

A Visualization Tool for Analyzing Cluster Performance Data

Third IEEE International Conference on Cluster Computing October 8-11, 2001

Rena Haynes, Patricia Crossno, Eric Russell (rahayne, pjcross, edrusse)@sandia.gov
Sandia National Laboratories*

Motivation

Support for

- Problem Analysis
 - hardware
 - software
 - operational
- Configuration Analysis
- Resource Utilization

in a large cluster environment

Visualization Support for Data Discovery

- Organize and manage display of data
- Display data in the context of cluster architecture
- Provide flexible data input

Organization and Management of Data Display

- Provide larger context through use of
 - color instead of text
 - -3-D
- Display related data together
 - functionally related
 - processor
 - network
 - job related
 - spatially related

Organization and Management of Data Display (cont.)

- User interaction capabilities
 - rotate, zoom, translate
 - animation
 - turn display objects on/off
 - set thresholds
 - select objects
 - display routes

Displaying Data in Context of Cluster Architecture

- Use of cluster interconnect model to determine display layout
- Tie performance data to display objects
- Use of routing information to display paths between nodes

Visualization Tool Model

- Basic unit is a switch containing 16 ports
- Defines the number of switches in the x, y, and z dimensions
- Defines port configurations for switches
 - port order
 - processor vs network
 - network connectivity
 - node order
- Defines switch and port labels

Visualization Tool Switch Display

- Is composed of 3-D cubes with port objects distributed on the six faces
- Divided into processor and
- network displays

Visualization Tool GUI

- Developed using GLUI
 (http://www.cs.unc.edu/~rademach/glui)
 library of graphics primatives
- provides selection, animation, and view control

Directory: /home/rahayne/cplant/p File: ross-model.txt

Directory: /home/rahayne/Cluster2

Error File

Flexible Data Input

- Integer values tagged with port identifier
- Timesteps

plane-0.sw-1.V7.Port-0.SU-58	162	162	105
plane-0.sw-1.V7.Port-7.SU-58	174	174	113
plane-0.sw-1.T0.Port-7.SU-48	250817	239923	147194
plane-0.sw-1.T0.Port-8.SU-48	174	174	113
lane-0.sw-1.T0.Port-11.SU-48	14473	3096	2388
plane-0.sw-1.T0.Port-12.SU-48	104873	98134	61598
plane-0.sw-1.T0.Port-13.SU-48	1092	792	612
plane-0.sw-1.T0.Port-14.SU-48	1276	828	720
plane-0.sw-1.T1.Port-0.SU-48	348	348	226
plane-0.sw-1.T1.Port-7.SU-48	162	162	105

• Separate job data

Display Ports Colored to Show Performance Data

- Based on minimum and maximum threshold values
- Default color for values below minimum is black
- Default color for values above maximum is yellow
- Values between minimum and maximum ramp from blue to purple to red
- Job data are colored randomly using a Hilbert curve algorithm

Faulty Cable: Network view Time step 1 Bad Packets

- **-**<1
- \blacksquare = 1
- between 1 and 4000
- >= 4000

Faulty Cable
Network view
Time step 3
Bad Packets

- **1**
- \blacksquare = 1
- between 1 and 4000
- >= 4000

Faulty Cable
Network view
Time step 5
Bad Packets

- **1**
- \blacksquare = 1
- between 1 and 4000
- >= 4000

Operational Analysis: VM reboot Processor view Bad Packets

Operational Analysis: VM reboot Network view Bad Packets + Route

Operational Analysis: VM reboot Network view Bad Packets + Route

Operational Analysis: VM reboot Network view Bad Packets + Route

Traffic Analysis: Processor Display Job Distribution

Traffic Analysis: Processor Traffic Good Packets

- < 2000
- = 2000
- between 2000 and 9,000,000
- = 9,000,000
- > 9,000,000

Traffic Analysis: Network Traffic Good Packets

- **2000**
- = 2000
- between 2000 and 9,000,000
- = 9,000,000
- > 9,000,000

Conclusions

- Visualization tool has been successful in isolating problems that appear to be system wide.
- Visualization tool provides a system view of Sandia's CPLANTTM clusters.
 - Analysis is only as good as input data