2.2. EXERCICES D'APPLICATION

Exercice 1

Soit la fonction f définie par $f(x) = x^3-3x^2+4$ et C_f sa courbe dans un repère orthonormal.

- 1. Etudier les variations de f et dresser son tableau de variation.
- 2. a) Montrer que f admet sur $[2; +\infty[$ une bijection réciproque f^{-1} dont on précisera l'ensemble de définition.
- b) f^{-1} est-elle dérivable en 0 ?
- 3. Montrer que l'équation f(x) = 1 admet une unique solution sur $[2; +\infty[$.
- 4. Déterminer les points d'intersection de C_f avec les axes de coordonnées.
- 5. Déterminer l'équation de (T) la tangente à C_f en $x_0 = 1$.
- 6. Tracer C_f , la tangente (T) et $C_{f^{-1}}$.
- 7. Résoudre graphiquement l'équation f(x) = m où m est un paramètre réel.

Exercice 2

Soit la fonction f telle que $f(x) = \frac{x^2}{1-x}$ et C_f sa courbe.

- 1. Déterminer D_f l'ensemble de définition de f et montrer qu'il existe trois réels a, b, c tels que $f(x) = ax + b + \frac{c}{1-x}$.
- 2. Déterminer (d) l'asymptote oblique à C_f et étudier sa position par rapport à C_f .
- 3. Etudier les variations de f et tracer sa courbe.
- 4. Montrer que le point d'intersection des asymptotes est centre de symétrie de C_f .
- 5. Soit la fonction g définie par $g(x) = \frac{x^2}{1+x}$; Tracer C_g la courbe de g à partir de C_f .

Exercice 3

Soit la fonction f définie sur [-2; 2] par

$$f(x) = \begin{cases} \frac{2-\sqrt{4-x^2}}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Etudier la continuité et la dérivabilité de f en 0 et en 2 ; interpréter graphiquement les résultats.
- 2. Etudier la parité de f et les variations de f sur [0; 2].
- 3. Tracer C_f la courbe de f et les tangentes à C_f en 0 et en 2, dans un repère orthonormal d'unité 2cm.

Exercice 4

Soit la fonction f, f(x) = cos4x + 2sin2x et C_f sa courbe

- 1. a) Justifier que l'étude de f peut être restreinte à l'intervalle $[0; \pi]$.
- b) Montrer que $f'(x) = 4(1-2\sin 2x)\cos 2x$.
- 2. Résoudre sur $[0; \pi]$ l'équation f'(x) = 0 et en déduire le tableau de variation de f.

- 3. Démontrer que la droite d'équation $x = \frac{\pi}{4}$ est axe de symétrie de C_f .
- 4. Construire $C_f \operatorname{sur} [-\pi; \pi]$.

2.3. EXERCICES D'ENTRAINEMENT

Exercice 5

Soit la fonction f définie par $f(x) = \frac{2x+2}{x^2+2x-3}$ et C_f sa courbe.

- 1. Etudier les variations de f.
- 2. Déterminer les coordonnées de I, le point d'intersection de C_f avec l'axe des abscisses.
- 3. Montrer que le point I est centre de symétrie de C_f.
- 4. Tracer C_f.
- 5. Discuter graphiquement suivant les valeurs du paramètre réel m, le nombre et le signe des solutions de l'équation $mx^2 + 2(m-1)x (3m+2) = 0$.

Exercice 6

On considère la fonction f définie par $f(x) = |x+2| + \frac{2}{x+1}$ et C_f sa courbe.