# PROG2

Zadanie 1

Pavol Marák

22. 2. 2022

#### Obsah

- Podmienky
- Vysvetlenie a úlohy
- Bodovanie
- Ukážka

# Podmienky

• Deadline: 4. 3. 2022, 23:59:59

• 10 bodov

#### Odovzdávanie

www.prog2.dev

# Penalizácia pri odovzdávaní zadania 1

| 1. | pokus max. 10  | b |
|----|----------------|---|
| 2. | pokus max. 9 b |   |
| 3. | pokus max. 7 b |   |
| 4. | pokus max. 5 b |   |
| 5. | pokus max. 3 b |   |
| 6. | pokus max. 1 b |   |

#### Zadanie 1

 Naprogramujte konzolovú aplikáciu v jazyku C, ktorá bude simulovať pristávanie sondy na povrchu vesmírneho telesa.

Zjednodušený fyzikálny model.



#### Zadanie 1

• Vstup: zadanie parametrov pristávania z klávesnice (stdin)



#### Zadanie 1

• Výstup: formátovaný výpis do konzoly/terminálu (stdout)



# Pristávanie sondy

Skladá sa z 2 fáz:

- 1. Fáza voľného pádu
- 2. Fáza riadeného pristávania

# Fáza voľného pádu

- Na začiatku simulácie sa sonda nachádza v počiatočnej výške H nad povrchom.
- Počiatočná rýchlosť sondy je  $v_0$ =0 m/s.
- Na začiatku simulácie má sonda vypnutý motor a padá voľným pádom.
- Sonda padá so zrýchlením g.
- Napr. pre mesiac platí g=1,62 m/s<sup>2</sup>.





Sonda voľne padá s vypnutým motorom smerom k povrchu so zrýchlením a =-g.

Smer voľného pádu

Povrch h=0



# Fáza riadeného pristávania

 Počas voľného pádu sondy nastane moment, kedy sonda musí zapnúť svoj motor, aby dokázala jeho ťahom vykompenzovať svoj voľný pád a bezpečne tak pristáť.

# Fáza riadeného pristávania

• Sonda musí zapnúť svoj motor v momente dosiahnutia kritickej výšky  $d_e$  nad povrchom, resp. po prekonaní dráhy voľného pádu  $d_f$ .

$$d_f = rac{(A-g)\cdot H}{A}$$

$$d_f = rac{(A-g)\cdot H}{A}$$





$$A = \frac{1}{m}$$



Gravitačné zrýchlenie vesmírneho telesa (m/s²)



Gravitačné zrýchlenie vesmírneho telesa (m/s²)

Počiatočná výška sondy (m)





# Fáza riadeného pristávania

- Sonda drží svoj motor zapnutý až do momentu, kedy jej aktuálna zostupová rýchlosť nebude v intervale  $< v_{soft}, 0$ ), čo považujeme za bezpečnú pristávaciu rýchlosť.
- Od momentu dosiahnutia bezpečnej rýchlosti, jemne riadime pristávanie pomocou vhodného zapínania/vypínania motora tak, aby sme stále udržovali bezpečnú rýchlosť

### Vstup programu

• Po spustení sú z klávesnice načítané tieto vstupné parametre:

| m          | hmotnosť sondy (kg)                                                                          |
|------------|----------------------------------------------------------------------------------------------|
| T          | ťah motora (N)                                                                               |
| H          | počiatočná výška sondy nad povrchom vesmírneho objektu/planéty (m)                           |
| g          | gravitačné zrýchlenie vesmírneho objektu/planéty (m/ $s^2$ )                                 |
| $v_{soft}$ | maximálna povolená rýchlosť sondy v okamihu pristávania potrebná na bezpečné pristátie (m/s) |
| $\Delta t$ | časový krok simulácie, v každom kroku sa vypočíta a zobrazí stav simulácie (s)               |

# Výstup programu

Po načítaní vstupných parametrov program vypíše na štandardný výstup (stdout) text skladajúci sa zo 4 častí:

- 1. Výpis všetkých vstupných parametrov.
- 2. Výpis hodnoty kritickej výšky  $d_e$ .
- 3. Výpis simulácie pristávania sondy s časovým krokom  $\triangle t$ .
- 4. Záverečný výpis

# 1. Výpis vstupných parametrov

$$m=17110.000$$

$$H=126.000$$

$$q=4.000$$

$$dt = 0.040$$

- Výpis je na prvých 6 riadkoch.
- Poradie parametrov sa nesmie meniť.
- Každé číslo je vypísané na 3 desatinné miesta
- Veličiny sú v základných jednotkách.

# 2. Výpis hodnoty kritickej výšky d<sub>e</sub>

de=95.816

- Výpis je **na 7. riadku.**
- Číslo je vypísané na 3 desatinné miesta
- Veličina je v základných jednotkách.

# 3. Výpis simulácie pristávania s časovým krokom $\triangle t$ .

- Výpis simulácie prebieha od počiatočnej výšky H až po kontakt sondy s povrchom.
- Časový krok pre výpis simulácie je ∆t.
- Vypisujú sa štvorice {s,h,t,v}

```
s=0 h=0126.000 t=0.000 v=0.000
s=0 h=0125.997 t=0.040 v=-0.160
s=0 h=0125.987 t=0.080 v=-0.320
s=0 h=0125.971 t=0.120 v=-0.480
s=0 h=0125.949 t=0.160 v=-0.640
s=0 h=0125.920 t=0.200 v=-0.800
s=0 h=0125.885 t=0.240 v=-0.960
s=0 h=0125.843 t=0.280 v=-1.120
s=0 h=0125.795 t=0.320 v=-1.280
```

# 3. Výpis simulácie pristávania s časovým krokom ∆t.

V každej iterácii simulácie sa vykonajú kroky v tomto poradí:

- 1. Výpočet stavu motora.
- 2. Vypíše sa štvorica  $\{s,h,t,v\}$  (vyjadruje stav na začiatku časového úseku  $\triangle t$ ).
- 3. Výpočet novej výšky h (na konci časového úseku  $\triangle t$ ).
- 4. Výpočet novej rýchlosti v (na konci časového úseku  $\triangle t$ ).

## Výpočet stavu motora

- Motor môže nadobúdať dve hodnoty: 0 vypnutý, 1 zapnutý.
- Stav sa vypočíta vždy na začiatku časového úseku  $\triangle t$  a je platný počas jeho celého trvania.
- Stav motora sa určí podľa aktuálnej výšky a rýchlosti sondy.
- Ak pre aktuálnu výšku sondy platí  $h <= d_e$ , tak sonda zapne svoj motor ak platí  $v < v_{soft}$ .

# Výpis štvorice {s,h,t,v}

$$s=0$$
 h=0125.949 t=0.160 v=-0.640

- s stav motora (0 vypnutý, 1 zapnutý)
- ullet h aktuálna výška sondy nad povrchom (na začiatku časového úseku  $\Delta t$ )
- ullet t uplynutý čas simulácie (na začiatku časového úseku  $\Delta t$ )
- ullet v aktuálna rýchlosť sondy (na začiatku časového úseku  $\Delta t$ )

Pri výpise *h* sa celá časť čísla dopĺňa nulami.

$$s=0$$
 h=0125.949 t=0.160 v=-0.640



4 miesta: celá časť 3 miesta: desatinná časť

s=0 h=0125.949 t=0.160 v=-0.640



3 desatinné miesta

s=0 h=0125.949 t=0.160 v=-0.640



3 desatinné miesta

$$h_{new} = h + v \cdot \Delta t + rac{a \cdot \Delta t^2}{2}$$

$$h_{new} = h + v \cdot \Delta t + rac{a \cdot \Delta t^2}{2}$$

Výška na konci časového úseku <u>∧</u>t

Výška na začiatku časového úseku ∆t



Výška na konci časového úseku △t

Výška na začiatku časového úseku ∆t



Výška na konci časového úseku △t Rýchlosť na začiatku časového úseku ∆t

# Výpočet novej výšky



$$v_{new} = v + a \cdot \Delta t$$

$$v_{new} = v + a \cdot \Delta t$$



Rýchlosť na konci časového úseku △t





## Zrýchlenie sondy

• Ak je motor sondy zapnutý:  $\,a=A-g\,$ 

ullet Ak je motor sondy vypnutý:  $\,a=-g\,$ 

#### 4. Záverečný výpis

```
---Landed---
h = -000.073
t = 13.920
 = -4.973
total= 241
max = 212
```

#### 4. Záverečný výpis

```
---Landed---
    =-000.073
 = 13.920
 = -4.973
total= 241
    = 212
max
```

Výpis celkového počtu riadkov simulácie, kedy bol motor sondy zapnutý

#### 4. Záverečný výpis

```
---Landed---
    =-000.073
   = 13.920
 = -4.973
total= 241
    = 212
max
```

Výpis celkového počtu riadkov simulácie, kedy bol motor sondy zapnutý.

Výpis najdlhšieho časového úseku, kedy bol motor zapnutý.

#### ---Landed---



| Testovacie scenáre                                                                                       |      |
|----------------------------------------------------------------------------------------------------------|------|
| Scenár 1 Kontrola výpisu vstupných parametrov.                                                           | 1 b  |
| Scenár 2 Kontrola výpisu kritickej výšky $d_e$ .                                                         | 2 b  |
| Scenár 3 Kontrola výpisu riadkov simulácie.                                                              | 4 b  |
| Scenár 4 Kontrola záverečného výpisu - trojica $\{h,t,v\}$ .                                             | 1 b  |
| Scenár 5 Kontrola záverečného výpisu - počet riadkov simulácie, kedy bol motor sondy počas letu zapnutý. | 1 b  |
| Scenár 6 Kontrola záverečného výpisu - najdlhší časový úseku, kedy bol motor zapnutý.                    | 1 b  |
| Súčet                                                                                                    | 10 b |

### Ukážka

# Zdroje

https://www.flaticon.com/