Manognya Kundarapu - EE24BTECH11037

Question: A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs. 27 for a book kept for seven days, while Susy paid Rs. 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

1) Theoretical Solution:

Let the fixed charge be Rs. x and the additional charge per day be Rs. y

$$\implies x + 4y = 27 \tag{1.1}$$

$$x + 2y = 21 \tag{1.2}$$

From 1.1,
$$x = (27 - 4y)$$
 (1.3)

Substituting x in 1.2, we get
$$(27 - 4y + 2y) = 21$$
 (1.4)

$$\implies y = 3$$
 (1.5)

$$x = 15$$
 (1.6)

2) LU Decomposition using Doolittle's algorithm

The system of linear equations: x + 4y = 27 and x + 2y = 21 can be written in matrix form as;

$$A\mathbf{x} = \mathbf{b}$$
, where

$$A = \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 27 \\ 21 \end{bmatrix}$$

Doolittle's algorithm decomposes A into a lower triangular matrix L and an upper triangular matrix U such that:

$$A = LU$$

where:

$$L = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

The elements of L and U are computed using:

$$U[i][j] = A[i][j] - \sum_{k=0}^{i-1} L[i][k]U[k][j]$$
(2.1)

$$L[i][j] = \frac{A[i][j] - \sum_{k=0}^{j-1} L[i][k]U[k][j]}{U[j][j]}$$
(2.2)

1

with the constraint L[i][i] = 1. Thus, we obtain

$$L = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 4 \\ 0 & -2 \end{bmatrix}$$

Solving for \boldsymbol{x} using Forward and Backward Substitution

With A = LU, we solve:

$$L\mathbf{y} = \mathbf{b}$$

$$\begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 27 \\ 21 \end{bmatrix}$$

Solving step-by-step:

$$\mathbf{y} = \begin{bmatrix} 27 \\ -6 \end{bmatrix}$$

Backward Substitution

Expanding $U\mathbf{x} = \mathbf{y}$:

$$\begin{bmatrix} 1 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 27 \\ -6 \end{bmatrix}$$

Thus we obtain;

$$\mathbf{x} = \begin{bmatrix} 15 \\ 3 \end{bmatrix}$$

