ST451 Bayesian Machine Learning

Exercises

- 1. Let $y = (y_1, \ldots, y_n)$ be a random sample from a $N(\theta, \sigma^2)$ distribution with σ^2 known.
 - (a) Show that the likelihood is proportional to

$$f(y|\theta) \propto \exp\left(-\frac{n(\bar{y}-\theta)^2 + (n-1)S^2}{2\sigma^2}\right).$$

where \bar{x} is the sample mean and S^2 is the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}.$$

Hence the likelihood simplifies to

$$f(y|\theta) \propto \exp\left(-\frac{(\theta - \bar{y})^2}{2\frac{\sigma^2}{n}}\right)$$

- (b) Set the prior for θ to be $N(\mu, \tau^2 \sigma^2)$ and derive its posterior distribution. (You can use the above result)
- 2. Suppose that $y_i \sim N(\mu, 1)$ for i = 1, ..., n and that the y_i 's are independent.
 - (a) Show that the sample mean estimator $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n} y_i$ is obtained from minimising the least squares criterion

$$\hat{\mu}_1 = \underset{\mu}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \mu)^2,$$

and that $\hat{\mu}_1$ an unbiased estimator of μ . Also find the variance of $\hat{\mu}_1$.

(b) Consider adding a penalty term to the least squares criterion, and therefore using the estimator that minimises

$$\hat{\mu}_2 = \underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mu)^2 + \lambda \mu^2$$

for the mean, where λ is a non-negative tuning parameter. Derive $\hat{\mu}_2$, find it bias and show that its variance is lower than that of $\hat{\mu}_1$

- (c) Find a Bayes estimator assuming the $N(0, 1/\lambda)$ as prior for μ . Compare with your answer in the previous part.
- 3. Load the dataset 'diabetes' from the scikit-learn library in Python. Fit a linear regression and a ridge regression model and assess their predictive performance by splitting the data into a training and test dataset.

1