Panel data models

Tutorial 2

Stanislav Avdeev

Goal for today's tutorial

- 1. Understand the panel structure of the data
- 2. Explore differences between pooled OLS, fixed and random effects estimators
- 3. Interpret the variation in the data
- 4. Make proper inferences using panel data models

Panel data

- Panel data is when you observe the same individual over multiple time periods
 - \circ "individual" could be a person, a company, a state, a country, etc. There are N individuals in the panel data
 - \circ "time period" could be a year, a month, a day, etc. There are T time periods in the data
- ullet We assume that we observe each individual the same number of times, i.e. a *balanced* panel (so we have N imes T observations)
 - you can use these estimators with unbalanced panels too, it just gets a little more complex

Panel data

- Let's use a dataset from wooldridge package on crime data
 - you can use a lot of datasets from different packages, such as wooldridge which contains datasets from "Introductory Econometrics: A Modern Approach" by Wooldridge J.M.
- Here's what a panel data set looks like a variable for individual (county), a variable for time (year), and then the data

County	Year	CrimeRate	ProbofArrest
1	81	0.0398849	0.289696
1	82	0.0383449	0.338111
1	83	0.0303048	0.330449
3	81	0.0163921	0.202899
3	82	0.0190651	0.162218
3	83	0.0151492	0.181586

6 rows out of 630. "Prob. of Arrest" is estimated probability of being arrested when you commit a crime

Between and within variation

Let's pick a few counties and graph this out

One outlier eliminated in County $\centef{7}$./ 28

Between variation

If we look at the **between** variation by using the **pooled** OLS estimator, we get this

One outlier eliminated in County \overline{q} ./ 28

Between variation

Between variation looks at the relationship between the means of each county

One outlier eliminated in County 7./ 28

Between variation

The individual year-to-year variation within county doesn't matter

One outlier eliminated in County $\ensuremath{\overline{g}}$./ 28

Within variation

Within variation goes the other way: it looks at variation within county from year-to-year

Between and within variation

- We can clearly see that **between counties** there's a strong **positive** relationship
- But if you look **within** a given county, the relationship isn't that strong, and actually seems to be **negative**
 - which would make sense if you think your chances of getting arrested are high,
 that should be a deterrent to crime
 - we are ignoring all differences between counties and looking only at differences within counties
- Fixed effects is sometimes also referred to as the within estimator

Panel data model

ullet The it subscript says this variable varies over individual i and time t

$$Y_{it} = \alpha + X'_{it}\beta + U_{it}$$

- What if there are individual-level components in the error term causing omitted variable bias?
 - \circ X_{it} might be related to the variable which is not in the model and thus in the error term
- So we really have this then:

$$Y_{it} = \alpha + X'_{it}\beta + \eta_i + U_{it}$$

- If you think X_{it} η_i are **not** correlated (based on theory, previous research), you can use both FE and RE estimators
- ullet If you think X_{it} η_i are correlated (based on theory, previous research), use FE estimator

• Let's simulate a panel dataset

id	time	х1	x2	у
1	1	2.2872472	0	6.4522242
1	2	-1.1967717	0	-0.3436617
1	3	-0.6942925	0	2.3772643
2	1	0.3569862	1	53.0468280
2	2	2.7167518	1	59.0964204
2	3	2.2814519	1	60.9361494

```
# The true effect is 2

library(plm) # package to estimate FE and RE models

pooled \leftarrow plm(y ~ x1 + x2, model = "pooling", df) # or lm(y ~ x1 + x2, df)

fixed \leftarrow plm(y ~ x1 + x2, model = "within", index = c("id", "time"), df)

random \leftarrow plm(y ~ x1 + x2, model = "random", index = c("id", "time"), df)
```

	Model 1	Model 2	Model 3
x1	1.278	1.900***	1.900***
	(2.235)	(0.043)	(0.043)
x2	51.049***		51.033***
	(4.474)		(14.176)
Num.Obs.	6000	6000	6000
+ p < 0.1, * p	0 < 0.05, **	p < 0.01, *	** p < 0.001

- Pooled OLS estimates are off as it doesn't take into account the panel structure of data
- FE and RE estimators provide unbiased estimates
- ullet FE estimator doesn't produce estimates of X_2 as it's not varying **within** individual

• Let's introduce the correlation between individual effects and individual characteristics

$$\operatorname{cov}(X_i,\eta_i)
eq 0$$

```
# The true effect is 2
pooled_corr 
    plm(y ~ x1 + x2, model = "pooling", df)
fixed_corr 
    plm(y ~ x1 + x2, model = "within", index = c("id", "time"), df)
random_corr 
    plm(y ~ x1 + x2, model = "random", index = c("id", "time"), df)
```

	Model 1	Model 2	Model 3
x1	11.969***	1.900***	11.720***
	(0.008)	(0.043)	(0.023)
x2	49.768***		49.799***
	(0.272)		(0.791)
Num.Obs.	6000	6000	6000
+ p < 0.1, * p	0.05, **	p < 0.01, **	** p < 0.001

- ullet Pooled OLS and RE estimates are off since $\mathrm{cov}(X_i,\eta_i)
 eq 0$
- ullet FE still provide unbiased estimates since η_i are eliminated
- How does FE estimator eliminate η_i ?

Estimation: de-meaning approach

- To estimate FE model, we need to remove between variation so that all that's left is within variation
- There are two main ways
 - de-meaning
 - binary variables
- They give the same result (for balanced panels anyway)
- Let's do de-meaning first, since it's most closely and obviously related to the "removing between variation" explanation
 - \circ for each variable X_{it}, Y_{it} , etc., get the mean value of that variable for each individual $ar{X}_i, ar{Y}_i$
 - \circ subtract out that mean to get residuals $(X_{it}-ar{X}_i), (Y_{it}-ar{Y}_i)$
 - work with those residuals
- ullet lpha and η_u terms get absorbed
- ullet The residuals are, by construction, no longer related to the η_i

$$Y_{it}-ar{Y}_i=(X_{it}-ar{X}_i)'eta+(U_{it}-ar{U}_i)$$

Estimation: LSDV approach

- De-meaning the data is not the only way to do it
 - and sometimes it can make the standard errors wonky, since they don't recognize that you've estimated those means
- You can also use the **least squares dummy variable** LSDV (another word for "binary variable") method
 - we just treat "individual" like the categorical variable it is and add it as a control

Estimation: empirical example

- Let's get back to the crime dataset
- To demean the data, we can use <code>group_by</code> to get means-within-groups and subtract them out

Estimation: empirical example

• To use least squares dummy variable, we only need to add FE as categorical variables

```
pooling ← lm(crmrte ~ prbarr, data = crime4)
lsdv ← lm(crmrte ~ prbarr + factor(county), data = crime4)
de_mean ← lm(demeaned_crime ~ demeaned_prob, data = crime4)
```

	Model 1	Model 2	Model 3
prbarr	0.049**	-0.030*	
	(0.017)	(0.012)	
demeaned_prob			-0.030*
			(0.012)
Num.Obs.	27	27	27
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			

Interpreting a within relationship

- How can we interpret that slope of -0.03?
 - this is all within variation so our interpretation must be within county
 - \circ if we think we've causally identified it, "raising the arrest probability by 1 percentage point in a county reduces the number of crimes per person in that county by 0.0003"
 - we're basically controlling for county, i.e. comparing a county to itself at a different point in time
- ullet A benefit of the LSDV approach is that it calculates the fixed effects $lpha_i$ for you
 - interpretation is exactly the same as with a categorical variable we have an omitted category (one county), and these show the difference relative to that omitted county
 - this also makes clear another element of what's happening. Just like with a categorical variable, the line is moving *up and down* to meet the counties
 - graphically, de-meaning moves all the points together in the middle to draw a line,
 while LSDV moves the line up and down to meet the points

Interpreting a within relationship

21 / 28

Panel data: estimation

- Applied researchers rarely do either of these, and rather will use a command specifically designed for the FE estimator
 - feols in **fixest**
 - felm in lfe
 - plm in **plm**
 - lm_robust in estimatr
- feols in fixest seems to be a better choice
 - it does all sorts of other neat stuff like fixed effects in nonlinear models like logit, regression tables, joint-test functions, and so on
 - it's very fast, and can be easily adjusted to do fixed effects with other regression methods like logit, or combined with instrumental variables
 - it clusters the standard errors by the first fixed effect by default

Panel data: estimation

Let's see at the output of feols

```
library(fixest)
fe_plm ← plm(crmrte ~ prbarr, model = "within", index = "county", crime4)
fe_feols ← feols(crmrte ~ prbarr | county, crime4)
```

	Model 1	Model 2	
prbarr	-0.030*	-0.030*	
	(0.012)	(0.006)	
Num.Obs.	27	27	
Std.Errors		by: county	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			

Fixed effects: limitations

- 1. Fixed effects don't control for anything that has **within** variation
- 2. They control away everything that's **between** only, so we can't see the effect of anything that's between only (effect of geography on crime rate? nope)
- 3. Anything with only a **little within** variation will have most of its variation washed out too (effect of population density on crime rate? probably not)
- 4. If there's not a lot of within variation, fixed effects are going to be very noisy. Make sure there's variation to study
- 5. The estimate pays the most attention to individuals with lots of variation in treatment
- 2 and 3 can be addressed by using the RE estimator instead (although you need to be certain that $\mathrm{cov}(X_i,\eta_i=0)$
 - How can you check that?

Fixed or random effects?

- To decide between FE or RE estimators you can run the **Hausman test** where the null hypothesis is that the preferred model is the RE estimator vs. the alternative the FE estimator
- It basically tests whether the errors are correlated with the regressors, the null hypothesis is they are not
 - \circ under H_0 : if $\mathrm{cov}(X_i,\eta_i=0)$ both RE and FE estimators are consistent, but the RE estimator is more efficient
 - \circ under H_1 : if $\operatorname{cov}(X_i,\eta_i
 eq 0)$ only FE estimator is consistent

Fixed or random effects?

• Let's apply it to two simulated datasets with and without correlated individual effects

```
phtest(fixed, random)
##
##
       Hausman Test
##
## data: v \sim x1 + x2
## chisq = 0.0018287, df = 1, p-value = 0.9659
## alternative hypothesis: one model is inconsistent
phtest(fixed corr, random corr)
###
###
       Hausman Test
###
## data: v \sim x1 + x2
## chisq = 71554, df = 1, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
```

ullet As expected, we should use the RE estimator in the first model, and the FE estimator in the second model $26 \ / \ 28$

Panel data: inference

- It's common to cluster standard errors at the level of the fixed effects, since it seems likely that errors would be correlated over time (autocorrelated errors)
 - it is a default function in feols in **fixest**
- It's possible to have more than one set of fixed effects
 - \circ but interpretation gets tricky think through what variation in X you're looking at (we will discuss that in the $5^{
 m th}$ tutorial on difference-in-differences design)

References

Books

- Huntington-Klein, N. The Effect: An Introduction to Research Design and Causality,
 Chapter 16: Fixed Effects
- Cunningham, S. Causal Inference: The Mixtape, Chapter 7: Panel Data

Slides

- Huntington-Klein, N. Econometrics Course Slides, Week 6: Within Variation and Fixed Effects
- Huntington-Klein, N. Causality Inference Course Slides, Lecture 8: Fixed Effects