Algebra - Lista 11

Zadanie 1 Czy zbiór $\{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ z działaniem składania permutacji jest podgrupą grupy S_4 ? (e oznacza permutację identycznościową.) Czy jeśli dodamy do tego zbioru wszystkie cykle trzyelementowe to czy otrzymamy podgrupą S_4 ?

Zadanie 2 Pokaż, że grupa S_n jest generowana przez dowolną transpozycję elementów sąsiednich oraz cykl $(1,2,3,\ldots,n)$. Jest też generowana przez zbiór $\{(1,2),(2,3,\ldots,n)\}$

Zadanie 3

- Wyznacz permutacje odwrotne do permutacji $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$.
 Przedstaw permutację $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 7 & 8 & 10 & 11 & 2 & 6 & 5 & 4 & 9 & 1 & 12 \end{pmatrix}$ jako złożenie cykli rozłącznych.
 Przedstaw permutacje $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$ jako złożenia transpozycji.

Zadanie 4 Pokaż, że każda permutacja parzysta jest złożeniem cykli trzyelementowych.

Wskazówka: Pokaż najpierw, że iloczyn dwóch transpozycji da się przedstawić jako złożenie najwyżej dwóch takich cykli.

Zadanie 5 (Inwolucja) Inwolucją nazywamy dowolną funkcję $f:A\mapsto A$ taką, że $f\circ f$ jest identycznością. Zauważ, że inwolucje zbioru $\{1, 2, \ldots, n\}$ są permutacjami z S_n .

- Jak wyglada rozkład inwolucji na cykle?
- Przedstaw permutację cykliczną (a_1, a_2, \dots, a_k) jako złożenie dwóch inwolucji.
- Udowodnij, że każda permutacja z S_n jest złożeniem dwóch inwolucji.

Zadanie 6

- W grupie obrótów kwadratu opisz warstwy (prawostronne) podgrupy generowanej przez obrót o 180⁰.
- W grupie symetrii kwadratu opisz warstwy (prawostronne) podgrupy generowanej przez obrót o 180⁰.
- W grupie symetrii kwadratu opisz warstwy (prawostronne) podgrupy generowanej przez obrót o 90°.
- W grupie symetrii kwadratu opisz warstwy (prawostronne) podgrupy generowanej przez symetrie wzdłuż przekatnej (wybierz dowolna).

Zadanie 7 Rozważmy S_6 oraz podgrupę wszystkich permutacji, które przeprowadzją 1 na 1. Jakie są warstwy prawostronne tej podgrupy?

Zadanie 8 Niech G będzie grupą, a H jej podgrupą. Definiujemy relację \equiv_H na G:

$$a \equiv_H b \iff ab^{-1} \in H.$$

- Pokaż, że \equiv_H jest relacją równoważności.
- $\bullet\,$ Pokaż, że jej klasami abstrakcji są prawostronne warstwy względem H.
- Pokaż, że $a \equiv_H b$ implikuje, że dla dowolnego $h \in H$: $ah \equiv_H bh$ oraz $ha \equiv_H hb$.

Zadanie 9 (Sprzężenie) Rozważmy grupę G i zdefiniujmy jej działania na sobie przez sprzężenie:

$$\varphi_q(x) = gxg^{-1}$$
.

Pokaż, że

- jest to działanie (czyli że $\varphi_{ab} = \varphi_a \varphi_b$);
- jest to izomorfizm z $G \le G$.

Zadanie 10 Niech G działa na zbiorze X (w dowolny sposób). Pokaż, że stabilizator dowolnego elementu $x \in X$ jest podgrupą G.