ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $\vec{\rm DE}$ KIỂM TRA GIỮA KỲ Môn: Toán rời rạc (MAT3500, Hè 2023-2024)

 $(D\grave{e}\ g\grave{o}m\ 4\ c\^{a}u/4\ trang)$ Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- \bullet Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- \bullet Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học.

Câu:	1	2	3	4	Tổng
Điểm tối đa:	2	2	3	3	10
Điểm:					

- 1. Cho các mệnh đề p, q, và r.
 - (a) (1 điểm) Chứng minh rằng các mệnh đề $(p \to r) \land (q \to r)$ và $(p \lor q) \to r$ là tương đương lôgic.
 - (b) (1 điểm) Chứng minh rằng các mệnh đề $(p \land q) \rightarrow r$ và $p \rightarrow (q \rightarrow r)$ là tương đương lôgic.

Lời giải:

(a) Ta có

$$\begin{array}{ll} (p \to r) \wedge (q \to r) \equiv (\neg p \vee r) \wedge (\neg q \vee r) & p \to q \equiv \neg p \vee q \\ & \equiv (\neg p \wedge \neg q) \vee r & \text{Luật phân phối} \\ & \equiv \neg (p \vee q) \vee r & \text{Luật De Morgan} \\ & \equiv (p \vee q) \to r & p \to q \equiv \neg p \vee q \end{array}$$

(b) Ta có

$$\begin{array}{ll} (p \wedge q) \rightarrow r \equiv \neg (p \wedge q) \vee r & p \rightarrow q \equiv \neg p \vee q \\ & \equiv (\neg p \vee \neg q) \vee r & \text{Luật De Morgan} \\ & \equiv \neg p \vee (\neg q \vee r) & \text{Luật kết hợp} \\ & \equiv p \rightarrow (\neg q \vee r) & p \rightarrow q \equiv \neg p \vee q \\ & \equiv p \rightarrow (q \rightarrow r) & p \rightarrow q \equiv \neg p \vee q \end{array}$$

- 2. (a) (1 điểm) Hãy cho ví dụ về các hàm f và g thỏa mãn điều kiện $f\circ g$ là song ánh nhưng f không là đơn ánh và g không là toàn ánh.
 - (b) (1 điểm) Tìm các tập hợp A,B thỏa mãn hai điều kiện sau

$$A = \{3, |B|\},\tag{1}$$

$$B = \{1, |A|, |B|\}. \tag{2}$$

Lời giải:

(a) Ví dụ, ta định nghĩa các hàm f và g như hình sau

(b) Chú ý rằng $1 \le |A| \le 2$ và $1 \le |B| \le 3$.

Trước tiên, ta xét trường hợp |A|=1. Từ |A|=1 và (1), ta có |B|=3. Từ |A|=1 và (2), ta có $|B|\leq 2$. Đây là một mâu thuẫn. Do đó, |A|=2.

Từ |A|=2 và (1), ta có $|B|\neq 3$, nghĩa là $1\leq |B|\leq 2$. Từ |A|=2 và (2), ta có $B=\{1,2,|B|\}$, nghĩa là $|B|\geq 2$. Do đó, |B|=2.

Tóm lại, ta có $A = \{3, 2\}$ và $B = \{1, 2, 2\} = \{1, 2\}.$

3. (3 điểm) Dãy Fibonacci $\{f_n\}$ được cho bởi hệ thức truy hồi $f_n = f_{n-1} + f_{n-2} \ (n \ge 2)$ và điều kiện ban đầu $f_0 = 0$ và $f_1 = 1$. Sử dụng phương pháp quy nạp, chứng minh rằng với mọi $n \ge 1$,

$$f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}.$$
 (3)

Lời giải: Ta chứng minh (3) đúng với mọi $n \ge 1$ bằng quy nạp.

- Bước cơ sở: Ta chứng minh với n = 1, (3) đúng. Thật vậy, với n = 1, (3) tương đương với $f_1^2 = f_1 f_2$. Do $f_1 = f_2 = 1$, ta có $f_1^2 = f_1 f_2 = 1$. Do đó, (3) đúng.
- Bước quy nạp: Giả sử với số nguyên $k \geq 1$ nào đó, (3) đúng với n = k, nghĩa là $f_1^2 + f_2^2 + \dots + f_k^2 = f_k f_{k+1}$. Ta chứng minh (3) đúng với n = k+1, nghĩa là chứng minh $f_1^2 + f_2^2 + \dots + f_k^2 + f_{k+1}^2 = f_{k+1} f_{k+2}$. Thật vậy, ta có

$$f_1^2+f_2^2+\cdots+f_k^2+f_{k+1}^2=f_kf_{k+1}+f_{k+1}^2 \qquad \qquad \text{Giả thiết quy nạp}$$

$$=f_{k+1}(f_k+f_{k+1})$$

$$=f_{k+1}f_{k+2}. \qquad \qquad \text{Định nghĩa dãy Fibonacci}$$

Theo nguyên lý quy nạp, ta có điều phải chứng minh.

4. (3 điểm) Sử dụng phương pháp quy nạp yếu, hãy chứng minh rằng với mọi số nguyên $n \geq 6$, tồn tại $a,b \in \mathbb{N}$ sao cho n=2a+7b. (**Chú ý:** Chứng minh bằng quy nạp mạnh cũng được chấp nhận, nhưng sẽ chỉ được tính tối đa 2 điểm.)

Lời giải: Ta chứng minh phát biểu P(n) := "tồn tại $a, b \in \mathbb{N}$ sao cho n = 2a + 7b" bằng quy nạp yếu.

- Bước cơ sở: Ta chứng minh P(6) đúng. Thật vậy, $6 = 2 \cdot 3 + 7 \cdot 0$.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \geq 6$ nào đó, nghĩa là tồn tại $a, b \in \mathbb{N}$ thỏa mãn k = 2a + 7b. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh tồn tại $c, d \in \mathbb{N}$ thỏa mãn k+1=2c+7d.

Từ giả thiết quy nạp, ta có k+1=2a+7b+1=2(a-3)+7(b+1).

Với $a \geq 3$, P(k+1) đúng, do ta có thể chọn $c = a - 3 \in \mathbb{N}$ và $d = b + 1 \in \mathbb{N}$.

Với $0 \le a \le 2$, do $6 \le k = 2a + 7b \le 4 + 7b$ và $b \in \mathbb{N}$, ta có $b \ge 1$, hay $b - 1 \in \mathbb{N}$. Ta cũng có k + 1 = 2a + 7b + 1 = 2(a + 4) + 7(b - 1). Suy ra P(k + 1) đúng, do ta có thể chọn $c = a + 4 \in \mathbb{N}$ và $d = b - 1 \in \mathbb{N}$.

Theo nguyên lý quy nạp, ta có điều phải chứng minh.

Chú ý: Một phương án khác để chứng minh $P(k) \rightarrow P(k+1)$ là như sau:

Từ giả thiết quy nạp, ta có k+1=2(a+4)+7(b-1).

Với $b \ge 1$, P(k+1) đúng do ta có thể chọn $c = a+4 \in \mathbb{N}$ và $d = b-1 \in \mathbb{N}$.

Với b=0, do $6 \le k=2a+7b=2a$, ta có $a \ge 3$, hay $a-3 \in \mathbb{N}$. Ta cũng có $k+1=2a+7b+1=2(a-3)+7\cdot 1$. Suy ra P(k+1) đúng, do ta có thể chọn $c=a-3 \in \mathbb{N}$ và $d=1 \in \mathbb{N}$.