Московский физико-технический институт

Лабораторная работа по общей физике

2.2 и 2.3 Изучение спектров атомов водорода и молекулы йода

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

1 Цель работы

- 1. Исследование сериальных закономерностей в оптическом спектре водорода
- 2. Исследование спектра поглощения паров йода в видимой области
- 3. Вычисление постоянной Ридберга для водорода по результатам измерения
- 4. Вычислить энергию колебательного кванта молекулы йода и энергию диссоциации в основном и возбужденном состояниях.

2 В работе используются

- стеклянно-призменный монохроматор-спектрометр УМ-2
- Неоновая лампа
- ртутная лампа ПРК-4 для градуировки
- водородная лампа
- Кювета с кристаллами йода

3 Теоретические положения

3.1 Водород

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2(\frac{1}{n^2} - \frac{1}{m^2}),\tag{1}$$

где R - постоянная Ридберга, а m, n - целые числа.

Использование постулатов Бора с учётом кулоновского взаимодействия между ядром и электроном позволяет легко определить возможные энергетические состояния водородоподобного атома. Если считать ядро неподвижным, то эти энергетические состояния определяются выражением

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{2}$$

Знание энергетических состояний атома позволяет в соответствии с формулой (2) определить возможные частоты его излучения и объяснить наблюдаемые закономерности.

В данной работе изучается серия Бальмера, линии которой лежат в видимой области, и изотопический сдвиг между линиями водорода. Для серии Бальмера в формуле (1) n=2. Величина m для первых четырёх линий этой серии принимает значение 3, 4, 5, 6.

Рис. 1

Боровский радиус (радиус первой орбиты) для электрона в поле ядра с зарядом Z:

$$r_B = \frac{\hbar^2}{Zm_e e^2} \tag{3}$$

Энергия основного состояния:

$$E = -\frac{m_e e^4}{2\hbar^2} Z^2 = -RZ^2 \tag{4}$$

Аналогичным образом могут быть найдены энергии возбуждённых состояний. Дискретные значения энергии электрона в атоме получаются из того условия, что на длине орбиты, по которой движется электрон, должно укладываться целое число волн де Бройля. Если радиус орбиты равен r, то n-му состоянию электрона соответствует условие

$$2\pi r = \lambda n(n \in \mathbb{N}); m_e v_n = \frac{nh}{2\pi r}$$
(5)

Аналогично пп. (3)-(4):

$$r_B = \frac{n^2 \hbar^2}{Z m_e e^2} \tag{6}$$

$$E = -\frac{m_e e^4}{2\hbar^2} \frac{1}{n^2} Z^2 = -R \frac{Z^2}{n^2} \tag{7}$$

3.2 Йод

Молекулы обладают более багатым спектром возбужденных состояний, чем изолированные атомы:

$$E = E_{\text{эл}} + E_{\text{колеб}} + E_{\text{враш}}$$

Соотношения соответствующих частот:

$$\omega_{\text{эл}}:\omega_{\text{колеб}}:\omega_{\text{вращ}}pprox 1:\sqrt{rac{m}{M}}:rac{m}{M}pprox 1:10^{-3}:10^{-6}$$

Оптические переходы связаны с излучением/поглощением квантов света сопровождаются изменением вращательного и колебательного состояний. Идет наложение колебательного спектра на электронный:

Рис. 2: Электронные и электронно-колебательные энергиетические уровни

 E_A - энергия возбуждения атома возникающая при переходе молекулы из состояния 1 в область непрерывного спектра 2.

Энергия чисто электронного перехода $h\nu_{\text{эл}} = E_2 - E_1$

Граница схождения спектра, где происзодит переход молекулы в облатсь непрерывного спектра $h\nu_{\rm rp}$

Все возможные линии поглощения для переходов между колебательными уровнями, налагающихся на два соседних электронных состояния можно на серии , соответствующие одному и тому же начальному состоянию. Эти серии называются сериями Деландра.

Рис. 3: Структура электронно-колебательного спеткра поглощения молекулы йода

Для наблюдения таких серий необходимо достаточно много молекул в начальном состоянии. Соотношения интенсивностей серий деландра пропорционально количеству молекул:

$$N_0: N_1: N_2 \approx 1: 1/3: 1/10$$

Энергетическое положение линий полгощения описывается выражением:

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2(n_2 + 1/2) - 1/2h\nu_1$$

Здесь пренебрегли ангармонизмом, для начальных серий можно пренебреч и энерг. расстояние между сериями:

$$h\nu_{0,n_2} - h\nu_{0,(n_2-1)} \approx h\nu_2$$

То есть равны колебательному кванту в возбужденном электронном состоянии.

Вся 1-я серия сдвинута в сторону меньших энергий на величину $h\nu_1$ на величину колебательного кванта основног состояния.

Рис. 4: Спектр поглощения паров йода

4 Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматорспектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0,38 до 1 мкм

Спектрометр нуждается в дополнительной градуировке, проводящейся по спектрам неоновой и ртутной ламп с известными длинами волн спектральных линий.

Квантовая физика Спектр ${\cal H}$ и ${\cal I}$

Рис. 6: Установка для Йода

Рис. 5: Установка для Водорода

5 Выполнение работы

1. Выполним градуировку по неоновой и ртутной лампе:

	I	I	
Neon λ , \hat{A}	Neon angle °	Hg angle $^{\circ}$	$\mid \text{Hg } \lambda, \ A$
5401	2250	652	4047
5852	2512	1204	4358
5882	2578	1870	4916
5945	2558	2292	5461
5976	2574	2470	5770
6030	2598	2482	5791
6074	2628	2686	6234
6094	2638	2932	6907
6143	2646		
6164	2656		
6217	2678		
6267	2698		
6305	2714		
6507	2790		

Сделаем фит полиномом 3й степени:

Рис. 7: Градуировка по неону и ртути

Ошибка аппроксимации $\sim 19.4~\mathring{A}$

2. По градуировочным графикам определим длины волн $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$

H line	H angle $^{\circ}$	$\lambda, \ \mathring{A}$
H_{α}	2810	6545.5
H_{β}	1814	4837.0
H_{γ}	1174	4365.8
H_{δ}	740	4099.9

- 3. По формуле $\frac{1}{\lambda_{mn}}=RZ^2(\frac{1}{n^2}-\frac{1}{m^2})$ определим постоянные Ридберга: Усредним $R=109772.9\pm715.5cm^{-1}(\sim0.7\%)$
- 4. По градуировочной кривой определим длины волн поглащения йода

$$n_{1,0}-2840^{\circ}-6627.3~\mathring{A}$$
 - самая длиноволновая

$$n_{1.5} - 2772^{\circ} - 6444.9 \ \mathring{A}$$
 - 6-я по счету слева

$$n_{\rm rp} - 2026^{\circ} - 5068.1 \; \mathring{A}$$
 - граница схождения спектра

- 5. Вычислим в электронвольтах энергию колебательного кванта возбужденного состояния молекулы йода: $h\nu_2 = (h\nu_{1.5} h\nu_{1.0})/5 = 0.0106$ (эВ)
- 6. Используя $h\nu_1=0.027(\mathrm{9B})$ и энергию возбуждения атома $E_A=0.94(\mathrm{9B})~h\nu_{\mathrm{rp}}\approx 2.45(\mathrm{9B})~h\nu_{1,0}\approx 1.93(\mathrm{9B})$ вычислим:
 - Энергию электронного перехода $h\nu_{\text{эл}} = h\nu_{1,0} + h\nu_1 \approx 1.95 \text{ (эВ)}$
 - Энергия диссоциации из основного состояния $D_1 = h\nu_{\rm rp} E_A \approx 1.51~({
 m 9B})$
 - Энергия диссоциации из возбужденного состояния $D_2 = h \nu_{\rm rp} h \nu_{\rm эл} \approx 0.5~({
 m ခB})$

6 Вывод

В данной работе исследованы сериальные закономерности в оптических спектрах водорода и йода. Вычислена постоянная Ридберга для водорода по результатам измерения. Вычислена энергия колебательного кванта молекулы йода и энергия диссоциации в основном и возбужденном состояниях.