Teoría de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

19 de noviembre de 2022

Contenidos Generales

A _I	artados del libro	Página
Ι	Prefacios, Repaso y otras consideraciones	7
1.	Operaciones sobre los números reales	9
In	roducción	10
	1.1. Estructura de los números reales	11 13
2.	Polinomios sobre el cuerpo de los reales y ecuaciones	17
	2.1. Conceptos básicos	17
	2.2. Operaciones con polinomios	
	2.3. Divisibilidad de polinomios	17
3.	Ecuaciones polinómicas	19
	3.1. Ecuaciones lineales	19
	3.2. Ecuaciones parabólicas	19
	3.3. Ecuaciones de grado mayor que 2	20
4.	Inecuaciones	21
	4.1. Inecuaciones lineales	21
	4.2. Inecuaciones no lineales	21
II	Análisis Matemático	23
5 .	Preámbulos para análisis	25
	5.1. Topología sobre \mathbb{R}	26

6.	Cálculo de Límites	29
	6.1. Preámbulo sobre las sucesiones reales	30
	6.2. Definición y propiedades	30
7.	Las funciones sobre $\mathbb R$	31
	7.1. Definiciones previas	32
8.	Derivabilidad sobre \mathbb{R}	33
	8.1. Concepto de la derivada	
	8.2. Derivabilidad de una función	
	8.2.1. Estudio de la derivabilidad de una función	
	8.3. Tabla de derivadas	
	8.4. Algunas demostraciones de fórmulas de derivadas	
	8.5	37
9.	•	39
	9.1. Cálculo de mínimos y máximos	
	9.2. Cálculo de la curvatura de las funciones	
	9.3. Optimización de funciones	40
10	Representación de funciones	41
	10.1. Dominio	42
	10.2. Simetría y periodicidad	43
	10.3. Continuidad	43
	10.4. Corte con los ejes	43
	10.5. Asíntotas	43
	10.6. Monotonía	
	10.7. Curvatura	43
11	Integración sobre $\mathbb R$	45
II	I Ejercicios de Análisis Matemático	47
	· ·	
12	Representación de funciones	49
	Introducción	49
	12.1. Funciones polinómicas	
	12.2. Funciones racionales	
	12.3. Funciones irracionales	
	12.4. Funciones exponenciales	
	12.5. Funciones logarítmicas	50 50

CONTENIDOS GENERALES	5
IV Álgebra lineal	51
13. Espacios Vectoriales	53
14. Aplicaciones lineales	55
15.Matrices	57
16.Determinantes	59
17.Discusión de sistemas	61
V Cálculo de probabilidades	63
18.Probabilidades básicas	65
19. Variables aleatorias discretas	67
20. Variables aleatorias continuas	69

Parte I

Prefacios, Repaso y otras consideraciones

Operaciones sobre los números reales

Índice de	l capítulo	
1.1.	Estructura de los números reales	10
1.2.	Potencias y Logaritmos	11
1.3.	Resolución de ecuaciones exponenciales	13
1.4.	Resolución de ecuaciones logarítmicas	15

Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

Definición 1.1.1. Un cuerpo es una terna $(\mathbb{K}, +, \cdot)$ donde:

- 1. K es un conjunto de elementos
- 2. + es una operación sobre los elementos de \mathbb{K} que cumple:
 - Es una operación **conmutativa**, es decir, sean $a, b \in \mathbb{K}$ entonces tendremos que a + b = b + a
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que a + (b + c) = (a + b) + c
 - Existe un elemento neutro, es decir $\exists e/e+a=a+e=a \ \forall a \in \mathbb{K}$.
 - Cada elemento $a \in \mathbb{K}$ existe un elemento **inverso** que se denota por a^{-1} de tal manera que $a + a^{-1} = a^{-1} + a = e$ (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Existe un **elemento neutro** para esta operación $\exists e/e \cdot a = a \cdot e = a$ $\forall a \in \mathbb{K}$.
 - Para todo elemento $a \in \mathbb{K}$ entonces $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$ (Esto es lo que distingue un cuerpo a un anillo)
 - · es distributivo respecto de + es decir, $a \cdot (b+c) = a \cdot b + a \cdot b$

11

Aclaración 1: Aunque se denoten como $+, \cdot$ no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que \mathbb{R} y \mathbb{C} son cuerpos

1.2. Potencias y Logaritmos

Definición 1.2.1. Podemos definir las potencias como $a^n = \overbrace{a \cdot \ldots \cdot a}^n$. Una vez entendido esto tenemos las siguientes propiedades

Propiedades

1.
$$a^1 = a y a^0 = 1$$
 para cualquier $a \in \mathbb{R}$

2.
$$a^{-1} = \frac{1}{a}$$

3.
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

7.
$$(a \cdot b)^n = a^n \cdot b^n$$

8.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que $a^0=1$ es básicamente proveniente del álgebra $\mathbb Z$ modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos $a^1 \cdot a^{-1} = a^0 = 1 \Rightarrow a^{-1} = \frac{1}{a}$

- 3. Ahora tenemos que $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a^{n+m}}_{n \text{ veces}} = \underbrace{a^{m+n}}_{n \text{ veces}}$
- 4. Si combinamos la propiedad 2 y 3 queda probado $\frac{a^n}{a^m}=a^n\cdot\frac{1}{a^m}=a^n\cdot a^{-m}=a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir, $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{m \text{ veces}} = \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} =$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente $(a \cdot b)^n = \underbrace{a \cdot b \cdot \ldots \cdot a \cdot b}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} \cdot \underbrace{b \cdot \ldots \cdot b}_{\text{n veces}} = \underbrace{a^n \cdot b^n}_{\text{n veces}}$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por b^{-1}

Definición 1.2.2. Definimos el logaritmo de $b \in \mathbb{R}^+$ en base a > 0 de la siguiente manera

$$loq_a b = x \Leftrightarrow a^x = b \tag{1.1}$$

Esta definición nos permite "traducir" de logaritmos a potencias y es lo que se utiliza para demostrar las siguientes propiedades

Propiedades: Sean $P, Q, a \in \mathbb{R}^+$

- 1. $log_a 1 = 0$
- $2. log_a a = 1$
- 3. $log_a(P \cdot Q) = log_aP + log_aQ$
- 4. $log_a\left(\frac{P}{Q}\right) = log_aP log_aQ$
- $5. \log_a P^n = n \cdot \log_a P$

Ejercicio Propuesto. Se propone al lector la demostración de estas propiedades utilizando la definición de logaritmos y las propiedades de las potencias.

1.3. Resolución de ecuaciones exponenciales

Definición 1.3.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita en el exponente

$$a^x = b$$

Podemos distinguir los siguientes casos:

Ecuaciones donde la incógnita aparece en un solo exponente
 El procedimiento es intentar poner todos los elementos como potencias de la base que tiene la incógnita

$$2^{x+1} = 8$$
$$2^{x+1} = 2^3$$

Tras esto, podemos hacer el logaritmo de cada uno de los lados ya que $log_a P = log_a Q \Leftrightarrow P = Q$ en este caso a = 2 de tal forma que lo anterior nos queda:

$$2^{x+1} = 2^3$$
$$log_2(2^{x+1}) = log_2(2^3)$$
$$x + 1 = 3$$
$$x = 2$$

También puede que no podamos descomponer en potencias de una sola base entonces tenemos el siguiente caso.

$$2^x = 127$$

Entonces tomamos logaritmos para poder resolverlo

$$2^{x} = 127$$

$$log_{2}(2^{x}) = log_{2}(127)$$

$$x \cdot log_{2}(2) = log_{2}(127)$$

$$x = log_{2}(127)$$

A partir de aquí podemos utilizar un cambio de base de los logaritmos para poder usar el logaritmo en base 10 o e.

Ejercicio 1.3.1. Resuelve las siguientes ecuaciones.

a)
$$4^{x+1} - 8 = 0$$
 b) $3^{x+2} = 81$
c) $x + 1$ d) $e^x - 1 = 3$

■ Ecuaciones donde la incógnita está en más de una potencia El procedimiento es conseguir una expresión donde las potencias que tengan las incógnitas se reduzcan a las misma base y podamos hacer un cambio de variable $a^x = t$ que después desharemos como si fuera un caso como el anterior.

Vamos a resolver el siguiente ejemplo

$$2^{x+1} + 2^{x-1} + 2^x = 7$$

Para empezar pongamos todo como una combinación lineal de 2^x para ello aplicamos las propiedades de las potencias.

$$2^{x+1} + 2^{x-1} + 2^x = 7$$
$$2 \cdot 2^x + \frac{2^x}{2} + 2^x = 7$$

Ahora ya podemos tomar el cambio de variable $2^x = t$ de manera que obtenemos lo siguiente.

$$2 \cdot 2^{x} + \frac{2^{x}}{2} + 2^{x} = 7$$
$$2 \cdot t + \frac{t}{2} + t = 7$$

La anterior ecuación es una ecuación fácilmente resoluble por tanto, ya hemos obtenido lo que queríamos, reducir la dificultad del ejercicio.

$$2 \cdot t + \frac{t}{2} + t = 7$$
$$\frac{7}{2} \cdot t = 7$$
$$t = 2$$

Por tanto sabemos que t=2 lo que implica entonces que $2^x=t=2$ y al aplicar logaritmos a ambos lados de la igualdad y obtenemos que

$$log_2 2^x = log_2 2$$
$$x = 1$$

1.4. Resolución de ecuaciones logarítmicas

Definición 1.4.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita dentro de un logaritmo.

Polinomios sobre el cuerpo de los reales y ecuaciones

Índice de	l capítulo	
2.1.	Conceptos básicos	17
2.2.	Operaciones con polinomios	17
2.3.	Divisibilidad de polinomios	17

- 2.1. Conceptos básicos
- 2.2. Operaciones con polinomios
- 2.3. Divisibilidad de polinomios

18CAPÍTULO 2. POLINOMIOS SOBRE EL CUERPO DE LOS REALES Y ECUACIONES

Ecuaciones polinómicas

Índice del capítulo

3.1.	Ecuaciones lineales	19
3.2.	Ecuaciones parabólicas	19
3.3.	Ecuaciones de grado mayor que 2	20

3.1. Ecuaciones lineales

Una ecuación lineal es de la forma ax + b = 0 y es el tipo más simple que puede haber de ecuación. Para resolver este tipo de ecuaciones, hay que aplicar la operación inversa a ambos lados de tal manera que si tenemos

$$ax + b = 0$$

y restamos b a ambos lados obtenemos que

$$ax + b - b = -b \Rightarrow ax = -b$$

y ahora si dividimos cada lado entre a obtendremos que

$$\frac{ax}{a} = \frac{-b}{a} \Rightarrow x = \frac{-b}{a}$$

3.2. Ecuaciones parabólicas

La fórmula general de las ecuaciones de segundo grado o parabólicas son de la forma

$$ax^2 + bx + c = 0$$

Las soluciones de este tipo de ecuaciones en caso de tenerlas se calculan con la siguiente fórmula:

$$x = \frac{-b \pm \sqrt{-b^2 - 4ac}}{2a}$$

En el caso de que b c sean nulos entonces tendremos que:

• c = 0 Entonces tenemos $ax^2 + bx$ sacamos factor común a x.

$$ax^2 + bx = 0$$
$$x \cdot (ax + b) = 0$$

Entonces como el producto es igual a 0 entonces puede que uno de los factores sea 0.

$$ax + b = 0$$
$$x = 0$$

ullet b=0 En este caso se resuelve como una ecuación normal y al final aplicaremos una raíz cuadrada

$$ax^{2} + b = 0$$

$$ax^{2} = -b$$

$$x^{2} = \frac{-b}{a}$$

$$x = \pm \sqrt{\frac{-b}{a}}$$

3.3. Ecuaciones de grado mayor que 2

Las ecuaciones de grado mayor que 2 se resuelven de manera muy parecida a las ecuaciones de 2^0 grado con c=0 se factoriza el polinomio y se va buscando las raíces de cada factor. De esta manera, podemos resolver ecuaciones del grado que queramos.

Inecuaciones

4.1.	Inecuaciones lineales
4.2.	Inecuaciones no lineales

4.1. Inecuaciones lineales

4.2. Inecuaciones no lineales

Parte II Análisis Matemático

Preámbulos para análisis

Índice del	capítulo	
5.1.	Topología sobre $\mathbb R$	26

5.1. Topología sobre \mathbb{R}

La topología ocupa un lugar muy destacado cuando se trata del análisis matemático ya que es la rama que estudia que ocurre con ciertas propiedades de proximidad cuando a un conjunto le aplicas lo que hemos llamado funciones continuas en anteriores cursos.

Definición 5.1.1. Una **topología**, τ , sobre el conjunto A es una familia de subconjuntos de finita o no que cumple las siguientes características:

- $A y \emptyset$ pertenecen a τ .
- Dado $\{A_i\}_{i\in I}$ una familia arbitraria (puede ser finita o no) de elementos de τ entonces $\bigcup_{i\in I} A_i$ también pertenece a la topología.
- Dado $\{A_i\}_{i=0}^{i=k}$ una familia finita de elementos de la topología entonces $\bigcap_{i=0}^{i=k} A_i$ es también un elemento de la topología.

A esta forma de definir una topología lo llamamos definir una topología por *abiertos*, ya que a los elementos de la topología definida así se les llama conjuntos abiertos.

Ejercicio 5.1.1. Comprobar que \mathbb{R} con los intervalos abiertos es una topología.

Definición 5.1.2. Diremos que un conjunto es **cerrado** cuando su complementario sea abierto.

Aclaración: Un conjunto puede no ser ni abierto ni cerrado y puede ser los dos a la vez, como por ejemplo el \emptyset ya que su contrario que sería el total es abierto, pero como está en la topología τ , entonces es abierto. Ambas cosas no son contradictorias.

Ahora bien, supongamos que ya tenemos estas cualidades de espacio topológico, ahora vamos a definir lo que es un entorno abierto de un punto a.

Definición 5.1.3. Un entorno no es más que la vecindad de un punto (Los puntos cercanos a él), y diremos que un entorno E es abierto si $\forall x \in E$ existe un abierto que está contenido en el entorno.

Ahora nos falta definir una medida sobre \mathbb{R} que nos permita decir de manera clara y concisa lo que está y lo que no está en las vecindades del punto. La medida más habitual sobre \mathbb{R} es el valor absoluto.

27

Definición 5.1.4. Una medida es una aplicación

$$||: \quad \mathbb{R} \times \mathbb{R} \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad dist(x,y)$$

Que cumple las siguientes propiedades:

- $\forall x \in \mathbb{R}$ se cumple que dist(x,x) = 0
- $\forall x, y \in \mathbb{R}$ se cumple que dist(x, y) = dist(y, x)
- $\forall x, y, z \in \mathbb{R}$ se cumple que $dist(x, z) \leq dist(x, y) + dist(y, z)$ Es decir, el camino más corto es el camino directo entre dos puntos.

Ejercicio 5.1.2. Probar que el valor absoluto es una medida sobre los números reales.

Ahora, vamos a definir la principal definición para la que usamos la topología. Las funciones continuas.

Definición 5.1.5. Una aplicación

$$f: X \longrightarrow Y$$

Diremos que es continua si $\forall E$ abierto de B entonces se cumple que $f^{-1}(B)$ es oto conjunto abierto.

Esta definición nos quiere decir que este tipo de funciones lo que hace es mandar puntos que están cerca a puntos que siguen cerca por así decirlo, ya que un entorno de f(a) viene de un entorno de a.

Continuará...

Cálculo de Límites

Índice de	l capítulo	
6.1.	Preámbulo sobre las sucesiones reales	30
6.2.	Definición y propiedades	30

6.1. Preámbulo sobre las sucesiones reales

Definición 6.1.1. Definimos una sucesión de números reales $\{a_k\}$ como una aplicación de la forma:

$$\{a_k\}: \mathbb{N} \longrightarrow \mathbb{R}$$
 $k \longmapsto a_k$

Tenemos que tener claros unos cuantos conceptos sobre sucesiones antes de ponernos a definir lo que es una función o sucesión convergente y que es eso de convergente.

Definición 6.1.2. Se dice que una sucesión $\{a_n\}$ es convergente en \mathbb{R} , o que es convergente a $l \in \mathbb{R}$ o que su límite es l cuando si $\forall \varepsilon \geq 0$ y $\varepsilon \in \mathbb{R}$ $\exists n_0 \in \mathbb{N}$ de manera que cuando $n \leq n_0 \Leftarrow |l - a_n| \leq \varepsilon$

Aclaración: Una sucesión que sea convergente tiene un único límite.

Esta definición lo que nos dice es que cogiendo un ε arbitrariamente pequeño se puede encontrar un $n_0 \in \mathbb{N}$ de manera que la distancia entre el límite y un término posterior de $\{a_n\}$ a a_{n_0} es menor que ese ε

Podemos entonces extender esta definición a una aplicación del tipo

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

Entonces dejemos definido esta extensión a lo continuo

6.2. Definición y propiedades

Definición 6.2.1. Una función es convergente a l cuando $x \to a \ \forall \varepsilon \in \mathbb{R}$ entonces $\exists \delta \geq 0$ de manera que $|x - a| \leq \delta \Rightarrow |f(x) - f(a)| \leq 0$

Podemos definir de esta manera el límite ya que hemos definido la estructura de espacio métrico de $\mathbb R$ ya que como demostramos anteriormente esta aplicación es una distancia.

Ejercicio 6.2.1. Probar que la función $f(x) = x^2 + x + 1$ tiende a 1 en el punto x = 0

Demostración. Tomemos un $\varepsilon < 0$ entonces tomando como $\delta < min\{1, \frac{\varepsilon}{2}\} \Rightarrow \delta < 1 \Rightarrow \delta^2 < \delta$ por tanto, tenemos que $|x| < \delta$

$$|f(x) - 1| = |x^2 + x| \le |x^2| + |x| < \delta^2 + \delta < 2\delta < \varepsilon$$

Las funciones sobre \mathbb{R}

Índice del capítulo	
7.1. Definiciones previas	32

7.1. Definiciones previas

Definición 7.1.1. Una función f(x) es continua en un punto a cuando $\lim_{x\to a} f(x) = f(a)$. Es otra forma de definir la continuidad y es equivalente a la definición que se puede dar de una aplicación continua que dábamos en el apartado de topología.

Definición 7.1.2. Diremos que una función es continua si lo es en todos sus puntos.

Propiedades Se cumplen las siguientes propiedades asociadas a las funciones continuas:

- \blacksquare Dadas f y g dos funciones continuas entonces tendremos que f+g también es una función
- Dada f una función continua y $k \in \mathbb{R}$ entonces tenemos que $k \cdot f$ es una función continua también
- Dadas dos funciones f, g continuas tenemos que $f \cdot g$ también es continua
- La composición de funciones continuas f, g también es una función continua.

Ejercicio 7.1.1. Demostrar mediante las propiedades de los límites de linealidad y de conservación del producto.

Ejercicio 7.1.2. Comprueba si las siguientes funciones son continuas en x=2

$$a)f(x) = \frac{1}{x-2}$$
 $b)f(x) = \frac{3x-5}{x^2-4}$ $c)f(x) = \frac{x^2}{x^2+1}$ $d)f(x) = 3x^2 - \frac{2}{x}$

Comprobar que una función es continua en un punto x = a es únicamente comprobar que el $\lim_{x\to a} f(x) = f(a)$ por tanto hay que tener en cuenta cuando no existe un límite

Derivabilidad sobre \mathbb{R}

Índice del capítulo	
8.1. Concepto de la derivada	34
8.2. Derivabilidad de una función	35
8.2.1. Estudio de la derivabilidad de una función	35
8.3. Tabla de derivadas	36
8.4. Algunas demostraciones de fórmulas de derivadas	36
8.5	37

Concepto de la derivada 8.1.

Para empezar, tenemos que refrescar un concepto de geometría análitica, la pendiente de una recta

Definición 8.1.1. La pendiente de una recta en \mathbb{R}^2 (El plano real) se define como la cantidad de unidades que avanza la y por cada unidad que avanza la x. Es decir, definiendo el incremento de y como $y_1 - y_0 = \Delta y$ donde y_1 es la coordenada y del punto final y y_0 lo mismo pero del punto inicial. definimos de manera igual el Δx . Entonces definimos de manera matemática la fórmula de la pendiente como:

$$m = \frac{\Delta y}{\Delta x}$$

Ahora bien, sea f(x) una función de manera que $f: \mathbb{R} \longrightarrow \mathbb{R}$ de la cual queremos obtener la recta secante que pasa por unos determinados puntos $p_1 = (x_1, y_1), p_2 = (x_2, y_2)$. Entonces tendremos la siguiente gráfica: Tendremos entonces que la fórmula de la recta secante a la función que pasa

por esos dos puntos p_1, p_2 es la siguiente:

$$(y - f(x_1)) = \frac{\Delta f(x)}{\Delta x}(x - x_1)$$

Definición 8.1.2. A la pendiente de la recta secante a la función f(x) en los puntos x_1, x_2 se le conoce como **Tasa de Variación Media**

Supongamos ahora que escribimos $x_1 = x$ y $x_2 = x + h$ donde $h \in \mathbb{R}$ entonces la ecuación anterior queda como:

$$(y - f(x_1)) = \frac{f(x_1 + h) - f(x_1)}{h}(x - x_1)$$

Si después de esto, si hacemos que la $h \to 0$ obtendremos la recta tangente de manera que la pendiente $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$. Es ese límite lo que definimos como $Derivada\ de\ una\ función$.

Definición 8.1.3. Llamaremos derivada de f(x) en el punto a al límite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

35

8.2. Derivabilidad de una función

Definición 8.2.1. Diremos que una función es derivable en a si existe el límite $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

Definición 8.2.2. Diremos que una función es derivable si lo es en todos los puntos del dominio.

8.2.1. Estudio de la derivabilidad de una función

8.3. Tabla de derivadas

Para empezar hay que tener en cuenta estas derivadas de operaciones de funciones básicas, sumar y restar, producto y división, producto por un escalar y composición Sean $a\in\mathbb{R}$

8.4. Algunas demostraciones de fórmulas de derivadas

8.5.

8.5.

Aplicaciones de la derivada

Índice del capítulo				
9.1.	Cálculo de mínimos y máximos	40		
9.2.	Cálculo de la curvatura de las funciones	40		
9.3.	Optimización de funciones	40		

- 9.1. Cálculo de mínimos y máximos
- 9.2. Cálculo de la curvatura de las funciones
- 9.3. Optimización de funciones

Representación de funciones

Índice del capítulo	
10.1. Dominio	42
10.2. Simetría y periodicidad	43
10.3. Continuidad	43
10.4. Corte con los ejes	43
10.5. Asíntotas	43
10.6. Monotonía	43
10.7. Curvatura	43

10.1. Dominio

Recordemos lo que era el dominio de una función de manera precisa

Definición 10.1.1. El dominio de una función o aplicación $f: X \longrightarrow Y$ es el subconjunto de puntos $x \in X$ para el cual existe f(x).

Para que lo entendamos de nuevo la función f en el caso que nos ocupa es algo a lo que le entran números, la función hace una operación, (En el caso de 2x sería que lo multiplica por dos) y te devuelve ese valor operado. El dominio son los números que la función puede operar sin romperse, es decir, sin hacer cosas raras que no se pueden hacer en los números reales como por ejemplo:

- Dividir entre 0: Por tanto si tenemos una fracción habrá que comprobar cuando el denominador se hace 0. (Plantear la ecuación)
- Hacer la raíz de un número negativo: Para poder hacerlo tendríamos que extender nuestro campo a C lo cual ahora mismo se nos escapa de nuestro alcance. Se plantea la inecuación
- Hacer el logaritmo de un número negativo

Dominios de las funciones elementales

Ahora vamos a ir desmenuzando los tipos de funciones que conocemos y analizando su dominio:

- Funciones Polinómicas Son las funciones del tipo $a_n \cdot x^n + \ldots + a_o$ en este caso, su dominio es todo \mathbb{R} .
- Funciones Racionales Son las funciones del tipo $\frac{a_n \cdot x^n + \ldots + a_0}{b_m \cdot x^m + \ldots + b_0}$ en este caso, su dominio es todo \mathbb{R} , salvo los puntos en los que se anule el denominador, por o tanto hay que resolver la ecuación $b_m \cdot x^m + \ldots + b_0 = 0$.
- Funciones Irracionales Son las de tipo $f(x) = \sqrt[n]{g(x)}$ tenemos que el dominio de f(x) es:
 - El mismo que g(x) si n es impar
 - Si n es par el dominio de f(x) son los x que cumplen que g(x) > 0.
- Funciones Exponenciales Son de la forma $f(x) = a^{g(x)}$ con a > 0 y $a \neq 1$, su dominio es \mathbb{R} .

- Funciones Logarítmicas Son de la forma $f(x) = log_a g(x)$ a > 0 y su dominio son los x tales que g(x) > 0.
- Funciones Trigonométricas Circulares Tanto f(x) = cos(x) como f(x) = sen(x) su dominio es \mathbb{R} y de aquí se pueden considerar el resto de funciones trigonométricas.

10.2. Simetría y periodicidad

La simetría de una función se define de la siguiente manera:

Definición 10.2.1. Una función $f:A \longrightarrow \mathbb{R}$ es par si $\forall x \in A$ se cumple que f(-x) = f(x). Es decir, es simétrica respecto del eje de coordenadas OY

Definición 10.2.2. Una función $f: A \longrightarrow \mathbb{R}$ es impar si $\forall x \in A$ se cumple que f(-x) = f(x). Es decir, es simétrica respecto del origen de coordenadas

Estas cualidades lo que nos permiten es reducir el tamaño del conjunto de puntos a estudiar, en el caso de la simetría nos permite reducir a la parte positiva de los reales y la periodicidad a un solo periodo.

- 10.3. Continuidad
- 10.4. Corte con los ejes
- 10.5. Asíntotas
- 10.6. Monotonía
- 10.7. Curvatura

Capítulo 11 $\label{eq:capitulo}$ Integración sobre $\mathbb R$

Parte III Ejercicios de Análisis Matemático

Representación de funciones

Índice del capítulo

Introducción	49
12.1. Funciones polinómicas	49
12.2. Funciones racionales	50
12.3. Funciones irracionales	50
12.4. Funciones exponenciales	50
12.5. Funciones logarítmicas	50
12.6. Funciones trigonométricas	50

Introducción

En esta capítulo vamos a recopilar todo los conocimiento de análisis que hemos recopilado durante todos los temas anteriores

12.1. Funciones polinómicas

Ejercicio 12.1.1.

$$f(x) = \frac{2x}{1+x^2}$$

Demostración. Hola

- 12.2. Funciones racionales
- 12.3. Funciones irracionales
- 12.4. Funciones exponenciales
- 12.5. Funciones logarítmicas
- 12.6. Funciones trigonométricas

Parte IV Álgebra lineal

Capítulo 13 Espacios Vectoriales

Capítulo 14 Aplicaciones lineales

Matrices

Capítulo 16 Determinantes

Capítulo 17 Discusión de sistemas

Parte V Cálculo de probabilidades

Capítulo 18 Probabilidades básicas

Variables aleatorias discretas

Variables aleatorias continuas