

National Institute of Technology Delhi

Mid Semester Examinations September 2018

Roll No:

Name of Specialization – B.Tech (EEE+ECE)
Course Name- Electromagnetics and Quantum Physics
Course Code: PHL-100

Year - 1st Semester -1st

Maximum Marks - 25

Total Time: 2:00 Hours

Instructions:

All questions are compulsory.

Symbols used in the questions are having their usual meaning.

Assume if any data is missing.

Q-1: (a) For a position vector R = xi + yj + zk. Find the values of (i) grad 1/R (ii) div (R/R^3) and (iii) curl (R/R^3) .

(b) Write the physical significance of 'gradient' and 'divergence'.

(2)

Q-2: Define the Stokes's theorem. If $E = \rho \cos \varphi \, a_{\rho} + \sin \varphi \, a_{\varphi}$, Evaluate $\oint E. \, dl$ around the path shown Figure below. Also confirm this by using Stokes's theorem. (5)

Q-3: Write the integral form of the Ampere's for the magnetostatic fields and convert it into its differential form. A thin ring of radius 5 cm is placed on plane z = 1cm so that its center is at $(0,0,1 \ cm)$. If the ring carries 50 mA along a_{φ} , find H at (a) (0,0,-1cm) and (b) (0,0,1)0 cm).

Q-4: A medium is characterized by $\sigma = 0$, $\epsilon = 5\epsilon_0$, and $\mu = 2\mu_0$. If $H = 2\cos(\omega t - 3y)$ a_Z A/m, calculate ω and E. (5)

Q-5: Define the skin depth of an EM waves. A uniform plane wave propagating in a medium has $E = 2 e^{-\alpha z} \sin(10^8 t - \beta z) a_y \text{ V/m}$. If the medium is characterized by $\epsilon_r = 1, \mu_r = 20$, and $\epsilon_r = 3 \text{ S/m}$, find $\epsilon_r = 3 \text{ M}$.
