Microprocessor

Course Objective:

To familiarize students with architecture, programming, hardware and application of microprocessor.

- 1.Introduction(4 hours)
 - a.Introduction and History of Microprocessors
 - b.Basic Block Diagram of a Computer
 - c.Organization of Microprocessor Based System
 - d.Bus Organization
 - e. Stored program Concept and Von Neumann Machine
 - f. Processing Cycle of a Stored Program Computer
 - g. Microinstructions and Hardwired/Microprogrammed Control Unit
 - h.Introduction to Register Transfer Language
- 2. Programming with 8085 Microprocessor(10 hours)
 - a.Internal Architecture and Features of 8085 microprocessor
 - b.Instruction Format and Data Format
 - c. Addressing Modes of 8085
 - d.Intel 8085 Instruction Set
 - e. Various Programs in 8085
 - i. Simple Programs with Arithmetic and Logical Operations
 - ii. Conditions and Loops
 - iii. Array and Table Processing
 - iv. Decimal BCD Conversion
 - v. Multiplication and Division
- 3. Programming with 8086 Microprocessor(12 hours)
 - a.Internal Architecture and Features of 8086 Microprocessor
 - i.BIU and Components
 - ii.EU and Components
 - iii.EU and BIU Operations
 - iv. Segment and Offset Address
 - b. Addressing Modes of 8086
 - c. Assembly Language Programming
 - d. High Level versus Low Level Programming
 - e. Assembly Language Syntax
 - i.Comments
 - ii. Reserved words
 - iii.Identifiers
 - iv.Statements
 - v.Directives
 - vi.Operators
 - vii.Instructions
 - f.EXE and COM programs
 - g. Assembling, Linking and Executing
 - h.One Pass and Two Pass Assemblers
 - i.Keyboard and Video Services

j. Various Programs in 8086

- i. Simple Programs for Arithmetic, Logical, String Input/Output
- ii. Conditions and Loops
- iii. Array and String Processing
- iv.Read and Display ASCII and Decimal Numbers
- v.Displaying Numbers in Binary and Hexadecimal Formats

4. Microprocessor System(10 hours)

- a.Pin Configuration of 8085 and 8086 Microprocessors
- b.Bus Structure
 - i. Synchronous Bus
 - ii. Asynchronous Bus
 - iii.Read and Write Bus Timing of 8085 and 8086 Microprocessors
- c. Memory Device Classification and Hierarchy
- d.Interfacing I/O and Memory
 - i. Address Decoding
 - ii. Unique and Non Unique Address Decoding
 - iii.I/O Mapped I/O and Memory Mapped I/O
 - iv. Serial and Parallel Interfaces
 - v.I/O Address Decoding with NAND and Block Decoders (8085, 8086)
 - vi.Memory Address Decoding with NAND, Block and PROM Decoders (8085, 8086)
- e.Parallel Interface
 - i. Modes: Simple, Wait, Single Handshaking and Double Handshaking
 - ii.Introduction to Programmable Peripheral Interface (PPI)
- f.Serial Interface
 - i.Synchronous and Asynchronous Transmission
 - ii. Serial Interface Standards: RS232, RS423, RS422, USB
 - iii.Introduction to USART
- g.Introduction to Direct Memory Access (DMA) and DMA Controllers

5. Interrupt Operations (5 hours)

- a.Polling versus Interrupt
- b.Interrupt Processing Sequence
- c.Interrupt Service Routine
- d.Interrupt Processing in 8085
 - i.Interrupt Pins and Priorities
 - ii. Using Programmable Interrupt Controllers (PIC)
 - iii. Interrupt Instructions
- e.Interrupt Processing in 8086
 - i.Interrupt Pins
 - ii. Interrupt Vector Table and its Organization
 - iii. Software and Hardware Interrupts
 - iv.Interrupt Priorities

6. Advanced Topics (4 hours)

- a.Multiprocessing Systems
 - i.Real and Pseudo-Parallelism
 - ii.Flynn's Classification
 - iii.Instruction Level, Thread Level and Process Level Parallelism
 - iv.Interprocess Communication, Resource Allocation and Deadlock
 - v.Features of Typical Operating System
- b. Different Microprocessor Architectures
 - i.Register Based and Accumulator Based Architecture
 - ii.RISC and CISC Architectures
 - iii. Digital Signal Processors

Practical:

There will be about 12 lab exercises to program 8085 and 8086 microprocessors.

References:

- 1.Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Application with 8085", 5th Edition 2002, Prentice Hall
- 2.Peter Abel, "IBM PC Assembly Language and Programming", 5th Edition 2001, Pearson Education Inc.
- 3.D. V. Hall, "Microprocessor and Interfacing, Programming and Hardware", 2nd Edition 1999, Tata McGraw Hill
- 4. John Uffenbeck, "Microcomputers and Microprocessors, The 8080, 8085 and Z-80 Programming, Interfacing and Troubleshooting" 3rd Edition 1999, Prentice Hall
- 5. Walter A. Triebel and Avtar Singh, "The 8088 and 8086 Microprocessors, Programming, Interfacing, Software, Hardware and Applications", 4th Edition 2003, Prentice Hall
- 6. William Stalling, "Computer Organization and Architecture", 8th Edition 2009, Prentice Hall

Evaluation Scheme:

The questions will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:

Chapters	Hours	Marks distribution*
1	4	8
2	10	16
3	12	16
4	10	16
5	5	8
6	4	8
1,2,3,4,5,6	6.1	8
Total	45	80

^{*}Note: There may be a minor deviation in Marks distribution