MA(q) | Properties and Characteristics

Moving Average (MA) Models

- Used to model stationary data
 - But not as useful as AR models for modeling actual stationary data
- They are useful in combination with the AR model to create the ARMA models, which are a useful extension of the AR models

Remember George Box's quote:

All models are wrong... but some are useful.

We first briefly study the moving average (MA) model

Moving Average Model of Order q: MA(q)

$$X_t = +a_t \quad _1a_{t-1} \quad ... \quad _qa_{t-q}$$

Where the θ_j 's are real constants and a_t 's are white

Notes:

- X_t at time t is a linear combination of present and past noise components
- An MA(q) is a finite GLP and is always stationary

• GLP:
$$X_t = \mu + \sum_{j=0} \psi_j a_{t-j}$$
 so for an MA(q)
$$\psi_0 = 1, \psi_1 = -\theta_1, ..., \psi_q = -\theta_q, \psi_k = 0, k > q$$

Already in GLP form!

Example: MA(1): $X_t = 4 + a_t + -.9a_{t-1} + 0a_{t-2}$...

Moving Average Model of Order q: MA(q)

$$X_t = +a_t \quad _1a_{t-1} \quad \therefore \quad _qa_{t-q}$$

Zero mean form

$$X_t = a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

Operator zero mean form

$$X_t = (1 - \theta_1 B - \dots - \theta_q B^q) a_t$$

MA-characteristic equation

$$1 - \theta_1 z - \dots - \theta_q z^q = 0$$

Moving Average Model of Order 1: MA(1)

$$X_t - \mu = a_t - \theta_1 a_{t-1}$$

where θ_1 is a nonzero real, finite constant and a_t is white noise

Operator form

$$X_t - \mu = (1 - \theta_1 B) a_t$$

Zero mean operator form

$$X_t = (1 \quad _1B)a_t$$

MA(1) results: $X_t - \mu = a_t - \theta_1 a_{t-1}$

$$X_t - \mu = a_t - \theta_1 a_{t-1}$$

Mean

$$E(X_t) = \mu$$

Autocorrelations

$$\rho_0 = 1$$

$$\rho_1 = \frac{-\theta_1}{1 + \theta_1^2}$$

$\rho_k = 0, k > 1$

Variance

$$\sigma_X^2 = \sigma_a^2 (1 + \theta_1^2)$$

Spectral density

$$S_{X}(f) = \frac{\sigma_{a}^{2}}{\sigma_{X}^{2}} |1 - \theta_{1}e^{-2\pi if}|^{2}$$

$$= \frac{\sigma_{a}^{2}}{\sigma_{X}^{2}} |1 - \theta_{1}(\cos 2\pi f - i\sin 2\pi f)|^{2}$$

Example

MA(1)

Example: $X_t = a_t - .99a_{t-1}$

$$\theta_1 = .99$$
 (watch signs!)

$$\rho_1 = \frac{-\theta_1}{1 + \theta_1^2} = \frac{-.99}{1 + .99^2} = -.49997$$

$$\rho_k = 0, k > 1$$

Note: For an MA(1), max $|\rho_1| = .5$.

Note: MA(1) spectral densities do not have "peaks." Instead, they have "dips."

Example: $X_t = a_t + .99a_{t-1}$

$$\theta_1 = -.99 (watch signs!)$$

$$\rho_1 = \frac{-\theta_1}{1 + \theta_1^2} = \frac{.9_1}{1 + .9^2} = .49997$$

$$\rho_k = 0, k > 1$$

Note: For an MA(1), max $|\rho_1| = .5$.

Note: MA(1) spectral densities do not have "peaks." Instead they have "dips."

Example

MA(2)

Next, We Briefly Consider the MA(2) Model:

$$X_t = a_t \quad a_{t-1} \quad a_{t-2}$$

Autocorrelations

$$_{0} = 1$$
 $_{1} = \frac{_{1} + _{1} + _{2}}{_{1} + _{1} + _{2}}$ $_{2} = \frac{_{2}}{_{1} + _{1} + _{2}}$

$$_{2} = \frac{2}{1 + \frac{2}{1} + \frac{2}{2}}$$

$$_{k} = 0, k > 2$$

Example: $X_t = a_t - .9a_{t-1} + .4a_{t-2}$

$$\rho_0 = 1$$

$$\rho_1 = \frac{-\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2} = \frac{-.9 + (.9)(-.4)}{1 + .9^2 + (-.4)^2} = -.6396$$

$$\rho_2 = \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2} = \frac{.4}{1 + .9^2 + (-.4)^2} = .2030$$

$$\rho_k = 0, k > 2$$

Key Feature of MA(q)

For an MA(q), $\rho_k = 0$, k > q

Other notes about MA(q) processes

- As previously mentioned, MA processes are not appropriate for modeling many real-world processes.
 - For example, the property of an MA(2) that X_t is uncorrelated with X_{t+3} , X_{t+4} , ... is unrealistic in most cases.
- MA behavior is most useful in the formulation of ARMA(p,q) models.

MA(q) | tswge and MA Models

tswge demo

The following command generates and plots a realization from an MA, AR, or ARMA model.

```
gen.arma.wge(n,phi,theta,vara,sn)
```

Notes:

- For MA models, theta is a constant for q = 1 and a vector for q > 1. For an MA(q), phi takes on its default value of 0.
- + sn=0 (default) generates a new (randomly obtained) realization each time. Setting sn > 0 allows you to generate the same realization each time you apply the command with the same sn.

```
gen.arma.wge(n=100,theta=-.99)
gen.arma.wge(n=100,theta=-.99)
gen.arma.wge(n=100,theta=-.99,sn=5)
gen.arma.wge(n=100,theta=-.99,sn=5)
gen.arma.wge(n=100,theta=-.99,sn=5)
gen.arma.wge(n=100,theta=c(.9,-.4)
```

tswge demo

The following command plots a realization of length n (default = 100), the true autocorrelations, and the spectral density for an MA, AR, or ARMA model.

plotts.true.wge(n,phi,theta,lag.max)

Example: plotts.true.wge(theta=c(.99)) plotts.true.wge(theta=c(.9,-.4))

MA(q) | tswge

MA and Dip in Spectral Density

Demo: Dip in Spectral Density

Consider the MA(2) model:

$$X_t = a_t \quad 1.1a_{t-1} + .9a_{t-2}$$

First, recall the spectral density of

$$X_t = 1.1X_{t-1} + .9X_{t-2} = a_t$$
 plotts.true.wge(phi=c(1.1,-.9))

Now, what does the spectral density of

$$X_t = a_t \quad 1.1a_{t-1} + .9a_{t-2}$$

look like?

plotts.true.wge(theta=c(1.1, -.9))

MA(q) Comments

Key Feature of MA(q)

For an MA(q), $\rho_k = 0$, k > q

Other notes about MA(q) processes

- As previously mentioned, MA processes are not appropriate for modeling many real-world processes.
 - For example, the property of an MA(2) that X_t is uncorrelated with X_{t+3} , X_{t+4} , ... is unrealistic in most cases.
- MA behavior is most useful in the formulation of ARMA(p,q) models.

MA(q) | Invertibility

Invertibility Light board?

Consider the MA(1) processes:

(a)
$$X_t = a_t - .8 a_{t-1}$$

(a)
$$X_t = a_t - .8a_{t-1}$$
 (b) $X_t = a_t - 1.25a_{t-1}$

For (a),
$$\rho_l(a) = \frac{-\theta_l}{1 + \theta_l^2} = \frac{-.8}{1.64}$$

For (b),
$$\rho_1(b) = \frac{-\theta_1}{1 + \theta_1^2} = \frac{-1.25}{1 + 1.25^2} = \frac{-1/.8}{1 + (1/.8)^2}$$

$$= \left(\frac{-1/.8}{1+(1/.8)^2}\right) \frac{.8^2}{.8^2}$$

$$=\frac{-.8}{.8^2+1}$$

$$= \rho_1(\mathbf{a})$$

Invertibility

- The previous example shows that two different MA(1) models can have the same autocorrelations
 - ρ_1 is the same for both models, and in each case, $\rho_0 = 1$ and $\rho_k = 0, k > 1$
- Undesirable situation
 - Called model multiplicity
- By restricting our models to invertible models, we can avoid model multiplicity

Which MA Models Are Invertible

An MA(q) model is invertible if and only if the roots of the MA-characteristic equation, $\theta(z) = 0$, are greater than 1 in absolute value.

For the previous example:

Light board?

Model (a): 1 - .8z = 0 has root 1/.8 = 1.25 > 1

Model (b): 1 - 1.25z = 0 has root 1/1.25 = .8 < 1

Results:

- Both models are stationary (all MA models are).
- Model (a) is invertible.
- We do not consider non-invertible models such as model (b).

MA(q) | tswge and Invertibility

tswge demo

Check for Invertibility

Use factor.wge

Example 1: Is
$$X_t = a_t - 1.6a_{t-1} + .9a_{t-2}$$
 invertible? factor.wge (phi=c (1.6, -.9))

Example 2: Is
$$X_t = a_t - 1.6a_{t-1} - .9a_{t-2}$$
 invertible? factor.wge (**phi=**c (1.6, .9))

Note: The frequency f_0 shown in the factor table is **not** a system frequency.

 In fact, it is a frequency at which there is a "dip" in the spectrum instead of a peak.

tswge demo

1.
$$X_t = a_t - .9a_{t-1}$$

2.
$$X_t = a_t - 1.111a_{t-1}$$

Note: 1/.9 = 1.1111....

Use plotts.true.wge to compare the characteristics of these two models.

ARMA(p,q) | Properties and Characteristics

Autoregressive: Moving Average Process of Orders p and q ARMA(p,q)

$$X_{t} - \varphi_{1} X_{t-1} - \dots - \varphi_{p} X_{t-p} = \beta + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q}$$

Where

- $\beta = (1 \varphi_1 \varphi_2 \dots \varphi_p)\mu$
- a_t is white noise
- φ_i 's and θ_j 's are real constants
- $\varphi_p \neq 0$ and $\theta_q \neq 0$
- $\varphi(z)$ and $\theta(z)$ have no common factors

Zero mean form

We will typically use the "zero mean" form of the model.

$$X_{t} - \varphi_{1}X_{t-1} - \dots - \varphi_{p}X_{t-p} = a_{t} - \theta_{1}a_{t-1} - \dots - \theta_{q}a_{t-q}$$

Operator notation

$$(1-\varphi_1B-\cdots-\varphi_pB^p)X_t = (1-\theta_1B-\cdots-\theta_qB^q)a_t$$
or
$$\varphi(B)X_t = \theta(B)a_t$$

ARMA(p,q) | Cancellation

$\mathsf{ARMA}(p,q) \; \mathsf{Model} \; \; \varphi(B)X_t = \theta(B)a_t$

- $\varphi(B)$ and $\theta(B)$ introduce characteristics of the same type as in the AR(p) and MA(q) cases.
- "Near cancellation" may "hide" some characteristics.

Light board

Light board

Example: Cancellation

$$(1-1.3B+.4B^2)X_t = (1-.8B)a_t$$

What model is this? ARMA(2,1)?

k	$ ho_k$	1	That is $2k-5k$
0	1	5 1	That is, $\rho^k = .5^k$,
1	.5		which are the autocorrelations for the
2	.25	$.5^{2}$	AR(1) model
3	.125	$.5^{3}$	$(15B)X_t = a_t.$
:	:	:	

Note:

$$(1-1.3B+.4B^2)X_t = (1-.8B)a_t$$
. Factoring, you get $(1-.8B)(1-.5B)X_t = (1-.8B)a_t$. By cancellation, we get $(1-.5B)X_t = a_t$ (i.e., the model above is an AR(1)).

ARMA(p,q) | Cancellation

Example: Cancellation

$$(1-1.3B+.4B^2)X_t = (1-.8B)a_t$$

What model is this? ARMA(2,1)?

k	$ ho_k$	1	That is, $\rho^k = .5^k$,
0	1	.51	
1	.5		which are the autocorrelations for the
2	.25	$.5^2$	AR(1) model
3	.125	$.5^3$	$(15B)X_t = a_t.$
•	:	:	

Note:

$$(1-1.3B+.4B^2)X_t = (1-.8B)a_t$$
. Factoring, you get $(1-.8B)(1-.5B)X_t = (1-.8B)a_t$. By cancellation, we get $(1-.5B)X_t = a_t$ (i.e., the model above is an AR(1)).

Cancellation

plotts.true.wge(250,phi = c(1.3,-.4),theta = c(.8))

plotts.true.wge(250,phi = c(.5))

The above two models are equivalent due to cancelation of the MA term and a factor in the AR term.

ARMA(p,q) | Blend of AR and MA

$\mathsf{ARMA}(p,q) \; \mathsf{Model} \; \varphi(B) X_t = \theta(B) a_t$

• $\varphi(B)$ and $\theta(B)$ introduce characteristics of the same type as in the AR(p) and MA(q) cases.

Key result:

 $\varphi(B)X_t = \theta(B)a_t$ is a stationary and invertible ARMA(p,q) process iff:

- i. Roots of $\varphi(z) = 0$ are all outside the unit circle
- ii. Roots of $\theta(z) = 0$ are all outside the unit circle

Note: In order to refer to a process as "ARMA," we will require it to be **stationary and invertible**.

Example $(1 1.95B + 1.9B^2 .9025B^3)X_t = (1 .95B)a_t$

$$(1 - 1.95B + 1.9B^2 - .9025B^3)X_t = a_t$$

$$X_t = (1 - .95B) a_t$$

$$(1 - 1.95B + 1.9B^2 - .9025B^3)X_t$$
$$= (1 - .95B)a_t$$

Notes

- The AR(3) part of the model (associated with the second column of graphs) displays:
 - A periodic behavior of about f = .16
 - A wandering behavior associated with f = 0; this is shown best in the realization and the spectral density
- The MA(1) part of the model is associated with a dip in the spectral density at f = 0.
 - It tends to "remove" behavior related to f = 0 (i.e., the aimless, aperiodic wandering)
- The ARMA(3,1) model retains the cyclic behavior, but the wandering behavior associated with f = 0 has been minimized.

Spectral Densities

ARMA(p,q) | tswge and Illustrating the Blend of AR and MA

What Can You Tell About the ARMA Model from These Plots?

$$(1 - .3B - .9B^2 - .1B^3 + .8075B^4)X_t = (1 + .9B + .8B^2 + .72B^3)a_t$$

tswge

```
# AR factors
factor.wge(c(.3,.9,.1,-.8075))
# MA factors
factor.wge(c(-.9,-.8,-.72))
DataScience@SMU
```

ARMA(p,q) | Example 1

Jet Fuel A

Review: AIC

- Akaike's Information Criterion
- Given a set of data, the AIC is used to evaluate and compare the quality of models
- Given a set of models, the model with the lowest
 AIC is thought to have the most quality

Jet Fuel Prices

Source: U.S. Energy Information Administration

aic.wge(jetA\$Price,p = 1, q = 0)\$value

[1] -4.012713

aic.wge(jetPrice,p = 2, q = 0)\$value

[1] -4.144347

aic.wge(jetA\$Price,p = 1, q = 1)\$value

[1] -4.195998

aic5.wge(jetA\$Price)

Five Smallest Values of aic
p q aic
5 1 1 -4.195998155
10 3 0 -4.190446477
6 1 2 -4.172063529
8 2 1 -4.171285161
13 4 0 -4.165614321

$ARMA(p,q) \mid Example 2$

Canadian Lynx

Lynx Data

Notes: The above plots are typical of those produced by AR models for which the characteristic equation has complex conjugate roots.

- The log lynx data have a pseudo-cyclic appearance.
- The autocorrelations show damped sinusoidal behavior.
- The spectral density has a peak at some f_0 between 0 and 0.5 (at approximately 0.1 in this case).

Lynx Data

Log lynx data

Autocorrelations

Spectral density


```
> aic5.wge(llynx)
-----WORKING... PLEASE WAIT...
```

Five Smallest Values of aic

	р	q	aic
14	4	1	-2.951518
16	5	0	-2.951301
13	4	0	-2.949515
12	3	2	-2.942965
17	5	1	-2.936873

$ARMA(p,q) \mid Example 3$

Airline Weather Delay

tswge Another Example: Airline Delays SWA Monthly Delay Since 2004

Five	e Smallest		Values of	aic
	р	q	aic	
14	4	1	19.00136	
17	5	1	19.01266	
18	5	2	19.02307	
4	1	0	19.03069	
8	2	1	19.04178	

$ARMA(p,q) \mid PSI Weights$

ψ -Weights

As mentioned earlier, the AR, MA, and ARMA processes can all be expressed as general linear processes (GLPs).

The form of the GLP is
$$X_t = \sum_{j=0}^{\infty} \psi_j a_{t-j}$$

Examples

MA

$$X_t = a_t - .8a_{t-1}$$
 ψ -weights: $\psi_0 = 1, \psi_1 = -.8, \psi_j = 0, j > 1$

AR

$$X_t - .8X_{t-1} = a_t \ \psi$$
-weights: $\psi_j = .8^j, j \ge 0$ (See Woodward et al., 2017.)

$$X_t = a_t + .8a_{t-1} + .64a_{t-1} + .512a_{t-1} + ...$$

ψ -Weights

- Are used in establishing prediction limits on forecasts
- They are more difficult to obtain for AR(p) models, p > 1 and ARMA(p,q) models
 - See Woodward et al. (2017) for calculation techniques.
- In this course, we will calculate ψ-weights using tswge command psi.weights.wge

ARMA(p,q) | tswge and PSI Weights

ψ -Weights and tswge

tswge gives $\psi_1, \psi_2, ..., \psi_{\text{lag.max}}$.

• In all cases, $\psi_0 = 1$.

```
# psi-weights for simple MA(1) model X(t)=(1-.8B)a(t)
psi.weights.wge(theta=.8,lag.max=5)

# psi-weights for simple AR(1) model (1-.8B)X(t)=a(t)
psi.weights.wge(phi=.8,lag.max=5) #note that psi(j)=.8<sup>j</sup>

# psi-weights for ARMA(2,1) model (1-1.2B+.6B<sup>2</sup>)X(t)=(1-.5B)a(t)
psi.weights.wge(phi=c(1.2,-.6),theta=c(.5),lag.max=5)
```


$ARMA(p,q) \mid Summary$

Comments about ARMA Models

- An MA(q) is an ARMA(0,q) model.
- An AR(p) is an ARMA(p,0) model.
- A stationary and invertible ARMA(p,q) model can be written in the two forms:
 - 1. A GLP (infinite order MA): $X_t = \sum_{j=0}^{\infty} \psi_j a_{t-j}$
 - 2. Infinite order AR: jX_t $j=a_t$ (where 0=1)

(See Woodward et al., 2017)

Comments about ARMA Models

- An ARMA(p,q) can be written as an infinite order AR (form 2).
- That is, an ARMA(p,q) model may be able to be approximated by a high-order AR.
- Some time series analysts choose to do that and focus on AR models.
- Box and Jenkins favor an ARMA model fit over a high-order AR fit.
 - More "parsimonious" model
 - That is, fewer parameters