Mapping Spatial Frequency Preferences in the Human Visual Cortex

William F. Broderick¹, Noah C. Benson², Eero P. Simoncelli^{1,2,3}, and Jonathan Winawer^{1,2} contact: wfb229@nyu.edu

1. Center for Neural Science, New York University

2. Department of Psychology, New York University

3. Howard Hughes Medical Institute

How do spatial frequency preferences change with eccentricity?

 V1 population receptive field (pRF) size grows linearly with eccentricity¹

 Previous results show peak spatial frequency decreases with eccentricity, but actual numbers vary by two to three octaves!

Variability perhaps due to inconsistent stimuli

References

1. Replotted from Benson, et al. (2018). bioRxiv. http://dx.doi.org/10.1101/308247 2. Kay, K. N., et al. (2013). Frontiers in Neuroscience.

http://dx.doi.org/10.3389/fnins.2013.00247 3. Benson NC, Winawer J (2018). In Preparation.

Extreme Possibilities

SF preferences **constant** across visual field

SF preferences **scale** with eccentricity

Stimuli and Task

- 40 stimulus classes (10 base frequencies, 4 types),
 8 phases (φ) per class
- Presented once in each of 12 runs in random order

Local spatial frequency (cpd)

1-back task on digit stream at fixation

Analysis

 GLMdenoise² to estimate a (bootstrapped) response amplitude per voxel per stimulus

• Bayesian retinotopy³ to estimate an eccentricity and angle for each voxel's population receptive field

Local spatial frequency (cpd)

V1 preferred period grows linearly with eccentricity

 This relationship is close to, but not exactly, scaling: preferred period is linear with eccentricity, but with intercept greater than zero

 Conventional full-field gratings produce similar results, but with much larger error bars

Subjects all show similar patterns

