EE 464 STATIC POWER CONVERSION-I Spring 2022-2023

Homework 2 Complete Simulation Report

Mehmet Emre Doğan – 2374825 Metehan Küçükler –

Table of Contents

Introduction	3
Topology Selection	=
Magnetic Design	
Complete Simulations	
Conclusion	
CONCIUSION	11

Introduction

This report explains the design decisions for the hardware project. Furthermore, it presents the details of the Magnetic Design of the Isolated Power Supply and the simulation results for the selected topology.

Topology Selection

The converter needs to be isolated. Therefore, the alternatives are listed below:

- > Flyback converter
- > Forward converter
- Push-Pull converter

Figure 1: TI Webench design

Magnetic Design

a) The duty range of the converter is selected as [0.278 – 0.336] to match the design by the Ti Webench. According to the duty range determination, the turn ratio is calculated via the MATLAB code below.

```
clearvars
syms d turnsRatio
v_o = 48
d_min = 0.278; v_d_minduty = 18;
d_max = 0.366; v_d_maxduty = 12
turnsRatio_minduty = ( (d_min/(1-d_min)) * (v_d_minduty/v_o) )^-1
turnsRatio_maxduty = ( (d_max/(1-d_max)) * (v_d_maxduty/v_o) )^-1
```

According to the code above, the transformer turns ratio (N_s/N_p) is calculated as 6.93.

b)

- The available cores and coil formers are investigated. Firstly, due to its available stock number is high, PCB5530-FA is selected as the coil former. Therefore, the compatible core 0P45530EC is selected as the transformer core. However, after calculations, it is seen that this core is overkill. Afterward, 79440A7 toroidal core is selected due to its high stock number and wide window area. A wide window area makes the wounding procedure easier.
- 2. Using the MATLAB code below, the primary turn number is 13, while the secondary turn number is 87. The magnetizing inductance is 8 uH.

```
U_o = v_o;
v_t = d_max;
f_sw = 100e3;
i_out = 1;
i_avgSec = i_out/(1-v_t);
xformerCurrRipple = 0.5; % percent
L_sec = (U_o*(1-v_t))/(xformerCurrRipple*i_avgSec*f_sw)
L_pri = L_sec/(turnsRatio_maxduty^2)
% (turnsRatio_maxduty^2)*2.814e-6
```

```
syms priTurns secTurns
AL = 51e-9 % nH/T^2; minimal
priTurns = double(solve(L_pri == AL*priTurns^2))
secTurns = double(solve(L_sec == AL*secTurns^2))
% make sure core is not saturated
ampTurns = i_out*secTurns
```

- 3. According to the AWG table, the secondary should be wounded using 5 parallel 28 AWG wires. The primary, on the other hand, 18 parallel 28 AWG wires will be used.
- 4. According to the code below, the fill factor is 12.53%, which is reasonable.

```
windowArea_mm2 = 427;
priTurns = ceil(priTurns(priTurns>0))
```

```
secTurns = ceil(secTurns(secTurns>0))
num_of_paralles_pri = ceil(num_of_paralles_pri)
num_of_paralles_sec = ceil(num_of_paralles_sec)
cableArea_mm2 = 0.080;
primaryArea_mm2 = priTurns*num_of_paralles_pri*cableArea_mm2
secondaryArea_mm2 = secTurns*num_of_paralles_sec*cableArea_mm2
totalCableArea_mm2 = primaryArea_mm2 + secondaryArea_mm2
fillFactor_perc = 100*totalCableArea_mm2/windowArea_mm2
```

5. Cable resistance calculation is done by the code below:

```
windingLengthPerTurn_mm = 68.2
ohms_per_meter = 212.872 / 1e3
primaryLength_m = windingLengthPerTurn_mm * priTurns * 1e-3
secondaryLength_m = windingLengthPerTurn_mm * secTurns * 1e-3
primary_DC_resistance_ohm = ohms_per_meter * primaryLength_m /
num_of_paralles_pri
secondary_DC_resistance_ohm = ohms_per_meter * secondaryLength_m /
num_of_paralles_sec
```

The DC and AC resistances of the transformer are assumed equal thanks to the skin depth being greater than the radius.

Primary Resistance: 10.5 mOhm

Secondary Resistance: 252 mOhm

6. Copper losses are calculated by the code below:

```
diameter_mm = vpa(0.32004*u.mm)
radius_mm = diameter_mm/2
skinDepth_cm = vpa(7.5/sqrt(f_sw)*u.cm)
skinDepth_mm = unitConvert(skinDepth_cm, u.mm)
% skin depth is greater than radius.
% Therefore, AC reistance equals DC resistance
DC_to_AC_ratio = 1
primary_AC_resistance_ohm = primary_DC_resistance_ohm*DC_to_AC_ratio
secondary_AC_resistance_ohm = secondary_DC_resistance_ohm*DC_to_AC_ratio
resistancePri_ohm = vpa(primary_AC_resistance_ohm * u.Ohm)
resistanceSec_ohm = vpa(secondary_AC_resistance_ohm * u.Ohm)
copperLossPri = vpa(unitConvert((i_in_max*u.A)^2 * resistancePri_ohm, u.W))
copperLoss_W = copperLossPri + copperLossSec
```

Total Copper Losses: 0.42 W

7. Core losses are calculated by the code below:

```
permeability = 26;
mu_zero = 1.25663706212e-6;
pathLength_m = 107e-3;
fluxDensity_Tesla = mu_zero * permeability * ampTurns / pathLength_m
% using graph above, 0.03 Tesla @ 100 kHz corresponds to
wattLoss_mW_cm3 = 60*u.mW/u.cm^3
volume_mm3 = 21300;
volume_cm3 = vpa(unitConvert(volume_mm3*u.mm^3, u.cm^3))
coreLoss_w = vpa(unitConvert(wattLoss_mW_cm3 * volume_cm3, u.W))
```

Core Loss: 1.27 W

The core loss is comparable with the copper loss. Hence, the design is good. No need to iterate more.

c. The open-loop flyback design is simulated on Simulink as shown in Figure 2. The circuit is simulated at its edges, namely, 12V input voltage and 0.366 duty and 18V input voltage and 0.278 duty. The simulation results are shown in Figures 3-6 for 0.278 duty and Figures 7-10 for 0.366 duty.

Figure 2: The Flyback converter in Simulink

Figure 3: Output voltage ripple for 0.278 duty

Figure 4: Output current waveform for 0.278 duty

Figure 5: Input current waveform for 0.278 duty

Figure 6: Transformer primary current waveform for 0.278 duty

Figure 7: Output voltage ripple for 0.366 duty

Figure 8: Output current waveform for 0.366 duty

Figure 9: Input current waveform for 0.366 duty

Figure 10: Transformer primary current waveform for 0.366 duty

Complete Simulations

Conclusion

Appendix – 1 [calc.mlx]

% (turnsRatio_maxduty^2)*2.814e-6

```
clearvars
u = symunit;
syms d turnsRatio
format shortEng
% format short
v o = 48
v_o =
   48.0000e+000
d_min = 0.278; v_d_minduty = 18;
d_{max} = 0.366; v_{d_{max}} = 12
v_d_maxduty =
   12.0000e+000
turnsRatio_minduty = ((d_min/(1-d_min)) * (v_d_minduty/v_o))^{-1}
turnsRatio_minduty =
    6.9257e+000
turnsRatio_maxduty = ((d_max/(1-d_max)) * (v_d_maxduty/v_o))^{-1}
turnsRatio maxduty =
    6.9290e+000
U_0 = v_0;
v_t = d_{max};
f_sw = 100e3;
i_out = 1;
i_avgSec = i_out/(1-v_t);
xformerCurrRipple = 0.5; % percent
L_sec = (U_o*(1-v_t))/(xformerCurrRipple*i_avgSec*f_sw)
L_sec =
  385.8778e-006
L_pri = L_sec/(turnsRatio_maxduty^2)
L_pri =
    8.0374e-006
```

```
syms priTurns secTurns
 AL = 51e-9 \% nH/T^2; minimal
 AL =
     51.0000e-009
 priTurns = double(solve(L_pri == AL*priTurns^2))
 priTurns = 2 \times 1
    -12.5537e+000
     12.5537e+000
 secTurns = double(solve(L_sec == AL*secTurns^2))
 secTurns = 2 \times 1
    -86.9841e+000
     86.9841e+000
 % make sure core is not saturated
 ampTurns = i_out*secTurns
 ampTurns = 2 \times 1
    -86.9841e+000
     86.9841e+000
AWG selection
 p_o = i_out * v_o
 p_o =
     48.0000e+000
 i_in_max = v_o/v_d_maxduty
 i_in_max =
      4.0000e+000
 selectedAWGRating = 0.226;
 num_of_paralles_sec = i_out/selectedAWGRating
 num_of_paralles_sec =
      4.4248e+000
 num_of_paralles_pri = i_in_max/selectedAWGRating
 num_of_paralles_pri =
     17.6991e+000
Fill Factor Calculation
 windowArea_mm2 = 427;
 priTurns = ceil(priTurns(priTurns>0))
 priTurns =
     13.0000e+000
```

secTurns = ceil(secTurns(secTurns>0))

```
secTurns =
     87.0000e+000
 num_of_paralles_pri = ceil(num_of_paralles_pri)
 num_of_paralles_pri =
     18.0000e+000
 num_of_paralles_sec = ceil(num_of_paralles_sec)
 num_of_paralles_sec =
      5.0000e+000
 cableArea mm2 = 0.080;
 primaryArea_mm2 = priTurns*num_of_paralles_pri*cableArea_mm2
 primaryArea_mm2 =
     18.7200e+000
 secondaryArea_mm2 = secTurns*num_of_paralles_sec*cableArea_mm2
 secondaryArea_mm2 =
     34.8000e+000
 totalCableArea_mm2 = primaryArea_mm2 + secondaryArea_mm2
 totalCableArea_mm2 =
     53.5200e+000
 fillFactor_perc = 100*totalCableArea_mm2/windowArea_mm2
 fillFactor_perc =
     12.5340e+000
Cable Resistance Calculation
 windingLengthPerTurn_mm = 68.2
 windingLengthPerTurn_mm =
     68.2000e+000
 ohms_per_meter = 212.872 / 1e3
 ohms_per_meter =
    212.8720e-003
 primaryLength_m = windingLengthPerTurn_mm * priTurns * 1e-3
 primaryLength_m =
    886.6000e-003
 secondaryLength_m = windingLengthPerTurn_mm * secTurns * 1e-3
 secondaryLength_m =
      5.9334e+000
```

```
primary_DC_resistance_ohm = ohms_per_meter * primaryLength_m / num_of_paralles_pri
 primary_DC_resistance_ohm =
     10.4851e-003
 secondary_DC_resistance_ohm = ohms_per_meter * secondaryLength_m / num_of_paralles_sec
 secondary_DC_resistance_ohm =
    252.6109e-003
Copper Loss Calculation
 diameter_mm = vpa(0.32004*u.mm)
 diameter_mm = 0.32004 mm
 radius_mm = diameter_mm/2
 radius mm = 0.16002 \, \text{mm}
 skinDepth_cm = vpa(7.5/sqrt(f_sw)*u.cm)
 skinDepth_cm = 0.023717082451262844989991701583245 cm
 skinDepth_mm = unitConvert(skinDepth_cm, u.mm)
 skinDepth_mm = 0.23717082451262844989991701583245 mm
 % skin depth is greater than radius.
 % Therefore, AC reistance equals DC resistance
 DC_to_AC_ratio = 1
 DC_to_AC_ratio =
      1.0000e+000
 primary_AC_resistance_ohm = primary_DC_resistance_ohm*DC_to_AC_ratio
 primary_AC_resistance_ohm =
     10.4851e-003
 secondary AC resistance ohm = secondary DC resistance ohm*DC to AC ratio
 secondary_AC_resistance_ohm =
    252.6109e-003
 resistancePri_ohm = vpa(primary_AC_resistance_ohm * u.Ohm)
 resistancePri_ohm = 0.01048512862222223207516300647058 \Omega
 resistanceSec_ohm = vpa(secondary_AC_resistance_ohm * u.Ohm)
 resistanceSec_ohm = 0.25261094496000002784796834021108 \Omega
 copperLossPri = vpa(unitConvert((i_in_max*u.A)^2 * resistancePri_ohm, u.W))
```

```
copperLossSec = vpa(unitConvert((i_out*u.A)^2 * resistanceSec_ohm, u.W))
```

copperLossSec = 0.25261094496000002784796834021108 W

```
copperLoss_W = copperLossPri + copperLossSec
```

 $copperLoss_W = 0.420373002915555599168229150564 W$

Core Loss Calculation

 $60 \frac{\text{mW}}{\text{cm}^3}$

Kool Mμ[®] Toroids 26μ, 40μ


```
volume_mm3 = 21300;
volume_cm3 = vpa(unitConvert(volume_mm3*u.mm^3, u.cm^3))
```

```
volume_cm3 = 21.3 cm³

coreLoss_w = vpa(unitConvert(wattLoss_mW_cm3 * volume_cm3, u.W))

coreLoss_w = 1.278 W
```

```
magnetizingResistance = v_d_minduty^2/p_o
```

```
magnetizingResistance =
   6.7500e+000
```

Appendix – 2 [TI Webench Design]

VinMin = 12.0V VinMax = 18.0V Vout = 48.0V Iout = 1.0A Device = UCC2813DTR-1 Topology = Flyback Created = 2023-04-30 12:30:51.274 BOM Cost = NA BOM Count = 48 Total Pd = 4.88W

WEBENCH® Design Report

Design: 4 UCC2813DTR-1 UCC2813DTR-1 12V-18V to 48.00V @ 1A

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
C12	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
C13	MuRata	GRM1555C1H102JA01J Series= C0G/NP0	Cap= 1.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
C21	Chemi-Con	ELXZ630ELL680MH12D Series= LXZ	Cap= 68.0 uF ESR= 1.5601 Ohm VDC= 63.0 V IRMS= 405.0 mA	1	\$0.17	Chemi-Con_800x1200 100 mm²
C22	Samsung Electro- Mechanics	CL21C220JBANNNC Series= C0G/NP0	Cap= 22.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
C23	Yageo	CC0805JRNPO9BN560 Series= C0G/NP0	Cap= 56.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Ccs	Samsung Electro- Mechanics	CL21C471JBANNNC Series= C0G/NP0	Cap= 470.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Cin	MuRata	GRM31CR71H475KA12L Series= X7R	Cap= 4.7 uF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 4.98 A	2	\$0.10	1206 11 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cout1	Chemi-Con	EMVY101ATR470MKE0S Series= MVY	Cap= 47.0 uF ESR= 330.0 mOhm VDC= 100.0 V IRMS= 450.0 mA	3	\$0.40	CAPSMT_62_KE0 225 mm²
Cref	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Csnub	TDK	C1005X5R1V225K050BC Series= X5R	Cap= 2.2 uF ESR= 1.0 mOhm VDC= 35.0 V IRMS= 0.0 A	1	\$0.06	0402_065 3 mm ²
Ct	Kemet	C0805C102J5GACTU Series= C0G/NP0	Cap= 1.0 nF ESR= 25.0 mOhm VDC= 50.0 V IRMS= 1.71 A	1	\$0.02	0805 7 mm ²
Cvcc	Chemi-Con	EMVY350ADA4R7MD55G Series= MVY	Cap= 4.7 uF ESR= 3.0 Ohm VDC= 35.0 V IRMS= 60.0 mA	1	\$0.10	CAPSMT_62_D55 28 mm²
D21	Nexperia	PMEG6010CEH,115	VF@Io= 570.0 mV VRRM= 60.0 V	1	\$0.04	SOD-123F 12 mm ²
Daux	SMC Diode Solutions	ST1300ATR	VF@Io= 1.1 V VRRM= 300.0 V	1	\$0.12	SMA 37 mm ²
Dsec	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 431.464 V	1	NA	CUSTOM 0 mm²
Dsec2	CUSTOM	CUSTOM	VF@Io= 500.0 mV VRRM= 431.464 V	1	NA	CUSTOM 0 mm ²
Dsnub	Diodes Inc.	ZLLS400TA	VF@Io= 400.0 mV VRRM= 40.0 V	1	\$0.16	SOD-323 9 mm ²
Dz	Diodes Inc.	MMSZ5250B-7-F	Zener	1	\$0.04	SOD-123 13 mm ²
M1	Texas Instruments	CSD19502Q5B	VdsMax= 80.0 V IdsMax= 100.0 Amps	1	\$0.81	DQK0006C 9 mm ²
01	Vishay-Semiconductor	TCMT1107	Optocoupler	1	\$0.19	SOP-4 44 mm ²
Q1	ON Semiconductor	BC846BLT1G	Bipolar Transistor	1	\$0.03	\$ SOT-23 14 mm ²
Qsc	STMicroelectronics	2N2222A	Bipolar Transistor	1	\$1.19	TO-18 57 mm ²
R11	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
R12	Vishay-Dale	CRCW04027K68FKED Series= CRCWe3	Res= 7.68 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
R13	Vishay-Dale	CRCW04024K99FKED Series= CRCWe3	Res= 4.99 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
R21	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
R22	Vishay-Dale	CRCW04021M15FKED Series= CRCWe3	Res= 1.15 MOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Raux	Vishay-Dale	CRCW040210R0FKED Series= CRCWe3	Res= 10.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rbias	Vishay-Dale	CRCW080513K7FKEA Series= CRCWe3	Res= 13.7 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rcs	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	Res= 1000.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rdrv	Vishay-Dale	CRCW080512R1FKEA Series= CRCWe3	Res= 12.1 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfbb	Vishay-Dale	CRCW04023K01FKED Series= CRCWe3	Res= 3.01 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rfbt	Vishay-Dale	CRCW040254K9FKED Series= CRCWe3	Res= 54.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rled	Vishay-Dale	CRCW040216K2FKED Series= CRCWe3	Res= 16.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rsc	Vishay-Dale	CRCW04024K32FKED Series= CRCWe3	Res= 4.32 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rsns	CUSTOM	CUSTOM Series= ?	Res= 33.9637 mOhm Power= 0.0 W Tolerance= 0.0%	1	NA	CUSTOM 0 mm ²
Rsnub1	CUSTOM	CUSTOM Series= ?	Res= 118.452 Ohm Power= 0.0 W Tolerance= 0.0%	1	NA	CUSTOM 0 mm ²
Rsnub2	CUSTOM	CUSTOM Series= ?	Res= 118.452 Ohm Power= 0.0 W Tolerance= 0.0%	1	NA	CUSTOM 0 mm ²
Rstartup1	Yageo	RC1206FR-073K83L Series=?	Res= 3.83 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rstartup2	Yageo	RC1206FR-073K83L Series=?	Res= 3.83 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rt	Vishay-Dale	CRCW04027K50FKED Series= CRCWe3	Res= 7.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rz	Vishay-Dale	CRCW201020K0FKEF Series= CRCWe3	Res= 20.0 kOhm Power= 750.0 mW Tolerance= 1.0%	1	\$0.04	2010 32 mm ²
Т1	CUSTOM	CUSTOM	Lp= 2.814 μH Rp= 870.0 mOhm Leakage_L= 56.286 nH Ns1toNp= 6.921 Rs1= 8.6 mOhms Ns2toNp= 1.636 Rs2= 700.0 μOhms	1	NA	CUSTOM 0 mm ²
U1	Texas Instruments	UCC2813DTR-1	Switcher	1	\$0.69	

D0008A 57 mm²

Footprint

Qty Price

VR TL431IDBVR **Texas Instruments** Voltage References \$0.09 R-PDSO-G3 16 mm² lout_DCM Cin Pd 0.050 0.925 0.900 0.045 0.040 0.875 0.850 0.035 lout DCM(A) 0.030 0.025 0.825 0.800 0.020 0.775 0.015 0.750 0.010 0.725 0.700 0.005 0.000 0.1 0.5 0.7 1.0 0.1 0.5 1.0 0.2 0.3 0.6 0.9 0.6 **Output Current (A) Output Current (A)** -Vin=12.0V -Vin=15.0V -Vin=18.0V Vin=12.0V → Vin=15.0V → Vin=18.0V **Ipri Avg Paux** 5.00 0.0022 4.75 4.50 0.0021 4.25 0.0020 4.00 3.75 0.0019 3.50 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 0.0018 0.0016 0.0015 0.0014 1.25 0.0013 1.00 0.0012 0.50 0.0011 0.25 0.0010 0.00 0.1 0.6 0.9 1.0 0.5 0.6 1.0 **Output Current (A) Output Current (A)** ■Vin=12.0V = Vin=15.0V = Vin=18.0V Vin=12.0V → Vin=15.0V → Vin=18.0V M1 Pd **Rdrv Pd** 0.675 0.650 0.020376004 0.625 0.600 0.020376003 0.575 0.020376002 0.550 0.020376001 0.020376000 0.525 0.525 0.500 0.475 0.450 0.425 0.020375999 0.400 0.020375998 0.375 0.350 0.020375997 0.325 0.300 0.020375996 0.275 0.250 0.020375995 0.6 **Output Current (A) Output Current (A) -**Vin=12.0V - Vin=15.0V - Vin=18.0V Vin=12.0V → Vin=15.0V → Vin=18.0V

Properties

Part Number

Name

Manufacturer

Operating Values

#	Name	Value	Category	Description
1.	Cin Pd	48.98 mW	Capacitor	Input capacitor power dissipation
2.	Cout1 IRMS	1.157 A	Capacitor	Output capacitor1 RMS ripple current
3.	Cout1 Pd	147.24 mW	Capacitor	Output capacitor1 power dissipation
4.	Daux trr	35.0 ns	Diode	Auxiliary Diode Reverse Recovery Time
5.	Dsec Pd	250.0 mW	Diode	Secondary Diode Power Dissipation
6.	Dsec Vf	500.0 mV	Diode	Effective Forward Voltage Drop at the Operating Current
7.	Dsec trr	0.0 ns	Diode	Output Diode Reverse Recovery Time
8.	Dsec2 Pd	250.0 mW	Diode	Secondary Diode Power Dissipation
9.	Dsec2 Vf	500.0 mV	Diode	Effective Forward Voltage Drop at the Operating Current
10.	Dsnub trr	3.0 ns	Diode	Snubber Diode Reverse Recovery Time
11.	IC Pd	43.834 mW	IC	IC power dissipation

#	Name	Value	Category	Description
12.	IC Tj	34.712 degC	IC	IC junction temperature
13.	ICThetaJA	107.5 degC/W	IC	IC junction-to-ambient thermal resistance
14.	lin Avg	4.407 A	IC	Average input current
15.	M1 Pd	565.4 mW	Mosfet	M1 MOSFET total power dissipation
	M1 TjOP	62.239 degC	Mosfet	M1 MOSFET junction temperature
17.	•	48.98 mW	Power	Input capacitor power dissipation
18.		147.24 mW	Power	Output capacitor1 power dissipation
19.		250.0 mW	Power	Secondary Diode Power Dissipation
20.	Dsec2 Pd	250.0 mW	Power	Secondary Diode Power Dissipation
-	IC Pd	43.834 mW	Power	IC power dissipation
22.	M1 Pd	565.4 mW	Power	
				M1 MOSFET total power dissipation
23.	Paux Pd Rstartup	2.206 mW	Power	Power Dissipation in Raux and Daux
24.	•	32.037 µW	Power	Power Dissipation in Rstartup1 and Rstartup2
25.	Rdrv Pd	20.376 mW	Power	Power Dissipation in Gate Drive Resistor
	Rfb Pd	39.786 mW	Power	Rfb Power Dissipation
27.	Rsns Pd	2.373 W	Power	Current Limit Sense Resistor Power Dissipation
28.	Snubber Pd	739.01 mW	Power	Snubber Power Dissipation
29.	T1 Copper Loss	1.44 W	Power	Transformer Copper Loss Power Dissipation
30.	T1 Core Loss	1.44 W	Power	Transformer Core Loss Power Dissipation
	T1 Pd	2.88 W	Power	Estimated Losses in Transformer
32.	Total Pd	4.879 W	Power	Total Power Dissipation
33.	Pd Rstartup	32.037 μW	Resistor	Power Dissipation in Rstartup1 and Rstartup2
34.	Rdrv Pd	20.376 mW	Resistor	Power Dissipation in Gate Drive Resistor
35.	Rfb Pd	39.786 mW	Resistor	Rfb Power Dissipation
36.	Rsns Pd	2.373 W	Resistor	Current Limit Sense Resistor Power Dissipation
37.	BOM Count	48	System	Total Design BOM count
			Information	
38.	Duty Cycle	38.414 %	System	Duty cycle
			Information	• •
39.	Efficiency	90.773 %	System	Steady state efficiency
	,		Information	,, ,
40.	FootPrint	1.272 k mm²	System	Total Foot Print Area of BOM components
		1.272 K IIIIII	Information	
41.	Frequency	100.0 kHz	System	Switching frequency
			Information	- · · · · · · · · · · · · · · · · · · ·
42.	lout	1.0 A	System	lout operating point
72.	lout	1.071	Information	lout operating point
43.	lout_DCM	709.799 mA	System	Approximate Current below which DCM mode of operation will begin
٦٥.	IOUI_DOW	703.733 IIIA	Information	Approximate outrent below which bow mode of operation will begin
44.	Mode	CCM	System	Conduction Mode
44.	Mode	CCIVI	Information	Conduction wode
45.	Dout	48.0 W	_	Total output power
45.	Pout	40.0 VV	System	rotal output power
46	Tdood	700 00F no	Information	Approximate Dood Time of the Degulator
46.	Tdead	708.095 ns	System	Approximate Dead Time of the Regulator
47	T-#	E 454	Information	American de Comunicator Off Time
47.	Toff	5.451 us	System	Approximate Converter Off Time
40	- • •	0.044	Information	A
48.	Ton Act	3.841 us	System	Approximate Converter On Time
			Information	
49.	Total BOM	NA	System	Total BOM Cost
			Information	
50.	Tsw	10.0 us	System	Switching Time Period
			Information	
51.	Vin	12.0 V	System	Vin operating point
			Information	
52.	Vout	48.0 V	System	Operational Output Voltage
			Information	
53.	Vout Actual	48.002 V	System	Vout Actual calculated based on selected voltage divider resistors
			Information	
54.	Vout Tolerance	2.242 %	System	Vout Tolerance based on IC Tolerance (no load) and voltage divider
			Information	resistors if applicable
55.	Vout p-p	250.208 mV	System	Peak-to-peak output ripple voltage
			Information	•
56.	Vout pp percentage	521.267 m%	System	Output Voltage ripple percentage
	5		Information	
57.	Vsnub	12.483 V	System	Voltage Across the Snubber
٠			Information	
58.	Ipri Avg	4.878 A	Transformer	Average Current in Primary Winding over the complete Switching
50.	.ra			Period
59.	lpri ripple	15.744 A	Transformer	Ripple Current in the Primary Winding
60.	Ipri ripple pk-pk	123.979 %	Transformer	Primary Current pk-pk ripple percentage(of lpri avg during ton only)
00.	percentage	120.010 /0	Tansionic	. Timaly current pre pre hope percentage (or ipit avg during tori only)
61.	Isec Ripple	2.275 A	Transformer	Ripple Current in the Secondary Winding
62.	Paux	2.275 A 2.206 mW	Transformer	Power Dissipation in Raux and Daux
63.	T1 Copper Loss	1.44 W	Transformer	Transformer Copper Loss Power Dissipation
64.	T1 Copper Loss	1.44 W	Transformer	Transformer Core Loss Power Dissipation
04.	. 1 OO10 L000	1.77 VV	Tansionic	Transformer Gore E000 Fower Diosipation

			_		
#	Name	Value	Category	Description	
65.	T1 Iprim RMS	8.359 A	Transformer	Transformer Primary RMS Current	
66.	T1 Iprim pk	20.57 A	Transformer	Transformer Primary Peak Current	
67.	T1 Is1 RMS	1.529 A	Transformer	Transformer Secondary1 RMS Current	
68.	T1 ls1 pk	2.972 A	Transformer	Transformer Secondary1 Peak Current	
69.	T1 Pd	2.88 W	Transformer	Estimated Losses in Transformer	
70.	Vaux	11.462 V	Transformer	Auxiliary Voltage	

Design Inputs

Name	Value	Description
lout	1.0	Maximum Output Current
VinMax	18.0	Maximum input voltage
VinMin	12.0	Minimum input voltage
VinTyp	15.0	Typical input voltage
Vout	48.0	Output Voltage
base_pn	UCC2813-1	Base Product Number
source	DC	Input Source Type
Та	30.0	Ambient temperature

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 12.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Master key: 5A3AA0AEA993C20F55934295563702ED[v1]
- 2. UCC2813-1 Product Folder: http://www.ti.com/product/UCC2813%2D1: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.