

Module 12 Serial Peripheral Interface (SPI)

15th February 2025

Before Getting Onto SPI

Time Duration For The Experiment – 45 Mins

Serial Peripheral Interface

SPI (Serial Peripheral Interface) is a synchronous serial communication interface

- Specifies a 4-wire protocol for point-to-point communication
- Master-slave architecture where master controls all communications

SPI Communication Interface

Timing Diagram

SPI in STM32

Figure 192. SPI block diagram

- Data is transmitted and received through the shift register using MOSI and MISO lines.
- The Rx buffer stores received data, while the Tx buffer holds data before transmission.
- SPI_CR1 and SPI_CR2 configure SPI settings, while SPI_SR indicates status and errors.
- The baud rate generator controls the speed of communication based on BR[2:0] settings.
- The NSS (Slave Select) pin manages multi-device communication by enabling/disabling slaves.
- Data transfer occurs synchronously, with the master generating the clock signal via SCK.

SPI Modes

Mode	CPOL	СРНА	Clock Idle State	Data Sampling
Mode 0	0	0	Low (0)	Capture on Rising Edge
Mode 1	0	1	Low (0)	Capture on Falling Edge
Mode 2	1	0	High (1)	Capture on Falling Edge
Mode 3	1	1	High (1)	Capture on Rising Edge

SPI Control Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	DFF	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	l

Bit	Bit Name	Description	Use Case
15	BIDIMODE	Bidirectional Data Mode	Used when a device supports only a
		1 = Half-duplex (single wire for Tx/Rx)	single data line (e.g., some sensors
		0 = Full-duplex (separate lines for Tx	that use half-duplex SPI).
		and Rx)	
14	BIDIOE	Output Enable in Bidirectional	If the device is in half-duplex mode
		Mode	and should only transmit data, set
		1 = Transmit-only	this bit.
		0 = Receive-only	
13	CRCEN	Enable CRC Calculation	Used in applications where data
		1 = CRC enabled	integrity is critical, such as
		0 = CRC disabled	industrial automation.
12	CRCNEXT	Transmit CRC Next	Used when CRC is enabled and the
		1 = Send CRC after last data byte	master must transmit the CRC
		0 = Normal operation	value at the end.
11	DFF	Data Frame Format	If the device communicates using
		1 = 16-bit data format	16-bit words (e.g., ADCs with 16-bit
		0 = 8-bit data format	output), set this bit.
10	RXONLY	Receive-Only Mode	Used when SPI is reading data from
		1 = Only receive data (MISO active,	a sensor (e.g., a temperature
		MOSI ignored)	sensor) and doesn't need to send
		0 = Normal mode	data.

SPI Control Register

Bit	Bit Name	Description	Use Case
9	SSM	Software NSS Management 1 = Software controls NSS pin 0 = Hardware controls NSS	Used when a software-controlled NSS signal is needed instead of hardware control.
8	SSI	Internal Slave Select (Used with SSM=1) 1 = NSS internally high (Master mode) 0 = NSS internally low (Slave mode)	Used when SPI is in master mode and doesn't have a physical NSS pin.
7	LSBFIRST	Data Transmission Order 1 = LSB first 0 = MSB first	Some devices require LSB-first communication (e.g., certain legacy EEPROMs).
6	SPE	Enable SPI Peripheral 1 = SPI enabled 0 = SPI disabled	SPI must be enabled before starting communication.
5:3	BR[2:0]	Baud Rate Control 000 = fPCLK/2 001 = fPCLK/4 111 = fPCLK/256	Used to adjust SPI speed according to the slave device's timing requirements.
2	MSTR	Master Selection 1 = Master 0 = Slave	Set this if the microcontroller should act as an SPI master.
1	CPOL	Clock Polarity 1 = Clock idle HIGH 0 = Clock idle LOW	Different SPI devices require different CPOL values; check the slave device's datasheet.
0	СРНА	Clock Phase 1 = Sample on second edge	Some devices require CPHA=1 for correct timing.

SPI Control Register - 2

Bit	Bit Name	Description	Use Case
7	TXEIE	Transmit Buffer Empty Interrupt Enable 1 = Interrupt when TX buffer is empty 0 = No interrupt	Used in applications requiring non- blocking SPI transmission via interrupts.
6	RXNEIE	Receive Buffer Not Empty Interrupt Enable 1 = Interrupt when RX buffer has data 0 = No interrupt	Used to notify the processor when new data arrives (e.g., from a sensor).
5	ERRIE	Error Interrupt Enable 1 = Interrupt on SPI error 0 = No interrupt	Used when error handling is critical, e.g., in safety-critical systems.
4	Reserved	Always 0	Reserved for future use.
3	FRF	Frame Format 1 = TI mode 0 = Motorola SPI mode	Used when interfacing with devices that follow the TI protocol.
2	SSOE	Slave Select Output Enable 1 = NSS forced low in master mode 0 = Normal NSS behavior	Used in multi-slave setups where NSS must be actively controlled by the master.
1	TXDMAEN	Enable DMA for Transmission 1 = DMA enabled 0 = DMA disabled	Used in high-speed SPI communication to offload processing from the CPU.
0	RXDMAEN	Enable DMA for Reception 1 = DMA enabled 0 = DMA disabled	Used when receiving a continuous data stream from a sensor.

Serial Peripheral Interface

15	14	13	12	11	10	9	. 8	. 7	. 6	. 5	4	3	2	1	0
			Reserved	ı			FRE	BSY	OVR	MODF	CRC ERR	UDR	CHSIDE	TXE	RXNE
							r	r	r	r	rc_w0	r	r	r	r

Bit	Bit Name	Description	Use Case
7	BSY	SPI Busy Flag1 = SPI is busy0 = SPI is idle	Check this flag before starting new communication.
6	OVR	Overrun Error Flag1 = Data overflowed0 = No error	If the SPI is too slow in reading data, this flag is set. Clear it to resume operation.
5	MODF	Mode Fault (Only in Master Mode)1 = NSS pulled low due to incorrect mode0 = No fault	Occurs when multiple masters drive the SPI bus incorrectly.
4	CRCERR	CRC Error1 = CRC mismatch0 = CRC correct	Used in applications where data integrity is critical.
2	TXE	Transmit Buffer Empty1 = TX buffer empty0 = Data still in TX buffer	Check before writing new data to avoid overwriting unsent data.
1	RXNE	Receive Buffer Not Empty1 = Data available0 = No data	Check this before reading data to avoid reading invalid values.

Baud Rate Generation

Baud Rate Generation

BR[2:0] Value	Prescaler	SPI Clock (f_{SPI})
000	$f_{PCLK}/2$	Fastest
001	$f_{PCLK}/4$	
010	$f_{PCLK}/8$	
011	$f_{PCLK}/16$	
100	$f_{PCLK}/32$	
101	$f_{PCLK}/64$	
110	$f_{PCLK}/128$	
111	$f_{PCLK}/256$	Slowest

SPI CONFIGURATION SEQUENCE

- Enable the SPI peripheral clock by setting the corresponding SPIxEN bit in the RCC register.
- Configure GPIO pins for SPI functions by setting them to Alternate Function mode and adjusting speed and pull settings.
- Configure NSS pin as GPIO output. Set the GPIO NSS pin as high.
- Set the SPI control registers by selecting baud rate, SPI mode (CPOL & CPHA), master or slave mode, and data format.
- Enable the SPI peripheral by setting the SPE bit in the SPI_CR1 register.
- Configure NSS pin as low.
- Transmit and receive data by checking the TXE and RXNE flags in SPI_SR and writing or reading from SPI_DR.
- Configure NSS Pin as high
- Disable the SPI peripheral by clearing the SPE bit in SPI_CR1 when communication is complete.