PHYS 5C:

BY KAMERON GILL Date April 14, 2017

I.

• Conductors are equipotentials.

Also generally equipotential surfaces $\perp E$

- A Gaussian surface is a surface that uses Guass. Flux through a close surface is equal
 to charges.
- Charge metal sphere. Radius R and charge Q. Set v=0 at r-> ∞ What is v at center of sphere (r=0)? set r=R, so $v=\frac{Q}{4\pi\varepsilon_0 R}$
- $\bullet \quad E = k \frac{Q}{r^r}$
- Ground can set V=0

It is possible for a grounded conductor not to be neutral!

• Potential to any charge distrubition

Discrete charges: $V = \int_{i=1}^{n} V_i \Rightarrow \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{Q_i}{r_i}$ (assume ref poistion $\to \infty$ and V = 0)

• continous charge distrubitino

$$V\!=\!\frac{1}{4\pi\varepsilon_0}\!\int\!\frac{\mathrm{d}\mathbf{q}}{r}$$

• Dipole potential

define eletric dipole moment: p=Ql

$$V = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p}\mathbf{cos}\theta}{r^2}$$

• Can't always set $V \to 0$ at $r \to \infty$

When charge distribution extends to ∞ in some direction(s) example ∞ sheet of charge density σ . Set reference position at a finite distance

• If a charge q moves through potential difference V, then its KE changes by qV