INTERNET PROTOCOLS The Foundation of the Web **GOALS** Understand the protocols and systems that make the web possible Protocol stacks TCP/IP SMTP and FTP 0 TCP/IP SUITE Prior network protocols were centralized, and proprietary Packet-switched Split messages into parts, deliver independently, then reassemble Open Specifications are open to the public Enables clients to be "thin"

STANDARDS

- IETF Internet Engineering Taskforce
 - standardizes Internet protocols
 - examples,:TCP, IP, SMTP, RTP, SIP, HTTP
 - final standards document is referred to as a RFC (request for comments)
 - anybody can participate in the IETF!
 - http://www.ietf.org

STANDARDS

- W3C World Wide Web Consortium
 - standardizes web technologies, mostly markup languages.
 - examples: HTML, XML, XSLT, VoiceXML
 - final standards document is referred to as a "recommendation"
 - participation is fee-based (e.g. mostly big tech companies)
 - http://www.w3c.org

NETWORK STACKS Receiver Sender TCP/IP Mapped Flow of Data Application Application to OSI Layers Presentation Presentation Session Session UDP Transport Network Flow of Ethernet ATM Data Link Physical Physical Protocol Between Each Layer

PROTOCOL STACK Network Interface Layer Local physical communication Ethernet / radio interface Internet Layer Routing, validity, packet delivery IP 0 PROTOCOL STACK Transport Layer Application to application delivery TCP Application Layer SMTP, HTTP 0 **END-TO-END** COMMUNICATION Messages start at the application layer Move down to the physical layer

- Across the network
- Up the protocol stack on the recipient's machine to the application
- Communication seems "end-to-end"

TCP

- Transmission Control Protocol
 - Reliable
 - Connection-oriented
 - Use case: use when reliable transmission is essential.

UDP

- User Datagram Protocol
 - o Unreliable
 - Connectionless
 - Use case: use when some packet loss is ok (audio or video transmission)
 - Use case 2: use when packet loss can be engineered out of the system (real time system)

CLIENT-SERVER ARCHITECTURE

- Request-response
- Server listens on a given address/port
- Server waits for clients to connect
- Client sends a request
 - o Requests are single-line or block
- Server performs some action and responds
- Servers are stateful or stateless

BEFORE THE WEB

- How to share information?
 - o Email (SMTP)
 - o File transfer (FTP)
 - Newsgroups (NNTP)
 - Gopher
 - Linked menus of distributed resources

SMTP

- Simple Mail Transfer Protocol
- Typically uses TCP port 25
- Text-based protocol
- Sample message:
 - · HELO
 - MAIL FROM:<somebody@gmail.com>
 - RCPTTO:<another@gmail.com>
 - · DATA
 - blablaba
 - · QUIT

ASSIGNMENT

- · Reading:
 - Read chapters I & 4 in this free IBM e-book:
 - http://www.redbooks.ibm.com/pubs/pdfs/redbooks/gg243376.pdf
 - Tim Berners-Lee's original Web proposal: http://www.w3.org/History/1989/proposal.html
 - Tim Berners-Lee et al., CACM article on the web: http://dl.acm.org/citation.cfm?doid=179606.179671
- Complete <u>Homework # I</u> before next week.