Final Exam Review Sheet (CS-352 Spring 2024)

This review sheet is an outline of main topics covered in class.

Overview

• Scope of the exam:

- Topics covered Authentication Protocols, Classical Ciphers, Block Cipher Principles, DES, TwoFish, and AES.
- The exam **does not** cover any other material covered by the midterm exam **except** where the knowledge of the prior material is related to the new material.
- Be able to answer questions similar and related to the handouts, demos, assignments, quizzes and slides.
- The guidelines to the salient topics are provided below.

\mathbf{C}

Classical Ciphers
• Do not need to know the history of cryptography.
• Understand the basic terminology: e.g. plaintext, ciphertext, cryptanalysis etc
• How are the ciphers classified?
 Substitution vs Transposition vs Product
•
– Stream vs Block
– Symmetric vs Public Key

• What is the difference between a monoal phabetic and a polyal phabetic cipher?

	Thy are attackers more interested in compromising the encryption keys than discovering e content of the specific ciphertext?
• W	That are the basic building blocks of symmetric cryptography?
• W	That are the requirements for strong symmetric encryption?
• W	That is the difference between unconditional and computational security?
	e able to encrypt and decrypt using all classical ciphers discussed in class e.g. Cesar, ayfair, Vigenère (with and without autokey), Railfence, etc. - Example: Encrypt plaintext sssssdlfjh using Playfair cipher and key hello.
	- Example: Decrypt ciphertext dyucumyed using Playfair cipher and key hello.
	 Example: Encrypt yuiopvbnm using the Vigenère cipher with autokey and key midterm.

Block Cipher Principles and DES

•	What is the difference between stream and block ciphers?
	What are confusion and diffusion? Why are they important when designing a block cipher? Give an example.
	 Example: Consider a block cipher with a property where if one bit of the key changes, many bits of the ciphertext change. Is this example of confusion or diffusion? Explain.
•	What primary techniques are used to achieve confusion and diffusion, respectively?
•	What makes a block cipher reversible?
•	Understand the ideal block cipher concepts. - Example: How many possible keys can I have in an ideal block cipher which encrypts 64-bit text blocks?

- Example: What is the size of the key in a 64-bit ideal block cipher?
• How does Feistel cipher perform substitution and permutation?
• What are the advantages of the Feistel cipher network?
• Know and understand how to use all DES-related tables.
 Example: Consider binary key string: 0011000110110111000000111001111011110
- Example: What will be the output of S-Box 8 given input 111011
• What important function do S-Boxes perform in DES encryption?

•	Do not Do not need to know all of the S-Box design criteria but need to know at least a few and describe them.
•	What is the important property of block cipher security achieved by swapping two halves of the text block after every round?
•	What is the avalanche effect? Why is it important?
•	Why not double DES? What is the method of breaking double DES?
•	Understand why when using 3DES, it's better to use EDE instead of EEE.
•	What is the difference between differential and linear cryptoanalysis?

Twofish

• What key sizes and block sizes does Twofish support?
• Know that Twofish is based upon a Fiestal cipher structure (as is DES).
• What is the distinguishing feature of Twofish S-Boxes? How do they compare with, say, DES S-Boxes.
• What is the distinguishing feature of Twofish key scheduling algorithm?

Advanced Encryption Standard (AES)

avanced Energypton Standard (PES)
• Compare and contrast AES and DES in terms of security, key size, block size, structure and the number of rounds.
• Is AES based on the Feistel cipher network?
• Be able to compare and contrast the Fiestal cipher framework to the Substitution Permitation framework.
• Know basic structure of the single AES round.
- Example: What sequence of operations does the first AES round perform?
- Example: How does the last round of AES differ from all other rounds?
- Example: In DES, the number of rounds is fixed. Is the same true of AES?

• Know how to convert a given plaintext into an AES state.
• In the SubBytes step, know how to use the Rijnadel S-Box in order to perform substitutions.
- Example: What is the result of substituting byte AE into the Rijnadel S-Box?
- Example: What is the result of substituting byte 2F into the Rijnadel S-Box?
• Understand how the ShiftRows step works.
 Example: Suppose 12 34 56 78 is the third row of the state. How will the row be transformed in the ShiftRows step.
• Understand how the MixColumns step works.

- Example: What is the rationale behind the MixColumns step?
 Given the MixColumns matrix and the state, know how to multiply the matrix by th state.
– Know how to E-table and L-table for performing $GF(2^8)$ multiplication.
* Example: What is AB \times 34 in $GF(2^8)$?
• Understand how the AddRoundKey step works.
- Example: Given the initial round key 93 1E D7 36 D6 C2 1B D9 D2 01 86 98 E 07 D2 F5, write the key in the matrix form, convert the key into four 4-byte vector W_0 , W_1 , and W_2 , and W_3 , and derive vectors W_4 , W_5 , and W_6 , and W_7 for the nex round.

Block Cipher Modes

- What are advantages and disadvantages of ECB, CBC, CFB, and CTR modes? Be able to analyse their security, efficiency, etc.
- Be able to prove correctness of given mode (similar to what we did in class).

- **Example:** Show that CBC cipher mode is correct (e.g. Slide 14 of Block Cipher Modes of Operation Slideset).

• What is the importance of padding? When is it done?

Authentication Protocols (AuthenticationProtocols.pdf)

• What are main issues in authentication protocols (slide 3).
• Know and understand all types of replay attacks (slide 4).
• What are the main countermeasures against replay attacks (i.e. nonces and time stamps)
• Explain the flow of logic in the Needham-Schroeder and Needham-Schroeder-Lowe protocols (slides 8 - 18).
\bullet What is the vulnerability in the Needham-Schroeder protocol? Explain (slides 9-12).
\bullet Why is it challenging to counter replay attacks with time stamps? (slide 12).
• Explain the flow logic in the Needham-Schroeder Public Key Protocol (15-18).

– How do we fix the vulnerability?	
• How does one-way authentication work in order to protect email? Does it provide co dentiality? Does it protect against replay attacks?	nfi-
• Explain why the information transferred through the Web vulnerable (slides 24-25)? able to give examples of attacks. How can we protect against such vulnerabilities?	Be
• At what layer does SSL run?	
• Know the protocols involved in SSL/TLS and their functions. Do not need to remem the details of the SSL/TLS handshake protocol.	ber
\bullet What services does the SSL/TLS protocol provide?	
• Know that SSL fragments messages. Each fragment can be compressed (optionally).	

- Is there a vulnerability?

- Does the Heartbleed vulnerability comprise a security flaw in the design of SSL? Explain.
- What are two fundamental ways of protecting passwords (slide 42)?

- Access control.
- One-way functions.
- What are hashing and salting?
- How is the password file protected in UNIX (as discussed in class)?