# 题目

## 摘要

第一段: 针对自己选择的题目,说明自己用了什么方法来解决的(这类题属于哪种典型的问题),其中利用了哪些关键的算法,再说出自己的所建模型的创新点。没有创新点,也可以说自己所建的模型相比较于其它的是一个很好的方案。

第二段: 针对问题一中的具体问题, 进行分析和求解, 几句话介绍自己是怎么解决的, 有数字结果的也可以直接贴结果。

第三段: 问题二中, 类比于第二段。

第四段: 问题三中, 类比于第三段。

第五段: 问题四中, 类比于第三段。

第五段: 问题四中, 类比于第四段。

第五段: 问题四中, 类比于第四段。

关键词:

# 1 问题重述

|     | 0 0 0 |
|-----|-------|
| 0   |       |
| 0   |       |
| 0   |       |
| 0   |       |
|     |       |
| 1.2 | 问题提出  |
|     | 0 0 0 |
| 0   |       |
| 0   |       |
|     |       |
|     | 问题一:  |
| 0   |       |
| 0   |       |
| 0   |       |
|     |       |
|     | 问题二:  |
| 0   |       |
| 0   |       |
| 0   |       |
|     |       |
|     | 问题三:  |
| 0   |       |
|     |       |

1.1 问题背景

## 2 问题分析

## 2.1 问题一的分析

问题一需要。。。

0

0

0

0

## 2.2 问题二的分析

在问题一的基础上。。。

0

0

0

0

## 2.3 问题三的分析

在问题二的基础上。。。

0

0

0

## 2.4 总思路图 (可选)



图 1. 总思路图 (随便找的网图)

# 3 模型假设

1. 。。。

0

2. 。。。。

0

3. 。。。。

0

4. 。。。。

0

# 4 符号说明

| 符号               | 说明          | 单位                   |
|------------------|-------------|----------------------|
| d                | 两点间的距离      | m                    |
| t                | 时间变量        | S                    |
| v                | 速度          | m/s                  |
| l                | 物体长度或路径长度   | m                    |
| $(x_i, y_i)$     | 第1个点的平面坐标   | -                    |
| $	heta_i$        | 第1个角度变量     | $\operatorname{rad}$ |
| $A_i$            | 第1个区域的面积    | $\mathrm{m}^2$       |
| $B_i$            | 第1个模型的系数矩阵  | -                    |
| $C_i$            | 第i类对象的成本或代价 | 元                    |
| lpha,eta         | 模型参数(如权重系数) | -                    |
| ho               | 密度          | ${ m kg/m^3}$        |
| $\lambda$        | 到达率或衰减系数    | 1/s                  |
| $T_{ m max}$     | 最大时间阈值      | S                    |
| N                | 样本总数或迭代次数   | -                    |
| $R^2$            | 拟合优度或决定系数   | -                    |
| $\varepsilon$    | 误差项或极小量     | -                    |
| $\nabla f$       | 函数 f 的梯度    | -                    |
| $\sum_{i=1}^{n}$ | 从1到n的求和运算   | -                    |

## 5 模型的建立与求解

ps: 这部分因人而异

#### 5.1 问题一的求解

### 5.1.1 建模思路/解题步骤

0

0

### 5.1.2 运算方程/运算方法

0

(示例)

等距螺线的极坐标方程为

$$r(\theta) = a + b\theta \tag{1}$$

其中,r为极径; $\theta$ 为极角;a和b均为实数,由题意可知a=0。 螺距p的大小可表示为

$$p = r(\theta + 2\pi) - r(\theta) = b \cdot 2\pi$$

结合以上分析, 得到

$$r(\theta) = \frac{p}{2\pi}\theta\tag{2}$$

将极坐标转换为直角坐标

$$\begin{cases} x = r(\theta) \cdot \cos \theta \\ y = r(\theta) \cdot \sin \theta \end{cases}$$
 (3)

这样,就可以计算出舞龙队在平面上任一角度 6下的具体位置。

#### 5.1.3 继续求解步骤(数据表、图)

0

0

0

**表格 1.** \*\*\*变化情况

|             | 0s       | 60s      | 120s     | 180s     | 240s     | 300s     |
|-------------|----------|----------|----------|----------|----------|----------|
| 龙头 (m/s)    | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 第一节龙身 (m/s) |          |          |          |          |          |          |
| 第二节龙身 (m/s) |          |          |          |          |          |          |
| 第三节龙身 (m/s) |          |          |          |          |          |          |
| 第四节龙身 (m/s) |          |          |          |          |          |          |
| 龙尾 (m/s)    |          |          |          |          |          |          |

## 5.1.4 继续求解步骤(数据表、图)



图 2. \*\*\*位置变化图

| 5.2            | 问题二的求解        |
|----------------|---------------|
| 5.2.1          | 建模思路/解题步骤     |
| 0              |               |
| 0              |               |
| 0              |               |
|                | 运算方程/运算方法     |
| 0              |               |
| 0              |               |
| <b>5.2.3</b> ° | 继续求解步骤(数据表、图) |
| 0              |               |
| 0              |               |
| <b>5.2.4</b> ° | 继续求解步骤(数据表、图) |
|                |               |

| 5.3 问题三的求解 |               |  |
|------------|---------------|--|
| 5.3.1      | 建模思路/解题步骤     |  |
| 0          |               |  |
| 0          |               |  |
| 0          |               |  |
|            | 运算方程/运算方法     |  |
| 0          |               |  |
| 0          |               |  |
| J          |               |  |
|            | 继续求解步骤(数据表、图) |  |
| 0          |               |  |
| 0          |               |  |
|            | 继续求解步骤(数据表、图) |  |
|            |               |  |

| 5.4   | 问题四的求解        |
|-------|---------------|
| 5.4.1 | 建模思路/解题步骤     |
| 0     |               |
| 0     |               |
| 0     |               |
|       |               |
| 5.4.2 | 运算方程/运算方法     |
| 0     |               |
| 0     |               |
| 0     |               |
|       |               |
| 5.4.3 | 继续求解步骤(数据表、图) |
| 0     |               |
| 0     |               |
| 0     |               |
|       |               |
| 5.4.4 | 继续求解步骤(数据表、图) |
| 0     |               |
| 0     |               |
| 0     |               |

# 6 模型的评价

| 6.1 | 模型的优点       |
|-----|-------------|
| 1   |             |
| 2   |             |
| 3   |             |
|     | 44441111444 |
| 6.2 | 模型的缺点       |
| 1   |             |
|     |             |
| 2   |             |
| 3   |             |
| ა   |             |
|     |             |
| 6.3 | 模型的改进       |
| 1   |             |
|     |             |
| 2   |             |
|     |             |
| 3   |             |

# 7 参考文献

[1] Alex Krizhevsky, Ilya Sutskever, 与 Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, 与 K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, 卷 25, 页面 0. Curran Associates, Inc., 2012.

### 附录A 支撑材料文件列表

| 文件名       | 说明          |
|-----------|-------------|
| ***-1.py  | 问题一到问题三的*** |
| ***-2.py  |             |
| ***-3.py  |             |
| ***-4.py  |             |
| ***1-1.py |             |
| ***1-2.py |             |
| ***1-3.py |             |
| ***1-4.py |             |
| ***2-1.py |             |
| ***2-2py  |             |
| ***2-3.py |             |

# 附录B 支撑材料的所有Python代码

```
文件名: data_processing-1.py
用途: 2023全国大学生数学建模竞赛c题-蔬菜运输优化
    数据预处理模块(数据清洗+特征计算)
import numpy as np
import pandas as pd
from scipy.optimize import linprog
import matplotlib.pyplot as plt
def load_and_clean_data(file_path):
   数据加载与清洗
   参数:
     file_path : str - CSV文件路径
   返回:
     df: DataFrame - 处理后的干净数据
   try:
     df = pd.read_csv(file_path, encoding='gbk') # 处理中文编码
     df.dropna(inplace=True) # 删除缺失值
     df = df[df['产量'] > 0] # 过滤无效产量记录
     return df
   except Exception as e:
     print(f"数据加载失败:_{str(e)}")
     return None
def transport_optimization(cost_matrix, supply, demand):
```

```
运输问题线性规划求解
   参数:
       cost_matrix : ndarray - 运输成本矩阵 (m×n)
       supply: ndarray - 供应量数组 (m,)
       demand : ndarray - 需求量数组 (n,)
   返回:
       result: dict - 包含优化结果的字典
   # 线性规划求解(使用单纯形法)
   res = linprog(cost_matrix.flatten(),
                A_eq=_build_constraints(supply, demand),
                b_eq=_build_boundary(supply, demand),
                method='highs')
   return {
       'status': res.status,
       'total_cost': res.fun,
       'schedule': res.x.reshape(cost_matrix.shape)
# ======== 可视化模块 =============
def plot_solution(routes, nodes):
   """绘制运输路线图"""
   plt.figure(figsize=(10, 8))
   for (i,j), val in np.ndenumerate(routes):
       if val > 0:
           plt.plot([nodes[i][0], nodes[j][0]],
                    [nodes[i][1], nodes[j][1]],
                    'b-', alpha=0.5, linewidth=val*2)
   plt.scatter(nodes[:,0], nodes[:,1], c='r', s=50)
   plt.title("Optimal_Transport_Routes")
   plt.xlabel("X_Coordinate")
   plt.ylabel("YuCoordinate")
   plt.grid(True)
   plt.savefig('routes.png', dpi=300)
if __name__ == '__main__':
   # 示例数据
   demo_cost = np.random.rand(5,3) * 100
   demo_supply = np.array([20, 30, 15, 25, 10])
   demo_demand = np.array([40, 30, 20])
   # 执行优化
   solution = transport_optimization(demo_cost, demo_supply, demo_demand)
   print(f"最优总成本: [solution['total_cost']:.2f] 元")
```