TFY4115 Fysikk (MTEL/MTTK/MTNANO)

Eksamen 11. des. 2014. Løsningsforslag

Oppgave 1. Flervalgsoppgaver

Oppgave:	1	2	3	4	5	6	7	8	9	10	11
Rett svar:	В	D	Ε	В	D	С	A	E	D	С	В
Oppgave:	12	13	14	15	16	17	18	19	20	21	22
Rett svar:	A	A	С	D	С	В	E	С	В	В	A

Detaljer om spørsmålene:

- $\underline{\textbf{1-1.}}$ B. Farten skifter retning på toppen slik at A ikke kan være rett. Akselerasjonen er konstant under bevegelsen opp (og ned), slik at D ikke er rett. Akselerasjonen har størst tallverdi når klossen er på vei oppover fordi da virker tyngden og friksjonen i samme retning, altså er B med størst endring i v på opptur riktig.
- <u>1-2.</u> D. $F_f = \mu_k F_N = \mu_k (mg F \sin \theta)$. Normalkrafta blir altså mindre som følge av at F har komponent oppover. Det gjelder også at $F_f = F \cos \theta$ når farta er konstant, men dette var ikke et oppgitt alternativ.
- <u>1-3.</u> E. Ved fall uten luftmotstand er akselerasjonen konstant og lik g. Med luftmotstand avtar den gradvis til null, men dette tar i prinsipp uendelig lang tid, slik at akselerasjonen avtar asymptotisk mot null. Med bruk av Newton 2: $mg bv^2 = ma$. Dvs. akselerasjonen avtar når v etterhvert øker og går mot null (lik null og konstant fart når luftmotstanden lik tyngden). Det er kvalitativt samme forløp dersom luftmotstanden prop. med v.
- 1-4. B. ω og $\alpha = \dot{\omega}$ er lik for alle punkter på plata. $a_c = \omega^2 r$ og $a_\theta = \alpha r$ øker begge med r=avstand fra sentrum.
- 1-5. D. Kollisjonen er fullstendig uelastisk, så (mekanisk) energi E for systemet kan ikke være bevart. Akslingen som står fast i bordet virker på systemet med en (ytre) kraft under støtet, dermed kan heller ikke systemets bevegelsesmengde p være bevart. Men denne krafta fra akslingen representerer ikke noe kraftmoment mhp. en aksen, slik at spinnet L er bevart.
- **<u>1-6.</u>** C. $\vec{\tau} = \vec{r} \times m\vec{g} = rmg\,\hat{\mathbf{x}}\,\times(-\,\hat{\mathbf{z}}\,) = rmg\,\hat{\mathbf{y}}$.
- <u>1-7.</u> A. Ifølge spinnsatsen $\vec{\tau} \cdot dt = d\vec{L}$ vil endring i spinnet $d\vec{L}$ ha samme retning som kraftmomentet $\vec{\tau}$. Kraftmomentet fra tyngdens er i retning $\hat{\mathbf{y}} : \vec{\tau} = \vec{r} \times m\vec{g} = rmg\,\hat{\mathbf{x}} \times (-\,\hat{\mathbf{z}}) = rmg\,\hat{\mathbf{y}}$. Med hjulrotasjonsretning ω som angitt har \vec{L} retning $\hat{\mathbf{x}}$ og med endring $d\vec{L}$ i retning $\hat{\mathbf{y}}$ vil presesjonen gå mot klokka sett ovenfra, dvs. $\vec{\Omega} \propto \hat{\mathbf{z}}$.
- $\underline{\textbf{1-8.}}$ E. Kinetisk energi alltid positiv, derfor kan A, C og D forkastes. Hastigheten endres harmonisk, derfor må E_{kin} også endres harmonisk, 5 er rett.
- <u>1-9.</u> D. Fra figuren ser vi f.eks. at x(0) = 1 og x(5T) = 0, 5, der $T = 2\pi/\omega$ er svingningens periode. Dermed:

$$e^{-\gamma \cdot 5T} = e^{-\gamma \cdot 5 \cdot 2\pi/\omega} = 0, 5 \qquad \Rightarrow \quad 10\pi \frac{\gamma}{\omega} = \ln 2 \qquad \Rightarrow \quad \frac{\gamma}{\omega} = \frac{\ln 2}{10\pi} = 0,0221.$$

- **1-10.** C. Ved maksimum v er $\dot{v} = 0$, som skjer når $a = \dot{v} = 0$.
- <u>1-11.</u> B. Klossen vil starte å gli når $mg\sin\theta > F_{\rm f,max} = \mu_{\rm s}F_{\rm N} = 0,65 \cdot mg\cos\theta$, altså ved $\theta = \arctan 0,65 = 33^{\circ}$. Grensen for å tippe over er når massesenteret ligger rett over nedre kontaktpunkt (momentbalanse). For en kube (kvadratisk sidekant) skjer dette ved $\theta = 45^{\circ}$.
- <u>1-12.</u> A. Med a=0,40 m = sidekant, F_x den horisontale krafta og G tyngden, gir rotasjonslikevekt om nedre feste: $G \cdot a/2 = F_x \cdot a$ som gir $F_x = G/2 = \frac{1}{2} \cdot 4,0$ kg $\cdot 10$ m/s² = 20 N.
- **1-13.** A. 1. Hovedsetning: $Q = \Delta U + W$. Temp. øker likt $\Rightarrow \Delta U > 0$ og lik i begge. Konstant volum: W = 0. Volumet må øke når T skal øke med konstant trykk, dvs. W > 0, dermed Q_p størst.
- <u>1-14.</u> C. Fra 2. hovedsetning. Arbeid kan 100% omformes til varme(D), ikke motsatt(C). Varme kan overføres fra kaldt til varmt legeme ved input av arbeid, en kjølemaskin(B). 2.H gjelder alle prosesser, også irreversible(E).
- <u>1-15.</u> D. Koeksistens mellom fast stoff og væske ved 1, dvs. smelting. Koeksistens mellom gass og væske ved 2, dvs. fordampning. Koeksistens mellom fast stoff og gass ved 3, dvs. sublimasjon.
- <u>1-16.</u> C. En isoterm fra tilstand a er brattere enn isobaren ab men slakere enn adiabaten ac. Dermed: $T_{\rm b} > T_{\rm a} > T_{\rm c}$.
- <u>1-17.</u> B. For ideell gass er T proporsjonal med $\langle E_k \rangle$, uavhengig av typen gass. (For toatomig gass blir noe av kin. energi rotasjonsenergi og translasjonsfarten blir mindre. Ingen vigrasjonsenergi ved romtemp.)

1-18. E.
$$\eta = W/Q_{\text{inn}} = (Q_{\text{inn}} - Q_{\text{ut}})/Q_{\text{inn}} = (12000 - 9000)/12000 = 1/4.$$

<u>1-19.</u> C. Per frihetsgrad er $C_V = \frac{1}{2}R$. Tre translasjonsfrihetsgrader (x, y, z) for alle gassmolekyler. Ved romtemperatur vil toatomige gassmolekyler rotere med to frihetsgrader, dermed R større. Vibrasjon først ved temperatur langt over romtemperatur.

<u>1-20.</u> B. Ved adiabatisk kompresjon er pV^{γ} konstant slik at $p_1 = p_0 \left(V_0 / V_1 \right)^{\gamma} = p_0 \cdot 3^{\gamma}$. Gassene er ideelle og ved 0 °C har enatomige He $\gamma = C_p / C_V = 5/3$ mens toatomige O₂ har $\gamma = C_p / C_V = 7/5 < 5/3$. Størst γ gir størst trykk, altså He størst trykk. Fra ideell gasslov pV = nRT vil ved sluttilstanden gassen med høyest p også ha høyest T når sluttvolumene er de samme.

1-22. A. Seriekopling av varmemotstander er som seriekopling av elektriske motstander, $R = \sum_{i} R_i = R_1 + R_2$. Utregnet: Ved stasjonære forhold er varmestrømmen lik i begge stavene, $\dot{Q} = \dot{Q}_1 = \dot{Q}_2$, der $\dot{Q}_i = \frac{\kappa_i A_i}{\ell_i} \Delta T_i = \frac{1}{R_i} \Delta T_i$ (formelsamling), altså $R_i \dot{Q} = \Delta T_i$. Sum av temperaturendring: $T_{\rm H} - T_{\rm L} = \Delta T_1 + \Delta T_2$ gir da $R\dot{Q} = R_1\dot{Q} + R_1\dot{Q}$, altså $R = R_1 + R_2$.

Oppgave 2. Mekanikk

<u>a.</u> Fra formelark har kula treghetsmoment $I = \frac{2}{5}mr^2$, som gir

$$E_{\rm k} = E_{\rm k,trans} + E_{\rm k,rot} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}mv^2 + \frac{1}{2}\cdot\frac{2}{5}mr^2\left(\frac{v}{r}\right)^2 = \frac{7}{10}mv^2$$
.

 $\underline{\mathbf{b}}$. Vi velger høyde h=0 på underlaget. Ved A har kulas tyngdepunkt en høyde h=r, ved C er høyden h=R. Bevaring av energi gir:

$$mgr + \frac{7}{10}mv_{\rm A}^2 = mgR + \frac{7}{10}mv_{\rm C}^2$$
 (1)

$$\Rightarrow v_{\rm C}^2 = v_{\rm A}^2 - gR' \cdot \frac{10}{7} = 9,0 \,\mathrm{m}^2/\mathrm{s}^2 - 9,81 \,\mathrm{m/s}^2 \cdot 0,200 \,\mathrm{m} \cdot \frac{10}{7} = 6,197 \,\mathrm{m}^2/\mathrm{s}^2, \tag{2}$$

der vi har brukt R' = R - r = 0,200 m.

$$v_{\rm C} = \sqrt{6, 197} \,\mathrm{m/s} = 2,489 \,\mathrm{m/s} = 2,49 \,\mathrm{m/s}.$$

 $\underline{\mathbf{c}}$. Vinkelhastigheten for kula avtar, og eneste krafta som gir vinkelakselerasjon er friksjonskrafta F_{f} . Derfor må F_{f} virke motsatt rotasjonsretningen, dvs. **oppover**, og parallelt med underlaget, som vist i figuren.

Med positiv omdreining i kulas rulleretning (med klokka) gir spinnsatsen

$$\sum \tau = I\alpha \quad \Rightarrow \quad -F_{\rm f} \, r = I\alpha \qquad \left(\Rightarrow \quad F_{\rm f} = -\frac{2}{5} m r \alpha \right). \tag{3}$$

 \mathbf{d} .

N2 med pos oppover:
$$ma = F_f - mg \sin \theta$$
 (4)

N2-rot (3) med
$$\alpha = a/r$$
: $I\alpha = I\frac{a}{r} = -F_{\rm f}r$ (5)

Likn. (3) eller (5) gir

$$F_{\rm f} = -I\frac{a}{r^2} = -\frac{2}{5}mr^2 \cdot \frac{a}{r^2} = -\frac{2}{5}ma,$$

som innsatt i (4) gir

$$ma(1+\frac{2}{5}) = -mg\sin\theta \quad \Rightarrow \quad a = -\frac{5}{7}g\sin\theta.$$
 (6)

$$E_{\text{tot}} = \frac{7}{10}mv^2 + mgh = \frac{7}{10}mv^2 + mgR'(1 - \cos\theta) = \text{konst.}$$

Derivasjon
$$dE_{\text{tot}}/dt$$
 gir
$$\frac{7}{10}m\,2v\,\frac{\mathrm{d}v}{\mathrm{d}t} + mgR'\sin\theta\,\frac{\mathrm{d}\theta}{\mathrm{d}t} = 0 \quad \Rightarrow \quad \frac{\mathrm{d}v}{\mathrm{d}t} = a = -\frac{5}{7}g\sin\theta.$$

Her har vi brukt $R' \frac{d\theta}{dt} = v$ slik at v forkortes bort.

<u>e.</u> I stilling C er $\theta = 90^{\circ}$, dvs. $a = -\frac{5}{7}g\sin\theta = -\frac{5}{7}g$. Da er vinkelakselerasjonen $\alpha = \frac{a}{r} = -\frac{5}{7}\frac{g}{r}$. Det er kun $F_{\rm f}$ som gir α , og skal kula rulle (uten å slure) er nødvendig friksjonskraft gitt ved likn. (5):

$$F_{\rm f} = -I\frac{\alpha}{r} = -\left(\frac{2}{5}mr^2\right) \cdot \left(-\frac{5}{7}\frac{g}{r^2}\right) = \frac{2}{7}mg = \frac{2}{7} \cdot 0,150\,\mathrm{kg} \cdot 9,81\,\mathrm{m/s^2} = \underline{0,420\,\mathrm{N}}.$$

Kan også finnes fra likn. (4): $F_f = ma + mg\sin\theta \stackrel{(6)}{=} -\frac{5}{7}mg\sin\theta + mg\sin\theta = \frac{2}{7}mg\sin\theta$.

<u>f.</u> Maksimal friksjonskraft er

$$F_{f,\max} = \mu_s \cdot F_N,$$

så vi må finne hva normalkrafta er mot underlaget ved C. Newton 2 horisontalt:

$$\sum F = ma_c \quad \Rightarrow \quad F_N = m \frac{v_{\rm C}^2}{R'} = 0,150 \,\mathrm{kg} \cdot \frac{6,197 \,\mathrm{m}^2/\mathrm{s}^2}{0,200 \,\mathrm{m}} = 4,65 \,\mathrm{N}.$$

Dermed er

$$F_{\rm f,max} = \mu_s \cdot F_N = 0,200 \cdot 4,65 \, \text{N} = 0,930 \, \text{N} \,.$$

Nødvendig friksjonskraft $F_{\rm f}=0,42\,{\rm N}$ er godt under det maksimale: kula ruller fortsatt trygt uten fare for å slure. (Sagt på annen måte: Nødvendig friksjonskoeffisient er $F_f/F_N = 0,42/4,65 = 0,090$, og den oppgitte er større.)

Oppgave 3. Kretsprosess.

a. Prosessene skissert i figuren, ikke perfekt krumning på kurvene.

1-2. Isoterm med helning $p \propto V^{-1}$.

2-3. Isobar ekspansjon. Konstant p, tilførsel av varme til høyere volum V_3 og høyere temperatur T_3 .

3-1. Adiabat med helning $p \propto V^{-\gamma}$, brattere enn isoterm ($\gamma = 7/5 = 1, 4$ for toatomig gass. Varme $Q_{23} > 0$ inn i gassen ved 2-3, varme $Q_{12} > 0$ trekkes ut av gassen ved 1-2, $Q_{31} = 0$ ved adiabaten.

To isotermer: $T_1 = T_2$ og T_3 er inntegnet.

<u>b.</u> Idealgass, isoterm prosess: $p_1V_1 = nRT_1 = p_2V_2$.

 $\Delta U = 0 \text{ J}$, fordi U kun avhengig T for ideell gass, og her er T konstant,

$$\begin{split} \Delta S &= \int_1^2 \mathrm{d}Q_{\mathrm{rev}}/T_1. \quad \text{1.hovedsetning med } \Delta U = 0 \text{ gir} \\ \mathrm{d}Q_{\mathrm{rev}} &= \mathrm{d}W = p \mathrm{d}V = (nRT_1/V) \cdot \mathrm{d}V, \text{ slik at: } \underline{\Delta S} = \frac{1}{T_1} \cdot nRT_1 \int_1^2 \mathrm{d}V/V = \underline{nR \ln V_2/V_1} \ . \end{split}$$

Eller direkte fra formelark: $\Delta S_{12} = nC_V \ln T_2/T_1 + nR \ln V_2/V_1 = 0 + nR \ln V_2/V_1$.

 $\underline{\mathbf{c}}$. Beregning av V_3 må baseres på skjæringen mellom isobaren 2-3 (med $p_2=p_3$) og adiabaten 3-1 (med $\overline{pV^{\gamma}}$ =konstant). Fra isotermen i $\underline{\mathbf{b}}$ er $p_2/p_1 = V_1/V_2$, og dette gir

$$p_2 V_3^{\gamma} = p_1 V_1^{\gamma} \quad \Rightarrow \quad V_3 = V_1 \left(\frac{p_1}{p_2}\right)^{1/\gamma} = \underline{V_1 \left(\frac{V_2}{V_1}\right)^{1/\gamma}}.$$

Tilhørende T_3 bestemt fra ideell gasslov $nRT_3 = p_2V_3$, der vi igjen utnytter $p_1V_1 = nRT_1 = p_2V_2$ fra isotermen 1-2.

$$T_3 = \frac{p_2 V_3}{nR} = \frac{p_2 V_2}{nR} \frac{V_3}{V_2} = T_1 \frac{V_1}{V_2} \left(\frac{V_2}{V_1}\right)^{1/\gamma} = \underline{T_1} \left(\frac{V_1}{V_2}\right)^{1-1/\gamma}$$

For toatomig gass er $\gamma=\frac{C_P}{C_V}=\frac{7/2}{5/2}=\frac{7}{5}$ og $1-\frac{1}{\gamma}=\frac{2}{7}$, men verdi ikke nødvendig å beregne eller å sette inn.

Kunne alternativt finne T_3 fra adiabatlikningen $T_3V_3^{\gamma-1} = T_1V_1^{\gamma-1}$, tar med som kontroll:

$$T_3 = T_1 \; \left[\frac{V_1}{V_3} \right]^{\gamma - 1} = T_1 \; \left[\left(\frac{V_1}{V_2} \right)^{1/\gamma} \right]^{\gamma - 1} = T_1 \; \left(\frac{V_1}{V_2} \right)^{(\gamma - 1)/\gamma} = T_1 \; \left(\frac{V_1}{V_2} \right)^{1 - 1/\gamma}$$

der vi har brukt uttrykket for V_3/V_1 ovenfor.

<u>d.</u> 1-2 er en isoterm prosess der vi f.eks. kan utnytte uttrykket for ΔS_{12} fra <u>a.</u> Dette gir

$$Q_{12} = T_1 \Delta S_{12} = nRT_1 \ln V_2 / V_1.$$

For den isobare prosessen har vi ganske enkelt

$$Q_{23} = n C_p \cdot (T_3 - T_1),$$

slik at netto varme er

$$Q = Q_{12} + Q_{23} = nRT_1 \ln V_2 / V_1 + n C_p \cdot (T_3 - T_1).$$

Dette er vel enkleste formen å uttrykke svaret med oppgitte størrelser inklusiv T_3 .

For isotermen kunne vi alternativt brukt $\Delta U = 0 \Rightarrow Q_{12} = W_{12} = \int_1^2 p dV = nRT_1 \int_1^2 \frac{dV}{V} = nRT_1 \ln V_2/V_1$.

<u>e.</u> For adiabaten 3-1 er det enklere å regne ut ΔU og så bruke 1. lov med Q=0, som gir $W=-\Delta U$. For ideell gass er indre energi kun avhengig av temperaturen og lik $U(T)=nC_VT$, slik at vi får

$$W_{31} = -(U_1 - U_3) = -nC_V(T_1 - T_3) = nC_V(T_3 - T_1).$$

Sjekk gjerne at $W_{31} > 0$, som den skal være for en ekspansjon.

Med mer strev kan arbeidet beregnes ved vanlig integrasjon av pdV. For adiabaten 3-1 er $pV^{\gamma}=p_1V_1^{\gamma}=p_3V_3^{\gamma}$, slik at

$$\begin{split} W_{31} &= \int_{3}^{1} p \mathrm{d}V = p_{1} V_{1}^{\gamma} \cdot \int_{3}^{1} V^{-\gamma} \mathrm{d}V = p_{1} V_{1}^{\gamma} \cdot \frac{1}{1 - \gamma} \left[V_{1}^{1 - \gamma} - V_{3}^{1 - \gamma} \right] \\ &= \frac{1}{1 - \gamma} \left[p_{1} V_{1}^{\gamma} \cdot V_{1}^{1 - \gamma} - p_{3} V_{3}^{\gamma} \cdot V_{3}^{1 - \gamma} \right] = \frac{1}{1 - \gamma} \left[p_{1} V_{1} - p_{3} V_{3} \right] = \frac{1}{\gamma - 1} \left[nRT_{3} - nRT_{1} \right] \\ &= \frac{nR}{\gamma - 1} \left[T_{3} - T_{1} \right] = nC_{V} \left[T_{3} - T_{1} \right]. \end{split}$$

I siste overgang har vi brukt $\frac{R}{\gamma-1} = \frac{RC_V}{C_p-C_V} = \frac{RC_V}{R} = C_V$ som framkommer fra $\gamma = C_p/C_V$ og $C_p - C_V = R$.

 $\underline{\mathbf{f.}}$ I TS-diagram er isoterm en horisontal linje og adiabat (isentrop) er en vertikal linje. Isobaren forbinder 2 og 3 og vil ha krumning som vist. Funksjonsforløpet for isobaren kan vi kun finne ut ved beregning, som spurt etter:

For prosess 2-3 gjelder: dQ = TdS og $dQ = n C_p dT$ og altså $dS = n C_p \frac{dT}{T}$. Gir integrert:

$$\int_{S_2}^{S} dS = n C_p \int_{T_1}^{T} \frac{dT}{T} \Rightarrow S - S_2 = n C_p \ln \frac{T}{T_1}$$

$$\Rightarrow T(S) = T_1 \cdot \exp\left\{\frac{S - S_2}{n C_p}\right\}. \tag{7}$$

Alternativt fra formelark for ΔS_{12} som gir $\Delta S_{23} = nC_V \ln T_3/T_2 + nR \ln V_3/V_2$. For isobaren 23 er $V/V_2 = T/T_2$, slik at $S - S_2 = S(T) - S(T_2) = n(C_V + R) \ln T/T_2 = nC_p \ln T/T_2$. Med $T_2 = T_1$ får vi også her $T(S) = T_1 \cdot \exp\left\{\frac{S - S_2}{nC_p}\right\}$.

Kommentar: Krumningen for isobaren kan kontrolleres uten utregning av T(S) med $\left(\frac{\partial T}{\partial S}\right)_p = 1/\left(\frac{\partial S}{\partial T}\right)_p = \frac{T}{nC_p}$ som vi får fra $S(T,p) = S_0 + nC_p \ln \frac{T}{T_0} - nR \ln \frac{p}{p_0}$ for ideell gass. Stigningstallet $\left(\frac{\partial T}{\partial S}\right)_p$ er altså positivt og øker med temperaturen.

Vi kan evt. kontrollere funnet uttrykk for T_3 i c. mot likn. (7):

Nå er $S_3 = S_1$ slik at likn. (7) gir $T_3 = T(S_1) = T_1 \cdot \exp\left\{\frac{S_1 - S_2}{n C_p}\right\}$. Fra **a.** har vi $S_1 - S_2 = -\Delta S = nR \ln V_1/V_2$. Bruk av $\frac{R}{C_p} = \frac{C_p - C_V}{C_p} = 1 - \frac{1}{\gamma}$ gir samme svaret for T_3 som i **c.** :

$$T_3 = T_1 \cdot \exp\left\{\frac{nR \ln \frac{V_1}{V_2}}{n \, C_p}\right\} = T_1 \cdot \exp\left\{\left(1 - \frac{1}{\gamma}\right) \ln \frac{V_1}{V_2}\right\} = T_1 \cdot \left(\frac{V_1}{V_2}\right)^{1 - \frac{1}{\gamma}}.$$