

Feature X1	Feature X2	Feature X3	Feature X4	Feature X5	Target
1	22	569	35	0	Class 1
1	7	351	751 alyl	ICS	Class 2
1	45	451	542	1	Class 2
1	5	572	8	0	Class 1
0	22	565	44	1	Class 3
0	24	243	546	1	Class 3
1	78	953	42	0	Class 2

 X_1

X,

X.

X

 $\mathsf{X}_{\scriptscriptstyle{5}}$

AnalyticsVidhya

Hidden Layer

Input Layer

Multiclass Classification Problem: Sigmoid

Multiclass Classification Problem: Sigmoid

Hidden Layer

Input Layer

Analytics Vidhya
Learn everything about analytics

Multiclass Classification Problem: Sigmoid

Input Layer

Hidden Layer

Output Layer

Multiclass Classification Problem: Softmax

Returns probability for each class

Returns probability for each class

• Sigmoid Activation Function:
$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Returns probability for each class

• Sigmoid Activation Function:
$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Returns probability for each class

• Sigmoid Activation Function:
$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Non-linear activation function

Returns probability for each class

• Sigmoid Activation Function:
$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Non-linear activation function

Probability of all classes

Hidden Layer

Input Layer

Analytics Vidhya

P (Class 1) =
$$\frac{\exp(Z_{21})}{\exp(Z_{21}) + \exp(Z_{22}) + \exp(Z_{23})}$$
 $softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$

$$Z_{22} \rightarrow P \text{ (Class 2)} = \frac{\exp(Z_{22})}{\exp(Z_{21}) + \exp(Z_{22}) + \exp(Z_{23})}$$

$$Z_{23} \rightarrow P \text{ (Class 3)} = \frac{\exp(Z_{23})}{\exp(Z_{21}) + \exp(Z_{22}) + \exp(Z_{23})}$$

Example:

2.33 P (Class 1) =
$$\frac{\exp(2.33)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)} = 0.83827314$$

$$-1.46 \longrightarrow P \text{ (Class 2)} = \frac{\exp(-1.46)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)} = 0.01894129$$

0.56 P (Class 3) =
$$\frac{\exp(0.56)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$
 = 0.14278557

Example:

2.33 P (Class 1) =
$$\frac{\exp(2.33)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$
 = 0.

= 0.83827314

$$-1.46$$
 P (Class 2) = $\frac{\exp(-1.46)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$ = 0.01894129

0.56 P (Class 3) =
$$\frac{\exp(0.56)}{\exp(2.33) + \exp(-1.46) + \exp(0.56)}$$

= 0.14278557

