mas550 homework

20208209 오재민

2020년 9월 21일

Problem (1.5.1).

First, we will show that $|g| \leq ||g||_{\infty}$ a.e.

It is true because

$$\mu\left(|g| > \|g\|_{\infty}\right) = \mu\left(\bigcup_{n=1}^{\infty} \left\{|g| \ge \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$\le \sum_{n=1}^{\infty} \mu\left(\left\{|g| > \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$= 0$$

by definition of $||g||_{\infty}$.

Hence $|g| \leq ||g||_{\infty}$ a.e.

Then, $\int |fg| d\mu \le ||g||_{\infty} \int |f| d\mu = ||g||_{\infty} ||f||_{1}$.

Problem (1.5.3).

(a) Since p > 1, $x \mapsto |x|^p$ is convex function. $|f + g|^p \le 2^{p-1}(|f|^p + |g|^p)$ follows from convexity of $|x|^p$.

 $\int |f+g|^p d\mu \le \int 2^p |f|^p d\mu + \int 2^p |g|^p d\mu$. Therefore finiteness of $||f||_p$ and $||g||_p$ leads $||f+g||_p < \infty$.

Now, consider $\int |f+g|^p d\mu = \int |f+g||f+g|^{p-1} d\mu \le \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu$. Let q be Holder conjugate of p. Then by applying Holder inequality, we get $||f+g||_p^p \le ||f+g||_p^{p/q} (||f||_p + ||g||_p)$. Simple calculating leads Minkowski's inequality.

(b) First consider p=1. By using triangle inequality, the result follows directly. Next consider $p=\infty$. $|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty}$ a.e. Therefore $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Problem (1.6.8).

First assume $g = 1_A$. Then $\int g d\mu = \mu(A) = \int_A f(x) dx = \int 1_A f dm$ where m is Lebesgue measure.

Next, assume $g = \sum_i a_i 1_{A_i}$, simple function. Then $\int g d\mu = \sum_i a_i \mu(A_i) = \sum_i a_i \int 1_{A_i} f dm$.

Next, assume g is nonnegative measurable. Let $\{s_n\}_{n=1}^{\infty}$ be increasing sequence of simple function converges to g pointwisely. Then $\int g d\mu = \lim_{n \to \infty} \int s_n d\mu = \int s_n d\mu$

 $\lim_{n\to\infty}\int s_nfdm$. But $s_nf\uparrow gf$ since f is nonnegative. By monotone convergence theorem, we can get $\int gd\mu = \int gfdm$.

Last, assume g is integrable function. We can decompose g by $g = g^+ - g^-$. Applying 3rd step for g^+, g^- each, we can get $\int g d\mu = \int g^+ f dm - \int g^- f dm = \int g f dm$ since f is nonnegative.

Problem (1.6.13).

Since $X_n \uparrow X$, $X_n^+ \uparrow X^+$ and $X_n^- \downarrow X^-$. And note that $X_n^- \leq X_1^-$ which is integrable. Apply monotone convergence theorem to X_n^+ and apply dominated convergence theorem to X_n^- to get $\lim EX_n = \lim EX_n^+ - \lim EX_n^- = EX^+ - EX^- = EX$.