Queimada

Érika S. Machado 18 de dezembro de 2018

Bibliotecas utilizadas

```
#library(rvest)
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.2.1 --
                     v purrr 0.2.5
v dplyr 0.7.5
## v ggplot2 3.1.0
## v tibble 1.4.2
                    v stringr 1.3.1
## v tidyr 0.8.1
## v readr 1.1.1
                    v forcats 0.3.0
## Warning: package 'ggplot2' was built under R version 3.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(knitr)
library(reshape2)
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
       smiths
library(rgdal)
## Warning: package 'rgdal' was built under R version 3.5.1
## Loading required package: sp
## rgdal: version: 1.3-6, (SVN revision 773)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 2.2.3, released 2017/11/20
## Path to GDAL shared files: C:/Users/ErikaS/Documents/R/win-library/3.5/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
## Path to PROJ.4 shared files: C:/Users/ErikaS/Documents/R/win-library/3.5/rgdal/proj
## Linking to sp version: 1.3-1
library(gdata)
## gdata: Unable to locate valid perl interpreter
## gdata:
## gdata: read.xls() will be unable to read Excel XLS and XLSX files
## gdata: unless the 'perl=' argument is used to specify the location
## gdata: of a valid perl intrpreter.
## gdata:
## gdata: (To avoid display of this message in the future, please
## gdata: ensure perl is installed and available on the executable
## gdata: search path.)
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLX' (Excel 97-2004) files.
##
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLSX' (Excel 2007+) files.
```

```
## gdata: Run the function 'installXLSXsupport()'
## gdata: to automatically download and install the perl
## gdata: libaries needed to support Excel XLS and XLSX formats.
## Attaching package: 'gdata'
## The following objects are masked from 'package:dplyr':
##
       combine, first, last
\hbox{\it \#\# The following object is masked from 'package:purrr':}
##
##
       keep
## The following object is masked from 'package:stats':
##
##
       nobs
## The following object is masked from 'package:utils':
##
##
       object.size
## The following object is masked from 'package:base':
##
##
       startsWith
library(factoextra)
## Warning: package 'factoextra' was built under R version 3.5.1
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
#library(leaflet)
#library(scales)
```

O estudo

Nesse estudo faremos algumas análises da taxa PRODES, que são taxas anuais de desmatamento por região, que são usadas pelo governo brasileiro para estabelecimento de políticas públicas. Os dados são de 2004 a 2017, refelentes aos estados: AC, AM, AP, MA, MT, PA, RO, RR, TO, além da Amazônia Legal.

Importando os dados

```
Dados = read.table("taxaprodes.txt", header = T)
kable(Dados)
```

Ano.Estados	AC	AM	AP	MA	MT	PA	RO	RR	то	AMZLEGAL
2004	728	1232	46	755	11814	8870	3858	311	158	27772
2005	592	775	33	922	7145	5899	3244	133	271	19014
2006	398	788	30	674	4333	5659	2049	231	124	14286
2007	184	610	39	631	2678	5526	1611	309	63	11651
2008	254	604	100	1271	3258	5607	1136	574	107	12911
2009	167	405	70	828	1049	4281	482	121	61	7464
2010	259	595	53	712	871	3770	435	256	49	7000
2011	280	502	66	396	1120	3008	865	141	40	6418
2012	305	523	27	269	757	1741	773	124	52	4571
2013	221	583	23	403	1139	2346	932	170	74	5891
2014	309	500	31	257	1075	1887	684	219	50	5012
2015	264	712	25	209	1601	2153	1030	156	57	6207
2016	372	1129	17	258	1489	2992	1376	202	58	7893

AMZLEGAL	то	RR	RO	PA	MT	MA	AP	AM	AC	Ano.Estados
6947	31	132	1243	2433	1561	265	24	1001	257	2017

Estatística descritiva

```
summary(Dados[,2:11])
```

```
##
## Min. :167.0 Min. : 405.0 Min. : 17.00 Min. : 209.0
   1st Qu.:254.8
                  1st Qu.: 538.0
                                  1st Qu.: 25.50
                                                   1st Qu.: 266.0
  Median : 272.0 Median : 607.0 Median : 32.00 Median : 517.0
##
##
  Mean :327.9 Mean : 711.4 Mean : 41.71 Mean : 560.7
##
                  3rd Qu.: 784.8
                                  3rd Qu.: 51.25
   3rd Qu.:356.2
                                                   3rd Qu.: 744.2
##
   Max. :728.0 Max. :1232.0 Max. :100.00 Max. :1271.0
                                     RO
                                                   RR
                       PA
##
         MT
  Min. : 757 Min. :1741 Min. : 435 Min. :121.0
1st Qu.: 1086 1st Qu.:2368 1st Qu.: 796 1st Qu.:135.0
##
##
##
  Median : 1525 Median :3389 Median :1083 Median :186.0
   Mean : 2849 Mean :4012 Mean :1408 Mean :219.9
3rd Qu.: 3113 3rd Qu.:5587 3rd Qu.:1552 3rd Qu.:249.8
##
##
##
   Max. :11814 Max. :8870 Max. :3858 Max. :574.0
##
         TO
                     AMZLEGAL
## Min. : 31.00 Min. : 4571
   1st Qu.: 50.50 1st Qu.: 6260
   Median : 59.50 Median : 7232
##
##
   Mean : 85.36
                   Mean :10217
   3rd Qu.: 98.75
                   3rd Qu.:12596
   Max. :271.00 Max. :27772
##
```

Vemos que os maiores índices de ocorrência de queimadas são na Amazônia Legal e Mato Grosso.

```
a = melt(Dados[,2:11]) %>% mutate(Ano = rep(2004:2017,10))
```

```
## No id variables; using all as measure variables
```

```
ggplot(a, aes(x = Ano, y = value, fill = variable, colour=variable)) +
geom_line(aes(group=variable))+
geom_point(aes(group=variable)) +
xlab("Ano") +
ylab("Taxa PRODES") +
scale_colour_discrete()
```


Outra informação importante que devemos perceber é que houve uma significativa diminutição das queimadas na Amazônia Legal no decorrer dos anos. Provavelmente por algum tipo de política de prevenção, fiscalização e cuidados.

```
kable(cov(Dados[,2:11]), caption = "Covariância")
```

Covariância

	AC	AM	AP	MA	MT	PA	RO	RR	то	AMZL
AC	24400.4396	26170.593	-618.65934	10178.264	438763.736	207636.04	142811.527	735.8352	7547.82418	857€
AM	26170.5934	62227.786	-2176.27473	-6805.736	478333.429	216389.27	171776.066	2307.9505	4750.32418	9529
AP	-618.6593	-2176.275	541.45055	5533.066	3981.088	17388.24	-3364.099	1733.1319	42.87912	230
MA	10178.2637	-6805.736	5533.06593	101308.681	453473.088	480947.24	107643.593	25181.8242	11647.10989	11891
MT	438763.7363	478333.429	3981.08791	453473.088	9760094.681	5641311.37	3026289.868	102872.2527	154423.12088	200595
PA	207636.0440	216389.275	17388.24176	480947.242	5641311.374	4252834.37	1661298.560	124546.4835	88582.12088	126909
RO	142811.5275	171776.066	-3364.09890	107643.593	3026289.868	1661298.56	1024894.725	16643.3407	52959.14286	62009
RR	735.8352	2307.951	1733.13187	25181.824	102872.253	124546.48	16643.341	14648.2253	933.71978	2896
то	7547.8242	4750.324	42.87912	11647.110	154423.121	88582.12	52959.143	933.7198	4090.24725	3249
AMZLEGAL	857625.6044	952973.412	23060.82418	1189107.132	20059542.637	12690933.71	6200952.725	289602.7637	324976.48901	425887

```
kable(cor(Dados[,2:11]), caption = "Correlação")
```

Correlação

	AC	AM	AP	MA	MT	PA	RO	RR	то	AMZLEGAL
AC	1.0000000	0.6716184	-0.1702054	0.2047159	0.8990936	0.6445620	0.9030771	0.0389215	0.7555238	0.8413009
AM	0.6716184	1.0000000	-0.3749231	-0.0857155	0.6137783	0.4206340	0.6801910	0.0764437	0.2977531	0.5853843
AP	-0.1702054	-0.3749231	1.0000000	0.7470731	0.0547640	0.3623573	-0.1428071	0.6154031	0.0288132	0.1518616
MA	0.2047159	-0.0857155	0.7470731	1.0000000	0.4560381	0.7327146	0.3340606	0.6536893	0.5721634	0.5724665
MT	0.8990936	0.6137783	0.0547640	0.4560381	1.0000000	0.8756163	0.9568500	0.2720688	0.7728773	0.9838897
PA	0.6445620	0.4206340	0.3623573	0.7327146	0.8756163	1.0000000	0.7957357	0.4989991	0.6716330	0.9429893
RO	0.9030771	0.6801910	-0.1428071	0.3340606	0.9568500	0.7957357	1.0000000	0.1358340	0.8179496	0.9385798
RR	0.0389215	0.0764437	0.6154031	0.6536893	0.2720688	0.4989991	0.1358340	1.0000000	0.1206283	0.3666592
то	0.7555238	0.2977531	0.0288132	0.5721634	0.7728773	0.6716330	0.8179496	0.1206283	1.0000000	0.7786272
AMZLEGAL	0.8413009	0.5853843	0.1518616	0.5724665	0.9838897	0.9429893	0.9385798	0.3666592	0.7786272	1.0000000

As correlações são maiores para os estados que são vizinhos uns dos outros.

```
#função retirada do help(pairs)
panel.hist <- function(x, ...)
 usr <- par("usr"); on.exit(par(usr))</pre>
 par(usr = c(usr[1:2], 0, 1.5))
 h <- hist(x, plot = FALSE)</pre>
 breaks <- h$breaks; nB <- length(breaks)</pre>
 y <- h$counts; y <- y/max(y)</pre>
 rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
#função retirada do help(pairs)
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, \dots)
 usr <- par("usr"); on.exit(par(usr))</pre>
 par(usr = c(0, 1, 0, 1))
 r <- abs(cor(x, y))
 txt <- format(c(r, 0.123456789), digits = digits)[1]</pre>
 txt <- paste0(prefix, txt)</pre>
 if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)</pre>
 text(0.5, 0.5, txt, cex = cex.cor * r)
}
panel.lm <- function (x, y, col = par("col"), bg = NA, pch = par("pch"),
   cex = 1, col.line="red") {
    points(x, y, pch = pch, col = col, bg = bg, cex = cex)
    ok <- is.finite(x) & is.finite(y)</pre>
    if (any(ok)) {
       abline(lm(y[ok]\sim x[ok]), col = col.line)
}
pairs(Dados[,2:11], diag.panel = panel.hist, upper.panel = panel.cor,
      lower.panel = panel.smooth)
```


correlações dá pra ver melhor o que está acontecendo e que muitas variáveis são correlacionadas.

Análise de Componentes principais

Como as variáveis possuem correlações fortes, iremos padronizar os dados e fazer análise de componentes principais para buscar a combinação linear que mais representa a variabilidade dos dados.

Padronizando os valores

```
pdados = data.frame(Dados$Ano.Estados,scale(Dados[,-1]))
kable(pdados, caption = "Dados padronizados")
```

Dados padronizados

Dados.Ano.Estados	AC	AM	AP	MA	MT	PA	RO	RR	то	AMZLEGAL
2004	2.5616291	2.0871215	0.1841806	0.6104042	2.8695212	2.3555522	2.4196385	0.7524708	1.1358426	2.6900170
2005	1.6909861	0.2551276	-0.3745005	1.1350826	1.3750180	0.9148858	1.8131413	-0.7182407	2.9027088	1.3480020
2006	0.4490396	0.3072412	-0.5034269	0.3559195	0.4749231	0.7985075	0.6327439	0.0914768	0.6042191	0.6235162
2007	-0.9209427	-0.4063144	-0.1166477	0.2208227	-0.0548270	0.7340146	0.2000961	0.7359459	-0.3495759	0.2197471
2008	-0.4728176	-0.4303668	2.5048558	2.2315661	0.1308256	0.7732922	-0.2690996	2.9254884	0.3384074	0.4128208
2009	-1.0297731	-1.2281060	1.2155918	0.8397546	-0.5762546	0.1303021	-0.9151079	-0.8173898	-0.3808479	-0.4218396
2010	-0.4408087	-0.4664455	0.4850088	0.4753074	-0.6332308	-0.1174867	-0.9615336	0.2980374	-0.5684797	-0.4929398
2011	-0.3063712	-0.8392582	1.0436899	-0.5174971	-0.5535282	-0.4869878	-0.5367881	-0.6521413	-0.7092036	-0.5821214
2012	-0.1463265	-0.7550747	-0.6323533	-0.9165040	-0.6697211	-1.1013682	-0.6276638	-0.7926026	-0.5215718	-0.8651428
2013	-0.6840766	-0.5145503	-0.8042552	-0.4955046	-0.5474465	-0.8079979	-0.4706068	-0.4125310	-0.1775801	-0.6628752
2014	-0.1207194	-0.8472757	-0.4604514	-0.9542054	-0.5679323	-1.0305714	-0.7155763	-0.0076723	-0.5528437	-0.7975670
2015	-0.4087998	0.0025770	-0.7183042	-1.1050112	-0.3995646	-0.9015855	-0.3738043	-0.5282050	-0.4433918	-0.6144536
2016	0.2825931	1.6742214	-1.0621080	-0.9510637	-0.4354147	-0.4947463	-0.0320323	-0.1481335	-0.4277558	-0.3561026
2017	-0.4536123	1.1611027	-0.7612797	-0.9290711	-0.4123682	-0.7658108	-0.1634071	-0.7265032	-0.8499274	-0.5010611

Componentes principais

```
cp = prcomp(pdados[,2:11])
cp
```

```
## Standard deviations (1, .., p=10):
## [1] 2.444338e+00 1.581076e+00 8.885131e-01 5.419573e-01 4.435656e-01
   [6] 4.236622e-01 2.144976e-01 1.296960e-01 5.627185e-02 7.344045e-17
##
## Rotation (n x k) = (10 x 10):
                PC1
                           PC2
                                      PC3
                                                PC4
##
## AC
          -0.35305759   0.2434359809   0.066571640   -0.10741351   0.65944222
## AM
         ## AP
          -0.06032671 -0.5828562053 0.006308125 -0.52607799 0.39916865
## MA
         -0.24335367 -0.4730112572 0.195739103 0.16209929 -0.21514964
## MT
         ## PA
         -0.37664294 -0.1634991260 -0.054402917 -0.25401397 -0.51318361
         -0.38552015  0.1869736774  0.047985494  0.03140582  -0.11585128
## RO
## RR
         -0.15419334 -0.4431406658 -0.561012786 0.55681256 0.20476505
## TO
         -0.33992645 0.0299974589 0.524114564 0.49931149 0.12866098
## AMZLEGAL -0.40571177 -0.0003698691 -0.030148480 -0.15030100 -0.14225793
##
               PC6
                        PC7
                                   PC8
                                             PC9
          ## AC
## AM
          0.66712219 -0.06220882 0.02699434 0.12326000 -0.032802070
          0.23433871 -0.36412306 -0.14542624 0.10884618 -0.003059768
## AP
## MA
          0.42308360 0.34338139 0.30408013 -0.46371656 -0.041853560
## MT
          -0.28542130 -0.12053084 0.70417697 0.18295016 -0.410805350
## PA
          -0.12955679 -0.55700365 -0.28710833 -0.61033925 -0.133121654
## RO
## RR
          \hbox{-0.32669855} \hbox{-0.02879998} \hbox{-0.06339053} \hbox{0.03624156} \hbox{-0.015914815}
## TO
          ## AMZLEGAL -0.16305489 -0.02346379 0.15226660 0.07028108 0.858137047
```

summary(cp)

```
## Importance of components:
                                   PC2
                                           PC3
                         2.4443 1.5811 0.88851 0.54196 0.44357 0.42366
## Standard deviation
## Proportion of Variance 0.5975 0.2500 0.07895 0.02937 0.01968 0.01795
## Cumulative Proportion 0.5975 0.8475 0.92640 0.95578 0.97545 0.99340
##
                            PC7
                                    PC8
                                           PC9
                                                     PC10
## Standard deviation
                         0.2145 0.12970 0.05627 7.344e-17
## Proportion of Variance 0.0046 0.00168 0.00032 0.000e+00
## Cumulative Proportion 0.9980 0.99968 1.00000 1.000e+00
```

A primeira componente principal responde por cerca de 59,75% da variância total dos dados padronizados. Se pegarmos as três primeiras componentes principais, conseguimos atingir 92,64% da variância total.

```
plot(1:10, cp$sdev^2, type = "b", xlab = "Componente",
ylab = "Variância", pch = 20, cex.axis = 1.3, cex.lab = 1.3)
```


A seguir estão as correlações entre os dois primeiros componentes principais e as variáveis:

```
cp$sdev[1:2]*t(cp$rotation[,1:2])
```

```
AC AM AP MA
## PC1 -0.8629920 -0.5942887 -0.1474589 -0.5948386 -0.974568 -0.9206426
## PC2 0.3848909 0.5301428 -0.9215402 -0.7478669 0.121277 -0.2585046
            RO
                     RR
                                TO
## PC1 -0.9423415 -0.3769006 -0.83089506 -0.9916966044
## PC2 0.2956197 -0.7006393 0.04742827 -0.0005847914
```

Análise de agrupamentos

Em seguida faremos agrupamentos dos anos da amostra para verificar os anos que apresentam características comuns. Esse grupo de ser tratado como momentos importantes de transição no histórico de queimadas.

```
set.seed(20)
\#tpdados = t(pdados[,2:11])
#colnames(tpdados) = 2004:2017
rownames(pdados) = 2004:2017
pdados = pdados[,-1]
kdados = kmeans(pdados,5)
d = reshape2::melt(pdados)
```

```
## No id variables; using all as measure variables
```

kdados

```
## K-means clustering with 5 clusters of sizes 2, 4, 1, 1, 6
## Cluster means:
##
                     AM
                              AP
## 1 1.0700129 0.2811844 -0.4389637 0.7455011 0.9249705 0.85669668
## 2 -0.6744739 -0.7350310 0.6569107 0.2545969 -0.4544601 0.06496057
## 3 2.5616291 2.0871215 0.1841806 0.6104042 2.8695212 2.35555220
## 4 -0.4728176 -0.4303668 2.5048558 2.2315661 0.1308256 0.77329224
## 5 -0.2551569 0.1201667 -0.7397920 -0.8918933 -0.5054079 -0.85034668
##
          RO RR TO AMZLEGAL
## 1 1.2229426 -0.3133820 1.7534639 0.9857591
## 2 -0.5533334 -0.1088869 -0.5020268 -0.3192884
## 3 2.4196385 0.7524708 1.1358426 2.6900170
## 4 -0.2690996 2.9254884 0.3384074 0.4128208
## 5 -0.3971818 -0.4359412 -0.4955118 -0.6328671
##
## Clustering vector:
## 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
                           2 2 2 5
##
## Within cluster sum of squares by cluster:
## [1] 5.424747 6.922917 0.000000 0.000000 8.134388
## (between SS / total SS = 84.2 %)
##
## Available components:
##
                   "centers"
## [1] "cluster"
                                  "totss"
                                                 "withinss"
## [5] "tot.withinss" "betweenss"
                                                 "iter"
                                  "size"
## [9] "ifault"
```

```
d = d[-c(1:14),]
Ano = rep(2004:2017, 9)
e = data.frame(d, Ano)
names(e) = c("UF", "PRODES", "Ano")
kdados$cluster <- as.factor(kdados$cluster)</pre>
b = kdados$cluster
Ano = factor(names(b))
b = data.frame(Ano, b)
tabelafinal = merge(e,b, by.x = "Ano", by.y = "Ano")
ggplot(tabelafinal, aes(Ano, PRODES, color = b)) + geom_point()
```


 $fviz_cluster(kdados, data = pdados)#1/sq$

