BEST (AV)AILABLE COPY PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-309771

(43)Date of publication of application : 28.11.1995

(51)Int.CI.

A61K 38/00 A61K 9/08 C07K C07K 7/06 CO7K 14/79

(21)Application number: 06-103109

17.05.1994

(71)Applicant: MORINAGA MILK IND CO LTD

(72)Inventor: EBINA TAKUSABUROU

-5

(54) PARENTERAL ANTITUMOR AGENT

(57)Abstract:

(22)Date of filing:

PURPOSE: To obtain a parenteral antitumor agent having a specific amino acid sequence, derived from lactoferrin, showing antitumor action and slight adverse effect, having thermostability, water solubility, stability in 1 an aqueous solution, antimicrobial action, not requiring

Lys ROL ROL ROL CID ROL ROL Met Lys Lys.

10

an antiseptic.

CONSTITUTION: Bovine lactoferrin is dissolved in purified water, adjusted to pH 2.5 with 0.1 N hydrochloric acid, mixed with swine pepsin, hydrolyzed at 37° C for six hours, adjusted to pH 7.0 with 0.1 N sodium hydroxide, heated at 80° C for 10 minutes to deactivate the enzyme, cooled to a room temperature and centrifuged to give a transparent supernatant liquid. Then the supernatant liquid is subjected to high performance liquid chromatography and an active fraction is dried in vacuum to give peptides having an amino acid sequence of formula I (RO1 is an amino acid

Lys RO1 RO1 RO1 Lyg

. 5

Π

ì

residue except Cys), formula II, etc. Further one or more peptides and sodium chloride are dissolved in water for

injection, adjusted to pH 7.0, filtered, sterilized and packed into an ampule to give the objective antitumor agent for parenteral administration.

LEGAL STATUS

[Date of request for examination]

26.12.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-309771

(43)公開日 平成7年(1995)11月28日

(51) Int. Cl. 6

識別記号

FΙ

A61K 38/00

9/08

F

9/14

A61K 37/18

9/14

審査請求 未請求 請求項の数1 OL (全10頁) 最終頁に続く

(21)出願番号

特願平6-103109

(22)出願日

平成6年(1994)5月17日

(71)出願人 000006127

森永乳業株式会社

東京都港区芝5丁目33番1号

(72) 発明者 海老名 卓三郎

宮城県仙台市青葉区広瀬町2-12

(74)代理人 弁理士 西澤 利夫

(54)【発明の名称】非経口用抗腫瘍剤

(57)【要約】

【構成】 配列番号1から配列番号31のいずれかに記 載のアミノ酸配列を有するペプチド、薬学的に許容され るこれらペプチドの誘導体、薬学的に許容されるこれら ペプチドの塩類、またはこれらの2種以上の混合物を有 効成分とする非経口用抗腫瘍剤。

【効果】 副作用が少なく、耐熱性があり、水に可溶性 で、水溶液中で安定なため、薬剤として安定であり、ペ プチドは抗菌作用を有するので、製剤化に当り防腐剤を・ 使用する必要がない。

【特許請求の範囲】

【請求項1】 配列番号1から配列番号31のいずれか に記載のアミノ酸配列を有するペプチド、薬学的に許容 されるこれらペプチドの誘導体、薬学的に許容されるこ れらペプチドの塩類、またはこれらの2種以上の混合物 を有効成分とする非経口用抗腫瘍剤。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、非経口用抗腫瘍剤に 関するものである。さらに詳しくは、この発明は特定の 10 アミノ酸配列を有するラクトフェリン由来のペプチド等 を有効成分とし、副作用のない新規な非経口用抗腫瘍剤 に関するものである。

[0002]

【従来の技術】従来より、ペプチドを有効成分とする抗 腫瘍剤として、シーピーエフ・ペプチド(特表平4-5 0 2 9 0 1 号公報)、マガイニン(特表平 4 - 5 0 6 8 0 1号公報)、18個のアミノ酸残基からなるペプチド (特公平6-4675号公報) 等が知られている。しか しながら、これらのペプチドは、この発明に係わるペプ 20 チドとは全く異なる別個のペプチドである。

【0003】一方、種々の微生物に対して抗菌作用を有 するペプチドについては、多数の発明が開示されてい る。例えば、グラム陽性菌およびグラム陰性菌に有効な ホスホノトリペプチド(特開昭57-106689号公 報)、ホスホノジペプチド誘導体(特開昭58-135 9 4号公報)、環状ペプチド誘導体(特開昭 5 8 - 2 1 3 7 4 4 号公報)、抗菌および抗ウイルス作用を示すペ プチド (特開昭59-51247号公報)、酵母に有効 なポリペプチド(特開昭60-130599号公報)、 グラム陽性菌に有効な糖ペプチド誘導体(特開昭60-172998号公報、特開昭61-251699号公報 および特開昭63-44598号公報)、グラム陽性菌 に有効なオリゴペプチド(特開昭62-22798号公 報)、ペプチド系抗生物質(特開昭62-51697号 公報および特開昭63-17897号公報)、その他北 米産カプトガニの血球から抽出した抗菌性ペプチド(特 開平2-53799号公報)、蜜蜂の血リンパから単離 した抗菌性ペプチド(特表平2-500084号公 報)、ロイヤルゼリーから単離した抗菌ペプチド(特開 40 平2-268198号公報)等がある。

【0004】ラクトフェリンは、乳汁および唾液、涙、 粘膜分泌液等のヒトを含む哺乳動物の体液に存在する鉄 結合性タンパク質であり、大腸菌、カンジダ菌、クロス トリジウム菌等の有害微生物に対して抗菌作用を示すこ とが知られている [ジャーナル・オブ・ペディアトリク ス(Journal of Pediatrics)、第94巻、第1ページ、 1979年]。また、ブドウ球菌および腸球菌に対し て、0.5~30mg/mlの濃度で抗菌作用を有する ことが知られている [ジャーナル・オブ・デイリー・サ 50 ず、文献にも記載されていない。さらに、第2鉄イオン

イエンス(Journal of Dairy Science)、第67巻、第6 06ページ、1984年]。

【0005】この発明の発明者らは、ラクトフェリンの 抗菌性に着目し、哺乳類のラクトフェリン、アポラクト フェリン、および/または金属飽和ラクトフェリン(以 下、これらをラクトフェリン類と記載することがある) を酸または酵素により加水分解した物質が、望ましくな い副作用(例えば抗原性)等がなく、しかも未分解のラ クトフェリン類よりも強い耐熱性および抗菌性を有する ことを見い出し、既に特許出願を行った(特開平5-3 20068号公報)。

【0006】また、この発明の発明者らは、ラクトフェ リンの分解物から強い抗菌活性を有するペプチドを単 離、若しくはそれらのペプチドと同一のアミノ酸配列を 有するペプチドまたはそれらのペプチドの誘導体を合成 し、20個のアミノ酸残基からなる抗菌性ペプチド(特 開平5-92994号公報)、11個のアミノ酸残基か らなる抗菌性ペプチド(特開平5-78392号公 報)、6個のアミノ酸残基からなる抗菌性ペプチド(特 開平5-148297号公報)、5個のアミノ酸残基か らなる抗菌性ペプチド(特開平5-1498296号公 報)、3~6個のアミノ酸残基からなる抗菌性ペプチド (特開平5-148295号公報)を、それぞれ既に特 許出願した。

【0007】さらに、乳汁の生理活性ペプチドには、成 長ホルモン、細胞分化増殖因子等の他に、カルシウム吸 収促進ペプチド(フードケミカル、第11巻、第33ペ ージ、1988年)、オピオイドペプチド [ホッペ・ザ イラーズ・ツァイトシュリフト・フュアー・フィジオロ ギッシェ・ヘミー(Hoppe-Seyler's Zeitschrift furPh ysiologische Chemie)、第360巻、第1211ペー ジ、1979年およびザ・ジャーナル・オブ・バイオロ ジカルケミストリー(The Journal of Biological Chemi stry)、第254巻、第2446ページ、1979 年]、アンジオテンシン転換酵素阻害ペプチド(フード ケミカル、第11巻、第39ページ、1988年)、胃 酸分泌抑制作用を有するペプチド(特開平5-2627 93号公報)等が知られている。

【0008】この発明の発明者らも、ラクトフェリン類 を酸または酵素により加水分解した物質と同一のアミノ 酸配列を有するペプチドまたはこれらペプチドの誘導体 に脳の保護作用(特願平4-327738号公報)、ラ クトフェリン加水分解物に上皮細胞増殖因子による繊維 芽細胞増殖を促進する作用(特開平6-48955号公 報)および神経成長因子産生促進作用(特開平5-23 557号公報)があることを見い出し、それぞれ既に特 許出願した。

【0009】しかしながら、これらのラクトフェリン由 来のペプチドが抗腫瘍作用を有することは知られておら

を結合させたラクトフェリンに抗腫瘍作用があることは 知られている (特公平5-85932号公報) が、ラク トフェリンから得られるペプチドに抗腫瘍作用があるこ とは知られていない。

[0010]

【発明が解決しようとする課題】前記従来技術から明ら かなように、副作用が少ない抗腫瘍剤が待望されていた が、その有効成分となる優れた物質は未だに知られてい ないのが現状であった。この発明は、以上のとおりの事 で有効な非経口用抗腫瘍剤を提供することを目的として いる。

[0011]

【課題を解決するための手段】この発明の発明者らは、 上記の課題を解決するために種々の物質を検索した結 果、ラクトフェリンを加水分解して得られるペプチド が、副作用が少なく、しかも優れた抗腫瘍作用を有する ことを見い出し、この発明を完成した。すなわち、この 発明は、前記の課題を解決するものとして、配列番号1 から配列番号31のいずれかに記載のアミノ酸配列を有 20 するペプチド、薬学的に許容されるこれらペプチドの誘 導体、薬学的に許容されるこれらペプチドの塩類 (以 下、これらをまとめてペプチド類と記載することがあ る)、またはこれらの2種以上の混合物を有効成分とす る非経口用抗腫瘍剤を提供する。

【0012】以下、この発明の構成および好ましい態様 について詳しく説明する。この発明の非経口用抗腫瘍剤 の有効成分であるペプチド類をラクトフェリン類から製 造する場合、出発物質として使用するラクトフェリン類 は、市販のラクトフェリン、哺乳類(例えば、ヒト、ウ 30 シ、ヒツジ、ヤギ、ウマ)の初乳、移行乳、常乳、末期 乳等、またはこれらの乳の処理物である脱脂乳、ホエー 等から常法(例えば、イオン交換クロマトグラフィー) により分離したラクトフェリン、それらを塩酸、クエン 酸等により脱鉄したアポラクトフェリン、アポラクトフ エリンを鉄、銅、亜鉛、マンガン等の金属でキレートし た金属飽和または部分飽和ラクトフェリンであり、市販 品または公知の方法により製造した調製品を使用するこ ともできる。

【0013】この発明において使用するペプチド類は、 ラクトフェリン類の分解物から分離手段によって得られ るペプチド、このペプチドと同一のアミノ酸配列、相同 なアミノ酸配列を有するペプチド、これらのペプチドの 誘導体、これらのペプチドの薬学的に許容される塩類ま たはこれらの任意の混合物であり、公知の方法により化 学的に合成することもできる。これらのペプチド類は、 例えば、前記特開平5-92994号公報、特開平5-78392号公報、特開平5-148297号公報、特 開平5-1498296号公報および特開平5-148

とができる。

【0014】前記の方法によって得られるペプチドは次 のアミノ酸配列を有するペプチド、その誘導体または塩 類を望ましい態様として例示できる。例えば、配列番号 1、2および27のアミノ酸配列を有するペプチド、そ の塩類またはその誘導体(特開平5-78392号公 報)、配列番号3、4、5および6のアミノ酸配列を有 するペプチド、その塩類またはその誘導体(特開平5-148297号公報)、配列番号7、8、9および31 情に鑑みてなされたものであり、副作用が少なく、少量 10 のアミノ酸配列を有するペプチド、その塩類またはその 誘導体(特開平5-1498296号公報)、配列番号 10から21のアミノ酸配列を有するペプチド、その塩 類またはその誘導体(特開平5-148295号公 報)、配列番号22から26、28、29および30の アミノ酸配列を有するペプチド、その塩類またはその誘 導体(特開平5-92994号公報)である。前記ペプ チドの薬学的に許容される塩類としては、塩酸塩、リン 酸塩、硫酸塩、クエン酸塩、乳酸塩、酒石酸塩等の酸付 加塩を例示でき、誘導体としては、カルボキシル基をア ミド化またはアミノ基をアセチル化した誘導体を例示す ることができる。

> 【0015】この発明の非経口用抗腫瘍剤は、公知の方 法により注射剤等に加工することができる。この発明の 抗腫瘍剤は、年齢、症状等により異なるが、体重1kg 当たり少なくとも1mgの割合で非経口的に投与でき る。非経口的投与方法としては、腫瘍部位への局所投与 の他、静脈内、動脈内、筋肉、皮下、胸腔、腹腔等への 注射による全身投与も行うことができる。また、他の薬 剤との併用投与、手術、放射線療法等との複合投与など も行うことができる。

> 【0016】次に試験例を示してこの発明を詳しく説明 する。

試験例1

この試験は、ペプチド類の抗腫瘍効果を調べるために行 った。

1) 試験動物

7週齢の雄BALB/cマウス (東北大学医学部附属動 物実験施設から購入)を、無作為に4群(1群7匹)に 分けて使用した。腫瘍は、BALB/cと同系のMe t 40 h-A線維芽肉腫細胞を使用した。

2) 試験方法

この試験は、海老名らの方法(癌と化学療法、第19 巻、第10号、第1429~1432ページ、1992 年)を一部変更して次のとおり行なった。

【0017】BALB/cマウスの腹皮内に1×10° 個のMeth-A線維芽肉腫細胞を移植し、大きな腫瘍 (原発巣) が指で触れて確認できる状態となる3日目か ら、腫瘍内に参考例1と同一の方法により製造した配列 番号26のペプチドを1日1匹当たり1mg投与した群 295号公報の各発明に記載された方法によって得るこ 50 と10mg投与した群、次の方法により精製したカゼイ

ンを10mg投与した群、並びに対照として何も投与し ない群の4群について、22日目に腫瘍の大きさおよび 重量を測定し、抗腫瘍効果を試験した。

【0018】カゼインの精製:新鮮な牛乳1リットルを 脱脂し、水を添加して2倍に希釈し、20℃に加温して 1 規定塩酸を添加し、p Hを 4. 6 に調整して粗カゼイ ンを沈殿させ、瀘過して粗カゼインを分離した。得られ た粗カゼインを1リットルの水に分散し、1規定水酸化 ナトリウムを添加してpHを6.8~7.0に調整しな 溶物を除去し、瀘液に再度1規定塩酸を添加し、pHを 4. 6に調整し、カゼインを沈殿させ、瀘過してカゼイ ンを得た。この溶解、沈殿を5回反復し、得られた沈殿 を冷却し、アルコールおよびエーテルで洗浄し、乾燥

し、精製カゼイン約22mgを得た。

3) 試験結果

この試験の結果は、表1に示すとおりである。表1から 明らかなように、配列番号26のペプチド投与群は、1 0mgの投与で完全に腫瘍を治癒させ、1mgの投与群 でもほぼ腫瘍を治癒させた。これに対してカゼイン投与 群および対照群では腫瘍が治癒せず、全例が死亡した。 【0019】この試験結果から、ペプチドは腫瘍を治癒 する効果があることが認められた。なお、他のペプチド がら攪拌し、粗カゼインを溶解した。溶液を瀘過して不 10 類についても同様の試験を行ったがほぼ同じような結果 が得られた。

[0020]

【表 1 】

被検薬	用量	有効数/	服务径	題將重量 (g)
DX 198 98	(mg/EC)	例数	(#4/	(87
対 照ペプチド	10	0/7 6/6* 6/7	22. (±1. 2 0. 0±0. 0 1. 2±2. 9	4,7±1,4 6,8±8,0 8,9±8;1
カゼイン	10	0/7	18.9±3.0	3.0±1.0

(井)

- 1) 體療係および腫瘍重量の表示は、平均土標準偏差である。
- 2) *は12日目に1匹死亡

【0021】試験例2

この試験は、ペプチドの急性毒性を調べるために行っ た。

1) 使用動物

6 週齢のCD (SD) 系のラット(日本SLCから購 入) の両性を用い、雄および雌を無作為にそれぞれ4群 (1群5匹)に分けて使用した。

2) 試験方法

参考例1と同一の方法で製造した配列番号26のペプチ ドを体重1kg当り1000、2000または4000 mgの割合で注射用水(大塚製薬社製)に溶解し、体重 100g当たり4mlの割合で金属製玉付き針を用いて 単回強制経口投与し、急性毒性を試験した。

3) 試験結果

この試験の結果は、表2に示すとおりである。表2から 明らかなように、このペプチドを1000mg/kg体 重および2000mg/kg体重の割合で投与した群に 死亡例は認められなかった。従って、このペプチドのL 40 Dsoは、2000mg/kg体重以上であり、毒性は極 めて低いことが判明した。なお、他のペプチド類につい ても同様の試験を行ったが、ほぼ同じような結果が得ら れた。

[0022]

【表 2】

ペプチド	死亡数/例数		
用 量 (ng/kg)	雄	雌	
0 1 0 0 0 2 0 0 0 4 0 0 0	0/5 0/5 0/5 5/5	0/5 0/5 0/5 5/5	

【0023】試験例3

この試験は、ペプチド類の有効量を調べるために行っ た。

1) 試験動物

7週齢の雄BALB/cマウス(東北大学医学部附属動 物実験施設から購入)を、無作為に4群(1群7匹)に 分けて使用した。腫瘍は、BALB/cと同系のMe t h-A線維芽肉腫細胞を使用した。

2) 試験方法

試験例1と同一の配列番号26のペプチドの投与量を表 3のとおり変更したことを除き、試験例1と同一の方法 により試験を行い、抗腫瘍効果を示す有効投与量を決定 した。

3) 試験結果

この試験の結果は、表3に示すとおりである。表3から 明らかなように、配列番号26のペプチド投与群は、1 Ομgの投与で7例中2例の腫瘍を治癒させ、100μ gの投与では7例中5例の腫瘍を治癒させた。

【0024】従って、1日1匹当たり10μg以上のペ プチドの投与は腫瘍を治癒するのに有効であることが認 められた。なお、他のペプチド類についても同様の試験

50 を行ったがほぼ同じような結果が得られた。

7

[0025]

【表3】

被検薬	用 量 (µ 2/匹)	有効数/ 例数	雅 慈 径 (ma)	競強強量 (g)
対 服ペプチド	1 10 100	0/7 0/7 2/7 5/7	23. 1±1. 4 22. 5±3. 2 15. 9±1. 8 7. 8±2. 1	4.8±0.9 4.5±1.0 3.5±0.7 1.5±0.3

(任) 1)顧瘍径および腫瘍重量の表示は、平均士標準偏差である。

【0026】参考例1

市販のウシ・ラクトフェリン (シグマ社製) 50mgを 精製水0.9mlに溶解し、0.1規定の塩酸でpHを 2. 5に調整し、のち市販のブタペプシン(シグマ社 製) 1 mgを添加し、37℃で6時間加水分解した。次 いで0.1規定の水酸化ナトリウムでpHを7.0に調 整し、80℃で10分間加熱して酵素を失活させ、室温 に冷却し、15,000rpmで30分間遠心分離し、 透明な上清を得た。この上清100μ lをTSKゲルO DS-120T (東ソー社製) を用いた高速液体クロマ トグラフィーにかけ、0.8ml/分の流速で試料注入 20 後10分間0.05%TFA(トリフルオロ酢酸)を含 む20%アセトニトリルで溶出し、のち30分間0.0 5%TFAを含む20~60%のアセトニトリルのグラ ジエントで溶出し、24~25分の間に溶出する画分を 集め、真空乾燥した。この乾燥物を2% (W/V) の濃 度で精製水に溶解し、再度TSKゲルODS-120T (東ソー社製) を用いた高速液体クロマトグラフィーに かけ、0.8m1/分の流速で試料注入後10分間0. 05%TFAを含む24%アセトニトリルで溶出し、の ち30分間0.05%TFAを含む24~32%のアセ 30 トニトリルのグラジエントで溶出し、33.5~35. 5分の間に溶出する画分を集めた。上記の操作を25回 反復し、真空乾燥し、ペプチド約1.5 mgを得た。

【0027】上記のペプチドを6N塩酸で加水分解し、アミノ酸分析計を用いて常法によりアミノ酸組成を分析した。同一の試料を気相シークェンサー(アプライド・バイオシステムズ社製)を用いて25回のエドマン分解を行ない、25個のアミノ酸残基の配列を決定した。またDTNB[5,5ージチオービス(2ーニトロベンゾイック・アシド)]を用いたジスルフィド結合分析法[アナリティカル・バイオケミストリー(Analytical Biochemistry)、第67巻、第493頁、1975年]によりジスルフィド結合が存在することを確認した。

【0028】その結果、このペプチドは、25個のアミノ酸残基からなり、3番目と20番目のシステイン残基がジスルフィド結合し、3番目のシステイン残基からNー末端側に2個のアミノ酸残基が、20番目のシステイン残基からCー末端側に5個のアミノ酸がそれぞれ結合した、配列番号26に記載のアミノ酸配列を有していることが確認された。

10 参考例 2

ペプチド自動合成装置(ファルマシアLKBバイオテクノロジー社製。LKBBiolynx4170)を用い、シェパード等による固相ペプチド合成法 [ジャーナル・オブ・ケミカル・ソサイエティー・パーキンI (Journal of Chemical Society Perkin I)、第538 頁、1981年] に基づいてペプチドを次のようにして合成した。

【0029】アミン官能基を9-フルオレニルメトキシ カルボニル基で保護したアミノ酸 [以下Fmoc-アミノ酸 またはFmoc-固有のアミノ酸の名称 (例えば、Fmoc-ア スパラギン) と記載することがある] に、N, N-ジシ クロヘキシルカルボジイミドを添加して所望のアミノ酸 の無水物を生成させ、このFmoc-アミノ酸無水物を合成 に用いた。ペプチド鎖を製造するためにC-末端のアス パラギン残基に相当するFmoc-アスパラギン無水物を、 そのカルボキシル基を介し、ジメチルアミノピリジンを 触媒としてウルトロシンA樹脂(ファルマシアLKBバ イオテクノロジー社製)に固定する。次いでこの樹脂を ピペリジンを含むジメチルホルムアミドで洗浄し、C-末端アミノ酸のアミン官能基の保護基を除去する。のち アミノ酸配列のC-末端から2番目に相当するFmoc-ア ルギニン無水物を前記C-末端アミノ酸残基を介して樹 脂に固定されたアルギニンの脱保護アミン官能基にカッ プリングさせた。以下同様にして順次グルタミン、トリ プトファン、グルタミン、およびフェニルアラニンを固 定した。全部のアミノ酸のカップリングが終了し、所望 のアミノ酸配列のペプチド鎖が形成された後、94%T FA、5%フェノール、および1%エタンジオールから なる溶媒でアセトアミドメチル以外の保護基の除去およ 40 びペプチドの脱離を行ない、高速液体クロマトグラフィ -によりペプチドを精製し、この溶液を濃縮し、乾燥し て、ペプチド粉末を得た。

【0030】前記のペプチドについてアミノ酸分析計を 用いて常法によりアミノ酸組成を分析し、配列番号10 に記載のアミノ酸配列を有することを確認した。

[0031]

【実施例】次に実施例を示してこの発明をさらに詳細かつ具体的に説明するが、この発明は以下の例に限定されるものではない。

50 実施例1

1

注射用水(大塚製薬社製)1mlに、参考例1と同一の 方法により製造した配列番号26のペプチド粉末100 μ gおよび塩化ナトリウム(和光純薬工業製)10mg の割合で溶解し、水酸化ナトリウム(和光純薬工業社 製) および塩酸(和光純薬工業社製)で p Hを約7に調 整し、濾過滅菌し、常法により1mlずつアンプルに充 填し、注射用の抗腫瘍剤を製造した。

実施例2

注射用水(大塚製薬製)1m1に、参考例2と同一の方 法により製造した配列番号10のペプチド粉末1mgお 10 はCys を除く任意のアミノ酸残基を示す。 よびD-マンニット (和光純薬工業社製) 49mgの割 合で溶解し、リン酸緩衝剤粉末(和光純薬工業社製)の 水溶液でpHを約7に調整し、濾過滅菌し、常法により 1 m l ずつバイアル瓶に充填し、凍結乾燥し、注射用の 抗腫瘍剤を製造した。

[0032]

【発明の効果】以上詳しく説明したとおり、この発明 は、ペプチド類を有効成分とする非経口用抗腫瘍剤に係 るものであり、この発明は以下のとおりの優れた効果を 有する。

- (1) 副作用が少ない。
- (2) 耐熱性があり、水に可溶性で、水溶液中で安定な ため、薬剤として安定である。
- (3) ペプチドは抗菌作用を有するので、製剤化に当り 防腐剤を使用する必要がない。
- (4) 正常細胞に対しては細胞毒性を示さず、腫瘍細胞 に対してのみ細胞毒性を示す。
- (5) ペプチドであるので体内で速やかに代謝される。

[0033]

【配列表】

配列番号:1

配列の長さ:11 配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。下記配列において、RO1

はCys を除く任意のアミノ酸残基を示す。

【0034】配列:

Lys RO1 RO1 RO1 RO1 Gln RO1 RO1 Met Lys Lys

10

配列番号:2

配列の長さ:11

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。下記配列において、RO1

はCys を除く任意のアミノ酸残基を示す。

【0035】配列:

Lys RO1 RO1 RO1 RO1 Gln RO1 RO1 Met Arg Lys

配列番号:3 配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。下記配列において、RO1

【0036】配列:

Arg RO1 RO1 RO1 RO1 Arg

配列番号:4

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド 配列の特徴:このペプチド、およびこのペプチドをフラ

20 グメントとして含むペプチド。下記配列において、R01

はCys を除く任意のアミノ酸残基を示す。

【0037】配列:

Lys RO1 RO1 RO1 RO1 Arg

配列番号:5

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状 配列の種類:ペプチド

30 配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。下記配列において、RO1 はCys を除く任意のアミノ酸残基を示す。

【0038】配列:

Lys RO1 RO1 RO1 RO1 Lys

配列番号:6

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

40 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。下記配列において、RO1

はCys を除く任意のアミノ酸残基を示す。

【0039】配列:

Arg RO1 RO1 RO1 RO1 Lys

1

配列番号:7

配列の長さ:5

配列の型:アミノ酸

50 トポロジー:直鎖状

```
12
```

```
配列の種類:ペプチド
                                   配列の長さ:4
  配列の特徴:このペプチド、およびこのペプチドをフラ
                                   配列の型:アミノ酸
  グメントとして含むペプチド。下記配列において、RO1
                                   トポロジー:直鎖状
  はCys を除く任意のアミノ酸残基を示す。
                                   配列の種類:ペプチド
  【0040】配列:
                                  配列の特徴:このペプチド、およびこのペプチドをフラ
 Arg RO1 RO1 RO1 Arg
                                   グメントとして含むペプチド。
 1
           5
                                   【0045】配列:
 配列番号:8
                                  Gln Trp Gln Arg
 配列の長さ:5
 配列の型:アミノ酸
                                10 配列番号:13
  トポロジー:直鎖状
                                  配列の長さ:3
 配列の種類:ペプチド
                                   配列の型:アミノ酸
 配列の特徴:このペプチド、およびこのペプチドをフラ
                                   トポロジー:直鎖状
 グメントとして含むペプチド。下記配列において、RO1
                                  配列の種類:ペプチド
 はCys を除く任意のアミノ酸残基を示す。
                                  配列の特徴:このペプチド、およびこのペプチドをフラ
  【0041】配列:
                                  グメントとして含むペプチド。
 Lys RO1 RO1 RO1 Arg
                                   【0046】配列:
, . 1
                                  Trp Gln Arg
 配列番号:9
 配列の長さ:5
                                20 配列番号: 14
 配列の型:アミノ酸
                                  配列の長さ:5
 トポロジー:直鎖状
                                  配列の型:アミノ酸
 配列の種類:ペプチド
                                   トポロジー:直鎖状
 配列の特徴:このペプチド、およびこのペプチドをフラ
                                  配列の種類:ペプチド
 グメントとして含むペプチド。下記配列において、RO1
                                  配列の特徴:このペプチド、およびこのペプチドをフラ
 はCys を除く任意のアミノ酸残基を示す。
                                  グメントとして含むペプチド。
  【0042】配列:
                                   【0047】配列:
 Arg RO1 RO1 RO1 Lys
                                  Arg Arg Trp Gln Trp
                                  1
 配列番号:10
                                30 配列番号: 15
 配列の長さ:6
                                  配列の長さ:4
 配列の型:アミノ酸
                                  配列の型:アミノ酸
 トポロジー:直鎖状
                                  トポロジー:直鎖状
 配列の種類:ペプチド
                                  配列の種類:ペプチド
 配列の特徴:このペプチド、およびこのペプチドをフラ
                                  配列の特徴:このペプチド、およびこのペプチドをフラ
 グメントとして含むペプチド。
                                  グメントとして含むペプチド。
 【0043】配列:
                                   【0048】配列:
 Phe Gln Trp Gln Arg Asn
                                  Arg Arg Trp Gln
          5
                                  1
 配列番号:11
                                40 配列番号:16
 配列の長さ:5
                                  配列の長さ:4
 配列の型:アミノ酸
                                  配列の型:アミノ酸
 トポロジー:直鎖状
                                  トポロジー:直鎖状
 配列の種類:ペプチド
                                  配列の種類:ペプチド
 配列の特徴:このペプチド、およびこのペプチドをフラ
                                  配列の特徴:このペプチド、およびこのペプチドをフラ
 グメントとして含むペプチド。
                                  グメントとして含むペプチド。
 【0044】配列:
                                  【0049】配列:
 Phe Gln Trp Gln Arg
                                  Trp Gln Trp Arg
 配列番号:12
                               50 配列番号:17
```

13

配列の特徴:このペプチド、およびこのペプチドをフラ

配列番号:20 配列の長さ:4 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

14

グメントとして含むペプチド。

【0053】配列: Leu Arg Trp Gln

10 1

配列番号:21 配列の長さ:3 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。

【0054】配列: Arg Trp Gln

20 1

配列番号:22 配列の長さ:20 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ グメントとして含むペプチド。下記配列において、2番 の Cysと19番の Cysがジスルフィド結合している。

[0055]

配列:

Lys Cys Arg Arg Trp Gln Trp Arg Met Lys Lys Leu Gly Ala Pro 10 5 Ser Ile Thr Cys Val

配列番号:23 配列の長さ:20 配列の特徴:このペプチド、およびこのペプチドをフラ グメントとして含むペプチド。下記配列においてCys* は、ジスルフィド結合の形成を防止するため、チオール 基を化学的に修飾したシステインを示す。

[0056]

配列:

Lys Cys* Arg Arg Trp Gln Trp Arg Met Lys Lys Leu Gly Ala Pro 15 10 5 Ser Ile Thr Cys* Val

20

配列の長さ:20 配列の型:アミノ酸 トポロジー:直鎖状 配列の特徴:このペプチド、およびこのペプチドをフラ グメントとして含むペプチド。下記配列において、2番 の Cysと19番の Cysがジスルフィド結合している。

[0057]

配列:

Gln Trp Arg

配列番号:18 配列の長さ:6

配列の長さ:3

配列の型:アミノ酸

トポロジー:直鎖状

【0050】配列:

配列の種類:ペプチド

グメントとして含むペプチド。

配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。

【0051】配列: Leu Arg Trp Gln Asn Asp

配列番号:19

配列の長さ:5 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

グメントとして含むペプチド。 【0052】配列:

Leu Arg Trp Gln Asn 5

配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド

配列番号:24

配列の種類:ペプチド

特開平7-309771 Lys Cys Phe Gln Trp Gln Arg Asn Met Arg Lys Val Arg Gly Pro 5 10 15 Pro Val Ser Cys Ile 配列番号:25 びこのペプチドをフラグメントとして含むペプチド。下 配列の長さ:20 記配列においてCys*は、ジスルフィド結合の形成を防止 配列の型:アミノ酸 するため、チオール基を化学的に修飾したシステインを トポロジー:直鎖状 示す。 配列の種類:ペプチド配列の特徴:このペプチド、およ [0058] 配列: Lys Cys* Phe Gln Trp Gln Arg Asn Met Arg Lys Val Arg Gly Pro 5 10 Pro Val Ser Cys* Ile 配列番号:26 配列の特徴:このペプチド、およびこのペプチドをフラ 配列の長さ:25 グメントとして含むペプチド。下記配列において、3番 配列の型:アミノ酸 の Cysと20番の Cysがジスルフィド結合している。 トポロジー:直鎖状 [0059] 配列の種類:ペプチド 配列: Phe Lys Cys Arg Arg Trp Gln Trp Arg Met Lys Lys Leu Gly Ala Pro Ser Ile Thr Cys Val Arg Arg Ala Phe 25 配列番号:27 配列番号:28 配列の長さ:11 配列の長さ:38 配列の型:アミノ酸 配列の型:アミノ酸 トポロジー:直鎖状 トポロジー:直鎖状 配列の種類:ペプチド 配列の種類:ペプチド 配列の特徴:このペプチド、およびこのペプチドをフラ 30 配列の特徴:このペプチド、およびこのペプチドをフラ グメントとして含むペプチド。 グメントとして含むペプチド。下記配列において、16 【0060】配列: 番の Cysと33番の Cysとがジスルフィド結合してい Lys Thr Arg Arg Trp Gln Trp Arg Met Lys Lys る。 5 10 [0061] 配列: Lys Asn Val Arg Trp Cys Thr Ile Ser Gln Pro Glu Trp Phe Lys 5 10 Cys Arg Arg Trp Gln Trp Arg Met Lys Lys Leu Gly Ala Pro Ser 20 25 Ile Thr Cys Val Arg Arg Ala Phe 35 配列番号:29 配列の特徴:このペプチド、およびこのペプチドをフラ 配列の長さ:32

配列の型:アミノ酸 トポロジー:直鎖状

配列の種類:ペプチド

グメントとして含むペプチド。下記配列において、10 番の Cysと27番の Cysとがジスルフィド結合してい

る。

[0062]

配列:

Thr Ile Ser Gln Pro Glu Trp Phe Lys Cys Arg Arg Trp Gln Trp Arg Met Lys Lys Leu Gly Ala Pro Ser Ile Thr Cys Val Arg Arg

特開平7-309771

20

25

30

18

Ala Phe

17

配列番号:30 配列の長さ:47

配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列の特徴:このペプチド、およびこのペプチドをフラ の長さ36であって9番、26番、及び35番に Cysを 有するペプチドの、9番の Cysと26番の Cysとがジス ルフィド結合し、上記配列の長さ36のペプチドの35 番の Cysが、配列の長さ11であって10番にCysを有 するペプチドの10番の Cysとがジスルフィド結合して いる。

[0063]

グメントとして含むペプチド。下記配列において、配列

配列:

Val Ser Gln Pro Glu Ala Thr Lys Cys Phe Gln Trp Gln Arg Asn

Met Arg Lys Val Arg Gly Pro Pro Val Ser Cys Ile Lys Arg Asp 25

Ser Pro Ile Gln Cys Ile 35

Gly Arg Arg Arg Ser Val Gln Trp Cys Ala 10 5

グメントとして含むペプチド。下記配列において、RO1 20 は Cysを除く任意のアミノ酸残基を示す。 配列番号:31 配列の長さ:5 【0064】配列:

配列の型:アミノ酸 Lys RO1 RO1 RO1 Lys トポロジー:直鎖状 1 配列の種類:ペプチド

配列の特徴:このペプチド、およびこのペプチドをフラ

フロントページの続き

技術表示箇所 FΙ 庁内整理番号 識別記号 (51) Int. Cl.6 A 6 1 K 9/19 ADU 38/16

C07K 5/09 5/093

5/097 5/103

5/11

5/113

14/79

5/117 7/06

Z 8318-4H 8318-4H

D A 6 1 K 9/14 ADU 37/14

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THES PAGE BLANK (USPTO)