Overview

This lecture covers fundamental results in computability theory regarding recursively enumerable (r.e.) sets and program properties, focusing on the Rice-Shapiro theorem and its applications.

Key Concepts

Recursively Enumerable Sets

A set $A \subseteq N$ is recursively enumerable (r.e.) if its semi-characteristic function is computable:

```
sc_A(x) = \{
1 if x \in A
↑ otherwise
```

Structure Theorem for Semi-Decidable Predicates

A predicate $P(x\Box)$ is semi-decidable if and only if there exists a decidable predicate $Q(t,x\Box)$ such that:

```
P(x\Box) \equiv \Box t.Q(t,x\Box)
```

This characterizes semi-decidable predicates as existential quantifications of decidable predicates.

Rice-Shapiro Theorem

Statement

For a set of computable functions $A \subseteq C$, if the corresponding set of indices $A = \{x \mid \phi_x \in A\}$ is r.e., then:

```
\forall f (f \in A \iff \exists \theta \subseteq f, \theta \text{ finite}, \theta \in A)
```

Interpretation

The theorem states that membership in a recursively enumerable set of functions can be determined by examining finite portions of the functions' behavior.

Application Strategy

The theorem provides two ways to prove a set is not r.e.:

- 1. Find $f \notin A$ with a finite $\theta \subseteq f$ where $\theta \in A$
- 2. Find $f \in A$ where all finite $\theta \subseteq f$ satisfy $\theta \notin A$

Example Applications

Case Study 1: Total Functions

- Set T = {x | φ_x total}
- T is not r.e.
- Proof: For any total f ∈ T, all finite θ ⊆ f are partial

Case Study 2: Injective Functions

- Set I = {x | φ_x injective}
- I is not r.e.
- Proof: id \notin I but has finite $\theta \subseteq$ id with $\theta \in$ I

S-m-n Theorem Applications

The s-m-n theorem allows construction of functions with specific domain/range properties:

- Given m,n \geq 1, there exists computable total s_m,n : $N^{m+1} \rightarrow N$
- For all $e \square N$, $x \square \square N^m$, $y \square \square N^n$: $\phi_e(^{m+n})(x \square, y \square) = \phi s_{m,n}(e,x \square)(^n)(y \square)$

Practical Applications

- Understanding program properties
- Analyzing computational limits
- Proving undecidability results
- Characterizing tractable verification problems

Key Takeaways

- 1. Program properties depending on infinite behavior are typically not r.e.
- 2. Only "finitary" properties of programs can be semi-decidable
- 3. The s-m-n theorem enables construction of functions with specified properties
- 4. Reduction to known non-r.e. sets (like K) proves non-recursive enumerability