54. Матрицы Адамара. (Первая) конструкция Пэли с квадратичными вычетами при n=p+1, p=4m+3.

Определение: Для простого p определим $p \times p$ матрицу Якобсталя Q формулой $Q_{jl} = \left(\frac{j-l}{p}\right)$ (это символ Лежандра).

І конструкция Пэли: Пусть $p \equiv 3 \pmod{4}$. Тогда матрица

$$\left(\begin{array}{cc}
1 & e^T \\
e & Q - E_p
\end{array}\right)$$

где e — столбец из единиц, а E_p — единичная матрица, является матрицей Адамара порядка p+1.

\triangle Рассмотрим скалярное произведение строк a_1 и a_2 матрицы Q.

$$\sum_{b=1}^{p} \left(\frac{a_1 - b}{p} \right) \left(\frac{a_2 - b}{p} \right)$$

Пусть $x = a_1 - b, c = a_2 - a_1$. Получаем

$$\sum_{r=1}^{p} \left(\frac{x}{p}\right) \left(\frac{c+x}{p}\right) = \sum_{r=1}^{p-1} \left(\frac{x}{p}\right) \left(\frac{x \cdot x^{-1}(x+c)}{p}\right) = \sum_{r=1}^{p-1} \left(\frac{x}{p}\right)^2 \left(\frac{1+x^{-1}c}{p}\right)$$

При $x \neq 0$ $\left(\frac{x}{p}\right)^2 = 1$. Положим $y = 1 + x^{-1}c$. Так как $c \not\equiv 0 \pmod{p}$, то $x^{-1}c$ пробегает все числа $1 \dots p - 1 \Rightarrow y$ пробегает числа $2 \dots p$.

$$\sum_{\substack{x \not\equiv 0 \pmod{p}}} \left(\frac{1 + x^{-1}c}{p} \right) = \sum_{\substack{y \not\equiv 1 \pmod{p}}} \left(\frac{y}{p} \right) = 0 - \left(\frac{1}{p} \right) = -1$$

Рассмотрим скалярное произведение строк искомой матрицы. По сравнению со скалярным произведением строк Q добавятся слагаемые 1, $(-1) \cdot \left(\frac{a_1 - a_2}{p}\right)$ и $(-1) \cdot \left(\frac{a_2 - a_1}{p}\right)$ (раньше они умножались на нули). Эти символы Лежандра отличаюся в $\left(\frac{-1}{p}\right)$ раз. $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+2}{2}} = (-1)^{2m+1} = -1 \Rightarrow$ слагаемые с символом Лежандра сократятся \Rightarrow скалярное произведение любых двух строк искомой матрицы равно (-1) + 1 = 0.

Очевидно, что если мы рассмотрим скалярное произведение первой строки с любой другой, мы получим 0, так как в Q было поровну единиц и минус единиц (ранее доказывалось, что в \mathbb{Z}_p поровну квадратичных вычетов и невычетов) и у нас добавилась одна единица и одна минус единица. \Rightarrow это матрица Адамара \blacksquare