CPE166 Quiz 1 Results for Casey Chan

(!) Correct answers are hidden.

Score for this attempt: 100 out of 100

Submitted Mar 1 at 2:54pm This attempt took 23 minutes.

Question 1

18 / 18 pts

Design the above circuit in Verilog by selecting one correct answer from each drop box below.

module cir (A, B, C, F);

__input ____ A, B, C;

__output ____ F;

__wire ____ D, E;

assign D = __~ (A | B) ____;

assign E = __B & C ____;

assign F = __D ^ E ____;

endmodule

Answer 1:

input

Answer 2:

output

```
Answer 3:

wire

Answer 4:

~(A|B)

Answer 5:

B & C

Answer 6:

D^E
```

```
18 / 18 pts
Question 2
// This is a testbench for question 1.
module cir_tb;
__reg ____ A, B, C ;
__wire ____ F;
__integer ____ i;
cir uut ( _____ A, B, C, F ____ );
initial
begin
   for (i = 0; i < ____8 ___ ; i=i+1)
   begin
     #10;
   end
   #10 $stop;
end
endmodule
```

Answer 1:

reg

Answer 2:

wire

Answer 3:

integer

Answer 4:

A, B, C, F

Answer 5:

8

Answer 6:

 $\{ A, B, C \} = i;$

Question 3

4 / 4 pts

// The verilog design of cir.v is the same as that used in question 1.

module question3 (A, B, Y);

Design the above circuit in Verilog and select one answer for each drop box below.
module cir2 (A, D, C, CLK);
input A, D, CLK;
output C;
wire E;
reg B;
regC;
assign E = ~ C;
always@(A or D or E) begin
if (D) B=A; else B=E;
B_L, end
always@(negedge CLK) C<=B;
endmodule
Answer 1:
wire
Answer 2:
reg
Answer 3:
reg
Answer 4:
A or D or E

Answer 5:		
D		
Answer 6:		
B=A		
Answer 7:		
B=E		
Answer 8:		
negedge CLK		
Answer 9:		
C<=B		

Question 5	12 / 12 pts
Design a counter circuit in Veirlog. The counter updates its valurising edge of the clock. It counts from 0 to 219, and then repeat	
module cir4 (clk, cnt); // cnt is the counter output input clk;	
// Use minimally allowed number of bits for	
// the following blanks.	
output [7: 0] cnt;	
reg [7: 0] cnt;	
always@(posedge_clk)	
begin	

Question 6 30 / 30 pts 1 S0/0 S2/0 0 S3/1

Design the above finite state machine in Verilog by selecting one correct

answer for each of the drop boxes below.

```
module fsm (reset, clk, a, y);
input reset, clk, a;
output a;
reg
        a;
parameter S0 = 2'b00, S1=2'b01, S2=2'b10, S3=2'b11;
__reg [1:0] __ cs, ns;
// cs: current state, ns: next state
always@( posedge clk or posedge reset )
begin
    if(reset)
     ___cs<=S0 _;
    else
       ___cs <= ns _;
end
always@( cs or a )
begin
   case(cs)
    S0:
            ns = S2;
    S1:
            if (a) ns = S1;
            else ns = __S0 _;
            if (a) ns = __S1 ;
    S2:
            else ns = __S3 _;
    S3:
            if (a) ns = __S3 _;
            else ns = __S0 _;
    default: ns = S0;
    endcase
end
always@(cs)
begin
   case(cs)
    S0:
            y= ___0 _;
            y= ___0 _;
    S1:
```

S2:
default: y = 0;
endcase
end
Answer 1:
reg [1:0]
Answer 2:
posedge clk or posedge reset
Answer 3:
cs<=S0
Answer 4:
cs <= ns
Answer 5:
S1
Answer 6:
S0
Answer 7:
S1
Answer 8:
S3
Answer 9:

S3			
Answer 10:			
S0			
Answer 11:			
cs			
Answer 12:			
0			
Answer 13:			
0			
Answer 14:			
0			
Answer 15:			
1			

Quiz Score: 100 out of 100