- 1. Создайте три формы Выводы (слова).
- 2. Постройте дерево вывода для каждого из сгенерированных слов.
- 3. Постройте эквивалентный конечный автомат.
- 4. Посредством вычисления конфигураций, чтобы показать, что формы предложений, порожденные грамматикой, принимаются конечным построенным автоматом.
- 5. Напишите регулярное выражение слов, генерируемых данной грамматикой.

 $G=(V_T, V_N, P, S), V_T=\{K, M, L, N\}, V_N=\{a, b, 1, 0\},$ где P:

K -> 1M

K -> 1

 $M \rightarrow 0L$

M -> aN

L -> 1L

 $L \rightarrow 0L$

 $L \rightarrow bN$

N -> aN

 $N \rightarrow bN$

N -> 1

1. Создайте три формы Выводы (слова).

K -> 1M -> 1aN -> 1abN -> 1ab1

K -> 1M -> 10L -> 10bN -> 10b1

K -> 1M -> 10N -> 10aN -> 10abN -> 10ab1

Постройте дерево вывода для каждого из сгенерированных слов.

1ab1

10b1

Постройте эквивалентный конечный автомат.

$G=(V_T,V_N,P,S),V_T=\{K,M,L,N\},V_N=\{a,b,1,0\},$ где P:	AF=(Q, Σ , δ ,X,F), Q={K, M, L, N}U {F}, Σ ={a, b, 1, 0}, Σ ={a, b, c, d, \bot },
K -> 1M	$\delta(K, 1)=\{M\},$
K -> 1	$\delta(K, 1)=\{F\},$
M -> 0L	δ(M, 0)={L},
M -> aN	δ(M, a)={N},
L -> 1L	
L -> 0L L -> bN	δ(L, 1)={L},
N -> aN	$\delta(L, 0)=\{L\},$
N -> bN	$\delta(L, b)=\{N\},$
N -> 1	$\delta(N, a) = \{N\}$
	$\delta(N, b)=\{N\}$
	δ(N, 1)={F}

Графический вид

Посредством вычисления конфигураций, чтобы показать, что формы предложений, порожденные грамматикой, принимаются конечным построенным автоматом.

$$(K, 1aab1) \mid -(M, aab1) \mid -(N, ab1) \mid -(N, b1) \mid -(N, 1) \mid -(F, \epsilon) \in AF$$

$$(K, 101b1) \mid -(M, 01b1) \mid -(L, 1b1) \mid -(L, b1) \mid -(N, 1) \mid -(F, \epsilon) \in AF$$

Напишите регулярное выражение слов, генерируемых данной грамматикой.

Регулярное выражение: 1a*(a+b)*1 *+10*(0+1)*b1*+1

