REDES DE COMPUTADORAS 1

Clase 7

Agenda

- Introducción y servicios
- Detección y corrección de errores
- Protocolos de acceso múltiple
- Direccionamiento de capa enlace
- Ethernet
- Hubs y switches

Direcciones MAC

Direcciones IP son de 32-bit:

- Direcciones de la capa de red.
- Utilizadas para conducir un datagrama a la subred destino.
- Es jerárquico.
- No es portátil.
 - asignado por administrador de subred.

Direcciones MAC (Ethernet)

- Direcciones de 48 bits.
- Utilizadas para conducir un datagrama de una interfaz a otra interfaz físicamente conectadas.
 - → En la misma subred.
- Grabadas en una ROM de la tarjeta adaptadora.
- Administradas por IEEE.
- Fabricantes de interfaces compran porciones del espacio de direcciones disponibles.
- Es portátil y no jerárquico
 - → Se puede mover una tarjeta de una LAN a otra.

Direcciones MAC

Cada adaptador (tarjeta) en la LAN tiene una dirección MAC única

ARP: Address Resolution Protocol

Pregunta: ¿Cómo determinar la dirección MAC sabiendo la dirección IP?

- Cada nodo IP (Host o Router) de la LAN tiene una tabla ARP
- Tabla ARP:
 Mapea direcciones IP → MAC

< IP address; MAC address; TTL>

- TTL (Time To Live): tiempo de expiración para el mapeo (típicamente 20 min)
- Mismo nombre pero no confundir con TTL en encabezado IP.

Protocolo ARP: Dentro de la misma LAN

- A quiere enviar un datagrama a B, y la dirección MAC de B no está en tabla ARP de A.
- A difunde (broadcast) un paquete de consulta ARP, conteniendo la IP de B.
 - Dirección destino MAC: FF-FF-FF-FF-FF.
 - Todas las máquinas de la LAN reciben la consulta ARP.
- B recibe paquete ARP, y responde a A con su dirección MAC.
 - La respuesta es enviada a la MAC de A (unicast).

- A guarda el par (IP,MAC) en su tabla ARP hasta que la información envejece (times out)
 - La información expira a menos que sea refrescada

ARP es "plug-and-play":

Los nodos crean sus tablas de ARP sin intervención de la administradores

Estructura de trama Ethernet

El adaptador transmisor encapsula el datagrama IP (u otro protocolo de red) en la trama Ethernet

Preámbulo:

- 7 bytes con patrón 10101010 seguido por un byte con patrón 10101011
- Usado para sincronizar la frecuencia de reloj del receptor

Estructura de trama Ethernet

- Direcciones: 6 bytes (= 48 bits)
 - Si el adaptador recibe trama con dirección destino propia o dirección de broadcast (eg paquete ARP), éste pasa los datos de la trama al protocolo de capa de red
 - de otro modo, el adaptador descarta la trama.
- Tipo: indica el protocolo de capa superior (principalmente IP pero hay otros como Novell IPX y AppleTalk)
- CRC: chequeado en receptor, si un error es detectado, la trama es simplemente descartada.

Servicios de Ethernet

- Sin conexión y No confiable.
 - Flujo de datagramas pasado a la capa de red puede tener vacíos por tramas descartada.
 - Los vacíos son llenados si la aplicación está usando TCP.
 - Si la aplicación está usando UDP entonces va a contener vacíos en la secuencia de datos recibidos.

Utiliza CSMA/CD.

- Sin ranuras.
- Sensa por portadora → el adaptador no transmite si otro adaptador lo está haciendo).
- Detecta Colisiones → adaptador transmisor aborta cuando éste detecta que otro adaptador está transmitiendo.
- Acceso Aleatorio → Antes de intentar una retransmisión el adaptador espera un tiempo aleatorio

CSMA/CD de Ethernet

Backoff Exponencial:

Objetivo: estimar la carga actual → si la carga es alta, la espera aleatoria será mayor

```
1<sup>a</sup> colisión: elige K entre {0,1}; retardo es K<sup>-</sup> 512 periodos de bits.
```

2ª colisión: elige K de {0,1,2,3}...

3^a colisión: elige K de {0,1,2,3,4,5,6,7}

10^a colisiones o más, elige K de {0,1,2,3,4,...,1023}

Periodo de 1 bit:

0,1 µseg en 10 Mbps → para K=1023, se esperará alrededor de 50 mseg

La eficiencia es mucho mayor que ALOHA (ranurado o no)

Topología Estrella

- En los 90 era común la topología Bus
- Hoy domina la topología estrella
- Elecciones de conexión: hub (extinguido) o switch

Hubs

- Hubs son esencialmente repetidores de capa física:
 - Los bits que ingresan por un enlace salen por TODOS los otros
 - No hay almacenamiento y reenvío
 - No hay CSMA/CD en hub: el adaptador detecta la colisión

Switches

- Dispositivo de capa enlace de datos
 - Almacena y re-envía tramas Ethernet.
 - Examina encabezados de tramas y re-envía basado en dirección MAC.
 - Cuando debe re-enviar una trama, usa CSMA/CD para acceder al medio.
- Transparente
 - Hosts no notan la presencia de switches
- Plug-and-play (aprenden solos)
 - Switches no requieren ser configurados
- Divide la subred en segmentos de LAN (para efectos de colisiones, por ejemplo)
- Filtra paquetes:
 - Tramas de un mismo segmento de LAN no son re-enviados a los otros segmentos.
 - · Los segmentos pasan a ser dominios de colisión separados.

Reenvío

- ¿Cómo determinar en qué segmento LAN enviar la trama?
- Similar a problema de ruteo ...

Auto aprendizaje

- Cada switch tiene una tabla de conmutación (switching table)
- Entradas de la tabla del switch:
 - (Dirección MAC, Interfaz, Marca de tiempo)
 - Entradas antiguas son descartadas (TTL ~60 min)
- Switches aprenden qué hosts se encuentra en qué interfaz
 - Cuando una trama es recibida, el switch "aprende" la interfaz del sector del Tx observando la MAC de la trama LAN de llegada.
 - Graba el par Tx/localización en tabla del switch.

Ejemplo de Switches

Supongamos que C envía una trama a D

- El switch (o bridge) recibe trama de C
 - Anota en tabla del switch que C está en interfaz 1
 - Debido a que D no está en la tabla, el switch re-envía la trama a interfaces 2 y 3 (inunda)
- La trama es recibida por D

Ejemplo de Switches

Supongamos que D responde a C con otra trama

- El switch recibe la trama de D
 - Y anota en su tabla que D está en interfaz 2
 - Debido a que C ya está en la tabla, el switch re-envía la trama sólo por interfaz
- La trama es recibida por C

Filtrado y reenvío

Cuando un switch recibe una trama:

Busca en su tabla usando la dirección MAC destino

if encuentra entrada para el destino
then {

if destino está en segmento desde donde llegó trama
then descarte trama
else re-envíe la trama a la interfaz indicada

Re-envíe en todas la interfaces
excepto la de llegada

Registre dirección origen

Switch: Aislamiento de tráfico

- El uso de un switch divide la subred en segmentos de LAN (para efectos de colisiones, por ejemplo)
- El switch filtra paquetes:
 - Las tramas de una mismo segmento de la LAN normalmente no son re-enviados a los otros segmentos
 - Los segmentos pasan a ser dominios de colisión separados

Switches: accesos dedicados

- Switch con muchas interfaces
- Cada host tiene conexión directa al switch
- No hay colisiones; full duplex

Conmutación: puede haber comunicación A-a-A' y B-a-B' simultáneamente, no hay colisiones

Redes Institucionales

Switches vs. Routers

- Ambos son dispositivos de almacenamiento y re-envío
 - Routers son dispositivos de capa de red (examinan encabezados de capa de red)
 - Switches son dispositivos de capa enlace de datos.
- Routers mantienen tablas de ruteo, implementan los algoritmos de ruteo
- Switches mantienen las tablas de switches, implementan filtrado y algoritmos de aprendizaje

Resumen comparativo

	Hubs	Switches	Routers
Aisla tráfico	No	Si	Si
Plug & play	Si	Si	No
Ruteo óptimo	No	No	Si