CS4224/CS5424 Lecture 3 Distributed Query Processing

Query Processing

- Translates query into a query plan that minimizes some cost function
 - Minimize total cost
 - ★ CPU cost, I/O cost, & communication cost
 - Minimize response time
 - ★ Time elapsed for query execution

Example

- Site A: Relations $R(a, c, \cdots)$ & $S(a, \cdots)$
- Site B: Relations $T(b, c, \cdots)$ & $U(b, \cdots)$
- Query at Site B:

SELECT * FROM R, S, T, U WHERE R.a = S.a AND T.b = U.b AND R.c = T.c

Query Plans:

Plan 1

Plan 2

Cost model:

- ► JC(X,Y) = CPU & I/O cost of joining relations X & Y
- CC(X) = Communication cost of sending relation X from one site to another site
- ► JC(R, S) = 2000, JC(T, U) = 2000
- ► $JC(R \bowtie S, T) = 1000$, $JC(R \bowtie S \bowtie T, U) = 600$
- ▶ $JC(R \bowtie S, T \bowtie U) = 100, CC(R \bowtie S) = 200$

Plan 1

Plan 2

Cost model:

- ► JC(X,Y) = CPU & I/O cost of joining relations X & Y
- CC(X) = Communication cost of sending relation X from one site to another site
- ► JC(R, S) = 2000, JC(T, U) = 2000
- ► $JC(R \bowtie S, T) = 1000$, $JC(R \bowtie S \bowtie T, U) = 600$
- ▶ $JC(R \bowtie S, T \bowtie U) = 100, CC(R \bowtie S) = 200$

Plan 1: Total Cost = 4300

Plan 2: Total Cost = 3800

Cost model:

- ► JC(X,Y) = CPU & I/O cost of joining relations X & Y
- CC(X) = Communication cost of sending relation X from one site to another site
- ► JC(R, S) = 2000, JC(T, U) = 2000
- ▶ $JC(R \bowtie S, T) = 1000$, $JC(R \bowtie S \bowtie T, U) = 600$
- ► $JC(R \bowtie S, T \bowtie U) = 100, \quad CC(R \bowtie S) = 200_{600}$

Plan 1: Response Time = 2300

Plan 2: Response Time = 3800

Query Processing Steps

Query rewriting

- Query decomposition
 - ★ Translates query into relational algebra query
- Data localization
 - * Rewrites distributed query into a fragment query

Global query optimization

Finds an optimal execution plan for query

Distributed query execution

Executes query plan to compute query result

Query Decomposition

Normalization

Rewrites query into some normal form

Semantic Analysis

Checks that query is semantically correct

Simplification & Restructuring

► Rewrites query into simpler form (e.g., eliminates redundancy)

Normalization

- A simple predicate defined on a relation R is of the form " A_i op v" where A_i is an attribute of R, $op \in \{=, \neq, <, \leq, >, \geq\}$ and $v \in Domain(A_i)$
- Conjunctive Normal Form (CNF)

$$(p_{11} \lor p_{12} \cdots \lor p_{1n_1}) \land \cdots \land (p_{m1} \lor p_{m2} \cdots \lor p_{mn_m})$$

Disjunctive Normal Form (DNF)

$$(p_{11} \wedge p_{12} \cdots \wedge p_{1n_1}) \vee \cdots \vee (p_{m1} \wedge p_{m2} \cdots \wedge p_{mn_m})$$

• Each p_{ii} is a simple predicate

Review of RA Equivalence Rules

attributes(R) = Set of attributes in schema of relation R attributes(p) = Set of attributes in predicate p

1. Commutativity of binary operators

1.1
$$R \times S \equiv S \times R$$

1.2 $R \bowtie S \equiv S \bowtie R$

2. Associativity of binary operators

2.1
$$(R \times S) \times T \equiv R \times (S \times T)$$

2.2 $(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)$

3. Idempotence of unary operators

3.1
$$\pi_{L'}(\pi_L(R)) \equiv \pi_{L'}(R)$$

if $L' \subseteq L \subseteq attributes(R)$
3.2 $\sigma_{p_1}(\sigma_{p_2}(R)) \equiv \sigma_{p_1 \wedge p_2}(R)$

Review of RA Equivalence Rules (cont.)

4. Commutating selection with projection

4.1
$$\pi_L(\sigma_p(R)) \equiv \pi_L(\sigma_p(\pi_{L\cup attributes(p)}(R)))$$

5. Commutating selection with binary operators

- 5.1 $\sigma_p(R \times S) \equiv \sigma_p(R) \times S$ if $attributes(p) \subseteq attributes(R)$
- 5.2 $\sigma_p(R \bowtie_{p'} S) \equiv \sigma_p(R) \bowtie_{p'} S$ if $attributes(p) \subseteq attributes(R)$
- 5.3 $\sigma_p(R \cup S) \equiv \sigma_p(R) \cup \sigma_p(S)$

Review of RA Equivalence Rules (cont.)

6. Commutating projection with binary operators

Let $L = L_R \cup L_S$, where $L_R \subseteq attributes(R)$ and $L_S \subseteq attributes(S)$

- 6.1 $\pi_L(R \times S) \equiv \pi_{L_R}(R) \times \pi_{L_S}(S)$
- 6.2 $\pi_L(R \bowtie_p S) \equiv \pi_{L_R}(R) \bowtie_p \pi_{L_S}(S)$ if $attributes(p) \cap attributes(R) \subseteq L_R$ and $attributes(p) \cap attributes(S) \subseteq L_S$
- 6.3 $\pi_L(R \cup S) \equiv \pi_L(R) \cup \pi_L(S)$

Example

Student (sid, sname, major)
Course (cid, cname, area)
Enrol (sid,cid, grade)

$$\sigma_{p_1}(\sigma_{p_2}(R)) \equiv \sigma_{p_1 \wedge p_2}(R)$$

3.2

$$\sigma_p(R \bowtie_{p'} S) \equiv \sigma_p(R) \bowtie_{p'} S$$
 if $attributes(p) \subseteq attributes(R)$

$$\pi_{L'}(\pi_L(R)) \equiv \pi_{L'}(R)$$
 if $L' \subseteq L \subseteq attributes(R)$

$$\pi_L(R \bowtie_p S) \equiv \pi_{L_R}(R) \bowtie_p \pi_{L_S}(S)$$

$$\pi_{L'}(\pi_L(R)) \equiv \pi_{L'}(R)$$
 if $L' \subseteq L \subseteq attributes(R)$

$$\pi_L(R\bowtie_{p} S) \equiv \pi_{L_R}(R)\bowtie_{p} \pi_{L_S}(S)$$

Original Query

Final Query

Query Localization

- Rewrites distributed query into a fragment query
- Uses data distribution information to determine which fragments are involved

Localization Program

 A localization program for a fragmented relation R is a reconstruction rule for R in terms of its fragments

Example:

- ▶ Let $\{R_1, \dots, R_n\}$ be a complete & disjoint partitioning of R
- ▶ If each $R_i = \sigma_{F_i}(R)$, then localization program for R is $R_1 \cup \cdots \cup R_n$
- ▶ If each $R_i = \pi_{L_i}(R)$ & $key(R) \in L_i$, then localization program for R is $R_1 \bowtie \cdots \bowtie R_n$

Localized Query

 Localized query = query with each fragmented relation replaced by its localization program

Reduction Techniques

- Reduction techniques = rewriting techniques to simplify localized queries
- Identify & eliminate query expressions on fragments that do not contribute to query results
- Techniques:
 - Reduction for horizontal fragmentation
 - * Reduction with selection
 - ★ Reduction with join
 - Reduction for derived horizontal fragmentation
 - Reduction for vertical fragmentation
 - Reduction for hybrid fragmentation

Reduction with Selection

Rule 1: $\sigma_p(R_i) = \emptyset$ if $R_i = \sigma_{F_i}(R)$ and $F_i \wedge p = false$

$$R = R_1 \cup R_2 \cup R_3$$

 $R_1 = \sigma_{a < 10}(R)$
 $R_2 = \sigma_{a \in [10,70]}(R)$
 $R_3 = \sigma_{a > 70}(R)$
 $Q_1 = \sigma_{a=12}(R)$
 $= \sigma_{a=12}(R_1 \cup R_2 \cup R_3)$
 $= \sigma_{a=12}(R_1) \cup \sigma_{a=12}(R_2) \cup \sigma_{a=12}(R_3)$
 $= \sigma_{a=12}(R_2)$

Reduction with Join

Rule 2: $R_i \bowtie_a S_j = \emptyset$ if $R_i = \sigma_{F_a \wedge F}(R)$, $S_j = \sigma_{F'_a \wedge F'}(S)$, $F_a \& F'_a$ are predicates on attribute a, and $F_a \wedge F'_a = false$

$$egin{array}{lll} R &=& R_1 \, \cup \, R_2 \, \cup \, R_3 & S &=& S_1 \, \cup \, S_2 \ R_1 &=& \sigma_{a < 10}(R) & S_1 &=& \sigma_{a < 10}(S) \ R_2 &=& \sigma_{a \in [10,70]}(R) & S_2 &=& \sigma_{a \geq 10}(S) \ R_3 &=& \sigma_{a > 70}(R) & S_2 &=& \sigma_{a \geq 10}(S) \ R_3 &=& \sigma_{a \geq 10}(S) \$$

Reduction for Derived Fragmentation

Rule 3: $S_i \bowtie_a R_j = \emptyset$ if $S_i = S \bowtie_a R_i$ is a derived horizontal fragmentation of S wrt R, and $i \neq j$

Consider $R(\underline{a}, b, c)$, $S(\underline{x}, y, a)$ where S.a is a foreign key of R

•
$$R_1 = \sigma_{b=10}(R)$$
, $R_2 = \sigma_{b\neq 10}(R)$

•
$$S_1 = S \ltimes_a R_1$$
, $S_2 = S \ltimes_a R_2$

$$Q = \sigma_{b=20}(R) \bowtie_{a} S$$

$$= \sigma_{b=20}(R_{1} \cup R_{2}) \bowtie_{a} (S_{1} \cup S_{2})$$

$$= \sigma_{b=20}(R_{2}) \bowtie_{a} (S_{1} \cup S_{2})$$

$$= (\sigma_{b=20}(R_{2}) \bowtie_{a} S_{1}) \cup (\sigma_{b=20}(R_{2}) \bowtie_{a} S_{2})$$

$$= \sigma_{b=20}(R_{2}) \bowtie_{a} S_{2}$$

Reduction for Vertical Fragmentation

Rule 4: $\pi_L(R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n) = \pi_L(R_2 \bowtie \cdots \bowtie R_n)$ if R_1, \cdots, R_n are vertical fragments of R and $(attributes(R_1) - key(R)) \cap L = \emptyset$

Consider R(
$$\underline{a}$$
,b,c) where $R=R_1\bowtie_a R_2$
$$R_1=\pi_{a,b}(R)$$

$$R_2=\pi_{a,c}(R)$$

$$Q = \pi_c(R)$$

$$= \pi_c(R_1 \bowtie_a R_2)$$

$$= \pi_c(R_2)$$

Reduction for Hybrid Fragmentation

$$R = (R_1 \cup R_2) \bowtie_a R_3$$
 $R_1 = \pi_{a,b}(\sigma_{a < 10}(R))$
 $R_2 = \pi_{a,b}(\sigma_{a \ge 10}(R))$
 $R_3 = \pi_{a,c}(R)$
 $Q = \pi_b(\sigma_{a=20}(R))$
 $= \pi_b(\sigma_{a=20}(R_1 \cup R_2) \bowtie_a R_3))$
 $= \pi_b(\sigma_{a=20}(R_1 \cup R_2))$
 $= \pi_b(\sigma_{a=20}(R_1) \cup \sigma_{a=20}(R_2))$
 $= \pi_b(\sigma_{a=20}(R_2))$

Distributed Join Strategies for $R \bowtie_A S$

- There are three cases to consider for $R \bowtie_A S$:
 - Case 1: Both R and S have been partitioned on join key
 - Case 2: Only R (but not S) has been partitioned on join key
 - Case 3: Neither R nor S has been partitioned on join key
- Case 1: Collocated/Local join
- Case 2: Directed join
 - Dynamically repartition S on join key
- Case 3: Repartitioned join
 - Dynamically repartition R & S on join key
- Broadcast join: Replicate either R or S to all nodes
 - Applicable for cases 2 & 3

Join Strategies: Example

- Customers (<u>cust#</u>, cname, city)
- Orders (order#, cust#, odate)
- Suppliers (supp#, sname, city)

Customers	5
-----------	---

Gastomers		
cust#	cname	city
1	Alice	Singapore
2	Bob	Penang
3	Carol	Bangkok
4	Dave	Singapore
5	Eve	Singapore
6	Fred	Penang
7	George	Bangkok

Orders

order#	cust#	odate
302	1	June 2013
304	2	May 2013
307	3	Nov 2013
308	1	April 2013
309	5	May 2013
311	6	Dec 2013
312	3	July 2013

Suppliers

supp#	sname	city
32	Α	Bangkok
33	В	Singapore
34	С	Singapore
36	D	Bangkok
37	E	Penang
38	F	Penang
39	G	Singapore

Collocated Join: Example

- Customers hash partitioned on cust# using h_{cust}
- Orders hash partitioned on cust# using h_{cust}
- $h_{cust}(c) = (c \mod 3) + 1$

Site 1

Oustomers		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customers

Orders₁

order#	cust#	odate
307	3	Nov 2013
311	6	Dec 2013
312	3	July 2013

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Orders₂

order#	cust#	odate
302	1	June 2013
308	1	April 2013

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₂

Orders₃

order#	cust#	odate
304	2	May 2013
309	5	May 2013

Collocated Join: Example (cont.)

Query 1: Customers ⋈_{cust#} Orders

Site 1

Oustomers		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customore.

Orders₁

order#	cust#	odate
307	3	Nov 2013
311	6	Dec 2013
312	3	July 2013

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Orders₂

order#	cust#	odate
302	1	June 2013
308	1	April 2013

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₃

Orders₃

order#	cust#	odate
304	2	May 2013
309	5	May 2013

 $\bigcup_{i=1}^{3} (Customers_i \bowtie Orders_i)$

Directed Join: Example

- Customers hash partitioned on cust# using h_{cust}
- Orders hash partitioned on order# using horder
- $h_{cust}(c) = (c \mod 3) + 1$
- $h_{order}(o) = (o \mod 3) + 1$

Site 1

cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customers₄

Orders₁

order#	cust#	odate
309	5	May 2013
312	3	July 2013

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Orders₂

order#	cust#	odate
304	2	May 2013
307	3	Nov 2013

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₂

Orders₃

order#	cust#	odate
302	1	June 2013
308	1	April 2013
311	6	Dec 2013

Directed Join: Example (cont.)

Query 1: Customers ⋈_{cust#} Orders

Site 1

Gastornord		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customers₄

Orders₁

order#	cust#	odate
309	5	May 2013
312	3	July 2013

Site 2

2 0.000		
cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Orders₂

order#	cust#	odate
304	2	May 2013
307	3	Nov 2013

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₃

Orders₃

order#	cust#	odate
302	1	June 2013
308	1	April 2013
311	6	Dec 2013

Directed Join: Example (cont.)

Query 1: Customers ⋈_{cust#} Orders

Repartition Orders on cust# : $Orders'_i = \sigma_{h_{cust}(cust\#)=i}(Orders)$

$$\bigcup_{i=1}^{3} (Customers_i \bowtie Orders_i')$$

Repartitioned Join: Example

- Customers hash partitioned on cust# using h_{cust}
- Suppliers hash partitioned on supp# using h_{supp}
- $h_{cust}(c) = (c \mod 3) + 1$
- $h_{supp}(s) = (s \mod 3) + 1$

Site 1

Gustoiners ₁		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Cuctomore

Suppliers₁

supp#	sname	city
33	В	Singapore
36	D	Bangkok
39	G	Singapore

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Suppliers₂

supp#	sname	city
34	С	Singapore
37	Е	Penang

Site 3

Odotomorag		
cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers

supp#	sname	city
32	Α	Bangkok
38	F	Penang

Repartitioned Join: Example (cont.)

Query 2: Customers ⋈_{city} Suppliers

Site 1

Oustomers		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customers

Suppliers₁

		<u>'</u>
supp#	sname	city
33	В	Singapore
36	D	Bangkok
39	G	Singapore

Site 2

_			
	cust#	cname	city
	1	Alice	Singapore
	4	Dave	Singapore
	7	George	Bangkok

Customers₂

Suppliers₂

supp#	sname	city
34	С	Singapore
37	Е	Penang

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₃

supp#	sname	city
32	Α	Bangkok
38	F	Penang

Repartitioned Join: Example (cont.)

- Query 2: Customers ⋈_{city} Suppliers
- Repartition both tables using h_{city}

С	$h_{city}(c)$
Singapore	1
Penang	2
Bangkok	3

- $Customers'_i = \sigma_{h_{city}(city)=i}(Customers)$
- Suppliers'_i = $\sigma_{h_{city}(city)=i}(Suppliers)$

Repartitioned Join: Example (cont.)

Query 2: Customers \bowtie_{city} Suppliers

$$\bigcup_{i=1}^{3} (Customers'_{i} \bowtie Suppliers'_{i})$$

Broadcast Join: Example

- Customers hash partitioned on cust# using h_{cust}
- Suppliers hash partitioned on supp# using h_{supp}
- $h_{cust}(c) = (c \mod 3) + 1$
- $h_{supp}(s) = (s \mod 3) + 1$

Site 1

cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Suppliers₁

supp#	sname	city
33	В	Singapore
36	D	Bangkok
39	G	Singapore

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Customers₂

Suppliers₂

supp#	sname	city
34	С	Singapore
37	E	Penang

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

Customers₂

supp#	sname	city
32	Α	Bangkok
38	F	Penang

Broadcast Join: Example (cont.)

Query 2: Customers ⋈_{city} Suppliers

Site 1

Odotomoro		
cust#	cname	city
3	Carol	Bangkok
6	Fred	Penang

Customers

Suppliers₁

supp#	sname	city
33	В	Singapore
36	D	Bangkok
39	G	Singapore

Customers₂

Site 2

cust#	cname	city
1	Alice	Singapore
4	Dave	Singapore
7	George	Bangkok

Suppliers₂

supp#	sname	city
34	С	Singapore
37	Е	Penang

Customers₃

Site 3

cust#	cname	city
2	Bob	Penang
5	Eve	Singapore

supp#	sname	city
32	Α	Bangkok
38	F	Penang

Broadcast Join: Example (cont.)

Option 1: Broadcast Suppliers

 $\bigcup_{i=1}^{3} (Customers_i \bowtie Suppliers)$

Broadcast Join: Example (cont.)

Option 2: Broadcast Customers

$$\bigcup_{i=1}^{3} (Customers \bowtie Suppliers_i)$$

Comparison of join strategies for $R \bowtie S$

Let the relations be partitioned over *n* nodes

Join Strategy	Communication Cost
Collocated	0
Directed	size(R) if R is being repartitioned
Repartitioned	size(R) + size(S)
Broadcast	$(n-1) \times size(R)$ if R is being broadcast

Query Processing in Google's F1

- Google's early NewSQL system
 - Distributed relational database system
 - Hybrid of NoSQL & RDBMS
 - NoSQL: High availability, scalability
 - RDBMS: Functionality, consistency, usability (SQL, transactions)
- Used by Google's AdWords system since 2012
 - ► 100s of applications & 1000s of users
 - ► Database is over 100 TB, 10⁵ requests/sec

Query Processing in Google's F1

SELECT agc.CampaignId,

ac.Region,

c.Language,

SUM(ac.Clicks)

FROM AdClick ac

JOIN AdGroupCreative agc

USING (AdGroupId, CreativeId)

JOIN Creative c

USING (Customerld, Creativeld)

WHERE ac.Date = '2013-02-23'

GROUP BY agc.CampaignId, ac.Region,

c.Language

Creative (Creativeld, Customerld, Language, ...)

AdGroupCreative (AdGroupId, Creativeld, CampaignId, Customerld, ...)

AdClick (AdGroupId, Creativeld, Region, Date, Clicks, ...)

(Shute, et al., 2013)

References

- T. Özsu & P. Valdureiz, *Distributed Query Processing*, Chapter 4, Principles of Distributed Database Systems, 4th Edition, 2020
- C. Baru, et al. *DB2 Parallel Edition*, IBM Systems Journal, 34(2), 1995.
- Google goes back to the future with SQL F1 database,
 The Register, August 2013,
 https://www.theregister.co.uk/2013/08/30/google_f1_deepdive/
- F1: A Distributed SQL Database That Scales, VLDB 2013, https://research.google.com/pubs/pub41344.html