APPM 4660 - HW #2 Griston Ceelegrine
1) P(x)=(x-2)9=X9-18x8+144x7-1077x6+7016x5-4072x4+5726x3-4608x2+2304x
1) P(x)=(x-2)9=x9-18x8+144x7-672x6+2016x5-4032x4+5376x3-4608x2+2304x (i)-(ii): Plots attribed on next page
(111) D. Heave blu the plats is that the first is much moe
jagged in its graph this the second is a lit roundor and
smoother, like the plot of a polynoral should be. The discrepancy
is most likely cared by round-off error. In the second graph, there
is only one" add won" operation and then one exponental; however, in
the first, a large # of multiplication and address openhas of numbers
w/ many deemed places curses round-off error, which is only propagated
the more operations are completed. Therefore, I would say
the second graph is more accorde, as it resembles more what
a polynomial "should" look like (smooth/rounded/differentiable).
2) How world you perform following calculations to avoid carcellations?
i) Evalute JX+1'-1 for x=0
To avoid loss of carcelling significant digits of subtraction of newly
egal #s, I would revote (FT-1' to)
exil #s, I would revole (k+1-1' to) [X+1-1-([X+1+1] -> (x+1)-1-x]
 1 · (Jx+1+1) (x+1+1 / Jx+1+2
now he have less carellator as he are addry not sustanting. Less relierror
Evaluate that respect
11) Evaluate sm(x)-sm(y) for x=y
I would still our some process for some reasons as in (i) abytedaling
sin(x)-sm(y).(sm(x)+sm(y)) 11/2(x)-sm2(y) 5/10(x+y)sm(x-y)
$\frac{\sin(x)-\sin(y)\cdot(\sin(x)+\sin(y))}{2} > \frac{\sin^2(x)-\sin^2(y)}{\sin(x)+\sin(y)} = \frac{\sin(x+y)\sin(x-y)}{\sin(x)+\sin(y)}$
which would produce assuss of less rel, error when evaluated
11) Evalue 1-(0)(x) for x=0
ce i ale la:
$\frac{1-\cos(x)}{5n(x)} \cdot \frac{(1+\cos(x))}{(1+\cos(x))} = \frac{1-\cos^2(x)}{5n(x)} \cdot \frac{\sin^2(x)}{(1+\cos(x))} = \frac{1-\cos^2(x)}{1+\cos^2(x)}$
5n(x) . (1+co)(x) [ndx)(1+co)(x) [1+co)(x)

and evaluate that myend for more accurate output.

```
3) \( (x) = (1+ x+x3) cos(x)
        I Rul degree Taylor Polynomial of Flx) about x .= 0
         P_2(x) = f(0) + f'(0)(x-0) + f''(0))(x)^2
           f(x) = (1+x+x^3)\cos(x) = 7 f(0) = (1+0+0)1 = 1
           f'(x) = (3x2x1) cos(x) - (x3xx+1) sin(x) => f'(0) = 1.1-0 = 1
          fu(x) = -5(3x3+1)21/(x) - (x)+x+1)(0)(x) +(x(0)(x) => f(0)=-1.1=-7
          f3(x)=(x3-17x+1) sm(x)+(3-9x3 cos(x) => f2(0)=3
         P2(X)=1+x-=x2
      a) P3(0.5) = 1+05-\frac{1}{2}(0.5)^2 = 1.5-\frac{1}{2}(\frac{1}{4}) = \frac{11}{2} \sigma F(0.5) \lefta approximation
          From bound:

1 F(0.5) - P2(0.5) \( \subseteq \frac{13(0.5)(0.5)^3}{6} = \frac{3}{6}(0.5)^3 = \frac{1}{16}
           Actual lerbor:
             160.5) - P2(0.5) = 1.426 - 1/8 = 0.05/07 < 0.0625
         F(x) - P2(x) & +3(x) x3
                         < (x3-17x+1)sm(x) + (3-9x2)cos(x) x3 | Ar P2(x)
   [Ux)gx - 165/x)gx > < [ [ (x 3-1+x+1) Pv(x) + (3-4x3)(00/x) x 3]
                   < [0.4428381]
```

	4) Consider o grandotte eguliar × 2+56×+1=0
	a) Assumy we can calculate square root of 3 correct deamals,
	r, = 56+(56)2-4(1)(1) r= 56+(56)2-4(1)(1) r= 56-(-56)2-4(1)(1) r= 56+(-56)2-4(1)(1)
	= 56+13132 56+55.964 = 56-13132 56-65.964
	2
	- III.964 = 55.982 / - 0.036 - [0.018]
	Actual rook => 1=28+3187, 1=28-3187
	51 rel eros: 2
	100+2: 1-1-1- 28+3/87-55.982 100+2: 12-12 (28-3/87)-0.018
	10.1 28+3187 1021 2x-3187
	- 7.67.846·10-5
	= 2.95005.10 i bad root >
	b) two relations that bette approximate "bad" root
	relation 1: (gray) = (x-1) (x-12) = 0 = x2-56x+1
	x2-12x-1,x+1,12 = x2-50x+1
	S.t 13+1,=50 and 1,12=1
	now, using the "good" root 5=55,982, we can find better approx. for re
	by pluggray in 12. I we the End eigenter 1,12=1 5/c the first
	would middle substraying 2 # that are very smiler, which we estitished
	my less accorde in problem (2) of the hw.
	: rz=1/r, = 1/55.982 = [0.017862] & new rz
	relatie voor for new 12 12x-3187-0.017xee2 [2.4500 5x.10-6] rev. oror way better!
	12x-3187 = 2.4500 58.10
	way bette!
	cold a 2 se alan concloude broads at Marcina as 21 at lextled landin
	relation 2: re-unity guadrate formula, as done on pg. 26 of textbook (and in
C. Company	into $r_2 = \frac{-2c}{b-\sqrt{b^2-4ac}}$ new r_2
pan n	solving. we get $r_2 = \frac{-2}{-56\sqrt{56-4}} = \frac{-2}{-111.964} = \frac{0.0178628}{0.0178628}$

