Autómatas y Lenguajes Formales Tarea 2

Alumnos:

Torres Partida Karen Larissa Altamirano Niño Luis Enrique

24 de marzo de 2020

1. En ciertos lenguajes de programación, los comentarios aparecen entre delimitadores tales como /# y #/. Sea C el lenguaje de todos los comentarios delimitados de forma válida. Un miembro de C debe empezar con /# y terminar con #/ sin que haya en medio ningún #/. Por simplicidad, consideramos como alfabeto de las cadenas de entrada a $\Sigma = \{a, b, /, \#\}$. Dé una expresión regular que genere a C. Aquí unos ejemplos en el lenguaje de programación C++(# es reemplazado por *):

Comentarios válidos:

/##

- /#/#/

- /#a/#b//##/

Comentarios inválidos:

| /#/

- /#/#/#/

- /#a#/#/

Respuesta:

La respuesta es $/\#(/+\#^*a+\#^*b)^*\#^*\#/$

2. Una expresión regular generalizada se define del mismo modo que una expresión regular ordinaria, excepto que dos operaciones adicionales, interseccón y complemento, son permitidas. Por ejemplo, la expresión regular generalizada $abb\overline{\varnothing} \cap \overline{(\overline{\varnothing}aaa\overline{\varnothing})}$ representa el conjunto de todas las cadenas en $\{a,b\}^*$ que comienzan con abb y no contienen a la subcadena aaa. Muestre que el subconjunto $\{aba\}^*$ de $\{a,b\}^*$ puede ser descrito por una expresión regular generalizada sin presencias del operador *.

Respuesta:

Tenemos que la expresión regular generalizada correspondiente es:

$$aba\overline{\varnothing}\cap \overline{(\varnothing bb\overline{\varnothing})}\cap \overline{(\overline{\varnothing}aaa\overline{\varnothing})}\cap \overline{(\overline{\varnothing}bab\overline{\varnothing})}\cap (aba\overline{\varnothing}aba)$$

3. Mediante el método dado en clase empleado en la demostración del Teorema de Kleene parte I, construya un AFN- ε noble para la expresión regular: $(a^*ba + b^*a)(ab)^*$.

El AFN- ε correspondiente es:

4. Use el algoritmo basado en el lema de Arden para encontrar una expresión regular correspondiente a cada uno de los AFD siguientes:

a) Renombrando los estados como $1 = q_0, 2 = q_1$ y $3 = q_2$. Los conjuntos $X_{i,j}$ y Y_i son los siguientes:

$$X_{0,0} = \varnothing$$
 $X_{1,0} = \varnothing$ $X_{2,0} = \{b\}$
 $X_{0,1} = \{a,b\}$ $X_{1,1} = \{a\}$ $X_{2,1} = \{a\}$
 $X_{0,2} = \varnothing$ $X_{1,2} = \{b\}$ $X_{2,1} = \varnothing$
 $Y_0 = \varnothing$ $Y_1 = \{\varepsilon\}$ $Y_2 = \varnothing$

Las ecuaciones características son:

$$L_{2} = X_{2,0}L_{0} + X_{2,1}L_{1} + X_{2,2}L_{2} + Y_{2} = bL_{0} + aL_{1}$$

$$L_{1} = X_{1,0}L_{0} + X_{1,1}L_{1} + X_{1,2}L_{2} + Y_{1} = aL_{1} + bL_{2} + \varepsilon$$

$$L_{0} = X_{0,0}L_{0} + X_{0,1}L_{1} + X_{0,2}L_{2} + Y_{0} = (a+b)L_{1}$$

Por el lema de Arden, la solución a X = AX + B es $X = A^*B$. Aplicamos este lema para solucionar las ecuaciones L_i del índice mayor al menor. Entonces tenemos:

- Para $L_2 = bL_0 + aL_1$, tenemos que $L_2 = AL_2 + B$, en donde $A = \emptyset$ y $B = bL_0 + aL_1$, y por lo tanto la solución es $L_2 = A^*B = \emptyset^*(bL_0 + aL_1) = bL_0 + aL_1$
- Sustituyendo $L_2 = bL_0 + aL_1$ en la ecuación para L_1 . Obtenemos:

$$L_1 = aL_1 + b(bL_0 + aL_1) + \varepsilon = aL_1 + bbL_0 + baL_1 + \varepsilon = (a + ba)L_1 + bbL_0 + \varepsilon$$

Entonces para $L_1 = (a + ba)L_1 + bbL_0 + \varepsilon$, tenemos que $L_1 = AL_1 + B$, en donde A = (a + ba) y $B = bbL_0 + \varepsilon$, y por lo tanto la solución es $L_1 = A^*B = (a + ba)^*(bbL_0 + \varepsilon)$

• Finalmente sustituyendo $L_1 = (a + ba)^*(bbL_0 + \varepsilon)$ en $L_0 = (a + b)L_1$ tenemos:

$$L_0 = (a+b)[(a+ba)^*(bbL_0+\varepsilon)] = (a+b)[((a+ba)^*bb)L_0 + (a+ba)^*\varepsilon] = ((a+b)(a+ba)^*bb)L_0 + (a+b)(a+ba)^*\varepsilon$$

Entonces para $L_0 = ((a+b)(a+ba)^*bb)L_0 + (a+b)(a+ba)^*\varepsilon$ tenemos que $L_0 = AL_0 + B$ y $L_0 = A^*B$, entonces $A = ((a+b)(a+ba)^*bb)$ y $B = (a+b)(a+ba)^*\varepsilon$, y por lo tanto

$$L_0 = ((a+b)(a+ba)^*bb)^*((a+b)(a+ba)^*\varepsilon)$$

Ésta es la expresión regular para el AFD dado.

Renombrando los estados como $1 = q_0, 2 = q_1, 3 = q_2$ y $4 = q_3$. Los conjuntos $X_{i,j}$ y Y_i son los siguientes:

Las ecuaciones características son:

$$\begin{split} L_3 &= X_{3,0}L_0 + X_{3,1}L_1 + X_{3,2}L_2 + X_{3,3}L_3 + Y_3 = aL_0 + bL_1 \\ L_2 &= X_{2,0}L_0 + X_{2,1}L_1 + X_{2,2}L_2 + X_{2,3}L_3 + Y_2 = (a+b)L_3 + \varepsilon \\ L_1 &= X_{1,0}L_0 + X_{1,1}L_1 + X_{1,2}L_2 + X_{1,3}L_3 + Y_1 = (a+b)L_2 + \varepsilon \\ L_0 &= X_{0,0}L_0 + X_{0,1}L_1 + X_{0,2}L_2 + X_{0,3}L_3 + Y_0 = aL_1 \end{split}$$

Por el lema de Arden, la solución a X = AX + B es $X = A^*B$. Aplicamos este lema para solucionar las ecuaciones L_i del índice mayor al menor. Entonces tenemos:

- o Para $L_3=aL_0+bL_1$, tenemos que $L_3=AL_3+B$, en donde $A=\varnothing$ y $B=aL_0+bL_1$, y por lo tanto la solución es $L_3=A^*B=\varnothing^*(aL_0+bL_1)=aL_0+bL_1$
- o Sustituyendo $L_3 = aL_0 + bL_1$ en la ecuación para L_2 . Obtenemos:

$$L_2 = (a+b)L_3 + \varepsilon = (a+b)(aL_0 + bL_1) + \varepsilon = (a+b)aL_0 + (a+b)bL_1 + \varepsilon$$

Entonces para $L_2 = (a+b)aL_0 + (a+b)bL_1 + \varepsilon$, tenemos que $L_2 = AL_2 + B$, en donde $A = \emptyset$ y $B = (a+b)aL_0 + (a+b)bL_1 + \varepsilon$, y por lo tanto la solución es $L_2 = A^*B = \emptyset^*((a+b)aL_0 + (a+b)bL_1 + \varepsilon) = (a+b)aL_0 + (a+b)bL_1 + \varepsilon$

• Sustituyendo $L_2 = (a+b)aL_0 + (a+b)bL_1 + \varepsilon$ en la ecuación para L_1 . Obtenemos:

$$L_1 = (a+b)L_2 + \varepsilon = (a+b)((a+b)aL_0 + (a+b)bL_1 + \varepsilon) + \varepsilon = (a+b)(a+b)aL_0 + (a+b)(a+b)bL_1 + (a+b)\varepsilon + \varepsilon = (a+b)(a+b)aL_0 + (a+b)(a+b)bL_1 + ((a+b)+\varepsilon)$$

Entonces para $L_1 = (a + b)(a + b)aL_0 + (a + b)(a + b)bL_1 + ((a + b) + \varepsilon)$, tenemos que $L_1 = AL_1 + B$, en donde A = (a + b)(a + b)b y $B = (a + b)(a + b)aL_0 + ((a + b) + \varepsilon)$, y por lo tanto la solución es $L_1 = A^*B = ((a + b)(a + b)b)^*((a + b)(a + b)aL_0 + ((a + b) + \varepsilon))$

o Sustituyendo $L_1 = ((a+b)(a+b)b)^*((a+b)(a+b)aL_0 + ((a+b)+\varepsilon)))$ en la ecuación para L_0 . Obtenemos:

$$L_0 = aL_1 = a(((a+b)(a+b)b)^*((a+b)(a+b)aL_0 + ((a+b)+\varepsilon))) = a(((a+b)(a+b)b)^*(a+b)(a+b)aL_0 + ((a+b)(a+b)b)^*((a+b)+\varepsilon))) = a((a+b)(a+b)b)^*(a+b)(a+b)aL_0 + a((a+b)(a+b)b)^*((a+b)+\varepsilon))$$

Entonces para $L_0 = a((a+b)(a+b)b)^*(a+b)(a+b)aL_0 + a((a+b)(a+b)b)^*((a+b)+\varepsilon))$, tenemos que $L_0 = AL_0 + B$, en donde $A = a((a+b)(a+b)b)^*(a+b)(a+b)a$ y $B = a((a+b)(a+b)b)^*((a+b)+\varepsilon))$, y por lo tanto la solución es $L_0 = A^*B = ((a((a+b)(a+b)a)^*$

5. Demuestre la siguiente equivalencia entre expresiones regulares:

$$(aa^*b + ba^*b + b^*a)^* \equiv (((a+b)a^*b)^*(b^*a)^*)^*$$

Usando las equivalencias vistas en clase:

$$\frac{(aa^*b + ba^*b + b^*a)^*}{\equiv (((a+b)a^*b + b^*a)^*}$$
$$\equiv (((a+b)a^*b)^*(b^*a)^*)^*$$

6. Para cada uno de los siguientes AFD, encuentre su AFD equivalente con el mínimo número de estados:

Aplicando el algoritmo de minimización de AFDs tenemos:

1				
×	2			
	×	3		
×		×	4	
\checkmark	√	√	\checkmark	5

En donde \checkmark representa las casillas marcadas en la primera iteración y \times las marcadas en la segunda iteración, una tercera iteración no cambia el estado de la tabla, entonces $1 \approx 3$ y $2 \approx 4$. Su AFD equivalente con el mínimo número de estados:

Aplicando el algoritmo de minimización de AFDs tenemos:

1					
√	2				
×	√	3			
×	√	×	4		
\checkmark	×	\checkmark	√	5	
×	√	×	×	√	6

4

En donde \checkmark representa las casillas marcadas en la primera iteración y \times las marcadas en la segunda iteración, entonces, como no quedó ninguna casilla libre, el AFD dado ya tiene el mínimo número de estados.