1. (6 bodova) Površinski niz izotropnih radijatora leži u x-y ravnini, kao na slici. Glavni nizovi tog niza su linearni nizovi: x-niz od 7 elemenata na razmaku $d_x = 3\lambda/4$ i y-niz od 5 elemenata na razmaku $d_y = 2\lambda/3$. Ako su fazni kutevi pobude x-niza i y-niza redom $\alpha_x = \pi/4$, $\alpha_y = -\pi/6$, odrediti u kojim sve smjerovima ovaj niz zrači maksimalno polje. Odrediti usmjerenost tog niza.

(Napomena: dijagram zračenja, kao i raspored i broj elemenata u nizu samo su ilustrativnog karaktera)

Rješenje:

Glavna latica niza postoji u onom smjeru u kojem vrijedi da nema faznog kašnjenja ni za x-niz ni za y-niz.

$$\delta_{r} = \beta d_{r} \sin \theta_{0} \cos \varphi_{0} + \alpha_{r} = 0$$

$$\delta_{v} = \beta d_{v} \sin \theta_{0} \sin \varphi_{0} + \alpha_{v} = 0$$

iz čega se mogu dobiti jednadžbe za θ_0 i φ_0 :

$$tg\,\varphi_0 = \frac{\alpha_y d_x}{\alpha_x d_y}\,,$$

$$\sin^2 \theta_0 = \left(\frac{\alpha_x}{\beta d_x}\right)^2 + \left(\frac{\alpha_y}{\beta d_y}\right)^2.$$

Uvrštavanjem zadanih vrijednosti dobiva se

$$\operatorname{tg}\varphi_{0} = \frac{-\frac{\pi}{6}\frac{3\lambda}{4}}{\frac{\pi}{4}\frac{2\lambda}{3}} = -\frac{3}{4} \implies \varphi_{0} = -36.87^{\circ}, 143.13^{\circ},$$

$$\sin^2 \theta_0 = \left(\frac{\frac{\pi}{4}}{\frac{2\pi}{\lambda} \frac{3\lambda}{4}}\right)^2 + \left(\frac{-\frac{\pi}{6}}{\frac{2\pi}{\lambda} \frac{2\lambda}{3}}\right)^2 = \frac{25}{576} \implies \sin \theta_0 = \frac{5}{24} \implies \theta_0 = 12.02^\circ, 167.98^\circ.$$

Rješenje $\varphi_0 = -36.87^\circ$ nije ispravno, zato što su u njemu predznaci od $\sin \varphi_0$ i $\cos \varphi_0$ krivi. Može se vidjeti iz početnih dviju jednadžbi da se za tu vrijednost φ_0 neće dobiti $\delta_x = \delta_y = 0$. Budući da je $\sin \theta$ uvijek pozitivan jer je θ u rasponu $[0, 180^\circ]$, uz $\alpha_x > 0$ mora vrijediti $\cos \varphi_0 < 0$, iz čega slijedi $\varphi_0 \in \langle 90^\circ, 270^\circ \rangle$. Isto se dobiva i iz druge jednadžbe. Dakle, ovaj niz zrači glavnu laticu u dva smjera, simetrično s obzirom na x-y ravninu, u smjerovima $(\theta_0, \varphi_0) = (12.02^\circ, 143.13^\circ)$, $(167.98^\circ, 143.13^\circ)$.

Usmjerenost niza dobiva se preko izraza

$$D = \frac{1}{2} \pi D_x D_y \cos \theta_0 = \frac{1}{2} \pi \frac{7 \cdot 3\lambda/4}{\lambda/2} \frac{5 \cdot 2\lambda/3}{\lambda/2} \cos(12.02^\circ) = 107.54,$$

odnosno u decibelima $d = 20.31 \,\mathrm{dB}$. Faktor 1/2 u izrazu postoji zato što niz zrači u oba poluprostora.

2. (9 bodova) Antenski sustav od četiri horizontalno polarizirana poluvalna dipola na razmaku $3\lambda/5$ kao na slici projektiran je kao poprečni niz. Izračunati dijagram zračenja u H-ravnini: odrediti smjer maksimuma glavne latice, smjerove nultočaka i maksimuma sekundarnih latica. Skicirati dijagram zračenja u čitavoj x-z ravnini i izračunati potiskivanje sekundarnih latica. Koliko se mora promijeniti fazni kut pobude α da bi glavna latica niza bila uperena u smjeru $\theta = 45^{\circ}$? Postoje li tada u dijagramu zračenja niza neželjene glavne latice (engl. grating lobes)?

Rješenje:

Prvi korak u rješenju zadatka jest odrediti fazni kut pobude α . Iz uvjeta da je niz poprečan, tj. da daje maksimum zračenja u smjeru $\theta = 90^{\circ}$, dobiva se

$$0 = \delta = \beta d \cos \theta + \alpha = \beta d \cos 90^{\circ} + \alpha = \alpha ,$$

dakle $\alpha = 0^{\circ}$. Uz poznati kut α možemo promotriti hod kuta δ pri promjeni kuta θ od 0° do 180° :

$$\delta\big|_{\theta=0} = \beta d \cos \theta + \alpha = \beta d = \frac{2\pi}{\lambda} \frac{3\lambda}{5} = \frac{6\pi}{5},$$
$$\delta\big|_{\theta=\pi} = -\beta d = -\frac{6\pi}{5}.$$

Hod kuta δ prikazan na Schelkunoffovoj kružnici izgleda kao na slici. Budući da niz ima 4 elementa, smjerovi nultočaka i glavnog maksimuma dobivaju se kao rješenja jednadžbe $w^4 - 1 = 0$.

Vrijednosti kuta δ za koje se dobivaju nultočke i maksimumi glavnih i sekundarnih latica očitavaju se izravno s ove kružnice. Dobiva se:

$$\delta_{s1} = \frac{6\pi}{5} \Rightarrow \theta_{s1} = 0^{\circ}$$
 (početna točka, maksimum sekundarne latice)
$$\delta_{n1} = \pi \Rightarrow \pi = \frac{6\pi}{5} \cos \theta_{n1} \Rightarrow \cos \theta_{n1} = \frac{5}{6} \Rightarrow \theta_{n1} = 33.55^{\circ} \text{ (prva nultočka)}$$

$$\delta_{s2} = \frac{3\pi}{4} \Rightarrow \theta_{s2} = 51.32^{\circ}$$

$$\delta_{n2} = \pi \Rightarrow \theta_{n2} = 65.38^{\circ}$$

 $\delta_0 = 0 \implies \theta_0 = 90^\circ$ (maksimum glavne latice – zadan u tekstu zadatka)

$$\delta_{n3} = -\frac{\pi}{2} \Rightarrow \theta_{n3} = 114.62^{\circ}$$

$$\delta_{s3} = -\frac{3\pi}{4} \Rightarrow \theta_{s3} = 128.68^{\circ}$$

$$\delta_{n4} = -\pi \Rightarrow \theta_{n4} = 146.44^{\circ}$$

$$\delta_{s4} = -\frac{6\pi}{5} \Rightarrow \theta_{s4} = 180^{\circ}$$
 (završna točka, maksimum sekundarne latice)

Dijagram zračenja izgleda kao na slici.

Potiskivanje sekundarnih latica računa se formulom

$$s = (n+1)\sin\left(\frac{3\pi}{2(n+1)}\right)$$

što daje s = 3.69 ili u decibelima $s = 11.35 \,\mathrm{dB}$.

Da bi glavna latica bila u smjeru $\theta=45^\circ$, postavljamo uvjet $\delta\big|_{\theta=45}=0$. Dobiva se jednadžba

$$0 = \frac{6\pi}{5}\cos 45^\circ + \alpha ,$$

iz čega slijedi $\alpha = -\frac{3\sqrt{2}}{5} \approx -0.84\pi$.

Da bi provjerili postoje li u novom dijagramu zračenja neželjene glavne latice, treba pogledati hod kuta δ uz novi kut pobude α i provjeriti prelazi li on jednom ili dvaput preko realne osi na Schelkunoffovoj kružnici. Vrijedi:

$$\delta\big|_{\theta=0} = \beta d + \alpha = \frac{6\pi}{5} - 0.84\pi = 0.36\pi ,$$

$$\delta\big|_{\theta=\pi} = -\beta d + \alpha = -\frac{6\pi}{5} - 0.84\pi = -2.04\pi < -2\pi .$$

Dakle, uz promjenu kuta θ od 0° do 180°, kut δ ide od 0.36 π do -2.04 π , te prelazi preko realne osi dva puta, za $\delta = 0$ i za $\delta = -2\pi$, što znači da će u dijagramu zračenja postojati, osim glavne, i jedna neželjena glavna latica (grating lobe).