Análise e síntese de circuitos sequenciais

As técnicas para análise de circuitos sequenciais que implementam uma certa máquina de estados finitos, em geral, dividem-se em duas etapas:

- 1. determinar as funções que determinam o próximo estado e as saídas
 - especificar as equações que representem a lógica do circuito e as saídas de cada flip-flop (estado corrente);
 - especificar as equações que determinem as transições entre dois pulsos de *clock*;
 - construir a *tabela de transiç*ões para cada uma das combinações das entradas, indicando quais os próximos estados;
 - identificar todas as combinações que representem um mesmo estado e reescrevêlas em uma tabela de estados;
- 2. construir as tabelas de estados/saídas que especifiquem o comportamento do circuito para todas as combinações das entradas e do estado corrente:
 - verificar as funções das saídas em relação às entradas e aos estados correntes;
 - após avaliar todas as combinações de entradas e estados, combinar a tabela de estados com essas informações e criar a tabela de estados/saídas, relacionando cada saída ao proximo estado.

Exemplo 1:

Considerar o circuito abaixo com um flip-flop tipo D.

Tabela de transições

$Q_t \ xy$	00	01	10	11
0	0	1	0	1
1	1	1	0	0
		Q _{t+1}		

Equações de transições

$$D = x' \cdot Q + y \cdot Q'$$

$$Q_{t+1} = x' \cdot Q_t + y \cdot Q'_t$$

Tabela de estados/saídas

Diagrama de estados

Considerar o circuito abaixo com dois flip-flops tipo JK.

Tabela de transições

S_1	S_2	Χ	S_1	S_2	saída
(t)	(t)		(t+1)	(t+1)	

0	0	0	0	0	0	0
1	0	0	1	0	1	0
2	0	1	0	1	0	0
3	0	1	1	0	1	0
4	1	0	0	1	1	0
5	1	0	1	0	1	0
6	1	1	0	0	0	0
7	1	1	1	Λ	1	1

Equações de transições

$$saida = s_1 \cdot s_2 \cdot x$$

$$J_1 = s_2 \cdot x' e K_1 = s_2 + x$$

$$J_2 = s_1 + x e K_2 = x'$$

$$\begin{split} Q_{t+1} &= J_1 \ Q'_t + K_1' \ Q_t \\ S_1 &= S_2 \bullet X' \bullet S_1' + (S_2 + X)' \bullet S_1 \\ &= S_2 \bullet X' \bullet S_1' + S_2' \bullet X' \bullet S_1 \\ &= X' \bullet \left(S_2 \bullet S_1' + S_2' \bullet S_1 \right) \\ &= X' \bullet \left(S_1 \quad \textbf{xor} \quad S_2 \right) \end{split}$$

$$\begin{aligned} &Q_{t+1} = J_2 \ Q'_t + K_2' \ Q_t \\ &S_2 = (X+S_1) \cdot S_2' + (X')' \cdot S_2 \\ &= (X \cdot S_2') + (S_1 \cdot S_2') + (X \cdot S_2) \\ &= X \cdot (S_2' + S_2) + (S_1 \cdot S_2') \\ &= X + (S_1 \cdot S_2') \end{aligned}$$

Tabela de estados/saídas

	S ₁	S 2	X=	0	X=	1	saída
0	0	0	0	0	0	1	0
1	0	1	1	0	0	1	0
2	1	0	1	1	0	1	0
3	1	1	0	0	0	1	0/1

Diagrama de estados

Exemplo 2:

Projetar um contador crescente módulo 4 (0-1-2-3-0) com flip-flops tipo D.

Tabela de transições

Diagrama de estados

	S ₁ (t)	S ₂ (t)	evento	S ₁ (t+1)	S ₂ (t+1)
	а	b	С	а	b
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	1	1
7	1	1	1	0	0

Equações de transições

sinais	SoP	mintermos	simplificação
S ₁	3,4,5,6	a'bc+ab'c'+ab'c+abc'	ac'+ab'+ab'c
\$2	1,2,5,6	a'b'c+a'bc'+ab'c+abc'	bc'+b'c

Circuito

Exemplo 3:

Projetar um contador decrescente módulo 4 (0-3-2-1-0) com flip-flops tipo D.

Tabela de transições

Diagrama de estados

	S1 (t)	S ₂ (t)	evento	S ₁ (t+1)	S ₂ (t+1)
	а	b	С	а	b
0	0	0	0	0	0
1	0	0	1	1	1
2	0	1	0	0	1
3	0	1	1	0	0
4	1	0	0	1	0
5	1	0	1	0	1
6	1	1	0	1	1
7	1	1	1	1	0

Equações de transições

sinais	SoP	mintermos	simplificação
S ₁	1,4,6,7	a'b'c+ab'c'+abc'+abc	ac'+ab+a'b'c
S ₂	1,2,5,6	a'b'c+a'bc'+ab'c+abc'	bc'+b'c

Circuito

