

Redes Neurais Artificiais

Teoria e Prática

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

Redes Neurais

Prof. Dr. Diego Bruno

O que são Redes Neurais?

Redes Neurais

Qual a estrutura de uma RNA?

Redes Biológicas x Arficiais

neurônio artificial

axônio+sinapse / saída

dendritos / pesos

núcleo / unidade

Neurônio Artificial

Dados de entrada e saída

Redes Neurais Biológicas x Arficiais

Dados interpretados na saída

Entrada

Processo

Relação de entrada e saída

Dados gerados

Imagem de Entrada

Análise de Características (Features)

Redes Neurais Artificiais

Dados a serem interpretados

Análise de características (features)

Caixa preta gerada no treino

Mas como são as Features?

Como são as features?

Outros Objetos

Classificação

Classificação de objetos

Aqui temos duas classes

Dados a serem interpretados

Dados a serem interpretados

Classificação de objetos

Mnist Dataset

Aqui temos 9 classes

DATASET – Base de treino

Mas o que gera um Treinamento?

Dados de aprendizado

Pesos gerados no treinamento

Arquivos de pesos

Modelo de treinamento

Modelo de treinamento

Pesos gerados em uma rede

Algoritmo

Modelo de treinamento

Relação dos pesos

Algoritmo

Importando Modelos de RNA

Classify ImageNet classes with ResNet50

```
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img to array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
```


Exemplo de RNA no COLAB

https://colab.research.google.com/github/storopoli/ciencia-de-dados/blob/master/notebooks/Aula_18_a_Redes_Neurais_com_TensorFlow.ip ynb#scrollTo=6zmMUxg8pfqE

Exemplo de RNA no COLAB

Processing 1 images image molded_images image_metas anchors

 shape: (480, 640, 3)
 min:
 0.00000
 max:
 255.00000
 uint8

 shape: (1, 1024, 1024, 3)
 min:
 -123.70000
 max:
 151.10000
 float64

 shape: (1, 93)
 min:
 0.00000
 max:
 1024.00000
 float64

 shape: (1, 261888, 4)
 min:
 -0.35390
 max:
 1.29134
 float32

https://colab.research.google.com/github/tensorflow/tpu/blob/master/models/official/mask_rcnn/mask_rcnn_demo.ipynb#scrolITo=X8rPd4MyrDsn

Obrigado!

Prof. Dr. Diego Bruno

