Feedback

- 새로 추가한 데이터 컬럼에 대해 상관관계 분석
- Date, time 분포를 찍어서 새로 추가한 이유 넣기

인공지능 기술 기반의 이상금융거래 탐지

팀장 신여명

목차

아이디어개발환경

주제 선정데이터 수집

 데이터 전처리

개념 설명

05 코드 설명

결과

01. 아이디어

편리한 신용카드 및 결제 환경

도난, 오용,

보이스피싱 피해

Fraud Detection System

이상금융거래탐지시스템

전자금융거래 데이터 금융사기 패턴 탐지, 예방

다양한 기술에 의한 사기, 보안에 취약

01. 개발환경

02. 주제선정

LG히다찌, 하나은행 의심거래보고 고도화위한 머신러닝 시 스템구축

2019.11.18 14:21:14 / 이상일 2401@ddaily.co.kr

농협카드 신인식 사장 '금융사고 제로' 특명…이상거래 탐지 3중 시스템 박차

서상혁 기자 입력 2020,09,11 16:38

(단독)카카오뱅크·케이뱅크 보안 구멍...사기이용계좌 1년새 2배 급증 편의성 등이 범죄악용 키워...은행측 "범죄동조탓" 주장

입력: 2020-09-23 06:00:00 | 수정: 2020-09-23 06:00:00

- 머신러닝 딥러닝 기반의 이상 거래 검출 방법
 - 2. 이상 거래 검출에 효과적인 알고리즘 연구

02. 데이터 수집

https://www.kaggle.com/c/ieee-fraud-detection

고객 거래 이상징후 감지 대회

Vesta사의 실제 전자상거래 데이터를 이용

03. 기본 데이터

- 참조 날짜/시간
- 결제 금액(USD)
- 제품 코드
- 결제 카드 정보
- 주소/거리
- 구매자 / 수신자 e-메일 도메인
- 집계 컬럼(결제 카드와 관련된 주소 수)
- 날짜/시간 컬럼(거래 사이의 시간)
- 카드정보 일치 여부
- Vesta 에서 제공한 다른 특성들

• ID 정보

- 네트워크 연결 정보 및결제와 관련된 디지털 서명
- ㅇ 사용 전자기기

```
# 컬럼 추가 (애플 제품이면 1 아니면 0)
apple = ['iOS Device', 'iPhone', 'MacOS']
all data["DeviceInfo"] = all data["DeviceInfo"].astype('str')
all_data['IsApple'] = all_data["DeviceInfo"].map(lambda x: 1 if any(a in x for a in apple) else 0)
print(all data['IsApple'].value counts())
# 컬럼 추가 (삼성 제품이면 1 아니면 0)
samsung = ['SAMSUNG', 'SM', "GT-"]
all data["DeviceInfo"] = all data["DeviceInfo"].astype('str')
all data['IsSamsung'] = all data["DeviceInfo"].map(lambda x: 1 if any(s in x for s in samsung) else 0)
print(all data['IsSamsung'].value counts())
# 컬럼 추가 (거래가 일어난 요일)
all_data['ts_day'] = np.floor((test['TransactionDT'] / (3600 * 24) - 1) % 7)
print(all data['ts day'].value counts().sort index())
# 컬럼 추가 (거래가 일어난 시간)
all data['ts hour'] = np.floor(test['TransactionDT'] / 3600) % 24
print(all data['ts hour'].value counts().sort index())
                                                              6.0
                                                                    70846
```

23.0

Name: ts day, dtype: int64

33655

Name: ts hour, dtype: int64

```
# 컬럼 추가 (이메일 도메인 카테고리 & 서비스 국가 카테고리)
      emails = {'gmail': 'google', 'att.net': 'att', 'twc.com': 'spectrum',
             'scranton.edu': 'other', 'optonline.net': 'other', 'hotmail.co.uk': 'microsoft',
# 컬럼 추가 (브라우저 카테고리)
all data['Browser'] = np.NaN
all data.loc[all data['id 31'].str.contains('chrome', na=False), 'Browser'] = 'Chrome'
all data.loc[all data['id 31'].str.contains('firefox', na=False), 'Browser'] = 'Firefox'
all data.loc[all data['id 31'].str.contains('safari', na=False), 'Browser'] = 'Safari'
all data.loc[all data['id 31'].str.contains('edge', na=False), 'Browser'] = 'Edge'
all data.loc[all data['id 31'].str.contains('ie', na=False), 'Browser'] = 'IE'
all data.loc[all data['id 31'].str.contains('samsung', na=False), 'Browser'] = 'Samsung'
all data.loc[all data['id 31'].str.contains('opera', na=False), 'Browser'] = 'Opera'
all data['Browser'].fillna("others", inplace=True)
print(all data['Browser'].value counts())
         all data[c]0[+ emalldomain c | = all data[c].map(emails)
```

all_data[c[0]+'_email_country'] = all_data[c[0]+'_email_country'].map(lambda x: x if str(x) not in us_emails else 'us')

all data[c[0]+' email country'] = all data[c].map(lambda x: str(x).split('.')[-1])

- 1. 결측치 (NaN) 처리
 - 완전 제거법
 - 결측치가 80%에 가까운 경우 그 변수 자체를 제거
 - 결측치를 지우면서 데이터 자체에 편향(bias)가 생길 수 있음

```
#결축치가 80%에 가까운 경우 그 변수 자체를 제거

col_drop_list = []

for i in all_data.columns:

   missing_percent = all_data[i].isnull().sum() / len(all_data[i]) * 100

   if missing_percent > 80:

        col_drop_list.append(i)
```

- 2. 카테고리형 데이터 Label Encoding
 - 사이킷런은 문자열 값을 입력 값으로
 처리 하지 않기 때문에 숫자형으로 변환
 - One Hot Encoding 사용시 열이 너무
 많아져 Label Encoding 선택
 - Label Encoding시 모델이 카테고리끼리 선형적 관계가 있다고 착각할 수도 있음
 => 트리모델 사용
 - 결측치 자동 처리

```
# 범주형 데이터 label encoding
le = LabelEncoder()
for i in cat_cols:
   all_data[i] = le.fit_transform(list(all_data[i]))
```

- 3. 수치형 칼럼 Minmax Scaling
 - 칼럼 간에 범위 차이가 큼
 - 모델이 범위가 큰 특정 칼럼을 더 중요하다고 인식할 수 있기 때문에 스케일링

MinMaxScaler 수치형 칼럼

all_data[i] = (minmax_scale(all_data[i], feature_range=(0,1)))

for i in num cols:

- 각 열 기준으로 Minmax Scale
- Standard Scaler는 평균과 표준편차를
 사용하기 때문에 데이터 분산 보존을
 위해 Minmax Scaler 사용

- 4. 수치형 칼럼 나머지 결측치 처리
 - 결측치를 drop 하지 않고 보존
 - 결측치 -1로 대체

```
# 결측치 처리 수치형만 -1
for i in num_cols:
all_data[i].fillna(-1, inplace=True)
```

- 5. Vxxx 칼럼 PCA 적용
 - 총 292개의 칼럼
 - 누적된 분산의 비율이 95%, 99%가

되는 주성분 축 / 차원을 선택

```
# PCA 95%
all_data2 = PCA_change(all_data, v_cols, n_components=0.95, prefix='PCA_V_')
# PCA 99%
all_data3 = PCA_change(all_data, v_cols, n_components=0.99, prefix='PCA_V_')
```

```
# Vxxx 컬럼 PCA 적용

def PCA_change(df, cols, n_components, prefix='PCA_'):
    pca = PCA(n_components=n_components, random_state=77)
    pc = pca.fit_transform(df[cols])
    print('원래 차원(픽셀) 수 :', len(cols)) #292 컬럼
    print('선택한 차원(픽셀) 수 :', pca.n_components_) #0.95: 4 컬럼 / 0.99: 8컬럼

    pc_df = pd.DataFrame(pc, index=df.index)
    pc_df.rename(columns=lambda x: str(prefix)+str(x), inplace=True)

    df = df.drop(cols, axis=1)
    new_df = pd.concat([df,pc_df], axis=1)
    return new_df
```

```
원래 차원(픽셀) 수 : 292
선택한 차원(픽셀) 수 : 4
원래 데이터 shape : (1097231, 367)
PCA(0.95) 데이터 shape : (1097231, 79)
원래 차원(픽셀) 수 : 292
선택한 차원(픽셀) 수 : 8
원래 데이터 shape : (1097231, 367)
```

PCA(0.99) 데이터 shape : (1097231, 83)

04. 개념 설명

균형 트리 분할

리프 중심 트리분할

Gradient Boosting Algorithm (GBM)

- 여러개의 Decision Tree 조합해서 결과
- 순차적으로 학습하면서 그 전 정보 (예측이 틀린데이터)를 바탕으로 다음 분류기를 만듬
- 약한 분류기를 모두 결합하여 강한 분류기

XGBoost vs LightGBM

- GBM의 단점 보완 (느림, 과적합 규제 부재)
- 더 빠른 학습시간 (최신)
- 트리 균형을 맞추지 않는 비대칭적 트리

04. 모델링

• 약 40% 랜덤하게 데이터 뽑아서 모델 훈련

04. 모델링

- SelectFromModel를 사용해 F.I 순서대로 학습시켜본 결과 모든 피처를 다 사용하는게 가장 성능이 좋음
- PCA (95%, 99%) 적용했을 때 피처 수가 1로 줄어들면서 성능이 급격히 낮아짐

원래 차원(픽셀) 수 : 367 선택한 차원(꾁셀) 수(0.95) : 1

최적 하이퍼 마라마는 : {'subsample': 0.9, 'num_leaves': 50, 'n_estimators': 800, 'min_child_samples': 20, 'max_depth': 15, 'learning_rate': 0.01, 'eval_metric': 'auc', 'colsample_bytree ': 0.7} 참고 AUC : 0.7319

acc: 0.9650033867690223

AUC : 73.3345%

TUC_auc . 0.733345142044100

XGBoost

L1: 불필요한 Feature에 대응하는 Weight를 정확히 0

L2:불필요한 Feature(이상치)에 대응하는 Weight를 0에 가깝게 만들 뿐, 0으로 만들지는 않음

```
params = {
    "n estimators": [500, 800, 1000, 1200],
   "learning rate":[0.01, 0.05, 0.001],
    "max depth":range(3,10,3),
                                      파라미터 세팅
    "colsample bytree":[0.5,0.6,0.7],
   "colsample bylevel":[0.7,0.8,0.9],
    'min child weight':range(1,6,2),
    'subsample' : [0.8,0.9],
    'objective' : ['binary:logistic'],
scoring = {
                     평가방식 : auc로 최적의
                      파라미터 찾기
kfold = KFold(n splits=5, shuffle=True, random state=SEED)
xgb = xgboost.XGBClassifier(tree method='gpu hist',
                         predictor='gpu predictor',
                                                  L1 Regularization (alpha)
                         reg alpha=0.15, #default 1,
                         reg lamdba=0.85, #default 0,
                                                   L2 Regularization (lambda)
                         random state=SEED
                                                   과적합 막기 위한 용되
model = RandomizedSearchCV(xgb, params, n jobs=-1, cv=kfold, scoring=scoring,
                     n iter=5, verbose=1, refit='AUC', return train score=True, random state=SEED)
model.fit(x train,y train,
                                 Validation data 로 평가하면서 학습
       eval set=[(x val, y val)],
       eval metric="auc",
       early stopping rounds=100,
                                 조기 종료 제공
#cv 별 결과 출력
df = pd.DataFrame(model.cv results )
print("cv result : \n", df.iloc[:,[18,12]])
```

XGBoost

```
result = model.predict(x test)
                                     Accuracy 계산
acc = accuracy score(y test, result)
print("Accuracy : ", acc)
result2 = model.predict_proba(x_test)[:,1]
                                            AUC 계산
roc = roc auc score(y test, result2)
print("AUC : %.4f%%"%(roc*100))
false positive rate, true positive rate, thresholds = roc curve(y test, result2)
roc auc = auc(false positive rate, true positive rate)
print("roc_auc :", roc_auc)
                                                                   ROC 커브 그리기AUC 계산
plt.figure(figsize=(10,10))
plt.title('Receiver Operating Characteristic')
plt.plot(false positive rate, true positive rate, color='red',label = 'AUC = %0.2f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.axis('tight')
plt.vlabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# top 20 feature importance by feature importance at
def plot feature importances(model):
                                                                 모델 변수 중요도 (top 20)
   plt.figure(figsize=(10,10))
                                                                  그래프 그리기
   plt.title('Model Feature Importances')
   feature names = index
   sorted idx = model.feature importances .argsort()[::-1]
   plt.barh(feature_names[sorted_idx][:20][::-1], model.feature_importances_[sorted_idx][:20][::-1], align='center')
   plt.xlabel("Feature Imortances", size=15)
   plt.ylabel("Feautres", size=15)
plot feature importances(model)
plt.show()
```

XGBoost

```
thresholds = np.sort(model.feature importances )
save_score = 0
best thresh = 0
for thresh in thresholds:
    selection = SelectFromModel(model, threshold=thresh, prefit=True)
                                                                         Model Selection
    select_x_train = selection.transform(x_train)
    select test = selection.transform(x test)
   selection_model = XGBClassifier(n_jobs=-1)
   selection model.fit(select x train, y train)
    y_predict = selection_model.predict_proba(select_test)[:,1]
    roc = roc_auc_score(y_test, result2)
   if roc > save score:
       save score = roc
       best thresh = thresh
   # print("best thresh, save score: ", best thresh, save score)
# print("======="")
                                                                              Model Selection 후
selection = SelectFromModel(model, threshold=best_thresh, prefit=True)
                                                                               RandomizedSearchCV
x train = selection.transform(x train)
x test = selection.transform(x test)
model = RandomizedSearchCV(xgb, params, n jobs=-1, cv=kfold, verbose=1, scoring=scoring, n iter=3, refit='AUC', return train score=True, random state=SEED)
model.fit(x train,y train)
```

LGBM

```
params = {
   "n estimators":[500, 800, 1000], #반복 수행하는 트리의 개수
   "learning rate":[0.01, 0.05, 0.001],
   "num leaves":[50], #하나의 트리가 가질 수 있는 최대 리프의 개수
   "max depth ":[6, 10, 15, 20], # 트리의 최대 깊이,
                                                                                     파라미터 세팅
   'min_child_samples':[20, 40, 60], #Leaf Node가 되기 위해서 최소한으로 필요한 데이터 개체의 수
   'subsample' : [0.8,0.9], #데이터를 샘플링하는 비율
   'colsample_bytree ' : [0.5,0.7,1], #개별 트리를 학습할 때마다 무작위로 선택하는 피쳐의 비율을 제어
    'eval metric' : ['auc']
scoring = {
                          평가방식 : auc로 최적의
    'AUC': 'roc auc',
                          파라미터 찾기
kfold = KFold(n_splits=5, shuffle=True, random_state=SEED)
lgbm = lightgbm.LGBMClassifier(
                        tree method='gpu hist',
                       predictor='gpu predictor',
                       random state=SEED
model = RandomizedSearchCV(lgbm, params, n_jobs=-1, cv=kfold, scoring=scoring, n_iter=10, verbose=1, refit='AUC', return_train_score=True, random_state=SEED)
model.fit(x train,y train,
                                                Validation data 로 평가하면서|
      eval set=[(x val, y val)],
      eval metric="auc",
                                                학습
      early_stopping_rounds=100,
df = pd.DataFrame(model.cv results )
                                                조기 종료 제공
print("cv result : \n", df.iloc[:,[18,12]])
```

#load data

DNN

```
x train = np.load('./data/project1/x train.npy',allow pickle=True)
y train = np.load('./data/project1/y train.npy',allow pickle=True)
test = np.load('./data/project1/x test.npy',allow pickle=True)
index = np.load('./data/project1/index no s.npy',allow pickle=True)
#모델 테스트를 위해 부분 데이터 잘라서 사용 (데이터 양이 너무 많음) - random으로 40%
x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, train_size=0.7, random_state=SEED, stratify=y_train)
x_train, x_temp, y_train, y_temp = train_test_split(x_train, y_train, train_size=0.4, random_state=SEED, stratify=y_train)
x_test, x_temp, y_test, y_temp = train_test_split(x_test, y_test, train_size=0.4, random_state=SEED, stratify=y_test)
x train, x val, y train, y val = train test split(x train, y train, train size=0.8, random state=SEED, stratify=y train)
#random 40% 데이터
print("x train shape : ", x train.shape) #(132280, 367)
print("y train shape : ", y train.shape) #(132280,)
print("x test shape : ", x test.shape) #(70864, 367)
print("y test shape : ", y test.shape) #(70864,)
model = Sequential()
                                                               DNN 모델링
model.add(Dense(1024, activation='relu',input_shape=(367,)))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
                                                                      평가방식 : auc 추가
model.compile(loss="binary crossentropy", optimizer="adam", metrics=["acc",tf.keras.metrics.AUC()])
es = EarlyStopping(monitor='loss',patience=30,mode='auto')
model.fit(x train,y train,epochs=500,batch size=32,verbose=2,callbacks=[es],validation data=(x val,y val))
loss,acc,auc = model.evaluate(x test,y test,batch size=32)
print("loss : ",loss)
print("acc : ",acc)
print("auc : ",auc)
```

AutoKeras

https://autokeras.com/tutorial/structured_data_classification/

A Simple Example

The first step is to prepare your data. Here we use the Titanic dataset as an example.

```
import tensorflow as tf
import autokeras as ak

TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv"

train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL)
```

The second step is to run the <u>StructuredDataClassifier</u>. As a quick demo, we set epochs to 10. You can also leave the epochs unspecified for an adaptive number of epochs.

```
# Initialize the structured data classifier.
clf = ak.StructuredDataClassifier(
    overwrite=True,
    max_trials=3) # It tries 3 different models.
# Feed the structured data classifier with training data.
clf.fit(
    # The path to the train.csv file.
    train_file_path,
    # The name of the label column.
    'survived',
    epochs=10)
# Predict with the best model.
predicted_y = clf.predict(test_file_path)
# Evaluate the best model with testing data.
print(clf.evaluate(test_file_path, 'survived'))
```

AutoKeras

```
#모델 테스트를 위해 부분 데이터 잘라서 사용 (데이터 양이 너무 많음) - random으로 40%
x train, x test, y train, y test = train test split(x train, y train, train size=0.7, random state=SEED, stratify=y train)
x train, x temp, y train, y temp = train_test_split(x_train, y_train, train_size=0.4, random_state=SEED, stratify=y_train)
x test, x temp, y test, y temp = train test split(x test, y test, train size=0.4, random state=SEED, stratify=y test)
x train, x val, y train, y val = train test split(x train, y train, train size=0.8, random state=SEED, stratify=y train)
#random 40% EIOIE
print("x train shape : ", x_train.shape) #(132280, 367)
print("y train shape : ", y_train.shape) #(132280,)
print("x test shape : ", x_test.shape) #(70864, 367)
print("y test shape : ", y_test.shape) #(70864,)
# Initialize the structed data classifier
clf = ak.StructuredDataClassifier(
   overwrite=True.
   max trials=3
# Feed the image classifier with training data
clf.fit(x train, y train, validation split=0.2, epochs=50)
# Predict with the best model
predicted y = clf.predict(x test)
print(predicted y)
# Evaluate the best model with testing data
print(clf.evaluate(x test, y test))
print("----")
```

```
#컴파일, 훈련
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["acc",tf.keras.metrics.AUC()])
```

AutoKeras

```
Hyperparameter | Value | Best Value So Far structured_data... | True | ? structured_data... | False | ? structured_data... | False | ? structured_data... | 0 | ? structured_data... | 32 | ? structured_data... | 32 | ? structured_data... | 32 | ? classification_... | 0 | ? optimizer | adam | ? learning_rate | 0.001 | ?
```

```
Search: Running Trial #2
                  Value
                                     Best Value So Far
Hyperparameter
structured data... True
                                     True
structured data... False
                                     False
structured data... 2
structured data... 32
                                     132
structured data...0
                                     0
structured data... 32
                                     32
classification ... 0.5
                                     0
optimizer
                  ladam
                                     adam
learning rate
                  0.001
                                     0.001
```

```
Trial 1 Complete [00h 41m 02s] val_accuracy: 0.9650696516036987
```

Best val_accuracy So Far: 0.9650696516036987 Total elapsed time: 00h 41m 02s

```
Trial 2 Complete [00h 40m 18s] val_accuracy: 0.9650696516036987
```

Best val_accuracy So Far: 0.9650696516036987

Total elapsed time: 01h 21m 20s

```
#컴파일, 훈련
model.compile(loss="binary crossentropy", optimizer="adam", metrics=["acc",tf.keras.metrics.AUC()])
```

AutoKeras

```
Search: Running Trial #3
                                      Best Value So Far
Hyperparameter
                  Value
structured data... True
                                      True
structured data... False
                                      False
structured data... 2
                                      32
structured data... 32
structured data... 0
structured data... 32
                                      32
classification ... 0
                                      0
optimizer
                  adam
                                      adam
learning rate
                                      0.001
                  0.001
```

```
Trial 1 Complete [00h 41m 02s]
val accuracy: 0.9650696516036987
```

```
Trial 2 Complete [00h 40m 18s]
val accuracy: 0.9650696516036987
```

Trial 3 Complete [00h 41m 11s] val accuracy: 0.9650696516036987

Total elapsed time: 00h 41m 02s

Best val accuracy So Far: 0.96506965160369 Best val_accuracy So Far: 0.9650696516036987 Total elapsed time: 01h 21m 20s

Best val accuracy So Far: 0.9650696516036987 Total elapsed time: 02h 02m 32s

06. 평가 지표

ROC 곡선 (Receiver Operating Characteristic)

- 이진 분류 모델 성능 평가 기법
- AUC는 'ROC 곡선 아래 영역'을 의미
- 곡선이 굽어지면 굽어질수록 AUC가 넓어지므로, 더욱 정확한 모델

1000	정상판정	암판정	
정상환자	988 _{TN}	2 _{FP}	
암환자	1 FN	9 _{TP}	

정상환자의 정확도는 99.8%지만 암환자의 정확도는 90%

Accuracy 정확도 결과 모델별 비교

	데이터	데이터 Vxxx 컬럼 PCA 95%	데이터 Vxxx 컬럼 PCA 99%
XGBoost	97.80%	98.00%	98.01%
LGBM	98.13%	98.10%	98.12%
DNN	97.07%		
AutoKeras	96.50%		

AUC 수신자 조작 특성 결과 모델별 비교

	데이터	데이터 Vxxx 컬럼 PCA 95%	데이터 Vxxx 컬럼 PCA 99%
XGBoost	92.42%	93.58%	93.57%
LGBM	94.38%	94.00%	93.80%

- 대체적으로 Accuracy 와 AUC 모두 LGBM이 제일 성능이 좋음
 - LGBM > XGBoost > DNN
- Vxxx 컬럼만 PCA 95%, 99%한 데이터와 안한 데이터의 성능 차이가 크게 없음
 - XGBoost는 PCA를 적용 안한 데이터가 0.5% 정도 낮음
 - LGBM은 모델 성능 차이가 거의 없음
- 최고 점수
 - Accuracy : PCA 적용 안한 데이터와 LGBM 모델 => 98.13%
 - AUC : PCA 적용 안한 데이터와 LGBM 모델 => **94.38%**

Model: LGBM

Data: without PCA

Accuracy: 98.0865%

AUC: 94.1472%

Model Feature Importances

```
cv result :
   mean test AUC
                  {'subsample': 0.9, 'num leaves': 50, 'n estimators': 800, 'min child samples': 20, 'max depth ': 15, 'learning rate': 0.01, 'eval metric': 'auc', 'colsample bytree ': 0.7}
       0.930177 {'subsample': 0.8, 'num leaves': 50, 'n estimators': 1000, 'min child samples': 20, 'max depth ': 15, 'learning rate': 0.05, 'eval metric': 'auc', 'colsample bytree ': 0.5}
       0.930229
                     {'subsample': 0.8, 'num leaves': 50, 'n estimators': 800, 'min child samples': 60, 'max depth ': 20, 'learning rate': 0.05, 'eval metric': 'auc', 'colsample bytree ': 1
                     {'subsample': 0.9, 'num leaves': 50, 'n estimators': 500, 'min child samples': 40, 'max depth ': 15, 'learning rate': 0.05, 'eval metric': 'auc', 'colsample bytree ': 1
       0.928528
       0.875468 {'subsample': 0.9, 'num leaves': 50, 'n estimators': 1000, 'min child samples': 20, 'max depth ': 6, 'learning rate': 0.001, 'eval metric': 'auc', 'colsample bytree ': 0.5}
       0.929292
                    {'subsample': 0.9, 'num leaves': 50, 'n estimators': 500, 'min child samples': 20, 'max depth ': 6, 'learning rate': 0.05, 'eval metric': 'auc', 'colsample bytree ': 0.5}
                      {'subsample': 0.8, 'num leaves': 50, 'n estimators': 800, 'min_child_samples': 40, 'max_depth ': 6, 'learning rate': 0.05, 'eval metric': 'auc', 'colsample bytree ': 1}
       0.930396
                 {'subsample': 0.9, 'num leaves': 50, 'n estimators': 500, 'min child samples': 20, 'max depth ': 20, 'learning rate': 0.001, 'eval metric': 'auc', 'colsample bytree ': 0.5}
                    {'subsample': 0.9, 'num leaves': 50, 'n estimators': 500, 'min child samples': 20, 'max depth ': 15, 'learning rate': 0.001, 'eval metric': 'auc', 'colsample bytree ': 1}
                  {'subsample': 0.9. 'num leaves': 50. 'n estimators': 500. 'min child samples': 40. 'max depth ': 10. 'learning rate': 0.001. 'eval metric': 'auc'. 'colsample bytree ': 0.7
```

```
최적 하이퍼 파고네는 : {'subsample': 0.8, 'num_leaves': 50, 'n_estimators': 800, 'min_child_samples': 40, 'max_depth': 6, 'learning_rate': 0.05, 'eval_metric': 'auc', 'colsample_bytree ': 1}
최고 AUC : 0.9904
score : 0.9808647550237074
AUC : 94.1472%
roc_auc : 0.9414722376579316
```

06. 개선사항

- 다양한 딥러닝 알고리즘 사용 (Conv1D)
 - o PCA 적용한 데이터들도 딥러닝 적용해보기
- 머신러닝 (분류) 선형모델 사용 (SVM, Logistic Regression)
- 모델 앙상블을 통한 모델 성능 개선
 - 트리모델 + 선형모델
 - 트리모델 + DNN (함수형 모델)
- 전처리 과정에서 Vxxx 컬럼말고도 다른 컬럼도 PCA 진행해보기
- AutoML?

06. 프로젝트 일정

	11/26	11/27	11/28	11/29	11/30
데이터 전처리					
XGBoost					
LGBM					
DNN					
AutoKeras					
PT 준비					

06. 파일

- https://github.com/ym0179/bit_seoul/tree/master/individual%20project
 - 데이터 전처리 파일 : fraud_detect_data.py
 - Xgboost 학습 파일 : fraud_detect_xgb.py
 - LGBM 학습 파일 : fraud_detect_lgbm.py
 - DNN 학습 파일 : fraud_detect_dnn.py
 - AutoKeras 학습 파일 : fraud_detect_autokeras.py

07. 추가_캐글

```
#데이터 로드
x_train = np.load('/kaggle/input/ieee-submission/x_train.npy',allow_pickle=True)
y_train = np.load('/kaggle/input/ieee-submission/y_train.npy',allow_pickle=True)
test = np.load('/kaggle/input/ieee-submission/x_test.npy',allow_pickle=True)
#모델링
model = LGBMClassifier(
    subsample = 0.9,
    num_leaves= 50,
    n_estimators= 1000,
   min_child_samples=20,
   max_depth = 6,
   learning_rate= 0.05,
    eval_metric= 'auc',
    colsample_bytree = 0.7,
    tree_method='qpu_hist',
    predictor='gpu_predictor',
    n_{jobs=-1},
    random_state=SEED
#학습
model.fit(x_train, y_train, verbose=1)
#예측
result = model.predict_proba(test)[:,1]
#제출
sub = pd.read_csv("/kaggle/input/ieee-fraud-detection/sample_submission.csv")
sub["isFraud"] = result
sub.to_csv("sub.csv",index=0)
```

07. 추가_캐글

07. 추가_캐글

108 / 6351 = 상위 1.7%... 더 올릴 수 있겠죠?

