CS & IT
ENGINEERING
Operating Systems

1500 Series

Lecture No. - 02

Recap of Previous Lecture

Questions Practice

Topics to be Covered

Topic

Priority Scheduling w/Round-Robin

Topic

Topic

Topic

Topic

Priority Scheduling w/Round-Robin

Run the process with the highest priority. Processes with the same Priority run

Round-Robin

Example:

Process	Burst Time	Priority	
P_1	4	3 (L)	
P ₂ '	5	2	
P ₃	8	2	
P ₄	7	1 (H)	
$\overline{P_5}$	3	3 ′	

Time quantum is 2. Draw the Gantt Chart and Compare Avg. TAT and RT with Pure

TQ=10

AT PW

#Q. The following processes are being scheduled using a preemptive, priority-

based, Round-Robin scheduling algorithm.

	0	1	
Lla	brid		
TIM	0010		

Process	Priority	Burst	Arrival
P_1	8	15	0
P ₂	3	20	0
P_3	4	20	20
P ₄	4	20	25
P ₅	5	5	45
P ₆	5	15	55

Сри Р1 Р2 (В3) Р4 Р3 Р5 Р4 Р8 Р3 Р4 Р2
0 15 20 25 35 45 50 55 70 75 80 95

Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. The scheduler will execute the highest-priority process. For processes with the same priority, a Round-Robin scheduler will be used with a time quantum of 10 units. If a process is preempted by a higher-priority process, the preempted process is placed at the end of the queue.

- a. Show the scheduling order of the processes using a Gantt chart.
- b. What is the turnaround time for each process?
- c. What is the waiting time for each process?

#Q. The following processes are being scheduled using a preemptive, Round-Robin scheduling algorithm.

Process	Priority	Burst	Arrival
P_1	H 40	20	0
P ₂	30	25	25
P ₃	30	25	30
P ₄	35	15	60
P ₅ L 5		10	100
P ₆	10	10	105

R.Q R; R; R; R; R; Rik; PGK

Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition to the processes listed below, the system also has an idle task (which consumes no CPU resources and is identified as P_{idle}). This task has priority 0 and is scheduled whenever the system has no other available processes to run. The length of a time quantum is 10 units. If a process is preempted by a higher-priority process, the preempted process is placed at the end of the queue.

- a. Show the scheduling order of the processes using a Gantt chart.
- b. What is the turnaround time for each process?
- c. What is the waiting time for each process?
- d. What is the CPU utilization rate?

he CPU utilization rate?

/ cpu Idlenen =
$$\frac{15}{120} = \frac{3}{24} = \frac{3}{8} = 0.125 = 12.5$$

A variation of the Round-Robin scheduler is the Regressive Round-Robin #Q. scheduler. This scheduler assigns each process a time quantum and a priority. The initial value of a time quantum is 50 milliseconds. However, every time a process has been allocated the CPU and uses its entire time quantum (does not block for I/O), 10 milliseconds is added to its time quantum, and its priority level is boosted. (The time quantum for a process can be increased to a maximum of 100 milliseconds.) When a process blocks before using its entire time quantum, its time quantum is reduced by 5 milliseconds, but its priority remains the same. What type of process (CPU-bound or I/O-bound) does the Regressive Round-Robin scheduler favor? < CPU-Bound

[MSQ]

#Q. Which of the following scheduling algorithms could result in starvation?

[NAT]

- #Q. Consider a variant of the RR scheduling algorithm in which the entries in the ready queue are pointers to the PCBs.
 - (a) What would be the effect of putting two pointers to the same process in the ready queue? (Prioritizing the Process)
 - (b) What would be major advantages and disadvantages of this scheme?

#Q. A process may be defined as:

A set of instructions to be executed by a computer.

A program in execution.

A piece of hardware that executes a set of instructions.

The main procedure of a program.

[MCQ]

#Q. A processor in the context of computing is:

PU

- A set of instructions to be executed on a computer.
- B A program in execution.
- A piece of hardware that executes a set of instructions.
- The main procedure of a program.

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

THANK - YOU