Índice general

1.		3					
	1.1.	Datos georreferenciados					
		1.1.1.	Datos Ve	ectoriales	3		
			1.1.1.1.	Simple features	3		
		1.1.2.	Datos Ra	aster	4		
		1.1.3.	Sistemas	de Referencia de Coordenadas	4		
			1.1.3.1.	Sistemas de Coordenadas Geográficas	5		
			1.1.3.2.	Sistemas de Coordenadas Proyectadas	5		
	1.2. Ingeniería de características						
	1.3. Análisis exploratorio de los datos						
	1.4.	Model	os		6		
	1.5	Herrar	nientas		6		

Capítulo 1

Preliminares

1.1. Datos georreferenciados

Todos los datos empleados en este trabajo son georreferenciados, lo que significa que están asociados a ubicaciones geográficas específicas. Por ello, resulta esencial introducir, aunque sea de forma general, los tipos de datos más utilizados para trabajar con esta información, sus características y las herramientas disponibles para manipularlos. Se tratarán los datos vectoriales y los datos rasters, al ser los tipos de datos fundamentales en este contexto, con características bien diferenciadas entre ellos.

1.1.1. Datos Vectoriales

El modelo de datos vectoriales geográficos se basa en puntos ubicados dentro de un sistema de referencia de coordenadas (CRS, por sus siglas en inglés). Estos puntos pueden representar características independientes o pueden estar conectados para formar geometrías más complejas como líneas y polígonos.

1.1.1.1. Simple features

Las "Simple features" son un estándar abierto ampliamente usado para la representación de datos vectoriales, desarrollado y respaldado por el Open Geospatial Consortium (OGC, por sus siglas en inglés), una organización sin ánimo de lucro dedicada a la creación de estándares abiertos e interoperables a nivel global dentro del marco de los sistemas geográficos de información (GIS, por sus siglas en ingés) y de la World Wide Web.

El paquete sf proporciona clases para datos vectoriales geográficos y una interfaz de línea de comandos consistente para importantes bibliotecas de bajo nivel para geoprocesamiento (GDAL, PROJ, GEOS, S2,...).

Los objetos sf son fáciles de manipular ya que son dataframes o tibbles con dos características fundamentales En primer lugar, contienen metadatos geográficos adicionales: tipo de geometríca, dimensión, "Bounding Box" (límites o extensión geográfica) e información sobre el Sistema de referencia de coordenadas. Y además, presentan una columna de geometrías que tiene el nombre de "geom". Algunas ventajas del uso del modelo de "simple features" en R son que en la mayoría de operaciones los objeto sf se pueden tratar como

data frames, los nombres de las funciones son consistentes (todos empiezan por st_), las funciones se pueden combinar con el operador tubería y además funcionan bien con el ecosistema de paquetes tidyverse.

El paquete sf de R soporta 18 tipos de geometrías para las simple features, de las cuales las más utilizadas son: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON and GEOMETRYCOLLECTION.

1.1.2. Datos Raster

El modelo de datos raster representa el espacio con una cuadrícula de celdas (también llamadas píxeles), que generalmente es regular, es decir, con todas las celdas de igual tamaño. Aunque no se tratarán en el presente trabajo, cabe mencionar que existen otros modelos de raster más complejos en los que se usan cuadrículas irregulares (rotadas, truncadas, rectilíneas o curvilíneas) y que pueden manipularse con el paquete de R (stars)[https://cran.r-project.org/web/packages/stars/index.html]. A cada una de estas celdas se le asocia uno (rasters de una sola capa) o varios (rasters multicapa).

Los datos en formato raster constan de una cabecera y una matriz cuyos elementos representan celdas equipespaciadas. En la cabecera del raster se definen el Sistema de referencia de coordenadas, la extensión (o límites espaciales del área cubierta por el ráster), la resolución y el origen. El origen son las coordenadas de uno de los píxeles del ráster, que sirve de referencia para los demás, siendo generalmente utilizado el de la esquina inferior izquierda (aunque el paquete TERRA usado en este trabajo usa por defecto el de la esquina superior izquierda). La resolución se calcula como:

$$resolution = \frac{x_{max} - x_{min}}{ncol}, \frac{y_{max} - y_{min}}{nrow}$$

La representación en forma de matriz evita tener que almacenar explícitamente las coordenadas de cada una de las cuatro esquinas de cada píxel, debiendo almacenar solamente las coordenadas de un punto (el origen). Esto, unido a las operaciones del álgebra de mapas hacen que el procesamiento de datos raster sea mucho más eficiente que el de datos vectoriales.

Se usará el paquete TERRA para tratar los datos en formato ráster. Este paquete permite tratar el modelo de rásters regulares con una o varias capas a través de la clase de objetos SpatRaster. Sin embargo, existen otras alternativas, como el paquete (stars)[https://cran.r-project.org/web/packages/stars/index.html], que además de ser más potente, permite trabajar con rásters no regulares y ofrece una mejor integración con el paquete sf y el entorno tidyverse.

1.1.3. Sistemas de Referencia de Coordenadas

Intrínseco a cualquier modelo de datos espaciales está el concepto de Sistema de referencia de coordenadas (CRS), que establece cómo la geometría de los datos se relaciona con la superficie terrestre. Es decir, es el nexo de unión entre el modelo de datos y la realidad, por lo que juega un papel fundamental. Los CRS pueden ser de dos tipos: geográficos o proyectados.

1.1.3.1. Sistemas de Coordenadas Geográficas

Los sistemas de coordenadas geográficas (GCS por sus siglas en inglés) identifican cada punto de la superficie terrestre utilizando la longitud y la latitud. La longitud es la distancia angular al Meridiano de Greenwich medida en la dirección Este-Oeste. La longitud es la distancia angular al Ecuador medida en la dirección Sur-Norte.

Cualquier sistema de coordenadas geográficas se compone de tres elementos: el elipsoide, el geoide y el datum. El primero es el elipsoide (o esfera) utilizado para representar de forma simplificada la superficie terrestre, sobre el que se supone que se encuentran los datos y el que permitirá realizar mediciones. El segundo, el geoide, es el modelo matemático que representa la verdadera forma de la Tierra, que no es suave sino que presenta ondulaciones debidas a las fluctuaciones del campo gravitatorio a lo largo de la superficie terrestre, que además cambian a una amplia escala temporal. Y el tercero, el datum, indica cómo se alinean el elipsoide y el geoide, es decir, cómo el modelo matemático se ajusta a la realidad. Este puede ser local o geocéntrico, en función de si el elipsoide se ajusta al geoide en un punto concreto de la superficie terrestre o de si el el centro del elipsoide el que se alinea con el centro de la Tierra. Ejemplos de datums geocéntricos usados en este trabajo son:

- European Terrestrial Reference System 1989 (ETRS89), usado ampliamente en la Europa Occidental.
- World Geodetic System 1984 (WGS84), usado a nivel global.

1.1.3.2. Sistemas de Coordenadas Proyectadas

Un Sistema de Coordenadas Proyectadas (PCS por sus siglas en inglés) es un sistema de referencia que permite identificar localizaciones terrestres y realizar mediciones en una superficie plana, es decir, en un mapa. Estos sistemas de coordenadas se basan en las coordenadas cartesianas, por lo que tienen un origen, un eje X y un eje Y y usan una unidad lineal de medida (en este trabajo, metro). Pasar de una superficie elíptica (GCR) a una superficie plana (PCS) requiere de transformaciones matemáticas apropiadas y siempre induce deformaciones en los datos.

Al proyectar la superficie terrestre en una superficie plana siempre se modifican algunas propiedades de los objetos, como el área, la dirección, la distancia o la forma. Un PCS solo puede conservar alguna de estas propiedades, por lo que es habitual clasificar los PCS en función de la propiedad que mantienen: las proyecciones de igual área preservan el área, las azimutales preservan la dirección, las equidistantes preservan la distancia y las conformales preservan la forma local. La mayoría de las proyecciones también se pueden clasificar en planas, cilíndricas o cónicas en función de cómo se realiza la proyección.

Un caso particular y ampliamente usado de PCS cilíndrico son los Universe Transverse Mercator (UTM), en el los que se proyecta el elipsoide sobre un cilindro tangente a este por las líneas de longitud (los meridianos). De esta forma, se divide el globo en 60 zonas de 6º de longitud, para cada una de las cuales existe un PCS UTM correspondiente que está asociado al meridiano central. Se trata de proyecciones conformales, por lo que preservan ángulos y formas en pequeñas regiones, pero distorsionan distancias y áreas.

A lo largo de este trabajo se utilizará ampliamente el Sistema de coordenadas proyectadas UTM30N (es habitual especificar el hemisferio para evitar confusión en los valores del eje Y, ya que miden distancia al ecuador, de ahí la N de hemisferio norte).

1.2. Ingeniería de características

Codificación variables categóricas - dummy variables Depuración datos - Imputaciones - Eliminación

1.3. Análisis exploratorio de los datos

1.4. Modelos

1.5. Herramientas

Lenguaje R $[\ldots],$ entorno de trabajo R
Studio $[\ldots].$ Paquetes de R $[\ldots]$ repositorio CRAN
 $[\ldots].$

"Paquetes" utilizados: - tidyverse:

- ggplot2, para la visualizaciónn.
- dplyr, para la manipulaciónn.
- tidyr, para la ordenación.?
- readr, para la importación.
- purrr, para la programación funcional
 - tidymodels
 - sf
 - terra
 - nasapower: obtenicón de información climática satelital
 - mapSpain: