

Static Analysis of Programs Model Checking MSI Option

Olivier Hermant olivier.hermant@mines-paristech.fr

MINES ParisTech, Centre de Recherche en Informatique

September 2020

Overview

Reactive Systems

Classical Programs

- compute
- terminate
- return a result
- complex data, but sequential flow

Reactive Programs

- must not terminate
- does not return anything
- simple data, distributed workflow

Examples

Operating Systems, control-command systems (CAS), ...

Checking a Reactive Program

Classical Program

- complex predicates, but fixed temporal aspect
- "the array is sorted"

Reactive Program

- simple predicates, but various temporal aspects
- "if a process continuously asks for execution, the OS will execute it"
- "it is always possible to get back to the initial state"
- "every time a failure is detected, an alarm is emitted"
- "every time an alarm is emitted, a failure has been detected"

Model Checking

Automated verification technique for reactive systems

Principle

- f 1 . modelize the system with m M and the property by arphi
- 2. does $M \models \varphi$?
- 3. Analyze
 - yes, ok. But beware that we considered only a model!
 - no, we have a counterexample. Replay it on the real system
 - real bug
 - ightharpoonup otherwise, refine M along arphi
- applicable during verification and design phases
- automatized
- lesser costs
- geared towards bug finding, more exhaustive than tests

Short Story

- ▶ 1975 : verification is not adapted to reactive systems
- 1977 : Pnueli proposes to use temporal logics
- 1981 : CTL Model Checking by Clarke, Sifakis, ...
- '80 & '90 : theoretical results
- '90 & '00 : performance improvement and extensions (probabilities, time)
- '00 : wide adoption and standardisation
 - microchip design (Intel, ...)
 - standardisation of the language PSL
 - software Model Checking (MS)
- '07 : Turing Prize to Clarke, Sifakis, Emerson

Representing a System

transition system : modelizes the behavior of a reactive system

What Kind of Properties?

- Accesibility. A given situation can be reached. x can have the value 0, every instruction can be executed
- ► Invariance. Each state respect a good property. x is never 0, there is no array overflow
- Safety. Something bad never happens.
 I can get money only if if have the right PIN
- ► Liveness. Something good eventually happens. the program terminates, the message is eventually transmitted, the program always come back to the initial state
- ► Fairness. Something good repeats infinitely often.

 if a process asks to be executed indefinitely, it will be executed infinitely many times all philosoph eats infinitely many times
- Observational Equivalence. Do two systems have the same behavior? simple system vs. optimized system

How to Represent Properties

- use temporal logics!
- advantages :
 - ▶ natural language imprecise, ambiguous
 - generic
 - automated verification possible
- several possible temporal logics :
 - ► ITI
 - ► CTL
 - ► CTL*
 - **.**..

Shortcomings of Model Checking

- 1. Finite transition systems
 - sometime hard to get a model
 - finite domain for variables, finite number of tasks, ...
- 2. **Small** transition systems

 - algorithmical and modelization problem
 example: 10 variables on 8 bits: 10²⁵⁶ possibilities
 - one possibility is 10 bytes
 - ► all possibilities is 10²⁴⁵ TB
- Model Checking must manage state explosion

Applications

- ▶ finite systems ⇒ bounded variables
- typically :
 - communication protocol
 - ► difficulty : intertwining of the agents
 - microprocessors
 - difficulty : number of variables
- in the future:
 - web services
 - small software, like drivers

Some Financial Issues

- cost of bugs : \$64 billion/y in the US
 - ► Toyota acceleration bug: \$1.2 billion
- Cost of verification
 - ▶ \$10 billion/y for tests in the US
 - ▶ 50 kLOC to debug: 60 days, \$30,000 and indirect costs
 - ▶ more that 50% of the cost of a critical system
 - ► for standard software, 30% in average
- Cost of removing a bug
 - ▶ 1 at design-time
 - 5-15 at unit testing time
 - ▶ 15-90 at integration time
 - ► 50-200 at production time
- Bug repartition (automotive industry, Bosch)
 - ▶ 60% specification, 20% design, 10% code, 10% system

Modelization

State Machine

abstraction of a reactive system

- ► Control states : idle,serving,served
- ► Variables : x:int, paid:bool
- ► Transitions : money, choice, served, back, cancel

State Machine

- $P = \langle C, V, A, T \rangle$
 - C finite set of control states
 - V finite set of variables
 - ► A finite set of [quarded] labelled actions on V
 - $ightharpoonup T \subset C \times A \times C$ finite set of transitions

Transition Systems

Transition System

$$S = \langle Q, T, \rightarrow \rangle$$

- \triangleright Q : set of states, or configurations
- \triangleright T : set of labelled transitions
- $ightharpoonup
 ightarrow \subset Q imes \mathcal{T} imes Q$ transition relation
- Q represents the set of possible states of the system
- ightharpoonup a transition t transforms a state q in a state q' if $(q, t, q') \in \rightarrow$

From State Machines towards Transition Systems

- ► Equivalence between a state machine $P = \langle C, V, A, T \rangle$ and a transition system $S = \langle Q, T, \rightarrow \rangle$
- a transition system has no variable (no state): incorporate it inside Q!
- \triangleright From P to S:
 - \triangleright assign to variables $v_i \in V$ a domain D_i

$$D = D_1 \times \cdots \times D_n$$

- ▶ associate actions $a \in A$ with partial functions $[a]: D \to D$ ▶ partial because of the guard conditions
- ightharpoonup set $Q = C \times D$, a configuration can be written as (c, d)
- let $((c,d),t,(c',d')) \in \rightarrow$ iff t=(c,a,c') and [a](d)=d'.

Example

System Execution

- $(i,0) \xrightarrow{\text{money}} (i,1) \xrightarrow{\text{money}} \cdots$
- ▶ can be shortened in money, money, choice, · · ·
- \triangleright $\mathcal{L}(S) = \text{Language of } S = \text{set of executions of } S$

Summary

- ► Reactive system = real world system
- ightharpoonup State machine P = model syntax
- ightharpoonup Transition system S = semantics of P

Temporal Logics

Temporal Properties

Accessibility

A given situation can be reached

Invariance.

Each local state respects a good property

► Safety

A bad thing never happens

Liveness.

Something good eventually happend

► Fairness

Something good repeats infinitely often

Observational Equivalence.

Two systems are equivalent

Express Properties

- need to express families of properties, not only particular cases
- Natural languages
 - imprecise
 - ► and verbose
- Graphical Formalisms
 - more precise
 - concise
 - easy to learn and share
 - still lack of precision and expressiveness

Temporal Logics

- Why logics?
 - no ambiguity in the expected properties
 - allow to prove soundness of the system
- Why temporal logics
 - concision, expressiveness, simplicity
 - ► algoritmics : decision and complexity
- What temporal logics?
 - classical logic
 - propositional, no first-order
 - temporal connectives and path quantification

Temporal Connectives

Express a succession of events along an (execution) path:

X - neXt: "at the next step"

► F - Finally: "in some moment in the future"

► G - Globally: "at any moment in the future"

V - Until : "until" pUp,p p p p p

- Accessibility.
 - A certain situation can be reached
 - ► F(x = 0)
- Invariance
 - ► Each local state respects a good property
 - $ightharpoonup G \neg (x = 0)$
- Liveness.
 - ► Something good eventually happens
 - $ightharpoonup G(p \Rightarrow Fq)$
- Total Soundness.
 - ightharpoonup (init \land precondition) \Rightarrow F(end \land postcondition)

Path Quantifiers

- Temporal Connectives
 - consider one execution at a time
 - executions are independent from each other
 - ► they are organized in a set
 - future is determined
- One may want to speak about possible futures, along the actions taken by the system
 - some states have the choice between different futures
 - interdependents executions
 - organized in a tree
- We introduce path quantifiers
 - ► A : all the future paths
 - **E** : at least one future path

Path Quantifiers and Temporal Connectives

- **EFp**: p is true in at least one future state
- ► **AFp**: p is reachable on every path
- **EGp**: there exists a path with p always true
- ► **AGp**: p is always true

- Accessibility
 - A certain situation can be reached
 - ightharpoonup EF(x = 0)
- Invariance.
 - ► Each local state respects a good property
 - ightharpoonup AG $\neg(x=0)$
- Liveness
 - ► Something good eventually happens
 - $ightharpoonup AG(p \Rightarrow Fq)$
- Total Soundness.
 - ► $A((init \land precondition)) \Rightarrow F(end \land postcondition))$
- Fairness
 - ► A(GF(execution request) ⇒ GF(process scheduled))

Several Temporal Logics

- Linear vs. Branching
 - restricts the ability to speak about possible futures
- Expressiveness
 - Syntactic or Semantic
- Conciseness
- With or without past
- Verification complexity
- Less formalized factors
 - understanding, adequation to needs

Definitions

- ightharpoonup the composition of a logic $\mathcal L$:
 - \triangleright a set L of formulas (φ)
 - ► a domain D for interpretations (noted 1)
 - ightharpoonup a satisfiability relation $\models \subseteq D \times L$
- ► We say that :
 - ightharpoonup I is a model of φ iff $I \models \varphi$
 - $ightharpoonup \varphi$ is satisfiable iff there exists I s.t. $I \models \varphi$
 - $\blacktriangleright \varphi$ is valid if for all I, I satisfies it
 - φ is contradictory iff no I satisfies it
- ightharpoonup let \mathcal{L} be a logic and $\varphi \in \mathcal{L}$
 - \blacktriangleright $\llbracket \varphi \rrbracket$ is the set of interpretations satisfying φ
 - $ightharpoonup E\subseteq D$ is \mathcal{L} -definable iff there exists $arphi\in\mathcal{L}$ s.t. $E=\llbracketarphi
 rbracket$.

Finally, we got to Semantics!

- $ightharpoonup I \models \varphi$ is typically a semantic relation
- ► So, no syntactic proof system
- actually, proof system is not relevant here
- and dealing with semantics is OK in this case :
 - no first-order quantification OK
 - \triangleright verify whether φ is satisfied in **one** particular model M. **OK**

Standard Semantic Questions

- ightharpoonup on a formula φ :
 - **Model Checking** : do we have $I \models \varphi$?
 - **Satisfiability**: is φ satisfiable?
 - **Validity**: is φ valid?
 - **Synthesis**: Find I such that $I \models \varphi$.
- \triangleright on logics \mathcal{L}_1 and \mathcal{L}_2 :
 - **Expressiveness**: do \mathcal{L}_1 and \mathcal{L}_2 define the same sets?
 - ▶ Conciseness : do \mathcal{L}_1 and \mathcal{L}_2 define identical sets with formulas of comparable size ?

Example: Propositional Logic

- you already know the syntax
- interpretation domain : boolean valuations

for each
$$A_i$$
, $I(A_i) = 0$ or 1

- Satisfiability relation :
 - I ⊨ T
 - I ⊭ ⊥
 - $I \models A_i \text{ iff } I(A) = 1 \text{ (A atomic)}$
 - $I \models \varphi_1 \land \varphi_2 \text{ iff } I \models \varphi_1 \text{ and } I \models \varphi_2$
 - \blacktriangleright $I \models \varphi_1 \lor \varphi_2$ iff $I \models \varphi_1$ or $I \models \varphi_2$
 - $I \models \neg \varphi \text{ iff } I \not\models \varphi$
- Examples : $A \lor \neg A$ is valid (excluded-middle!), A is satisfiable, $A \land \neg A$ is contradictory

Off Topic

- we have a syntax for propositional logic
- we have a proof system for propositional logic
- we have a semantics for propositional logic
- we can ask ourselves about soundness and completeness!

Soundness

If $A_1, \dots, A_n \vdash B$ and $I \models A_i$ then $I \models B$

- ► YES, it holds.
- proof? Exercise

Completeness

If , for any I, $I \models A_i$ then $I \models B$, then $A_1, \dots, A_n \vdash B$

- NO, it does not hold.
- \blacktriangleright we cannot build a proof of the excluded-middle : $\vdash A \lor \neg A$
- add this principle to the logic, and
- ► YES it holds.

In Temporal Logics

- Main domain of interpretation
 - Kripke structures M
 - \triangleright for us = a transition system S
- ▶ We define the satisfiability relation |= in three steps, the first two of which are interdependent :
 - 1. satisfiability of a path formula (no head A or E) on a path
 - 2. satisfiability of a state formula (with a head ${\bf A}$ or ${\bf E}$) on (M,s) based on the previous point
 - 3. M satisfies φ if (M,s^0) satisfies φ

Kripke Structures

- Temporal logic applies on Kripke structures, i.e. states and transitions
 - ► each state has properties ⇔ satisfies atomic formulas
- \blacktriangleright for Model Checking, the Kripke structure M is readily obtain from a transition system S:
 - ► forget the label of edges
 - add to each states the properties it verifies
 - add an initial state
- ▶ it turns out (Gödel ... again),
 - that this is also a good semantics for intuitionnistic logic,
 - aka natural deduction without excluded-middle!

Example of Kripke Structure

LTL

Linear Temporal Logic

- LTL is a logic said linear in time :
 - A very restricted, E forbidden
 - ightharpoonup A arphi alowed only if arphi contains no A or E and A is at the top of the formula
 - "all the paths verify φ"
- Examples:
 - ► AFGp is a LTL formula
 - ► *EFp* is not a LTL formula
- Abstract syntax :

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid X\varphi \mid F\varphi \mid G\varphi \mid \varphi U\varphi$$

LTL on Only One Path

- Domain of interpretation :
 - \triangleright paths σ
 - assuming each state s contains a set I(s) of predicates (assumed to be true at s)
 - notations
 - \triangleright $\sigma(0)$ is the state at position 0 of σ .
 - $ightharpoonup \sigma^{k}$ is the truncation of σ starting from position k
- Satisfiability:
 - $\sigma \models p \text{ iff } p \in I(\sigma(0))$

 - $ightharpoonup \sigma \models \varphi_1 \lor \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ or } \sigma \models \varphi_2$
 - $ightharpoonup \sigma \models \varphi_1 \wedge \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$

Satisfiability in LTL, continued

For the temporal connectives :

- $ightharpoonup \sigma \models X\varphi \text{ iff } \sigma^1 \models \varphi$
- $\triangleright \ \sigma \models F\varphi \text{ iff for some } k > 0, \ \sigma^k \models \varphi$
- $ightharpoonup \sigma \models G\varphi$ iff for any $k > 0, \sigma^k \models \varphi$
- ▶ $\sigma \models \varphi_1 U \varphi_2$ iff for some $k \ge 0$ $\sigma^k \models \varphi_2$ and for any $0 \le i < k$, $\sigma^i \models \varphi_1$
- \blacktriangleright this is a strong until, since φ_2 must be satisfied in the future.

Some Identities

- duality **F** and **G** : $F\varphi \equiv \neg G \neg \varphi$ and $G\varphi \equiv \neg F \neg \varphi$
- ► F definable with $U : F\varphi \equiv \text{True } U \varphi$
- ightharpoonup commutativity $\mathbf{X} \neg : \neg X \varphi \equiv X \neg \varphi$
- ▶ distributivity : $G(\varphi_1 \land \varphi_2) \equiv G\varphi_1 \land G\varphi_2$, $F(\varphi_1 \lor \varphi_2) \equiv F\varphi_1 \lor F\varphi_2$
- idempotency : $GG\varphi \equiv G\varphi$, $FF\varphi \equiv F\varphi$
- ▶ and many other identities ...

Where is LTL? Universal Path Quantifier

we defined validity for path formulas :

$$\varphi_{p} ::= p \mid \neg \varphi_{p} \mid \varphi_{p} \vee \varphi_{p} \mid \varphi_{p} \wedge \varphi_{p} \mid X \varphi_{p} \mid F \varphi_{p} \mid G \varphi_{p} \mid \varphi_{p} U \varphi_{p}$$

- ightharpoonup and we have only one type of state formulas : $\varphi_s := \mathbf{A} \varphi_p$
- \triangleright for state formulas, the interpretation domain is a pair (M, s)
 - \triangleright M is a Kripke structure
 - s is a state (initial state, or not)
- \blacktriangleright $(M,s) \models A\varphi_p$ iff all paths σ starting at s are such that $\sigma \models \varphi_p$
- \blacktriangleright and $M \models \varphi_s$ iff $(M, s_0) \models \varphi$

CTL and CTL*

- CTL* is a branching-time logic
- where combination of path quantifiers and temporal connectives is unrestricted
- distinction between state and path formulas
 - but beware, that the formulas are now interleaved, no hiearchy
 - state formulas :

$$\varphi_s ::= p \mid \neg \varphi_s \mid \varphi_s \vee \varphi_s \mid \varphi_s \wedge \varphi_s \mid \mathbf{A}\varphi_p \mid \mathbf{E}\varphi_p$$

path formulas :

$$\varphi_p ::= \varphi_s \mid \neg \varphi_p \mid \varphi_p \vee \varphi_p \mid \varphi_p \wedge \varphi_p \mid X\varphi_p \mid F\varphi_p \mid G\varphi_p \mid \varphi_p U\varphi_p$$

Satisfiability in CTL*

State Formulas, relation \models_s

- $ightharpoonup (M,s) \models_s p \text{ iff } p \in I(s)$
- $(M,s) \models_s A\varphi_p$ iff all paths σ starting at s verify $(M,\sigma) \models_p \varphi$
- \blacktriangleright $(M,s) \models_s E\varphi_p$ iff for at least one path σ starting at s, $(M,\sigma) \models_p \varphi$

Path Formulas, relation \models_{p}

- ► same relation as in LTL, except :
- \blacktriangleright $(M, \sigma) \models_{\rho} \varphi_s$ iff $(M, \sigma(0)) \models_s \varphi_s$

Finally,
$$M \models \varphi$$
 iff $(M, s_0) \models_s \varphi$

Identities

- all the LTL identities
- ▶ additional duality **A-E** : $\neg E\varphi \equiv A\neg \varphi$ and $\neg A\varphi \equiv E\neg \varphi$
- **Beware!** $A\varphi$ does not necessarily implies $E\varphi$
 - only if there exists a path from the current state

CTL without the *

- CTL is a restriction of CTL*
 - can use freely path quantifiers A,E
 - but temporal connectives X,F,G,U must always be preceded by A or E
- Examples:
 - \triangleright EF(AGp) is in the CTL language
 - $ightharpoonup E(Gp \land Xq)$ and AFGp are in CTL* but not in CTL

Impact on Semantics

- the semantics of CTL can be given only in termes of states
 - ▶ indeed, all the formulas of CTL are state formulas of CTL*
 - ► ignore paths
 - ▶ implies specific and efficient algorithms
- Drawback : CTL does not express fairness
 - adapt the semantics of M
 - Fair CTL, widely used

CTL Model Checking

ightharpoonup inductive approach : $\neg p$

ightharpoonup inductive approach : $\neg p$, $EX \neg p$

ightharpoonup inductive approach : $\neg p$, $EX \neg p$, $\neg EX \neg p$

inductive approach : $\neg p$, $\mathsf{EX} \neg p$, $\neg \mathsf{EF} \neg p$, p

inductive approach : $\neg p$, $\mathsf{EX} \neg p$, $\neg \mathsf{EF} \neg p$, p and the winner is **blueorange marked**

State Labelling

- ► Historical importance (Clarke & Emerson, 1981)
- linear in the size of the input (assuming the model has constant-size)
- quite specific to CTL
- reason on states, rather than on paths/execution traces
 - ightharpoonup label the states that verify a subformula ψ of φ by ψ itself
 - recursive labelling: with the subformulas first
 - $ightharpoonup M \models arphi ext{ iff } s_0 ext{ is labelled with } arphi$

Computing Labels

- Basic Operations :
 - ightharpoonup q labelled with p if $p \in I(q)$ (given by M)
 - ightharpoonup a labelled with $\varphi \wedge \psi$ iff labelled with both φ and ψ
- ightharpoonup Case **EX** φ
 - ightharpoonup q labelled iff there exists q
 ightharpoonup q' s.t. q' labelled with arphi
- ightharpoonup Case $\mathbf{EF}\varphi$:
 - lacktriangleq q labelled iff there exists $q o \cdots o q'$ and q' labelled with arphi

Computing Labels

- ightharpoonup let Q_{arphi} the set of states labelled with arphi
- we also compute those sets
- ightharpoonup Case $\mathbf{E}\varphi\mathbf{U}\psi$
 - lacksquare $q\in Q_{Earphi U\psi}$ iff q can reach Q_ψ with a path in Q_arphi
- ightharpoonup Case $\mathbf{EG}\varphi$:
 - \triangleright find the nontrivial strongly connected components of Q_{ω}
 - L is the set of those states
 - $lacktriangledown q \in {\sf EG}arphi$ iff ${m q}$ can reach ${m L}$ with a path in ${m Q}_arphi$

Complexity of Model Checking in CTL

- linear in the size of the formula
- $\triangleright \mathcal{O}(|M|.|\varphi|)$
- but beware that M is assumed to be a constant
- \triangleright computing M can be exponential (variables, concurrent processes)

LTL Model Checking

Büchi Automata

An extension of usual automata on infinite words

- \triangleright $B = \langle \Sigma, Q, \rightarrow, q_o, F \rangle$
- \triangleright an infinite word is accepted iff w visits infinitely many times F

- finite automaton : words ending with a
- ▶ Büchi automaton : words having an infinite number of a

Büchi Automata

- A tool to recognize sets of infinite words
- \triangleright $B = \langle \Sigma, Q, \rightarrow, q_0, F \rangle$:
 - \triangleright Σ , the alphabet (finite number of letters)
 - \triangleright Q, the set of states
 - $ightharpoonup \to \subset Q \times \Sigma \times Q$, the transitions
 - ▶ q₀ the initial state
 - $ightharpoonup F \subset Q$ the final/accepting states
- \triangleright an infinite word w is recognized by B iff its execution :

$$q_0 \stackrel{w_0}{\rightarrow} q_1 \stackrel{w_1}{\rightarrow} \cdots \stackrel{w_n}{\rightarrow} q_{n+1} \stackrel{w_{n+1}}{\rightarrow} \cdots$$

is such that for an infinite set of indices $i_1 < \cdots < i_n < \cdots$, $q_{i_k} \in F$

Properties of Büchi Automata

- define sets of infinite traces
 - \triangleright $\mathcal{L}(B)$ is the language recognized by B
 - \blacktriangleright those are called ω -regular languages
- operation on those languages
 - ▶ test of emptiness : is a strongly connected component intersecting F accessible from q_0 ?
 - \blacktriangleright intersection : compute B_{\otimes} such that $\mathcal{L}(B_{\otimes}) = \mathcal{L}(B_1) \cap \mathcal{L}(B_2)$
 - complementation very hard to implement $\mathcal{O}(2^{n^2})$ at best, $\mathcal{O}(2^{2^n})$ in practice

Why Büchi Automata in Model Checking?

- a Kripke structure M is the same as an automaton, it defines a language of infinite traces (paths)
- ▶ if we have another automaton B_{bad} defining a language $\mathcal{L}(B_{bad})$, would be easy to check emptiness of $\mathcal{L}(B_M) \cap \mathcal{L}(B_{bad})$
- ▶ can we transform a LTL formula φ into a Büchi automaton such that $\llbracket \neg \varphi \rrbracket = \mathcal{L}(B_{\neg \varphi})$?
- ▶ if this is the case, then :
 - 1. Transform M into B_M (immediate)
 - 2. Transform φ_p into $B_{\neg \varphi_p}$
 - 3. Compute $B_{\otimes} = B_M \otimes B_{\neg \varphi_p}$
 - 4. test $\mathcal{L}(B_{\otimes}) = \emptyset$

LTL and Büchi Automata

Theorem

It is possible to translate any LTL formula into a Büchi automaton defining the same language

On the AGFp example

double-exponential complexity if we use complementation