Tasks

Introduction to structural equation modeling and mixed models in

Day 9: SEM

Oksana Buzhdygan

oksana.buzh@fu-berlin.de

Food web length (1,2,3)

Effects of land use on arthropod food webs in grasslands

235 grasslands

Grazing type

("sheep", "cattle", or "mixed grazing")

Effects of land use on food webs in grasslands

Effects of land use on food webs in grasslands

Gr_type (grazing type) is your exogenous nominal categorical variables. Test **Gr_type** (as a part of the SEM model on fig. 1) using marginal means in **piecewiseSEM**.

fig. 1

The Effects of Grazing on Finnish Coastal Meadows

Photo: Jorma Pessa

Data:

Jutila, H. (1997) Vascular plant species richness in grazed and ungrazed coastal meadows, SW Finland. - Ann. Bot. Fenn. 34:245-263.

Grace, J.B. and Jutila, H. (1999) The relationship between species density and community biomass in grazed and ungrazed coastal meadows. Oikos, 85:398-408.

Hypothetical model

Task:

Perform the multigroup analysis for this hypothetical SEM model using *piecewiseSEM*

- Dataset: predicting latitude effect on survival of a tree species
- Repeated measures on 5 trees at 20 sites from 1970-2006
- Live (0/1) influenced by phenology (degree days until bud break, Julian days until bud break), size (stem diameter growth)

```
# Shipley data
library(piecewiseSEM)
data(shipley)
> str(shipley)
'data.frame': 1900 obs. of 9 variables:
$ site : int 1 1 1 1 1 1 1 1 1 ...
$ tree : int 1 2 3 4 5 1 2 3 4 5 ...
 $ lat : num 40.4 40.4 40.4 40.4 40.4 ...
        : int 1970 1970 1970 1970 1970 1972 1972 1972 1972
 $ year
1972 ...
 $ Date
                115 118 116 111 121 ...
        : num
                161 159 160 161 157 ...
 $ DD
         : num
 $ Growth : num 61.4 43.8 44.7 48.2 50 ...
 $ Survival: num 1 0.843 0.944 0.957 0.976 ...
 $ Live : int 1 1 1 1 1 1 1 1 1 ...
```

```
library(nlme)
                                                         DD
                                              lat
                                                                   Date
                                                                             Growth
                                                                                         Live
library(lme4)
 lme(DD ~ lat, random = ~ 1 | site / tree, na.action = na.omit,
     data = shipley),
  lme(Date ~ DD, random = ~ 1 | site / tree, na.action = na.omit,
      data = shipley),
  lme(Growth ~ Date, random = ~ 1 | site / tree, na.action = na.omit,
      data = shipley),
 glmer(Live ~ Growth + (1 | site) + (1 | tree),
        family = binomial(link = "logit"), data = shipley)
```

Task: Use these sub-models in piecewiseSEM as a part of the SEM model shown above. Think about the study design and explain the results.