

Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Departamento de Informática e Matemática Aplicada Bacharelado em Ciência da Computação

Geração de prosódia para o português brasileiro em sistemas *text-to-speech*

Felipe Cortez de Sá

Natal-RN Junho de 2018

Felipe Cortez de Sá

Geração de prosódia para o português brasileiro em sistemas text-to-speech

Monografia de Graduação apresentada ao Departamento de Informática e Matemática Aplicada do Centro de Ciências Exatas e da Terra da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do grau de bacharel em Ciência da Computação.

Orientador Carlos Augusto Prolo, doutor

Universidade Federal do Rio Grande do Norte – UFRN Departamento de Informática e Matemática Aplicada – DIMAP

Natal-RN Junho de 2018 Monografia de Graduação sob o título Geração de prosódia para o português brasileiro em sistemas text-to-speech apresentada por Felipe Cortez de Sá e aceita pelo Departamento de Informática e Matemática Aplicada do Centro de Ciências Exatas e da Terra da Universidade Federal do Rio Grande do Norte, sendo aprovada por todos os membros da banca examinadora abaixo especificada:

Professor Doutor Carlos Augusto Prolo Orientador Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte

Professor Doutor Antônio Carlos Gay Thomé Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte

Professora Doutora Erica Reviglio Iliovitz Departamento de Letras Universidade Federal do Rio Grande do Norte

Agradecimentos

Agradeço à minha família, a Antônia, a Marc, a Prolo e a todos os meus amigos e professores.

Some few people are born without any sense of time. As consequence, their sense of place becomes heightened to an excruciating degree. They lie in tall grass and are questioned by poets and painters from all over the world. These time-deaf are beseeched to describe the precise placement of trees in the spring, the shape of snow on the Alps, the angle of sun on a church, the position of rivers, the location of moss, the pattern of birds in a flock. Yet the time-deaf are unable to speak what they know. For speech needs a sequence of words, spoken in time.

Alan Lightman, Einstein's Dreams

Geração de prosódia para o português brasileiro em sistemas text-to-speech

Autor: Felipe Cortez de Sá

Orientador(a): Professor Doutor Carlos Augusto Prolo

RESUMO

Com a cada vez mais forte presença de smartphones e home assistants no cotidiano, grandes empresas de tecnologia vêm desenvolvendo sistemas de conversação baseados em fala, denominadas voice user interfaces. Apesar dos avanços, é perceptível que os sistemas de síntese de voz, especialmente para o português brasileiro, deixam a desejar quanto à naturalidade da fala gerada. Um dos fatores principais que contribuem para isso é a prosódia, isto é, entoação, ritmo e acento da fala. Este trabalho investiga sistemas textto-speech existentes através do estudo de seus algoritmos para síntese de voz e geração de prosódia para diversas línguas, com foco no português brasileiro. São explicitados os desafios encontrados, é feito um levantamento de modelos de análise prosódica na fonologia e propõem-se possíveis soluções para tornar a geração de voz mais próxima à humana.

Palavras-chave: text-to-speech, prosódia, voice user interfaces

Prosody generation for Brazilian Portuguese in text-to-speech systems

Author: Felipe Cortez de Sá

Advisor: Carlos Augusto Prolo, Ph.D.

ABSTRACT

With the evergrowing presence of smartphones and home assistants in our daily lives, technology companies have been developing two-way conversation systems, that is, voice user interfaces. Despite its recent improvements, text-to-speech programs still sound artificial, especially for their Brazilian Portuguese voices. A big contributing factor for that is the lack of accurate prosody, that is, pitch, length and emphasis. This thesis explores existing text-to-speech systems, especially those for which there are Brazilian Portuguese voices, focusing on their prosody generation modules. We highlight challenges of prosody generation, review prosodic analysis in the intonational phonology field and propose possible solutions for improving text-to-speech quality.

Keywords: text-to-speech, prosody, voice user interfaces

Lista de figuras

1	Arquitetura geral de sistemas TTS (adaptado de Dutoit (1997))	p. 19
2	Arquitetura do sistema desenvolvido	p. 29
3	Editor gráfico	p. 36

Lista de tabelas

Lista de Códigos

3.1	Exemplo de arquivo de entrada para MBROLA	p. 23
3.2	Exemplo de texto anotado com SSML	p. 25
3.3	Exemplo de texto anotado com Emotion M L com parâmetros discretos .	p. 25
3.4	Exemplo de texto anotado com SSML e Emotion ML (adaptado de (SCHRÖ-	
	DER; BURKHARDT, 2014))	p. 26
3.5	Anotações no modelo ToBI para o sistema TTS Festival	p. 26
4.1	Utilização do programa espeak e saída correspondente	p. 27
4.2	Linhas da tabela de conversão	p. 28
4.3	Utilização por linha de comandos	p. 30
A.1	Servidor	p. 35
A.2	Conversor eSpeakNG-MBROLA	p. 35
A.3	Editor gráfico	p. 39
A.4	Exemplo de resposta para $endpoint$ do eSpeakNG	p. 40
A.5	Exemplo de resposta para endroint do MBROLA	p. 41

Lista de abreviaturas e siglas

TTS - text-to-speech

INTSINT – International Transcription System for Intonation

HMM – Hidden Markov Model

SSML – Speech Synthesis Markup Language

XML – eXtensible Markup Language

W3C - World Wide Web Consortium

MBRPSOLA - Multi-Band Resynthesis Pitch Synchronous Overlap and Add

API - Application Programming Interface

JSON – JavaScript Object Notation

REST - Representational State Transfer

AJAX – Asynchronous JavaScript And XML

Lista de símbolos

```
f0 (frequência fundamental da fala)f0 (frequência fundamental da fala)ms (milissegundos)
```

Hz (Hertz)

Sumário

1	Intr	oduçã	o	p.
	1.1	Objeti	ivos	p.
	1.2	Organ	ização do trabalho	p.
2	Fun	.damer	ntação teórica	p.
	2.1	Prosó	dia	p.
		2.1.1	Componentes	p.
		2.1.2	Função prosódica	p.
			Afetiva	р.
			Suprassegmental	p
			Aumentativa	р
	2.2	Sistem	nas TTS	р
		2.2.1	Estrutura	р
		2.2.2	Front end	р
			2.2.2.1 Normalização de texto	р
			2.2.2.2 Conversão grafema-fone	р
			2.2.2.3 Geração de prosódia	р
		2.2.3	Back end	р
			Síntese articulatória	р
			Síntese por formantes	р
			Síntese concatenativa	р

3	Rev	risão da	a literatura	p. 22
	3.1	Sistem	nas TTS para o português brasileiro	p. 22
			Aiuruetê (BARBOSA et al., 1999)	p. 22
			eSpeakNG (DUNN, 2006)	p. 22
	Microsoft (BRAGA et al., 2008)	p. 22		
			(COUTO et al., 2010)	p. 22
			LianeTTS (SERPRO, 2011)	p. 23
			MBROLA	p. 23
			3.1.0.1 Formato	p. 23
		3.1.1	Modelos de análise entoacional	p. 24
			3.1.1.1 Teoria métrica-autossegmental	p. 24
			3.1.1.2 IPO	p. 24
			3.1.1.3 INTSINT	p. 24
			3.1.1.4 DaTo (Dynamic Tones)	p. 24
		3.1.2	Prosódia afetiva em sistemas TTS	p. 25
			3.1.2.1 SSML	p. 25
			3.1.2.2 EmotionML	p. 25
			3.1.2.3 Anotação manual	p. 26
4	Edi	tor do	prosódia	p. 27
-	4.1		mentação	р. 27 р. 27
	4.1	4.1.1	espeak-ng	р. 27 р. 27
		4.1.2	MBROLA	р. 27 р. 27
		4.1.3	INTSINT	р. 21 р. 28
		4.1.3	Arquitetura	р. 28 р. 28
			•	
		4.1.5	Módulo de prosódia	p. 29
		4.1.6	Endpoints	p. 29

[POST] /api/espeak	p. 29
[POST] /api/mbrola	p. 29
4.1.7 Editor gráfico	p. 29
4.1.8 Utilização	p. 30
5 Resultados	p. 31
6 Considerações finais	p. 32
6.1 Trabalhos futuros	p. 32
Referências	p. 33
Apêndice A - Primeiro apêndice	p. 35

1 Introdução

Interfaces humano-computador que utilizam a voz, denominadas voice user interfaces, antigamente vistas apenas na ficção científica, hoje são uma realidade e estão disponíveis em smartphones e ambientes desktop. De acordo com (DUTOIT, 1997; JURAFSKY; MARTIN, 2009), há uma grande área de aplicação para essas interfaces, como a acessibilidade, permitindo que deficientes visuais possam ouvir texto sem a necessidade de gravação prévia de seu conteúdo, ensino de linguagens e auxílio à pesquisa na linguística. Além disso, com o aumento da popularidade de sistemas embarcados, é importante investigar novas formas de interação humano-máquina, e a síntese de fala, juntamente com o reconhecimento, permitem comunicação de duas vias com esses sistemas.

Os serviços mais populares e robustos que temos atualmente são implementações proprietárias de grandes empresas, como Siri (Apple Inc., 2011), Cortana (Microsoft Corp., 2014) e Alexa (Amazon.com, Inc., 2014). Apesar da praticidade e ganho de acessibilidade providos por essas interfaces, os serviços disponíveis sintetizam voz com resultados perceptivelmente artificiais, principalmente para a língua portuguesa. Múltiplos trabalhos (HIRSCHBERG, 2006; RAJESWARI; UMA, 2012; TAYLOR, 2009) apontam como uma das maiores causas da artificialidade a prosódia empregada, isto é, o ritmo, entoação e acento da fala sintetizada.

1.1 Objetivos

Este trabalho tem como objetivo geral propor melhorias para o módulo de prosódia afetiva para sistemas TTS com suporte ao português brasileiro através de uma revisão da área da fonologia e estudo de estado da arte de sistemas TTS, com atenção especial a modelagem de prosódia suprassegmental e afetiva.

1.2 Organização do trabalho

No capítulo 2, são explicados em detalhes a arquitetura e funcionamento de sistemas TTS, destacando seus componentes principais e os algoritmos empregados em cada subsistema. Também é feita uma apresentação de conceitos da fonologia entoacional.

No capítulo 3, é feita uma revisão da literatura, realizando um levantamento dos sistemas text-to-speech existentes tanto para o inglês quanto para o português brasileiro e como a prosódia é modelada em cada um deles. Mostramos como trabalhos recentes abordam síntese de fala e apresentamos trabalhos existentes em análise de prosódia em um contexto não necessariamente computacional.

No capítulo 4, é descrito o sistema desenvolvido, justificando a abordagem com base na revisão da literatura. Explica-se a implementação do software, descrevendo sua arquitetura, as ferramentas e linguagens de programações utilizadas e o modo de utilização do programa.

No capítulo 5, apresentamos as conclusões feitas a partir da revisão bibliográfica e resultados obtidos com a implementação.

2 Fundamentação teórica

2.1 Prosódia

2.1.1 Componentes

Dutoit (1997) descreve como parâmetros principais da prosódia pitch, intensidade e duração. Outros nomes para os mesmos fenômenos também são utilizados. Moraes (1998) separa as características principais da prosódia em stress, accent e rhythm. Como eventos prosódicos estão alinhados a sílabas ou grupos de sílabas, a prosódia é dita um fenômeno suprassegmental. Além desses componentes principais, Taylor (2009) destaca downdrift (declinação), isto é, a queda gradual do valor de f0 durante um sintagma como aspecto relevante para a análise entoacional.

2.1.2 Função prosódica

Taylor (2009) argumenta que uma das dificuldades do desenvolvimento de um bom modelo de prosódia se deve à falta de consideração da função comunicativa da fala, isto é, comumente análises são feitas ignorando o contexto da intenção do locutor. Apresenta, então, três principais funções comunicativas para prosódia:

Afetiva Prosódia referente à emoção, estado mental e atitude do locutor.

Suprassegmental Quando uma mensagem é dita de maneira declarativa, sem conteúdo afetivo significante – descrita como discourse neutral –, ainda é possível observar variação de pitch, intensidade e duração. Na abordagem de Taylor (2009), essa parte da prosódia, dita suprassegmental, não é considerada conteúdo prosódico verdadeiro, mas sim um aspecto da fonética verbal. É possível ainda pensar em prosódia "real" como desvios dos parâmetros suprassegmentais.

Aumentativa Além da prosódia afetiva, é possível desviar da prosódia padrão para assegurar a comunicação efetiva de uma mensagem sem adicionar informação ao conteúdo do que está sendo dito. É usada, por exemplo, para enfatizar palavras, desambiguando uma mensagem que poderia ser interpretada de diferentes formas.

2.2 Sistemas TTS

Burnett e Shuang (2010) definem text-to-speech como "o processo de geração automática de fala a partir de texto ou texto anotado" (tradução nossa). São utilizados em leitores digitais, assistentes pessoais para smartphones e home assistants, aprendizagem de linguagens, entre outros.

Sistemas TTS são compostos por múltiplos subsistemas. Como veremos na seção 3.1, algumas implementações de TTS são modulares, permitindo desenvolvimento paralelo de cada componente individual. Isso possibilita que pesquisas possam investigar uma parte específica do sistema. Neste trabalho, por exemplo, estudamos especificamente o módulo de prosódia.

2.2.1 Estrutura

Na literatura, encontramos diversas arquiteturas específicas para um sistema TTS. Dutoit (1997) propõe uma arquitetura geral, dividindo os sistemas em duas partes principais:

Figura 1: Arquitetura geral de sistemas TTS (adaptado de Dutoit (1997))

É comum encontrar em outros trabalhos o termo $front\ end$ para o bloco de processamento de linguagem natural e $back\ end$ para o bloco de processamento digital de sinais. Doravante utilizaremos essa nomenclatura.

2.2.2 Front end

O front end de um sistema TTS é responsável pela conversão do texto em sua representação em fones juntamente com parâmetros prosódicos. Em outras palavras, o bloco é

responsável por determinar a pronúncia de cada palavra do texto, incluindo o contorno melódico e ritmo da fala. As definições seguintes são adaptadas de (JURAFSKY; MARTIN, 2009):

2.2.2.1 Normalização de texto

O processo de conversão de texto para fala começa com o processamento do texto a fim de gerar uma representação grafêmica. A primeira etapa da normalização é a separação em sintagmas, isto é, encontrar os limites de cada frase do texto. Frases que terminam com siglas ou abreviações podem dificultar o processo. Em "Encaminhamos o caso à deliberação de V. Exas. O prazo para resposta é de dez dias.", por exemplo, o ponto em "Exas." é final, não da abreviação.

Em seguida, devem-se transformar símbolos, abreviações, siglas e outras non-standard words em suas representações pronunciáveis. Como exemplo, "R\$ 50" deve ser lido como "cinquenta reais".

Por último, deve ser realizada a desambiguação de homônimos heterófonos: em "Gosto de pão", "gosto" pode ser pronunciada como "gôsto" ou "gósto".

2.2.2.2 Conversão grafema-fone

Com o texto normalizado, é preciso converter letras, isto é, grafemas, em uma representação pronunciável, ou seja, fones. Para isso, normalmente é composto um conjunto de regras letter-to-sound ou letra-som, contendo as pronúncias comuns para sequências de letras, juntamente a um dicionário de pronúncia com palavras que não seguem as regras. Para cada palavra, é feita uma busca no dicionário, e caso não seja encontrada, utilizam-se as regras.

2.2.2.3 Geração de prosódia

A partir do texto e fones gerados nas etapas anteriores, deve-se estimar *pitch*, intensidade e duração. Taylor (2009) explica que o desafio para implementação deste componente é que o texto praticamente não possui informação prosódica. Possíveis soluções para este problema são discutidas na seção 3.1.2.

2.2.3 Back end

Com o texto de entrada transformado em fones e informação prosódica, um *back end* é responsável por gerar uma forma de onda, ou seja, o áudio a ser reproduzido pelos alto-falantes. Jurafsky e Martin (2009), Taylor (2009) separam algoritmos de síntese em três classes:

Síntese articulatória Sintetizadores articulatórios sintetizam fala através de modelos matemáticos, aproximando o aparelho fonador por uma série de tubos abertos. Pequenas alterações nos parâmetros de entrada podem gerar uma grande variação de sons. Em contrapartida, é difícil encontrar uma correspondência entre o texto de entrada e os parâmetros necessários para o sintetizador.

Síntese por formantes — A fala, quando decomposta espectralmente através da transformada de Fourier, é majoritariamente composta por quatro senoides. A frequência mais baixa é dita frequência fundamental ou f0, emitida pela glote. As outras três senoides f1, f2 e f3 são chamadas formantes, e são geradas pela resonância do filtro resultante da posição da língua, queixo e lábio, alterando a intensidade de cada componente frequencial. A variação de intensidade de cada formante determina a vogal percebida. Sintetizadores por formantes são tentativas de modelagem da fala humana pela geração computacional dessas ondas. Apesar da simplicidade do modelo, além das senoides principais, há conteúdo harmônico significante no sinal de uma fala humana. Ao ignorar-se essa parte residual, a fala sintetizada é perceptivelmente robótica.

Síntese concatenativa Devido aos problemas destacados para as outras duas abordagens, a maioria dos sistemas hodiernos utilizam síntese concatenativa. Síntese concatenativa pode trabalhar com diferentes atomicidades: nível de palavra, dífonos e fones individuais.

3 Revisão da literatura

3.1 Sistemas TTS para o português brasileiro

Destacamos aqui sistemas TTS desenvolvidos por ordem cronológica a fim de evidenciar a evolução das tecnologias utilizadas e as tendências para trabalhos futuros.

Aiuruetê (BARBOSA et al., 1999) Desenvolvido com o objetivo de obter um sistema TTS com fala natural sem custo computacional elevado. Descartam síntese articulatória e formantes porque o custo seria muito alto, como descrito na seção 2.2.3, optando por uma solução concatenativa. Para a prosódia, a parte de *pitch* utiliza curvas f0 associadas a frases declarativas com declinação e as durações segmentais são obtidas por redes neurais treinadas a partir de parâmetros como número de vogais e clíticos.

eSpeakNG (DUNN, 2006) Projeto open-source com suporte a múltiplas linguagens. É modular, permitindo back end com síntese por formantes ou concatenativa. Também possibilita que seja utilizado apenas o front end, gerando representação no formato X-SAMPA (Extended Speech Assessment Methods Phonetic Alphabet). No seu módulo de prosódia, determina contorno f0 a partir de pontuação e tabela com regras para pre-head, head, nucleus e tail. As durações são fixas para fones diferentes e também são determinadas por uma tabela.

Microsoft (BRAGA et al., 2008) Desenvolvido pela Microsoft, realiza a marcação de ênfase e separação silábica utilizando um dicionário. Destaca-se por utilizar um corpus composto por 2000 sintagmas foneticamente anotados para determinar prosódia probabilisticamente.

(COUTO et al., 2010) Foi desenvolvido com base no framework MaryTTS um sistema completo para português brasileiro baseado em HMMs. O projeto iniciou com uma im-

plementação de um módulo de conversão grafema-fone LaPS-G2P (BARBOSA et al., 2003), tornando-se então um sistema completo (COUTO et al., 2010), e foi subsequentemente estendido por (COSTA et al., 2012) para funcionar de maneira *stand-alone*, isto é, ser utilizado sem necessidade de instalação do *framework* MaryTTS. A prosódia é gerada pelos parâmetros das cadeias de Markov, ou seja, determinada probabilisticamente a partir do corpus de treinamento.

LianeTTS (SERPRO, 2011) Projeto da SERPRO, o LianeTTS utiliza síntese concatenativa através do programa MBROLA. Assim como o eSpeakNG, os componentes são baseados em regras e tabelas. O cálculo de curva f0 é feito com base em parts-of-speech tagging, ou seja, atribuição de classes gramaticais a cada palavra do texto de entrada.

MBROLA é uma ferramenta para geração de voz baseada em síntese concatenativa por dífonos desenvolvida com o objetivo de fomentar pesquisas acadêmicas em geração de prosódia (DUTOIT et al., 1996). É utilizada como back-end para diversos sistemas TTS, como MaryTTS, Festival (CSTR, 2011) e eSpeakNG, e possui três vozes disponíveis para o português brasileiro.

```
_ 150 50 150
t 70 50 125
e 125 50 75
c 70 50 125
e 125 50 75
c 70 50 125
e 116 20 232 80 300
_ 150 50 150
```

Código 3.1: Exemplo de arquivo de entrada para MBROLA

3.1.0.1 Formato

Em cada linha, tem-se um fone ou um silêncio representado pelo *underscore* seguido por uma duração em milissegundos e, por último, um ou mais pares de porcentagem e frequência em Hertz determinando alvos para a curva f0. Como exemplo, na penúltima linha temos o fone e com duração de 116 ms e dois alvos para altura, 232 Hz em 20% e 300 Hz em 80%.

Cada voz gravada provê uma tabela com os fones que podem ser utilizados. Utilizamos neste trabalho a voz br3 desenvolvida por Denis R. Costa disponível no site oficial do

projeto MBROLA.

3.1.1 Modelos de análise entoacional

3.1.1.1 Teoria métrica-autossegmental

Utilizada por Moraes (2008) para analisar uma mesma frase com diferentes intenções.

3.1.1.2 IPO

Sistema proposto pela Escola Holandesa. Utilizada por Miranda (2015) para analisar a prosódia no português brasileiro.

3.1.1.3 INTSINT

Proposto por Hirst (1987) como um sistema de transcrição para entoação capaz de ser utilizado para analisar múltiplas línguas, com objetivo de criar uma representação equivalente ao IPA (*International Phonetic Alphabet*) para prosódia.

A entoação é anotada por três símbolos que definem frequências-alvo absolutas, Top (T), Mid (M) e Bottom (B), indicando respectivamente o limite superior, a base e o limite inferior para a frequência fundamental, três símbolos relativos à marcação anterior, Higher (H), Same (S) e Lower (L), e dois símbolos ditos iterativos, Upstepped (U) e Downstepped (D).

Além das anotações, utilizam-se dois parâmetros fixos key, definido em Hertz, e span, definido em oitavas.

A tabela 4.1.3 detalha como cada marcação é convertida para uma frequência em Hertz para determinação de curva f0.

Utilizada por Celeste e Reis (2012) e Moraes (1998) para analisar entoação para o português brasileiro.

3.1.1.4 DaTo (Dynamic Tones)

Apesar de o modelo ToBI para anotação entoacional ter sido utilizado para analisar o português brasileiro em diversos trabalhos, Lucente (2014) argumenta que há características perceptíveis que a notação não consegue expressar, propondo o modelo DaTo com base na entonação do português brasileiro.

3.1.2 Prosódia afetiva em sistemas TTS

3.1.2.1 SSML

A linguagem de marcação Speech Synthesis Markup Language foi criada motivada pela dificuldade de predição computacional de pronúncia (TAYLOR; ISARD, 1997). Quando originalmente proposta, diferentes sistemas TTS permitiam anotações extra-textuais para auxiliar a estimação de parâmetros, mas usuários tinham que aprender um sistema de anotação para cada programa diferente. A proposta da SSML é que os sistemas TTS recebam o texto anotado numa linguagem unificada. A linguagem foi adotada por soluções open-source como MaryTTS e espeak-ng, além dos sistemas proprietários encontrados em Alexa, Google Assistant e Cortana. A especificação é mantida pela W3C (BURNETT; SHUANG, 2010). e cita os elementos emphasis, break e prosody como marcadores que podem auxiliar o processador de linguagem natural a gerar parâmetros prosódicos apropriados.

```
<speak>
   Siga <emphasis level="strong">aquele</emphasis> carro.
</speak>
```

Código 3.2: Exemplo de texto anotado com SSML

3.1.2.2 EmotionML

EmotionML (SCHRÖDER; BURKHARDT, 2014) foi criada para várias coisas, uma delas é ajudar algoritmos a determinarem prosódia. (CHARFUELAN; STEINER, 2013) descreve um framework para implementação de determinação de prosódia a partir de anotações em EmotionML utilizando o framework MaryTTS.

Como explicitado por (TAYLOR, 2009), não há um acordo quanto ao sistema mais apropriado para representar emoções. A linguagem de marcação tem suporte a múltiplos sistemas descritivos, como categorias, dimensões, appraisals e action tendencies. As categorias podem receber valores discretos (como pode ser visto no código 3.3), determinando se uma emoção está presente ou valores contínuos, determinando a intensidade de uma emoção específica (como pode ser visto na figura 3.4), permitindo múltiplas categorias simultaneamente.

```
<emotionml version="1.0" xmlns="http://www.w3.org/2009/10/emotionml">
  <emotion category-set="http://www.w3.org/TR/emotion-voc/xml#everyday-categories">
  <emotion>
        <category name="happy" />
        Que bom te ver!
```

```
</emotion>
</emotionml>
```

Código 3.3: Exemplo de texto anotado com EmotionML com parâmetros discretos

Código 3.4: Exemplo de texto anotado com SSML e EmotionML (adaptado de (SCHRÖDER; BURKHARDT, 2014))

3.1.2.3 Anotação manual

Uma solução mais simples para geração de contornos f0 para prosódia efetiva é permitir que o usuário especifique na entrada do programa TTS marcações prosódicas utilizando um dos modelos de análise entoacional vistos anteriormente. Apesar de requerer conhecimento de fonologia, é uma opção viável enquanto não são desenvolvidos algoritmos para determinação de prosódia a partir de marcação emocional. O sistema Festival (CSTR, 2011) disponibiliza uma maneira de especificar entoação seguindo o modelo ToBI, como pode ser visto na tabela 3.5.

```
(Utterance Words
  (The
    (boy ((accent L*)))
    saw
    the
    (girl ((accent H*) (tone L-)))
    with
    the
    (telescope ((accent H*) (tone H-H%))))))
```

Código 3.5: Anotações no modelo ToBI para o sistema TTS Festival

4 Editor de prosódia

4.1 Implementação

4.1.1 espeak-ng

Foi utilizado o programa *open-source* espeak-ng (DUNN, 2006) para realizar a normalização de texto e realizar a conversão grafema-fone, ou seja, obter a partir do texto de entrada uma representação em fones. A saída gerada é passada para o programa desenvolvido neste trabalho através da biblioteca subprocess da linguagem Python. O comando utilizado para obter os grafemas pode ser visto no código 4.1.

- A flag -v seleciona uma voz. Neste caso, pt-br
- -x e -q escrevem fones na saída em vez da fala sintetizada
- -sep=/ separa fones utilizando o caractere /

```
$ espeak-ng -v pt-br 'Bom dia' -x -q --sep=/
$ b/'o/N dZ/'i/&
```

Código 4.1: Utilização do programa espeak e saída correspondente

Um fone precedido pelo caractere ' indica emphprimary stress.

Apesar da existência de outras ferramentas para front end para o português brasileiro, optamos por esta pela facilidade de instalação. O sistema TTS desenvolvido por Couto et al. (2010) não foi encontrado para download no começo do desenvolvimento deste trabalho.

4.1.2 MBROLA

Cada voz do MBROLA tem suporte a um conjunto específico de dífonos. O programa sampa_mbrola.py foi desenvolvido para converter a saída gerada em fones suportados pela

voz do MBROLA utilizada. O equivalente ao fone & gerado pelo espeak é a na voz do MBROLA, por exemplo. A ferramenta de conversão lê a tabela do arquivo sampa_mbrola.tbl, e substitui cada fone pelo equivalente corrigido. A tabela possui três colunas: o fone que o espeak produz, o fone equivalente para o MBROLA e um exemplo numa palavra do português. Em 4.2 é possível ver algumas linhas do arquivo.

```
& | a | v_a_le
6 | @ | tam_a_nho
n | n | _n_unca
```

Código 4.2: Linhas da tabela de conversão

As durações padrão para cada fone estão contidas na tabela do arquivo durations.tbl, adaptado da tabela utilizada pelo LianeTTS (SERPRO, 2011). Cada linha contém o fone e uma duração em milissegundos.

4.1.3 INTSINT

De acordo com (HIRST, 2007)

Tabela 1: Regras para INTSINT

Regra	Cálculo
Тор	$\text{key} \times \sqrt{2^{range}}$
Middle	key
Bottom	$\log \sqrt{2^{range}}$
Higher	$\sqrt{P_{i-1} \times T}$
Same	P_{i-1}
Lower	$\sqrt{P_{i-1} \times B}$
Upstepped	$\sqrt{P_{i-1} \times \sqrt{P_{i-1} \times T}}$
Downstepped	$\sqrt{P_{i-1} \times \sqrt{P_{i-1} \times B}}$

4.1.4 Arquitetura

Foi utilizada uma arquitetura cliente-servidor REST (FIELDING, 2000) comumente observada em aplicações web atuais. A interface gráfica consome uma API REST. A maneira como os módulos se comunicam pode ser vista na figura 2.

Figura 2: Arquitetura do sistema desenvolvido

4.1.5 Módulo de prosódia

O programa foi codificado em Python em sua versão 3.6. Pega resultado do espeak-ng, processa com editor gráfico e gera MBROLA.

Para alterar a prosódia manualmente, foi desenvolvido um editor gráfico para web utilizando HTML, CSS e JavaScript. A duração e altura de cada fone pode ser especificado arrastando barras de controle. O editor se comunica com o espeak-ng e MBROLA através de um servidor programado em Python utilizando o framework Flask para prover endpoints de uma API REST.

4.1.6 Endpoints

Foram criados dois *endpoints* para a API, possibilitando a comunicação entre interface gráfica e servidor.

[POST] /api/espeak Recebe um texto como entrada e gera uma resposta no formato JSON com lista de fones. Cada fone, por sua vez, possui campos duration, phone_mbrola, phone_sampa e pitch_changes. Um exemplo de resposta pode ser visto no código A.4

[POST] /api/mbrola Recebe uma lista de fones no formato MBROLA descrito na seção 3.1 e gera uma resposta com o nome do arquivo de áudio contendo a fala sintetizada

4.1.7 Editor gráfico

Editor gráfico utilizando o framework Vue.
js. Comunica-se com o servidor através de $AJ\!AX$

4.1.8 Utilização

O programa pode ser executado através de uma interface de linha de comandos

```
$ echo "Testando" | python3 sampa_mbrola.py > out.pho
$ mbrola ../br3/br3 out.pho out.wav; afplay out.wav
```

Código 4.3: Utilização por linha de comandos

5 Resultados

Com o levantamento dos sistemas TTS para o português brasileiro, notamos que falta suporte à síntese expressiva proporcionada pela geração de contornos F0 relacionados a prosódia afetiva. Linguagens de marcação como SSML e EmotionML já foram integradas a frameworks para TTS e sistemas comerciais, mas ainda não há integração entre essas linguagens e síntese de voz para o português brasileiro.

Estudando os modelos de anotação entoacional, percebe-se que ainda não há uma solução mais adequada para analisar o português brasileiro de forma a

Com o desenvolvimento da aplicação web deste trabalho, dá-se um passo inicial para a integração de prosódia afetiva a sistemas TTS para o português brasileiro.

6 Considerações finais

Neste trabalho foi apresentada a definição de um sistema TTS, bem como a descrição de seus componentes principais e possíveis implementações para cada módulo. Também foi realizada uma busca dos sistemas TTS open-source e comerciais existentes. Com o objetivo de melhorar a geração de prosódia, foi feita uma revisão de prosódia, descrevendo os principais sistemas de anotação usados na fonologia entoacional, principalmente aplicados ao português brasileiro. Investigamos como a prosódia funciona nos sistemas encontrados e identificamos que, enquanto a geração de prosódia suprassegmental em trabalhos recentes já produz resultados satisfatórios, ainda há desafios quando à síntese de fala expressiva relacionada à prosódia afetiva e aumentativa.

6.1 Trabalhos futuros

- Expansão do sistema desenvolvido neste trabalho para adicionar suporte a mais modelos notação entoacional, como ToBI e DaTo.
- Avaliação estatística da qualidade de falas geradas com a aplicação desenvolvida comparada a outros sistemas *open-source* e comerciais
- Adicionar suporte a SSML e EmotionML ao sistema desenvolvido, gerando curvas f0 a partir de marcações
- Uso técnicas de técnicas de Natural Language Understanding para gerar notação SSML e EmotionML automaticamente.
- Desenvolvimento de corpus anotados com prosódia para o português brasileiro.

Referências

Amazon.com, Inc. *Alexa*. 2014. Disponível em: https://developer.amazon.com/alexa. Acesso em 25 de setembro de 2017.

Apple Inc. Siri. 2011. Disponível em: https://www.apple.com/ios/siri/. Acesso em 25 de setembro de 2017.

BARBOSA, F. et al. Grapheme-phone transcription algorithm for a Brazilian Portuguese TTS. In: SPRINGER. *International Workshop on Computational Processing of the Portuguese Language*. [S.l.], 2003. p. 23–30.

BARBOSA, P. A. et al. Aiuruete: A high-quality concatenative text-to-speech system for brazilian portuguese with demisyllabic analysis-based units and a hierarchical model of rhythm production. In: Sixth European Conference on Speech Communication and Technology. [S.l.: s.n.], 1999.

BRAGA, D. et al. HMM-based Brazilian Portuguese TTS. Braga et al.(eds), Propor, p. 47–50, 2008.

BURNETT, D.; SHUANG, Z. W. Speech Synthesis Markup Language (SSML) Version 1.1. [S.l.], 2010. Disponível em: http://www.w3.org/TR/2010/REC-speech-synthesis11-20100907/. Acesso em 5 de junho de 2018.

CELESTE, L.; REIS, C. Análise entonativa formal: Intsint aplicado ao português. *Journal of Speech*, v. 2, n. 2, p. 3–21, 2012.

CHARFUELAN, M.; STEINER, I. Expressive speech synthesis in MARY TTS using audiobook data and emotionML. In: *INTERSPEECH*. [S.l.: s.n.], 2013. p. 1564–1568.

COSTA, E. S. et al. Um sintetizador de voz baseado em hmms livre: Dando novas vozes para aplicaç oes livres no português do brasil. In: *Workshop de Software Livre*. [S.l.: s.n.], 2012.

COUTO, I. et al. An open source HMM-based text-to-speech system for Brazilian Portuguese. In: 7th international telecommunications symposium. [S.l.: s.n.], 2010.

CSTR. Festival Speech Synthesis System. 2011. Disponível em: <www.cstr.ed.ac.uk/projects/festival/>. Acesso em 7 de junho de 2018.

DUNN, R. H. espeak-ng. 2006. Disponível em: https://github.com/espeak-ng/espeak-ng. Acesso em 29 de outubro de 2017.

DUTOIT, T. An introduction to text-to-speech synthesis. [S.l.: s.n.], 1997. (Text, Speech and Language Technology 3).

- DUTOIT, T. et al. The MBROLA project: Towards a set of high quality speech synthesizers free of use for non commercial purposes. In: IEEE. *Spoken Language*, 1996. ICSLP 96. Proceedings., Fourth International Conference on. [S.l.], 1996. v. 3, p. 1393–1396.
- FIELDING, R. T. Rest: architectural styles and the design of network-based software architectures. *Doctoral dissertation, University of California*, 2000.
- HIRSCHBERG, J. Speech synthesis, prosody. *Encyclopedia of language & linguistics*, v. 7, p. 49–55, 2006.
- HIRST, D. J. La représentation linguistique des systèmes prosodiques: une approche cognitive. Tese (Doutorado) Aix-Marseille 1, 1987.
- HIRST, D. J. A pract plugin for momel and intsint with improved algorithms for modelling and coding intonation. In: *Proceedings of the XVIth International Conference of Phonetic Sciences*. [S.l.: s.n.], 2007. v. 12331236.
- JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing (2nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009. ISBN 0131873210.
- LUCENTE, L. Uma abordagem fonética na fonologia entoacional. Fórum Linguístico, v. 11, n. 1, p. 79–95, 2014.
- Microsoft Corp. Cortana. 2014. Disponível em: https://www.microsoft.com/en-us/windows/cortana. Acesso em 25 de setembro de 2017.
- MIRANDA, L. Análise da entoação do português do Brasil segundo o modelo IPO. Tese (Doutorado) Dissertação de mestrado em Língua Portuguesa. Rio de Janeiro: UFRJ, 2015.
- MORAES, J. A. de. Brazilian portuguese. *Intonation systems: A survey of twenty languages*, Cambridge University Press, p. 179, 1998.
- MORAES, J. A. de. The pitch accents in Brazilian Portuguese: analysis by synthesis. In: *Proc. Speech Prosody.* [S.l.: s.n.], 2008. p. 389–397.
- RAJESWARI, K.; UMA, M. Prosody modeling techniques for text-to-speech synthesis systems—a survey. *International Journal of Computer Applications*, v. 39, n. 16, p. 8–11, 2012.
- SCHRÖDER, M.; BURKHARDT, F. *Emotion Markup Language (EmotionML) 1.0.* [S.l.], maio 2014. Disponível em: http://www.w3.org/TR/2014/REC-emotionml-20140522/. Acesso em 8 de junho de 2018.
- SERPRO. *LianeTTS*. 2011. Disponível em: http://intervox.nce.ufrj.br. Acesso em 7 de junho de 2018.
- TAYLOR, P. Text-to-speech synthesis. [S.l.]: Cambridge University Press, 2009.
- TAYLOR, P.; ISARD, A. SSML: A speech synthesis markup language. *Speech communication*, Elsevier, v. 21, n. 1-2, p. 123–133, 1997.

APÊNDICE A – Primeiro apêndice

```
import sqlite3
import sampa_mbrola
from flask import Flask, g, jsonify, render_template, abort, request
from flask_cors import CORS
app = Flask(__name__)
CORS(app)
@app.route('/api/espeak', methods=['POST'])
def frontend():
   text = request.form['text']
   converter = sampa_mbrola.Converter()
   sentence = converter.convert_sentence(text)
   return jsonify(sentence.dictify())
@app.route('/api/mbrola', methods=['GET'])
def mbrola(page):
   pass
if __name__ == '__main__':
   app.run(debug=True)
```

Código A.1: Servidor

```
import sys
import re
import subprocess
import random
import json
from collections import OrderedDict
from typing import List

def flatten(lst: list):
    return [item for sublist in lst for item in sublist]
```


Figura 3: Editor gráfico

```
class Phone():
   def __init__(
           self,
           phone_sampa: str,
           phone_mbrola: str,
           duration: int,
           pitch_changes: list
   ):
       self.phone_sampa = phone_sampa
       self.phone_mbrola = phone_mbrola
       self.duration = duration
       self.pitch_changes = pitch_changes
   def as_line(self):
       return "{} {} {}".format(
           self.phone_mbrola,
           self.duration,
           " ".join([str(item) for item in flatten(self.pitch_changes)])
       )
class Sentence():
   def __init__(self, phones: List[Phone]=None):
       if phones is None:
           self.phones = []
       else:
           self.phones = phones
```

```
def mbrola_phones(self):
       return [phone.phone_mbrola for phone in self.phones]
   def dictify(self):
       return [vars(phone) for phone in self.phones]
   def __repr__(self):
       return "\n".join([phone.as_line() for phone in self.phones])
class Converter():
   def __init__(self):
       self.load_sampa_mbrola()
       self.load_durations()
   def load_sampa_mbrola(self):
       equivs = {}
       with open("sampa_mbrola.tbl") as f:
           for line in f:
              k, v, _ = line.split()
              equivs[k] = v
       self.equivs = OrderedDict(
           sorted(equivs.items(), key=lambda t: -len(t[0])))
   def load_durations(self):
       durations = {}
       with open("durations.tbl") as f:
           for line in f:
              k, v = line.split()
              durations[k] = v
       self.durations = durations
   def convert_phoneme(self, sentence: str) -> tuple:
       """Returns first phone from the sentence"""
       if sentence[0] == " ":
           return ("_", 1)
       elif self.equivs:
           # s is a special case, needs to peek next
           if sentence[0] == "s":
```

```
if sentence[1] in "aeiou&":
              return ("s", 1)
       for equiv in self.equivs.items():
           if re.match(re.escape(equiv[0]), sentence):
              # print("match:", equiv[0], phoneme, "=", equiv[1])
              return (equiv[1], len(equiv[0]))
   # print("didn't match", phoneme)
   return (phoneme[0], 1)
def get_duration(self, phoneme: str) -> int:
   if self.durations and phoneme in self.durations:
       return self.durations[phoneme]
   else:
       return 100
def convert_sentence(self, input_str: str) -> Sentence:
   sentence = Sentence()
   sentence.phones.append(Phone(" ", "_", 150, [[50, 150]]))
   ignored = ["@", "\n", ",", "'", "^", ","]
   sampa = self.text_to_sampa(input_str)
   sampa = sampa.replace("'", "")
   print(";; ", sampa)
   while sampa:
       if sampa[0] not in ignored:
           converted = self.convert_phoneme(sampa)
           phone_sampa = sampa[:converted[1]]
           sampa = sampa[converted[1]:]
           duration = self.get_duration(converted[0])
           phone = Phone(
              phone_sampa = phone_sampa,
              phone_mbrola = converted[0],
              duration = int(duration),
              pitch_changes = [[50, 150]] # percentage, Hz
           )
           sentence.phones.append(phone)
```

```
else:
              sampa = sampa[1:]
       sentence.phones.append(Phone(" ", "_", 150, [[50, 150]]))
       return sentence
   def text_to_sampa(self, sentence: str) -> str:
       espeak_str = "espeak-ng -v pt-br '{}' -x -q".format(sentence)
       p = subprocess.Popen(espeak_str, stdout=subprocess.PIPE, shell=True)
       (output, err) = p.communicate()
       p_status = p.wait()
       output = output.decode("utf-8")
       output = output.replace("\n", "").strip()
       return output
if __name__ == "__main__":
   converter = Converter()
   for line in sys.stdin:
       print(";;", line)
       print(converter.convert_sentence(line))
```

Código A.2: Conversor eSpeakNG-MBROLA

```
var app = new Vue({
  el: '#app',
  data: {
    phones: [],
    height: 300
  },
  mounted: function() {
    var self = this;
    const requestURL = "http://127.0.0.1:5000/api/espeak";
    let XHR = new XMLHttpRequest();
    let FD = new FormData();

FD.append("text", "Bom dia, comunidade");

XHR.open("POST", requestURL);
    XHR.send(FD);

XHR.onreadystatechange = function() {
```

```
if (XHR.readyState === XMLHttpRequest.DONE) {
       if (XHR.status === 200) {
         const results = JSON.parse(XHR.responseText);
         self.phones = results;
       }
     }
   };
 },
 computed: {
   totalDuration: function() {
     let durations = this.phones.map((phone) => phone.duration);
     console.log(durations.reduce((acc, val) \Rightarrow acc + val, 0));
     return durations.reduce((acc, val) => acc + val, 0);
   }
 }
});
```

Código A.3: Editor gráfico

```
Γ
 {
   "duration": 150,
   "phone_mbrola": "_",
   "phone_sampa": " ",
   "pitch_changes": [[50, 150]
   ]
 },
 {
   "duration": 80,
   "phone_mbrola": "n",
   "phone_sampa": "n",
   "pitch_changes": [[50, 150]]
 },
 {
   "duration": 110,
   "phone_mbrola": "u",
   "phone_sampa": "U",
   "pitch_changes": [[50, 150]]
 },
   "duration": 150,
   "phone_mbrola": "_",
   "phone_sampa": " ",
```

```
"pitch_changes": [[50, 150]]
}
Código A.4: Exemplo de resposta para endpoint do eSpeakNG

{
    "mp3_file": "07acc5c4ba924294.mp3"
```

Código A.5: Exemplo de resposta para endpoint do MBROLA