试题类型	单选题
题目	甲、乙、丙三人各向目标射击一发子弹,以 $A \times B$ 与 C 分别
	表示甲、乙、丙命中目标,以下表示不多于两人命中目标的是
	()。
目录	/概率论与数理统计(中欧)/概率论的基本概念
难易度	中
是否带[考研]标识	
正确答案	A
解析	正确答案是 A。 由积事件定义。
A	ABC
В	$AB \cup BC \cup AC$
С	$\overline{A \cup B \cup C}$
D	$A \cup B \cup C$

试题类型	单选题
题目	将 n 个相互独立且可靠性为 p 的元件相互并联起来组成系统 S ,则系统
	S 的可靠性为 ()
目录	概率与统计 A/试卷 B
难易度	易
是否带[考研]标识	否
正确答案	В
解析	正确答案是B
	因为是并联所以只有在 n 个元件都不能正常工作时候系统才会不能正
	常工作,而 n 个元件都不能正常工作的概率为 $(1-p)^n$,所以系统 S 能
	正常工作的概率为 $1-(1-p)^n$
A	p^n
В	$1-(1-p)^n$
С	$1-p^n$
D	$(1-p)^n$

试题类型	单选题
题目	设连续型随机变量 X 的密度函数满足 $f(x) = f(-x)$, 则当 $x > 0$ 时,
	分布函数 <i>F(x)</i> 一定有 ()
目录	概率与统计 A/试卷 1
难易度	难
是否带[考研]标识	否
正确答案	A
解析	正确答案是 A
	$f(x)$ 对 称 , 故 $F(x)+F(-x)=1$, $F(0)=1/2$, $F(-x)=\int_{-\infty}^{-x}f(u)du=F(0)-\int_{0}^{x}f(u)du$; 故 A 对 ; C 不能对所有 x 都成立; 若 D 正确,则 $F(x)=\frac{2}{3}$, 故不成立
A	$F(-x) = \frac{1}{2} - \int_0^x f(u) du$
В	$F(-x) = 1 - \int_0^x f(u) du$
С	F(x) = F(-x)
D	F(-x) = 2F(x) - 1

试题类型	单选题
题目	二维随机变量(X,Y)服从单位圆盘上的均匀分布,则下面结论正确的是
目录	概率与统计 A/试卷 1
难易度	难
是否带[考研]标识	否
正确答案	С
解析	正确答案是 C。 $f(x,y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 \le 1\\ 0, 其他 \end{cases},$

	·
	$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2\sqrt{1-x^2}}{\pi}, -1 \le x \le 1\\ 0, \text{ #.de} \end{cases}$
	$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \frac{1}{\pi} dx = \frac{2\sqrt{1-y^{2}}}{\pi}, -1 \le y \le 1 \text{ in } X, Y \\ 0, \text{ in } t = 0 \end{cases}$
	同分布, 但不独立: 因 $f(x, y) = f_X(x) f_Y(y)$
A	X 与Y 是独立同分布的随机变量
В	X 与Y 是独立但分布不同的随机变量
С	X 与Y 是不独立但同分布的随机变量
D	X与Y是不独立也不同分布的随机变量

试题类型	单选题
题目	对任意两个独立且发生概率均大于零的事件 A 和 B ,不正确
	的是()
目录	概率与统计 A/试卷 1
难易度	易
是否带[考研]标识	否
正确答案	В
解析	正确答案是B
	由假设 $P(AB) = P(A)P(B) > 0 \Rightarrow AB \neq \emptyset$ 即 A 和 B 相容
A	$ar{A}$ 与 $ar{B}$ 一定独立
В	A 与 B 一定互不相容
С	A 与 $ar{B}$ 一定独立
D	\overline{A} 与 B 一定独立

试题类型	单选题
题目	如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$

	和 $F_2(x)$,那么 $X = \min\{X_1, X_2\}$ 的分布函数是()
目录	概率与统计 A/试卷 1
难易度	中
是否带[考研]标识	否
正确答案	D
解析	正确答案是 D
	$F_X(x) = P\{X \le x\} = 1 - [1 - F_1(x)][1 - F_2(x)]$
A	$F_1(x)F_2(x)$
В	$(1-F_1(x))(1-F_1(x))$
С	$1 - F_1(x)F_2(x)$
D	$1 - (1 - F_1(x))(1 - F_2(x))$

7	
试题类型	单选题
题目	两个盒子中各放了十只球,球颜色都是一只红球九只黑球。
	现从第一个盒中随机取出两球放入第二个盒中,然后再从第
	二个盒中随机抽取两球。则"第二次抽出的球是一红一黑"
	的概率"和"第二次抽出的球是一红一黑条件下,第一次抽
	取的球也是一红一黑"的概率是()
目录	概率与统计 A/试卷 1
难易度	中
是否带[考研]标识	否
正确答案	C
解析	正确答案是C
	A_i : "第 i 次取到一红一黑", $P(A_1) = \frac{C_9^1}{C_{10}^2} = \frac{1}{5}$,
	$P(\overline{A}_1) = \frac{4}{5} P(A_2 A_1) = \frac{C_2^1 C_{10}^1}{C_{12}^2} = \frac{10}{33},$
	$P(A_2 \mid \overline{A}_1) = \frac{C_{11}^1}{C_{12}^2} = \frac{1}{6} .$

	$P(A_2) = P(A_2 A_1)P(A_1) + P(A_2 \overline{A_1})P(\overline{A_1})$
	$= \frac{10}{33} \times \frac{1}{5} + \frac{1}{6} \times \frac{4}{5} = \frac{32}{165};$
	$P(A_1 \mid A_2) = \frac{P(A_2 \mid A_1)P(A_1)}{P(A_2)} = \frac{\frac{10}{33} \times \frac{1}{5}}{\frac{32}{165}} = \frac{5}{16}$
A	$\frac{15}{32}$ π $\frac{25}{146}$
В	$\frac{5}{24}$ $\pi \frac{47}{120}$
С	$\frac{32}{165}$ $\pi \frac{5}{16}$
D	$\frac{63}{125}$ $\pi \frac{7}{15}$

O	
试题类型	单选题
题目	设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则
	一定成立的是()
目录	概率与统计 A/试卷 1
难易度	易
是否带[考研]标识	否
正确答案	D
解析	正确答案是 D
	由对称性 $P(X > Y) = P(X < Y)$,其它结论未必正确
A	$P(X=Y) = \frac{1}{2}$
В	P(X=Y)=1
С	$P(X > Y) = P(X < Y) = \frac{1}{2}$
D	P(X > Y) = P(X < Y)

试题类型	单选题
题目	设随机变量 X 的密度函数 $f_X(x)$ 。 令 $Y = -2X$,则 Y 的密度函数 $f_Y(y)$ 为 ()。
目录	/概率论与数理统计(中欧)/随机变量及其分布
难易度	中
是否带[考研]标识	否
正确答案	C
解析	正确答案为C,考察随机变量函数分布的计算。
A	$2f_{X}(-2y)$
В	$2f_X\left(-rac{y}{2} ight)$
С	$\frac{1}{2}f_{x}\left(-\frac{y}{2}\right)$
D	$-\frac{1}{2}f_{X}\left(-\frac{y}{2}\right)$

试题类型	单选题
题目	设随机变量 X 服从参数为 p 的 0-1 分布,则
	E(X) = ()
分值	2
难易度	易
正确答案	A
A	p
В	2p
С	1
D	0
答案解析	解:
	$E(X) = 0 \square (1-p) + 1 \square p = p.$

试题类型	单选题
题目	对任意随机变量 X, 若 E(X)存在, 则
	$E\{E[E(X)]\}=(\)$
分值	2
难易度	易
正确答案	В
A	0
В	E(X)
С	1
D	不能确定
答案解析	解: 由 E (C) = C 可得。

试题类型	单选题
题目	设随机变量X的概率密度为
	$f(x) = \begin{cases} 1 - 1 - x , & 0 < x < 2 \\ 0, & \text{其它} \end{cases},$
	则 E(X)= ()
分值	2
难易度	易
正确答案	C
A	0
В	2
С	1
D	0.5
答案解析	解:
	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
	$= \int_0^1 x \Box x dx + \int_1^2 x \Box (2-x) dx = 1.$

试题类型	单选题
题目	设随机变量 X 服从泊松分布,且

	P{X=1}=P{X=2},则 D(X)= ()
分值	2
难易度	易
正确答案	D
A	1
В	0.5
С	0.75
D	2
答案解析	解:
	$P\{X=1\} = P\{X=2\} \Rightarrow e^{-\lambda} \frac{\lambda^1}{1!} = e^{-\lambda} \frac{\lambda^2}{2!}$
	$\Rightarrow \lambda = 2.$
	所以 D (X) =2

试题类型	单选题
题目	设(X,Y)服从二维正态分布,则下列条件中不
	是 X, Y 相互独立的充要条件是()
分值	2
难易度	易
正确答案	D
A	X,Y 不相关
В	E(XY)=E(X)E(Y)
С	cov(X,Y)=0
D	E(X)=E(Y)=0
答案解析	解:
	由二维正态分布 X,Y 相互独立的定义及 X,Y
	不相关的定义及其二者之间的关系可得。

	,
试题类型	单选题
题目	设随机变量(X,Y)具有概率密度
	$f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & \text{ 其它} \end{cases}$

	则 $\rho_{xy}=()$
分值	2
难易度	易
正确答案	С
A	$\frac{1}{11}$
В	1
С	$-\frac{1}{11}$
D	0.5
答案解析	解:
	$E(X) = \int_0^2 \int_0^2 x \frac{1}{8} (x+y) dx dy = \frac{7}{6} = E(Y).$
	$D(X) = E(X^{2}) - [E(X)]^{2}$ $= \int_{0}^{2} \int_{0}^{2} x^{2} \frac{1}{8} (x+y) dx dy - \frac{49}{36}$
	$ = \int_0^1 \int_0^1 x dx + y dx dy - \frac{1}{36} $ $ = \frac{5}{3} - \frac{49}{36} = \frac{11}{36} = D(Y). $
	3 36 36
	cov(X,Y) = E(XY) - E(X)E(Y)
	$= \int_0^2 \int_0^2 xy \frac{1}{8} (x+y) dx dy - \frac{7}{6} \frac{7}{6}$
	$=\frac{4}{3}-\frac{49}{36}=-\frac{1}{36}.$
	$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)D(Y)}} = \frac{-\frac{1}{36}}{\frac{11}{36}} = -\frac{1}{11}.$

试题类型	单选题
题目	设总体 X 服从参数为 $\frac{1}{2}$ 的指数分布,
	X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本,则
	当 $n \to \infty$ 时,由大数定理可得 $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$
	依概率收敛于 ()
分值	2

难易度	易
正确答案	A
A	0.5
В	0
С	2
D	1
答案解析	解:
	$E(X^{2}) = \int_{0}^{+\infty} x^{2} \Box 2e^{-2x} dx = \frac{1}{2}.$
	所以由大数定理可得结论。

试题类型	单选题
题目	对于给定的正数 $\alpha(0<\alpha<1)$, 设 z_{α} ,
	$\chi^2_lpha(n)$, $t_lpha(n)$, $F_lpha(n_1,n_2)$ 分别是标准正态
	分布, $\chi^2(n)$, $t(n)$, $F(n_1,n_2)$ 分布的上 α
	分位点,则下面的结论中不正确的是()
分值	2
难易度	易
正确答案	В
A	$z_{1-\alpha} = -z_{\alpha}$
В	$\chi_{1-\alpha}^2(n) = -\chi_{\alpha}^2(n)$
С	$t_{1-\alpha}(n) = -t_{\alpha}(n)$
D	$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$
答案解析	解: 标准正态分布, $\chi^2(n)$, $t(n)$, $F(n_1,n_2)$
	分布的上α分位点的定义及性质可得结论。

试题类型	单选题
题目	设总体 X 服从正态分布 N(10,3 ²),
	X_1, X_2, \cdots, X_6 是它的一个样本,
	$\overline{X} = \frac{1}{6} \sum_{i=1}^{6} X_{i}$, 则由中心极限定理可得
	$P\{\overline{X} > 11\} = ()$
分值	2
难易度	易
正确答案	A
A	$1-\varphi(\frac{\sqrt{6}}{3})$
В	$\varphi(\frac{\sqrt{6}}{3})$
С	$\varphi(\frac{\sqrt{2}}{3})$
D	$1-\varphi(\frac{\sqrt{2}}{3})$
答案解析	解:
	$X \square N(10,3^2), \overline{X} = \frac{1}{6} \sum_{i=1}^{6} X_i \square N(10,\frac{3^2}{6}).$
	$P\{\overline{X} > 11\} = P\{\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > \frac{11 - 10}{\frac{3}{\sqrt{6}}}\}$
	$\sqrt{n} \qquad \sqrt{6}$ $=1-\varphi(\frac{\sqrt{6}}{3}).$

1		
	试题类型	单选题
	题目	做点估计时,下述哪些是我们对估计量的要
		求()

分值	2
难易度	难
正确答案	D
A	估计是渐近相合估计
В	估计是相合估计
С	估计是无偏估计
D	以上都对
答案解析	解:
	点估计的估计量的评价标准。

试题类型	单选题
题目	设 X 服从 $b(1,p)$ 分布。令 $X_1,X_2,,X_n$ 为简单
	样本,则p的矩估计,最佳选项是()
分值	2
难易度	难
正确答案	A
A	\overline{X}
В	$1 + \sqrt{1 - 4S^2}$
	2
C	$1 - \sqrt{1 - 4S^2}$
	2
D	X_1
答案解析	解:由X是 E[X]的无偏估计可知。

试题类型	单选题
题目	设随机变量 $X \sim \pi(\lambda)$,这里 $\lambda > 0$ 。 $X_1,, X_n$
	是简单样本,则λ的最大似然估计为()
分值	2
难易度	难
正确答案	A
A	\overline{X}
В	S
С	$\sqrt{B_2}$,这里 B_2 是样本二阶中心矩
D	以上都对
答案解析	解:似然函数为:

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{X_i}}{X_i!} e^{-\lambda}\right) = e^{-n\lambda} \frac{\lambda^{\sum_{j=1}^{n} X_j}}{\prod_{j=1}^{n} X_j!}$$
最大似然方程为
$$0 = \frac{d \ln L(\lambda)}{d\lambda} = \frac{\sum_{j=1}^{n} X_j}{\lambda} - n$$
解得 $\hat{\lambda}_{MLE} = \overline{X}$

试题类型	单选题
题目	设随机变量 X 方差存在且有限,则对均值μ
	以及 σ^2 的估计,下述说法不正确的是()
分值	2
难易度	难
正确答案	С
A	X̄是μ的无偏估计
В	S^2 是 σ^2 的无偏估计
С	S是σ的无偏估计
D	矩法估计与最大似然估计都是相合估计
答案解析	解: $E[\overline{X}] = \mu$, $E[S^2] = \sigma^2$, 一般的, 即使 $E[\hat{\theta}] =$
	θ ,等式 $E[g(\hat{\theta})] = g(\theta)$ 也不成立,除非 g 是
	一个线性函数。

试题类型	单选题
题目	设 $X \sim N(\mu, 100^2)$, 随机抽取一组容量为 25
	的样本。在显著性水平 $\alpha = 0.05$ 下,检验问题
	H: μ≥100 vs. K: μ < 100 的拒绝域是()
分值	2
难易度	难
正确答案	D
A	$W = (-\infty, 100 - 20u_{0.025})$
	$\cup \left(100 + 20 u_{0.025}, \infty\right)$
В	$W = (-\infty, 100 - 20t_{0.025})$
	$\cup (100 + 20t_{0.025}, \infty)$
C	$W = (-\infty, 100 - 20t_{0.05})$
D	$W = (-\infty, 100 - 20u_{0.05})$
答案解析	解:

$X \sim N(\mu, \sigma^2)$,其中 σ^2 已知。则单边检验问题
$H: \mu \geq \mu_0$ vs. $K: \mu < \mu_0$ 的拒绝域为
$W = \left(-\infty, \mu_0 - \frac{\sigma}{\sqrt{n}} u_{\alpha}\right)$

试题类型	单选题
题目	某牛奶厂生产一种盒装牛奶,其容量 $X \sim N(100, \sigma^2)$, μ
	的单位是 ml , σ^2 的单位是 ml^2 。根据经验,总体方差不超
	过 32。某日,为了检验产品是否合格,质检部门随机抽取
	了 16 盒牛奶进行检验,检验结果是平均容量为103 ml,
	样本方差为13.84ml ² 。在显著性水平 0.05 下,检验问题
	$H_0: \sigma^2 \le 9 \text{ vs. } H_1: \sigma^2 > 9 \text{ 的拒绝域为 ()}$ 。
分值	2
难易度	难
正确答案	A
A	$S^2 \in \left(\frac{3}{5}\chi_{0.05}^2(15), \infty\right)$
В	$S^2 \in \left(\frac{9}{16}\chi_{0.05}^2(16), \infty\right)$
С	$S^2 \in \left(\frac{3}{5}\chi_{0.025}^2(15), \infty\right)$
D	$S^2 \in \left(\frac{9}{16}\chi_{0.025}^2(16), \infty\right)$
答案解析	解:
	单正态总体的方差单边检验问题 $H_0: \sigma^2 \leq \sigma_0^2$ vs. $\sigma^2 >$
	σ ₀ 水平α 拒绝域为
	$S^2 \in \left(\frac{\sigma_0^2}{n-1}\chi_\alpha^2(n-1), \infty\right)$

试题类型	单选题
题目	用铂球测万有引力常数值(单位: 10 ⁻¹¹ m³/(kg·
	s²))。所得观察数据为 6.661, 6.661, 6.667, 6.667,
	6.664 。设测定值总体X ~ N(μ , σ^2),其中 σ^2 未知。则
	μ的置信水平为 0.95 的置信区间()
分值	2
难易度	难
正确答案	D
A	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.05}(5), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.05}(5)\right)$

В	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.025}(5), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.025}(5)\right)$
С	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.05}(4), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.05}(4)\right)$
D	$\left(6.664 - \frac{3\sqrt{5}}{5000}t_{0.025}(4), 6.664 + \frac{3\sqrt{5}}{5000}t_{0.025}(4)\right)$
答案解析	解:方差未知的正态分布均值置信问题的枢轴量为 $T = \sqrt{n}(\bar{X} - \mu)/S \sim t(n-1)$ 由此可得水平 $1 - \alpha$ 的双侧置信区间为 $\begin{pmatrix} \bar{X} & S \\ \bar{X} & S \end{pmatrix}$
	$\left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$