2D Geometric TransformationsCS-477 Computer Vision

Dr. Mohsin Kamal

Associate Professor dr.mohsinkamal@seecs.edu.pk

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Pakistan

- 1 Recovering best affine transformation
- 2 2D affine warping
- 3 Image interpolation

Helpful material

- https://www.algorithm-archive.org/contents/
 affine_transformations/affine_
 transformations.html
- https://www.youtube.com/watch?v=E3Phj6J287o

- 1 Recovering best affine transformation
- 2 2D affine warping
- 3 Image interpolation

Given two images with unknown transformation between them...

■ Compute the values for $[a_1, \dots, a_6]$

- Input: we are given some correspondences
- Output: Compute $a_1 a_6$ which relate the images

■ This is an optimization problem. Find the 'best' set of parameters, given the input data

Parameter Optimization: Least Squared Error Solutions

- Input: Set of correspondences
 - Image 1: (x_i, y_i)
 - Image 2: (x_i', y_i')

- Find the solution (i.e. set of parameters a_1, \dots, a_6) such that the sum of the square of error in each corresponding point is as minimum as possible
- No other set of parameters exists that may have a lower error (in the squared error sense)

We can try to find the set of parameters in which the error is minimum

$$\begin{bmatrix} x_{j}^{*} \\ y_{j}^{*} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'_{j} \\ y'_{j} \\ 1 \end{bmatrix}$$

$$E(a_1, a_2, a_3, a_4, a_5, a_6) = \sum_{j=1}^{n} (x_j^* - x_j)^2 + (y_j^* - y_j)^2$$

$$E(\mathbf{a}) = \sum_{j=1}^{n} \left((a_1 x_j' + a_2 y_j' + a_3 - x_j)^2 + (a_4 x_j' + a_5 y_j' + a_6 - y_j)^2 \right)$$

$$E(\mathbf{a}) = \sum_{i=1}^{n} \left((a_1 x_j + a_2 y_j + a_3 - x_j^i)^2 + (a_4 x_j + a_5 y_j + a_6 - y_j^i)^2 \right)$$

- Minimize E w.r.t. a
- Compute \(\textit{\rm E}_{\rm \alpha_a}\), put equal to zero, solve simultaneously

$$\begin{bmatrix} \sum_{j} x_{j}^{2} & \sum_{j} x_{j} y_{j} & \sum_{j} x_{j} & 0 & 0 & 0 \\ \sum_{j} x_{j} y_{j} & \sum_{j} y_{j}^{2} & \sum_{j} y_{j} & 0 & 0 & 0 \\ \sum_{j} x_{j} & \sum_{j} y_{j} & \sum_{j} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sum_{j} x_{j}^{2} & \sum_{j} x_{j} y_{j} & \sum_{j} x_{j} \\ 0 & 0 & 0 & \sum_{j} x_{j} y_{j} & \sum_{j} y_{j}^{2} & \sum_{j} y_{j} \\ 0 & 0 & 0 & \sum_{j} x_{j} & \sum_{j} y_{j} & \sum_{j} 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \end{bmatrix} = \begin{bmatrix} \sum_{j} x_{j} x_{j}^{2} \\ \sum_{j} y_{j} x_{j}^{2} \\ \sum_{j} x_{j}^{2} \\ \sum_{j} y_{j}^{2} \\ \sum_{j} y_{j}^{2} \\ \sum_{j} y_{j}^{2} \end{bmatrix}$$

Alternative approach

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Given three pairs of corresponding points, we get 6 equations

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \\ x_3' \\ y_3' \end{bmatrix}$$

$$\mathbf{A}\mathbf{X} = \mathbf{B} \qquad \mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

- What if we knew four corresponding points?
- We should be able to utilize the additional information

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \\ x_4 & y_4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_4 & y_4 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ y_2' \\ x_3' \\ y_3' \\ x_4' \\ y_4' \end{bmatrix}$$

- Ax = B
- Cannot take inverse directly
- Also, 4 correspondences may not be exactly represented by an affine transformation

X_1	y_1	1	0	0	0]			$[x_1']$
0	0	0	x_1	y_1	1	a_1		y ₁ '
x_2	y_2	1	0	0	0	a_2		x_2
0	0	0	x_2	y_2	1	a_3		y ₂ '
x_3	y_3	1	0	0	0	a_4	=	x_3
0	0	0	X_3	y_3	1	a_5		y ₃ '
x_4	y_4	1	0	0	0	a_6		x_4
0	0	0	X_4	y_4	1	_		y ₄ '

Pseudo Inverse

For an over-constrained linear system

$$Ax = B$$

- A has more rows than columns
- Multiply by A^T on both sides

$$A^TAx = A^TB$$

- \blacksquare A^TA is a square matrix of as many rows as X
- We can take its inverse

$$X = (A^T A)^{-1} A^T B$$

Pseudo-inverse gives the least squares error solution!

Pseudo Inverse

- In general, we may be given *n* correspondences
- Concatenate n correspondences in A and B
- \blacksquare A is $2n \times 6$ and B is $2n \times 1$
- Solve using Least Squares

$$A^TAx = A^TB$$

- 1 Recovering best affine transformation
- 2 2D affine warping
- 3 Image interpolation

Image Resolution and Transformation

- Number of pixels does not change during translation, rotation, shearing and preserve the spatial resolution of image
- Number of pixels does change during scaling and perspective transformation
- Scale up corresponds to interpolating new pixels
- In scale down, some pixels are removed
- Perspective transformation can distort the image, resulting in a non-uniform distribution of pixels, which effectively changes the pixel count in different parts of the image.

Transformed

Warping

- Inputs:
 - Image X
 - Affine Transformation $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \end{bmatrix}^T$
- Output:
 - Generate X' such that X' = AX
- Obvious Process:
 - For each pixel in X
 - Apply transformation
 - At that location in X', put the same color as at the original location in X
- Problems?

Warping

- This will leave holes
 - Because every pixel does not map to an integer location!
- Reverse Transformation
- For each integer location in X'
- Apply inverse mapping
 - Problem?
- This will not result in answers at integer locations, in general
- Bilinearly interpolate from 4 neighbors

- 1 Recovering best affine transformation
- 2 2D affine warping
- 3 Image interpolation

Nearest neighbourhood

Example 1:

10	20	
30	40	

10	10	20	20
10	10	20	20
30	30	40	40
30	30	40	40

Nearest neighbourhood

Example 2

10	10	10	40	40	40
10	10	10	40	40	40
10	10	10	40	40	40
20	20	20	30	30	30
20	20	20	30	30	30
20	20	20	30	30	30

Nearest neighbourhood

Example 3

10	40
20	30

10	10	40	40	40
10	10	40	40	40
20	20	30	30	30
20	20	30	30	30
20	20	30	30	30

Towards bilinear interpolation

- Use the line equation i.e., y = mx + c
- Given: m=1 and c=-2
- Substitute x = 4.3 provides y = 2.3

■ At $x_3 = 3$, find $y_3 = ?$

$$\frac{y_6 - y_1}{x_6 - x_1} = \frac{y_3 - y_1}{x_3 - x_1}$$

$$y_3 = y_1 + \frac{y_6 - y_1}{x_6 - x_1}(x_3 - x_1)$$

Example 1

10	x_1	x_2	x_3	x_4	40
	x_5				
		x_6			<i>x</i> ₇
30				/	20

Example 2

10	10	20	20
10	10	20	20
30	30	40	40
30	30	40	40