2022-2023 春《测度与积分》期末(回忆)

2023年6月10日

- 1. (1) 设 A 是 Hilbert 空间 H 的闭子空间且 $A \neq H$,证明对任何 $\varepsilon > 0$,存在 $x \in H$,||x|| = 1,使得 $\mathrm{dist}(x,A) > 1 \varepsilon$.
 - (2) 设 Hilbert 空间 H 中单位球是紧的,证明 H 是有限维的.
 - (3) 设T是 Hilbert 空间H上的紧算子,证明0是T的连续谱点,即T不存在有界算子逆.
 - (4) 设 T 是 Hilbert 空间 H 上的紧算子,证明 I-T 的零空间 $\ker(I-T)$ 是有限维的.
 - (5) 设 T 是 Hilbert 空间 H 上紧算子, 证明 I-T 的像空间 Ran(I-T) 是闭的.
- 2. 设 $H = L^2([a,b])$, $\{\varphi_k\}_{k\geq 1}$ 是 H 的规范正交基. $\{\psi_k\}_{k\geq 1}$ 是一列正交向量组,而且满足:

$$\sum_{k=1}^{\infty} \int_{a}^{b} \left| \varphi_k(x) - \psi_k(x) \right|^2 \mathrm{d}x < 1.$$

证明 $\{\psi_k\}_{k>1}$ 是 H 的一组正交基.

3. 定义 \mathcal{M}_+ 是 (\mathbb{R}^d , \mathcal{B}) 上全体有限的(正的)Borel 测度. 设 $\mu, \nu \in \mathcal{M}_+$,定义 μ 和 ν 的卷积为 $(\mu * \nu)(E) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \chi_E(x+y) \mathrm{d}\mu(x) \mathrm{d}\nu(y)$.

证明卷积满足交换律和结合律,即 $\mu*\nu=\nu*\mu$, $(\mu*\nu)*\rho=\mu*(\nu*\rho)$;并说明是否存在卷 积单位元,即是否存在 $\nu\in\mathcal{M}_+$,使得对任何 $\mu\in\mathcal{M}_+$,都有 $\mu*\nu=\mu$?

4. 对 j=1,2,令 μ_j,ν_j 是 (X_j,\mathcal{M}_j) 上两个 σ - 有限的正测度,满足 $\nu_j\ll\mu_j$. i 证明 $\nu_1\times\nu_2\ll\mu_1\times\mu_2$,而且其 Radon-Nikodym 导数满足:

$$\frac{\mathrm{d}\nu_1 \times \nu_2}{\mathrm{d}\mu_1 \times \mu_2}(x_1, x_2) = \frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}(x_1) \frac{\mathrm{d}\nu_2}{\mathrm{d}\mu_2}(x_2).$$

- 5. 设 $H = L^2((0,1))$,定义其上的算子 \mathscr{A} : $x(t) \mapsto tx(t)$.
 - (1) 证明 ৶ 是有界、对称算子,但不是紧算子;
 - (2) 证明 ৶ 没有特征向量;
 - (3) 对任何 $0 < \lambda < 1$,证明 λ 不是 \mathscr{A} 的谱点 (即 $\ker(\lambda I \mathscr{A}) = \{0\}$),且 $\overline{\operatorname{Ran}(\lambda I \mathscr{A})} = H$,但 $\operatorname{Ran}(\lambda I \mathscr{A}) \neq H$.
- 6. 设 μ^* 为 X 上外测度, \mathcal{M} 为 μ^* -可测集组成的 σ -代数, $\mu = \mu^*|_{\mathcal{M}}$ 为测度. $E \subset X$,且 $\mu^*(E) = \mu^*(X)$ (E 未必属于 \mathcal{M})

- (1) 设 $A,B\in\mathcal{M}$ 且满足 $A\cap E=B\cap E$,证明 $\mu(A)=\mu(E)$;
- (2) 记 $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$,证明 \mathcal{M}_E 是 σ-代数. 对 $A \cap E \in \mathcal{M}_E$ 定义 $\nu(A \cap E) = \mu(A)$,证明 ν 是 \mathcal{M}_E 上的测度.