

MTH165

Unit 4 Multivariate functions **L22- Functions of several** variables, Limit and Continuity

Unit IV

Multivariate functions: Functions of two variables, Limits and Continuity, Partial derivatives, Total derivative and differentiability, Chain rule, Euler's theorem for Homogeneous functions, Maxima and Minima, Lagrange method of multiplier

Revision

The function $f(x) = 2x^3 - 3x^2 - 12x + 4$ has

(a) no maxima and minima

(b) one maxima and minima

(c) two maxima

(d) two minima

Revision

The maximum value of $\frac{\log x}{2}$ is

(b)
$$\frac{2}{e}$$
 (c) e

(d)
$$\frac{1}{e}$$

Functions of Two Variables

- Often a dependent variable depends on two or more independent variables:
 - The temperature T at a point on the surface of the earth at any given time depends on the longitude x and latitude y of the point.
 - We can express this by writing T(x, y).
 - The volume V of a circular cylinder depends on its radius r and height h.
 - We write *V*(*r*, *h*).

Examples

• Find the domains of the following functions and evaluate *f*(3, 2):

(a)
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$
 (b) $f(x, y) = x \ln(y^2 - x)$

• Solution The expression for (a) makes sense if $x - 1 \neq 0$ and $x + y + 1 \geq 0$, so $D = \{(x, y) | x + y + 1 \geq 0, x \neq 1\}$

Solution (cont'd)

Also for (a),

$$f(3,2) = \frac{\sqrt{3+2+1}}{3-1} = \frac{\sqrt{6}}{2}$$

 Here is a sketch of the domain:

Solution (cont'd)

For part (b),

$$f(3, 2) = 3\ln(2^2 - 3) = 3\ln 1 = 0$$

• Since $ln(y^2 - x)$ is defined only when $y^2 - x > 0$, the domain of f is

$$D = \{(x, y) | x < y^2\}$$

This is illustrated on the next slide:

Solution (cont'd)

- Just as...
 - the graph of a function of <u>one</u> variable is a <u>curve</u> C with equation y = f(x),
- SO...
 - the graph of a function of two variables is a surface S with equation z = f(x, y).

MCQ

The type of function which contain only one independent variables is classified as

- A. variate function
- B. multivariate function
- C. univariate function
- D. bivariate function

MCQ

The function of two variables in a way that u is dependent variable and v is independent variable is written as

- A. u = f(v)
- B. f = u(v)
- C. V = f(u)
- D. f = v(u)

Sketch the graph of the function

$$f(x, y) = 6 - 3x - 2y$$

The graph of f has the equation

$$z = 6 - 3x - 2y$$
, or $3x + 2y + z = 6$,

which represents a plane, let's find the zeros.

- Sketch the graph of the function $f(x, y) = x^2$.
- Solution The equation of the graph is $z = x^2$, which doesn't involve y.
- Thus any vertical plane y = k intersects the graph in a parabola $z = x^2$.
- The graph is called a *parabolic cylinder*

--Sketch the function $f(x,y) = \sqrt{x^2 + y^2}$

Let's identify what this surface given by $f(x, y) = \sqrt{x^2 + y^2}$ and rewrite the

function as
$$z = \sqrt{x^2 + y^2}$$
 or $z^2 = x^2 + y^2$

Sketch the traces of $f(x, y) = 10 - 4x^2 - y^2$ for the plane x = 1 and y = 2.

We'll start with x = 1. We can get an equation for the trace by plugging x = 1 into the equation. Doing this gives,

$$z = f(1, y) = 10 - 4(1)^{2} - y^{2} \implies z = 6 - y^{2}$$

and this will be graphed in the plane given by x = 1.

For y = 2 we will do pretty much the same thing that we did with the first part. Here is the equation of the trace,

$$z = f(x,2) = 10 - 4x^2 - (2)^2$$
 \Rightarrow $z = 6 - 4x^2$

and here are the sketches for this case.

Other Quadric Surfaces

- The following slides show the six basic types of quadric surfaces in standard form.
- All surfaces are symmetric with respect to the z-axis.
- If a quadric surface is symmetric about a different axis, its equation changes accordingly.

Surface

Equation

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

All traces are ellipses.

If a = b = c, the ellipsoid is a sphere.

Equation

Cone

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Horizontal traces are ellipses.

Vertical traces in the planes x = k and y = k are hyperbolas if $k \neq 0$ but are pairs of lines if k = 0.

Surface

Equation

Hyperboloid of One Sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry corresponds to the variable whose coefficient is negative.

Surface

Hyperbolic Paraboloid

Equation

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Horizontal traces are hyperbolas.

Vertical traces are parabolas.

The case where c < 0 is illustrated.

Surface

Hyperboloid of Two Sheets

Equation

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Horizontal traces in z = k are ellipses if k > c or k < -c.

Vertical traces are hyperbolas.

The two minus signs indicate two sheets.

The graph of $f(x, y) = (x^2 + y^2)^{1/2}$ is a paraboloid.

True

False

Limits and Continuity

Limits

DEFINITION: Suppose that f is a function of two variables. Let $P_0 = (x_0, y_0)$ be a fixed point in the plane such that every punctured disk $D_*(P_0, r)$ intersects the domain of f. We say that the real number ℓ is the *limit* of f(P) as P = (x, y) approaches P_0 , and we write

$$\lim_{P \to P_0} f(P) = \ell$$

if, for any $\varepsilon > 0$, there is a $\delta > 0$ such that $|f(P) - \ell| < \varepsilon$ for all points P in the domain of f with 0 < d (P, P₀) $< \delta$.

Limits and Continuity

Limits

EXAMPLE: Define $f(x, y) = x^2 + y^2$. Verify that $\lim_{(x,y)\to(0,0)} f(x, y) = 0$.

EXAMPLE: Define

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Discuss the limiting behavior of f(x, y) as $(x, y) \rightarrow (0, 0)$.

Limits and Continuity

EXAMPLE: Define $f(x, y) = (x + y + 1) / (x^2 - y^2)$. What is the limiting behavior of f as (x, y) tends to (1, 2)?

EXAMPLE: Evaluate the limit

$$\lim_{(x,y)\to(3,-2)} \frac{2x^2 + 5xy + 3y^2}{2x + 3y}.$$

MCQ

Find
$$lt_{(x,y) o (0,0)} rac{y^6}{x^{10}y^2 + x^{15}}$$

- a) 0
- b) 1
- c) Does Not exist
- d) ∞

MCQ

Find
$$lt_{(x,y)
ightarrow (0,0)} rac{sec(y).sin(x)}{x}$$

- a) ∞
- b) $\frac{1}{2}$
- c) 1
- d) $\frac{1}{3}$

Continuity

DEFINITION: Suppose that f is a function of two variables that is defined at a point $P_0 = (x_0, y_0)$. If f(x, y) has a limit as (x, y) approaches (x_0, y_0) , and if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0),$$

then we say that f is continuous at P_0 . If f is not continuous at a point in its domain, then we say that f is discontinuous there.

EXAMPLE: Suppose that

$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

is f continuous at (0, 0)?

Rules for Continuity

EXAMPLE: Discuss the continuity of

$$U(x,y) = y^{3} \sin(x) - \frac{\cos(xy^{2})}{(2x - y)^{2}}.$$

at (0,0).

Functions of Three Variables

EXAMPLE: Show that $V(x, y, z) = z^3 \cos(xy^2)$ is a continuous function.

Unit 4 Multivariate functions L23- Partial Derivatives

Limits and continuity

Method:-

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{\substack{y \to 0 \\ x \to 0}} f(x, y) = \lim_{\substack{y \to mx \\ x \to 0}} f(x, y) = \lim_{\substack{y \to mx^2 \\ x \to 0}} f(x, y)$$

All are same value then, limit exist

If limit exist then it's continuous at given point.

Revision

Find
$$lt_{(x,y) o (0,0)} rac{sin(y)}{x}$$

- a) 1
- b) 0
- C) ∞
- d) Does Not Exist

Revision

Find
$$lt_{(x,y) o (0,0)} rac{y^7 x^{98} - x^{97} y^8 + x^{105}}{x y^7 + x^8}$$

- a) Does Not Exist
- b) 0
- c) 1
- d) ∞

WHAT IS PARTIAL DIFFERENTIATION?

Let z=f(x,y) be function of two individual variables x & y the derivative with respect to x keeping y constant Is called partial derivative of z with respect to x.

It is denoted by $\frac{\partial z}{\partial x}$, $\frac{\partial f}{\partial x}$, f_x .

It is denoted as $\frac{\partial z}{\partial x} = \lim_{x \to 0} \frac{f(x+\partial x,y) - f(x,y)}{\partial x}.$

Partial derivatives of first order

Let
$$z = f(x, y)$$

First order:-

$$\left(\frac{\partial f}{\partial x} \operatorname{or} \frac{\partial z}{\partial x} \operatorname{or} fx\right) \operatorname{or} \left(\frac{\partial f}{\partial y} \operatorname{or} \frac{\partial z}{\partial y} \operatorname{or} fy\right)$$

Partial derivatives in higher orders

Second order:-

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} \text{ or } fxx$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} \quad or \quad fxy$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} \quad or \quad fyx$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} \text{ or } fyy$$

Third order:-

$$\frac{\partial^3 f}{\partial x^3} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} \right) = f x x x$$

$$\frac{\partial^3 f}{\partial x^2 \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \partial y} \right) = f y x x$$

$$\frac{\partial^3 f}{\partial x \partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial y^2} \right) = f y y x$$

$$\frac{\partial^3 f}{\partial y^3} = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y^2} \right) = f y y y$$

$$\frac{\partial^3 f}{\partial x \partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \partial y} \right) = f x y x$$

EXAMPLE:

If
$$a^2x^2 + b^2y^2 = c^2z^2$$
, evaluate $\underline{1}$ $\underline{\boldsymbol{\delta}^2z} + \underline{1}$ $\underline{\boldsymbol{\delta}^2z}$. $a^2\,\boldsymbol{\delta}x^2$ $b^2\,\boldsymbol{\delta}y^2$.

EXAMPLE:

If
$$a^2x^2 + b^2y^2 = c^2z^2$$
, evaluate $\frac{1}{a^2} \frac{\partial^2 z}{\partial x^2} + \frac{1}{b^2} \frac{\partial^2 z}{\partial y^2}$.

Solution:

Differentiating partially w.r.t. x,

$$2a^{2}x = 2c^{2}z \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{a^{2}x}{\partial x}$$

$$\frac{\partial z}{\partial x} = \frac{a^{2}x}{\partial x}$$
Differentiating $\frac{\partial z}{\partial x}$ partially w.r.t. x,
$$\frac{\partial z}{\partial x} = \frac{a^{2}}{2} \left(\frac{1}{2} - \frac{x}{2} \frac{\partial z}{\partial x} \right)$$

$$\frac{\partial^{2}z}{\partial x^{2}} = \frac{a^{2}}{2} \left(\frac{1}{2} - \frac{x}{2} \frac{\partial z}{\partial x} \right)$$

$$= \frac{a^{2}}{2} \left(1 - \frac{x}{2} \frac{a^{2}x}{2} \right)$$

$$\frac{1}{a^{2}} \frac{\partial^{2}z}{\partial x^{2}} = \frac{1}{c^{2}z} \quad (1 - \frac{a^{2}x^{2}}{c^{2}z^{2}})$$

$$\frac{1}{a^{2}} \frac{\partial^{2}z}{\partial y^{2}} = \frac{1}{c^{2}z} \quad (1 - \frac{b^{2}y^{2}}{c^{2}z^{2}})$$

$$\frac{1}{a^{2}} \frac{\partial^{2}z}{\partial y^{2}} + \frac{1}{b^{2}} \frac{\partial^{2}z}{\partial y^{2}} = \frac{1}{c^{2}z} \quad (2 - \frac{a^{2}x^{2} + b^{2}y^{2}}{c^{2}z^{2}})$$

$$= \frac{1}{a^{2}} \frac{(2 - \frac{c^{2}z^{2}}{c^{2}z^{2}})}{c^{2}z^{2}}$$

$$= \frac{1}{c^{2}z^{2}}$$

$$= \frac{1}{c^{2}z^{2}}$$

$$f(x, y) = x^2 + xyz + z$$
 Find f_x at (1,1,1)

- a) 0
- b) 1
- c) 3
- d) -1

 $f(x, y) = \sin(xy) + x^2 \ln(y)$ Find f_{yx} at $(0, \frac{\pi}{2})$

- a) 33
- b) 0
- c) 3
- d) 1

Show that the function

$$f(x,y) = \begin{cases} (x+y)\sin\left(\frac{1}{x+y}\right), & x+y \neq 0 \\ 0, & x+y = 0 \end{cases}$$

is continuous at (0,0) but its partial derivatives f_x and f_y do not exist at (0,0).

Total differential and differentiability

Definition 13.4.1 Total Differential

Let z = f(x, y) be continuous on an open set S. Let dx and dy represent changes in x and y, respectively. Where the partial derivatives f_x and f_y exist, the **total differential of** z is

$$dz = f_x(x, y) dx + f_y(x, y) dy.$$

Example Finding the total differential

Let $z = x^4 e^{3y}$. Find dz.

We can approximate Δz with dz, but as with all approximations, there is error involved. A good approximation is one in which the error is small. At a given point (x_0, y_0) , let E_1 and E_2 be functions of dx and dy such that $E_1 dx + E_2 dy$ describes this error. Then

$$\Delta z = dz + E_1 dx + E_2 dy = f_x (x_0, y_0) dx + f_y (x_0, y_0) dy + E_1 dx + E_2 dy.$$

If the approximation of Δz by dz is good, then as dx and dy get small, so does $E_1 dx + E_2 dy$. The approximation of Δz by dz is even better if, as dx and dy go to 0, so do E_1 and E_2 . This leads us to our definition of differentiability.

Definition Multivariable Differentiability

Let z = f(x, y) be defined on an open set S containing (x_0, y_0) where $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist. Let dz be the total differential of z at (x_0, y_0) , let $\Delta z = f(x_0 + dx, y_0 + dy) - f(x_0, y_0)$, and let E_1 and E_2 be functions of dx and dy such that

$$\Delta z = dz + E_1 dx + E_2 dy.$$

1. f is differentiable at (x_0, y_0) if

$$\lim_{(dx,dy) o(0,0)} E_1=0 \qquad ext{and}\qquad \lim_{(dx,dy) o(0,0)} E_2=0.$$

2. f is differentiable on S if f is differentiable at every point in S. If f is differentiable on \mathbb{R}^2 , we say that f is differentiable everywhere.

Differentiability of Multivariable Functions

Let z = f(x, y) be defined on an open set S. If f_x and f_y are both continuous on S, then f is differentiable on S.

The existence of first order partial derivatives implies continuity.

- a) True
- b) False

Unit 4 Multivariate functions

L 24-26-Total Derivative, chain rule, Euler's theorem

Compute the partial derivative of the function

$$f(x, y, z) = e^{1 - x\cos(y)} + z e^{-1/(1 + y^2)}$$

with respect to x at the point $(1,0,\pi)$.

- (a) -1
- (b) -1/e
- (c) 0
- (d) π/e

If
$$z = f(x + ay) + g(x - ay)$$
, then

A.
$$z_{xx} = z_{yy}$$

B.
$$z_{xx} = a^2 z_{yy}$$

C.
$$z_{yy} = a^2 z_{xx}$$

D.
$$z_{xx} + a^2 z_{yy} = 0$$

If
$$z = cos\left(\frac{x}{y}\right) + sin\left(\frac{x}{y}\right)$$
, then $x z_x + y z_y$ is equal to

A. z

B. 2z

C. 0

D. 4z

 $f(x, y, z, t) = xy + zt + x^2 yzt; x = k^3; y = k^2; z = k; t = \sqrt{k}$

Find $\frac{df}{dt}$ at k = 1

- a) 34
- b) 16
- c) 32
- d) 61

 $f(x, y) = x^2 + y^3$; $X = t^2 + t^3$; $y = t^3 + t^9$ Find $\frac{df}{dt}$ at t=1.

- a) 0
- b) 1
- c)-1
- d) 164

Homogeneous Function

Consider the function

$$f(x,y) = a_0 x^n + a_1 x^{n-1} y + a_2 x^{n-2} y^2 + \dots + a_n y^n$$

The degree of each term in x and y is n.

Such functions are called homogenious functions of degree n.

Another def.

A function f(x,y) of two independent variables x and y is said to be homogenious of degree n if f(x,y) can be

written in the form $x^n \phi \left(\frac{y}{x}\right)$ where ϕ can be any function

Some examples of homogenious functions

$$(1): F(x,y)=x^n \sin(\frac{y}{x})$$

(2):
$$F(x,y)=x^3-3xy^2+y^3$$

$$(3): F(x,y) = \frac{\left(\sqrt{y} - \sqrt{x}\right)}{y - x}$$

Euler's Theorem on Homogeneous Function

If z = F(x,y) be a homogenious function of x,y of degree n

then
$$x \frac{\delta z}{\delta x} + y \frac{\delta z}{\delta y} = nz$$
 for all x,y

Proof: We have

z is a homogenious function of degree n.

so that
$$z = x^n \phi \left(\frac{y}{x} \right)$$

$$\Rightarrow \frac{\delta z}{\delta x_{z}} = nx^{n-1} f(\frac{y}{x}) + x^{n} f'(\frac{y}{x}) \left(\frac{-y}{x^{2}}\right)$$

$$\Rightarrow \frac{\delta z}{\delta x_{z}} = nx^{n-1} f(\frac{y}{x}) + x^{n} f'(\frac{y}{x}) \left(\frac{x^{2}y}{x^{2}}\right)$$

$$= nx^{n-1} f(\frac{y}{x}) - yx^{n-2} f'(\frac{y}{x})^{x^{2}}$$

Similarly,
$$\frac{\delta z}{\delta y} = x^n f'(\frac{y}{x}) \left(\frac{1}{x}\right) = x^{n-1} f'(\frac{y}{x})$$

Thus, we have

$$x\frac{\delta z}{\delta x} + y\frac{\delta z}{\delta y} = nx^n f(\frac{y}{x}) - yx^{n-1} f'(\frac{y}{x}) + yx^{n-1} f'(\frac{y}{x})$$

$$\Rightarrow x \frac{\delta z}{\delta x} + y \frac{\delta z}{\delta y} = nx^n f(\frac{y}{x}) = nz$$

hence the result.

COROLLARY I:

If z = f(x, y) is a homo. function of x and y of degree n,

then
$$x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = n(n-1)z$$

Example: Verify Euler's theorem for the function

Solution:
$$z = x^n \log \frac{y}{x}$$

z is a homogenious function of x and y of degree n.

$$\therefore x \frac{\delta z}{\delta x} + y \frac{\delta z}{\delta y} = nz$$

Now,
$$\frac{\delta z}{\delta x} = nx^{n-1} \log \frac{y}{x} + x^n \left(\frac{x}{y} * \frac{-y}{x^2} \right)$$

$$= nx^{n-1}\log\frac{y}{x} - x^{n-1}$$

and
$$\frac{\delta z}{\delta y} = x^n * \frac{x}{y} * \frac{1}{x} = \frac{x^n}{y}$$

Multiply by x and y and add

$$\therefore x \frac{\delta z}{\delta x} + y \frac{\delta z}{\delta y} = x \left(n x^{n-1} \log \frac{y}{x} - x^{n-1} \right) + y * \frac{x^n}{y}$$

$$= n x^n \log \frac{y}{x} - x^n + x^n$$

$$= n x^n \log \frac{y}{x}$$

$$= n z$$

Example: If
$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$
,

then show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$$

Solution: We have
$$u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$

Let
$$z = \frac{x^2 + y^2}{x + y}$$
 then $\sin u = z$

where
$$z = \frac{x^2 + y^2}{x + y} = x \frac{1 + \left(\frac{y^2}{x^2}\right)}{1 + \left(\frac{y}{x}\right)}$$
 is a homogenious

function of degree one

.. By Eular's theorem ,we have

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$$

$$But \frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(\sin u) = \cos u \frac{\partial u}{\partial x}$$

$$and \frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(\sin u) = \cos u \frac{\partial u}{\partial y}$$

hence
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z = \cos u \left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right) = \sin u$$

or
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$$

Example: If $u = \cot^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$, then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{-1}{4}\sin 2u$$

Solution: We have $u = \cot^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$

Let
$$z = \frac{x + y}{\sqrt{x + \sqrt{y}}}$$
 then $\cot u = 1$

where
$$z = \frac{x+y}{\sqrt{x} + \sqrt{y}}$$
 then $\cot u = z$

$$\frac{x+y}{\sqrt{x} + \sqrt{y}} = x^{\frac{1}{2}} \frac{1 + \frac{y}{x}}{1 + \frac{\sqrt{y}}{\sqrt{x}}}$$
 is a homogenious

function of degree half

.. By Eular's theorem, we have

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = n z = \frac{z}{2}$$

$$\frac{\partial z}{\partial x} = -\cos ec^2 x \frac{\partial u}{\partial x}$$
and
$$\frac{\partial z}{\partial y} = -\cos ec^2 x \frac{\partial u}{\partial y}$$
 and we have

$$-x\cos ec^2x\frac{\partial u}{\partial x} - y\cos ec^2x\frac{\partial u}{\partial y} = \frac{1}{2}\cot u$$

$$= x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{-\cot u}{2\cos ec^2 x} = \frac{1}{4}\sin 2u$$

Exercise

- Find the first order partial derivatives of
 - (a) $\cot^{-1}(x+y)$
 - (b) $\sin(x^2y^2)$
 - (c) $\frac{x+y}{x-y}$
- 2 Find the second order partial derivatives of
 - (a) $\tan(\tan^{-1} x + \tan^{-1} y)$
 - $(b) \quad \frac{xy}{\sqrt{1+x^2+y^2}}$
 - $(c) \log(x \tan^{-1} y)$ $(d) e^{x^{y}}$

3 Varify that
$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

where u is log (ysinx+xsiny)

4 If
$$z = \sin^{-1} \left(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}} \right)$$
, show that

$$\frac{\partial z}{\partial x} = -\frac{y}{x} * \frac{\partial z}{\partial y}$$

If z = f(x+ay)+g(x-ay), show that

$$\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$

6 If
$$v = (x^2 + y^2 + z^2)^{\frac{3}{2}}$$
, show that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0$$

7 If
$$z(x+y)=(x^2+y^2)$$
, show that

$$\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$$

If
$$z = log \frac{x^2 + y^2}{x + y}$$
, show that

$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 1$$

$$\frac{\partial}{\partial x} \left[\left(1 - x^2 \right) \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left(y^2 \frac{\partial z}{\partial y} \right) = 0$$
If $z = \tan^{-1} \frac{y}{x}$, then show that

 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$

 $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$

10

If $z = 3xy - y^3 + (y^2 - 2x)^{-2}$, show that

 $\sqrt{1-2xy+y^2}$ show that

Jacobians

Definition of the Jacobian

Definition of the Jacobian

If x = g(u, v) and y = h(u, v), then the **Jacobian** of x and y with respect to u and v, denoted by $\partial(x, y)/\partial(u, v)$, is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

Example 1

Find the Jacobian for the change of variables

 $x = r \cos \theta$ and

 $y = r \sin \theta$

Example 1 Solution

Find the Jacobian for the change of variables x = r cose and y = r sine

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$

$$= \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix}$$

$$= r \cos^2 \theta + r \sin^2 \theta$$

$$= r.$$

Why would we change variables?

S is the region in the $r\theta$ -plane that corresponds to R in the xy-plane.

If
$$u = x^2 f\left(\frac{y}{x}\right)$$
 then:

A.
$$x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$
.

B.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$
.

C.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$
.

D.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$$
.

If $x = r \cos \varphi \sin \theta$, $y = r \sin \varphi \sin \theta$, $z = r \cos \theta$, then the value of $\frac{\partial (x,y,z)}{\partial (r,\theta,\varphi)}$ is:

- A. 0
- B. r
- C. $r^2 \sin \theta$
- D. $r^2 \cos \theta$

The Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for the function $u = e^x \sin y$, $v = x + \log \sin y$ is

A. 1

B. $\sin x \sin y - x y \cos x \cos y$

C. 0

D.
$$\frac{e^x}{x}$$

B. S grow at - ch 5 - Sec . 5. 7
$$\frac{\partial(u_1v)}{\partial(x_1v)} = \frac{\partial u_1v}{\partial x}$$

The sec . 5. 7 $\frac{\partial(u_1v)}{\partial(x_1v)} = \frac{\partial u_1v}{\partial x}$

The sec . 5. 7 $\frac{\partial(u_1v)}{\partial(x_1v)} = \frac{\partial(u_1v)}{\partial(x_1v)}$

Then

 $\int J = \frac{\partial(u_1v)}{\partial(u_1v)} = \frac{\partial(u_1v)}{\partial(u_1v)} = \frac{\partial(u_1v)}{\partial(u_1v)}$
 $\int J = \frac{\partial(u_1v)}{\partial(u_1v)} = \frac{\partial(u_1v)}{$

2 Chain Rule for Jacobians

99 u, v are functions of the and his are functions of the and then $\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(x,y)}$

2= f(u), u=

if
$$u=x^2-y^2$$
, $v=2xy$ and $x=9.650$, $y=9.5100$
then find $\frac{\partial(u/v)}{\partial(9/0)}$
 $\frac{\partial(y/0)}{\partial(9/0)} = \frac{\partial(u/v)}{\partial(x/y)} \cdot \frac{\partial(x/y)}{\partial(9/0)}$
(a) 9^2 (b) 29^3 (c) 49^3 (d) None of these

3 Jacobian of Implicit Functions

if we have

$$f_{1}(u_{1}, u_{2}, u_{3}, \chi_{1}, \chi_{2}, \chi_{3}) = 0$$

$$f_{2}(u_{1}, u_{2}, u_{3}, \chi_{1}, \chi_{2}, \chi_{3}) = 0$$

$$f_{3}(u_{1}, u_{2}, u_{3}, \chi_{1}, \chi_{2}, \chi_{3}) = 0 + hen$$

$$\int_{3}(u_{1}, u_{2}, u_{3}) = (-1)^{3} \frac{\partial \{f_{1}, f_{2}, f_{3}\}}{\partial (\chi_{1}, \chi_{2}, \chi_{3})}$$

$$\frac{\partial \{f_{1}, f_{2}, f_{3}\}}{\partial (\chi_{1}, \chi_{2}, \chi_{3})}$$

Forey.

Find $\partial(x/3/2)$ Find $\partial(x/3/2)$ Sol: Let $f_1 = u-xyz$, $f_2 = v-x^2-y^2-z^2$, $f_3 = w-x-y-z$ $\frac{\partial(x_1y_1z)}{\partial(u_1v_1w)} = -\frac{\partial(f_1f_2f_3)}{\partial(f_1f_2f_3)} \frac{\partial(u_1v_1w)}{\partial(x_1y_1g_3)}$

4) Functional Relationship: 97 4,,42,43 be functions of x1, X2, X3 than the necessary and sufficient condition of a functional relationship of the form flui, 42, 43)=0 is $J = \frac{\partial(u_1, u_2, u_3)}{\partial(u_1, u_2, u_3)} = 0$ if J = 0 then u, v, w are said to be functionally independent.

Show that u = x-y+z, y = x+y-zand $w = x^2+xz-xy$ are functionally helotical and find the relationship between them. $\frac{\partial(u_1v_1v_2)}{\partial(x_1y_1v_2)} = \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ 2x+2-y & -x & x \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 2x+2-y & -x & x \end{vmatrix} = 0$

2W = u(u+V)

MTH165 Unit 4

Multivariate functions

L 27-28-Maxima and minima of function of two variables and Langrange's method of multiplier

- The Function f(x,y) is maximum at (x,y) if for all small positive or negative values of h and k; we have
- ❖ f(x+h, y+k) f(x,y) < o
- Similarly f(x,y) is minimum at (x,y) if for all small positive or negative values of h and k, we have
- f(x+h, y+k) f(x,y) > 0

- Thus ,from the defination of maximum of f(x,y) at (x,y) we note that f(x+h, y+k) – f(x,y) preserves the same sign for a maximum it is negative and for a minimum it is positive
- Working rule to find maximum and minimum values of a function f(x,y)
- \bullet (1) find $\partial f/\partial x$ and $\partial f/\partial y$
- * (2) a necessary condition for maximum or minimum value is $\partial f/\partial x=0$, $\partial f/\partial y=0$

- * solve simultaneous equations $\partial f/\partial x=0$, $\partial f/\partial y=0$
- Let (a1,b1), (a2,b2)... be the solutions of these equations.

Find
$$\partial^2 f/\partial x^2 = r$$
, $\partial^2 f/\partial x \partial y = s$, $\partial^2 f/\partial y^2 = t$

- ♦ (3) a sufficient condition for maximum or minimum value is rt-s²>o.
- ♦ (4 a) if r>o or t>o at one or more points then those are the points of minima.
- ❖ (4 b) if r<0 or t<0 at one or more points then those points are the points of maxima.
- ♦ (5) if rt-s²<0, then there are no maximum or minimum at these points. Such points are called saddle points.

❖ (6) if rt-s²=0 nothing can be said about the maxima or minima .it requires further investigation.

❖ (7) if r=o nothing can be said about the maximum or minima. It requires further investigation.

MCQ

What is the saddle point?

- a) Point where function has maximum value
- b) Point where function has minimum value
- c) Point where function has zero value
- d) Point where function neither have maximum value nor minimum value

MCQ

For function f(x,y) to have minimum value at (a,b) value is?

- a) $rt s^2 > 0$ and r < 0
- b) rt $s^2>0$ and r>0
- c) $rt s^2 < 0$ and r < 0
- d) rt $s^2>0$ and r>0

Example

discuss the maxima and minima of

$$xy + 27(1/x + 1/y)$$

Solution

$$\partial f/\partial x = y - (27/x^2)$$
,

$$\partial f/\partial y = x - (27/y^2)$$

For max. or min ,values we have $\partial f/\partial x=0$, $\partial f/\partial y=0$. y-

$$(27/x^2)=0...(1)$$

$$x-(27/y^2)=0...(2)$$

Giving
$$x=y=3$$

$$\partial^2 f/\partial x^2 = r = 54/x^3$$

 $\partial^2 f/\partial x \, \partial y = s = 1$,
 $\partial^2 f/\partial y^2 = t = 27/y^3$
 $r(3,3) = 3$
 $s(3,3) = 1$
 $t(3,3) = 3$
 $rt-s^2 = 9-1=8>0$, since r,t are both >0
We get minimum value at $x=y=3$ which is 27.

MCQ

Discuss maximum or minimum value of $f(x,y) = y^2 + 4xy + 3x^2 + x^3$.

- a) minimum at (0,0)
- b) maximum at (0,0)
- c) minimum at (2/3, -4/3)
- d) maximum at (2/3, -4/3)

MCQ

Divide 120 into three parts so that the sum of their products taken two at a time is maximum. If x, y, z are two parts, find value of x, y and z.

- a) x=40, y=40, z=40
- b) x=38, y=50, z=32
- c) x=50, y=40, z=30
- d) x=80, y=30, z=50

Sometimes, we have a *constraint* which restricts us from choosing variables freely:

- Maximize volume subject to limited material costs
- Minimize surface area subject to fixed volume
- Maximize utility subject to limited income

Lagrange's Method of Undetermined Multipliers

To find extreme values of a function we consider a function

$$du = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \qquad \dots (3)$$

$$\frac{\partial \emptyset}{\partial x} dx = \frac{\partial \emptyset}{\partial x} dx + \frac{\partial \emptyset}{\partial y} dy + \frac{\partial \emptyset}{\partial z} dz \qquad (4)$$

Application of partial Differentiation

Multiplying the equation (4) by λ and adding with the equation (3) we get

$$du = \left(\frac{\partial f}{\partial x} + \lambda \frac{\partial \phi}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y} + \lambda \frac{\partial \phi}{\partial y}\right) dy + \left(\frac{\partial f}{\partial z} + \lambda \frac{\partial \phi}{\partial z}\right) dz$$

For u

$$\left(\frac{\partial f}{\partial x} + \lambda \frac{\partial \phi}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y} + \lambda \frac{\partial \phi}{\partial y}\right) dy + \left(\frac{\partial f}{\partial z} + \lambda \frac{\partial \phi}{\partial z}\right) dz = 0$$

This question will be satisfied if

$$\frac{\partial f}{\partial x} + \lambda \frac{\partial \phi}{\partial x} = 0$$

$$\frac{\partial f}{\partial y} + \lambda \frac{\partial \phi}{\partial y} = 0$$

$$\frac{\partial f}{\partial z} + \lambda \frac{\partial \phi}{\partial z} = 0$$
(5)

The three relations and

 $\emptyset(x,y,z) = 0$ are used to determine the values of x, y, z and

Working rule

- 1. From the equation $u=f(x, y, z) + \lambda \emptyset(x, y, z)$
- Consider x, y, z as independent variables and write down the equations.

$$\frac{\partial u}{\partial x} = 0, \frac{\partial u}{\partial y} = 0, \frac{\partial u}{\partial z} = 0$$

3. Solve these three equations along with $\emptyset(x,y,z)=0$ and find the value of x,y,z and λ . The values of x, y, z so obtained will give the extreme value of f(x,y,z).

Example

find the maximum value of V (x, y, z)=xyz subjected to the constraint 2x+2y+2z=108

Solution

$$let u = xyz + \lambda(2x + 2y + z - 108)$$

$$\frac{\partial u}{\partial x} = yz + 2\lambda$$

$$\frac{\partial u}{\partial y} = xz + 2\lambda$$

$$\frac{\partial u}{\partial z} = xy + \lambda$$

Equating these expressions to zero, we get

$$yz + 2\lambda = 0$$
(1)

Also we have
$$2x + 2y + z = 108$$
(4)

$$xy + \lambda = 0$$

....(3)

Also we have 2x + 2y + z = 108

.....(4)

From (1) (2) and (3), we get

$$\lambda = \frac{yz}{2} = \frac{xz}{2} = xy$$

.....(5)

(5)
$$\rightarrow x = y \text{ and } z = 2y$$

Substituting for x and z in (4) gives y=18

Thus x=18 and z=36

V(18, 18, 36) is the only possible of V subject to the constraint.

V(18, 18, 36) = (18)(18)(36) = 11664 is required maximum value.

MCQ

The drawback of Lagrange's Method of Maxima and minima is?

- a) Maxima or Minima is not fixed
- b) Nature of stationary point is can not be known
- c) Accuracy is not good
- d) Nature of stationary point is known but can not give maxima or minima

Tutorial

MTH165

$$Lt_{x\to 0} \frac{e^{x} \sin x - x - x^{2}}{x^{2} + x \log(1 - x)} =$$

(a)
$$e^{\frac{2}{3}}$$

(b)
$$\frac{2}{3}$$

(a)
$$e^{\frac{2}{3}}$$
 (b) $\frac{2}{3}$ (c) $-\frac{2}{3}$

Show that the limit $Lt - \frac{x^2 \sin \frac{1}{x}}{\sin x}$ exist but they cannot be evaluated by L' Hospital's rule.

(a) 0

- (b) 1
- (c) *e*
- (d) none of these

$$Lt_{x\to 0} \left[\tan \left(\frac{\pi}{4} + x \right) \right]^{\frac{1}{x}} =$$

- (a) e^3
- (b) 2

- (c) e^{2}
- (d) none of these

$$\underset{x\to 0}{Lt}\left(\frac{1}{e^x-1}-\frac{1}{x}\right)=$$

- (a) 0
- (b) $-\frac{1}{2}$

(c) $\frac{1}{2}$

(d) none of these

The absolute minimum value of $f(x) = x^2 - 3x$, $0 \le x \le 2$ is

(a) 0

(b) $-\frac{9}{4}$

- (c) $\frac{9}{4}$
- (d) no minimum value

The extreme value of $f(x) = \log x$ is

(a) 0

- (b) -1 (c) 1

(d) no extreme value

$$\underset{(x,y)\to(0,0)}{Lt} \frac{x^3 + y^3}{x^2 + y^2} =$$

- (a) 0
- (b) 1

- (c) ∞ (d) none of these

$$\underset{(x,y)\to(0,1)}{Lt}\tan^{-1}\left(\frac{y}{x}\right) =$$

- (a) 0 (b) 1

- (c) ∞
- (d) does not exist

$$\underset{(x,y)\to(0,0)}{Lt} \frac{x^2 - y^2}{(x+y)^4}$$

(a) 0

(b) 1

- (c) ∞
- (d) none of these

Tutorial

MTH165

If $u = x^2 + y^2 + z^2$ be such that $x u_x + y u_y + z u_z = \lambda u$, then λ is equal to

- A. 1
- B. 2
- C. 0
- D. none of above

If
$$f(x, y, z) = 0$$
, then the value of $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ is

- A. 1
- B. -1
- C. 0
- D. none of these

If $f(x, y) = e^{xy^2}$, the total differential of the function at the point (1, 2) is

A.
$$e(dx + dy)$$

B.
$$e^4 (dx + dy)$$

C.
$$e^4 (4dx + dy)$$

D.
$$4e^4 (dx + dy)$$

If f(x, y) is such that $f_x = e^x \cos y$ and $f_y = e^x \sin y$, then which of the following is true?

$$A. f(x, y) = e^{x+y} \sin(x+y)$$

B.
$$f(x, y) = e^x \sin(x + y)$$

C. f(x, y) does not exist

D. none of above

If
$$u = x^y$$
, the values of $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ are:

A.
$$xy^{x-1}$$
, $y^x \log y$

B.
$$x^y \log x$$
, yx^{y-1}

C.
$$yx^{y-1}$$
, $y^x \log y$

D.
$$yx^{y-1}, x^y \log y$$

