Preparing and labelling probe from a complex oligo library

Omid Gholamalamdari Updated 10/30/2018

Introduction

This protocol employs emulsion PCR (ePCR) to enrich sub libraries from a complex oligo library. I have prepared this protocol based on "Amplification of complex gene libraries by emulsion PCR" R. William, et.al, Nature Methods¹ and "Preparing Single-Stranded Labelled Probes from MYtags Immortal Lirary", Arbor Biosciences. Labelling protocol is based terminal transferase protocol from Roche.

Materials

- Oligo nucleotide library
- Enrichment primer sets
- Nuclease-free water
- Span 80 (Sigma S6760)
- Tween 80 (Sigma P5188)
- Triton X-100 (Sigma T8787)
- Minral Oil (Sigma M5904)
- dNTP, 10mM (NEB N047S)
- Bovine Serum Albumin (BSA) (Sigma B6917)
- Pfu Turbo DNA Polymerase
- diethyl ether

Equipments

- BRAND magnetic stirring bar, PTFE, cylindrical with pivot ring (Sigma Z329061). pre-cleaned (See "Cleaning stir bars").
- Magnetic stirrer with speed control (Burrell Scientific)
- PCR cleanup kit

Before you begin

Prepare library

- 1. Prepare a stock solution of your library.
- 2. Resuspend at 1 ng/ μ l in 10 mM Tris-HCl pH 7.5 or nuclease-free water.
 - Keep the stock at -80° C.
- 3. Prepare working stock aliquots (0.08 ng/ μ l) by adding 2 μ l of immortal library to $23\mu l$ of nuclease-free water (total volume: $25\mu l$).

¹https://www.ncbi.nlm.nih.gov/pubmed/16791213

 $^{^2}$ Version 1.4

Prepare primers

Prepare forward and reverse primers working stocks $(10\mu M)$ by diluting the $100\mu M$ stock in nuclease-free water.

Prepare water saturated diethyl ether.

Mix 100 ml of diethyl ether with 100 ml of nuclease-free water in a glass bottle by shaking for 30s. Allow the phases to settle before use (the top phase is diethyl ether). The water saturated solvent can be stored at RT for 3 months.

Procedure

Prepare ePCR mix.

1. Prepare the oil-surfactant mixture by through mixing the following components in a 50ml conical tube.

Component	Final concentration	For $5ml$	For 25 ml	For 50ml
Span 80	4.5% (vol/vol)	225µl	1.125ml	2.25ml
Tween 80	0.4% (vol/vol)	$20\mu l$	$100\mu l$	$200\mu l$
Triton X-100	0.05% (vol/vol)	$2.5\mu l$	$12.5\mu l$	$25\mu l$
Mineral oil		to $5ml$	to 25 ml	to 50 ml

- 2. Transfer 400μ l of the oil-surfactant mixure to a CryoTube vial, and add a 3x8 mm stir bar(pre-cleaned)
- 3. Begin stiring the mixture at 1,000 r.p.m. on the magnetic stirrer.
- 4. Prepare the aqueous phase for the emulsion by mixing the following:

Component	Amount
10X Cloned <i>Pfu</i> buffer	$26\mu l$
BSA (20 mg/ml stock)	$16.5\mu l$
Forward primer (10µM stock)	$7.8\mu l$
Reverse primer (10µM stock)	$7.8\mu l$
dNTPs (10mM stock)	$5.2\mu l$
Pfu Turbo DNA Polymerase	$5.2\mu l$
Template DNA	$\leq 10^9 molecules$ (1.66 fmol)
Nuclease-free water	to 260 μl

- 5. Add $200\mu l$ of the aqueous phase to the oil-surfactant mixure in dropwise manner over a period of 1.5 min.
 - After the addition is complete, continue stirring for another 5 minutes.
 - Keep the aqueous phase leftovers as the without emulsion contol.

▲ CRITICAL STEP

- 6. Pipet the emulsion into the wells of a PCR plate as 10 aliquots of 50 μ l.
 - Pipet 50 μ l of the aqueos phase left over to a well as nonemulsified control.
 - Overlay the emulsified and nonemulsified reactions with mineral oil.

PCR

7. Subject the PCR plate to the following program.

Cycle number	Denaturation	Annealing	Polymerization
1 2-26 27	2 min at 95°C 30 sec at 95°C	$30 \text{ sec at } A^1$	B ¹ min at 72°C 10 min at 72°C

 $^{1}A = C$ -5°C where C is the Tm of the primer with lowest Tm. B is equal to length of amplification in kbp.

- 8. Place the nonemulsified reaction aside.
 - PAUSE POINT You can keep both the w and w/o emulsion reaction at 4°C overnight!
- 9. Pool the ePCR reactions in a $1.7 \ ml$ eppendorf tube.
 - Centrifuge at 13,000g for 5 minutes.
 - Discard the upper (oil) phase.
- 10. To remove the remaining oil from the emulsion, perform the following extraction twice:
 - Add 1 ml of water-saturated diethyl ether, vortex the tube and let it settle.
 - Discard the upper (solvent) phase.

▲ CRITICAL STEP

- 11. Remove the residual solvent from the broken emulsion by centrifuging under vaccum for 5 min at 25°C.
- 12. Clean the emulsified and nonemulsified PCR products using a PCR clean-up kit.
- 13. Analyze Aliquotes of the emulsified and nonemulsified PCR products by electrophoresis.
 - 2% agarose gel in 1X TBE.