universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 12 - \mathcal{L}^p -spaces II

In Exercise 1 and 2, we define a maximum norm $||f||_{\max} = \max_{x \in [a,b]} |f(x)|$. Also, we write $\mathcal{L}^p(E) = \{f : E \to \mathbb{R} \text{ measurable } |\int_E |f(x)|^p d\mu < \infty \}$, $1 \le p < \infty$.

Exercise 1 (4 Points).

For f in $\mathcal{C}[a,b]$, the space of continuous real-valued functions on [a,b], define

$$||f||_1 = \int_a^b |f|.$$

- (a) Show that this is a norm on C[a,b].
- (b) Show that there is no $c \ge 0$ for which

$$||f||_{\max} \le c||f||_1$$
 for all f in $C[a,b]$.

(c) Show that there is a $c \geq 0$ for which

$$||f||_1 \le c||f||_{\max}$$
 for all f in $\mathcal{C}[a,b]$.

Exercise 2 (4 Points).

For f in $\mathcal{L}^{\infty}[a,b]$,

(a) Show that

$$||f||_{\infty} = \min \{ M \mid m \{ x \text{ in } [a,b] \mid f(x)| > M \} = 0 \}.$$

(b) Furthermore, if f is continuous on [a,b], show that

$$||f||_{\infty} = ||f||_{\max}.$$

Exercise 3 (6 Points).

- (a) Show that if $f(x) = \ln(1/x)$ for $x \in (0,1]$, then f belongs to $\mathcal{L}^p(0,1]$ for all $1 \le p < \infty$ but does not belong to $\mathcal{L}^{\infty}(0,1]$.
- (b) Define $f(x) = \frac{x^{-1/2}}{1+|\ln x|}$ and $E = (0,\infty)$. Show that f belongs to $\mathcal{L}^p(E)$ if and only if p=2.

Exercise 4 (4 Points).

For $n \in \mathbb{N}$, define

$$f_n(x) = \begin{cases} n^{\frac{1}{p}} & \text{if } 0 \le x \le \frac{1}{n}, \\ 0 & \text{if } \frac{1}{n} \le x \le 1. \end{cases}$$

Let f be identically zero on [0,1]. Show that $\{f_n\}$ converges pointwise to f but does not converge in \mathcal{L}^p .