

Welcome to ECE 594n

Geometric Machine Learning for Biomedical Imaging & Shape Analysis

Nina Miolane, Assistant Professor @ BioShape Lab

Welcome to ECE 594n

Geometric Machine Learning for Biomedical Imaging & Shape Analysis

Nina Miolane, Assistant Professor @ BioShape Lab

The Many Shapes of Alzheimer's Disease

The Many Shapes of Alzheimer's Disease

Macroscopic

Microscopic

Nanoscopic

Meters

From BioShapes to Biological Insights

From BioShapes to Biological Insights

Biophysics

Healthy/pathological state Function

→ BioShapes

From BioShapes to Biological Insights

Biophysics

Healthy/pathological state Function

→ BioShapes

Biomedical insights

← BioShapes

Geometric

Machine Learning

Geometric Machine Learning for Biomedical Imaging & Shape Analysis

Geometric Machine Learning for Biomedical Imaging & Shape Analysis

- Mathematical...
- Computational...
- Statistical...

...shape models

Translation

Translation

Shapes Equivalence classes

= Elements of "Quotient space" Q

Translation

Smooth deformation

Translation

Shapes Equivalence classes = Elements of "Quotient space" Q

Smooth deformation

Shapes \bigcirc Deformations = Elements of "Lie group" G

Translation

Shapes Equivalence classes
= Elements of "Quotient space" Q

Smooth deformation

Shapes → Deformations = Elements of "Lie group" *G*

= "Manifolds"

Computations on Manifolds

Computations on Manifolds

Computing with data on curved spaces

Data on a vector space

Data on a manifold

Example:
Data on the sphere

Statistics and Machine Learning on Manifolds

Statistics and Machine Learning on Manifolds

• Traditional statistics and machine learning (ML) fail

```
from geomstats.geometry.hypersphere
  import Hypersphere

sphere = Hypersphere(dim=2)
points = sphere.random_uniform(
    n_samples=2)

linear_mean = gs.sum(
    points, axis=0) / n_samples
```


Statistics and Machine Learning on Manifolds

Need geometric statistics and machine learning (ML)

```
from geomstats.learning.frechet_mean import \
    FrechetMean

estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)

frechet_mean = estimator.estimate_
```


Outline of ECE 594 N

Outline of ECE 594 N

- 1. (Geometry): Differential Geometry for Engineers
- 2. (Shapes): Computational Representations of Shapes
- 3. (Machine Learning): Geometric Machine Learning

With applications from cutting-edge research in biomedicine.

Software: Geomstats

Software: Geomstats

• Computations, statistics and machine learning on manifolds

1. Instantiate manifold of interest

```
sphere = Hypersphere(dim=2)
```

2. Apply machine learning method

```
estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)
```

Run Operations on 20+ Manifolds

Run Operations on 20+ Manifolds

```
from geomstats.geometry.discrete_curves \
    import R2, DiscreteCurves

curves = DiscreteCurves(R2)
metric = curves.square_root_velocity_metric

geodesic = metric.geodesic(
    initial_curve=cells_shape[i],
    end_curve=cells_shape[j])
```


Run Operations on 20+ Manifolds

```
from geomstats.geometry.special_euclidean \
    import SpecialEuclidean

se3 = SpecialEuclidean(n=3, point_type='vector')
metric = se3.left_canonical_metric

initial_point = se3.identity
initial_tangent_vec = gs.array(
    [1.8, 0.2, 0.3, 3., 3., 1.])
geodesic = metric.geodesic(
    initial_point=initial_point,
    initial_tangent_vec=initial_tangent_vec)
```


...Statistics and Machine Learning

	Statistics	Machine Learning	•••
Riemannian		(2019)	
Affine			
Stratified spaces	(2017-18)	(2020)	
Lie groups	(2015)		
Quotient spaces	(2017-21)		
Subriemannian	(2015)		

Miolane, Pennec: Computing bi-invariant pseudo-metrics on Lie groups for consistent statistics (2015).

Miolane, Pennec: A survey of mathematical structures for extending 2D neurogeometry to 3D image processing (2015).

Miolane, Holmes, Pennec: Template shape estimation: correcting an asymptotic bias (2017).

Miolane, Holmes, Pennec: Topologically constrained template (2018).

Miolane, Holmes: Learning submanifolds with Riemannian variational autoencoders. (2019).

Miolane, Poitevin, Lee, Holmes: Estimation of orientation and camera parameters in cryo-EM with autoencoders (2020).

...Statistics and Machine Learning

	Statistics	Machine Learning	•••
Riemannian		(2019)	
Affine			
Stratified spaces	(2017-18)	(2020)	
Lie groups	(2015)		
Quotient spaces	(2017-21)		
Subriemannian	(2015)		

Miolane, Pennec: Computing bi-invariant pseudo-metrics on Lie groups for consistent statistics (2015).

Miolane, Pennec: A survey of mathematical structures for extending 2D neurogeometry to 3D image processing (2015).

Miolane, Holmes, Pennec: Template shape estimation: correcting an asymptotic bias (2017).

Miolane, Holmes, Pennec: Topologically constrained template (2018).

Miolane, Holmes: Learning submanifolds with Riemannian variational autoencoders. (2019).

Miolane, Poitevin, Lee, Holmes: Estimation of orientation and camera parameters in cryo-EM with autoencoders (2020).

Welcome to ECE 594n

Geometric Machine Learning for Biomedical Imaging & Shape Analysis

Questions?

