Model Diagnostics

Check how well a model fits data

- ► Goodness-of-fit statistics
- Residuals

Compare different candidate models

- nested models
- hypothesis testing

Data: n independent observations (y_i, x_i) , $i = 1, \dots, n$,

$$\mathbf{x}_i = (x_{i1}, \cdots, x_{ip})^T$$
.

Model: GLM

- ► Two extreme models:
 - ▶ Null Model: Common μ for y_1, \ldots, y_n ; only 1 parameter.
 - ▶ Full (Saturated) Model: $\mu_i = y_i$ for $i = 1, \dots, n$; n parameters.
 - the null model is too simple,
 - ▶ the full model is uninformative and not generalizable.
- We need something in between: an intermediate p-parameter model (1

$$\eta_i = g(\mu_i) = \mathbf{x}_i \boldsymbol{\beta},$$

where β is *p*-dimensional.

▶ Assume the following log-likelihood (dispersion $\phi = 1$),

$$I(y, \mu) = y\theta - b(\theta) + c(y).$$

Let $I(y, \hat{\mu})$ denote the maximized log-likelihood over β , where

$$\hat{m{\mu}} = m{g}^{-1}(m{X}\hat{m{eta}})$$

- ▶ The maximum possible value of the log-likelihood is l(y, y), i.e. the full (saturated) model.
- ▶ The full model fits each data point exactly.

Deviance

Deviance measures the discrepancy between the two fits, which is twice the difference between l(y, y) and $l(y, \hat{\mu})$:

$$D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = 2\{l(\mathbf{y}, \mathbf{y}) - l(\mathbf{y}, \hat{\boldsymbol{\mu}})\}.$$

- Deviance can be interpreted as the likelihood ratio between the full model and the p-parameter model.
- ▶ When the *p*-parameter model is true, the deviance *may* be approximately distributed as χ^2_{n-p} .
- ▶ Deviance is commonly used to check the goodness of fit. A large value (compared to the quantile of χ^2_{n-p}) means lack of fit.

Example

▶ Normal linear regression: $y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i \ (\epsilon_i \sim N(0, 1))$

$$I(\mathbf{y}, \boldsymbol{\mu}) = -\frac{n}{2}\log(2\pi) - \sum_{i=1}^{n} \frac{(y_i - \mu_i)^2}{2}$$

$$D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = RSS = \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}})^2$$

▶ Poisson log linear regression: $\theta_i = \log \mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

$$I(\mathbf{y}, \boldsymbol{\mu}) = -\sum_{i=1}^{n} (\log y_i! - y_i \log \mu_i + \mu_i)$$

$$D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = 2\sum_{i=1}^{n} \left(y_i \log y_i - y_i - y_i \mathbf{x}_i^T \hat{\boldsymbol{\beta}} + \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}) \right)$$

Analysis of Deviance

- ▶ Deviance can be used for model selection (comparing nested models)
- ▶ Suppose we want to compare model M_0 (smaller model) to model M_1 (larger model)
- ▶ The difference in deviances between M_0 and M_1 is

$$D_{M_0} - D_{M_1} \stackrel{d}{\approx} \chi^2_{p-q}$$
, under M_0

where $\stackrel{d}{\approx}$ denotes "approx. distributed as".

- Related to likelihood ratio test
- ightharpoonup Reject the smaller model M_0 is the difference in deviances is large

Generalized Pearson's χ^2 statistic

► This is another important measure of discrepancy, which takes the following form,

$$G = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 / V(\hat{\mu}_i),$$

where $V(\cdot)$ is the variance function, and $\hat{\mu}_i = g^{-1}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$.

- ▶ If the *p*-parameter model is true, *G* may have an approximate distribution of $\chi^2(n-p)$.
- ▶ Both the deviance and the generalized Pearson χ^2 statistic have exact χ^2 distributions for normal linear models.

Residuals

- Normal residuals: $\epsilon_i = y_i \hat{\mu}_i$; important diagnostic tool: normality, dependence, homoscedastic.
- ▶ For GLM, we define two forms of generalized residuals:
 - Pearson residual
 - Deviance residual

Pearson Residual

▶ Define Pearson residual as:

$$r_{P_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

- ▶ The raw residual scaled by the estimated sd.
- ▶ Relation to the Generalized Pearson χ^2 statistic G:

$$G=\sum_i r_{P_i}^2.$$

▶ For normal dist., this reduces to the ordinary residual.

Deviance Residual

▶ Define Deviance residual as:

$$r_{D_i} = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{d_i},$$

where $d_i = D(y_i, \hat{\mu}_i)$.

- ▶ The deviance is $D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = \sum_i d_i = \sum_i r_{D_i}^2$.
- $ightharpoonup r_D$ is generally preferred

GLM Model Inference

According to general likelihood theory,

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \stackrel{\mathsf{asy}}{\sim} \mathsf{N}(0, \mathcal{I}(\boldsymbol{\beta})^{-1}),$$

where $\mathcal{I}(\beta)$ is the Fisher information.

• We can obtain asymptotic $100(1-\alpha)\%$ confidence intervals for β_j using

$$\hat{\beta}_j \pm Z_{1-\alpha/2} se(\hat{\beta}_j),$$

where $Z_{1-\alpha/2}$ denotes the $(1-\alpha/2)$ -th percentile of the N(0,1) density.

▶ Standard packages usually provide the estimate of $\mathcal{I}(\beta)$

Hypothesis Tests

- ▶ Interested in testing $H_0: \beta = \beta_0$ vs $H_1: \beta \neq \beta_0$.
- ▶ Recall log likelihood function $l(y, \beta)$, score vector $s(\beta)$, Fisher Information matrix $\mathcal{I}(\beta)$, and MLE $\hat{\beta}$.
- ▶ We will introduce three asymptotically equivalent tests.
 - Wald Test
 - Score Test
 - Likelihood Ratio Test

Wald test statistic:

$$TS_W = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T \mathcal{I}(\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Score test statistic (preferred):

$$TS_S = s(\beta_0)^T \mathcal{I}^{-1}(\beta_0) s(\beta_0)$$

or sometimes replace $\mathcal{I}^{-1}(eta_0)$ with $\mathcal{I}^{-1}(\hat{eta})$

Likelihood ratio test statistic (preferred):

$$TS_{LR} = 2[I(\mathbf{y}, \hat{\boldsymbol{\beta}}) - I(\mathbf{y}, \boldsymbol{\beta}_0)]$$

Under the null hypothesis $H_0: \beta = \beta_0$ and some regularity conditions, all three test statistics have asymptotic $\chi^2(p)$ distributions.

Poisson Example

 $(y_1, \dots, y_n) \sim_{iid} Poisson(\lambda)$. We are interested in testing $H_0: \lambda = \lambda_0$. Questions:

▶ What are the expressions for different statistics?

Poisson Example

 $(y_1, \dots, y_n) \sim_{iid} Poisson(\lambda)$. We are interested in testing $H_0: \lambda = \lambda_0$. What are the expressions of different statistics?

Answer:

The problem can be viewed as a hypothesis testing problem of a null Poisson regression model. In order to obtain different test statistics, we need to calculate the key quantities first. Assume $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$,

$$I(\mathbf{y}, \lambda) = \sum_{i=1}^{n} [y_i \log \lambda - \lambda - \log(y_i!)]$$

$$s(\lambda) = \frac{\partial I(\mathbf{y}, \lambda)}{\partial \lambda} = \frac{\sum_{i=1}^{n} y_i}{\lambda} - n = \frac{n(\bar{y} - \lambda)}{\lambda}$$

$$\mathcal{I}(\lambda) = \mathbb{E}\left(-\frac{\partial^2 I(\mathbf{y}, \lambda)}{\partial \lambda^2}\right) = \frac{\mathbb{E}(\sum_{i=1}^{n} y_i)}{\lambda^2} = \frac{n}{\lambda}$$

$$\hat{\lambda}_{MLE} = \bar{y}$$

Now we can derive the expressions of different test statistics:

▶ Wald:

$$TS_W = (\hat{\lambda}_{MLE} - \lambda_0) * \mathcal{I}(\hat{\lambda}_{MLE}) * (\hat{\lambda}_{MLE} - \lambda_0) = \frac{n(\bar{y} - \lambda_0)^2}{\bar{y}}$$

Score:

$$TS_S = s(\lambda_0) * \mathcal{I}^{-1}(\lambda_0) * s(\lambda_0) = \frac{n(\bar{y} - \lambda_0)^2}{\lambda_0}$$

LR:

$$TS_{LR} = 2[I(\boldsymbol{y}, \hat{\lambda}_{MLE}) - I(\boldsymbol{y}, \lambda_0)] = 2n \left[\bar{y} \log \frac{\bar{y}}{\lambda_0} - (\bar{y} - \lambda_0) \right]$$

They all asymptotically follow χ_1^2 ! We reject the null hypothesis (i.e., $\lambda=\lambda_0$) if a test statistic is too large (recall the graphical representation of different statistics).