Physics-informed neural networks

Pause and Ponder

- 3. What activation function should I choose when using 1 hidden layer NN to approximate functions?
 - E.g. A pulse function \rightarrow use tanh, sigmoid rather than sin, cos

4. Where should I place the collocation points?

Nabian et al., 2021: Sampling the collocation points according to a distribution proportional to the loss function will improve the convergence behavior of the PINNs training.

Empirical learning vs PINN

Empirical learning

Need training data of $u_i(x_i, t_i)$ to approximate u(x, t)

PINN

Only need training data (or knowledge) at IC, BC. u(x,t) within the x,t domain can be predicted without training data within the domain (just like a PDE solver)

- Application 1: Prediction of solution for a well-posed problem (this is what a traditional numerical solver can do)
 - Given an eqn + BC + IC and parameters λ , what's the model prediction?
- Application 2: Prediction of solution when data is available within the domain but not at the IC, BC (difficult for a traditional numerical solver!)
 Given an eqn and parameters λ, what's the model prediction best describes the data?
- Application 3: Data-driven discovery of unknown parameters (difficult for a traditional numerical solver!)

What are the parameters λ that best describe the data and the eqn?

E.g., Nonlinear Schrodinger equation

Problem statement

$$ih_t + 0.5h_{xx} + |h|^2 h = 0$$
, $x \in [-5, 5]$, $t \in [0, \pi/2]$,

IC: $h(0, x) = 2 \operatorname{sech}(x)$,

BC: h(t, -5) = h(t, 5),

$$h_X(t, -5) = h_X(t, 5),$$

Training data (from ground truth):

$$\{x_0^i, h_0^i\}_{i=1}^{N_0}$$

Collocation points:

$$\{t_b^i\}_{i=1}^{N_b} \quad \{t_f^i, x_f^i\}_{i=1}^{N_f}$$

Physics equations:

$$f := ih_t + 0.5h_{xx} + |h|^2 h$$

Loss function:

$$MSE_{0} = \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} |h(0, \mathbf{x}_{0}^{i}) - \mathbf{h}_{0}^{i}|^{2}, \quad \textbf{(1) IC}$$

$$MSE_{b} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} \left(|h^{i}(t_{b}^{i}, -5) - h^{i}(t_{b}^{i}, 5)|^{2} + |h_{x}^{i}(t_{b}^{i}, -5) - h_{x}^{i}(t_{b}^{i}, 5)|^{2} \right)$$

$$\textbf{(2) BC}$$

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$
. (3) Eqn

E.g., Nonlinear Schrodinger equation

Problem statement

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],$$

IC: $h(0, x) = 2 \operatorname{sech}(x)$,

BC: h(t, -5) = h(t, 5),

$$h_X(t, -5) = h_X(t, 5),$$

Trick

$$h = u + iv$$

eqn becomes

$$i(u+iv)_t + 0.5(u_{xx}+iv_{xx}) + (u^2+v^2)(u+iv) = 0$$

IC: $u + iv(0, x) = 2\operatorname{sech}(x)$

BC:
$$u(t,-5) = u(t,-5)$$
, $v(t,-5) = v(t,-5)$
 $u_x(t,-5) = u_x(t,-5)$, $v_x(t,-5) = v_x(t,-5)$

NN input: x,t

NN output: u,v

NN architecture: 5 layers 100 neurons per layer

Data points: 50 pts at t=0 (2sech(x))

Collocation points: 50 pts at x=5, x=-5,

20000 pts within the domain

Schrodinger equation coding exercise

• TF1.14

layers = [2, 100, 100, 100, 100, 2]

Iterations: 2000

