

Sequence Listing

<110> CENTRE NATIONAL D'ETUDES VETERINAIRES ET ALIMENTAIRES - CNEVA
<120> GENOMIC AND POLYPEPTIDE CIRCOVIRUS SEQUENCE
ASSOCIATED WITH PIGLET WEIGHT LOSS DISEASE (PWD),
APPLICATIONS TO DIAGNOSIS AND TO THE PREVENTION
AND/OR TO THE TREATMENT OF THE INFECTION
<130> D17221
<140>
<141>
<150> FR 97 15396
<151> 1997-12-05
<160> 20
<170> PatentIn Vers. 2.0
<210> 1
<211> 1759
<212> Genomic DNA
<213> Type A PWD circovirus
<220>
<223> + Polarity strand (5'-3')
<400> 1
accagcgcac ttcggcagcg gcagcacctc ggcagcgtca gtaaaaatgc caagcaaga 60
aaggcccg caacccata agagggtggg ttccaaatctc cctttttgtat tattttgttt gtggcgagga 120
gaaaaacaaa atacgggagc ttccaaatctc cctttttgtat tattttgttt gtggcgagga 180
aggtttggaa gagggtagaa ctccctaccc ccagggtttt gcaatttttgc ctaagaagca 240
gacttttaac aaggtaaatggt ggtattttgg tgccgcgtgc cacatcgaga aagcgaagg 300
aaccgaccag cagaataaaag aataactgcag taaagaaggc cacatactta tcgagtgtgg 360
agtcggcgg aaccaggga agcgcagcg ccttctact gctgtgagta cccttttgc 420
gacggggctt ttgggtactg tagccgagca gtttcctgtat acgtatgtga gaaatttccg 480
cgggctggct gaactttga aagtggcgg gaagatgcag aagcgtgatt ggaagacagc 540
tgtacacgtc atagtggttgc cgcccggttggaaagagc cagtggccc gtaattttgc 600
tgagcctagg gacacctact ggaagcttag tagaaataag tgggtggatg gatatcatgg 660
agaagaagtt gttgtttgg atgatttttta tggtctggta ctttggatg atctactgag 720
actgtgtac cggtatccat tgactgtaga gactaaaggg ggtactgttc cttttttggc 780
ccgcagtatt ttgattacca gcaatcaggc ccccccaggaa tggtactcct caactgttgt 840
cccaactgtat gaaactctct atcggaggat tactacttttgc caattttggaa agactgttgg 900
agaacaatcc acggaggatcc ccgaaggccg atttgaagca gtggaccac cctgtgccct 960
tttccccatataaaatatttactgatcttttttgc acatcgtaat gttttttatttgc 1020
tttatttattttagagggtct ttcaggatata attctctgaa ttgtacataa atagtcaacc 1080
ttaccacata attttggct gtgggtgcattttggagcgc atagccagg cctgtgtgt 1140
cgacatgggt gtgggtattt aaatggagcc acagctggtt tcttttatttttgc 1200
accaatcaat tgtttggct agctctgtt tgggggtgaa gtacctggag tggtaggtaa 1260
agggctgcct tatgggtgtgg cggggaggat agttatataatgggtcatag gccaagggtgg 1320
tgaggggggtt tacaaagggtt gcatccaaga taacaaacgt ggacccaaaca cctctttgtat 1380
tagaggtat ggggtctctg gggtaaaattt catatttagc ctttctataa cggtagtatttgc 1440
gaaaaggtag gggtaggggg ttgggtgcgc ctgggggggg gaggaaactgg cccatgttgc 1500
atctcagctc gttaacattc caagatgct gcaatgttgc tcctcttgc ttgtacataa 1560
attctctaga aaggcgggaa ttgaagatata ccgttgc ggcctatctg taacgggttc 1620
tgaaggcggg gtgtacaaa tatgggttttc tcggaggat gtttccaaga tggctgcggg 1680

ggcggtccg tcttgcgg taacgcctcc ttggccacgt catcctataa aagtgaaaga 1740
 agtcgcgtgc tgttagtatt 1759

<210> 2
 <211> 1759
 <212> Genomic DNA
 <213> Type A PWD circovirus
 <220>
 <223> Polarity strand - (5'-3')

<400> 2
 aatactacag cagcgcactt ctttcactt tataaggatga cgtggccaag gaggcggtac 60
 cgcaagaagac ggaccgcgcc ccgcagccat ctggaaacg tcctccggag aagaccata 120
 ttggcacacc ccgccttcag aaaccgtac agatggcgcc gaaagacggg tatcttcaat 180
 tccgcctt ctagagaatt tgtaactcacc ataagaggag gacactcgca gccatcttgg 240
 aatgttaacg agctgagatt caacatccgc cagttcttcc ccccctcagg cggcaccaac 300
 cccctacccc taccttcca atactacgt attagaaagg ctaaatatga attttacccc 360
 agagacccca tcacctctaa tcaaagaggt gtgggtcca ctgttgat 420
 aacttggtaa cccccccac caacttggcc tatgaccctt atattaacta ctcccccgc 480
 cacaccataa ggcagccctt tacctaccac tccaggtact teacccccc accagagcta 540
 gaccaaaacaa ttgattgggt ccagccaaat aataaaaagg accagctgtg gctccattt 600
 aatacccaaca ccaatgtcga gcacacaggg ctgggctatcg cgctccaaaaa tgcaaccaca 660
 gccaaaatt atgtggtaag gttgactatt tatgtacaat tcagagaatt tattctgaaa 720
 gaccctctaa atgaataaaa ataaaaacca ttacgatgtg ataacaaaaa agactcagta 780
 atttatTTTtatggaaaaa gggcacaggg tgggtccact gcttcaaattc ggccttcggg 840
 tacctccgtg gattgttctc cagcagtctt cccaaattgc aaagtagtaa tcctccgata 900
 gagagcttct acagctggga cagcagttaa ggagtaccat tcctgggggg cctgattgt 960
 ggtaatcaaa atactgcggg cccaaaaagg aacagtaccc ctttagtct ctacagtcaa 1020
 tggataccgg tcacacagtc tcagtagatc atcccaaggd aaccagccat aaaaatcatc 1080
 caaaacaaca acttcttctc catgatatcc atcccaccac ttatttctac taggcttcca 1140
 gtaggtgtcc ctaggctcag cccaaattacg ggccactdg ctcttccac aaccgggccc 1200
 gcccactatg acgtgtacag ctgtcttcca atcacgtcc tgcatcttcc cgctcactt 1260
 caaaagttca gccagccgc gggaaattct cacatacgtt acaggaaact gctcggtcac 1320
 agtcaccaaa gacccgtct cccaaagggt actcacacgca gttagacaggt cgctgcgtt 1380
 cccctgggtc cgccggagctc cacactcgat aagtatgtgg ctttcttac tgcaagtattc 1440
 ttatttctgc tggcggtt cttcgctt ctcgatgtgg cagcgggcac caaaatacca 1500
 ctccacctt taaaaggctc gtttcttagc aaaattcgca aacccctgga ggtgaggagt 1560
 tctaccctct tccaaacctt cctcgccaca aacaaaatda taaaaaggg agattggaag 1620
 ctcccgattt ttgttttct ctcctcgga aggatttata agggtaaca cccaccttt 1680
 atggggttgc gggccgctt ttttgcgttgg cattttcaact gacgctgccc aggtgctgcc 1740
 gtcgcgaag tgcgttgtt 1759

<210> 3
 <211> 939
 <212> DNA
 <213> Type A PWD circovirus

<220> ORF1

<400> 3
 atgccaagca agaaaagcgg cccgcaaccc cataagaggt ggggtttcac ctttaataat 60
 ctttccgagg aggagaaaaa caaaatacgg gagttccaa tctcccttt tgattatttt 120
 gtttgtggcg aggaagggtt ggaagagggt agaactcctc acctccagggtt gtttgcgaat 180
 ttgtctaaga agcagacttt taacaagggt aagtggattt ttggtgcccg ctgcccacatc 240
 gagaaagcga aaggaaccga ccagcagaat aaagaataact gcagtaaaga aggccacata 300
 ctatcgatgtt gtggagctcc gcggaaaccag gggaaagcgcga ggcacctgtc tactgtgt 360
 agtacccttt tggagacggg gtcttgcgtt actgttagccg agcagtttcc tgaacgtat 420
 gtgagaaatt tccgcgggctt ggctgaactt ttggaaagtga gggggaaat gcagcagcgt 480
 gattggaaga cagctgtaca cgtcatagtg ggcggccccc gttgtggaa gagccagttgg 540

gccccgttaatt ttgctgagcc tagggacacc tactggaaagc ctagtagaaa taagtggtgg 600
 gatggatatac atggagaaga agttgttgg ttggatgatt tttatggctg gttaccttgg 660
 gatgatctac tgagactgtg tgaccggtat ccattgactg tagagactaa agggggtaact 720
 gttcctttt tggcccgag tattttgatt accagcaatc aggcccccca ggaatggtaac 780
 tcctcaactg ctgtcccagc tgtagaagct ctctatcgga ggattactac tttgcaattt 840
 tgaagactg ctggagaaca atccacgag gtacccgaag gccgatttga agcagtggac 900
 ccaccctgtg ccctttccc atataaaata aattactga 939

<210> 4
<211> 702
<212> DNA
<213> Type A PWD circovirus
<220> ORF2

<400> 4
 atgacgtggc caaggaggcg ttaccgcaga agacggaccg gcccccccgag ccatcttgg 60
 aacatcctcc ggagaagacc atatttggta caccccgcttc tcagaaaccg ttacagatgg 120
 cggcggaaaga cgggtatctt caattcccgcc tttcttagag aatttgtact caccataaga 180
 ggaggacact cgcagccatc ttggaatgtt aacggagctga gattcaacat cggccagttc 240
 cttcccccctt cagggggcac caacccctta cccttacctt tccaatacta cctgtttaga 300
 aaggctaaat atgaattttt ccccaagagac cccatcacot ctaatcaaag aggtgttggg 360
 tccactgttg ttatcttggta tgccaaacctt gtaacccctt ccaccaactt ggcctatgac 420
 ccctatatta actactcctc ccggccacacc ataaggcago cctttaccta ccactccagg 480
 tacttcaccc ccaaaccaga gctagaccaa acaattgattt ggttccagcc aaataataaa 540
 agaaaaccagc tggctcca tttaaatacc cacaccaatg tcgagcacac aggctgggc 600
 tatgcgctcc aaaatgcaac cacagccaa aattatgtgg taaggttgc tatttatgtt 660
 caattcagag aatttacccctt gaaagaccctt ctaatgaat aa 702

<210> 5
<211> 621
<212> GENOMIC DNA
<213> Type A PWD circovirus
<220> ORF3

<400> 5
 atgatatcca tcccaccact tattttctact aggttccag taggtgtccc taggctcagc 60
 aaaattacgg gcccactggc tcttccaca accggggcgcc cccactatga cgtgtacagc 120
 tgccttccaa tcacgctgct gcatcttccc gtcacttttca aaaagttcag ccagcccgcg 180
 gaaatttctc acatacgtta cagggaaactg ctccggctaca gtcaccaaaag accccgtctc 240
 caaaagggtt ctcacagcag tagacaggtc gtcgcgttcc ccctgggtcc gcggagctcc 300
 acactcgata agtatgtggc cttctttact gcagtatttctt ttattctgct ggtcggttcc 360
 ttgcgtttc tcgatgtggc agcggggcacc aaaataccac ttcaccttgc taaaagtctg 420
 cttcttagca aaattcgcaa acccctggag gtgaggagtt ctacccttcc ccaaacccttc 480
 ctgcgccacaa aaaaaataat caaaaaggaa gatttggaaacgc tcccgttattt tgttttctc 540
 ctccctcgaa ggattattaa gggtaaacac ccaccttttta tgggttgcg ggccgtttt 600
 ctgcgttgc attttcactg a 621

<210> 6
<211> 312
<212> PRT
<213> Type A PWD circovirus
<400> 6

Met	Pro	Ser	Lys	Lys	Ser	Gly	Pro	Gln	Pro	His	Lys	Arg	Trp	Val	Phe
1									10					15	

Thr	Leu	Asn	Asn	Pro	Ser	Glu	Glu	Lys	Asn	Lys	Ile	Arg	Glu	Leu
									20				25	
													30	

Pro Ile Ser Leu Phe Asp Tyr Phe Val Cys Gly Glu Glu Gly Leu Glu
 35 40 45

Glu Gly Arg Thr Pro His Leu Gln Gly Phe Ala Asn Phe Ala Lys Lys
 50 55 60

Gln Thr Phe Asn Lys Val Lys Trp Tyr Phe Gly Ala Arg Cys His Ile
 65 70 75 80

Glu Lys Ala Lys Gly Thr Asp Gln Gln Asn Lys Glu Tyr Cys Ser Lys
 85 90 95

Glu Gly His Ile Leu Ile Glu Cys Gly Ala Pro Arg Asn Gln Gly Lys
 100 105 110

Arg Ser Asp Leu Ser Thr Ala Val Ser Thr Leu Leu Glu Thr Gly Ser
 115 120 125

Leu Val Thr Val Ala Glu Gln Phe Pro Val Thr Tyr Val Arg Asn Phe
 130 135 140

Arg Gly Leu Ala Glu Leu Leu Lys Val Ser Gly Lys Met Gln Gln Arg
 145 150 155 160

Asp Trp Lys Thr Ala Val His Val Ile Val Gly Pro Pro Gly Cys Gly
 165 170 175

Lys Ser Gln Trp Ala Arg Asn Phe Ala Glu Pro Arg Asp Thr Tyr Trp
 180 185 190

Lys Pro Ser Arg Asn Lys Trp Trp Asp Gly Tyr His Gly Glu Glu Val
 195 200 205

Val Val Leu Asp Asp Phe Tyr Gly Trp Leu Pro Trp Asp Asp Leu Leu
 210 215 220

Arg Leu Cys Asp Arg Tyr Pro Leu Thr Val Glu Thr Lys Gly Gly Thr
 225 230 235 240

Val Pro Phe Leu Ala Arg Ser Ile Leu Ile Thr Ser Asn Gln Ala Pro
 245 250 255

Gln Glu Trp Tyr Ser Ser Thr Ala Val Pro Ala Val Glu Ala Leu Tyr
 260 265 270

Arg Arg Ile Thr Thr Leu Gln Phe Trp Lys Thr Ala Gly Glu Gln Ser
 275 280 285

Thr Glu Val Pro Glu Gly Arg Phe Glu Ala Val Asp Pro Pro Cys Ala
 290 295 300

Leu Phe Pro Tyr Lys Ile Asn Tyr
 305 310

<210> 7
 <211> 233
 <212> PRT

<213> Type A PWD circovirus

<400> 7

Met	Thr	Trp	Pro	Arg	Arg	Arg	Tyr	Arg	Arg	Arg	Arg	Arg	Thr	Arg	Pro	Arg
1				5				10						15		

Ser	His	Leu	Gly	Asn	Ile	Leu	Arg	Arg	Arg	Pro	Tyr	Leu	Val	His	Pro
					20		25						30		

Ala	Phe	Arg	Asn	Arg	Tyr	Arg	Trp	Arg	Arg	Lys	Thr	Gly	Ile	Phe	Asn
					35		40				45				

Ser	Arg	Leu	Ser	Arg	Glu	Phe	Val	Leu	Thr	Ile	Arg	Gly	Gly	His	Ser
					50		55			60					

Gln	Pro	Ser	Trp	Asn	Val	Asn	Glu	Leu	Arg	Phe	Asn	Ile	Gly	Gln	Phe
					65		70			75			80		

Leu	Pro	Pro	Ser	Gly	Gly	Thr	Asn	Pro	Leu	Pro	Leu	Pro	Phe	Gln	Tyr
					85			90			95				

Tyr	Arg	Ile	Arg	Lys	Ala	Lys	Tyr	Glu	Phe	Tyr	Pro	Arg	Asp	Pro	Ile
					100		105				110				

Thr	Ser	Asn	Gln	Arg	Gly	Val	Gly	Ser	Thr	Val	Val	Ile	Leu	Asp	Ala
						115		120				125			

Asn	Phe	Val	Thr	Pro	Ser	Thr	Asn	Leu	Ala	Tyr	Asp	Pro	Tyr	Ile	Asn
					130		135			140					

Tyr	Ser	Ser	Arg	His	Thr	Ile	Arg	Gln	Pro	Phe	Thr	Tyr	His	Ser	Arg
					145		150			155			160		

Tyr	Phe	Thr	Pro	Lys	Pro	Glu	Leu	Asp	Gln	Thr	Ile	Asp	Trp	Phe	Gln
					165			170			175				

Pro	Asn	Asn	Lys	Arg	Asn	Gln	Leu	Trp	Leu	His	Leu	Asn	Thr	His	Thr
					180			185			190				

Asn	Val	Glu	His	Thr	Gly	Leu	Gly	Tyr	Ala	Leu	Gln	Asn	Ala	Thr	Thr
					195		200				205				

Ala	Gln	Asn	Tyr	Val	Val	Arg	Leu	Thr	Ile	Tyr	Val	Gln	Phe	Arg	Glu
					210		215			220					

Phe	Ile	Leu	Lys	Asp	Pro	Leu	Asn	Glu
					225		230	

<210> 8

<211> 206

<212> PRT

<213> Type A PWD circovirus

<400> 8

Met	Ile	Ser	Ile	Pro	Pro	Leu	Ile	Ser	Thr	Arg	Leu	Pro	Val	Gly	Val
1				5				10					15		

Pro	Arg	Leu	Ser	Lys	Ile	Thr	Gly	Pro	Leu	Ala	Leu	Pro	Thr	Thr	Gly
					20			25				30			
Arg	Ala	His	Tyr	Asp	Val	Tyr	Ser	Cys	Leu	Pro	Ile	Thr	Leu	Leu	His
					35			40			45				
Leu	Pro	Ala	His	Phe	Gln	Lys	Phe	Ser	Gln	Pro	Ala	Glu	Ile	Ser	His
					50			55			60				
Ile	Arg	Tyr	Arg	Lys	Leu	Leu	Gly	Tyr	Ser	His	Gln	Arg	Pro	Arg	Leu
					65			70		75		80			
Gln	Lys	Gly	Thr	His	Ser	Ser	Arg	Gln	Val	Ala	Ala	Leu	Pro	Leu	Val
					85				90			95			
Pro	Arg	Ser	Ser	Thr	Leu	Asp	Lys	Tyr	Val	Ala	Phe	Phe	Thr	Ala	Val
					100			105			110				
Phe	Phe	Ile	Leu	Leu	Val	Gly	Ser	Phe	Arg	Phe	Leu	Asp	Val	Ala	Ala
					115			120			125				
Gly	Thr	Lys	Ile	Pro	Leu	His	Leu	Val	Lys	Ser	Leu	Leu	Leu	Ser	Lys
					130			135			140				
Ile	Arg	Lys	Pro	Leu	Glu	Val	Arg	Ser	Ser	Thr	Leu	Phe	Gln	Thr	Phe
					145			150		155		160			
Leu	Ala	Thr	Asn	Lys	Ile	Ile	Lys	Lys	Gly	Asp	Trp	Lys	Leu	Pro	Tyr
					165			170			175				
Phe	Val	Phe	Leu	Leu	Leu	Gly	Arg	Ile	Ile	Lys	Gly	Glu	His	Pro	Pro
					180			185			190				
Leu	Met	Gly	Leu	Arg	Ala	Ala	Phe	Leu	Ala	Trp	His	Phe	His		
					195			200			205				

<210> 9

<211> 1767

<212> Genomic DNA

<213> Type B PWD circovirus

<220> Polarity strand + (5'-3')

<400> 9

```

accagcgcac ttcggcagcg gcagcacctc ggcagcacct cagcagcaac atgcccagca 60
agaagaatgg aagaagcggc ccccaacccc ataaaagggtg ggtgttcaact ctgaataatc 120
cttccgaaga cgagcgcaag aaaatacggg atcttccaat atccctattt gattattttt 180
ttgttggcga ggagggtaat gaggaaggac gaacacctca cctccagggg ttgcctaatt 240
ttgtgaagaa gcagactttt aataaaagtga agtggttattt gggtgccgc tgccacatcg 300
agaaaagcgaa aggaacagat cagcagaata aagaatactg cagtaaagaa ggcaacttac 360
tcatggagtg tggagctcct agatctcagg gacaacggag tgacctgtct actgctgtga 420
gtaccttgtt ggagagcggg agtctggta ccgttgcaga gcagcacccct gtaacgtttg 480
tcagaaattt ccgcgggctg gctgaacttt tgaaagttag cgggaaaatg cagaagcgtg 540
attggaaagac taatgtacac gtcattgtgg ggcacccctgg gtgtggtaaa agcaaatggg 600
ctgctaattt tgcagacccg gaaaccacat actggaaacc acctagaaac aagtggtggg 660
atggttacca tggtaagaa gtgggttta ttgatgactt ttatggctgg ctgcccctgg 720
atgatctact gagactgtgt gatcgatatac cattgactgt agagactaaa ggtggaactg 780

```

tacctttttt ggcccgagt attctgatta ccagcaatca
 cctcaactgc tgcggcgtt gtagaaagtc ttatcgagg
 ggaagaatgc tacagaacaa tccacggagg aaggggggcca
 catgccctga atttccatat gaaataaatt actgagtc
 ttttattatt cattaagggt taagtgggg gtcttaaaa
 atacatgggt acacggatat tgattcctg gtcgtatata
 gagggctacg tggctcacat ttccagcagt ttgttagtctc
 gttgttgggt tggaaagtaat caatagtgaa atctaggaca
 ggagtggtag gagaaggct gggttatggg atggcgggag
 ataggtgagg gctgtggcct ttgttacaaa gttatcatct
 cactcccctg tcaccctggg tgatcgggg gcagggccag
 tattctgttag tattcaaagg gcacagagcg ggggttgc
 gtcattaata ttgaatctca tcatgtccac cgcccaggag
 ctgacagta tatccgaagg tgcgggagag gcgggtgttgc
 ccagcggtaa cggtggcggg ggtggacag ccaggggcgg
 atggctgcgg gggcggtgtc ttcttctcg gtaacgcctc
 aaacgaaaga agtgcgctgt aagtatt

gaccggcgtt gaatggtaact 840
 gattacttcc ttggtatatt 900
 gttcgtcacc ctttcccccc 960
 ttttattcact tcgtaatgt 1020
 ttaaattctc tgaattgtac 1080
 ctgtttcga acgcagtgcc 1140
 agccacagct ggtttcttt 1200
 gggttggggg taaagtaccc 1260
 gagtagttt cataggggtc 1320
 aaaataacag cactggagcc 1380
 aattcaacct taacctttct 1440
 cccctcctg ggggaagaaa 1500
 ggcgttctga ctgtggttcg 1560
 aagatgccat ttttccttct 1620
 cggcggagga tctggccaag 1680
 ctggatacg tcataatctga 1740
 1767

<210> 10

<211> 1767

<212> GENOMIC DNA

<213> Type B PWD circovirus

<220> Polarity strand - ,(5'-3')

<400> 10

aataacttaca ggcgcacttct ttcgtttca gatatgacgt atccaaggag gcgttaccca 60
 agaagaagac accgcccccg cagccatctt ggcagatcc tccgccccg cccctggctc 120
 gtccacccccc gccaccgtt ccgctggaga agaaaaatg gcatcttcaa cacccgcctc 180
 tcccgaccc tccgtatatac tgtcaagcga accacagtca gaacgcctc ctggcggtg 240
 gacatgatga gattcaatata taatgacttt cttcccccag gaggggggtc aaacccccc 300
 tctgtgcctt ttgaatacta cagaataaga aagtttaagg ttgaattctg gccctgctcc 360
 ccgatcaccct agggtgacag gggagtggc tccagtgtcg ttattttaga tgataacttt 420
 gtaacaaagg ccacagccct cacctatgac ccctatgtaa actactcctc cgcgcataacc 480
 ataacccagc ctttcctcta ccactcccg tactttaccc ccaaacctgt cctagattc 540
 actattgtatt acttccaacc aaacaacaaa agaaaccagc tgtggctgag actacaaaact 600
 gctggaaatg tagaccacgt aggccctccgc actgcgttgc aaaacagtat atacgaccag 660
 gaatacaata tccgtgtaac catgtatgtt caattcagag aatthaattt taaagacccc 720
 ccacttaacc cttaatgtat aataaaaacc attacgaagt gataaaaaag actcagtaat 780
 ttatttcata tggaaattca gggcatggg gggaaagggt gacgaactgg ccccttcct 840
 ccgtggattt ttctgttagca ttcttccaaa ataccaaggat agtaatcctc cgataaaagag 900
 ctctacagc tgggacagcg ttggaggagt accattccaa cggggctga ttgtggtaa 960
 tcagaataact gccccccaaa aaaggtacag ttccacccatc agtcttaca gtcaatggat 1020
 atcgatcaca cagtctcgtt agatcatccc agggcagcca gccataaaag tcatcaataa 1080
 caaccacttc ttccacatgg taaccatccc accacttgtt tctaggtggt ttccagttatg 1140
 tggtttccgg gtctgcaaaa ttagcagccc attgtctttt accacaccca ggtggcccca 1200
 caatgacgtg tacattagtc ttccaaatcac gcttctgcatttccctc actttcaaaa 1260
 gttcagccag cccgcggaaa ttctgacaa acgttacagg gtgctgctc gcaacggtca 1320
 ccagactccc gctctccaaac aaggtaactca cagcagtaga caggtcactc cggtgtccct 1380
 gagatctagg agtccacac tccatcagta agtgccttc ttactgcag tattctttat 1440
 tctgctgatc tggcttttc gcttctcga tggcggcagcg ggcacccaaa taccacttca 1500
 ctttattaaa agtctgttc ttccacaaaat tagcgaaccc ctggaggtga ggtgttcgtc 1560
 ctccctcatt accctcctcg ccaacaataa aataatcaa tagggatatt ggaagatccc 1620
 gtatttctt gcgctcgatc tcggaagat tattcagagt gacacccac ctttatggg 1680
 gttgggggtcc gcttcttcca ttcttctcg tggcgtatgtt gctgctgagg tgctgcccag 1740
 gtgctgcccgc tgccgaagtgc gctgtgtt 1767

<210> 11

<211> 945

<212> DNA

<213> Type B PWD circovirus

<220> ORF1

<400> 11

atgcccagca	agaagaatgg	aagaagcgga	ccccaaacccc	ataaaagggtg	ggtgttcact	60
ctgaataatc	cttccgaaga	cgagcgcaag	aaaatacogg	atcttccat	atccctattt	120
gattattttt	ttgttggcga	ggagggtaat	gaggaaggac	gaacacctca	cctccagggg	180
ttcgctaatt	ttgtgaagaa	gcagacttt	aataaaagtga	agtggtattt	gggtgcccgc	240
tgccacatcg	agaaagcgaa	aggaacagat	cagcagaata	aagaatactg	cagtaaagaa	300
ggcaacttac	tgtggagtg	tggagctcct	agatctcagg	gacaacggag	tgacctgtct	360
actgctgtga	gtacccgtt	ggagagcggg	agtctggtga	ccgttgcaga	gcagcaccct	420
gtaacgtttt	tcagaaaattt	ccgcgggctg	gctgaacttt	tgaaagttag	cggaaaaatg	480
cagaagcgtg	attggaagac	taatgtacac	gtcattgtgg	ggccacctgg	gtgtggtaaa	540
agcaaatggg	ctgctaattt	tgcatgacccg	gaaaccacat	actggaaacc	acctagaaac	600
aagtggtggg	atggttacca	tggtgaagaa	gtggttgtt	ttgatgactt	ttatggctgg	660
ctgcccctggg	atgatctact	gagactgtgt	gatcgatato	cattgactgt	agagactaaa	720
ggtggactg	tacccctttt	ggcccgcagt	attctgatta	ccagcaatca	gaccgggttg	780
gaatggtact	cctcaactgc	tgtcccagct	gtagaagctc	tttatcgag	gattacttcc	840
tttgttatttt	ggaagaatgc	tacagaacaa	tccacggagg	aagggggcca	gttcgtcacc	900
cttccccccc	catgcccgtga	atttccatat	gaaataaatt	actga		945

<210> 12

<211> 702

<212> DNA

<213> Type B PWD circovirus

<220> ORF2

<400> 12

atgacgtatc	caaggaggcg	ttaccgaaga	agaagacacc	gcccccgca	ccatcttggc	60
cagatcctcc	gccggcgccc	ctggctcg	cacccccc	accgttaccg	ctggagaagg	120
aaaaatggca	tcttcaacac	ccgcctctcc	cgcaccttc	gataactgt	caagcgaacc	180
acagtcagaa	cgccttcctg	ggcggtgac	atgatgagat	tcaatattaa	tgactttctt	240
cccccaggag	gggggtcaaa	cccccgctct	gtgcccttgc	aataactacag	aataagaag	300
gttaagggtt	aattctggcc	ctgctcccg	atcacccagg	gtgacagggg	agtgggctcc	360
agtgtgtt	tttttagatga	taactttgt	acaaaggcca	cagccctcac	ctatgacccc	420
tatgtaaact	actccctcccg	ccataccata	accagccct	tctccatca	ctcccggtac	480
tttaccccca	aaccgttct	agatttact	attgattact	tccaaccaaa	caacaaaaga	540
aaccagctg	ggctgagact	acaaactgct	ggaaatgtag	accacgtagg	cctcggcact	600
gcgttcgaaa	acagtatata	cgaccagaa	tacaatatcc	gtgttaaccat	gtatgtacaa	660
ttcagagaat	ttaattttaa	agaccccca	cttaaccctt	aa		702

<210> 13

<211> 315

<212> DNA

<213> Type B PWD circovirus

<220> ORF3

<400> 13

atggtaacca	tcccaccact	tgtttctagg	tggtttccag	tatgtggttt	ccgggtctgc	60
aaaattagca	gcccatgtc	tttaccaca	cccagggtgg	cccacaatga	cgtgtacatt	120
agtcttccaa	tcacgcttct	gcattttccc	gctcaacttc	aaaagttcag	ccagccccgc	180
gaaatttctg	acaaacgtt	cagggtgt	ctctgcaacg	gtcaccagac	tcccgtctc	240
caacaaggta	ctcacagcag	tagacaggtc	actccgttgc	ccctgagatc	tagagctcc	300
acactccatc	agtaa					315

<210> 14
<211> 314
<212> PRT
<213> Type B PWD circovirus

<400> 14

Met	Pro	Ser	Lys	Lys	Asn	Gly	Arg	Ser	Gly	Pro	Gln	Pro	His	Lys	Arg
1					5				10				15		

Trp	Val	Phe	Thr	Leu	Asn	Asn	Pro	Ser	Glu	Asp	Glu	Arg	Lys	Lys	Ile
				20				25					30		

Arg	Asp	Leu	Pro	Ile	Ser	Leu	Phe	Asp	Tyr	Phe	Ile	Val	Gly	Glu	Glu
				35				40				45			

Gly	Asn	Glu	Glu	Gly	Arg	Thr	Pro	His	Leu	Gln	Gly	Phe	Ala	Asn	Phe
				50		55			60						

Val	Lys	Lys	Gln	Thr	Phe	Asn	Lys	Val	Lys	Trp	Tyr	Leu	Gly	Ala	Arg
					65			70		75			80		

Cys	His	Ile	Glu	Lys	Ala	Lys	Gly	Thr	Asp	Gln	Gln	Asn	Lys	Glu	Tyr
				85				90				95			

Cys	Ser	Lys	Glu	Gly	Asn	Leu	Leu	Met	Glu	Cys	Gly	Ala	Pro	Arg	Ser
				100				105				110			

Gln	Gly	Gln	Arg	Ser	Asp	Leu	Ser	Thr	Ala	Val	Ser	Thr	Leu	Leu	Glu
				115				120			125				

Ser	Gly	Ser	Leu	Val	Thr	Val	Ala	Glu	Gln	His	Pro	Val	Thr	Phe	Val
				130		135				140					

Arg	Asn	Phe	Arg	Gly	Leu	Ala	Glu	Leu	Leu	Lys	Val	Ser	Gly	Lys	Met
					145		150			155			160		

Gln	Lys	Arg	Asp	Trp	Lys	Thr	Asn	Val	His	Val	Ile	Val	Gly	Pro	Pro
					165			170				175			

Gly	Cys	Gly	Lys	Ser	Lys	Trp	Ala	Ala	Asn	Phe	Ala	Asp	Pro	Glu	Thr
				180				185			190				

Thr	Tyr	Trp	Lys	Pro	Pro	Arg	Asn	Lys	Trp	Trp	Asp	Gly	Tyr	His	Gly
					195		200				205				

Glu	Glu	Val	Val	Val	Ile	Asp	Asp	Phe	Tyr	Gly	Trp	Leu	Pro	Trp	Asp
				210		215				220					

Asp	Leu	Leu	Arg	Leu	Cys	Asp	Arg	Tyr	Pro	Leu	Thr	Val	Glu	Thr	Lys
				225		230				235			240		

Gly	Gly	Thr	Val	Pro	Phe	Leu	Ala	Arg	Ser	Ile	Leu	Ile	Thr	Ser	Asn
				245				250				255			

Gln	Thr	Pro	Leu	Glu	Trp	Tyr	Ser	Ser	Thr	Ala	Val	Pro	Ala	Val	Glu
				260				265			270				

Ala	Leu	Tyr	Arg	Arg	Ile	Thr	Ser	Leu	Val	Phe	Trp	Lys	Asn	Ala	Thr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

275

280

285

Glu Gln Ser Thr Glu Glu Gly Gly Gln Phe Val Thr Leu Ser Pro Pro
 290 295 300

Cys Pro Glu Phe Pro Tyr Glu Ile Asn Tyr
 305 310

<210> 15
 <211> 233
 <212> PRT
 <213> Type B PWD circovirus

<400> 15
 Met Thr Tyr Pro Arg Arg Arg Tyr Arg Arg Arg Arg His Arg Pro Arg
 1 5 10 15

Ser His Leu Gly Gln Ile Leu Arg Arg Arg Pro Trp Leu Val His Pro
 20 25 30

Arg His Arg Tyr Arg Trp Arg Arg Lys Asn Gly Ile Phe Asn Thr Arg
 35 40 45

Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Arg Thr Thr Val Arg Thr
 50 55 60

Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asn Asp Phe Leu
 65 70 75 80

Pro Pro Gly Gly Ser Asn Pro Arg Ser Val Pro Phe Glu Tyr Tyr
 85 90 95

Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr
 100 105 110

Gln Gly Asp Arg Gly Val Gly Ser Ser Ala Val Ile Leu Asp Asp Asn
 115 120 125

Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr
 130 135 140

Ser Ser Arg His Thr Ile Thr Gln Pro Phe Ser Tyr His Ser Arg Tyr
 145 150 155 160

Phe Thr Pro Lys Pro Val Leu Asp Phe Thr Ile Asp Tyr Phe Gln Pro
 165 170 175

Asn Asn Lys Arg Asn Gln Leu Trp Leu Arg Leu Gln Thr Ala Gly Asn
 180 185 190

Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Ile Tyr Asp
 195 200 205

Gln Glu Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe
 210 215 220

Asn Phe Lys Asp Pro Pro Leu Asn Pro

225

230

<210> 16
<211> 104
<212> PRT
<213> Type B PWD circovirus

<400> 16

Met	Val	Thr	Ile	Pro	Pro	Leu	Val	Ser	Arg	Trp	Phe	Pro	Val	Cys	Gly
1				5					10					15	
Phe	Arg	Val	Cys	Lys	Ile	Ser	Ser	Pro	Phe	Ala	Phe	Thr	Thr	Pro	Arg
		20				25							30		
Trp	Pro	His	Asn	Asp	Val	Tyr	Ile	Ser	Leu	Pro	Ile	Thr	Leu	Leu	His
		35					40					45			
Phe	Pro	Ala	His	Phe	Gln	Lys	Phe	Ser	Gln	Pro	Ala	Glu	Ile	Ser	Asp
	50				55				60						
Lys	Arg	Tyr	Arg	Val	Leu	Leu	Cys	Asn	Gly	His	Gln	Thr	Pro	Ala	Leu
	65				70				75				80		
Gln	Gln	Gly	Thr	His	Ser	Ser	Arg	Gln	Val	Thr	Pro	Leu	Ser	Leu	Arg
			85					90					95		
Ser	Arg	Ser	Ser	Thr	Leu	His	Gln								
				100											

<210> 17
<211> 15
<212> PRT
<213> Type B PWD circovirus

<400> 17

Val	Asp	Met	Met	Arg	Phe	Asn	Ile	Asn	Asp	Phe	Leu	Pro	Pro	Gly
1				5					10					15

<210> 18
<211> 15
<212> PRT
<213> Type B PWD circovirus

<400> 18

Gln	Gly	Asp	Arg	Gly	Val	Gly	Ser	Ser	Ala	Val	Ile	Leu	Asp	Asp
1				5					10				15	

<210> 19
<211> 15
<212> PRT
<213> Type B PWD circovirus

<400> 19

Gly	Val	Gly	Ser	Ser	Ala	Val	Ile	Leu	Asp	Asp	Asn	Phe	Val	Thr
1				5					10				15	

<210> 20
<211> 15
<212> PRT
<213> Type B PWD circovirus

<400> 20
Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Ile Tyr
1 5 10 15

Bibliographic references

- Allan, G.M. et al., 1995, *Vet. Microbiol.*, 44: 49-64.
- Barany, F., 1911, *PNAS. USA*, 88: 189-193.
- Boulton, L.H. et al., 1997, *J. Gen. Virol.*, 78 (Pt 6), 1265-1270.
- Buckholz, R.G., 1993, Yeast systems for the expression of heterologous gene products. *Curr. Op. Biotechnology* 4: 538-542.
- Burg, J.L. et al., 1996, *Mol. and Cell. Probes*, 10: 257-271.
- Chu, B.C.F. et al., 1986, *NAR*, 14: 5591-5603.
- Chu, P.W.G. et al., 1993, *Virus Research*, 27: 161-171.
- Clark, E.G., 1997, American Association of Swine Practitioners, 499-501.
- Daft, B. et al., 1996, American Association of Veterinary Laboratory Diagnosticians, 32.
- Derse, D. et al., 1995, *J. Virol.*, 69(3): 1907-1912.
- Duck, P. et al., 1990, *Biotechniques*, 9: 142-147.
- Dulac, G.C. et al., 1989, *Can. J. Vet. Res.*, 53: 431-433.
- Edwards, C.P., and Aruffo, A., 1993, Current applications of COS cell based transient expression systems. *Curr. Op. Biotechnology* 4: 558-563.
- Edwards, S. et al., 1994, *Vet. Rec.*, 134: 680-681.
- Erlich, H.A., 1989, In PCR Technology. Principles and Applications for DNA Amplification. New York: Stockton Press.
- Felgner, et al., 1987, *Proc. Natl. Acad. Sci.*, 84: 7413.
- Fontes, E.P.B. et al., 1994, *J. Biol. Chem.*, Vol. 269, No. 11: 8459-8465.
- Fraley et al., 1980, *J. Biol. Chem.*, 255: 10431.
- Guateli, J.C. et al., 1990, *PNAS. USA*, 87: 1874-1878.
- Hackland, A.F. et al., 1994, *Arch. Virol.*, 139: 1-22.
- Hanson, S.F. et al., 1995, *Virology*, 211: 1-9.
- Harding, J.C., 1997, American Association of Swine Practitioners, 503.
- Harding, R.M. et al., 1993, *Journal of General Virology*, 74: 323-328.

- Harding, J.C. and Clark, E.G., 1997, Swine Health and Production, Vol. 5, No. 5: 201-203.
- Heyraud-Nitschke, F. et al., 1995, Nucleic Acids Research, Vol. 23, No. 6.
- Horner, G.W., 1991, Surveillance 18(5): 23.
- Houben-Weyl, 1974, in Methode der Organischen Chemie, E. Wunsch Ed., Volume 15-I and 15-II, Thieme, Stuttgart.
- Huygen, K. et al., 1996, Nature Medicine, 2(8): 893-898.
- Innis, M.A. et al., 1990, in PCR Protocols. A guide to Methods and Applications, San Diego, Academic Press.
- Kaneda, et al., 1989, Science, 243: 375.
- Kievitis, T. et al., 1991, J. Virol. Methods, 35: 273-286.
- Kohler, G. et al., 1975, Nature, 256(5517): 495-497.
- Kwoh, D.Y. et al., 1989, PNAS. USA, 86: 1173-1177.
- Ladany, S. et al., 1989, J. Clin. Microbiol. 27: 2778-2783.
- Lazarowitz, S.G. et al., 1989, The EMBO Journal, Vol. 8 No. 4: 1023-1032.
- Luckow, V.A., 1993, Baculovirus systems for the expression of human gene products. Curr. Op. Biotechnology 4: 564-572.
- Mankertz, A. et al., 1997, J. Virol., 71: 2562-2566.
- Matthews, J.A. et al., 1988, Anal. Biochem., 169: 1-25.
- McNeilly, F. et al., 1996, Vet. Immunol. Immunopathol., 49: 295-306.
- Meehan, B.M. et al., 1997, J. Gen. Virol. 78: 221-227.
- Merrifield, R.D., 1966, J. Am. Chem. Soc., 88(21): 5051-5052.
- Midoux, 1993, Nucleic Acids Research, 21: 871-878.
- Miele, E.A. et al., 1983, J. Mol. Biol., 171: 281-295.
- Murphy, F.A. et al., 1995, Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag Wien New York.
- Nayar, G.P. et al., 1997, Can. Vet. J. 38(6): 385-386.
- Olins, P.O., and Lee, S.C., 1993, Recent advances in heterologous gene expression in E.coli. Curr. Op. Biotechnology 4: 520-525.

- Pagano et al., 1967, J. Virol., 1: 891.
- Rolfs, A. et al., 1991, In PCR Topics. Usage of Polymerase Chain reaction in Genetic and Infectious Disease. Berlin: Springer-Verlag.
- Sambrook, J. et al., 1989, In Molecular cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- Sanchez-Pescador, R., 1988, J. Clin. Microbiol., 26(10): 1934-1938.
- Segev D., 1992, in "Non-radioactive Labeling and Detection of Biomolecules". Kessler C. Springer Verlag, Berlin, New-York: 197-205.
- Shiver, J.W., 1995, in Vaccines 1995, eds Chanock, R.M. Brown, F. Ginsberg, H.S. & Norrby, E., pp. 95-98, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Tascon, R.E. et al., 1996, Nature Medicine, 2(8): 888-892.
- Tischer, I. et al., 1982, Nature, 295: 64-66.
- Tischer, I. et al., 1986, Arch. Virol., 91: 271-276.
- Tischer, I. et al., 1988, Zentralbl Bakteriol Mikrobiol Hyg [A] 270: 280-287.
- Tischer, I. et al., 1995, Arch. Virol., 140: 737-743.
- Urdea, M.S., 1988, Nucleic Acids Research, II: 4937-4957.
- Walker, G.T. et al., 1992, NAR 20: 1691-1696.
- Walker, G.T. et al., 1992, PNAS. USA, 89: 392-396.
- White, B.A. et al., 1997, Methods in Molecular Biology, 67, Humana Press, Towota.
- Zhao, T.M. et al., 1996, Proc. Natl. Acad. Sci., USA 93(13): 6653-6648.