THE REAL FIELD WITH AN IRRATIONAL POWER FUNCTION AND A DENSE MULTIPLICATIVE SUBGROUP

PHILIPP HIERONYMI

ABSTRACT. This paper provides a first example of a model theoretically well behaved structure consisting of a proper o-minimal expansion of the real field and a dense multiplicative subgroup of finite rank. Under certain Schanuel conditions, a quantifier elimination result will be shown for the real field with an irrational power function x^{τ} and a dense multiplicative subgroup of finite rank whose elements are algebraic over $\mathbb{Q}(\tau)$. Moreover, every open set definable in this structure is already definable in the reduct given by just the real field and the irrational power function.

1. Introduction

Let $\tau \in \mathbb{R} \setminus \mathbb{Q}$. We will consider the multiplicative group $(\mathbb{R}_{>0}, \cdot)$ as a $\mathbb{Q}(\tau)$ -linear space where the multiplication is given by a^q for every $q \in \mathbb{Q}(\tau)$ and $a \in \mathbb{R}_{>0}$.

Schanuel condition. Let $n \in \mathbb{N}$ and $a \in \mathbb{R}^n$, then

$$td_{\mathbb{Q}(\tau)}(a) + m.dim_{\mathbb{Q}(\tau)}(a) \ge m.dim_{\mathbb{Q}}(a),$$

where $td_{\mathbb{Q}(\tau)}(a)$ is the transcendence degree of a over $\mathbb{Q}(\tau)$, $m.dim_{\mathbb{Q}(\tau)}(a)$ and $m.dim_{\mathbb{Q}}(a)$ are the dimensions of the $\mathbb{Q}(\tau)$ - and \mathbb{Q} -linear subspaces of $\mathbb{R}_{>0}$ generated by a.

Let $\overline{\mathbb{R}} = (\mathbb{R}, <, +, \cdot, 0, 1)$ be the field of real numbers and let x^{τ} be the function on \mathbb{R} sending t to t^{τ} for t > 0 and to 0 for $t \leq 0$. Let $\mathbb{Q}(\tau)^{ac}$ be the algebraic closure of $\mathbb{Q}(\tau)$. The main result of this paper is the following:

Theorem A. Let $\tau \in \mathbb{R}$ satisfy the Schanuel condition and let Γ be a dense subgroup of $\mathbb{R}_{>0}$ of finite rank with $\Gamma \subseteq \mathbb{Q}(\tau)^{ac}$. Then every definable set in $(\overline{\mathbb{R}}, x^{\tau}, \Gamma)$ is a boolean combination of sets of the form

$$\bigcup_{g \in \Gamma^n} \{ x \in \mathbb{R}^m : (x, g) \in S \},$$

where $S \subseteq \mathbb{R}^{m+n}$ is definable in $(\overline{\mathbb{R}}, x^{\tau})$. Moreover, every open set definable in $(\overline{\mathbb{R}}, x^{\tau}, \Gamma)$ is already definable in $(\overline{\mathbb{R}}, x^{\tau})$.

A finite rank subgroup of $\mathbb{R}_{>0}$ is a subgroup that is contained in the divisible closure of a finitely generated subgroup. In fact, we will prove Theorem A not only for finite rank subgroups, but also for subgroups whose divisible closure has the Mann property (see page 4 for a definition of the Mann property). By work of Bays, Kirby and Wilkie in [1] the Schanuel condition holds for co-countably many real numbers τ . Assuming Schanuel's conjecture, the Schanuel condition also holds

This research was funded by $Deutscher\ Akademischer\ Austausch\ Dienst\ Doktorandenstipendium$ and $Engineering\ and\ Physical\ Sciences\ Research\ Council.$

when τ is algebraic (see page 4 for a statement of Schanuel's conjecture).

The significance of Theorem A comes from the fact that it produces the first example of a model theoretically well behaved structure consisting of a proper o-minimal expansion of the real field and a dense multiplicative subgroup of finite rank. So far it was only known by work of van den Dries and Günaydın in [5] that Theorem A holds if $(\overline{\mathbb{R}}, x^{\tau})$ is replaced by $\overline{\mathbb{R}}$. In particular, by [7], every open set definable in an expansion of the real field by a dense multiplicative subgroup Γ of $\mathbb{R}_{>0}$ of finite rank is semialgebraic. However Tychonievich showed in [13] that the structure $(\overline{\mathbb{R}}, \Gamma)$ expanded by the restriction of the exponential function to the unit interval defines the set of integers and hence every projective subset of the real line. Such a structure is as wild from a model theoretic view point as it can be. In contrast to this, every expansion of the real field whose open definable sets are definable in an o-minimal expansion, can be considered to be well behaved. For details, see Miller [11] and Dolich, Miller and Steinhorn [3].

None of the assumptions of Theorem A can be dropped. By [8], Corollary 1.5, $(\overline{\mathbb{R}}, x^{\tau}, 2^{\mathbb{Z}})$ defines the set of integers. For $\tau = \log_2(3)$, the Schanuel condition fails. Since $(\overline{\mathbb{R}}, x^{\log_2(3)}, 2^{\mathbb{Z}}3^{\mathbb{Z}})$ defines $2^{\mathbb{Z}}$, it also defines \mathbb{Z} . On the other hand, for a non-algebraic real number τ satisfying the Schanuel condition such that 2^{τ} is not in $\mathbb{Q}(\tau)^{ac}$, we have again that $2^{\mathbb{Z}}$ is definable $(\overline{\mathbb{R}}, x^{\tau}, 2^{\mathbb{Z}}2^{\tau\mathbb{Z}})$ and so is \mathbb{Z} .

However, Theorem A holds for certain multiplicative subgroups containing elements that are not algebraic over $\mathbb{Q}(\tau)$.

Theorem B. Let $\tau \in \mathbb{R}$ satisfy the Schanuel condition, let $a_1, ..., a_n \in \mathbb{Q}(\tau)^{ac}$ and let Δ be the $\mathbb{Q}(\tau)$ -linear subspace of $(\mathbb{R}_{>0}, \cdot)$ generated by $a_1, ..., a_n$. Then every definable set in $(\overline{\mathbb{R}}, x^{\tau}, \Delta)$ is a boolean combination of sets of the form

$$\bigcup_{g \in \Delta^n} \{ x \in \mathbb{R}^m : (x, g) \in S \},$$

where $S \subseteq \mathbb{R}^{m+n}$ is definable in $(\overline{\mathbb{R}}, x^{\tau})$. Moreover, every open set definable in $(\overline{\mathbb{R}}, x^{\tau}, \Delta)$ is already definable in $(\overline{\mathbb{R}}, x^{\tau})$.

- 1.1. **Acknowledgements.** I am deeply indebted to my thesis supervisor Alex Wilkie. His guidance, insights and encouragement made this work possible. I thank Martin Bays, Juan Diego Caycedo, Ayhan Günaydın, Chris Miller and Boris Zilber for helpful discussions on the topic of this paper.
- 1.2. Coventions and notations. Above and in the rest of the paper l, m, n always denote natural numbers. Also as usual 'definable' means 'definable with parameters' and when we want to make the language and the parameters explicit we write $\mathfrak{L}\text{-}B\text{-}definable$ to mean definable in the appropriate $\mathfrak{L}\text{-}structure$ using parameters from the set B.

In all instances, K will be either \mathbb{Q} or $\mathbb{Q}(\tau)$ and Γ will always denote a multiplicative subgroup of $\mathbb{R}_{>0}$. Further, every linear space considered in this paper will be a linear subspace of $(M_{>0}, \cdot)$ and not of (M, +), where M is a real closed field. In the case that $M_{>0}$ is a K-linear space, we will write $\mathrm{m.dim}_K(S_1/S_0)$ for the K-linear dimension of the quotient linear space of the K-linear space generated by $S_0 \cup S_1$

and S_0 , where $S_0, S_1 \subseteq M_{>0}$.

For a given variety W, we will write dim W for its dimension. For sets X_0, X_1 in a field extending $\mathbb{Q}(\tau)$ we will write $\operatorname{td}_{\mathbb{Q}(\tau)}(X_1/X_0)$ for the transcendence degree of the field extension $\mathbb{Q}(\tau)(X_1 \cup X_0)/\mathbb{Q}(\tau)(X_0)$.

As usual, for any subset $S \subseteq X \times Y$ and $x \in X$, we write S(x) for the set

$$\{y\in Y\ :\ (x,y)\in S\}.$$

For a subset $S \subseteq X^n$, $x \in S$ and a projection $\pi: X^n \to X^l$, we write $S(\pi(x))$ for the set

$${y \in S : \pi(y) = \pi(x)}.$$

1.3. **O-minimality.** Let $\tau \in \mathbb{R} \setminus \mathbb{Q}$ and let x^{τ} be the function on \mathbb{R} sending t to t^{τ} for t > 0 and to 0 for $t \leq 0$. In this paper we consider the structure $(\overline{\mathbb{R}}, x^{\tau}, \tau)$. We write T for its theory and \mathfrak{L} for its language. In [10] Miller showed that the theory T is o-minimal and model complete.

In the rest of this paper only the following facts about the o-minimality of T will be used:

Let M be a model of T. A definable subset C of M^n is a *cell*, if for some projection $\pi: M^n \to M^m$, π is a homeomorphism of C onto its image and $\pi(C)$ is open. Since T is o-minimal, every definable set $X \subseteq M^n$ is a finite union of cells which are defined over the same parameter set.

Let A be any subset of M. We write $\mathbf{cl}_T(A)$ for the definable closure of A in M. By o-minimality of T, $\mathbf{cl}_T(A)$ is itself a model of T. Moreover, the function $\mathbf{cl}_T(-)$ is a pregeometry; that is for every $A \subseteq M$, $a \in A$ and $b \in M$

- (i) $A \subseteq \mathbf{cl}_T(A)$,
- (ii) $b \in \mathbf{cl}_T(A)$ iff $b \in \mathbf{cl}_T(A_0)$, for some finite $A_0 \subseteq A$,
- (iii) $\mathbf{cl}_T(\mathbf{cl}_T(A)) = \mathbf{cl}_T(A),$
- (iv) if $b \in \mathbf{cl}_T(A) \setminus \mathbf{cl}_T(A \setminus \{a\})$, then $a \in \mathbf{cl}_T((A \setminus \{a\}) \cup \{b\})$.

Property (iv) is called the Steinitz exchange principle.

For two subsets $A, B \subseteq M$, we will say that A is cl_T -independent over B if for every $a \in A$

$$a \notin \mathbf{cl}_T(B \cup (A \setminus \{a\})).$$

Let M, M' be two models of T, let $N \leq M, N' \leq M'$ and let $\beta: N \to N'$ be an \mathfrak{L} -isomorphism. Let $a \in M$ and $b \in M'$ be such that a < c iff $b < \beta(c)$, for all $c \in N$. Then there is an \mathfrak{L} -isomorphism $\beta': \mathbf{cl}_T(N,a) \to \mathbf{cl}_T(N',b)$ extending β and sending a to b.

2. A SCHANUEL CONDITION AND THE MANN PROPERTY

Let $\tau \in \mathbb{R}$. As above, we will consider $(\mathbb{R}_{>0},\cdot)$ as a $\mathbb{Q}(\tau)$ -linear space. For $a \in \mathbb{R}^n_{>0}$, we write $\mathrm{m.dim}_{\mathbb{Q}(\tau)}(a)$ and $\mathrm{m.dim}_{\mathbb{Q}}(a)$ for the dimensions of the $\mathbb{Q}(\tau)$ -and \mathbb{Q} -linear subspaces of $\mathbb{R}_{>0}$ generated by a.

Condition 2.1. Let $n \in \mathbb{N}$ and $a \in \mathbb{R}^n$, then

$$td_{\mathbb{Q}(\tau)}(a) + m.dim_{\mathbb{Q}(\tau)}(a) \ge m.dim_{\mathbb{Q}}(a).$$

This condition has been analysed in [1]. The main theorem of [1] states that Condition 2.1 holds for co-countably many real numbers.

Theorem 2.2. ([1] Theorem 1.3) Let $\tau \in \mathbb{R}$. If τ is not \emptyset -definable in $(\overline{\mathbb{R}}, \exp)$, then Condition 2.1 holds.

It is not known whether there is any other irrational number τ such that Condition 2.1 holds. However it follows easily from a famous open conjecture of Schanuel, that every *algebraic* real number τ satisfies Condition 2.1. The conjecture states as follows.

Conjecture 2.3. (Schanuel's Conjecture) Let $n \in \mathbb{N}$ and $a \in \mathbb{R}^n$, then

$$td_{\mathbb{Q}}(a, \exp(a)) \ge m.dim_{\mathbb{Q}}(\exp(a)).$$

2.1. **The Mann property.** In this section we consider the Mann property and its connection to Condition 2.1. Let F be a field, E be a subfield of F and G be any subgroup of the multiplicative group F^{\times} . Consider equations of the form

$$(1) a_1 x_1 + \dots + a_n x_n = 1,$$

where $a_1, ..., a_n \in E$. We say a solution $(g_1, ..., g_n) \in G^n$ of (1) is non-degenerate if for every non-empty subset I of $\{1, ..., n\}$, $\sum_{i \in I} a_i g_i \neq 0$. Further we say that G has the Mann property over E if every equation of the above type (1) has only finitely many non-degenerate solutions in G^n . We also call an element $g \in G^n$ a Mann solution of G over E if it is a non-degenerate solution in G^n of an equation of the form (1).

In fact, it follows from work of Evertse in [6] and van der Poorten and Schlickewei in [12] that every finite rank multiplicative subgroup of a field of characteristic 0 has the Mann property over \mathbb{Q} . Combining this with [5], Proposition 5.6, we get the following theorem.

Theorem 2.4. Every finite rank multiplicative subgroup of $\mathbb{R}_{>0}$ has the Mann property over $\mathbb{Q}(\tau)$.

We conclude this section by showing that under Condition 2.1 the $\mathbb{Q}(\tau)$ -linear space generated by a *divisible* multiplicative subgroup Γ has the Mann property over $\mathbb{Q}(\tau)$, if Γ has the Mann property over $\mathbb{Q}(\tau)$ and every element of Γ is algebraic over $\mathbb{Q}(\tau)$.

Proposition 2.5. Assume Condition 2.1 holds for τ . Let Γ be a divisible multiplicative subgroup of $\mathbb{R}_{>0}$ with $\Gamma \subseteq \mathbb{Q}(\tau)^{ac}$ and Δ be the $\mathbb{Q}(\tau)$ -linear subspace of $\mathbb{R}_{>0}$ generated by Γ . Then

- (i) every Mann solution of Δ over $\mathbb{Q}(\tau)$ is in Γ and
- (ii) Δ has the Mann property over $\mathbb{Q}(\tau)$, if Γ has the Mann property over $\mathbb{Q}(\tau)$.

Proof. It is enough to show (i). Therefor let $a_1, ..., a_n \in \mathbb{Q}(\tau)$ and let $g = (g_1, ..., g_n) \in \Delta^n$ be such that

$$(2) a_1 g_1 + \dots + a_n g_n = 1$$

and for all $I \subseteq \{1, ..., n\}$

$$\sum_{i \in I} a_i g_i \neq 0.$$

We will show that $q \in \Gamma^n$.

Let $h \in \Gamma^m$ be such that $\operatorname{m.dim}_{\mathbb{Q}(\tau)}(g/h) = 0$ and $\operatorname{m.dim}_{\mathbb{Q}}(h) = m$. Let k be the maximal natural number such that there is a subtuple g' of g of length k such that $\operatorname{m.dim}_{\mathbb{Q}}(g'/h) = k$. It just remains to verify that k = 0. For a contradiction, suppose that k > 0. By (2) and (3), we have that

$$\operatorname{td}_{\mathbb{Q}(\tau)}(g'/h) < k.$$

Since every coordinate of h is algebraic over $\mathbb{Q}(\tau)$,

$$\operatorname{td}_{\mathbb{Q}(\tau)}(h, g') + \operatorname{m.dim}_{\mathbb{Q}(\tau)}(h, g') < k + m = \operatorname{m.dim}_{\mathbb{Q}}(h, g').$$

This contradicts Condition 2.1.

3. Tori and special pairs

Let M be a model of T. In the following we will consider $(M_{>0}, \cdot)$ as a K-linear space where K is either \mathbb{Q} or $\mathbb{Q}(\tau)$ and the multiplication is given by a^q for every $q \in K$ and $a \in M_{>0}$.

Definition 3.1. A basic K-torus L_0 of M^n is the set of solutions of equations of the form

$$\begin{split} x_1^{p_{1,1}} \cdot \ldots \cdot x_n^{p_{1,n}} &= 1, \\ & \vdots & \vdots \\ x_1^{p_{l,1}} \cdot \ldots \cdot x_n^{p_{l,n}} &= 1, \end{split}$$

where $p_{i,j} \in K$.

For $b \in M^m$, a K-torus L over b is a subset of $M_{>0}^n$ of the form $L_0(b)$, for some basis K-torus L_0 of $M_{>0}^{m+n}$. We will write dim L for the dimension of L which is given by the corank of the matrix $(p_{i,j})_{i=1,\dots,l,j=m+1,\dots,m+n}$.

The dimension of a torus and the linear dimension of a tuple in $M_{>0}$ correspond to each other. Let $a \in M^n$, $b \in M^m$ and let L be the minimal $\mathbb{Q}(\tau)$ -torus over b containing a. Then

$$\dim L = \mathrm{m.dim}_{\mathbb{O}(\tau)}(a/b).$$

For the following, the reader is reminded that for a set $S \subseteq M^n$, $y \in S$ and a projection $\pi: M^n \to M^l$ we write $S(\pi(y))$ for the set

$$\{z \in S : \pi(z) = \pi(y)\}.$$

Definition 3.2. Let $W \subseteq M^n$ be a variety and let L be a $\mathbb{Q}(\tau)$ -torus. The pair (W,L) is called special, if n=0 or

$$\dim W(\pi(y)) + \dim L(\pi(y)) < n - l,$$

for every point $y \in W \cap L$ and every projection $\pi : M^n \to M^l$, where $l \in \{0,...,n\}$.

Note that the notion of specialness is first order expressible. In particular, for given variety $W \subseteq M^{m+n}$ and $\mathbb{Q}(\tau)$ -torus $L \subseteq M^{m+n}$, the set

$$\{a \in M^m : (W(a), L(a)) \text{ is special } \}$$

is \mathfrak{L} -definable, where \mathfrak{L} is the language of $(\overline{\mathbb{R}}, x^{\tau}, \tau)$.

3.1. A Mordell-Lang Theorem for special pairs. Let Γ be a multiplicative subgroup of $\mathbb{R}_{>0}$ such that the divisible closure of Γ has the Mann property over $\mathbb{Q}(\tau)$ and Γ is a subset of $\mathbb{Q}(\tau)^{ac}$, the algebraic closure of $\mathbb{Q}(\tau)$. Further,

let
$$\Delta$$
 be the $\mathbb{Q}(\tau)$ -linear subspace of $\mathbb{R}_{>0}$ generated by Γ .

In this subsection we will prove the following theorem about special pairs defined over parameters from Δ . Its statement is similar to a conjecture of Mordell and Lang.

Theorem 3.3. Assume Condition 2.1. Let $W \subseteq \mathbb{R}^{l+n}$ be a variety defined over $\mathbb{Q}(\tau)$ and let $L \subseteq \mathbb{R}^{l+n}$ be a basic $\mathbb{Q}(\tau)$ -torus. Then there are finitely many basic \mathbb{Q} -tori $L_1, ..., L_m$ and $g_1, ..., g_m \in \Gamma^{l+n}$ such that

(4)
$$\{(h,y) \in \Delta^l \times \mathbb{R}^n : (W(h), L(h)) \text{ is special } \} \cap W \subseteq \bigcup_{i=1}^m g_i \cdot L_i.$$

and dim $L_i(z) < n$, if n > 0, for every $z \in \mathbb{R}^l$ and i = 1, ..., m.

For the proof of Theorem 3.3 the following lemma is needed.

Lemma 3.4. Assume Condition 2.1. Let $g \in \Delta^l$, $y \in \mathbb{R}^n$ and let W be a variety defined over $\mathbb{Q}(\tau)(g)$ and L be an $\mathbb{Q}(\tau)$ -torus over g. If the pair (W, L) is special and $y \in W \cap L$, then $y \in \Delta^n$.

Proof. Let $y = (y_1, ..., y_n) \in W \cap L$. If (W, L) is special, we have that for every subset $I \subseteq \{1, ..., n\}$

(5)
$$\operatorname{td}_{\mathbb{Q}(\tau)}((y_j)_{j \notin I}/g, (y_i)_{i \in I}) + \operatorname{m.dim}_{\mathbb{Q}(\tau)}((y_j)_{j \notin I}/g, (y_i)_{i \in I}) < n - |I|.$$

For a contradiction suppose that $y \notin \Delta^n$. We easily can reduce to the case that g, y are multiplicatively independent, ie. $\operatorname{m.dim}_{\mathbb{Q}}(g, y) = l + n$. By (5)

$$\operatorname{td}_{\mathbb{Q}(\tau)}(y/g) + \operatorname{m.dim}_{\mathbb{Q}(\tau)}(y/g) < n.$$

By definition of Δ , we can assume there is $s \in \mathbb{N}$ and a subtuple $h \in (\Delta \cap \mathbb{Q}(\tau)^{ac})^s$ of g such that

$$\operatorname{m.dim}_{\mathbb{O}(\tau)}(g/h) = 0.$$

Hence

$$td_{\mathbb{Q}(\tau)}(g, y) + m.dim_{\mathbb{Q}(\tau)}(g, y)$$

$$= td_{\mathbb{Q}(\tau)}(g) + m.dim_{\mathbb{Q}(\tau)}(g) + td_{\mathbb{Q}(\tau)}(y/g) + m.dim_{\mathbb{Q}(\tau)}(y/g)$$

$$< l - s + s + n = l + n.$$

By Condition 2.1, $\operatorname{m.dim}_{\mathbb{Q}}(g,y) < l+n$. This is a contradiction to our assumption on g and y.

In [5] it is shown that the Mann property implies the Mordell-Lang property. In our notation [5], Proposition 5.8, is stated as follows:

Lemma 3.5. Let G be a multiplicative subgroup of $\mathbb{R}_{>0}$ with the Mann property over $\mathbb{Q}(\tau)$. Then for every variety $W \subseteq \mathbb{R}^n$, there are finitely many basic \mathbb{Q} -tori $L_1,...,L_m$ of $\mathbb{R}^n_{>0}$ and $g_1,...,g_m \in G^n$ such that

$$W \cap G^n = \bigcup_{i=1}^m g_i \cdot L_i \cap G^n.$$

Moreover, every coordinate of $g_1, ..., g_n$ is a coordinate of a Mann solution of G over $\mathbb{Q}(\tau)$.

The fact that every coordinate of $g_1, ..., g_n$ is a coordinate of a Mann solution over $\mathbb{Q}(\tau)$ is not in the statement of [5], Proposition 5.8, but explicit in its proof.

Proof of Theorem 3.3. Since the divisible closure of Γ has the Mann property over $\mathbb{Q}(\tau)$, Δ has the Mann property over $\mathbb{Q}(\tau)$ by Proposition 2.5(ii). Hence by Lemma 3.5 there are basic \mathbb{Q} -tori $L_1, ..., L_m$ and $g_1, ..., g_m \in \Delta^{l+n}$ such that

(6)
$$W \cap \Delta^{l+n} = \bigcup_{i=1}^{m} g_i \cdot L_i \cap \Delta^{l+n}.$$

By Proposition 2.5(i), every Mann solution over $\mathbb{Q}(\tau)$ of Δ is in the divisible closure of Γ . Hence every coordinate of $g_1, ..., g_m$ is in the divisible closure of Γ by Lemma 3.5. After changing the L_i 's slightly, we can even take $g_1, ..., g_m \in \Gamma^{l+n}$. Finally, the left hand side of (4) in the statement of the theorem is contained in Δ^{l+n} by Lemma 3.4.

For the second statement of the theorem, let $i \in \{1, ..., m\}$ and let (h, y) be in the intersection of the left hand side of (4) and $g_i \cdot L_i$. Since (W(h), L(h)) is special, we have $\dim W(h) < n$. Hence $\dim L_i(h) < n$ by (6). It follows directly that $\dim L_i(z) < n$ for every $z \in \mathbb{R}^l$.

4. The axiomatization

Let Γ be a multiplicative subgroup of $\mathbb{R}_{>0}$ such that the divisible closure of Γ has the Mann property over $\mathbb{Q}(\tau)$ and Γ is a subset of $\mathbb{Q}(\tau)^{ac}$. Let Δ be the $\mathbb{Q}(\tau)$ -linear subspace of $\mathbb{R}_{>0}$ generated by Γ . Further we assume that

(7)
$$|\Gamma:\Gamma^{[d]}|<\infty, \text{ for every } d\in\mathbb{N},$$

where $\Gamma^{[d]}$ is the group of dth powers of Γ . In the rest of this section, axiomatizations of $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Gamma)$ and $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Delta)$ will be given.

Note that (7) holds for every multiplicative subgroup of $\mathbb{R}_{>0}$ which has finite rank.

4.1. **Abelian subgroups.** Let G be a multiplicative subgroup of $(M_{>0}, \cdot)$ for some real closed field M. For $k = (k_1, ..., k_n) \in \mathbb{Z}^n$ and $g = (g_1, ..., g_n) \in G^n$, we define

$$\chi_k(g) := g_1^{k_1} \cdot \ldots \cdot g_n^{k_n}.$$

Also, for $m \in \mathbb{Z}$, we will write

$$D_{k,m} := \{ g \in G^n : \chi_k(g) \in G^{[m]} \}.$$

Note that $(G^{[m]})^n \subseteq D_{k,m}$. Hence whenever $G^{[m]}$ is of finite index in G we have that $D_{k,m}$ is of finite index in G^n . This implies that both $D_{k,m}$ and $G^n \setminus D_{k,m}$ are finite unions of cosets of $(G^{[m]})^n$. Using the fact that the collection $\{(G^{[m]})^n : m \in \mathbb{N}\}$ is a distributive lattice of subgroups of G^n , we get the following consequence.

Lemma 4.1. Let n > 0, $k_1, \ldots, k_s \in \mathbb{Z}^n$ and $m_1, \ldots, m_t \in \mathbb{N}$. Suppose that $|G:G^{[m_j]}|$ is finite for $j=1,\ldots,t$. Then every boolean combination of cosets of D_{k_i,m_j} in G^n with $i \in \{1,\ldots,s\}$ and $j \in \{1,\ldots,t\}$ is a finite union of cosets of $(G^{[l]})^n$, where l is the lowest common multiple of m_1,\ldots,m_t .

We say a subgroup H of G is *pure*, if $h \in H^{[n]}$ whenever $h \in G^{[n]}$ for $n \in \mathbb{N}$. For a pure subgroup H of G and a subset A of G, we define $H_G\langle A\rangle$ as the set of $g \in G$ such that g^n is in the subgroup of G generated by H and A for some n > 0; that is there are $h \in H$, $a \in A^t$, and $k \in \mathbb{Z}^t$, such that $g^n = h \cdot \chi_k(a)$. Note that $H_G\langle A\rangle$ is the smallest pure subgroup of G containing A and H.

4.2. Languages and Mordell-Lang axioms for special pairs. Let $\mathfrak L$ be the language of $(\overline{\mathbb R}, x^{\tau}, \tau)$. We define the language $\mathfrak L_{\Gamma}$ as $\mathfrak L$ augmented by a constant symbol $\dot{\gamma}$ for every $\gamma \in \Gamma$. The $\mathfrak L$ -structure $(\overline{\mathbb R}, x^{\tau}, \tau)$ naturally becomes a $\mathfrak L_{\Gamma}$ -structure by interpreting every $\gamma \in \Gamma$ as $\dot{\gamma}$. Let T_{Γ} be the theory of this $\mathfrak L_{\Gamma}$ -structure. Finally let $\mathfrak L_{\Gamma}(U)$ be the language $\mathfrak L_{\Gamma}$ expanded by an unary predicate symbol U.

Let W be a variety defined over $\mathbb{Q}(\tau)$ and let L be a basic $\mathbb{Q}(\tau)$ -torus. Note that both W and L are \mathfrak{L} - \emptyset -definable. Further let φ be the $\mathfrak{L}_{\Gamma}(U)$ -formula which defines the set

$$S:=\{(g,y)\in\Gamma^l\times\mathbb{R}^n:\ (g,y)\in W\ \text{and}\ (W(g),L(g))\ \text{is special}\}.$$

By Theorem 3.3, there are basic \mathbb{Q} -tori $L_1,...,L_m$ and $\gamma_1,...,\gamma_m\in\Gamma^{l+n}$ such that S is a subset of the union of $\gamma_1\cdot L_1,...,\gamma_m\cdot L_m$ and $\dim L_i(z)< n$ for every i=1,...,m and $z\in\mathbb{R}^l$. Let $k_{i,1},...,k_{i,s_i}\in\mathbb{Z}^{l+n}$ be such that

$$L_i = \{x \in \mathbb{R}^n : \chi_{k_{i,j}}(x) = 1, \text{ for } j = 1, ..., s_i\}.$$

The Mordell-Lang axiom of (W, L) is defined as the $\mathfrak{L}_{\Gamma}(U)$ -formula $\psi_{(W,L)}$ given by

$$\varphi(x) \to \bigvee_{i=1}^m \bigwedge_{j=1}^{s_i} \chi_{k_{i,j}}(x) = \chi_{k_{i,j}}(\gamma_i).$$

- 4.3. The theory. We consider the class of all $\mathfrak{L}_{\Gamma}(U)$ -structure (M,G) satisfying the following axioms:
 - (A1) M is a model of T_{Γ} ,
 - (A2) G is a dense multiplicative subgroup of M with pure subgroup Γ ,
 - (A3) $|\Gamma : \Gamma^{[n]}| = |G : G^{[n]}|$, for all $n \in \mathbb{Q}$,
 - (A4) $L \cap (G \setminus \{1\})^n = \emptyset$, for every basic $\mathbb{Q}(\tau)$ -torus $L \subseteq M^n$ which is not a basic \mathbb{Q} -torus.
 - (A5) Mordell-Lang axiom $\psi_{W,L}$ for every variety $W \subsetneq M^{l+n}$ over $\mathbb{Q}(\tau)$ and every basic $\mathbb{Q}(\tau)$ -torus $L \subseteq M^{l+n}$,
 - (A6) the set

$$\bigcap_{i=1}^{m} \{ a \in M : \forall g \in G^{l} \ f_{i}(g,b) \neq a \}$$

is dense in M, for all $b\in M^n$ and \mathfrak{L} - \emptyset -definable functions $f_1,...,f_m:M^{l+n}\to M$.

One can easily show that there is a first order $\mathfrak{L}_{\Gamma}(U)$ -theory whose models are exactly the structures satisfying (A1)-(A6). Let $T_{\Gamma}(\Gamma)$ be this $\mathfrak{L}_{\Gamma}(U)$ -theory.

Proposition 4.2. Assume Condition 2.1. Then $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Gamma) \models T_{\Gamma}(\Gamma)$.

Proof. The axioms (A1)-(A3) hold by definition. Axiom (A5) is implied by Theorem 3.3. Since Γ is a subset of $\mathbb{Q}(\tau)^{ac}$, it is countable and hence (A6) holds for Γ . Finally consider axiom (A4). Let L be a basic $\mathbb{Q}(\tau)$ -torus $L \subseteq \mathbb{R}^n$ which is not a \mathbb{Q} -torus. For a contradiction, suppose there is $g \in (\Gamma \setminus \{1\})^n$ such that $g \in L$. Since every element of Γ is algebraic over $\mathbb{Q}(\tau)$ and L is not a \mathbb{Q} -torus, we get

$$\operatorname{td}_{\mathbb{Q}(\tau)}(g) + \operatorname{m.dim}_{\mathbb{Q}(\tau)}(g) = 0 + \operatorname{m.dim}_{\mathbb{Q}(\tau)}(g) < \operatorname{m.dim}_{\mathbb{Q}}(g).$$

This contradicts Condition 2.1.

For an axiomatization of $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Delta)$, consider the $\mathfrak{L}_{\Gamma}(U)$ -structures (M, G) satisfying

- (A7) G is a dense multiplicative subgroup of M with subgroup Δ ,
- (A8) $g^p \in G$, for every $g \in G$ and $p \in \mathbb{Q}(\tau)$.

Let $T_{\Gamma}(\Delta)$ be the first order $\mathfrak{L}_{\Gamma}(U)$ -theory whose models are exactly the structures satisfying (A1) and (A5)-(A8).

Proposition 4.3. Assume Condition 2.1. Then $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Delta) \models T_{\Gamma}(\Delta)$.

Among other things, it will be shown in the next section that both $T_{\Gamma}(\Gamma)$ and $T_{\Gamma}(\Delta)$ are complete.

5. Quantifier elimination

In this section, the first part of Theorem A and Theorem B is proved. We continue with the notation fixed at beginning of the last section (see page 7). In the following, \tilde{T} is either $T_{\Gamma}(\Gamma)$ or $T_{\Gamma}(\Delta)$.

Let $x = (x_1, \dots, x_m)$ be a tuple of distinct variables. For every $\mathfrak{L}_{\Gamma}(U)$ -formula $\varphi(x)$ of the form

(8)
$$\exists y_1 \cdots \exists y_n \bigwedge_{i=1}^n U(y_i) \wedge \psi(x, y_1, \dots, y_n),$$

where $\psi(x, y_1, \ldots, y_n)$ is an \mathfrak{L}_{Γ} -formula, let U_{φ} be a new relation symbol of arity m. Let $\mathfrak{L}_{\Gamma}(U)^+$ be the language $\mathfrak{L}_{\Gamma}(U)$ with relation symbols U_{φ} for every φ of the form (8). Let \tilde{T}^+ be the $\mathfrak{L}_{\Gamma}(U)^+$ -theory extending the theory \tilde{T} by axioms

$$\forall x (U_{\varphi}(x) \leftrightarrow \varphi(x)),$$

for each φ of the form (8). In order to show the first part of Theorem A and Theorem B, one has to show the following:

Theorem 5.1. The theory \tilde{T}^+ has quantifier elimination.

The rest of this section will provide a proof of Theorem 5.1. In fact, we will give the proof only for $\tilde{T} = T_{\Gamma}(\Gamma)$. The case of $T_{\Gamma}(\Delta)$ can be handled in almost exactly the same way. We will comment on the differences at the end of this section.

5.1. **Main Lemma.** This subsection establishes the main technical lemma used in the proof of Theorem 5.1. Therefor the following instance of Jones and Wilkie [9], Theorem 4.2, is needed.

Proposition 5.2. Let $M \models T$ and $b \in M, A \subseteq M$. If $b \in \mathbf{cl}_T(A)$, then there are $y \in M^n$, a variety W defined over $\mathbb{Q}(\tau)(A)$ and an $\mathbb{Q}(\tau)$ -torus L over A such that $(b,y) \in W \cap L$ and

$$\dim W + \dim L \le n + 1.$$

Further y can be assumed to be multiplicatively independent over b, A, ie. for every $a \in A^m$

$$m.dim_{\mathbb{Q}}(y/b,a) = n.$$

Lemma 5.3. Let $(M,G) \models \tilde{T}$ and H be a pure subgroup of G containing all interpretations of the constants $\dot{\gamma}$, where $\gamma \in \Gamma$. Then

$$cl_T(H) \cap G = H.$$

Proof. The inclusion $H \subset \mathbf{cl}_T(H) \cap G$ is trivial. It is just left to show that whenever $g \in \mathbf{cl}_T(H) \cap G$, then g is also in H. So let $g \in \mathbf{cl}_T(H) \cap G$. By Proposition 5.2, there is $n \in \mathbb{N}$ such that there are $h \in (H \setminus \{1\})^m$, $y \in M^n$, a variety $W \subseteq M^{m+1+n}$ defined over $\mathbb{Q}(\tau)$ and a basic $\mathbb{Q}(\tau)$ -torus $L \subseteq M^{m+1+n}$ such that

$$(g,y) \in W(h) \cap L(h),$$

(9)
$$\dim W(h) + \dim L(h) \le n + 1$$

and

(10)
$$\operatorname{m.dim}_{\mathbb{Q}}(y/h',g) = n$$
, for every $h' \in H^l$.

Take n minimal with this property.

We will now show that n=0. For a contradiction, suppose that n>0. We first prove that the pair (W(h,g),L(h,g)) is special. Towards a contradiction, suppose there are $z \in W(h,g) \cap L(h,g)$, l < n and a projection $\pi: M^n \to M^l$ with

$$\dim W(h,g)(\pi(z)) + \dim L(h,g)(\pi(z)) \ge n - l.$$

Let $W' \subseteq M^{l+1}$ be the variety defined by all polynomial equations over $\mathbb{Q}(\tau)(h)$ which are satisfied by $(g, \pi(z))$ and let $L' \subseteq M^{l+1}$ be the smallest $\mathbb{Q}(\tau)$ -torus over h which contains $(g, \pi(z))$. Then

$$\dim W' + \dim L'$$

$$\leq \dim W(h) + \dim L(h) - \dim W(h, g)(\pi(z)) - \dim L(h, g)(\pi(z))$$

$$\leq n + 1 - (n - l) = l + 1.$$

But this contradicts the minimality of n. Hence (W(h,g),L(h,g)) is special. By (A5), there are $\gamma \in \Gamma$ and a basic \mathbb{Q} -torus L_0 such that $(h,g,y) \in \gamma \cdot L_0$ and $\dim L_0(h,g) < n$. Hence $\mathrm{m.dim}_{\mathbb{Q}}(y/\gamma,h,g) < n$. This is a contradiction against (10). Hence n=0.

Since n=0, there is a variety $W\subseteq M$ defined over $\mathbb{Q}(\tau)$ and a basic $\mathbb{Q}(\tau)$ -torus $L\subseteq M$ such that $g\in W(h)\cap L(h)$ and

(11)
$$\dim W(h) + \dim L(h) \le 1.$$

First consider the case that $\dim W(h) = 1$. By (11), $\dim L(h) = 0$. By (A4) and $(h,g) \in L$, L is a basic \mathbb{Q} -torus. Hence $\mathrm{m.dim}_{\mathbb{Q}}(g/h) = 0$. Since H is pure and $g \in G$, we have $g \in H$.

Now consider dim W(h) = 0. By Definition 3.2 of specialness and $(h, g) \in G^{m+1}$, the pair (W(h, g), L(h, g)) is special. By (A5), there are a basic \mathbb{Q} -torus L_0 and a $\gamma \in \Gamma$ such that $(h, g) \in \gamma \cdot L_0$. As above, we get $g \in H$.

Corollary 5.4. Let $(M,G) \models \tilde{T}$ and H be a pure subgroup of G containing all interpretations of the constants $\dot{\gamma}$, where $\gamma \in \Gamma$. If A is \mathbf{cl}_T -independent over G, then

$$cl_T(A, H) \cap G = H.$$

Proof. H is obviously a subset of $\mathbf{cl}_T(A, H) \cap G$. By Lemma 5.3 it is only left to show that

(12)
$$\mathbf{cl}_T(A,H) \cap G \subseteq \mathbf{cl}_T(H) \cap G.$$

So let $g \in \mathbf{cl}_T(A, H) \cap G$ and A' be a minimal subset of A such that $g \in \mathbf{cl}_T(A', H) \cap G$. For a contradiction, suppose that A' is non-empty and let $a \in A'$. By minimality of A', we have $g \notin \mathbf{cl}_T(A' \setminus \{a\}, H)$. But then the Steinitz Exchange Principle implies that $a \in \mathbf{cl}_T(A' \setminus \{a\}, g, H)$. Since $g \in H \subseteq G$, we get that

$$a \in \mathbf{cl}_T(A' \setminus \{a\}, G).$$

But this is a contradiction to the \mathbf{cl}_T -independence of A over G. Hence A' is empty and $g \in \mathbf{cl}_T(H) \cap G$. Thus (12) holds.

- 5.2. Back and forth. Let (M, G), (M', G') be two $(|\Gamma|)^+$ -saturated models of \tilde{T} . Then M, M' are models of T_{Γ} . Let \mathcal{E} be the set of all \mathfrak{L}_{Γ} -elementary maps from M to M'. Let \mathcal{E} be the set of all $\beta \in \mathcal{E}$ such that there exist
 - a finite subset A of M, and a finite subset A' of M',
 - a pure subgroup H of G of cardinality at most $|\Gamma|$ and a pure subgroup H' of G' of cardinality at most $|\Gamma|$

such that

- (1) β is an $\mathfrak{L}_{\Gamma}(U)$ -isomorphism between $(\mathbf{cl}_{T}(A, H), H)$ and $(\mathbf{cl}_{T}(A', H'), H')$,
- (2) A is \mathbf{cl}_T -independent over G, and A' is \mathbf{cl}_T -independent over G' with $\beta(A) = A'$,
- (3) Γ is a pure subgroup of H and H'.

By Corollary 5.4, $(\mathbf{cl}_T(A, H), H)$ and $(\mathbf{cl}_T(A', H'), H')$ are $\mathfrak{L}_{\Gamma}(U)$ -substructures of (M, G) and (M', G') respectively. Hence every element of S is a partial isomorphism between (M, G) and (M', G').

Lemma 5.5. The set S is a back-and-forth system.

Proof. In order to prove this statement, we will show that for every $\beta \in \mathcal{S}$ and every $a \in M$, there is a $\tilde{\beta} \in \mathcal{S}$ such that $\tilde{\beta}$ extends β and $a \in dom(\gamma)$. In fact, this is enough because of the symmetry of the setting.

Let $\beta \in \mathcal{S}$ and $a \in M$. We can assume that $a \notin dom(\beta)$. Further let A, A', H, H' witness that $\beta \in \mathcal{S}$.

Case 1: $a \in G$.

Let p(x) be the $\mathfrak{L}_{\Gamma}(U)$ -type consisting of the \mathfrak{L}_{Γ} -type of a over $\mathbf{cl}_T(A, H)$ and for every $h \in H$, $k \in \mathbb{Z}$ and n > 0 one of the formulas

$$(13) x^k \cdot h \in G^{[n]},$$

$$(14) x^k \cdot h \notin G^{[n]},$$

depending on whether it is true in (M,G) that $a^kh \in G^{[n]}$ or not. Further let p' be the type over $\mathbf{cl}_T(A',H')$ corresponding to p via β . We want to find an $a' \in M'$ such that a' realizes p'. By compactness and saturation of (M',G'), it is enough to show that finitely many formulas of p' can be satisfied. By o-minimality of T, this reduces to find an $a' \in M'$ with

(15)
$$(M', G') \models \beta(c) < a' < \beta(d) \land \bigwedge_{i=1}^{n} \phi_i(a'),$$

for every $c, d \in \mathbf{cl}_T(A, H)$ with c < a < d and every finite collection of formulas ϕ_1, \ldots, ϕ_n of the form (13) or (14) with $(M, G) \models \bigwedge_{i=1}^n \phi_i(a)$. By Lemma 4.1, the set

$$Y := \{ g \in G' : (M', G') \models \bigwedge_{i=1}^{n} \phi_i(g) \}$$

is a finite union of cosets of $G'^{[s]}$ in G' for some $s \in \mathbb{N}$. Since $G'^{[s]}$ is dense in G', we have that Y is dense in G' as well. Since G' is dense in M', we have that $Y \cap (\beta(c), \beta(d))$ is dense in $(\beta(c), \beta(d))$. Now take any $a' \in Y \cap (\beta(c), \beta(d))$. This a' satisfies (15).

By definition, $H_G\langle a\rangle$ and $H'_{G'}\langle a'\rangle$ are the smallest pure subgroups of G and G' containing $H \cup \{a\}$ and $H' \cup \{a'\}$ respectively. Let $\tilde{\beta}$ be the \mathfrak{L}_{Γ} -isomorphism which extends β to $\mathbf{cl}_T(A, H, a)$ and maps a to a'. By conditions (13) and (14) we get for every $h \in G$ that $h \in H_G\langle a\rangle$ if and only if $\tilde{\beta}(h) \in H'_{G'}\langle a'\rangle$. Hence $\tilde{\beta}$ is an isomorphism of $(\mathbf{cl}_T(A, H, a), H_G\langle a\rangle)$ and $(\mathbf{cl}_T(A', H', a'), H'_{G'}\langle a'\rangle)$ and $\tilde{\beta} \in \mathcal{S}$. Case 2: $a \in \mathbf{cl}_T(A, G)$.

Let $g_1, \ldots, g_n \in G$ be such that $a \in \mathbf{cl}_T(A, \{g_1, \ldots, g_n\})$. By applying the previous case n times, we get a $\tilde{\beta} \in \mathcal{S}$ such that $g_1, \ldots, g_n \in \mathrm{dom}(\tilde{\beta})$ and $A \subseteq \mathrm{dom}(\tilde{\beta})$. Since $\mathrm{dom}(\tilde{\beta})$ is a model of T_{Γ} , we have $a \in \mathrm{dom}(\tilde{\beta})$ with $\tilde{\beta} \in \mathcal{S}$. Case 3: $a \notin \mathbf{cl}_T(A, G)$.

Let C be the cut of a in $\mathbf{cl}_T(A, H)$ and let C' be the corresponding cut of C under β in $\mathbf{cl}_T(A', H')$. By saturation, we can assume that there are $p, q \in M'$ such that every element in the interval (p, q) realizes the cut C'. Let $d \in M^{|A|}$ be the set A written as a tuple. Let f_1, \ldots, f_n be \emptyset -definable functions in the language \mathfrak{L}_{Γ} . By (A6), we know that there exists $b \in (p, q)$ such that for $i = 1, \ldots, n$ and every tuple g_1, \ldots, g_l of elements of G'

$$f_i(g_1,\ldots,g_l,d)\neq b.$$

Thus by saturation, there is an $a' \in (p,q)$ such that $a' \notin \mathbf{cl}_T(A',G')$. Since a' realizes the cut C', there is an \mathfrak{L}_{Γ} -isomorphism $\tilde{\beta}$ from $\mathbf{cl}_T(A,a,H)$ to $\mathbf{cl}_T(A',a',H')$ extending β and sending a to a'. Since $a \notin \mathbf{cl}_T(A,G)$ and $a' \notin \mathbf{cl}_T(A',G')$, we get that

$$\mathbf{cl}_T(A, a, H) \cap G = H \text{ and } \mathbf{cl}_T(A', a', H') \cap G' = H'.$$

Since $\beta(H) = H'$ and $\tilde{\beta}$ extends β , we get that $\tilde{\beta}$ is an $\mathfrak{L}_{\Gamma}(U)$ -isomorphism from $(\mathbf{cl}_T(A, a, H), H)$ to $(\mathbf{cl}_T(A', a', H'), H')$ with $\tilde{\beta}(A \cup \{a\}) = A' \cup \{a'\}$. Thus we have that $\tilde{\beta} \in \mathcal{S}$.

Theorem 5.6. Assume Condition 2.1. Then \tilde{T} is complete.

Proof. Let (M, G) and (M', G') be two $|\Gamma|^+$ -saturated models of \tilde{T} , and let S be as above. It only remains to show that S is non-empty. But it is easy to see that the identity map on $\mathbf{cl}_T(\Gamma)$ belongs to S.

5.3. Quantifier elimination. In this subsection Theorem 5.1 is finally proved (see page 9 for the statement).

Proof of Theorem 5.1. Let (M,G) and (M',G') be two $|\Gamma|^+$ -saturated models of \tilde{T}^+ and let \mathcal{S} be the back-and-forth system between (M,G) and (M',G') constructed above. Also take $a=(a_1,\ldots,a_n)\in M^n$ and $b=(b_1,\ldots,b_n)\in (M')^n$ satisfying the same quantifier-free $\mathfrak{L}_{\Gamma}(U)^+$ -type. In order to prove quantifier elimination, we just need to find $\tilde{\beta}\in\mathcal{S}$ sending a to b. Without loss of generality, we can assume that a_1,\ldots,a_r are maximally independent over G in respect to the pregeometry \mathbf{cl}_T . Since a and b have the same $\mathfrak{L}_{\Gamma}(U)^+$ -type, we get that b_1,\ldots,b_r are independent over G' in respect to the pregeometry \mathbf{cl}_T . Let β be the \mathfrak{L}_{Γ} -isomorphism between $\mathbf{cl}_T(\{a_1,\ldots,a_r\},\Gamma)$ and $\mathbf{cl}_T(\{b_1,\ldots,b_r\},\Gamma)$. We will now show that β extends to an isomorphism $\tilde{\beta}$ in the back-and-forth-system \mathcal{S} sending a to b. Let $g_1,\ldots,g_l\in G$ be such that a_{r+1},\ldots,a_n are in $\mathbf{cl}_T(\{a_1,\ldots,a_r,g_1,\ldots,g_l\},\Gamma)$. Let $p(x_1,\ldots,x_l)$ be the $\mathfrak{L}_{\Gamma}(U)$ -type consisting of the \mathfrak{L}_{Γ} -type of (g_1,\ldots,g_l) over $\mathbf{cl}_T(\{a_1,\ldots,a_r\},\Gamma)$ and for every $k_1,\ldots,k_l\in\mathbb{Z}$, $s\in\mathbb{N}$ and $\gamma\in\Gamma$ one of the formulas

$$(16) x_1^{k_1} \cdot \ldots \cdot x_l^{k_l} \cdot \gamma \in G^{[s]},$$

$$(17) x_1^{k_1} \cdot \ldots \cdot x_l^{k_l} \cdot \gamma \notin G^{[s]},$$

depending on whether $g_1^{k_1} \cdot \ldots \cdot g_l^{k_l} \cdot \gamma \in G^{[s]}$. Let p' be the type corresponding to p under β . We want to find $h_1, \ldots, h_l \in G'$ satisfying p'. By compactness and saturation of (M', G'), it is enough to show that every finite subset of p' can be realized. So let $\psi(x, b_1, \ldots, b_r)$ be an \mathfrak{L}_{Γ} -formula in p' and $\chi_1(x, b_1, \ldots, b_r), \ldots, \chi_t(x, b_1, \ldots, b_r)$ be finitely many formulas in p' of the form (16) or (17). Put $\chi = \bigwedge_{i=1}^t \chi_i$. By Lemma 4.1, the set

$$Y := \{(h_1, \dots, h_l) \in G'^l : (M', G') \models \chi(h_1, \dots, h_l, b_1, \dots, b_r))\}$$

is a finite union of cosets of $(G'^{[s]})^l$ in $(G')^l$ for some $s \in \mathbb{N}$. So the formula $\chi_i(x, b_1, \ldots, b_r)$ is equivalent to an atomic $\mathfrak{L}_{\Gamma}(U)^+$ -formula. Hence the formula $\psi \wedge \chi$ is also of this form. Thus

$$\exists y_1 \cdots \exists y_l \bigwedge_{i=1}^l U(y_i) \wedge \psi(y_1, \dots, y_l, b_1, \dots, b_r) \wedge \chi(y_1, \dots, y_l, b_1, \dots, b_r)$$

is equivalent to a quantifier-free $\mathfrak{L}_{\Gamma}(U)^+$ -formula. Since (a_1,\ldots,a_r) and (b_1,\ldots,b_r) have the same quantifier-free $\mathfrak{L}_{\Gamma}(U)^+$ -type, the formula

$$\exists y_1 \cdots \exists y_l \bigwedge_{i=1}^l U(y_i) \wedge \psi(y_1, \dots, y_l, b_1, \dots, b_r) \wedge \chi(y_1, \dots, y_l, b_1, \dots, b_r)$$

holds in (M', G'). So p' is finitely satisfiable. Now let $h_1, \ldots, h_l \in G'$ realize p'. Then β extends to an \mathfrak{L}_{Γ} -isomorphism

$$\tilde{\beta}: \mathbf{cl}_T(\{a_1,\ldots,a_r,g_1,\ldots,g_l\},\Gamma) \to \mathbf{cl}_T(\{b_1,\ldots,b_r,h_1,\ldots,h_l\},\Gamma).$$

By the construction of g_1, \ldots, g_l and h_1, \ldots, h_l , we have that

$$g_1^{k_1}\cdot\ldots\cdot g_l^{k_l}\gamma\in G^{[s]}$$
 if and only if $h_1^{k_1}\cdot\ldots\cdot h_l^{k_l}\gamma\in G'^{[s]}$

for all $k_1, \ldots, k_l \in \mathbb{Z}$, $s \in \mathbb{N}$ and $\gamma \in \Gamma$. Hence $\tilde{\beta}$ is an $\mathfrak{L}_{\Gamma}(U)$ -isomorphism of

$$\left(\mathbf{cl}_T(\{a_1,\ldots,a_r,g_1,\ldots,g_l\},\Gamma),\Gamma_G\langle g_1,\ldots,g_l\rangle\right)$$
 and

$$(\mathbf{cl}_T(\{b_1,\ldots,b_r,h_1,\ldots,h_l\},\Gamma),\Gamma_{G'}\langle h_1,\ldots,h_l\rangle).$$

Hence $\tilde{\beta} \in \mathcal{S}$.

5.4. Induced structure and open core. In this subsection it will be shown that every open definable set in $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Gamma)$ is already definable in the reduct $(\overline{\mathbb{R}}, x^{\tau}, \tau)$. This establishes the second part of Theorem A. We use the following instance of [7], Theorem 5.2.

Theorem 5.7. Suppose that for every model $(M, G) \models \tilde{T}$,

- for every finite $B \subseteq M$ such that $B \setminus G$ is cl_T -independent over G and
- for every set $X \subseteq G^n$ definable in (M,G) with parameters from B,

the topological closure \overline{X} of X is definable in M over B. Then every open set definable in $(\overline{\mathbb{R}}, x^{\tau}, \tau, \Gamma)$ is already definable in $(\overline{\mathbb{R}}, x^{\tau}, \tau)$.

In the remainder it will be shown that the assumption of Theorem 5.7 holds. Therefor let (M, G) be a model of \tilde{T} and let B be a finite subset of M such that $B \setminus G$ is \mathbf{cl}_T -independent over G.

Lemma 5.8. Let $X \subseteq G^n$ be definable in (M,G) with parameters from B. Then X is a finite union of sets of the form

(18)
$$E \cap \bigcup_{i=1}^{l} \gamma_i \cdot (G^{[s]})^n.$$

where $E \subseteq M^n$ is \mathfrak{L}_{Γ} -B-definable, $\gamma_1, \ldots, \gamma_l \in \Gamma^n$ and $s \in \mathbb{N}$.

Proof. We may assume that (M,G) is a $|\Gamma|^+$ -saturated model of \tilde{T} . By our assumption, B is a union of a finite set $S \subseteq G$ and a set $A \subseteq M$ which is \mathbf{cl}_T -independent over G. Let S be the back-and-forth system of partial $\mathfrak{L}_{\Gamma}(U)$ -isomorphisms between (M,G) and itself constructed above. Take $g,g'\in G^n$ such that for every $E\subseteq M^n$ \mathfrak{L}_{Γ} -definable over $B,\,\gamma_1,\ldots,\gamma_l\in\Gamma^n$ and $s\in\mathbb{N}$ we have that

(19)
$$g \in E \cap \bigcup_{i=1}^{l} \gamma_i(G^{[s]})^n \Leftrightarrow g' \in E \cap \bigcup_{i=1}^{l} \gamma_i(sG^{[s]})^n.$$

By Lemma 4.1 and (A3), the collection of finite union of sets of the form (18) is closed under boolean operations. Hence it suffices to show that there is $\beta \in \mathcal{S}$ fixing B such that β maps g to g'. Since g satisfies all \mathfrak{L}_{Γ} -formulas over B which are satisfied by g, there is an \mathfrak{L}_{Γ} -isomorphism from $\mathbf{cl}_T(g, B, \Gamma)$ to $\mathbf{cl}_T(g', B, \Gamma)$ fixing $B \cup \Gamma$ and mapping g to g'. We now show that $\beta \in \mathcal{S}$. Since $B = S \cup A$, it

is only left to prove that $\beta(\Gamma\langle g, S \rangle) = \Gamma\langle g', S \rangle$. Since β maps g to g' and fixes S, it is enough to show for all $h \in \Gamma_G \langle S \rangle^n$, $k \in \mathbb{Z}^n$ and $s \in \mathbb{N}$ that

$$g \in h \cdot D_{k,s}$$
 if and only if $g' \in h \cdot D_{k,s}$.

By Lemma 4.1 and (A3), there is are $\gamma_1,\ldots,\gamma_{l_1},\delta_1,\ldots,\delta_{l_2}\in\Gamma^n$ such that $h\cdot D_{k,s}=\bigcup_{i=1}^{l_1}\gamma_i(G^{[s]})^n$ and $G^n\setminus(h\cdot\gamma D_{k,s})=\bigcup_{i=1}^{l_2}\delta_i(G^{[s]})^n$. By (19), we have $g\in h\cdot D_{k,s}$ if and only if $g'\in h\cdot D_{k,s}$. Hence $\beta(\Gamma\langle g,S\rangle)=\Gamma\langle g',S\rangle$ and $\beta\in\mathcal{S}$. \square

Proposition 5.9. Let $X \subseteq G^n$ be definable in (M,G) with parameters from B. Then the topological closure \overline{X} of X is definable in M over B.

Proof. We prove that there is an \mathfrak{L}_{Γ} -B-definable set $E \subseteq M^n$ such that X is a dense subset of E. We do this by induction on n. The case n=0 is trivial. So let n>0. By Lemma 5.8 we may assume that there exists an \mathfrak{L}_{Γ} -B-definable set E_0 and an $\mathfrak{L}_{\Gamma}(U)$ - \emptyset -definable set D_0 which is dense in G^n such that $X=E_0\cap D_0$. Without loss of generality, we can assume that E_0 is a cell. First consider the case that E_0 is open. Then X is dense in E_0 . Now consider the case that there is a projection $\pi:M^n\to M^m$ such that m< n and π is homeomorphism of E_0 onto its image and $\pi(E_0)$ is open. Consider the set

$$X' := \{ (g_1, \dots, g_m) \in G^m \cap \pi(E_0) : \pi^{-1}(g_1, \dots, g_m) \in D_0 \}.$$

By the induction hypothesis, there is an \mathfrak{L}_{Γ} -B-definable subset E_1 of $\pi(E_0)$ such that X' is dense in E_1 . By continuity of π^{-1} , the image of X' under π^{-1} is dense in the image of E_1 under π^{-1} . Set $E := \pi^{-1}(E_1)$. Since $X = \pi^{-1}(X')$, we have that X is dense E.

5.5. **Proof of Theorem B.** As mentioned above, the proof of Theorem B, ie. the case $\tilde{T} = T_{\Gamma}(\Delta)$, is almost exactly the same as the proof of Theorem A. One only needs to replace 'H is a pure subgroup of G' by 'H is a $\mathbb{Q}(\tau)$ -linear subspace of G' in the statement of Lemma 5.3 and the definition of the back-and-forth system \mathcal{S} , and adjust the proof of Lemma 5.5 and Theorem 5.1 accordingly.

References

- M. Bays, J. Kirby, A. Wilkie, 'A Schanuel property for exponentially transcendental powers', arXiv:0810.4457, Preprint (2009)
- [2] O. BELEGRADEK, B. ZILBER, 'The model theory of the field of reals with a subgroup of the unit circle', *J. Lond. Math. Soc.* (2) 78 (2008) 563-579.
- [3] A. DOLICH, C. MILLER, C. STEINHORN, 'Structures having o-minimal open core', *Trans. Amer. Math. Soc.* to appear (2009)
- [4] L. VAN DEN DRIES, 'The field of reals with a predicate for the powers of two', Manuscripta Mathematica 54 (1985) 187-195.
- [5] L. VAN DEN DRIES, A. GÜNAYDIN, 'The fields of real and complex numbers with a small multiplicative group', Proc. London Math. Soc. (3) 93 (2006).
- [6] J.H. EVERTSE, 'On sums of S-units and linear recurrences', Compositio Math. 53 (1984) 225-244.
- [7] A. GÜNAYDIN, P. HIERONYMI, 'The real field with the rational points of an elliptic curve', arXiv:0906.0528, Preprint (2009)
- [8] P. Hieronymi, 'Defining the set of integers in expansions of the real field by discrete sets', Proc. Amer. Math. Soc. to appear, Preprint under arXiv:0906.4972 (2009)
- [9] G.O. Jones, A.J. Wilkie, 'Locally polynomially bounded structures', Bulletin London Math. Soc. (2) 40 (2008) 239-248.
- [10] C. MILLER, 'Expansions of the real field with power functions', Annals of Pure and Applied Logic 68 (1994) 79-94.

- [11] C. MILLER, 'Tameness in expansions of the real field', in Logic Colloquium '01 (Vienna), Lect. Notes Log. 20, Assoc. Symbol. Logic (2005) 281–316.
- [12] A.J. VAN DER PORTEN, H. P. SCHLICKEWEI, 'Additive relations in fields', J. Austral. Math. Soc. 51 (1991) 154-170.
- [13] M. TYCHONIEVICH, 'Defining additive subgroups of the reals from convex subsets', Proc. Amer. Math. Soc. 137 (2009) 3473-3476.

Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom

Current address: Department of Mathematics & Statistics, McMaster University, 1280 Main Street West Hamilton, ON, L8S 4K1, Canada

 $E\text{-}mail\ address{:}\ \texttt{P@hieronymi.de}$