

AO3415A

20V P-Channel MOSFET

General Description

The AO3415A uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch applications.

Product Summary

 $\begin{array}{lll} V_{DS} & -20V \\ I_{D} \ (at \ V_{GS}{=}{-}4.5V) & -5A \\ R_{DS(ON)} \ (at \ V_{GS}{=} \ -4.5V) & < 41 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS}{=} \ -2.5V) & < 53 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS}{=} \ -1.8V) & < 65 m\Omega \end{array}$

ESD protected

SOT23
Top View Bottom View

Absolute Maximum Ratings T_A=25℃ unless otherwise noted Maximum Units Parameter Symbol Drain-Source Voltage V_{DS} Gate-Source Voltage ±8 ٧ V_{GS} T_A=25℃ -5 Continuous Drain I_D Current T_A=70℃ -4 Α Pulsed Drain Current -30 I_{DM} T_A=25℃ 1.5 P_D W Power Dissipation ^B T_A=70℃ 1 \mathcal{C} Junction and Storage Temperature Range T_J , T_{STG} -55 to 150

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	65	80	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	85	100	℃/W				
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	43	52					

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V			-1	μА
.099	2515 Gaio Tollago Braill Gairein	T _J =55℃			-5	μπ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±8V			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.3	-0.57	-0.9	V
$I_{D(ON)}$	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V	-30			Α
		V _{GS} =-4.5V, I _D =-4A		34	41	mΩ
		T _J =125℃		49	59	11122
$R_{DS(ON)}$	Static Drain-Source On-Resistance	V_{GS} =-2.5V, I_D =-4A		42	53	mΩ
		V_{GS} =-1.8V, I_D =-2A		52	65	mΩ
		V _{GS} =-1.5V, I _D =-1A		61		mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-4A		20		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.64	-1	V
Is	Maximum Body-Diode Continuous Curre	ent			-2	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		600	751	905	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-10V, f=1MHz	80	115	150	pF
C _{rss}	Reverse Transfer Capacitance		48	80	115	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	6	13	20	Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge		7.4	9.3	11	nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-4A	0.8	1	1.2	nC
Q_{gd}	Gate Drain Charge]	1.3	2.2	3.1	nC
t _{D(on)}	Turn-On DelayTime			13		ns
t _r	Turn-On Rise Time	V_{GS} =-4.5V, V_{DS} =-10V, R_L =2.5 Ω ,		9		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		19		ns
t _f	Turn-Off Fall Time			29		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4A, dI/dt=500A/μs	20	26	32	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-4A, dI/dt=500A/μs	40	51	62	nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initial $T_J = 25^{\circ} \, C$.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}=150^\circ$ C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

0.0001

0.0001

0.001

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

10

100

1000

0.01

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-00904
Version	В
Title	AO3415A Marking Description

SOT-23 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

P - Package and product type

N - Last digital of product number

W - Week code

A - Assembly location code

L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
AO3415A	Green product	XF
AO3415AL	Green product	XF

Document No.	PO-00001
Version	L

SOT23 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

U	NΤ	т		•	
U.	IN.	ш	:	m	m

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIM	ENSIONS IN IN	CHES
STMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	0.85		1.25	0.033		0.049
A1	0.00		0.13	0.000		0.005
A2	0.70	1.00	1.15	0.028	0.039	0.045
b	0.30	0.40	0.50	0.012	0.016	0.020
c	0.08	0.13	0.20	0.003	0.005	0.008
D	2.80	2.90	3.10	0.110	0.114	0.122
Е	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.40	1.60	1.80	0.055	0.063	0.071
e		0.95 BSC			0.037 BSC	
e1		1.90 BSC		0.075 BSC		
L	0.30		0.60	0.012		0.024
θ1	0°	5°	8°	0°	5°	8°

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH OR GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
- 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED.
- 3. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. ALL DIMENSIONS ARE IN MILLIMETERS.

SOT23-3L Tape and Reel Data

SOT23-3L Carrier Tape

UNIT: MM

PACKAGE	A0	В0	К0	D0	D1	٧	E1	F	P0	P1	P2	Т	A2	B2
SDT23-3L (8 mm)	3.05-3.40	3.00-3.38	1.20- 1.47	1.55 ±0.05	1.00 ±0.25	8.00 ±0.30	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.18 -0.25	0.84-1.24	2.29-2.69

SOT23-3L Reel

UNIT:	MM
-------	----

TAPE SIZE	REEL SIZE	М	N	W	W1	Н	К	S	G	R	>
8 mm	ø178	ø178.00 ±1.00	ø54.00 ±0.50	9.00 ±0.30	11.40 ±1.00	ø13.00 +0.50 -0.20	10.60	2.00 ±0.50	ø9.00	5.00	18.00

SOT23-3L Tape

Leader / Trailer & Orientation

Unit Per Reel: 3000pcs

AOS Semiconductor Product Reliability Report

AO3415A, rev D

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO3415A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3415A passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Table of Contents:

I. Product Description

II. Package and Die information

III. Reliability Stress Test Summary and Results

IV. Reliability Evaluation

I. Product Description:

The AO3415A uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation gate voltages as low as 1.8V. This device is suitable for use as a load switch applications.

Details refer to the datasheet.

II. Die / Package Information:

AO3415A

Process Standard sub-micron

20V P-Channel MOSFET

Package TypeSOT23Lead FrameBare CuDie AttachAg EpoxyBondAu & Cu Wire

Mold Material Epoxy resin with silica filler

Moisture Level Up to Level 1

III. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C , Vds=80% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
MSL Precondition	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	2772 pcs	0	JESD22-A113
HAST	130°C , 85%RH, 33.3 psi, Vds = 80% of Vdsmax	96 hours	924 pcs	0	JESD22-A110
Autoclave	121°C , 29.7psi, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C , air to air,	250 / 500 cycles	924 pcs	0	JESD22-A104

Note: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 3.43

MTTF = 33270 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 3.43$

MTTF = 10^9 / FIT = 33270 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10^{-5} eV / K