Le produit scalaire dans le plan

I. Expression analytique du produit scalaire

1. Rappel

a. Formule trigonométrique du produit scalaire

Activité O

Soit ABC un triangle rectangle en B tel que AB = 2; BC = 2; $AC = \sqrt{2}$ et $(\overline{AB}; \overline{AC}) = \frac{\pi}{6} [2\pi]$

Calculer $\overrightarrow{AB}.\overrightarrow{AC}$, $\overrightarrow{BA}.\overrightarrow{BC}$ et $\overrightarrow{CA}.\overrightarrow{CB}$.

Définition et propriété

• Soient \vec{u} et \vec{v} deux vecteurs du plan, on a

 $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u},\vec{v})$ tel que (\vec{u},\vec{v}) est l'angle orienté formé par \vec{u} et \vec{v} .

• \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

b. Repère orthonormé direct

Définition

Soit (\vec{i}, \vec{j}) une base du plan, et O un point du plan.

On dit que (O, \vec{i}, \vec{j}) est un repère orthonormé direct si et seulement si $\|\vec{i}\| = \|\vec{j}\| = 1u$, $\vec{i} \cdot \vec{j} = 0$ et $(\vec{i}, \vec{j}) = \frac{\pi}{2} [2\pi]$.

Dans ce que suit, le plan est rapporté à un repère orthonormé direct $\left(O,\vec{i},\vec{j}\right)$

2. Expression analytique du produit scalaire

Introduction

Soient \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{u}(x, y)$ et $\vec{v}(x', y')$

On a $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$

Donc $\overrightarrow{uv} = xx'\overrightarrow{i}\overrightarrow{i} + xy'\overrightarrow{i}\overrightarrow{j} + x'y\overrightarrow{j}\overrightarrow{i} + yy'\overrightarrow{j}\overrightarrow{j} = xx' + yy'$ car $\overrightarrow{i}\overrightarrow{j} = \overrightarrow{j}\overrightarrow{i} = 0$ et $\overrightarrow{i}\overrightarrow{i} = \overrightarrow{j}\overrightarrow{i} = 1$.

L'expression $\overrightarrow{u.v} = xx' + yy'$ est l'expression analytique du produit scalaire.

Propriété Ø :

Soient \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{u}(x, y)$ et $\vec{v}(x', y')$

On a $\overrightarrow{u}.\overrightarrow{v} = xx' + yy'$

Exemple

On a $\vec{u}(-1;3)$ et $\vec{v}(-2;1)$ donc $\vec{u}.\vec{v} = -1 \times (-2) + 3 \times 1 = 5$.

Propriété @

Soient \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{u}(x, y)$ et $\vec{v}(x', y')$.

$$\vec{u} \perp \vec{v} \Leftrightarrow xx' + y' = 0$$

Application **O**

1) Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs du plan tels que $\vec{u}(-5,3)$, $\vec{v}(\frac{1}{2},-1)$ et $\vec{w}(-2;\frac{1}{3})$

Calculer $\vec{u}.\vec{v}$, $\vec{v}.\vec{w}$ et $\vec{u}.\vec{w}$

- 2) Soient \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{u}(2+m;-2)$, $\vec{v}(-3;\frac{1}{4}m)$. Déterminer la valeur de m pour que \vec{u} et \vec{v} soient orthogonaux.
- 3. Expression analytique de la distance entre deux points et la norme d'un vecteur.

<u>Propriété</u>

 \oplus Soit \vec{u} un vecteur du plan tel que $\vec{u}(x,y)$.

On a $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

 \oplus Etant donné deux points A et B du plan tels que $A(x_A; y_A)$ et $B(x_B; y_B)$.

On a
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Application @

On considère les points suivants A(3;2), $B(\frac{-1}{2};0)$ et C(1;-1).

- 1) Calculer les distances suivantes AB,AC et BC.
- 2) Montrer que le triangle ABC est rectangle en C.
- 4. Expression analytique de $\cos \theta$ et $\sin \theta$

Propriété

Soient \vec{u} et \vec{v} deux vecteurs du plan et θ la mesure de l'angle orienté (\vec{u}, \vec{v})

On a
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{xx' + yy'}{\sqrt{x^2 + y^2} + \sqrt{x'^2 + y'^2}}$$
 et $\sin \theta = \frac{\det(u, v)}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{xy' - x'y}{\sqrt{x^2 + y^2} \cdot \sqrt{x'^2 + y'^2}}$

Application 3

On considère les points suivants A(3;3), B(1;1) et C(1;3).

- 1) Calculer $\cos\left(\overrightarrow{AB}; \overrightarrow{AC}\right)$ et $\sin\left(\overrightarrow{AB}; \overrightarrow{AC}\right)$
- 2) Déduire la mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$

<u>Résultats</u>

• Aire d'un triangle

L'aire d'un triangle ABC est $S = \frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{BA}, \overrightarrow{BC} \right) \right| = \frac{1}{2} \left| \det \left(\overrightarrow{CA}, \overrightarrow{CB} \right) \right| (u)$

Aire d'un parallélogramme à partir de deux vecteurs

L'aire d'un parallélogramme ABCD est $S = \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right|$

Application @

On considère les points suivants : A(1;1), B(2;2) et C(0;3)

- 1) Calculer AC, BC et $\overrightarrow{CA}.\overrightarrow{CB}$
- 2) Déduire la nature du triangle ABC
- 3) Déterminer la surface du triangle ABC

II. La droite dans le plan

1. <u>Vecteur normal à une droite</u>

<u>Définition</u>

Soit (D) une droite du plan et \vec{u} son vecteur directeur.

Tout vecteur non nul et perpendiculaire au vecteur \vec{u} s'appelle vecteur normal à la droite (D).

Propriété :

Soit (D) une droite d'équation ax + by + c = 0, le vecteur $\vec{u}(-b, a)$ est le vecteur directeur de (D) et le vecteur $\vec{n}(a,b)$ le vecteur normal à (D).

Exemple

Donner un vecteur normal à (D) dans les cas suivants

•(D): 2x+3y-5=0: Le vecteur normal à (D) est $\vec{n}(2;3)$.

•(D): -3x+5=0: Le vecteur normal à (D) est $\vec{n}(-3,0)$.

•(D): -2y+4=0: Le vecteur normal à (D) est $\vec{n}(0;-2)$.

Equation cartésienne d'une droite définie par un point et un vecteur normal

Propriété

Soit (D) une droite du plan, passant par le point $A(x_0, y_0)$ et dont le vecteur normal est $\vec{n}(a,b)$.

L'équation cartésienne de la droite (D) est ax + by + c = 0 où $c = -ax_0 - by_0$

Application *©*

- 1) Déterminer l'équation cartésienne de la droite (D) passant par le point A(-1;2) et dont le vecteur normal est n(2,-3).
- 2) Déterminer l'équation cartésienne de la droite (Δ) la médiatrice du segment [AB] où A(-1;2)et B(2;-3).

3. Parallélisme et orthogonalité de deux droites.

<u>Propriété</u>

Soient (D) et (D') deux droites du plan dont $\vec{n}(a,b)$ et $\vec{n'}(a',b')$ sont respectivement les vecteurs normaux à (D) et (D').

- On dit que (D) et (D') sont *parallèles* si et seulement si $\det(\vec{n}, \vec{n'}) = 0$.
- On dit que (D) et (D') sont *orthogonales* si et seulement si $n \cdot n' = 0$.

Application ©

Etudier la position relative de (D) et (D') dans les cas suivants :

- (D): 2x+3y-1=0 ; $(D'): \frac{3}{2}x-y+4=0$ (D): x+4y+3=0 ; $(D'): -\frac{1}{2}x-2y+4=0$
- (D): 2x+y-1=0 ; (D'): -x+2y+3=0

4. Distance d'un un point par rapport à une droite

Définition

Soit (D) une droite et soient A un point du plan et H le projeté orthogonale de A sur (D).

Le nombre réel AH est appelé la distance du point A à la droite (D) et on écrit : d(A,(D)) = AH

<u>Propriété</u>

Soit (D) une droite d'équation ax + by + c = 0 et $A(x_0, y_0)$ un point du plan.

La distance du point A par rapport à la droite (D) est : $d(A,(D)) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$

Application 🕏

Soit (D) une droite d'équation et soit $A\left(\frac{1}{2};-3\right)$ un point du plan. Déterminer $d\left(A,\left(D\right)\right)$

III. Etude analytique d'un cercle

1. Equation d'un cercle défini par son centre et son rayon

Activité @

On considère le cercle (C) de centre $\Omega(1;1)$ et de rayon 2.

- 1) Parmi les points suivants, déterminer ceux qui appartiennent au cercle (C): A(3;1); B(2;2), $C(\sqrt{3}+1;2)$
- 2) Soit M(x; y) un point du plan
- a) Calculer ΩM la distance en fonction de x et y
- b) Montrer que le point appartient au cercle (C) si seulement si $:(E): x^2 + y^2 2x 2y 2 = 0$
- 3) En suivant la même démarche de la question 2)b), déterminer une équation cartésienne du cercle de centre $\Omega(a;b)$ et de rayon R.

Propriété

Soit un cercle de centre $\Omega(a;b)$ et de rayon R.

Une équation cartésienne du cercle (C) de centre $\Omega(a,b)$ et de rayon $R(R \succ 0)$ est :

$$(x-a)^2 + (y-b)^2 = R^2$$
 et on peut écrire : $x^2 + y^2 - 2ax - 2by + c = 0$ avec $c = a^2 + b^2 - R^2$

Exemple

On considère un cercle (C) de centre $\Omega(2;-1)$ et de rayon $R=\sqrt{2}$.

$$M(x,y) \in (C) \Leftrightarrow \Omega M^2 = R^2$$

Donc
$$(x-2)^2 + (y+1)^2 = \sqrt{2}^2$$
 Alors $x^2 - 4x + 4 + y^2 + 2y + 1 = 2$

D'où $x^2 + y^2 - 4x + 2y + 3 = 0$ est une équation cartésienne du cercle (C).

Application **8**

- 1) Déterminer une équation catésienne d'un cercle de centre de centre $\Omega(-2;1)$ et de rayon $R = \sqrt{3}$
- 2) Déterminer une équation cartésienne d'un cercle passant par le point A et de centre Ω dans les cas suivants

$$\otimes$$
 $A(1;3)$; $\Omega(2;-1)$; \otimes $A(2;4)$; $\Omega(2;0)$; \otimes $A(2;-2)$; $\Omega(-2;3)$

3) Déterminer le centre et le rayon d'un cercle (C) dans les cas suivants

$$\oplus x^2 + y^2 - 2x + 2y - 2 = 0$$
 ; $\oplus x^2 + 4x - 2y = 0$; $\oplus x^2 + y^2 + x - y - \frac{3}{2} = 0$

2. Equation d'un cercle définie par son diamètre

Propriété :

Soient $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points distincts du plan.

L'ensemble des points M qui vérifient $\overrightarrow{AM}.\overrightarrow{BM} = 0$ est un cercle de diamètre [AB] et d'équation $(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$

Application @

Déterminer une équation cartésienne d'un cercle (C) et de diamètre [AB] où A(1;-3) et B(2;1)

3. Représentation paramétrique d'un cercle

Définition

 \otimes L'ensemble des points M(x,y) du plan qui vérifient le système (S) $\begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases} / \theta \in \mathbb{R}$ est un cercle de centre $\Omega(a;b)$ et de rayon R.

 \otimes Le système (S) est appelé une représentation paramétrique d'un cercle.

Exemple

Soit (C) un cercle de centre $\Omega(-2;5)$ et de rayon R=2.

Le système (S) $\begin{cases} x = -2 + 2\cos\theta \\ y = 5 + 2\sin\theta \end{cases} / \theta \in \mathbb{R}$ est une représentation paramétrique du cercle (C).

Application @

Soit (C) un cercle de centre $\Omega(-2;5)$ et de rayon R=2.

1)

- a) Déterminer une représentation paramétrique du cercle (C).
- b) Préciser deux points appartenant au cercle (C).
- 2) Déterminer une représentation paramétrique d'un cercle définie par l'équation suivante $x^2 + y^2 6x + 4y 1 = 0$

4. Ensemble de points M(x, y) du plan vérifie $x^2 + y^2 + ax + by + c = 0$

Soient a,b et c des nombres réels et (E) un ensemble de points M(x,y) du plan tel que

$$(E) = \{M(x, y) / x^2 + y^2 + ax + by + c = 0\}.$$

<u>Propriété</u>

Si $a^2+b^2-4c<0$ alors l'ensemble (E) est un ensemble vide et on écrit $S=\emptyset$.

Si $a^2+b^2-4c < 0$ alors l'ensemble (E) est un point qui est $\Omega\left(\frac{-a}{2},\frac{-b}{2}\right)$ et on écrit $S = \left\{\Omega\left(\frac{-a}{2},\frac{-b}{2}\right)\right\}$

Si $a^2+b^2-4c<0$ alors l'ensemble(E) est un cercle de centre $\Omega\left(\frac{-a}{2},\frac{-b}{2}\right)$ et de rayon

$$R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} \text{ et on \'ecrit } S = \left\{ (C) \left\{ \Omega\left(\frac{-a}{2}, \frac{-b}{2}\right); R = \frac{\sqrt{a^2 + b^2 - 4c}}{2} \right\} \right\}$$

Application OO

Déterminer l'ensemble de points M(x, y) du plan qui vérifie :

- $x^2 + y^2 x + 3y 4 = 0$
- $x^2 + y^2 6x + 2y + 10 = 0$
- $x^2 + y^2 4x + 5 = 0$

5. Positions relatives d'une droite et un cercle

Pour étudier la position relative d'un cercle de centre $\Omega(a,b)$ et de rayon R et une droite, il suffit de comparer la distance d(A,(D)) et le rayon R.

Propriété

Soit (C) un cercle de centre $\Omega(a;b)$ et de rayon R et soit (D) une droite du plan.

ightharpoonup Si d(A,(D)) > R alors la droite (D) et le cercle (C) ne se coupent pas.

 \triangleright Si d(A,(D)) = R alors la droite (D) est tangente au cercle (C) (se coupent en un point).

 \triangleright Si d(A,(D)) < R alors la droite (D) et le cercle (C) se coupent en deux points.

Application OQ

Etudier la position relative du cercle (C) et la droite (D) dans les cas suivants

a.
$$\otimes$$
 (D): $2x+3y-1=0$; (C): $(x-2)^2+(y+1)^2=9$

$$(C): x^2 + y^2 - 2x - 2y - 7 = 0$$

6. Equation cartésienne de la tangente d'un cercle en un point

Propriété

Soient (C) un cercle de centre $\Omega(a;b)$ et de rayon R et soit (D) une droite du plan.et soient $A \in (C)$ et $M \in (D)$.

La droite (D) est tangente au cercle (C) en A si et seulement si $\overrightarrow{AM}.\overrightarrow{A\Omega} = 0$.

Application 🛛 🗷

Soit (E) l'ensemble de points M(x, y) du plan qui vérifie $x^2 + y^2 - 6x + 4y - 3 = 0$

- 1) Montrer que (E) est un cercle (C), en déterminant le centre et le rayon.
- 2) Vérifier que le point $A(3;2) \in (C)$.
- 3) Déterminer une équation cartésienne de la tangente du cercle (C) en un point A.

Exercice de synthèse

- I) Dans un repère orthonormé $(0; \vec{i}; \vec{j})$ on considère les points A(-2; 1), B(0; -2) et (1; 3)
- 1) Calculer \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC} , \overrightarrow{AB} . \overrightarrow{AC}
- 2) Déduire la nature du triangle ABC
- 3) Calculer la surface d triangle ABC
- 4) Calculer \overrightarrow{BC} . \overrightarrow{BA} ; $cos\left(\overrightarrow{BC};\overrightarrow{BA}\right)$; $sin\left(\overrightarrow{BC};\overrightarrow{BA}\right)$ et déduire la mesure principale de l'angle $\left(\overrightarrow{BC};\overrightarrow{BA}\right)$
 - 5) Donner une équation cartésienne de la droite (D), la hauteur du triangle ABC passant par A
 - 6) Calculer la distance d(B,(D))
- II) On considère le cercle (C) d'équation $x^2 + y^2 2x 4y 3 = 0$.

1)

- a) Montrer que $\Omega(1; 2)$ est le centre du cercle (C) et de rayon $R = 2\sqrt{2}$
- b) Déterminer une représentation paramétrique du cercle (C)

2)

- a) Vérifier que le point A(-1; 0) appartient au cercle (C).
- b) Donner l'équation de la tangente du cercle (C) au point A.
- 3) on considère la droite (D) d'équation x + y 3 = 0.
- a) Montrer que la droite (D) coupe le cercle (C) en deux points E et F.
- b) Déterminer les coordonnés de deux points E et F.
- c) Déterminer les équations cartésiennes de (D_1) et (D_2) les tangentes au cercle (C) en E et F.