

CSE 473: Pattern Recognition

Unsupervised Learning:Clustering

Bisecting k-means

- Bisecting k-means algorithm
 - Variant of k-means that can produce a partitional or a hierarchical clustering

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: **for** i = 1 to $number_of_iterations$ **do**
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

Bisecting k-means Example

Bisecting k-means as an initialization for a global k-means run

- bisecting k-means
 - bisects individual clusters
 - finds local minima of SSE
 - usually does not provide optimal clustering

Bisecting k-means as an initialization for a global k-means run

- bisecting *k*-means
 - bisects individual clusters
 - finds local minima of SSE
 - usually does not provide optimal clustering

 final centroids from bisecting k-means can be used as initial centroids of a global k-means run

Limitations of k-means

- k-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

• *k*-means has problems when the data contains outliers.

Limitations of k-means: Differing Sizes

Original Points

k-means (3 Clusters)

Limitations of *k*-means: Differing Density

Original Points

k-means (3 Clusters)

Limitations of *k*-means: Non-globular Shapes

Original Points

k-means (2 Clusters)

Overcoming k-means Limitations

Original Points

k-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming k-means Limitations

Original Points

k-means Clusters

Overcoming k-means Limitations

Original Points

k-means Clusters

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

Strengths of Hierarchical Clustering

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

– Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge two clusters or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity betⁿ two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and update

p2

the proximity matrix.

Proximity Matrix

After Merging

The question is "How do we update the proximity matrix?"

	p1	p2	рЗ	p4	p5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- ı MIN
- **I** MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> p3						
<u>р4</u> <u>р5</u>						_

- ı MIN
- I MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u>						
<u>p4</u> <u>p5</u>						

- ı MIN
- **I** MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- I MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p5	<u> </u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>р4</u> р5						_

- MIN
- **MAX**
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity: MIN or Single Link

 Similarity of two clusters is based on the two most similar (closest) points in the different clusters

	I 1	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Cluster Similarity: MAX or Complete Linkage

 Similarity of two clusters is based on the two least similar (most distant) points in the different clusters

	I 1	l 2	I 3	I 4	I 5
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{j}|}$$

	I 1	l 2	I 3	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Proximity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters

Hierarchical Clustering: Comparison

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficult to handle different sized clusters and convex shapes
 - Breaking large clusters

Density based Clustering

- locates high density regions in low density regions
- requires to define
 - What is the density

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - density is calculated based on
 - core point
 - border point
 - noise point

- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster

 A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point

 A noise point is any point that is not a core point or a border point.

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points
 - Put an edge between all core points which are within Eps
 - Make each group of core points as a cluster
 - Assign border point to one of the clusters of its associated core points

DBSCAN: Core, Border and Noise Points

Original Points

DBSCAN: Core, Border and Noise Points

Original Points

$$Eps = 10$$
, $MinPts = 4$

DBSCAN: Core, Border and Noise Points

Original Points

Point types: **core**, **border** and **noise**

Eps = 10, MinPts = 4

When DBSCAN Works Well

Original Points

Clusters

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

When DBSCAN Does NOT Work Well

- when *Eps* is low enough
 - successfully finds low density clusters C and D
 - considers the left side as a single cluster

When DBSCAN Does NOT Work Well

- when Eps is high enough
 - successfully finds high density clusters A, B
 - considers others as noise

Note the *k-dist* of these cluster points

K-dist: distance from *k*th nearest neighbour

Note the *k-dist* of these cluster points *K-dist* should be *very similar*

K-dist should be very similar
Unless densities change significantly

K-dist should be very similar

K-dist should be *very similar*However, *k-dist* for noise/outlier will be different

- For points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

DBSCAN: Problems and Limitations

- Resistant to noise
- Handle different sizes of clusters
- Problems with the following:
 - Different densities
 - Density/proximity analysis for high dimension