Introduction to Analog Layout Design Dr. S. L. Pinjare School Of ECE, REVA University

Analog VLSI Design

- Implementation of analog circuits and systems using integrated circuit technology.
- Unique Features of Analog IC Design
 - Customized design
 - Designed at the circuit level.
 - Geometry is an important part of the design.
 - Usually implemented as a mixed analog- digital circuit
 - Typically Analog is 20% and digital 80% of the chip area.
 - Analog requires 80% of the design time
 - Requires more iterations
 - Passes for success: 2-3 for analog, 1 for digital.
- In general, analog circuits are more complex than digital.
 - Need to have good knowledge of both circuit analysis, modeling and technology

- Electrical Design
- Physical Design
- Fabrication and Testing
- Final Product

Physical Design

Fabrication

Testing and Product

Development

23 January 2016 5

Development

The Layers

Layers in a Typical process

8

9

10

Via1

10

11

Metal 2

Pad OVGL

	Layers in a Typical process						
		Align to	Purpose	Mask CIF			
1	Active	notch	Defines Active area	CAA	43		
2	Pwell	1	Pwell and also sidewall implants(STI)	CWP	41		
3	Nwell	1	Nwell and also sidewall implants	CWN	42		
4	Poly	1	Poly gate	CPG	46		
5	N Select	1	Source drain implants / nLDD implants	CSN	45		
6	P Select	1	Source drain implants/ pLDD implants	CSP	44		
7	Contact	4	Defines contacts to poly and active	CCP or CCA	47,48		
8	Metal 1	7	First level metal interconnect	CMF	49		

Defines second level metal interconnect

CVA

CMS

COG

50

51

52

Via between m1 and m2

Defines bond pad openings

Analog Design components

- Active devices
 - Transistors
 - N-mos and P-mos
- Passives
 - Resistors
 - Capacitors
 - Inductors
 - Implemented using existing layers and masks
 - Possibly adding a few extra layers

The transistor-NMOS

• Four terminal Device

 NMOS Bulk terminal is tied to p substrate which is tied to Vss: Ground terminal

• Layers required:

The transistor-PMOS

- PMOS
 - Bulk terminal is tied to N-Well which is tied to Vdd:
- Layers required:
 - N-Well (in twin well process)

1.5um/0.6um

Design of an OpAMP

Specification

- -VDD = 1.8 V
- -VSS = 0V
- Power Dissipation < 0.3 mW
- Load = 2 pF
- Slew rate = $20V/\mu sec$
- ICMR+ = 1.6 V
- $ICMR_{\perp} = 0.8V$
- DC gain = 60db = 1000
- Phase Margin = 60°
- Unity Gain BW = 30 MHz

Design

Using Slew rate and load estimate current	20 uA
Using Phase margin and load determine miller capacitance Cc	800 fF
Using GBW estimate (W/L) of M1 and M2	6
Using ICMR+ estimate size (W/L) of M3 and M4	14
Using ICMR- estimate size (W/L) of M5	12
Using Phase Margin size M6;	174
Using Current requirement size M7(I7= 125 uA)	75
Using Current requirement size M8(I7= 20 uA)	12

Drawing Wide Transistor

• M6 W/L = 174

Active, Poly, Contact and M1

MOS transistor Layout

 Non-uniform current flow

Most of the current will be shrunk to — this side

M1 carries the most current and Mn carries the least current).

Drawing Wide Transistor

• M6 W/L = 174

for typical 0.18µ CMOS processes					
Large gate series resistance:	7.8±2.5 Ohm/sq				
Large distributed resistance of source/drain:	6.8±2.5Ohm/sq for n+ and 7.2±2.5Ohm/sq for p+.				
Large source/substrate and drain/substrate parasitic capacitances	N-900 fF/um2, 100fF/um P-800 fF/um2, 100fF/um				

MOS transistor Layout

- Parasitic resistance at source and drain must be kept as low as possible
- Gate series resistance must be minimized
 - Series resistance slows down switching speed
 - Also introduces unwanted noise.
- Parasitic source/substrate & drain/substrate capacitances must be minimized
 - Parasitic capacitance slows down switching speed
 - Increases power dissipation(Capacitance switching)
 - Additional load capacitance
 - Need to increase bias current to maintain bandwidth and/or slew rate.
 - Can lead to instability in high gain feedback systems.

- Criteria for MOS Transistor Layout
 - Minimize source/drain resistances.
 - Minimize source/substrate & drain/substrate parasitic capacitances.
 - Minimize gate series resistance.
- Parasitic aware layout

- Criteria for MOS Transistor Layout
 - Minimize source/drain resistances.
 - Minimize source/substrate & drain/substrate parasitic capacitances.
 - Minimize gate series resistance.
- Parasitic aware layout

Parasitic aware layout

• Multiple Contacts or one big contact

MOS transistor Layout

• Reliability issues: Curvature in metal Layer- Can lead to microfracture

- Multiple contacts at source/drain
 - Current is spread
 - Smaller source/drain resistances

Parasitic aware layout

- Multiple Contacts or one big contact
- Multiple contacts at source/drain
 - High reliability
 - Better contact at source/drain
 - Smaller contact resistance
 - \gg R = Rc/N, where N=number of contacts

- Multiple contacts at source/drain
 - Current is spread
 - Smaller source/drain resistances
 - Series resistance is negligible but lateral resistance still exists.
 - Large source/substrate and drain/substrate parasitic capacitances.

Parasitics in transistor

- Large gate series resistance- Gate is too long.
 - Contacts are not allowed on the gate above the channel
 - high temperature required to form contacts may destroy the thin gate oxide.

Poly contact at both ends

Wide transistors need to be split

MULTI-GATE FINGER LAYOUT

- Parallel connection of n elements (n = 4 for this example)
 - Reduces the gate resistance of the poly-silicon
 - Capacitance unchanged, Large area

Multifinger Layout-Shared sources/drains

- Contact space is shared among transistors
- Reduced silicon area.
 - Minimizes source/substrate & drain/substrate parasitic capacitances.
 - important for high speed

$$C_S = \frac{3}{4} C_S$$

$$Cd = \frac{1}{2} Cd$$

Note that parasitic capacitors are lesser at the drain

Folding

- Folding reduces gate resistance
- Shared source/drain, Reduced silicon area.

- Minimize Source/Substrate and Drain/Substrate Parasitic Capacitances
 - Shared sources/drains.

Another layout

Analog layout Issues

• Noise is important in all analog circuits because it limits dynamic range.

Analog layout Issues

- Noise is important in all analog circuits because it limits dynamic range.
 - Body Contact
 - Higher neutral body resistance

Single Body Contact more substrate noise

Substrate contact

- Generous use of SUBSTRATE PLUGS
 - help to reduce the resistance of the neutral body region,
 - Minimizes the noise contributed by this resistance.
 - minimizes substrate noise because it provides a low impedance path to ground for the noise current

Substrate contact

Layout of a Cascode circuit

Common Terminal

Well proximity effects (WPE)

Shallow Trench Isolation (STI) Stress

Antenna Effect

Metal Etching

• There will be charge accumulation on Metal1 during plasma etching (of metal1) causing damage to thin gate oxide (Large metal area)

Antenna Effect

Metal Etching

• There will be charge accumulation on Metal1 during plasma etching (of metal1) causing damage to thin gate oxide (Large metal area)

Avoids antenna effect

Antenna Effect

• RIE of Poly silicon

• Make connections at M1 level.

Analog layout Issues

Matching components

 In analog electronics it is often necessary to have matched pairs of devices with identical electrical properties, e.g. input transistors of a differential stage, and current mirror

Layout of Matched Transistors

- Matched transistors are used extensively in both analog and digital CMOS circuits.
 - In theory two device with the same size have the same electrical properties.

Layout of Matched Transistors

- Matched transistors are used extensively in both analog and digital CMOS circuits.
 - In theory two device with the same size have the same electrical properties.

In reality there is always process variations

Silicon is anisotropic

- Ion implantation is performed at an angle causing shadow
- Source and drain may not be symmetric due to ion implantation angle,
 - neccessary to avoid implant depth issues (channeling).

Source and drain are not equivalent

Photo-lithographic invariance (PLI)

- Lithography effects are different in different direction.
- Orientation is important in analog circuits for matching purposes
 - C and D are better
 - Maintain orientation

- C. Gate aligned
- D. Parallel gate:

Photo-lithographic invariance (PLI)

- Gate aligned
- Parallel gate:
 - Two drains have different surroundings
 - Two sources have different surroundings
- Current flows in the same direction

Well Proximity Effect

- High energy ion implants to form the well.
- Scattering from the edge of the photoresist mask, and embedding in the silicon surface (near well edge).
- Transistors close to the well edge will therefore have different properties.
- This is known as the well proximity effect (WPE). Important for matching.

As with S/D, implantation angle may render the scattering and doping asymmetric

- Shallow trench isolation strains the active area of the transistor. Influcences mobility and threshold voltage (stress induced enhancement or suppression of dopant diffusion).
- Distance between gate and STI impacts perforance.
- Important for matching.

Matching

- Layout techniques to minimize the errors introduced by process variations.
- Two electrically equivalent components: A and B
 - Drawn identically
 - A and B have same shape in area and perimeter
 - Are they Identical ?
 - Do they have the same surrounding?

Matching

- Layout techniques to minimize the errors introduced by process variations.
- Two electrically equivalent components: A and B
 - Drawn identically
 - A and B have same shape in area and perimeter
 - Are they Identical ?
 - Do they have the same surrounding?
 - -No?

Unit Matching

- Layout techniques to minimize the errors introduced by process variations.
- Two electrically equivalent components. A and B
 - Use Dummies to have identical surroundings

Layout of Matched Transistors

 Add dummy transistors to improve symmetry

 Presence of Metal line over M2 destroys symmetry

 Replicate Metal line over M1 improves symmetry

Metal Interconnections

- Both the transistor should have same surrounding.
- Unbalanced metal routing will cause the transistors to see different source voltage.
- Also, distribute reference as current, not bias voltage.

Metal 2 Metal 1 polysilicon Ion implantation beam Polysilicon gate Photoresist, PR₁ Photoresist, PR₁ Pigher dopant concentration near well edge SiO₂ Photoresist, PR₁ SiO₂ Pigher dopant concentration near well edge SiO₂

Well proximity effects (WPE)

- Shallow Trench Isolation (STI) Stress
- Planarity: Optics requires planarity -> special local and global "fill" requirements -> density checks now standard like LVS/DRC.
- Unintended impact of dummies on analog: matching, inductor Q, increased parasitics.
- Antenna charging: Connect diodes to prevent oxide damage during fabrication.
- WPE: Extra dopants due to scattering near well edge -> threshold voltage shifts -> minimize proximity to well edges
- STI stress: Affects mobility -> orient all devices the same way and use dummy devices

Unit matching

• Gradient along x-axis destroys symmetry

Process Variation

- Process variations can locally be approximated with a linear gradient.
- Example: Desired Resistor values; A= 7 units and B = 7 units
- Changed due to Gradient as follows.
- A= 5 unit

Process variations

can locally be approximated with a linear gradient.

(a):
$$A1 + A2 < B1 + B2$$

(b): A1 + A2 = B1 + B2 (Common-centroid layout)

Common Centroid Layouts

Common Centroid Layouts

Common Centroid Layout

Common Centroid Layouts

Mitigates variation in both x and Y direction

Common Centroid Layout

ABBA BAAB	ABBAABBA BAABBAAB	ABBAABBA BAABBAAB ABBAABBA	ABBAABBA BAABBAAB BAABBAAB ABBAABBA
ABA BAB	ABAABA BABBAB	ABAABA BABBAB ABAABA	ABAABAABA BABBABBAB BABBABBAB ABAABAABA
ABCCBA CBAABC	ABCCBAABC CBAABCCBA	ABCCBAABC CBAABCCBA ABCCBAABC	ABCCBAABC CBAABCCBA CBAABCCBA ABCCBAABC
AAB BAA	AABBAA BAAAAB	AABBAA BAAAAB AABBAA	AABBAA BAAAAB BAAAAB AABBAA

Matched Transistors-Interdigitized Layout Style

- Inter-digitized layout style Averages the process variations among transistors
 - Common terminal is like a serpentine
 - Two matched transistors with one common terminal
 - Split the transistor in two equal parts
 - 4 fingers for each transistors, Arrange AABBAABB

Matched Transistors

To achieve both common-centroid and PLI matched transistors has to be split into 4 fingers.

AABBBBAA

Matched Transistors

- Or ABBAABBA
- Use dummies if needed
- Uneven total drain area between A and B.
 - This is undesirable for ac conditions:
 - capacitors and other parameters may not be equal
 - A more robust approach

Matched Transistors

M1M2 M2M1 M1M2 M2M1 M1M2

$$M2\ 2+3\ +6+7+10=28$$

Dummy Devices at the Ends

Ending elements have different boundary conditions than the inner elements -> use dummy

- Dummies are shorted transistors
 - Adds to parasitics

Interdigital layout

- Split into parallel connections of even parts,
- Half of them will have the drain at the right side and half at the left,
- Be careful how you route the common terminal

M2 M1 M1 M2 M2 M1 M1 M2

M1 M2 M2 M1 M1 M2 M2 M1

M2 M1 M1 M2 M2 M1 M1 M2 M1 M2 M2 M1 M1 M2 M2 M1

Α		AA	AAA	AAAA
AB	*	ABBA	ABBAAB*	ABABBABA
AB	C*	ABCCBA	ABCBACBCA*	ABCABCCBACBA
AB	CD*	ABCDDCBA	ABCBCADBCDA*	ABCDDCBAABCDDCBA
AB	A	ABAABA	ABAABAABA	ABAABAABAABA
AB	ABA	ABABAABABA	ABABAABABAABABA	ABABAABABAABABABA
AA	BA*	AABAABAA	AABAAABAAABA*	AABAABAAABAABAA
AA	BAA	AABAAAABAA	AABAAABAAAABAA	AABAAAABAAABAA

Resistors

- All materials have a resistivity
- Typical resistivities
 - Metal layer : 0.1 Ohm/square
 - n/p-plus contacts and polysilicon: 10-100 Ohm/square
 - n-well: 1000 Ohm/square
 - low doped poly silicon: 10 k Ohm/square
 - more well defined than n-well, i.e. higher accuracy

Poly-Resistors

Poly Resistors

- Silicidated poly resistors: 1 − 10 Ohm/sq.
 - ≈±30%
- Non-silicidated poly resistors: 50-1000 Ohms per sq.
 - ≈±20%
 - Small parasitic capacitances to substrate.
 - Superior linearity.
 - High cost due to the extra mask needed to block silicide layer.

Diffusion Resistors

- 100-1000 Ohm/sq
 - N-well
 - Large error : ≈±40%
 - Resistance is strongly terminal voltage-dependent and highly nonlinear.
 - Depletion width varies with terminal voltages. The cross-section area varies with terminal voltages
 - noisy as all disturbances/noise from substrate can be coupled directly onto the resistors
 - Large parasitic capacitance between n-well and substrate.

Ion Implanted

- 500-2000 ohms/square
- Accuracy = $\pm 15\%$
- Parasitic capacitance to substrate is voltage dependent.
- Piezoresistance effects occur due to chip strain from mounting

Metal Resistor

• Low resistance

Resistor Layout

• Standard Resistors: Avoid 90 degree angle. 45 degree is recommended

- 1. Resistance at the corners cannot be estimated accurately
- 2. Current flow at the corner is not uniform

Recommended resistor layout

Corner Correction

Resistor Layout

 Dummy resistors are added to minimizes the effect of process variation

Shielded Resistors

- Shielding resistors
 - Connected to a constant voltage source
 - Prevent self-coupling of the resistor R/inter-coupling with others.
- Widely used in analog/RF design.
- Caution
 - a mutual capacitance between the resistor and its shield exist.

Layout of shielded resistors
(S = shielding resistors)

Layout of Large Resistors

- Use n-well resistors
 - have a large sheet resistance.
- Enclosed by a substrate shielding ring, also known as guard ring, to isolate the resistors from neighboring devices.

Process Bias Influence on Resistors

- Process bias is where the dimensions of the fabricated geometries are not the same as the layout data base dimensions.
- Process biases introduce systematic errors.

Etch Rate Variations – Polysilicon Resistors

• The size of the area to be etched determines the etch rate. Smaller areas allow less access to the etchant while larger areas allow more access to the etchant.

Etch Rate Variations – Polysilicon Resistors

• The size of the area to be etched determines the etch rate. Smaller areas allow less access to the etchant while larger areas allow more access to the etchant.

It may be advisable to connect the dummy strips to ground or some other low impedance node to avoid static electrical charge buildup.

Diffusion Interaction – Diffused Resistors

• Consider three adjacent p+ diffusions into a n epitaxial region,

- If A, B, and C are resistors that are to be matched, we see that the effective concentration of B is larger than A or C because of diffusion interaction. This would cause the B resistor to be smaller even though the geometry is identical.
- Solution: Place identical dummy resistors to the left of A and right of C. Connect the dummy resistors to a low impedance to prevent the formation of floating diffusions that might increase the sensitivity to latchup.

Thermoelectric Effects

- The thermoelectric effect, also called the Seebeck effect, is a potential difference that is developed between two dissimilar materials that are at different temperatures.
- Two possible resistor layouts with regard to the thermoelectric effect:

• High sheet resistivity resistors must use p+ or n+ in order to make contacts to metal. Thus, there is plenty of opportunity for the thermoelectric effect to cause problems if care is not taken. Below are three high sheet resistor layouts with differing thermoelectric performance.

Layout of Matched Resistors

- Inter-Digitized Layout
 - Minimizes the effect of process variation in x-direction.
- Dummy resistors are added to ensure both resistors have the exactly same environment.

Matched Resistors with Temperature Consideration

Keep away from power devices

Resistor layout guidelines-Matched resistors

- Use same material
- Identical geometry, same orientation
- Close proximity, interdigitate arrayed resistors
- Use dummy elements
- Place resistors in Low stress area
- Place resistors away from power devices
- Use electrostatic shielding

Capacitors

- There are naturally capacitors between each layer of metal, polysilicon or silicon
- Dielectrics between different metal layers have a thickness of 0.5-1 micron, which gives a rather large area for a given capacitance.

$$C = \varepsilon \frac{A}{t}$$

- Key Parameters
 - Capacitance per unit area
 - Larger specific capacitance (capacitance per unit area) gives smaller area
 - Linearity
 - Parasitic capacitance to substrate
 - Series resistance resistance of capacitor plates

Types of IC Capacitors

Poly-diffusion capacitors

- − .6-.8 fF/ μ m2(\approx ±5%).
- Matching 0.2%
- Nonlinear bottom-plate parasitic capacitance. ≈20% of inter-plate capacitance.

MOS capacitors

- -0.6 0.8 fF/µm2; (≈±5%).
- Matching 0.5%
- Stable capacitance in strong inversion
- Non-negligible channel resistance lowers the quality factor (Q) of the capacitor

Poly-poly capacitors

- -0.3 0.5 fF/μm2; (≈±10%). Matching 0.5%
- Not available in standard CMOS processes

Metal-poly capacitors

- 0.03-0.05 fF/μm2. (≈±25%). Matching 0.5%
- Capacitance is small, area consuming.

Metal-metal capacitors

- 0.02-0.04 fF/μm2; (≈±25%). Matching 0.1%
- Capacitance is small, area consuming

Pn junction capacitor

- Generally made by diffusion into the well
- Layout: Minimize the distance between the p+ and n+ diffusions.

MOS Gate Capacitor

Poly Poly Capacitors

Highly stable capacitors

 small bottom plate parasitic

Metal-Insulator-Metal (MiM) Capacitors

- In some processes, there is a thin dielectric between a metal layer and a special metal layer called "capacitor top metal". Typically the capacitance is around $1 fF/\mu m2$ and is at the level below top metal.
- Good matching is possible with low parasitics

Capacitor Errors

- Edge Effects
- There will always be a randomness on the definition of the edge. However, etching can be influenced by the presence of adjacent structures.

NON-IDEAL EFFECTS- UNDER-CUT

- Non-uniform undercut &/or edge fringing field effects change the value of designed capacitors.
- The area and perimeter ratio is preserved if we use layout utilizing unit capacitors.

Ideal case: no undercut				
	Case 1	Case 2		
Area	1:4	1:4		
Perimeter	1:2	1:4		
Typical case: 0.05 undercut				
	Case 1	Case 2		
Area	1:4.46	1:4		
P erimeter	1:2.1	1:4		

NON-IDEAL EFFECTS-Corner Rounding

- Etching always causes corner rounding to some extent.
- This means that
 - 90° corners will be eroded and
 - 270° corners will be have incomplete removal of material
- In order to overcome this effect use an equal number of 90° & 270° corners

Layout of Matched Capacitors

- Oxide Gradients: Error due to a variation in dielectric thickness across the wafer.
- Minimize the Effect of Oxide Thickness in both x and y-directions.
 - Common Centroid Structure.
- Dummy capacitors are needed to ensure the same environment for C1 and C2.

Layout of Matched Capacitors

- C1 and C2 are 2-poly capacitors.
- n-well is employed as a charge collector to shield the interaction between the bottom plate and substrate.
- n-well is biased at multiple points and connected to a constant voltage source.

Are there any thing else you can improve?

Is there full symmetry between C1 and C2?

Decreasing Sensitivity to Edge Variation

Sensitive to alignment errors in the upper and lower plates and loss of capacitance flux (smaller capacitance). Fringing Fringing Field

Insensitive to alignment errors and the flux reaching the bottom plate is larger resulting in large capacitance.

A structure that minimizes the ratio of perimeter to area (circle is

best).

Accurate Matching of Capacitors

- Accurate matching of capacitors depends on the following influence:
 - Mismatched perimeter ratios
 - Proximity effects in unit capacitor photolithography
 - Mismatched long-range fringe capacitance
 - Mismatched interconnect capacitance
 - Parasitic interconnect capacitance

Long-range fringe capacitance

• Long-range fringe capacitance

References

- A. Hastings, The Art of Analog Layout, Prentice-Hall, 2002.
- B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.

Summary

- Use large area to reduce random error
- Common Centroid layout to reduce linear gradient errors
- Use unit element arrays
- Interdigitize for matching
- Use of symmetry (photolithographic invariance)
- Dummy device for similar vicinity
- Guard rings for isolation

Thank You