Inequalities

Probability I (BST 230)

Jeffrey W. Miller

Department of Biostatistics Harvard T.H. Chan School of Public Health

Outline

Introduction

Markov's inequality

Markov's inequality Chebyshev's inequality Chernoff's bound

Jensen's inequality

Jensen's inequality Weighted AM-GM inequality Hoeffding's inequality

L^p norm inequalities

 L^p spaces Hölder's inequality Cauchy–Schwarz inequality Minkowski's inequality

Outline

Introduction

Markov's inequality

Markov's inequality Chebyshev's inequality Chernoff's bound

Jensen's inequality

Jensen's inequality
Weighted AM-GM inequality
Hoeffding's inequality

L^p norm inequalities

 L^p spaces Hölder's inequality Cauchy–Schwarz inequality Minkowski's inequality

Introduction

- Earlier we saw Boole's inequality and Bonferroni's inequality.
- There are many useful inequalities in probability theory.
- Inequalities are useful because it is usually easier to bound some quantity of interest than to characterize it exactly.
- And often, a decent bound is all that is needed to show what you want to show.
- Note: To simplify things, in this set of slides we will generally assume that all expectations are finite.

Introduction

- For example, suppose you are manufacturing widgets.
- Each widget can be defective in one of three ways, denoted by events A_1, A_2, A_3 .
- You have data on the probability of each type of defect, $P(A_k)$, but you don't have any data on the joint probability of these events.
- Fortunately, you can still bound the probability of any type of defect occurring by using Boole's inequality:

$$P(A_1 \cup A_2 \cup A_3) \le P(A_1) + P(A_2) + P(A_3).$$

• If each $P(A_k)$ is small, then you can guarantee that the probability of any defect occurring is small.

Recall: Boole's and Bonferroni's inequalities

• Boole's inequality (a.k.a. union bound): For any $A_1, A_2, ...,$

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) \le \sum_{i=1}^{\infty} P(A_i).$$

• Bonferroni's inequality: For any A_1, A_2, \ldots ,

$$P\Big(\bigcap_{i=1}^{\infty} A_i\Big) \ge 1 - \sum_{i=1}^{\infty} P(A_i^c).$$

Outline

Introduction

Markov's inequality

Markov's inequality Chebyshev's inequality Chernoff's bound

Jensen's inequality

Jensen's inequality
Weighted AM-GM inequality
Hoeffding's inequality

L^p norm inequalities

 L^p spaces Hölder's inequality Cauchy–Schwarz inequality Minkowski's inequality

Markov's inequality

- This is one of the simplest but most useful inequalities in probability theory.
- Markov's inequality: If X is a nonnegative random variable and a>0, then

$$P(X \ge a) \le \frac{\mathbf{E}X}{a}.$$

• Proof: Since $1 \ge \mathbb{1}(X \ge a)$,

$$EX \ge EX1(X \ge a)$$
$$\ge Ea1(X \ge a)$$
$$= aP(X \ge a).$$

Dividing both sides by a yields the result.

Example: Investing returns

- You invest \$1000 dollars in a holding where the annual returns are $\mathrm{Pareto}(\alpha,c)$ distributed with $\alpha=2$ and c=1/4.
- ullet More precisely, after n years, your investment is worth

$$Y_n = 1000X_1X_2\cdots X_n$$

dollars, where $X_1, \ldots, X_n \sim \operatorname{Pareto}(\alpha, c)$ independently.

• Recall that the pdf of $Pareto(\alpha, c)$ is

$$p(x) = \frac{\alpha c^{\alpha}}{x^{\alpha+1}} \mathbb{1}(x > c).$$

Is this a good investment?
 Group exercise (5 minutes): First guess using your intuition. Then try to show something formally.

Corollaries of Markov's inequality

1. For any r.v. X and any a > 0,

$$P(|X| \ge a) \le \frac{E|X|}{a}.$$

2. For any r.v. X, any $a\in\mathbb{R}$, and any monotone increasing function $g(x)\geq 0$ such that g(a)>0,

$$P(X \ge a) \le \frac{\mathrm{E}g(X)}{g(a)}.$$

3. Chebyshev's inequality: For any r.v. X and any a > 0,

$$P(|X - EX| \ge a) \le \frac{Var(X)}{a^2}.$$

Chebyshev's allows us to bound the probability that a r.v. is a certain distance from its mean.

Group exercise (5 minutes): Try to show 2 and 3 using Markov's inequality.

- Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$ and we want to bound the probability that X is far from its mean.
- The exact expression involves the standard normal cdf $\Phi(x)$:

$$P(|X - \mu| \ge a) = P(\left|\frac{X - \mu}{\sigma}\right| \ge a/\sigma) = 2\Phi(-a/\sigma)$$

for a > 0. However, $\Phi(x)$ does not have a simple closed form.

Meanwhile, Chebyshev's inequality easily yields

$$P(|X - \mu| \ge a) \le \frac{\operatorname{Var}(X)}{a^2} = \frac{\sigma^2}{a^2}.$$

Chernoff's bound

- This is surprisingly powerful corollary of Markov's inequality. It yields an exponentially decaying bound as a grows, compared to the 1/a in Markov's inequality.
- Chernoff's bound: For any r.v. X and any $a \in \mathbb{R}$,

$$P(X \ge a) \le \inf_{t>0} e^{-ta} \operatorname{E} \exp(tX).$$

• Proof: For all t > 0,

$$P(X \ge a) = P(tX \ge ta)$$

$$= P(\exp(tX) \ge \exp(ta))$$

$$\le \frac{\operatorname{E} \exp(tX)}{\exp(ta)}$$

$$= e^{-ta} \operatorname{E} \exp(tX).$$

Since the left-hand side doesn't depend on t, the inequality holds when taking the infimum of the right-hand side over t.

• Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$. By Chernoff's bound,

$$P(X - \mu \ge a) \le \inf_{t>0} e^{-ta} \operatorname{E} \exp\left(t(X - \mu)\right)$$
$$= \inf_{t>0} e^{-ta} \exp\left(\frac{1}{2}\sigma^2 t^2\right)$$
$$= \inf_{t>0} \exp\left(-ta + \frac{1}{2}\sigma^2 t^2\right)$$

• To minimize $f(t) = -ta + \frac{1}{2}\sigma^2t^2$, we set

$$0 = f'(t) = -a + \sigma^2 t$$

and solve to get $t = a/\sigma^2$. Plugging this in yields

using the formula for the mgf of $X - \mu \sim \mathcal{N}(0, \sigma^2)$.

$$P(X - \mu \ge a) \le \exp(-a^2/\sigma^2 + \frac{1}{2}a^2/\sigma^2) = \exp(-\frac{1}{2}a^2/\sigma^2).$$

• By symmetry, $P(-(X-\mu)\geq a)\leq \exp(-\frac{1}{2}a^2/\sigma^2)$. Thus, $P(|X-\mu|\geq a)\leq 2\exp(-\frac{1}{2}a^2/\sigma^2).$

- Chebyshev's inequality: $P(|X \mu| \ge a) \le \sigma^2/a^2$.
- Chernoff's bound: $P(|X \mu| \ge a) \le 2 \exp(-\frac{1}{2}a^2/\sigma^2)$.

- Chebyshev's inequality: $P(|X \mu| \ge a) \le \sigma^2/a^2$.
- Chernoff's bound: $P(|X \mu| \ge a) \le 2 \exp(-\frac{1}{2}a^2/\sigma^2)$.
- A tighter bound: $P(|X \mu| \ge a) \le \sqrt{\frac{2\sigma^2}{\pi a^2}} \exp(-\frac{1}{2}a^2/\sigma^2)$.

Outline

Introduction

Markov's inequality

Markov's inequality
Chebyshev's inequality
Charneff's bound

Jensen's inequality

Jensen's inequality Weighted AM-GM inequality Hoeffding's inequality

L^p norm inequalities

 L^p spaces Hölder's inequality Cauchy–Schwarz inequality Minkowski's inequality

Convex functions

• A function $g: \mathcal{X} \to \mathbb{R}$ is *convex* if

$$g(tx + (1-t)y) \le tg(x) + (1-t)g(y)$$

for all $x, y \in \mathcal{X}$ and all $t \in (0, 1)$.

- A function $g: \mathcal{X} \to \mathbb{R}$ is *concave* if -g is convex.
- Intuition: Convex functions curve upwards, concave functions curve downwards.

Properties of convex functions

• Suppose $g:\mathcal{X}\to\mathbb{R}$ is twice-differentiable at all $x\in\mathcal{X}$. Then g is convex if and only if

$$\frac{\partial^2}{\partial x^2}g(x) \ge 0$$

for all $x \in \mathcal{X}$.

• Suppose $g:\mathcal{X}\to\mathbb{R}$ is a convex function. For any $x_0\in\mathcal{X}$, there exist $a,b\in\mathbb{R}$ such that

$$ax + b \le g(x)$$

for all $x \in \mathcal{X}$ and

$$ax_0 + b = g(x_0).$$

Jensen's inequality

- This is a key inequality with many important consequences.
- Jensen's inequality: Let X be a r.v. with range \mathcal{X} . If $g: \mathcal{X} \to \mathbb{R}$ is a convex function then

$$g(EX) \le Eg(X)$$
.

• Proof: Define $x_0 = \mathrm{E} X$. Since g is convex, there exist $a,b \in \mathbb{R}$ such that $ax+b \leq g(x)$ for all $x \in \mathcal{X}$ and $ax_0+b=g(x_0)$. Therefore,

$$g(EX) = g(x_0) = ax_0 + b = E(aX + b) \le Eg(X).$$

Jensen's inequality: Examples

- Examples of Jensen's inequality:
 - \triangleright $|EX| \le E|X|$.
 - $(EX)^k \le EX^k$ for all $k \in \{2, 4, 6, ...\}$.
 - ▶ If $X \ge 0$ then $(EX)^r \le EX^r$ for all $r \ge 1$.
 - $ightharpoonup \exp(t \to X) \le \exp(t X) \text{ for } t > 0.$
 - ▶ If X > 0 then $1/EX \le E(1/X)$.
 - ▶ If X > 0 then $-\log(EX) \le -E\log(X)$.

Weighted AM-GM inequality

- The inequality of arithmetic means and geometric means is a classic result that is easily proved using Jensen's inequality.
- Weighted AM-GM inequality: For any $x_1, \ldots, x_n \geq 0$ and $w_1, \ldots, w_n \geq 0$ such that $\sum_{i=1}^n w_i = 1$,

$$w_1x_1 + \dots + w_nx_n \ge x_1^{w_1} \cdots x_n^{w_n}.$$

Group exercise (5 minutes): Try to show this using Jensen's inequality.

Hoeffding's inequality

- This is an interesting application of Jensen's inequality.
- Hoeffding's inequality: Suppose X_1,\ldots,X_n are independent r.v.s such that $r_i \leq X_i \leq s_i$, and denote $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Then for all a>0,

$$P(|\overline{X} - E\overline{X}| > a) \le 2 \exp\left(-\frac{2a^2n}{\frac{1}{n}\sum_{i=1}^n (s_i - r_i)^2}\right).$$

- Like Chernoff's bound, Hoeffding's provides an exponentially decaying bound as *a* grows. An advantage of Hoeffding's is that the mgf doesn't need to be known to get an explicit bound. On the other hand, the r.v.s need to be bounded.
- For instance, if $X_1, \ldots, X_n \sim \text{Bernoulli}(q)$, then

$$P(|\overline{X} - q| > a) \le 2\exp(-2a^2n).$$

Outline

Introduction

Markov's inequality

Markov's inequality Chebyshev's inequality

loncon's inequality

Jensen's inequality
Weighted AM-GM inequality
Hoeffding's inequality

L^p norm inequalities

 L^p spaces Hölder's inequality Cauchy–Schwarz inequality Minkowski's inequality

L^p spaces

- ullet L^p spaces are nice classes of functions that come up a lot.
- For $p \ge 1$, the L^p norm of a random variable X is $(E|X|^p)^{1/p}$.
- Examples:
 - ▶ The L^1 norm is simply E|X|.
 - ▶ If EX = 0 then the L^2 norm is $(E|X|^2)^{1/2} = \sqrt{Var(X)}$.
- The set of r.v.s X such that $(E|X|^p)^{1/p} < \infty$ is denoted L^p .
- That is, $X \in L^p$ means that $(E|X|^p)^{1/p} < \infty$.
- Note that $(E|X|^p)^{1/p} < \infty$ iff $E|X|^p < \infty$. The purpose of the 1/p is that it makes it have the properties of a "norm".

Hölder's inequality

 \bullet Hölder's inequality: For any random variables X and Y, if p,q>1 such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

then

$$E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q}.$$

Proof: By the weighted AM-GM inequality with n=2, $w_1=1/p$, and $w_2=1/q$,

$$\frac{1}{p} \frac{|X|^p}{\mathrm{E}|X|^p} + \frac{1}{q} \frac{|Y|^q}{\mathrm{E}|Y|^q} \ge \frac{|XY|}{(\mathrm{E}|X|^p)^{1/p} (\mathrm{E}|Y|^q)^{1/q}}.$$

Taking the expectation of both sides yields

$$1 = \frac{1}{p} + \frac{1}{q} \ge \frac{E|XY|}{(E|X|^p)^{1/p}(E|Y|^q)^{1/q}}.$$

Corollaries of Hölder's inequality

- The Cauchy–Schwarz inequality is an important special case of Hölder's inequality.
- Cauchy-Schwarz inequality: For any r.v.s X and Y,

$$E|XY| \le (E|X|^2)^{1/2} (E|Y|^2)^{1/2}.$$

Proof: Apply Hölder's with p = q = 2.

• Lyapunov's inequality: If $1 \le r < s < \infty$, then

$$(E|X|^r)^{1/r} \le (E|X|^s)^{1/s}.$$

Thus, if $X \in L^s$ then $X \in L^r$ for all $r \in [1, s)$.

Proof: Apply Hölder's to the random variables $|X|^r$ and Y=1 with p=s/r (and q=1/(1-1/p)) to get $\mathrm{E}|X|^r<(\mathrm{E}|X|^{rp})^{1/p}=(\mathrm{E}|X|^s)^{r/s}.$

Raising both sides to the power of 1/r yields the result.

Corollaries of Hölder's inequality

• Covariance inequality: If X and Y have means μ_X, μ_Y and variances σ_X^2, σ_Y^2 , then

$$|Cov(X,Y)| \le \sigma_X \sigma_Y.$$

Proof: By Jensen's and the Cauchy-Schwarz inequality,

$$|Cov(X,Y)| = |E(X - \mu_X)(Y - \mu_Y)|$$

$$\leq E|(X - \mu_X)(Y - \mu_Y)|$$

$$\leq (E|X - \mu_X|^2)^{1/2}(E|Y - \mu_Y|^2)^{1/2} = \sigma_X \sigma_Y.$$

- This shows that $-1 \le \rho_{X,Y} \le 1$ where $\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$.
- Minkowski's inequality: For any r.v.s X and Y and any $p \ge 1$, $(\mathrm{E}|X+Y|^p)^{1/p} < (\mathrm{E}|X|^p)^{1/p} + (\mathrm{E}|Y|^p)^{1/p}.$

Proof: See Casella & Berger, Theorem 4.7.5.

• Minkowski's establishes the triangle inequality for L^p norms.