Wine_Quality

March 3, 2022

1 Importing necessary libraries

```
[72]: import pandas as pd
      import numpy as np
      import scipy as sci
      import seaborn as sns
      import matplotlib.pyplot as plt
      from matplotlib import style
      %matplotlib inline
      sns.set()
      style.use('fivethirtyeight')
      import warnings
      warnings.filterwarnings('ignore')
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import accuracy_score
      from sklearn import preprocessing
      from sklearn import metrics
      from sklearn.linear_model import LogisticRegression
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.ensemble import RandomForestClassifier
```

1.0.1 Loading Data Set

```
[73]: wine_data = pd.read_csv("winequality-red.csv",sep=";")
```

2 Data Information

```
[74]: wine_data.shape
[74]: (1599, 12)
```

2.0.1 Printing First 5 columns to look at data

```
7.8
                               0.88
                                            0.00
                                                              2.6
1
                                                                        0.098
2
             7.8
                               0.76
                                            0.04
                                                              2.3
                                                                        0.092
3
                               0.28
                                            0.56
                                                              1.9
            11.2
                                                                        0.075
                               0.70
4
             7.4
                                            0.00
                                                              1.9
                                                                        0.076
   free sulfur dioxide total sulfur dioxide
                                                           pH sulphates \
                                               density
                  11.0
                                                 0.9978 3.51
0
                                         34.0
                                                                    0.56
1
                  25.0
                                         67.0
                                                 0.9968 3.20
                                                                    0.68
2
                  15.0
                                                                    0.65
                                         54.0
                                                 0.9970
                                                         3.26
3
                  17.0
                                         60.0
                                                 0.9980
                                                         3.16
                                                                    0.58
                                         34.0
4
                  11.0
                                                 0.9978 3.51
                                                                    0.56
   alcohol quality
       9.4
0
1
       9.8
                  5
                  5
2
       9.8
3
       9.8
                  6
```

2.0.2 Chacking for Null values

5

9.4

4

[76]: wine_data.isna().sum() [76]: fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides free sulfur dioxide total sulfur dioxide 0 density 0 0 рΗ sulphates 0 alcohol 0 quality 0 dtype: int64

3 Data Preprocessing

3.1 Descriptive statistics

77]: wine_data.describe().T						
[77]:	count	mean	std	min	25%	\
fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000	
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	

residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000
total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000
density	1599.0	0.996747	0.001887	0.99007	0.9956
рН	1599.0	3.311113	0.154386	2.74000	3.2100
sulphates	1599.0	0.658149	0.169507	0.33000	0.5500
alcohol	1599.0	10.422983	1.065668	8.40000	9.5000
quality	1599.0	5.636023	0.807569	3.00000	5.0000
	50%	′. 75%	√ ma	.X	
fixed acidity	7.90000	9.200000	15.9000	0	
volatile acidity	0.52000	0.640000	1.5800	0	
citric acid	0.26000	0.420000	1.0000	0	
residual sugar	2.20000	2.600000	15.5000	0	
chlorides	0.07900	0.090000	0.6110	0	
free sulfur dioxide	14.00000	21.000000	72.0000	0	
total sulfur dioxide	38.00000	62.000000	289.0000	0	
density	0.99675	0.997835	5 1.0036	9	
рН	3.31000	3.400000	4.0100	0	
sulphates	0.62000	0.730000	2.0000	0	
alcohol	10.20000	11.100000	14.9000	0	

3.2 Exploratory Data Analysis

quality

3.2.1 Plotting histogram for each feature for better understanding

6.00000

```
[78]: attribute_only = wine_data.drop(['quality'], axis=1)
plt.rcParams["figure.figsize"] = (16,10)
attribute_only.hist()
plt.show()
```

6.000000

8.00000

3.2.2 Checking correlation between columns

```
[8]: plt.rcParams["figure.figsize"] = (15,10)
sns.heatmap(wine_data.corr(), annot = True, cmap = 'coolwarm')
plt.show()
```



```
[24]: plt.rcParams["figure.figsize"] = (8,2)
```

```
[46]: # Plotting each feature to check outliers

Column_names = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual_

→sugar',

'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',

'pH', 'sulphates', 'alcohol']

for col in Column_names:

sns.boxplot(x=col,data=wine_data)

plt.show()
```



```
[47]: # Writing a function to remove outliers

def outlier_removed (c):

    a = wine_data[c].mean() + 3*wine_data[c].std()
    b = wine_data[c].mean() - 3*wine_data[c].std()
    wine_data[c] = np.where(
        wine_data[c]>a,
        wine_data[c].mean(),
        np.where(
            wine_data[c].mean(),
            wine_
```

```
[44]: #Removing outliers
for col in Column_names:
    outlier_removed(col)
```

```
[43]: #Checking boxplot after removing outlier sns.boxplot(x='residual sugar',data=wine_data)
```

[43]: <AxesSubplot:xlabel='residual sugar'>

3.2.3 Looking at unique value for Dependent variables

```
[29]: wine_data['quality'].value_counts()
[29]: 5
           681
      6
           638
      7
           199
      4
            53
      8
            18
      3
            10
      Name: quality, dtype: int64
     3.2.4 Mapping Quality to three classes (0 = \text{Low quality}, 1 = \text{Medium quality and } 2
            = Good quality)
[30]: bins_size = [0, 5.5, 7.5, 10]
      label = [0, 1, 2]
      wine_data['quality'] = pd.cut(wine_data['quality'], bins=bins_size,__
       →labels=label)
[31]: wine_data['quality'].value_counts()
[31]: 1
           837
      0
           744
            18
      Name: quality, dtype: int64
            Checking relationship of features with Quality
[38]: plt.rcParams["figure.figsize"] = (8,2)
      for col in Column_names:
          sns.barplot(x=col,y = 'quality', data=wine_data)
          plt.show()
```


4 Data Preparation for model building

[40]: # Defining Features X
X = attribute_only

```
[41]: # Defining target y
     y = wine_data[['quality']]
[42]: # Data Standardization
     X = preprocessing.StandardScaler().fit(X).transform(X)
[48]: # Splitting data into train and test
     →random state=0)
     4.0.1 Model 1 - DecisionTree Classifier
[49]: # Defining Model
     DT = DecisionTreeClassifier(random_state=5)
[50]: # Fitting Model
     DT.fit(X_train, y_train)
[50]: DecisionTreeClassifier(random_state=5)
[52]: # Prediction for test data
     Predicted_DT = DT.predict(X_test)
[53]: # Checking performance of Model
     accuracy_score(y_test,Predicted_DT)
                              recall f1-score
                  precision
                                                support
               0
                      0.74
                                0.78
                                         0.76
                                                    148
               1
                       0.78
                                0.73
                                          0.75
                                                    169
               2
                       0.00
                                0.00
                                         0.00
                                                      3
                                         0.75
                                                    320
        accuracy
       macro avg
                      0.51
                                0.50
                                         0.50
                                                    320
                                0.75
                                         0.75
     weighted avg
                      0.75
                                                    320
[54]: print(metrics.classification_report(y_test, Predicted_DT))
                              recall f1-score
                  precision
                                                support
               0
                      0.74
                                0.78
                                         0.76
                                                    148
                       0.78
                                0.73
                                          0.75
               1
                                                    169
                       0.00
                                0.00
                                         0.00
                                                      3
                                         0.75
                                                    320
        accuracy
                                         0.50
       macro avg
                      0.51
                                0.50
                                                    320
```

weighted avg 0.75 0.75 0.75 320

[58]: # Prediction of Train data
Predicted_DT2 = DT.predict(X_train)

[59]: # Checking Accuracy for Train dat a accuracy_score(y_train,Predicted_DT2)

[59]: 1.0

4.0.2 Model 2 - Logistic Regression

[60]: # Defining Model

LR = LogisticRegression(multi_class='multinomial',solver ='newton-cg')

[61]: # Fitting Model
LR.fit(X_train, y_train)

[61]: LogisticRegression(multi_class='multinomial', solver='newton-cg')

[62]: # Prediction for test data
Predicted_LR = LR.predict(X_test)

[63]: # Checking performance of Model accuracy_score(y_test,Predicted_LR)

[63]: 0.740625

[64]: print(metrics.classification_report(y_test, Predicted_LR))

	precision	recall	f1-score	support
0	0.74	0.72	0.73	148
1	0.74	0.78	0.76	169
2	0.00	0.00	0.00	3
accuracy			0.74	320
macro avg	0.49	0.50	0.50	320
weighted avg	0.73	0.74	0.74	320

4.0.3 Model 3 - Random Forest Classifier

[67]: # Defining Model

RF = RandomForestClassifier()

[68]: # Fitting Model

RF.fit(X_train, y_train)

[68]: RandomForestClassifier()

[69]: # Prediction for test data
Predicted_RF = RF.predict(X_test)

[70]: # Checking performance of Model accuracy_score(y_test,Predicted_RF)

[70]: 0.825

[71]: print(metrics.classification_report(y_test, Predicted_RF))

	precision recall f1-so		f1-score	support
0	0.82	0.82	0.82	148
1	0.83	0.84	0.84	169
2	0.00	0.00	0.00	3
accuracy			0.82	320
macro avg	0.55	0.55	0.55	320
weighted avg	0.82	0.82	0.82	320