Lecture 32: More Quick Sort, Sorting Summary

11/10/2020

Partition Sort a.k.a. Quicksort

- Quicksorting N items:
 - Partition on leftmost item
 - o Quicksort left half
 - Quicksort right half
- Run time is Theta(N log N) in the best case, Theta(N^2) in the worst case, and Theta(N log N) in the average case

Avoiding the Worst Case

- Four philosophies:
 - Randomness: Pick a random pivot or shuffle before sorting
 - Smarter pivot selection: Calculate or approximate the median
 - o Introspection: Switch to a safer sort if recursion goes too deep
 - Preprocess the array: Could analyze array to see if Quicksort will be slow. No obvious way to do this, though

Philosophy 1: Randomness (Preferred Approach)

- If pivot always lands somewhere "good", Quicksort is Theta(N log N). However, the ver rare Theta(N^2) cases do happen in practice
 - Bad ordering: Array already in sorted order
 - o Bad elements: Array with all duplicates
- Deal with bad ordering:
 - Strategy 1: Pick pivots randomly
 - Strategy 2: Shuffle before sorting
- THe second strategy requires care in partitioning code to avoid Theta(N^2) behavior on arrays of duplicates
 - Common bug in textbooks!

Philosophy 2a: Smarter Pivot Selection (constant time pivot pick)

- Randomness is necessary for best Quicksort performance! For any pivot selection procedure that is:
 - o Deterministic
 - o Constant time
- The resulting Quicksort has a family of dangerous inputs that an adversary could easily generate

Philosophy 2b: Smarter Pivot Selection (linear time pivot pick)

- Could calculate the actual median in linear time
 - "Exact median Quicksort" is safe: Worst case Theta(N log N), but it is slower than Mergesort

 Raises interesting question though: How do you compute the median or an array? Will talk about how to do this later today

Philosophy 3: Introspection

- Can also simply watch your recursion depth
 - o If it exceeds some critical value (say 10 ln N), switch to mergesort

Sorting Summary (so far)

- Listed by mechanism:
 - Selection sort: Find smallest item and put it at the front
 - Insertion sort: Figure out where to insert the current item
 - Merge sort: Merge two sorted halves into one sorted whole
 - o Partition (quick) sort: Partition items around a pivot

	Memory	Time	Notes
Heapsort	Θ(1)	Θ(N log N)	Bad caching (61C)
Insertion	Θ(1)	$\Theta(N^2)$	$\Theta(N)$ if almost sorted
Mergesort	Θ(N)	Θ(N log N)	
Random Quicksort	$\Theta(\log N)$ expected	Θ (N log N) expected	Fastest sort

Quicksort Flavors

- Quicksort is the fastest, but only if we make the right decisions about:
 - Pivot selection
 - Partition algorithm
 - How we deal with avoiding the worst case

Tony Hoare's In-place Partitioning Scheme

- · Proposed scheme where two pointers walk towards each other
 - Left pointer loves small items and hates large or equal items
 - o Right pointer loves large items and hates small or equal items
 - o Big idea: Walk pointers toward each other, stopping on a hated item
 - When both pointers have stopped, swap and move pointers by one towards each other
 - End result is that things on left are "small" and things on the right are "large"
 - When pointers cross, you are done
 - Swap pivot where right pointer ends up
- This partitioning scheme yields a very fast Quicksort and is faster than mergesort
 - Though faster schemes have been found since
 - Best known Quicksort uses a two-pivot scheme
 - o Overall runtime still depends crucially on pivot selection strategy!

What if we don't want randomness?

Another approach: Use the median (or an approximation)

- The best possible pivot is the median
 - Splits problem into two problems of size N/2

Median Identification

- Is it possible to find the median in Theta(N) time?
 - Yes! Use 'BFPRT' (called PICK in original paper)
 - o In practice, rarely used
- However, while runtime is still Theta(N log N) this makes quicksort much slower than mergesort

Quick Select

The Selection Problem

- Computing the exact median would be great for picking an item to partition around. Gives us a "safe quick sort"
 - o Unfortunately, it turns out that exact median computation is too slow
- However, it turns out that partitioning can be used to find the exact median
 - o The resulting algorithm is the best known median identification algorithm

Quick Select

- · Goal, find the median
- Keep partitioning until the pivot lands in the exact middle of the array
 - Only need to partition the half that contains the middle index of the array

Worst Case Performance of Quick Select

- Worst asymptotic performance Theta(N^2) occurs if array is in sorted order
 - Can mostly negate this using shuffling

Expected Performance

- On average, Quick Select will take Theta(N) time
- On average, pivot ends up about halfway:
 - Number of compares: N + N/2 + N/8 + ... + 1 ~~ Theta(N)

Quicksort with Quickselect

- What if we used Quickselect to find the exact median?
 - Resulting algorithm is still quite slow. Also: a little strange to do a bunch of partitions to identify the optimal item to partition around

Stability, Adaptiveness, Optimization

Other Desirable Sorting Properties: Stability

- A sort is said to be stable if order of equivalent items is preserved
- Equivalent items don't "cross over" when being stably sorted

Sorting Stability

- Is insertion sort stable?
 - Yes
 - o Equivalent items never move past their equivalent elements
- Is Quicksort stable?
 - Depends on partitioning strategy
 - Three array partitioning will be stable
 - Hoare partitioning may not be stable (we may swap equivalent items)

Stability

	Memory	# Compares	Notes	Stable?
Heapsort	Θ(1)	Θ(N log N)	Bad caching (61C)	No
Insertion	Θ(1)	$\Theta(N^2)$	Θ (N) if almost sorted	Yes
Mergesort	Θ(N)	Θ(N log N)		Yes
Quicksort LTHS	Θ(log N)	Θ (N log N) expected	Fastest sort	No

This is due to the cost of tracking recursive calls by the computer, and is also an "expected" amount. The difference between log N and constant memory is trivial.

You can create a stable Quicksort (i.e. the version from the previous lecture). However, unstable partitioning schemes (like Hoare partitioning) tend to be faster. All reasonable partitioning schemes yield $\Theta(N \log N)$ expected runtime, but with different constants.

Optimizing Sorts

- Additional tricks we can play:
 - Switch to insertion sort:
 - When a subproblem reaches size 15 or lower, use insertion sort
 - Make sort **adaptive**: Exploit existing order in array (Insertion Sort, SmoothSort, TimSort)
 - Exploit restrictions on set of keys. If number of keys is some constant, can sort faster
 - For Quicksort: Make the algorithm introspective, switching to a different sorting method if recursion goes too deep. Only a problem for deterministic flavors of Quicksort

Arrays.sort

- In Java, Arrays.sort(someArray) uses:
 - Mergesort if someArray consists of objects
 - Quicksort if someArray consists of primitives