HTWK

Projekt Medizinische Elektronik Zwischenpräsentation

HTWK

Gliederung:

- Elektronik
- Programmierung
- Vorstellung der Matrix
- Gehäuse

Elektronik

Test und Messung der Matrix

Leistungsmessung der Matrix bei "voll weiß" mit verschiedenen Helligkeitswerten

Helligkeit	Strom	Leistung
50/255	0,46 A	2,29 W
150/255	1,40 A	6,95 W
200/255	4,95 A	23,7 W
255/255	7,50 A	36,3 W

- Helligkeit 60 wirkte optisch am angenehmsten (Richtwert)
- finale Anpassung im gehäuse evtl. notwendig

ToDo:

- Netzteil (12V 2,5A ausreichend)
- Userbutton

Elektronik

Mögliche Position eines User Button? (3D Druck gehäuse)

Programmierung

Fertige Implementierung von:

- Arduino Uno R4 Support (FastLed pre-release)
- Potential-Visualisierung
- Vektor-Visualisierung mit/ohne Tracer
- Userinput um Modi zu wechseln
- Zeitbasiertes Moduswechseln → Normalbetrieb (5min)

Berechungszeiten → **Framerates**

	Arduino nano (test)	Arduino uno R4 (final)
Berechnungszeit Potential	106ms	78ms → 47ms
Berechnungszeit Vektor	9ms	8ms

- Maximale Berechnungszeit ~50ms → Visualisierung mit 20FPS
- 350 Werte Pro Herzschlag → 17,5s / Herzschlag

Programmierung

Möglichkeit für spätere erweiterungen:

- Saubere Formatierung und umfangreiche Kommentierung
- Flexibilität der Funktionen

Todo:

 Finale Einstellungen für den Aufbau (Helligkeit, Wechselzeiten)

Vorstellung der Matrix

Gehäusemechanik

Gehäusemechanik: Diffusor

- Vorgang der Modellerzeugung:
 - Auswahl eines fertigen geeigneten Torsomodells
 - Veränderung des Modells auf rechteckiges Reliefobjekt
 - Anpassung Befestigungsklammer (Reduktion nötiger Toleranzen beim Guss)
 - Erzeugung der Gussform

Gehäusemechanik: Diffusor

- Auswahl der Produktionsmittel
 - kein SLA-Drucker mit ausreichend Bauraum
 - -> Gussform für Epoxidharz
 - Druck Gussform & Befestigungsklammer im HTWK Mechatroniklabor
 - ToDo:

Auswahl Epoxidharz, Färbemittel (?), Trennmittel

Gehäusemechanik: Ausblick

- Diffusorguss
- Auswahl geeigneter Basis (Schneidebrett?/Echtholz?)
- Erzeugung Matrixfassung
- Erzeugung Elektronikgehäuse
- (User-Button)?
- Bill of Materials
- Druck Matrixfassung, Elektronikgehäuse
- Zusammenbau

