ALGORITMI ZA ELIPTIČKE KRIVULJE

3. zadaća

27. 5. 2009.

1. Za polinom

$$p(x) = (x - 18)(x - 16)(x - 15)(x - 13)(x - 12)(x - 11)(x - 10)(x - 9)(x + 15)(x + 16)(x + 17)(x + 18),$$
 odredite polinome $q(x), r(x) \in \mathbb{Q}[x]$ takve da vrijedi $p(x) = q^2(x) - r(x)$ i deg $r \le 4$.

2. Izračunajte Mazurovu ogradu M_3 za rang eliptičke krivulje

$$E: y^2 + xy + y = x^3 - 4213613959455x + 3328416232976793662$$

s torzijskom grupom \mathbb{Z}_3 .

- 3. Dokažite da jednadžba $y^2 = x^3 + 7$ nema cjelobrojnih rješenja.
- 4. Za svaki od brojeva n=2,3,4,5,6,7,8,9,10, pronađite jednu eliptičku krivulju E_n nad \mathbb{F}_5 sa svojstvom da je red grupe $E_n(\mathbb{F}_5)$ jednak n.
- 5. Zadana je eliptička krivulja

$$E: \quad y^2 = x^3 + x + 4$$

nad poljem \mathbb{F}_{151} . Odredite red grupe $E(\mathbb{F}_{151})$ Shanks-Mestreovom metodom, koristeći točku P=(0,2).

6. Pronađite barem jednu anomalnu i barem jednu supersingularnu eliptičku krivulju nad \mathbb{F}_{23} .

Rok za predaju zadaće je 10.6.2009.

Andrej Dujella