Algorithms on Strings Algorithmic Design

Alberto Casagrande Email: acasagrande@units.it

a.y. 2020/2021

Basic Definitions and Properties

An alphabet is a set of symbols e.g., $\{0,1\}$ or $\{a,\ldots,z\}$

A string S[1...|S|] is a finite sequence of symbols in an alphabet

 Σ^* is the set of all strings built on Σ

 ϵ is the empty string and belongs to Σ^*

E.g.,

"This is a string" or "This_is,a+string" or ϵ

If $x \in \Sigma^*$ and $y \in \Sigma^*$, then $xy \in \Sigma^*$ is their concatenation

If
$$y = xw$$
:

- x is a prefix of y and we write $x \sqsubset y$
- w is a suffix of y and we write $w \supset y$

If $x \in \Sigma^*$ and $q \in \mathbb{N}$, x_q will be the x's prefix of length q

If $x \in \Sigma^*$ and $y \in \Sigma^*$, then $xy \in \Sigma^*$ is their concatenation

If
$$y = xw$$
:

- x is a prefix of y and we write $x \sqsubseteq y$
- w is a suffix of y and we write $w \supset y$

If $x \in \Sigma^*$ and $q \in \mathbb{N}$, x_q will be the x's prefix of length q

Lemma (Overlapping-suffix lemma)

Let x, y, and w s.t. $x \supset w$ and $y \supset w$.

- if |x| > |y|, then $y \supset x$
- if |x| = |y|, then y = x

Given:

ullet a finite alphabet Σ

Given:

- ullet a finite alphabet Σ
- a text *T*[1...*n*]

Text c a b a b b

Given:

- ullet a finite alphabet Σ
- a text *T*[1...*n*]
- a pattern $P[1 \dots m]$ with $m \le n$

Given:

- ullet a finite alphabet Σ
- a text *T*[1...*n*]
- a pattern $P[1 \dots m]$ with $m \le n$

P occurs with shift s in T means T[s+1...s+m] = P

Given:

- ullet a finite alphabet Σ
- a text *T*[1...*n*]
- a pattern $P[1 \dots m]$ with $m \le n$

P occurs with shift s in T means T[s+1...s+m]=P

Given:

- \bullet a finite alphabet Σ
- a text *T*[1...*n*]
- a pattern $P[1 \dots m]$ with $m \le n$

P occurs with shift s in T means T[s+1...s+m] = P

If P occurs with shift s in T, then s is a valid shift

Strings 0000

Requires to find all the valid shifts for P in T

Requires to find all the valid shifts for P in T

E.g., For Text С а b а b b а b a a Pattern b b а

We get {

Requires to find all the valid shifts for P in T

We get {2,

Requires to find all the valid shifts for P in T

We get $\{2, 4,$

Requires to find all the valid shifts for P in T

We get $\{2, 4, 6\}$

Naïve Solution: Pseudo-Code

```
def NAIVE_STRING_MATCHING(T, P):
  valid ← []
  for s \leftarrow 1 upto |T| - |P| + 1:
    i ← 1
    while i \leq |P| and T[i+s] = P[i]:
       i \leftarrow i+1
  endwhile
    if i > |P|:
       valid.append(s)
    endif
  endfor
  return valid
enddef
```

Naïve Solution: Complexity

A match is tested for all the possible |T| - |P| + 1 shifts

Each match test costs O(|P|)

Since $|P| \le |T|$, the overall complexity is O(|P| * |T|)

E.g., to face a worst-case-scenario consider:

A Better Idea

A Better Idea

A Better Idea

Thus, $P_k \supseteq P_q$ because $P_q \supseteq T[2..q+1]$ and $P_k \supseteq T[2..q+1]$

The Knuth-Morris-Pratt Algorithm

The Prefix Function

The prefix function for P is defined as

$$\pi[q] = \max\{k : k < q \text{ and } P_k \supset P_q\}$$

 P_5

Strings

The Prefix Function

The prefix function for P is defined as

$$\pi[q] = \max\{k : k < q \text{ and } P_k \sqsupset P_q\}$$

 $\pi[q]$ is the longest prefix of P that is a proper suffix of P_q

The Knuth-Morris-Pratt Algorithm

The Prefix Function

The prefix function for P is defined as

$$\pi[q] = \max\{k : k < q \text{ and } P_k \sqsupset P_q\}$$

 $\pi[q]$ is the longest prefix of P that is a proper suffix of P_q

$$\pi[5] = 3$$

The Prefix Function

The prefix function for P is defined as

$$\pi[q] = \max\{k : k < q \text{ and } P_k \sqsupset P_q\}$$

 $\pi[q]$ is the longest prefix of P that is a proper suffix of P_q

$$\pi[3] = 1$$

 $\pi[5] = 3$

The Knuth-Morris-Pratt Algorithm

The Prefix Function

The prefix function for P is defined as

$$\pi[q] = \max\{k : k < q \text{ and } P_k \supset P_q\}$$

 $\pi[q]$ is the longest prefix of P that is a proper suffix of P_q

Strings

Computing the Prefix Function

Let
$$\pi^*[q]$$
 be $\{\pi[q], \pi^2[q], \dots, \pi^{(t)}[q]\}$

Lemma (Prefix-function iteration lemma)

$$\pi^*[q] = \{k : k < q \text{ and } P_k \sqsupset P_q\}$$

Lemma

If
$$\pi[q] > 0$$
, then $\pi[q] - 1 \in \pi^*[q-1]$

Let
$$E_q$$
 be $\{k \in \pi^*[q] : P[k+1] = P[q+1]\}$

Theorem

$$\pi[q] = \left\{ egin{array}{ll} 0 & \mbox{if $E_{q-1} = \emptyset$} \\ 1 + \max\{k \in E_{q-1}\} & \mbox{otherwise} \end{array}
ight.$$

Computing the Prefix Function: Pseudo-Code

```
def COMPUTE_PREFIX_FUNCTION(P):
  \pi \leftarrow \mathsf{INIT\_ARRAY}(|P|)
  \pi[1] \leftarrow 0
  k \leftarrow 0
  for q \leftarrow 2 upto |P|:
     while k > 0 and P[k+1] \neq P[q]:
        k = \pi[k]
     endwhile
     if P[k+1] = P[q]:
        k = k + 1
     endif
     \pi[q] \leftarrow k
  endfor
  return \pi
```

Computing the Prefix Function: an Example

At the begin of each for-loop iteration, $k = \pi[q-1]$

 P_k is the largest proper suffix of P_{a-1} which is also a prefix for it i.e., $P_k \supset P_{a-1}$ and $P_k \sqsubset P_{a-1}$

The initialization sets

•
$$\pi[1] = 0$$

•
$$k = 0$$

Then no **while**-loop iterations

Since $P[k+1] \neq P[q]$, $P_{k+1} \not \supseteq P_a$ and k is not updated

$$\pi[q] \leftarrow 0$$

Computing the Prefix Function: an Example

At the begin of each for-loop iteration, $k = \pi[q-1]$

 P_k is the largest proper suffix of P_{a-1} which is also a prefix for it i.e., $P_k \supset P_{a-1}$ and $P_k \sqsubset P_{a-1}$

When q=3:

•
$$k = 0$$

•
$$P[k+1] = P[q]$$

Then no **while**-loop iterations

Since P[k+1] = P[q], $P_{k+1} \supset P_a$ and k is updated to 1

$$\pi[q] \leftarrow 1$$

Computing the Prefix Function: an Example

At the begin of each **for**-loop iteration, $k = \pi[q-1]$

 P_k is the largest proper suffix of P_{q-1} which is also a prefix for it i.e., $P_k \supset P_{q-1}$ and $P_k \sqsubset P_{q-1}$

When q = 4:

•
$$k = 1$$

•
$$P[k+1] = P[q]$$

Then no **while**-loop iterations

Since P[k+1] = P[q], $P_{k+1} \supset P_q$ and k is updated to 2

$$\pi[q] \leftarrow 2$$

Computing the Prefix Function: an Example

At the begin of each **for**-loop iteration, $k = \pi[q-1]$

 P_k is the largest proper suffix of P_{q-1} which is also a prefix for it i.e., $P_k \supset P_{q-1}$ and $P_k \sqsubset P_{q-1}$

When q = 5:

•
$$k = 2$$

•
$$P[k+1] \neq P[q]$$

Since $P[k+1] \neq P[q]$, the 2nd largest prefix-suffix P_{q-1} is computed i.e., $\pi[k]$ and k is updated to 0

Since $P[k+1] \neq P[q]$, k is not updated

$$\pi[q] \leftarrow 0$$

Strings

Computing the Prefix Function: an Example

$$\pi$$
 0 0 1 2 0

At the begin of each for-loop iteration, $k = \pi[q-1]$

 P_k is the largest proper suffix of P_{a-1} which is also a prefix for it i.e., $P_k \supset P_{q-1}$ and $P_k \sqsubset P_{q-1}$

Strings

The Prefix Function: Complexity

The **while**-loop condition holds only if k > 0

However, each iteration of the while-loop decreases k

k is initialized to 0 and is increased in the **for**-loop

So, the **while**-loop can be repeated |P|-1 times at most

The overall asymptotic complexity is $\Theta(|P|)$

The Knuth-Morris-Pratt Algorithm

Once a mismatch has been identified after q matches

The algorithm uses the prefix function to avoid $\pi[q]$ useless character comparisons

The Knuth-Morris-Pratt Algorithm: Pseudo-Code

```
def KMP(T,P):
  valid = []
  \pi \leftarrow \mathsf{COMPUTE\_PREFIX\_FUNCTION(P)}
  q \leftarrow 0
  for i \leftarrow 1 upto |T|:
     while q > 0 and P[q+1] \neq T[i]:
       q = \pi[q]
     endwhile
     if P[q+1] = T[i]:
     q = q + 1
     endif
     if q = |P|:
       valid.append(i-q+1)
       q = \pi[q]
     endif
  endfor
  return valid
enddef
```

The Knuth-Morris-Pratt Algorithm: an Example

$$\pi$$
 0 0 1 2 0

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

The initialization sets

- \bullet i=1
- q = 0

Then no **while**-loop iterations

0

Strings

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

0

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 2:

•
$$q = 1$$

•
$$P[q+1] = T[i]$$

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 3:

•
$$q = 2$$

•
$$P[q+1] = T[i]$$

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

0

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 4:

•
$$q = 3$$

•
$$P[q+1] = P[i]$$

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each **for**-loop iteration, if i>1, then $q=\pi[i-1]$

 P_q is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_q \supseteq P_{i-1}$ and $P_q \sqsubseteq P_{i-1}$

When i = 5:

- q = 4
- $P[q+1] \neq T[i]$

Since $P[q+1] \neq T[i]$,

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 5:

- q = 4
- $P[q+1] \neq T[i]$

Since $P[q+1] \neq T[i]$, the 2nd largest prefix-suffix P_a is computed i.e., $\pi[q]$ and

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 5:

- q = 4
- $P[q+1] \neq T[i]$

Since $P[q+1] \neq T[i]$, the 2nd largest prefix-suffix P_a is computed i.e., $\pi[q]$ and q is updated to 2

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 5:

- q = 4
- $P[q+1] \neq T[i]$

Since $P[q+1] \neq T[i]$, the 2nd largest prefix-suffix P_a is computed i.e., $\pi[q]$ and q is updated to 2

Since P[q+1] = T[i], q is updated to 3

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each **for**-loop iteration, if
$$i > 1$$
, then $q = \pi[i-1]$

0

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 6:

•
$$q = 3$$

•
$$P[q+1] = T[i]$$

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 7:

- q = 4
- P[q+1] = T[i]

Then no **while**-loop iterations

Since
$$P[q + 1] = T[i]$$
, $P_{q+1} \supset T_i$ and

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 7:

- q = 4
- P[q+1] = T[i]

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 7:

- q = 4
- P[q+1] = T[i]

Then no **while**-loop iterations

Since P[q + 1] = T[i], $P_{q+1} \supset T_i$ and q is updated to 5

Since q = |P|, s = i - q +1 is a valid shift

The Knuth-Morris-Pratt Algorithm: an Example

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 7:

- q = 4
- P[q+1] = T[i]

Then no **while**-loop iterations

Since P[q + 1] = T[i], $P_{q+1} \supset T_i$ and q is updated to 5

Since q = |P|, s = i - q +1 is a valid shift and q is updated to $\pi[q]$

The Knuth-Morris-Pratt Algorithm: an Example

$$\pi$$
 0 0 1 2 0

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 7:

- q = 4
- P[q+1] = T[i]

Then no **while**-loop iterations

Since P[q + 1] = T[i], $P_{q+1} \supset T_i$ and q is updated to 5

Since q = |P|, s = i - q +1 is a valid shift and q is updated to $\pi[q] = 0$

The Knuth-Morris-Pratt Algorithm: an Example

$$\pi$$
 0 0 1 2 0

At the begin of each for-loop iteration, if i > 1, then $q = \pi[i-1]$

 P_a is the largest proper suffix of P_{i-1} which is also a prefix for it i.e., $P_a \supset P_{i-1}$ and $P_a \subset P_{i-1}$

When i = 8:

$$q = 0$$

•
$$P[q+1] = T[i]$$

Then no **while**-loop iterations

The Knuth-Morris-Pratt Algorithm: Complexity

As for the prefix function computation, the **while**-loop condition holds only if q > 0

However, each iteration of the **while**-loop decreases q

q is initialized to 0 and is increased in the for-loop

So, the **while**-loop can be repeated |T| times at most

The overall asymptotic complexity is $\Theta(|P| + |T|)$

The Boyer-Moore-Galil Algorithm

Matches the pattern backward

The Boyer-Moore-Galil Algorithm

Matches the pattern backward

Uses 3 main ingredients:

- good-suffix rule
- bad-character rule
- Galil's rule

The Good-Suffix Rules

If
$$P[i \dots |P|] = T[i+j \dots |P|+j]$$
 and

The Good-Suffix Rules

If
$$P[i\ldots |P|] = T[i+j\ldots |P|+j]$$
 and $P[i-1]
eq T[i+j-1]$

The Good-Suffix Rules

If
$$P[i \dots |P|] = T[i+j \dots |P|+j]$$
 and $P[i-1] \neq T[i+j-1]$

• align T[i+j...|P|+j] to its rightmost occurrence in P with a preceding character $\neq P[i-1]$

The Good-Suffix Rules

If
$$P[i \dots |P|] = T[i+j \dots |P|+j]$$
 and $P[i-1] \neq T[i+j-1]$

• align T[i+j...|P|+j] to its rightmost occurrence in P with a preceding character $\neq P[i-1]$

The Good-Suffix Rules

If
$$P[i \dots |P|] = T[i+j \dots |P|+j]$$
 and $P[i-1] \neq T[i+j-1]$

- align T[i+j...|P|+j] to its rightmost occurrence in P with a preceding character $\neq P[i-1]$
- if not exists,

The Good-Suffix Rules

If
$$P[i \dots |P|] = T[i+j \dots |P|+j]$$
 and $P[i-1] \neq T[i+j-1]$

- align T[i+j...|P|+j] to its rightmost occurrence in P with a preceding character $\neq P[i-1]$
- if not exists, align the longest $P_a \sqsubset P$ to $T[|P| + j - q \dots |P| + j]$

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

$$P_2^{-1} \supset P_4^{-1}$$

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

$$P_2^{-1} \supset P_4^{-1}$$
, $\pi[4] = 2$

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

$$P_2^{-1} \sqsupset P_4^{-1}$$
 , $\pi[4] = 2$, and $\pi^{-1}[2] = 4$

Strings

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

But
$$P^{-1}[q+1] \neq P^{-1}[\pi[q]+1]$$
 must be guaranteed

$$P_2^{-1} \sqsupset P_4^{-1}$$
 , $\pi[4] = 2$, and $\pi^{-1}[2] = 4$

The Good-Suffix Rules: Computing it

It is almost like π^{-1} on the reversed pattern P^{-1}

But
$$P^{-1}[q+1] \neq P^{-1}[\pi[q]+1]$$
 must be guaranteed

$$P_2^{-1} \sqsupset P_4^{-1}$$
 , $\pi[4] = 2$, and $\pi^{-1}[2] = 4$

You can guess a complexity $\Theta(|P|)$ to compute it

The Bad-Character Rules

If
$$P[i] \neq T[i+j]$$

The Bad-Character Rules

If
$$P[i] \neq T[i+j]$$

• align T[i+j] to its rightmost occurrence in P

The Bad-Character Rules

If
$$P[i] \neq T[i+j]$$

• align T[i+j] to its rightmost occurrence in P

The Bad-Character Rules

If
$$P[i] \neq T[i+j]$$

- align T[i+j] to its rightmost occurrence in P
- if not exists,

The Bad-Character Rules

If
$$P[i] \neq T[i+j]$$

- align T[i+j] to its rightmost occurrence in P
- if not exists, align P[1] to T[i+j+1]

Strings

The Bad-Character Rules: Computing It

• initialize an array C s.t. $|C| = |\Sigma|$

The Bad-Character Rules: Computing It

- initialize an array C s.t. $|C| = |\Sigma|$
- $C[a] \leftarrow |P|$ for each $a \in \Sigma$

The Bad-Character Rules: Computing It

- initialize an array C s.t. $|C| = |\Sigma|$
- $C[a] \leftarrow |P|$ for each $a \in \Sigma$
- $C[P[i]] \leftarrow |P| i$ for each $i \in [1 \dots |P|]$

The Bad-Character Rules: Computing It

- initialize an array C s.t. $|C| = |\Sigma|$
- $C[a] \leftarrow |P|$ for each $a \in \Sigma$
- $C[P[i]] \leftarrow |P| i$ for each $i \in [1...|P|]$

The complexity is $\Theta(|P| + |\Sigma|)$

The Galil's Rules

If a valid match has been discovered

The Galil's Rules

If a valid match has been discovered and P is k-periodic

Strings

The Galil's Rules

If a valid match has been discovered and P is k-periodic

P is shifted forward by k and |P| - k comparisons avoided

Strings

The Boyer-Moore-Galil's Algorithm

- try to match P on T backward

Strings

The Boyer-Moore-Galil's Algorithm

- try to match P on T backward
- if a mismatch is found, then select the largest shift among those suggested by the good-suffix and the bad-character rules

- try to match P on T backward
- if a mismatch is found, then select the largest shift among those suggested by the good-suffix and the bad-character rules
- if a valid shift is found, apply the Galil's rules or revert to the mismatch case

- try to match P on T backward
- if a mismatch is found, then select the largest shift among those suggested by the good-suffix and the bad-character rules
- if a valid shift is found, apply the Galil's rules or revert to the mismatch case

The overall asymptotic complexity is O(|P| + |T|)

In an average scenario is sub-linear w.r.t |T|.

Life's Code

Life's Code

All life forms share the same code: the DNA.

Why Studing DNA is Interesting?

- forecast/cure diseases
- threat genetic conditions

"Reading" DNA

Sequencers are machines to read DNA molecules

But they cannot (yet) accurately read a full DNA molecule

The longer the reading, the higher the probability of errors

Sequencing and Assembling DNA

- DNA is fragmented in relative short pieces (about 800bps)
- the fragments are sequenced
- the sequencer reads are assembled like a 1-D puzzle

Sequencing and Assembling DNA

- DNA is fragmented in relative short pieces (about 800bps)
- the fragments are sequenced
- the sequencer reads are assembled like a 1-D puzzle

Still slow and expensive due to fragment lengths

Re-sequencing and Aligning

Should we repeat the process of each individual? No

- DNA is fragmented in smaller pieces (about 100bps)
- the fragments are sequenced
- the sequencer reads are aligned over the reference genome

Re-sequencing and Aligning

Should we repeat the process of each individual? No

- DNA is fragmented in smaller pieces (about 100bps)
- the fragments are sequenced
- the sequencer reads are aligned over the reference genome

Fast and cheap due to small fragment size

The Multiple Patterns Single Text Matching Problem

We have

- a text T
- ullet a large set of patterns $\mathcal{P} = \{P_1, \dots, P_l\}$

The Multiple Patterns Single Text Matching Problem

We have

- a text T
- ullet a large set of patterns $\mathcal{P} = \{P_1, \dots, P_l\}$

We want to find a valid shift for each P_i

A Naïve Solution

For each P_i , compute BOYER_MOORE_GALIL(T, P_i)

Complexity:
$$O\left(|T| * I + \sum_{i=1}^{I} |P_i|\right)$$

E.g. T = cacao

Searching Time

Searching for P_i in the of T's substrings costs $\Theta(|P_i|)$

Once it has been computed, solving our problem takes time

$$\Theta\left(\sum_{i=1}^{l}|P_i|\right)$$

Searching for P_i in the of T's substrings costs $\Theta(|P_i|)$

Once it has been computed, solving our problem takes time

$$\Theta\left(\sum_{i=1}^{I}|P_i|\right)$$

How much does its computation cost?

Let $\sigma(T)$ be the set of all the substrings of T.

Let $\sigma(T)$ be the set of all the substrings of T.

•
$$Q = \{ \overline{x} \mid x \in \sigma(T) \}$$

Suffix Tries

Suffix Tries: A Formal Definition

Let $\sigma(T)$ be the set of all the substrings of T.

- $Q = \{ \overline{x} \mid x \in \sigma(T) \}$
- \bullet $\bot \notin Q$

Let $\sigma(T)$ be the set of all the substrings of T.

- $Q = \{ \overline{x} \, | \, x \in \sigma(T) \}$
- ⊥ ∉ Q
- $L: Q \mapsto [1...|T|]$ is the shift label

- $g(\bot, a) = \overline{\epsilon}$ for all $a \in \Sigma$
 - $\sigma(f(\overline{ax}) = \overline{x} \text{ for all } ax \in \sigma(T)$
 - $f(\overline{\epsilon}) = \bot$

Let $\sigma(T)$ be the set of all the substrings of T.

- $Q = \{ \overline{x} \, | \, x \in \sigma(T) \}$
- ⊥ ∉ Q
- $L: Q \mapsto [1 \dots |T|]$ is the shift label
- $g:(Q\cup\{\bot\})\times\Sigma\mapsto Q$ is the transition function
 - $g(\overline{x}, a) = \overline{xa}$ for all $xa \in \sigma(T)$
 - $g(\bot, a) = \overline{\epsilon}$ for all $a \in \Sigma$

Let $\sigma(T)$ be the set of all the substrings of T.

- $Q = \{\overline{x} \mid x \in \sigma(T)\}$
- ⊥ ∉ Q
- $L: Q \mapsto [1 \dots |T|]$ is the shift label
- $g:(Q\cup\{\bot\})\times\Sigma\mapsto Q$ is the transition function
 - $g(\overline{x}, a) = \overline{xa}$ for all $xa \in \sigma(T)$
 - $g(\bot, a) = \overline{\epsilon}$ for all $a \in \Sigma$
- $f: Q \mapsto Q \cup \{\bot\}$ is the suffix function
 - $f(\overline{ax}) = \overline{x}$ for all $ax \in \sigma(T)$
 - $f(\overline{\epsilon}) = \bot$

Suffix Tries: An Example

E.g.
$$T = ca$$

E.g.
$$T = ca$$

Suffix Tries

E.g.
$$T = cac$$

Suffix Tries

Growing Tries by Appending Characters

Boundary Path

Let
$$T^i$$
 be $T[1...i]$

The boundary path of $STrie(T^i)$ is the sequence

$$\overline{T^i} = s_1, s_2, \ldots, s_{i+1} = \bot$$

where
$$s_k = f^k(\overline{T^i})$$

Boundary Path

Let
$$T^i$$
 be $T[1...i]$

The boundary path of $STrie(T^i)$ is the sequence

$$\overline{T^i} = s_1, s_2, \ldots, s_{i+1} = \bot$$

where
$$s_k = f^k(\overline{T^i})$$

The active point is the first s_j that is not a leaf

The end point is the first $s_{i'}$ having a T[i+1]-transition

How the Algorithm Works

It adds a $\mathcal{T}[i+1]$ -transition from s_h for all $h \in [1,j'-1]$

If $h \in [1, j-1]$, then it extends a branch

If $h \in [j, j' - 1]$, then it creates a new branch

Building a Suffix Trie: Pseudo-Code

```
def UPDATE_STRIE(S, T, i, top): # top is the node corresponding
                                      # to T[1..i-1]
  r \leftarrow top
  old_s \leftarrow None
  while S.g(r, T[i]) = None:
     s ← CREATE_NEW_NODE()
    S.add_node(s)
    S.g(r, T[i]) \leftarrow s
     if old_s \neq None:
       S.f(old_s) \leftarrow s
     endif
     old_s \leftarrow s
     r \leftarrow S.f(r)
  endwhile
  f(old_s) \leftarrow S.g(r, T[i])
  return S.g(top, T[i])
enddef
```

Building a Suffix Trie: Complexity

- each node is visited at most twice
- constant steps per node
- $|Q| = |\sigma(T)|$

Building *STrie*(T) costs $\Theta(\sigma(T))$

Building a Suffix Trie: Complexity

- each node is visited at most twice
- constant steps per node
- $|Q| = |\sigma(T)|$

Building STrie(T) costs $\Theta(\sigma(T))$

Lemma

$$|\sigma(T)| \in O(|T|^2)$$
 (e.g., $a^n b^n$)

Theorem

Building a STrie(T) costs $O(|T|^2)$

Reducing Complexity

Suffix tries are redundant

Reducing Complexity

Suffix tries are redundant

Reducing Suffix Trie Redundancy: Suffix Trees

- \circ Q' containing branching nodes Q_b and leaves Q_l
- $g':((Q_b \cup \{\bot\}) \times \Sigma^*) \mapsto Q'$
- $f': Q_b \mapsto Q_b$

Reducing Suffix Trie Redundancy: Suffix Trees

- Q' containing branching nodes Q_b and leaves Q_l
- $g': ((Q_b \cup \{\bot\}) \times \Sigma^*) \mapsto Q'$
- $f': Q_b \mapsto Q_b$

- ullet the leaves represent some of the suffixes of ${\cal T}$ and they are at most $|{\cal T}|$
- ullet all the internal nodes are branching and they are at most |T|-1

These kind of trees has $\Theta(|T|)$ nodes

Substrings to Indexes Intervals

To save space g' labels are represented as T-index intervals

E.g., if
$$T = cacao$$
, then

- cao is represented by [3, 5]
- $g'(\overline{ca},[3,5]) = \overline{cao}$

Substrings to Indexes Intervals

To save space g' labels are represented as T-index intervals

E.g., if
$$T = cacao$$
, then

- cao is represented by [3,5]
- $g'(\overline{ca},[3,5]) = \overline{cao}$

If
$$\Sigma = \{a_1, \ldots, a_k\}$$
, then

- the string a_i labeling the edge $(\perp, \bar{\epsilon})$ is encoded as [-i, -i]
- $g'(\bot, [-i, -i]) = \overline{\epsilon}$ for all $i \in [1, k]$

Substrings to Indexes Intervals

To save space g' labels are represented as T-index intervals

E.g., if
$$T = cacao$$
, then

- cao is represented by [3,5]
- $g'(\overline{ca},[3,5]) = \overline{cao}$

If
$$\Sigma = \{a_1, \ldots, a_k\}$$
, then

- the string a_i labeling the edge $(\perp, \bar{\epsilon})$ is encoded as [-i, -i]
- $g'(\bot, [-i, -i]) = \overline{\epsilon}$ for all $i \in [1, k]$

We can also avoid L: look at the last matching label to infer shifts

A Suffix Tree Example

E.g. T = cac

Implicit and Explicit Nodes

Not all the node of the suffix trees are explicitly represented

We can represent implicit nodes by reference pairs explicit node/substring

E.g., if T=cac, then \overline{ca} is encoded as $(\overline{\epsilon},[1,2])$

Implicit and Explicit Nodes

Not all the node of the suffix trees are explicitly represented

We can represent implicit nodes by reference pairs explicit node/substring

E.g., if
$$T=cac$$
, then \overline{ca} is encoded as $(\overline{\epsilon},[1,2])$

Also explicit nodes can be represented by reference pairs as (x,ϵ)

$$(x, \epsilon)$$
 is encoded as $(x, [p+1, p])$

Implicit and Explicit Nodes

Not all the node of the suffix trees are explicitly represented

We can represent implicit nodes by reference pairs explicit node/substring

E.g., if
$$T=cac$$
, then \overline{ca} is encoded as $(\overline{\epsilon},[1,2])$

Also explicit nodes can be represented by reference pairs as (x,ϵ)

$$(x,\epsilon)$$
 is encoded as $(x,[p+1,p])$

If x is the closed ancestor of (x, w), then (x, w) is canonical

$$T = cac$$

$$T = cac$$

$$T = caca$$

$$T = cacac$$

$$T = cacaca$$

 s_j has a canonical reference pair (s, [k, i])

If it is implicit, it should become explicit

 s_i has a canonical reference pair (s, [k, i])

If it is implicit, it should become explicit

 s_j has a canonical reference pair (s, [k, i])

If it is implicit, it should become explicit

caco

 s_j has a canonical reference pair (s, [k, i])

If it is implicit, it should become explicit

Julia Tries

Branching in Suffix Trees: Explicit a Node

 s_i has a canonical reference pair (s, [k, i])

If it is implicit, it should become explicit

Branching in Suffix Trees: Adding a Branch

If s_j is explicit, add a new branch labeled $[i+1,\infty]$

$$T = caco$$

$$[-i, -i]$$

$$[1, 1]$$

 $[2,\infty]$

Branching in Suffix Trees: Adding a Branch

If s_j is explicit, add a new branch labeled $[i+1,\infty]$

$$T = caco$$

Following the Boundary Path

$$T = caco$$

Following the Boundary Path

$$T = caco$$

$$T = caco$$

Following the Boundary Path

$$T = caco$$

Following the Boundary Path

$$T = caco$$

Following the Boundary Path

$$T = caco$$

(s', [k, i]), where s' = f'(s), may be non-canonical

Before any other procedure, we must canonize it.

(s', [k, i]), where s' = f'(s), may be non-canonical

Before any other procedure, we must canonize it.

Let [k', i'] the label of the T[k]-transition from s'

(s', [k, i]), where s' = f'(s), may be non-canonical

Before any other procedure, we must canonize it.

Let [k', i'] the label of the T[k]-transition from s'• if [k, i] is shorter than [k', i'], it is canonical

$$(s', [k, i])$$
, where $s' = f'(s)$, may be non-canonical

Before any other procedure, we must canonize it.

Let [k', i'] the label of the T[k]-transition from s'

- if [k, i] is shorter than [k', i'], it is canonical
- otherwise replace:
 - s' with g'(s', [k', i'])
 - [k, i] with [k + (i' k') + 1, i]

and repeat

iff

Finding Next Active Point

 $\overline{T[j \dots i]}$ is the active point of $STree(T^i)$

 $T[j \dots i]$ is the longest suffix of T^i that occurs twice

Finding Next Active Point

 $\overline{T[j \dots i]}$ is the active point of $STree(T^i)$

iff

 $T[j \dots i]$ is the longest suffix of T^i that occurs twice

T[j'...i] is the end point of $STree(T^i)$

iff

T[j'...i] is the longest suffix of T^i s.t. T[j'...i+1] is a substring of T^i

Finding Next Active Point

 $\overline{T[j \dots i]}$ is the active point of $STree(T^i)$

iff

 $T[j \dots i]$ is the longest suffix of T^i that occurs twice

T[j'...i] is the end point of $STree(T^i)$

iff

T[j'...i] is the longest suffix of T^i s.t. T[j'...i+1] is a substring of T^i

Theorem

If (s, [k, i]) is the end point of $STree(T^i)$, then (s, [k, i+1]) is the active point of $STree(T^{i+1})$.

```
def UPDATE_STREE(root, T, s, k, i): \#(s, [k, i-i]) is the canonical
                                    # reference to active point
  old_r \leftarrow root
  (end\_point,r) \leftarrow TEST\_AND\_SPLIT((s,[k,i-1]), T, i)
  while not end_point:
    s \leftarrow CREATE\_NEW\_BRANCH(r, i)
    ADD_A_SUFFIX_TRANSITION(root, old_r,r)
     old r \leftarrow r
    (s,k) \leftarrow CANONIZE((s.f,[k,i-1]))
    (end\_point,r) \leftarrow TEST\_AND\_SPLIT((s,[k,i-1]), T, i)
  endwhile
  ADD_A_SUFFIX_TRANSITION(root, old_r, r)
  return (s,k)
enddef
```

```
def CREATE_NEW_BRANCH(r, i):
  s ← CREATE_NEW_NODE()
  # add a T[i]-transition from r to s
  s.g[T[i]] \leftarrow (r,[i,\infty])
  return s
enddef
def ADD_A_SUFFIX_TRANSITION(root, s, r):
  \# if s = root, then s.f = \bot
  if s \neq root:
    s.f \leftarrow r
  endif
endif
```

```
def TEST_AND_SPLIT((s,[k,p]), T, i):
  if k > p: # if (s, [k, p]) is explicit
    return HANDLE_EXPLICIT_NODE(s, T, i)
  endif:
 \# (s,[k,p]) is implicit
  return HANDLE_IMPLICIT_NODE((s,[k,p]), T, i)
enddef
def HANDLE_EXPLICIT_NODE(s, T, i):
  if s.g[T[i]] \neq NIL: # s has a T[i]-transition
    return (False,s)
  endif
  return (True,s)
enddef
```

```
def HANDLE_IMPLICIT_NODE((s,[k,p]), T, i):
  (dst, [sk, sp]) \leftarrow s.g[T[k]] \# get T[k] - transition's
                                  # dst and label
  rk \leftarrow sk+p-k+1
  if T[i] = T[rk]:
    return (True, s)
  endif
  r \leftarrow CREATE_NEW_NODE()
  # split the T[k]-transition in (s,r) and (r,dst)
  s.g[T[sk]] \leftarrow (r,[sk,rk-1])
  r.g[T[rk]] \leftarrow (dst,[rk,sp])
  return (False, r)
enddef
```

```
def CANONIZE((s,[k,p])):
  if k > p: # if (s, [k, p]) is explicit
    return (s,k)
  endif
  (dst, [sk, sp]) \leftarrow s.g[T[k]] \# get T[k]-transition's
                                   # dst and label
  while sp-sk \le p-k:
    k \leftarrow k+sp-sk+1
  s \leftarrow dst
    if k \leq p:
       (dst, [sk, sp]) \leftarrow s.g[T[k]]
     endif
  endwhile
  return (s,k)
enddef
```

```
def BUILD_STREE(T, Sigma):
  root ← CREATE_NEW_NODE()
 ⊥ ← CREATE_NEW_NODE()
  root.f \leftarrow \bot
  for i←1 upto | Sigma |:
     ai ← Sigma[i]
    \perp.g[ai] \leftarrow (root,[-i,-i])
  endfor
  k \leftarrow 1
  s \leftarrow root
  for i\leftarrow 1 upto |T|:
       (s,k) ← UPDATE_STREE(root, T, s, k, i)
       (s,k) \leftarrow CANONIZE((s,[k,i]))
  endfor
  return root
enddef
```

Building the Suffix Tree: Complexity

The algorithm is split into two components:

• The canonize calls:

2 The remaining computation:

Building the Suffix Tree: Complexity

The algorithm is split into two components:

- The canonize calls:
 - Each iteration of the while-loop increase k in (s, [k, p]) by at least 1
 - However, p is increased by 1 at each iteration of the main procedure's for-loop
 - canonize takes time O(|T|) in total
- The remaining computation:

Building the Suffix Tree: Complexity

The algorithm is split into two components:

- The canonize calls:
 - Each iteration of the while-loop increase k in (s, [k, p]) by at least 1
 - However, p is increased by 1 at each iteration of the main procedure's for-loop
 - canonize takes time O(|T|) in total
- The remaining computation: Consists in many suffix links and one T[i]-transition crossing
 - If r_i is the active point for $STree(T^i)$, the algorithm visits $depth(r_{i-1}) depth(r_i) + 2$.
 - In total $depth(r_0) depth(r_{|T|}) + 2|T| \in Theta(|T|)$

Suffix Trees: Conclusions

Solving the MPSM problem takes time

Suffix Trees: Conclusions

Solving the MPSM problem takes time

$$\Theta(|T|) + \Theta(\sum_{i=1}^{I} |P_i|)$$

Solving the MPSM problem takes time

$$\Theta(|T|) + \Theta(\sum_{i=1}^{l} |P_i|)$$

• Suffix trees take space $\Theta(|T|)$

Suffix Trees: Conclusions

Solving the MPSM problem takes time

$$\Theta(|T|) + \Theta(\sum_{i=1}^{l} |P_i|)$$

• Suffix trees take space $\Theta(|T|)$

However,

- it handles only one of the pattern valid shifts
- it requires up $(2+1+|\Sigma|)*|T|$ words of RAM (non-feasable for genome)

Suffix Trees: Conclusions

Solving the MPSM problem takes time

$$\Theta(|T|) + \Theta(\sum_{i=1}^{l} |P_i|)$$

• Suffix trees take space $\Theta(|T|)$

However,

- it handles only one of the pattern valid shifts
- it requires up $(2+1+|\Sigma|)*|T|$ words of RAM (non-feasable for genome)

A possible alternative is Suffix Arrays