MATB44 - Week 1 tut1 Teaching Notes

Ta Information

• Name: Shuang Wu

• Email: shuaang.wu@mail.utoronto.ca

• Role: Teaching Assistant

Week 1 Topics

1. Introduction to Ordinary Differential Equations (ODEs)

- Basic concepts of differential equations
- Definition and classification of differential equations
- Historical context and applications

2. Types of Differential Equations

- Ordinary vs Partial Differential Equations
- Linear vs Nonlinear differential equations
- Classification by order (first-order, second-order, etc.)
- Autonomous vs Non-autonomous equations
- Homogeneous vs Non-homogeneous equations

Detailed Content

1. Introduction to Ordinary Differential Equations (ODEs)

What is a Differential Equation? A differential equation is an equation that relates a function with its derivatives. It describes how a quantity changes over time or space.

General form: $F(x, y, y', y'', ..., y^{(n)}) = 0$

Example: $\frac{dy}{dx} = 2x + 3$

Why Study Differential Equations?

- Modeling: Describe natural phenomena (population growth, heat transfer, motion)
- Prediction: Forecast future behavior
- Control: Design systems to achieve desired outcomes

2. Classification of Differential Equations

A. Ordinary vs Partial Differential Equations Ordinary Differential Equation (ODE):

• Contains only ordinary derivatives

• One independent variable

• Example: $\frac{dy}{dx} = x^2 + y$

Partial Differential Equation (PDE):

Contains partial derivatives

• Multiple independent variables

• Example: $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ (heat equation)

B. Linear vs Nonlinear Linear ODE:

• Can be written as: $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = g(x)$

• Example: $y'' + 3y' + 2y = e^x$

Nonlinear ODE:

• Contains products or powers of y and its derivatives

• Example: $y'' + (y')^2 + y^3 = 0$

C. Classification by Order Order: The highest derivative present in the equation

• First-order: $\frac{dy}{dx} = f(x,y)$ • Second-order: $\frac{d^2y}{dx^2} = f(x,y,y')$ • Higher-order: Contains derivatives of order 3 or higher

D. Autonomous vs Non-autonomous Autonomous: Right-hand side doesn't explicitly depend on independent variable

• Example: $\frac{dy}{dt} = y(1-y)$

Non-autonomous: Right-hand side explicitly depends on independent variable

• Example: $\frac{dy}{dt} = ty + \sin(t)$

E. Homogeneous vs Non-homogeneous Homogeneous: For linear ODEs, when the righthand side is zero

• General form: $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$

• Example: y'' + 3y' + 2y = 0

Non-homogeneous: For linear ODEs, when the right-hand side is non-zero

• General form: $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x)$ where $g(x) \neq 0$

• Example: $y'' + 3y' + 2y = e^x$

Note: The concept of homogeneous/non-homogeneous applies only to linear differential equations.

2

Classification Practice Problems

Exercise: For each differential equation, determine:

Order: The highest derivative present

Linear: Yes/No

Autonomous: Yes/No

Homogeneous: Yes/No (only applies to linear equations)

1.
$$\frac{dy}{dx} = 3x^2 + 2y$$

2.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$

3.
$$y'' + (y')^2 + y^3 = x^3$$

4.
$$\frac{dy}{dt} = y^2 - 4y$$

5.
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^x$$

6.
$$x^2y'' + xy' + y = 0$$

7.
$$\frac{dy}{dx} = \sqrt{x+y}$$

1.
$$\frac{dy}{dx} = 3x^2 + 2y$$
2.
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
3.
$$y'' + (y')^2 + y^3 = x$$
4.
$$\frac{dy}{dt} = y^2 - 4y$$
5.
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^x$$
6.
$$x^2y'' + xy' + y = 0$$
7.
$$\frac{dy}{dx} = \sqrt{x + y}$$
8.
$$y''' + 2y'' - y' + y = \sin(x)$$
9.
$$\frac{d^2y}{dx^2} = y^2$$
10.
$$\frac{dy}{dt} = ty + \sin(t)$$

9.
$$\frac{d^2y}{dx^2} = y^2$$

10.
$$\frac{\widetilde{dy}}{dt} = ty + \sin(t)$$

Solutions:

- 1. Order: 1, Linear: Yes, Autonomous: No, Homogeneous: No
- 2. Order: 2, Linear: Yes, Autonomous: Yes, Homogeneous: Yes
- 3. Order: 2, Linear: No, Autonomous: No, Homogeneous: N/A
- 4. Order: 1, Linear: No, Autonomous: Yes, Homogeneous: N/A
- 5. Order: 3, Linear: Yes, Autonomous: No, Homogeneous: No
- 6. Order: 2, Linear: Yes, Autonomous: No, Homogeneous: Yes
- 7. Order: 1, Linear: No, Autonomous: No, Homogeneous: N/A
- 8. Order: 3, Linear: Yes, Autonomous: No, Homogeneous: No
- 9. Order: 2, Linear: No, Autonomous: Yes, Homogeneous: N/A
- 10. Order: 1, Linear: Yes, Autonomous: No, Homogeneous: No

Advanced Exercise: Autonomous Equations Property

Problem: Let $x^{(k)} = f(x, x^{(1)}, ..., x^{(k-1)})$ be an autonomous equation (or system).

Show that if $\phi(t)$ is a solution, so is $\phi(t-t_0)$.

Solution:

Since the equation is autonomous, the right-hand side f does not explicitly depend on the independent variable t.

Given that $\phi(t)$ is a solution, we have:

$$\phi^{(k)}(t) = f(\phi(t), \phi^{(1)}(t), ..., \phi^{(k-1)}(t))$$

Now consider $\psi(t) = \phi(t - t_0)$. We need to show that $\psi(t)$ is also a solution.

Taking derivatives of $\psi(t)$: - $\psi^{(1)}(t) = \phi^{(1)}(t-t_0)$ - $\psi^{(2)}(t) = \phi^{(2)}(t-t_0)$ - ... - $\psi^{(k)}(t) = \phi^{(k)}(t-t_0)$ Substituting into the original equation:

$$\psi^{(k)}(t) = \phi^{(k)}(t - t_0) = f(\phi(t - t_0), \phi^{(1)}(t - t_0), ..., \phi^{(k-1)}(t - t_0))$$

Since $\phi(t - t_0) = \psi(t)$, $\phi^{(1)}(t - t_0) = \psi^{(1)}(t)$, etc., we have:

$$\psi^{(k)}(t) = f(\psi(t), \psi^{(1)}(t), ..., \psi^{(k-1)}(t))$$

Therefore, $\psi(t) = \phi(t - t_0)$ is indeed a solution.

Interpretation: This property means that autonomous equations are time-invariant - if we shift a solution in time, we get another valid solution. This is a fundamental characteristic of autonomous systems.