Adopted Levels, Gammas

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 111,1093 (2010)	3-Mar-2009						

 $Q(\beta^{-})=251.8\ 16$; $S(n)=8952.4\ 15$; $S(p)=14110\ 3$; $Q(\alpha)=-9553\ 4$ 2012Wa38

Note: Current evaluation has used the following Q record 251.9 16 8951.9 1514125 13-9531 15 2009AuZZ,2003Au03.

⁶⁶Ni Levels

Configuration: Listed configurations are those expected in this region, and were used in DWBA analysis of $(\alpha,^2\text{He})$ data.

Cross Reference (XREF) Flags

```
A ^{66}Co β^- decay D ^{64}Ni(α, ^2He)
B ^{64}Ni(t,p) E (HI,xnγ)
C ^{68}Zn(^{14}C, ^{16}O)
```

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
0	0+	54.6 h <i>3</i>	ABCDE	% β^- =100 Configuration=(ν f _{5/2} 0 ⁺) T _{1/2} : from ⁶⁶ Ni β^- decay, weighted average of 55.1 h <i>10</i> (1956Jo20), 54.8 h <i>3</i> (1956Kj07), and 53.5 h <i>7</i> (1956Ru45).
1424.8 [‡] 10 2445 [‡] 1 2664 10	2 ⁺ 0 ⁺ (0 ⁺)	0.8 ps 2	ABC E AB B	$T_{1/2}$: Deduced by evaluators from B(E2) \uparrow =600 200 (2002So03).
2670.8 [‡] 13 2916 [‡] 1 2965 10	(3 ⁺) 2 ⁺ 0 ⁺		A E AB B	J^{π} : from log $ft=4.2$ for β^- decay from (3 ⁺).
3185.44 [#] 15 3230.6 3	(4 ⁺) 2 ⁺		B E AB	XREF: B(3219). J^{π} : From log $fi=4.9$ for β^{-} decay from (3 ⁺).
3370.9 [#] 4 3390 <i>50</i>	3 ⁻ (5 ⁻)		B E D	Configuration= $((\nu p_{1/2})(\nu g_{9/2}))5^-$ J ^{π} : L(α , ² He)=(5).
3541.34 [#] <i>18</i>			В Е	J^{π} : (4 ⁺) from L(t,p)=(4) disagrees with (5 ⁻) yrast state in (HI,xn γ) suggested from analogy with ⁶⁴ Ni.
3599.3 [#] 6 3646 <i>10</i>	(6 [−])&	4.3 ns 4	B E B	$T_{1/2}$: from (HI,xn γ) (1994Pa20).
3678 <i>10</i> 3725.2 [#] <i>6</i>	3-		B B E	
3746 <i>10</i> 3782 <i>10</i> 4028 <i>10</i> 4070.4 [#] 7	2+		B B B d B dE	
4089.4 [#] 6	7-		B dE	Configuration= $((\nu f_{5/2})(\nu g_{9/2}))7^-$ J ^{π} : L(α , ² He)=7 for a level at 4050 50.
4125 10 4407 10 4500 10 4655 10 4696 10 4738 10	(4+)		B B B B	3 . Z(a, 11e) / 101 a 10101 at 1030 30.

Adopted Levels, Gammas (continued)

⁶⁶Ni Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
4760 <i>50</i>	(5-)	d	Configuration= $((\nu f_{5/2})(\nu d_{5/2}))5^-$
.,,,,,	(0)	_	J^{π} : L(α , 2 He)=(5). At the largest angle measured, this level could not be separated clearly from the 5170 level with a dominant configuration=($\nu g_{9/2}$) $_{8+}^{+2}$.
4796 10		Вd	071-70+
4919 <i>10</i>		В	
4967 10		В	
5109 <i>10</i>		В	
5157 10		Вd	
5174.9 [#] 7	(8) ⁺	dE	Configuration= $((\nu G_{9/2})_{8+}^{+2} + (\nu G_{9/2})(\nu d_{5/2})6^+)$ J^{π} : L(α , 2 He)=8+6 for an unresolved doublet at 5170 50; (8 ⁺) in (HI,xn γ).
5192 10		Вd	
5237 10		В	
5260 10		В	
5327 10		В	
5368 10		В	
5503 10		В	
5584 10		В	
5612 <i>10</i>		В	
5660 10		В	
5745 10		В	
5787 10		В	
5836 <i>10</i>		В	
5885 10		В	
6004 10		В	
6027 10		В	
6074 10		В	
6122 10		В	
6166 10		В	
6217 10		В	
6267 10		В	
6304 10		В	
6339 10		В	
6384 10		В	
6457 <i>10</i> 6525 <i>10</i>		B B	
6556 10		В	
6579.8 [#] 9	(10±)&	_	
	$(10^+)^{\&}$	Е	
6600 10		В	
6665 10		В	
6730 <i>10</i>		В	

[†] From 64 Ni(t,p), except as stated. [‡] From 66 Co β^- decay.

[#] From (HI, $xn\gamma$).

[®] From deduced L values in 64 Ni(t,p) with the assumption that the spins of the transferred neutrons couple to S=0, except as stated otherwise. & From (HI,xn γ) based on level systematics and shell model calculations.

Adopted Levels, Gammas (continued)

$\gamma(^{66}Ni)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
1424.8	2+	1424.8 10	100	0	0+	3599.3	(6-)	58.0 5	100	3541.34	
2445	0^{+}	1020 [#] 1	100	1424.8	2+	3725.2		354.3 <i>5</i>	100	3370.9	3-
2670.8	(3^{+})	1246.0 9	100	1424.8	2+	4070.4		471.1 <i>4</i>	100	3599.3	(6^{-})
2916	2+	471.3 6	100	2445	0_{+}	4089.4	7-	490.1 2	100	3599.3	(6^{-})
3185.44	(4^{+})	1760.3 <i>1</i>	100	1424.8	2+	5174.9	$(8)^{+}$	1085.5 <i>3</i>	100	4089.4	7-
3370.9	3-	1945.8 <i>3</i>	100	1424.8	2+	6579.8	(10^{+})	1404.8 <i>6</i>	100	5174.9	$(8)^{+}$
3541.34		355.9 <i>1</i>	100	3185.44	(4^{+})						

 $^{^\}dagger$ From $^{66}\text{Co}~\beta^-$ decay and (HI,xn γ). ‡ Relative photon branching from each level. # Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

