S721 HW3

John Koo

Problem 1.45

We have:

$$P_X(X = x_i) = P(\{s_i \in S \mid X(s_i) = x_i\})$$

where each $x_i \in \mathcal{X}$ and $|\mathcal{X}| = m < \infty$.

- i. For each x_i , $P_X(X=x_i)=P(\{s_j\in S\mid X(s_j)=x_i\})$, and $P(\{s_j\in S\mid X(s_j)=x_i\})\geq 0$ since P is a probability measure. Similarly, let $A\subset \mathcal{X}$. Then $P_X(A)=\sum_{x_i\in A}P_X(X=x_i)$, and each $P_X(X=x_i)$ is nonnegative, so $P_X(A)\geq 0$.
- ii. $P_X(\mathcal{X}) = P_X(X \in \bigcup_{i=1}^m x_i) = P(\bigcup_i^m \{s_j \in S | X(s_j) = x_i\})$. We know that every s_j maps to an x_i , so $X^{-1}(\mathcal{X}) = S$. Therefore, this is equal to $P(X^{-1}(\mathcal{X})) = P(S) = 1$.
- iii. Since \mathcal{X} is finite (and therefore disjoint), \mathcal{B} is the set of all subsets of \mathcal{X} . Let $A_1, A_2, ...$ be pairwise disjoint subsets of \mathcal{X} . They are also all $\in \mathcal{B}$. Since the A_i s are disjoint and since X is a function, $B_i = X^{-1}(A_i)$ are all also pairwise disjoint (there cannot be one $s_j \in S$ that maps to two A_i s since that would mean $X(s_j)$ can take two different values). Then $P_X(\cup_i^\infty A_i) = P(\cup_i^\infty X^{-1}(A_i)) = \sum_i^\infty P(X^{-1}(A_i)) = \sum_i^\infty P_X(A_i)$.

Problem 1.47

Part d

$$\lim_{x \to -\infty} 1 - \exp(-x) = 1 - 1 = 0$$
$$\lim_{x \to \infty} 1 - \exp(-x) = 1 - 0 = 1$$
$$(1 - \exp(-x))' = \exp(-x) > 0$$

Part e

We have for some $\epsilon \in (0,1)$,

$$F_Y(y) = \begin{cases} \frac{1-\epsilon}{1+\exp(-y)} & y < 0\\ \epsilon + \frac{1-\epsilon}{1+\exp(-y)} & y \ge 0 \end{cases}$$

For the left limit, $\lim_{y\to-\infty}\frac{1-\epsilon}{1+\exp(-y)}=0$ since $\exp(-y)\to\infty$ as $y\to-\infty$.

For the right limit, $\lim_{y\to\infty} \epsilon + \frac{1-\epsilon}{1+\exp(-y)} = \epsilon + 1 - \epsilon = 1$ since $1+\exp(-y) \to 1+0=1$ as $y\to\infty$.

$$\left(\frac{1-\epsilon}{1+\exp(-y)}\right)' = (1-\epsilon)(-1)(-\exp(-y))(1+\exp(-y))^{-2} = \frac{(1-\epsilon)\exp(-y)}{(1+\exp(-y))^2}.$$
 Since $\epsilon > 0$ and $\exp(.) > 0$, this expression is always positive.

1

 $\epsilon + \frac{1-\epsilon}{1+\exp(-y)}$ is just the previous expression with a constant, so its derivative is the same.

Problem 1.49

We are given that $F_X(t) \leq F_Y(t) \ \forall t$.

$$P(X > t) = 1 - P(X \le t) = 1 - F_X(t) \ge 1 - F_Y(t) = 1 - P(Y \le t) = P(Y > t)$$

We are given that $F_X(t) < F_Y(t)$ for some t, i.e., $\exists t$ such that this is true. Suppose that this is true for t = s. Then like before,

$$P(X > s) = 1 - P(X \le s) = 1 - F_X(s) > 1 - F_Y(s) = 1 - P(Y \le s) = P(Y > s)$$

Problem 1.53

Part a

The support of Y is $y \ge 1$, so by definition, $\forall y < 1, F_Y(y) = 0$.

On the other hand, as $y \to \infty$, $y^{-2} \to 0$, so $1 - y^{-2} \to 1$.

 $(1-y^{-2})'=2y^{-3}$, and $y \ge 1$, so this is always positive.

Part b

We found the derivative of F_Y for $y \ge 1$ in part (a). For y < 1, F_Y is a constant (0), so the derivative is 0. Then

$$f_Y(y) = \begin{cases} 0 & y < 1\\ 2y^{-3} & y \ge 1 \end{cases}$$

Part c

$$F_Z(z) = P(Z \le z) = P(10(Y - 1) \le z) = P(Y \le z/10 + 1) = F_Y(z/10 + 1)$$

Then $F_z(z) = F_Y(z/10 + 1) = 1 - \frac{1}{\left(\frac{z}{10} + 1\right)^2}$

Problem 1.54

Part b

We require $\int ce^{-|x|}dx = 1$.

$$1 = \int ce^{-|x|} dx$$
$$= c \left(\int_{-\infty}^{0} e^{x} dx + \int_{0}^{\infty} e^{-x} dx \right)$$
$$= c(1+1) = 2c$$

Therefore, c = 1/2.

Not from textbook

Problem 1

- i. Consider x < y and $F(x) = P(X \le x)$ and $F(y) = P(X \le y)$. Note that for any $z \in \mathbb{R}$, $P(X \le z) = P((-\infty, z])$. For x < y, $(-\infty, x] \subset (-\infty, y]$. Therefore, $P((-\infty, x]) \le P((-\infty, y])$.
- ii. We showed (in class and previous homework) that if $A_1 \supset A_2 \supset \cdots$ then $P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$. Consider the sequence of intervals $(-\infty, x+1/n]$. We can see that each interval is a subset of the previous intervals and that as $n \to \infty$, the interval goes to $(-\infty, x]$. $P((-\infty, x+1/n]) = F(x+1/n)$ by definition, and $\lim_{n \to \infty} F(x+1/n) = \lim_{n \to \infty} P((-\infty, x+1/n]) = P((-\infty, x]) = F(x)$. We also know that F is monotone increasing (not necessarily strictly). So if we let $\delta = 1/n$, then we can see that $F(x) = \lim_{n \to \infty} F(x+1/n) = \lim_{\delta \to 0} F(x+\delta)$.
- iii. Consider the sequence of intervals $(-\infty, x n]$ for some constant x. We can see that each interval is a subset of the interval before it, and as $n \to \infty$, this interval becomes empty (Since each interval is a subset of the previous intervals, $(-\infty, x N] = \bigcap_{n=0}^{N} (-\infty, x n]$. Assume that y is in the interval where $n \to \infty$. Then $\exists N \in \mathbb{N}$ such that -N < y, so y cannot be in $\bigcap_{n=0}^{\infty} (-\infty, x n]$.

Let $A_n = X^{-1}((-\infty, x - n])$ (we can do this since such intervals generate the Borel σ -algebra). Since each interval is a subset of the previous intervals, $A_1 \supset A_2 \supset \cdots$ as well. Since the interval approaches the empty set, $A_n \to \emptyset$.

 $\lim_{n\to\infty} P((-\infty, x-n]) = \lim_{n\to\infty} F(x-n) = \lim_{y\to-\infty} F(y). \text{ On the other hand, } \lim_{n\to\infty} P((-\infty, x-n]) = \lim_{n\to\infty} P(A_n) = P(\emptyset) = 0. \text{ Therefore, } \lim_{y\to-\infty} F(y) = 0.$

Similarly, for $\lim_{x\to\infty} F(x)$, consider the intervals $(-\infty, x+n]$. Then as $n\to\infty$, the union of the intervals (or equivalently, the last interval, since each interval is a subset of the next interval), approaches \mathbb{R} . Let $B_n = X^{-1}((-\infty, x+n])$. Then since each interval is a subset of the next, $B_1 \subset B_2 \subset \cdots$ and $B_n = \bigcup_{i=1}^n B_i$.

By De Morgan's laws, $B_n^c = \bigcap_i^n B_i^c$. $B^c = \lim_{n \to \infty} B_n^c$ is empty since if we suppose that there is some $s \in B^c$, then $X(s) \in \lim_{n \to \infty} (-\infty, x+n]^c = \emptyset$. So $P(B^c) = P(\emptyset) = 0$, and $P(B^c) = P(\lim_{n \to \infty} B_n^c) = P(\lim_{n \to \infty} (-\infty, x+n]^c) = \lim_{y \to \infty} P(X \le y) = \lim_{y \to \infty} F(y)$ (letting y = x + n).

iv. Consider the intervals $(-\infty, x - 1/n)$. As $n \to \infty$, the interval approaches $(-\infty, x)$. We can also see that $P((-\infty, x)) = P(X < x)$.

Since the i^{th} interval is a subset of the $(i+1)^{\text{th}}$ interval, each interval is also the union of itself with all of its preceding intervals. Then $(-\infty,x)=\cup_n^\infty(-\infty,x-1/n)$ and $P(X< x)=P(\cup_n^\infty(-\infty,x-1/n))$. Let $\delta=1/n$. Then as $\delta\to\infty$, $P((-\infty,x-1/n))=P((-\infty,x-\delta))\to P((-\infty,x))=F(x^-)$.

v. $P(X = x) = P(X < x) - P(X < x) = F(x) - F(x^{-})$

Problem 2

It is sufficient to show that $X^{-1}((-\infty, x]) \in \mathcal{F}$.

Note that since F is strictly increasing, F^{-1} exists and is also strictly increasing.

$$\begin{split} X^{-1}((-\infty,x]) &= \{\omega \in \Omega \mid X(\omega) \leq x\} \\ &= \{\omega \in \Omega \mid F^{-1}(\omega) \leq x\} \\ &= \{\omega \in \Omega \mid \omega \leq F(x)\} \end{split}$$

This set is just [0, F(x)] (since $\Omega = [0, 1]$), which is in \mathcal{B} .

$$P(X(\omega) \le x)$$

= $P(\{\omega \in \Omega | X(\omega) \le x\})$

- $= P([0,F(x)]) \\ = F(x) \text{ since } P \text{ is the Lebesgue measure.}$