Summary for Algebraic Topology II

Notes by Lin-Da Xiao

$2018~\mathrm{ETH}$

Contents

1	21th Feb: Tor functor	2
2	28th Feb:	2

1 21th Feb: Tor functor

Definition 1.1. Suppose A is an abelian group, A **Free resolution** is an exact sequence of the form

$$\cdots \longrightarrow F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} A \longrightarrow 0,$$

where each F_i is a free abelian group. If moreover $F_i = 0, \forall i \geq 2$, we call it **Short** free resolution

$$0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$$

(We can easily generalize this definition to R-modules)

Proposition 1.2. Let A be an abelian group. Then there exists a short free resolution of A.

Proof. Let F be the free abelian group generated by all elements in A. There is a surjection from F to A by linearly extending the map sending basis element to itself. Let K denote the kernel of this map. K is an abelian subgroup of a free abelian group (\mathbb{Z} -module). A subgroup of a free abelian group is torsion free as a module. \mathbb{Z} is a PID. If R is a PID, then an R-module is free iff it is torsion free (See Bosch section 4.2). Then we know in particular, K is a free abelian group.

With this construction, we can define the Tor functor now:

Definition 1.3. Let A be an abelian group. Let $0 \to K \xrightarrow{f} F \to A \to 0$ be a short free resolution of A. Given any other abelian group B, we define

$$Tor(A, B) := \ker(f \otimes id_B)$$

Tor(A,B)

This definition is independent on the choice of short free resolution.

2 28th Feb:

Question: Given X, Y what is the cohomology of $X \times Y$?

Answer:

$$H_n(X \times Y) \cong \bigoplus_{i+j=n} H_i(X) \otimes H_j(Y) + \bigoplus_{k+\ell=n-1} \operatorname{Tor}(H_k, (X), H_\ell(Y))$$

We will discuss Elenberg-Zilber theorem along this line the next lecture. Today, we will prove the Algebraic Kueneth Theorem 2 28TH FEB: 3

Definition 2.1. Suppose (C_{\bullet}, ∂) and $(C'_{\bullet}, \partial')$ are two non-negative chain complexes. We define the **tensor complex** $(C_{\bullet} \otimes C'_{\bullet}, \Delta)$, where

$$(C_{\bullet} \otimes C'_{\bullet})_n = \bigoplus_{i+j=n} C_i \otimes C'_j$$

and the differential Δ is defined by

$$\Delta(c_i \otimes c'_j) = \partial c_i \otimes c'_j + (-1)^i c_i \otimes \partial' c_j$$

First, note that $\Delta(c_i \otimes c'_j)$ does indeed belong to $(C_{\bullet} \otimes C'_{\bullet})_{n-1}$. The reason for $(-1)^i$ is to make $\Delta^2 = 0$. $C_{\bullet} \otimes C'_{\bullet}$ is another non-negative chain complex.

Definition 2.2. Suppose $f_{\bullet}: C_{\bullet} \longrightarrow D_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \longrightarrow D'_{\bullet}$ are two morphism of chain complexes. Then we can define a chain map

$$f \otimes g : C \otimes C' \longrightarrow D \otimes D'$$

by

$$(f \otimes g)_n = \sum_{i+j=n} f_i \otimes g_j$$

It is easy to check this is indeed a chain map.

Lemma 2.3. If $f': C \longrightarrow C'$ and $g': D \longrightarrow D'$ are two more chain maps with f homotopic to f' and g homotopic to g'. Then $f' \otimes g'$ is homotopic to $f \otimes g$.

Theorem 2.4. (Algebraic Kuenneth Theorem) Let (C, ∂) and (D, ∂') be two nonnegative free complex. Then for every $n \geq 0$, there is a split exact sequence

$$0 \longrightarrow \oplus_{i+j=n} H_i(C) \otimes H_j(D) \longrightarrow H_N(C \otimes D) \longrightarrow \oplus_{k+\ell=n-1} \ \textit{Tor}(H_k(C), H_\ell(D)) \longrightarrow 0$$

where ω is the map $\langle c_i \rangle \otimes \langle d_j \rangle \mapsto \langle c_i \otimes d_j \rangle$. Thus there also exists a (non-natural) isomorphism

$$H_n(C \times D) \cong \bigoplus_{i+j=n} H_i(C) \otimes H_j(D) + \bigoplus_{k+\ell=n-1} Tor(H_k, (C), H_\ell(D))$$

The proof requires two auxiliary results.

Proposition 2.5. Let $(E_{\bullet}, 0)$ be a non-negative chain complex with all differential zero and (D_{\bullet}, ∂) be any non-negative chain complex. Given $i \geq 0$, let D_{\bullet}^{i} denote the chain complex where $D_{n}^{i} = D_{n-i}$ and the boundary map

$$D_n^i \longrightarrow D_{n-1}^i$$

is just the map: $D_{n-i} \longrightarrow D_{n-i-1}$.

Then

$$H_n(E_{\bullet} \otimes D_{\bullet}) \cong \bigoplus_{i \geq 0} H_n(E_i \otimes D_{\bullet}^i)$$

2 28TH FEB: 4

Proof. (of the Proposition) Since E_{\bullet} has no differentials

$$\Delta(e_i \otimes d_{n-i}) = (-1)^i e_i \otimes \partial d_{n-i}$$

$$= (-1)^i (id_E \otimes \partial) [e_i \otimes d_{n-i}]$$

$$H_n(E_{\bullet} \otimes D_{\bullet}) = \frac{ker\Delta}{im\Delta}$$

$$= \bigoplus_{i \geq 0} \frac{ker(id_E \otimes \partial|_{D_{n-i}})}{im(id_E \otimes \partial|_{D_{n-i+1}})}$$

$$= \bigoplus_{i \geq 0} H_n(E_i \otimes D_{\bullet}^i)$$

Proof. (of Theorem) We will prove it in three steps:

Let's use the same notation as we did in the proof of the universal coefficient theorem. $B_n \subset Z_n \subset C_n$. $(Z_{\bullet},0)$ and $(B_{\bullet}^+,0)$ are chain complexes with no differentials, where $B_n^+ = B_{n-1}$. $(H_{\bullet},0)$ be the chain complex. $i: Z_n \hookrightarrow C_n$, $j: B_n \hookrightarrow Z_n, d: C_n \longrightarrow B_{n-1}$, where d is the just the differential ∂ of C_{\bullet} and we use p to denote the projection $Z_n \twoheadrightarrow H_n$. Then we have two short exact sequence of chain complexes

$$0 \longrightarrow Z_{\bullet} \xrightarrow{i_{\bullet}} C_{\bullet} \xrightarrow{D_{\bullet}} B_{\bullet}^{+} \longrightarrow 0$$
$$0 \longrightarrow B_{\bullet} \xrightarrow{j_{\bullet}} Z_{\bullet} \xrightarrow{p_{\bullet}} H_{\bullet} \longrightarrow 0.$$

We tensor it with D_{\bullet} .

$$0 \longrightarrow Z_{\bullet} \otimes D_{\bullet} \xrightarrow{i_{\bullet}} C_{\bullet} \otimes D_{\bullet} \xrightarrow{D_{\bullet}} B_{\bullet}^{+} \otimes D_{\bullet} \longrightarrow 0$$
$$0 \longrightarrow B_{\bullet} \otimes D_{\bullet} \xrightarrow{j_{\bullet}} Z_{\bullet} \otimes D_{\bullet} \xrightarrow{p_{\bullet}} H_{\bullet} \otimes D_{\bullet} \longrightarrow 0.$$

They are again short exact sequence of chain complexes because D is free Abelian group thus flat module.

$$0 \longrightarrow Z_n \xrightarrow{i} C_n \xrightarrow{d} B_{n-1} \longrightarrow 0$$

This sequence splits as B_{n-1} is free abelian. Thus \exists a map $r: C_n \longrightarrow Z_n$ such that $r|_{Z_n}$ is the identity $r_{\bullet}: C_{\bullet} \longrightarrow Z_{\bullet}$.

Denote by μ the composition $p \circ r : C_{\bullet} \longrightarrow H$.

2 28TH FEB: 5

Claim: μ is a chain map from $(C_{\bullet}, \partial) \longrightarrow (H_{\bullet}, 0)$. Take $c \in C_{n+1}$ and check it commutes

$$\mu \circ \partial c = \mu \partial c = p \circ r \partial c = \langle \partial c \rangle = 0$$

and $0 \circ \mu c = 0$

Step 2: Define $\varphi = H_n(\mu \otimes id)$. $H_n(C_{\bullet} \otimes D_{\bullet}) \longrightarrow H_n(H_{\bullet} \otimes D_{\bullet})$.

Claim: φ is an isomorphism.

It suffices to prove the diagram commutes and conclude by five lemma.

Step 3: We complete the proof

$$H_n(C_{\bullet} \otimes \otimes D_{\bullet}) \cong H_n(H_{\bullet} \otimes D_{\bullet})$$

$$\cong \bigoplus_{i>0} H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i)$$

By the universal coefficient theorem, there is a split exact sequence

$$0 \longrightarrow H_i(C_{\bullet}) \otimes H_n(D_{\bullet}^i) \longrightarrow H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i) \longrightarrow \operatorname{Tor}(H_i(C_{\bullet}), H_{n-1}(D_{\bullet}^i)) \longrightarrow 0$$

If we get rid of the notation D^i_{\bullet} .

$$0 \longrightarrow H_i(C_{\bullet}) \otimes H_n(D_{\bullet}^i) \longrightarrow H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i) \longrightarrow \operatorname{Tor}(H_i(C_{\bullet}), H_{n-1-i}(D_{\bullet})) \longrightarrow 0$$

Take the direct sum over i and use the fact that