GLS UNIVERSITY

Faculty Of Computer Applications & Information Technology Integrated IMScIT Programme

221601104 Mathematics for Computer Science Assignment-II -Unit-2 Introduction to Matrix and Vectors

1	Define the following terms with suitable example.					
	Zero vector					
	Unit vector					
	Parallel vectors					
	Matrix					
	Row Matrix					
	> Column Matrix					
	Null Matrix					
	Unit Matrix					
	Square matrix					
	Symmetric matrix					
	Skew-symmetric matrix					
2	Find u.v if vectors u = (1 3) and v = (4 5)					
3	If $\vec{a}=(2 3 -1)$ and $\vec{b}=(1 -5 1)$ then find $\vec{a}-3\vec{b}$, $ \vec{a} $ and $ \vec{b} $					
4	If $\vec{a}=(1 3 -4)$, $\vec{b}=(2 -5 1)$ and $\vec{c}=(0 4 -2)$ Then find					
	$ \vec{a}-\vec{b} + \vec{c} $, $3\vec{c}-5\vec{b}$ and a.b					
5	$\vec{a}-\vec{b}+\vec{c}$, $3\vec{c}-5\vec{b}$ and a.b If $A=\begin{bmatrix}1&2\\1&-3\end{bmatrix}$ and $B=\begin{bmatrix}0&-1\\5&3\end{bmatrix}$ then find (i) $A+B$ (ii) 3A					
	$\begin{pmatrix} 1 & 9 \end{pmatrix} \qquad \begin{pmatrix} 5 & 7 \end{pmatrix}$					
6	If $A = \begin{bmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$ then verify that					
	(i) $A + B = B + A$ (ii) $A + (-A) = (-A) + A = O$.					
	If $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1 \end{bmatrix}$ then verify that					
	If $A = \begin{bmatrix} 2 & 3 & -8 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 9 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$ then verify that					
7	$\begin{vmatrix} 1 & 0 & -4 \end{vmatrix} \begin{vmatrix} -7 & 1 & -1 \end{vmatrix} \begin{vmatrix} 2 & 4 & -1 \end{vmatrix}$					
	A + (B+C) = (A+B) + C.					
0	Find Y and Y if $Y + Y = \begin{bmatrix} 7 & 0 \end{bmatrix}$ and $Y = Y = \begin{bmatrix} 3 & 0 \end{bmatrix}$					
8	Find X and Y if $X+Y=\begin{bmatrix} 7 & 0 \\ 3 & 5 \end{bmatrix}$ and $X-Y=\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$					
	(0, 4, 9) $(7, 3, 8)$					
9	If $A = \begin{bmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{bmatrix}$ find the value of (i) $B - 5A$ (ii) $3A - 9B$					

10	Find the values of x , y , z if (i) $\begin{pmatrix} x-3 & 3x-z \\ x+y+7 & x+y+z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 6 \end{pmatrix}$						
	(ii) $(x \ y-z \ z+3)+(y \ 4 \ 3)=(4 \ 8 \ 16)$						
11	Find x and y if $x \begin{pmatrix} 4 \\ -3 \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$						
12	Multiply the given Matrices:						
	(a) $\begin{pmatrix} 4 & 2 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -3 \\ -4 \end{pmatrix}$ (c) $2 \begin{pmatrix} 5 & -2 \\ 6 & -3 \end{pmatrix}$						
	(d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ (e) $6 \begin{pmatrix} -4 & 7 \\ -1 & -3 \end{pmatrix}$ (f) $\begin{pmatrix} 8 & 4 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ 6 \end{pmatrix}$						
13	$\mathbf{P} = \begin{pmatrix} -2 & 0 \\ 5 & 1 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} -4 & 1 \\ 3 & -2 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$						
	(a) P ² (b) QP (c) 5Q						
	(d) PC (e) IQ (f) 3I						
14	If $A = \begin{bmatrix} 10 & -3 & 1 \\ 1 & 1 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 3 & 2 \\ 7 & 0 & 9 \\ 11 & 1 & 2 \end{bmatrix}$ then find $(3A - 5B + AB)^T$ If $A = \begin{bmatrix} 1 & 3 & -5 \\ 3 & 11 & 54 \\ -5 & 54 & 22 \end{bmatrix}$ then check whether the given matrix is symmetric or not? Justify						
15	If $A = \begin{bmatrix} 1 & 3 & -5 \\ 3 & 11 & 54 \\ -5 & 54 & 22 \end{bmatrix}$ then check whether the given matrix is symmetric or not? Justify						
	your answer. Then evaluate AB if $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.						
16	If $A = \begin{bmatrix} 0 & 3 & 5 \\ -3 & 0 & -4 \\ -5 & 4 & 0 \end{bmatrix}$ then check whether the given matrix is skew-symmetric or not?						
	Justify your answer. Then evaluate AB if $B = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.						
	<u> </u>						
17	$\begin{pmatrix} -2 & a \\ -4 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 22 \\ 9 \end{pmatrix}$						