Real Analysis

September 16, 2024

1 Lebesgue Spaces

or $L^p(X,\mathcal{S},\mu)$

[1] Given a measure space (X, \mathcal{S}, μ) , and $0 , the Lebesgue Space <math>L^p$ is the set of \mathcal{S} -measurable functions $f: X \to \mathbb{F}$ such that $\|f\|_p < \infty$ is defined as follows:

measures the "average" size of the function by raising values to the power $p_{\rm r}$ integrating, and taking the $p{\rm -th}$ root.

• If
$$0 , $||f||_p = \left(\int |f|^p d\mu \right)^{\frac{1}{p}}$$$

$$\bullet \ \ \|f\|_{\infty} = \inf\{t > 0 \ : \mu(\{x \in X : |f(x)| > t\}) = 0\}$$

supremum norm: maximum absolute value of the function f over its domain

greatest lower bound of a set: searching for the smallest that satisfies the condition

References

[1] Tyler Perlman, The Development of the Hardy Inequality https: //www.sas.rochester.edu/mth/undergraduate/honorspaperspdfs/ tylerperlman2021.pdf