Прізвище: Куцак. **Ім'я:** Владислав. **Група:** КН-407.

Кафедра: САПР

Дисципліна: Теорія прийняття рішень.

Перевірив: Кривий Р.З.

 $\label{lem:com/Sova171/Lab/blob/master/Lab5/Lab5/Program.cs} Git Lab: \verb|https://github.com/Sova171/Lab/blob/master/Lab5/Lab5/Program.cs||$

3BIT

до лабораторної роботи №5 **на тему**: "Теорія ігор. Матричні ігри "

Мета роботи: Визначити основні поняття теорії ігор, властивості змішаних стратегій. Вивчити метод вирішення матричних ігор у змішаних стратегіях за допомогою введення до подвійних завдань лінійного програмування.

У грі беруть участь два гравці: А і В. У розпорядженні кожного гравця є кінцеве безліч варіантів вибору - стратегій. Нехай - безліч стратегій гравця А, - безліч стратегій гравця В. З кожною парою стратегій пов'язаний платіж, який один з гравців виплачує іншому. Тобто, коли гравець А вибирає стратегію (свою і-ю стратегію), а гравець В - стратегію, то результатом такого вибору стає платіж. Оскільки стратегій кінцеве число, то платежі утворюють матрицю розмірності п х m, звану матрицею платежів (або матрицею гри). Рядки цієї матриці відповідають стратегіям гравця A, а стовпці - стратегіям гравця В.

Лабораторне завдання:

- 1) Вихідні дані беруть із варіантів індивідуальних завдань.
- 2) При вирішенні матричної гри потрібно вийти на наступні етапи:
 - 1. Знайти сідлову точку і перевірити, чи має гра вирішення в чистих стратегій.
 - 2. У випадку відсутності чистої стратегії, знайти рішення в оптимальних змішаних стратегіях
 - 3. Спростити платіжну матрицю (перевірити матрицю на домінуючі рядки і стовбці).
 - 4. Визначити оптимальні плани за допомогою одного з методів лінійного програмування.
 - 5. Знайдіть рішення гри.

Індивідуальне завдання:

Табл. 1. Варіант індивідуального завдання.

	12	7	13	11	9
	12	15	10	7	12
14.	14	11	15	12	9
	7	12	15	12	7
	10	13	15	11	7

Результати виконання:

Перевіряємо чи платіжна матриця має сідлову точку:

Гравці	B_1	B_2	B ₃	\mathbf{B}_4	B ₅	$a = \min(A_i)$
A_1	12	7	13	11	9	7
A_2	12	15	10	7	12	7
A ₃	14	11	15	12	9	9
A_4	7	12	15	12	7	7
A_5	10	13	15	11	7	7
$b = \max(B_j)$	14	15	15	12	12	

Знаходимо гарантований виграш для гравця A, який визначається нижньою ціною гри $a = \max(a_i) = 9$.

Верхня ціна гри $b = min(b_j) = 12$.

Для нашої платіжної матриці отримуємо наступний результат:

A = 9 – нижня ціна гри, b = 12 – верхня ціна гри;

Отже робимо висновок, що в нас не має, як сідлової точки, так і вирішення самої ігри в чистих стратегіях, тому її можна вирішити, якщо дозволити гравцям вибирати свої стратегії випадковим чином (змішувати чисті стратегії).

Ціна гри знаходиться в межах: $9 \le v \le 12$.

Спрощуємо задачу, викреслюючи доміновані стратегії:

1) Стратегія A_3 домінує над стратегією A_1 (всі елементи рядка 3 більші або дорівнюють значенням 1-го рядка), отже виключаємо 1-ий рядок матриці.

Гравці	B_1	B_2	B ₃	B ₄	B ₅
A_1	12	7	13	11	9
A_2	12	15	10	7	12
A ₃	14	11	15	12	9
A_4	7	12	15	12	7
A ₅	10	13	15	11	7

2) Стратегія B₅ домінує над стратегією B₁ та B₂, стратегія B₄ домінує над стратегією B₃ (всі елементи стовпців 1 та 2 більші або дорівнюють значенням 5-го стовпця, всі елементи стовпця 3 більші або дорівнюють значенням 4-го стовпця), отже виключаємо 1-ий, 2-ий та 3-ий стовпці матриці.

Гравці	B_1	B_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_5
A_2	12	15	10	7	12
A ₃	14	11	15	12	9
A_4	7	12	15	12	7
A ₅	10	13	15	11	7

3) Стратегія A₃ домінує над стратегією A₄ та стратегією A₅ (всі елементи рядка 3 більші або дорівнюють значенням 4-го та 5 рядка), отже виключаємо 4-ий та 5-ий рядки матриці.

Гравці	\mathbf{B}_4	B ₅
A_2	7	12
A ₃	12	9
A_4	12	7
A ₅	11	7

Кінцевий результат:

Гравці	B_4	B ₅
A_2	7	12
A_3	12	9

Отже ми звели нашу гру 5 х 5 до гри 2 х 2.

Знаходимо розв'язок нашої гри:

-	
Для гравця А:	Для гравця В:
y = 7p1 + 12p2	y = 7q1 + 12q2
y = 12p1 + 9p2	y = 12q1 + 9q2
Де:	Де:
p1+p2=1	q1+q2=1
12p2 - 9p2 = 12p1 - 7p1	12q2 - 9q2 = 12q1 - 7q2
3p2 = 5p1	3q2 = 5q1
$p2 = 5/3p1 \Rightarrow p1 = 3/8; p2 = 5/8$	$q2 = 5/3q1 \Rightarrow q1 = 3/8; q2 = 5/8$
Підставляємо отримані значення	
Ціна гри = $7(3/8) + 12(5/8) = 10(1/8)$	

Відповідь:

- 1) Ціна гри = $10(1/8) \approx 10,125$;
- 2) Вектори стратегії гравців: (0, 3/8, 5/8, 0, 0), (0, 0, 0, 3/8, 5/8)

```
Код програми:
```

```
private static int[,] Dominant_str(int[,] array)
        {
             int don = 0;
             int checkin = 0;
             while (don < array.GetLength(0))</pre>
             int[] buble = Assignment_str(array, don);//Функція для копіювання рядка
             for (int i = 0; i < array.GetLength(0); i++)</pre>
                 bool chek = true;
                 int[] mas = Assignment_str(array, i);
if (don == i)
                 {
                      continue;
                 for (int j = 0; j < array.GetLength(1); j++)</pre>
                      if (buble[j] > mas[j])
                      {
                          chek = false;
                          break;
                      }
                 if (chek)
                      array = Delete_str(array, don);//Функція для видалення рядка
                          checkin++;
                          break;
                 }
             }
                 if (checkin > 0)
                 {
                      checkin = 0;
                      continue;
                 }
                 else
                 {
                     don++;
                 }
         }
             return array;
         }
```

Результат виконання програми:

```
12
        7
                         11
                 13
                                 9
12
        15
                         7
                                 12
                10
14
        11
                15
                         12
                                 9
        12
                15
                         12
10
                                 7
        13
                15
                         11
Ціна гри
9 < y < 12
1) Вилучення рядків
2) Вилучення стовпців
3) Результати для таблиці 2х2
12
        15
                10
                         7
                                 12
14
                15
                         12
                                 9
        11
        12
                15
                         12
10
        13
                15
                         11
1) Вилучення рядків
2) Вилучення стовпців
3) Результати для таблиці 2x2
        12
12
        9
12
        7
11
        7
1) Вилучення рядків
2) Вилучення стовпців
3) Результати для таблиці 2х2
        12
12
        9
1) Вилучення рядків
2) Вилучення стовпців
3) Результати для таблиці 2x2
Ймовірність 1 стратегії: 3/8
Ймовірність 2 стратегії: 5/8
Result of matrix game: 10,125
```

Висновок: під час виконання даної лабораторної роботи, визначив основні поняття теорії ігор та властивості змішаних стратегій. Вивчив метод вирішення матричних ігор у змішаних стратегіях за допомогою введення до подвійних завдань лінійного програмування.