24CY731 DATA MINING AND MACHINE LEARNING IN CYBER SECURITY

Lab 4 - Classifying Email as Spam or Not Spam using SVM

Karthikeyan G Roll No: CB.SC.P2.CYS24008

January 29, 2025

1 Classifying Email as Spam or Not Spam using SVM

```
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score,
   confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset
data = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.
   csv', index_col='Email No.') # Setting 'Email No.' as index
print("Preview of Data:\n", data.head()) # Display first few rows
# Separating features (X) and target (y)
features = data.drop(columns=['Prediction']) # Removing target column from
   features
target = data['Prediction'] # Assigning target variable
# Splitting data into training and testing (80-20 split)
X_train, X_test, y_train, y_test = train_test_split(
    features, target,
    test_size=0.2, # Keeping 20% for testing
    random_state=42 # Ensuring reproducibility
# Standardizing features (important for SVM)
scaler = StandardScaler()
X_{train\_scaled} = scaler.fit_transform(X_{train}) \# Fit on training data and
   transform
X_{test\_scaled} = scaler.transform(X_{test}) # Only transform test data
# Training SVM model with linear kernel
svm_classifier = SVC(kernel='linear', random_state=42) # Using linear kernel
svm_classifier.fit(X_train_scaled, y_train) # Training the model
# Making predictions on test data
predictions = svm_classifier.predict(X_test_scaled)
# Evaluating model performance
print("\nConfusion Matrix:")
conf_matrix = confusion_matrix(y_test, predictions) # Creating confusion matrix
print(conf_matrix)
print("\nClassification Report:")
print(classification_report(y_test, predictions)) # Detailed performance
   metrics
accuracy = accuracy_score(y_test, predictions) * 100 # Calculating accuracy
print("\nModel Accuracy: ", accuracy)
# Visualising confusion matrix using heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
            xticklabels=['Not Spam', 'Spam'],
yticklabels=['Not Spam', 'Spam'])
plt.title('Confusion Matrix')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.show()
```

1.1 Explanation of the Code

- **Previewing the Data**: We display the first few rows of the dataset to get an idea of its structure and contents.
- **Separating Features and Target**: The features (input variables) are separated from the target variable (Prediction). This step is crucial for training the model.
- **Splitting the Data**: The data is split into training and testing sets with an 80-20 ratio. This ensures that the model is trained on a majority of the data but still has enough data to test its performance.
- **Standardizing Features**: The features are standardized using 'StandardScaler'. Standardization is important for SVM as it ensures that all features contribute equally to the model.
- **Training the SVM Model**: An SVM model with a linear kernel is trained on the standardized training data. The linear kernel is chosen for its simplicity and effectiveness in this context.
- **Making Predictions**: The trained model makes predictions on the test data. These predictions are then used to evaluate the model's performance.
- Evaluating the Model: The model's performance is evaluated using a confusion matrix, classification report, and accuracy score. These metrics provide a comprehensive view of how well the model is performing.
- **Visualizing Results**: The confusion matrix is visualized using a heatmap to show the true positive, true negative, false positive, and false negative counts. The model accuracy is plotted as a bar graph, and the distribution of spam vs. not spam emails is shown using a count plot.

Preview of Data:														
	the	to ec	t and	for	of	а	you	hou	in		conne	evey	jay	\
Email No.														
Email 1	0	0 1	0	0	0	2	0	0	0			0	0	
Email 2	8 1	.3 24	6	6	2	102	1	27	18			0	0	
Email 3	0	0 1	0	0	0	8	0	0	4			0	0	
Email 4	0	5 22	0	5	1	51	2	10	1			0	0	
Email 5	7	6 17	1	5	2	57	0	9	3			0	0	
	valued	valued lay		infrastructure		military		all	lowing ff		dry	\		
Email No.														
Email 1	0	0			0		0		6	0	0			
Email 2	0	0	0				0		0 1		0			
Email 3	0	0			0		0		6	0	0			
Email 4	0	0			0		0		6	0	0			
Email 5	0	0			0		0		6	1	0			
Email No.														
Email 1		0												
Email 2		0												
Email 3		0												
Email 4		0												
Email 5		0												
[5 rows x	3001 co	lumns]												

Figure 1: Preview of the Dataset: This figure shows the first few rows of the email dataset, providing a glimpse of the features and the target variable.

```
Confusion Matrix:
[[707 32]
 [ 23 273]]
Classification Report:
             precision
                           recall f1-score
                                             support
          0
                  0.97
                            0.96
                                      0.96
                                                 739
          1
                  0.90
                            0.92
                                      0.91
                                                 296
    accuracy
                                      0.95
                                                1035
  macro avg
                  0.93
                            0.94
                                      0.94
                                                1035
                                      0.95
weighted avg
                  0.95
                            0.95
                                                1035
Model Accuracy: 94.68599033816425
```

Figure 2: Model Evaluation: This figure displays the classification report, including precision, recall, F1-score, and support for both spam and not spam classes.

Figure 3: Confusion Matrix Visualization: This heatmap represents the confusion matrix, showing the true positive, true negative, false positive, and false negative counts.

Figure 4: Model Accuracy: This bar graph illustrates the accuracy of the SVM model, indicating the percentage of correct predictions.

Figure 5: Distribution of Spam and Not Spam in the Dataset: This count plot shows the frequency of spam and not spam emails in the dataset, providing insight into the class distribution.