

Star Scheduling

Nadia Brauner* Hadrien Cambazard* Benoit Cance*
Nicolas Catusse* <u>Pierre Lemaire</u>* Bernard Penz*

Anne-Marie Lagrange Pascal Rubinio * Grenoble Alpes, CNRS, G-SCOP, F-38000 Grenoble

* Grenoble Alpes, CNRS, G-SCOP, F-38000 Grenoble pierre.lemaire@grenoble-inp.fr

° CNRS, IPAG, F-38000 Grenoble, France

june 2015

Star Scheduling

Nadia Brauner* Hadrien Cambazard* Benoit Cance*
Nicolas Catusse* <u>Pierre Lemaire</u>* Bernard Penz*

Anne-Marie Lagrange Pascal Rubinio * Grenoble Alpes, CNRS, G-SCOP, F-38000 Grenoble

* Grenoble Alpes, CNRS, G-SCOP, F-38000 Grenoble pierre.lemaire@grenoble-inp.fr

° CNRS, IPAG, F-38000 Grenoble, France

june 2015

Looking at the stars

- $[r_s; d_s)$ is the visibility interval
- p_s is the required duration of observation
- w_s is the interest

scheduling the observation of star s means observing s for a continuous duration p_s within the visibility interval $[r_s; d_s)$, rewarding w_s

Star scheduling (one night)

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$

Star scheduling (one night)

Instance: a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$

Question: find $S' \subset S$ and starting times $t_s, \forall s \in S'$ such that

- for each $s \in \mathcal{S}'$: $[t_s; t_s + p_s) \subset [r_s; d_s)$
- for each $(s_1, s_2) \in \mathcal{S'}^2$: $[t_{s_1}; t_{s_1} + p_{s_1}) \cap [t_{s_2}; t_{s_2} + p_{s_2}) = \emptyset$
- $\bullet \sum_{s \in S'} w_s$ is maximized

Star scheduling (several nights)

Instance: a set \mathcal{N} of nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n)$, depending on the night n of the observation

Star scheduling (several nights)

Instance: a set \mathcal{N} of nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n)$, depending on the night n of the observation

The order is known!

The meridian instant $(m_s = \frac{r_s + d_s}{2})$ is a mandatory instant of observation, that is: for every star s, $p_s^n \ge \frac{d_s^n - r_s^n}{2}$

Property

If for all star s: $p_s^n \ge \frac{d_s^n - r_s^n}{2}$, then observations must be scheduled by non-decreasing meridian time

The order is known!

The meridian instant $(m_s = \frac{r_s + d_s}{2})$ is a mandatory instant of observation, that is: for every star s, $p_s^n \ge \frac{d_s^n - r_s^n}{2}$

Property

If for all star s: $p_s^n \ge \frac{d_s^n - r_s^n}{2}$, then observations must be scheduled by non-decreasing meridian time

The order is known!

The meridian instant $(m_s = \frac{r_s + d_s}{2})$ is a mandatory instant of observation, that is: for every star s, $p_s^n \ge \frac{d_s^n - r_s^n}{2}$

Property

If for all star s: $p_s^n \ge \frac{d_s^n - r_s^n}{2}$, then observations must be scheduled by non-decreasing meridian time

A MIP model

$$\max \sum_{s} w_s z_s \longrightarrow 1 \text{ iff } s \text{ observed}$$

s.c.
$$\sum_{n \in \mathcal{N}} \overline{z_s^n} = z_s \rightarrow 1$$
 iff s observed on night n

A MIP model

A MIP model

$$\max \sum_{s \in S} w_s \frac{z_s}{z_s} \longrightarrow 1 \text{ iff } s \text{ observed}$$

s.c.
$$\sum_{s \in \mathcal{N}} \overline{Z_s^n} = \overline{Z_s} \rightarrow 1$$
 iff s observed on night n

visibility window of night
$$n$$

$$\begin{cases} r_s^n z_s^n \leq \underline{t_s} & \longrightarrow \text{ starting time of observation } s \\ t_s + p_s^n z_s^n \leq d_s^n z_s^n + M(1 - z_s^n) \end{cases}$$

$$s \prec s'$$
 if observed the same night

$$\prec s'$$
 if observed the same night $\begin{cases} z_s^n + z_{s'}^n - 1 \leq y_{ss'} \longrightarrow = 1 \text{ iff } s \text{ and } s' \text{ observed} \\ t_s + p_s^n \leq t_{s'} + M(1 - z_{ss'}) \end{cases}$

Introduction

Complexity

Solving star scheduling

Conclusions and perspectives

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$ such that $p_s \ge (d_s - r_s)/2$; a bound W

Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$ such that $p_s \geq (d_s - r_s)/2$; a bound W

Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

• $1|r_j| \sum w_j U_j$ is NP-complete (Lenstra et al., 1977)

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$ such that $p_s \ge (d_s - r_s)/2$; a bound W

Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $1|r_j| \sum w_j U_j$ is NP-complete (Lenstra et al., 1977)
- $1|r_i, p_i = p|\sum w_i U_i$ is polynomial (Baptiste, 1999)

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$ such that $p_s \ge (d_s - r_s)/2$; a bound W

Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $1|r_j| \sum w_j U_j$ is NP-complete (Lenstra et al., 1977)
- $1|r_j, p_j = p|\sum w_j U_j$ is polynomial (Baptiste, 1999)
- what if $p_i \geq (d_i r_i)/2$?

Instance: a set S of stars; each star $s \in S$ has an interest w_s , an observation duration p_s and a visibility window $[r_s; d_s)$ such that $p_s \ge (d_s - r_s)/2$; a bound W

Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $1|r_j| \sum w_j U_j$ is NP-complete (Lenstra et al., 1977)
- $1|r_j, p_j = p|\sum w_j U_j$ is polynomial (Baptiste, 1999)
- what if $p_j \geq (d_j r_j)/2$?

Complexity of the one night case

Star scheduling of one night is NP-Hard (even if $w_s = 1$)

• Variant of Partition : 2n pairs (a_{2i-1}, a_{2i}) so that $\sum_i a_i = 2B$. Can a total of B be made with one item from each pair?

- Variant of Partition : 2n pairs (a_{2i-1}, a_{2i}) so that $\sum_i a_i = 2B$. Can a total of B be made with one item from each pair?
- For each pair of items (a_{2i}, a_{2i+1}) create a pair of incompatible stars (s_{2i-1}, s_{2i}) : same visibility window and $p_s \ge (d_s r_s)/2$

$$p_{2i-1} = p_{2i} = 2B + a_i$$

- Variant of Partition : 2n pairs (a_{2i-1}, a_{2i}) so that $\sum_i a_i = 2B$. Can a total of B be made with one item from each pair?
- For each pair of items (a_{2i}, a_{2i+1}) create a pair of incompatible stars (s_{2i-1}, s_{2i}) : same visibility window and $p_s \ge (d_s r_s)/2$
- Set visibility windows so that scheduling a star from a pair does not prevent scheduling a star from another pair and each pair of stars have dedicated instants

- Variant of Partition : 2n pairs (a_{2i-1}, a_{2i}) so that $\sum_i a_i = 2B$. Can a total of B be made with one item from each pair?
- For each pair of items (a_{2i}, a_{2i+1}) create a pair of incompatible stars (s_{2i-1}, s_{2i}) : same visibility window and $p_s \ge (d_s r_s)/2$
- Set visibility windows so that scheduling a star from a pair does not prevent scheduling a star from another pair and each pair of stars have dedicated instants
- "yes" to Partition \iff non-idling schedule of length (2n+1)B

$$r_{2i-1} = r_{2i} = 2(i-1)B + \sum_{j=1}^{i-1} \min(a_{2i-1}, a_{2i})$$

$$d_{2i-1} = d_{2i} = 2iB + \sum_{j=1}^{i} \max(a_{2i-1}, a_{2i})$$

$$d_{2n-1} = d_{2n} = (2n+1)B$$

$$p_{2i-1} = p_{2i} = 2B + a_{i}$$

A pseudo-polynomial algorithm

f(i, t): maximum interest with stars 1 to i, and such that s_i ends before time t

$$f(i,t) = \begin{cases} \min(f(i-1,t), f(i-1,t-p_i) + w_i) & \forall i \in [1,m], t \in [r_i+p_i,T] \\ f(i-1,t) & \forall i \in [1,m], t \in [0,r_i+p_i[\\ -\infty & \forall i \in [1,m], t < 0 \\ 0 & i = 0, \forall t \in [0,T] \end{cases}$$

We are looking for f(m, T) which can be computed in O(mT)

Instance: a set of n nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n]$ such that $p_s^n \geq (d_s^n - r_s^n)/2$; a bound W Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

Instance: a set of n nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n)$ such that $p_s^n \geq (d_s^n - r_s^n)/2$; a bound W Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

• $P|r_i| \sum w_i U_i$ (identical nights) is NP-complete

Instance: a set of n nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n]$ such that $p_s^n \geq (d_s^n - r_s^n)/2$; a bound W Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $P|r_j|\sum w_jU_j$ (identical nights) is NP-complete
- $p_s = (d_s r_s)$, identical nights: polynomial (Kolen et al., 2007)

Instance: a set of n nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n)$ such that $p_s^n \geq (d_s^n - r_s^n)/2$; a bound W Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $P|r_j|\sum w_jU_j$ (identical nights) is NP-complete
- $p_s = (d_s r_s)$, identical nights: polynomial (Kolen et al., 2007)
- what if $p_i \geq (d_i r_i)/2$?

Instance: a set of n nights, a set \mathcal{S} of stars; each star $s \in \mathcal{S}$ has an interest w_s , an observation duration p_s^n and a visibility window $[r_s^n; d_s^n]$ such that $p_s^n \geq (d_s^n - r_s^n)/2$; a bound W Question: find a subset of stars so that the total interest is at least W, visibility windows are respected and observations do not overlap

- $P|r_j|\sum w_jU_j$ (identical nights) is NP-complete
- $p_s = (d_s r_s)$, identical nights: polynomial (Kolen et al., 2007)
- what if $p_j \ge (d_j r_j)/2$?

Complexity of the several nights case

Star scheduling of several nights is unary NP-Hard (even if $w_s=1$ and all nights are identical)

Solutions

Master problem: assignment of stars to nights

$$\max \sum_{s \in \mathcal{S}} w_s z_s$$

$$s.c. \sum_{n \in \mathcal{N}} z_s^n = z_s$$

Master problem: assignment of stars to nights

Slave problem: scheduling of each nights

max
$$\sum_{s \in S} w_s z_s$$
 Night 1: ok?
s.c. $\sum_{n \in \mathcal{N}} z_s^n = z_s$ Night 2: ok?

Master problem: assignment of stars to nights

Slave problem: scheduling of each nights

max
$$\sum_{s \in \mathcal{S}} w_s z_s$$
 Night 1: ok?
s.c. $\sum_{n \in \mathcal{N}} z_s^n = z_s$ Night 2: ok?
 $\sum_{s \in C_t^n} z_s^n \le |C_k^n| - 1$...

Master problem: assignment of stars to nights Slave problem: scheduling of each nights

$$\max \sum_{s \in \mathcal{S}} w_s z_s$$

$$s.c. \sum_{n \in \mathcal{N}} z_s^n = z_s$$

$$\sum_{s \in C_k^n} z_s^n \le |C_k^n| - 1$$

Night 1: ok?

Night 2: ok?

- efficient MIP
- upper bound at each iteration

- n independent problems
- linear complexity

Night patterns: Ω_n , set of all possible schedules for night n Pattern k for night n: $p_{n1}^k...p_{n|S|}^k$, where $p_{ns}^k=1$ iff star s belongs to the k-th pattern of night n; weight $w_n^k=\sum_{s\in S}w_sp_{ns}^k$

Night patterns: Ω_n , set of all possible schedules for night n. Pattern k for night n: $p_{n1}^k...p_{n|S|}^k$, where $p_{ns}^k = 1$ iff star s belongs to the k-th pattern of night n; weight $w_n^k = \sum_{s \in S} w_s p_{ns}^k$

$$\max \sum_{n \in \mathcal{N}} \sum_{k \in \Omega_n} w_n^k \frac{\rho_n^k}{\rho_n^k} \longrightarrow = 1 \text{ iff pattern } k \text{ used, night } n$$

$$\sum_{k \in \Omega_n} \rho_n^k = 1 \quad \forall n \in \mathcal{N}$$

$$\sum_{n \in \mathcal{N}} \sum_{k \in \Omega_n} p_{ns}^k \rho_n^k \leq 1 \quad \forall s \in \mathcal{S}$$

$$\rho_n^k \in \{0, 1\} \qquad \forall n \in \mathcal{N}, \forall k \in \Omega_n$$

Night patterns: Ω_n , set of all possible schedules for night n Pattern k for night n: $p_{n1}^k...p_{n|S|}^k$, where $p_{ns}^k = 1$ iff star s belongs to the k-th pattern of night n; weight $\mathbf{w}_n^k = \sum_{s \in S} \mathbf{w}_s p_{ns}^k$

Reduced cost of ρ_n^k : $w_n^k - \alpha_n - \sum_{s \in S} p_{ns}^k \beta_s$

Solutions

Night patterns: Ω_n , set of all possible schedules for night n. Pattern k for night n: $p_{n1}^k...p_{n|S|}^k$, where $p_{ns}^k = 1$ iff star s belongs to the k-th pattern of night n; weight $w_n^k = \sum_{s \in S} w_s p_{ns}^k$

Reduced cost of ρ_n^k : $w_n^k - \alpha_n - \sum_{s \in \mathcal{S}} p_{ns}^k \beta_s$

Pattern of max reduced cost? Single Night Case with costs $w_s - \beta_s$

Local search

Classical local-search procedure

Neighborhoods:

- moving a star from one night to another
- inserting an unobserved star
- exchanging two stars

An optimal schedule for each night is computed systematically

Solutions

			BD (OPT/ <i>UB</i>)		CG (UB)		LS (LB)	
instance	$ \mathcal{S} $	$ \mathcal{N} $	val	cpu(s)	val	cpu(s)	val	cpu(s)
pb1	200	32	<i>5200</i>	900	5200	1.47	5 200	0.28
pb2	200	32	<i>3310</i>	900	3310	0.99	3310	0.33
pb3	200	69	7800	100	7800	1.59	7800	0.17
pb4	200	69	_	_	4870	1.63	4870	0.11
pb5	400	69	12660	900	11910	5.11	11910	12.39
pb6	400	69	9250	900	9099.9	19.57	9070	773.95
pb7	400	142	_	_	13680	11.85	13680	0.15
pb8	400	142	976 0	900	9760	13.71	9760	0.21
real	800	142	18930	900	18620	92.41	18510	689.60
							18480	306.07

Example solution

solution

16

Star scheduling

- a particular interval-scheduling problem with known order
- NP-hardness is proven for both one night and general cases
- several solution methods are proposed and tested

Work in progress...

- Instances
 - we need more instances!
 - study the structure of the real instance (e.g., similarity between nights)
- Solution methods
 - enrich numerical experiments
 - embed the CG into a branch & bound to get optimal solutions
 - analyze (and improve) LS behavior
 - get advantage of nights' similarities
- Complexity
 - draw precise complexity frontiers
 - study approximability