Discrete Optimization

Constraint-based Scheduling

Goals of the Lecture

- Scheduling with Constraint Programming
 - modeling
 - -global constraints
 - and some nice techniques ...

Motivation

Very successful application area for constraint programming

Motivation

- Very successful application area for constraint programming
- minimize project duration subject to
 - precedence constraints
 - disjunctive constraints: no two tasks scheduled on the same machine can overlap in time

Project Scheduling

Project Scheduling

- Dedicated abstractions for scheduling
 - model-based computing

- Dedicated abstractions for scheduling
 - model-based computing
- Domain-specific concepts such as
 - activities
 - -resources
 - precedence constraints

—

- Dedicated abstractions for scheduling
 - model-based computing
- Domain-specific concepts such as
 - activities
 - -resources
 - precedence constraints
 - **—**
- Encapsulate
 - -variables and global constraints

- Dedicated abstractions for scheduling
 - model-based computing
- Domain-specific concepts such as
 - activities
 - -resources
 - precedence constraints
 - **—**
- Encapsulate
 - -variables and global constraints
- Support
 - -search procedures

- ► The "TSP" of scheduling
 - standard benchmarks and open problems

- ► The "TSP" of scheduling
 - standard benchmarks and open problems
- Problem formulation
 - -a set of tasks and
 - each task t has a duration d(t)
 - each task t executes on a machine m(t) and no two tasks scheduled on the same machine can overlap in time
 - a set of precedence constraints (b,a) stating that task a must start after task b has completed

- ► The "TSP" of scheduling
 - standard benchmarks and open problems
- Problem formulation
 - -a set of tasks and
 - each task t has a duration d(t)
 - each task t executes on a machine m(t) and no two tasks scheduled on the same machine can overlap in time
 - a set of precedence constraints (b,a) stating that task a must start after task b has completed
- Objective
 - minimize the project completion time

- ► A machine must handle its tasks sequentially
- a solution must find an ordering of the tasks on each machine

- ► A machine must handle its task sequentially
- a solution must find an ordering of the tasks on each machine

- It is sufficient to order all machines
 - each ordering then introduces precedence constraints

- ► It is sufficient to order all machines
 - each ordering then introduces precedence constraints
- Minimize project duration under precedence constraints
 - polynomial time
 - topological sorting (PERT)
 - transitive closure (Floyd-Warshall)

```
int duration[Jobs, Tasks] = ...;
int machine[Jobs, Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];
Scheduler sched(horizon);
Activity act[j in Jobs, t in Tasks](sched, duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines] (sched);
minimize makespan.end
subject to {
   forall(j in Jobs,t in tasks: t != Tasks.high)
       act[j,t] precedes act[j,t+1];
   forall(j in Jobs)
       act[j,Tasks.high] precedes makespan;
   forall(j in Jobs, t in Tasks)
       act[j,t] requires r[machine[j,t]];
```

```
int duration[Jobs, Tasks] = ...;
int machine[Jobs, Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];
Scheduler sched(horizon);
Activity act[j in Jobs, t in Tasks] (sched, duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines] (sched);
minimize makespan.end
subject to {
   forall(j in Jobs,t in tasks: t != Tasks.high)
       act[j,t] precedes act[j,t+1];
   forall(j in Jobs)
       act[j,Tasks.high] precedes makespan;
   forall(j in Jobs, t in Tasks)
       act[j,t] requires r[machine[j,t]];
```

```
int duration[Jobs, Tasks] = ...;
int machine[Jobs, Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];
Scheduler sched(horizon);
Activity act[j in Jobs, t in Tasks](sched, duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines] (sched);
minimize makespan.end
subject to {
  forall(j in Jobs, t in tasks: t != Tasks.high);
       act[j,t] precedes act[j,t+1];
  `forall(j in Jobs)
       act[j,Tasks.high] precedes makespan;
   forall(j in Jobs, t in Tasks)
       act[j,t] requires r[machine[j,t]];
```

```
int duration[Jobs, Tasks] = ...;
int machine[Jobs, Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];
Scheduler sched(horizon);
Activity act[j in Jobs, t in Tasks](sched, duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines] (sched);
minimize makespan.end
subject to {
  forall(j in Jobs, t in tasks: t != Tasks.high);
       act[j,t] precedes act[j,t+1];
   `forall(j in Jobs)
       act[j,Tasks.high] precedes makespan;
  forall(j in Jobs, t in Tasks)
       act[j,t] requires r[machine[j,t]];
```

Model Compilation

- Each activity encapsulates
 - variables (e,s,d) for starting date, ending date, and duration
 - a constraint linking these three variables
 - s + d = e
- Each precedence constraint (b,a)
 - $-s_a \ge e_b$
- Each machine m gives rise to a global constraint
 - -disjunctive(t₁,...,t_n)

Detecting feasibility of a disjunctive constraint is NP-Complete

Feasibility of Disjunctive Constraints

- Some basic intuition and algorithms
 - -very rich domain
 - just making you curious
 - many interesting connections
- Notations
 - $-s(\Omega) = \min(t \text{ in } \Omega) \min(s_t)$
 - $-e(\Omega) = max(t in \Omega) max(e_t)$
 - $-d(\Omega) = sum(t in \Omega) min(d_t)$

Feasibility test: tasks T

$$-s(T) + d(T) \le e(T)$$

► Feasibility test: tasks T

$$-s(T) + d(T) \le e(T)$$

A better feasibility test: tasks T

-for all
$$\Omega$$
 ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

A better feasibility test: tasks T

$$-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$$

A better feasibility test: tasks T

$$-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$$

► A better feasibility test: tasks T

$$-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$$

- ► A better feasibility test: tasks T
 - $-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$
- ► What is the issue here?

- ► A better feasibility test: tasks T
 - -for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)
- We only need to look at a quadratic number of subsets.

- ► A better feasibility test: tasks T
 - -for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)
- We only need to look at a quadratic number of subsets.

► Task intervals

```
-S(t_1,t_2) = \{ t \text{ in } R \mid s(t) \geq s(t_1) \& e(t) \leq e(t_2) \}
```

Task intervals

```
-S(t_1,t_2) = \{ t \text{ in } R \mid s(t) \geq s(t_1) \& e(t) \leq e(t_2) \}
```

- A better feasibility test: tasks T
 - $-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$

► Task intervals

```
-S(t_1,t_2) = \{ t \text{ in } R \mid s(t) \geq s(t_1) \& e(t) \leq e(t_2) \}
```

- ► A better feasibility test: tasks T
 - $-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$
- Implementation
 - -apply the feasibility tests for all task intervals $S(t_1,t_2)$ with t_1,t_2 in T

Task intervals

```
-S(t_1,t_2) = \{ t \text{ in } R \mid s(t) \geq s(t_1) \& e(t) \leq e(t_2) \}
```

- A better feasibility test: tasks T
 - $-\text{ for all }\Omega\subseteq T\text{: }s(\Omega)+d(\Omega)\leq e(\Omega)$
- Implementation
 - -apply the feasibility tests for all task intervals $S(t_1,t_2)$ with t_1,t_2 in T
- Complexity
 - $-O(|T|^3)$


```
d := 0;
for each task t in decreasing order of st
  if et <= e
    d := d + dt;
    if st + d > e
        return failure;
return success;
```

Disjunctive Constraint: Feasibility

► Relax: feasibility of the preemptive schedule

► One-machine preemptive feasibility can be computed in O(ITI log ITI)

- Edge finding rules
 - -select a set Ω of tasks and a task i $\notin \Omega$

- Edge finding rules
 - -select a set Ω of tasks and a task i $\notin \Omega$
- ▶ Determine if i must start after all tasks in Ω
 - $-s(\Omega \cup \{i\}) + d(\Omega \cup \{i\}) > e(\Omega)$

- Edge finding rules
 - -select a set Ω of tasks and a task i $\notin \Omega$
- \blacktriangleright Determine if i must start after all tasks in Ω
 - $-s(\Omega \cup \{i\}) + d(\Omega \cup \{i\}) > e(\Omega)$
- Update the starting times of i to
 - $-\max(\gamma \subseteq \Omega) s(\gamma) + d(\gamma)$

- Edge finding rules
 - -select a set Ω of tasks and a task i $\notin \Omega$
- \blacktriangleright Determine if i must start after all tasks in Ω
 - $-s(\Omega \cup \{i\}) + d(\Omega \cup \{i\}) > e(\Omega)$
- Update the starting times of i to
 - $-\max(\gamma \subseteq \Omega) s(\gamma) + d(\gamma)$
- Same for the ending dates

- Edge finding rules
 - -select a set Ω of tasks and a task i $\notin \Omega$
- \blacktriangleright Determine if i must start after all tasks in Ω
 - $-s(\Omega \cup \{i\}) + d(\Omega \cup \{i\}) > e(\Omega)$
- Update the starting times of i to
 - $-\max(\gamma \subseteq \Omega) s(\gamma) + d(\gamma)$
- Same for the ending dates
- The edge finding rules can be enforced in strongly polynomial time

► Can A₁ start before A₂ or A₃?

► Can A₁ start before A₂ or A₃?

► A1 must start after A2 and A3

Search for Disjunctive Scheduling

- Basic strategy
 - -choose a machine
 - -sequence that machine
 - -repeat

Search for Disjunctive Scheduling

- Basic strategy
 - -choose a machine
 - -sequence that machine
 - -repeat
- Which machine?
 - first-fail principle: the tightest machine

Search for Disjunctive Scheduling

- Basic strategy
 - -choose a machine
 - -sequence that machine
 - -repeat
- Which machine?
 - first-fail principle: the tightest machine
- Which task?
 - a task that can be scheduled first (or last)
 - -a task that is as tight as possible

Until Next Time