# Cognitive (Neuro) Psychology VI. Scaling Methods

Marianne Maertens

Technische Universität Berlin

July 2016

#### So far ...



#### So far ...



#### Perceptual Scales

describe the relationship between the perceived and physical magnitudes of a stimulus, e.g. transparency and perceived transparency

"psychological scales"

"sensory scales"

"transducer functions"



#### Perceptual Scales

describe the relationship between the perceived and physical magnitudes of a stimulus, e.g. transparency and perceived transparency

"psychological scales"
"sensory scales"
"transducer functions"









# Matching vs. Scaling

Adjust the test field so that it looks like the target





# Matching vs. Scaling

Adjust the test field so that it looks like the target





Which of the pairs looks more different



19

12

B2

### (Asymmetric) Matching





## (Asymmetric) Matching





- matching measures internal variables indirectly
- it is prone to response strategies (Runeson!)

#### Types of perceptual scales



#### ordinal:

- number stimulus magnitudes according to their rank order along perceptual continuum, difference between any pair of number does not necessarily correspond to magnitude of the perceptual difference, e.g. 1, 2, 3
- differences between numbers do not correspond to perceived differences

#### Types of perceptual scales



#### interval:

- differences between number correspond to perceptual differences, even though numbers themselves are arbitrary, e.g. 1, 5, 6 or 4, 12, 14, an interval scale can be transformed without loss of information by the equation aX + b
- does not capture perceived relative magnitudes of the stimulus dimension

### Types of perceptual scales



#### ratio:

 capture relative perceived magnitudes, e.g. values of 1 and 5 indicate that the second value is five times the first

# Forced-choice vs. non-forced choice scaling procedures

| N | Task name              | Stimuli | Task                                                                                                              |
|---|------------------------|---------|-------------------------------------------------------------------------------------------------------------------|
| 2 | Paired-<br>comparisons | • v     | Select the brighter stimulus                                                                                      |
| 3 | Method of triads       | V S     | Select the stimulus<br>from the bottom pair<br>that is most similar<br>(or most different) to<br>the top stimulus |
| 4 | Method of quadruples   | v •     | Select the pair<br>(top or bottom) that<br>is more<br>similar (or more<br>different)                              |

# Forced-choice vs. non-forced choice scaling procedures

| N   | Task name               | Stimuli                               | Task                                                                                                                   |
|-----|-------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3   | Partition scaling       | • • • • • • • • • • • • • • • • • • • | Adjust middle<br>stimulus until<br>perceptually<br>mid-way between<br>the anchors<br>either side                       |
| > 3 | Multi-partition scaling | 1                                     | Adjust stimuli<br>between the<br>anchors at either<br>end until all<br>stimuli are at equal<br>perceptual<br>intervals |

# Example: Multi-partition scaling



# Example: Multi-partition scaling



## General principle of a perceptual scale

- perceptual scale is power function  $\Psi(x) = a * S^n$
- quadruples
- equal physical magnitudes, different perceptual magnitudes and vice versa



Why not construct a perceptual scale from JNDs?

Why not construct a perceptual scale from JNDs?

#### thought experiment:

- start with low stimulus level, baseline
- measure JND between baseline and a higher stimulus level
- second baseline will be first baseline plus the JND
- measure JND between second baseline and a higher stimulus
- ...
- series of baselines separated by JNDs that span the entire stimulus range
- Discrimination scale, Discrimination or Fechnerian scaling

• JND for some criterion level, e.g. 75% correct, depends on signal-to-noise ratio  $\frac{\Delta \Psi}{\sigma}$ 



additive noise

multiplicative noise

• JND for some criterion level, e.g. 75% correct, depends on signal-to-noise ratio  $\frac{\Delta \Psi}{\sigma}$ 



additive noise

- multiplicative noise
- ⇒ impossible to derive the shape of the underlying perceptual scale from JNDs

#### Maximum Likelihood Difference Scaling - MLDS

Maloney & Yang, 2003

- forced-choice scaling procedure
- state-of-the-art optimization
- produces interval perceptual scale

#### How MLDS works

- set of stimulus magnitudes  $S_1, S_2, S_3, ..., S_n$
- $\Psi(2), \Psi(3), \Psi(4), ..., \Psi(n-1)$  are free parameters that have to be estimated,  $\Psi(1)$  and  $\Psi(n)$  are fixed at 0 and 1

#### How MLDS works

- set of stimulus magnitudes  $S_1, S_2, S_3, ..., S_n$
- $\Psi(2), \Psi(3), \Psi(4), ..., \Psi(n-1)$  are free parameters that have to be estimated,  $\Psi(1)$  and  $\Psi(n)$  are fixed at 0 and 1
- trial 1:  $S_1$ ,  $S_2$  and  $S_3$ ,  $S_4$ ,
- observer:  $S_1$ ,  $S_2$  is more different
- for a given test set of  $\Psi(S)$ s MLDS calculates the probability that a hypothetical observer characterized by these parameters will respond that  $S_1$ ,  $S_2$  has the larger perceived difference = likelihood for this trial

#### How MLDS works

- set of stimulus magnitudes  $S_1, S_2, S_3, ..., S_n$
- $\Psi(2), \Psi(3), \Psi(4), ..., \Psi(n-1)$  are free parameters that have to be estimated,  $\Psi(1)$  and  $\Psi(n)$  are fixed at 0 and 1
- trial 1:  $S_1$ ,  $S_2$  and  $S_3$ ,  $S_4$ ,
- observer:  $S_1$ ,  $S_2$  is more different
- for a given test set of  $\Psi(S)$ s MLDS calculates the probability that a hypothetical observer characterized by these parameters will respond that  $S_1$ ,  $S_2$  has the larger perceived difference = likelihood for this trial
- likelihoods of all trials are multiplied to obtain across-trials likelihood

· initial guesses for parameters:

$$\Psi(1)=0.5,\,\Psi(2)=0.7,\,\Psi(3)=0.2,\,\Psi(4)=0.3$$

$$\Rightarrow L(S_1, S_2)|(\Psi(1), \Psi(2), \Psi(3), \Psi(4))$$

• initial guesses for parameters:

$$\Psi(1)=0.5,\,\Psi(2)=0.7,\,\Psi(3)=0.2,\,\Psi(4)=0.3$$

$$\Rightarrow L(S_1, S_2)|(\Psi(1), \Psi(2), \Psi(3), \Psi(4))$$

$$D = |\Psi(2) - \Psi(1)| - |\Psi(4) - \Psi(3)| = |(0.7 - 0.5)| - |0.3 - 0.2| = 0.1$$

• initial guesses for parameters:

$$\Psi(1) = 0.5, \, \Psi(2) = 0.7, \, \Psi(3) = 0.2, \, \Psi(4) = 0.3$$

$$\Rightarrow L(S_1, S_2)|(\Psi(1), \Psi(2), \Psi(3), \Psi(4))$$

$$D = |\Psi(2) - \Psi(1)| - |\Psi(4) - \Psi(3)| = |(0.7 - 0.5)| - |0.3 - 0.2| = 0.1$$

- convert to z-score  $\frac{D}{\sigma_d} = 1$
- calculate area under the standard normal distribution  $\Phi(z=1)=0.8413$

initial guesses for parameters:

$$\Psi(1)=0.5,\,\Psi(2)=0.7,\,\Psi(3)=0.2,\,\Psi(4)=0.3$$

$$\Rightarrow L(S_1, S_2)|(\Psi(1), \Psi(2), \Psi(3), \Psi(4))$$

$$D = |\Psi(2) - \Psi(1)| - |\Psi(4) - \Psi(3)| = |(0.7 - 0.5)| - |0.3 - 0.2| = 0.1$$

- convert to z-score  $\frac{D}{\sigma_d} = 1$
- calculate area under the standard normal distribution  $\Phi(z=1)=0.8413$

$$\Rightarrow L(S_3, S_4)|(\Psi(1), \Psi(2), \Psi(3), \Psi(4)) = (1 - 0.8413)$$

#### Across-trials likelihood

- 1. calculate likelihoods for all trials
- 2. multiply individual likelihoods across trials
- 3. compute logarithm of the result
- 4. repeat procedure for other set of  $\Phi(S)$  and  $\sigma_d$
- 5. select the set that gives the largest across-trials likelihood



"Which pair looks more different,  $(x_1, x_2)$  or  $(x_2, x_3)$ ?"



Decision model: 
$$\Delta = (\Psi(x_3) - \Psi(x_2)) - (\Psi(x_2) - \Psi(x_1)) + \epsilon$$
,  $\epsilon \sim N(0, \sigma^2)$ 











 human observers are more sensitive to differences in low intensities

#### Relevance: electronic displays

**Gamma correction** is the name of a nonlinear operation used to encode luminance values in image systems. Gamma correction is defined by the following power-law expression:

$$V_{out} = V_{in}^{\gamma}$$

Mac 2.1, Windows 2.2





# **Applications**

- Standardized color palettes e.g. Munsell
- Monitor calibration



# **Applications**

- Standardized color palettes e.g. Munsell
- Monitor calibration
- Colormaps in plotting software



#### Colormap evaluation: option a.py









#### Summary

- forced-choice scaling: paired, triad, quadruple comparison
- non-forced-choice scaling: partition, multi-partition scaling
- discrimination (Fechnerian) scaling is appropriate when the scale is used to predict JNDs
- to use a JND based scale to identify the true underlying perceptual scale, internal noise must be additive
- MLDS is relevant for a variety of applications

#### References

 Kingdom, F.A.A. & Prins, N. (2010). Psychophysics. A practical introduction. London, UK: Elsevier Academic Press.