NU1 Statements A Collection of Unsubstantiated Claims

Nick Spinale Budapest Semesters in Mathematics Number Theory

October 20, 2016

Divisibility

Notation. $a|b \iff \exists x : ax = b$

Proposition. -

- 1. $a|b \implies a|bc$
- 2. $a|b \text{ and } b|c \implies a|c$
- 3. $a|b \text{ and } a|c \implies a|bx + cy$
- 4. $a|b \text{ and } b \neq 0 \implies |a| \leq |b|$
- 5. $a|b \text{ and } b|a \implies a = \pm b$

Proposition. $a^n - b^n = (a - b) \sum_{i=0}^n a^{n-i} b^i$

Proposition. If n is odd, then $a^n + b^n = (a+b)\sum_{i=0}^n (-1)^i a^{n-i} b^i$

Definition. d, denoted (a, b), is the distingiushed common divisor of a and b iff

- 1. d|a and d|b
- 2. $c|a \text{ and } c|b \implies c|d$

Proposition. (a,b) exists, and is unique up to sign.

Definition (Euclidean Algorithm). Todo

Proposition. -

- 1. (a,b) = (a,ak+b)
- 2. (a,b) = (ma, mb)

Definition. a and b are relatively prime iff (a, b) = 1.

Lemma (Euclid). a|bc and $(a,b) = 1 \implies a|c$

Base 10 Divisibility

Proposition (Divisibility by 9). $\overline{a_k \dots a_2 a_1} \equiv a_k + \dots + a_2 + a_1 \mod 9$

Proposition (Divisibility by 11). $\overline{a_k \dots a_2 a_1} \equiv \sum_{i=1}^k (-1)^{n-1} a_i \mod 11$

Proposition (Last *n* digit rule). If $a|10^k$, then $\overline{\ldots a_k \ldots a_2 a_1} \equiv \overline{a_k \ldots a_2 a_1} \mod a$

Primes

Definition. p is irreducable iff $a|p \implies a = 1 \lor a = p$

Definition. p is prime iff $p|ab \implies p = a \lor p = b$

Theorem. In \mathbb{Z} , irreducability and primality are equivalent.

 $\textbf{Theorem} \ (\textbf{Fundimental Theorem of Arithmetic}). \ \textit{Every positive integer n has a unique canonical representation}$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k} = \prod_{i=1}^k p_i^{\alpha_i}$$

Where $p_1 < p_2 < \ldots < p_k$ are primes.

Theorem. There are infinitely many primes

Congruences