© Copyright Microsoft Corporation. All rights reserved.

FOR USE <u>ONLY</u> AS PART OF MICROSOFT VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE <u>NOT</u> AUTHORIZED FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Microsoft Azure Virtual Training Day: Data Fundamentals

We will be starting shortly

About this course

Course objectives:

- Describe core data concepts
- · Identify services for relational data
- · Identify services for non-relational data
- Identify services for data analytics

This course is supplemented by online training at https://aka.ms/AzureLearn_DataFundamentals

Course Agenda

Module 1: Explore fundamentals of data

- · Core data concepts
- Data roles and services

Module 2: Explore fundamentals of relational data in Azure

- · Explore relational data concepts
- · Explore Azure services for relational data

Module 3: Explore fundamentals of non-relational data in Azure

- Fundamentals of Azure Storage
- Fundamentals of Azure Cosmos DB

Module 4: Explore fundamentals of large-scale data warehousing

Large-scale data warehousing

Module 5: Explore fundamentals of real-time analytics

Streaming and real-time analytics

Module 6: Explore fundamentals of data visualization

Data visualization

Demos

 Demos in this course are based on exercises in Microsoft Learn

Module 1:

Explore Fundamentals of Data

- Lesson 1: Core data concepts
- Lesson 2: Data roles and services

What is data?

Values used to record information – often representing *entities* that have one or more *attributes*

Structured

Cı	Customer				
ID	FirstName	LastName	Email	Address	
1	Joe	Jones	joe@litware.c om	1 Main St.	
2	Samir	Nadoy	samir@north wind.com	123 Elm Pl.	

Prod	Product			
ID	Name	Price		
123	Hammer	2.99		
162	Screwdriver	3.49		
201	Wrench	4.25		

Semi-structured

```
"firstName": "Joe",
    "lastName": "Jones",
    "address":
        "streetAddress": "1 Main
                                        "firstName": "Samir",
St.",
                                        "lastName": "Nadoy",
        "city": "New York",
                                        "address":
        "state": "NY",
        "postalCode": "10099"
                                            "streetAddress": "123 Elm
                                   Pl.",
    "contact":
                                            "unit": "500",
                                            "city": "Seattle",
                                            "state": "WA",
          "type": "home",
                                            "postalCode": "98999"
          "number": "555 123-1234
                                        "contact":
          "type": "email",
          "address":
                                              "type": "email",
"joe@litware.com"
                                              "address":
                                    "samir@northwind.com"
```


How is data stored?

Files

Delimited Text

```
FirstName, LastName, Email
Joe, Jones, joe@litware.com
Samir, Nadoy, samir@northwind.com
```

JavaScript Object Notation (JSON)

```
"customers":
[
    { "firstName": "Joe", "lastName": "Jones"},
    { "firstName": "Samir", "lastName": "Nadoy"}
]
```

Extensible Markup Language (XML)

<Customer firstName="Joe" lastName="Jones"/>

Binary Large Object (BLOB)

10110101101010110010...

Optimized formats:

• Avro, ORC, Parquet

2

Non-relational

Transactional data workloads

Data is stored in a database that is optimized for *online transactional processing* (OLTP) operations that support applications

A mix of *read* and *write* activity

For example:

- Read the *Product* table to display a catalog
- Write to the Order table to record a purchase

Data is stored using *transactions*

Transactions are "ACID" based:

- **Atomicity** each transaction is treated as a single unit of work, which succeeds completely or fails completely
- Consistency transactions can only take the data in the database from one valid state to another
- Isolation concurrent transactions cannot interfere with one another
- **Durability** when a transaction has succeeded, the data changes are persisted in the database

Analytical data workloads

- 1. Data files may be stored in a central data lake for analysis
- An extract, transform, and load (ETL) process copies data from files and OLTP databases into a data warehouse that is optimized for read activity
- 3. Data in the data warehouse may be aggregated and loaded into an online analytical processing (OLAP) model, or *cube*
- 4. The data in the data lake, data warehouse, and analytical model can be queried to produce reports and dashboards

Data professional roles

Database provisioning, configuration and management

Database security and user access

Database backups and resiliency

Database performance monitoring and optimization

Data integration pipelines and ETL processes

Data cleansing and transformation

Analytical data store schemas and data loads

Analytical modeling

Data reporting and summarization

Data visualization

Microsoft cloud services for data

Data stores

Azure SQL

Family of SQL Server based relational database services

Azure Database for open-source

• Maria DB, MySQL, PostgreSQL

Azure Cosmos DB

Highly scalable non-relational database system

Azure Storage

- File, blob, and table storage
- Hierarchical namespace for data lake storage

Data engineering and analytics

Azure Data Factory

Data pipelines

Azure Stream Analytics

Real-time data processing for IoT solutions

Azure Synapse Analytics

• Integrated, end-to-end analytics

 Pipelines, SQL, Apache Spark, Data Explorer ...

Azure Data Explorer

 Real-time data analysis for logs and telemetry

Azure Databricks

Apache Spark analytics and data processing

Microsoft Purview

- Enterprise data governance
- Data mapping and discoverability

Azure HDInsight

Apache open-source platform

Microsoft Power BI

- Analytical data modeling
- Interactive data visualization

others...

Module 2:

Explore Fundamentals of Relational Data in Azure

- Lesson 1: Explore relational data concepts
- Lesson 2: Explore Azure services for relational data

Relational tables

- · Data is stored in tables
- · Tables consists of rows and columns
- · All rows have the same columns
- · Each column is assigned a datatype

Cus	Customer					
ID	FirstName	MiddleName	LastName	Email	Address	City
1	Joe	David	Jones	joe@litware.co m	1 Main St.	Seattle
2	Samir		Nadoy	samir@northwi nd.com	123 Elm Pl.	New York

Product			
ID	Name	Price	
123	Hammer	2.99	
162	Screwdriver	3.49	
201	Wrench	4.25	
	·	<u> </u>	

Order			
OrderNo	OrderDate	Customer	
1000	1/1/2022	1	
1001	1/1/2022	2	

LineItem				
OrderNo	ItemNo	ProductID	Quantity	
1000	1	123	1	
1000	2	201	2	
1001	1	123	2	

Normalization

Sales Data				
OrderNo	OrderDate	Customer	Product	Quantity
1000	1/1/2022	Joe Jones, 1 Main St, Seattle	Hammer (\$2.99)	1
1000	1/1/2022	Joe Jones- 1 Main St, Seattle	Screwdriver (\$3.49)	2
1001	1/1/2022	Samir Nadoy, 123 Elm Pl, New York	Hammer (\$2.99)	2

- · Separate each *entity* into its own table
- Separate each discrete attribute into its own column
- Uniquely identify each entity instance (row) using a primary key
- · Use foreign key columns to link related entities

LineItem				
OrderNo	ItemNo	ProductID	Quantity	
1000	1	123	1	
1000	2	201	2	
1001	1	123	2	

Product			
ID	Name	Price	
123	Hammer	2.99	
162	Screwdriver	3.49	
201	Wrench	4.25	

Structured Query Language (SQL)

- SQL is a standard language for use with relational databases
- Standards are maintained by ANSI and ISO
- Most RDBMS systems support proprietary extensions of standard SQL

Other common database objects

Views

Pre-defined SQL queries that behave as virtual tables

Stored Procedures

Pre-defined SQL statements that can include parameters

Product			
ID	Name	Price	
201	Wrench Spanner	4.25	

Indexes

Tree-based structures that improve query performance

CREATE INDEX idx_ProductName
ON Product(Name);

Azure SQL

Family of SQL Server based cloud database services

SQL Server on Azure VMs

- Guaranteed compatibility to SQL Server on premises
- Customer manages everything OS upgrades, software upgrades, backups, replication
- Pay for the server VM running costs and software licensing, not per database
- Great for hybrid cloud or migrating complex on-premises database configurations

Azure SQL Managed Instance

- Near 100% compatibility with SQL Server on-premises
- Automatic backups, software patching, database monitoring, and other maintenance tasks
- Use a single instance with multiple databases, or multiple instances in a pool with shared resources
- Great for migrating most on-premises databases to the cloud

Azure SQL Database

- Core database functionality compatibility with SQL Server
- Automatic backups, software patching, database monitoring, and other maintenance tasks
- Single database or elastic pool to dynamically share resources across multiple databases
- Great for new, cloud-based applications

laaS

PaaS

Azure Database services for open-source

Azure managed solutions for common open-source RDBMSs

Azure Database for MySQL

- PaaS implementation of MySQL in the Azure cloud, based on the MySQL Community Edition
- Commonly used in Linux, Apache, MySQL, PHP (LAMP) application architectures

Azure Database for MariaDB

- An implementation of the MariaDB Community Edition database management system adapted to run in Azure
- Compatibility with Oracle Database

Azure Database for PostgreSQL

- Database service in the Microsoft cloud based on the PostgreSQL Community Edition database engine
- Hybrid relational and object storage

Demo

Provision Azure relational database services

Module 3:

Explore Fundamentals of Non-relational Data in Azure

- Lesson 1: Fundamentals of Azure Storage
- Lesson 2: Fundamentals of Azure Cosmos DB

Azure Blob Storage

Storage for data as binary large objects (BLOBs)

- Block blobs
 - Large, discrete, binary objects that change infrequently
 - o Blobs can be up to 4.7 TB, composed of blocks of up to 100 MB
 - A blob can contain up to 50,000 blocks
- Page blobs
 - Used as virtual disk storage for VMs
 - o Blobs can be up to 8 TB, composed of fixed sized-512 byte pages
- Append blobs
 - o Block blobs that are used to optimize append operations
 - o Maximum size just over 195 GB each block can be up to 4 MB

Per-blob storage tiers

- Hot Highest cost, lowest latency
- · Cool Lower cost, higher latency
- Archive Lowest cost, highest latency

Blobs can be organized in virtual directories, but each path is considered a single blob in a flat namespace – folder level operations are not supported

Azure Data Lake Store Gen 2

Distributed file system built on Blob Storage

- Combines Azure Data Lake Store Gen 1 with Azure Blob Storage for large-scale file storage and analytics
- Enables file and directory level access control and management
- Compatible with common large scale analytical systems

Enabled in an Azure Storage account through the Hierarchical Namespace option

- Set during account creation
- Upgrade existing storage account
 - One-way upgrade process

File system includes directories and files, and is compatible with large scale data analytics systems like Hadoop, Databricks, and Azure Synapse Analytics

Azure Files

Files shares in the cloud that can be accessed from anywhere with an internet connection

- Support for common file sharing protocols:
 - Server Message Block (SMB)
 - Network File System (NFS) requires premium tier
- Data is replicated for redundancy and encrypted at rest

Azure Table Storage

Key-Value storage for application data

- Tables consist of key and value columns
 - Partition and row keys
 - Custom property columns for data values
 - A *Timestamp* column is added automatically to log data changes
- Rows are grouped into partitions to improve performance
- Property columns are assigned a data type, and can contain any value of that type
- Rows do not need to include the same property columns

Demo

Explore Azure Storage

What is Azure Cosmos DB?

A multi-model, global-scale *NoSQL* database management system

- Support for multiple storage APIs
- Real time access with fast read and write performance
- Enable multi-region writes to replicate data globally; enabling users in specified regions to work with a local replica

Azure Cosmos DB APIs

Azure Cosmos DB for NoSQL

Native API for Cosmos DB

SELECT *
FROM customers c
WHERE c.id = "joe@litware.com"

"id": "joe@litware.com",
"name": "Joe Jones",
"address": {
 "street": "1 Main St.",
 "city": "Seattle"

```
Azure Cosmos DB for MongoDB
```

Compatibility with MongoDB

db.products.find({ id: 123})

```
{
    "id": 123,
    "name": "Hammer",
    "price": 2.99}
}
```

Azure Cosmos DB for PostgreSQL

• Compatibility with PostgreSQL

id	name	dept	manager
1	Sue Smith	Hardware	Joe Jones
2	Ben Chan	Hardware	Sue Smith

Azure Cosmos DB for Table

- Key-value storage API
- Compatible with Azure Table Storage

PartitionKey	RowKey	Name
1	123	Joe Jones
1	124	Samir Nadoy

Azure Cosmos DB for Apache Cassandra

 Compatibility with Apache Cassandra

id	name	dept	manager
1	Sue Smith	Hardware	
2	Ben Chan	Hardware	Sue Smith

Azure Cosmos DB for Apache Gremlin

 Used to work with graph data

 vertices are connected via relationships (edges)

Demo

Explore Azure Cosmos DB

Module 4:

Explore Fundamentals of Large-scale data warehousing

Lesson 1: Large-scale data warehousing

What is large-scale data warehousing?

Analytical data store Analytical data model Data visualization Data ingestion and processing Extract, Transform, and Load (ETL) Denormalized relational Semantic models for Reports or Extract, Load, and Transform (ELT) data storage in a data analytical entities Charts orchestration warehouse Often in the form of **Dashboards** Semi-structured file Distributed processing to cleanse aggregated *cubes* that and restructure data at scale summarize numeric values storage in a data lake across one or more Batch and real-time data dimensions processing

Data ingestion and processing pipelines

Analytical data stores

Data Warehouse

- Large-scale relational database store and query engine
- Data is *denormalized* for query optimization
 - Typically as a star or snowflake schema of numeric facts that can be aggregated by dimensions

Data Lake

- Data files are stored in a distributed file system
- Tabular storage layers can be used to abstract files and provide a relational interface.
 - Use PolyBase external tables or create a lake database in Azure Synapse Analytics
 - Use database tables and SQL endpoints in Azure Databricks
 - Use Spark Delta Lake to add relational storage semantics and create a data lakehouse in Azure Synapse Analytics, Azure Databricks, and Azure HDInsight

Choose an analytical data store service

Azure Synapse Analytics

- Unified solution for relational data warehouse and data lake analytics
- Scalable processing and querying through multiple analytics runtimes
 - Synapse SQL
 - Apache Spark
 - Synapse Data Explorer
- Interactive experience in Azure Synapse Studio
- Built-in pipeline integration for data ingestion and processing

Use for a single, unified large-scale analytical solution on Azure

Azure Databricks

- Azure-based implementation of Databricks cloud analytics platform
- Scalable Spark and SQL querying for data lake analytics
- Interactive experience in Azure Databricks workspace
- Use Azure Data Factory to implement data ingestion and processing pipelines

Use to leverage Databricks skills and for cloud portability

Azure HDInsight

- Azure-based implementation of common Apache "big data" frameworks built on a data lake
 - Hadoop Query data lake files using Hive tables
 - Spark Use Spark APIs to query data, and abstract underlying file storage as tables
 - Kafka Real-time event processing
 - Storm Stream processing
 - HBase NoSQL data store

Use when you need to support multiple open-source platforms

Demo

Explore Azure Synapse Analytics

Module 5:

Explore Fundamentals of real-time analytics

• Lesson 1: Streaming and real-time analytics

Batch vs stream processing

Batch processing

Data is collected and processed at regular intervals

Stream processing

Data is processed in (near) real-time as it arrives

Real-time data processing with Azure Stream Analytics

- Create an individual Azure Stream Analytics job or an Azure Stream Analytics cluster
- Ingest data from an input, such as:
 - Azure Event Hubs
 - Azure IoT Hub
 - Azure Blob Storage
 - 0 ..
- Process data with a perpetual query
- Send results to an *output*, such as:
 - Azure Blob Storage
 - o Azure SQL Database
 - Azure Synapse Analytics
 - Azure Function
 - Azure Event Hubs
 - Power BI
 - 0 ..

Real-time log and telemetry analysis with Azure Data Explorer

- High throughput, scalable service for batch and streaming data
 - Azure Data Explorer dedicated service
 - Azure Synapse Data Explorer runtime in Azure Synapse Analytics
- Data is ingested from streaming and batch sources into tables in a database
- Tables can be queried using Kusto Query Language (KQL):
 - Intuitive syntax for read-only queries
 - Optimized for raw telemetry and timeseries data

Demo

Explore Azure Stream Analytics

Module 6:

Explore Fundamentals of Data Visualization

• Lesson 1: Data visualization

Introduction to data visualization with Power BI

- Start with Power BI Desktop
 - Import data from one or more sources
 - Define a data model
 - Create visualizations in a report
- Publish to Power BI Service
 - Schedule data refresh
 - Create dashboards and apps
 - Share with other users
- Interact with published reports
 - Web browser
 - Power BI phone app

Analytical data modeling

Common data visualizations in reports

Tables and text Product Sales Name Quantity Bolts 2 Hammer 4 Nails 1 Screwdriver 2 Screws 2 Wrench 4 Total 15

Demo

Visualize data with Power BI

Further learning

To review what you've learned and do additional labs, review the Microsoft Learn modules for this course:

- Explore core data concepts https://aka.ms/ExploreDataConcepts
- Explore relational data in Azure https://aka.ms/ExploreRelationalData
- Explore non-relational data in Azure https://aka.ms/ExploreNonRelationalData
- Explore data analytics in Azure https://aka.ms/ExploreDataAnalytics

Thank you

