Applicants submit the instant amendment as a replacement for the amendment filed by Applicants on May 28, 2002.

Please amend the above-identified application as follows:

In the Claims:

1. (Amended) A compound of Formula (I), the racemic-diastereomeric mixtures, optical isomers, pharmaceutically-acceptable salts, prodrugs or biologically active metabolites thereof,

SUN NINCE

wherein:

R₁ is

 $\begin{array}{c|c} R_{a} & G_{1} & (J_{1})_{a} \\ D_{1} & 1 & L_{1} \\ M_{1} & Z_{110} & A - Z_{111} & Z_{100} \end{array}$

 $-\sqrt{\frac{2}{2}}G_{2}^{K_{b}}(J_{2})_{b}$

where Z¹⁰⁰ is

or a group optionally substituted with R_b selected from the

group consisting of cycloalkyl, naphthyl, tetrahydronaphthyl, benzothienyl, furanyl,

N S N O , thiazolyl,

thienyl, benzoxazolyl, benzothiazolyl,

benzofuranyl, 2,3-dihydrobenzofuranyi, indolyl, isoxazolyl, tetrahydropyranyl, tetrahydrofuranyl, piperidinyl, pyrazolyl, pyrrolyl, oxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, indolinyl, indazolyl, benzoisothiazolyl, pyrido-oxazolyl, pyrimido-oxazolyl, pyrimido-thiazolyl and benzimidazolyl;

 Z^{110} is a covalent bond, or an optionally substituted (C_1 - C_6) which is optionally substituted with one or more substituents selected from the group consisting of alkyl, CN,

Application No.: 09/663,320 Art Unit: 1624

OH, halogen, NO₂, COOH, substituted or unsubstituted amino and substituted or unsubstituted phenyl;

Z¹¹ is a covalent bond, an optionally substituted (C₁-C₆) or an optionally substituted -(CH₂)_n-cycloalkyl-(CH₂)_n-; where the optionally substituted groups are optionally substituted with one or more substituents selected from the group consisting of alkyl, CN, OH, halogen, NO₂, COOH, substituted or unsubstituted amino and substituted or unsubstituted phenyl;

 R_a and R_1 each represent one or more substituents for each occurrence independently selected from the group consisting of hydrogen, halogen, -CN, -NO₂, -C(O)OH, -C(O)H, -OH, -C(O)O-alkyl substituted or unsubstituted carboxamido, tetrazolyl, trifluoromethylcarboxylamino, trifluoromethylsulfonamido, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted aryl, substituted or unsubstituted aryloxy, substituted or unsubstituted heteroaryloxy, substituted or unsubstituted arylalkyl, substituted or unsubstituted alkynyl, substituted or unsubstituted amino, substituted or unsubstituted aminoalkyl, substituted or unsubstituted arylalkyl, substituted aminoalkyl, substituted or unsubstituted arylalkyl, substituted aminoalkyl, substituted or unsubstituted arylalkyl, substituted arylalkyl, substituted or unsubstituted arylalkyl, subs

where R_c for each occurrence is independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, $CH_2-NR_dR_e$, $-W-(CH_2)_t-NR_dR_e$, $-W-(CH_2)_t-$

 Z^{105} for each occurrence is independently a covalent bond or (C_1-C_6) ;

 Z^{200} for each occurrence is independently a substituted or unsubstituted (C_1 - C_6), substituted or unsubstituted phenyl or substituted or unsubstituted -(C_1 - C_6)-phenyl;

 R_d and R_e for each occurrence are independently H, alkyl, alkanoyl or SO_2 -alkyl; or R_d , R_e and the nitrogen atom to which they are attached together form a five- or six-membered heterocyclic ring; t for each occurrence is independently an integer from 2 to 6; W for each occurrence is independently a direct bond or O, S, S(O), $S(O)_2$, or NR_f , wherein R_f for each occurrence is independently H or alkyl;

or R₁ is a substituted or unsubstituted carbocyclic or heterocyclic ring fused with

Sub

Bt

Application No.: 09/663,320 Art Unit: 1624

ring 2;

R₃ is hydrogen, hydroxy, substituted or unsubstituted alkyl or substituted or unsubstituted alkoxy;

A is -O-; -S-;\-S(O)_p-; -N(R)-; -N(C(O)OR)-; -N(C(O)R)-; -N(SO₂R)-;

 $-CH_2O-\CH_2S-$; $-CH_2N(R)-$; -CH(NR)-; $-CH_2N(C(O)R))-$;

 $-CH_2N(C(Q)OR)$ -; $-CH_2N(SO_2R)$ -; -CH(NHR)-; -CH(NHC(Q)R)-;

 $-CH(NHSO_2^{\uparrow}R)$ -; -CH(NHC(O)OR)-; -CH(OC(O)R)-; -CH(OC(O)NHR);

-CH=CH-; -C(\(\frac{1}{2}NOR\)-; -C(O)-; -CH(OR)-; -C(O)N(R)-; -N(R)C(O)-;

 $-N(R)S(O)_p$ -; -OC(O)N(R)-; ; $-N(R)-C(O)-(CH_2)_n-N(R)$ -, -N(R)C(O)O-; -N(R)-

 $(CH_2)_{n+1}$ -C(O)-, $-S(O)_pN(R)$ -; -O- $(CR_2)_{n+1}$ -C(O)-, -O- $(CR_2)_{n+1}$ -O-,

 $-N(C(O)R)S(O)_p$ -; $-N(R)S(O)_pN(R)$ -; $-N(R)-C(O)-(CH_2)_n$ -O-, -C(O)N(R)C(O)-; $-N(C(O)R)S(O)_p$ -; $-N(C(O)R)S(O)_p$ -; -N(C(O)R)S(O)-; -N(C(O)R)S(O)

 $S(O)_pN(R)C(O)$ -; $-OS(Q)_pN(R)$ -; $-N(R)S(O)_pO$ -; $-N(R)S(O)_pC(O)$ -; -

 $SO_pN(C(O)R)$ -; -N(R)SO_pN(R)-; -C(O)O-; -N(R)P(OR_g)O-; -N(R)P(OR_g)-; -

 $N(R)P(O)(OR_g)O-$; $-N(R)P(Q)(OR_g)-$;

 $-N(C(O)R)P(OR_g)O-$; $-N(C(O)R)P(OR_g)-$; $-N(C(O)R)P(O)(OR_g)O-$, or

 $-N(C(O)R)P(OR_g)-;$

where R for each occurrence is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted arylalkyl or substituted or unsubstituted aryl;

R_g for each occurrence is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted cycloalkyl or substituted or unsubstituted aryl;

p is 1 or 2;

or in a phosphorus containing group, the nitrogen atom, the phosphorus atom, R and R_g together form a five- or six membered heterocyclic ring; or

A is NRSO₂ and R, R_a and the nitrogen atom together form a substituted or unsubstituted five or-six-membered heterocyclic ring fused to ring 1; R₂ is -Z¹⁰¹-Z¹⁰²;

5 vh

At

Application No.: 09/663,320 Art Unit: 1624

Z¹⁰¹ is a covalent bond, $-(C_1-C_6)-$, $-(C_1-C_6)-$ O-, $-(C_1-C_6)-$ C(O)-, $-(C_1-C_6)-$ C(O)O-, $-(C_1-C_6)-$ C(O)-NH-, $-(C_1-C_6)-$ C(O)-N((C₁-C₆))- or a substituted or unsubstituted phenyl group;

Z¹⁰² is hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted, saturated or unsaturated heterocyclic group, or a substituted or unsubstituted, saturated or unsaturated heterobicyclic group;

said substituted heterocyclic or substituted heterobicyclic group having one or more substitutents each independently selected from the group consisting of hydroxyl, cyano, substituted or unsubstituted alkoxy, substituted or unsubstituted sulfonamido, substituted or unsubstituted ureido, substituted or unsubstituted carboxamido; substituted or unsubstituted amino, oxo, a saturated, unsaturated or aromatic, substituted or unsubstituted heterocyclic group comprising one or more nitrogen atoms, one or more oxygen atoms or a combination thereof;

wherein said nitrogen atoms are independently optionally substituted by a substituted or unsubstituted alkyl, substituted or unsubstituted arylaryl group; or

R₂ is of the formula B-E, wherein B is a substituted or unsubstituted cycloalkyl, substituted or unsubstituted armino, substituted or unsubstituted amino, substituted or unsubstituted aminoalkylsulfonyl, substituted or unsubstituted alkoxyalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aminoalkylcarbonyl, hydroxy, substituted or unsubstituted alkylene, substituted or unsubstituted aminoalkyl, substituted or unsubstituted alkylenecarbonyl or substituted or unsubstituted aminoalkylcarbonyl group; and E is substituted or unsubstituted azacycloalkyl, substituted or unsubstituted azacycloalkylsulfonyl, substituted or unsubstituted azacycloalkylsulfonyl, substituted or unsubstituted heteroarylsulfonyl, substituted or unsubstituted heteroarylsulfonylamino, substituted or unsubstituted heteroarylcarbonylamino or substituted or unsubstituted aryl;

a is 1 and D₁, G₁, J₁, L₁ and M₁ are each independently selected from the group

5 Jb

BI

Application No.: 09/663,320

Art Unit: 1624

consisting of CR_a and N, provided that at least two of D_1 , G_1 , J_1 , L_1 and M_1 are

- a is 0, and one of D₁, G₁, L₁ and M₁ is NR_a, one of D₁, G₁, L₁ and M₁ is CR_a and the remainder are independently selected from the group consisting of CR_a and N, wherein Rais as defined above;
- b is 1 and D_2 , G_2 , J_2 , L_2 and M_2 are each independently selected from the group consisting of CR_a and N, provided that at least two of D₂, G₂, J₂, L₂ and M₂ are CR_a; or
- b is 0, and one of D₂, G₂, L₂ and M₂ is NR_a, one of D₂, G₂, L₂ and M₂ is CR_a and the remainder are independently selected from the group consisting of CRa and N, wherein Ra is as defined above; and

n for each occurrence is independently an integer from 0 to 6.