Lernzettel Mathe

- Lernzettel Mathe
 - Analysis
 - * Kurvendiskussion
 - * e-Funktionen
 - * Integration
 - Stochastik
 - Analytische Geometrie
 - * Vektoren
 - * Geraden
 - * Ebenen
 - * Lineare Gleichungssysteme LGS

Analysis

Kurvendiskussion

- 1. Symmetrie
- 2. Nullstellen

$$f(x) = 0$$

3. Extrema

$$f'(x)=0$$

$$f''(x_E)<0\Rightarrow {\sf Maximum}$$

$$f''(x_E)>0\Rightarrow {\sf Minimum}$$

$$f''(x_E)=0\Rightarrow {\sf keine\ Aussage}$$

4. Wendepunkte

$$f''(x)=0$$

$$f'''(x_W)<0\Rightarrow {\sf Wendepunkt(L-r)}$$
 $f'''(x_W)>0\Rightarrow {\sf Wendepunkt(R-l)}$

$$f'''(x_W) = 0 \Rightarrow \text{keine Aussage}$$

e-Funktionen

Integration

Mit der Integration lässt sich der Flächeninhalt unter einer Funktion berechnen.

$$\int_{a}^{b} f(x)dx$$

Name	Bedeutung
a	untere Integrationsgrenze
b	obere Integrationsgrenze
f(x)	Integral
dx	Differenzial

Ableiten

$$\frac{f(x) \qquad x^n}{f'(x) \quad n \cdot x^{n-1}}$$

Aufleiten

$$\frac{f(x) \qquad x^n}{F(x) \quad \frac{1}{n+1} \cdot x^{n+1}}$$

Produktregel

$$f(x) = u(x) \cdot v(x)$$

$$f' = u' \cdot v + u \cdot v'$$

Kettenregel

Stochastik

Analytische Geometrie

Vektoren

Betrag eines Vektors

Der Betrag eines Vektors ist die Länge eines seiner Pfeile.

Beispiel

$$\overrightarrow{AB} = \begin{pmatrix} 2\\4\\4 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \sqrt{2^2 + 4^2 + 4^2} = \sqrt{36} = 6$$

CAS Vektor > norm

Skalarprodukt

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $\vec{a}\cdot\vec{b}$ ist eine reelle Zahl

CAS Vektor > dotP

Kreuzprodukt/Normalenvektor

Figure 1: Kreuzprodukt

$$\vec{a}\times\vec{b}=\vec{c}$$

CAS Vektor > crossP

Winkel zwischen zwei Vektoren

CAS Vektor > angle

Geraden

Geradengleichungen

Parametergleichung

Figure 2: Parametergleichung

$$g: \vec{x} = \vec{a} + r \cdot \vec{m}$$

• \vec{x} : beliebiger Raumvektor

• \vec{a} : Stützvektor/Ortsvektor

• \vec{m} : Richtungsvektor

• *r* : Geradenparameter

Normalenform

$$g: \vec{n}_g \cdot (\vec{x} - \vec{a}) = 0$$

• \vec{x} : beliebiger Raumvektor

• \vec{a} : Stützvektor/Ortsvektor

• \vec{n}_g : Normalenvektor von g

Punkt auf der Gerade

Wenn der Punkt X (somit der Vektor \vec{x}) auf einer Gerade liegt, wird die Geradengleichung in der Parameterform:

• einen Wert für den Geradenparameter ermöglichen

in der Normalenform:

• 0 ergeben

Schnittpunkt zweier Geraden

Schneiden sich zwei Geraden g_1 und g_2 , so kann der Schnittpunkt ermittelt werden, indem die beiden Gleichungen gelichgesetzt werden. Danach wird in einem LGS die Lösung für die beiden Geradenparameter gefunden. Jetzt kann der jeweilige Parameter in eine der Parameter in seine Geradengleichung eingesetzt werden, um ein Vektor \vec{x} zu ermitteln.

$$g_1 = g_2$$

$$\vec{a_1} + r \cdot \vec{m_1} = \vec{a_2} + s \cdot \vec{m_2}$$

Schnittwinkel zweier Geraden

Schnittwinkel mit den Richtungsvektoren $\vec{m_q}$ und $\vec{m_h}$ der Geraden g und h:

$$\cos \varphi = \frac{|\vec{m_g} \cdot \vec{m_h}|}{|\vec{m_g}| \cdot |\vec{m_h}|}$$

Abstand Punkt von Gerade

Der Abstand zwischen einem Punkt X und einer Gerade g kann mithilfe einer Hilfsebene H berechnet werden.

Schnittpunkt Gerade und Ebene

Schneidet sich eine Gerade g und eine Ebene E, so kann der Schnittpunkt ermittelt werden, indem die Geradengleichung (in Parameterform) in die Ebendengleichung (in Koordinatenform) eingesetzt wird. Danach wird nach den Geradenparameter gelöst, welcher danach für eine Lösung für den Vektor \vec{x} in die Geradengleichung eingesetzt werden muss.

$$g: \vec{x} = \vec{a} + r \cdot \vec{m}$$

$$E: ax + by + cz = d$$

g in E

$$(a_1 + r \cdot m_1) \cdot x + (a_2 + r \cdot m_2) \cdot y + (a_3 + r \cdot m_3) \cdot z = d$$

Schnittwinkel Gerade und Ebene

Schnittwinkel mit dem Richtungsvektor $\vec{n_g}$ der Geraden und dem Normalenvektor \vec{n} der Ebene:

$$\sin \varphi = \frac{|\vec{n} \cdot \vec{m_g}|}{|\vec{n}| \cdot |\vec{m_g}|}$$

Ebenen

Ebenengleichung

Parameterform

Figure 3: Parameterform

$$E: \vec{x} = \vec{a} + r \cdot \vec{b} + s \cdot \vec{c}$$

• \vec{x} : beliebiger Raumvektor

• \vec{a} : Stützvektor/Ortsvektor

• \vec{b}, \vec{c} : Richtungsvektor

• r,s: Ebenenparameter

Normalenform

Figure 4: Normalenform

$$E: \vec{n}_E \cdot (\vec{x} - \vec{a}) = 0$$

• \vec{x} : beliebiger Raumvektor

• \vec{a} : Stützvektor/Ortsvektor

• \vec{n}_E : Normalenvektor von E

Koordinatenform

$$E: ax + by + cz = d$$

- a,b,c: Koordinaten des Normalenvektors
- d: Skalarprodukt von \vec{n} (Normalenvektor) und \vec{a} (Stützvektor/Ortsvektor)

Schnittgerade zweier Ebenen

Schneiden sich zwei Ebenen E_1 und E_2 , so kann die Schnittgerade g ermittelt werden, indem eine der beiden Ebenengleichungen (in Koordinaten) in die andere (in Parameterform) eingesetzt wird. Danach wird nach einen der zwei Parameter gelöst. Die Lösung enthält den anderen Parameter und wird dann in die Ebenengleichung in Parameterform eingesetzt. Diese Ebenengleichung hat jetzt nur noch ein Parameter und macht sie zu einer Geradengleichung.

$$E_1: \vec{x} = \vec{a} + r \cdot \vec{b} + s \cdot \vec{c}$$

$$E_2: ax + by + cz = d$$

 E_1 in E_2

$$(a_1 + r \cdot b_1 + s \cdot c_1) \cdot x + (a_2 + r \cdot b_2 + s \cdot c_2) \cdot y + (a_3 + r \cdot b_3 + s \cdot c_3) \cdot z = d$$

resultiert in g

$$g: \vec{x} = \vec{a} + r \cdot \vec{m}$$

Schnittwinkel zweier Ebenen

Schnittwinkel mit den Normalenvektoren $\vec{n_1}$ und $\vec{n_2}$ der beiden Ebenen:

$$\cos \varphi = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}| \cdot |\vec{n_2}|}$$

Abstand Punkt und Ebene

Der Abstand zwischen dem Punkt X (Vector \vec{x}) und der Ebene E (in Normalenform) kann mit folgender Formel berechnet werden.

$$d(X, E) = \left| \frac{\vec{n} \cdot (\vec{x} - \vec{a})}{|\vec{n}|} \right|$$

Lineare Gleichungssysteme - LGS

Mit einem LGS kann man Gleichungen mit mehreren Unbekannten/Gleichungen lösen. Ein LGS kann zum Beispiel verwendet werden, wenn man überprüfen möchte, ob ein Punkt auf einer Geraden liegt.

Punkt X(0, -1, 1) Gerade

$$g: \vec{x} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

LGS:

$$\begin{cases} I. \ 0 = 0 + r \cdot 0 \\ II. \ -1 = -2 + r \cdot 2 \\ III. \ 1 = 0 + r \cdot 2 \end{cases}$$

2	. Somit liegt der F	5