PES310 MODELAGEM E INFERÊNCIA ESTATÍSTICA

Revisão final

Resumo visual da disciplina

Modelagem e Inferência Estatística

SEMANA 1 | Regressão linear simples | Atividade Avaliativa

Nesta semana, eu já:

- O Conheci os principais assuntos que serão abordados nesta matéria;
- Lembrei os conceitos de estatística e probabilidade;
- O Entendi o que é a regressão linear e a quais tipos de dados ela se aplica;
- O Resolvi problemas com dados onde pode ser aplicada a regressão linear.

SEMANA 2 | Análise de ajustes | Atividade Avaliativa

Nesta semana, eu já:

- Entendi os procedimentos para fazer inferências;
- Obtive medidas qualitativas mediante o coeficiente de correlação;
- O Estimei os coeficientes de regressão usando o método dos mínimos quadrados.

SEMANA 3 | Teste de hipótese e Previsão da resposta Atividade Avaliativa

Nesta semana, eu já:

- O Realizei o teste de hipótese para verificar se o modelo de regressão de primeira ordem é um ajuste apropriado aos dados;
- O Estimei a resposta esperada, predizi valores de observações futuras, e encontrei seus intervalos de confiança usando os coeficientes de confiança;
- O Fiz inferências sobre coeficiente de correlação entre a variável resposta e as variáveis preditoras.

SEMANA 4 | Adequações do modelo e modelos não lineares Atividade Avaliativa

Nesta semana, eu já:

- Entendi os processos de padronização de variáveis.
- O Usei o método de mínimos quadrados para estimar os coeficientes de regressão em um modelo de regressão não linear.
- O Realizei teste de hipótese para a determinação de quais coeficientes de regressão são significantes.

SEMANA 5 | Métodos de regressão gerais, Modelos Logístico e polinomial

Nesta semana, eu já:

- O Estimei os coeficientes de regressão em um modelo de regressão múltipla e realizei teste de hipótese para a determinação de quais coeficientes de regressão são significantes.
- O Ajustei modelos de regressão linear múltipla a um conjunto de dados ao usar duas ou mais variáveis preditoras, e realizar análise de resíduos.
- O Ajustei modelos de regressão linear múltipla a um conjunto de dados que envolve variáveis preditoras qualitativas ou categóricas.
- O Determinei a presenca de multicolinearidade e sua possível eliminação.

SEMANA 6 | Regressão múltipla parte 1 | Atividade Avaliativa Nesta semana, eu iá:

- O Lembrei modelos existentes na teoria de confiabilidade:
- O Entendi os modelos de regressão linear múltipla usando variáveis preditoras e
- O Analisei dados provenientes de experimentos com efeitos fixos, aleatórios ou mistos;
- O Realizei análise de resíduos para verificar a adequação dos modelos em consideração:
- O Usei técnicas não paramétricas em certos tipos de planejamentos quando as condições de normalidade não são válidas;
- O Resumi e interpretar os resultados desses experimentos;
- O Estimei observações ausentes em certos tipos de planejamentos e, subsequentemente, analisar os dados como dados balanceados:
- O Fiz inferências sobre coeficiente de correlação entre a variável resposta e as variáveis preditoras.

SEMANA 7 | Regressão múltipla parte 2 | Atividade Avaliativa

Nesta semana, eu já:

- O Conheci os modelos lineares generalizados e as aplicações de cada um deles;
- O Lembrei os conceitos de contagens, categorias e dados assimétricos;
- O Apliquei os modelos a diferentes dados de acordo com critérios estabelecidos.

SEMANA 8 | Revisão

- Revisei os principais conteúdos vistos:
- O Identifiquei os conteúdos mais sensíveis e que merecem mais atenção no momento da revisão.

Algumas perguntas iniciais...

Iremos aprender todas as bases estatísticas para fazer a análise de dados? A ciência de dados se preocupa em validar se os dados são confiáveis?

Essa disciplina contempla cálculo numérico?

Regressão linear simples

A regressão linear simples corresponde ao modelo mais simples que se pode propor para descrever a relação que eventualmente exista entre uma variável explanatória x e uma variável resposta Y

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Como não temos acesso à populações de Y, usamos dados para estimar os parâmetros β_0 e β_1

Hipóteses do modelo linear simples

• Para cada valor da variável explicativa x, a distribuição populacional da resposta Y é normal, com média $\mu = \beta_0 + \beta_1 x$ e desvio padrão σ .

A média geralmente muda para diferentes valores de x, enquanto o desvio padrão é o mesmo para todo x

Hipóteses do modelo linear simples

■ Se (x_i, y_i) denota um par de valores observados e \hat{y}_i o valor previsto da resposta em $x = x_i$, então os resíduos

$$e_i = y_i - \hat{y}_i = y_i - (\beta_0 + \beta_1 x_i)$$

são independentes

Uma vez que tenhamos obtido a melhor estimativa dos parâmetros β₀ e β₁ e validado o modelo, podemos usá-lo para fazer predições para a resposta y em função de x e vice-versa

Formulário

• A partir de um conjunto de observações (x_1, y_1) , ..., (x_n, y_n) —isto é, dados—estimamos os parâmetros da regressão linear pelas fórmulas

$$\widehat{\boldsymbol{\beta}}_{1} = \frac{\sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i} (x_{i} - \overline{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\widehat{\boldsymbol{\beta}}_0 = \overline{\mathbf{y}} - \widehat{\boldsymbol{\beta}}_1 \overline{\mathbf{x}}$$

O modelo é útil?

■ Geralmente propomos um modelo de regressão linear para fazer previsões. Portanto, devemos tanto quanto possível tentar validar a utilidade da reta de regressão estimada resultante $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

Avaliação do coeficiente de determinação

$$r^2 = 1 - \frac{SQE}{SQT} = 1 - \frac{S_{yy} - \widehat{\beta}_1 S_{xy}}{S_{yy}}$$

Teste de significância

$$H_0: \beta_1 = 0, \ H_1: \beta_1 \neq 0$$

O coeficiente de determinação r^2

- Pode ser interpretado como a proporção da variação observada de y que pode ser atribuída a uma relação linear aproximada entre y e x (i.e., pelo modelo linear)
- O modelo é tanto mais adequado quanto r² for mais próximo de 1

A hipótese $H_0: \beta_1 = 0$

■ Caso a hipótese H_0 seja plausível, o modelo não é adequado, pois $\beta_1 = 0$ significa que não existe relação entre y e x (poder de previsão nulo)

Teste da hipótese H_0 : $\beta_1 = 0$

- Para realizar este teste de significância, precisamos conhecer a distribuição amostral de $\hat{\beta}_1$
- Sob as suposições para regressão linear simples $\widehat{\beta}_1 \sim N(\beta_1, \sigma_{\widehat{\beta}_1})$, onde a variância e o dp de $\widehat{\beta}_1$ valem

$$V(\widehat{\beta}_1) = \sigma_{\widehat{\beta}_1}^2 = \frac{\sigma^2}{S_{xx}} \Longrightarrow \sigma_{\widehat{\beta}_1} = \frac{\sigma}{\sqrt{S_{xx}}}$$

Na prática desconhecemos $\sigma_{\widehat{\beta}_1}$ e utilizamos a estimativa empírica $s_{\widehat{\beta}_1}$ em seu lugar

Teste da hipótese H_0 : $\beta_1 = 0$

■ A fim de construir um intervalo de confiança (IC) para o estimador $\hat{\beta}_1$ de β_1 normalizamos essa variável

$$t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$$

■ Essa estatística t corresponde à razão de uma v. a. normal por outra v. a. do tipo χ^2 e possui portanto distribuição t de Student—no caso, de n-2 graus de liberdade (gl ou df)

Teste da hipótese H_0 : $\beta_1 = 0$

• O intervalo de confiança de nível $1 - \alpha$ para a estatística t é dado por

$$P\left(-t_{\alpha/2,n-2} < t < t_{\alpha/2,n-2}\right) \ge 1-\alpha$$

• Encontrando o valor crítico $t_{\alpha/2,n-2}$ em uma tabela da distribuição t de Student estabelecemos o IC de nível $100\%(1-\alpha)$ para a inclinação β_1 da linha de regressão da população na forma

$$\widehat{m{eta}}_1 \pm t_{lpha/2,n-2} \cdot s_{\widehat{m{eta}}_1}$$

Teste da hipótese H_0 : $\beta_1 = 0$

Normalmente $\alpha=0,05$, i.e., confiança $c=1-\alpha=0,95$

Hipótese nula: H_0 : $\beta_1 = \beta_{10}$

Valor da estatística do teste: $t = \frac{\hat{\beta}_1 - \beta_{10}}{s_{\hat{\beta}_1}}$

Hipótese alternativa Determinação do valor-p

 $\begin{array}{ll} H_{\rm a} \colon \beta_1 > \beta_{10} & \text{\'Area sob a curva } t_{n-2} \text{ \'a direita de } t \\ H_{\rm a} \colon \beta_1 < \beta_{10} & \text{\'Area sob a curva } t_{n-2} \text{ \'a esquerda de } t \\ H_{\rm a} \colon \beta_1 \neq \beta_{10} & 2 \cdot (\text{\'Area sob a curva } t_{n-2} \text{ \'a direita de } |t|) \end{array}$

O teste de utilidade do modelo é o teste de H_0 : $\beta_1=0$ versus H_a : $\beta_1\neq 0$, sendo o valor da estatística de teste a razão $t=\hat{\beta}_1/s_{\hat{\beta}_1}$.

curva t para gl relevante

1. **Teste unilateral à direita** $H_{\rm a}$ contém a designaldade > t calculado

Valor-p = área na cauda inferior

2. Teste unilateral à esquerda

Ha contém a desigualdade <

Valor-p = soma da área nas duas caudas

3. Teste bilateral

 H_a contém a designaldade \neq

curva t para gl relevante

Predição de valores futuros

Um intervalo de confiança para \widehat{Y}

A partir das estimativas de $\widehat{\beta}_0$ e $\widehat{\beta}_1$ podemos estimar o valor de $\mu_{Y|x^*}$ para um valor dado de x^* a partir do estimador $\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 x^*$

Essa estimativa pontual não fornece informações sobre a precisão da estimativa de \hat{Y} ...

Solução: construir um intervalo de confiança para \widehat{Y} usando o desvio padrão de $\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 x^*$

$$s_{\widehat{Y}} = s \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}$$

Às vezes a regressão linear simples não funciona...

(Fonte xkcd #2048)

Inadequação de modelos lineares

- Caso se constate que um modelo de regressão linear simples não descreve adequadamente os dados, pode-se tentar modelos não lineares ou de regressão múltipla
- Análise de adequação: resíduos padronizados

$$e_i^* = \frac{y_i - \hat{y}_i}{s\sqrt{1 - \frac{1}{n} - \frac{(x^* - \overline{x})^2}{S_{xx}}}}$$

quase todos os e_i^* recaem no intervalo (-2,2)

Nem todo modelo não linear é difícil

Os principais modelos não lineares usados em uma primeira abordagem são obtidos de um modelo linear por transformações de variáveis

Tabela 13.1 Funções intrinsecamente lineares úteis*

Função	Transformação(ões) para linearizar	Forma linear
a. Exponencial: $y = \alpha e^{\beta x}$	$y' = \ln(y)$	$y' = \ln(\alpha) + \beta x$
b. Potência: $y = \alpha x^{\beta}$	$y' = \log(y), x' = \log(x)$	$y' = \log(\alpha) + \beta x'$
$\mathbf{c.} \ \ y = \alpha + \beta \times \log(x)$	$x' = \log(x)$	$y = \alpha + \beta x'$
d. Recíproca: $y = \alpha + \beta \cdot \frac{1}{x}$	$x' = \frac{1}{x}$	$y = \alpha + \beta x'$

^{*} Quando $\log(\cdot)$ aparece, tanto a base 10 quanto a base e podem ser usadas.

Nem todo modelo não linear é difícil

Figura 13.3 Gráficos das funções intrinsecamente lineares dadas na Tabela 13.1.

Modelos intrinsecamente lineares

- Um modelo relacionando Y com x é intrinsecamente linear se por meio de uma transformação em Y ou x ou ambos puder ser reduzido a um modelo probabilístico linear $Y' = \beta_0 + \beta_1 x' + \varepsilon'$
- A vantagem de um modelo intrinsecamente linear é que os parâmetros β_0 e β_1 do modelo transformado podem ser imediatamente estimados usando o princípio dos mínimos quadrados simplesmente substituindo x' e y' nas fórmulas de estimativa

Modelos logístico e polinomial

- Muitas vezes a variável de resposta Y não tem suporte em toda a reta—por exemplo, é uma variável binária (0 ou 1), de contagem, estritamente positiva...
- Nestes casos, podemos empregar modelos lineares generalizados para ajustar os dados
- Os dois modelos lineares generalizados são o modelo logístico e o modelo polinomial

Modelos logístico

- Y assume dois valores (0 ou 1) dependendo do valor de alguma variável quantitativa $P(Y_i = 1 \mid x_i) = p(x_i)$
- Um modelo para p(x) bastante útil é aquele que relaciona a razão das chances p(x)/(1-p(x)) com

$$\frac{p(x)}{1-p(x)}=e^{\beta_0+\beta_1x}$$

 Tomando o logaritmo natural em ambos os lados obtemos o modelo logístico (linear no preditor x)

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Modelos polinomiais

- *Y* não se comporta de maneira monotônica, às vezes crescendo em um intervalo e decrescendo em outro
- Nestes casos, podemos empregar modelos polinomiais para ajustar os dados

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \cdots + \beta_k x^k + \varepsilon$$

• As estimativas para β_0 , β_1 , ..., β_k são obtidas pela resolução de um sistema linear $(k+1) \times (k+1)$

Modelos polinomiais

 No modelo de regressão polinomial, a estimativa da variância do erro é dada por

$$\widehat{\sigma}^2 = s^2 = \frac{SQE}{n - (k+1)}$$

o denominador n-(k+1) indica que k+1 graus de liberdade são perdidos na estimativa de $\beta_0, \beta_1, ..., \beta_k$

O coeficiente de determinação múltipla ajustado vale

$$R^2$$
(ajustado) = $1 - \frac{n-1}{n-(k+1)} \cdot \frac{SQE}{SQT}$

Modelos de regressão múltipla

Modelos de regressão múltipla

 Modelo probabilístico que relacione uma variável dependente Y a mais de uma variável preditora

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon$$

• O coeficiente de regressão β_i fornece a variação esperada em Y devido a uma variação em x_i enquanto as outras variáveis preditoras x_j , $j \neq i$, se mantêm constantes

Modelos de regressão múltipla

Modelos com interação e preditores quadráticos

- Modelos de regressão múltipla podem ser usados para formular modelos com interação entre as variáveis preditoras
- O modelo com interação mais geral envolvendo no máximo produtos quadráticos possui a forma geral (usando somente duas variáveis preditoras, x_1 e x_2 , no exemplo, mas poderiam ser em maior número)

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \varepsilon$$

Modelos de regressão múltipla

Teste de utilidade de modelos com interação e preditores quadráticos

■ Testamos a hipótese H_0 de que todos os $\beta_i = 0$ usando a estatística de teste

$$f = \frac{R^2/k}{(1-R^2)/[n-(k+1)]}$$

onde
$$R^2 = 1 - SQE/SQT = SQR/SQT$$

■ A estatística f possui distribuição $F_{k,n-(k+1)}$ de Fisher-Snedecor com k graus de liberdade "em cima" e n-(k+1) graus de liberdade "embaixo"

Dicas finais

- As videoaulas de "Revisando conhecimentos" são valiosas, em particular nas 3 primeiras semanas
- As videoaulas são integralmente baseadas nos exemplos resolvidos do texto-base de Jay L. Devore, Probabilidade e Estatística para Engenharia e Ciências, (trad. 9ª ed.), Capítulos 12 e 13
- Estudem com base nos exemplos resolvidos do texto-base—eles estão muito mais claros e detalhados do que nas videoaulas (devido à curta duração das videoaulas)

Bom estudo e bom final de ano a tod@s!

