Задача А. Без двух единиц подряд

Имя входного файла: notwo.in
Имя выходного файла: notwo.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

По данному натуральному числу n выведите все двоичные последовательности длины n, не содержащие двух единиц подряд, в лексикографическом порядке.

Формат входных данных

Одно натуральное число $n \ (1 \leqslant n \leqslant 20)$.

Формат выходных данных

Каждая последовательность должна выводиться в отдельной строке, вывод должен завершаться символом новой строки. Числа, входящие в последовательность, должны быть разделены одним пробелом.

Примеры

	notwo.in	notwo.out
4		0 0 0 0
		0 0 0 1
		0 0 1 0
		0 1 0 0
		0 1 0 1
		1 0 0 0
		1 0 0 1
		1 0 1 0

Задача В. Мирные ферзи

 Имя входного файла:
 queen2.in

 Имя выходного файла:
 queen2.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Известно, что на шахматной доске размером 8×8 можно расставить 8 ферзей так, чтобы они не били друг друга. Попробуйте расставить n ферзей на шахматной доске размером $n\times n$ так, чтобы они не били друг друга. Ваша программа должна определить количество способов это сделать.

Формат входных данных

Программа получает на вход натуральное число n, не превосходящее 10.

Формат выходных данных

Программа должна вывести единственное число: количество расстановок мирных ферзей на доске $n \times n$.

Примеры

	queen2.in	queen2.out
	2	0
Ī	4	2

Задача С. Все двоичные строки длины n, содержащие ровно k единиц

 Имя входного файла:
 combnk.in

 Имя выходного файла:
 combnk.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

По данным числам N и K выведите все строки из нулей и единиц длины N, содержащие ровно K единиц, в лексикографическом порядке.

Формат входных данных

Заданы 2 числа: N и K $(0 \leqslant K \leqslant N, 0 \leqslant N \leqslant 100)$.

Формат выходных данных

Необходимо вывести все строки из нулей и единиц длины N, содержащие ровно K единиц, в лексикографическом порядке. Гарантируется, что размер ответа не превышает 10 мегабайт.

Примеры

combnk.in	combnk.out
4 2	0011
	0101
	0110
	1001
	1010
	1100

Задача D. Разбиения на слагаемые

Имя входного файла: partition.in Имя выходного файла: partition.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Перечислите все разбиения целого положительного числа N на целые положительные слагаемые. Разбиения должны обладать следующими свойствами:

- Слагаемые в разбиениях идут в невозрастающем порядке.
- Разбиения перечисляются в лексикографическом порядке.

Формат входных данных

Во входном файле находится единственное число $N \ (1 \leqslant N \leqslant 40)$.

Формат выходных данных

В выходной файл выведите искомые разбиения по одному на строку.

Примеры

partition.in	partition.out
4	1 1 1 1
	2 1 1
	2 2
	3 1
	4

Задача Е. Задача о рюкзаке

 Имя входного файла:
 knapsack.in

 Имя выходного файла:
 knapsack.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Одной из классических NP-полных задач является так называемая «Задача о рюкзаке». Формулируется она следующим образом. Дано n предметов, каждый из которых характеризуется весом w_i и полезностью p_i . Необходимо выбрать некоторый набор этих предметов так, чтобы суммарный вес этого набора не превышал W, а суммарная полезность была максимальна. Ваша задача состоит в том, чтобы написать программу, решающую задачу о рюкзаке.

Формат входных данных

Первая строка входного файла содержит натуральные числа $n(1\leqslant n\leqslant 20)$ и $W(1\leqslant W\leqslant 10^9)$. Каждая из последующих n строк содержит описание одного предмета. Каждое описание состоит из двух чисел: w_i — веса предмета и p_i — его полезности $(1\leqslant w_i,p_i\leqslant 10^9)$.

Формат выходных данных

В первой строке выходного файла выведите количество выбранных предметов и их суммарную полезность. Во второй строке выведите через пробел их номера в возрастающем порядке (предметы нумеруются с единицы в порядке, в котором они перечислены во входном файле). Если искомых наборов несколько, выберите тот, в котором наименьшее число предметов. Если же после этого ответ по-прежнему неоднозначен, выберите тот набор, в котором первый предмет имеет наименьший возможный номер, из всех таких выберите тот, в котором второй предмет имеет наименьший возможный номер, и т. д.

Примеры

римеры				
knapsack.in	knapsack.out			
2 10	1 100			
10 100	1			
9 80				
5 100	2 1100			
80 1000	2 3			
50 550				
50 550				
50 550				
50 550				
6 100	1 1100			
80 1000	6			
50 550				
50 550				
50 550				
50 550				
100 1100				
	1			