Unit 5: Exponential and Logarithmic Functions 5.2 Laws of Logarithms

There are some basic properties of logarithms:

Basic Property

Proof

#1:
$$\log_b 1 = 0$$

$$#2: log_b b = 1$$

$$#3: log_b b^x = x$$

$$#4: b^{\log_b x} = x$$

Logarithms are exponents and the Exponent Laws give rise to corresponding Laws of Logarithms. **Recall**: the power law of exponents

$$\left(b^{x}\right)^{y}=b^{xy}$$

We can use the power law of exponents to develop a power law of logarithms.

The Power Law: the logarithm of a power of a number is equal to the exponent multiplied by the

logarithm of the number. $\left| \log_a (b^n) = n \log_a b \right|$

Proof:

Ex. 1: Rewrite the following:

a.
$$\log_6 36^4$$

b.
$$3\log_5 25$$

c.
$$\log_3 \sqrt{27}$$

Ex. 2: Determine $\log_3 81^{\frac{51003}{2}}$.

Ex. 3: Change of base Formula: Show that $\log_b x = \frac{\log_a x}{\log_a b}$, where a > 0.

Ex. 4: Find the value of $\log_3 23$, correct to two decimal places.

Ex. 5: Prove that $\log_t b = \frac{1}{\log_b t}$.

The Product Law

The logarithm of a product is equal to the sum of the logarithms of the factors. $\boxed{\log_a \left(mn\right) = \log_a m + \log_a n}$

$$\log_a(mn) = \log_a m + \log_a n$$

Proof:

Ex. 6: Evaluate using properties of logarithms.

a.
$$\log_6 12 + \log_6 3$$

b.
$$\log 25 + \log 4$$

c.
$$\log_{\frac{1}{9}} (\sqrt[3]{81})^2$$

Ex. 7: Write $\log_a x^3 y^4$ in terms of $\log_a x$ and $\log_a y$.

The Quotient Law

The logarithm of a quotient is equal to the logarithm of the numerator minus the logarithm of the denominator.

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

Proof:

Ex. 8: Evaluate using properties of logarithms.

a.
$$\log_2\left(\frac{25.6}{6.4}\right)$$

b.
$$\log_4 48 - \log_4 3$$

c.
$$\log_5\left(\frac{1}{25}\right)$$

Ex. 9: Write the following expressions as a single logarithm.

a)
$$3\log(x+3) - 2\log(x-1)$$

b)
$$2\log(x+5) - \log(x^2 - 25) + 3\log x$$

$$\mathsf{c)}\log\left(\frac{\sqrt[6]{x^5}}{x^2}\right) - \log\sqrt[3]{x}$$

Ex. 10: Fully expand and simplify the following expressions.

$$log_k \left(\sqrt{\frac{x^3 y^2}{w}} \right)$$

Practice

1. Evaluate using properties of logarithms.

a)
$$4\log_4(\log 100)$$

b)
$$\frac{3}{\log_{2} 2} - \frac{5}{\log_{2} 2} - \frac{2}{\log_{4} 2}$$

b)
$$\frac{3}{\log_8 2} - \frac{5}{\log_2 2} - \frac{2}{\log_4 2}$$
 c) $\sqrt{25^{\frac{1}{\log_6(5)}} + 49^{\frac{1}{\log_8(7)}}}$

d)
$$\frac{\log_3 \sqrt{243} \sqrt{81\sqrt[3]{3}}}{\log_2 \sqrt[4]{64} + \log_5 5^{-10}}$$

d)
$$\frac{\log_3 \sqrt{243\sqrt{81\sqrt[3]{3}}}}{\log_2 \sqrt[4]{64} + \log_5 5^{-10}}$$
 e) $\log_9 (243)^{-4} - \log_6 \left(\frac{1}{1296}\right) + \log_5 \sqrt[3]{78125}$

2. If
$$(x+y)^2 = 4xy$$
, prove that $\log_a \left(\frac{x+y}{2}\right) = \frac{1}{2} (\log_a x + \log_a y)$.

3. If
$$\log_8 5 = m$$
 and $\log_4 3 = n$ find an expression for $\log_2 15$ in terms of m and n.

4. If
$$\log_a b = \frac{2}{x^3}$$
 and $\log_b \sqrt{a} = 4x^5$, determine x.

Exit Card!

1. Write $\log(x) - 4\log(x-5) + \frac{2}{3}\log\sqrt{x+1}$ as a single logarithm.

2. Evaluate $\left(\frac{1}{5}\right)^{-2 + \log_{\sqrt{5}} 10}$.

Warm Up- Exponential and Logarithmic Functions

Multiple Choice: Write the capital letter corresponding to the most correct answer on the line provided

1. The inverse of $f(x) = 1 + 3^x$ is:

A)
$$f^{-1}(x) = \log_{\frac{1}{3}}(x-1)$$

B)
$$f^{-1}(x) = \left(\frac{1}{3}\right)^x - 1$$

C)
$$f^{-1}(x) = \log_3(x-1)$$

D)
$$f^{-1}(x) = 3\log(x-1)$$

2. If $\log(2) = m$, and $\log(3) = n$, $\log_6(5)$ in terms of m and n is equivalent to

A)
$$\frac{m}{n}$$

A)
$$\frac{m}{n}$$
 B) $1 - \frac{m}{n+m}$ C) $\frac{1-m}{n+m}$ D) $\frac{m-1}{n+m}$

C)
$$\frac{1-m}{n+m}$$

D)
$$\frac{m-1}{n+m}$$

_____3. $\log_8\left(\frac{\sqrt{2}}{4}\right)$ is equal to:

A)
$$-\frac{1}{2}$$

B)
$$-\frac{8}{6}$$
 C) $\frac{1}{2}$ D) $-\frac{3}{5}$

C)
$$\frac{1}{2}$$

D)
$$-\frac{3}{5}$$

4. Evaluate. Show steps. Leave answers in exact form.

a)
$$\log_3\left(\log_3\left(\sqrt[3]{\sqrt[3]{3}}\right)\right)$$

b)
$$2^{\log_2 5 + 2\log_2 3}$$

c)
$$\frac{\log_{0.2} (125)^2}{\log_8 \sqrt{512}}$$

5. Let $f(x) = \log_5(x^2 - x - 2) - 2\log_5(x + 1)$. Determine the domain of the function and express f(x) as a single logarithm.

6. If $\log_{12}(3) = m$, find the value of $\log_{\sqrt{3}}(16)$ in terms of m.