

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1 Claim 1 (currently amended): A method of joining workpieces
2 comprising:

3 a) creating a first surface diffusion zone containing
4 therein a first polymerizable material, wherein said first
5 surface diffusion zone is adjacent to a first surface of a
6 first workpiece and is within said first workpiece; and,

7 if present, removing any non-absorbed excess of said
8 first polymerizable material from said first surface; and,

9 b) creating a second surface diffusion zone containing
10 therein a second polymerizable material, wherein said second
11 surface diffusion zone is adjacent to a second surface of a
12 second workpiece and is within said second workpiece; and,

13 if present, removing any non-absorbed excess of said
14 second polymerizable material from said second surface, and
15 wherein said first polymerizable material and said second
16 polymerizable material are capable of bonding with each
17 other; and,

18 c) bringing said first surface and said second surface
19 into intimate contact at a bonding surface; and,

20 d) causing said first polymerizable material and said
21 second polymerizable material to react and join across said
22 bonding surface.

1 Claim 2 (previously presented): A method of joining as in
2 claim 1 wherein at least one of said first surface or said
3 second surface has at least one microfeature therein.

Claim 3 (canceled).

1 Claim 4 (previously presented): A method of joining as in
2 claim 1 wherein at least one of said first workpiece or said
3 second workpiece is selected from the group consisting of
4 polyimides, polyetherketones, polyetherimides,
5 polyphenylenes, and polyether-ether-ketones.

1 Claim 5 (previously presented): A method of joining as in
2 claim 4 wherein said first workpiece and said second
3 workpiece are polyphenylenes and said first polymerizable
4 material and second polymerizable material are mixtures of
5 styrene and divinylbenzene.

1 Claim 6 (previously presented): A method of joining as in
2 claim 5 wherein both of said mixtures have a ratio of
3 approximately 9:1 by volume of styrene to divinylbenzene.

1 Claim 7 (currently amended): A method of joining workpieces
2 comprising:

- 3 a) creating a first surface diffusion zone containing
4 therein a polymerizable material, wherein said first surface
5 diffusion zone is adjacent to a first joining surface of a
6 first workpiece and is within said workpiece and, ~~if~~
7 present, removing any non-absorbed excess of said
8 polymerizable material from said first joining surface; and,
9 b) providing a second workpiece having a second joining
10 surface; and,

11 c) bringing said first joining surface and said second
12 joining surface into intimate contact at a bonding surface;
13 and,

14 d) causing said polymerizable material to react and
15 join across said bonding surface.

1 Claim 8 (previously presented): A method of joining as in
2 claim 7 wherein at least one of said first joining surface
3 or said second joining surface has at least one microfeature
4 therein.

Claim 9 (canceled).

1 Claim 10 (previously presented): A method of joining as in
2 claim 7 wherein at least one of said first workpiece or said
3 second workpiece is selected from the group consisting of
4 polyimides, polyetherketones, polyetherimides,
5 polyphenylenes, and polyether-ether-ketones.

1 Claim 11 (previously presented): A method of joining as in
2 claim 10 wherein said first workpiece is a polyphenylene,
3 said second workpiece is a polyetherimide and said
4 polymerizable material is styrene.

Claims 12-21 (canceled).

1 Claim 22 (currently amended): A method of fabricating a
2 microfluidic device comprising:
3 creating a first surface diffusion zone containing
4 therein a first polymerizable material, wherein said first
5 surface diffusion zone is adjacent to a first surface of a
6 first workpiece and is within said first workpiece; and,

7 ~~if present,~~ removing any non-absorbed excess of said
8 first polymerizable material from said first surface; and,
9 creating a second surface diffusion zone containing
10 therein a second polymerizable material, wherein said second
11 surface diffusion zone is adjacent to a second surface of a
12 second workpiece and is within said second workpiece; and,
13 ~~if present,~~ removing any non-absorbed excess of said
14 second polymerizable material from said second surface; and,
15 wherein said first polymerizable material and said
16 second polymerizable material are capable of bonding with
17 each other; and,
18 wherein at least one of said first surface and said
19 second surface has one or more microfluidic features
20 therein; and,
21 bringing said first surface and said second surface
22 into intimate contact at a bonding surface so as to form a
23 microfluidic device; and,
24 causing said first polymerizable material and said
25 second polymerizable material to react and join across said
26 bonding surface, creating thereby a microfluidic device.

1 Claim 23 (currently amended): A method of fabricating a
2 microfluidic device comprising:

3 creating a first surface diffusion zone containing
4 therein a first polymerizable material, wherein said first
5 surface diffusion zone is adjacent to a first joining
6 surface of a first workpiece and is within said first
7 workpiece; and,
8 ~~if present,~~ removing any non-absorbed excess of said
9 first polymerizable material from said first joining
10 surface; and,

11 providing a second workpiece having a second joining
12 surface; and,

13 wherein at least one of said first joining surface and
14 said second joining surface has one or more microfluidic
15 features therein; and,

16 bringing said first joining surface and said joining
17 second surface into intimate contact at a bonding surface so
18 as to form a microfluidic device; and,

19 causing said polymerizable material to react and join
20 across said bonding surface, creating thereby a microfluidic
21 device.

1 Claim 24 (new): A method of joining porous polymer
2 workpieces comprising:

3 a) applying a first polymerizable material to a first
4 surface of a first porous polymer workpiece; and,

5 (i) causing said first polymerizable material to
6 penetrate said first surface of said first porous
7 polymer workpiece, creating therein a first surface
8 diffusion zone adjacent to said first surface; and,

9 (ii) drying said first surface thereby removing
10 any non-absorbed excess of said first polymerizable
11 material; and,

12 b) applying a second polymerizable material to a
13 second surface of a second porous polymer workpiece;
14 and,

15 (i) causing said second polymerizable material to
16 penetrate said second surface of said second porous
17 polymer workpiece, creating therein a second surface
18 diffusion zone adjacent to said second surface; and,

19 (ii) drying said second surface, thereby removing
20 any non-absorbed excess of said second polymerizable
21 material; and,
22 c) bringing said first surface and said first surface
23 diffusion zone adjacent thereto into intimate contact
24 with said second surface and said second surface
25 diffusion zone adjacent thereto creating a bonding
26 interface; and,
27 d) applying heat, pressure, radiation, or combinations
28 thereof to said bonding interface, thereby causing said
29 first polymerizable material and said second
30 polymerizable material to react and join together
31 across said bonding interface, thereby bonding said
32 first porous polymer workpiece to said second porous
33 polymer workpiece.