

PANIMALAR ENGINEERING COLLEGE

An Autonomous Institution

[JAISAKTHI EDUCATIONAL TRUST]

Approved by AICTE | Affiliated to Anna University | Recognized by UGC
All Eligible UG Programs are Accredited by NBA
Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai- 600 123

TECHDIVATHON

Empower, Innovate, Elevate: Code the Future Together

Domain: AGRICULTURE

Problem Statements:

S.No	Title	Problem Statement	Description	
1	Automated Soil Quality and Nutrient Sensor System	Farmers face difficulty in consistently monitoring soil health, leading to suboptimal	This system automatically tracks soil pH, moisture, and nutrient levels, wirelessly transmitting data for timely	
2	Danie Bereit Con	crop management.	decisions.	
2	Drone-Based Crop Health Monitoring	Manual crop monitoring is labor-intensive and delays disease detection.	A drone with infrared cameras scans crops to detect diseases and pests early, ensuring timely action to prevent losses.	
3	Smart Irrigation Control System	Farmers waste water due to inefficient irrigation practices, leading to resource depletion and lower yields.	This system uses soil moisture sensors to optimize water usage, delivering precise irrigation only when needed.	
4	Pest Detection and Repellent Device	Pests damage crops, and chemical pesticides harm the environment and human health.	This device uses sensors to detect pests and ultrasonic waves to repel them, providing an eco-friendly alternative to pesticides.	
5	Low-Cost Greenhouse Monitoring Sensors	Greenhouse farming is expensive to automate, making it inaccessible to small-scale farmers.	Affordable sensors monitor temperature, humidity, and light, enabling farmers to maintain optimal crop conditions.	
6	Seed Planting Robot	Manual seed planting is time- consuming and lacks precision, reducing efficiency and crop yield.	This robot automates seed planting, ensuring accurate depth and spacing for optimal crop growth and resource use.	
7	Weather Monitoring Station for Farms	Unpredictable weather events lead to crop losses and unprepared farmers.	A weather station monitors local conditions and provides real-time alerts, helping farmers mitigate weather risks.	
8	IoT-Enabled Livestock Health Tracker	Monitoring livestock health and location is cumbersome, especially for large herds.	A wearable device tracks livestock vitals and location, sending alerts about health anomalies or potential threats.	
9	Portable Soil Testing Kit	Farmers in remote areas lack access to quick soil health analysis, delaying corrective measures.	A compact kit providing instant on-site analysis of soil parameters like pH and nutrients, empowering farmers with actionable insights.	

10	Deal Time Com	Tanalying anon massyth at a con	This device were impose someons to
10	Real-Time Crop	Tracking crop growth stages	This device uses image sensors to
	Growth Monitoring	manually is inefficient and	monitor crop growth and sends real-
	Device	often inaccurate.	time updates to a dashboard for
			planning.
11	AI-Powered Crop	Farmers struggle to identify	This app leverages AI to diagnose plant
	Disease	crop diseases accurately and	diseases from photos and suggests
	Identification App	quickly.	treatments to improve crop health.
12	Crop Yield	Predicting crop yield under	This software uses satellite imagery and
	Prediction Using	varying environmental	weather data to forecast crop yields,
	Weather and Satellite	conditions is challenging.	aiding in resource planning.
	Data		munig in resource planning.
13	Farm-to-Market	Farmers face difficulties in	A platform connecting farmers with
	Optimization	selling produce efficiently due	local markets, tracking demand, and
	Platform	to disconnected supply chains.	optimizing logistics for better
	1 latioilii	to disconnected supply chains.	profitability.
14	Fortilizar Hanga	Overuse or underuse of	· ·
14	Fertilizer Usage		This tool analyzes crop and soil data to
	Optimization Tool	fertilizers results in lower yields	recommend optimal fertilizer use,
		and environmental harm.	enhancing productivity while reducing
1.7	0 1 10		waste.
15	Soil and Crop	Managing large amounts of	A centralized dashboard aggregates data
	Analysis Dashboard	data for soil and crop health is	from sensors, providing actionable
		overwhelming for farmers.	insights to improve yields.
16	Virtual Farming	Farmers lack accessible training	This simulator offers interactive virtual
	Simulator	to adopt modern farming	training to educate farmers on
		techniques.	innovative practices.
17	Weather-Adaptive	Adverse weather conditions	This app provides real-time weather
	Crop Management	often catch farmers unprepared,	alerts and suggests adaptive farming
	App	leading to crop losses.	practices to mitigate risks.
18	Agri-Supply Chain	Lack of transparency in supply	An app that tracks crop movement from
	Tracker	chain logistics reduces farmers'	farm to market using QR codes,
	Tracker	profits and increases waste.	ensuring transparency and
		profits and mercases waste.	accountability.
19	Pest Management	Farmers need sustainable and	An app that logs pest infestations and
1)	Mobile Application	effective pest control solutions.	provides eco-friendly treatment
	Wioone Application	effective pest control solutions.	recommendations for sustainable
			farming.
20	Water Usage	Inofficient water management	· ·
20		Inefficient water management	A tool that tracks irrigation water usage
	Analysis Tool for	leads to waste and poor crop	and suggests optimization strategies for
0.1	Irrigation	health.	conservation and efficiency.
21	Precision Farming	Small-scale farmers lack access	This robot performs real-time soil and
	Robot for Small-	to advanced tools for soil and	crop analysis, with data visualized on a
-	Scale Farms	crop analysis.	mobile app for actionable insights.
22	Intelligent Seed	Seed planting in large areas is	A drone that automates seed planting
	Sowing Drone	time-consuming and imprecise.	with precision, controlled via a mobile
			app to streamline operations.
23	Automated	Greenhouse environmental	A system integrating sensors to monitor
	Greenhouse	control is tedious and often	temperature, humidity, and lighting,
	Management System	inaccurate when done	controlled via a centralized dashboard.
		manually.	
24	Livestock	Monitoring livestock health and	Wearable sensors and an app track
-	Monitoring and Alert	safety manually is inefficient	livestock health and location, sending
	System System	for large-scale operations.	alerts for abnormalities.
25	Solar-Powered Smart	Traditional irrigation systems	This system uses solar-powered pumps
23		rely heavily on electricity and	
	Irrigation System		and soil sensors for precise irrigation,
		waste water.	reducing energy use and water wastage.