

شماره دانشجویی: 401108931

نام و نام خانوادگی: سینا دانیالی عنوانگزارش: پروژه ماشین لرنینگ

فایلهای دیتاست به هم اضافه شده و یک فایل را تشکیل دادهاند.

در ابتدا پس از مشاهده ی جلسات و نمونهها، سعی شد الگوریتمی بهینه برای پیش بینی این دو دسته آلاینده پیاده سازی شود. در گام اول این پروژه، به رسم ماتریس کوریلیشن(correlation matrix) پرداختم که ارتباطات خطی موجود دیده شود. همچنین با استفاده از کدهایی که در فایل دوم jupyter موجود است، به رسم گرافهای این دو آلاینده پرداختم و دیگر فاکتورها را هم بر حسب هم plot کردم که در صورت وجود ارتباط مفید، از آنها استفاده شود. گرافها:

سپس برای ویژگیهای مختلف correlation matrix (سمت راست: مقادیر بیش از ۵۴ م):

پس از ملاحظهی این ماتریس، به این نتیجه رسیدیم که NOX را نمی توان با رگرسیون خطی پیش بینی کرد، زیرا ستون مربوط به NOX مقادیر بالایی (نزدیک به یک) ندارد. ولی CO مقادیر خوبی در رگرسیون خطی دارد و امکان پیادهسازی این الگوریتم در آن وجود دارد.

دیتاها با هم مرج شدند و در یک فایل گرد هم به نام gt_new.csv جمع شدند.

با سرچ در یوتیوب متوجه روند پیادهسازی الگوریتم RF شدم و تصمیم گرفتم از این الگوریتم استفاده کنم. اگر چه که برای CO رگرسیون خطی چندگانه هم به کار رفته است. به علاوه در حال جستجو برای این مسئله بودم که به مقالهای برخوردم. مقادیر عددی حل شده که در جدول این مقاله بود را در فایل قرار می دهم.

Model	Feature	$RMSE_1$ (training)	$RMSE_1$ (validation)	R_1^2 (training)	R_1^2 (validation)	$R_1^2(harm)$	Rank
Ridge	Raw	1.4794 ± 0.0236	1.6725 ± 0.1086	0.5703 ± 0.0181	0.3929 ± 0.1363	0.4652	30
LASSO	Raw	1.5166 ± 0.0256	1.5794 ± 0.0810	0.5485 ± 0.0183	0.4627 ± 0.1027	0.5019	25
kNN	Raw	0.9805 ± 0.0415	1.6029 ± 0.0907	0.8112 ± 0.0147	0.4422 ± 0.1337	0.5724	17
Cubist	Raw	0.9410 ± 0.0331	1.7147 ± 0.1757	0.8262 ± 0.0098	0.3294 ± 0.2687	0.4710	29
RF	Raw	0.3959 ± 0.0126	1.5148 ± 0.1260	0.9692 ± 0.0018	0.4931 ± 0.1581	0.6537	8
LGBM	Raw	0.9021 ± 0.0242	1.4847 ± 0.1109	0.8404 ± 0.0054	0.5142 ± 0.1493	0.6380	15
CatBoost	Raw	0.7192 ± 0.0177	1.4962 ± 0.0986	0.8985 ± 0.0050	0.5083 ± 0.1454	0.6492	10
DFR	Raw	0.4203 ± 0.0533	1.4508 ± 0.0929	0.9647 ± 0.0101	0.5355 ± 0.1416	0.6887	1
Ridge	Top5	1.4731 ± 0.0234	1.6985 ± 0.1233	0.5740 ± 0.0183	0.3719 ± 0.1501	0.4514	31
LASSO	Top5	1.5166 ± 0.0256	1.5796 ± 0.0809	0.5485 ± 0.0183	0.4625 ± 0.1028	0.5019	26
kNN	Top5	0.9659 ± 0.0372	1.6156 ± 0.0911	0.8168 ± 0.0119	0.4351 ± 0.1242	0.5677	19
Cubist	Top5	0.9139 ± 0.0282	1.6067 ± 0.1059	0.8362 ± 0.0064	0.4336 ± 0.1515	0.5710	18
RF	Top5	0.3926 ± 0.0143	1.5214 ± 0.1282	0.9697 ± 0.0018	0.4874 ± 0.1629	0.6487	11
LGBM	Top5	0.8766 ± 0.0280	1.4876 ± 0.1112	0.8492 ± 0.0065	0.5149 ± 0.1333	0.6411	14
CatBoost	Top5	0.6793 ± 0.0189	1.4915 ± 0.0765	0.9095 ± 0.0034	0.5133 ± 0.1298	0.6562	5
DFR	Top5	0.4426 ± 0.1059	1.4665 ± 0.1019	0.9600 ± 0.0199	0.5230 ± 0.1564	0.6771	3 /
Ridge	Top10	1.4662 ± 0.0239	1.7061 ± 0.1226	0.5780 ± 0.0173	0.3671 ± 0.1482	0.4490	32
LASSO	Top10	1.5166 ± 0.0256	1.5796 ± 0.0809	0.5485 ± 0.0183	0.4625 ± 0.1028	0.5019	27
kNN	Top10	0.9555 ± 0.0306	1.6279 ± 0.1165	0.8209 ± 0.0080	0.4329 ± 0.0932	0.5668	21
Cubist	Top10	0.8835 ± 0.0299	1.6609 ± 0.1489	0.8470 ± 0.0053	0.3941 ± 0.1689	0.5379	23
RF	Top10	0.3907 ± 0.0154	1.5200 ± 0.1268	0.9700 ± 0.0021	0.4888 ± 0.1596	0.6501	9
LGBM	Top10	0.8656 ± 0.0244	1.4771 ± 0.1083	0.8530 ± 0.0052	0.5222 ± 0.1320	0.6478	12
CatBoost	Top10	0.6629 ± 0.0166	1.4996 ± 0.0949	0.9138 ± 0.0019	0.5092 ± 0.1293	0.6540	6
DFR	Top10	0.5157 ± 0.0800	1.4553 ± 0.0954	0.9480 ± 0.0137	0.5335 ± 0.1379	0.6828	2
Ridge	Top15	1.4006 ± 0.0229	1.6419 ± 0.1009	0.6149 ± 0.0168	0.4140 ± 0.1348	0.4948	28
LASSO	Top15	1.4946 ± 0.0232	1.5643 ± 0.0817	0.5615 ± 0.0189	0.4726 ± 0.1026	0.5132	24
kNN	Top15	0.9639 ± 0.0339	1.6249 ± 0.1137	0.8177 ± 0.0087	0.4347 ± 0.0937	0.5676	20
Cubist	Top15	0.8657 ± 0.0196	1.6262 ± 0.1390	0.8530 ± 0.0049	0.4227 ± 0.1451	0.5653	22
DE	2015	0.2001 0.0160	1 5000 1 0 1000	0.0704 0.0070	0.4941 + 0.1574	0.6460	10

Model	Feature	$RMSE_2(training)$	$RMSE_2(validation)$	R_2^2 (training)	R_2^2 (validation)	$R_2^2(harm)$	Rank
Ridge	Raw	8.0201 ± 0.2835	8.9742 ± 1.3405	0.5241 ± 0.0147	0.3055 ± 0.1522	0.3860	31
LASSO	Raw	8.1722 ± 0.2307	8.8594 ± 1.3761	0.5058 ± 0.0089	0.3226 ± 0.1625	0.3939	30
dNN	Raw	3.9581 ± 0.1333	8.1884 ± 1.4900	0.8841 ± 0.0040	0.4079 ± 0.2070	0.5582	17
Cubist	Raw	3.4166 ± 0.1246	9.0217 ± 1.9114	0.9136 ± 0.0036	0.2830 ± 0.2693	0.4322	26
RF	Raw	1.4852 ± 0.0515	8.0454 ± 2.3642	0.9837 ± 0.0006	0.4181 ± 0.2894	0.5868	13
GBM	Raw	4.0848 ± 0.1898	7.8623 ± 2.4172	0.8766 ± 0.0061	0.4421 ± 0.2921	0.5878	12
atBoost	Raw	3.4740 ± 0.1417	7.5844 ± 2.2079	0.9107 ± 0.0035	0.4831 ± 0.2568	0.6313	5
OFR	Raw	1.3876 ± 0.0339	7.6528 ± 2.1068	0.9866 ± 0.0004	0.4737 ± 0.2446	0.6466	1
tidge	Top5	7.8477 ± 0.2828	8.8006 ± 1.2802	0.5443 ± 0.0150	0.3320 ± 0.1448	0.4125	27
ASSO	Top5	8.0746 ± 0.2293	8.8308 ± 1.3028	0.5175 ± 0.0094	0.3279 ± 0.1499	0.4015	29
:NN	Top5	3.8759 ± 0.1831	8.4803 ± 1.4437	0.8888 ± 0.0070	0.3689 ± 0.1972	0.5214	18
Cubist	Top5	3.0717 ± 0.1790	9.1445 ± 1.8200	0.9301 ± 0.0057	0.2585 ± 0.2803	0.4046	28
RF	Top5	1.4229 ± 0.0701	8.0976 ± 2.4076	0.9850 ± 0.0009	0.4081 ± 0.3044	0.5771	16
GBM	Top5	3.9416 ± 0.2119	7.8735 ± 2.3924	0.8850 ± 0.0078	0.4432 ± 0.2848	0.5906	11
atBoost	Top5	3.2241 ± 0.1945	7.6050 ± 2.3047	0.9230 ± 0.0066	0.4812 ± 0.2592	0.6326	3
OFR	Top5	1.3343 ± 0.0623	7.8488 ± 2.1422	0.9868 ± 0.0010	0.4514 ± 0.2496	0.6195	7
tidge	Top10	7.1284 ± 0.3165	8.2374 ± 1.3735	0.6240 ± 0.0198	0.4132 ± 0.1488	0.4972	22
ASSO	Top10	7.3737 ± 0.2507	8.1341 ± 1.2779	0.5976 ± 0.0140	0.4294 ± 0.1313	0.4998	19
NN	Top10	3.8935 ± 0.1961	8.7830 ± 1.3248	0.8878 ± 0.0080	0.3261 ± 0.1855	0.4769	23
Cubist	Top10	2.9779 ± 0.1602	9.2755 ± 1.8734	0.9344 ± 0.0045	0.2372 ± 0.2903	0.3784	32
RF	Top10	1.4166 ± 0.0720	8.0678 ± 2.3633	0.9852 ± 0.0009	0.4137 ± 0.2949	0.5827	14
.GBM	Top10	3.9261 ± 0.2156	7.8846 ± 2.2774	0.8859 ± 0.0081	0.4446 ± 0.2712	0.5921	10
CatBoost	Top10	3.1678 ± 0.1915	7.6168 ± 2.0930	0.9257 ± 0.0062	0.4859 ± 0.2301	0.6373	2
OFR	Top10	1.2718 ± 0.0707	7.8449 ± 1.9908	0.9880 ± 0.0010	0.4535 ± 0.2344	0.6217	6
tidge	Top15	7.1072 ± 0.3163	8.2306 ± 1.3712	0.6262 ± 0.0197	0.4146 ± 0.1466	0.4989	21
ASSO	Top15	7.3664 ± 0.2523	8.1389 ± 1.2822	0.5984 ± 0.0140	0.4290 ± 0.1310	0.4997	20
NN	Top15	3.9220 ± 0.2127	8.9632 ± 1.3194	0.8861 ± 0.0090	0.2994 ± 0.1846	0.4476	24
abist	Top15	3.0055 ± 0.1803	9.0422 ± 1.5951	0.9331 ± 0.0061	0.2873 ± 0.2104	0.4393	25
UF .	Top15	1.4099 ± 0.0741	8.1053 ± 2.3890	0.9853 ± 0.0009	0.4083 ± 0.2996	0.5773	15
GBM	Top15	3.8962 ± 0.2230	7.8800 ± 2.1927	0.8877 ± 0.0083	0.4474 ± 0.2580	0.5949	9
CatBoost	Top15	3.1638 ± 0.1911	7.6521 ± 2.1359	0.9259 ± 0.0062	0.4792 ± 0.2393	0.6316	4
DFR	Top15	1.1262 ± 0.0663	7.9106 ± 1.9222	0.9879 ± 0.0009	0.4460 ± 0.2260	0.6146	8

لينك مقاله: https://www.sciencedirect.com/science/article/pii/50016236123019804

پس از اینها با تغییر مداوم مجموعه ویژگی ها سعی کردم به وضعیت بهینه دست یابم. یعنی دیتاهایی که به نسبت ۸۰ به ۲۰ تقسیم شده بودند، در تست و ترین استفاده شدند. تست برای پیشبینی و ترین هم برای آموزش مدل.

باقی نکات و... در کد موجودند. برای اینکه نحوه پیش بینی بهتر به چشم بیاید، نمودار هم رسم شده است. البته نمودارهای پایانی رسم نشده که البته اهمیتی ندارد، چرا که بیش از همه دقت دارند.

در زمانهای پایانی اتمام پروژه، با مشورت یک فرد با تجربه، تصمیم گرفتیم به دلیل ضعیف بودن درخت تصمیم، از رگرسیون غیرخطی هم استفاده کرده و نتیجه را ببینیم. به وسیلهی امکانی که در پایتون وجود داشت، موفق شدیم به دقت بالای ۷<u>۰٬</u> برای هر دو آلاینده دست پیدا کنیم. برای یافتن این ماکسیمم مقدار، از greedy search استفاده کردیم. به این صورت که ابتدا مجموعههای سهتایی از ویژگی ها را گرفتیم و واریانس آنها را بررسی کردیم. سپس مجموعههای چهارتایی را امتحان کردیم که دیدیم دقت بهتری دارند. بررسی مجموعههای پنج تایی ممکن بود، ولی به شدت زمان بر بوده و به CPU فشار وارد می کرد (در چهارتایی ها هم همینطور، به شدت طول می کشید). از بین درجههای یکه موجود بود، با چند تست، دیدیم درجه سه نسبت به بقیه بهینه تر است (البته درجه پنج با مجموعههای سهتایی هم بهینه بود).

نکته هایی که عدم رعایت آنها موجب دردسر بود و بعد فهمیدم:

- ۱- فایل اکسل، csv نیست و باید به آن تبدیل شود.
- ۲- در استفاده از ترین و تست باید دقت کرد. آموزش با ترین است و پیش بینی فقط با دیتای تست باید انجام شود.
- ۳- متغیرها و... در ژوپیتر ذخیره می شود. برای ران کردن کد باید ابتدا کرنل را ری استارت کرد تا از خطاهای احتمالی جلوگیری شود.
- ۴- وقتی از greedy search استفاده کردم، در jupyter خیلی اذیت شدم. پیشنهاد دوستان این بود که از google colab استفاده کنیم که به CPU دستگاه فشار وارد نشود و سرعت بیشتری داشته باشد.
 - ۵- در پروژه، برای گرفتن واریانس از RF.score(x_train,y_train) استفاده می کردم که متوجه شدم اشتباه است و باید از y_real با استفاده می کردم.
 این ها دیتای تست هستند و درست. RF در کد تعریف شده است.
 - ابتداکه میخواستم پروژه را شروع کنم، wget! که در فایل بود اجازه Run نمیداد، با بررسی متوجه شدم این برای نسخه های قبل ژوپیتر است و برای دانلود فایل
 دیتاست، ما به آن نیازی نداریم.
 - ۷- برای پلات کردن نمودار نیاز به اندیس داشتم که آن را با linspace ساختم.

كدهاي مربوط به ماتريسها و پلاتها موجود است، در صورت نياز قابل ارسال ميباشد.