Deep Generative Models

Lecture 6

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

The main challenge is a determinant of the Jacobian.

Residual flows: planar/Sylvester

$$g(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{z} + \mathbf{u} \, \sigma(\mathbf{w}^T \mathbf{z} + b); \quad g(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{z} + \mathbf{A} \, \sigma(\mathbf{B}\mathbf{z} + \mathbf{b}).$$

Matrix determinant lemma for calculating the Jacobian.

Autoregressive flows

$$x_i = \tau(z_i, c(\mathbf{z}_{1:i-1})) \Leftrightarrow z_i = \tau^{-1}(x_i, c(\mathbf{z}_{1:i-1}))$$

Jacobian is triangular.

Rezende D. J., Mohamed S. Variational Inference with Normalizing Flows, 2015 Berg R. et al. Sylvester normalizing flows for variational inference, 2018 Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Recap of previous lecture

Gaussian autoregressive flow (MAF)

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_i = \sigma_i(\mathbf{x}_{1:i-1}) \cdot z_i + \mu_i(\mathbf{x}_{1:i-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_i = (x_i - \mu_i(\mathbf{x}_{1:i-1})) \cdot \frac{1}{\sigma_i(\mathbf{x}_{1:i-1})}.$$

Generation function $g(\mathbf{z}, \boldsymbol{\theta})$ is **sequential**. Inference function $f(\mathbf{x}, \boldsymbol{\theta})$ is **not sequential**.

Inverse autoregressive flow (IAF)

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_i = \tilde{\sigma}_i(\mathbf{z}_{1:i-1}) \cdot z_i + \tilde{\mu}_i(\mathbf{z}_{1:i-1})$$
 $\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_i = (x_i - \tilde{\mu}_i(\mathbf{z}_{1:i-1})) \cdot \frac{1}{\tilde{\sigma}_i(\mathbf{z}_{1:i-1})}.$

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Recap of previous lecture

Autoregressive flows

RealNVP: Affine coupling law

$$\begin{cases} \mathbf{z}_{1:d} = \mathbf{x}_{1:d}; \\ \mathbf{z}_{d:m} = \tau(\mathbf{x}_{d:m}, c(\mathbf{x}_{1:d})); \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{1:d} = \mathbf{z}_{1:d}; \\ \mathbf{x}_{d:m} = \tau^{-1}(\mathbf{z}_{d:m}, c(\mathbf{z}_{1:d})). \end{cases}$$

Dinh L., Krueger D., Bengio Y. NICE: Non-linear Independent Components Estimation, 2014 Dinh L., Sohl-Dickstein J., Bengio S. Density estimation using Real NVP, 2016

Linear flows

RealNVP

$$\begin{cases} \mathbf{z}_{1:d} = \mathbf{x}_{1:d}; \\ \mathbf{z}_{d:m} = \tau(\mathbf{x}_{d:m}, c(\mathbf{x}_{1:d})); \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}_{1:d} = \mathbf{z}_{1:d}; \\ \mathbf{x}_{d:m} = \tau^{-1}(\mathbf{z}_{d:m}, c(\mathbf{z}_{1:d})). \end{cases}$$

- First step is a **split** operator which decouples a variable into 2 subparts: **x**₁ and **x**₂ (usualy channel-wise).
- ▶ We should **permute** components between different layers.

$$z = Wx$$
, $W \in \mathbb{R}^{m \times m}$

In general, we need $O(m^3)$ to invert matrix.

Invertibility

- ▶ Diagonal matrix O(m).
- ▶ Triangular matrix $O(m^2)$.
- It is impossible to parametrize all invertible matrices.

Linear flows

$$z = Wx$$
, $W \in \mathbb{R}^{m \times m}$

Matrix decompositions

LU-decomposition

$$W = PLU$$
,

where P is a permutation matrix, L is lower triangular with positive diagonal, U is upper triangular with positive diagonal.

QR-decomposition

$$W = QR$$

where \mathbf{Q} is an orthogonal matrix, \mathbf{R} is an upper triangular matrix with positive diagonal.

Hoogeboom E., Van Den Berg R., and Welling M. Emerging convolutions for generative normalizing flows, 2019

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Glow samples

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

MAF/IAF pros and cons

MAF

IAF

Sampling is slow.

- Sampling is fast.
- ► Likelihood evaluation is fast. ► Likelihood evaluation is slow. How to take the best of both worlds?

WaveNet

Autoregressive model with caused dilated convolutions for raw audio waveforms generation.

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{t=1}^{r} p(x_t|\mathbf{x}_{1:t-1},\boldsymbol{\theta}).$$

Parallel WaveNet

- 24kHz instead of 16kHz using increased dilated convolution filter size from 2 to 3.
- ▶ 16-bit signals with mixture of logistics instead of 8-bit signal with 256-way categorical distribution.

Probability density distillation

- 1. Train usual WaveNet (MAF) via MLE (teacher network).
- Train IAF WaveNet (student network), which attempts to match the probability of its own samples under the distribution learned by the teacher.

Student objective

$$KL(p_s||p_t) = H(p_s, p_t) - H(p_s).$$

More than 1000x speed-up relative to original WaveNet!

Parallel WaveNet

Likelihood-based models

Exact likelihood evaluation

- Autoregressive models (PixelCNN, WaveNet);
- ► Flow models (NICE, RealNVP, Glow).

Approximate likelihood evaluation

Latent variable models (VAE).

What are the pros and cons of each of them?

VAE recap

ELBO

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})}
ightarrow \max_{oldsymbol{\phi},oldsymbol{ heta}}.$$

image credit:

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z}))$$
 (or Softmax $(\pi(\mathbf{z}))$).

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Posterior collapse

Representation learning

"Identifies and disentangles the underlying causal factors of the data, so that it becomes easier to understand the data, to classify it, or to perform other tasks".

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta) p(\mathbf{z}) d\mathbf{z}$$

If the decoder model $p(\mathbf{x}|\mathbf{z}, \theta)$ is powerful enough to model $p(\mathbf{x}|\theta)$ the latent variables \mathbf{z} becomes irrelevant.

$$\mathcal{L}(q, \theta) = \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \right].$$

Early in the training the approximate posterior $q(\mathbf{z}|\mathbf{x})$ carries little information about \mathbf{x} and the model sets the posterior to the prior to avoid paying any cost $KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$.

PixelVAF

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

- More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.
- ▶ Too powerful $p(\mathbf{x}|\mathbf{z}, \theta)$ could lead to posterior collapse, where variational posterior $q(\mathbf{z}|\mathbf{x})$ will not carry any information about data and close to prior $p(\mathbf{z})$.

How to make the generative model $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ more powerful?

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1},\mathbf{z},\boldsymbol{\theta})$$

PixelVAF

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables.
- ► Local statistics are captured by limited receptive field autoregressive model.

MNIST results

Gulrajani I. et al. PixelVAE: A Latent Variable Model for Natural Images, 2016

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ makes the model expressive, but posterior collapse is possible.
- ► PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

How to force the model encode information about x into z?

KL annealing

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Start training with $\beta=$ 0, increase it until $\beta=$ 1 during training.

Free bits

$$\mathcal{L}(q, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))).$$

It ensures the use of less than λ bits of information and results in $\mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \geq \lambda$.

Bowman S. R. et al. Generating Sentences from a Continuous Space, 2015 Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Importance Sampling

Generative model

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Here
$$f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$$
.

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Could we choose better $f(\mathbf{x}, \mathbf{z})$?

IWAE

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Let define

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$$
$$\mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z} | \mathbf{x})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = p(\mathbf{x} | \boldsymbol{\theta})$$

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) = \\ &= \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left[\frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k|\boldsymbol{\theta})}{q(\mathbf{z}_k|\mathbf{x})} \right] = \mathcal{L}_K(q, \boldsymbol{\theta}). \end{split}$$

IWAE

VAE objective

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}
ightarrow \max_{q,oldsymbol{ heta}}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{\mathsf{z}_1, \dots, \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x})} \left(\frac{1}{K} \sum_{k=1}^K \log \frac{p(\mathsf{x}, \mathsf{z}_k | \theta)}{q(\mathsf{z}_k | \mathsf{x})} \right) \to \max_{q, \theta}.$$

IWAE objective

$$\mathcal{L}_{K}(q, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K} \sim q(\mathbf{z} | \mathbf{x})} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) \rightarrow \max_{q, \boldsymbol{\theta}}.$$

If K = 1, these objectives coincide.

Summary

- Linear flows try to parametrize set of invertible matrices via matrix decompositions.
- More powerful decoder in VAE leads to more expressive generative model. However, too expressive decoder could lead to the posterior collapse.
- The decoder weakening is a set of techniques to avoid the posterior collapse.
- ► The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.