Odpovídejte celou větou (na každou otázku) a každé své tvrzení řádně zdůvodněte. Dodržujte a ve svém řešení vyznačte dělení jednotlivých úloh na podúlohy.

Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Pro reálné čtvercové regulární matice A, B, C, D typu $n \times n$ nemusí nutně platit následující rovnost:
 - (a) $(\mathbf{A} \cdot \mathbf{B}) \cdot (\mathbf{C} \cdot \mathbf{D}) = (\mathbf{A} \cdot (\mathbf{B} \cdot (\mathbf{C} \cdot \mathbf{D}))).$
 - (b) $\mathbf{A}^{-1} \cdot (\mathbf{B} \mathbf{A}) = \mathbf{A}^{-1} \cdot \mathbf{B} \mathbf{E}_n$.
 - (c) $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
 - (d) $(\mathbf{A} \cdot \mathbf{B})^{-1} \cdot \mathbf{A} = \mathbf{B}$.
- 2. Ať $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ je lineárně nezávislý seznam vektorů v lineárním prostoru \mathbb{R}^3 nad \mathbb{R} , a uvažujme vektor $\mathbf{p} \in \mathbb{R}^3$. Obecně neplatí tvrzení:
 - (a) Vektor \mathbf{p} lze zaměnit za jeden z vektorů \mathbf{u} , \mathbf{v} , \mathbf{w} , a vytvořit tak novou bázi \mathbb{R}^3 .
 - (b) $\mathbf{p} \in \mathsf{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
 - (c) Ať \mathbf{A} je matice se sloupci \mathbf{u} , \mathbf{v} , \mathbf{w} . Pak má soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{p}$ řešení.
 - (d) At' **A** je matice se sloupci \mathbf{u} , \mathbf{v} , \mathbf{w} . Pak $\det(\mathbf{A}) \neq 0$.
- 3. Je dáno lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ a v \mathbb{R}^3 tři různé vektory $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ takové, že $\mathbf{f}(\mathbf{v}_1) = \mathbf{o}, \ \mathbf{f}(\mathbf{v}_2) = \mathbf{o}$ a $\mathbf{f}(\mathbf{v}_3) = \mathbf{o}$. Hodnost zobrazení \mathbf{f} nemůže být
 - (a) 3,
 - (b) 2,
 - (c) 1,
 - (d) 0.
- 4. Ať má soustava lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ nad \mathbb{R} právě jedno řešení. Potom nutně platí:
 - (a) pokud je matice A čtvercová, pak má nulový determinant,
 - (b) matice A nemůže mít více řádků než sloupců,
 - (c) matice A nemá více sloupců než řádků,
 - (d) vektor **b** nemůže být lineární kombinací sloupců matice **A**.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

- 1. Definujte pojmy: konečná lineárně nezávislá množina vektorů a dimense lineárního prostoru. Žádné další pojmy definovat nemusíte.
- 2. Ať L je lineární prostor nad \mathbb{F} , dim(L) = n. Ať $M = \{\mathbf{m}_1, \dots, \mathbf{m}_n\}$ je množina vektorů z L. Dokažte, že M je lineárně nezávislá množina právě tehdy, když $\mathsf{span}(M) = L$.

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

V prostoru \mathbb{R}^4 nad \mathbb{R} isou zadány afinní podprostory

$$\pi = \underbrace{\begin{pmatrix} 5 \\ 7 \\ 4 \\ -5 \end{pmatrix}}_{=\mathbf{p}} + \operatorname{span}(\begin{pmatrix} 2 \\ 3 \\ 1 \\ -2 \end{pmatrix}) \qquad \pi' = \underbrace{\begin{pmatrix} 1 \\ -1 \\ 3 \\ -4 \end{pmatrix}}_{=\mathbf{p}'} + \operatorname{span}(\begin{pmatrix} 2 \\ 2 \\ -1 \\ 3 \end{pmatrix})$$

Určete vzájemnou polohu π a π' a průnik $\pi \cap \pi'$.