FONCTIONS RÉELLES

Définition 0.1. Soit E une partie de \mathbb{R} . Une fonction réelle f sur E associe à chaque élément $x \in E$ au plus un élément $f(x) \in \mathbb{R}$. Pour $x \in E$, le nombre f(x) est appelé l'image de x par f si il existe. En général, on note

$$f: \begin{cases} E \to \mathbb{R} \\ x \mapsto f(x) \end{cases}$$

ou

$$f: x \in E \mapsto x \in \mathbb{R}$$

Le domaine de définition D de f est l'ensemble des éléments $x \in E$ pour lesquels f(x) existent.

Exemples 0.2. • Considérons la fonction

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2. \end{cases}$$

Le domaine de définition de f est $D = \mathbb{R}$.

• Considérons la fonction

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

Le domaine de définition de f est $D = \mathbb{R} - \{0\} = \mathbb{R}^*$.

• Considérons la fonction

$$f: \begin{cases}]0, +\infty[: \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

Le domaine de définition de f est $D =]0, +\infty[$.

 $D\acute{e}finitions$ 0.3. Soit $f:E\to\mathbb{R}$ une fonction réelle. On dit que

- f est strictement croissante sur E si pour tous $a, b \in E$, on a $a \le b \Rightarrow f(a) \le f(b)$.
- f est décroissante sur E si pour tous $a, b \in E$, on a $a \le b \Rightarrow f(a) \ge f(b)$.
- f est monotone sur E si f est croissante ou f est décroissante.
- f est strictement croissante sur E si pour tous $a, b \in E$, on a $a < b \Rightarrow f(a) < f(b)$.
- f est strictement décroissante sur E si pour tous $a, b \in E$, on a $a < b \Rightarrow f(a) > f(b)$.
- f est strictement monotone sur E si f est strictement croissante ou f est strictement décroissante.

Remarque 0.4. Une fonction strictement croissante (resp. strictement décroissante) est toujours croissante (resp. décroissante). En effet, soient $a, b \in E$ tels que $a \leq b$. Si a = b, alors $f(a) \leq f(a) = f(b)$ (resp. $f(b) = f(a) \geq f(a)$). Si a < b, comme f est strictement croissante (resp. strictement décroissante) on a f(a) < f(b) (resp. f(b) > f(a)). Ainsi $f(a) \leq f(b)$ (resp. $f(b) \geq f(a)$).

Exemples 0.5. • La

$$f: \begin{cases} \mathbb{R} : \to \mathbb{R} \\ x \mapsto f(x) = 2x + 1 \end{cases}$$

est strictement croissante. En effet, soient a < b. On a 2a < 2b, donc f(a) = 2a + 1 < 2b + 1 = f(b).

• La fonction

$$f: \begin{cases} [0, \infty[: \to \mathbb{R} \\ x \mapsto f(x) = x^2 \end{cases}$$

est strictement croissante. En effet soient $a,b \in [0,\infty[$ tels que a < b. On a f(b)-f(a) = $b^2 - a^2 = (b - a)(b + a)$. Or b - a > 0 et a + b > 0, donc f(b) - f(a) = (b - a)(b + a) > 0. Ainsi f(a) < f(b).

• La

$$f: \begin{cases}]0, +\infty[: \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

est strictement décroissante. En effet, soient a, b tels que a < b. On a $\frac{1}{b} > \frac{1}{a}$, donc f(b) > f(a).

• La

$$f: \begin{cases} \mathbb{R} : \to \mathbb{R} \\ x \mapsto f(x) = -3x + 2. \end{cases}$$

 $f: \begin{cases} \mathbb{R}: \to \mathbb{R} \\ x \mapsto f(x) = -3x + 2. \end{cases}$ est strictement décroissante. En effet, soient a,b tels que a < b. On a -3b > -3a, donc f(b) = -3b + 2 > -3a + 2 = f(a).