Mathematical Logic

Code2Hack

2020年1月23日

目录

1	Inti	roduction	2
	1.1	An Example from Group Theory	2
	1.2	An Example from the Theory of Equivalence Relations	2
	1.3	A Preliminary Analysis	2
	1.4	Preview	3
2	Syn	atax of First-Order Languages	3
	2.1	Alphabets	3
	2.2	The Alphabet of a First-Order Language	4
	2.3	Terms and Formulas in First-Order Languages	5
	2.4	Induction in the Calculus of Terms and in the Calculus of	
		Formulas	6
	2.5	Free Variables and Sentences	9
3	Sen	nantics of First-Order Languages	10
	3.1	Structures and Interpretations	10
	3.2	Standardization of Connectives	11
	3.3	The Satisfaction Relation	11
	3.4	The Consequence Relation	12
	3.5	Two Lemmas on the Satisfaction Relation	15
	3.6	Some Simple Formalizations	19
	3.7	Some Remarks on Formalizability	20
	3.8	Substitution	20

4	A Sequent Calculus			
	4.1	Sequent Rules	23	
	4.2	Structural Rules and Connective Rules	24	
	4.3	Derivable Connective Rules	25	
	4.4	Quantifier and Equality Rules	26	
	4.5	Further Derivable Rules and Sequents	27	

1 Introduction

1.1 An Example from Group Theory

Axiom 1.1.1: Group theory

A group is a triple (G, \circ^G, e^G) which satisfies:

- (G1) For all $x, y, z : (x \circ y) \circ z = x \circ (y \circ z)$
- (G2) For all $x : x \circ e = x$
- (G3) For every x there is a y such that $x \circ y = e$

1.2 An Example from the Theory of Equivalence Relations

Axiom 1.2.1: Theory of equivalence relations

The pair (A, R^A) :

- (E1) xRx.
- (E2) If xRy then yRx.
- (E3) If xRy and yRz then xRz.

1.3 A Preliminary Analysis

A few important points:

1. Is every proposition ψ which follows from Φ also provable from Φ ?

${\bf Remark:} {\it Godel's \ Completeness \ Theorem.}$

If not, the axioms are not complete/sufficient?

Yes, this is exactly the content of Godel's Completeness Theo-

- 2. The concept follows from (the Consequence Relation).
- 3. The concept proof: inferences from the axioms to the proposition.
 - Connectives.
 - Quantifiers.
 - Rules.

1.4 Preview

- Godel's Completeness Theorem forms a bridge between syntax and semantics.(Chapter VI)
- \bullet The consistancy of mathematics or a justification of rules of inference.(Chapter VII X)
- Proofs by computers.(Chapter X)
- Logic programming: the starting point of AI.(Chapter XI)

2 Syntax of First-Order Languages

2.1 Alphabets

 A^* denotes the set of all strings over A.

Lemma 2.1.1: Countability

For a nonempty set M, the following are equivalent:

- (a) M is at most countable.
- (b) There is a surjective map $\alpha : \mathbf{N} \to M$.
- (c) There is an injective map $\beta: M \to \mathbf{N}$.

Proof

Hints. p.20

- 1. (a) \rightarrow (b): by the definition of countability.
- 2. (b) \rightarrow (c): the least index.
- 3. (c) \rightarrow (a): by ranking of the images under β .

Remark

- The subset of a countable set is also countable.
- The union of two countable sets is also countable.
- Alphabet could be finite, countable or uncountable(VII.4 p.116).

Lemma 2.1.2: Countability of A^*

If alphabet \mathcal{A} is at most countable, then \mathcal{A}^* is countable.

Proof. p.21

- 1. Define a map $\beta: \mathcal{A}^* \to \mathbf{N}$.
- 2. Prove β is injective by the foundamental theorem of arithmetic.

2.2 The Alphabet of a First-Order Language

First, review the three important concepts:

- Connectives.
- Quantifiers.

• Equality relation.

Definition 2.2.1: Alphabet of first-order language

The alphabet of first-order language is $A_S := A \cup S$.

The set \mathcal{A} :

- (a) v_0, v_1, \dots (variables);
- (b) $\neg, \land, \lor, \rightarrow, \leftrightarrow$;
- (c) ∀,∃;
- (d) \equiv ;
- (e)),(;

The symbol set S, which determines the first-order language.(???)

- $1. \ n\hbox{-}ary \ relation \ symbols.$
- 2. n-ary function symbols.
- 3. a set of constants.

Remark

A first-order language is determined by the symbol set S because S determines the way that terms, formulas are formed(syntax)

2.3 Terms and Formulas in First-Order Languages

Definition 2.3.1: S-term p.23

- (T1) Every variable.
- (T2) Every constant.
- (T3) If the strings t_1, \dots, t_n are S-terms, then $ft_1 \dots t_n$ is also an S-term.

We denote the set of S-terms by T^S .

Definition 2.3.2: S-formulas p.24

- (F1) $t_1 \equiv t_2$.
- (F2) $Rt_1 \dots t_n$.
- (F3) If ψ is an S-formula, so is $\neg \psi$.
- (F4) If ψ and ϕ are S-formulas, so are $(\psi \land \phi), (\psi \lor \phi), (\psi \to \phi), (\psi \leftrightarrow \phi)$.
- (F5) If ψ is an S-term and x is a variable, then $\forall x\psi$ and $\exists x\psi$ are S-formulas.

We denote the set of S-formulas by L^S .

Remark: Difference between \equiv and binary relation R

Why isn't \equiv included in the binary relations?

Lemma 2.3.3: Countability of T^S and L^S

If S is at most countable, then T^S and L^S are countable.

2.4 Induction in the Calculus of Terms and in the Calculus of Formulas

p.27

Definition 2.4.1: Induction over &

Let S be a symbol set and let $Z \subset \mathcal{A}_S^*$ be a set of strings over \mathcal{A}_S . To describe the elements of Z by means of a calculus \mathfrak{C} , we formally write the rules as:

$$\frac{\zeta_1,\ldots,\zeta_n}{\zeta}$$

Example: Rewrite the definition of S-term 2.3.1

Here the set $Z = T^s$.

- (T1) -x;
- (T2) $\overline{}$ if $c \in S$;
- (T3) $\frac{t_1,\dots,t_n}{ft_1\dots t_n}$ if $f\in S$ and f is n-ary.

Proof by induction on terms p.28

Proof by induction on formulas p.28

Example

- (a) For all symbol sets S, the empty string \square is neighter an S-term nor an S-formula.
- (b) (1) \circ is not an $S_{gr}-term.$ (2) $\circ \circ v_1$ is not an $S_{gr}-term.$
- (c) For all symbol sets S, every S-formula contains the same number of the left and right parentheses.

Proof. p.28

- (a) Let P be the property on \mathcal{A}_S^* which holds for a string ζ iff ζ is nonempty.
- (b) P on \mathcal{A}_S^* holds for a string ζ over \mathcal{A}_S iff ζ is distinct from $(1) \circ$; $(2) \circ \circ v_1$.
- (c)

Lemma 2.4.2: Initial segment

- (a) For all terms t and t', t is not a proper initial segment of t'.
- (b) For all formulas φ and φ' , φ is not an initial segement of φ' .

Proof. p.29

Proper P holds for a string η iff for all terms t', t' is not a proper initial segement of η and η is not an initial segment of t'.

- 1. t = x or t = c.
- 2. $t = ft_1 \dots t_n$ and P holds for t_1, \dots, t_n .

Question

Is this second-order language? $\forall t \forall t' ((Pt \land Pt') \rightarrow \neg (Rtt' \lor Rt't)))$

Lemma 2.4.3

• (a) If $t_1,\dots,t_n=t_1',\dots,t_m'$, then n=m and $t_i=t_i'$ for $1\leq i\leq n.$

• (b) The same as (a) for formulas.

Theorem 2.4.4: Unique Decomposition p.30

Definition 2.4.5: Two important functions: Var and SF p.31

2.5 Free Variables and Sentences

p.32

Definition 2.5.1: Free variables in an S-term

$$\begin{split} free(t_1 \equiv t_2) &:= var(t_1) \cup var(t_2) \\ free(Pt_1 \dots t_n) &:= var(t_1) \cup \dots var(t_n) \\ free(\neg \varphi) &:= free(\varphi) \\ free((\varphi * \psi)) &:= free(\varphi) \cup free(psi)for* = \land, \lnot, \rightarrow, \leftrightarrow \\ free(\forall x \varphi) &:= free(\varphi) \ x \\ free(\exists x \varphi) &:= free(\varphi) \ x \end{split}$$

Definition 2.5.2: Sentences

Formulas without free variables are called *sentences*

We denote:

$$L_n^S \,:=\, \{\varphi | \varphi \in L^S \ and \ free(\varphi) \subset \{v_0, \dots, v_{n-1}\}\}$$

In particular L_0^S is the set of S-sentences.

3 Semantics of First-Order Languages

3.1 Structures and Interpretations

Definition 3.1.1: S-Structure \mathfrak{A} p.36

An S-structure is a pair $\mathfrak{A} = (A, \mathfrak{a})$:

- A is a nonempty set, the domain of \mathfrak{A} .
- \mathfrak{a} is a map defined on S satisfying:
 - 1. for every n-ary relation symbol R on S, $\mathfrak{a}(R)$ is an n-ary relation on A.
 - 2. for every n-ary function symbol f on S, $\mathfrak{a}(f)$ is an n-ary function on A>
 - 3. for every constant c in S, $\mathfrak{a}(f)$ is an element of A.

Example:

In arithmetic, two symbol sets:

$$\begin{split} S_{ar} &:= \{+, \cdot\,, 0, 1\} \\ S_{ar}^{<} &:= \{+, \cdot\,, 0, 1, <\} \end{split}$$

are just symbols without meaning.

Until we define the domain and the meaning of the symbols and build the structures:

$$\begin{split} \mathfrak{N} &:= \{\mathbf{N}, +^{\mathbf{N}}, \cdot^{\mathbf{N}}, 0^{\mathbf{N}}, 1^{\mathbf{N}}\} \\ \mathfrak{N}^{<} &:= \{\mathbf{N}, +^{\mathbf{N}}, \cdot^{\mathbf{N}}, 0^{\mathbf{N}}, 1^{\mathbf{N}}, <^{\mathbf{N}}\} \end{split}$$

Definition 3.1.2: Assignment β **p.36**

An assignment in an S-structure is a map $\beta:\{v_n\mid n\in \mathbf{N}\}\to A.$

Definition 3.1.3: S-interpretation \Im

An S-interpretation is a pair (\mathfrak{A}, β) .

$\beta \frac{a}{x}$ and $\Im \frac{a}{x}$ **p.37**

Given $a \in A, x \in S, y \in S$, and β is an assignment in $\mathfrak A$. Let $\beta \frac{a}{x}$ be the assignment in $\mathfrak A$ which maps x to a and agrees with β on all variables distinct from x:

$$\beta \frac{a}{x}(y) := \begin{cases} \beta(y) & \text{if } y \neq x \\ a & \text{if } y = x \end{cases}$$

For $\mathfrak{I}=(\mathfrak{A},\beta)$ let $\mathfrak{I}\frac{a}{x}:=(\mathfrak{A},\beta\frac{a}{x})$

3.2 Standardization of Connectives

p.38

3.3 The Satisfaction Relation

Definition 3.3.1: $\Im(t)$

- (a) For a variable x, $\Im x := \beta(x)$.
- (b) For a constant c, $\Im(c) := c^{\mathfrak{A}}$.
- (c) For n-ary function symbol $f \in S,$ and terms $t_1, \dots, t_n.$

$$\Im(ft_1\dots t_n):=f^{\mathfrak{A}}(\Im(t_1)\dots\Im(t_n))$$

Definition 3.3.2: Satisfaction Relation =

Satisfaction relation is a binary relation between S-interpretation and S-formula, which is a property in induction.

Also we say the left side is the *model* of the right side.

$$\begin{split} \mathfrak{I} &\vDash t_1 \equiv t_2 \, : iff \, \mathfrak{I}(t_1) \equiv \mathfrak{I}(t_2) \\ \mathfrak{I} &\vDash Rt_1 \dots t_n \, : iff \, R^{\mathfrak{I}}t_1 \dots t_n \\ \\ \mathfrak{I} &\vDash \neg \varphi \, : iff \, \text{not} \, \, \mathfrak{I} \vDash \mathfrak{I}(\varphi) \\ \\ \mathfrak{I} &\vDash \forall x \varphi \, : iff \, \text{for all} \, \, a \in A, \mathfrak{I} \frac{a}{x} \vDash \varphi \end{split}$$

Given a set of formulas, \Im is a model of iff for all $\varphi \in \Im \models \varphi$.

3.4 The Consequence Relation

Definition 3.4.1: Consequence Relation p.41

A relation between a set of formulas and one formula. We say φ is a consequence of Φ :

$$\Phi \vDash \varphi : iff$$

Every interpretation which satisfies Φ is also a model of φ .

Definition 3.4.2: Valid p.42

A formula φ is valid $(\models \varphi)$:iff $\emptyset \models \varphi$.

Definition 3.4.3: Satisfiable

A formula φ is satisfiable (written Sat φ) :iff there is an interpretation which is a model of φ .

A set of formulas Φ is satisfiable: Sat Φ iff there is an interpretation which is a model of all the formulas in Φ .

Lemma 3.4.4

For all Φ and all φ . $\Phi \vDash \varphi$ iff not Sat $\Phi \cup \{\neg \varphi\}$.

Definition 3.4.5: Logically equivalent

Logically equivalent :iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$

Example: Logically equivalant

$$\varphi \wedge \psi \quad and \quad \neg(\neg \varphi \vee \neg \psi)$$

$$\varphi \rightarrow \psi \quad and \quad \neg \varphi \vee \psi$$

$$\varphi \leftrightarrow \psi \quad and \quad \neg(\varphi \wedge \psi) \vee \neg(\neg \varphi \vee \neg \psi)$$

$$\forall x \varphi \quad and \quad \neg \exists x \neg \varphi$$

We can dispense with the connectives $\land, \rightarrow, \leftrightarrow, \forall$ with a map * by induction on formulas, which associates each formula φ with an equivalent formula φ^* which does not contain $\land, \rightarrow, \leftrightarrow, \forall$. p.42

Lemma 3.4.6: Coincidence Lemma p.43

Let $\mathfrak{I}_1=(\mathfrak{A}_1,\beta_1)$ be an $S_1-interpretation$, let $\mathfrak{I}_2=(\mathfrak{A}_2,\beta_2)$ be an $S_2-interpretation$, both with the same domain $A_1=A_2=A$. Consider the symbol set $S=S_1\cap S_2$.

- 1. Let t be an S-term. If \mathfrak{I}_1 and \mathfrak{I}_2 agree on the S-symbols(f,g,c) and the variables occurring in t, then $\mathfrak{I}_1(t)=\mathfrak{I}_2(t)$.
- 2. Let φ be an S-formula. If \mathfrak{I}_1 and \mathfrak{I}_2 agree on the S-symbols and the variables occurring free in φ , then $\mathfrak{I}_1 \vDash \varphi$ iff $\mathfrak{I}_2 \vDash \varphi$.

Proof p.44

For $\varphi = \exists x \psi, \Im_1 \vDash \varphi$

iff there is an $a \in A_1$ such that $\Im_1 \frac{a}{x} \vDash \psi$

Because \mathfrak{I}_1 and \mathfrak{I}_2 agree on $free(\varphi)$ and, $free(\psi) \subset free(\varphi) \cup$

 $\{x\}.$ Thus $\mathfrak{I}_1\frac{a}{x}$ and $\mathfrak{I}_2\frac{a}{x}$ agree on S and $free(\psi).$

iff there is an $a \in A_2$ such that $\Im_2 \frac{a}{x} \vDash \psi$.

 $\text{iff } \Im_2 \vDash \exists x \varphi.$

Definition 3.4.7: S-reduct and expansion p.45

Let S and S' be symbol sets such that $S \subset S'$. Let $\mathfrak{A} = (A, \mathfrak{a})$ be an S-structure and $\mathfrak{A}' = (A', \mathfrak{a}')$ be an S'-structure. We say:

 ${\mathfrak A}$ is a reduct of ${\mathfrak A}',$ or conversely expansion iff

A=A' and ${\mathfrak a}$ and ${\mathfrak a}'$ agree on S. Writen

$$\mathfrak{A}=\mathfrak{A}'|_S$$

Example

$$\mathfrak{R}=\mathfrak{R}^<|_{S_{ar}}$$

Check 3.1.1

Remark

With the *coincidence lemma 3.4.6*, the symbol set S need not be fixed when discussing interpretation, consequence and satisfiability.

Theorem 3.4.8: p.45

 Φ is satisfiable with respect to S iff Φ is satisfiable with respect to S'.

3.5 Two Lemmas on the Satisfaction Relation

Definition 3.5.1: *Isomorphism* p.47

Let $\mathfrak A$ and $\mathfrak b$ be the S-structures. A map $\pi:A\to B$ is called an isomorphism of $\mathfrak A$ onto $\mathfrak B$ (written: $\mathfrak A\cong\mathfrak B$)

- 1. π is a bijection of A onto B.
- 2. For n-ary $R \in S$ and $a_1, \dots, a_n \in A$.

$$R^{\mathfrak{A}}a_{1}\ldots a_{n}$$
 iff $R^{\mathfrak{B}}\pi(a_{1})\ldots\pi(a_{n})$

3. For n-ary $f \in S$ and $a_1, \dots, a_n \in S$.

$$\pi(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(\pi(a_1),\ldots,\pi(a_n))$$

4. For $c \in S$, $\pi c^{\mathfrak{A}} = c^{\mathfrak{B}}$.

 $\mathfrak A$ and $\mathfrak B$ are said to be *isomorphic* iff there is an isomorphism $\pi:\mathfrak A\cong\mathfrak B$.

Example

The $S_{gr}-structure$ $(\mathbf{N},+,0)$ is isomorphic to the $S_{gr}-structure$ $(G,+^G,0)$, where G consists of the even natural numbers. The map $\pi:\mathbf{N}\to G$ with $\pi(n)=2n$ is an isomporphism. Check 1.1.1

Lemma 3.5.2: Isomorphism Lemma p.47

If \mathfrak{A} and \mathfrak{B} are isomorphic S-structures, with every assignment β in \mathfrak{A} we associate the assignment $\beta^{\pi} := \pi \circ \beta$ in \mathfrak{B} , and for the corresponding interpretations $\mathfrak{I} = (\mathfrak{A}, \beta)$ and $\mathfrak{I}^{\pi} = (\mathfrak{B}, \beta^{\pi})$, we have:

1. For every S - term t,

$$\pi(\Im(t)) = \Im^{\pi}(t)$$

2. For every $S - formula \varphi$,

$$\mathfrak{I} \vDash \varphi \quad iff \quad \mathfrak{I}^{\pi} \vDash \varphi$$

In particular, for all $S-formulas \varphi$

$$\mathfrak{A} \vDash \varphi \quad iff \quad \mathfrak{B} \vDash \varphi.$$

Remark

To discuss the *structure* differences(assignment not considered),

- The coincidence lemma 3.4.6: same domain A, different S, with the same \mathfrak{a} and β (agreement on the intersection of S);
- The *Isomorphism lemma 3.5.2*: different domain A and B, the same S, also with the different $\mathfrak a$ and $\mathfrak b$. The bridge is isomorphism.

Both focus on the topic of satisfaction, validity and consequence.

Corollary 3.5.3: *p.48*

If $\pi:\mathfrak{A}\cong\mathfrak{B}$, then for $\varphi\in L_n^S$, and a_0,\dots,a_{n-1}

$$\mathfrak{A} \vDash \varphi[a_0, \dots, a_{n-1}] \quad iff \quad \mathfrak{B} \vDash \varphi[\pi(a_0), \dots, \pi(a_{n-1})]$$

Isomorphic structures cannot be disguinshed in L_0^S . Conversely,

Example

The $S_{ar}-structure$

$$(\mathbf{Q}, +, 0) \vDash \forall v_0 \exists v_1 \ v_1 + v_1 \equiv v_0$$

While in the integers this sentence no longer holds

not
$$(\mathbf{Z}, +, 0) \vDash \forall v_0 \exists v_1 \ v_1 + v_1 \equiv v_0$$

j In this case, sentences might not hold when passing to substructures.

Definition 3.5.4: Substructure p.49

Let $\mathfrak A$ and $\mathfrak B$ be S-structures. We say $\mathfrak A\subset \mathfrak B$ if (a) $A\subset B$. (b)

- 1. For n-ary $R \in S$, for all $a_1, \ldots, a_n \in A$, $R^{\mathfrak{A}}a_1 \ldots a_n$ iff $R^{\mathfrak{B}}a_1 \ldots a_n$. Written as $R^{\mathfrak{A}} = R^{\mathfrak{B}} \cap A^n$.
- 2. For n-ary $f \in S, f^{\mathfrak{A}}$ is the restriction of $f^{\mathfrak{B}}$ to $A^n.$
- 3. For $c \in S$, $c^{\mathfrak{A}} = c^{\mathfrak{B}}$.

Remark: S-closed

If $\mathfrak{A} \subset \mathfrak{B}$, then A is S-closed;

Conversely, every S-closed subset $X\subset B$ uniquely generates a substructure named $[X]^{\mathfrak{B}}$.

Lemma 3.5.5: p.49

Let $\mathfrak A$ and $\mathfrak B$ be S-structures with $\mathfrak A\subset \mathfrak B$. Let $\beta:\{v_n\,|\,n\in \mathbf N\}\to A$ be an assignment in $\mathfrak A$.

Then for every S - term t:

$$(\mathfrak{A},\beta)(t)=(\mathfrak{B},\beta)(t);$$

For every quantifier-free $S-formula \varphi$:

$$(\mathfrak{A},\beta) \vDash \varphi \quad iff \quad (\mathfrak{B},\beta) \vDash \varphi.$$

Definition 3.5.6: Universal formulas

- (i) $-\varphi$, if φ is quantifier-free.
- (ii) $\frac{\varphi,\psi}{\varphi*\psi}$. Where $*=\wedge, lor$.
- (iii) $\frac{\varphi}{\forall x \varphi}$.

Lemma 3.5.8: Substructure Lemma p.50

Let $\mathfrak A$ and $\mathfrak B$ be S-structures with $\mathfrak A\subset \mathfrak B$, and let $\varphi\in L_n^S$ be universal. Then the following holds for all $a_0,\dots,a_{n-1}\in A$:

$$\mathfrak{B}\vDash\varphi[a_0,\dots,a_{n-1}]\quad then\quad \mathfrak{A}\vDash\varphi[a_0,\dots,a_{n-1}]$$

Corollary 3.5.8

If $\mathfrak{A} \subset \mathfrak{B}$, then for every universal sentence φ :

If
$$\mathfrak{B} \vDash \varphi$$
 then $\mathfrak{A} \vDash \varphi$.

3.6 Some Simple Formalizations

Definition 3.6.1: Equivalence Relations p.52

$$\forall x Rxx,$$

 $\forall x \forall y (Rxy \to Ryx),$
 $\forall x \forall y \forall z ((Rxy \land Ryz) \to Rxz).$

See 1.2.1

Example: continuity p.52

Example: Cardinality Statements p.53

Example: The Theory of Orderings p.53

A structure $\mathfrak{A} = (A, <^{\mathfrak{A}})$ is called an *ordering* if:

$$\mathfrak{A} \vDash \Psi_{ord} \begin{cases} \forall x \neg x < x, \\ \forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z)), \\ \forall x \forall y (x < y \lor x \equiv y \lor y < x) \end{cases}$$

Partially defined ordering:

The Theory of Fields p.54

The Theory of Graphs

3.7 Some Remarks on Formalizability

Partial Functions p.55

e.g. division in ${f R}$

Many-Sorted Structures p.55

e.g. the structure with two domains: scalar and vector space.

Limits of Formalizability p.57

1. Torsion Groups.

$$\forall x (x \equiv e \lor x \circ x \equiv e \lor (x \circ x) \circ x \equiv e \lor \dots)$$

This infinite formula cannot be formed by first-order language.

2. Peano's Axioms

Dedekind's Theorem

3.8 Substitution

Definition 3.8.1: Substitution for Terms p.60

1. Variables.

$$x\frac{t_0\dots t_r}{x_0\dots x_r}:= \begin{cases} x & \quad if \ x\neq x_0,\dots,x_r\\ t_i & \quad if \ x=x_i \end{cases}$$

2. Constants.

$$c\frac{t_0\dots t_r}{x_0\dots x_r}:=c.$$

3. Functions.

Definition 3.8.2: Substitution for Formulas p.60

(e) Suppose x_{i_1},\dots,x_{i_s} are exactly the variables x_i among $x_0,\dots,x_r,$ such that

$$x_i \in free(\exists x\varphi) \text{ and } x_i \neq t_i$$

then set

$$[\exists \varphi] \frac{t_0, \dots, t_r}{x_0, \dots, t_r} := \exists u \frac{t_{i_1} \dots t_{i_s} u}{x_{i_1} \dots x_{i_s} x}$$

Where u is the variable x if x does not occur in $t_{i_1}\dots t_{i_s}$; Otherwise u is the first variable in v_0,\dots which does not occur in $\varphi,t_{i_1},\dots,t_{i_s}$.

Definition 3.8.3: $\Im \frac{a}{x}$

Let $\mathfrak{I}=(\mathfrak{A},\beta)$ be an interpretation, x_0,\dots,x_r be pairwise distinct and $a_0,\dots,a_r\in A.$

$$\beta \frac{a_0 \dots a_r}{x_0 \dots x_r}(y) := \begin{cases} \beta(y) & \quad if \ y \neq x_i (0 \leq i \leq r) \\ a_i & \quad if \ y = x_i \end{cases}$$

$$\Im \frac{a_0 \dots a_r}{x_0 \dots x_r} := (\mathfrak{A}, \beta a_0 \dots a_r x_0 \dots x_r)$$

Lemma 3.8.4: Substitution Lemma p.61

(a) For every term t:

$$\Im\left(t\frac{t_0\dots t_r}{x_0\dots x_r}\right)=\Im\frac{\Im(t_0)\dots\Im(t_r)}{x_0\dots x_r}(t)$$

(b) For every formula φ :

$$\mathfrak{I}\vDash\varphi\frac{t_0\dots t_r}{x_0\dots x_r}\quad iff\quad \mathfrak{I}\frac{\mathfrak{I}(t_0)\dots \mathfrak{I}(t_r)}{x_0\dots x_r}\vDash\varphi$$

Remark

语法替换和语义替换是等价的?

Lemma 3.8.5: p.62

(a) For every permutation π of $0, \dots, r$

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} = \varphi \frac{t_{\pi(0)} \dots t_{\pi(r)}}{x_{\pi(0)} \dots x_{\pi(r)}}$$

- (b)
- (c)

Corollary 3.8.6: *p.63*

Suppose $free(\varphi)\subset\{x_0,\dots,x_r\}$, and x_0,\dots,x_r are distinct. Then, for terms t_0,\dots,t_r that $var(t_i)\subset\{v_0,\dots,v_{n-1}\}$, we have

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \in L_n^S.$$

In particular, $\varphi \frac{c_0 \dots c_r}{x_0 \dots x_r}$ is a sentence.

Definition 3.8.7: Rank of a formula

$$rk(\varphi)\quad :=0 \quad if\varphi \text{ is atomic.}$$

$$rk(\neg \varphi) := rk(\varphi) + 1$$

$$rk(\varphi\vee\psi)\quad := rk(\varphi) + rk(\psi) + 1$$

$$rk(\exists x\varphi) := rk(\varphi) + 1$$

Lemma 3.8.8: Substitution and rank p.64

$$rk\left(\varphi\frac{t_0\dots t_r}{x_0\dots x_r}\right)=rk(\varphi)$$

4 A Sequent Calculus

p.65

Some basic concepts

If S is a symbol set and Φ is a set of S-sentences (axioms?).

- 1. We note Φ^{\vDash} as the set of S-sentences which are consequences of Φ .
- 2. Whether every sentence in Φ^{\vDash} can be proved from the axioms in $\Phi?$
- 3. Formal proofs can be regarded as syntactic operations on strings of symbols. Thus obtaining a $calculus \mathfrak{S}$.
- 4. Formally provable(syntactic) v.s. Consequence(semantic).

4.1 Sequent Rules

Terminologies p.66

- Sequent: a nonempty set of formulas $\varphi_1, \dots \varphi_n$. Abbreviated as Γ, Δ, \dots .
- Antecedent: $\varphi_1, \dots, \varphi_n$.
- Succedent: φ .
- Sequent calculus \mathfrak{S} : rules to prove.
- Derivable: formally provable. $\vdash \Gamma \varphi$.

Definition 4.1.1: Derivable

A formula φ is $derivable(formally\ provable)$ from a set Φ of formulas(written: $\Phi \vdash \varphi$)

iff

There are finitely many formulas $\varphi_1,\dots,\varphi_n$ in Φ that $\vdash \varphi_1\dots\varphi_n\varphi$.

Derivable v.s. Correct

A sequent $\Gamma \varphi$ is correct if $\Gamma \vDash \varphi$, which is semantic and different from derivable.

4.2 Structural Rules and Connective Rules

Structure Rules p.68

Antecedent Rule(Ant)

$$\frac{\Gamma \quad \varphi}{\Gamma' \quad \varphi} \quad if \quad \Gamma \subset \Gamma'$$

Assumption Rule(Assm)

$$\overline{\Gamma \quad \varphi} \quad if \quad \varphi \in \Gamma$$

Connective Rules

Proof by Cases Rule(PC)

$$\begin{array}{ccc} \Gamma & \psi & \varphi \\ \hline \Gamma & \neg \psi & \varphi \\ \hline \Gamma & & \varphi \end{array}$$

Contradiction Rule(Ctr)

$$\begin{array}{cccc}
\Gamma & \neg \varphi & \psi \\
\Gamma & \neg \varphi & \neg \psi \\
\hline
\Gamma & \varphi
\end{array}$$

 \vee -Rule for the Antecedent(\vee A)

$$\begin{array}{cccc} \Gamma & \varphi & \chi \\ \Gamma & \psi & \chi \\ \hline \Gamma & (\varphi \lor \psi) & \chi \end{array}$$

 \vee -Rules for the Succedent(\vee S)

(a)
$$\frac{\Gamma \qquad \varphi}{\Gamma \quad (\varphi \lor \psi)}$$

(b)
$$\frac{\Gamma \qquad \varphi}{\Gamma \quad (\psi \lor \varphi)}$$

4.3 Derivable Connective Rules

Derivable Connective Rules p.70

Second Contradiction Rule(Ctr' | Noname? p.71

$$\begin{array}{ccc}
\Gamma & \psi \\
\Gamma & \neg \psi \\
\hline
\Gamma & \varphi
\end{array}$$

Chain Rule(Ch p.70)

$$\begin{array}{cccc}
\Gamma & \varphi \\
\Gamma & \varphi & \psi \\
\hline
\Gamma & \psi
\end{array}$$

Contraposition Rules(Cp p.70)

$$\begin{array}{c|ccc} \Gamma & \varphi & \psi \\ \hline \Gamma & \neg \psi & \neg \varphi \end{array}$$

$$\Gamma \quad (\varphi \vee \psi)$$

$$\begin{array}{ccc}
\Gamma & \neg \varphi \\
\hline
\Gamma & \psi
\end{array}$$

"Modus ponens".

$$\Gamma \quad (\varphi \to \psi)$$

$$\frac{\Gamma}{\Gamma}$$
 ψ

4.4 Quantifier and Equality Rules

Quantifier Rules

∃**S**(p.72)

$$\frac{\Gamma \quad \varphi \frac{t}{x}}{\Gamma \quad \exists x \varphi}$$

Correctness.

- 3.8.4(substitution lemma)
- 3.3.2(definition of satisfaction)

∃**A**(p.72)

$$\begin{array}{cccc}
\Gamma & \varphi \frac{y}{x} & \psi \\
\hline
\Gamma & \exists x \varphi & \psi
\end{array}$$

If y is not free in $\Gamma \exists x \varphi \psi$.

Correctness.

3.4.6(Coincidence Lemma)

Equality Rules p.73

Reflexivity Rule for Equality (\equiv). ${\bf Substitution} \ \, {\bf Rule} \ \, {\bf for} \ \, {\bf Equality}({\bf Sub})$

$$\Gamma \quad t \equiv t$$

$$\begin{array}{ccc}
\Gamma & \varphi \frac{t}{x} \\
\Gamma & t \equiv t' & \varphi \frac{t'}{x}
\end{array}$$

4.5 Further Derivable Rules and Sequents

p.74

$$(a)$$
 Γ φ

$$(b) \frac{\Gamma \quad \varphi \quad \psi}{\Gamma \quad \exists x \varphi \quad \psi}$$

if x is not free in $\Gamma \psi$