Theoretical Computer Science Cheat Sheet				
$\pi \approx 3.14159,$		$e \approx 2.71$	71828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803$, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Ja
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13	\mathcal{S}^{u}	then P is the distribution function of X . If
7	128	17	Euler's number e :	P and p both exist then
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$
10	1,024	29	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.	Expectation: If X is discrete
11	2,048	31		$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$
15	32,768	47		Variance, standard deviation:
16	65,536	53 50	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$
17 18	131,072 262,144	59 61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$
19	524,288	67	Factorial, Stirling's approximation:	For events A and B: $Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \land B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ $\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$
$\frac{20}{21}$	2,097,152	73	, , , , , , , , , , , , , , , , , , , ,	iff A and B are independent.
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
24	16,777,216	89	Ackermann's function and inverse: $(2^{j}) \qquad i=1$	For random variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101	$\begin{cases} a(i-1, a(i, j-1)) & i, j \ge 2 \end{cases}$	if X and Y are independent.
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	Bayes' theorem: $\mathbf{D}_{\mathbf{w}}[\mathbf{P} A]\mathbf{D}_{\mathbf{w}}[A]$
30	1,073,741,824	113	· /	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$
31	2,147,483,648	127	$\operatorname{E}[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	Inclusion-exclusion:
32	4,294,967,296	131	k=1	n n
Pascal's Triangle		е	Poisson distribution: $e^{-\lambda \sqrt{k}}$	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] +$
1			$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, E[X] = \lambda.$	$n \longrightarrow k$
1 1			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^k X_{i_j}\right].$
1 2 1			$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	$k=2$ $i_i < \cdots < i_k$ $j=1$ Moment inequalities:
1 3 3 1			V 2110	1
1 4 6 4 1			The "coupon collector": We are given a random coupon each day, and there are n	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
1 5 10 10 5 1			different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\sqrt{2}}.$
1 6 15 20 15 6 1			tion of coupons is uniform. The expected	Geometric distribution:
1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1			number of days to pass before we to collect all n types is	$\Pr[X=k] = pq^{k-1}, \qquad q = 1 - p,$
1 9 36 84 126 126 84 36 9 1			nH_n .	<u>~</u>
1 9 30 84 120 120 84 30 9 1 1 10 45 120 210 252 210 120 45 10 1			n_{III}	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$
1 10 48) 120 210 202 210 I	120 40 10 1		κ=1