MC1496/MC1596

DESCRIPTION

The MC1496 is a monolithic double-balanced modulator/demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switched function (carrier). The MC1596 will operate over the full military temperature range of -55 to +125°C. The MC1496 is intended for applications within the range of 0 to +70°C.

FEATURES

- Excellent carrier suppression 65dB typ @ 0.5MHz 50dB typ @ 10MHz
- Adjustable gain and signal handling
- Balanced inputs and outputs
- High common-mode rejection—85dB typ

APPLICATIONS

- Suppressed carrier and amplitude modulation
- Synchronous detection
- FM detection
- Phase detection
- Sampling
- Single sideband
- Frequency doubling

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #		
14-Pin Cerdip	0 to +70°C	MC1496F			
14-Pin Plastic	0 to +70°C	MC1496N	0405		
14-Pin Cerdip	-55 to +125°C	MC1596F	0581		
14-Pin Plastic	-55 to +125°C	MC1596N	0405		

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING		
	Applied voltage	30	V	
V ₈ -V ₁₀	Differential input signal	±5.0	V	
V ₄ -V ₁	Differential input signal	(5±l ₅ R _e)	V	
V ₂ -V ₁ , V ₃ -V ₄	Input signal	5.0	V	
l ₅	Bias current	10	mA	
P _D	Maximum power dissipation, T _A =25°C (still-air) ¹ F package N package	1190 1420	mW mW	
T _A	Operating temperature range MC1496 MC1596	0 to +70 -55 to +125	°C	
T _{STG}	Storage temperature range	-65 to +150	°C	

NOTES:

1. Derate above 25°C, at the following rates:

F package at 9.5mW/°C N package at 11.4mW/°C

MC1496/MC1596

EQUIVALENT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS

 $V_{CC}\text{=+}12V_{DC};\ V_{CC}\text{=-}8.0V_{DC};\ I5\text{=}1.0\text{mADC};\ R_{L}\text{=}3.9\text{k}\Omega;\ R_{E}\text{=}1.0\text{k}\Omega;\ T_{A}\text{=-}25^{\circ}\text{C},\ unless\ otherwise\ specified.}$

SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Тур	Max	Min	Тур	Max	
R _{IP} C _{IP}	Single-ended input impedance Parallel input resistance Parallel input capacitance	Signal port, f=5.0MHz		200 2.0			200 2.0		kΩ pF
R _{OP} C _{OP}	Single-ended output impedance Parallel output resistance Parallel output capacitance	f=10MHz		40 5.0			40 5.0		kΩ pF
I _{BS}	Input bias current I _{BS} = I _{BC} =			12 12	25 25		12 12	30 30	μ Α μ Α
l _{ios}	Input offset current I _{IOS} =I ₁ -I ₄ I _{IOC} =I ₈ -I ₁₀			0.7 0.7	5.0 5.0		0.7 0.7	7.0 7.0	μ Α μ Α
Tcho	Average temperature coefficient of input offset current Output offset current			2.0			2.0		nA/°C
l∞	l ₆ -l ₁₂			14	50		15	80	μΑ
T _{cloo} V _o	Average temperature coefficient of output offset current Common-mode quiescent output voltage (Pin 6 or Pin 12)			90 8.0			90 8.0		nA/°C V _{DC}
l _{D+} l _{D-}	Power supply current I ₆ +I ₁₂ I ₁₄			2.0	3.0 4.0		2.0 3.0	4.0 5.0	mA _{DC}
P _D	DC power dissipation	<u> </u>		33			33	- · · ·	mW

March 18, 1987 468

MC1496/MC1596

AC ELECTRICAL CHARACTERISTICS

 V_{CC} =+12 $_{DC}$; V_{CC} =-9.0 V_{DC} ; I_{S} =1.0mA $_{DC}$; R_{L} =3.9k Ω ; R_{E} =1.0k Ω ; T_{A} =+25°C unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Тур	Max	Min	Тур	Max	1
V _{CFT}	Carrier feedthrough	V _C =60mV _{RMS} sinewave and offset adjusted to zero							
		f _C =1.0kHz		40			40		μV _{RMS}
		f _C =10MHz		140			140		
		V _C =300mV _{P-P} squarewave:							
		Offset adjusted to zero f _C =1.0kHz		0.04	0.2	1	0.04	0.4	mV _{RMS}
		Offset not adjusted f _C =1.0kHz		20	100		20	200	
V _{CS}	Carrier suppressions	f _S =10kHz, 300mV _{RMS} sinewave						1	
		f _C =500kHz, 60mV _{RMS} sinewave	50	65		40	65		dB
	<u> </u>	f _C =10MHz, 60mV _{RMS} sinewave		50			50	ŀ	
BW _{3dB}	Transadmittance bandwidth	Carrier input port, V _C =60mV _{RMS}		300			300		MHz
	(Magnitude) (R _L =50Ω)	sinewave f _S =1.0kHz,							
		300mV _{RMS} sinewave							
		Signal input port, V _S =300mV _{RMS}		80			80		MHz
		sinewave $ V_C = 0.5V_{DC}$	ľ						
A _{VS}	Signal gain	V _S =100mV _{RMS} ; f=1.0kHz	2.5	3.5		2.5	3.5		V/V
		V _C = 0.5V _{DC}							
CMV	Common-mode input swing	Signal port, f _S =1.0kHz		5.0			5.0		V _{P-P}
A _{CM}	Common-mode gain	Signal port, f _S =1.0kHz		-85			-85		dB
		V _C = 0.5V _{DC}							
DV _{OUT}	Differential output voltage swing capability			8.0			8.0		V _{P-P}

March 18, 1987 469

MC1496/MC1596

TEST CIRCUITS

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.