## Pergunta 1 Parcialmente correto Pontuou 0,050 de 1,000 V Destacar pergunta

Pretende-se resolver a seguinte equação, usando o Método da Bissecção:

$$x^3 - 10 \sin x + 2,9 = 0$$

Partindo do intervalo inicial:

qual o valor do extremo superior do intervalo que contém a raíz, na iteração número 2 (a iteração 0 é a que utiliza o intervalo inicial dado)?

A resposta é um número em vírgula fixa, com 4 casas decimais.

Resposta: 4,0000

## A resposta correta é: 2,7500

## Pergunta 2 Parcialmente correto Pontuou 0,673 de 2,500 🌵 Destacar pergunta

Seja a seguinte equação:

$$ax^7 + bx - c = 0$$

Resolva-a numericamente usando o **Método da Corda**, com os seguintes parâmetros:



 $Preencha\ o\ quadro\ com\ os\ valores\ calculados\ para\ as\ três\ primeiras\ iterações,\ a\ partir\ dos\ valores\ iniciais\ dados:$ 

| X <sub>e</sub> | $x_{e}$ $x_{d}$   |          | x <sub>n</sub> |          | f(x <sub>e</sub> ) | f(x <sub>d</sub> ) | f(x <sub>n</sub> ) |  |
|----------------|-------------------|----------|----------------|----------|--------------------|--------------------|--------------------|--|
| 0.000000       | 0.000000 1.000000 |          | 0.333333       |          | -0.500000          | 1.000000           | -0.332876          |  |
| 0,333333       | 1                 | 1,000000 | <b>\</b>       | 0,583076 | ×                  |                    |                    |  |
| 0,333333       | ,                 | 0,583076 | ×              | 1,255576 | ×                  |                    |                    |  |
| ×              |                   | X        |                |          |                    |                    |                    |  |

Classifique os seguintes critérios de paragem do processo iterativo aplicado, considerando também a função em causa:



Respostas de escolha múltipla erradas deduzem 25% dos pontos da resposta!

A resposta é um número em vírgula fixa, com pelo menos 5 decimais.

Uma função foi tabelada, e com essa tabela foram calculados vários valores para o integral definido no intervalo dado.

No cálculo de cada valor foi usado sempre o mesmo método, mas variado o parâmetro **h**, na regra

h' = h/2, h" = h'/2.

| >     | f(x) |       | ×     | f(x) |      | ×     | f(x) |      |
|-------|------|-------|-------|------|------|-------|------|------|
| 1.000 | 5    | 5     | 1.000 | 5    | 5    | 1.000 | 5    | 5    |
| 1.100 | 5.1  | 10.2  |       |      |      |       |      |      |
| 1.200 | 5.6  | 11.2  | 1.200 | 5.6  | 11,2 |       |      |      |
| 1.300 | 5.9  | 11.8  |       |      |      |       |      |      |
| 1.400 | 6.2  | 12.4  | 1.400 | 6.2  | 12.4 | 1.400 | 6.2  | 12.4 |
| 1.500 | 7    | 14    |       |      |      |       |      |      |
| 1.600 | 7.8  | 15.6  | 1.600 | 7.8  | 15,6 |       |      |      |
| 1.700 | 8    | 16    |       |      |      |       |      |      |
| 1.800 | 8.5  | 8.5   | 1.800 | 8.5  | 8.5  | 1.800 | 8.5  | 8.5  |
|       | "=   | 5.235 |       | l'=  | ×    |       | =    | 5.18 |

a) Qual foi o método numérico de integração usado no cálculo?

Rule of Trapezes •

✓ Regra dos trapézios#Correcto A resposta correta é: Rule of Trapezes





pode ser calculada usando o **Método de Newton**, aplicado a uma das seguintes equações, resultando cada uma numa fórmula recorrente diferente:

| a) | $x^m - R = 0$           |
|----|-------------------------|
| b) | $1 - \frac{R}{x^m} = 0$ |

Qual escolheria para resolver o problema ? Escreva uma justificação concisa. Escreva o código de programação mínimo, na sua linguagem de escolha.

A resposta deve discutir:

 $x = \sqrt[m]{R}$ 

- condições e velocidade de convergência;
- escolha do guess;
- controle do erro;
  valores do testo;
- valores de teste;
- cálculo de derivadas;
- simplificação da expressão recorrente.

O código deve:

- estar correto!
- propor optimização.