

Leibniz Universität Hannover

Seminar Aspects of Distributed Systems

Implementation of Energy Efficiency in HPC

HLRN III Supercomputer Introduction + Guided Tour (26.05.2016)

07.04.16 Introduction, Impulse Presentation
 14.04.16 Assignment of Topics, Lab: Play with the System 21.04.16 Lab: Work on Your Topic
 Lab: Work on Your Topic
 26.05.16 HLRN III Supercomputer
 Lab: Work on Your Topic
 30.06.16 Presentation Session #1
 07.07.16 Presentation Session #2
 14.07.16 Presentation Session #3

Der Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen (HLRN)

- als Zusammenschluss der 6 nördlichen Bundesländer (Berlin, Bremen, Hamburg, Mecklenburg-Vorpommern, Niedersachsen und Schleswig-Holstein) gegründet
- Ende 2012 ist Brandenburg als 7. Mitglied beigetreten.

Standorte der Hardware

 Hannover (Leibniz Universität IT Services)

Historie: HLRN-I und HLRN-II

HLRN-I

- 40 Mio DM (2002-2008)
- 1024 CPUs (IBM Power)
- 5.2 TFLOP/s peak

HLRN-II

- 30 Mio € (2008-2013)
- 25k CPU Kerne (Intel x86)
- 300 TFLOP/s peak

- (möglichst) symmetrischer Aufbau in Berlin und Hannover
- > 10 Gbit/s Verbindung zwischen den Sites
- einheitliche Nutzer- und Projektverwaltung
- dezentrales Netzwerk von Fachberatern zur Unterstützung der Nutzer

HLRN-III – zeitlicher Ablauf

November 2010	Antragsskizze an die DFG
Juli 2011	Genehmigung des Vollantrags
März 2012	EU weite Ausschreibung des HLRN-III im Verhandlungsverfahren
August 2012	Beginn der Verhandlungen mit IBM und Cray
Oktober 2012	Finale Angebote nach drei Verhandlungsrunden
Dezember 2012	Vertragsabschluss mit Cray
Oktober 2013	Betriebsbereitschaft HLRN-III Phase 1 in Berlin
Dezember 2013	Betriebsbereitschaft HLRN-III Phase 1 in Hannover
September 2014	Installation HLRN-III Phase 2
Dezember 2014	Betriebsbereitschaft HLRN-III Phase 2

HLRN-III - Anforderungen

- Investitionssumme und Räumlichkeiten (30 Mio €)
- Limitierung der Betriebskosten (Wartung, Strom und Klima) (2 M € pro Jahr und Site für 5 Jahre)
- Erhalt der Expertise aus dem HLRN-II (Forderung mindestens ein Teil der MPP Komponente x86 CPU + Linux)
- extrem heterogener Anwendungsmix, d.h. die Leistungsbewertung kann nicht an einem singulären Benchmark festgelegt werden
- Anbieter mussten Leistungszusagen für 8 repräsentative Applikationen abgeben
- Garantierte Lauffähigkeit aller großen ISV und Open Source Pakete
- Vorgaben für weitere Komponenten: SMP Knoten, Pre/Post-Processing und Dateisysteme

HLRN-III Hardware Phase 1

MPP symmetrisch in Berlin + Hannover

- 4 Racks Cray XC30
 - 744 Knoten (2x 12core Intel Ivy Bridge, 64GB RAM)
 - Aries Interconnect
- 17856 Cores
- 46 TB Memory
- 329 TFlops peak
- 2 Pre/Post Knoten (4x 8core Intel Sandy Bridge, 768GB RAM)

File Systeme in Berlin + Hannover

- 1.4 PB Work-Filesystem lustre
 ~20GB/s Bandbreite
- 680TB /home /sw etc. (10GigE NFS/GPFS

SMP nur in Hannover

32 Knoten:

- 4x 8core Intel Sandy Bridge
- 256GB RAM
- 12 TB lokale Festplatten
- InfiniBand FDR (Lustre + MPI)

HLRN-III Hardware Phase 2 1/2

MPP in Berlin

- 6 Racks Cray XC40
 - 1128 Knoten (2x 12core Intel Haswell, 64GB RAM)
 - Aries Interconnect
- 27072 Cores
- 71TB Memory
- 1040 TFlops peak
- 2 Pre/Post Knoten (4x 10core Intel Ivy Bridge, 1.5TB RAM)

MPP in Hannover

- 5 Racks Cray XC40
 - 936 Knoten (2x 12core Intel Haswell, 64GB RAM)
 - Aries Interconnect
- 22464 Cores
- 59TB Memory
- 863 TFlops peak
- 2 Pre/Post Knoten (4x 10core Intel Ivy Bridge, 1.5TB RAM)

HLRN-III Hardware Phase 2 2/2

SMP nur in Hannover

- 32 weitere Knoten:
- 4x 10core Intel Ivy Bridge
- 512GB RAM
- 24 TB lokale Festplatten
- InfiniBand FDR (Lustre + MPI)

-l-u-s-t-r-e- pro Site:

- 1.4 PB Work-Filesystem
- ~31GB/s Bandbreite

HLRN-III Hardware Endausbau

- MPP Komponente
 - 3552 Knoten, 85248 Cores, 222TB RAM, ~2.5PFlops peak
- SMP Komponente (MEGWARE)

- 64 Knoten, 2304 Cores, 24TB RAM
- Hannover: 10 Nvidia K40 im SMP System

- Work Dateisystem Lustre
 - ~7.2PB Kapazität, ~100GB/s I/O Bandbreite
- 8 Pre/Post Knoten, /home (680TB), Login Knoten, . . .

HLRN-III vs. HLRN-II

- Anzahl Cores (MPP): 20k → 85k (*4.25)
- größtes MPP Segment: 7680 cores → 44920 cores (*5.8)
- RAM: 100TB → 222TB (*2.2)
- Peak Performance: 240 TFlops → 2.5 Pflops (~ *10)
- Work Filesystem: 1.6 PB → 7.2 PB (* 4.5)
- Racks: $100 \rightarrow 30 \ (* \ 0.3)$
- Leistungsaufnahme: 1.6 MW → 1.6 MW
- Budget 30 Mio € → 30 Mio €

HLRN-III Betriebskonzept

- Zwei Standorte ein System
- Einheitliche Nutzerverwaltung
- Ein Accounting für beide Systeme
- Black-Box
- Moab wird als Grid betrieben Jobs aus H können auch in B laufen

Vorteile:

- mehr Personal
- Raid1 Effekt bei Ausfällen und Wartung
- doppelte Datenhaltung möglich
- Betriebskosten werden geteilt

Nachteile:

- Partitionierung maximale
 Problemgröße halbiert
- Sites nach einiger Zeit leicht abweichend konfiguriert
- doppelte Datenhaltung nötig
- mehr Infrastruktur

Schema einer Site

HLRN-III Architektur

Aufbau der Cray XC30 (Cascade)

Aries Netzwerk 1/2

- Ein Aries Router pro Blade
 - direkt mit den PCIe 3.0 x16 Lanes eines Knotens verbunden.
- 1.3 µs Latenz
- ~16GB/s Durchsatz (bidirektional) Knoten ↔ Router

16 Router werden über die Chassis-Backplane verbunden

6 Chassis werden elektrisch verkabelt Rank-2 Copper Network

optische Verkabelung zwischen den Gruppen Rank-3 Network

Copper & Optical Cabling

Rank-3 Active Optics

Rank-2 Passive CU

Cray XC30 Kühlung

erfolgt quer

Notstromversorgung / USV

HLRN-III Software (System)

- Betriebssysteme:
 - Cray Linux Environment (CLE) auf der XC30, XC40
 - SLES auf den SMP und Pre/Post Knoten
- Compiler: GNU, Intel und Cray
- MPI: Intel MPI und Cray mpt
- Intel MKL + Cray Scientific Libraries
- Allinea DDT Debugger
- Intel und Cray Performance und Analysis Tools
- Batch: Moab/Torque HPC Suite Enterprise Edition

Ein Cray Mitarbeiter zur Anwenderunterstützung und Portierung von Open Source Paketen und Nutzerprogrammen

HLRN-III Software (User)

- Bereitstellung von optimierten Anwenderprogrammen durch Module
- Ingenieurwissenschaft abaqus, fluent, cfx . . .
- Chemie cp2k, gromacs, namd, vasp . . .
- Bibliotheken boost, netcdf, hdf5, fftw . . .
- Unterstützung beim Bau von Software durch Cray, Betreiberzentren und Fachberater

Contact: lehre@dcsec.uni-hannover.de