MECH 467 Tutorial 2 – Inverse Laplace Transforms, Final Value Theorem, Block Diagram Algebra

1) Find the response of y(t) of a system G(s) for a given input r(t)

Transfer Function $G(s)$	Initial Condition $y(0)$	Input $r(t)$
3	10	6
s + 3	(Hint: transform to ode)	
$\frac{1}{s+10}$	0	$3\cos 10t$
$\frac{-4s+20}{s+300}$	0	10
$\frac{3}{s^2 + 0.5s + 4}$	y(0) = y'(0) = 0	2

2) Find the steady state response y_{ss} and steady state error e_{ss} given a system G(s) for a given input r(t)

Transfer Function $G(s)$	Input $r(t)$
$\frac{3}{s+3}$	6
$\frac{-4s+20}{s+300}$	10
$\frac{3}{s^2 + 0.5s + 4}$	2
$\frac{3}{s^2 + 0.5s + 4}$	2t
$\frac{10}{s^2 + 3s + 10}$	2t

- 3) Find the output as a function of the reference input and disturbance for the block diagram in Figure 1
- 4) Express the transfer function and the disturbance transfer function for the block diagram in Figure 1

Figure 1