FU08 - Automata and Languages Exercise 6

 $\begin{array}{c} {\rm NGUYEN~Tuan~Dung} \\ {\rm s}1312004 \end{array}$

December 27, 2024

Question 1: Convert the following finite automata into equivalent regular expressions

$$M=(Q, \sum, \delta, q_0, F)$$
 with

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\sum = \{0, 1\}$$

 $Q = \{q_0, q_1, q_2, q_3, q_4\}$ $\sum = \{0, 1\}$ $F = \{q_4\}, \text{ and } \delta \text{ is defined by}$

δ	0	1
q_0	q_1	q_3
q_1	q_1	q_4
q_2	q_2	q_1
q_3	q_4	q_3
q_4	q_2	q_4

Solution:

From the state transition table, we construct the DFA.

• Step 1: Insert a new end state.

• Step 2: Rip q_3 .

start

 start $0^{+}1$ $1^{+}0$

0

 q_1

 $1 \cup (0^+10^*1)$

• Step 5: Rip q₄. $(1^+0) \cup (0^+1)[1 \cup (0^+10^*1)]^*$ start -

 \implies Hence, the regular expression for the finite automata is: $(1^+0) \cup (0^+1)[1 \cup (0^+10^*1)]^*$.

Question 2: Convert the following finite automata into equivalent regular expressions

$$M = (Q, \Sigma, \delta, q_0, F)$$
 with

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\sum = \{0, 1\}$$

$$\begin{split} M &= (Q, \sum, \delta, q_0, F) \text{ with } \\ Q &= \{q_0, q_1, q_2, q_3\} \\ \sum &= \{0, 1\} \\ F &= \{q_3\} \text{ , and delta is defined by } \end{split}$$

δ	0	1
q_0	q_2	q_1
q_1	q_1	q_3
q_2	q_2	q_1
q_3	q_3	q_3

Solution:

From the state transition table, we construct the NFA.

• Step 1: Adding new end state.

• Step 3: Rip q₃.

• Step 2: Rip q_2 .

• Step 4: Rip q_1 .

 \implies Hence, the regular expression for the finite automata is: $[1 \cup (0^+1)]0^*1(0 \cup 1)^*$.

Question 3: Convert the following finite automata into equivalent regular expressions

$$\begin{split} M &= (Q, \sum, \delta, q_0, F) \text{ with } \\ Q &= \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\} \\ \sum &= \{0, 1\} \\ F &= \{q_3\} \text{ , and } \delta \text{ is defined by } \end{split}$$

δ	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_3	q_1
q_3	q_3	q_0
q_4	q_3	q_5
q_5	q_6	q_4
q_6	q_5	q_6
97	q_6	q_3

Solution:

From the above information, let us construct the corresponding NFA.

Let us insert new ending state and starting state.

ullet Since q_7 has no path leading to it, we can remove it without affecting the automaton.

• Step 1: Rip out q₆.

• Step 2: Rip out q_5 .

• Since q₄ has no path leading to it, we can remove it without affecting the automaton.

• Step 3: Rip q_3 .

• Step 4: Rip q_0 .

• Step 5: Rip q₂.

• Step 6: Rip q_1 .

