Hoofdstuk 6 : Continuïteit (handboek analyse 2)

1. Eigenschappen van absolute waarden p 12-13

Extra oefeningen + nr 9, 11, 12 p 14

2. ε-Omgeving van een getal p 15

Extra oefeningen

- 3. Continuïteit p 15-27
 - 3.1 Inleidende voorbeelden
 - 3.2 Omgevingsdefinitie
 - 3.3 ε - δ -definitie
 - 3.4 Continuïteit van bijzondere functies
 - 3.5 Links en rechts continuïteit
 - 3.6 Eigenschappen van continue functies

Extra oefeningen + nr 1, 2, 3, 4 p 35

Oefening 1

Tot welk interval behoort x als:

- a) $|x-2,3| \le 0.05$
- b) $\left|\frac{2x}{3}\right| \le 4$
- c) |x + 2| < 4
- d) $|1-x| \le 0,1$

Oefening 2

Bereken zonder GRM: $|\pi-1|-|\pi-2|-|\pi-3|-|\pi-4|$ (VWO 2016 ronde 1)

Oefening 3

Welke van de volgende verzamelingen zijn ε – omgevingen van -4? Waarom niet?

]-6,-5[]-6,6[]-4,4[]-8,0[[-8,0]

Oefening 4

Zijn volgende intervallen ε – omgevingen, linker of rechteromgevingen van 8?

]6,10[]6,12[]6,10] [8,9[]5,8[]1,8[U]8,9[

[0,10] [4,8]

Oefening 5

Van enkele functies is de grafiek gegeven. Beantwoord voor elke functie de volgende vragen:

- Is f continu in a?
- Is f links continu in a?
- Is f rechts continu in a?

Oefening 6

$$\begin{cases} \forall x \in IR_0^- : f(x) = 2x \\ \forall x \in] 0,2 [: f(x) = x \\ \forall x \in [2,4] : f(x) = x + 1 \\ \forall x \in [4,6] : f(x) = 1 \end{cases}$$

Gevr: a) dom f

- b) teken de grafiek van f
- c) onderzoek grafisch de continuïteit van f in 0, 1, 2, 3, 4, 5, 6, 7

Oefening 7

$$\begin{cases} \forall x \in] -6,-4 \]: f(x) = x + 2 \\ \forall x \in] -4,-2 \ [: f(x) = x + 3 \\ \forall x \in] -2,0 \ [: f(x) = 1 \\ \forall x \in IR^+: f(x) = \frac{x}{2} \end{cases}$$

Gevr: a) dom f

- b) teken de grafiek van f
- c) onderzoek grafisch de continuïteit van f in -5, -4, -2, 0

Oefening 8

Bepaal c zodat de volgende functies continu zijn en teken de grafiek:

$$f(x) = \begin{cases} 2x + c & x \le 1 \\ x^2 + 3 & x > 1 \end{cases} \qquad f(x) = \begin{cases} cx + 5 & x \le 2 \\ 7x - c & x > 2 \end{cases}$$