

# MM54HC7266/MM74HC7266 Quad 2-Input Exclusive NOR Gate

#### **General Description**

This exclusive NOR gate utilizes advanced silicon-gate CMOS technology to achieve operating speeds similar to equivalent LS-TTL gates while maintaining the low power consumption and high noise immunity characteristic of standard CMOS integrated circuits. These gates are fully buffered and have a fanout of 10 LS-TTL loads. The MM54HC/MM74HC logic family is functionally as well as pin out compatible with the standard 54LS/74LS logic family. However, unlike the 'LS266, which is an open collector gate, the 'HC266 has standard CMOS push-pull outputs. All inputs are protected from damage due to static discharge by internal diode clamps to V<sub>CC</sub> and ground.

#### **Features**

- Typical propagation delay: 9 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent current: 20 µA maximum (74 Series)
- Output drive capability: 10 LS-TTL loads
- Push-pull output

#### **Connection Diagram**



TL/F/8437-1

Order Number MM54HC7266 or MM74HC7266

#### **Truth Table**

| Inp | uts | Outputs |  |  |
|-----|-----|---------|--|--|
| Α   | В   | Υ       |  |  |
| L   | L   | Н       |  |  |
| L   | Н   | L       |  |  |
| Н   | L   | L       |  |  |
| Н   | Н   | Н       |  |  |

 $Y = \overline{A \oplus B} = AB + \overline{AB}$ 

# Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )                             | -0.5  to  +7.0  V              |
|---------------------------------------------------------------|--------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                           | $-1.5$ to $V_{\rm CC} + 1.5$ V |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{CC} + 0.5$       |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> )      | $\pm$ 20 m $^{A}$              |
| DC Output Current, per pin (IOUT)                             | $\pm$ 25 mA                    |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | $\pm$ 50 mA                    |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to $+150$ °C             |
| Power Dissipation (P-)                                        |                                |

Power Dissipation (PD)

600 mW (Note 3) S.O. Package only 500 mW 260°C

Lead Temp. ( $T_L$ ) (Soldering 10 seconds)

| Operating Condition                            | ons |          |       |
|------------------------------------------------|-----|----------|-------|
|                                                | Min | Max      | Units |
| Supply Voltage (V <sub>CC</sub> )              | 2   | 6        | V     |
| DC Input or Output Voltage $(V_{IN}, V_{OUT})$ | 0   | $V_{CC}$ | V     |
| Operating Temp. Range (TA)                     |     |          |       |
| MM74HC                                         | -40 | +85      | °C    |
| MM54HC                                         | -55 | +125     | °C    |
| Input Rise or Fall Times                       |     |          |       |
| $(t_r, t_f)$ $V_{CC} = 2.0V$                   |     | 1000     | ns    |
| $V_{CC} = 4.5V$                                |     | 500      | ns    |
| $V_{CC} = 6.0V$                                |     | 400      | ns    |

#### **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                            | Conditions                                                                                               | v <sub>cc</sub>      | T <sub>A</sub> =  | 25°C               | 74HC<br>T <sub>A</sub> = -40°C to 85°C | 54HC<br>T <sub>A</sub> = -55°C to 125°C | Units       |
|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|----------------------------------------|-----------------------------------------|-------------|
|                 |                                      |                                                                                                          |                      | Тур               |                    | Guaranteed Limits                      |                                         |             |
| V <sub>IH</sub> | Minimum High Level<br>Input Voltage  |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                   | 1.5<br>3.15<br>4.2 | 1.5<br>3.15<br>4.2                     | 1.5<br>3.15<br>4.2                      | V<br>V      |
| V <sub>IL</sub> | Maximum Low Level<br>Input Voltage** |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                   | 0.5<br>1.35<br>1.8 | 0.5<br>1.35<br>1.8                     | 0.5<br>1.35<br>1.8                      | V<br>V<br>V |
| V <sub>OH</sub> | Minimum High Level<br>Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \mu A$                                         | 2.0V<br>4.5V<br>6.0V | 2.0<br>4.5<br>6.0 | 1.9<br>4.4<br>5.9  | 1.9<br>4.4<br>5.9                      | 1.9<br>4.4<br>5.9                       | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$<br>$ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 4.2<br>5.7        | 3.98<br>5.48       | 3.84<br>5.34                           | 3.7<br>5.2                              | V<br>V      |
| V <sub>OL</sub> | Maximum Low Level<br>Output Voltage  | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 20 \mu A$                                            | 2.0V<br>4.5V<br>6.0V | 0<br>0<br>0       | 0.1<br>0.1<br>0.1  | 0.1<br>0.1<br>0.1                      | 0.1<br>0.1<br>0.1                       | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$<br>$ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 0.2<br>0.2        | 0.26<br>0.26       | 0.33<br>0.33                           | 0.4<br>0.4                              | V<br>V      |
| I <sub>IN</sub> | Maximum Input<br>Current             | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                                  | 6.0V                 |                   | ±0.1               | ±1.0                                   | ±1.0                                    | μΑ          |
| I <sub>CC</sub> | Maximum Quiescent<br>Supply Current  | V <sub>IN</sub> =V <sub>CC</sub> or GND<br>I <sub>OUT</sub> =0 μA                                        | 6.0V                 |                   | 2.0                | 20                                     | 40                                      | μΑ          |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages ( $V_{OH}$ , and  $V_{OL}$ ) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case  $V_{IH}$  and  $V_{IL}$  occur at  $V_{CC}$ =5.5V and 4.5V respectively. (The  $V_{IH}$  value at 5.5V is 3.85V.) The worst case leakage current ( $I_{IN}$ ,  $I_{CC}$ , and  $I_{OZ}$ ) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup>VIL limits are currently tested at 20% of V<sub>CC</sub>. The above VIL specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.

### AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

| Symbol                              | Parameter                 | Conditions | Тур | Guaranteed<br>Limit | Units |
|-------------------------------------|---------------------------|------------|-----|---------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay |            | 12  | 20                  | ns    |

## $\textbf{AC Electrical Characteristics} \ \textit{V}_{CC} = 2.0 \textit{V} \ \text{to 6.0V}, \textit{C}_{L} = 50 \ \text{pF}, \textit{t}_{r} = \textit{t}_{f} = 6 \ \text{ns (unless otherwise specified)}$

| Symbol                              | Parameter                                 | Conditions | v <sub>cc</sub>      | T <sub>A</sub> =25°C  |                 | 74HC<br>T <sub>A</sub> = -40°C to 85°C | 54HC<br>T <sub>A</sub> = -55°C to 125°C | Units          |
|-------------------------------------|-------------------------------------------|------------|----------------------|-----------------------|-----------------|----------------------------------------|-----------------------------------------|----------------|
|                                     |                                           |            |                      | Typ Guaranteed Limits |                 | Limits                                 |                                         |                |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay              |            | 2.0V<br>4.5V<br>6.0V | 60<br>12<br>10        | 120<br>24<br>20 | 151<br>30<br>26                        | 179<br>36<br>30                         | ns<br>ns<br>ns |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise<br>and Fall Time      |            | 2.0V<br>4.5V<br>6.0V | 30<br>8<br>7          | 75<br>15<br>13  | 95<br>19<br>16                         | 110<br>22<br>19                         | ns<br>ns<br>ns |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5) | (per gate) |                      | 25                    |                 |                                        |                                         | pF             |
| C <sub>IN</sub>                     | Maximum Input<br>Capacitance              |            |                      | 5                     | 10              | 10                                     | 10                                      | pF             |

Note 5:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$ .

#### Physical Dimensions inches (millimeters) 0.785 (19.939) MAX [14] [13] [12] [11] [10] [9] [8] 0.025 (0.635) RAD 0.220-0.310 (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.005 0.200 (D.127) MIN GLASS SEALANT (5.080) MAX 0.020-0.060 (7.366-8.128) 0.060 ±0.005 (1.524 ±0.127) 0.180 (0.508 - 1.524)MA 0.008-0.012 10° MAX (0.203-0.305) 0.310-0.410 D.018 ±0.003 0.125-0.200 0.098 (7.874 - 10.41)(0.457 ±0,076) (3.175-5.080) (2.489) MAX BOTH ENDS 0.100 ±0.010 0.150 (3.81) J14A (REV G) MIN Order Number MM54HC7266J or MM74HC7266J NS Package J14A 14 13 12 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) 1 2 3 1 2 3 4 5 6 7 0.092 (2.337) DIA 0.030 MAX (0.762) DEPTH 0.145 - 0.200 (3.683 - 5.080 0.008-0.016 (0.203-0.406) TYP $\frac{0.125-0.150}{(3.175-3.810)}$ 0.075 ±0.015 (1.905 ±0.381) 0.280 -(7.112)-MIN 0.014 - 0.023 (0.356 - 0.584) TYP -0.050 ± 0.010 (1.270 - 0.254) TYP 0.325 + 0.040 (8.255 + 1.016 - 0.381 Order Number MM74HC7266N NS Package N14A

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (652) 2737-1600 Fax: (652) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408