Formulation

The goal is to express quantum mechanics in a new way with geometric algebra in order to get an understanding for space and spin.

The wavefunction can be expressed as

$$\Psi = \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

where e_i, f_i are orthonormal vectors which square to +1,

$$J=e_0f_0$$

is an independent bivector, and ψ_i are the complex valued components of the wave vector. In total there are 2n+2 orthonormal vectors for an n-dimensional original wave vector.

Alternatively, the bivector

$$\boxed{\Psi f_0 = rac{1}{\sqrt{2}} \sum_{i=1}^n \left((e_i f_0 + f_i e_0) \mathfrak{R} \psi_i + (e_i e_0 - f_i f_0) \mathfrak{I} \psi_i
ight)}$$

is a more natural choice, but for the derivation I will use the first version. The difference to other treatments of spin with geometric algebra is that here the basis is of the form ab+cd with 2 additional basis vectors, instead of $\sigma_{12}=e_1e_2$.

There is a possibility that the bivectors $e_i f_0$, $f_i e_i$, $e_i e_0$, $-f_i f_0$ are related to the Dirac matrices and they come into action when they do not share the same coefficient like here.

One advantage is that the full probability calculation becomes

$$P(1 o 2) = \langle \Psi_1 \Psi_1^\dagger \Psi_2 \Psi_2^\dagger
angle - 1$$

which can take the same rotor for $\Psi\Psi^{\dagger}$ and Ψ .

For a spin-1/2 particle coordinates will come out as

$$egin{aligned} J\Psi\Psi^\dagger &= J + N + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ N &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

where coordinates do not depend on e_0, f_0 . N belongs to Z somehow. Space rotations can be derived in this basis and the same rotor can be applied to Ψ too. They anti-commute and obey

$$XY = Z$$
 $YZ = X$ $ZX = Y$

which has been derived from the spin wave vector alone.

Observation in quantum mechanics

The probability $P = |\langle \psi_1 | \psi_2 \rangle|^2$ to measure a state ψ_1 in a state ψ_2 can be calculated from (see appendix)

$$egin{aligned} P(1
ightarrow2) &= \langle (1-\Psi_1\Psi_1^\dagger)(1-\Psi_2\Psi_2^\dagger)
angle \ &= \langle \Psi_1\Psi_1^\dagger\Psi_2\Psi_2^\dagger
angle -1 \ &= \Omega_1\cdot\Omega_2 -1 \end{aligned}$$

with the state vector

$$\Omega = J\Psi\Psi^\dagger$$

This is an inner product between two state multivectors. The observable state vector can be expanded into a state bivector

$$oxed{\Omega = J\Psi\Psi^\dagger \ = J + \sum_i e_i f_i \, |\psi_i|^2 + \sum_{i < j} (e_i f_j + e_j f_i) \, \mathfrak{R}(\psi_i \psi_j^*) - \sum_{i < j} (e_i e_j + f_i f_j) \, \mathfrak{I}(\psi_i \psi_j^*)}$$

(see appendix) for an easier translation from the usual representation with a complex wave vector ψ_i . Note that J appears only once at the front.

Unitary transformation

A unitary transformation of the wavefunction can be represented as a rotor in geometric algebra. Note that the same rotor can be applied to Ψ or $\Psi\Psi^{\dagger}$.

State vector of a single spin

The wavefunction for a single spin-up in a direction given by Euler angles θ,ϕ is usually written as

$$\psi = egin{pmatrix} \cosrac{ heta}{2} \ \sinrac{ heta}{2}e^{i\phi} \end{pmatrix}$$

up to an arbitrary phase.

The state vector written in geometric algebra then is

$$\begin{split} \Omega &= J\Psi \Psi^{\dagger} \\ &= J + \sum_{i} e_{i}f_{i} \left| \psi_{i} \right|^{2} + \sum_{i < j} (e_{i}f_{j} + e_{j}f_{i}) \, \Re(\psi_{i}\psi_{j}^{*}) - \sum_{i < j} (e_{i}e_{j} + f_{i}f_{j}) \, \Im(\psi_{i}\psi_{j}^{*}) \\ &= J + e_{1}f_{1} \cos^{2}\frac{\theta}{2} + e_{2}f_{2} \sin^{2}\frac{\theta}{2} \\ &\quad + (e_{1}f_{2} + e_{2}f_{1}) \cos\frac{\theta}{2} \sin\frac{\theta}{2} \cos\phi \\ &\quad + (e_{1}e_{2} + f_{1}f_{2}) \cos\frac{\theta}{2} \sin\frac{\theta}{2} \sin\phi \\ &= J + e_{1}f_{1}\frac{1 - \cos\theta}{2} + e_{2}f_{2}\frac{1 + \cos\theta}{2} \\ &\quad + (e_{1}f_{2} + e_{2}f_{1})\frac{1}{2} \sin\theta \cos\phi \\ &\quad + (e_{1}e_{2} + f_{1}f_{2})\frac{1}{2} \sin\theta \sin\phi \\ &= J + \frac{1}{2}(e_{1}f_{1} + e_{2}f_{2}) \\ &\quad + \frac{1}{2}(e_{2}f_{2} - e_{1}f_{1}) \cos\theta \\ &\quad + \frac{1}{2}(e_{1}f_{2} + e_{2}f_{1}) \sin\theta \cos\phi \\ &\quad + \frac{1}{2}(e_{1}e_{2} + f_{1}f_{2}) \sin\theta \sin\phi \end{split}$$

Remembering that we have Euler angles, we can identify the multivectors for space coordinates from this expression for a single spin

$$egin{aligned} J\Psi\Psi^\dagger &= J + N + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ N &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

Space rotations will be derived soon, but from XY=Z we can already see the rotation.

Interpretation

A vague idea why quantum mechanics is this way, is because due to the rules of probability, a state should be a (multi)vector and probabilities be calculated from an inner product. The probabilities rules are that they should sum to 1 and redoing a measurement yields the same results.

This state is constantly being rotated looking like $\Omega = \cdots R_3 R_2 R_1 \Omega_0 R_1^{\dagger} R_2^{\dagger} R_3^{\dagger} \cdots$ and for some reason we get, that actually Ω should split into $\Omega = \Psi \Psi^{\dagger}$ - as if all particles start with the same state Ω_0 .

 Ψ has only roughly the square root number of element from the observable $\Omega.$

Other ideas

Looking at

$$\Psi f_0 = rac{1}{\sqrt{2}} \sum_{i=1}^n \left((e_i f_0 + f_i e_0) \mathfrak{R} \psi_i + (e_i e_0 - f_i f_0) \mathfrak{I} \psi_i
ight)$$

one may also consider what happens if the terms $e_if_0,f_ie_0,e_ie_0,f_if_0$ have independent coefficients. Maybe this is related to Dirac matrices like

$$\Psi f_0 = rac{1}{\sqrt{2}} \sum_{i=1}^n \left(e_i f_0 \psi_i^{(1)} + f_i e_0 \psi_i^{(2)} + e_i e_0 \psi_i^{(3)} - f_i f_0 \psi_i^{(4)}
ight)$$

but I have not checked that yet. Basically, the system is that all basis vectors are combined with e_0 and f_0 .

Multiple spins

For multiple spins one could take the wavefunction of dimension $n=2^k$ and apply the above procedure. However, it may also be insightful to generate a new wavefunction from multiplying two single spin wave functions

$$\Psi = \sum_{\substack{i=1,2 \ i=3,4}} rac{1}{\sqrt{2}} (e_i + J f_i) \left(\mathfrak{R} \psi_i^{(1)} + J \, \mathfrak{I} \psi_i^{(1)}
ight) rac{1}{\sqrt{2}} (e_j + J f_j) \left(\mathfrak{R} \psi_j^{(2)} + J \, \mathfrak{I} \psi_j^{(2)}
ight)$$

This is for independent spins. For entangled spins, the cross-terms will have separate coefficients.

Appendix

Derivation

$$\Psi = \sum_i rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

With $z_i=\Re\psi_i+J\,\Im\psi_i$

$$egin{aligned} \Psi \Psi^\dagger &= rac{1}{2} \sum_{ij} (e_i + J f_i) z_i z_j^\dagger (e_j - J f_j) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left((e_i + J f_i) (e_j - J f_j) z_i z_j^\dagger + (e_j + J f_j) (e_i - J f_i) z_j z_i^\dagger
ight) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J \right) z_i z_j^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_j e_i + f_j f_i - (e_j f_i + e_i f_j) J \right) z_j z_i^\dagger \end{aligned}$$

With the real and imaginary parts

$$egin{aligned} R_{ij} &= rac{1}{2}(z_iz_j^\dagger + z_jz_i^\dagger) \ JI_{ij} &= rac{1}{2}(z_iz_j^\dagger - z_jz_i^\dagger) \ z_iz_j^\dagger &= R_{ij} + J\,I_{ij} \ z_jz_i^\dagger &= R_{ij} - J\,I_{ij} \end{aligned}$$

where R_{ij}, I_{ij} are scalars this becomes

$$egin{aligned} \Psi \Psi^\dagger &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} + J \, I_{ij}) \ &+ rac{1}{2} \sum_{i < j} \left(-e_i e_j - f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} - J \, I_{ij}) \ &= \sum_i z_i z_i^\dagger - \sum_i e_i f_i J z_i z_i^\dagger \ &- \sum_{i < j} (e_i f_j + e_j f_i) J R_{ij} \ &+ \sum_{i < j} (e_i e_j + f_i f_j) J \, I_{ij} \end{aligned}$$

For normalized wave vectors

$$\sum_i z_i z_i^\dagger = 1$$

Therefore

$$J\Psi\Psi^\dagger = J + \sum_i e_i f_i z_i z_i^\dagger + \sum_{i < j} (e_i f_j + e_j f_i) R_{ij} - \sum_{i < j} (e_i e_j + f_i f_j) \, I_{ij}$$

is a grade-2 multivector.

The probability in quantum mechanics can be calculated from the dot product of two real vectors where states have the components

$$(\psi_i\psi_i^*,\ldots,\sqrt{2}\Re(\psi_i\psi_i^*),\ldots,\sqrt{2}\Im(\psi_i\psi_i^*),\ldots)$$

due to

$$egin{aligned} P(\psi
ightarrow \phi) &= |\langle \psi | \phi
angle|^2 \ &= \sum_i \psi_i \phi_i^* \sum_j \phi_j \psi_j^* \ &= \sum_i \psi_i \phi_i^* \phi_i \psi_i^* + \sum_{i < j} \left(\psi_i \phi_i^* \phi_j \psi_j^* + \psi_j \phi_j^* \phi_i \psi_i^*
ight) \ &= \sum_i \psi_i \psi_i^* \phi_i \phi_i^* + \sum_{i < j} 2 \mathfrak{R}(\psi_i \psi_j^* \phi_i^* \phi_j) \ &= \sum_i \psi_i \psi_i^* \phi_i \phi_i^* + \sum_{i < j} 2 \left(\mathfrak{R}(\psi_i \psi_j^*) \mathfrak{R}(\phi_i \phi_j^*) + \mathfrak{I}(\psi_i \psi_j^*) \mathfrak{I}(\phi_i \phi_j^*)
ight) \end{aligned}$$

being a dot product of vectors with components $\psi_i \psi_i^*, \sqrt{2} \psi_i \psi_j^* (i < j)$.

Therefore in our case and for normalized wave vectors the probability can also be calculated from

$$P(1 o 2) = \langle (1-\Psi_1\Psi_1^\dagger)(1-\Psi_2\Psi_2^\dagger)
angle = \langle \Psi_1\Psi_1^\dagger\Psi_2\Psi_2^\dagger
angle - 1$$

Relations between single spin vectors

$$XY = Z \qquad YZ = X \qquad ZX = Y \ XN = 0 \qquad YN = 0 \qquad ZN = 0$$
 $\Pi = e_1 f_1 e_2 f_2 \ XX = -rac{1}{2}(1+\Pi) \ YY = -rac{1}{2}(1+\Pi) \ ZZ = -rac{1}{2}(1+\Pi) \ NN = -rac{1}{2}(1-\Pi)$

Wave vector basis

$$egin{aligned} \Psi &= \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i) \ &= \sum_{i=1}^n \Lambda_i \, (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i) \end{aligned}$$

with

$$egin{aligned} \Lambda_i &= rac{1}{\sqrt{2}}(e_i + Jf_i) \ X_{ij} &= rac{1}{2}(e_i f_j + e_j f_i) & ilde{X}_{ij} &= rac{1}{2}(e_i f_j - e_j f_i) \ Y_{ij} &= rac{1}{2}(e_i e_j + f_i f_j) & ilde{Y}_{ij} &= rac{1}{2}(e_i e_j - f_i f_j) \ Z_{ij} &= rac{1}{2}(e_j f_j - e_i f_i) & ilde{Z}_{ij} &= rac{1}{2}(e_j f_j + e_i f_i) \ T_{ij} &= rac{1}{2}(e_i f_i + e_j f_j) & ilde{T}_{ij} &= rac{1}{2}(e_i f_i - e_j f_j) \ e_i f_i &= T_{ij} - Z_{ij} &= ilde{T}_{ij} + ilde{Z}_{ij} \ e_j f_j &= T_{ij} + Z_{ij} &= ilde{T}_{ij} - ilde{Z}_{ij} \end{aligned}$$

Neither of these ab + cd terms has an inverse.

$$egin{aligned} \Lambda_i^2 &= 0 & \Lambda_i \Lambda_i^\dagger = 1 - J (T_{ij} - Z_{ij}) \ \Lambda_i \Lambda_j &= & & e_1 f_1 = T - Z \ e_2 f_2 &= T + Z \ TT + XX &= -1 \end{aligned}$$