# LECTURE 9 COST IN THE LONG RUN SHORT-RUN COST VS. LONG-RUN COST

#### Where are we?

- Production function
  - How firms turn L and K into Q
- Optimal choice of L and K in the short run
  - Cost curves in the short run
- Optimal choice of L and K in the long run
  - To produce a certain amount of output  $Q_0$ , how much L and K should the firm use?
  - How much does it cost to produce  $Q_0$ ?
  - Cost curve: cost as a function of Q
- □ Short-run cost vs. long-run cost

#### Part 1

# Long-Run Cost Minimizing Input Choice

# How much labor and capital should the firm use?

- Recall
  - price of labor is w per unit
  - price of capital is *r* per unit
  - In the long run, both *L* and *K* are variable
- Assume the firm maximizes profit
- □ For any output level  $Q_0$ , the firm chooses L and K to minimize the total cost of production

$$\min_{L,K} wL + rK$$

$$s.t. \quad F(L,K) = Q_0$$

#### Which combination is cost-minimizing?



### Cost-Minimizing Input Choice

- The cost minimizing input combination
  - must be on the isoquant
  - must be on the lowest isocost
- On the isoquant

$$F(L,K) = Q_0$$

Tangency condition

$$MRTS_{L,K} = \frac{w}{r}$$

Equivalently

$$MRTS_{L,K} = \frac{MP_L}{MP_K} = \frac{w}{r} \Rightarrow \frac{MP_L}{w} = \frac{MP_K}{r}$$

# Example: Solving for the Cost-Minimizing Choice of Inputs

Suppose the production function is

$$Q = KL$$

- □ Input prices are w=1 and r=2
- What is the cost-minimizing choice of inputs if the firm wants to produce 8 units?
- □ To minimize cost, the firm chooses *K* and *L* such that

$$\frac{K}{L} = \frac{1}{2}$$

# Example: Solving for the Cost-Minimizing Choice of Inputs Cont'

□ The firm must produce 8 units of output

$$KL = 8$$

Solving the two equations we get

$$L = 4, K = 2$$

# Comparative Statics: Changes in Input Prices and Output Level

- When input prices change
  - How does the cost-minimizing choice of *L* and *K* change?
- When output level changes
  - How does the cost-minimizing choice of *L* and *K* change?
- The above analysis is called comparative statics

### Suppose price of labor drops



#### Suppose Q increases



# Normal vs. Inferior Input

- □ <u>Definition 9.1</u> Normal input
  - The cost-minimizing quantity of the input increases when output increases
  - Holding input prices fixed
- □ <u>Definition 9.2</u> *Inferior input* □
  - The cost-minimizing quantity of the input decreases when output increases
  - Holding input prices fixed



#### Input Demand Function

- As the input prices or the output level change, firm's cost-minimizing choice of labor and capital may also change
- □ Definition 9.3 The demand function of an input is the cost-minimizing choice of input as a function of w, r, and Q
  - Demand function of labor
  - Demand function of capital

# **Example: Deriving Input Demand Functions**

- Suppose the production function is
  - Q = KL

- Input prices are w and r
- □ To minimize cost, the firm chooses *K* and *L* such that

$$\frac{K}{L} = \frac{w}{r}$$

This gives us

$$K = \frac{w}{r}L, \quad L = \frac{r}{w}K$$

# Example: Deriving Input Demand Functions Cont'

Substituting

$$Q = KL = (\frac{wL}{r})L = \frac{w}{r}L^2$$

□ The demand function of labor is

$$L(w,r,Q) = \sqrt{\frac{rQ}{w}}$$

The demand function of capital is

$$K(w,r,Q) = \sqrt{\frac{wQ}{r}}$$

#### Part 2

# Long-Run Cost Curves

# Long-Run Total Cost Curve in Graph



### Long-run Total Cost Curve/Function

- Definition 9.4 Long-run total cost curve is total cost in the long run as a function of Q
  - Holding *w* and *r* constant
- Every point on the long-run total cost curve represents the firm's minimized total cost for a given level of output, holding input prices fixed
- No fixed cost in the long run
  - **■** *LTC*=0 when *Q*=0
- Definition 9.5 Long-run total cost function is total cost in the long run as a function of Q, w, and r

### Example: Deriving Long-Run Total Cost Function

Suppose the production function is

$$Q = KL$$

- Input prices are w and r
- We have already derived the cost-minimizing choice of labor and capital

$$L(w,r,Q) = \sqrt{\frac{rQ}{w}}$$

$$K(w,r,Q) = \sqrt{\frac{wQ}{r}}$$

#### Example: Deriving Long-Run Total Cost Function Cont'

□ The long-run total cost function is

$$LTC(Q, w, r) = wL + rK = w\sqrt{\frac{rQ}{w}} + r\sqrt{\frac{wQ}{r}}$$

Simplifying, we get

$$LTC(Q, w, r) = 2\sqrt{wrQ}$$

#### Average Cost and Marginal Cost

- □ <u>Definition 9.6</u> Long-run average cost (LAC)
  - Total cost per unit of output

$$LAC(Q) = \frac{LTC(Q)}{Q}$$

□ <u>Definition 9.7</u> Long-run marginal cost (LMC)

$$LMC(Q) = \frac{dLTC(Q)}{dQ} = \frac{\Delta LTC(Q)}{\Delta Q}$$

where  $\Delta Q$  is extremely small

# Relationship between LMC and LAC



#### **Economies of Scale**

- □ Definition 9.8 Economies of scale
  - □ If *LAC* is decreasing in *Q*
- □ Definition 9.9 Diseconomies of scale
  - □ If *LAC* is increasing in *Q*

# Economies of Scale in Graph



#### Source of Economies of Scale

- Indivisible input
  - The size of some input cannot be scaled down
  - The cost of the input gets spread out as quantity of output increases
- Returns to specialization
  - More workers can lead to better specialization
  - Specialization improves productivity
  - Example
    - When L=2, K=1, Q=2, suppose w=r=1, LTC(2)=3, LAC(2)=1.5
    - When *L*=3, *K*=1, *Q*=4 because of better specialization of labor
    - *LTC*(4)=4, *LAC*(4)=1

孠

#### Source of Diseconomies of Scale



- Managerial diseconomies of scale
  - An a% increase in Q requires a more than a% increase in the firm's spending on managers

#### Part 3

### Short-Run Cost Vs. Long-Run Cost

# Short-Run Expansion Path



#### Is *STC=LTC* possible?



#### STC cannot be lower than LTC



#### SAC cannot be lower than LAC



### How about marginal cost?



### When does Long-Run Cost=Short-Run Cost?

- $\square$  Suppose in the short run capital is fixed at  $K_0$
- $\square$  Suppose when the firm produces  $Q_0$ ,  $K_0$  is the cost-minimizing capital choice in the long run
- □ When  $Q=Q_0$ 
  - The choice of inputs in the long-run and in the short-run are the same
  - STC=LTC
  - $\square$  SAC=LAC
  - □ SMC=LMC

# Long-run Average Cost Curve vs. Short-run Average Cost Curves

- Suppose if the firm produces 40 units
  - Its optimal choice of capital in the long run is 10
- Suppose if the firm produces 75 units
  - Its optimal choice of capital in the long run is 12
- Suppose if the firm produces 105 units
  - Its optimal choice of capital in the long run is 15

# LAC is the lower envelope of SAC



#### When LAC is at its minimum

- When the firm produces 75 units its LAC is the lowest across all possible output levels
- $\square$  At this output level, the SAC when K=12 must also reach its minimum
  - When *LAC* is at its minimum, its slope is 0
  - At the point where the SAC is tangent to LAC, they have the same slope
  - The slope of the SAC at the point where it is tangent to LAC is also 0
  - Thus SAC is at its minimum

#### When LAC is not at its minimum

- □ SAC is not tangent to LAC at SAC's minimum point
  - When *LAC* is not at its minimum, it is either decreasing or increasing, i.e., its slope is either negative or positive
  - At the point where *SAC* is tangent to *LAC*, they have the same slope
  - The slope of the *SAC* at the point where it is tangent to *LAC* is also either negative or positive
  - □ Thus SAC is not at its minimum

#### LMC vs. SMC



#### The Minimum Point of *LAC*

