

FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE		NUMBER	SECTION		
	Thermodynamics I	ENGR 251	M		
EXAMINATION	DATE	TIME & PLACE Room:	# OF PAGES		
Final	December 12, 2008	14:00 - 17:00	4		
		H-509; H-520; H-521			
PROFESSORS		LAB INSTRUCTOR	1		
L. Kadem					
MATERIALS ALLOWED	MATERIALS ALLOWED				
CALCULATORS ALLOWED NO YES (non programmable)					
SPECIAL INSTRUCTIONS:					
Answer the followi	ng four questions.				
State clearly any assumptions you make.					
Draw a clear sketch of the problem.					
Return the Exam	paper with the answers' boo	ok.			
\mathbf{X}					
Name:		I.D.:			
	Surname, given name	·s			

Question no. 1 (20 Marks)

An ideal steam power plant operates between the pressure limits of 3 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 400°C, and the mass flow rate of steam through the cycle is 60 kg/s.

- a) Show the cycle on a T-s diagram with respect to saturation lines.
- b) Compute the thermal efficiency of the cycle.
- c) Compute the net power output of the power plant.

Thermal efficiency	
Power	
output	

Question no. 2 (20Marks)

Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet temperature of 1000 K. Determine the required mass flow rate of air for a net power output of 90 MW, assuming both the compressor and the turbine have an isentropic efficiency of: (a) 100% and (b) 80%.

Assume constant specific heats at room temperature.

Mass flow rate (100 %)	
Mass flow rate (80 %)	

Question no. 3 (20 Marks)

The compression ratio of an ideal Otto cycle is 8. At the onset of the compression stroke, the pressure is 0.1 MPa and the temperature is 15°C.

The heat supplied to air, per cycle, is 1800 kJ/kg. Determine:

- -a) The pressure, the specific volume and the temperature at each state.
- -b) The thermal efficiency.

Assume constant specific heats at room temperature.

	T	P	V
Point 1			
Point 2			
Point 3			
Point 4			
Thermal efficiency			

Question no. 4 (20 Marks)

An insulated 0.08 m³ tank contains helium at 2 MPa and 80°C. A valve is now opened, allowing some helium to escape. The valve is closed when one-half of the initial mass has escaped. Determine:

- -a) The final temperature in the tank.
- -b) The final pressure in the tank.

Final	
temperature	
Final pressure	

NOTES:

The enthalpy of helium exiting the tank can be approximated by: $C_p \; T_{avg}$ The internal energy at each state can be approximated by: $C_v \; T$

Question no. 5 (20 Marks)

The conditions at the inlet of a steam turbine can be controlled using a valve (see figure below). The pressure before the valve is 1.4 MPa and the temperature 300°C. The pressure at the turbine exit is fixed at 10 kPa. Assuming the expansion through the turbine is adiabatic and reversible, determine:

- The pressure at point (2) to produce 75% of the maximal work.

Pressure (2)	

Formulae and Constants

For Air: k=1.4; $C_p=1.005 \text{ kJ/kg K}$; R=0.287 kJ/kg K

For Helium: k= 1.667

$$\left(\frac{T_2}{T_1}\right)_{s=cte} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

$$\left(\frac{T_2}{T_1}\right)_{s=cte} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

$$\left(\frac{P_2}{P_1}\right)_{s=cte} = \left(\frac{v_1}{v_2}\right)^k$$