

			C	ode	e:1	5M	E3	1T
Register Number					, r E			

III Semester Diploma Examination, Oct./Nov.-2019

STRENGTH OF MATERIALS

Ti	me: 3 Hours]	Max. Marks: 100
No	ote: (i) Answer any six questions from Part – A and any seven qu	estions from Part – B
	(ii) Assume missing data.	
	PART – A	
1.	Define Poisson's ratio and modulus of rigidity.	5
2.	Explain Hoop's stress and Longitudinal stress in thin cylindrical she	ells. 5
3.	State parallel and perpendicular axis theorem.	. 5
4.	Locate C.G. for triangle, rectangle, circle, semicircle, square with figure.	the help of plain 5
5.	Define shear force and bending moment in beams.	.5
6.	Explain sagging and hogging bending moment.	5
7.	List the assumptions of theory of simple bending.	5
8.	Explain Modulus of section for rectangular and circular sections.	5
9.	Explain proof resilience and modulus of resilience.	5
	1 of 4	(Turn over

PART - B

- 10. A rod of diameter 15 mm and 50 mm long is subjected to tensile load of 25 kN. The modules of elasticity for steel rod may be taken as 200 kN/mm². Find the stress, strain and elongation of the bar due to applied load.
 10
- A bar of 30 mm diameter is subjected to an axial pull of 80 kN. The measured extension is 0.1 mm on a gauge length of 200 mm and the change in diameter is 0.04 mm.
 Calculate the Poisson's ratio and the values of Young's modulus, bulk modulus and modulus of rigidity.
- 12. Find the C.G. of 'L' section of dimensions $100 \times 80 \times 20$ mm.

10

- 13. Find the moment of inertia $[I_{XX}]$ of I section having top flange of 100 mm × 20 mm, web 120×20 mm and bottom flange 150×20 mm.
- 14. A cantilever beam of length 3 m subjected to point load of 5 kN, 8 kN and 12 kN at a distance of 1 m. 1.5 m and 2.5 m from the free end. Draw SFD and BMD.
- 15. A simply supported beam of length 8 m carries two point loads of 30 kN and 40 kN respectively at a distance of 1.5 m and 6.5 m from the left support. Also it carries a UDL of 10 kN/m between the points loads. Draw shear force and bending moment diagram.
 10
- 16. A steel plate is bent into an arc of a circle of radius 10 m. If the breadth of the plate is 150 mm and thickness 25 mm and $E = 2 \times 10^5 \text{ N/mm}^2$. Calculate the maximum stress induced in the plate and the bending moment which can produce this stress.

5

5

- A simply supported wooden beam of span 1.3 m is carrying a central point load of 40 kN. If the allowable bending stress in the timber is taken as 8 N/mm². Find the breadth and depth of the timber. Take b = 0.6 d.
- 18. (a) List the assumptions made in theory of torsion.

(b) Calculate the strain energy stored in a bar 2.5 m long, 50 mm wide and 40 mm thick when it is subjected to tensile load of 50 kN. Take Young's modulus is $2 \times 10^5 \text{ N/mm}^2$.

19. A solid circular shaft is required to transmit 100 kW at 180 rpm. The permissible shear stress in the shaft is 60 N/mm². Find the suitable diameter of the shaft. The angle of twist is not to exceed 1° in a length of 3 m. The value of rigidity modulus is $0.8 \times 10^5 \text{ N/mm}^2$.

10