Доказательства к экзамену по Математическому Анализу 3 семестр

Данил Заблоцкий 22 января 2024 г.

Содержание

1	Функции многих переменных	4
	1.2 Теорема о существовании производной функции по вектору .	4
2	Основные теоремы дифференциального исчисления функ-	
	ций многих переменных	4
	2.5 Теорема о среднем (аналог теоремы Лагранжа)	4
	2.6 Следствие теоремы о среднем	5
	2.7 Достаточное условие дифференцируемости функции	6
	2.9 Теорема о смешанных производных	7
	2.10 Формула Тейлора	9
	2.12 Необходимое условие локального экстремума	10
	2.14 Достаточное условие локального экстремума	11
	2.16 Теорема о неявной функции	12
3	Приложение теоремы о неявной функции	14
	3.18 Теорема о неявной функции	14
	3.22 Теорема о структуре касательного пространства	15
	3.25 Необходимое условие условного локального экстремума	17
	3.28 Достаточное условие условного локального экстремума	19
4	Теория рядов	22
	4.31 Критерий Коши сходимости числовых рядов	22
	4.32 Необходимое условие сходимости числового ряда	23
	4.33 Теорема об остатке ряда	23
	4.34 Теорема о сумме рядов и умножении ряда на число	25
	4.36 Основная теорема о сходимости положительных рядов	25
	4.37 Первый признак сравнения	25
	4.38 Второй признак сравнения	26
	4.39 Третий признак сравнения	26
	4.40 Интегральный признак сходимости Коши-Маклорена	27
	4.41 Радикальный признак Коши	28
	4.42 Признак Даламбера	28
	4.43 Признак Раббе	29

	4.44 Признак Кумера	30
	4.45 Признак Бертрана	32
	4.46 Признак Гаусса	35
	4.50 Следствие абсолютной сходимости ряда	3
	4.52 Признак Лейбница	3
	4.53 Признак Абеля	3!
	4.54 Признак Дирихле	30
	4.55 Сочетательное свойство сходящихся рядов	36
	4.56 Переместительное свойство сходящихся рядов	3'
	4.57 Теорема Римана о перестановке членов условно сходящегося	
	ряда	38
	4.58 Теорема Коши о произведении рядов	39
	4.63 Теорема о связи сходимости простого и повторного рядов	40
	4.64 Свойства двойного ряда	42
	4.65 Теорема о связи сходимости двойного и повторного рядов	44
	4.66 Теорема о связи сходимости двойного и простого рядов	4
5	Поточечная и равномерная сходимость семейства функций	4
	5.75 Критерий Коши сходимости семейства функций	4
	5.76 Следствие из критерия Коши сходимости семейства функций	4
_		4.
6	Функциональный ряд	46
	6.80 Критерий Коши равномерной сходимости ряда	46
	6.81 Следствие из критерия Коши равномерной сходимости ряда.	40
	6.82 Признак сравнения	4'
	6.83 Признак Вейерштрасса	4'
	6.84 Признак Абеля	4'
	6.85 Признак Дирихле	49
7	Свойства предельной функции	50
	7.86 Условия коммутирования двух предельных переходов	50
	7.87 Непрерывность предельной функции	5
	7.88 Интегрируемость предельной функции	5
	7.89 Теорема Дини	52
	7.90 Дифференцируемость предельной функции	5
8	Свойства предельной функции	5
	8.95 Теорема о сходимости степенного ряда	5
	8.97 Теорема Абеля о сумме степенного ряда	56
	8.98 Теорема об интегрировании степенного ряда	5'
	8.99 Теорема о дифференцировании степенного ряда	5'
	8.100 Теорема о единственности степенного ряда	58
	8.102Утверждение о связи степенного ряда и ряда Тейлора	59
	8.103Разложение элементарных функций в степенной ряд	59
9	Интегралы, зависящие от параметра	60
J	9.105 Теорема о непрерывности собственного интеграла, зависяще-	U
	го от параметра	60
	9.106Теорема о дифференцировании собственного интеграла, зави-	0(
	сяшего от параметра	6

	9.107Теорема об интегрировании собственного интеграла, завися-	
	щего от параметра	62
	9.110Утверждение об эквивалентности сходимости несобственного	
	интгерала, зависящего от параметра и семейства функций –	
	интегралов по верхнему пределу, зависящих от параметра	63
	9.111Критерий Коши равномерной сходимости несобственных ин-	
	тегралов, зависящих от параметра	64
	9.112Следствие критерия Коши равномерной сходимости несоб-	
	ственных интегралов, зависящих от параметра	64
	9.113Признак Вейерштрасса и его следствие	65
	9.114Признак Абеля	65
	9.115Признак Дирихле	66
10	Функциональные свойства несобственного интеграла, зави-	
	сящего от параметра	67
	10.11 Георема о предельном переходе под знаком несобственного	
	интеграла, зависящего от параметра	67
	10.11 Теорема о непрерывности несобственного интеграла, завися-	
	щего от параметра	68
	10.11 Георема о дифференцировании несобственного интеграла, за-	
	висящего от параметра	69
	10.11 Георема об интегрировании несобственного интеграла, зави-	
	сящего от параметра	69
	10.12 Теорема о перестановке двух несобственных интегралов, за-	
	висящих от параметра	70
11	Эйлеровы интегралы	71
	11.12 © войства бетта-функции	71
	11.12Свойства гамма-функции	74
12	Кратные интегралы. Мера Жордана в \mathbb{R}^n	77
	12.12Свойства клеточных множеств (1-6)	77
	12.12 Пемма о корректности определения меры клеточного множе-	
	ства	78
	12.13 \mathbb{C} войства меры клеточных множеств (1-4)	79
	12.13 Пемма о корректности определения меры измеримого по Жор-	
	дану множества	80
	12.13 Свойства множества меры нуль (1-3)	81
	12.13 К ритерий измеримости множества в \mathbb{R}^n	81
13	Определение и свойства кратного интеграла Римана	82
	13.14 Георема о сведении двойного интеграла по прямоугольнику к	
	повторному интегралу	82
	13.14 Георема о сведении двойного интеграла по элементарной об-	o :
	ласти к повторному интегралу	84

1 Функции многих переменных

1.2 Теорема о существовании производной функции по вектору

Утверждение. Пусть $f:D\to\mathbb{R}$ – дифференцируемо в точке $x_0\in D$. Тогда $\forall \vec{v}\in T\mathbb{R}^n_{x_0}\exists \frac{\partial f}{\partial \vec{v}}(x_0)$:

$$\frac{\partial f}{\partial \vec{v}}(x_0) = \frac{\partial f}{\partial x_1}(x_0) \cdot v_1 + \frac{\partial f}{\partial x_2}(x_0) \cdot v_2 + \ldots + \frac{\partial f}{\partial x_n}(x_0) \cdot v_n = df(x_0) \cdot \vec{v},$$

где $df(x_0) \cdot \vec{v}$ – скалярное произведение,

$$df(x_0) = \left\{ \frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0) \right\},$$

$$\vec{v} = \{v_1, v_2, \dots, v_n\}$$

Доказательство. Рассмотрим отображение $\gamma:[0;1] \to \mathbb{R}^n$:

$$\vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t \Leftrightarrow \vec{\gamma}(t) = \begin{cases} x_1 = x_0^{(1)} + v_1 \cdot t \\ x_2 = x_0^{(2)} + v_2 \cdot t \\ \vdots \\ x_n = x_0^{(n)} + v_n \cdot t \end{cases}, \quad t \in [0; 1]$$

Заметим, что $\gamma(t)$ дифференцируемо в точке $t=0\Rightarrow$ отображение $f\circ\gamma:[0;1]\to\mathbb{R}$ — дифференцируемо в точке t=0.

$$f \circ \gamma = f(\gamma(t)) \Rightarrow$$

$$\Rightarrow \frac{df(\gamma(t))}{dt}\bigg|_{t=0} = \left(\frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{dx_n}{dt}\right)\bigg|_{t=0} =$$

$$= \left(\frac{\partial f}{\partial x_1} \cdot v_1 + \frac{\partial f}{\partial x_2} \cdot v_2 + \dots + \frac{\partial f}{\partial x_n} \cdot v_n\right)\bigg|_{t=0} = df(\gamma(0)) \cdot \vec{v}$$

Если f дифференцируемо в точке $x_0 \Rightarrow \forall \vec{\gamma}(t) = \vec{x_0} + \vec{v} \cdot t$:

$$\frac{df(\gamma(t))}{dt} \coloneqq \lim_{t \to 0} \frac{f(x_0 + v \cdot t) - f(x_0)}{t} = \frac{\partial f}{\partial \vec{v}}(x_0)$$

2 Основные теоремы дифференциального исчисления функций многих переменных

2.5 Теорема о среднем (аналог теоремы Лагранжа)

2 ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ **Теорема 1** (О среднем). Пусть D – область в \mathbb{R}^n , $x \in D$, $x+h \in D$, $[x,x+h] \subset D$, $f:D \to \mathbb{R}$ – дифференцируемо на (x,x+h) и непрерывно на [x,x+h]. Тогда $\exists \xi \in (x,x+h)$:

$$f(x+h)-f(x)=f'(\xi)\cdot h=\frac{\partial f}{\partial x_1}(\xi)\cdot h^1+\frac{\partial f}{\partial x_2}(\xi)\cdot h^2+\ldots+\frac{\partial f}{\partial x_n}(\xi)\cdot h^n,$$

где $\{1, 2, \dots, n\}$ над h – индексы.

Доказательство. Рассмотрим отображение $\gamma:[0;1] \to D,$ определенное:

$$\gamma(t) = x + t \cdot h, \quad \gamma(t) = \begin{cases} x_1(t) = x_1 + t \cdot h^1 \\ x_2(t) = x_2 + t \cdot h^2 \\ \vdots \\ x_n(t) = x_n + t \cdot h^n \end{cases},$$

$$x = (x_1, x_2, \dots, x_n), \quad h = \{h^1, h^2, \dots, h^n\}, \ t \in [0; 1]$$

$$\gamma(0) = x, \\ \gamma(1) = x + h \quad , \quad [0; 1] \xrightarrow{\gamma} [x; x + h].$$

Заметим, что gamma(t) дифференцируемо на (0;1), непрерывно на [0;1], причем $(x_i(t))'=h^i$.

Рассмотрим функцию $F(t) = f(\gamma(t)), F: [0;1] \to \mathbb{R}$. Имеем:

- 1. F дифференцируема на (0;1) (как композиция двух дифференцируемых).
- 2. F непрерывна на [0;1] (как композиция двух непрерывных).

Следовательно, по теореме Лагранжа:

$$F(1) - F(0) = F'(\tau) \cdot (1 - 0), \ \tau \in (0; 1)$$

$$f(x + h) - f(x) = \left(f(\gamma(\tau))\right)' \cdot 1$$

$$\left(f(\gamma(\tau))\right)' \cdot 1 = f'(\gamma(\tau)) \cdot \gamma'(\tau) = \frac{\partial f}{\partial x_1} \cdot h' + \frac{\partial f}{\partial x_2} \cdot h_2 + \dots + \frac{\partial f}{\partial x_n} \cdot h^n.$$

Пусть $\gamma(\tau) = \xi \in D$, тогда:

$$f(x+h)-f(x)=\left(\frac{\partial f}{\partial x_1}(\xi)\right)\cdots\frac{\partial f}{\partial x_n}(\xi)\cdot\begin{pmatrix}h^1\\\vdots\\h^n\end{pmatrix}=f'(\xi)\cdot h.$$

2.6 Следствие теоремы о среднем

Следствие. Пусть D – область в \mathbb{R}^n , $f:D\to\mathbb{R}$ – дифференцируема на D и $\forall x\in D$ d(fx)=0 (то есть $\forall i$ $\frac{\partial f}{\partial x_i}=0$). Тогда f(x)=const.

Доказательство. Пусть $x_0 \in D$ и $B(x_0, \rho) \subset D$ — шар \exists , так как D — область. Тогда $\forall x \in B(x_0, \rho)$ [$x_0; x$] $\subseteq B(x_0, \rho) \subseteq D$. Следовательно:

$$f(x) - f(x_0) = f'(\xi) \cdot (x - x_0) = 0.$$

$$\left\{ \frac{\partial f}{\partial x_1}(\xi), \dots, \frac{\partial f}{\partial x_n}(\xi) \right\}$$

Таким образом, $\forall x \in B(x_0, \rho) \ f(x) = f(x_0)$. Построим путь из точки x_0 к некоторой точке $x \in D$:

$$\gamma:[0;1] \to D, \qquad \begin{array}{c} \gamma(0)=x_0 \\ \gamma(1)=x \end{array}.$$

По определению пути, γ – непрерывно. Тогда $\exists \delta: \ \forall 0 \leqslant t \leqslant \delta$

$$\gamma(t) \in B(x_0, \rho) \Rightarrow f(\gamma(t)) = f(x_0), \ t \in [0; \delta],$$

где t – точка из $B(x_0, \rho)$.

Пусть $\Delta = \sup \delta \Rightarrow f(\gamma(\Delta)) = f(x_0)$. Покажем, что $\Delta = 1$.

Пусть $\Delta < 1$ ($\Delta \neq 1$). Построим шар $B(\gamma(\Delta), \rho_{\Delta})$. Тогда $\exists \varepsilon > 0 : \Delta - \varepsilon < t < \Delta + \varepsilon$.

Но тогда $f(\gamma(\Delta+\varepsilon)) = f(x_0)$ (так как точка $\gamma(\Delta+\varepsilon) \in B(\gamma(\Delta), \rho_{\Delta})$) – противоречие с тем, что $\Delta = \sup \delta \Rightarrow \Delta = 1$.

 $\gamma(1)$ = x и f(x) = $f(x_0)$ \Rightarrow так как $x \in D$ – произведение точек, то имеем, что $\forall x \in D$ f(x) = $f(x_0)$ \Rightarrow f(x) – const.

2.7 Достаточное условие дифференцируемости функции

Теорема 2 (Достаточное условие дифференцируемости функции). Пусть D – область в $\mathbb{R}^n, \ f: D \to \mathbb{R}, \ f$ имеет непрерывные частные производные в каждой окрестности точки $x \in D$. Тогда f – дифференцируема в точке x.

Доказательство. Без ограничения общности, будем считать, что окрестность точки $x_0 \in D$ является шаром $B(x_0, \rho) \subset D$.

Пусть $h: x_0 + h \in B(x_0, \rho)$. Здесь

$$x_0 = (x^1, x^2, \dots, x^n)$$

 $x_0 + h = (x^1 + h^1, x^2 + h^2, \dots, x^n + h^n)$.

Заметим, что точки

$$x_1 = (x^1, x^2 + h^2, \dots, x^n + h^n)$$

$$x_2 = (x^1, x^2, x^3 + h^3, \dots, x^n + h^n)$$

$$\vdots$$

$$x_{n-1} = (x^1, x^2, x^3, \dots, x^{n-1}, x^n + h^n)$$
 $\in B(x_0, \rho).$

$$f(x_0+h)-f(x_0)=\\ =f(x_0+h)-f(x_1)+f(x_1)-f(x_2)+f(x_2)-\dots\\ \dots-f(x_{n-1})+f(x_{n-1})-f(x_0)=\\ =f(x^1+h^1,\dots,x^n+h^n)-f(x^1,x^2+h^2,\dots,x^n+h^n)+\\ +f(x^1,x^2+h^2,\dots,x^n+h^n)-f(x^1,x^2,\dots,x^n+h^n)+\\ +f(x^1,x^2,\dots,x^n+h^n)-\dots-f(x^1,x^2,\dots,x^{n-1},x^n)+\\ +f(x^1,x^2,\dots,x^{n-1},x^n+h^n)-f(x^1,x^2,\dots,x^n)=\\ =\left|\begin{array}{c} \text{Теорема Лагранжа для}\\ \text{функции одной переменной} \end{array}\right|=\\ =\frac{\partial f}{\partial x_1}(x^1+\theta^1h^1,x^2+h^2,\dots,x^n+h^n)\cdot h^1+\\ +\frac{\partial f}{\partial x^2}(x^1,x^2+\theta^2h^2,\dots,x^n+h^n)\cdot h^2+\dots\\ \dots+\frac{\partial f}{\partial x^n}(x^1,x^2,\dots,x^n+\theta^nh^n)\cdot h^n.$$

Используя непрерывность частных производных, запишем:

$$f(x_0 + h) - f(x_0) =$$

$$= \frac{\partial f}{\partial x^1} (x^1, x^2, \dots, x^n) \cdot h^1 + \alpha^1(h^1) + \dots$$

$$\dots + \frac{\partial f}{\partial x^n} (x^1, x^2, \dots, x^n) \cdot h^n + \alpha^n(h^n),$$

где $\alpha^1, \alpha^2, \dots, \alpha^n$ стремятся к нулю при $\vec{h} \to 0$. Это означает, что:

$$f(x_0 + h) - f(x_0) = L(x_0) \cdot h + \underset{h \to 0}{o}(h)$$
(где $L(x_0) = \frac{\partial f}{\partial x^1}(x_0) \cdot h^1 + \ldots + \frac{\partial f}{\partial x^n}(x_0) \cdot h^n = df(x_0)$) \Rightarrow

 \Rightarrow по определению f(x) дифференцируема в точке x_0 .

2.9 Теорема о смешанных производных

Теорема 3 (О смешанных производных). Пусть D — область в \mathbb{R}^n , f: $D \to \mathbb{R}, \ x \in D$, f имеет в D непрерывные смешанные производные (второго порядка). Тогда эти производные не зависят от порядка дифференцирования.

2 ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИ**Я** ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Доказательство. Пусть $\frac{\partial^2 f}{\partial x^i \partial x^j}$ и $\frac{\partial^2 f}{\partial x^j \partial x^i}$ – непрерывны в точке $x \in D$. Так как остальные переменные фиксированы, то можно считать,

что f зависит только от двух переменных. Тогда $D \subset \mathbb{R}^2, \ f:D \to \mathbb{R}$ и $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ – непрерывны в точке $x_0 = (x, y) \in D.$

Покажем, что $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. Рассмотрим функции:

$$\begin{aligned} \phi(t) &= f(x+t\cdot\Delta x,y+\Delta y) - f(x+t\cdot\Delta x,y) \\ \psi(t) &= f(x+\Delta x,y+t\cdot\Delta y) - f(x,y+t\cdot\Delta y) \end{aligned} , \quad t \in [0;1].$$

Имеем:

$$\phi(1) - \phi(0) = f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) - f(x, y + \Delta y) + f(x, y)$$

$$\psi(1) - \psi(0) = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) - f(x + \Delta x, y) + f(x, y)$$

Тогда:

$$\phi(1) - \phi(0) = \psi(1) - \psi(0) \tag{1}$$

$$\begin{split} \phi(1) - \phi(0) &= \phi'(\xi) \cdot (1 - 0) = \\ &= \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y + \Delta y) \cdot \Delta x + \frac{\partial f}{\partial y} (x + \xi \cdot \Delta x, y + \Delta y) - \\ &\quad - \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y) \cdot \Delta x - \frac{\partial f}{\partial y} (x + \xi \cdot \Delta x, y) \cdot 0 = \\ &= \left(\frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y + \Delta y) - \frac{\partial f}{\partial x} (x + \xi \cdot \Delta x, y) \right) = \\ &= \left| \begin{array}{c} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{array} \right| = \\ &= \frac{\partial^2 f}{\partial x \partial y} (x + \xi \cdot \Delta x, y + \eta \cdot \Delta y) \Delta x \Delta y. \end{split}$$

Положим $(x + \xi \Delta x, y + \eta \cdot \Delta y) = P \in \Pi$.

Аналогично:

$$\psi(1) - \psi(0) = \psi'(\xi) \cdot (1 - 0) =$$

$$= \frac{\partial f}{\partial x} (x + \Delta x, y + \xi \cdot \Delta y) \cdot 0 + \frac{\partial f}{\partial y} (x + \Delta x, y + \xi \cdot \Delta y) \cdot \Delta y -$$

$$- \frac{\partial f}{\partial x} (x, y + \xi \cdot \Delta y) \cdot 0 - \frac{\partial f}{\partial y} (x, y + \xi \cdot \Delta y) \cdot \Delta y =$$

$$= \left(\frac{\partial f}{\partial y} (x + \Delta x, y + \xi \cdot \Delta y) - \frac{\partial f}{\partial y} (x, y + \xi \cdot \Delta y) \right) \Delta y =$$

$$= \begin{vmatrix} \text{по теореме Лагранжа для} \\ \text{функции 1-ой переменной} \end{vmatrix} =$$

$$= \frac{\partial^2 f}{\partial y \partial x} (x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) \Delta y \Delta x$$

Положим, что $(x + \tau \cdot \Delta x, y + \xi \cdot \Delta y) = Q$. Тогда из 1 следует, что:

$$\begin{array}{cccc} \frac{\partial^2 f}{\partial x \partial y}(P) \Delta x \Delta y & = & \frac{\partial^2 f}{\partial y \partial x}(Q) \Delta x \Delta y \\ & & & & & & & \\ \frac{\partial^2 f}{\partial x \partial y} \big(x + \xi \cdot \Delta x, y + \eta \cdot \Delta y \big) & = & \frac{\partial^2 f}{\partial y \partial x} \big(x + \tau \cdot \Delta x, y + \xi \cdot \Delta y \big) \end{array}.$$

Используя непрерывность частных производных при $\Delta x \to 0$ и $\Delta y \to 0 \Rightarrow$

$$x + \xi \cdot \Delta x \to x$$
, $y + \eta \cdot \Delta y \to y$.

Таким образом,

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

2.10 Формула Тейлора

Теорема 4 (Формула Тейлора). Пусть D – область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f\in C^{(k)}(D,\mathbb{R}),\ x\in D,\ x+h\in D,\ [x;x+h]\subset D.$ Тогда:

$$f(x+h) = f(x) + \sum_{i=1}^{k-1} \frac{1}{i!} \left(\frac{\partial}{\partial x^1} \cdot h^1 + \ldots + \frac{\partial}{\partial x^n} \cdot h^n \right)^i \cdot f(x) + R^k,$$

где R^k – остаточный член,

$$R^{k} = \frac{1}{k!} \left(\frac{\partial}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial}{\partial x^{n}} \cdot h^{n} \right)^{k} \cdot f(x + \xi \cdot h),$$
$$x = (x^{1}, \dots, x^{n}), \quad h = (h^{1}, \dots, h^{n}).$$

Доказательство. Рассмотрим функцию:

$$\phi(t) = f(x + t \cdot h), \ t \in [0; 1]$$

Применим формулу Тейлора к $\phi(t)$:

$$\phi(1) = \phi(0) + \frac{1}{1!} \cdot \phi'(0) \cdot (1 - 0) + \frac{1}{2!} \cdot \phi''(0) \cdot (1 - 0)^{2} + \frac{1}{3!} \cdot \phi'''(0) \cdot (1 - 0)^{3} + \dots + \frac{1}{k!} \cdot \phi^{(k)} \cdot (1 - 0)^{k}.$$
 (2)

$$\phi(1) = f(x+h), \quad \phi(0) = f(x).$$

$$\phi'(0) = f'(x+th) \cdot (x+t \cdot h)_k' \Big|_{t=0} =$$

$$= \left(\frac{\partial f(x+t \cdot h)}{\partial x^1} \quad \frac{\partial f(x+t \cdot h)}{\partial x^2} \quad \dots \quad \frac{\partial f(x+t \cdot h)}{\partial x^n} \right) \cdot \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix} \Big|_{t=0} =$$

$$= \left(\frac{\partial f(x+t \cdot h)}{\partial x^1} \cdot h^1 + \frac{\partial f(x+t \cdot h)}{\partial x^2} \cdot h^2 + \dots + \frac{\partial f(x+t \cdot h)}{\partial x^n} \cdot h^n \right) \Big|_{t=0} =$$

$$= \frac{\partial f}{\partial x^1}(x) \cdot h^1 + \frac{\partial f}{\partial x^2}(x) \cdot h^2 + \dots + \frac{\partial f}{\partial x^n}(x) \cdot h^n =$$

$$= \left(\frac{\partial}{\partial x^1} \cdot h^1 + \dots + \frac{\partial}{\partial x^n} \cdot h^n \right) \cdot f(x)$$

$$\phi''(0) = \left(\sum_{i=1}^{n} \frac{\partial f(x+t \cdot h)}{\partial x^{i}} \cdot h^{i}\right)_{t}^{\prime} \bigg|_{t=0} =$$

$$= \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x+t \cdot h)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j}\right) \bigg|_{t=0} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j} =$$

$$= \left(\frac{\partial}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial}{\partial x^{n}} \cdot h^{n}\right)^{2} \cdot f(x)$$

И так далее. Подставим получившиеся выражения в 2 и получим искомое. \Box

2.12 Необходимое условие локального экстремума

Теорема 5 (Необходимое условие локального экстремума). Пусть D- область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ x_0\in D-$ точка локального экстремума, тогда в точке $x_0\ \forall i=\overline{1,n}$

$$\frac{\partial(x_0)}{\partial x^i} = 0.$$

Доказательство. Фиксируем все переменные за исключением x^i , тогда можно рассматривать функцию $f(x^1,\dots,x^i,\dots,x^n)$ как функцию одной переменной, для которой x_0 – точка локального экстремума, следовательно $\frac{\partial f}{\partial x^i}(x_0)=0,$

i – произвольная $\Rightarrow \forall i$ выполняется.

2.14 Достаточное условие локального экстремума

Теорема 6 (Достаточное условие локального экстремума). Пусть D – область в \mathbb{R}^n , $f: D \to \mathbb{R}$ дифференцируема в точке $x \in D$, x – критическая точка для $f, f \in C^n(D, \mathbb{R}), n = 2$. Тогда, если:

- 1. Q(h) знакоположительна, то в точке x локальный минимум.
- 2. Q(h) знакоотрицательна, то в точке x локальный максимум.
- 3. Q(h) может принимать различные значения (> 0,< 0), тогда в точке x нет экстремума.

Доказательство. По формуле Тейлора:

$$\begin{split} f(x+h) - f(x) &= \frac{1}{2} \cdot \sum_{i,j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot h^{i} h^{j} + o\left(\|h\|^{2}\right) = \\ &= \frac{\|h\|^{2}}{2} \cdot \left(\sum_{i,j=1}^{n} \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}} \cdot \frac{h^{i}}{\|h\|} \frac{h^{j}}{\|h\|} + \alpha(h)\right) = \begin{vmatrix} \text{где } \alpha(h) \to 0 \text{ при} \\ h \to 0 \end{vmatrix} = \\ &= \frac{\|h\|^{2}}{2} \cdot \left(Q\left(\frac{h}{\|h\|}\right) + \alpha(h)\right). \end{split}$$

Вектор $\frac{h}{\|h\|} < S^{(n-1)}$ — единичная (n-1)-мерная сфера. Сфера $S^{(n-1)}$ — компактное множество \Rightarrow по теореме Больцано - Вейерштраса, $\exists e_1, e_2 \in S^{(n-1)}$:

$$Q_1(e_1) = \max Q(h) = M$$
, $Q_2(e_2) = \min Q(h) = m$

1. Если Q(h) — знакоположительна $\Rightarrow m>0$. Следовательно, $\exists \partial>0: \forall h \ \|h\|<\partial, \ |\alpha(h)|< m$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) > 0,$$

следовательно, $\forall h: \|h\| < \delta$

$$f(x+h) - f(x) > 0,$$

2 ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ по определению, x – точка локального минимума (здесь $\|h\| < \delta$ – аналог понятия окрестности точки x).

2. Если Q(h) — знакоотрицательна, то M < 0. Тогда $\exists \delta > 0: \forall h \ \|h\| < \delta \ |\alpha(h)| < -M$

$$Q\left(\frac{h}{\|h\|}\right) + \alpha(h) < 0,$$

следовательно, $\forall h: \|h\| < \delta$

$$f(x+h) - f(x) < 0,$$

тогда x – точка локального максимума.

3. Если Q(h) – знакопеременна, то $m < 0 < M, \ \forall t > 0$

$$Q(t \cdot e_2) < 0$$
, $Q(t \cdot e_1) > 0$,

тогда в точке x нет экстремума.

2.16 Теорема о неявной функции

Теорема 7 (О неявной функции). Пусть F(x,y) отображает окрестность $U(x_0;y_0) \subset \mathbb{R}^2$ в \mathbb{R} , $F:U(x_0,y_0) \to \mathbb{R}$.

Пусть F имеет следующие свойства:

- 1. $F(x_0, y_0) = 0$.
- 2. $F(x,y) \in C^P(U,\mathbb{R}), p \ge 1.$
- 3. $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$.

Тогда \exists открезки $I_x, I_y: f: I_x \to I_y$:

- 1. $I_x \times I_y \subset U(x_0, y_0)$.
- 2. $\forall x \in I_x \ y = f(x) \Leftrightarrow F(x,y) = 0$.
- 3. $f \in C^P(I_x, I_y)$.
- 4. $\forall x \in I_x \ f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}$.

Доказательство. Будем считать, что окрестность $U(x_0,y_0)$ – круг с центром в точке (x_0,y_0) . Для определенности будем считать, что $F_y'(x_0,y_0)>0$.

В силу непрерывности F'_y \exists окрестность $V(x_0,y_0) \subset U(x_0,y_0)$: $\forall (x,y) \in V$ $F'_y(x,y) > 0$. Если посмотрим на функцию F(x,y) при фиксированной x как на функцию по переменной y, то $F(\overline{x},y)$ будет монотонной (в силу того, что $F'_y(\overline{x},y) > 0$). Тогда для $\beta = \frac{1}{2}\tau$, где τ – радиус круга

 $U(x_0, y_0)$.

$$F(x_0, y_0 - \beta) < F(x_0, y_0) < F(x_0, y_0 + \beta)$$

Так как F(x,y) непрерывна, то $\exists \delta > 0: \forall x \in [x_0 - \delta, x_0 + \delta]$

$$F(x, y_0 - \beta) < 0$$
, $F(x, y_0 + \beta) > 0$.

При фиусированном x функция $f(\overline{x}, y)$ непрерывно монотонна, на концах отрезка $[y_0 - \beta; y_0 + \beta]$ имеет разные знаки, тогда $\exists ! y_x \in [y_0 - \beta; y_0]$ $\beta; y_0 + \beta]$: $F(\overline{x}, y_x) = 0$. В силу непрерывности F(x, y) по $x, \exists \delta > 0$: $\forall x \in [x_0 - \delta; x_0 + \delta] \ F(x, y_x = 0).$

Определим функцию $f:[x_0-\delta;x_0+\delta] \to [y_0-\beta;y_0+\beta]$ положив, что $y = f(x) \Leftrightarrow F(x,y) = 0$, то есть $y_x = f(x)$. Положим $f \in C^{(P)}(I_x, I_y)$.

1. Покажем, что f – непрерывна.

Для начала покажем, что f непрерывна в точке x_0 .

Пусть $\varepsilon > 0$ задано. Покажем, что $\exists \delta > 0: \forall x \in (x_0 - \delta; x_0 + \delta) \Rightarrow$ $f(x) \in (y_0 - \varepsilon; y_0 + \varepsilon).$

Будем считать, что $\varepsilon < \beta \Rightarrow [y_0 - \varepsilon; y_0 + \varepsilon] \subset [y_0 - \beta; y_0 + \beta] \Rightarrow$ найдется отрезок $[x_0 - \delta; x_0 + \delta]$ и функция

$$\hat{f}(x) : [x_0 - \delta; x_0 + \delta] \to [y_0 - \varepsilon; y_0 + \varepsilon],$$
$$\hat{f}(x) = y \Leftrightarrow F(x, y) = 0.$$

Ho на $[x_0 - \delta; x_0 + \delta] \hat{f}(x) \equiv f(x) \Rightarrow f([x_0 - \delta; x_0 + \delta]) \subset [y_0 - \varepsilon; y_0 + \varepsilon] \Rightarrow$ f(x) непрерывна в точке x_0 .

Теперь, пусть $x \in I_x = [x_0 - \delta; x_0 + \delta].$

Для точки (x,y_x) выполнены все условия теоремы $\Rightarrow \exists$ отрезок $[x-\alpha;x+\alpha]=\widehat{I}_x$ и $[y_x-\gamma;y_x+\gamma]=\widehat{I}_y$ и функция $g:\widehat{I}_x\to\widehat{I}_y:\ g(\overline{x})=$ $y \Leftrightarrow F(\overline{x}, y) = 0 \ \forall \overline{x} \in \widehat{I}_x.$

Ho на отрезке $[x - \alpha; x + \alpha]$ функция $g(x) \equiv f(x)$.

По построению g(x) непрерывна в точке x, следовательно и f(x)непрерывна в точке x.

2. Покажем, что f(x) дифференцируема на I_x .

Пусть $x \in I_x$, $x + \Delta x \in I_x$, y = f(x), $y + \Delta y = f(x + \Delta x)$. Тогда

$$0 = F(x + \Delta x, y + \Delta y) - F(x, y) =$$

$$\begin{vmatrix} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\$$

$$\Rightarrow \frac{\Delta y}{\Delta x} = \frac{-F_x'(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y)}{F_y'(x + \theta \cdot \Delta x, y + \theta \cdot \Delta y)}$$

Поскольку f – непрерывная функция, то при $\Delta x \to 0: \Delta y \to 0$ $0 (f(x + \Delta x) - f(x) = \Delta y \rightarrow 0)$. Тогда:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{-F'_x(x, y)}{F'_y(x, y)}$$
(3)

Из теоремы о непрерывности композиции непрерывной функции $\Rightarrow f'(x)$ – непрерывна в точке $x \Rightarrow f \in C^{(1)}(I_x, I_y)$.

Если $F \in C^{(p)}(U, \mathbb{R}), p > 1$, то:

$$f''(x) = \left(-\frac{F_x'(x,y)}{F_y'(x,y)}\right)' = \frac{(-F_x')' \cdot F_y' + F_x' \cdot (F_y')'}{(F_y')^2} = -\left(F_{xx}'' + F_{xy}'' \cdot f'(x)\right) \cdot F_y' + F_x' \cdot \left(F_{yx}'' + F_{yy}'' \cdot f'(x)\right) = \frac{y'(x)}{(F_y')^2}, \quad (4)$$

где $F''_{xx}, F''_{xy}, F''_{yy}$ вычисляются в точке $(x, f(x)) \Rightarrow f(x) \in C^{(2)}(I_x, I_y)$, если $F(x, y) \in C^{(2)}(U, \mathbb{R})$.

Заметим, что в левой части выражения 4 производная функции fимеет порядок на 1 больше, чем производная функции f в правой части. Тогда по индукции можно показать, что $f \in C^{(p)}(I_x, I_y)$, если $F(x,y) \in C^{(p)}(U,\mathbb{R})$.

3 Приложение теоремы о неявной функции

3.18 Теорема о неявной функции

Теорема 8 (О неявной функции, общий случай). Пусть $F:U(x_0,y_0) \to$ \mathbb{R}^n , где $U(x_0, y_0) \subset \mathbb{R}^{m+n}$ — окрестность точки (x_0, y_0) такая, что

- $1. \ F \in C^{(p)}(U,\mathbb{R}^n), \ p \geqslant 1.$ $2. \ F(x_0,y_0) = 0.$ $3. \ F_y'(x_0,y_0) \text{обратная матрица}.$

Тогда $\exists (n+m)$ -мерный промежуток $I = I_x^m \times I_y^n \subset U(x_0; y_0)$, где

$$I_x^m = \left\{ x \in \mathbb{R}^m \mid |x - x_0| < \alpha \right\},$$

$$I_x^m = \left\{ y \in \mathbb{R}^n \mid |y - y_0| < \beta \right\},$$

- $\forall (x,y) \in I_x^m \times I_y^n \ F(x,y) = 0 \Leftrightarrow y = f(x).$ $f'(x) = -[F'_y(x,y)]^{-1} \cdot F'_x(x,y).$

Доказательство. Например, можно посмотреть в Зориче (надо найти).

3.22Теорема о структуре касательного пространства

Теорема 9 (О структуре касательного пространства). Пусть S - k-мерная поверхность в \mathbb{R}^n , $x_0 \in S$. Тогда касательное пространство TS_{x_0} в точке x_0 состоит из направляющих векторов касательных к гладким кривым на поверхности S, проходящих через точку x_0 .

Доказательство. Пусть x = x(t) – гладкая кривая в \mathbb{R}^n , то есть

$$\begin{cases} x^1 = x^1(t) \\ \vdots \\ x^n = x^n(t) \end{cases}, t \in \mathbb{R}.$$

 $x_0 = x(t_0)$. Касательный вектор в точке x_0 к кривой имеет вид:

$$\begin{pmatrix} \frac{dx^1}{dt}(t_0) \\ \vdots \\ \frac{dx^n}{dt}(t_0) \end{pmatrix} = \begin{pmatrix} x^{1'}(t_0) \\ \vdots \\ x^{n'}(t_0) \end{pmatrix}.$$

1. Пусть S-k-мерная поверхность, задана системой уравнений F(x) = 0 и пусть x = x(t) – гладкая кривая на S. Покажем, что вектор

$$x'(t_0) = \begin{pmatrix} \frac{dx^1}{dt}(t_0) \\ \vdots \\ \frac{dx^n}{dt}(t_0) \end{pmatrix}$$
: $x'(t_0) \in TS_{x_0}, \ x_0 = x(t_0), \text{ то есть покажем,}$

что $x'(t_0)$ удовлетворяет уравнению $F_x'(t_0) \cdot \xi = 0$.

Так как кривая x = x(t) лежит на S, то F(x(t)) = 0 – верно. Продифференцируем F(x(t)) = 0 по t в точке x_0 :

$$F_x'(x_0) \cdot x'(t_0) = 0,$$

это и есть уравнение касательного пространства, то есть $x'(t_0)$ удовлетворяет уравнению касательного пространства $F_x'(x_0) \cdot \xi$ =

2. Пусть $\xi = (\xi^1, \xi^2, \dots, \xi^n) \in TS_{x_0}$, то есть ξ удовлетворяет уравнению $F'_x(x_0) \cdot \xi = 0$

Покажем, что \exists гладкая кривая l на поверхности S:

• $x_0 \in l$

• ξ ялвяется направляющим вектором касательной к l в точке x_0

Поверхность S задана системой уравнений:

$$\begin{cases} F^{1}(x) = 0 \\ \vdots \\ F^{n-k}(x) = 0 \end{cases}$$
 (5)

Пусть

$$\begin{vmatrix} \frac{\partial F^1}{\partial x^{k+1}} & \dots & \frac{\partial F^1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^{n-k}}{\partial x^{k+1}} & \dots & \frac{\partial F^{n-k}}{\partial x^n} \end{vmatrix} (x_0) \neq 0.$$

По теореме о неявной функции, система 5 эквивалентна системе:

$$\begin{cases} x^{k+1} = f^1(x^1, \dots, x^k) \\ \vdots \\ x^n = f^{n-k}(x^1, \dots, x^k) \end{cases}$$
 (6)

Обозначим $u=(x^1,\dots,x^k),\ v=(x^{k+1},\dots,x^n),$ тогда 6 имеет вид: v=f(u).

Тогда по утверждению касательное пространство задается уравнениями:

$$\begin{cases}
x^{k+1} = x_0^{k+1} + \frac{\partial f^1}{\partial x^1}(x_0) \cdot (x^1 - x_0^1) + \dots + \frac{\partial f^1}{\partial x^k}(x_0) \cdot (x^k - x_0^k) \\
\vdots \\
x^n = x_0^n + \frac{\partial f^{n-k}}{\partial x^1}(x_0) \cdot (x^1 - x_0^1) + \dots + \frac{\partial f^{n-k}}{\partial x^k}(x_0) \cdot (x^k - x_0^k)
\end{cases} (7)$$

Пусть

$$\eta = \begin{pmatrix} \eta' \\ \vdots \\ \eta^k \\ \eta^{k+1} \\ \vdots \\ \eta^n \end{pmatrix} = \begin{pmatrix} x^1 - x_0^1 \\ \vdots \\ x^k - x_0^k \\ x^{k+1} - x_0^{k+1} \\ \vdots \\ x^n - x_0^n \end{pmatrix}.$$

Тогда система 7 примет вид:

$$\begin{cases}
\eta^{k+1} = \frac{\partial f^1}{\partial x^1}(x_0) \cdot \eta^1 + \ldots + \frac{\partial f^1}{\partial x^k}(x_0) \cdot \eta^k \\
\vdots \\
\eta^n = \frac{\partial f^{n-k}}{\partial x^1}(x_0) \cdot \eta^1 + \ldots + \frac{\partial f^{n-k}}{\partial x^k}(x_0) \cdot \eta^k
\end{cases} (8)$$

Таким образом, если вектор $\xi \in TS_{x_0}$, то он полностью определяется своими первыми k координатами, а остальные можно волучить с помощью системы 8.

Построим кривую в \mathbb{R}^n , то есть зададим ее уравнением x = x(t):

$$l: \begin{cases} x^{1} = x_{0}^{1} + \xi^{1}t \\ \vdots \\ x^{k} = x_{0}^{k} + \xi^{k}t \\ x^{k+1} = f^{1}(x_{0}^{1} + \xi^{1}t, \dots, x_{0}^{k} + \xi^{k}t) \\ \vdots \\ x^{n} = f^{n-k}(x_{0}^{1} + \xi^{1}t, \dots, x_{0}^{k} + \xi^{k}t) \end{cases}$$
 $v = f(u)$ (9)

Пусть точка x_0 соответствует параметру t = 0:

$$x(0) = \begin{cases} x^1 = x_0^1 \\ \vdots \\ x^k = x_0^k \\ x^{k+1} = f^1(x_0^1, \dots, x_0^k) \\ \vdots \\ x^n = f^{n-k}(x_0^1, \dots, x_0^k) \end{cases},$$

то есть кривая проходит через точку x_0 .

Далее, функция f удовлетворяет условию $v=f(u) \Leftrightarrow F(u,v)=0$. Тогда $F(u,f(u))=0 \Rightarrow l$, заданная системой $9,\ l \in S$.

$$(9)'_{t}: x'_{t}(0) = \begin{pmatrix} \xi^{1} \\ \vdots \\ \xi^{k} \\ \frac{\partial f^{1}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial f^{1}}{\partial x^{k}}(x_{0}) \cdot \xi^{k} \\ \vdots \\ \frac{\partial f^{n-k}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial f^{n-k}}{\partial x^{k}}(x_{0}) \cdot \xi^{k} \end{pmatrix} = \begin{pmatrix} \xi^{1} \\ \vdots \\ \xi^{k} \\ \xi^{k+1} \\ \vdots \\ \xi^{n} \end{pmatrix}.$$

Таким образом построили гладкий путь, лежащий на поверхности S, проходящий через точку $x_0 \in S$, вектор $x'(t_0)$ – его касательный вектор $\in TS_{x_0}$.

3.25 Необходимое условие условного локального экстремума

Теорема 10 (Необходимое условие условного локального экстремума). Пусть система уровнений

$$\begin{cases}
F^{1}(x^{1}, \dots, x^{n}) = 0 \\
\vdots \\
F^{n-k}(x^{1}, \dots, x^{n}) = 0
\end{cases}$$
(10)

задает (n-k)-мерную гладкую поверхность S в $D \subset \mathbb{R}^n$, D – область. Функция $f:D \to \mathbb{R}$ – гладкая. Если $x_0 \in S$ является точкой условного локального экстремума для функции f, то существует такой набор

чисел $\lambda_1, \lambda_2, \dots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0).$$

Лемма 1. Если x_0 – точка условного локального экстремума для функции f и x_0 не является критической для функции f (то есть $df(x_0) \neq 0$), то касательное пространство $TS_{x_0} \subset TN_{x_0}$, где

$$N_{x_0} = \{x \in D \mid f(x) = f(x_0)\},\$$

– поверхность уровня, проходящая через x_0 .

Доказательство. Касательное пространство TS_{x_0} задается системой уравнений:

$$\begin{cases}
\frac{\partial F^{1}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial F^{1}}{\partial x^{n}}(x_{0}) \cdot \xi^{n} = 0 \\
\vdots \\
\frac{\partial F^{n-k}}{\partial x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\partial F^{n-k}}{\partial x^{n}}(x_{0}) \cdot \xi^{n} = 0
\end{cases} ,$$
(11)

но $\forall i = \overline{1, n-k}$:

$$\left\{\frac{\partial F^i}{\partial x^1}\cdot (x_0),\ldots,\frac{\partial F^i}{\partial x^n}\cdot (x_0)\right\} = \operatorname{grad} F^i(x_0).$$

Перепишем 11 в виде:

$$\begin{cases}
\left(gradF^{1}(x_{0}),\xi\right) = 0 \\
\vdots \\
\left(gradF^{n-k}(x_{0},),\xi\right) = 0
\end{cases}$$
(12)

Касательное пространство TN_{x_0} к N_{x_0} = $\{x \in D \mid f(x) = f(x_0)\}$ задается уравнением: $f'(x_0) \cdot \xi = 0$. Заметим, что:

$$f'(x_0) = gradf(x_0) = \left\{ \frac{\partial f(x_0)}{\partial x^1}, \dots, \frac{\partial f(x_0)}{\partial x^n} \right\} \Rightarrow$$

$$\Rightarrow f'(x_0) \cdot \xi = 0 \Leftrightarrow \left(gradf(x_0), \xi \right) = 0 \tag{13}$$

Таким образом из леммы 1 следует, что $\forall \xi$, удовлетворяющего системе уравнений 12, так же удовлетворяет уравнению 13, то есть из того, что $\forall i \in \overline{1,n-k}$

$$\xi \perp gradF^{i}(x_{0}) \Rightarrow \xi \perp gradf(x_{0}) \Rightarrow$$

 $\Rightarrow \exists \lambda_1, \dots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0).$$

3.28 Достаточное условие условного локального экстремума

Теорема 11 (Достаточное условие условного экстремума). Если при введенных выше условиях квадратичная форма

$$Q(\xi) = \sum_{i,j=1}^{n} \frac{\partial^{2} L}{\partial x^{i} \partial x^{j}} (x_{0}) \cdot \xi^{i} \xi^{j}, \ \left(\xi = (\xi^{1}, \dots, \xi^{n}) \right)$$

- 1. Знакоопределена на TS_{x_0} :
 - ullet если Q знакоположительна, то точка x_0 точка условного локального min
 - ullet если Q знакоотрицательна, то точка x_0 точка условного локального max
- 2. Если Q может принимать значения разных знаков, то в точке x_0 условного экстремума не наблюдается.

Доказательство. Заметим, что $f|_S$ и $L|_S$ совпадают. В самом деле, если $x \in S$, то:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{k} \lambda_i \cdot F^i(x) = f(x).$$

Поэтому покажем, что условие знакопостоянства Q является достаточным для экстремума функции $L|_{\mathfrak{s}}$.

Имеем, что

$$\begin{cases} \frac{\partial L}{\partial x^1}(x_0) = 0\\ \vdots\\ \frac{\partial L}{\partial x^n}(x_0) = 0 \end{cases}$$

По формуле Тейлора:

$$L|_{S}(x) - L(x_{0}) = \sum_{i,j=1}^{n} \frac{\partial^{2} L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot (x^{i} - x_{0}^{i})(x^{j} - x_{0}^{j}) + o(\|x - x_{0}\|^{2})$$
(14)

Так как S-m=(n-k)-мерная поверхность, то существует гладкое отображение $x(t): \mathbb{R}^m \to \mathbb{R}^n: x=x(t) \in S \ \forall t \in \mathbb{R}^m, \ x(0)=x_0.$ Отображение x(t) биективно отображает \mathbb{R}^m на $U_S(x_0)=U(x_0)\cap S.$

Если $x \in S$, то условие дифференцируемости x(t):

$$x - x_0 = x\left(\underset{\in \mathbb{R}^m}{t}\right) - x(0) = x'(0) \cdot t + o(||t||)$$

$$\begin{cases} x^{1} - x_{0}^{1} = \frac{\partial x^{1}}{\partial t^{1}}(0) \cdot t^{1} + \ldots + \frac{\partial x^{1}}{\partial t^{m}}(0) \cdot t^{m} + o(\|t\|) \\ \vdots \\ x^{n} - x_{0}^{n} = \frac{\partial x^{n}}{\partial t^{1}}(0) \cdot t^{1} + \ldots + \frac{\partial x^{n}}{\partial t^{m}}(0) \cdot t^{m} + o(\|t\|) \\ \text{или кратко} \\ \begin{cases} x^{1} - x_{0}^{1} = \sum_{i=1}^{m} \frac{\partial x^{1}}{\partial t^{i}}(0) \cdot t^{i} + o(\|t\|) \\ \vdots \\ x^{n} - x_{0}^{n} = \sum_{i=1}^{m} \frac{\partial x^{n}}{\partial t^{i}}(0) \cdot t^{i} + o(\|t\|) \end{cases}$$

$$(15)$$

Подставим 15 в 14:

$$\begin{split} L\big|_{S}(x) - L(x_{0}) &= \frac{1}{2} \cdot \sum_{i,j=1}^{n} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha} + o(\|t\|)\right)}_{x^{i} - x_{0}^{i}} \cdot \underbrace{\left(\sum_{\beta=1}^{m} \frac{\partial x^{j}}{\partial t^{\beta}}(0) \cdot t^{\beta} + o(\|t\|)\right)}_{x^{j} - x_{0}^{j}} + o(\|t\|) + o(\|x - x_{0}\|^{2}) = \\ &= \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}} \cdot \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right)}_{x^{j} - x_{0}^{j}} \cdot \underbrace{\left(\sum_{\beta=1}^{m} \frac{\partial x^{i}}{\partial t^{\beta}}(0) \cdot t^{\beta}\right)}_{x^{j} - x_{0}^{j}} + \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right)}_{x^{j} - x_{0}^{j}} \cdot \underbrace{\left(\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right)}_{x^{j} - x_{0}^{j}} + o(\|t\|^{2}) = \underbrace{\frac{\|t\|^{2}}{2}}_{x^{j} - x_{0}^{j}} \cdot \underbrace{\sum_{i,j=1}^{m} \frac{\partial^{2}L(x_{0})}{\partial x^{i} \partial x^{j}}}_{x^{j} - x_{0}^{j}} \cdot \underbrace{\frac{\partial^{2}L(x_{0})}{\partial t^{\alpha}} \cdot \underbrace{\frac{\partial^{2}L(x_{0})}{\partial t^{\beta}}}_{x^{j}} \cdot \underbrace{\frac{\partial^{2}L(x_{0})}{\|t\|}}_{x^{j} - x_{0}^{j}} + o(\|t\|^{2}) = \underbrace{\frac{\|t\|^{2}}{2}}_{x^{j} - x_{0}^{j}} \cdot \underbrace{\left(\|t\|^{2}\right)}_{x^{j} - x_{0}^{j}} + o(\|t\|^{2}). \end{split}$$

Таким образом получаем, что

$$L|_{S}(x) - L(x_0) = \frac{\|t\|^2}{2} \cdot Q(\xi) + o(\|t\|^2), \ \xi \in TS_{x_0}.$$

Тогда, если Q > 0, то

$$L|_{S}(x) - L(x_0) > 0 \Rightarrow x_0 - \min$$
 для $L|_{S}(x) \Rightarrow x_0 - \min$ для $f|_{S}$.

Если Q < 0, то

$$L\big|_S(x) - L(x_0) < 0 \Rightarrow x_0$$
 – локальный тах для $L\big|_S(x) \Rightarrow$

$$\Rightarrow x_0$$
 – локальный тах для $fig|_S$ ($\forall x \in U_S(x_0)$)

Если Q — знакопеременна, то не для всех $x \in U_S(x_0)$ разность $L|_S(x)-L(x_0)$ имеет постоянный знак \Rightarrow в этом случае в точке x_0 нет экстремума.

Докажем (♡), то есть покажем, что

$$o(\|t\|) \cdot \sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}} \cdot t^{\alpha} = o(\|t\|^{2})$$

И

$$o(\|x - x_0\|^2) = o(\|t\|^2), \ x \in S.$$

В самом деле,

$$\left|\sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial t^{\alpha}}(0) \cdot t^{\alpha}\right| \leq \sum_{\alpha=1}^{m} \left|\frac{\partial x^{i}}{\partial t^{\alpha}}(0)\right| \cdot \left|t^{\alpha}\right| \leq \|t\| \cdot \underbrace{\sum_{\alpha=1}^{m} \left|\frac{\partial x^{i}}{\partial t^{\alpha}}(0)\right|}_{const>0} = \underbrace{\frac{\sum_{\alpha=1}^{n} \left|\frac{\partial x^{i}}{\partial t^{\alpha}}(0)\right|}_{O(\|t\|)} = \underbrace{\frac{\sum_{\alpha=1}^{n} \left|\frac{\partial x^{i}}{\partial t^{\alpha}}(0)\right|}_{O(\|t\|)}}_{O(\|t\|)} = \underbrace{\frac{\sum_{\alpha=1}^{n} \left|\frac{\partial x^{i}}{\partial t^{\alpha}}(0)\right|}_{O(\|t\|)}}_{O(\|t\|)}}_{O(\|t\|)}$$

Таким образом,

$$\begin{split} o\big(\|t\|\big)\cdot \left|\sum_{\alpha=1}^m \frac{\partial x^i(0)}{\partial t^\alpha}\cdot t^\alpha\right| &\leqslant o\big(\|t\|\big)\cdot O\big(\|t\|\big) = \\ &= \omega(t)\cdot \|t\|\cdot \gamma(t)\cdot \|t\| = \left| \begin{array}{c} \text{где } \omega(t)\to 0 \text{ при } t\to 0, \\ \gamma(t)-\text{ ограниченная функция} \end{array} \right| = \\ &= \frac{\alpha(t)}{\omega(t)\gamma(t)}\cdot \|t\|^2 = o\big(\|t\|^2\big), \ \frac{\alpha(t)\to 0, }{t\to 0}, \end{split}$$

Далее, если $x \in S$, то

$$\|x - x_0\|^2 = \left\| \begin{pmatrix} x^1 - x_0^1 \\ \vdots \\ x^n - x_0^n \end{pmatrix} \right\|^2 \stackrel{15}{=} \left\| \begin{pmatrix} \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^{\alpha}} \cdot t^{\alpha} + o(\|t\|) \\ \sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^{\alpha}} \cdot t^{\alpha} + o(\|t\|) \end{pmatrix} \right\|^2 =$$

$$= \left(\sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^{\alpha}} \cdot t^{\alpha} + o(\|t\|) \right)^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\partial x^n}{\partial t^{\alpha}} + o(\|t\|) \right)^2 =$$

$$= \left(\sum_{\alpha=1}^m \frac{\partial x^1}{\partial t^{\alpha}} \cdot t^{\alpha} \right)^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\partial x^n}{\partial t^{\alpha}} \right)^2 + o(\|t\|^2) \le$$

$$\le \left(\max_{\alpha} \frac{\partial x^1}{\partial t^{\alpha}} \right)^2 \cdot \left(\sum_{\alpha=1}^m t^{\alpha} \right)^2 + \dots + \left(\max_{\alpha} \frac{\partial x^n}{\partial t^{\alpha}} \right)^2 \cdot \left(\sum_{\alpha=1}^m t^{\alpha} \right)^2 \le$$

$$\le \|t\|^2 \cdot \left(\left(\max_{\alpha} \frac{\partial x^1}{\partial t^{\alpha}} \right)^2 + \left(\max_{\alpha} \frac{\partial x^n}{\partial t^{\alpha}} \right)^2 \right) \le$$

$$\le \|t\|^2 \cdot \left(\max_{\alpha} \left(\max_{\alpha} \frac{\partial x^1}{\partial t^{\alpha}} \right) + \left(\max_{\alpha} \frac{\partial x^n}{\partial t^{\alpha}} \right)^2 \right) \le$$

$$\le \|t\|^2 \cdot \left(\max_{\alpha} \left(\max_{\alpha} \frac{\partial x^1}{\partial t^{\alpha}} \right) \right) \cdot n = B\|t\|^2 = o(\|t\|^2).$$

Поэтому

$$o(\|x - x_0\|^2) =$$

$$= \beta(x - x_0) \cdot \|x - x_0\|^2 = \beta(t) \cdot \|x - x_0\|^2 \leqslant \beta(t) \cdot B \cdot \|t\|^2 =$$

$$= o(\|t\|^2)$$

$$(\beta(x - x_0) \to 0 \text{ при } x \to x_0 \Leftrightarrow t \to 0)$$

4 Теория рядов

4.31 Критерий Коши сходимости числовых рядов

Определение 1 (Ряд). Рядом называется выражение:

$$a_1 + a_2 + \ldots + a_n + \ldots, \quad a_i \in \mathbb{R}.$$

Числа a_i называются членами ряда, a_n – n-ым членом ряда.

$$\sum_{n=1}^{\infty} a_n \tag{16}$$

Рассмотрим числа:

$$A_1 = a_1,$$

 $A_2 = a_1 + a_2,$
 \vdots
 $A_n = a_1 + a_2 + \ldots + a_n.$

Числа A_1, A_2, \dots, A_n называются частичными суммами ряда 16.

Теорема 12 (Критерий Коши). Ряд 16 сходится тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N, \ \forall p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| < \varepsilon$$
.

Доказательство. Ряд 16 сходится $\underset{\text{по определению}}{\Leftrightarrow} \exists \lim_{n \to \infty} A_n \Leftrightarrow A_n - \text{фундаментальная последовательность: } \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \text{и} \ \forall p > 0$

$$|A_n - A_{n+p}| < \varepsilon, \quad \left(\begin{array}{c}$$
 критерий Коши сходимости последовательности $\end{array} \right).$

Имеем

$$|A_n - A_{n+p}| =$$

$$= |a_1 + a_2 + \dots + a_n - (a_1 + a_2 + \dots + a_n + \dots + a_{n+p})| =$$

$$= |a_{n+1} + \dots + a_{n+p}| < \varepsilon.$$

4.32 Необходимое условие сходимости числового ряда

Теорема 13 (Необходимое условие сходимости ряда). Если ряд 16 сходится, тогда:

$$\lim_{n\to\infty} a_n = 0.$$

Доказательство. Пусть ряд 16 сходится, тогда $\exists \lim_{n \to \infty} A_n$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (A_n - A_{n-1}) =$$

$$= \lim_{n \to \infty} A_n - \lim_{n \to \infty} A_{n-1} = 0$$

4.33 Теорема об остатке ряда

Определение 2 (*m*-ый остатный ряд). Пусть дан ряд 16. Ряд вида

$$\sum_{n=m+1}^{\infty} a_n \tag{17}$$

называется m-ым остатным ряда 16.

Теорема 14 (Об остатке ряда). Следующие условия эквивалентны:

- 1. Ряд 16 сходится.
- 2. Любой его остаток сходится.
- 3. Некоторый его остаток 17 сходится.

Доказательство.

• Докажем, что из $1. \Rightarrow 2.$

Пусть ряд 16 сходится и его сумма равна A.

Пусть $A_k^* = \sum_{n=m+1}^{m+k} a_n - k$ -тая частичная сумма ряда 17.

Ряд 17 сходится, если $\exists \lim_{k \to \infty} A_k^*$.

$$A_k^* = \underbrace{A_{m+k}}_{\text{частичная сумма}} -A_m$$

ряда 16

$$\lim_{k \to \infty} A_k^* = \lim_{k \to \infty} (A_{m+k} - A_m) =$$

$$= \lim_{k \to \infty} A_{m+k} - \lim_{k \to \infty} A_m = A - A_m.$$

$$\lim_{const = A_m}$$

- Доказательство того, что из $2. \Rightarrow 3.$ очевидно.
- Докажем, что из $3. \Rightarrow 1.$ Пусть ряд 17 – сходится.

Тогда при n > m:

$$A_n = A_m + \underbrace{A_{n-m}^*}_{\sum_{k=m+1}^{m+(n-m)} a_k}$$

$$A_n = \underbrace{a_1 + a_2 + \ldots + a_m}_{A_m} + \underbrace{a_{m+1} + \ldots + a_n}_{A_{n-m}^*}.$$

Ряд 16 сходится \Leftrightarrow $\exists \lim_{n \to \infty} A_n$.

Рассмотрим:

$$\lim_{n\to\infty} A_n = \lim_{n\to\infty} \left(A_m + A_{n-m}^* \right) = \lim_{n\to\infty} A_m + \lim_{n\to\infty} A_{n-m}^* = \lim_{n\to\infty} A_{n-m}^* = \lim_{n\to\infty} A_n = \lim_{n\to\infty} A_{n-m}^* = \lim_{n\to\infty} A_n = \lim_{n\to$$

 $\Rightarrow \exists \lim_{n \to \infty} A_n \Rightarrow 16$ сходится.

4.34 Теорема о сумме рядов и умножении ряда на число

Теорема 15. Если ряды (A), (B) сходятся, то:

- 1. $\forall a \in \mathbb{R}$ ряд $\sum_{n=1}^{\infty} \alpha a_n$ сходится и его сумма равна $\alpha \cdot A$, где $A = \sum_{n=1}^{\infty} a_n$.
- 2. Ряд (A+B) сходится и его сумма равна $A^*+B^*,$ где $A^*=\sum_{n=1}^\infty a_n,$ $B^*=\sum_{n=1}^\infty b_n.$

Доказательство. 1. Пусть ряд (A) сходится.

Рассмотрим ряд $\sum_{n=1}^{\infty} \alpha \cdot a_n$:

$$A_n' = \sum_{k=1}^n \alpha \cdot a_k,$$

$$\lim_{n \to \infty} A'_n = \lim_{n \to \infty} \sum_{k=1}^n \alpha \cdot a_k = \alpha \cdot \lim_{n \to \infty} \sum_{k=1}^n a_k = \alpha \cdot A$$

2. Самостоятельно.

4.36 Основная теорема о сходимости положительных рядов

Теорема 16. Положительный ряд (A) сходится \Leftrightarrow его частичные суммы ограничены, то есть $\exists M > 0: \ \forall n \ A_n < M.$

Доказательство. Заметим, что последовательность частичных сумм A_n возрастает, то есть $\forall n \ A_{n+1} > A_n$.

По теореме Вейерштрасса, возрастающая последовательность A_n имеет предел \Leftrightarrow она ограничена, то есть $\exists M>0: \ \forall n\ A_n < M.$

4.37 Первый признак сравнения

Теорема 17 (1-ый признак сравнения). Пусть даны ряды (A), (B), причем $a_n > 0$, $b_n > 0 \ \forall n$.

Если $\exists N \in \mathbb{N}: \ \forall n > N \ a_n \leqslant b_n$, то:

- 1. Из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).
- 2. Из расходимости ряда $(A) \Rightarrow$ расходимость ряда (B).

Доказательство.

- 1. Пусть ряд (B) сходится \Rightarrow по теореме 16 его частичные суммы ограничены \Rightarrow по неравенству $a_n \leqslant b_n$ частичные суммы ряда (A) также ограничены \Rightarrow по 16 ряд (A) сходится.
- 2. Аналогично.

4.38 Второй признак сравнения

Теорема 18 (2-ой признак сравнения). Пусть даны ряды (A), (B), причем $a_n > 0$, $b_n > 0 \ \forall n$.

чем $a_n > 0, \ b_n > 0 \ \forall n.$ Если $\lim_{n \to \infty} \frac{a_n}{b_n} = k, \ k \in [0; \infty],$ то:

- 1. При $k = \infty$ из сходимости $(A) \Rightarrow$ сходимость ряда (B).
- 2. При k = 0 из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).
- 3. При 0 < $k_{const≠0}$ < ∞ ряды (A) и (B) ведут себя одинаково.

Доказательство. Переписать доказательство для несобственных интегралов, заменив слово "интеграл"на слово "ряд".

4.39 Третий признак сравнения

Теорема 19 (3-й признак сравнения). Пусть даны ряды (A),(B), причем $a_n>0,\ b_n>0\ \forall n.$

Если $\exists N \in \mathbb{N} \cup \{0\}: \ \forall n > N \ \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n},$ то:

- 1. Из сходимости ряда $(B) \Rightarrow$ сходимость ряда (A).
- 2. Из расходимости ряда $(A) \Rightarrow$ расходимость ряда (B).

Доказательство. Можно считать, что N = 0. Тогда $\forall n > N$ имеем:

$$\frac{a_2}{a_1} \leqslant \frac{b_2}{b_1}; \quad \frac{a_3}{a_2} \leqslant \frac{b_3}{b_2}; \quad \frac{a_4}{a_3} \leqslant \frac{b_4}{b_3}; \quad \dots; \quad \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}.$$

Перемножим левые и правые части:

$$\frac{a_2 \cdot a_3 \cdot a_4 \cdot \ldots \cdot a_{n+1}}{a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n} \leqslant \frac{b_2 \cdot b_3 \cdot b_4 \cdot \ldots \cdot b_{n+1}}{b_1 \cdot b_2 \cdot b_3 \cdot \ldots \cdot b_n},$$

$$\frac{a_{n+1}}{a_1}\leqslant \frac{b_{n+1}}{b_n}\Rightarrow a_{n+1}\leqslant \frac{a_1}{b_1}\cdot b_{n+1} \text{ (по теореме 17)}.$$

- 1. Если ряд (B) сходится \Rightarrow сходится ряд $\sum_{n=1}^{\infty} \frac{a_1}{b_1} \cdot b_{n+1} \Rightarrow$ сходится ряд $\sum_{n=1}^{\infty} a_{n+1} \Rightarrow$ сходится (A).
- 2. Аналогично.

4.40 Интегральный признак сходимости Коши-Маклорена

Теорема 20 (Интегральный признак Коши-Маклорена). Пусть дан положительный ряд (A).

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. $f(x): [1; +\infty) \to \mathbb{R}$.
- 2. f(x) непрерывна.
- 3. f(x) монотонна.
- 4. $f(x) = a_n, \forall n \in \mathbb{N}$.

Тогда ряд (A) и интеграл $\int_{1}^{\infty} f(x) dx$ ведут себя одинаково.

Доказательство. Ограничимся случаем, когда f(x) монотонно убывает.

Рассмотрим функцию $\phi(x)$ = a_n при $n \le x < n+1$ и $\psi(x)$ = a_{n+1} при $n \le x < n+1$. Тогда $\forall x \in [1; +\infty)$:

$$\psi(x) \leqslant f(x) \leqslant \phi(x)$$
.

Отсюда

$$\int_{1}^{N} \psi(x) dx \leqslant \int_{1}^{N} f(x) dx \leqslant \int_{1}^{N} \phi(x) dx \Rightarrow$$

$$\Rightarrow \sum_{n=1}^{N} a_{n+1} \leqslant \int_{1}^{N} f(x) dx \leqslant \sum_{n=1}^{N} a_{n}$$
частичная сумма ряда (A)

• Если интеграл сходится, то частичная сумма $\sum_{n=1}^{N} a_{n+1}$ ограничена \Rightarrow ряд (A) сходится.

П

- Если интеграл расходится, то частичная сумма $\sum_{n=1}^{N} a_n$ непрерывна \Rightarrow ряд (A) расходится.
- Если ряд (A) сходится, то $\sum_{n=1}^{N} a_n$ ограничена $\Rightarrow \int_{1}^{N} f(x) dx$ ограничен $\Rightarrow \int_{1}^{\infty} f(x) dx$ сходится.
- Если ряд (A) расходится \Rightarrow частичная сумма $\sum_{n=1}^{N} a_{n+1}$ неограничена \Rightarrow интеграл расходится.

4.41 Радикальный признак Коши

Теорема 21 (Радикальный признак Коши). Пусть ряд (A) положительный и $\varlimsup_{n\to\infty}\sqrt[n]{a_n}=q$. Тогда:

- 1. При q < 1 ряд (A) сходится.
- 2. При q > 1 ряд (A) расходится.
- 3. При q = 1 может как сходиться, так и расходиться.

Доказательство.

1. Пусть q < 1. Возьмем число r: q < r < 1. Тогда $\exists N: \forall n > N$

$$\sqrt[n]{a_n} < r \Rightarrow a_n < r^n.$$

 $0 < r < 1 \Rightarrow \sum_{n=1}^{\infty} r^n$ — сходится \Rightarrow по 1-му признаку сравнения сходится ряд (A).

- 2. Пусть q > 1, тогда существует подпоследовательность $\sqrt[n_i]{a_{n_i}} \to q$ при $i \to \infty \Rightarrow a_{n_i} \to q^{n_i} > 1 \Rightarrow a_n \nrightarrow 0 \Rightarrow$ необходимое условие сходимости не выполняется \Rightarrow ряд (A) расходится.
- 3. Рассмотрим ряды $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n^2}$:

$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n^2}} = 1.$$

4.42 Признак Даламбера

Теорема 22 (Признак Даламбера). Пусть ряд (A) положительный и $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = d$. Тогда:

- 1. При d < 1 ряд (A) сходится.
- 2. При d > 1 ряд (A) расходится.

3. При d = 1 может как сходиться, так и расходиться.

Доказательство.

1. Пусть d < 1. Возьмем $d < r < 1 \Rightarrow \exists N: \ \forall n > N \ \frac{a_{n+1}}{a_n} < r,$

$$b_1 = \frac{a_2}{a_1};$$
 $b_2 = \frac{a_3}{a_2};$ $b_3 = \frac{a_4}{a_3};$...; $b_n = \frac{a_{n+1}}{a_n};$

Можно считать, что N = 0, тогда $\forall n > N$:

$$a_2 < r \cdot a_1$$

 $a_3 < r \cdot a_2 < r^2 \cdot a_1$
 $a_4 < r \cdot a_3 < r^3 \cdot a_1$
 \vdots
 $a_{n+1} < r^n \cdot a_1$

Так как 0 < r < 1, то $\sum_{n=1}^{\infty} r^n \cdot a_1$ сходится \Rightarrow сходится ряд (A) по 1 признаку сравнения.

- 2. Самостоятельно.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n}{n+1}=1,$$

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1.$$

4.43 Признак Раббе

Теорема 23 (Признак Раббе). Пусть ряд (A) – положительный. Если $\lim_{n\to\infty} n\cdot\left(\frac{a_n}{a_{n+1}}-1\right)$ = r, то:

- 1. При r > 1 ряд (A) сходится.
- 2. При r < 1 ряд (A) расходится.
- 3. При r = 1 ряд (A) может как сходиться, так и расходиться.

Доказательство.

1. Пусть r>1. Возьмем p и q: $1 . Так как <math>\lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) = r$, то $\exists N_1: \ \forall n>N_1 \ n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) > q$, то есть:

$$\frac{a_n}{a_{n+1}} > 1 + \frac{q}{n}. (18)$$

Далее, рассмотрим:

$$\lim_{n\to\infty}\frac{\left(1+\frac{1}{n}\right)^p-1}{\frac{1}{n}}\stackrel{\text{формула}}{=}\lim_{n\to\infty}\frac{1+\frac{p}{n}+o\left(\frac{1}{n}\right)-1}{\frac{1}{n}}=p\lessdot q\Rightarrow$$

 $\Rightarrow \exists N_2: \ \forall n > N_2:$

$$\frac{\left(1 + \frac{1}{n}\right)^p - 1}{\frac{1}{n}} < q \Rightarrow \left(1 + \frac{1}{n}\right)^p < 1 + \frac{q}{n}.\tag{19}$$

Сравниваем неравенства 18 и 19, получим, что при $n > \max(N_1, N_2)$:

$$\left(1+\frac{1}{n}\right)^p < 1+\frac{q}{n} < \frac{a_n}{a_{n+1}} \Rightarrow$$

$$\Rightarrow \frac{a_n}{a_{n+1}} > \left(1+\frac{1}{n}\right) = \frac{(n+1)^p}{n^p} = \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}}.$$

Ряд $\sum_{n=1}^{\infty}\frac{1}{n^{p}}$ сходится при p>1:

$$\frac{a_n}{a_{n+1}} > \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}} \Rightarrow a_n \cdot \frac{1}{(n+1)^p} > \frac{1}{n^p} \cdot a_{n+1} \Rightarrow \frac{a_{n+1}}{a_n} < \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}}.$$

По 3-му признаку сравнения, ряд (A) сходится при $p>1\Rightarrow$ при r>1

2. Пусть r < 1. Тогда $\exists N: \ \forall n > N$:

$$\begin{split} n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) < 1 \Rightarrow \\ \Rightarrow \frac{a_n}{a_{n+1}} < 1 + \frac{1}{n} = \frac{n+1}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}} \Rightarrow \\ \Rightarrow \frac{a_{n+1}}{a_n} > \frac{\frac{1}{n+1}}{\frac{1}{n}}. \end{split}$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ — гармонический, расходящийся \Rightarrow по 3-му признаку сравнения ряд (A) расходится.

3. <u>Упражнение:</u> привести 2 примера рядов (сходящийся, расходящийся), но r=1 в обоих случаях.

4.44 Признак Кумера

4 ТЕОРИЯ РЯДОВ

Теорема 24 (Признак Кумера). Пусть дан ряд (A) — положительный. Пусть числа $c_1, c_2, \ldots, c_n, \ldots$: $\forall n > N$ $c_n > 0$ и ряд $\sum_{n=1}^{\infty} c_n$ — расходится. Если

$$\lim_{n \to \infty} \left(c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \right) = k,$$

то

- 1. При k > 0 ряд (A) сходится.
- 2. При k < 0 ряд (A) расходится.
- 3. При k = 0 может как сходиться, так и расходиться.

Доказательство.

1. Пусть k > 0. Возьмем $0 . Тогда <math>\exists N : \ \forall n > N$:

$$\begin{aligned} c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} > p &\Rightarrow \\ &\Rightarrow c_n \cdot a_n - c_{n+1} \cdot a_{n+1} > p \cdot a_{n+1} > 0 \Rightarrow \\ &\Rightarrow c_n \cdot a_n > c_{n+1} \cdot a_{n+1}, \quad \forall n > N \end{aligned}$$

Тогда последовательность $\{c_n\cdot a_n\}$ убывает и ограничена снизу \Rightarrow последовательность сходится.

Пусть $c = \lim_{n \to \infty} c_n \cdot a_n$. Рассмотрим ряд:

$$\sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{m+1}) =$$

$$= (c_1 \cdot a_1 - c_2 \cdot a_2) + (c_2 \cdot a_2 - c_3 \cdot a_3) + \dots + (c_n \cdot a_n - c_{n+1} \cdot a_{n+1}) =$$

$$= c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1},$$

$$\lim_{n \to \infty} \sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{n+1}) =$$

$$= \lim_{n \to \infty} (c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1}) = c_1 \cdot a_1 - c \Rightarrow$$

 \Rightarrow сходится ряд $\sum_{n=1}^{\infty} (c_n \cdot a_n - c_{n+1} \cdot a_{n+1}) \Rightarrow$ из того, что $c_n \cdot a_n - c_{n+1} \cdot a_{n+1} > p \cdot a_{n+1} > 0$ и 1-го признака сравнения \Rightarrow ряд $\sum_{n=1}^{\infty} p \cdot a_{n+1}$ сходится \Rightarrow ряд (A) сходится.

2. Пусть $k < 0 \Rightarrow \exists N : \forall n > N$

$$\begin{split} c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} < 0 \Rightarrow \\ \Rightarrow \frac{a_n}{a_{n+1}} < \frac{c_{n+1}}{c_n} = \frac{\frac{1}{c_n}}{\frac{1}{c+n+1}} \Rightarrow \frac{a_{n+1}}{a_n} > \frac{\frac{1}{c_{n+1}}}{\frac{1}{c_n}}. \end{split}$$

 $\sum_{n=1}^{\infty}\frac{1}{c_n}$ расходится \Rightarrow по 3-му признаку сравнения ряд (A) расходится.

3. Придумать 2 примера когда k = 0 и ряды сходятся/расходятся.

4.45 Признак Бертрана

Теорема 25 (Признак Бертрана). Пусть ряд (A) – положительный. Если

$$\lim_{n\to\infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] = B,$$

TC

- 1. При B > 1 ряд (A) сходится.
- 2. При B < 1 ряд (A) расходится.
- 3. При B = 1 ряд (A) может как сходиться, так и расходиться.

Доказательство. Рассмотрим ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$ — расходится. Составим последовательность Кумера:

$$k_{n} = \underbrace{n \cdot \ln n}_{c_{n}} \cdot \frac{a_{n}}{a_{n+1}} - \underbrace{(n+1) \cdot \ln(n+1)}_{c_{n+1}} =$$

$$= \left| \ln(n+1) = \ln \left(n \cdot \frac{n+1}{n} \right) = \ln n + \ln \left(1 + \frac{1}{n} \right) \right| =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - (n+1) \cdot \left(\ln n + \ln \left(1 + \frac{1}{n} \right) \right) =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - n \cdot \ln n - \ln n - \ln \left(1 + \frac{1}{n} \right)^{n+1} =$$

$$= \ln n \left(n \cdot \frac{a_{n}}{a_{n+1}} - n - 1 \right) - \ln \left(1 + \frac{1}{n} \right)^{n+1} =$$

$$= \ln n \cdot \left(n \left(\frac{a_{n}}{a_{n+1}} - 1 \right) - 1 \right) - \ln \left(1 + \frac{1}{n} \right)^{n+1};$$

 $\lim_{n\to\infty} k_n =$

$$= \lim_{n \to \infty} \left[\underbrace{\ln n \cdot \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{B} - \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{n} \right) \right] =$$

по признаку Кумера, при B-1>0 ряд (A) сходится, при B-1<0 ряд (A) расходится, при B=1 ряд (A) может как сходиться, так и расходиться. \square

4.46 Признак Гаусса

Теорема 26 (Признак Гаусса). Ряд $(A),\ a_n>0,\ \forall n\in\mathbb{N},\ \lambda,\mu\in\mathbb{R}.$ Если

$$\frac{a_n}{a_{n+1}} = \left(\lambda + \frac{\mu}{n}\right) + O\left(\frac{1}{n^2}\right),\,$$

то

- 1. При $\lambda > 1$, ряд (A) сходится.
- 2. При λ < 1, ряд (A) расходится.
- 3. При λ = 1 и
 - (a) $\mu > 1 \Rightarrow$ ряд (A) сходится.
 - (b) $\mu \le 1 \Rightarrow$ ряд (A) расходится.

Доказательство.

1. Если $\lambda < 1$, то

$$\begin{split} \lim_{n\to\infty} \frac{a_{n+1}}{a_n} &= \left[\lim_{n\to\infty} \left(\lambda + \frac{\mu}{n} + O\left(\frac{1}{n^2}\right)\right)\right]^{-1} = \\ &= \left[\lim_{n\to\infty} \left(\lambda + \frac{\mu}{n} + \underbrace{\frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2}\right)}\right)\right]^{-1} = \frac{1}{\lambda}, \end{split}$$

по признаку Даламбера, если $\frac{1}{\lambda} < 1$, то есть $\lambda > 1$, ряд (A) сходится.

- $2. \Rightarrow$ из 1.
- 3. Если $\lambda = 1$, то

$$\begin{split} \frac{a_n}{a_{n+1}} &= 1 + \frac{\mu}{n} + O\left(\frac{1}{n^2}\right), \\ n\left(\frac{a_n}{a_{n+1}} - 1\right) &= \mu + n \cdot O\left(\frac{1}{n^2}\right), \end{split}$$

$$\lim_{n\to\infty} \left(n\cdot\frac{a_n}{a_{n+1}}-1\right) = \lim_{n\to\infty} \left(\mu + \underbrace{n\cdot\frac{1}{n^2}\cdot\Omega(\frac{1}{n^2})}_{\to 0}\right) = \mu \Rightarrow$$

 \Rightarrow по признаку Раббе $\Rightarrow \left[\begin{array}{c} \mu > 1 \Rightarrow (A) \text{ сходится.} \\ \mu < 1 \Rightarrow (A) \text{ расходится.} \end{array} \right]$

Пусть μ = 1, тогда

$$\begin{split} \lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) &= \\ &= \lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(1 + \frac{1}{n} + O\left(\frac{1}{n^2} \right) - 1 \right) - 1 \right) = \\ &= \lim_{n \to \infty} \ln n \cdot \left(1 + n \cdot O\left(\frac{1}{n^2} \right) - 1 \right) = \\ &= \lim_{n \to \infty} \ln n \cdot n \cdot O\left(\frac{1}{n^2} \right) = \\ &= \lim_{n \to \infty} \left(\ln n \cdot n \cdot \frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2} \right) \right) = \\ &= \lim_{n \to \infty} \frac{\ln n}{n} \cdot \Omega\left(\frac{1}{n^2} \right) = 0. \end{split}$$

В самом деле,

$$\lim_{n\to\infty}\frac{\ln n}{n}=\lim_{n\to\infty}\frac{1}{n}\cdot\ln n=\lim_{n\to\infty}\ln n^{\frac{1}{n}}=\lim_{n\to\infty}\ln \sqrt[n]{n}=0\Rightarrow$$

 \Rightarrow по прихнаку Бертрана ряд (A) расходится.

4.50 Следствие абсолютной сходимости ряда

Утверждение. Если ряд (A) абсолютно сходящийся, то он сходящийся.

Доказательство. Пусть ряд (A) абсолютно сходящийся, то есть сходится ряд $(A^*) \Rightarrow$ по критерию Коши $\forall \varepsilon > 0 \ \exists N : \ \forall n > N \ \forall p > 0$

$$|a_{n+1}| + |a_{n+1}| + \ldots + |a_{n+1}| < \varepsilon.$$

Пусть $\varepsilon > 0$ задано. Рассмотрим:

$$|A_{n+p} - A_n| = |a_{n+1} + \ldots + a_{n+p}| \le |a_{n+1}| + \ldots + |a_{n+p}| < \varepsilon \Rightarrow$$

 \Rightarrow ряд (A) сходится.

4.52 Признак Лейбница

Теорема 27 (признак Лейбница). Пусть ряд $(\overline{A}), a_n > 0 \ \forall n$ удовлетво-

- 1. $a_1 \geqslant a_2 \geqslant a_3 \geqslant \ldots \geqslant a_n \geqslant \ldots$ 2. $\lim_{n \to \infty} a_n = 0$.

Тогда ряд (\overline{A}) сходится и его сумма $S: 0 < S \le a_1$.

Доказательство. Рассмотрим:

$$S_{2n} = a_1 - a_2 + a_3 - \dots + a_{2n-1} - a_{2n} =$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}),$

тогда $\forall i: a_i - a_{i+1} \geqslant 0 \Rightarrow S_{2n} \geqslant 0 \ \forall n \Rightarrow$ последовательность $S_{2n} \nearrow$. С другой стороны,

$$S_{2n} = a_1 - \underbrace{(a_2 - a_3)}_{\geqslant 0} - \underbrace{(a_4 - a_5)}_{\geqslant 0} - \dots - \underbrace{(a_{2n-2} - a_{2n-1})}_{\geqslant 0} - a_{2n} \Rightarrow$$

 $\Rightarrow S_{2n} \leqslant a_1 \ \forall n.$

Таким образом, S_{2n} не убывает и ограничена сверху \Rightarrow по теореме Вейерштрасса \Rightarrow $\exists \lim_{n \to \infty} S_{2n}$ = S.

Далее,

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} (S_{2n} + a_{2n+1}) = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1} = S + 0 = S.$$

Таким образом, $\lim_{n\to\infty} S_n = S$.

Так как $0 < S_n \leqslant a_1$ (если $S_n = 0$, то a_1 может быть = 0, что невозможно, так как $a_n > 0$) \Rightarrow (берем пределы от неравенства) $0 < S \leqslant a_1$.

4.53 Признак Абеля

Теорема 28 (Признак Абеля). Если

- ullet последовательность $\{a_n\}$ монотонна и ограничена,
- ряд $\sum_{n=1}^{\infty} b_n$ сходится,

то ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

Доказательство. Пусть выполнены условия признака Абеля. Тогда $\exists M>0: \ |a_n|\leqslant M.$ Пусть $\varepsilon>0$ задано. Возьмем номер $N: \ \forall n>N, \ \forall p>0$

$$\left| \sum_{k=n+1}^{n+p} b_k \right| < \varepsilon^* = \frac{\varepsilon}{3 \cdot M}.$$

Частичные суммы ряда $\sum_{n=1}^\infty a_n\cdot b_n$ имеют вид $S_n=a_1\cdot b_1+\ldots+a_n\cdot b_n$. По критерию Коши найдем $N_1:\ \forall n>N_1,\ \forall p>0$

$$|S_{n+p} - S_n| < \varepsilon,$$

$$|a_{n+1} \cdot b_{n+1} + a_{n+2} \cdot b_{n+2} + \dots + a_{n+p} \cdot b_{n+p}| \le$$

$$\le \varepsilon^* \cdot (|a_{n+1}| + 2 \cdot |a_{n+p}|) \le \varepsilon^* \cdot 3 \cdot M = \frac{\varepsilon}{3 \cdot M} = \varepsilon \Rightarrow$$

 \Rightarrow по критерию Коши ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

4.54 Признак Дирихле

Теорема 29 (Признак Дирихле). Если

- последовательность $\{a_n\}$ монотонна и $\lim_{n\to\infty} a_n = 0$,
- частичные суммы ряда (B) ограничены, то есть $\exists k > 0:$ $\forall n \mid \sum_{m=1}^n b_m \mid < k,$

то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

Доказательство. Пусть выполнены условия признака Дирихле. Так как $\lim_{n\to\infty} a_n = 0$, то $\exists N: \ \forall n>N \ \ (\varepsilon>0$ задано):

$$|a_n| < \frac{\varepsilon}{3 \cdot k}, \quad \left| \sum_{k=1}^n b_k \right| \leqslant k.$$

По критерию Коши:

$$\begin{split} |S_{n+p} - S_n| &= |a_{n+1} \cdot b_{n+1} + \ldots + a_{n+p} \cdot b_{n+p}| \overset{\text{10 demme}}{\leqslant} \\ &\leqslant k \cdot \left(\left| a_{n+1} \right| + 2 \cdot \left| a_{n+p} \right| \right) < k \cdot \frac{3 \cdot \varepsilon}{3 \cdot k} = \varepsilon. \end{split}$$

_

4.55 Сочетательное свойство сходящихся рядов

Теорема 30 (Сочетательное свойство сходящихся рядов).

- 1. Если ряд (A) сходится, то для любой возрастающей последовательности n_k ряд (\widetilde{A}) сходится и их суммы совпадают $(A = \widetilde{A})$.
- 2. Если ряд (\widetilde{A}) сходится и внутри каждой скобки знак не меняется, то ряд (A) сходится и их суммы совпадают, то есть $\widetilde{A} = A$.

Доказательство.

1. Пусть ряд (A) сходится, \widetilde{A}_k – частичные суммы ряда (\widetilde{A}) :

$$\begin{split} \widetilde{A}_1 &= \widetilde{a}_1 = \sum_{k=1}^{n_1} a_k = A_{n_1} \\ \widetilde{A}_2 &= \widetilde{a}_1 + \widetilde{a}_2 = \sum_{k=n_1+1}^{n_2} a_k = A_{n_1} \\ \vdots \\ \widetilde{A}_k &= A_{n_k} \end{split}$$

Так как ряд (A) сходится, то $\exists \lim_{k \to \infty} A_{n_k} = A$, следовательно:

$$A = \lim_{k \to \infty} A_{n_k} =$$

$$= \lim_{n \to \infty} \widetilde{A}_k = \widetilde{A}$$

2. Пусть ряд (\widetilde{A}) сходится. Имеем:

при:
$$a_1 > 0$$
: $A_1 < A_2 < \ldots < A_{n_1}$ $a_1 < 0$: $A_1 > A_2 > \ldots > A_{n_1}$

• Далее, если $a_{n_1+1} > 0$, тогда:

при
$$a_1 > 0$$
: $A_{n_1+1} < A_{n_1+2} < \ldots < A_{n_2}$

$$A_{n_1} = \widetilde{A}_1 < A_{n_2} = \widetilde{A}_2,$$

при $a_1 < 0$: $A_{n_1} < 0$ и $A_{n_1} < A_{n_2}$

$$\widetilde{A}_1 < \widetilde{A}_2$$
.

• Если же $a_{n_1+1} < 0$, тогда:

при:
$$egin{array}{ll} a_1 < 0: & A_{n_1} = \widetilde{A}_1 > A_{n_2} = \widetilde{A}_2 \\ a_1 > 0: & A_{n_1} = \widetilde{A}_1 > \widetilde{A}_2 \end{array}$$
 .

Аналогично, пока n меняется от n_k до n_{k+1} , то будем иметь либо $A_{n_k} < A_n < A_{n_{k+1}}$, либо $A_{n_k} > A_n > A_{n_{k+1}}$.

Ряд (\widetilde{A}) – сходится \Rightarrow $\exists \lim_{k \to \infty} \widetilde{A}_k = \lim_{k \to \infty} \widetilde{A}_{k+1} = \widetilde{A} \Rightarrow$ по теореме о 2-х миллиционерах:

$$\lim_{k\to\infty} A_n = \widetilde{A}.$$

4.56 Переместительное свойство сходящихся рядов

Теорема 31 (Переместительное свойство сходящихся рядов). Если ряд (A) абсолютно сходится, то его сумма не зависит от перестановки членов ряда.

Доказательство. Пусть ряд (A) сходится абсолютно \Rightarrow ряд (A^*) сходится. Пусть ряд

$$(A')$$
 $\sum_{n=1}^{\infty} a'_n$

получен из ряда (A) путем перестановки его членов. Покажем, что ряд (A') сходится и A = A' (их суммы совпадают).

1. Пусть (A) — знакоположительный, то есть $\forall n \in \mathbb{N}$ $a_n > 0$. Рассмотрим частичные суммы ряда (A'):

$$A'_k = a'_1 + a'_2 + \ldots + a'_k = a_{n_1} + a_{n_2} + \ldots + a_{n_k}.$$

Пусть $n' = \max\{n_1, n_2, \dots, n_k\}$. Тогда:

$$A'_{k} \leq a_1 + a_2 + \ldots + a_{n_i} + \ldots + a_{n'} = A_{n'},$$

где $A_{n'}-n'$ -я частичная сумма ряда (A). Так как (A) сходится и знакоположительный $\Rightarrow A_{n'} \leqslant A$.

Таким образом получаем, что $\forall k \ A_k' \leqslant A \Rightarrow$ последовательность $A_k' \nearrow$ и ограничена, тогда:

$$\exists \lim_{k \to \infty} A'_k = A' \leqslant A.$$

С другой стороны, ряд (A') получен перестановкой членов ряда $(A) \Rightarrow A' \geqslant A \Rightarrow A' \leqslant A \leqslant A' \Rightarrow A = A'.$

2. Пусть ряд (A) сходится абсолютно, то есть (A^*) сходится. С рядом (A) свяжем два ряда:

$$(P) \sum_{n=1}^{\infty} p_n, \quad (Q) \sum_{n=1}^{\infty} q_n,$$

где p_n – положительные члены ряда (A), q_n – отрицательные члены ряда (A), взятые по модулю, причем все члены рядов (P) и (Q) взяты в том же порядке, как они стояли в ряде (A).

Если ряд (A) сходится абсолютно, то сходится ряд (A^*) , (A^*) – положительный ряд $\Rightarrow (A^{*'})$ сходится (получен путем перестановки членов ряда (A^*)) \Rightarrow по лемме сходятся ряды (P') и (Q') и A' = P' - Q'.

$$(A) \xrightarrow{(P)} (A^*) \rightarrow \underbrace{(A^{*'})}_{\text{cx.}}$$

$$(A) \xrightarrow{(Q)} (P') \xrightarrow{(A')} (Q')$$

- (P') положительный ряд \Rightarrow по пункту 1, (P) сходится,
- (Q') положительный ряд \Rightarrow по пункту 1, (Q) сходится

и
$$P' = P$$
, $Q' = Q \Rightarrow A' = P - Q = A$.

4.57 Теорема Римана о перестановке членов условно сходящегося ряда

Теорема 32 (Римана о перестановке членов условно сходящегося ряда). Если ряд (A) условно сходится, то $\forall B \in \mathbb{R}$ (в том числе $B = \pm \infty$) \exists перестановка ряда (A) такая, что полученный ряд сходится и имеет сумму B. Более того, \exists перестановка ряда (A) такая, что частичные суммы полученного ряда не стремятся ни к конечному, ни к бесконечному пределу.

Доказательство. Пусть $B \in \mathbb{R}$. Возьмем номера:

$$n_1: p_1 + p_2 + \ldots + p_{n_1} \geqslant B,$$

 $n_2: p_1 + p_2 + \ldots + p_{n_1} - q_1 - q_2 - \ldots - q_{n_2} \leqslant B.$

Более того, элементы p и q будем брать столько, сколько это необходимо для выполнения этого условия.

Возьмем:

$$n_3: p_1 + p_2 + \ldots + p_{n_1} - q_1 - q_2 - \ldots - q_{n_2} + p_{n_1+1} + p_{n_1+2} + \ldots + p_{n_3} \geqslant B$$

и так далее.

Таким образом получим ряд

$$(p_1 + \ldots + p_{n_1}) + (-q_1 - \ldots - q_{n_2}) + (p_{n_1+1} + \ldots + p_{n_3}) + (-q_{n_2+1} - \ldots - q_{n_4}) + \ldots$$

- этот ряд сходится к B.

Действительно, так как ряд (A) сходится, то $\lim_{n\to\infty} a_n = 0$.

Так как количество членов p_i и q_i бралось лишь столько, сколько необходимо, то соответствующие частичные суммы отличаются от B разве что на последнее слогаемое в этой частичной сумме, которое стремится к нулю $\Rightarrow \lim_{n\to\infty} A'_n = B$.

4.58 Теорема Коши о произведении рядов

Теорема 33 (Коши о произведении рядов). Если ряды (A), (B) абсолютно сходятся, A и B – их суммы, то \forall их произведение абсолютно сходится и равно $A \cdot B$.

Доказательство. Рассмотрим r-тую частичную сумму ряда

$$(A \cdot B)^* \quad \sum_{r=1}^{\infty} |a_{n_r} \cdot b_{k_r}|,$$

$$S_r = |a_{n_1} \cdot b_{k_1}| + |a_{n_2} \cdot b_{k_2}| + \dots + |a_{n_r} \cdot b_{k_r}| \le$$

$$\le (|a_{n_1}| + |a_{n_2}| + \dots + |a_{n_r}|) \cdot (|b_{k_1}| + |b_{k_2}| + \dots + |b_{k_r}|) \le$$

$$\le (|a_1| + |a_2| + \dots + |a_m|) \cdot (|b_1| + |b_2| + \dots + |b_m|),$$

где $m = \max\{n_1, n_2, \dots, n_r, k_1, k_2, \dots, k_r\}.$

Так как ряды (A) и (B) сходятся абсолютно, то есть сходятся ряды (A^*) и (B^*) , то $S_r \leqslant A^* \cdot B^* \Rightarrow$ последовательность $S_r \nearrow$ и ограничена $\Rightarrow \exists \lim_{r \to \infty} S_r \Rightarrow$ ряд $(A \cdot B)^*$ сходится \Rightarrow ряд $(A \cdot B) -$ сходится, причем его сумма не зависит от порядка суммирования.

Будем суммировать ряд $A \cdot B$ по квадратам:

$$\underbrace{a_1b_1}_{c_1} + \underbrace{\left(a_1b_2 + a_2b_2 + a_2b_1\right)}_{c_2} + \underbrace{\left(a_1b_3 + a_2b_3 + a_3b_3 + a_3b_2 + b_3b_1\right)}_{c_3} + \dots$$

$$S_1 = a_1b_1 = A_1 \cdot B_1$$

$$S_2 = c_1 + c_2 = a_1b_1 + (a_1b_2 + a_2b_2 + a_2b_1) = (a_1 + a_2) \cdot (b_1 + b_2) = A_2 \cdot B_2$$

$$S_3 = c_1 + c_2 + c_3 = (a_1 + a_2 + a_3) \cdot (b_1 + b_2 + b_3) = A_3 \cdot b_3$$

$$\vdots$$

$$S_n = A_n \cdot B_n$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (A_n \cdot B_n) = \lim_{n \to \infty} A_n \cdot \lim_{n \to \infty} B_n = A \cdot B$$

4.63 Теорема о связи сходимости простого и повторного рядов

Определение 3 (Повторный ряд). *Повторным рядом* называются выражения

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk},\tag{20}$$

И

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{nk}.$$
 (21)

Говорят, что ряд 20 сходится, если сходятся все ряды (A_n) по строкам $(\sum_{k=1}^\infty a_{n_k}=A_n)$ и сходится ряд $\sum_{n=1}^\infty A_n$.

Определение 4 (Простой ряд). Пусть ряд

$$\sum_{r=1}^{\infty} U_r \tag{22}$$

построен из элементов таблицы, взятых в произвольном порядке. Такой ряд будем называть *простым*, связанным с данной таблицей.

Теорема 34 (О связи сходимости простого и повторного рядов).

- 1. Если ряд 22 абсолютно сходится, то ряд 20 сходится и его сумма равна U.
- 2. Если после замены элементов таблицы (\star) их модулями ряд 20^* ходится, то ряд 22 сходится абсолютно и суммы рядов 20 (без модулей) и 22 совпадают.

Доказательство.

1. Пусть 20^* сходится. Покажем, что все ряды по строкам сходятся:

$$(A_n)$$
 $\sum_{k=1}^{\infty} a_{nk} \quad (\forall n \in \mathbb{N})$

и сходится ряд $\sum_{n=1}^{\infty} A_n$.

Рассмотрим

$$|a_{n1}| + |a_{n2}| + \ldots + |a_{nk}| \le |u_1| + |u_2| + \ldots + |u_r|,$$

где r выбран таким образом, чтобы среди $|u_i|$ были все слагаемые $|a_{n1},\ldots,a_{nk}|$.

Таким образом,

$$\underbrace{|a_{n1}| + \ldots + |a_{nk}|}_{A_{nk}^*} \leqslant U^* \Rightarrow \exists \lim_{k \to \infty} A_{nk}^* = A_n^* \Rightarrow$$

 \Rightarrow ряд $\sum_{k=1}^{\infty} a_{nk} \ \forall n \in \mathbb{N}$ сходится абсолютно \Rightarrow он сходится.

Далее, пусть $\varepsilon > 0$ задано. Выберем номер $r_0: \ \forall r > r_0$

$$\sum_{i=1}^{\infty} |u_{r+i}| < \frac{\varepsilon}{3}.$$

Тогда

$$\left| \sum_{i=1}^{r} u_i - U \right| = \left| \sum_{i=1}^{\infty} u_{r+i} \right| \leq \sum_{i=1}^{\infty} |u_{r+i}| < \frac{\varepsilon}{3}$$

Так как ряды по строкам сходятся, то $\forall n$ выберем m(n):

$$\left|\sum_{k=1}^{m(n)} a_{n_k} - A_n\right| < \frac{\varepsilon}{3}.$$

Наконец, выберем номер N_0 такой, что все числа u_1,u_2,\ldots,u_{r_0} содержались бы в первых N_0 строках:

$$\left| \sum_{n=1}^{N_0} A_n - U \right| =$$

$$= \left| \sum_{n=1}^{N_0} A_n - \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} + \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i + \sum_{i=1}^{r_0} u_i - U \right| \le$$

$$\le \sum_{n=1}^{N_0} \left| A_n - \sum_{k=1}^{m(n)} a_{n_k} \right| + \left| \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i \right| + \left| \sum_{i=1}^{r_0} u_i - U \right| <$$

$$< \frac{\varepsilon}{3} + \sum_{i=r_0+1}^{\infty} (u_i) + \frac{\varepsilon}{3} < \frac{\varepsilon}{3} \cdot 3 = \varepsilon.$$

2. Пусть ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{n_k}| = A^*$ сходится.

Тогда $\forall r \; \exists N, K$ такие, что числа u_1, \ldots, u_r содержатся в N первых строчках и K первых столбцах таблицы:

$$\sum_{i=1}^r |u_i| \leqslant \sum_{n=1}^N \sum_{k=1}^K |a_{n_k}| \leqslant A^* \Rightarrow$$

 $\Rightarrow |u_r| \nearrow$ и ограничен \Rightarrow ряд 22 сходится абсолютно \Rightarrow по пункту 1. суммы рядов 22 и 20 равны.

4.64 Свойства двойного ряда

Определение 5 (Двойной ряд). *Двойным рядом* называется выражение:

$$\sum_{n.k=1}^{\infty} a_{nk} \tag{23}$$

Говорят, что ряд 23 сходится, если:

$$\exists A = \lim_{\substack{K \to \infty \\ N \to \infty}} A_{NK} = \lim_{\substack{K \to \infty \\ N \to \infty}} \sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}.$$

То есть $\forall \varepsilon > 0 \ \exists N_0$ и $K_0: \ \forall N > N_0$ и $\forall k > K_0$

$$\left| \underbrace{\sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}}_{A_{NK}} - A \right| < \varepsilon.$$

Теорема 35 (Свойства двойных рядов).

1. Если ряд 23 сходится, то

$$\lim_{\substack{n\to\infty\\k\to\infty}} a_{nk} = 0.$$

2. (Критерий Коши) Ряд 23 сходится \Leftrightarrow $\forall \varepsilon>0$ $\exists N_0,K_0:$ $\forall n>N_0, \ \forall k>K_0, \ \forall p>0, \ \forall q>0$

$$\left|\sum_{n=1}^p \sum_{k=1}^q a_{(N_0+n)(K_0+k)}\right| < \varepsilon.$$

3. Если ряд 23 сходится, то $\forall c \in \mathbb{R}$ ряд

$$\sum_{n,k=1}^{\infty} (c \cdot a_{nk})$$

сходится, и его сумма равна $c \cdot A$ (где $A = \sum_{n,k=1}^{\infty} a_{nk}$).

4. Если ряд 23 сходится и ряд

$$\sum_{n = 1}^{\infty} b_{nk}$$

сходится, то

$$\sum_{n,k=1}^{\infty} (a_{nk} + b_{nk}) = A + B,$$

а к тому же - сходится.

5. Если $\forall n, \ \forall k \ a_{nk} \geqslant 0$, то ряд 23 сходится \Leftrightarrow его частичные суммы ограничены в совокупности.

Доказательство.

1. Пусть ряд 23 сходится. Заметим, что

$$A_{nk} = \sum_{i,j=1}^{n,k},$$

$$a_{nk} = A_{nk} - A_{n(k-1)} - A_{(n-k)k} + A_{(n-1)(k-1)}$$

 $\Rightarrow a_{nk} \rightarrow 0.$

2. (Критерий Коши) На декартовом произведении $\mathbb{N} {\times} \mathbb{N}$ введем базу:

$$B_{nk} = \{(n,k): n > N_0, k > K_0\}.$$

Тогда критерий Коши сходимости ряда – это есть критерий Коши существования предела функции A_{nk} по данной базе.

- 3. Самостоятельно.
- 4. Самостоятельно.
- 5. | ⇒ | Очевидно.
 - $|\Leftarrow|$ Пусть множество $\{A_{nk}\}$ ограничено. Пусть $A=\sup\{A_{nk}\}$. Покажем, что A – сумма ряда 23. Пусть $\varepsilon>0$ задано. Выберем N_0 и K_0 :

$$A - A_{N_0 K_0} < \varepsilon$$
 (no onp. sup)

Тогда $\forall n>N_0$ и $\forall k>K_0$ $A_{nk}\geqslant A_{N_0K_0}\Rightarrow 0< A-A_{nk}\leqslant A-A_{N_0K_0}<\varepsilon\Rightarrow |A-A_{nk}|<\varepsilon.$

⇒ ряд 23 сходится.

4.65 Теорема о связи сходимости двойного и повторного рядов

Теорема 36 (О связи сходимости двойного ряда и повторного). Если

- ряд 23 сходится (двойной),
- все ряды по строкам сходятся,

тогда повторный ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$ сходится и

$$A = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} = \sum_{n,k=1}^{\infty} a_{nk}.$$

Доказательство. Пусть $\varepsilon>0$ задано. Выберем $N_0,K_0: \ \forall n>N_0$ и $k>K_0$

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} - A \right| < \frac{\varepsilon}{2}. \tag{24}$$

$$\sum_{i,j=1}^{n,k} a_{ij} = A_{nk}$$
 двойного ряда.

В неравенстве 24 переходим к пределу при $k \to \infty$.

Тогда $\forall n > N_0$

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij} - A \right| = \left| \sum_{i=1}^{n} A_n - A \right| < \frac{\varepsilon}{2} < \varepsilon$$

 \Rightarrow повторный ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} = A$.

4.66 Теорема о связи сходимости двойного и простого рядов

Теорема 37 (О связи сходимости двойного и простого рядов). Если ряд 23^* сходится, то сходится ряд 22.

И наоборот, если сходится ряд 22*, то сходится ряд 23.

И в обоих случаях суммы рядов равны:

$$\sum_{n=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$$

Доказательство.

• $|\Rightarrow|$ Пусть двойной ряд сходится абсолютно, то есть сходится ряд $\sum_{n,k=1}^{\infty}|a_{nk}|$.

Тогда для любого номера $S \exists N, K$ такие, что все числа u_1, \ldots, u_S

содержатся в первых N строках и первых K столбцах, тогда:

$$|u_1| + |u_2| + \ldots + |u_S| \le \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}| \le A^* = \sum_{n,k=1}^{\infty} |a_{nk}| \Rightarrow$$

 \Rightarrow последовательность $U_i^* \nearrow$ и ограничена \Rightarrow ряд $\sum_{r=1}^{\infty} u_r$ сходится абсолютно \Rightarrow сходится.

• $| \leftarrow |$ Пусть ряд $\sum_{r=1}^{\infty} |u_r|$ сходится $\Rightarrow \forall N, K \exists S$: все числа $a_{11}, a_{12}, \dots, a_{1K}, a_{21}, \dots, a_{2K}, \dots, a_{N1}, \dots$ содержатся среди чисел u_1, \dots, u_S . Тогда

$$A_{NK}^* = \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}| \le \sum_{r=1}^{S} |u_r| \le U^* = \sum_{r=1}^{\infty} |u_r| \Rightarrow$$

 \Rightarrow ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится.

Покажем, что $\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$.

Так как ряд $\sum_{r=1}^{\infty} u_r$ сходится абсолютно, то расположим элементы по квадратам:

$$\begin{aligned} a_{11} &= u_{r_1} \\ a_{12} + a_{22} + a_{21} &= u_{r_2} + u_{r_3} + u_{r_4} \\ \vdots \\ A_{nn} &= a_{11} + \ldots + a_{nn} = U_n = u_{r_1} + \ldots + u_{r_n} \\ A &= \lim_{n \to \infty} A_{nn} = \lim_{n \to \infty} U_n = U. \end{aligned}$$

5 Поточечная и равномерная сходимость семейства функций

5.75 Критерий Коши сходимости семейства функций

Теорема 38 (Критерий Коши сходимости семейства функций). Пусть Y – полное метрическое пространство, $f_t: X \to Y, \ t \in T$ – семейство $\{f_t\}$ равномерно сходится на X по базе $\mathfrak{B} \Leftrightarrow \forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$ и $\forall x \in X$

$$\rho(f_{t_1}(x); f_{t_2}(x)) < \varepsilon.$$

Доказательство. А где

5.76 Следствие из критерия Коши сходимости семейства функций

Следствие. Пусть X,Y – метрические пространства, $E \subset X, \ x_0 \in E$ – предельная точка для E. Семейство $f_t: X \to Y$:

5 ПОТОЧЕЧНАЯ И РАВНОМЕРНАЯ СХОДИМОСТЬ СЕМЕЙСТВ**А**5 ФУНКЦИЙ

- 1. f_t сходится на E по базе \mathfrak{B} .
- 2. f_t расходится в точке x_0 по базе \mathfrak{B} .
- 3. $\forall t \ f_t$ непрерывно в точке x_0 .

Тогда на E семейство f_t сходится неравномерно.

Доказательство. Применим критерий Коши, покажем, что $\exists \varepsilon > 0: \forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$ и $\exists x \in E:$

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon.$$

Таким образом f_t расходится в точке x_0 , тогда $\exists \varepsilon > 0: \forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$:

$$\rho_Y(f_{t_1}(x_0), f_{t_2}(x_0)) \ge \varepsilon.$$

Так как f_{t_1} и f_{t_2} непрерывны, тогда $\exists U(x_0) \in X: \ \forall x \in U(x_0)$

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon.$$

Возьмем $\forall x \in U(x_0) \cap E \Rightarrow$ тогда в x будет выполняться неравенство

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant \varepsilon \Rightarrow$$

 $\Rightarrow f_t$ на E сходится неравномерно.

6 Функциональный ряд

6.80 Критерий Коши равномерной сходимости ряда

Определение 6 (Функциональный ряд). Пусть $f_n: X \to \mathbb{R}, X$ – произвольное множество.

Функциональным рядом называется выражение вида

$$\sum_{n=1}^{\infty} f_n(x) \tag{25}$$

Теорема 39 (Критерий Коши равномерной сходимости функциональных рядов). Ряд 25 равномерно сходится на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| < \varepsilon.$$

Доказательство. Самостоятельно (круто).

6.81 Следствие из критерия Коши равномерной сходимости ряда

Следствие. Пусть X, Y — метрические пространства, $E \subset X, x_0 \in E$ — предельная точка для E. Семейство $f_t : X \to Y$:

- 1. f_t сходится на E по базе \mathfrak{B} .
- 2. f_t расходится в точке x_0 по базе \mathfrak{B} .
- 3. $\forall t \ f_t$ непрерывно в точке x_0 .

Тогда на E семейство f_t сходится неравномерно.

Следствие (Из следствия выше). Если $f_t:(a;b] \to D, \ D$ – область в Y:

- 1. $\forall t \ f_t$ непрерывно в точке b.
- 2. f_t сходится на (a;b) по \mathfrak{B} .
- 3. f_t расходится в точке b.

Тогда на (a;b) f_t сходится неравномерно.

Следствие (Которое нужно доказать). Если:

- 1. Ряд 25 сходится на (a; b).
- 2. Расходится в точке b.
- 3. $\forall n \ f_n(x)$ непрерывно в точке b.

Тогда ряд 25 сходится на (a;b) неравномерно.

Доказательство. Следует из предыдущих следствий.

6.82 Признак сравнения

Я не нашел.

6.83 Признак Вейерштрасса

Следствие (Мажорантный признак Вейерштрасса). Пусть

1. $\forall n \; \exists M_n$

$$|a_n(x)| \le M_n \quad \forall x \in X.$$

2. Ряд $\sum_{n=1}^{\infty} M_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится на X абсолютно и равномерно.

Доказательство. А где

6.84 Признак Абеля

Теорема 40 (Признак Абеля). Пусть функции $a_n(x)$ и $b_n(x)$ удовлетворяют условиям:

- ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- последовательность $\{b_n(x)\}$ равномерно ограничена на X и монотонна (то есть $\exists L > 0: \ \forall n \in \mathbb{N} \ u \ \forall x \in X \ |b_n(x)| \leq L$),

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно

Доказательство. Рассмотрим

$$\begin{aligned} \left| a_{n+1}(x) \cdot b_{n+1}(x) + a_{n+2}(x) \cdot b_{n+2}(x) + \dots + a_{n+p}(x) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(\left(A_{n+2} - A_n \right) - \left(A_{n+1} - A_n \right) \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(\left(A_{n+p} - A_n \right) - \left(A_{n+p-1} - A_n \right) \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(A_{n+2} - A_n \right) \cdot b_{n+2}(x) - \left(A_{n+1} - A_n \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) - \left(A_{n+p-1} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot \left(b_{n+1}(x) - b_{n+2}(x) \right) + \left(A_{n+2} - A_n \right) \cdot \left(b_{n+2}(x) - b_{n+3}(x) \right) + \dots \\ &\quad \dots + \left(A_{n+p-1} - A_n \right) \cdot \left(b_{n+p-1}(x) - b_{n+p}(x) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \sum_{k=1}^{p-1} \left(\left(A_{n+k} - A_n \right) \cdot \left(b_{n+k}(x) - b_{n+k-1}(x) \right) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &\leq \\ &\leq \sum_{k=1}^{p-1} \left(\left| A_{n+k} - A_n \right| \cdot \left| b_{n+k}(x) - b_{n+k+1}(x) \right| \right) + \left| A_{n+p} - A_n \right| \cdot \left| b_{n+p}(x) \right|. \end{aligned}$$

Если выполнены условия Абеля, то $\forall \varepsilon > 0$ выберем $N: \ \forall n > N, \ \forall p > 0 \ \forall x \in X$

$$\left|a_{n+1}(x) + a_{n+2}(x) + \ldots + a_{n+p}(x)\right| < \frac{\varepsilon}{3 \cdot L}$$

Тогда

$$\sum_{k=1}^{p-1} \left(|A_{n+k} - A_n| \cdot |b_{n+k}(x) - b_{n+k+1}(x)| \right) + |A_{n+p} - A_n| \cdot |b_{n+p}(x)| < \frac{\varepsilon}{3 \cdot L} \left(\sum_{k=1}^{p-1} \left| b_{n+k}(x) - b_{n+k+1}(x) \right| + \left| b_{n+p}(x) \right| \right) \le \frac{\varepsilon}{3 \cdot L} \left(|b_{n+1}(x)| + 2|b_{n+p}(x)| \right) < \frac{\varepsilon}{3 \cdot L} \cdot 3 \cdot L = \varepsilon \Rightarrow$$

 \Rightarrow по критерию Коши, $\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$ сходится равномерно на X.

6.85 Признак Дирихле

Теорема 41 (Признак Дирихле).

- частичные суммы ряда $\sum_{n=1}^{\infty} a_n(x)$ равномерно ограничены на X (то есть $\exists M > 0: \ \forall n \ \text{и} \ \forall x \in X \ \left| \sum_{k=1}^{n} a_k(x) \right| \leqslant M$),
- последовательность $\{b_n(x)\}$ монотонна и равномерно на X стремится к 0,

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно

Доказательство. Рассмотрим

$$\begin{aligned} \left| a_{n+1}(x) \cdot b_{n+1}(x) + a_{n+2}(x) \cdot b_{n+2}(x) + \dots + a_{n+p}(x) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(\left(A_{n+2} - A_n \right) - \left(A_{n+1} - A_n \right) \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(\left(A_{n+p} - A_n \right) - \left(A_{n+p-1} - A_n \right) \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot b_{n+1}(x) + \left(A_{n+2} - A_n \right) \cdot b_{n+2}(x) - \left(A_{n+1} - A_n \right) \cdot b_{n+2}(x) + \dots \\ &\quad \dots + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) - \left(A_{n+p-1} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \left(A_{n+1} - A_n \right) \cdot \left(b_{n+1}(x) - b_{n+2}(x) \right) + \left(A_{n+2} - A_n \right) \cdot \left(b_{n+2}(x) - b_{n+3}(x) \right) + \dots \\ &\quad \dots + \left(A_{n+p-1} - A_n \right) \cdot \left(b_{n+p-1}(x) - b_{n+p}(x) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &= \\ &= \left| \sum_{k=1}^{p-1} \left(\left(A_{n+k} - A_n \right) \cdot \left(b_{n+k}(x) - b_{n+k-1}(x) \right) \right) + \left(A_{n+p} - A_n \right) \cdot b_{n+p}(x) \right| &\leq \\ &\leq \sum_{k=1}^{p-1} \left(\left| A_{n+k} - A_n \right| \cdot \left| b_{n+k}(x) - b_{n+k+1}(x) \right| \right) + \left| A_{n+p} - A_n \right| \cdot \left| b_{n+p}(x) \right|. \end{aligned}$$

Пусть выполнены условия Дирихле. Тогда $\forall \varepsilon > 0$ выберем $N: \ \forall n > N \ \forall x > X$

$$|b_n(x)| < \frac{\varepsilon}{3 \cdot M}.$$

$$\sum_{k=1}^{p-1} \left(|A_{n+k} - A_n| \cdot |b_{n+k}(x) - b_{n+k+1}(x)| \right) + |A_{n+p} - A_n| \cdot |b_{n+p}(x)| \le$$

$$\le \frac{\varepsilon}{p \cdot M} \left(\sum_{k=1}^{p-1} |A_{n+k} - A_n| + |A_{n+p} - A_n| \right) =$$

$$= \frac{\varepsilon}{p \cdot M} \left(|a_{n+1}(x)| + |a_{n+1}(x) + a_{n+2}(x)| + \dots + |a_{n+1}(x) + \dots + a_{n+p}(x)| \right) \le$$

$$\le \frac{\varepsilon}{p \cdot M} \cdot (p \cdot M) = \varepsilon.$$

7 Свойства предельной функции

7.86 Условия коммутирования двух предельных переходов

Теорема 42 (Условия коммутирования двупредельных переходов). Пусть X,T — множества, \mathfrak{B}_x — база на $X,\ \mathfrak{B}_T$ — база на $T,\ Y$ — полное МП, $f_t:X\to Y,\ f:X\to Y$:

- $f_t \Longrightarrow_T f$ на X,
- $\bullet \ \forall t \in T \ \exists \lim_{\mathfrak{B}_X} = A_t,$

тогда существуют и равны два повторных предела:

$$\underset{\mathfrak{B}_T}{\lim} \underset{\mathfrak{B}_X}{\lim} f_t(x) = \underset{\mathfrak{B}_X}{\lim} \underset{\mathfrak{B}_T}{\lim} f_t(x).$$

Запишем условия и утверждение теоремы в форме диаграмы:

$$\begin{array}{ccc}
f_t(x) & \Longrightarrow & f(x) \\
\forall t, \mathfrak{B}_X & & \downarrow & \downarrow \\
A_t & \xrightarrow{\mathfrak{B}_T} & A
\end{array}$$

→ - дано, --> - утверждение

Доказательство. Докажем наличие нижней стрелки, то есть покажем,

$$\exists \lim_{\mathfrak{B}_T} = A.$$

Пусть $\varepsilon > 0$ задано. Выберем элемент $B_t \in \mathfrak{B}_T \ \forall t_1, t_2 \in B_t$ и $\forall x \in X$

$$\rho(f_{t_1}(x), f_{t_2}(x)) < \frac{\varepsilon}{2},$$

это можно сделать, так как \exists равномерная сходимость f_t к f по \mathfrak{B}_T на X.

Зафиксируем t_1 и t_2 и перейдем к пределу по базе \mathfrak{B}_X в неравенстве

$$\rho(A_{t_1}, A_{t_2}) < \frac{\varepsilon}{2} < \varepsilon.$$

Таким образом для функции $A_t: T \to Y$ выполняются условия критерия Коши \exists -ия предела функции по базе $\mathfrak{B}_T \Rightarrow \exists \lim_{n \to \infty} A_t = A$.

Покажем, что $\lim_{\mathfrak{B}_X} f(x) = A$. Рассмотрим

$$\rho(f(x), A) \leq \rho(f(x), f_t(x)) + \rho(f_{t_2}(x), A_t) + \rho_t(A_t, A).$$

Пусть $\varepsilon > 0$ задано. Выберем $B_t' \in \mathfrak{B}_T: \ \forall t \in B_t'$ и $\forall x \in X$

$$\rho(f(x), f_t(x)) < \frac{\varepsilon}{3}.$$

Затем выберем $B_t^{\prime\prime} \in \mathfrak{B}_T: \ \forall t \in B_t^{\prime\prime}$

$$\rho(A_t, A) < \frac{\varepsilon}{3}.$$

Зафиксируем $t \in B'_t \cap B''_t$.

Выберем $B_x \in \mathfrak{B}_X : \ \forall x \in B_x$

$$\rho(f_t(x), A_t) < \frac{\varepsilon}{3} \quad (f_t \to A_t).$$

Тогда $\forall x \in B_x$

$$\rho(f(x), A) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

7.87 Непрерывность предельной функции

Теорема 43 (Непрерывность предельной функции). Пусть X, Y – метрические пространства, \mathfrak{B} – база на $T, f_t: X \to Y, f: X \to Y$:

- $\forall t \in T$ функция f_t непрерывна в точке $x_0 \in X$,
- семейство $f_t \Longrightarrow_{\mathfrak{B}} f$ на X,

тогда функция f непрерывна в точке x_0 .

Доказательство. Имеем

$$\begin{array}{cccc}
f_t(x) & \Longrightarrow & f(x) \\
\forall t & \text{при} & & \downarrow \\
x \to x_0 & & & \downarrow \\
f_t(x_0) & \xrightarrow{--} & A & = f(x_0)
\end{array}$$

7.88 Интегрируемость предельной функции

Теорема 44 (Интегрируемость предельной функции). Пусть $f_t:[a;b] \to \mathbb{R}, \ f:[a;b] \to \mathbb{R}$:

- $\forall t \in T$ f_t интегрируема по Риману на [a;b],
- $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ на [a;b] (\mathfrak{B} база на T),

тогда:

7 СВОЙСТВА ПРЕДЕЛЬНОЙ ФУНКЦИИ

1. f интегрируема по Риману на [a;b].

2

$$\int_{a}^{b} f(x)dx = \lim_{\mathfrak{R}} \int_{a}^{b} f_{t}(x)dx \Leftrightarrow \lim_{\mathfrak{R}} \int_{a}^{b} f_{t}(x)dx = \int_{a}^{b} \lim_{\mathfrak{R}} f_{t}(x)dx.$$

Доказательство.

$$\int_{a}^{b} f(x)dx = \lim_{\lambda(P)\to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} =$$

$$= \lim_{\lambda(P)\to 0} \sigma(f(P,\xi)) = \lim_{\lambda(P)\to 0} \lim_{\mathfrak{B}} \sigma(f_{t},(P,\xi)) = \lim_{\mathfrak{B}} \lim_{\lambda(P)\to 0} \sigma(f_{t},(P,\xi)) =$$

$$= \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x) dx.$$

$$\sigma_{t} = \sigma(f_{t}, (P, \xi)) \xrightarrow{\stackrel{\frown}{\mathfrak{B}}} \sigma(f, (P, \xi))$$

$$\downarrow^{\forall t} \qquad \qquad \downarrow^{\lambda(P) \to 0} \qquad \qquad \downarrow^{\lambda(P) \to 0}$$

$$\int_{a}^{b} f_{t}(x) dx \xrightarrow{\stackrel{\frown}{\mathfrak{B}}} \int_{a}^{b} f(x) dx \qquad (26)$$

(я не научился делать утверждение для равномерной сходимости)

Пусть \mathcal{P} – множество разбиений с отмеченными точками отрезка [a;b]. Тогда функции $\sigma(f_t,(P,\xi))$ и $\sigma(f,(P,\xi))$ функции на \mathcal{P} .

Покажем, что семейство $\sigma_t = \sigma(f_t, (P, \xi))$ сходится равномерно к функции $\sigma(f, (P, \xi))$:

$$\left| \sigma (f_t, (P, \xi)) - \sigma (f, (P, \xi)) \right| =$$

$$= \left| \sum_{i=1}^n f_t(\xi_i) \Delta x_i - \sum_{i=1}^n f(\xi_i) \Delta x_i \right| \leq \sum_{i=1}^n \left| f_t(\xi_i) - f(\xi_i) \right| \Delta x_i.$$

Пусть $\varepsilon > 0$ задано. Выберем элемент $B \in \mathfrak{B}: \ \forall t \in B, \ \forall x \in [a;b]$

$$\left| f_t(x) - f(x) \right| < \frac{\varepsilon}{h - a}$$

Тогда

$$\sum_{i=1}^{n} \left| f_t(\xi_i) - f(\xi_i) \right| \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon.$$

Таким образом $|\sigma_t - \sigma| < \varepsilon \Rightarrow \sigma_t \Longrightarrow \sigma \Rightarrow$ по теореме 42 все стрелки в диаграмме 26 доказаны \Rightarrow все переходы в равенстве законны.

7.89 Теорема Дини

Теорема 45 (Дини). Пусть X – компактное метрическое пространство. Последовательность $f_n: X \to \mathbb{R}$ монотонна на X и $\forall x \ f_n$ непрерывна на X.

Если $f:X \to \mathbb{R}$ непрерывна на X, то эта сходимость равномерная.

Доказательство. Для $\forall x \in X$ выберем номер $N_x: \ \forall n > N_x$

$$|f_n(x) - f(x)| < \varepsilon$$
, где $\varepsilon > 0$ задано.

Так как f_{N_x} и f непрерывны, то $\exists U_x \subset X \ \forall y \in U_x$

$$|f_{N_x}(y) - f(y)| < \varepsilon$$
, (используя непрерывность).

Таким образом для каждого $x \in X$ построим такую окружность U_x . Семейство таких окрестностей является открытым покрытием пространства X.

Пусть $\{U_{X_1},U_{X_2},\dots,U_{X_k}\}$ – конечное подпокрытие X. Положим $N=\max\{N_{X_1},N_{X_2},\dots,N_{X_1=k}\}$. Тогда $\forall n>N,\ \forall x\in X$

$$|f_n(x) - f(x)| < \varepsilon.$$

Это и есть равномерная сходимость.

7.90 Дифференцируемость предельной функции

Теорема 46 (Дифференцируемость предельной функции). Пусть $-\infty < a < b < +\infty \ (a, b - \text{конечны}), \ f_t : (a; b) \to \mathbb{R}, \ f : (a; b) \to \mathbb{R}$:

- $\forall t \in T$ f_t дифференцируема на (a; b),
- $\exists \phi : (a;b) \to \mathbb{R} : f'_t \underset{\mathfrak{B}}{\Longrightarrow} \phi \text{ Ha } (a;b),$
- $\exists x_0 \in (a;b) : f_t(x_0) \to f(x_0),$

тогда:

- 1. $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ Ha (a;b).
- 2. f дифференцируема на (a;b).
- 3. $\forall x \in (a;b) \ f'(x) = \phi(x)$.

Докажем, что семейство функций f_t сходится к f равномерно на (a;b):

$$\begin{aligned} \left| f_{t_{1}}(x) - f_{t_{2}}(x) \right| &= \\ &= \left| f_{t_{1}}(x) - f_{t_{2}}(x) + f_{t_{1}}(x_{0}) - f_{t_{1}}(x_{0}) + f_{t_{2}}(x_{0}) - f_{t_{2}}(x_{0}) \right| \leqslant \\ &\leqslant \left| \left(f_{t_{1}}(x) - f_{t_{1}}(x_{0}) \right) - \left(f_{t_{2}}(x) - f_{t_{2}}(x_{0}) \right) \right| + \left| f_{t_{1}}(x_{0}) - f_{t_{2}}(x_{0}) \right| = \\ &= \left| f'_{t_{1}}(\xi) - f'_{t_{2}}(\xi) \right| \cdot \left| x - x_{0} \right| + \left| f_{t_{1}}(x_{0}) - f_{t_{2}}(x_{0}) \right|. \end{aligned}$$

Пусть $\varepsilon > 0$ задано. Выберем $B \in \mathfrak{B} \ (\mathfrak{B}$ – база на $T) \ \forall t_1, t_2 \in B$

$$\left| f_{t_1}(x_0) - f_{t_2}(x_0) \right| < \frac{\varepsilon}{2}$$

и $\forall x \in (a;b)$ и $\forall t_1', t_2' \in B$:

$$\left|f'_{t'_2}(x) - f'_{t'_2}(x)\right| < \frac{\varepsilon}{2(b-a)}.$$

Тогда $\forall t_1, t_2 \in B$ и $\forall x \in (a; b)$

$$|f_{t_1}(x) - f_{t_2}(x)| < \frac{\varepsilon}{2(b-a)} \cdot (b-a) + \frac{\varepsilon}{2} = \varepsilon.$$

Итак, $f_t \Longrightarrow f$ на (a;b). Покажем, что предельная функция f дифференцируема на (a;b) и $\forall x \in (a;b)$

$$f'(x) = \phi(x)$$
:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\lim_{\mathfrak{B}} f_t(x+h) - \lim_{\mathfrak{B}} f(x)}{h} = \lim_{h \to 0} \frac{f_t(x+h) - f_t(x)}{h} \stackrel{(\star)}{=}$$

$$\stackrel{(\star)}{=} \lim_{\mathfrak{B}} \lim_{h \to 0} \frac{f_t(x+h) - f_t(x)}{h} = \lim_{\mathfrak{B}} f'_t(x) = \phi(x).$$

Покажем законность перехода (*). Пусть $x \in (a;b), x+h \in (a;b).$ Рассмотрим

$$F_{t}(h) = \xrightarrow{f_{t}(x+h)-f_{t}(x)} \xrightarrow{\xrightarrow{--}} \xrightarrow{g} \xrightarrow{f(x+h)-f(x)} = F(h)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Докажем существование двойной верхней стрелки. Имеем:

$$\begin{cases}
f_t(x) \xrightarrow{\mathfrak{B}} f(x) \\
f_t(x+h) \xrightarrow{\mathfrak{B}} f(x+h)
\end{cases} \Rightarrow F_t(h) \xrightarrow{\mathfrak{B}} F(h),$$

$$\begin{aligned} \left| F_{t_1}(h) - F_{t_2}(h) \right| &= \\ &= f'_{t_1}(\xi) \cdot |h| \\ &= \left| \underbrace{\frac{f_{t_1}(x+h) - f_{t_1}(x)}{h}}_{= f'_{t_1}(\xi) \cdot |h|} - \frac{f_{t_2}(x+h) - f_{t_2}(x)}{h} \right| = \\ &= \frac{1}{|h|} |f'_{t_1}(\xi) \cdot |h| - f'_{t_2}(\xi) \cdot |h| = \\ &= |f'_{t_1}(\xi) - f'_{t_2}(\xi)|, \ \xi \in (x; x+h). \end{aligned}$$

Пусть $\varepsilon > 0$ задано. Тогда $\exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$

$$\left|f'_{t_1}(\xi) - f'_{t_2}(\xi)\right| < \varepsilon.$$

Таким образом семейство $\{F_t(h)\}$ сходится равномерно на (a;b). Правая вертикальная стрелка следует из теоремы 42.

8 Свойства предельной функции

8.95 Теорема о сходимости степенного ряда

Определение 7 (Степенной ряд). *Степенным рядом* называется выражение вида

$$\sum_{n=0}^{\infty} \left(a_n \cdot (x - x_0)^n \right)$$

или

$$\sum_{n=0}^{\infty} (a_n \cdot x^n). \tag{27}$$

Теорема 47 (О сходимости степенного ряда).

- 1. Областью сходимости степенного ряда 27 является промежуток (-R;R), где $R\geqslant 0$ $(+\infty)$.
- 2. $\forall [\alpha; \beta] \subset (-R; R)$ ряд 27 сходится равномерно на $[\alpha; \beta]$.
- 3. Число R, называемое радиусом сходимости степенного ряда 27, может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

Доказательство. Воспользуемся признаком Коши:

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n| \cdot |x|^n} = |x| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = k.$$

При k < 1 ряд $\sum_{n=0}^{\infty} |a_n \cdot x^n|$ сходится \Rightarrow ряд 27 сходится абсолютно. Покажем, что при k > 1 ряд 27 расходится. Для этого покажем, что при k > 1 $a_n \cdot x^n \nrightarrow 0$.

В самом деле, \exists подпоследовательность номеров n_k и $\exists k: \ \forall k > K$

$$|a_{n_k} \cdot x^{n_k}| > \left(\frac{1+k}{2}\right)^{n_k} > 1 \Rightarrow a_n \cdot x^n \underset{n \to \infty}{\to} 0.$$

Таким образом, $|x| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1$,

$$|x| < \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = R \Rightarrow x \in (-R; R)$$
 — область сходимости 27.

При k=1 ряд 27 может как сходиться, так и расходиться.

Таким образом, доказали пункты 1. и 3..

Докажем пункт 2.:

Пусть $[\alpha; \beta] \subset (-R; R)$. Возьмем x_0 :

$$-R < -x_0 < \alpha < \beta < x_0 < R$$
.

Тогда $\forall x \in [\alpha; \beta]$

$$|a_n \cdot x^n| < |a_n \cdot x_0^n|.$$

Заметим, что так как $x_0 \in (-R;R)$, то ряд $\sum_{n=0}^{\infty} |a_n \cdot x_0^n|$ сходится \Rightarrow по признаку Вейерштрасса ряд 27 сходится равномерно на $[\alpha;\beta]$. \square

8.97 Теорема Абеля о сумме степенного ряда

Теорема 48 (Абеля, о сумме степенного ряда). Если R – радиус сходимости ряда 27 и ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ сходится, то

$$\lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

Доказательство. Заметим, что сумма ряда является непрерывной на интервале сходимости.

В самом деле, если $x_0 \in (-R; R)$, то $\exists x_0 \in [\alpha; \beta]$: по теореме 47 на $[\alpha; \beta]$ ряд 27 сходится равномерно \Rightarrow его сумма является непрерывной функцией на $[\alpha; \beta]$, то есть она непрерывна в точке x_0 .

Так как $x_0 \in (-R; R)$ произвольная \Rightarrow сумма ряда 27 непрерывна на (-R; R).

Покажем, что ряд 27 равномерно сходится на промежутке $[\alpha; R]$, где $\alpha > -R$.

B самом деле, $\forall x \in [\alpha; R]$:

$$\sum_{n=0}^{\infty} |a_n \cdot x^n| = \sum_{n=0}^{\infty} \left(a_n \cdot R^n \cdot \left| \left(\frac{x}{R} \right)^n \right| \right).$$

Здесь ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ – сходится, а последовательность $\left\{ \left(\frac{|x|}{R}\right)^n \right\}$ монотонна и равномерно ограничена \Rightarrow по теореме Абеля ряд 27 схо-

дится на $[\alpha; R]$ равномерно \Rightarrow сумма его непрерывна на $[\alpha; R] \Rightarrow$

$$\Rightarrow \lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

8.98 Теорема об интегрировании степенного ряда

Теорема 49 (Об интегрировании степенного ряда). Пусть дан ряд 27. Пусть S(x) – его сумма, R – радиус сходимости ряда 27. Тогда $\forall \overline{x} \in$ (-R;R) функция S(x) интегрируема на $[0;\overline{x}]$ (или на $[\overline{x};0]$) и

$$\int_0^{\overline{x}} S(x) dx = \int_0^{\overline{x}} \left(\sum_{n=0}^{\infty} (a_n \cdot x^n) \right) dx = \sum_{n=0}^{\infty} \int_0^{\overline{x}} (a_n \cdot x^n) dx = \sum_{n=0}^{\infty} \left(\frac{a_n}{n+1} \cdot \overline{x}^{n+1} \right).$$

Если ряд 27 сходится при x = R, то утверждение остается верным и для \overline{x} = R.

Доказательство. Имеем,

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$

Пусть R' и R'' – радиусы сходимости рядов $\sum_{n=0}^{\infty} \left(\frac{a_n}{n_1} \cdot x^{n+1}\right)$ и $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1})$, соответственно:

$$R' = \frac{1}{\frac{\overline{\lim}}{\overline{\lim}_{n \to \infty}} \sqrt[n]{\frac{|a_n|}{n+1}}} = \begin{vmatrix} \lim_{n \to \infty} \sqrt[n]{n} = 1 \\ \text{смотреть Демидович} \end{vmatrix} = \frac{1}{\frac{\overline{\lim}}{\overline{\lim}_{n \to \infty}} \sqrt[n]{|a_n|}} = R,$$

$$R'' = \frac{1}{\frac{\overline{\lim}}{\overline{\lim}_{n \to \infty}} \sqrt[n]{|a_n| \cdot n}} = R.$$

$$R'' = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n| \cdot n}} = R.$$

Таким образом для ряда 27 выполняется условия теорем об интегрировании и дифференцировании предельной функции.

Условия равномерной сходимости следуют из теоремы 47.

8.99 Теорема о дифференцировании степенного ряда

Теорема 50 (О дифференцировании степенного ряда). Пусть дан ряд 27. Пусть S(x) – его сумма, R – радиус сходимости ряда 27. Тогда $\forall x \in (-R; R)$ функция S(x) дифференцируема в точке x и

$$S'(x) = \left(\sum_{n=0}^{\infty} (a_n \cdot x^n)\right)' = \sum_{n=0}^{\infty} (a_n \cdot x^n)' = \sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1}).$$

Если ряд $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1})$ сходится при x = R (-R), то утверждение теоремы остается верно и при x = R.

Доказательство. Имеем,

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

Пусть R' и R'' – радиусы сходимости рядов $\sum_{n=0}^{\infty} \left(\frac{a_n}{n_1} \cdot x^{n+1} \right)$ и $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1})$, соответственно:

$$R'=rac{1}{\displaystyle \varlimsup_{n o\infty}\sqrt[n]{\dfrac{|a_n|}{n+1}}}=\left| \begin{array}{cc} \displaystyle \liminf_{n o\infty}\sqrt{n}=1 \\ \displaystyle \mathrm{смотреть}\ \Box \mathrm{емидович} \end{array} \right|=rac{1}{\displaystyle \varlimsup_{n o\infty}\sqrt[n]{|a_n|}}=R,$$
 $R''=rac{1}{\displaystyle \varlimsup_{n o\infty}\sqrt[n]{|a_n|\cdot n}}=R.$

Таким образом для ряда 27 выполняется условия теорем об интегрировании и дифференцировании предельной функции.

Условия равномерной сходимости следуют из теоремы 47.

8.100 Теорема о единственности степенного ряда

Теорема 51 (Об единственности). Если существует окрестность U точки x=0 суммы рядов $\sum_{n=0}^{\infty} (a_n \cdot x^n)$ и $\sum_{n=0}^{\infty} (b_n \cdot x^n)$ совпадают для всех $x \in U$, то $\forall n$

$$a_n = b_n$$
.

Доказательство. Положим $x=0\Rightarrow a_0=b_0$. Далее рассмотрим ряд $\sum_{n=1}^{\infty} \left((a_n-b_n)\cdot x^n\right)$. Он сходится на U, так как сходятся исходные ряды. Пусть $\sum_{n=0}^{\infty} (a_n\cdot x^n) = S_a(x), \; \sum_{n=0}^{\infty} (b_n\cdot x^n) = S_b(x)$. По условию теоремы, $\forall x\in U(0)$

$$S_a(x) \equiv S_b(x),$$

$$\sum_{n=0}^{\infty} (a_n \cdot x^n) - \sum_{n=0}^{\infty} (b_n \cdot x^n) = S_a(x) - S_b(x) \equiv 0$$

$$\sum_{n=1}^{\infty} ((a_n - b_n) \cdot x^{n-1}) \equiv 0$$

Поделим $\sum_{n=1}^{\infty} \left((a_n - b_n) \cdot x^{n-1} \right) \equiv 0$ на $x \neq 0$, получится ряд

$$\sum_{n=1}^{\infty} \left((a_n - b_n) \cdot x^{n-1} \right) \equiv 0.$$

Перейдем к пределу в $\sum_{n=1}^{\infty} \left(\left(a_n - b_n \right) \cdot x^{n-1} \right) \equiv 0$ при $x \to 0$:

$$0 \equiv \lim_{x \to 0} \sum_{n=1}^{\infty} ((a_n - b_n) \cdot x^{n-1}) = \sum_{n=1}^{\infty} \lim_{x \to 0} ((a_n - b_n) \cdot x^{n-1}) = a_1 - b_1 \Rightarrow$$

$$\Rightarrow a_1 = b_1$$
. И так далее $\Rightarrow \forall n \ a_n = b_n$.

8.102 Утверждение о связи степенного ряда и ряда Тейлора

Утверждение. Если функция f(x) в окрестности точки x_0 является суммой степенного ряда $\sum_{n=0}^{\infty} \left(a_n \cdot (x-x_0)^n\right)$, то этот ряд является ее рядом Тейлора.

Доказательство. Имеем, $\forall x \in U(x_0) = (x_0 - \varepsilon; x_0 + \varepsilon)$:

$$f(x) = \sum_{n=0}^{\infty} (a_n \cdot (x - x_0)^n).$$
 (28)

Положим, что $x=x_0$, тогда $f(x_0)=a_0$. Продифференцируем выражение 28 и вычислим производную в точке $x=x_0$ (и далее по аналогии):

$$f'(x_0) = 1 \cdot a_1;$$

$$f''(x_0) = 2 \cdot 1 \cdot a_2 \Rightarrow a_2 = \frac{f''(x_0)}{1 \cdot 2} = \frac{f''(x_0)}{2!};$$

$$f'''(x_0) = 3 \cdot 2 \cdot 1 \cdot a_3 \Rightarrow a_3 = \frac{f'''(x_0)}{1 \cdot 2 \cdot 3} = \frac{f'''(x_0)}{3!};$$

$$\vdots$$

$$f^{(n)}(x_0) = n \cdot (n-1) \cdot \ldots \cdot 1 \cdot a_n \Rightarrow a_n = \frac{f^{(n)}(x_0)}{1 \cdot 2 \cdot \ldots \cdot n} = \frac{f^{(n)}(x_0)}{n!}.$$

8.103 Разложение элементарных функций в степенной ряд

Лемма 2. Если f(x) — ∞-но дифференцируемая функция на [0; H] и $\exists L > 0: \ \forall n \in \mathbb{N}$ и $\forall x \in [0; H]$

$$\left|f^{(n)}(x)\right| \leqslant L,$$

то на [0;H] функция f может быть разложена в степенной ряд (ряд Тейлора).

Доказательство. Имеем:

$$|f(x) - F_n(x)| = |f(x) - \sum_{k=0}^n \left(\frac{f^{(k)}(0)}{k!} \cdot x^k \right)| = |R_n(x)|,$$

где $F_n(x)$ — частичная сумма ряда Тейлора (степенной ряд), $R_n(x)$ — остаточный член в формуле Тейлора.

Так как f(x) есть сумма ряда $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n \Leftrightarrow R_n(x)$ должен \to к 0 при $n \to \infty$.

Рассмотрим

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot x^{n+1}, \quad 0 < \xi < x.$$

Если выполнены условия леммы, то

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot x^{n+1} \right| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} \cdot |x^{n+1}| \le \frac{L \cdot H^{n+1}}{(n+1)!},$$

$$\lim_{n \to \infty} \frac{L \cdot H^{n+1}}{(n+1)!} = 0 \Rightarrow$$

 \Rightarrow (упражнение: доказать) $\Rightarrow R_n(x) \to 0$ при $n \to \infty$.

9 Интегралы, зависящие от параметра

9.105Теорема о непрерывности собственного интеграла, зависящего от параметра

Тут не уверен, оно или нет.

Теорема 52. Если функция f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y)dx$ непрерывна на [c;d].

Доказательство. Пусть $y_0 \in [c;d]$. Покажем, что F(y) непрерывна в

$$|F(y) - F(y_0)| =$$

$$= \left| \int_a^b f(x, y) dx - \int_a^b f(x, y_0) dx \right| = \left| \int_a^b \left(f(x, y) - f(x, y_0) \right) dx \right| \le$$

$$\le \int_a^b |f(x, y) - f(x, y_0)| dx.$$

Так как f(x,y) непрерывна на P и P – компактное, то f(x,y) – равномерно непрерывна на $P\Rightarrow \forall \varepsilon>0\ \exists \delta>0:\ \forall\ M_1\ ,\ M_2\ \in P:$

$$\rho\big((x_1,y_1),(x_2,y_2)\big) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} < \delta \Rightarrow \\ \Rightarrow \big|f(x_1,y_1) - f(x_2;y_2)\big| < \varepsilon.$$
 Пусть $\varepsilon > 0$ задано. Выберем $\delta > 0 : \forall M_1, M_2 \in P$:

$$\rho(M_1, M_2) < \delta \Rightarrow \left| f(x_1, y_1) - f(x_2, y_2) \right| < \frac{\varepsilon}{h - a}.$$

$$\begin{split} \left| F(y) - F(y_0) \right| \leqslant \\ \leqslant \int_a^b \left| f(x,y) - f(x,y_0) \right| dx < \int_a^b \frac{\varepsilon}{b-a} dx = \\ &= \frac{\varepsilon}{b-a} \cdot \int_a^b dx = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon \\ \Rightarrow F(y) \text{ непрерывна в точке } y_0, \text{ где точка } y_0 - \text{прозвольная.} \end{split}$$

 \Rightarrow F(y) непрерывна в точке y_0 , где точка y_0 – прозвольная.

9.106 Теорема о дифференцировании собственного интеграла, зависящего от параметра

Лемма 3. Если:

• f(x,y) непрерывна на P,
• $\frac{\partial f}{\partial y}(x,y)$ непрерывна на P,
то $F(y)=\int_a^b f(x,y)dx$ дифференцируема на [c;d] и

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx.$$

Теорема 53 (О дифференцировании собственного интеграла, зависящего от параметра). Пусть:

- $\alpha(y), \beta(y)$ дифференцируемые на [c;d],
- $\forall y \in [c;d] \ a \leqslant \alpha(y) \leqslant b$ и $a \leqslant \beta(y) \leqslant b$,
- f(x,y) непрерывна на P = $[a;b] \times [c;d]$,
- $\frac{\partial f}{\partial y}$ непрерывна на P,

тогда $F(y) = \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ дифференцируема на [c;d] и

$$F'(y) = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) dx + f(\beta(y),y) \cdot \beta'(y) - f(\alpha(y),y) \cdot \alpha'(y)$$

(формула Лейбница)

Доказательство. Используя лемму 3, рассмотрим функцию

$$\Phi(y,\alpha(y),\beta(y)) = \int_{\alpha(y)}^{\beta(y)} f(x,y)dx:$$

$$\begin{aligned} & \Phi'_y & = & \Phi'_y \cdot y'_y + \Phi'_\alpha \cdot \alpha'_y + \Phi'_\beta \cdot \beta'_y \\ & F'_y & = & \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x, y) dx + f(\beta, y) \cdot \beta'_y - f(\alpha, y) \cdot \alpha'_y \end{aligned}$$

9.107 Теорема об интегрировании собственного интеграла, зависящего от параметра

Теорема 54 (Об интегрировании собственного интеграла по параметру). Если f(x,y) непрерывна на $P=[a;b]\times[c;d]$, то функция $F(y)=\int_a^b f(x,y)dx$ интегрируема на [c;d] и

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx.$$

Обычно пишут:

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

Доказательство. Рассмотрим функции

$$\phi(u) = \int_{c}^{u} \left(\int_{a}^{b} f(x, y) dx \right) dy,$$

$$\psi(u) = \int_{a}^{u} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

 $\phi(u)$ и $\psi(u)$ непрерывны и дифференцируемы на [a;b].

В самом деле, $F(y) = \int_a^b f(x,y) dx$ непрерывна на [c;d] (так как f(x,y) непрерывна на P и по теореме 52).

А функция $\phi(u) = \int_{c}^{u} F(y) dy$ — непрерывна и дифференцируема на [c;d] (по теореме 52).

При этом

$$\phi'(y) = F(u) = \int_a^b f(x, u) fx.$$

Далее, функция $\Phi(x,u)=\int_c^u f(x,y)dy$. $\Phi(x,u)$ — дифференцируема по u и $\Phi'_u(x,u)=f(x,u)$.

$$\psi'(u) = \int_a^b \Phi'_u(x, u) dx = \int_a^b f(x, u) fx.$$

Имеем, что $\phi'(u) = \psi'(u) \ \forall u \in [c;d] \Rightarrow$

$$\Rightarrow \phi(u) - \psi(u) = const \ \forall u \in [c; d].$$

Заметим, что $\phi(c) - \psi(c) = 0 - 0 = 0 \Rightarrow \forall u \in [c;d] \phi(u) - \psi(u) = 0 \Rightarrow$

$$\phi(u) = \psi(u) \Rightarrow$$

$$\Rightarrow \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

9.110 Утверждение об эквивалентности сходимости несобственного интгерала, зависящего от параметра и семейства функций – интегралов по верхнему пределу, зависящих от параметра

Определение 8 (Несобственный интеграл, зависящий от параметра). Пусть $\forall y \in Y \ \exists \int_a^\omega f(x,y) dx.$

 $Hecoбcmвенным\ интегралом,\ зависящим\ om\ параметра\ y$ называется функция

$$F(y) = \int_{a}^{\omega} f(x, y) dx. \tag{29}$$

Примечание. Далее, рассмотрим семейство функций

$$F_b(y) = \int_a^b f(x, y) dx, \ b \in [a; \omega). \tag{30}$$

Утверждение. Интеграл 29 сходится на Y равномерно \Rightarrow семейство функций 30 сходится на Y равномерно при $b \to \omega$.

Доказательство.

1. Интеграл 29 сходится на Y равномерно $\stackrel{\text{по опр.}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists B \in [a;\omega): \forall b \in (B;\omega)$

$$\left| \int_b^{\omega} f(x,y) dx \right| < \varepsilon.$$

2. Семейство функций 30 равномерно сходится на Y при $b \to \omega \overset{\text{по опр.}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \widetilde{B} \in [a;\omega): \ \forall b \in (\widetilde{B};\omega)$

$$|F_b(y) - F(y)| < \varepsilon, \ \forall y \in Y.$$

Но

$$|F_b(y) - F(y)| = \left| \int_a^b f(x, y) dx - \int_a^\omega f(x, y) dx \right| =$$

$$= \left| -\left(\int_a^b f(x, y) dx + \int_a^\omega f(x, y) dx \right) \right| = \left| \int_a^\omega f(x, y) dx \right|.$$

9.111 Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Теорема 55 (Критерий Коши равномерной сходимости несобственного интеграла зависящего от параметра). Интеграл $F(y) = \int_a^\omega f(x,y) dx$ равномерно сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists B \in [a;\omega) \colon \forall b_1,b_2 \in (B;\omega) \ \forall y \in Y$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| < \varepsilon.$$

Доказательство. Для семейства функций $F_b(y) = \int_a^b f(x,y) dx$ равномерная сходимость на Y при $b \to \infty$ равносильна утверждению $\forall \varepsilon > 0 \; \exists B \in [a;\omega) \colon \forall b_1,b_2 \in (B;\omega)$ и $\forall y \in Y$

$$\left|F_{b_1}(y) - F_{b_2}(y)\right| < \varepsilon,$$

$$|F_{b_1}(y) - F_{b_2}(y)| =$$

$$= \left| \int_a^{b_1} f(x, y) dx - \int_a^{b_2} f(x, y) dx \right| = \left| -\left(\int_a^{b_1} f(x, y) dx + \int_a^{b_2} f(x, y) dx \right) \right| =$$

$$= \left| \int_{b_1}^{b_2} f(x, y) dx \right| < \varepsilon.$$

9.112 Следствие критерия Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Следствие. Пусть f(x,y) непрерывна на множестве $[a;\omega) \times [c;d],$ $\int_a^\omega f(x,y) dx$ сходится на [c;d) и расходится в точке y=d. Отсюда следует, что $\int_a^\omega f(x,y) dx$ на [c;d) сходится неравномерно.

Доказательство. Так как при $y = d \int_a^{\omega} f(x,y) dx$ расходится $\Rightarrow \exists \varepsilon > 0 \ \forall B \in [a;\omega) \ \exists b_1,b_2 \in (B;\omega)$:

$$\left| \int_{b_1}^{b_2} f(x, d) dx \right| \geqslant \varepsilon.$$

Далее, в силу непрерывности функции f(x,y) на $[a;\omega) \times [c;d]$ следует, что $F(y) = \int_{b_1}^{b_2} f(x,y) dx$ непрерывна на [c;d] (смотреть теорему 52).

Следовательно, \exists окрестность $(d - \delta; d]$: $\forall y \in (d - \delta; d]$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \geqslant \varepsilon.$$

Таким образом, $\exists \varepsilon > 0: \forall B \in [a; \omega) \exists b_1, b_2 \in (B; \omega):$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \geqslant \varepsilon$$

 \Rightarrow по критерию Коши $\int_a^\omega f(x,y)dx$ сходится на [c;d) неравномерно. \square

9.113 Признак Вейерштрасса и его следствие

Теорема 56 (Признак Вейерштраса). Пусть

1. $\forall y \in Y$ и $\forall x \in [a; \omega)$

$$|f(x,y)| \leq g(x,y).$$

2. $\int_a^\omega g(x,y)dx$ – равномерно сходится на Y.

Тогда $\int_a^\omega f(x,y)dx$ – равномерно сходится на Y.

Доказательство. Имеем

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| \le \int_{b_1}^{b_2} |f(x, y)| dx \le \int_{b_1}^{b_2} g(x, y) dx.$$

Так как $\int_a^\omega g(x,y)dx$ сходится равномерно на Y, то по признаку Коши

$$\left| \int_{b_1}^{b_2} g(x, y) dx \right| < \varepsilon$$

 $\Rightarrow \int_a^\omega f(x,y)dx$ сходится равномерно на Y.

Следствие. Если $\forall y \in Y, \ \forall x \in [a; \omega)$

$$|f(x,y)| \geqslant g(x),$$

то из сходимости $\int_a^\omega g(x)dx \Rightarrow$ равномерна сходимость

$$\int_{a}^{\omega} f(x,y)dx$$
 на Y .

9.114 Признак Абеля

Теорема 57 (Признак Абеля). Если

- 1. $\int_a^\omega g(x,y)dx$ равномерно сходится на Y.
- 2. $\forall y \in Y$ функция f(x,y) монотонна по x и равномерно ограничена, то есть $\exists M>0: \ \forall x \in [a;\omega)$ и $\forall y \in Y$

$$|f(x,y)| \leq M.$$

Тогда

$$\int_{a}^{\omega} (f(x,y) \cdot g(x,y)) dx - \text{сходится равномерно на } Y.$$

Доказательство.

2-я теорема
$$\left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right|^{\text{0 среднем}} =$$

$$= \left| f(b_1,y) \cdot \int_{b_1}^{\xi} g(x,y) dx + f(b_2,y) \cdot \int_{\xi}^{b_2} g(x,y) dx \right| \leqslant$$

$$\leqslant |f(b_1,y)| \cdot \left| \int_{b_1}^{\xi} g(x,y) dx \right| + |f(b_2,y)| \cdot \left| \int_{\xi}^{b_2} g(x,y) dx \right|.$$

Пусть выполнены 1. и 2. для признака Абеля. Пусть $\varepsilon > 0$ задано,

$$\left| \int_{b_1}^{\xi} g(x,y) dx \right| < \frac{\varepsilon}{2 \cdot M} \quad \text{и} \quad \left| \int_{\xi}^{b_2} g(x,y) dx \right| < \frac{\varepsilon}{2 \cdot M} \Rightarrow$$

$$\Rightarrow \left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right| < M \cdot \frac{\varepsilon}{2 \cdot M} + M \cdot \frac{\varepsilon}{2 \cdot M} = \varepsilon \Rightarrow$$

$$\Rightarrow \int_{a}^{\omega} \left(f(x,y) \cdot g(x,y) \right) dx \text{ сходится равномерно на } Y \text{ по критерию Коши.}$$

9.115Признак Дирихле

Теорема 58 (Признак Дирихле). Если

1. $\int_a^b g(x,y) dx$ ограничена в совокупности, то есть $\exists L > 0: \ \forall y \in Y$ и $\forall b \in [a;\omega)$

$$\left| \int_{a}^{b} g(x,y) dx \right| \leqslant L.$$

2. $\forall y \in Y \ f(x,y)$ монотонна по x и $f(x,y) \to 0$ равномерно при $x \to \omega$.

Тогда

$$\int_{a}^{\omega} (f(x,y) \cdot g(x,y)) dx - \text{сходится равномерно на } Y.$$

Доказательство.

$$\left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right|^{2-\mathfrak{H}}$$
 о среднем
$$= \left| f(b_1,y) \cdot \int_{b_1}^{\xi} g(x,y) dx + f(b_2,y) \cdot \int_{\xi}^{b_2} g(x,y) dx \right| \leqslant$$

$$\leqslant |f(b_1,y)| \cdot \left| \int_{b_1}^{\xi} g(x,y) dx \right| + |f(b_2,y)| \cdot \left| \int_{\xi}^{b_2} g(x,y) dx \right|.$$

Пусть выполнены 1. и 2. для признака Дирихле. Пусть $\varepsilon > 0$ задано, тогда:

$$|f(x,y)| < \frac{\varepsilon}{2 \cdot L} \Rightarrow \left| \int_{b_1}^{b_2} \left(f(x,y) \cdot g(x,y) \right) dx \right| < \frac{\varepsilon}{2 \cdot L} \cdot L + \frac{\varepsilon}{2 \cdot L} \cdot L = \varepsilon \Rightarrow$$

$$\Rightarrow \int_{a}^{\omega} \left(f(x,y) \cdot g(x,y) \right) dx \text{ сходится равномерно на } Y.$$

10 Функциональные свойства несобственного интеграла, зависящего от параметра

10.116 Теорема о предельном переходе под знаком несобственного интеграла, зависящего от параметра

Теорема 59 (О предельном переходе под знаком несобственного интеграла). Если

1.
$$\forall b \in [a; \omega)$$

$$f(x,y) \Longrightarrow_{\mathfrak{B}_y} \phi(x)$$

на [a;b], где \mathfrak{B}_y – база на Y.

2. $\int_a^{\omega} f(x,y)dx$ сходится равномерно на Y.

Тогда

$$\lim_{\mathfrak{B}_{y}} F(y) = \lim_{\mathfrak{B}_{y}} \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} \lim_{\mathfrak{B}_{y}} f(x,y) dx = \int_{a}^{\omega} \phi(x) dx.$$

Доказательство. Имеем $F_b(y) = \int_a^b f(x,y) dx$

$$F_{b}(y) = \int_{a}^{b} f(x,y)dx \xrightarrow{\Longrightarrow} \int_{a}^{\omega} f(x,y)dx = F(y)$$

$$\forall b \ \mathfrak{B}_{y} \downarrow \qquad \qquad \downarrow \mathfrak{B}_{y}$$

$$\int_{a}^{b} \phi(x)dx \xrightarrow{b \to \omega} \int_{a}^{\omega} \phi(x)dx$$

Докажем левую вертикальную стрелку. Вспомним теорему 44.

- 1. $\forall y \in Y \ f(x,y)$ интегрируется на [a;b] (из условия $2 \Rightarrow$)
- 2. $f(x,y) \underset{\mathfrak{B}_y}{\Rightarrow} \phi(x)$ на $[a;b] \Rightarrow$

$$\int_{a}^{b} \phi(x)dx = \lim_{\mathfrak{B}_{y}} \int_{a}^{b} f(x,y)dx$$

 \Rightarrow используя теорему 40, доказывается утверждение этой теоремы. $\ \square$

10.117Теорема о непрерывности несобственного интеграла, зависящего от параметра

Следствие (Непрерывность несобственного интеграла, зависящего от параметров). Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d].

Тогда $F(y) = \int_a^{\omega} f(x,y) dx$ непрерывна на [c;d]

Доказательство. $y_0 \in [c;d]$. Докажем, что F(y) непрерывна в точке y_0 , то есть докажем, что $\lim_{y \to y_0} F(y) = F(y_0)$.

Имеем:

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{\omega} f(x,y) dx \stackrel{\text{?}}{=}$$

$$\stackrel{\text{?}}{=} \int_a^{\omega} \lim_{y \to y_0} f(x,y) dx \stackrel{\text{henp. }}{=} \frac{f(x,y)}{=} \int_a^{\omega} f(x,y_0) dx = F(y_0).$$

Проверим, выполняются ли условия теоремы 59.

База: $y \to y_0$. Надо показать, что

1.
$$f(x,y) \Longrightarrow_{y \to y_0} f(x,y_0)$$
 ha $[a;b] \forall b \in [a;\omega)$.

2. Дано.

Так как f(x,y) непрерывна на $[a;\omega)\times[c;d]\Rightarrow f(x,y)$ равномерно непрерывна на $[a;b] \times [c;d]$ (по теореме Кантора) $\Rightarrow \forall (x,y_0) \; \exists U \in [a;b] \times$ $\left|f(x,y)-f(x,y_0)\right|<\varepsilon\Rightarrow$? обоснован.

$$|f(x,y)-f(x,y_0)|<\varepsilon\Rightarrow$$

10.118 Теорема о дифференцировании несобственного интеграла, зависящего от параметра

Теорема 60 (О дифференцировании несобственного интеграла по параметру). Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$ и имеет непрерывную производную по y.
- 2. $\int_a^\omega f_y'(x,y)dx$ равномерно сходится на [c;d].
- 3. $\int_a^\omega f(x,y)dx$ сходится хотя бы в одной точке $y_0\in(c;d)$.

Тогда

- 1. $\int_a^\omega f(x,y)dx$ сходится равномерно на $[c';d'] \subset (c;d)$.
- 2. $F(y) = \int_a^{\omega} f(x,y) dx$ дифференцируема на (c;d).
- 3. $F'(y) = (\int_a^{\omega} f(x,y) dx)'_y = \int_a^{\omega} f'_y(x,y) dx$.

Доказательство. Рассмотрим семейство функций $F_b(y) = \int_a^b f(x,y) dx$. Имеем $\forall b \ F_b(y)$ дифференцируема на (c;d) и

$$F'_b(y) = \int_a^b f'_y(x, y) dx$$
 (теорема 53).

Далее, $F_b'(y)$ сходится равномерно на (c;d) при $f \to \omega$ и $F_b(y)$ сходится хотя бы в одной точке $y = y_0 \in (c;d)$ при $b \to \omega$.

Следовательно, по теореме 46, семейство $F_b(y)$ сходится равномерно на [c';d'] при $b \to \omega$. Предельная функция F(y) дифференцируема и

 $F'(y) = \lim_{b \to \omega} F'_b(y) = \lim_{b \to \omega} \int_a^{\omega} f'_y(x, y) dx = \int_a^{\omega} f'_y(x, y) dx.$

69

10.119 Теорема об интегрировании несобственного интеграла, зависящего от параметра

Теорема 61 (Об интегрировании несобственного интеграла по параметру). ${\rm Есл}{\rm u}$

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d].

Тогда функция $F(y) = \int_a^\omega f(x,y) dx$ интегрируема по Риману на [c;d] и

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy.$$

Доказательство. Имеем $\forall b \in [a; \omega)$

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy \text{ (теорема 54)}.$$

$$\lim_{b \to \omega} \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx =$$

$$= \lim_{b \to \omega} \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy \stackrel{\text{ond.}}{=} \int_{a}^{\omega} dx \int_{c}^{d} f(x, y) dy,$$

$$\lim_{b \to \omega} \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx =$$

$$= \int_{c}^{d} \left(\lim_{b \to \omega} \int_{a}^{b} f(x, y) dy \right) \stackrel{\text{onp.}}{=} \int_{c}^{d} dy \int_{a}^{\omega} f(x, y) dx.$$

Покажем правомерность предельного перехода.

Рассмотрим семейство функций $F_b'(y) = \int_a^b f(x,y) dx$. Покажем, что для этого семейства выполняются условия теоремы 44.

В самом деле,

- 1. $\forall b \in [a; \omega) \ F_b(y)$ непрерывна на [c; d] (теорема 59) $\Rightarrow \forall b \in [a; \omega) \ F_b(y)$ интегрируема по Риману на [c; d].
- 2. Так как $\int_a^{\omega} f(x,y) dx$ равномерно сходится на [c;d], то множество $F_b(y)$ сходится равномерно на [c;d] к F(y) при $b \to \omega$.

іных ин-

70

10.120 Теорема о перестановке двух несобственных интегралов, зависящих от параметра

Теорема 62 (О перестановке несобственного интерграла, зависящего от параметра). Пусть

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;\widetilde{\omega})$.
- 2. $\forall d \in [c; \widetilde{\omega}) \int_a^{\omega} f(x,y) dx$ сходится равномерно на [c;d].
- 3. $\forall b \in [a;\omega) \int_c^{\widetilde{\omega}} f(x,y) dx$ сходится равномерно на [a;b].
- 4. Существует хотя бы одни из интегралов:

$$\int_a^{\omega} dx \int_c^{\widetilde{\omega}} \big| f(x,y) \big| dy \quad \text{или} \quad \int_c^{\widetilde{\omega}} dy \int_a^{\omega} \big| f(x,y) \big| dx.$$

Тогда существует

$$\int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy = \int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx.$$

Доказательство. $\forall d \in [c; \widetilde{\omega})$ верно равенство

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy \text{ (теорема 61)}.$$

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy \text{ (теорема 61)}.$$

$$\int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx \stackrel{\text{onp. }}{=} \lim_{d \to \widetilde{\omega}} \int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx =$$

$$= \lim_{d \to \widetilde{\omega}} \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy \stackrel{?}{=} \int_{a}^{\omega} \left(\lim_{d \to \widetilde{\omega}} \int_{c}^{d} f(x,y) dy \right) dx =$$

$$= \int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy.$$

Докажем возможность предельного перехода.

Рассмотрим семейство $\Phi_d(x) = \int_c^d f(x,y) dy$. Имеем:

1.
$$\forall b \in [a; \omega) \Phi_d(x) \Longrightarrow_{d \to \widetilde{\omega}} \Phi(x) = \int_c^{\widetilde{\omega}} f(x, y) dy$$
 на $[c; d]$ (условие 3.).

2. $\int_a^\omega \Phi_d(x) dx$ равномерно сходится на $[c;\widetilde{\omega})$.

Покажем пункт 2.

 $\forall d \in [c; \widetilde{\omega})$ и $\forall x \in [a; \omega)$

$$|\Phi_d(x)| = \left| \int_c^d f(x,y) dy \right| \le \int_c^d |f(x,y)| dy \le \int_c^{\widetilde{\omega}} |f(x,y)| dy \xrightarrow[d \to \widetilde{\omega}]{} \phi(x).$$

Допустим, что $\exists \int_a^\omega dx \int_c^{\widetilde{\omega}} |f(x,y)| dy$. Тогда получаем, что $\int_a^\omega \phi(x) dx$ сходится и не зависит от $d\Rightarrow$ по признаку Вейерштрасса $\int_a^\omega \Phi_d(x) dx$ сходится равмномерно на $[c;\widetilde{\omega})\Rightarrow$ выполняется условие теоремы $59 \Rightarrow$ вопрос о предельном переходе снят.

11 Эйлеровы интегралы

11.123Свойства бетта-функции

OOΦ

/тверждение. $B(\alpha, \beta)$ определенная при всех $\alpha > 0, \beta > 0$.

Доказательство.
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \int_0^{\frac{1}{2}} x^{\alpha-1} (1-x)^{\beta-1} dx + \int_{\frac{1}{2}}^1 x^{\alpha-1} (1-x)^{\beta-1} dx.$$

Рассмотрим

$$x^{\alpha-1}(1-x)^{\beta-1} = \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} \underset{x\to 0}{\sim} \frac{1}{x^{1-\alpha}},$$
$$\lim_{x\to 0} \frac{(1-x)^{\beta-1}}{x^{1-\alpha}} : \frac{1}{x^{1-\alpha}} = \lim_{x\to 0} (1-x)^{\beta-1} = 1.$$

 $\int_0^{\frac12} \frac{dx}{x^{1-\alpha}} \text{ сходится при } 1-\alpha<1\Rightarrow\alpha>0.$ Аналогично можно показать, что $\int_{\frac12}^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ сходится при

2. Симметричность

$$B(\alpha, \beta) = B(\beta, \alpha).$$

Утверждение.
$$B(\alpha,\beta) = B(\beta,\alpha).$$
 Доказательство. Замена $t=1-x\Rightarrow x=1-t,\ dx=-dt,$
$$\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}dx =$$

$$= \int_1^0 (1-t)^{\alpha-1} \cdot t^{\beta-1}(-dt) = \int_0^1 t^{\beta-1}(1-t)^{\alpha-1}dt =$$

$$= B(\beta,\alpha).$$

3. Формула понижения

Примечание (Формула понижения для
$$\beta$$
-функции).
$$B(\alpha,\beta) = \int_0^1 \underbrace{x^{\alpha-1}}_u \underbrace{(x-1)^{\beta-1} dx}_v = \\ = \begin{vmatrix} u = x^{\alpha-1} & du = (\alpha-1)x^{\alpha-2} dx \\ v = -\frac{1}{\beta}(1-x)^{\beta} & dv = (x-1)^{\beta-1} dx \end{vmatrix} = \\ = -x^{\alpha-1}(1-x)^{\beta} \cdot \frac{1}{\beta} \Big|_0^1 + \int_0^1 \frac{1}{\beta}(1-x)^{\beta}(\alpha-1)x^{\alpha-2} dx = \\ = \frac{\alpha-1}{\beta} \int_0^1 x^{\alpha-2}(1-x)^{\beta} dx = \frac{\alpha-1}{\beta} \int_0^1 \frac{1-x}{1-x}x^{\alpha-2}(1-x)^{\beta} dx = \\ = \frac{\alpha-1}{\beta} \int_0^1 (1-x)x^{\alpha-2}(1-x)^{\beta-1} dx = \\ = \frac{\alpha-1}{\beta} \int_0^1 (x^{\alpha-2}(1-x)^{\beta-1} - x^{\alpha-1}(1-x)^{\beta-1}) dx = \\ = \frac{\alpha-1}{\beta} \left(\int_0^1 (1-x)^{\beta-1} dx - \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx \right) = \\ = \frac{\alpha-1}{\beta} \left(B(\alpha-1,\beta) - B(\alpha,\beta) \right).$$

$$B(\alpha,\beta) = \frac{\alpha-1}{\beta} \Big(B(\alpha-1,\beta) - B(\alpha,\beta) \Big) \Rightarrow$$

$$\Rightarrow B(\alpha,\beta) \Big(1 + \frac{\alpha-1}{\beta} \Big) = \frac{\alpha-1}{\beta} B(\alpha-1,\beta).$$

$$B(\alpha,\beta) = \frac{\alpha-1}{\beta+\alpha-1} - B(\alpha-1,\beta) \Big), \quad \alpha > 1, \ \beta > 0.$$
усть $\beta = 1$:

$$B(\alpha,1) = \int_0^1 x^{\alpha-1} dx = \frac{x^{\alpha}}{\alpha} \Big|_0^1 = \frac{1}{\alpha}.$$

Далее, если $\beta = n \in \mathbb{N}$, то

$$B(\alpha, n) = B(n, \alpha) =$$

$$= \frac{n-1}{\alpha+n-1} \cdot B(n-1, \alpha) = \frac{n-1}{\alpha+n-1} \cdot \frac{n-2}{\alpha+n-2} \cdot B(n-2, \alpha) =$$

$$= \frac{(n-1)!}{(\alpha+n-1)(\alpha+n-2)\dots(\alpha+1)} \cdot B(\alpha, 1) =$$

$$= \frac{(n-1)!}{(\alpha+n-1)\dots(\alpha+1)\alpha}.$$

Отсюда:

$$B(m,n) = \frac{(n-1)!}{(m+n-1)\dots(m+1)m} = \frac{(n-1)!\cdot(m-1)!}{(m+n-1)!}$$

11.124 Свойства гамма-функции

1. **ΟΟΦ**

Утверждение. $\Gamma(\alpha)$ определенная при $\alpha > 0$.

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} \cdot e^{-x} dx = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^{+\infty} x^{\alpha - 1} e^{-x} dx.$$

Заметим, что

$$\lim_{x \to 0} \frac{(x^{\alpha - 1}e^{-x})}{x^{\alpha - 1}} = 1 \Rightarrow x^{\alpha - 1}e^{-x} \sim \frac{1}{x^{1 - \alpha}} = x^{\alpha - 1}.$$

 $\int_0^1 \frac{1}{x^{1-\alpha}} dx$ сходится при $1-\alpha < 1 \Rightarrow \alpha > 0$.

Далее, $e^{-x} \to 0$ при $x \to +\infty \Rightarrow \forall \beta \in \mathbb{R}$ $e^{-x} = o(x^{\beta})$ при $x \to +\infty$. $e^{-x} = \alpha(x) \cdot x^{\beta}$, где $\alpha(x) \to 0$ при $x \to +\infty$.

$$e^{-x} = \alpha(x) \cdot x^{\beta}$$
, где $\alpha(x) \to 0$ при $x \to +\infty$.

$$x^{\beta} \to 0$$
 при $x \to +\infty$, если $\beta < 0$.

$$x^{eta}
ightarrow +\infty$$
 при $x
ightarrow +\infty,$ если $eta > 0.$ Но $\infty = rac{1}{0} \Rightarrow \lim_{x
ightarrow +\infty} rac{e^{-x}}{x^{eta}} = 0.$

Таким образом, сходимость интеграла $\int_1^{+\infty} x^{\alpha-1} e^{-x} dx$ та же, что и сходимость интеграла $\int_1^{-\infty} x^{\alpha-1} x^{\beta} dx$.

Можно подобрать такую β , что $\forall \alpha \in \mathbb{R}$

$$\int_1^{+\infty} x^{\alpha-1} x^{\beta} dx - \text{сходится} \Rightarrow$$

$$\Rightarrow \int_1^{+\infty} x^{\alpha-1} e^{-x} dx \text{ сходится при } \forall \alpha \in \mathbb{R} \Rightarrow$$

2. Правило дифференцирования $\Gamma(\alpha)$

Утверждение. $\forall \alpha > 0 \ \Gamma(\alpha)$ дифференцируема в точке α и

$$\Gamma'(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

Более того, $\Gamma(\alpha)$ бесконечно дифференцируема в точке α и n-ная

производная

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x dx.$$

Доказательство. Теорема 60.

$$\Gamma'(\alpha) = \left(\int_0^{+\infty} x^{\alpha - 1} e^{-x} dx\right)_{\alpha}' \stackrel{?}{=}$$

$$\stackrel{?}{=} \int_0^{+\infty} (x^{\alpha - 1} e^{-x})_{\alpha}' dx = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

$$\boxed{(a^x)_x' = a^x \cdot \ln a}$$

Покажем, что условия теоремы 60 выполняются:

- (a) $f(x,\alpha) = x^{\alpha-1}e^{-x}$ дифференцируема по α на $[\alpha \varepsilon; \alpha + \varepsilon]$.
- (b) $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln x dx$ равномерно сходится на $[\alpha \varepsilon; \alpha + \varepsilon]$.
- (c) $\int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ сходится хотя бы в одной точке отрезка $[\alpha \varepsilon; \alpha + \varepsilon]$.

Докажем пункт 2.

$$\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln x dx = \int_0^1 x^{\alpha-1} e^{-x} \ln x dx + \int_1^{+\infty} x^{\alpha-1} e^{-x} \ln x dx.$$

Пусть $\alpha_0 > 0$.

Выберем $\varepsilon < \frac{\alpha_0}{2}$. Рассмотрим $\alpha \in [\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$.

 $E_{CЛИ} \alpha_0 > 1$

Можно выбрать $\varepsilon: \alpha_0 - \varepsilon > 1$. Тогда

$$\lim_{x \to 0} x^{\alpha - 1} \ln x =$$

$$= \left| 0 \cdot \infty = \frac{1}{\infty} \cdot \infty = \frac{\infty}{\infty} \right| = \lim_{x \to 0} \frac{\ln x}{x^{1 - \alpha}} = \lim_{x \to 0} \frac{\frac{1}{x}}{(1 - \alpha)x^{-\alpha}} = \lim_{x \to 0} \frac{1}{(1 - \alpha)x^{-\alpha}} =$$

$$= \lim_{x \to 0} \frac{1}{1 - \alpha} \cdot x^{\alpha - 1} = 0.$$

Таким образом при $\alpha_0 > 1$ точка 0 не является особенной.

Если $\alpha_0 < 1 \ \forall \alpha \in [\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$

$$|x^{\alpha-1}\ln x| \le x^{\alpha_0-\varepsilon-1}|\ln x|.$$

Покажем, что

$$\begin{split} x^{\alpha_0-\varepsilon-1}|\ln x| &= 0 \ \left(x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}}\right) \Leftrightarrow \\ &\Leftrightarrow x^{\alpha_0-\varepsilon-1}|\ln x| = \alpha(x) \cdot x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}} \Leftrightarrow \\ &\Leftrightarrow |\ln x| = \alpha(x) \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}} \Leftrightarrow \\ &\Leftrightarrow \lim_{x\to 0} \frac{\frac{1}{x}}{\frac{\alpha_0-\varepsilon-1}{2} \cdot x^{\frac{\alpha_0-\varepsilon-1}{2}}} = \lim_{x\to 0} \frac{1}{x} \cdot x^{-\left(\frac{\alpha_0-\varepsilon-1}{2}-1\right)} = \lim_{x\to 0} x^{-\left(\frac{\alpha_0-\varepsilon-1}{2}\right)} = 0. \end{split}$$

Таким образом, по признаку Вейерштрасса, $\int_0^1 x^{\alpha-1} e^{-x} \ln x dx$ будет сходиться при сходимости интеграла

$$\int_0^1 x^{\alpha_0 - \varepsilon - 1} \cdot x^{\frac{\alpha_0 - \varepsilon - 1}{2}} dx = \int_0^1 x^{\frac{3}{2}(\alpha_0 - \varepsilon - 1)} dx = \int_0^1 \frac{dx}{x^{-\frac{3}{2}(\alpha_0 - \varepsilon - 1)}}$$

сходится при
$$-\frac{3}{2}$$
 $(\alpha_0 - \varepsilon - 1) < 1$.

Так как $\int_0^{+\infty} x^{\alpha_0-\varepsilon-1} \cdot x^{\frac{\alpha_0-\varepsilon-1}{x}} dx$ сходится по признаку Вейерштрасса, то $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln x dx$ сходится равномерно на $[\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$. Лалее. $\forall \alpha \in [\alpha_0 - \varepsilon; \alpha_0 + \varepsilon]$

$$e^{-x}x^{\alpha-1}\ln x \le e^{-x}x^{\alpha_0+\varepsilon-1}\ln x$$
.

Так как $\int_0^{+\infty} e^{-x} x^{\alpha_0+\varepsilon-1} \ln x dx$ сходится, то и сходится равномерно на $\left[\alpha_0-\varepsilon;\alpha_0+\varepsilon\right]$ и $\int_0^{+\infty} e^{-x} x^{\alpha-1} \ln x dx$.

Аналогичное доказательство имеет место быть и для $\Gamma^{(n)}(\alpha)$. \square

3. Формула понижения

Примечание (Формула понижения для γ -функции).

$$\Gamma(\alpha+1) = \int_0^{+\infty} x^{\alpha} e^{-x} dx =$$

$$= \begin{vmatrix} u = x^{\alpha} & du = \alpha x^{\alpha-1} dx \\ v = -e^{-x} & dv = e^{-x} dx \end{vmatrix} = x^{\alpha} (-e^{-x}) \Big|_0^{+\infty} + \int_0^{+\infty} \alpha x^{\alpha-1} e^{-x} dx =$$

$$= \alpha \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

Пусть $\alpha = n \Rightarrow$

$$\Rightarrow \Gamma(n+1) =$$

$$= n\Gamma(n) = n(n-1)\Gamma(n-1) = n(n-1)(n-2)\Gamma(n-2) =$$

$$= n(n-1)\dots\Gamma(1),$$

$$\Gamma(1) = \int_0^{+\infty} x^0 e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

$$\Gamma(n+1) = n!$$

12 Кратные интегралы. Мера Жордана в \mathbb{R}^n

12.127 Свойства клеточных множеств (1-6)

Свойсто (1)

Утверждение. Пересечение двух клеток есть клетка.

Доказательство. Достаточно заметить, что $[a;b) \cap [c;d)$ есть либо тоже полуинтервал, либо \varnothing (того же вида).

Свойсто (2)

Утверждение. Объединение конечного числа непересекающихся клеточных множеств является клеточным множеством.

Свойсто (3)

Утверждение. Пересечение двух клеточных множеств есть клеточное множество.

Доказательство. Пусть A и B – клеточные множества, Π_1,Π_2,\ldots,Π_n – разбиение $A,\ \Pi'_1,\Pi'_2,\ldots,\Pi'_k$ – разбиение множества B

Пересечение $A \cap B$ состоит из клеток $\Pi_{ij} = \Pi_i \cap \Pi'_j$, $i = \overline{1, n}$, $j = \overline{1, k}$, причем клетки Π_{ij} попарно не пересекаются.

Свойсто (4)

Утверждение. Разность двух клеток есть клеточное множество.

Доказательство. Если клетка R является пересечением клеток Π и Q, то:

$$\Pi \setminus Q = \Pi \setminus R$$
,

и существует разбиение клетки Π такая, что клитка R является одной из клеток разбиения. \square

Свойсто (5)

Утверждение. Разность двух клеточных множеств есть клеточное множество.

Доказательство. Пусть множество A разбито на клетки Π_1,Π_2,\dots,Π_n и Q — некоторая клетка.

Множества $K_i = \Pi_i \setminus Q$ есть попарно непересекающиеся клеточ-

ные множества (в силу 4-го свойства). Множество $A \setminus Q$ есть $\bigcup K_i$, тогда в силу 2-го свойства $\bigcup K_i$ – клеточное множество.

Пусть B – клеточное множество, имеет разбиение $\Pi'_1, \Pi'_2, \dots, \Pi'_k$. Множество $A {\,\smallsetminus\,} B$ можно получить, последовательно вычитая из Aклетки $\Pi_1', \Pi_2', \dots, \Pi_k'$, каждый раз получая клеточное множество за конечное число шагов.

Свойсто (6)

Утверждение. Объединение конечного числа клеточных множеств есть клеточное множество.

Доказательство. Если A и B – клеточные множества, то в силу (3)-го и (5)-го свойств, множества $A \setminus B$, $B \setminus A$ и $A \cap B$ являются конечными. Тогда:

$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

клеточное множество по свойству 2.

12.129Лемма о корректности определения меры клеточного множества

Определение 9 (Клетка). Множество

$$\Pi = \left\{ (x_1, \dots, x_n) : \ a_i \leqslant x_i < b_i, \ i = \overline{1, n} \right\}$$
(31)

называется κ леткой в \mathbb{R}^n .

Пустое множество также считается клеткой.

-[a;b) полуинтервалы

прямоугольники, у которых удалены

соответствующиеся стороны

параллелепипеды, у которых удалены в \mathbb{R}^3 соответствующиеся грани

Определение 10 (Мера клетки). $Mерой m(\Pi) \kappa лет \pi u \Pi$, определенной 31, называется число:

$$m(\Pi) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n) \tag{32}$$

Мера пустого множества равна нулю по определению.

Определение 11 (Мера клеточного множества). Mepoŭ m(A) клеточного множества A, разбитого на клетки $\Pi_1, \Pi_2, \dots, \Pi_n$ называется число:

$$m(A) = \sum_{i=1}^{n} m(\Pi_i)$$
(33)

Лемма 4. Мера клеточного множества не зависит от способа разбиения множества на клетки.

Доказательство. Можно показать, что при \forall разбиении Π_1, \dots, Π_k клетки Π мера Π как клеточного множества всегда равна $m(\Pi)$, определяемой 32.

Для \mathbb{R}^1 очевидна верна формула 33,

$$m(\Pi) = \sum_{i} m(\Pi_i).$$

В общем случае для клетки Π можно провести аналогичные рассуждения. \square

12.130 Свойства меры клеточных множеств (1-4)

Свойсто (1)

Утверждение. Если клеточные множества A_1, \ldots, A_n попарно не пересекаются, то

$$m(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} m(A_i)$$
 (34)

Свойство (2)

Утверждение. Если A и B – клеточные множества и $A \subset B$, то

$$m(B) = m(A) + m(B \setminus A) \tag{35}$$

и $m(A) \leqslant m(B)$.

Доказательство. A и $B \setminus A$ — не пересекающиеся множества, $A \cup (B \setminus A) = B \Rightarrow$ по свойству (1)

$$m(B) = m(A) + m(B \setminus A) \Rightarrow m(A) \leq m(B).$$

• Свойство (3)

Утверждение. Если A_1, \ldots, A_n – клеточные множества, то

$$m(\bigcup_{i=1}^{n} A_i) \leqslant \sum_{i=1}^{n} m(A_i)$$
(36)

Доказательство. Докажем для n = 2, по индукции можно доказать $\forall n$.

Имеем A_1 и A_2 , заметим, что $A_1 \subset A_1 \cup A_2 = B, \ B \setminus A_1 \subset A_2$

$$m(A_1 \cup A_2) = m(B) \stackrel{\text{(5)}}{=} m(A_1) + m(B \setminus A_1) \leq m(A_1) + m(A_2).$$

Свойство (4)

Утверждение. Для \forall клеточного множества A и $\forall \varepsilon > 0$ \exists клеточное множество

$$A_{\varepsilon}: A_{\varepsilon} \subset \overline{A_{\varepsilon}} \subset A^{\circ} \subset A,$$

где $\overline{A_\varepsilon}$ – замыкание множества A_ε, A° – совокупность все внутренних точке множества A.

Доказательство. Достаточно доказать для клетки 31.

Из определения клетки \Rightarrow точка $(x_1, \dots, x_n) \in G\Pi$ $(G\Pi - \text{граница})$ клетки), если $\exists i : x_i = a_i$ или $x_i = b_i$.

Сдвигаем левые концы полуинтервалов $[a_i;b_i)$ вправо, а правые – влево \Rightarrow построена клетка Π_{ε} , которая не содержит граничных точек клетки $\Rightarrow \Pi_i \subset \overline{\Pi_{\varepsilon}} \subset \Pi^{\circ} \subset \Pi$.

12.133 Лемма о корректности определения меры измеримого по Жордану множества

Лемма 5. Определение меры измеримого по Жордану множества корректно, число $m(\Omega)$ \exists и !, причем

$$m(\Omega) = \sup_{A \subset \Omega} m(A) = \inf_{B \supset \Omega} m(B).$$

Доказательство. Пусть A и B – некоторые клеточные множества, $A \subset \Omega \subset B \Rightarrow A \subset B \Rightarrow m(A) \leqslant m(B)$.

 \exists число γ , разделяющее числовые множества $\{m(A)\}$ и $\{m(B)\}$, порожденные клеточными множествами $A \subset \Omega$ и клеточными множествами $B \supset \Omega$, то есть

$$m(A) \leqslant \sup_{A \subset \Omega} m(A) \leqslant \gamma \leqslant \inf_{B \supset \Omega} m(B) \leqslant m(B).$$

В качестве $m(\Omega)$ можно взять γ . Таким образом существование числа $m(\Omega)$ доказано.

Теперь докажем, что γ – единственное.

Пусть есть два числа α и β : $\,\forall A$ и B – клеточных множеств: $A \subset \Omega \subset B$

$$m(A) \le \alpha \le \beta \le m(B)$$
 (37)

Так как Ω измеримо по Жордану, то $\forall \varepsilon > 0$ \exists клеточные множества A_ε и B_ε :

$$m(B_{\varepsilon}) - m(A_{\varepsilon}) < \varepsilon, \quad A_{\varepsilon} \subset \Omega \subset B_{\varepsilon}$$
 по свойству 4 (38)

Из 37 и 37 \Rightarrow $m(B) - m(a) \geqslant m(B_{\varepsilon}) - m(A_{\varepsilon}) \geqslant \beta - \alpha \Rightarrow 0 \leqslant \beta - \alpha \leqslant m(B_{\varepsilon}) - m(A_{\varepsilon}) < \varepsilon \Rightarrow 0 \leqslant \beta - \alpha < \varepsilon$.

В силу производности
$$\varepsilon \Rightarrow \alpha = \beta$$
.

12.135Свойства множества меры нуль (1-3)

Свойство (1)

Утверждение. Если $E \subset \mathbb{R}^n$ и $\forall \varepsilon > 0 \ \exists B = B_{\varepsilon} : \ E \subset B$ и m(B) < $\varepsilon \Rightarrow m(E) = 0.$

Доказательство. Пусть $A = \emptyset \Rightarrow A \subset E \subset B \Rightarrow m(B) - m(A) =$ $m(B) - 0, \ m(B) < \varepsilon \Rightarrow E$ — измеримое по Жордану множество и $m(E) \leq m(B) < \varepsilon$.

В силу произвольности $\varepsilon \Rightarrow m(E) = 0$.

Определение 12 (Множество меры нуль). Множество, удовлетворяющее условию свойства (1), называется множеством меры нуль.

Свойство (2)

Утверждение. Объединение конечного числа множеств меры нуль есть множество меры нуль.

Доказательство. Пусть E_1 и E_2 – множества меры нуль.

 $m(E_1)=m(E_2)=0\Rightarrow \forall \varepsilon>0$ $\exists B_1$ и $B_2:E_1\subset B_1$ и $E_2\subset B_2$ и $m(B_1)<\frac{\varepsilon}{2},\ m(B_2)<\frac{\varepsilon}{2}.$

$$(E_1 \cup E_2) \subset (B_1 \cup B_2).$$

 $m(B_1 \cup B_2) \le m(B_1) + m(B_2) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow$ $\Rightarrow m(E_1 \cup E_2) \le m(B_1 \cup B_2) < \varepsilon.$

$$\Rightarrow m(E_1 \cup E_2) \leqslant m(B_1 \cup B_2) < \varepsilon$$

В силу произвольности $\varepsilon \Rightarrow m(E_1 \cup E_2) = 0$.

Свойство (3)

Утверждение. Подмножество множества меры нуль есть множество меры нуль.

Доказательство. Пусть $E_1 \subset E$, где $m(E) = 0 \Rightarrow \forall \varepsilon > 0 \; \exists B : E \subset B$

Тогда $E_1 \subset E \subset B \Rightarrow m(E_1) \leqslant m(E) \leqslant m(B) \leqslant \varepsilon \Rightarrow m(E_1) < \varepsilon$ и в силу произвольности $\varepsilon \Rightarrow m(E_1) = 0$.

12.136 Критерий измеримости множества в \mathbb{R}^n

Лемма 6. Если связное множество $A \subset \mathbb{R}^n$ не имеет общих точек с границей множества $B \subset \mathbb{R}^n$, то A лежит либо внутри B, либо в дополнении к B.

Теорема 63 (Критерий измеримости множества в \mathbb{R}^n). Множество $\Omega \subset \mathbb{R}$ измеримо по Жордану $\Leftrightarrow \Omega$ – ограничено и $m(G\Omega)$ = 0 (его граница меры нуль).

Доказательство.

• \implies Пусть $\Omega \subset \mathbb{R}^n$ измеримо по Жордану $\implies \forall \varepsilon > 0 \; \exists A \; \mathsf{u} \; B - \mathsf{k}$ леточные множества: $A \subset \Omega \subset B \; \mathsf{u} \; m(B) - m(A) < \varepsilon$.

Из свойства 4 (из 12.130) \Rightarrow множество A не содержит все граничные точки Ω , а множество B – содержит. Тогда клеточное множество $B \setminus A \supset G\Omega$.

$$m(B \setminus A) = m(B) - m(A) < \varepsilon \quad \text{if} \quad m(G\Omega) \le m(B \setminus A) < \varepsilon \Rightarrow$$

 \Rightarrow в силу произвольности $\varepsilon \Rightarrow m(G\Omega) = 0$.

• \leftarrow Пусть $m(G\Omega)$ = 0 и Ω – ограниченное множество в \mathbb{R}^n .

Пусть $\varepsilon > 0$ задано. Построим множество $C: C\Omega \subset C$ и $m(C) < \varepsilon$ (12.135, ①) \Rightarrow П \smallsetminus C – клеточное множество, не содержащее граничных точек Ω .

Пусть
$$\Pi \setminus C = \bigcup_{i=1}^{n} \Pi_i$$
.

Так как Π_i не содержат граничных точек, то либо $\Pi_i \cap \Omega = \emptyset$, либо $\Pi_i \subset \Omega$ (лемма 6). Перенумеруем Π_i таким образом, чтобы $\Pi_1, \ldots, \Pi_k \subset \Omega$, $\Pi_{k+1}, \ldots, \Pi_n \cap \Omega = \emptyset$.

Обозначим
$$A = \bigcup_{i=1}^{n} \Pi_i, \ B = \bigcup_{i=1}^{n} \Pi_i,$$

$$D = A \cup C = \Pi \setminus B \Rightarrow A \subset \Omega \subset D$$
,

$$m(D) - m(A) =$$

$$= m(A \cup C) - m(A) = m(\Pi \setminus B) - m(A) = m(C) < \varepsilon \Rightarrow$$

$$\Rightarrow m(D) - m(A) < \varepsilon.$$

где $A \subset \Omega \subset D \Rightarrow \Omega$ – измеримое по Жордану множество.

13 Определение и свойства кратного интеграла Римана

13.148 Теорема о сведении двойного интеграла по прямоугольнику к повторному интегралу

Теорема 64 (Формула сведения двойного интеграла по прямоугольнику κ повторному). Пусть

1. Функция f(x,y) интегрируема на прямоугольнике

$$\Pi = \{(x, y): a \le x \le b, c \le y \le d\}.$$

2. $\int_{c}^{d} f(x,y)dy \exists \forall x \in [a;b].$

Тогда функция $F(x) = \int_c^d f(x,y) dy$ интегрируема на отрезке [a;b] и справедлива формула:

$$\iint_{\Pi} f(x,y)dxdy = \int_{a}^{b} dx \int_{c}^{d} f(x)dy$$

Доказательство. Возьмем произвольное разбиение отрезков [a;b] и [c;d] точками

$$a = x_0 < x_1 < \dots < x_n = b$$

 $c = y_0 < y_1 < \dots < y_m = d$

и обозначим Π_1,\ldots,Π_n и Π'_1,\ldots,Π'_m соответсвующие промежутки раз-

Тогда

$$\Pi = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \Pi_{ij},$$

где $\Pi_{ij} = \{(x,y): x \in \Pi_i, y \in \Pi'_j\}.$

Положим

$$M_{ij} = \sup_{(x,y)\in\Pi_{ij}} f(x,y), \quad m_{ij} = \inf_{(x,y)\in\Pi_{ij}} f(x,y).$$

Так как $\int_c^d f(x,y)dy \; \exists \; \forall x \in [a;b]$, то $\forall x \in \Pi_i$ справедливо неравен-

$$m_{ij} \cdot \Delta y_i \leqslant \int_{y_{i-1}}^{y_i} f(x, y) dy \leqslant M_{ij} \cdot \Delta y_i,$$

где $\Delta y_i = y_i - y_{j-1}$.

Суммируем эти неравенства по индексу j:

$$\sum_{j=1}^{m} m_{ij} \Delta y_i \leqslant \int_{c}^{d} f(x, y) dy \leqslant \sum_{j=1}^{m} M_{ij} \Delta y_j$$
 (39)

Введем обозначения:

$$F(x) = \int_c^d f(x,y)dy, \quad M_i = \sup_{x \in \Pi_i} F(x), \quad m_i = \inf_{x \in \Pi_i} F(x).$$

Тогда из $39 \Rightarrow$

$$\sum_{j=1}^m m_{ij} \Delta y_j \leqslant m_i \leqslant M_i \leqslant \sum_{j=1}^m M_{ij} \Delta y_j \Rightarrow$$

$$\Rightarrow 0 \leqslant M_i - m_i \leqslant \sum_{j=1}^m (M_{ij} - m_{ij}) \Delta y_j \tag{40}$$

Домножим на Δx_i неравенство 40 и просуммируем по i:

$$\begin{split} 0 \leqslant \sum_{i=1}^n (M_i - m_i) \Delta x_i \leqslant \sum_{i=1}^n \sum_{j=1}^m (M_{ij} - m_{ij}) m(\Pi_{ij}) = \\ &= \overline{S}(f, \Pi) - \underline{S}(f, \Pi) \to 0 \text{ при } l(T) \to 0, \end{split}$$

так как f(x,y) интегрируема на прямоугольнике $\Rightarrow \sum_{i=1}^n (M_i - m_i) \Delta x_i \to 0$ при $\max |\Delta x_i| \to 0 \Rightarrow F(x)$ интегрируема на $[a;b] \Rightarrow \exists$

$$\int_{a}^{b} F(x)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy.$$

Покажем, что он равен двойному. Интегрируем неравенство 39

$$\sum_{j=1}^{m} m_{ij} \Delta y_j \Delta x_i \leqslant \int_{x_{i-1}}^{x_i} dx \int_{c}^{d} f(x, y) dy \leqslant \sum_{j=1}^{m} M_{ij} \Delta y_j \Delta x_i.$$

Суммируем по i:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} m(\Pi_{ij}) \leq \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy \leq \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} m(\Pi_{ij}).$$

$$\underline{S}(f,\Pi) \leqslant \int_a^b dx \int_c^d f(x,y) dy \leqslant \overline{S}(f,\Pi).$$

С другой стороны, из условий следует, что

$$\underline{S} \leqslant \iint_{\Pi} f(x,y) dx dy \leqslant \overline{S}.$$

Разность \overline{S} – \underline{S} может быть сколь угодно малой \Rightarrow

$$\Rightarrow \iint\limits_{\Pi} f(x,y) dx dy = \int_a^b dx \int_c^d f(x,y) dy.$$

13.149 Теорема о сведении двойного интеграла по элементарной области к повторному интегралу

Теорема 65 (Сведение двойного интеграла по элементарной области к повторному). Пусть Ω — элементарная относительно оси Oy область, функция f(x,y) интегрируема на $\overline{\Omega} = \Omega \cup G\Omega$ и $\forall x \in [a;b] \exists \int f(x,y) dx$.

Тогда справедлива следующая формула:

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x,y)dy.$$
 (41)

Доказательство. Есть на фотографиях (надо дописать).