U.S. Appln. No.: 10/578,623

Attorney Docket No.: Q94379

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-4 (canceled).

5. (previously presented): An optical material cured by exposing an active energy beam-curable composition for optical material to an active energy beam, the composition comprising (A) a di(meth)acrylate represented by the following formula (1) and (B) a mono(meth)acrylate represented by the following formula (2) and/or a mono(meth)acrylate represented by the following formula (3), wherein the composition contains 10 to 90 wt % of the component (A) and 90 to 10 wt % the component (B) on the basis of the total weight of the components (A) and (B):

$$H_{2}C = \overset{R_{1}}{C} - \overset{O}{C} + \overset{R_{2}}{C} - \overset{O}{C} + \overset{R_{2}}{C} - \overset{O}{C} + \overset{R_{3}}{C} - \overset{O}{C} - \overset{R_{4}}{C} - \overset{O}{C} - \overset{R_{3}}{C} - \overset{O}{C} - \overset{R_{3}}{C} - \overset{O}{C} - \overset{R_{3}}{C} - \overset{O}{C} - \overset{C}{C} - \overset{C$$

wherein R_1 and R_3 independently represents a hydrogen atom or a methyl group, R_2 and R_4 independently represents a hydrogen atom, a methyl group or an ethyl group, R_5 to R_8 independently represents a hydrogen atom, a methyl group or a bromine atom, and \underline{l} and \underline{m} independently represents an integer of 1 to 6;

$$H_2C = \overset{R_9}{C} \overset{O}{-C} - O$$
 (2)

U.S. Appln. No.: 10/578,623

Attorney Docket No.: Q94379

wherein R9 represents a hydrogen atom or a methyl group; and

$$H_2C = \stackrel{\mathsf{R}_{10}}{C} \stackrel{\mathsf{O}}{-} \stackrel{\mathsf{C}}{-} \stackrel{\mathsf{C}}{$$

wherein R₁₀ represents a hydrogen atom or a methyl group.

- 6. (previously presented): The optical material according to Claim 5, wherein each of R_1 and R_3 is a hydrogen atom in the formula (1).
- 7. (previously presented): The optical material according to Claim 5, wherein each of R_2 and R_4 is a hydrogen atom in the formula (1).
- 8. (previously presented): The optical material according to Claim 5, wherein all of R_5 to R_8 are hydrogen atoms; R_5 is a hydrogen atom and R_6 is a methyl group, and R_7 is a hydrogen atom and R_8 is a methyl group; or R_5 is a hydrogen atom and R_6 is a bromine atom, and R_7 is a hydrogen atom and R_8 is a bromine atom.
- 9. (previously presented): The optical material according to Claim 5, wherein each of \underline{l} and \underline{m} is an integer of 1 to 3.
- 10. (previously presented): The optical material according to Claim 5, wherein the component (A) is bis(4-acryloxyethoxyphenyl) sulfide, bis(4-acryloxydiethoxyphenyl) sulfide, bis(4-acryloxyethoxy-3-methylphenyl) sulfide or bis(4-acryloxydiethoxy-3-methylphenyl) sulfide.
- 11. (previously presented): The optical material according to Claim 5, wherein the mono(meth)acrylate represented by the formula (2) is o-phenylphenyl (meth)acrylate.

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Appln. No.: 10/578,623

Attorney Docket No.: Q94379

12. (previously presented): The optical material according to Claim 5, wherein the composition further comprises (C) a photoinitiator.

- 13. (previously presented): The optical material according to Claim 5, wherein the composition contains 30 to 90 wt % of the component (A) and 70 to 10 wt % of the component (B).
- 14. (previously presented): The optical material according to Claim 5 having a refractive index (25°C) of 1.59 or more.
- 15. (previously presented): The optical material according to Claim 5, wherein the optical material is a lens sheet or a plastic lens.
 - 16. (previously presented): A method for producing an optical material comprising:

a step of applying or pouring an active energy beam-curable composition for optical material to a casting mold having a predetermined shape, wherein the composition comprises (A) a di(meth)acrylate represented by the following formula (1) and (B) a mono(meth)acrylate represented by the following formula (2) and/or a mono(meth)acrylate represented by the following formula (3) in 10 to 90 wt % of the component (A) and 90 to 10 wt % of the component (B) on the basis of the total weight of the components (A) and (B), and

a step of irradiating an active energy beam after the applying or pouring;

U.S. Appln. No.: 10/578,623

Attorney Docket No.: Q94379

wherein R_1 and R_3 independently represents a hydrogen atom or a methyl group, R_2 and R_4 independently represents a hydrogen atom, a methyl group or an ethyl group, R_5 to R_8 independently represents a hydrogen atom, a methyl group or a bromine atom, and $\underline{1}$ and \underline{m} independently represents an integer of 1 to 6;

$$H_2C = \overset{\mathsf{R_9}}{\mathsf{C}} \overset{\mathsf{O}}{\mathsf{C}} - \mathsf{O}$$
 (2)

wherein R9 represents a hydrogen atom or a methyl group; and

$$H_{2}C = \overset{\mathsf{R}_{10}}{\mathsf{C}} \overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{C}}}} - \overset{\mathsf{C}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{C}}}} - \overset{\mathsf{C}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{C}}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\mathsf{C}}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}}$$

wherein R₁₀ represents a hydrogen atom or a methyl group.

17. (previously presented): The method for producing an optical material according to Claim 16, wherein each of R_1 and R_3 is a hydrogen atom in the formula (1).

18. (previously presented): The method for producing an optical material according to Claim 16, wherein each of R_2 and R_4 is a hydrogen atom in the formula (1).

19. (previously presented): The method for producing an optical material according to Claim 16, wherein all of R_5 to R_8 are hydrogen atoms; R_5 is a hydrogen atom and R_6 is a methyl group, and R_7 is a hydrogen atom and R_8 is a methyl group; or R_5 is a hydrogen atom and R_6 is a bromine atom, and R_7 is a hydrogen atom and R_8 is a bromine atom, in the formula (1).

20. (previously presented): The method for producing an optical material according to Claim 16, wherein each of 1 and m is an integer of 1 to 3 in the formula (1).

U.S. Appln. No.: 10/578,623

Attorney Docket No.: Q94379

21. (previously presented): The method for producing an optical material according to Claim 16, wherein the component (A) is bis(4-acryloxyethoxyphenyl) sulfide, bis(4-acryloxyethoxyphenyl) sulfide, bis(4-acryloxyethoxy-3-methylphenyl) sulfide or bis(4-acryloxydiethoxy-3-methylphenyl) sulfide.

- 22. (previously presented): The method for producing an optical material according to Claim 16, wherein the mono(meth)acrylate represented by the formula (2) is o-phenylphenyl (meth)acrylate.
- 23. (previously presented): The method for producing an optical material according to Claim 16, wherein the composition further comprises (C) a photoinitiator.
- 24. (previously presented): The method for producing an optical material according to Claim 16, wherein the active energy beam-curable composition comprises 30 to 90 wt % of the component (A) and 70 to 10 wt % of the component (B).
- 25. (new): The optical material according to Claim 5, wherein the composition comprises a di(meth)acrylate represented by formula (1) and a mono(meth)acrylate represented by formula (3).
- 26. (new): The optical material according to Claim 25, wherein the mono(meth)acrylate represented by formula (3) is p-cumylphenol (meth)acrylate.