MCQ Paper - test

Generated Question Paper

MCQ Examination (ANSWERS)

Name:	
Class:	Section:
Roll no.:	

Instructions:

- Fill OMR sheet with blue/black pen.
- Fill circles completely.
- · No stray marks.
- Enter Name, Class, Section.

SET A

Questions: **9**Duration: **120min**

Calculus: Differentiation and Integration

This section covers fundamental and advanced topics in differential and integral calculus.

1. Evaluate the definite integral: $\int_0^{\infty} (\pi/2) \sin^2(x) dx$

A. 1

B. π/2

c. π/4 *

D. 0

Explanation:

To solve, use the power-reduction identity $\sin^2(x) = (1 - \cos(2x))/2$. The integral becomes $\int_0^{\Lambda} (\pi/2) (1/2 - \cos(2x)/2) dx$. Integrating yields [x/2 - $\sin(2x)/4$] from 0 to $\pi/2$. Evaluating at the limits gives $(\pi/4 - \sin(\pi)/4) - (0 - \sin(0)/4) = \pi/4$.

2. Consider the function of two variables provided below:

Let f(x, y) be a differentiable function defined as $f(x, y) = e^{x}(xy) + cos(x^2 + y^2)$.

What is the value of the partial derivative $\partial f/\partial x$ at the point (0, 0)?

A. e

B. -1

c. 1

D. 0 *

Explanation:

Using the product rule for differentiation, $\partial f/\partial x = (\partial/\partial x [e^{(xy)}])$ * $\cos(x^2 + y^2) + e^{(xy)} * (\partial/\partial x [\cos(x^2 + y^2)]) = y^*e^{(xy)}*\cos(x^2+y^2) - 2x^*e^{(xy)}*\sin(x^2+y^2)$. Evaluating at (0,0) gives $0^*e^{0*}\cos(0) - 0^*e^{0*}\sin(0) = 0$.

3. The Fundamental Theorem of Calculus connects the concepts of differentiation and integration.

Statement I:

If F'(x) = f(x) for all x in [a, b], then $\int f(x) dx = F(b) - F(a)$.

Statement II:

If f is continuous on [a, b], then the function $G(x) = \int^x f(t) dt$ is differentiable on (a, b) and G'(x) = f(x).

Which of the statements above are considered parts of the Fundamental Theorem of Calculus?

- A. Statement II only
- B. Neither statement is correct
- c. Statement I only
- D. Both Statement I and Statement II *

Explanation:

The Fundamental Theorem of Calculus is commonly presented in two parts. Statement I is the second part, which provides a method for evaluating definite integrals. Statement II is the first part, which establishes the relationship between the derivative and the integral.

Linear Algebra: Matrices and Vector Spaces

This section tests knowledge of matrix properties, linear transformations, and vector spaces.

4. Match each type of matrix in Column A with its defining property in Column B.

Column A: Matrix
Type

1. Orthogonal
2. Symmetric
3. - c. A = -A
Skew-Symmetric

4. Idempotent - d. $A^{-1} = A$

Which option represents the correct matching?

A. 1-b, 2-a, 3-d, 4-c

B. 1-a, 2-d, 3-b, 4-c

c. 1-d, 2-c, 3-a, 4-b

D. 1-d, 2-a, 3-c, 4-b *

Explanation:

The definitions are: Orthogonal matrix $(A^{-1} = A)$, Symmetric matrix (A = A), Skew-Symmetric matrix (A = -A), and Idempotent matrix $(A^2 = A)$. The choice correctly aligns these definitions.

- **5.** For any two n × n matrices A and B, which of the following properties is NOT always true?
 - i. det(A) = det(A)
 - ii. det(AB) = det(A)det(B)
 - iii. det(A + B) = det(A) + det(B)
 - iv. If A is invertible, $det(A^{-1}) = 1/det(A)$
 - A. Property iv
- B. Property iii *
- c. Property ii
- **D.** Property i

Explanation:

The determinant of a sum of matrices is generally not equal to the sum of their determinants. This is a common misconception. All other listed properties are fundamental theorems of matrix determinants.

6. Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by the rule T(x, y, z) = (x + 2y - z, 3x + y + 4z).

Based on the transformation T, evaluate the following statements:

Statement I:

The kernel (null space) of T has a dimension greater than zero.

Statement II:

The transformation T is surjective (onto).

Which assessment of the statements is correct?

- A. Both statements are false
- **B.** Statement I is true, Statement II is false
- c. Both statements are true *
- **D.** Statement I is false, Statement II is true

Explanation:

The matrix for T is A = [[1, 2, -1], [3, 1, 4]]. The rank of A is 2, as the rows are linearly independent. By the Rank-Nullity Theorem, $\operatorname{rank}(T)$ + $\operatorname{nullity}(T) = \operatorname{dim}(\operatorname{domain}) = 3$. So, 2 + $\operatorname{nullity}(T) = 3$, which implies $\operatorname{nullity}(T) = 1$. Since the $\operatorname{nullity}$ is > 0, the kernel is non-trivial (Statement I is true). Since the $\operatorname{rank}(T) = 2$, which equals the dimension of the codomain \mathbb{R}^2 , the transformation is surjective (Statement II is true).

Complex Analysis and Series

Questions on complex numbers, Euler's formula, and the convergence of infinite series.

7. For a complex number z = a + ib, where $i^2 = -1$, consider the following statements:

Assertion (A):

The modulus |z| is given by the formula $\sqrt{(a^2 + b^2)}$.

Reason (R):

|z| geometrically represents the distance of the point (a, b) from the origin in the Argand (complex) plane.

Which of the following is true regarding statements (A) and (R)?

- A. Both (A) and (R) are true, and(R) is the correct explanation of (A). *
- B. (A) is false but (R) is true.
- c. (A) is true but (R) is false.
- **p.** Both (A) and (R) are true, but (R) is not the correct explanation of (A).

Explanation:

The assertion (A) correctly states the formula for the modulus of a complex number. The reason (R) provides the correct geometric interpretation. The formula in (A) is derived from the Pythagorean theorem applied to the distance described in (R).

- 8. Consider the infinite series $S = \Sigma_{n=1 \text{ to } \infty} ((-1)^n * n) / (n^2 + 1)$.

 Determine the nature of the convergence of the series S.
 - A. Absolutely convergent
 - **B.** The series does not converge or diverge
 - c. Divergent
 - D. Conditionally convergent *

Explanation:

The series is an alternating series. We apply the Alternating Series Test with $b = n/(n^2+1)$. Since b is positive, decreasing for n≥1, and $\lim(n\to\infty) \quad b = 0,$ the series converges. To test for absolute convergence, examine we Σ $n/(n^2+1)$. Using the Limit Comparison Test with the divergent harmonic series Σ 1/n, we find that Σ n/(n²+1) also diverges. Therefore, the series is conditionally convergent.

9. Euler's formula states that $e^{(i\theta)} = \cos(\theta) + i \sin(\theta)$, linking complex exponentials with trigonometric functions.

Using this formula, which step in the following simplification of $e^{(i\pi)} + 1$ contains an error?

Step 1: Substitute $\theta = \pi$ into the formula, yielding $e^{(i\pi)} = \cos(\pi) + i \sin(\pi)$.

Step 2: Evaluate the trigonometric functions: $cos(\pi) = -1$ and $sin(\pi) = 0$.

Step 3: Conclude that $e^{(i\pi)} = -1 + i(0) = -1$.

Step 4: Perform the final addition: $e^{(i\pi)} + 1 = 1 + 1 = 2$.

A. Step 3

B. Step 1

c. Step 4 *

D. Step 2

Explanation:

Steps 1, 2, and 3 correctly derive that $e^{(i\pi)} = -1$. This is a famous result known as Euler's Identity. Step 4 makes an error in the final calculation. It should be $e^{(i\pi)} + 1 = -1 + 1 = 0$, not 1 + 1 = 2.

* * * * END * * * *