BIO206 2023

Report 1. Shared plant knowledge

1) Plant knowledge file

- a) How many subjects and plants in the dataset?
- b) Calculate the total sum of knowledge **by plant** (how many people know each plant?). Are some plants more popular than others? What is the average by plant? Plot a histogram with the distribution.
- c) Calculate total knowledge **by individual** (how many plants are known by each person?) Is plant knowledge variable among individuals? What is the average plant knowledge by individual? Plot a histogram.

2) Plant participants file

- a) What is the age distribution in the sample? Produce a table.
- b) Which fraction is pre-adult (5-10 or 10-15 years old)?
- c) What is the sex ratio in the sample?

3) Dyads

- a) How many dyads are FF, MM, and FM?
- b) How many dyads are 'young' (both individuals are 15 or under) and 'old' (both over 60)?
- c) How many dyads born in same vs. different camp? (use born instead of born_cluster)
- d) How many dyads were in the same vs. different camps during the interviews?

4) Total knowledge score

Assuming (incorrectly) that the data points (rows) are independent, we can define 'total score' as the sum of shared knowledge (from 0 to number of plants) by each dyad.

Is there a difference in total score as a function of dyadic:

- a) Age? (define levels as: "young", "old", or "others")
- b) Sex? (MM, MF, FF)
- c) Camp? (same vs different camp)

5) Regression analysis

Now create a variable *shared knowledge* of each plant by each dyad.

Run separate logistic regressions (i.e. not controlling for pseudoreplication) to predict shared knowledge as a function of dyadic:

- a) Age
- b) Sex
- c) Camp
- d) A multiplicative model with age, sex and their interaction (age*sex). Is the interaction significant?

Paste the optimised model outputs and interpret results a), b), c) and d)

6) Mixed-effects modelling

a) Which random factor should be included in all analyses? Pick just that one, and use it in all the following analyses.

Controlling for *random intercept effects only*, run a mixed effects logistic regression model of shared knowledge on:

- b) Age
- c) Sex
- d) Camp
- e) A multiplicative model including age, sex and interaction (age*sex)

7) Conclusion

Compare the results from total scores, logistic regression and mixed effects logistic regression, and discuss the effect of age, sex and camp on shared plant knowledge. Which factor(s) is/are the most important?

8) Code file

Attach code file you used to create dataset and run analyses here if writing the report in Word (or submit an R notebook including the code)