

1- The Physical Layer

"Wireless" well before radios...

Chappe's optical telegraph (late 18th century)

A smart fraud (1834-1837)

Blanc brothers' goal

Get stock market news before competitors

The solution

Hack the optical telegraph Covert channel faster than mail

How??

Exploit error correction!

Hiding stock market trends

- 1. Added by an accomplice operator in Tours
- 2. Observed by an accomplice in Bordeaux
- 2. Discarded by legitimate receiver thanks to '\b'

References

"1834: The First Cyberattack - Schneier on Security," accessed June 28, 2021, https://www.schneier.com/blog/archives/2018/05/1834_the_first_.html.

"Journal Des Débats Politiques et Littéraires," issue, Gallica, January 29, 1837, https://gallica.bnf.fr/ark:/12148/bpt6k4393846.

"What the Count of Monte Cristo Can Teach Us About Cybersecurity - IEEE Spectrum," IEEE Spectrum: Technology, Engineering, and Science News, accessed June 28, 2021, https://spectrum.ieee.org/tech-talk/telecom/security/what-the-count-of-monte-cristo-canteach-us-about-cybersecurity.

Radio communications

A brief history

1950

2020

End of the 19th Century

Electromagnetism
Radio communications

20th Century

Huge development

Many applications + Integration

21st Century

Integration + computation + embedded Smartphones, Embedded, IoT, sensors Software Defined Radios

How many radios on a smartphone?

GNSS (km)

Cellular (km)

FM (km)

WiFi (m)

BT/BLE (m)

NFC (mm)

UWB (m)

References

G. R. M. Garratt, T. B. A. Senior, and John L. Volakis, The Early History of Radio: From Faraday to Marconi (Institution of Engineering and Technology, 1994).

Massimo Guarnieri, "A Question of Coherence [Historical]," IEEE Industrial Electronics Magazine 10, no. 3 (September 2016): 54–58, https://doi.org/10.1109/MIE.2016.2590718.

"Hedy Lamarr," in Wikipedia, June 25, 2021, https://en.wikipedia.org/w/index.php?title=Hedy_Lamarr&oldid=1030354762.

How do radio communications work? (A minimalistic overview)

The goal

Transmit information

Which physical signal?
How to encode information?
What circuits?
How to deal with errors?

Propagation

Transmitting information: Modulation

Intuition

Sinusoidal radio signal (carrier) Modulate (information)

- Amplitude
- Frequency
- Phase

Some math...

A signal E.g., a quantity that varies over time

Some math...

Intuition

See the signal as the projection on the real axis of a rotating vector in the complex plane

Analytic signal representation

$$x(t) = Re\{x_a(t)\} = Re\{a(t)e^{i\Phi(t)}\} = a(t)cos(\Phi(t))$$

Analytical signal

$$x(t) = Re\{x_a(t)\} = Re\{a(t)e^{j\Phi(t)}\} = a(t)cos(\Phi(t))$$

Analytic signal

Amplitude

Phase

$$f(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt}$$

Frequency

Polar to quadrature

$$I(t) = a(t) \cos(\Phi(t))$$

$$Q(t) = a(t) \sin(\Phi(t))$$

$$x_a(t) = I(t) + jQ(t) = a(t)e^{j\Phi(t)}$$

Don't be confused by math

The physical signal (The real part)

The mathematical representation (The complex analytical signal)

On time, frequency, and frequency over time

Frequency analysis

Time domain

For real signals the transform is symmetric so we sometimes draw only the right side

$$egin{aligned} \cos x &= \mathrm{Re}ig(e^{ix}ig) = rac{e^{ix} + e^{-ix}}{2}, \ \sin x &= \mathrm{Im}ig(e^{ix}ig) = rac{e^{ix} - e^{-ix}}{2i}. \end{aligned}$$

$$X(f) = F(x(t)) = \int_{-\infty}^{+\infty} x(t)e^{-i\pi 2ft}$$
Decompose $x(t)$ into an infinite sum of complex sinewaves at different frequency

different frequency

Some examples

sinusoidal signals: Fourier transform of $f(t) = \cos \omega_0 t$

$$F(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) e^{-j\omega t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(\omega + \omega_0)t} dt$$

$$= \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

shifted rectangular pulse:
$$f(t) = \left\{ \begin{array}{ll} 1 & 1-T \leq t \leq 1+T \\ 0 & t < 1-T \text{ or } t > 1+T \end{array} \right.$$

$$F(\omega) = \int_{1-T}^{1+T} e^{-j\omega t} dt = \frac{-1}{j\omega} \left(e^{-j\omega(1+T)} - e^{-j\omega(1-T)} \right)$$
$$= \frac{-e^{-j\omega}}{j\omega} \left(e^{-j\omega T} - e^{j\omega T} \right)$$
$$= \frac{2\sin\omega T}{\omega} e^{-j\omega}$$

https://web.stanford.edu/class/ee102/lectures/fourtran

https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/identmeth/fourier.pdf

Power Spectral Density (PSD)

Sometimes it is convenient to reason in terms of power

- Signal:
 - x(t)

$$x_T(t) = x(t) \ if \ -\frac{T}{2} < t < \frac{T}{2} \ else \ 0$$

- Power in the time domain
 - Power: $\lim_{T\to\infty}\frac{1}{T}\int |x_T(t)|^2 dt$
- Power in the frequency domain
 - Power Spectral Density (PSD): $PSD(f) = \lim_{T \to \infty} \frac{1}{T} \int |X_T(f)|^2 dt$

It tells us the distribution of power over the frequency components of x(t)

High data-rate => Large bandwidth

Baseband to passband

Baseband and passband

The Electronics

Quadrature Modulator

(This is just one possible architecture!)

It's time for some examples

Phase-shift Keying (PSK) and Quadrature Amplitude Modulation (QAM)

Binary-PSK

Quadrature-PSK

QAM 16

BPSK with square pulses

```
Input bits one by one
   bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])
   symbols psk = bits
    bpsk = np.array((-1+0j, +1+0j))
                                                       Constellation
     Mbpsk = np.repeat(bpsk[symbols psk], Ns)
                                 Find symbol in
Baseband IQ
                                                    Repeat for the
                                  constellation
                                                   entire duration of
  samples
                  Q
                                                     the symbol
bpsk = Mbpsk.real*np.cos(2*np.pi*f0*t bpsk) - Mbpsk.imag*np.sin(2*np.pi*f0*t bpsk)
```

Simulate quadrature modulator

BPSK with square pulses

bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])

time (s)

QPSK with square pulses

```
Input bits two by two
   bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])
   symbols qpsk = np.array([BitArray(i).uint for i in bits.reshape(-1,2)])
            np.sqrt(2)*np.array((-1-1j, -1+1j, +1-1j, +1+1j))/2
   Mqpsk = np.repeat(qpsk[symbols qpsk],
                                Find symbol in
                                                                 Constellation
Baseband IQ
                                                  Repeat for the
                                 constellation
 samples
                                                 entire duration of
                  Q
                                                    the symbol
  = Mqpsk.real*np.cos(2*np.pi*f0*t qpsk) - Mqpsk.imag*np.sin(2*np.pi*f0*t qpsk)
```

Simulate quadrature modulator

QPSK with square pulses

bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])

time (s)

QAM16 with square pulses

```
Input bits four by four
    bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])
     symbols qam16 = np.array([BitArray(i).uint for i in bits.reshape(-1,4)])
     qam16 = np.sqrt(2)*np.array((-3-3j, -3-1j, -3+3j, -3+1j, -1-3j, -1-1j, -1+3j, -1+1j,
                             +3-3j, +3-1j, +3+3j, +3+1j, +1-3j, +1-1j, +1+3j, +1+1j))/4
             = np.repeat(qam16[symbols qam16], Ns)
                                                                            Constellation
                                     Find symbol in
Baseband IQ
                                                           Repeat for the
                                       constellation
  samples
                                                         entire duration of
                     Q
                                                             the symbol
 qam16 = Mqam16.real*np.cos(2*np.pi*f0*t qam16) - Mqam16.imag*np.sin(2*np.pi*f0*t qam16)
```

Simulate quadrature modulator

QAM16 with square pulses

bits = np.array([0,1,0,1,1,1,0,0,1,1,1,0,1,0,1,1])

time(s)

More in general, a generic up-converter

$$I(nT_s) = a(nT_s)\cos(\Phi(nT_s))$$

$$f_{RF} \bigcirc \downarrow 0$$

$$f_{R$$

- By properly choosing I and Q we can apply any analog/digital amplitude/frequency/phase modulation to the carrier
- In any case, I and Q can be generated in the digital domain (hardware or software) and then converted into physical signals with a (multi-bit) DAC
- The PSK/QAM examples seen before are a specific case of phase or phase+amplitude modulation

Some references

Check the full script plus look at the following links for more examples including other modulations

https://inst.eecs.berkeley.edu/~ee123/sp15/lab/lab6/Pre-Lab6-Intro-to-Digital-Communications.html

https://pysdr.org/content/digital modulation.html

Security Implications

Fingerprinting based on Quadrature Errors

Figure 1: Common transmitter impairments and their sources

Fingerprinting based on Quadrature Errors

Figure 4: The 4 symbols of QPSK on I/Q plane

Some more considerations

Sending data in practice

E.g., On-Off Keying (OOK) and Manchester Encoding

Upper layers (link, network, app, ...)

Sending data in practice

Example of simple packet (a real remote, simplified)

Preamble (Sync) Command (Payload) CRC (Errors) Rolling code (Freshness) Address

On-Off Keying (OOK) + Manchester encoding

Physical layer

Dealing with a noise (+ channel – not shown)

We need to deal with noise

Bit errors happen

How to correct errors?

Error detection and correction (intuition only)

Error Detection

(Add redundant bits for checking errors)

Error detection and correction (intuition only)

Error Detection & Correction

(Add redundant bits to detect errors and their position)

Interleaving (intuition only)

Adviser expects TEMPEST becomes quickly serious problem

Interleaving "Shuffle in time"

AxMokum eEccoer Teilles burbstT qeoicSs srveEey pdpPmls

References

"A Foundation in Digital Communication," accessed May 11, 2021, https://www.afidc.ethz.ch/A_Foundation_in_Digital_Communication/Home.html.

Arya Behzad, Wireless LAN Radios: System Definition to Transistor Design (IEEE Press Series on Microelectronic Systems) (Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008).

Quick recap of this part

- Transmitting information with radio waves:
 - EM waves at radio frequency propagate from transmitter to receiver
 - Currents in antennas generate EM signals (TX)
 - EM signals propagate (Propagation)
 - EM signals generate currents in antennas (RX)
 - The waves are modulated to transmit information
 - Analytical signals are a convenient representation
 - AM/FM/PM modulation
 - Baseband vs. passband (Up/Down-conversion)
 - Transmission in practice
 - Electronic circuits in a typical transmitter (receiver is symmetrical)
 - Encoding, modulation, packets, upper protocol layers
 - Dealing with noise and bit errors:
 - Detection, detection and correction, interleaving

Software Defined Radios (SDR) (A quick introduction)

Software Defined Radio (SDR)

"Radio in which some or all of the **physical layer functions** are software-defined"

Software Defined Radio Forum, "SDRF Cognitive Radio Definitions Working Document SDRF-06-R-0011-V1.0.0", 2007, http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf.

Software Defined Radio (SDR)

A lot of cheap user-friendly devices

Minimal configurable hardware

A lot of open-source tools already implemented

SDR hardware examples

Warning: There is more! This is just an example, no advertisement!

RTL-SDR

https://www.rtl-sdr.com/

Entry level, simple, only RX, cheap 20 euros

HackRF

https://greatscottgadgets.com/hackrf/

RX/TX, higher bandwidth and range, more expensive

USRP B210

https://www.ettus.com/all-products/ub210-kit/

RX/TX, dual channel, high quality, expensive

SDR software examples

Warning:
There are so many
more! And you can
write your own

```
Simple AM/FM/...
https://gqrx.dk/
https://cubicsdr.com/
                                        Generic framework
https://www.gnuradio.org/
https://github.com/bastibl/gr-ieee802-11
                                              A lot of projects
https://github.com/tapparelj/gr-lora sdr
gr-* many more projects
                                             GPS spoofing and GNSS Rx
https://github.com/osqzss/gps-sdr-sim
https://gnss-sdr.org/
                                                 Ham radio (Amateur)
https://fr.wikipedia.org/wiki/FlDigi
https://physics.princeton.edu/pulsar/K1JT/wsjtx.html
https://github.com/jopohl/urh
                                           Reverse engineering
https://batchdrake.github.io/SigDigger/
                                           radio protocols
```

An example: QPSK simulation

An example: QPSK transmission

E-g., URSP SDR connected via USB

https://wiki.gnuradio.org/index.php/Guided Tutorial PSK Demodulation

An example: LoRa

J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and A. Burg, "An Open-Source LoRa Physical Layer Prototype on GNU Radio"

References

Software Defined Radio Forum, "SDRF Cognitive Radio Definitions Working Document SDRF-06-R-0011-V1.0.0", 2007, http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf.

https://www.gnuradio.org/

https://wiki.gnuradio.org/index.php/Tutorials

"Homework":

- 1. Familiarize with GNURadio
- 2. Start studying the tutorials It will be useful for the lab!

Important to Know

- Analytical Signal Representation vs Real Signal
- Frequency Representation: Baseband vs Passband
- Operation of the Quadrature Modulator
- What is an IQ diagram and How are Modulations Mapped onto it
- Basic Packet Structure and Error Correction

Next Week:

- Basics of the Wireless Communication Channel
- Physical Layer Based Security

Questions?