Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε. Ζάγος

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2003

Μέρος Α' (1 ώρα 20') Οι αριθμοί στις παρενθέσεις είναι μονάδες και συγχρόνως περίπου ο αριθμός των λεπτών που πρέπει να διαθέσετε. (35')

1. (6)

- a. (3) Κατασκευάστε διάγραμμα Venn ώστε να φαίνονται οι εξής περιοχές: $O(n), O(n^2), O(n^2), \Theta(n^2), \omega(n^2)$.
- b. (3) Τοποθετήστε τις παρακάτω συναρτήσεις σε έναν νέο πίνακα, έτσι ώστε: δύο συναρτήσεις f(n), g(n) να βρίσκονται στην ίδια γραμμή αν και μόνο αν $f(n)=\Theta(g(n))$, και μια συνάρτηση f(n) να είναι κάτω από μια συνάρτηση g(n) στον πίνακα αν και μόνο αν f(n)=o(g(n)).

4 ⁿ⁺⁴	4 ⁿ	$(n+1)^2 + 2n$	0.001n	$n^{5.2}$	$5\log n + 5^n + 5$	$\log n$
$n^2 \log n$	(n+1)!	$n + \log^2 n$	$n^2 \log \log n$	log log log n	$(\log n)^3$	$n^{0.01}$

- **2. (6)** a. Ορίστε: κύκλος Euler, κύκλος Hamilton.
 - b. Σχεδιάστε ένα γράφο που να περιέχει κύκλο Euler αλλά όχι κύκλο Hamilton.
 - c. Σχεδιάστε ένα γράφο που να περιέχει κύκλο Hamilton αλλά όχι κύκλο Euler.
- **3. (5)** Χρησιμοποιώντας παραδείγματα, σχολιάστε τη διαφορά πολυπλοκότητας ενός αλγόριθμου από την πολυπλοκότητα ενός προβλήματος.

4. (18)

- a. (2) Ορίστε: **P**, **NP**
- b. (3) Ορίστε: αναγωγή κατά Karp (Karp reduction).
- c. (3) Ορίστε: **NP-Πλήρες** ως προς \leq_T^P
- d. (3) Χρησιμοποιώντας το θεώρημα **Cook** εξηγήστε τι μπορεί κανείς να συμπεράνει εάν αποδειχθεί ότι το πρόβλημα **SAT** επιλύεται με πολυωνυμικό ντετερμινιστικό αλγόριθμο.
- e. (3) Αναφέρετε και ορίστε ένα πρόβλημα το οποίο δεν είναι γνωστό αν είναι **ΝΡ-πλήρες**, ούτε αν ανήκει στο **P**.
- f. (2) Ορίστε: Αλγόριθμος με μαντείο (Oracle).
- g. (2) Σωστό ή λάθος; (με εξήγηση).
 - i) NPSPACE ⊆ PSPACE
 - ii) P = NP
 - iii) PSPACE ⊂P