Candidate's	Nama
""uluale's	IVame:

Maring gurde. Ocan Nelson		071	1190	3056	018	497.	5248
	ıdom	No.			_	onal N	_
Signature: #Ruthaft							

(Do not write your School/Centre Name or Number anywhere on this booklet)

P525/1 CHEMISTRY Paper 1 2 ¾ hours

Uganda Advanced Certificate of Education CHEMISTRY Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer allquestions in section A and six questions in section B All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables(3 – figure tables) are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 N m⁻²

1011		1307				I	or E	xamir	ier's	Use (Only						
101	10	12	14	15	6	7	18	9	10	11	12	13	14	15	16	17	Total
1	2	3	4	11	-				a	a	a	9	9	9	9	9.00	-100%

Turn Over

1.	(a)	A solution containing 1.5% of a polymer was found to have an osmotic pressure of 3.6 × 10 ⁻⁴ atmospheres at 25°C. Calculate the molecular
		mass of the polymer. (2 ½ marks)
	7	IV = MRI at veject Are without cornect fromly and Substitution;
(3	6 4154	(X 101325) (100 X106) = (1.5 × 6.31 × 298)
		(ah)
		Mr = 101,833.21 g dany & More 18 units out
	(b)	Explain why in the determination of molecular mass of polymers, osmotic pressure is used instead of ebullioscopic and cryoscopic methods.
ומ		HELPT MALET WILLEAUS
		have a very high Molecular Muss; thus produces very few particles in Son;
		a Very small values of booling point elevation and ficerily point
lep	ression	which cannot be accurately Measured; But exert 62
a 1	leng	high osmohi preserve which can be accurately Mousered.
2.	pairs	e one reagent that can be used to distinguish between each of the following of compounds. In each case, state what is observed if the reagent is ately treated with each member of the pair.
	(a)	CH3CH2CH2CH-CH3 and CH3CH2CH-CH2CH3 OH Keept forburd by; OH Veis I (3 marks) ne Solution and Sodium hydroxide Solution.
	(a) T 1º	alli a calium landorale solution.
	Lodin	ne Solution and South Vigarounde solution.
	CH3CH	2 CH2CHCH2 - Yellow precipitate Vej: formulae 12 CHCH2CH3 - No obcanable Change; rej: vallory 5 m 64 (03)
	-Hz-CH	of CHCH_CH3 - No of comable Change; resignation som
		2

(b)		
Anhydr	ous Zin	CH ₃ and	mediately at room temp;
			rej: without nom temp;
3. (a)) Thomacco	rium $^{232}_{90}Th$ undergoes radioactive derding to the following equation: $^{232}_{90}Th \rightarrow X + \alpha$	
Ca	alculate: (i)	the atomic number of X.	(1 mark) 1
	(ii)	themass number of X.	(1 mark) গ
(b)	X de	cays further to form Y as shown by $X \rightarrow Y + \beta$	the equation below.
Ca	lculate: (i)	the atomic number of Y.	(1 mark)
	(ii)	the mass number of Y.	(1 mark)

second on a	Geiger coun er second. C	X had an initial activity of 250 counts per ater. After 40 minutes the activity had declined to Calculate the half-life of X. (3 marks) $ \frac{11_{\text{en}}}{1} = \frac{1}{2} = \frac{1}{2} $
$\lambda = 1.02054$	X1035-1	$T_{1} = \left(\frac{\ln 2}{1.02054\times10^{-3}}\right) $
follow the stric loo	Low to	more The = 679. Seconds:
4. (a) Define the te	erm hydrati	on energy. Seet: enthulpy change; heat change; en one mole of a gaseous cons is
Completely Surrounde	d by Wat	> Molecules to from hydrated Ion.
* K		affect the magnitude of hydration energy. (01 mark)
rijet Ionic Ionic	radius	s of the ion $\sqrt{7}$ enthalpies of hydration of Ca^{2+} and Cl^{-} ions.
(c) The table be		Enthalpy of hydration (kJ mol ⁻¹)
1011	Ca ²⁺	1577
The state of the s	Cl-	381

	L	
	(i)	State whether the values of enthalpies of hydration given in the table above are positive or negative. Give a reason for your answer.
TH.	.l.	changed ions to the wester Molecule; res, energy grant out Calculate the enthalpy of hydration of calcium chloride Enthalpy of Status of Positively Changed and Magatively Changed ions to the wester Molecule; res, energy grant out Enthalpy of Enthaps of hydrator
+us	Neg.	Charged cons to the wester Molecule; res, every guerout
	(ii)	Calculate the enthalpy of hydration of calculate the enthalpy of hydrate the enthalpy of hydration of calculate the enthalpy of hydrate
	E	Calculate the enthalpy of hydration of calcium chloride rthalong hydration = thydration + 2 Enthalpy of hydrate of Cacl = -1577 + (2-381) / france; 4
		= -1577 + (2-381)VI franca;
		= -2339 KJmol It day More unther units

 The first ionization energies of some group II metals of the periodic table and melting points of their chlorides are given in the table below

V 1 1	134	C-	Sr	Ba
Metal	Mg	Ca		505
1 st ionization energy kJ mol ⁻¹	738	590	549	
Melting point of chlorides	708	772	873	967

of: rejet explanation for wrong trend Briefly explain the variation in trends of: the first ionization energy. The First I'E decreases from Magnessian + Barriam; From Magnessian La barium; atomic radius increases; due + a greater increase in Screening effect than increase in the nuclear charge; thus the effective nuclear attraction for the outermost electrons decreases; hance outermist electrons experiences low nuclear attraction; Making It easy to remove them with even little energy; (b) melting points of the chlorides reject from Beat rd. (2 1/2 marks) Combols
The Melting points increases from Magnesium chloride & barium chloride; from Magnissum ion to barium ion ionic radius increases with reset asomic readius constant tonic charge; resulting to electrose in the charge (2h) density and decrease in polarising power of the cations; thus loading + an increase in the conie character and a decrease in the covalent character; thus much and high amount of energy is required + brease sonic bonds than covalent bonds; deny wances for explanation

8,	State what would be observed and write equation for the reaction that would take place when the following pairs of compounds are reacted. (a) Propanal and silver nitrate in aqueous ammonia. (2 marks)
	Silver Wirner formed; It (1)
2[<u>A</u> م	(NH ₃) + CHCHCHO + 30H _(ap) + 2 A _{g(s)} + CH ₃ CHCOO _(ap) + 4NH ₃ (ap) + 2H ₂ (s) : Completed equs; reject any unball equal (b) But-2-ene and acidified potassium manganate(VII) solution.
	Purple SSTution turns to Colourless Solution (2 marks)
<u>СН</u> С.	H=CHCH ₂ + 2KMnO ₄ + 2H ₂ SO ₄ - 2CH ₂ COOH ₁₄ + 2MnSO ₄ + K ₂ SO ₄ + 2H ₂ O ₄ , Ves completed agas; Equations and electrode potentials for some reactions are given below:
	$2H_{(aq)}^{+} + O_{2(g)} + 2e^{-} \rightarrow H_{2}O_{2(aq)}E^{o} = +0.68V$ $Ag_{(aq)}^{+} + e^{-} \rightarrow Ag_{(s)}E^{o} = +0.80V$ $H_{2}O_{2(aq)} + 2H_{(aq)}^{+} + 2e^{-} \rightarrow 2H_{2}O_{(l)}E^{o} = +1.77V$
	a) (i) Write an ionic equation for the reaction between silver nitrate and hydrogen peroxide. (1½ marks)
	$\frac{2 A_g^+}{(ii)} + \frac{1}{4} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac$
	Ecel = Eright - Elegt deny Mency for und $= +0.80 - (+0.68)$ t $= +0.12$ V rg; with Dawl Units in (V) b) State the property shown by hydrogen peroxide in the reaction in a) (i).
1	= +0.12 V rej; with Dawl Units is (V) b) State the property shown by hydrogen peroxide in the reaction in a) (i). (01 mark)
	Reducing Agent; 16

SECTION B: (54 MARKS)

Answer six questions from this section. Additional questions answered will not be marked.

	10.	(a)	What is meant by the term buffer solution? (02 marks)	
	ls		then that resists PH changes when a small quantity of	
	an	auid	or a base is added to it; or on little small ditution; 62)
rejer.	Junh	, (b)	Calculate the mass of sodium propanoate that should be added to 1 dm ³ of a 0.1 M propanoic acid in order to give a solution whose pH is 4.5. State any assumptions made. (The dissociation constant for propanoic acid, $K_a = 1.4 \times 10^{-5} \text{mol dm}^{-3}$) (05 marks)	
1	Deny	all n	enefor wrong formula 7 Herf Wolar Mass 9 CHZCHZCOONA	
	РН	= -	$\log ka + \log \left(\frac{[Sa1+]}{[Aza]}\right) + = 12x_3 + 5 + 16x_2 + 23 \text{ Mx}(5)$ $= 969 \text{ M}$)
	4.5	= -l	(1.4x105) + log ([sul]) 1 mile of CHCHCOONa weigh, 96g+	
	4.5	.=4	85387 + log [suit] - (8,0.1 0.0437M of CH3CH3COONa Weigh's (91x0.0437)	9
			5387 + log [sunt]+1 = 4.1952g	
		log. [alt] = -1.3587/1 . The news of soction propagate	
eerpt of utorne appro	any fraid suches	(c)	Heat she be added is 4.19529 for least that she had be added is 4.19529 for least thought units————————————————————————————————————	3
	,		PH remains Constant; It (2)	
ej: e for	mil	obsen	(ii) Give a reason for your answer in c(i) (011/2 marks) The hydrogen ion from longerton of HU; react on the the CH, CH, COO rejet for CH, CH, COOH te wise) from the Complete longerton of the Southern proparable s to	
	when out	panoa	norcaed; thus More Rulf (CHZCH, COONAT); 10 intest to pt;	
)[(51/2)	

	12.	(a)	Write (i)	an equation f Aluminium	for the reaction	on between wa	ater and the	chloride of: (01½ marks)
		<i>!</i>	1113(5)	+ 3 H ₂ O ₀ ,	> A1(0	$(31)_{3}(5) + 3$	HCLEST	+ (b)
			(ii)	Sulphur	cledul	hy states in	Accept Cay)	(01½ marks)
		2	Saclac	1) + 2 H ₂ O ₁₁	→ 50 ₂	91 + 3561)	+ 4 HCLig	(15)
			(iii)	Phosphorous	S	ry Hzsy) //cept ((01½ marks)
	an	249}	Write	+ 3 H ₂ O ₃ , e an equation in exide solution Aluminium	for the reaction and:	, (ag) + 3 HC on between hore	Light (a)	
Aleupt			+ 2	Silicon	راب ک → 2/	(1(OH), (az) + dany z new	3 H ₂ (g) L re for stubes	Stuted wrongly
Nolecule Equisi	γ (7 8 ²	Sics	<u>+2</u> (ii)	OH (4) + H	dem all No	i 0g. Leg. +:	Chemical Si	(h) (ot 1/2 marks)
10 60		3CL Nitro		6 OH رمير). I hydrogen re	→ 5Cl7, deny a act to form a	+ ClO ₃ (4) cu Nomes fr mmonia accor	+ 3 H ₂ O _{d)} - unbaland ding to the f	ollowing
	10.	equat	ion.			$2NH_{3(g)}\Delta =$		
		(a)		the industrial	conditions us	sed to obtain n	naximum yie	(() 1 1/2 marks)
res:I	on ca	<i>k</i>	F	inely divide	d Iron Cata	dysts rej	ion Catal	yst;
			H	rgh pressure	-(200-100 L	atm)	Accept to	presere as well
				ow temp	esutre or	450-500°C		prosere as well

(b)	During	the man	ufacture	of nitric :	acid amm	onia is ca	atalyticall	y oxidized	
	to P wh	nich is fu	rther oxi	dized to (Q. Q is the	en reacted	d with wa	iter to	
1	11(1)(1)1(1)	a mitric o	014						ne
•	(i) 1	Name P	and Q	الثعمسمم	ماليا . ه	dony M	emi If The	Sepan	uted
	1	· 1S	iniii.ege	nivions xi q	<u> </u>	(A)	(٧	to wrats a Sepan marks)	
	(Q is	.N.itroge	heixoibn	e; /	(ق	(½		
dany mans for (fructions balanced to	ii) V	Vrite equ	4.0	r the form	nation of	P, Q and	100	id. 01½ marks)
fructions balance	4NH C	. + 5	0, (0) -	→ 4NO	(+ 6	H,Ou, V	it (h))	
l and	llulone	Fr 145	bulanced		de	1 11-4		m (helec	•
any a	E	quation	for the fo	rmation o	of Q:	2 marc	10	on Stules; 1½ marks,)
	2) den E	10 G2 fr quation	O2.(g) v woright	state;	And All	frunbalue	P; (0.	- mssiy sign(: 1½ marks)	reussible
440269	, + 2	H.O., +	0, (4) -	-04HN	02 (40) 4	Jr (Th)		
			•		L .	FI	100 Still	the same 1	rules ubove
(c) W	rite eq	uations i rbon	for the rea	action of	concentra	nea miric	(0)	½ marks)	
(i)	0						•		
Cus	+4H)	102(1)	→ CC	2.(9) +	4 NO2 Cg).	+ 2 H ₂ (14	r (II)	
, (ii) co	pper					(01	½ marks)	
Comontol Cun comontol Cun vo Mailrute.	,			0 (10)	1.	0 NO ()	+ 240	2/2	(E)
(immental Cu	.52+	4 HNU3.	(i) —D	Cully)	2 (m) T	2,1452,149).		2017	
a wilmite.	. 1-4-	for the	eaction b	etween P	and sodi	um hydro	oxide is s	hown in	Shillyplies
the table	ic data helow	ioi the i	Caction						
ille table	ociow.				Sec.	٠_انس			1
Concentration	1.05	0.88	0.74	0.51	0.37	0.26	0.16	0.10	
of P (mol l ⁻¹)	0.0	3.5	7.0	14.5	20.0	27.0	35.5	45.0	1
Time	0.0	3.5			= - 10		4		

(a) Plot a graph of Concentration of P against Time

(03 marks)

Determine

- (i) (03 marks) thehalf life of P
- $T_{1} = \begin{pmatrix} T_{1}' + T_{1}^{2} \\ 2 \end{pmatrix} \downarrow \qquad \qquad Diffnbuted to$ $1e T_{1} = \begin{pmatrix} 13+13 \\ 2 \end{pmatrix} \downarrow \downarrow \qquad \qquad = \frac{1}{2}$
 - Ti = 13 seconds. It day & when if units Missing the order of the reaction. (ii)
- First Order: V @
- the rate constant for the reaction
- T₁ = \frac{\log \tau}{\text{\text}} \text{ Accept Any log real computation US \(\text{\text{\text{TL}}} \)

 13 = \frac{\log \text{\text{Inz}}}{\text{\text{\text{TL}}}} λ = 0.06335 × den + Mone If units Missing
- The conductimetric curve for the titration of ethanoic acid and sodium 15. hydroxide is given below.

(02 marks)

order, Trend = Explain why Explain the shape of the curve. (PQRS). ions from soln; At Q Kis lowest; due to presence 9 A CH3COO in the soln; we one slow Conducting ins; along the conductivity (K); increases gradually then rapidly addition of excess NaOH + resultant solution; whose complete longation produces high hydroxyl ions which are fast conduction cons. The molar conductivity of silver nitrate, potassium nitrate and potassium chloride are 134.0, 143.2 and 140.8 S cm2 mol-1 respectively at infinite dilution at 25°C. Calculate the: Molar conductivity of silver chloride at infinite dilution at 25°C. (011/2 marks) -lo Agel = No Kel + Lo AgNo. = (140,8 + 134,0) - 143.2 Lt fromuly taxing 160 = 131.6 Scm2Moli (ii) Solubility product, Ksp of silver chloride at 25°C. (The electrolytic conductivity of water and that of a saturated solution of silver chloride are 5.5 x 10-8 and 1.934 x 10-6 S cm-1 respectively) (3 1/2 marks) 3/2 C = 1.4278×105M

17. (a) What is meant by	he term common ion effect? (02 marks)
Is the precipitation J.	Sparingly Stuble Ionic compount (Sult) from
Its saturated Solu by as	dition of a more SSluble Sout Containing one
J the similar ion in	the suprated solve at Constant temp;
(b) Magnesium hydro Write:	tide is sparingly soluble in water.
rejet (m)	for the solubility of magnesium hydroxide in water Accept Mg(OH)2657 Mg2+ 261/2 marks)
$M_g(OH)_{(S)} + a$	1 = Mg2+ (4) + 20H (4) V + (15)
for willout = (ii) the expression hydroxide.	dery to new for word Sketes on for the solubility product, Ksp.) of magnesium (01 mark)
Ksp	= [Mg2+][ōH]2 V G deny If b(i) is wrong
	(1½ marks)
let solubility of Mg(OH) us be x s in	$v_{2}(x)$ $4.2 \times 10^{12} = .4 \times 3$;
Thus; [My2+] = x; [ŌH] = z Ksp = x(2x)2; ν	x; = 1.0164 × 10 T Molding.
day where for word (ii) 1 500; 0.01 M so	dium hydroxide 2y is very small; thus (2) marks) 2000/M
[Mg2+] =y; [ōH]=(2	$y+0.01)^{2}$ $y=4.2\times10^{12}$ $y=4.2\times10^{13}$ $y=4.2\times10^{13}$
But Since Solubility of My(OH) is Very sm (iii) Comment of	$y + 0.01$) $y = 4.2 \times 15^{8} \text{ moldm}^{3}$ $y = 4.2 \times 15^{8} \text{ moldm}$
Mangin madroxide	Mal stube is
0-01 N Sodium hy	Inside;

16

PERIODIC TABLE

	2										7	3	4	5	6	7	8
1 H 1.0																1 H 1,0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 CI 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
85.5 55 Cs 133	87.6 56 Ba 137	57 La 139	91.2 72 Hf 178	92.9 73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr	88 Ra	89 Ac (227)					74.1		V Trial				كدفوا			T 70	71
(223)	(226)	(221)	57 La	58 Ce	59 Fr	60 Nd	61 Pm	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

- H indicates Atomic number
- 2. H indicates relative Atomic mass 1.0