

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 27 de junho de 2022

SEM CONSULTA

Duração da Prova: 1h 20

Um pequeno restauranye de Take Way pretende um estudo de simulação, com base no qual consiga retirar conclusões quanto ao número adequado de funcionários. Atualmente existem 3 funcionários: 1 dedicado ao atendimento aos clintes, um dedicado ao pagamento e um outro flexível, que trata da reposição de alimentos, quando necessário, e que, estando livre e havendo clientes em espera, ajuda no atnedimento aos clientes. Notem que, a chegada de clientes é dada por uma distribuição exponencial de valor médio 2 mins; o tempo de atendimento é dado por distribuição exponencial de valor médio 4 mins; o tempo associado ao pagamento segue uma distribuição uniforme entre 50 e 130 segundos. A reposição de alimentos é necessária ao fim do atendimento de cada 20 clientes, e o tempo de reporição segue uma distribuição exponencial de valor médio 6 mins.

- a) Identifique e caracterize as entidades e as atividades. Apresente ciclo de atividades completo. (3 val)
- b) Identifique e caracterize o conjunto de eventos necessário à simulação do sistema descrito, segundo uma abordagem de Simulação Discreta por Eventos. Apresente todos os eventos, analise e justifique, com base na apresentação de um **grafo de eventos**, quantas e quais as rotinas de eventos que no **mínimo** teria de implementar. (2 val)
- c) Apresente, em pseudo-código, as rotinas dos eventos associados ao atendimento aos clientes. (3 val)
- d) Indique quais as <u>medidas de desempenho e 2 cenários alternativos a analisar</u>, de modo a sugerir melhorias no funcionamento do sistema. (2 val)
- e) <u>Indique em que consiste, e quais as vantagems e desvantagens</u> de ajustar os dados obtidos da observação do sistema real com base me curvas de probabilidade empíricas. **Justifique**. (2 val)
- f) Considere o sistema descrito e <u>indique quantas e quais são as fontes de aleatoriedade. Justifique.</u> (2 val)
- g) Fizeram-se 10 corridas de simulação do sistema. Considere, nas tabelas abaixo, os valores médios do atraso total por automóvel. Para uma confiança de 95% qual o intervalo de confiança e que conclusões se podem retirar? (2 val)
 - o Apresente todos os cálculos estatísticos que suportam as conclusões.

MESTRADO EM ENGENHARIA INFORMÁTICA

Modelação e Simulação de Processos

Exame de Época Normal - 27 de junho de 2022

SEM CONSULTA

Duração da Prova: 1h 20

- h) Considerando que o intervalo de confiança que resulta da comparação de dois cenários alternativos relativos à taxa de utilização dos recursos do sistema descrito, é [0,150 ; 0,378] retire conclusões quanto à decisão a tomar pelo responsável do sistema. Note que, foi aplicada a abordagem Parried-T, comparadando Cen₁ - Ceb₂. **Justifique**.(2 val)
- i) Relativamente aos Digital Twins (DTs), apresente uma resposta completa que elabore sobre a relação, diferenças, vantagesn/desvantagem entre os DTs e a simulação. (2 val)

			*				,		γ				
ν	0.6000	0.7000	0.8000	0.9000	0.9333	0.9500	0.9600	0.9667	0.9750	0.9800	0.9833	0.9875	0.9900
1	0.325	0.727	1.376	3.078	4.702	6.314	7.916	9.524	12.706	15.895	19.043	25.452	31.821
2	0.289	0.617	1.061	1.886	2.456	2.920	3.320	3.679	4.303	4.849	5.334	6.205	6.965
3	0.277	0.584	0.978	1.638	2.045	2.353	2.605	2.823	3.182	3.482	3.738	4.177	4.541
4	0.271	0.569	0.941	1.533	1.879	2.132	2.333	2.502	2.776	2.999	3.184	3.495	3.747
5	0.267	0.559	0.920	1.476	1.790	2.015	2.191	2.337	2.571	2.757	2.910	3.163	3.365
6	0.265	0.553	0.906	1.440	1.735	1.943	2.104	2.237	2.447	2.612	2.748	2.969	3.143
7	0.263	0.549	0.896	1.415	1.698	1.895	2.046	2.170	2.365	2.517	2.640	2.841	2.998
8	0.262	0.546	0.889	1.397	1.670	1.860	2.004	2.122	2.306	2.449	2.565	2.752	2.896
9.	0.261	0.543	0.883	1:383	1.650	1.833	1.973	2.086	2.262	2.398	2.508	2.685	2.821
10	0.260	0.542	0.879	1.372	1.634	1.812	1.948	2.058	2.228	2.359	2.465	2.634	2.764
11	0.260	0.540	0.876	1.363	1.621	1.796	1.928	2.036	2.201	2.328	2.430	2.593	2.718
						21170	1.720	2.000	2.201	2.320	2.430	2.393	4./10

$$S^{2}(n) = \frac{\sum_{i=1}^{n} \left[X_{i} - \overline{X}(n) \right]^{2}}{n-1} \qquad \overline{X}(n) \pm t_{n-1, 1-\alpha/2} \sqrt{\frac{S^{2}(n)}{n}} \qquad t_{n} = \frac{\left[\overline{X}(N) - \mu \right]}{\sqrt{S^{2}(n)/n}}$$

$$t_n = \frac{\left[\overline{X}(N) - \mu\right]}{\sqrt{S^2(n)/n}}$$

$$n_a^*(\beta) = \min \left\{ i \ge n : t_{i-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{i}} \le \beta \right\}$$

$$\overline{Z}(n) = \frac{\sum_{j=1}^{n} Z_{j}}{n}$$

$$Var[\overline{Z}(n)] = \frac{\sum_{j=1}^{n} [Z_{j} - \overline{Z}(n)]^{2}}{n(n-1)}$$

$$\hat{f} = \frac{\left[S_1^2(n_1)/n_1 + S_2^2(n_2)/n_2\right]^2}{\left[S_1^2(n_1)/n_1\right]^2/(n_1-1) + \left[S_2^2(n_2)/n_2\right]^2/(n_2-1)}$$

 $\overline{X_1}(n_1) - \overline{X_2}(n_2) \pm t_{\hat{f}, 1-\alpha/2} \sqrt{\frac{S_1^2(n_1)}{n_1} + \frac{S_2^2(n_2)}{n_2}}$

$$\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \sqrt{Var[\overline{Z}(n)]}$$