(Barown Varenesic "VHDL") Digital Systems
[Mason's Mana Digital Lagic") Algorithmic Layer (Application CFLD Register Jeronifer Digital blocks Grate Level (Cs 206) CAD Layout level -> Hardware design eloot. NOT gate AND gate ORgate XORgate
AB A+B AB+ AB Name Expansion Symbol ñ A YOR B 17 00 0 0 0 0 0 0 0 0 0 0 (17B+ FB) KNOR (y) = XOR A OB AOB = AB+ AB

	Basic Harioms 3-		*			P. No:
	Basic Harioms 3-		t			
	Basic itxioms 3-		*:			
	Basic Hacions 3					
			00	- n		
17	0+0:0	25	0.0			
27	011 = 1	63	0.1			
37_	1+0-1	-17	1.1	20		
uz	1+1=1	%				
	Boolean Lacus:					
		8				
17	Commutative Lac					
	A+B=B+A	ω				
	AB = BA			,		
	1311					
22	17880ciative Laco					- 1 · 1
	17880ciative Laco				-00	(A) (E)
	A+(B+C) - (A+B)	+ C				
	A(BC) = (AB)C			3		
0	, , , , , , , , , , , , , , , , , , ,	-				
37	Distaributive Law.			l el	* =	
	AB+A(=A(B+C)					
			2		ľ	
	Rules 3-					
						101
13	D = O + F		7.7	0 = A A		
27	A+1 = 1					
31	A.O = 0			A.A = B		
4)	A-1 - A		76	· Ä = A	5.1	
2,5	· A + A = A		103	A + AB=		8)
63	A + A = 1				A	2000
0(17 4 14 - 1		12	A+ QB=	(A.A) (14 7 5)
			12 -	(A+B)(A+c)	RAB	(Dosee)

	Combining Laws-
	4
12	F(A+B)=A
27	
32	$H + B \supset (A + \overline{B}) = H$
	AC+BE - AC+BE+ AB (consensus law).
3 3	
	Facility of the second
	Consensus Law: F- AC+BC+AB
	TAC + BE + AB (C+E)
	= AC + BC + ABC + ABC
	FAC (LAB) + BC (LAB)
	= AC+ BC
	F= (A+B)(A+c)
	Demosigan's Lawis
	78 = A+B
17	
2-7	P+B = A.B
	Total Quartus UB+ (CAD tool)
	Intel Quartus UB+ (CAD tool)
-	

	Date: (P. No:	
	Tutarial - 1	
1.	Convert from decimal to binary:	1
	6) 0.188 b) 410	_
	Heradecimal to decimal Jacan 257.7B	_
	Hexaderimal to binary of 3ACF7	_
Ч.	Octal to decimal of a 2 531 by 320.127	_
5-	Decimal to octal of 316.32	_
Prod (I) -	Subtract using Complement Method:	
0-1-	Subtract (1000) - (1110) using 2's complement metho	√.
0.2-	Subtract (13250), - (72532), Using 9's complement method	
0.3-	Subtract (3250), - (72352), Using lo's comprement me	(he
GJ.O. •	The struct is a tre number.	_
0	If no covery bit take I's complement of the smult which is negative.	

Date:

	Code Conversion and BCD addition/ subtaction:
Q. I.	Convert (101100011) BCD to decimal
<u>Q-2</u>	Convert (379) to BCD
0-3-	Convert Group rade (11011) gray to binary.
	Convert binary (10110) Pinaria to Charan cays.
	BCD addition of (01100110) and (01010011)
<u> </u>	Add following using BCD addition method: (956), and (452),0.
6.7	Subtanct fallowing using BCD subtanction method: (17), and (12), a
£45_	

Date:	
P. No:	

Minterm: In a J'est n' variables, each Jean appears at least once.

SOB: ABC + AC (Non-standard)

Percoduct of Sum (PoS): (A+B+C).(A+C)

Marterm

Conmical Standard Sept Pas :-

C. A.D Convert :-

X= AB+ ABC = AB(C+E) + ABC

= ÂBC + ÂBC + ABC (all agre minterms)

eda Convert 3-

X= (A+B) (A+B+C)

= (A+B+C=) (A+B+c)

= (A+B+c)(A+B+c)(A-B+c) (all one marchene

	Combinational Circuits:
()_	Half-Addes (HA), -, (1-bit addes).
	Half-Addess (HA), (1-bit addess). - 2 Addition of 2 boolses variables
	4
	B - H - S (Sum) B - C (Casury)
	B - A - C (Coory)
	Touth Table 3-
	R B 5 C S = RB + AB = A + B
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 1 1 0 0 0
	1 D D XOK
•	NAND logic: S= AB+DB
	- ABTAATAB+BB
	= A(A+B)+B(A+B)
	= (A + B)(A + R) $= (B + R) DR$
- 1	- (H 1 K) (ID

= A. AB + B. AB

$$S = (\overline{A.AB}) \cdot (B.\overline{AB})$$

$$X = \overline{X} + \overline{Y}$$

$$X = \overline{X} + \overline{Y}$$

	Full addess:
	B A Cout
- O - 1 - 3 - 4 - 5 - 6 - 7	17 B C S Cool 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1
	$S = \sum_{m} (1,2,4,7) = \overline{ABC} + \overline{ABC}$

= C (A 8 8) + A B

Date:	
P. No:	

1,

- 7		S. C-NB-BC-CA
		VHDL Fundamentals VHDL: VHSIC Hondamere Description Language
		VHSIC: Very High Speed Integrated Circuit.
		Other languages: Verilog, 17HDL, etc.
		Template: > Interface Rooms > Declaration (i/Ps) T/P, O/Ps Body
		1/P, 0/Ps (Architectuse) 0/P (1-1/11) [n-6/11)
		Pasels: Pacimony I/P. O/P.
		Key woords :-
	->-	TS, IN, OUT, PORT MAP, END, START, INDUT
	->	There are case insensitive

	Descriptions?
	Co Cropinalisa
17	Bignal names: (an be innumerated through commusi)
22	Mode: IN-specifying that signal is an input
	INOUT- specifying signal is both i/p & o/p.
	Bullen -
	F F
	A A
	1 Dignot 1
27	Type: Built-in are user defined signal type:
-3(-	The part - in an over refined signed side.
	example :
	bit: can have legical value 0 asi 1.
	al land can have bollen when Claby ide
	81d-lagic vector: can have vector of bit values.
	(n docento o).
	f 3 docento 0
	Y-bit
	e.g.
	ENTITY AND I

	P. No:
e.8	ENTITY AND IS
	Part / 2. IN Std-ragic
	y: IN std-logic; F: OUT 8td-logic);
	F: 6UT 8td-logic);
	end ANDZ;
	aychitecture rame
	Regin Regin
	FEX ANDY;
	end AND2
1	
1	Liberagiies ?-
	Liberary IEEE;
	USE JEEE stalogie - 11640ADL;
	USE IEEE Rumeric std o'All;
	USE IEEE Std-logic asith. All;
	· · · · · · · · · · · · · · · · · · ·
	1315. 7
	5. X, = 1 102 1

	(P. No:
	Tutorial - 2
1.	Expres f= A+B'c in -canonical+ forms
	Sop and Pas.
2.	# F O L C (20 a 217 a 22
	TEB+c (AB+AC)), no. of NAND gates susquished
	to clesion the logic.
3.	I& (AOB)OB - A + (BOC) + (ADA)
	18 (HOB) OD - HO (BOC) + (HOH)
4.	(A'+B) - ?
	(145) (145) = C
-5-	$F(A,B,C,D) = \pi(0,1,5,7,8,9,15)$
5~_	F(D & C D) = T (D & C)
	(A,B,C,D)= (10,13,14)
	- 1 XII (%) 1 1 1
m, <n< th=""><th>F = A + B'C</th></n<>	F = A + B'C
	= A (BC+BC) + AB'C+ A'B'C
-	- ABC + ABC + ABC + FBC
	= ABC + ABC + ABC + ABC + ABC + ABC
	+49c
	F = ABC + ABC + ABC + ABC + ABC
	F = A + B'C + CC' =+ F+ C(B'+C')
	= A.(B+C)
	f=(F')'= (A'. (B+c'))' = (A'B+A'c')
	f=(E,), = (H, (B+C,)) = (HB+HC,)
	(A+B'+c).(A+B'+c)()()()=(A+B').(A+O)

			00	01		10
5 - a)	Ag	00	1	1		0
	AB	01	0,	1.	1	0
1	AB	11	0	X.	1	×.
1	AB	10	128	1	0	X
			-		- 1	ra

رَى مِي مِنَ فِي رِي

n-6.88-27

3

A'B'C' (D+ D'E)

Delay of RCA 3-	
T= (17-1) To t Ts To: delay of carry being rippled through the previous stages. To: Delay of proclucing the final stage scum	
Agen of RCA: To X AFA (can be found using now of go	Jes gic)
1 inventor > 1 n mos 1 c mas	
nxAfr= (R-1) Afr+ Flan (if Cin=0) e. 2. Complementagy Metal axide Semic PA = (R-1) Afr + Flan (if Cin=0) e. 2. Complementagy Metal axide Semic	20 notice
Entity FA is posit (a,b, Cin; IN std-logic;	
S, C : OUT std. lagic); end FA; Penchitecture FA behaviour of FA is	
Beign SE (a xor b) xor Cir. CE (a AND b) OR (Cir AND (a xor b));	

Date:	
P. No:	

	Liborary JEEE;
	Using JEEE, Adalogic 1164-all;
6 () ()	Entity FOURBIT IS PORT (a,b 3 IN 8td-logic-vector (3 documbo 0);
	Cin: IN std-lagic;
	S: OUT 81d lagic-vertage dansola v);
	End FOURBIT;
	They is the little of the state
	Asichitecture Fourtstruc of FourBIT IS
	Signal C: 87d-lægic vector (4 dounte 1);
	7
	Component FA
	posit (a, b, &, Cin: IN 81d-lægic)
	S. C. OUT std-logic);
	end component;
	Begin keywood
	FA(0): FA poort map (a(0), b(0), Ca, S(0) ((1));
	FA(1): FA postmap (a(1), b(1), C(1), S(1), c(2));
	FA(2): FA postmap (a(2), b(2), c(2), s(2), c(3));
	fA(3): FA postmap (a(3), b(3), c(3), c(3), c(4));
	Cout = (4);
	Court TIA
	END FOUR- STORY

(Schematic capture) -> design entry modes

Date:	
P. No:	

Addess (cogld.)

Date:	
P. No:	

	(P. No:
	BCD Addes
	Adde 2 binary digits Each binary digits represented as 4-bit numb Peroduces sum between 0-9
-	e.8.526 is represented as
	0101 0010 0110
11	010100100110
	Case 12 Sum equals to 2 now less with
	6 .01 to
C	Case 27 Sum greater than 5, with casery 1:- 7 0111 +9 1000 onge 10000 sum the invalid 0/P with 6.
	0000

3
Date:
P. No:
(P.No.
bc+ ac+ab
bc + ac.
bex ac'
• 14.
bc bc
1-12-co =0-
1
a a
-
م از د
I to
t y
(cl+ac)
pp, P(6+0) + C,(C+0)
(C+a)(c'+b)
5 1 1 1
£+6:10:10b

by -> liberary TEEE; (c+a)(c'+b)

Use TEEE std-logic 1164 all; c+bi ci+ab

entity ciacuit is

PORT (a, b, c, d: † N std-logic; ca.c + ca.b

f: Out std-logic);

General;

· Tutorial-4

1.a2 - F = bc + bcd + ac + ab

= bc + ac' + ab

= a(b+c) + bc

onchitecture cinquit est dinquit is

begin

F (c OR a) AND ((NOT c) OR b);

end cinquit;

Digital THAMSMission

		7				
				> Lo	ž.	
>	do	-g.		_ i,		
8:3		er er	3:8	_> j,_	64	
= Encodor	1	0	Deroden	→ is		
	<u></u> >	51	6	-134		
>	de	4.	9	-> J _s		
				-→ j ₆		
—>				-> j ₇		
	**	4				

2:4 Decaders-

		90	Decoder with
,	10	J.	enables : Decoder je greeponsible
<u></u>	- Î.,	ما	for converting on I/P binerry no
	+	ds	into a high of Pline.
	le		4

	e	l i.	io	100	1	de	da	It is a combinational
	0	0	0	0	0	0	0	ckb. that convends
	O	a	٦	P	0	0	0	binancy inges forcem in
	0		0	0	0	3	0	is sing to "2"
	0		d	0	101	-01	O	ON lines.
	1	0	0		O	0	0	
	-1		1	0	1	d	0	Qe=0, the decoder
Ī	1	1	0	9	0	11	0	CKIE is disabled OFF
	((1	7 /	01	D	lo	١	(Qe-1 the decoded
		~	2				-2	ckt works normally
	2	67 3	P	4-	bi+ 7	912	1	4

Date: P. No: Psicosity Encodes: Periodity 17, n. 02 D, D. 0 4:2 P.E. 0 0 O 0 \circ 1 . Ó X 0 Ĺ ۲

	Tutorial-6
	IQ TO STATE OF THE PARTY OF THE
2	
<u> </u>	Stauctural UNDE Jan full addons-
	library IEEE;
	Use IEEE- 812- logic 1164 all;
	entity on 2 is
	PORT (a, b: IN std-legic;
	T: OUT 81 d-logie);
	end and;
	anchitecture and of any is
	begin
	$x \leftarrow a \circ R \cdot b$
	end asi-2;
le.	the second secon
	t ₁
1	entry half-adder is
	PORT (x. y : IN std-legic;
	8, C: OUT std-logic);
-	
	architecture half-adder of half-adder is
	Compropert wer 2
	PORT (a,b: IN std_logic;
	X: OUT Ad logic);
	end component;

	Date: P, No:
	MULTIPLEXER
	9- 4:1 oy c- MUX D- 5, 5 ₆
_ Pf.	A digital (kl. with 2" inputs & one confect line (2":2)
	n: # select lines/contenal lines
	8 — o y c — o D — o S S S o
	4 input Androg Mux (800itch)
	Encoder: 2°-> 2 Decoder: 12->2° 1MUX: 2°->1

Toruth Toble :-

S, So Y -> Y-5,'So'A + 5,'SoB + 5,50'C + 5,50D

0 O A

0 1 8

1 1 D

S, S, ABCD

5, 5, 5, Y

0 0 H

0 1 0

0 1 3

1 0 0 1

1 O I F

1 1 0 6

1 1

Y= \$ 5 5 1 + 5 5 5 8 + 5 5 5 C + 5 5 5 D + 5 5 5 F + 5 5 5 F + 5 5 5 6 + 5 5 5 H

Multiples Addess (IM) (IA) This State Buffield (TSB) (Date: P. No:
Multiples Addes (1M) (1A) This State Buffers (TSB) (TS			
Ty:-State Buffield (TSB) (TS		y= x, x x2 + m, + m2 + n, x n2 + Z, x Z	
Ty:-State Buffield (TSB) (TS		M. Olles Addes	
Ty:-State Bulfiers (T,5 B) ((
Ty:-State Bulfrows (T,SB) (T,SB) At TSB has one i/p one o/p and one control line(e) (T,SB) (T,SB		5,210,7	
Ty:-State Bulfrows (T,SB) (T,SB) At TSB has one i/p one o/p and one control line(e) (T,SB) (T,SB			
(T,SB) (A) TSB has one i/p one of and one control line (e). (Control line (e). (Con have 3 of states (Con have			
(T,SB) (A) TSB has one i/p one of and one control line (e). (Control line (e). (Con have 3 of states (Con have		Tyi-State Bultages	
Pf TSB has one i/p one o/p and one control line (e). Ex f f con hand 3 o/p states o o z			
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, i To bigh-temperature (ofen-ckt) The con y = 7 Achive-high else y = x non-invested			
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, o, To high-temperature (open-ckt) I o o Achive-high else y=x non-invested			
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, o, To high-temperature (open-ckt) I o o Achive-high else y=x non-invested	10		
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, o, To high-temperature (open-ckt) I o o Achive-high else y=x non-invested	الليالية		
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, o, To high-temperature (open-ckt) I o o Achive-high else y=x non-invested			
Achive-high TSB has one i/p one o/p and one contract line(e). I con have 3 o/p states 2, o, o, To high-temperature (open-ckt) I o o Achive-high else y=x non-invested			
exf f con hand 3 of states o o z 'z', 'o', 'i' o i z Z high-temperature (offen-ckt) I o o Active-high class y = x nour-invested			
exf f' con hand 3 co/p states co o z 'z', 'o', 'i' o i z Z high temperature (open-ckt) I o o Active high class y = x nour-invested		0 =	
exf f' con hand 3 co/p states co o z 'z', 'o', 'i' o i z Z high temperature (open-ckt) I o o Active high class y = x nour-invested		It ISB has one i/p one ofp and	One
Active-high Place $y = x$		control line (e).	
Active-high clase $y = x$		1-16	
Active-high Place $y = x$		e & J con hand 3 o/	States
Active-high Place $y = x$		0 0 2	
Active-high Place y= x non-invested		E-> high-temperature	(open-ckt)
nan-invested			
nan-invested		1	
LCB WOWER		non invested	
		LCB.	

		Date: (P. No:
Se	Imbols ?-	
		1.1 -2.1
-	21111	
G	non-invested	by Active - high
	10	
(2)	Active low	d) Active Loss
64	non-invested	Bat between i
	1-2	
<u>ယ</u> - မ		0777
60	², ´¹¹, ´₹', ´X¹→	x: don't coole 1x: conflict of output
		"U": Uninitialized its value.
		3

				13	ate: . No:	
		Paril	1 04			
		Parity Gene Func	1. States			
	dato aresid	Lunc	rion.			
n	- B C	0/0	(P)	o code a	mad	
0	0 0	1	(10)			
0	0 1	0			U	
0	1 0	0	Υ.			
5		0			7	
1 7	0 0					
	0)	<u> </u>				
	1		101			
1		0	7			
Pa	(A,B,C) = (A,B,C) + (A,B,C) + (A,B,C) + AB' (A)B+AB'	E (0,35,	e) - AB6			
	COA DB		1. 2.1			_
	B-	c		·	n (<u>c</u>	_
Singl	e event ups	el (SEU) ~	· Ne	send on	extero.	ს, ↓
0200	ned during	Inonemies	lion.	edisc if	017-3-47	

Delects but does not rectify. Con't detail mostible

_												
		099	Posity	Clare	- 1,40							
			4									_
		H	B	.c.	P		,2F. C					
	0	0	0	0	ט	1	1		, in			
	1	0	0	0	1	• •	_0_					
	2	ی	0	4	0_		0					
	3	0	0		1	,						
_	ď	0		_0_	0		0					
	5	٥	1	0	Ý							
_	6	0	C	1	0				_			
	7	0)		A.		0					
	8		6	0	0		0			_		
_		1-	0	0	1		41 9					-
_	10	1 -	.0	1 2	0	4 ft.	1	-				
	tt	-	0	((0	. !				
-	12_			0,,,	0		1					
	-13-	100	•	0	1(100)	÷.	0	3.		1		
_	ાવ	1/20	(-	1	0	-	0				_	
	15	1	· ·	(1-1		1		-		-	
_		-					Jag a					
		Con	cepf: (cr)12.	nd:	0 C	reck	Jan-
		odd number of 1'8.										
		If odd # 1's one present, then PEC = 0										
		250 - 1										

clac PEC = 1.

PEC = 51 (0,3, 5, 6, 9, 10, 12, 15)

Date: P. No:

		(7.10.
	18 0 1 0 1 0 1 6 1 6 1 0 1 6 1 0 1 6 1 0 1 6 1 0 1 6 1 6	
	PEC: ABED + ABED + ABE	D + ABCD + ABCD
	+ ABC5+ ABE5+ A	
	-> A (B = 5+ B C) + B = D + B	(6) + 0(8E) + R(6)
		+ BED + B(D)
	-> A (BOCOD) + A (BOC	(A (B)
	-> A & B & C & P	(D = P)
	-> ABBGCAB	
	₩ 10 H	
	ABCDE, E.E.	
	0000011	E3 = 2m(5,6,2,8,9)
ı	0 0 0 1 0 0 0	F2 = Em (1,2,3,4,9)
3	0 0 1 0 0 1 0 1	E. = 5m (0, 3, 4, 7,8)
3	00110110	E = 5m (0,2,4,6,8)
4	0 1 0 0 0 1 1 1	
S	0 101000	
6	0 1 1 0 1 0 0 1	
}	0 11.1 10 10	-
8	1 000 1011	
_ 3	10011100	

BCD to XS-3 converted

Digital Design

C

Implementing Adder Using Decoder:-

Designing 4:1 MUZ -

	Date:
	Design 8:1 Mux using 4:1 Mux and 2:1 Mux
	7-
	I.— U.)
	-T MUX
	J ₃ —
- 12	5 50 NUX Y
	7
	I ₅ 4.1
	J. M bx
F. 1984	J
	7, 50
ķi.	
Ú	
Oney.	J(A, B, c, D) = 5, m (2, 4, 6, 2, 9, 10, 11, 12, 15)
	Implement the boolean function very S: 1 MUK.
	, 0-
l-	5-
î	1-
	D-
	1 —
	5-
ii ii	Sl. Sl. Sl.

	Date; P. No:
<u></u> 3/.	Impleating INVERTER Using MUX:
<u></u>	Shannon's expansion ->
	f= xfx + x'fx' '
	where f is any function
	Ex and Fx' rage the positive and negative shannon
<u> </u>	CO-factors.
	neg cosaction is evaluated @ x=0
Ŭ	
\rightarrow	F=C'
	x = c $x = c$ $x = c$
7	Free C' Fac
	=> F= 1 C' + O C (ox) O C + 1 C'
	·c

Digital	Com	page.	00183-
---------	-----	-------	--------

1-Bit Camparalasi:-

R:	B;_	E;_	L	G:
0	0	્ય	.0	D
0	,	0	1	٥
r	0	D	0	(!!
	/		ಎ	0_

->
$$L = \overline{A_3} B_3 + (A_3 O B_3) (\overline{A_2} B_2) + (A_3 O B_3) (A_5 O B_3) (\overline{A_2} O B_3) (\overline{A_3} O B_3) (\overline{A_3}$$

$$-> G_{1} = P_{3} B_{3} + (P_{3} O B_{3}) (P_$$

Date: P. No:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,	BA=E	PI<	A> A) <u>D</u>	n R	1 A2 , B2	A3 , B3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		011-1	L	H	10,00	Y	1 2 1 22	A > B =	
$A_{3} = B_{3}$ $A_{1} > B_{2}$ X		L	Н		1		1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		L		1			$A_2 < B_2$	A3 = B2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		L		H ·		A, > B	A = 32	A = B,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		L	1-1	- (1	A. < 9.	A2 = B2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		L	·	H	An > Bn	A = B.	A2 = B2	A = B3	
$A_3 = B_3 \qquad A_2 = B_1 \qquad A_1 = B_2 \qquad A_0 = B_2 \qquad L \qquad L \qquad H$		L	H				A2 = B2	A3 - B3	
		H	L	L	Ao - Bo	A = B	1 Az = Bz	A3= B3	
		•		111	,				
		37	= =						
					-2	П,			
						-			
			7						-
					,				
	7							, , , , , , , , , , , , , , , , , , ,	
				ت الماضي	``				
				•.					
			-			•			
							+		
				94					

Date: P. No:

	Crontar	al Line	8 %- (igrals)		0.65	(64)	
	b-inv	a ba						
	0	00	AND					
	0	01	OR				- 1	
	0	10	DOA					
		, 0	SUBTRA	CT			17. 17	
					1 -		3-1	
							-39 ₋₅	
	1		-					بــــــ
	lest	of 1	= quality	°-				
	1	1 - B -						
	3	thon 7	esco Mag	1-1				
	die	SINN C	Da Dag			de Van G	100	1.11
		3= OK	,	- a - 1		10		
		inv						
		0. 1				ty in	. 81	
			U0 -	Regult	-0			
opio	de							
-1	1-1-	0, 10,	<u> </u>	0 0	-1	. 70	910	
-		6 AL	U ₁ (Result i	$\rightarrow \rightarrow$	-Do-		
	-		1					
	1							
		03,		Reside 3				
\uparrow		131- I	· U ₃₁			-		
	1							

	Date:
	P. No:
<i></i>	
/	
	Henning Code or
).	
	(1) (2) 3 (4) 5 6 7
	P3 P2 D1 P3 D2 D3 D4
1	
1	4. bit data wased
á e	7-6+ rade wood
4	.3-bil possily
1	To board
	3 10 10 10 10 10 10 10 10 10 10 10 10 10
	Rules Jos Hanning Code Generation
4	•
/	
_ Step 1:	Mark all bits that are power of 2 as
	posity bits. (1,2,4,)
Step 2:	Mark all the remaining positions for date encoding
012	1- 1 1 it only Males the howite of scame 1:48
Step 3:	Fach posity reliculates the posity of some bits. Position 1: 5kip 1 bit. Check 7 bit. 5kip 1-bit.
-1	De Col I O III Children
544:	Position 2: Sheck 2-67. 5kip 1-611. e-a
	Pasition3: Check 4-bits, Skip 4-bits,
	Position 8: Chek Sbile, Skip 8 bile,
Story:	Set the harity bit to is it threate are add no.
	Set the parity bit to is it there are add no. of is (because - we're checking for ever parity).
	A T Concava Comme Concava A
-	

	P. No:
	Data word:
>	10011010
	1 2 3 4 5 6 7 8 9 10 11 12
	0 1 2 1 2 0 1 0 1 0
	P. P. D. P. D. D. D. D.
	Post -> 1,3,5,2,9,4,
	Per 2 -> 2.3 = 6.7 = nu
	Posu → 4, 5, 6, 7, 12, 19, 14, 15
Stenson then	Cade Word - 011100101010
Received	Code Wood - 011700101010
)	F 2 -2
0	Check from even posity @ posis: 8,9,10,11,12
	-i Jails
	-> x, = 1
(D).	Check food even posity @ posite: 4.56,7, 12
	→ pouses
<u></u>	-, X==0
(3),	Chele for ever " " 1: 2.3.6.7.10, 11
	-1 30:19
	-1 X3 =10 1

Date: P. No: pas 2: 1, 3, 5, 7 D, 1 \mathcal{I}_{\bullet} χ^3 X. Yy DOST 10