Examples for 11/19/15, Part 1

$$s_{\text{pooled}}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

A confidence interval for $\mu_1 - \mu_2$ is

$$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2} \cdot s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

 $n_1 + n_2 - 2$ degrees of freedom

To test

$$H_0: \mu_1 - \mu_2 = \delta_0$$

Test Statistic: $t = \frac{\left(\frac{1}{y_1} - \frac{1}{y_2}\right) - \delta_0}{s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$

 $n_1 + n_2 - 2$ degrees of freedom

1. Assume that the distributions of Y_1 and Y_2 are $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, respectively. Given the $n_1 = 6$ observations of Y_1 ,

and the $n_2 = 8$ observations of Y_2 ,

test H_0 : $\mu_1 = \mu_2$ vs. H_1 : $\mu_1 \neq \mu_2$. Use a 5% level of significance. What can you say about the p-value of this test?

Assumptions:

- 1) Two independent samples.
- 2) Both populations are normal.
- 3) The population standard deviations are equal.

$$\overline{y}_1 = \frac{405}{6} = 67.5$$
 $\overline{y}_2 = \frac{560}{8} = 70$ $s_1^2 = \frac{21.5}{5} = 4.3$ $s_2^2 = \frac{28}{7} = 4$

$$s_{\text{pooled}}^2 = \frac{(6-1)\cdot 4.3 + (8-1)\cdot 4}{6+8-2} = 4.125$$

Test Statistic:
$$t = \frac{(67.5 - 70) - 0}{\sqrt{4.125 \cdot \left(\frac{1}{6} + \frac{1}{8}\right)}} = -2.279.$$

 $n_1 + n_2 - 2 = 12$ degrees of freedom

The t Distribution

r	t _{0.40}	t _{0.25}	t _{0.10}	t _{0.05}	t 0.025	t _{0.01}	t _{0.005}
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055

Rejection Region: Reject H_0 if $t < -t_{0.025}(12)$ or $t > t_{0.025}(12)$ $t_{0.025}(12) = 2.179$. **Reject H_0 at \alpha = 0.05.**

OR

$$-2.681$$
 < -2.279 < -2.179
 $-t_{0.01}(12)$ < t < $-t_{0.025}(12)$
 0.01 < one tail < 0.025

p-value = two tails

0.02 < p-value < 0.05. Reject H₀ at $\alpha = 0.05$.

$$J=2$$
.

$$N = n_1 + n_2 = 6 + 8 = 14$$
.

$$\overline{y} = \frac{n_1 \cdot \overline{y}_1 + n_2 \cdot \overline{y}_2 + \dots + n_J \cdot \overline{y}_J}{N} = \frac{6 \cdot 67.5 + 8 \cdot 70}{14} = \frac{965}{14} = 68.92857.$$

SSB =
$$n_1 \cdot (\overline{y}_1 - \overline{y})^2 + n_2 \cdot (\overline{y}_2 - \overline{y})^2 + ... + n_J \cdot (\overline{y}_J - \overline{y})^2$$

= $6 \cdot (67.5 - 68.92857)^2 + 8 \cdot (70 - 68.92857)^2 = 21.42857$.

$$MSB = \frac{SSB}{J-1} = \frac{21.42857}{1} = 21.42857.$$

SSW =
$$(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2 + ... + (n_J - 1) \cdot s_J^2$$

= $5 \cdot 4.3 + 7 \cdot 4 = 49.5$.

MSW =
$$\frac{\text{SSW}}{N-I} = \frac{49.5}{12} = 4.125$$
. [= s_{pooled}^2]

SSTot = SSB + SSW = 70.92857.

Test Statistic:
$$F = \frac{MSB}{MSW} = \frac{21.42857}{4.125} = 5.1948.$$
 [= t^2]

ANOVA table:

Source	SS	DF	MS	\mathbf{F}
Between	21.42857	1	21.42857	5.1948
Within	49.5	12	4.125	
Total	70.92857	13		

Critical Value:
$$F_{0.05}(1, 12) = 4.75$$
. $[=(t_{0.025}(12))^2]$

Reject H_0 at $\alpha = 0.05$.

$$F_{0.05}(1, 12) = 4.75 < 5.1948 < 9.33 = F_{0.01}(1, 12).$$

$$0.05 > p$$
-value > 0.01 .

Reject H_0 at $\alpha = 0.05$.

In general,

$$\begin{split} &J=2. & N=n_1+n_2. \\ &\overline{y} = \frac{n_1 \cdot \overline{y}_1 + n_2 \cdot \overline{y}_2}{N} = \frac{n_1 \cdot \overline{y}_1 + n_2 \cdot \overline{y}_2}{n_1 + n_2}. \\ &MSB = \frac{SSB}{J-1} = n_1 \cdot \left(\overline{y}_1 - \overline{y}\right)^2 + n_2 \cdot \left(\overline{y}_2 - \overline{y}\right)^2 \\ &= n_1 \cdot \left(\overline{y}_1 - \frac{n_1 \cdot \overline{y}_1 + n_2 \cdot \overline{y}_2}{n_1 + n_2}\right)^2 + n_2 \cdot \left(\overline{y}_2 - \frac{n_1 \cdot \overline{y}_1 + n_2 \cdot \overline{y}_2}{n_1 + n_2}\right)^2 \\ &= n_1 \cdot \left(\frac{n_2 \cdot \left(\overline{y}_1 - \overline{y}_2\right)}{n_1 + n_2}\right)^2 + n_2 \cdot \left(\frac{n_1 \cdot \left(\overline{y}_2 - \overline{y}_1\right)}{n_1 + n_2}\right)^2 \\ &= n_1 \cdot \frac{n_2^2 \cdot \left(\overline{y}_1 - \overline{y}_2\right)^2}{\left(n_1 + n_2\right)^2} + n_2 \cdot \frac{n_1^2 \cdot \left(\overline{y}_2 - \overline{y}_1\right)^2}{\left(n_1 + n_2\right)^2} \\ &= n_1 n_2 \cdot \frac{\left(\overline{y}_1 - \overline{y}_2\right)^2}{\left(n_1 + n_2\right)} = \frac{\left(\overline{y}_1 - \overline{y}_2\right)^2}{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \end{split}$$

MSW =
$$\frac{\text{SSW}}{N-J} = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2} = s_{\text{pooled}}^2$$

$$F = \frac{MSB}{MSW} = \frac{(\bar{y}_1 - \bar{y}_2)^2}{s_{pooled}^2 \cdot (\frac{1}{n_1} + \frac{1}{n_2})} = t^2.$$

```
y1 \leftarrow c(65,68,67,66,71,68)
y2 \leftarrow c(68,70,67,71,70,72,73,69)
t.test(y1, y2, alternative = c("two.sided"), var.equal = TRUE)
##
##
   Two Sample t-test
##
## data: y1 and y2
## t = -2.2792, df = 12, p-value = 0.04174
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.8898756 -0.1101244
## sample estimates:
## mean of x mean of y
        67.5
                  70.0
y < -c(y1,y2)
pop <- c(rep(1,6), rep(2,8))
result = lm(y \sim factor(pop))
summary(aov(result))
               Df Sum Sq Mean Sq F value Pr(>F)
## factor(pop) 1 21.43 21.429 5.195 0.0417 *
## Residuals
               12 49.50
                          4.125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```