Лабораторная работа 8 Оценка интегралов методом Монте-Карло

Цель работы

- 1. Исследование метода статистических испытаний для оценки интегралов
- 2. Оценка точности получаемых оценок

Порядок выполнения работы

- 1. Оценка интеграла.
 - 1.1. Составить программу для вычисления интеграла для заданного варианта (в MATLAB или VBA в зависимости от варианта).
 - 1.2. Выполнить вычисления и получить оценку для интеграла для заданного числа N повторных испытаний.
- 2. Оценка точности найденного значения интеграла.
 - 2.1. Выполнить повторные оценки m раз и найти выборочную дисперсию и среднеквадратическое отклонение оценки интеграла.
 - 2.2. Построить интервальную оценку для интеграла.
- 3. Построить график подынтегральной функции на заданном интервале.

Содержание отчета

- 1. Задание
- 2. Текст программы
- 3. Результаты расчетов
- 4. График функции

Варианты:

Вариант	Интеграл	N	m	Программа
1	$I = \int_{-\pi}^{\pi} x \sin x dx$	70	13	MATLAB
2	$I = \int_{0}^{1} \frac{x^3 dx}{\sqrt{1 - x^4}}$	34	12	VBA
3	$I = \int_{0}^{0.5} \frac{x dx}{\sqrt{1 - x^2}}$	36	16	MATLAB
4	$I = \int_{0}^{\pi} \cos x (\cos x + \operatorname{tg} x) dx$	38	10	VBA
5	$I = \int_{-1}^{+1} e^{-x} (x^3 + x) dx$	40	8	MATLAB
6	$I = \int_{1}^{4} \frac{xdx}{1+x^2}$	42	12	VBA

		1		
7	$I = \int_{1}^{5} \operatorname{arctg} x dx$	410	5	MATLAB
8	$I = \int_{0}^{3} \ln \sqrt{1 + x^2} dx$	37	4	VBA
9	$I = \int_{0}^{2} x^{2} dx$	490	5	MATLAB
10	$I = \int_{-\pi}^{\pi} (x^2 + \cos^2 x) dx$	430	20	VBA
11	$I = \int_{5}^{13} \frac{\cos x}{\sqrt{1+x^4}} dx$	90	15	MATLAB
12	$I = \int_{\pi/4}^{\pi/3} \frac{dx}{2 + 5\cos^2 x}$	80	16	VBA
13	$I = \int_{1}^{4} \left(\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} \right) dx$	350	21	MATLAB
14	$I = \int_{1}^{2} \left(x^2 + \frac{1}{x} + \frac{1}{x^3} \right) dx$	270	7	VBA
15	$I = \int_{0}^{3} \left(\sqrt{x} + \sqrt[3]{x^2}\right) dx$	330	24	MATLAB
16	$I = \int_{0}^{2} \frac{dx}{\sqrt{5 - x^2}}$	210	8	VBA
17	$I = \int_{0}^{2} \frac{3x - 5}{x + 1} dx$	80	21	MATLAB
18	$I = \int_{-\infty}^{\infty} \frac{2x^2 - x + 7}{x + 3} dx$	480	4	VBA
19	$I = \int_{3}^{6} e^{x/3} dx$ $\pi/12$	320	29	MATLAB
20	$I = \int_{-\pi/2}^{\pi/12} \cos^3 2x dx$	270	14	VBA

21	$I = \int_{0}^{1} x(1-x)^2 dx$	180	19	MATLAB
22	$I = \int_{0}^{2} \frac{x^2 + 5}{x^2 + 2} dx$	320	23	VBA
23	$I = \int_{\pi/2}^{\pi} \frac{\sin x}{x} dx$	390	6	MATLAB
24	$I = \int_{1}^{2} \sqrt{8 + x^3} dx$	480	17	VBA