Relazione elaborato finale Computational Learning Variational Auto-Encoder: Analisi ed implementazione

Parte Seconda

Giuseppe Martinelli Matr: 7093926

Introduzione

Lo scopo di questo progetto è stato quello di risolvere tutte le problematiche teoriche e pratiche che si sono riscontrate nella relazione precedente, in merito all' implementazione di un Variational Auto-Encoder. Per questo motivo, ricapitoliamo brevemente le difficoltà che ho avuto in passato e vediamo quali strategie sono state adottate.

Problemi del passato: Degenerazione output, exploding gradients, ...

E' possibile poter riassumere le difficoltà precedenti nei seguenti punti:

- 1. Degenerazione dell'output & Immagini deturpate
- 2. Esplosione varianza, Vanishing Gradients, Instability
- 3. KL Vanishing
- 4. Batch Normalization & Input normalization

Questi quattro fattori, che sono anche dipendenti tra loro, portavano il modello a generare le seguenti immagini:

Le quali indicano che il modello di generazione non sta apprendendo correttamente il "mapping" tra lo spazio latente z e lo spazio delle immagini. In effetti il decoder sta sostanzialmente campionando in maniera casuale dallo spazio latente,

Risoluzione delle problematiche del modello: Degenerazione output

Il risultato di quella immagine di output degradata è avvenuto per le seguenti motivazioni:

1. Implementazione errata del modello

Da un'attenta analisi del codice, l'implementazione del layer *Linear* effettuava un reshape dell'input in forma vettoriale. Originariamente, le motivazioni di questo errore non mi erano molto chiare, ma eseguendo un reshape in forma vettoriale si perdeva il senso della combinazione lineare del layer. Cioè, effettuare una combinazione lineare del genere:

[B x C x W x H]
$$\rightarrow$$
 [B x C x W*H] * [W*H x Out_features] \rightarrow [B x C x Out_features]

E' completamente diverso, a livello ideologico, rispetto a:

[B x C x W x H]
$$\rightarrow$$
 [B x C x W x H].reshape(B x -1) \rightarrow [B x -1] * [-1 x Out_features]

In quanto si perde il senso di combinazione lineare: cioè lo scopo è quello di moltiplicare una matrice di pesi W per ogni channel in maniera indipendente

2. Scelta errata di iper-parametri

Questo punto incide sulla qualità del modello di poter apprendere la distribuzione di probabilità sconosciuta dei dati e della sua capacità di poter generare correttamente. Detto ciò, la scelta corretta di questi valori può essere fatta attraverso una model selection robusta

3. Errore nel calcolo della Loss

Questo errore è strettamente collegato al primo punto (se non in parte dovuto da esso). Infatti, a causa degli enormi valori di log varianza che si ottenevano dall'encoder, era impossibile poter calcolare la vera varianza effettuando l'esponenziale

```
def encode(self, x):
x = self.relu(self.img_2hid(x))
mu, sigma = self.fc_mu(x), self.fc_std(x)
return self.relu(mu), self.relu(sigma)
```

Ciò oltre a riflettersi sulle prestazioni del modello non permetteva di effettuare il calcolo corretto relativo alla probabilità $p_{\theta}(x|z) \sim q_{\theta}(x|z) \sim N(z;\mu,log\sigma)$ La soluzione è stata quella di introdurre dei layer di normalizzazione e di Relu aggiuntivi.

```
def encode(self,x):
x = self.img_2hid(x)
#Normalize
x = self.encode_input_batch(x)
x = self.relu(x)
mu_sigma = self.fc_mu(x)_self.fc_std(x)
# Normalize
mu_sigma = self.norm_mu(mu)_self.norm_std(sigma)
return self.relu(mu)_self.relu(sigma)
```

Risoluzione delle problematiche del modello: Esplosione varianza, Vanishing Gradients, Instability

Per poter fronteggiare il problema dell'esplosione della varianza è stato implementato ed introdotto il layer di *Batch Normalization* il quale, attraverso lo shifting e resizing dell'input, ci permette di combattere il fenomeno dell'**internal covariance shift** (https://arxiv.org/pdf/1502.03167.pdf). Inoltre, i layer di batch normalization introducono molti altri effetti benefici all'interno del modello, come ad esempio la possibilità di permetterci di scegliere un learning rate più alto senza la ricaduta nel problema dell'esplosione dei gradienti. Inoltre, questo layer ha anche un effetto di regolarizzazione sul modello, il quale non ha bisogno di ulteriori tecniche aggiuntive di regolarizzazione come il dropout. L'utilizzo di questo layer ha però un costo, infatti esso introduce due nuovi parametri di shift che devono essere appresi durante l'apprendimento. Un altro aspetto importante è il posizionamento del layer di normalizzazione, infatti vi è un acceso dibattito in ambiente accademico, dove molti studiosi sostengono che il posizionamento della regolarizzazione dopo la funzione di

attivazione dei neuroni ottenga risultati migliori rispetto alla sua posizione standard antecedente.

L'introduzione del layer di normalizzazione introduce un altro aspetto da tenere in considerazione, se precedentemente nel modello di encoding/decoding vi era la sola presenza di layer Relu, adesso vi è bisogno di un'attenta scelta di funzione di attivazione. Infatti, se il layer BatchNorm ritorna effettivamente un tensore completamente negativo (cosa probabile) si può verificare un effetti di *dead neurons*, in quanto il layer successivo Relu restituirebbe un output completamente vuoto. Per ciò, nella nuova struttura del modello si è deciso di inserire dei layer di Leaky Relu.

```
def decode(self_xx):
first_hidden = self.z_2hidden(x)
hidden_norm = self.hidden_batch_norm(first_hidden)
leaky_relu = torch.nn.functional.leaky_relu(hidden_norm)
hidden_2img_space = self.hidden_2img(leaky_relu)
img_batch = self.img_batch(hidden_2img_space)
last_relu = self.relu(img_batch)
```

Per poter affrontare il problema dell'esplosione/annullamento dei gradienti, nel modello è stato inserito anche il *gradient clipping* che introduce però un nuovo iper parametro da dover validare

Risultati con un VAE lineare

Dopo le modifiche fatte agli errori discussi e le eventuali aggiunte, sono stati ottenuti i seguenti risultati con un VAE completamente lineare, sia in termini di encoder e sia in termini di decoder

Rispetto alla iterazione precedente di questo progetto, questo si è dimostrato già un grande risultato, che mi ha fatto sperare di poter costruire anche un modello basato su

reti di convoluzione. Tuttavia, analisi preliminari dell'output di reti CNN hanno portato ad output estremamente degradati (come l'immagine all'inizio di questa relazione), la motivazione per cui ciò accadde non mi è totalmente conosciuta. Una prima analisi ed indagine mi spinge a dover sostenere che il problema di modelli convoluzione/deconvoluzione ricade nella mia implementazione del layer di deconvoluzione, in quanto suppongo che in fase di calcolo dei gradienti il layer di deconvoluzione abbia lo stesso problema che il layer convoluzionale ha nella ricostruzione dei gradienti originali (in altre parole, l'implementazione matriciale non permette a torch di aggiustare in modo sensato la matrice di deconvoluzione una volta chiamato opt.step()). Questa mia supposizione è ancora sotto fase di test ed indagine

Scelta dataset & Scelta iper-parametri: Grid Search

Come in precedenza (e per una questione strettamente temporale) ho deciso di utilizzare un modello VAE completamente lineare e di addestrarlo sul dataset MNIST. L'utilizzo di questo dataset, oltre ad essere facilmente utilizzabile grazie a molte librerie già esistenti in torch per il suo caricamento/gestione, mi permette di poter eseguire una model selection molto più estensiva: considerando molti più iper parametri e quindi modelli. Quindi, ricapitoliamo velocemente gli iper parametri che devono essere selezionati:

1. Numero di epoche \rightarrow [15]

La scelta di questo numero può sembrare molto riduttiva, ma bisogna tenere in considerazione che si stanno allenando due modelli aventi profondità 3. Il valore in sé è stato scelto per necessità del tutto pratiche, in modo tale da permetterci di allenare più modelli e di non dover attendere troppo

2. **Batch** \rightarrow [1000]

Il seguente valore di batch oltre a permetterci un'esecuzione più veloce è stato scelto anche in virtù del fatto che sembra essere la batch size consigliata per il dataset MNIST

- 3. Grandezza spazio nascosto (Hidden features) \rightarrow [400,600,800]
- 4. Grandezza spazio latente (Z-features) \rightarrow [100,200,400]
- 5. Learning Rate \rightarrow [1, 1e-5, 3e-2]
- 6. Gradient Learning Rate \rightarrow [1.0, 2e-4]

Per quanto riguarda gli iperparametri 3,4 la scelta di quei particolari valori deriva da diversi test che sono stati effettuati e che hanno portato a buoni risultati, invece per i parametri 5 e 6, l'utilizzo di learning alti (1) deriva dalla presenza nel modello dei layer di normalizzazione e di gradient clipping.

Model-Selection: Holdout

In questo progetto ho deciso di voler utilizzare il metodo Hold-Out per effettuare la model selection. Sebbene questo metodo sia meno robusto, ho preferito scegliere un metodo di selezione "più semplice" per potermi dedicare all'allenamento e selezione di più modelli. Con questa configurazione, ho diviso il dataset MNIST in 80% training, 10% validazione e 10% testing

Risultati della validazione

Con il seguente numero di iperparametri, i modelli da dover validare risultano essere **54,** per questioni prettamente legate a risorse computazionali, spaziali e temporali sono riuscito ad allenare e validate con successo 27 modelli, di cui si riportano le statistiche di loss di Elbo e di loss di ricostruzione

Configurazione	Training Loss	Validation Loss	Reconstruction Loss	Recon Validation Loss
15, 1000, 400, 100, 1, 1.0	188717.95312 5	193569.57812 5	46853.734375	51276.328125
15, 1000, 400, 100, 1, 0.0002 (2e-4)	265885.375	264605.6875	85097.765625	84167.453125
15, 1000, 400, 100, 1e-05, 1.0	265059.59375	263087.4375	83973.65625	83366.195312 5
15, 1000, 400, 100, 1e-05, 0.0002	192218.6875	192506.84375	50146.1875	50612.683593 75
15, 1000, 400, 100, 0.03 (3e-2), 1.0	192542.89062 5	192352.03125	50609.238281 25	50576.898437 5
15, 1000, 400, 100, 0.03, 0.0002	332994.375	337683.28125	49033.726562	53703.617187 5
15, 1000, 400, 200, 1, 1.0	335834.28125	337391.75	52646.011718 75	53569.738281 25

15, 1000, 400, 200, 1, 0.0002	443891.3125	443657.15625	83754.015625	84492.929687
15, 1000, 400, 200, 1e-05, 1.0	444778.28125	446822.59375	83467.632812	85561.375
15, 1000, 400, 200, 1e-05, 0.0002	333519.4375	332861.125	50034.371093	49550.0625
15, 1000, 400, 200, 0.03, 1.0	334032.4375	335292.90625	50195.617187 5	51590.777343 75
15, 1000, 400, 200, 0.03, 0.0002	614127.3125	614507.0625	45877.894531 25	46961.371093 75
15, 1000, 400, 400, 1, 1.0	620790.8125	622898.4375	53935.554687 5	54443.429687 5
15,1000,400,400,1e-05,1.0	806971.9375	802278.5625	82544.9375	82910.546875
15, 1000, 400, 400, 0.03, 0.0002	195899.125	215140.98437 5	54371.199218 75	72968.796875
15, 1000, 600, 100, 1, 1.0	220538.35937	215072.71875	78426.640625	73285.09375
15, 1000, 600, 100, 1, 0.0002	263671.875	265030.53125	83039.203125	85131.789062 5
15, 1000, 600, 100, 1e-05, 1.0	264015.8125	262635.25	83062.796875	82671.796875
15, 1000, 600, 100, 1e-05, 0.0002	190098.09375	189923.53125	47923.699218 75	48096.398437 5
15, 1000, 600, 100, 0.03, 1.0	190142.15625	190219.8125	48408.351562 5	48268.777343 75
15, 1000, 600, 100, 0.03, 0.0002	330854.5	332560.3125	47244.5625	48438.671875
15, 1000, 600, 100, 0.03, 0.0002	336466.875	337272.59375	52819.566406 25	54076.363281 25
15, 1000, 600, 200, 1, 0.0002	445759.125	444013.96875	85258.34375	84896.945312
15, 1000, 600, 200, 1e-05, 1.0	445676.1875	444897.25	83784.203125	84785.546875

15, 1000, 600, 200, 1e-05, 0.0002	334117.84375	334117.84375	50177.429687 5	49989.101562 5
15, 1000, 600, 200, 0.03, 1.0	333711.0625	334200.8125	49932.742187 5	50732.101562 5
5, 1000, 600, 200, 0.03, 0.0002	623019.75	621137.0	54466.511718 75	54009.054687 5

Si noti come tra tutti i modelli risultano essere migliori in base alle statistiche di validazione il modello (15, 1000, 400, 200, 0.03, 0.0002) ed il modello (15, 1000, 600, 100, 1e-05, 0.0002). Risulta interessante notare come il primo modello sia migliore in termini di ricostruzione dell'immagine generata, mentre il secondo risulti essere il migliore per Elbo. Ho deciso di voler selezionare entrambi i modelli e di passare alla fase di testing.

Fase di Testing

Configurazione	Training Loss	Recon Loss	Test Loss	Test Recon Loss
15, 1000, 400, 200, 0.03, 0.0002	310152.75	26381.353515 625	3111354.0	272252.5
15, 1000, 600, 100, 1e-05, 0.0002	236763.35937 5	70727.78125	2387431.0	725964.625

Dalla fase di testing possiamo anche confermare le nostre supposizioni che abbiamo fatto in validazione, in effetti il modello (15, 1000, 400, 200, 0.03, 0.0002) risulta essere migliore nella capacità di ricostruzione, mentre il secondo ha una pessima capacità di ricostruzione rispetto al primo, però cattura meglio la distribuzione dei dati

