Discovering Knowledge in Data

Daniel T. Larose, Ph.D.

Chapter 2 Data Preprocessing

Prepared by James Steck and Eric Flores

CRISP-DM Review

- This chapter (chapter 2) examines phases 2 and 3 of the CRISP-DM process
- Chapter 3 expands on the Data Understanding phase
- Chapter 4 and above focus on Modeling

Why Do We Preprocess Data?

- Raw data is often unprocessed, incomplete, or noisy.
- May contain:
 - Obsolete/redundant fields
 - Missing values
 - Outliers
 - Data in form not suitable for data mining
 - Values not consistent with policy or common sense

Why Do We Preprocess Data? (cont'd)

- For data mining purposes, database values must undergo data cleaning and data transformation
- Data often from legacy (out-dated) databases where values:
 - Not looked at in years
 - Expired
 - No longer relevant
 - Missing
- Minimize GIGO (Garbage In → Garbage Out)
 - IF Garbage Into model is minimized →
 THEN Garbage results Out from model is minimized
- Effort for Data preparation ranges around 10%-60% of data mining process – depending on dataset

Data Cleaning – Example

TABLE 2.1 Can You Find Any Problems in This Tiny Data Set?

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	75000	С	M	5000
1002	J2S7K7	F	-40000	40	W	4000
1003	90210		10000000	45	S	7000
1004	6269	M	50000	0	S	1000
1005	55101	F	99999	30	D	3000

CustomerID field is assumed to be fine; But Zip Code, Gender?

Zip Code

- Do not assume local format
 - 90210 (U.S.) vs. J2S7K7 (Canada)
 - In a free trade era should expect some unusual values
- Be aware of data type/conversion issues
 - Zip code 06269 stored in numeric field truncates the leading zeroes, and thus, is represented as 6269 (Zip Code for Storrs, CT)

Gender

 Value is missing for customer 1003

Data Cleaning - Example (cont'd)

TABLE 2.1 Can You Find Any Problems in This Tiny Data Set?

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	75000	С	M	5000
1002	J2S7K7	F	40000	40	W	4000
1003	90210		10000000	45	S	7000
1004	6269	\mathbf{M}	50000	0	S	1000
1005	55101	F	99999	30	D	3000

Income Field Contains \$10,000,000?

- Possibly valid on zip code 90210 (Beverly Hills, CA)
- Still considered <u>outlier</u> (extreme data value) - Some statistical and data mining methods negatively affected by outliers
- Handling of outliers examined later in this chapter

Income Field Contains -\$40,000?

- Income less than \$0?
- Value beyond bounds for expected income, therefore an error
- Caused by data entry error?
- Discuss anomaly with database administrator

Income Field Contains \$99,999?

- Value may be valid, but...other values appear rounded to nearest \$5,000
- Legacy Systems: Value represents database code used to denote missing value?

Other considerations for Income

- Confirm values in expected unit of measure, such as U.S. dollars
- Which unit of measure for income?
- Customer with zip code J2S7K7 in Canadian dollars?

Data Cleaning – Example (cont'd)

TABLE 2.1 Can You Find Any Problems in This Tiny Data Set?

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	75000	С	M	5000
1002	J2S7K7	F	-40000	40	W	4000
1003	90210		10000000	45	S	7000
1004	6269	\mathbf{M}	50000	0	S	1000
1005	55101	F	99999	30	D	3000

Age field contains C

- Possible a leftover of earlier categorization of age into a bin labeled C?
- Data Mining software will likely reject a text value on an otherwise numeric field – this needs resolution

Age field contains 0 (zero)

- Unlikely: A newborn baby made \$1000 transaction
- Most probably: Missing value or other anomalous condition coded as 0 (zero)
- Important: Age value will quickly become obsolete; it is recommended to store date type fields (like birthdate) instead, and calculate age as needed

Marital Status Field

- What is the meaning of the symbols?
- Don't make assumptions: Is S for Single or Separated?
- Consider possibility of codes using words from another language: C is for Cold in English, and Chaud (Hot) in French

Transaction Amount Field

 Values in this fields seems OK, assuming common unit of measure

Handling Missing Data

- Missing values pose problems to data analysis methods
- More common in databases containing large number of fields
- Absence of information rarely beneficial to task of analysis
- In contrast, all things being equal, having more data is almost always better
- Careful analysis required to handle issue

Suppose you are given a cars dataset containing records for 261 automobiles manufactured in 1970s and 1980s

Suppose that some fields are missing for certain records, like in

figure below:

	mpg	cubicinches	hp	brand
1	14.000	350	165	US
2	31.900		71	Europe
3	17.000	302	140	US
4	15.000	400	150	
5	37.700	89	62	Japan

- Delete Records Containing Missing Values?
 - Dangerous, as pattern of missing values may be systematic
 - Valuable information in other fields lost
 - As much as 80% of the records lost, if only 5% of data values are missing, according to Schmueli, Patel, and Bruce [1].
- Three alternative methods available Not entirely satisfactory
- Data imputation methods Better approach

- Alternative Method #I Replace Missing Values with a Constant, specified by the Analyst
- Example:
 - Missing numeric values are replaced with 0.0
 - Missing categorical values are replaced with "Missing"

	mpg	cubicinches	hp	brand
1	14.000	350	165	US
2	31.900	0	71	Europe
3	17.000	302	140	US
4	15.000	400	150	Missing
5	37.700	89	62	Japan

- Alternative Method #2 Replace Missing Values with <u>Mode</u> or <u>Mean</u>
- Example:
 - Mode of <u>categorical</u> field brand = US
 - Missing values are replaced with this value
 - Mean for non-missing values in <u>numeric</u> field *cubicinches* = 200.65
 - Missing values are replaced with 200.65

	mpg	cubicinches	hp	brand
1	14.000	350	165	US
2	31.900	200.65	71	Europe
3	17.000	302	140	US
4	15.000	400	150	US
5	37.700	89	62	Japan

- Notes on Alternative Method #2 Replace Missing Values with <u>Mode</u> or <u>Mean</u>
 - Substituting mode or mean for missing values sometimes works
 well however, end user needs to be informed.
 - Mean is not always the best choice for "typical" value.
 - For example, the mean maybe greater than 80-th percentile.
 - Resulting confidence levels for statistical inference become overoptimistic (Larose), since measures of spread are artificially reduced.
 - Benefits and drawbacks resulting from the replacement of missing values must be carefully evaluated against possible invalidity of results.

- Alternative Method #3 Replace Missing Values with Random Values
 - Example: Value for cylinders, cubicinches, and hp randomly drawn proportionately from each field's distribution
 - Values randomly taken from underlying distribution
 - Benefit: Measures of location and spread remain closer to original
 - No guarantee that resulting records would make sense (see side note)

This record leads to a car that does not exist!

Japanese car with 400cc engine

	mpg	cubicinches	hp	brand
1	14.000	350	165	US
2	31.900	450	71	Europe
3	17.000	302	140	US
4	15.000	400	150	Japan
5	37.700	89	62	Japan

- Data Imputation Methods
 - Imputation of Missing Data What is the likely value, given record's other attribute values?
 - Example: From two samples below, American car would be expected to have more cylinders
 - American car with 300 cubic inches and 150 horsepower
 - Japanese car with 100 cubic inches and 90 horsepower
 - Requires tools like multiple regression, or classification and regression trees
 - To be discussed in Chapter 13 Imputation of Missing Data

Identifying Misclassifications

- Check classification labels to verify values are valid and consistent
- Example: Table below Frequency distribution for origin of manufacture of automobiles
 - Frequency distribution shows four classes: USA, France, US, and Europe.
 - Count for USA = 1 and France = 1.
 - Two records classified inconsistently with respect to origin of the manufacture.
 - Maintain consistency by labeling USA \rightarrow US, and France \rightarrow Europe.

Brand	Frequency
USA	1
France	1
US	156
Europe	46

Graphical Methods for Identifying Outliers

- Outliers are extreme values that go against the trend of the remaining data
- Outliers may represent errors in data entry
- Even if valid data point, certain statistical methods are very sensitive to outliers and may produce unstable results
- Two graphical methods presented

Graphical Methods for Identifying Outliers (cont'd)

- Method #I Histogram
 - A <u>histogram</u> examines values of <u>numeric</u> fields (good for onedimensional data)
 - Example: Histogram shows vehicle weights for a cars data set
 - The extreme left-tail contains one outlier weighing several hundred pounds (192.5)
 - Should we doubt validity of this value? This is too light for a car.
 - Possibility: Original value was 1925 pounds. Requires further investigation.

Graphical Methods for Identifying Outliers (cont'd)

- Method #2 Two (or three)-dimensional Scatter Plot
 - Two (or three)-dimensional scatter plots help determine outliers in two (or three) dimensions.
 - Example: Scatter plot of mpg against weight (lbs) shows two possible outliers
 - Most data points cluster together along x-axis
 - However, one car weighs 192.5 pounds and other gets over 500 miles per gallon!

• Important: A record may be outlier in a particular dimension, but not in the

other

Measures of Center and Spread

Measures of center (1/5) - Introduction

- Estimate where the center of a particular variable's distribution lies
- Most common measures of center
 - Mean, Median and Mode
 - They are a special case of *measures of location*, which indicate where a numeric variables lies.

Measures of center (2/5) - Mean

- Average of the valid values for a random variable
 - Add all field values and divide by sample size
 - Denoted as \bar{x} (x-bar) and computed as:

$$\bar{x} = \frac{\sum x}{n}$$

- Where
 - ∑ represents "sum of all variables"
 - n represents sample size

Measures of center (3/5) - Example

 From the table below, use the Sum and Count to calculate the Mean

$$\bar{x} = \frac{\sum x}{n} = \frac{5209}{3333} = 1.563$$

Population: Number of calls made by each customer

■ Customer Service Calls

	Count	3333
	Mean	1.563
İ	Sum	5209.000
	Median	1
	Mode	1

Measures of center (4/5) – Alternatives

- Mean is not always ideal
 - On extremely skewed datasets, it is less representative of variable center; it is also sensitive to outliers
- Alternative measures of center
 - Median Field value in the middle, when field values are sorted into ascending order
 - Mode Field value occurring with the greatest frequency
 - Pros: Can be used with either numerical or categorical data
 - Cons: Not always associated with the variable center

Measures of center (5/5) – Further notes

- Measures of center do not always concur
- Example: Table below
 - Median is I Half the customers made one customer service call
 - Mode is I Most frequent number of calls is one
 - But Mean is 1.563 (56.3% higher than median/mode) Caused by the mean sensitivity to the right-skewness of the data

■ Customer Service Calls

Population: Number of Count

calls made by each customer

Count	3333
Mean	1.563
- Sum	5209.000
Median	1
Mode	1

Measures of Center and Spread

Measures of Spread (1/5) - Introduction

- Measures of location not enough to summarize a variable
- Example: Table with Price/Earning (P/E) ratios for two portfolios
 - Portfolio A Spread with one very low and one very high P/E value
 - Portfolio B Tightly clustered around the center
 - P/E ratios for each portfolio is distinctly different, yet **they both** have P/E ratios with mean 10, median 11 and mode 11.
- Clearly, measures of center do not provide a complete picture
- Measures of spread or measures of variability complete the picture by describing how spread the data values of each portfolio are

Stock Portfolio A	Stock Portfolio B	
1	7 —	P/E ratio for the first stock
11	8	
11	11	
11	11	
16	13	Discovering Knowledge in Data: An Introduction to Data Mining, Seby Daniel Larose and Chantal Larose, John Wiley and Sons, Inc., 2

to Data Mining, Second Edition,

Measures of Center and Spread

Measures of Spread (2/5) - Introduction

- Typical measures of variability include
 - Range (maximum minimum)
 - Standard Deviation Sensitive to the presence of outliers (because of the squaring (power 2) involved – see below)
 - Mean Absolute Deviation Preferred in situations involving extreme values
- Sample Standard Deviation is defined by

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

- Interpreted as "typical" distance between a field value and the mean
- Most field values (95%) lie within two standard deviations of the mean
 - Example: For table below, number of calls made by most customers are within 2(1.315) = 2.63 of the mean of 1.563 calls. Most customers made between -1.067 and 4.193 (rounded to integers 0 to 4) calls.

■ Customer Service Calls

■ Statistics

3333
1.563
5209.000
1
1

Population: Number of calls made by each customer

Data Transformation

- Variables tend to have ranges different from each other
- In baseball, two fields may have ranges:

 \circ Batting average: [0.0, 0.400]

Number of home runs: [0, 70]

- Some data mining algorithms adversely affected by differences in variable ranges
- Variables with greater ranges tend to have larger influence on data models' results
- Therefore, numeric field values should be normalized
- Standardizing will scale the effect each variable has on results
- Neural Networks and other algorithms that make use of distance measures benefit from normalization
- Two of the prevalent methods will be reviewed
- In the following pages X* will refer to the normalized form of random variable X

Min-Max Normalization

- Determines how much greater field value is than minimum value for field
- Scales this difference by field's range

$$X^* = \frac{X - \min(X)}{\operatorname{range}(X)} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

- Figure 2.8 below shows summary statistics for weight (lbs) field
 - Min = 1613
 - \circ Max = 4997

⊟ weig	htlbs	
Ė⊸S	tatistics	
	Mean	3005.490
	Min	1613
1	Max	4997
	Range	3384
	Standard Deviation	852.646

Min-Max Normalization (cont'd)

Find Min-Max normalization for cars weighing 1613, 3305 and 4997 pounds, respectively

$$X^* = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Where:

$$min(X) = 1613$$

 $max(X) = 4997$

Car	Weightlbs	Formula	Result	Comments
Lightest vehicle	X = 1613	$X^* = \frac{1613 - 1613}{4997 - 1613}$	X* = 0	Represents the minimum value in this variable, and has min-max normalization of zero.
Mid-range vehicle	X = 3305	$X = \frac{3305 - 1613}{4997 - 1613}$	X* = 0.5	Weight exactly half-weight between the lightest and the heaviest vehicle, and has min-max normalization of 0.5.
Heaviest vehicle	X = 4997	$X = \frac{4997 - 1613}{4997 - 1613}$	X* = I	Heaviest vehicle of the dataset has min-max normalization of one.

Min-Max normalization will always have a value between 0 and 1. It is also possible to find the associated data value for a given Min-Max Normalization (how?)

Z-score Standardization

- Widely used in statistical analysis
- Takes difference between field value and field value mean
- Scales this difference by field's standard deviation

$$X^* = \frac{X - \text{mean}(X)}{\text{SD}(X)}$$

• Figure 2.8 below shows that mean (weight) and standard deviation for weight equals 3005.49 and 852.646, respectively

⊟ weight ⊟Stat		
	Mean	3005.490
	Min	1613
ļ	Max	4997
	Range	3384
	Standard Deviation	852.646

Z-score Standardization (cont'd)

Find Z-scode standardization for cars weighing 1613, 3006 and 4997 pounds, respectively

Where:
$$X^* = \frac{X - \text{mean}(X)}{\text{SD}(X)}$$

 $\text{mean}(X) = 3005.49$
 $\text{SD}(X) = 852.65$

Car	Weightlbs	Formula	Result	Comments
Lightest vehicle	X = 1613	$X^* = \frac{1613 - 3005.49}{852.646}$	X* ≈ -1.63	Data values below the mean will have negative Z-score standardization.
Average vehicle	X = 3005.49	$X = \frac{3005.49 - 3005.49}{852.646}$	X* ≈ 0	Values falling very close to the mean will have zero (0) Z-score
Heaviest vehicle	X = 4997	$X = \frac{4997 - 3005.49}{852.646}$	X* ≈ 2.34	Data values above the mean will have a positive Z-score standardization

It is also possible to find the associated data value for a given Z-score (how?).