PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-089377

(43) Date of publication of application: 03.04.2001

(51)Int.Cl.

A61K 31/7004 A61P 31/04 // CO7H 3/10

(21)Application number: 11-266336

(71)Applicant: HISAKU SUSUMU

NIHON STARCH CO LTD

(22)Date of filing:

20.09.1999

(72)Inventor: HISAKU SUSUMU

TAKEDA YASUSHI ABE JUNICHI

MUROYA TOSHIYASU YOSHINAGA KAZUHIRO **FUJISUE MASAMITSU**

(54) AGENT FOR SUPPRESSING OR INHIBITING BACTERIAL PROLIFERATION CONTAINING 1.5-D-ANHYDROFRUCTOSE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an agent for effectively suppressing or inhibiting the proliferation of bacteria.

SOLUTION: The objective agent for effectively suppressing or inhibiting the proliferation of bacteria contains 1,5-D-anhydrofructose. Preferably, the bacteria is Gram-positive bacteria. The invention also discloses the use of 1,5-D- anhydrofructose for the suppression or inhibition of the proliferation of bacteria.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-89377

(P2001-89377A)(43)公開日 平成13年4月3日(2001.4.3)

(51) Int. Cl. 7

識別記号

FΙ

テーマコート・ (参考)

A61K 31/7004

// CO7H 3/10

A61P 31/04

A61K 31/7004

4C057

A61P 31/04

CO7H 3/10

4C086

審査請求 未請求 請求項の数3 OL (全7頁)

(21)出願番号

特願平11-266336

(71)出願人 599133082

▲桧▼作 進

(22)出願日

平成11年9月20日(1999.9.20)

鹿児島県鹿児島市玉里団地2丁目28-6

(71)出願人 390015004

日本澱粉工業株式会社

鹿児島県鹿児島市南栄3丁目20番地

(72)発明者 ▲桧▼作 進

鹿児島県鹿児島市玉里団地2丁目28-6

(72)発明者 竹田 靖史

鹿児島県日置郡松元町春山1685-19

(74)代理人 100080609

弁理士 大島 正孝

最終頁に続く

(54)【発明の名称】1, 5-D-アンヒドロフルクトースを含有する細菌増殖の抑制ないし阻止剤

(57)【要約】

【課題】 細菌の増殖を効果的に抑制ないし阻止する剤 を提供すること。

【解決手段】 1,5-D-アンヒドロフルクトースを 含有する、細菌の増殖抑制ないし阻止剤。

【特許請求の範囲】

【請求項1】 1. 5-D-アンヒドロフルクトースを 含有することを特徴とする、細菌の増殖抑制ないし阻止 剤。

【請求項2】 細菌がグラム陽性菌である請求項1の細 菌の増殖抑制ないし阻止剤。

【請求項3】 1,5-D-アンヒドロフルクトースの 細菌増殖の抑制ないし阻止のためへの使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、1,5-D-アン ヒドロフルクトースの細菌増殖の抑制ないし阻止剤への 使用およびそれを含有する剤に関する。

[0002]

【従来の技術】 1, 5-D-アンヒドロフルクトース は、担子菌などの微生物あるいは紅藻などの植物組織に 存在する酵素澱粉リアーゼの作用により澱粉あるいは澱 粉分解物を基質として生産することができる。--1,--5--D-アンヒドロフルクトースはグルコースが脱水した興 味ある特異な構造をしているが、その生理機能に関する 20 報告はなされていない。

[0003]

【発明が解決しようとする課題】本発明の目的は、1, 5-D-アンヒドロフルクトースの細菌増殖の抑制ない し阻止への使用を提供することにある。本発明の他の目 的は、1、5-D-アンヒドロフルクトースを活性成分 とする細菌増殖の抑制ないし阻止剤を提供することにあ る。本発明のさらに他の目的および利点は、以下の説明 から明らかになろう。

[0004]

【課題を解決するための手段】本発明によれば、本発明 の上記目的および利点は、1,5-D-アンヒドロフル クトースを含有することを特徴とする、細菌の増殖抑制 ないし阻止剤によって達成される。

【0005】すなわち、本発明の剤の存在下で種々の細

菌を増養すると、非存在下で培養した場合に比較し有為 な増殖阻止あるいは増殖抑制阻止効果が認められる。現 在、抗菌作用を示す種々の化学物質が製造され利用され ているが、1,5-D-アンヒドロフルクトースは多糖 類である澱粉から酵素の作用により生産できる点に特徴 がある。従って、食品に安全な抗菌剤として利用可能で ある。細菌の増殖抑制作用を持つ多糖類の酵素分解物と してペクチン分解物が利用されているが、澱粉はペクチ ンに比較して安価である点で有利である。

【0006】本発明の剤は、例えば、食品、例えば、医 10 薬品、例えば、化粧品、例えば、洗剤等保存しようとす る製品に対し直接混入して使用することができ、あるい は、これらの製品と別個に製品の包装中に存在させて使 用することもできる。

【0007】一般に、抗菌物質を微生物に作用させた場 合、各抗菌物質が抗菌効果を示す特徴的な細菌のスペク トラムが存在する。そこで、1,5-D-アンヒドロフ ルクトース存在下で各種細菌を培養し増殖に及ぼす影響 を調べた。第一に、1、5-D-アンヒドロフルクトー スの各種細菌に対する最小生育阻止濃度を試験した。菌 株を生理食塩水に懸濁後、寒天培地(0.25%酵母エ キス、0.5%ペプトン、1.0%グルコース、1.5 %軟寒天)に白金耳を用いて接種した後、37℃でコロ ニーが形成されるまで培養した。次いで、滅菌した楊枝 を用いて各細菌をコロニーから1.0、2.0、3. 0、4.0、5.0%の1,5-D-アンヒドロフルク トースを含む上記組成の寒天培地に接種した。実験は寒 天培地のpHが異なる2種の条件(pH5.6および 7. 0) で実施した。コントロールには1,5-D-ア 30 ンヒドロフルクトースを含まない同培地を用いた。増殖 能の判定は37℃一晩培養した後、目視により形成され たコロニーを観察することにより行った。結果を表1に 示す。

[0008]

【表1】

			培地の pH	
			7.0	5.6
グラム陰性菌	Escherichia coli	IFO 3301	5.0%	4.0%
	Pseudomonas aeruginosa	IFO 12689	5.0%	4.0%
	Proteus vulgaris	IFO 3851	5.0%	3.0%
	Enterobactor cloacae	JCM 1232	5.0%	5.0%
グラム陽性菌	Bacillus subtillis	IFO 3009	3.0%	2.0%
	Bacillus cereus	IFO 3131	2.0%	1.0%
	Lactobacillus casei	ATCC 393	1.0%	1.0%
	Streptococcus eginus	ATCC 9812	3.0%	2.0%

【0009】表1から次のことがわかる。pH5.6、 pH7. 0の条件下でいずれの細菌に対しても1,5-D-アンヒドロフルクトースは5%以下の濃度で増殖阻

の内でも特に枯草菌(Bacillus subtil lis, Bacillus cereus) および乳酸 菌(Lactobacillus casei)に有効 害効果を持つこと、菌株により有効濃度が異なるが、そ 50 であること。特に、乳酸菌は各種食品腐敗の原因菌とし

て大きな位置を占めており、乳酸菌に対して安全で有効 な抗菌物質が少ないことから注目される結果である。ま た、全体的にpH5.6での方が、pH7.0の条件下 よりも最小生育阻止濃度が低いという結果が得られた。 これは1, 5-D-Pンヒドロフルクトースが多くの酸 性を示す食品に有効に利用できるこを示している。さら に、用いた菌株をグラム陰性菌とグラム陽性菌に分ける とグラム陽性菌に対する方が最小生育濃度が低いことも わかる。

【0010】次に、液体培地を用いて細菌を振とう培養 10 し、pH7. 0での培養に及ぼす1, 5-D-アンヒド ロフルクトースの影響を経時的に測定した。培地には、 0. 25%酵母エキス、0. 5%ペプトン、1. 0%グ ルコースから成る液体培地を用いた。それぞれ0.2、 0. 4、0. 6%の1, 5-D-アンヒドロフルクトー スを添加した液体培地20mLを含む試験管にコロニー から滅菌済み楊枝を用いて各細菌を接種した。滅菌済み ウレタンで栓をした後、37℃で振とう培養を行った。 コントロールには、1、5-D-アンヒドロフルクトー スを含まない液体培地を同様に処理したものを用いた。 培養開始後、2、4、6、8および24時間後に培養液 の一部を採取し、600nmでの濁度(A600)を測 定した。同様に細菌を接種していない培地の濁度を測定 し、培養液の値から差し引いた値を細菌の濁度として採 用した。結果を図1に示す。寒天培地による結果同様、 各種細菌により異なるものの、多くの細菌に対して1% 以下の濃度で増殖抑制効果が認められた。ここでも、寒 天培地による結果同様、Lactobacillus caseiの属するグラム陽性菌に対する方がグラム陰 性菌に対するよりも効果的であった。

【0011】本発明の剤は、1、5-D-アンヒドロフ ルクトース以外に他の、不活性担体および補助剤を含有 することができる。不活性担体としては、例えば、澱 粉、マルトデキストリン、シクロデキストリン、焙焼デ キストリン、ショ糖、ブドウ糖、麦芽糖、乳糖等の糖 類、カルボキシメチルセルロース、寒天、寒天分解物、 カラギーナン、グルコマンナン、ローカストビーンガ ム、キサンタンガム等の増粘多糖類、小麦粉、米粉、コ ーンフラワー等の穀物粉、脱脂大豆、脱脂粉乳、トウモ ロコシ蛋白等の蛋白質、また、液状あるいはゲル状の場 合には上記物質に加えて水、アルコール等の常温、常圧 で液状の物質を挙げることができる。補助剤としては、 例えば、アジピン酸、プロピオン酸、ソルビン酸、コハ ク酸、安息香酸、炭酸、亜硝酸塩等の各種酸およびその 塩類を挙げることができる。本発明の剤は、種々の剤型 例えば溶液、顆粒剤、粉剤、錠剤、懸濁剤、ゲル剤等で あることができる。

[0.012]

【実施例】以下、実施例により本発明をさらに詳述す 20 る。本発明はかかる実施例により何ら制限されるもので はない。

【0013】実施例1(保存による日持ちテスト) 小麦粉1kg、食塩30g、水300gに対し、実施例 比較例1ではグルコースを30g添加し、ロール式製麺 機にて生うどんを作成した。両者を室温(22~30 ℃)で保存し、麺1g中に存在する一般性菌数を経時的 に測定した。結果を表2に示す。

[0014]

30 【表2】

保存日数	0	1	2	3	4
実施例 1	$1.\overline{5}\times10^3$	2.4×10^{2}	3.8×10^{3}	1.2×10 ⁵	>101
比較例 1	2.3×10^{3}	6.2×10 ⁶	>107	_	_

【0015】実施例2(保存による日持ちテスト) ボイルしたジャガイモ1kgを皮をむいた後、木製の棒 を用いて押しつぶし、マッシュポテトを作成した。食塩 10g、コショウ5g、マヨネーズ50g、牛乳100 mLに加え、実施例2-1、2-2、2-3には、それ ぞれ1. 5-D-アンヒドロフルクトース2、5、10 40

g、比較例2にはグルコースを50g添加し、均一に攪 拌した後、両者を25℃、湿度80%で保存し、1g中 に含まれる一般性菌数を測定した。結果を表3に示す。 [0016]

【表3】

保存時間	0 h r	3 h r	6 h r	12hr	24hr
比較例 2	3.0×10^{2}	8.1×10^{2}	6.3×10^{3}	3.1×10 ⁴	>101
実施例 2-1	3.0×10^{2}	1.6×10 ²	2.1×10^{2}	3.8×10^{2}	2.6×10 ⁴
実施例 2 - 2	3.0×10^{2}	8.9×10	1.1×10	1.2×10 ²	9.2×10^{3}
実施例 2 - 3	3.0×10^{2}	5.6×10	7. 2×10	8.0×10	1.2×10^{3}

【0017】実施例3

砂糖100g、黒糖10g、梅酢300g、昆布エキス パウダー50gに水を加えて1.0Lとした液を調味液 として用いた。塩蔵していた干し大根を水にさらし塩分 50 ドロフルクトース10g、比較例3にはグルコース10

を3.5%に調整した後、1.5mmの厚さにスライス。 した。スライスした大根300gに対し、調味液100 mLを加え、さらに、実施例3には1,5-D-アンヒ

gを添加し、密封した。実施例、比較例ともに10パッ クずつ用意し、室温(22~30℃)で保存後、経時的 にガスが充満するパックの数を測定した。

[0018] 【表4】

保存日数	0	1	2	3	4
実施例3	- 0	0	0	2	6
比較例3	0	1	7	10	10

【0019】実施例4(化粧水)

グリセリン50g、プロピレングリコール40g、ソル クエン酸10g、精製水700gを混合して溶解した。 水酸化ナトリウム溶液でpH5.5に調整してから、精 製水を加えて容積を1 Lにした。実施例4には、1,5 -D-アンヒドロフルクトースを30g添加し、比較例

4には、トレハロース30gを添加し、加温しながら攪 拌して十分に溶解した。実施例、比較例ともに滅菌した ビタンモノステアレート20g、エタノール100g、 10 ボトルに100mLずつ加え、10℃で保存して経時的 にサンプル1mL中に含まれる菌数を測定した。

[0020]

【表5】

保存日数	0	3	6	9	1 2
実施例4	1.5×10	2.4×10	6.3×10	1.1×10^{2}	4.6×10^{2}
比較例4	0.7×10	6.2×10	8.4×10^{2}	2.4×10^4	1.1×10 ⁵

【0021】実施例4(製剤)

1,5-D-アンヒドロフルクトース73部、グルコー 20 関係を示している。 ス2部、水25部、微量の塩その他の成分を常法により 混合して液状製剤を調製した。

実施例5 (製剤)

実施例4の液状製剤を常法により凍結乾燥して粉末製剤 を調製した。

実施例6(製剤)

実施例4の液状製剤を常法により噴霧乾燥して粉末製剤 を調製した。

実施例7(製剤)

実施例6の粉末製剤を常法により造粒して、水に溶け易 30 くした顆粒状製剤を調製した。

実施例8(製剤)

1.5-D-アンヒドロフルクトース20部、グルコー ス10部、水70部、微量の塩その他の成分を常法によ り混合して液状製剤を調製した。

実施例9(製剤)

1.5-D-アンヒドロフルクトース20部、グルコー ス10部、酢酸3部、水67部、微量の塩その他の成分 を常法により混合して液状製剤を調製した。

実施例10(製剤)

実施例8の液状製剤を常法により凍結乾燥して粉末製剤 を調製した。

実施例11(製剤)

実施例8の液状製剤を常法により濃縮後、噴霧乾燥して 粉末製剤を調製した。

実施例12(製剤)

実施例11の粉末製剤を常法により造粒して、水に溶け 易くした顆粒状製剤を調製した。

【図面の簡単な説明】

【図1】振とう培養におけるEscherichia

coliの培養時間と培養培地の濁度(A600)との

【図2】振とう培養におけるPseudomonas aeruginosaの培養時間と培養培地の濁度(A 600)との関係を示している。

【図3】振とう培養におけるProteus vulg arisの培養時間と培養培地の濁度(A600)との 関係を示している。

【図4】振とう培養におけるEnterobactor cloacaeの培養時間と培養培地の濁度(A60 0) との関係を示している。

【図5】振とう培養におけるBacillus sub tillisの培養時間と培養培地の濁度(A600) との関係を示している。

【図6】振とう培養におけるBacillus cer eusの培養時間と培養培地の濁度(A600)との関 係を示している。

【図7】振とう培養におけるStreptococcu eqinusの培養時間と培養培地の濁度(A60 0)との関係を示している。

【図8】振とう培養におけるLactobacillu s caseiの培養時間と培養培地の濁度(A60 40 0) との関係を示している。

【符号の説明】

【外1】

1. 5-D-アンヒドロフルクトース濃度0% 【外2】

1,5-D-アンヒドロフルクトース濃度0.2%

50 【外3】

7

8 ---

1,5-D-アンヒドロフルクトース濃度0.4%
【外4】

1, 5-D-アンヒドロフルクトース濃度0.6%

フロントページの続き

(72)発明者 安部 淳一

鹿児島県鹿児島市錦江台1丁目24-22

(72)発明者 室屋 賢康

鹿児島県鹿児島市南栄3-20 日本澱粉工

業株式会社内

(72)発明者 吉永 一浩

鹿児島県鹿児島市南栄3-20 日本澱粉工

業株式会社内

(72)発明者 藤末 真実

鹿児島県鹿児島市南栄3-20 日本澱粉工

業株式会社内

Fターム(参考) 4C057 BB02 BB07 4C086 AA01 AA02 EA01 MA01 MA04 NA14 ZB35