Homework 2

Jaden Wang

Problem (1). Since G/Z(G) is cyclic, let aZ(G) be its generator. Given $g, h \in G$, we know that $g = a^i x$ and $h = z^j y$ for some $i, j \in \mathbb{N}$ and $x, y \in Z(G)$. Hence,

$$gh = a^i x a^j y = a^i a^j x y = a^{i+j} y x = a^j y a^i x = hg.$$

Problem (2).

(a) Define the set map $\phi_g: G/H \to G/H, g'H \mapsto gg'H$. We wish to show that $\Phi: G \to \operatorname{Aut}_{|G/H|} \cong S_{|G/H|}, g \mapsto \phi_g$ is a group homomorphism.

$$\Phi(g_1g_2)(g'H) = \phi_{g_1g_2}(g'H)$$

$$= g_1g_2g'H$$

$$= \phi_{g_1}(g_2g'H)$$

$$= \phi_{g_1}\phi_{g_2}(g'H)$$

$$= \Phi(g_1)\Phi(g_2)(g'H)$$

Hence $\Phi(g_1g_2) = \Phi(g_1)\Phi(g_2)$.

- (b) Given g_1H and g_2H , we see that $g_2H = g_2g_1^{-1}g_1H = \Phi(g_2g_1^{-1})(g_1H)$ so the action is transitive. Moreover, $\operatorname{Stab}_G(H) = \{g \in G : gH = H\} = \{g \in H\} = H$.
- (c) Clearly $K = \bigcap_{g' \in G} \operatorname{Stab}_G(g'H) \subseteq \operatorname{Stab}_G(H) = H$. Since $K = \ker \Phi$, it is a normal subgroup of G.
- (d) Consider the cosets G/H which has order 4. Then the kernel K of the action $\Phi: G \to S_4$ is the largest normal subgroup contained in H by part c. Since $K \subseteq H$, by order consideration |K| = 1, 5, 7 or 35 so |G/K| = 140, 28, 20 or 4. Since im $\Phi \subseteq S_4$, $|\operatorname{im} \Phi|| 24$ so it is 1, 2, 3, 4, 6, 12 or 24. By the first isomorphism theorem, $|G/K| = \operatorname{im} \Phi$ so they must equal 4. But this implies that |K| = |H| so K = H. It follows that $H \subseteq G$.

Problem (3).

(a) Given $a, b \in A$, since the action is transitive, there exists a $g \in G$ s.t. b = g.a. I claim

that $H_b = gH_ag^{-1}$. Given $h \in H_b$, then

$$h.b = b$$
$$h.(g.a) = g.a$$
$$(g^{-1}hg).a = a$$

Since $H \leq G$, $g^{-1}hg \in H$. So $g^{-1}hg \in H_a$ and $h = gg^{-1}hgg^{-1}$. Given $gh'g^{-1} \in gH_ag^{-1}$, we know since H is normal, $gh'g^{-1} \in H$.

$$h'.a = a$$

$$(g^{-1}gh'g^{-1}g).a = a$$

$$(gh'g^{-1}).(g.a) = g.a$$

$$(gh'g^{-1}).b = b$$

So $gh'g^{-1} \in H_b$ and the equality follows. Since action of g by conjugation on G is an automorphism of G, the action restricted to H_a is still a bijection so $|H_b| = |gH_ag^{-1}|$. Since a, b are arbitrary, we show that all stablizers of element in A have the same cardinality. By the Orbit-Stablizer Theorem, the orbits also have the same cardinality $|\mathcal{O}| = |H: H_a|$.

- (b) It is easy to see that $H \cap G_a \subseteq H_a$. Given $h \in H_a$, clearly $h \in H$ and since h.a = a, $h \in G_a$. So $h \in H \cap G_a$ and therefore $H_a = H \cap G_a$. It follows that $|\mathcal{O}| = |H: H_a| = |H: H \cap G_a|$.
- (c) Suppose the number of orbits of H on A is n. Since |A| is finite, and the orbits partition A, n is finite and $|H:H\cap G_a|$ is finite. Thus $|HG_a:G_a|=|H:H\cap G_a|$ is also finite. But since $|HG_a|\leq |H||G_a|$ we have

$$n = \frac{|A|}{|\mathcal{O}|}$$

$$= \frac{|A|}{|H: H \cap G_a|}$$

$$= \frac{|G.a|}{|H: H \cap G_a|}$$

$$= \frac{|G: G_a|}{|H: H \cap G_a|}$$

$$= \frac{|G:G_a|}{|HG_a:G_a|}$$
$$= |G:HG_a|$$

4th iso for cosets

ALTER (using HW1.8 lemma):

$$\frac{|G:G_a|}{|H:H\cap G_a|} = \frac{|G:HG_a||HG_a:G_a|}{|H:H\cap G_a|}$$
$$= |G:HG_a|$$
 2nd iso

Problem (4).

(a) We know that gcd(|N|, |G:N|) = 1. Now suppose there exists a $H \leq G$ s.t. |H| = |N|. Since $N \leq G$, $HN \leq G$.

$$|N| = \frac{|G|}{|G:N|}$$

$$= \frac{|G:HN||HN|}{|G:N|}$$

$$= \frac{|G:HN||H||N|}{|G:N||H\cap N|}$$

$$= \frac{|G:HN|}{|G:N|} \frac{|N|^2}{|H\cap N|}$$

Since |N| is an integer, all denominators in the expression must vanish. Since |G:N| and |N| are coprime, this implies that |G:N|||G:HN|. But we also have |G:N|=|G:HN||HN:N| so |G:HN|||G:N|. Since these are positive integers, |G:N|=|G:HN| which forces HN=N. It follows that $H\leq N$ and therefore H=N.

Alternatively (collab with Ari), we know that since $NH \leq G$, |NH|||G|. Hence

$$\frac{|NH|}{|N|} \left| \frac{|G|}{|N|} \right|$$

$$\frac{|H|}{|H \cap N|} \left| |G:N| \right|$$

$$\frac{|N|}{|H \cap N|} \left| |G:N| \right|$$

Since $\frac{|N|}{|H\cap N|} = |N: H\cap N|$ also divides |N| by Lagrange, $\frac{|N|}{|H\cap N|}$ divides $\gcd(|N|, |G: N|) = 1$. It must be that $\frac{|N|}{|H\cap N|} = 1$ so $|N| = |H\cap N|$ which implies $N = H\cap N$. Hence $H \leq N$ and thus H = N.

(b) We have $\gcd(|H|, |G:H|) = 1$ and $N \subseteq G$. By the second isomorphism theorem, $|N:H\cap N| = |NH:H|$. Since |G:H| = |G:NH||NH:H|, and $|H\cap N|$ divides |H| by Lagrange, $\gcd(|H\cap N|, |N:H\cap N|)$ must divide $\gcd(|H|, |G:H|) = 1$ which forces it to be 1 as well. Hence $H\cap N$ is a Hall subgroup of N.

By the third isomorphism theorem, |G/N:NH/N| = |G:NH| which divides |G:H|. Also |NH/N| = |NH:N|. And again by the third isomorphism theorem, $|NH:N| = |H:H\cap N|$ which divides |H|. So again we have $\gcd(|NH/N|, |G:NH|)$ dividing $\gcd(|H|, |G:H|) = 1$ which yields that NH/N is a Hall subgroup of G/N.

Problem (5).

- (a) We know that S_n is generated by successively increasing transpositions (Exercise 3.5.3). So it suffices to show that (1,2) and $(1,2,3,\ldots,n)$ generate all such transpositions. We know that conjugating (1,2) by $(1,2,\ldots,n)$ just becomes (2,3). Then conjugating (2,3) by $(1,2,\ldots,n)$ yields (3,4). Repeat until we get (n-1,n) and that's all the generators we need for S_n .
- (b) It suffices to show that we can obtain (1,2) from any transposition (i,j) with $1 \le i < j \le p$ and $(1,2,\ldots,p)$. Since p is prime, powers (< p) of the p-cycle remains a p-cycle. Moreover, each power permutes the last letter in the cycle so we can always obtain some power (in fact, $(1-i) \mod p$) that looks like $(1,\ldots,i)$. Conjugating (i,j) by this yields (1,j). Moreover, $(1,2,\ldots,p)^{(2-j) \mod p}$ should put 2 immediately after j. Conjugating (1,j) by this yields (1,2).
- (c) No. We see that in S_4 , (1,4) cannot be generated by (2,4) and (1,2,3,4).

Problem (6). Given $k \in K$, we know that $|K| = |S_n| : \operatorname{Stab}_{S_n}(\{k\})|$ by Orbit-Stablizer Theorem. We also know from 3b that $\operatorname{Stab}_{A_n}(\{k\}) = H \cap \operatorname{Stab}_{S_n}(\{k\})$. Let the conjugacy class of k acted by A_n be K'. $|K'| = |A_n| : \operatorname{Stab}_{A_n}(\{k\})| = |A_n| : A_n \cap \operatorname{Stab}_{S_n}(\{k\})|$. Recall that $A_n \leq S_n$ so $A_n \operatorname{Stab}_{S_n}(\{k\})$ is a subgroup of S_n containing A_n . Since A_n is maximal, $A_n \operatorname{Stab}_{S_n}(\{k\})$ either equals A_n or S_n . If it is A_n , then by the second isomorphism theorem, $|K'| = |A_n| : A_n \cap \operatorname{Stab}_{S_n}(\{k\})| = |A_n \operatorname{Stab}_{S_n}(\{k\})| = |S_n| : \operatorname{Stab}_{S_n}(\{k\})| / |S_n| : A_n| = |K|/2$. Since k is arbitrary, picking another element not in K' yields another orbit

of size |K|/2 and that is all of K. So we have two orbits of equal size in this case. If $A_n \operatorname{Stab}_{S_n}(\{k\}) = S_n$, then following the computation above, we obtain that |K'| = |K| so there is only one orbit.

Problem (7). Every group has the identity conjugacy class $\{e\}$. Let g be the representative of the other conjugacy class. By the class equation, $|G| = 1 + |G| : C_G(g)|$. Since $|G| : C_G(g)|$ divides |G|, we have that n(|G| - 1) = |G| for some $n \in \mathbb{N}$. That is,

$$n|G| - n = |G|$$

 $(n-1)|G| = n$
 $|G| = \frac{n}{n-1} = 1 + \frac{1}{n-1}$

Since $|G| \in \mathbb{N}$, it's easy to see that n = 2 is the unique solution. Therefore, |G| = 2 so $G \cong \mathbb{Z}_2$.

Problem (8). Let $S = \{(a_1, \ldots, a_p) : a_i \in G, a_1 \cdots a_p = e\}$. Consider the set map $\phi : S \to G^{p-1}, (a_1, \ldots, a_p) \mapsto (a_1, \ldots, a_{p-1})$ by dropping the last entry. Surjectivity is clear. If $\phi(a_1, \ldots, a_p) = (a_1, \ldots, a_{p-1}) = (b_1, \ldots, b_{p-1}) = \phi(b_1, \ldots, b_p)$, then $a_i = b_i$ for all $1 \le i < p$, and $a_p = b_p = (a_1 \cdots a_{p-1})^{-1}$. So ϕ is injective. Hence $|S| = |G|^{p-1}$. Let Z be the set of fixed points of S from $\mathbb{Z}/p\mathbb{Z}$ action (by shifting indices). It's easy to see that $Z = \{(a, \ldots, a) : a \in G, a^p = e\}$. But since there are exactly n elements of order p in G, together with e we have exactly n + 1 elements in Z. Since $\mathbb{Z}/p\mathbb{Z}$ is a p-group, by the lemma from class,

$$|S| \equiv |Z| \bmod p.$$

But since order of any element divides the order of group, p||G| so $p||G|^{p-1} = |S|$. Therefore, p must also divide |Z| = n + 1.