

# MA3010 Thermodynamics and Heat Transfer OBTL July 26 2021

Thermodynamics & Heat Transfer (Nanyang Technological University)



Scan to open on Studocu



#### Teaching, Learning and Pedagogy Division

Reg. No. 200604393R

| Academic Year  | 2021/2022 Semester 1                 |  |  |
|----------------|--------------------------------------|--|--|
| Course         | Assistant Professor Hou Han Wei      |  |  |
| Coordinator    |                                      |  |  |
| Course Code    | MA3010                               |  |  |
| Course Title   | Thermodynamics & Heat Transfer       |  |  |
| Pre-requisites | MA2003 Introduction to Thermo-fluids |  |  |
| No of AUs      | 3                                    |  |  |
| Contact Hours  | Lectures: 26 hours                   |  |  |
|                | Tutorials: 13 hours                  |  |  |
| Proposal Date  | July 2019                            |  |  |

#### Course Aims

This is a core mechanical engineering course covering the basic concepts and principles of thermodynamics and heat transfer.

You will be taught how to use second law to describe irreversible processes. You will be introduced to ideal gas mixtures and their applications in the analyses of psychrometry. You will learn basic concepts of heat transfer and how to describe and analyse systems, in which heat transfer by conduction, convection and radiation takes place. You will develop necessary skills and abilities to analyse and solve realistic engineering problems using basic concepts of thermodynamics and heat transfer.

#### **Intended Learning Outcomes (ILO)**

Upon successful completion of the course, you will be able to

- 1) set up basic thermodynamic systems and their interactions with the surroundings for analysis,
- 2) perform energy balances (1st Law analysis) for closed systems and steady state control volumes,
- evaluate the thermodynamic properties for ideal gases, water/steam and major refrigerants,
- 4) identify and explain processes using the 2nd Law of thermodynamics and the concept of maximum efficiency of thermodynamic cycles,
- 5) use the entropy concept to analyse closed systems and steady state control volumes undergoing reversible and irreversible processes,
- 6) differentiate between thermodynamics and heat transfer,
- 7) differentiate between conduction, convection and radiation modes of heat transfer,
- 8) describe the main principles of conduction heat transfer (steady and unsteady cases),
- 9) describe the main principles of convection heat transfer (forced and free/natural cases),
- 10) describe the main principles of radiation heat transfer, and make appropriate assumptions when applying the thermodynamic and heat transfer laws to real-world and

Teaching, Learning and Pedagogy Division LT19A-B4-01, 50 Nanyang Avenue, Singapore 639798 65923739

TLPD-OBTL@ntu.edu.sg http://www.ntu.edu.sg/tlpd



| engineering problems. |  |
|-----------------------|--|
|                       |  |

# **Course Content**

|   | Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 | Second Law of Thermodynamics and Entropy Irreversible and reversible processes. Statements of the Second law and corollaries. Thermodynamic temperature scale. Carnot cycle and maximum performance of cycles. Clausius inequality. Entropy change for pure substances. Entropy balance for closed systems. Entropy rate balance for control volumes. Isentropic and polytrophic processes. Isentropic efficiencies of devices. Reversible steady flow processes. | 7     |
| 2 | Non-reacting Gas Mixtures and Psychrometrics  Description of mixture composition. Properties of ideal and real gas mixtures. Principles of psychrometrics. Conservation of mass and energy for psychrometric systems. Air conditioning processes.                                                                                                                                                                                                                 | 6     |
| 3 | Conduction heat transfer Concepts of heat flow. Fourier's Law; one dimensional heat conduction. Steady conduction: the concept of thermal resistance; thermal energy generation. Unsteady heat flow concept (the lumped capacitance method).                                                                                                                                                                                                                      | 4     |
| 4 | Convection heat transfer Forced convection: external convection (flows over bodies) and internal convection (duct flow). Free convection over flat plate, cylinder and sphere.                                                                                                                                                                                                                                                                                    | 6     |
| 5 | Radiation Blackbody radiation. Properties of surfaces, view factor concept.                                                                                                                                                                                                                                                                                                                                                                                       | 3     |

# Assessment (includes both continuous and summative assessment)

| Component     | Course<br>LO<br>Tested | Related<br>Programme LO<br>or Graduate<br>Attributes | Weighting | Team/Individual | Assessment rubrics |
|---------------|------------------------|------------------------------------------------------|-----------|-----------------|--------------------|
| 1. Continuous | 1-6                    | EAB SLO                                              | 15%       | Individual      |                    |
| Assessment 1  |                        | a,b,c,d                                              |           |                 |                    |
| (CA1): Quiz   |                        |                                                      |           |                 |                    |
| 2. Continuous | 7-8                    | EAB SLO                                              | 15%       | Individual      |                    |
| Assessment 2  |                        | a,b,c,d                                              |           |                 |                    |
| (CA2): Quiz   |                        |                                                      |           |                 |                    |
| 3. Continuous | 1-10                   | EAB SLO                                              | 10%       | Individual      |                    |
| Assessment 3  |                        | a,b,c                                                |           |                 |                    |

| (CA3):Weekl<br>y online<br>Quizzes            |      |                    |      |            |  |
|-----------------------------------------------|------|--------------------|------|------------|--|
| 4. Final Examination (2.5 hours; Closed book) | 1-10 | EAB SLO<br>a,b,c,d | 60%  | Individual |  |
| Total                                         |      |                    | 100% |            |  |

#### Formative feedback

The outcome of the quiz will be released after the quiz to provide feedback and correct any mistakes/misapplication of concepts made by the class.

The answers for the weekly online quiz (on NTU Blackboard) will be provided upon submission to reinforce key concepts of the lecture materials.

You're encouraged to participate actively in tutorials and present your solutions and approaches to the tutorial questions. The instructor will comment on your solutions and clarify doubts on key concepts.

Feedback is welcome during the course and you can write in to the lecturers for constructive suggestions.

# Learning and Teaching approach

| Approach | How does this approach support students in achieving the learning outcomes?                                                                      |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Lecture  | Lectures provide important background concepts, and numerous worked and practical examples will also be included to assist you in your learning. |  |
| Tutorial | You will learn to apply key concepts to solve engineering problems. You are encouraged to present your solutions for class discussions.          |  |

## **Reading and References**

#### **Textbook**

1. Yunus A. Cengel, Michael A. Boles. Thermodynamics: An Engineering Approach, 6th Edition, McGraw-Hill, NY, 2007, ISBN 978-007-125771-8. (7th (2011) or 8th Edition (2015) in SI Units are also acceptable)

2. Cengel, Y.A. and Ghajar, A.J., Heat and Mass Transfer: Fundamentals and Applications, 5th



Edition (SI Units), McGraw Hill, 2015

## **Course Policies and Student Responsibilities**

As a student of the course, you are required to abide by both the University Code of Conduct and the Student Code of Conduct. The Codes provide information on the responsibilities of all NTU students, as well as examples of misconduct and details about how students can report suspected misconduct. The university also has the Student Mental Health Policy. The Policy states the University's commitment to providing a supportive environment for the holistic development of students, including the improvement of mental health and wellbeing. These policies and codes concerning students can be found in the following link.

http://www.ntu.edu.sg/CampusLife/StudentLife/Pages/StudentConduct.aspx

### **Academic Integrity**

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the academic integrity website for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

## **Course Instructors**

| Instructor     | Office Location | Phone     | Email            |
|----------------|-----------------|-----------|------------------|
| Dr Hou Han Wei | N3-02c-86       | 6790 4950 | hwhou@ntu.edu.sg |
| Aw Kuan Thai   | N.A             | 9297 5109 | ktaw@ntu.edu.sg  |

### Planned Weekly Schedule

| Week | Topic                                                                                 | Course LO                                                                                 | Readings/<br>Activities                                                      |
|------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1    | Review of first law of thermodynamics                                                 | Understand the law of conservation of energy (ILO 1, 2)                                   | Access recorded lecture sequence                                             |
|      | Review of<br>thermodynamic<br>properties, property<br>diagrams and<br>property tables | Review on definition of thermodynamic properties and systems, understand how to interpret | Textbook (Cengel,<br>Y.A., Boles, M.A.<br>and Kanoglu, M.)<br>Chapter 1 to 6 |

| :   |                     |                                                     |                   |
|-----|---------------------|-----------------------------------------------------|-------------------|
|     |                     | property diagrams<br>and property tables<br>(ILO 3) |                   |
|     | Heat engines,       | ,                                                   |                   |
| : 1 | refrigerators and   | Understand the                                      |                   |
| i I | •                   |                                                     |                   |
|     | heat pumps          | working principles                                  |                   |
|     |                     | of heat engines,                                    |                   |
|     |                     | refrigerators and                                   |                   |
|     |                     | heat pumps (ILO 1,                                  |                   |
|     |                     | 2, 4)                                               |                   |
|     | Reversible and      |                                                     |                   |
|     | irreversible        | Understand and                                      |                   |
|     | processes           | differentiate                                       |                   |
|     | 1                   | between reversible                                  |                   |
|     |                     | and irreversible                                    |                   |
|     |                     | processes (ILO 4)                                   |                   |
|     | Clausius inequality | processes (ILO T)                                   |                   |
|     | and                 | Understand the                                      |                   |
|     | Kelvin-Plack        |                                                     |                   |
|     |                     | concepts behind the                                 |                   |
|     | statement           | Clausius inequality                                 |                   |
|     |                     | and                                                 |                   |
|     |                     | Kelvin-Plack                                        |                   |
|     |                     | statement (ILO 4)                                   |                   |
|     |                     |                                                     |                   |
|     | Carnot cycle,       | Understand the                                      |                   |
|     | Carnot principles   | processes of the                                    |                   |
|     |                     | Carnot cycle, relate                                |                   |
|     |                     | the Carnot                                          |                   |
|     |                     | principles to the 2 <sup>nd</sup>                   |                   |
|     |                     | law of                                              |                   |
|     |                     | thermodynamics.                                     |                   |
|     | Thermodynamic       | (ILO 4)                                             |                   |
|     | temperature scale   | (ILC I)                                             |                   |
|     | comporature scare   | Understand the                                      |                   |
|     |                     | basis for the                                       |                   |
|     |                     |                                                     |                   |
|     |                     | thermodynamic                                       |                   |
|     |                     | temperature scale                                   |                   |
|     |                     | (ILO 4)                                             |                   |
| 2   | Entropy definition  | Understand the                                      | A aggregated      |
| 2   | Entropy definition  |                                                     | Access recorded   |
|     |                     | concept of entropy                                  | lecture sequence  |
|     |                     | (ILO 5)                                             | T 4 1 (C 1        |
| : 1 | Entropy change for  | TT 1 . 11                                           | Textbook (Cengel, |
| : 1 | reversible,         | Understand how                                      | Y.A., Boles, M.A. |
|     | irreversible        | entropy changes for                                 | and Kanoglu, M.)  |
|     | processes           | different processes                                 | Chapter 7         |
|     |                     | (ILO 4 ,5)                                          |                   |
| 3   | Tds relations       | Understand the Tds                                  | Access recorded   |
|     |                     | equation and its                                    | lecture sequence  |

|   | Entropy change of liquids and solids Entropy change for ideal gases                                                                    | different forms (ILO 4, 5)  Understand the application of Tds equations to the different states of matters and their entropy changes (ILO 4, 5)                                 | Textbook (Cengel,<br>Y.A., Boles, M.A.<br>and Kanoglu, M.)<br>Chapter 7                           |
|---|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 4 | Entropy balance for steady flow control volumes  Reversible steady                                                                     | Understand how entropy changes during different processes for flow systems (ILO 3, 4, 5)                                                                                        | Access recorded lecture sequence  Textbook (Cengel, Y.A., Boles, M.A. and Kanoglu, M.) Chapter 7  |
|   | Isentropic efficiencies of steady flow devices                                                                                         | Understand and identify reversible steady flow work (ILO 4, 5)  Understand the concept of isentropic efficiency (ILO 4, 5)                                                      |                                                                                                   |
| 5 | Composition of gas<br>mixtures, properties<br>of ideal gas<br>mixtures<br>Energy balance for<br>ideal gas mixtures                     | Understand gas mixtures and their properties (ILO 3)  Understand how the properties of gas mixtures changes via different processes (ILO 2, 3)                                  | Access recorded lecture sequence  Textbook (Cengel, Y.A., Boles, M.A. and Kanoglu, M.) Chapter 13 |
| 6 | Dry and atmospheric air Specific and relative humidity  Dew-point, adiabatic saturation and wet bulb temperatures  Psychrometric chart | Overview on atmospheric air (ILO 3)  Understand the different definitions and vapour states for atmospheric air (ILO 2, 3)  Understand how to interpret the psychrometric chart | Access recorded lecture sequence  Textbook (Cengel, Y.A., Boles, M.A. and Kanoglu, M.) Chapter 14 |

| 7 | Air-conditioning     | Understand the        | Access recorded    |
|---|----------------------|-----------------------|--------------------|
|   | processes            | various air-          | lecture sequence   |
|   |                      | conditioning          |                    |
|   |                      | processes and         | Textbook (Cengel,  |
|   |                      | identify the paths on | Y.A., Boles, M.A.  |
|   |                      | a psychrometric       | and Kanoglu, M.)   |
|   | Introduction to heat | chart (ILO 2,3)       | Chapter 14         |
|   | transfer             |                       |                    |
|   |                      | Understand the        | Textbook (Cengel,  |
|   |                      | fundamental           | Y.A. and Ghajar,   |
|   |                      | principles of heat    | A.J.) Chapter 1    |
|   | Heat transfer        | transfer (ILO 6)      |                    |
|   | mechanisms and       |                       |                    |
|   | simultaneous heat    | Obtain a broad        |                    |
|   | transfer modes       | overview of           |                    |
|   |                      | different heat        |                    |
|   |                      | transfer mechanisms   |                    |
|   |                      | (ILO 7)               |                    |
| 8 | Fourier's Law        | Understand the        | Access recorded    |
|   |                      | fundamentals of       | lecture sequence   |
|   |                      | heat transfer (ILO    |                    |
|   |                      | 8)                    | Textbook (Cengel,  |
|   | Heat conduction      |                       | Y.A. and Ghajar,   |
|   | equations and one-   | Understand multi-     | A.J.) Chapter 2    |
|   | dimensional heat     | dimensional and       |                    |
|   | conduction           | time dependence of    |                    |
|   |                      | heat transfer (ILO    |                    |
|   |                      | 8)                    |                    |
|   | Steady-state heat    |                       |                    |
|   | conduction and       | Understand the        |                    |
|   | concept of thermal   | concept of thermal    |                    |
|   | resistance           | resistance and its    |                    |
|   |                      | limitations (ILO 8)   |                    |
|   | Thermal resistance   |                       |                    |
|   | network              | Understand and        |                    |
|   |                      | evaluate the total    |                    |
|   |                      | thermal resistance    |                    |
|   | TT .                 | of a system (ILO 8)   |                    |
|   | Heat conduction      | XX 1                  |                    |
|   | with thermal energy  | Understand and        |                    |
|   | generation           | evaluate heat         |                    |
|   |                      | conduction when       |                    |
|   |                      | there is thermal      |                    |
|   |                      | energy generation     |                    |
|   | T                    | involved (ILO 8)      | 1 1                |
| 9 | Transient            | Understand            | Access recorded    |
|   | conduction:          | conditions at which   | lecture (NTULearn) |
|   | Lumped capacitance   | lumped system         |                    |
|   | model                | analysis are          | Textbook (Cengel,  |

|    |                                                                                                          | applicable. (ILO 8)                                                                                                                                                                                                          | Y.A. and Ghajar,<br>A.J.) Chapter 4 and                                                       |
|----|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|    | Fundamentals of convection: Classification of fluid flow, dimensional less groups and their significance | Understand physical mechanism of convection. Derivation of differential equations based on mass, momentum and energy balance. (ILO 9)                                                                                        | 6                                                                                             |
| 10 | External forced convection: Flow over flat plate, cylinder and sphere                                    | Distinguish laminar and turbulent flow. Understand various approaches to analyse local and averaged convection coefficients. (ILO 9)                                                                                         | Access recorded lecture (NTULearn)  Textbook (Cengel, Y.A. and Ghajar, A.J.) Chapter 7        |
| 11 | Internal forced convection  Radiation                                                                    | Understand different flow regimes in internal flow. Analyse heat convention problems with constant heat flux or surface temperature conditions. (ILO 9)  Fundamentals of thermal radiation. Properties of surfaces. (ILO 10) | Access recorded lecture (NTULearn)  Textbook (Cengel, Y.A. and Ghajar, A.J.) Chapter 8 and 12 |
| 12 | Radiation                                                                                                | Blackbody<br>radiation. View<br>factor concept.<br>(ILO 10)                                                                                                                                                                  | Access recorded lecture (NTULearn)  Textbook (Cengel, Y.A. and Ghajar, A.J.) Chapter 13       |
| 13 | Radiation and Revision                                                                                   | View factor concept<br>worked examples.<br>(ILO 10)                                                                                                                                                                          | Access recorded lecture (NTULearn)  Textbook (Cengel, Y.A. and Ghajar, A.J.) Chapter 13       |

# Appendix 1

- \* EAB SLO stands for the Engineering Accreditation Board Student Learning Outcomes. The list for the Engineering Accreditation Board Student Learning Outcomes is as follows:
  - a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
  - b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
  - c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
  - d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
  - e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
  - f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
  - g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
  - h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
  - i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
  - j) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
  - k) **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
  - 1) **Life-long Learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change