Homework 10

** Problem 1. For $z \in \mathbb{C}$ we have

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Proof. Let $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. This series converges for all z by the ratio test. We know that f'(z) can be found by differentiating the series term by term. Then

$$f'(z) = 0 + \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Thus f'(z) = f(z). Moreover, f(0) = 1. This means that f must be the unique function e^z .

** Problem 2. For $x \in \mathbb{R}$ we have

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Proof. This follows from ** Problem 1 since $\mathbb{R} \subseteq \mathbb{C}$.

** **Problem 3.** Let $U \subseteq \mathbb{R}^{n+p}$ be open and let $F: U \to \mathbb{R}^p$ be C^1 . Suppose there exists $(x_0, y_0) \in U$ such that $F(x_0, y_0) = 0$ and $\det D_y F(x_0, y_0) \neq 0$. Also suppose there exists an open neighborhood of (x_0, y_0) , $D \times E$ and a function $f: D \to E$ such that F(x, f(x)) = 0 for all $x \in D$. Then if $F \in C^r$ then $f \in C^r$ for all r > 1.

Proof. Use induction on r. We already have the base case for r=1. Suppose now that $F \in C^r$ for $r \in \mathbb{N}$. Consider the difference

$$|f^{(r)}(x+h) - f^{(r)}(x)| = |\phi^{(r)}(x+h, f^{(r)}(x+h)) - \phi^{(r)}(x, f^{(r)}(x))|$$

$$\leq |\phi^{(r)}(x+h, f^{(r)}(x+h)) - \phi^{(r)}(x+h, f^{(r)}(x))| + |\phi^{(r)}(x+h, f^{(r)}(x+h)) - \phi^{(r)}(x, f^{(r)}(x))|$$

$$\leq \frac{1}{2}|f^{(r)}(x+h) - f(x)| + \beta_r|h|$$

where

$$\beta_r = \sum_{i=1}^p \sum_{i=1}^n \sup_{D \times E} \left| \frac{\partial \phi_i^{(r)}}{\partial x_j}(x, y) \right|.$$

Thus $|f^{(r)}(x+h)-f^{(r)}(x)| \leq 2\beta |h|$ and so $f^{(r)}$ is continuous. Now we consider

$$|F^{(r)}(x+h,y+k) - F^{(r)}(x,y) - D_x F^{(r)}(x,y)h - D_y F^{(r)}(x,y)k| < \varepsilon |(h,k)|$$

for small |(h,k)|. Letting $k = f^{(r)}(x+h) - f^{(r)}(x)$ and $y = f^{(r)}(x)$ we have the given result.

Problem 1. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-x^{-2}} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Show that f is a C^{∞} function and that $f^{(i)}(0) = 0$ for all i.

Proof. Note that

$$\lim_{x \to 0} e^{-\frac{1}{x^2}} = 0$$

and so this function is continuous and thus differentiable at x=0. For $x\neq 0$, using the chain rule we have

$$Df(x) = \frac{a_1 e^{-\frac{1}{x^2}}}{x^3}$$

where a_1 is some integer constant. Now suppose that the kth derivative for $x \neq 0$ is

$$D^{k}f(x) = \frac{a_{1}e^{-\frac{1}{x^{2}}}}{x^{(k+2)}} + \frac{a_{2}e^{-\frac{1}{x^{2}}}}{x^{(k+4)}} + \dots + \frac{a_{k}e^{-\frac{1}{x^{2}}}}{x^{(k+2k)}}$$

where a_1, \ldots, a_k are integer constants. Using the chain rule and the product rule, we can differentiate again to obtain

$$D^{k+1}f(x) = \frac{a_1 e^{-\frac{1}{x^2}}}{x^{(k+3)}} + \frac{a_2 e^{-\frac{1}{x^2}}}{x^{(k+5)}} + \dots + \frac{a_k e^{-\frac{1}{x^2}}}{x^{(k+1+2(k))}} + \frac{a_{k+1} e^{-\frac{1}{x^2}}}{x^{(k+1+2(k+1))}}$$

for all $x \neq 0$ where a_1, \ldots, a_k are different integer constants. Thus, by induction, the is the kth nonzero derivative. To show that each derivative is continuous at 0, note that the first derivative for $x \neq 0$ is

$$Df(x) = \frac{a_1 e^{-\frac{1}{x^2}}}{x^3}.$$

Taking $\lim_{x\to 0} Df(x)$ we see that l'Hopital's Rule applies, and we end up with $\lim_{x\to 0} Df(x) = 0$. We can assume inductively that the kth derivative is continuous at 0, and then use that fact and l'Hopital's Rule to show the k+1st derivative is continuous at 0. Thus $D^k f(0)$ exists for all k and $D^k f(0) = 0$ for all k. \square

Problem 2. Let

$$f(x) = \begin{cases} e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}} & x \in (-1,1) \\ 0 & x \notin (-1,1). \end{cases}$$

- 1) Show that $f: \mathbb{R} \to \mathbb{R}$ is C^{∞} function which is positive on (-1,1) and 0 elsewhere.
- 2) Show that there exists a C^{∞} function $g: \mathbb{R} \to [0,1]$ such that g(x) = 0 for $x \leq 0$ and g(x) = 1 for $x \geq \varepsilon$.
- 3) If $a \in \mathbb{R}^n$ define $g : \mathbb{R}^n \to \mathbb{R}$ by

$$g(x) = f(\frac{(x_1 - a_1)}{\varepsilon}) \dots f(\frac{(x_n - a_n)}{\varepsilon}).$$

Show that g is a C^{∞} function which is positive on

$$(a_1 - \varepsilon, a_1 + \varepsilon) \times \cdots \times (a_n - \varepsilon, a_n + \varepsilon)$$

and 0 elsewhere.

- 4) If $A \subseteq \mathbb{R}^n$ is open and $C \subseteq A$ is compact, show that there is a nonnegative C^{∞} function $f: A \to \mathbb{R}$ such that f(x) > 0 for $x \in C$ and f = 0 outside of some closed set contained in A.
- 5) Show that we can choose an f so that $f: A \to [0,1]$ and f(x) = 1 for $x \in C$.

Proof. 1) For all points other than 1 and -1 the result is clear. At x = 1 and x = -1 we can take the left and right hand derivatives, and use Problem 1. This shows that the derivative exists there.

2) For $0 < \varepsilon < 1$ let

$$g(x) = \begin{cases} 0 & x < 0\\ \frac{\int_0^x f}{\int_0^{\varepsilon}} & 0 \le x \le \varepsilon\\ 1 & x > \varepsilon. \end{cases}$$

Clearly g(x) = 0 for $x \le 0$ and g(x) = 1 for $x \ge \varepsilon$.

- 3) This follows almost immediately from Part 1). As in part one, all points easily satisfy the statement except for $(a_1 \pm \varepsilon, a_2 \pm \varepsilon, \dots, a_n \pm \varepsilon)$. At these points the left or right hand derivative and Problem 1 give the desired result.
- 4) Let d be the distance between C and cA . Let $\varepsilon = d/(2\sqrt{n})$. For all $x \in C$ let R_x be the open rectangle around x with side length 2ε . Now let f_x be the function defined in Part 3). These rectangles form an open cover, so since C is compact a finite number of them, say R_{x_1}, \ldots, R_{x_k} cover C. Let $f = \sum_{i=1}^k f_{x_i}$. Since these rectangles cover C, by Part 3) we know that f is positive on C. By the way we chose ε we know that the closure of all the rectangles is contained in C, and f is defined to be 0 outside of this union.
- 5) Since C is compact we know that f(C) attains a minimum value, $\varepsilon > 0$. Thus $f(x) \ge \varepsilon$ for $x \in C$. Now consider $g \circ f$ where g is the function defined in Part 2). Then $g \circ f(x) = 1$ for all $x \in C$.

Problem 3. Define $g, h : \{x \in \mathbb{R}^2 \mid |x| \leq 1\} \to \mathbb{R}^3$ by

$$g(x,y) = (x, y, \sqrt{1 - x^2 - y^2}), h(x,y) = (x, y, -\sqrt{1 - x^2 - y^2}).$$

Show that the maximum of f on $\{x \in \mathbb{R}^3 \mid |x| = 1\}$ is either the maximum of $f \circ g$ or the maximum of $f \circ h$ on $\{x \in \mathbb{R}^2 \mid |x| \leq 1\}$.

Proof. Let $A=\{x\in\mathbb{R}^2\mid |x|\leq 1\}$ and $B=\{x\in\mathbb{R}^3\mid |x|=1\}$. Consider $P=(x,y,z)\in B$ and note that $x^2+y^2+z^2=1$. Then $z^2=1-x^2-y^2$. This shows that $B=g(A)\cup h(A)$. Thus, the maximum of f on B is either the maximum of f on g(A) or the maximum of f on h(A). Therefore the maximum of f on h(A) is the maximum of h(A).

Problem 4. Find the partial derivatives for the following:

- 1) F(x,y) = f(g(x)k(y), g(x) + h(y))
- 2) F(x, y, z) = f(g(x + y), h(y + z))
- 3) $F(x, y, z) = f(x^y, y^z, z^x)$
- 4) F(x,y) = f(x,g(x),h(x,y)).

Proof. 1) We have

$$D_1F(x,y) = (D_1f(g(x)k(y), g(x) + h(y)))(k(y)g'(x)) + (D_2f(g(x)k(y), g(x) + h(y)))g'(x)$$

$$D_2F(x,y) = (D_1f(g(x)k(y), g(x) + h(y)))(g(x)k'(y)) + (D_2f(g(x)k(y), g(x) + h(y)))h'(y).$$

2) We have

$$D_1F(x,y,z) = (D_1f(g(x+y),h(y+z)))g'(x+y)$$

$$D_2F(x,y,z) = (D_1f(g(x+y),h(y+z)))g'(x+y) + (D_2f(g(x_y),h(y+z)))h'(y+z)$$

$$D_3F(x,y,z) = (D_2f(g(x+y),h(y+z)))h'(y+z).$$

3) We have

$$D_1F(x,y,z) = (D_1f(x^y,y^z,z^x))(yx^{y-1}) + (D_3f(x^y,y^z,z^x))(\ln zz^x)$$

$$D_2F(x,y,z) = (D_1f(x^y,y^z,z^x))(\ln xx^y) + (D_2f(x^y,y^z,z^x))(zy^{z-1})$$

$$D_3F(x,y,z) = (D_2f(x^y,y^z,z^x))(\ln yy^z) + (D_3f(x^y,y^z,z^x))(xz^{x-1}).$$

4) We have

$$D_1F(x,y) = (D_1f(x,g(x),h(x,y))) + (D_2f(x,g(x),h(x,y)))g'(x) + (D_3f(x,g(x),h(x,y)))(D_1h(x,y))$$
$$D_2F(x,y) = (D_3f(x,g(x),h(x,y)))(D_2h(x,y)).$$

Problem 5. 1) Show that $D_{e_i}f(a) = D_if(a)$.

2) Show that $D_{tx}f(a) = tD_xf(a)$.

3) If f is differentiable at a then show that $D_x f(a) = Df(a)(x)$ and therefore $D_{x+y} f(a) = D_x f(a) + D_y f(a)$.

Proof. 1) We have

$$\begin{split} D_i f(a) &= \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_n)}{h} \\ &= \lim_{h \to 0} \frac{f((a_1, \dots, a_i, \dots, a_n) + (0, \dots, h_j, \dots, 0)) - f(a_1, \dots, a_n)}{h} \\ &= \lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h} \\ &= D_{e_i} f(a). \end{split}$$

2) We have

$$D_{tx}f(a) = \lim_{s \to 0} \frac{f(a + stx) - f(a)}{s} = \lim_{s t \to 0} t \frac{f(a + stx) - f(a)}{st} = tD_x f(a).$$

3) We have

$$0 = \lim_{tx \to 0} \frac{|f(a+tx) - f(a) - Df(a)(tx)|}{|tx|} = \lim_{tx \to 0} \left| \frac{f(a+tx) - f(a)}{t} - Df(a)(x) \right| / |x|$$

which gives the desired result for $x \neq 0$. The case when x = 0 is trivial. The fact that $D_{x+y}f(a) = D_xf(a) + D_yf(a)$ follows from the additivity of Df(a).

Problem 6. Let g be a continuous real-valued function on the unit circle $\{x \in \mathbb{R}^2 \mid |x| = 1\}$ such that g(0,1) = g(1,0) = 0 and g(-x) = -g(x). Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} |x|g\left(\frac{x}{|x|}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$$

Show that $D_x f(0,0)$ exists for all x, but if $g \neq 0$, then $D_{x+y}(0,0) = D_x(0,0) + D_y(0,0)$ is not true for all x and y.

Proof. Define h(t) = f(tx). Then either h(t) = t|x|g(x/|x|) or h(t) = 0. In either case, h is linear and thus differentiable. Thus $D_x f(0,0)$ exists for all x. Suppose that $g(a,b) \neq 0$. Then we have $D_{a+b} f(0,0) = g(a,b) \neq 0$. But $D_a f(0,0) + D_b f(0,0) = 0 + 0 = 0$.

Problem 7. Let $A = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \text{ and } 0 < y < x^2\}$. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & x \notin A \\ 1 & x \in A. \end{cases}$$

Show that $D_x f(0,0)$ exists for all x although f is not continuous at (0,0).

Proof. We have the result every straight line y=ax through (0,0) contains an interval around (0,0) which is in $\mathbb{R}^2 \backslash A$. To see this, note that if $a \leq 0$, the line is disjoint from A. If a>0 the line intersects the graph at (a,a^2) and (0,0). Letting $g(x)=ax-x^2$ we see that y=ax cannot intersect A anywhere left of x=a. Now let $g_h(t)=f(th)$ for all $h\in\mathbb{R}^2$. Each of these is identically 0 in some neighborhood of the origin, which shows it's continuous there. Therefore $D_x f(0,0)$ exists for all x. Moreover, we have that f is not continuous at (0,0) since any rectangle around the origin will contain a point $x\in A$ such that |f(x)-f((0,0))|=1.

Problem 8. 1) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

Show that f is differentiable at 0 but f' is not continuous at 0. 2) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Show that f is differentiable at (0,0) but $D_i f$ is not continuous at (0,0).

Proof. 1) It's clear that f is differentiable at $x \neq 0$. At x = 0 we have

$$Df(0) = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h}}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0$$

since $|h \sin 1/h| \le |h|$. For $x \ne 0$ we have $f'(x) = 2x \sin(1/x) - \sin(1/x)$. The first term goes to 0 as x goes to 0. The second term takes on every value between -1 and 1 in each neighborhood of 0. Thus $\lim_{x\to 0} f'(0)$ doesn't exist.

2) The fact that f is differentiable at 0 follows exactly as in Part 1). Taking $f(x,0) = f(0,y) = x^2 \sin(1/|x|)$ we see that this is g(|x|) where g is the function in Part 1). It's clear then that $D_1 f(x,0)$ and $D_2 f(0,y)$ are defined, as they are in Part 1). Moreover, the partial derivatives are equivalent within a sign of g' and so are not continuous at 0 as in Part 1).

Problem 9. If $f: \mathbb{R}^n \to \mathbb{R}^m$, then Df(a) exists if all $D_j f_i(x)$ exist in an open set containing a and if each function $D_j f_i$ is continuous at a except for $D_1 f_i$.

Proof. The proof follows exactly as in the proof of Theorem 2-9, for all i > 1. In the case for i = 1, we already know Df(a) exists so we have

$$\lim_{h\to 0} \frac{|f(a_1+h_1,a_2,\ldots,a_n)-f(a_1,a_2,\ldots,a_n)-D_if(a)h_1|}{|h|}=0.$$

This completes the proof.

Problem 10. A function $f: \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree m if $f(tx) = t^m f(x)$ for all x. If f is also differentiable show that

$$\sum_{i=1}^{n} x_i D_i f(x) = m f(x).$$

Proof. Let g(t) = f(tx). We know then that

$$g'(t) = \sum_{i=1}^{n} x_i D_i f(tx).$$

More over, $g(t) = f(tx) = t^m f(x)$. Thus $g'(t) = mt^{m-1} f(x)$. Letting t = 1 gives the result.

Problem 11. If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and f(0) = 0, prove there exist $g_i: \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = \sum_{i=1}^{n} x^{i} g_{i}(x).$$

Proof. Let $h_x(t) = f(tx)$. Then

$$\int_0^1 h_x'(t)dt = h_x(1) - h_x(0) = f(x) - f(0) = f(x).$$

Similarly, using the method in Problem 10 we have

$$\int_0^1 h'(t)dt = \int_0^1 \left(\sum_{i=1}^n x_i D_i f(tx)\right) dt = \sum_{i=1}^n x_i \int_0^1 D_i f(tx) dt.$$

Letting $g_i = \int_0^1 D_i f(tx) dt$ gives the result.