MATH357 - Statistics

Based on lectures from Winter 2025 by Prof. Abbas Khalili. Notes by Louis Meunier

Contents

1 Review of Probability	2
2 Statistics	6

§1 Review of Probability

⇒ Definition 1.1 (Measurable Space, Probability Space): We work with a set Ω = sample space = {outcomes}, and a σ -algebra \mathcal{F} , which is a collection of subsets of Ω containing Ω and closed under taking complements and countable unions. The tuple (Ω, \mathcal{F}) is called *measurable space*.

We call a nonnegative function $P: \mathcal{F} \to \mathbb{R}$ defined on a measurable space a *probability* function if $P(\Omega) = 1$ and if $\{E_n\} \subseteq \mathcal{F}$ a disjoint collection of subsets of Ω , then $P(\bigcup_{n \geq 1} E_n) = \sum_{n \geq 1} P(E_n)$. We call the tuple (Ω, \mathcal{F}, P) a *probability space*.

 \hookrightarrow Definition 1.2 (Random Variables): Fix a probability space (Ω, \mathcal{F}, P) . A Borel-measurable function $X : \Omega \to \mathbb{R}$ (namely, $X^{-1}(B) \in \mathcal{F}$ for every $B \in \mathfrak{B}(\mathbb{R})$) is called a *random variable* on \mathcal{F} .

- *Probability distribution*: X induces a probability distribution on $\mathfrak{B}(\mathbb{R})$ given by $P(X \in B)$
- *Cumulative distribution function (CDF)*:

$$F_X(x) := P(X \le x).$$

Note that $F(-\infty) = 0$, $F(+\infty) = 1$ and F right-continuous.

We say X discrete if there exists a countable set $S := \{x_1, x_2, ...\} \subset \mathbb{R}$, called the *support* of X, such that $P(X \in S) = 1$. Putting $p_i := P(X = x_i)$, then $\{p_i : i \ge 1\}$ is called the *probability mass function* (PMF) of X, and the CDF of X is given by

$$P(X \le x) = \sum_{i: x_i \le x} p_i.$$

We say *X* continuous if there is a nonnegative function *f* , called the *probability distribution* function (PDF) of *X* such that $F(x) = \int_{-\infty}^{x} f(t) dt$ for every $x \in \mathbb{R}$. Then,

- $\forall B \in \mathfrak{B}(\mathbb{R}), P(X \in B) = \int_B f(t) dt$
- F'(x) = f(x)
- $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$

If $X : \Omega \to \mathbb{R}$ a random variable and $g : \mathbb{R} \to \mathbb{R}$ a Borel-measurable function, then $Y := g(X) : \Omega \to \mathbb{R}$ also a random variable.

1 Review of Probability

Definition 1.3 (Moments): Let *X* be a discrete/random random variable with pmf/pdf *f* and support *S*. Then, if $\sum_{x \in S} |x| f(x) / \int_{S} |x| f(x) dx < \infty$, then we say the first moment/mean of *X* exists, and define

$$\mu_X = \mathbb{E}[X] = \begin{cases} \sum_{x \in S} x f(x) \\ \int_S x f(x) \, \mathrm{d}x \end{cases}.$$

Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable function. Then, we have

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x \in S} g(x) f(x) \\ \int_{S} g(x) f(x) \end{cases}.$$

Taking $g(x) = |x|^k$ gives the so-called "kth absolute moments", and $g(x) = x^k$ gives the ordinary "kth moments". Notice that $\mathbb{E}[\cdot]$ linear in its argument.

For $k \ge 1$, if μ exists, define the central moments

$$\mu_k \coloneqq \mathbb{E}\Big[\left(X - \mu\right)^k\Big],$$

where they exist.

 \hookrightarrow **Definition 1.4** (Moment Generating Function (mgf)): If X a r.v., the mgf of X is given by

$$M(t) \coloneqq \mathbb{E}[e^{tX}],$$

if it exists for $t \in (-h, h)$, h > 0. Then, $M^{(n)}(0) = \mathbb{E}[X^n]$.

Definition 1.5 (Multiple Random Variable): $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ a random vector if $X^{-1}(I) \in \mathcal{F}$ for every $I \in \mathfrak{B}_{\mathbb{R}^n}$. (It suffices to check for "rectangles" $I = (-\infty, a_1] \times \cdots \times (-\infty, a_n]$, as before.)

Let *F* be the CDF of *X*, and let $A \subseteq \{1, ..., n\}$, enumerating *A* by $\{i_1, ..., i_k\}$. Then, the CDF of the subvector $X_A = (X_{i_1}, ..., X_{i_k})$ is given by

$$F_{X_A}(x_{i_1},...,x_{i_k}) = \lim_{\substack{x_{i_j} \to \infty, \\ i_j \in \mathcal{I} \setminus A}} F(x_1,...,x_n).$$

In particular, the marginal distribution of X_i is given by

$$F_{X_i}(x) = \lim_{x_1,...,x_{i-1},x_{i+1},...,x_n \to +\infty} F(x_1,...,x,...,x_n).$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ measurable. Then,

$$\mathbb{E}[g(X_1,...,X_n)] = \begin{cases} \sum_{(x_1,...,x_n)} g(x_1,...,x_n) f(x_1,...,x_n) \\ \int \cdots \int g(x_1,...,x_n) f(x_1,...,x_n) \, \mathrm{d} x_1 \cdots \, \mathrm{d} x_n \end{cases}.$$

We have the notion of a joint mgf,

$$M(t_1,...,t_n) = \mathbb{E}\left[e^{\sum_{i=1}^n t_i X_i}\right],$$

if it exists for $0 < \left(\sum_{i=1}^n t_i^2\right)^{\frac{1}{2}} < h$ for some h > 0. Notice that $M(0, ..., 0, t_i, 0, ..., 0)$ is equal to the mgf of X_i .

1 Review of Probability

Definition 1.6 (Conditional Probability): Let $(X_1,...,X_n)$ a random vector. Let $\mathcal{I} = \{1,...,n\}$ and A,B disjoint subsets of \mathcal{I} with k := |A|, h := |B|. Write $X_A = (X_{i_1},...,X_{i_k})^t$, similar for B. Then, the conditional probability of A given B is given by

$$f_{X_A|X_B}(x_a|x_b) := f_{X_A|X_B = x_B}(x_A) = \frac{f_{X_A,X_B}(x_a,x_b)}{f_{X_b}(x_b)},$$

provided the denominator is nonzero. Sometimes we have information about conditional probabilities but not the main probability function; we have that

$$f(x_1,...,x_n) = f(x_1)f(x_2 \mid x_1)f(x_3 \mid x_1, x_2) \cdots f(x_n \mid x_1,...,x_{n-1}),$$

which follows from expanding the previous definition and observing the cancellation.

Let $X = (X_1, ..., X_n) \sim F$. We say $X_1, ..., X_n$ (mutually) independent and write $\coprod_{i=1}^n X_i$ if

$$F(x_1,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i),$$

where F_{X_i} the marginal cdf of X_i . Equivalently,

$$\prod_{i=1}^{n} X_i \Leftrightarrow f(x_1, ..., x_n) = \prod_{i=1}^{n} f_{X_i}(x_i)$$

$$\Leftrightarrow P(X_1 \in B_1, ..., X_n \in B_n) = \prod_{i=1}^{n} P(X_i \in B_i) \ \forall \ B_i \in \mathfrak{B}_{\mathbb{R}}$$

$$\Leftrightarrow M_X(t_1, ..., t_n) = \prod_{i=1}^{n} M_{X_i}(t_i).$$

If X, Y are two random variables with cdfs F_X , F_Y such that $F_X(z) = F_Y(z)$ for every z, we say X, Y identically distributed and write $X \stackrel{d}{=} Y$ (note that X need not equal Y pointwise). If $X_1, ..., X_n$ a collection of random variables that are independent and identically distributed with common cdf F, we write $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$.

Further, define the covariance, correlation of two random variables *X*, *Y* respectively:

$$\operatorname{Cov}(X,Y) \coloneqq \sigma_{X,Y} \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mu_X \mu_Y, \qquad \rho_{X,Y} \coloneqq \frac{\sigma_{XY}}{\sigma_X \sigma_Y},$$

$$if \, \mathbb{E}[|X - \mathbb{E}[X]| \, |Y - \mathbb{E}[Y]|] < \infty.$$

Theorem 1.1: If $X_1, ..., X_n$ independent and $g_1, ..., g_n : \mathbb{R} \to \mathbb{R}$ borel-measurable functions, then $g_1(X_1), ..., g_n(X_n)$ also independent.

1 Review of Probability 5

Definition 1.7 (Conditional Expectation): Let *X*, *Y* be random variables and *g* : \mathbb{R} → \mathbb{R} a borel-measurable function. We define the following notions:

$$\mathbb{E}[g(X)|Y = y] = \begin{cases} \sum_{x \in S_X} g(x) f(x|y) \text{ discrete} \\ \int_{S_X} g(x) f(x|y) dx \text{ cnts} \end{cases}$$

$$\text{Var}(X|Y = y) = \mathbb{E}[X^2|Y = y] - \mathbb{E}^2[X|Y = y].$$

Theorem 1.2: If $\mathbb{E}[g(X)]$ exists, then $\mathbb{E}[g(X)] = \mathbb{E}[\mathbb{E}[g(X)|Y]]$, where the first nested \mathbb{E} is with respect to x, the second y.

Theorem 1.3: If $\mathbb{E}[X^2]$ < ∞, then $Var(X) = Var(\mathbb{E}[X|Y]) + \mathbb{E}[Var(X|Y)]$. In particular, $Var(X) \ge Var(\mathbb{E}[X|Y])$.

§2 STATISTICS

- \hookrightarrow **Definition 2.1** (Inference): We consider some population with some characteristic we wish to study. We can model this characteristic as a random variable $X \sim F$. In general, we don't have access to F, but wish to take samples from our population to make inferences about its properties.
- (1) *Parametric inference:* in this setting, we assume we know the functional form of X up to some parameter, $\theta \in \Theta \subset \mathbb{R}^d$, where Θ our "parameter space". Namely, we know $X \sim F_\theta \in \mathcal{F} := \{F_\theta \mid \theta \in \Theta\}$.
- (2) *Non-parametric inference:* in this setting we know noting about *F* itself, except perhaps that *F* continuous, discrete, etc.

Other types exist. We'll focus on these two.

Definition 2.2 (Random Sample): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$. Then $X_1, ..., X_n$ called a *random sample* of the population.

We also call X_i the "pre-experimental data" (to be observed) and x_i the "post-experimental data" (been observed).

2 Statistics 6

 \hookrightarrow **Definition 2.3** (Statistics): Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$ where X_i a d-dimensional random vector. Let

$$T: \underbrace{\mathbb{R}^d \times \mathbb{R}^d \times \dots \times \mathbb{R}^d}_{n-\text{fold}} \to \mathbb{R}^k$$

be a borel-measurable function. Then, $T(X_1,...,X_n)$ is called a *statistic*, provided it does not depend on any unknown.

Example 2.1: $\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i$ (the "sample mean") and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X_n} \right)^2$, (the "sample variance") are both typical statistics.

→Theorem 2.1: Let $x_1, ..., x_n \in \mathbb{R}$, then

(a)
$$\operatorname{argmin}_{\alpha \in \mathbb{R}} \left\{ \sum_{i=1}^{n} (x_i - \alpha)^2 \right\} = \overline{x_n};$$

(b)
$$\sum_{i=1}^{n} (x_i - \overline{x_n})^2 = \sum_{i=1}^{n} (x_i^2) - n\overline{x_n}^2$$
;

(c)
$$\sum_{i=1}^{n} (x_i - \overline{x_n}) = 0$$
.

Theorem 2.2: Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} F$, and $g : \mathbb{R} \to \mathbb{R}$ borel-measurable such that $\text{Var}(g(X)) < \infty$. Then,

(a)
$$\mathbb{E}\left[\sum_{i=1}^{n} g(X_i)\right] = n\mathbb{E}[g(X_1)];$$

(b)
$$\operatorname{Var}\left(\sum_{i=1}^{n} g(X_i)\right) = n \operatorname{Var}(X_1)$$
.

Theorem 2.3: Let $X_1,...,X_n \stackrel{\text{iid}}{\sim} F$ with $\sigma^2 < \infty$, then

1.
$$\mathbb{E}\left[\overline{X_n}\right] = \mu$$
, $\operatorname{Var}\left(\overline{X_n}\right) = \frac{\sigma^2}{n}$, $\mathbb{E}\left[S_n^2\right] = \sigma^2$.

2. If $M_{X_1}(t)$ exists in some neighborhood of 0, then $M_{\overline{X_n}}(t) = M_{X_1}(\frac{t}{n})^n$, where it exists.