# **Gasdynamik FOSAv3 - Leo Rauschenberger**

Allgemein: Keine Interpolation / SPD immer auf bereits eingezeichneten Linien / Dauer: 2h (4 Aufgaben = 30min pro Aufgabe) / Taschenrechner / **Geodreieck !!!** 

# **Basic**

| $1 Pa = 1 \frac{\text{kg}}{\text{ms}^2} = 10^{-5}  bar$ | $A = \frac{\pi d^2}{4}$                                                       |
|---------------------------------------------------------|-------------------------------------------------------------------------------|
| $R = 287 \frac{J}{kgK}$                                 | $\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$               |
| $C_n = \frac{1}{n}$                                     | $\frac{T_2}{T_2} = \left(\frac{p_2}{\gamma}\right)^{\frac{\gamma-1}{\gamma}}$ |
| $p = \rho RT$                                           | $T_1 \qquad (p_1)$                                                            |
| $Ma = \frac{u}{a} = \frac{u}{\sqrt{\gamma RT}}$         |                                                                               |

### Zustandswerte

| $p_0 = p_{tot}$           | Druck mit Geschwindigkeit                          |
|---------------------------|----------------------------------------------------|
|                           | Auch:                                              |
|                           | Ruhedruck (da zur Messung die Strömung auf 0       |
| $\rho u^2$                | abgebremst werden muss)                            |
| $ p_0 = p + \frac{p}{2} $ | $p_K$ Kesseldruck                                  |
|                           | $p_t$ Pitotdruck (wie in LAT)                      |
|                           | $p_{SP}$ Staupunktdruck (zB an Kugelsonde)         |
| $p = p_{stat}$            | Druck ohne Geschwindigkeit                         |
|                           | Statischer Druck (die Strömung fließt am Messpunkt |
|                           | unabgebremst vorbei)                               |
|                           | $p_s$                                              |



## Winkel

| ν | Prandtl Meyer Winkel                                         |
|---|--------------------------------------------------------------|
| α | Machscher Winkel                                             |
| β | Strömungswinkel = Winkel zwischen Stromlinie und Horizontale |
|   |                                                              |



$$\rho_1 u_1 = \rho_2 u_2$$

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$

$$h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}.$$

| Konti       | $\dot{m}_1 = \dot{m}_2$                                                                                                                                                                                                   |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | $\rho_1 u_1 A_1 = \rho_2 u_2 A_2$                                                                                                                                                                                         |  |
| Impuls      | $p_1 + \rho_1 u_1^2 = p_2 + \rho_1 u_1^2$                                                                                                                                                                                 |  |
| Energiesatz | Darf über Stoß hinweg aufgestellt werden da $T_0=konst.!$                                                                                                                                                                 |  |
|             | Zwischen Ruhezone und Strömung (z.B. Kessel & Öffnung): $c_pT_0=c_pT_1+\frac{u_1^2}{2}$                                                                                                                                   |  |
|             | Zwischen zwei Strömungszonen: $c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$ $\leftrightarrow T_1 \left( \frac{1}{\nu - 1} + \frac{Ma_1^2}{2} \right) = T_2 \left( \frac{1}{\nu - 1} + \frac{Ma_2^2}{2} \right)$ |  |

## **Einlauf:**

| Senkrechter Stoß | $Ma_1^*Ma_2^*=1$ | $Ma_2^* = \frac{1}{Ma_1^*}$ |
|------------------|------------------|-----------------------------|
| Angepasste Düse  |                  | $p_u = p_E$                 |
| isentrop         |                  | $p_{01} = p_{02}$           |
|                  |                  |                             |
|                  |                  |                             |

Mach'sche Linien führen zu keiner Ma-Zahl Änderung

$$F_A = pA$$

| Gesucht    | Gegeben                                     | Vorgehensweise                                                                                                                                         |
|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $M_2$      | $M_1, \beta$                                | $\xrightarrow{D2} \sigma \to M_1 \sin \sigma \xrightarrow{D3} \frac{p_2}{p_1}, \frac{p_{02}}{p_{01}} etc. \to \frac{p_2}{p_{02}} \xrightarrow{T1} M_2$ |
| $\rho_0$   |                                             | $\frac{p_0}{RT_0}$                                                                                                                                     |
| $ ho^*$    |                                             | $\left  \frac{\rho^*}{ ho_0}  ho_0 \right $                                                                                                            |
| m          |                                             | $ ho_{\infty}u_{\infty}A_{\infty} \  ho_{\infty}Ma_{\infty}\cdot a_{\infty}A_{\infty}$                                                                 |
| $T_e$      | $u_e$ , $c_p = \frac{\gamma R}{\gamma - 1}$ | $T_0 - \frac{u_e^2}{2c_p}$                                                                                                                             |
| $u_e$      | $M_{ae}$                                    | $M_{ae}\sqrt{\gamma R\frac{T_e}{T_o}T_o}$                                                                                                              |
| Schubkraft |                                             | $F_N - F_{Druckkr\"{a}fte} = I_{aus} - I_{ein} = \dot{m}_{aus} u_{aus} - \dot{m}_{ein} u_{ein}$                                                        |
|            |                                             | $\operatorname{Eg.} F_{Druckkr\"{a}fte} = (p_e - p_u)A_e$                                                                                              |



# **Senkrechter Stoß**

- Wenn Ma1 bekannt, ist auch die Machzahl nach dem Stoß bekannt!

$$Ma_1^*Ma_2^*=1$$

Für D3:

$$Ma_{1,n} = Ma_1$$

- Ruhetemperatur bleibt konstant
- Vor senkrechtem Stoß Ma>1, dahinter Ma<1
- Entropieänderung (Ex.3)

$$\frac{\Delta s}{R} = -\ln\left(\frac{p_{02}}{p_{01}}\right)$$

- Wert aus D3 ablesen (vor einsetzen invertieren!!)

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2}$$

$$T_{01} = T_{02}$$

# Starke & schwache Stöße





Stoßwinkel  $\sigma_1$ 

Umlenkungswinkel  $eta_2$ 

Für D3 (d.h. die oben hergeleiteten Beziehungen gelten nun nur für die <u>normale Machzahl</u>) :

$$Ma_{1,n} = Ma_1 \sin \sigma_1$$

Rechenregel (oder aus D3)

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} (M\alpha_{1n}^2 - 1)$$

Weiterhin:

$$T_{01} = T_{02}$$

# PM und Charakteristiken



## **Prandtl-Meyer Eigenschaften:**

- Infinitesimal schwache Schrägstöße
- Strömungsgebiet in dem es nicht zur Überschneidung der Mach'schen Linien kommt
- Isentrop
- Prandtl-Meyer Winkel  $\nu$  ist in Tabelle 1. Er wird für Ma=1 zu null!
- Ruhedruck bleibt gleich bei PM!  $ightarrow |p_{01}=p_{02}|$
- Nur einfache Gebiete!!!

| Prandtl-   | Expansion       | 1///                                  | $\nu = \nu_1 +  \Delta\beta $                                                             |
|------------|-----------------|---------------------------------------|-------------------------------------------------------------------------------------------|
| Meyer Str. | (Eckenströmung) | $\beta_1$                             | $p_{01} = p_{02}$ $\alpha = \arcsin\left(\frac{1}{Ma_1}\right)$                           |
|            | Kompression     | A A A A A A A A A A A A A A A A A A A | $v = v_1 -  \Delta\beta $ $p_{01} = p_{02}$ $\alpha = \arcsin\left(\frac{1}{Ma_1}\right)$ |

## Charakteristiken

- Auch in nicht einfachen Gebieten anwendbar

| Charakteristik  | rechtslaufend | $P_2$ $\alpha_2$ $\beta_2$ $P_3$ $P_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $v_2 + \beta_2 = v_3 + \beta_3$ $y' = \frac{dy}{dx} = \tan(\beta - \alpha)$ $\delta = \beta - \alpha$ |
|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                 | linkslaufend  | $P_1$ $\alpha_1$ $\beta_1$ $\alpha_1$ | $v_1 - \beta_1 = v_3 - \beta_3$ $y' = \frac{dy}{dx} = \tan(\beta + \alpha)$                           |
| einfaches Gebie | et            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta = \beta + \alpha$ Die Zustände entsprechen einander $\nu_1 = \nu_2$                           |

|                                | $\beta_1 = \beta_2$                |
|--------------------------------|------------------------------------|
| Auf Symmetrielinie/            | $\beta = 0$                        |
| Freistrahlrand angepasste Düse |                                    |
| Wand                           | $\beta = \beta_{Wand}$             |
| Adiabate Strömung (?)          | $T_0 = T_{1,0} = T_{2,0} = \cdots$ |
| Schallzustand                  | $Ma = 1$ : $\nu = 0$               |
| Mittlere Charakteristik        | $\frac{\beta_{max}}{2}$            |

# Beispiele:



Am Freistrahlrand werden Expansionen als Kompressionen reflektiert.

An festen Wänden / Symmetrielinien expandieren Expansionen weiter.



# (Linearisierte) Potentialtheorie

## Voraussetzungen:

- homentrope Strömung (adiabat, reibungsfrei, isoenergetisch)
- Kleine Geschwindigkeitsstörungen

Mit: 
$$\lambda = \sqrt{Ma_{\infty}^2 - 1}$$

| Kontur             | v', u' linearisierte Werte.                                                                                                     |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Kontui             |                                                                                                                                 |  |
|                    | Exakt: $\frac{dy}{dx} = \frac{v'}{u_{\infty} + u'}$                                                                             |  |
|                    |                                                                                                                                 |  |
|                    | Approx.: $\frac{dy}{dx} = \frac{v'}{v_{co}}$                                                                                    |  |
|                    | $dx u_{\infty}$                                                                                                                 |  |
|                    | Mit                                                                                                                             |  |
|                    | $v' = -\lambda f'$                                                                                                              |  |
|                    | u'=f'                                                                                                                           |  |
| Druckbeiwert       | $u' = f'$ $c_p = -2\frac{u'}{u_{\infty}}$                                                                                       |  |
|                    | $\left c_{p}=-2\frac{1}{u_{\infty}}\right $                                                                                     |  |
|                    | day                                                                                                                             |  |
|                    | Exakt: $c_P = \frac{2\frac{dy}{dx}}{\lambda + \frac{dy}{dx}}$                                                                   |  |
|                    | $\int dx$                                                                                                                       |  |
|                    | Approx.: $c_P = \frac{2}{\lambda} \frac{dy}{dx}$                                                                                |  |
|                    | Approx $\left \frac{c_P - \frac{1}{\lambda} dx}{dx}\right $                                                                     |  |
|                    | n n                                                                                                                             |  |
|                    | $c_p = rac{p - p_\infty}{rac{ ho_\infty}{2} u_\infty^2}$                                                                      |  |
|                    | <u>Z</u>                                                                                                                        |  |
|                    | $\operatorname{Mit} \rho = \frac{p}{RT} \& u^2 = Ma^2 \gamma RT:$                                                               |  |
|                    | $c_p = \frac{2}{vMa_p^2} \left( \frac{p}{n_p} - 1 \right) = \frac{2}{vMa_p^2} \left( \frac{p}{n_p} \frac{p_0}{n_p} - 1 \right)$ |  |
|                    | $\gamma M a_{\infty}^2 \langle p_{\infty} \rangle \gamma M a_{\infty}^2 \langle p_0 p_{\infty} \rangle$                         |  |
| Auftriebsbeiwert   | Bei Profillänge L:                                                                                                              |  |
| Authebsbeiweit     |                                                                                                                                 |  |
|                    | $c_A = \frac{1}{L} \int_0^L (c_{pu} - c_{po})  dx$                                                                              |  |
|                    | $L J_0$                                                                                                                         |  |
|                    | $\alpha$                                                                                                                        |  |
|                    | Bei symmetrischem Profil ergibt sich: $c_A=4rac{lpha}{\lambda}$                                                                |  |
| Widerstandsbeiwert | $c_W = \frac{1}{L} \int_0^L \left( c_{po} \frac{dy}{dx} \Big _K - c_{pu} \frac{dy}{dx} \Big _K \right) dx$                      |  |
|                    | $L \int_0^{\infty}  \nabla^{po} dx _K  \nabla^{pu} dx _K dx$                                                                    |  |
|                    |                                                                                                                                 |  |

# Vorgehen:

| In Gebiete aufteilen  p <sub>0</sub> 2  p <sub>u</sub> Ma <sub>1</sub> 1  3                                                                                                                                                                                                                            | Profil ohne Aussenwände:  - Die Charakteristischen Linien gehen unter winkel $\alpha = \arcsin\frac{1}{Ma_{\infty}}$ vom Profil aus. (Da dies nur eine Appproximation ist, gilt die lin. Potentialtheorie NUR für schwache Störungen/schlanke Profile!)  Profil mit Außenwänden (im Windkanal):  - Reflexion muss betrachtet werden!  - Reflektierte Wellen dürfen nicht auf das Modell auftreffen! |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wellengig als Lösungsansatz:                                                                                                                                                                                                                                                                           | u^↑ onet.                                                                                                                                                                                                                                                                                                                                                                                           |
| Mach'sche Linien mit positiver oder negativer Steigung beschreiben: $y \geq 0$ : $\phi = f(\xi) = f(x - \lambda y)$ $y \leq 0$ : $\phi = g(\eta) = g(x + \lambda y)$ Oder kombiniert: $\phi(x,y) = f + g$ Geschwindigkeiten graphisch beschreiben: $v' = u_{\infty} \frac{dy}{dx} \Big _{\mathcal{V}}$ | $\frac{dy}{dx}\Big _{K}$ gegeben oder leicht aus der Kontur ablesbar                                                                                                                                                                                                                                                                                                                                |
| $ax_{K}$                                                                                                                                                                                                                                                                                               | Die Kleinwinkelnäherung kann genommen werden!                                                                                                                                                                                                                                                                                                                                                       |
| Geschwindigkeiten aus Wellengleichungen: $v' = \phi_y = \lambda(-f'+g')$ $f' \& g' \text{ finden und einsetzen in:}$ $u' = \phi_x = f' + g'$                                                                                                                                                           | Also:                                                                                                                                                                                                                                                                                                                                                                                               |
| Wobei:                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| $u' = 0 \rightarrow c_p = 0$ wenn glatt                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Einsetzen in z.B. $c_P = -2 \frac{u'}{u_\infty}$                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ggf. gleichsetzen mit: $c_p = \frac{2}{\gamma M a_\infty^2} \Big( \frac{p}{p_\infty} - 1 \Big)$                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |

Für Benennung und Winkel sind immer das dahinter liegende Gebiet relevant!!

(Dies ist auch beim Einzeichnen des Stromlinienverlaufs zu beachten!!)

# Ähnlichkeit

4 Fälle:

- Bei Überschallströmungen gilt natürlich:  $\lambda = \sqrt{{\it Ma}_{\infty}^2 - 1}$ 

- 
$$c_p = c_a$$

|   | Allgemein                             |                                                                                        | $c_p \frac{\sqrt{1 - Ma_{\infty}^2}}{d/t} = konst.$                                                         |
|---|---------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1 | Potentiallinienanalogie               | $c_p = konst.$                                                                         | $c_{p} \frac{\sqrt{1 - Ma_{\infty}^{2}}}{d/t} = konst.$ $\frac{\lambda}{\left(\frac{d}{t}\right)} = konst.$ |
|   |                                       |                                                                                        | Wenn angestellt: $\epsilon_2 = \frac{\lambda_2}{\lambda_1} \epsilon_1$                                      |
| 2 |                                       | $Ma_{\infty} = konst.$                                                                 | $\epsilon_2 = \frac{\lambda_2}{\lambda_1} \epsilon_1$ $\frac{c_p}{\left(\frac{d}{t}\right)} = konst.$       |
| 3 | Prandtl-Glauert-Regel                 | $\frac{d}{t} = konst.$                                                                 | $c_p \lambda = konst.$                                                                                      |
|   |                                       | <ul><li>Gleiches Profil</li><li>2D Profil</li></ul>                                    | Wenn angestellt: $\epsilon_2 = \epsilon_1$                                                                  |
| 4 | Göthert Regel/<br>Stromlinienanalogie | $\left(\frac{d}{t}\right)\lambda = konst.$                                             | $c_p \lambda^2 = konst.$                                                                                    |
|   |                                       | <ul><li>Auch auf 3D anwendbar</li><li>Gleiche Stromlinien</li><li>Tragflügel</li></ul> | Wenn angestellt: $\boxed{\epsilon_2 = \frac{\lambda_1}{\lambda_2} \epsilon_1}$                              |

N.B: Unterschallströmungen sind NIE ähnlich zu Überschallstr.

Prandtl-Glauert erlaubt es Wasser mit Luftversuch vergleichen:

$$M_{inkompr} = 0 \; \& \; M_{\infty} < 1$$

$$c_{pink.} = c_p \sqrt{1 - Ma_{\infty}^2}$$



# Theorie für schlanke, schwach angestellte Profilen:

Nur anwendbar, wenn die Potentiallinienanalogie gilt. D.h. mit Göthert NICHT kompatibel.



### Fragestellungen:

| $F_A = ?$ | $F_A =  ho_\infty rac{u_\infty^2}{2} c_A b_1 t_1$   |
|-----------|------------------------------------------------------|
| $F_W = ?$ | $F_W = \rho_\infty \frac{u_\infty^2}{2} c_W b_1 t_1$ |

# **Tabellen**

Meist soll der nächstgelegene Wert verwendet werden.

## Stoßpolarendiagramm (D4 oder SPD)



Für Werte, welche zwischen den dargestellten Polaren liegen, müssen neue Polaren eingezeichnet werden.

Mit

$$a^* = \sqrt{\gamma R T^*}$$



Skalierung ca. 10cm = Mach 1 in Klausur

## Kessel (mit Düse)

| Auslegungsfall | Nicht-Auslegungsfall |
|----------------|----------------------|
|                |                      |

#### Schub

 $F_{Schub} - F_{Druckkr\"{a}fte} = \dot{I}_{aus} - \dot{I}_{ein} = \dot{m}_{aus}u_{aus} - \dot{m}_{ein}u_{ein}$ 

- $F_{Druckkräfte} = (p_e p_u)A_e$
- FD nur wenn die Druckkammer sich bewegt
- Oft  $\dot{m}_{ein} pprox 0$

### **Energiesatz:**

Oft kann sich zunutze gemacht werden, dass an einer Stelle die Strömung nicht in Bewegung ist:

Zwischen Ruhezone und Strömung (z.B. Kessel & Öffnung):

$$c_p T_0 = c_p T_1 + \frac{u_1^2}{2}$$

Zwischen zwei Strömungszonen:

$$c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2}$$

$$\leftrightarrow T_1 \left( \frac{1}{\gamma - 1} + \frac{Ma_1^2}{2} \right) = T_2 \left( \frac{1}{\gamma - 1} + \frac{Ma_2^2}{2} \right)$$

Stoß entsteht in der Düse; Position

### <u>Düse</u>

## $oldsymbol{eta}_{max}$ bestimmen

#### Ss16 a1

### **Durchströmung (mit mehreren verengten Querschnitten)**

Wichtig! In den kritischen Querschnitten sind die Verhältnisse bekannt (im Auslegungszustand)!

$$Ma = 1$$

| Ma   | Ma*   | p/p <sub>0</sub> | $\rho/\rho_0$ | T/T <sub>0</sub> | A*/A   | v [°] |
|------|-------|------------------|---------------|------------------|--------|-------|
| 1,00 | 1,000 | 0,5283           | 0,6339        | 0,8333           | 1,0000 | 0,00  |

Nicht auf denselben krit. Querschnitt beziehen, sondern auf den gerade davor!

# Damit Keine Überschallströmung auftritt (im gesamten Kanal)

## Im Auslegungsfall tritt im engsten Querschnitt IMMER der Schallzustand auf!

Es lässt sich anhand des Druckverhältnisses im Austrittsquerschnitt feststellen, welcher Fall vorliegt:

- $Ma_{E,Ausleg} = \cdots \text{ in T1: } \frac{A^*}{Ae} = \cdots$ In T1 <u>im Unterschall</u> bei  $\frac{A^*}{Ae} \rightarrow \frac{p_e krit}{p_0}$
- Wenn  $\frac{p_u}{p_0} > \frac{p_e k r i t}{p_0}$  dann überall Unterschall

## $p_2$ damit im $A_E$ ein senkrechter Verdichtungsstoß auftritt: (Ex2)

- Machzahl Mae & p1e vor Stoß entspricht Auslegungsfall
- Aus D3  $\frac{p_2}{p_1}$
- P2 rechnen!

### Stoß lokalisieren (Ex3)

### Meist über Ruhedruckverlust!

### **Einlauf**

## Auslegungsfall

 $\dot{m} = \rho u A = \rho u h b$ 

### Höhe berechnen:

$$tan \sigma_0 = \frac{H}{L}$$

# Nicht-Auslegungsfall

1. Durch Absenkung von  $Ma_{\infty}$  wird der Stoß aus dem TW herausgedrückt



$$\begin{split} \Delta H &= H - H_n \quad \text{mit } \Delta H \text{ aus } \tan \beta = \frac{\Delta H}{\Delta L} = \frac{\Delta H}{L - H_n / \tan \sigma_{1neu}} \\ &\leftrightarrow \tan \beta \left( L - \frac{H_n}{\tan \sigma_{1neu}} \right) = H - H_n \end{split}$$

Nach  $H_n$  auflösen! Fall:  $M_{a\infty} < (M_{a\infty})_{ausl}$ 

$$\dot{m}_{ausl} = \rho_{\infty}(M_{a\infty})_{ausl} a_{\infty} h_{ausl}$$

$$\dot{m} = \rho_{\infty} M_{a\infty} a_{\infty} h$$

$$\frac{\dot{m}}{\dot{m}_{ausl}} = \frac{M_{a\infty}}{(M_{a\infty})_{ausl}} \frac{h}{h_{ausl}}$$

$$\rightarrow \dot{m} = \dot{m}_{ausl} \frac{M_{a\infty}}{(M_{a\infty})_{ausl}} \frac{h}{h_{ausl}}$$

$$h < h_{ausl}$$

$$\rightarrow \dot{m} < \dot{m}_{ausl}$$

2. Durch Erhöhung der Anströmmachzahl geht der Stoß ins TW hinein

Höhe bleibt gleich, aber die Machzahl nimmt zu; also höherer Massenstrom

| Fall: $M_{a\infty} > (M_{a\infty})_{ausl}$                                      |
|---------------------------------------------------------------------------------|
| $\dot{m}_{ausl} = \rho_{\infty}(M_{a\infty})_{ausl} a_{\infty} h$               |
| $\dot{m} = \rho_{\infty} M_{a\infty} a_{\infty} h$                              |
| $\frac{\dot{m}}{\dot{m}_{ausl}} = \frac{M_{a\infty}}{(M_{a\infty})_{ausl}}$     |
| $\rightarrow \dot{m} = \dot{m}_{ausl} \frac{M_{a\infty}}{(M_{a\infty})_{ausl}}$ |
| $\rightarrow \dot{m} > \dot{m}_{ausl}$                                          |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |

Note: Bei isentroper Kompression, also schwachen Stößen (siehe SSO4)

- ist  $\beta$  nicht bekannt.
- Muss mit  $\alpha$  statt  $\sigma$  gerechnet werden
- D3 nicht anwendbar!!

Isentropenbeziehungen!

$$\frac{p_1}{P_{\infty}} = \left(\frac{\rho_1}{\rho_{\infty}}\right)^{\gamma} = \frac{T_1}{T_{\infty}} = \left(\frac{p_1}{P_{\infty}}\right)^{\frac{\gamma-1}{\gamma}}$$

$$\dot{m} = \rho u A = \rho u h b$$

Oft muss h ermittelt werden aus der Einlauflänge

Skizze

## Geschwindigkeits-Flächenbeziehung

$$\frac{du}{u} = -\frac{1}{1 - M^2} \frac{dA}{A}$$

Ma > 1

Ma = 1

Ma < 1

Messzeit berechnen:

Messzeitende ist erreicht, wenn ein senkrechter Verdichtungsstoß am Messstreckende Auftritt. D.h. von Auslegungsfall bis senkrechter stoß

Die Machzahl ist bei stoßfreier Düsenströmung nur vom Flächenverhältnis  $A_e=A_H$  abhängig und somit konstant (= Me ). Der Totaldruck im Kessel ändert sich infolge des Ausströmens.

Massenänderung im Kessel: