

Buck型DC-DC变换器

模糊PID控制器设计与仿真

洪翠

福州大学电气学院

Email: hongcui@fzu.edu.cn

PID控制是电力电子变换器系统常用的控制方法。

传统PID控制在抗扰动等方面以及动态响应速度方面仍存在不尽如人意之处。

ENT E

为提高开关电源动态响应及控制精度, 出现了一些改进的PID控制方法,这其中就 包括与智能控制相结合的智能PID控制。

高楼

仿真结果表明该模糊PID控制器具有较优的控制特性。

1. 直流功率变换器控制系统

DC-DC变换器是构建许多其它类型电能变换器的基 本组成部分。为有效地实现电能变换,保证系统安全 稳定运行,需将DC-DC变换器与其它功能模块配合构成 直流功率变换器控制系统:

构成:

变换器电路;

PWM调制器:

功率器件驱动器;

2. 开关变换器的PID控制

按照控制对象输出量偏差的比例(P)、积分(I)、微分(D)进行控制的PID控制技术是最早发展起来的应用经典控制理论的控制策略之一,系统框图:

PID误差调节控制技术具有控制系统设计简单、适应性较好的优点。

但其输出反馈控制的目的是基于目标误差而不是 基于模型的控制,因此动态响应较慢、控制效果较 差,无法实现优化控制,亦无法满足开关电源日益 提高动态响应和控制精度的要求。

不过,因其经典PID控制在控制领域据有不可取 代的地位,一些新的控制方法亦多是基于PID实现或 是与PID结合。

PID控制器参数整定要求

-)当偏差e较大时, K_p 应取较大些, K_D 应取较小些, 并 $K_I=0$,限制积分作用。
- 》当偏差 e 中等大小时, K_p 应取小些以使系统响应 具有较小的超调。值得注意的是,这时的 K_p K_p 参 数取值对系统影响较大,要大小适中,以保证系统 的响应速度。
- 当偏差 e 较小时,应增加 K_p 和减小 K_I 取值。同时为了避免系统在设定值附近震荡,当偏差变化量 ec 较小时, K_D 可取值大些;当偏差变化量 ec较大时,

 K_D 应取值小些。

PID控制的参数整定,必须考虑到在

不同时刻三个参数所起作用以及它们相

互之间的互联关系!

3. Buck变换器的模糊PID控制

DC-DC变换器基于输出电压的偏差与偏差变化率实现模糊PID控制有两种方

式:

常规PID控制器+模糊控制器(切

换):

模糊PID控制器(利用模糊推理在线

调整PID控制器参数);

DC-DC变换器模糊PID控制

据输出电压偏差切换控制转换开关:偏差较大时用模糊控制;偏差较小时用PID控制;

模糊控制器设计

- ▶确定控制器的输入输出变量,将其转换为语言变量 (变量模糊化);
- >根据经验以及控制原则确定模糊推理规则;
- 根据输入依模糊控制规则采用Mamdani或其它推理 方法推理基準學學學中亦是的语言使
 - 方法推理获得控制器输出变量的语言值;
- 输出反模糊化;

0.2

0.0

输入变量语言值及其隶属函数

4

输出变量语言值及其隶属函数

模糊控制规则

	u ec	NB	NM	NS	ZE	PS	P M	PB
Î	NB	∣PB	PB	PB	PB	PM	ZE	ZE
	NM	PB	PB	PB	PB	PM	ZE	ZE
	NS	PM	PM	PM	PM	ZE	NS	NS
	NZ	PM	PM	PS	ZE	NS	NM	NM
	PZ	PM	PM	PS	ZE	NS	NM	NM
	PS	PS	PS	ZE	NM	NM	NM	NM
Sell R	PM	ZE	ZE	NM	NB	NB	NB	NB
	PB	ZE	ZE	NM	NB	NB	NB	NB

规则形式: IF ×× & ×× , THEN ××;

输出反模糊化

电路参数:

$$f_S = 20kHz$$
 $R = 50\Omega$ $L = 10mH$

$$C = 500 \mu F$$
 $V_g = 10V$ $V_o = 5V$

仿真控制对象:

仿真输出波形

(阶跃响应)

(扰动特性)

小结

- ✓ 人工智能技术与经典的PID控制相结合的控制方法对于控制对象模型精确性的要求并不是很高,因此对于非线性系
- 统的控制具有较好的应用前景;
 - ✓ 为进一步提高控制特性,还可以考虑增加模糊控制器维
- 数,引入其它的输入控制量,或是设计具有多输出的模糊控制器以对应调整不同的控制量;

