

## Zadanie D3: Ciąg rekurencyjny

Ciąg Fibonacciego, określony w następujący sposób:

$$F_1 = 1$$

V LO

$$F_2 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$
 dla  $n \ge 3$ 

jest najbardziej znanym przykładem ciągu określonego za pomocą liniowej rekurencji. Takie ciągi pojawiają się w różnych kontekstach w matematyce i naukach przyrodniczych, dlatego też umiejętność ich liczenia może być ważna dla informatyka. Twoim zadaniem jest obliczyć zadany (m-ty) wyraz ciągu  $(a_n)_{n=1}^{\infty}$  określonego przez współczynniki  $c_1, \ldots, c_k$  następującym równaniem:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

znając jego k początkowych wyrazów. Dla prostoty obliczeń wystarczy, jeśli podasz trzy ostatnie cyfry szukanej liczby.

## Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ( $1 \le z \le 2 * 10^9$ ) – liczbę zestawów danych, których opisy wystepują kolejno po sobie. Opis jednego zestawu jest następujący:

Pierwsza linia zestawu zawiera dwie liczby k, m ( $1 \le k \le 80, 1 \le m \le 10^9$ ) oddzielone spacją – są to ilość współczynników w równaniu rekurencyjnym, oraz numer wyrazu, który należy wyliczyć. W drugiej linii znajduje się k liczb  $c_1, \ldots, c_k$  – współczynniki równania. W trzeciej, również k liczb  $a_k, \ldots, a_1$  (uwaga na kolejność!) – początkowe wyrazy ciągu  $(a_n)$ . Wszystkie podane współczynniki i początkowe wyrazy są całkowite, nieujemne i nie większe niż  $10^9$ .

## Wyjście

Dla każdego zestawu danych wypisz w osobnej linii trzy ostatnie cyfry liczby  $a_m$ . Jeśli liczba ta ma mniej niż trzy cyfry, uzupełnij ją zerami (na przykład **005** zamiast **5**).

## Przykład

| Dla danych wejściowych: | Poprawną odpowiedzią jest: |
|-------------------------|----------------------------|
|                         |                            |
| 4                       | 001                        |
| 2 1                     | 003                        |
| 1 1                     | 008                        |
| 2 1                     | 141                        |
| 2 3                     |                            |
| 1 1                     |                            |
| 2 1                     |                            |
| 2 5                     |                            |
| 1 1                     |                            |
| 2 1                     |                            |
| 2 40                    |                            |
| 1 1                     |                            |
| 2 1                     |                            |
|                         |                            |