

Evaluating the load-balancing potential for the energy system provided through distribution grid flexibilities

Julian Endres | Thesis Presentation | 26. April 2023

Outline

REINER LEMOINE INSTITUT

- 1. Motivation
- 2. Research Questions
- 3. Grid Topologies
- 4. Methodology
- 5. Results
- 6. Comparison
- 7. Conclusion

Sector coupling requires grid expansion

[BBH]

- Decarbonization through electrification of all sectors (sector coupling)
- Increased power demand by "new consumers"
- More renewable generation
- Reinforcement necessary in distribution grids
- Storage capacity makes battery electric vehicle (BEV) and heat pump (HP) operation more flexible

Can temporal flexibilities be used to reduce the demand of spatial flexibility?

[BEA]

1. What is the minimum required reinforcement in distribution grids using flexible demand units?

- 1. What is the minimal required reinforcement in distribution grids using flexible demand units?
- 2. Which flexibility potential can be provided to the overlying grid levels?

- 1. What is the minimum required reinforcement in distribution grids using flexible demand units?
- 2. Which flexibility potential can be provided to the overlying grid levels?
- 3. How does the provided flexibility potential increase with additional reinforcement?

Grid Topologies

We analyzed heterogeneous grid topologies

- Synthetic distribution grids
- Selected by k-means clustering
- Representative for all rural and suburban
 Germany
- BEV/HP penetration follow NEP 2035 C

Source	Total	Unit
Wind Onshore	98.4	GW
Wind Offshore	27.8	GW
Photovoltaic	97.8	GW
Biomass	27.8	GW
Hydropower	3.2	GW

Installation location	Private space			Publicly accessible space			
Charging use case	Ho	ome	Work	Charg	ing hub	Pul	olic
Typical locations for charging infrastructure	Garage or private parking space at home	Parking spaces (e.g. in residential areas, multi-family houses, apartment blocks)	Company parking on own site	Charging station/ charging hub in town	Charging station/ charging hub on road axes	Customer parking spaces or multi-storey car parks (e.g. shopping malls)	Road side, public parking spaces
Typical charging capacity (kW)	Up to 11	Up to 11	Up to 22	Up to 150	Up to 350	Up to 50	Up to 22
Average standing time	Overnight	Overnight	7 hours	10 - 20 minutes	15 - 30 minutes	30 - 90 minutes	15 minutes up to 14 hours
Destination	Но	ome	Work	Fast cha	rging event		nool, Shopping, haring, Leisure

Characteristics of different charging use cases [BEV]

Installation location	Private space			Publicly accessible space			
Charging use case	Но	ome	Work	Work Charging hub		Public	
Typical locations for charging infrastructure	Garage or private parking space at home	Parking spaces (e.g. in residential areas, multi-family houses, apartment blocks)	Company parking on own site	Charging station/ charging hub in town	Charging station/ charging hub on road axes	Customer parking spaces or multi-storey car parks (e.g. shopping malls)	Road side, public parking spaces
Typical charging capacity (kW)	Up to 11	Up to 11	Up to 22	Up to 150	Up to 350	Up to 50	Up to 22
Average standing time	Overnight	Overnight	7 hours	10 - 20 minutes	15 - 30 minutes	30 - 90 minutes	15 minutes up to 14 hours
Destination	Но	ome	Work	Fast char	rging event		nool, Shopping, sharing, Leisure

Characteristics of different charging use cases [BEV]

Observation periods

Observation periods

- Reinforcement
- Flexibility potential

Observation periods

- Reinforcement
- Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Observation periods

- Reinforcement
- Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Minimal loadbalancing potential

Observation periods

- Reinforcement
- Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Minimal loadbalancing potential

- Flexibility bands
- Energy level
- Power consumption

Observation periods

- Reinforcement
- Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Minimal loadbalancing potential

- Flexibility bands
 - Energy level
 - Power consumption

Additional reinforcement

- Load-case scenario
- Incremental increase of load from flexible units

Observation periods • Reinforcement • Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Minimal loadbalancing potential

- Flexibility bands
 - Energy level
 - Power consumption

Additional reinforcement

- Load-case scenario
- Incremental increase of load from flexible units

Increased loadbalancing potential

1h load case

100 % flex load

Name	Based on
Reference	no flexible charging
Minimal reinforcement	optimized dispatch
20 % flex load	1h load case
40 % flex load	1h load case
60 % flex load	1h load case
80 % flex load	1h load case
100 % flex load	1h load case

Name	Based on
Reference	no battery/thermal storage
Minimal reinforcement	optimized dispatch
20 % flex load	1h load case
40 % flex load	1h load case
60 % flex load	1h load case
80 % flex load	1h load case
100 % flex load	1h load case

	Name	Based on
	Reference	no battery/thermal storage
	Minimal reinforcement	optimized dispatch
-	20 % flex load	1h load case
	40 % flex load	1h load case
	60 % flex load	1h load case
	80 % flex load	1h load case
	100 % flex load	1h load case

	Name	Based on
	Reference	no battery/thermal storage
4	Minimal reinforcement	optimized dispatch
	20 % flex load	1h load case
	40 % flex load	1h load case
	60 % flex load	1h load case
	80 % flex load	1h load case
	100 % flex load	1h load case

Name	Based on
Reference	no battery/thermal storage
Minimal reinforcement	optimized dispatch
20 % flex load	1h load case
40 % flex load	1h load case
60 % flex load	1h load case
80 % flex load	1h load case
100 % flex load	1h load case

	Name	Based on
	Reference	no battery/thermal storage
	Minimal reinforcement	optimized dispatch
	20 % flex load	1h load case
-	40 % flex load	1h load case
>	60 % flex load	1h load case
•	80 % flex load	1h load case
	100 % flex load	1h load case

	Name	Based on
	Reference	no battery/thermal storage
	Minimal reinforcement	optimized dispatch
	20 % flex load	1h load case
>	40 % flex load	1h load case
	60 % flex load	1h load case
>	80 % flex load	1h load case
•	100 % flex load	1h load case

Results

Research Question 1:

What is the minimal required reinforcement?

Research Question 2:

Which flexibility potential can be provided to the overlying grid levels?

A limited load balancing potential is available for HPs

- Flexibility band defines
 operational space of HP's
- Only about ¼ of the installed capacity can be used due to grid constraints

Minimal Power Potential BEV

Flexibility band defines operational space of BEV's

About 1/2 of the available capacity can be used

Research Question 3:

How does the provided flexibility potential increase with additional reinforcement?

Load Balancing Potential increases with reinforcement

Load Balancing Potential increases with reinforcement

Grid Comparison

Conclusion

Conclusion

- Reinforcement costs can be reduced with flexible operation strategies by up to 55%
- In this state, a limited load balancing potential can be provided to the transmission grid
- Additional reinforcement is expensive but necessary to provide substantial load balancing potential
- For half the grids, the costs are in a range which could be economically reasonable
- Further research is needed to determine:
 - economic benefit
 - transmission grid and storage expansion savings

Sources

[BEV] Gemassmer, J.; Daam, C.; Reibsch, R. Challenges in Grid Integration of Electric Vehicles in Urban and Rural Areas. *World Electr. Veh. J.* **2021**, *12*, 206.

[BEA] Kucevic, D., Tepe, B., Schachler, B., Röpcke, T., Helfenbein, K., Dotzauer, P., Hesse, H. C., & Jossen, A. (2022). *Open Battery Models for Electrical Grid Applications : Abschlussbericht open_BEA*. Technische Universität München.

[EGO] U. P. Mueller, B. Schachler, M. Scharf, *et al.*, "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," *Energies*, vol. 12, no. 11, p. 2091, 11 Jan. 2019

[BBH] Becker Buettner Held, "Verteilnetzbetreiber 2030", May 2018

Thank you for the attention

Grid topologies

	1690	1811	1056	176	177	2534	unit
lv-grids	179	381	130	196	110	56	-
surface area	529	1665	445	308	145	62	km^2
line length	689	1515	474	881	556	341	km

Flexibility Bands for BEV

HP and TES Capacity

Selected observation periods

Minimal line loading optimization

Minimal line loading optimization

Minimal Energy Level Potential HP

Minimal Energy Level Potential BEV

Reinforcement Measures

Reinforcement Measures in eDisGo[EGO]

Reinforcement Measures

Grid Model: Power

$$p_{b,t} = \sum_{n \in down(b)} \left(P_{n,t}^{fix} + p_{c(n),t}^{EV} + p_{c(n),t}^{HP} - p_{n,t}^{curt,l/BEV/HP} + p_{n,t}^{curt,f} \right), \tag{4.6}$$

$$q_{b,t} = \sum_{n \in down(b)} \left(Q_{n,t}^{fix} - q_{n,t}^{curt,l} + q_{n,t}^{curt,f} \right) \qquad \forall t \in T, \ b \in B.$$

$$(4.7)$$

$$-P_{b,t} \le p_{b,t} \le P_{b,t},\tag{4.8}$$

$$P_{b,t} = \sqrt{\left(S_b^{nom}\right)^2 - \left(Q_{b,t}^{fix}\right)^2} \qquad \forall t \in T, \ b \in B.$$

$$\tag{4.9}$$

Grid Model: Voltage

$$v_{slack,t} = V_{nom}^2 \quad \forall t \in T,$$
 (4.10)
 $v_{m,t} = v_{n,t} + 2 \cdot (p_{b,t} \cdot R_b + q_{b,t} \cdot X_b) \quad \forall t \in T, \ b \in B,$ (4.11)
 $V_{min,l}^2 \leq v_{n,l} \leq V_{max,l}^2 \quad \forall n \in N, \ l \in \{lv, mv\}.$ (4.12)

Minimal Line Loading

$$\min_{p,q,\dot{q},e,soe,v} \delta_{curt} \sum_{t \in T} \sum_{n \in N} p_{n,t}^{curt} + \delta_{load} \sum_{t \in T} \sum_{b \in B} l_{b,t}^2 \quad \text{with} \quad l_b = \frac{p_{b,t}}{P_{b,t}}, \tag{4.3}$$

$$\delta_{curt} = 10^{-2} >> \delta_{load} = 10^{-5}.$$
 (4.4)

$$p_{n,t}^{curt} = \delta_{curt,l} \ p_{n,t}^{curt,l} + \delta_{curt,EV} \ p_{n,t}^{curt,EV} + \delta_{curt,HP} \ p_{n,t}^{curt,HP} + \delta_{curt,f} \ p_{n,t}^{curt,f}. \tag{4.5}$$

Flexibility Potential: Energy Level

$$\min_{p,q,\dot{q},e,soe,v} \sum_{t \in T} e_t^{cum} \quad \forall t \in T,$$
(4.26)

$$\max_{p,q,\dot{q},e,soe,v} \sum_{t \in T} e_t^{cum} \quad \forall t \in T,$$
(4.27)

$$e_t^{cum} = e_{t-1}^{cum} + \left(\sum_{c \in CP} p_{c,t}^{EV} + \sum_{h \in HP} p_{h,t}^{HP}\right) \cdot \Delta t \qquad \forall t \in T \setminus \{0\}, \ c \in CP, \ h \in HP,$$
 (4.28)
$$(4.29)$$

Flexibility Potential: Power

$$\min_{p,q,\dot{q},e,v} \quad \delta_{curt} \sum_{t \in T} \sum_{n \in N} p_{n,t}^{curt} + \delta_{power} \left(\sum_{c \in CP} p_{c,t}^{EV} + \sum_{h \in HP} p_{hp,t}^{HP} \right), \tag{4.30}$$

$$\max_{p,q,\dot{q},e,v} \quad -\delta_{curt} \sum_{t \in T} \sum_{n \in N} p_{n,t}^{curt} + \delta_{power} \left(\sum_{c \in CP} p_{c,t}^{EV} + \sum_{h \in HP} p_{hp,t}^{HP} \right), \tag{4.31}$$

$$\delta_{curt} = 10^{-2}$$
 >> $\delta_{power} = 10^{-5}$. (4.32)

Heat Pump Model

$$p_{h,t}^{HP} \cdot COP_{h,t} = \dot{Q}_t^D + \dot{q}_{h,t}^{TES} \qquad \forall t \in T, \quad h \in HP, \tag{4.19}$$

$$soe_{h,t}^{TES} = \eta_{th} \cdot soe_{h,t-1}^{TES} + \dot{q}_{h,t}^{TES} \cdot \Delta t \qquad \forall t \in T, \quad h \in HP \tag{4.20}$$

$$0 \leq p_{h,t}^{HP} \leq P_h^{nom} \qquad \forall t \in T, \quad h \in HP, \tag{4.21}$$

$$0 \leq soe_{h,t}^{TES} \leq C_h^{TES} \qquad \forall t \in T, \quad h \in HP, \tag{4.22}$$

$$soe_{h,-1}^{TES} = \frac{1}{2} \cdot C_h^{TES} \qquad \forall h \in HP, \tag{4.23}$$

$$soe_{h,t_{end}}^{TES} = \frac{1}{2} \cdot C_h^{TES} \qquad \forall h \in HP. \tag{4.24}$$

EV Model

$$\underline{p}_{c,t}^{EV} \leq p_{c,t}^{EV} \leq \overline{p}_{c,t}^{EV} \qquad \forall t \in T, \quad c \in CP, \tag{4.15}$$

$$\underline{e}_{c,t} \leq e_{c,t} \leq \overline{e}_{c,t} \qquad \forall t \in T, \quad c \in CP, \tag{4.16}$$

$$e_{c,t} = \frac{1}{2} \cdot \left(\underline{e}_{c,t} + \overline{e}_{c,t}\right) \qquad \forall t \in \{0, t_{end}\}, \quad c \in CP, \tag{4.17}$$

$$e_{c,t} = e_{c,t-1} + \eta \cdot p_{c,t}^{EV} \cdot \Delta t \qquad \forall t \in T \setminus \{0\}, \quad c \in CP. \tag{4.18}$$

Voltage Band Division

$$(0.9 V_{nom})^2 \le v_{n,lv} \le (1.1 V_{nom})^2,$$
 (4.13)

$$(0.985 V_{nom})^2 \le v_{n,mv} \le (1.05 V_{nom})^2$$
. (4.14)

Voltage Band Division [REH]

Power and Energy Potential: EV

Power and Energy Potential: HP

Residential Heat Demand Profile

Reinforcement Costs

Cost Benefit for all grids

Additional Reinforcement Costs

Additional Reinforcement Costs

Methodology

Observation periods • Reinforcement • Flexibility potential

Minimal reinforcement

- Minimal line loading & curtailment optimization
- Reinforcement heuristic

Minimal loadbalancing potential

- Flexibility bands
 - Energy level
 - Power consumption

Additional reinforcement

- Load-case scenario
- Incremental increase of load from flexible units

Increased loadbalancing potential