Joshua Mitchell; MATH 5374; HW 3; 4.4 and 5.4

4.4

Two matrices A, B $\in \mathbb{C}^{m \times m}$ are unitarily equivalent if A = QBQ* for some unitary Q $\in \mathbb{C}^{m \times m}$. Is it true or false that A and B are unitarily equivalent if and only if they have the same singular values?

 \Rightarrow

Assume that A and B are unitarily equivalent. Specifically, $A = QBQ^*$ for some unitary $Q \in \mathbb{C}^{m \times m}$ Notice:

$$A = QBQ^*$$

$$U_A \Sigma_A V_A^* = QU_B \Sigma_B V_B^* Q^*$$

$$U_A \Sigma_A V_A^* = QU_B \qquad \Sigma_B \qquad V_B^* Q^*$$

$$\Sigma_A = U_A^* Q U_B \qquad \Sigma_B \qquad V_B^* Q^* V_A$$

Since Q, U_B , V_B^* , Q*, U_A , and V_A^* are all unitary, any matrix that is a product of these 6 matrices is also unitary. Thus, no scaling is done by any product subset of these matrices.

Since both Σ_A and Σ_B are diagonal matrices composed of singular values of A and B, respectively, and can be written as non-scaling transformations of each other, they must have the same set of singular values.

 \Leftarrow

Assume A and B have the same set of singular values. Specifically,

$$A = U_A \Sigma V_A^* \qquad B = U_B \Sigma V_B^*$$

Then,

$$A = U_A \Sigma V_A^*$$
$$U_A^* A V_A = \Sigma$$

and

$$B = U_B U_A^* A V_A V_B^*$$

= $U_B U_A^* A V_A V_B^*$

Now, we wish to show:

$$U_B U_A^* = (V_A V_B^*)^{-1} = (V_A V_B^*)^* = V_B V_A^*$$

Alas, I'm not sure how to do that.

5.4

Suppose $A \in \mathbb{C}^{m \times m}$ has an SVD $A = U\Sigma V^*$. Find an eigenvalue decomposition (5.1) of the 2m x 2m hermitian matrix B:

$$B = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}$$

$${}_{2m \times 2m}$$

An eigenvalue decomposition of B will be of the form:

$$B = XVX^{-1}$$

Recall: Theorems 6.4.3 and 6.4.4 of Linear Algebra with Applications, edition 4:

Theorem 6.4.3 (Schur's Theorem):

For each $n \times n$ matrix A, there exists a unitary matrix U such that U*AU is upper triangular.

and

Theorem 6.4.4 (Spectral Theorem):

If A is Hermitian, then there exists a unitary matrix U that diagonalizes A (i.e. that $U^*AU = D$, a diagonal matrix).

Since B is hermit an,

$$U^*BU=D$$

where U is a unitary matrix and D is a diagonal matrix. With some algebra,

$$B = UDU^*$$

Since U diagonalizes B, it follows that the diagonal elements of D are the eigenvalues of A and the column vectors of U are eigenvectors of A.