# Overview of Hypothesis Testing

Paul Wakim, PhD

Chief, Biostatistics and Clinical Epidemiology Service Clinical Center, National Institutes of Health U.S. Department of Health and Human Services

3 November 2015



#### Outline

- Fundamentals of Hypothesis Testing
- Superiority vs. Non-Inferiority vs. Equivalence
- Multiple Comparisons (Multiplicity Adjustment)
- Bottom-Line Key Points

#### Outline

- Fundamentals of Hypothesis Testing
- Superiority vs. Non-Inferiority vs. Equivalence
- Multiple Comparisons (Multiplicity Adjustment)
- Bottom-Line Key Points

## Question

Without \_\_\_\_\_ ? \_\_\_ , there is no need for Statistics

## Answer

Without variability, there is no need for Statistics









#### Statistical Inference

- 1) Draw a sample from the population of interest
- 2) Analyze the sample data
- 3) Make conclusion about the population based on results from the sample

## Typical Setting of Statistical Inference (non-Bayesian)

Null Hypothesis  $(H_0)$ Experimental = Control or Experimental - Control = 0

Alternative Hypothesis  $(H_1 \text{ or } H_A)$ Experimental  $\neq$  Control or Experimental – Control  $\neq$  0

Question: Is there enough evidence to reject H<sub>0</sub>

– the hypothesis of no difference?

We expect (hope) to reject H<sub>0</sub> in favor of H<sub>A</sub>

| Conclusion        | Reject H <sub>0</sub><br>(evidence of<br>difference)            |  |
|-------------------|-----------------------------------------------------------------|--|
| (based on sample) | Fail to Reject H <sub>0</sub><br>(no evidence of<br>difference) |  |

|                   |                                                                 | True (Unknown) State                      |                                             |
|-------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
|                   |                                                                 | No Difference<br>(H <sub>0</sub> is true) | <b>Difference</b> (H <sub>0</sub> is false) |
| Conclusion        | Reject H <sub>0</sub><br>(evidence of<br>difference)            |                                           |                                             |
| (based on sample) | Fail to Reject H <sub>0</sub><br>(no evidence of<br>difference) |                                           |                                             |

|                   |                                                                 | True (Unknown) State                      |                                             |
|-------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
|                   |                                                                 | No Difference<br>(H <sub>0</sub> is true) | <b>Difference</b> (H <sub>0</sub> is false) |
| Conclusion        | Reject H <sub>0</sub><br>(evidence of<br>difference)            |                                           | Correct Conclusion<br>(True Positive)       |
| (based on sample) | Fail to Reject H <sub>0</sub><br>(no evidence of<br>difference) |                                           |                                             |

|                   |                                                                 | True (Unknown) State                             |                                             |
|-------------------|-----------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
|                   |                                                                 | <b>No Difference</b><br>(H <sub>0</sub> is true) | <b>Difference</b> (H <sub>0</sub> is false) |
| Conclusion        | Reject H <sub>0</sub><br>(evidence of<br>difference)            |                                                  | Correct Conclusion<br>(True Positive)       |
| (based on sample) | Fail to Reject H <sub>0</sub><br>(no evidence of<br>difference) | Correct Conclusion<br>(True Negative)            |                                             |

|                                    |                                                                 | True (Unknown) State                      |                                             |
|------------------------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
|                                    |                                                                 | No Difference<br>(H <sub>0</sub> is true) | <b>Difference</b> (H <sub>0</sub> is false) |
| Conclusion<br>(based on<br>sample) | Reject H <sub>0</sub><br>(evidence of<br>difference)            | <b>Type I Error</b> (False Positive)      | Correct Conclusion<br>(True Positive)       |
|                                    | Fail to Reject H <sub>o</sub><br>(no evidence of<br>difference) | Correct Conclusion<br>(True Negative)     |                                             |

|                                                                        |                                                                 | True (Unknown) State                      |                                             |
|------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
|                                                                        |                                                                 | No Difference<br>(H <sub>0</sub> is true) | <b>Difference</b> (H <sub>0</sub> is false) |
| Conclusion (ev diff sample)  (based on sample)  (a)  (big diff sample) | Reject H <sub>0</sub><br>(evidence of<br>difference)            | <b>Type I Error</b> (False Positive)      | Correct Conclusion<br>(True Positive)       |
|                                                                        | Fail to Reject H <sub>0</sub><br>(no evidence of<br>difference) | Correct Conclusion<br>(True Negative)     | <b>Type II Error</b> (False Negative)       |

 $\alpha$  (alpha) = probability of making a Type I error  $\beta$  (beta) = probability of making a Type II error

## Alpha (α) Probability of Making a Type I Error

Non-technical definition (superiority trial): Chance of concluding that the experimental treatment is more effective when in fact it is not

#### **Technical definition:**

Probability of rejecting H<sub>0</sub> when H<sub>0</sub> is true

#### Different perspectives:

Regulatory agency, pharmaceutical company

#### **Bottom line:**

Most commonly used value for  $\alpha$ : 0.05 (two-sided)

## Beta (β) Probability of Making a Type II Error

- $\beta$  = Chance of claiming no diff. when a diff. exists
  - = Probability of *not* rejecting  $H_0$  when  $H_0$  is false

Low β is "good"

Power =  $1 - \beta$ 

- = Probability of rejecting  $H_0$  when  $H_0$  is false
- = Probability of detecting an effect when it exists

High power is "good"

#### Power to Detect an Effect

Non-technical definition (superiority trial): Chance of concluding that the experimental treatment is more effective when in fact it is

#### **Technical definition:**

Probability of rejecting  $H_0$  when  $H_0$  is false (i.e. when  $H_A$  is true)

#### Different perspectives:

Regulatory agency, pharmaceutical company

#### **Bottom line:**

Most commonly used value for power:

Early-phase: 0.60 to 0.80 – Late-phase: 0.80 to 0.95

If you don't change the sample size...

 $\alpha(alpha) \psi \Leftrightarrow \beta(beta) \uparrow \Leftrightarrow Power \psi$ 

Toss a coin

#### Null hypothesis $(H_0)$ :

It's the regular coin, with *Head* on one side and *Tail* on the other side

#### Alternative hypothesis $(H_A)$ :

It's the other coin, with Head on both sides

We assume "equipoise", i.e. the coin is as likely to be a regular coin as to have 2 Heads

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |
| 3              | 3                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |
| 3              | 3                       |
| 4              | 4                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |
| 3              | 3                       |
| 4              | 4                       |
| 5              | 5                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |
| 3              | 3                       |
| 4              | 4                       |
| 5              | 5                       |
| 6              | 6                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) |
|----------------|-------------------------|
| 1              | 1                       |
| 2              | 2                       |
| 3              | 3                       |
| 4              | 4                       |
| 5              | 5                       |
| 6              | 6                       |
| 7              | 7                       |

Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

How many consecutive Heads did it take you to reject H<sub>0</sub>?

How does it compare to a p-value of 0.05?

| # of<br>Tosses | # of<br>Heads<br>(data) | p-value |
|----------------|-------------------------|---------|
| 1              | 1                       | 0.500   |
| 2              | 2                       | 0.250   |
| 3              | 3                       | 0.125   |
| 4              | 4                       | 0.063   |
| 5              | 5                       | 0.031   |
| 6              | 6                       | 0.016   |
| 7              | 7                       | 0.008   |

Hypotheses: Experiment: 7 tosses

H<sub>0</sub>: it's a regular coin Data: 7 Heads

 $H_{\Delta}$ : the coin has 2 Heads Result: p-value=0.008

Conclusion: reject H<sub>0</sub>

Have we proved H<sub>A</sub>?

Is 0.008 the likelihood that the results are *due* to chance? No

Is 0.008 the probability that H<sub>0</sub> is true?

Is 0.992 (1–0.008) the probability that  $H_A$  is true?

0.008 is the probability of getting 7 Heads if it were a regular coin  $(H_0)$ 

## Definition of p-value

The p-value is the probability of obtaining a result as extreme or more extreme than the one obtained, if  $H_0$  were actually true

If p-value  $\leq \alpha$  (alpha), reject H<sub>0</sub> If p-value  $> \alpha$  (alpha), do not reject H<sub>0</sub>

Commonly used alpha levels: 0.05 or 0.01

## Bayesian Approach



#### Hypotheses:

 $H_0$ : it's a regular coin: P(H) = p = 1/2

 $H_A$ : the coin has 2 Heads: P(H) = p = 1

## Bayesian Approach

If we start with the belief (prior) that  $H_0$  and  $H_A$  are equally likely,

## Updating the Distribution of p=P(H) with Data





















#### Hypotheses:

 $H_0$ : it's a regular coin: P(H) = p = 1/2

 $H_A$ : the coin has 2 Heads: P(H) = p = 1

## Bayesian Approach

If we start with the belief (prior) that  $H_0$  and  $H_A$  are equally likely,

then after 7 tosses (experiment) and 7 Heads (data),

our updated belief (posterior) is:

we're 0.8% sure P(Head)=1/2 (H<sub>0</sub>) – it's the regular coin and 99.2% sure that P(Head)=1 (H<sub> $\Delta$ </sub>) – it's the 2-H coin

#### Hypotheses:

H<sub>0</sub>: it's a regular coin

H<sub>A</sub>: the coin has 2 Heads

| # of<br>Tosses | # of<br>Heads<br>(data) | Frequentist's p-value | Toss<br># | Result<br>(data) | Bayesian's posterior prob. of regular coin |
|----------------|-------------------------|-----------------------|-----------|------------------|--------------------------------------------|
| 1              | 1                       | 0.500                 | 1         | Н                | 0.333                                      |
| 2              | 2                       | 0.250                 | 2         | Н                | 0.200                                      |
| 3              | 3                       | 0.125                 | 3         | Н                | 0.111                                      |
| 4              | 4                       | 0.063                 | 4         | Н                | 0.059                                      |
| 5              | 5                       | 0.031                 | 5         | Н                | 0.030                                      |
| 6              | 6                       | 0.016                 | 6         | Н                | 0.015                                      |
| 7              | 7                       | 0.008                 | 7         | Н                | 0.008                                      |

# What is the connection between alpha ( $\alpha$ ) and p-value?

If the p-value is less than  $\alpha$  (typically 0.05), the null hypothesis (e.g. of no difference) is rejected, and the result is declared statistically significant at the 5% alpha level

If the p-value is greater than  $\alpha$ , the result is not statistically significant at the 5% alpha level

# What is the connection between p-value and sample size?

Randomized Controlled Trial

Objective: To compare 2 treatments

Data are collected. Analysis is done.

Result: p-value = 0.something

# Distribution of the difference between the 2 treatment groups, IF in fact there is no difference

Observed treatment effect = 3

One-sided p-value = 0.16

Two-sided p-value = 0.32



# Distribution of the difference between the 2 treatment groups, IF in fact there is no difference

N is increased – everything else remains the same

Observed treatment effect = 3



# Distribution of the difference between the 2 treatment groups, IF in fact there is no difference



### What's the point?

There are two ways to get statistically significant results... guaranteed!

1. Analyze a very large sample

# What is the connection between confidence intervals and hypothesis testing?

#### 95% Confidence Intervals



# 95% Confidence Intervals (natural perspective)

There is a 95% chance that the true *unknow*n value is inside the confidence interval

We are 95% confident that the true *unknown* value is somewhere within the confidence interval

# 95% Confidence Intervals (natural perspective)



# 95% Confidence Intervals (frequentist's pure perspective)

There is a 95% chance that the confidence interval covers the true *unknown* value

# 95% Confidence Intervals (frequentist's pure perspective)

true *unknown* value

### 95% Confidence Intervals



True Difference

# What is the connection between confidence intervals and hypothesis testing?

If the 95% confidence interval does not include the value of the null hypothesis (e.g. of zero difference), the result is statistically significant at the 5% alpha level

If it does, the result is not statistically significant at the 5% alpha level

#### Outline

- Fundamentals of Hypothesis Testing
- Superiority vs. Non-Inferiority vs. Equivalence
- Multiple Comparisons (Multiplicity Adjustment)
- Bottom-Line Key Points

## Superiority

#### Clinical hypothesis:

Experimental treatment is more effective than the control treatment

#### Statistical hypotheses:

Null hypothesis  $H_0$ : Experimental = Control Alternative hypothesis  $H_A$ : Experimental  $\neq$  Control

We expect (hope) to reject  $H_0$  in favor of  $H_A$ 

## Superiority



95% confidence intervals around the difference: Experimental – Control High numbers (on the right) represent good outcome

Based on Piaggio 2006

## Non-Inferiority

#### Clinical hypothesis:

Experimental treatment is not less effective than the control treatment

#### Statistical hypotheses:

Null hypothesis  $H_0$ : Experimental < Control –  $\delta$ Alternative hypothesis  $H_{\Delta}$ : Experimental  $\geq$  Control –  $\delta$ 

We expect (hope) to reject H<sub>0</sub> in favor of H<sub>A</sub>

## Non-Inferiority



95% confidence intervals around the difference: Experimental – Control High numbers (on the right) represent good outcome

Based on Piaggio 2006

### Equivalence

#### Clinical hypothesis:

Experimental treatment is as effective as the control treatment

#### Statistical hypotheses:

Null hypothesis  $H_0$ :

Experimental < Control –  $\delta$  <u>or</u> Experimental > Control +  $\delta$  Alternative hypothesis H<sub>A</sub>:

Control  $-\delta \le \text{Experimental} \le \text{Control} + \delta$ 

We expect (hope) to reject H<sub>0</sub> in favor of H<sub>A</sub>

## Equivalence



95% confidence intervals around the difference: Experimental – Control High numbers (on the right) represent good outcome Based on Piaggio 2006

#### Outline

- Fundamentals of Hypothesis Testing
- Superiority vs. Non-Inferiority vs. Equivalence
- Multiple Comparisons (Multiplicity Adjustment)
- Bottom-Line Key Points





### When to do multiplicity adjustment?

Formally, whenever there are more than one primary endpoint (or primary hypothesis), more than two treatment conditions, more than one dose vs. placebo, or more than one time point

Informally, whenever there are more than one secondary analysis, including subgroup analyses

### The second way....

There are two ways to get statistically significant results... guaranteed!

- 1. Analyze a very large sample
- 2. Keep trying different statistical tests on different assessments (outcomes) or on different subgroups of the data

#### Outline

- Fundamentals of Hypothesis Testing
- Superiority vs. Non-Inferiority vs. Equivalence
- Multiple Comparisons (Multiplicity Adjustment)
- Bottom-Line Key Points

#### **Bottom-Line Key Points**

- Statistical inference uses results from a sample from the population of interest to draw conclusions about the population
- The null hypothesis is set up with the hope that it will be rejected
- Alpha (α) is the chance of making a Type I error, i.e.
   of concluding that there is a difference when in fact
   there isn't
- Beta (β) is the chance of making a Type II error, i.e. of concluding that there isn't a difference when in fact there is
- Power =  $1 \beta$  = the chance of concluding that there is a difference when in fact there is

### Bottom-Line Key Points (cont'd)

- The investigator controls the chance of making a Type I error (alpha) and the chance of making a Type II error (beta) via the sample size
- P-value is the probability of obtaining a result as extreme or more extreme than the one obtained, if there were no difference
- Statistical significance does not mean clinical importance
- Confidence intervals are very useful to better understand results
- Multiplicity adjustment is needed with more than one primary hypothesis
- Bayesian approach is gaining popularity as being more intuitive, and is worth considering

## The End



Thank you for your attention
I hope this was worth your time

#### References

Piaggio G et al., Reporting of Noninferiority and Equivalence Randomized Trials: An Extension of the CONSORT Statement, JAMA, 2006, 295:1152-1160

Underwood D, *The Profitable Pause*, International Clinical Trials, August 2011, Issue 21, 56-60

## Questions / Comments