Exercice 1. Alternative systems

Lemma 1 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The linear system :

$$Ax = b$$

$$x \ge 0$$

has a solution if and only if $y^{\top}b \geq 0$ for all $y \in \mathbb{R}^m$ such that $y^{\top}A \geq 0$.

Theorem 1 (Fredholm's theorem) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The linear system :

$$Ax = b$$

has a solution if and only if $y^{\top}b = 0$ for all $y \in \mathbb{R}^m$ such that $y^{\top}A = 0$.

Question 1. Prove Farkas's lemma using linear programming duality.

Question 2. Prove Fredholm's alternatives theorem using Farkas' lemma.

Exercice 2. Benders' reformulation

Consider the following mixed-integer linear program:

$$\min_{x \in \mathbb{Z}_{+}^{n_{x}}, y \in \mathbb{R}_{+}^{n_{y}}} c^{\top} x + f^{\top} y$$
s.t.
$$Tx + Wy \ge h$$

Show that this problem can equivalently be written as:

$$\min_{x \in \mathbb{Z}_{+}^{n_{x}}, \theta \in \mathbb{R}} c^{\top} x + \theta$$
s.t. $\theta \ge \pi_{i}^{\top} (h - Tx)$ $\pi_{i} \in ext(\Pi)$

$$\pi_{i}^{\top} (h - Tx) \le 0$$
 $\pi_{j} \in ray(\Pi)$

where $\Pi = \{\pi \geq 0 \mid \pi^\top W \leq f\}$ and $ext(\Pi)$ and $ray(\Pi)$ are, respectively, its extreme points and exreme rays.

Hint : Start by writing the problem as $\min_{x \in \mathbb{Z}_+^{n_x}} c^\top x + Q(x)$ where Q(x) is defined as :

$$Q(x) := \min \quad f^{\top} y$$
 s.t. $Wy > h - Tx$

then use duality theory.

Exercice 3. Dual of the shortest path problem

Let G = (V, A) be a directed graph with costs c_{ij} for $(i, j) \in A$ and consider the shortest path problem on this graph from $s \in V$ to $t \in V$.

Let x_{ij} for $(i, j) \in A$ be decision variables such that $x_{ij} = 1$ if arc (i, j) is chosen as part of the shortest path and 0 otherwise. A linear programming formulation for this problem can be written as:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$
s.t.
$$\sum_{j\in \delta^{-}(i)} x_{ji} - \sum_{j\in \delta^{+}(i)} x_{ij} = d_i \qquad \forall i\in V$$

$$x_{ij} \geq 0 \qquad \forall (i,j)\in A$$

where $\delta^+(i)/\delta^-(i)$ are, respectively, the forward and backward star of $j \in V$ and $d_i = -1$ for i = s and $d_i = 1$ for i = t and $d_i = 0$, otherwise.

Question 1. Write the linear programming dual of this formulation.

Exercice 4. Branch-and-bound algorithm

Consider the following instance of the (binary) knapsack problem where the knapsack capacity is given as W = 6 and the item profits u_i and item weights w_i are summarized in the following table :

Question 1. Apply the branch-and-bound algorithm to this instance :

- Dual bounds can be calculated by solving linear programming relaxations.
- Choice of branching variables and nodes to treat can be done randomly (or according to a rule of your choosing).

Exercice 5. Lagrangean dual

Consider the following optimization problem:

$$\min_{x \in \{0,1\}^n} c^{\top} x
\text{s.t.} x \in X
 a^{\top} x \le b$$
(P)

where X is a given polyhedron.

Question 1. Show that the problem :

$$L(\lambda) := \min_{x \in \{0,1\}^n} \quad c^\top x + \lambda (a^\top x - b)$$
s.t. $x \in X$

is a relaxation of (P) for all $\lambda \geq 0$.

Question 2. Show that the problem:

$$\max_{\lambda \ge 0} L(\lambda)$$

provides a dual bound on the optimal value of P. (This is called a Lagrangean dual problem.)

Question 3. We next propose to show that the Lagrangean dual problem may provide a better dual bound for (P) compared to its continuous (LP) relaxation.

1. Show that for given λ , $L(\lambda)$ is equal to the solution of the following optimization problem:

$$\max \quad \theta$$
 s.t. $\theta \le c^{\top} x^i + \lambda (a^{\top} x^i - b)$ $\forall x^i \in (X \cap \{0, 1\}^n)$

- 2. Based on the previous expression provide a linear programming formulation for the Lagrangean dual problem.
- 3. Write the dual of the Lagrangean dual problem written as a linear program. Show that it is equivalent to:

min
$$c^{\top}x$$

s.t. $x \in \text{conv}(X \cap \{0, 1\}^n)$
 $a^{\top}x < b$

where $conv(X \cap \{0,1\}^n)$ is the convex hull of all feasible solutions.

4. What can we say about the Lagrangean dual bound compared to the dual bound obtained from:

min
$$c^{\top}x$$

s.t. $x \in (X \cap [0, 1]^n)$
 $a^{\top}x \le b$