7 (Tarea Original) ## Proba extras ## Una función de densidad f, de una variable aleatoria continua X, esta dada por:

$$f(x) = \begin{cases} 1/2 & 0 < x < 1 \\ x/3 & 1 \le x < 2 \end{cases}$$
en otro caso
entre la finción de densidad d

Encuentra la finción de densidad de la variable aleatoria $Y = X^2 - 1$

$$Y = x^{7} - 1$$

$$x = \sqrt{y} - 1$$

$$f_{x}(x(y)) = \begin{cases} \sqrt{2} - 1 < y < 0 \\ \sqrt{y} - \frac{1}{3} \end{cases}$$

$$2 \le y \le 5$$

$$0 \text{ en otro caso}$$

$$\frac{\sqrt{y-1}}{3} \quad 2 \leq y \leq 5$$

$$0 \quad \text{en otro caso}$$

$$\frac{1}{4} \quad \frac{1}{\sqrt{y-1}} \quad -1 \leq y \leq 5$$

$$0 \quad \text{en otro caso}$$

Sea F la función dada por: $\begin{cases}
O & \chi \in (-\infty, -1) \\
F(x) = \begin{cases}
1/2 & \chi \in [-1, 1) \\
1/6 & \chi \in [3, \infty)
\end{cases}$

Demostra que existe una variable aleatorra, \times tal que Fx = F y encuentra la distribución de $Y = X^2$

entonces existe x una v.a talque
$$Fx$$
 es su distribución

i) $\lim_{x \to (-\infty)} F(x) = 0$ y $\lim_{x \to \infty} F(x) = 1$

 $x \rightarrow (-\infty)$ $x \rightarrow \infty$ $x \rightarrow (-\infty)$ $x \rightarrow \infty$ $x \rightarrow (-\infty)$ $x \rightarrow \infty$

$$F(x) = \frac{1}{2}$$
 es siempre creaiente ya que
 $F(x_1) \le F(x_2) = \frac{1}{2}$ $x_1, x_2 \in [-1, 1)$
sean $x_1, x_2 \in [1, 3)$ tal que $F(x_1) \le F(x_2)$
 $= \frac{1}{16}(x_1 + x_2) = \frac{1}{16}(x_2 + x_3) = \frac{1}{16}(x_1 - x_2) = F(x_1) - F(x_2)$

Por definición si Fx = F una función de distribución

como $x_1 \notin x_2 \stackrel{\sim}{\sim} x_1 - x_2 \stackrel{\sim}{\leftarrow} 0$ entences $F(x_1) - F(x_2) = \frac{1}{16}(x_1 - x_2) \stackrel{\leftarrow}{\leftarrow} 0$ $F(x_1) - F(x_2) \stackrel{\leftarrow}{\leftarrow} 0 = F(x_1) \stackrel{\leftarrow}{\leftarrow} F(x_2)$

 $F(x_i) - F(x_i) \le 0 =$: F(x) es creciente.

3)
$$\lim_{X \to -1^{+}} f(x) = \frac{1}{2} = f(-1)$$

 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{3}{4} = f(1)$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{12}{16} = \frac{12}{16}$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{12}{16} = \frac{12}{16} = \frac{12}{16}$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac{12}{16} = \frac{12}{16} = \frac{12}{16}$
 $\lim_{X \to -1^{+}} f(x) = \frac{12}{16} = \frac$