Mathématiques – Terminale spécialité

Corrigés des exercices

Table des matières

1 Compléments sur la dérivation

2

Compléments sur la dérivation 1

Exercice 1 La fonction f est définie sur l'intervalle [-2;6] par

$$f(x) = 0,5x^2 - 2x - 4.$$

Pour tout $x \in \mathbb{R}$:

$$f'(x) = 0.5 \times 2x - 2 \times 1 - 0 = x - 2.$$

La dérivée est du premier degré, donc pour obtenir le tableau de signe, il faut résoudre une équation, puis regarder le signe de a :

$$x-2=0$$

$$x-\cancel{2}+\cancel{2}=0+2$$

$$x=2.$$

a = 1 (puisque x - 2 signifie (1x - 2)), a est \oplus donc le signe est de la forme $(-\phi + 1)$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	-2	2	6
f'(x)	_	- 0	+
f(x)	2	-6	2

Pour compléter l'extrémité des flèches, on calcule :

- $f(-2) = 0.5 \times (-2)^2 2 \times (-2) 4 = 2$ $f(2) = 0.5 \times 2^2 2 \times 2 4 = -6$ $f(6) = 0.5 \times 6^2 2 \times 6 4 = 2$

On peut aussi faire un tableau de valeurs à la calculatrice.

Remarque: La courbe représentative est une parabole, dont le sommet *S* a pour coordonnées (2; -6).

Exercice 2 On considère un segment [AB] de longueur 4 et un point mobile M pouvant se déplacer librement sur ce segment.

$$A \longrightarrow A \longrightarrow A$$

On note x la longueur du segment [AM] et f(x) le produit des longueurs $AM \times BM$.

1.
$$BM = AB - AM = 4 - x$$
, donc

$$f(x) = AM \times BM$$

$$= x \times (4 - x)$$

$$= x \times 4 + x \times (-x)$$

$$= 4x - x^{2}.$$

2. Le produit des longueurs $AM \times BM$ est donné par f(x), donc maximiser ce produit revient à maximiser la fonction f. On étudie donc les variations : pour tout $x \in [0;4]$,

$$f'(x) = 4 \times 1 - 2x = -2x + 4.$$

On résout :

$$-2x+4=0$$

$$-2x+4-4=0-4$$

$$\frac{-2x}{-2}=\frac{-4}{-2}$$

$$x=2.$$

a = -2, a est Θ donc le signe est de la forme $|+ \varphi -$

On obtient le tableau de signe de f' et le tableau de variations de f:

Il n'est pas utile ici de compléter l'extrémité des flèches: tout ce qui nous intéresse, c'est la valeur de x pour laquelle f atteint son maximum.

Conclusion: f atteint son maximum lorsque x = 2, donc le produit $AM \times BM$ est maximal lorsque x = 2; c'est-à-dire quand M est le milieu de [AB].

Remarque: Cet exemple est celui qu'a choisi Fermat vers 1637 pour exposer sa méthode de l'adégalité – ancêtre de la dérivation – pour déterminer le maximum et le minimum d'une fonction.

Exercice 3 La fonction g est définie sur \mathbb{R} par

$$g(x) = 0.5x^3 + 0.75x^2 - 3x - 1.$$

Pour tout $x \in \mathbb{R}$:

$$g'(x) = 0.5 \times 3x^2 + 0.75 \times 2x - 3 \times 1 - 0 = 1.5x^2 + 1.5x - 3.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = 1, 5, b = 1, 5, c = -3.
- le discriminant est $\Delta = b^2 4ac = 1,5^2 4 \times 1,5 \times (-3) = 20,25$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1, 5 - \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 - 4, 5}{3} = \frac{-6}{3} = -2,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1, 5 + \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 + 4, 5}{3} = \frac{3}{3} = 1.$$

3

 $a = 1.5 \ a \text{ est} \oplus \text{donc le signe est de la forme} + \phi - \phi +$

x	$-\infty$	-2		1		+∞	
g'(x)		+	0	-	0	+	
g(x)			4		-2.75		7

- $g(-2) = 0.5 \times (-2)^3 + 0.75 \times (-2)^2 3 \times (-2) 1 = 4$ $g(1) = 0.5 \times 1^3 + 0.75 \times 1^2 3 \times 1 1 = -2.75$

Remarque: Voici à quoi ressemble la courbe représentative :

Exercice 4 La fonction h est définie sur $[1; +\infty[$ par

$$h(x) = (x - 6)\sqrt{x}.$$

On utilise la formule pour la dérivée d'un produit avec

$$u(x) = x - 6 \qquad , \qquad v(x) = \sqrt{x},$$

$$u'(x) = 1 \qquad , \qquad v'(x) = \frac{1}{2\sqrt{x}}.$$

On obtient, pour tout $x \in [1; +\infty[$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 1 \times \sqrt{x} + (x - 6) \times \frac{1}{2\sqrt{x}}$$

$$= \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{2x}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{3x - 6}{2\sqrt{x}}.$$
(rappel: $\sqrt{x} \times \sqrt{x} = \sqrt{x^2} = x$)

• On résout rapidement :

$$3x - 6 = 0 \iff 3x = 6 \iff x = \frac{6}{3} = 2.$$

- Dans 3x 6, $a = 3 \oplus$, donc $\phi +$
- $2\sqrt{x}$ est strictement positif pour tout $x \in [1; +\infty[$.

On a donc le tableau:

x	1		2		+∞
3x-6		-	0	+	
$2\sqrt{x}$		+		+	
h'(x)		_	0	+	
h(x)	-5		$-4\sqrt{2}$		Л

•
$$h(1) = (1-6) \times \sqrt{1} = -5 \times 1 = -5$$
;
• $h(2) = (2-6) \times \sqrt{2} = -4\sqrt{2}$.

•
$$h(2) = (2-6) \times \sqrt{2} = -4\sqrt{2}$$
.