## Example 6

As shown in the figure below, in  $\triangle ABC$ , AD = AB.AD is the angle bisector of  $\angle A$ .  $CM \perp AM$  at the extension of AD. Show that  $AM = \frac{1}{2}(AB + AC)$ . Solution:



```
Method 1:
```

Extend AM to E such that AM = ME.

AE = 2AM = AD + DE.

Now we prove that EC = DE.

Since AD is the angle bisector of  $\angle A, \angle BAD = \angle CAD = \alpha$ .

Since  $AC = CE, \angle CEA = \angle CAE = \alpha$ .

Since  $AB = AD, \angle ABD = \angle ADB = \beta$ .

We also know that  $\angle ADB = \angle CDE = \alpha$ . (vertical angles).

Thus  $\angle ECD = \angle EDC = \beta$ . So EC = DE.

 $2AM = AD + DE = AD + EC \Rightarrow AM = \frac{1}{2}(AB + AC).$ 



Method 2: Extend CM to E to meet the extension of AB at E. So AE = AC. Draw MN//EA to meet BC at N. Since AD is the angle bisector of  $\angle A$ , AM is the angle bisector of  $\angle A$ . So  $\angle EAM = \angle CAM = \alpha \cdot AE = AC$ 



Since MN//EA,  $\angle BAD = \angle NMD = \alpha$ . Since AB = AD,  $\angle ABD = \angle ADB = \beta$ . We also know that M is the midpoint of CE.MN//EB, so  $MN = \frac{1}{2}BE$ . In  $\triangle MDN$ ,  $\angle NMD = \alpha$ ,  $\angle NDM = \beta$ . So  $\angle MND = \beta$ . Thus MN = DM.  $AM = AD + DM = AB + MN = AB + \frac{1}{2}BE = AB + \frac{1}{2}(AE - AB) = AB + \frac{1}{2}(AC - AB) = \frac{1}{2}(AB + AC)$ .