0.1. LOCALIZATION

0.1 Localization

Definition 1. A multiplicative set is a subset S of a ring R such that the following two conditions hold.

1

- 1. S contains the identity, i.e. $1 \in S$.
- 2. For any two elements $x \in S$ and $y \in S$ it is their product is contained in S, i.e. $xy \in S$.

Example 1.1. In any ring R, the subsets $\{1\}$, and R are multiplicative sets.

Example 1.2. Consider the ring of integers \mathbb{Z} . Some of the multiplicative sets in \mathbb{Z} includes

- $\{1, 2, 4, 8, \ldots\} = \{2^n \mid n \in \mathbb{N}_0\}$
- $\{1, 3, 9, 27, \ldots\} = \{3^n \mid n \in \mathbb{N}_0\}$
- $\{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, \ldots\} = \{2^n \cdot 3^m \mid n, m \in \mathbb{N}_0\}$
- $\{1, 4, 16, 64, \ldots\} = \{4^n \mid n \in \mathbb{N}\}$
- $\{1, -2, 4, -8, \ldots\} = \{(-2)^n \mid n \in \mathbb{N}\}$
- $\{1, -1, 2, -2, 4, -4, 8, -8, \ldots\} = \{\pm 2^n \mid n \in \mathbb{N}\}$

Observation: Given some elements of the ring, we may generate the multiplicative set.

Example 1.3. • In $\mathbb{Z}/2\mathbb{Z}$, the only multiplicative sets are $\{1\}$ and $\mathbb{Z}/2\mathbb{Z}$

- In $\mathbb{Z}/3\mathbb{Z}$, the multiplicative sets are $\{1\}$, $\{1,0\}$, $\{1,2\}$ and $\mathbb{Z}/2\mathbb{Z}$
- In $\mathbb{Z}/4\mathbb{Z}$, the multiplicative sets are $\{1\}$, $\{1,0\}$, $\{1,2,0\}$, $\{1,3\}$, and $\mathbb{Z}/4\mathbb{Z}$
- In $\mathbb{Z}/5\mathbb{Z}$, the multiplicative sets are $\{1\}$, $\{1,0\}$, and $\{0,1,2,3,4\}$
 - 1. $S(\{1,2\}) = \{1,2,3,4\}$
 - 2. $S(\{1,3\}) = \{1,2,3,4\}$
 - 3. $S(\{1,4\}) = \{1,4\}$
- In $\mathbb{Z}/6\mathbb{Z}$, the multiplicative sets are $\{1\}$, $\{1,0\}$
 - $-S({1,2}) = {1,2,4}$
 - $-S({1,3}) = {1,3}$
 - $-S({1,4}) = {1,4}$
 - $-S({1,5}) = {1,5}$
 - $-S({1,2,3}) = {0,1,2,3,4}$
 - $-S({1,2,5}) = {1,2,4,5}$
 - $S(\{1,3,4\}) = \{0,1,3,4\}$
 - $-S({1,3,5}) = {1,3,5}$
 - $-S({1,4,5}) = {1,2,4,5}$
- In $\mathbb{Z}/7\mathbb{Z}$, the multiplicative sets are
 - $-S({1,2}) = {1,2,4}$
 - $-S({1,3}) = {1,2,3,4,5,6}$
 - $-S({1,4}) = {1,2,4}$

$$-S(\{1,5\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,6\}) = \{1,6\}$$

$$-S(\{1,2,3\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,2,5\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,2,6\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,3,4\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,3,5\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,3,6\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,4,5\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,4,6\}) = \{1,2,3,4,5,6\}$$

$$-S(\{1,5,6\}) = \{1,2,3,4,5,6\}$$

• In $\mathbb{Z}/12\mathbb{Z}$

$$- S(\{1,2\}) = \{1,2,4,8\}$$
$$- S(\{1,3\}) = \{1,3,9\}$$

 $- S(\{1,4\}) = \{1,4\}$

Well, I wrote a python script for this

Remark. The statement: If S is a multiplicative set with 0, then $S \setminus \{0\}$ is a multiplicative set is false.

The converse is (probably) true: If S is multiplicative, then so is $S \cup \{0\}$.

Remark. A multiplicative set need not to have a finite generating set.

Question: Do multiplicative sets have countably finite generating sets?

Answer: Most certainly it isn't. There is no way that R has a countable set of elements that generate R just through multiplication.

Theorem 2. An ideal \mathfrak{p} of a ring R is prime if and only if its complement $R \setminus \mathfrak{p}$ is multiplicatively closed.

Remark. Not all multiplicative sets are the complements of a prime ideal. The above theorem gives an alternative definition of prime ideals but does not function as a definition of multiplicative sets.

Proof. Let \mathfrak{p} be an ideal of a ring R.

"\(\Rightarrow\)": Suppose $\mathfrak p$ is prime. Since $\mathfrak p$ does not contain 1, its complement $R \setminus \mathfrak p$ must contain 1. Fix two elements $x \in R \setminus \mathfrak p$ and $y \in R \setminus \mathfrak p$ and assume $xy \notin R \setminus \mathfrak p$. Then, $xy \in \mathfrak p$, but then $x \in \mathfrak p$ or $y \in \mathfrak p$ both of which are contradictions.

" \Leftarrow ": Suppose $R \setminus \mathfrak{p}$ is multiplicatively closed.

Example 2.1. Consider the ring of integers \mathbb{Z} . Some of the multiplicative sets in \mathbb{Z} includes

• $\mathbb{Z} \setminus (2) = \{..., -5, -3, -1, 1, 3, 5, ...\}$ this corresponds to the high school math observation that odd times odd is odd

Theorem 3. If \mathfrak{a} is an ideal in R, then $1 + \mathfrak{a}$ is a multiplicative set.

What about the converse? Let $1 + \mathfrak{a}$ be multiplicative.

0.2 Localization

Definition 4.

Example 4.1. • Localization of \mathbb{Z} at $S := \{1, 2, 4, 8, \ldots\}$

- some elements: $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$
- it is $\frac{1}{2} = \frac{2}{4}$ because $1 \cdot 4 2 \cdot 2 = 0$
- Localization of \mathbb{Z} at $S := \{1, -2, 4, -8, \ldots\}$
- some elements: $\frac{-1}{-2}$, $\frac{2}{4}$
- it is $\frac{-1}{-2} = \frac{2}{4}$ because $-1 \cdot 4 = -2 \cdot 2$

Definition 5.

$$\tau: R \longrightarrow S^{-1}R, x \mapsto \frac{x}{1}$$

Remark. τ is not injective

Why??

Theorem 6. For $\tau: R \longrightarrow S^{-1}R$ it is true:

- 1. $\ker \tau = \{ x \in R \mid sx = 0 \text{ for some } x \in S \}$. This means that the kernel is a subset of the zero divisor
- 2. For all $s \in S$, we have $\tau(s)$ is a unit in the Localization.
- 3. $S^{-1}R \neq 0$ iff $0 \notin S$
- 4. if S contains only units, τ bijective

Proof. 1. Let $x \in \ker(\tau)$, then $\tau(x) = \frac{x}{1} \sim \frac{0}{1} \iff xs = 0$

2. Let $s \in S$, then $\tau(s) = \frac{s}{1}$. We want to find $\frac{p}{q}$ such that $\frac{sp}{q} \sim \frac{1}{1}$ so $(sp-q)t = 0 \iff spt - qt = 0$

Yeah, so simply:

Let
$$s \in S$$
. The inverse of $\tau(s) = \frac{s}{1}$ is $\frac{1}{s}$ as $\frac{s}{s} \sim \frac{1}{1}$

3. $0 \in S$, then by definition.

0.3 Localization of Modules

Definition 7.

Theorem 8. 1. For every R-module M, there is a canonical isomorphism

$$M \otimes_R R_S \xrightarrow{\sim} M_S, (x \otimes \frac{a}{s}) \mapsto \frac{ax}{s}$$

 \square