TMA4315: Compulsory exercise 2 Logistic regression and Poisson regression

Group XX: Henrik Syversveen Lie, Mikal Stapnes, Oliver Byhring 10.10.2018

Contents

Part 1: Logistic regression a)	1
Part 1: Logistic regression	

a)

We let y_i be the number of successfull ascents, and n_i be the total number of attempts (success + fail) of the i'th mountain. We then do binary regression with the logit link to model the probability of success. This gives

- 1. Model for response: $Y_i \sim \text{Bin}(n_i, \pi_i)$, for i = 1, ..., 113
- 2. Linear predictor: $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$ 3. Link function: $\eta_i = \ln(\frac{\pi_i}{1-\pi_i})$

where x_i is a p dimensional column vector of covariates for observation i, and β is the vector of regression parameters.