Trabalho III

Bruno lochins Grisci

Universidade Federal do Rio Grande do Sul bigrisci@inf.ufrgs.br

5 de julho de 2017

Sumário

- Prelúdio
- 2 Criação da proteína
- 3 Implementação
- 4 Resultados

Antes de começar...

Correção da formatação do arquivo PDB do trabalho II.

Otimização

Particle Swarm Optimization

- Minimização
- Função de avaliação: RMSD_{all}
- Dimensões: $2 \times \parallel AA \parallel -2$
- Limites: $[-\pi, \pi]$
- População: 200
- Iterações: 300

Minimização do RMSD

Tempo de execução: 19 minutos

Resultados

• $RMSD_{C_{\alpha}}$: 0.40

• RMSD_{backbone}: 0.83

• RMSD_{all}: 2.38

Ângulos (1PLX × 1PLX-F)

AA	PHI	PSI	OMEGA
TYR	360.00×360.00	176.63 x -115.80	360.00 x 360.00
GLY	148.48 x 121.15	-21.96×10.17	179.86 x 179.98
GLY	114.02×78.37	29.89 x 35.39	179.81 x -179.99
PHE	-88.00 x -81.96	-38.16 x -93.28	179.75 x 179.97
MFT	-74 24 × -9 66	360 00 × 360 00	-179 95 x 180 00

Ferramentas

- Python;
- Numpy;
- Orientado a Objetos;
- Trabalhos I e II.

1L2Y

Sequência: NLYIQWLKDGGPSSGRPPPS;

• 1L2Y x 1L2Y-P:

• $RMSD_{C_{\alpha}}$: 17.89

• RMSD_{backbone}: 18.08

• RMSD_{all}: 19.13

Energia Potencial (AMBER99)

```
\begin{split} E_{total} &= \\ \sum_{bonds} K_b (b - b_0)^2 + \\ \sum_{UB} K_{UB} (S - S_0)^2 + \\ \sum_{angle} K_{\theta} (\theta - \theta_0)^2 + \\ \sum_{dihedrals} K_{\chi} (1 + \cos(\eta - \delta)) + \\ \sum_{impropers} K_{imp} (\varphi - \varphi_0)^2 + \\ \sum_{nonbond} \varepsilon \left[ \left( \frac{R_{minij}}{r_{ij}} \right)^{12} - 2 \left( \frac{R_{minij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{\varepsilon_1 r_{ij}} \end{split}
```

Termos não ligados

$$\begin{split} \varepsilon &= \sqrt{\varepsilon_{i}\varepsilon_{j}} \\ \sigma_{i} &= R_{mini} \cdot 2^{-1/6} \\ r_{ij} &= \parallel P_{i} - P_{j} \parallel \\ R_{minij} &= \frac{R_{mini} + R_{minj}}{2} \\ U_{ij}^{LJ} &= \sqrt{\varepsilon_{i}\varepsilon_{j}} \left[\left(\frac{R_{mini} + R_{minj}}{2r_{ij}} \right)^{12} - 2\left(\frac{R_{mini} + R_{minj}}{2r_{ij}} \right)^{6} \right] \\ \varepsilon_{1} &= 8.99 \cdot 10^{9} \\ E_{nonbond} &= \sum_{nonbond} \varepsilon \left[\left(\frac{R_{minij}}{r_{ij}} \right)^{12} - 2\left(\frac{R_{minij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{\varepsilon_{1}r_{ij}} \end{split}$$

Otimização

Particle Swarm Optimization

- Minimização;
- Função de avaliação: *E*_{nonbond} (AMBER99);
- Dimensões: 2× || AA || −2;
- Limites: $[-\pi,\pi]$;
- População: 20;
- Iterações: 300

Energia X RMSD

Tempo: 1h 54min

1L2Y X 1L2Y-F

- $RMSD_{C_{\alpha}}$: 6.17
- RMSD_{backbone}: 5.80
- RMSD_{all}: 7.45

Fim