Aufgabenblatt 6

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Duale LP, Dualer Simplex-Algorithmus-Schritt

Lösungen

Aufgabe 1

Gegeben ist die primale LP

$$\max Z(x_1, x_2) = 120x_1 + 100x_2$$

$$2x_1 + 2x_2 \leq 8$$

$$5x_1 + 3x_2 \leq 15$$

$$x_1, x_2 \geq 0$$

Bestimmen Sie die duale LP.

$$\min Z_D(y_1, y_2) = 8y_1 + 15y_2 2y_1 + 5y_2 \geqslant 120 2y_1 + 3y_2 \geqslant 100 y_1, y_2 \geqslant 0$$

Aufgabe 2

Gegeben ist eine primale LP

$$\max Z(x_1, x_2, x_3) = 3x_1 + 2x_2 + x_3$$

$$x_1 + 2x_2 - x_3 \leq 4$$

$$2x_1 - x_2 + x_3 = 8$$

$$x_1 - x_2 \leq 6$$

$$x_1, x_2 \geqslant 0 \quad x_3 \in \mathbb{R}$$

Bestimmen Sie die duale LP.

Hinweis: Benutzen Sie die Tabelle im Skript Seite 41.

$$\min Z_D(y_1, y_2, y_3) = 4y_1 + 8y_2 + 6y_3$$

$$y_1 + 2y_2 + y_3 \geqslant 3$$

$$2y_1 - y_2 - y_3 \geqslant 2$$

$$-y_1 + y_2 = 1$$

$$y_1, y_3 \geqslant 0 \quad y_2 \in \mathbb{R}$$

Aufgabe 3 Obere Schranke einer LP

Die Uhrenhersteller LP in Grundform ist

$$\max Z(x_1, x_2) = 3x_1 + 8x_2$$

unter den Nebenbedingungen:

$$2x_1 + 4x_2 \le 1600$$

 $6x_1 + 2x_2 \le 1800$
 $x_2 \le 350$
 $x_1, x_2 \ge 0$.

- (a) Zeigen Sie, dass zweimal die erste Restriktion eine obere Schranke für Z mit dem Wert 3200 ergibt. $Z=3x_1+8x_2\leqslant 2\cdot (2x_1+4x_2)\leqslant 3200$
- (b) Zeigen Sie, dass $\frac{3}{2}$ mal der erste Restriktion und zweimal der dritte Restriktion eine obere Schranke für Z mit dem Wert 3100 ergibt. $Z=3x_1+8x_2=\frac{3}{2}\cdot(2x_1+4x_2)+2\cdot(x_2)\leqslant \frac{3}{2}\cdot1600+2\cdot350=3100$
- (c) Was ist der Zielfunktionswert wenn $x_1 = 100$, $x_2 = 350$? Ist dieser Punkt zulässig? $Z(x_1, x_2) = 3x_1 + 8x_2 = 3100$. Ja er passt zu alle Bedingungen \Rightarrow zulässig.
- (d) Was ist die Folgerung aus (b) und(c)? Aus (b) Z=3100 ist eine obere Schranke für Z und aus (c) ist $x_1=100$ und $x_2=350$ eine zulässige Lösung mit dem Zielfunktionswert 3100. (b) und (c) zusammen zeigt, dass die Lösung optimal ist.

Aufgabe 4 Unzulässiger Ausgangspunkt

Zeichnen Sie grafisch den zulässigen Bereich der folgenden LP. Lösen Sie sie mit dem Simplex-Algorithmus.

Unter den Bedingungen
$$\max Z(x_1,x_2) = 10x_1 + 2x_2$$

$$4x_1 + x_2 \leqslant 10$$

$$2x_1 + x_2 \leqslant 8$$

$$x_2 \geqslant 3$$

$$x_1,x_2 \geqslant 0.$$

<i>Tab.</i> 0		x_1	x_2	<i>Tab. 1</i>		x_1	y_3	<i>Tab.</i> 2		y_1	y_3
Z	0	-10	-2	Z	6	-10	-2	Z	23.5	2.5	0.5
y_1	10	4	1	y_1	7	4	1	x_1	1.75	0.25	0.25
y_2	8	2	1	y_2	5	2	1	y_2	1.5	-0.5	0.5
y_3	-3	0	-1	x_2	3	0	-1	x_2	3.0	0.0	-1.0

Vorgehensweise: Tableau 0 hat einen negativen Wert in der erste Spalte, was eine unzulässige Lösung zeigt. Wähle y_3 als Pivotzeile. Da nur x_2 hat eine negativen Wert in der y_3 Zeile ist x_2 die Pivotspalte. Rechne alle Koeffizienten in der Tabelle, wie bei einem primalen SimpAlg-Schritt. Tableau 1 hat keinen negativen Wert in der erste Spalte, also ist diese Lösung zulässige aber noich nicht optimal. Setze mit den üblichen SimpAlg fort.

2

Die optimale Lösung ist $x_1^* = 1.75$, $x_2^* = 3$ $z^* = 23.5$

Aufgabe 5 Unzulässiger Ausgangspunkt

Lösen Sie die LP mit dem Simplex-Algorithmus.

Unter den Bedingungen
$$\begin{array}{rcl} \max Z(x_1,x_2) &=& 2x_1+x_2\\ -x_1+x_2 &\leqslant& 1\\ x_1+3x_2 &\geqslant& 6\\ x_1 &\leqslant& 7\\ x_1,x_2 &\geqslant& 0. \end{array}$$

Negativer Wert in der Lösungsspalte: Dualer Schritt mit Pivotzeile y₂

Tal	p. 0	x_1	x_2
Z	0	-2	-1
y_1	1	-1	1
y_2	-6	-1	-3
y_3	7	1	0
θ		2	$\frac{1}{3}$

Beide NBV-Einträge in der Pivotzeilesind negativ \Rightarrow berechne die θ -Werte und wählen den größten Wert. $\Rightarrow x_1$ ist die Pivotspalte.

Tal	b. 1	y_2	x_2
\overline{Z}	12	-2	5
y_1	7	-1	4
$ x_1 $	6	-1	3
y_3	1	1	-3

Alle Lösungswerte sind positiv, normaler (primaler) Schritt. Pivotspalte ist y_2 und Pivotzeile ist y_3 .

3

Tal	b. 1	y_3	x_2		
Z	14	2	-1		
y_1	8	1	1		
$ x_1 $	7	1	0		
y_2	1	1	-3		

Noch ein normaler (primaler) Schritt. Pivotspalte ist x_2 und Pivotzeile ist y_1 .

Tal	b. 1	y_3	y_1
Z	22	3	1
x_2	8	1	1
x_1	7	1	0
y_2	25	4	3

Optimaler Lösung $x_1^* = 7$, $x_2^* = 8$, $Z^* = 22$