ATGM336H-5N 模块使用手册

一.、产品介绍

全球四大卫星定位系统

GPS 系统(美国)

BDS 系统(中国北斗)

GLONASS 系统(俄罗斯)

伽利略卫星导航系统(欧盟)

关于模块型号和信息:

1.2 产品选购

型号	多	模功	能	电	源	接	П			特	性		
	GPS	BDS	GLONASS	2.7V~3.6V	1.65V~3.6V	UART1	UART2	Flash	TCXO	天线检测	天线过流保护	前置 SAW	外置 LNA
ATGM336H-5N-1X	•			•		•	•	•	•	•	•	•	•
ATGM336H-5N-2X				•				•					
ATGM336H-5N-3X		•		•				•	•	•	•	•	•
ATGM336H-5N-5X	•		•	•		•	•	•	•	•	•	•	•
ATGM336H-5N-7X	•	•	•	•		•	•	•	•	•	•	•	•

- 模块供电 3.3-5V
- 具备 SMA 天线接口和 IPEX 天线接口
- 板载 E2PROM 可设置保存波特率等信息
- 板载 XH414 充电电子,加速热启动搜星
- 支持 A-GNSS
- 冷启动捕获灵敏度: -148dBm
- 跟踪灵敏度: -162dBm
- 定位精度: 2.5 米 (CEP50, 开阔地)
- 首次定位时间: 32 秒(也有可能是几分钟,要看具体环境而定)
- 低功耗:连续运行<25mA
- 内置天线检测及天线短路保护功能
- 板子尺寸 13.1mm x 15.7mm

二、模块连接线

GPS模块和USB转TTL线的接线图

GPS模块和单片机的接线图

(3.3V和5V自适应)

连接好了线之后,安装下 ch340 的驱动,出现串口号。

三、数据解析

测试最好是带电脑到户外空旷地进行,若是把天线放在阳台外面的话,有一定几率定位失败,这个受楼距,遮挡物等因素影响。空旷地首次定位一般是一分钟以内。板载 LED 保持一定的频率闪烁证明定位成功了,我们用串口来看下数据, 波特率默认是 9600.

定位成功后 用串口显示数据

\$GNGGA, 084852. 000, 2236. 9453, N, 11408. 4790, E, 1, 05, 3. 1, 89. 7, M, 0. 0, M, ,*48 \$GNGLL, 2236. 9453, N, 11408. 4790, E, 084852. 000, A, A*4C \$GPGSA, A, 3, 10, 18, 31, , , , , , , , 6. 3, 3. 1, 5. 4*3E \$BDGSA, A, 3, 06, 07, , , , , , , , , 6. 3, 3. 1, 5. 4*24 \$GPGSV, 3, 1, 09, 10, 78, 325, 24, 12, 36, 064, , 14, 26, 307, , 18, 67, 146, 27*71 \$GPGSV, 3, 2, 09, 21, 15, 188, , 24, 13, 043, , 25, 55, 119, , 31, 36, 247, 30*7F \$GPGSV, 3, 3, 09, 32, 42, 334, *43 \$BDGSV, 1, 1, 02, 06, 68, 055, 27, 07, 82, 211, 31*6A \$GNRMC, 084852. 000, A, 2236. 9453, N, 11408. 4790, E, 0. 53, 292. 44, 141216, , , A*7 5 \$GNVTG, 292. 44, T, , M, 0. 53, N, 0. 98, K, A*2D \$GNZDA, 084852. 000, 14, 12, 2016, 00, 00*48 \$GPTXT, 01, 01, 01, ANTENNA OK*35

我们来一步步解读下数据 数据里面我们看到 三种数据类型 GN、GP、BD 分别代表 双模模式、GPS 模式、北斗模式

NMEA0183 协议 帧格式内容可以参考以下几个表格

(1) \$GPGGA (GPS 定位信息)

序号	名称	样例数据	单位	描述
	消息 ID	\$GPGGA		GGA 协议的数据头
<1>	定位点的 UTC 时间	161229.487		格式: hhmmss.sss
<2>	纬度	3723.2475		格式: ddmm.mmmm
<3>	纬度方向	И		N: 北纬; S: 南纬
<4>	经度	12158.3416		格式: dddmm.mmmm
<5>	经度方向	W		W: 西经; E: 东经
<6>	GPS 定位状态指示	1		0: 未定位 1: 无差分,SPS模式,定位 有效 2: 带差分,SPS模式,定位 有效 3: PPS模式,定位有效
<7>	使用卫星数量	07		从 00 到 12 (不足 10 的前面 补 0)。
<8>	水平精度衰减因子	1.0		范围: 0.5-99.9
<9>	海平面高度	9.0	*	范围: -9999.9 - 9999.9
<10>	高度单位	М		M 表示高度单位为米
<11>	大地椭球面相对于海平 面的高度		*	范围: -999.9 - 9999.9
<12>	高度单位			M 表示高度单位为米
<13>	差分修订时间		秒	从最近一次接收到差分信号 开始的秒数,如果不是差分 定位,此项为空
<14>	差分参考基站 ID 号	0000		范围: 0000-1023, 如果不是 差分定位,此项为空
<u>hh</u>	校验和	18		\$与*之间所有字符 ASCII 码的校验和(各字节做异或运算,得到校验和后,再转换成 16进制格式的 ASCII 字符。
	回车和换行	<cr><lf></lf></cr>	- A:	代表协议帧结束

(2) \$GPGLL (地理定位信息)

序号	名称	样例数据	单位	描述
	消息 ID	\$GPGLL		GLL 协议的数据头
<1>	纬度	3723.2475		格式: ddmm.mmmm
<2>	纬度方向	И	80	N: 北纬; S: 南纬
<3>	经度	12158.3416		格式: dddmm.mmmm
<4>	经度方向	W		W: 西经; E: 东经
<5>	定位点的 UTC 时间	161229.487	30	格式: hhmmss.sss
<6>	数据状态	A		A: 定位数据有效, V 定位 数据无效
hh	校验和	2C	30	
	回车和换行	<cr><lf></lf></cr>		代表协议帧结束

(3) \$GPGSA (当前卫星信息)

序号	名称	样例数据	单位	描述
	消息 ID	\$GPGSA		GSA 协议的数据头
<1>	定位模式	A	10	M: 手动; A: 自动
<2>	定位类型	3		1: 无定位信息 2: 二维定位 3: 三维定位
<3>	第1信道正在使用的卫星 PRN 码编号	07		PRN 码: (Pseudo Random Noise, 伪随机噪声码), 范 围是 01 至 32, 最多可接收 12 颗卫星信息。
<4>	第 2 信道正在使用的卫星 PRN 码编号	02		同上
<5>	第3信道正在使用的卫星 PRN 码编号	26		同上
<6>	第 4 信道正在使用的卫星 PRN 码编号	27		同上
<7>	第 5 信道正在使用的卫星 PRN 码编号	09	8	同上
<8>	第6信道正在使用的卫星 PRN 码编号	04		同上
<9>	第7信道正在使用的卫星 PRN 码编号	15		同上
<10>	第8信道正在使用的卫星 PRN 码编号			同上
<11>	第9信道正在使用的卫星 PRN 码编号			同上
<12>	第 10 信道正在使用的卫星 PRN 码编号			同上
<13>	第 11 信道正在使用的卫星 PRN 码编号	100	ass.	同上
<14>	第12信道正在使用的卫星 PRN 码编号			同上
<15>	PDOP 综合位置精度因 子	1.8		范围: 0.5 - 99.9
<16>	HDOP 水平精度因子	1.0		范围: 0.5-99.9
<17>	VDOP 垂直精度因子	1.5		范围: 0.5-99.9
<u>hh</u>	校验和	2C		
	回车和换行	<cr><lf></lf></cr>		代表协议帧结束

(4) \$GPGSV (可见卫星信息)

序号	名称	样例数据	单位	描述
	消息 ID	\$GPGSV		GSV 协议的数据头
<1>	本次 GSV 语句的总数目	2		范围: 1-3
<2>	当前 GSV 语句序号	1		范围: 1-3
<3>	当前可见卫星总数	07		范围: 00-12
<4>	卫星 PRN 码编号	07		范围: 01-32
<5>	卫星仰角	79	度	范围: 00-90
<6>	卫星方位角	048	度	范围: 000-359
<7>	信噪比	42	dbHz	范围: 00-99
<4>	卫星 PRN 码编号	02		范围: 01-32
<5>	卫星仰角	51	度	范围: 00-90
<6>	卫星方位角	062	度	范围: 000-359
<7>	信噪比	43	dbHz	范围: 00-99
<4>	卫星 PRN 码编号	26		范围: 01-32
<5>	卫星仰角	36	度	范围: 00-90
<6>	卫星方位角	256	度	范围: 000-359
<7>	信噪比	42	dbHz	范围: 00-99
<4>	卫星 PRN 码编号	27		范围: 01-32
<5>	卫星仰角	27	度	范围: 00-90
<6>	卫星方位角	138	度	范围: 000-359
<7>	信噪比	42	dbHz	范围: 00-99
hh	校验和	71	2 60 900 00 00 00	
	回车和换行	<cr><lf></lf></cr>		代表协议帧结束

序号	名称	样例数据	单位	描述
	消息 ID	\$GPRMC		RIMC 协议的数据头
<1>	定位点的 UTC 时间	161229.487	3	格式: hhmmss.sss
<2>	定位状态	A		A: 定位, V: 导航
<3>	纬度	3723.2475		格式: ddmm.mmmm
<4>	纬度方向	И		N: 北纬; S: 南纬
<5>	经度	12158.3416		格式: dddmm.mmmm
<6>	经度方向	W		W: 西经; E: 东经
<7>	对地航速	0.13	Knots	范围: 000.0 - 999.9
<8>	对地航向	309.62	度	以真北为参考基准,二维方 向指向,相当于二维罗盘
<9>	定位点的 UTC 日期	120598		格式: ddmmyy(日月年)
<10>	磁偏角		度	范围: 000 - 180
<11>	磁偏角方向			E: 东, W: 西
hh	校验和	10		
	回车和换行	<cr><lf></lf></cr>		代表协议帧结束

(6) \$GPVTG (地面速度信息)

序号	名称	样例数据	单位	描述
	消息 ID	\$GPVTG		VTG 协议的数据头
<1>	对地航向	309.62	度	以真北为参考基准,二维方 向指向,相当于二维罗盘
<2>		T		真北参照系
<3>	磁偏角		度	(a)
<4>	4	M		磁北参照系
<5>	对地航速	0.13	Knots	范围: 000.0 - 999.9
<6>		И		表示: 节,Knots
<7>	水平运动速度	0.2		
<8>		K		表示: 公里/时,km/h
hh	校验和	6E		
	回车和换行	<cr><lf></lf></cr>	- 18	代表协议帧结束

(7) 天线状态输出

\$GPTXT, 01, 01, 01, ANTENNA OK*35

Ok 代表天线已经检测到, open 代表天线断开。

关于 UTC 时间和当前北京时间的计算

\$GNGGA, 084852.000, 2236.9453, N, 11408.4790, E, 1, 05, 3. 1, 89. 7, M, 0. 0, M, , *48

所看到的就是 UTC 时间,格式是 hhmmss.sss , 小数点后三位秒忽略, 那就 08 点 48 分 52 秒。

UTC + 时区差 = 本地时间

时区差东为正,西为负。在此,把东八区时区差记为 +08, 所以北京时间是 16 点 48 分 5 秒

关于经纬度的换算

\$GNRMC, 084852. 000, A, 2236. 9453, N, 11408. 4790, E, 0. 53, 292. 44, 141216, , , A*7 5

数据格式: 度分格式 换算成百度 谷歌地图的格式

如果想转换成 度分秒的 格式

北纬 2236.9453 =22 度 36 分 0.9453x60 秒 = 22 度 36 分 56.718 秒 东经 11408.4790=114 度 8 分 0.4790x60 秒=114 度 8 分 28.74 秒

经纬度	度分秒在约	线转换换算	算工具
Eedu.org.cn 作者:佚名 文章来源	原:本站原创 点	击数:24217	更新时间:2015/8/10
瓜子网二手车之卖网	房屋抵押	甲贷款	哪家银行存款利息高
输入度分秒纬度: 22	2 36	56. 718	
输入度分秒经度: 1	14 8	28. 74	
转换为经纬 》 结果:			
纬度: 22.615	755		
经度: 114.14	1317	_	

http://www.eedu.org.cn/greenlife/life/201508/100048.shtml

最后再用这个在线转换验证结果

关于热启动 温启动 冷启动 的阐述

冷启动是指在一个陌生的环境下启动 GPS 直到 GPS 和周围卫星联系并且计算出坐标的启动过程。以下几种情况开机均属冷启动:

- 1、初次使用时;
- 2、电池耗尽导致星历信息丢失时:
- 3、关机状态下将接收机移动 1000 公里以上距离。也就是说冷启动是通过硬件方式的强制性启动,因为距离上次操作 GPS 已经把内部的定位信息清除掉,GPS 接收机失去卫星参数,或者已经存在的参数和实际接收到卫星参数相差太多,导致导航仪无法工作,必须从新获得卫星提供的坐标数据,所以说车辆从地库里启动导航百分百算冷启动,这也是从地库出来搜星时间长的原因。

温启动是指距离上次定位时间超过 2 个小时的启动,搜星定位时间介于冷启动和热启动之间。如果您前一日使用过 GPS 定位,那么次日的第一次启动就属于温启动,启动后会显示上次的位置信息。因为上次关机前的经纬度和高度已知,但由于关机时间过长,星历发生了变化,以前的卫星接受不到了,参数中的若干颗卫星已经和 GPS 接收机失去了联系,需要继续搜星补充位置信息,所以搜星的时间要长于热启动,短于冷启动。

热启动是指在上次关机的地方没有过多移动启动 GPS,但距离上次定位时间必须小于 2 个小时,通过软件的方式,进行一些启动前的保存和关闭等准备工作后的启动。