Analysis of a Complex Kind Week 6

Lecture 2: Power Series

Petra Bonfert-Taylor

Power Series (Taylor Series)

Definition

A power series (also called Taylor series), centered at $z_0 \in \mathbb{C}$, is a series of the form

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k.$$

Examples:

- $\sum_{k=0}^{\infty} z^k$ is a power series with $a_k = 1$, $z_0 = 0$. It converges for |z| < 1.

where $w=\frac{-z^2}{2}$. This series converges when |w|<1, and diverges when $|w|\geq 1$. Therefore, the original series converges when $|z|<\sqrt{2}$ and diverges when $|z|\geq \sqrt{2}$.

The Radius of Convergence

For what values of z does a power series converge?

Theorem

Let $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ be a power series. Then there exists a number R, with $0 \le R \le \infty$, such that the series converges absolutely in $\{|z-z_0| < R\}$ and diverges in $\{|z-z_0| > R\}$. Furthermore, the convergence is uniform in $\{|z-z_0| \le r\}$ for each r < R.

We call *R* the *radius of convergence* of the power series.

Examples

- $\sum_{k=0}^{\infty} z^k$ has radius of convergence 1.
- $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} z^{2k}$ has radius of convergence $\sqrt{2}$.
- $\sum_{k=0}^{\infty} k^k z^k$??? Pick an arbitrary $z \in \mathbb{C} \setminus \{0\}$. Observe that
 - $\left|k^kz^k\right|=(k|z|)^k\geq 2^k$ as soon as $k\geq \frac{2}{|z|}$, thus the series does not converge for any $z\neq 0$. The radius of convergence of this power series is 0!
- $\sum_{k=0}^{\infty} \frac{z^k}{k^k}$??? Pick an arbitrary $z \in \mathbb{C}$. Observe that $\left| \frac{z^k}{k^k} \right| = \left(\frac{|z|}{k} \right)^k \le \left(\frac{1}{2} \right)^k$ as soon as $k \ge 2|z|$. Thus the series converges absolutely for all $z \in \mathbb{C}$, and so $R = \infty$!

Analyticity of Power Series

Theorem

Suppose that $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ is a power series of radius of convergence R>0.

Then

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 is analytic in $\{|z - z_0| < R\}$.

Furthermore, the series can be differentiated term by term, i.e.

$$f'(z) = \sum_{k=1}^{\infty} a_k \cdot k(z-z_0)^{k-1}, \quad f''(z) = \sum_{k=2}^{\infty} a_k \cdot k(k-1)(z-z_0)^{k-2}, \quad \dots$$

In particular, $f^{(k)}(z_0) = a_k \cdot k!$, i.e. $a_k = \frac{f^{(k)}(z_0)}{k!}$ for $k \ge 0$.

Example

Recall that $\sum_{k=0}^{\infty} z^k$ has radius of convergence 1, and so by the theorem,

$$f(z) = \sum_{k=0}^{\infty} z^k \text{ is analytic in } \{|z| < 1|\}.$$

Taking the derivative and differentiating term by term (as in the theorem), we find

$$f'(z) = \sum_{k=1}^{\infty} kz^{k-1} \quad (= \sum_{k=0}^{\infty} (k+1)z^k).$$

But we also know that $f(z) = \frac{1}{1-z}$, and so $f'(z) = \frac{1}{(1-z)^2}$. Thus

$$\sum_{k=0}^{\infty} (k+1)z^k = \frac{1}{(1-z)^2}.$$

Integration of Power Series

Note: Power series can similarly be integrated term by term:

Fact

If $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ has radius of convergence R, then for any w with $|w-z_0| < R$ we have that

$$\int_{z_0}^w \sum_{k=0}^\infty a_k (z-z_0)^k dz = \sum_{k=0}^\infty a_k \int_{z_0}^w (z-z_0)^k dz = \sum_{k=0}^\infty a_k \frac{1}{k+1} (w-z_0)^{k+1}.$$

Here, the integral is taken over any curve in the disk $\{|z-z_0| < R\}$ from z_0 to w.

Example

Let's again look at the power series $\sum_{k=0}^{\infty} z^k$, which has R=1. Then for any w with

|w| < 1 we thus have

$$\int_0^w \sum_{k=0}^\infty z^k dz = \sum_{k=0}^\infty \int_0^w z^k dz = \sum_{k=0}^\infty \frac{1}{k+1} w^{k+1} = \sum_{k=1}^\infty \frac{w^k}{k}.$$

We also know that $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$, hence

$$\int_0^w \sum_{k=0}^\infty z^k dz = \int_0^w \frac{1}{1-z} dz = -\log(1-z)|_0^w = -\log(1-w).$$

Here, we used that $\operatorname{Log} z$ is analytic in $\mathbb{C}\setminus (-\infty,0]$, hence $-\operatorname{Log}(1-z)$ is analytic in $\mathbb{C}\setminus [1,\infty)$, in particular in $\{|z|<1\}$, where it is a primitive of $\frac{1}{1-z}$.

Example, Continued

We have shown:

$$\int_0^w \sum_{k=0}^\infty z^k dz = \sum_{k=1}^\infty \frac{w^k}{k} \quad \text{and} \quad \int_0^w \sum_{k=0}^\infty z^k dz = -\log(1-w),$$

hence

$$\sum_{k=1}^{\infty} \frac{w^k}{k} = -\log(1-w) \quad \text{for } |w| < 1.$$

Letting z = 1 - w this becomes

$$\operatorname{Log} z = -\sum_{k=1}^{\infty} \frac{(1-z)^k}{k} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (z-1)^k \quad \text{for } |z-1| < 1.$$

Question

How do you find R, the radius of convergence of a power series?