Tema 2

ESTRUCTURA SISTEMAS OPERATIVOS

<u>Índice</u>

- Núcleo SO (kernel)
- Mecanismos transferencia al kernel
- Tipos de estructuras de SO
- Casos de estudio:
 - Windows
 - Linux

El núcleo (kernel) del S.O.

- Es la parte más importante y crítica del SO y por lo tanto, se encuentra permanentemente cargada en memoria.
- Funciones del núcleo del SO:
 - Gestión de interrupciones
 - Planificación de la CPU
 - Gestión de procesos
 - Sincronización y comunicación entre procesos
 - ...
- El núcleo es un área de ejecución privilegiada (se puede hacer cualquier cosa), y por lo tanto requiere protecciones fuertes.

Modo dual de trabajo

- Mecanismo de protección hardware que permite proteger los recursos de la máquina y asegurar que un programa no afectará a otro
- Permite, al menos, 2 modos de ejecución: usuario (1) y sistema (0).
- Instrucciones privilegiadas sólo posibles en modo sistema.
 - E/S:
 - siempre en modo sistema
 - Memoria:
 - registros base y límite por programa
 - accesos fuera originan un fallo de protección

Acceso al núcleo (kernel) del S.O.

- El cambio de modo de ejecución implica también un cambio contexto desde el modo usuario al modo kernel.
- El cambio de contexto implica:
 - Modificar espacio de direccionamiento
 - Modificar el modo de ejecución de modo no privilegiado a modo privilegiado ó viceversa.
- Mecanismos de entrada al núcleo:
 - Traps,
 - Interrupciones
 - Excepciones.

Cambio modo ejecución

Interrupciones

- Son sucesos asíncronos independientes al proceso en ejecución.
- Proceso de tratamiento interrupción:
 - Almacenar contexto proceso y cambiar a modo protegido.
 - Determinar la causa de la interrupción.
 - Buscar la dirección de la RTI
 - Llamar a la RTI.
 - Restaurar contexto del proceso y volver a modo usuario.
- Prioridad interrupciones.

Excepciones

- Son roturas de secuencia no previstas, provocadas por la ejecución de usuario en curso (normalmente errores).
- Tratamiento:
 - Tratar la excepción por parte del SO.
 - Si no se soluciona el problema:
 - Enviar señal al proceso.
 - Proceso actúa en consecuencia:
 - Ejecuta el gestor especificado por el proceso.
 - Ejecuta el gestor por defecto.

Estructura S.O.

- Atendiendo a la estructura interna del núcleo, los S.O. se pueden clasificar:
 - S.O. monolíticos.
 - S.O. por capas ó niveles.
 - S.O. basados en micro-kernel
 - S.O. basados en máquinas virtuales

S.O. monolíticos.

- S.O. monolíticos.
 - No tienen una estructura bien definida
 - El s.o. está descrito como un conjunto de procedimientos que se pueden llamar entre si, sin ninguna limitación.
 - S.O complejos y difíciles de implementar y depurar
- Ejemplo: MS-DOS

Estructura MS-DOS

Estructura SO Monolíticos

S.O. por capas ó niveles.

- Existen distintos niveles ó capas de sistema, las cuales van creando diferentes niveles de abstracción.
- La capa inferior es el hardware, mientras que la capa superior es el interfaz con el usuario.
- Una capa solo se puede comunicar con las capas contiguas.
- Ventajas:
 - Independencia entre las capas.
 - Permite describir el SO de forma más clara.
- Desventajas:
 - Rendimiento.
 - Dificultad definir apropiadamente las capas debido a a las limitaciones de comunicación entre capas.

Estructura SO por Capas

Estructura Microkernel

- Mueve en lo posible la funcionalidad desde el kernel hacia el espacio de usuario.
- La comunicación se produce entre los módulos de usuario utilizando paso de mensajes.
- Ventajas:
 - Fácil de extender el microkernel
 - Fácil de portar el SO hacia nuevas arquitecturas hardware
 - Más confiable (una menor porción del código se está ejecutando en modo kernel)
 - Más seguro

Estructura SO microkernel

Máquinas Virtuales

- El SO crea la ilusión de múltiples procesos, cada uno de ellos ejecutándose en su propio procesador (máquina virtual).
- Una MV crea una copia idéntica del hardware
 - Procesador con su propia memoria y E/S
 - Sobre una MV se puede ejecutar cualquier SO
 - Sobre el mismo computador varios SSOO a la vez
- Los recursos del computador físico están compartidos para crear las máquinas virtuales.
 - Planificación UCP para MV → multiproceso
 - Spooling y sistema ficheros → multiplexación E/S
- Ventajas:
 - Protección sencilla, muy modular, bueno para investigación y desarrollo ya que permite ejecutar diferentes SO
- Inconvenientes:
 - Difícil compartir recursos
 - Difícil implementar duplicados exactos del HW
- Ej. VM-370, MS-DOS en Windows, **VMware**

Estructura SO basado en Máquinas Virtuales

Sin Máquina Virtual

Maquina Virtual

Tipos de Virtualización

- Máquina virtual o hipervisor de tipo 1
 - Se ejecutan encima del hardware y los comparten entre las diferentes VM
 - Requieren de soporte específico del HW

- Máquina virtual o hipervisor de tipo 2
 - Se ejecutan dentro de un sistema operativo Huesped, creando la máquina virtual a partir de los recursos gestionados por este
 - No requieren soporte específico del HW

Caso de estudio: Windows

- Características (NT, 2000, XP, vista,...):
 - Arquitectura Microkernel (modelo clienteservidor a nivel usuario).
 - Diseño Orientado a Objetos.
 - Soporte Multihilos.
 - Soporte Multiprocesamiento Simétrico.
 - Compatibilidad otros sistemas operativos (subsistema de ambiente)
 - Abstracción Hardware (HAL)

Windows: Arquitectura

Sistema gráfico y de ventanas: Implementa la interfaz gráfica de usuario (GUI)

Drivers de dispositivos:

Conjunto de librería dinámicas y dirvers que permiten traducir las peticiones de E/S del usuario a peticiones a los dispositivitos.

Ejecutor: Contiene los servicios básicos del SO (Gestión de memoria, E/S, procesos y threads)

Kernel: Controla la ejecución del procesador/es (planificación hilos, cambio contexto, gestión interrupciones)

HAL (Capa de abstracción del hardware): Permite aislar el kernel del S0 de las características especificas del hardware.

Windows: Arquitectura

Procesos soporte sistema:

Procesos en modo usuario necesarios para gestionar el sistema (gestor de sesión, subsistema de autentificación)

Procesos de servicio:

Servicios utilizados por los desarrolladores para extender la funcionalidad del sistema (ejecución en background)

Aplicaciones de usuario:

Ejecutables y DLLs que proporcionan la funcionalidad final al usuario.

Subsistemas de ambiente protegido: Proporciona diferentes ambientes de ejecución compatibles con las APIS de programación de diferentes sistemas operativos (Windows, POSIX, OS/2)

Caso de estudio: Linux

- Características:
 - Arquitectura monolítica híbrida basada en módulos:
 - Enlazado dinámico
 - Módulos apilables
 - Basado en procesos pero con soporte a hilos.
 - Soporte Multiprocesamiento Simétrico.
 - Abstracción Hardware

Linux: Arquitectura

