Hola

Parte 3

ENUNCIADO

3 – TCL: Teorema Central del Límite

El resultado de (2.d) no es más que un caso particular del Teorema Central del Límite:

$$\overline{X}_n \approx \mathcal{N} \quad \mu, \frac{\sigma^2}{n}$$

Este teorema establece que, en condiciones bastante generales, al tomar muestras aleatorias de una población con cualquier distribución, la media de estas muestras tenderá a seguir una distribución normal, siempre que el tamaño de la muestra sea lo suficientemente grande.

En esta sección vamos a trabajar con las mismas variables aleatorias que introdujimos en las dos secciones anteriores:

$$X \sim U(0, 18), \quad \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \approx \mathcal{N} \quad \mu, \frac{\sigma^2}{n} = \mathcal{N} \quad \mathbb{E}(X), \frac{\mathbb{V}(X)}{n}$$

donde ahora para el promedio tomamos n como una variable libre que vamos a ir cambiando, en vez de fijar n=15 como hicimos en la sección anterior.

- (3.a) Muestre que se cumple el TCL para un caso particular: realice un histograma para X y otro para \overline{X}_{40} , con $R=10^6$ realizaciones en ambos casos. Superponga la forma funcional de la distribución que espera para cada una de las distribuciones.
- (3.b) Grafique ocho histogramas como un arreglo de 4×2 paneles (filas×columnas). En la primera fila, grafique los histogramas de \overline{X}_n para n=1 y $R \in \{10^2, 10^6\}$ (un panel por cada R). Para las siguientes filas repita este procedimiento con $n \in \{2, 5, 15\}$. ¿Qué cambia y qué no al variar n? ¿Qué cambia y que no al variar R? Discuta el resultado detalladamente.

PUNTO 3.A

PUNTO 3.A

PUNTO 3.A

ESTÉTICA DE LOS HISTOGRAMAS

ESTÉTICA DE LOS HISTOGRAMAS

how to do a beautiful histogram in R using hist function, give me only the code, documented


```
# Generate some sample data
data <- rnorm(1000, mean = 50, sd = 10)

# Create a beautiful histogram
hist(
```

PUNTO 3.B

(3.b)
$$X_j \sim U_j(0, 18), \quad \overline{X}_n \sim \frac{1}{n} \sum_{j=1}^n X_j$$

Grafique ocho histogramas como un arreglo de 4×2 paneles (filas \times columnas). En la primera fila, grafique los histogramas de \overline{X}_n para n=1 y $R\in 10^2, 10^6$ (un panel por cada R). Para las siguientes filas repita este procedimiento con $n\in 2,5,15$.

PUNTO 3.B

(3.b)
$$X_j \sim U_j(0, 18), \quad \overline{X}_n \sim \frac{1}{n} \sum_{j=1}^n X_j$$

Grafique ocho histogramas como un arreglo de 4×2 paneles (filas \times columnas). En la primera fila, grafique los histogramas de \overline{X}_n para n=1 y $R\in 10^2, 10^6$ (un panel por cada R). Para las siguientes filas repita este procedimiento con $n\in 2,5,15$.

¿Qué cambia y qué no al variar n ? ¿Qué cambia y que no al variar R ?

PUNTO 3.B

(3.b)
$$X_j \sim U_j(0, 18), \quad \overline{X}_n \sim \frac{1}{n} \sum_{j=1}^n X_j$$

Grafique ocho histogramas como un arreglo de 4×2 paneles (filas \times columnas). En la primera fila, grafique los histogramas de \overline{X}_n para n=1 y $R\in 10^2, 10^6$ (un panel por cada R). Para las siguientes filas repita este procedimiento con $n\in 2,5,15$.

¿Qué cambia y qué no al variar n ? ¿Qué cambia y que no al variar R ?

Discuta el resultado detalladamente.

PUNTO 3.B

Eso es todo