MATH 340 - Spring 2017

Homework 3

Solutions written by Alex Menendez (1438704)

Problems assigned:

- §1.3: 31
- §1.6: 35
- §2.1: 4, 6, 11, 17, 28, 40a, 40b

Solutions:

 $\S 1.3$

31.

- (a) *Proof.* We'll prove two directions:
 - \Rightarrow : If v + W is a subspace, then it contains zero that is, $0 \in v + W$, or 0 = v + w for some $w \in W$. However, it's not hard to see that w = -v in which case $-v \in W$. Since W is a subspace, it's closed under scaling, and so if $-v \in W$ then $v \in W$, as required.
 - \Leftarrow : We'll assume that $v \in W$ and then show that v + W = W, in which case v + W is a subspace of V since W is a subspace of V. Thus, we'll show a double subset inclusion to show equality: for some $x \in v + W$, x = v + w for some fixed v and w. Since $v \in W$, however, and since W is a subspace and is closed under addition, $v + w \in W \Rightarrow x \in W$, and so $v + W \subset W$. For the other inclusion, take some $y \in W$ and write y = w + (w v) (i.e. y = w so there's no ambiguity about it being an element of W). Since $v \in W$, as assumed, $w v \in W$ (again, since W is a subspace) and so $y \in v + W \Rightarrow v + (w v) \in v + W$. Thus, $W \subset v + W$ and so v + W = W, showing that it is a subspace of V, as required.

(b) *Proof.* We need to show two implications:

- \Rightarrow : If $v_1 + W = v_2 + W$, then both $v_1 + W \subset v_2 + W$ and $v_1 + W \supset v_2 + W$. In either case, $v_1 + w_1 = v_2 + w_2$ for some $w_1, w_2 \in W$ (we can't assume we're adding the same element of W to v_1 and v_2). By algebra, $v_1 v_2 = w_2 w_1$. Since W is a subspace of V it's closed under scaling and addition, so $w_2 w_1 \in W$ whence $v_1 v_2 \in W$, as required.
- \Leftarrow : On a similar note, if $v_1 v_2 \in W$, then $v_1 v_2 = w w'$ for some $w, w' \in W$. Thus, $v_1 + w' = v_2 + w$, whence both $v_1 + W \subset v_2 + W$ and $v_1 + W \supset v_2 + W$, implying that $v_1 + W = v_2 + W$, as required.

(c) *Proof.* We know the following:

- $v_1 + W \subset v_1' + W$ and $v_1 + W \supset v_1' + W$
- $v_2 + W \subset v_2' + W$ and $v_2 + W \supset v_2' + W$

From this, we see that $(v_1+W)+(v_2+W)\subset (v_1'+W)+(v_2'+W)$ $(v_1+W)+(v_2+W)\supset (v_1'+W)+(v_2'+W)$, which implies that $(v_1+W)+(v_2+W)=(v_1'+W)+(v_2'+W)$, as required. Similarly, knowing that $x\in av_1+W$, that implies that $x=av_1+w_0$ for some $w_0\in W$. But since $v_1+W\subset v_1'+W$ we have that $x=av_1'+w_1$ for some $w_1\in W$, and so $x\in av_1'+W$. Thus, $a(v_1+W)\subset a(v_1'+W)$. By the same exact argument using the fact that $v_1+W\supset v_1'+W$, we have that $a(v_1'+W)\subset a(v_1+W)$. Therefore, $a(v_1+W)=a(v_1'+W)$, as required.

- (d) *Proof.* We'll go through and manually verify each axiom:
 - (a) Given $v_1 + W \in V/W$ and $v_2 + W \in V/W$, we have that $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$. Alternatively, we can define $(v_2 + W) + (v_1 + W) = (v_2 + v_1) + W$. Now, since, for any $x \in (v_1 + v_2) + W$, $x = (v_1 + v_2) + W$ for some $w \in W$. But $v_1 + v_2 = v_2 + v_1$ so $x = (v_2 + v_1) + W$ for which $x \in (v_2 + v_1) + W$, and so $(v_1 + W) + (v_2 + W) \subset (v_2 + W) + (v_1 + W)$. By the exact same argument exploiting the commutativity of addition of v_1 and v_2 , $(v_2 + W) + (v_1 + W) \subset (v_1 + W) + (v_2 + W)$ and so $(v_1 + W) + (v_2 + W) = (v_2 + W) + (v_1 + W)$.

- (b) Given $v_1 + W$, $v_2 + W$, and $v_3 + W$ in V/W, we have $v_1 + W + ((v_2 + W) + (v_3 + W)) = v_1 + (v_2 + v_3) + W$. Alternatively, $((v_1 + W) + (v_2 + W)) + (v_3 + W) = (v_1 + v_2) + v_3 + W$. If we take any $x \in v_1 + (v_2 + v_3) + W$, we have that $x = v_1 + (v_2 + v_3) + W$ for some $w \in W$. By associativity of addition, $x = (v_1 + v_2) + v_3 + W$ and so $x \in (v_1 + v_2) + v_3 + W$. Thus, $v_1 + (v_2 + v_3) + W \subset (v_1 + v_2) + v_3 + W$. By the exact same argument flipped the other way around, $(v_1 + v_2) + v_3 + W \subset v_1 + (v_2 + v_3) + W$, and so $v_1 + W + ((v_2 + W) + (v_3 + W)) = ((v_1 + W) + (v_2 + W)) + v_3 + W$, as required.
- (c) We desire an element of V/W such that, given some arbitrary $v+W \in V/W$, (v+W)+ (that element) = v+W. That is, we want an element that will give us a double subset inclusion. Note that, if we take W, certainly it's in V/W and (v+W)+W=v+W. That is, $(v+W)+W\subset v+W$ and $(v+W)+W\supset v+W$. (Also, with how we've defined addition in V/W, the equality is obvious.)
- (d) For any $v + W \in V/W$, we can take -v + W, in which case (v + W) + (-v + W) = (v v) + W = W.
- (e) Given $v + W \in V/W$, we have that $1(v + W) = 1 \cdot v + W = v + W$.
- (f) Given some $a, b \in \mathbb{F}$, we have that (ab)(v+W) = (ab)v + W and a(b(v+W)) = a(bv+W). Given some $x \in (ab)v + W$, we have that x = (ab)v + w for some $w \in W$. Of course, by associativity of scalar multiplication, x = a(bv) + w for which $x \in a(b(v+W))$ and so $(ab)(v+W) \subset a(b(v+W))$. By the exact same argument, $(ab)(v+W) \supset a(b(v+W))$, and so (ab)(v+W) = a(b(v+W)).
- (g) Given some $a \in \mathbb{F}$ and $v_1 + W$ and $v_2 + W$ in V/W, we have that any $x \in a((v_1 + W) + (v_2 + W))$, $x = a((v_1 + v_2) + W) = (av_1 + av_2) + W$ and so $x \in (av_1 + W) + (av_2 + W)$. Thus, $a((v_1 + W) + (v_2 + W)) \subset (av_1 + W) + (av_2 + W)$. By the same token, $a((v_1 + W) + (v_2 + W)) \supset (av_1 + W) + (av_2 + W)$ and so $a((v_1 + W) + (v_2 + W)) = (av_1 + W) + (av_2 + W)$, as required.

(h) Given $a, b \in \mathbb{F}$, we have that (a+b)(v+W) = (a+b)v + W = (av+bv) + W, and so, by a double subset inclusion (as before), (a+b)(v+W) = (av+W) + (bv+W).

 $\S 1.6$

35.

- (a) Proof. We first need to show that $\{u_{k+1} + W, \dots, +u_n + W\}$ is linearly independent: let $\alpha_{k+1}, \dots, \alpha_n$ be scalars such that $\sum_{i=k+1}^n \alpha_i(u_i + W) = 0 \Rightarrow \alpha_{k+1} = \dots = \alpha_n = 0$. Secondly, $\operatorname{Span}\{u_{k+1} + W, \dots, +u_n + W\} = \alpha_{k+1}u_{k+1} + \dots + \alpha_nu_n$ whence $\operatorname{Span}\{u_{k+1} + W, \dots, +u_n + W\} \subset V/W$. Moreover, given any $v + W \in V/W$, we have that $v + W \in \operatorname{Span}\{u_{k+1} + W, \dots, +u_n + W\}$ and so $V/W \subset \operatorname{Span}\{u_{k+1} + W, \dots, +u_n + W\}$ for which $\operatorname{Span}\{u_{k+1} + W, \dots, +u_n + W\} = V/W$, as required. \square
- (b) Claim. $\dim V = \dim W + \dim V/W$.

Proof. Given a linear transformation $T: V \to V/W$, we see that $\mathcal{N}(T) = W$, $\mathcal{R}(T) = W$, and so by the rank-nullity theorem, $\dim \mathcal{R}(T) + \dim \mathcal{N}(T) = \dim V \Rightarrow \dim V/W + \dim W = \dim V$.

 $\S 2.1$

4.

 $Proof. \ \, \text{If we consider } T \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix} + T \begin{pmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{pmatrix} \text{ we obtain } T \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix} + T \begin{pmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{pmatrix} = \begin{pmatrix} 2a_1 - a_2 & a_3 + 2a_2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 2b_1 - b_2 & b_3 + 2b_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2(a_1 + b_1) - (a_2 + b_2) & (a_3 + b_3) + 2(a_2 + b_2) \\ 0 & 0 \end{pmatrix}. \ \, \text{Alternatively,}$ $T \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix} + \begin{pmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{pmatrix} = T \begin{pmatrix} a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \\ a_4 + b_4 & a_5 + b_5 & a_6 + b_6 \end{pmatrix} = \begin{pmatrix} 2(a_1 + b_1) - (a_2 + b_2) & (a_3 + b_3) + 2(a_2 + b_2) \\ 0 & 0 \end{pmatrix}.$ Indeed, they're identical, so T is additive. Furthermore, given some $\alpha \in \mathbb{F}$, $T \begin{pmatrix} \alpha \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix} \end{pmatrix} = T \begin{pmatrix} \alpha a_1 & \alpha a_2 & \alpha a_3 \\ \alpha a_4 & \alpha a_5 & \alpha a_6 \end{pmatrix} = \begin{pmatrix} 2\alpha a_1 - \alpha a_2 & \alpha a_3 + 2\alpha a_2 \\ 0 & 0 \end{pmatrix}, \text{ and }$ $\alpha T \begin{pmatrix} \alpha a_1 & \alpha a_2 & \alpha a_3 \\ \alpha a_4 & \alpha a_5 & \alpha a_6 \end{pmatrix} = \alpha \begin{pmatrix} 2a_1 - a_2 & a_3 + 2a_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2\alpha a_1 - \alpha a_2 & \alpha a_3 + 2\alpha a_2 \\ 0 & 0 \end{pmatrix}, \text{ whence } T \text{ obeys scalar multiplication, as well, and is thus linear.}$

• To compute a basis for $\mathcal{N}(T)$, we'll examine $T\begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, which follows from the definition of the null space. From the definition of T itself, we obtain $2a_1 - a_2 = 0 \Rightarrow 2a_1 = a_2$ and $a_3 + 2a_2 \Rightarrow a_3 = -2a_2$. Thus, we can

feed any matrix of the form $\begin{pmatrix} a & 2a & -4a \\ b & c & d \end{pmatrix}$ for $a,b,c,d\in\mathbb{F}$ into T and obtain the zero matrix in $\mathbb{F}^{2\times 2}$. What we glean from this is that

$$\begin{pmatrix} a & 2a & -4a \\ b & c & d \end{pmatrix} = a \begin{pmatrix} 1 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\text{and so } \mathcal{N}(T) = \operatorname{Span}\left\{\begin{pmatrix} 1 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right\} \text{ and thus we have found a basis for } \mathcal{N}(T).$

$$\begin{split} \bullet & \text{ Similarly, } \mathcal{R}(T) = \operatorname{Span}\left\{T\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, T\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, T\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, T\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, T\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, T\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right\} = \operatorname{Span}\left\{\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right\}. \end{split} \right.$$

From this, we see that $\dim(\mathcal{N}(T)) = 4$ and $\dim(\mathcal{R}(T)) = 2$, whence $\dim(\mathbb{F}^{2\times 3}) = 6$, thus verifying the dimension theorem. We also see that T is neither one-to-one or onto, since $\mathcal{N}(T) \neq \{0\}$ and $\mathcal{R}(T) \neq \mathbb{F}^{2\times 2}$.

6.

Proof. First, we see that T satisfies additivity: let A and B be matrices in $\mathbb{F}^{n \times n}$. It follows that T(A+B) = Tr(A+B); however, the trace is linear, and so Tr(A+B) = Tr(A) + Tr(B) = T(A) + T(B), as required. Furthermore, given some $\alpha \in \mathbb{F}$, we have that $T(\alpha A) = \text{Tr}(\alpha A) = \alpha \text{Tr}(A) = \alpha T(A)$, as expected.

- To find a basis for $\mathcal{N}(T)$, we desire a basis for the kernel of the map $A \mapsto \operatorname{Tr}(A)$ that is, a basis for the set of all matrices A such that $\operatorname{Tr}(A) = 0$. In general, any matrix A in $\mathbb{F}^{n \times n}$ can be written as A = D + S, where D is the matrix consisting of A's diagonal elements and zero everywhere else while S consists of A's off-diagonal elements and zero down the diagonal. Thus, $\operatorname{Tr}(A) = \operatorname{Tr}(D+S) = \operatorname{Tr}(D) + \operatorname{Tr}(S)$. But, since S has zeroes down its diagonal, $\operatorname{Tr}(S) = 0$, so $\operatorname{Tr}(A) = 0 \Rightarrow \operatorname{Tr}(D) + 0 = 0$. Thus, the problem of finding a basis for matrices A such that $\operatorname{Tr}(A) = 0$ amounts to finding a basis for the set of diagonal matrices D such that $\operatorname{Tr}(D) = 0$, which is markedly simpler.
- 11. We'll begin by trying to boil everything down so that it's in terms of the standard basis vectors e_1, e_2 in \mathbb{R}^2 . Since $T(1,1) = T(e_1 + e_2) = T(e_1) + T(e_2)$ and $T(2,3) = T(2e_1 + 3e_2) = 2T(e_1) + 3T(e_2)$, we obtain the following system of equations:

$$\begin{cases} T(e_1) + T(e_2) = (1, 0, 2) \\ 2T(e_1) + 3T(e_2) = (1, -1, 4) \end{cases}$$

which, by elimination, yields

$$\begin{cases}
T(e_1) = (2, 1, 2) \\
T(e_2) = (-1, -1, 0)
\end{cases}$$

Thus, for any $(x, y) \in \mathbb{R}^2$, $T(x, y) = xT(e_1) + yT(e_2) = x(2, 1, 2) + y(-1, -1, 0) = (2x - y, x - y, 2x)$. This gives the desired transformation. We now know that T(8, 11) = (5, -3, 16).

17.

(a) Proof. We'll go the route of contraposition – if T is assumed to be onto then $\mathcal{R}(T) = W$ in which case, by the rank-nullity theorem, we have that $\dim \mathcal{R}(T) + \dim \mathcal{N}(T) = \dim V \Rightarrow \dim V = \dim \mathcal{N}(T) + \dim W$. Thus, if $\mathcal{N}(T) = \{0\}$, we have that $\dim V = \dim W$ and $\dim V > \dim W$ otherwise. This, of course, gives $\dim V \geq \dim W$, the desired result.

(b) Proof. Assume that $\dim V > \dim W$. Because $\dim \mathcal{R}(T)$ is a subspace of W, it follows that $\dim \mathcal{R}(T) \leq \dim W < \dim V$, so $\dim \mathcal{N}(T) = \dim V - \dim \mathcal{R}(T)$ (by the rank-nullity theorem), and thus $\mathcal{N}(T) \neq \operatorname{Span}\{0\}$, so T isn't one-to-one.

28.

- $\{0\}$ is T-invariant: given any $x \in \{0\}$, it holds that x = 0 and so, because T is linear, $0 \stackrel{T}{\mapsto} 0$ and so $T(x) \in \{0\}$.
- V is T-invariant: given any $x \in V$, it holds that, since T is defined so that $V \stackrel{T}{\to} V$, $T(x) \in V$.
- $\mathcal{R}(T)$ is T-invariant: given any $x \in \mathcal{R}(T)$, there exists a $v \in V$ so that T(v) = x. It follows that, since $V \xrightarrow{T} V$, $T(v) \in V$ and so T(x) = T(T(v)) is well-defined. It follows from the definition of T that $T(T(v)) \in \mathcal{R}(T)$ because $T(v) \in \mathcal{R}(T)$.

• $\mathcal{N}(T)$ is T-invariant: given any $x \in \mathcal{N}(T)$, it follows that T(x) = 0. However, since T is linear, T(0) = 0 and so $0 \in \mathcal{N}(T) \Rightarrow T(x) \in \mathcal{N}(T)$.

40.

- (a) Proof. We can prove the linearity of η in one fell swoop by first computing $\eta(\alpha v_1 + \beta v_2) = (\alpha v_1 + \beta v_2) + W = \alpha v_1 + W + \beta v_2 + W$. Secondly, $\alpha \eta(v_1) + \beta \eta(v_2) = \alpha(v_1 + W) + \beta(v_2 + W) = \alpha v_1 + W + \beta v_2 + W$. Thus, $\eta(\alpha v_1 + \beta v_2) = \alpha \eta(v_1) + \beta \eta(v_2)$ and so η is linear, as required. We can now show, rather trivially, that η is onto for any $v + w \in v + W$, there exists a $v \in V$ so that $\eta(v) = v + W$. Furthermore, $\mathcal{N}(\eta) = \{v \in V \mid v + W = W\} = W$.
- (b) Since η is onto, it holds that $\mathcal{R}(\eta) = V/W$. Furthermore, $\mathcal{N}(T) = W$. By the rank-nullity theorem, $\dim \mathcal{N}(T) + \dim \mathcal{R}(T) = \dim V$. Of course, this implies that $\dim W + \dim V/W = \dim V$, as required.