DM549/DS(K)820/MM537/DM547

Lecture 3: More on Quantifiers

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 9, 2024

Definitions:

■ tautology, contradiction, contingency,

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

Important logical equivalences:

the Distributive Law,

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

- the Distributive Law,
- De Morgan's Laws,

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

- the Distributive Law,
- De Morgan's Laws,
- contraposition,

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

- the Distributive Law.
- De Morgan's Laws,
- contraposition,
- implication only using \land , \lor , \neg ,

Definitions:

- tautology, contradiction, contingency,
- logically equivalent.

- the Distributive Law,
- De Morgan's Laws,
- contraposition,
- implication only using \land , \lor , \neg ,
- bi-implication as two implications.

Important definitions:

propositional functions,

- propositional functions,
- the universal quantifier,

- propositional functions,
- the universal quantifier,
- the existential quantifier,

- propositional functions,
- the universal quantifier,
- the existential quantifier,
- the uniqueness quantifier (much less common than the other two!).

- propositional functions,
- the universal quantifier,
- the existential quantifier,
- the uniqueness quantifier (much less common than the other two!).

More on Quantifiers

Remarks:

- We say that the quantifier binds variables x.
- In the above statements, we call *D* the *domain* (domæne) or universe (univers).
- We also say that we *quantify over* (kvantificerer over) D.
- When clear from the context, the domain is sometimes left out.
- Some authors leave out the colon.
- How to memorize?
 - ► for ∀II.
 - ▶ there ∃xists.
 - "!" looks a bit like "1".
- Quantifiers have a *higher* preference (i.e., they are evaluated earlier) than the operators \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow , \oplus .

A Quiz

Go to pollev.com/kevs

Let P(x) and Q(x) both be propositional functions.

Let P(x) and Q(x) both be propositional functions.

We can **restrict** the domain to values x satisfying Q(x) with the following notation:

 $\forall x \in D, Q(x) : P(x)$

Let P(x) and Q(x) both be propositional functions.

$$\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$$

Let P(x) and Q(x) both be propositional functions.

- $\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$
- $\exists x \in D, Q(x) : P(x) \equiv$

Let P(x) and Q(x) both be propositional functions.

- $\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$
- $\exists x \in D, Q(x) : P(x) \equiv \exists x \in D : (Q(x) \land P(x)),$

Let P(x) and Q(x) both be propositional functions.

- $\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$
- $\exists x \in D, Q(x) : P(x) \equiv \exists x \in D : (Q(x) \land P(x)),$
- $\exists !x \in D, Q(x) : P(x) \equiv \exists !x \in D : (Q(x) \land P(x)).$

Let P(x) and Q(x) both be propositional functions.

We can **restrict** the domain to values x satisfying Q(x) with the following notation:

- $\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$
- $\exists x \in D, Q(x) : P(x) \equiv \exists x \in D : (Q(x) \land P(x)),$
- $\exists !x \in D, Q(x) : P(x) \equiv \exists !x \in D : (Q(x) \land P(x)).$

Remarks:

Read: "... x in D with Q(x) ...".

Let P(x) and Q(x) both be propositional functions.

We can **restrict** the domain to values x satisfying Q(x) with the following notation:

- $\forall x \in D, Q(x) : P(x) \equiv \forall x \in D : (Q(x) \Rightarrow P(x)),$
- $\exists x \in D, Q(x) : P(x) \equiv \exists x \in D : (Q(x) \land P(x)),$
- $\exists ! x \in D, Q(x) : P(x) \equiv \exists ! x \in D : (Q(x) \land P(x)).$

Remarks:

- Read: "... x in D with Q(x) ...".
- Notice the difference in how the quantification with restricted domain can be translated into a quantification without restricted domain.

De Morgan's Laws for Quantifiers (Table 1.4.2)

$$\neg \forall x \in D : P(x) \equiv \exists x \in D : \neg P(x), \quad \neg \exists x \in D : P(x) \equiv \forall x \in D : \neg P(x)$$

De Morgan's Laws for Quantifiers (Table 1.4.2)

$$\neg \forall x \in D : P(x) \equiv \exists x \in D : \neg P(x), \quad \neg \exists x \in D : P(x) \equiv \forall x \in D : \neg P(x)$$

Proof idea:

- Interpret the quantified statements as conjunction/disjunction,
- apply De Morgan's (regular) laws,
- interpret disjunction/conjunction as quantified statement.

De Morgan's Laws for Quantifiers (Table 1.4.2)

$$\neg \forall x \in D : P(x) \equiv \exists x \in D : \neg P(x), \quad \neg \exists x \in D : P(x) \equiv \forall x \in D : \neg P(x)$$

Proof idea:

- Interpret the quantified statements as conjunction/disjunction,
- apply De Morgan's (regular) laws,
- interpret disjunction/conjunction as quantified statement.

Interpretation: Can pull " \neg " to the right, but, by doing so, we "flip" quantifiers (\forall changes to \exists and \exists changes to \forall).

A Quiz

Go to pollev.com/kevs

Note:

A propositional function may also have two (or more!) variables.

Note:

- A propositional function may also have two (or more!) variables.
- By adding a quantifier in front (and binding one of the variables), one obtains a propositional function with only one variable.

Note:

- A propositional function may also have two (or more!) variables.
- By adding a quantifier in front (and binding one of the variables), one obtains a propositional function with only one variable.
- By adding another quantifier in front (and binding another variable), one obtains a proposition (with no variables!).

Note:

- A propositional function may also have two (or more!) variables.
- By adding a quantifier in front (and binding one of the variables), one obtains a propositional function with only one variable.
- By adding another quantifier in front (and binding another variable), one obtains a *proposition* (with no variables!).
- The resulting proposition has two *nested* quantifiers.

The Order of Quantifiers

The Order of Quantifiers

The Order of Quantifiers matters:

■ $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.

The Order of Quantifiers

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\blacksquare \exists x : \forall y : P(x,y) \text{ implies } \forall y : \exists x : P(x,y).$

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x, y)$ implies $\forall y : \exists x : P(x, y)$.

...but not always:

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x, y)$ implies $\forall y : \exists x : P(x, y)$.

...but not always:

 $\forall x : \forall y : P(x,y) \equiv \forall y : \forall x : P(x,y).$

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x, y)$ implies $\forall y : \exists x : P(x, y)$.

...but not always:

- $\forall x : \forall y : P(x,y) \equiv \forall y : \forall x : P(x,y).$
- $\exists x : \exists y : P(x,y)$

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x, y)$ implies $\forall y : \exists x : P(x, y)$.

...but not always:

- $\forall x : \forall y : P(x,y) \equiv \forall y : \forall x : P(x,y).$
- $\exists x : \exists y : P(x,y) \equiv \exists y : \exists x : P(x,y).$

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x, y)$ implies $\forall y : \exists x : P(x, y)$.

...but not always:

- $\forall x : \forall y : P(x,y) \equiv \forall y : \forall x : P(x,y).$
- $\exists x : \exists y : P(x,y) \equiv \exists y : \exists x : P(x,y).$
 - Also write $\forall x, y : P(x, y)$ and $\exists x, y : P(x, y)$.

The Order of Quantifiers matters:

- $\forall x : \exists y : P(x, y)$ does not imply $\exists y : \forall x : P(x, y)$ in general.
- $\exists x : \forall y : P(x,y)$ implies $\forall y : \exists x : P(x,y)$.

...but not always:

- $\forall x : \forall y : P(x,y) \equiv \forall y : \forall x : P(x,y).$
- $\exists x : \exists y : P(x,y) \equiv \exists y : \exists x : P(x,y).$
 - Also write $\forall x, y : P(x, y)$ and $\exists x, y : P(x, y)$.

In general: We may exchange consecutive quantifiers if and only if they are of the same type!

Joke:

■ Person 1: "Someone steals a car every fifteen seconds."

Joke:

- Person 1: "Someone steals a car every fifteen seconds."
- Person 2: "We have to find that person and stop them."

Joke:

- Person 1: "Someone steals a car every fifteen seconds."
- Person 2: "We have to find that person and stop them."

Seriously:

If you express a mathematical statement in natural language, make sure it is unambiguous!

Joke:

- Person 1: "Someone steals a car every fifteen seconds."
- Person 2: "We have to find that person and stop them."

Seriously:

- If you express a mathematical statement in natural language, make sure it is unambiguous!
- When writing down as formal logic, such ambiguities cannot happen.
 - ► (This is why we are learning about this topic!)

A Quiz

Go to pollev.com/kevs

We already know how to do this:

 First negate outer quantification, "flipping" it and moving the negation inwards.

We already know how to do this:

- First negate outer quantification, "flipping" it and moving the negation inwards,
- then do the same with second quantifier,

We already know how to do this:

- First negate outer quantification, "flipping" it and moving the negation inwards,
- then do the same with second quantifier,
- etc.

We already know how to do this:

- First negate outer quantification, "flipping" it and moving the negation inwards,
- then do the same with second quantifier,
- etc.
- Or directly: Flip all quantifiers and move the negation all the way inwards.

More Quantifiers

Rule of Thumb

number of quantifier flips (as you read from left to right)

complexity of proposition

Test 1

Don't forget that the test has been opened today. Good luck!