Amendments to the Claims:

The following listing of claims will replace all prior versions, and listing of claims in the application. For the Examiner's convenience a complete listing of all claims incorporating the amendments made herein is attached as Appendix A.

Listing of Claims:

1. (Currently Amended) A method of treating a disease state in a mammal that is alleviable by treatment with an agent capable of increasing ABCA-1 expression, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of the Formula I:

$$R^{2}$$
 X^{2}
 X^{2}
 X^{3}
 X^{3}
 X^{4}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{4}
 X^{2}
 X^{4}
 X^{5}
 X^{5

Formula I

wherein:

m, n and p are independently 0 or 1; A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond; where Z^1 is oxygen or sulfur; R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

 R^1 , $R^2\underline{R}^2$, and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_q$, or NR^5 ;
in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

X¹, X², and X³ are nitrogen; Y¹ is lower alkylene or carbonyl; Y² is lower alkylene or oxygen; and

Zic culfur

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl.

2. (Cancelled)

- 3. (Previously Presented) The method of claim 1, wherein R^2 is hydrogen and R^4 is optionally substituted alkyl.
- 4. (Original) The method of claim 3, wherein R³ is optionally substituted aryl or optionally substituted heteroaryl.

5. (Cancelled)

- 6. (Currently Amended) The method of claim 54, wherein A is a covalent bond, and R^1 is hydrogen.
- 7. (Currently Amended) The method of claim 6, wherein R^3 is optionally substituted phenyl-and Y^2 -is methylene.
- 8. (Currently Amended) The method of claim 7, wherein R⁴ is alkyl of 1-8 carbon atoms-and T is oxygen.
- 9. (Previously Presented) The method of claim 8, wherein R^3 is 4-t-butylphenyl and R^4 is methyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-methylthio-1,3,5-triazine-2-ylamine.
- 10. (Original) The method of claim 8, wherein R³ is 4-t-butylphenyl and R⁴ is n-pentyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.
- 11. (Currently Amended) The method of claim 7, wherein R⁴ is alkyl of 1-8 carbon atoms- and T is oxygen.
- 12. (Original) The method of claim 11, wherein R³ is 3-chlorophenyl, R⁴ is methyl, and R⁵ is hydrogen, namely 4-[(3-chlorophenylamino)methyl]-6-methylthio-[1,3,5]triazin-2-ylamine.
- 13. (Original) The method of claim 11, wherein R³ is 2,4-dimethoxyphenyl, R⁴ is methyl, and R⁵ is hydrogen, namely N-{[(3,5-dimethoxyphenyl]aminomethyl}-4-methylthio-1,3,5-triazine-2-ylamine;

Claims 14-27 (Cancelled)

28. (Currently Amended) A method for treating a disease or condition in a mammal that can be treated with a compound that elevates serum levels of HDL cholesterol, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I.

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond;

where Z¹ is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_{e}$, or NR^{5} ;

in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

X¹, X², and X³ are nitrogen;

Y¹-is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl.

- 29. (Original) The method of claim 28, wherein the disease state or condition is coronary artery disease or atherosclerosis.
- 30. (Currently Amended) A method for treating a disease or condition in a mammal related to low HDL cholesterol levels, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I:

$$\begin{array}{c|c}
R^2 & AR^1 \\
\hline
X^1 & X^2 \\
\hline
R^3 & (Y^1)_m & (Y^2)_p & X^3 & Z
\end{array}$$

Formula 1

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z^1 is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_q$, or NR^5 ;
in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^{1} , X^{2} , and X^{3} are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur

with the proviso that when A is a covalent bond and R² is hydrogen then R¹ cannot be phenyl.

- 31. (Original) The method of claim 30, wherein the disease state or condition is coronary artery disease or atherosclerosis.
- 32. (Currently Amended) A method for treating a disease or condition in a mammal that can be treated with a compound that promotes cholesterol efflux from cells, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I.

Formula I

wherein:

m, n and p are independently 0 or 1; A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond; where Z^1 is oxygen or sulfur; R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_q$, or NR^5 ;
in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

X¹, X², and X³ are nitrogen; Y¹ is lower alkylene or carbonyl; Y² is lower alkylene or oxygen; and

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl.

- 33. (Original) The method of claim 32, wherein the disease state or condition is coronary artery disease or atherosclerosis.
- 34. (Currently Amended) A method for treating a condition related to coronary artery disease in a mammal that can be usefully treated with a combination of a compound that elevates serum levels of HDL cholesterol and a compound that lowers

LDL cholesterol, comprising administering to a mammal in need thereof a therapeutically effective dose of a compound of Formula I

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO_2 , or a covalent bond;

where Z^1 is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 \boldsymbol{R}^2 is hydrogen , alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_q$, or NR^5 ;

in which q is 0, 1, or 2; and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

$$X^{1}$$
, X^{2} , and X^{3} are nitrogen;

Y¹ is lower alkylene or carbonyl;

Y² is lower alkylene or oxygen; and

Z is sulfur

with the proviso that when A is a covalent bond and R^2 is hydrogen then R^1 cannot be phenyl

and a compound that lowers LDL cholesterol.

- 35. (Original) The method of claim 34, wherein the LDL cholesterol lowering compound is chosen from clofibrate, gemfibrozil, and fenofibrate, nicotinic acid, mevinolin, mevastatin, pravastatin, simvastatin, fluvastatin, lovastatin, cholestyrine, colestipol and probucol.
 - 36. (Currently Amended) A compound of the Formula I:

$$\begin{array}{c|c}
R^2 & AR^1 \\
\hline
X^1 & X^2 \\
\hline
R^3 & (Y^1)_m & (Y^2)_p & X^3 & Z
\end{array}$$

Formula I

wherein:

m, n and p are independently 0 or 1;

A is $-C(Z^1)$ -, $-C(Z^1)$ -NH-, SO₂, or a covalent bond;

where Z^1 is oxygen or sulfur;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R² is hydrogen, alkyl, or cycloalkyl; or

R¹, R² and A when taken together with the nitrogen atom to which they are attached form a nitrogen bearing heterocycle;

R³ is optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

R⁴ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl; and

T is
$$O$$
, $S(O)_q$, or NR^5 ;

in which q is 0, 1, or 2, and

R⁵ is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;

 X^{1} , X^{2} , and X^{3} are nitrogen.

Y¹ is lower alkylene or carbonyl;
Y² is lower alkylene or oxygen; and

Z is sulfur

with the proviso that

when A is a covalent bond, R^1 and R^2 are both hydrogen, Y^2 is methylene, and R^4 is methyl or ethyl, R^3 cannot be lower alkyl or unsubstituted phenyl; and when A is a covalent bond, R^1 cannot be substituted phenyl

- 37. (Cancelled)
- 38. (Previously Presented) The compound of claim 36, wherein R² is hydrogen, and R⁴ is optionally substituted alkyl.
- 39. (Previously Presented) The compound of claim 38, wherein R³ is optionally substituted aryl or optionally substituted heteroaryl.
 - 40. (Cancelled)
- 41. (Currently Amended) The compound of claim $40\underline{39}$, wherein A is a covalent bond, and R^1 is hydrogen.
- 42. (Currently Amended) The compound of claim 41, wherein R^3 is optionally substituted phenyl-and Y^2 is methylene.
- 43. (Currently Amended) The compound of claim 42, wherein R⁴ is alkyl of 1-8 carbon atoms-and T is oxygen.
- 44. (Original) The compound of claim 43, wherein R^3 is 4-t-butylphenyl and R^4 is methyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.

- 45. (Original) The compound of claim 43, wherein R^3 is 4-t-butylphenyl and R^4 is n-pentyl, namely 6-{[4-(tert-butyl)phenoxy]methyl}-4-pentylthio-1,3,5-triazine-2-ylamine.
- 46. (Original) The compound of claim 43, wherein R³ is 3-chlorophenyl, R⁴ is methyl, and R⁵ is hydrogen, namely 4-[(3-chlorophenylamino)methyl]-6-methylthio-[1,3,5]triazin-2-ylamine.
- 47. (Original) The compound of claim 43, wherein R^3 is 2,4-dimethoxyphenyl, R^4 is methyl, and R^5 is hydrogen, namely N-{[(3,5-dimethoxyphenyl]aminomethyl}-4-methylthio-1,3,5-triazine-2-ylamine.

Claims 48-62. (Cancelled)

63. (Previously Presented) A pharmaceutical composition comprising at least one pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of claim 36.