

Universidade Federal do Rio Grande do Norte - UFRN Instituto Metrópole Digital - IMD Núcleo de Pesquisa e Inovação em Tecnologia da Informação - nPITI Laboratório de Robótica e Sistemas Dedicados - LARS

DCA0414 - INTRODUÇÃO A ROBÓTICA

Introdução ao Processamento de Imagens - Aula 2

Ministrantes:
Daniel Fernandes

Prof. Orientador: Pablo Javier Alsina

Introdução ao Processamento de Imagens

- Filtro de média
- Filtro de Mediana
- Transformada de Hough para Círculos
- Limiarização
- Watershed
- Erosão e Dilatação
- Momento

Filtro da média

Filtros da média são usados para borrar e reduzir a quantia de ruídos na imagem. O borramento é usado em tarefas de pré-processamento, como a remoção de pequenos detalhes de uma imagem antes da extração de objetos. O borramento de imagens geralmente é aplicado usando máscaras como as mostradas a seguir:

$\frac{1}{9}$ ×	1	1	1
	1	1	1
	1	1	1

	1	2	1
1 6 ×	2	4	2
	1	2	1

Filtro de Mediana

Filtro utilizado para retirar ruídos na imagem do tipo sal e pimenta, ou seja, ruídos que não são facilmente removidos pelos filtros de borramento. Sua aplicação consiste em agrupar de forma crescente um grupo de pixel de tamanho impar e definir a saída como sendo o pixel localizado no meio.

Transformada de Hough para Círculos

A transformada de Hough para encontrar círculos se assemelha bastante ao método de encontrar linhas, onde pixels de borda que mais recebem votações para pertencer a um círculo centrado em ponto a e b e de raio r são mostrados ao usuário.

$$(x-a)^2 + (y-b)^2 = r^2$$

Limiarização

Consiste em separar regiões de uma imagem de forma binária, geralmente é usado para separar objetos em uma imagem do seu plano de fundo. A definição do melhor valor do limiar pode ser feita de forma subjetiva, porém definir o seu valor com base no estudo do histograma da imagem costuma ser uma boa prática para várias

aplicações.

Watershed

Técnica de segmentação onde a imagem é tratada como uma superfície topográfica. Nela, tendo como base um determinado número de marcadores, "inunda" aíreas onde a classe do pixel se assemelha até que toda imagem seja preenchida toda a imagem.

Erosão e Dilatação

Erosão - Torna pixel (k,j) = 0 se pelo menos i vizinhos = 0, caso contrário, mantém o seu valor

Dilatação - Torna pixel (k,j) = 1 se pelo menos i vizinhos = 1, caso contrário, mantém o seu valor.

Normalmente essas duas técnicas são combinadas para redução de ruídos ou para restaurar conexões fracas entre objetos (abertura e fechamento).

Momento

Momento de ordem k+j (k>=0, j>=0) de uma região conexa R:

$$\mathbf{m}_{kj} = \sum_{(x,y)\in R} \mathbf{x}^{k} \cdot \mathbf{y}^{j}$$

Momentos são atributos que caracterizam tamanho, forma e orientação de um objeto

Momento

Caracterizam área e posição do centróide:

$$A = m_{00}$$

$$x_c = m_{10}/m_{00}$$

$$y_c = m_{01}/m_{00}$$

Momentos centrais

Invariantes à translação:

$$\mu_{kj} = \sum (x-x_c)^k \cdot (y-y_c)^j$$

$$(x,y) \in R$$

Invariantes à translação

 μ 02 e μ 20 são os momentos de inércia de R em relação x e y através do centróide

Momento

Momento central normalizado em relação a área:

$$v_{kj} = \mu_{kj}/\mu_{00}^{(k+j+2)/2}$$

Invariantes a mudanças de escala

Dica

Função