H3: The Schrödinger equation 3.1 the time-dependent Schrödinger equation			
	but since $\omega=\hbar k^2/2m$ we find the classical relation: $E=\frac{p_x^2}{2m}$ connecting energy and momentum		
	If we differentiate once and twice we find two relations: $\frac{\partial \Psi}{\partial t} = -\frac{\mathrm{i} E}{\hbar} \Psi. \qquad \qquad \frac{\partial^2 \Psi}{\partial x^2} = -\frac{p_x^2}{\hbar^2} \Psi.$ Hence: $\mathrm{i} \hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t).$ > is linear and homogeneous > $\psi(x,t)$ is satisfied by superposition of plane waves:		
	$\Psi(x,t) = (2\pi\hbar)^{-1/2} \int_{-\infty}^{+\infty} e^{i[p_x x - E(p_x)t]/\hbar} \phi(p_x) dp_x$		
quantum-mechanical E-p relation	Since we can represent the energy and momentum by the operators: $E_{\rm op} = {\rm i}\hbar\partial/\partial t \qquad (p_x)_{\rm op} = -{\rm i}\hbar\partial/\partial x$ we find the relation: $E_{\rm op}\Psi(x,t) = \frac{1}{2m}[(p_x)_{\rm op}]^2\Psi(x,t)$		
3D Schrödinger equation	We can define vector \mathbf{k} , for which we have the momentumvector \mathbf{p} Now: $\Psi(\mathbf{r},t) = A\mathrm{e}^{\mathrm{i}(\mathbf{k}\cdot\mathbf{r}-\omega t)} = A\mathrm{e}^{\mathrm{i}(\mathbf{p}\cdot\mathbf{r}-Et)/\hbar}$ we thus find the classical relation: $E = \frac{\mathbf{p}^2}{2m}$ and thus the Schrödinger eq: $i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t)$ where $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$		
3D E-p relation	We once again find operators for E and p: $E_{\rm op}={\rm i}\hbar\frac{\partial}{\partial t}, \qquad {\bf p}_{\rm op}=-{\rm i}\hbar\nabla$ thus we find: $E_{\rm op}\Psi({\bf r},t)=\frac{1}{2m}({\bf p}_{\rm op})^2\Psi({\bf r},t)$		
	in similar fashion we find for the kinetic energy T = ${\bf p^2}/2$ m: $T=\frac{1}{2m}({\bf p}_{\rm op})^2=-\frac{\hbar^2}{2m}\nabla^2$		

Schrödinger-eq for a particle in a
potential energy field

Consider the same particle moving in a field with potential energy > the force acting on the particle is given by:

$$\mathbf{F}(\mathbf{r},t) = -\nabla V(\mathbf{r},t)$$

for a classical particle the energy is given by:

$$E = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t).$$

since V isn't dependent on **p** or E, we can conclude:

$$E_{\rm op}\Psi(\mathbf{r},t) = \left[\frac{1}{2m}(\mathbf{p}_{\rm op})^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t)$$

which:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t).$$

Schrödinger-eq and Hamiltonian

We can find the Hamiltonian operator hiding in the Schrödinger-eq:

$$H = -\frac{\hbar^2}{2m}\nabla^2 + V$$
$$= \frac{1}{2m}(\mathbf{p}_{op})^2 + V = T + V$$

thus we can rewrite:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = H\Psi(\mathbf{r},t).$$

difference between classical and quantum E and **p**

In a classical sense we know:

$$E = H_{\rm cl}(\mathbf{r}, \mathbf{p}, t)$$

where

$$H_{\rm cl}(\mathbf{r}, \mathbf{p}, t) = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t).$$

however in quantum we find the Hamiltonian upon substitution $\, p \to p_{\text{op}} = - \mathrm{i} \hbar \, \nabla$

$$H \equiv H_{\rm cl}(\mathbf{r}, -\mathrm{i}\hbar\nabla, t).$$

thus, the Schrödinger-eq can be found classically with substitutions:

$$E \to E_{\rm op} = i\hbar \frac{\partial}{\partial t}, \qquad \mathbf{p} \to \mathbf{p}_{\rm op} = -i\hbar \nabla$$

and applying the operators $E_{\rm op}$ and $H \equiv H_{\rm cl}({\bf r}, -{\rm i}\hbar\nabla, t)$ on both sides on $\Psi({\bf r}, t)$.

■ Klassiek: energie is een scalair en een functie van \vec{r} , \vec{p} , t

$$E\left(\vec{r},\vec{p},t\right)\equiv H_{cl}\left(\vec{r},\vec{p},t\right)$$

 H_{cl} : Klassieke Hamiltoniaan van het deeltje = energie

- 1 Vrij deeltje: $H_{cl} = \frac{\vec{p} \cdot \vec{p}}{2m}$
- **2** Harmonische oscillator: $H_{cl} = \frac{\vec{p} \cdot \vec{p}}{2m} + \frac{1}{2}k\vec{r} \cdot \vec{r}$
- **Kwantummechanisch:** de Hamiltoniaan wordt een operator

$$E_{op}\left(\vec{r}_{op},\vec{p}_{op},t\right)\equiv H\left(\vec{r},-i\hbar\vec{\nabla},t\right)$$

H: Kwantummechanische Hamiltoniaan = energie-operator

- 1 Vrij deeltje: $H = \frac{-\hbar^2}{2m} \vec{\nabla} \cdot \vec{\nabla}$
- 2 Harmonische oscillator: $H = \frac{-\hbar^2}{2m} \vec{\nabla} \cdot \vec{\nabla} + \frac{1}{2} k \vec{r} \cdot \vec{r}$

	3.2 conservation of probability	
statistical interpretation of Ψ	If a particle is described by a wave function $\Psi(\mathbf{r},t)$ > the probability of finding the particle at time t w $P(\mathbf{r},t)\mathrm{d}\mathbf{r}= \Psi(\mathbf{r},t) ^2\mathrm{d}$ Which is normalised by: $\int \Psi(\mathbf{r},t) ^2\mathrm{d}\mathbf{r}=1$	vithin volume d r = dxdydz is:
	$>$ if Ψ can be normalised its <i>square integrable</i>	
change of P(r ,t) over time	Probability should be conserved over time ie: once Ψ is normalised at a given time t, it must	remain so at all times:
	$\frac{\partial}{\partial t} \int P(\mathbf{r}, t) d\mathbf{r} = 0$	
Conservation of probability	We can find an expression that verifies that P stay	ys normalised over time
	Consider:	
	$\int_{V} P(\mathbf{r}, t) d\mathbf{r} = \int_{V} \Psi(\mathbf{r}, t) ^{2} d\mathbf{r}$	(3.30)
	where the integrals extend over the volume V . The rate of chan	ge of this probability
	is $\frac{\partial}{\partial t} \int_{V} P(\mathbf{r}, t) d\mathbf{r} = \int_{V} \left[\Psi^{*} \left(\frac{\partial \Psi}{\partial t} \right) + \left(\frac{\partial \Psi^{*}}{\partial t} \right) \Psi \right] d\mathbf{r}.$	(3.31)
	Where, according to the Schrödinger equation:	
	$-i\hbar \frac{\partial}{\partial t} \Psi^*(\mathbf{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \right]$	(t) $\Psi^*(\mathbf{r},t)$
	we find:	
	$\frac{\partial}{\partial t} \int_{V} P(\mathbf{r}, t) d\mathbf{r} = \frac{\mathrm{i}\hbar}{2m} \int_{V} [\Psi^{*}(\nabla^{2}\Psi) - (\nabla^{2}\Psi^{*})\Psi] d\mathbf{r}$	
	$=\frac{\mathrm{i}\hbar}{2m}\int_{V}\nabla\cdot[\Psi^{*}(\nabla\Psi)-(\nabla\Psi^{*})\Psi]\mathrm{d}\mathbf{r}$	
	$=-\int_{V}\mathbf{ abla}.\mathbf{j}\mathrm{d}\mathbf{r}.$	(3.33)
	In the last line we have introduced the vector	
	$\mathbf{j}(\mathbf{r},t) = \frac{\hbar}{2m\mathbf{i}} [\Psi^*(\nabla \Psi) - (\nabla \Psi^*)\Psi]$	(3.34)
	We can thus verify that P is normalised at all time	s if there is a j for which:
	$\frac{\partial}{\partial t} \int_{V} P(\mathbf{r}, t) d\mathbf{r} = -\int_{S} \mathbf{j} . d\mathbf{S}$	

probability conservations in terms of H

Use a the form of the Schrödinger eq. with the Hamiltonian:

$$-\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi^*(\mathbf{r},t)=[H\Psi(\mathbf{r},t)]^*$$

we can write the left-hand side of (3.29) as

$$\frac{\partial}{\partial t} \int P(\mathbf{r}, t) d\mathbf{r} = \frac{\partial}{\partial t} \int |\Psi(\mathbf{r}, t)|^2 d\mathbf{r}$$

$$= \int \left[\Psi^* \left(\frac{\partial \Psi}{\partial t} \right) + \left(\frac{\partial \Psi^*}{\partial t} \right) \Psi \right] d\mathbf{r}$$

$$= (i\hbar)^{-1} \int [\Psi^* (H\Psi) - (H\Psi)^* \Psi] d\mathbf{r}$$

so that the condition (3.29) becomes

$$\int \Psi^*(H\Psi) d\mathbf{r} = \int (H\Psi)^* \Psi d\mathbf{r}.$$

ie H should be a Hermitian when acting on square integrable wave functions

3.2.2 probability current density	
probability current density	= j as defined by the equation: $\frac{\partial}{\partial t}P(\mathbf{r},t) + \nabla .\mathbf{j}(\mathbf{r},t) = 0$
	ie: rate if change of the probability of finding a particle in a volume V = the probability flux passing through the surface S of bounding V
properties of j	We can also express \mathbf{j} as: $\mathbf{j}(\mathbf{r},t) = \text{Re}\left\{\Psi^* \frac{\hbar}{\text{i}m} \nabla \Psi\right\}.$
	- $\frac{\hbar}{im}$ ∇ represents the quantity \mathbf{p}/m > product of velocity and density > \mathbf{j} is the current density
	- if Ψ is real, \textbf{j} vanishes > complex Ψ is needed if we describe non-zero probability situations
	- Ψ and $\nabla\Psi$ are continuous > j and P are also continuous
	3.3 expectation values and operators
expectation value of a function	for a function $f(\mathbf{r},t)$ working on Ψ we define:
	$\langle f(\mathbf{r},t)\rangle = \int f(\mathbf{r},t)P(\mathbf{r},t)d\mathbf{r}$
	$= \int \Psi^*(\mathbf{r}, t) f(\mathbf{r}, t) \Psi(\mathbf{r}, t) d\mathbf{r}$
	for example:
	$\langle \mathbf{r} \rangle = \int \mathbf{r} P(\mathbf{r}, t) d\mathbf{r}$ $= \int \Psi^*(\mathbf{r}, t) \mathbf{r} \Psi(\mathbf{r}, t) d\mathbf{r}.$
	$=\int \Psi^*(\mathbf{r},t)\mathbf{r}\Psi(\mathbf{r},t)d\mathbf{r}.$
	and we can do the same for ϕ with $\Pi(\mathbf{p},t)\mathrm{d}\mathbf{p}=\Phi^*(\mathbf{p},t)\Phi(\mathbf{p},t)\mathrm{d}\mathbf{p}$
	$\langle \mathbf{p} \rangle = \int \mathbf{p} \Pi(\mathbf{p}, t) \mathrm{d}\mathbf{p}$
	$= \int \Phi^*(\mathbf{p}, t) \mathbf{p} \Phi(\mathbf{p}, t) d\mathbf{p}$
expectation value of p	We can rewrite (p) as:
	$\langle {f p} angle = \int \Psi^*({f r},t) (-{ m i}\hbar {f abla}) \Psi({f r},t) { m d}{f r}.$ >proof: p92
expectation value of E	Consider E(r,p) a function in both r and p:
	$E = \mathbf{p}^2 / 2m + V(\mathbf{r}, t)$
	> define the expectation value as:
	$\langle E \rangle = \left\langle \frac{\mathbf{p}^2}{2m} \right\rangle + \langle V \rangle$
	or in operator form: $\left\langle i\hbar \frac{\partial}{\partial t} \right\rangle = \left\langle -\frac{\hbar^2}{2m} \nabla^2 \right\rangle + \langle V \rangle$
	> now ${\bf p}$ isn't included in E anymore, thus we can just use Ψ :
	$\langle E \rangle = \int \Psi^*(\mathbf{r}, t) \left(i\hbar \frac{\partial}{\partial t} \right) \Psi(\mathbf{r}, t) d\mathbf{r}$
	$= \int \Psi^*(\mathbf{r}, t) H \Psi(\mathbf{r}, t) d\mathbf{r} = \int \Psi^*(\mathbf{r}, t) \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \right] \Psi(\mathbf{r}, t) d\mathbf{r}$
	$= \langle H \rangle.$ (3

expectation value of functions in r and p	Consider A(r , p , t) a function define	ed by $\Psi(\mathbf{r},t)$	
	1: substitute variables by their ope	erators:	
	$A(\mathbf{r}, -\mathrm{i}\hbar \nabla, t)$		
	2: calculate (A) from the expressio	on:	
	100		
	$\langle A \rangle = \int \Psi^*(\mathbf{r}, t) A(\mathbf{r}, -i)$	$(h \mathbf{V}, t) \Psi(\mathbf{r}, t) d\mathbf{r}$.	
	> if A isn't normalised, it should be	e replaced by:	
	$\langle A \rangle = \frac{\int \Psi^*(\mathbf{r}, t) A(\mathbf{r}, -i\hbar)}{\int \Psi^*(\mathbf{r}, t) \Psi}$	∇ , t) Ψ (\mathbf{r} , t) $d\mathbf{r}$	
	$\int \Psi^*(\mathbf{r},t)\Psi$	$(\mathbf{r},t)\mathrm{d}\mathbf{r}$	
> variables and their operators	Physical quantity	Operator	
	Position coordinate x	X	
	Position vector r	r	
	x component of momentum p_x	$-i\hbar \frac{\partial}{\partial x}$	
	Momentum p	$-\mathrm{i}\hbar abla$	
	Kinetic energy $T = \frac{\mathbf{p}^2}{2m}$	$-\frac{\hbar^2}{2m}\nabla^2$	
	Potential energy $V(\mathbf{r},t)$	$V(\mathbf{r},t)$	
	Total energy $\frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t)$	$H = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t)$	
	> say A is an operator associated which is a separate constant of the same of	eal quantities d hold:	
	> operator must be Hermitian		
commutator of operators	For A and B two operators		
	> define [A B] = AB-BA the commu > if [A B] = 0 then A and B commu ie: AB = BA		
	>> not all operators commute		

	Quantum mechanics should converge to classical mechanics for big enough	scales
	> to test this, we need to prove two classical Newton formulas:	
	$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathbf{p}}{m} \text{and} \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\nabla V$	
	for expectation values of corresponding quantum operators for Ψ a square-integrable solution normalised to unity	
1: dr/dt = p/m	For the expectation value of x:	
	$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\mathrm{d}}{\mathrm{d}t} \int \Psi^*(\mathbf{r},t) x \Psi(\mathbf{r},t) \mathrm{d}\mathbf{r}$	
	$= \int \Psi^*(\mathbf{r}, t) x \frac{\partial \Psi(\mathbf{r}, t)}{\partial t} d\mathbf{r} + \int \frac{\partial \Psi^*(\mathbf{r}, t)}{\partial t} x \Psi(\mathbf{r}, t) d\mathbf{r}.$	
	using the Schrödinger eq. for Ψ and Ψ^* :	
	$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = (\mathrm{i}\hbar)^{-1} \left[\int \Psi^* x (H\Psi) \mathrm{d}\mathbf{r} - \int (H\Psi)^* x \Psi \mathrm{d}\mathbf{r} \right]$	
	$= (i\hbar)^{-1} \left[\int \Psi^* x \left(-\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \right) d\mathbf{r} \right]$	
	$-\int \left(-\frac{\hbar^2}{2m}\nabla^2\Psi^* + V\Psi^*\right) x\Psi d\mathbf{r} .$	
	The terms involving the potential V cancel out, so that	
	$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\mathrm{i}\hbar}{2m} \int [\Psi^* x (\nabla^2 \Psi) - (\nabla^2 \Psi^*) x \Psi] \mathrm{d}\mathbf{r}.$	
	> Now Greens identity says: $\int_V [u(\nabla^2 v) + (\nabla u) \cdot (\nabla v)] d\mathbf{r} = \int_S u(\nabla v) \cdot d\mathbf{S}$	
	Thus we could write:	
	$\int (\nabla^2 \Psi^*) x \Psi d\mathbf{r} = \int_{S} x \Psi(\nabla \Psi^*) . d\mathbf{S} - \int (\nabla \Psi^*) . \nabla (x \Psi) d\mathbf{r}.$	(3.84)
	The first integral on the right is over the infinite bounding surface S , are equal to zero because the wave function Ψ vanishes at large distances. Conwe have	nd hence is insequently,
	$\int (\nabla^2 \Psi^*) x \Psi d\mathbf{r} = -\int (\nabla \Psi^*) \cdot \nabla (x \Psi) d\mathbf{r}.$	(3.85)
	Using again Green's first identity, we have	
	$-\int (\nabla \Psi^*) \cdot \nabla (x \Psi) d\mathbf{r} = -\int_{S} \Psi^* \nabla (x \Psi) \cdot d\mathbf{S} + \int \Psi^* \nabla^2 (x \Psi) d\mathbf{r}.$	(3.86)
	Again the surface integral vanishes, so that	
	$\int (\nabla^2 \Psi^*) x \Psi d\mathbf{r} = \int \Psi^* \nabla^2 (x \Psi) d\mathbf{r}.$	(3.87)
	Which we can use to simplify the equation:	
	$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\mathrm{i}\hbar}{2m} \int \Psi^*[x\nabla^2\Psi - \nabla^2(x\Psi)]\mathrm{d}\mathbf{r}$	
	$=-rac{\mathrm{i}\hbar}{m}\int\Psi^*rac{\partial\Psi}{\partial x}\mathrm{d}\mathbf{r}.$	
	which is the expression:	
	$\frac{\mathrm{d}}{\mathrm{d}t}\langle x\rangle = \frac{\langle p_x\rangle}{m}$	

2: $dp/dt = -\nabla V$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle p_x \rangle &= -\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} \int \Psi^* \frac{\partial \Psi}{\partial x} \mathrm{d}\mathbf{r} \\ &= -\mathrm{i}\hbar \bigg[\int \Psi^* \frac{\partial}{\partial x} \frac{\partial \Psi}{\partial t} \mathrm{d}\mathbf{r} + \int \frac{\partial \Psi^*}{\partial t} \frac{\partial \Psi}{\partial x} \mathrm{d}\mathbf{r} \bigg]. \end{split}$$

Replace Ψ and Ψ^* by their schrödinger eq.:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle p_x \rangle = -\int \Psi^* \frac{\partial}{\partial x} \left(-\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \right) \mathrm{d}\mathbf{r} + \int \left(-\frac{\hbar^2}{2m} \nabla^2 \Psi^* + V \Psi^* \right) \frac{\partial \Psi}{\partial x} \mathrm{d}\mathbf{r}
= \frac{\hbar^2}{2m} \int \left[\Psi^* \left(\nabla^2 \frac{\partial \Psi}{\partial x} \right) - (\nabla^2 \Psi^*) \frac{\partial \Psi}{\partial x} \right] \mathrm{d}\mathbf{r}
- \int \Psi^* \left[\frac{\partial}{\partial x} (V \Psi) - V \frac{\partial \Psi}{\partial x} \right] \mathrm{d}\mathbf{r}.$$
(3.91)

Assuming that $\partial \Psi/\partial x$, as well as Ψ , vanishes at large distances, the first integral on the right of (3.91) is equal to zero by Green's second identity⁷, in which $u = \Psi^*$ and $v = \partial \Psi/\partial x$. The second integral on the right of (3.91) is just

$$-\int \Psi^* \left[\frac{\partial}{\partial x} (V \Psi) - V \frac{\partial \Psi}{\partial x} \right] d\mathbf{r} = -\int \Psi^* \frac{\partial V}{\partial x} \Psi d\mathbf{r}$$
$$= -\left\langle \frac{\partial V}{\partial x} \right\rangle \tag{3.92}$$

so that

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle p_x \rangle = -\left\langle \frac{\partial V}{\partial x} \right\rangle \tag{3.93}$$

3.5 the time-dependent Schrödinger equation. Stationary states

time independent Schrödinger eq.

Consider a potential V(r) independent from t

> then H is also independent from t: $H = -(\hbar^2/2m)\nabla^2 + V(\mathbf{r})$

For a solution of Ψ of the form:

$$\Psi(\mathbf{r},t) = \psi(\mathbf{r}) f(t)$$

we can substitute in the TDSE to get:

$$\mathrm{i}\hbar\psi(\mathbf{r})\frac{\mathrm{d}f(t)}{\mathrm{d}t} = \left[-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r})\right]f(t).$$

Dividing both sides of this equation by $\Psi(\mathbf{r},t)=\psi(\mathbf{r})f(t)$, we find that

$$i\hbar \frac{1}{f(t)} \frac{\mathrm{d}f(t)}{\mathrm{d}t} = \frac{1}{\psi(\mathbf{r})} \left[-\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r}) \right].$$

the left side is only dependent on t

> both sides should be constant

> has the dimension of an energy E:

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}f(t) = Ef(t)$$

and

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E \psi(\mathbf{r}).$$

The first equation can be immediately integrated to give

$$f(t) = C \exp(-iEt/\hbar)$$

Where we can take C=1, to find the solutions of the TISE given by:

$$\Psi(\mathbf{r}, t) = \psi(\mathbf{r}) \exp(-iEt/\hbar).$$

TISE as an eigenvalue problem	Since $H = -(\hbar^2/2m)\nabla^2 + V(\mathbf{r})$ we can simplify the TISE to:
	$H\psi(\mathbf{r}) = E\psi(\mathbf{r})$
	where the eigenfunction $\psi(\textbf{r})$ corresponds to an eigenvalue E
	And each solution of the TISE is also an eigenfunction of H $H\Psi=E\Psi.$
	which can be rewritten since $E_{\mathrm{op}}=\mathrm{i}\hbar\partial/\partial t$. :
	$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi=E\Psi$
proof: E a real constant	To prove that E is real, we can look at the probability density: $P(\mathbf{r},t) = \Psi^*(\mathbf{r},t)\Psi(\mathbf{r},t)$
	$= \psi^*(\mathbf{r})\psi(\mathbf{r})\exp\left[-\frac{\mathrm{i}}{\hbar}(E - E^*)t\right].$
	since probability conservation we get:
	$(E - E^*) \int \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t) d\mathbf{r} = 0$
overestation value of F	thus E=E* We can calculate (E):
expectation value of E	$\langle E \rangle = \int \Psi^*(\mathbf{r}, t) \left(i\hbar \frac{\partial}{\partial t} \right) \Psi(\mathbf{r}, t) d\mathbf{r} = \int \Psi^*(\mathbf{r}, t) H \Psi(\mathbf{r}, t) d\mathbf{r}$
	= E
	Which can be shown to be: $E = \langle H \rangle = \langle T \rangle + \langle V \rangle.$
	More generally:
	$\langle E^n \rangle = \int \Psi^*(\mathbf{r}, t) H^n \Psi(\mathbf{r}, t) d\mathbf{r} = E^n.$
expectation values of functions of E	For a function f() that can be expanded around E:
	$f(E) = \sum_{n} a_n E^n$
	its expectation value, in a state (3.100) normalised to unity, is given by
	$\langle f(E) \rangle = \sum_{n} a_n \langle E^n \rangle = \sum_{n} a_n E^n = f(E)$
3.5.1 stationary states	
stationary state	= ψ () that are not dependent on time ie: $\Psi(\mathbf{r},t) = \psi(\mathbf{r}) \exp(-\mathrm{i}Et/\hbar)$.
	then: - probability density is given by:
	$P(\mathbf{r})=\psi^*(\mathbf{r})\psi(\mathbf{r})= \psi(\mathbf{r}) ^2$ > constant over time
	- the probability current density is given by:
	$\mathbf{j}(\mathbf{r}) = \frac{\hbar}{2m\mathbf{i}} \{ \psi^*(\mathbf{r}) [\nabla \psi(\mathbf{r})] - [\nabla \psi^*(\mathbf{r})] \psi(\mathbf{r}) \}$
	and since P is time-independent, the continuity eq. reduce to:
	$\nabla . \mathbf{j}(\mathbf{r}) = 0.$

3.6 energy quantisation

energy case study

consider a particle moving in 1D on a potential V(x)

> stationary states: $\Psi(x,t) = \psi(x) \exp(-iEt/\hbar)$

solutions of the TISE:

$$H\psi(x) \equiv -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \psi(x)}{\mathrm{d} x^2} + V(x)\psi(x) = E\psi(x)$$

which we shall rewrite for convenience as

$$\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} = \frac{2m}{\hbar^2} [V(x) - E]\psi(x).$$

Where $\psi(x)$ should be finite and single-valued everywhere

For a solution $\psi(x)$, we know that: - the real part of $\psi(x)$ is also a solution:

 $[\psi(x) + \psi^*(x)]/2$

- the imaginary part is also a solution:

 $[\psi(x) - \psi^*(x)]/2i$

which are both real functions

> we only need to analyse the real eigenfunctions to construct all eigenfunctions

>> we study 4 cases in a potential V(x) where:

- $V(x) = V_for x→∞$
- as x increases, V(x) decreases to $V_{\text{min}}V(x_0$
- for $x>x_0 V(x)$ increases until it becomes equal to V_+

1: E<V_{min}

V(x)-E is always positive

- > d²ψ/dt² always has the same sign as ψ
- > if: $-\psi$ >0, then the function curves upwards
 - ψ <0, the function curves downwards
 - ψ =0, the function escapes the x-axis

>> each solution will approach infinite values

> there is no physically acceptable solution

3.7: properties of the energy eigenfunctions			
Integrability of unbound solutions	We have seen that unbound solutions aren't square integrable		
	Solution: enclose the system in a box with impenetrable walls > entire eigenvalue spectrum becomes discrete > for volumes V of the box large enough this doesn't effect the outcome		
orthogonality relations	Let $\psi_E(x)$ be the eigenfunction for an energy E > for V the volume of a large box, the eigenfunction can be normalised:		
	$\int_{V} \psi_{E}^{*}(\mathbf{r}) \psi_{E}(\mathbf{r}) d\mathbf{r} = 1$		
	we can prove the orthogonality of two eigenfunctions ψ_{E} and $\psi_{\text{E}'}$ for E and E':		
	$\int \psi_{E'}^*(\mathbf{r})\psi_E(\mathbf{r})d\mathbf{r} = 0, \qquad E \neq E'.$		
	which can be combined to form orthogonality relations:		
	$\int \psi_{E'}^*(\mathbf{r})\psi_E(\mathbf{r})\mathrm{d}\mathbf{r} = \delta_{EE'}$		
	where $\delta_{EE'}$ is the Kronecker δ -symbol, such that		
	$\delta_{EE'} = \begin{cases} 1 & \text{if } E = E' \\ 0 & \text{if } E \neq E' \end{cases}.$		
proof: orthogonality	Since $H\psi_E = E\psi_E$ we can multiply both sides by $\psi_{E'}$ *:		
	$\psi_{E'}^*(H\psi_E) = E\psi_{E'}^*\psi_E$		
	But we also have that $H\psi_{E'} = E\psi_{E'}$, so taking the complex conjugate:		
	$(H\psi_{E'})^*=E'\psi_{E'}^*$ and multiplying both sides by $\psi_{\rm E}$ gives us:		
	$(H\psi_{E'})^*\psi_E = E'\psi_{F'}^*\psi_F.$		
	subtract the two and integrate over volume V:		
	$(E - E') \int \psi_{E'}^* \psi_E d\mathbf{r} = \int [\psi_{E'}^* (H\psi_E) - (H\psi_{E'})^* \psi_E] d\mathbf{r}$ $= 0$		
general solution of $\Psi(\mathbf{r},t)$	For a given potential V(x) independent from t		
	> the solution of $\Psi(\mathbf{r},t)$ is a superposition of all the eigenfunctions of the TISE:		
	$\Psi(\mathbf{r},t) = \sum_{E} C_{E}(t) \psi_{E}(\mathbf{r})$		
	with expansion coefficients dependent on time		
calculating $C_E(t)$	We can easily see: $\int \psi_{E'}^*(\mathbf{r}) \Psi(\mathbf{r}, t) d\mathbf{r} = \sum_E C_E(t) \int \psi_{E'}^*(\mathbf{r}) \psi_E(\mathbf{r}) d\mathbf{r}$		
	$=\sum_{E}C_{E}(t)\delta_{EE'}$		
	$= C_{E'}(t).$		
oscillation theorem	For bound states of one-dimensional systems For bound state eigenfunctions $\psi_1, \psi_2,, \psi_n,$ for energies $E_1 < E_2 < < E_n <$		
	> the nth eigenfunction will have (n-1) zeros for finite values of x and		
	between two consecutive zeros of ψ_n the following eigenvalues will have at least 1 zero		

3.8 general solution of the time-dependent Schrödinger equation for a time-independent potential

expansion of $\Psi(\mathbf{r},t)$

We know that Ψ can be expanded in terms of eigenfunctions:

$$\Psi(\mathbf{r},t) = \sum_{E} C_{E}(t) \psi_{E}(\mathbf{r})$$

we can simplify the right-hand of the equation by multiplying by H:

$$\begin{split} \mathrm{i}\hbar\frac{\partial}{\partial t}\sum_{E}C_{E}(t)\psi_{E}(\mathbf{r}) &= H\sum_{E}C_{E}(t)\psi_{E}(\mathbf{r})\\ &= \sum_{E}C_{E}(t)H\psi_{E}(\mathbf{r})\\ &= \sum_{E}C_{E}(t)E\psi_{E}(\mathbf{r}). \end{split}$$

multiply by $\psi_{E'}{}^*$ and integrate over a box with volume V:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\sum_{E}C_{E}(t)\int\psi_{E'}^{*}(\mathbf{r})\psi_{E}(\mathbf{r})\mathrm{d}\mathbf{r}=\sum_{E}C_{E}(t)E\int\psi_{E'}^{*}(\mathbf{r})\psi_{E}(\mathbf{r})\mathrm{d}\mathbf{r}.$$

which, due to orthogonality, reduces to:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} C_E(t) = E C_E(t)$$

integration leaves us with the result:

$$C_E(t) = C_E(t_0) \exp[-iE(t - t_0)/\hbar].$$

Thus we have a solution for the TDSE:

$$\Psi(\mathbf{r},t) = \sum_{E} C_{E}(t_{0}) \exp[-\mathrm{i}E(t-t_{0})/\hbar] \psi_{E}(\mathbf{r})$$

or:

$$\Psi(\mathbf{r},t) = \sum_{E} c_{E} \psi_{E}(\mathbf{r}) \exp(-\mathrm{i}Et/\hbar)$$

where the constants c_E are given by

$$c_E = C_E(t_0) \exp(iEt_0/\hbar).$$

propagator $K(\mathbf{r}, t; \mathbf{r'}, t_0)$

At any particular time t_0 , the constants c_{E} can be evaluated by knowledge of Ψ :

$$c_E = \exp(iEt_0/\hbar) \int \psi_E^*(\mathbf{r}) \Psi(\mathbf{r}, t_0) d\mathbf{r}$$
(3.154)

so that the general solution (3.152) may be written as

$$\Psi(\mathbf{r},t) = \sum_{\mathbf{r}} \left[\int \psi_E^*(\mathbf{r}') \Psi(\mathbf{r}',t_0) d\mathbf{r}' \right] \exp[-iE(t-t_0)/\hbar] \psi_E(\mathbf{r}). \tag{3.155}$$

This expression gives $\Psi(\mathbf{r}, t)$ at any time, once it is known at the time $t = t_0$. If we define the function

$$K(\mathbf{r}, t; \mathbf{r}', t_0) = \sum_{E} \psi_{E}^*(\mathbf{r}') \psi_{E}(\mathbf{r}) \exp[-iE(t - t_0)/\hbar]$$
(3.156)

we see that we may recast (3.155) in the simpler form

$$\Psi(\mathbf{r},t) = \int K(\mathbf{r},t;\mathbf{r}',t_0)\Psi(\mathbf{r}',t_0)d\mathbf{r}'.$$
 (3.157)

normalization condition in c _E	The complex conjugate of Ψ is:	
	$\Psi^*(\mathbf{r},t) = \sum_{E'} c_{E'}^* \psi_{E'}^*(\mathbf{r}) \exp(\mathrm{i}E't/\hbar)$	
	Where we must have:	
	$\int \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t) d\mathbf{r} = \sum_E \sum_{E'} c_{E'}^* c_E \exp[-\mathrm{i}(E - E')t/\hbar] \int dt$	$\psi_{E'}^*(\mathbf{r})\psi_E(\mathbf{r})\mathrm{d}\mathbf{r}$
	= 1	(3.159)
	since the energy eigenfunctions are orthogonal, we have:	
	$\sum_{E} \sum_{E'} c_{E'}^* c_E \exp[-\mathrm{i}(E - E')t/\hbar] \int \psi_{E'}^*(\mathbf{r}) \psi_E(\mathbf{r}) d\mathbf{r}$	
	$= \sum_{E} \sum_{E'} c_{E'}^* c_E \exp[-\mathrm{i}(E - E')t/\hbar] \delta_{EE'}$	
	$=\sum_{E} c_{E} ^{2}$	
	thus we can simplify the normalization condition to be: $\sum_{E} c_{E} $	$^{2}=1.$
expectation value of E	For a general wave function:	
	$\langle E \rangle = \langle H \rangle = \int \Psi^*(\mathbf{r}, t) H \Psi(\mathbf{r}, t) d\mathbf{r}$	
	$=\sum_{E}\sum_{E'}c_{E'}^*c_E\exp[-\mathrm{i}(E-E')t/\hbar]\int\psi_{E'}^*(\mathbf{r})H\psi_E(\mathbf{r})\mathrm{d}\mathbf{r}$	
	$= \sum_{E} \sum_{E'} c_{E'}^* c_E \exp[-\mathrm{i}(E - E')t/\hbar] E \int \psi_{E'}^*(\mathbf{r}) \psi_E(\mathbf{r}) d\mathbf{r}$	
	$= \sum_{E} \sum_{E'} c_{E'}^* c_E \exp[-\mathrm{i}(E - E')t/\hbar] E \delta_{EE'}$	
	$=\sum_{E} c_{E} ^{2}E$	
TDSE outside the box	Until now we have enclosed the system in a box with volume V > system without box: partly discrete and partly continuous > general solution of TDSE will be a sum of infinite eigenfunction	s
	ie: take an integral instead of a sum for the continuous part 3.9: Schrödinger equation in momentum space	
Momentum space TDSE	Insert the equation for φ in the TDSE and we find:	
Womentum space 1232	$i\hbar \frac{\partial}{\partial t} \Phi(\mathbf{p}, t) = \frac{\mathbf{p}^2}{2m} \Phi(\mathbf{p}, t) + (2\pi\hbar)^{-3/2} \int e^{-i\mathbf{p} \cdot \mathbf{r}/\hbar} V(\mathbf{r}, t)$	$\Psi(\mathbf{r},t)\mathrm{d}\mathbf{r}.$
	using the convolution theorem we can simplify this to:	
	$i\hbar \frac{\partial}{\partial t} \Phi(\mathbf{p}, t) = \frac{\mathbf{p}^2}{2m} \Phi(\mathbf{p}, t) + \int \tilde{V}(\mathbf{p} - \mathbf{p}', t) \Phi(\mathbf{p}', t) d\mathbf{p}'$	
	where	
	$\tilde{V}(\mathbf{p} - \mathbf{p}', t) = (2\pi\hbar)^{-3} \int e^{-i(\mathbf{p} - \mathbf{p}') \cdot \mathbf{r}/\hbar} V(\mathbf{r}, t) d\mathbf{r}.$	
	>> more complicated than the TDSE	
	> not used very much	

3.9.1 expectation values		
expectation value of r	for the x-component of ${\bf r}$, we find (x) by using ψ and expressing this in terms of	ф:
	$\langle x \rangle = \int \Phi^*(\mathbf{p}, t) \left(i\hbar \frac{\partial}{\partial p_x} \right) \Phi(\mathbf{p}, t) d\mathbf{p}$	
	Thus we find for r:	
	$\langle \mathbf{r} \rangle = \int \Phi^*(\mathbf{p}, t) (\mathrm{i}\hbar \nabla_{\mathbf{p}}) \Phi(\mathbf{p}, t) \mathrm{d}\mathbf{p}$	
	thus r is represented in momentum space as the operator: $\mathbf{r}_{\text{op}} = \mathrm{i}\hbar\boldsymbol{\nabla}_{p}$	
expectation values in momentum space	We can find any expectation value by following the same rules as in configuration	on space:
	1: For a dynamical variable A(r,p,t) substitute position vars with their open	erators:
	$A(i\hbar \nabla_{\mathbf{p}}, \mathbf{p}, t)$	
	2: the expectation value is then give by	
	$\langle A \rangle = \int \Phi^*(\mathbf{p}, t) A(i\hbar \nabla_{\mathbf{p}}, \mathbf{p}, t) \Phi(\mathbf{p}, t) d\mathbf{p}. $ (3.179)))
	If the wave function $\Phi(\mathbf{p}, t)$ is not normalised to unity, the above expression must be replaced by	n
	$\langle A \rangle = \frac{\int \Phi^*(\mathbf{p}, t) A(i\hbar \nabla_{\mathbf{p}}, \mathbf{p}, t) \Phi(\mathbf{p}, t) d\mathbf{p}}{\int \Phi^*(\mathbf{p}, t) \Phi(\mathbf{p}, t) d\mathbf{p}}.$ (3.180)))
variables and their operators	Physical quantity Operator	
	Position coordinate x if $h \frac{\partial}{\partial p_x}$ Position vector \mathbf{r} if $h \nabla_{\mathbf{p}}$ x -component of momentum p_x p_x Momentum \mathbf{p} \mathbf{p} Kinetic energy $T = \frac{\mathbf{p}^2}{2m}$ $\frac{\mathbf{p}^2}{2m}$	
	Potential energy $V(\mathbf{r}, t)$ $V(i\hbar\nabla_{\mathbf{p}}, t)$ Total energy $\frac{\mathbf{p}^2}{2m} + V(\mathbf{r}, t)$ $H = \frac{\mathbf{p}^2}{2m} + V(i\hbar\nabla_{\mathbf{p}}, t)$	
3.9.2 stationary states		
separable form of φ	For V and time-independent potential energy, we find: $\Phi(\mathbf{p},t)=\phi(\mathbf{p})\exp(-\mathrm{i}Et/\hbar)$ with a probability density constant in time: $\Pi(\mathbf{p})= \phi(\mathbf{p}) ^2=\phi^*(\mathbf{p})\phi(\mathbf{p})$	
	we clearly see that φ is the Fourier-transform of ψ > eigenfunctions for momentum space can be found by Fourier-transforming:	
	$\phi(\mathbf{p}) = (2\pi\hbar)^{-3/2} \int e^{-i\mathbf{p}\cdot\mathbf{r}/\hbar} \psi(\mathbf{r}) d\mathbf{r},$ $\psi(\mathbf{r}) = (2\pi\hbar)^{-3/2} \int e^{i\mathbf{p}\cdot\mathbf{r}/\hbar} \phi(\mathbf{p}) d\mathbf{p}.$	
	J v v (p)dp.	
TISE for momentum space	We can find: $\frac{{\bf p}^2}{2m}\phi({\bf p})+\int \tilde{V}({\bf p}-{\bf p}')\phi({\bf p}'){\rm d}{\bf p}'=E\phi({\bf p})$	
	where $\tilde{V}(\mathbf{p} - \mathbf{p}') = (2\pi\hbar)^{-3} \int e^{-\mathrm{i}(\mathbf{p} - \mathbf{p}') \cdot \mathbf{r}/\hbar} V(\mathbf{r}) d\mathbf{r}.$	
	$V(\mathbf{p} - \mathbf{p}) = (2\pi n) - \int e^{-\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}} V(\mathbf{r}) d\mathbf{r}$	