SNP

March 8, 2021

```
[1]: import numpy as np
import numpy.linalg as alg
import pandas as pd
import random
import math
import matplotlib.pyplot as plt
import seaborn as sns
```

0.0.1 Import Data

```
[2]: df = pd.read_csv('ceph_hgdp_minor_code_XNA.betterAnnotated.csv')
df.head(6)
```

	df	.head(6)													
[2]:		snp	chr		pos	HGDP	004	48 HG	DP004	79 H	GDP009	85 HGD	P010	94	\
	0	rs10000929	rs10000929 4 131516		16474			1	0		0	1			
	1	rs10002472	4	4 159087423 4 128697858 4 59063992				2		1		2	2		
	2	rs10005550	4					2	2		2		2		
	3	rs10007576	4					2	0		2		1		
	4	rs10007998	s10007998 4		35988597		0		0		0			0	
	5	rs10010285	4	356	87757			0		1		0		0	
		HGDP00982	HGDPO	0911	HGDPO	1202		HGDP0	1342	HGDP	00824	HGDP01	319	\	
	0	1	(1			1		0		1		
	1	0		2		2			2		2		2		
	2	1	0			1			2		2	2			
	3	2		2		2			2		1		2		
	4	0		0		0			2	2		1		2	
	5	0		1		1			0		1		0		
		HGDP01357	HGDPO	0549	HGDPO	0953	HG	DP0107	O HG	DP013	76 HG	DP00671	HG	DP01	.024
	0	0		0		2			0		0	0			2
	1	1		2		1			1		2	0			2
	2	1		2		2			2		2	1			2
	3	1		2		2			1		1	1			0
	4	0		2		0			1		2	2			1
	5	1		2		0			1		Ο	2			0

[6 rows x 1046 columns]

[3]: snp = df.drop(columns=['snp', 'chr', 'pos'])

```
snp.head(6)
[3]:
        HGDP00448 HGDP00479
                               HGDP00985 HGDP01094
                                                       HGDP00982
                                                                   HGDP00911
     0
                 1
                            0
                                        0
                                                    1
                                                                1
                                                                            0
                 2
                                        2
     1
                             1
                                                    2
                                                                0
                                                                            2
     2
                 2
                             2
                                        2
                                                    2
                                                                1
                                                                            0
     3
                 2
                                        2
                                                                2
                                                                            2
                             0
                                                    1
     4
                 0
                                        0
                                                                            0
                                                                0
        HGDP01202
                   HGDP00927
                                HGDP00461
                                           HGDP00451
                                                       ... HGDP01342
                                                                      HGDP00824
     0
                 1
                                        1
     1
                 2
                             1
                                        2
                                                    2
                                                                   2
                                                                               2
     2
                                        2
                                                    2
                                                                   2
                                                                               2
                 1
                             1
     3
                 2
                                                    2
                                                                   2
                                        1
                                                    1
                                                                               1
        HGDP01319
                   HGDP01357
                                HGDP00549
                                           HGDP00953
                                                       HGDP01070
                                                                   HGDP01376
     0
                            0
                                        0
                                                    2
                 1
                 2
                             1
                                        2
                                                                            2
     1
                                                    1
                                                                1
     2
                 2
                                        2
                                                    2
                                                                2
                                                                            2
                             1
                 2
     3
                                                    2
                                                                            1
                                                                1
                 2
                                        2
                                                                            2
     4
        HGDP00671
                   HGDP01024
     0
                 0
     1
                 0
                            2
     2
                 1
                             2
     3
                 1
     4
                 2
     [6 rows x 1043 columns]
[4]: (P, N) = snp.shape
     print('The shape pf original dataset is {} * {}'.format(P, N))
    The shape pf original dataset is 488919 * 1043
[5]: info = pd.read_csv('ceph_hgdp_minor_code_XNA.sampleInformation.csv')
```

```
info.head(6)
```

```
[5]:
              ID Gender
                            Population
                                                   Geographic.origin \
                         Biaka Pygmies
                                            Central African Republic
    0 HGDP00448
                      M
    1 HGDP00479
                         Biaka Pygmies
                                            Central African Republic
    2 HGDP00985
                         Biaka Pygmies
                                            Central African Republic
                      М
    3 HGDP01094
                         Biaka Pygmies
                                            Central African Republic
                      M
    4 HGDP00982
                         Mbuti Pygmies
                                       Democratic Republic of Congo
                      Μ
    5 HGDP00911
                              Mandenka
                      М
                                                             Senegal
      Geographic.area region
                                  distance latitude
                                                     longtitude
    O Central Africa Africa 2384.859098
                                                 4.0
                                                            17.0
    1 Central Africa Africa 2384.859098
                                                 4.0
                                                            17.0
    2 Central Africa Africa 2384.859098
                                                 4.0
                                                           17.0
    3 Central Africa Africa 2384.859098
                                                 4.0
                                                           17.0
    4 Central Africa Africa 1335.495772
                                                 1.0
                                                           29.0
    5 Central Africa Africa 5469.912857
                                                12.0
                                                          -12.0
```

0.0.2 MDS Algorithm

```
[6]: k1=500
k2=1000

R1 = np.zeros((k1, P), dtype=float)
R2 = np.zeros((k2, P), dtype=float)

for i in range(k1):
    t = random.sample(range(0, P), k1)
    R1[i, t] = 1/k1
for i in range(k2):
    t = random.sample(range(0, P), k2)
    R2[i, t] = 1/k2
```

```
[7]: H = - np.ones((N, N))/N
H += np.eye(N)

X = np.array(snp)

X1 = np.dot(R1, X)
X1_centered = np.dot(X1, H)
K1 = np.dot(X1_centered.T, X1_centered)

X2 = np.dot(R2, X)
X2_centered = np.dot(X2, H)
K2 = np.dot(X2_centered.T, X2_centered)
```

```
[8]: eigen_values_k1, eigen_vectors_k1 = alg.eig(K1)
      eigen_pairs k1 = [ (eigen_values_k1[i], eigen_vectors_k1[:, i]) for i in_
       →range(len(eigen_values_k1))]
      eigen_values_k2, eigen_vectors_k2 = alg.eig(K2)
      eigen_pairs_k2 = [ (eigen_values_k2[i], eigen_vectors_k2[:, i]) for i in_
       →range(len(eigen_values_k2))]
 [9]: eigen_pairs_k1.sort(key=lambda eigen_pairs_k1: eigen_pairs_k1[0], reverse=True)
      eigen_pairs_k2.sort(key=lambda eigen_pairs_k2: eigen_pairs_k2[0], reverse=True)
[10]: lambda1_k1, pca1_k1 = eigen_pairs_k1[0]
      pca1_k1 = pca1_k1.astype(np.float64)
      cord1_k1 = math.sqrt(lambda1_k1) * pca1_k1
      lambda2_k1, pca2_k1 = eigen_pairs_k1[1]
      pca2_k1 = pca2_k1.astype(np.float64)
      cord2_k1 = math.sqrt(lambda2_k1)* pca2_k1
      lambda1_k2, pca1_k2 = eigen_pairs_k2[0]
      pca1_k2 = pca1_k2.astype(np.float64)
      cord1 k2 = math.sqrt(lambda1 k2) * pca1 k2
      lambda2 k2, pca2 k2 = eigen pairs k2[1]
      pca2_k2 = pca2_k2.astype(np.float64)
      cord2 k2 = math.sqrt(lambda2 k2) * pca2 k2
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
     packages/ipykernel launcher.py:2: ComplexWarning: Casting complex values to real
     discards the imaginary part
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
     packages/ipykernel_launcher.py:3: ComplexWarning: Casting complex values to real
     discards the imaginary part
       This is separate from the ipykernel package so we can avoid doing imports
     until
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
     packages/ipykernel_launcher.py:5: ComplexWarning: Casting complex values to real
     discards the imaginary part
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
     packages/ipykernel_launcher.py:6: ComplexWarning: Casting complex values to real
     discards the imaginary part
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
     packages/ipykernel_launcher.py:9: ComplexWarning: Casting complex values to real
     discards the imaginary part
       if __name__ == '__main__':
     /opt/anaconda3/envs/MATH5473/lib/python3.7/site-
```

```
packages/ipykernel_launcher.py:10: ComplexWarning: Casting complex values to
real discards the imaginary part
    # Remove the CWD from sys.path while we load stuff.
/opt/anaconda3/envs/MATH5473/lib/python3.7/site-
packages/ipykernel_launcher.py:12: ComplexWarning: Casting complex values to
real discards the imaginary part
    if sys.path[0] == '':
/opt/anaconda3/envs/MATH5473/lib/python3.7/site-
packages/ipykernel_launcher.py:13: ComplexWarning: Casting complex values to
real discards the imaginary part
    del sys.path[0]
```

0.0.3 Visualization

```
[11]: region = info['region']
   keys = list(region.unique())
   color_range = list(np.linspace(0, 1, len(keys), endpoint=False))
   colors = [plt.cm.tab20b(x) for x in color_range]
   color_dict = dict(zip(keys, colors))
   color_dict['No data'] = 'lightgray'

[12]: df1 = pd.DataFrame(dict(pca1=cord1_k1, pca2=cord2_k1, region=region))
   fig1, ax1 = plt.subplots()
```

MDS of SNP dataset with dimension deduced to k1=500

MDS of SNP dataset with dimension deduced to k1=1000

0.0.4 Conclusion

According to the two graphs above, we can reach the same concluison as introduced in class about the SNP dataset. In this exercise, I have to constrain k to a small number because my computer cannot handle large matrix and give the result. Thus, only k=500 and k=1000 are tried.

[]: