回归分析

回归(regression)? Francis Golton (1822-1911)

- 一般说来高个子的父代会有高个子的子代_____
- •子代的身高比父代更加趋向一致("向平庸的回归")

 $\bar{x} \approx 68, \bar{y} \approx 69$ 儿子比父亲平均高**1**英寸

对于身高72英寸的父亲, 儿子身高多数不到73英寸;

对于身高64英寸的父亲, 儿子身高多数超过65英寸;

回归直线 y=0.516 x+33.73

Pearson: 1078个父亲和儿子身高的散点图

回归分析是数学建模的有力工具

- 由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系;
- ·人们关心的变量(因变量)受另外几个变量(自变量)的关 联性(非因果性)的影响,并且存在众多随机因素,难以 用机理分析方法找出它们之间的关系;
- 需要建立这些变量的数学模型,使得能够根据自变量的数值预测因变量的大小,或者解释因变量的变化。

血压与年龄 刹车距离与车速 薪金与资历、教育程度、工作岗位

回归分析的主要步骤

- 收集一组包含因变量和自变量的数据;
- 选定因变量与自变量之间的模型,利用数据 按照最小二乘准则计算模型中的系数;
- 利用统计分析方法对不同的模型进行比较, 找出与数据拟合得最好的模型;
- 判断得到的模型是否适合于这组数据,诊断 有无不适合回归模型的异常数据;
- 利用模型对因变量作出预测或解释。

回归分析(Regression Analysis)

- 从应用角度介绍回归分析的基本原理、 方法和软件实现
 - 1. 简化的实际问题及其数学模型
 - 2. 一元线性回归
 - 3. 多元线性回归
 - 4. 非线性回归

实例及其数学模型 例1 血压与年龄

为了解血压随年龄增长而升高的关系,调查了30个成年人的血压(收缩压,mmHg)与年龄:

序号	血压	年龄	序号	血压	年龄	序号	血压	年龄
1	144	39	11	162	64	21	136	36
2	215	47	12	150	56	22	142	50
3	138	45	13	140	59	23	120	39
4	145	47	14	110	34	24	120	21
5	162	65	15	128	42	25	160	44
• • •	•••	• • •	• • •	•••	• • •	• • •	•••	• • •

- •用这组数据确定血压与年龄的关系;
- 从年龄预测血压可能的变化范围;
- •回答"平均说来60岁比50岁的人血压高多少"。

例1 血压与年龄

模型 记血压(因变量) y, 年龄(自变量) x,

作数据 (x_i, y_i) (i=1,2,...30)的散点图

y与x大致呈线性关系

$$y = \beta_0 + \beta_1 x$$

由数据确定系数 β_0 , β_1 的估计值 $\hat{\beta}_0$, $\hat{\beta}_1$

- 曲线拟合(求超定线性方程组的最小二乘解);
- 从统计推断角度讨论 β_0 , β_1 的置信区间和假设检验;
- 对任意的年龄 x 给出血压 y 的预测区间。

例2 血压与年龄、体重指数、吸烟习惯

又调查了例1中30个成年人的体重指数、吸烟习惯:

序号	丘压	年龄	体重 指数	吸烟	序号	压	年龄	体重 指数	吸烟	序号	压	年龄	体重 指数	吸烟
1	144	39	24.2	0	11	162	64	28.0	1	21	136	36	25.0	0
2	215	47	31.1	1	12	150	56	25.8	0	22	142	50	26.2	1
3	138	45	22.6	0	13	140	59	27.3	0	23	120	39	23.5	0
4	145	47	24.0	1	14	110	34	20.1	0	24	120	21	20.3	0
5	162	65	25.9	1	15	128	42	21.7	0	25	160	44	27.1	1
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	•••

体重指数: 体重(kg) /[身高(m)]²

吸烟习惯: 0~不吸烟, 1~吸烟

例2 血压与年龄、体重指数、吸烟习惯

模型 记血压y,年龄 x_1 、体重指数 x_2 、吸烟习惯 x_3

作数据y对 x_2 的散点图 y与 x_2 大致呈线性关系

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

由数据确定系数 $\beta_0, \beta_1, \beta_2, \beta_3$

的估计值 $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$

例3 软件开发人员的薪金

建立模型研究薪金与资历、管理责任、教育程度的关系, 分析人事策略的合理性,作为新聘用人员薪金的参考. 46名软件开发人员的档案资料

编号	薪金	资历	管理	教育	编号	薪金	资历	管 理	教育
01	13876	1	1	1	42	27837	16	1	2
02	11608	1	0	3	43	18838	16	0	2
03	18701	1	1	3	44	17483	16	0	1
04	11283	1	0	2	45	19207	17	0	2
05	11767	1	0	3	46	19346	20	0	1

资历~从事专业工作的年数;管理~1=管理人员,0= 非管理人员;教育~1=中学,2=大学,3=研究生

模型

 $y\sim$ 薪金, $x_1\sim$ 资历(年)

 $x_2 = 1$ ~ 管理人员, $x_2 = 0$ ~ 非管理人员

$$x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其它} \end{cases}$$

大学:
$$x_3=0, x_4=1$$
;

$$x_4 = \begin{cases} 1, & \text{大学} \\ 0, & \text{其它} \end{cases}$$
 大学: $x_3 = 0, x_4 = 1;$ 研究生: $x_3 = 0, x_4 = 1$

研究生: $x_3=0, x_4=0$

假设

- 资历每加一年薪金的增长是常数:
- 管理、教育、资历之间无交互作用.

线性回归模型 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$

由数据确定 $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$

例4 酶促反应

酶~高效生物催化剂; 酶促反应~经过酶催化的化学反应

酶促反应的反应速度主要取决于反应物(底物)的浓度:

- 底物浓度较小时,反应速度大致与浓度成正比;
- 底物浓度很大、渐进饱和时,反应速度趋于固定值.

Michaelis-Menten模型

 $y \sim$ 酶促反应的速度, $x \sim$ 底物浓度

待定系数 β_1 (最终反应速度)

 β_2 (半速度点)

例4 酶促反应

为研究酶促反应中嘌呤霉素对反应速度与底物浓度之间关系的影响,设计了两个实验:使用的酶经过嘌呤霉素处理;使用的酶未经嘌呤霉素处理。

实验数据

底物浓度(ppm)		0.0	02	0.	06	0.	11	0.	22	0.:	56	1.3	10
反应	处理	76	47	97	107	123	139	159	152	191	201	207	200
速度	未处理	67	51	84	86	98	115	131	124	144	158	160	/

对未经嘌呤霉素处理的反应,用实验数据估计参数 β_1 , β_2 ; 用实验数据研究嘌呤霉素处理对参数 β_1 , β_2 的影响。

模型
$$y = \frac{\beta_1 x}{\beta_2 + x}$$
 \rightarrow \frac{1}{y} = \frac{1}{\beta_1} + \frac{\beta_2}{\beta_1} \frac{1}{x} = \theta_1 + \theta_2 \frac{1}{x} \\
\text{\pi}\beta_1, \beta_2 \pi\text{\text{the}}\qquad \text{\pi}\text{\text{the}}\qquad \text{\pi}\text{\text{the}}\qquad \text{\pi}\text{\text{the}}\qquad \text{\pi}\text{\text{the}}\qquad \text{\pi}\text{\text{the}}\qquad \text{\pi}\tex

1/x较小时有很好的线性趋势, 1/x较大时出现很大的分散.

$$\theta_1 = 6.972 \times 10^{-3}, \ \theta_2 = 0.215 \times 10^{-3} \ \ \beta_1 = 143.43, \ \beta_2 = 0.0308$$

x较大时, y有较大偏差. 参数估计时, x较小(1/x很大)的数据控制了参数的确定.

直接考虑非线性模型

一元线性回归分析

问 已知一组数据 (x_i, y_i) , i=1,2,...n (平面上的n个点), 题 用最小二乘准则确定一个线性函数(直线) $y = \beta_0 + \beta_1 x$

1. 血压与年龄

2. 合金强度与碳含量

系数的计算二者没有什么区别; 2的拟合效果比1好得多.

怎样衡量由最小二乘准则拟合得到的模型的可靠程度? 怎样给出模型系数的置信区间和因变量的预测区间?

一元线性回归模型 $y = \beta_0 + \beta_1 x + \varepsilon$

x~自变量 β_0 , β_1 ~回归系数

 ϵ ~随机变量(影响y的随机因素的总和)

基本假设

独立性:对于不同的x,y相互独立

线性性: y的期望是x的线性函数

齐次性:对于不同的x,y的方差是常数

正态性:对于给定的x,y服从正态分布

 ε 是相互独立的、期望为0、方差为 σ^2 、正态分布的随机变量,即 $\varepsilon \sim N(0, \sigma^2), \varepsilon$ 称(随机)误差。

回归系数的最小二乘估计

数据
$$x_i, y_i$$
($i=1,...n$)代入 $y = \beta_0 + \beta_1 x + \varepsilon$ $\psi_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

误差平方和

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

$$\frac{\partial Q}{\partial \beta_0} = 0, \frac{\partial Q}{\partial \beta_1} = 0$$

$$\frac{\partial Q}{\partial \beta_0} = 0, \frac{\partial Q}{\partial \beta_1} = 0 \qquad \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \ s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2, \ s_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

直线 $y = \hat{\beta}_0 + \hat{\beta}_1 x$ 通过 x_i, y_i 的均值点 (\bar{x}, \bar{y})

最小二乘估计

线性无偏最小方差估计

一元线性回归的统计分析

1.误差方差 $D\varepsilon = \sigma^2$ 的估计

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, i = 1, 2, \dots n$$
 y_i 理论值(期望)的估计

$$\hat{\varepsilon}_i = y_i - \hat{y}_i, i = 1, 2, \dots n$$
 误差 ε_i 的估计,称残差(记作 e_i)

残差平方和
$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

ở的无偏估计
$$s^2 = \hat{\sigma}^2 = \frac{Q}{n-2}$$

 $n-2\sim Q$ 的自由度=数据容量 – 模型中所含参数的个数

 s^2 ~剩余方差(样本方差),s~剩余标准差(样本标准差)

一元线性回归的统计分析

2. 回归系数的区间估计和假设检验

统计性质: $\hat{\beta}_1 \sim N(\beta_1, \sigma^2/s_{xx})$, $Q/\sigma^2 \sim \chi^2_{(n-2)}$, $\hat{\beta}_1$ 和Q相互独立

t 分析
$$t = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}}/\sigma}{\sqrt{Q/(n-2)\sigma^2}} = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}}}{s} \sim t_{(n-2)}$$

$$m{eta_1}$$
的置信区间 $[\hat{eta}_1 - t_{(n-2),1-\alpha/2} \frac{S}{\sqrt{S_{xx}}}, \ \hat{eta}_1 + t_{(n-2),1-\alpha/2} \frac{S}{\sqrt{S_{xx}}}]$

问:怎样缩短 β 的置信区间?

对 β_1 的假设检验 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$

$$|t| = \frac{|\hat{\beta}_1 \sqrt{s_{xx}}|}{s} > t_{(n-2),1-\alpha/2}$$
 | 拒绝 H_0 | 回归模 | β_1 的置信区间型有效 | 不包含零点

一元线性回归的统计分析

3.模型的有效性检验 偏差的分解:
$$y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$= Q + U$$

总偏差平方和 残差平方和 回归平方和

决定系数 $R^2 = U/S$ 因变量的总变化中自变量引起的部分的比例

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i} \qquad \bar{y} = \hat{\beta}_{0} + \hat{\beta}_{1}\bar{x} \qquad U = \hat{\beta}_{1}^{2}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2} = \hat{\beta}_{1}^{2}s_{xx}$$
若 H_{0} 成立 $U/\sigma^{2} = \hat{\beta}_{1}^{2}s_{xx}/\sigma^{2} \sim \chi_{(1)}^{2}$

$$Q/\sigma^{2} \sim \chi_{(n-2)}^{2}, \qquad \qquad \uparrow F = \frac{U}{Q/(n-2)} \sim F_{(1,n-2)}$$
给定 α ,有 $F_{(1,n-2),1-\alpha}$ $F > F_{(1,n-2),1-\alpha}$ 乜 拒绝 H_{0} \quad 回归模

利用一元线性回归模型进行预测

 x_0 给定, y_0 的预测值: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$

性质: \hat{y}_0 无偏, 且 $E(\hat{y}_0 - y_0)^2$ 最小

$$\hat{\mathbf{y}}_{0} = \hat{\mathbf{y}}_{0} - t_{(n-2),1-\alpha/2} s_{0} \sqrt{\frac{(x_{0} - \overline{x})^{2}}{s_{xx}}} + \frac{1}{n} + 1, \quad \hat{y}_{0} + t_{(n-2),1-\alpha/2} s_{0} \sqrt{\frac{(x_{0} - \overline{x})^{2}}{s_{xx}}} + \frac{1}{n} + 1]$$

s~剩余标准差

n很大且 x_0 接近 \bar{x}

$$[\hat{y}_0 - u_{1-\alpha/2}s, \ \hat{y}_0 + u_{1-\alpha/2}s]$$

$$\hat{y} + \delta(x)$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\hat{y} - \delta(x)$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\delta(x) = t_{(n-2),1-\alpha/2} s_{\sqrt{\frac{(x-\bar{x})^2}{s_{xx}} + \frac{1}{n} + 1}} \approx u_{1-\alpha/2} s_{\sqrt{\frac{(x-\bar{x})^2}{s_{xx}} + \frac{1}{n} + 1}}$$

一元线性回归的MATLAB实现

b=regress(y,X)

[b,bint,r,rint,s]=regress(y,X,alpha)

输入: y~因变量(列向量), X~1与自变量组成的矩阵, alpha~显著性水平 α (缺省时设定为0.05)。

输出: $b = (\hat{\beta}_0, \hat{\beta}_1)$,bint~ β_0 , β_1 的置信区间,r~残差(列向量),rint~残差的置信区间,

s(3个统计量和误差方差的估计): 决定系数 R^2 ; F值; $F_{(1,n-2)}$ 分布的分位数 $F_{(1,n-2),1-\alpha}$ 大于F值的概率p。当 $p<\alpha$ 时拒绝 H_0 ,回归模型有效。

注意 regress 与 polyfit 用法的区别

例1 血压与年龄 模型 $y = \beta_0 + \beta_1 x$ 数据 xueya1.m

回归系数	回归系数估计值	回归系数置信区间				
$oldsymbol{eta}_0$	98.4084	[78.7484 118.0683]				
$oldsymbol{eta}_1$	0.9732	[0.5601 1.3864]				
$R^2=0.4540$ $F=23.2834$ $p<0.0001$ $s^2=273.7137$						

模型 β_1 置信区间不含零点; $p < \alpha$; $F_{(1,n-2),1-\alpha} = 4.1960 < F$ 检验 β_1 置信区间较长, R^2 较小,模型精度不高。由残差图剔除异常数据后

回归系数	回归系数估计值	回归系数置信区间
$oldsymbol{eta_0}$	96.8665	[85.4771 108.2559]
$oldsymbol{eta_1}$	0.9533	[0.7140 1.1925]
$R^2 = 0.712$	23 F = 66.8358 p <	$60.0001 s^2 = 91.4305$

例1 血压与年龄 模型 $y = \beta_0 + \beta_1 x$ xueya.m

剔除异常点 (x_2, y_2)

又出现两个新的异常点.

对50岁人的血压进行预测: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = 144.5298$

预测区间 (α =0.05): [124.5406 164.5190]

简化 (t→u): [125.7887 163.2708]

多元线性回归分析

模型
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$

估计回归系数
$$(y_i, x_{i1}, \dots x_{im}), i = 1, \dots, n > m$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_m x_{im} + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2), \ i = 1, \dots n$$

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \cdots & & & \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \cdots \\ \varepsilon_n \end{bmatrix}, \quad \beta = [\beta_0, \beta_1, \cdots \beta_m]^T \quad \begin{cases} Y = X\beta + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

$$Q(\beta) = \sum_{i=1}^{n} \varepsilon_i^2 = (Y - X\beta)^T (Y - X\beta) \qquad \frac{\partial Q}{\partial \beta_i} = 0, \quad i = 0, 1, \dots m$$

思考 怎样保证 XTX可逆 为什么要求 n>m

多元线性回归的统计分析

1.误差方差 σ 的估计

一元回归

多元回归

模型

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$

估计值

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_m x_{mi}$

残差

$$e_i = \hat{\varepsilon}_i = y_i - \hat{y}_i$$

 $e_i = \hat{\varepsilon}_i = y_i - \hat{y}_i$

残差 平方和

$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

剩余方差

$$s^2 = \hat{\sigma}^2 = \frac{Q}{n-2}$$

 $s^2 = \hat{\sigma}^2 = \frac{Q}{n - m - 1}$

Q的自由度

n-(m+1) (m+1个参数)

2. 回归系数的区间估计和假设检验

一元回归

多元回归

$$\begin{split} \hat{\beta}_{l} \sim N(\beta_{l}, \sigma^{2}/s_{xx}), \quad s_{xx} &= \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} & \hat{\beta}_{j} \sim N(\beta_{j}, \sigma^{2}c_{jj}), \quad c_{jj} \sim (\widetilde{X}^{T}\widetilde{X})^{-1} \\ Q/\sigma^{2} \sim \chi^{2}_{(n-2)}, & Q/\sigma^{2} \sim \chi^{2}_{(n-m-1)} \end{split}$$
 的 j 对角元
$$t &= \frac{(\hat{\beta}_{l} - \beta_{l})\sqrt{s_{xx}}/\sigma}{\sqrt{Q/(n-2)\sigma^{2}}} = \frac{(\hat{\beta}_{l} - \beta_{l})\sqrt{s_{xx}}}{s} \sim t_{(n-2)} \qquad t_{j} &= \frac{(\hat{\beta}_{j} - \beta_{j})/\sigma\sqrt{c_{jj}}}{\sqrt{Q/(n-m-1)\sigma^{2}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{s\sqrt{c_{jj}}} \sim t_{(n-2)} \\ [\hat{\beta}_{l} - t_{(n-2),l-\alpha/2} \frac{s}{\sqrt{s_{xx}}}, \quad \hat{\beta}_{l} + t_{(n-2),l-\alpha/2} \frac{s}{\sqrt{s_{xx}}}] \qquad [\hat{\beta}_{j} - t_{(n-2),l-\alpha/2} s\sqrt{c_{jj}}, \quad \hat{\beta}_{j} + t_{(n-2),l-\alpha/2} s\sqrt{c_{jj}}] \\ H_{0} : \beta_{1} &= 0, \quad H_{1} : \beta_{1} \neq 0 \qquad \qquad H_{0}^{(j)} : \beta_{j} &= 0, \quad H_{1}^{(j)} : \beta_{j} \neq 0 \\ |t| &= \left| \frac{\hat{\beta}_{l}}{s\sqrt{c_{jj}}} \right| > t_{(n-2),l-\alpha/2} \end{split}$$
拒绝 H_{0} ,模型有效

3. 模型的有效性检验

一元回归

多元回归

偏差分解
$$S = U + Q$$

$$S = U + Q$$

决定系数
$$R^2 = U/S$$

$$R^2 = U/S$$

$$R^2 = U/S$$

$$H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0$$

$$H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0$$

$$Q/\sigma^2 \sim \chi^2_{(n-m-1)} H_0^{(j)}: \beta_j = 0, \quad H_1^{(j)}: \beta_j \neq 0$$

$$H_0$$
成立 $U/\sigma^2 \sim \chi^2_{(1)}, \ Q/\sigma^2 \sim \chi^2_{(n-2)}, \ U/\sigma^2 \sim \chi^2_{(m)},$

$$U/\sigma^2 \sim \chi^2_{(m)}$$

$$F = \frac{U}{Q/(n-2)} \sim F_{(1,n-2)}$$

$$F = \frac{U/m}{Q/(n-m-1)} \sim F_{(m,n-m-1)}$$

检验
$$F > F_{(1,n-2),1-\alpha}$$

$$F_{(\mathrm{m,\,n\text{-}m\text{-}1}),\,1\text{-}lpha}$$

1-α F₍ 拒绝H₀,模型有效

利用多元线性回归模型进行预测

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_m x_m$$

性质: \hat{y}_0 无偏, 且 $E(\hat{y}_0 - y_0)^2$ 最小

预测区间

$$\left[\hat{y} - \delta(x), \hat{y} + \delta(x)\right]$$

$$\delta(x) = t_{(n-2),1-\alpha/2} s_{\sqrt{\frac{(x-\bar{x})^2}{s_{xx}} + \frac{1}{n} + 1}} \approx u_{1-\alpha/2} s$$

$$\delta(x) = t_{(n-2),1-\alpha/2} s \sqrt{(x-\bar{x})^T (\tilde{X}^T \tilde{X})^{-1} (x-\bar{x}) + \frac{1}{n} + 1} \approx u_{1-\alpha/2} s$$

与一元回归对比

多元线性回归的MATLAB实现

与一元回归相同

b=regress(y,X) 注意 X 的构造 [b,bint,r,rint,s]=regress(y,X,alpha)

例2 血压与年龄、体重指数、吸烟习惯 xueya2.m

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$
 剔除两个异常点后
$$\hat{y} = 58.5101 + 0.4303 x_1 + 2.3449 x_2 + 10.3065 x_3$$

- •年龄和体重指数相同,吸烟者比不吸烟者的血压(平均)高10.3
- 与例1 "血压与年龄"的结果 $\hat{y} = 96.8665 + 0.9533x_1$ 相比,年龄增加1岁血压的升高值(即 β_1)为何有这么大的差别

线性最小二乘拟合与多元线性回归的一般形式

线性回归模型
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$
 (1)

"线性"是指y是系数 β 的关系(非指y与x的关系)

$$y = \beta_0 + \beta_1 x^2$$
, $y = \beta_0 + \beta_1 e^{x_1} + \beta_2 / x_2$ ~线性回归

线性回归 一般形式

$$y = \beta_0 + \beta_1 r_1(x) + \dots + \beta_m r_m(x) + \varepsilon, \varepsilon \sim N(0, \sigma^2) \quad (2)$$

$$x = (x_1, \dots x_k), \quad r_j(x) (j = 1, \dots, m)$$
 是已知函数

$$\diamondsuit r_j(x)=u_j$$
, 则(2) \rightarrow (1)

多元线性回归中的交互作用

例3 软件开发人员的薪金 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$

 $y \sim$ 新金, $x_1 \sim$ 资历, $x_2 = 1 \sim$ 管理人员, $x_2 = 0 \sim$ 非管理人员

 $x_3=1, x_4=0$ ~中学; $x_3=0, x_4=1$ ~大学; $x_3=0, x_4=0$ ~研究生

系数	系数估计	置信区间					
β_0	11032	[10258 11807]					
β_1	546	[484 608]					
β_2	6883	[6248 7517]					
β_3	-2994	[-3826 -2162]					
β_4	148	[-636 931]					
R^2	$R^2=0.957$ $F=226$ $p=0.000$						

 $R^2, F, p \to 模型整体上可用$

xinjin1.m

资历增加1年 薪金增长546 管理人员多6883

中学程度比更高的少2994

大学程度比更高的多148

 β_4 置信区间包含零点,解释不可靠!

用残差分析发现交互作用

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4$$

考察残差 $e = y - \hat{y}$ 是否为 $N(0, \sigma^2)$

-1000

-2000

残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映

管理与教育的组合

组合	1	2	3	4	5	6
管理	0	1	0	1	0	1
教育	1	1	2	2	3	3

e与管理—教育组合的关系

残差全为正,或全为负,管理—教育组合处理不当 应增加x₂与x₃, x₄的交互项

增加管理x2与教育x3, x4的交互项

xinjin2.m

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_2 x_3 + \beta_6 x_2 x_4 + \varepsilon$$

系数	系数估计值	置信区间						
$oldsymbol{eta}_0$	11204	[11044 11363]						
β_1	497	[486 508]						
$oldsymbol{eta}_2$	7048	[6841 7255]						
$oldsymbol{eta_3}$	-1727	[-1939 -1514]						
$oldsymbol{eta_4}$	-348	[-545 -152]						
β_5	-3071	[-3372 -2769]						
$oldsymbol{eta}_6$	1836	[1571 2101]						
R^{2}	$R^2=0.999$ $F=554$ $p=0.000$							

R², F有改进, 所有回归系数置信 消除了不正常现象 区间都不含零点, 模型完全可用 异常数据(33号)应去掉

去掉异常数据后的结果

系数	系数估计值	置信区间					
$oldsymbol{eta}_0$	11200	[11139 11261]					
β_1	498	[494 503]					
$oldsymbol{eta_2}$	7041	[6962 7120]					
β_3	-1737	[-1818 -1656]					
$oldsymbol{eta_4}$	-356	[-431 -281]					
β_5	-3056	[-3171 –2942]					
β_6	1997	[1894 2100]					
$R^2 = 0.9998$ $F = 36701$ $p = 0.0000$							

 R^2 : $0.957 \rightarrow 0.999 \rightarrow 0.9998$

 $F: 226 \rightarrow 554 \rightarrow 36701$

置信区间长度更短

xinjin3.m

残差图十分正常

最终模型的结果可以应

模型应用 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_2 x_3 + \hat{\beta}_6 x_2 x_4$

制订6种管理—教育组合人员的"基础"薪金(资历

Y	0)				
•	¹ 组合	管理x2	教育 (x_3, x_4)	系数	"基础"薪
	<u> </u>	H •2	4) (14 (15) (14)		金
	1	0	(1,0)	β_0 + β_3	9463
	2	1	(1,0)	$\beta_0 + \beta_2 + \beta_3 + \beta_5$	13448
	3	0	(0,1)	$oldsymbol{eta_0}$ + $oldsymbol{eta_4}$	10844
	4	1	(0,1)	β_0 + β_2 + β_4 + β_6	19882
	5	0	(0,0)	$oldsymbol{eta}_0$	11200
	6			$\beta_1 + \beta_2 = 44$	北 18241

人子性及官理人贝几史尚柱及官理人贝的新金尚

大学程度非管理人员比更高程度非管理人员的薪金略低

线性回归的特殊情形----多项式回归

例1 西红柿的施肥量与产量 14块同样大小土地的数据

序号	产量(升)	施肥(千克)	序号	产量(升)	施肥(千克)
1	1035	6.0	•••	• • •	• • •
2	624	2.5	12	1030	9.0
3	1084	7.5	13	985	11.0
• • •	•••	• • •	14	855	12.5

模型 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

b=regress(y,X)求解

$$\hat{y} = 175.62 + 217.87x - 13.15x^2$$

一元多项式回归模型的一般形式

$$y = \beta_0 + \beta_1 x + \dots + \beta_m x^m + \varepsilon$$

注意3个程序的用法与所得结果的相同点和不同点

例2 商品销售量与价格

某厂生产的一种电器的销售量y与竞争对手的价格 x_1 和本厂的价格 x_2 有关。

下表是该商品在10个城市的销售记录。

x_1 (元)	120	140	190	130	155	175	125	145	180	150
x ₂ (元)	100	110	90	150	210	150	250	270	300	250
y (个)	102	100	120	77	46	93	26	69	65	85

- 1)根据这些数据建立y与 x_1 和 x_2 的关系式,对得到的模型和系数进行检验。
- 2) 若某市本厂产品售价160元, 竞争对手售价 170元, 预测该市的销售量。

例2 商品销售量与价格

y与 x_2 有较明显的线性关系,y与 x_1 的关系难以确定. 需要试验不同的回归模型,用统计分析决定优劣.

线性模型 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

shangpin.m

系数	系数估计	置信区间
$oldsymbol{eta_0}$	66.5176	[-32.5060 165.5411]
$oldsymbol{eta_1}$	0.4139	[-0.2018 1.0296]
$oldsymbol{eta_2}$	-0.2698	[-0.4611 -0.0785]

 $R^2 = 0.6527$, F = 6.5786, p = 0.0247, $s^2 = 351.0445$

置信区间包含零点

整体检验效果不好

二次函数

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$$

回归模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$

多元二项式回

归的一般形式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le j,k \le m} \beta_{jk} x_j x_k + \varepsilon$$

MATLAB命令: rstool(x,y,'model',alpha)

X~ n×m自变量矩阵, y~因变量向量,model选择:

linear (只包含线性项));

purequadratic (包含线性项和纯二次项);

interaction(包含线性项和纯交互项);

quadratic(包含线性项和完全二次项)。

输出一个交互式画面

例2 商品销售量与价格

model = purequadratic

4个模型的输出比较

	$oldsymbol{eta_{\scriptscriptstyle 0}}$	$oldsymbol{eta_{\!\scriptscriptstyle 1}}$	$oldsymbol{eta_2}$	$oldsymbol{eta_3}$	eta_{4}	$oldsymbol{eta}_{5}$	S
Purequadratic	-312.5871	7.2701	-1.7337	-0.0228	0.0037		16.6436
quadratic	-307.3600	7.2032	-1.7374	0.0001	-0.0226	0.0037	18.6064
interaction	137.5317	-0.0372	-0.7131	0.0028			19.1626
linear	66.5176	0.4139	-0.2698				18.7362

变量选择与逐步回归

变量选择

影响因变量的因素:

自变量 $x_1, x_2, ...x_m$ 及其简单函数, 如 $x_i^2, 1/x_i, e^{x_i}$ ($i \in \{1, 2, \cdots m\}$)

- 将所有影响显著的因素都纳入回归模型;
- 最终的模型尽量简单, 即包含尽量少的因素。

变量选择的标准

$$s^2 = Q/(n-p-1), s^2$$
最小

- ・从候选集合 $S=\{x_1,...x_k\}$ 中选出一子集 S_1 (含 $p\le k$ 个自变量)与因变量y构造回归模型,其优劣由 s^2 度量.
- \bullet 影响显著的自变量进入模型时,Q明显下降,s减小;

逐步回归

- 从候选集合中确定一初始子集;
- ·从子集外(候选集合内)中引入一个对y影响显著的;
- 对集合中的变量进行检验,剔除影响变得不显著的;
- 迭代式地进行引入和剔除,直到不能进行为止。
- 选择衡量影响显著程度的统计量,通常用偏F统计量;
- 适当选取引入变量的显著性水平 $lpha_{in}$ 和剔除变量的 $lpha_{out}$ 。
- •引入新的变量后原来模型内影响显著的变量变得不显著,从而被剔除~自变量之间存在较强相关性的结果.

多重共线性 某些自变量之间的相关性很强

□矩阵XTX病态 □回归系数的置信区间较大

MATLAB中的逐步回归

stepwise (x,y,inmodel,penter,premove)

x~n×k自变量数据矩阵(k~全部变量数), y~因变量向量, inmodel~初始模型中候选变量的指标(x的列序数, 缺省时为全部候选变量),

penter ~ 引入变量的显著性水平 α_{in} (缺省时为0.05) premove~剔除变量的显著性水平 α_{out} (缺省时为0.10)

输出交互式画面

例 儿童的体重与身高和年龄

序号	体重(kg)	身高(m)	年龄	序号	体重(kg)	身高(m)	年龄
1_	27.1	1.34	8	7	30.9	1.39	10
2	30.2	1.49	10	8	27.8	1.21	9
3	24.0	1.14	6	9	29.4	1.26	10
4	33.4	1.57	11	10	24.8	1.06	6
5	24.9	1.19	8	11	36.5	1.64	12
6	24.3	1.17	7	12	29.1	1.44	9

可能存在二次函数关系

例 儿童的体重与身高和年龄

ertong.m

非线性回归分析

非线性最小二乘拟合

己知模型
$$y = f(x, \beta), x = (x_1, \dots, x_m), \beta = (\beta_1, \dots, \beta_k)$$
 f对 β 非线性

观测数据
$$(x_i, y_i), x_i = (x_{i1}, \dots x_{im}), i = 1, \dots, n, n > m$$

误差平方和
$$Q(\beta) = \sum_{i=1}^{n} \varepsilon_i^2(\beta) = \sum_{i=1}^{n} [y_i - f(x_i, \beta)]^2$$

非线性回归

$$\begin{cases} y = f(x, \beta) + \varepsilon, & x = (x_1, \dots, x_m), & \beta = (\beta_1, \dots, \beta_k) \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

回归系数 β 的最小二乘估计 $\hat{\beta}$

非线性回归可以对非线性最小二乘拟合结果作统计分析

MATLAB中的非线性回归

[b,R,J]=nlinfit(x,y,'model',b0)

x~自变量数据矩阵(每列一个变量),y~因变量向量,Model~模型的函数名,m文件: y = f(b,x),b为待估系数 β , b0~回归系数 β 的初值.

输出: $b\sim\beta$ 的估计, $R\sim$ 残差, $J\sim$ 估计误差的Jacobi矩阵

bi=nlparci(b,R,J) 回归系数β的置信区间

nlintool(x,y,'model',b) 一个交互式画面

(内容和用法与多项式回归的Polytool类似)

实例4 酶促反应(续)

模型
$$y = \frac{\beta_1 x}{\beta_2 + x}$$

 $y \sim$ 酶促反应的速度, $x \sim$ 底物浓度

对未经嘌呤霉素处理的数据

huaxue1.m

nlinfit $\hat{\beta}_1 = 160.2781$, $\hat{\beta}_2 = 0.0477$, 与用Isqnonlin的结果相同

nlparci $\beta_1 \in [145.6191,174.9372], \hat{\beta}_2 \in [0.0301,0.0653]$

数据拟合结果

nlintool的交互式画面

酶促反应的混合反应模型

在同一模型中考虑嘌呤霉素处理的影响

$$y = \frac{\beta_1 x}{\beta_2 + x}$$
 $\Rightarrow y = \frac{(\beta_1 + \gamma_1 x_2) x_1}{(\beta_2 + \gamma_2 x_2) + x_1}$

 x_1 ~底物浓度, x_2 ~0(未经处理),1(经过处理)变量,

 β_1 ~未经处理的最终反应速度,

 β_2 ~未经处理的反应的半速度点,

γ1~经处理后最终反应速度的增长值,

γ2~经处理后反应的半速度点的增长值.