Ramdom Forest using train{caret}: Regression Example

Oscar A. Trevizo

2023-05-09

Contents

1	Kar	idom i	forest using train{caret}	2
2	Libraries			
3	Tree-based regression using Random Forest on OJ{ISLR} dataset			2
	3.1	Load	the data	2
	3.2	Split t	the data: train / test datasets	3
3.3 Fit the model: Sale price of MM vs some variables		Fit the	e model: Sale price of MM vs some variables	3
		3.3.1	Top contributors	4
		3.3.2	plot the model	4
		3.3.3	See what RF did on train dataset	5
		3.3.4	Predict on test dataset	6
		3.3.5	Plot predictions vs actuals	6
		3.3.6	Prediction performance	6
	3.4	Fine-t	une the model: Change mtry	7
		3.4.1	Verify tuning paramaters	7
		3.4.2	Get model information	7
		3.4.3	Fit the mode using mtry = $9 \dots \dots \dots \dots \dots \dots$	15
		3.4.4	Verify top contributors in updated model	16
		3.4.5	See what RF did on train dataset	16
		3.4.6	Predict on test dataset	16
		3.4.7	Plot predictions vs actuals	16
		3.4.8	Prediction performance	17

1 Random Forest using train{caret}

Function train() "sets up a grid of tuning parameters for a number of classification and regression routines, fits each model and calculates a resampling based performance measure." [Rstudio doc]

This example uses train() to fit a $Random\ Forest\ model$ using the OJ{ISLR} dataset.

Additional documention:

http://topepo.github.io/caret/available-models.html

We will use Random Forest in this example. Search for method value ' rf'.

2 Libraries

3 Tree-based regression using Random Forest on $OJ{ISLR}$ dataset

Fit a Random Forest regression model for sale price of Minute Made Orange Juice .

Explore OJ using '?' Rstudio help:

>?OJ

Orange Juice Data

Description

3.1 Load the data

```
# load the data:
data(OJ)
str(OJ)
```

```
## 'data.frame':
                    1070 obs. of 18 variables:
                    : Factor w/ 2 levels "CH", "MM": 1 1 1 2 1 1 1 1 1 1 ...
##
   $ Purchase
  $ WeekofPurchase: num
                          237 239 245 227 228 230 232 234 235 238 ...
##
  $ StoreID
                    : num
                           1 1 1 1 7 7 7 7 7 7 ...
##
   $ PriceCH
                           1.75 1.75 1.86 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...
                    : num
##
  $ PriceMM
                           1.99 1.99 2.09 1.69 1.69 1.99 1.99 1.99 1.99 ...
##
  $ DiscCH
                           0 0 0.17 0 0 0 0 0 0 0 ...
                    : num
                           0 0.3 0 0 0 0 0.4 0.4 0.4 0.4 ...
##
   $ DiscMM
                    : num
##
   $ SpecialCH
                           0 0 0 0 0 0 1 1 0 0 ...
                    : num
##
  $ SpecialMM
                           0 1 0 0 0 1 1 0 0 0 ...
                    : num
## $ LoyalCH
                           0.5 0.6 0.68 0.4 0.957 ...
                    : num
##
   $ SalePriceMM
                           1.99 1.69 2.09 1.69 1.69 1.99 1.59 1.59 1.59 1.59 ...
                    : num
##
  $ SalePriceCH
                           1.75 1.75 1.69 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...
                    : num
  $ PriceDiff
                           0.24 -0.06 0.4 0 0 0.3 -0.1 -0.16 -0.16 -0.16 ...
                    : num
                    : Factor w/ 2 levels "No", "Yes": 1 1 1 1 2 2 2 2 2 2 ...
##
   $ Store7
   $ PctDiscMM
                           0 0.151 0 0 0 ...
##
                    : num
                           0 0 0.0914 0 0 ...
##
   $ PctDiscCH
                    : num
                          0.24 0.24 0.23 0 0 0.3 0.3 0.24 0.24 0.24 ...
  $ ListPriceDiff : num
                    : num 1 1 1 1 0 0 0 0 0 0 ...
##
   $ STORE
```

```
##
     Purchase WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH
## 1
            CH
                           237
                                            1.75
                                                     1.99
                                                                                   0
                                       1
                                                             0.00
                                                                      0.0
## 2
            CH
                            239
                                                             0.00
                                                                                   0
                                       1
                                            1.75
                                                     1.99
                                                                      0.3
## 3
            CH
                            245
                                                     2.09
                                                                      0.0
                                                                                   0
                                       1
                                            1.86
                                                             0.17
## 4
            MM
                            227
                                            1.69
                                                     1.69
                                                             0.00
                                                                      0.0
                                                                                   0
                                       1
                                       7
                                                                                   0
## 5
            CH
                            228
                                            1.69
                                                     1.69
                                                             0.00
                                                                      0.0
                                            1.69
## 6
            CH
                            230
                                       7
                                                     1.99
                                                             0.00
                                                                      0.0
                                                                                   0
##
     SpecialMM
                 LoyalCH SalePriceMM SalePriceCH PriceDiff Store7 PctDiscMM
## 1
              0 0.500000
                                  1.99
                                                1.75
                                                           0.24
                                                                     No
                                                                         0.000000
              1 0.600000
## 2
                                  1.69
                                                1.75
                                                          -0.06
                                                                     No
                                                                         0.150754
                                                1.69
## 3
              0 0.680000
                                  2.09
                                                           0.40
                                                                     No
                                                                         0.000000
## 4
              0 0.400000
                                  1.69
                                                1.69
                                                           0.00
                                                                         0.000000
## 5
              0 0.956535
                                                           0.00
                                                                         0.00000
                                  1.69
                                                1.69
                                                                    Yes
## 6
              1 0.965228
                                  1.99
                                                1.69
                                                           0.30
                                                                    Yes
                                                                         0.000000
##
     PctDiscCH ListPriceDiff STORE
## 1
      0.000000
                          0.24
                                    1
      0.000000
                          0.24
  2
##
                                    1
  3
      0.091398
                          0.23
##
                                    1
## 4
      0.000000
                          0.00
                                    1
## 5
      0.000000
                          0.00
                                    0
## 6
      0.000000
                          0.30
                                    0
```

Notes about the dataset:

Variable Purchase is a 2-level factor with values CH (1) or MM (2).

The dataset has separate columns for $sale\ prices$ of CH and MM.

We are interested in the sale price of MM: SalePriceMM. We want to predict it, but we do not want to take PriceMM, nor PriceDiff into account.

3.2 Split the data: train / test datasets

```
set.seed(1234)
ind <- sample(2, nrow(OJ), replace = T, prob = c(0.7, 0.3))
train <- OJ[ind == 1,]
test <- OJ[ind == 2,]</pre>
```

3.3 Fit the model: Sale price of MM vs some variables

To predict SalePriceMM, remove -PriceMM -PriceDiff, -ListPriceDiff from the formula. Otherwise, the accuracy will be too high. We want to challenge the model at least a little bit.

3.3.1 Top contributors

```
# Put the important variables in a dataframe for convenience
contributors <- varImp(forest)$importance

# Note, each contributor is a row. There is one column containing the importance score.
#(contributors_names <- rownames(contributors$importance))

# Arrange them top to bottom:
contributors %>% dplyr::select(Overall) %>% arrange(desc(Overall))

## Overall
## DiscMM 100.00000
## STORE 32.43674
## SpecialMM 26.71921
## Store7Yes 0.00000
3.3.2 plot the model
```


3.3.3 See what RF did on train dataset

forest

```
## Random Forest
##
## 1070 samples
##
      4 predictor
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 2 times)
## Summary of sample sizes: 857, 856, 856, 856, 856, 856, ...
## Resampling results across tuning parameters:
##
##
     mtry
           RMSE
                      Rsquared
                                 MAE
##
     2
           0.1153483
                      0.7956248
                                 0.07931460
           0.1122843
                      0.8021685
##
     3
                                 0.06835454
                     0.8026898
                                 0.06624390
##
           0.1121406
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 4.
```

3.3.4 Predict on test dataset

```
rf <- predict(forest, test)
# For ggplot we need a dataframe:
rf_df <- data.frame(rf, test)</pre>
```

3.3.5 Plot predictions vs actuals

```
rf_df %>% ggplot(aes(x = SalePriceMM, y = rf)) +
  geom_point() +
  geom_smooth(method = 'lm', col = 'red', se=FALSE) +
  scale_y_continuous('Predictions') +
  scale_x_continuous('Sale Price MM (USD)') +
  ggtitle('Sale Price MM predictions', 'Source: OJ{ISLR}')
```

'geom_smooth()' using formula = 'y ~ x'

Sale Price MM predictions

Source: OJ{ISLR}

3.3.6 Prediction performance

• Root Mean Squared Error

• R-squared

```
# RMSE
sqrt(mean((test$SalePriceMM - rf)^2))

## [1] 0.1043353

# R squared
cor(test$SalePriceMM, rf)^2 ## R-Squared

## [1] 0.8376638
```

3.4 Fine-tune the model: Change mtry

Model rf from train() has a tuning parameter mtry. Parameter mtry is the number of predictors randomly selected by rf.

To change the value of mtry, use train() parameter tuneGrid. Parameter tuneGrid is a dataframe with possible tuning values.

3.4.1 Verify tuning paramaters

3.4.2 Get model information

```
getModelInfo(model = 'rf')

## $qrf
## $qrf$label
## [1] "Quantile Random Forest"
```

```
##
## $qrf$library
## [1] "quantregForest"
##
## $qrf$loop
## NULL
## $qrf$type
## [1] "Regression"
##
## $qrf$parameters
   parameter
##
                 class
                                                label
## 1
         mtry numeric #Randomly Selected Predictors
##
```

```
## $qrf$grid
## function (x, y, len = NULL, search = "grid")
## {
##
       if (search == "grid") {
           out <- data.frame(mtry = caret::var_seq(p = ncol(x),</pre>
##
##
               classification = is.factor(y), len = len))
##
       }
##
       else {
##
           out <- data.frame(mtry = unique(sample(1:ncol(x), size = len,</pre>
##
               replace = TRUE)))
##
       }
##
       out
## }
##
## $qrf$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## quantregForest::quantregForest(x, y, mtry = min(param$mtry, ncol(x)),
##
##
## $qrf$predict
## function (modelFit, newdata, submodels = NULL)
##
       out <- predict(modelFit, newdata, what = 0.5)</pre>
##
       if (is.matrix(out))
           out <- out[, 1]
##
       out
## }
## $qrf$prob
## NULL
## $qrf$tags
## [1] "Random Forest"
                                      "Ensemble Model"
## [3] "Bagging"
                                      "Implicit Feature Selection"
## [5] "Quantile Regression"
                                      "Robust Model"
##
## $qrf$sort
## function (x)
## x[order(x[, 1]), ]
##
##
## $rf
## $rf$label
## [1] "Random Forest"
## $rf$library
## [1] "randomForest"
##
## $rf$loop
## NULL
##
## $rf$type
## [1] "Classification" "Regression"
##
```

```
## $rf$parameters
                                                  label
     parameter
                 class
## 1
          mtry numeric #Randomly Selected Predictors
##
## $rf$grid
## function (x, y, len = NULL, search = "grid")
##
       if (search == "grid") {
##
           out <- data.frame(mtry = caret::var_seq(p = ncol(x),</pre>
##
                classification = is.factor(y), len = len))
##
       }
##
       else {
##
           out <- data.frame(mtry = unique(sample(1:ncol(x), size = len,</pre>
               replace = TRUE)))
##
##
       }
## }
##
## $rf$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## randomForest::randomForest(x, y, mtry = param$mtry, ...)
##
## $rf$predict
## function (modelFit, newdata, submodels = NULL)
## if (!is.null(newdata)) predict(modelFit, newdata) else predict(modelFit)
##
## $rf$prob
## function (modelFit, newdata, submodels = NULL)
## if (!is.null(newdata)) predict(modelFit, newdata, type = "prob") else predict(modelFit,
       type = "prob")
##
##
## $rf$predictors
## function (x, ...)
## {
##
       varIndex <- as.numeric(names(table(x$forest$bestvar)))</pre>
       varIndex <- varIndex[varIndex > 0]
##
##
       varsUsed <- names(x$forest$ncat)[varIndex]</pre>
##
       varsUsed
## }
##
## $rf$varImp
## function (object, ...)
## {
       varImp <- randomForest::importance(object, ...)</pre>
##
       if (object$type == "regression") {
##
           if ("%IncMSE" %in% colnames(varImp)) {
##
##
                varImp <- data.frame(Overall = varImp[, "%IncMSE"])</pre>
##
##
           else {
##
                varImp <- data.frame(Overall = varImp[, 1])</pre>
##
##
       }
##
       else {
##
           retainNames <- levels(object$y)</pre>
##
           if (all(retainNames %in% colnames(varImp))) {
```

```
##
                varImp <- varImp[, retainNames]</pre>
           }
##
##
           else {
##
                varImp <- data.frame(Overall = varImp[, 1])</pre>
##
##
       }
##
       out <- as.data.frame(varImp, stringsAsFactors = TRUE)</pre>
##
       if (dim(out)[2] == 2) {
##
           tmp <- apply(out, 1, mean)</pre>
##
           out[, 1] <- out[, 2] <- tmp
##
       }
##
       out
## }
##
## $rf$levels
## function (x)
## x$classes
##
## $rf$tags
## [1] "Random Forest"
                                      "Ensemble Model"
## [3] "Bagging"
                                      "Implicit Feature Selection"
##
## $rf$sort
## function (x)
## x[order(x[, 1]), ]
## $rf$oob
## function (x)
## {
##
       out <- switch(x$type, regression = c(sqrt(max(x$mse[length(x$mse)],</pre>
           0)), x$rsq[length(x$rsq)]), classification = c(1 - x$err.rate[x$ntree,
##
##
            "OOB"], e1071::classAgreement(x$confusion[, -dim(x$confusion)[2]])[["kappa"]]))
       names(out) <- if (x$type == "regression")</pre>
##
           c("RMSE", "Rsquared")
##
       else c("Accuracy", "Kappa")
##
##
       out
## }
##
##
## $rfRules
## $rfRules$label
## [1] "Random Forest Rule-Based Model"
## $rfRules$library
## [1] "randomForest" "inTrees"
                                       "plyr"
##
## $rfRules$type
## [1] "Classification" "Regression"
## $rfRules$parameters
##
     parameter
                                                  label
                  class
          mtry numeric #Randomly Selected Predictors
## 2 maxdepth numeric
                                    Maximum Rule Depth
##
```

```
## $rfRules$grid
## function (x, y, len = NULL, search = "grid")
## {
##
       if (search == "grid") {
##
            out <- data.frame(mtry = caret::var_seq(p = ncol(x),</pre>
##
                classification = is.factor(y), len = len), maxdepth = (1:len) +
##
##
       }
       else {
##
##
           out <- data.frame(mtry = sample(1:ncol(x), size = len,</pre>
##
                replace = TRUE), maxdepth = sample(1:15, size = len,
##
                replace = TRUE))
##
       }
## }
##
## $rfRules$loop
## function (grid)
## {
##
       loop <- plyr::ddply(grid, c("mtry"), function(x) c(maxdepth = max(x$maxdepth)))</pre>
       submodels <- vector(mode = "list", length = nrow(loop))</pre>
##
##
       for (i in seq(along = loop$maxdepth)) {
##
            index <- which(grid$mtry == loop$mtry[i])</pre>
           trees <- grid[index, "maxdepth"]</pre>
##
##
            submodels[[i]] <- data.frame(maxdepth = trees[trees !=</pre>
##
                loop$maxdepth[i]])
##
##
       list(loop = loop, submodels = submodels)
## }
##
## $rfRules$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
       if (!is.data.frame(x) | inherits(x, "tbl_df"))
##
##
           x <- as.data.frame(x, stringsAsFactors = TRUE)</pre>
##
       RFor <- randomForest::randomForest(x, y, mtry = min(param$mtry,
##
           ncol(x)), ...)
##
       treeList <- inTrees::RF2List(RFor)</pre>
##
       exec <- inTrees::extractRules(treeList, x, maxdepth = param$maxdepth,</pre>
##
           ntree = RFor$ntree)
##
       ruleMetric <- inTrees::getRuleMetric(exec, x, y)</pre>
##
       ruleMetric <- inTrees::pruneRule(ruleMetric, x, y)</pre>
##
       ruleMetric <- inTrees::selectRuleRRF(ruleMetric, x, y)</pre>
       out <- list(model = inTrees::buildLearner(ruleMetric, x,</pre>
##
##
           y))
##
       if (!last) {
##
           out$rf <- treeList</pre>
##
           outx <- x
##
           out$y <- y
##
           out$trees <- RFor$ntree
##
       }
##
       0111
## }
##
## $rfRules$predict
```

```
## function (modelFit, newdata, submodels = NULL)
## {
##
       if (!is.data.frame(newdata) | inherits(newdata, "tbl df"))
##
            newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)</pre>
##
       out <- inTrees::applyLearner(modelFit$model, newdata)</pre>
       if (modelFit$problemType == "Regression")
##
            out <- as.numeric(out)</pre>
##
##
       if (!is.null(submodels)) {
##
            tmp <- vector(mode = "list", length = nrow(submodels) +</pre>
##
                1)
##
            tmp[[1]] <- if (is.matrix(out))</pre>
                out[, 1]
##
##
            else out
##
            for (i in seq(along = submodels$maxdepth)) {
##
                exec <- inTrees::extractRules(modelFit$rf, modelFit$x,</pre>
##
                     maxdepth = submodels$maxdepth[i], ntree = modelFit$trees)
##
                ruleMetric <- inTrees::getRuleMetric(exec, modelFit$x,</pre>
##
                     modelFit$v)
##
                ruleMetric <- inTrees::pruneRule(ruleMetric, modelFit$x,</pre>
##
                     modelFit$y)
##
                ruleMetric <- inTrees::selectRuleRRF(ruleMetric,</pre>
##
                     modelFit$x, modelFit$y)
##
                mod <- inTrees::buildLearner(ruleMetric, modelFit$x,</pre>
##
                     modelFit$y)
##
                tmp[[i + 1]] <- inTrees::applyLearner(mod, newdata)</pre>
                if (modelFit$problemType == "Regression")
##
##
                     tmp[[i + 1]] <- as.numeric(tmp[[i + 1]])</pre>
##
##
            out <- tmp
       }
##
##
       out
## }
##
## $rfRules$prob
## NULL
## $rfRules$predictors
## function (x, ...)
## {
##
       split_up <- strsplit(x$model[, "condition"], "&")</pre>
       isolate <- function(x) {</pre>
##
            index <- gregexpr("]", x, fixed = TRUE)</pre>
##
            out <- NULL
##
##
            for (i in seq_along(index)) {
##
                if (all(index[[i]] > 0)) {
                     tmp <- substring(x[i], 1, index[[i]][1])</pre>
##
##
                     tmp <- gsub("(X)|(\\[)|(\\])|(,)|( )", "", tmp)</pre>
                     tmp <- tmp[tmp != ""]</pre>
##
##
                     out <- c(out, as.numeric(tmp))</pre>
                }
##
##
            }
##
            as.numeric(unique(out))
##
       }
##
       var_index <- unique(unlist(lapply(split_up, isolate)))</pre>
```

```
if (length(var_index) > 0)
##
##
            x$xNames[var index]
       else NULL
##
## }
##
## $rfRules$varImp
## function (object, ...)
## {
##
       split_up <- strsplit(object$model[, "condition"], "&")</pre>
       isolate <- function(x) {</pre>
##
##
            index <- gregexpr("]", x, fixed = TRUE)</pre>
            out <- NULL
##
            for (i in seq_along(index)) {
##
                if (all(index[[i]] > 0)) {
##
##
                     tmp <- substring(x[i], 1, index[[i]][1])</pre>
##
                     tmp \leftarrow gsub("(X)|(\[)|(\])|(,)|()", "", tmp)
##
                     tmp <- tmp[tmp != ""]</pre>
##
                     out <- c(out, as.numeric(tmp))</pre>
                }
##
            }
##
##
            as.numeric(unique(out))
##
##
       var_index <- lapply(split_up, isolate)</pre>
       vars_dat <- lapply(var_index, function(x, p) {</pre>
##
            out <- rep(0, p)
##
##
            if (length(x) > 0)
##
                out[x] <- 1
##
            out
##
       }, p = length(object$xNames))
       vars_dat <- do.call("rbind", vars_dat)</pre>
##
##
       colnames(vars_dat) <- object$xNames</pre>
##
       freqs <- as.numeric(object$model[, "freq"])</pre>
       vars_dat <- vars_dat * freqs</pre>
##
##
       var_imp <- apply(vars_dat, 2, sum)</pre>
##
       out <- data.frame(Overall = as.vector(var_imp))</pre>
##
       rownames(out) <- names(var_imp)</pre>
##
       out
## }
##
## $rfRules$levels
## function (x)
## x$obsLevels
## $rfRules$tags
## [1] "Random Forest"
                                        "Ensemble Model"
## [3] "Bagging"
                                        "Implicit Feature Selection"
## [5] "Rule-Based Model"
##
## $rfRules$sort
## function (x)
## x[order(x[, "maxdepth"]), ]
##
##
## $wsrf
```

```
## $wsrf$label
## [1] "Weighted Subspace Random Forest"
## $wsrf$library
## [1] "wsrf"
##
## $wsrf$loop
## NULL
##
## $wsrf$type
## [1] "Classification"
## $wsrf$parameters
     parameter
                                                 label
## 1
          mtry numeric #Randomly Selected Predictors
##
## $wsrf$grid
## function (x, y, len = NULL, search = "grid")
## {
       if (search == "grid") {
##
##
           out <- data.frame(mtry = caret::var_seq(p = ncol(x),</pre>
##
               classification = is.factor(y), len = len))
       }
##
##
       else {
##
           out <- data.frame(mtry = unique(sample(1:ncol(x), size = len,</pre>
##
               replace = TRUE)))
##
       }
##
       out
## }
##
## $wsrf$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
##
       dat <- if (is.data.frame(x))</pre>
##
##
       else as.data.frame(x, stringsAsFactors = TRUE)
##
       dat$.outcome <- y
##
       wsrf::wsrf(.outcome ~ ., data = dat, mtry = min(param$mtry,
##
           ncol(x)), ...)
## }
##
## $wsrf$predict
## function (modelFit, newdata, submodels = NULL)
## {
##
       if (!is.data.frame(newdata))
           newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)</pre>
##
       predict(modelFit, newdata)$class
##
## }
##
## $wsrf$prob
## function (modelFit, newdata, submodels = NULL)
## {
##
       if (!is.data.frame(newdata))
           newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)</pre>
##
```

```
predict(modelFit, newdata, type = "prob")$prob
##
## }
##
## $wsrf$predictors
## function (x, ...)
## x$xNames
## $wsrf$varImp
## NULL
##
## $wsrf$levels
## function (x)
## x$obsLevels
##
## $wsrf$tags
## [1] "Random Forest"
                                     "Ensemble Model"
## [3] "Bagging"
                                     "Implicit Feature Selection"
##
## $wsrf$sort
## function (x)
## x[order(x[, 1]), ]
```

See example online:

Examples for tuning RF: https://rpubs.com/phamdinhkhanh/389752

Another interesting use case is: $\frac{1}{machine learning mastery.com/tune-machine-learning-algorithms-in-r/}$

3.4.3 Fit the mode using mtry = 9

```
# Typically mtry is based on the number of variables
# mtry <- sqrt(ncol(NUMBER_OF_VARIABLES))</pre>
# In this example we will force to be 5
mtry = 4
tunegrid <- expand.grid(.mtry=mtry)</pre>
set.seed(1234)
forest <- train(SalePriceMM ~</pre>
                 +STORE
                 +DiscMM
                 +SpecialMM
                 +Store7,
                 data=OJ,
                 method="rf",
                 tuneGrid = tunegrid,
                 trControl=cvcontrol,
                 importance=TRUE)
```

3.4.4 Verify top contributors in updated model

```
# Put the important variables in a dataframe for convenience
contributors <- varImp(forest)$importance

# Note, each contributor is a row. There is one column containing the importance score.
#(contributors_names <- rownames(contributors$importance))

# Arrange them top to bottom:
contributors %>% dplyr::select(Overall) %>% arrange(desc(Overall))

## DiscMM 100.00000
## STORE 34.16202
## SpecialMM 31.91219
## Store7Yes 0.00000
```

3.4.5 See what RF did on train dataset

Some numbers did change.

forest

```
## Random Forest
##
## 1070 samples
##
      4 predictor
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 2 times)
## Summary of sample sizes: 857, 856, 856, 856, 856, 856, ...
## Resampling results:
##
##
    RMSE
                Rsquared
                           MAE
##
    0.1121741 0.8025847 0.06623864
## Tuning parameter 'mtry' was held constant at a value of 4
```

3.4.6 Predict on test dataset

```
rf <- predict(forest, test)
# For ggplot we need a dataframe:
rf_df <- data.frame(rf, test)</pre>
```

3.4.7 Plot predictions vs actuals

```
rf_df %>% ggplot(aes(x = SalePriceMM, y = rf)) +
  geom_point() +
  geom_smooth(method = 'lm', col = 'red', se=FALSE) +
  scale_y_continuous('Predictions') +
  scale_x_continuous('Sale Price MM (USD)') +
  ggtitle('Sale Price MM predictions', 'Source: OJ{ISLR}')
```

'geom_smooth()' using formula = 'y ~ x'

Sale Price MM predictions

Source: OJ{ISLR}

3.4.8 Prediction performance

- Root Mean Squared Error
- R-squared

```
# RMSE
sqrt(mean((test$SalePriceMM - rf)^2))
```

[1] 0.104345

```
# R squared
cor(test$SalePriceMM, rf)^2 ## R-Squared
```

[1] 0.837615