ACTL3142 Week 5 - Generalised Linear Models

Tadhg Xu-Glassop 2025T2

Exponential Family

Exponential Family

A random variable Y comes from the *exponential family* if its density has the form,

$$f_Y(y) = \exp\left[\frac{y\theta - b(\theta)}{\psi} + c(y;\psi)\right].$$

 ψ is a scale factor while b and c specify the type of distribution. θ actually specifies scale/location of the resulting distribution.

Exponential Family

Exponential Family

A random variable Y comes from the *exponential family* if its density has the form,

$$f_Y(y) = \exp\left[\frac{y\theta - b(\theta)}{\psi} + c(y;\psi)\right].$$

 ψ is a scale factor while b and c specify the type of distribution. θ actually specifies scale/location of the resulting distribution.

We also have

$$\mathbb{E}[Y] = b'(\theta) = \mu;$$

$$Var(Y) = \psi b''(\theta) = V(\theta).$$

Generalised Linear Models

Generalised Linear Models

Assume $Y|X \sim G$, where G is in the exponential family. Then, assume $g(\mu_X) = \eta = \mathbf{x}_i \beta$. So,

$$g(\mu_X) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p.$$

 ${\it G}$ is the stochastic component, ${\it g}$ is the link function, and η is the systematic component.

If we take $g(\mu) := \theta(\mu)$, then g is said to be the 'canonical link.'

(Scaled) Deviance

Scaled Deviance Test for Nested Models

Let D_1 and D_2 be the scaled deviance of \mathcal{M}_1 with p predictors and \mathcal{M}_2 with p+q predictors. Then under the hypothesis,

$$\mathcal{H}_0: \beta_{p+1} = \beta_{p+2} \cdots = \beta_{p+q} = 0,$$

we have

$$D_1 - D_2 \sim \chi_q^2.$$

Under $\alpha = 5\%$, we have the critical value of χ_q^2 is 2q.

Pearson / Deviance Residuals

We can extend residuals from MLR to GLM's with Pearson / Deviance residuals. Specifically,

$$r_i^P = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}.$$

Note the *z*-score resemblance, and thus we expect the residuals to be approximately normal if our GLM is a good fit - very similar to what we're used to from MLR.

