Introduction to Machine Learning

Risk Minimizers

Learning goals

- Bayes optimal model (also: risk minimizer, population minimizer)
- Bayes risk
- Bayes regret, estimation and approximation error
- Optimal constant model
- Consistent learners

EMPIRICAL RISK MINIMIZATION

Very often, in ML, we minimize the empirical risk

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

- ullet each observation $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X} \times \mathcal{Y}$, so from feature and target space
- $f_{\mathcal{H}}: \mathcal{X} \to \mathbb{R}^g$, f is a model from hypothesis space \mathcal{H} ; maps a feature vector to output score; sometimes or often we omit \mathcal{H} in the index
- $L: (\mathcal{Y} \times \mathbb{R}^g) \to \mathbb{R}$ is loss; L(y, f) measures distance between label and prediction
- We assume that $(\mathbf{x}, y) \sim \mathbb{P}_{xy}$ and $(\mathbf{x}^{(i)}, y^{(i)}) \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}_{xy}$ \mathbb{P}_{xy} is the distribution of the data generating process (DGP)

Let's define (and minimize) loss in expectation, the theoretical risk:

$$\mathcal{R}\left(f
ight) := \mathbb{E}_{xy}[L\left(y,f(\mathbf{x})
ight)] = \int L\left(y,f(\mathbf{x})
ight) d\mathbb{P}_{xy}$$

OPTIMAL CONSTANTS FOR A LOSS

- Let's assume some RV $Z \in \mathcal{Y}$ for a label
- Z not Y, because we want to fiddle with its distribution
- Assume Z has distribution Q, so $Z \sim Q$
- We can now consider $\arg\min_c \mathbb{E}_{Z \sim Q}[L(Z, c)]$ so the score-constant which loss-minimally approximates Z

We will consider 3 cases for Q

- ullet $Q = P_Y$, simply our labels and their marginal distribution in \mathbb{P}_{xy}
- $Q = P_{Y|X=x}$, conditional label distribution at point X = x
- $Q = P_n$, the empirical product distribution for data y_1, \ldots, y_n

If we can solve $\arg\min_c \mathbb{E}_{Z\sim Q}[L(Z,c)]$ for any Q, we will get multiple useful results!

OPTIMAL CONSTANT MODEL

- We would like a loss optimal, constant baseline predictor
- A "featureless" ML model, which always predicts the same value
- Can use it as baseline in experiments, if we don't beat this with more complex model, that model is useless
- Will also be useful as component in algorithms and derivations

$$f_c^* = rg \min_{c \in \mathbb{R}} \mathbb{E}_{xy} \left[L(y, c) \right] = rg \min_{c \in \mathbb{R}} \mathbb{E}_y \left[L(y, c) \right]$$

and

 $f(\mathbf{x}) = \theta = c$ that optimizes the empirical risk $\mathcal{R}_{emp}(\theta)$ is denoted as as $\hat{f}_c = \arg\min_{c \in \mathbb{R}} \mathcal{R}_{emp}(\theta)$.

OPTIMAL CONSTANT MODEL

- Let's start with the simplest case, L2 loss
- And we want to find and optimal constant model for

$$arg min \mathbb{E}[L(Z, c)] =$$

$$\arg\min\mathbb{E}[(Z-c)^2] =$$

$$\arg\min \mathbb{E}[Z^2] - 2cE[Z] + c^2 =$$

• Using $Q = P_Y$, this means that, given we know the label distribution, the best constant is c = E[Y].

OPTIMAL CONSTANT MODEL

- If we only have data $y_1, \dots y_n$ arg min $\mathbb{E}_{Z \sim P_n}[(Z c)^2] = \mathbb{E}_{Z \sim P_n}[Z] = \frac{1}{n} \sum_{i=1}^n y^{(i)} = \bar{y}$
- And we want to find and optimal constant model for

RISK MINIMIZER

Let us assume we are in an "ideal world":

- The hypothesis space $\mathcal H$ is unrestricted. We can choose any $f:\mathcal X\to\mathbb R^g$.
- We also assume an ideal optimizer; the risk minimization can always be solved perfectly and efficiently.
- We know \mathbb{P}_{xy} .

How should *f* be chosen?

RISK MINIMIZER

The *f* with minimal risk across all (measurable) functions is called the **risk minimizer**, **population minimizer** or **Bayes optimal model**.

$$f^* = \underset{f:\mathcal{X} \to \mathbb{R}^g}{\arg \min} \mathcal{R}_L(f) = \underset{f:\mathcal{X} \to \mathbb{R}^g}{\arg \min} \mathbb{E}_{xy} \left[L(y, f(\mathbf{x})) \right]$$
$$= \underset{f:\mathcal{X} \to \mathbb{R}^g}{\arg \min} \int L(y, f(\mathbf{x})) \, d\mathbb{P}_{xy}.$$

The resulting risk is called **Bayes risk**: $\mathcal{R}_L^* = \mathcal{R}_L(f^*)$

OPTIMAL POINT-WISE PREDICTIONS

To derive the risk minimizer, observe that by law of total expectation

$$\mathcal{R}_{L}(f) = \mathbb{E}_{xy} \left[L(y, f(\mathbf{x})) \right] = \mathbb{E}_{x} \left[\mathbb{E}_{y|x} \left[L(y, f(\mathbf{x})) \mid \mathbf{x} = \mathbf{x} \right] \right].$$

- We can choose f(x) as we want (unrestricted hypothesis space, no assumed functional form)
- Hence, for a fixed value $\mathbf{x} \in \mathcal{X}$ we can select **any** value c we want to predict. So we construct the **point-wise optimizer**

$$f^*(\mathbf{x}) = \operatorname{argmin}_c \mathbb{E}_{v|x} [L(y, c) \mid \mathbf{x} = \mathbf{x}] \quad \forall \mathbf{x} \in \mathcal{X}.$$

THEORETICAL AND EMPIRICAL RISK

The risk minimizer is mainly a theoretical tool:

- ullet In practice we need to restrict the hypothesis space ${\mathcal H}$ such that we can efficiently search over it.
- In practice we (usually) do not know \mathbb{P}_{xy} . Instead of $\mathcal{R}(f)$, we are optimizing the empirical risk

$$\hat{f}_{\mathcal{H}} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{emp}(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Note that according to the **law of large numbers** (LLN), the empirical risk converges to the true risk (but beware of overfitting!):

$$\bar{\mathcal{R}}_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \overset{n \to \infty}{\longrightarrow} \mathcal{R}(f).$$

ESTIMATION AND APPROXIMATION ERROR

Goal of learning: Train a model \hat{f} for which the true risk $\mathcal{R}_L\left(\hat{f}\right)$ is close to the Bayes risk \mathcal{R}_L^* . In other words, we want the **Bayes regret**

$$\mathcal{R}_L\left(\hat{f}\right) - \mathcal{R}_L^*$$

to be as low as possible.

The Bayes regret can be decomposed as follows:

$$\mathcal{R}_{L}\left(\hat{f}\right) - \mathcal{R}_{L}^{*} = \underbrace{\left[\mathcal{R}_{L}\left(\hat{f}\right) - \inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f)\right]}_{\text{estimation error}} + \underbrace{\left[\inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f) - \mathcal{R}_{L}^{*}\right]}_{\text{approximation error}}$$

ESTIMATION AND APPROXIMATION ERROR

- $\mathcal{R}_L(\hat{f}) \inf_{f \in \mathcal{H}} \mathcal{R}(f)$ is the **estimation error**. We fit \hat{f} via empirical risk minimization and (usually) use approximate optimization, so we usually do not find the optimal $f \in \mathcal{H}$.
- $\inf_{f \in \mathcal{H}} \mathcal{R}_L(f) \mathcal{R}_L^*$ is the **approximation error**. We need to restrict to a hypothesis space \mathcal{H} which might not even contain the Bayes optimal model f^* .

(UNIVERSALLY) CONSISTENT LEARNERS

Consistency is an asymptotic property of a learning algorithm, which ensures the algorithm returns **the correct model** when given **unlimited data**.

Let $\mathcal{I}: \mathbb{D} \to \mathcal{H}$ be a learning algorithm that takes a training set $\mathcal{D}_{\text{train}} \sim \mathbb{P}_{\text{xy}}$ of size n_{train} and estimates a model $\hat{f}: \mathcal{X} \to \mathbb{R}^g$.

The learning method \mathcal{I} is said to be **consistent** w.r.t. a certain distribution \mathbb{P}_{xy} if the risk of the estimated model \hat{f} converges in probability (" $\stackrel{\rho}{\longrightarrow}$ ") to the Bayes risk \mathcal{R}^* when n_{train} goes to ∞ :

$$\mathcal{R}\left(\mathcal{I}\left(\mathcal{D}_{\mathsf{train}}
ight)
ight)\overset{
ho}{\longrightarrow}\mathcal{R}_{L}^{*}\quad\mathsf{for}\;n_{\mathsf{train}}
ightarrow\infty.$$

(UNIVERSALLY) CONSISTENT LEARNERS

Consistency is defined w.r.t. a particular distribution \mathbb{P}_{xy} . But since we usually do not know \mathbb{P}_{xy} , consistency does not offer much help to choose an algorithm for a particular task.

More interesting is the stronger concept of **universal consistency**: An algorithm is universally consistent if it is consistent for **any** distribution.

In Stone's famous consistency theorem from 1977, the universal consistency of a weighted average estimator as KNN was proven. Many other ML models have since then been proven to be universally consistent (SVMs, ANNs, etc.).

Note that universal consistency is obviously a desirable property - however, (universal) consistency does not tell us anything about convergence rates ...

