Lab 1

Sara Frazer

Oct 1, 2023

CDA3203 Computer Logic Design Fall 2023

Dr. Maria Petrie Florida Atlantic University

Part 1: Design 9 circuits by completing below: Draw the symbol for the gate, its Truth Table, its Simplest Sum of Products Expression, draw its NOT-AND-OR Equivalent Circuit, its all-NAND Equivalent Circuit.

1.1 NOT gate.

Draw NOT gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A DO Ā	A NOT(A) 0 1 1 0 Y1=A'	A DO A	100

1.2- AND gate

Draw AND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A AE	A B AND(A,B) 0 0 0 0 1 0 1 0 0 1 1 1 1 Y2=AB	A B AB	A Do Do AB

1.3- OR gate

Draw OR gate	Sim	ith Tabl oplest S lucts Ed		NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A A+B	A 0 0 1 1 Y=A+B	B 0 1 0 1	OR 0 1 1 1 1	A DAYS	A-DO-DOATB B-DO-DOATB

1.4- XOR gate

Draw XOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A AOB	A B XOR(A,B) 0 0 0 0 1 1 1 0 1 1 1 0 Y4=AB'+A'B	A B D D	4 1000

1.5- NAND gate

Draw NAND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A DOAB	A B NAND(A,B) 0 0 1 0 1 1 1 0 1 1 1 0 Y5=A'B'	# DO JO	A DOAB

1.6- NOR gate

Draw NOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A A+B	A B NOR(A,B) 0 0 1 0 1 0 1 0 0 1 1 0 Y6=A'+B'	A DO	A-100-700-100-

1.7- XNOR gate

Draw XNOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A DO AOB	A B XNOR(A,B) 0 0 1 0 1 0 1 0 0 1 1 1 Y7=(AB)+(A'B')	BLAODI	A TIPO TO

1.8 3-input NAND gate

Draw 3-input NAND gate	Truth Table and Simplest Sum of Products Equation				NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
A B DABL	X2 0 0 0 1 1 1	X1 0 0 1 1 0 0 1 1	X0	NA ND 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-100-12-12-12-12-12-12-12-12-12-12-12-12-12-	A B DABL
	1 Y8=	1 A'B'C'	1	0		

1.9- 2 to 1 Encoder or Multiplexer (Mux)

Draw 2to1 Mux	Truth Table and Simplest Sum of Products Equation			of	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
	S	x1	х0	Mu x	STORY	S-11/5 DoSXI 5X1+5X2
	0	0	0	0	X,-	XI
	0	0	1	1	X _o D	X ₂ OoM
X, -T-f	0	1	0	0		
Xo -	0	1	1	1		
	1	0	0	0		
	1	0	1	1		
	1	1	0	0		
	1	1	1	1		
	Y8=	S'X1+S	5X0			

1.10 - 2 to 4 decoder or Demultiplexer (DMux)

Draw 2to4	Truth Table and Simplest Sum	NOT-AND-OR Equivalent	all-NAND Equivalent
DMux	of Products Equation	Circuit	Circuit

3 Input NAND

Project wizard

Diagram

Truth Table

X2	X1	X0	NAND3
0	0	0	1
0	0	1	1
0	1	0	1

0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

VHDL Code

```
NAND3_SaraFrazer.vhd
              ■--3 input NAND
2
                --Built from 2 input NAND
4 4
           3
               --by Sara Frazer
           4
T
           5
               LIBRARY ieee;
               USE ieee.std_logic_ll64.all;
           6
E E
16 %
              ENTITY NAND3 SaraFrazer IS
                   PORT (A, B, C : IN STD_LOGIC;
          G
              25
2 %
          10
                              : OUT STD LOGIC);
               END NAND3 SaraFrazer;
          11
7 0
               -- structural specification
          12
13
              ARCHITECTURE Structure OF NAND3 SaraFrazer IS
                   signal w1, w2 : STD_LOGIC;
          14
267 ab
             # BEGIN
          15
          16
                   w1<=A NAND B;
----
                   w2<=w1 NAND w1;
          17
1 °2
          18
                   X<=w2 NAND C;
          19
               END Structure;
```


Timing Diagram

NAND 4

Project Wizard

Diagram

Truth Table

Α	В	С	D	A'B'C'D'
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

VHDL Code

```
60 MAND4 SamFrazervhid
             = -- 4 input NAND
-- Built from 3 input NAND
          2
44 1
          3
               -- Sara Frazer
          4
7
          5
               LIBRARY ieee;
          6
               USE ieee.std logic 1164.all;
存证
          7
16 %
          8 ENTITY NAND4 SaraFrazer IS
          9 =
                  PORT (A, B, C, D:IN STD LOGIC;
% %
                      X :OUT STD LOGIC);
         10
              END NAND4 SaraFrazer;
         11
7 0
         12
             # ARCHITECTURE Structure of NAND4 SaraFrazer IS
         13
              signal w1, w2, w3, w4: STD_LOGIC;
         14
267 ab/
         15 BEGIN
         16
             w1<= A NAND B;
         17
              w2<= w1 NAND w1;
w3<= C NAND D;
         18
               w4<= w2 NAND w2;
         19
              X<= w3 NAND w4;
          20
          21
               END Structure;
       <
```


Timing Diagram

2 to 1 Mux

Project Wizard

Diagram

VHDL Code

```
Muxito | SaraFrazerxhd
              ≝-- 2 to 1 Mux ALL NAND
          2
              -- Built from all NAND
44 4
          3
              -- Sara Frazer
          4
T
          5
              LIBRARY ieee;
          6
              USE ieee.std logic 1164.all;
使使
          7
          8
              ENTITY Mux2tol SaraFrazer IS
          9
                   PORT (s, x1, x2: IN STD LOGIC;
% %
         10
                      : OUT STD LOGIC);
         11
              END Mux2tol SaraFrazer;
0
  12
         13
              MARCHITECTURE LogicFunc OF Mux2tol SaraFrazer IS
         14
267 ab/
         15
                   f<=((s nand s) nand x1) nand (s nand x2);
         16
               END LogicFunc;
<
```


Timing Diagram

4 to 1 Mux

Project Wizard

Diagram

Truth Table

VHDL Code

```
Mux4to1_SaraFrazer.vhd
               -- Mux4tol Sara Frazer
          1
LIBRARY ieee;
          2
44 1
             USE ieee.std logic 1164.ALL;
          3
          4 ENTITY Mux4tol SaraFrazer IS
()
          5 PORT(s0, s1, 10, 11, 12, 13 :IN STD_LOGIC;
             f :OUT STD_LOGIC);
END Mux4tol_SaraFrazer;
          6
连续
          7
16 %
          8
          9 Mux4tol SaraFrazer IS
% %
          10
                   SIGNAL f1, f2:STD LOGIC;
         11 COMPONENT Mux2tol SaraFrazer IS
7 0
         12 PORT(s, x1, x2: IN STD LOGIC;
         13
                   f :OUT STD LOGIC);
         14
              END COMPONENT Mux2tol SaraFrazer;
267 ab/
         15
===
         16
              BEGIN
               mux0: Mux2tol_SaraFrazer PORT MAP (s1, I0, I1, f1);
         17
3 3
              mux1: Mux2tol_SaraFrazer PORT MAP (s1, I2, I3, f2);
mux2: Mux2tol_SaraFrazer PORT MAP (s0, f1, f2, f);
         18
         19
         20
               END Structure;
          21
```


Timing Diagram

Mux 8to1

Project Wizard

I added both mux 2 to and mux 4 to 1 files. Does not change the diagram if I only add mux 4to1.

Drawing

