

MEMORY ORGANISATION

Anandha Gopalan (with thanks to N. Dulay and E. Edwards)

axgopala@imperial.ac.uk

Memory Organisation

- Addressing
- Byte Ordering
- Memory Modules and Chips

Main Memory (RAM)

W bits 1011111010101010101111110 001010101011101010101011 011011010010100111011000 R rows 1010101010010010111010 110110101000100010101010 010101011110001011111011 11101100000011111011111

- Each memory location is W bits long
 - Normally a bytemultiple, e.g. 16bits, 32-bits
- Memory Size
 - R x W bits
- Access
 - Can Read/Write entire row or just one byte at a time

Addressing

Main Memory

0110	1101	1010	1101
0000	0000	0000	0011
0000	0000	0000	0000
1111	1111	1111	1111
0000	0000	0000	0000
1001	1010	1010	0010
0000	0000	0000	0000
1111	1111	1111	1110

 Where in memory is the 16-bit value of 3?

 We need a scheme for uniquely identifying every memory location

ADDRESSING

Identify memory locations with a positive number called the (memory) address

Word Addressing

Main Me	mory	Address	Address (binary)	
0110 1101	1010 1101	— 0	0000	
0000 0000	0000 0011	— 1	0001	
0000 0000	0000 0000	— 2	0010	
1111 1111	1111 1111	← 3	0011	
0000 0000	0000 0000	4	0100	
1001 1010	1010 0010	— 5	0101	
0000 0000	0000 0000	_ 6	0110	
1111 1111	1111 1110	7	0111	

Byte Addressing

Main Memory

Word Address

0110 1101	1010 1101	← 0
0000 0000	0000 0011	← 2
0000 0000	0000 0000	← 4
1111 1111	1111 1111	← 6
0000 0000	0000 0000	← 8
1001 1010	1010 0010	← 10
0000 0000	0000 0000	← 12
1111 1111	1111 1110	← 14

 With byte addressing, every byte in main memory has an address

 In this example which is byte 0 and which is byte 1?

Byte Addressing

- Two formats
 - Big Endian
 - Stores Most Significant Byte first
 - Motorola 6800, IBM POWER, SPARC, System/360, ARM
 - Little Endian
 - Stores Least Significant Byte first
 - x-86, ARM, DEC Alpha, VAX, PDP-11

Byte Addressing (Big Endian)

Byte Addressing (Little Endian)

Byte Ordering – *Multibyte* Data Items

Example 1: 16-bit Integer

(View 1)

16-bit integer '5' stored at memory address 24

Big Endian

0000 0000 0000 0101

Byte Addresses

24

25

Little Endian

0000 0101 0000 0000

Byte Addresses

24

25

Example 1: 16-bit Integer

(View 2)

16-bit integer '5' stored at memory address 24

Big Endian

0000 0000 0000 0101

Word address 24

Byte Addresses

24

25

Little Endian

0000 0000 0000 0101

Word address 24

Byte Addresses

25

24

Example 2: 32-bit Value

(View 1)

32-bit hex value 54 BC FE 30 stored at memory address 24

Example 2: 32-bit Value

(View 2)

32-bit hex value 54 BC FE 30 stored at memory address 24

Example 3: ASCII String

(View 1)

- String "JIM BLOGGS" stored at memory address 24
- Treat a string as an array of (ASCII) bytes
 - Each byte is considered individually

Example 3: ASCII String

(View 2)

- String "JIM BLOGGS" stored at memory address 24
- Treat a string as an array of (ASCII) bytes
 - Each byte is considered individually

Potential Problems

- How do we transfer a multi-byte value (e.g. a 32-bit integer) from a Big-Endian memory to a Little-Endian memory and vice-versa?
- How do we transfer an ASCII string value (e.g. "JIM BLOGGS") from a Big-Endian memory to a Little-Endian memory and vice-versa?
- How do we transfer an object which holds both types of values above and vice-versa?
- Why is it necessary?

Memory Modules and Chips

- Two 512MB memory modules
 - Each module has two 128M x 16-bit RAM Chips

- Two 512MB memory modules
 - Each module has four 128M x 8-bit RAM Chips

Four 256MB memory modules

Each module has two 64M x 16-bit RAM Chips

Four 256MB memory modules

Memory Interleaving

Example:

- Memory = 4M words, each word = 32-bits
- Built with 4 x 1M x 32-bit memory modules
- For 4M words we need 22 bits for an address
- 22 bits = 2 bits (to select Modules) + 20 bits (to select row within Module)

High-Order Interleave

Address Decimal	Address Binary							
0	00	0000	0000	0000	0000	0000	Module=0	Row=0
1	00	0000	0000	0000	0000	0001	Module=0	Row= 1
2	00	0000	0000	0000	0000	0010	Module=0	Row=2
3	00	0000	0000	0000	0000	0011	Module=0	Row=3
4	00	0000	0000	0000	0000	0100	Module=0	Row=4
5	00	0000	0000	0000	0000	0101	Module=0	Row=5
•••								
2 ²⁰ -1	00	1111	1111	1111	1111	1111	Module=0	Row=2 ²⁰ -1
2 ²⁰	01	0000	0000	0000	0000	0000	Module=1	Row=0
2 ²⁰ +1	01	0000	0000	0000	0000	0001	Module=1	Row=1

High-Order Interleave

- Good if Modules can be accessed independently by different units, e.g. by the CPU and a Hard Disk (or a second CPU) AND the units use different Modules
- Parallel operation → Higher Performance

Low-Order Interleave

Address Binary							
00	0000	0000	0000	0000	0000	Module= <mark>0</mark>	Row=0
00	0000	0000	0000	0000	0001	Module=1	Row=0
00	0000	0000	0000	0000	0010	Module= <mark>2</mark>	Row=0
00	0000	0000	0000	0000	0011	Module= <mark>3</mark>	Row=0
00	0000	0000	0000	0000	0100	Module= <mark>0</mark>	Row=1
00	0000	0000	0000	0000	0101	Module=1	Row=1
00	1111	1111	1111	1111	11 11	Module=3	$Row = \frac{2^{18} - 1}{}$
01	0000	0000	0000	0000	0000	Module= <mark>0</mark>	$Row = \frac{2^{18}}{}$
01	0000	0000	0000	0000	0001	Module=1	$Row=2^{18}$
	00 00 00 00 00 00	00 0000 00 0000 00 0000 00 0000 00 0000 00 1111 01 0000	00 0000 0000 00 0000 0000 00 0000 0000	Binary 00 00000 00000 0000 00 00000 0000 0000 00 0000 0000 0000 00 0000 0000 0000 00 1111 1111 1111 01 0000 0000 0000 0000	Binary 00 00000 00000 0000 0000 00 00000 0000 0000 0000 00 0000 0000 0000 0000 00 0000 0000 0000 0000 00 1111 1111 1111 1111 01 0000 0000 0000 0000	Binary 00 0000 0000 0000 0000 0000 00 0000 0000 0000 0000 00 0000 0000 0000 0000 0001 00 0000 0000 0000 0000 0010 00 0000 0000 0000 0000 0011 00 0000 0000 0000 0000 0101 00 1111 1111 1111 1111 1111 01 0000 0000 0000 0000 0000	Binary 00 0000 0000 0000 0000 0000 Module=0 00 0000 0000 0000 0000 0001 Module=1 00 0000 0000 0000 0000 0010 Module=2 00 0000 0000 0000 0000 0011 Module=3 00 0000 0000 0000 0000 0100 Module=0 00 0000 0000 0000 0000 0101 Module=1 00 1111 1111 1111 1111 1111 Module=3 01 0000 0000 0000 0000 0000 Module=0

Low-Order Interleave

Good if the CPU (or other unit) can request multiple adjacent memory locations

- Since adjacent memory locations lie in different Modules an "advanced" memory system can perform the accesses in parallel
 - Such adjacent accesses often occur in practice, e.g.
 - i. Elements in an array, e.g.. Array[N], Array[N+1], Array[N+2],
 - ii. Instructions in a Programs, InstructionN, InstructionN+1,...
- In the above situations, an "advanced" CPU can pre-fetch the adjacent memory locations → higher performance