Binomial Heaps

Introduction and Worst-Case Analysis

Amortized Analysis of Insert

Amortized Analysis of Lazy-Union

Priority Queues

Abstract data typ: manage a set of elements with keys (their priority) under the operations *insert, minimum, deleteMinimum*, and optionally decreaseKey, remove and merge.

Implementations:

	deleteMin	decreaseKey	insert	build
Binary heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Balanced Search Trees	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(n \log n)$
Fibonaccis Heaps	$O(\log n)^*$	$O(1)^*$	O(1)	O(n)

^{*} amortised

Priority Queues

Abstract data typ: manage a set of elements with keys (their priority) under the operations *insert, minimum, deleteMinimum*, and optionally decreaseKey, remove and merge.

Implementations:

	deleteMin	decreaseKey	insert	build
Binary heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Balanced Search Trees	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(n \log n)$
Fibonaccis Heaps	$O(\log n)^*$	$O(1)^*$	O(1)	O(n)

^{*} amortised

Runtime for Dijkstras Algorithm: $O(m + n \log n)$ using Fibonacci heaps

Mergeable Priority Queues

Abstract data typ: manage a set of elements with keys (their priority) under the operations *insert, minimum, deleteMinimum*, and optionally decreaseKey, remove and merge.

Implementations:

	deleteMin	decreaseKey	insert	build
Binary heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Balanced Search Trees	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(n \log n)$
Fibonaccis Heaps	$O(\log n)^*$	$O(1)^*$	O(1)	O(n)

^{*} amortised

Goal today: Efficiently mergeable heaps

Mergeable Priority Queues

Abstract data typ: manage a set of elements with keys (their priority) under the operations *insert, minimum, deleteMinimum*, and optionally decreaseKey, remove and merge.

Implementations:

	deleteMin	decreaseKey	insert	merge
Binary heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	
Binomial heaps				
Fibonaccis Heaps	$O(\log n)^*$	$O(1)^*$	O(1)	

* amortised

Goal today: Efficiently mergeable heaps

Mergeable Priority Queues

Abstract data typ: manage a set of elements with keys (their priority) under the operations *insert, minimum, deleteMinimum*, and optionally decreaseKey, remove and merge.

Implementations:

	deleteMin	decreaseKey	insert	merge
Binary heaps	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
Binomial heaps	$O(\log n)^*$	$O(\log n)$	O(1)	O(1)
Fibonaccis Heaps	$O(\log n)^*$	$O(1)^*$	O(1)	O(1)

^{*} amortised

Goal today: Efficiently mergeable heaps

- $D_i = \text{data structure after } i \text{th operation}$
- $c_i = \text{actual cost of } i \text{th operation}$
- $\hat{c}_i =$ amortized cost of ith operation = coins

- $D_i = \text{data structure after } i \text{th operation}$
- $c_i = \text{actual cost of } i \text{th operation}$
- $\hat{c}_i =$ amortized cost of ith operation = coins

- assign amortized cost ("coins") to every operation
- check whether enough coins are saved to pay for all operations:

for all
$$j: \sum_{i=1}^{j} \hat{c}_i - \sum_{i=1}^{j} c_i \ge 0$$
 (coins saved in step $i: \hat{c}_i - c_i$)

- $D_i = \text{data structure after } i \text{th operation}$
- $c_i = \text{actual cost of } i \text{th operation}$
- $\hat{c}_i =$ amortized cost of ith operation = coins

- assign amortized cost ("coins") to every operation
- check whether enough coins are saved to pay for all operations:

for all
$$j: \sum_{i=1}^{j} \hat{c}_i - \sum_{i=1}^{j} c_i \ge 0$$
 (coins saved in step $i: \hat{c}_i - c_i$)

potential method:

- say how many "coins" are saved with data structure D_i : $\Phi(D_i)$ ("potential")
- calculate amortized costs from potential:

$$\hat{c}_i = c_i$$
 + coins saved in step $i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
= c_i + Δ_i (change in potential)

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	example: $k=6$
0	0	0	0	0	0	0	
1	0	0	0	0	0	1	

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	(
0	0	0	0	0	0	0	
1	0	0	0	0	0	1	

example: k = 6

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0

example: k = 6

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1

example: k = 6

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1
6	0	0	0	1	1	0
7	0	0	0	1	1	1
8	0	0	1	0	0	0

example: k = 6

Algorithm. increment a k- bit binary counter

Representation as array. A[j]: jth least-significant bit

value	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1
6	0	0	0	1	1	0
7	0	0	0	1	1	1
8	0	0	1	0	0	0

example: k = 6

flipped bits

costs. number of bits flipped. How many for n increments?

actual cost per operation: 1 coin per bit flipped

invariant: ???

accounting/amortized cost (\hat{c}_i): ???

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i): ???

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🕕 🕕

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🕕 🕕

• 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🕕 🕕

• 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🔘 🔘

• 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🕕 🕕

- 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1
- to flip a 1 to 0: use saved coin

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🔘 🔘

- 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1
- to flip a 1 to 0: use saved coin

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🔘 🔘

- 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1
- to flip a 1 to 0: use saved coin

The worst-case running time of a sequence of n increments (starting from 0) is O(n). The amortized running time of one increments is $O(\hat{c}_i) = O(1)$

actual cost per operation: 1 coin per bit flipped

invariant: Every 1 of the counter has a coin

accounting/amortized cost (\hat{c}_i):

increment: assign 2 coins (\hat{c}_i = 2) 🔘 🔘

- 1 bit flips from 0 to 1: pay 1 coin to flip 0 to 1 and save 1 coin with new 1
- to flip a 1 to 0: use saved coin

The worst-case running time of a sequence of n increments (starting from 0) is O(n). The amortized running time of one increments is $O(\hat{c}_i) = O(1)$

- invariant \Rightarrow number of coins in data structure $\sum_{i=1}^n \hat{c}_i \sum_{i=1}^n c_i \geq 0$
- amortized cost per operation $\hat{c}_i \leq 2$
- actual total costs $\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} \hat{c}_{i} \leq \sum_{i=1}^{n} 2 = 2n$

$$\Phi(D_i) = ???$$

 $\Phi(D_i) = \text{number of 1-bits}$

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$

$$\Phi(D_i)= ext{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0)=0$ and $\Phi(D_i)\geq 0$ for all i

$$\Phi(D_i)= ext{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0)=0 ext{ and } \Phi(D_i)\geq 0 ext{ for all } i$ amortized cost: $\hat{c}_i=c_i+\Phi(D_i)-\Phi(D_{i-1})$

• c_i = number of bits flipped

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$

$$\Phi(D_0) = 0 \text{ and } \Phi(D_i) \geq 0 \text{ for all } i$$

amortized cost: $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

• c_i = number of bits flipped

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 0 1 0 1 1 1

• c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 0 1 1 1 1

- c_i = number of bits flipped
 - = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0
 - = 1 + number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 0 1 1 1 1

- c_i = number of bits flipped
 - = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0
 - = 1 + number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \boxed{1} \boxed{1} \boxed{0} \boxed{0}$

- c_i = number of bits flipped
 - = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0
 - = 1 + number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

```
amortized cost: \hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}
```

- c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0 = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s

$$\Phi(D_i)= ext{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0)=0$ and $\Phi(D_i)\geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}$

- c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0 = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s = number of bits flipped from 0 to 1 number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}$

- c_i = number of bits flipped
 - = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0
 - = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s
 - = number of bits flipped from 0 to 1 number of bits flipped from 1 to 0
 - = 1 number of bits flipped from 1 to 0

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}$

- c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0
 - = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s = number of bits flipped from 0 to 1 number of bits flipped from 1 to 0
 - = 1 number of bits flipped from 1 to 0

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}$

- c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0 = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s = number of bits flipped from 0 to 1 number of bits flipped from 1 to 0 = 1 number of bits flipped from 1 to 0

$$\begin{split} \hat{c}_i &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \\ &= (1 + \text{number of bits flipped from 1 to 0}) + \\ &\quad (1 - \text{number of bits flipped from 1 to 0}) \end{split}$$

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

amortized cost:
$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $\boxed{0} \ \boxed{1} \ \boxed{1} \ \boxed{0} \ \boxed{0}$

- c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0 = 1 + number of bits flipped from 1 to 0
- change in potential: Δ_i = increase in number of 1s = number of bits flipped from 0 to 1 number of bits flipped from 1 to 0 = 1 number of bits flipped from 1 to 0

$$\begin{split} \hat{c}_i &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \\ &= (1 + \text{number of bits flipped from 1 to 0}) + \\ &\quad (1 - \text{number of bits flipped from 1 to 0}) = 2 \end{split}$$

$$\Phi(D_i) = \text{ number of 1-bits } = \sum_{j=0}^k A[j]$$
 $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i

- amortized cost: $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 2$
 - c_i = number of bits flipped = number of bits flipped from 0 to 1 + number of bits flipped from 1 to 0

• change in potential: Δ_i = increase in number of 1s = number of bits flipped from 0 to 1 - number of bits flipped from 1 to 0 = 1 — number of bits flipped from 1 to 0

The worst-case running time of a sequence of n increments (starting from 0) is O(n). The amortized running time of one increments is $O(\hat{c}_i) = O(1)$

Binomial trees and Binomial heaps

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

 B_0 B_1 B_2 Question: What does B_3 look like?

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

Lemma: A binomial tree B_k has

- 2^k nodes
- height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

Lemma: A binomial tree B_k has

- 2^k nodes
- height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

Binomial tree: recursively defined

 B_0 single node

 B_k two B_{k-1} joined by making one a child of the root of the other

Lemma: A binomial tree B_k has

- 2^k nodes
- height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

Corollary: Maximal degree in a binomial tree on n nodes is $\log n$.

Lemma: A binomial tree B_k has 2^k nodes, height k

- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

base: k=0

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

 B_0

base:
$$k=0$$

• $1=2^0$ nodes, height 0

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

 B_0

Proof: Induction(k)

base: k=0

- $1=2^0$ nodes, height 0
- on level 0 exactly $\binom{0}{0} = 1$ nodes

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i=0,..,k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

 B_0

Proof: Induction(k)

base: k=0

- $1=2^0$ nodes, height 0
- on level 0 exactly $\binom{0}{0} = 1$ nodes
- root of degree 0: no children

Lemma: A binomial tree B_k has 2^k nodes, height k

- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

Lemma: A binomial tree B_k has • 2^k nodes, height k

- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

step: k > 0

• $2^{k-1} + 2^{k-1} = 2^k$ nodes

Lemma: A binomial tree B_k has

- ... neight k on level i for i=0,..,k exactly $\binom{k}{i}$ nodes root of degree k; children of degree i

Proof: Induction(k)

step: k > 0

• $2^{k-1} + 2^{k-1} = 2^k$ nodes, height (k-1) + 1 = k

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

- $2^{k-1}+2^{k-1}=2^k$ nodes, height (k-1)+1=k on level i=0 exactly $\binom{k}{0}=1$ nodes

Lemma: A binomial tree B_k has

 B_0

 B_1 B_2

 B_3

- 2^k nodes, height k
- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

- $2^{k-1} + 2^{k-1} = 2^k$ nodes, height (k-1) + 1 = k
- on level i=0 exactly $\binom{k}{0}=1$ nodes i>0:

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

•
$$2^{k-1} + 2^{k-1} = 2^k$$
 nodes, height $(k-1) + 1 = k$

• on level
$$i=0$$
 exactly $\binom{k}{0}=1$ nodes
$$i>0\text{: }\binom{k-1}{i}+\binom{k-1}{i-1}=\binom{k}{i} \text{ nodes}$$
 left right

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

step: k > 0

•
$$2^{k-1} + 2^{k-1} = 2^k$$
 nodes, height $(k-1) + 1 = k$

• on level
$$i=0$$
 exactly $\binom{k}{0}=1$ nodes
$$i>0\text{: }\binom{k-1}{i}+\binom{k-1}{i-1}=\binom{k}{i} \text{ nodes}$$
 left right

• degree of root: (k-1)+1=k

Lemma: A binomial tree B_k has

- 2^k nodes, height k
- on level i for i = 0, ..., k exactly $\binom{k}{i}$ nodes
- root of degree k; children of degree k-1,...,0

Proof: Induction(k)

•
$$2^{k-1} + 2^{k-1} = 2^k$$
 nodes, height $(k-1) + 1 = k$

• on level
$$i=0$$
 exactly $\binom{k}{0}=1$ nodes
$$i>0\text{: }\binom{k-1}{i}+\binom{k-1}{i-1}=\binom{k}{i} \text{ nodes}$$
 left right

- degree of root: (k-1)+1=k
- degree of children: $k-1, k-2, \ldots, 0$ right

Binomial Heap is a set of binomial trees where each node stores a key with the binomial heap property:

- each binomial tree fulfills the MinHeap-property
- for all $k \geq 0$ there is at most one binomial tree B_k

Binomial Heap is a set of binomial trees where each node stores a key with the binomial heap property:

- each binomial tree fulfills the MinHeap-property
- for all $k \geq 0$ there is at most one binomial tree B_k
- \Rightarrow a binomial heap on n nodes consists of at most $\lfloor \log n \rfloor + 1$ binomial trees and these correspond to the binary representation of $n = \sum_{i=0}^{\lfloor \log n \rfloor} b_i 2^i$

Binomial Heap is a set of binomial trees where each node stores a key with the binomial heap property:

- each binomial tree fulfills the MinHeap-property
- for all $k \geq 0$ there is at most one binomial tree B_k
- \Rightarrow a binomial heap on n nodes consists of at most $\lfloor \log n \rfloor + 1$ binomial trees and these correspond to the binary representation of $n = \sum_{i=0}^{\lfloor \log n \rfloor} b_i 2^i$

What does a binomial heap on n=6 or n=8 nodes look like?

Implementation:

- each node x stores $\ker[x]$, degree [x], and three pointers to its parent, leftmost child, right sibling
- root of binomial heaps are stored in a linked list (of heaps of increasing size)

make-0: generate empty heap (i.e. empty list)

make-0: generate empty heap (i.e. empty list) head[H] o NIL

make-0: generate empty heap (i.e. empty list) head[H] o NIL

min: iterate through list of roots (or store extra pointer)

make-0: generate empty heap (i.e. empty list) head[H] o NIL

min: iterate through list of roots (or store extra pointer) min[H]


```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k

link(y, z) (assuming $key[z] \le key[y]$)


```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k

```
link(y, z) (assuming key[z] \le key[y]) parent[y] = z
```



```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k

```
\begin{aligned} & \text{link}(y,z) \text{ (assuming key}[z] \leq \text{key}[y]) \\ & \text{parent}[y] = z \\ & \text{sibling}[y] = \text{child}[z] \end{aligned}
```



```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k

```
\begin{aligned} & \text{link}(y,z) \text{ (assuming key}[z] \leq \text{key}[y]) \\ & \text{parent}[y] = z \\ & \text{sibling}[y] = \text{child}[z] \\ & \text{child}[z] = y \end{aligned}
```



```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k

```
\begin{aligned} & \text{link}(y,z) \text{ (assuming key}[z] \leq \text{key}[y]) \\ & \text{parent}[y] = z \\ & \text{sibling}[y] = \text{child}[z] \\ & \text{child}[z] = y \\ & \text{degree}[z] = \text{degree}[z] + 1 \end{aligned}
```



```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1) How to make a 1-binomial heap?
 - union with existing heap

```
make-0: generate empty heap (i.e. empty list)
       iterate through list of roots (or store extra pointer)
min:
union(H_1, H_2):

    merge the lists of roots (by increasing degree/size)

 • iterate through merged list and link binomial trees of equal k
insert(H, a):

    make a 1-binomial heap (make-1) How to make a 1-binomial heap?

    union with existing heap

                                         parent[x] = NIL
                                         child[x] = NIL
                                         sibling[x] = NIL
                                         \text{key}[x] = a
                                         degree[x] = 0
                                         Head[H'] = x
```

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: Q: how to realize decreasekey(x,k)?

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

```
make-0: generate empty heap (i.e. empty list) min: iterate through list of roots (or store extra pointer) union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): Q: how to realize delete(x)?

```
make-0: generate empty heap (i.e. empty list) min: iterate through list of roots (or store extra pointer) union(H_1, H_2):
```

- merge the lists of roots (by increasing degree/size)
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)
- deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap
- delete(x): $decKey(x, -\infty)$; delete-min

make-0

make-0 head →

make-0 head → Ø
insert(5) ???

make-0 head →
insert(5)

insert(7) ????

$$-$$
 5 $-$ (make-1 + union \rightarrow link)

$$-$$
 5 \rightarrow (make-1 + union \rightarrow link)

insert(4) ????


```
union(H, H')
H': \int_{-10}^{10}
11
```


union(H, H')

H': / 10

$$\begin{array}{c} \mathsf{union}(H,H') \\ H'': / \\ 6 \end{array}$$

???

$$\begin{array}{c} \text{union}(H,H') \\ H'': / \\ 6 \end{array}$$

$$\begin{array}{c} \text{union}(H,H') \\ H'': / \\ 6 \end{array}$$

$$\begin{array}{c} \text{union}(H,H') \\ H'': / \\ 6 \end{array}$$

deleteMin

Runtimes: ???

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): $decKey(x, -\infty)$; delete-min

```
Runtimes: ???
```

```
make-0: generate empty heap (i.e. empty list)
min: iterate through list of roots (or store extra pointer)
union(H_1, H_2):
```

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

```
delete(x): decKey(x, -\infty); delete-min
```

```
make-0: generate empty heap (i.e. empty list) O(1) min: iterate through list of roots (or store extra pointer) O(\log n)
```

Runtimes: ???

union(H_1, H_2):

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): $decKey(x, -\infty)$; delete-min

```
make-0: generate empty heap (i.e. empty list) O(1) min: iterate through list of roots (or store extra pointer) O(\log n) union(H_1, H_2):
```

Runtimes: ???

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k insert(H, a):
 - make a 1-binomial heap (make-1)
 - union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): $decKey(x, -\infty)$; delete-min

```
O(1)
make-0: generate empty heap (i.e. empty list)
                                                                          O(\log n)
       iterate through list of roots (or store extra pointer)
min:
                                                                          O(\log n)
union(H_1, H_2):
```

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k

insert(H, a):

- make a 1-binomial heap (make-1)
- union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): decKey($x, -\infty$); delete-min

Runtimes: ???

 $O(\log n)$

```
O(1)
make-0: generate empty heap (i.e. empty list)
                                                                          O(\log n)
       iterate through list of roots (or store extra pointer)
                                                                          O(\log n)
union(H_1, H_2):
```

- merge the lists of roots
- iterate through merged list and link binomial trees of equal k

```
insert(H, a):
```

- make a 1-binomial heap (make-1)
- union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): decKey($x, -\infty$); delete-min

Runtimes: ???

 $O(\log n)$

 $O(\log n)$

```
Runtimes: ???
                                                                           O(1)
make-0: generate empty heap (i.e. empty list)
                                                                           O(\log n)
       iterate through list of roots (or store extra pointer)
                                                                           O(\log n)
union(H_1, H_2):

    merge the lists of roots

 • iterate through merged list and link binomial trees of equal k
                                                                           O(\log n)
insert(H, a):
```

- make a 1-binomial heap (make-1)
- union with existing heap

delete-min:

- find min root x and delete it from root list
- union with the list of children of x (in opposite direction)

 $O(\log n)$ deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap

delete(x): $decKey(x, -\infty)$; delete-min

 $O(\log n)$

```
O(1)
make-0: generate empty heap (i.e. empty list)
                                                                           O(\log n)
       iterate through list of roots (or store extra pointer)
                                                                           O(\log n)
union(H_1, H_2):

    merge the lists of roots

 • iterate through merged list and link binomial trees of equal k
                                                                           O(\log n)
insert(H, a):

    make a 1-binomial heap (make-1)

    union with existing heap

delete-min:
                                                                           O(\log n)
 • find min root x and delete it from root list
 • union with the list of children of x (in opposite direction)
                                                                           O(\log n)
deckey: siftUp/bubbleUp in corresponding tree like in ordinary heap
delete(x): decKey(x, -\infty); delete-min
```

Runtimes: ???

Runtimes

	worst-case	
make		
min		
insert		
delete-min		
union		

Runtimes

	worst-case	
make	O(1)	
min	O(1)	
insert	$O(\log n)$	
delete-min	$O(\log n)$	
union	$O(\log n)$	

Runtimes

	worst-case	
make	O(1)	
min	O(1)	
insert	$O(\log n)$	
delete-min	$O(\log n)$	
union	$O(\log n)$	

Which operation has a lower amortized runtime?

Runtimes

	worst-case	amortised
make	O(1)	O(1)
min	O(1)	O(1)
insert	$O(\log n)$	O(1)
delete-min	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$

Amortised Analysis with accounting or potential method

idea: save 1 coin per tree

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m = \# \text{roots} = O(\log n)$

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m = \# \text{roots} = O(\log n)$

link trees of same degree: pay with coins

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m=\# \text{roots} = O(\log n)$

link trees of same degree: pay with coins

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m=\#\mathrm{roots}=O(\log n)$

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m = \# \text{roots} = O(\log n)$ link trees of same degree: pay with coins

deleteMin:

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m=\# \text{roots} = O(\log n)$ link trees of same degree: pay with coins

deleteMin: $\leq \log n$ children of min-node (need a coin each)

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m=\# \text{roots} = O(\log n)$ link trees of same degree: pay with coins

deleteMin: $\leq \log n$ children of min-node (need a coin each) union with remaining roots in $O(\log n)$ time

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m=\#\text{roots}=O(\log n)$ \triangle link trees of same degree: pay with coins

deleteMin: $\leq \log n$ children of min-node (need a coin each) union with remaining roots in $O(\log n)$ time

decreaseKey: does not change number of trees, $\hat{c} = \operatorname{actual} \operatorname{cost} = O(\log n)$

idea: save 1 coin per tree

make-0: $\hat{c}=1$ for creating empty heap link: $\hat{c}=0$ (pay for link with existing coin)

insert: $\hat{c}=3$ (2 for make-1 + 1 for calling union + 0 for linking)

union:

merge lists: $\Theta(m)$, where $m = \# \text{roots} = O(\log n)$ \triangle link trees of same degree: pay with coins

deleteMin: $\leq \log n$ children of min-node (need a coin each) union with remaining roots in $O(\log n)$ time

decreaseKey: does not change number of trees, $\hat{c} = \operatorname{actual} \operatorname{cost} = O(\log n)$

all amortized costs as stated + always enough coins to pay for actual costs

$$\Phi(D_i) = c \cdot \# \text{trees in } D_i$$

 $\Phi(D_i) = c \cdot \# {\sf trees\ in\ } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

 $\Phi(D_i) = c \cdot \# {\sf trees\ in\ } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0)$$

 $\Phi(D_i)=c\cdot\#$ trees in D_i , where $c\geq 1$ is a constant. (here: c=1 works) $\Phi(D_0)=0$, $\Phi(D_i)\geq 0=\Phi(D_0)$ \checkmark $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$
 $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make-0:

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$
 $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1$$
, $\Delta_i = -1 \cdot c$

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$
 $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \to \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

make-1:

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$
 $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \qquad \rightarrow \hat{c_i} = 1 - c \leq 0$$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

insert:

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

insert: a number k>0 trees are "iterated through" and k-1 linked

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \to \hat{c_i} = c_i = 1$

link:
$$c_i = 1$$
, $\Delta_i = -1 \cdot c$ $\rightarrow \hat{c_i} = 1 - c \leq 0$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

insert: a number k>0 trees are "iterated through" and k-1 linked $c_i=1+k$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1$$
, $\Delta_i = -1 \cdot c$ $\rightarrow \hat{c_i} = 1 - c \leq 0$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

insert: a number k>0 trees are "iterated through" and k-1 linked

$$c_i = 1 + k$$
 $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c(1 - (k-1)) = c - c(k-1)$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make-0:
$$c_i = 1$$
, $\Delta_i = 0 \rightarrow \hat{c_i} = c_i = 1$

link:
$$c_i = 1, \Delta_i = -1 \cdot c \longrightarrow \hat{c_i} = 1 - c \le 0$$

make-1:
$$c_i = 1$$
, $\Delta_i = 1 \cdot c \rightarrow \hat{c_i} = 1 + c = \Theta(1)$

insert: a number k>0 trees are "iterated through" and k-1 linked

$$\begin{aligned} c_i &= 1 + k & \Delta_i &= \Phi(D_i) - \Phi(D_{i-1}) = c(1 - (k-1)) = c - c(k-1) \\ \hat{c_i} &= c_i + \Delta_i = 1 + k & + c - c(k-1) \\ &= 2 + c & - (c-1)(k-1) \leq 2 + c = \Theta(1) \end{aligned}$$

 $\Phi(D_i) = c \cdot \# {\sf trees\ in\ } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union:

 $\Phi(D_i) = c \cdot \# {\sf trees\ in\ } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i = k + \ell$, where k = #roots in merged list, $\ell = \#$ links

 $\Phi(D_i)=c\cdot\#$ trees in D_i , where $c\geq 1$ is a constant. (here: c=1 works) $\Phi(D_0)=0$, $\Phi(D_i)\geq 0=\Phi(D_0)$ \checkmark $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$

 $\Phi(D_i)=c\cdot\#$ trees in D_i , where $c\geq 1$ is a constant. (here: c=1 works) $\Phi(D_0)=0$, $\Phi(D_i)\geq 0=\Phi(D_0)$ \checkmark $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\,\ell$ (because of the ℓ links)

 $\Phi(D_i) = c \cdot \# {\sf trees\ in\ } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\;\ell$ (because of the ℓ links) $\to \hat{c_i}=k+\ell-c\;\ell=O(\log n)$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union:
$$c_i=k+\ell$$
, where $k=\#$ roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\;\ell$ (because of the ℓ links) $\to \hat{c_i}=k+\ell-c\;\ell=O(\log n)$

deleteMin:

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i = k + \ell$, where k = #roots in merged list, $\ell = \#$ links $k > \ell > 0$ and $k, \ell = O(\log n)$

 $\Delta_i = -c\,\ell$ (because of the ℓ links) $\to \hat{c_i} = k + \ell - c\,\ell = O(\log n)$

deleteMin: $c_i = 1 + (r + k) + \ell + \log n$, where r = degree of min

find and remove min union update min pointer

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\,\ell$ (because of the ℓ links) $\to \hat{c_i}=k+\ell-c\,\ell=O(\log n)$

deleteMin: $c_i=1+(r+k)+\ell+\log n$, where r= degree of min $\Delta_i=c\cdot(r-1)-c\cdot\ell=c\cdot(r-\ell-1)$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\,\ell$ (because of the ℓ links) $\to \hat{c_i}=k+\ell-c\,\ell=O(\log n)$

deleteMin: $c_i=1+(r+k)+\ell+\log n$, where r= degree of min $\Delta_i=c\cdot(r-1)-c\cdot\ell=c\cdot(r-\ell-1)$ $\hat{c_i}=c_i+\Delta_i=O(\log n)$, since $k,\ell,r\leq \log n$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 1$ is a constant. (here: c = 1 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

union: $c_i=k+\ell$, where k=#roots in merged list, $\ell=\#$ links $k>\ell\geq 0$ and $k,\ell=O(\log n)$ $\Delta_i=-c\,\ell$ (because of the ℓ links) $\to \hat{c_i}=k+\ell-c\,\ell=O(\log n)$

deleteMin: $c_i=1+(r+k)+\ell+\log n$, where r= degree of min $\Delta_i=c\cdot(r-1)-c\cdot\ell=c\cdot(r-\ell-1)$ $\hat{c_i}=c_i+\Delta_i=O(\log n)$, since $k,\ell,r<\log n$

→ all amortized costs as claimed

Runtimes

	worst-case	amortised
make	O(1)	O(1)
min	O(1)	O(1)
insert	$O(\log n)$	O(1)
delete-min	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$

Amortised Analysis with accounting or potential method **Lazy Union:**

only concatenate lists and link only for a delete-min

Runtimes

	worst-case	amortised	amortised
	Worst case		lazy union
make	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(1)
insert	$O(\log n)$	O(1)	O(1)
delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$	O(1)

Amortised Analysis with accounting or potential method **Lazy Union:**

only concatenate lists and link only for a delete-min

store: roots in doubly-linked list and maintain min-pointer

operations:

make-0 and link: as before

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

example:

insert(5)

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

example:

insert(5)

insert(7)

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

store: roots in doubly-linked list and maintain min-pointer operations:

```
make-0 and link: as before
```

union: only concatenate lists (!) + update min-pointer

```
example: insert(5) 5 insert(7) 7 \rightarrow 5 insert(4) 4 \rightarrow 5 \rightarrow 7 union(H_{,//}^{10})
```

store: roots in doubly-linked list and maintain min-pointer operations:

```
make-0 and link: as before
```

union: only concatenate lists (!) + update min-pointer

```
example:
insert(5)
insert(7)
```

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

example: insert(5) 5 $union(H, \frac{2}{7})$ insert(7) $7 \rightarrow 5$ 6 insert(4) $4 \rightarrow 5 \rightarrow 7$ $10 \rightarrow 4 \rightarrow 5 \rightarrow 7$

$$2 \longrightarrow 10 \longrightarrow 4 \longrightarrow 5 \longrightarrow 7$$

$$0 \longrightarrow 4 \longrightarrow 5 \longrightarrow 7$$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)
remove min-node

$$2 \longrightarrow 10 \longrightarrow 4 \longrightarrow 5 \longrightarrow 7$$

$$6 \qquad 11$$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node create array A of size $|\log_2 n| + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node create array A of size $|\log_2 n| + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node create array A of size $|\log_2 n| + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node create array A of size $|\log_2 n| + 1$

A =

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)

remove min-node

create array A of size $\lfloor \log_2 n \rfloor + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node

create array A of size $\lfloor \log_2 n \rfloor + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)

remove min-node

create array A of size $\lfloor \log_2 n \rfloor + 1$

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)

remove min-node

create array A of size $\lfloor \log_2 n \rfloor + 1$

insert trees of degree i into A[i]. If A[i] is non-empty: link + insert into A[i+1]

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done) remove min-node create array A of size $|\log_2 n| + 1$

11 $\Delta = \square$

insert trees of degree i into A[i]. If A[i] is non-empty: link + insert into A[i+1]

store: roots in doubly-linked list and maintain min-pointer operations:

make-0 and link: as before

union: only concatenate lists (!) + update min-pointer

insert: make-1 + union

deleteMin: (this is where the work is done)
remove min-node

create array A of size $\lfloor \log_2 n \rfloor + 1$

 $2 \longrightarrow 10 \longrightarrow 4 \longrightarrow 5 \longrightarrow 7$ $6 \qquad 11$

insert trees of degree i into A[i]. If A[i] is non-empty: link + insert into A[i+1]

idea: save 2 coins per tree

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c}=1$ (lazy)

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c} = 1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c} = 1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c} = 1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2\log n$ coins for children of min

idea: save 2 coins per tree

```
make-0: \hat{c}=1 for creating empty heap
```

link:
$$\hat{c} = 1 + 2 - 4 = -1$$

union: $\hat{c}=1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2\log n$ coins for children of min

actual cost: $t + \ell + O(\log n)$, where t = #trees to start (after removing min)

and
$$\ell=\# links$$

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c}=1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2 \log n$ coins for children of min

actual cost: $t + \ell + O(\log n)$, where t = #trees to start (after removing min)

and
$$\ell=\# links$$

 ℓ links free up 2ℓ coins (ℓ of these pay for link itself, see above)

$$t + \ell = (t - \ell) + 2\ell$$

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c}=1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2 \log n$ coins for children of min

actual cost: $t + \ell + O(\log n)$, where t = #trees to start (after removing min)

and
$$\ell=\# links$$

 ℓ links free up 2ℓ coins (ℓ of these pay for link itself, see above)

afterwards: #trees $\leq \log n + 1 \rightarrow t - \ell \leq \log n + 1$

$$t + \ell = (t - \ell) + 2\ell$$

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c}=1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2\log n$ coins for children of min

actual cost: $t + \ell + O(\log n)$, where t = #trees to start (after removing min)

and
$$\ell=\# links$$

 ℓ links free up 2ℓ coins (ℓ of these pay for link itself, see above)

afterwards: #trees $\leq \log n + 1 \rightarrow t - \ell \leq \log n + 1$

$$t + \ell = (t - \ell) + 2\ell \le 2\ell + \log n + 1$$

idea: save 2 coins per tree

make-0: $\hat{c}=1$ for creating empty heap

link: $\hat{c} = 1 + 2 - 4 = -1$

union: $\hat{c}=1$ (lazy)

insert: $\hat{c}=4$ (1+2 for make-1 + 1 for union)

deleteMin:

pay at most $2\log n$ coins for children of min

actual cost: $t + \ell + O(\log n)$, where t = #trees to start (after removing min)

and
$$\ell=\# links$$

 ℓ links free up 2ℓ coins (ℓ of these pay for link itself, see above)

afterwards: #trees $\leq \log n + 1 \rightarrow t - \ell \leq \log n + 1$

$$t + \ell = (t - \ell) + 2\ell \le 2\ell + \log n + 1 \ \rightarrow \hat{c_i} = O(\log n)$$
 coins suffice

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0)$$

 $\Phi(D_i)=c\cdot\#$ trees in D_i , where $c\geq 2$ is a constant. (here: c=2 works) $\Phi(D_0)=0$, $\Phi(D_i)\geq 0=\Phi(D_0)$ \checkmark $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$ $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make, link, insert: as for regular union

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$ $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

make, link, insert: as for regular union union:

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0)=0$$
, $\Phi(D_i)\geq 0=\Phi(D_0)$ $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0)=0$$
, $\Phi(D_i)\geq 0=\Phi(D_0)$ $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

deleteMin:

+ link

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works) $\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0)$ $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$ make, link, insert: as for regular union union: $c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$ deleteMin: $c_i = t + \ell + O(\log n)$, where t = #trees to start (after removing min) and $\ell=\#$ links add to array everything else

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0)=0$$
, $\Phi(D_i)\geq 0=\Phi(D_0)$ $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

and
$$\ell=\# links$$

$$\Delta_i \leq c \log n - c \cdot \ell$$
 new trees: trees removed children of min by linking

 $\Phi(D_i) = c \cdot \#$ trees in D_i , where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

$$\Delta_i \le c \log n - c \cdot \ell$$

$$\hat{c_i} = c_i + \Delta_i = t + \ell - c \cdot \ell + O(\log n)$$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0, \Phi(D_i) \ge 0 = \Phi(D_0) \checkmark$$

$$\hat{c_i} = c_i + \Delta_i, \text{ where } \Delta_i = \Phi(D_i) - \Phi(D_{i-1})$$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

$$\Delta_i \le c \log n - c \cdot \ell$$

$$\hat{c_i} = c_i + \Delta_i = t + \ell - c \cdot \ell + O(\log n)$$

$$\leq t - \ell + O(\log n)$$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0)=0$$
, $\Phi(D_i)\geq 0=\Phi(D_0)$ $\hat{c_i}=c_i+\Delta_i$, where $\Delta_i=\Phi(D_i)-\Phi(D_{i-1})$

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

$$\Delta_i \le c \log n - c \cdot \ell$$

$$\hat{c_i} = c_i + \Delta_i = t + \ell - c \cdot \ell + O(\log n)$$

$$\leq t - \ell + O(\log n) = O(\log n),$$
since $t - \ell = \#$ trees at end $= O(\log n)$

 $\Phi(D_i) = c \cdot \# \text{trees in } D_i$, where $c \geq 2$ is a constant. (here: c = 2 works)

$$\Phi(D_0) = 0$$
, $\Phi(D_i) \ge 0 = \Phi(D_0)$
 $\hat{c_i} = c_i + \Delta_i$, where $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

all amortized costs as claimed

make, link, insert: as for regular union

union:
$$c_i = 1, \Delta_i = 0 \rightarrow \hat{c_i} = 1$$

$$\Delta_i \le c \log n - c \cdot \ell$$

$$\hat{c_i} = c_i + \Delta_i = t + \ell - c \cdot \ell + O(\log n)$$

$$\leq t - \ell + O(\log n) = O(\log n),$$
since $t - \ell = \#$ trees at end $= O(\log n)$

Runtimes

	worst-case	amortised	amortised
	vvoi se case		lazy union
make	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(1)
insert	$O(\log n)$	O(1)	O(1)
delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$	O(1)

Amortised Analysis with accounting or potential method **Lazy Union:**

only concatenate lists and link only for a delete-min

Runtimes

			amortised
	worst-case	amortised	lazy union
make	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(1)
insert	$O(\log n)$	O(1)	O(1)
delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$	O(1)

Amortised Analysis with accounting or potential method Lazy Union:

only concatenate lists and link only for a delete-min

but decreaseKey still costs $O(\log n)$ time!

Runtimes

	worst-case	amortised	amortised lazy union
make	O(1)	O(1)	O(1)
min	O(1)	O(1)	O(1)
insert	$O(\log n)$	O(1)	O(1)
delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$
union	$O(\log n)$	$O(\log n)$	O(1)

Amortised Analysis with accounting or potential method Lazy Union:

only concatenate lists and link only for a delete-min

but decreaseKey still costs $O(\log n)$ time! o Fibonacci Heaps!