

A class of groups for which every action is W^* -superrigid

BY CYRIL HOUDAYER⁽¹⁾, SORIN POPA⁽²⁾ AND STEFAAN VAES⁽³⁾

Abstract

We prove the uniqueness of the group measure space Cartan subalgebra in crossed products $A \rtimes \Gamma$ covering certain cases where Γ is an amalgamated free product over a non-amenable subgroup. In combination with Kida's work we deduce that if $\Sigma < \mathrm{SL}(3, \mathbb{Z})$ denotes the subgroup of matrices g with $g_{31} = g_{32} = 0$, then any free ergodic probability measure preserving action of $\Gamma = \mathrm{SL}(3, \mathbb{Z}) *_{\Sigma} \mathrm{SL}(3, \mathbb{Z})$ is stably W^* -superrigid. In the second part we settle a technical issue about the unitary conjugacy of group measure space Cartan subalgebras.

1 Introduction

This short article is a two-fold complement to [PV09]. The main result of [PV09] provides a class \mathcal{G} of groups Γ such that for every free ergodic probability measure preserving (pmp) action $\Gamma \curvearrowright (X, \mu)$, the II_1 factor $L^\infty(X) \rtimes \Gamma$ has a unique group measure space Cartan subalgebra up to unitary conjugacy. The class \mathcal{G} contains all non-trivial amalgamated free products $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ such that Γ admits a non-amenable subgroup with the relative property (T) and such that Σ is an amenable group that is sufficiently non normal in Γ . In combination with known orbit equivalence superrigidity theorems, several group actions $\Gamma \curvearrowright (X, \mu)$ are shown in [PV09] to be W^* -superrigid: any isomorphism between $L^\infty(X) \rtimes \Gamma$ and an arbitrary group measure space II_1 factor $L^\infty(Y) \rtimes \Lambda$, comes from a conjugacy of the actions. For example the Bernoulli action $\Gamma \curvearrowright [0, 1]^\Gamma$ is W^* -superrigid for many of the groups $\Gamma \in \mathcal{G}$, see [PV09, Theorem 1.3]. Using Kida's [Ki09, Theorem 1.4] and denoting by $\Sigma < \mathrm{SL}(3, \mathbb{Z})$ the subgroup of upper triangular matrices, one deduces W^* -superrigidity for every free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$ such that all finite index subgroups of Σ still act ergodically, see [PV09, Theorem 6.2].

In the first part of this article we generalize the uniqueness of the group measure space Cartan subalgebra to the case where $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ is an amalgamated free product over a possibly non-amenable subgroup Σ , see Theorem 5. We still assume some softness on Σ by imposing the existence of a normal tower $\{e\} = \Sigma_0 \triangleleft \Sigma_1 \triangleleft \cdots \triangleleft \Sigma_{n-1} \triangleleft \Sigma_n = \Sigma$ such that all quotients Σ_i / Σ_{i-1} have the Haagerup property. We have to strengthen however the rigidity assumption by imposing that Γ admits an infinite subgroup that has property (T). The proof of Theorem 5 is identical to the proof of [PV09, Theorem 5.2], apart from the fact that we need a new transfer of rigidity lemma, see Lemma 4 (cf. [PV09, Lemma 3.1]).

Using Kida's [Ki09, Theorem 9.11] it follows that if $\Sigma < \mathrm{SL}(3, \mathbb{Z})$ denotes the subgroup of matrices g with $g_{31} = g_{32} = 0$, then any free ergodic pmp action of Γ on (X, μ) is stably W^* -superrigid, see Theorem 3. Contrary to the case where Σ consists of the upper triangular matrices, no ergodicity assumption has to be made on the action of the finite index subgroups of Σ .

⁽¹⁾Partially supported by ANR grant AGORA NT09_461407

⁽²⁾Partially supported by NSF Grant DMS-0601082

⁽³⁾Partially supported by ERC Starting Grant VNALG-200749, Research Programme G.0639.11 of the Research Foundation – Flanders (FWO) and K.U.Leuven BOF research grant OT/08/032.

In the second part of this article we provide a detailed argument for the following principle: if $B \subset A \rtimes \Gamma$ is a Cartan subalgebra in a group measure space II_1 factor and if B embeds into $A \rtimes \Sigma$ for a sufficiently non normal subgroup $\Sigma < \Gamma$, then B and A are unitarily conjugate. So Proposition 8 provides a justification for the end of the proofs of [PV09, Theorems 5.2 and 1.4], which were rather brief compared to the rest of that article. We are very grateful to Steven Deprez who pointed out to us the necessity of adding more details.

2 Preliminaries

Intertwining-by-bimodules

Let (M, τ) be a von Neumann algebra with a faithful normal tracial state τ and let $A, B \subset M$ be (possibly non-unital) von Neumann subalgebras. In [Po03, Section 2] the technique of intertwining-by-bimodules was introduced. It is shown there that the following two conditions are equivalent.

- There exist projections $p \in A$, $q \in B$, a non-zero partial isometry $v \in pMq$ and a normal $*$ -homomorphism $\theta : pAp \rightarrow qBq$ satisfying $xv = v\theta(x)$ for all $x \in pAp$.
- There is no sequence of unitaries (w_n) in A such that $\|E_B(aw_nb)\|_2 \rightarrow 0$ for all $a, b \in M$.

If one, and hence both, of these conditions hold, we write $A \prec_M B$. By [Po01, Theorem A.1], if A and B are Cartan subalgebras of a II_1 factor M , then $A \prec_M B$ if and only if A and B are unitarily conjugate.

Property (T) for von Neumann algebras

Let (P, τ) be a von Neumann algebra with a faithful normal tracial state τ . A normal completely positive map $\varphi : P \rightarrow P$ is said to be subunital if $\varphi(1) \leq 1$ and subtracial if $\tau \circ \varphi \leq \tau$. Following [CJ85], we say that P has property (T) if every sequence of normal subunital subtracial completely positive maps $\varphi_n : P \rightarrow P$ converging to the identity pointwise in $\|\cdot\|_2$, converges uniformly in $\|\cdot\|_2$ on the unit ball of P .

If Γ is a countable group, then $L\Gamma$ has property (T) if and only if the group Γ has property (T) in the usual sense.

Relative property (H) and property anti-(T)

In [Po01, Section 2] property (H) of a finite von Neumann algebra M relative to a von Neumann subalgebra $P \subset M$ is introduced. We recall from [Po01] the following facts.

- If $\Gamma \curvearrowright P$ is a trace preserving action, then $P \rtimes \Gamma$ has property (H) relative to P if and only if the group Γ has the Haagerup property. Recall that a countable group Γ has the Haagerup property if and only if there exists a sequence of positive definite functions $\varphi_n : \Gamma \rightarrow \mathbb{C}$ tending to 1 pointwise and such that for every n the function φ_n belongs to $c_0(\Gamma)$ (see e.g. [CCJJV]).

- If M has property (H) relative to $P \subset M$, there exists a sequence of normal subunital subtracial completely positive P -bimodular maps $\varphi_n : M \rightarrow M$ such that $\|\varphi_n(x) - x\|_2 \rightarrow 0$ for every $x \in M$ and such that every φ_n satisfies the following relative compactness property: if (w_k) is a sequence of unitaries in M satisfying $\|E_P(aw_kb)\|_2 \rightarrow 0$ for all $a, b \in M$, then $\|\varphi_n(w_k)\|_2 \rightarrow 0$ when $k \rightarrow \infty$. The converse is almost true, but we have no need to go into these technical details.
- If M has property (H) relative to $P \subset M$, then $N \overline{\otimes} M$ has property (H) relative to $N \overline{\otimes} P$ for every finite von Neumann algebra N .

The following lemma is essentially contained in [Po01, Theorem 6.2]. We provide a full proof for the convenience of the reader.

Lemma 1. *Let (M, τ) be a tracial von Neumann algebra and $P_1 \subset P \subset M$ von Neumann subalgebras. Assume that P has property (H) relative to P_1 .*

If $M_0 \subset pMp$ is a von Neumann subalgebra such that M_0 has property (T) and $M_0 \prec_M P$, then $M_0 \prec_M P_1$.

Proof. Assume that $M_0 \not\prec_M P_1$. Since $M_0 \prec_M P$, by [Va07, Remark 3.8] we find non-zero projections $p_0 \in M_0$, $q \in P$, a non-zero partial isometry $v \in p_0Mq$ and a normal unital $*$ -homomorphism $\theta : p_0M_0p_0 \rightarrow qPq$ such that $xv = v\theta(x)$ for all $x \in p_0M_0p_0$ and such that $\theta(p_0M_0p_0) \not\prec_P P_1$.

Since P has property (H) relative to P_1 , we can take a sequence $\varphi_n : P \rightarrow P$ of normal subunital subtracial completely positive maps such that $\|\varphi_n(x) - x\|_2 \rightarrow 0$ for all $x \in P$ and such that every φ_n satisfies the relative compactness property explained above. Since $\theta(p_0M_0p_0)$ has property (T), take n such that $\|\varphi_n(w) - w\|_2 \leq \|q\|_2/2$ for all unitaries $w \in \theta(p_0M_0p_0)$. Since $\theta(p_0M_0p_0) \not\prec_P P_1$, take a sequence of unitaries $w_k \in \theta(p_0M_0p_0)$ such that $\|E_{P_1}(aw_kb)\|_2 \rightarrow 0$ for all $a, b \in P$. By the relative compactness of φ_n , it follows that $\|\varphi_n(w_k)\|_2 \rightarrow 0$ when $k \rightarrow \infty$. So, for k large enough, we have $\|\varphi_n(w_k)\|_2 < \|q\|_2/2$. It follows that

$$\|q\|_2 = \|w_k\|_2 \leq \|\varphi_n(w_k)\|_2 + \|\varphi_n(w_k) - w_k\|_2 < \|q\|_2 ,$$

which is absurd. \square

We say that a finite von Neumann algebra P is *anti-(T)* if there exist von Neumann subalgebras $C1 = P_0 \subset P_1 \subset \dots \subset P_n = P$ such that for all $i = 1, \dots, n$, the von Neumann algebra P_i has property (H) relative to P_{i-1} . Repeatedly applying Lemma 1, an anti-(T) von Neumann algebra cannot contain a diffuse von Neumann subalgebra with property (T).

We say that a countable group Σ is anti-(T) if there exist subgroups $\{e\} = \Sigma_0 < \Sigma_1 < \dots < \Sigma_n = \Sigma$ such that for all $i = 1, \dots, n$, Σ_{i-1} is normal in Σ_i and Σ_i/Σ_{i-1} has the Haagerup property. If Σ is anti-(T), then the group von Neumann algebra $L\Sigma$ is anti-(T) as well. An anti-(T) group cannot contain an infinite subgroup with property (T). Nevertheless, $SL(2, \mathbb{Z}) \times \mathbb{Z}^2$ is an anti-(T) group (since $SL(2, \mathbb{Z})$ has the Haagerup property and \mathbb{Z}^2 is amenable) which contains an infinite subgroup with the *relative* property (T), namely \mathbb{Z}^2 . This explains why our new transfer of rigidity lemma (see Lemma 4) requires property (T) rather than relative property (T).

3 Transfer of rigidity and W^* -superrigidity

We say that free ergodic pmp actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \eta)$ are

- W^* -equivalent, if $L^\infty(X) \rtimes \Gamma \cong L^\infty(Y) \rtimes \Lambda$,
- orbit equivalent, if the orbit equivalence relations $\mathcal{R}(\Gamma \curvearrowright X)$ and $\mathcal{R}(\Lambda \curvearrowright Y)$ are isomorphic,
- conjugate, if there exists an isomorphism of probability spaces $\Delta : X \rightarrow Y$ and an isomorphism of groups $\delta : \Gamma \rightarrow \Lambda$ such that $\Delta(g \cdot x) = \delta(g) \cdot \Delta(x)$ almost everywhere.

Following [PV09, Definition 6.1] a free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$ is called *W^* -superrigid* if the following property holds. If $\Lambda \curvearrowright (Y, \eta)$ is an arbitrary free ergodic pmp action and $\pi : L^\infty(X) \rtimes \Gamma \rightarrow L^\infty(Y) \rtimes \Lambda$ is a W^* -equivalence, then the actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are conjugate through $\Delta : X \rightarrow Y$, $\delta : \Gamma \rightarrow \Lambda$ and up to unitary conjugacy π is of the form

$$\pi(au_g) = \Delta_*(a\omega_g)u_{\delta(g)} \quad \text{for all } a \in L^\infty(X), g \in \Gamma,$$

where $(\omega_g) \in Z^1(\Gamma \curvearrowright X)$ is a \mathbb{T} -valued 1-cocycle for the action $\Gamma \curvearrowright X$.

Slightly more natural than W^* -superrigidity is the notion of *stable W^* -superrigidity* where possible finite index issues are correctly taken into account. A stable isomorphism between II_1 factors M and N is an isomorphism between M and an amplification N^t . This leads to the notion of *stable W^* -equivalence* between free ergodic pmp actions. Similarly one defines *stable orbit equivalence*. Finally, a *stable conjugacy* between two free ergodic pmp actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \eta)$ is a conjugacy between the actions $\frac{\Gamma_0}{G} \curvearrowright \frac{X_0}{G}$ and $\frac{\Lambda_0}{H} \curvearrowright \frac{Y_0}{H}$ where $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ are induced⁽⁴⁾ from $\Gamma_0 \curvearrowright X_0$, $\Lambda_0 \curvearrowright Y_0$ and where $G \triangleleft \Gamma_0$, $H \triangleleft \Lambda_0$ are finite normal subgroups.

Definition 2 ([PV09, Definition 6.4]). A free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$ is said to be *stably W^* -superrigid* if the following holds. Whenever π is a stable W^* -equivalence between $\Gamma \curvearrowright (X, \mu)$ and an arbitrary free ergodic pmp action $\Lambda \curvearrowright (Y, \eta)$, the actions are stably conjugate and π equals the composition of

- the canonical stable W^* -equivalence given by the stable conjugacy,
- the automorphism of $L^\infty(X) \rtimes \Gamma$ given by an element of $Z^1(\Gamma \curvearrowright X)$,
- an inner automorphism of $L^\infty(X) \rtimes \Gamma$.

Let $\Gamma \curvearrowright (X, \mu)$ be stably W^* -superrigid. If moreover Γ has no finite normal subgroups and if finite index subgroups of Γ still act ergodically on (X, μ) , then $\Gamma \curvearrowright (X, \mu)$ is W^* -superrigid in the sense explained above.

The following is the main result in this section.

Theorem 3. Denote by $\Sigma < \text{SL}(3, \mathbb{Z})$ the subgroup of matrices g such that $g_{31} = g_{32} = 0$. Put $\Gamma = \text{SL}(3, \mathbb{Z}) *_{\Sigma} \text{SL}(3, \mathbb{Z})$. Every free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$ is stably W^* -superrigid. In particular all a-periodic⁽⁵⁾ free ergodic pmp actions of Γ are W^* -superrigid.

⁽⁴⁾A free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$ is said to be induced from $\Gamma_0 \curvearrowright X_0$ if $\Gamma_0 < \Gamma$ is a finite index subgroup and $X_0 \subset X$ is a non-negligible Γ_0 -invariant subset such that $\mu(X_0 \cap g \cdot X_0) = 0$ for all $g \in \Gamma - \Gamma_0$.

⁽⁵⁾A free ergodic pmp action is called a-periodic if it is not induced from a finite index subgroup, i.e. if finite index subgroups still act ergodically.

More generally, if $k \geq 1$ and $n_1, \dots, n_k \in \{1, 2\}$, the same conclusion holds for the group $\Gamma = \mathrm{PSL}(n, \mathbb{Z}) *_{\Sigma} \mathrm{PSL}(n, \mathbb{Z})$ where $n = 2 + n_1 + \dots + n_k$ and Σ is the image in $\mathrm{PSL}(n, \mathbb{Z})$ of

$$\mathrm{SL}(n, \mathbb{Z}) \cap \begin{pmatrix} \mathrm{GL}(2, \mathbb{Z}) & * & \cdots & * \\ 0 & \mathrm{GL}(n_1, \mathbb{Z}) & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathrm{GL}(n_k, \mathbb{Z}) \end{pmatrix}.$$

Proof. The theorem is a direct consequence of Kida's [Ki09, Theorem 9.11] and the uniqueness of group measure space Cartan theorem 5 below. Let

$$P = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \text{ and } G = \mathrm{SL}(n, \mathbb{Z}) \cap \begin{pmatrix} \mathrm{GL}(2, \mathbb{Z}) & 0 & \cdots & 0 \\ 0 & \mathrm{GL}(n_1, \mathbb{Z}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathrm{GL}(n_k, \mathbb{Z}) \end{pmatrix},$$

and denote by \overline{P} (resp. \overline{G}) the image of P (resp. G) in $\mathrm{PSL}(n, \mathbb{Z})$. We have that \overline{P} is amenable and normal in Σ and $\overline{G} \cong \Sigma/\overline{P}$ has the Haagerup property. This shows that Σ is anti-(T). Therefore, if $\Gamma \curvearrowright (X, \mu)$ is an arbitrary free ergodic pmp action, Theorem 5 says that every stable W^* -equivalence between $\Gamma \curvearrowright (X, \mu)$ and an arbitrary $\Lambda \curvearrowright (Y, \eta)$ comes from a stable orbit equivalence of the actions. Kida showed in [Ki09, Theorem 9.11] that Γ is coupling rigid with respect to the abstract commensurator⁽⁶⁾ $\mathrm{Comm}(\Gamma)$. Since Γ is icc and $\mathrm{Comm}(\Gamma)$ is countable, this precisely means that every stable orbit equivalence comes from a stable conjugacy, cf. [Ki09, Proposition 3.11]. \square

The W^* -superrigidity in Theorem 3 arises as the combination of Kida's OE superrigidity and the following uniqueness result for group measure space Cartan subalgebras. We first need a new transfer of rigidity lemma (cf. [PV09, Lemma 3.1]).

Lemma 4. *Let M be a II_1 factor and $\varphi_n : M \rightarrow M$ a sequence of normal subunital subtracial completely positive maps. Assume that $P, M_0 \subset M$ are von Neumann subalgebras such that P is anti-(T) and such that M_0 is diffuse and has property (T).*

Let $p \in M$ be a projection and $pMp = Q \rtimes \Lambda$ any crossed product decomposition with Q being anti-(T). Denote by $(v_s)_{s \in \Lambda}$ the corresponding canonical unitaries.

For every $\varepsilon > 0$, there exists n and a sequence $(s_k)_{k \in \mathbb{N}}$ in Λ such that

1. $\|\varphi_n(v_{s_k}) - v_{s_k}\|_2 \leq \varepsilon$ for all $k \in \mathbb{N}$,
2. for all $a, b \in M$ we have $\|E_P(av_{s_k}b)\|_2 \rightarrow 0$ when $k \rightarrow \infty$.

Proof. Since M is a II_1 factor and M_0 is diffuse, we may assume that $p \in M_0$. Write $N = Q \rtimes \Lambda$ and denote by $\Delta : N \rightarrow N \overline{\otimes} N$ the normal $*$ -homomorphism given by $\Delta(av_s) = av_s \otimes v_s$ for all $a \in Q$ and $s \in \Lambda$. Normalize the trace τ on M such that $\tau(p) = 1$.

⁽⁶⁾Given a group Γ the abstract commensurator $\mathrm{Comm}(\Gamma)$ is defined as the group of all isomorphisms $\delta : \Gamma_1 \rightarrow \Gamma_2$ between finite index subgroups $\Gamma_1, \Gamma_2 < \Gamma$, identifying two such isomorphisms when they coincide on a finite index subgroup. Inner conjugacy provides a homomorphism from Γ to $\mathrm{Comm}(\Gamma)$, which is injective if and only if Γ is icc.

Since Q is anti-(T), Lemma 1 implies that $pM_0p \not\prec_N Q$. Let (w_n) be a sequence of unitaries in pM_0p such that $\|E_Q(aw_nb)\|_2 \rightarrow 0$ for all $a, b \in N$. It follows that $\Delta(w_n)$ is a sequence of unitaries in $N\overline{\otimes}N$ satisfying

$$\|(\text{id} \otimes \tau)(a\Delta(w_n)b)\|_2 \rightarrow 0 \quad \text{for all } a, b \in N\overline{\otimes}N.$$

Indeed, it suffices to check the convergence for $a = 1 \otimes cv_s$ and $b = 1 \otimes dv_t$, where $c, d \in Q$ and $s, t \in \Lambda$. We have $\|(\text{id} \otimes \tau)((1 \otimes cv_s)\Delta(w_n)(1 \otimes dv_t))\|_2 = |\tau(\sigma_{t^{-1}}(d)c)|\|E_Q(w_nv_{ts})\|_2 \rightarrow 0$. So, $\Delta(pM_0p) \not\prec_{N\overline{\otimes}N} N \otimes 1$. Since P is anti-(T), Lemma 1 implies that $\Delta(pM_0p) \not\prec_{N\overline{\otimes}M} N\overline{\otimes}P$.

Choose $\varepsilon > 0$. Put $\varepsilon_1 = \varepsilon^2/4$. Since pM_0p has property (T), take n such that

$$1 - \text{Re}(\tau \otimes \tau)(\Delta(w)^*(\text{id} \otimes \varphi_n)\Delta(w)) \leq \varepsilon_1$$

for all $w \in \mathcal{U}(pM_0p)$. Define

$$\mathcal{V} := \{s \in \Lambda \mid 1 - \text{Re} \tau(v_s^* \varphi_n(v_s)) \leq 2\varepsilon_1\}.$$

Note that for all $s \in \mathcal{V}$, we have $\|\varphi_n(v_s) - v_s\|_2 \leq \sqrt{4\varepsilon_1} = \varepsilon$. In order to prove the lemma, it suffices to show that there exists a sequence $s_k \in \mathcal{V}$ such that $\|E_P(av_{s_k}b)\|_2 \rightarrow 0$ for all $a, b \in M$. Assume the contrary. We then find a finite subset $\mathcal{F} \subset M$ and a $\delta > 0$ such that

$$\sum_{a, b \in \mathcal{F}} \|E_P(av_s b)\|_2^2 \geq \delta \quad \text{for all } s \in \mathcal{V}.$$

We will deduce that $\Delta(pM_0p) \prec_{N\overline{\otimes}M} N\overline{\otimes}P$. This will be a contradiction with the statement $\Delta(pM_0p) \not\prec_{N\overline{\otimes}M} N\overline{\otimes}P$ that we have shown at the beginning of the proof.

Let $w \in \mathcal{U}(pM_0p)$. Write $w = \sum_{s \in \Lambda} w_s v_s$ where $w_s \in Q$. Since $\tau(p) = 1$, we have $\sum_{s \in \Lambda} \|w_s\|_2^2 = 1$. Therefore,

$$\begin{aligned} \varepsilon_1 &\geq 1 - \text{Re}(\tau \otimes \tau)(\Delta(w)^*(\text{id} \otimes \varphi_n)\Delta(w)) \\ &= \sum_{s \in \Lambda} \|w_s\|_2^2 (1 - \text{Re} \tau(v_s^* \varphi_n(v_s))) \\ &\geq \sum_{s \in \Lambda - \mathcal{V}} \|w_s\|_2^2 (1 - \text{Re} \tau(v_s^* \varphi_n(v_s))) \\ &\geq \sum_{s \in \Lambda - \mathcal{V}} \|w_s\|_2^2 2\varepsilon_1. \end{aligned}$$

We conclude that for all $w \in \mathcal{U}(pM_0p)$ we have

$$\sum_{s \in \Lambda - \mathcal{V}} \|w_s\|_2^2 \leq \frac{1}{2}$$

implying that

$$\sum_{s \in \mathcal{V}} \|w_s\|_2^2 \geq \frac{1}{2}$$

for all $w \in \mathcal{U}(pM_0p)$.

It follows that for all $w \in \mathcal{U}(pM_0p)$

$$\begin{aligned} \sum_{a,b \in \mathcal{F}} \|E_{N\overline{\otimes} P}((1 \otimes a)\Delta(w)(1 \otimes b))\|_2^2 &= \sum_{a,b \in \mathcal{F}, s \in \Lambda} \|w_s\|_2^2 \|E_P(av_sb)\|_2^2 \\ &\geq \sum_{a,b \in \mathcal{F}, s \in \mathcal{V}} \|w_s\|_2^2 \|E_P(av_sb)\|_2^2 \\ &\geq \sum_{s \in \mathcal{V}} \|w_s\|_2^2 \delta \\ &\geq \frac{\delta}{2}. \end{aligned}$$

This means that $\Delta(pM_0p) \prec_{N\overline{\otimes} M} N\overline{\otimes} P$. We have reached the desired contradiction. \square

We are ready to formulate and prove our uniqueness of group measure space Cartan theorem. We use the notation $D_n(\mathbb{C}) \subset M_n(\mathbb{C})$ to denote the subalgebra of diagonal matrices.

Theorem 5. *Let $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ be an amalgamated free product satisfying the following conditions: Γ_1 admits an infinite subgroup with property (T), Σ is anti-(T) and $\Gamma_2 \neq \Sigma$. Assume moreover that there exist $g_1, \dots, g_n \in \Gamma$ such that $\bigcap_{i=1}^n g_i \Sigma g_i^{-1}$ is finite. Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic pmp action and denote $M = L^\infty(X) \rtimes \Gamma$.*

Whenever $\Lambda \curvearrowright (Y, \eta)$ is a free ergodic pmp action, $p \in M_n(\mathbb{C}) \otimes M$ is a projection and

$$\pi : L^\infty(Y) \rtimes \Lambda \rightarrow p(M_n(\mathbb{C}) \otimes M)p$$

is a $*$ -isomorphism, there exists a projection $q \in D_n(\mathbb{C}) \otimes L^\infty(X)$ and a unitary $u \in q(M_n(\mathbb{C}) \otimes M)p$ such that

$$\pi(L^\infty(Y)) = u^*(D_n(\mathbb{C}) \otimes L^\infty(X))u.$$

Proof. Write $A = M_n(\mathbb{C}) \otimes L^\infty(X)$ and $N = A \rtimes \Gamma$. Put $B = L^\infty(Y)$. We first prove that $\pi(B) \prec_N A \rtimes \Sigma$. Denote by $|g|$ the length of $g \in \Gamma_1 *_{\Sigma} \Gamma_2$ as a reduced word. Denote for $0 < \rho < 1$ by m_ρ the corresponding completely positive maps on N given by $m_\rho(au_g) = \rho^{|g|} au_g$ for all $a \in A$, $g \in \Gamma$. When $\rho \rightarrow 1$, we have $m_\rho \rightarrow \text{id}$ pointwise in $\|\cdot\|_2$.

Write $\varepsilon = \tau(p)/5000$ and $P = A \rtimes \Sigma$. Note that P is anti-(T). By Lemma 4 take $0 < \rho_1 < 1$ and a sequence (s_k) in Λ satisfying $\|m_{\rho_1}(v_{s_k}) - v_{s_k}\|_2 \leq \varepsilon$ for all k and $\|E_P(xv_{s_k}y)\|_2 \rightarrow 0$ for all $x, y \in N$. By [PV09, Lemma 5.7] there exists a $0 < \rho < 1$ and a $\delta > 0$ such that $\tau(w^* m_\rho(w)) \geq \delta$ for all $w \in \mathcal{U}(\pi(B))$. By [PV09, Theorem 5.4] and because $\pi(B)$ is regular in pNp , it follows that $\pi(B) \prec_N P$.

So we have shown that $\pi(B) \prec_N A \rtimes \Sigma$. By Proposition 8 below and since we have $g_1, \dots, g_n \in \Gamma$ such that $\bigcap_{i=1}^n g_i \Sigma g_i^{-1}$ is finite, it follows that $\pi(B) \prec_N A$. The theorem now follows from [Po01, Theorem A.1]. \square

4 An embedding result, strengthening [PV06, Theorem 6.16]

Assume that (A, τ) is a tracial von Neumann algebra and that $\Gamma \curvearrowright (A, \tau)$ is a trace preserving action. We do not assume that σ is properly outer or that σ is ergodic. Let $M = A \rtimes \Gamma$.

Whenever $\Lambda < \Gamma$ is a subgroup, consider the basic construction $\langle M, e_{A \rtimes \Lambda} \rangle$. By definition $\langle M, e_{A \rtimes \Lambda} \rangle$ consists of those operators on $L^2(M)$ that commute with the right module action

of $A \rtimes \Lambda$. The basic construction comes with a canonical operator valued weight T_Λ from $\langle M, e_{A \rtimes \Lambda} \rangle^+$ to the extended positive part of M . For all $x, y \in M$, the element $xe_{A \rtimes \Lambda}y$ is integrable with respect to T_Λ and $T_\Lambda(xe_{A \rtimes \Lambda}y) = xy$. Choose $g_i \in \Gamma$ such that $\Gamma = \bigsqcup_i g_i \Lambda = \bigsqcup_i \Lambda g_i^{-1}$. Denoting by ρ_g the right multiplication operator by u_g^* on $L^2(M)$, one checks that $\sum_i \rho_{g_i} e_{A \rtimes \Lambda} \rho_{g_i}^* = 1$, whence

$$T_\Lambda(x) = \sum_i \rho_{g_i} x \rho_{g_i}^* \quad \text{for all } x \in \langle M, e_{A \rtimes \Lambda} \rangle^+.$$

The canonical semi-finite trace Tr_Λ on $\langle M, e_{A \rtimes \Lambda} \rangle$ is given as the composition of T_Λ and the trace τ on M .

Assume that $p \in M$ is a projection and $B \subset pMp$ is a quasi-regular subalgebra (see [Po01, 1.4.2]). Recall that this means that the quasi-normalizer of B inside pMp is weakly dense in pMp . Obviously, regular subalgebras $B \subset pMp$ or, even more specifically, Cartan subalgebras $B \subset pMp$ are quasi-regular.

Given a subgroup $\Lambda < \Gamma$, let $H \subset pL^2(M)$ be the closed linear span of all B - $(A \rtimes \Lambda)$ -subbimodules of $pL^2(M)$ that are finitely generated as a right Hilbert $(A \rtimes \Lambda)$ -module. Since $B \subset pMp$ is quasi-regular, H is stable by left multiplication with pMp . The subspace H is also invariant under right multiplication by $A \rtimes \Lambda$. So H is of the form $pL^2(M)z(\Lambda)$ for some projection $z(\Lambda) \in M \cap (A \rtimes \Lambda)'$. We make $z(\Lambda)$ uniquely defined by requiring that $z(\Lambda)$ is smaller or equal than the central support of p in M .

Note that by definition $z(\Lambda) \neq 0$ if and only if $B \prec_M A \rtimes \Lambda$.

Denote by $J : L^2(M) \rightarrow L^2(M)$ the adjoint operator. So, given $x \in M$, Jx^*J is the operator of right multiplication with x . Denote by $\text{supp } a$ the support projection of a positive operator a . Observe that

$$\begin{aligned} & pJz(\Lambda)J \\ &= \bigvee \{q \mid q \text{ is an orthogonal projection in } B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p \text{ satisfying } \text{Tr}_\Lambda(q) < \infty\} \\ &= \bigvee \{q \mid q \text{ is an orthogonal projection in } B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p \text{ satisfying } \|T_\Lambda(q)\| < \infty\} \\ &= \bigvee \{\text{supp } a \mid a \in (B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p)^+ \text{ and } \|T_\Lambda(a)\| < \infty\}. \end{aligned} \tag{1}$$

If a and b are positive operators, then $\text{supp}(a) \vee \text{supp}(b) = \text{supp}(a+b)$. So we find a sequence of elements $a_n \in (B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p)^+$ such that all $T_\Lambda(a_n)$ are bounded and $\text{supp}(a_n) \rightarrow pJz(\Lambda)J$ strongly. Moreover, every projection $\text{supp}(a_n)$ can be strongly approximated by a spectral projection of the form $q_n = \chi_{[\varepsilon_n, +\infty)}(a_n)$ for $\varepsilon_n > 0$ sufficiently small. We have $q_n \leq \frac{1}{\varepsilon_n} a_n$ so that $T_\Lambda(q_n)$ is bounded. Hence we find a sequence of projections $q_n \in B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p$ such that $q_n \rightarrow pJz(\Lambda)J$ strongly and $\|T_\Lambda(q_n)\| < \infty$ for all n .

Note that $z(\Lambda_1) \leq z(\Lambda_2)$ when $\Lambda_1 < \Lambda_2 < \Gamma$. Indeed, it suffices to observe that for every B - $(A \rtimes \Lambda_1)$ -subbimodule $K \subset pL^2(M)$ that is finitely generated as a right Hilbert module, the closed linear span of $K(A \rtimes \Lambda_2)$ is a B - $(A \rtimes \Lambda_2)$ -subbimodule of $pL^2(M)$ that is finitely generated as a right Hilbert module. Hence $pL^2(M)z(\Lambda_1) \subset pL^2(M)z(\Lambda_2)$. Since by convention $z(\Lambda_1)$ and $z(\Lambda_2)$ are smaller or equal than the central support of p , we conclude that $z(\Lambda_1) \leq z(\Lambda_2)$.

By definition, $z(g\Lambda g^{-1}) = u_g z(\Lambda) u_g^*$ for all $g \in \Gamma$, $\Lambda < \Gamma$.

Proposition 6. *Let $M = A \rtimes \Gamma$ for some trace preserving action of a countable group Γ on the tracial von Neumann algebra (A, τ) . Let $B \subset pMp$ be a quasi-regular von Neumann subalgebra. For every subgroup $\Lambda < \Gamma$, define as above the projection $z(\Lambda) \in M \cap (A \rtimes \Lambda)'$ such that*

$p\mathrm{L}^2(M)z(\Lambda)$ equals the closed linear span of all B - $(A \rtimes \Lambda)$ -submodules of $p\mathrm{L}^2(M)$ that are finitely generated as a right Hilbert module.

If $\Sigma < \Gamma$ and $\Lambda < \Gamma$ are subgroups, then the projections $z(\Sigma)$ and $z(\Lambda)$ commute and satisfy

$$z(\Sigma \cap \Lambda) = z(\Sigma)z(\Lambda).$$

Proof. We use the operator valued weight T_Σ as explained above. As we saw after formulae (1) we can take projections $q_n \in B' \cap p\langle M, e_{A \rtimes \Sigma} \rangle p$ and $e_n \in B' \cap p\langle M, e_{A \rtimes \Lambda} \rangle p$ such that $q_n \rightarrow pJz(\Sigma)J$ and $e_n \rightarrow pJz(\Lambda)J$ strongly and such that for all $n \in \mathbb{N}$, we have $\|T_\Sigma(q_n)\| < \infty$ and $\|T_\Lambda(e_n)\| < \infty$. Note that $e_n q_n e_n \in (B' \cap p\langle M, e_{A \rtimes (\Sigma \cap \Lambda)} \rangle p)^+$. We claim that

$$\|T_{\Sigma \cap \Lambda}(e_n q_n e_n)\| < \infty \quad \text{for all } n \in \mathbb{N}. \quad (2)$$

Fix $n \in \mathbb{N}$. Take $g_i \in \Gamma$ such that $\Gamma = \bigsqcup_i g_i \Lambda$. Take $h_j \in \Lambda$ such that $\Lambda = \bigsqcup_j h_j(\Sigma \cap \Lambda)$. Note that the cosets $h_j \Sigma$ are disjoint and that $\Gamma = \bigsqcup_{i,j} g_i h_j(\Sigma \cap \Lambda)$. Because of the latter, we have

$$T_{\Sigma \cap \Lambda}(e_n q_n e_n) = \sum_{i,j} \rho_{g_i h_j} e_n q_n e_n \rho_{g_i h_j}^* = \sum_i \rho_{g_i} e_n \left(\sum_j \rho_{h_j} q_n \rho_{h_j}^* \right) e_n \rho_{g_i}^*.$$

Because the cosets $h_j \Sigma$ are disjoint, we know that

$$\sum_j \rho_{h_j} q_n \rho_{h_j}^* \leq \sum_{h \in \Gamma/\Sigma} \rho_h q_n \rho_h^* = T_\Sigma(q_n) \leq \|T_\Sigma(q_n)\| 1.$$

Therefore,

$$T_{\Sigma \cap \Lambda}(e_n q_n e_n) \leq \|T_\Sigma(q_n)\| \sum_i \rho_{g_i} e_n \rho_{g_i}^* = \|T_\Sigma(q_n)\| T_\Lambda(e_n).$$

So claim (2) is proven.

Since $e_n q_n e_n \in (B' \cap p\langle M, e_{A \rtimes (\Sigma \cap \Lambda)} \rangle p)^+$ claim (2) implies that

$$\mathrm{supp}(e_n q_n e_n) \leq pJz(\Sigma \cap \Lambda)J \quad \text{for all } n \in \mathbb{N}.$$

Hence, $\mathrm{Ran}(e_n q_n) \subset p\mathrm{L}^2(M)z(\Sigma \cap \Lambda)$ for all n . Since $e_n \rightarrow pJz(\Lambda)J$ and $q_n \rightarrow pJz(\Sigma)J$ strongly and since $z(\Lambda)$ and $z(\Sigma)$ are chosen below the central support of p , it follows that

$$\mathrm{Ran}(z(\Lambda)z(\Sigma)) \subset \mathrm{Ran} z(\Sigma \cap \Lambda).$$

Since $z(\Sigma \cap \Lambda) \leq z(\Sigma)$ and $z(\Sigma \cap \Lambda) \leq z(\Lambda)$, we get the chain of inclusions

$$\mathrm{Ran} z(\Lambda) \cap \mathrm{Ran} z(\Sigma) \subset \mathrm{Ran}(z(\Lambda)z(\Sigma)) \subset \mathrm{Ran} z(\Sigma \cap \Lambda) \subset \mathrm{Ran} z(\Lambda) \cap \mathrm{Ran} z(\Sigma).$$

So all these inclusions are equalities. This means that $z(\Lambda)$ and $z(\Sigma)$ are commuting projections and $z(\Sigma \cap \Lambda) = z(\Sigma)z(\Lambda)$. \square

As an immediate corollary we find the following generalization of [PV06, Theorem 6.16].

Corollary 7. Let $\Gamma \curvearrowright A$ be a trace preserving action, $M = A \rtimes \Gamma$, $\Sigma < \Gamma$ a subgroup and $B \subset pMp$ a quasi-regular von Neumann subalgebra. If $z(\Sigma)$ equals the central support of p , then the same is true for $z(g_1 \Sigma g_1^{-1} \cap \dots \cap g_n \Sigma g_n^{-1})$ and in particular

$$B \prec_M A \rtimes (g_1 \Sigma g_1^{-1} \cap \dots \cap g_n \Sigma g_n^{-1}) \quad (3)$$

for all $g_1, \dots, g_n \in \Gamma$

5 Application to the proofs of Theorem 5, [PV09, Theorems 5.2 and 1.4] and [FV10, Theorem 4.1]

In the setup of Theorem 5 and [PV09, Theorems 5.2 and 1.4] we know that $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ is an amalgamated free product and we know that $A \rtimes \Gamma$ is a factor. We prove that in such a situation, whenever $B \subset p(A \rtimes \Gamma)p$ is a quasi-regular subalgebra, $z(\Sigma)$ can only take the values 0 or 1. A similar statement is true when $\Gamma = \text{HNN}(H, \Sigma, \theta)$ is an HNN extension⁽⁷⁾ of a countable group H with a subgroup $\Sigma < H$ and an injective group homomorphism $\theta : \Sigma \rightarrow H$. The precise formulation goes as follows.

Proposition 8. *Let Γ either be an amalgamated free product $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ with $\Gamma_1 \neq \Sigma \neq \Gamma_2$ or an arbitrary HNN extension $\Gamma = \text{HNN}(H, \Sigma, \theta)$. Let (A, τ) be a tracial von Neumann algebra and $\Gamma \curvearrowright A$ a trace preserving action. Put $M = A \rtimes \Gamma$ and let $B \subset pMp$ be a quasi-regular von Neumann subalgebra. As above we define for every subgroup $\Lambda < \Gamma$, the projection $z(\Lambda) \in M \cap (A \rtimes \Lambda)'$ such that $pL^2(M)z(\Lambda)$ is the closed linear span of all B - $(A \rtimes \Lambda)$ -subbimodules of $pL^2(M)$ that are finitely generated as a right Hilbert module.*

The projection $z(\Sigma)$ belongs to the center of M . So, if M is a factor and if $B \prec_M A \rtimes \Sigma$, then $z(\Sigma) = 1$ and

$$B \prec_M A \rtimes (g_1 \Sigma g_1^{-1} \cap \dots \cap g_n \Sigma g_n^{-1})$$

for all $g_1, \dots, g_n \in \Gamma$.

Proof. Assume first that $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ is a non-trivial amalgamated free product. We use Proposition 6 to prove that $z(\Sigma) = z(\Gamma_1)$. Once this is proven, by symmetry also $z(\Sigma) = z(\Gamma_2)$. But then $z(\Sigma)$ commutes with both $A \rtimes \Gamma_1$ and $A \rtimes \Gamma_2$, so that $z(\Sigma)$ belongs to the center of M .

Put $z_1 = z(\Gamma_1)$. Define $S \subset \Gamma$ as the set of elements $g \in \Gamma$ that admit a reduced expression starting with a letter from $\Gamma_2 - \Sigma$. Whenever $g \in S$, we have $g\Gamma_1 g^{-1} \cap \Gamma_1 \subset \Sigma$. It follows from Proposition 6 that the projections $z_1 = z(\Gamma_1)$ and $u_g z_1 u_g^* = z(g\Gamma_1 g^{-1})$ commute and that

$$z(\Sigma) \geq z(g\Gamma_1 g^{-1} \cap \Gamma_1) = u_g z_1 u_g^* z_1 \quad \text{for all } g \in S. \quad (4)$$

We claim that

$$z_1 = \bigvee_{g \in S} u_g z_1 u_g^* z_1 .$$

To prove this claim, put

$$q = z_1 - \bigvee_{g \in S} u_g z_1 u_g^* z_1 .$$

Whenever $g \in S$, we have

$$q u_g q u_g^* = q z_1 u_g z_1 u_g^* = q z_1 u_g z_1 u_g^* u_g q u_g^* = q u_g z_1 u_g^* z_1 u_g q u_g^* = 0 .$$

Take $a \in \Gamma_1 - \Sigma$ and $b \in \Gamma_2 - \Sigma$ and put $u_n = u_{(ba)^n}$. It follows that the projections $u_n q u_n^*$, $n \in \mathbb{N}$, are mutually orthogonal. Indeed, if $n < m$, we have

$$u_n q u_n^* u_m q u_m^* = u_n (q u_{m-n} q u_{m-n}^*) u_n^* = 0$$

⁽⁷⁾The HNN extension $\text{HNN}(H, \Sigma, \theta)$ is generated by a copy of H and an element t , called stable letter, subject to the relation $t\sigma t^{-1} = \theta(\sigma)$ for all $\sigma \in \Sigma$.

because $(ba)^{m-n} \in S$. Since τ is a finite trace on M , it follows that $\tau(q) = 0$ and hence, $q = 0$. This proves the claim. In combination with (4) it follows that $z(\Sigma) \geq z_1$. Hence, $z(\Sigma) = z_1$.

Next assume that $\Gamma = \text{HNN}(H, \Sigma, \theta)$. Denote by $t \in \Gamma$ the stable letter. For every $n \geq 1$, one has $t^{-n}Ht^n \cap H \subset \Sigma$. The same argument as in the case of amalgamated free products shows that $z(\Sigma) = z(H)$. We also have $\Sigma \subset t^{-1}Ht$. Hence $z(\Sigma) \leq z(t^{-1}Ht)$. Since $z(H) = z(\Sigma)$ and $z(t^{-1}Ht) = u_t^*z(H)u_t$, we conclude that $z(H) \leq u_t^*z(H)u_t$. The left and right hand side have the same trace and hence must be equal. It follows that $z(\Sigma)$ commutes with u_t . Since $z(\Sigma)$ already commutes with $A \rtimes H$, it follows that $z(\Sigma)$ belongs to the center of M .

Finally consider the special case where M is a factor and $B \prec_M A \rtimes \Sigma$. The latter precisely means that $z(\Sigma) \neq 0$. Since $z(\Sigma)$ is a projection in the center of M , it follows that $z(\Sigma) = 1$. Then also $z(g\Sigma g^{-1}) = 1$ for all $g \in \Gamma$. By Proposition 6, we get that

$$z(g_1\Sigma g_1^{-1} \cap \dots \cap g_n\Sigma g_n^{-1}) = 1$$

for all $g_1, \dots, g_n \in \Gamma$. In particular,

$$B \prec_M A \rtimes (g_1\Sigma g_1^{-1} \cap \dots \cap g_n\Sigma g_n^{-1})$$

for all $g_1, \dots, g_n \in \Gamma$. □

References

- [CCJJV] P.-A. CHERIX, M. COWLING, P. JOLISSAINT, A. VALETTE, Groups with the Haagerup property. Gromov's a-T-menability. *Progress in Mathematics* **197**, Birkhäuser Verlag, Basel, 2001.
- [CJ85] A. CONNES AND V.F.R. JONES, Property (T) for von Neumann algebras, *Bull. London Math. Soc.* **17** (1985), 57-62.
- [FV10] P. FIMA AND S. VAES, HNN extensions and unique group measure space decomposition of II_1 factors. *Trans. Amer. Math. Soc.*, to appear. [arXiv:1005.5002](https://arxiv.org/abs/1005.5002)
- [Ki09] Y. KIDA, Rigidity of amalgamated free products in measure equivalence theory. *J. Topol.* **4** (2011), 687–735.
- [Po01] S. POPA, On a class of type II_1 factors with Betti numbers invariants. *Ann. of Math.* **163** (2006), 809-899.
- [Po03] S. POPA, Strong rigidity of II_1 factors arising from malleable actions of w -rigid groups, Part I. *Invent. Math.* **165** (2006), 369-408.
- [PV06] S. POPA AND S. VAES, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups. *Adv. Math.* **217** (2008), 833-872.
- [PV09] S. POPA AND S. VAES, Group measure space decomposition of II_1 factors and W^* -superrigidity. *Invent. Math.* **182** (2010), 371-417.
- [Va07] S. VAES, Explicit computations of all finite index bimodules for a family of II_1 factors. *Ann. Sci. École Norm. Sup.* **41** (2008), 743-788.

Cyril Houdayer
CNRS-ENS Lyon
UMPA UMR 5669
69364 Lyon cedex 7
France
cyril.houdayer@ens-lyon.fr

Sorin Popa
Mathematics Department
UCLA
CA 90095-1555
United States
popa@math.ucla.edu

Stefaan Vaes
Department of Mathematics
K.U.Leuven, Celestijnenlaan 200B
B-3001 Leuven
Belgium
stefaan.vaes@wis.kuleuven.be