Линейная регрессия и обобщения

Виктор Китов

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- 3 Разные функции потерь
- 4 Взвешенный учет наблюдений
- 5 Другие типы регрессии

Линейная регрессия

• Линейная регрессия

$$\widehat{y} = x^T \widehat{\beta} = \sum_{i=1}^D \widehat{\beta}_i x^i$$

$$\widehat{\beta} = \underset{\beta}{\text{arg min}} \sum_{n=1}^N \left(x_n^T \beta - y_n \right)^2$$

- Если смещение \widehat{eta}_0 явно не указано, всегда включают константный признак в x.
- Предположения:
 - ullet каждый x^i линейно влияет y с коэффициентом \widehat{eta}_i
 - ullet вклад каждого признака x^i не зависит от значений др. признаков.

Анализ метода

Преимущества:

- интерпретируемость
 - знак коэффициентов=направление влияния x^i
 - модуль коэффициента=сила влияния x^i (при признаках из одной шкалы!)
 - $\widehat{\beta}$ асимптотически нормальны (см. ссылку), можем тестировать:
 - значимость отличия коэффициентов (или группы коэффициентов) от нуля,
 - гипотезу положительного влияния признака на отклик (положительности коэффициента)
 - есть аналитическое решение
 - быстро и просто строятся прогнозы
 - меньше переобучается, чем сложные модели
 - ullet для больших D может быть оптимальной моделью

Недостатки: модельные предположения слишком простые

- признаки могут влиять нелинейно
- признаки могут иметь взаимозависимое влияние

Признаки

- Можно использовать вещественные признаки и бинарные.
- Категориальные можно закодировать:
 - номером категории (плохо)
 - счетчиком встречаемости категории
 - в виде бинарных (one-hot encoding)
 - в виде вещественных (mean value encoding)

One-hot кодирование

Direction
North
North-West
South
East
North-West

Mean value кодирование

- можно делать по вещественному признаку
- \bullet если делаем по y, то на отдельной выборке!

id	job	job_mean	target
1	Doctor	0,50	1
2	Doctor	0,50	0
3	Doctor	0,50	1
4	Doctor	0,50	0
5	Teacher	1	1
6	Teacher	1	1
7	Engineer	0,50	0
8	Engineer	0,50	1
9	Waiter	1	1
10	Driver	0	0

Решение

Определим $X \in \mathbb{R}^{N \times D}$, $\{X\}_{ij}$ - значение j-го признака i-го объекта, $Y \in \mathbb{R}^N$, $\{Y\}_i$ - отклик i-го объекта. Метод наименьших квадратов (МНК, ordinary least squares):

$$L(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 = \|X\beta - Y\|_2^2 \to \min_{\beta}$$

$$L'(\beta) = 2 \sum_{n=1}^{N} x_n \left(x_n^T \beta - y_n \right) = 0$$

$$2X^T (X\beta - Y) = 0$$

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

Интуиция: $\widehat{\beta}_i$ пропорциональна ковариации x_n^i и y_n , нормализованная $Var[x^i]$ и $cov[x^i,x^j]$.

Глобальность минимума

- Это глобальный минимум, т.к. оптимизируемый критерий выпуклый.
 - выпуклая ф-ция от линейной выпукла¹, сумма выпуклых выпукла
 - для выпуклой ф-ции достаточное условие минимума равенство нулю производной.

¹ Будет ли суперпозиция произвольных выпуклых ф-ций выпуклой?

Геометрическая интерпретация

• Находится линейная комбинация признаков, чтобы приблизить Y в \mathbb{R}^N :

$$L(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 = \| X \beta - Y \|_2^2 \to \min_{\beta}$$

• Решение - проекция на линейную оболочку признаков в \mathbb{R}^N .

Линейно зависимые признаки - проблема

- $oldsymbol{\circ}$ Решение $\widehat{eta}=(X^TX)^{-1}X^TY$ существует, когда X^TX невырождена.
- Поскольку $rank(X) = rank(X^TX) \ \forall X$, проблема возникает при линейной зависимости признаков.
 - ullet пример: константный признак и one-hot закодированные $e_1, e_2, ... e_K$, поскольку $\sum_k e_k \equiv 1$
 - интерпретация: возникает неоднозначность \widehat{eta} для зависимых признаков:
 - линейная зависимость: $\exists \alpha : x^T \alpha = 0 \, \forall x$
 - ullet предположим \widehat{eta} решение $\sum_{n=1}^{N}\left(x_{n}^{T}eta-y_{n}\right)^{2}
 ightarrow \min_{eta}$
 - тогда $\widehat{\beta} + k\alpha$ тоже решение $\forall k \in \mathbb{R}: x^T \widehat{\beta} \equiv x^T \widehat{\beta} + kx^T \alpha \equiv x^T (\widehat{\beta} + k\alpha).$
- При почти зависимых признаках (X^TX плохо обусловлена, т.е. $\lambda_{max}/\lambda_{min}$ велико):
 - ullet \widehat{eta} неустойчиво и принимает большие по модулю значения.

Линейно зависимые признаки - решение

- Проблема может быть решена:
 - отбором признаков (feature selection)
 - снижением размерности (dimensionality reduction)
 - накладыванием доп. условий на решение (регуляризация)
 - $\|\beta\|$ должна быть мала
 - некоторые β_i должны быть неотрицательные
 - ...

Нелинейные зависимости в линейной регрессии

Перейдем от $x \in \mathbb{R}^D$ к его нелинейному преобразованию $\in \mathbb{R}^M$:

$$x \to [\phi_1(x), \, \phi_2(x), \, ... \, \phi_M(x)]$$

$$\widehat{y}(x) = \phi(x)^T \widehat{\beta} = \sum_{m=1}^M \widehat{\beta}_m \phi_m(x)$$

Линейная регрессия с полиномиальным преобразованием признака

Анализ

 $\widehat{y}(x)$ уже нелинейно зависит от x. При этом преимущества лин. регрессии сохраняются:

- интерпретируемость (для несложных преобразований)
- аналитическое решение
- глобальный минимум потерь

Популярные трансформации признаков

Рассмотрим популярные преобразования признаков.

$\phi_k(x)$	примеры		
$(x^i)^2, \sqrt{x^i}, \ln x^i$	учитываем нелинейное влияние расстояния до метро		
	на стоимость квартиры		
$\mathbb{I}\left\{x^i\in[a,b]\right\}$	принадлежит ли клиент определенному возрасту?		
	(совершеннолетний, но не пенсионер)		
$x^i \mathbb{I}[x^i \le a], \ x^i \mathbb{I}[x^i > a]$	учесть изменения влияния x^i при $x^i > a$		
$(x^i)(x^j)$	длина х ширина участка = площадь		
$\langle x,z\rangle/(\ x\ \ z\)$	угол между объектом и репрезентативым объектом z		
$ x-z ^2$	расстояние от объекта до репрезентативного		
	объекта z (чаще используют близость)		
x^i/x^j	стоимость квартиры/метраж = стоимость одного		
	метра		
$F_{x^i}(x^i)$	приводим признак к равномерному распределению		
	$(F(\cdot)$ - ф-ция распределения)		

Нелинейная регрессия

• Можно исходные признаки подставлять в нелинейную ϕ -цию $\hat{y} = f(x|\beta)$

$$L(\beta|X,Y) = \sum_{n=1}^{N} (f(x_n|\beta) - y_n)^2$$

$$\widehat{\beta} = \arg\min_{\beta} L(\beta|X,Y)$$

- ullet В общем случае не существует аналитического решения $\widehat{eta}.$
 - используем численные методы, например SGD.

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- ③ Разные функции потерь
- Взвешенный учет наблюдений
- 5 Другие типы регрессии

Регуляризация

- Для лучшей обобщающей способности важна не только точность, но и простота модели.
- Учтем простоту дополнительным регуляризатором $R(\beta)$:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda R(\beta) \to \min_{\beta}$$

- $\lambda > 0$ гиперпараметр, контролирующий сложность модели.
 - как он влияет на сложность?

$$R(\beta) = ||\beta||_1$$
, Лассо регрессия (Lasso regression) $R(\beta) = ||\beta||_2^2$ Гребневая регрессия (Ridge regression)

Зависимость \widehat{eta} от λ

• Зависимость $\widehat{\beta}$ от λ для гребневой (A) и лассо (B) регрессии:

- Лассо регрессия может использоваться для автоматического отбора признаков.
- $oldsymbol{\lambda}$ находят по экспоненциальной сетке $[10^{-6}, 10^{-5}, ... 10^5, 10^6].$
 - потом уточняют
- Всегда рекомендуется включать регуляризацию:
 - плавный контроль сложности модели
 - решение однозначно даже для линейно зависимых признаков
 - ullet из набора решений выбирается с наименьшим $\|eta\|.$

ElasticNet.

• ElasticNet - линейная комбинация L_1 и L_2 регуляризации:

$$R(eta)=lpha||eta||_1+(1-lpha)||eta||_2^2 o \min_eta$$
 $lpha\in[0,1]$ — гиперпараметр.

- ullet Если два признака x^i и x^j равны:
 - Гребневая регрессия выберет оба с равным весом
 - правильно, т.к. нет априорных предпочтений
 - Лассо регрессия выберет один из них (в общем случае)
 - зато отберет лишние признаки
- ElasticNet обладает обоими преимуществами.

Аналитическое решение для гребневой регрессии

Критерий гребневой регрессии

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda \beta^T \beta \to \min_{\beta}$$

Условие стационарности (равенство нулю производной):

$$2\sum_{n=1}^{N} x_n \left(x_n^T \widehat{\beta} - y_n \right) + 2\lambda \widehat{\beta} = 0$$
$$2X^T (X \widehat{\beta} - Y) + 2\lambda \widehat{\beta} = 0$$
$$\left(X^T X + \lambda I \right) \widehat{\beta} = X^T Y$$

поэтому

$$\widehat{\beta} = (X^T X + \lambda I)^{-1} X^T Y$$

 $X^TX + \lambda I$ всегда невырождена как сумма $X^TX \succeq 0$ и $\lambda I \succ 0$.

Учет разных признаков с разной силой

 Прогнозы обычной регрессии инвариантны к масштабированию признаков:

$$\widehat{y} = \widehat{\beta}_1 x^1 + \widehat{\beta}_2 x^2 + \dots \xrightarrow{x^1 \to x^1/\alpha} \left(\alpha \widehat{\beta}_1\right) \left(\frac{x^1}{\alpha}\right) + \widehat{\beta}_2 x^2 + \dots$$

• Но не регуляризованной:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \frac{\lambda R(\beta)}{\beta} \rightarrow \min_{\beta}$$

- После изменения масштаба признаков, они будут вносить другой вклад в прогноз.
 - для большего учета признака как нужно изменить его масштаб?

Агрегация разных моделей

- Пусть $x_i = [x_i^1, ... x_i^D]$ состоит из прогнозов у D разными моделями, которые мы линейно объединяем.
- Веса $\frac{1}{D}, \frac{1}{D}, \dots \frac{1}{D}$ разумный бейзлайн, но модели могут быть разной точности.
- Учтем их с настраиваемыми весами $\widehat{\beta}_1, ... \widehat{\beta}_D$ (blending, linear stacking):

$$\widehat{y} = x_n^T \widehat{\beta}$$

• Логично предположить неотрицательность весов и несильное отклонение от бейзлайна.

$$\begin{cases} \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda \sum_{d=1}^{D} \left(\beta - \frac{1}{D} \right)^2 \to \min_{\beta} \\ \beta_i \ge 0, \quad i = 1, 2, ...D \end{cases}$$

ullet Во избежание переобучения нужно базовые модели и \widehat{eta} настраивать на разных обучающих выборках.

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- 3 Разные функции потерь
- 4 Взвешенный учет наблюдений
- ⑤ Другие типы регрессии

Обобщение функции потерь²

• Обобщим квадратичные потери на произвольные:

$$\sum_{n=1}^{N} \left(x^{T} \beta - y_{n} \right)^{2} \to \min_{\beta} \qquad \Longrightarrow \qquad \sum_{n=1}^{N} \mathcal{L}(x_{n}^{T} \beta - y_{n}) \to \min_{\beta}$$

ФУНКЦИЯ ПОТЕРЬ

$$\mathcal{L}(\varepsilon) = \varepsilon^2$$

 $\mathcal{L}(\varepsilon) = |\varepsilon|$

$$\mathcal{L}(arepsilon) = egin{cases} rac{1}{2}arepsilon^2, & |arepsilon| \leq \delta \ \delta \left(|arepsilon| - rac{1}{2}\delta
ight) & |arepsilon| > \delta \end{cases}$$
 Хубера

НАЗВАНИЕ

квадратичная абсолютная

СВОЙСТВА

дифференцируемая устойчивая к выбросам

оба свойства

²Чему равен константный прогноз, минимизирующий квадратичные и абсолютные ошибки?

Визуализация функций потерь

Оптимальный прогноз для квадратичной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при квадратичной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{(\widehat{y} - y)^2\right\} \to \min_{\widehat{y} \in \mathbb{R}}$$
$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \mathbb{E}\left\{2(\widehat{y} - y)\right\} = 2\widehat{y} - 2\mathbb{E}y = 0$$
$$\widehat{y} = \mathbb{E}y$$

Оптимальный прогноз для абсолютной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при абсолютной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{|\widehat{y} - y|\right\} = \int |\widehat{y} - y| \, p(y) dy =$$

$$= \int (\widehat{y} - y) \mathbb{I}[\widehat{y} \ge y] p(y) dy + \int (y - \widehat{y}) \mathbb{I}[\widehat{y} < y] p(y) dy \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int \mathbb{I}[\widehat{y} \ge y] p(y) dy - \int \mathbb{I}[\widehat{y} < y] p(y) dy = 0$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int_{y \le \widehat{y}} p(y) dx - \int_{y > \widehat{y}} p(y) dy = 0$$

$$\widehat{y} = \text{median}[y]$$

Влияние функции потерь на результат

• Следовательно, для фиксированного *х* оптимальный функциональный прогноз будет:

$$\begin{split} \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left(\widehat{y}(x) - y\right)^2 \right| x\right\} &= \mathbb{E}[y|x] \\ \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left|\widehat{y}(x) - y\right| \right| x\right\} &= \mathsf{median}[y|x] \end{split}$$

 При фиксированных обучающей выборке и модели результат будет получаться разный для различных ф-ций потерь!

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- 3 Разные функции потерь
- 4 Взвешенный учет наблюдений
- 5 Другие типы регрессии

Взвешенный учет наблюдений³

• Взвешенный учет наблюдений

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2 \to \min_{\beta \in \mathbb{R}^D}$$

$$w_1 \ge 0, ... w_N \ge 0$$

- Неравномерные веса могут быть обусловлены:
 - разному доверию различным фрагментам обучающей выборки
 - желанием снизить влияние объектов-выбросов
 - желанием сделать сделать сбалансированную выборку
 - Например, результаты голосования. Женщины много голосовали, мужчины мало. Хотим построить модель без перекоса на женские предпочтения.

³Выведите решение для взвешенной линейной регрессии.

Проблема выбросов

Робастная регрессия

- Инициализировать $w_1 = ... = w_N = 1/N$
- Повторять до сходимости:
 - ullet оценить регрессию $\widehat{y}(x)$ используя (x_i,y_i) с весами w_i .
 - для каждого i = 1, 2, ...N:
 - переоценить $\varepsilon_i = \widehat{y}(x_i) y_i$
 - пересчитать веса $w_i = K(|\varepsilon_i|)$
 - ullet нормализовать веса $w_i = rac{w_i}{\sum_{n=1}^N w_n}$

Комментарии:

- $K(\cdot)$ некоторая убывающая функция.
- Веса объектов-выбросов убывают, получаем устойчивое к выбросам решение.
- Алгоритм обобщается на любой метод, допускающий взвешенный учет наблюдений.

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- ③ Разные функции потерь
- 4 Взвешенный учет наблюдений
- 5 Другие типы регрессии

Регрессия опорных векторов

Идея: допускаем небольшие $\pm arepsilon$ отклонения, L_2 регуляризация.

$$\begin{cases} \frac{1}{2} \left\| \beta \right\|_2^2 \to \min_{\beta \in \mathbb{R}^D} & \text{(смещение } \beta_0 \text{ пишем явно)} \\ x_n^T \beta + \beta_0 - y_n \leq \varepsilon & n = \overline{1, N} \\ y_n - x_n^T \beta - \beta_0 \leq \varepsilon & n = \overline{1, N} \end{cases}$$

Если невозможно вписать все ошибки в интервал [-arepsilon, arepsilon], воспользуемся методом общего вида:

$$\begin{cases} \frac{1}{2} \|\beta\|_2^2 + C \sum_{n=1}^{N} (\xi_n + \xi_n^*) \to \min_{\beta \in \mathbb{R}^D; \xi_n, \xi_n^* \in \mathbb{R}^N} \\ x_n^T \beta + \beta_0 - y_n \le \varepsilon + \xi_n, & \xi_n \ge 0 \\ y_n - x_n^T \beta - \beta_0 \le \varepsilon + \xi_n^*, & \xi_n^* \ge 0 \end{cases} \qquad n = \overline{1, N}$$

 $C \geq 0$ - гиперпараметр, контролирующий противоречие между точностью и простотой модели.

Регрессия опорных векторов

Эквивалентная формулировка (без ограничений неравенства):

$$rac{1}{2} \, \|eta\|_2^2 + C \sum_{n=1}^N \mathcal{L}(x_n^Teta + eta_0 - y_n) o \min_{eta \in \mathbb{R}^D}$$
 $\mathcal{L}(u) = egin{cases} 0, & ext{if } |u| \leq arepsilon \\ |u| - arepsilon & ext{иначе} \end{cases}$ $arepsilon - ext{нечувствительная } \phi$ -ция потерь

Решение будет зависеть <u>только</u> от объектов с |ошибка| $\geq \varepsilon$, называемых опорными векторами.

Orthogonal matching pursuit: задача

Метод Orthogonal Matching Pursuit решает задачу:

$$\begin{cases} \|X\beta - Y\|_2^2 \to \min_{\beta} \\ \|\beta\|_0 \le K \end{cases}$$

или эквивалентную (с точностью до $K(\varepsilon)$):

$$\begin{cases} \|\beta\|_0 \to \min_{\beta} \\ \|X\beta - Y\|_2^2 \le \varepsilon \end{cases}$$

• $\|\beta\|_0 = \#[$ число ненулевых весов]

Orthogonal matching pursuit: метод

- Инициализировать модель, равную константному нулю.
- ② Повторять, пока $\|\beta\|_0 < K$ (или пока $\|X\beta Y\|_2^2 > \varepsilon$)
 - добавить признак, максимально коррелирующий с ошибками прогноза последней модели.
 - переобучить линейную регрессию на данных (отобранные признаки, ошибки прогнозирования)
 - обновить ошибки прогнозирования
 - Метод обобщается
 - на произвольный алгоритм прогнозирования
 - на произвольную меру взаимосвязи признаков и откликов

MARS регрессия

ullet Рассмотрим $S=\left\{\left(x_j-t
ight)_+,\left(t-x_j
ight)
ight\}_{t=x_i^1,...x_i^N;\;j=1,...D}$

• Multivariate Adaptive Regression Splines (MARS⁴):

$$\widehat{y}(x) = \beta_0 + \sum_{m=1}^{M} \beta_m h_m(x)$$

где $h_m(x) \in S$ или произведение элементов S.

⁴Др. название - Earth.

• Инициализация: M=0; $\widehat{y}(x)=\widehat{\beta}_0=\arg\min_{\beta_0}(y_n-\beta_0)^2$

- Инициализация: M=0; $\widehat{y}(x)=\widehat{\beta}_0=\arg\min_{\beta_0}(y_n-\beta_0)^2$
- Наращивание: последоват-но добавляем по 1 новой паре:
 - ullet для каждого $h_l(x)$ текущей модели, каждого j=1,...D и $t\in \left\{x_i^1,...x_i^N
 ight\}$ пробуем добавить в модель

$$\hat{\beta}_{M+1}h_{I}(x)(x_{j}-t)_{+}+\hat{\beta}_{M+2}h_{I}(x)(t-x_{j})_{-}$$

- ullet $\widehat{eta}_{M+1},\widehat{eta}_{M+2}$ находятся методом наименьших квадратов
- выбираем пару, приводящую к макс. уменьшению MSE
- ullet ограничение: каждый признак присутствовать в произведении ≤ 1 раза (чтобы не было переобучения)
- пересчет MSE при сдвиге t можно пересчитывать не за O(N), а за O(1) (т.к. сдвиг на константу)

- ullet Инициализация: M=0; $\widehat{y}(x)=\widehat{eta}_0=rg \min_{eta_0}(y_n-eta_0)^2$
- Наращивание: последоват-но добавляем по 1 новой паре:
 - ullet для каждого $h_l(x)$ текущей модели, каждого j=1,...D и $t\in \left\{x_j^1,...x_j^N
 ight\}$ пробуем добавить в модель

$$\widehat{\beta}_{M+1}h_{I}(x)(x_{j}-t)_{+}+\widehat{\beta}_{M+2}h_{I}(x)(t-x_{j})_{-}$$

- ullet $\widehat{eta}_{M+1},\widehat{eta}_{M+2}$ находятся методом наименьших квадратов
- выбираем пару, приводящую к макс. уменьшению MSE
- ullet ограничение: каждый признак присутствовать в произведении ≤ 1 раза (чтобы не было переобучения)
- пересчет MSE при сдвиге t можно пересчитывать не за O(N), а за O(1) (т.к. сдвиг на константу)
- Критерий остановки:
 - validation MSE не увеличивается
 - #слагаемых выше порога
 - степень мономов в слагаемых выше порога

Обучение MARS: упрощение модели⁵

- После окончания наращивания модели следует её упрощение:
- Последовательно выбрасывается по одному слагаемому, удаление которого меньше всего ↓ MSE.
- Варианты:
 - смотреть на validation MSE
 - в MARS смотрят на train MSE, нормированный на #степеней свободы:

$$rac{\sum_{n=1}^{N}\left(y_{n}-\widehat{y}_{n}
ight)^{2}}{\left(1-M_{\widehat{y}}/N
ight)^{2}};\;M_{\widehat{y}}=\#$$
слагаемых $+\,lpha$ #узлов, $\,lpha=3\,$

(#узлов=#задействованных порогов t)

⁵Hastie et al. The Elements of Statistical Learning.

Нейросеть на основе MARS⁶

• Алгоритм MARS м. быть использован как начальное приближение для нейросети, которая будет потом донастраиваться.

Figure 1: Structure of Converted Lavers

Parameters of the network is calculated from the linear spline model in the form of (7). For the weight matrix $W^{(1)}$ of the hidden layer, $w_{i,j}^{(1)}$ equals 1 if basis $h_i(X)$ is of the form $R(X_j - t_i)$, -1 if $h_i(X)$ is of the form $R(t_i - X_i)$ and 0 otherwise. The bias vector of the hidden layer is set to be $(t_1, \dots, t_M)^T$. The weight matrix (vector) of the output layer is calculated as $(\beta_1, \dots, \beta_M)^T$ (here we assume the output dimension to be 1, as mentioned), and the bias of the output layer is equal to the intercept β_0 . Shown in Figure 2 is a simple example of the described conversion.

			b° 0,3 0,9
Basis Func	Pruned	Coefficient	
h(x2-0.4)	No	0.5	1 a ₀ 0.7
h(x1-0.3)	No	0.7	0.7
Intercept	No	0.9	0 a ₁ 0.5
Example	of Cons	struction	x ₂ 1 num_basis num_outpo

num_inputs

Figure 2: One l

⁶https://arxiv.org/pdf/2102.06554.pdf

Нейросеть на основе MARS

- $\hat{y}(x) = \beta_0 + \sum_{m=1}^{M} \beta_m h_m(x)$ представляется в виде 2х слойной сети $(h_m(x))$ вычисляются на скрытом слое с помощью сдвигов признаков, ReLU).
- рассматривается MARS сос лагаемыми 1го порядка (без произведений)
 - связь со скр. слоем каждый с каждым (просто где-то нулевой вес)
- Мультиплицируется скрытый слой несколько раз с единичной матрицей (без модификаций)
- Расширенная архитектура донастраивается BackProp.

Заключение

- Линейная регрессия дает интерпретируемое аналитическое решение.
- Нелинейные закономерности моделируются:
 - добавлением нелинейных преобразований признаков
 - прогнозированием произвольной нелинейной функцией
- Регуляризация позволяет:
 - считать прогнозы для линейно-зависимых признаков
 - плавно настраивать сложность модели
 - отбирать признаки (лассо регрессия)
- Автоматический отбор признаков:
 - Лассо регрессия, orthogonal matching pursuit
- Различные функции потерь приводят к разным прогнозам.
- Устойчивость к выбросам достигается:
 - \bullet применением L_1 потерь (лассо регрессия)
 - взвешенным учётом наблюдений (робастная регрессия)