Factorisation de Cholesky

On considère un système linéaire Ax = b avec $b \in IR^N$ et $A \in M_N(\mathbb{R})$ symétrique définie positive $(y^T Ay > 0 \ \forall y \in IR^N \setminus \{0\})$ et donc A inversible. La méthode de Cholesky pour résoudre ce type de système est basée sur le résultat suivant:

Théorème (factorisation de Cholesky)

Soit $A \in M_N(IR)$ symétrique définie positive. Alors il existe une unique matrice $T \in M_N(IR)$ triangulaire inférieure telle que :

$$t_{ii} > 0$$
 et $A = T T^{T}$.

Remarque:

Réciproquement, l'existence d'une factorisation de Cholesky implique *A* symétrique définie positive.

$$(\operatorname{car} x^{T} A x)$$
$$= \left\| T^{T} x \right\|_{2}^{2}$$

En utilisant la factorisation de Cholesky, on a donc:

$$Ax = b \Leftrightarrow \begin{cases} A = T T^{T} \\ T(T^{T}x) = b \end{cases} \Leftrightarrow \begin{cases} A = T T^{T} \\ T^{T}x = y \\ Ty = b \end{cases}$$

La méthode de Cholesky pour résoudre Ax = b consiste en 3 étapes:

- * factorisation de Cholesky $A = T T^T$
- * résolution du système triangulaire Ty = b (descente)
- * résolution du système triangulaire $T^T x = y$ (remontée)

Cette décomposition est très intéressante lorqu'on doit résoudre plusieurs systèmes de même matrice A sym def >0 avec des seconds membres b différents: la factorisation est effectuée une seule fois (c'est l'opération la plus coûteuse)

Nous allons donner un algorithme permettant de calculer la factorisation $A = T T^T$ en $\approx N^3/3$ opérations arithmétiques élémentaires lorsque $N \to \infty$ (pour une matrice A pleine)

Le coût total pour résoudre le système linéaire Ax = bpar la méthode de Cholesky est donc $\approx N^3/3$ lorsque $N \to \infty$:

- * factorisation de Cholesky $A = T T^T$: $\approx N^3/3$
- * résolution de $Ty = b : O(N^2)$ car système triangulaire
- * résolution de $T^T x = y : O(N^2)$ car système triangulaire

 \Rightarrow moins coûteux que méthode de Gauss $\approx 2N^3/3$

Plan:

1- Preuve du théorème de factorisation de Cholesky

2- Calcul de la factorisation :

- -algorithme de Cholesky (identification)
- -exemple
- -calcul du coût lorsque N → ∞
- -remarques (erreurs d'arrondis,...)

Preuve de la factorisation de Cholesky à partir de A=LU

Soit $A \in M_N(IR)$ symétrique définie positive.

Alors
$$A = LU$$
 $\operatorname{car} \Delta_k = \begin{pmatrix} a_{1,1} & \cdots & a_{1,k} \\ \vdots & & \vdots \\ a_{k,1} & \cdots & a_{k,k} \end{pmatrix}$ inversible $\forall k \ge 1$

En effet Δ_k est sym def >0: $\forall x \in \mathbb{R}^k \setminus \{0\}$,

$$x^{T} \Delta_{k} x = \begin{pmatrix} x_{1} & \cdots & x_{k} & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} a_{1,1} & \cdots & a_{1,N} \\ \vdots & & \vdots & & \vdots \\ a_{N,1} & \cdots & a_{N,N} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{k} \\ 0 \\ \vdots \\ 0 \end{pmatrix} > 0$$

et $(\Delta_k \text{ sym def } > 0) \Rightarrow (\Delta_k \text{ inversible})$

Comme A est symétrique, nous allons montrer que:

$$U = DL^{T}, D = diag(u_{11}, u_{22}, ..., u_{NN})$$

et donc la factorisation A = LU s'écrit:

$$A = LDL^{T}$$

Preuve: on remarque que $A = A^T = U^T L^T = U^T D^{-1} D L^T$ (*U* inversible donc $D = \text{diag}(u_{11}, u_{22}, ..., u_{NN})$ l'est aussi)

Donc
$$A = LU = (U^{T}D^{-1})(DL^{T})$$

- * U^TD^{-1} est triangulaire inférieure de diagonale unité
- * DL^T est triangulaire supérieure
- \Rightarrow par unicité de la factorisation $LU: U = DL^T \quad (L = U^T D^{-1})$

Puisque $A = LDL^T$ avec L inversible (matrices A, D congruentes): $A \text{ sym def } > 0 \Leftrightarrow D \text{ sym def } > 0 \quad (x^T A x = y^T D y \text{ avec } y = L^T x)$

Puisque $D = diag(u_{11}, u_{22}, ..., u_{NN})$, on a donc :

A sym def >0
$$\Leftrightarrow u_{ii}>0 \forall i=1,...,N$$

En notant $D^{1/2} = \text{diag}(u_{11}^{1/2}, u_{22}^{1/2}, ..., u_{NN}^{1/2}) : A = LD^{1/2}D^{1/2}L^T$, d'où :

$$A = TT^{T}$$
 avec $T = LD^{1/2}$ triangulaire inférieure, $t_{ii} = u_{ii}^{1/2} > 0$

On a donc montré l'existence de la factorisation de Cholesky de A

Preuve de l'unicité de la factorisation de Cholesky:

supposons $A = TT^T$ avec T triangulaire inférieure et $t_{ii} > 0$ et montrons qu'on a nécessairement $T = LD^{1/2}$.

Pour cela on utilise l'unicité de la factorisation A = LU.

On a
$$A = TT^{T} = (T\Lambda^{-1})(\Lambda T^{T})$$
 avec $\Lambda = \text{diag}(t_{11}, t_{22}, ..., t_{NN}),$

 $T\Lambda^{-1}$ est triang. inf de diagonale unité, ΛT^{T} est triang. sup, donc par unicité de la factorisation A = LU:

$$\Lambda T^T = U \implies t_{ii}^2 = u_{ii} \implies t_{ii} = \sqrt{u_{ii}} \text{ car } t_{ii} > 0, \text{ i.e. } \Lambda = D^{1/2}$$

et $T\Lambda^{-1} = L \implies T = L\Lambda = LD^{1/2}$

Algorithme de factorisation Cholesky:

Soit $A \in M_N(IR)$ symétrique définie positive.

La factorisation de Cholesky $A = TT^{T}$

 $(T \in M_N(IR))$ triangulaire inférieure, $t_{ii} > 0$) se calcule comme suit:

pour tout j = 1,...,N:

$$\mathbf{t}_{j,j} = \left(a_{j,j} - \sum_{k < j} \mathbf{t}_{j,k}^2\right)^{1/2}$$

pour tout i = j + 1,...,N:

$$t_{i,j} = \frac{1}{t_{j,j}} \left(a_{i,j} - \sum_{k < j} t_{i,k} t_{j,k} \right)$$

Justification de l'algorithme de Cholesky: on calcule $(t_{ij},...,t_{Ni})$ successivement pour j = 1,...,N, par identification des coefficients $(a_{ii},...,a_{Ni})$ dans $A = TT^T$

Puisque $A = TT^T$ avec T triangulaire inférieure:

$$a_{i,j} = \sum_{k=1}^{\min(i,j)} \mathbf{t}_{i,k} \mathbf{t}_{j,k}$$

-Etape 1 : calcul de 1ère colonne de T à partir de celle de A

$$a_{1,1} = t_{1,1}^2 \Rightarrow \boxed{t_{1,1} = (a_{1,1})^{1/2}} \quad (a_{1,1} > 0 \text{ car } A \text{ sym def } > 0)$$

pour tout $i \ge 2$: $a_{i,1} = t_{i,1} t_{1,1} \Rightarrow \boxed{t_{i,1} = \frac{a_{i,1}}{t_{1,1}}}$

pour tout
$$i \ge 2$$
: $a_{i,1} = t_{i,1}t_{1,1} \Longrightarrow t_{i,1} = \frac{a_{i,1}}{t_{1,1}}$

-Récurrence: on suppose connues les colonnes 1,..., p de T, calculons la (p+1)ième colonne de T

On rappelle que (identification dans $A = TT^{T}$):

$$a_{i,j} = \sum_{k=1}^{\min(i,j)} t_{i,k} t_{j,k}$$

$$\Rightarrow a_{p+1,p+1} = \sum_{k=1}^{p+1} t_{p+1,k}^2 = t_{p+1,p+1}^2 + \sum_{k=1}^p t_{p+1,k}^2$$

$$\Rightarrow t_{p+1,p+1}^2 = a_{p+1,p+1} - \sum_{k=1}^p t_{p+1,k}^2 > 0 \text{ (puisque } T \text{ existe)}$$

On en déduit (puisque $t_{p+1,p+1} > 0$):

$$\mathbf{t}_{p+1,p+1} = \left(a_{p+1,p+1} - \sum_{k=1}^{p} \mathbf{t}_{p+1,k}^{2}\right)^{1/2}$$

Pour compléter le calcul de la colonne p + 1 de T, il reste à calculer $t_{i,p+1}$ pour tout $i \ge p + 2$:

$$a_{i,p+1} = \sum_{k=1}^{p+1} t_{i,k} t_{p+1,k} = t_{i,p+1} t_{p+1,p+1} + \sum_{k=1}^{p} t_{i,k} t_{p+1,k}$$

$$\Rightarrow t_{i,p+1} t_{p+1,p+1} = a_{i,p+1} - \sum_{k=1}^{p} t_{i,k} t_{p+1,k} \text{ , où } t_{p+1,p+1} > 0 \text{ est connu,}$$

$$\Rightarrow t_{i,p+1} = \frac{1}{t_{p+1,p+1}} \left(a_{i,p+1} - \sum_{k=1}^{p} t_{i,k} t_{p+1,k} \right)$$

Remarque : l'algorithme de Cholesky permet de savoir si $A \in M_N(IR)$ symétrique est définie positive. C'est le cas si et seulement si

l'algo peut être mené à son terme: $a_{j,j}$ - $\sum_{k < j} t_{j,k}^2 > 0$ pour tout j = 1,...,N

Exemple de factorisation de Cholesky:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 5 & 3 \\ 1 & 3 & 6 \end{pmatrix} = TT^{T} = \begin{pmatrix} t_{11} & 0 & 0 \\ t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & t_{33} \end{pmatrix} \begin{pmatrix} t_{11} & t_{21} & t_{31} \\ 0 & t_{22} & t_{32} \\ 0 & 0 & t_{33} \end{pmatrix}$$

$$t_{11}^2 = 1$$
 et $t_{11} > 0$ donc $t_{11} = 1$,
 $t_{11}t_{21} = -1$ donc $t_{21} = -1$, $t_{11}t_{31} = 1$ donc $t_{31} = 1$

$$t_{21}^2 + t_{22}^2 = a_{22}$$
 et $t_{22} > 0$ donc $t_{22} = (a_{22} - t_{21}^2)^{1/2} = 2$
 $t_{31}t_{21} + t_{32}t_{22} = a_{32}$ donc $t_{32} = (a_{32} - t_{31}t_{21}) / t_{22} = 2$

$$t_{31}^2 + t_{32}^2 + t_{33}^2 = a_{33}$$
 et $t_{33} > 0$ donc $t_{33} = (a_{33} - t_{31}^2 - t_{32}^2)^{1/2} = 1$ $\Rightarrow T = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$

$$\Rightarrow T = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Coût de l'algorithme de Cholesky

équivalent quand $N \rightarrow \infty$ du nb d'op. arithmétiques (matrice A pleine)

Etape 1 : calcul de 1ère colonne de T \Rightarrow N opérations $t_{11} = \sqrt{a_{11}}, t_{i1} = a_{i1}/t_{11}$ pour i=2,...,N (N-1 divisions, une $\sqrt{}$)

Etape p+1 : calcul de (p+1)ième colonne de T (connaissant colonnes 1...p)

$$\mathbf{t}_{p+1,p+1} = \left(a_{p+1,p+1} - \sum_{k=1}^{p} \mathbf{t}_{p+1,k}^{2}\right)^{1/2}$$

 \Rightarrow 2p+1 opérations (p soustractions, p ×, une $\sqrt{}$)

$$\mathbf{t}_{i,p+1} = \frac{1}{\mathbf{t}_{p+1,p+1}} \left(a_{i,p+1} - \sum_{k=1}^{p} \mathbf{t}_{i,k} \mathbf{t}_{p+1,k} \right)$$

 \Rightarrow 2p+1 opérations (1 division, p soustractions, p ×)

 \Rightarrow le calcul de (p+1)ième colonne de T correspondant à $t_{i,p+1}$ pour i = p+1,...,N nécessite (2p+1)(N-p) opérations

calcul
$$j$$
 – ième colonne de T : $C_j = (2j-1)(N+1-j)$ opérations

Coût du calcul des colonnes 1,2,...,N de T :

$$\sum_{j=1}^{N} C_{j} = 2 \sum_{j=1}^{N} j(N+1-j) - \sum_{j=1}^{N} (N+1-j)$$

$$= 2(N+1) \sum_{j=1}^{N} j - 2 \sum_{j=1}^{N} j^{2} + O(N^{2})$$

$$= 2(N+1) \left(\frac{N^{2}}{2} + O(N) \right) - 2 \left(\frac{N^{3}}{3} + O(N^{2}) \right) + O(N^{2})$$

$$= N^{3} - (2/3)N^{3} + O(N^{2})$$

$$\approx (1/3)N^3$$
 $((1/6)N^3$ multiplications et soustractions, $N\sqrt{}$

Remarques:

*Nous verrons que le calcul d'une $\sqrt{\ }$ en double précision machine ~ 4 itérations de la méthode de Newton (~ 12 opérations élémentaires), donc le coût du calcul des $N\sqrt{\ }$ est O(N), négligeable devant $(1/3)N^3$

*Borne sur les coefficients de
$$T$$
: $\sum_{k=1}^{i} t_{i,k}^2 = a_{i,i} \Rightarrow t_{i,k} \le \sqrt{a_{i,i}}$

*Estimation des erreurs d'arrondi (Wilkinson, 1968): (u désigne l'unité d'arrondi, u $\approx 10^{-16}$ en double précision, cond(A) = conditionnement de A pour norme euclidienne) L'algo de Cholesky en arithmétique flottante peut être mené à son terme si $q_N u \operatorname{cond}(A) \le 1$ pour une constante $q_N = O(N^{3/2})$, et la solution numérique \hat{x} de Ax = b vérifie $(A + E)\hat{x} = b$ avec $||E||_2 = O(N^{3/2}u||A||_2)$