

Lecture 10: Attention mechanism

Radoslav Neychev

Attention

Attention

Main idea:

on each step of the **decoder**, use **direct connection to the encoder** to focus on a particular part of the source sequence

Attention output **Attention** Concatenate distribution **Attention** scores Encoder

Attention output **Attention** distribution Attention scores Encoder

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T \mathbf{h}_1, \dots, \mathbf{s}^T \mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , where $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention provides interpretability

- We may see what the decoder was focusing on
- We get word alignment for free!

Attention advantages

- "Free" word alignment
- Better results on long sequences

Image source: Neural Machine Translation by Jointly Learning to Align and Translate

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- ullet Additive attention: $oldsymbol{e}_i = oldsymbol{v}^T anh(oldsymbol{W}_1 oldsymbol{h}_i + oldsymbol{W}_2 oldsymbol{s}) \in \mathbb{R}$
 - \circ $extbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, extbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Self-Attention

Self-Attention at a High Level

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

Self-Attention at a High Level

What are the query, key, value vectors?

They're abstractions that are useful for calculating and thinking about attention.

STEP 2:

calculate a score

(score each word of the input sentence against the current word) Input

Embedding

Queries

Keys

Values

Score

STEP 5:

multiply each value vector by the softmax score

STEP 6:

sum up the weighted value vectors

Self-Attention

STEP 1: create Query, Key, Value

STEP 3: divide by $\sqrt{d_k}$

STEP 2: calculate scores

STEP 4: softmax

STEP 5: multiply each value vector by the softmax score

STEP 6: sum up the weighted value vectors

Self-Attention: Matrix Calculation

Pack embeddings into matrix **X**

Multiply X by weight matrices we've trained (Wk, Wq, Wv)

Image source: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Matrix Calculation

Image source: https://jalammar.github.io/illustrated-transformer/

Image source: https://jalammar.github.io/illustrated-transformer/

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Why Multi-Head Attention?

Attention head: Who

Attention head: Did What?

Attention head: To Whom?

Attention vs. Multi-Head Attention

Attention: a weighted average

Multi-Head Attention:

parallel attention layers with different linear transformations on input and output.

Transformer outro

The Transformer

The Transformer

The Transformer

The Encoder Side

the word in each position flows through its own path in the encoder 42

BERT

Bidirectional Encoder Representations from Transformers

Model inputs

Transformer Block in BERT

the word in each position flows through its own path in the encoder 45

Model inputs

Identical to the Transformer up until this point

Why is BERT so special?

Model outputs

For sentence classification we focus on the first position (that we passed [CLS] token to)

BERT

Image source: http://jalammar.github.io/illustrated-bert/

Model inputs

Image source: http://jalammar.github.io/illustrated-bert/

Similar to CNN concept!

0.1% Aardvark BERT: pre-training Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word 0% Zyzzyva FFNN + Softmax 512 **BERT** Randomly mask 512 15% of tokens [MASK] in Let's stick this skit [CLS] Input this skit Image source: http://jalammar.github.io/illustrated-bertfcls] to improvisation in

BERT: pre-training

- "Masked Language Model" approach
- To make BERT better at handling relationships between multiple sentences, the pre-training process includes an additional task:
 - "Given two sentences (A and B), is B likely to be the sentence that follows A, or not?"

Input [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Image source: http://jalammar.github.io/illustrated-bert/

BERT: input data format

For each tokenized input sentence, we need to create:

- **input ids**: a sequence of integers identifying each input token to its index number in the BERT tokenizer vocabulary
- segment mask: a sequence of 1s and 0s used to identify whether the
 input is one sentence or two sentences long. For one sentence inputs,
 this is simply a sequence of 0s. For two sentence inputs, there is a 0 for
 each token of the first sentence, followed by a 1 for each token of the
 second sentence
- **attention mask**: a sequence of 1s and 0s, with 1s for all input tokens and 0s for all padding tokens

BERT: fine-tuning for different tasks

BERT for feature extraction

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

BERT for feature extraction

What is the best contextualized embedding for "Help" in that context?

Four Hidden

For named-entity recognition task CoNLL-2003 NER Dev F1 Score First Layer Embedding ____ 91.0 Last Hidden Layer 94.9 Sum All 12 95.5 Layers Second-to-Last 95.6 Hidden Layer Sum Last Four 95.9 Hidden Help Concat Last 96.1

Image source: http://jalammar.github.io/illustrated-bert/

BERT: tokenization

Example: Unaffable -> un, ##aff, ##able

- Single model for 104 languages with a large shared vocabulary (119,547 <u>WordPiece</u> model)
- Non-word-initial units are prefixed with ##
- The first 106 symbols: constants like PAD and UNK
- 36.5% of the vocabulary are non-initial word pieces
- The alphabet consists of 9,997 unique characters that are defined as word-initial (C) and continuation symbols (##C), which together make up 19,994 word pieces
- The rest are multi character word pieces of various length.

BERT: tokenization

BERT: overview

- BERT repo
- Try out BERT on TPU
- WordPieces Tokenizer
- PyTorch Implementation of BERT

Outro

- Attention mechanism allows to "attend all positions" in the original sequence (or any other input with internal structure)
- Attention mechanism requires more computational resources than original seq2seq models
- Change of the model architecture affects the training procedure, so be careful with intuitive explanations