Contour Detection - Solution

Method Description:

For Part 1(Warm-up), to reduce the image artifacts, I tried padding the image on its left, right, up, down directions 3 pixels, which fits the size of the filter. The convolution will have larger overlap area with the images, which will reduce the artifacts of the image boundaries. Then I used the gaussian filter from scipy.ndimage to achieve the gaussian filter, start from 1, I tried sigma = 2, sigma = 3. From 1 to 2, the performance increased, and from 2 to 3, the performance decreased. Eventually after multiple experiments I picked sigma = 2.5 as the best parameter. For the non-maximum suppression, I first calculate the angle (in radians) between the positive x-axis and the point (x, y) in the xy-plane with np.arctan2(). Then I continue to determine the direction of the edge at each pixel based on its gradient direction angle. This is done by comparing the gradient angle to a set of predefined threshold values, which correspond to four different edge directions: horizontal, vertical, and two diagonal directions, in other words, I round the gradient direction angle to 45*n, n is the integer. However, even though I tried multiple parameters, the eventual result still have 0.001 distance to the final results.

Precision Recall Plot:

Results Table:

Method	Overall F-	Average max	AP	Runtime(seconds)
--------	------------	-------------	----	------------------

	max score	F-score		
Initial	0.404	0.460	0.315	0.006
implementation				
Warm-up	0.424	0.483	0.359	0.006
[remove				
boundary				
artifacts]				
Smoothing	0.520	0.522	0.333	0.007
Non-	0.551	0.580	0.511	0.147
maximum				
Suppression				
Val set	0.551	0.580	0.511	0.147
numbers of				
best model				
[From				
gradescope]				

Visualizations:

My code works relatively well for the contours that was formed by large piece geometry pieces. However, when the image is shattered, or having condensed geometries, or especially with condense, line-like objects(like grass), my code does not behave so well. Also, my contour detected is not smooth enough and I also did not completely remove the artifacts. I think it might be the problem of implementation of NMS. Or the sigma of Gaussian filter.