1 Rules for the Connectives

Exercise 2

Apply both implication rules to prove $P \implies R$ from the givens $P \implies Q$, $P \implies (Q \implies R)$.

Exercise 4

Assume that $n, m \in \mathbb{N}$.

Show: $(m \text{ is odd} \land n \text{ is odd}) \implies m+n \text{ is even.}$

Answer of exercise 4

- Prove that $(m \text{ is odd } \land n \text{ is odd}) \implies m+n \text{ is even when:}$
- Prove that m + n is necessarily even if m and n are both odd.
- $-n \in \mathbb{N}$
- $-m \in \mathbb{N}$

 \Vdash { assume m and n are odd, and then derive that m+m is even to demonstrate implication }

- Prove that m+n is even when:
- (1) m is odd
- (2) n is odd
- [3] { definition of odd-ness } $\exists x \in \mathbb{Z} \mid m = 2x + 1$
- [4] { definition of odd-ness } $\exists y \in \mathbb{Z} \mid n = 2y + 1$

Exercise 5

Show:

- 1. From $P \iff Q$ it follows that $(P \implies R) \iff (Q \implies R)$,
- 2. From $P \iff Q$ it follows that $(R \implies P) \iff (R \implies Q)$.

Exercise 7

Produce proofs for:

- 1. Given: $P \implies Q$. To show: $\neg Q \implies \neg P$,
- 2. Given: $P \iff Q$. To show: $\neg P \iff \neg Q$.

Harder

Exercise 9

Show that from $(P \Longrightarrow Q) \Longrightarrow P$ it follows that P.

Hint: Apply Proof by Contradiction. (The implication rules do not suffice for this admittedly exotic example.)

Exercise 11

Assume that A, B, C, and D are statements.

- 1. From the given $A \implies B \lor C$ and $B \implies \neg A$, derive that $A \implies C$.
- 2. From the given $A \lor B \Longrightarrow C \lor D, C \Longrightarrow A$, and $B \Longrightarrow D$.

Exercise 15

Show that for any $n \in \mathbb{N}$, division of n^2 by 4 gives a remainder 0 or 1.

2 Rules for the Quantifiers

Exercise 18

Show, using \forall -introduction and Deduction Rule: if from Γ , P(c) it follows that Q(c) (where c satisfies P, but is otherwise "arbitrary"), then from Γ it follows that $\forall x \colon P(x) \implies : Q(x)$.