Conception et Pratique de l'Algorithmique

http://www-apr.lip6.fr/~buixuan/cpa2019

Binh-Minh Bui-Xuan

Paris, Avril 2020

Cours 10 : chemins et arbre de Steiner

Rappel cours + tme 9:

- arbre couvrant : classique vs. arbre de Steiner
- problème ArbreCouvrantMin : glouton est optimal
- complexité en $O(m \log n)$ théorique; en $O(m \log n + n^2)$ en tme

Cours 10 : chemins et arbre de Steiner

Rappel cours + tme 9:

- arbre couvrant : classique vs. arbre de Steiner
- problème ArbreCouvrantMin : glouton est optimal
- complexité en $O(m \log n)$ théorique; en $O(m \log n + n^2)$ en tme

AUJOURD'HUI:

- problème ArbreSteiner : NP-difficile
- heuristique du glouton avec réduction à ArbreCouvrantMin
- problème AllToAllPaths : en $O(n^3)$ par prog. dynamique
- techniques : glouton, programmation dynamique
- algorithmes : Kruskal, Floyd-Warshall

Réseaux connexe:

Réseaux connexe : budget

Steiner dans un graphe géométrique

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel; hitPoints sous liste de Points

OUT : arbre Tree, de poids total minimum, couvrant tous les points de hitPoints, dont tout sommet est dans Points, dont toute arête est de distance inférieur au seuil edgeThreshold.

Steiner dans un graphe géométrique

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel; hitPoints sous liste de Points

OUT : arbre Tree, de poids total minimum, couvrant tous les points de hitPoints, dont tout sommet est dans Points, dont toute arête est de distance inférieur au seuil edgeThreshold.

N.B.: Structure de graphe?

Théorème : ArbreSteiner est NP-difficile sur les graphes g'eom'etriques

Heuristique du glouton

PRINCIPE : construire un graphe complet K, dont les sommets sont hitPoints, dont toute arête uv (dans K) a pour poids la distance d'un plus court chemin entre u et v dans G. Principe de l'heuristique :

 $G \to {\rm Steiner}$ dans $K \leftrightarrow {\rm Kruskal}$ dans $K \leftrightarrow {\rm sous\text{-}graphe}~H$ dans $G \to {\rm Kruskal}$ dans H

Heuristique du glouton

PRINCIPE : construire un graphe complet K, dont les sommets sont hitPoints, dont toute arête uv (dans K) a pour poids la distance d'un plus court chemin entre u et v dans G. Principe de l'heuristique :

G o Steiner dans $K \leftrightarrow$ Kruskal dans $K \leftrightarrow$ sous-graphe H dans $G \to$ Kruskal dans H

EXERCICE: Pseudo-code?

Structure de données : chemins?

Chemin 1-to-1 : liste chaînée, tas, ...

Chemin all-to-all : matrice de distance + accès, p.e.

- dist[i][j] : distance dans G entre i et j
- paths[i][j] : le sommet k, successeur de i dans un plus court chemin de i à j

QUESTION : matrice d'accès \rightarrow liste chaînée?

Problème ALLTOALLPATHS

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel. Soit G le graphe géométrique représenté par la liste Points et le réel edgeThreshold

Out : matrices de distance et d'accès représentant les plus courts chemins dans G entre toute paire de points dans Points

EXERCICE: algorithme en $O(n^4)$?

PRINCIPE : soit M^p la matrice où $M^p(i,j)$ est la distance entre i et j des chemins utilisant au plus p sommets dans G. Question :

- procédure calculant $M^p \to M^{p+1}$?
- procédure calculant M^2 ?

Problème ALLTOALLPATHS

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel. Soit G le graphe géométrique représenté par la liste Points et le réel edgeThreshold

Out : matrices de distance et d'accès représentant les plus courts chemins dans G entre toute paire de points dans Points

EXERCICE: algorithme en $O(n^4)$?

PRINCIPE : soit M^p la matrice où $M^p(i,j)$ est la distance entre i et j des chemins utilisant au plus p sommets dans G. On a :

$$-M^{p+1}(i,j) = \min_k M^p(i,k) + M^2(k,j)$$

$$\sqrt{-M^2(i,j)} = (d(i,j) < \text{edgeThreshold})?d(i,j) : \infty$$

Problème ALLTOALLPATHS

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel. Soit G le graphe géométrique représenté par la liste Points et le réel edgeThreshold

Out : matrices de distance et d'accès représentant les plus courts chemins dans G entre toute paire de points dans Points

EXERCICE : complexité de l'algorithme suivant?

PRINCIPE : $M^p(i,j)$: distance entre i et j des chemins passant uniquement par les p premiers sommets de G, i.e. :

$$-M^{p+1}(i,j) = \min\left(M^p(i,j), M^p(i,p+1) + M^p(p+1,j)\right)$$

$$\downarrow -M^0(i,j) = (d(i,j) < \text{edgeThreshold})?d(i,j) : \infty$$

6

Rappel: cette technique a un nom: Programmation dynamique

Voyageur de commerce

IN : Points, une liste de coordonnées de points en 2D; edgeThresholh un réel. Soit G le graphe géométrique représenté par la liste Points et le réel edgeThreshold

OUT : permutation Circuit des points de Points, de distance consécutive totale minimum, dont toute paire consécutive de points a pour distance inférieure à edgeThreshold

QUESTION:

- complexité de l'algorithme brute-force?
- formule de récursion pour programmation dynamique?

Conclusion, question

CONCLUSION:

- ArbreSteiner : heuristique par ArbreCouvrantMin
- AllToallPaths : récursion de Floyd-Warshall

QUESTION:

- implantation? (voir TME)

