Лабораторная работа №13

Задание для самостоятельного выполнения

Астраханцева А. А.

2 мая 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Астраханцева Анастасия Александровна
- НФИбд-01-22, 1132226437
- Российский университет дружбы народов
- · 1132226437@pfur.ru
- · https://github.com/aaastrakhantseva

Постановка задачи

Цель: Закрепить навыки работы с CPN Tools, научится проводить анализ сетей Петри.

Задание:

- 1. Используя теоретические методы анализа сетей Петри, провести анализ сети (с помощью построения дерева достижимости). Определить, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделировать сеть Петри с помощью CPNTools.
- 3. Вычислить пространство состояний. Сформировать отчёт о пространстве состояний и проанализировать его.Построить граф пространства состояний.

Постановка задачи

Заявка (команды программы, операнды) поступает в оперативную память (ОП), затем передается на прибор (центральный процессор, ЦП) для обработки. После этого заявка может равновероятно обратиться к оперативной памяти или к одному из двух внешних запоминающих устройств (В1 и В2). Прежде чем записать информацию на внешний накопитель, необходимо вторично обратиться к центральному процессору, определяющему состояние накопителя и выдающему необходимую управляющую информацию. Накопители (В1 и В2) могут работать в 3-х режимах.

Множество позиций:

- Р1 состояние оперативной памяти (свободна / занята);
- Р2 состояние внешнего запоминающего устройства В1 (свободно / занято);
- РЗ состояние внешнего запоминающего устройства В2 (свободно / занято);
- Р4 работа на ОП и В1 закончена;
- P5 работа на ОП и В2 закончена;
- Р6 работа на ОП, В1 и В2 закончена;

Множество переходов:

- Т1 ЦП работает только с RAM и В1;
- T2 обрабатываются данные из RAM и с B1 переходят на устройство вывода;
- Т3 CPU работает только с RAM и B2;
- T4 обрабатываются данные из RAM и с B2 переходят на устройство вывода;
- T5 CPU работает только с RAM и с B1, B2;
- T6 обрабатываются данные из RAM, B1, B2 и переходят на устройство вывода.

Функционирование сети Петри

Можно расматривать как срабатывание переходов, в ходе которого происходит перемещение маркеров по позициям:

- работа CPU с RAM и B1 отображается запуском перехода T1 (удаление маркеров из P1, P2 и появление в P1, P4), что влечет за собой срабатывание перехода T2, т.е. передачу данных с RAM и B1 на устройство вывода;
- работа CPU с RAM и B2 отображается запуском перехода Т3 (удаление маркеров из P1 и P3 и появление в P1 и P5), что влечет за собой срабатывание перехода Т4, т.е. передачу данных с RAM и B2 на устройство вывода;
- работа СРU с RAM, В1 и В2 отображается запуском перехода Т5 (удаление маркеров из Р4
 и Р5 и появление в Р6), далее срабатывание перехода Т6, и данные из RAM, В1 и В2
 передаются на устройство вывода;
- состояние устройств восстанавливается при срабатывании: RAM переходов Т1 или Т2; В1 переходов Т2 или Т6; В2 переходов Т4 или Т6.

Описание модели

Рис. 1: Сеть для выполнения домашнего задания

Анализ сети Петри

Рис. 2: Дерево достижимости

Представленная сеть:

- безопасна, поскольку в каждой позиции количество фишек не превышает 1;
- ограничена, так как существует такое целое k, что число фишек в каждой позиции не может превысить k (в данном случае k=1);
- сеть не имеет тупиков;
- сеть не является сохраняющей, так как при переходах t5 и t6 количество фишек меняется.

Реализация модели в CPN Tools

Реализация модели в CPN Tools

```
Declarations
 Standard declarations
 ▼colset RAM = unit with mem;
 colset B1 = unit with storage1;
 ▼colset B2 = unit with storage2;
 ▼colset B1xB2 = product B1*B2;
 var b1:B1;
 ▼ var b2:B2:
 var ram:RAM;
 MA--:---
```

Рис. 4: Задание деклараций

Реализация модели в CPN Tools

Пространство состояний

Рис. 6: Граф пространства состояний

Пространство состояний

- есть 5 состояний и 10 переходов между ними, strongly connected components (SCC) graph содержит 1 вершину и 0 переходов.
- Границы значений для каждого элемента: состояние P1 всегда заполнено 1 элементом, а остальные содержат максимум 1 элемент, минимум 0.
- Маркировка home для всех состояний, так как в любую позицию мы можем попасть из любой другой маркировки.
- Маркировка dead равная None, так как нет состояний, из которых переходов быть не может.
- Бесконечно часто могут происходить переходы Т1, Т2, Т3, Т4, но не обязательно, переход Т5 необходим для того, чтобы система не попадала в тупик, а переход Т6 происходит всегда, если доступно.

Выводы

В результате выполнения данной лабораторной работы я выполнила задание для самостоятельного выполнения, а именно провела анализ сети Петри, построила сеть в CPN Tools, построила граф состояний и провела его анализ.