ЛЕКЦИЯ 15. МОДУЛЬНАЯ АРИФМЕТИКА

ТЕОРИЯ ДЕЛИМОСТИ

наибольший общий делитель

Определение 1. Для положительных целых чисел а и b существуют и единственны неотрицательные целые числа q (*целое частное*) и r (*остаток*), где $0 \le r \le b$ такие что

$$a = bq + r$$
.

Определение 2. *Наибольшим общим делителем* а и b называют такое положительное число $d = HO\mathcal{I}(a,b)$, что

- 1) $d \mid a, d \mid b$
- 2) d наибольшее из таких чисел

Определение 3. *Наименьшим общим кратным* а и b называют такое положительное число c = HOK(a,b), что

- 3) c:a,c:b
- 4) с наименьшее из таких чисел

Теорема.
$$HOK(a,b) = \frac{a \cdot b}{HO\mathcal{I}(a,b)}$$
.

Доказательство: позже.

АЛГОРИТМ ЕВКЛИДА

while a!=b:	while b>0:
	0/ 1
if a>b:	r = a % b
a -= b	a, b = b, r
else:	print(a)
b -=a	
print(a)	
медленный вариант	быстрый вариант

 Π ример: НОД(42,30) = 6

42=30*1+12 30=12*2+6 12=6*2+0

линейное представление нод

ТЕОРЕМА 3.32. Наибольший общий делитель положительных целых чисел a и b существует. Такой наибольший общий делитель может быть записан в виде

$$u \cdot a + v \cdot b$$

для некоторых целых чисел u и v. Кроме того, наибольший общий делитель — это наименьшее положительное целое число такого вида.

ДОКАЗАТЕЛЬСТВО. Пусть S — множество всех положительных целых чисел, имеющих форму na+mb. Пусть d=ua+vb — наименьший элемент множества S. Тогда $d \leq a$, т.к. $a=1 \cdot a+0 \cdot b$ принадлежит S. Кроме того, a=qd+r для некоторых q и r, где q>0 и $0 \leq r < d$. Итак, a=q(ua+vb)+r. Решая относительно r, получаем, r=(1-qu)a+(-v)qb, так что r принадлежит S или r=0. Но r меньше, чем d, которое, в свою очередь, является наименьшим элементом множества S, так что r=0. Поэтому $d\mid a$. Аналогично, $d\mid b$. Если c — произвольный делитель чисел a и b, то по теореме 3.24 часть (в) $c\mid d$, поскольку d=ua+vb. Следовательно, d — наибольший общий делитель чисел a и b.

Найти линейное представление НОД можно из алгоритма Евклида, двигаясь по нему *в обратную сторону*.

С л е д с т в и е . НОД(а,b) делится на любой другой общий делитель а,b (иногда это свойство берут в качестве определения НОД).

Пример:

$$6 = 30 - 12*2 = 30 - (42 - 30*1)*2 = 30*3 + 42*(-2)$$

ВЗАИМНО ПРОСТЫЕ ЧИСЛА

О пределение. Числа а и в называются взаимно простыми, если НОД(а,b)=1.

Т е о р е м а . Числа а и b взаимно просты т. и т.д., когда найдутся такие целые u и v, что

$$au + bv = 1$$
.

Доказательство: из теоремы о линейном представлении НОД.

ПРОСТЫЕ ЧИСЛА

О пределение. Целое число, большее 1, называется *простым*, если оно делится только на 1 и на себя. Целое число, большее 1, называется *составным*, если оно не простое.

ТЕОРЕМА 3.40. (Евклид) Существует бесконечно много простых чисел.

ДОКАЗАТЕЛЬСТВО. Допустим, что существует только конечное число простых чисел, например, p_1, p_2, \ldots, p_k . Рассмотрим целое число $(p_1p_2\cdots p_k)+1$. Предположим, что p_r — некоторое простое число, и $p_r \mid ((p_1p_2\cdots p_k)+1)$. Но тогда $p_r \mid (p_1p_2\cdots p_k)$, откуда следует, что $p_r \mid 1$, а это приводит к противоречию, т.к. $p_r > 1$. Следовательно, $(p_1p_2\cdots p_k)+1$ — простое число, что, в свою очередь, также является противоречием, т.к. этого числа нет среди указанной конечной совокупности простых чисел. Таким образом, наше предположение о том, что существует конечное число простых чисел, ложно, поэтому простых чисел должно быть бесконечно много.

Постулат Бертрана или теорема Чебышёва: при любом n>2 в интервале от n до 2n найдётся простое число.

Сформулировал и проверил для n<=3 000 000 Бертран, а доказал Чебышёв.

ПРОВЕРКА НА ПРОСТОТУ

ТЕОРЕМА 3.41. Если положительное целое число n является составным, то n имеет простой делитель p такой, что $p^2 \le n$.

ДОКАЗАТЕЛЬСТВО. Пусть p — наименьший простой делитель числа n. Если n раскладывается на множители r и s, то $p \le r$ и $p \le s$. Следовательно, $p^2 \le rs = n$.

ОСНОВНАЯ ТЕОРЕМА АРИФМЕТИКИ

ТЕОРЕМА 3.46. (Основная теорема арифметики) Любое положительное целое число, большее, чем 1, либо является простым, либо может быть записано в виде произведения простых чисел, причем это произведение единственно с точностью до порядка сомножителей.

ТЕОРЕМА 3.49. Пусть $a=p_1^{a(1)}p_2^{a(2)}p_3^{a(3)}\cdots p_k^{a(k)}$ и $b=p_1^{b(1)}p_2^{b(2)}p_3^{b(3)}\cdots p_k^{b(k)}$, где p_i — простые числа, которые делят либо a, либо b, и некоторые показатели степени могут быть равны 0. Пусть $m(i)=\min(a(i),b(i))$ и $M(i)=\max(a(i),b(i))$ для $1\leq i\leq k$. Тогда

НОД
$$(a,b) = p_1^{m(1)} p_2^{m(2)} p_3^{m(3)} \cdots p_k^{m(k)}$$

И

$$HOK(a,b) = p_1^{M(1)} p_2^{M(2)} p_3^{M(3)} \cdots p_k^{M(k)}.$$

Следствие.
$$HOK(a,b) = \frac{a \cdot b}{HO \mathcal{I}(a,b)}$$
.

Пример:

Применим теорему 3.49 в случае, когда a=195000 и b=10435750. Разложения на простые множители чисел a и b имеют вид

$$a = 2^3 3^1 5^4 13^1$$
 и $b = 2^1 5^3 13^3 19^1$.

Таким образом,

$$\begin{split} \text{HOД}(195000,10435750) &= 2^{\min(3,1)} 3^{\min(1,0)} 5^{\min(4,3)} 13^{\min(1,3)} 19^{\min(0,1)} = \\ &= 2^1 3^0 5^3 13^1 19^0 = 2^1 5^3 13^1 = 3250, \\ \text{HOK}(195000,10435750) &= 2^{\max(3,1)} 3^{\max(1,0)} 5^{\max(4,3)} 13^{\max(1,3)} 19^{\max(0,1)} = \\ &= 2^3 3^1 5^4 13^3 19^1 = 626145000 \,. \end{split}$$

ТЕОРИЯ СРАВНЕНИЙ

СРАВНЕНИЯ

ОПРЕДЕЛЕНИЕ 3.51. Пусть n- положительное целое число. Целое число a **сравнимо** с целым числом b по модулю n, что обозначается $a\equiv b\pmod n$, если n делит (a-b).

ТЕОРЕМА 3.52. Отношение \equiv для фиксированного n является отношением эквивалентности на множестве целых чисел. Это означает, что

- а) $a \equiv a \pmod{n}$ для каждого целого числа a;
- **6)** если $a \equiv b \pmod{n}$, то $b \equiv a \pmod{n}$ для целых чисел a и b;
- **в)** если $a \equiv b \pmod{n}$ и $b \equiv c \pmod{n}$, то $a \equiv c \pmod{n}$.

СВОЙСТВА СРАВНЕНИЙ

ТЕОРЕМА 3.54. Отношение сравнимости обладает следующими свойствами:

- а) если $a \equiv b \pmod n$ и $c \equiv d \pmod n$, то $a+c \equiv b+d \pmod n$ и $ac \equiv bd \pmod n$;
- **6)** если $a \equiv b \pmod{mn}$, то $a \equiv b \pmod{m}$ и $a \equiv b \pmod{n}$.
- в) к обеим частям сравнения можно прибавлять (вычитать) одно и то же число;
- г) обе части сравнения можно домножать на одно и то же число;
- д) если а сравнимо с b, то и a^k сравнимо с b^k ;
- е) обе части сравнения можно делить на число, взаимно простое с модулем;
- ж) можно делить a,b,m на любое число (например, на их НОД).

ВЫЧЕТЫ

Определение 1. Каждый класс эквивалентности называется классом вычетов по модулю п и обозначается

$$[a]_n = \{b : b \equiv a \pmod{n}\}$$
.

Определение 2. Множество всех вычетов обозначается Z_n и называется кольцом вычетов по модулю n.

На множестве Z_n можно определить операции сложения и умножения. Если [a] — класс вычетов по модулю n, содержащий a, и [b] — класс вычетов по модулю n, содержащий b, то сложение и умножение определим соотношениями

$$[a] \oplus [b] = [a+b] = [[a+b]]_n$$
,
 $[a] \odot [b] = [a \cdot b] = [[a \cdot b]]_n$,

Когда и так понятно, что речь идёт о вычетах, часто используют сокращённую запись, принятую в «обычной» арифметике, и вместо $[a] \oplus [b]$ пишут a+b, а вместо $[a] \odot [b]$ - просто ab.

Вычисляя все возможные суммы и произведения (а их конечное число!), можно создать *таблицы* сложения и умножения в \mathbb{Z}_n . При различных n они будут обладать различными интересными свойствами.

 Π р и м е р 1 . Таблицы сложения и умножения в \mathbb{Z}_5 :

a+b	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$a \cdot b$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

В о прос: какие свойства вы можете заметить у этих таблиц?

 Π р и м е р 2 . Таблица умножения в \mathbb{Z}_4 :

$a \cdot b$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Можно заметить, что в этой таблице появились т.н. *делители нуля*: $2 \cdot 2 = 0$ (т.е. при умножении ненулевых чисел можем получить 0!).

ПОЛНАЯ И ПРИВЕДЁННАЯ СИСТЕМЫ ВЫЧЕТОВ

Определение 1. *Полной системой вычетов* по модулю п называется такое множество чисел $\{r_1, r_2, ..., r_n\}$, в котором все числа r_i выбраны из разных классов эквивалентности.

О пределение 2. *Первичная или каноническая система вычетов* по модулю $n: \{0,1,...,n-1\}$.

О пределение 3. *Приведённая система вычетов* по модулю n- такое подмножество полной системы вычетов, в котором все числа **взаимно просты** с n.

Приведённая система вычетов образует *мультипликативную подгруппу* в кольце вычетов: это значит, что каждый приведённый вычет имеет обратный по умножению (при этом остальные вычеты обратных не имеют!). Другими словами, в приведённой системе вычетов *возможно деление*.

ТЕОРЕМА 3.65. Пусть n — положительное целое число и $\{r_1, r_2, \ldots, r_k\}$ — полная [приведенная] система вычетов по модулю n. Если a — целое число, взаимно простое с n, то $\{ar_1, ar_2, \ldots, ar_k\}$ — также полная [приведенная] система вычетов.

 Π р и м е р 1 . Приведённая система вычетов в Z_5 : {1,2,3,4}.

$$1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} = 4$$

 Π р и м е р 2 . Приведённая система вычетов в \mathbb{Z}_4 : {1,3}.

$$1^{-1} = 1, 3^{-1} = 3$$