CNN & xgboost

Agenda

- CNN
 - Representation
 - Filter
 - Pooling
 - ANN
- xgboost

convoluted

/ kpnvə'l(j)uːtɪd/

 (especially of an argument, story, or sentence) extremely complex and difficult to follow.

"the film is let down by a convoluted plot in which nothing really happens"

2. TECHNICAL

intricately folded, twisted, or coiled.

"walnuts come in hard and convoluted shells"

CNN - Bild Representation

Hur representeras en bild i ett program.

CNN - Bild Representation

Svartvit bild representerar varje pixel med ett tal mellan 0 och 255.

När man jobbar med neurala nätverk brukar dessa normaliseras till att ligga mellan 0 och 1.

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

CNN - Hur

Stegen i ett CNN förarbete.

STEP 1: Convolution

STEP 2: Max Pooling

STEP 3: Flattening

STEP 4: Full Connection

CNN - Filter

- Feature detector / filter sveper över hela bilden för att hitta speciella egenskaper i den.
- Detta kallas att man "convolut":ar bilden.

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Input Image

Feature Detector

CNN - Filter

Varje filter kartlägger om man i bilden hittar en viss signal (en etta).

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	0	0	1
)	1	0	0
	0	1	1

705					
	0	1	0	0	0
	0	1	1	1	0
	1	0	1	2	1
	1	4	2	1	0
	0	0	1	2	1

Input Image

Feature Detector Feature Map

CNN - Filter

I ett CNN finns flera olika filter, som har förmågan att hitta karaktäristiska egenskaper för en bild.

CNN - GIMP

Experimentera med GIMP

• https://docs.gimp.org/2.8/en/plug-in-convmatrix.html

CNN - RELU

På samma sätt som i allmänna neurala nätverk behöver man bryta symmetrin (RELU).

CNN - RELU

 När filtret bryter vänder bilden till ett negativ finns det fortfarande en skala från svart till vitt.

- RELU bryter ned det linjära förhållandet mellan färgerna (tar bort negativa värden).
- Lämnar endast en nyans av grått och vitt. Mer icke-linjär bild. Lättare att hitta kanter.

CNN - Max Pooling

Man behöver vidare en mekanism för att hitta egenskaper i en bild även om dessa är vridna, hoptryckta, spegelvända och oavsett var i bilden de förekommer.

CNN - Pooling

Detta kallas "spatial invariance" -

CNN - Max Pooling

Finns olika slags "pooling":

- mean
- max
- sum

0	1	0	0	0	
0	1	1	1	0	
1	0	1	2	1	
1	4	2	1	0	
0	0	1	2	1	

Feature Map

Max Pooling

1	1	0
4	2	1
0	2	1

Pooled Feature Map

- Verktyget f\u00f6r detta kallas max pooling, en operation som igen sveper \u00f6ver matrisen och h\u00e4mtar maxv\u00e4rdet.
- Fungerar som pixling av en bild. Minskar storleken men behåller den viktiga informationen ("features").
- Förhindrar överträning ("overfitting") p.g.a. att vi har minskat antalet features. .

CNN - Filter - Pooling

Den ursprungliga bilden har genererat ett lager av filtreringar, som i sin tur har genomgått en max pooling.

CNN - Filter - Pooling

- Bilden är sig lik efter både convolution och pooling.
- Kanterna hittas på olika sätt

CNN - Flattening

Platta ut matriserna för att kunna koppla på ett allmänt neuralt nätverk (flattening).

CNN -

Från bild till utplattade noder

CNN -

Från bild till utplattade noder

CNN + ANN

CNN - ANN

De utplattade noderna följs av ett ANN.

"Features" är redan "kodade" när det går vidare till ett artificiellt neuralt nätverk. a

CNN - ANN

- Multioutput.
- ANN träning fungerar so vanligt feed forward.
- Loss function uträknas (backpropagerar.
- Vikterna uppdateras.
- Noderna får "rösta".

CNN

Hela CNN sekvensen..

CNN - Softmax

Hitta mest sannolika kandidaten och summera sannolikheterna till 1: Softmax funktionen

CNN - Cross Entropy

Använd Cross Entropy för att beräkna felet i varje steg

Dog 1 0.9 0.6 0.4 0.4 0.7 0.7 0.7 0.7

NN1

Row	Dog^	Cat^	Dog	Cat	
#1	0.9	0.1	1	0	
#2	0.1	0.9	0	1	
#3	0.4	0.6	1	0	

NN2

Row	Dog^	Cat^	Dog	Cat
#1	0.6	0.4	1	0
#2	0.3	0.7	0	1
#3	0.1	0.9	1	0

	Classification Error	
1/3 = 0.33		1/3 = 0.33
	Mean Squared Error	
0.25		0.71
	Cross-Entropy	
0.38		1.06

- Cross entropy = loss funktion. (Lite som mean square error.)
- Vill minimera denna.
- Cross entropy bättre för klassifikation då ökningen i sgd blir lite större. (Funkar med softmax funktionen.)

RESTORY...

xgboost

xgboost

Skapa flera träd genom att välja delmängder på flera sätt Random forest

 Både för regression och klassifikation.

Boosting

Skapa flera träd genom att börja med icke noggrant träd, förbättra detta succesivt

xgboost

RESTORY...

Algorithms Overview

Algorithm	Description
Linear Models	 + Simple and easy to understand + Performs surprisingly well for a variety of problems - Difficulty handling non-linear datasets - Features on similar scale, one-hot encoding, complex features
Decision Tree	 + Can Handle Complex non-linear relationship + Easily handles numeric categorical data, missing data - Prone to overfitting - Poor predictive accuracy
Ensemble Methods	+ Combines multiple simple decision trees + Addresses decision tree overfitting problem + Much better predictive performance - More complex to understand

Sammanfattning

- CNN
 - Representation
 - Filter
 - Pooling
 - o ANN
- xgboost

- Kod:
 - o CNN
 - o xgboost

Länkar

- <u>Lättläst artikel om pooling</u>
- Experimentera online med filter
- xgboost
- A friendly intro to cross entropy
- StatQuest xgboost
- Art or Al
- Image segmentation different techniques
- Image segmentation P1
- Image segmentation stanford
- Image parts techniques
- xgboost är gradient descend?

Deep learning for beginners - CNN