ANALIZA III - LISTA 7

**1. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie klasy C^1 i $|f'(x)| \le k < 1$ dla każdego $x \in \mathbb{R}$. Udowodnić, że przekształcenie płaszczyzny $F: \mathbb{R}^2 \to \mathbb{R}^2$ zdefiniowane wzorem

$$F(x,y) = (x + f(y), y + f(x)),$$

klasy \mathcal{C}^1 , różnowartościowe i na \mathbb{R}^2 .

- **2. Załóżmy, że funkcja $f: \mathbb{R}^n \to \mathbb{R}^m$ i m < n jest klasy C^1 , rząd Df jest równy m w każdym punkcie. Pokazać, że nie jest wzajemnie jednoznaczna.
- **3. Funkcja g(t) odwzorowuje pewien przedział otwarty (-a, a) w przestrzeń \mathbb{R}^2 i jest klasy C^1 . Czy jest możliwe by obraz każdego przedziału otwartego (-b, b), gdzie 0 < b < a zawierał otoczenie (tzn, zbiór otwarty w \mathbb{R}^2) punktu g(0)?
- **4. Rozstrzygnąć analogiczne zagadnienie jak w zadaniu 3, gdy $g: \mathbb{R}^m \to \mathbb{R}^n$ i m < n, rząd Df jest równy m w każdym punkcie.
- **5. Załóżmy, że $L:\mathbb{R}^n\longmapsto\mathbb{R}^n$ jest liniowym izomorfizmem. Ponadto załóżmy, że $g:\mathbb{R}^n\longmapsto\mathbb{R}^n$ jest funkcją klasy C^1 spełniającą

$$||g(\mathbf{x})|| \le 10||\mathbf{x}||^2$$

dla wszystkich $\mathbf{x} \in \mathbb{R}^N$. Udowodnij, że funkcja

$$f(\mathbf{x}) = L\mathbf{x} + g(\mathbf{x})$$

jest lokalnie odwracalna w pewnym otoczeniu zera.

W zadaniach 2 i 4 nie stosujemy gotowych silnych twierdzeń tylko próbujemy metodami elementarnymi +to, co było dotychczas na wykładzie. Założenie, że rząd jest m nie jest potrzebne, ale nie widzę prostej metody bez tego założenia. Można założyć najpierw, że m=2, n=3 i zobaczyć, co się dzieje.