Quantum Backpropagation (QBP) for Training a Variational Quantum Circuit for Supervised Learning

Amit LeVi

November 15, 2024

Training a Variational Quantum Circuit for Supervised Learning We're exploring how to train a variational quantum circuit (VQC) for a given supervised learning model using a dataset $\{(X_i, y_i)\}$.

Problem Definition

Objective: Optimize the parameters $\vec{\theta}$ of a VQC $U(\vec{\theta})$ to minimize a loss function $\mathcal{L}(\vec{\theta})$ over a dataset $\{(X_i, y_i)\}$, where:

- X_i : Input data samples.
- y_i : Corresponding target labels.

Algorithm Steps

1. Data Encoding

Goal: Encode classical input data X_i into quantum states $|\psi(X_i)\rangle$. Methods:

- Amplitude Encoding: Use the amplitudes of the quantum state to represent the data.
- Basis Encoding: Map data to the basis states of qubits.
- Angle Encoding: Encode data into rotation angles of quantum gates.

Example using Angle Encoding:

For each feature $x_{i,j}$ of X_i , apply a rotation gate to qubit j:

$$|\psi(X_i)\rangle = \bigotimes_j R_Y(x_{i,j}) |0\rangle$$

- $R_Y(\theta) = e^{-i\theta Y/2}$ is the rotation around the Y-axis.
- $|0\rangle$ is the initial state of each qubit.

2. Variational Quantum Circuit

Circuit Structure:

- Parameterized Gates: Gates that depend on parameters $\vec{\theta}$, such as $R_Y(\theta_k)$ or $R_Z(\theta_k)$.
- Entangling Gates: Gates like CNOT to create entanglement between qubits.

Circuit Application:

- 1. State Preparation: Start with $|\psi(X_i)\rangle$.
- 2. Apply $U(\vec{\theta})$: Sequence of parameterized and entangling gates.
- 3. Resulting State: $\left|\phi_i(\vec{\theta})\right\rangle = U(\vec{\theta}) \left|\psi(X_i)\right\rangle$.

3. Measurement and Output

Measurement Operator O:

- Usually a Hermitian operator corresponding to an observable.
- Commonly, measurements are performed on one or more qubits.

Compute Model Output:

$$f_{\vec{\theta}}(X_i) = \left\langle \phi_i(\vec{\theta}) \middle| O \middle| \phi_i(\vec{\theta}) \right\rangle$$

This is the expected value of O after applying the circuit to $|\psi(X_i)\rangle$.

4. Loss Function Definition

For Regression Tasks:

Mean Squared Error (MSE):

$$\mathcal{L}(\vec{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\vec{\theta}}(X_i))^2$$

For Classification Tasks:

Cross-Entropy Loss:

$$\mathcal{L}(\vec{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \ln p_{\vec{\theta}}(X_i) + (1 - y_i) \ln (1 - p_{\vec{\theta}}(X_i)) \right]$$

• $p_{\vec{\theta}}(X_i)$ is the probability obtained from measuring $|\phi_i(\vec{\theta})\rangle$.

5. Gradient Computation

Parameter-Shift Rule for Quantum Gradients:

For each parameter θ_k :

1. Shifted Parameters:

$$\vec{\theta}_k^{\pm} = \vec{\theta} \pm \frac{\pi}{2} \vec{e}_k$$

• \vec{e}_k is a unit vector with 1 at position k and 0 elsewhere.

2. Compute Shifted Outputs:

$$f_{\vec{\theta}_k^{\pm}}(X_i) = \langle \psi(X_i) | U^{\dagger}(\vec{\theta}_k^{\pm}) OU(\vec{\theta}_k^{\pm}) | \psi(X_i) \rangle$$

3. Compute Quantum Gradient:

$$\frac{\partial f_{\vec{\theta}}(X_i)}{\partial \theta_k} = \frac{1}{2} \left[f_{\vec{\theta}_k^+}(X_i) - f_{\vec{\theta}_k^-}(X_i) \right]$$

4. Compute Loss Gradient:

For loss $\ell(y_i, f_{\vec{\theta}}(X_i))$:

$$\frac{\partial \mathcal{L}}{\partial \theta_k} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell(y_i, f_{\vec{\theta}}(X_i))}{\partial f_{\vec{\theta}}(X_i)} \cdot \frac{\partial f_{\vec{\theta}}(X_i)}{\partial \theta_k}$$

• For MSE:

$$\frac{\partial \ell}{\partial f_{\vec{\theta}}(X_i)} = -2(y_i - f_{\vec{\theta}}(X_i))$$

• For Cross-Entropy:

$$\frac{\partial \ell}{\partial f_{\vec{\theta}}(X_i)} = -\left(\frac{y_i}{p_{\vec{\theta}}(X_i)} - \frac{1-y_i}{1-p_{\vec{\theta}}(X_i)}\right) \cdot \frac{\partial p_{\vec{\theta}}(X_i)}{\partial f_{\vec{\theta}}(X_i)}$$

6. Parameter Update with Optimizer

Using the Adam Optimizer:

• Initialize:

- $-m_k = 0$ (First moment estimate)
- $-v_k = 0$ (Second moment estimate)
- -t = 0 (Time step)

- Hyperparameters: η (learning rate), β_1 , β_2 (decay rates), ϵ (small
- At Each Iteration:
 - 1. Increment Time Step:

$$t = t + 1$$

- 2. Compute Gradients $\frac{\partial \mathcal{L}}{\partial \theta_k}$ for all k as above.
- 3. Update First Moment Estimate:

$$m_k = \beta_1 m_k + (1 - \beta_1) \frac{\partial \mathcal{L}}{\partial \theta_k}$$

4. Update Second Moment Estimate:

$$v_k = \beta_2 v_k + (1 - \beta_2) \left(\frac{\partial \mathcal{L}}{\partial \theta_k}\right)^2$$

5. Compute Bias-Corrected Estimates:

$$\hat{m}_k = \frac{m_k}{1-\beta_1^t}, \quad \hat{v}_k = \frac{v_k}{1-\beta_2^t}$$

6. Update Parameters:

$$\theta_k \leftarrow \theta_k - \eta \frac{\hat{m}_k}{\sqrt{\hat{v}_k} + \epsilon}$$

7. Convergence Check

Stopping Criteria:

- Maximum Iterations: Stop after a set number of iterations.
- Loss Threshold: Stop when $\mathcal{L}(\vec{\theta})$ is below a predefined threshold.
- Parameter Change: Stop if $|\theta_k^{\text{new}} \theta_k^{\text{old}}|$ is below a small value for all k.

Quantum Backpropagation (QBP)

```
Initialize parameters randomly
Initialize first moment m = 0 and second moment v = 0
Set hyperparameters , 1, 2,
Set time step t = 0
repeat until convergence:
   t = t + 1
    for each data point (X_i, y_i):
        Prepare quantum state |(X_i)> from input X_i
        for each parameter _k:
            // Compute shifted parameters
            _{plus} = + (/2) * e_k
            _{\text{minus}} = - (/2) * e_k
            // Apply quantum circuit with shifted parameters
            f_plus = Measure O after applying U(_plus) to |(X_i)>
            f_minus = Measure O after applying U(_minus) to |(X_i)>
            // Compute gradient of the model output
            f/_k = (f_plus - f_minus) / 2
            // Store f/_k for gradient computation
        // Compute gradient of loss function
        Compute f based on loss function (y_i, f_(X_i))
        // Compute gradient of loss with respect to parameters
        For each _k:
            /_k = (/f) * (f/_k)
    // Average gradients over all data points
    For each _k:
        g_k = (1/N) * _i _i/_k
        // Update moments
        m_k = 1 * m_k + (1 - 1) * g_k
        v_k = 2 * v_k + (1 - 2) * (g_k)^2
        // Bias correction
        m_hat_k = m_k / (1 - 1^t)
        v_{hat_k} = v_k / (1 - 2^t)
        // Update parameters
        _k = _k - * m_hat_k / (sqrt(v_hat_k) + )
```

Mathematical Proof of Correctness

Parameter-Shift Rule Correctness

Assumptions:

- The gate $U_k(\theta_k) = e^{-i\theta_k G_k}$, where G_k is a Hermitian operator with eigenvalues ± 1 .
- The cost function $f_{\vec{\theta}}(X_i) = \langle \psi(X_i) | U^{\dagger}(\vec{\theta}) OU(\vec{\theta}) | \psi(X_i) \rangle$ is differentiable with respect to θ_k .

Proof:

1. Derivative of $f_{\vec{\theta}}(X_i)$:

$$\frac{\partial f_{\vec{\theta}}(X_i)}{\partial \theta_k} = \langle \psi(X_i) | \frac{\partial U^{\dagger}(\vec{\theta})}{\partial \theta_k} OU(\vec{\theta}) + U^{\dagger}(\vec{\theta}) O \frac{\partial U(\vec{\theta})}{\partial \theta_k} | \psi(X_i) \rangle$$

2. Derivative of $U(\vec{\theta})$:

$$\frac{\partial U(\vec{\theta})}{\partial \theta_k} = -iU_1 \cdots U_{k-1} G_k U_k(\theta_k) U_{k+1} \cdots U_N$$

3. Simplify the Expression:

Let
$$|\phi_i(\vec{\theta})\rangle = U(\vec{\theta}) |\psi(X_i)\rangle$$
, then:

$$\frac{\partial f_{\vec{\theta}}(X_i)}{\partial \theta_k} = -i \left\langle \phi_i(\vec{\theta}) \middle| \left[G_k, O \right] \middle| \phi_i(\vec{\theta}) \right\rangle$$

4. Express Using Shifted Parameters:

Since $G_k^2 = I$ and eigenvalues are ± 1 , we have:

$$\frac{\partial f_{\vec{\theta}}(X_i)}{\partial \theta_k} = \frac{1}{2} \left[f_{\vec{\theta}_k^+}(X_i) - f_{\vec{\theta}_k^-}(X_i) \right]$$

This shows that the parameter-shift rule gives the exact gradient.

Convergence of the Optimizer

- Adam Optimizer is proven to converge under certain conditions (bounded gradients, appropriate hyperparameters).
- Assumptions in Quantum Context:
 - Bounded Gradients: Quantum measurements yield bounded outputs; thus, gradients are bounded.

- **Smoothness:** The cost function is smooth due to the nature of quantum gates and measurements.

Conclusion:

Using the parameter-shift rule and Adam optimizer, the algorithm converges to a set of parameters $\vec{\theta}^*$ that minimize the loss function $\mathcal{L}(\vec{\theta})$.

_

Memory Requirements

- Classical Memory:
 - Store parameters $\vec{\theta}$, gradients \vec{g} , and optimizer variables \vec{m}, \vec{v} .
 - Memory complexity: $\mathcal{O}(N)$, where N is the number of parameters.

• Quantum Memory:

- Quantum circuits are executed per data point and per parameter shift.
- Quantum memory is used per circuit execution but does not accumulate.
- Memory complexity depends on the number of qubits and circuit depth, not on N or dataset size.

Summary

By following this algorithm:

- We encode classical data X_i into quantum states $|\psi(X_i)\rangle$.
- We apply a parameterized quantum circuit $U(\vec{\theta})$ and measure to get outputs $f_{\vec{\theta}}(X_i)$.
- We define a suitable loss function $\mathcal{L}(\vec{\theta})$ and compute its gradients with respect to the parameters using the parameter-shift rule.
- We update the parameters using the Adam optimizer to minimize the loss.

This full algorithm allows us to train a VQC for supervised learning tasks using datasets $\{(X_i, y_i)\}$, bridging the gap between classical data and quantum computing capabilities.

Quantum Gradient Estimation with Grover's Algorithm:

- State Preparation: $\mathcal{O}(N)$ - Circuit Execution: $\mathcal{O}(Nd)$ - Gradient Estimation: $\mathcal{O}(P\sqrt{N})$ - Synchronization: $\mathcal{O}(P\log Q)$ - Adam Optimization: $\mathcal{O}(P)$ Total Quantum Complexity:

$$\mathcal{O}(N) + \mathcal{O}(Nd) + \mathcal{O}(P\sqrt{N}) + \mathcal{O}(P\log Q) + \mathcal{O}(P)$$

Classical Back-propagation

$$\mathcal{O}\left(\sum_{l=1}^{L}n_{l-1}n_{l}\right)+\mathcal{O}(P)$$