#### Project in ML and Electronics

# Predicting the amount of LPG Gas

## Predicting the amount of LPG Gas

#### THEME:

Suppose there is a Gas cylinder with an initial weight of 30 kg. During the usage of Gas, there is a decrease in the weight of the Gas cylinder continuously. We want to measure the amount of use of LPG gas after every 10 seconds.

# Projective Objective

**Project Challenge:** Reading streaming data from Computer USB port and make excel sheet of reading and apply ML algorithms for prediction.

Hardware Used : 1. Load cell (for measuring weight)

2. Arduino

3. Amplifier (Analog to Digital Converter)

Software Used: Arduino Programming, Python Programming,

Serial Library

# Top View

Plywood -

Arduino \_\_\_\_\_

Amplifier —



Side View

Load Cell



### Transfer Arduino Data to USB Port

Connector -



# Read Data From USB Port by PYTHON SERIAL LIBRARY



| Sequence | Seconds | Current weights (in gm) | weight decreses by (in gm) |
|----------|---------|-------------------------|----------------------------|
| 1        | 10      | 1025.51                 | 0.00                       |
| 2        | 20      | 1025.94                 | 0.43                       |
| 3        | 30      | 1025.5                  | -0.44                      |
| 4        | 40      | 1022.96                 | -2.54                      |
| 5        | 50      | 1016.16                 | -6.80                      |
| 6        | 60      | 1010.78                 | -5.38                      |
| 7        | 70      | 1005.34                 | -5.44                      |
| 8        | 80      | 996.62                  | -8.72                      |
| 9        | 90      | 989.31                  | -7.31                      |
| 10       | 100     | 981.4                   | -7.91                      |
| 11       | 110     | 973.7                   | -7.70                      |
| 12       | 120     | 965.97                  | -7.73                      |
| 13       | 130     | 958.46                  | -7.51                      |
| 14       | 140     | 950.88                  | -7.58                      |
| 15       | 150     | 943.15                  | -7.73                      |
| 16       | 160     | 935.13                  | -8.02                      |
| 17       | 170     | 926.94                  | -8.19                      |
| 18       | 180     | 917.8                   | -9.14                      |
| 19       | 190     | 910.19                  | -7.61                      |
| 20       | 200     | 903.44                  | -6.75                      |
| 21       | 210     | 895.13                  | -8.31                      |
| 22       | 220     | 888.52                  | -6.61                      |
| 23       | 230     | 879.49                  | -9.03                      |
| 24       | 240     | 872.38                  | -7.11                      |
| 25       | 250     | 864.63                  | -7.75                      |
| 26       | 260     | 856.66                  | -7.97                      |
| 27       | 270     | 849.61                  | -7.05                      |
| 28       | 280     | 843.17                  | -6.44                      |
| 29       | 290     | 835.22                  | -7.95                      |
| 30       | 300     | 826.48                  | -8.74                      |
| 31       | 310     | 818.83                  | -7.65                      |
| 32       | 320     | 810.07                  | -8.76                      |
| 33       | 330     | 801.9                   | -8.17                      |
| 34       | 340     | 794.99                  | -6.91                      |

#### Real time data in excel

| Sequence | Seconds | Current weights (in gm) | weight decreses by (in gm) |
|----------|---------|-------------------------|----------------------------|
| 1        | 10      | 1025.51                 | 0.00                       |
| 2        | 20      | 1025.94                 | 0.43                       |
| 3        | 30      | 1025.5                  | -0.44                      |
| 4        | 40      | 1022.96                 | -2.54                      |
| 5        | 50      | 1016.16                 | -6.80                      |
| 6        | 60      | 1010.78                 | -5.38                      |
| 7        | 70      | 1005.34                 | -5.44                      |
| 8        | 80      | 996.62                  | -8.72                      |
| 9        | 90      | 989.31                  | -7.31                      |
| 10       | 100     | 981.4                   | -7.91                      |
| 11       | 110     | 973 7                   | -7 70                      |

# Use Data For Predictions by Regression

```
from joblib import load
     def prediction():
       print('model can predict in range of 0 - 1000 ml')
       try:
         weight = int(input('Enter The weight in gm/ml to predict:'))
         if not (weight > 0 and weight < 1000):</pre>
 8
           return print('Enter the value between 0-1000 ml or gm')
 9
       except:
         return print('You entered invalid input')
10
       test model = load('/Users/anchalkumarchaubey/Desktop/Project/python code/linear model.joblib')
11
       sequence = test_model.predict([[weight]])
12
13
       hrs = (sequence*5)/60
       return print(hrs[0,0],'hours')
14
15
     prediction()
16
     prediction()
17
     prediction()
18
```

#### Prediction in hours

Predictions

/python\_code/prediction.py model can predict in range of 0 - 1000 ml Enter The weight in gm/ml to predict:100 10.358962939292221 hours