Chapitre 7 Les arbres

Module Structures de données et programmation C

2éme ANNEE LEESM

mlahby@gmail.com

26 mai 2021

Plan

- Génératlités sur sur les arbres
 - Définition
 - Terminologie et propriètés
 - Applications
 - Mesures sur les arbres
- 2 Les arbres binaires
 - Définition des arbres binaires
 - Arbres binaires particuliers
 - Implémentation d'un arbre binaire
 - Les primitives sur les arbres binaires
 - Les autres fonctions sur les arbres binaires
- 3 Les algorithmes de parcours

Définition

- Un arbre (tree en anglais) est une structure de données dynamique et non linéaire.
- Un arbre = ensemble de sommets ou noeuds tel que :
 - ∃ un sommet unique appelé racine r qui n'a pas de supérieur
 - Tous les autres sommets sont atteints à partir de r par une branche unique
- Représentattion graphique d'un arbre :

Terminologie et propriètés

- noeud = sommet
- racine= noeud sans père
- Une feuille est un sommet qui n'a pas de fils.
- branche : chemin entre 2 noeuds
- père d'un sommet : le prédécesseur d'un sommet
- fils d'un sommet : les successeurs d'un sommet
- frères : des sommets qui ont le même père
- Tout sommet x qui n'est pas la racine a :
 - un unique parent, noté parent(x) (appelé père parfois)
 - 0 ou plusieurs fils. fils(x) désigne l'ensemble des fils de x
- Si x et y sont des sommets tels que x soit sur le chemin de r à y alors
 - x est un ancêtre de y
 - ullet y est un descendant de imes

Terminologie et propriètés

⇒Exemple :

- 1 est la racine
- 4,5,6,9,8 sont les feuilles
- 9 est un descendant de 3, mais pas de 2
 - 3 est un ancêtre de 9.

- Modèle pour les structures hiérachisées :
 - Arbre familial
 - Arbre généalogique
 - Structure de fichiers sous linux ou windows
 - Organigramme d'une entreprise
- Les expressions arithmétiques
- En linguistique et en compilation (arbres syntaxiques).
- Gérer des bases de données
- Utilisation pour des algorithmes de recherches rapides et efficaces (tri par tas)
- Algorithmique du texte (Huffamn, prefix-trees): compression, recherche de motifs, détection de répétitions, ...
- Intelligence artificielle : arbres de décision
- Cryptoghraphie : algorithmes de recherche

⇒ Exemple 1 : Arbre généalogique

\Rightarrow Exemple 2 : Organigramme d'entreprise

⇒ Exemple 3 : Arborescence des fichiers sous linux

⇒ Exemple 4 : Evaluation d'une expression algébrique

L'évaluation de l'expression arithmétique x+y.(u+x)-u/z est représentée par l'arbre ci-dessous :

⇒ Exemple 5 : Arbre syntaxique

l'arbre suivant représente la structure de la phrase : for i := 1 to v = a + i

⇒ Exemple 6 : Intelligence artificielle : arbres de décision Modélisation et Création d'un Labyrinthe Rectangulaire en Deux Dimensions

Mesures sur les arbres

Arité d'un arbre

- L'arité d'un arbre représente le nombre maximum de fils qu'il possède pour un sommet donné.
- Un arbre dont les noeuds ne comporteront qu'au maximum n fils sera d'arité n.
 On parlera alors d'arbre n-aire.
- Il existe un cas particulièrement utilisé : c'est l'arbre binaire.
- ⇒ Exemple : Voici un arbre généalogique dont l'arité est 4

Mesures sur les arbres

La profondeur d'un sommet

- La profondeur (niveau) d'un noeud est la longueur de la branche depuis la racine
- La profondeur d'un sommet est définie récursivement par :
 - prof(v) = 0 si v est la racine
 - prof(v) = prof(parent(v)) + 1

La hauteur d'un sommet

 La hauteur d'un sommet est la plus grande profondeur d'une feuille du sous-arbre dont il est la racine

Autres mesures

- La hauteur d'un arbre est la hauteur de sa racine
- La taille d'un arbre est le nombre de ses sommets
- Le degré d'un noeud est le nombre de fils que possède ce noeud.

Mesures sur les arbres

⇒Exemple :

- 2,3 sont à la profondeur 1
- 4,5,6,7,8 sont à la profondeur 2
- La hauteur de 3 est 2, celle de 6 est 0, celle de 3 est 0, celle de 1 est 4
- La hauteur de l'arbre est 5
- La taille de l'arbre est 9

Définition des arbres binaires

Définition informelle

- Dans un arbre binaire tout noeud a au plus deux fils
- Un arbre binaire possède exactement deux sous-arbres (éventuellement vides)

Définition récursive

- Soit vide
- Soit composé
 - d'une racine r
 - de 2 sous arbres binaires ABG et ABD disjoints
 - * ABG : sous Arbre Binaire Gauche
 - * ABD : sous Arbre Binaire Droit

La notion de noeud

Définition

- Le noeud est le composant principal d'un arbre binaire
- Un noeud est une structure qui comporte trois champs :
 - Le champ valeur : il contient des informations sur l'élément représenté par la cellule;
 - Le champ ag: il représente un pointeur qui contient l'adresse du sous-arbre gauche
 - Le champ ad : il représente un pointeur qui contient l'adresse du sous-arbre droit

Représentation graphique d'un arbre binaire

⇒Définition informelle

Représentation graphique d'un arbre binaire

⇒Définition récursive

Arbres binaires particuliers

- Arbre binaire dégénéré, filiforme : Chaque noeud possède exactement un fils
 - → à éviter
- Arbre binaire complet (uniforme) : Chaque niveau est complètement rempli
 - Cela signifie, tout sommet est soit une feuille au dernier niveau, soit possède exactement 2 fils
 - → situation idéale
- Arbre binaire parfait (presque complet): Tous les niveaux sont complètement remplis sauf éventuellement le dernier et dans ce cas les feuilles sont le plus à gauche possible
- Arbre binaire équilibré : La différence de hauteur entre 2 frères ne peut dépasser 1

Arbres binaires particuliers

Arbre Parfait → situation idéale

Arbres binaires particuliers

Arbre dégénéré → Pire des situations

Arbres binaires particuliers

Arbre presque parfait

Arbres binaires particuliers

Arbre équilibré

Arbre binaire avec deux pointeurs sur ABG et ABD

- Un arbre binaire est soit :
 - un pointeur sur le noeud racine (arbre non vide)
 - le pointeur NULL (arbre vide)
- Un noeud est une structure à trois champs :
 - Une étiquette (valeur)
 - le sous-arbre gauche (ABG)
 - le sous-arbre droit (ABD)
- Avantages :
 - Définition récursive, simple à programmer,
 - la plus utilisée
- Inconvénients :
 - · consomme de la mémoire dynamique
 - Temps d'exécution lent.

Arbre binaire avec deux pointeurs sur ABG et ABD

Définition d'un arbre binaire

```
typedef int Element;
/* Définition du type noeud d'un arbre binaire */
typedef struct noeud{
    Element etiq; /*le champ etiq peut avoir n'importe quel type*/
    struct noeud *ag; /*pointeur contenant l'adresse du ABG*/
    struct noeud *ad; /*pointeur contenant l'adresse du ABD*/
}Tnoeud;
```

Déclaration d'un arbre binaire

- Pour déclarer une variable de type arbre, il suffit de déclarer un pointeur sur son noeud racine
- Exemple :

Tnoeud * Arb

Arbre binaire avec deux pointeurs sur ABG et ABD

\Rightarrow Exemple :

Tnoeud * Arb;

Arbre binaire avec un tableau

- Un arbre binaire est une structure à deux champs :
 - Un tableau où sont mémorisés les noeuds
 - Un entier qui donne l'indice de la racine dans le tableau
- Un noeud est une structure à trois champs :
 - L'étiquette du noeud
 - L'indice de son fils gauche (ou 0 si pas de fils gauche)
 - L'indice de son fils droit (ou 0 si pas de fils droit)
- Inconvénients :
 - Définition non récursive (arbre ≠ sous-arbre)
 - Utilisée uniquement si on traite un arbre unique

Implémentation d'un arbre binaire

Arbre binaire avec un tableau

Définition d'un arbre binaire

```
typedef int Element;
/* Définition du type noeud d'un arbre binaire */
typedef struct noeud{
    Element etiq; /*le champ etiq peut avoir n'importe quel type*/
    int fg; /*indice du ABG*/
    int fd; /*indice du ABD*/
}NOEUD;
/* Définition d'un arbre binaire */
typedef struct {
    NOEUD tab[TAILLE_MAX]; /*Tableau contenant les noeuds de l'arbre*/
    int racine; /*indice de la racine*/
}Tnoeud;
```

Déclaration d'un arbre binaire

• Pour déclarer un arbre, on utilise la syntaxe suivante :

Tnoeud * arb;

Arbre binaire avec un tableau

\Rightarrow Exemple :

Créer un arbre vide :Tnoeud *ArbreBinVide(void)

Définition de la fonction

```
Tnoeud *ArbreBinVide(void)
{
    Tnoeud * A;
    A=NULL;
    return(A);
}
```

Remarque

```
⇒ On peut faire typedef Tnoeud * arbreBin, dans ce l'entête devient : arbreBin ArbreBinVide(void) {
    arbreBin A;
    A=NULL;
    return(A);
}
```

Tester si l'arbre binaire est vide : int EstVide(Tnoeud * A)

- La fonction EstVide() teste si l'arbre est vide ou non,
- elle renvoie 1 si elle est vide, et 0 sinon.

Définition de la fonction

```
int EstVide(Tnoeud * A)
{
    if (A==NULL)
        return 1;
    else
        return 0;
}
```

Autre méthode

```
arbreBin EstVide(arbreBin A)
{    if (A==NULL)
        return 1;
    else
        return 0;
```

Créer un noeud : Tnoeud * CreerNoeud(Element e, Tnoeud *I, Tnoeud *r);

- La fonction CreerNoeud renvoie un arbre binaire dont la racine est e, le fils gauche est l et le fils droit r.
- elle renvoie un message d'erreur s'il n' y a pas assez d'espace.

Définition de la fonction

```
 \begin{split} & \mathsf{Tnoeud} * \mathsf{CreerNoeud}(\mathsf{Element}\ \mathsf{e},\ \mathsf{Tnoeud}\ \mathsf{*noeud}\ \mathsf{*r}) \\ & \{\mathsf{Tnoeud}\ \mathsf{*new}\ ; \\ & \mathsf{new} = (\mathsf{Tnoeud}\ \mathsf{*}) \mathsf{malloc}(\mathsf{sizof}(\mathsf{Tnoeud}))\ ; \\ & \mathsf{if}\ (\mathsf{new} = \mathsf{NULL}) \\ & \{\mathsf{printf}("\mathsf{Allocation}\ \mathsf{rat\'ee}\,!")\ ; \\ & \mathsf{exit}(-1)//\mathsf{pour}\ \mathsf{quitter}\ \mathsf{le}\ \mathsf{programme}\,; \\ & \} \\ & \mathsf{else} \\ & \{\mathsf{new} - \mathsf{>etiq} = \mathsf{e}\,; \\ & \mathsf{new} - \mathsf{>fg} = \mathsf{l}\,; \\ & \mathsf{new} - \mathsf{>fd} = \mathsf{r}\,; \\ & \mathsf{return}\ \mathsf{new}\,; \\ & \} \\ & \} \\ \end{aligned}
```

Créer une feuille : Tnoeud * CreerFeuille(Element e);

 La fonction CreerFeuille renvoie un arbre binaire dont la racine est e et les fils gauche et droit sont vides.

Définition de la fonction

```
Tnoeud * CreerFeuille(Element e)
      {
            return CreerNoeud(e,ArbreBinVide(),ArbreBinVide());
      }
```

Une autre solution

```
arbreBin CreerFeuille(Element e)
{arbreBin new;
new=(arbreBin)malloc(sizof(Tnoeud));
new->etiq=e;
new->fg=NULL;
new->fd=NULL;
return new;
}
```

Valeur de la racine : Element ValRacine(Tnoeud * A);

- La fonction ValRacine renvoie l'élément à la racine de l'arbre A s'il n'est pas vide
- Elle provoque une erreur si bt est vide.

Définition de la fonction

```
Element ValRacine(Tnoeud * A)
    {
        if (EstVide(A))
        {
            printf("Pas de noeud à la racine d'un arbre vide!!!");
            exit(-1)//pour quitter le programme;
        }
        else
        {
            return (A— >etiq);
        }
    }
}
```

Adresse du fils gauche :Tnoeud * FilsGauche(Tnoeud *A);

- La fonction FilsGauche renvoie l'adresse du fils gauche de A s'il n'est pas vide.
- Elle provoque une erreur si A est vide.

Définition de la fonction

Adresse du fils droit : Tnoeud * FilsDroit(Tnoeud *A);

- La fonction FilsDroit renvoie l'adresse du fils droit de A s'il n'est pas vide.
- Elle provoque une erreur si A est vide.

```
\label{eq:total_continuous} Tnoeud * FilsGauche(Tnoeud *bt) $$ \{$ if (EstVide(A)) $$ \{$ printf("Pas de fils droit dans un arbre vide!!!"); $$ exit(-1)//pour quitter le programme; $$ \}$ else $$ \{$ return (A->fd); $$ \}$
```

Tester si un noeud est une feuille : int EstFeuille(Tnoeud * F)

- La fonction EstFeuille() teste si un noeud est une feuille
- elle renvoie 1 si elle est une feuille, et 0 sinon.

Définition de la fonction

```
int EstFeuille(Tnoeud * F)
{
    if (A==NULL)
        return 0;
    if (A->fg==NULL && A->fd==NULL)
        return 1;
    else
        return 0;
}
```

Autre solution

```
\label{eq:continuous} $$\inf EstFeuille(arbreBin F) $$ \{ \\ return ! EstVide(F) && EstVide(FilsGauche(F)) && EstVide(FilsDroit(F)); \\ \} $$
```

Insérer une feuille comme comme fils droit d'un noeud void insertDroit(Tnoeud *n, Element e)

- La fonction insertDroit() insère une feuille contenant e comme fils droit de n.
- elle provoque une erreur si n est vide ou si son fils droit n'est pas vide.

```
void insertDroit(Tnoeud *n, Element e)
{
    if(!EstVide(n) && EstVide(FilsDroit(n)))
        n - >fd=CreerFeuille(e);
    else
        {
            printf("Impossible d'insérer un noeud comme un fils droit!!");
            exit(-1)//pour quitter le programme;
        }
}
```

Insérer une feuille comme comme fils gauche d noeud void insertGauche(Tnoeud *n, Element e)

- La fonction insertGauche() insère une feuille contenant e comme un fils gauche de n.
- elle provoque une erreur si n est vide ou si son fils gauche n'est pas vide.

```
void insertGauche(Tnoeud *n, Element e)
{
    if(!EstVide(n) && EstVide(FilsGauche(n)))
        n - >fg=CreerFeuille(e);
    else
        {
            printf("Impossible d'insérer un noeud comme un fils gauche!!");
            exit(-1)//pour quitter le programme;
        }
}
```

Supprimer un fils droit d'un noeud Element SupprimerDroit(Tnoeud *n)

- La fonction SupprimerDroit() supprime et renvoie la racine du fils droit de n si c'est une feuille
- Provoque une erreur si n est vide ou si son fils droit n'est pas une feuille.

```
Element SupprimerDroit(Tnoeud *n)
    Element res:
    if(EstVide(n) || !EstFeuille(FilsDroit(n)))
            printf("Impossible de supprimer le fils droit!!");
            exit(-1)//pour quitter le programme;
    else
            res=ValRacine(n->fd);
            n->fd=ArbreBinVide():
            return res:
```

Supprimer un fils gauche d'un noeud Element SupprimerGauche(Tnoeud *n)

- La fonction SupprimerGauche() supprime et renvoie la racine du fils gauche de n si c'est une feuille.
- Provoque une erreur si n est vide ou si son fils gauche n'est pas une feuille.

```
Element SupprimerGauche(Tnoeud *n)
    Element res:
    if(EstVide(n) || !EstFeuille(FilsGauche(n)))
            printf("Impossible de supprimer le fils gauche!!");
            exit(-1)//pour quitter le programme;
    else
            res=ValRacine(n->fg);
            n->fg=ArbreBinVide();
            return res:
```

Insèrer une feuille le plus à droite possible void insertDroitplusProfond(TNoeud **bt, Element e)

- La fonction insertDroitplusProfond() insère une feuille contenant e le plus à droite possible dans l'arbre *bt.
- Si l'abre est vide, l'insertion se fait à la racine.

```
void insertDroitplusProfond(TNoeud **bt, Element e)
{
    Tnoud * tmp;
    if(EstVide(*bt)
        *bt=CreerFeuille(e);
    else
    {
        tmp=*bt;
        while(!Estvide(FilsDroit(tmp)))
        tmp=FilsDroit(tmp);
        insertDroit(tmp,e);
    }
}
```

Supprimer le noeud le plus à gauche possible void SupprimerGaucheplusProfond(TNoeud **bt)

- La fonction SupprimerGaucheplusProfond() supprime (et renvoie sa racine) le noeud le plus à gauche possible dans l'arbre *bt.
- Provoque une erreur si *bt est vide. Peut supprimer la racine si elle est le noeud le plus à gauche.

```
void SupprimerGaucheplusProfond(TNoeud **bt){
    Tnoud * tmp:
    Element res;
    if(EstVide(*bt)
         printf("impossible!!!");
    if(EstVide(FilsGauche(*bt))){
           res=ValRacine(*bt);
           *bt=FilsDroit(*bt); }
    else{
           tmp=*bt;
           while(!Estvide(FilsGauche(FilsGauche(tmp))))
                tmp=FilsGauche(tmp);
           res=ValRacine(FilsGauche(tmp));
           tmp->fg=(tmp->fg)->fd;
    return res; }
```

Rechercher un élément : int Rechercher(Tnoeud *a, Element v)

```
\label{eq:continuous_section} \begin{tabular}{ll} int Rechercher(Tnoeud *a, Element v) & \{ & if (EstVide(a)) & & return 0; \\ if (a->etiq==v) & & return 1; \\ if (Rechercher(FilsGauche(a),v)) & & return 1; \\ return Rechercher(FilsDroit(a),v)) & & \\ \end{tabular}
```

Notion de parcours

Défintion

- Un parcours est un algorithme qui appelle une fonction, sur tous les noeuds (ou les sous arbres) d'un arbre.
- L'ordre sur les nœuds dans lequel la procédure est appelée doit être fixé.
- Il y a de nombreux choix possibles qui sont classés en deux familles :
 - Les algroithmes de parcours en largeur.
 - 2 Les algroithmes de parcours en profondeur.

Quelques exemples de fonctions

- affichage,
- liste des valeurs,
- modification
- etc

Parcours en profondeur

Défintion

Un parcours est dit en profondeur lorsque, systématiquement, si l'arbre n'est pas vide, le parcours de l'un des deux sous-arbres est terminé avant que ne commence celui de l'autre.

Les différents types

- On distingue trois types :
 - Parcours préfixe (Racine Gauche Droit)
 - \rightarrow le noeud racine est traité au premier passage avant le parcours des sous-arbres
 - Parcours infixe ou symétrique (Gauche Racine Droit)
 - → le noeud racine est traité au second passage après le parcours du sous-arbre gauche et avant le parcours du sous-arbre droit
 - 3 Parcours postfixe (Gauche Droit Racine)
 - ightarrow le noeud racine est traité au dernier passage après le parcours des sous-arbres

Parcours préfixe RGD

\Rightarrow Exemple :

Algorithme de parcours préfixe RGD

Principe du parcours préfixe :

- application d'une fonction F à la racine,
- parcours préfixe du sous-arbre gauche,
- parcours préfixe du sous-arbre droit

Code C :

```
void ParcoursPrefixe(Tnoeud * A)
    if (A!=NULL)
          printf("%d", ValRacine(A));
          ParcoursPrefixe(A - > fg);
          ParcoursPrefixe(A - > fd);
```

Parcours infixe GRD

\Rightarrow Exemple :

Algorithme de parcours infixe GRD

Principe du parcours infixe :

- parcours infixe du sous-arbre gauche,
- 2 application d'une fonction F à la racine,
- parcours infixe du sous-arbre droit

Code C:

Parcours postfixe GDR

\Rightarrow Exemple :

Algorithme de parcours postfixe GDR

Principe du parcours postfixe :

- parcours postfixe du sous-arbre gauche;
- parcours postfixe du sous-arbre droit;
- 3 application d'une fonction F à la racine.

Code C :

```
void ParcoursPostfixe(Tnoeud * A)
{
    if (A!=NULL)
        {
            ParcoursPostfixe(A->fg);
            ParcoursPostfixe(A->fd);
            printf("%d",ValRacine(A));
            }
}
```

Parcours en largeur

Définition

Un **parcours** est dit **en largeur** lorsqu'il procède en croissant selon les niveaux.

Voici un parcours en largeur de gauche à droite

29 170

48

Algorithme de parcours en largeur

 $\label{lde} \textbf{Id\'e} : on \ \text{remplace la pile d'appels par une file d'attente dans l'algorithme de parcours pr\'efixe}$

```
ParcoursEnLargeur (Tnoeud *A)
Début
    créer une file vide F
    SLA est non vide ALORS
         Enfiler A dans F
         Tant que (F non vide) faire
             A < -- Défiler(F)
             traitement(A)
             SI ABG de A non vide ALORS
                  Enfiler ABG de A dans E
             FSI
             SLABD de A non vide ALORS
                  Enfiler ABD de A dans E
             FSI
         FinTQ
    FSI
    détruire F
Fin
```