Serial No.: 09/944,161 **Filed**: August 30, 2001

IN THE SPECIFICATION:

Please replace the paragraph starting on page 62, line 18, with the following rewritten paragraph:

- DNA-probe preparation: Two DNA probes for measure the wild type Cystic Fibrosis gene and the AF508 mutation of the Cystic Fibrosis were synthesised (DNA Technology, Aarhus, Denmark), both capture DNA-probe being 5 thiol modified.

ļ	PROBE WCF	5' DMT-S-(CH2) ₁₂ CCATTAAAGAAAATATCATCTT-3'
	(SEQ ID NO: 1)	
	PROBE _{ACF}	5' DMT-S-(CH1) ₁₂ GCACCATTAAAGAAAATATCATCGG-3'
	(SEQ ID NO: 2)	

Table I: Capture probe wild type = $PROBE_{wCF}$ and Capture probe $\Delta F508$ mutation = $PROBE_{\Delta CF}$

Please replace the paragraph starting on page 65, line 4, with the following rewritten paragraph:

- -The detection of the $\Delta F508$ mutation of the Cystic Fibrosis gene using the PCR based micro-cantilevers as a sensor can be divided into several procedures:
- Cleaning the gold micro-cantilever
- 2. Immobilization of the detection probe to the surface of the micro-cantilever (programming of the micro-cantilever chip).
- 3. DNA isolation from the biological sample (in this example three patient samples).
- Designing PCR primers for either single reactions or multiplex reactions.

an

Serial No.: 09/944,161 **Filed**: September 30, 2001

- 5. The reaction step involving simultaneously PCR reaction probe hybridization and a 3' extension reaction.
- 6. Measuring the bending of the micro-cantilever due to specific extension of the probe on the surface of the micro-cantilevers.

Primer $1_{ ext{CF}}$	5'-AAGCAAGAATATAAGACATTGG-3' (sense)
(SEQ ID NO: 3)	
Primer 2 _{CF}	5'-CTATATTCATCATAGGAAACAC-3' (antisence)
(SEQ ID NO: 4)	
$PROBE_{wCF}$	5'DMT-S-(CH2) ₁₂ -CCATTAAAGAAAATATCATCTT-3'
(SEQ ID NO: 1)	
$PROBE_{\Delta CF}$	5' DMT-S-(CH2) ₁₂ -GCACCATTAAAGAAAATATCATCGG-3'
(SEQ ID NO: 2)	

Cra

Table II: Hybridization probes and PCR primers-

Please replace the paragraph starting on page 68, line 9, with the following rewritten paragraph:

-The cleaning of the gold micro- cantilever was performed as described in example 1. The quantitative analysis by RT-PCR can be difficult because of the exponential nature of PCR. A small variation during the assay might yield a marked change in the amount of the final products. The use of internal standards is therefor desirable in quantitative RT-PCR analysis to correct variations in RT-PCR as well as product detection step (micro-cantilever detection). An ideal endogenous standard would be a transcript in which the expression is constant during the cell cycle, between cell types or in response to external stimuli. A housekeeping gene GAPD that is transcribed constitutively in most cell types and tissue has been commonly used as an invariant control.

03

Serial No.: 09/944,161 **Filed**: September 30, 2001

PROBE _{IL6}	5' DMT-S-(CH2) ₁₂ -CTGCGCAGCTTTAAGGAGTTCC-3'
(SEQ ID NO:5)	
PROBE _{GAPD} (SEQ ID NO:6)	5' DMT-S-(CH2) ₁₂ -CGCTGGGGCTGGCATTGCCCTC-3'
Primer 1 _{GAPD}	5'- CATCAAGAAGGTGGTGAAGC-3' (sense)
(SEQ ID NO:7) Primer 2 _{GAPD}	5'- GAGCTTGACAAAGTGGTCGT-3' (antisense)
(SEQ ID NO:8)	
Primer 1 _{IL6} (SEQ ID NO:9)	5'-ATGAACTCCTTCTCCACAAGCGC-3' (sense)
Primer 2 _{1L6}	5'- GAAGAGCCCTCAGGCTGGACTG - 3' antisense)
(SEQ ID	
NO:10)	

Table IV: Hybridization probes and PCR primers, both probes are located in close distance to PCR Primer $2_{\rm IL6}$ and Primer $2_{\rm GAPD}$ as illustrated in figure 17 and 18.—

Please replace the paragraph starting on page 71, line 18, with the following rewritten paragraph:

--The cleaning of the gold micro-cantilever was performed as described in example $1. \,$

PROBE_{HSV} 5' DMT-S-(CH2)₁₂-CAGCAAGATAAAGGTGAACGGC-3'

(SEQ ID NO:11)

Primer 1_{HSV} (SEQ ID NO:12)

Primer 2_{HSV} (SEQ ID NO:13)

5'-CCGTACATGTCGATGTCACC-3' (antisense)

Table VI: Hybridization probes and PCR primers. The PCR primer give a 179 bp fragment of the HSV polymerase gene, the HSV probe are located in close distance to Primer $2_{\rm HSV}$

On page 73, immediately preceding the claims, insert the enclosed text entitled "SEQUENCE LISTING".

95

-4-

1066365