Creating Digital Voltmeter using Arduino

What is an LCD Display?

LCD stands for **Liquid Crystal Display**. It is a **flat-panel display technology** commonly used in digital devices such as calculators, watches, TVs, monitors, and **Arduino projects**. In electronics, especially with microcontrollers, the most common LCD module is the **16x2 LCD**, which can display 16 characters per line on 2 lines.

How Does an LCD Work?

An **LCD display works** by **blocking light** rather than emitting it. Here's a simplified breakdown:

1. Liquid Crystals

- Inside the display, there is a layer of liquid crystal material sandwiched between two
 polarized glass sheets.
- These crystals can **twist and untwist** when voltage is applied, controlling the **passage of light** through them.

2. Backlight

- An LCD does not emit light by itself; it uses a backlight (usually white LEDs) placed behind the screen.
- The light from the backlight passes through the layers, and the liquid crystals either allow or block it to form visible characters or images.

3. Polarizers and Filters

- The light first passes through a polarizing filter, then through the liquid crystals.
- Based on the voltage applied to different segments, the crystals change their orientation and determine whether light can pass through the next polarizing filter or not.
- This creates the dark and light areas we see as characters or graphics.

Working with LCD in Arduino

- The most common module used is **LCD 16x2** (16 characters × 2 lines).
- It uses an **HD44780 controller**, which can be controlled via **parallel pins** or **I2C** (using an adapter).
- Arduino sends commands and data to the LCD to control what is shown on the screen.

Example:

If you send the string "Voltage: 5.0V" from Arduino to the LCD, it will appear directly on the screen.

Summary

Used In

Feature	Description
Full Form	Liquid Crystal Display
Works By	Blocking or allowing light
Needs Backlight? Yes	

Watches, calculators, Arduino, etc.

Feature Description

Type for Arduino 16x2 LCD (most common)

1. What is a Digital Voltmeter?

A **Digital Voltmeter (DVM)** is an electronic instrument used to measure electrical voltage, either **AC** or **DC**, and display the result numerically on a digital display (like an LCD or LED). Unlike analog voltmeters that use a moving needle to indicate voltage, DVMs provide precise digital readings, making them more accurate and easier to read.

2. Circuit Diagram for Arduino Digital Voltmeter

To build a simple Arduino-based digital voltmeter, you'll need the following components:

- Arduino Uno
- Voltage divider circuit (to scale down input voltage)
- Resistors (e.g., $10k\Omega$ and $100k\Omega$)
- LCD Display (16x2 or OLED, optional for output)
- Connecting wires

Basic Circuit Explanation:

- The input voltage is passed through a voltage divider to ensure it's within Arduino's ADC range (0–5V).
- The divided voltage is read using the analogRead() function.
- Arduino converts this analog value to a digital voltage using the ADC (Analog to Digital Converter).
- The result is displayed via Serial Monitor or LCD.

3. Simulation of Digital Voltmeter using TinkerCAD

You can simulate this setup using **Autodesk TinkerCAD**:

- 1. Go to TinkerCAD Circuits.
- 2. Create a new circuit.

- 3. Add the Arduino Uno board, resistors, voltage source, and optional LCD.
- 4. Build the voltage divider circuit as described.
- 5. Use Arduino code to read analog voltage and convert it to a readable format.
- 6. Upload the code and start the simulation.

You can even use a potentiometer as the voltage source for testing within safe limits.

4. How Does the Digital Voltmeter Work?

A **Digital Voltmeter** works by:

- 1. **Sampling the Input Voltage** through a voltage divider (if needed).
- 2. **Converting Analog to Digital** using an **ADC** (Analog-to-Digital Converter). Arduino Uno has a 10-bit ADC, which converts 0–5V to a value from 0–1023.
- 3. Calculating the Actual Voltage by applying the formula:

V=(analogRead×5.01023)×voltage divider multiplierV = \left(\frac{{analogRead \times 5.0}}{1023}\right) \times \text{{voltage divider multiplier}}V=(1023analogRead×5.0) \times \text{{voltage divider multiplier}}

4. **Displaying the Value** on a serial monitor or LCD.

Advanced DVMs use **integrating ADCs** which offer high accuracy and noise rejection, especially useful in precision instruments.