UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

LABORATORIO 9 GRAFOS

ALUMNO: VLADIMIR EDSON SOLÓRZANO HUAMANI

DOCENTE: EDITH PAMELA RIVERO TUPAC

Arequipa-Perú 2021 1. Implementar el cogido de Grafo cuya representación sea realizada mediante LISTA DE ADYACENCIA. (3 puntos)

Se incluyo listas de adyacencia por medio de Listas enlazadas de vértices y aristas

- 2. Implementar BSF, DFS y Dijkstra con sus respectivos casos de prueba. (5 puntos) Solo esta implementado DFS, aunque no funciona.
- 3. Solucionar el siguiente ejercicio: (5 puntos) El grafo de palabras se define de la siguiente manera: cada vértice es una palabra en el idioma inglés y dos palabras son adyacentes si difieren exactamente en una posición. Por ejemplo, las cords y los corps son adyacentes, mientras que los corps y crops no lo son.
- a) Dibuje el grafo definido por las siguientes palabras: words cords corps coops crops drops drips grips gripe grape graph

b) Mostrar la lista de adyacencia del grafo.

```
Graph →Grape,
Grape →Graph, Gripe,
Gripe →Grape, Grips,
Grips →Gripe, Drips,
Drips →Grips, Drops,
Drops →Drips, Crops,
Crops →Drops, Coops,
Coops →Crops, Corps,
Corps →Coops, Cords,
Cords →Corps, Words,
Words →Cords,
```

4. Realizar un método en la clase Grafo. Este método permitirá saber si un grafo está incluido en otro. Los parámetros de entrada son 2 grafos y la salida del método es true si hay inclusión y false el caso contrario. (4 puntos).

No se implemento

1. ¿Cuántas variantes del algoritmo de Dijkstra hay y cuál es la diferencia entre ellas? (1 puntos)

Existen muchas variantes del algoritmo Djisktra, como el uso de colas de prioridad, listas enlazadas y de variantes especializadas como colas especializadas. Alguna de sus variantes se diferencia en la forma de aplicación del algoritmo ya sea para ganar velocidad de ejecución o solucionar un caso especifico al cual un algoritmo común Dijkstra no podría solucionar por ejemplo el caso de tener vértices con un peso negativo.

2. Investigue sobre los ALGORITMOS DE CAMINOS MINIMOS e indique, ¿Qué similitudes encuentra, qué diferencias, en qué casos utilizar y por qué? (2 puntos)

Los algoritmos mas conocidos para la solución de caminos mínimos

	Diferencias	Casos a utilizar
Dijkstra	Resuelve desde un único	Si solo se desea hallar una
	vértice origen hasta todos	distancia especifica
	los otros vértices del grafo	
Bellman - Ford	Resuelve el problema	Cuando haya aristas con
	desde un origen si la	peso negativo
	ponderación de las aristas	
	es negativa	
Floyd	Resuelve toda la distancia	Si se desea hallar todas las
	de todos los vértices	distancias
Búsqueda A*	Resuelve entre un par de	Si se desea resolver el
	vértices usando la	problema rápidamente.
	heurística para agilizar la	
	búsqueda.	
Johnson	Resuelve el problema de	Cuando se tenga grafos de
	todos los vértices al igual	baja intensidad y se
	Floyd, pero es más rápido	requiera velocidad.
	en grafos de baja	
	densidad.	
Virterbi	Resuelve el problema del	Cuando se quiera reducir
	camino estocástico más	a probabilidad de
	corto con un peso	transmisión errónea.
	probabilístico adicional en	
	cada vértice	