Normed Linear Spaces

Definition Let X be a vector space over the field \mathbb{K} . A norm on X is function on $\|\cdot\|: X \to [0,\infty)$, with the properties

- i) $\|\lambda x\| = |\lambda| \|x\|$;
- ii) ||x + y|| < ||x|| + ||y||:
- iii) $||x|| = 0 \Leftrightarrow x = 0$.

for all $\lambda \in \mathbb{K}$ and $x, y \in X$. The pair $(X, \|\cdot\|)$ is said to be a normed space.

A function $p: X \to [0, \infty)$ is said to be a seminorm on X if

- (a) $p(\lambda x) = |\lambda| p(x)$.
- (b) p(x+y) < p(x) + p(y).

Every normed space is also a metric space with respect to the induced metric d(x,y) := ||x - y||.

Convergence in a normed space is defined by the metric d, that is, $x_n \to x$ in $(X, \|\cdot\|)$ if $\|x_n - x\| \to 0$ as $n \to \infty$.

A Banach space is a normed space that is a complete w.r.t. the induced metric.

Definition 1.1 A subset K of a vector space V is convex if whenever $x, y \in K$ the line segment joining x and y, lies in K, i.e, for every $\lambda \in [0,1]$ we have $\lambda x + (1-\lambda)y \in K$.

Lemma 1.1 In any normed space $(X, \|\cdot\|)$, $\mathbb{B}_X := \{x \in X, \|x\| \le 1\} \text{ and } B_X := \{x \in X, \|x\| < 1\} \text{ are }$ convex.

Lemma 1.2 Suppose that $N: X \to [0, \infty)$ satisfies

- (i) N(x) = 0 if and only if x = 0;
- (ii) $N(\lambda x) = |\lambda| N(x)$ for every $\lambda \in \mathbb{K}, x \in X$ and, in addition, that the set $B := \{x : N(x) \le 1\}$ is convex.

Then N satisfies

$$N(x+y) \le N(x) + N(y) \tag{1.1}$$

and so N defines a norm on X.

Proof We can assume that N(x)>0, N(y)>0. In this case $x/N(x)\in B$ and $y/N(y)\in B$ so using the convexity of B we have

$$\frac{N(x)}{N(x)+N(y)}\frac{x}{N(x)} + \frac{N(y)}{N(x)+N(y)}\frac{y}{N(y)} \in B.$$

Thus

$$\frac{x+y}{N(x)+N(y)} \in B,$$

which implies that

$$1 \ge N\left(\frac{x+y}{N(x)+N(y)}\right) = \frac{N(x+y)}{N(x)+N(y)} \Rightarrow N(x+y) \le N(x)+N(y).$$

 $f:[a,b] \to \mathbb{R}$, is convex if whenever $x,y \in [a,b]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \ \forall \lambda \in (0, 1).$$
 (1.2)

If $f \in C^2(a,b) \cap C([a,b])$ and $f''(x) > 0 \ \forall x \in (a,b)$, then f is convex.

Note that $s \to |s|^p$ is convex for all $1 \le p < \infty$ and that $s \to e^s$ is convex.

Examples i) $(\mathbb{K}^n, \|\cdot\|)$ with

$$||x|| = ||x||_{l^2} = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} x \in \mathbb{K}^n.$$
 (1.3)

ii) $(\mathbb{K}^n, \|\cdot\|_{l^p}), \ 1 \leq p < \infty$, where

$$||x||_{l^p} = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} x \in \mathbb{K}^n.$$
 (1.4)

iii) $(\mathbb{K}^n, \|\cdot\|_{l^\infty})$ with

$$||x||_{l^{\infty}} = \max_{j=1,\cdots,n} |x_j|. \tag{1.5}$$

Lemma 1.3 (Minkowski's inequality in \mathbb{K}^n) For all $1\leq p\leq \infty$, if $x,y\in \mathbb{K}^n$, then

$$||x+y||_{l^p} \le ||x||_{l^p} + ||y||_{l^p}. \tag{1.6}$$

Proof. The case $p=\infty$ is obvious. Suppose that $1\leq p<\infty$. By Lemma 1.2, we need only to show that

$$B = \{x \in \mathbb{K}^n : ||x||_{l^p} \le 1\} = \{x \in \mathbb{K}^n : ||x||_{l^p}^p \le 1\}$$

is convex. Note that $\forall 1 \leq p < \infty$, $t \to |t|^p$ is convex. If $x,y \in \mathbb{K}^n$, $\lambda \in (0,1)$, then

$$\|\lambda x + (1 - \lambda)y\|_{l^p}^p = \sum_{i=1}^n |\lambda x_i + (1 - \lambda)y_i|^p$$

$$\leq \sum_{i=1}^{n} (\lambda |x_i| + (1-\lambda)|y_i|)^p \leq \sum_{i=1}^{n} (\lambda |x_i|^p + (1-\lambda)|y_i|^p) \leq 1,$$

and so $\lambda x + (1 - \lambda)y \in B$ and B is convex.

Lemma 1.4 Let $\dim(V) < \infty$ and $\{e_j\}_{j=1}^n$ be a basis of V. Then

$$||x||_E = \left(\sum_{j=1}^n |\alpha_j|^2\right)^{1/2}, \text{ for } x = \sum_{j=1}^n \alpha_j e_j$$
 (1.7)

is a norm on V.

Proof. We check the triangle inequality. Let

$$x = \sum_{j=1}^{n} \alpha_j e_j, y = \sum_{j=1}^{n} \beta_j e_j \in V$$
; then

$$||x + y||_E = ||\alpha + \beta||_{l^2} \le ||\alpha||_{l^2} + ||\beta||_{l^2} = ||x||_E + ||y||_E,$$

where
$$\alpha = (\alpha_1, \dots, \alpha_n)$$
 and $\beta = (\beta_1, \dots, \beta_n)$.

Example iv) The sequence space $l^p(\mathbb{K}), 1 \leq p < \infty$, consists of all \mathbb{K} - valued sequences $x = (x_j)_{j=1}^\infty$ such that the l^p norm is finite, where

$$||x||_{l^p} = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p};$$
 (1.8)

and $l^{\infty}(\mathbb{K})$ is the space of bounded sequences equipped with the norm

$$||x||_{\infty} = \sup_{j \in \mathbb{N}} |x_j|. \tag{1.9}$$

Lemma 1.5 (Minkowski's inequality in $l^p(\mathbb{K})$) For all $1 \leq p \leq \infty$, if $x,y \in l^p(\mathbb{K})$, then $x+y \in l^p(\mathbb{K})$ and

$$||x+y||_{l^p} \le ||x||_{l^p} + ||y||_{l^p}.$$
 (1.10)

Proof. Let $1 \le p \le \infty$. We use (1.6) to get

$$\left(\sum_{j=1}^{n} |x_j + y_j|^p\right)^{1/p} \leq \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p\right)^{1/p} \\ \leq ||x||_{l^p} + ||y||_{l^p}.$$

We can take the limit as $n \to \infty$ to deduce (1.10).

Example v) On the Space C([0,1]), the collection of continuous functions on [0, 1], we define

$$||f|| = \max_{x \in [0,1]} |f(x)|.$$

 $(C([0,1]),\|\cdot\|)$ is a normed space.

Example vi) If X is a metric space consider the space $C_b(X; \mathbb{K})$ of all bounded continuous functions from X into \mathbb{K} . Then

$$||x||_{\infty} := \sup_{x \in X} |f(x)|$$

defines a norm on $C_b(X;\mathbb{K})$. If X is compact, then $C_b(X;\mathbb{K})=C(X;\mathbb{K})$, and this norm is the same as the maximum norm

$$||x||_{\infty} := \max_{x \in X} |f(x)|.$$

Example vii) On the Space C([0,1]) for any $1 \le p < \infty$,

$$||f||_p := \left(\int_0^1 |f(x)|^p dx\right)^{1/p}$$

defines a norm.

• If $x, y \in X$, then

$$|||x|| - ||y||| \le ||x - y||;$$

in particular, the map $x \to ||x||$ is continuous from $(X, ||\cdot||)$ into \mathbb{R} .

Definition Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space X are equivalent - we write $\|\cdot\|_1 \sim \|\cdot\|_2$ -if there exist constants $0 < c_1 \le c_2$ such that

$$c_1 ||x||_1 \le ||x||_2 \le c_2 ||x||_1 \text{ for all } x \in X.$$
 (1.11)

- The above notion of 'equivalence' is an equivalence relation.
- Two equivalent norms on X induce the same topology on X.
- If $\|\cdot\|_1 \sim \|\cdot\|_2$ then

$$||x_n - x||_1 \to 0 \Leftrightarrow ||x_n - x||_2 \to 0.$$

- If $(x_n), (y_n) \subset X$ with $x_n \to x, y_n \to y$ and if $(a_n) \subset \mathbb{K}^n$ with $a_n \to a$, then $||x_n|| \to ||x||$; $x_n + y_n \to x + y$, and $a_n x_n \to ax$.
- If $1 \le p \le q \le \infty$, then $l^p(\mathbb{K}) \subset l^q(\mathbb{K})$ and

$$||x||_{l^q} \le ||x||_{l^p}, \ \forall x \in l^p(\mathbb{K}).$$
 (1.12)

• Let $1 \le p < q$. For any C > 0, we do not have

$$||x||_{l^p} \le C||x||_{l^q}$$
, for every $x \in l^1(\mathbb{K})$. (1.13)

In fact, define $x^{(n)} \in l^1$ by

$$x_j^{(n)} = \begin{cases} j^{-1/p}, & j = 1, \dots, n \\ 0 & j = n+1, \dots \end{cases}$$

Then $\|x^{(n)}\|_{l^q} < \sum_{j=1}^{\infty} j^{-q/p} < \infty \quad \forall n \text{ but } \|x^{(n)}\|_{l^p} = \sum_{j=1}^n j^{-1} \text{ is unbounded, so (1.13) cannot hold for any } C > 0.$

Definition $(X,\|\cdot\|_X)$ and $(Y,\|\cdot\|_Y)$ are isomorphic, write $X\simeq Y$, if \exists a bijective linear map $T:X\to Y$ and $c_1>0,c_2>0$ such that

$$c_1 ||x||_X \le ||T(x)||_Y \le c_2 ||x||_X \ \forall x \in X;$$
 (1.14)

and are *isometric* if in addition T preserves the norm, i.e.,

$$||T(x)||_Y = ||x||_X \ \forall x \in X,$$

and in this case, T is called an isometry from X to Y.

Theorem 1.1 If $\dim(X) = n < \infty$, then any two norms on X are equivalent.

Proof. Let $\{u_j\}_{j=1}^n$ be a base of X and define

$$\left\| \sum_{j=1}^{n} x_j u_j \right\|_{F} = \left(\sum_{j=1}^{n} |x_j|^2 \right)^{1/2}.$$

 $\|\cdot\|_E$ is a norm on X. It suffices to show that any norm $\|\cdot\|$ on X is equivalent to $\|\cdot\|_E$. We have

$$\left\| \sum_{j=1}^{n} x_j u_j \right\| \le \beta \left\| \sum_{j=1}^{n} x_j u_j \right\|_E, \tag{1.15}$$

where $\beta = \left(\sum_{j=1}^n \|u_j\|^2\right)^{1/2}$. Note that $f: (\mathbb{K}^n, \|\cdot\|) \to (X, \|\cdot\|_E)$, $f(x_1, \cdots, x_n) = \sum_{j=1}^n x_j u_j$ is an isometry. Thus, $B:= \{u \in X: \|u\|_E = 1\} = \{\sum_{j=1}^n x_j u_j: \sum_{j=1}^n |x_j|^2 = 1\}$ is a compact subset of $(X, \|\cdot\|_E)$. By (1.14), $\|\cdot\|$ is continuous on $(X, \|\cdot\|_E)$. Hence $\exists v_0 \in B$ such that $\|v_0\| \le \|u\|$, $\forall u \in B$ and so $\|v_0\| \|w\|_E < \|w\|$, $\forall w \in X$.

• If S is a nonempty subset of a linear space X, we denote by $\mathsf{Span}(S)$ the collection of all finite linear combinations of elements of S , i.e.,

$$\mathrm{Span}S = \left\{ \sum_{i=1}^{n} x_i u_i, \ x_i \in \mathbb{K}, n \in \mathbb{N}, u_i \in S, i = 1, ..., n \right\}.$$

- $\mathrm{Span}(S)$ is a linear subspace of X, called the linear subspace spanned by S and $\mathrm{call}\ \mathrm{clin}(S) := \overline{\mathrm{Span}(S)}$ the closed linear span of S. If $X = \mathrm{Span}(S)$ we say that S spans X.
- ullet A set $E\subset X$ is linearly independent if any finite collection of elements of E is linearly independent.
- ullet A Hamel basis for a vector space X is any linearly independent spanning set.
- Every vector space has a Hamel basis.

Lemma If X is a normed space, the following are equivalent:

- (i) X is separable (i.e. X contains a countable dense subset);
- (ii) The unit sphere in $X,\ S_X:=\{x\in X:\|x\|=1\}$, is separable;
- (iii) X contains a countable set $\{x_j\}_{j=1}^{\infty}$ s.t. $\overline{\operatorname{Span}\{x_j\}_{j=1}^{\infty}} = X$.

Proof. ii) \Rightarrow iii): Let $\{x_j\}_{j=1}^{\infty}$ be a dense subset of S_X . If $0 \neq x \in X$ and $\epsilon > 0$, then from $x/\|x\| \in S_X$, $\exists x_k$ s.t.

$$||x_k - x/||x||| < \epsilon/||x||, i.e., ||x - x_k||x||| < \epsilon,$$

and since $x_k ||x|| \in \overline{\operatorname{Span}\{x_j\}_{j=1}^{\infty}}$ this gives (iii).

- iii) \Rightarrow i): The collection of finite linear combinations of the $\{x_j\}$ with rational coefficients is countable. This countable collection is dense in X.
- If $(X,\|\cdot\|)$ is a Banach space and Y is a linear subspace of X then $(Y,\|\cdot\|)$ is a Banach space if and only Y is closed.

Lemma For $1 \leq p < \infty$ the space $l^p(\mathbb{K})$ is separable, but $l^\infty(\mathbb{K})$ is not separable.

Proof If $1 \leq p < \infty$, then the linear span of $\{e^{(j)}\}_{j=1}^{\infty}$, where $e_i^{(j)} = \delta_{ij}$ is dense in $l^p(\mathbb{K})$: given any $x \in l^p(\mathbb{K})$ and any $\epsilon > 0$ $\exists N$ s.t.

$$\sum_{j=n+1}^{\infty} |x_j|^p < \epsilon \quad \text{for every } n \ge N$$

and so

$$\left\| x - \sum_{j=1}^{n} x_j e^{(j)} \right\|_{l^p} = \left(\sum_{j=n+1}^{\infty} |x_j|^p \right)^{1/p} < \epsilon.$$

In the space $l^{\infty}(\mathbb{K})$, consider the uncountable set

$$S := \{ x \in l^{\infty} : x_j = 0 \text{ or } 1 \text{ for each } j \in \mathbb{N} \}.$$

Any two distinct elements x and y in S satisfy

$$||x - y||_{l^{\infty}} = 1$$

since they must differ by 1 in at least one term. Any dense set A of $l^{\infty}(\mathbb{K})$ must contain an uncountable number of elements: since A is dense, for every $x \in S$ there must be some $x' \in A$ such that $\|x'-x\|_{l^{\infty}} < 1/3$. But if x,y are distinct elements of S, then $x' \neq y'$ since

$$||x' - y'||_{l^{\infty}} > 1/3$$

by triangular inequality. Thus A contains an uncountable number of elements.

Definition A normed space $(X, \|\cdot\|)$ is complete if every Cauchy sequence in X converges in X (to a limit that lies in X). A Banach space is a complete normed space.

Steps to show completeness:

- (i) use the definition of what it means for a sequence to be Cauchy to identify a possible limit;
- (ii) show that the original sequence converges to this 'possible limit' in the appropriate norm;
- (iii) check that the 'limit' lies in the correct space.

Theorem For each $1 \leq p \leq \infty$ the space $l^p(\mathbb{K})$ is complete w.r.t. its standard norm.

Proof Let $1 \leq p < \infty$ and $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \cdots) \subset l^p(\mathbb{K})$ be a Cauchy sequence. Then $\forall \epsilon > 0, \exists N_\epsilon$ s.t.

$$||x^{(n)} - x^{(m)}||_{l^p}^p = \sum_{i=1}^{\infty} |x_j^{(n)} - x_j^{(m)}| < \epsilon^p \ \forall n, m \ge N_{\epsilon}. \quad (1.16)$$

Thus $(x_j^{(n)})_{n=1}^\infty$ is Cauchy in $\mathbb K$ for every j and so for each $j\in\mathbb N$

$$x_j^{(n)} \to a_j \text{ as } n \to \infty$$

for some $a_j \in \mathbb{K}$. Set $a = (a_1, a_2, \cdots)$; then (1.16) implies that

$$||x^{(n)} - a||_{l^p}^p = \sum_{i=1}^{\infty} |x_j^{(n)} - a_j| < \epsilon^p \ \forall n \ge N_{\epsilon},$$

and so $x^{(n)}-a\in l^p$ provided that $n\geq N_\epsilon$. This implies that $a\in l^p$ and $x^{(n)}\to a$ in $l^p(\mathbb{K})$.

Theorem Let X be a metric space and let $\mathbb{F}_b(X:\mathbb{K})$ be the collection of all functions $f:X\to\mathbb{K}$ that are bounded, i.e. $\sup_{x\in X}|f(x)|<\infty$. Then $\mathbb{F}_b(X:\mathbb{K})$ is complete with the supremum norm

$$||f||_{\infty} := \sup_{x \in X} |f(x)|.$$

Remark

$$||f_n - f||_{\infty} \to 0 \Leftrightarrow f_n \to f \text{ uniformly.}$$

If (f_n) is a Cauchy sequence in $\mathbb{F}_b(X:\mathbb{K})$, then given any $\epsilon>0$, $\exists N$ s.t.

$$||f_n - f_m||_{\infty} = \sup_{x \in X} |f_n(x) - f_m(x)| < \epsilon \quad \forall m, n \ge N.$$
 (1.17)

Thus for each $x \in X$, $(f_n(x))$ is a Cauchy sequence in $\mathbb K$ and so we can set

$$f(x) = \lim_{k \to \infty} f_k(x).$$

From (1.17) we have

$$|f_n(x) - f_m(x)| < \epsilon \ \forall m, n \ge N,$$

where N does not depend on x. Letting $m \to \infty$ we obtain

$$|f_n(x) - f(x)| < \epsilon \ \forall n \ge N,$$

where N does not depend on x again. It follows that

$$\sup_{x \in X} |f_n(x) - f(x)| < \epsilon \quad \forall n \ge N$$
 (1.18)

and so $f_n \to f$ uniformly on X. Since f_N is bounded and we have from (1.18) that $||f_N - f||_{\infty} < \epsilon$. Thus f is bounded.

Corollary If (X, d) is any metric space, then $C_b(X : \mathbb{K})$, the space of all bounded continuous functions from X to \mathbb{K} , is complete when equipped with the supremum norm $||f||_{\infty} := \sup_{x \in X} |f(x)|$. Proof Note that $C_b(X : \mathbb{K})$ is a linear subspace of $\mathbb{F}_b(X : \mathbb{K})$. It then suffices to show that $C_b(X : \mathbb{K})$ is a closed subspace. Let $(f_k) \in C_b(X : \mathbb{K})$ and $||f_k - f||_{\infty} \to 0$. Fix $x \in X$. Given $\epsilon > 0$, $\exists N$ such that $||f_n - f||_{\infty} < \epsilon/3$ for every $n \geq N$. Since $f_N \in C_b(X : \mathbb{K}), \ \exists \delta > 0 \text{ s.t.}$ $d(x,y) < \delta \Rightarrow |f_N(y) - f_N(x)| < \epsilon/3$. Thus if $d(x,y) < \delta$, then $|f(y)-f(x)| \leq |f(y)-f_N(x)|+|f_N(y)-f_N(x)|$

$$|f(y) - f(x)| \le |f(y) - f_N(x)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon,$$

which shows that f is continuous at x. Since this holds for any $x \in X$, we conclude that $f \in C_b(X : \mathbb{K})$.

Theorem The space C([a,b]) of all continuously differentiable functions on [a,b] is complete with the C^1 norm $||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty}$.

Proof Let $(f_n) \in C([a,b])$ be Cauchy in C^1 norm. $\forall \epsilon > 0, \exists N$ s.t.

$$||f_n - f_m||_{\infty} + ||f'_n - f'_m||_{\infty} < \epsilon \quad n, m \ge N.$$
 (1.19)

Thus (f_n) and (f'_n) are both Cauchy sequences in C([a,b]) with the supremum norm and so $\exists f,g\in C([a,b])$ s.t. such that $\|f_n-f\|_\infty \to 0, \|f'_n-g\|_\infty \to 0$. Claim: g=f'. In fact, from

$$\left| \int_{a}^{x} f'_{n}(t)dt - \int_{a}^{x} g(t)dt \right| \le \int_{a}^{x} |f'_{n}(t) - g(t)|dt \le (b - a)||f'_{n} - g||_{\infty},$$

we have by taking $n\to\infty$ in $f_n(x)=f_n(a)+\int_a^x f_n'(t)dt$ that $f(x)=f(a)+\int_a^x g(t)dt$ and so f'=g. Hence $f\in C'([a,b])$. Taking $m\to\infty$ in (1.19), we have $\|f_n-f\|_\infty+\|f_n'-f'\|_\infty<\epsilon \ \ \forall n\ge N$ which shows that $f_n\to f$ in $C^1([a,b])$.

The space $C^k([a,b])$ of all k times continuously differentiable functions on [a,b] with the C^k norm

$$||f||_{C^k} = \sum_{j=0}^k ||f^{(j)}||_{\infty}$$
, where $f^{(j)} = \frac{d^j f}{dx^j}$.

is complete.

If $\{x_n\}$ is a sequence in a normed linear space V, the series $\sum_{n=1}^{\infty} x_n$ is said to converge to x if $\sum_{n=1}^{N} x_n \to x$ as $N \to \infty$, and it is called absolutely convergent if $\sum_{n=1}^{\infty} ||x_n|| < \infty$

Lemma A normed linear space V is complete iff every absolutely convergent series in V converges.

Proof. If V is complete and $\sum_{n=1}^{\infty} ||x_n|| < \infty$, let $S_N = \sum_{n=1}^N x_n$. Then for N > M, we have

$$||S_N - S_M|| \le \sum_{n=M+1}^N ||x_n|| \to 0, \text{ as } M, N \to \infty.$$

so the sequence $\{S_N\}$ is Cauchy and hence convergent. Conversely, let $\{x_n\}$ be a Cauchy sequence. We can choose $n_1 < n_2 < \cdots$ such that $||x_n - x_m|| < 2^{-j}$ for $m, n \geq n_j$. Let $y_1 = x_{n_1}, \ y_j = x_{n_j} - x_{n_{j-1}}$ for j > 1. Then $\sum_{j=1}^k y_j = x_{n_k}$, and

$$\sum_{j=1}^{\infty} ||y_j|| \le ||y_1|| + \sum_{j=1}^{\infty} \frac{1}{2^j} < \infty,$$

so $\lim_{k\to\infty} x_{n_k} = \sum_{j=1}^\infty y_j$ exists. But since $\{x_n\}$ is Cauchy, we know that $\{x_n\}$ converges to the same limit as $\{x_{n_k}\}$.

• If $(X, \|\cdot\|_X) \simeq (Y, \|\cdot\|_Y)$, then $(X, \|\cdot\|_X)$ is complete iff $(Y, \|\cdot\|_Y)$ is complete.

Proof Let $T: X \to Y$ be an isomorphism between X and Y with

$$c_1 ||x||_X \le ||Tx||_Y \le c_2 ||x||_X, \ \forall x \in X$$

for some $c_1>0, c_2>0$. Assume that Y is complete. Let (x_n) be a Cauchy sequence in X; then (Tx_n) is Cauchy in Y and so $Tx_n\to y$ for some $y\in Y$. Let $x=T^{-1}y$; then

$$||x_n - x||_X \le \frac{1}{c_1} ||Tx_n - y||_Y \to 0.$$

Hence, X is complete.

• If X is a normed space and $\|\cdot\|_1$) and $\|\cdot\|_2$) are two equivalent norms on X, then $(X, \|\cdot\|_1)$ is complete $\Leftrightarrow (X, \|\cdot\|_2)$ is complete.

• If $(X,\|\cdot\|_X)$ and $(Y,\|\cdot\|_Y)$ are complete, then $X\times Y$ is complete for the norm $\|(x,y)\|_1:=\|x\|_X+\|y\|_Y$ and also for the equivalent norm $\|(x,y)\|_2:=\left(\|x\|_X^2+\|y\|_Y^2\right)^{1/2}$.

Proof If (x_n,y_n) is a Cauchy sequence in $X\times Y$ using the norm $\|\cdot\|_1$, then from

$$||(x_n, y_n) - (x_m, y_m)||_1 = ||x_n - x_m||_X + ||y_n - y_m||_y$$

we know that (x_n) is Cauchy in $(X,\|\cdot\|_X)$ and (y_n) is Cauchy in $(Y,\|\cdot\|_Y)$. Thus $\exists x\in X,y\in Y$ s.t. $x_n\to x$ in $(X,\|\cdot\|_X)$, $y_n\to y$ in $(Y,\|\cdot\|_Y)$. Since

$$||(x_n, y_n) - (x, y)||_1 = ||x_n - x||_X + ||y_n - y||,$$

it follows that $(x_n,y_n) \to (x,y)$ in $(X \times Y,\|\cdot\|_1)$, and so this space is complete.

Riesz's Lemma Let $(X,\|\cdot\|)$ be a normed space and Y a proper closed subspace of X. Then $\exists x \in X$ with $\|x\| = 1$ such that $\|x - y\| > 1/2$ for every $y \in Y$.

Proof Let $x_0 \in X \setminus Y$ and set $d = d(x_0,Y) := \inf_{y \in Y} \|x_0 - y\|$. If $d = d(x_0,Y) = 0$, then $\exists (y_n) \in Y$ s.t. $\|y_n - y_0\| \to 0$, i.e. $y_n \to x_0$ and then since Y is closed, we would have $x_0 \in Y$. Thus, d > 0.

Choose $y_0\in Y$ s.t. $d\leq \|x_0-y_0\|\leq 2d$ and set $x=\frac{x_0-y_0}{\|x_0-y_0\|};$ then $\|x\|=1,$ and for any $y\in Y$ we have

$$||x - y|| = \left\| \frac{x_0 - y_0}{||x_0 - y_0||} - y \right\|$$

$$= \frac{1}{||x_0 - y_0||} ||x_0 - [y_0 + y ||x_0 - y_0||]||$$

$$\geq \frac{d}{||x_0 - y_0||} \geq \frac{d}{2d} = \frac{1}{2}.$$

- If $(X, \|\cdot\|)$ is a Banach space and Y is a linear subspace of X, then $(X, \|\cdot\|)$ is a Banach space if and only if Y is closed.
- \bullet A finite-dimensional subspace of a normed linear space X is complete and so is closed.

Theorem A normed space X is finite-dimensional iff its closed unit ball is compact.

Proof Let $\dim X = \infty$. Take any $x_1 \in X$ with $\|x_1\| = 1$. Then $\operatorname{span}\{x_1\}$ is a proper closed linear subspace of X, so $\exists x_2 \in X$ with $\|x_2\| = 1$ and $\|x_2 - x_1\| \geq 1/2$. Now $\operatorname{Span}\{x_1, x_2\}$ is a proper closed linear subspace of X so $\exists x_3 \in X$ with $\|x_3\| = 1$ and $\|x_3 - x_2\| \geq 1/2$ and $\|x_3 - x_1\| \geq 1/2$.

One can continue inductively to obtain a sequence (x_n) with $\|x_n\|=1$ and $\|x_i-x_j\|\geq 1/2$ whenever $i\neq j$. No subsequence of the (x_n) can be Cauchy, so no subsequence can converge, from which it follows that the closed unit ball in X is not compact. \square

• A set is precompact if its closure is compact.

Lemma A subset A of a complete normed space $(X,\|\cdot\|)$ is precompact iff any sequence in A has a Cauchy subsequence.

Proof

 \Rightarrow : Let A be precompact and that $(x_n) \in A$. Since $(x_n) \in \overline{A}$ and \overline{A} is compact, (x_n) has a convergent subsequence, and any convergent sequence is Cauchy.

 \Leftarrow : Suppose that any sequence in A has a Cauchy subsequence. Take a sequence $(y_n) \in \overline{A}$; then $\exists \ (x_n) \in A$ such that $\|x_n - y_n\| < 1/n$. Let x_{n_k} be a Cauchy subsequence of (x_n) ; then (y_{n_k}) is Cauchy too, and so converges to a limit y, which is contained in \overline{A} since this set is closed. This shows that \overline{A} is compact.

Arzelá-Ascoli Theorem If X is a compact metric space then $A \subset C(X:\mathbb{R})$ is precompact iff it is bounded $(\exists R>0 \text{ s.t.} \|f\|_{\infty} \leq R \ \forall f \in A)$ and equicontinuous, i.e. $\forall \epsilon>0 \ \exists \delta>0 \text{ s.t.}$

$$d(x,y)<\delta \Rightarrow |f(x)-f(y)|<\epsilon \text{ for every } f\in A, x,y\in X.$$

Proof \Leftarrow : Take a countable set (x_n) as below:

• (Exercise 2.14) In any compact metric space \exists a countable subset $(x_n)_{n=1}^\infty$ s.t. $\forall \epsilon>0$ $\exists M(\epsilon)$ such that for every $x\in X$ we have

$$d(x_j, x) < \epsilon \text{ for some } 1 < j < M(\epsilon).$$

Let $(f_j) \subset A$. We can use a 'diagonal argument' to find a subsequence (which we relabel) such that $f_j(x_k)$ converges for every k. The idea is to repeatedly extract subsequences to ensure that $f_j(x_k)$ converges for more and more of the (x_k) .

 $\begin{array}{l} (f_j) \text{ is bounded} \Rightarrow f_j(x_1) \text{ is bounded in } \mathbb{K} \Rightarrow \exists (f_{1,j}) \subset (f_j) \text{ s.t.} \\ f_{1,j}(x_1) \text{ converges. Since } (f_{1,j}(x_2)) \text{ is bounded in } \mathbb{K}, \\ \exists (f_{2,j}) \subset (f_{1,j}) \text{ s.t. } f_{2,j}(x_2) \text{ converges. Since } \\ (f_{2,j}(x_1)) \subset (f_{1,j}(x_1)), \ (f_{2,j}(x_1)) \text{ still converges.} \end{array}$

We continue, extracting subsequences of subsequences, so that

$$f_{n,j}(x_i)$$
 converges for all $i = 1, ..., n$.

Consider the sequence $(f_{m,m})_{m=1}^{\infty}$. This is a subsequence of (f_j) , and a subsequence of $(f_{n,j})$ once $m \geq n$. We have $(f_{m,m}(x_k))_{m=k}^{\infty} \subset (f_{k,j}(x_k))_{j=1}^{\infty}$. Thus

$$f_{m,m}(x_k)$$
 converges for all $k \in \mathbb{N}$.

Set $g_m = f_{m,m}$. Let's show that (g_m) is Cauchy in the supremum norm.

Given $\epsilon > 0$, since $(g_n) \subset (f_j)$ is equicontinuous $\exists \delta > 0$ s.t.

$$d(x,y) < \delta \Rightarrow |g_n(x) - g_n(y)| < \epsilon/3 \ \forall \ n, \ x, y.$$

 $\exists M(\delta) \text{ s.t. } \forall x \in X, \ \exists \ x_i \text{ with } 1 \leq i \leq M \text{ s.t. } d(x,x_i) < \delta.$ Since $g_n(x_i)$ converges for every $i, \ \exists N \text{ s.t. } \text{if } n,m \geq N, \text{ then}$

$$|g_n(x_i) - g_m(x_i)| < \epsilon/3, \ 1 \le i \le M$$

Thus, if n,m>N, we have for any x, by taking $i\in\{1,\cdots,M\}$ with $d(x,x_i)<\delta$ that

$$|g_n(x) - g_m(x)| \le |g_n(x) - g_n(x_i)| + |g_n(x_i) - g_m(x_i)| + |g_m(x_i) - g_m(x)| < \epsilon,$$

which shows that if $n, m \geq N$, then $\|g_n - g_m\|_{\infty} \leq \epsilon$ and so (g_n) is Cauchy.

 \Rightarrow : The boundedness of A follows from the fact that \overline{A} is compact.

Since A is precompact, it is totally bounded. Thus, $\forall \ \epsilon > 0$, $\exists \{f_1,...,f_n\}$ s.t. $\forall f \in A$, we have

$$||f - f_i||_{\infty} < \epsilon/3$$
 for some $i \in \{1, ..., n\}$.

Since the f_j are all continuous functions on the compact set X they are uniformly continuous, so $\exists \delta>0$ s.t. $\forall i=1,\cdots,n$

$$d(x,y) < \delta \Rightarrow |f_i(x) - f_i(y)| < \epsilon/3.$$

For any $f \in A$ choose j such that $||f - f_j||_{\infty} < \epsilon/3$; then whenever $d(x,y) < \delta$ we have

$$|f(x) - f(y)| \leq |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_j(y) - f(y)|$$

$$\leq ||f - f_j||_{\infty} + |f_j(x) - f_j(y)| + ||f_j - f||_{\infty} < \epsilon,$$

so A is equicontinuous.