

BSM 471-AĞ GÜVENLİĞİ

Hafta4: Katman 2 Protokolleri ve Çalışma Yapıları

Dr. Öğr. Üyesi Musa BALTA Bilgisayar Mühendisliği Bölümü Bilgisayar ve Bilişim Bilimleri Fakültesi

Konu İçeriği

- Ethernet Protokolü
 - ➤ Backoff algoritması
 - ➤ Başlık yapısı
 - ➤ İletim şekilleri
- ARP Protokolü
 - ➤ Genel çalışma yapısı
 - ➤ Başlık yapısı
 - > Kullanım durumları

Ethernet Protokolü

- En yaygın kullanılan LAN tabanlı veri bağı katman protokolü IEEE 802.3 Ethernet'tir.
- Ethernet'in bir kısmı, 1960'larda geliştirilen Alohanet'in bir uzantısıdır.
 - Bu, bilgisayar sistemlerine erişmek için radyo teknolojisini kullanan bir ağdaki birden fazla kişiye izin vermek için kullanılan bir radyo tekniğiydi.
- Ethernet CSMA/CD tekniğini kullanır.
- Ethernet'in tercih edilme sebebi:
 - Kurulum kolaylığı
 - Güvenilirlik
 - Ağın ölçeklenmesine imkan tanıması
 - Çoklu kullanım türlerine uyum sağlama yeteneği

CSMA/CD Çalışma Yapısı

- Carrier Sense (Taşıyıcı sezme), Multiple Access (Çoklu erişim) Collision Detection (Çarpışmayı Sezme)'a göre
 Ethernet protokolü;
- Taşıyıcı sezme ile kabloda aktarım olup olmadığını,
- Çoklu erişim ile, iletim hattındaki tüm düğümlerin aynı hakka sahip olduğunu,
- *Çarpışmayı sezme* ile de iletim hattındaki iki düğümün aynı anda verilerini göndermeleri durumunda çarpışmalarını anlamaları için oluşturulan mekanizmadır.

Ethernet'de Veri Gönderme

Ethernet Başlık Yapısı

Ethernet II Paket yapısı:

Preamble (Başlangıç byteları)	Destination Address (Hedef MAC adresi)	Source Address (Kaynak MAC adresi)	Packet Type (Bir üst katmandaki paketin tipi)	Data Bölümü (Payload)	(Kontrol byteları)
8 Byte	6 Byte	6 Byte	2 Byte	46-1500 Byte	4 Byte

Ethernet İletişim Şekilleri

Adress Resolution Protocol (ARP)

- Bir paketin bir ana bilgisayara veya yönlendiriciye teslim edilmesi iki düzey adresleme gerektirir:
 - Mantiksal
 - Fiziksel
- Mantıksal bir adresi, karşılık gelen fiziksel adresle eşleştirebilmemiz gerekir; bunun tersi de geçerlidir. Bunlar;
 - Statik
 - Dinamik
- haritalama kullanılarak yapılabilir.

ARP Protokolünün İşleyişi

a. ARP request is multicast

b. ARP reply is unicast

Adress Resolution Protocol (ARP)

- Bir ana bilgisayar veya yönlendirici başka bir ana bilgisayara veya yönlendiriciye göndermek için bir IP datagramına sahip olduğunda, alıcının mantıksal (IP) adresine sahiptir.
- Ancak fiziksel veri ağından geçebilmek için IP datagramının bir çerçeveye alınması gerekir. Bu, gönderenin alıcının fiziksel adresine ihtiyacı olduğu anlamına gelir. Eşleme, mantıksal bir adresi fiziksel bir adrese karşılık gelir.
- ARP, IP protokolünden mantıksal bir adresi kabul eder, adresi karşılık gelen fiziksel adresle eşler ve veri bağlantı katmanına iletir.

ARP Protokolünün OSI Referans Modelindeki Karşılığı

ARP Protokolünün Paket Yapısı

Hardwa	are Type	Protocol Type			
Hardware length	Protocol length	Operation Request 1, Reply 2			
Sender hardware address (For example, 6 bytes for Ethernet)					
Sender protocol address (For example, 4 bytes for IP)					
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)					
Target protocol address (For example, 4 bytes for IP)					

ARP Protokolünün Kullanım Durumları

Case 1: A host has a packet to send to a host on the same network.

Case 3: A router has a packet to send to a host on another network.

Case 2: A host has a packet to send to a host on another network.

Case 4: A router has a packet to send to a host on the same network.

ARP Örnek

State Queue Attempt Time-out Protocol Addr. Hardware Addr. ACAE32457342 900 180.3.6.1 130.23.43.20 130.23.43.25 129.34.4.8 xB23455102210 x46EF45983AB 14 5 201.11.56.7 System A System B R 450 114.5.7.89 457342ACAE32 12 220.55.5.7 P 0x0002 0x08000x00010x08000x060x040x0002 0x060x040x00010xB23455102210 0x46EF45983AB R 9 60 19.1.7.82 4573E3242ACA 0x82172B14 0x82172B19 0x0000000000000 18 3 188.11.8.71 0xB23455102210 0x82172B19 0x82172B14 Preamble Data Preamble CRC 0xB23455102210 0x46EF45983AB 0x0806 CRC 0x0806Data and SFD 28 bytes and SFD ARP Request ARP Reply (from B to A)

Original Cache Table