

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Seconda prova intermedia 17 giugno 2010

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione del pane su scala industriale segue un processo in cinque fasi: (1) preparazione ingredienti, (2) impasto in gradienti, (3) prima cottura, (4) trattamento superficiale pane, (5) seconda cottura. Un forno dispone di:

- 3 impastatrici A,B,C di capacità (in kg di farina per ora) 10, 5, 7 rispettivamente;
- 2 forni D,E per prima cottura di capacità (in kg di farina per ora) 8, 13 rispettivamente;
- 1 forno F per seconda cottura di capacità (in kg di farina per ora) 21;

- Personale largamente sufficiente a seguire tutte le lavorazioni manuali.
- Si vuole determinare la produzione massima del forno (in kg di farina per ora).
- 1. Formulare il problema come un opportuno problema su grafi <u>descrivendo il</u> problema, archi, nodi e pesi del grafo
- 2. Risolvere il problema con un algoritmo specifico
- 3. Mostrare un certificato di ottimalità della soluzione.

Esercizio 2

In tabella sono riportati gli archi di un grafo con 4 nodi ed è dato il costo di ciascun arco. Risolvere il problema del cammino minimo dal nodo "a" a tutti gli altri nodi con l'algoritmo di Floyd-Warshall. Discutere la correttezza dei risultati ottenuti. In caso positivo mostrare i cammini, in caso negativo mostrare un ciclo negativo.

Archi	(a,b)	(a,c)	(a,d)	(b,a)	(b,c)	(b,d)	(c,b)	(c,d)	(d,a)	(d,b)	(d,c)
Costi	3	-5	4	7	1	1	2	4	1	0	-3

Domanda 3

Definire il problema di Flusso di costo minimo, illustrare un algoritmo noto per risolverlo e dimostrare la struttura grafica di una base della matrice dei coefficienti del problema in forma standard.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Seconda prova intermedia 17 giugno 2010

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione di ceramica può effettuarsi con due processi. La bicottura prevede: (1) preparazione di un grezzo crudo, (2) prima cottura, (3) pittura terracotta, (4) cottura finale. La monocottura evita la fase di prima cottura e prevede la pittura del grezzo crudo. Un'azienda ceramica che produce vasi dispone di:

- 4 operai per la fase (1) pagati a ora, ciascun operaio produce 2 vasi crudi l'ora e lavora 7 ore/giorno per 5 giorni/settimana al costo di 10 €/ora, può lavorare ulteriori 2 ore/giorno di straordinario al costo di 14 €/ora;
- un forno per la prima cottura che cuoce vasi crudi al costo di 0,2 €/vaso;
- un forno per la cottura finale che cuoce vasi crudi al costo di 0,3 €/vaso e terrecotte al costo di 0,1 €/vaso;

Per la pittura l'azienda si rivolge ad artisti esterni pagati a cottimo: 3 €/vaso per la pittura dei vasi crudi e 2,4 €/vaso per la pittura di una terracotta. Tra una settimana dovranno essere pronti 152 vasi in monocottura e 165 vasi in bicottura.

Si vuole determinare la produzione di costo minimo.

- 1. Formulare il problema come un opportuno problema su grafi <u>descrivendo il problema, archi, nodi e pesi del grafo</u>
- 2. Risolvere il problema con il simplesso su reti (fase 1 e fase 2).
- 3. Mostrare un certificato di ottimalità della soluzione.

Esercizio 2

In tabella sono riportati gli archi di un grafo con 6 nodi, e sono dati i valori di capacità degli archi ed un flusso iniziale. Si verifichi che il flusso dato sia ammissibile. Se il flusso dato risulta ammissibile, trovare il massimo flusso inviabile dal nodo 1 al nodo 6 con l'algoritmo di Ford e Fulkerson partendo dal flusso dato, se il flusso non è ammissibile partire dal grafo completamente scarico. Individuare il taglio di capacità minima nel grafo.

Archi	(1,2)	(1,3)	(2,3)	(2,4)	(3,4)	(3,6)	(4,5)	(4,6)	(5,6)
Capacità	6	47	4	8	40	9	27	16	34
Flussi	6	14	0	6	14	0	20	0	20

Domanda 3

Definire il problema di cammino minimo, illustrare un algoritmo noto per risolverlo nel caso in cui siano presenti archi di peso negativo e dimostrare il teorema di Floyd-Warshall

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione del pane su scala industriale segue un processo in cinque fasi: (1) preparazione ingredienti, (2) impasto in gradienti, (3) prima cottura, (4) trattamento superficiale pane, (5) seconda cottura. Un forno dispone di:

- 3 impastatrici A,B,C di capacità (in kg di farina per ora) 10, 5, 7 rispettivamente;
- 2 forni D,E per prima cottura di capacità (in kg di farina per ora) 8, 13 rispettivamente;
- 1 forno F per seconda cottura di capacità (in kg di farina per ora) 21;

- Personale largamente sufficiente a seguire tutte le lavorazioni manuali.
- Si vuole determinare la produzione massima del forno (in kg di farina per ora).
- 4. Formulare il problema come un opportuno problema su grafi <u>descrivendo il problema, archi, nodi e pesi del grafo</u>
- 5. Risolvere il problema con un algoritmo specifico
- 6. Mostrare un certificato di ottimalità della soluzione.

Esercizio 2

È dato il problema di PL in figura.

- 1. Portare il problema in forma standard.
- 2. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema o dimostrare che il problema è impossibile o illimitato inferiormente. Applicare la regola di Bland.

$$\max \quad 3x_1 + 2x_2 - x_3$$

$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 5 \\ x_1 + 2x_2 + x_4 = 4 \\ x_1 - 2x_3 - x_4 = -2 \\ x_1 & libera \\ x_2, x_3, x_4 \ge 0 \end{cases}$$

Domanda 3

Illustrare le definizioni di vertice e direzione estrema. Enunciare il teorema di Minkowski-Weyl e utilizzarlo per dimostrare che se un problema di PL in forma standard ammette soluzione ottima, allora ammette soluzione ottima su un vertice.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione di ceramica può effettuarsi con due processi. La bicottura prevede: (1) preparazione di un grezzo crudo, (2) cottura 1, (3) pittura terracotta, (4) cottura 2. La monocottura evita la fase di cottura 1 e prevede la pittura del grezzo crudo. Un'azienda ceramica che produce vasi dispone di:

- 4 operai per la fase (1) pagati a ora, ciascun operaio produce 2 vasi crudi l'ora e lavora 7 ore/giorno per 5 giorni/settimana al costo di 10 €/ora, può lavorare ulteriori 2 ore/giorno di straordinario al costo di 14 €/ora;
- un forno per la cottura 1 che cuoce vasi crudi al costo di 0,2 €/vaso;
- un forno per la cottura 2 che cuoce vasi crudi al costo di 0,3 €/vaso e terrecotte al costo di 0,1 €/vaso;

Per la pittura l'azienda si rivolge ad artisti esterni pagati a cottimo: 3 €/vaso per la pittura dei vasi crudi e 2,4 €/vaso per la pittura di una terracotta. Tra una settimana dovranno essere pronti 152 vasi in monocottura e 165 vasi in bicottura.

Si vuole determinare la produzione di costo minimo.

- 1. Formulare il problema come un opportuno problema su grafi <u>descrivendo il problema</u>, archi, nodi e pesi del grafo
- 2. Risolvere il problema con il simplesso su reti (fase 1 e fase 2).
- 3. Mostrare un certificato di ottimalità della soluzione.

Esercizio 2

È dato il problema di PL in figura.

- 1. Costruire il problema duale.
- 2. Trovare la soluzione ottima del problema duale sapendo che la soluzione ottima del primale è $x^{*T} = (0.5 \ 0 \ 2 \ 1.5)$.
- 3. Determinare il minimo valore del termine noto del terzo vincolo del problema primale affinché la base associata alla soluzione ottima rimanga la stessa.

min
$$2x_1 + 4x_2 + x_3 - x_4$$

$$\begin{cases}
4x_1 + x_2 \ge 2 \\
x_2 + 2x_3 = 4 \\
x_3 + 2x_4 \le 5 \\
x \ge 0
\end{cases}$$

Domanda 3

Definire il problema di cammino minimo, illustrare un algoritmo noto per risolverlo nel caso in cui siano presenti archi di peso negativo e dimostrare il teorema di Floyd-Warshall.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione del pane su scala industriale segue un processo in cinque fasi: (1) preparazione ingredienti, (2) impasto in gradienti, (3) prima cottura, (4) trattamento superficiale pane, (5) seconda cottura. Un forno dispone di:

- 3 impastatrici A,B,C di capacità (in quintali di farina al giorno) 10, 5, 7 rispettivamente e di costo 11, 12, 10 rispettivamente (in € per quintale);
- 2 forni D,E per prima cottura di costo (in € per quintale) 8, 13 rispettivamente;
- 1 forno F per seconda cottura di costo (in € per quintale) 21;
- Personale largamente sufficiente a seguire tutte le lavorazioni manuali.

Gli ordinativi del giorno richiedono di produrre 18 quintali di pane. Si vuole determinare la produzione di costo minimo del forno assumendo che il prodotto non perda peso nelle varie fasi di lavorazione e che la capacità dei forni sia infinita.

- 1. Formulare il problema come un opportuno problema su grafi <u>descrivendo il</u> problema, archi, nodi e pesi del grafo
- 2. Risolvere il problema con un algoritmo specifico
- 3. Mostrare un certificato di ottimalità della soluzione.

Esercizio 2

Dato il problema di PL (primale) in figura,

- 1. risolvere il problema primale con il metodo grafico ed impostare il problema duale;
- 2. se il primale ammette una soluzione ottima, dalla soluzione ottima del primale ricavare la soluzione ottima del duale con le condizioni di ortogonalità. Se il primale non ammette una soluzione ottima, risolvere il problema duale con il metodo del simplesso.

$$\max x_1 + 2x_2$$

$$\begin{cases} 5x_1 + 3x_2 \le 30 \\ -x_1 + 2x_2 \le 8 \\ -x_1 + 5x_2 \ge 20 \\ x \ge 0 \end{cases}$$

Domanda 3

Illustrare le definizioni di insieme convesso, funzione convessa, problema di programmazione convessa. Dimostrare che nei problemi di Programmazione Convessa un punto di minimo locale è anche punto di minimo globale.

Nome:	0	Ordinamento 270/04 – Laurea ing. Inf.
Cognome:	0	Ordinamento 509/99 – Laurea ing. Inf.
Matricola:	0	Altro

Esercizio 1

La produzione di ceramica può effettuarsi con due processi. La bicottura prevede: (1) preparazione di un grezzo crudo, (2) prima cottura, (3) pittura terracotta, (4) cottura finale. La monocottura evita la fase di prima cottura e prevede la pittura del grezzo crudo. Un'azienda ceramica che produce vasi dispone di:

- 5 operai per la fase (1) pagati a ora che producono 1 vaso in 30 minuti al costo di 2 € oppure in 20 minuti al costo di 3 €;
- un forno per la prima cottura che cuoce un vaso crudo in 2 ore al costo di 0,9 €/vaso;
- un forno per la cottura finale che cuoce vasi crudi in 2 ore al costo di 1,3 €/vaso e terrecotte in 10 minuti al costo di 0,3 €/vaso;

Per la pittura l'azienda si rivolge ad artisti esterni pagati a cottimo: nella modalità standard

un pittore prende 6 €/vaso per la pittura dei vasi crudi e 5 €/vaso per la pittura di una terracotta e restituisce il vaso dipinto dopo 2 ore. Nella modalità veloce viene restituito il vaso dipinto dopo 1 ora con un aumento di costo del 20%.

Si vuole determinare la modalità di produzione di un vaso a costo minimo e la modalità di produzione di un vaso nel tempo minimo.

- 1. Formulare i problemi come opportuni problemi su grafi <u>descrivendo i problemi, archi, nodi e pesi dei grafi;</u>
- 2. Risolvere i problemi con un algoritmo opportuno tra quelli studiati.
- 3. Mostrare la differenza di costo delle due soluzioni.

Esercizio 2

Dato il problema di PL (primale) in figura,

- 1. risolvere il problema primale con il metodo grafico ed impostare il problema duale;
- 2. se il primale ammette una soluzione ottima, dalla soluzione ottima del primale ricavare la soluzione ottima del duale con le condizioni di ortogonalità. Se il primale non ammette una soluzione ottima, risolvere il problema duale con il metodo del simplesso.

$$\max x_1 + 2x_2$$

$$\begin{cases} 5x_1 + 3x_2 \le 10 \\ -x_1 + 2x_2 \le 8 \\ -x_1 + 5x_2 \ge 20 \\ x \ge 0 \end{cases}$$

Domanda 3

Definire il problema di Massimo Flusso, illustrare un algoritmo noto per risolverlo e dimostrare il teorema di Ford-Fulkerson.