Moment des forces-Equilibre

Quentin ROBERT

GENTS DO IT WITH PRECISION

Table des matières

1	Cours		
	1.1	Outils Mathématiques / Rappel	3
	1.2	Moment des forces-Equilibres	5
2	Exo	1:	6

1 Cours

1.1 Outils Mathématiques / Rappel

Produit scalaire:

Notions:

$$\overrightarrow{V_1} \cdot \overrightarrow{V_2} = \overrightarrow{V_1} \text{ scalaire } \overrightarrow{V_2}$$
$$= \text{ scalaire } \mathbb{R}$$

Définition:

$$\overrightarrow{V_1} \cdot \overrightarrow{V_2} \ = \left\| \overrightarrow{V_1} \right\| \times \left\| \overrightarrow{V_2} \right\| \times \cos\left(\alpha\right)$$

• si
$$\alpha = \frac{\pi}{2} \iff \overrightarrow{V}_1 \cdot \overrightarrow{V}_2 = 0$$
 soit que : $\overrightarrow{V}_1 \perp \overrightarrow{V}_2$

• si
$$0 \leqslant \alpha < \frac{\pi}{2} \iff \overrightarrow{V}_1 \cdot \overrightarrow{V}_2 > 0$$

$$\bullet \frac{\pi}{2} < \alpha \leqslant \pi \iff \overrightarrow{V}_1 \cdot \overrightarrow{V}_2 < 0$$

Définition: En fonction des coordonnées \overrightarrow{V}_1 et \overrightarrow{V}_2

$$\overrightarrow{V_1} \cdot \overrightarrow{V_2} = \begin{pmatrix} V_{1x} \\ V_{1y} \\ V_{1z} \end{pmatrix} \bullet \begin{pmatrix} V_{2x} \\ V_{2y} \\ V_{2z} \end{pmatrix}$$
$$= V_{1x} \cdot V_{2x} + V_{1y} \cdot V_{1y} + V_{1z} \cdot V_{2z}$$

Produit vectoriel:

Notions:

$$\overrightarrow{\overrightarrow{V_1}} \wedge \overrightarrow{V_2} = \overrightarrow{V_3} (\overrightarrow{V_1} \text{ vectoriel } \overrightarrow{V_2} = \overrightarrow{V_3})$$

Définition:

Norme de \overrightarrow{V}_3 avec $\alpha = (\overrightarrow{V}_1, \overrightarrow{V}_2)$

$$\overrightarrow{V}_{3} = \left\| \overrightarrow{V}_{1} \right\| \times \left\| \overrightarrow{V}_{1} \right\| \times \left| \sin \left(\alpha \right) \right|$$

• si
$$\alpha = 0$$
 ou $\alpha = \pi \iff \sin(\alpha) = 0$
 $\iff \overrightarrow{V_1} \land \overrightarrow{V_2} = \overrightarrow{0}$

• si
$$\alpha = \frac{\pi}{2} \iff \left\| \overrightarrow{V_1} \wedge \overrightarrow{V_2} \right\| = \text{norme maximale.}$$

Propriété:

- \bullet \overrightarrow{V}_3 est perpendiculaire au plan formé par \overrightarrow{V}_1 et $\overrightarrow{V}_2.$
- $\bullet(\overrightarrow{V_1},\overrightarrow{V_2},\overrightarrow{V_3})$ forme un triè dre direct.

Définition: Calcul des coordonnées de \overrightarrow{V}_3

Calculs en fonction de $\overrightarrow{V_1}$ et $\overrightarrow{V_2}$: (Règle du gamma)

$$\overrightarrow{V_3} = \overrightarrow{V_1} \wedge \overrightarrow{V_2} \Longrightarrow \begin{pmatrix} V_{1x} \\ V_{1y} \\ V_{1z} \end{pmatrix} \bullet \begin{pmatrix} V_{2x} \\ V_{2y} \\ V_{2z} \end{pmatrix} = \begin{pmatrix} V_{3x} = V_{1y} \cdot V_{2z} - V_{1z} \cdot V_{2y} \\ V_{3y} = V_{1z} \cdot V_{2x} - V_{1x} \cdot V_{2z} \\ V_{3z} = V_{1x} \cdot V_{2y} - V_{1y} \cdot V_{2x} \end{pmatrix}$$

$$\left\|\overrightarrow{V_3}\right\| = \sqrt{V_{3x}^2 + V_{3y}^2 + V_{3z}^2}$$

Moment des forces-Equilibres

Définition:

Moment d'une force par rapport à un point O:

 $\overrightarrow{M}_{/O}(\overrightarrow{F_A})$ avec O centre de rotation et A point d'application.

$$\overrightarrow{M}_{/O}(\overrightarrow{F_A}) = \overrightarrow{OA} \wedge \overrightarrow{F_A}$$

Si \overrightarrow{F} n'a aucun effet de rotation sur le système, alors $\overrightarrow{M}_{/O}(\overrightarrow{F_A}) = \overrightarrow{O}$ Si \overrightarrow{F} a une droite d'action coupant l'axe de rotation, alors $\overrightarrow{M}_{/O}(\overrightarrow{F_A}) = \overrightarrow{O}$

Condition d'équilibre de translation :

$$\sum \overrightarrow{F_{ext}} = \overrightarrow{0}$$

Condition d'équilibre de rotation :

$$\sum \overrightarrow{M}_{/O}(\overrightarrow{F_A}) = \overrightarrow{0}$$

2 Exo 1:

1-

$$\overrightarrow{M}_{/O}(\overrightarrow{F_1}) = \overrightarrow{OA} \wedge \overrightarrow{F_1}$$

$$= \begin{pmatrix} L/2 \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} F_1 \sin(60) \\ F_1 \cos(60) \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \times 0 - 0 \times F_1 \cos(60) \\ 0 \times F_1 \sin(60) - L/2 \times 0 \\ L/2 \times F_1 \cos(60) - 0 \times F_1 \sin(60) \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ L/2 \times F_1 \cos(60) \end{pmatrix} \implies \begin{pmatrix} M_x(\overrightarrow{F_1}) \\ M_y(\overrightarrow{F_1}) \\ M_z(\overrightarrow{F_1}) \end{pmatrix}$$

Donc
$$M_z(\overrightarrow{F_1}) = \frac{1}{2} \times 8 \times \frac{1}{2} = 2$$
Nm

$$\overrightarrow{M}_{/O}(\overrightarrow{F_2}) = \overrightarrow{OB} \wedge \overrightarrow{F_2}$$

$$= \begin{pmatrix} L \\ 0 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} F_2 \sin(30) \\ -F_2 \cos(30) \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ -F_2 \times L \cos(30) \end{pmatrix}$$

Donc
$$M_z(\overrightarrow{F_2}) = (-12) \times 1 \times \cos(30) = (-12) \times \cos(30)$$
Nm