ARITHMETIC Chapter 7

DIVISIBILIDAD I

¿Qué tan complicado será dividir 999922217722 5 entre 9 y dar como resultado el residuo?

Al dividir
2612¹²³ entre
13, en 10
segundos
podrías
obtener el
residuo?

TEORIA DE DIVISIBILIDAD

Es parte de la aritmética que estudia las condiciones que debe de reunir un numeral para que sea divisible por otro y las consecuencias que se derivan de este hecho.

(2)

DIVISOR

Un número B es divisor de A, si al dividir A entre B el cociente es un número entero y el residuo es cero.

Luego 11 es divisor de 132.

MULTIPLICIDAD

El número entero A es múltiplo de un número entero positivo B, si A es el resultado de multiplicar B por una cantidad entera. Consideremos el ejemplo anterior.

Además:

- 132 es múltiplo de 11
 132 es divisible por 11.
- 0=11(0) entonces 0 es múltiplo de 11.
 ¡LA DIVISIBILIDAD Y MULTIPLICIDAD SON CONCEPTOS EQUIVALENTES!

Notación de múltiplo

Del ejemplo anterior: 132 es múltiplo de 11

Se denota 132 = 11

también 132 = 11k, $k \in Z$

EL CERO ES MÚLTIPLO DE TODO NÚMERO

Ejemplos:

- 23 = 23 ya que 23 = 23(1)
- \div -28 = $\dot{7}$ ya que -28 = 7(-4)
- \bullet 0 = 9 ya que 0 = 9(0)

TODO NÚMERO ENTERO ES MÚLTIPLO DE SÍ MISMO

5

NÚMEROS NO DIVISIBLES

POR DEFECTO

$$123 = \dot{12} + 3$$

$$r+r_e=d$$

POR EXCESO

$$123 = 12 - 9$$

$$3 + 9 = 12$$

$$84 = 9+3 = 9-6$$

$$67 = 8+3 = 8-5$$

$$77 = \dot{5} + 2 = \dot{5} - 3$$

$$27 = \dot{7} + 6 = \dot{7} - 1$$

OPERACIONES CON MÚLTIPLOS DEL MISMO MÓDULO

Adición: Ejemplo

$$\underbrace{\frac{14}{6} + \frac{28}{7}}_{7} + \underbrace{\frac{42}{7}}_{7} = \underbrace{\frac{42}{7}}_{7}$$

Generalizamos: n + n = n

$$\stackrel{\circ}{n} + \stackrel{\circ}{n} = \stackrel{\circ}{n}$$

Multiplicación: *Ejemplo*

$$\underbrace{5 \times 3}_{5 \times 3} = \underbrace{5}_{6}$$

$$\underbrace{5 \times 3}_{n \times k} = \underbrace{5}_{n}$$

Donde: $k \in \mathbb{Z}$

Sustracción: *Ejemplo*

$$\frac{72 - 45}{9} = \frac{27}{9}$$

Generalizamos:

$$n-n=n$$

Potenciación: *Ejemplo*

$$3^4 = 81$$

$$(\mathring{3})^4 = \mathring{3}$$

Generalizamos: $\left|\binom{\mathfrak{o}}{n}^{k}\right| = \binom{\mathfrak{o}}{n}$; $k \in \mathbb{Z}^{+}$

HELICO | THEORY

$$F = \binom{0}{7+1} \binom{0}{7+3} \binom{0}{7+2}$$

$$F = 7 + 1 \times 3 \times 2$$

$$F = 7 + 6$$

En conclusión

$$\binom{\circ}{n+a}\binom{\circ}{n+b}\binom{\circ}{n+c}...\binom{\circ}{n+m} = \binom{\circ}{n+a\cdot b\cdot c\cdot ...\cdot m}$$

Ejemplo:

$$\binom{\circ}{5+3}^3 = \binom{\circ}{5+3}\binom{\circ}{5+3}\binom{\circ}{5+3} = \frac{\circ}{5+3}^3 = \frac{\circ}{5+2}$$

$$\binom{\circ}{9+2}^2 = \binom{\circ}{9+2}\binom{\circ}{9+2} = \frac{\circ}{9+2}^2 = \frac{\circ}{9+4}$$

En conclusión

$$\binom{o}{n+r}^k = \stackrel{o}{n+r}^k; k \in \mathbb{Z}^+$$

Ejemplo:

$$(\overset{\circ}{7}-1)^4 = \overset{\circ}{7}+1^4 = \overset{\circ}{7}+1$$

$$\binom{0}{7-1}^3 = \frac{0}{7-1}^3 = \frac{0}{7-1}$$

En conclusión

$$\binom{\circ}{n-r}^k =$$
 $n+r^k$; k : par
 $n-r^k$; k : impar

1 Calcule la suma de los 15 primeros múltiplos positivos de 12.

Por dato: 12(1) +12(2)+12(3)+12(4)+...+12(15)

Factorizamos: 12[1+2+3+4+...+15]

$$12[\frac{15(16)}{2}]$$

∴ La suma es 1440

2 Se sabe que: 189 = 13 + x

$$150 = \overset{0}{8} - y$$

Calcule (x+y)²

$$\begin{array}{c}
 189 = \overset{0}{13} + x \\
 & \downarrow \\
 189 \\
 182 \\
 7
 \end{array}$$

$$150 = \overset{0}{8} - y = \overset{0}{8} + 6 = \overset{0}{8} - 2$$

$$150 \quad \overset{1}{8} \quad \overset{1}{9}$$

$$144 \quad 18$$

$$\therefore (x+y)^2 = (7+2)^2 = 81$$

3 ¿Cuántos números múltiplos de 8 hay desde 248 hasta 1424?

POR DATO: $248 \le 8k \le 1424$

ENTRE 8: $31 \le k \le 178$

Los valores que toma "k":

K: 31,32,33,...178

Total=178-31 + 1=148

∴ Hay 148 números múltiplo de 8

4 Indique la cantidad de números múltiplos de 11 que hay entre 66 y 638.

POR DATO: 66<11k < 638

ENTRE 11: 6< k < 58

Los valores que toma "k":

Hay 51 números

Determine el residuo que se obtiene al dividir "N" entre 5. N= 4324 + 5289 + 6321

$$N = \dot{5} + 4 + \dot{5} + 4 + \dot{5} + 1$$

$$N = \dot{5} + 9 \implies$$

$$N = \dot{5} + 4$$

El residuo es 4

Sea P = 2345 x 2314 + 19 al dividirlo entre 12 se obtiene a de residuo, calcule el costo de un tablero de ajedrez cuyo precio es (a – 3)(a + 1) soles.

19 12 19 =
$$1\dot{2} + 7$$

P = $(\dot{1}2 + 5)$ $(\dot{1}2 + 10) + \dot{1}2 + 7$

P = $1\dot{2} + 57$

P = $1\dot{2} + 57$

P = $1\dot{2} + 6$

a = 9

Del 1 al 600 se determina
 A: cantidad de números múltiplos de 5
 B: cantidad de números múltiplos de 3
 Calcule A + B

$$A = \frac{600}{5} = 120$$

$$B = \frac{600}{3} = 200$$

$$A + B = 120 + 200$$

3 Jimmy viajará al extranjero por razones de estudio pero le promete a su esposa que volverá luego de 100 días. Si hoy es el día de su partida y es martes, calcule que día de la semana caerá la fecha de su retorno.

Será día jueves