COMP3411/COMP9414/COMP9814 13s1 Planning 1 COMP3411/COMP9814 13s1 Planning

Outline

- The Planning Problem
- Planning with State-Based Search
- Partial-Order Planning
- Planning with Propositional Logic

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Example: Single-Player "Game"

```
Legality
```

```
legal(you,rightShoe) <= true(rightSockOn)
legal(you,rightSock)
legal(you,leftShoe) <= true(leftSockOn)
legal(you,leftSock)</pre>
```

Update

```
next(rightShoeOn) <= does(you,rightShoe)
next(rightSockOn) <= does(you,rightSock)
next(leftShoeOn) <= does(you,leftShoe)
next(leftSockOn) <= does(you,leftSock)</pre>
```

Termination and Goal

```
terminal <= true(rightShoeOn)∧true(leftShoeOn)
goal(you,100) <= true(rightShoeOn)∧true(leftShoeOn)
```

Applications of Planning

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

COMP3411/COMP9414/COMP9814

COMP3411/COMP9414/COMP9814

Planning

A Simpler Description Language for Planning Problems

- Initial state: conjunction of variable-free atoms
- Actions: <Name, Precondition, Effect>
 - Name: Action name + parameter list
 - Precond: Conjunction of literalsEffect: Conjunction of literals
- Goal: logical sentence

A solution to a planning problem is an action sequence that, when executed in the initial state, results in a state that satisfies the goal.

COMP3411/COMP9414/COMP9814 © Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1 Planning 5 COMP3411/COMP9414/COMP9814 13s1 Planning

Example

Initial state

Actions

()

rightShoe Precond: rightSockOn

Effect: rightShoeOn

rightSock Effect: rightSockOn
leftShoe Precond: leftSockOn

Effect: leftShoeOn

leftSock Effect: leftSockOn

Goal

rightShoeOn ∧ leftShoeOn

COMP3411/COMP9414/COMP9814 © Michael Thielscher. Michael Genesereth 2013

COMP3411/COMP9814 13s1 Planning

... Formalised in the Planning Description Language

Initial state

 $on(a,table) \land on(b,table) \land on(c,a) \land clear(b) \land clear(c)$

Actions

Name: move(X,Y,Z)

Precond: $on(X,Y) \land clear(X) \land clear(Z) \land X \neq Z \land Y \neq Z$ Effect: $on(X,Z) \land clear(Y) \land \neg on(X,Y) \land \neg clear(Z)$

Name: moveToTable(X,Y)
Precond: on(X,Y) \clear(X)

Effect: $on(X,table) \land clear(Y) \land \neg on(X,Y)$

Goal

 $on(a,b) \land on(b,c)$

Another Example: Blocks World Planning

A robot arm can pick up a block and move it to another position. The arm can only pick up one block at a time.

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

8

Planning by State-Based Search

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814

COMP3411/COMP9414/COMP9814 13s1 Planning ⁹ COMP3411/COMP9814 13s1 Planning ¹

Recap: State Machines

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Forward Search

State Machine for the Example Game

Backward Search

COMP3411/COMP9414/COMP9814 © Michael Thielscher, Michael Genesereth 2013 COMP3411/COMP9414/COMP9814

COMP3411/COMP9414/COMP9814 13s1 COMP3411/COMP9414/COMP9814 13s1 Planning Planning

Bidirectional Search

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

COMP3411/COMP9414/COMP9814 13s1

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

Planning

Partial-Order Planning

16

Partial-Order Plan (POP): Example

Plan-Space Search with POPs

COMP3411/COMP9414/COMP9814 © Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1 Planning 17 COMP3411/COMP9814 13s1 Planning 18

Partial-Order Planning as Search Problem

- Search nodes are (mostly unfinished) partial-order plans
 The initial plan contains only Start and Finish action
- Plans have 4 components:
 - A set of actions (steps of the plan)
 - A set of ordering constraints A<B (A before B)
 - A set of causal links A ^p→ B (read: "A achieves p for B")
 - A set of open preconditions
- A plan is consistent if there are no cycles in the ordering constraints and no conflicts with the causal links.
- An action C conflicts with a causal link A ^p→ B if C has the effect ¬p and C could come after A and before B
- A consistent plan with no open preconditions is a solution.

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Example: Flat Tire Problem

Initial state at(flat,axle) \(\text{At(spare,trunk)} \)

Actions

Name: remove(spare,trunk)

Precond: at(spare,trunk)

Effect: ¬at(spare,trunk) \(\text{at(spare,ground)} \)

Name: remove(flat,axle)

Precond: at(flat,axle)

Effect: ¬at(flat,axle)∧at(flat,ground)

Name: putOn(spare,axle)

Precond: at(spare,ground)∧¬at(flat,axle)

Effect: ¬at(spare,ground)∧at(spare,axle)

Goal at(spare,axle)

Algorithm for Solving POPs

Define effect of Start := initial state of the planning problem (no percond)

Define precond of *Finish* := goal of the planning problem

 The initial plan contains Start and Finish, the ordering constraint Start<Finish, no causal links. All preconditions of Finish are open.

- Repeat
 - Pick an open precondition p (of an action B in the plan)
 - Pick an action A with effect p
 - Add the causal link A ^p→ B and the ordering constraint A<B (if A is new to the plan, add Start<A and A<Finish)
 - If a conflict arises between a causal link A
 ^p→ B and an action C: add either B<C or C<A
- · Retry (with different choices) if plan is inconsistent, stop if solution is found

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

20

(no effect)

POP for the Flat Tire Problem (1)

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814

21 COMP3411/COMP9414/COMP9814 13s1 COMP3411/COMP9414/COMP9814 13s1 Planning Planning

POP for the Flat Tire Problem (2)

Planning

Encoding Planning Problems in Propositional Logic

Planning can be done by testing the satisfiability of a logical sentence:

initial state \wedge all possible actions \wedge goal

- This sentence contains propositions for every action occurrence
 - A model will assign true to an action A iff A is part of the correct plan
- An assignment that corresponds to an incorrect plan will not be a model because of inconsistency with the assertion that goal is true
- If the planning problem is unsolvable, there will be no model for the sentence
- Planners based on satisfiability can handle large planning problems

Planning with Propositional Logic

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

24

Recap: Blocks World Planning

A robot arm can pick up a block and move it to another position. The arm can only pick up one block at a time.

COMP3411/COMP9414/COMP9814 © Michael Thielscher, Michael Genesereth 2013 COMP3411/COMP9414/COMP9814 © Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1 Planning 25 COMP3411/COMP9814 13s1 Planning 2 25 Plann

Example: Blocks World Planning as Satisfiability (1)

Encoding of the initial state

```
on(a,table)^0
on(b,table)^0
on(c,a)^0
clear(b)^0
clear(c)^0
```

Encoding of action preconditions

```
move(X,Y,Z)^T \Rightarrow on(X,Y)^T \land clear(X)^T \land clear(Z)^T
moveToTable(X,Y)^T \Rightarrow on(X,Y)^T \land clear(X)^T
(for all X,Y,Z \in \{a,b,c,table\}, T \in \{0,1,2,...,max-1\}, X \neq Z, Y \neq Z)
```

Action exclusion axioms

```
 \neg (move(X,Y,Z)^T \land moveToTable(X',Y')^T) \\ \neg (moveToTable(X,Y)^T \land moveToTable(X',Y')^T) \\ \neg (move(X,Y,Z)^T \land move(X',Y',Z')^T)  (for suitable X,X',...)
```

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Conditional Planning

Example: Blocks World Planning as Satisfiability (2)

Encoding of action effects

```
\begin{array}{lll} \operatorname{move}(X,Y,Z)^T & => \operatorname{on}(X,Z)^T + 1 & \wedge \operatorname{clear}(Y)^T + 1 \\ \operatorname{move}(X,Y,Z)^T & => \operatorname{\neg on}(X,Y)^T + 1 & \wedge \operatorname{\neg clear}(Z)^T + 1 \\ \operatorname{moveToTable}(X,Y)^T & => \operatorname{on}(X,\operatorname{table})^T + 1 & \wedge \operatorname{clear}(Y)^T + 1 \\ \operatorname{moveToTable}(X,Y)^T & => \operatorname{\neg on}(X,Y)^T + 1 \end{array}
```

Explanation closure axioms

Encoding of the goal

```
on(a,b)^max \land on(b,c)^max
```

Solution (max=3): a model that contains

```
moveTable(c,a)^0, move(b,table,c)^1, move(a,table,b)^2
```

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

·

28

Planning Under Incomplete Information: Maze World

Initial State: (ac) (robot in a, gold in c)

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814

Environment Model

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Agent Actions

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

32

COMP3411/COMP9414/COMP9814 13s1

Planning

Agent Percepts

Initial State and Goal

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814

Planning

Planning is the process of finding a transition diagram *for our agent* that causes its environment to go from any initial state to a goal state.

Planning can be done offline and the resulting plan/program installed in the agent *or* the planning can be done online followed by execution.

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Incompleteness

Possible sources of incompleteness:

Partial knowledge of

- Initial state
- Transition diagram for environment
- Goal

Complete Planning Techniques under incomplete information

- Coercion (e.g. do the *grab* action at all locations)
- Conditional plan (e.g. if see the gold grab it; else move)

Postponement Techniques

Delayed planning

State Space Planning

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Initial State Uncertainty

37 COMP3411/COMP9414/COMP9814 13s1 COMP3411/COMP9414/COMP9814 13s1 Planning Planning

Sequential State Set Progression

COMP3411/COMP9414/COMP9814

COMP3411/COMP9414/COMP9814 13s1

Planning

© Michael Thielscher, Michael Genesereth 2013

Sequential State Set Plan

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

40

COMP3411/COMP9414/COMP9814 13s1

Planning

Plan Execution

Conditional State Set Progression

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814

COMP3411/COMP9414/COMP9814 13s1 Planning ⁴¹ COMP3411/COMP9814 13s1 Planning ⁴²

Conditional State Set Plan

COMP3411/COMP9414/COMP9814

© Michael Thielscher, Michael Genesereth 2013

COMP3411/COMP9414/COMP9814 13s1

Planning

Comparison

Sequential plan

- possible that no plan exists
- plan may contain redundant moves

Conditional plan

large search space

Delayed planning

irreversibility problematic

As we can see from this analysis, it is sometimes desirable for an agent to do only a portion of its planning up front, secure in the knowledge that it can do more later as necessary.

Planning can be done offline and the resulting plan/program executed during play *or* the planning can be done online and interleaved with execution.

Background Reading

Planning

 Russell & Norvig AIMA (3rd ed): Chapter 10 (2nd edition: Chapter 11)

COMP3411/COMP9414/COMP9814