MATH 210A

Name: Quin Darcy
Due Date: 9/18/19
Instructor: Dr. Shannon
Assignment: Homework 3

1.

(a) Assume that $N \triangleleft G$, and define $\varphi \colon G \times N \to N$ by $\varphi((g, n)) = g \star n \star g^{-1}$. Prove that φ is an action of G on N.

Proof. We want to show that for all $h, g \in G$ and all $n \in N$ that

$$\varphi(h \star g, n) = \varphi(h, \varphi(g, n))$$
 and $\varphi(e, n) = n$.

Let $h, g \in G$ and let $n \in N$. Then

$$\varphi(h \star g, n) = (h \star g) \star n \star (h \star g)^{-1}$$

$$= (h \star g) \star n \star (g^{-1} \star h^{-1})$$

$$= h \star (g \star n \star g^{-1}) \star h^{-1}$$

$$= \varphi(h, g \star n \star g^{-1})$$

$$= \varphi(h, \varphi(g, n)).$$

Note that the fourth equality holds since N is normal which means that for all $g \in G$ and $n \in N$, $g \star n \star g^{-1} \in N$ and so $(h, g \star n \star g^{-1}) \in G \times N$. We have satisfied the first of the two equalities. Now consider

$$\varphi(e, n) = e \star n \star e^{-1} = e \star n \star e = n.$$

Therefore, φ is an action of G on N.

(b) Assume that $H \subseteq_g G$. Prove that $H \triangleleft G$ iff H is a union of conjugacy classes.

Proof. Assume $H \triangleleft G$, and let

$$A = \bigcup_{h \in H} C(h),$$

where C(h) denote the conjugacy class of $h \in H$. We want to show that $H \triangleleft G$ implies H = A. Let $m \in H$. Then for some $g \in G$, $m \in gHg^{-1}$ by Exercise 4, part (a). Thus, for some $h \in H$, $m = g \star h \star g^{-1}$. Thus, $m \in C(h)$. Since $C(h) \subseteq A$, then $m \in A$. Thus, $H \subseteq A$. Now let $a \in A$. Then for some $h \in H$, $a \in C(h)$. Thus, for some $g \in G$, $a = g \star h \star g^{-1}$. However, by Exercise 4, part (a), $g \star h \star g^{-1} \in H$ for all $g \in G$. Thus, $a \in H$. Hence, $A \subseteq H$. Therefore, H = A.

Assume H is equal to a union of conjugacy classes. We want to show that for all $g \in G$, $gHg^{-1} = H$. Let $g \in G$ and let $m \in gHg^{-1}$. Then for some $h \in H$, $m = g \star h \star g^{-1}$. Thus, $m \in C(h) \subseteq H$ and hence, $m \in H$. Thus, $gHg^{-1} \subseteq H$. Now let $m \in H$. Then, for some $h \in H$, $m \in C(h)$. Thus, $m = g \star h \star g^{-1}$, for some $g \in G$. Thus, $m \in gHg^{-1}$. Thus, $H \subseteq gHg^{-1}$. Therefore, for all $g \in G$, $gHg^{-1} = H$. Thus, $H \subseteq G$.

- 2. Assume that H is a subgroup of G. Define $N(H) = \{g \in G : gHg^{-1} = H\}$.
 - a) Prove that N(H) is a subgroup of G.

Proof. To prove that $N(H) \subseteq_g G$, we will first show that $N(H) \neq \emptyset$. Since $eHe^{-1} = H$, then it follows that $e \in N(H)$ and thus $N(H) \neq \emptyset$. Next, we must show that for all $h, g \in G$, if $h, g \in N(H)$, then $h \star g^{-1} \in N(H)$. Let $h, g \in G$ and assume $h, g \in N(H)$. Then we have that $hHh^{-1} = H$ and $gHg^{-1} = H$. We want to show that $h \star g^{-1} \in N(H)$. Thus, we want to show that

$$(h\star g^{-1})H(h\star g^{-1})^{-1} = h\star (g^{-1}Hg)\star h^{-1} = H.$$

Note that since $gHg^{-1}=H$ and, by Homework 2, $gHg^{-1}=g^{-1}Hg$ (this holds since $g^{-1}\star h\star g=g\star h'\star g^{-1}$, provided $h=g\star (g\star h'\star g^{-1})\star g^{-1}\in H$). Thus, with $g^{-1}Hg=H$, then

$$h \star (g^{-1}Hg) \star h^{-1} = hHh^{-1} = H.$$

Thus, $h \star g^{-1} \in N(H)$. Therefore, N(H) is a subgroup of G.

- b) Prove that $H \triangleleft N(H)$.
 - **Proof.** To prove that $H \triangleleft N(H)$, we will show that for all $g \in N(H)$, $gHg^{-1} = H$. Let $g \in N(H)$. Then $gHg^{-1} = H$. Therefore, $H \triangleleft N(H)$.
- c) Prove that if M is a subgroup of G, and $H \triangleleft M$, then $M \subseteq N(H)$.

Proof. Assume $M \subseteq_g G$ and $H \triangleleft M$. Let $m \in M$, then since $H \triangleleft M$ it follows that $mHm^{-1} = H$. Since $M \subseteq G$, then we have that $m \in G$ and $mHm^{-1} = H$. Thus, $m \in N(H)$. Therefore, $M \subseteq N(H)$.

3. Prove, by induction, that for $n \ge 2$, $(a_1 a_2 ... a_n)^{-1} = (a_n a_{n-1} ... a_2 a_1)$.

Proof. Let $P(n) := (a_1 a_2 \dots a_n)^{-1} = (a_n a_{n-1} \dots a_1)$. Then we want to show that for all $n \in \mathbb{N}$, P(n) holds.

BASE CASE: Let n=2. Then we can write the 2-cycle as (a_1a_2) . Since this is a permutation, then we can also write it as a bijective map $\sigma: \{a_1, a_2\} \to \{a_1, a_2\}$, where $\sigma(a_1) = a_2$ and $\sigma(a_2) = a_1$. Since for each 2-cycle permutation, it is its own inverse, it follows that $\sigma(\sigma(a_1)) = \sigma(a_2) = a_1$ and $\sigma(\sigma(a_2)) = \sigma(a_1) = a_2$. Thus, denoting this in cycle notation, we have that $(a_1a_2) = (a_1a_2)^{-1} = (a_2a_1)$. Thus, P(2) holds.

<u>INDUCTIVE STEP:</u> Assume that for some $k \in \mathbb{N}$, where k > 2, P(k) holds. Then

$$(a_1 a_2 \dots a_k)^{-1} = (a_k a_{k-1} \dots a_1). \tag{1}$$

By the result on pg. 9, any permutation can be written as the product of transpositions. Thus,

$$(a_1 a_2 \dots a_{k+1})^{-1} = ((a_1 a_{k+1}) \dots (a_1 a_2))^{-1}$$

$$= (a_1 a_2)^{-1} \dots (a_1 a_{k+1})^{-1}$$

$$= (a_2 a_1) \dots (a_{k+1} a_1)$$

$$= (a_{k+1} a_k \dots a_1).$$

Thus, P(k+1) holds. Therefore, for all $n \in \mathbb{N}$, P(n) holds.

5.

a) Let D be a subset of S_n consisting of all of the odd permutations in S_n . Define $\theta: A_n \to D$ by $\theta(\sigma) = \sigma(12)$ (that is $\sigma \circ (12)$). Prove that θ is 1-1 and onto D.

Proof. Assume that for some $\sigma_1, \sigma_2 \in A_n$, that $\theta(\sigma_1) = \theta(\sigma_2)$. Then it follows that $\sigma_1(12) = \sigma_2(12)$. Composing both sides with (12), we get $\sigma_1 = \sigma_2$. Thus, θ is 1-1. Let $\delta \in D$. Then if we take $\sigma \in A_n$ such that $\sigma = \delta(12)$, we get that $\theta(\delta(12)) = \delta$. Therefore, θ is onto.

b) Prove that $A_n \subseteq_g S_n$, and that $A_n \triangleleft S_n$.

Proof. Since the identity $(1) = (a_1 a_2)(a_1 a_2)$, for any $a_1, a_2 \in \{1, ..., n\}$ then it follows that (1) is an even permutation and thus $(1) \in A_n$. Thus, $A_n \neq \emptyset$. By definition, A_n contains all even permutations on n letters, and thus $A_n \subseteq S_n$. Now we wish to show that for all $\sigma \circ \gamma^{-1} \in A_n$ whenever $\sigma, \gamma \in A_n$. Let $\sigma, \gamma \in A_n$. Then both σ and γ can be written as the product of an even number of transpositions. Thus, we may write

$$\sigma = (a_1 a_{2m+1}) \cdots (a_1 a_2)$$
 and $\gamma = (b_1 b_{2k+1}) \cdots (b_1 b_2)$,

for $a_1, \ldots, a_{2m+1}, b_1, \ldots b_{2k+1} \in \{1, \ldots n\}$. So we have that σ is the product of 2m transpositions and is the product of 2k transpositions. By the result proven in Exercise 3, we have that

$$\gamma^{-1} = (b_2 b_1) \cdots (b_{2k+1} b_1).$$

Note that the number of transpositions remains unchanged. Thus,

$$\sigma \circ \gamma^{-1} = (a_1 a_{2m+1}) \cdots (a_1 a_2)(b_2 b_1) \cdots (b_{2k+1} b_1)$$

is the product of 2m+2k=2(m+k) transpositions. Thus, $\sigma \circ \gamma^{-1} \in A_n$. Therefore, $A_n \subseteq_g S_n$.

To prove that $A_n \triangleleft S_n$, we will show that $[S_n \colon A_n] = 2$ and appeal to Exercise 5 on Homework 2. By part (a) of Exercise 5, we showed that $|A_n| = |D|$, where D is the set of all odd permutations. Since S_n consists of all odd and even permutations, we have that $A_n \cap D = \emptyset$ and $A_n \cup D = S_n$. Thus, $\{A_n, D\}$ is a partition on S_n . Now let $\sigma \in S_n/A_n$, then either $\sigma \in A_n$ or $\sigma \in S_n - A_n = D$. Thus, $S_n/A_n = \{A_n, D\}$ which implies that $[S_n \colon A_n] = 2$. Thus, $A_n \triangleleft S_n$.

6. In S_5 , find c((123)(45)), and find N((123)(45)).

Solution. On pg. 7 we proved that

$$\left| c(s) \right| = \frac{|G|}{|N(s)|},$$

where G was a group and $s \in S$, for a set S. Thus, replacing these terms with the terms in our question, we get

$$\left| c((123)(45)) \right| = \frac{|S_5|}{\left| N((123)(45)) \right|}.$$

We know that $|S_5| = 5! = 120$, so finding either |c((123)(45))| or |N((123)(45))| will give us the other.

Recall that

$$N((123)(45)) = {\sigma \in S_5 : \sigma \circ (123)(45) = (123)(45) \circ \sigma}.$$

Thus, we are looking for a σ such that

$$\sigma \circ (123)(45) \circ \sigma^{-1} = (123)(45),$$

of which there are 6 since o((123)(45)) = 6. Thus,

$$\left| c((123)(45)) \right| = 120/6 = 20$$
 and $\left| N((123)(45)) \right| = 6$.

- 4. Assume H and K are subgroups of (G, \star) , and that $N \triangleleft G$.
 - a) Prove that HK is a subgroup of G iff HK = KH.

Proof. Assume that $HK \subseteq_g G$. Let $x \in HK$. Then since HK is a subgroup, $x^{-1} \in HK$. Thus, there exists $h \in H$ and $k \in K$ such that $x^{-1} = h \star k$. Thus, $x = k^{-1} \star h^{-1}$, which is an element of KH. Thus, $x \in KH$. Hence, $HK \subseteq KH$. Let $x \in KH$. Then by the same reasoning as before, $x^{-1} \in KH$. Thus, there exists $k \in K$ and $k \in H$ such that $k^{-1} = k \star k$. Thus, $k^{-1} = k \star k$. Therefore, $k^{-1} = k \star k$.

Assume that HK = KH. Let $x, y \in HK$. Then there exists $g, h \in H$ and $j, k \in K$ such that $x = g \star j$ and $y = h \star k$. Thus,

$$x \star y^{-1} = (g \star j) \star (k^{-1} \star h^{-1}) = g \star (j \star k^{-1} \star h^{-1}).$$

Since $j \star k^{-1} \star h^{-1} \in KH$ and KH = HK, then there exists some $h' \in H$ and $k' \in K$ such that $j \star k^{-1} \star h^{-1} \star = h' \star k'$. Thus,

$$x \star y^{-1} = g \star h' \star k'.$$

We see that $g \star h' \in H$ and $k' \in K$. Thus, $g \star h' \star k' \in HK$. Thus, $x \star y^{-1} \in HK$. Therefore, $HK \subseteq_g G$.

b) Prove that NH is a subgroup of G.

Proof. Let $x \in NH$. Then there exists $n \in N$ and $h \in H$ such that $x = n \star h$. Note that $n \star h \in Nh$, and since N is normal, then Nh = hN. Thus, $n \star h \in hN$ which implies that there exists some $n' \in N$ such that $n \star h = h \star n'$, and this is an element of HN. Thus, $x \in HN$ and hence $NH \subseteq HN$. By the same argument, we

can show $HN\subseteq NH$. Thus, NH=HN, and by (a), NH is therefore a subgroup of G. \square