1. Доказать формулу

$$\frac{\Delta\omega}{\omega_0} = \frac{1}{Q}$$

Здесь ω_0 — круговая частота резонанса = $2\pi f_0$, $\Delta \omega$ — ширина амплитудной резонансной кривой, Q — добротность.

Докажем обратную формулу:

$$\frac{\omega_0}{\Delta\omega} = Q$$

По определению добротность колебательной системы — это отношение энергии, запасенной системой, к потере энергии за время изменения фазы на 1 радиан.

$$Q = \frac{E}{-\Delta E_1}$$

Покажем связь с характеристиками колебаний

Координата колеблющегося тела в случае затухающих колебаний:

$$x(t) = a_0 e^{-\beta t} \cos(\omega t)$$

 t_1 - время увеличения фазы на 1 радиан

$$\omega(t + t_1) - \omega t = 1$$

$$\omega t_1 = 1$$

$$t_1 = \frac{1}{\omega}$$

$$E(t) = \frac{1}{2}m\omega^2 a_0^2 e^{-2\beta t}$$

$$E(t + t_1) = \frac{1}{2}m\omega^2 a_0^2 e^{-2\beta (t + t_1)}$$

$$E(t + t_1) = \frac{1}{2}m\omega^2 a_0^2 e^{-2\beta t} \cdot e^{-2\beta t_1}$$

$$-\Delta E_1 = E(t) - E(t + t_1) = \frac{1}{2} m \omega^2 a_0^2 e^{-2\beta t} - \frac{1}{2} m \omega^2 a_0^2 e^{-2\beta t} \cdot e^{-2\beta t_1}$$

$$= \frac{1}{2} m \omega^2 a_0^2 e^{-2\beta t} \left(1 - e^{-2\beta t_1} \right) = E(t) \cdot \left(1 - e^{-2\beta t_1} \right)$$

$$Q = \frac{E(t)}{-\Delta E_1} = \frac{E(t)}{E(t) \cdot (1 - e^{-2\beta t_1})} = \frac{1}{1 - e^{-2\beta t_1}} = \frac{1}{1 - e^{-2\beta t_1}}$$

Пусть затухание мало: $\alpha \ll \omega$

$$\frac{2\beta}{\omega} \ll 1$$

$$\lim_{x \to 0} \frac{e^{-x}}{1 - x} = 1$$

Тогда заменим $e^{-\frac{2\beta}{\omega}}$ на $1-\frac{2\beta}{\omega}$

$$Q = \frac{1}{1 - e^{-\frac{2\beta}{\omega}}} = \frac{1}{1 - (1 - \frac{2\beta}{\omega})} = \frac{\omega}{2\beta}$$
$$\omega \approx \omega_0$$
$$Q = \frac{\omega_0}{2\beta}$$

Докажем, что ширина амплитудной резонансной кривой приблизительно равна удвоенному коэффициенту затухания колебательного контура β :

$$\Delta\omega \approx 2\beta$$

Формула для амплитуды напряжения на конденсаторе U_{C_m} , выраженная через собственную частоту контура ω_0 и коэффициент затухания β :

$$U_{C_m} = \frac{U_m \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}$$

Предположим, что величина коэффициента затухания β последовательного колебательного контура мала: $\beta \ll \omega_0$. Тогда частота ω_{max} , при которой функция $U_{C_m}(\omega)$ достигает наибольшего значения, приблизительно равна собственной частоте контура ω_0 : $\omega_{max} = \sqrt{\omega_0^2 - 2\beta^2} \approx \omega_0$.

Подставим $\omega = \omega_0$

$$U_{C_m} = \frac{U_m \omega_0^2}{\sqrt{(\omega_0^2 - \omega_0^2)^2 + 4\beta^2 \omega_0^2}} = \frac{U_m \omega_0^2}{\sqrt{4\beta^2 \omega_0^2}} = \frac{U_m \omega_0^2}{2\beta \omega_0} = \frac{U_m \omega_0}{2\beta}$$

 $\Delta\omega$ — это диапазон частот колебаний внешнего напряжения U, границам которого соответствуют значения напряжения $U_{C_m}(\omega)$ в $\sqrt{2}$ раз меньше резонансного, т. е. ширина амплитудной резонансной кривой на такой ее высоте, где значения функции $U_{C_m}(\omega)$ в $\sqrt{2}$ раз меньше ее максимального значения $U_{C_m \ max}$.

Частота ω , при которой амплитуда напряжения в $\sqrt{2}$ раз меньше максимального резонансного значения, должна удовлетворять условию

$$U_{C_m}(\omega) = \frac{1}{\sqrt{2}} U_{C_m \, max}$$

Используем формулу при условии, что $\omega=\omega_0$

$$\frac{U_m \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}} = \frac{1}{\sqrt{2}} \frac{U_m \omega_0^2}{\sqrt{(\omega_0^2 - \omega_0^2)^2 + 4\beta^2 \omega_0^2}}$$

$$\frac{U_m \omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}} = \frac{1}{\sqrt{2}} \frac{U_m \omega_0}{2\beta}$$

$$\frac{\omega_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}} = \frac{1}{2\sqrt{2}\beta}$$

$$2\sqrt{2}\beta\omega_0 = \sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}$$

$$8\beta^2\omega_0^2 = (\omega_0^2 - \omega^2)^2 + 4\beta^2\omega^2$$

$$(\omega_0^2 - \omega^2)^2 = 8\beta^2\omega_0^2 - 4\beta^2\omega^2$$

$$(\omega_0^2 - \omega^2)^2 = 4\beta^2(2\omega_0^2 - \omega^2)$$

Сделаем предположение о том, что резонансная кривая является достаточно узкой. Это означает, что:

$$|\omega_0 - \omega| \ll \omega_0$$
$$|\omega_0^2 - \omega^2| \ll \omega_0^2$$

Тогда

$$(\omega_0^2 - \omega^2)^2 = 4\beta^2 (2\omega_0^2 - \omega^2) \approx 4\beta^2 \omega_0^2$$
$$((\omega_0 - \omega)(\omega_0 + \omega))^2 \approx 4\beta^2 \omega_0^2$$

Т. к. ω_0 и ω близки друг к другу, то:

$$\omega_0 + \omega \approx 2\omega_0$$

T. K.
$$|\omega_0 - \omega| = \frac{\Delta \omega}{2}$$

$$\left(\frac{\Delta\omega}{2}\right)^{2}(2\omega_{0})^{2} \approx 4\beta^{2}\omega_{0}^{2}$$
$$\frac{\Delta\omega}{2}2\omega_{0} \approx 2\beta\omega_{0}$$
$$\Delta\omega \approx 2\beta$$

Тогда
$$Q = \frac{\omega_0}{2\beta} \approx \frac{\omega_0}{\Delta\omega}$$

Источники:

https://www.youtube.com/watch?v=tNJDjGcEgVs

Леденев А.Н. - Физика. Кн. 4. Колебания и волны. Оптика-ФМЛ (2005) (https://studfile.net/preview/12632504/page:5/#7) стр 26-29

2. Что называют собственными частотами в связанных колебательных системах? Как найти собственные частоты двух одинаковых маятников, связанных между собой пружиной. Приведите примеры связанных колебаний.

Собственные частоты в связанных колебательных системах — это частоты собственных колебаний. Собственные колебания системы — это набор характерных для колебательной системы типов гармонических колебаний, происходящих за счёт начального запаса энергии. Колебание физической системы можно представить в виде суперпозиции различных нормальных колебаний.

Система двух одинаковых связанных пружиной маятников

Чтобы найти их собственные частоты, нужно решить следующую систему уравнений

$$\begin{cases} mL^2\ddot{\varphi}_1 = -F_{\text{TSM}} \cdot L \sin\varphi_1 + F_{\text{ynp}} \cdot L_1 \cos\varphi_1 \\ mL^2\ddot{\varphi}_2 = -F_{\text{TSM}} \cdot L \sin\varphi_2 - F_{\text{ynp}} \cdot L_1 \cos\varphi_2 \end{cases}$$

$$\begin{cases} -F_{\text{TSM}} \cdot L \sin\varphi_1 + F_{\text{ynp}} \cdot L_1 \cos\varphi_1 - mL^2\ddot{\varphi}_1 = 0 \\ -F_{\text{TSM}} \cdot L \sin\varphi_2 - F_{\text{ynp}} \cdot L_1 \cos\varphi_2 - mL^2\ddot{\varphi}_2 = 0 \end{cases}$$

$$\begin{cases} F_{\text{TSM}} \cdot L \sin\varphi_1 - F_{\text{ynp}} \cdot L_1 \cos\varphi_1 + mL^2\ddot{\varphi}_1 = 0 \\ F_{\text{TSM}} \cdot L \sin\varphi_2 + F_{\text{ynp}} \cdot L_1 \cos\varphi_1 + mL^2\ddot{\varphi}_2 = 0 \end{cases}$$

$$\begin{cases} \frac{F_{\text{TSM}} \cdot L \sin\varphi_1}{mL^2} - \frac{F_{\text{ynp}} \cdot L_1 \cos\varphi_1}{mL^2} + \ddot{\varphi}_1 = 0 \\ \frac{F_{\text{TSM}} \cdot L \sin\varphi_1}{mL^2} + \frac{F_{\text{ynp}} \cdot L_1 \cos\varphi_1}{mL^2} + \ddot{\varphi}_1 = 0 \end{cases}$$

$$\begin{cases} F_{\text{TSM}} \cdot L \sin\varphi_1 - F_{\text{ynp}} \cdot L_1 \cos\varphi_1 + \ddot{\varphi}_1 = 0 \\ \frac{F_{\text{TSM}} \cdot L \sin\varphi_1}{mL^2} - \frac{F_{\text{ynp}} \cdot L_1 \cos\varphi_1}{mL^2} + \ddot{\varphi}_1 = 0 \end{cases}$$

$$\begin{cases} F_{\text{TSM}} \cdot L \sin\varphi_1 - F_{\text{ynp}} \cdot L_1 \cos\varphi_1 + \ddot{\varphi}_1 = 0 \\ \frac{F_{\text{TSM}} \cdot L \sin\varphi_1}{mL^2} - \frac{F_{\text{ynp}} \cdot L_1 \cos\varphi_1}{mL^2} + \ddot{\varphi}_1 = 0 \end{cases}$$

$$\begin{cases} F_{\text{TSM}} \cdot L \sin\varphi_1 - F_{\text{ynp}} \cdot L_1 \cos\varphi_1 + \ddot{\varphi}_1 = 0 \\ \frac{F_{\text{TSM}} \cdot L \sin\varphi_1}{mL^2} - \frac{F_{\text{ynp}} \cdot L_1 \cos\varphi_1}{mL^2} + \ddot{\varphi}_1 = 0 \end{cases}$$

При малом отклонении $tg \, \varphi pprox \varphi$

$$F_{ ext{ynp}} pprox kL_1(arphi_2 - arphi_1)$$
 $F_{ ext{TSK1}} = mg\cosarphi_1$ $F_{ ext{TSK2}} = mg\cosarphi_2$

При малом отклонении $\cos \varphi = 1 - \frac{\varphi^2}{2!} = 1$

$$F_{\text{Tgw1}} \approx mg$$

$$F_{\text{тяж2}} \approx mg$$

$$\begin{cases} \frac{mg \cdot L \sin \varphi_1}{mL^2} - \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1 \cos \varphi_1}{mL^2} + \ddot{\varphi}_1 = 0\\ \frac{mg \cdot L \sin \varphi_2}{mL^2} + \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1 \cos \varphi_2}{mL^2} + \ddot{\varphi}_2 = 0 \end{cases}$$

$$\begin{cases} \frac{g \cdot \sin \varphi_1}{L} - \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1 \cos \varphi_1}{mL^2} + \ddot{\varphi}_1 = 0\\ \frac{g \cdot \sin \varphi_2}{L} + \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1 \cos \varphi_2}{mL^2} + \ddot{\varphi}_2 = 0 \end{cases}$$

$$\cos \varphi \approx 1$$
, $\sin \varphi \approx \varphi$

$$\begin{cases} \frac{g \cdot \varphi_1}{L} - \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1}{mL^2} + \ddot{\varphi}_1 = 0\\ \frac{g \cdot \varphi_2}{L} + \frac{kL_1(\varphi_2 - \varphi_1) \cdot L_1}{mL^2} + \ddot{\varphi}_2 = 0 \end{cases}$$

$$\begin{cases} \ddot{\varphi}_1 + \frac{g}{L}\varphi_1 - \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0 \\ \ddot{\varphi}_2 + \frac{g}{L}\varphi_2 + \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0 \end{cases}$$

Здесь
$$\frac{g}{L} = \omega_0^2$$

Сложим уравнения:

$$\ddot{\varphi}_1 + \ddot{\varphi}_2 + \frac{g}{L}(\varphi_1 + \varphi_2) = 0$$

Вычтем из второго первое:

$$\ddot{\varphi}_2 + \frac{g}{L}\varphi_2 + \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) - \ddot{\varphi}_1 - \frac{g}{L}\varphi_1 + \frac{kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0$$

$$\ddot{\varphi}_2 - \ddot{\varphi}_1 + \frac{g}{L}(\varphi_2 - \varphi_1) + \frac{2kL_1^2}{mL^2} \cdot (\varphi_2 - \varphi_1) = 0$$

$$\ddot{\varphi}_2 - \ddot{\varphi}_1 + \left(\frac{g}{L} + \frac{2kL_1^2}{mL^2}\right)(\varphi_2 - \varphi_1) = 0$$

Перейдем к координатам $\xi_1 = \varphi_1 + \varphi_2$ и $\xi_2 = \varphi_2 - \varphi_1$

$$\ddot{\xi_1} + \frac{g}{L}\xi_1 = 0$$

$$\ddot{\xi_2} + \left(\frac{g}{L} + \frac{2kL_1^2}{mL^2}\right)\xi_2 = 0$$

Тогда нормальные частоты равны:

$$\Omega_{n1} = \sqrt{\frac{g}{L}}$$

$$\Omega_{n2} = \sqrt{\frac{g}{L} + \frac{2kL_1^2}{mL^2}}$$

В зависимости от типа колебаний (синфазные, противофазные, общий случай) собственные частоты маятников будут равны либо первой моде:

$$\varphi_{1} = \frac{1}{2} \Phi_{01} \cos(\Omega_{n1} t + \varphi_{01})$$

$$\varphi_{2} = \frac{1}{2} \Phi_{01} \cos(\Omega_{n1} t + \varphi_{01})$$

либо второй моде:

$$\varphi_{1} = \frac{1}{2} \Phi_{02} \cos(\Omega_{n2} t + \varphi_{02})$$

$$\varphi_{2} = -\frac{1}{2} \Phi_{02} \cos(\Omega_{n2} t + \varphi_{02})$$

либо их полусумме:

$$\begin{split} \varphi_1 &= \frac{1}{2} \Phi_{01}(\cos(\Omega_{n1}t) + \cos(\Omega_{n2}t)) = \\ &= \frac{1}{2} \Phi_{01} \cos\left(\frac{(\Omega_{n1} + \Omega_{n2})t}{2}\right) \cdot \cos\left(\frac{(\Omega_{n2} - \Omega_{n1})t}{2}\right) \\ \varphi_2 &= \frac{1}{2} \Phi_{02}(\cos(\Omega_{n1}t) + \cos(\Omega_{n2}t)) = \\ &= -\frac{1}{2} \Phi_{01} \sin\left(\frac{(\Omega_{n1} + \Omega_{n2})t}{2}\right) \cdot \sin\left(\frac{(\Omega_{n2} - \Omega_{n1})t}{2}\right) \end{split}$$

Источники:

https://study.physics.itmo.ru/mod/resource/view.php?id=5669 crp 7-16
https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000469545/SOURCE1 crp 8-11

3. *RC*-схема, показанная на рисунке, называется фильтром высоких частот, поскольку она пропускает высокочастотные сигналы переменного тока с меньшим затуханием, чем низкочастотные сигналы.

(а) Покажите, что коэффициент передачи по напряжению равен $A=\frac{V_{out}}{V_{in}}=\frac{2\pi fRC}{\sqrt{4\pi^2f^2R^2C^2+1}}$

Закон Ома: U = IR

Полное сопротивление: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

 X_L не учитываем

$$\frac{V_{out}}{V_{in}} = \frac{IR}{I\sqrt{R^2 + (X_L - X_C)^2}} = \frac{R}{\sqrt{R^2 + {X_C}^2}}$$

Реактивное сопротивление:

$$X_{C} = \frac{1}{2\pi fC}$$

$$\frac{V_{out}}{V_{in}} = \frac{R}{\sqrt{R^{2} + \left(\frac{1}{2\pi fC}\right)^{2}}} = \frac{R}{\sqrt{R^{2} + \frac{1}{4\pi^{2}f^{2}C^{2}}}} = \frac{R}{\sqrt{\frac{R^{2}4\pi^{2}f^{2}C^{2} + 1}{4\pi^{2}f^{2}C^{2}}}}}$$

$$= \frac{R}{\frac{\sqrt{R^{2}4\pi^{2}f^{2}C^{2} + 1}}{2\pi fC}} = \frac{2\pi fRC}{\sqrt{4\pi^{2}f^{2}R^{2}C^{2} + 1}}$$

Источники: https://studfile.net/preview/7510994/

https://ru.wikipedia.org/wiki/Реактивное сопротивление

(b) Коэффициент усиления A при $f \to 0$ и $f \to \infty$

$$\lim_{f \to 0} \frac{2\pi fRC}{\sqrt{4\pi^2 f^2 R^2 C^2 + 1}} = \frac{0}{\sqrt{0 + 1}} = 0$$

$$\lim_{f \to \infty} \frac{2\pi fRC}{\sqrt{4\pi^2 f^2 R^2 C^2 + 1}} = \lim_{f \to \infty} \frac{2\pi fRC}{2\pi fRC} = \lim_{f \to \infty} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2 f^2 R^2 C^2}}} = \lim_{f \to \infty} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2 f^2 R^2 C^2}}} = \lim_{f \to \infty} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2 f^2 R^2 C^2}}} = \lim_{f \to \infty} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2 f^2 R^2 C^2}}} = \lim_{f \to \infty} \frac{1}{\sqrt{1 + \frac{1}{4\pi^2 f^2 R^2 C^2}}}$$

$$= \frac{1}{\sqrt{1 + 0}} = 1$$

(c) При R=850 Ом и $C=1.0\times 10^{-6} \Phi$ постройте график зависимости $\log(A)$ от $\log(f)$ в подходящих масштабах, чтобы показать поведение схемы на высоких и низких частотах

Можно заметить, что на больших частотах логарифм коэффициента усиления стремится к 0, т. к. сам коэффициент стремится к единице. При низких частотах коэффициент стремится к 0, поэтому логарифм стремится к $-\infty$ (т.к. основание логарифма взяла =2)