Контрольная 4. Распределения, сходимости.

- 1. (3) Пусть $\hat{F}(x)$ эмпирическая функция распределения. Пусть $x, y \in \mathbb{R}$. Найдите ковариацию $Cov(\hat{F}(x), \hat{F}(y))$.
- 2. (3) Найти оценку максимального правдоподобия параметра θ у распределения с плотностью

$$f_{\theta}(y) = \theta y^{\theta - 1} \quad y \in [0, 1]$$

- 3. (3)Пусть $\{X_1, \ldots, X_n\}$ выборка из распределения Бернулли с параметром р. Является ли статистика $\hat{p} = (\overline{X})^2$ несмещённой оценкой параметра р? Состоятельной?
- 4. (3) Пусть $\{X_1, \ldots, X_{3n}\}$ выборка объёма 3n из нормального распределения со средним а и единичной дисперсией. Проверить несмещённость и состоятельность следующих оценок параметра а

$$\frac{1}{n} \sum_{i=n+1}^{2n} X_i$$

$$\frac{1}{n} \sum_{i=1}^{n} X_{3i}$$

5. (3) Пусть $\{X_1,\ldots,X_n\}$ — выборка из равномерного распределения на отрезке $[0,\theta]$. Проверить состоятельность и несмещённость следующих оценок параметра θ

$$\frac{(n+1)X_{(1)}}{n}X_{(n)}$$

- 6. (3)Пусть $\{X_1, \ldots, X_n\}$ выборка из равномерного распределения на отрезке $[0, \theta]$. Является ли оценка $(n+1)X_{(1)}$ асимптотически нормальной оценкой параметра θ ?
- 7. (3+3)Найти методом моментов и методом максимального правдоподобия оценки параметров распределениея Вейбула

$$f_X(x) = \begin{cases} \frac{k}{\lambda} (\frac{x}{\lambda})^{k-1} e^{-(\frac{x}{\lambda})^k} & x \ge 0\\ 0 & x < 0 \end{cases}$$

8. (4) Распределение Кэптейна определяется плотностью

$$f_{\theta}(y) = \frac{g'(y)}{\sqrt{2pi}} e^{-\frac{(\theta - g(y))^{2}}{2}}$$

- где g(y) неубывающая дифференцируемая функция. Найти оценку максимального правдоподобия параметра θ .
- 9. У Саши есть 2 классификатора: получше и похуже. Предположим, что качество одного классификатора = с и не известно. Классификатор тем точнее и лучше, чем больше с. Предположим, что при измерении качества мы наблюдаем значения $y_i = c + \epsilon_i$. ϵ_i независимые одинаково распределённые нормальные величины с некоторой дисперсией и нулевым математическим ожиданием. Таким образом, y_i тоже случайные величины с мат. ожиданием с и дисперсией σ^2 .
 - (a) (3) Постройте доверительный интервал для значения с так, чтобы вероятность того, что с лежит в этом интервале была не менее 0.95. Найдите границы интервалов для данных каждого классификатора.
 - (b) (3) Любым известным вам способом (хоть с лекций, хоть с практик, хоть из гугла) проверьте гипотезу о том, что классификатор получше работает точнее, чем тот, что похуже. Можно ли утверждать, что лучший классификатор точнее.

Измерения классификатора получше: $0.64175111,\,0.63247873,\,0.63313111,\,0.63270667,\,0.63184\,$, $0.64238667,\,0.63818667,\,0.64000529,\,0.63401333,\,0.63696317,\,0.63300127,\,0.63815111,\,0.63456127,\,0.63844444,\,0.64431556,\,0.64572444,\,0.63088381,\,0.63283492,\,0.64132952,\,0.6414\,$, $0.631\,$, $0.63810667,\,0.64361651,\,0.63152762,\,0.64319556,\,0.64393778,\,0.64226286,\,0.63413079,\,0.63395556,\,0.62351175,\,0.63728095,\,0.63190349,\,0.63716\,$, $0.63773397,\,0.63676381,\,0.63008063,\,0.63776952,\,0.63110952,\,0.63800444,\,0.63679111$

Измерения классификатора похуже: $0.62203002,\,0.62244152,\,0.62315778,\,0.6215295$, $0.62170169,\,0.62271204,\,0.62261512,\,0.62374008,\,0.62170984,\,0.62257677,\,0.61856799,\,0.6150659$, $0.61587726,\,0.62742243,\,0.6164587$, $0.62721114,\,0.62420552,\,0.62223767,\,0.62851293,\,0.61790504,\,0.61169198,\,0.62410424,\,0.62155702,\,0.61685259,\,0.61949887,\,0.62610344,\,0.62347114,\,0.61816931,\,0.62375206,\,0.61676952,\,0.62067124,\,0.6205655$, $0.61914936,\,0.62486339,\,0.61320572,\,0.61730455,\,0.62041464,\,0.61807048,\,0.62044667,\,0.61814111$