1. Convert (1278.875)₁₀ to its equivalent representation in the following

bases:
$$(4 \text{ FE} \cdot \text{E})_{16}$$
 $\rightarrow \text{ Base } 16$
 $\rightarrow \text{ Base } 8$
 $(2376.7)_8$

SOLUTION:

$$\Rightarrow$$
 (1278.875)₁₀ = (10011111110.111)₂

Base 16: (1278.875)10 0.875 × 16 = 14.0 - 14 16 1278 =7 (1278)₁₀ = (4FE)₁₀ 7 (1278.875)10 = (4FE.E)16 Base 8: (1278.875)10 8 1278 0.875 \times 8 = 7.0 - 7 8 159 - 67 0.0 \times 8 = 0.0 \times 0 8 19 - 7 \Rightarrow (0.875)₁₀ = (0.7)₈ \Rightarrow (1278)₁₀ = (2376)₈ \Rightarrow (1278.875)₁₀ = (2376.7)₈ Base 7: (1278.875)10 7 1278 0.875 \times 7 = 6.125 -6
7 182 - 4
7 26 \wedge 0 0.875 \times 7 = 6.125 - 6
3 - 5
0.875 \times 7 = 6.125 - 6
1278) 10 = (3504) 7 $\Rightarrow (0.875)_{10} = (0.606)_{7}$ ⇒ (1278.875)₁₀ = (3504.6060)₇

$$\Rightarrow$$
 (1278)₁₀ = (1202100)₃

2. Find the Base 10 equivalents of the following numbers:

- → (3F1B.25)₁₆ (16155.14453)₁₀ → (456723.75)₈ (155091.9531)₁₀
- → (1011110001110101.10011)₂ (48 245.59375)₁₀
- → (31242.2314)₅ (2072·5344)₁₀
- → (31242.60)₇ (7674.85714)₁₀

SOLUTION:

- → (3FIB.25)16
- $= 3 \times 16 + F \times 16 + I \times 16 + B \times 16 + 2 \times 16 + 5 \times 16$
- = 12288 + 3840 + 16 + 11 + 0.125 + 0.01953
- = (16155.14453)10
- Ly (456723.75) g
- = 4x8+ 5x8+6x8+7x8+2x8+3x8+7x8+5x8
- = 131072+20480+3072+448+16+3+0.875+0.0781
- = (155091.9531)10
- 4 (1011110001110101.1do11)2
- $= 1 \times 2^{\frac{1}{4}} + 0 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{1}{4}} + 0 \times 2^{\frac$
- = 32768 + 8192+ 4096 + 2048 + 1024 + 64 + 32 +16+4+1+0.5+0.0625+0.03125
 - = (48245.59375)10

L+ (31242.2314)5

 $= 3 \times 5 + 1 \times 5 + 2 \times 5 + 4 \times 5 + 2 \times 5 + 2 \times 5 + 3 \times 5$ $+1 \times 5 + 4 \times 5 + 4$

= 1875 + 125 + 50 + 20 + 2 + 0.4 + 0.12 + 0.008 + 0.0064

= (2072.5344)10

→ (31242.60)
₇

 $= 3 \times 7 + 1 \times 7 + 2 \times 7 + 4 \times 7 + 2 \times 7 + 6 \times 7 + 0 \times 7^{2}$

= 7203+343+98+28+2+0.85714+0

= (7674.85714)10

- 3. Convert the following numbers directly to binary without using an intermediary base:
 - → (3E89.AC27)16 (11111010001001.1010110000100111)2
 - → (22144.3561)₈ (1001000|100100.0||101 110 00|)₂
- 4. Convert (1100110111001010.1011101)₂ to:
 - → Octal (146712.564)8
 - → Hexadecimal (CDCA.BA)16

Don't use an intermediary base.

SOLUTION:

consider, the following table:

Binary Octal Hena decimal 0000 0000 0000 0000 0000 0000 0000		9	
00010 00000 00010 00000 00000 00000 00000 00000 00000 0000	. Binary	Octal	Hena decimal
	000000000000000000000000000000000000000	H 12 13 14 15	C

```
Using the Table:
 3. (3E89.AC27)16
   converting each digit into its equivalent 4 bits:
(2) - 0011 1110 1000 1001 . 1019 1100, 0019 0111
=> (3E89.AC27)16 = (0011111010001001.101011000010011)
    (22144.3561)g
 (8) Converting each digit into its equivalent 3 bits:
           → 010 010 001 100 100, 011, 101, 110, 001
\Rightarrow (22|44.3561)<sub>8</sub> = (010010001100100.011101110001)
4. (1100110111001010.1011101), 3

Splitting the given No into Bits groups

(2) - 001,100,110,111,001,010,.101,110,100,1

(3) - 1 4 6 7 1 2 . 5 6 4
=> (1100110111001010.1011101)2 = (146712.564)8
 ( 1100110111001010 . 1011101)2
  3 plitting the given No. into 4 bits groups (2) → [100, 1101, 1100, 1010, 1011, 1010]
=> (11001101110010101.1011101)2 = (CD CA. BA)16
```

5. Complete the following tables:

Integer conversions between binary, octal, hex, decimal

Original Number to Base convert	Number to	Base to convert to			
	Binary /	Octal	Hex	Decimal	
Binary	110110	110110	, 66	36	54
Octal	123	1010011	123	53/	83
Hex	2D .	101101	55 V	2D V	45 /
Decimal	123	1111011.	/173 /	7B /	123

SOLUTION:

First converting each No. into its

decimal equivalent No. and then converting
the No. into required Base equivalents.

Conversions with fractions (max 3 places of precision)

Original Number to Base convert	Number to	Base to convert to			
	Binary /	Octal	Hex	Decimal	
Binary	1011.11	1011-110	13.600	B.C00	11.750
Octal	12.5	1010.101	12.500	A. A00	, 10.625
Hex	D.8	1101.1000	15.400	D.800V	13.500
Decimal	7.6	111.100/	7.463	7.999/	7.600

SOLUTION:

First converting each No. into its decimal equivalent No. and then converting the No. into the hequited Base equivalents

6. Convert the following binary numbers to their ones and twos complements:

SOLUTION:

- a). For I's complement, inverting the bits,

 ⇒ 001100001110"

 For 2's complement, adding I to I's complement,

 ⇒ 001100001111
- b). For 1's complement, inverting the bits,

 >> 000000000000

 For 2's complement, adding 1 to 1's complement,

 >> 000000000001
- c). For 1's complement, inverting the bits,

 ⇒ 011111111110 √

 For 2's complement, adding 1 to 1's complement,

 ⇒ 0111111111111