Day10

Olivia Wu

2024-03-19

Problem 4.8

```
a) TsqrtMDs = -3.17 + 6.79Hospitals
##
## Call:
## lm(formula = TsqrtMDs ~ Hospitals, data = Training)
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -18.582 -6.362 -2.918
                             8.277
                                    23.170
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.1695
                            2.6915 -1.178
                                              0.247
## Hospitals
                 6.7853
                            0.5284 12.841 2.19e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.627 on 33 degrees of freedom
## Multiple R-squared: 0.8332, Adjusted R-squared: 0.8282
## F-statistic: 164.9 on 1 and 33 DF, p-value: 2.194e-14
```

b) The cross-validation correlation is 0.953.

```
Prediction <- predict(modelT, Holdout)</pre>
Prediction
##
                             3
                                       4
                                                 5
                    2
                                                          6
## 64.68383 23.97183 17.18649 17.18649 17.18649 30.75716 10.40116 10.40116
##
                   10
                            11
                                      12
                                                13
                                                         14
          9
## 71.46916 23.97183 10.40116 10.40116 44.32783 10.40116 10.40116 10.40116
                   18
##
         17
## 10.40116 10.40116
cor(Prediction,sqrt(Holdout$MDs))
```

```
## [1] 0.9531439
```

c) The shrinkage is 0.8332 - 0.908 = -0.075, which is close to zero, so our coefficient of determinations are similar. The model for our training sample seems to be effective.

Problem 4.9

```
a) \hat{GPA} = 1.147 + 0.466HSGPA + 0.015HU + 0.199White
```

All predictors are significant. The estimated standard deviation of the error term is 0.3773, and $R^2 = 0.2842$. This shows that a small percent of variability is explained by the model.

```
##
## Call:
## lm(formula = GPA ~ HSGPA + HU + I(White), data = Training)
## Residuals:
##
        Min
                  1Q
                       Median
                                     30
  -1.09844 -0.23079 0.03517 0.23600
                                         0.82933
##
  Coefficients:
##
##
               Estimate Std. Error t value Pr(>|t|)
   (Intercept) 1.147478
                           0.311524
                                      3.683 0.000323 ***
## HSGPA
               0.466053
                           0.088393
                                      5.273 4.75e-07 ***
## HU
               0.015328
                           0.004091
                                      3.747 0.000257 ***
## I(White)
               0.199174
                           0.076152
                                      2.615 0.009846 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3773 on 146 degrees of freedom
## Multiple R-squared: 0.2842, Adjusted R-squared: 0.2695
## F-statistic: 19.32 on 3 and 146 DF, p-value: 1.319e-10
 b)
                             3
## 3.152561 3.040603 2.960027 2.730315 2.944078 3.268243 3.604737 3.245045
                  10
                            11
                                     12
                                               13
                                                        14
                                                                 15
                                                                           16
  3.410132 3.061938 2.901408 3.073537 3.014712 2.904827 3.065147 3.413655
                                     20
                                               21
                                                        22
                                                                 23
                                                                           24
##
         17
                  18
                            19
##
  3.061895 3.092490 2.990063 3.045884 3.201649 3.466889 3.354205 2.957334
##
         25
                  26
                            27
                                     28
                                               29
                                                        30
                                                                 31
                                                                           32
## 2.718183 2.578471 3.191812 3.288337 3.151835 3.002475 2.926162 2.550298
##
         33
                  34
                            35
                                     36
                                               37
                                                        38
                                                                 39
                                                                           40
## 3.306568 3.192433 2.954020 3.324895 3.017908 2.965929 2.780842 2.575170
##
         41
                  42
                            43
                                     44
                                               45
                                                        46
                                                                 47
                                                                           48
  2.759209 3.317013 2.960027 3.181870 3.187047 3.022686 2.640300 3.277669
##
         49
                  50
                            51
                                     52
                                               53
                                                        54
                                                                 55
                                                                           56
## 3.394287 2.882145 3.195629 3.192223 2.963844 2.962720 2.894557 3.014607
         57
                                                                           64
                  58
                            59
                                     60
                                               61
                                                        62
## 2.437825 2.681637 3.257576 3.210957 3.252399 2.740256 3.245771 3.257060
         65
                  66
                            67
                                     68
##
## 3.089176 3.122512 2.945009 2.970695 2.810164
                              2
                                            3
                                                                          5
##
    0.1774394377
                  0.7093971450
##
                                 0.7199727824 -0.5703145067
                                                             -0.4140782175
##
               6
                              7
                                            8
                                                           9
                                                                         10
## -0.0382432643 -0.2047372186 -0.6550454987 0.3798684276 0.4580618768
```

```
##
                               12
                                              13
                                                                             15
               11
    0.1985923190
                   0.2664629939 -0.2747119553
                                                  0.2351734504
##
                                                                 -0.7751471876
##
               16
                               17
                                              18
                                                              19
                                                                             20
    -0.2536553431
                  -0.0018953044
                                  -0.3524895565
                                                  -0.3600627205
                                                                  0.0141157790
##
##
               21
                               22
                                              23
                                                              24
                                                                             25
    0.7683507724
                  -0.7868886116
                                   0.2257948302
                                                                 -0.0881825223
##
                                                  0.6026659164
##
               26
                               27
                                              28
                                                              29
                                                                             30
##
   -0.6084714179
                   0.4681877699
                                   0.2216631324
                                                 -0.0818348277
                                                                  0.1975249313
##
               31
                               32
                                              33
                                                             34
                                                                             35
   -0.3461618179
                                   0.2034320264
##
                  -0.6202984124
                                                 -0.4424330626
                                                                  0.1059798830
##
               36
                               37
                                              38
                                                              39
                                                                             40
   -0.4148954015
                  -0.4579081385
                                  -0.3659294161
                                                 -0.3708417600
                                                                  0.0751703326
##
##
               41
                              42
                                              43
                                                              44
                                                                             45
                                                  0.0181296694
    0.1907910433
                  -0.5770129223
                                  -0.1300272176
##
                                                                  0.4429532055
##
               46
                               47
                                                              49
                                              48
                                                                             50
##
    -0.5626864554
                   0.3596999810
                                   0.2423307665
                                                  -0.2842874743
                                                                 -0.1221447143
##
               51
                               52
                                              53
                                                             54
                                                                             55
##
    0.1743707542
                  -0.6322232584
                                  -0.5838442333
                                                  0.7272796483
                                                                  0.7945570625
##
               56
                              57
                                                             59
                                                                             60
                                              58
##
    0.1053929468
                  -0.1978247748
                                   -0.4516368696
                                                  0.4624243698
                                                                  0.4690425865
##
               61
                               62
                                              63
                                                             64
                                                                             65
##
    0.4176008337
                  -0.2202564063
                                   0.0842287668
                                                  0.0529403002
                                                                  0.0408244100
                               67
##
               66
                                              68
                                                              69
   -0.2425121782 -0.2950094662 -0.0006948518 -0.1901644095
```

c) The mean (-0.059) is reasonably close to 0, and the standard deviation of the error term (0.407) is also close to the one provided by the output.

```
mean(Error)
```

[1] -0.05947226

sd(Error)

[1] 0.4065554

d) The cross-validation correlation is 0.596.

[1] 0.5960115

e) $0.2842 - 0.596^2 = -0.071$. There is little change in the amount of variability explained.

[1] -0.07102966

Problem 4.11

a)

log(GDP) vs. Religiosity

b) $log(\hat{G}DP) = 11 - 1.4 Religiosity$

53.88% of the variability in log(GDP) is explained by this model.

```
##
## Call:
## lm(formula = logGDP ~ Religiosity, data = GDP)
##
## Residuals:
##
       Min
                                3Q
                1Q
                   Median
                                       Max
##
   -1.8387 -0.8108 0.1272
                            0.5833
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.9961
                            0.3656
                                    30.079 < 2e-16 ***
## Religiosity -1.4013
                            0.2001
                                   -7.005 1.43e-08 ***
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.085 on 42 degrees of freedom
## Multiple R-squared: 0.5388, Adjusted R-squared: 0.5278
## F-statistic: 49.06 on 1 and 42 DF, p-value: 1.432e-08
```

- c) For every one percentage point of increase in Religiosity, the GDP of that country tends to decrease by 1.4.
 - d) The magnitude of the residual for Kuwait is 3.987.

Studentized Residuals vs. Predicted Values

 $e) log(\hat{G}DP) = 10.8 - 0.998 Religiosity - 1.59 Africa - 0.608 Asia + 0.344 Middle East - 0.803 East Europe + 0.84 West Europe$

```
##
## Call:
   lm(formula = logGDP ~ Religiosity + I(Africa) + I(Asia) + I(MiddleEast) +
##
       I(EastEurope) + I(WestEurope) + I(Americas), data = GDP)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
  -1.5274 -0.5720 -0.0760
                            0.5457
                                     2.3395
##
##
  Coefficients: (1 not defined because of singularities)
##
                 Estimate Std. Error t value Pr(>|t|)
                  10.7956
                               0.5365
                                       20.124
                                               < 2e-16 ***
## (Intercept)
                  -0.9979
                                       -3.498
                                               0.00124 **
## Religiosity
                               0.2852
## I(Africa)
                  -1.5937
                               0.4778
                                       -3.336
                                               0.00195 **
## I(Asia)
                  -0.6081
                               0.4689
                                       -1.297
                                               0.20265
## I(MiddleEast)
                               0.4852
                   0.3437
                                        0.708
                                               0.48314
## I(EastEurope)
                  -0.8035
                               0.5304
                                       -1.515
                                               0.13830
## I(WestEurope)
                   0.4601
                               0.5479
                                        0.840
                                               0.40646
## I(Americas)
                       NA
                                   NA
                                           NA
                                                    NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8947 on 37 degrees of freedom
```

```
## Multiple R-squared: 0.7235, Adjusted R-squared: 0.6787 ## F-statistic: 16.14 on 6 and 37 DF, p-value: 5.095e-09
```

- f) For every one percentage point of increase in Religiosity, the GDP of that country tends to decrease by 0.998.
 - g) We can use a nested F-test. The output shows significance at the 0.05 level.

```
## Analysis of Variance Table
##
## Model 1: logGDP ~ Religiosity
  Model 2: logGDP ~ Religiosity + I(Africa) + I(Asia) + I(MiddleEast) +
##
       I(EastEurope) + I(WestEurope) + I(Americas)
##
     Res.Df
               RSS Df Sum of Sq
                                      F
## 1
         42 49.405
## 2
         37 29.615
                          19.79 4.9449 0.001448 **
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

h) The magnitude of the residual for Kuwait is 3.37, which is better than before.

Studentized Residuals vs. Predicted Values

Problem 4.12

a) We can use backward selection, but removing the predictor with the highest p-value (Ascent) reduces the R^2 value. We can keep all four predictors.

```
##
## Call:
##
  lm(formula = Time ~ Difficulty + Ascent + Elevation + Length,
##
       data = HP)
##
  Residuals:
##
##
        Min
                  1Q
                       Median
                                     30
                                             Max
  -1.77942 -0.81216 -0.08647
##
                                0.68962
                                         3.06736
##
##
  Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                5.9567864
                            2.2307630
                                        2.670
                                               0.01082 *
##
  (Intercept)
## Difficulty
                0.8654527
                            0.2285275
                                        3.787
                                               0.00049 ***
                            0.0003310
                                               0.07669 .
## Ascent
                0.0006011
                                        1.816
## Elevation
               -0.0016703
                            0.0005183
                                       -3.223
                                               0.00249 **
## Length
                0.4440084
                            0.0812523
                                        5.465 2.49e-06 ***
##
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.171 on 41 degrees of freedom
## Multiple R-squared: 0.8401, Adjusted R-squared: 0.8245
## F-statistic: 53.84 on 4 and 41 DF, p-value: 8.738e-16
```

b) The residuals look to be randomly scattered and have constant variance, and the normal quantile plot is roughly linear, suggesting that the residuals are normally distributed. There are 3 observations that have unusually high residuals.

c) There are three mountains that have residuals greater than 2, and none that are less than -2. These mountains are listed below.

```
## 24 40 33 12 39 2

## 2.964556 2.562853 2.103006 1.214045 1.166073 1.149155

## 46 20 44 9 8 3

## -1.194827 -1.347085 -1.438332 -1.445827 -1.522155 -1.650153

## [1] "Seward Mtn." "Mt. Emmons" "Mt. Donaldson"
```

d)

```
##
                                 44
                                             36
                                                        31
                                                                   20
                       1
## 0.27592666 0.22312686 0.21784754 0.21773847 0.18153489 0.17180037 0.16953496
                      10
                                 12
                                              4
                                                         5
                                                                   38
## 0.15684071 0.14783751 0.13746680 0.12972137 0.12479187 0.12375495 0.12361326
            7
                      40
                                  3
                                             39
                                                        11
## 0.12253277 0.11873558 0.11613924 0.11018597 0.10954176 0.10526535 0.10192553
                       8
                                             33
                                                        21
                                 13
## 0.09962786 0.09462390 0.09280489 0.09191579 0.09036746 0.08883646 0.08859683
##
           18
                      34
                                  15
                                             19
                                                        37
                                                                     9
## 0.08768826 0.08689236 0.08448517 0.08251557 0.07822965 0.07488939 0.07367008
           24
                      42
                                 29
                                             25
                                                        30
                                                                   22
## 0.07072971 0.06695087 0.06630653 0.06032788 0.05940688 0.05885257 0.05747866
                      17
                                 14
## 0.05243718 0.03895260 0.03770663 0.02984441
```

[1] "hi2: 0.217391304347826 hi3: 0.326086956521739"

There are four mountains that have a moderately high leverage. They are

[1] "Nye Mtn." "Mt. Marcy" "Cliff Mtn." "Sawteeth"

The highest Cook's D is only 0.1558, which is less than 0.5. There are no mountains that are an influential case.

40 24 44 33 20 3 ## 0.15582827 0.11242804 0.11231391 0.08263319 0.07381836 0.06867450