

Elliptic Curves, n° 2

Lei Bichang

October 11, 2024

We prepare some lemmas here.

Lemma 1. If C_1, C_2 are smooth curves, $\phi: C_1 \to C_2$ is a surjective morphism, $f \in \bar{K}(C_1)^{\times}$ and $D \in Div(C_2)$, then

$$f(\phi^*D) = (\phi_*f)(D)$$

if both sides are well-defined.

Proof. (*) Assume that both sides of the desired equation are well-defined. For simplicity of notations, assume that $K = \bar{K}$.

By Lemma 2 and the fact that ϕ^* : $\text{Div}(C_2) \to \text{Div}(C_1)$ is additive, it suffices to prove in the case of D = (P), where $P \in C_2$ is a point. In this case,

$$f(\phi^*(P)) = f\left(\sum_{Q \in \phi^{-1}(P)} e_{\phi}(Q) \cdot (Q)\right) = \prod_{Q \in \phi^{-1}(P)} f(Q)^{e_{\phi}(Q)},$$

$$(\phi_* f)((P)) = (\phi_* f)(P) = (N_{K(C_1)/K(C_2)} f)(P),$$

where we identify $K(C_2)$ with $\phi^*K(C_2) \subset K(C_1)$.

Since $f(\phi^*D)$ is well-defined and the support of $\phi^*(D)$ is $\phi^{-1}(P)$, every points $Q \in \phi^{-1}(P)$ is not a zero or pole for f, so $f \in K(C_1)_Q^{\times}$, where $K(C_1)_Q$ is the local ring of C_1 at Q.

Similarly, $\phi_* f \in K(C_2)_P^{\times}$ because $(\phi_* f)(D)$ is well-defined, and $(\phi_* f)(P)$ is the image of $\phi_* f$ in the residue field $k_P := K(C_2)_P/\mathfrak{m}_P$.

Let B be the integral closure of $K(C_2)_P$ in $K(C_1)$. Then $f \in B$ and $N_{B/K(C_1)_P}f = \phi_*f$. By the commutative diagram

$$\begin{array}{ccc}
B & \longrightarrow & B/\mathfrak{m}_P B \\
\downarrow & & \downarrow \\
K(C_1)_P & \longrightarrow & k_P
\end{array}$$

where the vertical arrows are the corresponding norm maps, we have $(\phi_* f)(P) = \det(u)$, where $u : B/\mathfrak{m}_P B \to B/\mathfrak{m}_P B$ is the k_P -linear map given by multiplication-by- $\bar{f} \in B/\mathfrak{m}_P B$.

The ideal $\mathfrak{m}_P B$ decomposes in B as

$$\mathfrak{m}_P B = \prod_{Q \in \phi^{-1}(P)} \mathfrak{m}_Q^{e_\phi(Q)},$$

where \mathfrak{m}_Q is the intersection of the maximal ideal of $K(C_2)_Q$ with B. This gives an isomorphism of k_P modules

$$B/\mathfrak{m}_PB \simeq \prod_{Q \in \phi^{-1}(P)} B/\mathfrak{m}_Q^{e_\phi(Q)}.$$

For $Q \in \phi^{-1}(P)$, let $\pi_Q \in \mathfrak{m}_Q$ be a uniformiser, then $1, \bar{\pi}_Q, \dots, \bar{\pi}_Q^{e_{\phi}(Q)-1}$ form a k_P -basis for $B/\mathfrak{m}_Q^{e_{\phi}(Q)}$. Write $\phi^{-1}(P) = \{Q_1, \dots, Q_r\}$, then

$$1, \bar{\pi}_{Q_1}, \dots, \bar{\pi}_{Q_1}^{e_{\phi}(Q_1)-1}, \cdots, 1, \bar{\pi}_{Q_r}, \dots, \bar{\pi}_{Q_r}^{e_{\phi}(Q_r)-1}$$

form a basis of B/\mathfrak{m}_B over k_P . Note that

$$f \cdot \pi_Q^i \in f(P)\pi_Q^i + \mathfrak{m}_Q^{i+1}$$

for every $Q \in \phi^{-1}(P)$, so each subspace $\left\langle 1, \bar{\pi}_Q, \dots, \bar{\pi}_Q^{e_{\phi}(Q)-1} \right\rangle \subset B/\mathfrak{m}_P B$ is *u*-stable, and the matrix of *u* under the chosen basis is block-wise diagonal of the form

$$u = \begin{pmatrix} u_1 & & \\ & \ddots & \\ & & u_r, \end{pmatrix}$$

where

$$u_i = \begin{pmatrix} f(Q_i) & * & * \\ & \ddots & * \\ & & f(Q_i) \end{pmatrix}$$

is upper-triangular. Therefore,

$$(\phi_* f)(P) = \det(u) = \prod_{Q \in \phi^{-1}(P)} f(Q)^{e_{\phi}(Q)}.$$

Lemma 2. If $D, E \in \text{Div}(C)$ and $f, g \in \bar{K}(E)^{\times}$, then

$$f(D+E) = f(D)f(E),$$

$$(fg)(D) = f(D)g(D)$$

if both sides are well-defined.

Proof. Write $D = \sum_{P \in C} a_P(P)$, $E = \sum_{P \in C} b_P(P)$, then

$$f(D+E) = \prod_{P \in C} f(P)^{a_P + b_P} = \prod_{P \in C} f(P)^{a_P} f(P)^{b_P} = f(D)f(E),$$
$$(fg)(D) = \prod_{P \in C} f(P)^{a_P} g(P)^{a_P} = f(D)g(D).$$

Exercise 1

(a) Write

$$\operatorname{div}(f) = \sum_{i \in I} n_i(A_i), \quad \operatorname{div}(g) = \sum_{j \in J} m_j(B_j),$$

where $\{n_i\}_{i\in I}$ and $\{m_j\}_{j\in J}$ are finite sets of nonzero integers and A_i, B_j are distinct points on $C = \mathbb{P}^1$. Let [X:Y] be a homogeneous coordinate on \mathbb{P}^1 s.t. all of the A_i 's and B_j 's are in the chart $Y \neq 0$, then we can write

$$A_i = [a_i : 1], \quad B_j = [b_j : 1]$$

with $a_i, b_i \in \bar{K}$, and thus

$$f = a \prod_{i \in I} (X - a_i Y), \quad g = b \prod_{i \in J} (X - b_i Y)$$

with $a, b \in \bar{K}^{\times}$. Hence

$$f(\operatorname{div} g) = \prod_{j} f(B_{j})^{m_{j}} = \prod_{i,j} a^{n_{j}} (b_{j} - a_{i})^{n_{i}m_{j}} = (-1)^{\sum_{i,j} n_{i}m_{j}} a^{\operatorname{deg}\operatorname{div} g} b^{\operatorname{deg}\operatorname{div} f} \prod_{i,j} (a_{i} - b_{j})^{n_{i}m_{j}}$$
$$= (-1)^{\sum_{i,j} n_{i}m_{j}} \prod_{i} g(A_{i})^{n_{i}} = (-1)^{\sum_{i,j} n_{i}m_{j}} g(\operatorname{div} f) = g(\operatorname{div} f),$$

because $\deg \operatorname{div} f = \deg \operatorname{div} g = 0$ and $\sum_{i,j} n_i m_j = (\sum_i n_i)(\sum_j n_j) = (\deg \operatorname{div} f)(\deg \operatorname{div} g) = 0$.

(b) Let [X:Y] be a homogeneous coordinate on \mathbb{P}^1 and $x:=X/Y\in \bar{K}(\mathbb{P}^1)$. Then $\mathrm{div}\,g=g^*(\mathrm{div}\,x)$. Write $\mathrm{div}(f)=\sum_{i\in I}n_i(A_i)$ with $n_i\neq 0$ for all $i\in I$. Then $g(A_i)\in \bar{K}^\times$, and the corresponding point in \mathbb{P}^1 is $[g(A_i):1]$. Thus we see that

$$f(\operatorname{div} g) = f(g^*(\operatorname{div} x)) \stackrel{(!)}{=} (g_* f)(\operatorname{div} x)$$
$$= x(\operatorname{div}(g_* f)) = x(g_* \operatorname{div} f)$$
$$= x\left(\sum_{i \in I} n_i([g(A_i):1])\right)$$
$$= \prod_{i \in I} g(A_i)^{n_i} = g(\operatorname{div} f),$$

where (!) is deduced from Lemma 1.

Exercise 2

(a) First, we need to show the existence of D_P, D_Q, f_P and f_Q for every $P, Q \in E[m]$. Let $D_P = (P) - (O)$. For D_Q , we seek for points $Q_1, Q_2, Q_3 \in E \setminus \{P, O\}$ s.t. $Q_2 + Q_3 = Q_1$, then set

$$D_Q := (Q) + (Q_1) - (Q_2) - (Q_3).$$

For example, let $n \geq 4$ be an integer that is prime to m and $\operatorname{char}(K)$, then $E[n] \neq \{O\}$ and we can choose $Q_2 \in E[n] \setminus \{O\}$, $Q_3 := 2Q_2$, $Q_1 := 3Q_2$.

Since

$$\sigma(mD_P) = m\sigma(D_P) = mP = 0,$$

 mD_P is a principal divisor and thus there exists $f_P \in \bar{K}(E)^{\times}$ with div $f_P = mD_P$. The function f_Q exists for the same reason.

Independent of choices. Let D'_P, D'_Q, f'_P and f'_Q be another set of choices. We prove in the following steps.

(1) Suppose $D'_P = D_P$ and $D'_Q = D_Q$. Then div $f'_P = \text{div } f_P$, so $f'_P = cf_P$ for some $c \in \bar{K}^{\times}$. Hence for any divisor $D = \sum_{X \in E} n_X(X) \in \text{Div}^0(E)$,

$$f_P'(D) = \prod_{X \in E} (cf_P(X))^{n_X} = c^{\deg D} f_P(D) = f_P(D).$$

Similarly, $f'_Q(D) = f_Q(D)$ for all $D \in \text{Div}^0(E)$. Therefore, the choice of f_P and f_Q does not affect $\tilde{e}_m(P,Q)$.

(2) Suppose $D'_P = D_P$ and $f'_P = f_P$. Then

$$\sigma(D_Q' - D_Q) = \sigma(D_Q') - \sigma(D_Q) = O$$

and $deg(D'_Q - D_Q) = 0$. So $D'_Q - D_Q = div g$ for some $g \in \overline{K}(E)^{\times}$, and

$$\operatorname{div}\left(\frac{f_Q'}{f_Q}\right) = mD_Q' - mD_Q = m(D_Q' - D_Q) = \operatorname{div}(g^m).$$

Hence there is a $c \in \bar{K}^{\times}$ s.t. $f'_Q = cg^m f_Q$. Note that div $f_P = mD_P$ and div $g = D'_Q - D_Q$ have disjoint supports.

Now by Lemma 2 and Exercise 1,

$$\frac{f_P(D_Q')}{f_Q'(D_P)} = \frac{f_P(D_Q + \operatorname{div} g)}{(cf_Q g^m)(D_P)} = \frac{f_P(D_Q) f_P(\operatorname{div} g)}{(cf_Q)(D_P)(g(D_P)^m)} \\
= \frac{f_P(D_Q)}{c^{\operatorname{deg} D_P} f_Q(D_P)} \frac{f_P(\operatorname{div} g)}{g(mD_P)} \\
= \frac{f_P(D_Q)}{f_Q(D_P)} \frac{g(\operatorname{div} f_P)}{g(mD_P)} = \frac{f_P(D_Q)}{f_Q(D_P)}.$$

Therefore, $\tilde{e}_m(P,Q)$ is independent of the choice of D_P .

(3) Suppose $D'_Q = D_Q$ and $f'_Q = f_Q$. Then

$$\frac{f_P(D_Q')}{f_Q'(D_P)} = \left(\frac{f_Q'(D_P)}{f_P(D_Q')}\right)^{-1} = \tilde{e}_m(Q, P)^{-1} = \left(\frac{f_Q(D_P)}{f_P(D_Q)}\right)^{-1} = \frac{f_P(D_Q)}{f_Q(D_P)}.$$

So $\tilde{e}_m(P,Q)$ is independent of the choice of D_P .

In conclusion, $\tilde{e}_m(P,Q)$ is well-defined and depends only on P and Q.

(b) By Lemma 2 and Exercise 1,

$$\tilde{e}_m(P,Q)^m = \frac{f_P(D_Q)^m}{f_Q(D_P)^m} = \frac{f_P(mD_Q)}{f_Q(mD_P)} = \frac{f_P(\text{div } f_Q)}{f_Q(\text{div } f_P)} = 1.$$

(c) The existence of g_Q and g_P are similar, so it suffices to prove for g_P . Write $D_P = \sum_{X \in E} n_X(X)$. By the assumption on m, $[m] \in \text{End}(E)$ is sparable and thus unramified. Hence

$$\operatorname{div}([m]^* f_P) = [m]^* (\operatorname{div} f_P) = [m]^* (mD_P)$$

$$= \sum_{X \in E} m n_X [m]^* (X) = \sum_{X \in E} m n_X \sum_{mY = X} (Y) = \sum_{Y \in E} m n_{mY} (Y).$$

Let $D := \sum_{Y \in E} n_{mY}(Y)$, then div $([m]^* f_P) = mD$. Since [m] is separable and unramified.

$$\deg D = \sum_{Y \in E} n_{mY} = \sum_{X \in E} \sum_{mY = X} n_X = \sum_{X \in E} m^2 n_X = m^2 \deg D_P = 0.$$

If $mZ = X \in E$, then

$$\sum_{mY=X}Y=\sum_{W\in E[m]}(Z+W)=m^2Z+\sum_{W\in E[m]}W=mX,$$

so

$$\sigma(D) = \sum_{X \in E} n_X \sum_{mY = X} Y = \sum_{X \in E} n_X mX = m\sigma(D_P) = mP = O.$$

Therefore, D is a principal divisor, so there exists $h \in \bar{K}(E)^{\times}$ s.t. div h = D. Thus

$$\operatorname{div}(h^m) = mD = \operatorname{div}([m]^* f_P),$$

which means there is a $c \in \bar{K}^{\times}$ s.t. $[m]^* f_P = ch^m$. Let $g_P := c^{1/m} h$, then $[m]^* f_P = g_P^m$.

(d) By definition, $g_P(X)^m = f_P(mX)$ and $g_Q(X)^m = f_Q(mX)$ for all $X \in E$. By Lemma 2,

$$\left(\frac{g_P(Q'+R)g_Q(O)}{g_P(R)g_Q(P')}\right)^m = \frac{f_P(mQ'+mR)f_Q(mO)}{f_P(mR)f_Q(mP')} = \frac{f_P((Q+mR)-(mR))}{f_Q((P)-(O))}.$$

The divisor (Q - (Q)) verifies the conditions for D_P . If (Q + mR) - (mR) verifies the conditions for D_Q , then $g_P(Q' + R)g_Q(Q)/g_P(R)g_Q(P') = \tilde{e}_m(P,Q)$ by setting $D_P = (P) - (Q)$ and $D_Q = (Q + mR) - (mR)$.

Both $\sigma((Q+mR)-(mR))=0$ and $\deg((Q+mR)-(mR))=0$ is clear. It is left to show that

$$\{Q + mR, mR\} \cap \{P, O\} = \varnothing. \tag{1}$$

We just need

$$mR \notin \{O, P, -Q, P - Q\},$$

which is equivalent to $mR \notin \{O, P, -Q\}$ as

$$mR = P - Q \iff mR = 2mR \iff mR = O.$$

This can be satisfies, because there are m^2 possible P''s; a fixed choice of P' gives m^2 choices of Q' if $Q \neq \pm P$ and $m^2 - 2$ choices of Q' if $Q = \pm P$; every Q' gives 4 possible R. So there are $4m^4 - 8m^2$ choices of R, but

$$\#\{R \in E | mR \in \{O, P, -Q\}\} \le 3m^2 < 4m^4 - 8m^2$$

for $m \geq 2$.

(e) Keep the choice of $D_P = (P) - (O)$ and $D_Q = (Q + mR) - (mR)$. Then

$$[m]^*(mD_P) = m \left(\sum_{Y \in E[m]} (P' + Y) - (Y) \right),$$

so

$$\operatorname{div}(g_P) = \frac{1}{m}\operatorname{div}(f_P) = \sum_{Y \in E[m]} (P' + Y) - (Y).$$

Similarly,

$$\operatorname{div}(g_Q) = \sum_{Y \in E[m]} (Q' + R + Y) - (R + Y).$$

Therefore,

$$\operatorname{div}\left(\frac{g_P(X+Q'+R)g_Q(X)}{g_P(X+R)g_Q(X+P')}\right)$$

$$= \sum_{Y \in E[m]} \left((Y+P'-Q'-R) - (Y-Q'-R) + (Y+Q'+R) - (Y+R) - (Y+R) - (Y+R) + (Y+Q'+R) - (Y+R) + (Y+R-P') + (Y+R-P') \right)$$

$$= \sum_{Y \in E[m]} \left((Y+R) - (Y-Q'-R) + (Y+Q'+R) - (Y+R) - (Y+R) - (Y+P'-R) + (Y-R) + (Y+R-P') \right)$$

$$= \sum_{Y \in E[m]} \left(-(Y-Q'-R) + (Y+Q'+R) - (Y+P'-R) + (Y+R-P') \right).$$

Since $(P'-R)-(Q'+R)=O\in E$, i.e., P'-R=Q'+R, we conclude that

$$\operatorname{div}\left(\frac{g_P(X+Q'+R)g_Q(X)}{g_P(X+R)g_Q(X+P')}\right) = 0.$$

Meanwhile,

$$\operatorname{div}\left(\prod_{k=0}^{m-1} g_Q(X+kQ')\right) = \sum_{k=0}^{m-1} \sum_{Y \in E[m]} \left((Y+R-(k-1)Q') - (Y+R-kQ')\right)$$

$$= \sum_{Y \in E[m]} (Y+R-(-1)Q') - (Y+R-(m-1)Q')$$

$$= \sum_{Y \in E[m]} (Y+R+Q') - (Y+R+Q'-Q)$$

$$= [m]^*(mR+Q) - [m]^*(mR+Q-Q) = 0.$$

Therefore, the two functions are both constant.

(f) We have

$$\begin{split} \tilde{e}_m(P,Q) &= \left(\frac{g_P(Q'+R)g_Q(O)}{g_P(R)g_Q(P')}\right)^m \\ &= \prod_{k=0}^{m-1} \frac{g_P((k+1)Q'+R)g_Q(kQ')}{g_P(kQ'+R)g_Q(kQ'+P')} \\ &= \frac{g_P(mQ'+R)}{g_P(R)} \prod_{k=0}^{m-1} \frac{g_Q(kQ')}{g_Q(kQ'+P)} \\ &= \frac{g_P(Q+R)}{g_P(R)}. \end{split}$$

Since $\operatorname{div}(f_P) = mD_P = m(P) - m(O)$ and $f_P \circ [m] = g_P^m$, the value $\frac{g_P(Q+R)}{g_P(R)} = e_m(P,Q)$.