CORRIGÉ RISQUES MULTIPLES 1

Exercice 3.1 Démontrer que la fonction $C^{\perp}(u_1, u_2) = u_1 u_2$ avec $(u_1, u_2) \in [0, 1]^2$ est bien une copule. Elle se dénomme la copule produit.

La copule produit a pour expression $C^{\perp}(u_1, u_2) = u_1 u_2$ avec $(u_1, u_2) \in [0, 1]^2$. Elle est bien une fonction copule car:

- 1. $C^{\perp}(u,0) = C^{\perp}(0,u) = u * 0 = 0 * u = 0 \forall u \in [0,1],$
- 2. $C^{\perp}(u,1) = C^{\perp}(1,u) = u * 1 = 1 * u = u \ \forall u \in [0,1],$
- 3. C^{\perp} est 2-increasing : en effet $v_1v_2 u_1v_2 v_1u_2 + u_1u_2 = (v_1 u_1)(v_2 u_2) \ge 0 \ \forall (u_1, u_2) \in [0, 1]^2, (v_1, v_2) \in [0, 1]^2$ tel que $0 \le u_1 \le v_1 \le 1$ et $0 \le u_2 \le v_2 \le 1$.

Exercice 3.2 Soit la distribution logistique bivariée de Gumbel définie sur \mathbb{R}^2 par $F(x_1, x_2) = (1 + e^{-x_1} + e^{-x_2})^{-1}$. Extraire la fonction copule à l'aide du théorème de Sklar.

Les lois marginales sont définies par $F_1(x_1)=F(x_1,\infty)=(1+e^{-x_1})^{-1}$ et $F_2(x_2)=(1+e^{-x_2})^{-1}$. Nous obtenons les fonctions inverses suivantes :

$$F_1^{-1}(u_1) = \ln u_1 - \ln(1 - u_1) = \ln \frac{u_1}{1 - u_1}$$

$$F_2^{-1}(u_2) = \ln u_2 - \ln(1 - u_2)$$

Nous obtenons la fonction copule logistique de Gumbel suivante :

$$C(u_1, u_2) = F(F_1^{-1}(u_1), F_2^{-1}(u_2))$$

$$= \left(1 + \frac{1 - u_1}{u_1} + \frac{1 - u_2}{u_2}\right)^{-1} = \frac{u_1 u_2}{u_1 + u_2 - u_1 u_2}$$

Exercice 3.3 Déterminer si la copule logistique de Gumbel a des dépendances de queue à gauche et à droite.

La copule logistique de Gumbel a une dépendance de queue à gauche :

$$\lambda_L = \lim_{u \to 0^+} \frac{C(u, u)}{u} = \lim_{u \to 0^+} \frac{u^2}{2u^2 - u^3} = \lim_{u \to 0^+} \frac{1}{2 - u} = \frac{1}{2}$$

En revanche, elle n'a pas de dépendance de queue à droite :

$$\lambda_U = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u} = \lim_{u \to 1^-} \left(1 - 2u + \frac{u}{2 - u} \right) \frac{1}{1 - u}$$

$$= \lim_{u \to 1^-} \frac{(1 - 2u)(2 - u) + u}{(2 - u)(1 - u)} = \lim_{u \to 1^-} 2 \frac{1 - 2u + u^2}{(2 - u)(1 - u)}$$

$$= \lim_{u \to 1^-} 2 \frac{(1 - u)^2}{(2 - u)(1 - u)} = \lim_{u \to 1^-} 2 \frac{1 - u}{2 - u} = 0$$

Exercice 3.4 La copule logistique de Gumbel est un cas particulier d'une copule Archimédienne. Laquelle ? Même question pour la copule produit.

La copule logistique de Gumbel est un cas particulier de la copule Clayton pour $\theta=1.$ En effet :

$$C(u_1, u_2) = (u_1^{-1} + u_2^{-1} - 1)^{-1} = \frac{1}{\frac{1}{u_1} + \frac{1}{u_2} - 1}$$
$$= \frac{1}{\frac{u_2}{u_1 u_2} + \frac{u_1}{u_1 u_2} - \frac{u_1 u_2}{u_1 u_2}} = \frac{u_1 u_2}{u_1 + u_2 - u_1 u_2}$$

La copule produit est un cas particulier de la copule Gumbel pour $\theta=1.$ En effet :

$$C(u_1, u_2) = \exp[\ln u_1 + \ln u_2] = \exp[\ln(u_1 u_2)] = u_1 u_2$$