Trabalho Prático de Programação Natural Cubo Mágico

Gabriel de Biasi¹

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais
Av. Antônio Carlos, 6627 – Pampulha – Belo Horizonte – MG

biasi@dcc.ufmg.br

1. Descrição do Problema

O brinquedo "Cubo Mágico" ou *Rubik's Cube* foi criado por Rubik em 1974 e distribuído comercialmente em 1980. Possui um conjunto de 26 cubos menores, 6 faces com três tipos de cubos distintos: São 4 centros, 12 meios e 8 quinas. Cada tipo cubo possui um número específico de cores, onde os centros possui uma cor, meios possuem duas cores e as quinas possuem três cores.

É possível realizar movimentos em faces do cubo mágico sendo possível rotacionar os cubos desta face. Há 3 movimentos distintos que podem ser feitos em cada face, sendo eles: rotação horária, rotação anti-horária e dupla rotação. Logo, o cubo mágico tem um total de 18 movimentos possíveis. O objetivo do jogo é fazer com que todas as faces tenham a mesma cor. Na Figura 1 temos na esquerda um cubo em um estado "bagunçado" e outro no estado concluído.

Figura 1. Cubo mágico bagunçado e um cubo mágico resolvido

Neste trabalho, é proposto um algoritmo evolutivo que tenha capacidade de resolver uma dada instância de cubo mágico colocando-o no estado resolvido e ao mesmo tempo buscando minimizar a quantidade de movimentos necessários.

2. Metodologia

Para alcançar o objetivo do jogo, foi utilizado como base um método de resolução criado pelo professor *Morwen Thistlethwaite*, onde o espaço de buscas de soluções é categorizado e então o cubo precisa ser levado de uma categoria para a próxima utilizando apenas os movimentos permitidos da categoria atual [Scherphuis 2016].

2.1. Categorias do Cubo

Thistlethwaite criou 5 categorias, que descreve o tão próximo um cubo mágico está da solução. As categorias diminuem drasticamente o espaço de busca de soluções, fazendo com que a busca pela solução simplifique com o avanço entre as categorias.

- **G0** Todos os estados do cubo mágico possíveis. Naturalmente, todos os cubos mágicos já estão presentes no conjunto G0. Sua ordem é de $|G0| = 4.33 \times 10^{19}$.
- **G1** Nesta categoria, os meios do cubo estão devidamente **orientados**, ou seja, não são necessários os movimentos simples [L,R] para colocá-los em sua posição original. Sua ordem é de $|G1|=2.11\times 10^{19}$.
- **G2** Na categoria G2 os meios da camada do meio não podem ser movidos de suas faces e a face de cima e a face de baixo só possuem suas respectivas cores amarelo/branco. Sua ordem é de $|G2|=1.95\times10^{10}$.
- G3 Todas as faces opostas do cubo mágico agora possuem suas determinadas cores. As faces frente/atrás terão laranja ou vermelho, cima/baixo terão amarelo ou branco e esquerda/direita terão verde ou azul. Sua ordem é de $|G3| = 6.63 \times 10^5$.
- **G4** Estado do cubo resolvido, |G4| = 1.

Os movimentos de cada categoria que permitem levar para a próxima sem a quebra de propriedade são os seguintes:

Tabela 1. Movimentos permitidos em cada categoria			
Categoria	Conjunto de Movimentos Permitidos		
G0	(F, R, U, B, L, D)		
G1	(F, R, U, B, L2, D2)		
G2	(F, R, U2, B2, L2, D2)		
G3	(F2, R2, U2, B2, L2, D2)		
G4	Ø		

Tabela 1. Movimentos permitidos em cada categoria

[El-Sourani et al. 2010].

3. Descrição Geral da Implementação

Nesta seção, será discutido como as funções básicas de algoritmos evolucionários foram implementadas para o contexto do problema proposto.

3.1. Fluxo de Trabalho do Algoritmo

O algoritmo inicia com a definição de três constantes, Alpha (α) , Theta (Θ) e Lambda (λ) . Estas constantes representam, respectivamente, a quantidade de gerações máxima do algoritmo, o tamanho da população e a quantidade de indivíduos resolvidos necessária para avançar uma categoria.

3.2. Definição de um Indivíduo

Neste algoritmo, um indivíduo é representado por uma lista de movimentos no cubo mágico, partindo do estado do cubo que foi passado quando o algoritmo iniciou. Exemplo:

É importante ressaltar que cada indivíduo deste algoritmo evolucionário possui **quatro** valores de *fitness* diferentes, que é melhor explicado na Subseção 3.6.

Tabela 2. Exemplos de Indivíduos

ID	Conjunto de Movimentos
I1	$[F, R2, Ui, B, L2, \dots, D, Fi]$
I2	[Di, Ui, R2, D2, U, Li]
I3	[U2, R2, Ui, D, F2]
I4	$[\emptyset]$

3.3. Seleção

A seleção de indivíduos é feita por ranqueamento simples, onde todos os todos indivíduos da população atual são ordenados por fitness e os λ primeiros indivíduos são selecionados e considerados os candidatos para gerar a próxima geração.

Após a seleção, todos λ candidatos terão a probabilidade $\frac{1}{\lambda}$ de serem escolhidos e então serem duplicados. Este processo se repete até que a nova população alcance a quantidade de Θ indivíduos.

3.4. Mutação

Etc.

3.5. Função clean

Esta função é chamada toda vez que uma sequência de mutação é criada para um indivíduo. A fim de reduzir o número de movimentos necessários para resolver o cubo mágico, movimentos em sequência que não geram efeitos no cubo são removidos e movimentos que podem ser simplificados são alterados, sem perda de contexto final do cubo.

A seguir, temos três exemplos de simplificação que podem ser feitos em uma sequência de movimentos. Na Tabela 3 apenas o movimento F é apresentado, entretanto estas regras podem ser utilizadas para quaisquer movimentos do cubo mágico e em qualquer ordem.

Tabela 3. Exemplos de Reduções de Movimentos

Inicial	Motivo	Final
[F, Fi]	Não produz efeito	[Ø]
[F, F]	Torna-se um giro duplo	[F2]
[F, F2]	Torna-se um giro invertido	[Fi]

3.6. Função fitness

4. Execução dos Experimentos

lala

5. Conclusão

Neste trabalho.

Referências

[El-Sourani et al. 2010] El-Sourani, N., Hauke, S., and Borschbach, M. (2010). An evolutionary approach for solving the rubik's cube incorporating exact methods.

[Scherphuis 2016] Scherphuis, J. (2016). Thistlethwaite's 52-move algorithm.