

Visualización de Hipotesis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
datos = pd.read_csv('P1-Vehiculos-en-Circulacion.csv')
print("Nombres de variables y datos\n", datos.head())
print("\nTipo de datos\n", datos.dtypes)
print("\nDimensiones totales:", datos.shape, "\n")
Y_AP=datos.AUTO_PARTICULAR
X MP=datos.MOTO PARTICULAR
plt.scatter(X_MP, Y_AP)
plt.title("Auto particular contra Moto particular")
plt.xlabel("Moto particular")
plt.ylabel("Auto particular")
plt.show()
print(datos.PROD_EST.value_counts())
print(datos.COBERTURA.value counts())
print(datos.ANIO.value_counts())
print(datos.ESTATUS.value_counts())
datos=datos.drop(['PROD_EST'], axis=1)
datos=datos.drop(['COBERTURA'], axis=1)
datos=datos.drop(['ANIO'], axis=1)
datos=datos.drop(['ESTATUS'], axis=1)
datos=datos.drop(['ID_MUNICIPIO'], axis=1)
print("\nNueva base de datos\n", datos.head(), "\n")
print(datos.dtypes)
```


Cualitativo a Cuantitativo

```
datos_encoded=datos.copy()
if datos encoded["ID ENTIDAD"].dtype == 'bool':
    datos_encoded["ID_ENTIDAD"] = datos_encoded["ID_ENTIDAD"].astype(int)
else:
    datos_encoded["ID_ENTIDAD"] = datos_encoded["ID_ENTIDAD"].astype("category")
datos_encoded = pd.get_dummies(datos_encoded, columns=["ID_ENTIDAD"], drop_first=True)
datos_encoded = datos_encoded.copy()
for col in datos_encoded.columns:
    if datos_encoded[col].dtype=='bool':
        datos_encoded[col]=datos_encoded[col].astype(int)
numeric_cols=datos_encoded.select_dtypes(include=np.number)
print("Shape final:", numeric_cols.shape)
print(numeric_cols.head())
```

Regresion Mixta

```
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear model import LinearRegression
estimator=LinearRegression()
sfsForward=SFS(estimator,
                  k features=(3,10),
                  forward=True,
                  scoring='r2',
                  cv=10
modeloF=sfsForward.fit(X_train, Y_train)
selected variablesF=list(modeloF.k feature names )
from sklearn.metrics import r2_score
x_train_selectedF=X_train[selected_variablesF]
x_test_selectedF=X_test[selected_variablesF]
sfsFBward =SFS(estimator,
                  k_features=(3,10),
                  forward=False,
                  scoring='r2',
                  cv=10)
ModeloFB=sfsFBward.fit(x_train_selectedF,Y_train)
print("Variables seleccionadas:\n", ModeloFB.k feature names_)
X_train_selectedFB=X_train[list(ModeloFB.k_feature_names_)]
X_test_selectedFB=X_test[list(ModeloFB.k_feature_names_)]
estimator.fit(X_train_selectedFB,Y_train)
```

Metricas

Dan Vanishla.	AUTO DADTTO		D 60	 	======	0.044		
Dep. Variable: Model:	AUTO_PARTICULAR OLS Least Squares Mon, 08 Sep 2025 08:55:02 1524 1513		R-squared: Adj. R-squared:			0.844		
Method:			_			0.843 815.9		
Date:			F-statistic: Prob (F-statistic):			0.00		
Time:):	-11951.		
No. Observations:			Log-Likelihood: AIC: BIC:					
Df Residuals:								
Df Model:		1513	BIC:			2.398e+04		
Covariance Type:	nonro							
	110111 0				======			
	coef	std	err	t	P> t	[0.025	0.975]	
const	51.1246	21.	 477	2.380	0.017	8.997	93.252	
AUTO_PUBLICO	2.1109	0.	229	9.234	0.000	1.663	2.559	
CAM_PAS_PUBLICO	6.7747	1.	225	5.529	0.000	4.371	9.178	
CYC_CARGA_PARTICULAR	0.8040	0.	015	54.249	0.000	0.775	0.833	
MOTO_PARTICULAR	0.3483	0.	021	16.605	0.000	0.307	0.389	
ID_ENTIDAD_13	669.5005	84.	681	7.906	0.000	503.395	835.606	
ID_ENTIDAD_15	1492.0281	102.	952	14.492	0.000	1290.084	1693.973	
ID_ENTIDAD_17	775.1106	131.	032	5.915	0.000	518.087	1032.134	
ID_ENTIDAD_18	-1051.1788	189.	910	-5.535	0.000	-1423.693	-678.664	
ID_ENTIDAD_24	-781.9315	103.	845	-7.530	0.000	-985.627	-578.236	
ID_ENTIDAD_29	1706.2173	117.		14.533	0.000	1475.934	1936.501	
Omnibus:		 .251		in-Watson:		1.941		
Prob(Omnibus):	0			ue-Bera (JB):		3349.605		
Skew:	1	.217		(JB):		0.00		
Kurtosis:	9	.843	Cond	. No.		2.31e+04		

strong multicollinearity or other numerical problems.

Comparacion del RSS

RSS lineal: 126493531.37699278

RSS KNN: 115370014.52000001

Comparacion del RSE

RSE lineal: 576.1978994774155

RSE KNN: 550.280325888876

Comparacion del R2

R2 lineal: 0.8402404143300133

R2 KNN: 0.8542892627171292

Grafico Final

