SHAPE FEATURE REPRESENTATIONS

Yixin Lin Glizela Taino Mark Moyou Adrian M. Peter

SHAPE RETRIEVAL

REFRESHER

QUERY SHAPE

DATABASE

PROBLEM STATEMENT

SHAPE REPRESENTATION

FEATURE REPRESENTATION

RETRIEVAL MECHANICS

ROADMAP FOR FEATURE REPRESENTATION

LAPLACE-BELTRAMI OPERATOR

ISOMETRY INVARIANCE

WAVELETS

WHY WAVELETS

WAVELET DENSITY ESTIMATION

WAY, ELORSMALLY

$$\sqrt{p(x)} = \sum_{j_0,k} \frac{\alpha_{j_0,k}}{\sum_{\substack{\text{Scaling Coefficient Function Father}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Father}}} + \sum_{\substack{j \geq j_0,k \\ \text{Wavelet Wavelet Basis Coefficient Function Mother}}} \frac{\beta_{j,k}}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{j \geq j_0,k \\ \text{Wavelet Wavelet Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{j \geq j_0,k \\ \text{Wavelet Wavelet Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} \frac{\phi_{j_0,k}(x)}{\sum_{\substack{\text{Scaling Basis Coefficient Function Mother}}} + \sum_{\substack{\text{Scaling Basis Coefficient Function Mother}} \frac{\phi_$$

$$\phi \alpha_{j_o,\mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o,\mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}} ^{2}$$

$$\psi_{j,\mathbf{k}}^{2}(\mathbf{x}) = 2^{j} \psi \int \frac{\sqrt{p(\mathbf{x})}}{\sqrt{p(\mathbf{x})}} \phi_{j_o,k}(x) dx$$

$$\psi_{j,\mathbf{k}}^{3}(\mathbf{x}) = 2^{j} \psi \mathcal{E} \left[\frac{\phi_{j_o,k}(x)}{\sqrt{p(x)}} \right] .$$

WAVELET DENSITY ESTIMATION

NEGATIVE LOG LIKELIHOOD

$$-\log p(X; \{\alpha_{j_0,k}, \beta_{j,k}\}) = -\frac{1}{N} \log \prod_{i=1}^{N} \left[\sqrt{p(x_i)} \right]^2$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \left[\sum_{j_0,k} \alpha_{j_0,k} \phi_{j_0,k}(x_i) + \sum_{j \ge j_0,k}^{j_1} \beta_{j,k} \psi_{j,k}(x_i) \right]^2$$

$$\sum_{j_0,k} \alpha_{j_0,k}^2 + \sum_{j\geq j_0,k}^{j_1} \beta_{j,k}^2 = 1.$$

WAVELET DENSITY ESTIMATION

WAVELEDIDIEMISTATIESTIMATION

Database
MPEG7

Translations **576**

INITIALIZE COEFFICIENTS

$$\alpha_{j_o, \mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o, \mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}}$$

Problem

576 loopsistations

× 4007 samples

2,308,032 operations

INITIALIZE COEFFICIENTS

$$\alpha_{j_o, \mathbf{k}} = \frac{1}{N} \frac{\sum_{i=1}^{N} \phi_{j_o, \mathbf{k}}(\mathbf{x})}{\sqrt{p(\mathbf{x})}}$$

Solution

loops over each function

determine which points fall under it

calculate scaling function for only relevant

points

save scaling values for each point

INITIALIZE COEFFICIENTS

NEGATIVE LOG LIKELIHOOD

$$-\log p(X; \{\alpha_{j_0,k}, \beta_{j,k}\})$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \left[\sum_{j_0,k} \alpha_{j_0,k} \phi_{j_0,k}(x_i) \right]^2$$

Problem

ran the same as initializeCoefficients to find the scaling basis value for each sample

Solution

pass scaling basis value for each sample from initializeCoefficients

simply perform appropriate operates for the cost function and gradient

NEGATIVE LOG LIKELIHOOD

LINEAR ASSIGNMENT

LINEAR ASSIGNMER ORMALLY

$$sX, Y' = |Y|$$
 $C: X \times Y \to \mathbb{R}$
 $X \to Y$

JONKER-VOLGENANT

COST MATRIX

$$C = -(\boldsymbol{c_1} \otimes \boldsymbol{c_2}) + \lambda$$

OPTIMIZATION FOR JONKER-VOLGENANT

SAME SHAPE WARP

DIFFERENT SHAPE WARP

RESULTS ON DATASETS

FUTURE RESEARCH

- Optimize multi-resolution, ID,
 3D
- Find better feature
 representations instead of
 LBO signatures
- Investigate ways to visualize these high dimensional feature representations
- Find the best lambda to get the best results and test on multi resolution

FEATURE REPRESENTATION

THANKYOU