Intro to Stan

2017 Oct 19

github.com/Sz-Tim/stan_intro

Bayesian Inference

- Frequentist: Parameters are fixed, but unknown
- Bayesian: Parameters are random variables described by probability distributions
- Bayes' Theorem
 - $P(\theta|y) = P(\theta) * P(y|\theta) / P(y)$
 - Posterior = Prior * Likelihood / constant

Prior Distribution: P(θ) (Uninformed)

Prior Distribution: P(θ) (Informed)

Likelihood Function: P(y|θ)

Markov Chain Monte Carlo

- Estimate posterior probability distributions
- Avoids difficult/impossible analytical solutions
- In each iteration, draw parameter values & calculate likelihood
- Several common algorithms for draws

stan

- Language/platform (2011)
- Open-source
- Many interfaces (R, python, Matlab, etc)
- Compiles model to C++
- Hamiltonian Monte Carlo (HMC) combined with a No U-Turn Sampler (NUTS)

An example: Linear regression

$$y = bx + a (+ \varepsilon)$$

in R: $mod1 <-lm(y \sim x)$ summary(mod1)

An example: Linear regression

$$y = bx + a (+ \varepsilon)$$

 $\varepsilon \sim Norm(0, \sigma)$
 $y \sim Norm(bx + a, \sigma)$

$y \sim Norm(bx + a, \sigma)$

in stan:

- Program blocks
- Explicitly declare variable type, size,
 & constraints
- End lines with ";"
- As in R, order matters

```
data {
 int n;
 vector[n] x;
vector[n] y;
parameters {
 real a;
 real b;
 real<lower=0> sigma;
model {
 a \sim normal(0, 1);
 b \sim normal(0, 1);
 sigma \sim cauchy(0, 2.5);
 y \sim normal(b*x + a, sigma);
```

Data Types: R

- vector (1D)
- matrix (2D)
- array (nD)
- dataframe (2D)
- list

Data Types

- int
- real
- vector (1D)

Data Types

- int
- real
- vector (1D)
- row_vector (1D)

Data Types

- int
- real
- vector (1D)
- row_vector (1D)
- matrix (2D)
- arrays (nD)

