Applications linéaires

Exercice 1 Soient E et F des \mathbb{K} -espaces vectoriels de dimension finie, soit $f \in \mathcal{L}(E, F)$.

1) On suppose que:

$$\forall g \in \mathcal{L}(F, E), f \circ g \circ f = 0 \Rightarrow g = 0.$$

Montrer que f est bijective.

2) Calculer, en fonction de $p = \dim E$, $n = \dim F$ et $r = \operatorname{rg} f$ la dimension de :

$$H = \{ g \in \mathcal{L}(F, E), f \circ g \circ f = 0 \}.$$

Exercice 2 Soit E et F deux espaces-vectoriels de dimensions finies. Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ vérifiant $u \circ v \circ u = u$ et $v \circ u \circ v = v$.

- 1) Montrer que $E = \operatorname{Im} v \oplus \operatorname{Ker} u$.
- 2) Montrer que $\operatorname{rg} u = \operatorname{rg} v = \operatorname{rg} v \circ u = \operatorname{rg} u \circ v$.

Exercice 3

Soit E un \mathbb{K} -ev de dimension finie n non nulle.

L'ensemble $\mathcal{L}(E, \mathbb{K})$ des formes linéaires de E est un \mathbb{K} -ev appelé le dual de E et noté E^* . Le dual de E^* est appelé le bidual de E et noté E^{**} . On a ainsi $(E^*)^* = E^{**}$.

Partie I — Base duale —

Soit $\mathscr{B} = (e_k)_{1 \leq k \leq n}$ une base de E. Pour tout $i \in [1, n]$, on note e_i^* l'unique forme linéaire de E définie par la relation :

$$\forall j \in [1, n], e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}.$$

On rappelle que δ est appelé symbole de Kronecker.

La famille $(e_k^*)_{1 \leq k \leq n}$ est alors notée \mathscr{B}^* .

1) Pour tout $k \in [1, n]$, e_k^* est appelée l'application coordonnée d'indice k de \mathscr{B} . Justifier cette appellation en montrant que pour tout $x \in E$ on a $x = \sum_{k=1}^{n} e_k^*(x)e_k$.

- 2) a) Montrer que \mathscr{B}^* est une famille libre de E^* .
 - **b)** Montrer que pour toute $f \in E^*$, $f = \sum_{k=1}^n f(e_k)e_k^*$.
 - c) En déduire que \mathscr{B}^* est une base de E^* , appelée la base duale de \mathscr{B} .

Partie II — Bidual et base antéduale —

- 3) Pour tout $x \in E$ on note ev_x l'application $E^* \to \mathbb{K}$, appelée évaluation de f en x. $f \mapsto f(x)$
 - a) Soit $x \in E$. Montrer que ev_x appartient à E^{**} .
 - b) Montrer que l'application ev : $E \rightarrow E^{**}$ est un isomorphisme de E sur E^{**} . $x \mapsto \text{ev}_x$
 - c) Quelle est l'application e_i^{**} ?
- 4) Soit $\mathscr{F} = (f_1, \ldots, f_n)$ une base de E^* . Montrer qu'il existe une et une seule base $\mathscr{G} = (g_1, \ldots, g_n)$ de E telle que $\mathscr{G}^* = \mathscr{F}$. Cette base est appelée base antéduale de \mathscr{F} .