CS 302.1 - Automata Theory

Lecture 07

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

0

0

0

0

Pushdown Automata

- Automata that recognizes CFLs
- FSM + stack
- FSM transitions by reading an input symbol and by interacting with the stack

One-way infinite tape holding the input string TOP O 1 1 0 0 0 0

Multiple transitions/input symbol possible

PDAs are **non-deterministic**.

Missing transitions

FSM

 ϵ -transitions

What is the language recognized by this PDA?

In some references (such as Sipser):

The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, and the element at the top of the stack is b (b is popped), then push c on to the Stack.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, then pop b (the element at the top of the stack is b) and push c on to the Stack.
- The label " $a,b \to \epsilon$ " implies that if the input symbol is a then pop b.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a, b \rightarrow \epsilon$ " implies that if the input symbol is a and b is popped.
- The symbol signifying the bottom of the Stack \$ is pushed at the very beginning.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states**.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

A PDA accepts a string $w \in L$, if there exists a run such that

• It reaches a final state when the entire string is read.

OR

The stack is empty when the entire string is read.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

A PDA accepts a string $w \in L$, if there exists a run such that

• It reaches a final state when the entire string is read.

OR

• The **stack is empty** when the entire string is read.

These two notions of acceptance are equivalent

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Transition function:

• $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_i, \epsilon)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and b is popped, transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_i, \epsilon)$: If the input symbol read is a, and b is popped, transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$: Transition from q_i to q_i if the stack is empty.

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and a is popped, then Push a and remain at q_i : $\ref{eq:a}$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and b is popped, then push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and a is popped, then Push a and remain at $q_i: \delta(q_i, a, a) = (q_i, a)$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

There exists an accepting run for w on P

• If $\mathcal{L}(P) = L$, then the PDA P recognizes L

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

$$\delta(T, 1, X) = (T, \epsilon)$$

$$\delta(T, \epsilon, \$) = (F, \$)$$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- The above intuition is applicable for even length palindromes of the form ww^R .
- What about odd length palindromes?
 - Non-determinism to the rescue once again

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Recognizes even length palindromes of the form: ww^R

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Odd length palindromes are of the form wcw^R , such that $c \in \Sigma$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

 $1, \epsilon, \epsilon$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

Pushdown Automata

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached?
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

This allows the PDA to recognize strings of the form: $\omega c w^R$, where the aforementioned transitions non-deterministically guessed $c \in \{0,1\}$

Equivalence between PDA and CFL

- We already know that a language is Context-Free if and only if there exists a CFG that generates all the strings belonging to the CFL.
- It can be shown that a language is context free if and only if a PDA recognizes it.
 - If L is context free then there exists a PDA that recognizes L. (We'll prove this next)
 - If there exists a PDA for L, then L is context-free. (Won't prove this in class. Look up a standard text book)

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

- Before formally proving this, we will use some examples in order to provide some intuition.
- For any L, we can write a context free grammar that can generate all strings that are in L.
- Any string w is generated by the CFG if there exists a derivation $S \stackrel{\hat{}}{\Rightarrow} w$.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

- Before formally proving this, we will use some examples in order to provide some intuition.
- For any L, we can write a context free grammar that can generate all strings that are in L.
- Any string w is generated by the CFG if there exists a derivation $S \stackrel{*}{\Rightarrow} w$.
- The proof consists of using the rules of the CFG to build a PDA so that it can simulate any derivation $S \stackrel{*}{\Rightarrow} w$.
 - The PDA accepts an input w if the CFG G generates w
 - It determines whether \exists a derivation for w.
 - Takes advantage of non determinism

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Intuitions

• The PDA begins by pushing the start variable *S* onto the stack.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Intuitions

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack is any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Intuitions

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack is any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack is any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: Consider the grammar G with the rules: $S \to aTb|b$ $T \to Ta|\epsilon$

The string w = aaab can be generated by G. Derivation:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

1. Push *S* onto the Stack.

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push *S* onto the Stack.
- 2. Pop S and
 - a. Push b
 - b. Push T
 - c. Push a

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push *S* onto the Stack.
- 2. Pop S and
 - a. Push b
 - b. Push T
 - c. Push a

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

a

b

- 1. Push S onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push *S* onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).
- 4. Pop T and push Ta

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push *S* onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).
- 4. Pop T and push Ta
- 5. Pop T and push Ta

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

b

- 1. Push *S* onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).
- 4. Pop T and push Ta
- 5. Pop T and push Ta
- 6. Pop *T* (for the rule $T \rightarrow \epsilon$)

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

b

- 1. Push S onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).
- 4. Pop T and push Ta
- 5. Pop T and push Ta
- 6. Pop *T* (for the rule $T \rightarrow \epsilon$)
- 7. Read the input (a) (Pop a).

- The PDA begins by pushing the start variable *S* onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string w non-deterministically]

Example:
$$S \rightarrow aTb|b$$

 $T \rightarrow Ta|\epsilon$

_

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push *S* onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) (Pop a).
- 4. Pop T and push Ta
- 5. Pop T and push Ta
- 6. Pop *T* (for the rule $T \rightarrow \epsilon$)
- 7. Read the input (a) (Pop a).
- 8. Read the input (a) (Pop a).

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- Read the input symbol if the top of the stack is some terminal a. [This tries to match part of the input string

w non-deterministically]

Example:
$$S \rightarrow aTb|b$$
 $T \rightarrow Ta|\epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push S onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) and pop a.
- 4. Pop T and push Ta
- 5. Pop T and push Ta
- 6. Pop T (for the rule $T \to \epsilon$)
- 7. Read the input (a) (Pop a).
- 8. Read the input (a) (Pop a).
- 9. Read the input (b) (Pop b).

- The PDA begins by pushing the start variable S onto the stack.
- If the top of the stack any variable A, then non-deterministically select one of the rules $A \to x$ (x can be a sequence of variables and terminals) pop A and push x on to the stack. [Non deterministically chooses a rule as an intermediate derivation step]
- **Read the input symbol** if the top of the stack is some terminal a.

Example:
$$S \rightarrow aTb|b$$
 $T \rightarrow Ta|\epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

- 1. Push S onto the Stack.
- 2. Pop S and push aTb (Shorthand).
- 3. Read the input (a) and pop a.
- 4. Pop T and push Ta
- 5. Pop T and push Ta
- 6. Pop T (for the rule $T \to \epsilon$)
- 7. Read the input (a) (Pop a).
- 8. Read the input (a) (Pop a).
- 9. Read the input (b) (Pop b).
- 10. Since the stack is empty exactly when the input has been read, accept w.

Example: $S \rightarrow aTb|b$

 $T \to Ta | \epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

Example: $S \rightarrow aTb|b$ $T \rightarrow Ta|\epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

 ϵ , S, Push aTb ϵ , T, Push Ta

 ϵ , S, Push b

For rules where several elements need to be pushed, new states are introduced. This is only a shorthand for that.

Example: $S \rightarrow aTb|b$ $T \rightarrow Ta|\epsilon$

Input to PDA: w = aaab

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

Example: $S \rightarrow aTb|b$ $T \rightarrow Ta|\epsilon$

Input to PDA: w = aaab

Derivation for input string w = aaab can be generated by G:

$$S \rightarrow aTb \rightarrow aTab \rightarrow aTaab \rightarrow aaab$$

Summary

Given the rules of a CFG G, the equivalent PDA either non deterministically chooses which rule to use or matches part of the input symbol.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Proof: For convenience, we shall be using the shorthand notation.

Let G be a CFG with a set of rules R, then the equivalent PDA P will have three kind of states $\{q_0, q_1, q_2\}$.

The PDA P first pushes the start symbol S into the stack, irrespective of the input symbol and transitions from the initial state q_0 to q_1 , i.e. $\delta(q_0, \epsilon, \epsilon) = (q_1, S)$.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Proof: Let G be a CFG with a set of rules R, then the equivalent PDA P will have three states $\{q_0, q_1, q_2\}$.

The PDA P first pushes the start symbol S into the stack, irrespective of the input symbol and transitions from the initial state q_0 to q_1 , i.e. $\delta(q_0, \epsilon, \epsilon) = (q_1, S)$.

At q_1 , the PDA P implements the rules R of G.

• Pop A and push x onto the stack, where $A \to x$ is a rule in R and return back to q_1 , i.e. let $\delta(q_1, \epsilon, A) = (q_1, x)$.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Proof: Let G be a CFG with a set of rules R, then the equivalent PDA P will have three states $\{q_0, q_1, q_2\}$.

The PDA P first pushes the start symbol S into the stack, irrespective of the input symbol and transitions from the initial state q_0 to q_1 , i.e. $\delta(q_0, \epsilon, \epsilon) = (q_1, S)$.

At q_1 , the PDA P implements the rules R of G.

- Pop A and push x onto the stack, where $A \to x$ is a rule in R and return back to q_1 , i.e. let $\delta(q_1, \epsilon, A) = (q_1, x)$.
- Pop a, i.e. let $\delta(q_1, a, a) = (q_1, \epsilon)$. Matching the input string with the terminals in stack.

Prove that if L is context free then there exists an equivalent PDA that recognizes L.

Proof: Let G be a CFG with a set of rules R, then the equivalent PDA P will have three states $\{q_0, q_1, q_2\}$.

The PDA P first pushes the start symbol S into the stack, irrespective of the input symbol and transitions from the initial state q_0 to q_1 , i.e. $\delta(q_0, \epsilon, \epsilon) = (q_1, S)$.

At q_1 , the PDA P implements the rules R of G.

- Pop A and push x onto the stack, where $A \to x$ is a rule in R and return back to q_1 , i.e. let $\delta(q_1, \epsilon, A) = (q_1, x)$.
- Pop a, i.e. let $\delta(q_1, a, a) = (q_1, \epsilon)$. Matching the input string with the terminals in stack.
- If the stack is empty, when all the input symbols are read, transition from q_1 to the accepting state q_2 , i.e. let $\delta(q_1,\epsilon,\$)=(q_2,\$)$

Equivalence between PDA and CFL

- It can be shown that a language is context free **if and only if** a PDA recognizes it.
 - If L is context free then there exists a PDA that recognizes L. (We proved this)
 - The proof for the other direction (Constructing a CFG that generates L given a PDA that recognizes L) is quite elaborate
 - We won't be covering it in class. But the proof itself is quite easy to understand.
 - Refer to a standard text book (e.g. Sipser)

 $(RL \equiv Regular \ Grammar \equiv Regular \ Expressions \equiv NFA \equiv DFA) \subseteq (CFL \equiv CFG \equiv PDA)$

Thank You!