Institute of Business & Information Technology

University of the Punjab

Sheet	No.		
Sneet	NO.		

Assignment 01

Fall Term 2021

Code 1T-466 Degree BBIT

Title Analysis of Algorithm Batch F18-IT Specialization

Due Date: Nov 25, 2021 before 0945hr Marks 70

Instructions:

- Do not forget to pray before starting to attempt the paper. Trust me it helps.
 Remember! <u>SOMEONE</u> is always with you (Be Relaxed), and HE is also watching you (Be Honest)
- 2. Question Paper is SELF EXPLANATORY. Understanding the Question Paper is part of Solution.
- 3. Nothing Beyond the Finish Line will be Evaluated. Back Side of Pages is Beyond Finish Line.
- 4. For Calculations etc. Use the back side of the pages.
- 5. Error in Question will be advantageous to Student.
- 6. Read the Questions carefully before attempting.
- 7. Solve your paper using Black/Blue Pen only.
- 8. Attempt All Questions in a Precise Fashion.
- 9. Switch Off your Cellular Phones.

Class: IT Major

Assistant's Signature

10. Manage Your Time.

Reg. No:

GOOD LUCK

Date: Friday, Nov 19, 2021

Examiner's Signature

Signature:				Section
Q 05.	Q 04.	Q 03.	Q 02.	Q 01.
		20	25	25
	04.	Q		Q 02. Q 03. Q

Iterative Functions by Frequency Count Method

Question No 01. Find the Time Complexity of the Following Iterative Algorithms, Show Working.	25
<pre>int x=1, y=0; while (y <= n) {</pre>	4
y = x * x * x; Print(y);	
x++; }	
for (i=1; i $\leq \frac{n}{2}$; i++) for (int j=1; j \leq i ³ ; j++)	4
<pre>for(int k=1; k <= n; k=k * 5) Print("IBIT-PU");</pre>	
<pre>for (i = 1; i <= n; i += c) for (j = i+1; j <= n; j *= c) Print("IBIT");</pre>	4

<pre>for (k=1; k <= \frac{n}{2}; k+=2) print("IBIT"); for (i = \frac{n}{2}; i > 0; i -= c) for (j = i+1; j <=n; j += c) Print("IBIT"); 4</pre>	for(j=n; j >= 1; j-=2)	4
<pre>print("IBIT"); for (i = \frac{n}{2}, i > 0; i -= c)</pre>	for(i=1; i ³ <= j; i++)	
<pre>for (i = n/2; i > 0; i -= c)</pre>	for $(k=1; k \le \frac{1}{2}; k+=2)$	
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>	<pre>print("IBIT");</pre>	
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>		
<pre>for (j = i+1; j <=n; j += c) Print("IBIT"); for (int i=1;i <= n; i=i*2) for (int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for (int k=i; k <=10*i; k++)</pre>	s_{n} t_{n} t_{n} t_{n} t_{n} t_{n} t_{n}	4
<pre>Print("IBIT"); for(int i=1;i <= n; i=i*2) for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		4
<pre>for(int i=1;i <= n; i=i*2) for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>	<pre>Print("IBIT");</pre>	
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
<pre>for(int j=1; j <= 2*(i-1); j++) Print("IBIT-PU") for(int k=i; k <=10*i; k++)</pre>		
Print("IBIT-PU") for(int k=i; k <=10*i; k++)	for(int i=1;i <= n; i=i*2)	5
for(int k=i; k <=10*i; k++)		
Print("AoA")		
	Print("AoA")	

Page: 3 November 2021

Time Complexity of Recursive Algorithms by Reverse Substitution

Question No 02.	20
Find the Time Complexity of the Following Recursive Algorithms, Show Working. void Func(int n) {	5
if (n==1)	
return; for (i=1;i <= n; i=i*2)	
<pre>Print("IBIT-PU");</pre>	
Func(n-1);	
}	
<pre>int findMin(int[] X, int NoE){</pre>	4
int Min;	
<pre>if(NoE == 1) { return X[0];</pre>	
}else{	
<pre>Max = findMin(X, NoE - 1);</pre>	
if(Min < X[NoE - 1])	
return Min;	
else	
return X[NoE - 1];	
}	

Time Complexity of Recursive Algorithms by Reverse Substitution

$T(n) = 3T(n-2) + n^3$	7

Time Complexity of Recursive Algorithms by Reverse Substitution

$T(n) = 2T\left(\frac{n}{3}\right) + n^2$	9

Time Complexity of Recursive Functions by Master Theorem

Question No 03.	20
Write down the Formal Statement of Master Theorem	5
Find the Time Complexity of the Following Recursive Algorithms using Recursion Tree, Show Working.	
$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \sqrt{n}$	3
$T(n)=2T\left(\frac{n}{2}+17\right)+n$	3
$T(n) = 7T\left(\frac{n}{5}\right) + \Theta\left(n^2 \log^3 n\right)$	3
$I(n) = II\left(\frac{1}{5}\right) + O(n \log n)$	3

Time Complexity of Recursive Functions by Master Theorem

$T(n) = 2T\left(\frac{n}{3}\right) + n^{-2}lgn$	
$T(n) = 9T\left(\frac{n}{3}\right) + n^2 l g^{-3} n$	

Nothing beyond this line will be evaluated