(19) 日本国特許庁 (J P) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号 特開2001-156800 (P2001-156800A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7

識別記号

FΙ

テーマコート (参考)

H04L 12/28

12/56

H04L 11/20

E 5K030

G 9A001

102A

審査請求 有 請求項の数22 OL (全 14 頁)

(21)出願番号

特顯平11-338923

(22)出願日

平成11年11月30日(1999.11.30)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 藤田 範人

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100088812

弁理士 ▲柳▼川 信

Fターム(参考) 5K030 HA10 HD03 JA06 LB19

9A001 CC03 DD10 JJ12 KK56

(54) 【発明の名称】 通信コネクションマージ方式及びそれを用いるノード

(57)【要約】

【課題】 コネクションオリエンテッド網(MPLS 網)において新規に設定しようとする通信コネクション (LSP)を既存のLSPにマージする際に、LSPの もつ要求帯域等の付帯パラメータも同時にマージする。 また、一度マージされた複数のLSPを途中で分岐でき るようにする。

【解決手段】 既存のLSP304がLSR107から LSR109までの区間においてトンネリング用LSP 303によってトンネリングされているとする。この 時、新規にLSP306を設定しようとする場合、LS P304とLSP306とを収容することができるよう にトンネリング用LSP303の付帯パラメータを変更 した後に、トンネリング用LSP303上において、ト ンネリング用LSP303の終点LSR109において 分岐可能な形態で、LSP304に対してLSP306 をマージする。

【特許請求の範囲】

【請求項1】 コネクションオリエンテッド網の複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行う通信コネクションマージ方式であって、既存通信コネクションに対して設定中の新規通信コネクションをマージしようとする際にマージしようとしているノードから出側ノードまでの転送経路を同一にすることが可能であるか否かを判定するステップと、可能と判定された時に前記既存通信コネクションの付帯パラメータを前記新規通信コネクションを収容自在に変更するステップと、前記収容自在に変更を行った後にマージを行うステップとを有することを特徴とする通信コネクションマージ方式。

1

【請求項2】 前記コネクションオリエンテッド網はMPLS(MultiProtocol Label Switching)網であり、前記通信コネクションはLSP(Label Switched Path)であり、前記ノードはLSR(Label Switching Router)であることを特徴とする請求項1記載の通信コネクションマージ方式。

【請求項3】 前記コネクションオリエンテッド網はATM (Asynchronous Transfer Mode) 網であり、前記通信コネクションはVC (Virtual Channel) であり、前記トンネリング用通信コネクションはVP (Virtual Path) であり、前記ノードはATMスイッチであることを特徴とする請求項1記載の通信コネクションマージ方式

【請求項4】 コネクションオリエンテッド網の複数の 通信コネクションを転送経路上の途中のノードにおいて 30 同一の通信コネクションに集約するマージ処理を行う通 信コネクションマージ方式であって、既存通信コネクシ ョンに対して設定中の新規通信コネクションをマージし ようとする際に前記既存通信コネクションと前記新規通 信コネクションとの転送経路を共有することが可能な区 間において前記既存通信コネクションが経由するトンネ リング用通信コネクションが存在するか否かを判定する ステップと、存在すると判定された時に前記トンネリン グ用通信コネクションの付帯パラメータを前記新規通信 コネクションが収容可能に変更するステップと、前記収 40 容可能に変更を行った後に前記トンネリング用通信コネ クション上において前記既存通信コネクションと前記新 規通信コネクションとを前記トンネリング用コネクショ ンの終点ノードにおいて分岐可能な形態でマージを行う ステップとを有することを特徴とする通信コネクション マージ方式。

【請求項5】 前記トンネリング用通信コネクションは、上位のトンネリング用通信コネクションを下位のトンネリング用通信コネクションの終点ノードにおいて分岐可能な形態でマージを再帰的に任意の回数だけ繰り返 50

すことが可能であることを特徴とする請求項4記載の通信コネクションマージ方式。

【請求項6】 前記コネクションオリエンテッド網はMPLS(MultiProtocol Label Switching)網であり、前記通信コネクションはLSP(Label Switched Path)であり、前記ノードはLSR(Label Switching Router)であることを特徴とする請求項4または請求項5記載の通信コネクションマージ方式。【請求項7】 前記コネクションオリエンテッド網はATM(Asynchronous Transfer Mode)網であり、前記通信コネクションはVC(Virtual Channel)であり、前記トンネリング用通信コネクションはVP(Virtual Path)であり、前記ノードはATMスイッチであることを特徴とする請求項4記載の通信コネクションマージ方式。

【請求項8】 コネクションオリエンテッド網の複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行う通信コネクションマージ方式であって、既存通信コネクションをマージしようとする際に前記既存通信コネクションと前記新規通信コネクションとの転送経路を同一にすることが可能な区間において新たに前記既存通信コネクション及び前記新規通信コネクションの付帯パラメータを収容可能なトンネリング用通信コネクションを設定するステップと、前記トンネリング用通信コネクション上において前記既存通信コネクションと前記新規通信コネクションとを前記トンネリング用通信コネクションと表前記トンネリング用通信コネクションと表前記トンネリング用通信コネクションとを行うステップとを有することを特徴とする通信コネクションマージ方式。

【請求項9】 前記トンネリング用通信コネクションは、上位のトンネリング用通信コネクションを下位のトンネリング用通信コネクションの終点ノードにおいて分岐可能な形態で、マージを再帰的に任意の回数だけ繰り返すことが可能であることを特徴とする請求項8記載の通信コネクションマージ方式。

【請求項10】 前記コネクションオリエンテッド網はMPLS (MultiProtocol Label Switching) 網であり、前記通信コネクションはLSP (Label Switched Path)であり、前記ノードはLSR (Label Switching Router)であることを特徴とする請求項8または請求項9記載の通信コネクションマージ方式。

【請求項11】 前記コネクションオリエンテッド網は ATM (Asynchronous Transfer Mode)網であり、前記通信コネクションはVC (Virtual Channel)であり、前記トン

2

3

ネリング用通信コネクションはVP(Virtual Path)であり、前記ノードはATMスイッチである ことを特徴とする請求項8記載の通信コネクションマー ジ方式。

【請求項12】 コネクションオリエンテッド網内に配 置されかつ複数の通信コネクションを転送経路上の途中 のノードにおいて同一の通信コネクションに集約するマ ージ処理を行うノードであって、既存通信コネクション に対して設定中の新規通信コネクションをマージしよう とする際にマージしようとしているノードから出側ノー 10 ドまでの転送経路を同一にすることが可能であるか否か を判定する手段と、可能と判定した時に前記既存通信コ ネクションの付帯パラメータを前記新規通信コネクショ ンを収容自在に変更する手段と、前記収容自在に変更を 行った後にマージを行う手段とを有することを特徴とす るノード。

【請求項13】 前記コネクションオリエンテッド網が MPLS (MultiProtocol Label Switching)網であり、前記通信コネクション がLSP(Label Switched Path) 20 である場合のLSR(Label Switching Router) であることを特徴とする請求項12記 載のノード。

【請求項14】 前記コネクションオリエンテッド網が ATM (Asynchronous Transfer Mode)網であり、前記通信コネクションがVC (Virtual Channel)であり、前記トン ネリング用通信コネクションがVP(Virtual Path) である場合のATMスイッチであることを特 徴とする請求項12記載のノード。

【請求項15】 コネクションオリエンテッド網内に配 置されかつ複数の通信コネクションを転送経路上の途中 のノードにおいて同一の通信コネクションに集約するマ ージ処理を行うノードであって、既存通信コネクション に対して設定中の新規通信コネクションをマージしよう とする際に前記既存通信コネクションと前記新規通信コ ネクションとの転送経路を共有することが可能な区間に おいて前記既存通信コネクションが経由するトンネリン グ用通信コネクションが存在する否かを判定する手段 と、存在すると判定した時に前記トンネリング用通信コ 40 ネクションの付帯パラメータを前記新規通信コネクショ ンが収容自在に変更を行う手段と、前記収容自在に変更 を行った後に前記トンネリング用通信コネクション上に おいて前記既存通信コネクションと前記新規通信コネク ションとを前記トンネリング用コネクションの終点ノー ドにおいて分岐可能な形態でマージを行う手段とを有す ることを特徴とするノード。

【請求項16】 前記トンネリング用通信コネクション は、上位のトンネリング用通信コネクションを下位のト 岐可能な形態で、マージを再帰的に任意の回数だけ繰り 返すことが可能であることを特徴とする請求項15記載 のノード。

【請求項17】 前記コネクションオリエンテッド網が MPLS (MultiProtocol Label Switching)網であり、前記通信コネクション がLSP (Label Switched Path) である場合のLSR (Label Switching Router)であることを特徴とする請求項15ま

【請求項18】 前記コネクションオリエンテッド網が ATM (Asynchronous Transfer Mode)網であり、前記通信コネクションがVC (Virtual Channel)であり、前記トン ネリング用通信コネクションがVP(Virtual Path) である場合のATMスイッチであることを特 徴とする請求項15記載のノード。

たは請求項16記載のノード。

【請求項19】 コネクションオリエンテッド網内に配 置されかつ複数の通信コネクションを転送経路上の途中 のノードにおいて同一の通信コネクションに集約するマ ージ処理を行うノードであって、既存通信コネクション に対して設定中の新規通信コネクションをマージしよう とする際に前記既存通信コネクションと前記新規通信コ ネクションとの転送経路を同一にすることが可能な区間 において新たに前記既存通信コネクション及び前記新規 通信コネクションの付帯パラメータを収容可能なトンネ リング用通信コネクションを設定する手段と、前記トン ネリング用通信コネクション上において前記既存通信コ ネクションと前記新規通信コネクションとを前記トンネ リング用通信コネクションの終点ノードにおいて分岐可 能な形態でマージを行う手段とを有することを特徴とす るノード。

【請求項20】 前記トンネリング用通信コネクション は、上位のトンネリング用通信コネクションを下位のト ンネリング用通信コネクションの終点ノードにおいて分 岐可能な形態で、マージを再帰的に任意の回数だけ繰り 返すことが可能であることを特徴とする請求項19記載 のノード。

【請求項21】 前記コネクションオリエンテッド網が MPLS (MultiProtocol Label Switching)網であり、前記通信コネクション がLSP (Label Switched Path) である場合のLSR(Label Switching Router)であることを特徴とする請求項19ま たは請求項20記載のノード。

【請求項22】 前記コネクションオリエンテッド網が ATM (Asynchronous Transfer Mode)網であり、前記通信コネクションがVC (Virtual Channel) であり、前記トン ンネリング用通信コネクションの終点ノードにおいて分 50 ネリング用通信コネクションがVP(Virtual

Path)である場合のATMスイッチであることを特徴とする請求項19記載のノード。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は通信コネクションマージ方式及びそれを用いるノードに関し、特にコネクションオリエンテッド網内に設定される複数の通信コネクションを途中でマージする際にマージを行う共有経路上の付帯パラメータも同時に更新してマージする通信コネクションマージ方式及びノードに関する。

[0002]

【従来の技術】従来、この種の通信コネクションマージ方式及びノードは、例えば1999年8月、インターネット・ドラフト、ドラフト・アイイーティーエフ・エムピーエルエス・アーキテクチャ・06・テキスト(Internet Draft, draft-ietf-mpls-arch-06.txt, August, 1999)及び1999年10月、インターネット・ドラフト、ドラフト・アイイーティーエフ・エムピーエルエス・エルデーピー・06・テキスト(Internet Draft, draft-ietf-mpls-ldp-06.txt, October, 1999)に示される 20ように、MPLS(MultiProtocol Label Switching)網内でLSP(Label Switched Path)を設定する時に、マージポイントから出側LSR(Label Switching Router)までの転送経路を同一にすることができるものをマージするために用いられている。

【0003】ここで、マージとは複数の転送経路を途中で一本の転送経路に集約することをいい、マージポイントから出側LSRまでの区間において、パケットには同一の転送経路識別子(ここではMPLSのラベル)が用いられる。このマージを行うことによって、LSRの転 30送ラベル数の節減といった効果があり、大規模網における運用に寄与する。

【0004】次に、従来の技術について、コネクションオリエンテッド網をMPLS網、通信コネクションをLSP、ノードをLSRとして説明する。図9参照すると、MPLS網1はLSR101~104から構成されている。各LSR101~104はリンク201~203によって接続され、データはこれらのリンク201~203を通ってやりとりされる。また、LSR101からLSR102を経由してLSR103に至るLSP34001が存在する。

【0005】ここで、LSR104からLSR103へ 至るLSPを新規に設定する場合を考えると、まずLS R104はLSP設定プロトコルを用いてLSR103 へのLSP設定要求401をLSR102へ送信する。 このLSP設定要求401を受信したLSR102はL SR103までマージすることができるLSPが存在す るかどうかを判定し、存在するならばマージを行う。こ こでは出側ルータまでの経路を同一にすることができる LSP301がすでに存在するのでマージを行うことが 50

可能である。

【0006】マージを行う場合、LSR102から先 (すなわち、LSR103)へはLSP設定要求を行わ ず、LSR104へLSP設定応答402を返し、LS R104を起点とし、LSR102においてLSP30 1にマージされるLSP302が設定される。

[0007]

【発明が解決しようとする課題】上述した従来の通信コネクションマージ方式では、既にあるLSPのパラメータの変更を行わずに、マージを行うのみであるので、マージを行う時に要求帯域等のLSPがもつ付帯パラメータ(以下、パラメータとする)も一緒にマージできないという問題がある。

【00008】このようなパラメータの例としては、要求 帯域、遅延等といったトラフィックに関するパラメー タ、VPN(Virtual Private Network) 識別子、優先度 等といったポリシに関するパラメータ等がある。

【0009】また、従来の通信コネクションマージ方式では、一度マージを行ってしまうと、マージされたLSPを途中で分岐することができないので、マージを行う時に要求帯域等のLSPがもつパラメータも一緒にマージできたとしても、その適用範囲は出側LSRまでの転送経路が同一にすることができる場合に限られるという問題がある。たとえ転送経路のほとんどの部分が同一であったとしても、出側LSRが異なる場合にはマージを行うことはできない。

【0010】そこで、本発明の目的は上記の問題点を解消し、マージを行う時にマージされるLSPの要求帯域等のパラメータも一緒にマージすることができる通信コネクションマージ方式及びそれを用いるノードを提供することにある。

【0011】本発明の他の目的は、LSPのパラメータも一緒にマージするだけではなく、一度マージを行ったLSPを途中で分岐することができる通信コネクションマージ方式及びそれを用いるノードを提供することにある。

[0012]

【課題を解決するための手段】本発明による通信コネクションマージ方式は、コネクションオリエンテッド網の複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行う通信コネクションマージ方式であって、既存通信コネクションに対して設定中の新規通信コネクションをマージしようとしているノードから出側ノードまでの転送経路を同一にすることが可能でありかつ前記既存通信コネクションの付帯パラメータを前記新規通信コネクションを収容自在に変更することが可能か否かを判定するステップと、可能と判定された時に前記既存通信コネクションの付帯パラメータを前記新規通信コネクションが収容自在に変更するステップと、規通信コネクションが収容自在に変更するステップと、

前記収容自在に変更を行った後にマージを行うステップ とを備えている。

【0013】本発明による他の通信コネクションマージ 方式は、コネクションオリエンテッド網の複数の通信コ ネクションを転送経路上の途中のノードにおいて同一の 通信コネクションに集約するマージ処理を行う通信コネ クションマージ方式であって、既存通信コネクションに 対して設定中の新規通信コネクションをマージしようと する際に前記既存通信コネクションと前記新規通信コネ クションとの転送経路を共有することが可能な区間にお 10 いて前記既存通信コネクションが経由するトンネリング 用通信コネクションが存在するか否かを判定するステッ プと、存在すると判定された時に前記トンネリング用通 信コネクションの付帯パラメータを前記新規通信コネク ションが収容可能に変更するステップと、前記収容可能 に変更を行った後に前記トンネリング用通信コネクショ ン上において前記既存通信コネクションと前記新規通信 コネクションとを前記トンネリング用コネクションの終 点ノードにおいて分岐可能な形態でマージを行うステッ プとを備えている。

【0014】本発明による別の通信コネクションマージ方式は、コネクションオリエンテッド網の複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行う通信コネクションに大力して設定中の新規通信コネクションと前記新規通信コネクションとの転送経路を同一にすることが可能な区間において新たに前記既存通信コネクションとが記新規通信コネクションとの転送経路を同一にすることが可能な区間において新たに前記既存通信コネクション及び前記新規通信コネクションの付帯パラメータを収容可能なトンネリング用通信コネクションを設定するステップと、前記トンネリング用通信コネクション上において前記既存通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションの終点ノードにおいて分岐可能な形態でマージを行うステップとを備えている。

【0015】本発明によるノードは、コネクションオリエンテッド網内に配置されかつ複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行うノードであって、既存通信コネクションに対して設定中の新規通信コネクションをマージしようとする際にマージしようとしているノードから出側ノードまでの転送経路を同一にすることが可能でありかつ前記既存通信コネクションの付帯パラメータを前記新規通信コネクションを収容自在に変更可能と判定した時に前記既存通信コネクションの付帯パラメータを前記新規通信コネクションを収容自在に変更可能と判定した時に前記既存通信コネクションの付帯パラメータを前記新規通信コネクションを収容自在に変更する手段と、前記収容自在に変更を行った後にマージを行う手段とを備えている。

【0016】本発明による他のノードは、コネクション 50

8

オリエンテッド網内に配置されかつ複数の通信コネクシ ョンを転送経路上の途中のノードにおいて同一の通信コ ネクションに集約するマージ処理を行うノードであっ て、既存通信コネクションに対して設定中の新規通信コ ネクションをマージしようとする際に前記既存通信コネ クションと前記新規通信コネクションとの転送経路を共 有することが可能な区間において前記既存通信コネクシ ョンが経由するトンネリング用通信コネクションが存在 する否かを判定する手段と、存在すると判定した時に前 記トンネリング用通信コネクションの付帯パラメータを 前記新規通信コネクションが収容自在に変更を行う手段 と、前記収容自在に変更を行った後に前記トンネリング 用通信コネクション上において前記既存通信コネクショ ンと前記新規通信コネクションとを前記トンネリング用 コネクションの終点ノードにおいて分岐可能な形態でマ ージを行う手段とを備えている。

【0017】本発明による別のノードは、コネクションオリエンテッド網内に配置されかつ複数の通信コネクションを転送経路上の途中のノードにおいて同一の通信コネクションに集約するマージ処理を行うノードであって、既存通信コネクションに対して設定中の新規通信コネクションをでである際に前記既存通信コネクションとが可能な区間において新たに前記既存通信コネクション及び前記新規通信コネクションの付帯パラメータを収容可能なトンネリング用通信コネクションを設定する手段と、前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションとを前記トンネリング用通信コネクションの終点ノードにおいて分岐可能な形態でマージを行う手段とを備えている。

【0018】すなわち、本発明の第1の通信コネクションマージ方式は、LSP設定要求を受信したLSRが、新規に設定しようとするLSPを既に設定されているLSPにマージすることができるかどうかを判断する。その判断基準としては出側LSRまでの経路を同一にすることができることに加え、新規に設定しようとするLSPのもつ要求帯域等のパラメータを既存のLSPが収容することができるように、既存のLSPのパラメータを変更することができるかどうかである。

【0019】既存のLSPのもつパラメータを変更するためには、マージするLSRから下流の全てのLSRに対してパラメータの変更が可能かどうかのネゴシエーションを行わなければならないので、これをシグナリング等によって実現する。ネゴシエーションの結果、パラメータの変更が可能であればマージを行う。

【0020】もし不可能であればマージを行わず、さらに先のLSRへとLSP設定要求を出して別のLSPを設定する。このような方式を採用することによって、マージを行う時にマージされるLSPの要求帯域等のパラ

メータも一緒にマージすることが可能となる。

【0021】本発明の第2の通信コネクションマージ方式は、MPLS網内に予めトンネリング用LSPが設定されている時に、新規に設定しようとするLSPの一部経路として、トンネリング用LSPを用いることができるならば、本発明の第1の通信コネクションマージ方式と同様の手順を用いて、新規に設定しようとするLSPを収容することができるように、トンネリング用LSPのパラメータの変更をネゴシエーションする。ネゴシエーションの結果、パラメータの変更が可能ならば、LS 10 Pの一部経路として、トンネリング用LSPを用いてLSPの設定を行う。

【0022】LSPの転送経路にトンネリング用LSPが用いられている部分では、転送パケットに対してMPLSのラベルスタックが用いられ、収容されているLSPのラベルの前にトンネリング用LSPのラベルが付与される。トンネリング用LSPには複数のLSPを収容することが可能であり、トンネリング用LSP以外の部分では収容されているLSPの経路が同じである必要はない。

【0023】このような方式を採用することによって、LSPのパラメータも一緒にマージするだけではなく、一度マージを行ったLSPを途中で分岐することが可能となる。

[0024]

【発明の実施の形態】次に、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態を説明するための図である。図1において、本発明の第1の実施の形態はコネクションオリエンテッド網の代表例としてMPLS網1において行われることを前30提とする。

【0025】MPLS網1はLSR101~104から構成され、各LSR101~104間はリンク201~203によって接続されている。また、LSR101からLSR102を経由してLSR103へ至るLSP301が設定されている。

【0026】図2は本発明の第1の実施の形態における LSR102の動作を示すフローチャートであり、図3 は本発明の第1の実施の形態におけるLSR103の動作を示すフローチャートである。これら図1~図3を参 40 照して本発明の第1の実施の形態の動作について説明する。

【0027】まず、LSR104がLSR102を経由してLSR103に至るLSPを新規に設定しようとする場合について考える。ここで、新規に設定しようとするLSPは要求帯域等のパラメータをもっているものとする。LSR102はLSR104から送信されたLSP設定要求401を受信する(図2ステップS1)。

【0028】このLSP設定要求401を受信したLS R102は、LSR102から出側LSR103までの 50 経路を同一にすることができるLSPが存在するかどうかをチェックする(図2ステップS2)。このようなLSPが存在しない場合にはマージを行わずにLSPを設定する手順に移行する(図2ステップS12)。

10

【0029】ステップS2の結果、LSR102からLSR103までの経路を同一にすることができるLSPが存在する場合には、そのLSPが新規に設定しようとするLSPと同じ種類のパラメータを備えているかどうかをチェックする(図2ステップS3)。もしも備えていない場合にはマージすることができないので、マージせずにLSPを設定する手順に移行する(図2ステップS12)。

【0030】ステップS3の結果、新規に設定しようとするLSPと同じ種類のパラメータを備えたLSP301が存在しているとする。この場合、LSR102においてLSP301のパラメータの変更ができるかどうかをチェックする(図2ステップS4)。もしもパラメータの変更が不可能な場合には、マージせずにLSPを設定する手順に移行する(図2ステップS12)。

【0031】ステップS4の結果、パラメータの変更が 可能であれば、その変更を仮設定する(図2ステップS 5)。ここで、仮設定とはLSPのパラメータを実際に 変更しないまま、パラメータを変更するためのリソース を確保しておくことをいう。さらに、LSP301の転 送経路に沿ってLSP301のパラメータ変更要求40 3を送信し、応答を待つ(図2ステップS6.S7)。 【0032】LSP301のパラメータ変更要求403 を受信したLSR103はLSP301のパラメータが 要求通り変更可能かどうかをチェックする(図3ステッ プS21, S22)。変更不可能ならば、要求を出した LSR(前LSR;この場合はLSR102)へパラメ ータ変更拒絶通知を送信する(図3ステップS30)。 【0033】ステップS22の結果、変更可能ならば、 パラメータの変更を仮設定する(図3ステップS2 3)。ここで、もしも自ノードが出側LSRならば、そ のままパラメータの変更を本設定する(図3ステップS 24, S27)。LSR103の場合には出側LSRな ので、この手順を踏む。

【0034】もしも自ノードが出側LSRでなければ、 LSP上にある次のLSR(次LSR)にパラメータ変 更要求を送信し、応答を待つ(図3ステップS24~S 26)。次LSRからパラメータ変更拒絶通知を受信し た場合、自ノードのパラメータ変更の仮設定を解除し、 前LSRへパラメータ変更拒絶通知を送信する(図3ステップS29、S30)。

【0035】また、次LSRからパラメータ変更応答を受信したならば、パラメータの変更を本設定する(図3ステップS27)。パラメータの変更を本設定した後は、前LSRへパラメータ変更応答404を送信する(図3ステップS28)。

【0036】LSR102が次LSRからパラメータ変 更拒絶を受信した場合、パラメータ変更の仮設定を解除 し、マージせずにLSPを設定する手順に移行する(図 2ステップS9、S12)。

【0037】LSR102が次LSRからパラメータ変 更応答を受信した場合にはパラメータ変更の本設定を行 い、LSPのマージを行う(図2ステップS8,S1 0)。そして、LSR104へLSP設定応答402を 送信する(図2ステップS11)。この結果、LSR1 04を起点とし、LSR102でLSP301にマージ 10 されるLSP302の設定が完了する。

【0038】本実施の形態では、新規に設定しようとす るLSPを既存のLSPにマージする際に、マージポイ ントから出側LSRまでの経路が同一である場合に加 え、マージポイントから出側LSRまでの区間におい て、新規に設定しようとするLSPのパラメータを収容 することができるように既存のLSPのパラメータを変 更うことを特徴としている。これによって、例えば要求 帯域等の付帯パラメータをもったLSPのマージを行う ことが可能になる。

【0039】また、本実施の形態では、マージポイント から出側LSRまでの区間において既存のLSPのパラ メータを変更してからマージを行っているが、一度マー ジされたLSPを解放する場合には、再度同区間でネゴ シエーションを行うことによって、解放後に残るLSP を収容することができるようにパラメータを変更した後 に解放を行う。

【0040】さらに、本実施の形態では、MPLS網の 代わりにATM (Asynchronous Transfer Mode)網、LS Pの代わりにVC(Virtual Channel)、LSRの代わり 30 にATMスイッチを用いた場合にも上記と同様にして実 施することができる。

【0041】図4及び図5は本発明の第2の実施の形態 を説明するための図である。これら図4及び図5を参照 して本発明の第2の実施の形態について説明する。ここ で、本発明の第2の実施の形態はコネクションオリエン テッド網の代表例としてMPLS網1において行われる ことを前提とする。

【0042】MPLS網1はLSR105~111から 構成され、各LSR間はリンク204~209によって 40 接続されている。また、LSR107を起点とし、LS R108を経由してLSR109へ至るトンネリング用 LSP303が予め設定されている。さらに、LSR1 05を起点とし、LSR107及びLSR109を経由 してLSR110へ至るLSP304が予め設定されて いる。

【0043】LSP304の転送経路のうち、LSR1 07とLSR109との間はトンネリング用LSP30 3が用いられている。この部分はMPLSのラベルスタ ックを用いて実現されており、LSR107とLSR1 50 われた部分であり、パラメータ変更に成功したならばO

09との間においては、LSP304用に割り当てられ たラベルの前にトンネリング用LSP303用に割り当 てられたラベルがスタックされる。

【0044】図6はMPLSパケットの構成を説明する ための図である。図6においてはLSR107とLSR 109との間において、LSP304上を流れるMPL Sのパケット構成を示したものである。

【0045】MPLSパケット501にはIPデータグ ラム502の前につけられたIPヘッダ503のさらに 前に、MPLSのラベルを格納するシムヘッダ504. 505が付加されている。シムヘッダ504内のラベル はLSP304用に割り当てられたものが格納され、シ ムヘッダ505内のラベルはトンネリング用LSP30 3用に割り当てられたものが格納される。

【0046】シムヘッダ505はトンネリング用LSP 303がLSP304の転送経路として用いられるLS R107とLSR109との間でのみ付与され、その他 の区間ではシムヘッダ504が先頭にくる。

【0047】図7は本発明の第2の実施の形態における LSR107の動作を示すフローチャートである。これ ら図4と図5と図7とを参照して本発明の第2の実施の 形態の動作について説明する。

【0048】LSR106はLSR107を経由してL SR110へ至るLSPを新規に設定しようとする場合 について考える。ここで、新規に設定しようとするLS Pは要求帯域等の付帯パラメータを含むものであるとす

【0049】LSR106はLSP設定要求405をL SR107へ送信し、これを受信したLSR107は、 本発明の第1の実施の形態と同様に、出側LSRまでの 経路を同一にすることができるLSPが存在するかをチ エックする(図7ステップS41、S42)。もしも存 在すれば、新規に設定しようとするLSPをそのLSP にマージしようとする。図4においてはLSP304が マージされようとするLSPである。

【0050】まず、LSP304がLSR107におい て、トンネリング用LSPを転送経路の一部として用い ているかどうかをチェックする(図7ステップS4

3)。ステップS43の結果、LSP304がLSR1 07においてトンネリング用LSPを転送経路の一部と して用いているならば、まずその新規に設定しようとす るLSPを収容することができるように、トンネリング 用LSPのパラメータ変更を、図2ステップS13(図 2ステップ S 3~S 9) と同様の手順で、ネゴシエーシ ョンする(図7ステップS45)。図4においてはLS P304がLSR107においてトンネリング用LSP 303を転送経路の一部として用いているので、ステッ プS43からステップS45へと移る。

【0051】ステップS13とは図2において破線で囲

Kとなり、何らかの原因でパラメータ変更ができないな らばNGとなる。図2の場合にはOKならばステップS 10に移り、NGならばステップS12に移る。

【0052】ステップS45において、パラメータ変更 が成功する場合のパラメータ変更に関するメッセージの やりとりは、LSR107からLSR108へのパラメ ータ変更要求407、LSR108からLSR109へ のパラメータ変更要求409、LSR109からLSR 108へのパラメータ変更応答410、LSR108か らLSR107へのパラメータ変更応答408の順序で 10 行われる。

【0053】ステップS45の結果、パラメータ変更が 成功しなかったならば、マージを行わずにLSPを設定 する手順に移行する(図7ステップS52)。もしもパ ラメータ変更が成功したならば、LSP304自体のパ ラメータ変更を行う(図7ステップS47)。

【0054】ステップS47において、パラメータ変更 が成功する場合のパラメータ変更に関するメッセージの やりとりは、LSR107からLSR109へのパラメ ータ変更要求411、LSR109からLSR110へ 20 のパラメータ変更要求413、LSR110からLSR 109へのパラメータ変更応答414、LSR109か らLSR107へのパラメータ変更応答412の順序で 行われる。

【0055】ステップS43の結果、LSP304がL SR107においてトンネリング用LSPを転送経路の 一部として用いていない場合は、直接ステップS47の 手順に移り、LSP304のパラメータ変更を行う(図 7ステップS47)。

【0056】ステップS47の結果、パラメータ変更が 30 成功しなかったならば、マージを行わずにLSPを設定 する手順に移行する(図7ステップS52)。もしもパ ラメータ変更が成功したならば、新規に設定しようとす るLSPをLSP304にマージを行い、LSR106 に対してLSP設定応答406を送信する(図7ステッ プS50,S51)。ステップS50,S51の結果、 LSR106を起点とし、LSR107においてLSP 304にマージされるLSP305の設定が完了する。 【0057】次に、ステップS42において、LSP設 定要求405を受信したLSR107において、出側L 40 SRまでの経路を同一にすることができるLSPが存在 しなかった場合の動作について説明する。図5におい て、LSR106がLSR107を経由してLSR11 1へ至るLSPを新規に設定しようとする場合はこのよ うな状況になる。

【0058】まず、LSR107において設定されてい るトンネリング用LSPの終点までの経路を、新規に設 定しようとするLSPの通過経路の一部とすることがで きるかどうかをチェックする(図7ステップS44)。 ここで、トンネリング用LSPの起点は必ずしもLSR 50 ネリング用LSP303が転送経路として用いられてい

107である必要はない。

【0059】ステップS44の結果、LSR107にお いて設定されているトンネリング用LSP303の終点 までの経路が、新規に設定しようとするLSPの通過経 路の一部とすることができないならば、新規に設定しよ うとするLSPをトンネリング用LSPに収容させよう とせずに、LSPを設定する手順に移行する(図7ステ ップS52)。

【0060】ステップS44の結果、LSR107にお いて設定されているトンネリング用LSP303の終点 までの経路が、新規に設定しようとするLSPの通過経 路の一部とすることができるとする。図5に示す例では この場合に相当し、トンネリング用LSP303に対し て、新規に設定しようとするLSPを収容することがで きるようにパラメータの変更を行う(図7ステップS4

【0061】ステップS46において、パラメータ変更 が成功する場合のパラメータ変更に関するメッセージの やりとりは、ステップS45においてパラメータ変更が 成功する場合と同様である。

【0062】ステップS46の結果、パラメータ変更が 成功しなかったならば、新規に設定しようとするLSP をトンネリング用LSP303に収容させようとせず に、LSPを設定する手順に移行する(図7ステップS 52)。もしもパラメータ変更が成功したならば、新規 に設定しようとするLSPをトンネリング用LSP30 3に収容し、トンネリング用LSP303の終点LSR 109へLSP設定要求415を送信する(図7ステッ プS48, S49)。

【0063】ステップS49以降のLSP設定が成功す る場合のメッセージのやりとりは、LSR109からL SRI11へのLSP設定要求417、LSR111か らLSR109へのLSP設定応答418、LSR10 9からLSR107へのLSP設定応答416、LSR 107からLSR106へのLSP設定応答406の順 序で行われる。

【0064】もしもステップS49以降でLSPの設定 に失敗した場合には、ステップ S 4 8 で行ったトンネリ ング用LSP303へ収容されている状態を解除し、L SPの設定はエラーとなる。

【0065】ステップS49以降でLSP設定に成功す ると、LSR106を起点とし、LSR107、LSR 109を経由してLSR111へ至るLSP306の設 定が完了する。LSP306の転送経路のうち、LSR 107からLSR109までの区間においては、LSP 304とトンネリング用LSP303上でマージされて

【0066】LSP306上を転送されるMPLSのパ ケット構成について述べる。LSP306のうち、トン

16

る部分においては、LSP306用に割り当てられたラ ベルを格納したシムヘッダの前にLSP303用に割り 当てられたラベルを格納したシムヘッダがつけられて転 送される。

【0067】例えば、LSR107とLSR108の間 では、LSP設定応答416で割り当てられたラベルを 格納したシムヘッダの前に、LSP設定応答408で割 り当てられたラベルを格納したシムヘッダがつけられ る。

を新規に設定しようとするLSPの通過経路の一部とし て用いることができる場合に、新規に設定しようとする LSPをトンネリング用LSPが収容することができる ように、トンネリング用LSPのパラメータの変更をネ ゴシエーションし、もしも変更可能ならば、トンネリン グ用LSPを新規に設定しようとするLSPの一部とし て用いる。

【0069】この他にも、トンネリング用LSPが、新 規に設定しようとするLSPをネゴシエーションを行わ ずに収容することができることが分かっている場合に は、ネゴシエーションを行わずに、新規に設定しようと するLSPをトンネリング用LSPに収容する。すなわ ち、図7のステップS46が省かれる。

【0070】また、本実施の形態では、トンネリング用 LSPは予め設定されているとしたが、トンネリング用 LSPが存在しない場合に、新規に設定しようとするL SPを既に設定されていると経路の一部を共有すること ができるとする。この時、その共有部分において新たに トンネリング用LSPを設定し、そのトンネリング用L SPの部分において、新規に設定しようとするLSPを 30 既に設定されている LSPにマージすることも可能であ

【0071】すなわち、この場合、図7のステップS4 6において、トンネリング用LSPのパラメータ変更を ネゴシエーションする代わりに、新規に設定しようとす るLSPと既に設定されているLSPをともに収容する ことができるようなトンネリング用LSPを設定する。

【0072】また、本実施の形態ではラベルスタックの 階層は2階層であったが、これを任意の数の階層に拡張 することも可能である。すなわち、トンネリング用LS 40 Pの経路の一部としてトンネリング用LSPが用いら れ、任意の数が重ねられるという場合においても適用す ることができる。

【0073】また、本実施の形態では、MPLS網の代 わりにATM網、LSPの代わりにVC、トンネリング 用LSPの代わりにVP(Virtual Path)、LSRの代わ りにATMスイッチを用いた場合にも上記と同様にして 実施することができる。この場合は、トンネリング用V Pによってトンネリングされている部分においては、V Pスイッチングが行われる。

【0074】本実施の形態によって、トンネリング用し SPの転送経路部分においてのみマージを行うことがで きるので、付帯パラメータをもったLSPのマージを行 うことができるだけでなく、一度マージを行っても、ト ンネリング用LSPの転送経路部分以外では分岐を行う ことが可能である。

【0075】本実施の形態の図5においては、LSP3 04とLSP306とがトンネリング用LSP303に よって、LSR107とLSR109との間でマージさ 【0068】本実施の形態では、トンネリング用LSP 10 れているが、LSR109において、それぞれLSR1 10とLSR111とへと分岐している。

> 【0076】次に、図1を参照して本発明の第1の実施 例について説明する。かかる実施例は本発明の第1の実 施の形態に対応するものである。本実施例ではMPLS 網1内にLSR101~104が存在し、各LSR10 1~104間はリンク201~203によって接続され ている。また、LSR101を起点とし、LSR102 を経由してLSR103を終点とするLSP301が予 め設定されている。LSP301には通過リンクの予約 帯域として10メガビット/秒が各LSR101~10 4において設定されている。

> 【0077】 ここで、LSR104からLSR102を 経由してLSR103を終点とするLSPを新規に設定 しようとする。ここで、新規に設定しようとするLSP の予約したい帯域は5メガビット/秒であるとする。

【0078】LSR104は自ノードにおいて、5メガ ビット/秒の帯域予約を仮設定し、LSR102へLS P設定要求(ラベルリクエストメッセージ) 401を送 信する。LSP設定要求401には通過ノードがLSR 102、103であるという情報と、予約したい帯域で ある5メガビット/秒というトラフィックパラメータと が入れられている。

【0079】LSP設定要求401を受信したLSR1 02は、出側LSR103までの経路を同一にすること ができるLSPがLSR102において存在するかどう かを検索する。ここでは、出側LSR103までの経路 が同一であるLSP301が検索にかかる。

【0080】次に、LSP301が予約帯域というパラ メータを備えているかをチェックし、備えているなら ば、そのパラメータを変更して新規に設定しようとする LSPとマージが行えるかどうかをチェックする。

【0081】ここでは、10メガビット/秒というLS P301の予約帯域を、新規に設定しようとするLSP の予約したい帯域である5メガビット/秒と足し合わせ ることが可能かどうかが調べられる。もしも足し合わせ て合計 15メガビット/秒に変更することが可能である ならば、LSR102において、LSP301の予約帯 域をその値に仮設定する。

【0082】次に、LSR102はLSR103に対し 50 てパラメータ変更要求403を送信する。パラメータ変

更要求403にはLSP301の変更したい予約帯域で ある15メガビット/秒という値が入れられている。

【0083】パラメータ変更要求403を受信したLS R103は、LSP301の予約帯域が15メガビット /秒に変更可能かどうかを判断する。もしも変更可能な らば、LSP301の予約帯域を15メガビット/秒に 変更し、LSR102ヘパラメータ変更応答404を返 す。

【0084】パラメータ変更応答404を受信したLS R102は仮設定していた値を本設定し、LSR104 へLSP設定応答(ラベルマッピングメッセージ) 40 2を返す。 LSP設定応答402には、設定後にLSP 302上を流れるMPLSのパケットがLSR104か らLSR102へ転送される時に用いられるラベル値が 入れられている。このラベル値は、LSP301におけ るLSR102からLSR103への転送ラベルとバイ ンディングされる。

【0085】LSP設定応答402を受信したLSR1 04は、仮設定していた帯域予約を本設定し、新規に設 定しようとするLSPをLSP301に対してマージし 20 た後、LSPの設定を終了する。すなわち、LSR10 5を起点とし、LSR102でLSP301にマージさ れるLSP302が設定される。LSP302は予約帯 域が5メガビット/秒であり、LSP301のLSR1 02からLSR103までの部分は予約帯域が15メガ ビット/秒となる。

【0086】図8は本発明の第2の実施例を説明するた めの図である。この図8を参照して本発明の第2の実施 例について説明する。かかる実施例は、本発明の第2の 実施の形態に対応するものである。

【0087】MPLS網1はLSR112~118から 構成されており、各LSR112~118間はリンク2 10~215によって接続されている。また、MPLS 網1はOSPF (Open Shortest Path First)ルーティン グプロトコルのエリア2、3及びバックボーン4に領域 が区切られているとする。

【0088】予め、LSR113を起点とし、LSR1 14、LSR116を経由してLSR117へ至るLS P308が設定されているとする。LSP308がバッ クボーン4を通過する部分であるLSR114とLSR 40 116の間は、LSR114を起点とし、LSR115 を経由してLSR116へ至るトンネリング用LSP3 07によってトンネリングされている。

【0089】トンネリング用LSP307によってLS P308の転送経路がトンネリングされている部分にお いて、LSP308上を流れるパケットにはLSP30 8用に割り当てられたラベルの前にトンネリング用LS P307用に割り当てられたラベルがスタックされてい る。

帯域として30メガビット/秒が通過する各LSRにお いて設定されている。トンネリング用LSP307にお いても、LSP308を収容するために30メガビット /秒の帯域予約がなされている。

【0091】 ここで、 LSR112はLSR118まで LSPを新規に設定しようとする。ここで、新規に設定 しようとするLSPの予約したい帯域は20メガビット /秒であるとする。

【0092】まず、LSR112はOSPFによって収 集されたトポロジ情報を用いてLSR118への経路を 計算する。OSPFでは自ノードの属するエリア内に関 しては各リンク210~215の接続状況がわかるが、 自ノードの属するエリア外に関しては到達可能性しか分 からないので、この計算の結果、LSR118へ到達す るためには、LSR114を通ればよいということしか 分からない。

【0093】LSR112はLSR114へ対して、L SP設定要求(ラベルリクエストメッセージ) 419を 送信する。LSP設定要求419には通過ノードがLS R114、宛先ノードがLSR118であるという情報 と、予約したい帯域である20メガビット/秒というト ラフィックパラメータが入れられている。

【0094】LSP設定要求419を受信したLSR1 1 4 は L S R 1 1 8 への経路計算を行う。この計算の結 果、バックボーン4内においてはLSR115、LSR 116を通ればよいということが分かる。

【0095】ここで、出側LSR118までの経路を同 一にすることができるLSPがLSR114において存 在するかどうかをチェックする。すなわち、LSR11 5, 116を経由してLSR118へ至るLSPが存在 するか調べる。ここではそのようなLSPは存在しな

【0096】よって、LSR114において設定されて いるトンネリング用LSPの終点までの経路を、設定し ようとしているLSPの通過経路の一部にすることがで **きるかどうかをチェックする。ここでは、LSR115** を経由してLSR116を終点とするトンネリング用L SPが存在するかを調べる。したがって、トンネリング 用LSP307がその候補として選ばれる。

【0097】次に、トンネリング用LSP307が予約 帯域というパラメータを備えているかをチェックする。 もしも備えているならば、トンネリング用LSP307 の予約帯域を、上述した本発明の第1の実施例と同様の 手順で、30メガビット/秒と20メガビット/秒とを 足し合わせた50メガビット/秒に変更する。

【0098】トンネリング用LSP307の予約帯域の 変更が成功したならば、以後、LSR114からLSR 116へのLSP設定要求421、LSR116からL SR118へのLSP設定要求423、LSR118か 【0090】また、LSP308には通過リンクの予約 50 らLSR116へのLSP設定応答424、LSR11

6からLSR114へのLSP設定応答422、LSR 1 1 4 から L S R 1 1 2 への L S P 設定応答 4 2 0 の順 序でLSPの設定が行われる。

【0099】LSR116がLSP設定要求423をL SR118を送信する際、OSPFによってLSR11 8への経路が計算され、次ホップがLSR118である ということが分かる。結果的に、LSR112を起点と し、LSR114、LSR116を経由してLSR11 8へ至るLSP309が設定される。

【0100】LSP309の転送経路のうち、バックボ 10 を途中で分岐することができるという効果がある。 ーン4を通過する部分であるLSR114とLSR11 6との間は、トンネリング用LSP307が用いられて いる。バックボーン4においてはLSP309上を流れ るパケットに対して、LSP309に割り当てられたラ ベルの前にトンネリング用LSP307用に割り当てら れたラベルがスタックされる。

【0101】また、LSP309には予約帯域として2 0メガビット/秒が設定される。トンネリング用LSP 307においては、LSP308の予約帯域である30 メガビット/秒とLSP309の予約帯域である20メ 20 ガビット/秒とを足し合わせた50メガビット/秒の帯 域予約がなされる。

【0102】バックボーン4においては、エリア2から 入ってきたLSP308とLSP309とはトンネリン グ用LSP307によってマージされており、エリア3 に出ていく時にそれぞれLSR117、LSR118へ と分岐するという形態になっている。

【0103】このように、LSPのマージを行う際に、 既存ののLSPのもつ付帯パラメータを、新規に設定し ようとするLSPを収容することができるように変更を 30 行ってからマージを行う。これによって、従来マージで きなかった要求帯域等をもつLSPのマージを行うこと が可能になり、より多くのLSPをマージすることがで きるので、ラベル数の節減に寄与する。これは網の大規 模化をする上で不可欠である。

【0104】また、予め設定されたトンネリング用LS Pに、複数のLSPをその付帯パラメータとともに収容 することで、トンネリング用LSPの部分のみでのマー ジが可能になる。例えば、ほとんどのLSPが網内の同 一の部分を通過する場合でも、従来、出側LSRまでの 40 24 LSP設定応答 経路を同一にすることができる場合の他はマージを行う ことができなかったが、同一経路を通過する部分にトン ネリング用LSPを設定しておくことによって、この部 分においてマージを行うことができる。

[0105]

【発明の効果】以上説明したように本発明の通信コネク ションマージ方式によれば、LSPのマージを行う際 に、既存ののLSPのもつ付帯パラメータを、新規に設 定しようとするLSPを収容することができるように変

更を行ってからマージを行うことによって、マージを行 う時にマージされるLSPの要求帯域等のパラメータも 一緒にマージすることができるという効果がある。

20

【0106】また、本発明の他の通信コネクションマー ジ方式によれば、予め設定されたトンネリング用LSP に、複数のLSPをその付帯パラメータとともに収容す ることで、トンネリング用LSPの部分のみでのマージ を可能とすることによって、LSPのパラメータも一緒 にマージするだけではなく、一度マージを行ったLSP

【図面の簡単な説明】

【図1】本発明の第1の実施の形態を説明するための図 である。

【図2】本発明の第1の実施の形態におけるLSR10 2の動作を示すフローチャートである。

【図3】本発明の第1の実施の形態におけるLSR10 3の動作を示すフローチャートである。

【図4】本発明の第2の実施の形態を説明するための図 である。

【図5】本発明の第2の実施の形態を説明するための図 である。

【図6】MPLSパケットの構成を説明するための図で ある。

【図7】本発明の第2の実施の形態におけるLSR10 7の動作を示すフローチャートである。

【図8】本発明の第2の実施例を説明するための図であ

【図9】MPLS網における従来のマージの動作を説明 するための図である。

【符号の説明】

1 MPLS網

2,3 OSPFのエリア

4 OSPFのバックボーン

101~118 LSR

201~215 リンク

301~309 LSP

401, 405, 415, 417, 419, 421, 4 23 LSP設定要求

402, 406, 416, 418, 420, 422, 4

403, 407, 409, 411, 413 パラメータ 変更要求

404, 408, 410, 412, 414 パラメータ 変更応答

501 MPLSパケット

502 IPデータグラム

503 IPヘッダ

504,505 シムヘッダ

【図7】

【図8】

