Bike Share Linear Regression

Elizabeth Do Alexis Khamphilom

Data Background

- University of California Irvine Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/bike+sh aring+dataset
- 17,379 Instances & 17 Variables
- Bike share records by the hour from 2011 to 2012 based in Washington, D.C
- Dataset contains environmental and seasonal settings (windspeed, temperature, working day, season, etc.)

Questions

- What are the main predictors for bike share count?
- How does the environment and weather affect the bike share count?
- When is the best time to rent a bike share?

Exploratory Data Analysis

Load dataset and libraries

- library(caret)
- library(ggplot2)
- library(dplyr)
- library(GGally)

Data cleaning

3rd Qu.:281.0 Max. :977.0

- Removed columns
- Renamed columns
- Changed data types to factors

instant	dteday	season	yr	n	inth	hr	holiday	weekday	workingday
Min. : 1	Min. :2011-01	-01 1:4242	0:8645	5	:1488	Min. : 0.0	0 0:16879	0:2502	0: 5514
1st Qu.: 4346	1st Qu.:2011-07	-04 2:4409	1:8734	7	:1488	1st Qu.: 6.0	00 1: 500	1:2479	1:11865
Median : 8690	Median :2012-01	-02 3:4496		12	:1483	Median :12.0	00	2:2453	
Mean : 8690	Mean :2012-01	-02 4:4232		8	:1475	Mean :11.5	55	3:2475	
3rd Qu.:13034	3rd Qu.:2012-07	-02		3	:1473	3rd Qu.:18.0	00	4:2471	
Max. :17379	Max. :2012-12	-31		10	:1451	Max. :23.0	00	5:2487	
):8521			6:2512	
weathersit	temp	atemp		hum	V	rindspeed	casual	re	egistered
Min. :1.000	Min. :0.020	Min. :0.0000) Min.	:0.00	000 Mir	1. :0.0000	Min. : 0.	00 Min.	: 0.0
1st Qu.:1.000	1st Qu.:0.340	1st Qu.:0.333		Qu.:0.48		Qu.:0.1045	1st Qu.: 4.		Qu.: 34.0
Median :1.000	Median :0.500	Median :0.4848	3 Medi	an :0.63	00 Med	lian :0.1940	Median : 17.	00 Medi	ian :115.0
Mean :1.425	Mean :0.497	Mean :0.4758	3 Mean	:0.62	72 Mea	n :0.1901	Mean : 35.	68 Mean	1 :153.8
3rd Qu.:2.000	3rd Qu.:0.660	3rd Qu.: 0.6212	2 3rd	Qu.:0.78	300 3rd	Qu.:0.2537	3rd Qu.: 48.	00 3rd	Qu.:220.0
Max. :4.000	Max. :1.000	Max. :1.0000) Max.	:1.00	000 Max	. :0.8507	Max. :367.	00 Max.	:886.0
cnt									

Exploratory Data Analysis

- Visualize distribution of counts
 - Working day vs. Count: increased bike rentals during working days

Month vs Count by Season: increased bike rentals during Spring and Summer months

Variable Selection

- ggpairs to explore correlation between variables
- Highly positive correlation between count and temp at 0.405
- Determined that count and wind speed correlation is low at 0.093

Variable Selection

- Focused on temperature as the variable vs. count of bike rentals
- Increased in Spring and Summer
- Decreased in Fall and Winter

Forward Selection Model

```
Linear Regression with Forward Selection

13904 samples
    16 predictor

No pre-processing
Resampling: Cross-validated (10 fold)
Summary of sample sizes: 12514, 12515, 12512, 12513, 12513, 12513, ...
Resampling results across tuning parameters:

nvmax RMSE Rsquared MAE
2 0.2109028 0.9556167 0.1398529
3 0.2085877 0.9565088 0.1398499
```

RMSE was used to select the optimal model using the smallest value. The final value used for the model was nvmax = 4.

0.1998162 0.9599774

Ridge Model

Ridge Regression

13904 samples 16 predictor

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 12513, 12514, 12513, 12514, 12514, 12514, ... Resampling results across tuning parameters:

lambda	RMSE	Rsquared	MAE
0e+00	1.678867e-11	1.0000000	1.205701e-11
1e-04	7.280988e-05	1.0000000	5.892592e-05
1e-01	6.558327e-02	0.9965326	5.332291e-02

RMSE was used to select the optimal model using the smallest value. The final value used for the model was lambda = 0.

Full Model

```
> full_model
Linear Regression
13904 samples
   16 predictor
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 12514, 12513, 12513, 12513, 12513, 12514, ...
Resampling results:
  RMSE
                Rsquared MAE
  5.863997e-15 1
                         5.059537e-15
Tuning parameter 'intercept' was held constant at a value of TRUE
> postResample(pred = pred full, obs = data_test_proc$cnt)
                 Rsquared
        RMSE
                                  MAE
8.650100e-15 1.000000e+00 7.506199e-15
> postResample(pred = pred_fit, obs = data_test_proc$cnt)
     RMSE Rsquared
0.9139233 0.1560137 0.6955093
```

 RMSE from the Full Model improved from the model fit from 0.9139233 to 8.650100e-15

Model Comparison


```
Call:
summary.resamples(object = results)
Models: forward_model, ridge_model, full_model
Number of resamples: 10
MAE
                      Min.
                                1st Ou.
                                              Median
                                                              Mean
forward_model 1.351373e-01 1.373775e-01 1.400522e-01 1.394791e-01
              2.058812e-15 4.812974e-13 8.032226e-13 6.160524e-10
full model
              3.345588e-15 4.215177e-15 4.661787e-15 5.059537e-15
                   3rd Ou.
forward model 1.415159e-01 1.426219e-01
ridge_model
            2.318225e-11 5.465598e-09
              4.776140e-15 1.136381e-14
full model
RMSE
                      Min.
                                              Median
                                1st Ou.
forward_model 1.966329e-01 2.019988e-01 2.068263e-01 2.057752e-01
              2.704072e-15 6.765759e-13 1.124692e-12 8.425584e-10
full model
              3.982160e-15 5.115196e-15 5.407496e-15 5.863997e-15
                   3rd Ou.
                                   Max. NA's
forward model 2.091535e-01 2.174141e-01
ridge_model
              3.211450e-11 7.459150e-09
                                           0
full_model
              5.754910e-15 1.177975e-14
                                           0
Rsquared
                                     Median
                          1st Qu.
                                                        3rd Ou.
                   Min.
                                                 Mean
forward model 0.9541719 0.9555462 0.9582487 0.9577666 0.9599802 0.9605839
ridge_model
              1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
full model
              1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
              NA'S
forward model
ridge_model
full model
```

 The Full Model had a significantly lower RMSE mean than both the Forward Selection Model & Ridge Model

Conclusion & Recommendations

Conclusion:

- Temperature and working day are the main predictors for bike rental share count
- The environment and weather affect the bike share count, since there is an increase in count as temperature increases
- The best time to rent a bike share is when it is a warmer temperature (Summer and Spring) and on a working day.

Recommendations:

- Increase the number of bike rentals in the warmer seasons for more usage
- Increase the number of bike rentals near offices on working days for commuters
- Schedule maintenance for bike rentals on weekend evenings when it is being used less