«Метод конечных разностей во временной области (FDTD)»

Моделирование распространения электромагнитной волны в неоднородных средах

Геометрия решаемой задачи (fdtd_heterogen_01.py)

Конечно-разностная схема

$$H_{v}^{q+1/2}[m+1/2]=$$

$$=H_{y}^{q-1/2}[m+1/2]+(E_{z}^{q}[m+1]-E_{z}^{q}[m])\frac{1}{\mu W_{0}}S_{c}$$

$$E_z^{q+1}[m] =$$

$$= E_z^q[m] + \left(H_y^{q+1/2}[m+1/2] - H_y^{q+1/2}[m-1/2]\right) \frac{W_0}{\varepsilon} S_c$$

Конечно-разностная схема

$$H_{y}^{q+1/2}[m+1/2] =$$

$$= H_{y}^{q-1/2}[m+1/2] + \left(E_{z}^{q}[m+1] - E_{z}^{q}[m]\right) \frac{1}{\mu[m+1/2]W_{0}} S_{c}$$

$$\begin{split} E_{z}^{q+1}[m] &= \\ &= E_{z}^{q}[m] + \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]\right) \frac{W_{0}}{\varepsilon[m]} S_{c} \end{split}$$

7

Хранение компонент поля и параметров материалов в реализации FDTD

Индекс →	0	1	2	3
Ez	E_{0}	$E_{_I}$	$E_2^{}$	$E_3^{}$
eps	\mathcal{E}_0	$\mathcal{E}^{}_{l}$	$\mathcal{E}_2^{}$	\mathcal{E}_{3}

<i>M</i> -4	<i>M</i> -3	<i>M</i> -2	<i>M-1</i>
$E_{M ext{-}4}$	E_{M-3}	E_{M-2}	E_{M-I}
$\mathcal{E}_{M ext{-}4}$	\mathcal{E}_{M-3}	\mathcal{E}_{M-2}	$\mathcal{E}_{M ext{-}1}$

Индекс →	0	1	2	3
Ну	$H_{1/2}$	$H_{I+1/2}$	$H_{2+1/2}$	$H_{3+1/2}$
mu	$\mu_{1/2}$	$\mu_{_{I+1/2}}$	$\mu_{2+1/2}$	$\mu_{3+1/2}$

Учет параметров среды

Если
$$\varepsilon = f_{\varepsilon}(m)$$
, $\mu = f_{\mu}(m)$

$$Ez[m] = Ez[m] + (Hy[m] - Hy[m - 1]) * Sc * W0 / eps[m]$$

$$Hy[m] = Hy[m] + (Ez[m+1] - Ez[m]) * Sc / (W0 * mu[m])$$

Демонстрация моделирования распространения электромагнитной волны в неоднородных средах

Коэффициенты отражения и прохождения

Для волны, падающей по нормали:

Коэффициент отражения:

$$\Gamma = \frac{\dot{E}_{\text{orp}}}{\dot{E}_{\text{пад}}} = \frac{W_2 - W_1}{W_2 + W_1}$$

Коэффициент прохождения:

$$T = \frac{\dot{E}_{\text{пр}}}{\dot{E}_{\text{пал}}} = \frac{2W_2}{W_2 + W_1}$$

$$W = \sqrt{\frac{\mu \mu_0}{\epsilon \epsilon_0}} = W_0 \sqrt{\frac{\mu}{\epsilon}}$$

Коэффициенты отражения и прохождения идеального диэлектрика

Для границы раздела двух диэлектриков $\mu_1 = \mu_2 = 1$

Коэффициент отражения:

$$\Gamma = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

Коэффициент прохождения:

$$T = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

Структура массивов полей

Структура массивов полей

Демонстрация моделирования распространения электромагнитной волны в неоднородных средах

Погрешность из-за дискретной сетки

Погрешность из-за дискретной сетки

