Intercepts of the Quadratic

 $p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the p-intercepts of multiplicity 1. h(0) = c computes the single h-intercept.

Given a quadratic $h(p) = a p^2 + b p + c$ compute its discriminant \triangle :

$$D_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$$
 computes the p-intercepts of multiplicity 1.
 $D_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the p-intercept.

Example 1. $h(p) = p^2 - p - 42$ compute its discriminant \triangle :

$$\triangle=169>0$$
 $p_{1,2}=-6.7$

$$p_{1,2} = -6,7$$

 $h(0) = -42$ h-intercept.

-50

-100

 $h(p) = 3p^2 + 24p + 48$ compute its discriminant \triangle :

10

p-intercept 2

$p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single p-intercept of multiplicity 2. Example 2.

no p-intercepts.

h(0) = 500 h-intercept.

 $\triangle = -1600 < 0$

However there is a h-intercept.

Case2: △=0

-10

p-intercept 1

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Example 3. $h(p) = 4p^2 + 80p + 500$ compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,_-\,\!\mathsf{4}\,\!\mathsf{ac}}$ has no value in Real Numbers. Therefore there are