ICCS361 - Week 4

#### Association Rules & Frequent Itemsets

Sunsern Cheamanunkul

Ref Credit: Association Rules & Sequential Patterns by Bing Liu, UIC





# **Today**

- Association Rules Mining
- Frequent Itemsets
- Apriori Algorithm

### Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Bread  $\rightarrow$  Milk [sup = 5%, conf = 100%]

#### The model: data

- $I = \{i_1, i_2, ..., i_m\}$ : a set of *items*.
- Transaction t
  - $\Box$  t a set of items, and  $t \subseteq I$ .
- Transaction Database T: a set of transactions
  T = {t<sub>1</sub>, t<sub>2</sub>, ..., t<sub>n</sub>}.

#### Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
...
tn: {biscuit, eggs, milk}
```

- Concepts:
  - An item: an item/article in a basket
  - !: the set of all items sold in the store
  - A transaction: items purchased in a basket; it may have TID (transaction ID)
  - A transactional dataset: A set of transactions

#### Transaction data: a set of documents

 A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

#### The model: rules

- A transaction t contains X, a set of items (itemset) in I, if X ⊆ t.
- An association rule is an implication of the form:

$$X \rightarrow Y$$
, where X,  $Y \subset I$ , and  $X \cap Y = \emptyset$ 

- An itemset is a set of items.
  - E.g., X = {milk, bread, cereal} is an itemset.
- A k-itemset is an itemset with k items.
  - □ E.g., {milk, bread, cereal} is a 3-itemset

#### Rule strength measures

Support: The rule holds with support sup in T
 (the transaction data set) if sup% of
 transactions contain X ∪ Y.

- □  $sup = Pr(X \cup Y)$ .
- Confidence: The rule holds in T with confidence conf if conf% of transactions that contain X also contain Y.
  - $\Box conf = Pr(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.

#### Support and Confidence

- Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X. Assume T has n transactions.
- Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

### Goal and key features

 Goal: Find all rules that satisfy the userspecified minimum support (minsup) and minimum confidence (minconf).

#### Key Features

- Completeness: find all rules.
- No target item(s) on the right-hand-side
- Mining with data on hard disk (not in memory)

# An example

- Transaction data
- Assume:

```
minsup = 30%
minconf = 80%
```

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes

• An example frequent itemset:

{Chicken, Clothes, Milk} [sup = 3/7]

Association rules from the itemset:

Clothes  $\rightarrow$  Milk, Chicken [sup = 3/7, conf = 3/3]

...

Clothes, Chicken  $\rightarrow$  Milk, [sup = 3/7, conf = 3/3]

#### Transaction data representation

- A simplistic view of shopping baskets,
- Some important information not considered.
   E.g,
  - the quantity of each item purchased and
  - the price paid.

# Many mining algorithms

- There are a large number of them!!
- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
  - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.
- We study only one: the Apriori Algorithm

#### The Apriori algorithm

#### Two steps:

- Find all itemsets that have minimum support (frequent itemsets, also called large itemsets).
- Use frequent itemsets to generate rules.
- E.g., a frequent itemset
   {Chicken, Clothes, Milk} [sup = 3/7]
   and one rule from the frequent itemset
   Clothes → Milk, Chicken [sup = 3/7, conf = 3/3]

#### Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is ≥ minsup.
- Key idea: The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets



### The Algorithm

- Iterative algo. (also called level-wise search):
   Find all 1-item frequent itemsets; then all 2-item frequent itemsets, and so on.
  - □ In each iteration *k*, only consider itemsets that contain some *k*-1 frequent itemset.
- Find frequent itemsets of size 1: F<sub>1</sub>
- From k = 2
  - $C_k$  = candidates of size k: those itemsets of size k that could be frequent, given  $F_{k-1}$
  - $\neg$   $F_k$  = those itemsets that are actually frequent,  $F_k \subseteq C_k$  (need to scan the database once).

#### Dataset T Example minsup=0.5 Finding frequent itemsets

| TID  | Items      |
|------|------------|
| T100 | 1, 3, 4    |
| T200 | 2, 3, 5    |
| T300 | 1, 2, 3, 5 |
| T400 | 2, 5       |

#### itemset:count

1. scan T 
$$\rightarrow$$
 C<sub>1</sub>: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

$$\rightarrow$$
  $F_1$ : {1}:2, {2}:3, {3}:3, {5}:3

$$\rightarrow$$
 C<sub>2</sub>: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T 
$$\rightarrow$$
 C<sub>2</sub>: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

$$\rightarrow$$
  $F_2$ :

$$\rightarrow$$
  $F_2$ : {1,3}:2, {2,5}:3, {3,5}:2

$$\rightarrow$$
 C<sub>3</sub>:

$$\{2, 3, 5\}$$

3. scan T 
$$\rightarrow$$
 C<sub>3</sub>: {2, 3, 5}:2

$$\rightarrow$$
  $F_{3:}\{2,3,5\}$ 

| TID  | Items      |
|------|------------|
| T100 | 1, 3, 4    |
| T200 | 2, 3, 5    |
| T300 | 1, 2, 3, 5 |
| T400 | 2, 5       |

### Details: ordering of items

- The items in I are sorted in lexicographic order (which is a total order).
- The order is used throughout the algorithm in each itemset.
- {w[1], w[2], ..., w[k]} represents a k-itemset w consisting of items w[1], w[2], ..., w[k], where w[1] < w[2] < ... < w[k] according to the total order.</li>

# Details: the algorithm

```
Algorithm Apriori(T)
    C_1 \leftarrow \text{init-pass}(T);
    F_1 \leftarrow \{f \mid f \in C_1, f.\text{count}/n \ge minsup\}; // \text{n: no. of transactions in T}
    for (k = 2; F_{k-1} \neq \emptyset; k++) do
           C_k \leftarrow \text{candidate-gen}(F_{k-1});
           for each transaction t \in T do
               for each candidate c \in C_k do
                       if c is contained in t then
                          c.count++:
               end
           end
          F_{k} \leftarrow \{c \in C_{k} \mid c.count/n \geq minsup\}
    end
return F \leftarrow \mathbf{U}_k F_k;
```

#### Apriori candidate generation

- The candidate-gen function takes F<sub>k-1</sub> and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps
  - join step: Generate all possible candidate itemsets C<sub>k</sub> of length k
  - $\neg$  *prune* step: Remove those candidates in  $C_k$  that cannot be frequent.

# Candidate-gen function

```
Function candidate-gen(F_{k-1})
     C_{k} \leftarrow \emptyset;
    forall f_1, f_2 \in F_{k-1}
            with f_1 = \{i_1, \ldots, i_{k-2}, i_{k-1}\}
            and f_2 = \{i_1, \ldots, i_{k-2}, i'_{k-1}\}
             and i_{k-1} < i'_{k-1} do
        c \leftarrow \{i_1, ..., i_{k-1}, i'_{k-1}\};
                                                                  // join f_1 and f_2
        C_{k} \leftarrow C_{k} \cup \{c\};
        for each (k-1)-subset s of c do
             if (s \notin F_{k-1}) then
                 delete c from C_k;
                                                                  // prune
        end
     end
    return C_{k};
```

#### An example

• 
$$F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$$

- After join
  - $C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}\}$
- After pruning:
  - $C_4 = \{\{1, 2, 3, 4\}\}$

because  $\{1, 4, 5\}$  is not in  $F_3$  ( $\{1, 3, 4, 5\}$  is removed)

# Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
   For each proper nonempty subset A of X,
  - □ Let *B* = X *A*
  - $\square$  A  $\rightarrow$  B is an association rule if
    - Confidence(A → B) ≥ minconf,
       support(A → B) = support(A∪B) = support(X)
       confidence(A → B) = support(A ∪ B) / support(A)

### Generating rules: an example

- Suppose {2,3,4} is frequent, with sup=50%
  - Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with sup=50%, 50%, 75%, 75%, 75%, 75% respectively
  - These generate these association rules:
    - $2.3 \rightarrow 4$ , confidence=100%
    - $2,4 \rightarrow 3$ , confidence=100%
    - $3.4 \rightarrow 2$ , confidence=67%
    - $2 \rightarrow 3.4$ , confidence=67%
    - $3 \rightarrow 2.4$ , confidence=67%
    - $4 \rightarrow 2.3$ , confidence=67%
    - All rules have support = 50%

# Generating rules: summary

- To recap, in order to obtain A → B, we need to have support(A ∪ B) and support(A)
- All the required information for confidence computation has already been recorded in itemset generation. No need to see the data T any more.
- This step is not as time-consuming as frequent itemsets generation.

# On Apriori Algorithm

#### Seems to be very expensive

- Level-wise search
- K = the size of the largest itemset
- It makes at most K passes over data
- In practice, K is bounded (10).

#### More on association rule mining

- Clearly the space of all association rules is exponential, O(2<sup>m</sup>), where m is the number of items in I.
- The mining exploits sparseness of data, and high minimum support and high minimum confidence values.
- Still, it always produces a huge number of rules, thousands, tens of thousands, millions, ...

# Improving Apriori Algo.

- Further reduce the size of the candidate sets C<sub>i</sub> for i >= 2
- Simultaneously find  $F_1$ ,  $F_2$ ,  $F_3$ , ... in one or two passes, rather than a pass per level.