

Global entangling gates on arbitrary ion qubits

Yao Lu, Shuaining Zhang, Kuan Zhang, Wentao Chen, Yangchao Shen, Jialiang Zhang, Jing-Ning Zhang & Kihwan Kim

Nature 572, 363-367 (2019)

Published: 24 July 2019

Author

- Tenured Associate Professor @ Tsinghua Univ.
- **X** Research interest
- Realization of quantum memory and quantum algorithms with two-species of atomic ions
- Quantum simulation with 2D crystal of ions
- Quantum computation and simulation with individually controllable ions

Quantum simulation of the quantum rabi model in a trapped ion PRX 8, 021027 (2018)

Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion Nature Comm. 9, 195 (2018)

Single-qubit quantum memory exceeding 10-minute coherence time Nature Photon. 11, 646 (2017)

Universal quantum computation

Decomposition of universal quantum circuit: single- and two-qubit gates -> Not necessarily efficient

Global entangling gate: a single all to all connected gate -> polynomial or exponential speedups

- Global gates using a single motional mode
 # of ions increases -> Difficult to isolate single mode
 (sacrifice the gate speed)
- Gates using multiple motional mode
- -> scalable but limited to pairwise gates

A scalable scheme for global entangling gates

Efficient construction of three- and four-qubit quantum gates by global entangling gates

Svetoslav S. Ivanov, Peter A. Ivanov, and Nikolay V. Vitanov *PRA* **91**, 032311 (2015)

Compiling quantum algorithms for architectures with multiqubit gates

Esteban A Martinez, Thomas Monz, Daniel Nigg, Philipp Schindler and Rainer Blatt

New J. Phys. 18, 063029 (2016)

Use of global interactions in efficient quantum circuit constructions

Dmitri Maslov and Yunseong Nam New J. Phys. 20, 033018 (2018)

Experimental scheme

Pulse Optimization

The time evolution operator in trapped ion system

$$U(\tau) = \exp\left(\sum_{j,m} \beta_{j,m}(\tau)\sigma_x^j - i\sum_{j < j'} \theta_{j,j'}\sigma_x^j \sigma_x^{j'}\right)$$
$$\beta_{j,m} = \alpha_{j,m}(\tau)a_m^{\dagger} - \alpha_{j,m}^*(\tau)a_m$$
$$GE_N(\theta) = \exp\left(-i\theta\sum_{j < j'}^N \sigma_x^j \sigma_x^{j'}\right)$$

 $a_m(a_m^{\mathsf{T}})$ is the annihilation(creation) operator of the mth mode $\alpha_{i,m}$ is displacement of the *m*th motional mode of *i*th ion

Global entangling gate

$$GE_N(\theta) = \exp\left(-i\theta \sum_{j < j'}^N \sigma_x^j \sigma_x^{j'}\right)$$

$$\theta_{j,j'}(\tau) = -\sum_{m} \int_{0}^{\tau} dt_{2} \int_{0}^{t_{2}} dt_{1} \frac{\eta_{j,m} \eta_{j',m} \Omega_{j}(t_{2}) \Omega_{j'}(t_{1})}{2} sin[(\nu_{m} - \mu)(t_{2} - t_{1}) - (\varphi_{j}(t_{2}) - \varphi_{j'}(t_{1}))]$$

$$\alpha_{j,m}(\tau) = -i\eta_{j,m} \int_0^{\tau} \frac{\Omega_j(t)e^{-i\varphi_j(t)}}{2} e^{i(\nu_m - \mu)t} dt$$

Constraint : $\alpha_{j,m} = 0$, $\theta_{j,j'} = \theta$ (in GHZ case, $\frac{n}{4}$)

Global three-qubit entangling gate

Motional mode frequency $\{v_1, v_2, v_3\} = 2\pi \times \{2.184, 2.127, 2.044\}$ MHz

detuning $\mu = 2\pi \times 2.094 \mathrm{MHz}$

图

Extended Data Table 1 | Pulse scheme for the global three-qubit entangling gate

Qubit j		1	2	3
$\Omega_j^{\sf max}({\sf MHz})$		$\text{-}2\pi\times0.181$	$2\pi\times0.253$	$-2\pi \times 0.181$
$\phi_{j,k}\left(\pi ight)$	1	0.104	0.104	0.104
	2	0.033	0.033	0.033
	3	0.095	0.095	0.095
	4	-0.095	-0.095	-0.095
	5	-0.033	-0.033	-0.033
	6	-0.104	-0.104	-0.104

Here, Ω_j^{max} refers to the maximal amplitude of the Rabi frequency on the jth qubit during pulse shaping and $\phi_{j,k}$ refers to the value of the modulated phase on the jth qubit in the kth segment.

Global four-qubit entangling gate

 $\{\nu_1,\nu_2,\nu_3,\nu_4\} = 2\pi \times \{2.186,2.147,2.091,2.020\} \text{MHz}$

 $\mu=2\pi imes2.104$ MHz

Extended Data Table 2 \mid Pulse scheme for the global four-qubit entangling gate

Qubit j		1	2	3	4
$\Omega_j^{\sf max}({\sf MHz})$		$\text{-}2\pi\times0.117$	$2\pi\times0.168$	$2\pi\times0.168$	$\text{-}2\pi\times0.117$
	1	0.041	0.231	0.231	0.041
	2	-0.070	0.579	0.579	-0.070
	3	0.472	-0.001	-0.001	0.472
	4	0.054	0.230	0.230	0.054
	5	0.035	0.285	0.285	0.035
	6	0.402	-0.170	-0.170	0.402
	7	-0.402	0.170	0.170	-0.402
	8	-0.035	-0.285	-0.285	-0.035
	9	-0.054	-0.230	-0.230	-0.054
	10	-0.472	0.001	0.001	-0.472
	11	0.070	-0.579	-0.579	0.070
	12	-0.041	-0.231	-0.231	-0.041

The definitions of \varOmega_{j}^{\max} and $\phi_{j,k}$ are as in Extended Data Table 1.

Conclusion

- Implementation of the universal quantum computation by global entangling gate
- Scalable scheme for global entangling gates by coupling to multiple motional modes
- Pulse optimization can be done by solving the minimization problem
- Pulse optimization with a large number of qubits should be assisted by a classical machine learning technique
- The solution of the global N-qubit entangling gate can be applied on any subset of qubits by simply setting $\Omega_i=0$

