# COMPUTER ARCHITECTURE AND ORGANIZATION PROJECT

## **Project Title:**

## <u>Image Classifier with LENET Model</u> <u>using parallel approach</u>

Name: Jay Kabra Reg No: 23BIT0246

Name: Rudra Shrivastava Reg No: 23BIT0174

Name: Purv Patel Reg No: 23BIT0184

Programme: B. Tech

**Branch: Information Technology** 

**Course Title: Computer Architecture and Organization** 

**Course Code: BITE301L** 

Slot: A2+TA2

Faculty Name: DR. VANITHA M

#### **Abstract**

#### **Project Overview:**

This project investigates the application of parallel computing techniques to optimize LeNet-5, a Convolutional Neural Network (CNN), for image classification. The primary focus is on improving computational efficiency through parallel execution using multicore processors, OpenMP, CUDA, and hybrid parallelism frameworks.

#### **Problem Statement:**

LeNet-5, though effective for handwritten digit classification, suffers from high training time and computational load when handling large datasets. Conventional training on CPUs is inefficient, necessitating parallel approaches for acceleration.

#### **Solution Approach:**

The proposed method employs data parallelism, model parallelism, and hybrid parallelism to distribute computation across multiple processing units. Benchmarking is conducted to analyze the performance trade-offs among CPU, GPU, and hybrid parallel architectures.

#### **Literature Review**

### **Evolution of CNN-Based Image Classification**

Early image classification relied on Support Vector Machines (SVMs) and Decision Trees, requiring manual feature extraction. CNNs, particularly LeNet-5, revolutionized image classification by automating feature extraction and improving accuracy. Modern architectures like AlexNet, VGGNet, ResNet, and GoogLeNet have introduced optimizations such as deeper networks, residual learning, and inception modules.

#### **Parallel Computing in Deep Learning**

Parallel computing has been extensively used to enhance CNN training performance. The three main approaches include:

Data Parallelism: Splitting datasets across multiple GPUs, reducing training time.

Model Parallelism: Distributing CNN layers across devices to optimize memory usage.

Hybrid Parallelism: Combining data and model parallelism for maximum efficiency.

#### **Key Findings from Research Papers**

| Research Paper<br>Title                             | Topic of Key<br>Outcome     | Key Findings                                                                                                                                                                                                                                                                                                                                                                                | Impact                                                                                                                                                                                            |
|-----------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neural Network Implementation Using CUDA and OpenMP | Parallel Computing in LeNet | This study demonstrates that leveraging parallel computing significantly enhances the training speed of LeNet models. By utilizing OpenMP for CPU parallelism and CUDA for GPU acceleration, the execution time is reduced by up to 15× compared to single-threaded CPU execution. The study also highlights the trade-offs between CPU-based multi- threading and GPU- based acceleration. | The implementation of parallel computing allows LeNet to scale efficiently for large datasets, making real-time applications such as digit recognition and medical image classification feasible. |

| Hybrid Parallelism in Deep Learning: Optimizing LeNet with CPU- GPU Synergy                         | GPU vs CPU Performance in CNNs                      | Comparative analysis of LeNet training on CPU (multi-core) vs GPU (NVIDIA RTX 3080) reveals that GPUs handle convolutional operations significantly faster due to optimized tensor cores. However, the study also finds that GPU performance varies with batch sizes, showing diminishing returns beyond a certain threshold. | GPU-accelerated training enables deep learning applications to process larger datasets more efficiently, but careful optimization of batch sizes is necessary for optimal performance.                |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures | Hybrid Parallelism<br>(Data + Model<br>Parallelism) | The study finds that hybrid parallelism, where data parallelism is combined with model parallelism, improves computational efficiency by 20%. Layer-wise distribution across multiple GPUs helps in reducing memory constraints, while data parallelism accelerates backpropagation.                                          | Hybrid parallelism allows training of larger LeNet architectures on distributed systems, making them suitable for real-world Al applications such as autonomous systems and biometric authentication. |

| DELTA            | Memory                            | Implementing                      | Momory               |
|------------------|-----------------------------------|-----------------------------------|----------------------|
| DELTA:           | Optimization in                   | Implementing                      | Memory               |
| Dynamically      | Parallel CNN Training             | parallelized                      | optimization         |
| Optimizing GPU   | Hammig                            | memory                            | techniques allow     |
| Memory beyond    |                                   | management                        | deeper networks      |
| Tensor           |                                   | techniques, such                  | to be trained on     |
| Recomputation    |                                   | as tensor                         | GPUs with limited    |
| Recomputation    |                                   | recomputation and batch           | VRAM, increasing     |
|                  |                                   |                                   | model scalability    |
|                  |                                   | normalization,                    | and feasibility for  |
|                  |                                   | reduces memory overhead by 35%.   | edge computing       |
|                  |                                   | •                                 | applications.        |
|                  |                                   | The study also explores efficient |                      |
|                  |                                   | data loading                      |                      |
|                  |                                   | techniques to                     |                      |
|                  |                                   | minimize I/O                      |                      |
|                  |                                   | bottlenecks.                      |                      |
|                  |                                   | bottlenecks.                      |                      |
| Accelerating     | Synchronization                   | Multi-GPU training                | Reducing             |
| Neural Network   | Overhead in Multi-<br>GPU Systems | using model                       | synchronization      |
|                  |                                   | parallelism                       | overhead improves    |
| Training with    |                                   | introduces                        | training efficiency, |
| Distributed      |                                   | synchronization                   | enabling large-      |
| Asynchronous     |                                   | overhead,                         | scale CNN models     |
| and Selective    |                                   | particularly when                 | like LeNet to be     |
| Optimization     |                                   | using traditional                 | deployed across      |
| (DASO)           |                                   | parameter servers.                | cloud-based          |
|                  |                                   | The study proposes                | distributed          |
|                  |                                   | using                             | environments.        |
|                  |                                   | asynchronous                      |                      |
|                  |                                   | updates to reduce                 |                      |
|                  |                                   | bottlenecks.                      |                      |
| Benchmarking     | Energy Efficiency                 | The study finds that              | Lower power          |
|                  | in Parallel Deep                  | GPU-based                         | consumption          |
| the Performance  | Learning                          | execution reduces                 | makes parallel       |
| and Energy       |                                   | energy                            | deep learning        |
| Efficiency of Al |                                   | consumption by                    | models more          |
| Accelerators for |                                   | 40% compared to                   | sustainable for      |
| Al Training      |                                   | CPU-based                         | deployment in        |
|                  |                                   | training. Efficient               | real-time            |
|                  |                                   |                                   | . 25                 |

|                 |                    | T                                              |                                                 |
|-----------------|--------------------|------------------------------------------------|-------------------------------------------------|
|                 |                    | parallelization                                | applications such                               |
|                 |                    | reduces redundant                              | as autonomous                                   |
|                 |                    | computations,                                  | vehicles and IoT-                               |
|                 |                    | optimizing power                               | based                                           |
|                 |                    | usage.                                         | surveillance.                                   |
|                 |                    |                                                |                                                 |
| Evaluating      | Scalability of     | The implementation of                          | Scalability is crucial                          |
| Modern GPU      | Parallel CNNs      | LeNet in multi-GPU and cloud-based             | for real-world AI applications, where           |
| Interconnect:   |                    | distributed                                    | CNNs must handle                                |
| PCIe, NVLink,   |                    | environments showed                            | increasing data loads                           |
| NV-SLI,         |                    | strong scalability, with                       | without performance                             |
| _               |                    | training times remaining consistent even as    | degradation. LeNet's parallel execution         |
| NVSwitch and    |                    | dataset sizes increased.                       | framework ensures that                          |
| GPUDirect       |                    | The study also explores                        | it remains applicable                           |
|                 |                    | the impact of                                  | for <b>autonomous</b>                           |
|                 |                    | interconnect speeds<br>(PCIe vs NVLink) on     | driving, industrial automation, and             |
|                 |                    | distributed training                           | large-scale AI-                                 |
|                 |                    | performance, showing                           | powered analytics in                            |
|                 |                    | that optimized data                            | real-time                                       |
|                 |                    | transfer reduces bottlenecks.                  | applications.                                   |
| Hybrid Quantum- | Quantum-Assisted   | Early-stage research                           | The integration of                              |
| 1 -             | Parallel Computing | into <b>hybrid quantum</b> -                   | quantum computing                               |
| Classical       |                    | classical computing                            | into parallel deep                              |
| Convolutional   |                    | suggests that quantum-<br>enhanced parallelism | learning could significantly enhance            |
| Neural Networks |                    | could improve feature                          | processing speeds,                              |
|                 |                    | extraction and                                 | particularly for                                |
|                 |                    | robustness against                             | complex AI tasks.                               |
|                 |                    | noise in CNN-based image classification        | Although quantum AI is still in its infancy, it |
|                 |                    | tasks. Quantum-                                | could revolutionize AI                          |
|                 |                    | assisted CNN models                            | applications in <b>drug</b>                     |
|                 |                    | demonstrated increased                         | discovery, large-scale                          |
|                 |                    | efficiency in learning                         | simulations, and real-<br>time anomaly          |
|                 |                    | representations from high-dimensional          | detection in critical                           |
|                 |                    | image datasets.                                | environments.                                   |
| Asynchronous    | Synchronization    | The study highlights that                      | Optimizing                                      |
| Stochastic      | Challenges in      | layer dependencies in                          | synchronization                                 |
| Gradient        | Model Parallelism  | model parallelism introduce                    | strategies is essential for large-scale CNN     |
| Descent with    |                    | synchronization                                | training. Addressing                            |
|                 |                    | overhead, affecting                            | these bottlenecks will                          |
| Decoupled       |                    | training efficiency.                           | enable more efficient                           |
| Backpropagation |                    | Asynchronous gradient updates and pipeline     | multi-GPU and<br>distributed AI model           |
| and Layer-Wise  |                    | parallelism were tested                        | deployments,                                    |
| Updates         |                    | as potential solutions to                      | allowing models like                            |
|                 |                    | improve synchronization                        | LeNet-5 to be trained                           |
|                 |                    |                                                | faster without                                  |

|                                                                            | Practical                                     | between distributed devices.                                                                                                                                                                                                                             | sacrificing accuracy. Further research into adaptive pipeline scheduling is needed.                                                                                                                                                                                                                |
|----------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A Close Look at Multi-tenant Parallel CNN Inference for Autonomous Driving | Practical Deployment of Parallel LeNet Models | The study explores how parallel execution of LeNet can enable realtime inference for applications such as autonomous navigation, surveillance, and industrial defect detection. Optimized parallel models showed minimal latency in realworld scenarios. | The ability to deploy parallelized LeNet models in real-world applications ensures that AI systems can make instant decisions with high accuracy. The combination of high-speed inference, low latency, and scalable deep learning pipelines makes this approach practical for various edge AI and |
|                                                                            |                                               |                                                                                                                                                                                                                                                          | IoT-based smart systems.                                                                                                                                                                                                                                                                           |

## Comparative Analysis of GPU, CPU,2 Threaded GPU and 4 Threaded GPU

| Approach   | Performance runtime | Memory<br>Efficiency | Accuracy Trade-<br>offs |
|------------|---------------------|----------------------|-------------------------|
| CPU        | 150.54 secs         | Low                  | High                    |
| GPU        | 4.08 secs           | Moderate             | High                    |
| 2 Threaded | 3.73 secs           | High                 | Moderate                |
| 4 Threaded | 3.19 secs           | Very High            | High                    |

#### **Key Points on GPUs for Parallel CNN Execution**

- **-High Throughput Computing:** GPUs can process multiple operations in parallel, significantly accelerating CNN training.
- **-Efficient Memory Management:** Modern GPUs like NVIDIA A100 offer large memory bandwidth to handle deep learning workloads.
- **-Tensor Cores:** Specialized hardware in GPUs optimizes matrix multiplications for deep learning tasks.
- **-Reduced Latency in Parallel Training:** GPU interconnect technologies (NVLink, PCIe Gen4) facilitate high-speed data transfers between processing units.
- **-Scalability:** Multi-GPU setups enable large-scale training without overloading single devices.

#### Methodology

#### **Implementation Steps:**

- **1.Dataset Preparation:** MNIST and CIFAR-10 datasets are preprocessed and augmented.
- **2.Baseline LeNet Model:** Implemented in C++ using Eigen and OpenCV.
- **3.Data Parallelism:** Multi-core CPU parallelism via OpenMP and GPU-based parallelism via CUDA.
- **4.Model Parallelism:** Layer-wise distribution of CNN computation across devices.
- **5.Hybrid Parallelism:** Combining both approaches for optimized resource utilization.
- **6.Benchmarking & Evaluation:** Measuring execution time, memory usage, and classification accuracy.

#### **Project Structure**

Hardware: Intel i7 Multi-Core CPU, NVIDIA RTX 3080 GPU.

**Software:** OpenMP, CUDA, TensorFlow, PyTorch, C++.

**Code Components:** CNN forward propagation, gradient computation, and optimization.

#### **Key Findings**

#### **KEY FINDINGS**

**Execution Speed:** GPU acceleration led to a 15× speedup over CPU training.

Memory Optimization: Hybrid parallelism reduced memory bottlenecks by 35%.

Accuracy Retention: Model parallelism maintained classification accuracy.

Scalability: Hybrid parallelism scaled efficiently with increasing dataset size.

**Energy Efficiency:** GPU-based execution consumed significantly less power per training iteration.

## Conclusion

#### **Final CON:**

This project demonstrates that hybrid parallelism significantly improves the efficiency of CNN training while maintaining classification accuracy. The combination of OpenMP, CUDA, and distributed computing reduces computational bottlenecks.

#### **Future Work:**

Extending hybrid parallelism to Transformer-based models.

Optimizing GPU-to-GPU direct communication for further speedup.

Implementing real-time image classification using optimized LeNet.

#Code for the performance analysis of model using CPU, GPU and with 2 and 4 Threads

## **CPU PERFORMANCE:**

















## FOR GPU PERFORMACE:





#### **FOR 2-THREADS**



```
C 25 colab.research.google.com/drive/1piQVPEr-MNorimR8D7Ta-W3bz1dt-0OR#scrollTo=JhT4d1A3RSnx
 ould not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge
        MODEL
Q
Conv2D(32, (3,3), activation = 'relu'),
MaxPooling2D((2,2)),
                  Flatten(),
Dense(64, activation = 'relu'),
Dense(1, activation = 'sigmoid')
        /usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`inpusuper().__init__(activity_regularizer=activity_regularizer, **kwargs)
     [21] model = Sequential()
              model.add(Conv2D(32, (3,3), activation = 'relu', input_shape = (100, 100, 3)))
model.add(MaxPooling2D((2,2)))
              model.add(Conv2D(32, (3,3), activation = 'relu'))
model.add(MaxPooling2D((2,2)))
              model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dense(1, activation = 'sigmoid'))
     [22] model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
     start = time.time()
model.fit(X_train, Y_train, epochs=5, batch_size=64, verbose=2)
end = time.time()
        Epoch 1/5
32/32 - 0s - 15ms/step - accuracy: 0.7355 - loss: 0.5322
                 32 - 0s - 15ms/5ccp

5ch 2/5

/32 - 1s - 18ms/step - accuracy: 0.7600 - loss: 0.4946

och 3/5
⋝
```





### **FOR 4 THREADS**

```
\verb|^{25}| colab.research.google.com/drive/1xQuQJMFa_fKOzqiCp0qZXYoGxcO0Zdqk#scrollTo=eTl5dlt-dUA-defined and the collaboration of the 
  [ ] import numpy as np
                                     import random
 Q
                                     import matplotlib.pyplot as plt
                                      from tensorflow.keras.models import Sequential
                                     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
{x}
                       [ ] from google.colab import drive
                                     drive.mount('/content/drive')
⊙ಾ

→ Mounted at /content/drive
[ ] import tensorflow as tf
                                     import time
                      [] tf.config.threading.set_intra_op_parallelism_threads(4)
                      [] print("Intra-op threads:", tf.config.threading.get_intra_op_parallelism_threads())
                       → Intra-op threads: 4
                       [ ] file_path = '/content/drive/My Drive/input_test.csv'
                       [ ] file_path2 = '/content/drive/My Drive/input.csv'
                      [ ] file_path3 = '/content/drive/My Drive/labels.csv'
                       [ ] file_path4 = '/content/drive/My Drive/labels_test.csv'
```



## **CONCLUSION:**

Execution time CPU = 150.54 secs

Execution time with GPU = 4.08 secs

Execution time with 2-Threads = 3.73 secs

Execution time with 4-Threads = 3.19 secs