

Mock Paper Mark Scheme

Advanced Subsidiary/Advanced GCE

General Certificate of Education

Subject **MECHANICS**

Paper No. Mock M2

Question number	Scheme	Marks
1.	$v = \frac{1}{2}u$ KE loss = $\frac{1}{2}m(u^2 - (\frac{1}{2}u)^2)$	B1 M1 A1
	$= \frac{3mu^2}{8}$ $\therefore \text{ fraction of KE lost} = \frac{3mu^2}{8} \div \frac{1}{2}mu^2 = \frac{3}{4}$	M1 A1 (5)
2.	$S \longrightarrow B \qquad R (\rightarrow), F = S$ $M (A)$ $mg \ 2a \cos \theta + F \ a \sin \theta = S \times A$	B1 $4a \sin \theta \qquad \text{M1 A2}$
	i.e. $2mg + 2F = 8S$ $F = \frac{1}{3}mg$	M1 A1 (6)
3. (a)	Relative mass 4 1	$ \begin{array}{ccc} CDE \\ 3 \\ \overline{y} \end{array} $ B3 (-1 each error or omission)
	$(4 \times 10) - (1 \times 20) = 3 \overline{y}$ $6\frac{2}{3} = \frac{20}{3} = \overline{y} (T)$	M1 A1 A1 (6)
(b)	$\tan \theta = \frac{15 - \overline{y}}{20}$	M1
	$E \qquad \theta \qquad D = \frac{15 - \frac{20}{3}}{20} = \frac{5}{12}$ $\theta = 22.6^{\circ} \text{ (1 d.p.)}$	A1 (3) (9)
Question number	Scheme	Marks

4. (a)	$k \times \left(\frac{7}{2}\right)^2$	$R(\checkmark), 100g \times \frac{1}{20} = k \times \left(\frac{7}{2}\right)^2$	M1 A1
	1	$\Rightarrow k = 4$ (T)	A1 (3)
	√a 100g		
(<i>b</i>)			241.42
(0)	F	$R(\nearrow), F-100g \times \frac{1}{40} - 16 = 0$	M1 A2
	↓	$\Rightarrow F = 40.5 \text{ N}$	A1
	4.2^2 β_{-} $-100g$	$P = 40.5 \times 2$	M1
		= 81 W	A1 (6) (9)
5. (a)	$u \rightarrow \qquad \rightarrow \lambda u$	$mu + km\lambda u = kmv$	
	S m km T	$\frac{u}{k}(1+k\lambda)=v$	M1 A1
	$\begin{array}{ccc} \rightarrow & \rightarrow \\ 0 & v \end{array}$	r.	MIAI
	0 v	$v = e(u - \lambda u) = eu(1 - \lambda)$	M1 A1
		$\Rightarrow \frac{u}{k}(1+k\lambda) = eu(1-\lambda)$	M1
		$\Rightarrow \frac{(1+k\lambda)}{k(1-\lambda)} = e (T)$	A1 (6)
(<i>b</i>)		$k(1-\lambda)$	
(0)	$\frac{1+k\lambda}{k(1-\lambda)} \le 1$	$\Rightarrow 1 + k\lambda \le k(1 - \lambda)$	M1
	$\kappa(1-\lambda)$	1	A1
		$\Rightarrow \frac{1}{1-2\lambda} \le k$	
		since $0 < \lambda < \frac{1}{2}$, $k > 1$ (T)	A1 (3) (9)
Question number		Scheme	Marks
110111001	I		ı

6. (a) (b)	$\mathbf{v} = \int 2\mathbf{i} + 6t\mathbf{j} dt = 2t\mathbf{i} + 3t^2 \mathbf{j} (+ \mathbf{c})$ $\mathbf{c} = 2\mathbf{i} - 4\mathbf{j}$ $\mathbf{v} = (2t + 2)\mathbf{i} + (3t^2 - 4)\mathbf{j}$ $t = 2: \mathbf{v} = 6\mathbf{i} + 8\mathbf{j}$ $3\mathbf{i} - 1.5\mathbf{j} = 0.5(\mathbf{v} - (6\mathbf{i} + 8\mathbf{j}))$ $\Rightarrow \mathbf{v} = 12\mathbf{i} + 5\mathbf{j}$ $\Rightarrow \mathbf{v} = \sqrt{(12^2 + 5^2)} = 13 \text{m s}^{-1}$	M1 A1 A1 (3) B1 M1 A1 A1 A1 A1 A1 (6) (9)
7. (a) (b)	(†): $-52.5 = 14t - \frac{1}{2} \times 9.8t^{2}$ $7t^{2} - 20t - 75 = 0$ (7t + 15)(t - 5) = 0 $t = 5$ (or $t = -\frac{15}{7}$) (\rightarrow): $S = 28 \cos 30^{\circ} \times 5$ $= 70\sqrt{3} = 121 \text{ m (3 s.f.)}$ $v_{\text{horizontal}} : 28 \cos 30^{\circ} = 14\sqrt{3}$ $v_{\text{vertical}} : 28 \sin 30^{\circ} - 5g = -35$ $\therefore \text{ speed} = \sqrt{(14\sqrt{3})^{2} + 35^{2}} = \sqrt{1813} = 42.6 \text{ m s}^{-1}$	M1 A2 M1 A1 A1 M1 A1 (8) B1 M1 A1 M1 A1 M1 A1 M1 A1
OR	KE gain = PE loss $\frac{1}{2} m (v^2 - 28^2) = mg \times 52.5$ $\Rightarrow v = \sqrt{1813} = 42.6 \text{ m s}^{-1}$	M1 A2 M1 A1 (5)

Question number	Scheme	Marks
8. (a)		M1 A1
	$\frac{1}{2}R \qquad \frac{1}{2}mgd = \frac{1}{2}m \times 10^2 - mgd \sin \alpha$ $10 \qquad mg$	M1 A3
	$OA = d = \frac{50}{g} = 5.10 \text{ m (3 s.f.)}$	A1 (7)
(b)	At A, $\frac{1}{2}R$ component of weight down plane = $3mg$	D.
	$mg \sin \alpha = \frac{3mg}{5}$	B1
	$mg limiting friction up = \frac{2mg}{5}$	B1
	$\therefore \text{ slides down as } \frac{3mg}{5} > \frac{2mg}{5}$	M1 (3)
	Work done against friction = KE loss	
	$2 \times \frac{2mg}{5} \times \frac{50}{g} = \frac{1}{2} m (10^2 - v^2)$	M1 A3
	$v = \sqrt{20} = 4.47 \text{ m s}^{-1}$	A1 (5) (15)

5 Turn Over