

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ – UNIOESTE CAMPUS UNIVERSITÁRIO DE CASCAVEL CURSO DE CIÊNCIA DA COMPUTAÇÃO

1ª AVALIAÇÃO DE COMPUTAÇÃO GRÁFICA

Acadêmico(a):	Data: 25/06/2020
Academico(a).	Dala. 25/00/2021

INSTRUÇÕES

- a) Somente serão consideradas corretas aquelas questões que apresentarem todos os cálculos registrados nas folhas de respostas. Use arredondamento na 3ª casa decimal. <u>Não faça truncamento nos cálculos!</u>
- **b)** <u>Confira</u> os cálculos realizados para não propagar erros. A propagação de erros anulará as questões posteriores.
- **c)** A <u>interpretação</u> da avaliação é de <u>responsabilidade do acadêmico</u>. Caso seja necessário registre, por escrito, a interpretação adotada.
- **d)** As respostas das questões da avaliação deverão ser manuscritas. Qualquer opção outra anulará as respostas da avaliação.
- e) Digitalize as folhas de resposta (preferência pelo formato .jpg ou .pdf), empacote-as todas em um único arquivo (preferência pelo formato .zip) e submeta o arquivo como resposta para a atividade avaliativa na Equipe da Disciplina no Teams. Confira a qualidade da digitalização realizada antes do envio, assegurando boa legibilidade das respostas.

QUESTÕES

- 1) Cite 3 exemplos, com suas respectivas justificativas, de contribuições para o desenvolvimento das Ciências e que são objetos de estudo da Computação Gráfica (5 pontos).
- Explique as características e os relacionamentos entre os diferentes sistemas de coordenadas 2D: Coordenadas de dispositivo, Coordenadas de Mundo e Coordenadas Normalizadas (5 pontos).
- 3) Explique porque o formato dos objetos gráficos (matriciais/vetoriais) interferem no desenvolvimento de hardwares gráficos (5 pontos).
- 4) Modele um cubo e represente seus atributos geométricos e topológicos na estrutura *wingededge* (10 pontos).
- 5) Uma curva de Bézier foi ajustada aos seguintes vértices: $P_0 = (3; 2; 6)$, $P_1 = (5; 8; 5)$, $P_2 = (11; -9; 2)$ e $P_3 = (16; -3; 4)$. Determine as coordenadas do ponto P desta curva a 75% do percurso entre P_0 e P_3 (t = 0,75) (10 pontos).
- 6) O objeto ao lado foi modelado no Sistema de Referência do Universo (SRU) orientado pela regra da mão-direita. Suas coordenadas são:

A = (-10,868; 1,640; 2,861) B = (-7,001; 5,736; 4,368) C = (-5,670; 9,832; 0,437) D = (3,980; -9,832; -4,062) E = (7,847; -5,736; -2,556) F = (9,178; -1,640; -6,487)

O centro geométrico deste objeto está nas coordenadas CG = (-0,211; 0,000; -0,453)

Aplique uma sequência de transformações geométricas ao objeto de tal forma que ambas as faces triangulares fiquem paralelas ao plano XZ. Quando isso acontecer as arestas

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ – UNIOESTE CAMPUS UNIVERSITÁRIO DE CASCAVEL CURSO DE CIÊNCIA DA COMPUTAÇÃO

laterais (AD, BE e CF) serão perpendiculares ao plano XZ, ou seja, o objeto estará alinhado exatamente na vertical. Para concluir o processo o centro geométrico do objeto deverá estar posicionado nas coordenadas (0; 0; -0,5).

- a) Quais as coordenadas finais dos vértices do objeto quando finalizadas as transformações geométricas solicitadas (15 pontos)?
- b) Concatene todas as transformações geométricas realizadas em uma única matriz composta. Aplique esta matriz composta aos vértices originais do objeto. Demonstre que os resultados obtidos são equivalentes (10 pontos)

7) Considerando:

- i) O objeto descrito no enunciado no exercício 6;
- ii) Observador posicionado no VRP = (100; -50; 70), olhando em direção ao ponto P = (2; 1; 3);
- iii) Vetor *view-up* \vec{Y} = (0; 1; 0);
- iv) Plano de projeção a 50 u. d. (unidades de distância) do observador, alocado entre VRP e P;
- v) Projeção perspectiva;
- vi) Window delimitada por $x_{min} = -50$, $y_{min} = -40$, $x_{max} = 40$ e $y_{max} = 30$;
- vii) Viewport delimitada por $u_{min} = 300$, $v_{min} = 200$, $u_{max} = 1000$ e $v_{max} = 600$.

Determine:

- a) Quais faces do objeto são visualizadas pelo observador, considerando o método de determinação de visibilidade pelo cálculo da normal (15 pontos)?
- b) Quais as coordenadas dos vértices do objeto no SRT, considerando a *Window* e a *Viewport* especificadas (15 pontos)?
- c) Considerando a face DFE e a *scanline* que passa pelo vértice E do objeto mapeado no SRT, aplique o algoritmo z-buffer para determinar a cota z no ponto de interseção entre a *scanline* e a aresta DF daquela face (10 pontos).