TG-51 Worksheet A: Photon Beams

1.	Site data
	Institution:
	Physicist:
	Date:
	Accel or ⁶⁰ Co Mfr.:
	Model & serial number:
2	Nominal photon energy/beam identifier: MV Instrumentation
2.	a. Chamber model:
	Serial number:
	Cavity inner radius (r_{cav} , Table III):
	Waterproof: yes no
	If no, is waterproofing ≤ 1 mm PMMA or thin latex?: yes no
	b . Electometer model:
	Serial number:
	i. P_{elec} , electrom. Corr factor (Sec. VII.B):
	c. Calibration factor $N_{D,w}^{60_{Co}}$ (Sec.V):
	Date of report (not to exceed 2 years):
3.	Measurement Conditions (10 x 10 cm ² , point of measurement at 10 cm depth (water equivalent)
	a. Distance (SSD or SAD): cm_SAD
	b . Field size: cm ²
	on surface (SSD setup)
	at detector (SAD setup):
	c. Number of monitor units: MU (min for ⁶⁰ Co)
4.	Beam Quality (Sec. VIII.B – not needed for ⁶⁰ Co
	If energy <10 MV, use no lead foil.
	Measure $\%dd$ (10) [% depth-dose at 10 cm depth for curve shifted upstream by $0.6r_{cav}$]
	Field size $10 \times 10 \text{ cm}^2$ on surface, $SSD = 100 \text{ cm}$: yes no
	$\mathbf{a.}\% dd(10)_{x} = \% \ dd(10)$
	If energy $\geq 10 \text{ MV}$
	Distance of 1 mm lead foil phantom surface 50 ± 5 cm 30 ± 1 cm
	Measure % $dd(10)$ Pb [% depth-dose at 10 cm depth for curve shifted upstream by 0.6 r_{cav}]
	Field size $10 \times 10 \text{ cm}^2$ on surface, $SSD = 100 \text{ cm}$: yes \square no \square
	$%dd(10)_{Pb}$ (includes e ⁻ contamination):
	50 cm: $%dd(10)_x = [0.8905 + 0.00150\%dd(10)_{Pb}] %dd(10)_{Pb}$ [$%dd(10)_{Pb} \ge 73\%$] Eq.(13)
	30 cm: $\%dd(10)_x = [0.8116 + 0.00264\%dd(10)_{Pb}]\%dd(10)_{Pb} $ [$\%dd(10)_{Pb} \ge 71\%$] Eq. (14)
	If $%dd(10)_{Pb} < 71\%$ (30 cm) or 73% (50 cm): $%dd(10)_x = %dd(10)_{Pb}$
	b. $\% dd(10)_x$ (for open beam):
	Has lead foil been removed? yes no
	Interim alternative for energy $> 10 MV$ & with ≥ 45 cm clearance: using no lead foil
	Measure $\%dd(10)$ [% depth-dose at 10 cm depth for curve shifted upstream by 0.6 r_{cav}]
	%dd(10): No lead
	$%dd(10)_x = 1.267 (%dd(10) - 20.0)$ [for 75% <%dd(10) \ge 89%
	$c. \%dd(10)_{x} = $

TG-51 Worksheet A: Photon Beams (cont'd)

5	Determination of k_Q (Sec. IX. B) Chamber model used to get k_Q : a. %dd(10) _x (from 4, above): b. k_Q [Table I or Fig. 4]:	
6.	Temperature/pressure Correction (Sec.VII.C) a. Temperature: b. Pressure:	$\frac{\text{°C}}{\text{kPa}} = \text{mmHg} \frac{101.33}{760.}$
	c. P_{TP} :	$Eq.(10) = \left(\frac{273.2 + 6a}{295.2} \left(\frac{101.33}{6b}\right)\right)$
7.	Polarity correction (Sec. VII. A.)	[(233.2), 00)]
	M _{raw} : M _{raw} :	C or rdg C or rdg
	a. M_{raw} (for polarity of calibration): b. P_{pol} :	C or rdg $Eq.(9) = \frac{M raw - M raw}{2M_{raw}}$
8.	P_{ion} measurements (Sec.VII. D. 2) Operating voltage = V_H : Lower voltage $V_{L:}$	V V
	\mathbf{M}_{raw}^{H} :	C or rdg
	M _{raw} ^L : ⁶⁰ Co treated as general recombination	C or rdg
	a. $P_{\text{ion}}(V_{\text{H}})$ (Eq.(11));	$ \left[\left(1 \left(\frac{V_H}{V_L} \right)^2 \right) \middle/ \left(\frac{M raw}{M raw} - \left(\frac{V_H}{V_L} \right)^2 \right) \right] $
	Pulsed/swept beams	
	b. P_{ion} (V _H) (Eq.(12))	$ \left[\left(1 \frac{V_H}{V_L} \right) \middle/ \left(\frac{M \ raw}{M \ raw} - \frac{V_H}{V_L} \right) \right] $
9.	If $P_{\text{ion}} > 1.05$, another ion chamber should be used Corrected ion. ch. rdg. M (Sec.VII) at 10 cm dep	
	$\mathbf{M} = P_{\mathrm{ion}} P_{\mathrm{TP}} \mathbf{P}_{\mathrm{elec}} P_{\mathrm{Pol}} \mathbf{M}$	$a_{\text{raw}} = [8(a \cdot \text{or} \cdot \text{b}) \cdot 6c \cdot 2bi \cdot 7b \cdot 7a]$
10.	Fully corrected M (Eq.(8)): Dose to water at 10 cm depth : $D_w^Q = R$ a. Dose to water at 10 cm depth =	$Mk_Q N_{D,_w}^{60_{Co}} = [9 \cdot 5b \cdot 2c] \text{ Eq. (3)}$
	b. Dose/ MU(or min ⁶⁰ Co) at 10 cm depth	Gy/MU [10a/3c]
11.	Dose to water/MU (or min, 60 Co) at d_{max} (if relevant of the control of the contro	Gy/MU [10b/(11a)]
	· · · · · · · · · · · · · · · · · · ·	cGy (water)/MU