TheNumbersBook.com 2010

Dummit & Foote (3.1) 1, 6, 7, 9, 14, 24, 40, 41

3.1.1 Let $\varphi: G \to H$ be a homomorphism and let E be a subgroup of H. Prove that $\varphi^{-1}(E) \leq G$ (i.e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If $E \subseteq H$ prove that $\varphi^{-1}(E) \subseteq G$. Deduce that $\ker \varphi \subseteq G$.

We prove that $\varphi^{-1}(E)$ is nonempty, closed under inverses and products:

- (1) Since *E* is a subgroup of *H*, then $e_H \in E$ and so $e_G = \phi^{-1}(e_H)$ because identities map to identities.
- (2) $\phi^{-1}(E)$ is closed under multiplication: Let $g, g' \in \phi^{-1}(E)$. Then $\phi(g), \phi(g') \in E$ (because if g, g' are in the preimage of E, then they must have been in the image of E in the first place). Since E is a subgroup, it is closed under multiplication. Thus, $\phi(g)\phi(g') \in E$. Since ϕ is a homomorphism, we have that $\phi(gg') \in E$ and so $gg' \in \phi^{-1}(E)$.
- (3) Finally, let $g \in \phi^{-1}(E)$. Then $\phi(g) \in E$ and since E is a subgroup of H, $\phi(g)^{-1} \in E$. Specifically, since ϕ is a homomorphism, $\phi(g^{-1}) \in E$ and so $g^{-1} \in \phi^{-1}(E)$, as desired.

Thus, $\phi^{-1}(E) \subseteq G$.

Since *E* is normal, $E = \phi(g^{-1})E\phi(g) = \phi(g)^{-1}E\phi(g)$. Taking the inverse map of both sides yields

$$g^{-1}\phi^{-1}(E)g = \phi^{-1}(E)$$

This implies that $\phi^{-1}(E)$ is normal.

Finally, we deduce that $\ker(\phi) \subseteq G$. Note that $\phi(\ker(\phi)) = \{0\}$ as $\ker(\phi) = \{x \in G | \phi(x) = 0\}$. Since 0 is trivially a normal subgroup of H, we have that $\phi^{-1}(\phi(\ker(\phi))) = \ker(\phi)$ is a normal subgroup of G.

3.1.6 Define $\varphi : \mathbb{R}^{\times} \to \{\pm 1\}$ by letting $\varphi(x)$ be x divided by the absolute value of x. Describe the fibers of φ and prove that φ is a homomorphism.

The fibers are as follows: all elements $x \in \mathbb{R}^+$ will map to +1 and all elements $x \in \mathbb{R}^-$ will map to -1.

We now prove that φ is a homomorphism. First, note that the binary operation is multiplication. Let $a, b \in \mathbb{R}$:

$$\varphi(ab) = \frac{ab}{|ab|}$$

$$= \frac{a}{|a|} \frac{b}{|b|} \text{ (Property of absolute value)}$$

$$= \varphi(a)\varphi(b)$$

So φ satisfies the property of homomorphism.

3.1.7 Define $\pi : \mathbb{R}^2 \to \mathbb{R}$ by $\pi((x,y)) = x + y$. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically.

Consider + to be the componentwise addition. Then for $(a,b),(c,d) \in \mathbb{R}^2$,

$$\pi((a,b) + (c,d)) = \pi((a+c,b+d))$$

$$= (a+c) + (b+d)$$

$$= (a+b) + (c+d) (\mathbb{R} \text{ is commutative})$$

$$= \pi((a,b)) + \pi((c,d))$$

Now note that for any $x + y \in \mathbb{R}$, consider the point $(x, y) \in \mathbb{R}^2$. Clearly, $\pi((x, y)) = x + y$, so π is surjective.

The fiber of π are the equations of the form x+y=m where m is some real number. Interestingly, there is an uncountable set of points (x,y) that map m (i.e. there is an uncountable number of ways to write m using two real numbers). Notice how this partitions \mathbb{R} . With regard to the kernel, note that $0 \in \mathbb{R}$ is the additive identity. Thus, the fiber corresponding to the kernel is x+y=0, or all points in \mathbb{R}^2 of the form (x,-x).

3.1.9 Define $\varphi : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ by $\varphi(a + bi) = a^2 + b^2$. Prove that φ is a homomorphism and find the image of φ . Describe the kernel and the fibers of φ geometrically (as subsets of the plane).

Let a + bi, $c + di \in \mathbb{C}$:

$$\varphi((a+bi)(c+di)) = \varphi(ac + adi + bci + bdi^{2})$$

$$= \varphi((ac - bd) + (ad + bc)i)$$

$$= (ac - bd)^{2} + (ad + bc)^{2}$$

$$= a^{2}c^{2} - 2acbd + b^{2}d^{2} + a^{2}d^{2} + 2adbc + b^{2}c^{2}$$

$$= a^{2}(c^{2} + d^{2}) + b^{2}(c^{2} + d^{2})$$

$$= (a^{2} + b^{2})(c^{2} + d^{2})$$

$$= \varphi(a + bi)\varphi(c + di)$$

The image of φ is all the non-negative real number, which is a subset of \mathbb{C} (why nonnegative? Because $0 \notin \mathbb{C}^{\times}$). The fibers of φ are of the form $a^2 + b^2 = m$ for some positive real number m. In other words, fibers are the circles of radius \sqrt{m} . The kernel, then, is a circle of radius 1.

3.1.14 Consider the additive quotient group \mathbb{Q}/\mathbb{Z} .

- (a) Show that every coset of \mathbb{Z} in \mathbb{Q} contains exactly one representative $q \in \mathbb{Q}$ in the range $0 \le q < 1$.
- (b) Show that every element of \mathbb{Q}/\mathbb{Z} has finite order but that there are elements of arbitrarily large order.
- (c) Show that \mathbb{Q}/\mathbb{Z} is the torsion subgroup of \mathbb{R}/\mathbb{Z} (cf. Exercise 6, Section 2.1).
- (d) Prove that \mathbb{Q}/\mathbb{Z} is isomorphic to the multiplicative group of root of unity in \mathbb{C}^{\times} .
- (a) Consider an arbitrary coset $q + \mathbb{Z}$ where $q \in \mathbb{Q}$. We can write q uniquely in terms of its integral and fractional part to get:

$$q = int(q) + frac(q)$$

(note that $\frac{1}{q}$) is unique). Since $int(q) \in \mathbb{Z}$, we get that $q + \mathbb{Z} = \frac{1}{q} + \mathbb{Z}$. Since $\frac{1}{q} \in [0,1)$, every coset contains exactly one representative in the interval [0,1).

(b) Recall that $(q + \mathbb{Z}) + (r + \mathbb{Z}) = (q + r + \mathbb{Z})$ and consider an arbitrary coset $q + \mathbb{Z}$. Since $q \in \mathbb{Z}$, we write it as $\frac{a}{b} + \mathbb{Z}$ where $a, b \in \mathbb{Z}$ and are in lowest terms. Note that

$$b(q + \mathbb{Z}) = b(\frac{a}{b} + \mathbb{Z})$$

$$= (\frac{a}{b} + \mathbb{Z}) + \frac{a}{b} + \mathbb{Z}) + \dots + (\frac{a}{b} + \mathbb{Z})$$

$$= (b\frac{a}{b} + \mathbb{Z})$$

$$= a + \mathbb{Z}$$

$$= \mathbb{Z}.$$

and it is the smallest such b that yields the identity in \mathbb{Q}/\mathbb{Z} . Thus, the order of any coset is simply the denominator, in lowest terms. Clearly, b can get arbitrarily large.

(c) Note that \mathbb{Q}/\mathbb{Z} is a subgroup of \mathbb{R}/\mathbb{Z} . Consider any element (a coset in this case) of \mathbb{R}/\mathbb{Z} . As seen above, it must be of the form $r+\mathbb{Z}$ where (in this case), $r\in\mathbb{R}$ and $r\in[0,1)$ for the same reasoning as part a. Now it is easy to verify that there exists an integer k such that $rk\in\mathbb{Z}$ iff $r\in\mathbb{Q}$ (a standard result in analysis). It follows $r+\mathbb{Z}$ has a finite order iff $r\in\mathbb{Q}$. Thus, \mathbb{Q}/\mathbb{Z} are the only subsets of \mathbb{R}/\mathbb{Z} that have finite order. Thus \mathbb{Q}/\mathbb{Z} is a torsion subgroup of \mathbb{R}/\mathbb{Z} .

(d) Let $\zeta_m = e^{\frac{2\pi i}{m}}$ and consider the map

$$\phi: \mathbb{Q}/\mathbb{Z} \to \mathbb{C}^{\times}$$

defined by $\phi(\frac{a}{b} + \mathbb{Z}) = \zeta_b$. We show that ϕ is an isomorphism. First, note that $\ker(\phi) = \{\mathbb{Z}\}$ as the only cosets that go to $\zeta_1 = 1$ is b = 1 (or \mathbb{Z}) (injectivity). Furthermore, for any root of unity ζ_m^k , we have the corresponding element $\frac{ak}{b} + \mathbb{Z}$ (surjectivity). Thus, ϕ is an isomorphism, as desired.

3.1.24 Prove that if $N \subseteq G$ and H is any subgroup of G then $N \cap H \subseteq H$.

Let $k \in N \cap H$. Then $k \in N \subseteq G$. Thus, $g^{-1}kg \in N$ for all $g \in G$ because N is normal. Specificall, $g \in H$ for all $g \in G$ because $g \in H$ for all $g \in G$ because $g \in H$ for all $g \in G$ because $g \in H$ for all $g \in G$ because $g \in G$ for all $g \in G$ because $g \in G$ for all $g \in G$ because $g \in G$ for all $g \in G$ because $g \in G$ for all $g \in G$ because $g \in G$ for all $g \in G$ for all

$$h^{-1}kh \in N \cap H$$

for all $h \in H$. Thus, $N \cap H \subseteq H$.

3.1.40 Let G be a group, let N be a normal subgroup of G and let $\overline{G} = G/N$. Prove that \overline{x} and \overline{y} commute in \overline{G} if and only if $x^{-1}y^{-1}xy \in N$. (The element $x^{-1}y^{-1}xy$ is called the *commutator* of x and y and is denoted by [x, y].)

 (\Rightarrow) Note that elements of \overline{G} are of the form xN. Now let $\overline{x} = xN$, $\overline{y} = yN$ be any two elements of \overline{G} . Then

$$\overline{xy} = \overline{yx}$$

and so xyN = (xN)(yN) = (yN)(xN) = yxN. This implies that $x^{-1}y^{-1}xyN = N$ and so $x^{-1}y^{-1}xy \in N$.

 (\Leftarrow) Note that if $x^{-1}y^{-1}xy \in N$ then $x^{-1}y^{-1}xy$ and 1 are coset representatives of the same coset, namely N. Thus, $x^{-1}y^{-1}xyN = N$ or equivalently yxN = xyN. Now consider any $\overline{x} = xN, \overline{y} = yN \in \overline{G}$. Then

$$\overline{xy} = (xN)(yN)$$

$$= xyN$$

$$= yxN \text{ (because } x^{-1}y^{-1}xy \in N)$$

$$= (yN)(xN)$$

$$= \overline{yx}$$

Thus, \overline{x} , \overline{y} commute.

3.1.41 Let *G* be a group. Prove that $N = \langle x^{-1}y^{-1}xy|x,y \in G \rangle$ is a normal subgroup of *G* and G/N is abelian (*N* is called the *commutator subgroup* of *G*).

We want to show that $g^{-1}(x^{-1}y^{-1}xy)g \in N$ for $g \in G$. Using the fact that $gg^{-1} = 1$, we get:

$$g^{-1}x^{-1}y^{-1}xyg = g^{-1}x^{-1}1y^{-1}1x1yg$$

$$= g^{-1}x^{-1}gg^{-1}y^{-1}gg^{-1}xgg^{-1}yg$$

$$= (g^{-1}xg)^{-1}(g^{-1}yg)^{-1}(g^{-1}xg)(g^{-1}yg) \text{ (Property of inverses)}$$

$$= x'^{-1}y'^{-1}x'y' \text{ (for some } x', y' \in G)$$

$$\in N$$

Thus, N is normal. Now note that $x^{-1}y^{-1}xy \in N$ for all $x, y \in G$. By 3.1.40, $\overline{x}, \overline{y}$ commute in G/N. Thus, G/N is abelian.