

Bachelorproef
Nick Michiels (0623764)

Promotor:

Prof. dr. Philippe Bekaert

Begeleiders:

Tom Cuypers
Yannick Francken

Eindwerk voorgedragen tot het behalen van de graad van bachelor in de informatica/ICT

Academiejaar 2008 - 2009

Overzicht

- Inleiding
- Probleemstelling
- Opstelling
- Gerelateerd werk
- Het proces
- Filmpje
- Conclusies
- Toekomstig werk

Inleiding

- Augmented Reality Systeem (T. Azuma)
 - Combinatie reële met virtuele wereld
 - Interactie moet realtime
 - Functioneren in 3D

Inleiding

- Johnny Lee
 - Projectie op objecten
 - Gebruik makend van infrarood markers

Probleemstelling

- Papier op werktafel herkennen
- Zonder aanbreng van markers
- 1 camera
- Projecteren op papier
- Realtime

Opstelling

- Werktafel
- Projector
- Camera

Diffuus doek

Gebruikte technieken

- Calibratie
 - Anti-degradatie
 - Graycodes
- Segmentatie
 - Hough
 - RANSAC
- Computer visie
 - Condensation filter

Calibratie

- Camera en projector valt niet geometrisch samen in hetzelfde punt
- Mapping van camera- naar projectorcoördinaten

Radiale correctie

- Wiskundig model
- Opstellen verstoringfunctie
- Inverse van verstoringfunctie

Graycodes

- Sequentie van patronen
- Per pixel unieke graycode opstellen
- Mapping aanmaken
- Zeer schaalbaar
 - O(log₂(n))
 - 60 patronen om Verenigde Staten tot op millimeter nauwkeurig te coderen.

Graycodes

RANSAC

- Stochastisch iteratief algoritme
- Schatten parameters van wiskundig model
- Op basis van een verzameling van punten
- In ons geval lijnen

Condensation filter

- Particle filter
 - Toestand volgende frame schatten gebruik makend van huidig frame
 - Particles genereren die bepaalde transformatie weerspiegelen

Overeenkomst particle met echte wereld geeft de mate van

correctheid

- 4 stappen
 - Initialisation
 - Select
 - Predict
 - Measure

Het proces: benadering 1

Tijden

Benadering 1

Computer Visie Frame (Totaal: 168,5 ms)

Segmentatie Frame (Totaal: 224,5 ms)

Benadering 2

Computer Visie Frame (Totaal: 353,5 ms)

Segmentatie Frame (Totaal: 409,5 ms)

Filmpje

VRAGEN?