16.01.2024 9 клас

Тема. Основні типи задач на розв'язування трикутників

<u>Мета:</u> вчитися знаходити невідомі сторони і кути трикутника за відомими сторонами і кутами

Повторюємо

- Сформулюйте теорему Піфагора.
- Сформулюйте теорему косинусів.
- Сформулюйте теорему синусів.
- Чому дорівнює сума кутів трикутника?
- Як знайти кути трикутника, знаючи довжини всіх його сторін?

Ознайомтеся з інформацією та зробіть конспект у зошиті

Розв'язати трикутник – означає знайти невідомі сторони і кути трикутника за відомими сторонами і кутами.

Теореми, які використовують при розв'язуванні трикутників.

Теорема косинусів

$$a^2 = b^2 + c^2 - 2bc \cdot cos \propto$$

Теорема синусів

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{a}{\sin\gamma}$$

При розв'язуванні задач використовуються такі позначення:

a, b і c – сторони трикутника, α , β і γ – кути протилежні відповідно сторонам a, b і c. Розглянемо чотири види задач на розв'язування трикутників.

1. Розв'язування трикутників за двома сторонами і кутом між ними

Задача 1. Дано сторони трикутника a і b та кут C між ними. Знайти сторону c та кути A і B.

Розв'язання у загальному вигляді	Приклад
Дано: <i>a</i> , <i>b</i> , ∠ <i>C</i> . Знайти: <i>c</i> , ∠ <i>A</i> , ∠ <i>B</i> .	Дано: $a=4$, $b=7$, $\angle C=40^\circ$. Знайти: c , $\angle A$, $\angle B$.
P озв'язання. $1. \ c = \sqrt{a^2 + b^2 - 2ab\cos C}.$	P озв'язання. $1. \ c = \sqrt{4^2 + 7^2 - 2 \cdot 4 \cdot 7\cos 40^\circ} \approx 4,70.$
$2. \cos A = \frac{b^2 + c^2 - a^2}{2bc}.$	2. $\cos A \approx \frac{7^2 + 4,70^2 - 4^2}{2 \cdot 7 \cdot 4,7} \approx 0,8372,$
Далі знаходимо кут A за допомогою калькулятора або таблиць.	$\angle A pprox 33^{\circ}09'$.
3. $\angle B = 180^{\circ} - (\angle A + \angle C)$.	3. $\angle B \approx 180^{\circ} - (33^{\circ}09' + 40^{\circ}) = 106^{\circ}51'$.

2. Розв'язування трикутників за стороною і двома кутами

Задача 2. Дано сторону трикутника a і кути B і C. Знайти сторони трикутника b і c і кут A.

Розв'язання у загальному вигляді	Приклад
Дано: a , ∠ B , ∠ C . Знайти: ∠ A , b , c .	Дано: $a=8$, $\angle B=40^\circ$, $\angle C=80^\circ$. Знайти: $\angle A$, b , c .
Розв'язання. 1. ∠A = 180° - (∠B + ∠C).	Розв'язання. 1. $\angle A = 180^{\circ} - (40^{\circ} + 80^{\circ}) = 60^{\circ}$.
$2. \frac{a}{\sin A} = \frac{b}{\sin B}; \ b = \frac{a \sin B}{\sin A}.$	2. $b = \frac{8 \sin 40^{\circ}}{\sin 60^{\circ}} \approx 5,94.$
$3. \frac{a}{\sin A} = \frac{c}{\sin C}; \ c = \frac{a \sin C}{\sin A}.$	3. $c = \frac{8 \sin 80^{\circ}}{\sin 60^{\circ}} \approx 9{,}10.$

3. Розв'язування трикутників за трьома сторонами

Задача 3. Дано три сторони a, b і c трикутника (|b-c| < a < b+c). Знайти три кути A, B і C трикутника.

Розв'язання у загальному вигляді	Приклад
Дано: а, b, с.	Дано: $a = 7$, $b = 8$, $c = 9$.
Знайти: ∠А, ∠В, ∠С.	Знайти: ∠А, ∠В, ∠С.
Розв'язання.	Розв'язання.
1. $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$.	1. $\cos A = \frac{8^2 + 9^2 - 7^2}{2 \cdot 8 \cdot 9} = \frac{2}{3}$;
Далі знаходимо кут A за допомогою калькулятора або таблиць.	$\angle A \approx 48^{\circ}11'$.
$2. \cos B = rac{a^2 + c^2 - b^2}{2ac}$. Далі зна-	$2. \cos B = \frac{7^2 + 9^2 - 8^2}{2 \cdot 7 \cdot 9} = \frac{11}{21};$
ходимо кут В за допомогою	$\angle B \approx 58^{\circ}25'$.
калькулятора або таблиць. 3. $\angle C = 180^{\circ} - (\angle A + \angle B)$.	3. $\angle C \approx 180^{\circ} - (48^{\circ}11' + 58^{\circ}25') = 73^{\circ}24'$.

4. Розв'язування трикутників за двома сторонами і кутом, протилежним до однієї з них

Задача 4. Дано сторони трикутника a, b і кут A. Знайти сторону c трикутника та кути B і C.

Розв'язання у загальному вигляді	Приклад
Дано: а, b, ∠А.	Дано: $a = 10$, $b = 8$, $\angle A = 70^{\circ}$.
Знайти: с, ∠В, ∠С.	3 найти: c , $\angle B$, $\angle C$.
Розв'язання.	Розв'язання.
I спосіб.	I спосіб.
1. $a^2 = b^2 + c^2 - 2bc \cos A$.	1. $10^2 = 8^2 + c^2 - 2 \cdot 8 \cdot c \cdot \cos 70^\circ$.
З цього рівняння знаходи-	$c^2 - 5.47c - 36 = 0; c_1 \approx 9.33;$
мо с. Задача може мати два,	$c_2 \approx -3.86$ не задовольняє змісту за-
один або не мати жодного	дачі.
розв'язку.	Отже, $c \approx 9,33$.
$2. \cos B = rac{a^2 + c^2 - b^2}{2ac}$. Далі	2. $\cos B \approx \frac{10^2 + 9,33^2 - 8^2}{2 \cdot 10 \cdot 9,33} \approx 0,659;$
знаходимо кут B за допомогою калькулятора або таб-	$\angle B \approx 48^{\circ}45'$.
лиць. 3. $\angle C = 180^{\circ} - (\angle A + \angle B)$.	3. $\angle C \approx 180^{\circ} - (70^{\circ} + 48^{\circ}45') = 61^{\circ}15'$.

II спосіб.

$$1. \frac{a}{\sin A} = \frac{b}{\sin B};$$

$$\sin B = \frac{b \sin A}{a}.$$

Може існувати два, один або не існувати жодного кута, що задовольняли б останню рівність та нерівність $\angle A + \angle B < 180^\circ$.

2.
$$\angle C = 180^{\circ} - (\angle A + \angle B)$$
.

3.
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
; $c = \frac{a \sin C}{\sin A}$. 3. $c \approx \frac{10 \sin 61^{\circ}15'}{\sin 70^{\circ}} \approx 9,33$.

II спосіб.

1.
$$\sin B = \frac{8 \sin 70^{\circ}}{10} \approx 0,7518;$$

$$\angle B$$
 ≈ 48°45′ aбо

$$\angle B \approx 180^{\circ} - 48^{\circ}45' = 131^{\circ}15'$$
.

Оскільки $\angle A + \angle B = 70^{\circ} + 131^{\circ}15' >$ $> 180^{\circ}$, то $\angle B = 131^{\circ}15'$ не є розв'язком задачі.

2.
$$\angle C \approx 180^{\circ} - (70^{\circ} + 48^{\circ}45') = 61^{\circ}15'$$
.

3.
$$c \approx \frac{10 \sin 61^{\circ}15'}{\sin 70^{\circ}} \approx 9,33.$$

Ця задача, на відміну від трьох попередніх, які завжди мають єдиний розв'язок, може мати один, два або не мати жодного розв'язку.

Поміркуйте

- Що значить розв'язати трикутник?
- Які співвідношення між сторонами і кутами трикутника використовують для розв'язування трикутників?

Домашне завдання

- Опрацювати параграф 13
- Виконати №582(1), 584(1), 586 (1)

Джерела

- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017
- Всеукраїнська школа онлайн