CLAIMS

w hat	18	claimed	18:

4

5

1

2

3

1

1

2

3

6

7

1	1. A method for pre-distorting an input signal, comprising:
2	generating, based on the input signal, a first signal corresponding to a first portion of a first transfer
3	function;

- generating, based on the input signal, a second signal corresponding to a second portion of the first transfer function;
- 6 combining the first and second signals to generate a first combined signal corresponding to the first 7 transfer function; and
- 8 pre-distorting the input signal based on the first combined signal.
 - 2. The invention of claim 1, wherein:
 - the first transfer function corresponds to amplitude characteristics of an amplifier; and the amplitude of the input signal is adjusted based on the first combined signal.
 - 3. The invention of claim 1, wherein:
- 2 the first transfer function corresponds to phase characteristics of an amplifier; and
- 3 the phase of the input signal is adjusted based on the first combined signal.
 - 4. The invention of claim 3, further comprising:
 - generating, based on the input signal, a third signal corresponding to a first portion of a second transfer function corresponding to amplitude characteristics of the amplifier;
- 4 generating, based on the input signal, a fourth signal corresponding to a second portion of the second 5 transfer function;
 - combining the third and fourth signals to generate a second combined signal corresponding to the second transfer function; and
- 8 adjusting the amplitude of the input signal based on the second combined signal.
- 5. The invention of claim 4, further comprising detecting the envelope of the input signal, wherein:
- 2 the first and second signals are generated based on the envelope-detected input signal;
- 3 the first signal is generated by DC-shifting the envelope-detected input signal; and
- 4 the first and second signals are generated using different non-linear analog circuits that model
- 5 different portions of the first transfer function.

1052.026 -9- 901

1 2	6. The invention of claim 1, further comprising detecting the envelope of the input signal, wherein the first and second signals are generated based on the envelope-detected input signal.
_	
1	7. The invention of claim 6, wherein the first signal is generated by DC-shifting the envelope-
2	detected input signal.
1	8. The invention of claim 1, wherein the first and second signals are generated using different non-
2	linear analog circuits that model different portions of the first transfer function.
1	9. The invention of claim 1, further comprising:
2	differentiating a first portion of the first combined signal to generate a differentiated signal; and
3	combining the differentiated signal with a second portion of the first combined signal to generate a
4	frequency-dependent combined signal, wherein the input signal is pre-distorted based on the frequency-
5	dependent combined signal.
1	10. The invention of claim 1, further comprising:
2	generating a frequency-dependent pre-distortion signal; and
3	combining the frequency-dependent pre-distortion signal with the first combined signal to generate a
4	frequency-dependent combined signal, wherein the input signal is pre-distorted based on the frequency-
5	dependent combined signal.
1	11. An apparatus for pre-distorting an input signal, comprising:
2	means for generating, based on the input signal, a first signal corresponding to a first portion of a first
3	transfer function;
4	means for generating, based on the input signal, a second signal corresponding to a second portion of
5	the first transfer function;
6	means for combining the first and second signals to generate a first combined signal corresponding to

the first transfer function corresponds to amplitude characteristics of an amplifier; and the amplitude of the input signal is adjusted based on the first combined signal.

means for pre-distorting the input signal based on the first combined signal.

7

8

1

the first transfer function; and

12. The invention of claim 11, wherein:

1052.026 -10- 901

1	13. The invention of claim 11, wherein:
2	the first transfer function corresponds to phase characteristics of an amplifier; and
3	the phase of the input signal is adjusted based on the first combined signal.
1	14. The invention of claim 13, further comprising:
2	means for generating, based on the input signal, a third signal corresponding to a first portion of a
3	second transfer function corresponding to amplitude characteristics of the amplifier;
4	means for generating, based on the input signal, a fourth signal corresponding to a second portion of
5	the second transfer function;
6	means for combining the third and fourth signals to generate a second combined signal corresponding
7	to the second transfer function; and
8	means for adjusting the amplitude of the input signal based on the second combined signal.
1	15. An apparatus for pre-distorting an input signal, comprising:
2	a main signal path comprising a first element adapted to pre-distort the input signal based on a first
3	control signal; and
4	a control signal path adapted to generate the first control signal and comprising:
5	an envelope detector adapted to detect the envelope of the input signal;
6	a DC-level-shifting circuit adapted to DC-shift a first copy of the envelope-detected input signal;
7	a first non-linear circuit adapted to generate, based on the DC-shifted, envelope-detected input
8	signal, a first signal corresponding to a first portion of a first transfer function;
9	a second non-linear circuit adapted to generate, based on a second copy of the envelope-detected
10	input signal, a second signal corresponding to a second portion of the first transfer function; and
11	a first combiner adapted to combine the first and second signals to generate a first combined
12	signal corresponding to the first transfer function, wherein the first control signal is based on the first
13	combined signal.
1	16. The invention of claim 15, wherein:
2	the first transfer function corresponds to amplitude characteristics of an amplifier; and
3	the first element is an attenuator adapted to adjust the amplitude of the input signal based on the first
4	control signal.
1	17. The invention of claim 15, wherein:

1052.026 -11- 901

the first transfer function corresponds to phase characteristics of an amplifier; and

2

3	the first element is a phase adjuster adapted to adjust the phase of the input signal based on the first
4	control signal.
1	18. The invention of claim 17, wherein:
2	the main signal path further comprises an attenuator adapted to adjust the amplitude of the input
3	signal based on a second control signal; and
4	the control signal path is further adapted to generate the second control signal and further comprises
5	a third non-linear circuit adapted to generate, based on the DC-shifted, envelope-detected input
6	signal, a third signal corresponding to a first portion of a second transfer function corresponding to
7	amplitude characteristics of the amplifier;
8	a fourth non-linear circuit adapted to generate, based on the envelope-detected input signal, a
9	fourth signal corresponding to a second portion of the second transfer function; and
10	a second combiner adapted to combine the third and fourth signals to generate a second
11	combined signal corresponding to the second transfer function, wherein the second control signal is
12	based on the second combined signal.
1	19. The invention of claim 18, wherein the first and second non-linear circuits are analog circuits.
1	20. The invention of claim 15, wherein the first and second non-linear circuits are analog circuits.
1	21. The invention of claim 15, wherein the control signal path further comprises:
2	a differentiator adapted to differentiate a first portion of the first combined signal to generate a
3	differentiated signal; and
4	a second combiner adapted to combine the differentiated signal with a second portion of the first
5	combined signal to generate a frequency-dependent combined signal, wherein the first control signal is
6	based on the frequency-dependent combined signal.
1	22. The invention of claim 15, further comprising:
2	an additional set of circuitry adapted to generate a frequency-dependent pre-distortion signal; and
3	a second combiner adapted to combine the frequency-dependent pre-distortion signal with the first

combined signal to generate a frequency-dependent combined signal, wherein the first control signal is

based on the frequency-dependent combined signal.

4