Fast-fit-mode: partial results

Robert Poenaru

March 21, 2020

1 Rezultate preliminarii

Am modificat programul astfel incat la fiecare pas, in loc sa verific daca frecventa de wobbling ω_{θ} (unde frecventa de wobbling $\omega = f(I)$ este o functie de spin), fac o verificare asupra perechii:

$$\Omega = \left\{ \omega_{\theta}, \omega_{\theta'}^{\text{chiral}} \right\}$$

sa fie formata doar din numere reale si pozitive. Evident ca cea de a doua frecventa, notata de mine ω^{chiral} , nu este alteeva decat frecventa pentru unghiul $\theta' = \theta + \pi$.

In acest fel, am izolat complet problema spinilor mici in care frecventa "chirala" ar fi putut fi complexa.

2 Fast fit mode

Am luat pasi destui de mari in cautarea minimului functiei RMS (pasi mari atat pentru momentele de inertie \mathcal{I}_k cat si pentru unghiul θ). Pentru pasi mari, o cautare are loc in cateva minute, de aceea am numit programul *fast-fit-mode*.

2.1 Rezultate numerice

Am obtinut urmatorul set de parametrii $\mathbf{X} = \{\theta, \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3\}$:

- Unghiul de coupling: $\theta = -54$ (Rez. anterioare: $\theta = -71$),
- Momentele de inertie: $\mathcal{I}_1 = 91$, $\mathcal{I}_2 = 11$, $\mathcal{I}_3 = 46$ (Rez. anterioare: $\mathcal{I}_1 = 89$, $\mathcal{I}_2 = 12$, $\mathcal{I}_3 = 48$),
- $E_{\text{RMS}} = 0.174611$ (Rez. anterioare: $E_{\text{RMS}} = 0.174452$).

2.2 Concluzii

- Chiar si cu pasi mari, programul a gasit un RMS destul de apropiat de cel initial, desi este putin mai mare.
- Problema frecventelor de wobbling pentru $\theta'=\theta+\pi$ la spini mici $I\approx 5\hbar$ a fost rezolvata. Perechea Ω are acum doar numere reale pozitive.
- Concret pentru cazul nostru, in care initial aveam probleme la spinul 11/2: $\Omega(I = 11/2) = \{0.158867, 0.0857974\}$
- URMEAZA SA PUN LA RULAT PROGRAM CU PASI FOARTE MARUNTI. ESTE ASTEPTATA O IMBUNATATIRE A RMS-ULUI + FRECVENTE REALE LA SPINI MICI.