시계열 데이터 분석

with Pandas

이홍주 (Software Engineer) lee.hongjoo@yandex.com

시계열 데이터 분석 with Pandas

- Time Series with Pandas
- 시계열 데이터 특성
- ETS 모델
- SMA, WMA, SES 모델
- ARIMA 모델

- 시계열 데이터는 시간 데이터를 인덱스로 하는 연속된 데이터 입니다.
- 시간 데이터를 Python 의 DateTime 타입으로 바꾸어 Pandas 가 제공하는 시계열 데이터를 처리하는 아래 기능들을 학습합니다.
 - o DateTime 인덱스
 - Time Resampling
 - Time Shifts
 - Rolling and Expanding

- DateTime Index
 - o time 또는 date 정보는 별개의 칼럼이기보다 인덱스인 경우가 많습니다.
 - o Pandas 에 내장된 기능들로 DateTime 인덱스를 생성하고 활용하는 방법을 다룹니다.

Time Resampling

- 시계열 데이터의 인덱스는 시(hours), 분(minutes) 등 작은 단위 DateTime 인덱스로 이뤄진
 경우도 많습니다.
- 더 넓은 주기로 데이터를 집계(aggregate) 해야 하는 경우 Time Resampling 이 필요합니다.
- o groupby 를 사용함으로써 Time Resampling 을 수행할 수는 있지만, 비지니스 도메인에서 분기나 회계년도를 편리하게 처리할 방법은 못됩니다.
- o Pandas 는 이런 경우에 활용할 수 있는 frequency sampling 도구를 지원합니다.

Time Shifting

- 시계열 분석 알고리즘을 사용하기 위해 데이터를 임의 시간만큼 앞 또는 뒤로 이동시켜야 할
 때가 있습니다.
- o Pandas 는 이런 경우에도 매우 쉬운 방법을 제공합니다.

Rolling and Expanding

- 매일 수집한 데이터들에는 노이즈가 포함되기도 합니다.
- 이럴 경우 데이터의 일반적인 트렌드를 구하기 위해 rolling mean (또는 moving average) 을 사용하기도 합니다.
- o Pandas 에 내장된 rolling 함수를 이용하면 주어진 시한 내 평균 (rolling mean) 등을 구할 수 있습니다.
- 임의 시간 간격의 window 를 만들고 그 안에서 mean 같은 통계적 aggregation 을 실행하면 됩니다.

• 볼린저 밴드 (Bollinger Band)

시계열 데이터 분석

- Time Series with Pandas
- 시계열 데이터 특성
- ETS 모델
- SMA, WMA, SES 모델
- ARIMA 모델

- 시계열 데이터는 몇가지 속성들을 가지고 있는데 그림을 통해 그것들을 알아보고 중요 용어를 정리합니다.
 - Trends
 - Seasonality
 - Cyclical

Trends

• Seasonality - 반복되는 트렌드

Google Trends: "Snowboarding"

• Cyclical - 일정하지 않은 기간의 트렌드

시계열 데이터 분석 with Pandas

- Time Series with Pandas
- 시계열 데이터 특성
- ETS 모델
- SMA, WMA, SES 모델
- ARIMA 모델

- 데이터의 패턴을 더 잘 파악하기 위해서 또는 예측을 수행하기 위해 Smoothing 을 합니다.
- Smoothing 위해서 Error, Trend, Seasonality 요소들을 활용하는데, 각각을 더하거나 곱하여 Smoothing 을 합니다.
- 또한 이것들을 가지고 시계열 데이터를 모델링 할 수 있습니다.

- ETS Decomposition
 - ETS 컴포넌트들을 시각화 하는 것은 데이터의 흐름을 이해하는 데 큰 도움이 됩니다.

• ETS Decomposition - Airline Passengers

• ETS Decomposition - Airline Passengers

시계열 데이터 분석 with Pandas

- Time Series with Pandas
- 시계열 데이터 특성
- ETS 모델
- SMA, WMA, SES 모델
- ARIMA 모델

Simple Moving Average

	I
sales	3MA
39	
44	
40	
45	
38	
43	
39	
	39 44 40 45 38 43

Simple Moving Average

week	sales	ЗМА
1	39	
2	44	
3	40	
4	45	41
5	38	
6	43	
7	39	
8		

Simple Moving Average

week	sales	ЗМА
1	39	
2	44	
3	40	
4	45	41
5	38	43
6	43	41
7	39	42
8		40

$$F_4 = (40 + 44 + 39) / 3$$

$$F_5 = (45 + 40 + 34) / 3$$

$$F_6 = (38 + 45 + 40) / 3$$

$$F_7 = (43 + 38 + 45) / 3$$

$$F_8 = (38 + 45 + 40) / 3$$

week	sales	4WMA
1	39	
2	44	
3	40	
4	45	
5	38	
6	43	
7	39	
8		

week	sales	4WMA
1	0.1 x 39	
2	0.2x 44	
3	0.3x 40	
4	0.4x 45	
5	38	
6	43	
7	39	
8		

$$F_5 = 0.4(45) + 0.3(40) + 0.2(44) + 0.1(39)$$

week	week sales 4	
1	39	
2	0.1x 44	
3	0.2x 40	
4	0.3x 45	
5	0.4x 38	42.7
6	43	41.1
7	39	
8		

$$F_5 = 0.4(45) + 0.3(40) + 0.2(44) + 0.1(39)$$

$$F_6 = 0.4(38) + 0.3(45) + 0.2(40) + 0.1(44)$$

week	sales	4WMA
1	39	
2	44	
3	0.1x 40	
4	0.2x 45	
5	0.3x 38	42.7
6	0.4 x 43	41.1
7	39	41.6
8		

$$F_5 = 0.4(45) + 0.3(40) + 0.2(44) + 0.1(39)$$

$$F_6 = 0.4(38) + 0.3(45) + 0.2(40) + 0.1(44)$$

$$F_7 = 0.4(43) + 0.3(38) + 0.2(45) + 0.1(40)$$

week	sales	4WMA
1	39	
2	44	
3	40	
4	0.1x 45	
5	0.2x 38	42.7
6	0.3 x 43	41.1
7	0.4x 39	41.6
8		40.6

$$F_5 = 0.4(45) + 0.3(40) + 0.2(44) + 0.1(39)$$

$$F_6 = 0.4(38) + 0.3(45) + 0.2(40) + 0.1(44)$$

$$F_7 = 0.4(43) + 0.3(38) + 0.2(45) + 0.1(40)$$

$$F_8 = 0.4(39) + 0.3(43) + 0.2(38) + 0.1(45)$$

Simple Exponential Smoothing

 A_{t} F_{t}

	<u> </u>	
week	sales	forecast
1	39	
2	44	
3	40	
4	45	
5	38	
6	43	
7	39	

$$F_{t+1} = F_t + \alpha(A_t - F_t)$$

smoothing constant : $0 \le \alpha \le 1$

$$F_{t+1} = \alpha A_t + (1 - \alpha) F_t$$

Simple Exponential Smoothing

A.		F.
Ť		Ť

	<u> </u>	
week	sales	forecast
1	39	
2	44	39.00
3	40	40.00
4	45	40.00
5	38	41.00
6	43	40.40
7	39	40.92

Let
$$\alpha = 0.2$$
,

$$F_{t+1} = 0.2 A_t + 0.8 F_t$$

$$F_{2} = A_{1}$$

$$F_3 = 0.2(44) + 0.8(39.00)$$

$$F_{A} = 0.2(40) + 0.8(40.00)$$

$$F_5 = 0.2(45) + 0.8(40.00)$$

$$F_6 = 0.2(38) + 0.8(41.00)$$

$$F_7 = 0.2(43) + 0.8(40.30)$$

Simple Exponential Smoothing

Α.		F
î ît		· t

	<u> </u>	L
week	sales	forecast
1	39	
2	44	39.00
3	40	40.00
4	45	40.00
5	38	41.00
6	43	40.40
7	39	40.92
8		40.54

Let
$$\alpha = 0.2$$
,
 $F_{t+1} = 0.2 A_t + 0.8 F_t$
 $F_2 = A_1$
 $F_3 = 0.2(44) + 0.8(39.00)$
 $F_4 = 0.2(40) + 0.8(40.00)$
 $F_5 = 0.2(45) + 0.8(40.00)$
 $F_6 = 0.2(38) + 0.8(41.00)$
 $F_7 = 0.2(43) + 0.8(40.30)$

 $F_8 = 0.2(39) + 0.8(40.92)$

EWMA 모델

 SMA (Simple Moving Averages) 를 통해서 간단한 트렌드 모델을 만들 수 있습니다.

EWMA 모델

- SMA 의 취약점
 - 윈도우 크기가 작을 수록 노이즈가 생기기 십상이다
 - 윈도우 크기만큼 lag 이 발생한다
 - 평균치이기 때문에 데이터에 상하 정점에 도달할 수가 없다
 - 데이터의 트렌드를 반영할 뿐 미래의 대한 예측 자료로서 근거가 약하다
 - 과거의 극단적으로 높거나 낮은 값들이 SMA 를 왜곡시킬 수 있다

시계열 데이터 분석

- SMA 의 문제점을 보완하기 위해 EWMA 를 (Exponentially Weighted Moving Average) 사용합니다.
- EWMA 는 SMA 의 lag 에 의한 영향을 경감시키고 최근의 데이터에 더 많은 가중치(weight)를 부여합니다.

시계열 데이터 분석 with Pandas

- Time Series with Pandas
- 시계열 데이터 특성
- ETS 모델
- SMA, WMA, SES 모델
- ARIMA 모델

ARIMA 모델

- Autoregressive Integrated Moving Average 는 개발된지 오래된 방법으로 시계열 데이터 분석을 위해 이해해야 하는 중요한 모델링 또는 예측 기법입니다.
- Stationary vs Non-stationary time series
- Seasonal vs Non-seasonal ARIMA
 - Non-seasonal ARIMA: ARIMA(p, d, q)
 - Seasonal ARIMA: ARIMA(p, d, q)(P, D, Q)m
- ARIMA
 - Autoregressive AR(p)
 - Integrated I(d)
 - Moving Average MA(q)

Stationary vs Non-Stationary

- Stationary 데이터 특성
 - 연속되는 숫자들의 평균(mean)이 time invariant
 - 연속되는 숫자들의 분산(variance)이 time invariant
 - 연속되는 숫자들의 공분산(covariance)이 time invariant

Stationary Test

 ARIMA 모델은 시계열 데이터가 stationary 특성을 보일 때 효과적이므로 데이터가 stationary 특성을 보이는지 확인할 수 있어야 합니다.

Differencing

○ 시계열 데이터가 Non-Stationary 하다면 초기 differencing 작업을 ("Integrated") 한 번 이상 적용해서 데이터를 stationary 하게 만드는 단계가 필요합니다.

0

Stationary 데이터 특성

 Stationary 데이터는 <u>평균(mean)</u>, 분산(variance), 공분산(covariance) 이 시점에 따라 달라지지 않습니다.

Stationary 데이터 특성

 Stationary 데이터는 평균(mean), <u>분산(variance)</u>, 공분산(covariance) 이 시점에 따라 달라지지 않습니다.

Stationary 데이터 특성

 Stationary 데이터는 평균(mean), 분산(variance), <u>공분산(covariance)</u> 이 시점에 따라 달라지지 않습니다.

Stationarity Test

- Augmented Dickey-Fuller test
 - 통계적 시험을 통해 시계열 데이터가 stationary 특성을 보이는지 확인할 수 있습니다.

Differencing

- Non-stationary 데이터는 differencing 을 통해 stationary 하게 변환해줍니다.
- differencing 한 데이터에 대해 stationary 할 때까지 differencing 을 반복합니다.
- seasonal 데이터일 경우 season 을 기준으로 differencing 합니다.
 - 예를 들어 1년 주기의 seasonality 를 갖은 월간 데이터에 대해 differencing 할 때, differencing
 의 시간 단위는 1 이 아니라 12 로 하게 됩니다.
 - seasonal ARIMA 모델의 경우 1차 differencing 후 seasonal differencing 하는 것도 흔히 사용하는 방법입니다.

Differencing

Integrated - I(d)

$$\circ I(d) = Y_t - Y_{t-d}$$

Original Data

Time1	10
Time2	12
Time3	8
Time4	14
Time5	7

First Difference

Time1	NA
Time2	2
Time3	-4
Time4	6
Time5	-7

Second Difference

Time1	NA
Time2	NA
Time3	-6
Time4	10
Time5	-13

Seasonal vs Non-seasonal

- ARIMA (p, d, q)
- ARIMA (p, d, q) (P, D, Q) m

Autoregression - AR(p)

- t 시점의 데이터와 이전 시점 (t-p; lagged p) 의 데이터 사이의 관계에 대한 회귀 모델 (regression model)
- $Y_t = \Box_0 + \Box_1 Y_{t-1} + \dots + \Box_p Y_{t-p} + e_t$

Moving Average - MA(q)

- t 시점의 데이터 이전 시점의 (t-q) moving average 의 residual 에 대한 회귀 모델
- $\mathcal{E}_{t} = \theta_{0} + \theta_{1}\mathcal{E}_{t-1} + \dots + \theta_{p}\mathcal{E}_{t-q} + e_{t}$

ARIMA(p, d, q)

Autoregressive Integrated Moving Average

- AR: A model that uses dependent relationship between an observation and some number of lagged observations.
- I: The use of differencing of raw observations in order to make the time series stationary.
- MA: A model that uses the dependency between an observation and a residual error from a MA model.

parameters of ARIMA model

- p: The number of lag observations included in the model
- o d: the degree of differencing, the number of times that raw observations are differenced
- o q: The size of moving average window.

- Autocorrelation function(ACF): measured by a simple correlation between current observation Y_t and the observation p lags from the current one Y_{t-n}.
- Partial Autocorrelation Function (PACF): measured by the degree of association between Y_t and Y_{t-p} when the effects at other intermediate time lags between Y_t and Y_{t-p} are removed.
- Inference from ACF and PACF: theoretical ACFs and PACFs are available for various values of the lags of AR and MA components. Therefore, plotting ACFs and PACFs versus lags and comparing <u>leads to the selection of the</u> <u>appropriate parameter p and q for ARIMA model</u>

- I(d): stationary 로 변환한 order d
- AR(p), MA(q):
 - o AutoCorrelation 플롯과 Partial AutoCorrelation Plot 을 참고해서 p 와 q 를 결정합니다.

- AutoCorrelation Plot (a.k.a Correlogram)
 - 특정 시간만큼 지연된(lag) 시점의 데이터와의 연관성을 보여줍니다.

- Partial AutoCorrelation Plot
 - t 시점과 특정 시간만큼 지연된(lag) 시점 t-p 의 연관성을 그 사이 (t..t-p) 데이터의 영향을 배제하고 보여줍니다.

General characteristics of theoretical ACFs and PACFs

model	ACF	PACF
AR(p)	Tail off; Spikes decay towards zero	Spikes cutoff to zero after lag p
MA(q)	Spikes cutoff to zero after lag q	Tails off; Spikes decay towards zero
ARMA(p,q)	Tails off; Spikes decay towards zero	Tails off; Spikes decay towards zero

Reference :

- http://people.duke.edu/~rnau/411arim3.htm
- Prof. Robert Nau

