<u></u>

3. Teil: Grundlagen der Leistungselektronik

Aufgabe 1: Zweiquadrantensteller

Ein Motor soll von einem Zweiquadrantensteller mit variabler Spannung versorgt

Gehen Sie von idealen Bedingungen aus (ideale Halbleiter-Bauteile, idealer Stromübergang von einem auf das andere Ventil, keine Verluste)

Speisespannung:

 $U_d = 120 \text{ V}$

(1a)

Ankerwiderstand Motor

 $R = 6\Omega$

Motorgegenspannung:

 $U_M = 60 \text{ V}$, const

Taktfrequenz Zweiquadrantensteller: $f_T = 20 \text{ kHz}$

Glättungsinduktivität:

40 μ s und "Rückspeisen" T_r (Betrieb mit konstanter Taktfrequenz f_T = 20 kHz) Erste Annahme: ausschließliche Betriebszustände des 2Q-Stellers: "Treiben" Te=

- 1.1. Berechnen Sie Tr.
- 1.2. Berechnen Sie die Gleichspannung U_A (Spannung an M und R)
- 1.3. Berechnen Sie den Motorstrom I_R
- 1.4. Zeichnen Sie den zeitlichen Verlauf der Gesamtspannung ua. Benutzen Sie das bereitgestellte Diagramm (1a)
- 1.5. Beschreiben Sie die unterschiedlichen Betriebsarten "Treiben", "Rückspeisen", und "Freilauf" (kurzer Text).

12

= 40 µs, "Freilauf" T_a , der Betriebszustand "Rückspeisen" tritt nicht auf, (Betrieb mit Zweite Annahme: ausschließliche Betriebszustände des 2Q-Stellers: "Treiben" Te fester Taktfrequenz f_T = konstant → Pulsbreitensteuerung)

- 1.6. Berechnen Sie die neue Gleichspannung U_A (Spannung an M und R)
- 1.7. Bestimmen Sie unter Verwendung der Pulsbreitensteuerung die Einschaltdauer T_e sowie die Ausschaltdauer T_a so, dass sich $U_A = 84 \text{ V}$ ergibt.
- 1.8. Zeichnen Sie den zeitlichen Verlauf der Spannung u_A für $U_A = 84 \text{ V}$. Benutzen Sie das bereitgestellte Diagramm (1b).

Dritte Annahme: Für die Induktivität L gilt nun nicht mehr L $\rightarrow \infty$

- 1.9. Berechnen Sie für $T_e = 35 \mu s$ und für $T_a = 15 \mu s$ die Induktivität L so, dass der Strom iL gerade nicht mehr lückt
- 1.10. Zeichnen Sie den zeitlichen Verlauf des Stroms i_L. Benutzen Sie das bereitgestellte Diagramm (1c).