COMPUTATIONAL VISION: Face Detection

Master in Artificial Intelligence

Department of Mathematics and Computer Science

2019-2020

Outline

- 1. Basic Concepts
- 2. Visual features
- 3. Ensemble learning
- 4. Cascade of classifiers

"Hidden Face by Coffee Beans"

- The first step to face analysis
 - Given an image, where are the faces?

Identify and locate human faces in an image regardless of their position, scale, in plane rotation, orientation, pose and illumination.

→ A very difficult problem

Detection vs. Recognition

Intra-class variability

• Inter-class confusion

Paul Newman/Marlon Brando

- Classical approach for face detection:
 - P. Viola and M. Jones. *Rapid object detection using a boosted cascade of simple features*. Proc. CVPR, 1:511-518, 2001.

Objectives of Viola & Jones method:

- Accurate detection of faces
- Fast Algorithm
- Real-time detection (video processing)

With a camera, we do not want to wait too much time to take a picture!

Viola & Jones method

- Posed as a standard pattern recognition problem
- The main steps of a pattern recognition problem are:
 - 1. Feature extraction from the image
 - 2. Training of a classifier
 - 3. Test of new images using the trained classifier

Pattern recognition scheme

Basic concepts for understanding Viola & Jones method:

- 1. "Rectangular" features (Haar-like features)
- 2. Integral Images
- 3. AdaBoost
- 4. Cascade of classifiers

Windowing strategy

Basic Concepts

- Restrictions
 - Large number of regions to analyze (after windowing strategy)
 - Unbalanced problem
 - Most of the regions are from non-face class
 - Only few windows or none have a face

- Samples set
 - Positive and negative image samples (X)
 - Labels (Y)
- An image is a matrix

140	140	140	121	121	140
141	142	120	121	121	142
143	121	121	200	200	50
121	121	204	201	200	50
121	204	202	198	250	2
204	203	198	150	250	5

- Feature: function that transforms an image (matrix) into a value
 - A certain pixel of the image
 - Mean value of the image
 - **—** ...

- Feature Set
 - All pixels of the image
 - Family of functions
 - Filter banks
 - SIFT descriptor

N features

X11	X12	X 13	 	X ₁ N
X21	X22	X 23	 	X ₂ N
X 31	X 32	X 33	 	Хзи
X41			 	X4N
Хм1			 	Xmn

M Samples

- Visual Features
 - Designed to be sensitive to visual artifacts in the objects
 - Contrasted regions
 - Edges
 - Corners
 - **—** ...

Rectangle features

The k-th feature:

$$F_k = \sum_{(i,j) \in R1} I(i,j) - \sum_{(i,j) \in R2} I(i,j)$$

- Set of features: different sizes, shapes and positions of the regions with respect to the window.
- Region configurations to detect
 - Edges
 - Lines
 - Center-surround structures
- Definition in a training window

• For a 24x24 detection region, the number of possible rectangle features (A and B) is over 180,000.

Feature interpretation:

Which structures of the image are they showing?

Feature interpretation:

And apply to faces, which information are they providing?

Feature extraction:

Given the set of masks, a feature vector of the window is built:

The feature vector describes the content of the window and it is used to train the classifier and to detect faces.

How rectangle features are computed in a fast way:

Integral Image

$$II(x, y) = \sum_{i=1}^{x} \sum_{j=1}^{y} I(i, j)$$

We use the intergral image to efficiently compute rectangle sums:

$$D = 1+4-(2+3)$$
= $A + (A + B + C + D) - (A + B + A + C)$
= D

Any rectangular sum can be computed in constant time and it is independent of the size of the rectangular area.

In Python:

np.cumsum(np.cumsum(img_arr, axis=0), axis=1);

 Integral Image enables to evaluate all rectangle sizes in constant time. Therefore, no image scaling is necessary.

- Multi-scale detection by means of region scaling
 - Just scale the parameters of the features

- Given an image (region), predicts its class
 - Using all the N features

Using a subset of K features: Feature selection

- Feature selection
 - Remove noisy features
 - Time restriction
 - Repetitions of the method (Object detection)
 - Large feature sets
- Classification algorithm:
 - AdaBoost (Adaptive Boosting)
 - Feature selection
 - Strong classifiers from simple classifiers
 - Ensemble of classifiers

AdaBoost

- Introduced by Freund & Schapire in 1999.
- Combine several weak classifiers to build a single strong classifier
 - >> BOOSTING
- Weak classifiers are defined in each iteration and are devoted to misclassified examples
 - >> ADAPTIVE

AdaBoost revision

- Weak classifier/hypothesis
 - Decision stumps
 - 1 feature + Threshold

$$X = \begin{cases} f_i(X) \to \Re \\ h(X) = \begin{cases} +1 & if \ f(X) \ge Thr \\ -1 & elsewhere \end{cases}$$

Strong classifier/hypothesis

$$\mathbf{X} = \begin{bmatrix} h_1(X) \rightarrow \{-1,+1\} \\ h_2(X) \rightarrow \{-1,+1\} \\ \dots \\ h_m(X) \rightarrow \{-1,+1\} \end{bmatrix} \qquad H(X) = sign\left(\sum_{i=1}^m h_i(X)\right)$$

AdaBoost revision

- Weighting strategy
 - Focus on **difficult samples** by adding a weight to each sample: $X = \{x \mid i=1 \cdot N\}$

$$X = \{x_i \mid i = 1: N\}$$

$$Y = \{y_i \mid i = 1: N\}$$

$$\sum_{i=1}^{N} \omega_i = 1$$

$$W = \{\omega_i \mid i = 1: N\}$$

- Weak Learner
 - Find the weak hypothesis that minimizes the weighted error: N

$$\varepsilon = \sum_{h(x_i) \neq y_i}^{N} \omega_i$$

AdaBoost

AdaBoost

Strong Classifier

Hypothesis

$$h(X) = \begin{cases} +1 & if \ f(X) \ge Thr \\ -1 & elsewhere \end{cases}$$

Final decision

$$H(X) = sign\left(\sum_{i=1}^{m} h_i(X)\right)$$

Input test image

After some experiments:

The initial rectangle features selected by Adaboost are:

In general, detection error is measured in:

- False Positive (FP)
- False Negative (FN)

Viola & Jones method accepts FP, but not a FN.

→ Faces can not be lost!!

Cascade of classifiers

- Method to speed-up the detection process.
 Typical when windowing is used.
- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows

- Each stage only process regions classified as faces by the previous stages.
 - Similarity between faces/non-faces regions increments each stage, incrementing the difficulty of the problem.

Number of regions processed by each stage decrease exponentially:

#windows	Stage 0	Stage 1	Stage 5	Stage 10	Stage 15
FA = 0.5	1.000.000	500.000	31.250	976	30

Basic evaluation concepts:

- Probability of detection (POD) or **Detection Rate** (DR):
 DR = TP/(TP+FN) = TP/P
- False alarm rate (FA) or False Positive rate:

$$FA = FP/(TN+FP) = FP/N$$

Receiver operating characteristic (ROC) curve

 Chain classifiers that are progressively more complex and have lower false positive rates

Criteria for cascade design:

- 1) Each classifier of the cascade is an AdaBoost
- 2) The first classifier C₁ is the simplest one
- 3) Following classifiers are more complex to refine the results of previous classifiers.

Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
- Test on a validation set
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

- Viola & Jones prepared their final Detector cascade:
 - 38 layers (stages), 6060 total features included
 - 1st classifier- layer, 2-features
 - 50% FP rate, 99.9% TP rate
 - 2nd classifier- layer, 10-features
 - 20% FP rate, 99.9% TP rate
 - Next 2 layers 25-features each, next 3 layers 50-features each and so on...
- Tested on the MIT+MCU test set
- Process a 384x288 image on a PC (dated 2001) took about 0.067 seconds

Results

Summary

- Viola & Jones algorithm is a method for automatic detection of faces in an image.
- Rectangle Haar-like features provide a description of the window features of the image
- By means of integral images, the rectangle features can be computed fast!
- Rectangle features are robust in front of noise
- AdaBoost is used for feature selection and classification
- Cascade of classifiers allows to obtain a very low false negative rate detecting faces at real-time!

Bibliography

Bibliography:

- Szelisky, "Computer Vision: algorithms and applications".
- P. Viola and M. Jones. "Rapid object detection using a boosted cascade of simple features".
- Proc. CVPR, 1:511-518, 2001. P. Viola and M. Jones: "Robust Real-time Object Detection", IJCV 2001.

- Article: https://realpython.com/traditional-face-detection-python/
- Videos:
 - http://www.youtube.com/watch?NR=1&v=lvBvFHEX-CY
 - http://www.youtube.com/watch?NR=1&v=JyBMxeVCQkc
 - http://videolectures.net/lmcv04_verri_clafa1/

COMPUTATIONAL VISION: Face Detection

Master in Artificial Intelligence

Department of Mathematics and Computer Science

2019-2020

