STAC67: Regression Analysis Lecture 17

Sohee Kang

Mar. 17, 2021

Power cells example

- Researcher studies the effects of the charge rate (amperes) and temperature (degrees Celsius) of a new type of power cell in a preliminary small-scale experiment.
- Three levels of charge rate and of temperature
- Life of the power cell in terms of the number of discharge-charge cycles before the cell failed

STAC67: Regression Analysis

Cell i	Number of cycles Y_i	Charge rate <i>Xi</i> 1	Temperature X_{i2}
1	150	0.6	10
2	86	1.0	10
3	49	1.4	10
:	:	:	:
11	224	1.4	30
Mean		1.0	20

2 / 12

Power cells example

```
Powercell= read.table("Table8-1.txt", header=T)
par(mfrow=c(2,2))
pairs(Powercell, pch=19, cex=1.5)
```


Power cells example

• prhyromial second order seems to be a good idea.

```
fit = lm(Y^X1 + X2 + I(X1^2)+I(X2^2)+I(X1*X2), data=Powercell)
summary(fit)
##
## Call:
## lm(formula = Y \sim X1 + X2 + I(X1^2) + I(X2^2) + I(X1 * X2), data = Powercell)
##
## Residuals:
##
        1
                                                                       10
           9.263 12.202 41.930 -5.842 -31.842 21.158 -25.404 -20.465 7.263
## -21.465
##
       11
   13.202
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                                        0.0741 .
## (Intercept) 337.7215
                        149.9616
                                2.252
## I(X1 * X2) 2.8750 4.0468
                                0.710
                                         0.5092
                                                             Ho: Bo = ... Bx =0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                                        model is significent, which is a contribution in F-test
##
## Residual standard error: 32.37 on 5 degrees of freedom
## Multiple R-squared: 0.9135, Adjusted R-squared: 0.8271
## F-statistic: 10.57 on 5 and 5 DF, p-value: 0.01086 -
                                                       · There's multicolinearity.
```

R output

• The correlation matrix of the variables included in the model is:

	Y	X_1		_	_		•
Y	1.000	-0.556	0.751	-0.529	0.737	0.255	Threshold for = 1
X_1	-0.556	1.000	0.000	0.991	0.000	0.605	multicolineurity =
X_2	0.751	0.000	1.000	0.000	0.986	0.757	
$X_2 X_1^2 X_2^2$	-0.529	0.991	0.000	1.000	0.006	0.600	
X_{2}^{2}	0.737	0.000	0.986	0.006	1.000	0.746	
X_1X_2	0.255	0.605	0.757	0.600	0.746	1.000	

• Based on the R output on this slide and the previous one, would you say that the model considered is appropriate? Justify.

Recording of the variables

• Let's center the variables around the mean:

$$(X; -\underline{X})$$

• The correlation matrix of the recoded variables is:

	Y	x_1	<i>X</i> ₂	x_1^2	x_{2}^{2}	X_1X_2
Y	1.000	-0.556	0.751	0.165	-0.022	0.093
x_1	-0.556	1.000	0.000	0.000	0.000	0.000
<i>X</i> ₂	0.751	0.000	1.000	0.000	0.000	0.000
$x_1^2 \\ x_2^2$	0.165	0.000	0.000	1.000	0.267	0.000
$x_2^{\overline{2}}$	-0.022	0.000	0.000	0.267	1.000	0.000
X_1X_2	0.093	0.000	0.000	0.000	0.000	1.000
Cen	terily	posp	tol	polynon	ial mo	dels.

high correlation

R codes

```
attach(Powercell)
x1 = X1 - mean(X1)
x2 = X2 - mean(X2)
fit2 = lm(Y \sim x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2))
summary(fit2)
##
## Call:
## lm(formula = Y \sim x1 + x2 + I(x1^2) + I(x2^2) + I(x1 * x2))
##
## Residuals:
        1
                                      5
                                             6
                                                                          10
##
                              4
           9.263 12.202 41.930 -5.842 -31.842 21.158 -25.404 -20.465 7.263
## -21.465
##
       11
## 13.202
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                          16.6076 9.805 0.000188 ***
## (Intercept) 162.8421
## x1
             -139.5833
                          33.0418 -4.224 0.008292 **
                                                  - polynomial tems still not significant
## x2
               7.5500 1.3217 5.712 0.002297 **
## I(x1^2) 171.2171 127.1255 1.347 0.235856
             -0.1061 0.2034 -0.521 0.624352
## I(x2^2)
             2.8750 4.0468 0.710 0.509184
## I(x1 * x2)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.37 on 5 degrees of freedom
## Multiple R-squared: 0.9135, Adjusted R-squared: 0.8271
## F-statistic: 10.57 on 5 and 5 DF, p-value: 0.01086
```

Polynomial regression model and centered data

• Reason of centering: a term and its higher order one highly correlated, centering reduces computation difficulties.

Hierarchical approach to fitting

- First fit a second-order or third-order model and then explore whether a lower-order model is adequate
- Exercise 1:

Consider the third order model with one value

$$\gamma$$
 -test $Y_i = \beta_0 + \beta_1 X_i + \beta_{11} X_i^2 + \beta_{111} X_i^3 + \epsilon_i \frac{\text{F--lest}}{\beta_{111}}$

How can we test whether the cubic term can be dropped? And how can we test whether both the cubic term and quadratic term can be dropped?

Regression function in terms of the initial variables

- We often wish to express the final model in terms of the original variables (rather than the centered variables).
- Example: we consider the fitted model

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_{11} x_i^2 + \hat{\beta}_{111} x_i^3$$

which we want to express in terms of Xi rather than $x_i = X_i - \bar{X}$.

• Exercise 2: Show that the fitted model

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i} + \hat{\beta}_{11}x_{i}^{2}$$

can be express in terms of X_i as

$$\hat{Y}_{i} = \hat{\beta}'_{0} + \hat{\beta}'_{1}X_{i} + \hat{\beta}'_{11}X_{i}^{2}$$

Example: Relationship Between Container Ship Speed and Fuel Consumption

Wang and Meng (2012) studied the relationship between Container Ship speed (X, in knots) and fuel consumption (Y, in tons/day)

```
spdfuel=read.csv("ship_speed_fuel.csv", header=T)
attach(spdfuel)

plot(speed,fuel,xlab="Speed (knots)",ylab="Fuel Consumption (tons/day)", pch=20)
```


R codes

```
speed.star = speed - mean(speed)
fit1 = lm(fuel~speed.star + I(speed.star^2)+ I(speed.star^3), data=spdfuel)
summary(fit1)
##
## Call:
## lm(formula = fuel ~ speed.star + I(speed.star^2) + I(speed.star^3),
      data = spdfuel)
##
##
## Residuals:
##
       Min
                 1Q Median
                                  3Q
                                          Max
## -1.09704 -0.43998 -0.09629 0.47461 1.32907
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                              0.2324 252.566 < 2e-16 ***
                 58.7020
## speed.star
               13.3245
                            0.2993 44.518 < 2e-16 ***
## I(speed.star^2) 0.7779 0.2152 3.616 0.00232 **
                              0.1384 -8.294 3.46e-07 ***
## I(speed.star^3) -1.1479
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7171 on 16 degrees of freedom
## Multiple R-squared: 0.9966, Adjusted R-squared: 0.9959
## F-statistic: 1551 on 3 and 16 DF, p-value: < 2.2e-16
```

R codes

```
anova(fit1)
## Analysis of Variance Table
##
## Response: fuel
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## speed.star 1 2355.43 2355.43 4580.2738 < 2.2e-16 ***
## I(speed.star^2) 1 2.77 2.77 5.3784 0.03394 *
## I(speed.star^3) 1 35.37 35.37 68.7881 3.462e-07 ***
## Residuals
            16 8.23 0.51
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit2 = lm(fuel~speed.star)
anova(fit2)
## Analysis of Variance Table
##
## Response: fuel
            Df Sum Sq Mean Sq F value Pr(>F)
## speed.star 1 2355.43 2355.43 914.36 < 2.2e-16 ***
## Residuals 18 46.37 2.58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```