Design of Flexural Members Chapter 8-10

Objectives are to review:

- Flexural Design [16.F]
- Shear: [16.G2]
- Serviceability: [16.L3] Deflection
- 1. Briefly Discuss Vibration [16.L5] & Ponding [16.App 2]
- 2. Evaluate members with concentrated loads:[16.J10]
- 3. Evaluate members with biaxial bending: [16.H1]
- 4. Determine Shear Center and Torsion applied to members
- 5. Design Beam Bearing Plates: [16.J8]
- 6. Design Lateral Bracing: [16.App 6]

Flexural Stress

Flexural Stress Elastic Section Modulus, S

Rectangular Section: S_{rect.}

$$M_y = F_y$$
 [(bd/4) (2d/3)] = F_y [bd²/6]
Therefore, elastic section modulus, $S_{rect} = bd^2/6$

Flexural Stress Plastic Section Modulus, Z

Rectangular Section: Z_{rect.}

$$M_P = M_N = F_y [(bd/2) (d/2)] = F_y [bd^2/4]$$

Therefore, plastic section modulus, $Z_{rect.} = [bd^2/4]$

Plastic Section Modulus, Z

Example 8-1

First, we must find the Plastic Neutral Axis (N.A.).

To find the Plastic N.A. set $A_1 = A_2$ and solve for $\overline{y}_p = 1.5$ in Plastic Section Modulus, $Z = \sum A_i |\overline{y}_i - \overline{y}_p|$

Flexure Limit States

Chapter 9-AISC Part 16.F

1. Full Section Yielding

- Continuously Braced (Laterally) or $L_b < L_p$
- Plastic Behavior Controls
- Compact sections

2. Inelastic Lateral-Torsional Buckling

- Braced at intermediate intervals, $L_p < L_b < L_r$

3. Elastic Lateral-Torsional Buckling

- Braced at long intervals, $L_r < L_b$

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Full Yielding-Elastic Design

Requirements:

1. Member must be braced such that:

$$L_b \leq L_p$$

Where,

 L_b = Distance between points in the compression flange that are either braced against lateral displacement or against twist of the section.

 L_p = Limiting Braced Distance for Full Plastic Yielding and the Beginning of Inelastic Lateral-Torsional Buckling (LTB) using <u>elastic analysis</u>

Full Yielding-Elastic Design

Compression Flange Bracing Limits for compact I-shaped Members and Channels:

$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$$
 EQ. F2-5

Note: L_p (LTB) does not apply to circular or square HSS or I-shaped members and channels with flexure about weak axis.

2. Member must be compact.

- <u>Compact</u> sections are capable of reaching full plastic yielding before buckling.
- Width-to-Thickness Ratio Limits for compact elements are specified in AISC Table B4.1b.

$$\lambda \leq \lambda_r$$

where,

 λ = Element Width-to-Thickness Ratio

 λ_r = Element compact/noncompact limit

Note: Most hot-rolled shapes are compact (see user note in AISC 16.F2). Other restrictions for λ_r apply for plastic analysis (see Appendix 1-1.2.2).

Nominal Moment Capacity:

$$M_n = M_p = F_y Z$$

EQ. F2-1

$$\Phi_b = 0.9 (LRFD)$$

$$\Omega_{\rm b} = 1.67 \; ({\rm ASD})$$

Table 3-2 AISC provides Plastic moment capacity for W shapes.

Zone 2 and 3 Behavior Lateral Torsional Buckling (LTB)

Nominal Moment vs. Unbraced Length Compact Sections

Nominal Moment Capacity

Zone 2-Inelastic LTB

AISC Eq. F2-2: I-Shaped Compact Sections

$$M_n = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

$$L_r = Eq. \ F2-6 \ AISC.$$

Note: L_p and L_r are provided in Table 3-2 for W shapes

Nominal Moment Capacity

Zone 2-Inelastic LTB

From AISC Eq. F2-2:

$$\emptyset M_n = \emptyset C_b \left[M_{px} - \left(M_{px} - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le \emptyset M_p$$

We can simplify this equation as follows: LRFD

$$\emptyset M_n = C_b [\emptyset M_{px} - (BF)(L_b - L_p)] \le \emptyset M_{px}$$
 Eq. 3-4a

Since **BF** is provided in Table 3-2, we can interpolate ΦM_n for any $L_p < L_b \le L_r$ for all W shapes.

Bending Coefficients, C_b

Lateral-Torsional Buckling Modification Factor

$$C_b = \frac{12.5 \, M_{max}}{2.5 \, M_{max} + 3 \, M_A + 4 \, M_B + 3 \, M_C} \quad (Eq. F1 - 1)$$

$$C_b = [12.5/4]/[(2.5/4+3/8+4/4+3/8) = 1.316$$

Beam Bending Coefficients, C_b Table 3-1 AISC

Bending Coefficients, C_b

Example 1

Given: The simply supported W18 x 55 beam is braced at ends only. $P_{LL} = 40$ kips, $P_{DL} = 10$ kips.

Find:

1. Is the beam adequate for flexure? Check LRFD and ASD

Nominal Moment Capacity Zone 3-Elastic LTB

AISC Eq. F2-3: I-Shaped Compact Sections

 $M_n = F_{cr}S_x \le M_p$ Eq. F2-3 where,

 $F_{cr} = Critical \ Elastic \ Buckling \ Stress \ in \ Beams. \ (EQ.\ F2-4)$

 $S_x = Elastic Section Modulus about x-axis$

Design Chart

AISC Table 3-10

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Design Chart AISC Table 3-10

Example 2 Problem 9-27

Given: W16 x 36 A992 beam

Find:

1. Using Elastic Analysis, is beam adequate? Neglect self-wt. and assume $C_b = 1.0$. LRFD and ASD

Nominal Moment Capacity

Non-Compact Sections

• W-shapes with non-compact compression flanges are included in Table 3-2 and have reduced strength due to <u>local buckling</u> and <u>LTB</u>.

• Section F3 of the AISC specification applies to <u>non-compact</u> I-shaped members and built up members with <u>slender</u> compression flanges.

Nominal Moment Capacity

Non-Compact Sections

Two Limit States: Full yielding does not apply

- 1. F3.1 Lateral Torsional Buckling: Same as F2.2
- 2. F3.2 Compression Flange Local Buckling:
 - a.) Non-compact Flanges:

$$M_n = \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$
 Eq. F3-1

b.) Slender Flanges:

$$M_n = \frac{0.9Ek_cS_x}{\lambda^2}$$

Eq. F3-2

Nominal Moment vs. Unbraced Length Non-Compact Sections

Class Problem 1

Given: $\underline{LL(psf)}$ $\underline{DL(psf)}$

Roof 30 10 (roofing only)

Floor 75 12 (superimposed)

15 (partition)

Bay spacing = 35ft.

Density of Concrete = 150 pcf

Find: Design interior Beams (L = 35ft):

- 1. 2nd & 3rd Floor (beams @ 5' c.c.)
- 2. Roof (beams @ 6'-4" c.c)

Method:(LRFD)

Shear Design

AISC Part 16.G1: General Provisions

All beams must be designed for adequate Web Shear Strength:

$$\Phi_{v} V_{n} \ge V_{u} (LRFD)$$

$$V_n / \Omega_v \ge V_u (ASD)$$

$$\Phi_{\rm v} = 1.0$$

$$\Omega_{\rm v} = 1.5$$

- Shear strength is generally not a problem for most rolled shapes except:
 - High concentrated loads near supports
 - Notched or coped beams
 - Thin webs
- Shear strength can be a critical consideration for built-up Plate girders because of the relatively thin webs.

Web Shear Stress

Web Shear Strength

Shear Yielding and Buckling

$$V_n = 0.6F_y A_w C_v$$

G2-1

G2.1 a) For all rolled I-shaped members with $\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_y}}$

$$\Phi_{\rm v} = 1.0 \, ({\rm LRFD})$$
 , $\Omega_{\rm v} = 1.5 \, ({\rm ASD})$

and

$$C_v = 1.0$$
 (Web Shear Coefficient)

G2-2

Few exceptions to the above requirements are listed in the user note.

Web Shear Coefficient, C_v

G2.1 b.) For all other shapes except round HSS, C_v depends on web slenderness ratio h/t_w and the presence of transverse web stiffeners.

• Use AISC Equations G2-3 through G2-5 to obtain C_v

Note: Transverse web stiffeners will increase web shear strength as determined by the web plate buckling coefficient, k_v utilized in these equations.

Table 3-2 provides shear strength values for all rolled shapes without web stiffeners and includes web slenderness considerations.

Example 4 Problem 10-21

Given: W14 x 34 A992 beam in diagram below

<u>Find</u>: Is Beam adequate for Shear? LRFD and ASD.

Design for Serviceability

AISC Part 16 Chapter L

L1: "Serviceability is a state in which the function of a building, its appearance, maintainability, durability, and comfort of its occupants are preserved under normal usage."

- Camber
- Deflections
- Drift
- Vibration
- Wind-induced motion
- Thermal expansion and contraction
- Connection slip

Design for Serviceability Beam Deflection

- Maximum beam deflections are evaluated under service load conditions for each span.
- Span deflection limits are specified by building codes and AASHTO for bridges.

Typical Requirements:

- For buildings: Δ_{LL} < span length/360 Floors
- For bridges : $\Delta_{\rm LL+I}$ < span length/800 to 1000

Beam Deflection Limits

IBC 2009

TABLE 10.1 Deflection Limits from IBC 2009			
Members	Loading conditions		
	L	D + L	S or W
For floor members	L 360	$\frac{L}{240}$	_
For roof members supporting plaster ceiling*	$\frac{L}{360}$	L 240	$\frac{L}{360}$
For roof members supporting nonplaster ceilings*	$\frac{L}{240}$	$\frac{L}{180}$	$\frac{L}{240}$
For roof members not supporting ceilings*	$\frac{L}{180}$	$\frac{L}{120}$	$\frac{L}{180}$
*All roof members should be investigated for ponding.			

Beam Deflection

Steps for Checking Service Load Deflections

- 1. Use Beam Diagrams/Structural analysis software to calculate maximum deflection for each span under <u>Service</u> (un-factored) <u>Loads</u>.
- 2. Check $\Delta_{LL(max)} \leq L/360$ for Floors

$$\Delta_{LL + D(max)} \leq L/240$$
 for Floors

- 3. Increase Beam Size (Moment of Inertia) if requirements are not satisfied. Use Table 3-3.
- 4. Consider cambering long beams to minimize dead load deflections and permanent sag in floors.

Beams with Concentrated Loads [AISC 16J10]

- 1. Forces applied normal to the flange of W-shaped sections.
- 2. Type of Forces
 - A. Single concentrated force (tension or compression)
 - B. Double concentrated force (force couple acting on ones side of the member)

Members with concentrated loads applied to flanges

C&W Warehouse, Spartanburg, SC. (Courtesy of Britt, Peters and Associates.)

Beams with Concentrated Loads [AISC 16J10]

1. Limit States

- A. Flange Local Bending (Tensile only) [J10.1]
- B. Web Local Yielding (All) [J10.2]
- C. Web Local Crippling (Compression only) [J10.3]
- D. Web Sidesway Buckling (Compression & unrestrained for torsion) [J10.4]
- E. Web Compression Buckling (Compression both flanges) [J10.5]
- F. Web Panel Zone Shear(Force couple applied to one or both flanges [J10.6]

Flange Local Bending

16.J10.1: Flange Local Bending

Tensile loads applied to flanges

$$R_n = 6.25 F_{yf} t_f^2 (kips)$$
 [Eq. J10-1]

Local Web Yielding

[AISC 16.J10.2]

$$R_n = F_{yw} t_w (2.5k + l_b)$$
 [Eq. J10-3]

Beams with Concentrated Loads Web Crippling

16.J10.3: Web Local Crippling

• Compression loads applied to flanges

(a)
$$x \ge d/2$$
; R_n : [Eq. J10-4]

(b)
$$x < d/2$$
;

i.
$$l_b/d \le 0.2$$
; R_n : [Eq. J10-5a]

ii.
$$l_b/d > 0.2$$
; R_n : [Eq. J10-5b]

[AISC Tables]

1. Use Table 9-4: "Beam Bearing Constants" for the following limit states:

A. Web Local Yielding

i.
$$x \le d$$
; $\Phi R_n = \Phi R_1 + l_b (\Phi R_2)$ or $R_n / \Omega = R_1 / \Omega + l_b (R_2 / \Omega)$

ii.
$$x > d$$
; $\Phi R_n = 2\Phi R_1 + l_b (\Phi R_2)$ or $R_n / \Omega = 2R_1 / \Omega + l_b (R_2 / \Omega)$

B. Web Local Crippling

i.
$$l_b/d \le 0.2$$
; $\Phi R_n = \Phi R_3 + l_b (\Phi R_4)$ or $R_n/\Omega = R_3/\Omega + l_b (R_4/\Omega)$

ii.
$$l_b/d > 0.2$$
; $\Phi R_n = 2\Phi R_5 + l_b(\Phi R_6)$ or $R_n/\Omega = 2R_5/\Omega + l_b(R_6/\Omega)$

Web Sidesway Buckling

16.J10.4: Web Sidesway Buckling

- Compression loads applied to flanges
- (a) Compression Flange restrained against rotation; R_n : [Eq. J10-6]
- (b) Compression Flange not restrained against rotation; R_n : [Eq. J10-7]

Web Compression Buckling

16.J10.5: Web Compression Buckling

Pair of Compression forces applied to flanges

$$R_n = \frac{24t_w^3 \sqrt{EF_{yw}}}{h}$$
 [Eq. J10-8]

Biaxial Bending

[AISC 16H1]

Biaxial Bending

[AISC 16H1]

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Class Problem 2

Given: Snow Load = 50 psf, DL = 10 psf, Wind = 20 psf \perp to roof truss @ 18 ft. 6 in. c-c.

Find:

- 1. Determine lightest channel for purlin considering biaxial bending only. Assume fully braced top flange.
- 2. Maximum Torsion

Shear Center

Shear Stress:
$$\sigma_v = \frac{VQ}{Ib}$$
 (psi)

Shear Flow:
$$q_v = \frac{VQ}{I}$$
 (lb/in)

- 1. Determine shear flow at various points on the section.
- 2. Place an imaginary Vertical Force (V) a distance e from the center of web and opposite direction of the centroid.
- 3. Sum Moments about the center of web and set equal to zero.
- 4. Solve for shear center, e_0

Torsion Force = P x (horiz. dist. to shear center, e')

Shear Center Example 10-8

Given: C10 x 30 beam, Simple Span = 15 ft., $w_u = 0.4$ klf, shear center, e = 0.706

Find:

- 1. Maximum Torsion Force applied to the beam. Assume ends are restrained against rotation.
- 2. Maximum Rotation of beam

Beam Bearing Plate Design

1. Compute minimum plate area based on concrete bearing strength similar to base plate design. [16J8]

$$P_p = 0.85 f_c 'A_1$$
 Eq.J8-1 $\Phi_c = 0.65, \ \Omega_c = 2.31$

2. Assume 1in. wide strip cantilever fixed at root of fillet. Determine plate thickness assuming full plastic yield of plate.

LRFD:
$$t = \sqrt{\frac{2R_u n^2}{\varphi_b A_1 F_y}}$$
; $\Phi_b = 0.9$

ASD:
$$t = \sqrt{\frac{2R_a n^2 \Omega_b}{A_1 F_y}}$$
; $\Omega_b = 1.67$

Beam Bearing Plate Design

1. Compute minimum plate area based on concrete bearing strength similar to base plate design. [16J8]

$$P_{p} = 0.85 f_{c} A_{I}$$
 Eq.J8-1 $\Phi_{c} = 0.65, \ \Omega_{c} = 2.31$

2. Check Web Local Yielding [Eq. J10-3] and Web Crippling [Eq. J10-5b]

Beam Bearing Plate Design

3. Assume cantilever strip (1in. wide) fixed at root of fillet. Determine plate thickness assuming full plastic yield of plate at root.

LRFD:
$$t = \sqrt{\frac{2R_u n^2}{\varphi_b A_1 F_y}}$$
 ; $\Phi_b = 0.9$

ASD:
$$t = \sqrt{\frac{2R_a n^2 \Omega_b}{A_1 F_y}}$$
; $\Omega_b = 1.67$

Example 5

<u>Given:</u> The simply supported beam is braced at ends only. $P_{LL} = 40$ kips, $P_{DL} = 10$ kips. Assume Each end is supported on 8 in. wide concrete bearing pad. (f_c '= 4ksi)

Find: Determine minimum size bearing plate for W18 x 55. LRFD

Beam Lateral Bracing Appendix 6.3

Given: W18 x 55 is braced at middle and ends.

Find: Required strength of lateral bracing. LRFD

Homework #2

Ch. 9 Problems: 25, 32

Ch10 Problems: 9, 17,24 (check LL deflection),27,28,30,31,32

Due: 09/22/14