

National Math Olympiad (3rd Round) 2003

| 1 | suppose this equation: x $\sup_{i \ge 1/\sin i} +y \sup_{i \le 1/\sin i} +z \sup_{i \le 1/\sin i} =w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | isup¿2i/sup¿. show that the solution of this equation ( if w,z have same par-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | ity) are in this form:<br>$x=2d(XZ-YW)$ , $y=2d(XW+YZ)$ , $z=d(X   \sup_{i \in I} 2i / \sup_{i \in I} +Y   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_{i \in I} 2i / \sup_{i \in I} -Z   \sup_$ |
|   | $-W  \sup_{\xi} 2_i / \sup_{\xi} ), w = d(X  \sup_{\xi} 2_i / \sup_{\xi} + Y  \sup_{\xi} 2_i / \sup_{\xi} + Z  \sup_{\xi} 2_i / \sup_{\xi} + W  \sup_{\xi} 2_i / \sup_{\xi} )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 | assume ABCD a convex quadrilatral. P and Q are on BC and DC respectively such that angle BAP= angle DAQ .prove that [ADQ]=[ABP]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | ([ABC] means its area ) iff the line which crosses through the orthocenters of these traingles , is perpendicular to AC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 | assume that A is a finite subset of prime numbers, and a is an positive integer. prove that there are only finitely many positive integers m s.t: prime divisors of a^m-1 are contained in A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 | XOY is angle in the plane.A,B are variable point on OX,OY such that 1/OA+1/O (k is constant).draw two circles with diameter OA and OB.prove that common external tangent to these circles is tangent to the constant circle (ditermine the radius and the locus of its center).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 | Let $p$ be an odd prime number. Let $S$ be the sum of all primitive roots modulo $p$ . Show that if $p-1$ isn't squarefree (i. e., if there exist integers $k$ and $m$ with $k > 1$ and $p-1 = k^2m$ ), then $S \equiv 0 \mod p$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | If not, then what is $S$ congruent to $\mod p$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 | let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | prove IK is parallel to AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 | $f_1, f_2, \ldots, f_n$ are polynomials with integer coefficients. Prove there exist a reducible $g(x)$ with integer coefficients that $f_1+g, f_2+g, \ldots, f_n+g$ are irreducible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Contributors: sam-n, Omid Hatami, MindFlyer, hossein11652, xxp2000



| 8  | A positive integer $n$ is said to be a <i>perfect power</i> if $n=a^b$ for some integers $a,b$ with $b>1$ . (a) Find 2004 perfect powers in arithmetic progression. (b) Prove that perfect powers cannot form an infinite arithmetic progression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Does there exist an infinite set $S$ such that for every $a,b\in S$ we have $a^2+b^2-ab\mid (ab)^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 | let p be a prime and a and n be natural numbers such that (p^a -1 )/ (p-1) = $2$ ^n find the number of natural divisors of na. :)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 | assume that X is a set of n number and $0 \le k \le n$ . the maximum number of permutation which acting on X st every two of them have at least k component in common, is $a_{n,k}$ and the maximum nuber of permutation st every two of them have at most k component in common, is $b_{n,k}$ .  a) proeve that $a_{n,k} \cdot b_{n,k-1} \le n!$ b) assume that p is prime number, determine the exact value of $a_{p,2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12 | There is a lamp in space. (Consider lamp a point)  Do there exist finite number of equal sphers in space that the light of the lamp can not go to the infinite? (If a ray crash in a sphere it stops)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 | here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad assume that P is n-gon ,lying on the plane ,we name its edge 1,2,,n. if S=s1,s2,s3, be a finite or infinite sequence such that for each i, si is in {1,2,,n}, we move P on the plane according to the S in this form: at first we reflect P through the s1 (s1 means the edge which iys number is s1)then through s2 and so on like the figure below.  a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane b)prove that the sequence in a) isn't periodic. c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely? |
| 14 | n $\graph$ 6 is an integer. evaluate the minimum of $f(n)$ s.t: any graph with n vertices and $f(n)$ edge contains two cycle which are distinct (also they have no comon vertice)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Contributors: sam-n, Omid Hatami, MindFlyer, hossein11652, xxp2000



| <br>15 | Assume $m \times n$ matrix which is filled with just 0, 1 and any two row differ in at                                                                                                                                                                                                       |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19     | least $n/2$ members, show that $m \leq 2n$ .                                                                                                                                                                                                                                                 |
|        | ( for example the diffrence of this two row is only in one index                                                                                                                                                                                                                             |
|        | 110                                                                                                                                                                                                                                                                                          |
|        | 100)                                                                                                                                                                                                                                                                                         |
|        | Edited by Myth                                                                                                                                                                                                                                                                               |
| 16     | Segment $AB$ is fixed in plane. Find the largest $n$ , such that there are $n$ points $P_1, P_2, \ldots, P_n$ in plane that triangles $ABP_i$ are similar for $1 \leq i \leq n$ . Prove that all of $P_i$ 's lie on a circle.                                                                |
| 17     | A simple calculator is given to you. (It contains 8 digits and only does the operations $+,-,*,/,$ ) How can you find $3^{\sqrt{2}}$ with accuracy of 6 digits.                                                                                                                              |
| 18     | In tetrahedron $ABCD$ , radius four circumcircles of four faces are equal. Prove that $AB = CD$ , $AC = BD$ and $AD = BC$ .                                                                                                                                                                  |
| 19     | An integer $n$ is called a good number if and only if $ n $ is not square of another integer. Find all integers $m$ such that they can be written in infinitely many ways as sum of three different good numbers and product of these three numbers is square of an odd number.              |
| 20     | Suppose that $M$ is an arbitrary point on side $BC$ of triangle $ABC$ . $B_1, C_1$ are points on $AB, AC$ such that $MB = MB_1$ and $MC = MC_1$ . Suppose that $H, I$ are orthocenter of triangle $ABC$ and incenter of triangle $MB_1C_1$ . Prove that $A, B_1, H, I, C_1$ lie on a circle. |
| 21     | Let $ABC$ be a triangle. $W_a$ is a circle with center on $BC$ passing through $A$ and perpendicular to circumcircle of $ABC$ . $W_b, W_c$ are defined similarly. Prove that center of $W_a, W_b, W_c$ are collinear.                                                                        |
| 22     | Let $a_1 = a_2 = 1$ and                                                                                                                                                                                                                                                                      |
|        | $a_{n+2} = \frac{n(n+1)a_{n+1} + n^2a_n + 5}{n+2} - 2$                                                                                                                                                                                                                                       |
|        | for each $n \in \mathbb{N}$ . Find all $n$ such that $a_n \in \mathbb{N}$ .                                                                                                                                                                                                                  |
| 23     | Find all homogeneous linear recursive sequences such that there is a $T$ such that $a_n = a_{n+T}$ for each $n$ .                                                                                                                                                                            |



| 24 | A,B are fixed points. Variable line $l$ passes through the fixed point $C$ . There are two circles passing through $A,B$ and tangent to $l$ at $M,N$ . Prove that circumcircle of $AMN$ passes through a fixed point.                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 | Let $A, B, C, Q$ be fixed points on plane. $M, N, P$ are intersection points of $AQ, BQ, CQ$ with $BC, CA, AB$ . $D', E', F'$ are tangency points of incircle of $ABC$ with $BC, CA, AB$ . Tangents drawn from $M, N, P$ (not triangle sides) to incircle of $ABC$ make triangle $DEF$ . Prove that $DD', EE', FF'$ intersect at $Q$ . |
| 26 | Circles $C_1, C_2$ intersect at $P$ . A line $\Delta$ is drawn arbitrarily from $P$ and intersects with $C_1, C_2$ at $B, C$ . What is locus of $A$ such that the median of $AM$ of triangle $ABC$ has fixed length $k$ .                                                                                                              |
| 27 | $S \subset \mathbb{N}$ is called a square set, iff for each $x,y \in S, xy+1$ is square of an integer. a) Is $S$ finite? b) Find maximum number of elements of $S$ .                                                                                                                                                                   |
| 28 | There are $n$ points in $\mathbb{R}^3$ such that every three form an acute angled triangle. Find maximum of $n$ .                                                                                                                                                                                                                      |
| 29 | Let $c \in \mathbb{C}$ and $A_c = \{p \in \mathbb{C}[z]   p(z^2 + c) = p(z)^2 + c\}.$                                                                                                                                                                                                                                                  |
|    | a) Prove that for each $c \in C$ , $A_c$ is infinite.                                                                                                                                                                                                                                                                                  |
|    | b) Prove that if $p \in A_1$ , and $p(z_0) = 0$ , then $ z_0  < 1.7$ .                                                                                                                                                                                                                                                                 |
|    | c) Prove that each element of $A_c$ is odd or even.                                                                                                                                                                                                                                                                                    |
|    | Let $f_c = z^2 + c \in \mathbb{C}[z]$ . We see easily that $B_c := \{z, f_c(z), f_c(f_c(z)), \dots\}$ is a subset of $A_c$ . Prove that in the following cases $A_c = B_c$ .                                                                                                                                                           |
|    | d) $ c  > 2$ .                                                                                                                                                                                                                                                                                                                         |
|    | e) $c \in \mathbb{Q} \setminus \mathbb{Z}$ .                                                                                                                                                                                                                                                                                           |
|    | f) $c$ is a non-algebraic number                                                                                                                                                                                                                                                                                                       |
|    | g) $c$ is a real number and $c \notin [-2, \frac{1}{4}]$ .                                                                                                                                                                                                                                                                             |