

Visão geral

- 32-bit RISC CPU: Tensilica Xtensa LX106 running at 80 MHz
- 64 KiB of instruction RAM, 96 KiB of data RAM
- External QSPI flash 512 KiB to 4 MiB (up to 16MiB is supported)
- IEEE 802.11 b/g/n Wi-Fi
- Integrated TR switch, balun, LNA, power amplifier and matching network
- WEP or WPA/WPA2 authentication, or open networks
- 16 GPIO pins
- SPI, I²C, I²S interfaces with DMA (sharing pins with GPIO)
- UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2
- 1 10-bit ADC

Pontos positivos

- Baixo custo
- Capacidade WiFi sem necessidade de hardware extra (shield no caso dos arduinos)
- Possui pinos de I/O e protocolos implementados em Hardware
- Tem um toolchain de software livre e ainda possui um port do ambiente arduino que permite que programadores familiares com a API do Arduino não tenham que aprender outra API
- Grande disponibilidade de materiais na Internet
- Existem produtos comerciais que utilizam o esp8266 e muitos deles podem ser atualizados (hackeados) pelo proprietário

Pontos negativos - software

- Existe um descompasso entre o toolchain mais atual e a API disponível no arduino.
- Existe uma confusão entre bibliotecas do arduino por conta das várias plataformas que hoje são suportadas
- Essas questões são eliminadas ao se utilizar apenas o toolchain

Pontos negativos - Hardware

- A alimentação do dispositivo deve ser adequada. Ao utilizar o WiFi o consumo de energia sobe (pico) com alguns milisegundos. Se a fonte não for capaz de aguentar esse pico o microcontrolador será resetado
- Não existem muitos pinos de I/O livres para uso dependendo do kit
- A CPU é proprietária e não é ARM. A Espressif agora está investindo numa
 CPU RISC V

Aplicações

- Eletrodomésticos
- Automação residencial
- Tomadas inteligentes
- Controladores industriais pela Internet
- Monitores de crianças
- Cameras IP
- Redes de Sensores
- Dispositivos Wearable
- Beacons WiFi

Ideias de projetos

- Sensores para ligar no corpo huma
- Sensores de estacionamento

Board ID	#Pins	Pitch	Form factor	LEDs	Antenna	Ant.Socket	Shielded	Dimensions mm	Flash Size in Bytes and (bits)
ESP-01	8	0.1"	2×4 DIL	Yes	Etched-on PCB	No	No	14.3 x 24.8	512KB (4Mb) ××
ESP-02	8	0.1"	2×4 notch	No?	None	Yes	No	14.2 x 14.2	512KB (4Mb) ×
ESP-03	14	2mm	2×7 notch	No	Ceramic	No	No	17.3 x 12.1	512KB (4Mb) ×
ESP-04	14	2mm	2×4 notch	No?	None	No	No	14.7 x 12.1	512KB (4Mb) ×
ESP-05	5	0.1"	1×5 SIL	No	None	Yes	No	14.2 x 14.2	512KB (4Mb) ×
ESP-06	12+GND	misc	4×3 dice	No	None	No	Yes	16.3 x 13.1	512KB (4Mb) ×
ESP-07	16	2mm	2×8 pinhole	Yes	Ceramic	Yes	Yes	21.2 x 16.0	1MB (8Mb) ××
ESP-07S	16	2mm	2×8 pinhole	No	None	Yes	Yes	17.0 x 16.0	4MB (32Mb)
ESP-08	14	2mm	2×7 notch	No	None	No	Yes	17.0 x 16.0	?? (please fill if you know)
ESP-08 New	16	2mm	2×8 notch	No	None	No	Yes	18.0 x 16.0	?? (please fill if you know)
ESP-09	12+GND	misc	4×3 dice	No	None	No	No	10.0 x 10.0	1MB (8Mb)
ESP-10	5	2mm ??	1×5 notch	No	None	No	No	14.2 x 10.0	512KB (4Mb) *
ESP-11	8	1.27mm	1×8 pinhole	No?	Ceramic	No	No	17.3 x 12.1	512KB (4Mb) *
ESP-12	16	2mm	2×8 notch	Yes	Etched-on PCB	No	Yes	24.0 x 16.0	4MB (32Mb) ??
ESP-12F	22	2mm	2×8 notch	Yes	Etched-on PCB	No	Yes	24.0 x 16.0	4MB (32Mb)
ESP-12E	22	2mm	2×8 notch	Yes	Etched-on PCB	No	Yes	24.0 x 16.0	4MB (32Mb)
ESP-12S	16	2mm	2×8 notch	Yes	Etched-on PCB	No	Yes	24.0 x 16.0	4MB (32Mb)
ESP-13	18	1.5mm	2×9	?	Etched-on PCB	No	Yes	20.0 x 19.9	4MB (32Mb)
ESP-14	22	2mm	2×8 + 6	1	Etched-on PCB	No	Yes	24.3 x 16.2	?? (please fill if you know)
ESP-201	22+4	0.1"	2×11 + 4	2	Etched-on PCB ×××	Yes	No	33.5 x 25.5	512KB (4Mb)
WROOM-02	18	1.5mm	2×9	No	Etched on PCB	No	Yes	20.0 x 18.0	?? (please fill if you know)
WT8266-S1	18	1.5mm	3×6	1	Etched on PCB	No	Yes	15.0 x 18.6	4MB (32Mb)

Produtos comerciais

- Sonoff
- Tasmota
- Tuya
- Shelly

Projetos:

esphome

Detalhes

- Não existe memória ROM dentro do chip
 - É preciso usar uma memória FLASH externa SPI
 - o Todos os módulos (ESP01, ESP12, ESP07, etc) já possuem a memória externa
- * O esp8266 suporta até 16MB de memória FLASH externa, mas cada módulo poderá ter uma memória de tamanho diferente

Qual o tamanho da minha memória?

esptool --port /dev/ttyUSB0 --chip auto flash_id

>>> Detected flash size: 4MB

- Tem 17 pinos de I/O. Pinos de IO são chamados GPIO e podem ser ligados a um resistor de pull up por software ou colocados em alta impedância
- O GPIO16 é o único que pode ser programado para ter resistor de pull down
- O ESP8266 pode ser programado via WiFi. Neste modo os dados são primeiramente enviados para uma parte da FLASH e depois de terminada a transmissão o dispositivo usará essa área como memória. Consome o dobro de espaço.

 O esp8266 vem de fábrica com um bootloader gravado. Esse código envia algumas informações para a porta serial quando o dispositivo é iniciado. Utiliza uma taxa de transferência de 74880 bits por segundo (que não é uma taxa de bits padrão)

toolchain

https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/linux-setup.html

https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/index.html#get-esp8266-rtos-sdk

Começando um projeto

Use um esqueleto
 mkdir projeto
 cd projeto
 cp -r \$IDF_PATH/examples/get-started/hello_world
 cd hello_world
 make menuconfig
 make

o make flash