Sistemas de Comunicación

- Comunicaciones Digitales -

- QAM -

Ph.D. Cristian Guarnizo Lemus

cristianguarnizo@itm.edu.co

Contenido

Probabilidad de error y Tasa de errores de Bits (BER)

Sentido Humano 1. Definiciones conceptuales

Probabilidad de error P(e): es la expectativa teórica que determinado sistema tenga una tasa de errores.

Tasas de errores de bits (BER): es un registro empírico (histórico) del funcionamiento real del sistema en cuanto a errores.

Sentido Humano 1. Definiciones conceptuales

Si un sistema tiene una P(e) de 10^{-5} quiere decir que en el pasado hubo un bit erróneo en cada 100.000 bits transmitidos.

Para evaluar el desempeño de un sistema se comparan la tasa de error de bits y la probabilidad esperada de error.

La potencia de la portadora se puede expresar en watts o en dBm, así

$$C_{\text{(dBm)}} = 10\log\left(\frac{C_{\text{(watts)}}}{0.001}\right)$$

La potencia del ruido térmico se describe con la ecuación

$$N = KTB$$
 (watts)

 $K = \text{constante de Boltzmann} (1.38 \times 10^{-23} \text{ Joules por kelvin})$

T = temperatura (kelvin)

K =ancho de banda (hertz)

En dBm

$$N_{(dBm)} = 10\log\left(\frac{KTB}{0.001}\right)$$

Innovación Tecnológica con Sentido Humano

1. Definiciones matemáticas

La ecuación de la relación de potencia de portadora a ruido es

$$\frac{C}{N} = \frac{C}{KTB}$$

C = potencia portadora (watts)

N =potencia de ruido (watts)

En dB

$$\frac{C}{N}(dB) = 10\log\left(\frac{C}{N}\right)$$
$$= C_{(dBm)} - N_{(dBm)}$$

La energía por bit se define

$$E_b = CT_b$$
 [J/bit]

 E_b = energía de un solo bit (joules por bit)

 T_b = tiempo de un solo bit (segundos)

C =potencia de la portadora (watts)

En dBJ

$$E_{b(\text{dBJ})} = 10\log(E_b)$$

La energía también se puede expresar

$$E_b = \frac{c}{f_b} [J/bit]$$

 f_b = frecuencia de bits.

En dBJ

$$E_{b(\text{dBJ})} = 10\log(C) - 10\log(f_b)$$

La densidad de potencia del ruido es la potencia del ruido normalizada a un ancho de banda de 1 Hz.

$$N_0 = \frac{N}{B}$$
 [W/Hz]

N= potencia del ruido térmico (watts)

B = Ancho de banda (hertz).

En dBm

$$N_{0(\text{dBm})} = 10\log\left(\frac{N}{0.001}\right) - 10\log(B)$$

Al combinar las ecuaciones se obtiene

$$N_0 = \frac{N}{B} = \frac{KTB}{B} = KT$$

En dBm

$$N_{0(\text{dBm})} = 10\log\left(\frac{K}{0.001}\right) + 10\log(T)$$

La relación de energía por bit a densidad de potencia de ruido se usa para comparar dos o mas sistemas digitales de modulación (FSK, PSK, QAM).

$$\frac{E_b}{N_0} = \frac{C/f_b}{N/B} = \frac{C}{N} \times \frac{B}{f_b}$$

 E_b/N_0 = relación de energía por bit a densidad de potencia C/N= relación de potencia de portadora a ruido B/f_b = relación de ancho de banda de ruido a frecuencia de bits

Expresada en dB

$$\frac{E_b}{N_0} (dB) = 10\log\left(\frac{C}{N}\right) + 10\log\left(\frac{B}{f_b}\right)$$
$$= 10\log(E_b) - 10\log(N_0)$$

Ejemplo (Tomasi, 12-2): Determinar, para un sistema QPSK y los parámetros dados:

- a) La potencia de portadora, en dBm.
- b) La potencia de ruido en dBm.
- c) La densidad de potencia de ruido, en dBm.
- d) La energía por bit, en dBJ.
- e) La relación de potencia de portador a ruido, en dB.
- f) La relación E_b/N_0 .

$$C = 10^{-12}$$
 [W], $N = 1.2 \times 10^{-14}$ [W], $f_b = 60$ kbps, $B = 120$ kHz

Ejemplo (Tomasi, 12-2): Determinar, para un sistema QPSK y los parámetros dados:

a) La potencia de portadora, en dBm.

$$C = 10\log\left(\frac{C}{0.001}\right) = 10\log\left(\frac{10^{-12}}{0.001}\right) = -90 \text{ dBm}$$

b) La potencia del ruido, en dBm.

$$N = 10\log\left(\frac{N}{0.001}\right) = 10\log\left(\frac{1.2 \times 10^{-14}}{0.001}\right) = -109.2 \text{ dBm}$$

Ejemplo (Tomasi, 12-2): Determinar, para un sistema QPSK y los parámetros dados:

c) La densidad de potencia de ruido, en dBm.

$$N_{0(\text{dBm})} = 10\log\left(\frac{N}{0.001}\right) - 10\log(B)$$

= -109.2 dBm - 10log(120k) = -160 dBm

d) La energía por bit.

$$E_b = 10\log\left(\frac{C}{f_b}\right) = 10\log\left(\frac{10^{-12}}{60\text{kbps}}\right) = -167.8 \text{ By so CER 464990}$$

Ejemplo (Tomasi, 12-2): Determinar, para un sistema QPSK y los parámetros dados:

e) La relación de potencias de portadora a ruido

$$\frac{C}{N} = 10\log\left(\frac{C}{N}\right) = 10\log\left(\frac{10^{-12}}{1.2 \times 10^{-14}}\right) = 19.2 \text{ dB}$$

f) La relación de energía por bit a densidad de ruido

$$\frac{E_b}{N_0} = 10\log\left(\frac{C}{N}\right) + 10\log\left(\frac{B}{f_b}\right) = 19.2 + 10\log\left(\frac{120\text{kHz}}{60\text{kbps}}\right) = 22.2 \text{ dB}$$

Los errores de bits se relacionan con la distancia entre los puntos de un diagrama de estado-espacio de señal. Para **BPSK**:

Para producir un error se requiere que el error del ruido sea 0 lógico 180° lo suficiente para general ángulo de ±90°.

En general, para los sistemas PSK, la fórmula general para los puntos umbral es (desplazamientos de fase)

$$TP = \pm \frac{\pi}{M}$$

La formula general para la máxima distancia entre puntos de señalización esta dada por

$$\sin(\theta) = \sin\left(\frac{360^{\circ}}{2M}\right) = \frac{d/2}{D}$$

d = distancia entre errores, D = máxima amplitud de la señal.

Despejando para d se obtiene

$$d = \left(2\sin\frac{180^{\circ}}{M}\right) \times D$$

Se puede observar que en QPSK solo se pueden tolerar desplazamientos de fase de $\pm 45^{\circ}$.

$$d = \left(2\sin\frac{180^{\circ}}{4}\right) \times D$$
$$= \left(2\sin(45^{\circ})\right) \times D$$
$$= \sqrt{2}D$$

Ejercicio: Cual es el desplazamiento máximo de fase en 8-PSK y 16-PSK. Cual es valor de la distancia entre errores.

$$d_{8PSK} = \left(2\sin\frac{180^{\circ}}{8}\right) \times D \qquad d_{16PSK} = \left(2\sin\frac{180^{\circ}}{16}\right) \times D$$

$$d_{8PSK} = (2\sin(22.5^{\circ})) \times D$$
 $d_{16PSK} = (2\sin(11.25^{\circ})) \times D$

La ecuación general de la probabilidad de error de bit, para un sistema PSK *M*-fásico es

$$P(e) = \frac{1}{\log_2(M)} \operatorname{erf}(z)$$

$$z = \sin(\pi/M)\sqrt{\log_2(M)}\sqrt{E_b/N_0}$$

Ejemplo (Tomasi, 12-13): Calcular el ancho mínimo de banda necesario para alcanzar una $P(e) = 10^{-7}$ para 8-PSK trabajando a 10Mbps con una relación de potencia de portadora a ruido de 11.7 dB.

A partir de la figura se observa que para lograr la P(e), se requiere una relación E_b/N_0 de 14.7dB.

Ejemplo (Tomasi, 12-13): Calcular el ancho mínimo de banda necesario para alcanzar una $P(e) = 10^{-7}$ para 8-PSK trabajando a 10Mbps con una relación de potencia de portadora a ruido de 11.7 dB.

$$\frac{E_b}{N_0}(dB) = 10\log\left(\frac{C}{N}\right) + 10\log\left(\frac{B}{f_b}\right)$$

$$10\log\left(\frac{B}{f_b}\right) = \frac{E_b}{N_0} \text{ (dB)} - 10\log\left(\frac{C}{N}\right)$$

Ejemplo (Tomasi, 12-13): Calcular el ancho mínimo de banda necesario para alcanzar una $P(e) = 10^{-7}$ para 8-PSK trabajando a 10Mbps con una relación de potencia de portadora a ruido de 11.7 dB.

$$\frac{B}{f_b}$$
(dB) = $\frac{E_b}{N_0}$ (dB) - $\frac{C}{N}$ (dB) = 14.7 - 11.7 = 3dB

$$\frac{B}{f_b} = 10^{(0.3)} = 2$$

$$B=2f_b=2\times 10\text{Mbps}=20\text{MHz}$$

Sentido Humano 3. Errores en QAM

Para sistemas M-arios mayores de 4, la QAM es mejor que la PSK. La ecuación general de la distancia entre puntos adyacentes de señalización para un sistema QAM con *L* niveles en cada eje es

$$d = \frac{\sqrt{2}}{L - 1} \times D$$

La ecuación general de la probabilidad de error de bit, en un sistema QAM de *L* niveles es

$$P(e) = \frac{1}{\log_2(L)} \left(\frac{L-1}{L}\right) \operatorname{erfc}(z)$$

$$z = \frac{\sqrt{\log_2(L)}}{L - 1} \sqrt{\frac{E_b}{N_0}}$$

TABLA 12-2 Comparación de presencia de errores en diversos esquemas de modulación digital (BER = 10^{-6} de probabilidad de error)

	Técnica de modulación	Relación C/N (dB)	Relación E_b/N_0 (dB)
_	BPSK	10.6	10.6
	QPSK	13.6	10.6
	4-QAM	13.6	10.6
	8-QAM	17.6	10.6
	8-PSK	18.5	14
	16-PSK	24.3	18.3
	16-QAM	20.5	14.5
	32-QAM	24.4	17.4
m	64-QAM	26.6	18.8

Sentido Humano 3. Errores en QAM

 E_b/N_0 (dB)

Ejemplo (Tomasi, 12-14): Cual sistema requiere la máxima relación E_b/N_0 para obtener una $P(e)=10^{-6}$, un sistema QAM de 4 niveles o uno 8-PSK?

Sentido Humano Errores en QAM

Ejemplo (Tomasi, 12-14): Cual sistema requiere la máxima relación E_b/N_0 para obtener una $P(e)=10^{-6}$, un sistema QAM de 4 niveles o uno 8-PSK?

Solución: De acuerdo a las figuras anteriores, para QAM de 4 niveles E_b/N_0 =10.6dB. Mientras que para 8-PSK, E_b/N_0 =14dB. Entonces para lograr una $P(e) = 10^{-6}$, un sistema QAM necesitaría la relación E_b/N_0 3.4dB menor.

Bibliografía

–TOMASÍ, Wayne. (2003) Sistemas de Comunicaciones Electrónicas. 4ª ed. Prentice Hall.

