Теория Вероятностей

Лекции

Савва Чубий, БПИ233

2024-2025

2024-09-06	
Введение	3
Основные понятия	3
Классическое определение вероятности	4
2024-09-13	
Геометрическое определение вероятности	4
Св-ва $P(A)$	4
Задача	4
Частотное (статистическое) определение	5
Аксиоматическое определение Колмагорова	5
Свойства $P(A)$	5
Условная вероятность	
2024-09-20	
Независимость в совокупности	7
Теорема умножения вероятностей	7
Биномиальная схема испытаний Бернулли	8
Наиболее вероятное число успехов	8
Формула полной вероятности	9
2024-09-27	
Формула Байеса	
Задача	10
Случайные величины (СВ)	10
Дискретный случайные величины	11
Числовые характеристики случайных величин	12
Математическое ожидание	12
2024-10-04	
Свойства математического ожидания	12
Дисперсия	12
Свойства дисперсии	
Другие	
Часто встречающиеся распределения	13

Распределение Бернулли	13
Биномиальное распределение	
Распределение Пуассона	14
Геометрическое распределение	15
2024-10-11	
Непрерывные случайные величины	15
Свойства плотности распределения	16
Числовые характеристики	17
Математическое ожидание	17
Свойства математического ожидания	17
Квантиль	17
Примеры распределений	17
Равномерное на интервале $(a;b)$	

2024-09-06

- Введение -----

Итог = $0.1 \cdot$ ИДЗ + $0.15 \cdot$ Сем + $0.25 \cdot$ КР + $50 \cdot$ Экз

Нужно набрать 4 — не 3.5

По ИДЗ бывают защиты

На семинарах могут быть самостоятельные

Кибзун, Горяинова, Наумов «ТВ и МС. Базовый курс с примерами к задачам» 2013 или 2014

КР на тему «случайные события и случайные величины (одномерные)» примерно после 7-ми занятий, в начале 20-ого модуля

Экз на тему «многомерные случайные величины»

— Основные понятия ——

Опр. Теория Вероятностей — раздел математики, изучающий математические модели массовых случайных явлений

При большом кол-ве событий величина $\frac{m}{n} \to P$ стабилизируется

 $\omega_1,...,\omega_n$ — элементарные случайные события

Опр. Пространство Элементарных Событий (Ω **)** — совокупность элементарных случайных событий

Опр. Случайное событие — любое $A\subset \Omega$

Опр. Достоверное событие — событие, которое происходит в опыте всегда. Совпадает с Ω

Опр. Невозможное событие — событие, которое не происходит в опыте никогда. Является \emptyset

Операции над множествами/ событиями:

- Произведение событий $A\cdot B$ событие из $A\cap B$
- Сумма событий A+B событие из $A\cup B$
- Разность событий $A \setminus B$
- Противоположное событие $\overline{A}=\Omega\setminus A$

Свойства операций над множествами:

- A + A = A
- $A \cdot A = A$
- $A \cdot \Omega = A$
- $A + \Omega = \Omega$
- A + B = B + A
- $A \cdot B = B \cdot A$
- A + (B + C) = (A + B) + C
- $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- $\overline{A} = A$
- $\overline{A+B} = \overline{A} \cdot \overline{B}$

Опр. σ -алгебра событий класс подмножеств в \mathcal{A} на пространстве элементарных событий Ω ,

1. $\Omega \in \mathcal{A}$

- 2. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$
- 3. $\forall A_1,...,A_n,... \in \mathcal{A} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A} \land \Pi_{i=1}^{\infty} A_i \in \mathcal{A}$

— Классическое определение вероятности

Пусть Ω содержит конечное число равновозможных взаимоисключающих исходов, тогда:

Опр. Вероятность события А (классическое определение)

$$P(A) = \frac{|A|}{|\Omega|},$$

где |A| – мощность события, количество событий, входящих в A

Свойства:

- $P(A) \in [0;1]$
- $P(\Omega) = 1$
- Если $A \cdot B = \emptyset$, то P(A+B) = P(A) + P(B)

2024-09-13

- Геометрическое определение вероятности –

Рассматриваем подмножества на \mathbb{R}^n , которые имеют конечную меру

Пример эксперимента: попадет ли случайная точка в подмножество

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$

Опр. События **несовместны** $-A \cdot B = \emptyset$

—— Св-ва
$$P(A)$$
 ——

- 1. $P(A) \ge 0 \forall A \subset \Omega$
- 2. $P(\Omega) = 1$
- 3. если A_1 и A_2 несовместны, то $P(A_1+A_2)=P(A_1)+P(A_2)$

x — время прихода Джульеты

у — время прихода Ромео

$$|x - y| < 14$$

$$P(\overline{A}) = \frac{\mu(\overline{A})}{\mu(\Omega)} = \frac{\frac{9}{16}}{1}$$

$$P(A) = 1 - \frac{9}{16} = \frac{7}{16}$$

Частотное (статистическое) определение

Пусть опыт проведен N раз, и событие произошло m_A раз. Тогда **частота** события A: $\nu(A) = \frac{m_A}{N}$

$$P(A) = \lim_{N \to \infty} \frac{m_A}{N}$$

Аксиоматическое определение Колмагорова

Пусть $\mathcal{A}-\sigma$ -алгебра событий на пространстве Ω . Числ функция $P:\mathcal{A}\to\mathbb{R}^1$ — вероятность, если:

- 1. $\forall A \in \mathcal{A}P(A) \geq 0$ аксиома неотрицательности
- 2. $P(\Omega) = 1$ условие нормировки
- 3. если $A_1,...,A_n,...$ попарно несовместны, то $P(\sum_{i=1}^\infty A_i = \sum_{i=1}^\infty P(A_i)$

Число P(A) называется вероятностью соб-я A

Тройка (Ω, \mathcal{A}, P) — вероятностное пространство

— Свойства
$$P(A)$$
 —

1.
$$P(\overline{A}) = 1 - P(A)$$

Док-во
$$\Omega = A + \overline{A}$$

$$A \cdot \overline{A} = \emptyset$$

$$1 = P(\Omega) = P\big(A + \overline{A}\big) = P(A) + P\big(\overline{A}\big)$$

2.
$$P(\emptyset) = 1 - P(\Omega) = 0$$

3.
$$A \subset B \Rightarrow P(A) \leq P(B)$$

Док-во

$$B = A + (B \setminus A)$$

$$P(B) = P(A + (B \setminus A)) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0}$$

4.

$$\forall A: 0 \leq P(A) \leq 1$$

5. Теорема сложения: $P(A + B) = P(A) + P(B) - P(A \cdot B)$

$$A = A\Omega = AB + A\overline{B}$$

$$B = B\Omega = AB + \overline{A}B$$

$$A + B = \underbrace{AB + A\overline{B} + \overline{A}B}_{\text{попарно несовместны}}$$

$$P(A) = P(AB) + P(A\overline{B}) \Rightarrow P(A) - P(AB) = P(A\overline{B})$$

$$P(B) = P(AB) + P(\overline{A}B) \Rightarrow P(B) - P(AB) = P(\overline{A}B)$$

$$P(A + B) = P(AB) + P(\overline{A}B) + P(\overline{A}B) = P(AB) + P(A) - P(AB) + P(B) - P(AB) = P(A) + P(B)$$

6. Обобщение теоремы сложения:

$$P\left(\underbrace{A_1 + A_2}_{A} + \underbrace{A_3}_{B}\right) = P(A) + P(B) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

$$P\left(\sum_{i} A_i\right) = \sum_{i} P(A_i) - \sum_{i < j} P\left(A_iA_j\right) + \sum_{i < j < k} P\left(A_iA_jA_k\right) - \dots + (-1)^{n+1}P(A_1...A_n)$$

- Условная вероятность —

Переходим из Ω в B

Пусть $A, B \in \Omega$ и $P(B) \neq 0$, тогда вероятность A при условии B:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Опр. A и B независимые, если P(A|B) = P(A)

Опр. A и B **независимые**, если P(AB) = P(A)P(B)

Любые несовместные события зависимы

2024-09-20

- Независимость в совокупности

Опр. События $A_1,...,A_n$ независимы в совокупности, если

$$\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n : P(A_1 A_2 \ldots) = P \Big(A_{i_1} \Big) P \Big(A_{i_2} \Big) \ldots$$

- Независимы в совокупности ightarrow независимы попарно
- Независимы все подмножества ightarrow независимы совокупно

Тетраэдр; Стороны: красная, синяя, зеленая, все вместе

 A_1 — выпала грань с **красным** цветом A_2 — выпала грань с **синим** цветом A_3 — выпала грань с **зеленым** цветом

$$P(A_1) = P(A_2) = P(A_3) = \frac{2}{4} = \frac{1}{2}$$

$$P(A_1A_2) = P(A_1A_3) = P(A_2A_3) = \frac{1}{4}$$

$$P(A_1A_2A_3) = \frac{1}{4} \neq P(A_1)P(A_2)P(A_3)$$

– Теорема умножения вероятностей

Пусть $P(A_1A_2...A_n) > 0$,

$$P\left(\overbrace{A_{1}...A_{n}}^{A}\right) = P(A_{1})P(A_{2} \mid A_{1})P(A_{3} \mid A_{1}A_{2})...P(A_{n} \mid A_{1}...A_{n-1})$$

Док-во

Пусть:

$$\begin{split} B_{n-1} &= A_1 ... A_{n-1} \\ B_{n-2} &= A_1 ... A_{n-2} \\ &\vdots \\ B_1 &= A_1 \end{split}$$

Тогда

$$A = B_{n-1}A_n$$

$$\begin{split} P(A) &= P(B_{n-1}A_n) = \\ &= P\left(\overbrace{B_{n-1}}^{B_{n-2}A_{n-1}}\right) P(A_n \mid B_{n-1}) = \\ &= P(A_n \mid A_1...A_{n-1}) P(B_{n-2}) P(A_{n-2} \mid B_{n-2}) = ... \end{split}$$

Пример

Перестановки: МАТАН

$$\begin{split} P(\text{'M' 'A' 'T' 'A' 'H'}) = \\ = P(\text{'M'})P(\text{'A' | 'M'})P(\text{'T' | 'M' 'A'})P(\text{'A' | 'M' 'A' 'T'})P(\text{'H' | 'M' 'A' 'T' 'A'}) = \\ = \frac{1}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \end{split}$$

Биномиальная схема испытаний Бернулли

Схема испытаний, которая удовлетворяет условиям:

- Исход двоичен. Происходит A (успех) или \overline{A} (неудача)
- Всех испытания независимы в совокупности
- p = P(A) не изменяется от опыта к опыту

k успехов из n испытаний:

$$P_{n(k)} = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k}$$

Док-во

Если все успехи в начале:

$$P\left(\underbrace{\mathtt{YY}...\mathtt{Y}}_{k}\mathtt{HH}...\mathtt{H}\right) = p^{k}q^{n-k}$$

Учтем перестановки. Выберем, где места будут успехи (C_n^k способов):

$$P_{n(k)} = C_n^k p^k q^{n-k}$$

$$P(k_1 \leq k \leq k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$$

$$1 = \sum_{k=0}^n P_{n(k)} = \sum_{k=0}^n C_n^i p^i q^{n-i} = (p+q)^n = 1^n = 1$$

 $\sum_{k=0}^{1} n(k) \qquad \sum_{k=0}^{\infty} c_n p \cdot q \qquad (p + q) \qquad 1$

— Наиболее вероятное число успехов —

По определению:

$$k_0 = \operatorname{argmax}_{1 < i < n} C_n^i p^i q^{n-i}$$

По удобному:

$$k_0 = \begin{cases} [(n+1)p] & \text{если } (n+1)p \notin \mathbb{Z} \\ (n+1)p & \text{и } (n+1)p-1 & \text{если } (n+1)p \in \mathbb{Z} \end{cases}$$

- Формула полной вероятности —

Опр. Пусть $H_1,...,H_n\in\Omega$. Если

1.
$$\forall i \neq j : H_i \cdot H_j = \emptyset$$

2.
$$H_1 + ... + H_n = \Omega$$

то $H_1,...,H_n$ полная группа событий (гипотезы)

Рис. 4. Полная группа событий (гипотезы)

Пусть $A\subset \Omega, H_1,...H_n$ — полная группа событий

$$\begin{split} P(A) &= P(A \cdot \Omega) = P(A \cdot (H_1 + \ldots + H_n)) = \\ &= P(AH_1 + \ldots AH_n) \quad \widehat{\widehat{=}} \quad P(H_1)P(A \mid H_1) + \ldots + P(H_n)P(A \mid H_n) \end{split}$$

Пример

N — всего билетов

m — билетов студент Сидоров выучил

A — Сидорову попался счастливый билет

Иванов заходит первый. Сидоров заходит второй.

 H_1 — Иванов вытащил счастливый (для Сидорова)

 H_2 — Иванов вытащил **не** счастливый (для Сидорова)

$$P(H_1) = \frac{m}{N}$$

$$P(H_2) = \frac{N-m}{N}$$

$$\begin{split} P(A) &= P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) = \\ &= \frac{m}{N} \cdot \frac{m-1}{N-1} + \frac{N-m}{N} \cdot \frac{m}{N-1} \end{split}$$

Для гипотез:

• Априорные вероятности — знаем ещё до опыта:

$$P(H_1), ..., P(H_n)$$

• Апостериорные вероятности — вероятности гипотез после эксперимента (когда знаем, что некоторое событие уже произошло):

$$P(H_1 \mid A), ..., P(H_n \mid A)$$

2024-09-27

—— Формула Байеса ———

$$P(H_i \mid A) = rac{P(AH_i)}{P(A)} = rac{P(H_i)P(A \mid H_i)}{\sum_{j=1}^n P(H_j)P(A \mid H_j)}$$

$$\sum_{i=1}^n P(H_i) = 1$$

$$\sum_{i=1}^n P(H_i \mid A) = 1$$
 —— Задача ——

Таблица 1. Условие

Завод Процент поставленных деталей		Вероятность исправной детали		
№ 1	65%	0.9		
№ 2	35%	0.8		

A — деталь с дефектом оказалась в самолете

 H_1 — деталь взяли и 1-ого завода

$$P(H_1) = 0.65$$

 $P(A \mid H_1) = 0.1$

 H_2 — деталь взяли и 2-ого завода

$$\begin{split} P(H_1) &= 0.35 \\ P(A \mid H_1) &= 0.2 \\ \\ P(A) &= P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) = 0.65 \cdot 0.1 + 0.35 \cdot 0.2 \\ \\ P(H_1 \mid A) &= \frac{P(H_1)P(A \mid H_1)}{P(A)} = \frac{65}{135} = 0.48 \\ \\ P(H_2 \mid A) &= \frac{P(H_2)P(A \mid H_1)}{P(A)} = \frac{70}{135} = 0.52 \end{split}$$

- Случайные величины (CB) —

Опр. Случайная величина — величина, которая после эксперимента принимает заранее неизвестное значение.

Числовая функция $\xi:\Omega\to\mathbb{R}$, которая удовлетворяет условию измеримости¹:

$$\forall x \in \mathbb{R} : \{\omega : \xi(\omega) \le x\} \in \mathcal{A}$$

Таблица 2. Пример с кубиком

$$\Omega = \left\{ \begin{array}{cccc} \omega_1, & \omega_2, & ..., & \omega_6 \end{array} \right\}$$

$$\downarrow & \downarrow & \downarrow$$

$$\xi = \left\{ \begin{array}{cccc} 1, & 2, & ..., & 3 \end{array} \right\}$$

Опр. Функция распределения (вероятностей) случайно величины ξ называется функция

$$F_\xi(x) = P(\omega: \xi(\omega) \leq x)$$

Свойства F(x):

1.
$$F(+\infty) = 1$$

$$F(-\infty) = 0$$

$$\forall x : 0 \le F(x) \le 1$$

- 2. F(x) не убывает: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- 3. F(x) непрерывна справа:

$$F(x_0) = \lim_{\varepsilon \to 0+} F(x_0 + \varepsilon),$$

где x_0 — точка разрыва

Если некоторая F(x) удовлетворяет условиям, то она является функцией распределения некоторой величины.

Случайные величины:

- Дискретные
- Непрерывные

— Дискретный случайные величины —

Опр. Случайную величину называют **дискретной**, если множество её возможных значений конечно или счетно.

Опр. Ряд распределения для дискретной CB — табличка из ξ в P:

ξ	x_1	x_2	 x_n
P	p_1	p_2	 p_n

Пример

$$\begin{array}{|c|c|c|c|c|c|} \hline \xi & -1 & 0 & 2 \\ \hline P & 0.2 & 0.3 & 0.5 \\ \hline \end{array}$$

$$x < -1 : F(x) = 0$$

$$F(-1) = 0.2$$

¹почти всегда исполняется

$$F(-0.5) = 0.2$$

$$F(0) = 0.2 + 0.3$$

$$F(2) = 1$$

$$x > 2 : F(x) = 1$$

Числовые характеристики случайных величин

Математическое ожидание

Опр. Математическим ожиданием E **(среднее значение)** дискретной CB ξ называется число

$$E\xi = \sum_{i=1}^{\infty} x_i p_i$$

Предполагается, что ряд $\sum_{i=1}^{\infty} \lvert x_i \rvert p_i$ сходится

2024-10-04

Свойства математического ожидания

- 1. Ec = c
- 2. $E(c\xi) = cE(\xi)$
- 3. Если $a \le \xi \le b$, то $a \le E\xi \le b$.
- 4. $E(\xi_1 + \xi_2) = E(\xi_1) + E(\xi_2)$
- 5. Пусть $\eta=\varphi(\xi)$, где φ детерминированная функция, тогда $E\eta=E\varphi(\xi)=\sum_{i=1}^n \varphi(x_i)p_i$

- Дисперсия -

Опр. Дисперсией случайной величины ξ называется число

$$D\xi = E(\xi - E\xi)^2$$

Свойства дисперсии

- 1. Dc = 0
- 2. $D(c\xi) = c^2 D(\xi)$
- 3. $\forall \xi : D(\xi) \ge 0$
- 4. $D(\xi) = E(\xi^2 2\xi E(\xi) + (E\xi)^2) = E(\xi^2) 2(E\xi)^2 + (E\xi)^2 = E\xi^2 (E\xi)^2$ удобная формула для вычислений
- мула для вычислении 5. $D(\xi_1+\xi_2)=E(\xi_1+\xi_2)^2-(E(\xi_1+\xi_2))^2=E(\xi_1^2)+2E(\xi_1\xi_2)+E(\xi_2^2)-(E\xi_1)^2-2E\xi_1E\xi_2+(E\xi_2)^2=D\xi_1+D\xi_2+2\underbrace{(E(\xi_1\xi_2)-E\xi_1E\xi_2)}_{\text{ковариация}}=D\xi_1+D\xi_2+2\underbrace{\cot(\xi_1,\xi_2)}_{\text{ковариация}}$ 6. Если ξ_1 и ξ_2 независимы, то $\cot(\xi_1,\xi_2)=0\to D(\xi_1+\xi_2)=D\xi_1+D\xi_2$

Опр. Среднеквадратическое отклонение: $\sigma_{\xi} = \sqrt{D\xi}$

Опр. Начальный момент порядка k (k=1,2,...): $\mu_k=E\xi^k$

$$\mu_1 = E\xi$$

Опр. Центральный момент порядка k~(k=2,3,...): $\nu_k = E(\xi-E\xi)^k$

$$\nu_2 = D\xi$$

Опр. Центрированная случайная величина: $\xi^0 = \xi - E\xi$

$$E\xi^0=0$$

Опр. Нормированная случайная величина: $\xi^* = \frac{\xi^0}{\sigma}$

$$D\xi^* = D\frac{\xi^0}{\sigma} = \frac{1}{\sigma^2}D\xi^0 = 1$$

Часто встречающиеся распределения

— Распределение Бернулли —

$$\xi$$
 $_{\text{имеет распределение}}$ $\mathrm{Ber}(p), 0$

ξ	0	1
P	1-p	p

$$\begin{array}{c|cc} \xi^2 & 0 & 1 \\ P & 1-p & p \end{array}$$

$$E\xi = 0 + 1 \cdot p = p$$

$$D\xi=E\xi^2-\left(E\xi^2\right)=p-p^2=p(1-p)=pq$$

— Биномиальное распределение —

$$\xi {\sim} \; \mathrm{Bi}(n,p), 0$$

ξ	0		k		n
P		:	$C_n^k p^k q^{n-k}$:	

Матожидание. Способ 1:

$$\sum_{k=0}^{n} k \cdot C_n^k p^k q^{n-k} = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^k q^{n-k} = np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} = \{i=k-1\} = np \sum_{i=0}^{n} \frac{(n-1)!}{i!(n-1-i)!} p^i q^{n-1-i} = np \sum_{k=0}^{n} \frac{(n-1)!}{i!(n-k)!} p^k q^{n-k} = np \sum_{k=0}^{n} \frac{(n-k)!}{i!(n-k)!} p^k q^{n-k} = np \sum_{k=0}^{n} \frac{(n-k)!}{i!(n-k$$

Маожидание. Способ 2:

$$\xi = \xi_1 + \xi_2 + \xi_3 + \ldots + \xi_n$$

$$\xi_i {\sim} \ \mathrm{Ber}(p)$$

$$E\xi = E\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n (E\xi_i) = np$$

Дисперсия. Способ 1:

$$D\xi = E\xi^2 - (E\xi)^2 = \sum_{k=0}^{n} k^2 \cdot C_n^k p^k q^{n-k} = \dots$$

Дисперсия. Способ 2:

$$D\xi = D\Biggl(\sum_{i=1}^n \xi_i\Biggr)$$
 $\underset{{
m T.K. \; He3aBucumi}}{=} \sum_{i=1}^n D(\xi_i) = npq$

Пример

Бросаем монетку 10 раз.

$$n = 10, p = 0.5 \rightarrow \begin{cases} E\xi = 10 \cdot 0.5 = 5\\ D\xi = 10 \cdot \frac{1}{2} \cdot \frac{1}{2} = 2.5 \end{cases}$$

— Распределение Пуассона —

$$\xi \sim \Pi(\lambda), \lambda > 0$$

$$\xi = \{0, 1, 2, \ldots\}$$

$$P(\xi = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Проверим условие нормировки:

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Матожидание:

$$E\xi = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Дисперсия:

$$\begin{split} D\xi &= E\xi^2 - (E\xi)^2 = \sum_{k=0}^\infty k^2 \frac{e^{-\lambda} \lambda^k}{k!} - \lambda^2 = \sum_{k=0}^\infty k \frac{e^{-\lambda} \lambda^k}{(k-1)!} - \lambda^2 = \\ &= \lambda \sum_{k=0}^\infty (k-1+1) \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \end{split}$$

Теорема Пуассона Пусть проводятся испытания по схеме Бернулли, причем $n \to \infty, p \to 0, np \to \lambda.$ Тогда

$$\lim_{n\to\infty} C_n^k p^k (1-p)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}$$

Док-во

$$\begin{split} \lim_{n\to\infty} C_n^k p^k (1-p)^{n-k} &= \lim_{n\to\infty} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = \\ &= \lim_{n\to\infty} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} = \\ &= \frac{\lambda^k}{k!} \lim_{n\to\infty} \frac{n\cdot (n-1)\cdot \ldots \cdot (n-k+1)}{n^k} \frac{\left(1-\frac{\lambda}{n}\right)^n}{\left(1-\frac{\lambda}{n}\right)^k} = 1 \cdot \frac{e^{-\lambda}}{1} = e^{-\lambda} \end{split}$$

Погрешность при замене Бернулли на Пуассона:

$$\left| C_n^k p^k q^{n-k} - \frac{e^{-np} (np)^k}{k!} \right| \le np^2$$

— Геометрическое распределение —

$$\xi \sim G(p), 0
$$\xi = \{1, 2, \dots\}$$

$$P(\xi = k) = q^{k-1}p$$$$

Смысл: Испытание с двумя исходами. Останавливаемся, когда произошел первый успех.

Матожидание:

$$\begin{split} E\xi &= \sum_{k=1}^{\infty} kq^{k-1}p = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} \left(q^{k}\right)' = \\ &= p\left(\sum_{k=1}^{\infty} q^{k}\right)' = p\left(\frac{q}{1-q}\right)' = \frac{p}{\left(1-q\right)^{2}} = \frac{1}{p} \end{split}$$

Дисперсия:

$$D\xi = \frac{q}{p^2}$$

Пример

Студент знает 80% материала. Его спрашивают, пока не завалят.

$$\xi \sim G(0.2)$$

2024-10-11

– Непрерывные случайные величины —

Нельзя задать рядом распределения

Можно задать функцией распределения

Опр. Плотность $f_{\xi}(x)$ случайно величины — такая неотрицательная кусочная функция, что

$$\forall x \in R: F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt$$

Опр. Случайные величины, для которых определена плотность определения, будем называть $\mathbf{непрерывнымu}^2$.

Канторова лестница

Пример функции, которая непрерывна, но плотности не имеет

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{2}F(3x), & 0 \le x \le \frac{1}{3}\\ \frac{1}{2}, & \frac{1}{3} \le x \le \frac{2}{3}\\ \frac{1}{2} + \frac{1}{2}F(3x - 2), \frac{2}{3} \le x \le 1\\ 1, & x \ge 1 \end{cases}$$

В точках дифференцируемости функции F(x): f(x) = F'(x)

С какой вероятностью будет принято какое-то конкретное значение x:

$$f(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x < \xi \le x + \Delta x)}{\Delta x}$$
$$f(x)\Delta x = P(x < \xi \le x + \Delta x)$$

Итого, ответ 0

— Свойства плотности распределения —

- $\forall x: f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x)dx = F(+\infty) = 1$
- $\int_{x_1}^{x_2} f(x) dx = F(x_2) F(x_1) = P(x_1 < \xi \le x_2)$
- Пусть СВ ξ имеет плотность распределения $f_{\xi}(x)$, а функция $\varphi(x)$ монотонная, дифференцируемая, детерминированная. СВ $\eta=\varphi(\xi)$. $f_{\eta}(y)=?$:
 - 1. Пусть $\varphi(x)$ монотонно возрастающая

$$\begin{split} F_{\eta}(y) &= P(\eta \leq y) = P(\varphi(\xi) \leq y) = P\big(\xi \leq \varphi^{-1}(y)\big) = F_{\xi}\big(\varphi^{-1}(y)\big) \\ \\ f_{\eta}(y) &= \big(F_{\eta}(y)\big)' = f_{\eta}\big(\varphi^{-1}(y)\big)\big(\varphi^{-1}(y)\big) \end{split}$$

2. Пусть $\varphi(x)$ — монотонно убывающая

$$F_{\eta}(y) = P(\eta \leq y) = P(\varphi(\xi) \leq y) = P\big(\xi \geq \varphi^{-1}(y)\big) = 1 - F_{\xi}\big(\varphi^{-1}(y)\big)$$

Но мы рассматриваем только два вида

²На самом деле есть три вида величин:

^{1.} Дискретные

^{2.} Сингулярные

^{3.} Абсолютно неприрывные

$$f_{\eta}(y) = \left(F_{\eta}(y)\right)' = -f_{\eta}\big(\varphi^{-1}(y)\big)\underbrace{\left(\varphi^{-1}(y)\right)}_{<0}$$

- 3. **Итого**, $f_{\eta}(y) = f_{\xi}(\varphi^{-1}(y)) | (\varphi^{-1}(y))' |$
- Если функция не монотонная, то нужно разделить её на интервалы монотонности и применить прошлый пункт

Числовые характеристики –

Математическое ожидание

Опр. Математическим ожиданием непрерывной случайной величины ξ называется число

$$E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx,$$

если интеграл сходится абсолютно:

$$E\xi = \int_{-\infty}^{\infty} |x| f_{\xi}(x) dx.$$

Для бесконечностей:

- Если f(x)>0 только при x>0 и $\int_{-\infty}^{\infty}xf_{\xi}(x)dx$ расходится, то $E\xi=+\infty$ Если f(x)>0 только при x<0 и $\int_{-\infty}^{\infty}xf_{\xi}(x)dx$ расходится, то $E\xi=-\infty$

Свойства математического ожидания

- 1. Ec = c
- 2. $E(c\xi) = cE(\xi)$
- 3. Если $a \le \xi \le b$, то $a \le E\xi \le b$.
- 4. $E(\xi_1 + \xi_2) = E(\xi_1) + E(\xi_2)$
- 5. Пусть $\eta=\varphi(\xi)$, где φ детерминированная функция, тогда $E\eta=\int_{-\infty}^{\infty}\varphi(x)f_{\xi}(x)dx$

- Квантиль –

Опр. Число $z_{\gamma}, 0 < \gamma < 1$ называется γ -квантилью непрерывного строго монотонного распределения $F_{\xi}(x)$, если $\underbrace{F_{\xi}(z_{\gamma})}_{=P\left(\xi\leq z_{\gamma}\right)}=\gamma$

Для непрерывного распределения верно:

$$\int_{-\infty}^{z_{\gamma}} f_{\xi}(x) dx = \gamma$$

Для дискретных величин в качестве квантили берут минимальное подходящее число:

$$z_{\gamma} = \min\{x : F(x) \ge \gamma\}$$

Если $\forall x: f(-x) = f(x)$, то $z_{\gamma} = -z_{1-\gamma}$.

Опр. Квантиль уровня 0.5 называется медианой.

Опр. Квантили уровня 0.25 и 0.75 называются **нижним и верхним квартилью**.

— Примеры распределений ——

<u>Равномерное на интервале</u> (a; b)

$$f(x) = \begin{cases} 0, & x \notin (a, b) \\ \frac{1}{b-a}, & x \in (a, b) \end{cases}$$