Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron

Ziqing Hong

Dissertation Defense Oct. 13, 2015

Top forward–backward asymmetry: An exciting chase for new physics

- Hot topic at the Tevatron for years
- Will be glossing over the gory details and focusing on the measurement techniques, the data, and the interpretation of them

Table of contents for Top Asymmetry

- Introduction
 - The Standard Model and the Top Quark
 - $A_{FB}^{t\bar{t}}$: Smoking gun for new physics?
 - Searching for more evidence
- Tevatron and CDF
- $f tar t o {\sf dilepton}$
- $lack A_{\mathsf{FB}}^\ell$ in dilepton and combination at CDF
- **5** $A_{FB}^{t\bar{t}}$ in dilepton and combination at CDF
- \bullet Best-world understanding of top A_{FB}
- Conclusions

The Standard Model - Top Quark

Top Quark

- Observed at Tevatron (1995)
- Very heavy
 - $m_t \simeq 173 \; \mathrm{GeV/c^2}$
- Very short lived
 - No time to form hadrons
 - Decay immediately after production

Fascinating particle
Properties need to be further understood

Top-Quark Pair at the Fermilab **Tevatron**

- $p\bar{p}$ collision at Tevatron
 - Asymmetric initial state
 - pp collision at LHC
- Top quark (t) and top antiquark (\bar{t}) pair produced
 - 85% quark annihilation (a)
 15% gluon fusion (b)
 - LHC is gluon fusion dominated
- \sim 70,000 $t\bar{t}$ produced
- Tevatron sensitive to certain top properties

$t\bar{t}$ at Tevatron

- Cross-section, mass and width measured & agree with SM
- What else can we learn about $t\bar{t}$ produced at Tevatron?
- Angular distribution
- What direction do the top quarks go?

$A_{FB}^{t\bar{t}}$ at Tevatron

Angular distribution

$$y = \frac{1}{2} \ln \frac{E + \rho_z}{E - \rho_z}$$

$$\Delta y = y_t - y_{\bar{t}}$$

- Simplest observable: forward-backward asymmetry (A_{FB})
- Does top quark prefer proton direction or the opposite?
- Quantified by rapidity difference between t and \bar{t}
 - Δy 1-1 mapped to θ_t
 - Invariant under longitudinal boost
- Define A_{FB} of $t\bar{t}$ production:

$$A_{\mathsf{FB}}^{tar{t}} = rac{\mathcal{N}(\Delta y > 0) - \mathcal{N}(\Delta y < 0)}{\mathcal{N}(\Delta y > 0) + \mathcal{N}(\Delta y < 0)}$$

$A_{FB}^{t\bar{t}}$ at Tevatron

Angular distribution

$$y = \frac{1}{2} \ln \frac{E + \rho_z}{E - \rho_z}$$

$$\Delta y = y_t - y_{\bar{t}}$$

- Simplest observable: forward–backward asymmetry (A_{FB})
- Does top quark prefer proton direction or the opposite?
- Quantified by rapidity difference between t and \bar{t}
 - Δy 1-1 mapped to θ_t
 - Invariant under longitudinal boost
- Define A_{FB} of $t\bar{t}$ production:

$$A_{\mathsf{FB}}^{tar{t}} = \mathsf{P(top}{ o}) - \mathsf{P(}{\leftarrow}\mathsf{top})$$

Top A_{FB} : Why important?

- No net asymmetry in leading order diagram
 - Asymmetry only from higher order effects
- Slight asymmetry starting from next-to-leading order (NLO) effects
 - Interference among diagrams
- Larger-than-expected EW correction and higher order QCD corrections complicate the calculation
- Precision probe of SM predictions with large mass particles

What does the SM predict?

- Original prediction suggests an asymmetry of 0.05
- Different SM calculation gives different answers (0.050-0.125)
- ullet Benchmark NLO SM: $A_{
 m FB}^{tar t} = 0.088 \pm 0.006$ (PRD **86**,034026 (2012))
- Recent NNLO prediction: $A_{\rm FB}^{t\bar{t}}=0.095\pm0.007$ (PRL 115, 052001 (2015))
- aN³LO: $A_{\text{FB}}^{t\bar{t}} = 0.100 \pm 0.006 \leftarrow$ (PRD **91**, 071502 (2015)(R))
- SM calculation has been pushed forward by this measurement

$A_{FB}^{t\bar{t}}$ at Tevatron

Previous experimental results?

- CDF: $A_{\text{FB}}^{tt} = 0.164 \pm 0.047$ (Lep+jets, PRD **87**, 092002 (2013))
- D0: $A_{\text{FB}}^{t\bar{t}} = 0.106 \pm 0.030$ (Lep+jets, PRD **90**, 072011 (2014))

$$A_{\rm FB}^{tt} = 0.175 \pm 0.064$$

(Dilepton, PRD 92, 052007 (2015))

• Final result from CDF in tension with aN³LO SM calculation (0.100), with both results from D0 consistent with calculation

$t\overline{t}$ forward-backward asymmetry

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

Perhaps more important:

$$A_{\text{FB}}^{t\bar{t}}$$
 vs. Δy_t

- Characterized by a linear function
- Slope: 0.253 ± 0.062 (PRD **87**, 092002 (2012))
- 2.2 σ higher than NNLO SM prediction
 - Slope: 0.114^{+0.005}_{-0.012} (PRL **115**, 052001 (2015))

$A_{FB}^{t\bar{t}}$ at Tevatron

Anomalously large $A_{\mathsf{FB}}^{t\bar{t}}$ at Tevatron

• Calling for more accurate SM calculation?

Or

• Smoking gun for new physics?

$A_{\text{FB}}^{t\bar{t}}$ at Tevatron

Possible alternative hypotheses?

Models beyond the SM can predict large $A_{\sf FB}^{tar{t}}$

- Axigluons
- \bullet Flavor-changing Z' boson
- \bullet Beyond-SM W' boson
- Beyond-SM Higgs boson
- Extra dimensions
-

$A_{FB}^{t\bar{t}}$ at Tevatron

How to look for more evidence for/against new physics?

Pursue in two directions

- Measure A_{FB}^{tt} with more $t\bar{t}$ events in other final states
- Measure other related observables

- Top-Quark Pair Decay Modes
 How does the top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:

- Top-Quark Pair Decay Modes
 How does the top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$

- Top-Quark Pair Decay Modes
 How does the top quark decay?
- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton provides additional handle

Top-Quark Pair Decay Modes • How does the top quark decay?

- $t \rightarrow Wb$ almost 100% of time
- Three types of final states based on W decay mode:
 - All hadronic←Difficult channel
 - Large branching fraction
 - Hard to determine jet energy/charge
 - Hard to reconstruct $t\bar{t}$
 - Lepton+jets←Previous result
 - Decent branching fraction
 - Lepton provides additional handle
 - Dilepton ←Focus of this talk
 - Small branching fraction
 - Leptons precisely measured
 - Two ν 's, hard to reconstruct $t\bar{t}$

Additional $t\bar{t}$ events in dilepton

- Previous CDF measurement based on lepton+jets final state
- Can measure $A_{\text{FB}}^{t\bar{t}}$ in dilepton

- Independent dataset with extended detector coverage, different background constitution and estimation methods
- Need to reconstruct 4-momenta of $t\bar{t}$ \rightarrow Tough job in dilepton
- More on this later

Other observables?

- Besides $A_{\rm FB}^{t\bar{t}}$, two equally important observables with leptons
- Leptonic A_{FB}

$$\bullet \boxed{ A_{\mathsf{FB}}^{\ell} = \frac{\textit{N}(\textit{q}_{\ell} \eta_{\ell} > 0) - \textit{N}(\textit{q}_{\ell} \eta_{\ell} < 0)}{\textit{N}(\textit{q}_{\ell} \eta_{\ell} > 0) + \textit{N}(\textit{q}_{\ell} \eta_{\ell} < 0)} }$$

- Also lepton pair $A_{\rm FB}$ defined with lepton η difference, only in dilepton
 - Details in backup.
- Why consider A_{FR}^{ℓ} ?
 - Lepton angles precisely measured
 - Tend to follow direction of parent tops
 - Also carries top spin information

A_{FB}^ℓ at Tevatron

• Measurement of A_{FB}^ℓ in lepton+jets at CDF

$$A_{\rm FB}^{\ell} = 0.094^{+0.032}_{-0.029}$$
, PRD **88**, 072003 (2013)

- ullet 1.9 σ larger than NLO SM calculation of 0.038 \pm 0.003
- ullet Large $A_{\mathsf{FB}}^{tar{t}}$ holds in A_{FB}^ℓ in the same dataset

Today

New results presented today:

- Confirm or deny this anomalous large asymmetry ($A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$) with the dilepton final state
- What is the best-world-understanding of the A_{FB} results?

TEVATRON DEERO DEERO

Tevatron

- $p\bar{p}$ collider
- Center-of-mass energy 1.96 TeV
- Run II delivered 12fb⁻¹
- ullet Acquired $\sim 10 {
 m fb}^{-1}$ by CDF

CDF

- General purpose detector
 - 1.4 T magnetic field
 - Tracking, Calorimeter and Muon systems
- Coverage in $t\bar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - Muon : $|\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

$tar{t} ightarrow \mathsf{dilepton}$

- ullet $A_{\mathsf{FB}}^{tar{t}}$ and A_{FB}^{ℓ} measurement in lepton+jets: done
- ullet Go after the next important final state: tar t o dilepton

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

Two opposite charged leptons

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets -

• Need a sample enriched by $t\bar{t}$ events with dilepton signature:

- Two opposite charged leptons
- At least two jets
- Large $\not\in_{\mathcal{T}}$ (imbalanced $p_{\mathcal{T}}$)

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets
 - Large $\not\in_T$ (imbalanced p_T)
- Details of $t\bar{t}$ \rightarrow dilepton event selection criteria in the backups

Signal and background modeling

Signal modeling:

- Prediction with POWHEG MC (NLO SM w/ only QCD correction)
- Background modeling:
 - Diboson production (WW, WZ, ZZ, W γ) MC prediction
 - Z/γ^* +jets MC prediction with correction from data
 - W+jets Data-based
 - $t\bar{t}$ non-dilepton
 - Prediction with POWHEG MC

Source	Events
Diboson	31.4±5.9
$Z/\gamma^*+{\sf jets}$	50.5±6.2
W+jets fakes	64±17
$tar{t}$ non-dilepton	14.6±0.8
Total background	160±21
$tar{t}~(\sigma=7.4~{ m pb})$	408±19
Total SM expectation	568±40
Observed	569

Agreement is excellent (Maybe too good? Probably luck)

 A_{FB}^{ℓ} Methodology

ullet Start with A_{FB}^ℓ measurement

A_{FB}^ℓ Methodology

- ullet Benchmark models with $-0.06 < A_{ t FB}^{\ell} < 0.15$
- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - ullet No acceptance beyond $|q_\ell \eta_\ell| = 2$
- Need a clever way to measure the subtle difference

A_{FB}^{ℓ} Methodology

• Decomposition of $q_\ell \eta_\ell$ spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}{2}; \mathcal{A}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) - \mathcal{N}(-q_\ell\eta_\ell)}{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}$$

A_{FB}^{ℓ} Methodology

$$\mathcal{S}(q_\ell \eta_\ell) = rac{\mathcal{N}(q_\ell \eta_\ell) + \mathcal{N}(-q_\ell \eta_\ell)}{2}; \mathcal{A}(q_\ell \eta_\ell) = rac{\mathcal{N}(q_\ell \eta_\ell) - \mathcal{N}(-q_\ell \eta_\ell)}{\mathcal{N}(q_\ell \eta_\ell) + \mathcal{N}(-q_\ell \eta_\ell)}$$

- $S(q_{\ell}\eta_{\ell})$ consistent among models
- $\mathcal{A}(q_\ell \eta_\ell)$ sensitive to different $\mathcal{A}_{\mathsf{FB}}^\ell$
 - Well modeled with $a \cdot \tanh(\frac{1}{2}q_\ell\eta_\ell)$
- $A_{\sf FR}^\ell$ rewritten as

Validation summarized as PRD **90**, 014040 (2014) Hong, Edgar, Henry, Toback, Wilson, Amidei

$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\int_0^\infty \mathrm{d}q_\ell \eta_\ell \mathcal{A}(q_\ell \eta_\ell) \mathcal{S}(q_\ell \eta_\ell)}{\int_0^\infty \mathrm{d}q_\ell' \eta_\ell' \mathcal{S}(q_\ell' \eta_\ell')}$$

$\mathcal{A}_{\mathsf{FB}}^{\ell}$ Methodology with Detector Response

- ullet Detector response mostly cancels out in $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
 - Subtract off backgrounds
 - ullet Fit $\mathcal{A}(q_\ell\eta_\ell)$ with $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$
 - ullet Obtain $\mathcal{S}(q_\ell\eta_\ell)$ from POWHEG simulation at parton-level
 - ullet Calculate A_{FB}^ℓ with $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

A_{FB}^{ℓ} in dilepton

• Measure $A_{\rm FB}^{\ell}$ with CDF full dataset in dilepton (9.1 ${\rm fb}^{-1}$)

$$A_{\rm FB}^{\ell} = 0.072 \pm 0.060$$

Cf.
$$A_{FB}^{\ell}(SM,NLO) = 0.038 \pm 0.003$$

- Dominant uncertainty is statistical
- Table of systematics in backup
- ullet Combined A_{FB}^ℓ measurements at CDF with BLUE
- Result is 2σ larger than NLO SM prediction:

$$A_{\rm FB}^{\ell} = 0.090^{+0.028}_{-0.026}$$

• PRL **113**, 042001 (2014) (CDF)

 $A_{FB}^{\ell}(\%)$

 A_{FB}^ℓ in dilepton and CDF combination

• Conclusion: observed large $A_{\rm FB}^{\ell}$ in dilepton as well, continue pursuing $A_{\rm FB}^{t\bar{t}}$ measurement in dilepton

Next: measure $A_{FB}^{t\bar{t}}$ in dilepton

$t\bar{t}$ Momenta Reconstruction

- ullet Need to reconstruct the momenta of t and $ar{t}$
- Quadratic energy-momentum conservation equations
 - Two neutrino undetected, 6 unknown variables
 - 6 constraints $(2 m_W, 2 m_t, \vec{E}_T)$
 - Up to 4 solutions
- What makes it even more complicated
 - 2 lepton-jet pairings ($b \bar{b}$ ambiguity): 2 sets of solutions
 - Jet energy and #_T comes with large resolution Need to let them float within their uncertainties, 4 more variables
- Under-constrained system, 4-dimensional parameter space × 2 lepton-jet pairing choices

MCMC based full probability reconstruction

- 4-dimensional parameter space × 2 lepton-jet pairing choices
 - ullet Each point in the space represents a valid tar t pair
- A likelihood quantifies the "goodness" of a solution
 - \bullet How likely the measured leptons, jets, and $\not\!\!E_T$ originates from this $t\bar t$ pair
- Mapping out the full probability distribution of solutions using Markov-chain Monte Carlo
 - Bayesian Analysis Toolkit (<u>BAT</u>)
 (Comput. Phys. Commun. 180 (2009) 2197)
- Computationally intensive algorithm (2 mins/event)
 - Fully utilized the Brazos Cluster for over a month (brazos.tamu.edu, 3000 cores)
 - Special thanks to the Brazos team!

Reco. performance - Single event How well does the reconstruction do?

Powheg $t\bar{t}$ simulation

- Δy_t probability distribution from one (well-measured) event from simulation
- Two lep-jet pairings, multiple solution structure
- Use the full distribution in the measurement
 - It contains the maximum amount of information

Reco. performance - Δy resolution

How well does the reconstruction do?

- ullet 61% having Δy_t measured within 0.5 of truth value
- Need a sophisticated methodology to measure $A_{\rm FB}^{t\bar{t}}$ at the **parton level**
 - As if it were measured with the top quarks before they decay

$A_{\text{FB}}^{t\bar{t}}$ Measurement Methodology

- Need a measurement procedure for parton-level inclusive $A_{\text{FB}}^{t\bar{t}}$
 - So that results can be directly comparable to theoretical predictions
- Correct for two effects:
 - Not able to measure all events
 - Limited detector coverage
 - Imperfect event selection efficiency
 - Not able to measure Δy_t correctly for events we do have a measurement
 - Finite detector response resolution
 - Imperfect $t\bar{t}$ momenta reconstruction

$A_{\text{FR}}^{t\bar{t}}$ Measurement Methodology

• Use a Bayesian inference model

$$\exp[r] = \sum_{p=1}^{4} \operatorname{parton}[p] * \operatorname{Eff}[p](A_{\operatorname{FB}}^{t\bar{t}}) * \operatorname{Det}[p][r] + \operatorname{bkg}[r]$$

- Compare observed events with the expectation $\exp[r]$ with compound Poisson distribution
- Include two effects in the Bayesian model
 - \bullet ${\bf Smearing}$ caused by detector response and $t\bar{t}$ reco
 - Acceptance imposed by detector coverage and efficiency caused by object ID and event selection
- Find parton-level parton[p] matches data best
- Parton-level $A_{FR}^{t\bar{t}}$ obtained with parton p

Extract $A_{FB}^{t\bar{t}}$

- To extract parton-level A^{tt}_{FB}, run MCMC to find most probable parameters that match observation
- Extract $A_{\mathsf{FB}}^{t\bar{t}}$ from marginalized posterior distribution
- \bullet $Powhed sample with 10M events gives <math display="inline">0.053 \pm 0.013$ with 0.0524 generated

Methodology works!

Optimization

- Optimize before looking at data
 - Minimize the expected uncertainty on $A_{\text{FR}}^{t\bar{t}}$
- Two categories of actions done:
 - Use more information in the measurement
 - Keep full probability distributions than pick the most probable solution
 - Weight both lep-jet pairings with likelihoods
 - Add information from jet charge
 - Reject $t\bar{t}$ with low reconstruction quality
 - Jet energy dragged too far from measured values
 - m_{lb}^2 too high, not likely good top
 - Lepton lying on top of a jet
 - Signal efficiency of 95% with background rejection of 40%
- = <mark>0.144</mark> before optimization and <mark>0.114</mark> after Ziqing Hong (Texas A&M University

Bias test

- ullet Compare $A_{\mathsf{FB}}^{tar{t}}$ extracted with $A_{\mathsf{FB}}^{tar{t}}$ generated
- No bias with SM or SM-like samples (reweighted POWHEG)
- Don't anticipate measurement to work perfectly in BSM scenarios
 - ullet BSM scenarios calculated at LO, with known defects in $p_T^{tar{t}}$.

Data - Event yields

- Methodology vetted, now look at data
- Data event yield agrees with expected
- ullet Reconstructed Δy compared with POWHEG ($A_{\sf FB}^{tar t}=0.052$) shown below

CDF Run II Preliminary (9.1 ${\rm fb}^{-1}$)

Expected and observed events $(t\bar{t} \rightarrow l^+l^- + 2 \text{jets} + E_T)$

	(' 71)
	Source	Events
V	Diboson	26±5
	$Z/\gamma^*+{\sf jets}$	37±4
	$W+{\sf jets}$	28±9
	$tar{t}$ non-dilepton	5.3 ± 0.3
	Total background	96±18
	Signal $t\bar{t}$ ($\sigma=7.4~{ m pb}$)	386±18
	Total SM expectation	482±36
	Observed	495

$A_{\rm FB}^{t\bar{t}}$ from data

- Applied the measurement to dilepton data
- $m{A}_{\mathsf{FB}}^{tar{t}} = 0.12 \pm 0.11 (\mathsf{stat}) \pm 0.07 (\mathsf{syst}) \ m{A}_{\mathsf{FB}}^{tar{t}} = 0.12 \pm 0.13$
- Dominant uncertainty is statistical
- Table of systematics in backups
- Combined with CDF result in lepton+jets
- \bullet $A_{\sf FB}^{t\bar{t}}({\sf CDF}) = 0.160 \pm 0.045$
- Consistent with aN^3LO SM prediction $A_{\rm FB}^{t\bar{t}}=0.100\pm0.006$ within 1.5σ
- Manuscript in preparation, to be submitted to PRD

$$A_{\mathsf{FB}}^{t\bar{t}}$$
 vs. Δy_t

- Also extracted $A_{\mathsf{FB}}^{t\bar{t}}$ vs. Δy_t from dilepton data
- ullet Characterized by the slope lpha with zero intercept
- \bullet Combined all CDF measurements with a simultaneous fit for the slope α
- $_{ullet}$ $\alpha({
 m CDF})=0.277\pm0.057$, 2.0σ from NNLO SM CDF Run II Preliminary

Best-world understanding of top AFB

What is the best-world understanding of top A_{FB} ?

Final word on A_{FR} from Tevatron

All results consistent but higher than NLO (and NNLO)

SM predictions

Tevatron Top Asymmetry

Conclusions: Top A_{FB}

- The A_{FB} of top-pairs at the Tevatron has been a hot topic for years
- Measurements of $A_{\rm FB}^{t\bar{t}}$, $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\ell\ell}$ provide complementary handles to probe the production and decay of $t\bar{t}$
- ullet All Tevatron legacy top A_{FB} measurement done
- No clear sign of new physics, which is kind of disappointing
- Have been pushing top physics calculation to higher precision
- Either way it has been an exciting chase for new physics

Backup Slides

Backup slides

$tar{t} ightarrow {\sf dilepton}$ event selection criteria

Baseline Cuts		Exactly two leptons with $E_{\rm T}>20~{ m GeV}$ and passing standard identification requirements with following modifications				
		-COT radius exit $>$ 140 cm for CMIO				
		$-\chi^2/ndf < 2.3$ for muon tracks				
	Ŋ	At least one trigger lepton				
		At least one tight and isolated lepton				
	eline	At most one lepton can be loose and/or non-isolated				
	Base	$E_T > 25~{ m GeV}$, but $E_T > 50~{ m GeV}$ when there is any lepton or jet within 20° of the direction of $E_T = 10^{-5}$				
		MetSig (= $\frac{E_T}{\sqrt{E_T^{sym}}}$) > 4 $\sqrt{\rm GeV}$ for ee and $\mu\mu$ events where 76 ${\rm GeV/c^2}$ < ${\rm m_{ll}}$ < $106~{\rm GeV/c^2}$				
		$m_{ll} > 10~{ m GeV/c^2}$				
Signal		Two or more jets with $E_{ m T} > 15~{ m GeV}$ within $ \eta < 2.5$				
	igna Cuts	$H_T > 200 \text{ GeV}$				
	S C	Opposite sign of two leptons				

ДŔ

Validation

Agreement is excellent

Дk

Alternative Signal Modeling

- What does the η_ℓ spectra look like in various scenarios?
 - Test the measurement with both SM and BSM models
- Simulate $t\bar{t}$ in various $t\bar{t}$ production mechanisms
 - SM sample: PYTHIA/ALPGEN (LO) and POWHEG (NLO)
 - Benchmark BSM model w/ axigluon
 - Many more simulated and studied
- ullet Span large range of A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

Model	A_{FB}^ℓ (Parton Level)	$A_{FB}^{\ell\ell}$ (Parton Level)	De	scription
AxiL	-0.063(2)	-0.092(3)	Left-handed	Tree-level axigluon $\label{eq:mean_signal} \text{m} = 200~\mathrm{GeV/c^2}$
AxiR	0.151(2)	0.218(3)	Right-handed	
Axi0	0.050(2)	0.066(3)	Unpolarized	$\Gamma=50~{\rm GeV}$
ALPGEN	0.003(1)	0.003(2)	Tree-level	Standard Model
PYTHIA	0.000(1)	0.001(1)	LO Sta	ndard Model
POWHEG	0.024(1)	0.030(1)	NLO Standard Model	
Calculation	0.038(3)	0.048(4)	NLO SM (F	PRD 86 034026 (2012))

A_{FB}^ℓ at Tevatron

- NLO SM prediction: $A_{\rm FB}^{\ell} = 0.038 \pm 0.003$
 - Conventional renormalization scale $(\mu_R \sim m_t)$ w/ EWK corrections.
 - No NNLO calculation yet
- Prediction with new physics?
- ullet Based on CDF $A_{\rm FB}^{tt}$ result (0.16 \pm 0.05), assuming everything else SM-like:

$$0.070 < A_{\mathsf{FB}}^{\ell} < 0.076$$

- In new physics models, correlations between $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$ are model dependent
- Independent measurements of $A_{\text{FR}}^{t\bar{t}}$ and A_{FR}^{ℓ} are crucial

Example:

Axigluon model

$$(m = 200 \text{ GeV/c}^2, \Gamma = 50 \text{ GeV})$$

$$\rightarrow A_{\rm FB}^{tt} = 0.12$$

$$-0.06 < A_{\rm FB}^{\ell} < 0.15$$
 depending on handedness of couplings (PRD **87**,034039 (2013))

A_{FB}^ℓ Methodology - Introduction

- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - ullet No acceptance beyond $|q_\ell \eta_\ell| = 2$
- Need a clever way to measure the subtle difference

 A_{FB}^{ℓ} Methodology - Introduction

• Decomposition of $q_{\ell}\eta_{\ell}$ spectrum into symmetric and asymmetric components:

$$\mathcal{S}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}{2}; \mathcal{A}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) - \mathcal{N}(-q_\ell\eta_\ell)}{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}$$

 A_{FB}^{ℓ} Methodology - Introduction

- ullet $\mathcal{S}(q_\ell\eta_\ell)$ consistent among models
- $\mathcal{A}(q_\ell \eta_\ell)$ very different for different models
 - Sensitive to different values of A_{FB}^ℓ

Not well modelled for $q_\ell \eta_\ell > 2.5$

• $\mathcal{A}(q_\ell \eta_\ell)$ well modeled with $a \cdot \tanh(\frac{1}{2}q_\ell \eta_\ell)$

But contribution here is tiny

Detector only goes out to 2.0

Function empirically determined

$\mathcal{A}_{\mathsf{FB}}^\ell$ Measurement Methodology

• A_{FB}^ℓ rewritten as

$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\int_0^\infty \mathrm{d}q_\ell \eta_\ell \mathcal{A}(q_\ell \eta_\ell) \mathcal{S}(q_\ell \eta_\ell)}{\int_0^\infty \mathrm{d}q_\ell' \eta_\ell' \mathcal{S}(q_\ell' \eta_\ell')}$$

• $A_{\rm FB}^{\ell}$ measurement in lepton+jets based on this decomposition and $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ modeling

$$A_{\rm FB}^{\ell} = 0.094_{-0.029}^{+0.032}$$

 \bullet 1.9 σ larger than NLO SM

PRD 88 072003 (2013), CDF

A_{FB}^{ℓ} Methodology Study

Why does the $a \cdot \tanh$ model work so well?

• $q_\ell \eta_\ell$ spectrum actually well described by a double-Gaussian

• A_{FB}^{ℓ} comes from shift in mean

ightarrow A_{FB}^{ℓ} linearly related with mean in regime of interest

Next few pages summarized in PRD **90**, 014040 (2014) Z. Hong *et al.*

A_{FB}^{ℓ} Methodology Study

• Double-Gaussian does better job in modeling differential asymmetry in large $q_\ell \eta_\ell$ region

- ullet $\mathcal{A}(q_\ell\eta_\ell)$ most sensitive way to measure $\mathcal{A}_{\mathsf{FB}}^\ell$
 - Provides effective measure of mean
 - Acceptance of detector mostly cancels out

A_{FB}^{ℓ} Methodology Study

- Another way of looking at data: Differential contribution to A_{FB}^{ℓ}
- What do we learn?
 - $_{\bullet}$ Asymmetry mostly from $|\eta|<2.0$
 - Best detector coverages here
 - ullet $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$ is excellent for $|q_\ell\eta_\ell|<2.5$
 - Mismodeling in region with small contribution

- More than good enough
- \bullet Moving forward with $a \cdot tanh$ model with confidence

A_{FB}^{ℓ} Methodology - Introduction

• a · tanh model works well at parton level

• Does detector response affect the measurement?

A_{FB}^{ℓ} Methodology with Detector Response

- ullet Detector response mostly cancels out in $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
 - Subtract off backgrounds
 - ullet Fit $\mathcal{A}(q_\ell\eta_\ell)$ with $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$
 - ullet Obtain $\mathcal{S}(q_\ell\eta_\ell)$ from POWHEG simulation at parton-level
 - ullet Calculate A_{FB}^ℓ with $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

Backup Slides

Systematic uncertainty of A_{FB}^ℓ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value	
(A_{FB}^ℓ)		
Backgrounds	0.029	
Asymmetric Modeling	0.006	
Jet Energy Scale	0.004	
Symmetric Modeling	0.001	
Total Systematic	0.030	
Statistical	0.052	
Total Uncertainty	0.060	

A_{FB}^{ℓ} CDF combination

CDF Run II Preliminary

Source of uncertainty	$L+J (9.4fb^{-1})$	$DIL (9.1 fb^{-1})$	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
$_{ m JES}$	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	

 A_{FB}^ℓ

- The ratio of $A_{\rm FB}^{tt}/A_{\rm FB}^{\ell}$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05), this yields prediction of 0.070 < $A_{\rm FB}^{\ell}$ < 0.076

ДŘ

$$A_{\mathsf{FB}}^{\ell\ell}$$

Lepton pair A_{FB}

$$\bullet \hspace{0.5cm} A_{\mathsf{FB}}^{\ell\ell} = \frac{\mathit{N}(\Delta \eta > 0) - \mathit{N}(\Delta \eta < 0)}{\mathit{N}(\Delta \eta > 0) + \mathit{N}(\Delta \eta < 0)}$$

- $\begin{array}{c} \text{proton} \\ q \\ 00000 \\ \overline{q} \\$
- NLO SM prediction: $A_{\rm FR}^{\ell\ell} = 0.048 \pm 0.004$
- Larger expectations
- Only defined in dilepton, smaller statistics
- Provide extra information to help constraining new physics models

$A_{\mathsf{FB}}^{\ell\ell}$ in dilepton

- Measurement techniques works equally well for $A_{\rm FB}^{\ell\ell}$
- ullet Measure $A_{\mathsf{FB}}^{\ell\ell}$ with the same method

$$A_{\rm FB}^{\ell\ell} = 0.076 \pm 0.072 ({
m stat}) \pm 0.039 ({
m syst}) \ = 0.076 \pm 0.081$$

Cf.
$$A_{FB}^{\ell}(SM,NLO)=0.048\pm0.004$$

- Dominant uncertainty is statistical $\frac{\widehat{s}}{8}$
- Result consistent with SM
- PRL 113, 042001 (2014) (CDF)

 $\Delta \eta$

Backup Slides

Systematic uncertainty of $A_{\mathsf{FB}}^{\ell\ell}$ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value	
$(A_{FB}^{\ell\ell})$		
Backgrounds	0.037	
Asymmetric Modeling	0.012	
Jet Energy Scale	0.003	
Symmetric Modeling	0.004	
Total Systematic	0.039	
Statistical	0.072	
Total Uncertainty	0.082	

$t\bar{t}$ Reconstruction Equations

$$\begin{split} M_{l^{+}\nu}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu})^{2} = M_{W}^{2} \\ M_{l^{-}\bar{\nu}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}})^{2} = M_{W}^{2} \\ M_{l^{+}\nu b}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu} + \vec{p}_{b})^{2} = M_{t}^{2} \\ M_{l^{-}\bar{\nu}\bar{b}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^{2} = M_{t}^{2} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{x} &= (\not E_{T})_{x} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{y} &= (\not E_{T})_{y} \end{split}$$

tt Likelihood

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_b, E_{\bar{b}}) = & P(p_z^{t\bar{t}}) P(p_T^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{\text{jet1}}} \exp\left(-\frac{1}{2}\left(\frac{E_{\text{jet1}}^{\text{measure}} - E_{\text{jet1}}^{\text{fit}}}{\sigma_{\text{jet1}}}\right)\right) \times \frac{1}{\sigma_{\text{jet2}}} \exp\left(-\frac{1}{2}\left(\frac{E_{\text{jet2}}^{\text{measure}} - E_{\text{jet2}}^{\text{fit}}}{\sigma_{\text{jet2}}}\right)\right) \\ & \frac{1}{\sigma_x^{\not t}} \exp\left(-\frac{1}{2}\left(\frac{\not E_x^{\text{measure}} - \not E_x^{\text{fit}}}{\sigma_x^{\not t}}\right)\right) \times \frac{1}{\sigma_y^{\not t}} \exp\left(-\frac{1}{2}\left(\frac{\not E_y^{\text{measure}} - \not E_y^{\text{fit}}}{\sigma_y^{\not t}}\right)\right) \end{split}$$

Дk

$t\bar{t}$ Kinematic Reconstruction - Strategy

- Parametrize the system (within each lepton-jet pairing)
 with 4 parameters
 - 2 ϕ of the two neutrinos (in the rest frame of the corresponding lepton+jet) $(\phi_{1,2})$
 - 2 E_T deviations $(\frac{E_{
 m jet}^{
 m measure}-E_{
 m jet}^{
 m fit}}{\sigma_{
 m jet}})$ for two b-jets $({
 m jd}_{1,2})$
- Determine the kinematics of the whole event with the 4 parameters
- Each set of $(\phi_1, \ \phi_2, \ jd_1, \ jd_2)$ represents a possible solution to the event
- Assigning likelihood based on how reconstructed $E_T^{\rm jet}$ and $\not\!\!E_T$ matches measured ones
- Adding information from templates of $p_T^{t\bar{t}}$, $p_z^{t\bar{t}}$ and $M^{t\bar{t}}$

Samples with varying $A_{FB}^{t\bar{t}}$

PRL 111, 182002 (2013) Parametrize $\cos \theta^*$ with Legendre Polynomials

- Motivated by CDF measurement of differential cross section in terms of Legendre polynomials
- The excess of $A_{\rm FB}^{t\bar{t}}$ comes in with an excess in the linear coefficient (a_1)
- Reweight Powheg MC with various "excess" in a₁

Optimization - options

- Picking max-likelihood solution vs. using full probability
 - Full probability always provides better resolution
- Picking the more likely lepton-jet pairing according to likelihood or weight the two pairings
 - Two lepton-jet pairings (even, odd), max likelihood of each pairing $(L_{max,even}, L_{max,odd})$
 - Picking the larger L_{max} pairing, or weight both according to $w_{\rm even} = \frac{L_{max,even}}{L_{max,even} + L_{max,odd}}$, etc.
 - Weighting always gives better resolution
 - More tunable parameters
 - Peak of $jd_{1,2}$
 - Track-weighted jet charge
 - m_{lb}^2
 - ΔR_{\min} (lepton, jet)

$\sigma(\text{tot.})/\sigma(\text{sig.only})$	Pick L-J pairing	Weight both
Max-likelihood	0.144/0.133	0.137/0.126
Full probability	0.131/0.114	0.122/0.106

Optimization - II

Extra optimizations

- Reject low-quality lepton-jet pairings
 - \bullet Jet energy got dragged too far from measured values to make a $t\bar{t}$
 - m_{lb}^2 too high, not likely good top
 - Lepton lying on top of a jet, likely to be W+jets
- Reject events with both lepton-jet pairings rejected
 - Rejected a good fraction of backgrounds while keeping signal almost not affected
- Incorporate more information in weighting lepton-jet pairings
 - Track-momemtum-weighted jet charge

 $\sigma(A_{\sf FB}^{t\bar{t}}) = {f 0.144}$ before optimization and ${f 0.114}$ after

Table of uncertainties: Full set of results

CDF Run II Preliminary
$$(9.1 \text{ fb}^{-1})$$

$$(t\bar{t} \rightarrow l^+l^- + 2\text{jets} + \not\!\!E_T)$$
Source of uncertainty
$$A_{FB}^{t\bar{t}}$$
Value
$$A_{FB}^{t\bar{t}}$$
Statistical
$$0.11$$
Background
$$0.04$$
Parton Showering
$$0.03$$
Color reconnection
$$0.03$$

$$1/FSR$$

$$0.03$$
JES
$$0.02$$
Unfolding
$$0.02$$
PDF
$$0.01$$
Total systematic
$$0.07$$

- ullet $A_{\mathsf{FB}}^{tar{t}} = 0.12 \pm 0.11(\mathsf{stat}) \pm 0.07(\mathsf{syst}) = 0.12 \pm 0.13$
- Result is dominated by statistical uncertainty
- Dominant systematic is Background

Optimization - performance

ullet Δy resolution and detector response matrix after optimization

Final word on A_{FB} from Tevatron

- ullet Differential $A_{\rm FB}$ show mostly good agreement between CDF and D0
 - Some areas under study

Both experiments working to

- understand the differences

 Are the two experiments measuring the
 - same observables?Different techniques causing bias in either/both experiments?
 - Statistical fluctuation?

