CHAPITRE MI3 – DOCUMENTS Énergies d'un point matériel

FIGURE 1 : Jeu constitué de perles enfilées sur des tiges rigides

FIGURE 2 : Profil d'altitude h(x) (profil d'énergie potentielle de pesanteur)

FIGURE 3 : Puits d'énergie potentielle de profondeur E_{∞}

Exercice d'application 1

Soit un point matériel M de masse m parcourant une courbe \mathcal{C} quelconque entre les points $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ dans le référentiel \mathcal{R} muni de la base cartésienne avec l'axe (Oz) vertical ascendant. Déterminer le travail du poids entre les points A et B.

Exercice d'application 2

Une luge assimilée à un point matériel M(m) est tirée avec une force $\overrightarrow{F} = F\overrightarrow{u_{\theta}}$ à la surface d'un igloo, assimilé à une demi-sphère de rayon R. Exprimer le travail W de la force \overrightarrow{F} entre deux points A et B. La norme de \overrightarrow{F} est constante.

Exercice d'application 3 : Travail d'une force de frottement solide

Soit un point M de masse m glissant avec frottement sur un rail horizontal (Ox). Le coefficient de frottement solide est f. Le point matériel part de O avec une vitesse v_0 suffisante pour atteindre un mur situé en B sur lequel il rebondit, et repasser par un point A situé entre O et B. Déterminer l'expression du travail W_1 de la force de frottement au cours du trajet direct OA, puis l'expression du travail W_2 de la force de frottement au cours du trajet OBA.

Exercice d'application 4

Un palet M(m) est lâché sans vitesse initiale au sommet d'un plan incliné. Il descend le plan incliné sous l'effet de son seul poids. On note α l'inclinaison du plan par rapport à l'horizontale. Calculer la vitesse du palet après avoir parcouru une distance D le long du plan incliné.

> Exercice d'application 5

Soit deux points matériels situés en O et M, séparés par une distance r, de masses respectives m_0 et m. Le point situé en O exerce sur le point situé en M une force gravitationnelle $\overrightarrow{F}_{O \to M}^{grav}$. Montrer que cette force est conservative.

Exercice d'application 6

Retrouver l'équation différentielle du mouvement pour un mobile en chute libre selon la verticale (Oz) dans le champ de pesanteur terrestre par dérivation de l'énergie mécanique.

Exercice d'application 7

On considère une masse ponctuelle M(m) suspendue verticalement à un ressort (raideur k, longueur à vide l_0) dans le champ de pesanteur \vec{g} . L'extrémité supérieure O est fixe dans le référentiel d'étude ; l'autre extrémité est reliée à M. Déterminer la position d'équilibre $z_{\acute{e}q}$ de M. Est-elle stable ?