# Continuous Evaluation Challenges for TinyML

# **MLOps:** Continuous Monitoring



# The MLOps **Personas**



ML Engineer



ML Researcher



Data Scientist



Data Engineer



Software Engineer



DevOps



Business Analyst

# Continuous Monitoring for TinyML

- Monitoring may not always be a feasible option
  - Low power communication protocol
  - Device isn't wifi-enabled

Monitoring opens up security and privacy risks

# Continuous Monitoring for TinyML

- Monitoring may not always be a feasible option
  - Low power communication protocol
  - Device isn't wifi-enabled

- Monitoring opens up security and privacy risks
- How can we enable Continuous Monitoring to enable Continuous
   Training without moving the data off the endpoint tiny ML device?

Data Movement

# Computation vs. Communication

- Data movement is extremely important to keep in mind for efficient system engineering
- Data movement is more costly than computation itself











**LAN** Bluetooth, ZigBee, WiFi

Cellular 2G, 3G, 4G LPWAN
LoRa, Sigfox, NB-loT

| Data Rate    | ~100kbps - 100mbps                            | ~100kbps - 100mbps                                           | 10kbps                                                                        |
|--------------|-----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|
| Range        | Short                                         | Long                                                         | Long Range (10 miles)                                                         |
| Battery Life | Varies                                        | Medium                                                       | Long Battery Life (10 yrs)                                                    |
| Cost         | Expensive                                     | Very Expensive                                               | Best Price                                                                    |
| Use Cases    | Smart TV, WiFi Network,<br>Bluetooth Speakers | Smart Grid, CCTV,<br>Personal Communication<br>(smartphones) | Monitoring, Metering,<br>Temperature, Asset<br>Tracking, Weather,<br>Location |

#### **Long Range**

Deep indoor coverage (multi-floor buildings)

Star topology network

design

#### **Long Battery Life**

Low-power optimized

Up to 10 year lifetime

Up to 10x versus Cellular M2M

### High Capacity

Millions of messages per gateway

Multi-tenant interoperability

Public/Private network deployments

#### **Low Cost**

Minimal infrastructure

Low cost end-node

Open source software

#### Geolocation

Indoor/outdoor

Accurate without GPS

No battery life impact

#### Updates

Firmware updates over-the-air for apps and LoRaWAN stack

### Roaming

Seamless handoffs from one network to another

### Security

Embedded end-to-end AES-128 encryption

Unique ID

Application

Network

Vending machines could alert distributors
 when a product requires maintenance



- Vending machines could alert distributors
   when a product requires maintenance
- Animal lovers can track pets or study migration patterns over longer distances



- Vending machines could alert distributors
   when a product requires maintenance
- Animal lovers can track pets or study migration patterns over longer distances
- Oil companies could receive alerts when home oil tanks are running low



- Vending machines could alert distributors
   when a product requires maintenance
- Animal lovers can **track** pets or study migration patterns over longer distances
- Oil companies could receive alerts when home oil tanks are running low
- Logistics providers could track cargo containers on trucks, ships and trains



- Natural Disaster Prevention
- Smart Agriculture Monitoring
- Animal Production Monitoring
- Endangered Species Protection
- Smart Industry Control
- Smart Cities, Homes, Buildings & Offices
- Supply Chain Logistics, Asset Tracking &
   Quality Management
- Smart Metering Facilities (Water, Gas, Electricity)









Network Communication Latency



Network Communication Latency



#### App Server



### App Server



### App Server





### Embedded Inference

- computation v. communication trade-off
- different communication protocols



# Network Advantages for Class A Devices

- No complicated network planning is required.
   Gateways can be added anywhere at any time
- Accurate message delivery is robust, since multiple gateways receive the same data packet during each uplink. This is called uplink spatial diversity
- There is no need to plan for different frequencies for each gateway, or to reallocate frequencies when the number of gateways change. All gateways are constantly listening to all frequencies of the network
- Mobile devices can operate at ultra low power thanks to the fact that any gateway can receive messages from any device at any time



### **Detecting Drift**—Predictions





### **Detecting Drift**—Data Distributions

### **BASELINE**

60% male, income 50k, etc.

#### **TARGET**

80% male, income 60k, etc.

# Communication Protocol Features

- Long/Short range
- Power consumption
- Data rate



### Class A



### Class B



### Class C



### Different Communication Protocols





# Cross Comparison

- Class A device communication is initiated only by the end device
- **Class B** devices have regularly-scheduled windows, in addition to those that open when a Class A-style uplink is sent to server
- Class C devices achieve the lowest latency among all operating modes



# Cross Comparison

- Class A device communication is initiated only by the end device
- **Class B** devices have regularly-scheduled windows, in addition to those that open when a Class A-style uplink is sent to server
- Class C devices achieve the lowest latency among all operating modes

