PAU 2001

Pautes de correcció LOGSE: Química

SÈRIE 2

1. Mescla: sulfat de coure(II) + àcid benzoic + sulfat de bari

a) Hi ha dues possibilitats:

En el segon cas, la separació de l'àcid benzoic i el sulfat de bari pot fer-se també per sublimació.

- b) Material: erlenmeyers, embuts, filtres, vidres de rellotge, cristal·litzadors, calefactor (elèctric o bec Bunsen), trespeus, reixetes, etc.
- Substàncies nocives. Són perilloses per a la salut si s'inhalen, ingereixen o entren en contacte amb la pell. Poden tenir efectes nocius irreversibles per exposició única, repetida o temporal. Cal evitar el contacte.
- 2. Oxidació del Cu per l'HNO₃

a) Oxidació: Cu \to Cu²⁺ + 2 e⁻ (x 3) Reducció: NO₃⁻ + 4 H⁺ + 3 e⁻ \to NO + 2 H₂O (x 2) Reacció global: 3 Cu + 2 NO₃⁻ + 8 H⁺ \to 3 Cu²⁺ + 2 NO + 4 H₂O 3 Cu + 8 HNO₃ \to 3 Cu(NO₃)₂ + 2 NO + 4 H₂O

b) Oxidant: NO_3^- (o HNO₃)

Reductor: Cu

- c) Per factors de conversió: 105 cm³ HNO₃ 2 M
 (El resultat correcte correspon a la relació estequiomètrica 3 Cu ↔ 8 HNO₃. La relació 3 Cu ↔ 2 NO₃⁻ de la reacció global iònica només seria vàlida si en el medi hi hagués algun altre àcid)
- 3. Mescla d'octà $(C_8H_{18}, 114 \text{ g}\cdot\text{mol}^{-1})$ i nonà $(C_9H_{20}, 128 \text{ g}\cdot\text{mol}^{-1})$

a) C_8H_{18} + 25/2 O_2 \rightarrow 8 CO_2 + 9 H_2O C_9H_{20} + 14 O_2 \rightarrow 9 CO_2 + 10 H_2O

- b) 484 g mescla equivalen a 2 mol de cada compost: $(2 \times 114 + 2 \times 128)$ oxigen necessari: 25 mol (per l'octà) + 28 mol (pel nonà) = 53 mol O₂ Aplicant l'equació dels gasos: $V = 1186,5 \text{ dm}^3 \text{ O}_2 \rightarrow 5932,5 \text{ dm}^3 \text{ aire}$
- c) $\Delta H = 23182 \text{ kJ}$

PAU 2001

Pautes de correcció LOGSE: Química

OPCIÓ A

- 4. Solubilitat de l'Mg(OH)₂ (massa molecular = $58.3 \text{ g} \cdot \text{mol}^{-1}$)
 - a) $K_{ps} = [Mg^{2+}][OH^{-}]^2 = s(2s)^2 = 4s^3 \rightarrow s = 1,12\cdot10^{-4} \text{ mol·dm}^{-3} = 6,52\cdot10^{-3} \text{ g·L}^{-1}$
 - b) pH = 12 \rightarrow [OH⁻] = 0,01 mol·dm⁻³

 $K_{\text{DS}} = s'(2s' + 0.01)^2 \approx 10^{-4}s' \rightarrow s' = 5.6 \cdot 10^{-8} \text{ mol·dm}^{-3} \text{ (aproximació vàlida)} = 3.26 \cdot 10^{-6} \text{ g·L}^{-1}$

- c) Medi àcid \rightarrow disminueix $[OH^-]_{total} \rightarrow$ augmenta $[Mg^{2+}] \rightarrow$ augmenta la solubilitat
- 5. Elements A, B, C del 3r període.
 - a) A:
- B: $1s^22s^22p^63s^23p^2$ grup 2N C: $1s^22s^22p^63s^23p^5$ grup IV A + C: Λ^{2+} grup IV (o 14è)
 - grup VII (o 17è)
 - b) A + C: $A^{2+} + 2 C^{-} \rightarrow AC_{2}$ (tendència forta a formar ions: enllaç iònic)
 - B + C: B + 4C \rightarrow BC₄ (dificultat de format ions: enllaç covalent)

OPCIÓ B

- 4. $HNO_3 + Ba(OH)_2$
 - a) $2 \text{ HNO}_3 + \text{Ba}(\text{OH})_2 \rightarrow \text{Ba}(\text{NO}_3)_2 + 2 \text{ H}_2\text{O}$
 - b) Hi ha un excés de 5·10⁻⁴ mol de Ba(OH)₂
 - c) HNO₃ 0,01 M: pH = 2

 $[OH^{-}] = 0.02 \text{ M} \rightarrow [H^{+}] = 5.10^{-13} \rightarrow \text{pH} = 12.3$ Ba(OH)₂ 0,01 M:

- $[OH^{-}] = 1.10^{-3} \text{ mol } / 0.2 \text{ dm}^{3} = 5.10^{-3} \rightarrow ... \rightarrow pH = 11.7$
- 5. Mescla d'heli i nitrogen.
 - a) De l'equació dels gasos: $n_{\text{total}} = 4,47 \text{ mol}$

$$n(\text{He}) + n(\text{N}_2) = 4,47 \text{ mol}$$

 $4n(\text{He}) + 28n(\text{N}_2) = 50 \text{ g}$ \rightarrow $n(\text{He}) = 3,13 \text{ mol}$
 $n(\text{N}_2) = 1,34 \text{ mol}$

- b) P(He) = 0.70 atm; $P(N_2) = 0.30$ atm
- c) El component de menor massa molecular tindrà més tendència a sortir pel forat. Per tant, augmentarà la proporció de N₂.