Appunti Elettronica Digitale

Leonardo Toccafondi

2024-04-12

Indice

1 Dispositivi elettronici					
	1.1	Semiconduttori			
		1.1.1 Giunzione p-n			
	1.2	I diodi			
		1.2.1 Polarizzazione			
		1.2.2 Equazione caratteristica e breakdown			
		1.2.3 Diodi Speciali			
_					
2		ransistor			
	2.1	Introduzione			
	2.2	Bipolar Junction Transistor: i BJT			
	2.3	Bipolar Junction Transistor: i BJT			
		2.3.1 Il BJT npn			
		2.3.2 Layout planare di un transistor NPN			
		2.3.3 Il BJT pnp			
		2.3.4 Transistor "speciali"			
	2.4	I transistor MOS			
		2.4.1 N-MOS			
		2.4.2 P-MOS			
		2.4.3 Real N-MOS			
3	D:a	sital Logio Cinquita (cinquiti a logica digitale)			
0	3.1	rital Logic Circuits (circuiti a logica digitale) Famiglie logiche			
	3.1				
		3.1.1 Operatori logici (booleani)			
	2.0	3.1.2 Leggi (o teoremi) di de Morgan			
	3.2	Famiglie logiche: parametri statici			
	3.3	Famiglie logiche: parametri dinamici			
	3.4	RTL (Resistor-Transistor Logic)			
	2.5	3.4.1 Funzione di trasferimento della porta NOT			
	3.5	TTL (transistor-transistor-logic)			
	3.6	MOS logic cell - Porte logiche MOS			
		3.6.1 CMOS - Complementary MOS			
A	Ese	ercizi 3			
		Esercizi capitolo 1			
		25010211 capito20 1 · · · · · · · · · · · · · · · · · ·			
В	Var				
	B.1	Semiconduttori e bande			
	B.2	Corrente nel N-MOS			
		Termini 3			

iv INDICE

Capitolo 1

Dispositivi elettronici

1.1 Semiconduttori

I semiconduttori sono i materiali con cui sono composti i circuiti integrati. Sono, come suggerisce il nome, materiali in cui il flusso di corrente *non è libero* (non è un conduttore), ma è **presente** (non è un'isolante). In particolare, conducono in particolari situazioni. Quali sono però i materiali con queste condizioni?

- Elementi semiconduttori: Silicio (Si), Germanio (Ge) (Carbonio (C), ma composto)
- *Elementi composti*: GaAs, GaN (Gallio-Arsenico/Azoto) In generale sono gli elementi della 14° colonna della tavola periodica o composti a numero medio di elettroni liberi pari a 4 (dai 3 ai 4).

Silicio

Il silicio è il materiale semiconduttore sicuramente più diffuso.

Un atomo presenta 4 elettroni (detti di valenza) nello strato più esterno, ma sua forma cristallina pura del silicio ogni atomo forma un legame covalente^a con i suoi vicini "più prossimi". Il cristallo di silicio puro ha inoltre una struttura cristallina matriciale, che blocca il passaggio di carica.

È da notare che all'aumentare della temperatura, qualche elettrone può rompere il legame e muoversi liberamente nel cristallo.

Per dotare un materiale semiconduttore di conduttività *selettiva* è necessario "drogare" il materiale stesso. Il drogaggio, quindi, va a **modificare** la concentrazione di elettroni e di lacune ¹, attraverso questo inserimento di impurità sostituzionali (ovvero atomi di elementi diversi, i quali si sostituiscono ad alcuni degli atomi di silicio.) In pratica andiamo ad aggiungere, in piccole dosi, nel reticolo cristallino materiali della 5° colonna (drogaggio di tipo **n**, hanno 5 elettroni di valenza, sono detti **donatori**, ad esempio il fosforo), o elementi della 3° colonna (tipo **p**, hanno 3 elettroni di valenza e sono detti **accettori**, ad esempio il boro).

Tale discrepanza induce la formazione di livelli energetici aggiuntivi all'interno della banda proibita² o "gap" del semiconduttore. Nel primo caso si genera un eccesso di lacune, le quali si comportano come particelle cariche *positivamente*, mentre nel secondo si ha un eccesso di elettroni liberi, determinando così una variazione della conducibilità elettrica intrinseca del materiale.

Non solo, sia le lacune che gli elettroni liberi sono quindi liberi di muoversi all'interno del semiconduttore! La qualità del semiconduttore è influenzata dal materiale usato (per esempio Ge è meglio del Si, ma è più raro), che è a sua volta influenzato dal goal³ (elettronica digitale usa Si, l'elettronica di potenza il GaN o SiC).

Vediamo ora degli elementi in silicio.

1.1.1 Giunzione p-n

Una giunzione p
n (o p-n) si forma quando una del materiale semiconduttore intrinseco
⁴ drogato con un drogaggio p (con una percentuale N_A , n. accettori) viene posta a contatto con altro materiale semiconduttore drogato con

 $[^]a$ legame chimico in cui due atomi mettono in comune delle coppie di elettroni.

¹Assenza di elettroni dovuta alla **rottura** di un legame. È insieme all'elettrone, un portatore di carica nei semiconduttori.

²Intervallo di energia interdetto agli elettroni, distanza tra la banda di valenza di conduzione (nei semiconduttori distanti 1eV). ³(penso voglia dire "obiettivo perseguito").

⁴Puro, quindi privo di un quantitativo significativo di drogaggio.

un drogaggio n (con una percentuale N_D , n. donatori). La concentrazione di ioni dalle seguenti "formule":

$$N_A = \frac{\#acceptors}{vol.unit} \text{ e } N_D = \frac{\#donors}{vol.unit}$$

dove N_a indica il numero⁵ di ioni di tipo p:'positivo', mentre N_d il numero di ioni di tipo n:'negativo'.

Collegando un blocco drogato tipo p ed uno tipo n abbiamo (idealmente)⁶

Figura 1.1: Giunzione pn

Il materiale quindi è separato in due zone *nettamente distinte*, senza alterazione della struttura cristallina all'interfaccia delle due zone.

L'abbondanza di lacune in p è, come sappiamo, corrispondente ad una carenza di elettroni, di cui n *abbonda*. In altre parole questa diversa *densità* di portatori di carica genera una **migrazione** di elettroni da N verso P, detta anche $diffusione^7$ (elettrica) I_D oppure anche corrente di diffusione, che consiste quindi in

- lacune che si diffondono dalla regione (dal semiconduttore) drogata con p alla regione n;
- elettroni che si diffondono dalla regione drogata con n alla regione p.

N.B.: Nella zona n i **portatori maggioritari** di carica sono le cariche negative, mentre nella zona p sono le cariche positive

Tale fenomeno carica in modo positivo il semiconduttore drogato n (meno elettroni), e in modo negativo il semiconduttore drogato p (più elettroni).

Le lacune che si diffondono dalla regione/zona p alla n si ricombinano con gli elettroni liberi, scomparendo. Di conseguenza, il numero di elettroni liberi nella zona n diminuisce, quindi non saranno più neutralizzate alcune cariche fisse positive (atomi donatori). Dal momento che questa ricombinazione avviene in prossimità della giunzione, accanto a questa si svilupperà una regione **svuotata** di elettroni, con cariche fisse positive non compensate.

Analogamente nella zona p otterremo una zona svuotata dalle lacune e che comprende delle cariche fisse (in questo caso negative) non compensate.

Entrambe queste zone danno luogo alla **regione di svuotamento**⁸ (o di carica spaziale, in inglese *depletion layer*). Inoltre lo spostamento delle cariche crea a cavallo della giunzione un campo elettrico, con la zona n positiva rispetto alla zona p. La presenza del campo elettrico comporta la presenza di una differenza di potenziale. Questa è anche detta **barriera di potenziale**⁹, in quanto si oppone ad un'ulterore diffusione ai portatori di

⁵Oppure densità di ioni, o concentrazione...

⁶Nella pratica parto da un blocco puro di silicio, per poi iniettare a *strati* il drogaggio.

⁷Fenomeno che si ritrova in natura qualora vi sia uno squilibrio nella distribuzione nello spazio di particelle simili.

 $^{^8 \}mathrm{Svuotata}$ di portatori \mathbf{mobili}

⁹È possibile superarla, ma deve essere fornita una differenza di potenziale **esterna**.

1.2. I DIODI 3

carica soggetti alla spinta della diffusione (si oppone al movimento di elettroni nella regione p e lacune nella regione n). Una volta che la corrente di diffusione equivale la corrente di trascinamento 10 I_S raggiungiamo un **equilibrio** (dinamico): la presenza del campo elettrico comporta la presenza di una differenza di potenziale. In genere la regione di svuotamento non è simmetrica: la seguente equazione regola la larghezza della regione:

$$x_p N_A = x_N N_D$$

dove x_p e x_n sono rispettivamente le **larghezze** della regione di svuotamento entro il semiconduttore drogato p e drogato n.

Figura 1.3: Grafici relativi al potenziale, al campo elettrico e alla carica nella giunzione pn

Come si vede nella @fig:1.3:

• $N_A > N_D \rightarrow$ più è drogata la regione più la regione di svuotamento è piccola.

1.2 I diodi

Il simbolo circuitale della giunzione p-n, detta **diodo**¹¹ è

Figura 1.4: Diodo

dove a sinistra abbiamo un **anodo** A (dal greco *salita*), e a destra un **catodo** K (dal greco *discesa*). Sia la zone p che la zona n sono munite di un contatto elettrico (detto **reoforo**), in modo tale che sia possibile applicarvi una tensione.

1.2.1 Polarizzazione

L'applicazione di un potenziale sul diodo viene detta polarizzazione, e si distingue la:

• Polarizzazione diretta (forward bias): applico un potenziale positivo sull'anodo A (lato p) e negativo sul catodo K (lato n). La differenza di potenziale applicata ha la polarità *concorde* con la barriera di potenziale.

¹⁰Detta anche corrente di deriva (drift), in questo caso i portatori si muovono perché **spinti** dal campo elettrico dovuto allo squilibrio di carica.

¹¹Il diodo ideale è un dispositivo che lascia passare corrente solo in un senso, con resistenza nulla, e non lascia passare corrente nell'altro senso. Il diodo a giunzione approssima molto bene un diodo ideale, ed è l'elemento circuitale non lineare più importante.

- L'aumento della tensione determina una riduzione della barriera di potenziale, e di conseguenza della larghezza della regione di svuotamento. In questo modo aumenta il numero di elettroni e di lacune capaci di attraversare la giunzione tramite la diffusione.
- La corrente di diffusione, rispetto a quella di deriva, aumenta rapidamente di svariati ordini di grandezza.

Figura 1.5: Diodo polarizzato direttamente

- Polarizzazione indiretta (reverse bias): applico un potenziale negativo sull'anodo e positivo sul catodo. In questo caso la polarità della tensione applicata è discorde rispetto a quella della barriera di potenziale.
 - La regione di svuotamento si allarga, e la tensione di polarizzazione richiama le lacune verso il terminale negativo e gli elettroni verso il terminale positivo. Quindi l'ampiezza della barriera di potenziale aumenta.
 - La corrente di diffusione diminuisce fino ad annullarsi, mentre quella di deriva rimane (anche se è molto piccola e varia con la temperatura). Quindi quasi nessuna corrente riesce a scorrere.
 - Il campo elettrico incrementa fino ad ottenere il breakdown.

Figura 1.6: Diodo polarizzato indirettamente

1.2.2Equazione caratteristica e breakdown

In generale, la giunzione pu ha un'equazione caratteristica

$$i = I_S(e^{\frac{V_d}{nV_t}} - 1)$$

detta equazione di Shockley:

- V_d indica la differenza di potenziale applicati ai capi del diodo;
- nV_t è il potenziale nativo dei diodi (pari a 0.7 V), o tensione termica, pari a 26 mV. I_S (o I_0) è una costante detta corrente di saturazione (per il Si ha valori tra 10^{-15} e 10^{-19} A)

In condizioni di polarizzazione diretta la corrente è trascurabile per tensioni al di sotto di 0, 5-0, 6V (per diodi al silicio) e dopo aver superato la $tensione\ di\ soglia$ cresce molto repentinamente 12 .

Quando il diodo è in polarizzazione inversa, aumentando la tensione la corrente rimane costante finché non si raggiunge la cosiddetta tensione di breakdown (o di rottura). Una volta oltrepassata la corrente aumenta (forse in questo caso diminuisce) in maniera drastica a tensione praticamente costante.

Il breakdown

Il fenomeno del breakdown è dovuto a:

- 1. Effetto Zener: prevalente per tensioni di breakdown inferiori alla decina di volt. Quando il diodo è polarizzato inversamente e la tensione è compresa tra 0V e V_Z (inferiore a zero), si comporta quasi come un circuito aperto, seppur continui a scorrere una piccola corrente di saturazione inversa, oltre V_Z la banda di valenza della regione p si avvicina talmente tanto alla banda di conduzione che alcuni elettroni si spostano dall'una all'altra;
- 2. Effetto valanga (avalanche): prevalente per tensioni di breakdown superiori alla decina di volt. Si manifesta in presenza di campi elettrici molto elevati, dovuti alla presenza di una tensione "moderata", ma imposta su distanze molto corte.

Solitamente il processo del breakdown è irreversibile, tranne per i diodi Zener, i quali sono ideati per andare in breakdown.

 $^{^{12}}$ Per un aumento di corrente di un fattore mille è sufficiente un aumento di tensione pari a $0.8\,\mathrm{V}$. Infatti viene assunta $0.6\,\mathrm{V}$ come tensione di soglia e $0.8\,\mathrm{V}$ come tensione massima.

1.2. I DIODI 5

Figura 1.7: Una tipica caratteristica I-V di un diodo a giunzione PN

1.2.3 Diodi Speciali

1.2.3.1 Fotodiodi

I fotodiodi sono diodi in cui la giunzione è "scoperta", o incapsulata in un materiale trasparente, in quanto vogliamo che sia in grado di **emettere** una corrente elettrica sfruttando l'effetto fotoelettrico. Difatti è un $trasduttore^{13}$ da un segnale ottico ad un elettrico.

L'equazione caratteristica del fotodiodo è pari a quella di un diodo normale, con l'aggiunta di un termine I_{ph} , che rappresenta la corrente $fotogenerata^{14}$:

$$i = I_S(e^{\frac{V_d}{nV_t}}-1) - I_{ph}$$

$$+ - - - - + - - -$$
 Diodo normale Fotodiodo

I fotodiodi p-n possono essere utilizzati senza essere polarizzati: sono adatti per "applicazioni" in situazioni di bassa luminosità. Quando sono illuminati, il campo elettrico nella regione di deplezione aumenta, producendo la corrente fotogenerata la quale è cresce all'aumentare del flusso di fotoni.

Altrimenti i fotodiodi operano in *polarizzazione inversa*, in modo tale che i fotoni (del colore "giusto") possedano energia sufficiente ad oltrepassare la barriera di potenziale e a condurre quindi corrente elettrica.

1.2.3.2 Led

I led (*light emitting diode*) è un tipo di diodo che **converte** energia elettrica in luce. Sono formati da sottili strati di materiali semiconduttori fortemente drogati, i quali caratterizzano i diversi colori emessi quando viene applicata una polarizzazione *diretta*.

Da un punto di vista *costruttivo* i led sono ricoperti da uno strato spesso di resina¹⁵ **trasparente** di forma emisferica, sia per proteggere il led stesso sia per convogliare la luce emessa.

Figura 1.8: Simbolo circuitale di un led

Applicando quindi una tensione positiva all'anodo, riduciamo la barriera di potenziale, in modo tale che elettroni e lacune ricombinandosi generino fotoni pari al gap tra la banda di conduzione e quella di valenza.

 $^{^{13}\}mathrm{Dispositivo}$ in grado di convertire una forma di energia in una diversa.

 $^{^{14}\}mathrm{Risulta}$ proporzionale al flusso di fotoni che colpiscono il fotodiodo

 $^{^{15}}$ Epossidica, in inglese *epoxy*.

Come si può vedere nella tabella sottostante, al fine di generare un colore visibile, deve essere fornita una tensione almeno pari a $1,5\mathrm{V}$

Semiconduttore composto	V_F a 20 mA	Banda di lunghezza d'onda	Colore
GaInN	4.0V	450 nm	Bianco
SiC	3.6V	430-505 nm	Blu
GaAsP	22V	585-595 mm	Giallo
GaAsP	2.0V	605-620nm	Ambra
GaAsP	1.8V	630-660nm	Rosso
GaAs	1.2V	850-940nm	Infrarosso

Tabella 1.1: Diverse tipologie di led in base al colore prodotto

1.2.3.3 Diodo Schottky

In questa tipologia di diodo la giunzione p-n è data dall'unione del metallo (che svolge il ruolo della regione p) con un materiale semiconduttore drogato n. In questo modo si viene a creare una "barriera Schottky": questa, a differenza della giunzione p-n standard, ha una bassa tensione di giunzione (o tensione di soglia). Infatti ai capi di un diodo Schottky si misura solitamente una differenza di potenziale tra i 0.15V e i 0.45V: così facendo abbiamo una maggior efficienza e una maggior velocità di commutazione, riducendo i tempi di turnoff¹⁶! Inoltre, nella zona della giunzione del metallo, la zona di svuotamento è **nulla o quasi inesistente**¹⁷.

Figura 1.9: Simbolo circuitale di un diodo Schottky

1.2.3.4 Diodo Zener

Questa tipologia di diodo lavora in **breakdown**. Se viene applicata una polarizzazione diretta esso lavora e funziona come un diodo "qualsiasi". Invece, se viene applicata una polarizzazione inversa la tensione di breakdown è "molto precisa": in questo modo se $V_G < V_Z$ non accade nulla $(V_G = V_Z)$, mentre se $V_G \ge V_Z$ allora il diodo va in breakdown e su esso scorre una corrente. Ho quindi una tensione di uscita stabilizzata $(V_O = V_Z)$.

Nel circuito della figura seguente la resistenza è molto importante, in quanto se non fosse presnete $i_R = \frac{V_G - V_i}{R}$, ma $R \to 0$ e quindi $i_R \to \infty$

Figura 1.10: Schema di un diodo Zener

 $^{^{16}}$ Tempo che passa tra la fine dell'influenza esterna (forward bias) ed il momento in cui smette di fluire corrente. È un ritardo causato dalla carenza di lacune ($N_D >> N_A$), causando un accumulo extra di carica in p, la quale sarà rilasciata durante il turnoff. 17 Dal lato p.

Capitolo 2

I transistor

2.1 Introduzione

Un transistor è un dispositivo a semiconduttori utilizzato per interrompere (commutare) o amplificare segnali elettrici, come se fosse una **valvola**¹: in pratica regola la corrente che scorre in una maglia (quella in uscita al circuito) tramite la tensione applicata ad un'altra (ovvero quella in ingresso al circuito).

Quando viene utilizzato come interruttore, un transistor è un dispositivo logico a *due stati*: ON e OFF (binario 1 e 0). Sulla base di questo vengono realizzate *porte logiche* più complesse, quali AND, OR, NOT, le quali a loro volta sono impiegate per realizzare tutti quei dispositivi che compongono la parte **digitale** dell'elettronica (famiglie logiche, memorie etc.).

Invece, quando viene utilizzato come modulatore di corrente, un transistor \grave{e} a "semplicemente" un **amplificatore**².

2.2 Bipolar Junction Transistor: i BJT

A differenza dei diodi a giunzione, i $transistor\ bipolari$ utilizzano tre strati di materiali semiconduttori, in pratica otteniamo due diodi posti in $antiserie^3$, in modo tale da "condividere" uno strato.

Ad ogni strato sarà associato un *terminale*⁵: quello che sarà detto **base**, che a sua volta separa due terminali drogati con gli stessi materiali (opposti al materiale della base), che saranno detti rispettivamente **collettore** ed **emettitore**.

I dispositivi BJT sono dispositivi bipolari in quanto il processo di conduzione coinvolge portatori di entrambe le polarità.

La struttura di un transistor BJT può essere realizzata in due modi: quello \mathbf{npn} e quello \mathbf{pnp} . È importante notare come in un transistor la zona dell'emettitore è significativamente più drogata di quelle di base e di collettore; si indica infatti con $\mathbf{p+}$ nei transistori \mathbf{pnp} e con $\mathbf{n+}$ nei transistori \mathbf{npn} .

Figura 2.1: Transistor BJT

¹Infatti sono andate a sostituire le valvole termoioniche, o tubo a vuoto.

 $^{^2\}mathrm{Pu}\grave{\mathrm{o}}$ essere sia un amplificatore di potenza che di tensione.

³Antiserie indica, per bipoli **polarizzati**, una connessione in serie (quindi un solo punto di contatto), in cui le polarità dei terminali vengono accoppiate per segni uguali

⁴Oppure possiamo anche dire che sono due giunzioni p-n poste l'una di seguito all'altra e orientata in senso inverso, andando poi a costituire tre regioni *consecutive*.

⁵Si può esprimere anche come *elettrodo*

Figura 2.2: Overall caption for the figure

Come è possibile notare dalle figure precedenti, da un punto di vista circuitale i transistor BJT sono rappresentati utilizzando 3 terminali: \rightarrow nel simbolo indica la giunzione (e ne è riportata solo una), mentre le frecce indicano i versi delle tensioni (dove sono maggiori). Parlando del transistor npn, per quanto riguarda le correnti abbiamo che all'equilibrio $I_B + I_C = I_E$, ed I_B, I_C sono entranti, mentre I_E è uscente.

Per entrambe le tipologie di BJT, da un punto di vista costruttivo valgono queste regole:

- 1. La regione dell'emettitore è altamente drogata e ha il compito di emettere o iniettare portatori di corrente nella regione di base. Nei transistor npn, l'emettitore di tipo n immette elettroni liberi nella base, mentre nei transistor pnp, l'emettitore di tipo p introduce lacune nella base.
- 2. La base è sottile e leggermente drogata. La maggior parte dei portatori di corrente iniettati nella regione di base si muove verso il collettore senza fuoriuscire dal conduttore della base.
- 3. La regione del collettore è moderatamente drogata ed è la più grande all'interno del transistor. La sua funzione consiste nel raccogliere o attrarre i portatori di corrente iniettati nella regione di base.

2.3 Bipolar Junction Transistor: i BJT

Il transistor BJT è stato il primo transistor ad essere prodotto su larga scala, precedendo di una decade l'introduzione dei transistor ad **effetto di campo**.

I BJT sono un dispositivo a semiconduttore a **tre** terminali, realizzato tramite due giunzioni p-n. Sono **bipolari** in quanto il processo di conduzione coinvolge portatori di *entrambe le polarità*: quindi sia lacune che elettroni. La realizzazione fisica consiste nell'utilizzo di tre strati di materiale semiconduttore, collegati ognuno ad un proprio terminale: abbiamo due strati esterni composti con lo stesso materiale drogante (**collettore** ed **emettitore**), ed un secondo strato posto tra gli altri due all'interno del quale viene introdotto un materiale drogante opposto (**base**). Così facendo otteniamo due giunzioni p-n: una base-emettitore ed una base-collettore.

Configurazione a diodi

In generale un transistor BJT è **quasi equivalente** a porre due diodi in antiserie^a. In realtà è più vicina una configurazione di due giunzioni p-n poste l'una di seguito all'altra e orientate in senso inverso (ognuna delle quali con la propria regione di svuotamento). Questo perché per far funzionare il transistor BJT è necessaria la presenza di un'unica regione di base, che svolge un ruolo cruciale nel controllo della corrente. Quando si affiancano due diodi, l'interazione tra le loro giunzioni non riproduce le caratteristiche di amplificazione e controllo della corrente tipiche di un BJT, in quanto l'introduzione di un metallo nel circuito non permette la corretta gestione delle correnti e delle tensioni necessarie per il funzionamento del transistor: non vi è il campo elettrico necessario a far passare gli elettroni da un diodo all'altro passando per il filo metallico.

È possibile realizzare la struttura in due diverse modalità:

- tipo npn
- tipo pnp

I transistor npn sono usati più frequentemente. Inoltre le regole ed i risultati ottenuti possono essere estesi ai transistor pnp modificando opportunamente i versi di tensioni e correnti.

^aAntiserie indica, per bipoli polarizzati, una connessione in serie (quindi un solo punto di contatto), in cui le polarità dei terminali vengono accoppiate per segni uguali

2.3.1 Il BJT npn

Un BJT npn è formato da due sezioni di tipo n (emettitore e collettore), e da una di tipo p. Di fondamentale importanza per la fabbricazione di un BJT è lo spessore della base. Infatti deve essere il più sottile possibile, senza ottenere un corto circuito tra le regioni del collettore e dell'emettitore.

In base alle polarizzazioni applicate alle giunzioni base-collettore e base-emettitore, otteniamo 4 regioni di funzionamento del transistor BJT:

Polariza	zazione delle giunzioni	Regione di funzionamento	
B- E	B- C	Regione di funzionamento	
Inversa	Inversa	Cutoff (Spento)	
Diretta	Inversa	Attiva Diretta	
Diretta	Diretta	Saturazione	
Inversa	Diretta	Attiva Inversa	

Tabella 2.1: Regioni di funzionamento in base alla polarizzazione delle giunzioni

2.3.1.1 Regioni di funzionamento

2.3.1.1.1 Cutoff In questa regione il transistor è spento. Entrambe le giunzioni sono polarizzate inversamente: le rispettive tensioni sono ambedue sotto soglia. In particolare $V_{BE} < V_{\text{soglia}}$ e $V_{BC} < 0$.

Dato che la giunzione BE non è polarizzata $\rightarrow i_B = 0$. Inoltre, dato che tutte le giunzioni sono polarizzate inversamente, anche la corrente del collettore è $\textit{nulla.} \rightarrow i_C = 0$

Nel grafico, la corrente non è esattamente nulla dato che secondo la legge di I_D in una giunzione con polarizzazione inversa la corrente vale I_O .

In definitiva non vi è conduzione.

2.3.1.1.2 Attiva diretta In questa regione la giunzione BE è polarizzata direttamente, mentre la giunzione BC è polarizzata inversamente. Significa che:

- $\begin{array}{ll} \bullet & V_{BE} > V_{\rm soglia} \\ \bullet & V_{BC} < 0 \end{array}$

La corrente $I_B > 0$, e nonostante la tensione della giunzione BC sia negativa, $I_C = h_{fe}I_b$.

Dunque gli elettroni dovrebbero ricombinarsi e "richiudersi" verso la base. Tuttavia, sapendo che la base è "corta" gli elettroni raggiungono il collettore prima di ricombinarsi, il quale li prende (forse meglio dire li accetta), in quanto possiede un potenziale positivo. È da notare che comunque non tutti gli elettroni riescono ad attraversare tutto il transistor, statisticamente alcuni si ricombinano con le lacune presenti nella regione

Il ⁶guadagno⁷ del transistor di corrente è $h_{fe} = \frac{I_C}{I_B}$. Il transistor ha una funzione di amplificatore della corrente di base nel caso in cui h_{fe} sia un valore alto: ciò lo rende "attivo"

In questa regione funge da generatore di corrente controllato in corrente.

2.3.1.1.3 Saturazione In questa regione anche la giunzione BE è polarizzata direttamente:

- $\begin{array}{ll} \bullet & V_{BE} < V_{\rm soglia} \\ \bullet & V_{CE} < V_{CE-sat} \end{array}$

Se vale quest'ultima condizione (la tensione della giunzione BE è bassa) allora anche BC è polarizzata direttamente. Per lo stesso motivo gli elettroni non vengono "raccolti" dal collettore, tendendo a rimanere nella base:

- $\begin{array}{ll} \bullet & I_B > 0 \\ \bullet & I_C < h_{fe} \ I_B \end{array}$

È da notare come in questa configurazione/regione otteniamo una tensione in uscita costante V_{CE-sat}

⁶È una funzione di.

⁷In inglese è **gain**.

2.3.1.1.4 Regione attiva inversa In questo caso $V_{BE} < 0$ e $V_{BC} > V_{\text{soglia}}$. Quindi gli elettroni si spostano nel collettore. In questo caso il *guadagno di corrente è ≤ 1 : $I_e \simeq -I_B$.

Otteniamo un guadagno di corrente molto basso (tipicamente ≤ 1)

Figura 2.3: Curva BJT.

In questo grafico sono rappresentate delle curve che riportano gli andamenti di I_C in funzione di V_{CE} con I_B .

2.3.2 Layout planare di un transistor NPN

Figura 2.4: Configurazione planare di un BJT npn

Come mostra anche lo schema, da un punto di vista fisico il layout planare di un transistor BJT npn non è simmetrico: questo sia per il drogaggio, sia per la realizzazione del dispositivo stesso. L'emettitore è molto piccolo e molto drogato, mentre le regioni della base e del collettore sono (viceversa) molto grandi e poco drogate.

I contatti della base, dell'emettitore e del collettore sono metallici (se legati a zona n viene un diodo di silicio). Dato che i materiali n^+ sono molto drogati la regione di svuotamento è molto piccola e gli elettroni la possono attraversare come se non ci fosse.

2.3.3 Il BJT pnp

È un dispositivo *complementare* al pnp: valfolo le stesse equazioni, ma tensioni e correnti sono **opposte** Sia le prestazioni che il guadagno sono **minori**, perché i portatori in movimento sono le *lacune*, più lente rispetto agli elettroni. 2.4. I TRANSISTOR MOS

2.3.4 Transistor "speciali"

2.3.4.1 Foto transistor

Il phototransistor è caratterizzato da una corrente di base "photo-generated". Il resto dei parametri di lavoro sono gli stessi un un normale BJT.

$$I_C = k \cdot P_L$$

dove P_L è la potenza luminosa.

È importante che il dispositivo si trovi in regione attiva: per questo sarà inserito un resistore dal lato del collettore per evitare di andare in saturazione.

Figura 2.5: Un fototransistor npn ed uno pnp

Figura 2.6: Schema con fototransistor npn

2.4 I transistor MOS

I MOSFET (Metal Oxide Semiconductor Field Effect Transistor) sono una tipologia di transistor appartenente ai transistor ad effetto di campo: non si basano sulle proprietà delle giunzioni p-n.

I transistor ad effetto di campo

I transistor ad effetto di campo sono caratterizzati dalla possibilità di controllare la **conduttività elettrica del dispositivo**, ovvero la quantità di corrente elettrica che attraversa il dispositivo stesso, attraverso la formazione di un *campo elettrico* all'interno di esso.

Possono essere realizzati in diverse modalità:

- 1. JFET: ovvero Junction-Fet, realizzato con una giunzione p-n come elettrodo "rettificante";
- 2. MESFET: abbreviazione di Metal Semiconductor FET realizzato tramite una giunzione Schottky raddrizzante metallo-semiconduttore;
- 3. MOSFET: il più comune.

I MOS sono strutturati con più strati di materiali sovrapposti: metallo, ossido di silicio (SiO_2) e del silicio, o di tipo p o di tipo n. Si utilizza l'ossido come un isolante, non permettendo quindi il passaggio di cariche elettriche tra il metallo ed il semiconduttore.

Uno dei pregi dei transistor di tipo MOS è il **consumo**: un BJT ha un consumo di energia costante nel tempo (dal momento che deve mantenere la polarizzazione), mentre un transistor MOS consuma solo durante le transizioni.

Come per i transistor a giunzione, a seconda del drogaggio possiamo ottenere due tipologie diverse di transistor MOS: i nmos e i pmos.

In particolare, sono dispositivi controllati in tensione.

2.4.1 N-MOS

Nell'N-MOS (a canale P), il silicio è di tipo n: il drogaggio n+ favorisce il contatto ohmico⁹ con l'alluminio. Le definizioni delle correnti e delle tensioni equivalgono quelle dei transistor NPN.

 $^{^8\}mbox{In}$ questo caso la corrente di base è sostituita dall'intensità luminosa.

 $^{^9}$ Un contatto ohmico è una giunzione elettrica tra un metallo e un semiconduttore che non ha proprietà rettificanti (non trasforma un segnale alternato in uno continuo). La caratteristica principale è avere una curva corrente-tensione I-V lineare, come prevista dalla legge di Ohm.

Figura 2.7: Sezione di un transistor N-MOS.

È da notare come solitamente il metallo utilizzato sia l'alluminio, anche se a volte può essere del silicio molto drogato. L'ossido, invece, è ossido di silicio.

In generale qualsiasi MOSFET (quindi anche un N-MOS) ha tre terminali: source (emettitore), gate (base) e drain (collettore)¹⁰.

All'atto pratico si ha la corrente del gate sempre **nulla** (in regime continuo; essenzialmente solo col potenziale "fermo": $i_G = \frac{dV}{dt} \cdot C$). L'ossido ha la funzione di isolante, inoltre la lastra (di metallo) è sottile ($\approx 10nm$), la quale $blocca^{11}$ il passaggio di corrente dal gate al blocco sottostante, formando una struttura di un condensatore a facce piane.

Come detto in precedenza la struttura di un transistor N-MOS è simile ad un condensatore, dove le piastre sono il gate, mentre la piastra sotto è l'ossido. Applicando quindi una tensione positiva in GS (tra il gate e il source, $V_{GS} > 0$), si accumulano sopra e sotto l'ossido delle cariche (che saranno positive sopra, quindi sul gate, e negative sotto). Queste cariche andranno a riempire alcune lacune presenti sotto l'ossido, creando così un $depletion\ layer$.

Come in un condensatore, al crescere della tensione V_{GS} aumenta anche l'accumulo delle cariche; superata una certa **tensione di soglia** V_T ($V_{GS} > V_T$), le cariche accumulate hanno riempito tutte le lacune, ed iniziano ad accumularsi sotto l'ossido: così facendo si va creare una regione caratterizzata da una **carica elettrica libera**, che collega S a G. Questa regione è essenzialmente un **canale** conduttivo¹², dove può passare della corrente.

Come il BJT, anche con un transistor N-MOS si hanno diverse working regions:

- Cutoff: il dispositivo è **spento**, in quanto $V_{GS} < V_T$; si ha quindi corrente nulla su drain/source, come un interruttore aperto $(i_D) = 0$;
- Linear: il dispositivo è in conduzione $V_{GS} > V_T$; non ha ancora raggiunto la massima corrente (di saturazione, $i_D < i_{D-sat}$). Esiste allora un rapporto di proporzionalità $i_D \propto \frac{V_{DS}}{R_{DS}}$; il rapporto tra i due è detto resistenza di canale (R_{DS}) e dipende dalla tensione di Gate. Infatti il dispositivo in questa regione si comporta come un resistore. In questa regione vi è un numero sufficiente di elettroni per far comportare il dispositivo in modo proporzionale, approssimandolo ad un resistore.
- Saturation: il dispositivo è acceso $V_{GS} > V_T$, ma ha saturato¹³ la corrente $(i_D = I_{sat})$. Questo è dovuto alla tensione di Gate; all'aumentare della tensione V_{GS} , oltre una certa soglia non otteniamo un aumento di corrente, dal momento che il drain D attira più elettroni di quanti ne inserisca S. Indichiamo le caratteristiche di un MOS con due grafici:

Come accennato prima abbiamo a che fare con un generatore di corrente governato in tensione, in particolare dalla V_{DS} , quella tra drain e source. L'equazione della corrente (di Drain) è:

$$i_D = \left\{ \begin{array}{ccc} K[2(V_{GS} - V_T)V_{DS} - V_{DS}^2)] & : & V_{DS} \leq V_{GS} - V_T \\ i_{D-sat} = k(V_{GS} - V_T) & : & V_{DS} \geq V_{GS} - V_T \end{array} \right.$$

La prima equazione raffigura una parabola che ha come parametro la tensione V_{DS} : avrà il proprio vertice in $V_{GS} - V_T$. La seconda equazione (che vale nel momento in cui viene raggiunto il vertice della parabola) determina la corrente di saturazione, e diventa una **costante**, con un coefficiente di proporzionalità:

$$K = \frac{1}{2}\mu \, C_{ox} \frac{W}{L}$$

dove in K, abbiamo più parametri: μ dovrebbe essere la $mobilit\grave{a}^{14}$ del materiale, C_{ox} la capacità dell'ossido

 $^{^{10}}$ Di solito la regione di silicio drogato più grande (ad esempio la regione p nel N-MOS), viene detta bulk.

 $^{^{11}}$ Infatti anche per quanto riguarda lo schema del circuito il gate è isolato rispetto agli altri due terminali.

¹²Inizialmente la sua proprietà principale è quella di "essere una resistenza".

 $^{^{13}\}mathrm{Ha}$ raggiunto la massima corrente.

¹⁴Quanto scorrono facilmente le cariche al suo interno.

Figura 2.8: Curve caratteristiche di un transistor N-MOS.

per unità di carica 15 , mentre W rappresenta la larghezza della zona che va a costituire il canale, mentre L è la lunghezza.

$$K \propto \mu \Rightarrow K_n \simeq 2K_p$$

All'aumentare della corrente il N-MOS si comporta come un resistore la cui resistenza è data da $R = \frac{\rho \cdot L}{s} = \frac{\rho \cdot L}{W \cdot h}$. Posso quindi riscrivere la costante:

$$K = \frac{h}{\rho} \cdot \frac{W}{L}$$

dove la prima parte rappresenta la parte "tecnologica", mentre la seconda è la parte "geometrica" su cui posso agire per tarare la risposta di I_D rispetto a V_{DS} . Inoltre la lunghezza L determina la distanza tra Drain e Source e di conseguenza la lunghezza del canale: questo è il parametro che va a determinare la tensione massima tra Source e Drain prima di rompere il dispositivo. Questo perché applicando una certa tensione V_{DS} la quale sviluppa un campo elettrico e quanto sono più lontani i terminali quanto più basso è il campo elettrico, e quindi il MOSFET potrà reggere tensioni più alte, e viceversa.

Come nei BJT, una volta superata la cosiddetta tensione di breakdown il dispositivo si rompe; questa tensione è proporzionale al canale.

Figura 2.9: Vista di un transistor N-MOS dall'alto.

2.4.2 P-MOS

È il dispositivo complementare all'N-MOS.

 $^{^{15}\}mathrm{Più}$ è maggiore più ha possibilità di spostare cariche.

Figura 2.10: Sezione di un transistor P-MOS

Valgono le stesse equazioni, ma le tensioni e le correnti sono opposte $(V_{GS} < 0, V_{DS} < 0, V_t < 0)$. Applicando al Ground una tensione negativa si accumulano cariche positive sotto l'ossido: si formerà dunque un canale di lacune. Il Drain sarà considerato negativo rispetto al Source.

Il guadagno (e quindi la corrente di uscita) sono minori, in quanto le lacune sono portatori minoritari (come per i transistor BJT, in quanto $k_n \approx 2k_p$), le quali andranno a formare il canale di conduzione.

Le equazioni delle curve sono le stesse dell'N-MOS.

Per valutare K dato delle curve è possibile risolvere il seguente sistema:

$$\begin{cases} I_{D1} = K(V_{GS} - V_t)^2 \\ I_{D2} = K(V_{GS} - V_t)^2 \end{cases} \longrightarrow \begin{cases} \sqrt{I_{DS}} = \sqrt{K}(V_{GS} - V_t) \\ \sqrt{I_{DS}} = \sqrt{K}(V_{GS} - V_t) \end{cases}$$

Riepilogo dei transistor MOS

I MOS hanno le seguenti regioni:

- 1. Quando la tensione di Gate è inferiore alla tensione di soglia ($V_G < V_{th}$ entrambe in valore assoluto), siamo in *cutoff*: non abbiamo portatori nel canale. Siamo in interdizione ed il dispositivo è spento e non passa corrente tra source e drain;
- 2. Nella regione lineare, in cui ci troviamo superando la tensione di soglia per piccole tensioni di drain, la (curva) caratteristica della corrente è parabolica: inizialmente si potrebbe approssimare con una retta (da qui lineare). La pendenza di quest'ultima mi indica la resistenza del canale, tant'è che il dispositivo viene detto resistore controllato in tensione (di Gate)! Sono inversamente proporzionali.
- 3. Una volta raggiunto il vertice della parabola ci troviamo nella regione detta di saturazione la corrente diventa **costante** e sempre dipendente dalla tensione di Gate: il transistor è un generatore di corrente controllato in tensione.

2.4.3 Real N-MOS

All'apparenza il transistor N-MOS sembra un dispositivo simmetrico, ma non lo è. Infatti in precedenza abbiamo assunto la tensione $V_{DS} > 0$ perché polarizzando la S viene polarizzato anche il blocco P^{16} sottostante: in questo modo si viene a formare un **body diode** tra l'emettitore ed il collettore. In sostanza si va a cortocircuitare (viene metallizzato) Source con la regione di tipo P: rimane la giunzione tra P e il Drain.

Body diode

Il **body diode** (o di bulk) sono diodi *intrinseci* per qualsiasi transistor ad effetto di campo. Nelle applicazioni FET a canale N, la corrente scorre tipicamente dal drain alla source a causa della polarità del body diode. Anche se non è stato indotto un canale, la corrente può comunque fluire dalla source al drain attraverso la connessione in cortocircuito source-body e il diodo body-drain. Per questo motivo, un tipico FET a canale N non può bloccare il flusso di corrente dalla sorgente al drain.

Nel nostro caso è essenzialmente una giunzione p-n parassita in cui passa la corrente invece che nel canale.

Se $V_{DS} < 0$ il diodo in questione è in forward bias, e la corrente i_D non dipende più dal gate¹⁷: non abbiamo

 $^{^{16}\}mathrm{O}~n$ se in un P-MOS.

 $^{^{17} \}mathrm{Nel}$ transistore P-MOS accade se la tensione tra drain e source $V_{DS} > 0$

2.4. I TRANSISTOR MOS

Figura 2.11: Presenza nel real N-MOS del body diode

Figura 2.12: Schema circuitale del real N-MOS

quindi più il controllo sul dispositivo, perché la corrente scorre nel diodo indipendentemente dalla tensione applicata sul Gate. Per evitarlo la tensione di Drain dovrebbe essere maggiore rispetto a quella di Source.

Il P-MOS reale funziona al contrario.

Capitolo 3

Digital Logic Circuits (circuiti a logica digitale)

Servono per trasferire e processare informazioni tra dispositivi **senza modificare i valori**, funzionano realizzando operazioni *booleane* su dati booleani.

3.1 Famiglie logiche

Definizione: famiglie logiche

Una famiglia logica è un insieme di dispositivi elettronici i quali, se connessi tra di loro in modo opportuno, permettono di realizzare una qualsiasi funzione logica. Queste sono funzioni che definiscono lo stato di un'uscita per ogni possibile configurazione degli stati.

3.1.1 Operatori logici (booleani)

• NOT (negazione): restituisce il bit negato.

A
$$\overline{A}$$

Figura 3.1: Simbolo circuitale di NOT con A e \overline{A}

$$\begin{array}{c|c} A & \overline{A} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

Figura 3.2: Tabella di verità per NOT

• AND (prodotto logico): restituisce vero se entrambi i bit sono veri.

Figura 3.3: Simbolo circuitale di AND con A e B

Α	В	A+B
0	0	0
1	0	0
0	1	0
1	1	1

Figura 3.4: Tabella di verità per AND

• **OR** (somma logica): restituisce vero se almeno un bit è vero.

$$A \longrightarrow A+B$$

Figura 3.5: Simbolo circuitale di AND con A e B

A	В	A+B
0	0	0
1	0	1
0	1	1
1	1	1

Figura 3.6: Tabella di verità per AND

Concatenando queste porte logiche è possibile costruire una qualsiasi operazione logica complessa.

3.1.2 Leggi (o teoremi) di de Morgan

Servono a stabilire relazioni di equivalenza tra la congiunzione (AND) e la disgiunzione (OR) logica: attraverso la negazione (NOT) è possibile esprimere queste due porte logiche in termini reciproci. Le leggi sono le seguenti

$$A + B = \overline{\overline{A} \cdot \overline{B}} \Longrightarrow \overline{A + B} = \overline{A} \cdot \overline{B} \tag{1}$$

$$A \cdot B = \overline{\overline{A} + \overline{B}} \Longrightarrow \overline{A \cdot B} = \overline{A} + \overline{B} \tag{2}$$

A parole:

- La legge (1) dice che effettuare la negazione dell'operazione di AND tra due ingressi equivale all'OR tra la negazione dei due singoli ingressi;
- Allo stesso modo la legge numero (2) ci dice che la negazione dell'operazione OR tra i due ingressi equivale alla somma tra gli stessi ingressi negati singolarmente.

A questo punto possiamo ricavare due porte:

• NAND: o "NOT AND", è un dispositivo complementare alla porta AND. Per le leggi di Morgan un NAND equivale all'operazione di OR tra due ingressi negati.

Figura 3.7: Simbolo circuitale di NAND con A e B

A	В	\overline{A}	\overline{B}	$A \cdot B$	$\overline{A \cdot B}$
0	0	1	1	0	1
1	0	0	1	0	1
0	1	1	0	0	1
1	1	0	0	1	0

Figura 3.8: Tabella di verità per NAND

• NOR: o "NOT OR", è il dispositivo complementare alla porta OR. Sempre per le leggi di Morgan un NOR equivale all'operazione AND fra due ingressi negati

Figura 3.9: Simbolo circuitale di NOR con A e B

A	В	\overline{A}	\overline{B}	A + B	$\overline{A+B}$
0	0	1	1	0	1
1	0	0	1	1	0
0	1	1	0	1	0
1	1	0	0	1	0

Figura 3.10: Tabella di verità per NOR

Osservazione: completezza della famiglia logica

Una famiglia logica si dice *completa* quando tra i suoi dispositivi è presente la porta NOT ed una tra la porta AND o la porta OR. In particolare è possibile realizzare, con le porte NAND e NOR, tutte le porte precedenti: in questo modo quindi *si possono realizzare tutti i circuiti con una singola porta!*

• Esempi:

Figura 3.11: Rappresentazioni della porta NOT.

Figura 3.12: Rappresentazioni della porta AND.

Figura 3.13: Rappresentazioni della porta OR.

In elettronica, lo stato logico 0 è associato ad una bassa tensione, mentre lo stato 1 è associato ad un'alta tensione.

3.2 Famiglie logiche: parametri statici

Quando si tratta un segnale logico, ci si aspetta che esso sia *ben definito*: in particolare deve essere ben chiaro quando il segnale è "alto" e quando è basso. Per ogni famiglia logica quindi esistono quindi una serie di parametri che ne definiscono il funzionamento. I seguenti parametri sono detti statici in quanto sono misurati con il circuito "fermo", senza commutazioni: non dipendono dal fatto che il segnale stia variando nel tempo.

- 1) **Tensione di ingresso**: discrimina il valore *logico* in base alla tensione d'ingresso, quindi come questa sia *interpretata*:
 - $V_{iL} \doteq$ è il **massimo** valore di tensione in ingresso che la famiglia logica rileva come *livello logico* basso (oppure 0 logico, stato negativo);
 - $V_{iH} \doteq \grave{e}$ il **minimo** valore di tensione in ingresso che la famiglia logica (o l'integrato) percepisce come livello logico alto (oppure 1 logico, stato positivo).
- 2) Tensione di uscita: indica come interpretare i valori rilevati all'uscita di un circuito:
 - $V_{oL} \doteq \grave{\rm e}$ il **massimo** valore della tensione in uscita da una porta logica¹ dalla porta logica tale che, in base alle specifiche del prodotto, corrisponde ad un livello logico **basso** (0 logico);
 - $V_{oH} \doteq \grave{\rm e}$ il **minimo** valore della tensione in uscita da una porta logica che in base alle specifiche del prodotto stabilisce un valore logico **alto** (1 logico).

¹La porta successiva potrà riconoscerlo.

Nota: Regione di indeterminazione.

Per evitare ambiguità devono valere:

$$V_{iL} \le V_{iH}; \quad V_{oL} \le V_{oH}$$

Idealmente tutti i valori in ingresso corrispondono ai valori in uscita. Tuttavia questo non è possibile, a causa di possibili variazioni ambientali e/o nel processo di costruzione. Si usano quindi dei valori $V_{i/oL}$ più bassi dei $V_{i/oH}$, statisticamente certi, i quali considerano anche le possibili oscillazioni dei valori. Questo perché rispettando questi valori definiti del costruttore del circuito in tutte le condizioni operative il segnale sarà interpretato/percepito **correttamente**.

Infatti sappiamo che un qualsiasi valore di tensione di ingresso compreso tra $[V_{iL-max}, V_{iH-min}]$ non sappiamo quando potrà essere riconosciuto dalla porta come 1 logico o come 0 logico: si dice che sono valori nella *regione di indeterminazione*. Inoltre, per una far sì che non ci siano errori di interpretazione è necessario che l'operazione di commutazione tra gli stati sia il più *veloce* possibile, in quanto il valore in questi casi passa nella regione.

Allo stesso modo, un qualsiasi valore di tensione di uscita compreso nell'intervallo $[V_{oL-max}, V_{oH-min}]$ non potrà essere riconosciuto con 1 logico o come 0 logico da una porta posta immediatamente in cascata.

- 3) Corrente assorbita:
 - I_{iH} : corrente assorbita in ingresso quando viene applicato il valore logico alto;
 - I_{iL}: corrente assorbita in ingresso quando viene applicato il valore logico basso.

Da queste grandezze ne derivano altre 3:

4) **Noise Margin**²: resilienza del circuito al rumore; quanto disturbo può ricevere senza influire sul suo comportamento. È la quantità cui il segnale eccede la soglia minima V_{iH} e V_{iL} :

$$NM = \min(NM_H, NM_L); \quad NM_H = V_{oH} - V_{iH}; \quad NM_L = V_{iL} - V_{oL}$$

Osservazione

 NM_H e NM_L devono essere **positivi**, per cui è necessario che le tensioni siano:

$$V_{oH} > V_{iH}; \quad V_{iL} > V_{oL}$$

Maggiore è la differenza tra i valori (e quindi il Noise Margin), maggiore è il grado di "certezza" dell'interpretazione del segnale.

- 5) Fan-out³: rappresenta il massimo numero di porte d'ingresso che posso guidare/pilotare (collegabili ad un'uscita) mantenendo un valore logico corretto (dipende da I_{iL} , I_{iH});
- 6) Static power⁴: rappresenta la *potenza assorbita (o dissipata) in condizioni statiche*. È pari alla media tra le potenze assorbite con un'uscita alta/bassa;

$$P = \frac{(P_H + P_L)}{2}$$

dove
$$P_H = V_{cc} \cdot i_H$$
 e $P_L = V_{cc} \cdot i_L$.

3.3 Famiglie logiche: parametri dinamici.

I parametri precedenti devono essere misurati in condizioni *statiche*, mentre questi si misurano *al momento di una commutazione di stato*⁵.

²Più è alto meglio è; higher better.

³Più è alto meglio è; higher better.

⁴Più bassa è meglio è; lower better.

⁵Quindi la porta logica cambia dallo stato alto al basso o viceversa.

- 1) Ritardo/tempo di propagazione (propagation delay): indicato con $t_{p_{HL}}$ e $t_{p_{LH}}$, rappresenta in quanto tempo un cambio in ingresso è *percepito* (e riportato) dall'uscita. È fondamentale che sia **basso**: ad esempio con 10 ns siamo vincolati a processi con frequenza massima di 100 MHz; tra i due tempi di propagazione conta quello **più lento**, ovvero quello più penalizzante.
- 2) Energia di commutazione (Switching power): indica l'energia impiegata (in Joule) per commutare uno stato, essa cresce *linearmente* con la velocità del circuito (lower better). Viene integrata per il tempo della commutazione;
- 3) **Prodotto ritardo-potenza** (Delay-Power product): è il prodotto tra il ritardo di propagazione e la potenza dissipata nel circuito; serve per *bilanciare* le prime due, le quali sono tra loro discordi (lower better). A livello del design del circuito si può aumentare la potenza e di conseguenza diminuirà il ritardo di propagazione (a parità di circuito). La potenza dipende dalle resistenze, mentre il ritardo dalle capacità.

3.4 RTL (Resistor-Transistor Logic)

È una famiglia di porte logiche *che usano i transistor BJT* e resistenze per realizzare le porte. Il sistema è obsoleto a causa del suo fan-in limitato (al massimo 3 ingressi). Alcuni esempi di porte sono:

• NOT: Corrisponde ad un transistor con una resistenza di base R_B e una resistenza di collettore R_C , l'ingresso è collegato alla base del transistor; il dispositivo si comporta come un *invertitore*. In questa configurazione, ovvero quando l'emettitore è collegato a massa, si parla di emettitore comune.

Figura 3.14: Porta NOT realizzata con RTL.

• NOR: in questo caso mettiamo due stadi d'ingresso uguali, collegandoli alla stessa resistenza di collettore.

Figura 3.15: Porta NOR realizzata con RTL.

3.4.0.1 Lista parametri RTL

- 1) Statici:
 - $V_{iH} = 0.75V, V_{iL} = 0.6V$
 - $I_{iH}@V_{iH}=150\mu A, I_{iH}@5V=9.5mA$: la @ indica che viene stabilita la corrente I_{iH} con la tensione
 - $I_{iL} \simeq 0$: è circa zero se l'ingresso è basso, in quanto la giunzione BE è spenta:
 - $V_{oH} = 5V$: (no load condition, **senza carico**, ovveor se non si collega nulla)
 - $V_{oL} = 0.2V$: pari alla tensione di saturazione

$$\text{Per valutare } I_{iH} = \left\{ \begin{array}{ll} V_{iH} &= V_{IN} = 0,75V \text{ e } V_{BE} \simeq 0,6V \\ I_{iH} &= I_{B} \text{ e } I_{B} \cdot R_{B} + V_{BE} = V_{IN} \end{array} \right.$$

Il range d'ingresso va dai 5V alla tensione $V_{iH} = 0,75V$, con 5 = V tensione di alimentazione della

- 2) Dinamici:
 - $\bullet \quad NM_H = 4.25V, NM_L = 0.4V \rightarrow NM = 0.4V$

 - $\bullet \ \ P_L = 5V \times 7.5 mA(Rc) = 37.5 mW, P_H = 0, P = 18 mW$
 - t_{pHL} e t_{pLH} veloci per merito della resistenza in base (si tratta di qualche nS) DP=5nS×18mW = 90pJ\$

 - Il fanout si calcola facendo: $(V_{CC} V_{iH})/R_C = n \times I_{iH}(@V_{iH})$.

Funzione di trasferimento della porta NOT

Analizziamo il funzionamento della porta logica NOT.

- Se la tensione in ingresso V_{in} è bassa, la corrente i_C è nulla e la corrente i va tutta in OUT.
- Se la tensione in ingresso V_{in} è alta, si ha che $i_C \leq h_{fe} \cdot i_B$: la corrente non può andare tutta in uscita.

Analizzando il circuito inserendo dei valori: se nell'ingresso, ovvero nella base, non abbiamo corrente (quindi $I_B=0$), il transistor sarà in **interdizione** (in cutoff) e non passerà corrente, $I_C=0$. La tensione in uscita sarà di conseguenza $V_{out} = 5V - R_C$.

Se invece in ingresso abbiamo una tensione in ingresso alta (per esempio 5V), posso ipotizzare che la giunzione base-emettitore sia polarizzata direttamente e che quindi a cavallo tra la R_B e la messa a terra ci siano 0,7V, mentre che sulla resistenza si misura 4,3V. La corrente che entra in base è circa $10 \ mA$: di conseguenza il transistor è in **saturazione** e quindi $V_{CE}=V_{CE-sat}=0, 2V^6.$

(b) Ingrandimento tra 0.5V e 1V

Figura 3.16: Grafici sulla funzione di trasferimento

Bisogna però stabilire se la famiglia logica sia "buona" o meno tramite i valori di V_{iH} e V_{iL} . Per far ciò utilizziamo un simulatore di circuiti elettrici, all'interno del quale sono inseriti sia i parametri che la descrizione del circuito stesso e farne un grafico. Il primo rappresenta della funzione di trasferimento della porta NOT, ottenuto. Il grafico si dice statico, in quanto non è presente la variabile temporale. Sull'asse delle ascisse è presente la tensione in ingresso, mentre sulle ordinate è presente la tensione di uscita.

Sappiamo dal grafico che esso rappresenta la porta NOT in quanto se l'ingresso è basso, l'uscita è alta e viceversa (sopra certi valori). In una zona tra gli 0.5V = 0.7V si ha la commutazione.

Il secondo grafico è un ingrandimento del primo, viene evidenziata la zona della commutazione: a 600mV viene definito il punto in cui la giunzione base emettitore si accende. Ciò significa che si sta accendendo anche il transistor (sta iniziando a polarizzarsi), quindi scorre corrente in base e di conseguenza anche sulla resistenza

⁶Se non torna rileggere parte BJT.

di collettore, e la tensione (del collettore) in uscita diminuisce (drasticamente). Quindi dai 700mV il transistor è in saturazione, ma vogliamo dare alla tensione in ingresso minimo 750mV. Abbiamo quindi trovato V_{iH} e V_{iL} . La tensione in uscita V_{oL} è semplice trovarla sugli $\approx 0, 2V = V_{CE-sat}$, mentre V_{oH} è più particolare, perché senza nessun carico è pari a 5V.

Osserviamo inoltre che il noise margin è particolarmente basso, dovuto alla differenza tra i valori delle tensioni associati agli stati logici bassi.

3.4.1.1 Calcolo del Fan-out

Sappiamo che all'uscita di un transistor si possono collegare più ingressi: potenzialmente un numero n

Figura 3.17: Uscita per calcolo fanout: da un transistor si collegano n ingressi, composti da una resistenza ed una giunzione base-emettitore

• Se vogliamo un valore alto su V_{OUT} , questo deve essere pari (condizione limite) alla tensione $V_{iH}=0,75V$. Inoltre:

$$\begin{split} V_{RC} &= 5 - 0,75 \ V = 4,25 V \\ R_C &= 640 \Omega \end{split} \right\} \Longrightarrow I_{out} = \frac{4,25 V}{640 \Omega} = 6,6 \ mA \\ I_{iH}@0,75 V &= 150 \ \mu A \Longrightarrow \frac{6,6 \ mA}{150 \ \mu A} = 44 \ \text{porte logiche}. \end{split}$$

che rispetto al valore espresso sul datasheet, ovvero 33, è maggiore. Tuttavia si utilizza quest'ultimo valore al fine di lasciare un po' di margine al circuito (considerando $I_H = 200 \mu A$)

• Per avere un valore basso su V_{out} : se l'uscita bassa con corrente $I_{iL} \simeq 0$, teoricamente non vi è un limite sul numero di porte logiche.

3.4.1.2 Calcolo della potenza statica

• Potenza dissipata se l'uscita è bassa:

$$\left. \begin{array}{l} V_{RC} = 5 - 0, 2 \ V = 4, 8V \\ i_C = \frac{4, 8 \ V}{640\Omega} = 7, 5 \ mA \end{array} \right\} \Longrightarrow P_L = 5 \ V \cdot 7, 5 \ mA = 37, 5 \ mW \\ \end{array}$$

• Potenza dissipata se l'uscita è alta:

$$V_{out} = 5 \: V \Longrightarrow V_{RC} = 0 \Longrightarrow I_C = 0 \Longrightarrow P_H = 0 \: mW$$

Si considera carico *nullo*: la porta non è collegata ad altre porte.

3.4.1.3 Tempi di propagazione:

- $t_{p_{HL}}$ è pari al tempo necessario a polarizzare la giunzione p-n: pochi nS;
- $t_{p_{LH}}^{FHL}$ è pari al tempo necessario a rimuovere i portatori minoritari dalla base, ovvero il tempo necessario a spegnere la giunzione p-n: pochi nS;

L'ultimo parametro dinamico è il Delay-power product: $DP = 5 ns \cdot 18 mW = 90 pJ$

Osservazione

Se incrementiamo la resistenza di base (aumentando da 450 Ω) diminuisce la potenza ma aumenta il tempo.

Tuttavia i valori scelti per le resistenza ottimizzano le prestazioni di tutta la famiglia logica RTL.

Problemi della famiglia RTL

Uno dei problemi principali della famiglia logia RTL è il fatto che lo stadio d'ingresso formato da una resistenza e dalla giunzione base-emettitore assorbe molta corrente in un verso e non ne assorbe nell'altro.

3.5 TTL (transistor-transistor-logic)

È una famiglia logica successiva alla famiglia RTL, ed è più *evoluta*: le porte logiche in questo caso sono realizzati utilizzando una *coppia di transistori*:

Figura 3.18: Porta NOT "semplice" in TTL.

3.5.0.1 Porta Basic NOT:

Durante le transizioni dallo stato basso ad alto i portatori minoritari presenti in Q2 vengono rimossi dal transistor Q1; se l'ingresso della porta logica è **basso/spento** (ad esempio la tensione in ingresso $V_{in}=0,2V$) la giunzione base-emettitore Q1 sarà accesa (grazie alla resistenza RPU, resistenza di pull-up, che porta i 5V in ingresso) e quindi scorre della corrente in base nel transistor Q1. La giunzione può essere in regione attiva diretta oppure in saturazione: tuttavia per essere in regione attiva dovrebbe esserci un ingresso di corrente nel collettore di Q1, ma in condizioni stazionarie ciò non accade perché per la disposizione del transistor Q2 non scorre corrente verso il collettore, quindi Q1 si trova in saturazione. Di conseguenza la tensione sulla base del transistor Q2 (= tensione di collettore di Q1) sarà pari a $V_{in}+0,2V=0,2V$, che è troppo bassa per accendere il transistor Q2: per questo motivo tutta la corrente andrà in uscita.

Memo

La giunzione base-collettore è anch'essa assimilabile ad un diodo, per cui ha il suo massimo potenziale a $\approx 0,7V$

Quando l'ingresso è a 5V, il transistor entra in regione attiva inversa, caratterizzata da un guadagno molto basso. Di conseguenza, nel collettore fluisce quasi esclusivamente la corrente di base. Con questa famiglia logica, il

problema dell'assorbimento di corrente si manifesta principalmente quando il transistor viene acceso. Tuttavia, tale assorbimento è inferiore poiché il transistor opera già in saturazione. Inoltre, questo comportamento rende la porta più prevedibile nel funzionamento.

A causa delle oscillazioni dei valori la tensione in $V_B = 0 - 0,75V$, mentre la tensione sul collettore $V_C = 0 - 1,5V$. Se invece abbiamo un ingresso alto (tensione in ingresso $V_{in} = 5V$), Q1 si troverà in regione attiva inversa, con gain quasi nullo.

Figura 3.19: Porta NOT "semplice" con Q1 diodo.

Q1 diventa assimilabile ad un diodo, mandando tutta la corrente verso la base del transistor Q2: in questo modo essa va in saturazione, ottenendo un'uscita bassa (come nella porta NOT nella logica RTL). È da notare che attraverso Q1 la corrente di scarica di Q2 viene aumentata considerevolmente e di conseguenza si potrà spegnere velocemente: la transizione dell'uscita da basso ad altro è molto veloce.

In sintesi:

- Transizioni dallo stato basso ad alto *veloci*, dato che il transistor Q1 aiuta a smaltire le cariche minoritarie immagazzinate da Q2;
- L'uscita deve comunque essere tirata verso l'alto a da R_C
- L'ingresso assorbe corrente sole se basso, ed è in funzione di RPU

3.5.0.2 Enhanced NOT

Viene disegnato un nuovo circuito per migliorare le prestazioni: in particolare l'uscita, se positiva, non è governata dal transistor, ma dalla resistenza di collettore.

Consideriamo quindi un circuito migliorato:

^aAumentare la tensione o portare un segnale verso un valore più alto.

Figura 3.20: Enhanced NOT.

Il sottocircuito $phase\ splitter$ si occupa di generare due segnali complementari: se il collettore è alto l'emettitore è basso e viceversa.

Il funzionamento di questo circuito è un'estensione della porta logica NOT base: il transistor Q3 pilota l'uscita in modo tale che soltanto uno dei due transistor Q2 e Q4 sia acceso!

Caratteristiche della porta logica Enhanced Not

- Q4 "tira su" la (tensione di) uscita rapidamente. Tuttavia, come visto in precedenza un transistor si spegne molto più lentamente di quanto si accenda: esiste quindi la possibilità che il transistor Q4 si accenda prima che si spenga Q2 (questo viene detto fenomeno di cross-conduction). Per evitarlo si rallenta l'accensione di Q4 ponendo una resistenza di collettore R_C .
- Come spiegato nel punto precedente, il transistor Q2 si spegne più lentamente (commutazione tra L e H), perché non c'è più Q1 ad assorbire. Per limitare il problema di utilizza una resistenza di pull-down RPD.

Analizziamo il grafico di funzionamento della porta NOT, dove sull'asse delle ascisse abbiamo la tensione in ingresso, mentre sull'asse delle ordinate abbiamo la tensione in uscita:

Figura 3.21: Grafico porta enhanced NOT.

Il porta si trova nella regione lineare tra gli 0,6 e gli 1,2V: Q3 si sta accendendo, sulla seconda resistenza di

pull-up RPU' cade un potenziale proporzionale alla corrente che Q3 inizia a far scorrere. Tale caduta si riflette sul transistor Q4. Dopodiché subito dopo 1, 2V si ha una ripida caduta di tensione causata dall'accensione del transistor Q2.

Si può osservare come in uscita non otteniamo mai una tensione pari a 5V: questo a causa delle cadute di potenziale sul transistor Q4 e sul diodo D1.

Tuttavia questo circuito non è ancora il migliore possibile, in quanto vorremmo delle funzioni che siano più "ripide". Per ovviare a ciò si aggiunge un altro sottocircuito al phase splitter e al totem pole: il sottocircuito $active\ pull-down.$

3.5.0.3 Standard NOT

Figura 3.22: Standard NOT.

Il sottocircuito active pull-down (APD) è attivo perché sostituisce la resistenza di pull down, che era passiva. Infatti una tensione nel punto P accende il transistor Q5, che fa da "pozzo". Il fatto di essere un "componente attivo" implica inoltre altre due cose:

- 1) È più rapido a spegnere il transistor Q2 al momento opportuno;
- 2) Sincronizza, al momento dell'accensione del circuito, l'accensione dei transistor Q2 e Q3 e lo spegnimento di Q4: infatti il transistor Q5 viene detto sincronizzatore. Esso si accende insieme a Q2 e sottrae corrente alla base di Q4.

Tutto ciò rende il grafico più ripido:

L'aggiunta di un nuovo transistor si è rivelata una scelta eccellente, poiché questa porta non solo è più veloce rispetto alla versione enhanced, ma consuma anche meno energia. Questo miglioramento è dovuto al fatto che, nell'intervallo di tempo tra il momento in cui l'input passa a 0 e l'output sale a 1 (circa 10 ns), il circuito assorbe corrente. Grazie al transistor aggiunto, questa finestra temporale è stata quasi dimezzata, riducendo significativamente il consumo di corrente. La resistenza RC da 130Ω serve per ridurre la corrente che passa quando, durante la commutazione, sia Q2 che Q4 sono chiusi e quindi la corrente va verso la massa.

3.5.0.4 Parametri TTL

- $\begin{array}{ll} \bullet & V_{iH} = 1,35V, & V_{iL} = 1,1V \\ \bullet & I_{iH} \sim 1,5\mu A, & I_{iL} = 1\mu A \\ \bullet & V_{oH} = 3,75V, & V_{oL} = 0,2V \\ \bullet & NM_H = 2.4V,NM_L:0.9V \rightarrow NM = 0.9V \end{array}$

Figura 3.23: Grafico di trasferimento della porta Standard NOT in TTL.

 $\left. \begin{array}{l} P_L = 5V(\underbrace{0,7mA}_{R_{PU}} + \underbrace{2,5mA}_{R'_{PU}}) = 16mW \\ P_L = 5V(\underbrace{1mA}_{R_{PU}}) = 5mW \end{array} \right\} \Longrightarrow P = 11,5mW \label{eq:pure_pure}$

$$\bullet \ t_{p_{HL}} \sim t_{p_{HL}} \sim 5nS, \quad PD = 5nS \cdot 11, 5mW = 57, 5pJ$$

3.5.0.5 Ulteriori porte logiche in TTL

Per realizzare tutte le funzioni è tuttavia necessario implementare almeno la porta NAND oppure la porta NOR. Tra le due la più semplice è la prima, che è uguale alla standard NOT, tranne per la presenza di un transistor multi-emettitore.

Figura 3.24: NAND in logica TTL.

L'ingresso è polarizzato positivo solo nel caso in cui lo siano sia A che B (A=B=1 spegne l'uscita). È molto semplice da utilizzare in circuiti integrati.

Funzionamento

Il funzionamento della porta è il seguente: il primo dei due emettitori che collego alla terra spegne il circuito a destra e quindi passa la corrente "da sopra". Se invece sono entrambi su Q_3, Q_5, Q_2 sono accesi e quindi l'uscita è giù.

3.5.0.6 Analisi dinamica TTL porta NOT

Analizziamo cosa succede sull'uscita durante le commutazioni:

- Commutazione H-L (Alto o Basso)
 - Da
 - * Q4 in regione attiva;
 - * Q1 in saturazione;
 - A:
 - * Q2, Q3, Q5 in saturazione (si devono accendere);
 - * Q4 spento;
 - * Q1 in regione attiva inversa⁷;

Mettere alto l'ingresso (tensione in ingresso V_{in} alta) porta il transistor Q1 nella sua regione attiva inversa, causando l'accensione dei transistor Q2, Q3, Q5. A loro volta essi contribuiscono a spegnere il transistor Q4, e di conseguenza con esso anche l'uscita. È una commutazione veloce ($\sim 2nS$), i tre transistor si accendono velocemente e Q4 passa velocemente in regione attiva inversa⁸.

Figura 3.25: Grafico commutazione H-L.

- Commutazione L-H (Basso \rightarrow Alto)
 - Da
 - * Q2, Q3, Q5 in saturazione;
 - A:
 - * Q1 in saturazione;
 - * Q4 in regione attiva;

È più difficile rispetto alla commutazione H-L. Quando la tensione in ingresso è pari ad un livello logico basso, il transistor Q1 prima di passare alla regione di saturazione passa dalla regione attiva diretta (a causa delle cariche accumulate sulla base del transistor Q3), svuotando così Q3, che si spegnerà.

Figura 3.26: Ingresso basso TTL.

Ora Q4 si può accendere, mentre il transistor Q2 deve essere spento⁹: questa azione è svolta o dalla resistenza di pull-down o dall'*active pull-down* se presente. Infatti la presenza o meno del sottocircuito APD gioca un ruolo chiave nello spegnimento del transistor.

⁷Q4 e Q1 si devono spegnere.

 $^{^8\}mathrm{Si}$ spegne più velocemente proprio perché non è in saturazione!

⁹Va svuotato dalle cariche!

3.5.0.6.1 Assenza sottocircuito active pull-down Siamo nel caso in cui vi è solo una resistenza di pull-down. La commutazione tra lo stato basso e lo stato alto avviene in un tempo compreso tra i 10 e i 12 nS.

Il transistor Q1 svuota la base del transistor Q3, il quale si spegne. Quando ciò accade la corrente si sposta verso Q4, il quale si accende e tenta di "alzare - tirare su" l'uscita. Tuttavia Q2 deve ancora spegnersi, dal momento che era in saturazione. Una svolta spento Q2, l'uscita è libera di salire.

Vi è un periodo di tempo in cui sono accesi sia lo stato alto che lo stato basso; inoltre ho un assorbimento di corrente per tutto l'intervallo tempo in cui il transistor Q2 non si è ancora spento (ovvero in quell'arco di tempo in cui il segnale **non** sta commutando), comportando un maggior consumo di potenza. Ciò è dovuto dall'accensione di Q4 e da Q2 non ancora spento, a causa della cross-conduction.

Figura 3.27: Grafico commutazione porta NOT in TTL senza la presenza dell'APD.

Figura 3.28: Grafico della corrente porta NOT senza APD.

3.5.0.6.2 Presenza sotto circuito active pull-down Il funzionamento dei transistor Q2, Q3, Q5 è sincronizzato sia in accensione che in spegnimento ed in quest'ultima fase anche *velocizzato*. Il transistor Q1 svuota sempre la base di Q3, il quale si spegne. Il tempo necessario al transistor Q2 per spegnersi è molto inferiore grazie alla presenza di Q5, il quale è un *carico attivo* e "tira" corrente molto velocemente.

Il picco di corrente in questo caso ha una durata più limitata (non più $\sim 10nS$) ed ho quindi un minor consumo di potenza.

Figura 3.29: Grafico commutazione L-H porta NOT con APD.

Figura 3.30: Grafico assorbimento corrente in presenza di APD.

3.6 MOS logic cell - Porte logiche MOS

Questa famiglia logica non usa più transitor bipolari, ma passa ai MOSFET: in questo caso si utilizzando i MOSFET *ad arricchimento*, come descritti nel paragrafo a loro dedicato. Tuttavia esistono anche i MOSFET *a svuotamento*, i quali funzionano in modo inverso, in quanto il canale è già presente e si va ad applicare una corrente per rimuoverlo.

3.6.1 CMOS - Complementary MOS

Andiamo ora a descrivere una famiglia detta *Complementary MOS* o CMOS, questo perché vengono utilizzati entrambe le tipologie di transistor ad effetto di campo, sia quelle a canale n sia quelle a canale P. Un vantaggio nell'utilizzo di transistor MOS per realizzare porte logiche è la possibilità di realizzare dispositivi molto compatti e che consumano meno rispetto alle precedenti famiglie logiche.

Le equazioni che guidano la corrente sono:

$$\begin{split} I_D &= K[2(V_{GS}-V_t)V_{DS}-V_{DS}^2] \\ I_{Dsat} &= K(V_{GS}-V_t)^2 @V_{DS} \geq V_{GS}-V_t \\ K &= \frac{1}{2}\mu C_{ox}\frac{W}{L} \end{split}$$

3.6.1.1 CMOS - NOT

Figura 3.31: Porta NOT in logica CMOS.

Possiamo quindi apprezzare la simmetria del circuito, che contribuisce a semplificarne la gestione.

Solitamente vogliamo che i dispositivi digitali lavorino nella regione lineare (i MOS) e in saturazione (i BJT). Nel caso dei MOS, quando sono in regione lineare funzionano come se fossero delle resistenze connesse ad un interruttore (l'interruttore si apre quando il CMOS è interdetto).

In base al valore del segnale in ingresso v_i il circuito equivale alla configurazione sulla destra della figura con:

- Con ingresso basso, l'interruttore S_P è chiuso, mentre è aperto l'altro S_N , quindi entra la tensione V_{DD} . Il valore del segnale in uscita è quindi alto.
- Con l'ingresso alto, l'interruttore S_P è aperto, invece l'interruttore S_N è chiuso, il quale è collegato a terra. In uscita abbiamo quindi un segnale basso.

Per tracciare la $caratteristica^{10}$, ovvero il grafico che pone in relazione la tensione in ingresso e quella in uscita, devo porre l'ipotesi che la corrente sul drain del transistor N-MOS sia la stessa che c'è sul drain sul transistor P-MOS, $i_{DP}=i_{DN}$. Questo viene garantito dal fatto che in conduzioni statiche la corrente di gate e quindi $i_{iH}/i_{iL}\sim 0$; inoltre l'ingresso è collegato direttamente al gate, il quale è fisicamente separato dal circuito. Sempre in condizioni statiche abbiamo che le correnti di drain dei due transistor si equivalgono: sia in uscita che in ingresso sono entrambe pari a zero.

Sappiamo che per la tensione d'ingresso a 0 otteniamo in uscita V_{DD} , e per la tensione d'ingresso con valore V_{DD} ottengo 0 in uscita. Di conseguenza sappiamo anche che:

$$\begin{split} V_{DS_n} &= V_{out} \\ V_{GS_n} &= V_{in} \\ V_{DS_p} &= V_{DD} - V_{out} \\ V_{GS_p} &= V_{DD} - V_{in} \end{split}$$

Se volessi rappresentare l'andamento della corrente del P-MOS, possiamo notare come V_{DS_p} vada nel verso opposto di V_{DS_n} : sapendo che tra i due transistor deve passare la stessa corrente si trova l'intersezione tra le due curve della corrente dei MOS, con una particolare condizione. A questo punto metto a sistema le equazioni dei due MOS:

$$\begin{split} I_D &= K[2(V_{GS}-V_t)V_{DS}-V_{DS}^2]\\ K_P &= \frac{1}{2}\mu_P C_{ox}\frac{W_P}{L_P}\\ K_N &= \frac{1}{2}\mu_N C_{ox}\frac{W_N}{L_N} \end{split}$$

Figura 3.32: Caratteristica di trasferimento della tensione dell'inverter CMOS quando K_P e K_n sono uguali.

Ponendo infatti che le due costanti K_P per il P-MOS e K_N per l'N-MOS si equivalgano ottengo che le due rispettive equazioni della corrente di drain siano **uguali**! L'unica differenza è che una parte da 0 e cresce

 $^{^{10} \}mathrm{Funzione}$ di trasferimento ingresso-uscita.

positivamente verso V_{DD} e l'altra parte dalla V_{DD} e diminuisce verso zero: sono l'una il complementare dell'altra. Il grafico quindi diventa **anti-simmetrica**¹¹ **rispetto al centro** (che si trova in $\frac{V_{DD}}{2}$). Ciò è un risultato desiderato, in quanto il parametro del Noise Margin nel caso in cui il funzionamento del dispositivo è esattamente simmetrico il margine di rumore alto **sarà uguale** al margine di rumore basso, quindi ottimizzo le risorse della porta logica.

Andando più nel dettaglio si possono identificare diversi punti: alcuni tra i più importanti sono quelli dove la pendenza è pari ad 1 (in valore assoluto), che è dove solitamente si prendono i valori della tensione in ingresso:

$$\begin{split} V_{iH} &= \frac{1}{8} [5V_{DD} - 2V_t] \\ V_{iL} &= \frac{1}{8} [3V_{DD} 2V_t] \end{split}$$

Gli altri parametri sono i seguenti

$$\begin{split} V_{oH} &= V_{DD} \\ V_{oL} &= 0 \\ NM_L &= NM_H = NM = V_{iL} \end{split}$$

Per quanto riguarda la tensione in uscita "alta" e "bassa", sapendo che non scorre corrente staticamente in questa porta logica e per come abbiamo strutturato il circuito (vedi versione con le resistenze per ogni singolo MOS), la tensione di uscita è pari a quella presente in ingresso, **perché non vi è caduta di tensione sulle resistenze!** Per i margini di rumore basta utilizzare le equazioni delle tensioni in ingresso ed otteniamo i valori.

Se si volesse massimizzare il margine di rumore si potrebbe andare ad intervenire sulla formula per fare in modo che i due valori si avvicinino fino a diventare uguali in $\frac{V_{DD}}{2}$. Ma si può modificare solo alzando la tensione di soglia V_t , che dovrà essere anche lei posizionata nel mezzo; tuttavia ciò sarebbe erroneo, perché renderebbe la curva meno ripida, e di conseguenza la transazione sarebbe meno rapida/brusca/ripida. Questo accade se separo le tensioni, prendendo una tensione di soglia più bassa di $\frac{V_{DD}}{2}$. Solitamente abbiamo $V_{iH} \sim \frac{2}{3}V_{DD}, V_{iL} \sim \frac{1}{3}V_{DD}$. Un altro motivo per cui non vogliamo che la tensione di soglia sia nel mezzo è perché in quel caso scorre una corrente nel circuito.

Nel caso dei CMOS il parametro della tensione di alimentazione è lasciato abbastanza libero! Niente ci obbliga ad avere una determinata tensione, a differenza della famiglia TTL la quale è legata alla tensione di soglia della giunzione p-n, che ricordiamo essere pari a 0,7V. Un vantaggio che deriva dalla possibilità di selezionare tensioni più basse se necessario è quello della **riduzione della dimensione dei dispositivi!** A tensioni più basse posso formare dei MOS con un canale più corto, posso inserirne di più nello stesso spazio.

 $^{^{11}\}mathrm{Ricordo}$ che ciò è dovuto all'uguaglianza delle due equazioni.

Appendice A

Esercizi

A.1 Esercizi capitolo 1

Appendice B

Varie

Le leggi di Kirchoff

- 1. Legge di Kirchoff alle correnti: la somma delle correnti in un nodo è pari a 0.
- 2. Legge di Kirchoff alle tensioni: la somma delle tensioni lungo un percorso chiuso è pari a0.

B.1 Semiconduttori e bande

Gli elettroni in un solido allo stato fondamentale e a temperatura 0 kelvin, in obbedienza alla loro natura fermionica e al principio di Pauli che preclude ai fermioni il fatto di potersi trovare in due nello stesso stato, riempiono gli stati elettronici loro consentiti partendo dal livello energetico più basso via via su, fino a che tutti gli elettroni del solido hanno trovato un'accomodazione. Si distribuiscono cioè rispettando la distribuzione di Fermi-Dirac calcolata a temperatura 0 kelvin. Nei metalli, il livello energetico più alto occupato si definisce livello di Fermi.

Figura B.1: Schema semplificato della struttura elettronica a bande per metalli, semiconduttori e isolanti.

A questo punto possono verificarsi diverse possibilità:

- Vi è una banda, o più di una fra le ultime riempite da elettroni, che è parzialmente riempita e restano degli stati vuoti. In tal caso si ha a che fare con un metallo, cioè un sistema in cui gli ultimi elettroni hanno la possibilità di spostarsi in livelli energetici molto vicini, infinitesimalmente più alti in energia, e dunque hanno la possibilità di una mobilità elevata che porta il sistema ad essere un buon conduttore di elettricità.
- L'ultima banda è stata riempita completamente in modo tale che il prossimo stato elettronico consentito si trovi sulla banda successiva e fra questa banda e la banda completamente riempita c'è una banda proibita (band qap) di energie. In tal caso il solido è un dielettrico.
- Si parla infine di semiconduttore nel caso di un isolante in cui la banda proibita è talmente piccola che a temperatura ambiente c'è una certa probabilità che gli elettroni si trovino a saltare la banda proibita per agitazione termica, e dunque il sistema si trovi in una situazione prossima a quella di un metallo, con valori di conducibilità elettrica non nulli.

(N.B paragrafo proveniente da Wikipedia)

38 APPENDICE B. VARIE

B.2 Corrente nel N-MOS

A differenza del transistor BJT, dove la base è comunque ristretta, abbiamo in pratica due giunzioni p-n tra la base e il source oppure con il drain: quindi è come se ci fossero due diodi contrapposti. Infatti ciò spiega il perché in prima approssimazione non scorre corrente tra Source e Drain (in condizione di quiete).

B.3 Termini

- V_{cc} : è la tensione di alimentazione positiva che fornisce energia a un circuito elettronico associata al collettore; sta per "Voltage at the Common Collector" (tensione al collettore comune), che è il punto di riferimento per le tensioni di alimentazione nei circuiti a transistor bipolari (BJT).
- Le resistenze di pull-up e pull-down sono usate nei circuiti logici elettronici per garantire che gli ingressi di un sistema logico stabilito siano a livelli logici previsti se i dispositivi esterni sono scollegati o ad alta impedenza. Essi possono essere utilizzati anche a livello di interfaccia tra due diversi tipi di dispositivi logici, possibilmente operanti a diverse tensioni di alimentazione.

Uscita del segnale/interruttore	Interruttore aperto	Interruttore chiuso	
Con resistore di pull-up	Tensione di alimentazione positiva / segnale alto	Tensione di massa / segnale basso	
Con resistore di pull-down	Tensione di massa / segnale basso	Tensione di alimentazione positiva / segnale alto	
Senza resistore di pull-up o pull-down	Tensione/segno indeterminato	Tensione/segno dell'ingresso dell'interruttore	

Tabella B.1: Tabella di comportamento del segnale dell'interruttore con vari resistori