TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4512BP, TC4512BF, TC4512BFN

TC4512B 8 - CHANNEL DATA SELECTOR

TC4512B is data selector which selects 8 channel data inputs (X0 through×7) according to binary address inputs A, B and C. Since high impedance can be given to output Z by setting DISABLE input to "H", the wired-OR arrangement can be achieved. DISABLE input takes precedence over other inputs giving the output high impedance.

If DISABLE="L" and INHIBIT="H", the data select operation is inhibited and output Z becomes "L" Level.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	V _{IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	I _{IN}	± 10	mA
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Temperature Range	T _{opr}	- 40∼8 5	°C
Storage Temperature Range	T _{stg}	− 65 ~150	°

TRUTH TABLE

	OUTPUT				
Α	В	С	INHIBIT	DISABLE	Z
L	L	L	L	L	X0
Н	L	L	L	L	X1
L	Н	L	L	L	X2
Н	Н	L	L	L	Х3
L	L	Н	L	L	X4
Н	L	Н	L	L	X5
L	Н	Н	L	L	X6
Н	Н	Н	L	L	X7
*	*	*	Н	L	L
*	*	*	*	Н	HZ

* : DON'T CARE HZ : HIGH IMPEDANCE (Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT

961001EBA2

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	V _{DD}		3	_	18	٧
Input Voltage	V _{IN}		0	_	V_{DD}	٧

STATIC ELECTRICAL CHARACTERISTICS ($V_{SS} = 0V$)

CHARACTERISTIC SYME		SYMBOL	TEST CONDITION	\ <u>/</u>	– 40°C		25°C			85°C		J _{UNIT}	
		STIVIBOL	L TEST CONDITION		MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.		
High-Level Output Voltage		V _{OH}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95	— —	4.95 9.95 14.95	5.00 10.00 15.00	_ _ _	4.95 9.95 14.95	_ _ _	,,	
Low-Level Output Voltage		V _{OL}	$\begin{aligned} I_{OUT} < 1\mu A \\ V_{IN} = V_{SS}, V_{DD} \end{aligned}$	5 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0.00 0.00 0.00	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	V	
Output High Current		Іон	$V_{OH} = 4.6V$ $V_{OH} = 2.5V$ $V_{OH} = 9.5V$ $V_{OH} = 13.5V$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	- 0.61 - 2.5 - 1.5 - 4.0	_ _ _ _	- 0.51 - 2.1 - 1.3 - 3.4	- 1.0 - 4.0 - 2.2 - 9.0	_ _ _ _	- 0.42 - 1.7 - 1.1 - 2.8	_ _ _ _	mA	
Output Low Current		I _{OL}	$V_{OL} = 0.4V$ $V_{OL} = 0.5V$ $V_{OL} = 1.5V$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	0.61 1.5 4.0	_ _ _	0.51 1.3 3.4	1.2 3.2 12.0	_ _ _	0.42 1.1 2.8	_ _ _		
Input High Voltage \		V _{IH}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25		3.5 7.0 11.0			
Input Low Voltage		V _{IL}	$V_{OUT} = 0.5V, \ 4.5V$ $V_{OUT} = 1.0V, \ 9.0V$ $V_{OUT} = 1.5V, \ 13.5V$ $\left \ I_{OUT} \right < 1\mu A$	5 10 15		1.5 3.0 4.0	_ _ _	2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V	
Input Current	"H"Level	I _{IH}	V _{IH} = 18V	18	_	0.1	_	10-5	0.1	_	1.0	μΑ	
	"L" Level	I _{IL}	V _{IL} = 0V	18	_	- 0.1	_	- 10 ⁻⁵	-0.1	_	- 1.0	μ A	
3-State Output Leakage Current	"H"Level	I _{DH}	V _{OH} = 18V	18	_	0.4	_	10-4	0.4	_	12	μΑ	
	"L" Level	I _{DL}	V _{OL} = 0V	18	_	-0.4	_	- 10 ⁻⁴	-0.4	_	- 12		
Quiescent Current	Supply	I _{DD}	$V_{IN} = V_{SS}, V_{DD} *$	5 10 15		5 10 20	_ _ _	0.005 0.010 0.015	5 10 20	_	150 300 600	μΑ	

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vss = 0V, $C_L = 50$ pF)

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time			5	_	80	200	
Output Transition Time	t _{TLH}		10	_	50	100	
(Low to High)			15	<u> </u>	40	80	
Output Transition Time			5		80	200	1
Output Transition Time	t _{THL}		10	_	50	100	
(High to Low)			15	_	40	80	
	_		5	_	140	280	
Propagation Delay Time (INHIBIT - Z)	t _{pLH}		10	_	60	140	
(INHIBIT - Z)	t _{pHL}		15	_	40	100	ns
Decreasing Dalay Time	_		5	_	240	400] '''
Propagation Delay Time (A, B, C - Z)	t _{pLH}		10	<u> </u>	95	170	
	t _{pHL}		15	<u> </u>	65	120	
Donas nation Dalay Time	_		5	_	210	360	
Propagation Delay Time	t _{pLH}		10	_	85	150	
(X - Z)	t _{pHL}		15	_	60	110	
Three State Disable Time (DISABLE - Z)			5	_	60	120	
	t_{pZL}, t_{pLZ}	$R_L = 1k\Omega$	10	_	25	60	
	t_{pHZ}, t_{pZH}		15	_	20	40	
Input Capacitance	C _{IN}		-	_	5	7.5	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS WAVEFORM 1 WAVEFORM 2(X = "H")20ns 20ns 20ns 20ns 90% 90% 90% 90% A, B, C **INHIBIT** 50% 50% 50% 50% 10% 10% 10% 10% $t_{\mathsf{TL} \overset{.}{\mathsf{H}}}$ t_{THL} 90% Ζ 90% 50% 50% 50% 50% 10% 10% t_{pLH} t_{pHL} $\mathsf{t}_{\mathsf{pHL}}$ t_{pLH} WAVEFORM 3 WAVEFORM 4 20ns 20ns 20ns 20ns 90% 90% 90% 90% Х **DISABLE** 50% 50% 50% 50% 10% 10% 10% 10% 90% Z Z 50% 50% 10% t_{pZL} t_{pLZ} 90% Z t_{pLH} $\mathsf{t}_{\mathsf{pHL}}$ 10% t_{pZH} $\mathsf{t}_{\mathsf{pHZ}}$

DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm

SOP 16PIN (150mil BODY) OUTLINE DRAWING (SOL16-P-150 -1.27)

Unit in mm

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.