Applied Genome Research

De novo transcriptome assembly

205048 & 205049

Generates initial assembly of dominant isoforms

(https://github.com/trinityrnaseq/trinityrnaseq/wiki)

Constructs graph of common sequences and unique sequences of different isoforms

Resolves graph and reports separate isoforms (final assembly)

Assembly requires trimming of reads

- Why is trimming required?
 - Removal of adapters to avoid artificial joins
- Start trimmomatic in SE mode on the RNA-Seq read sets!

Running Trinity

```
$ Trinity \
--normalize_reads \
--seqType fq \
--max_memory 20G \
--single <INPUT>.fastq \
--CPU 6 \
--output <OUTPUT_DIRECTORY>
```

Trinity on cluster

```
1 #!/bin/bash
2 echo "Trinity \
3 --normalize reads \
4 --seqType fq \
5 -- max memory 10G \
6 --left 1 1P.fastq,2 1P.fastq \
7 --right 1 2P.fastq,2 2P.fastq \
8 --CPU 4 \
9 --output <SOME DIRECTORY>" \
10 | qsub \
11 - cwd \
12 -N iGEM trin \
13 -l vf=10G -l arch=lx-amd64 -l idle=1
14 -P fair share \
15 -pe multislot 20 \
16 -o output.txt \
17 -e error.txt
```

Components of Trinity

Boas Pucker

6

General analysis concept

Best practice workflow

- 1) Generate resource report:
 - trinityrnaseq-Trinity-v2.4.0/trinity-plugins/COLLECTL/examine_resource_usage_profiling.pl collect
- 2) Check assembly for full length transcripts => BLASTx vs. nr
- 3) Analyze tophit coverage
- 4) Check integrated hits via bowtie mapping against assembly
- 5) Calculate Nx stats e.g. Ex90N50 (N50 is not useful)
- 6) Run BUSCO to check assembly completeness
- 7) Run Interproscan to assign GO terms

Assembly evaluation – Nx for continuity quantification

Contigs are sorted by decreasing size.

Contigs sum up to 50% of total assembly size

Assembly evaluation – Ex90N50

Sorting contigs by expression and selecting all sequences that account for 90% of all expression

Contigs sum up to 50% of selected assembly fraction

Saturation of assembly size

BUSCO

- "quantitative measures for the assessment of genome assembly, gene set, and transcriptome completeness, based on evolutionarily-informed expectations of gene content from near-universal single-copy orthologs"
- https://busco.ezlab.org/
- Applications: assembly completeness assessment, estimation of heterozygosity, optimization of gene prediction, identification of paralogs, ...

Gene Ontology (GO) terms

- http://geneontology.org/
- Computational representation of biological knowledge
- Over 40k biological concepts
- Used for automatic annotation of predicted genes
- GO enrichment analyses (e.g. in RNA-Seq studies)

Construct GFF3

- One feature/entry in GFF3 file is created per sequence in FASTA file
- Length of sequences is used to determine start/end
- Running number is used to generate unique IDs

EXERCISE

- 1) Run 'contig_stats.py' on Trinity.fasta!
- 2) Use STAR to map all WT and 3xmyb reads to assembly!
- 3) Construct reference file for read counting via 'fasta2gff.py'!
- 4) Use featureCounts to get expression values! (feature type = mRNA)
- 5) Construct heatmap via 'construct_heatmap.py'! (see tipps)

Construct Heatmap

Add your own file paths and file names!

Run script like always: python construct_heatmap.py

EXERCISE

- Identify MYB11, MYB12, and MYB111 via BLAST!
- Is there expression different between samples?