Olimpiada Naţională de Matematică Etapa finală, Iaşi, 6 aprilie 2010

CLASA a VII-a SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. Fie S o submulțime cu 673 de elemente a mulțimii $\{1,2,\ldots,2010\}$. Arătați că există două elemente distincte a și b din S cu proprietatea că 6 divide a+b.

proprietatea că 6 divide $a + b$.
Soluție. Considerăm mulțimile: $A = \{6, 12, \dots, 2010\}, B = \{3, 9, 15, \dots, 2007\}, C = \{1, 7, 13, \dots, 2005\}, D = \{2, 8, 14, \dots, 2006\}, E = \{4, 10, 16, \dots, 2008\}, F = \{5, 11, 17, \dots, 2009\},$ fiecare având câte 335 elemente
Dacă în S există două elemente din A sau două elemente din B , suma lor se divide cu 6 , ceea ce încheie soluția. În caz contrar, în celelalte 4 mulțimi se află cel puțin $673-2=671$ elemente din S
Problema 2. Fie $ABCD$ un dreptunghi de centru O , având $\not \subset DAC = 60^\circ$. Bisectoarea unghiului $\not \subset DAC$ intersectează DC în S . Dreptele OS și AD se intersectează în L , iar dreptele BL și AC se intersectează în M . Arătați că dreptele SM și CL sunt paralele.
Soluţie. Avem $\sphericalangle SAC = \sphericalangle SCA = 30^\circ$, deci $SA = SC$. Cum $OA = OC$, rezultă că $SO \bot AC$
$\frac{LS}{SO} = 2$
$\frac{LS}{SO} = 2.$ 1 punct Patrulaterul $DBCL$ este paralelogram. Notăm Q centrul său, deci
DQ = QC
$\frac{CM}{MO} = 2.$ 2 puncte
MO

Problema 3. Căsuțele unui tablou cu 50 de linii și 50 de coloane se pot colora numai cu roșu sau cu albastru. Inițial, toate căsuțele sunt colorate cu roșu. Un *pas* înseamnă schimbarea culorii tuturor căsuțelor dintr-o linie sau dintr-o coloană.

- a) Arătați că nu există nicio secvență de pași după care tabloul conține exact 2011 căsuțe colorate cu albastru.
- b) Găsiți un număr de pași după care tabloul conține exact 2010 căsuțe colorate cu albastru.

Soluție. Să observăm că liniile selectate spre a fi modificate pot fi considerate consecutive; aceeași precizare este valabilă pentru coloane. Mai mult, selectarea unei linii (sau coloane) de două ori nu modifică starea acesteia, deci presupunem că cele x linii sunt distincte și cele y coloane sunt distincte.

Astfel obţinem exact A = xy + (50 - x)(50 - y) căsuţe albastre. 2 puncte

- b) Avem $A = 2010 \Leftrightarrow xy 25x 25y + 245 = 0 \Leftrightarrow (x 25)(y 25) = 380 = 19 \cdot 20$. 2 puncte

Pentru x = 25 + 19 = 44 și y = 25 + 20 = 45 obținem cerința. **1 punct** Notă. Numărul necesar de pași nu este unic.

Problema 4. Într-un triunghi isoscel ABC cu AB = AC, bisectoarea unghiului B intersectează latura AC în punctul B' și există egalitatea BB' + B'A = BC. Determinați măsurile unghiurilor triunghiului ABC.