

King Abdulaziz University Faculty of engineering

Digital 2 (EE460)

Name: Zahid Alfahmi ID: 2035446

Assignment three: 8-bit processor

Introduction:

The objective of this design assignment is to extend the functionality of a simple 8-bit processor by incorporating additional operations and increasing the number of registers. Specifically, the processor will be enhanced to support bitwise AND, OR, and XOR operations, as well as a store operation to output data from a register. Additionally, the number of registers will be expanded from 4 to 8, providing more flexibility and capability for data storage and manipulation, solving the problem of limited operations in the alu.

Top Level Design:

It shows the top-level design that includes a control module and Datapath module .

Figure 1 TOP LEVEL

Data path:

The data path includes alu, mux, file register and the operations are done in it.

Figure 2 data path

Control:

The control module doses the operation to convert the machine code from the user to the actual operation the processor does it works as a translator.

Figure 3 Control

Operation:

The operations instruction sheet shows the operation and what it does and how to use it and its machine code for the user to use it.

		S	
operation	opcode	Machine code	Description
load	000	000_000_xxx	Rx ← dataIn
move	001	001_000_000	Rx ← [Ry]
add	010	010_000_000	$Rx \leftarrow [Rx] + [Ry]$
sub	011	011_000_000	$Rx \leftarrow [Rx] - [Ry]$
and	100	100_000_000	Rx ← [Rx] & [Ry]
or	101	101_000_000	Rx ← [Rx] [Ry]
xor	110	110_000_000	$Rx \leftarrow [Rx] \oplus [Ry]$
store	111	111_000_xxx	Rx → dataOut

Figure 4 instruction sheet

Testing:

Accurate operations between registers with all the possible operations.

Figure 5 wave