# DATA FORMATS & METHODS IN VARIANT CALLING

Javier Perales-Patón jperales@cnio.es



Bioinformatics Unit CNIO. Madrid, Spain.

Fátima Al-Shahrour

[falshahrour@cnio.es]

Elena Piñeiro-Yáñez

[epineiro@cnio.es]

Pedro Fernandes

[pfern@igc.gulbenkian.pt]



# <u>Today</u>

| 09:30 - 10:00 | Introduction to the course and self presentation of the participants. Personalized medicine. |  |  |  |
|---------------|----------------------------------------------------------------------------------------------|--|--|--|
| 11:30 - 12:30 | NGS I : Variant detection.                                                                   |  |  |  |
| 14:00 - 16:00 | Playing with the data and the methods.                                                       |  |  |  |
| 16:30 - 18:00 | Practical : Running the pipeline.                                                            |  |  |  |

# **Data formats cheat sheet**

| Format        | Uses                                                                                                                        | Example                                                           | File<br>type  | Software<br>Management                                                  | File<br>Extension |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|-------------------|
| Fasta         | Human genome Define biological sequences (DNA, RNA, cDNA, proteins).                                                        | human_genome.fa                                                   | Plain<br>text | samtools,<br>picard-tools                                               | .fa; .fasta       |
| FastQ         | Raw sequencing data  Single-end sequencing → 1 file  Paired-end sequencing → 2 files (R1 and R2 for each end, respectively) | DNAseq_raw_data.fastq<br>(DNAseq_R1.fastq and<br>DNAseq_R2.fastq) | Plain<br>text | samtools,<br>picard-tools<br><b>Aligners</b>                            | .fq; .fastq       |
| SAM           | Define read alignments. Store alignment meta-info (reference, methods, one- or multi-sample).                               | mapped_reads.sam                                                  | Plain<br>text | samtools,<br>picard-tools                                               | .sam              |
| BAM           | VISUALIZE ALIGNMENTS (IGV) The same as SAM, but compressed and indexed. Also to store UNMAPPED reads (compressed).          | mapped_reads.bam<br>unmapped_reads.bam                            | Binary        | samtools,<br>picard-tools, <b>IGV</b><br>(Integrative<br>Genome Viewer) | .bam              |
| VCF           | SNV & Indels calls Indicate genomic variations. Store Variant calling meta-info (reference, methods,one- or multi-sample).  | detected_pointvariants.vcf                                        | Plain<br>text | bcftools, vcftools,<br>Unix                                             | .vcf              |
| BED           | Intervals  Delimit genomic regions (i.e. intervals) w or w/o annotations.                                                   | targeted_regions.bed intervals.bed                                | Plain<br>text | bedtools, Unix GATK, picard-tools                                       | .bed              |
| TSV or<br>CSV | Create data matrix (rows X Columns)                                                                                         | CONTRA_output.tsv<br>annotated_variants.tsv                       | Plain<br>text | Unix, Microsoft<br>Excel, OpenOffice                                    | .tsv; .csv; .txt  |
| XML           | RUbioSeq configuration file (internal) Define software internal configuration.                                              | config.xml                                                        | Plain         | Unix, Firefox                                                           | .xml              |

# **FASTA & FASTQ formats**

FASTA format: simple sequences

Each sequence is composed by at least two consecutive lines.

- -">" Sequence name
- Multiple lines with the whole sequence.

Possible chars: DNA  $\rightarrow$  ATCGatcgNRY...,

Protein→ 1 letter amino acid code

https://en.wikipedia.org/wiki/FASTA format

>DNA\_SEQUENCE\_1
NNNNNNCTCTGGGGGACAGAACCCTATGGTGGCCCCGGCTCCTCCCCAGTATCCAGTCCT
CCGTGAAGATGGAGCCATATTCC

60 chars

FASTQ format: raw sequencing data.

Each sequence read is composed by 4 lines:

- "@"read name
- Sequence
- "+" (optionally: repeat the read name)
- Base Quality Score: Phred scale (0,40) transformed in ASCII chars.

1 unique sample could have:

If Single-end Seq  $\rightarrow$  1 file (suffix ".fastq")

If Paired-end Seq → 2 files (suffixes "\_R1.fastq" "\_R2.fastq")





https://en.wikipedia.org/wiki/FASTQ\_format

# FASTQ format in detail

Just to show how one single read is: 4 consecutive lines.

```
readname
              @HWI-EAS209_0006_FC706VJ:5:58:5894:21141
                                                        ATCACG
              sequence
              !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}JJJJJJ
comment
  Quality
              Encoding:
                           !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
                          33
                                                                                            126
                                    Different platforms
                                       Phred+33, raw reads typically (0, 40)
                                       Solexa+64, raw reads typically (-5, 40)
    have been using
                          I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
                          J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 different encodings.
                             with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
                             (Note: See discussion above).
                          L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

WARNING: There are many codifications for the Phred Score, which overlap each other. Therefore, you must know the actual codification.

https://en.wikipedia.org/wiki/FASTQ\_format

# **FASTA & FASTQ formats**

```
@9VMIV:01561:02299
TGGAGGAGTTGAAGTTTGGAGGAGGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGGCTGCAGCAAGGGCTGGGCGATATCCCCTTGCTCGCAGC
@C?DA?B@ABCCB?ACAC>A@?B?==>C@C@@A?AA@B@?>BC@?9A@EC@C@>B@D@?E@AB@BAAB@?@CCACC>?<AB>D@?DB@>?>DD???=AC?A?>><CCC>A@B;>=;
GCTGCGAGCAAGGGGATATCGCCCAGCCCTTGCTGCAGCCCAACAACTATCAGTTCTGCTGAGGAGTTGACGACGAGGAGTACCACTCTCCCCTCCAAACTTCAACTCCTCCAGACCAGTGAGGGAAGTGAGGAACTGAGAGCAGTACACT
A>BB?:A@>CB@>>>CA@A?:><;B@>>>BBC>AA=D@>?>DB?EC@CAC@B?@B@BC>BBA@?C@@CBC@9B?C?=?@@@@?;B>?@A@>><A?>C@>DCA?A??B====9;;:A@A@;B@@AA@>?CB?@47821/14:0403
@9VMIV:01056:02786
GCTGCGAGCAAGGGGATATCGCCCAGCCCTTGCTGCAGCCCAACAACTATCAGTTCTGCTGAGGAGTTGACGACAGGGAGTACCACTCTCCCCTCCCAAACTTCAACTCCTCCC
A>DD?<B0?B==<<<@A@A@:>>=B0>>>BBC>BC>E0>?>DB0DB0CAC0E0AC0BC?CCC@?B00CBA?<A?B0=?B0?00>B?<0<<==7==:=?:?0:<===B===0;;;<8
GCTGCGAGCAAGGGGATATCGCCCAGCCCTTGCTGCAGCCCAACAACTATCAGTTCTGCTGAGGAGTTGACGACAGGGAGTACCACTCTCCCCTCCTAAACTTCAACTCCTCCAAAGC
A>BB?=A@>B?@??<@A@A?8<?<A@?><A=<;;;:B?>>5;;?B>@A::9A::9>?AC@?B@ABCA@<@>A?=>B?:=87;9:9:@>><:=;==:?B?<===B==4323914:753
@9VMIV:00229:02357
<u>GGAGGAGTTGAAGTTTGGAGGAGGGGAGAGTGG</u>TACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGGCTGCAGCAAGGGCTGGGCGATATCCCCTTGCTCGCAGC
A?DA@A@ABCCB@ACCC?B@?B@>>?C@C@@A>AA@B@?=BBA?9A@EB@C@>A@B@>D@A@>CCCB@?@BCABC>??AB>D@>DC@??>DC>?=<?@=8;<<8;<<>A?B
GGAGGAGTTGAAGTTTGGAGGAGGGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGGCTGCAGCAAGGGCTGGGCGATATCCCCTTGCTCGCAGC
@>DA@C@ABC@B?@ABC?C@?B?>=?B@B@AC?AA@B@?>BC@?9A@BB@B@>C@D@?D@BC?BBBB@@@@A@AA>>?=@=E@>CC?>?>BC>?=:AA?=;==::=<>?<<<>@;
@9VMIV:00290:02125
GGAGGAGTTGAAGTTTGGAGGAGGGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGCAGAACTGATAGTTGTTGGGCTGCAGCAAGGGCTGGGCGATATCCCCTTGCTCGCAGC
<u>A?DA?C@ACCAB@@BAB?B@?C@>>?A@A</u>@AC?@@@B@=>CCA?:A@DB@B@>B@E@=D@BB?BBBBA?@BA@AA>?<BB>D@>CA?>?>BB??=9BC?<:>><ABC?A<37654
@9VMIV:00398:00013
<u>GGAGGAGTTGAAGTTTGGAG</u>GAGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGCTGCAG
A>DA@C@@?@CC@ACBB?B@?A??=A@A@AC?@@?B@?>BCA@:A@B@>C@>B@D@>D??=<BA@B@:79578558<?>?<
@9VMIV:00571:02383
GGAGGAGTTGAAGTTTGGAGGAGGGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGGCGTGCAGCAAGGGCCTGGGCGATATCCCCTTGCTCGCAGC
@>AA?AAACCAB@ACBC?C@?B@?>>C@C@AC?@@???<=?CA?<A@DB@A@>B@B@=B@AA@CAAA@@@?>@<5<584645B=>EB@>;<;?=>597::8:9<<198<7@?054<<
@9VMIV:00585:00910
GGAGGAGTTGAAGTTTGGAGGAGGGGGAGAGTGGTACTCCCTGTCGTCAACTCCTCAGCAGAACTGATAGTTGTTGGGCTGCAGCAAGGGCTGGGCGATATCCCCTTGCTCGCCAGC
A?BA@B@ABCCB@AACA?C@?C@???C@B@@C?AA@B?=>CB@@:A@DB@B@;A@D@?E@BB?AAAA<>?CCABC?=<=?=E@>EB@?==4B;;;233322::1453;10.244<;
```

A single sample could have Millions of reads. My experience is that...

Panel of 50 genes $\rightarrow$  70,000 reads Whole-exome seq  $\rightarrow$  30,000,000 to 70,000,000 reads

Performed by **RestQC software**: easy-to-use software.

Input: FastQ files. Output report: html (web-like) with plots



| Measure                           | Value                              |  |  |
|-----------------------------------|------------------------------------|--|--|
| Filename                          | <pre>good_sequence_short.txt</pre> |  |  |
| File type                         | Conventional base calls            |  |  |
| Encoding                          | Illumina 1.5                       |  |  |
| Total Sequences                   | 250000                             |  |  |
| Sequences flagged as poor quality | 0                                  |  |  |
| Sequence length                   | 40                                 |  |  |
| %GC                               | 45                                 |  |  |

Additional tests: over-represented contaminants (adaptor/vector), technical biases, etc.

Integrated in RUbioSeq! Easy-to-use.

Performed by **RestQC software**: easy-to-use software.

Input: FastQ files. Output report: html (web-like) with plots





### **GOOD SAMPLE**

### **BAD SAMPLE**

Additional tests: over-represented contaminants (adaptor/vector), technical biases, etc.

Integrated in RUbioSeq! Easy-to-use.

Performed by **RestQC software**: easy-to-use software.

Input: FastQ files. Output report: html (web-like) with plots



### **GOOD SAMPLE**

### **BAD SAMPLE**

Additional tests: over-represented contaminants (adaptor/vector), technical biases, etc.

Integrated in RUbioSeq! Easy-to-use.

Performed by **RestQC software**: easy-to-use software.

Input: FastQ files. Output report: html (web-like) with plots



Additional tests: over-represented contaminants (adaptor/vector), technical biases, etc.

Integrated in RUbioSeq! Easy-to-use.

# SAM & BAM FORMAT :: Part 1 - header



- SAM format specs: <a href="http://samtools.github.io/hts-specs/SAMv1.pdf">http://samtools.github.io/hts-specs/SAMv1.pdf</a>
- SAM flags: http://broadinstitute.github.io/picard/explain-flags.html

# SAM & BAM FORMAT :: Part 2 - alignment



| <u>FIELDS</u> |              |                                                                |  |  |  |  |
|---------------|--------------|----------------------------------------------------------------|--|--|--|--|
| #Col          | <u>Field</u> | <u>Description</u>                                             |  |  |  |  |
| 1.            | QNAME        | read name                                                      |  |  |  |  |
| 2.            | FLAG         | bitwise FLAG* (unmapped, pair unmapped, properly mapped,)      |  |  |  |  |
| 3.            | RNAME        | Reference sequence name (e.g. chr1).                           |  |  |  |  |
| 4.            | POS          | 1-based leftmost position.                                     |  |  |  |  |
| 5.            | MAPQ         | Mapping Quality (Phred-scaled). Scale 0 to 255.                |  |  |  |  |
| 6.            | CIGAR        | extended CIGAR string.                                         |  |  |  |  |
| 7.            | MRNM         | Paired-end: Mate Reference sequence Name (= if same as RNAME). |  |  |  |  |
| 8.            | MPOS         | Paired-end: 1-based Mate position.                             |  |  |  |  |
| 9.            | TLEN         | Paired-end: Insert size                                        |  |  |  |  |
| 10.           | SEQ          | Read sequence                                                  |  |  |  |  |
| 11.           | QUAL         | Base Quality Score from the Read sequence.                     |  |  |  |  |
| 12.           | OPT          | Optional Tags.                                                 |  |  |  |  |

- SAM format specs: http://samtools.github.io/hts-specs/SAMv1.pdf
- SAM flags: http://broadinstitute.github.io/picard/explain-flags.html

# **BED FORMAT**

```
track name="CHP2_Designed" description="Amplicon_Insert_CHP2" type=bedDetail ionVersion=4.0
chr1
                                               GENE ID=MPL
      43814968
                  43815086
                             CHP2 MPL 1 .
chr1
      115252185
                             CHP2 NRAS 3
                                               GENE ID=NRAS
                  115252269
chr1
                             CHP2 NRAS 2
                                               GENE ID=NRAS
      115256504
                  115256584
chr1
      115258689
                 115258774
                             CHP2 NRAS 1
                                               GENE ID=NRAS
                             CHP2 ALK 2
                                               GENE ID=ALK
chr2
      29432572
                  29432680
                             CHP2 ALK 1
chr2
      29443607
                                               GENE ID=ALK
                  29443729
                  209113206
                             CHP2 IDH1 1 .
                                               GENE ID=IDH1
chr2
      209113103
chr2
      212288904
                  212288990
                             CHP2 ERBB4 8 .
                                               GENE ID=ERBB4
chr2
      212530051
                  212530180
                             CHP2 ERBB4 7 .
                                               GENE ID=ERBB4
```

The first three are required BED fields, the rest optional.

- 1. **chrom** The name of the chromosome (e.g. chr3, chrY, chr2).
- 2. **chromStart** The starting position of the feature in the chromosome. The first base in a chromosome is **numbered 0**.
- 3. **chromEnd** The ending position of the feature in the chromosome or scaffold.

### Adittionally, 9 optional fields:

- 4. name Defines the name of the BED line.
- 5. Score (. or a number between 0 and 1000).
- 6. strand (+ forward, reverse)
- 7. thickStart
- 8. thickEnd
- 9. itemRgb (255,0,0).
- 10. blockCount; 11. blockSizes; 12. blockStarts

### The BED format is 0-based.

Official specs: <a href="http://genome.ucsc.edu/FAQ/FAQformat#format1">http://genome.ucsc.edu/FAQ/FAQformat#format1</a>
<a href="http://bedtools.readthedocs.org/en/latest/content/general-usage.html">http://bedtools.readthedocs.org/en/latest/content/general-usage.html</a>

# **BED FORMAT**



WARNING: You must know what library designed was used to sequence your data, each library has particular regions to be sequenced. You will call variants along these regions.

Examples: Agilent SureSelect v5 Human all Exon, IonTorrent comprehensive cancer panel, etc

# VCF format



- VCF records are oriented to provide details of single variant calls.
- Not all records in a VCF are true calls, the FILTER column specifies those which passed the calling.
- **QUAL** is the score assigned to a given call. The greater QUAL is, the more reliable is. It is in log-scale.
- ID is an identifier. E.g. a dbSNP id.

A PDF with the v4.2 specifications: http://samtools.github.io/hts-specs/VCFv4.2.pdf

What is a VCF and how to interpret it: <a href="https://software.broadinstitute.org/gatk/guide/article?id=1268">https://software.broadinstitute.org/gatk/guide/article?id=1268</a>

**PM16 @GTPB** 

# **TSV**

Tab-separated Text (tabular structure).

| Column1 var_r1c1 var_r2c1 var_r3c1 | Column2 var_r1c2 var_r2c2 var_r3c2 | var_r1c3<br>var_r2c3<br>var_r3c3 | Column4 var_r1c4 var_r2c4 var_r3c4 | <br>ColumnN var_r1cN var_r2cN var_r3cN |
|------------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------------------------|
| var_r4c1                           | var_r4c2                           | var_r4c3                         | var_r4c4                           | <br>var_r4cN                           |
|                                    |                                    |                                  |                                    |                                        |
| var_rNc1                           | var_rNc2                           | var_rNc3                         | var_rNc4                           | var_rNcN                               |



No format specifications.

There are no limits in terms of the matrix dimension (rows X columns).

However, there are good practices in Bioinformatics:

- 1. Use intuitive column names without spaces or rare chars. Instead of those, use "." or "\_".
- Data dimension: higher number of rows than columns.
- 3. Rows  $\rightarrow$  individual observations or records. E.g. genomic positions.
- 4. Columns→ Individual variables for each individual observation. E.g. Chromosome, position, Score, Gene mutated, etc.
- 5. Do NOT mix data from different observations

### Tidy data principles:

http://vita.had.co.nz/papers/tidy-data.pdf