EE419/519 Homework Assignment #4

Due December 17, 2024

1. Consider the following converter. S is ON for D_1T_S . The capacitor, C, is sufficiently large so that the output ripple is negligible. Ignore the voltage drop of the diodes. We have V_d =300V, L=100 μ H, L_M =1.5mH, and T_S =40 μ S.

- i. Assuming that i_L is always greater than 0, choose N_1 , N_2 , and D to have V_0 =12V.
- ii. Find the maximum value of R_L to ensure a continuous mode of operation.
- iii. Choose a value for N_3 to have i_M go to zero $4\mu s$ before the end of the cycle.
- iv. Choose a load resistance R_L larger than the maximum value. Determine the output voltage under this condition. Note that the average value of i_L is equal to V_o/R_L .
- 2. The converter below has V_d =200V, D, T_S =40 μ s. S_1 and S_2 are ON consecutively for a duty cycle of D<0.5. S_1 turns on at the beginning of the cycle, and S_2 turns on at the half-point of the cycle. The capacitor, C, is sufficiently large so that the output ripple is negligible. Ignore the voltage drop of the diodes. The inductors are L_M =18mH and L=100 μ H.

- a. Assume that both diodes D_1 and D_2 are ON during the time switches are off. Choose N_1 , N_2 , and D to have V_0 =18V.
- b. Find the maximum value of R_L to ensure this mode of operation by plotting the i_L for the boundary case. Note that during the time switches are both off, to assure that both D_1 and D_2 are ON, $i_L(t)$ should be greater than $(N_1/2N_2)V_dDT_s/L_M$.
- c. Plot the diode currents i_{D1} and i_{D2} for the boundary case.