Aproksimavimas ir skaitinis integravimas

IV praktikos užduotis

Užduotis susideda iš trijų dalių: 1 dalis - aproksimavimas, 2 - integravimas, 3 - adaptyvaus integravimo algoritmas. Vertinimas: 0.3 + 0.4 + 0.3.

1 Aproksimavimas mažiausių kvadratų metodu

Pagal savo eilės numerį pasirinkite duomenų failą ir jį nuskaitykite. Duomenų faile yra n eilučių, t.y. n taškų, pirmasis stulpelis - taškų x koordinatė, antrasis - y. Duomenis aproksimuokite nurodyta funkcija, t.y. raskite parametrus a_0, \ldots, a_m , su kuriais aproksimacinė funkcija $f(x) = \sum_{j=0}^m a_j \varphi_j(x)$ būtų priderinta (prifitinama) prie duomenų mažiausių kvadratų metodu. Primenu, kad parametrai $\mathbf{a} = (a_0, \ldots, a_m)$ randami sprendžiant lygtį:

$$\Phi^T \Phi \mathbf{a} = \Phi^T \mathbf{y},$$

kur Φ yra $n \times m + 1$ matrica, gaunama duomenis x_i , $i = 1, \ldots, n$ statant į $\varphi_j(x)$, o $\mathbf{y} = (y_1, \ldots, y_n)$ duomenų y koordinatės.

Gautą aproksimacinę funkciją **nubraižykite** kartu su duomenų taškais.

Aproksimacinių funkcijų sąrašas:

- 1. Aproksimuokite funkcijomis $a_0 + a_1x$ ir $a_0 + a_1x + a_2x^2$. Paskaičiavę paklaidas (sumavimo kvadratu normoje) tarp duomenų ir funkcijos nustatykite, kuris modelis tinkamesnis.
- 2. Aproksimuokite funkcijomis $a_0 + a_1x + a_2x^2$ ir $a_0 + a_1x + a_2x^2 + a_3x^3$. Paskaičiavę paklaidas (sumavimo kvadratu normoje) tarp duomenų ir funkcijos nustatykite, kuris modelis tinkamesnis.
- 3. Aproksimuokite funkcijomis $a_0 + a_1x$ ir $a_0 + a_1x + a_2x^2 + a_3x^3$. Paskaičiavę paklaidas (sumavimo kvadratu normoje) tarp duomenų ir funkcijos nustatykite, kuris modelis tinkamesnis.
- 4. Aproksimuokite funkcija $a_0 + a_1 \cos(\lambda x) + a_2 \sin(\lambda x)$, $\lambda = \frac{2\pi}{P}$, P funkcijos periodo ilgis, kurį įvertinkite patys iš duomenų. Paskaičiuočite paklaidą (sumavimo kvadratu normoje) tarp duomenų ir funkcijos.
- 5. Aproksimuokite funkcija $a_0 + a_1 \cos(\lambda x) + a_2 \sin(\lambda x) + a_3 \cos(2\lambda x) + a_4 \sin(2\lambda x)$, $\lambda = \frac{2\pi}{P}$, P-funkcijos periodo ilgis, kurį įvertinkite patys iš duomenų. Paskaičiuočite paklaidą (sumavimo kvadratu normoje) tarp duomenų ir funkcijos.
- 6. Aproksimuokite funkcija $a_0 + a_1 \cos(\lambda x) + a_2 \sin(\lambda x) + a_3 \cos(2\lambda x) + a_4 \sin(2\lambda x) + a_5 \cos(3\lambda x) + a_6 \sin(3\lambda x)$, $\lambda = \frac{2\pi}{P}$, P funkcijos periodo ilgis, kurį įvertinkite patys iš duomenų. Paskaičiuočite paklaidą (sumavimo kvadratu normoje) tarp duomenų ir funkcijos.

Nr.	Aproks. funk.	Duomenų failas	Nr.	Aproks. funk.	Duomenų failas
1	1	duom1.txt	26	2	duom1.txt
2	2	duom2.txt	27	3	duom2.txt
3	3	duom3.txt	28	1	duom3.txt
4	4	duom4.txt	29	5	duom4.txt
5	5	duom5.txt	30	6	duom5.txt
6	6	duom6.txt	31	4	duom6.txt
7	2	duom1.txt	32	3	duom1.txt
8	3	duom2.txt	33	2	duom2.txt
9	1	duom2.txt	34	1	duom3.txt
10	2	duom3.txt	35	6	duom4.txt
11	5	duom4.txt	36	5	duom5.txt
12	6	duom5.txt	37	4	duom6.txt
13	4	duom6.txt	38	1	duom1.txt
14	3	duom1.txt	39	2	duom2.txt
15	2	duom2.txt	40	3	duom3.txt
16	1	duom3.txt	41	4	duom4.txt
17	6	duom4.txt	42	5	duom5.txt
18	5	duom5.txt	43	6	duom6.txt
19	4	duom6.txt	44	3	duom1.txt
20	1	duom1.txt	45	2	duom2.txt
21	2	duom2.txt	46	1	duom3.txt
22	3	duom3.txt	47	6	duom4.txt
23	4	duom4.txt	48	5	duom5.txt
24	5	duom5.txt	49	4	duom6.txt
25	6	duom6.txt	50	3	duom1.txt

2 Integravimas

Pagal savo eilės numerį pasirinkite integruojamą funkciją ir skaitinio integravimo metodą. Imdami skirtingą integravimo mazgų skaičių $n=20,40,60,\ldots$ suskaičiuokite apytiksles integralo reikšmes. Kiekvienam h paskaičiuokite paklaidą pagal formules (pirma reikia rasti išvestinės įvertį M_i jums patinkančiu būdu).

Suintegravę funkciją patys "ant popieriaus" (proga prisiminti integravimą) raskite tikrąją integralo

reikšmę ir ją palyginkite su rastomis apytikslėmis, t.y paskaičiuokite tikrąją paklaidą. Sudarykite lentelę skirtingiems h iš apytikslių integralo reikšmių, apytikslių ir tikslių paklaidų, padarykite išvadas apie metodo tikslumo eilę (braižydami paklaidų grafiką ar lygindami paklaidų santykius).

Metodai:

- 1. Kairiųjų stačiakampių
- 2. Dešiniųjų stačiakampių
- 3. Trapecijų
- 4. Simpsono

Nr.	Metodas	Funkcija	Intervalas	Nr.	Metodas	Funkcija	Intervalas
1	1	$3+\sqrt{x-1}$	[1, 6]	26	1	$3xe^{-x^2}$	[1, 5]
2	2	$e^{x/3}$	[0, 3]	27	2	$\frac{x^2}{\sqrt{6-x^3}}$	[0, 2]
3	3	$2x\cos(3x^2))$	$[0, \pi/2]$	28	3	$x + \frac{4}{x^3}$	[2, 4]
4	4	$3x^2 - 2x + 1$	[1, 4]	29	4	$x^3 + \sqrt{x+1}$	[2, 5]
5	1	$x^2\cos(x^3)$	$[0, \pi/4]$	30	4	$\frac{x+1}{x^2}$	[1, 4]
6	2	xe^{-x^2}	[1, 3]	31	3	$\frac{x^2-1}{x^3}$	[2, 5]
7	3	$\frac{x}{\sqrt{5-x^2}}$	[1, 2]	32	2	$3x + 4\sqrt{x}$	[0, 3]
8	4	$\frac{2}{x^3}$	[1, 3]	33	1	$e^{-x} + \sqrt{x}$	[0, 4]
9	2	$x^2 + \sqrt{x}$	[1, 4]	34	3	$-2x + e^{x/2}$	[2, 4]
10	3	$\frac{1}{x^2}$	[2, 4]	35	4	$x^2 + e^{x/4}$	[1, 6]
11	4	$1 + 2\sqrt{x+1}$	[1, 4]	36	1	$3x\sin(3x^2)$	$[\pi/4, \pi/2]$
12	1	$e^{-x/2}$	[0, 2]	37	2	$x^2 \cos(x^3)$	$[0, \pi/2]$
13	3	$2x\sin(4x^2)$	$[0, \pi/2]$	38	4	$2x^3 - 2x^2 + 1$	[1, 4]
14	4	$2x^2 + x + 1$	[2, 4]	39	3	$x^2 - 3x + 2$	[2, 5]
15	1	$x^2\sin(x^3)$	$[0, \pi/4]$	40	2	$2x^3 + x - 1$	[1, 5]
16	2	xe^{x^2}	[0, 2]	41	1	$2x^2\sin(x^3)$	$[0, \pi/3]$
17	3	$\frac{x}{\sqrt{3-x^2}}$	[0, 1]	42	2	xe^{-2x^2}	[0, 4]
18	4	$\frac{2}{x^2}$	[1, 4]	43	3	$x^2e^{-x^3}$	[1, 4]
19	2	$x^3 + \sqrt{x}$	[1, 3]	44	4	$\frac{5-x}{x^3}$	[1, 3]
20	1	$\frac{2}{x^3}$	[1, 5]	45	1	$x^3 + \sqrt{2x}$	[0, 3]

Nr.	Metodas	Funkcija	Intervalas	Nr.	Metodas	Funkcija	Intervalas
21	3	$4x + \sqrt{x}$	[1, 4]	46	2	$\frac{x-2}{x^3}$	[2, 6]
22	4	$e^{x/4}$	[0, 4]	47	3	$x-2+3\sqrt{x}$	[1, 5]
23	2	$2x\cos(2x^2)$	$[0, \pi/4]$	48	4	$\frac{x+1}{x^4}$	[1, 5]
24	4, 9	$3x^3 - x + 2$	[1, 3]	49	1	$2x^2 + \cos(x + \pi/4)$	$[0, \pi/2]$
25	1	$3x^2\cos(x^3)$	$[0, \pi/2]$	50	2	$\frac{3}{(x+2)^2}$	[0, 6]

3 Integravimas adaptyviu algoritmu

Imkite funkciją ir intervalą iš antros dalies, nustatykite tikslumą ϵ . Adaptyvaus integravimo algoritmu, pateiktu paskaitoje, suskaičiuokite integralą. Pamėginkite optimizuoti taip, kad funkcijos reikšmių skaičiavimo reiktų kuo mažiau. Kiekvienam intervalui panaudokite metodą iš antros dalies.