Calcolo delle Probabilità e Statistica Matematica Soluzioni della I prova intercorso - Classe 1 (resto 0) 20/5/2022

Esercizio 1 Un dispositivo effettua un controllo automatico su coppie di dati (α, β) ricevuti da una centralina di rilevazione. Dalle precedenti osservazioni risulta che un dato di tipo α presenta errore con probabilità 0,1. Inoltre, se un dato di tipo α presenta errore, allora il dato di tipo β presenta errore con probabilità 0,3. Invece, se un dato di tipo α non presenta errore, allora il dato di tipo β presenta errore con probabilità 0,2.

- (i) Calcolare la probabilità che un dato di tipo β presenti errore.
- (ii) Calcolare la probabilità che un dato di tipo α presenti errore sapendo che il dato di tipo β presenta errore.
- (iii) Stabilire se gli eventi "il dato di tipo α presenta errore" e "il dato di tipo β presenta errore" sono indipendenti o positivamente correlati o negativamente correlati.
- (iv) Supponendo che in una settimana il dispositivo effettui 7 controlli indipendenti, qual è la probabilità che in una settimana si presenti almeno una volta un errore in un dato di tipo α ?

Soluzione Ponendo

 $A = \{ \text{un dato di tipo } \alpha \text{ presenta errore} \}, \text{ con } P(A) = 0,1 \text{ e } P(\overline{A}) = 0,9$ $B = \{ \text{un dato di tipo } \beta \text{ presenta errore} \}, \text{ con } P(B|A) = 0,3 \text{ e } P(B|\overline{A}) = 0,2$ si ha

(i)
$$P(B) = P(B|A) P(A) + P(B|\overline{A}) P(\overline{A}) = 0.3 \cdot 0.1 + 0.2 \cdot 0.9 = 0.03 + 0.18 = 0.21$$

(ii)
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{0.3 \cdot 0.1}{0.21} = \frac{1}{7} = 0.1428 > P(A) = 0.1$$

- (iii) pertanto A e B sono eventi positivamente correlati.
- (iv) Supponendo che in una settimana il dispositivo effettui 7 controlli indipendenti, la probabilità che in una settimana si presenti almeno una volta un errore in un dato di tipo α è

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (0.9)^7 = 1 - 0.4783 = 0.5217$$

essendo X una variabile aleatoria binomiale di parametri n = 7 e p = P(A) = 0,1.

Esercizio 2 Una procedura effettua la generazione a caso di 4 numeri a_1, a_2, a_3, a_4 con la seguente regola: ciascun numero a_k , indipendentemente dagli altri, viene scelto a caso (ossia uniformemente) nell'insieme dei primi k numeri interi positivi, quindi $a_k \in \{1, 2, ..., k\}$ per k = 1, 2, 3, 4.

(i) Determinare la cardinalità dello spazio campionario.

(ii) Indicando con X la variabile aleatoria discreta che descrive quante volte la procedura genera un numero uguale a 1, ricavare la funzione di probabilità p(x) = P(X = x), per x = 1, 2, 3, 4.

(iii) Calcolare il valore atteso e la varianza di X.

(iv) Valutare le seguenti probabilità: $P(X \le 2)$, P(X > 1), P(X > 2|X > 1).

Soluzione (i) Lo spazio campionario contiene $|S| = 1 \cdot 2 \cdot 3 \cdot 4 = 24$ sequenze del tipo a_1, a_2, a_3, a_4 . (ii) Si ha

a_1	a_2	a_3	a_4	X	a_1	a_2	a_3	a_4	X
1	1	1	1	4	1	2	1	1	3
1	1	1	2	3	1	2	1	2	2
1	1	1	3	3	1	2	1	3	2
1	1	1	4	3	1	2	1	4	2
1	1	2	1	3	1	2	2	1	2
1	1	2	2	2	1	2	2	2	1
1	1	2	3	2	1	2	2	3	1
1	1	2	4	2	1	2	2	4	1
1	1	3	1	3	1	2	3	1	2
1	1	3	2	2	1	2	3	2	1
1	1	3	3	2	1	2	3	3	1
1	1	3	4	2	1	2	3	4	1

quindi

$$p(1) = \frac{6}{24}$$
, $p(2) = \frac{11}{24}$, $p(3) = \frac{6}{24}$, $p(4) = \frac{1}{24}$

(iii) Pertanto risulta

$$E(X) = \sum_{k=1}^{4} k \, p(k) = \frac{50}{24} = \frac{25}{12} = 2,083$$
 $E(X^2) = \sum_{k=1}^{4} k^2 \, p(k) = \frac{120}{24} = 5$

$$Var(X) = E(X^2) - [E(X)]^2 = 5 - (2{,}083)^2 = \frac{95}{144} = 0{,}6597$$

(iv) Infine si ha

$$P(X \le 2) = p(1) + p(2) = \frac{17}{24}, \qquad P(X > 1) = 1 - p(1) = 1 - \frac{6}{24} = \frac{18}{24} = \frac{3}{4}$$
$$P(X > 2|X > 1) = \frac{P(X > 2)}{P(X > 1)} = \frac{7/24}{18/24} = \frac{7}{18} = 0.3\overline{8}.$$

Esercizio 3 Il tempo di durata dell'esecuzione di una procedura è descritto da una variabile aleatoria continua X avente densità di probabilità

$$f(x) = \begin{cases} \frac{c}{(x+1)^2}, & x > 0, \\ 0 & \text{altrimenti.} \end{cases}$$

- (i) Determinare il valore di c.
- (ii) Ricavare la funzione di distribuzione di $F(x) = P(X \le x)$.
- (iii) Calcolare la mediana di X, ossia il valore m tale che F(m) = 1/2.
- (iv) Se si effettuano 4 esecuzioni indipendenti della procedura, quanto vale la probabilità che esattamente due di esse abbiano durata maggiore di 1?

Soluzione (i) Risulta

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} \frac{c}{(x+1)^2} dx = c(-1) \frac{1}{x+1} \Big|_{0}^{\infty} = c \qquad \Rightarrow \qquad c = 1.$$

(ii) Per x < 0 risulta F(x) = 0, mentre per $x \ge 0$ si ha

$$F(x) = \int_0^x f(t) dt = \int_0^x \frac{c}{(t+1)^2} dt = (-1) \frac{1}{t+1} \Big|_0^x = 1 - \frac{1}{x+1} = \frac{x}{x+1}.$$

(iii) Risulta F(m) = 1/2 per

$$F(m) = \frac{m}{m+1} = \frac{1}{2} \qquad \Rightarrow \qquad m = 1.$$

(iv) Se si effettuano 4 esecuzioni indipendenti della procedura, la probabilità che esattamente due di esse abbiano durata maggiore di 1 è

$$\binom{4}{2} \left(\frac{1}{2}\right)^4 = \frac{4 \cdot 3}{2} \cdot \frac{1}{16} = \frac{3}{8} = 0.375$$

avendo fatto riferimento ad uno schema binomiale di parametri n=4 e $p=\frac{1}{2}$.

Esercizio 4 La variabile aleatoria doppia discreta (X, Y) ha funzione di probabilità congiunta indicata in tabella:

- (i) Determinare i valori ammissibili di p.
- (ii) Stabilire se vi sono valori di p tali che X e Y sono indipendenti.
- (iii) Ricavare il valore atteso e la varianza di X, ed il valore atteso e la varianza di Y.
- (iv) Calcolare il coefficiente di correlazione $\rho(X,Y)$ e commentare il risultato ottenuto.

Soluzione (i) Imponendo $p \ge 0$ e $1/2 - p \ge 0$, i valori ammissibili di p sono: $0 \le p \le 1/2$.

(ii) Si ha

$x \setminus y$	0	1	2	$p_X(x)$
0	1/8	p	1/8	1/4 + p
1	1/8	1/2 - p	1/8	3/4 - p
$p_Y(y)$	1/4	1/2	1/4	1

pertanto

$$p(0,0) = p_X(0) p_Y(0) \quad \Leftrightarrow \quad \frac{1}{8} = \left(\frac{1}{4} + p\right) \frac{1}{4} \quad \Leftrightarrow \quad p = \frac{1}{4}.$$

Sostituendo $p = \frac{1}{4}$ nella tabella si ricava facilmente che

$$p(x,y) = p_X(x) p_Y(y) \quad \forall x, y \qquad \Leftrightarrow \quad p = \frac{1}{4}$$

quindi X e Y sono indipendenti se e solo se $p = \frac{1}{4}$.

(iii) Si ha

$$\begin{split} E(X) &= E(X^2) = \frac{3}{4} - p, \qquad Var(X) = \left(\frac{3}{4} - p\right) \left(\frac{1}{4} + p\right), \\ E(Y) &= 1, \qquad E(Y^2) = \frac{3}{2}, \qquad Var(Y) = \frac{1}{2}, \\ E(XY) &= \frac{1}{2} - p + \frac{1}{4} = \frac{3}{4} - p, \qquad Cov(X, Y) = \frac{3}{4} - p - \left(\frac{3}{4} - p\right) = 0, \end{split}$$

quindi X e Y sono scorrelate per ogni $0 \le p \le 1/2$.