Nodal Voltage Analysis

Q1 [Alexander Problem 3.3]

Apply nodal voltage analysis to the circuit in Figure 3.52 to find v_0 , I_1 , I_2 , I_3 , I_4 .

Q2 [Alexander Problem 3.5]

Apply nodal voltage analysis to the circuit in Figure 3.54 to find v_o .

Q3 [Alexander Problem 3.11]

Apply nodal voltage analysis to the circuit in Figure 3.60 to find V_o and the power dissipated in all the resistors.

Q4 [Alexander Problem 3.32]

Find the nodal voltages v₁, v₂, v₃ in the circuit of Fig 3.81, and hence find all branch currents.

Q5 [Modified from Rizzoni Problem 3.12]

Find V_1 and V_2 in Figure P3.12 (relative to the node at the bottom of the circuit) using nodal voltage analysis. Then find V_L and use it to find the power delivered to the load resistor R_L . Given: $R_1 = 8 \ \Omega$, $R_2 = 2 \ \Omega$, $R_3 = 5 \ \Omega$, $R_4 = 6 \ \Omega$, $R_L = 4 \ \Omega$, $V_S = 4 \ V$, $I_S = 3 \ A$.

Figure P3.12

Q6 [Modified from Rizzoni Problem 3.62]

Apply nodal voltage analysis to the nodal voltage at A and B in Fig P3.5. Hence find the voltage across nodes A-B. Assume all resistors in the circuit are $100~\Omega$ and voltage sources are 5~V.

Figure P3.5

Mesh Current Analysis

Q7 [Modified from Alexander Problem 3.15]

Identify the number of mesh current equations needed to analyse the circuit in Figure 3.64. Then apply mesh current analysis to find i_o . Use i_o to find the nodal voltages V_1 , V_2 , V_3 .

Q8 [Modified from Alexander Problem 3.36]

Identify the number of mesh current equations needed to analyse the circuit in Figure 3.84. Then apply mesh current analysis to find currents i_1 , i_2 , and i_3 .

Q9 [Alexander Problem 3.51]

Identify the number of mesh current equations needed to analyse the circuit in Figure 3.96. Then apply mesh current analysis to find the voltage v_o .

Numerical solutions

Q1 [Alexander Problem 3.3]

 $v_o = -60 \text{ V}$

 $I_1 = -6 \text{ A}, I_2 = -3 \text{ A}, I_3 = -2 \text{ A}, I_4 = -1 \text{ A}.$

Q2 [Alexander Problem 3.5]

 $v_o = 20 \text{ V}$

Q3 [Alexander Problem 3.11]

 $V_o = 3 V$

For the 12 Ω resistor in series with the 60 V source: P = 270.75 W

For the 12 Ω resistor between V_o and ground: P = 0.75 W

For the 6 Ω resistor: P = 121.5 W

Power generated by 60 V source = 285 W

Power generated by 24 V source = 108 W

Q4 [Alexander Problem 3.32]

 $v_1 = 2 V$, $v_2 = 12 V$, $v_3 = -8 V$

Q5 [Modified from Rizzoni Problem 3.12]

 $V_1 = 12 V$

 $V_2 = 5 V$

Power delivered to $R_L = 1 \text{ W}$

Q6 [Modified from Rizzoni Problem 3.62]

 $V_{AB} = 2.5V$

Q7 [Modified from Alexander Problem 3.15]

Current through 10 Ω : $i_0 = 2$ A

 $V_1 = 20 \text{ V}, V_2 = 10 \text{ V}, V_3 = 28 \text{ V}$

Q8 [Modified from Alexander Problem 3.36]

 $i_1 = -2 A$; $i_2 = 3 A$; $i_3 = -1 A$

Q9 [Alexander Problem 3.51]

 $v_0 = 20 \text{ V}$