R Event Study

David Zimmermann 2018-01-31

${\bf Contents}$

1	Inti	roduction	
2	\mathbf{Pre}	eparation	
3	2.1	Load libraries	
	2.2	Load data	
	2.3	Inspect data	
	2.4	Merge Data	
	2.5	Estimation and Events	
3	Estimation		
	3.1	Calculate the CMRM	
	3.2	CAPM	
	3.3	Merge Returns	
	3.4	Calculate the Abnormal Returns	
	3.5	Calculate the Cumulative Abnormal Returns	
4	Testing 1		
	4.1	T-test	
	4.2	Testing over Aggregated Times	
	4.3	Multiple Time Windows	

1 Introduction

The following script provides an application of an event study. The data and the script itself can be found here: https://github.com/DavZim/Classes/tree/master/Advanced%20Corporate%20Finance/Event%20Study

To run this notebook, make sure that you have at least RStudio version 1.0.44 installed and run R version 3.3.2.

The general outline for this document is to first load the data, merge the necessary data, inspect the data both visually and via tables, estimate a CMRM (constant-mean-return model), calculate the ARs (abnormal returns), and CARs (cumulative abnormal returns) and then test for significance using a t-test.

2 Preparation

2.1 Load libraries

```
library(dplyr)  # for data manipulation
library(ggplot2)  # for plotting
library(lubridate)  # for dates
library(readr)  # for data loading
library(scales)  # for plotting
library(tidyr)  # for tidy data
```

2.2 Load data

2.3 Inspect data

returns

```
## 4 1997-01-07 Chrysler 0
## 5 1997-01-08 Chrysler -0.00702
## 6 1997-01-09 Chrysler 0
## 7 1997-01-10 Chrysler 0.0106
## 8 1997-01-13 Chrysler -0.0210
## 9 1997-01-14 Chrysler 0.00714
## 10 1997-01-15 Chrysler 0
## # ... with 26,594 more rows
market
## # A tibble: 17,736 x 3
##
     date country
                            mret
              <chr>
##
     <date>
                           <dbl>
## 1 1997-01-02 us -0.00751
## 2 1997-01-03 us
                      0.0149
                       0.000372
## 3 1997-01-06 us
## 4 1997-01-07 us
                       0.00791
## 5 1997-01-08 us
                     -0.00519
## 6 1997-01-09 us
                       0.00820
## 7 1997-01-10 us
                       0.00613
## 8 1997-01-13 us
                      -0.000457
## 9 1997-01-14 us
                       0.0122
## 10 1997-01-15 us -0.00269
## # ... with 17,726 more rows
events
## # A tibble: 6 x 2
   company event
##
    <chr>
              <date>
## 1 Chrysler 1998-05-06
## 2 BellSouth 2006-03-06
## 3 Engelhard 2006-01-03
## 4 Norsk Hydro 2006-12-18
## 5 Pilkington 2005-10-31
## 6 INA
               1999-09-14
2.4
     Merge Data
comps <- c("Chrysler", "BellSouth", "Engelhard", "Norsk Hydro", "Pilkington", "INA")</pre>
counts <- c("us", "us", "us", "norway", "uk", "italy")</pre>
countries <- data_frame(company = comps, country = counts)</pre>
# merge into one dataset
merged <- left_join(returns, countries, by = "company")</pre>
merged <- left_join(merged, market, by = c("date", "country"))</pre>
merged <- left_join(merged, events, by = "company")</pre>
merged
## # A tibble: 26,604 x 6
##
   date company
                            ret country
                                            mret event
                         <dbl> <chr>
##
     <date> <chr>
                                           <dbl> <date>
## 1 1997-01-02 Chrysler 0.0341 us -0.00751 1998-05-06
```

2 1997-01-03 Chrysler 0.0146 us

0.0149 1998-05-06

```
## 3 1997-01-06 Chrysler 0.0289 us
                                         0.000372 1998-05-06
## 4 1997-01-07 Chrysler 0
                                         0.00791 1998-05-06
                                 118
## 5 1997-01-08 Chrysler -0.00702 us
                                         -0.00519 1998-05-06
## 6 1997-01-09 Chrysler 0
                                         0.00820 1998-05-06
                                 118
## 7 1997-01-10 Chrysler 0.0106 us
                                         0.00613 1998-05-06
## 8 1997-01-13 Chrysler -0.0210 us
                                        -0.000457 1998-05-06
## 9 1997-01-14 Chrysler 0.00714 us
                                        0.0122 1998-05-06
## 10 1997-01-15 Chrysler 0
                                         -0.00269 1998-05-06
                                 118
## # ... with 26,594 more rows
```

2.5 Estimation and Events

```
# calculate the event-time as the difference in days to the event
merged <- merged %>% group_by(company) %>%
 mutate(date_index = 1:n(),
        event index = max(ifelse(event == date, date index, 0)),
        event_time = date_index - event_index)
merged
## # A tibble: 26,604 x 9
## # Groups: company [6]
##
     date
                company
                              ret country
                                              mret event
                                                               date index
##
     <date>
                <chr>
                            <dbl> <chr>
                                              <dbl> <date>
                                                                   <int>
## 1 1997-01-02 Chrysler 0.0341 us
                                          -0.00751 1998-05-06
                                                                       1
                                                                       2
## 2 1997-01-03 Chrysler
                         0.0146
                                          0.0149
                                                    1998-05-06
## 3 1997-01-06 Chrysler 0.0289 us
                                                                       3
                                          0.000372 1998-05-06
## 4 1997-01-07 Chrysler 0
                                         0.00791 1998-05-06
                                                                       4
                                  us
                                         -0.00519 1998-05-06
## 5 1997-01-08 Chrysler -0.00702 us
                                                                       5
                                          0.00820 1998-05-06
## 6 1997-01-09 Chrysler 0
                                  us
                                                                       6
## 7 1997-01-10 Chrysler 0.0106 us
                                                                       7
                                          0.00613 1998-05-06
## 8 1997-01-13 Chrysler -0.0210 us
                                          -0.000457 1998-05-06
                                                                       8
                                          0.0122
## 9 1997-01-14 Chrysler 0.00714 us
                                                                       9
                                                    1998-05-06
## 10 1997-01-15 Chrysler 0
                                          -0.00269 1998-05-06
                                  us
                                                                       10
## # ... with 26,594 more rows, and 2 more variables: event_index <dbl>,
## #
     event_time <dbl>
```

Now we want to split our sample into estimation-sample ([-230, -31]) and event-sample ([-30, +30]). We also want to have a quick visualization of the return correlations to the market.

```
## # A tibble: 1,200 x 9
## # Groups:
              company [6]
##
     date
                company
                              ret country
                                              mret event
                                                               date index
                                              <dbl> <date>
##
      <date>
                <chr>
                            <dbl> <chr>
                                                                    <int>
## 1 1997-06-18 Chrysler 0.00384 us
                                          -0.00462 1998-05-06
                                                                      120
## 2 1997-06-19 Chrysler -0.00382 us
                                          0.00995 1998-05-06
                                                                      121
## 3 1997-06-20 Chrysler 0
                                          0.000297 1998-05-06
                                  us
                                                                      122
## 4 1997-06-23 Chrysler -0.0115 us
                                                                      123
                                          -0.0202
                                                   1998-05-06
## 5 1997-06-24 Chrysler 0.0234 us
                                          0.0180
                                                    1998-05-06
                                                                      124
                                                                      125
## 6 1997-06-25 Chrysler -0.00381 us
                                          -0.00757 1998-05-06
## 7 1997-06-26 Chrysler 0.0114 us
                                          -0.00573 1998-05-06
                                                                      126
                                          0.00388 1998-05-06
## 8 1997-06-27 Chrysler -0.0113 us
                                                                      127
## 9 1997-06-30 Chrysler 0.00382 us
                                          -0.00263 1998-05-06
                                                                      128
## 10 1997-07-01 Chrysler -0.00951 us
                                           0.00659 1998-05-06
                                                                      129
## # ... with 1,190 more rows, and 2 more variables: event_index <dbl>,
## #
      event_time <dbl>
event
## # A tibble: 366 x 9
## # Groups: company [6]
##
     date
                company
                              ret country
                                               mret event
                                                               date_index
##
      <date>
                <chr>
                            <dbl> <chr>
                                              <dbl> <date>
                                                                    <int>
## 1 1998-03-25 Chrysler -0.0173 us
                                          -0.00222 1998-05-06
                                                                      320
   2 1998-03-26 Chrysler -0.0132 us
                                          -0.000497 1998-05-06
                                                                      321
                                                                      322
## 3 1998-03-27 Chrysler 0.00149 us
                                          -0.00467 1998-05-06
## 4 1998-03-30 Chrysler -0.00593 us
                                          -0.00151 1998-05-06
                                                                      323
## 5 1998-03-31 Chrysler -0.00598 us
                                          0.00787 1998-05-06
                                                                      324
## 6 1998-04-01 Chrysler 0.00601 us
                                          0.00625 1998-05-06
                                                                      325
## 7 1998-04-02 Chrysler -0.0209 us
                                                                      326
                                          0.00974 1998-05-06
## 8 1998-04-03 Chrysler -0.00305 us
                                                                      327
                                          0.00218 1998-05-06
## 9 1998-04-06 Chrysler 0.0214 us
                                          -0.00387 1998-05-06
                                                                      328
## 10 1998-04-07 Chrysler 0.00300 us
                                          -0.00971 1998-05-06
                                                                      329
## # ... with 356 more rows, and 2 more variables: event_index <dbl>,
## # event_time <dbl>
# Graph data
theme_set(theme_light())
ggplot(estimation %>% filter(ret != 0), aes(x = mret, y = ret, color = company)) +
 geom_point() +
 facet_wrap(~company) +
 scale_x_continuous(labels = percent) +
 scale_y_continuous(labels = percent) +
  theme(legend.position = "none") +
 labs(title = "Correlations to Market Returns",
      subtitle = "The respective markets are USA, UK, Norway, and Italy",
      x = "Market Return", y = "Company Return")
```

Correlations to Market Returns

The respective markets are USA, UK, Norway, and Italy

3 Estimation

3.1 Calculate the CMRM

Although we have many options, this script uses the constant-mean-return model to calculate expected returns (for simplicity reasons mainy).

The expected return is given by

$$E\left[R_{i,t}|X_{t}\right]$$

using the CMRM (constant mean return model), we get

$$E[R_{i,t}|X_t] = \overline{R_{i,t}}$$

```
cmrm <- estimation %>% group_by(company) %>% summarise(cmrm = mean(ret))
cmrm
```

```
## 5 Norsk Hydro 0.000419
## 6 Pilkington 0.00147
```

3.2 CAPM

To calculate the capm we can use the simplified market-model (estimates the intercept (risk-free rate) instead of imposing it) which uses a linear regression of the form $return \sim market return$, using the broom-library we can do the following:

```
capm <- estimation %>%
  group_by(company) %>%
  # "do" a regression using do() from the broom-package (tidyverse)
  # see https://qithub.com/tidyverse/broom
  do(fit = lm(ret ~ mret, data = .)) %>%
  # get the coefficients: intercept and slope (alpha and beta)
  # and discard the model itself (fit)
  mutate(alpha = coefficients(fit)[1],
         beta = coefficients(fit)[2],
         fit = NULL)
capm
## Source: local data frame [6 x 3]
## Groups: <by row>
##
## # A tibble: 6 x 3
##
     company
                       alpha beta
##
     <chr>>
                       <dbl> <dbl>
## 1 BellSouth
               -0.00000498 0.681
## 2 Chrysler
                 0.000699
                             0.851
## 3 Engelhard
                 -0.000335
                             1.06
## 4 INA
                 -0.000117
                             0.870
## 5 Norsk Hydro -0.000616
                             1.27
## 6 Pilkington
                  0.000906
                             1.22
event_capm <- left_join(event, capm, by = "company") %>%
  # compute the expected return
  mutate(capm = alpha + mret * beta,
         alpha = NULL,
         beta = NULL)
event_capm
## # A tibble: 366 x 10
## # Groups:
              company [6]
##
      date
                 company
                               ret country
                                                mret event
                                                                date_index
##
                 <chr>>
                             <dbl> <chr>
                                                                      <int>
      <date>
                                               <dbl> <date>
   1 1998-03-25 Chrysler -0.0173
                                           -0.00222 1998-05-06
                                                                        320
   2 1998-03-26 Chrysler -0.0132
                                           -0.000497 1998-05-06
                                                                        321
   3 1998-03-27 Chrysler 0.00149 us
                                           -0.00467 1998-05-06
                                                                        322
  4 1998-03-30 Chrysler -0.00593 us
                                           -0.00151 1998-05-06
                                                                        323
##
  5 1998-03-31 Chrysler -0.00598 us
                                            0.00787 1998-05-06
                                                                        324
  6 1998-04-01 Chrysler 0.00601 us
                                            0.00625 1998-05-06
##
                                                                        325
   7 1998-04-02 Chrysler -0.0209 us
                                            0.00974 1998-05-06
                                                                        326
##
## 8 1998-04-03 Chrysler -0.00305 us
                                           0.00218 1998-05-06
                                                                        327
## 9 1998-04-06 Chrysler 0.0214 us
                                           -0.00387 1998-05-06
                                                                        328
## 10 1998-04-07 Chrysler 0.00300 us
                                           -0.00971 1998-05-06
                                                                        329
```

```
## # ... with 356 more rows, and 3 more variables: event_index <dbl>,
## # event_time <dbl>, capm <dbl>
```

Nonetheless, we will continue the tests using the CMRM and leave the testing of the CAPM to the interested reader.

3.3 Merge Returns

Next, we want to merge the expected returns into the event-dataset to be able to calculate the next steps.

```
# select only necessary variables
event <- event %>% select(company, ret, event_time)
event <- left_join(event, cmrm, by = "company")</pre>
event
## # A tibble: 366 x 4
## # Groups:
               company [?]
##
      company
                    ret event_time
                                      cmrm
##
      <chr>
                  <dbl>
                             <dbl>
                                     <dbl>
  1 Chrysler -0.0173
                             -30.0 0.00173
## 2 Chrysler -0.0132
                             -29.0 0.00173
## 3 Chrysler 0.00149
                             -28.0 0.00173
## 4 Chrysler -0.00593
                             -27.0 0.00173
## 5 Chrysler -0.00598
                             -26.0 0.00173
## 6 Chrysler 0.00601
                             -25.0 0.00173
## 7 Chrysler -0.0209
                             -24.0 0.00173
## 8 Chrysler -0.00305
                             -23.0 0.00173
## 9 Chrysler 0.0214
                             -22.0 0.00173
## 10 Chrysler 0.00300
                             -21.0 0.00173
## # ... with 356 more rows
```

3.4 Calculate the Abnormal Returns

The abnormal return in period t for company i is given by

$$AR_{i,t} = R_{i,t} - E\left[R_{i,t}\right]$$

which we can calculate in R like this

```
event <- event %>% mutate(ar = ret - cmrm)
event
```

```
## # A tibble: 366 x 5
## # Groups:
              company [6]
##
      company
                   ret event_time
                                      cmrm
                                                  ar
##
      <chr>
                 <dbl>
                            <dbl>
                                     <dbl>
                                               <dbl>
                            -30.0 0.00173 -0.0190
##
   1 Chrysler -0.0173
##
   2 Chrysler -0.0132
                            -29.0 0.00173 -0.0149
##
  3 Chrysler 0.00149
                            -28.0 0.00173 -0.000245
## 4 Chrysler -0.00593
                            -27.0 0.00173 -0.00766
## 5 Chrysler -0.00598
                            -26.0 0.00173 -0.00771
## 6 Chrysler 0.00601
                            -25.0 0.00173 0.00428
## 7 Chrysler -0.0209
                            -24.0 0.00173 -0.0226
## 8 Chrysler -0.00305
                            -23.0 0.00173 -0.00478
## 9 Chrysler 0.0214
                            -22.0 0.00173 0.0197
```

```
## 10 Chrysler 0.00300 -21.0 0.00173 0.00126
## # ... with 356 more rows
```

3.5 Calculate the Cumulative Abnormal Returns

The CARs are given by

$$CAR_{i,t} = \sum_{k=1}^{t} AR_{i,t-k}$$

with a known distribution of

$$CAR_{i,t} \sim N(0, \sigma_{i,t}^2)$$

In R we can calculate the CARs like this

```
indiv_event <- event %>% group_by(company) %>% mutate(car = cumsum(ar))
indiv_event
```

```
## # A tibble: 366 x 6
## # Groups:
              company [6]
##
      company
                   ret event_time
                                     cmrm
                                                 ar
                                                        car
##
      <chr>
                            <dbl>
                                    <dbl>
                                                      <dbl>
                 <dbl>
                                              <dbl>
## 1 Chrysler -0.0173
                            -30.0 0.00173 -0.0190
                                                    -0.0190
## 2 Chrysler -0.0132
                            -29.0 0.00173 -0.0149
                                                    -0.0340
## 3 Chrysler 0.00149
                            -28.0 0.00173 -0.000245 -0.0342
## 4 Chrysler -0.00593
                            -27.0 0.00173 -0.00766 -0.0419
## 5 Chrysler -0.00598
                            -26.0 0.00173 -0.00771 -0.0496
## 6 Chrysler 0.00601
                            -25.0 0.00173 0.00428 -0.0453
## 7 Chrysler -0.0209
                            -24.0 0.00173 -0.0226
                                                    -0.0679
## 8 Chrysler -0.00305
                            -23.0 0.00173 -0.00478 -0.0727
## 9 Chrysler 0.0214
                            -22.0 0.00173 0.0197
                                                   -0.0530
## 10 Chrysler 0.00300
                            -21.0 0.00173 0.00126 -0.0518
## # ... with 356 more rows
```

Individual Cumulative Abnormal Returns

We can also calculate aggregated values (AAR) as the average abnormal return) per day, which is handy, for example for ploting

```
# aggregated
agg_event <- event %>% group_by(event_time) %>% summarise(aar = mean(ar))
agg_event <- agg_event %>% mutate(car = cumsum(aar))
agg_event
## # A tibble: 61 x 3
##
      event time
                       aar
                                 car
##
                               <dbl>
           <dbl>
                     <dbl>
           -30.0 0.0112
                            0.0112
##
   1
           -29.0 -0.00671
                            0.00452
##
           -28.0 -0.00415
                            0.000364
##
   3
           -27.0 0.00292
                            0.00329
##
##
   5
           -26.0 0.00278
                            0.00607
           -25.0 -0.000583 0.00549
##
   6
##
   7
           -24.0 -0.0127
                           -0.00719
           -23.0 0.00429
                           -0.00291
##
##
           -22.0 0.00559
                            0.00269
   9
## 10
           -21.0 -0.00326
                           -0.000577
## # ... with 51 more rows
ggplot(agg_event, aes(x = event_time, y = car)) +
  geom_vline(xintercept = 0, color = "red", linetype = "dashed") +
  geom_step() +
  scale_y_continuous(labels = percent) +
 labs(title = "Aggregated Cumulative Abnormal Returns", subtitle = "In the Event-Horizon",
```


Aggregated Cumulative Abnormal Returns

In the Event-Horizon

4 Testing

To test for signifiance, we mainly use t-test in this script, other tests include Boehmer et al. (1991) and Corrado (1989), among others.

The variance of the CARs, are known to be distributed with a variance of

$$\sigma_{i,t}^2 = \frac{1}{N(N-1)} \sum_{j=1}^{N} (CAR_{j,t} - \overline{CAR_{j,t}})^2$$

4.1 T-test

The first chunk uses a t-test to test the individual ARs (the question we are trying to answer: Is the abnormal return in time-period t different from zero?).

```
## # A tibble: 61 x 5
##
                               var_ar t_value p_value
      event_time
                   mean_ar
##
           <dbl>
                     <dbl>
                                <dbl>
                                        <dbl>
                                               0.255
##
           -30.0 0.0112
                           0.0000795
                                       1.26
   1
##
   2
           -29.0 -0.00671 0.0000111
                                      -2.01
                                               0.0907
   3
           -28.0 -0.00415 0.0000596
                                      -0.538
##
                                               0.610
           -27.0 0.00292 0.0000887
##
                                       0.311
                                               0.767
##
   5
           -26.0 0.00278 0.00000740
                                      1.02
                                               0.346
##
   6
           -25.0 -0.000583 0.0000349
                                      -0.0988 0.924
   7
           -24.0 -0.0127
##
                           0.0000297
                                      -2.33
                                               0.0589
##
   8
           -23.0 0.00429
                           0.0000120
                                       1.24
                                               0.262
           -22.0 0.00559
                           0.0000183
                                       1.31
                                               0.239
##
   9
## 10
           -21.0 -0.00326
                           0.000118
                                      -0.301
                                               0.774
## # ... with 51 more rows
```

The following chunk uses CARs to see if the price-development (which is represented by the CARs) is different from zero, instead of a snapshot of a single day as we did in the example above.

```
# test2 with CARs
stars <- function(p) {</pre>
  ifelse(p < 0.001, "***",
         ifelse(p < 0.01, "**",
                ifelse(p < 0.05, "*", " ")))
}
test2 <- indiv_event %>%
  group by(event time) %>%
  summarise(mean_car = mean(car),
         var_car = 1/(n()*(n() - 1)) * sum((car - mean_car)^2),
         t_value = mean_car / sqrt(var_car),
         p_value = pt(abs(t_value), df = n(), lower.tail = F)*2)
test2 %>% mutate(sign = stars(p_value),
                 car = cumsum(mean_car)) %>%
  select(event_time, car, t_value, sign) %>%
  filter(event_time %in% -3:6) # look only at the frame [-3, 6], to have less output
```

```
## # A tibble: 10 x 4
##
      event_time
                   car t_value sign
##
           <dbl> <dbl>
                          <dbl> <chr>
           -3.00 0.184
                          0.165 " "
##
   1
                          0.444 " "
           -2.00 0.210
##
    2
##
    3
           -1.00 0.230
                          0.357 " "
##
   4
            0
                  0.421
                          4.07
                                **
            1.00 0.625
##
   5
                          4.55
                                **
            2.00 0.840
##
    6
                          4.52
                                **
##
   7
            3.00 1.05
                          4.32
                                **
##
   8
            4.00 1.26
                          3.90
##
   9
            5.00 1.48
                          3.96 **
## 10
            6.00 1.69
                          3.90 **
```

4.2 Testing over Aggregated Times

In the next step we want to look not at a single time-point, but at aggregated times, in this example, we want to see if the price in the time-horizon [-3, +3] is different from zero.

```
## # A tibble: 1 x 5
## mean_car var_car t_value p_value sign
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 0.206 0.000893 6.89 0.000460 ***
```

So we can see, that we have detected highly significant returns in the time-period [-3, +3]. If we want to test multiple time-periods we can do it like this.

4.3 Multiple Time Windows

It may seem a bit more complicated, but we are essentially doing the same thing as before, but use a lapply-function to loop over the row-numbers and repeat the process.

```
time_windows <- data_frame(min = c(-1, 0, -1, -3),
                           \max = c(0, 1, 1, 3))
list_events <- lapply(1:nrow(time_windows), function(i) {</pre>
  tmp <- indiv_event %>% filter(event_time >= time_windows$min[i] &
                           event_time <= time_windows$max[i]) %>%
    select(company, ar) %>%
    group_by(company) %>%
    summarise(car = sum(ar)) %>%
    summarise(mean_car = mean(car),
              var car = 1/(n()*(n() - 1)) * sum((car - mean car)^2),
              t_value = mean_car / sqrt(var_car),
              p_value = pt(abs(t_value), df = n(), lower.tail = F)*2,
              sign = stars(p_value)) %>%
    mutate(range = paste0("[", time_windows$min[i], ", ",
                          time_windows$max[i], "]"))
  return(tmp %>% select(range, car = mean_car, t_value, p_value, sign))
})
# lapply returns a list of data_frames, to bind them into a single df, we use
# do.call in combination with rbind.
mult_events <- do.call(rbind, list_events)</pre>
mult_events
```

A tibble: 4 x 5

```
## range car t_value p_value sign
## <a href="mailto:chr">chr</a> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 [-1, 0] 0.164 5.27 0.00188 **
## 2 [0, 1] 0.184 5.85 0.00110 **
## 3 [-1, 1] 0.178 5.06 0.00231 **
## 4 [-3, 3] 0.206 6.89 0.000460 ***
```