Logică Matematică și Computațională – addenda la Cursul I, schițată

Claudia Mureşan, c.muresan@yahoo.com, cmuresan@fmi.unibuc.ro, claudia.muresan@unibuc.ro
Universitatea din Bucureşti, Facultatea de Matematică și Informatică, 2021–2022, Semestrul I

Despre toate enunţurile vom presupune că sunt fie **false**, fie **adevărate** (amintesc că aceasta nu e o condiţie trivială: a se vedea în Cursul I *paradoxul mincinosului*), mai precis că au exact una dintre aceste valori de adevăr, deci că acestea sunt singurele valori de adevăr cu care lucrăm şi că sunt diferite.

Fie p, q şi r enunţuri arbitrare.

p sau q: adevărat ddacă p e adevărat sau q e adevărat.

p și q: adevărat ddacă p e adevărat și q e adevărat.

non p: adevărat ddacă p e fals.

p => q: adevărat ddacă, ori de câte ori p e adevărat, atunci şi q e adevărat.

Aşadar: $\mathbf{p} \Rightarrow \mathbf{q}$: fals ddacă \mathbf{p} e adevărat şi \mathbf{q} e fals.

Exemplu: Dacă un triunghi e echilateral, atunci toate unghiurile sale sunt de 60°. Enunţul acesta e adevărat chiar dacă există triunghiuri care nu sunt echilaterale; existenţa acelor triunghiuri nu invalidează acest enunţ; acele triunghiuri satisfac în mod trivial această implicaţie, pentru că nu satisfac premisa implicaţiei.

 $p \le q$: adevărat ddacă p = q şi q = p sunt adevărate, deci adevărat ddacă (p = p) şi (q = p) e adevărat.

р	q	p => q	(non p) sau q	q => p	p <=> q
fals	fals	adevărat	adevărat	adevărat	adevărat
fals	adevărat	adevărat	adevărat	fals	fals
adevărat	fals	fals	fals	adevărat	fals
adevărat	adevărat	adevărat	adevărat	adevărat	adevărat

Aşadar: **p <=> q**: adevărat ddacă p şi q au aceeaşi valoare de adevăr.

Prin urmare: **p <=> (non non p)** e adevărat întotdeauna.

De asemenea, (p <=> q) <=> [(non p) sau q] e adevărat întotdeauna, pentru că p <=> q şi (non p) sau q au aceeaşi valoare de adevăr.

Conform definiţiilor de mai sus, conectorii logici sau şi şi sunt comutativi, adică [(p sau q) \Leftrightarrow (q sau p)] şi [(p şi q) \Leftrightarrow (q şi p)] sunt întotdeauna adevărate, şi asociativi, adică [((p sau q) sau r) \Leftrightarrow (p sau (q sau r))] şi [((p şi q) şi r) \Leftrightarrow (p şi (q şi r))] sunt întotdeauna adevărate, şi de aceea aceste enunţuri se pot scrie fără paranteze:

p sau q sau r, respectiv p şi q şi r.

Observaţie: Dacă, într-un enunţ compus α , înlocuim un enunţ β din componenţa lui α cu un enunţ cu aceeaşi valoare de adevăr ca şi β , atunci obţinem un enunţ cu aceeaşi valoare de adevăr ca şi α (şi, desigur, putem face acest lucru pentru mai multe enunţuri β succesiv).

Abreviem ad-hoc: A := adevărat; F := fals.

Să demonstrăm că:

• [p sau (q şi r)] ⇔ [(p sau q) şi (p sau r)]

"=>":

Presupunem [p sau (q $\sin r$)] A. \Leftrightarrow p A sau (q A $\sin r$ A).

Dacă p $A \Rightarrow$ (p sau q) $A \Rightarrow$ (p sau r) $A \Leftrightarrow$ (p sau q) $A \Rightarrow$ (p sau r) $A \Rightarrow$

Dacă ($q A \sin A$) => ($p \sin q$) $A \sin (p \sin r) A <=> (<math>p \sin q$) $\sin (p \sin r) A$.

"<=":

Presupunem [(p sau q) şi (p sau r)] A. ⇔ (p sau q) A şi (p sau r) A.

Dacă p A => [p sau (q şi r)] A.

Dacă p F, atunci, întrucât (p sau q) A şi (p sau r) A => q A şi r A \Leftrightarrow q şi r A => [p sau (q şi r)] A.

• [p şi (q sau r)] ⇔ [(p şi q) sau (p şi r)]

"=>":

Presupunem [p şi (q sau r)] A. ⇔ p A şi (q sau r) A ⇔ p A şi (q A sau r A).

Dacă q A \Rightarrow (p şi q) A \Rightarrow [(p şi q) sau (p şi r)] A.

Dacă r A \Rightarrow (p şi r) A \Rightarrow [(p şi q) sau (p şi r)] A.

"<=":

Presupunem [(p şi q) sau (p şi r)] A. \Leftrightarrow (p şi q) A sau (p şi r) A \Leftrightarrow (p A şi q A) sau (p A şi r A).

Dacă p A şi q A => p A şi (q sau r) A ⇔ [p şi (q sau r)] A.

Dacă p A şi r A => p A şi (q sau r) A \Leftrightarrow [p şi (q sau r)] A.

• [p=>q] ⇔ [(non q)=>(non p)]

"=>": Demonstrăm că: [p=>q] => [(non q)=>(non p)]. (*)

Presupunem p=>q A.

Dacă (non q)A, \Leftrightarrow q F => p F \Leftrightarrow (non p)A. Aşadar [(non q)=>(non p)] A.

"<=": În (*) înlocuim: p cu non q, iar q cu non p, şi obţinem:

 $[(\text{non q})=>(\text{non p})] => [(\text{non non p})=>(\text{non non q})] \Leftrightarrow [p=>q].$

Aşadar $[p=>q] \ll [(non q)=>(non p)].$

Exerciţiu: Să se demonstreze că, pentru orice mulţime M, are loc echivalenţa: $(\forall x \in M)(p(x) \ \text{şi} \ q(x)) \Leftrightarrow [(\forall x \in M)(p(x)) \ \text{şi} \ (\forall x \in M)(q(x))], pornind de la echivalenţa: <math>(\forall x)(p(x) \ \text{şi} \ q(x)) \Leftrightarrow (\forall x)(p(x)) \ \text{şi} \ (\forall x)(q(x)).$

Rezolvare: $(\forall x \in M)(p(x) \notin q(x)) \Leftrightarrow (\forall x)[x \in M => (p(x) \notin q(x))] \Leftrightarrow$

 $(\forall x)[x\notin M \text{ sau } (p(x) \text{ şi } q(x))] \Leftrightarrow (\forall x)[(x\notin M \text{ sau } p(x)) \text{ şi } (x\notin M \text{ sau } q(x))] \Leftrightarrow$

 $[(\forall x)(x\notin M \text{ sau } p(x)) \text{ şi } (\forall x)(x\notin M \text{ sau } q(x))] \Leftrightarrow$

 $[(\forall x)(x\in M \Rightarrow p(x))\ \S i\ (\forall x)(x\in M \Rightarrow q(x))] \Leftrightarrow [(\forall x\in M)(p(x))\ \S i\ (\forall x\in M)(q(x))].$

Remarcă: Dacă proprietatea q nu depinde de variabila x de sub incidența cuantificatorului, atunci: $\forall xq \Leftrightarrow q \Leftrightarrow \exists xq$, și au loc:

• $(\forall x \in M)(p(x) \text{ și q}) \Leftrightarrow [(\forall x)(p(x)) \text{ și q}], \text{ pentru că:}$

 $(\forall x \in M)(p(x) \notin q) \Leftrightarrow [(\forall x)(p(x)) \notin \forall x \neq q] \Leftrightarrow [(\forall x)(p(x)) \notin q];$

• $(\exists x \in M)(p(x) \text{ sau } q) \Leftrightarrow [(\exists x)(p(x)) \text{ sau } q]$, pentru că:

 $(\exists x \in M)(p(x) \text{ sau } q) \Leftrightarrow [(\exists x)(p(x)) \text{ sau } \exists xq] \Leftrightarrow [(\exists x)(p(x)) \text{ sau } q];$

• $(\forall x \in M)(p(x) \text{ sau } q) \Leftrightarrow [(\forall x)(p(x)) \text{ sau } q]$, pentru că:

dacă q e adevărată, atunci $[(\forall x)(p(x))$ sau q] e adevărată, iar (p(x) sau q) e adevărată pentru orice x, deci $(\forall x \in M)(p(x)$ sau q) e adevărată;

dacă q e falsă, atunci $[(\forall x)(p(x)) \text{ sau q}]$ e adevărată ddacă $(\forall x)(p(x))$ e adevărată ddacă (p(x)) e adevărată pentru orice x ddacă $(\forall x)(p(x))$ sau q) e adevărată;

• $(\exists x \in M)(p(x) \notin [(\exists x)(p(x)) \notin q], pentru că:$

dacă q e falsă, atunci $[(\exists x)(p(x))$ şi q] e falsă, iar (p(x) şi q) e falsă pentru orice x, deci $(\exists x \in M)(p(x)$ şi q) e falsă;

dacă q e adevărată, atunci $[(\exists x)(p(x))$ și q] e adevărată ddacă $(\exists x)(p(x))$ e adevărată ddacă $(\exists x)(p(x))$ e adevărată pentru măcar un $(\exists x)(p(x))$ și q) e adevărată pentru măcar un $(\exists x)(p(x))$ și q) e adevărată.

Dar, dacă înlocuim conectorii logici "sau", "şi" cu "=>" sau "⇔", proprietăţile de mai sus nu rămân valabile.

Exemplu: Enunţul $(\forall x \in \mathbb{N})(2|n=>2|3)$ este fals, pentru că, pentru n=2, 2|2=>2|3 este fals. Dar enunţul $(\forall x \in \mathbb{N})(2|n)=>2|3$ este adevărat, pentru că antecedentul $(\forall x \in \mathbb{N})(2|n)$ al acestei implicaţii este fals.

Exemplu de utilizare a ultimei proprietăți din remarca anterioară:

A se vedea în Seminarul I faptul că, dacă P,Q sunt submulțimi ale unei mulțimi M, atunci: $P=Q \Leftrightarrow (\forall x \in M)(x \in P \Leftrightarrow x \in Q)$.

Fie A, B, C, D mulţimi.

O relație binară de la A la B este o submulțime a produsului cartezian AxB={(a,b) | aєA,bєB}. Aceasta este o generalizare a noțiunii de funcție de la A la B; spre deosebire de cazul unei funcții, elementul bєB asociat de o relație binară unui element aєA nu există neapărat și nu e neapărat unic.

Amintesc că, în sistemul axiomatic din primul curs, a fost definită perechea ordonată $(a,b):=\{a,\{a,b\}\}$. Această pereche ordonată poate fi definită şi ca o funcție de la $\{1,2\}$ la $\{a,b\}$ care duce pe 1 în a şi pe 2 în b.

Compunerea de relații binare generalizează compunerea de funcții:

a f(a) g(f(a))=(gof)(a)
A
$$\xrightarrow{f} \xrightarrow{g} \xrightarrow{g} \xrightarrow{f}$$

gof

şi se defineşte astfel: dacă R e o relaţie binară de la A la B, iar S e o relaţie binară de la B la C, adică R \subseteq AxB şi S \subseteq BxC, atunci compunerea SoR e o relaţie binară de la A la C definită astfel: SoR={(a,c) | a \in A, c \in C, (\exists b \in B)((a,b) \in R şi (b,c) \in S)} \subseteq AxC.

Să demonstrăm că, la fel ca în cazul particular al funcțiilor, compunerea de relații binare e asociativă, adică: pentru orice $R\subseteq AxB$, $S\subseteq BxC$ și $T\subseteq CxD$, avem: To(SoR) = (ToS)oR.

Avem SoR \subseteq AxC, ToS \subseteq BxD, iar To(SoR) \subseteq AxD şi (ToS)oR \subseteq AxD, prin urmare, conform proprietății din Seminarul I menționată mai sus, e suficient să demonstrăm că, pentru orice x \in AxD, are loc (\forall x \in M)(x \in To(SoR) \Leftrightarrow x \in (ToS)oR). Un element arbitrar x din AxD este de forma x=(a,d), cu a element arbitrar al lui A şi d element arbitrar al lui D.

Fie, aşadar, aєA şi dєD, arbitrare, fixate. Avem: $(a,d) \in To(SoR) \Leftrightarrow^{\text{(definiţia compunerii)}} (\exists c \in C)((a,c) \in SoR \text{ şi } (c,d) \in T) \Leftrightarrow^{\text{(definiţia compunerii)}} (\exists c \in C)[(\exists b \in B)((a,b) \in R \text{ şi } (b,c) \in S) \text{ şi } (c,d) \in T] \Leftrightarrow^{\text{((c,d)} \in T \text{ nu depinde de b)}} (\exists c \in C)(\exists b \in B)((a,b) \in R \text{ şi } (b,c) \in S) \text{ şi } (c,d) \in T) \Leftrightarrow^{\text{(cuantificatorii de acelaşi fel comută)}} (\exists b \in B)(\exists c \in C)((a,b) \in R \text{ şi } (b,c) \in S) \text{ şi } (c,d) \in T) \Leftrightarrow^{\text{((a,b)} \in R \text{ nu depinde de c)}} (\exists b \in B) [(a,b) \in R \text{ şi } (\exists c \in C)((b,c) \in S) \text{ şi } (c,d) \in T)] \Leftrightarrow^{\text{(definiţia compunerii)}} (\exists b \in B) [(a,b) \in R \text{ şi } (b,d) \in ToS] \Leftrightarrow^{\text{(definiţia compunerii)}} (a,d) \in (ToS) \circ R.$ $Aşadar To(SoR) = (ToS) \circ R.$