Converting Tumor Biology Into Effective Novel Therapies in T-Cell Lymphoma

Andrei Shustov, MD
University of Washington Medical Center
Seattle WA

Classification of Mature T-cell Lymphomas (MTCL)

Mature T-/NK-cell lymphomas

CTCL

Mycosis fungoides (MF)

Transformed MF

Sézary syndrome

Primary cutaneous CD30+
T-cell disorders

Primary cutaneous gamma/delta TCL

Extranodal

NK/TCL nasal type

Enteropathy-associated TCL

Hepatosplenic TCL

Subcutaneous panniculitis-like TCL

Nodal

Peripheral TCL-NOS

Anaplastic large cell lymphoma (ALK +/-)

Angioimmunoblastic TCL

Leukemic

Adult T-cell leukemia/ lymphoma

Aggressive NK-cell leukemia

T-cell prolymphocytic leukemia

T-cell large granular lymphocytic leukemia

Aggressive

PTCL Prognosis Is Indicative of Diverse Biology

How Tumor Biology Will Drive Effective New Therapies

- **►** Molecular classification
- Risk stratification
- Biology-based treatment choices
- Novel agents
- Novel platforms
- > Trials based on biology

Survival Prediction in AITL

Distribution of Mutations in AITL

IDH Mutations and Global Histone Methylation

	Overall	TET2 mutated	TET2 WT	Pa
Patients (n)	86	13	73	
CR	20 (23%)	5 (38%)	15 (21%)	0.17
PR	1 (1%)	0 (0%)	1 (1%)	
mCR	11 (13%)	4 (31%)	7 (10%)	
SD with HI	13 (15%)	2 (15%)	11 (15%)	
SD without HI	23 (27%)	1 (8%)	22 (31%)	
Progression	15 (17%)	1 (8%)	14 (19%)	
Early death (<4 cycles)	3 (4%)	0 (0%)	3 (4%)	
Overall response (CR, PR, mCR)	32 (37%)	9 (69%)	23 (31%)	0.01
Overall response including SD with HI	45 (52%)	11 (85%)	34 (47%)	0.01
Response duration, mos	9.3 (1.7-29.0)	9.2 (2.0-28.2)	7.1 (1.7-29.0)	0.7

Abbreviations: CR, complete remission; HI, hematological improvement; mCR, marrow CR; mos, months; PR, partial remission; SD, stable disease; TET2, ten-eleven-translocation 2.

Results are reported as n (%) or median.

^a TET2 mutated versus WT.

Itzykson R, et al. *Leukemia*. 2011;25(7):1147-1152. Cheminant M, et al. *Br J Haematol*. 2014 Oct 14. [Epub ahead of print]

Belinostat in AITL: Results From the Belief Trial

	Efficacy analysis (N = 120)				
		Responders			
	N		CR	PR	
CPRG lymphoma diagnosis		ORR %	N (%)	N (%)	
PTCL, NOS	77	23	7(9)	11 (14)	
AITL	22	46	4 (18)	6 (27)	
ALCL, ALK-negative	13	15	1(7)	1 (7)	
ALCL, ALK-positive	2	0	-	-	
Enteropathy-associated TCL	2	0	-	-	
Extranodal NK/TCL, nasal type	2	50	1	-	
Hepatosplenic TCL	2	0	-	-	

Horwitz S, et al. Presented at: 13th International Conference on Malignant Lymphoma; June 17-20, 2015; Lugano, Switzerland. Abstract 153.

Belinostat in AITL: Results From the Belief Trial

DOR median 13.6 months (95% CI, 1.4-29.4) (8.3 months for overall study) PFS median 4.2 months (95% CI, 1.5-13.9) (1.6 months for overall study)

Horwitz S, et al. Presented at: 13th International Conference on Malignant Lymphoma; June 17-20, 2015; Lugano, Switzerland. Abstract 153.

Targeting Microenvironment in AITL

de Leval L, et al. Br J Haematol. 2010;148(5):673-689.

Chaoui D, et al. *Br J Haematol*. 2014;164(5):750-752.

Molecular Distinction of ALK-Negative ALCL

Supervised analyses identified genes differentially expressed in (A) angioimmunoblastic T-cell lymphoma (AITL) versus peripheral T-cell lymphoma (PTCL) not otherwise specified (NOS) and (B) ALK-negative anaplastic large-cell lymphoma (ALCL) versus PTCL

Survival curves according to peripheral T-cell lymphoma (PTCL): (A) histopathologic subtype, (B) molecular subtype, and (C) molecular distinction of CD30+ PTCL not otherwise specified (NOS) and ALK-negative anaplastic large-cell lymphoma (ALK-).

Brentuximab Vedotin (SGN-35) in Patients With Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study

Barbara Pro, Ranjana Advani, Pauline Brice, Nancy L. Bartlett, Joseph D. Rosenblatt, Tim Illidge, Jeffrey Matous, Radhakrishnan Ramchandren, Michelle Fanale, Joseph M. Connors, Yin Yang, Eric L. Sievers, Dana A. Kennedy, and Andrei Shustov

Shustov A. Ther Adv Hematol. 2013;4(3):173-187.

SGN-35-004: Updated Results

- 37 of 58 patients (64%) were alive at time of last follow-up
- Estimated overall survival rate at 3 years = 63% (95% CI: 51%, 76%)
- 12 patients were retreated with brentuximab vedotin (N = 8) or received extended treatment (>16 cycles) with brentuximab vedotin (N = 4)

Note: 10 pts did not have a PET scan at C4 because of AEs (3 pts), progressive disease (5 pts), investigator decision (1 pt), and patient decision (1 pt); PFS was censored at the IRF's last radiologic assessment that determined lack of progression

- Time, Months
 Median OS for patients who did not obtain a CR was 7.7 months
 (95% CI: 4.5, 13.7)
- Median OS for patients who obtained a CR has not yet been reached

Note: Allo-SCT (8 pts) and auto-SCT (7 pts); 3 non-disease-related deaths occurred in post-allo SCT patients; PFS was censored at the IRF's last radiologic assessment that determined lack of progression

SGN-35-004: Updated Results

Duration of Response in Patients with CR

Of the 34 patients who achieved a CR, 16 (47%) remained in remission at the time of last follow-up:

- 10/16 have received SCT following brentuximab vedotin
- 6/16 have had no new anti-cancer therapy following brentuximab vedotin

OS and PFS by ALK status

ALK-Positive ALCL: Not All Born Equal

Savage KJ, et al. Blood. 2008;111:5496-5504.

Sibon D, et al. J Clin Oncol. 2012;30:3939-3946. Suzuki R, et al. Blood. 2000;96:2993-2900.

ALK+ ALCL

Kutok JL, et al. *J Clin Oncol.* 2002;20(17):3691-3702.

Amin HM, et al. *Blood*. 2007;110(7):2259-2267.

	N	ORR/CR	PFS
Passerini, et al	11	91%/64%	63% (2 years)
Mosse, et al	8	88%/75%	NR

PTCL-NOS: Where Do We Go From Here?

Collateral pathway

blockade

Targeted

Cell cycle/

Apoptosis

modulation

Epigenetic

modulation

S-phase blockade

therapy

Novel Agents in PTCL

Study	N	ORR (%)	CR (%)	PFS (months)	DOR (months)	OS (months)
Romidepsin ¹	130	25	15	4	28	11.3
Pralatrexate ²	111	29	11	3.5	10.1	14.5
Belinostat ³	129	26	11	1.6	13.6	7.9
Bendamustine ⁴	60	50	28	3.6	3.5	6.2

- 1. Coiffier B, et al. J Clin Oncol 2012; 30:631-636.
- 2. O'Connor OA, et al. *J Clin Oncol* 2011; 29:1182-1189.
- 3. O'Connor OA, et al. *J Clin Oncol* 2014; In review.
- 4. Damaj G, et al. *J Clin Oncol* 2013; 31:104-110.

"If we knew what it was we were doing, it would not be called research, would it?"

> Albert Einstein

