Xiaojia Quan CS 161 HW6

1.

(a) P(A, B, C), P(x, y, z)

Unifier: $\{x/A, y/B, z/C\}$

(b) Q(y, G(B, A), D), Q(G(x, x), y, D).

The unifier does not exist because x cannot bind to both A and B

(c) R(x,z,A), R(A,z,y)

 $\{x/A, y/A, z/B\}$

(d) Older(Father(y), John), Older(Father(x), x).

{x/John, y/John}

(e) Knows(y,y), Knows(Father(x),x).

The unifier does not exist since we cannot force y/Father(y)

2.

- John likes all kinds of food.
- Apples are food.
- Chicken is food.
- Anything someone eats and isn't killed by is food.
- If you are killed by something, you are not alive.
- Bill eats peanuts and is still alive. *
- Sue eats everything Bill eats.
- 1. (a) Translate these sentences into formulas in first-order logic.
 - a. $(Ax) (Food(x) \Rightarrow Likes(John, x))$
 - b. Food(Apples)
 - c. Food(Chicken)
 - d. $((A \ a \ b) \ (Eat(a, b) \ \& \ (\sim Kill \ (b, a))) => Food(b))$

	 e. ((A q r) Kills(q, r) => (~ Alive(r))) f. Eats(Bill, Peanuts) & Alive(Bill) g. (Az) ((Eats (Bill, z)) => Eats (Sue, z)) 	
(b) Convert the formulas of part (a) into CNF (also called clausal form).		
	a. $\sim Food(x) \mid Likes(John, x)$	
	b. Food(Apples)	
	c. Food(Chicken)	
	d. \sim Eat(a, b) Kill(b, a) Food(b)	
	e. \sim Kills(q, r) \sim Alive(r)	
	f. Eats(Bill, Peanut) & Alive(Bill)	
	g. ~Eats(Bill, z) Eats(Sue, z)	
(c) Prove that John likes peanuts using resolution.		
	a. \sim Food(x) Likes(John, x)	
	b. Food(Apples)	
	c. Food(Chicken)	
	d. \sim Eat(a, b) Kill(b, a) Food(b)	
	e. \sim Kills(q, r) \sim Alive(r)	
	f. Eats(Bill, Peanut) & Alive(Bill)	
	g. ~Eats(Bill, z) Eats(Sue, z)	
	Prove: h. ~Likes(John, peanuts)	
	i. ~Food(Peanuts)	a, h
	j. ~Eats(Bill, Peanuts) Kills(Peanuts, Bill)	d, i, a/Bill, b/Peanuts
	k. Eats(Bill, Peanuts)	f
	l. Kills(Peanuts, Bill)	j, k

f n. Alive(Bill) o. False contradiction between m and n. Thus, ~Like(John, peanuts) is false. Likes(John, peanuts) has been proved. (d) Use resolution to answer the question, "What food does Sue eat?" a. \sim Food(x) | Likes(John, x) b. Food(Apples) c. Food(Chicken) d. \sim Eat(a, b) | Kill(b, a) | Food(b) e. \sim Kills(q, r) | \sim Alive(r) f. Eats(Bill, Peanut) & Alive(Bill) g. ~Eats(Bill, z) | Eats(Sue, z) Eats(Sue, peanut) f. g. z/Peanut (e) (CNF) 1. Eats(x, y) | Die(x) $2. \sim Die(x) \mid \sim Alive(x)$ 3. Alive(Bill) Ans: a. \sim Food(x) | Likes(John, x) b. Food(Apples) c. Food(Chicken)

r/Bill, e, 1

m. ~Alive(Bill)

- d. \sim Eat(a, b) | Kill(b, a) | Food(b)
- e. \sim Kills(q, r) | \sim Alive(r)
- g. \sim Eats(Bill, z) | Eats(Sue, z)
- 1. $Eats(o, q) \mid Die(o)$
- $2. \sim Die(w) \mid \sim Alive(w)$
- 3. Alive(Bill)
- 4. ~Die(Bill) x/Bill
- 5. Eats(Bill, q) o/Bill
- 6. Eats (Bill, M) q/M
- 7. ~Eats(Bill, M) | Eats(Sue, M) z/M
- 8. Eats (Sue, M) 6, 7