

Non-Terrestrial Networks (NTN) Towards 2030s and Beyond

Halim Yanikomeroglu
Chancellor's Professor
Director, Carleton-NTN Lab
Systems and Computer Engineering
Carleton University

ECOR 1055 – Introduction to E

Non-Terrestrial Networks | Towa

Global gross domestic product (GDP) at current prices fr (in billion U.S. dollars)

The \$100 Trillion World Economy

Despite conflict and looming stagilation, the global economy will hit an impressive new milestone, reaching \$104 trillion, according to the latest IMF projections for end of year.

Layers of Non-Terrestrial Networks (NTN)

- Space networks (LEO satellite mega-constellations, MEO, GEO)
- Stratospheric networks (HAPS: high altitude platform stations)
- Aerial networks (UAV as a user | UAV as a BS)

Integration of one or more of the above with terrestrial networks

Non-Terrestrial Networks | Towards 2030s and Beyond

Agenda

- Generations of Mobile | Cellular | Wireless Networks
- Satellite Networks
- > HAPS (High Altitude Platform Station) Networks
- Concluding Remarks

Terrestrial Mobile | Cellular | Wireless Networks

- Handoff → Seamless roaming
- Network-wide frequency (channel) reuse planning → Quality-of-Service (QoS) guarant

Non-Terrestrial Networks | Towards 2030s and Beyond

Generations of Mobile | Cellular | Wireless Networks

allixo.com

Generations of Mobile | Cellular | Wireless Networks

4G LTE and 5G Key Performance Indicators (KPIs)

What is New in 6G Discussions?

New capabilities of IMT-2030 **Capabilities of IMT-2030** NOTE: The range of values given for capabilities are estimated targets for research and investigation of Sustainability IMT-2030. Al-related capabilities interoperability Sensing-related capabilities Positioning Coverage (1 - 10 cm) Security, privacy, Peak data rate and resilience 1-10-5 Reliability User experienced (1-10-5 - 1-10-7) data rate 500 106 Latency Spectrum efficiency (0.1 - 1 ms)Mobility Connection Area traffic (500 - 1,000)density capacity km/h) (106 - 108 Chhanced capabilities for IMT-2030

What is New in 6G Discussions?

The Wireless Revolution

1G, 2G, 3G, 4G, 5G

mobile | connectivity

The 2nd Wireless Revolution: D2D = Triple-Mode

Agenda

- Generations of Mobile | Cellular | Wireless Networks
- Satellite Networks
- > HAPS (High Altitude Platform Station) Networks
- Concluding Remarks

It is Getting Crowded Out There

Number of active satellites from 1957 to 2023

1957: 1 active satellite 04 May 2024: 9,900 active satellites 2030: 100,000+ active satellites

New?: LEOs (Low Earth-Orbit Satellites)

Satellite Orbits, Periods and Footprints

GEO: 35,786 km

MEO: 2,000 km – 35,000 km LEO: 160 km – 2,000 km

New?: LEOs (Low Earth-Orbit Satellites)

- Small footprint → High throughput
- Close to earth → Low latency
- Easy to launch → Low-cost
- Inter-satellite links → Constellation

Satellite Orbits, Periods and Footprints

GEO: 35,786 km

MEO: 2,000 km – 35,000 km LEO: 160 km – 2,000 km

NG SatComNets

NG SatComNets

constellation → mega-constellation

NG SatComNets

constellation > mega-constellation

RF → optical

LEO-LEO (LISL)
LEO-GS
dense GS network with site diversity

NG SatComNets

constellation → mega-constellation

RF → optical

LEO-LEO (LISL)
LEO-GS
dense GS network with site diversity

bent pipe → mesh

on-board processing regenerative payload

NG SatComNets

NG SatComNets

routing, load-balancing, ...

NG SatComNets

different than terrestrial network

routing, load-balancing, ...

scalable solutions

opportunistic use

NG SatComNets

Gigantic Antenna Arrays @ LEO (→ Larger LEOs)

AST SpaceMobile: Gigantic antenna arrays in LEO orbit $8 \text{ m} \times 8 \text{ m} = 64 \text{ m}^2 \text{ (deployed in Nov 2022)} \rightarrow 30 \text{ m} \times 30 \text{ m} = 900 \text{ m}^2$

Starlink Gen2: Surface area 10x bigger than Gen1

NRC - CNRC

Laser Inter Satellite Links in Next-Generation Satellite Megaconstellations

Dhiraj Bhattacharjee, Jintao Liang, Aizaz Chaudhry, Pablo Madoery, Halim Yanikomeroglu, Gunes Karabulut Kurt, Peng Hu, Stephane Martel, Khaled Ahmed

Latency Minimization for Multi-Pair End-to-End Connections

Non-Terrestrial Networks | Towards 2030s and Beyond

Agenda

- Generations of Mobile | Cellular | Wireless Networks
- Satellite Networks
- > HAPS (High Altitude Platform Station) Networks
- Concluding Remarks

HAPS: High Altitude Platform Station (High Altitude Pseudo Satellite)

Article 1.66A of ITU's Radio Regulations: "A station on an object at an altitude of 20 to 50 km and at a specified, nominal, fixed point relative to the Earth".

VHetNet: Terrestrial BSs + HAPS BSs in Urban Areas

- Owned/shared by the legacy operators, part of the 3GPP ecosystem
- Vertical HetNet (VHetNet): One single network with multiple tiers super macro BS (SMBS) ← macro BS ← small BS
 10-100 km ← few km ← 100 m

SMBS: native

Integrated with terrestrial network in harmonized spectrum

- → One air-interface
- → One device
- → One network

urban/suburban (metro) areas

HAPS: Super Macro Base Station in Stratosphere (20 km)

HAPS: Super Macro Base Station in Stratosphere (20 km)

HAPS: Super Macro Base Station in Stratosphere (20 km)

HAPS: Super Macro Base Station in Stratosphere (20 km)

HAPS: Super Macro Base Station in Stratosphere (20 km)

HAPS: High Altitude Platform Station - Urban/Suburban Regions

HAPS: Super Macro Base Station in Stratosphere (20 km)

VHetNet: Terrestrial BSs + HAPS BSs in Urban/Suburban Areas

VHetNet: Terrestrial BSs + HAPS BSs in Urban/Suburban Areas

Ubiquitous & Instantaneous Hotspot – Anytime, Anywhere, Affordable

20 km

Ubiquitous & Instantaneous Hotspot – Anytime, Anywhere, Affordable

20 km

HAPS: High Altitude Platform Station

centralized massive access capacity provided through dynamic beams wherever necessary, whenever necessary

Non-Terrestrial Networks | Towards 2030s and Beyond

HAPS Super Macro BS: 100 Tb/s

2000s: 3G 1 M

2010s: 4G 100 M

2020s: 5G 10 G

2030s: 6G 1 T

2040s: 7G 100 T

100x per G

GEO HTS 2023: 1,000 beams → 1 Tb/s @ 35,786 km HAPS 2040s: 10,000 beams → 100 Tb/s @ 20 km

CONSE.

Best practices from SatNets and terrestrial networks
→ HAPS networks

HAPS-enabled Wireless Infrastructure towards 2050

Wireless Infrastructure for Green and Sustainable Smart Cities & Societies

Non-Terrestrial Networks | Towards 2030s and Beyond

100s or 1000s of dynamic spot beams from stratosphere (20 km): 10 – 100 Tbps of capacity whenever needed, wherever needed (no waste)

Linear HAPS Constellation for Neom City

HAPS Energy Source

5G BS in 2020s: 11.5 kW

HAPS SMBS in 2040s: x10

- Nuclear power?
- Remote charging?
- Tethering to ground?
- Lithium-ion batteries?
- Lithium-metal batteries? (HAPS Mobile, Mar 2023)
- Fluoride-ion batteries?
- Hydrogen fuel?
- Battery replacement?

Non-Terrestrial Networks | Towards 2030s and Beyond

HAPS Energy Source

5G BS in 2020s: 11.5 kW

HAPS SMBS in 2040s: x10

- Nuclear power?
- Remote charging?
- Tethering to ground?
- Lithium-ion batteries?
- Lithium-metal batteries?
 (HAPS Mobile, Mar 2023)
- Fluoride-ion batteries?
- Hydrogen fuel?
- Battery replacement?

Aerial refueling (In-Flight Refueling – IFR) KC-135 Stratotanker refuels an F-16 Fighting Falcon

HAPS for 3D Aerial Highways

Non-Terrestrial Networks | Towards 2030s and Beyond

Multi-Industry Artificial Intelligence Engine

HAPS Networks for Localization | Navigation | Positioning

My

Non-Terrestrial Networks | Towards 2030s and Beyond

HAPS Constellation for Intelligent Transportation Systems

Agenda

- Generations of Mobile | Cellular | Wireless Networks
- Satellite Networks
- > HAPS (High Altitude Platform Station) Networks
- Concluding Remarks

Concluding Remarks

NTN:

Non a single technology, a colossal infrastructure paradigm with unprecedented opportunities

Concluding Remarks

NTN:

Non a single technology, a colossal infrastructure paradigm with unprecedented opportunities

HAPS

A new network infrastructure layer in stratosphere (between the ground and space layers).

Concluding Remarks

NTN:

Non a single technology, a colossal infrastructure paradigm with unprecedented opportunities

HAPS:

A new network infrastructure layer in stratosphere (between the ground and space layers).

Why not?

Major Opportunities lie in the Air & Space, rather than on the Ground

