

Chapitre III - Les fonctions trigonométriques

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES								
I - Si	nus et cosinus	1						
1.	Définition	1						
2.	Périodicité	2						
3.	Formules de trigonométrie	2						
4.	Résolution d'équations	4						
5.	Fonctions réciproques	4						
II - Étude des fonctions trigonométriques 5								
1.		5						
2.	Signe et variations	5						
3.	Limite	6						
4.	Valeurs remarquables	6						
5.	Représentation graphique	7						

I - Sinus et cosinus

1. Définition

Dans tout le cours, le plan sera muni d'un repère orthonormé $(O, \ \tilde{\imath}; \ \tilde{\jmath})$. Il sera également muni d'un cercle appelé **cercle trigonométrique** \mathcal{C} de centre O et de rayon 1 orienté dans le sens inverse des aiguilles d'une montre (c'est le **sens direct**) :

Soit M un point quelconque d'abscisse x et d'ordonnée y situé sur le cercle $\mathcal C$. Les coordonnées de M sont :

- L'abscisse de M appelée **cosinus** est notée cos(x).
- L'ordonnée de M appelée **sinus** est notée sin(x).
- Pour tout $x \in \mathbb{R}$, on aura $-1 \le cos(x) \le 1$ et $-1 \le sin(x) \le 1$.

2. Périodicité

Les fonctions sinus et cosinus sont périodiques de période 2π . Ainsi pour tout x réel et k entier relatif :

$$- cos(x) = cos(x + 2k\pi)$$

$$- sin(x) = sin(x + 2k\pi)$$

Concrètement, cela signifie que $cos(x) = cos(x + 2\pi) = cos(x + 4\pi) = ... = cos(x + 2k\pi)$ et idem pour sin(x).

3. Formules de trigonométrie

On a les relations suivantes pour tout $x \in \mathbb{R}$:

```
-cos(-x) = cos(x) \text{ (la fonction cosinus est paire)}
-sin(-x) = -sin(x) \text{ (la fonction sinus est impaire)}
-cos(x + \pi) = -cos(x)
-sin(x + \pi) = -sin(x)
-cos(x - \pi) = -cos(x)
-sin(x - \pi) = sin(x)
-cos(\frac{\pi}{2} - x) = sin(x)
-sin(\frac{\pi}{2} - x) = cos(x)
-cos(x + \frac{\pi}{2}) = -sin(x)
-sin(x + \frac{\pi}{2}) = cos(x)
-cos(x + y) = cos(x) \times cos(y) - sin(x) \times sin(y)
-sin(x + y) = sin(x) \times cos(y) + cos(x) \times sin(y)
-cos(x)^2 + sin(x)^2 = 1
```

Il n'est aucunement demandé de mémoriser ces formules (sauf les trois dernières). Cependant, il doit être possible de les retrouver à l'aide du cercle trigonométrique. Ainsi, prenons l'exemple de $cos(x+\pi)$:

On remarque que l'ordonnée reste la même (le sinus est le même). Cependant, on a bien une abscisse opposée. On a retrouvé la formule $cos(x+\pi)=-cos(x)$.

4. Résolution d'équations

Il est possible de résoudre des équations incluant des sinus et des cosinus. Ainsi, soient x et y deux réels et k un entier relatif. On a les relations suivantes :

$$- \cos(x) = \cos(y) \iff \begin{cases} y = x + 2k\pi \\ ou \\ y = -x + 2k\pi \end{cases}$$

$$- \sin(x) = \sin(y) \iff \begin{cases} y = x + 2k\pi \\ ou \\ y = \pi - x + 2k\pi \end{cases}$$

Comme précédemment, ces formules peuvent se retrouver à l'aide du cercle trigonométrique.

5. Fonctions réciproques

Soient $x, y \in \mathbb{R}$, on admettra qu'il existe une **fonction réciproque** à cos(x) (notée arccos(x)) et une **fonction réciproque** à sin(x) (notée arcsin(x)). On a les relations suivantes :

$$- cos(x) = y \iff x = arccos(y)$$

$$- sin(x) = y \iff x = sin(y)$$

Cela signifie qu'à tout réel x, la fonction arccos(x) y associe son **antécédent** y par rapport à cos(x) (pareil pour arcsin(x) avec sin(x)).

Exemples :

$$cos(0) = 1$$
, $arccos(1) = 0$

—
$$sin(rac{\pi}{2})=1$$
, $arcsin(1)=rac{\pi}{2}$

II - Étude des fonctions trigonométriques

1. Dérivée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle :

-
$$cos'(u(x)) = u'(x) * -sin(u(x))$$

- $sin'(u(x)) = u'(x) * cos(u(x))$

Ainsi, si on a u(x) = x:

$$- cos'(x) = -sin(x)$$
$$- sin'(x) = cos(x)$$

2. Signe et variations

L'étude du signe des dérivées des fonctions trigonométriques permet d'obtenir les variations de celles-ci. Voici donc le signe et la variation de ces fonctions. Tout d'abord celui de la fonction cosinus :

x	- π		0		π
(cos(x)) [']	0	+	0	-	0
cos(x)	-1		1		-1

Veuillez noter que ce tableau est périodique de période 2π .

Voici maintenant celui de la fonction sinus :

Ce tableau est également périodique de période 2π .

3. Limite

Les fonctions trigonométriques ont pour particularité de **ne pas admettre de limite** en $\pm \infty$. Ceci provenant du fait que ces fonctions sont périodiques et que leur valeur oscille entre -1 et 1.

4. Valeurs remarquables

Voici un tableau regroupant quelques valeurs remarquables de sinus et de cosinus :

Valeur de x (à $2k\pi$ près, $k \in \mathbb{Z}$)	Valeur de cos(x)	Valeur de sin(x)
0	1	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
6		
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
4	2	
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
3	2	2
$\frac{\pi}{}$	0	1
2		
2π	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
3	$-\frac{1}{2}$	
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
4		2
5π	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
6	2	
π	-1	0

5. Représentation graphique

À l'aide de toutes les informations et valeurs données précédemment, il est possible d'établir une représentation graphique de la fonction cosinus :

De même pour la fonction sinus :

On remarque sur ces graphiques plusieurs propriétés données : parité, signe, périodicité, etc...