31 октября 2024 г. 20:25

- 1. What is ML?
- 2. In traditional programming we usually use rules based approach. But it takes a lot of time and hard.
- 3. Training approach: input + output -> some learning algo -> model. Than we can use this model to get predictions on real data.
- 4. Main approaches: supervised(labeled data, there is right answer) and unsupervised(there is no ready answer, only input data).
- 5. Supervised is divided into regression and classification. Regression is used to predict continous value, classification - labeling objects with some class.
- 6. Unsupervised is divided into clustering and dimensionality reduction. Clustering splitting objects in groups(clusters) by some metrics.

8. Cool examples:

Common Use Cases

	Supervised	Unsupervised
Online Services	Spam / Not Spam Predict Probability Customer Will Click on Ad	 Group Articles into Categories Similar Search Results
Financial Services	Credit Card Fraud	Anomaly Detection
Telecom	Predict Customer Churn	
Health Care	Probability of Readmission Predict Days of Hospital Stay	Patient Similarity
Real Estate	Predict House Price	
Retail	Prejudice Price Forecast Sales Sentiment Analysis	Similar Customers Product Similarity Customer Group Products Which Are Purchased Together

- Adaptability: models can adapt to new data, new tasks, and improve over time with retraining
- Problem solving: excels at complex problems where patterns are not easily discernible

What Kind of Problem do I Need to Solve? How do I Solve it?

	The Problem to Solve	The Category of Techniques	Covered in this Course
10.	I want to group items by similarity. I want to find structure (commonalities) in the data	Clustering	K-means clustering Hierarchical clustering DBSCAN
	I want to discover relationships between actions or items	Association Rules	Apriori FP Growth
	I want to determine the relationship between the outcome and the input variables	Regression	kNN Linear Regression Logistic Regression
	I want to assign (known) labels to objects	Classification	kNN Naïve Bayes Decision Trees
	I want to find the structure in a temporal process I want to forecast the behavior of a temporal process	Time Series Analysis	ACF, PACF, ARIMA
	I want to analyze my text data	Text Analysis	Regular expressions, Document representation (Bag of Words), TF-IDF

12. Clustering usually uses distance paradigm. In space N objects are being valued how close they are. Close groups gather into clusters. Also there can be some objects in none of clusters

K-Means

- 13. Clustering numerical data, so input must be numerical
- 14. Need to have defined distance metric
- 15. Defining K number of clusters.
- 16. Output is set of centers of clusters(centroids).

Algo itself:

- 1. Selecting K random centroids. But ideally they should be chosen from real dots from dataset in a big spam of dots(but not necesserly, it's a heuristic and can be adjusted to get more accurate results).
- 2. Evaluating distance for every dot and assigning it to the closest cluster
- 3. Recalculating centroid inside of every cluster(recalculated centroid is a mean value of all dots in cluster)
- 4. Repeat 2 and 3 until centroids stay almost unchangable or until certain number of iterations reached
- 5. Result: output centroids and output dots distribution among clusters
- 17. If K is unknown than it is tried to be guessed