

Excited States of the Uniform Electron Gas

Pierre-François Loos

Laboratoire de Chimie et Physique Quantiques (UMR 5626), UPS, CNRS, Toulouse, France

Ground-State UEG [1–4]

reduced energy

Reduced energy of the UEG

$$\epsilon(\rho,\zeta) = t_{\rm s}(\rho,\zeta) + \epsilon_{\rm x}(\rho,\zeta) + \epsilon_{\rm c}(\rho,\zeta)$$
 density
$$\rho = \rho_{\uparrow} + \rho_{\downarrow} \quad \text{with} \quad \rho_{\sigma} = \int_{0}^{k_{\rm F}\sigma} \frac{k^2}{2\pi^2} \, \mathrm{d}k = \frac{k_{\rm F}\sigma}{6\pi^2}$$

Kinetic energy

Fermi wave vector

$$t_{s\sigma}(\rho_{\sigma}) = \frac{1}{\rho_{\sigma}} \int_{0}^{k_{F\sigma}} \frac{k^{2} k^{2}}{2 \pi^{2}} dk = C_{F} \rho_{\sigma}^{2/3} \quad \text{with} \quad C_{F} = -\frac{3}{10} (6\pi^{2})^{2/3} \approx 4.5578$$

Exchange energy

$$\epsilon_{\mathbf{x}\sigma}(\rho_{\sigma}) = \frac{1}{2} \int \int \frac{\rho_{\mathbf{x}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2})}{r_{12}} \, \mathrm{d}\boldsymbol{r}_{1} \, \mathrm{d}\boldsymbol{r}_{2} = C_{\mathbf{x}} \rho_{\sigma}^{1/3} \quad \text{with} \quad C_{\mathbf{x}} = -\frac{3}{4} \left(\frac{6}{\pi}\right)^{1/3} \approx -0.930526$$

$$\rho_{\mathbf{x}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = -\frac{|\rho_{1}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2})|^{2}}{\rho(\boldsymbol{r}_{1})} = -\frac{|j_{k_{\mathrm{F}\sigma}}(r_{12})|^{2}}{\rho(\boldsymbol{r}_{1})}$$
with $j_{k_{\mathrm{F}\sigma}}(r_{12}) = 1/(2\pi^{2})[\sin(k_{\mathrm{F}\sigma}r_{12}) - k_{\mathrm{F}\sigma}r_{12}\cos(k_{\mathrm{F}\sigma}r_{12})]/(r_{12}^{3}).$

Correlation energy

In the high-density limit (small r_s), we have

$$\epsilon_{\rm c}(r_s,\zeta) = \lambda_0(\zeta) \ln r_s + \epsilon_0(\zeta) + \lambda_1(\zeta) r_s \ln r_s + \epsilon_1(\zeta) r_s + \cdots \qquad r_s = \left(\frac{3}{4\pi\rho}\right)^{1/3}$$

In the low-density limit (large r_s), we have

$$\epsilon_{\rm xc}(r_s,\zeta) = \frac{\eta_0}{r_s} + \frac{\eta_1}{r_s^{3/2}} + \frac{\eta_2(\zeta)}{r_s^2} + \cdots$$
 (Wigner crystal)

Excited-State UEGs

Occupation

$$f_{k\sigma} = \begin{cases} 1 & 0 \le k \le k_{F\sigma}(1 - \Delta_{\sigma}) \\ 0 & k_{F\sigma}(1 - \Delta_{\sigma}) < k < k_{F\sigma} \\ 1 & k_{F\sigma} \le k \le k_{F\sigma}(1 + \kappa_{\sigma}\Delta_{\sigma}) \\ 0 & k < k_{F\sigma}(1 + \kappa_{\sigma}\Delta_{\sigma}) \end{cases}$$

Density

$$\rho_{\sigma} = \int_{0}^{\infty} f_{k\sigma} \frac{k^{2}}{2\pi^{2}} dk = \int_{0}^{k_{F\sigma}(1-\Delta_{\sigma})} \frac{k^{2}}{2\pi^{2}} dk + \int_{k_{F\sigma}}^{k_{F\sigma}(1+\kappa_{\sigma}\Delta_{\sigma})} \frac{k^{2}}{2\pi^{2}} dk$$
$$= \left[1 - 3\Delta_{\sigma}(1 - \kappa_{\sigma}) + 3\Delta_{\sigma}^{2}(1 + \kappa_{\sigma}^{2}) - \Delta_{\sigma}^{3}(1 - \kappa_{\sigma}^{3})\right] \frac{k_{F\sigma}^{3}}{6\pi^{2}}$$

If one matches the density of the ground- and excited-state UEG, it yields

$$\kappa_{\sigma} = \frac{(1 + 3\Delta_{\sigma} - 3\Delta_{\sigma}^2 + \Delta_{\sigma}^3)^{1/3} - 1}{\Delta_{\sigma}}$$

Funding

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Kinetic and Exchange Energies of Excited-State UEGs

Kinetic energy

$$t_{s\sigma}(\rho_{\sigma}, \Delta_{\sigma}) = \frac{1}{\rho_{\sigma}} \int_{0}^{\infty} f_{k} \frac{k^{2}}{2} \frac{k^{2}}{2\pi^{2}} dk = \Xi_{s}(\Delta_{\sigma}) C_{F} \rho_{\sigma}^{2/3}$$

gap-dependent Thomas-Fermi coefficient

$$\Xi_{\rm S}(\Delta_{\sigma}) = (1 - \Delta_{\sigma})^5 + (1 + \Delta_{\sigma}\kappa_{\sigma})^5 - 1$$

Exchange energy

$$\epsilon_{x\sigma}(\rho_{\sigma}, \Delta_{\sigma}) = \frac{1}{2} \int \int \frac{\rho_{x}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2})}{|\boldsymbol{r}_{1} - \boldsymbol{r}_{2}|} d\boldsymbol{r}_{1} d\boldsymbol{r}_{2} = \Xi_{x}(\Delta_{\sigma}) C_{x} \rho_{\sigma}^{1/3}$$

gap-dependent Dirac coefficien

$$\Xi_{\mathbf{x}}(\Delta_{\sigma}) = (1 - \Delta_{\sigma})^{4} + 4\Delta_{\sigma}\kappa_{\sigma}(1 + \Delta_{\sigma}^{2}\kappa_{\sigma}^{2}) + 8\Delta_{\sigma}^{2}\kappa^{2}\ln 2 - \Delta_{\sigma}^{4}\kappa_{\sigma}^{4}
+ 2\Delta_{\sigma}^{2}\kappa^{2} \left[\left(1 - \frac{\Delta_{\sigma}\kappa_{\sigma}}{2} \right)^{2} \ln \left(1 - \frac{\Delta_{\sigma}\kappa_{\sigma}}{2} \right) + 2\left(1 - \frac{\Delta_{\sigma}^{2}\kappa_{\sigma}^{2}}{4} \right) \ln \left(\frac{\Delta_{\sigma}\kappa_{\sigma}}{2} \right) \right]
+ \left(1 + \frac{\Delta_{\sigma}\kappa_{\sigma}}{2} \right)^{2} \ln \left(1 + \frac{\Delta_{\sigma}\kappa_{\sigma}}{2} \right) \right]$$

Correlation Energy of Excited-State UEGs

Infrared divergence in the high-density limit

$$\epsilon^{(2)} = \epsilon^{(2\mathrm{d})} + \epsilon^{(2\mathrm{x})}$$

$$\underline{\epsilon^{(2\mathrm{d})}} = -\frac{3}{16\pi^5} \int \frac{\mathrm{d}\boldsymbol{k}}{k^4} \int \mathrm{d}\boldsymbol{q} \int \frac{\mathrm{d}\boldsymbol{p}}{\boldsymbol{k} \cdot (\boldsymbol{p} - \boldsymbol{q} + \boldsymbol{k})}$$

$$\int \mathrm{d}\boldsymbol{q} \int \frac{\mathrm{d}\boldsymbol{p}}{\boldsymbol{k} \cdot (\boldsymbol{p} - \boldsymbol{q} + \boldsymbol{k})} \approx (2\pi)^2 \int_0^1 \mathrm{d}\boldsymbol{x} \int_0^1 \mathrm{d}\boldsymbol{y} \int_{1-kx}^1 \mathrm{d}\boldsymbol{p} \int_{1-ky}^1 \frac{\mathrm{d}\boldsymbol{q}}{k(x+y)}$$

$$\epsilon^{(2\mathrm{d})} \approx -\frac{3}{16\pi^5} \int_{\sqrt{r_s}}^1 \frac{4\pi k^2 \, \mathrm{d}\boldsymbol{k}}{k^4} (2\pi)^2 \frac{2k}{3} (1 - \ln 2) \sim \frac{1 - \ln 2}{\pi^2} \ln r_s$$

Direct component for excited-state UEGs

$$\epsilon^{(2d)}(\Delta) \sim \lambda_0(\Delta) \ln r_s$$

 Δ -dependent direct component

$$\lambda_0(\Delta) = \Lambda_0(\Delta)\lambda_0 = \frac{1}{\pi^2} \sum_{k=1}^6 \lambda_0^{(k)}$$

with

$$\lambda_0^{(1)} = (1 - \Delta)^3 F(1, 1) \qquad \lambda_0^{(2)} = F(1, 1)$$

$$\lambda_0^{(3)} = (1 + \kappa \Delta)^3 F(1, 1) \qquad \lambda_0^{(4)} = -2F(1 - \Delta, 1)$$

$$\lambda_0^{(5)} = -2F(1, 1 + \kappa \Delta) \qquad \lambda_0^{(6)} = 2F(1 - \Delta, 1 + \kappa \Delta)$$

and

$$F(\alpha, \beta) = \alpha^2 \beta + \alpha \beta^2 + \alpha^3 \ln \alpha + \beta^3 \ln \beta - (\alpha^3 + \beta^3) \ln(\alpha + \beta)$$

References

- [1] G. F. Giuliani and G. Vignale. Quantum theory of the electron liquid. Cambridge University Press, Cambridge, 2005.
- [2] R. G. Parr and W. Yang. *Density-functional theory of atoms and molecules*. Oxford, Clarendon Press, 1989.
- [3] P.-F. Loos and P. M. W. Gill. The uniform electron gas. Wiley Interdiscip. Rev. Comput. Mol. Sci., 6:410–429, 2016.
- [4] M. Lewin, E. H. Lieb, and R. Seiringer. Statistical mechanics of the uniform electron gas. Journal de l'École polytechnique — Mathématiques, 5:79–116, 2018.