Learning New Tasks with Situated Interactive Instruction

Shiwali Mohan and John E. Laird

Interactive Taskable Agents

Our goal is to design long-living agents that dynamically expand their task knowledge and skill-set through their experiences in novel environments.

Learning new tasks requires learning relevant features in perception, spatial relationships, goals, task decomposition structure, policy etc.

Situated Comprehension

Human language is contextual, flexible, efficient, effective, ambiguous The Indexical Hypothesis (Glenberg and Robertson 1999) - speaker and hearer share ground

- language is reference to elements in the common ground

The Indexical Model (Mohan, Mininger, Laird 2013)

- 1. Index words and phrases to referents
- perceptual classification - NN/ADJ
- NP set of objects
- 2. Extract domain-knowledge associated with referents
- 3. Mesh under syntactic, knowledge-based constraints

Referring expressions are ambiguous (it, that object, the blue cube, ...) Use of RE is influenced by relative salience of objects and partners. The Givenness Hierarchy (Gundel 1993):

in-focus (it) > activated (this, that rectangle) > uniquely-identifiable (the green rectangle) > type-identifiable (a green rectangle)

Human speakers and hearers rely on shared experience and knowledge

- Take the trash out to the curb.
- Take the trash out.

Our agent can exploit the difference in instructions to reason about the arguments of task verbs and uses this experience to fill up unknown or not-specified values.

Situated Interactive Instruction (SII)

Tutorial interactions that occur when an expert and a learner collaborate on a task are

- rich in useful information, identifies relevant features, goals, task decomposition structure
- concept-level, exploits shared perceptions, common domain knowledge, experience
- mixed-initiative, distributes the onus of learning between the learner and the expert
- alternative, complimentary to learning from demonstration (LfD)

Rosie Framework

Developed in the Soar cognitive architecture (Laird 2012) Is reactive to real time changes (50 ms perceive-decide-act cycle) Learns online, acquires a variety of concepts: perceptual classification & categorization,

Task Learning

parameters Store the green cylinder store(02, pantry, IN(02, PANTRY)) What? subtasks store: open,move[pick-up, put-down],close goals in(02,pantry) and closed(pantry) policy if [state, task] then execute(subtask) How? model if [state, task] then [next-state] availability if [state] then available(task) When? termination

Learning occurs in two different phases (Mohan and Laird 2014)

if [goal] then terminate(task)

1. interactive task execution

if the agent does not know the policy for a state, it explores available options till depth K. if it is successful, it executes it, else it asks a questions

2. retrospective explanation

the agent looks back at the instructions and deduces why the instructed actions were useful in achieving the goal of the task and learns concepts. a variation of explanation-based learning (DeJong 1986)

Learning is comprehensive, general, transferrable, mixedinitiative

