# Regression Model to Predict Viscosity of a Blend from its Composition

#### Mohammed Quazi

PhD Candidate - Statistics
Department of Mathematics & Statistics
University of New Mexico
mquazi@unm.edu
https://math.unm.edu/~mquazi/
https://github.com/mquazi



#### Overview

- Introduction
  - Viscosity Data Exercise
- Data Exploration
  - Preliminary Data Analysis
- Model Selection
- MLR Model Assumptions
- Final Model
  - Conclusion

#### Viscosity Data Exercise

Introduction

- Files to execute this study are here: github.com/mquazi/Intro\_OW\_ANOVA
- Main question: Build a predictive model to predict Blend KV40
- Viscosity of a blend is the response variable Blend KV40
- Predictor variables considered are 6 performance package (DI), viscosity modifier (VM), base stock density (BS Density), base stock KV40 (BS KV40), base stock KV100 (BS KV100), base stock total (BS total)
- ► If the prediction model is not accurate enough, need to include the individual base stocks

## Preliminary Data Analysis

- ▶ No NAs or missing data points
- 86 rows and 20 columns
- ► Correlation between Blend KV40 and BS KV100 is 0.708 (good)
- ► Correlation between Blend KV40 and BS KV40 is 0.718 (good)
- Correlation between BS KV40 and BS KV100 is 0.9888 (bad)

#### Boxplot DI

▶ No real takeaways, DI median Blend KV40 levels do not really differ

#### Boxplot BlendKV40 vs DI



## Boxplot VM

▶ Upward trend, 0.11's Blend KV40 median to lookout for

#### Boxplot BlendKV40 vs VM



#### **Pairplot**



- After constructing the required interactions
- ► Model form is:

$$Y = \beta_0 + \sum_{i=1}^{6} \beta_i X_i + \sum_{i=4}^{5} \delta_i X_2 X_i + \epsilon$$
(1)

 $\beta_0, \, \beta_i, \, \& \, \delta_i \text{ are constants}$   $\epsilon \text{ iid Normal}(0, \sigma^2)$ 

► But the interaction terms have correlations with other predictors

- ▶ I built another additive model and the dropped interactions are considered later using added variable plots
- Model form is:

$$Y = \beta_0 + \sum_{i=1}^{6} \beta_i X_i + \epsilon$$
(2)

$$\beta_0, \, \beta_i, \& \, \delta_i$$
 are constants  $\epsilon$  iid Normal $(0, \sigma^2)$ 

#### Model Selection

▶ Backward elimination and best subsets criteria based on adjusted  $R^2$ ,  $R^2$ ,  $C_p$ , BIC suggested models are

| Procedure            | Variables included        | $R^2$ | $AdjR^2$ | $C_p(p+1)$ | BIC(lowest) |
|----------------------|---------------------------|-------|----------|------------|-------------|
| Backward elimination | $X_1, X_2, X_3, X_5$      | 0.98  | 0.98     | 4.5        | -320        |
| Best subsets         | $X_1, X_2, X_3, X_4, X_5$ | 0.98  | 0.98     | 5          | -320        |
| Best subsets         | $X_1, X_3, X_4, X_5, X_6$ | 0.98  | 0.98     | 5          | -320        |
| Best subsets         | $X_1, X_2, X_3, X_5$      | 0.98  | 0.98     | 4.5        | -320        |

#### Final model selected by me by striking a balance between a simpler model and good model attributes for further analysis is

$$Y = \beta_0 + \sum_{i=1}^{3} \beta_i X_i + \beta_5 X_5 + \epsilon$$
 (3)

$$\beta_0, \ \beta_i, \ \& \ \beta_5$$
 are constants  $\epsilon$  iid Normal(0,  $\sigma^2$ )

Retained variables are: DI, VM, BS Density and BS KV40

- ▶ Linearity assumption is not in danger, the fit curve is not too erratic
- ► **Homoscedascity** is clearly violated with an obvious curvature. However, Breusch-Pagan test P-value is 0.2545



- ▶ **Normality** assumption regarding variances is violated. Plot shows points deviating too much from the straight line
- ► Shapiro-Wilks test yields the same result



- ▶ **Multicollinearity** is not an issue at all, since all the VIFs are well within the critical value of 5
- ► After considering the Bonferroni limit, DFFITS and Cook's distances, leverage points, no case is particularly alarming as an **outlier**

#### Cook's distance





► To fix the issue of **non-constant variances**, from Box-Cox procedure, square root transformation of the Blend KV40 variable looks reasonable



- After transformation, linearity and independence assumptions still hold Multicollinearity is not a serious issue, as all VIFs are well within the limit
- Normality of error terms is still not satisfied, but greatly improved



► **Homoscedasticity** is still not satisfied but greatly improved from previous plot. Curvature has weakened



► From Bonferroni limit, DFFITS and Cook's distances, and leverage points, no case is particularly alarming as an **outlier** 

#### Cook's distance



#### Final Model for future predictions of Blend KV40

► The interaction terms dropped just before variable selection were checked again using added variable plots, but none could have improved the model. Final transformed model is

$$Y' = \beta_0 + \sum_{i=1}^{3} \beta_i X_i + \beta_5 X_5 + \epsilon \tag{4}$$

Y'is the square root transformation of the Blend KV40 (response)  $\beta_0, \, \beta_i, \, \& \, \beta_5$  are constants  $\epsilon$  iid Normal $(0, \sigma^2)$ 

Retained variables are: DI, VM, BS Density and BS KV40

## Final Model for future predictions of Blend KV40

Table: ANOVA Table for the Final Model

|                | Df | Sum Sq | Mean Sq | F value   | Pr(>F) |
|----------------|----|--------|---------|-----------|--------|
| ×1(DI)         | 1  | 1.334  | 1.334   | 137.238   | 0      |
| ×2(VM)         | 1  | 54.382 | 54.382  | 5,595.461 | 0      |
| x3(BS Density) | 1  | 24.667 | 24.667  | 2,538.046 | 0      |
| x5(BS KV40)    | 1  | 30.015 | 30.015  | 3,088.242 | 0      |
| Residuals      | 81 | 0.787  | 0.010   |           |        |

#### Final Model for future predictions of Blend KV40

Table: Coefficients and SEs – All predictors are significant at  $\alpha = 0.05$ 

|                         | Dependent variable:       |  |  |
|-------------------------|---------------------------|--|--|
|                         | ynew                      |  |  |
| x1(DI)                  | 12.212***                 |  |  |
| . ,                     | (0.423)                   |  |  |
| x2(VM)                  | 35.681***                 |  |  |
| , ,                     | (0.496)                   |  |  |
| x3(BS Density)          | 15.657***                 |  |  |
| , ,,                    | (1.712)                   |  |  |
| ×5(BS KV40)             | 0.125***                  |  |  |
| ,                       | (0.002)                   |  |  |
| Constant                | -11.825***                |  |  |
|                         | (1.399)                   |  |  |
| Observations            | 86                        |  |  |
| $R^2$                   | 0.993                     |  |  |
| Adjusted R <sup>2</sup> | 0.993                     |  |  |
| Residual Std. Error     | 0.099 (df = 81)           |  |  |
| F Statistic             | 2,839.747*** (df = 4; 81) |  |  |

Note:

## Thank You!