

Raman Effect in Liquid Ethylene

George Glockler and M. M. Renfrew

Citation: J. Chem. Phys. 6, 170 (1938); doi: 10.1063/1.1750221

View online: http://dx.doi.org/10.1063/1.1750221

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v6/i3

Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded

Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Raman Effect in Liquid Ethylene

Because of inconsistencies in the reports of previous investigators (Table I) we have studied the Raman spectrum of liquid ethylene (-120°C). Ten Raman shifts have been measured. Nine of these have been recorded at one time or another in the literature. Our results include two lines found in the gas by Dickinson, Dillon, and Rasetti1 which had not been checked by subsequent experimenters.2, 3 Only six of the frequencies can be assigned to fundamental vibrations of the molecule.3

The new frequency 1601 cm⁻¹ found by us is a faint companion to the strong Raman line 1621 cm-1 which has been attributed to parallel vibrations of the carbon atoms with relatively large displacements.3, 4 The new line is

TABLE I.

LIQUID ETHYLENE			ETHYLENE GAS		
GLOCKLER RENFREW ⁸ (1938)	HEMPTINNE JUNGERS DELFOSSE ⁶ (1937)	Bonner ³ . (1936)	Daure ⁷ (1929)	Bhagavan- TAM ² (1936)	DICKINSON DILLON RASETTI ¹ (1929)
942 1339 1601	1341	950 1341	1340	1343	1342.4
1621 1655 2871	1621	1619 1654 2880	1620	1626 1656 2880	1623.3 2880.0
3009 3076 3231	3007 3082	3009 3069	3000 3080	3020	3019.3 3240.0
3264					3272.0

apparently produced by this same type of vibration in those molecules which contain the C13 isotope.5 Calculation checks roughly the separation observed, and the intensity ratio is appropriate.

The weak 942 cm⁻¹ line is very diffuse; also diffuse is the somewhat stronger line 3076 cm⁻¹. A faint "shadow" accompanies the strong 3009 cm⁻¹ frequency; however, microphotometer tracings failed to show a separate line. All other lines are well defined, though in some cases they are

The 3-prism Steinheil spectrograph used in this laboratory gives a dispersion of 8A/mm at 4916A. Exposures of 12 hours brought out all lines. No filters were used. The strongest Raman frequencies were excited by Hg lines 4047, 4078, and 4358; the weak lines by 4047 and 4358, except for the Raman shift 1655 cm⁻¹ which falls behind the Hg "triplet" when excited by 4047.

Ethylene (99.95 percent) manufactured for anaesthesia was used.

> GEORGE GLOCKLER M. M. Renfrew

University of Minnesota, Minneapolis, Minnesota, February, 1938.

1 R. G. Dickinson, R. T. Dillon and F. Rasetti, Phys. Rev. 34, 582

R. G. Dickinson, R. T. Dinor and F. Rasecu, Phys. Rev. 52, 502 (1929).
S. Bhagvantam, Nature 138, 1096 (1936).
L. G. Bonner, J. Am. Chem. Soc. 58, 34 (1936).
H. W. Thompson and J. W. Linnett, J. Chem. Soc. 1376 (1937).
S. Bhagavantam, Proc. Ind. Acad. Sci. 2A, 86 (1935).
M. Hemptinne, J. C. Jungers and J. M. Delfosse, Nature 140, 323 (1932).

P. Daure, Ann. de physique 12, 375 (1929).
M. M. Renfrew, duPont Fellow (1937-38).