Is Seven Shuffles Enough?

Yi Lee

May 10, 2023

Consider the following trick:

Start with an ordered deck

- Start with an ordered deck
- ► Riffle shuffle once

- ► Start with an ordered deck
- ► Riffle shuffle once
- Riffle shuffle again

- Start with an ordered deck
- Riffle shuffle once
- Riffle shuffle again
- Pick a card and remember it

- Start with an ordered deck
- ► Riffle shuffle once
- ► Riffle shuffle again
- Pick a card and remember it
- Insert it back into the deck

- ► Start with an ordered deck
- Riffle shuffle once
- ► Riffle shuffle again
- Pick a card and remember it
- Insert it back into the deck
- Riffle shuffle one last time

- Start with an ordered deck
- Riffle shuffle once
- Riffle shuffle again
- Pick a card and remember it
- Insert it back into the deck
- Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- Start with an ordered deck
- Riffle shuffle once
- Riffle shuffle again
- Pick a card and remember it
- Insert it back into the deck
- Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- ► Start with an ordered deck 1 rising sequence
- Riffle shuffle once
- Riffle shuffle again
- Pick a card and remember it.
- Insert it back into the deck
- Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- ► Start with an ordered deck 1 rising sequence
- ► Riffle shuffle once 2 rising sequences
- ► Riffle shuffle again
- Pick a card and remember it
- Insert it back into the deck
- Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- Start with an ordered deck 1 rising sequence
- ► Riffle shuffle once 2 rising sequences
- ► Riffle shuffle again 4 rising sequences
- Pick a card and remember it
- Insert it back into the deck
- ► Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- ► Start with an ordered deck 1 rising sequence
- ► Riffle shuffle once 2 rising sequences
- ► Riffle shuffle again 4 rising sequences
- Pick a card and remember it
- ► Insert it back into the deck 4 + 1 rising sequences
- Riffle shuffle one last time
- Claim: I can find your card

Consider the following trick:

- ► Start with an ordered deck 1 rising sequence
- ► Riffle shuffle once 2 rising sequences
- ► Riffle shuffle again 4 rising sequences
- Pick a card and remember it
- ▶ Insert it back into the deck 4 + 1 rising sequences
- ▶ Riffle shuffle one last time 8 + 1 rising sequences
- Claim: I can find your card

Main Theorem

After shuffling n cards for $\frac{3}{2} \log_2 n + \theta$ times, the distance to uniform is

$$1-2\Phi\left(\frac{-2^{-\theta}}{4\sqrt{3}}\right)+O\left(\frac{1}{n^{1/4}}\right)$$

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Main Theorem

After shuffling n cards for $\frac{3}{2} \log_2 n + \theta$ times, the distance to uniform is

$$1 - 2\Phi\left(\frac{-2^{-\theta}}{4\sqrt{3}}\right) + O\left(\frac{1}{n^{1/4}}\right)$$
$$\left[1 - 2\Phi\left(\frac{-1}{4c\sqrt{3}}\right) \xrightarrow{c \to \infty} \frac{1}{2c\sqrt{6\pi}} \right]$$

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Some Data

 $\begin{array}{c} \text{Table 4} \\ \text{Shuffles needed to mix 25, 32, 52, 78, 104, 208 or 312 cards} \end{array}$

n	25	32	52	78	104	208	312
$\frac{3}{2}\log_2 n$	6.97	7.50	8.55	9.43	10.05	11.55	12.43

Some Data

 $\begin{array}{c} \text{Table 4} \\ \text{Shuffles needed to mix 25, 32, 52, 78, 104, 208 or 312 cards} \end{array}$

n	25	32	52	78	104	208	312
$\frac{3}{2}\log_2 n$	6.97	7.50	8.55	9.43	10.05	11.55	12.43

 ${\it Table~3} \\ {\it Total~variation~distance~for~m~shuffles~of~25,~32,~52,~78,~104,~208~or~312~distinct~cards}$

m	1	2	3	4	5	6	7	8	9	10
25	1.000	1.000	0.999	0.775	0.437	0.231	0.114	0.056	0.028	0.014
32	1.000	1.000	1.000	0.929	0.597	0.322	0.164	0.084	0.042	0.021
52	1.000	1.000	1.000	1.000	0.924	0.614	0.334	0.167	0.085	0.043
78	1.000	1.000	1.000	1.000	1.000	0.893	0.571	0.307	0.153	0.078
104	1.000	1.000	1.000	1.000	1.000	0.988	0.772	0.454	0.237	0.119
208	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.914	0.603	0.329
312	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.883	0.565

► Shuffling Cards and Stopping Time (1986)

- ► Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture

- ► Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$

- ► Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)

- ► Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - ► Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)

- ► Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?
 - ▶ Blackjack: Suits don't matter, and 10 = J = Q = K

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?
 - ▶ Blackjack: Suits don't matter, and 10 = J = Q = K
- Analysis of Casino Shelf Shuffling Machines (2013)

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?
 - ▶ Blackjack: Suits don't matter, and 10 = J = Q = K
- Analysis of Casino Shelf Shuffling Machines (2013)
- Shuffling Cards by Spatial Motion (2017)

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?
 - ▶ Blackjack: Suits don't matter, and 10 = J = Q = K
- Analysis of Casino Shelf Shuffling Machines (2013)
- Shuffling Cards by Spatial Motion (2017)
 - What if the deck is too big to be riffled?

- Shuffling Cards and Stopping Time (1986)
 - Covered mostly in lecture
 - $t \le 2 \log_2 \frac{4n}{3}$
- ► Trailing the Dovetail Shuffle to its Lair (1992)
 - Natural follow-up work
 - Main theorem today
- ► A Rule of Thumb for Riffle Shuffling (2008)
 - What if there are duplicate cards?
 - ▶ Blackjack: Suits don't matter, and 10 = J = Q = K
- ► Analysis of Casino Shelf Shuffling Machines (2013)
- Shuffling Cards by Spatial Motion (2017)
 - What if the deck is too big to be riffled?
 - Analysis of smooshing shuffle

Another Way to Riffle Shuffle

a-shuffle: generalization of riffle shuffle

Another Way to Riffle Shuffle

a-shuffle: generalization of riffle shuffle

► Split the deck into *a* packets using the multinomial distribution

Another Way to Riffle Shuffle

a-shuffle: generalization of riffle shuffle

- ► Split the deck into *a* packets using the multinomial distribution
- ▶ Iteratively riffle the packets together

Some Facts About a-shuffle

1. There are many equivalent descriptions.

Some Facts About a-shuffle

- 1. There are many equivalent descriptions.
- 2. An *a*-shuffle followed by a *b*-shuffle is equivalent to a *ab*-shuffle.

Some Facts About a-shuffle

- 1. There are many equivalent descriptions.
- 2. An *a*-shuffle followed by a *b*-shuffle is equivalent to a *ab*-shuffle.
- 3. If π has r rising sequences, then the probability of obtaining π in an a-shuffle is $\frac{\binom{a+n-r}{n}}{a^n}$.

Let

• $m = \frac{3}{2} \log_2 n + \theta$ be the number of shuffles,

Let

- $m = \frac{3}{2} \log_2 n + \theta$ be the number of shuffles,
- ▶ $Q^m(r) = \frac{\binom{2^m + n r}{n}}{2^{mn}}$ be the probability of a permutation with r rising sequences,

Let

- $m = \frac{3}{2} \log_2 n + \theta$ be the number of shuffles,
- ▶ $Q^m(r) = \frac{\binom{2^m + n r}{n}}{2^{mn}}$ be the probability of a permutation with r rising sequences,
- ▶ $A_{n,r} = |\{ \pi \in \mathsf{Sym}(n) : \pi \text{ has } r \text{ rising sequences } \}|$

Let

- $m = \frac{3}{2} \log_2 n + \theta$ be the number of shuffles,
- ▶ $Q^m(r) = \frac{\binom{2^m + n r}{n}}{2^{mn}}$ be the probability of a permutation with r rising sequences,
- ► $A_{n,r} = |\{ \pi \in Sym(n) : \pi \text{ has } r \text{ rising sequences } \}|$

Goal: upper bound the distance

$$||Q^m - U|| = \sum_{r:Q^m(r) \ge \frac{1}{n!}} A_{n,r} \left(Q^m(r) - \frac{1}{n!} \right)$$

Let

- $m = \frac{3}{2} \log_2 n + \theta$ be the number of shuffles,
- ▶ $Q^m(r) = \frac{\binom{2^m + n r}{n}}{2^{mn}}$ be the probability of a permutation with r rising sequences,
- ▶ $A_{n,r} = |\{ \pi \in \mathsf{Sym}(n) : \pi \text{ has } r \text{ rising sequences } \}|$

Goal: upper bound the distance

$$||Q^{m} - U|| = \sum_{r:Q^{m}(r) \ge \frac{1}{n!}} A_{n,r} \left(Q^{m}(r) - \frac{1}{n!} \right)$$
$$= \sum_{r=0}^{r^{*}} A_{n,r} \left(Q^{m}(r) - \frac{1}{n!} \right)$$

Let
$$c=2^{\theta}$$
, then

$$\sum_{r=0}^{r^*} A_{n,r} \cdot Q^m(r) \approx \sum_{r=r_0}^{r^*} A_{n,r} \cdot Q^m(r)$$

Let $c=2^{\theta}$, then

$$\sum_{r=0}^{r^*} A_{n,r} \cdot Q^m(r) \approx \sum_{r=r_0}^{r^*} A_{n,r} \cdot Q^m(r)$$

$$\leq A_{n,r^*} \sum_{r=r_0}^{r^*} Q^m(r)$$

Let $c=2^{\theta}$, then

$$\sum_{r=0}^{r^*} A_{n,r} \cdot Q^m(r) \approx \sum_{r=r_0}^{r^*} A_{n,r} \cdot Q^m(r)$$

$$\leq A_{n,r^*} \sum_{r=r_0}^{r^*} Q^m(r)$$

$$\approx A_{n,r^*} \int_{r_0}^{r^*} Q^m(r)$$

Let $c = 2^{\theta}$, then

$$\sum_{r=0}^{r^*} A_{n,r} \cdot Q^m(r) \approx \sum_{r=r_0}^{r^*} A_{n,r} \cdot Q^m(r)$$

$$\leq A_{n,r^*} \sum_{r=r_0}^{r^*} Q^m(r)$$

$$\approx A_{n,r^*} \int_{r_0}^{r^*} Q^m(r)$$

$$\approx \dots$$

Let $c=2^{\theta}$, then

$$\sum_{r=0}^{r^*} A_{n,r} \cdot Q^m(r) \approx \sum_{r=r_0}^{r^*} A_{n,r} \cdot Q^m(r)$$

$$\leq A_{n,r^*} \sum_{r=r_0}^{r^*} Q^m(r)$$

$$\approx A_{n,r^*} \int_{r_0}^{r^*} Q^m(r)$$

$$\approx \dots$$

$$\approx \Phi\left(\frac{1}{4c\sqrt{3}}\right)$$

Putting Everything Together

$$\sum_{r=0}^{r^*} A_{n,r} \left(Q^m(r) - \frac{1}{n!} \right) = \Phi \left(\frac{1}{4c\sqrt{3}} \right) - \frac{1}{n!} \sum_{r=0}^{r^*} A_{n,r}$$

Putting Everything Together

$$\sum_{r=0}^{r^*} A_{n,r} \left(Q^m(r) - \frac{1}{n!} \right) = \Phi\left(\frac{1}{4c\sqrt{3}} \right) - \frac{1}{n!} \sum_{r=0}^{r^*} A_{n,r}$$
$$\approx \Phi\left(\frac{1}{4c\sqrt{3}} \right) - \Phi\left(-\frac{1}{4c\sqrt{3}} \right)$$

Putting Everything Together

$$\sum_{r=0}^{r^*} A_{n,r} \left(Q^m(r) - \frac{1}{n!} \right) = \Phi\left(\frac{1}{4c\sqrt{3}} \right) - \frac{1}{n!} \sum_{r=0}^{r^*} A_{n,r}$$

$$\approx \Phi\left(\frac{1}{4c\sqrt{3}} \right) - \Phi\left(-\frac{1}{4c\sqrt{3}} \right)$$

$$= 1 - 2\Phi\left(-\frac{1}{4c\sqrt{3}} \right)$$