Statystyka matematyczna i ekonometria

Projekt - Auto Sprzedam

Autorzy

Anna Kalitka (255445) Antoni Bezdzietny (249327)

Projekt zaliczeniowy Laboratorium, lato 2023/24

I - Opis bazy danych

Wybrana została baza danych **AutoSprzedam**. Baza pochodzi z zasobów ePortalu.

Zawartość bazy danych

Baza danych składa się z 41034 rekordów, zawierających szczegółowe dane dotyczące sprzedaży samochodów m.in.

	Тур	
Kolumna	danych	Opis
NrOferty	int	Numer oferty sprzedaży samochodu.
CenaPLN	string	Cena samochodu wyrażona w polskich złotych (PLN).
KM	int	Liczba koni mechanicznych samochodu.
Marka	string	Marka samochodu.
Model	string	Model samochodu.
LiczbaDrzwi	string	Liczba drzwi w samochodzie.
PojemnoscSkokowa int		Pojemność skokowa silnika wyrażona w centymetrach sześciennych (cm³).
PrzebiegKm	int	Przebieg samochodu wyrażony w kilometrach.
RodzajPaliwa	string	Rodzaj paliwa używanego przez samochód (benzyna, diesel, hybryda,
		elektryczny itp.).
RokProdukcji	int	Rok produkcji samochodu.
Kolor	string	Kolor samochodu.
KrajPochodzenia	string	Kraj pochodzenia samochodu.
PojazdUszkodzony	string	Informacja czy pojazd jest uszkodzony (Tak/Nie).
SkrzyniaBiegow	string	Typ skrzyni biegów w samochodzie (manualna, automatyczna).

Prezentacja bazy danych

```
# Wczytanie bazy danych
database = read.csv("../database/AutoSprzedam.dat", sep = "\t", dec = ',');
cat("Liczba rekordów:", nrow(database), ", liczba kolumn:", ncol(database), "\n")
## Liczba rekordów: 41034 , liczba kolumn: 14
N = 5:
cat("-", "Przykład ", N, "pierwszych rekordów.\n")
## - Przykład 5 pierwszych rekordów.
head(database, N)
     NrOferty CenaPLN KM
                                   Marka
                                                 Model LiczbaDrzwi PojemnoscSkokowa
## 1
            1
                27900 150
                                    Opel
                                                Vectra
                                                                4/5
            2
## 2
                28000 116
                                  Toyota Corolla Verso
                                                                4/5
                                                                                 2000
## 3
            3
                25500 150
                                   Skoda
                                                                4/5
                                                                                 1781
                                                Superb
                29900 109 Mercedes-Benz
                                                                2/3
## 4
            4
                                                  A 180
                                                                                 1991
## 5
            5
                29800 207
                                 Peugeot
                                                   607
                                                                4/5
                                                                                 2946
##
     PrzebiegKm
                           RodzajPaliwa RokProdukcji
                                                                   Kolor
## 1
          80840 olej napędowy (diesel)
                                                2005
                                                         czarny-metallic
## 2
         166000 olej napędowy (diesel)
                                                2004
                                                                   bialy
## 3
         112000
                            benzyna+LPG
                                                2002
                                                        bordowy-metallic
                                                2005
## 4
          42000 olej napędowy (diesel)
                                                                czerwony
## 5
         169000
                                benzyna
                                                2004 granatowy-metallic
     KrajPochodzenia PojazdUszkodzony SkrzyniaBiegow
##
## 1
              Niemcy
                                   Nie
                                             manualna
## 2
                                   Nie
                                             manualna
              Polska
## 3
              Polska
                                   Nie
                                             manualna
## 4
              Polska
                                   Nie
                                             manualna
## 5
             Francja
                                   Nie
                                             manualna
cat("- ", "Przykład ", N, "ostatnich rekordów.\n")
## - Przykład 5 ostatnich rekordów.
tail(database, N)
##
         NrOferty CenaPLN
                                                 Model LiczbaDrzwi PojemnoscSkokowa
                            KM
                                        Marka
## 41030
            41030 98000.00 220
                                         Opel Insignia
                                                                4/5
                                                                                 1998
## 41031
                                                  S 400
                                                                4/5
                                                                                 3996
            41031 34924.50 184 Mercedes-Benz
                                                                2/3
## 41032
            41032 41175.09 70
                                      Peugeot
                                                    308
                                                                                 1397
                                                                4/5
## 41033
            41033 47900.00 115
                                                  C-MAX
                                                                                 1560
                                         Ford
                                         Ford
## 41034
            41034 14200.00 90
                                                Mondeo
                                                                4/5
                                                                                 1998
##
         PrzebiegKm
                               RodzajPaliwa RokProdukcji
                                                                       Kolor
## 41030
              25500
                                    benzyna
                                                     2010 grafitowy-metallic
## 41031
             162000 olej napędowy (diesel)
                                                     2001
                                                            srebrny-metallic
                                                     2010
## 41032
               9289
                                                            srebrny-metallic
                                    benzyna
## 41033
              45000 olej napędowy (diesel)
                                                     2010
                                                             czarny-metallic
## 41034
             191024 olej napędowy (diesel)
                                                     2003
                                                             czarny-metallic
         KrajPochodzenia PojazdUszkodzony SkrzyniaBiegow
## 41030
                  Polska
                                       Nie
                                                 manualna
## 41031
                                       Nie
                  Czechy
                                             automatyczna
## 41032
                  Niemcy
                                       Nie
                                                  manualna
```

## 41033	Belgia	Nie	manualna
## 41034	Niemcy	Nie	manualna

Przygotowanie bazy danych

Przed przejściem do dalszej pracy z bazą danych postanowiono wprowadzenie zmian w jej strukturze, których celem jest uproszczenie przyszłych prac z danymi.

Pole - SkrzyniaBiegow

W bazie występują 3 rodzaje typów skrzyni biegów: półautomatyczna/sekwencyjna, manualna oraz automatyczna. Udział typu półautomatyczna/sekwencyjna w całej bazie wynosi 1,5%.

W związku z niewielkim udziałem ze skrzynią półautomatyczna/sekwencyjna, typ ten został usunięty z bazy. Dzięki czemu możliwe jest przekształcenie kolumny SkrzyniaBiegow (char), na SkrzyniaBiegowManualna (bool).

```
gear_box_summary = database %>% group_by(database$SkrzyniaBiegow) %>% summarise(liczba = n());
gear_box_summary
## # A tibble: 3 x 2
##
     `database$SkrzyniaBiegow`
                                 liczba
##
     <chr>>
                                  <int>
## 1 automatyczna
                                   6941
                                  34030
## 2 manualna
## 3 półautomatyczna/sekwencyjna
cat("Udział pojazdów ze skrzynia biegów typu 'półautomatyczna/sekwencyjna'",
    sum(gear_box_summary[3,2])/sum(gear_box_summary[,2])*100, "%.");
## Udział pojazdów ze skrzynią biegów typu 'półautomatyczna/sekwencyjna' 0.1535312 %.
# Remove cars with database$SkrzyniaBieqow == 'półautomatyczna/sekwencyjna'
database = database[database$SkrzyniaBiegow != "półautomatyczna/sekwencyjna",];
# Cast to logical value
database$SkrzyniaBiegow = database$SkrzyniaBiegow == "manualna";
colnames(database)[14] = "SkrzyniaBiegowManualna";
```

${\bf Pole}\ PojazdUszkodzony$

Domyślnym typem danych dla pola PojazdUszkodzony jest (char). Zmienna jest typem logicznym (TAK/NIE). W związku z powyższym kolumna PojazdUszkodzony została przekształcona to typu bool.

```
database$PojazdUszkodzony = database$PojazdUszkodzony == "Tak";
```

Pole Liczba drzwi

W bazie występują pojazdy tylko i wyłącznie z dwoma liczbami drzwi 2/3 oraz 4/5. W związku z powyższym można analogicznie przekształcić typ danych na typ bool.

```
database$LiczbaDrzwi = database$LiczbaDrzwi == "4/5";
colnames(database)[6] = "LiczbaDrzwi4/5"
```

Prezentacja bazy danych - po wprowadzonych zmianach

```
cat("-", "Przykład ", N, "pierwszych rekordów.\n")
## - Przykład 5 pierwszych rekordów.
head(database, N)
     NrOferty CenaPLN KM
##
                                   Marka
                                                 Model LiczbaDrzwi4/5
## 1
            1
                27900 150
                                    Opel
                                                Vectra
                                                                  TRUE
            2
## 2
                28000 116
                                  Toyota Corolla Verso
                                                                  TRUE
## 3
            3
                25500 150
                                   Skoda
                                                Superb
                                                                  TRUE
## 4
                29900 109 Mercedes-Benz
                                                 A 180
                                                                 FALSE
## 5
            5
                29800 207
                                 Peugeot
                                                   607
                                                                  TRUE
     PojemnoscSkokowa PrzebiegKm
                                            RodzajPaliwa RokProdukcji
## 1
                 1900
                            80840 olej napędowy (diesel)
                                                                  2005
## 2
                 2000
                           166000 olej napędowy (diesel)
                                                                  2004
## 3
                 1781
                           112000
                                             benzyna+LPG
                                                                  2002
## 4
                 1991
                            42000 olej napędowy (diesel)
                                                                  2005
## 5
                 2946
                           169000
                                                                  2004
                                                 benzyna
                  Kolor KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
##
## 1
                                  Niemcy
                                                    FALSE
        czarny-metallic
                                                                             TRUE
## 2
                  bialy
                                  Polska
                                                     FALSE
                                                                             TRUE
## 3
       bordowy-metallic
                                  Polska
                                                    FALSE
                                                                             TRUE
## 4
                                  Polska
                                                                             TRUE
               czerwony
                                                    FALSE
                                                                             TRUE
## 5 granatowy-metallic
                                 Francja
                                                     FALSE
cat("- ", "Przykład ", N, "ostatnich rekordów.\n")
## - Przykład 5 ostatnich rekordów.
tail(database, N)
         NrOferty CenaPLN KM
                                        Marka
                                                 Model LiczbaDrzwi4/5
## 41030
            41030 98000.00 220
                                         Opel Insignia
                                                                  TRUE
## 41031
            41031 34924.50 184 Mercedes-Benz
                                                 S 400
                                                                  TRUE
            41032 41175.09 70
                                                   308
                                                                 FALSE
## 41032
                                      Peugeot
## 41033
            41033 47900.00 115
                                         Ford
                                                 C-MAX
                                                                  TRUE
## 41034
            41034 14200.00 90
                                         Ford
                                                Mondeo
                                                                  TRUE
         PojemnoscSkokowa PrzebiegKm
                                                RodzajPaliwa RokProdukcji
## 41030
                     1998
                                25500
                                                     benzyna
                                                                      2010
## 41031
                     3996
                               162000 olej napędowy (diesel)
                                                                      2001
## 41032
                     1397
                                 9289
                                                     benzyna
                                                                      2010
## 41033
                     1560
                                45000 olej napędowy (diesel)
                                                                      2010
## 41034
                     1998
                               191024 olej napędowy (diesel)
                                                                      2003
##
                      Kolor KrajPochodzenia PojazdUszkodzony
## 41030 grafitowy-metallic
                                      Polska
                                                         FALSE
## 41031
           srebrny-metallic
                                      Czechy
                                                         FALSE
## 41032
           srebrny-metallic
                                      Niemcy
                                                         FALSE
## 41033
            czarny-metallic
                                      Belgia
                                                         FALSE
## 41034
            czarny-metallic
                                      Niemcy
                                                         FALSE
##
         SkrzyniaBiegowManualna
## 41030
                            TRUE
## 41031
                          FALSE
## 41032
                            TRUE
```

```
## 41033 TRUE
## 41034 TRUE
```

II - Wyznaczenie podstawowych statystyk

W tej sekcji przedstawione zostaną podstawowe statystyki dla wybranych zmiennych.

Statystyki dla zmiennych nuemrycznych

```
##
           database.CenaPLN database.KM database.PojemnoscSkokowa
               1.000000e+03
                                1.00000
## Min.
                                                           13.0000
## 1st Qu.
               1.720000e+04
                               83.00000
                                                        1560.0000
## Median
               2.600000e+04 110.00000
                                                        1896.0000
## Mean
               4.084835e+04
                              121.00517
                                                         1916.8589
## 3rd Qu.
              4.190000e+04
                              140.00000
                                                        1998.0000
## Max.
               1.788000e+06 1400.00000
                                                        7300.0000
               2.636581e+09 3589.98079
                                                      415825.4410
## Var
## Sd
               5.134764e+04
                               59.91645
                                                         644.8453
##
           database.PrzebiegKm database.RokProdukcji
## Min.
                           1.0
                                         2001.000000
## 1st Qu.
                      80000.0
                                         2003.000000
## Median
                      131000.0
                                         2005.000000
## Mean
                      125329.7
                                        2005.289864
## 3rd Qu.
                                        2007.000000
                      170361.0
## Max.
                     2600000.0
                                        2011.000000
## Var
                  5110148687.7
                                            7.805945
## Sd
                       71485.3
                                            2.793912
```

Statystyki dla zmiennych dwumianowych

Class PojazdUszkodzony SkrzyniaBiegowManualna LiczbaDrzwi4_5

```
## 1 False 39497 6941 5301
## 2 True 1474 34030 35670
```

Statystyki dla pozostałych zmiennych (jakościowych)

```
quality_database = data.frame(database$Marka,
                                database$RodzajPaliwa,
                                database$Kolor,
                                database$KrajPochodzenia);
sapply(quality_database, function (x){
  round(sort(table(x), decreasing = TRUE) / nrow(quality_database) , 3)})
## $database.Marka
## x
##
                                                      Renault
                                                                         Audi
      Volkswagen
                           Ford
                                           Opel
##
           0.151
                          0.132
                                         0.122
                                                         0.115
                                                                        0.091
##
         Peugeot
                          Skoda
                                        Toyota Mercedes-Benz
                                                                          BMW
##
           0.078
                          0.072
                                         0.066
                                                         0.064
                                                                        0.062
##
            Fiat
##
           0.047
##
   $database.RodzajPaliwa
##
   olej napędowy (diesel)
                                            benzyna
                                                                benzyna+LPG
##
                     0.680
                                              0.297
                                                                       0.022
                                       benzyna+CNG
##
                   hybryda
                                                         napęd elektryczny
                     0.001
                                              0.001
##
                                                                       0.000
##
##
   $database.Kolor
##
  х
##
     srebrny-metallic
                          czarny-metallic niebieski-metallic
                                                                    szary-metallic
##
                                                                              0.068
                 0.252
                                     0.191
                                                          0.070
##
   grafitowy-metallic granatowy-metallic
                                                          bialy
                                                                  zielony-metallic
##
                                     0.056
                                                          0.053
                                                                              0.033
                 0.057
##
             czerwony
                                    czarny
                                                     niebieski
                                                                          granatowy
##
                                                          0.027
                 0.031
                                     0.029
                                                                              0.025
##
       zloty-metallic
                                   srebrny
                                              bordowy-metallic
                                                                 czerwony-metallic
##
                 0.017
                                     0.012
                                                          0.012
                                                                              0.011
      bezowy-metallic
##
                         brazowy-metallic
                                                bialy-metallic
                                                                              zolty
##
                 0.009
                                     0.009
                                                          0.007
                                                                              0.005
##
              zielony
                                     szary
                                             wisniowy-metallic fioletowy-metallic
##
                 0.005
                                     0.004
                                                          0.004
                                                                              0.003
##
            grafitowy pomaranczowy-metal
                                                       bordowy
                                                                             bezowy
##
                 0.003
                                     0.002
                                                          0.002
                                                                              0.001
##
                           zolty-metallic
                                                     fioletowy
                                                                            brazowy
                 zloty
##
                 0.001
                                     0.001
                                                          0.000
                                                                              0.000
##
                                  wisniowy
                                               rozowy-metallic
                                                                             rozowy
         pomaranczowy
##
                 0.000
                                     0.000
                                                          0.000
                                                                              0.000
##
## $database.KrajPochodzenia
## x
##
              Niemcy
                                  Polska
                                                    Francja
                                                                         Czechy
##
               0.398
                                   0.298
                                                      0.092
                                                                          0.063
```

##	Belgia	Wlochy	Holandia	Austria
##	0.052	0.024	0.020	0.014
##	Stany Zjednoczone	Szwajcaria	Wielka Brytania	Luksemburg
##	0.014	0.008	0.005	0.004
##	Dania	Hiszpania	Szwecja	Kanada
##	0.003	0.003	0.001	0.001
##	Slowacja	Irlandia	Norwegia	Estonia
##	0.000	0.000	0.000	0.000
##	Rumunia	Wegry	Grecja	Islandia
##	0.000	0.000	0.000	0.000
##	Rosja			
##	0.000			

III - Graficzna prezentacja danych

Wykresy dla zmiennych nuemrycznych

```
sapply(numerical_database, draw_numerical);
```

\$database.CenaPLN

\$database.KM

##
\$database.PojemnoscSkokowa

##
\$database.PrzebiegKm

##
\$database.RokProdukcji

Statystyki dla zmiennych jakościowych

```
ggplot(logical_statistics, aes(x="", y=PojazdUszkodzony, fill=Class)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + ggtitle("Pojazd uszkodzony");
```

Pojazd uszkodzony


```
ggplot(logical_statistics, aes(x="", y=SkrzyniaBiegowManualna, fill=Class)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + ggtitle("Skrzynia manualna")
```

Skrzynia manualna


```
ggplot(logical_statistics, aes(x="", y=LiczbaDrzwi4_5, fill=Class)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() + ggtitle("Liczba drzwi 4/5")
```

Liczba drzwi 4/5

rednia cena sprzeda y dla marki


```
ggplot(wzg_marka, aes(y=Marka, x=liczbaSprzedanych)) +
   geom_bar(position="dodge", stat="identity", fill="lightblue")+
   ggtitle("Liczba sprzedanych pojazdów")
```

Liczba sprzedanych pojazdów


```
fuelType = database %>% group_by(database$RodzajPaliwa) %>% summarise(liczba = n());
colnames(fuelType) = c("FuelType", "Count");
fuelType = fuelType[order(fuelType$Count, decreasing = TRUE),]
fuelType
## # A tibble: 6 x 2
```

```
##
    FuelType
                            Count
##
     <chr>
                             <int>
## 1 olej napędowy (diesel) 27865
## 2 benzyna
                            12161
## 3 benzyna+LPG
                              886
## 4 hybryda
                               25
## 5 benzyna+CNG
                               23
## 6 napęd elektryczny
                               11
ggplot(fuelType, aes(x="", y=Count, fill=FuelType)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) + theme_void();
```


IV - Obserwacje odstające

Obserwacja odstająca, element odstający – obserwacja relatywnie odległa od pozostałych elementów próby. Innymi słowy, posiadająca nietypową wartość zmiennej niezależnej (objaśniającej) lub nietypowe wartości obydwu zmiennych – zależnej (objaśnianej) i objaśniającej (objaśniających w analizie regresji wielokrotnej).

Redukcja danych odstających zgodnie z regułą 3 sigma (CenaPLN)

Redukcja danych zgodnie z regułą 3 sigma.

Identyfikacja danych odstających za pomocą reguły trzech sigm:

- 1. Obliczenie średniej (μ): Najpierw oblicza się średnią dla danego zbioru danych.
- 2. Obliczenie odchylenia standardowego (σ): Następnie oblicza się odchylenie standardowe, które mierzy, jak bardzo dane rozpraszają się wokół średniej.
- 3. Ustalenie zakresu trzech sigm: Wartości, które znajdują się poza zakresem trzech sigm $(\mu \pm 3\sigma)$, są uznawane za dane odstające.

```
iv_sigma_mean_price = mean(database$CenaPLN);
iv_sigma_sd_price = sd(database$CenaPLN);
iv_sigma_lower_bound <- iv_sigma_mean_price - 3 * iv_sigma_sd_price;
iv_sigma_upper_bound <- iv_sigma_mean_price + 3 * iv_sigma_sd_price;
cat("Wyznacznowe granice metoda 3 sigma: \n")</pre>
```

Redukcja danych odstających regułą odstępu międzykwartylowgo (PrzebiegKM)

Metoda redukcji, polega na wykrywaniu i usuwaniu wartości odstających z zestawu danych. Metoda ta opiera się na kwartylach i rozstępie międzykwartylowym.

- 1. Wyznaczenie Q1 (pierwszy kwartyl) oraz Q3 (trzeci kwartyl)
- 2. Wyznaczenie odstępu międzykwartylowego IQR = Q3 Q1
- 3. Wyznaczenie dolnej $Q1 1.5 \times IQR$ oraz górnej $Q1 + 1.5 \times IQR$ granicy.

Ilość elementów odstających zgodnie z regułą odstępu międzykwartylowego PrzebiegKm n = 137

cat("Ilość elementów odstających zgodnie z regułą odstępu międzykwartylowego PrzebiegKm n =", iv_n_outl

V - Wyznaczanie prawdopodobieństw dla zmiennej

Rozkłady dyskretne

Dwumianowy

```
#Generowanie próbki
set.seed(42)
N <- 1000
n <- 20
p <- 0.4
X <- rbinom(N, n, p)
```

```
#Prawdopodobieństwa
pbinom(8, n, p) - pbinom(7, n, p) # P(X=8) p. punktowe

## [1] 0.1797058

pbinom(10, n, p) # P(X<=10) p. przedziałowe

## [1] 0.8724788

#Wykres gęstości
a <- seq(0, n, by = 1)
b <- dbinom(a, n, p)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(0, n, by = 1)
b <- pbinom(a, n, p)
plot(a,b)</pre>
```



```
### Rozkład Poissona
#Generowanie próbki
N <- 1000
lambda <- 200
X <- rpois(N, lambda)
#Prawdopodobieństwa
ppois(190, lambda) - ppois(189, lambda) # P(X=190)
## [1] 0.02243432
ppois(190, lambda) #(P<=190)
## [1] 0.2529326
#Wykres gęstości
a <- seq(min(X), max(X), by = 1)
b <- dpois(a, lambda)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(min(X), max(X), by = 1)
b <- ppois(a, lambda)
plot(a,b)</pre>
```


Rozkłady ciągłe

Rozkład normalny

```
#Generowanie próbki
N <- 1000
mu <- 7 # średnia
sigma <- 10 # odchylenie standardowe
X <- rnorm(N, mu, sigma)

#Prawdopodobieństwa
#Prawd. punktowe w rozkładzie ciągłym = 0
pnorm(10, mu, sigma) # P(X<=10) p. przedziałowe

## [1] 0.6179114

#Wykres gęstości
a <- seq(min(X), max(X), by = 0.5)
b <- dnorm(a, mu, sigma)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(min(X), max(X), by = 0.5)
b <- pnorm(a, mu, sigma)
plot(a,b)</pre>
```


Rozkład Beta

```
#Generowanie próbki
N <- 1000
alpha <- 0.5
beta <- 0.5
X <- rbeta(N, alpha, beta)

#Prawdopodobieństwa
#Prawd. punktowe w rozkładzie ciągłym = 0
pbeta(0.7, alpha, beta) # P(X<=0.7) p. przedziałowe

## [1] 0.6309899

#Wykres gęstości
a <- seq(0, 1, by = 0.02)
b <- dbeta(a, alpha, beta)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(0, 1, by = 0.02)
b <- pbeta(a, alpha, beta)
plot(a,b)</pre>
```


VI - Budowa macierzy z bazy danych

Do zbudowanie macierzy wykorzystano wszystkie dostępne numeryczne dane tj. *CenaPLN*, *KM*, *PrzebiegKm*, *RokProdukcji*, *PojemnoscSkokowa*. Dzięki temu możliwe jest wyznaczenie macierzy korelacji pomiędzy danymi.

```
# Select data
vi_database = data.matrix(select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == T
                      c("CenaPLN", "KM", "PrzebiegKm", "RokProdukcji", "PojemnoscSkokowa")))
#Is matrix
is.matrix(vi_database)
## [1] TRUE
#Display head
head(vi_database)
        CenaPLN KM PrzebiegKm RokProdukcji PojemnoscSkokowa
##
## [1,]
          27900 150
                          80840
                                         2005
                                                           1900
## [2,]
          28000 116
                         166000
                                         2004
                                                           2000
## [3,]
          25500 150
                         112000
                                         2002
                                                           1781
                          42000
                                         2005
## [4,]
          29900 109
                                                           1991
## [5,]
          29800 207
                         169000
                                         2004
                                                           2946
## [6,]
          21400 122
                         160000
                                         2003
                                                           1800
# Dimension
vi_dim <- dim(vi_database);</pre>
```

```
cat("Rozmiar macierzy:", vi_dim[1], "x", vi_dim[2]);
## Rozmiar macierzy: 32776 x 5
# Columns mean
vi_means = round(colMeans(vi_database), 3);
cat(paste(names(vi_means), vi_means, sep = " : ", collapse = ",\n"))
## CenaPLN : 29568.104,
## KM : 104.715,
## PrzebiegKm : 127770.544,
## RokProdukcji : 2005.09,
## PojemnoscSkokowa : 1742.825
# Correlation
vi_corr_matrix = cor(vi_database);
print(vi_corr_matrix)
##
                                      KM PrzebiegKm RokProdukcji
                       CenaPLN
## CenaPLN
                     1.0000000 0.53784100 -0.33277193 0.58752036
## KM
                     0.5378410 1.00000000 0.07887219 0.08579668
## PrzebiegKm
                   -0.3327719 0.07887219 1.00000000 -0.54240181
## RokProdukcji
                    0.5875204 0.08579668 -0.54240181 1.00000000
## PojemnoscSkokowa 0.4122382 0.74804407 0.26670668 -0.08499544
                   PojemnoscSkokowa
## CenaPLN
                         0.41223816
## KM
                         0.74804407
## PrzebiegKm
                         0.26670668
## RokProdukcji
                        -0.08499544
## PojemnoscSkokowa
                         1.00000000
corrplot(vi_corr_matrix, order = "hclust",
         tl.col = "black", tl.srt = 45)
```


Jak można zaobserwować: - CenaPLN skorelowana jest z RokProdukcji (silnie), KM, PojemnoscSkokowa oraz odwrotnie z PrzebiegKM,

- PojemnoscSkokowa jest silnie skorelowana z ilością KM (większa pojemność -> więcej KM), - PrzebiegKM jest odwrotnie skorelowany z RokProdukcji (starszy samochód -> większy przebieg).

VII - Przedziały ufności

W tej sekcji przedstawione zostaną badania określające przedziały ufności z różnym stopniem 'zaufania'. Oznacza to, że jeśli grupa badana była zgromadzona w sposób losowy to rzeczywisty parametr populacji z z określonym stopniem 'zaufania' znajduje się w tym przedziale.

Zmienna numeryczna

W celu określnenia przedziałów ufności zmiennej numerycznej wybrano cechę CenaPLN.

Przedział ufności dla średniej:

Ze względu na dużą liczebność próby n > 30, przedział ufności dla średniej zgodnie z wzorem:

$$P\left(\overline{X} - u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \overline{X} + u_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

gdzie:

- \overline{X} średnia,
- n to liczebność próby losowej,
- s to odchylenie standardowe z próby,

• u_{α} - to wartość kwantyla 1 - $\frac{\alpha}{2}$ rozkładu normalnego standaryzowanego dla poziomu istotności α .

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_price_mean = mean(database$CenaPLN);
vii_price_sd = sd(database$CenaPLN);
n = length(database$CenaPLN);
# Mean confidence function
mean_confidence <- function(mean, sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  offset = qnorm(1 - alpha / 2) * sd / sqrt(n);
  lower_bound = mean - offset;
  upper_bound = mean + offset;
  return(c(lower_bound, upper_bound));
# Calculate confidence
mean_confidence_intervals = sapply(confidence_level, function(conf_level) {
  mean_confidence(vii_price_mean, vii_price_sd, n, conf_level)
});
# Create matrix
mean_confidence_intervals = t(mean_confidence_intervals);
rownames(mean_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(mean_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności średniej dla różnych poziomów ufności:");
## [1] "Przedziały ufności średniej dla różnych poziomów ufności:"
print(mean_confidence_intervals);
                        Dolny przedział Górny przedział
##
## Poziom ufności: 0.9
                               40431.08
                                               41265.61
## Poziom ufności: 0.95
                               40351.15
                                               41345.54
## Poziom ufności: 0.99
                               40194.91
                                                41501.78
print(paste("Wartość średnia z próby:", round(vii_price_mean,2)));
```

Przedział ufności dla odchylenia standardowego:

[1] "Wartość średnia z próby: 40848.35"

Ze względu na dużą liczebność próby n>30, przedział ufności dla odchylenia standardowego zgodnie z wzorem:

$$P\bigg(\frac{S}{1+\frac{u_{\alpha}}{\sqrt{2n}}} < \sigma < \frac{S}{1-\frac{u_{\alpha}}{\sqrt{2n}}}\bigg) = 1 - \alpha$$

gdzie:

- n to liczebność próby losowej,
- S to odchylenie standardowe z próby,

```
• u_{\alpha} - to wartość kwantyla 1 - \frac{\alpha}{2} rozkładu normalnego standaryzowanego dla poziomu istotności \alpha .
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_price_mean = mean(database$CenaPLN);
vii_price_sd = sd(database$CenaPLN);
n = length(database$CenaPLN);
# SD confidence function
sd_confidence <- function(sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  ua = qnorm(1 - alpha / 2);
  offset = ua / sqrt(2*n);
  lower_bound = sd / (1 + offset);
  upper_bound = sd / (1 - offset);
  return(c(lower_bound, upper_bound));
};
# Calculate confidence
sd_confidence_intervals = sapply(confidence_level, function(conf_level) {
  sd_confidence(vii_price_sd, n, conf_level);
});
# Create matrix
sd_confidence_intervals = t(sd_confidence_intervals);
rownames(sd_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(sd_confidence_intervals) = c("Dolny przedział", "Górny przedział");
print("Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:");
## [1] "Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:"
print(sd_confidence_intervals);
##
                            Dolny przedział Górny przedział
## Poziom ufności: 0.9
                                    51054.28
                                                      51644.40
## Poziom ufności: 0.95
                                    50998.46
                                                      51701.64
                                                      51813.89
## Poziom ufności: 0.99
                                    50889.72
print(paste("Wartość odchylenia standardowego z próby:", round(vii_price_sd,2)));
## [1] "Wartość odchylenia standardowego z próby: 51347.64"
Przedział ufności dla zmiennej jakościowej (frakcyjna)
Do wyznaczenia przedziału ufności dla zmiennej PojazdUszkodzony.
p \in (\tfrac{m}{n} \, \check{} \, u_{1-\frac{\alpha}{2}} \, \tfrac{\sqrt{\frac{m}{n} \cdot (1-\frac{m}{n})}}{\sqrt{n}}, \tfrac{m}{n} + u_{1-\frac{\alpha}{2}} \, \tfrac{\sqrt{\frac{m}{n} \cdot (1-\frac{m}{n})}}{\sqrt{n}})
gdzie:
m - ilość zdarzeń sprzyjających,
```

n - ilość wszystkich zdarzeń,

• u_{α} - to wartość kwantyla 1 - $\frac{\alpha}{2}$ rozkładu normalnego standaryzowanego dla poziomu istotności α . # Meta data # Confidence level 0.9, 0.95, 0.99 confidence_level = c(0.9, 0.95, 0.99); # Basic data vii_positive = sum(database\$PojazdUszkodzony == TRUE); = length(database\$PojazdUszkodzony); mean_bool_confidence <- function(m, n, confidence_level) {</pre> alpha = 1 - confidence_level; mn = m / n;offset = qnorm(1 - alpha / 2) * sqrt(mn * (1-mn)) / sqrt(n); lower_bound = mn - offset; upper_bound = mn + offset; return(c(lower_bound, upper_bound)); }; # Calculate confidence confidence_intervals = sapply(confidence_level, function(conf_level) { mean_bool_confidence(vii_positive, vii_all, conf_level); }); # Create matrix confidence_intervals = t(confidence_intervals); rownames(confidence_intervals) = paste0("Poziom ufności: ", confidence_level); colnames(confidence_intervals) = c("Dolny przedział", "Górny przedział"); print("Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):"); ## [1] "Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):" print(confidence_intervals); ## Dolny przedział Górny przedział ## Poziom ufności: 0.9 0.03446330 0.03749003 ## Poziom ufności: 0.95 0.03417338 0.03777995 0.03360675 ## Poziom ufności: 0.99 0.03834658 print(paste("Udział pojazdów uszkodzonych w zbiorze ", round(vii_positive/length(database\$PojazdUszkodz ## [1] "Udział pojazdów uszkodzonych w zbiorze 0.04" Przedział ufności dla zmiennej jakościowej

Do analizy wybrano pole Marka.

```
vii_marka = database %>% group_by(database$Marka) %>% summarise(percent = n()/length(database$Marka));
```

Przedział ufności dla średniaj z udziału Marki w zbiorze

Ze względu na mała liczebność próby n < 30, przedział ufności dla odchylenia standardowego zgodnie z wzgrem:

$$P(\overline{X} - t_{\alpha,n-1} \frac{s}{\sqrt{n}}, \overline{X} + t_{\alpha,n-1} \frac{s}{\sqrt{n}}) = 1 - \alpha$$

gdzie:

```
• \overline{X} - średnia.
```

- n to liczebność próby losowej,
- s to odchylenie standardowe z próby,
- $t_{\alpha,n-1}$ dystrybuanta rozkładu t-studenta dla 1-a i n-1 stopni swobody.

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_marka_mean = mean(vii_marka$percent);
vii_marka_sd = sd(vii_marka$percent);
n = length(vii_marka$percent);
# Mean confidence function
mean_confidence <- function(mean, sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  offset = pt(alpha, n-1) * sd / sqrt(n);
 lower bound = mean - offset;
 upper_bound = mean + offset;
 return(c(lower_bound, upper_bound));
};
# Calculate confidence
mean_confidence_intervals = sapply(confidence_level, function(conf_level) {
  mean_confidence(vii_marka_mean, vii_marka_sd, n, conf_level)
});
# Create matrix
mean_confidence_intervals = t(mean_confidence_intervals);
rownames(mean_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(mean_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności średniej z danych jakościowych dla różnych poziomów ufności:");
## [1] "Przedziały ufności średniej z danych jakościowych dla różnych poziomów ufności:"
print(mean confidence intervals);
##
                        Dolny przedział Górny przedział
                             0.08539988
## Poziom ufności: 0.9
                                             0.09641830
## Poziom ufności: 0.95
                             0.08559816
                                             0.09622002
## Poziom ufności: 0.99
                             0.08575720
                                             0.09606098
print(paste("Wartość średnia z próby:", round(vii_marka_mean, 3)));
## [1] "Wartość średnia z próby: 0.091"
```

Przedział ufności dla średniaj z udziału Marki w zbiorze

Ze względu na mała liczebność próby n < 30, przedział ufności dla odchylenia standardowego zgodnie z wzorem:

```
P\left(\frac{n \cdot S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}} < \sigma^2 < \frac{n \cdot S^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right) = 1 - \alpha
```

gdzie:

- n to liczebność próby losowej,
- S to odchylenie standardowe z próby,
- $\chi_{1-\frac{\alpha}{2},n-1}$ kwantyle rozkładu Chi-kwadrat 1-a i n-1 stopni swobody.

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_marka_mean = mean(vii_marka$percent);
vii_marka_sd = sd(vii_marka$percent);
n = length(vii_marka$percent);
# Mean confidence function
sd_confidence <- function(sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  lower_bound = sqrt((n * sd * sd) / (qchisq(1-alpha/2, n-1)));
  upper_bound = sqrt((n * sd * sd) / (qchisq(alpha/2, n-1)));
  return(c(lower_bound, upper_bound));
};
# Calculate confidence
sd_confidence_intervals = sapply(confidence_level, function(conf_level) {
  sd_confidence(vii_marka_sd, n, conf_level);
}):
# Create matrix
sd_confidence_intervals = t(sd_confidence_intervals);
rownames(sd_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(sd_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:");
## [1] "Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:"
print(sd_confidence_intervals);
##
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                             0.02628534
                                             0.05665759
                                             0.06241419
## Poziom ufności: 0.95
                             0.02484986
## Poziom ufności: 0.99
                             0.02240909
                                             0.07659717
print(paste("Wartość odchylenia standardowego z próby:", round(vii_marka_sd,2)));
```

[1] "Wartość odchylenia standardowego z próby: 0.03"

VIII - Testowanie hipotez

Zmienne jakościowe

Test niezależności

Za pomocą testu niezależności χ^2 sprawdzona zostanie niezależność pomiędzy Marką a udziałem w nich samochodów ze skrzynią mechaniczną.

Hipoteza:

 H_0 - udział skrznyni mechanicznej jest niezależny od marki,

 ${\cal H}_1$ - udział skrznyni mechanicznej jest zależny od marki,

Poziom istotności $\alpha = 0.05$.

```
vii_cross = table(database$Marka, database$SkrzyniaBiegowManualna)
vii_table = data.frame(Marka=rownames(vii_cross), UdzialSkrzyniManualnej = (vii_cross[,2]/(vii_cross[,1])
ggplot(vii_table, aes(y=Marka, x=UdzialSkrzyniManualnej)) +
    geom_bar(position="dodge", stat="identity", fill="orange")+
    ggtitle("Udział samochodów z skrzynią manualną")
```

Udział samochodów z skrzyni manualn


```
chisq.test(vii_cross)
```

```
##
## Pearson's Chi-squared test
##
## data: vii_cross
```

```
## X-squared = 10428, df = 10, p-value < 2.2e-16
```

Zgodnie z wynikiem testu mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - udział skrznyni mechanicznej jest zależny od marki.

Test proporcji

Test proporcji pozwala odpowiedzieć na pytanie czy odsetki w jednej, dwóch lub więcej grupach różnią się od siebie istotnie.

Hipoteza:

 H_0 - odsetek pojazdów uszkodzonych jest niezależny od kraju pochodzenia,

 H_1 - odsetek pojazdów uszkodzonych jest zależny od kraju pochodzenia,

Poziom istotności $\alpha = 0.05$.

```
vii_proporcja = database %>% group_by(KrajPochodzenia) %>% summarise(Liczebnosc = n());
vii_proporcja$Uszkodzonych = table(database$KrajPochodzenia, database$PojazdUszkodzony)[,2];
vii_proporcja$ProcentUszkodzonych = (vii_proporcja$Uszkodzonych / vii_proporcja$Liczebnosc) * 100;
vii_proporcja = vii_proporcja %>% filter(Liczebnosc > 1000);

ggplot(vii_proporcja, aes(y=KrajPochodzenia, x=ProcentUszkodzonych)) +
    geom_bar(position="dodge", stat="identity", fill="orange")+
    ggtitle("Procent pojazdów uszkodzonych")
```

Procent pojazdów uszkodzonych


```
vii_test = prop.test(x = vii_proporcja$Uszkodzonych, n = vii_proporcja$Liczebnosc);
print(vii_test);
```

```
##
## 5-sample test for equality of proportions without continuity
##
   correction
##
## data: vii_proporcja$Uszkodzonych out of vii_proporcja$Liczebnosc
## X-squared = 1074.4, df = 4, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
       prop 1
                                                        prop 5
##
                    prop 2
                                prop 3
                                            prop 4
## 0.057422969 0.001156961 0.118827568 0.025647319 0.020011482
```

Zgodnie z wynikiem testu mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - odsetek pojazdów uszkodzonych jest zależny od kraju pochodzenia.

Zmienne ilościowe

Test normalności

Test umożliwia weryfikację czy cecha ma rozkłada normalny.

Hipoteza:

 H_0 - cena pojazdów ma rozkład normalny,

 H_1 - cena pojazdów nie ma rozkładu normalnego,

Poziom istotności $\alpha = 0.05$.

```
vii_test = ad.test(database$CenaPLN);
print(vii_test);

##
## Anderson-Darling normality test
##
## data: database$CenaPLN
## A = 5521.3, p-value < 2.2e-16
ggplot(database, aes(sample = CenaPLN)) +
    stat_qq() +
    stat_qq_line(color="red");</pre>
```


Zgodnie z wynikiem testu mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - cena pojazdów nie ma rozkładu normalnego.

Test średnich

Ze względu na to, iż cena nie jest zmienną o rozkładzie normalnym. Wykorzystujemy nieparametryczny test Wilcoxona.

Hipoteza:

```
H_0 - średnia jest równa 41000,
```

 ${\cal H}_1$ - średnia nie jest równa 41000,

Poziom istotności $\alpha = 0.05$.

```
wilcox.test(x = database$CenaPLN, mu = 41000)

##

## Wilcoxon signed rank test with continuity correction
##

## data: database$CenaPLN

## V = 238698925, p-value < 2.2e-16

## alternative hypothesis: true location is not equal to 41000</pre>
```

Zgodnie z wynikiem testu mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - średnia nie jest równa 41000.

IX - Regresja liniowa i inne

Modele dla jednej zmiennej


```
summary(model);
##
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
##
     Min
             1Q Median
                           ЗQ
                                 Max
  -39901 -11905 -4136
                         6516 637321
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.382e+04 2.507e+02 174.76
## PrzebiegKm -1.115e-01 1.746e-03 -63.88
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```



```
summary(model);
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
##
       Min
                1Q
                   Median
                                 ЗQ
                                        Max
                               6505 566066
##
  -124863
           -11495
                     -3285
##
## Coefficients:
```

```
##
                     Estimate Std. Error t value Pr(>|t|)
                  -1.286e+04 5.297e+02 -24.28 <2e-16 ***
## (Intercept)
## PojemnoscSkokowa 2.435e+01 2.972e-01 81.91
                                                 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20030 on 32774 degrees of freedom
## Multiple R-squared: 0.1699, Adjusted R-squared: 0.1699
## F-statistic: 6710 on 1 and 32774 DF, p-value: < 2.2e-16
print(model$coefficients);
##
       (Intercept) PojemnoscSkokowa
##
      -12862.74176
                          24.34602
```

Modele dla 2 zmiennych

summary(model);

##

-5537.7325250

```
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
                            3Q
      Min
               1Q Median
                                     Max
## -167185 -9096 -1707
                            6209 521446
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  -5.538e+03 4.627e+02 -11.97 <2e-16 ***
                  -1.597e-01 1.511e-03 -105.69 <2e-16 ***
## PrzebiegKm
## PojemnoscSkokowa 3.185e+01 2.663e-01 119.61 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17300 on 32773 degrees of freedom
## Multiple R-squared: 0.3809, Adjusted R-squared: 0.3809
## F-statistic: 1.008e+04 on 2 and 32773 DF, p-value: < 2.2e-16
print(model$coefficients);
##
       (Intercept)
                       PrzebiegKm PojemnoscSkokowa
```

31.8533893

-0.1597319

Drzewa decyzyjne

```
ix_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                     c("CenaPLN", "RokProdukcji", "PojemnoscSkokowa"))
ix_data_split = initial_split(ix_database, prop = 0.75);
ix_train_data <- training(ix_data_split);</pre>
ix_test_data <- testing(ix_data_split);</pre>
tree_spec <- decision_tree() %>%
 set_engine("rpart") %>%
set_mode("regression")
tree_fit <- tree_spec %>%
fit(CenaPLN ~ ., data = ix_train_data)
predictions <- tree_fit %>%
predict(ix_test_data) %>%
pull(.pred)
metrics <- metric_set(rmse, rsq)</pre>
model_performance <- ix_test_data %>%
mutate(predictions = predictions) %>%
metrics(truth = CenaPLN, estimate = predictions)
print(model_performance)
## # A tibble: 2 x 3
     .metric .estimator .estimate
##
     <chr> <chr>
                            <dbl>
## 1 rmse
             standard 12300.
## 2 rsq
             standard
                            0.675
rpart.plot(tree_fit$fit, type = 5, extra = 101, under = TRUE, cex = 0.8, box.palette = "auto")
## Warning: Cannot retrieve the data used to build the model (so cannot determine roundint and is.binar
## To silence this warning:
##
       Call rpart.plot with roundint=FALSE,
##
       or rebuild the rpart model with model=TRUE.
```

