考试方式: 闭卷

太原理工大学 大学物理 A(一)试卷 A

适用专业: 11 级一二本 考试日期: 2012.7.4 时间: 120 分钟 共 8 页

题 号	 	 总 分
得分		

一、选择答案填在下面相应的空格内(共30分)

得分	A	1	2	3	4	5	6	7	8	9	10
	卷		·								

- ①. (本题 3分)
 - 一运动质点在某瞬时位于矢径 r(x,y)的端点处, 其速度大小为

- (D) $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)}$
- [^]2,(本题 3分)·

质量为m的质点,以不变速率v沿图中正三角形 ABC 的水平光滑轨道运动. 质点越过 A 角时,轨道作 用于质点的冲量的大小为

- $(A) m \nu$.
- (B) $\sqrt{2mv}$.
- (C) $\sqrt{3} m v$.
- (D) 2mv.

3, (本题 3分)

光滑的水平桌面上,有一长为 2L、质量为 m 的匀质细杆,可绕过其中点且 垂直于杆的竖直光滑固定轴 O 自由转动,其转动惯量为 $\frac{1}{2}$ mL^2 ,起初杆静止。桌

面上有两个质量均为 m 的小球, 各自在垂直于杆的方向 上,正对着杆的一端,以相同速率 v相向运动,如图所示.当 两小球同时与杆的两个端点发生完全非弹性碰撞后, 就与 & v m.O 杆粘在一起转动,则这一系统碰撞后的转动角速度应为

- (B) $\frac{4v}{5L}$

4. (本题 3分)

 $V_1/V_2=1/2$,则其内能之比 E_1/E_2 为:

(A) 3 / 10.

(B) 1/2.

(C) 5/6.

(D) 5/3.

(5. (本题 3分)

设v 代表气体分子运动的平均速率, v, 代表气体分子运动的最概然速率, $(v^2)^{1/2}$ 代表气体分子运动的方均根速率。处于平衡状态下理想气体,三种速率关系为

- (A) $(\overline{v^2})^{1/2} = \overline{v} = v_p$
- (B) $\overline{v} = v_n < (\overline{v^2})^{1/2}$
- (C) $v_p < \overline{v} < (\overline{v^2})^{1/2}$
- (D) $v_p > \overline{v} > (\overline{v^2})^{1/2}$

№. (本题 3分).

之定量的理想气体,从 p-1 图上初态 a 经b(1)或(2)过程到达末态 b,已知 a、b 两态 处于同一条绝热线上(图中虚线是绝热线),则 气体在

- (A)(1)过程中吸热,(2)过程中放热.
- (B)(1)过程中放热,(2)过程中吸热.
- (C) 两种过程中都吸热.
- (D) 两种过程中都放热.

有两个电荷都是+q 的点电荷, 相距为 2a. 今以左边的点电荷所在处为球心, 以 a 为半 径作一球形高斯面 . 在球面上取两块相等的小 面积 S_1 和 S_2 , 其位置如图所示. 设通过 S_1 和 S_2 的电场强度通量分别为 ϕ_1 和 ϕ_2 ,通过整个球面的电场强度通量为 ϕ_3 ,则

- (A) $\Phi_1 > \Phi_2$, $\Phi_S = q / \varepsilon_0$.
- (B) $\Phi_1 < \Phi_2$, $\Phi_S = 2q / \varepsilon_0$.
- (C) $\Phi_1 = \Phi_2$, $\Phi_S = q/\varepsilon_0$.
- (D) $\Phi_1 < \Phi_2$, $\Phi_S = q / \varepsilon_0$.

B. (本题 3分)

在磴感强度为 \bar{B} 的均匀磁场中作一半径为r的半球面S,S边 线所在平面的法线方向单位矢量 \bar{n} 与 \bar{B} 的夹角为 α ,则通过半球 面 S 的磁通量(取弯面向外为正)为

- (A) $\pi r^2 B$.
- (B) $2 \pi r^2 B$.
- (C) $-\pi r^2 B \sin \alpha$.
- (D) $-\pi r^2 B \cos \alpha$.

9. (本题 3分) 如图,两根直导线 ab 和 cd 沿半径方向被接到一个截面处
处相等的铁环上, 稳恒电流 I 从 a 端流入而从 d 端流出, 则磁 b
感强度 \bar{B} 沿图中闭合路径 L 的积分 $\oint \bar{B} \cdot \mathrm{d}\bar{l}$ 等于
(A) $\mu_0 I$. (B) $\frac{1}{3} \mu_0 I$.
(C) $\mu_0 I/4$. (D) $2\mu_0 I/3$.
70. (本题 3分)
如图所示,直角三角形金属框架 abc 放在均匀磁场中,磁场 \bar{B}
\mathcal{L}_{i}
$BA(S)$ 的, Abc 四路中的感应电动势 \mathcal{E} 和 a 、 c 两点间的电势差 U_a
13/
(A) $\mathcal{E}=0$, $U_a-U_c=\frac{1}{2}B\omega l^2$.
(B) $\mathcal{E} = 0$, $U_a - U_c = -\frac{1}{2}B\omega l^2$.
(C) $\mathcal{E}=B\omega l^2$, $U_a-U_c=\frac{1}{2}B\omega l^2$.
(D) $\mathcal{E} = B\omega l^2$, $U_a - U_c = -\frac{1}{2}B\omega l^2$.
总分
二、填空题(共30分)
1116
10
12
13
18
14.
14

一质点作半径为 0.1 m 的圆周运动, 其角位置的运动学方程为:

$$\theta = \frac{1}{4} + \frac{1}{2}t^{2} \qquad (SI)$$

$$\omega = \frac{d\theta}{dt} = t \qquad \alpha t = 0 \cdot \ln k^{2}$$

则其切向加速度为 a, = 12. (本题 3分)

如图所示,质量 m=2 kg 的物体从静止开始,沿 1/4 圆弧 从 A 滑到 B,在 B 处速度的大小为 v=6 m/s,已知圆的半径 R=4 m,则物体从 A 到 B 的过程中摩擦力对它所作的功

W =

13. (本题 3分)

气体经历如图所示的一个循环过程,在这个循

环中, 外界传给气体的净热量是

14. (本题 3分):

热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与

热现象有关的实际宏观过程都是不可逆的, 开尔文表述指出了

的过程是不可逆的, 而克劳修斯表述指出了的过程是不可逆的.

15. (本题 3分)

两根相互平行的"无限长"均匀带正电直线 1、2,相距为 d, 其电荷线密度分别为 λ_1 和 λ_2 如图所示,则场强等于零的点与直线 1

的距离a为

在点电荷 q 的电场中,把一个 -1.0×10^{-9} C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功 1.8×10^{-5} J,

则该点电荷 q=

(真空介电常量ε₀=8.85×10⁻¹²C²·N⁻¹·m⁻²)

17. (本题 3分)

一个不带电的金属球壳的内、外半径分别为 R₁和 R₂,今在中心处放置一电

荷为q的点电荷,则球壳的电势 $U = \frac{q}{4N_{top} R_t}$

18. (本题 3分)

有一半径为 a, 流过稳恒电流为 I 的 1/4 圆弧形载流导线 bc, 按图示方式置于均匀外磁场 B 中,则该载流导线所受的

安培力大小为

19. (本题 3分):

一无限长载流直导线, 通有电流 I, 弯成如图形状. 设各线段皆在纸面内, 则 P 点磁感强度 \overline{B} 的大小为

20. (本题 3分).

用导线制成一半径为r=10 cm 的闭合圆形线圈, 其电阻 R=10 Ω , 均匀磁场垂直于线圈平面、欲使电路中有一稳定的感应电流 i=0.01 A, B 的变化率应为

三、计算题(共40分)

总 分

21. (本题10分)

如图所示,质量为 m_A 的小球 A 沿光滑的弧形轨道滑下,与放在轨道端点 P 处(该处轨道的切线为水平的)的静止小球 B 发生弹性正碰撞,小球 B 的质量为 m_B ,A、B 两小球碰撞后同时落在水平地面上. 如果 A、B 两球的落地点距 P 点正下方 O 点的距离之比 L_A / L_B =2/5,

求:两小球的质量比加。//m』。

29B: la=Vst.

THE PHE MANO = MANA + MONE

AND THE THENS' = I MANA + I THOUSE

AND THE VO. NO. NO. NO.

班级、密封线内不准答题,违者故零分计)

22. (本题10分)

一定量的单原子分子理想气体,从初态 A 出发,沿图示直线过程变到另一状态 B,又经过等容、等压两过程回到状态 A.

- (1) 求 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$ 各过程中系统对外所作的功 W, 内能的增量 ΔE 以及所吸收的热量 Q.
- (2) 整个循环过程中系统对外所作的 总功以及从外界吸收的总热量(过程吸热 的代数和).

$$\begin{array}{c|cccc}
P & (10^5 \text{ Pa}) \\
\hline
3 & & & & & & \\
\hline
1 & & & & & \\
\hline
0 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
0 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & & \\
\hline
1 & & & & & \\
\hline
2 & & & & \\
2 & & & & & \\
\hline
2 & & & & \\
2 & & & & \\
2 & &$$

$$W_{-c} = 0$$
. $W_{c \to A} = -100\overline{J}$.
 $ADB_{2} \times E_{1} = \mathcal{V}(C_{1}, m_{1}) = \frac{3}{2} (|BU_{8} - BV_{4}| = |\overline{J}|^{2})$
 $Q_{F} \times E + W = \frac{3}{2} (|BU_{8} - BV_{4}| = |\overline{J}|^{2})$

$$Q = xE + W = \frac{1}{2}(|8VB||AVA| = |5|)$$

$$P = \frac{1}{2}(|8VB||AVA| = |5|)$$

$$Q = \frac{1}{2}(|8VB||A$$

23. (本题 | 0分)

一半径为 R 的带电球体, 其电荷体密度分布为

$$\rho = \frac{qr}{\pi R^4} \quad (r \le R) \qquad (q \ 为 - 正的常量)$$

$$\rho = 0 \qquad (r > R)$$

试求: (1) 带电球体的总电荷; (2) 球内、外各点的电场强度;

解酶施

$$\varphi \circ dg = \rho dV = \mathscr{Z}_{R^{\circ}} \cdot 4\pi r^{\circ} dx$$

 $= \frac{4\pi}{R^{\circ}} r^{\circ} dx$
 $O = dg = \int_{0}^{R} \frac{4^{\circ}}{R^{\circ}} r^{\circ} dx$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{4^{\circ}}{R^{\circ}} r^{\circ} dx$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{4^{\circ}}{R^{\circ}} r^{\circ} dx$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{R^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$
 $= \frac{4^{\circ}}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \left[\frac{R}{R^{\circ}} \cdot \frac{r^{\circ}}{r^{\circ}} \right] r^{\circ} dr$

が的: E= 2 4A20Rig

24. (本题10分);

两根平行无限长直导线相距为 d,载有大小相等方向相反的电流 I,电流变化率 $dI/dt = \alpha > 0$. 一个边长为 d 的正方形线圈位于导线平面内与一根导线相距 d,如图所示。求线圈中的感应电动势 ε ,并说明线圈中的感应电流是顺时针还是逆时针方向。

三.21. 解: A.B.图球发生弹性正碰撞,由水平分间动量分距与 机械能弹性,得.

$$M_A V_{A0} = M_A V_A + M_B V_B$$
 (1) 2 分 $\frac{1}{2} M_A V_{A0}^2 = \frac{1}{2} M_A V_A^2 + \frac{1}{2} M_B V_B^2$ (2) 2 分 联总解答: $U_A = \frac{M_A - M_B}{M_A + M_B} V_{A0}$, $V_B = \frac{2 M_A V_{A0}}{M_A + M_B}$ 2 分 由于一环间早节落型, $1 \times V_A > 0$, $M_A > M_B \cdot Z \approx$ 两者下 落时间相间,所从

$$\frac{4}{V_A} = \frac{L_B}{V_B}$$

$$\frac{1}{V_A} = \frac{L_A}{L_B} = \frac{2}{L}$$

$$\frac{M_A - M_B}{2M_A} = \frac{2}{L}$$

$$\frac{4}{W_A} = \frac{L_A}{L_B} = \frac{2}{L_B}$$

$$\frac{M_A - M_B}{2M_A} = \frac{2}{L_B}$$

$$\frac{M_A - M_B}{2M_A} = \frac{2}{L_B}$$

22. 解: (1) A-B.

$$A_1 = \frac{1}{2}(P_B + P_A)(V_B - V_A) = 200J$$

 $\Delta E_1 = \mathcal{V}C_V(T_B - T_A) = 3(P_BV_B - P_AV_A)/2 = 750J$
 $Q_1 = A_1 + 0E_1 = 9t_0T$

B->C:
$$A_{2}=0$$

 $\Delta E_{2}=D(v(T_{C}-T_{B})=3(P_{C}V_{C}-P_{B}V_{B})/2=-600J$
 $Q_{2}=A_{2}+\Delta E_{2}=-600J$
 C ->A: $A_{3}=P_{A}(V_{A}-V_{C})=-100J$
 $\Delta E_{3}=D(V_{C})=-100J$
 $\Delta E_{3}=D(V_{C})=-100J$

(2)
$$A = A_1 + A_2 + A_3 = 1007$$

 $Q = Q_1 + Q_2 + Q_3 = 1007$

23. 解: 1) 在球内取半径为 γ 、厚为 $d\gamma$ 的薄球壳,该壳内所包) 含的电荷为 $dQ = QdV = 2 \Upsilon 4 \Lambda \Gamma^2 d\Gamma/(\pi Q^4) = 42 \Upsilon^3 d\Gamma/Q^4$ 则环体所带的总电荷为 $Q = \int PdV = \left(42/Q^4\right) \int_0^{\gamma} \gamma^3 d\gamma = 2$ 3分 (2) 在球内作一半径为 γ 的高斯环面,接高斯定理有 $2\pi V^2 E_1 = \frac{1}{6} \int_0^{\gamma} \frac{q_T}{\pi Q^4} 4\pi V^2 d\gamma = \frac{q_L^4}{5 R^4}$

得
$$E_1 = \frac{9V_1^2}{476R^4}$$
 每 $(N \leq R)$, 百方旬沿移10外。 25

在球体外作半径为 15的高斯球面, 披离斯定跟有

程
$$E_{1} = \frac{2}{4261_{2}^{2}}$$
 (12水), E_{2} 均溢半径何外, 2名

24.解:截流为1的形限的直部在与其相区为1处约的磁度 应路度为:11.17

B= 41 25

以限时针的信何为得圈回路的正分句,与健圈相距较是的导传在详圈中产生的磁通量力;

$$\overline{A} = \int_{2d}^{3d} d \cdot \frac{MoI}{2Zr} dr = \frac{MoI}{2Z} \ln^{\frac{3}{2}}$$

与战圈相距影近的部门中周后旅通量为;

$$\frac{\mathcal{L}_{2} = \int_{d}^{2d} - d \cdot \frac{101}{201} dI = -\frac{1002d}{200} \ln^{2}$$
是疏通 $\Phi = \mathcal{L}_{1} + \mathcal{L}_{2} = -\frac{1002d}{200} \ln^{4}$
提起电动势力:

 $\mathcal{E} = -\frac{d\mathcal{P}}{d\mathcal{A}} = \frac{u_0 d}{2\pi} \left(l_{\text{M}}^{\frac{4}{3}} \right) \frac{d^{\text{I}}}{d\mathcal{A}} = \frac{u_0 d}{2\pi} l_{\text{M}}^{\frac{4}{3}}$

由足刀口和国路正分向为吸时针,研以它的没向为吸时针为自,详圈中的变色电流亦是吸附针为向。

V3

通者按零分计)

解封线内不准答题,

考试方式: 闭卷

太原理工大学 大学物理 A(一)试卷 A

适用专业: 09 级一二本 考试日期: 2010.7.14 时间: 120 分钟 共 8 页

. 题 号	 =	三	总 分
得分			•

一、选择答案填在下面相应的空格内(共30分)

A 卷第一题	1	2	3	4	(5)	6	7	8	9	10
相应选择						-		·		

一质点在平面上运动,已知质点位置矢量的表示式为 $\overline{r} = at^2\overline{i} + bt^2\overline{j}$ (其中

- a、b 为常量),则该质点作
 - (A) 匀速直线运动,
- (B) 变速直线运动.
- (C) 抛物线运动,
- (D)一般曲线运动,

(本题 3分)

质量为 m=0.5 kg 的质点,在 Oxy 坐标平面内运动,其运动方程为 x=5t, $y=0.5t^2$ (SI),从 t=2 s到 t=4 s这段时间内,外力对质点作的功为

- (A) 1.5 J.
- (B) 3 J.
- an M(C) 4.5 J.
- (D) -1.5 J.

(本题 3分)(^^

★光滑的水平桌面上有长为 21、质量为 m 的匀质细杆。 可绕通过其中点 O 且垂直于桌面的竖直固定轴自由转动,

桌面上正对着杆的一端,在垂直于杆长的方向上,以速率 v 运动,如图所示。当 速度是

- $\overline{12}$

- 福动: U=RW=JW 超新一碰后 $\angle mV = ml^2\omega + \frac{1}{2}m^2\omega$

第1页共8页

- 4. (本题 3分)(Ţ, pŊ 一 温度、压强相同的氦气和氧气,它们分子的平均动能₹和平均平动动能平 + He. O.
 - (A) ε 和 w 都相等.
- (B) $\bar{\epsilon}$ 相等,而证不相等。
- (C) \overline{v} 相等, 而 $\overline{\varepsilon}$ 不相等.
- (D) *E* 和 w 都 不 相 等 .

☆5. (本题 3分)/ ^ ^ ^ / ;

如图所示,一定量理想气体从体积 1/1,膨胀到体积 1/2 分别经历的过程是: $A \rightarrow B$ 等压过程, $A \rightarrow C$ 等温过程; $A \rightarrow D$ 绝热过程,其中吸热量最多的过程与压力根: A= [\subsetext{\subset

- (风)既是 $A \rightarrow B$ 也是 $A \rightarrow C$,两过程吸热
- 6. (本题 3分)

"理想气体和单一热源接触怕等温膨胀时,吸收的热量全部用来对外作功。" 对此说法,有如下几种评论,哪种是正确的?

- (A) 不违反热力学第一定律,但违反热力学第二定律. 4分不多之
- (C) 不违反热力学第一定律,也不违反热力学第二定律.
- (立) 违反热力学第一定律,也违反热力学第二定律,

√7。(本题 3分)(:^~~

点电荷-q位于圆心O处,A、B、C、D为同一圆周 上的四点,如图所示.现将一试验电荷从A点分别移动 到 B、C、D 各点,则

- (A) A 到 B, 电场力作功最大.
- (C) 从 A 到 D, 电场力作功最大.
- (D) 从 A 到各点, 电场力作功相等.

8. (本题 3分)(

半径为r的均匀带电球面1,带有电荷q,其外有一同心的半径为R的均匀带电 球面 2,带有电荷 Q,则此两球面之间的电势差 U_1 - U_2 为: A

(A)
$$\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R}\right)$$

少四条皆垂直于纸面的载流细长直导线, 每条中的电流皆为 I. 这四条导线被纸面截得的断面,如图所示,它们组成了边 长为 2a 的正方形的四个角顶,每条导线中的电流流向亦如图 所示.则在图中正方形中心点 O 的磁感强度的大小为

$$(A) \quad B = \frac{2\mu_0}{\pi a} I \quad .$$

(B)
$$B = \frac{\sqrt{2}\mu_0}{2\pi a}I.$$

(C)
$$B = 0$$
.

(D)
$$B = \frac{\mu_0}{\pi a} I.$$

10. (本题 3分)

如图所示,矩形区域为均匀稳 恒磁场, 半圆形闭合导线回路在纸 面内绕轴 O 作逆时针方向匀角速 转动, O 点是圆心且恰好落在磁场 的边缘上, 半圆形闭合导线完全在 磁场外时开始计时. 图(A)—(D)的 ε-- 函数图象中哪一条属于半圆 形导线回路中产生的感应电动

二填空题 (共37分)

11. (本题 3分)(′ 地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常量为G,

则地球绕太阳作圆周运动的轨道角动量为L= M GN

(才2)(本题 3分)(

一质量为 M 的质点沿 x 轴正向运动,假设该质点通过坐标为 x 的位置时速

度的大小为 kx (k 为正值常量),则该质点从 $x=x_0$ 点出发运动到 $x=x_1$ 处所经历的

$$\int \frac{dx}{x} = \int k dt$$

13. (本题 3分)

$$\ln x = kt. \quad \Delta t = \frac{\ln x_0 - \ln x_0}{k} = \frac{\ln x_1}{k}$$

一飞轮以 600 rev/min 的转速旋转,转动惯量为 2.5 kg·m², 现加一恒定的 $W_0=2\pi \alpha n.=20 M/s.$ t=1s. W=0. $W=w+\beta t.$ $\Rightarrow \beta=20\pi.$

省4(本题 3分)。

氢分子的质量为 3.3×10⁻²⁴ g, 如果每秒有 10²³ 个氢分子沿着与容器器壁的 法线成 45° 角的方向以 10° cm/s 的速率撞击在 2.0 cm² 面积上(碰撞是完全弹

性的),则此氢气的压强为一

15. (本题 3分)(

当理想气体处于平衡态时,若气体分子速率分布函数为f(v),则分子速率处

于最概然速率 v_p 至 ∞ 范围内的概率 $\Delta N/N=$ 16. (本题 3分)

气体经历如图所示的一个循环过程,在这个循

环中, 外界传给气体的净热量是

17. (本题 3分)

在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量 $d\bar{E} \cdot d\bar{S}$ 的值仅

包围在曲面内的电荷 取决于文学的负责不断。

18. (本题 3分)(*

电容为 Co 的平板电容器,接在电路中. 若将相对电 容率为 6, 的各向同性均匀电介质填满电容器的极板间,

则电容器的电容为原来的 👉 倍.

19. (本题 3分)(

在一根通有电流 I 的长直导线旁, 与之共面地放着一个 长、宽各为a和b的矩形线框,线框的长边与载流长直导线 平行,且二者相距为 b,如图所示。在此情形中,线框内的

20. (本题 3分)(

有一半径为a,流过稳恒电流为I的1/4圆弧形载流导线 bc,按图示方式置于均匀外磁场 \bar{B} 中,则该载流导线所受的

安培力大小为 B1a

三 计算题 (共40分)

21. (本题/o分)/

水平小车的 B 端固定一轻弹簧, 弹簧为 自然长度时,靠在弹簧上的滑块距小车 A 端 为 L=1.1 m. 已知小车质量 M=10 kg, 滑块 质量m=1 kg,弹簧的劲度系数k=110 N/m.现

推动滑块将弹簧压缩al =0.05 m 并维持滑块与小车静止,然后同时释放滑块与小 车. 忽略一切摩擦. 求:

- (1) 滑块与弹簧刚刚分离时,小车及滑块相对地的速度各为多少?
- (2) 滑块与弹簧分离后,又经多少时间滑块从小车上掉下来? 山解: 後趣意知:

·对外奔、滑快、弹簧板成的多流 活 能量守恒.

> 1/2 = 1/2 + 1/MVg2 + 1/2 MVg2 站電宇柜 mu = mub. 朝姆 VA = 0.5 m/s. > VB = 0.05m/s. <

(2)) (V+V6)+=L. 得t=-1.1-=25.

22. (本题10分) 第2章 16 72

一定量的某单原子分子理想气体装在封闭的汽缸里,此汽缸有可活动的活 塞(活塞与气缸壁之间无摩擦且无漏气). 已知气体的初压强 p_1 =1atm, 体积 V_i=1L, 现将该气体在等压下加热直到体积为原来的两倍, 然后在等体积下加 热直到压强为原来的 2 倍,最后作绝热膨胀,直到温度下降到初温为止,

- (1) 在 p-V 图上将整个过程表示出来.
- (2) 试求在整个过程中气体内能的改变.
- (3) 试求在整个过程中气体所吸收的热量. (1 atm=1.013×10⁵ Pa)
- (4) 试求在整个过程中气体所作的功. 脚: 依题复可做p-v图.

在由 U-> 以过起中, 等压氢化. A1 = 5 pdv = p(1/2-Vi) = 1,013x105 J.

Q1=VG,m(To-Ti)==(Ph)-PN) ~ 3 × 10 Pax 1 = 10 500 100T.

在中月→月本社長· 02= 至X2×102=100月 UE- = 650]

23. (本题10分)、

一个细玻璃棒被弯成半径为R的半圆形,沿其上半部分均匀分布有电荷+Q,沿其下半部分均匀分布有电荷-Q,如图所示.试求圆心O处的电场强度.

$$\frac{2}{2} \times \frac{1}{2} \times \frac{1}$$

24. (本题10分)

如图所示,一半径为 r_2 电荷线密度为 λ 的均匀带电圆环,里边有一半径为 r_1 总电阻为 R 的导体环,两环共面同心 $(r_2 >> r_1)$,当大环以变角速度 $\omega = \omega(t)$ 绕垂直于环面的中心轴旋转时,求小环中的感应电流,其方向如何?

密封线内不准答题,

班级、

考试方式: 闭卷

太原理工大学 大学物理 A(一) 试卷 B

L	题	号	—	 三	四	<i>3</i> 5.	六	七	八	九	总 分
	得	分									

一 选择题 (共30分)

1. (本题 3分)

如图, 两根直导线 ab 和 cd 沿半径方向被接到一个截面处 处相等的铁环上,稳恒电流 I 从 a 端流入而从 d 端流出,则磁 感强度 \bar{B} 沿图中闭合路径 L 的积分 $d\bar{B} \cdot d\bar{l}$ 等于

- (A) $\mu_0 I$.
- (C) $\mu_0 I/4$.
- (D) $2\mu_0 I/3$.

P=1S. ON=2. 1 有一半径为 R 的单匝圆线圈, 通以电流 I, 若将该导线弯成匝数 N 面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的 磁矩分别是原来的

- (A) 4倍和1/8.
- (B) 4倍和1/2.
- (C) 2倍和1/4.
- (D) 2倍和1/2.

3. (本题 3分)(

如图所示, 矩形区域为均匀稳恒磁 场, 半圆形闭合导线回路在纸面内绕 时. 图(A)—(D)的 \mathcal{E} —t 函数图象中哪 应电动势?

4. (本题 3分)

如图所示,一静止的均匀细棒,长为 L、质量为 M,可 绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面 内转动,转动惯量为 $\frac{1}{3}ML^2$. 一质量为m、速率为v的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端, 设穿过棒后子弹的速率为 1 0 , 则此时棒的角速度应为

5. (本题 3分)

质点作曲线运动,r表示位置矢量, \bar{v} 表示速度, \bar{a} 表示加速度,s表示路程, a,表示切向加速度,下列表达式中,

- (1) dv/dt = a,
- (2) dr/dt = v,
- (3) dS/dt = v,
- (4) $\left| d\bar{v} / dt \right| = a_t$. (B)°只有(2)、(4)是对的.
- (A) 只有(1)、(4)是对的. (C) 只有(2)是对的.
- (B)、只有(3)是对的.

6. (本题 3分)

对位移电流,有下述四种说法,请指出哪一种说法正确

- (A) 位移电流是指变化电场,
- (B) 位移电流是由线性变化磁场产生的.
- (C) 位移电流的热效应服从焦耳—楞次定律,
- (D) 位移电流的磁效应不服从安培环路定理,

7. (本题 3分)

已知氢气与氧气的温度相同,请判断下列说法哪个正

- (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氢分子的速率大向上了 (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率上
- 均根速率大.

8. (本题 3分). 测度3 000 1 mol 刚性双原子分子理想气体,当温度为 T 时,其内能为

- (A) $\frac{3}{2}RT$. (B) $\frac{3}{2}kT$. (C) $\frac{5}{2}RT$. (D) $\frac{5}{2}kT$. [

(式中 R 为普适气体常量, k 为玻尔兹曼常量)

9. (本题 3分)(~~)

已知一定量的某种理想气体,在温度为 T_1 与 T_2 时的分子最概然速率分别为 v_{p1} 和 v_{p2} ,分子速率分布函数的最大值分别为 $f(v_{p1})$ 和 $f(v_{p2})$. 若 $T_1 > T_2$,则

- (C) $v_{p1} < v_{p2}$, $f(v_{p1}) > f(v_{p2})$.
- (A) $v_{p1} > v_{p2}$, $f(v_{p1}) > f(v_{p2})$.
- (B) $v_{p1} > v_{p2}$,

10. (本题 3分)(1

有两个电荷都是+q的点电荷,相距为

2a. 今以左边的点电荷所在处为球心,以 a 为半 径作一球形高斯面 . 在球面上取两块相等的小 面积 S_1 和 S_2 ,其位置如图所示. 设通过 S_1 和

 S_2 的电场强度通量分别为 ϕ_1 和 ϕ_2 ,通过整个球面的电场强度通量为 ϕ_s ,

- (A) $\Phi_1 > \Phi_2$, $\Phi_S = q/\varepsilon_0$.
- (B) $\Phi_1 < \Phi_2$, $\Phi_S = 2q / \varepsilon_0$.
- (C) $\Phi_1 = \Phi_2$, $\Phi_S = q/\varepsilon_0$.
- (D) $\Phi_1 < \Phi_2$, $\Phi_S = q/\epsilon_0$.

专业班级

二 填空题 (共30分)
11. (本题 3分)(0)
图示 BCD 是以《圆心,以 R 为半径的半圆 C
弧,在 A 点有一电荷格点电荷, O 点有一电荷
为 $-q$ 的点电荷,线数 A 现将一单位正电荷从 $+q$ q q q q q q q q q
BC17 753 VB-VD=A PB= 4760R + -9 4760R =0
场力所作的功为 $6126R$ · $90.=$ $\frac{9}{47603R} + \frac{-9}{47160R}$
12. (本题 3分)(1 = - 29: - 9 - 20: - 29: 9 - 20: 20: 20: 20: 20: -
一金属球壳的产径分别为 R ₁ 和 R ₂ ,带电荷为 Q. 在球心处有一电荷
郑q 的点电荷,则表面上的电荷面密度σ= 证识记内表
13. (本题 3分)(流过
有一半径为 a ,恒电流为 I 的 $1/4$ 圆弧形载流导线 c B bc ,按图示方式置一磁场 B 中,则该载流导线所受的
bc,按图小刀式点。 mana b 1,对以数别可见的 a l 1
安培力大小为
14. (本题 3分) 型负子约
一段直导线在 Y 3 做场的平面内运动,已知导线绕其一端以角速度 ω
转动时的电动势是直于导线方向的速度可作平动时的电动势相同,那与导传以理
么,导线的长度之·
15. (本题 3分号方M)
已知地球质半径为 R. 一质量为 m 的火箭从地面上升到距地面高
度为2R处。在从地球引力对火箭作的功为
16. (本题 3分
一质量为Ax轴正向运动,假设该质点通过坐标为 x 的位置时速 M 你们 医 2 况 本 3 0
度的大小为 kx (量),则此时作用于该质点上的力 F=,该 发 为正值第
质点从 $x=x_0$ 点 $x=x_1$ 处所经历的时间 $\Delta t=$
(出发运动到

17. (本题 3分)(
一个作定轴转动的物体,对转轴的转动惯量为 J . 正以角速度 ω_0 = 10 rad·s 匀速转动. 现对物体加一恒定制动力矩 $M=-0.5\mathrm{N\cdot m}$,经过时间 $t=5.0\mathrm{s}$ 后
物体停止了转动. 物体的转动惯量 J=
18. (本题 3分)
如图所示,已知图中画不同斜线的两部分的面积 分别为 S_1 和 S_2 ,那么 P -V 图下 A
(1) 如果气体的膨胀过程为 $a-1-b$,则气体对 b
外做功 $A = S_1 + S_2$;
(2) 如果气体进行 a—2—b—1—a 的循环过程, 0——>V 至时针:由线所图面积为净功.
则它对外做功 $A = -S$,
19. (本题 3分)
一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若
热机在最大效率下工作,且每一循环吸热 2000 J,则此热机每一循环作功
J.
20. (本题 ·3分)(均匀能电影》 47%k 47%k 47% 47%k 47% 47%k 47% 47% 47% 47% 47% 47% 47% 47% 47% 47%
9
$R(r_1 < R < r_2)$ 的球面上任一点的电势 U 由变为
· · · · · · · · · · · · · · · · · · ·

三 计算题 (共40分)

21. (本题10分)

如图所示,一电荷面密度为o的"无限大"平面,在距 离平面 a 处的一点的场强大小的一半是由平面上的一个半 径为 R 的圆面积范围内的电荷所产生的. 试求该圆半径的 大小.

22. (本题)凉分)(

无限长直导线旁有一与其共面的矩形线圈,直导 线中通有恒定电流 I, 将此直导线及线圈共同置于随时

当线圈以速度 v 垂直长直导线向右运动时,求线圈在 如图所示位置时的感应电动势.

23. (本题10分)

光滑平面上有一半径为 R 的 1/4 圆弧形物块(如图),其质量为 M,圆弧表面光滑,若另有一质量为 m 的滑块从其顶端 A 沿圆弧自由滑到底端 B,求这一过程中物块的支撑力 N 对滑块所做的功.

24. (本题10分)(

一定量的单原子分子理想气体,从 A 态出发经等压过程膨胀到 B 态,又经 绝热过程膨胀到 C 态,如图所示.试求 这全过程中气体对外所作的功,内能的 增量以及吸收的热量.

、二本A卷答案

选择应、

「填空题 (共3 0 分)		and the same of th	-
11. (本题 3分)(0404) m√GMR	3.分	17. (本题 3分)(1435) 包围在曲面内的净电荷	2分
12. (本题 3分)(0166)	2 ()	曲面外电荷	1分
$\frac{1}{k} \ln \frac{x_1}{x_0}$	3分	18. (本题 4 分)(1221) ε	3 分
13. (本题 3分)(0240) 157 N·m	3 分	19. (本题 3分)(2550) <u>μ₀la</u> ln 2	3 分
14. (本题 3分)(4007) 2.33×10³Pa	. 3分	m2 2π 20. (本题 3分)(2584)	2 71
15. (本题 3分)(4283) ∫ _r f(v)dv	3分	aIB	3 分
16. (本题 3分)(4580) 90 J	3 分	e de la companya de	

三 计算题 (共编分)

21. (本题和分)(0171)

解: (1) 以小车、滑块、弹簧为系统,忽略一切摩擦,在弹簧恢复原长的过程中, 系统的机械能守恒,水平方向动量守恒. 设滑块与弹簧刚分离时,车与滑块对地 的速度分别为 V和 v,则

$$\frac{1}{2}k(\Delta l)^{2} = \frac{1}{2}mv^{2} + \frac{1}{2}MV^{2}$$
① 2分
$$mv = MV$$
② 2分
$$V = \sqrt{\frac{k}{M+M^{2}/m}}\Delta l = 0.05 \text{ m/s, 问左}$$
① 1分
$$v = \sqrt{\frac{k}{m+m^{2}/M}}\Delta l = 0.5 \text{ m/s, 问右}$$
① 2分
$$\Delta t = L/v' = 2 \text{ s}$$

3 }} $M = \overline{O} - \overline{V} = 14.9 \times 10^{5} 1$ 根据热一律 Q=W+AE, 得全过程 A→B→C的 ₩ Þ $Q_{AB} = V C_p (T_B - T_A) = \frac{2}{2} (p_B V_B - p_A V_A) = 14.9 \times 10^5 J.$ B→C 过程是绝热过程, 有 Q_m=0. 3 }} 图此金过程 A→B→C 的 AE=0. TAV = VQ $A_{k} A_{k} d = A_{k} A_{k} d$ 出春 回图出: 稱 (7114)(代01國本).52 $(W \frac{1}{2} + m) / 18m = 10 = 0$ 0 = 0 0 = 0**影立翔太⑥、⑤、①**科 ③ ⑦ gy = p: 泵关学位运 IR = JB: 渰骱权 pw = I - 8w: 林树林 縣: 税据牛顿运动定律和转动定律列方程 (3310)(代8 國本).15 (代18共)國冀书 三 3 }} s/T 81.£ (5113)(45 國本).02 _ψ ₩ε (1202)(代5 國本).61 £4 E (4882)(公5 國本).81

(8711)(代5 國本)、71

班级、密封线内不准答题,

(密封线外不要写姓名、

考试方式: 闭卷

适用专业: 10 级一二本 考试日期: 2011.7.15 时间: 120 分钟 共 8 页 题 号 Ξ 总 分

大学物理 A(一)

一、选择题(共30分)(将答案填在下面相应的空格内)

太原理工大学

A ÷	卷第一题	1	2	3	4	5	(6)	7	8	(9)	(10)
相	应选择				-					÷	

1. (本题 3分)

得 分

 \bigcirc 在相对地面静止的坐标系内, $A \setminus B$ 二船都以 2 m/s 速率匀速行驶,A 船沿 x轴正向,B船沿y轴正向。今在A船上设置与静止坐标系方向相同的坐标系(x,y)方向单位矢用i、j表示),那么在A船上的坐标系中,B船的速度(以m/s 为单 位)为

(A) 2i + 2i.

(B) $-2\bar{i} + 2\bar{j}$.

(C) $-2\vec{i} - 2\vec{j}$.

(D) $2\bar{i} - 2\bar{j}$.

P. (本题 3分)

质量分别为 mi和 mi的再滑块 z 和 z 通过 一轻弹簧水平连结后置于水平桌面上, 滑魚与 [作用下匀速运动,如图所示。如突然撤消拉力,则刚撤消后瞬间,二者的加速度 a。和 a。分别为

- (A) $a_A = 0$, $a_B = 0$.
- (B) $a_A > 0$, $a_B < 0$.
- (C) $a_A < 0$, $a_B > 0$.
- (D) $a_A < 0$, $a_B = 0$.

3、(本题 3分)

一个质点同时在几个力作用下的位移为:

 $\Delta \bar{r} = 4\bar{i} - 5\bar{i} + 6\bar{k} \text{ (SI)}^{7}$

其中一个力为恒力 $\bar{F}=-3\bar{i}-5\bar{j}+9\bar{k}$ (SI),则此力在该位移过程中所作的功为

- (A) -67 J.
- (B) 17 J.
- (C) 67 J.
- (D) 91 J.

4. (本题 3分)

 \mathbb{C} 如图所示,一静止的均匀细棒,长为 L、质量为 M, 3 1-5ML 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端, t 设穿过棒后子弹的速率为 $\frac{1}{2}v$,则此时棒的 $\underline{角速度应}$ 为

- (D) $\frac{7mv}{4ML}$

5. (本题 3分)

- (A) 两种气体分子的平均平动动能相等. pV = WRT.
- (B) 两种气体分子的平均动能相等。 学灯
- (C) 两种气体分子的平均速率相等.
- (D) 两种气体的内能相等.

- (C) 气体内能增加

7. (本题 3分)

电荷面密度分别为 $+\sigma$ 和 $-\sigma$ 的两块"无限大"均匀带电的平行平板,如图放 置,则其周围空间各点电场强度 随位置坐标 x 变化的关系曲线为:(设场强方向 向右为正、向左为负)

第1页共8页

一二本人卷

一二本 A 卷

违者按零分计)

密封线内示准答题,

(密封线外7

-8. (本题 3分)

将一空气平行板电容器接到电源上充电到一定电压后,在 保持与电源连接的情况下,把一块与极板面积相同的各向同性 均匀电介质板平行地插入两极板之间,如图所示.介质板的插 入及其所处位置的不同,对电容器储存电能的影响为:

- 储能减少,但与介质板相对极板的位置无关.
- 储能减少,且与介质板相对极板的位置有关
- 储能增加,但与介质板相对极板的位置无关,
- 储能增加,且与介质板相对极板的位置有关.

b) (本题 3分)

如图,流出纸面的电流为 2I,流进纸面的电流 为 I, 则下述各式中哪一个是正确的?

(B)
$$\oint_{L_2} \vec{H} \cdot d\vec{l} = I$$

如图所示,导体棒 AB 在均匀磁场 B 中 绕通过 C 点的 垂直干棒长且沿磁场方向的轴 OO′转动(角速度 ō 与 Ē 同 方向),BC的长度为棒长的

- (A) A点比B点电势高。(B) A点与B点电势相等
- (C) A点比B点电势低。(D) 有稳恒电流从A点流向B点。
- 二、填空题(共30分)(将答案填在下面相应的横线上)

11. (本题 3分)

已知质点的运动学方程为 $\vec{r} = (5 + 2t - \frac{1}{2}t^2)\vec{i} + (4t + \frac{1}{3}t^3)\vec{j}$ (SI) 当 t=2 s 时,加速度 a 的大小为 $\overrightarrow{j}=$ $\overrightarrow{dt}=(2-t)\overrightarrow{i}+(4+t)\overrightarrow{j}$ $\overrightarrow{a}=-\overrightarrow{i}+4\overrightarrow{j}$ [$\overrightarrow{a}|=\sqrt{1+6}=\sqrt{1}$]
12. (本题 3分) $\overrightarrow{a}=$ $\overrightarrow{dt}=-\overrightarrow{i}+2t\overrightarrow{j}$ $\overrightarrow{a}=\sqrt{1+6}=\sqrt{1}$

一质量为m的物体,原来以速率v向北运动,它突然受到外力打击,变为 向西运动,速率仍为 v,则合外力的冲量大小为

13. (本题 3分)

一个作定轴转动的物体,对转轴的转动惯量为 J. 正以角速度 $\omega=10 \text{ rad} \cdot \text{s}^{-1}$ 匀速转动. 现对物体加一恒定制动力矩 $M=-0.5\,\mathrm{N\cdot m}$, 经过时间 $t=5.0\,\mathrm{s}$ 后, 物体停止了转动.物体的转动惯量为 0.15 69 m2.

14. (本题 3分)

若某种理想气体分子的方均根速率 $\left(v^2\right)^{1/2}=450~\mathrm{m/s}$,气体压强为 $p=7\times10^4$ Pa,则该气体的密度 ρ 为

15. (本题 3分)

图示氡气分子和氧气分子在相同温度下的 麦克斯韦速率分布曲线. 则氢气分子的最概然

16. (本题 3分)

热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若 热机在最大效率下工作,且每一循环吸热 2000 J ,则此热机每一循环作功

 $\int = \left| -\frac{\tau_2}{\tau_1} \right| = \left| \frac{Q_1 - Q_2}{Q_1} \right| = \frac{\tau_1 - \tau_2}{\tau_1}$ 点电荷 q1、q2、q3和 q4在真空中的分布如图所 示. 图中 S 为闭合曲面,则通过该闭合曲面的 电场强度通量

一二本 A 卷

18. (本题 3分)

如图所示. 试验电荷 q, 在点电荷+Q产生的电场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到无穷 远处的过程中, 电场力作功为

如图,一根载流导线被弯成半径为 R 的 1/4 圆弧,放在磁感强度为 B 的均匀磁场中,则载流导线 ab 所受磁场的

作用力的大小为

20. (本题 3分)

二、	订异西	医(天 40 万)		极品=	3-B'= 10	水(上光)。
题	号	21	22	23	. 24	总分
得	分					

21. (本题10分)

一质量为 m_A =0.1 kg 的物体 A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的 劲度系数 k = 90 N/m、现在用力推 A,从而弹簧被压缩了 x_0 = 0.1 m . 在弹簧的原长处放有质量 m_B =0.2 kg 的

物体 B, 如图所示. 由静止释放物体 A 后, A 将与静止的物体 B 发生弹性碰撞. 求碰撞后 A 物体还能把弹簧压缩多大距离.

碰撞后 A 物体还能把弹簧压缩多大距离. $E_{K} = \frac{1}{2} k / k^2 = \frac{1}{2} \times 90 \times 0.0 = 0.45$].

22. (本题10分)

如图所示,abcda 为<u>l mol 单</u>原子分子理想气体的循环过程,求:

- (1) 气体循环一次,在吸热过程中从外 界共吸收的热量;
 - (2) 气体循环一次对外做的净功;
- (3) 证明 在 abcd 四态,气体的温度有 $T_oT_c=T_bT_d$.
- (1)解: 知吸起过起: ab, bc.

 $p (\times 10^5 \text{ Pa})$

 $\stackrel{V(\times 10^{-3} \text{ m}^3)}{\longrightarrow}$

- e) A= 103 m3 x 105 Pa = 100]
- (3)证明. $P_a = P_a$. $P_b = P_c$. $V_a = V_b$. $V_c = V_d$. $V_c = V_$

23. (本题 /0分) \bar{a} 电荷 q 均匀分布在长为 2L 的细杆上,求在 无穷远处为电势零点)。 解:投细科最右诉为原色、建色化棉色。 见从、则入=一数 是 dy= >dx = 3/4 dx. 西边教分署 $\int dV = \int_0^{2L} \frac{g}{8\pi \epsilon l (a+x)} dx.$

 $V = \frac{9}{8\pi \epsilon_0 L} \int_0^2 \frac{1}{(a+x)} d(x+a) = \frac{9}{8\pi \epsilon_0 L} \ln \frac{a+2L}{a}$

24. (本题10分)

两根平行无限长直导线相距为 d, 载有大小相等 方向相反的电流 I,电流变化率 $dI/dt = \alpha > 0$. 一个边 长为 d 的正方形线圈位于导线平面内与一根导线相距 d, 如图所示. 求线圈中的感应电动势 \mathcal{E} , 并说明线圈 中的感应电流是顺时针还是逆时针方向.

选择题(30分)

A	
	A

二、填空题(共30分)

11. (本题 4分)(0253) 2.24 m/s^2

16. (本题 3分)(4331)

12. (本题 4分)(0060) $\sqrt{2} mv$

17:(本题 4分)(1499) $(q_2+q_4)/\varepsilon_0$

13. (本题 3分)(0553) $0.25 \text{ kg} \cdot \text{m}^2$

18. (本题 4分)($qQ / (4\pi \varepsilon_0 R)$

14. (本题 3分)(4008) 1.04 kg · m⁻³

19. (本题 3分)/ $\sqrt{2}BIR$

15. (本题 4分)(4560) 4000 m • s⁻¹

20. (本题 3分) $\frac{\mu_0 I}{2R} (1 - \frac{1}{\pi})$

三 计算题 (共38分)

21. (本题10分)(0469)

解:释放物体A到A与B碰撞前,以A与弹簧为系统,机械能守恒

$$\frac{1}{2}kx_0^2 = \frac{1}{2}m_A v^2$$

2分

A 与 B 碰撞过程中以 A、B 为系统, 动量守恒, 机械能守恒

$$m_A v = m_A v_A' + m_B v_B'$$

2分

$$\frac{1}{2}m_A v^2 = \frac{1}{2}m_A v_A'^2 + \frac{1}{2}m_B v_B'^2$$

2分

A 与 B 碰撞后, A 压缩弹簧; 机械能守恒

$$\frac{1}{2}m_{A}v_{A}^{\prime 2}=\frac{1}{2}kx_{0}^{\prime 2}$$

联立①、②、③、④并考虑到 $v'_4 < 0$ 且 x'_0 为压缩量与 x_0 一样应取正值,可求出

$$x_0' = \frac{|(m_A - m_B)|x_0}{m_A + m_B} = 0.033 \text{ m}$$

2分

2分

23. (本题 8分)(1597)

解:设坐标原点位于杆中心O点,x轴沿杆的方向, 如图所示. 细杆的电荷线密度 $\lambda = q/(2l)$, 在 x 处取

 $dq = \lambda dx = qdx / (2l)$

它在 P 点产生的电势为

$$dU_{P} = \frac{dq}{4\pi\varepsilon_{0}(l+a-x)} = \frac{q\,dx}{8\pi\varepsilon_{0}l(l+a-x)} \qquad 4 \text{ }$$

整个杆上电荷在 P 点产生的电势

$$U_{P} = \frac{q}{8\pi\varepsilon_{0}l} \int_{1}^{1} \frac{\mathrm{d}x}{(l+a-x)} = \frac{-q}{8\pi\varepsilon_{0}l} \ln(l+a-x) \Big|_{-l}^{l} = \frac{q}{8\pi\varepsilon_{0}l} \ln\left(1+\frac{2l}{a}\right) \qquad \qquad U = \int_{1}^{2} \frac{1}{2} \mathrm{d}x = \int_{1}^{2} \frac{1}$$

24. (本题10分)(2737)

解: (1) 载流为 I 的无限长直导线在与其相距为 r 处产生的磁感强度为:

版长且导线任与共相距为
$$r$$
 处产生的磁感强度为: $B = \mu_0 I / (2\pi r)$

以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通

量为:
$$\Phi_1 = \int_0^{3d} d \cdot \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 Id}{2\pi} \ln \frac{3}{2}$$

与线圈相距较近的导线对线圈的磁通量为:

$$\Phi_2 = \int_{d}^{2d} -d \cdot \frac{\mu_0 I}{2\pi r} dr = -\frac{\mu_0 Id}{2\pi} \ln 2$$

总磁通量

$$\Phi = \Phi_1 + \Phi_2 = -\frac{\mu_0 Id}{2\pi} \ln \frac{4}{3}$$

4分

$$\mathcal{E} = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} \left(\ln\frac{4}{3}\right) \frac{\mathrm{d}\,I}{\mathrm{d}\,t} = \frac{\mu_0 d}{2\pi} \alpha \ln\frac{4}{3}$$

2分

由 ε >0 和回路正方向为顺时针,所以 ε 的绕向为顺时针方向,线圈中的感应电流 亦是顺时针方向. 2分

22. (本题10分)(4110)

解: (1) 过程 ab 与 bc 为吸热过程,

吸热总和为
$$Q_1 = C_V (T_b - T_a) + C_p (T_c - T_b)$$

$$= \frac{3}{2} (p_b V_b - p_a V_a) + \frac{5}{2} (p_c V_c - p_b V_b)$$

=800 J

(2) 循环过程对外所作总功为图中矩形面积

$$W = p_b(V_c - V_b) - p_d(V_d - V_a) = 100 \text{ J}$$
 2 $\text{ }\%$

(3) $T_a = p_a V_a / R$, $T_c = p_c V_c / R$, $T_b = p_b V_b / R$, $T_d = p_d V_d / R$,

$$T_a T_c = (p_a V_a p_c V_c) / R^2 = (12 \times 10^4) / R^2$$

$$T_b T_d = (p_b V_b p_d V_d) / R^2 = (12 \times 10^4) / R^2$$

$$T_a T_c = T_b T_d$$

4分