323 ARTIFICIAL INTELLIGENCE & EXPERT SYSTEMS

Local Search Algorithms

Chapter 4

Local search algorithms

- The search algorithms we have seen so far are systematic.
- This systematicity is achieved by keeping one or more paths in memory and by recording which alternatives have been explored at each point along the path and which have not.
- When a goal is found, the path to that goal is also a part of a solution to the problem.
- In many problems, the path to the goal is irrelevant.
- If the path to the goal does not matter, we might consider a different class of algorithms – local search algorithms.

Local search algorithms

- Local search algorithms work by keeping in memory just one current state (or perhaps a few), moving around the state space based on purely local information.
- The paths followed by the search are not retained.
- Local search algorithms are not systematic,
- They have two advantages:
 - (1) they use very little memory—usually a constant amount;
 - (2) they can often find reasonable solutions in large or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

Example: Travelling Salesperson Problem

- In addition to finding goals, local search algorithms are useful for solving optimization problems.
 - the aim is to find the best state according to an objective function.
 - start with any complete tour, perform pairwise exchanges

 variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
- What matters is the final configuration of queens, not the order in which they are added.
- Local search: start with all n, move a queen to reduce conflicts

 Almost always solves n-queens problems almost instantaneously for very large n, e.g., n=1 million

Algorithm

- 1. Generate a possible solution.
- 2. Test to see if this is actually a solution.
- Quit if a solution has been found.
 Otherwise, return to step 1.

- Hill Climbing search is simply a loop that continually moves in the direction of increasing value – uphill.
- It terminates when it reaches a "peak" where no neighbor has a higher value.
- The algorithm does not maintain a search tree, so the current node only records the state and objective function value.

- Searching for a goal state = Climbing to the top of a hill
- ➤ Generate-and-test + direction to move.
- Heuristic function to estimate how close a given state is to a goal state.

Algorithm

- Evaluate the initial state.
- 2. Loop until a solution is found or there are no new operators left to be applied:
 - Select and apply a new operator
 - Evaluate the new state:

 $goal \rightarrow quit$

better than current state → new current state

Hill-climbing search


```
function HILL-CLIMBING (problem) returns a state that is a local maximum
  inputs: problem, a problem
  local variables: current, a node
                     neighbor, a node
   current \leftarrow Make-Node(Initial-State[problem])
  loop do
       neighbor \leftarrow a highest-valued successor of current
       if Value[neighbor] \le Value[current] then return State[current]
       current \leftarrow neighbor
```

At each step the current node is replaced by the best neighbor → the neighbor with the highest value.

- Each state has 8 queens on the board, one per column.
- The successor function returns all possible states generated by moving a single queen to another square in the same column.
 - so, each state has 8x7=56 successors.
- h = number of pairs of queens that are attacking each other, either directly or indirectly
- The global minimum of this function is zero.

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	₩	13	16	13	16
₩	14	17	15	♛	14	16	16
17	₩	16	18	15	₩	15	₩
18	14	酥	15	15	14	₩	16
14	14	13	17	12	14	12	18

- h = 17 for the above state
- The figure also shows the values of all its successors, with the best successors h=12.

Hill-climbing algorithms choose randomly among the set of best successors, if there is more than one.

 A local minimum with h = 1 but every successor has a higher cost.

Hill-climbing algorithms choose randomly among the set of best successors, if there is more than one.

 A local minimum with h = 1 but every successor has a higher cost.

Hill Climbing: Disadvantages

Local maximum

A state that is better than all of its neighbours, but not better than some other states far away.

Hill Climbing: Disadvantages

Plateau

A flat area of the search space in which all neighbouring states have the same value.

Hill-climbing search

- Hill-climbing search modifies the current state by trying to improve it, as shown by the arrow
- Problem: depending on initial state, can get stuck in local maxima

Hill Climbing: Disadvantages

Ways Out

- Backtrack to some earlier node and try going in a different direction.
- Make a big jump to try to get in a new section.
- Moving in several directions at once.

Stochastic Hill Climbing

- Generate successors randomly until one is better than the current state
- Good choice when each state has a very large number of successors

- Still, this is an incomplete algorithm
 - We may get stuck in a local maxima

Random Restart Hill Climbing

- Generate start states randomly
- Then proceed with hill climbing
- Will eventually generate a goal state as the initial state
- Hard problems typically have an large number of local maxima
 - This may be a decent definition of "difficult" as related to search strategy

 Sometimes worse must you get in order to find the better

-Yoda

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency.
- e.g. task of getting a ping-pong ball into the deepest crevice in a bumpy surface.
 - If we just let the ball roll, it will come to rest at a local minimum.
 - If we shake the surface, we can bounce the ball out of the local minimum.
- The trick is to shake just hard enough to bounce the ball out of local minima, but not hard enough get it from the global minimum.

- The principle behind SA is similar to what happens when metals are cooled at a controlled rate
- The slowly decrease of temperature allows the atoms in the molten metal to line themselves up to form a regular crystalline structure that possesses a low density and a low energy.

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.
- Widely used in VLSI layout, airline scheduling, etc

- like hill-climbing identify the quality of the local improvements
- instead of picking the best move, pick one randomly- say the change in objective function is $\boldsymbol{\delta}$
- if δ is positive, then move to that state
- otherwise:
 - ullet move to this state with probability proportional to δ
 - thus: worse moves (very large negative δ) are executed less often

- There is always a chance of escaping from local maxima over time, make it less likely to accept locally bad moves
- (Can also make the size of the move random as well, i.e., allow "large" steps in state space)

Simulated annealing

function SIMULATED-ANNEALING(*problem, schedule*) **return** a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a "temperature" controlling the prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[*problem*])

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T = 0 then return current

next ← a randomly selected successor of *current*

 $\Delta E \leftarrow VALUE[next] - VALUE[current]$

if $\Delta E > 0$ then current \leftarrow next

else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

- high T: probability of "locally bad" move is higher
- low T: probability of "locally bad" move is lower
- typically, T is decreased as the algorithm runs longer
- i.e., there is a "temperature schedule"

Simulated Annealing in Practice

- method proposed in 1983 by IBM researchers for solving VLSI layout problems (Kirkpatrick et al, Science, 220:671-680, 1983).
 - theoretically will always find the global optimum
- Other applications: Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout, Image Processing, ...
- useful for some problems, but can be very slow
 - slowness comes about because T must be decreased very gradually to retain optimality

Jigsaw puzzles – Intuitive usage of Simulated Annealing

- •Given a jigsaw puzzle such that one has to obtain the final shape using all pieces together.
- •Starting with a random configuration, the human brain unconditionally chooses certain moves that tend to the solution.
- •However, certain moves that may or may not lead to the solution are accepted or rejected with a certain small probability.
- •The final shape is obtained as a result of a large number of iterations.

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Local Beam Search

k is the beam width.

Travelling Salesman Problem

Keeps track of k states rather than just 1. k=2 in this example. Start with k randomly generated states.

Travelling Salesman Problem (k=2)

Generate all successors of all the k states

Travelling Salesman Problem (k=2)

None of these is a goal state so we continue

Travelling Salesman Problem (k=2)

Select the best k successors from the complete list

Local beam search

Travelling Salesman Problem (k=2)

Repeat the process until goal found

Local beam search

- How is this different from k random restarts in parallel?
- Random-restart search: each search runs independently of the others.
- Local beam search: useful information is passed among the k parallel search threads
 - Eg. One state generates good successors while the other k-1 states all generate bad successors, then the more promising states are expanded

Local beam search

- Disadvantage: all k states can become stuck in a small region of the state space
- To fix this, use stochastic beam search
- Stochastic beam search:
 - Doesn't pick best k successors
 - Chooses k successors at random, with probability of choosing a given successor being an increasing function of its value

- Like natural selection in which an organism creates offspring according to its fitness for the environment.
- Essentially a variant of stochastic beam search that combines two parent states
- Over time, population contains individuals with high fitness

Genetic algorithms - definitions

- A successor state is generated by combining two parent states rather than modifying a single state.
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms - definitions

- Selection: Pick two random individuals for reproduction
- Crossover: Mix the two parent strings at the crossover point

Genetic algorithms - definitions

 Mutation: randomly change a location in an individual's string with a small independent probability

Randomness aids in avoiding small local extrema

Genetic algorithms - overview

Population = Initial population

Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty

For 1 to size(Population)

Select pair of parents (P_1,P_2) using Selection (P,F) timess Function

Child $C = Crossover(P_1, P_2)$

With small random probability, Mutate(C)

Add C to NewPopulation

Population = NewPopulation

Return individual in Population with best Fitness Function

- Fitness Function: number of nonattacking pairs of queens (28 is the value for the solution)
- Represent 8-queens state as an 8 digit string in which each digit represents position of queen

(a) shows a population of four 8-digit strings representing 8-queens states, each range from 1 to 8.

The production of the next generation of states is shown in Figure (b) – (e).

In (b), each state is rated by the evaluation function – fitness function. We use the number of nonattacking pairs of queens – 28 for a solution.

The values of the four states are 24, 23, 20 and 11.

The probability of being chosen for reproducing is proportional to the fitness score :

$$\checkmark$$
 24/(24+23+20+11) = 31%

$$\checkmark$$
 23/(24+23+20+11) = 29% etc.

Example-8 queens (fitness function)

- In (c), a random choice of two pairs is selected for reproduction, in accordance with the probabilities in (b).
 - one individual is selected twice and one not at all.

Example- 8 queens (selection)

Notice 3 2 7 5 2 4 1 1 is selected twice while 3 2 5 4 3 2 1 3 is not selected at all

For each pair, a croossover point is randomly chosen.

- In (d), the offsprings are created by crossing over the parent strings at the crossover point.
 - e.g. the first child of the first pair gets the first three digits from the first parent and the remaining digits from the second parent.

Example- 8 queens (crossover)

Example- 8 queens (mutation)

Finally, in (e), each location is subject to random mutation with probability.

- e.g. in the 8-queens problem, choose a queen at random and move it to a random square in its column.

Hill Climbing Example

Consider the following search problem:

- the set of states $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$
- successors of s_0 are $\{s_0, s_1, s_2\}$
- successors of s_1 are $\{s_1, s_2, s_3\}$
- successors of s_2 are $\{s_2, s_3\}$
- successors of s_3 are $\{s_0, s_3, s_4\}$
- successors of s_4 are $\{s_4, s_5\}$
- successors of s_5 are $\{s_2, s_3, s_5\}$
- objective function f is as follows: $f(s_0) = 0$, $f(s_1) = 3$, $f(s_2) = 2$, $f(s_3) = 4$, $f(s_4) = 1$, and $f(s_5) = 5$.

- Trace hill climbing search starting in state s0 (indicate which state is considered at each iteration, and which solution is returned when the search terminates).
- Does it return the optimal solution?
- Which (if any) states are local maxima and global maxima?

Problem Example

Problem Example

Consider a GA with chromosomes consisting of six genes $x_i = abcdef$, and each gene is a number between 0 and 9. Suppose we have the following population of four chromosomes:

$$x_1 = 435216$$
 $x_2 = 173965$ $x_3 = 248012$ $x_4 = 908123$

and let the fitness function be f(x) = (a + c + e) - (b + d + f).

- 1. Sort the chromosomes by their fitness
- 2. Do one-point crossover in the middle between the 1st and 2nd fittest, and two-points crossover (points 2, 4) for the 2nd and 3rd.
- 3. Calculate the fitness of all the offspring