

EDITAL DE PRÁTICA – AV2		
COMPONENTE CURRICULAR:	Práticas Integradas: Camada de Serviço	
ESPAÇO DE APRENDIZAGEM:	AVA + Sala do Eixo Integrativo	
DISCENTE(S):		

Objetivos de Aprendizagem

- Codificação de Python para Banco de dados;
- Dispositivo de IoT acessando base de dados.

Conteúdos Formativos

- Uso do Git e GitHub para versionamento e entrega.
- Introdução à Banco de Dados para registro de leituras com timestamp.
- Uso de Python (Flask/FastAPI ou SQLite) como backend para IoT.

Equipamentos e Materiais		
Descrição	Quantidade	
Computador com acesso à internet	1	
Conta no Wokwi (se não tiver, crie uma gratuitamente)	1	
Conta no GitHub		
Arduino IDE	1	
Callmebot	1	

Equipamentos e Materiais		
Descrição	Quantidade	
ESP32	1	
Sensor de Temperatura	1	
Fotorresistor	1	
Motor	2	
Sensor de presença (PIR)	1	
LED Verde	1	
LED Vermelho	1	

Introdução

Bem-vindo à atividade da Camada de Serviço. Neste guia, exploraremos a criação de um projeto de um robô explorador espacial.

• O que é o projeto?

- o Um robô explorador que busca indícios de vida extraterrestre em um planeta simulado.
- O robô físico coleta dados de sensores e calcula a probabilidade de vida.
- o O controle remoto simulado envia comandos de movimentação.

• Qual o papel de cada ESP32?

- ESP32 no Wokwi (controle remoto): recebe dados do joystick e envia comandos para o robô.
- ESP32 no laboratório (robô explorador): recebe comandos, movimenta motores, lê sensores e calcula probabilidade de vida.

• Por que isso é importante?

- o Introduz versionamento com GitHub.
- o Permite armazenar dados em banco de dados para futuras análises.
- o Apresenta uso prático de **Python** em integração IoT.,

• Nosso projeto:

- O robô calcula a probabilidade de vida com base nos sensores e algoritmo de aprendizado de máquina, sendo controlado remotamente.
- A atividade terá 5 etapas principais:
 - Etapa 01: Controle remoto com ESP32 + Joystick no Wokwi.
 - Etapa 02: Robô físico em laboratório.
 - Etapa 03: Armazenamento dos Dados dos Sensores.
 - Etapa 04: Github.
 - Etapa 05: Apresentação do Projeto.

Descrições e Procedimentos

Etapa 01: Controle Remoto no Wokwi

Passo 1: Cadastrar conta no Wokwi

- Para esta atividade, será usado o Wokwi.
- Se já tiver conta, vá direto para o passo 2.
- Se não tiver:
 - Acesse https://wokwi.com
 - o Clique em "Cadastre-se" no canto superior direito.
 - o Preencha nome de usuário, e-mail e senha.
 - o Clique em "Cadastre-se" para finalizar.
 - o Confirme sua conta clicando no link enviado para o e-mail.
 - Volte ao site e faça login com seu usuário e senha.
 - Depois do login, você terá acesso ao painel do Wokwi, onde poderá criar e simular circuitos eletrônicos.

Passo 2: Montagem do Circuito Simulado

- Criem um projeto no Wokwi.
- Escolham a placa ESP32.
- Adicionem os seguintes componentes:
 - Joystick Analógico

- o LEDs Verde e Vermelho
- Interruptor/Botão (para parada/controle do sistema)
- Façam as conexões de acordo com o esquemático e datasheet do ESP32 e dos componentes e pequenos programas testando as funcionalidades dos componentes

Passo 3: Programação do Circuito Simulado

- Criem o código do firmware do ESP32 para:
 - Joystick (analógico):
 - Movimentar o robô em 4 direções:
 - Frente → motores para frente.
 - Trás → motores para trás.
 - Esquerda → motor direito ativo.
 - Direita → motor esquerdo ativo.
 - o O ESP32 deve ler os valores do joystick (eixo X e Y) e enviar os comandos ao robô.

Botão remoto de desligar:

- Um botão no circuito simulado deve servir para desligar remotamente o robô físico.
- Ao ser pressionado:
 - O controle remoto envia comando "DESLIGAR".
 - O robô deve parar imediatamente os motores.
 - No monitor serial do controle remoto, deve aparecer: "Comando enviado: DESLIGAR".

• LEDs no controle remoto (status de envio):

- o LED verde aceso: controle remoto funcionando normalmente e conectado ao robô.
- LED vermelho aceso: robô desligado ou desconectado.
- Esses LEDs não simulam os do robô, mas indicam o estado da comunicação no controle remoto.

• Monitor Serial (controle remoto):

- Mostrar continuamente os comandos enviados (ex.: "Comando: Frente", "Comando: Direita").
- Mostrar mensagem clara ao pressionar o botão de desligar.
- o Exibir se o robô está **ligado** (LED verde) ou **desligado** (LED vermelho).

Passo 4: Funcionamento do Circuito Simulado

- Simular o projeto no Wokwi.
 - Verificar se o projeto funciona corretamente.
 - Corrigir possíveis erros no código.

Passo 5 - GitHub

- Criar repositório no GitHub com nome sugerido: iot-esp32-robo-espacial.
- Adicionar:
 - Código do controle remoto (arquivo .ino).
 - o Link do projeto no Wokwi.
 - o Arquivo README.md com:
 - Nome do projeto.
 - Objetivo da etapa.
 - Lista dos componentes do circuito.
 - Como rodar no Wokwi.
- Entregável:

- o Projeto funcionando no Wokwi (com joystick, botão e LEDs).
- Link do projeto no README do GitHub.
- o Código do firmware versionado no GitHub.

Etapa 02: Robô físico em laboratório

Passo 5: Cadastrar conta no CallmeBot

- Acesse https://www.callmebot.com
- Se já tiver conta → vá para a Etapa 3 (criação do projeto).
- Se não tiver conta → siga os passos para vincular seu número de celular e obter a APIKEY:
 - o Adicione o número +34 644 78 33 97 aos seus contatos do WhatsApp.
 - Envie a mensagem: "I allow callmebot to send me messages".
 - o Aguarde a resposta: "API ativada para o seu número de telefone. Sua APIKEY é XXXXX".
 - o Guarde a APIKEY enviada, pois ela será usada para enviar mensagens pela API.

Passo 6: Montagem do Circuito Físico em Laboratório

- Conecte todos os componentes ao ESP32 conforme o esquema definido:
 - o Motores (2): responsáveis pela locomoção (um do lado esquerdo e outro do lado direito).
 - Sensor de temperatura: coleta dados do ambiente.
 - o **Fotorresistor**: mede a luminosidade do ambiente.
 - Sensor de presença (PIR): detecta movimento em volta do robô.
 - o **LED verde**: aceso quando o robô está ligado e operando normalmente.
 - LED vermelho: aceso quando o robô é desligado remotamente pelo controle ou entra em modo de alerta (probabilidade de vida > 75%).
- Certifique-se de:
 - Verificar a polaridade dos motores (direita/esquerda).
 - o Testar as conexões com o multímetro ou checar no Monitor Serial.
 - o Deixar os sensores bem-posicionados para captar sinais do ambiente

Passo 7: Programação do Circuito Físico em Laboratório

- O Criem o código do firmware do ESP32 para:
 - Sensor de Temperatura e Umidade (DHT):
 - O sensor deve medir temperatura em ºC e umidade em %.
 - Mostrar leituras no Monitor Serial.
 - Fotorresistor (luz):
 - Medir a intensidade de luz do ambiente.
 - Mostrar valor no Monitor Serial.
 - Sensor de Presença (PIR):
 - Detectar movimento no ambiente.
 - Mostrar no Monitor Serial: "Presença detectada" ou "Sem presença".
 - Monitor Serial
 - A cada 2 segundos, o ESP32 deve enviar informações atualizadas:
 - Temperatura medida.
 - Umidade medida.
 - Intensidade da luz.
 - Estado do sensor de presença.
 - Estado do robô (ligado, desligado ou alerta).
 - Valor calculado da probabilidade de vida (%).
 - Cálculo da Probabilidade de Vida

- O ESP32 deve usar os valores dos sensores como entrada de um algoritmo simples de aprendizado de máquina. Exemplo de regras:
 - Temperatura entre 15 ${}^{\circ}$ C e 30 ${}^{\circ}$ C \rightarrow +25%.
 - Umidade entre 40% e 70% \rightarrow +25%.
 - Luz adequada (valor acima de um limite) → +20%.
 - Presença detectada → +30%.
- A soma desses fatores gera a probabilidade de vida (0% a 100%).
- Mostrar no Monitor Serial:
 - "Probabilidade de vida: XX%".

Decisão com base na Probabilidade

- Se a probabilidade for ≤ 75%:
 - LED verde aceso.
 - Mostrar no Monitor Serial: "Exploração normal. Nenhum indício relevante detectado."
- Se a probabilidade for > 75%:
 - LED vermelho aceso.
 - Mostrar no Monitor Serial: "ALERTA! Alta probabilidade de vida detectada!".
 - Enviar mensagens via Callmebot (WhatsApp):
 - "Alerta! Alta probabilidade de vida detectada no planeta."

Motores (DC)

- O robô deve ter 2 motores para locomoção:
 - Motor esquerdo.
 - Motor direito.
- A direção é controlada pelos comandos recebidos do joystick.

o • LEDs

- LED verde aceso → quando o robô está funcionando normalmente.
- LED vermelho aceso → quando o robô foi desligado remotamente ou quando a probabilidade de vida for superior a 75%.

Passo 11: Funcionamento do Circuito

- Testar o projeto completo no circuito físico.
 - Verificar se o projeto funciona corretamente.
 - o Corrigir possíveis erros no código e montagem.
- Entregável:
 - o Robô físico funcionando (movimento, sensores e LEDs).
 - o Cálculo da probabilidade de vida ativo.
 - Mensagem de alerta via Callmebot quando > 75%.

Etapa 03: Armazenamento dos Dados dos Sensores

Passo 8: Registro no Banco de Dados

 A cada 2 segundos, enviar dados via HTTP POST para o backend Python ou serviço REST, por exemplo:

```
.

"timestamp": "2025-09-02T14:35:00Z",

"temperatura_c": 24.3,

"umidade_pct": 55,
```



```
"luminosidade": 723,
"presenca": 1,
"probabilidade_vida": 78.0
}
```

- Conferir resposta do servidor.
- o Caso falhe, armazenar em buffer e reenviar depois.

Passo 9: Integração com Python (Backend e Banco)

- Criar API em Python (Flask/FastAPI) com endpoint /leituras.
- Banco de dados recomendado: SQLite.
- Estrutura da tabela leituras:
 - o id (chave primária).
 - o timestamp.
 - o temperatura_c.
 - o umidade_pct.
 - o luminosidade.
 - o presenca.
 - o probabilidade vida.
- Adicionar rota GET /leituras para consultar últimas 100 leituras.

Entregável:

Leituras armazenadas no banco de dados.

Etapa 04: Github

Passo 10 - GitHub

- Criar branch feat/robo-lab.
- Adicionar ao repositório:
 - o Código do ESP32 do robô.
 - Scripts Python do backend.
 - o Arquivo SQL de criação da tabela.
 - Atualizar README.md com instruções:
 - Como montar o robô.
 - Como rodar o backend Python.
 - Como consultar dados salvos.

Entregável:

o Código e backend versionados no GitHub.

Etapa 05: Apresentação do Projeto

Passo 9: Apresentação do Circuito Simulado e em Laboratório

- Preparar uma apresentação oral (5–10 minutos).
- Mostrar o circuito no Wokwi e no laboratório real.
- Explicar de forma simples e clara:
- Como cada sensor e atuador foi usado.
- Quais foram as dificuldades e como foram resolvidas.
- Repositório GitHub atualizado:
 - o Código do controle remoto (Wokwi).
 - o Código do robô físico (ESP32).

- Backend Python + banco de dados.
- README.md com instruções completas.
- Entregável: Apresentação oral com demonstração prática e Repositório GitHub.

	Cronograma					
Nº	Etapa	Entregável	Prazo			
01	01	Circuito Simulado	Final do encontro			
02	02	Circuito em Laboratório e Banco de Dados	Final do encontro			
	03					
04	04	Githb	Final do encontro			
05	05	Apresentação oral	Final do encontro			

Avaliação				
1	Etapa 01	1,0		
2	Etapa 02	1,0		
3	Etapa 03	4,0		
4	Etapa 04	2,0		
5	Etapa 05	2,0		
	Total	10 pontos		

Referências

ARDUINO. Arduino IDE. Disponível em: https://www.arduino.cc/en/software. Acesso em: 31 ago. 2025.

ESPRESSIF SYSTEMS. ESP32 technical reference manual. Shanghai: Espressif, 2022.

RANDOM NERD TUTORIALS. *ESP32 tutorials and projects*. Disponível em: https://randomnerdtutorials.com/ Acesso em: 31 ago. 2025.

WOKWI. Online ESP32 and Arduino simulator. Disponível em: https://wokwi.com/. Acesso em: 31 ago. 2025