

جامعة برج العرب التكنولوجية

IT Essentials

د/ اسامه النحاس

Data Representation

Decimal System

■ A numbering system is a way for representing certain value in different ways.

- Decimal system (base = 10): We have 10 symbols to represent values (0,1,2,3,4,5,6,7,8,9).
- When finishing all the symbols in a digit, we make it zero and add one to the next digit.

Value ₁₀
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Decimal System

- Decimal number system is base 10
 - **■** 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Uses 10 numbers

23625

Power of 10 representation	104	10 ³	102	10 ¹	100
Decimal representation	10000	1000	100	10	1
Base 10 representation	20,000	3,000	600	20	5

Binary System

- Binary system (base = 2): We have 2 symbols to represent values (0,1).
- When finishing all the symbols in a digit (bit), we make it zero and add one to the next digit (bit).
- We need too many bits for representing relatively small values:

$$(1000)_{10} = (11\ 1110\ 1000)_2$$

 $(1,000,000)_{10} =$
 $(1111\ 0100\ 0010\ 0100\ 0000)_2$

Value ₂	Value ₁₀		
0	0		
1	1		
10	2		
11	3		
100	4		
101	5		
110	6		
111	7		
1000	8		
1001	9		
1010	10		
1011	11		
1100	12		
1101	13		
1110	14		
1111	15		
10000	16		

Converting Binary to Decimal

Binary number system is base 2

- > \(0, 1 \)
- Uses 2 numbers

$$10010001 = 145$$

Base 2 representation	27	26	2 ⁵	24	23	2 ²	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	1	0	0	1	0	0	0	1

Converting to Decimal

- To find the value of any representation in any numbering system we multiply each digit by its corresponding weight.
- Binary system: Example value of $(1101)_2$:

Digits	1	1	0	1	
Weights	2 ³	2 ²	2 ¹	2 ⁰	
Weights	8	4	2	1	
Weighted digits	1×8	1×4	0×2	1×1	
Value	$(13)_{10}$				

Convert Binary to Decimal

- 1. Choose an 8 bit binary number = 10101110
- 2. Write the binary digits under the correct column
- 3. For each column with a 1, you will add that decimal value
- 4. You will not add the values of the columns you entered o

Power of 2 representation	27	26	2 ⁵	24	23	22	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	1	0	1	0	1	1	1	0

Hexadecimal System

- Hexadecimal system (base = 16): We have 16 symbols to represent values (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).
- ► When finishing all the symbols in a digit, we make it zero and add one to the next digit.
- Significantly less bits are required to represent the same values:

$$(1000)_{10} = (3E8)_{16}$$

 $(1,000,000)_{10} = (F4240)_{16}$

Value ₂	Value ₁₀	Value ₁₆
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	C
1101	13	D
1110	14	E
1111	15	F
10000	16	10

Converting to Decimal

- To find the value of any representation in any numbering system we multiply each digit by its corresponding weight.
- \blacksquare Hexadecimal system: Example value of $(2A)_{16}$:

Digits	2	Α	
Weights	16¹	16°	
Weights	16	1	
Weighted digits	2×16	A×1=?	
Value	$(42)_{10}$		

Α	10
В	11
C	12
D	13
Е	14
F	15

Hexa to decimal

Octal System

- Octal system (base = 8): We have 8 symbols to represent values (0,1,2,3,4,5,6,7).
- When finishing all the symbols in a digit, we make it zero and add one to the next digit.
- Number of representable values in N digits: $M = 8^N$
- Range of values: $0 \rightarrow M 1$

•	Value ₂	Value ₈	Value ₁₀	Value ₁₆
	0	0	0	0
	1	1	1	1
	10	2	2	2
	11	3	3	3
	100	4	4	4
	101	5	5	5
	110	6	6	6
	111	7	7	7
	1000	10	8	8
	1001	11	9	9
	1010	12	10	Α
	1011	13	11	В
	1100	14	12	C
	1101	15	13	D
	1110	16	14	E
	1111	17	15	F
•	10000	20	16	10

Converting to Decimal

- To find the value of any representation in any numbering system we multiply each digit by its corresponding weight.
- \blacksquare Octal system: Example value of (263)₈:

Digits	2	6	3			
Weights	82	8 ¹	8°			
Weights	64	8	1			
Weighted digits	2×64	6×8	3×1			
Value	(179) ₁₀					

Value of Representation

- To find the value of any representation in any numbering system we multiply each digit by its corresponding weight.
- \blacksquare Decimal system: Example value of $(7129.45)_{10}$:

Digits	7	1	2	9 .	4	5
Weights	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10 ⁻²
Weights	1000	100	10	1	0.1	0.01
Weighted	2×1000	7×100	2×10	9×1	4×0.1	5×0.01
Value	7129.45					

Converting from Decimal 4

- Converting a decimal integer to binary (base 2):
 - \blacksquare Example: Given $(13)_{10}$
 - By iterative division by 2 till reaching 0.
 - ■The representation is the reminder.
- Converting a decimal fraction to binary (base 2):
 - \blacksquare Example: Given $(0.375)_{10}$
 - By iterative multiplication by 2 till reachingo. Representation is the integer part.

$$0.375 \times 2 = 0.75$$

 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$
 0.0
 $(0.375)_{10} = (0.011)_{2}$

Converting from Decimal

- ► Shortcut method for decimal to binary conversion:
 - Put ones into the bits corresponding to composing weights.
 - Example: Convert the numbers 9, 21, 12.25 into binary.

Weights	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²
Weights	32	16	8	4	2	1	0.5	0.25
9 =	0	0	1	0	0	1 .	. 0	0
21 =	0	1	0	1	0	1 .	. 0	0
12.25 =	0	O	1	1	O	0	• 0	1

Converting from Decimal

- ► Shortcut method for decimal to binary conversion:
 - Put ones into the bits corresponding to composing weights.
 - Example: Convert the numbers 9, 21, 12.25 into binary.

$$(9)_{10} = (1001)_{2}$$
 $(21)_{10} = (10101)_{2}$
 $(12.25)_{10} = (1100.01)_{2}$

9 =	0	0	1	0	0	1 .	. 0	0
21 =	0	1	0	1	0	1 .	0	0
12.25 =	0	0	1	1	0	0	0	1

Converting Decimal to Binary

- Convert decimal 35 to binary
 - 1. Using 8 bits, find largest power of 2 that will "fit" into 35
 - 2. Place a 1 into that slot
 - 3. If the # doesn't fit, place a o into that slot

Power of 2 representation	27	26	2 ⁵	24	23	2 ²	21	20
Decimal representation	128	64	32	16	8	4	2	1
Base 2 representation	0	0	1	0	0	0	1	1

> Decimal into Binary

	Decin	nal number 225	
Division	Quotient	Remainder	
225 / 2	112	1	LSB
112 / 2	56	0	
56 / 2	28	0	
28 / 2	14	0	
14 / 2	7	0	
7/2	3	1	
3/2	1	1	
1/2	0	1	
В	inary number	11100001	
	Deci	mal number 77	
Division	Quotient	Remainder	
77 / 2	38	1 <	LSB
38 / 2	19	0	
19/2	9	1	
9/2	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1	
		0	
В	inary number	01001101	

Data Representation

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	_I Decimal	Hex	Char	_I Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	(HORIZONTAL TAB)	41	29)	73	49	1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ī
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
								_			

Data Representation

How is a letter converted to binary form and back?

Step 1.

The user presses the capital letter D (shift+D key) on the keyboard.

An electronic signal for the capital letter **D** is sent to the system unit.

Step 4.

After processing, the binary code for the capital letter **D** is converted to an image, and displayed on the output device.

Step 3.

The signal for the capital letter **D** is converted to its ASCII binary code (01000100) and is stored in memory for processing.

Binary Arithmetic (Addition)

Two bits	sum	Carry
0 + 0	0	o (No carry)
0 + 1	1	o (No carry)
1 + 0	1	o (No carry)
1 + 1	0	1 (carry)

Three bits	sum	Carry
0+0+0	0	o (No carry)
0 + 0 + 1	1	o (No carry)
0 + 1 + 0	1	o (No carry)
0 + 1 + 1	0	1
1 + 0 + 0	1	o (No carry)
1 + 0 + 1	0	1
1 + 1 + 0	0	1
1 + 1 + 1	1	1

Binary Arithmetic (Addition)

Addition of the binary numbers involves the following steps—

- 1. Start addition by adding the bits in unit column (the right-most column). Use the rules of binary addition.
- 2. The result of adding bits of a column is a sum with or without a carry.
- 3. Write the sum in the result of that column.
- 4. If a carry is present, the carry is carried-over to the addition of the next left column.
- 5. Repeat steps 2–4 for each column, i.e., the tens column, hundreds column and so on.

Examples

Binary	Addition	Decimal Addition
1	0	2
+ 0	1	+ 1
Result 1	1	3

Addition of Binary Numbers

The addition of any two signed binary numbers is performed as follows

- Represent the positive number in binary form.
- Represent the negative number in 2's complement form.
- Add the bits of the two signed binary numbers.
- Ignore any carry out from the sign bit position.
- Please note that the negative output is automatically in the 2's complement form.

Example: add 5 and 10.

Binary Addition	Decimal Addition
00000101	+ 5
00001010	+10
00001111	+15