Eksamen i MAT1100, 8/12–03, Del 1

	KANDIDATNUMMER:
DATO:	Mandag 8/12, 2003.
TID:	KL. 9.00–12.00.
Vedlegg:	FORMELSAMLING.
TILLATTE HJELPEMIDLER: OPPGAVESETTET ER PÅ 2 SIDER.	Godkjent kalkulator.
OFFGAVESETTET ER FA 2 SIDER.	
hver. Det er bare ett riktig alterna svare på et spørsmål, får du 0 poeng av oppgavesettet består av 7 delspø	en ene delen inneholder 10 flervalgsoppgaver som teller 3 poeng ativ på hvert spørsmål. Dersom du svarer feil eller lar være å g. Du blir altså ikke "straffet" for å svare feil. Den andre delen ørsmål som teller 10 poeng hver. I denne delen må du grunngi å 0 poeng selv om de er riktige. Maksimalt oppnåelig poengsum
1) Integralet $\int x \cos(x^2) dx$ er lik:	
$ \begin{array}{c c} $	
$\sqcup \arccos(x^2) + C$	
$\frac{1}{2}\cos(x^2) + C$	
2) Integralet $\int \ln(x^2+1)dx$ er lik:	
$ (x^2 + 1) \ln(x^2 + 1) - (x^2 + 1) + $	C
	C
3-1-1	
3) Når vi substituerer $u = \arcsin x$	i integralet $\int_0^{1/2} e^{\arcsin x} dx$, får vi:
$\Box \int_0^{\pi/6} e^u du$	
	lting på uttrykket $\frac{x^3+2x-4}{(x-1)^3(x^2+x+5)}$ bør vi sette det lik:
$ \frac{Ax+B}{x-1} + \frac{Bx+C}{x^2+x+5} $ $ \frac{A}{(x-1)^3} + \frac{Bx+C}{x^2+x+5} $	
$\frac{A}{(x-1)^3} + \frac{Bx+C}{x^2+x+5}$	
$ \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{Dx+E}{x^2+x+5} $	
☐ Vi må først polynomdividere	

å

5) Det uegentlige integralet $\int_1^\infty \frac{1}{x(1+\ln^2 x)} dx$:	
6) Hvis $F(x) = \int_1^{x^2} \frac{\sin t}{t} dt$, så er $F'(x)$ lik:	
$ \begin{array}{c} \frac{\sin x^2}{x^2} \\ \frac{\sin x}{x} \\ \frac{\sin x}{x} \\ \int_1^{x^2} \frac{t \cos t - \sin t}{t^2} dt \\ 2x \sin x^2 \\ \frac{2 \sin x^2}{x} \end{array} $	
7) Finn den partiellderiverte $\frac{\partial f}{\partial x}$ når $f(x,y) = \arctan(x^2y)$:	
$ \begin{array}{c} \frac{1}{1+x^4y^2} \\ \frac{2xy}{\cos(x^2y)} \\ \frac{2xy}{1+x^4y^2} \\ \frac{2xy}{\sqrt{1-x^4y^2}} \\ \frac{2xy}{\sqrt{1-x^4y^2}} \\ \arctan(x^2y) \cdot 2xy \end{array} $	
8) Hvis $f(x,y)=3x^2y+6xy^3$, $\vec{a}=(2,1)$, $\vec{r}=(3,-1)$, så er den retningsderiverte $f'(\vec{a},\vec{r})$ li	ik:
$ \begin{array}{c} \square & 3 \\ \square & 102 \\ \square & 6 \\ \square & -6 \\ \square & 0 \end{array} $	
9) I hvilken retning vokser $f(x,y) = 6xy + 7x^2y$ hurtigst når vi står i punktet $(-1,2)$:	
$ \Box (-16,1) \Box (2,8) \Box (3,2) \Box (42,3) \Box (42,-3) $	
10) $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$ er lik:	
$ \begin{array}{c} \square & 0 \\ \square & -2 \\ \square & \text{finnes ikke} \\ \square & \infty \\ \square & 1 \end{array} $	