

VinMin = 6.0V VinMax = 20.0V Vout = 12.0V lout = 6.0A Device = LM5175PWPR Topology = Buck_Boost Created = 1/10/17 1:46:39 PM BOM Cost = \$12.67 BOM Count = 43 Total Pd = 0.99W

WEBENCH® Design Report

Design: 4875907/3 LM5175PWPR LM5175PWPR 6.0V-20.0V to 12.00V @ 6.0A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbias	MuRata	GRM188R61E105KA12D Series= X5R	Cap= 1.0 uF ESR= 17.113 mOhm VDC= 25.0 V IRMS= 979.39 mA	1	\$0.01	0603 5 mm ²
2.	Cboot1	Kemet	C0603C104K3RACTU Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
3.	Cboot2	Kemet	C0603C104K3RACTU Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
4.	Cbulk	Nichicon	UUD1E680MCL1GS Series= uD	Cap= 68.0 uF ESR= 440.0 mOhm VDC= 25.0 V IRMS= 230.0 mA	1	\$0.11	SM_RADIAL_6.3AMM 80 mm²
5.	Ccomp	Yageo America	CC0805KRX7R9BB682 Series= X7R	Cap= 6.8 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
6.	Ccomp2	Samsung Electro- Mechanics	CL21C131JBANNNC Series= C0G/NP0	Cap= 130.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7.	Ccs	AVX	06035A470JAT2A Series= C0G/NP0	Cap= 47.0 pF ESR= 174.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
8.	Cf	Kemet	C0805C224K5RACTU Series= X7R	Cap= 220.0 nF ESR= 46.0 mOhm VDC= 50.0 V IRMS= 2.65 A	1	\$0.02	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Cin	MuRata	GRM31CR71H475KA12L Series= X7R	Cap= 4.7 uF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 4.98 A	4	\$0.07	1206 11 mm ²
10. Cout	MuRata	GRM32ER61C476ME15L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 16.0 V IRMS= 4.59346 A	2	\$0.24	1210_280 15 mm ²
11. Coutx	TDK	C3216JB1E226M Series= JB	Cap= 22.0 uF ESR= 2.246 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.55	1206 11 mm ²
12. Coutx2	TDK	C3216JB1E226M Series= JB	Cap= 22.0 uF ESR= 2.246 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.55	1206 11 mm ²
13. Coutx3	TDK	C3216JB1E226M Series= JB	Cap= 22.0 uF ESR= 2.246 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.55	1206 11 mm ²
14. Cslope	Samsung Electro- Mechanics	CL10C910JB8NCNC Series= C0G/NP0	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
15. Css	Kemet	C0603C223K3RACTU Series= X7R	Cap= 22.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
16. Cvcc	MuRata	GRM188R61C105KA93D Series= X5R	Cap= 1.0 uF ESR= 10.127 mOhm VDC= 16.0 V IRMS= 994.63 mA	1	\$0.01	0603 5 mm ²
17. D2	Torex USA Corporation	XBS104S13R-G	VF@Io= 540.0 mV VRRM= 40.0 V	1	\$0.12	SOD-323 9 mm ²
18. D3	Comchip Technology	CDBK0520L	VF@Io= 385.0 mV VRRM= 20.0 V	1	\$0.07	SOD-123F 12 mm ²
19. Dboot1	Torex USA Corporation	XBS053V15R-G	VF@Io= 470.0 mV VRRM= 30.0 V	1	\$0.12	SOD-523 5 mm ²
20. Dboot2	Torex USA Corporation	XBS053V15R-G	VF@Io= 470.0 mV VRRM= 30.0 V	1	\$0.12	SOD-523 5 mm²
21. Df	Torex USA Corporation	XBS053V15R-G	VF@Io= 470.0 mV VRRM= 30.0 V	1	\$0.12	SOD-523 5 mm ²
22. L1	Wurth Elektronik	7443556260	L= 2.6 µH DCR= 1.6 mOhm	1	\$4.43	WE-HCB-18X8.9 410 mm ²
23. M1	Texas Instruments	CSD17310Q5A	VdsMax= 30.0 V IdsMax= 100.0 Amps	1	\$0.31	TRANS_NexFET_Q5A 55
24. M2	Texas Instruments	CSD18504Q5A	VdsMax= 40.0 V IdsMax= 50.0 Amps	1	\$0.33	TRANS_NexFET_Q5A 55
25. M3	Texas Instruments	CSD17577Q3A	VdsMax= 30.0 V IdsMax= 35.0 Amps	1	\$0.21	DNH0008A 18 mm²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
6. M4	Texas Instruments	CSD17575Q3	VdsMax= 30.0 V IdsMax= 60.0 Amps	1	\$0.35	DQG0008A 18 mm ²
7. Rcomp	Vishay-Dale	CRCW04026K81FKED Series= CRCWe3	Res= 6.81 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
3. Rcsg	Vishay-Dale	CRCW0603100RFKEA Series= CRCWe3	Res= 100.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
). Rcsp	Vishay-Dale	CRCW0603100RFKEA Series= CRCWe3	Res= 100.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
). Rf	Vishay-Dale	CRCW060310R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
. Rfbb	Vishay-Dale	CRCW060320K0FKEA Series= CRCWe3	Res= 20.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
. Rfbt	Vishay-Dale	CRCW0603280KFKEA Series= CRCWe3	Res= 280.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
3. Rmode	Vishay-Dale	CRCW060393K1FKEA Series= CRCWe3	Res= 93.1 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
. Rpg	Vishay-Dale	CRCW060320K0FKEA Series= CRCWe3	Res= 20.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
i. Rsense	Vishay-Dale	WSR37L000FEA Series= WSR	Res= 7.0 mOhm Power= 3.0 W Tolerance= 1.0%	1	\$0.64	4527 122 mm ²
S. Rt	Vishay-Dale	CRCW040273K2FKED Series= CRCWe3	Res= 73.2 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
. Ruvb	Vishay-Dale	CRCW040268K1FKED Series= CRCWe3	Res= 68.1 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
3. Ruvt	Vishay-Dale	CRCW0402249KFKED Series= CRCWe3	Res= 249.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
9. U1	Texas Instruments	LM5175PWPR	Switcher	1	\$3.10	

PWP0028F_N 98 mm²

Operating Values

Ohe	railing values		operating values						
#	Name	Value	Category	Description					
1.	Cin IRMS	2.937 A	Current	Input capacitor RMS ripple current					
2.	Cout IRMS	697.331 mA	Current	Output capacitor RMS ripple current					
3.	Coutx IRMS	194.33 mA	Current	Output capacitor_x RMS ripple current					
4.	lin Avg	3.65 A	Current	Average input current					
5.	L lpp	3.089 A	Current	Peak-to-peak inductor ripple current					
6.	L1 Irms	6.066 A	Current	Inductor ripple current					
7.	M1 Irms	4.657 A	Current	MOSFET RMS ripple current					
8.	M2 Irms	3.784 A	Current	MOSFET RMS ripple current					
9.	SW lpk	0.0 A	Current	Peak switch current					
10.	BOM Count	43	General	Total Design BOM count					
11.	FootPrint	1.097 k mm ²	General	Total Foot Print Area of BOM components					
12.	Frequency	343.832 kHz	General	Switching frequency					
13.	IC Tolerance	0.0 V	General	IC Feedback Tolerance					
14.	M1 Rdson	5.9 mOhm	General	Drain-Source On-resistance					
15.	M1 ThetaJA	50.0 degC/W	General	MOSFET junction-to-ambient thermal resistance					
16.	M2 Rdson	9.8 mOhm	General	Drain-Source On-resistance					
17.	M2 ThetaJA	50.0 degC/W	General	MOSFET junction-to-ambient thermal resistance					
18.	Mode	CCM	General	Conduction Mode					
19.	Pout	72.0 W	General	Total output power					
20.	Total BOM	\$12.67	General	Total BOM Cost					
21.	Low Freq Gain	67.914 dB	Op_Point	Gain at 10Hz					
22.	Vout Actual	12.0 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors					
23.	Vout OP	12.0 V	Op_Point	Operational Output Voltage					
24.	Cross Freq	15.802 kHz	Op_point	Bode plot crossover frequency					
25.	Duty Cycle	60.232 %	Op_point	Duty cycle					
26.	Efficiency	98.637 %	Op_point	Steady state efficiency					
27.	Gain Marg	-17.641 dB	Op_point	Bode Plot Gain Margin					
28.	IC Tj	65.276 degC	Op_point	IC junction temperature					
29.	ICThetaJA	30.5 degC/W	Op_point	IC junction-to-ambient thermal resistance					
30.	IOUT_OP	6.0 A	Op_point	lout operating point					
31.	M1 TjOP	73.439 degC	Op_point	MOSFET junction temperature					

#	Name	Value	Cotogory	Description
			Category	Description
32.	M2 TjOP	70.558 degC	Op_point	MOSFET junction temperature
33.	Operating Topology	Buck	Op_point	The current operating topology of the device
34.	Phase Marg	61.42 deg	Op_point	Bode Plot Phase Margin
35.	VIN_OP	20.0 V	Op_point	Vin operating point
36.	Vout p-p	12.827 mV	Op_point	Peak-to-peak output ripple voltage
37.	Cin Pd	6.467 mW	Power	Input capacitor power dissipation
38.	Cout Pd	738.401 µW	Power	Output capacitor power dissipation
39.	Coutx Pd	84.819 µW	Power	Output capacitor_x power loss
40.	D2 Pd	0.0 W	Power	Diode power dissipation
41.	D3 Pd	0.0 W	Power	Diode power dissipation
42.	IC Pd	172.983 mW	Power	IC power dissipation
43.	L Pd	72.0 mW	Power	Inductor power dissipation
44.	M1 Pd	256.509 mW	Power	MOSFET power dissipation
45.	M1 PdCond	135.488 mW	Power	M1 MOSFET conduction losses
46.	M1 PdSw	121.021 mW	Power	M1 MOSFET switching losses
47.	M2 Pd	173.793 mW	Power	MOSFET power dissipation
48.	M2 PdCond	145.891 mW	Power	M2 MOSFET conduction losses
49.	M2 PdSw	27.902 mW	Power	M2 MOSFET switching losses
50.	M3 Pd	212.4 mW	Power	M3 MOSFET total power dissipation
51.	M3 PdCond	212.4 mW	Power	M3 MOSFET conduction losses
52.	M4 Pd	0.0 W	Power	M4 MOSFET total power dissipation
53.	Rsense Pd	100.216 mW	Power	LED Current Rsns Power Dissipation
54.	Total Pd	994.935 mW	Power	Total Power Dissipation
55.	Vout Tolerance	1.886 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	6.0	Maximum Output Current
2.	VinMax	20.0	Maximum input voltage
3.	VinMin	6.0	Minimum input voltage
4.	Vout	12.0	Output Voltage
5.	base_pn	LM5175	Base Product Number
6.	source	DC	Input Source Type
7.	Та	60.0	Ambient temperature

Design Assistance

- 1. Tip: Snubbers and/or gate resistors may be required to limit the SW1,2 node switching spikes below the IC and FET abs max ratings.
- 2. Tip: Slope Capacitor: smaller slope capacitors provide better transition region behavior.
- 3. LM5175 Product Folder: http://www.ti.com/product/LM5175: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.