Entry, Exit, and Firm Dynamics

November 26, 2020

There's no characterization of entry, exit, or the firm life-cycle in the very basic firm dynamics model. To capture these features, we consider the following model.

1 A model with entry and exit

Time period is discrete. Within every period, a firm owns capital, and chooses how much labor to hire for production, and make investment or disinvestment decisions.

At the beginning of the period, a firm can choose whether to continue operation or to exit from the market. To continue operation in this period, the firm should pay a fixed, operating cost c.

Continue Operation

We first consider the case that the firm chooses to continue operation. Assume firm's production function is f(z, k, l). Firm will maximize its profit by hiring labor and pay wage w at a competitive labor market,

$$\pi(z,k) = \max_{l} f(z,k,l) - wl$$

Then this firm decides how much investment *i* it should make. The capital accumulation follows

$$k' = (1 - \delta) k + i$$

and the firm also incurs a capital adjustment cost $\Phi(\cdot)$. For simplicity, we assume a quadratic adjustment cost here

$$\Phi(k',k) = \frac{\phi}{2} \left(\frac{k'}{k} - (1-\delta) \right)^2 k$$

Exit

Now we consider the exit decisions of a firm. When a firm exits from the market, it can sell it's post-depreciation capital and get the scrap value back. That is to say the firm is going adjust its post-depreciation capital to 0, which also faces a capital adjustment cost.

We denote the scrap value as V^x , which is a function of k.

$$V^{x}(k) = (1 - \delta) k - \Phi(0, k)$$

Firm Decision

We denote the value function that firm chooses to continue operating as V^c , and we denote the value function that firm faces at the beginning of a period (before making exit/continuation decisions) as V.

$$V^{c}(z,k) = \pi(z,k) - c - (k' - (1 - \delta)k) - \Phi(k',k) + \beta \mathbb{E}_{z'|z} V(z',k')$$

and at the beginning of the period, a firm decides whether to stay or to exit,

$$V\left(z,k\right) = \max_{\text{stay/exit}} \left\{ V^{x}\left(k\right), V^{c}\left(z,k\right) \right\}$$