800 🐠 💳 Domanda 1 Quante volte la CPU deve accedere alla memoria quando preleva ed eseque un'istruzione che ha due operandi, uno con modo di indirizzamento immediato e uno con modo di indirizzamento registro? Risposta errata Scegli un'alternativa: Punteggio ottenuto 0,00 su a, 2 x 2.00 O b. 3 Contrassegna O c. 1 domanda O d. 4 e. Nessuna delle precedenti. Risposta errata. La risposta corretta è: 1 Domanda 2 Dato il numero -5,640625 la sua rappresentazione in virgola mobile a singola precisione (IEEE 754) è: Risposta errata Punteggio Scegli un'alternativa: ottenuto 0,00 su 3.00 b. 010000001011010010000000000000000 Contrassegna domanda Od. 10110100100000000000000010000001 e. Nessuna delle precedenti. X Risposta errata. Domanda 3 Sia data la seguente sequenza di istruzioni MIPS e si consideri la pipeline a 5 stadi vista a lezione: Risposta SUB \$4, \$2, \$1 corretta LW \$4, 20(\$1) Punteggio ottenuto 3,00 su SUB \$2, \$3, \$4 3.00 ADD \$1, \$2, \$4 Contrassegna Indicare quale delle seguenti affermazioni è vera: domanda Scegli un'alternativa: 🏿 a. L'ultima istruzione ha una dipendenza di tipo RAW sia con la seconda che con la terza istruzione. Entrambi vengono risolte senza l'introduzione di stalli. 🗸 o b. L'esecuzione completa senza data forwarding richiede 2 cicli di stallo in più rispetto a quelli richiesti dall'esecuzione completa con data forwarding. O c. L'esecuzione completa con data forwarding richiede 8 cicli di clock senza alcuno stallo. O d. L'esecuzione completa senza data forwarding richiede 11 cicli di clock di cui 4 di stallo. e. Nessuna delle precedenti.

Si spieghi in dettaglio lo schema per realizzare la moltiplicazione fra numeri a virgola mobile nello standard IEEE 754.

Discutere vantaggi e svantaggi di una codifica delle istruzioni a lunghezza fissa.

Nel contesto della pipeline, si motivi e si spieghi in dettaglio la tecnica del salto ritardato (delayed branch).



Sia data la seguente seguenza di istruzioni dove i dati immediati sono espressi in esadecimale

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data- forwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• evidenziare le dipendenze dai dati presenti e mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

|      |      |     |       |       | 1                                                                   | 2         | 3         | 4          | 5            | 6             | 7          | 8          | 9          | 10           | 11     | 12       | 13          | 14      | 15         | 16        | 17        | 18        | 19      | 20 |
|------|------|-----|-------|-------|---------------------------------------------------------------------|-----------|-----------|------------|--------------|---------------|------------|------------|------------|--------------|--------|----------|-------------|---------|------------|-----------|-----------|-----------|---------|----|
| SUB  | \$1, | \$5 | \$5   |       | IF                                                                  | ID        | EXE       | MEM        | WB           |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
| SW   | \$4, | 5(  | 1)    |       |                                                                     | IF        | ID        | EXE        | MEM          | WB            |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
| LW   | \$1, | 22  | (\$4) |       |                                                                     |           | IF        | ID         | EXE          | MEM           | WB         |            |            |              |        |          |             |         |            |           |           |           |         |    |
| SW   | \$4, | 73  | (\$1) |       |                                                                     |           |           | IF         | ID           | <del>ID</del> | EXE        | MEM        |            |              |        |          |             |         |            |           |           |           |         |    |
| ADD  | \$5, | \$3 | \$4   |       |                                                                     |           |           |            | IF           | HF.           | ID         | EXE        | MEM        | WB           |        |          |             |         |            |           |           |           |         |    |
| ADDI | \$3, | \$4 | , 8   |       |                                                                     |           |           |            |              |               | IF         | ID         | EXE        | MEM          | WB     |          |             |         |            |           |           |           |         |    |
| SW   | \$3, | 3(  | 55)   |       |                                                                     |           |           |            |              |               |            | IF         | ID         | <del>‡</del> | #      | EXE      | MEM         | WB      |            |           |           |           |         |    |
|      |      |     |       |       |                                                                     |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 1    | 1   |       | ОК    | ж                                                                   |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 2    | 2   |       | IF/I  | D.IR[RS]==ID/EXE[RD] ===> EX/MEM.ALUOUTPUT_SUB> EXE.ALUINPUT.TOP_SW |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 3    |     |       | ОК    |                                                                     |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 4    | 4   |       | IF/I  | D.IR[RS]                                                            | ==ID/EXE[ | [RT] ===> | 1 STALLO   | MEM/WB       | .LMD_LW       | > EXE.ALUI | NPUT.TOP_  | SW         |              |        |          |             |         |            |           |           |           |         |    |
|      | 5    | 5   |       | ОК    |                                                                     |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 6    | 6   |       | ОК    |                                                                     |           |           |            |              |               |            |            |            |              |        |          |             |         |            |           |           |           |         |    |
|      | 7    | 7   |       | \$3 - | - IF/ID.                                                            | IR[RT]==I | D/EXE[RT] | ===> 2 STA | ALLI + SCRIT | TURA PRIM     | A METà DEI | CICLO E LE | TTURA NELL | A SECONDA    | A METà | \$5 - IF | /ID.IR[RS]= | EXE/MEN | I[RT] ===> | RISOLTA C | ON STALLI | DELLA DIP | ENDENZA |    |