Circuits intégrés en 3D

Automated System Partitioning for Efficient 3D-IC Partitioning Using Hypergraphs — Quentin Delhaye

Ce qu'on a...

Ce qu'on aimerait...

Plongeons au coeur du smartphone

Qu'est-ce qu'un circuit intégré?

Une mer de transistors

Comment améliorer les performances ?

Plus de transistors, mais sur la même surface

Rendre les transistors plus petits

C'est cher et complexe

Circuit intégré 2D

Circuit intégré 3D

Question de recherche

Comment décider sur quelle couche placer chacun des transistors ou les "blocs logiques"?

Ma recherche, mon job

Le partitionement : enjeu clef

Plusieurs objectifs possibles :

Equilibre des partitions ou non

Minimiser le nombre de connexions 3D

Maximiser le nombre de fils coupés étant plus longs qu'une certaine longueur

Obtenir un workflow complet

Les circuits intégrés sont partout

Circuits intégrés en 3D

