

TrenchT2[™] HiperFET[™] **Power MOSFET**

IXFH230N075T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

$V_{\scriptscriptstyle DSS}$	=	75V
I _{D25}	=	230A
R _{DS(on)}	≤	$4.2 \mathrm{m}\Omega$

TO-247

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 175^{\circ}C$	75	V	
V _{DGR}	$T_{_J} = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{_{GS}} = 1\text{M}\Omega$	75	V	
V _{GSM}	Transient	± 20	V	
I _{D25}	T _c = 25°C (Chip Capability)	230	Α	
LRMS	Lead Current Limit, RMS	160	Α	
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	700	Α	
I _A	T _C = 25°C	115	Α	
E _{as}	$T_{c} = 25^{\circ}C$	850	mJ	
$\mathbf{P}_{_{\mathrm{D}}}$	$T_{c} = 25^{\circ}C$	480	W	
T_J		-55 +175	°C	
T_{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L	1.6mm (0.062in.) from Case for 10s	300	°C	
T _{sold}	Plastic Body for 10 seconds	260	°C	
Weight		6	g	

Features

- International Standard Package
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Automotive
 - Motor Drives
 - 12V Power Bus
 - ABS Systems
- DC/DC Converters and Off-Line UPS
- Primary- Side Switch
- High Current Switching Applications

Symbol Test Conditions (T _J = 25°C Unless Otherwise Specified)		Chara Min.	cteristic Typ.	Value Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	75			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.0		4.0	V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μΑ
	$T_J = 150^{\circ}C$			250	μΑ
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 50A$, Note 1			4.2	$m\Omega$

IXFH230N075T2

Symbol (T _J = 25	Test Conditions °C, Unless Otherwise Specified)	Chara Min.	acteristic Typ.	c Values Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	50	85	S
C _{iss})		10.5	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1165	pF
C_{rss}	J		125	pF
t _{d(on)}	Pasiativa Switching Times		23	ns
t _r	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 0.5 \bullet I_{D25}$ $R_{G} = 2\Omega \text{ (External)}$		18	ns
t _{d(off)}			33	ns
t _f			15	ns
Q _{g(on)})		178	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		53	nC
\mathbf{Q}_{gd})		41	nC
R _{thJC}				0.31 °C/W
R _{thCH}			0.21	°C/W

TO-247 (IXFH) Outline R Q S D A1 L1 L1 L2 D A2 A1 C Terminals: 1 - Gate 2 - Drain

Terminals:	1 - Gate	2 - Drain
	3 - Source	

Dim.	Millimeter		Inc	Inches	
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A,	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b,	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C,$		Chara Min.	cteristic Typ.	Values Max.	
I _s	$V_{GS} = 0V$			230	Α
I _{SM}	Repetitive, Pulse width limited by $T_{_{\rm JM}}$			900	Α
V _{SD}	$I_{F} = 100A, V_{GS} = 0V, Note 1$			1.3	V
t _{rr}	$I_F = 115A, V_{GS} = 0V$		59		ns
I _{RM}	$-di/dt = 100A/\mu s$		3.6		Α
Q_{RM}	$V_{R} = 37V$		106		nC

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 115A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 115A Value vs.

Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXFH230N075T2

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.

Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

