MA338 (S'20): Final Exam

Huan Q. Bui

1. Differentiation

(a) Assume that

$$f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

and assume that g(0) = 0 and g''(0) = 17. With no further assumptions, find f'(0), justify everything.

<u>Solution</u>: The answer is f'(0) = 17/2. The key is using L'Hôpital's rule twice. By definition,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{g(x)}{x^2}.$$

Since g''(0) exists, g'(x) must be differentiable at 0. It follows that g(x) must be continuous at 0. Now, g(0) = 0, so $\lim_{x\to 0} g(x) = g(0) = 0$ by continuity. It is also clear that $\lim_{x\to 0} x^2 = 0$. L'Hôpital's rule says that

$$\lim_{x \to 0} \frac{g(x)}{x^2} = \lim_{x \to 0} \frac{g'(x)}{2x},$$

provided the limit on the right hand side exists. The evaluate the limit on the right hand side, we apply L'ôpital's rule again: Clearly $\lim_{x\to 0} 2x = 0$. It remains to show $\lim_{x\to 0} g'(x) = g'(0) = 0$. The first equality follows from the fact that g'(x) is differentiable (hence continuous) at x = 0. We want to justify the second equality. By definition,

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{g(x)}{x} = f(0) = 0.$$

So, because $\lim_{x\to 0} g'(x) = 0$ and $\lim_{x\to 0} 2x = 0$, L'Hôpital's rule says

$$\lim_{x \to 0} \frac{g'(x)}{2x} = \lim_{x \to 0} \frac{g''(x)}{2} = \frac{17}{2}.$$

Thus,

$$f'(0)=\frac{17}{2}.$$

(b) Assuming only that f'(0) > 0 and f' continuous at 0, prove that there exists an interval containing 0 on which f is increasing. (This f is in no way related to the previous f in part (a).)

<u>Proof:</u> Since f' is continuous at 0 and f'(0) > 0 there exists a neighborhood $(-\delta, \delta) \subset \mathbb{R}$ on which f' > 0. This makes sense, because by definition, for $\epsilon = f'(0)/2 > 0$, there exists $\delta > 0$ such that whenever $|y - x| < \delta$, $|f'(y) - f'(x)| < \epsilon = f'(0)/2 < f'(0)$. The triangle inequality says that f'(t) > 0 for all $t \in (-\delta, \delta)$. With this, take $x, y \in (-\delta, \delta)$ such that x < 0 < y.

The mean value theorem says that there exists $t \in [x, y]$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(t) > 0, \text{ since } t \in [x, y] \subset (-\delta, \delta).$$

Rearranging gives f(y) - f(x) > (y - x)f'(t) for any $x, y \in (-\delta, \delta)$ such that y > 0 > x. We have demonstrated that it is possible to find an interval containing 0 on which f is increasing.

(c) Show that there exists a continuous function f with f'(0) > 0, but f is not increasing on any interval containing 0.

<u>Proof:</u> Intuitively, we want to construct a function f such that even though f'(0) > 0, it "wiggles" so much that f is never strictly increasing on any interval around zero, no matter how small. This idea suggests picking an f that oscillates faster near zero. To this end, consider $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x + 2x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 $ln[9]:= Plot[x + x^2 + Sin[1/x], \{x, -0.05, 0.05\}]$

We first show that f is continuous. When $x \neq 0$, f is clearly continuous. So we only focus on showing f is continuous at 0. Let $\epsilon > 0$ be given, then

$$|f(x) - f(0)| = |f(x)| \le |x| + |2x^2 \sin \frac{1}{x}| \le |x| + 2|x^2|.$$

Choose $\delta = \min\{1, \epsilon/3\}$. Then whenever $|x - 0| < \delta$, we have

$$|f(x) - f(0)| \le |x| + 2|x^2| = |x|(2|x| + 1) < \frac{\epsilon}{3} \cdot 3 < \epsilon.$$

This shows f is continuous. Next, we want to show f'(0) > 0. To this end, we just evaluate f'(0). By definition,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left(1 + 2x \sin \frac{1}{x} \right) = 1 > 0$$

since $x \sin(1/x) \to 0$ as $x \to 0$. Finally, we will show that f is not increasing on any interval containing 0. Assume (to get a contradiction) that f is increasing on some interval containing 0. Because f' is continuous and positive at 0, there exists an interval containing 0 on which f' > 0 (we proved this in the last item). Now, look at f again. For $x \ne 0$,

$$f'(x) = 1 - 2\cos\frac{1}{x} + 4x\sin\frac{1}{x}.$$

Let an interval containing 0 be given. It is possible to find a sufficiently small t in this interval such that $\cos(1/t) = 1$ and |4t| < 1/2 (This is possible because 1/t will be sufficiently large in magnitude and \cos is periodic.) It follows that

$$|f'(t) + 1| = |1 - 2 + 4t \sin \frac{1}{t} + 1| = |4t \sin \frac{1}{t}| \le |4t| < 1/2,$$

which implies -3/2 < f(t) < -1/2. Clearly, f(t) < 0, which contradicts the fact that there exists an interval containing 0 on which f'(t) > 0 for all t on that interval.

(d) Assume that $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

<u>Proof:</u> Let $\delta > 0$ be given. Pick $x, y \in \mathbb{R}$ such that $0 < x - y < \delta$. Because $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$, we have

$$0 \le \frac{\left| f(x) - f(y) \right|}{x - y} = \left| \frac{f(x) - f(y)}{x - y} \right| \le x - y < \delta.$$

Since this holds for any $\delta > 0$, f'(x) = 0 for all $x \in \mathbb{R}$ (because f'(x) is the limit of the difference quotient as $y \to x$). This means f is constant, by Theorem 5.11(b), Baby Rudin.

2. Series

(a) Prove that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|.$$

<u>Proof:</u> Since $\sum_{n=1}^{\infty} a_n$ converges absolutely, $\sum_{n=1}^{\infty} a_n$ converges (Theorem 3.45). Let $C = \sum_{n=1}^{\infty} a_n$. Consider the sequence $\{|s_N|\}$ where each $s_N = \lim_{n=1}^N a_n$. Clearly,

$$||s_N| - |C|| \le |s_N - C| \to 0$$
, as $N \to \infty$.

Thus, $\lim_{N\to\infty} |s_N| = |C|$. Now, for each N, we also have the triangle inequality:

$$|s_N| = \left| \sum_{n=1}^N a_n \right| \le \sum_{n=1}^N |a_n|.$$

Taking $N \to \infty$ on both sides we have

$$\lim_{N \to \infty} |s_N| = |C| = \left| \sum_{n=1}^{\infty} a_n \right| \le \lim_{N \to \infty} \sum_{n=1}^{N} |a_n| = \sum_{n=1}^{\infty} |a_n|.$$

(b) Show that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and b_n is a subsequence of a_n , then $\sum_{n=1}^{\infty} b_n$ is absolutely convergent. Given an example that shows this statement is false if $\sum_{n=1}^{\infty} a_n$ is assumed to be only conditionally convergent.

Proof: The absolute convergence of $\sum_{n=1}^{\infty} a_n$ implies the convergence of $\sum_{n=1}^{\infty} |a_n|$. Since b_n is a subsequence of a_n , we must have that

$$\sum_{n=1}^{\infty} |b_n| \le \sum_{n=1}^{\infty} |a_n| < \infty,$$

where the first inequality follows because we are summing only nonnegative terms. Therefore, $\sum_{n=1}^{\infty} b_n$ is absolutely convergent.

When $\sum_{n=1}^{\infty} a_n$ is assumed to be only conditionally convergent, that is $\sum_{n=1}^{\infty} |a_n|$ is divergent, then the statement is false. Consider the conditionally convergent series $\sum_{n=1}^{\infty} (-1)^{n+1}/n$:

$$\sum_{n=1}^{\infty} (-1)^{n+1}/n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

We know that $\sum_{n=1}^{\infty} 1/n$ is divergent (harmonic series). Call $a_n = (-1)^{n+1}/n$. Clearly, $|a_1| \ge |a_2| \ge \dots$; the sequence $\{a_n\}$ is alternating; and $\lim_{n\to\infty} a_n = 0$. Theorem 3.43 (alternating series test) tells us that $\sum_{n=1}^{\infty} (-1)^{n+1}/n$ is convergent. Hence, $\sum_{n=1}^{\infty} (-1)^{n+1}/n$ is conditionally convergent.

Consider the subsequence $\{b_n\}$ of $\{a_n\}$ consisting only of the terms of a_n where n is odd:

$$\sum_{n=1}^{\infty} b_n = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$$

We want to show that the series $\sum_{n=1}^{\infty} b_n$ is NOT absolutely convergent. We notice that

$$\sum_{n=1}^{\infty} |b_n| = \sum_{n=1}^{\infty} b_n = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots = \sum_{n=1}^{\infty} \frac{1}{2n-1}$$

So this comes down to determining the convergence of $\sum_{n=1}^{\infty} b_n$. It turns out that $\sum_{n=1}^{\infty} b_n > \infty$ because it fails the integral test:

$$\int_{1}^{\infty} \frac{1}{2n-1} dn = \lim_{k \to \infty} \int_{1}^{k} \frac{1}{2n-1} dn = \frac{1}{2} \ln(1+2k) \to \infty$$

as $k \to \infty$. Thus, $\sum_{n=1}^{\infty} b_n$ is NOT absolutely convergent. Therefore, the statement is false when $\sum_{n=1}^{\infty} a_n$ is only conditionally convergent.

(c) Assume a_n is a decreasing sequence of positive numbers, and that $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\lim_{n\to\infty} na_n = 0$.

<u>Proof:</u> The key here is to put an upper bound on na_n and show that bound goes to $\overline{\text{zero}}$ as $n \to \infty$. Consider the partial sum $S_n = \sum_{i=1}^n a_i$. We have

$$S_{2n} - S_n = \sum_{i=n+1}^{2n} = a_{2n} + a_{2n-1} + \dots + a_{n+1}$$
 (1)

$$\geq a_{2n} + a_{2n} + \dots + a_{2n} \tag{2}$$

$$= na_{2n}. (3)$$

where we have used the condition that a_n is a decreasing sequence of positive numbers to get the inequality. Now, $\sum_{n=1}^{\infty} a_n$ is convergent, so the sequence of partial sums is convergent, hence Cauchy. It follows that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that whenever $n \geq N$,

$$|na_{2n}| \leq |S_{2n} - S_n| = \left| \sum_{i=n+1}^{2n} \right| < \epsilon.$$

Thus $\lim_{n\to\infty} na_{2n} = 0$ and so $\lim_{n\to\infty} 2na_{2n} = 0$. Further,

$$(2n+1)a_{2n+1} \leq (2n+1)a_{2n} = \left(1 + \frac{1}{2n}\right)(2na_n) \leq 2 \cdot 2na_{2n} = 4na_{2n},$$

which also goes to 0 as $n \to \infty$. So, because both $na_n \to 0$ as $n \to \infty$ for all n (odd or even), $\lim_{n \to \infty} na_n = 0$.

(d) Prove that every positive rational number can be written as a finite sum of *distinct* numbers of the form 1/k with $k \in \mathbb{N}$.

<u>Proof:</u> We will first show this is true for all rationals r such that $0 \le r = p/q < 1$ where $\overline{p,q}$ are positive integers with no common factor. If r=0 or p=1 then the statement is true. Assume (an inductive hypothesis) that the statement holds for all rationals r above but with p < P. Consider the rational number P/q < 1. We can always find the least positive integer m such that $1/m \le P/q$. Because P/q < 1 and m is an integer, we have

$$\frac{1}{m} \leq \frac{P}{q} < \frac{1}{m-1} \implies mP - P < q \leq mP \implies 0 \leq mP - q < P.$$

Let the residual R = P/q - 1/m = (mP - q)/qm. Because mP - q < P, R can be written as a finite sum of distinct 1/k's, $k \in \mathbb{N}$. We also have that

$$R < \frac{1}{m-1} - \frac{1}{m} == \frac{1}{m(m-1)} \le \frac{1}{m}.$$

So, 1/m cannot appear in the finite sum for R. This means r = P/q = R + 1/m can be written as a finite sum of distinct 1/k's. By induction, all rationals less than 1 can be written as a finite sum of distinct 1/k's, $k \in \mathbb{N}$.

We now want to extend this to all rationals greater than or equal to 1. We now use the fact that $\sum_{n=1}^{\infty} 1/n = \infty$. Let $S_n = \sum_{i=1}^n 1/i$, which is rational. Let a rational $r \ge 1$ be given. There exists $n \in \mathbb{N}$ such that

$$S_n \le r < S_{n+1}.$$

Now let us write $r = (r - S_n) + S_n$, which is a sum of two rational numbers. By the choice of n,

$$r - S_n < S_{n+1} - S_n = \frac{1}{n+1} < 1,$$

which means $r - S_n$ can be written as a finite sum of distinct 1/k's, $k \in \mathbb{N}$. Further, none of the summands in the sum for $r - S_n$ is can be greater than 1/(n+1), which means no summand in the sum for $r - S_n$ can be a summand of S_n , which is a finite sum of distinct 1/k's, $k \in \mathbb{N}$. Therefore, r can be written as a finite sum of distinct numbers of the form 1/k with $k \in \mathbb{N}$.

3. Hilbert Space

(a) Let V denote the set of continuous functions that map [0,1] into the complex numbers \mathbb{C} . With $f \in V$, each complex number f(x) can be written in terms of its real and imaginary parts

$$f(x) = \operatorname{Re} \{ f(x) \} + i \operatorname{Im} \{ f(x) \}.$$

The real valued functions $\operatorname{Re}\{f\}$ and $\operatorname{Im}\{f\}$ are called the real part of f and the imaginary part of f, respectively. We define the integral of a complex valued function by

$$\int_0^1 f(x) \, dx \equiv \int_0^1 \text{Re} \{ f(x) \} \, dx + i \int_0^1 \text{Im} \{ f(x) \} \, dx.$$

Show that the assignment

$$\langle f, g \rangle \equiv \int_0^1 f(x) \overline{g(x)} \, dx$$

satisfies the axioms of a complex inner product (find the axioms in a book or on the internet).

Proof: Let $f, g, h \in V$ and $c \in \mathbb{C}$ be given.

• $\sqrt{\langle f, g \rangle} = \overline{\langle g, f \rangle}$. We have that

$$\langle f, g \rangle \equiv \int_0^1 f(x) \overline{g(x)} \, dx$$

and

$$g(x)\overline{f(x)} = \left[\operatorname{Re} \left\{ g(x) \right\} + i \operatorname{Im} \left\{ g(x) \right\} \right] \left[\operatorname{Re} \left\{ f(x) \right\} - i \operatorname{Im} \left\{ f(x) \right\} \right]$$
$$= \left[\operatorname{Re} \left\{ f(x) \right\} \operatorname{Re} \left\{ g(x) \right\} + \operatorname{Im} \left\{ f(x) \right\} \operatorname{Im} \left\{ g(x) \right\} \right]$$
$$+ i \left[\operatorname{Im} \left\{ g(x) \right\} \operatorname{Re} \left\{ f(x) \right\} - \operatorname{Re} \left\{ g(x) \right\} \operatorname{Im} \left\{ f(x) \right\} \right],$$

$$f(x)\overline{g(x)} = \left[\operatorname{Re} \left\{ f(x) \right\} + i \operatorname{Im} \left\{ f(x) \right\} \right] \left[\operatorname{Re} \left\{ g(x) \right\} - i \operatorname{Im} \left\{ g(x) \right\} \right]$$
$$= \left[\operatorname{Re} \left\{ g(x) \right\} \operatorname{Re} \left\{ f(x) \right\} + \operatorname{Im} \left\{ g(x) \right\} \operatorname{Im} \left\{ f(x) \right\} \right]$$
$$+ i \left[\operatorname{Im} \left\{ f(x) \right\} \operatorname{Re} \left\{ g(x) \right\} - \operatorname{Re} \left\{ f(x) \right\} \operatorname{Im} \left\{ g(x) \right\} \right].$$

So,
$$\operatorname{Re}\left\{g(x)\overline{f(x)}\right\} = \operatorname{Re}\left\{f(x)\overline{g(x)}\right\}$$
 and $\operatorname{Im}\left\{g(x)\overline{f(x)}\right\} = -\operatorname{Im}\left\{f(x)\overline{g(x)}\right\}$

$$\overline{\langle g, f \rangle} = \overline{\int_0^1 g(x)\overline{f(x)} \, dx}$$

$$= \overline{\int_0^1 \operatorname{Re}\left\{g(x)\overline{f(x)}\right\} \, dx + i \int_0^1 \operatorname{Im}\left\{g(x)\overline{f(x)}\right\} \, dx}$$

$$= \int_0^1 \operatorname{Re}\left\{g(x)\overline{f(x)}\right\} \, dx - i \int_0^1 \operatorname{Im}\left\{g(x)\overline{f(x)}\right\} \, dx$$

$$= \int_0^1 \operatorname{Re}\left\{f(x)\overline{g(x)}\right\} \, dx + i \int_0^1 \operatorname{Im}\left\{f(x)\overline{g(x)}\right\} \, dx$$

$$= \int_0^1 f(x)\overline{g(x)} \, dx$$

$$= \langle f, g \rangle.$$

• $\sqrt{\langle f + g, h \rangle} = \langle f, h \rangle + \langle g, h \rangle$. We have that

$$Re\{(f+g)h\} = Re\{fh+gh\} = Re\{fh\} + Re\{gh\}$$
$$Im\{(f+g)h\} = Im\{fh+gh\} = Im\{fh\} + Im\{gh\}$$

So,

$$\langle f + g, h \rangle = \int_0^1 (f + g) \overline{h} \, dx$$
=
=
-

- $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$
- $\langle cf, g \rangle = c \langle f, g \rangle$
- $\langle f, cg \rangle = \overline{c} \langle f, g \rangle$
- $\langle f, f \rangle$ is a nonnegative real number and $\langle f, f \rangle = 0$ if and only if f = 0.
- (b) Assume V is a complex inner product space with inner product $\langle x, y \rangle$ and its associated metric

$$d(x,y) = \sqrt{\langle x - y, x - y \rangle}$$

and let \mathcal{H} denote the metric completion of V. Thus we may think of V as a dense subset of the metric space \mathcal{H} . The purpose of the following exercises is to show how

one may extend the vector space structure of V to \mathcal{H} , and how to extend the inner product to \mathcal{H} , which shows that the metric completion of an inner product space is a Hilbert space.

- Given $x, y \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{C}$, we define $\alpha x + \beta y$ to be the limit of the sequence $\alpha x_i + \beta y_i$, where x_i is any sequence in V converging to x, y_i is any sequence in V converging to y. Show that this definition is well-defined.
- Imitate the procedure above to show how to extend the inner product so that $\langle x, y \rangle$ is defined for all $x, y \in \mathcal{H}$. (Hint: extend one variable at a time.)

4. Isometries

(a) Assume that $f: \mathbb{R} \to \mathbb{R}$ satisfies |f(x) - f(y)| = |x - y| for all $x, y \in \mathbb{R}$. Prove that f(x) = mx + b

with m = 1 or m = -1.

- (b) Prove that there does not exist a function $f: \mathbb{R}^2 \to \mathbb{R}$ that satisfies |f(x) f(y)| = ||x y|| for all $x, y \in \mathbb{R}^2$.
- (c) Prove that if $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfies ||f(x) f(y)|| = ||x y|| for all $x, y \in \mathbb{R}^n$ then f is onto.
- (d) Let $\mathcal H$ denote an infinite dimensional (real or complex) Hilbert space. Given an example of a function $f:\mathcal H\to\mathcal H$ that satisfies

$$||f(x) - f(y)|| = ||x - y||$$

for all $x, y \in \mathcal{H}$ but f is *not* onto.