AYT-Kimya

Modern Atom Teorisi

Atomun Kuantum Modeli

Belirsizlik İlkesi : W. Heisenberg
Orbital Denklemi : Schröndinger

Kuantum Sayıları

n : baş (birincil) kuantum sayısı

ℓ : açısal momentum kuantum sayısı / ikincil (yan) kuantum sayısı

me: manyetik kuantum sayısı
ms: spin kuantum sayısı

Baş Kuantum Sayısı (n)

K: n = 1 L: n = 2 M: n = 2 N: n = 3 Atomun hacmi n² ile doğru orantılıdır.

Açısal Momentum Kuantum Sayısı (&)

Orbital türünü belirtir.

Her orbitalin kendine özgü şekli vardır.

 $\ell=0$: s orbitali $\ell=1$: p orbitali $\ell=2$: d orbitali $\ell=3$: f orbitali

Manyetik Kuantum Sayısı (m_e)

$$s: m_{\ell} = 0$$

$$p: m_{\ell} = -1, 0, 1$$

$$d: m_{\ell} = -2, -1, 0, 1, 2$$

$$f: m_{\ell} = -3, -2, -1, 0, 1, 2, 3$$

Orbitalin yönelimini belirtir.

Alt enerji düzeyinde kaç orbital olduğunu gösterir. Bir alt enerji düzeyindeki orbital sayısı = $2\ell+1$

Spin Kuantum Sayısı (m_s)

Elektronun kendi etrafındaki dönme eksenini belirtir, $+\frac{1}{2}$ ya da $-\frac{1}{2}$ değeri alabilir.

Orbitallerin Enerji Seviyeleri

Orbitallerin enerjileri kıyaslanırken:

- (n+ℓ) değeri büyük olan orbitalin enerjisi büyüktür
- (n+ℓ) değerleri eşit olan iki orbitalden n değeri büyük olanın enerjisi daha büyüktür.

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p

Periyodik Sistem ve Elektron Sistemi

Pauli İlkesi

Bir atomda bütün kuantum sayıları aynı olan iki atum bulunamaz.

Bir orbitalde en fazla iki elektron bulunur.

Boş orbitaller O,

yarım dolu orbitaller 🛈 ya da 🛈,

tam dolu orbitaller ise 🕀

şeklinde gösterilir.

Aufbau Kuralı

Elektronlar temel halde düşük enerjili orbitalden yüksek enerjili olana doğru sırayla dizilir.

24Cr ve 29Cu bu kurala aykırıdır.

Hund Kuralı

Elektronlar, eş enerjili orbitallere yerleştirilirken önce boş orbitallere aynı spinli olarak yerleştirilir, hepsi dolduktan sonra mevcut olanlara zıt spinli olarak yerleştirilir.

Atomların Elektron Dizilimleri

```
<sub>6</sub>Li: 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>

⊕ ⊕ ⊙○
```

Ayrıca,

 $_{16}$ S: $1s^2 2s^2 2p^6 3s^2 3p^4$

kısaltılarak şöyle de yazılabilir:

Küresel Simetrik Elektron Dizilimi

```
s^1, s^2,
```

 $p^{3}, p^{6},$

 d^5, d^{10}

f⁷,f¹⁴,

yarım ya da tam dolu orbitallerdir.

Son orbitalleri tam ya da yarım dolu olan atomlar küresel simetriktir ve daha kararlıdırlar, elektron koparmak daha zordur ve **iyonlaşma** enerjileri yüksektir.

Uyarılmış Hâl Elektron Dizilimi

Temel Haldeki atome enerji verilirse elektronları daha yüksek enerjili **orbitale** ya da **katmana** geçebilir, buna atomun uyarılması denir ve uyarılmış atomlar **Aufbau** kuralına uymaz.

İyonların Elektron Dizilimi

X^{y+} bir anyon ve X^{y-} bir katyondur.

Anyonların dizilimi elektron sayısına göre yapılır.

Katyonların dizilimi yapılırken önce temel hâl dizilimi yapılır, sonra sırasyla baş kuantum sayısı büyük olandan elektron koparılır.

Periyodik Sistem

- Artan atom numaralarına göre sıralıdır.
- 7 periyot ve 18 grup vardır.

Değerlik Orbitali ve Değerlik Elektronları

Atomun genellikle en yüksek enerji düzeyindeki orbitallere değerlik orbitaller , bu orbitaldeki elektronlar ise değerlik elektronlar olarak adlandırılır.

Sonu s ya da p orbitali ile biten elementlerinin değerlik elektronları en büyük baş kuantum sayılı orbitallerin içerdiği elektronlardır. Sonu d ile biten elementlerinin değerlik elektronları belirlenirken ise,

ns ve (n-1)d orbitallerindeki elektronlar değerlik elektronlardır.

Periyodik Sistemde Yer Belirleme

Elementin temel hâl atom diziliminde son orbital türü bloku belirler. En büyük baş kuantum sayısı periyot numarasıdır.

s ve p blokları A grubunda, d bloku ise B grubundadır.

₂He dışındaki elementlerin değerlik elektron sayısı grup numarasına eşittir.

Periyodik Özellikler

Atom ve İyon Yarıçapı

Atom çapları,

- yukarıdan aşağı gidildikçe büyür.
- soldan sağa gidildikçe küçülür.

Aynı katmandaki elektronlardan proton sayısı büyük olan atomum yarıçapı daha küçüktür.

Anyon ve Katyonlarda elektron başına düşen çekim

kuvveti p⁺ sayısı ile orantılıdır.