1

第2章 进程与线程

硬件基础运行环境

-

第2章 进程与线程

2.1处理器概述

2.1.1单处理器和多处理器系统

- ■计算机系统的核心是中央处理器
 - ■中央处理器的任务:
 - ■取指→译码→取操作数→执行指令
 - ■单处理器系统:一个计算机系统只包括一个 运算处理器。
 - 多处理器系统: 一个计算机系统有多个运算 **处理器**。

计算机系统结构分类

■ 单指令流单数据流(SISD): 一个处理器在一个存储器中的数据上执行单条指令流

算机系统结构分类

单指令流多数据流(SIMD): 单条指令流控制多个处理 单元同时执行,每个处理单元包括处理器和相关的数 据存储,一条指令控制了不同的处理器对不同的数据 进行操作。向量机和阵列机是这类计算机系统的代表

计算机系统结构分类

■ 多指令流单数据流(MISD): 一个**数据流**被传送给一组 **处理器**,通过处理器上不同指令操作最终得到处理结 果

计算机系统结构分类

■ 多指令流多数据流(MIMD): 多个处理器对各自不同的数据集同时执行不同的指令流。可以把MIMD系统划分为共享内存紧密耦合系统和内存分布松散耦合系统两类(共享内存型还可再分为MSP(Master/Slave)和SMP(Symmetric))

- 多处理器指在一个体系结构上放置多个(单核)CPU芯片, 而多核则指在同一块CPU芯片上放置多个核(core), 即执行单元。
- 多CPU和多核的区别是后者更加紧凑,成本更低、功 耗更小。

■(1)多处理器结构

■(2)超线程结构

■(3)多核结构

■(4)多核超线程结构

- ■操作系统与多核处理器的关系
 - ■处理器通信支持
 - 进程/线程数据共享支持
 - ■存储器层次及管理
 - ■程序并行执行模型支持
 - ■同步支持
 - ■调度及优化
 - ■能耗管理

2.1.2寄存器(1)

- 计算机系统的处理器包括一组寄存器, 其个数根据机型的不同而不同,它们构 成了一级存储,比主存容量小,但访问 速度快。
- 这组寄存器所存储的信息,与程序的执 行有很大关系,构成了**处理器现场**。

寄存器(2)

- ■按照功能分类: x86结构为例
 - ■通用寄存器-- EAX, EBX, ECX和EDX
 - ■指针及变址寄存器--ESP, EBP, ESI及EDI
 - 段选择符寄存器--CS、DS、SS、ES、FS、GS
 - ■指令指针寄存器和标志寄存器--EIP、 EFLAGS
 - ■控制寄存器--CRO, CR1, CR2和CR3
 - ■外部设备使用的寄存器

-

2.1.3 特权指令与非特权指令(1)

机器指令的集合称指令系统

- ① 数据处理类指令
 - 执行算术和逻辑运算
- ② 转移类指令
 - 改变指令的执行序列
- ③ 数据传送类指令
 - 处理器的寄存器间、寄存器与主存单元间、 主存单元间数据交换
- ④ 移位与字符串指令
- ⑤ I/O类指令

特权指令与非特权指令(2)

- 从资源管理和控制程序执行的角度出发, 必须把指令系统中的指令分作两部分
 - ■特权指令: 只能提供给操作系统的核心程序 使用的指令
 - ■非特权指令: 其他普通功能指令

特权指令做了一些什么?

- 设置定时器
- ■读取时钟
- ■清除内存
- 发起陷入指令
- 关中断
- 修改设备状态信息
- 用户与内核态切换
- 访问I/O设备

中央处理器如何判定特权指令是否能够执行呢?

2.1.4 处理器状态

- 处理器状态标志和设置处理器成不同状态:
 - 管理状态(特权状态、系统模式、特态或管态)
 - 用户状态(目标状态、用户模式、常态或目态)
- 处理器处于管理状态时
 - 程序可以执行全部指令,使用所有资源,具有改变处理器状态的能力;
- 处理器处于用户状态时
 - 程序只能执行非特权指令
- 操作系统内核工作在管理态,用户程序工作在用户态
 - 特权指令只允许OS内核执行
- CPU通常用受保护的控制寄存器来区分管理态和用户 态

OS保护

Intel Pentium的处理器状态有四种,支持4个保护级别,0级权 限最高,3级权限最低

- 内核态运行在Ring0
- 用户态运行在Ring3

了存保护

- OS必须做到不同进程间的内存隔离
- OS内核占用的内存不能被用户态的进程破坏
- 硬件支持的内存保护
 - ■基址与限址寄存器
 - 页表寄存器/页属性/页保护
 - ■段描述符/段属性
 - 大小、基址、特权级、代码/数据
 - 通过特权级检查,实现内存的隔离与保护

处理器状态的切换

应用程序和内核程序相互隔离保护了,怎 么实现相互联系呢?

- 引起处理器状态切换的原因(用户态**→**核心 杰):
 - 程序请求操作系统服务,执行系统调用
 - 程序运行产生中断或者异常事件,程序被中断,转 向中断处理程序或异常处理程序
- ■状态切换步骤
 - 保存中断处理器现场
 - ■根据中断号设置程序计数器
 - 交换PSW, 转向中断处理程序

2.1.5 程序状态字寄存器(1)

- 计算机如何知道当前处于何种工作状态? 这时 能否执行特权指令?
 - 程序状态字: PSW (Program Status Word),用 于区别不同的处理器工作状态
 - 控制指令执行顺序
 - 保留和指示与程序有关的系统状态
 - 实现程序状态的保护和恢复
- 程序和处理器的配合:
 - 每个程序都有一个/组与其执行相关的PSW
 - 每个处理器都设置一个/组PSW寄存器
 - 程序占有处理器执行,它的PSW将占有PSW寄存器

程序状态字寄存器(2)

- PSW寄存器包括以下内容:
 - ■程序基本状态:
 - ■程序计数器;
 - ■条件码;
 - ■处理器状态位。
 - 中断码。保存程序执行时当前发生的中断事件。
 - 中断屏蔽位。指明程序执行中发生中断事件 时,是否响应出现的中断事件。

- ■通用寄存器
- 8, 16, and 32 bit versions
- 堆栈平衡目的: %EBP, %ESP

General-Purpose Registers

31	16	15	8	7	0	16-bit	32-bit
		AH		AL		AX	EAX
		BH		BL		BX	EBX
		CH		CL		CX	ECX
		DH		DL		DX	EDX
		BP					EBP
		SI					ESI
		DI					EDI
		SP					ESP

- EIP 执行指令在内存中的地址
- ■指令长度不是固定的
- EIP通常可以被 CALL, RET, JMP等控制

■控制寄存器

- 实模式
- 保护模式

- 8086: 16-bits 处理器
 - 可寻址空间: 64KB
- 地址总线 20-bits
 - 最大寻址空间: 1MB
 - 16位如何与20位匹配
 - ■引入段寄存器,分两次读进地址:段基址+偏移
 - 实模式寻址: physical addr = 16 * segment + offset
 - CS: code segment, for EIP
 - SS: stack segment, for SP and BP
 - DS: data segment for load/store via other registers
 - ES: another data segment, destination for string ops
 - *e.g. CS*=*f*000 *IP*=*fff*0 => *ADDR*: *ffff*0

- 80386: 32-bit data and bus addresses
 - ■保护模式

- ■向前兼容性
 - 8086是16位的处理器+20位的地址总线
 - 为了兼容......

- 从实模式启动,切换到保护模式
- ■一直沿用至今

- ■与内存管理相关的寄存器
 - GDTR (全局描述符寄存器)
 - ■段属性
 - IDTR (中断描述符寄存器)
 - ■中断响应程序的地址
 - ■保护级别
 - TR (任务寄存器)
 - ■与进程相关
 - ■用户进程切换时的状态保存地址
 - TSS

- ■与程序状态相关的寄存器
 - Intel Pentium中,PSW由标志寄存器EFLAGS和指令 指针寄存器EIP组成,均为32位。

- EFLAGS的低16位称FLAGS,标志可划分为三组:
 - ■状态标志: CF, PF, AF, ZF, OF, SF
 - ■控制标志: VM, TF, IF(中断允许)等
 - ■系统标志: IOPL (控制I/O访问)

System Flags in the EFLAGS

讨论问题

1. 在支持多道任务处理时,单核处理器、 多核处理器、多重处理器从微观上看是 串行还是并行,为什么?

2. 当应用程序和内核程序分别受到攻击, 可能存在哪些风险,各有什么不同?