# **Graph Colouring Problem**

Given an undirected graph and a number m, determine if the graph can be coloured with at most m colours such that no two adjacent vertices of the graph are coloured with same colour. Here colouring of a graph means assignment of colours to all vertices.

## Input:

1) A 2D array graph[V][V] where V is the number of vertices in graph and graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0. 2) An integer m which is maximum number of colours that can be used.

### Output:

An array colour[V] that should have numbers from 1 to m. colour[i] should represent the colour assigned to the ith vertex. The code should also return false if the graph cannot be coloured with m colours.

Following is an example graph (from Wiki page ) that can be coloured with 3 colours.



#### **Naive Algorithm**

Generate all possible configurations of colours and print a configuration that satisfies the given constraints.

```
while there are untried configuration
{
   generate the next configuration
   if no adjacent vertices are coloured with same colour
   {
      print this configuration;
   }
}
```

There will be V<sup>m</sup> configurations of colours.

#### **Backtracking Algorithm**

The idea is to assign colours one by one to different vertices, starting from the vertex 0. Before assigning a colour, we check for safety by considering already assigned colours to the adjacent vertices. If we find a colour assignment which is safe, we mark the colour assignment as part of solution. If we do not a find colour due to clashes then we backtrack and return false.

The most obvious solution to this problem is arrived at through a design referred to as backtracking.

Recall that the essence of backtracking is:

- 1. Number the solution variables  $[v_0 \ v_1, ..., v_{n-1}]$ .
- 2. Number the possible values for each variable  $[c_0 c_1, ..., c_{k-1}]$ .
- 3. Start by assigning  $c_0$  to each  $v_i$ .
- 4. If we have an acceptable solution, stop.
- 5. If the current solution is not acceptable, let i = n-1.
- 6. If i < 0, stop and signal that no solution is possible.
- 7. Let j be the index such that  $v_i = c_i$ . If i < k-1, assign  $c_{i+1}$  to  $v_i$  and go back to step 4.
- 8. But if  $j \ge k-1$ , assign  $c_0$  to  $v_i$ , decrement i, and go back to step 6.

Although this approach will find a solution eventually (if one exists), it isn't speedy. Backtracking over n variables, each of which can take on k possible values, is O(k<sup>n</sup>).

For graph colouring, we will have one variable for each node in the graph. Each variable will take on any of the available colours.