

Scanned by TapScanner

	20 PE = 38 × 10-30
	KT 1.33 × 10-23 × 18
	$= \left[1.12 \times 10^3\right]$
	% N2 = e 1120
	NJ 1
	[NI = 61130]
	LN2
	= 10 1120 = 1 Ams
4.	Colculate the ratio of spontaneous Emission to Sumulate
	Emission of wewelength of addiction emission in
	5500A° at 2000K (Criven h= 6.602 × 10-39Js and
	k= 1.38 × 10-23 S.I. Units)
2	
)oln	1= 5500 × 10-10 m
	T = 2000 K
	K= 1.38 X 10-23
-	"o" We know that
-	Frequency - x speed of light
+	wwelength
+	= 3×10%
-	5500 V10-10
-	
	= 0.05 × 1016
	[19 = 5× 1014]
	NI = @ 5500 X10-10 X 5 X 10+14/2000 X 1.38 X10-23
	N ₂
	Scanned by TanScannel

Carolina 44	STATE OF THE STATE
Ans 5.	Cohesent length (l) = C. Dt C= 3×108 m/s Dt = 26.7 ×10-9
	$C = 3 \times 10^8 \text{ m/s}$ $\Delta t = 26.7 \times 10^{-9}$
	l= 3×108×26.7×10-9
	$= 80.1 \times 10^{-4} = 8.01 \text{ m}$
	THE PART OF THE PROPERTY OF TH
The sales of the sales	Teacher's Singnatur

	Subject
6.	In a He-Ne lases Beam, the two plane misous free
	the presponte conitre are at a distance are at a
	Find the mode separation of longitudinal cavity in
	forms of frequency.
(a)	
101	$\frac{21}{\epsilon}$
	fi= nc +0
	21
	$f_2 = (n+1)c - f_2$
	ZL From Egr () and ()
-	
-	$g = F_2 - F_1 = \Delta U$
	$= \frac{nc}{2L} + \frac{c}{2L} - \frac{nc}{2L}$
	$f_{2}-f_{1}=c$
	2 L]
+	% F2-F, = 3×108 L= 0.5 m [Galven)
+	2 x 0.5
+	
+	= 3×108 Hz Am
-	
-	
-	

S	ubject
9	A step index optical fibre has stefrative index of n ₂ = 1.458 and stellative index $\Delta = 10\%$ fine its bical and maximum angle of acceptance.
Soin	Acceptance angle => $\sin \alpha = \sqrt{n_1^2 - n_2^2 - 0}$
	Numerical acceptance =)
	$NA = n_1 \sqrt{RA} - 2$
	So, $\Delta = m_1 - m_2$ n_1
	$10 = n_1 - 1.458$ n_1
	$10n_1 = n_1 - 1.458$ $9n_1 = -1.458$
	$\left[\begin{array}{c} n_1 = -1.458 \\ \hline 9 \end{array}\right] - 3$
	Putting Eq3 into 0
	Sin 0 = 10.026 - 2.125
	$SinO \cong \sqrt{-2}$
	$Sin0 = 1.4 i$ $\left[Q = Sin^{-1} \left(\frac{1}{5} i \right) \right] Ans$

Scanned by TapScanner

	Date:
	Subject
(B)	Consider the step index fibes with $n_2 = 1.46$ $b = 0.0015$ and gradius = $a = Sum$. Show that
	1>1-40 um, it is a single mode fibe.
2	$V_{num} = 2\pi na \int_{-2}^{2} \Delta$
	$= 2 \times 3.14 \times 1.46 \times 5 \times \sqrt{3.000015}$
	1.5
	= 30.56 × J 0.003
	= 30.56 × 1.734
	1000
	· Vnum = 1.739
	which in loss than 2,405
	30, it in Single mode Optical fibre.
	Hence proved.

Scanned by TapScanner

Scanned by TapScanner