Modélisation et détection de délit d'initié

BROUX Lucas, HEANG Kitiyavirayuth

20 mars 2018

4 D L 4 D L 4 E L 4 E L 500 C

Introduction

Présentation du projet

- Modélisation et détection de délit d'initié : Que se passe t'il lorsqu'un agent dispose d'une information confidentielle sur l'évolution future du marché?
- Objectifs :
 - Analyser le gain de l'initié par rapport à un non-initié.
 - Simuler les stratégies de l'initié et du non-initié.

Introduction

Choix du sujet

- Problématique concrète.
- Aspect théorique : notions profondes et techniques.
- Étude de cas particuliers possible à notre niveau.

Plan de la présentation

- 1 Introduction
 - Projet
 - Choix du sujet
- 2 Modèle diffusif cas particulier
 - Description du modèle

Modèle diffusif - cas particulier

évolution des prix

On considère 2 actions risquées sur le marché financier sur l'espace de probabilité $(\Omega, \mathcal{F}_t; t \in [0, T], \mathbb{P})$, dont les prix évoluent selon l'équation :

$$\begin{cases} S_t^i = S_t^0 + \int_0^t S_t^s b_t^s dt + \int_0^t S_s^i \sigma_s^i dW_s, & 0 \le t \le T, \quad i = \{1, 2\} \\ S_t^0 = S_0^0 + \int_0^t S_s^0 r_s ds \end{cases}$$

- W est un mouvement brownien de 2 dimension dont \mathcal{F} est la filtration naturelle.
- Pour simplifier, on suppose que b, r et σ sont constants.

Initié

- On suppose qu'à t=0, l'initié dispose a une information sur le futur, $L:=\ln(S_T^1)-\ln(S_T^2)$, dont les autres investisseurs sur le marché ne disposent pas.
- Sa filtration naturelle est donc $\mathcal{Y}_t := \mathcal{F}_t \vee \sigma(L)$.
- Il dispose d'un capital X_0 à t=0, consomme à une vitesse c, et il place la quantité θ^i sur l'actif i.
- $\pi_t^i = \theta_t^i S_t^i$: la somme investie sur le *i*-ième l'actif, $i = \{1, 2\}$.

Hypothèse d'autofinancement

■ Sa richesse au temps *t* s'exprime donc :

$$X_t = \sum_{i=0}^2 \theta_t^i S_t^i - \int_0^t c_s ds$$

Nous supposons que son portefeuille est autofinançant :

$$dX_t = \sum_{i=0}^2 \theta_t^i dS_t^i - c_t dt$$

■ En notant $R_t = (S_t^0)^{-1}$ le facteur d'actualisation, on obtient :

$$X_tR_t + \int_0^t R_sc_sds = \int_0^t (R_s\pi_s, b_s - r_s\mathbf{1})ds + \int_0^t (R_s\pi_s, \sigma_sdW_s)$$

Conclusion

Retour d'expérience