4,75 out of 6 points

Week5

Qi'ao Chen 21210160025

March 30, 2022

Exercise 1. Show that $a_1, a_2, ...$ is not totally indiscenible + *Proof.* If $a_i = a_j$ and i < j, then since $a_i a_j \equiv a_m a_n$ for any m < n, $a_1, a_2, ...$ is a constant sequence. Because $a_1, a_2, ...$ is a non-constant indiscenible sequence, either $a_1 < a_2$ or $a_1 > a_2$. We may assume $a_1 < a_2$. Then $a_1 a_2 \not\equiv$ a_2a_1 since $x < y \in \operatorname{tp}(a_1a_2)$ but $x > y \in \operatorname{tp}(a_2a_1)$ Exercise 2. Show that $a_1 a_2 > 0$ *Proof.* If $a_i = 0$, then $x = 0 \in \operatorname{tp}(a_i)$. But since $a_i \equiv a_j$ for any $j, a_1, a_2, ...$ is 4 | a constant sequence, a contradiction. If $a_1 a_2 < 0$, then $a_2 a_3 < 0$ and so $a_1 a_2^2 a_3 > 0$ which implies $a_1 a_3 > 0$. But $a_1a_2 \equiv a_1a_3$, we get a contradiction. Hence $a_1a_2 > 0$ Exercise 3. Suppose $a_2 - a_1 \ge 1$. Show that $a_2 - a_1 \ge 7$ *Proof.* we have $a_8 - a_7 \ge 1, a_7 - a_6 \ge 1, \dots, a_2 - a_1 \ge 1$, and so $a_8 - a_1 \ge 7$. + 1 Hence $a_2 - a_1 \ge 7$ Exercise 4. Show that at least one of the following is true: $a_2 < (1.01) \cdot a_1$ or $a_2 > 200 \cdot a_1$ *Proof.* Assume $a_2 \ge (1.01) \cdot a_1$ and $a_2 \le 200 \cdot a_1$. Claim: $a_{2n} \ge (1.01)^{2n-1}a_1$ +0.75 If $a_{2n} \ge (1.01)^{2n-1}a_1$, then $a_{2n+2} \ge (1.01) \cdot a_{2n+1}$, $a_{2n+1} \ge (1.01) \cdot a_{2n}$, and so $a_{2n+2}a_{2n+1}a_{2n} \geq (1.01)^{2n+1}a_1a_{2n}a_{2n+1}$. Since $a_{2n+1}a_{2n} > 0$, $a_{2n+2} \geq 0$ Hence if we take N large enough, then $a_{2N} \geq (1.01)^{2N-1}a$ $\geq 200 \cdot a_1$. $q_1 \geq 0$? en by indiscernibility, $a_2 > 200 \cdot a_1$, a contradiction $(1.01)^{2n+1}a_1$. Then by indiscernibility, $a_2 > 200 \cdot a_1$, a contradiction

Exercise 5. Show that $a_i + a_j \neq a_k$ for any i, j, k

Proof. Without loss of generality, we may assume that $\{a_i,a_j,a_k\}=\{a_1,a_2,a_3\}$ in joint $\{a_i,a_j,a_k\}=\{a_1,a_2,a_3\}$ and $\{a_i,a_j,a_k\}=\{a_1,a_2,a_3\}$ or jet $\{a_1,a_2,a_3\}$ and $\{a_1,a_2,a_3\}$ or jet $\{a_1,a_2,a_3\}$ or jet $\{a_1,a_2,a_3\}$ or jet $\{a_1,a_2,a_3\}$ and $\{a_1,a_2,a_3\}$ or jet $\{a_1,a_2,a_3\}$ or jet

- 1. If $a_1+a_2=a_3$. Then $a_3-a_2=a_1$ and there is $q\in\mathbb{Q}$ s.t. $q\leq a_1<1+q$ what if $a_1>0$? where q>0. Then $a_3-a_2\geq q$. Take $N=\lceil\frac{1+q}{q}\rceil$, since $a_{N+2}-a_{N+1}\geq q$, $a_{N+1}-a_N\geq q$, a_1 , a_1 , a_2 , a_3 , a_2 , a_3 , a_4 ,
- 2. If $a_1 + a_3 = a_2$, take $a_2 a_1 = a_3$ and we can prove similarly

+()

3. If $a_2+a_3=a_1$. Then $a_2-a_1=-a_3$ and there $q\in\mathbb{Q}$ s.t. $-1-q<-a_3\leq -q$ where q>0. Similarly we can prove that $a_2-a_1<-a_3$.

Therefore $a_i + a_j \neq a_k$

Exercise 6. Show that there is an indiscenible sequence b_1,b_2,b_3,\dots s.t. $b_2>200\cdot b_1$

Proof. Let $(a_i:i\in\mathbb{N}\setminus\{0\})$ be an infinite sequence s.t. $a_i=201^i,\,i\in\mathbb{N}$. Then by Theorem 10 in the notes, there is an indiscenible sequence $(b_j:j\in\mathbb{N}\setminus\{0\})$ with $\operatorname{tp}^{EM}(\bar{b})\stackrel{\cong}{=}\operatorname{tp}^{EM}(\bar{a})$. Since in \bar{a} , for any $j>i,\,a_j>200\cdot a_i$, therefore $b_m>200\cdot b_n$ for any m>n. Particularly, $b_2>200\cdot b_1$. \Box