• Mathematical:

α	0°	45°	90°	135°	180°	360°
sinα	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	0
cosα	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	1

$$sin^2\theta + cos^2\theta = 1; \ sin(\theta_1 + \theta_2) = sin\theta_1 cos\theta_2 + cos\theta_1 sin\theta_2; \ cos(\theta_1 + \theta_2) = cos\theta_1 cos\theta_2 - sin\theta_1 sin\theta_2$$

Vectors:

Dot product: $a \cdot b = a_1b_1 + a_2b_2 + \dots + a_nb_n$; Cross product: $a \times b = (y_1z_2 - y_2z_1)i - (x_1z_2 - x_2z_1)j + (x_1y_2 - x_2y_1)k$

Bug Algorithm:

Assume only local knowledge of environment and a global goal with essentially tactile sensing

Behaviors: Boundary follow / motion to goal

Bug 1:

- Towards to goal, remember closest point if encounter with obstacle, return the closest point and continue
- Boundary: $D + 1.5 \sum P$. Worst case to travel half of boundary of obstacle to find closest point

Bug 2:

- Along m-line intersect with obstacle, follow obstacle until encounter the m-line again closer to the goal
- Boundary: $D + 0.5 \sum n_i P_i$. n_i is the number of intersection with *ith* obstacle. Worst case to have $\frac{n}{2}$ inner loop

Bug 1 vs Bug 2:

- Bug 1 is an exhausting algorithm, while Bug 2 is a greedy algorithm. Bug 1 is safe and reliable, Bug 2 better in some case
- As the intersection number between m-line and obstacle increasing, the Bug 1 is likely to outperform than Bug 2

Tangent Bug:

- Improvement to the Bug 2 algorithm determines a shorter path to the goal using a range sensor with finite distance sensing
- Motion-to-goal: Move in straight line to goal until sense obstacle, move to an intermediate point O_i according to some distance until reach the goal or a minimum M_i in which case switch to boundary following
- Boundary-following: define d_{reach} (shortest distance between obstacle and goal) and $d_{following}$ (shortest distance between sensed boundary and the goal) and continue move around the obstacle till $d_{reach} < d_{following}$. Then switch to motion to goal
- Issue: the robot does not know the obstacles boundary a priori

• Representation:

Boundary point: represent the object by specifying details about points on the boundary

<u>Primitive:</u> Use primitives (mathematical functions) for defining objects. e.g. Circle - $x^2 + y^2 \le 1$

Polygons and polyhedral use linear primitives (e.g., half spaces)

A generalization of polygons and polyhedral that uses nonlinear primitives

Boundary representation are composed of two parts: topology and geometry(surface, curves and points). The main topological items are: faces(bounded portion of a surface), edge(a bounded piece of a curve) and vertices(lies at a point)

A boundary representation of a nonconvex polygon may be directly encoded by listing the vertices a specific order.

Rigid Body Transformation:

Only change position and rotation, NOT change shape

Rigid body translation: $h(x, y) = (x + x_t, y + y_t)$

2D rotation:
$$R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
 Rotate followed by translate: $T = R(\theta) + t = \begin{bmatrix} \cos\theta & -\sin\theta & x_t \\ \sin\theta & \cos\theta & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

2D rotation about an arbitrary point:
$$T = T(x, y) * R(\theta) * T(-x, -y) = \begin{bmatrix} \cos\theta & -\sin\theta & x_r(1 - \cos\theta) + y_r\sin\theta \\ \sin\theta & \cos\theta & y_r(1 - \cos\theta) - x_r\sin\theta \\ 0 & 0 & 1 \end{bmatrix}$$

Translate by T(-x, -y), Rotate by θ , then translate by T(x, y)

Rigid body translation in 3D: $h(x, y, z) = (x + x_t, y + y_t, z + z_t)$

3D rotation: There are 3 axis of rotations: x, y, z. Each rotation is **counter clockwise**

Commonly used is yaw-pitch-roll referring to rotation about z, y, x axis

$$\text{Yaw: } R_z(\alpha) = \begin{pmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ Pitch: } R_y(\beta) = \begin{pmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{pmatrix} \text{ Roll: } R_x(\gamma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\gamma & -\sin\gamma \\ 0 & \sin\gamma & \cos\gamma \end{pmatrix}$$

Order is important: Rotate γ about x axis, rotate β about y axis, rotate α about z axis:

$$R(\alpha,\beta,\gamma) = R_z(\alpha)R_y(\beta)R_x(\gamma) = \begin{pmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \end{pmatrix}$$

Euler angles: any rotation can be represented by no more than three rotations about coordinate axes, - no two successive rotations are about the same axis

Property of rotation matrix: rotation matrix R is an orthogonal matrix -> $R^TR = RR^T = I \rightarrow \det(R) = \pm 1$, In right hand coordinate: $\det(R) = 1$

Special Orthogonal matrices: $SO(n) = \{R \in R^{n \times n} | RR^T = I \land \det(R) = 1\}$

Gimbal lock: Problem of loss of a degree of freedom in 3D space. How to avoid: not to use gimbals entirely -> Use quaternion methods to derive orientation and velocity

Quaternion:

- Something extend from complex number
- a + bi + cj + dk, and $i^2 = -1$, $j^2 = -1$, $k^2 = -1$. So that: ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j
- Sum: $q_1 + q_2 = (a_1 + a_2, v_1 + v_2)$. Production: $q_1q_2 = (a_1a_2 v_1 \cdot v_2, a_1v_1 + a_2v_2 + v_1 \times v_2)$. If vectors are 0, back to real number, otherwise complex $v_1 \cdot v_2 = b_1b_2 + c_1c_2 + d_1d_2; \ v_1 \times v_2 = (c_1d_2 - c_2d_1)i + (d_1b_2 - d_2b_1)j + (b_1c_2 - b_2c_1)k$
- $q_1q_2 \neq q_2q_1 \rightarrow v_1 \times v_2 \neq v_2 \times v_1$. It is opposite
- Conjugate: q = a + bi + cj + dk, $q^* = a bi cj dk$ \Rightarrow $qq^* = q^*q = a^2 + b^2 + c^2 + d^2$
- Quaternion rotation: $S_{q(N,\frac{\theta}{n})}(v) = q(N,\frac{\theta}{2}) \cdot v \cdot q^*(N,\frac{\theta}{2})$

Unit Quaternion: $q(N, \theta) = (\cos \theta, \sin \theta N)$. Unit quaternion rotation $q = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} N)$

Pros of quaternion: Does not suffer gimbal lock; Concatenating rotation is computationally faster and numerically more stable; Angle and axis is simply to

Cons of quaternion: Not intuitive; Cannot visualize, need to convert to rotation matrix to visualize

Kinematic Chains of Bodies:

- Kinematic: study if possible movements and configurations of a system
- Link: Each rigid body in a chain of rigid bodies; Joint: Connect two rigid bodies and enforces constrains
- Forward kinematics: Position of the end effector in terms of joint angles -> Given the joint angles, find the position of the end-effector
- Inverse kinematics: Joint angles in terms of the position of the end effector \rightarrow Given the position of the end-effector, determine the joint angles
- Application of T_i moves A_i from its body frame to body frame of A_{i-1}

$$T_i = \begin{pmatrix} \cos\theta_i & -\sin\theta_i & a_{i-1} \\ \sin\theta_i & \cos\theta_i & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

For I = 3, we can have

$$x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) + a_3 \cos(\theta_1 + \theta_2 + \theta_3)$$

$$y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2) + a_3 \sin(\theta_1 + \theta_2 + \theta_3)$$

Inverse kinematic with 2 solutions:

$$cos\theta_2 = \frac{1}{2a_1a_2}((x^2 + y^2) - (a_1^2 + a_2^2))$$

$$\sin \theta_2 = \pm \sqrt{1 - \cos^2 \theta_2}$$

$$\cos\theta_1 = \frac{1}{x^2 + y^2} (x(a_1 + a_2 \cos\theta_2) \pm y a_2 \sqrt{1 - \cos^2\theta_2})$$

$$cos\theta_{1} = \frac{1}{x^{2} + y^{2}} (x(a_{1} + a_{2}cos\theta_{2}) \pm ya_{2}\sqrt{1 - cos^{2}\theta_{2}})$$

$$sin\theta_{1} = \frac{1}{x^{2} + y^{2}} (y(a_{1} + a_{2}cos\theta_{2}) \mp xa_{2}\sqrt{1 - cos^{2}\theta_{2}})$$

Configuration Space:

Definition: The configuration of a moving object is a specification of the position of every point on the object

The configuration space C is the set of all possible configurations \rightarrow Configuration space is the space that robot can reach

The dimension of a configuration space: the minimum number of a parameters needed to specify the configuration of object

Degrees of freedom (Dof) of a moving object

Dof for a space: $d = \frac{n(n+1)}{2}$

2-dimensional space: degree is 3, with 2 position parameters and 1 rotation parameters

3-dimensional space: degree is 6, with 3 position parameters and 3 rotation parameters

4-dimensional space: degree is 10, with 4 position parameters and 6 rotation parameters

Dof =
$$\sum (freedom\ of\ bodies) - \#\ of\ independent\ constraints = m(N-1-J) + \sum_{i=1}^J f_i$$

m is space degree, N is number of bodies(include ground), J is number of joints, f is total number of joints degrees

Degree of freedom of different joints:

Revolute joint: 1; Prismatic joint: 1; Universal: 4; Spherical: 3

- One joint can only connect 2 rigid bodies
- Topology:

- Two spaces are topologically equivalent if one can be smoothly deformed to the other without cutting and gluing
- Topologically distinct 1-dimensional space: "circle", "line", "closed interval"
- Topologically distinct 2-dimensional space: "plane", "sphere", "surface of torus", "surface of a cylinder"
- Examples:

Mobile robot translating in palne	\mathbb{R}^2	Rigid body translating in 3D	\mathbb{R}^3
Mobile body trans and rotate 2d	SE(2)	Rigid body trans and rotation	SE(3)
n-joint revolute arm	\mathbb{T}^n	Planar mobile robot with n-joint	$SE(2) \times \mathbb{T}^n$
		arm	
Prismatic joint	\mathbb{R}	Boundary of circle in 2D	\mathcal{S}^1
Torus	$\mathbb{T} = s^1 \times s^1$	Boundary of sphere in 3D	S^2
		2D rotation	SO(2)
		3D rotation	SO(3)
		$S^1 \times S^1 \dots \times S^1 = \mathbb{T}^n \neq S^n$	$SE(3) = \mathbb{R}^3 \times SO(3)$

PRM:

- 1. Add q_{init} , q_{goal} to roadmap vertex set V
- 2. Repeat: for $q \leftarrow Sample()$, add to roadmap vertex set V if isSampleCollisionFree(q) = true
- 3. For each pair neighboring $Sample(q_a, q_b) \in V \times V$

Generate path from $LocalPath(q_a, q_b)$

If $isPathCollisionFree(path) = true: add(q_a, q_b)$ to road map edge set E

4. Search Graph(V, E) for path q_{init} to q_{goal}

Pros: Computationally efficient, Solves high-dimensional problems, Easy to implement, Applications in many different areas

Cons: Not guarantee completeness (Not always find solution or report no solution exist)

Probabilistic completeness:

- 1. When has solution, probability to find a solution when time goes infinite
- 2. When no solution may not able to determine solution does not exist

Path smoothing:

Repeatedly replace long paths by short paths

Roadmap with no circle: Edge is added to roadmap only if connects two different roadmap components

Lazy PRM:

- 1. Generate samples and construct edges
- 2. Find minimum path to check if is edge collision free
- 3. Remove collision edge and redo procedure

Narrow-Passage Problem

1. Probability of generating samples vis uniform sampling in a narrow passage is low due to the small volume of the narrow passage.

Gaussian Sampling

- 1. $q_a \leftarrow$ generate configuration uniformly at random
- 2. $r \leftarrow$ generate distance form Gaussian distribution
- 3. $q_b \leftarrow$ generate configuration uniformly at random at distance r from q_a
- 4. If q_a is collision free and q_b is not, return q_a
- 5. If q_b is collision free and q_a is not, return q_b
- 6. Otherwise, return null

Bridge-based Sampling

If q_b and q_b are both NOT collision free, then create Path between q_b and q_b

And find q at the midpoint of the Path then check if q is collision free

Visibility-based Sampling

Generate samples that create new components or join existing components

- 1. Generate a q uniformly at random and if is CollisionFree() is true
- 2. If q belongs to a new roadmap component then return
- 3. If q connects two roadmap components then return

4. Otherwise return null

Importance Sampling

Construct roadmap using given sampling strategy

Identify roadmap nodes that lie in regions that are hard to connect

Sample more in these regions

• Tree-based Motion Planning

Useful for problems that involves kinematic and dynamic constrains

General idea: Graw a tree in the free configuration space from q_{init} to q_{goal}

Rapidly-exploring Random Tree (RRT)

- \blacksquare Generate q_{rand} at random sample and find q_{near} which is the nearest configuration in Tree from q_{rand}
- Generate Path from q_{rand} to q_{near} and if $dist \leq step$, add q_{rand} to Tree and add Path as edge to Tree
- Else find a configuration q_{new} in the Path has $dist \leq step$, add q_{new} to Tree and add (q_{new}, q_{near}) as edge
- If find solution $dist(q_{new}, q_{goal}) \approx 0$, return. Otherwise repeat

Aspect of improvement:

Only take small step between q_{rand} and $q_{near} \rightarrow$ Take several steps until q_{rand} is reached or a collision is found

Expansive-Space Tree (EST)

- Push the tree frontier in the free configuration space
- EST associate a weight w(q) with each tree configuration
- \blacksquare w(q) is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch
- $w(q) = \frac{1}{1 + \deg(q)} = \frac{1}{(1 + \text{number of neighbors near } q)}$
- Select q in T with probability $w(q)/\sum_{q' \in T} w(q')$
- Sample a collision-free configuration near q_{near}
- Generate path from q to q_{near}
- If path is collision-free, then add to the Tree

Bi-directional Trees

- Rooted at q_{start} and q_{goal}
- Fewer configuration in each tree, imposes less of a computational burden
- Each tree explores a different part of the configuration space
- PRM provides global sampling of the configuration space. But if sampling is sparse, roadmap is disconnected, and dense sampling is impractical in high-dimensional spaces
- Tree planner provides fast local exploration of area around root. But tree growth slow down significantly in high-dimensional spaces even bi-directional trees offers some improvements
- Sampling-based Roadmap of Trees (SRT)
 - Hierarchical planner
 - Top level performs global sampling (PRM-based)
 - Bottom level performs local sampling (Tree-based)
 - Combines advantages of global and local sampling
 - ◆ Idea: Sample some configurations in space, and expand configurations into Trees, then connect nearest trees
 - Combine Sampling with Some Estimation of Coverage
 - ♦ EST: Use density of nodes to guide expansion (density bias)
 - ♦ SBL: Uses some coverage estimates and density of nodes
 - KPIECE (Sampling and some estimation of coverage):
 - ♦ Keeps tract of coverage by using discretization and by distinguishing the boundary from the covered space
 - ♦ Keeping of coverage can be done in a hierarchical fashion
 - Projections may be used
 - Path-Directed Subdivision Trees (PDST):
 - ♦ Incrementally grows a tree
 - ◆ Samples are paths instead of configurations
 - ◆ Density used to limit redundant growth
 - ♦ Measures coverage spatially and uses deterministic priority scheme to guide expansion. No distance measure is needed
 - ◆ Excellent planner for robots with dynamics