# Applying Various Movesets to the Lattice-SAW Model of High Intensity Vortices

Max Figura and Dr. Pavel Bělík

Augsburg University - Mathematics, Statistics, and Computer Science Department

## Introduction

A Self-Avoiding Walk (SAW) is a structure that can be used to mathematically model some kind of linear path through space. Two such models, which we were concerned with here, are for a vortex filament in a tornado and for a long protein chain. Using the similarities of these two contexts, we examined multiple approaches to the problem of energy sampling in order to determine which is most efficient and reliable.

# **SAWs and Energy**

For the sake of simplicity, we worked exclusively with SAWs that are constrained to the lattice grid in three dimensions, resulting in the more "blocky" visualisations here. A caveat to this: as we increase the size of the SAW, it does not necessarily correspond to a "larger" structure but rather one which is more precise

The chief metric with which we were concerned here is the energy of a configuration, a measure of its compactedness.



For an environmental parameter  $\beta$ , we used a Markov Chain Monte Carlo technique to determine the average energy of the vortex model at progressively longer SAWs. Our primary goal was to compare a few combinations of movesets that specify how the next state can be constructed from the previous.

# **Movesets Explored**

#### LT Moves

Proposed in [1] as an alternative to the Pivot algorithm, Localised Transformations (LT) work by randomly reconstructing (or permuting) the steps of some subsection of the SAW.



Figure: A single LT move, reconstructing the highlighted segments.

#### Pull Moves

As detailed in [3], pull moves displace a single point and then "pull" the subsequent steps along until a new valid configuration is reached.



Figure: A single pull move, starting with the circled point

#### Bond-Rebridging Moves

Rebridging moves, devised in [2], replace one set of parallel adjacent segments with another, re-routing the SAW through the same volume.



Figure: A single rebridge move, placing new segments at the dotted lines

#### Madras Moves

The moveset described by [4] works by rotating or reflecting some subsection of the SAW, leaving the ends of the subsection unmoved.



Figure: A single Madras move, rotating the section between the circled points

## **Moveset Comparison**

After implementing the model and movesets in the Julia programming language, we ran many averaging trials, using different parameters for the length N, the environmental parameter  $\beta$ , and the combination of movesets employed.



Figure: Simulation-generated average energies for  $10 \le N \le 100$ ,  $\Delta N = 10$ ,  $-50 \le \beta \le 100$ 

While all movesets were functional, as evidenced by the macroscopically smooth curves in the above images, we were able to draw some conclusions about the relative performance of each moveset:

- The LT moves are more reliable for negative  $\beta$ /high energy states.
- The pull moves are more reliable for large, positive  $\beta$ /low energy states.
- Both rebridging and Madras moves act as a stablising force for positive  $\beta$  when used in conjunction with LT or pulls.

# References

- [1] P. Bělík et al. "Equilibrium Energy and Enrtopy of Vortex Filaments on a Cubic Lattice: A Localized Transformations Algorithm". (2021)
- [2] J. M. Deutsch. "Long range moves for high density polymer simulations". The Journal of Chemical Physics 106.21 (1997), pp. 8849–8854.
- [3] N. Lesh et al. "A Complete and Effective Move Set for Simplified Protein Folding". (2003)
- [4] N. Madras et al. "The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk". In: Journal of Statistical Physics 50 (1988), pp. 109–186.

#### Minima

A secondary objective of ours was to investigate the minimum energy values for different lengths of SAWs. Using the model with these different movesets, we employed a Simulated Annealing schedule for  $\beta$  and recorded the lowest-energy configuration found in each trial. This method yielded potential minima for  $3 \le N \le 90$ , most of which were supported by multiple trials. Previous work had determined the minima for  $3 \le N \le 21$ , and [1] had suggested a linear trend given those values. These new values, which must be greater than the true minima if not equal, allow us to refine the linear trend as well as suggest a better-fitting  $N\log(N)$  curve.





Figure: Minimum energy values for  $3 \le N \le 90$ , with trend lines. The left image shows the predictions of Bělík et al. based off of minima for  $3 \le N \le 18$ . The right shows new best fit linear and  $N \log(N)$  curves.

There seem to be some patterns in the contruction of the configurations themselves, most notably in a tend towards bilateral symmetry, which had been previously noted in [1].





Figure: Minima found for N=35 and N=39, exhibiting bilateral symmetry and showing similar and repeating structures

While these patterns could potentially be utilised to easily find the minimum-energy configuration of anylength SAW, more research is needed to determine those mechanisms.

# Acknowledgements

Thank you to Augsburg University and URGO for providing the funding and resources for this research.

