Chem2110 Quiz 1 October 2010

TIME: 11/4 Hours

NAME: MODEL ANSWERS ID NUMBER: _____

1 H 1.008																	2 He 4.003
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	\mathbf{F}	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na												Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	$\mid \mathbf{V} \mid$		\mathbf{Mn}	Fe	Co	Ni	Cu		Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh		Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs		La*		Ta	W	Re	Os	Ir	Pt		Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89															•
Fr	Ra	$\mathbf{A}\mathbf{c}^{\dagger}$															
(223)	226	(227)															

Question	Maximu m Marks	Score
1	47	
2	38	
Total	85	

QUESTION 1

(a) Write the <u>name</u> of each of the following compounds: (10 marks)

PdCrO₄ palladium(II) chromate

NH₄Fe(SO₄)₂•12H₂O ammonium iron(III) sulfate dodecahydrate

 $Mg(IO)_2$ magnesium hypoiodite

RbO₂ rubidium superoxide

NiF₂•4H₂O nickel(II) fluoride tetrahydrate

 $HBrO_3(aq)$ bromic acid

KMnO₄ potassium permanganate

Tl₃As thallium(I) arsenide

 H_2CO_3 (aq) carbonic acid

Cl₂O₇ dichlorine heptoxide

(b) Write a formula for each of the following substances: (10 marks)

Dinitrogen tetroxide N₂O₄

Antimony(III) acetate (CH₃COO)₃Sb

Aluminium hydrogen phosphate Al₂(HPO₄)₃

Mercury(I) bromite $Hg_2(BrO_2)_2$

Strontium sulfide SrS

Hydrocyanic acid **HCN(aq)**

Hydrogen selenide H₂Se

Zinc bicarbonate Zn(HCO₃)₂

Gold(III) nitrite hydrate Au(NO₂)₃·xH₂O

Cesium dichromate Cs₂Cr₂O₇

- (c) Complete the following statements: (27 marks)
- (i) H⁺ is an electrophile whereas H⁻ is a nucleophile and H is a free radical
- (ii) P³⁻ is a monatomic anion whereas PO₄³⁻ is a polyatomic anion
- (iii) Sr is a **metal** whereas Se is a **metalloid** or **semimetal** (your textbook says **nonmetal**)
- (iv) The name of the **alkaline earth** metal ion found in bones and teeth is **calcium ion**
- (v) The elements in the Periodic Table are arranged in order of increasing number of **protons**
- (vi) The mathematical equation that states the Heisenberg uncertainty principle is $\Delta x \cdot \Delta(mv) \ge h/(4\pi)$
- (vii) Wave functions of atomic orbitals are obtained from the **Schrödinger** equation.
- (viii) Isotopes are atoms of a given element that have different mass numbers (or different numbers of neutrons)
- (ix) Whereas nitrogen is a major element in the human body, copper is a **trace** element.
- (x) The name of H⁺ is **proton**
- (xi) Ammonia is molecular (or covalent) whereas K₂SO₄ is ionic
- (xii) CO₂ is a compound whereas S₈ is an element
- (xiii) The elements in Group 1 are collectively known as alkali metals
- (xiv) In **covalent** bonding, two atoms share **electrons**
- (xv) Chemical bonds can be classified as ionic, **pure (nonpolar) covalent** and **polar covalent**

according to the electronegativity difference between the atoms chemically bonded together

(xvi) Sr is an s-block element whereas Sn is a p-block element and Sc is

a d-block element

QUESTION 2

(a) Complete the following table: (8 marks)

Symbo I	Number of protons	Number of electrons	Number of neutrons	Net charge	Name of substance
Bi³+	83	80		+3	bismuth(III) ion
¹³⁰ Te ²⁻	52	54	78	-2	telluride ion
²H	1	1	1	0	deuterium
Cd ²⁺	48	46		+2	cadmium ion

(b) For each of the following substances, give the number of unpaired electrons in the *d*-orbitals: (4 marks)

Vanadium(V) ion **0**

Chromium atom 5

Copper atom

0

Iron(III) ion

5

(c) Which atomic orbitals in an atom have the following quantum numbers? (4 marks)

$$n = 3$$
, $\ell = 0$, $m_{\ell} = 0$

3*s*

$$n = 4$$
, $\ell = 24d$

$$n = 2$$
, $\ell = 2$

none

$$\ell = 3$$

 $(\mbox{\bf d})$ What is the maximum number of electrons in an atom that can have the following quantum

numbers? (2 marks)

$$n = 3$$
, $m_{\ell} = 0$, $m_{\rm s} = +\frac{1}{2}$ $n = 3$, $\ell = 1$, $m_{\rm s} = +\frac{1}{2}$ 3

(e) Complete the following table. (20 marks)

	Lewis structure(s)	Orbital shape (drawing and name)	Molecular shape (drawing and name)
H₂CO			
XeO_2F_2			
Sulfite ion			

$\mathbf{BrF_4}^{ ext{-}}$	
----------------------------	--