## Stochastic Calculus

Kellen Kanarios

University of Michigan

March 28, 2022

# Background

#### Definition

A random variable  $X_t$  is a mapping  $X_t:\Omega\to\mathbb{R}$ . Where  $\Omega$  is the **sample space** and P is the measure of the **probability space**, such that  $P(\Omega)=1$ .

### Definition translated into english

- **1** Unbeknownst to us, someone chooses a random  $\omega \in \Omega$ . Then we see the  $X(\omega) \in \mathbb{R}$ .
- ② We cannot see the corresponding  $\omega \in \Omega$ , but the  $X(\omega) \in \mathbb{R}$  gives us partial information about  $\omega$ .

# Background

### Example

Consider the case where you flip a coin. Using our previous definition, this could be described as  $\Omega = \{\text{heads, tails}\}$  and

$$X(\omega) = egin{cases} 1, & ext{if } \omega = ext{heads} \ -1, & ext{if } \omega = ext{tails} \end{cases}$$
 where  $\omega \in \Omega$ .

This would yield the familiar notation of P(X = 1) = .5 and P(X = -1) = .5.

## Background

#### Definition

A **stochastic process** is a function that takes a random variable.

### Example

Coin tossing. If you consider our random variable from the previous example, a stochastic process would just be some function  $f(X(t,\omega))$ , where  $X(t,\omega)$  is our X, but our mysterious man just picks a new random  $\omega$  everytime t changes.

## Wiener Process

#### Definition

A stochastic process  $\boldsymbol{W}$  is called a Wiener process if the follow conditions hold

- $W_0 = 0$
- The process W has independent increments
- **9** For s < t the random variable  $W_t W_s$  has the Gaussian distribution N(0, t s)
- W has continuous trajectories

### Wiener Process

### Theorem

A Wiener trajectory is with probability one, nowhere differentiable, and it has locally infinite total variation.



Figure: Wiener trajectory

## Quadratic Variation

#### Motivation

A stochastic process does not have the normal notion of variance.

#### Definition

Suppose P is a partition of [0,t] denoted  $t_k$  and let  $\|P\|$  be the mesh of the partition then

$$[X]_t = \lim_{\|P\| \to 0} \sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2$$

#### Comments

Note that Quadratic Variation itself is a stochastic process. An intuitive way to think about quadratic variation is the internal clock of a process, describing how randomness accumulates over time.

## Quadratic Variation of Wiener Process

#### Theorem

Quadratic variation of a Wiener Process is t

#### Proof

Let  $P = \{0 = t_0 \le t_1 \le \dots \le t_m = t\}$  be a partition of the interval [0, t]. Then the quadratic variation on P is

$$[W]^P = \sum_{k=1}^m (W_{t_k} - W_{t_{k-1}})^2$$

Therefore,

$$E[[W]^P] = \sum_{k=1}^m E[(W_{t_k} - W_{t_{k-1}})^2]$$



## Quadratic Variation of Wiener Process

#### Theorem

Quadratic variation of a Wiener Process is t

#### Proof cont.

Note that  $E[(W_{t_{i+1}}-W_{t_i})^2]=Var[W_{t_{i+1}}-W_{t_i}]$  such that

$$E\left[\left[W\right]^{P}\right] = \sum_{k=1}^{m} Var\left[W_{t_{k}} - W_{t_{k-1}}\right]$$

It follows from the definition of the Wiener process that

$$E[[W]^P] = \sum_{k=1}^{m} (t_k - t_{k-1})$$
$$= t$$

## Quadratic Variation of Wiener Process

#### Theorem

Quadratic variation of a Wiener Process is t

#### Proof end.

Finally, from the definition of discrete expectation we have that

$$E[[W]^P] := \lim_{\|P\| \to 0} [W]^P := t$$

### **Implications**

This motivates us to write

$$\int_{0}^{t} (dW_t)^2 = t$$

Or equivalently,

$$(dW_t)^2 = dt$$

# Everything Itô

# The Stochastic Integral

### The Problem

Integrals of the form  $\int_0^t g_s dW_s$ .

# The Stochastic Integral

### The Problem

Integrals of the form  $\int_0^t g_s dW_s$ .

### Solution 1

Riemman Integral

Not possible due to locally unbounded variation

## Geometric Brownian Motion Model

#### Definition

**Geometric Brownian Motion** is a stochastic process whose dynamics follow the stochastic differential equation

$$dX_t = \alpha X_t dt + \sigma X_t dW_t$$

We can write the equation as

$$X_t = (\alpha + \sigma W_t) X_t$$

Where W is the time derivative of the Wiener process.

## Geometric Brownian Motion Model

#### Derivation

Assume  $S_t$  follows a Geometric Brownian Motion. Using Ito's lemma,

$$d\log(S_t) = \frac{1}{S_t} dS_t - \frac{1}{2S_t^2} (dSt)^2$$

From the definition,

$$d\log(S_t) = \frac{1}{S_t}(\mu S_t dt + \sigma S_t dW_t) - \frac{1}{2S_t^2}(\mu S_t dt + \sigma S_t dW_t)^2$$

Note that

$$(\mu S_t dt + \sigma S_t dW_t)^2 = S_t^2 (\mu^2 dt^2 + \sigma^2 dW_t^2 + 2\mu\sigma dt dW_t)$$

From Ito's multiplication table,  $dt^2=0=dtdW_t$  and  $dW_t^2=dt$  such that

$$(\mu S_t dt + \sigma S_t dW_t)^2 = S_t^2 \sigma^2 dt$$



## Geometric Brownian Motion Model

### Derivation cont.

Substituting back,

$$dlog(S_t) = (\mu dt + \sigma dW_t) - \frac{1}{2S_t^2} (S_t^2 \sigma^2 dt)$$
  
=  $(\mu - \frac{\sigma^2}{2}) dt + \sigma dW_t$