习 题

2. 解: 余 3 循环码的主要特点是任何两个相邻码只有一位不同,它和余 3 码的关系是:

设余 3 码为 $B_3B_2B_1B_0$,余 3 循环码为 $G_3G_2G_1G_0$,可以通过以下规则将余 3 码转换为余 3 循环码。

- (1) 如果 B_0 和 B_1 相同,则 G_0 为 0,否则为 1;
- (2) 如果 B_1 和 B_2 相同,则 G_1 为 0,否则为 1;
- (3) 如果 B_2 和 B_3 相同,则 G_2 为 0,否则为 1;
- (4) G₃和 B₃相同。
- 4. 解: $(1) \times$,因为只要 A=1,不管 $B \setminus C$ 为何值,A+B=A+C 即成立,没有必要 B=C。
- (2)×,不成立,因为只要 A=0,不管 $B \times C$ 为何值, AB=AC 即成立,没有必要 B=C。
- (3) $\sqrt{\ }$, 当 A=**0** 时,根据 A+B=A+C 可得 B=C; 当 A=**1** 时,根据 AB=AC 可得 B=C。

7.
$$\Re : Y = \overline{AB} + BC = AB \cdot \overline{BC} = AB(B + \overline{C}) = AB + ABC = ABC + ABC$$

\overline{A}	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0
	· ·		

8. $M: L_1 = \overline{A} \overline{B} \overline{C} + \overline{A} B C$

$$L_2 = \overline{L_1} \, \overline{ABC} = \overline{\overline{A} \, \overline{B} \, \overline{C} + \overline{ABC}} \cdot \overline{ABC} = (A + B + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + \overline{C})$$

真值表

				L_2					
0	0	0	1	0 1 1	1	0	0	0	1
0	0	1	0	1	1	0	1	0	1
0	1	0	0	1	1	1	0	0	1
0	1	1	1	0	1	1	1	0	0

9.
$$\widetilde{R}: L = A\overline{B} + \overline{A}B = A\overline{B} + \overline{A}B + A\overline{A} + B\overline{B} = A(\overline{A} + \overline{B}) + B(\overline{A} + \overline{B})$$

逻辑电路图

A	В	C	Y_1	Y_2
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

从真值表可知:

$$Y_1 \neq Y_2$$

$$F = ABC + AB\overline{C} + B\overline{C} = AB + B\overline{C}$$

与非-与非式:

$$F = \overline{\overline{AB + BC}} = \overline{\overline{AB \cdot BC}}$$

最小项表达式:

$$F = ABC + AB\overline{C} + \overline{A}B\overline{C}$$

12. 解:方法一: 先求最小项之和,再求最大项之积。

$$F = \overline{A}BC + AB\overline{C} + ABC = \sum m \ (3.6.7) = \prod M \ (0.1.2.4.5)$$

$$=(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)(\overline{A}+B+\overline{C})$$

方法二: 利用逻辑代数公式直接求。

$$F = AB + BC = B(A+C) = (A+B)(\overline{A}+B)(A+C)$$

$$= (A+B+\overline{C})(A+B+C)(\overline{A}+B+\overline{C})(\overline{A}+B+C)(A+\overline{B}+C)(A+B+C)$$

$$= (A+B+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+B+C)(A+\overline{B}+C)(A+B+C)$$

14.
$$\overrightarrow{R} F = AB + \overrightarrow{AC} + \overrightarrow{BC} + A\overrightarrow{BCD} = AB + \overrightarrow{AC} + \overrightarrow{BC}$$

$$= AB + (\overrightarrow{A} + \overrightarrow{B}) C = AB + \overrightarrow{ABC} = AB + C$$
15. $\overrightarrow{R}: F = AB + \overrightarrow{AC} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{D}$

$$= AB + \overline{AC} + \overline{BC} + \overline{CD} + \overline{D}$$

$$= AB + \overline{AC} + \overline{BC} + \overline{C} + \overline{D}$$

$$= AB + \overline{CAB} + \overline{C} + \overline{D} = AB + C + \overline{C} + \overline{D} = 1$$

17.
$$\overline{u}$$
: $\diamondsuit X = ABCD + \overline{ABCD}$, $Y = A\overline{B} + B\overline{C} + C\overline{D} + D\overline{A}$

$$\therefore XY = (ABCD + \overline{A}\overline{B}\overline{C}\overline{D})(A\overline{B} + B\overline{C} + C\overline{D} + D\overline{A}) = 0$$

$$X + Y = ABCD + \overline{A}\overline{B}\overline{C}\overline{D} + A\overline{B} + B\overline{C} + C\overline{D} + D\overline{A}$$

$$=ACD+\overline{A}$$
 $\overline{C}\overline{D}+A\overline{B}+B\overline{C}+C\overline{D}+D\overline{A}$ (利用公式 $A+\overline{AB}=A+B$)

$$=AC+\overline{A}\overline{C}+A\overline{B}+B\overline{C}+C\overline{D}+D\overline{A}$$
 (利用公式 $A+\overline{AB}=A+B$)

$$=AC+D\overline{A}+CD+\overline{A}\overline{C}+A\overline{B}+B\overline{C}+C\overline{D}$$
 (利用公式 $AB+\overline{AC}+BC=AB+\overline{AC}$)

$$=AC+D\overline{A}+C+\overline{A}\overline{C}+A\overline{B}+B\overline{C}$$
 (利用公式 $AB+A\overline{B}=A$)

$$=D\overline{A}+C+\overline{A}+A\overline{B}+B$$
 (利用公式 $AB+A=A$)

$$=C+\overline{A}+A+B=1+C+B=1$$

∴
$$X = \overline{Y}$$
, 原等式成立。

18. 解:

19. 解:

$$F = \overline{AB} + A\overline{B} + B\overline{C}$$
 或者 $F = \overline{AB} + A\overline{B} + A\overline{C}$

21. 解:

F = BD + AC

22. 解:最简与-或式: $F = A + BC + \overline{BD}$

最简与-或-非式:
$$F = \overline{ABC} + \overline{AD}$$

$F \setminus CD$									
AB	00	01	11	10					
00	1	0	0	×					
01	0	0	×	1					
11	1	×	× 1						
10	×	1	×	1					

 F_{CD}

00

01

00

1

01

1

11

0

0

0

0

23. 解: (1) 最简与-或式

(2) 最简或-与式

方法一:根据最简与-或式变换得到:

$$\overline{F} = \overline{\overline{C} + BD + \overline{B} \, \overline{D}} = C(\overline{B} + \overline{D})(B + D) = \overline{B}CD + BC\overline{D}$$

$$F = \overline{\overline{B}CD + BC\overline{D}} = (B + \overline{C} + \overline{D})(\overline{B} + \overline{C} + D)$$

方法二: 利用卡诺图对 0 方格画包围圈。

$$\overline{F} = \overline{B}CD + BC\overline{D}$$
 $F = (B + \overline{C} + \overline{D})(\overline{B} + \overline{C} + D)$

24. $M: Y = B\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C}D$

$$= AB\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C}D = \sum m(5,7,9,13)$$

约束条件 $CD+\overline{CD}=0$,意味着C、D不能同时为1,也不能同时为0。对应着8个无关项。

$$CD + \overline{C}\overline{D} = \overline{A}\overline{B}CD + \overline{A}BCD + A\overline{B}CD + A\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} = 0$$
$$\sum d(0,3,4,7,8,11,12,15) = 0$$

两个式子都包含了最小项ABCD,根据约束条件,该最小项恒等于 0,属于无关项。

$$Y = F(A, B, C, D) = \sum m(5, 9, 13) + \sum d(0, 3, 4, 7, 8, 11, 12, 15)$$

Y AB CI	00	01	11	10
00	×	0	×	0
01	×	1	X	0
11	×	1	\times	0
10	×	1	X	0

Y = BD + AD

27. 解: (1) 真值表

A	В	С	F	A	В	С	F
0	0	0	0	1	0	0	1
0	0	1	1	1	0	1	0
0	1	0	1	1	1	0	0
0	1	1	0	1	1	1	1

- (2) $F = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC = \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}}$ (无法用卡诺图化简)
- (3) 逻辑图

28. 解: (1) 真值表:

A_3	A_2	A_1	A_0	F	A_3	A_2	A_1	A_0	F
0	0	0	0	1	1	0	0	0	0
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	0	1	1	1	1	0	1	1	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	1	1	1	0	1	1
0	1	1	0	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0

(2) 表达式

(3) 电路图

$$F = \overline{A_3} + A_2 \overline{A_1} + A_2 \overline{A_0}$$

(4) 如果要求用与非门实现,则:

$$F = \overline{A_3} + A_2 \overline{A_1} + A_2 \overline{A_0} = \overline{A_3} + A_2 \overline{A_1 A_0} = \overline{\overline{A_3} + A_2 \overline{A_1 A_0}} = \overline{A_3 \overline{A_2 \overline{A_1 A_0}}}$$
逻辑图:

$$\frac{29.\text{M}}{F_2} = \overline{A} \overline{B} + \overline{C} \overline{D}$$

$$F_2 = (A+B)(C+D)$$

31. **解**: 方案一: L_1 和 L_2 采用如图1 所示的卡诺图进行化简,即对 L_1 和 L_2 的逻辑函数单独 化简,得到最简与非-与非式:

图 1 设计方案一卡诺图

$$L_1 = B\overline{C} + BD = \overline{B\overline{C}}\overline{BD}$$
, $L_2 = B\overline{D} + BC = \overline{B\overline{D}}\overline{BC}$

根据逻辑式得逻辑图,如图2所示。

图 2 方案一逻辑图

方案二: L_1 和 L_2 采用如图3 所示的卡诺图进行化简,得到最简与非-与非式:

$$L_1 = B\overline{C} + BCD = \overline{BC}\overline{BCD}$$
, $L_2 = B\overline{D} + BCD = \overline{BD}\overline{BCD}$

根据逻辑式得逻辑图,如图4所示。

图 3 方案二卡诺图

设计方案二得到的逻辑表达式虽然不是最简式,但 从图4的逻辑图看,所用的与非门比设计方案一少 一个。这是因为在设计方案二中,两个逻辑函数利 用了一个公共项 BCD,从而节省了一个与非门。从 这个例子得到如下启发:对于具有多个输出变量的 组合逻辑电路设计,有时不应该单纯追求每个输出 与-或表达式最简,而应该在各个输出与-或表达式 中尽可能多用公共项,达到整体最简的目的。