

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : H04L 9/28		A1	(11) International Publication Number: WO 99/22485
			(43) International Publication Date: 6 May 1999 (06.05.99)
(21) International Application Number:	PCT/IB98/01698		
(22) International Filing Date:	22 October 1998 (22.10.98)		
(30) Priority Data:	08/957,288	24 October 1997 (24.10.97)	US
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application	US	08/957,288 (CON)	
	Filed on	24 October 1997 (24.10.97)	
(71)(72) Applicant and Inventor:	BACKAL, Shaul, O. [IL/US]; 19528 Ventura Boulevard #317, Tarzana, CA 91356 (US).		
(74) Agents:	SWISS, Gerald, F. et al.; Burns, Doane, Swecker & Mathis, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).		
			(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
			Published With international search report.

(54) Title: VIRTUAL MATRIX ENCRYPTION (VME) AND VIRTUAL KEY CRYPTOGRAPHIC METHOD AND APPARATUS

(57) Abstract

A data security method and apparatus (Fig. 5A-C) which does not send the content of the message with encrypted data. The encrypted data consists of pointers to locations within a virtual matrix (Fig. 2A), a large continuously changing array of values, the processing of which is referred to as Virtual Matrix Encryption. The data security arrangement uses a very large key (Fig. 4), which creates a high level of security. The key is not transferred but is instead created from a file of any size that is available on both a computer used to send a secure message and a computer used to receive a secure message. The present invention further enhances security by allowing definition of a data range where the data can be decrypted correctly.

VM-Virtual Matrix
PVM=Progressive Virtual Matrix
RVM=Regressive Virtual Matrix
VMP=Virtual Matrix Pointer

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

**VIRTUAL MATRIX ENCRYPTION (VME)
AND VIRTUAL KEY CRYPTOGRAPHIC METHOD AND APPARATUS**

BACKGROUND OF THE INVENTION

5

Field of the Invention

The present invention relates to data security.

State of the Art

10 Many different types of data security measures are known. Presently, most widespread data security measures are based on public-key encryption. Public-key encryption is described, for example, in U.S. Patent 4,218,582, incorporated herein by reference. Other patents relating to public-key encryption include U.S. Patents 4,200,770; 4,405,829; 4,424,414 and 4,995,082, all of which are incorporated herein
15 by reference.

One of the reasons for the relative prominence of public-key cryptography is that it solves the problem of key distribution in an elegant fashion.

20 Prior to public-key cryptography, symmetric-key cryptography required use of the identical key to decrypt the file as was used to encrypt the file. Hence, the key had to be communicated in secrecy between users. In public-key encryption, the encryption and the decryption keys are separate, with the encryption key being publicly known and the decryption key being kept secret. Public-key encryption may also be used for authentication.

25 Despite the important advantage of not requiring secure key distribution, public-key cryptography also suffers from various disadvantages. Administration is typically required to ensure that unique public-keys are assigned to each user. A person's public-key must be listed in a directory, and must be found in the directory prior to encrypting a message. The computational burden of public-key cryptography is significant both in generating random prime numbers for use as keys and in encryption
30 and decryption processing itself. Furthermore, despite the computational complexity, public-key encryption using medium size keys has been shown to be insecure given the

tremendous network computing resources that may be brought to bear on breaking the encryption.

What is needed, then, is a data security mechanism that surpasses in security present public-key cryptography methods and that minimizes the computational burden
5 involved.

SUMMARY OF THE INVENTION

The present invention, generally speaking, provides a data security method and apparatus that provides an exceptional degree of security at low computational cost.
10 The data security arrangement differs from known data security measures in several fundamental aspects. Most notably, the content of the message is not sent with the encrypted data. Rather, the encrypted data consists of pointers to locations within a virtual matrix, a large (infinitely large in concept), continuously-changing array of values. The encryption technique is therefore referred to as Virtual Matrix Encryption.
15 Furthermore, the data security arrangement uses a very large key of one million bits or more which creates a level of security much higher than any other existing method. The key is not transferred but is instead created from a file of any size that is available on both a computer used to send a secure message and a computer used to receive a secure message. The term Virtual Key Cryptographic as used herein to refer to
20 techniques in which a key is recreated at a remote location from an electronic file without any transmission of the key itself. The file may be a system file, a file downloaded from the Internet, etc. A smaller, transaction-specific key, e.g., a 2,048 bit key, is sent end-to-end and is used in conjunction with the very large key to avoid a security hazard in instances where the same file is used repeatedly to create the very
25 large key. A central Virtual Matrix algorithm is surrounded by a myriad of other algorithms. A single byte may be encrypted many, many times, each successive result being passed to another algorithm in what may be regarded as a random path determined by reseeding of a random number generator at various junctures using values from the very large key, the smaller key and various other user supplied
30 parameters, including, for example, source user, destination user, file name, save-as

file name, and description. An optional higher level of security is available. If the message is secured using the same string as the file name and save-to file name, then when unlocking is attempted the first time, the original file will be overwritten, affording only a single opportunity for the message to be unlocked. A message may be 5 secured in accordance with various options specifying an intended audience, including Global, Specific and Private options. Global allows anyone having a copy of the data security software to decrypt the message providing that person has the correct keys and is able to supply parameters matching those with which the message was secured. Group allows the possibility of successful decryption by any of a number of users 10 within a group identified by its members having copies of the software program with a common prefix. Specific allows only a user having a particular numbered copy of the software program to decrypt. Finally, Private allows decryption only by the same software copy used to secure the message originally. Without the correct keys and parameters, it is impossible for the message to be unlocked. The present invention 15 further enhances security by allowing definition of a data range where the data can be decrypted correctly, hence preventing lengthy efforts to break the code by brute computational force.

BRIEF DESCRIPTION OF THE DRAWING

20 The present invention may be further understood from the following description in conjunction with the appended drawing. In the drawing:

Figure 1 is a generalized schematic block diagram of a Virtual Matrix
Encryption technique in accordance with the present invention;

25 Figure 2A is a schematic diagram of a Virtual Matrix;
Figure 2B is a flowchart of encryption using a Progressive Virtual Matrix;
Figure 2C is a flowchart of decryption using a Regressive Virtual Matrix;
Figure 3A is a flowchart of encryption/decryption using a Multiple Algorithms
Matrix;

Figure 3B is a flowchart of a first portion of a many way branching mechanism;

Figure 3C is a second portion of the many way branching mechanism of Figure 3B;

Figure 4 is a flowchart illustrating generation of a Million Bit Virtual Key;

Figure 5A is a flowchart of key generation for a Multiplication Modulo Matrix

5 (MMM) algorithm;

Figure 5B is a flowchart of encryption using the MMM algorithm;

Figure 5C is a flowchart of decryption using the MMM algorithm;

Figure 6 is a flowchart illustrating generation of a Specific Transaction Key;

Figure 7 is a flowchart of a Bit Level Encryption algorithm;

10 Figure 8A is a flowchart of encryption in accordance with a Subtraction Modulo Matrix (SMM) algorithm;

Figure 8B is a flowchart of decryption using the SMM algorithm;

Figure 9 is a flowchart of a Date Limit algorithm; and

Figure 10 is a flowchart of a Targeted Delivery System algorithm.

15

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to Figure 1, the data security technique of the present invention is shown in simplified, schematic form. Unlike existing encryption/decryption algorithms, the present technique uses a complex of algorithms, described individually 20 hereinafter, to form a "pipeline" into which data to be secured is passed. While inside the pipeline, the data is subjected to myriad operations the particulars of which are controlled by specific keys and parameters. At one or more points along the pipeline, data passes through a Virtual Matrix (VM) module. The VM module uses a Progressive Virtual Matrix (PVM) to encrypt data. The PVM may be imagined as a 25 kind of N dimensional "Rubik's cube" on each face of which all possible data values appear exactly once in random arrangement. When a data value is encrypted, it is replaced by a pointer value that points to the then-current location in the virtual matrix of the data value. Then the cube is "rotated," shuffling the data values so that the location of at least the last data value is changed.

In one embodiment of the invention, the pipeline may be imagined as consisting of various modules, including the VM module, connected in a random sequence. Each module may appear multiple times. However, different instances of the same module within the pipeline operate differently. In particular, some or all of the modules make use of a random number generator. Whereas in one instance of a given module one value may be used to seed the random number generator, in another instance, a different value may be used to seed the random number generator. Different instances of the same module therefore produce entirely different results. The various values used to seed the random number generator may include, for example, the last byte of original data, a Specific Transaction Key (STK), a "files" key, a "users" key, an encrypted byte input from a previous module, etc. The VM module produces the important result that message data is not itself transmitted even in encrypted form. Rather, pointers to message data (Virtual Matrix Pointers, or VMP) are transmitted. Because of this important property of the VM module, it is illustrated as a hub about which the various other modules are arranged. The specific modules are identified in the legend accompanying Figure 1.

Both the VMP and the STK are transmitted across an unsecured channel. A very large key MBK (having, in one example, a size of one million bits) is generated and used locally but is not transmitted. The identical key is generated at the remote end in order to unlock the message. Because the same key is used at both ends of the transaction but is not transmitted from one end to the other, the key is referred to as a Virtual Key. Cryptographic methods using such a Virtual Key are referred to herein by the term Virtual Key Cryptographic (in contrast to symmetric-key cryptography and public-key cryptography). This relationship between the MBK on the source side and the MBK on the destination side is indicated by dashed lines in Figure 1. The MBK may be dynamically varied during the course of an encryption session.

Corresponding modules as referred to previously are arranged on the destination side in a reverse pipeline. The pipeline receives the VMP pointer data and performs operations on it in accordance with pieces of the STK and MBK to produce the original data.

Beginning now with Figure 2, illustrating operation of the VM module, each of the modules of Figure 1 will be described in greater detail.

A Virtual Matrix is an N-Dimensional array of arbitrary size. A particular value in the Virtual Matrix is therefore identified by a pointer (x, y, z...). If one pointer is held constant, then, as each of the other pointers range over their possible values, every possible value being encrypted is encountered in random order. In the three dimensional example of Figure 2A, the Virtual Matrix takes the form of a cube. On the Z = 0 face of the cube, all the possible byte values from 0 to 255 appear in random positions. Figure 2B illustrates operation on the encryption side using the Progressive Virtual Matrix (PVM). A byte value to be encrypted is located within the Virtual Matrix and replaced by a pointer (X, Y, Z) to that value. Once a particular value has been used, it is swapped with a value at a random position. On the destination end, the procedure is reversed (Figure 2C).

Note that reseeding of the random number generator at the destination end is "reverse synchronized" with reseeding of the random number generator at the source end; accordingly, reverse random sequences are generated and changes to the Virtual Matrix at the destination end are "reverse synchronized" with changes to the Virtual Matrix at the source end.

Referring to Figure 3, operation of a Multiple Algorithms Matrix (MAM) module is illustrated. The MAM module consists chiefly of a large (e.g., 256) number of unique encryption algorithms and an equal number of corresponding decryption algorithms. Basically, each possible data value is encrypted/decrypted by its own unique algorithm. Referring in particular to Figure 3A, when a given algorithm is run, first the random number generator is reseeded in accordance with a selected parameter. Then depending on whether encryption or decryption is being performed, the corresponding encryption or decryption algorithm is run.

Large branches (e.g., 256-way) may require special branching procedures, illustrated in Figures 3A and 3B. Depending on the input data, one of some number of procedures (e.g., 16 procedures P1-P16) is run (Figure 3B), which causes in turn one of a still larger number of algorithms (e.g., 256 algorithms EDO - ED256) to be run

(Figure 3C). If for example $Q = 16$, then $V = 2$ and P2 is run; within P2 it is determined that $Z = 1$, with the result that the second listed algorithm ($V = 2$) in the first list ($Z = 1$) of Figure 3B is run, namely ED16.

The manner in which an MBK may be built from an arbitrary file is illustrated 5 in Figure 4. At the conclusion of the routine of Figure 4, the MBK will be a series of bytes $K(0)\dots K(131,071)$. Prior to executing the routine these bytes are all zeroed. The arbitrary file will have a length W that is either less than 2^{20} bits or greater than 2^{20} bits (131,072 bytes). In both instances, the random number generator is reseeded with a predetermined parameter P , a counter V is initialized to minus one, and a loop is 10 entered in which V is incremented. The case in which $W > 131,072$ bytes will first be described.

After the counter V has been incremented, a variable B is set to $V \bmod 131,072$. (For the first 131,073 passes through the loop, $V \bmod 131,072 = V$.) The V th byte of the file is then retrieved and placed in a variable A . The key byte $K(B)$ is 15 then XORed, first with A and then with a random number produced by the random number generator. This manner of operation proceeds until each and every record of the file has been used. The resulting virtual key is the series of bytes $K(0)\dots K(131,071)$.

If the file size is less than 131,072 bytes, operation proceeds in a similar 20 manner. However, at least some of the bytes of this file are used twice or more, whereas each of the key bytes is used only once. Say, for example, that the file is 2^{10} bits in length (65,536 bytes). Execution of the algorithm may, in this example, be divided into a first half and a second half. During the first half, respective key bytes are XORed with respective bytes from the file. The resulting key byte is further 25 XORed with a random number from the random number generator. At the halfway point the counter counting bytes from the file wraps around. Then during the last half of the algorithm, byte 0 of the file is XORed with key byte $K(65,535)$ the result of which is then XORed with a random number that one of the file is XORed with key byte $K(65,536)$, etc.

Referring to Figure 5, the Multiplication Modulo Matrix uses a matrix of number pairs whose product, module 256, equals one. The matrix of number pairs is scrambled in accordance with a random number. As in many other places within data security software, the random number is produced following reseeding of the random number generator with a changing variable P. Generation of the keys, or number pairs, occurs only once per session. Encryption/decryption using the keys, however, may occur many times per session.

Referring first to Figure 5A, variables A and B, representing a key pair, are first set to one and are thereafter incremented by two. A is incremented within an outer program loop, whereas B is incremented within an inner program loop. For each value of A, B is incremented until $A * B \text{ Mod } 256 = 1$. The values of A and B are then placed in a matrix. Although A and B take only odd values, they are placed at consecutive even and odd locations within the matrix. The outer loop completes when A = 255. Subsequent steps handle the "degenerate case" of A = 1. Finally, the random number generator is reseeded and the matrix is scrambled in accordance with a resulting random number.

During encryption, Figure 5B, the original data is multiplied by E(P), the encryption key of a key pair chosen from the matrix in accordance with the changing parameter P. During decryption, Figure 5C, the encrypted data is multiplied by D(P), the inverse key.

Referring to Figure 6, the manner in which the Specific Transaction Key (STK) is generated will be described in detail. In a preferred embodiment, the STK is 2048 bits (256 bytes) long.

The main work of generating the STK occurs within an outer loop control using a counter Y and an inner loop control using a counter X. Prior to entering the outer loop, however, the random number generator is reseeded. A resulting random number is multiplied by 1024 and the result placed in a variable V. The variable V is then multiplied by a further random number times 1024. The random number generator is then reseeded using V, and the outer loop counter Y is initialized to minus one.

Within the outer loop, Y is incremented, and a random number is generated, multiplied by 2^{20} and the result placed in a variable E. The random number generator is then reseeded using E. Within the inner loop, X is incremented, and a random number is generated, multiplied by 256 and the result placed in a variable Z. The key 5 byte K(Y*16 + X) is then set to Z. In an exemplary embodiment, the inner loop is executed 16 times for each execution of the outer loop, which is also executed 16 times, for a total of 256 times. A 256-byte key therefore results.

Most known encryption algorithms operate at the byte level. At the byte level, 10 binary numbers are human intelligible. For example, a byte of a given value may represent a particular text character. Byte-level encryption is therefore susceptible to hacking. The present day security software, by contrast, employs as one of its modules a Bit Level Encryption (BLE) module. Using BLE, a byte is encrypted at the bit level. Since a bit is the smallest possible unit of digital information, by itself, a bit is 15 meaningless. Bit Level Encryption is therefore substantially immune to the type of hacking to which byte level encryption is susceptible.

Referring to Figure 7, during BLE the random number generator is reseeded for 20 every byte with different parameters. BLE is accomplished by XORing a data byte P with a random value F derived from multiple passes (e.g., 8) through a program loop controlled by a variable V. At the outset, F and U are both set to zero, after which the loop is entered.

Within the loop, a random number is generated and multiplied by 256 and the 25 result is placed in a variable W. A variable H is set to 2^U , and W and H are then ANDed together and the result placed in variable T. ANDing W with H (2^U) will result in only one random bit on or off. The variables F and T are added together. The variable U is then incremented. In an exemplary embodiment, the loop is executed eight times, until U = 8. When U = 8, the data byte is XORed with F, with the result that the bits of the data byte are randomly toggled.

The security offered by the present data security software is formidable, not 30 only by virtue of the strength of the individual algorithms but by virtue of combining these algorithms in pipeline fashion as previously described. The Subtraction Module

Matrix algorithm, to be presently described, is most effective in combination with other algorithms. The algorithm uses parameters A, B, C, D and E which are changing flow parameters. In an exemplary embodiment these parameters are chosen to ensure that their sum exceeds 256.

5 Referring to Figure 8A, P represents a data byte to be encrypted using the parameters A, B, C, D and E. These parameters are each subtracted from the data in turn, modulo 256. In the course of the series of subtractions, an "underflow" is guaranteed to occur. This underflow substantially transforms the data in a complex way in dependence on the parameters A, B, C, D and E.

10 During decryption, Figure 8B, the reverse process is followed. That is, A, B, C, D and E are added to the encrypted data in turn, modulo 256. The original data is thereby recovered.

15 In accordance with prior art security methods, an encrypted message may be decrypted without time limitations. Hence, a message may be intercepted on Day 1, repeated efforts to break the encryption began also on Day 1, and repeated efforts to break the encryption succeed on Day 30, or Day 100. Many existing data security methods rely on computational difficulty to provide data security in the face of brute force attacks. Even if an encrypted message might take a millennium to break, however, the fact remains that a dedicated effort to break the encryption would, over 20 the course of a millennium, succeed.

25 The present data security software, on the other hand, provides for date limited encryption such that an encrypted message can only be decrypted on a specified date or within a specified range of dates. This functionality is obtained by security embedding date limit information within the STK. During decryption, this date limit information is extracted from the STK and compared with the current date from the computer's real time clock. If the current date is not within the specified range, then the decryption process yields wrong results. Although the date on a computer may be reset, a hacker will not know what the date should be set to. The date limit may be set to allow decryption within a limited time period from the time of encryption, or only on a 30 specific near term date, or even a date or range of dates in the remote future.

Referring to Figure 9, to set a date limit a FROM date and a TO date are entered. The FROM date is stored as bytes 0-7 of a variable C, and the TO date is stored as bytes 8-15. A counter variable Y used to control loop execution is set to -16.

Within the loop, Y is incremented by 16. A random number is generated, 5 multiplied by 16, and added to Y, and the result is stored in a pointer variable B. Each pass through the loop, the next byte of C, from low to high, is placed in a variable Z. A random number is generated and multiplied by 256, and Z is multiplied by the resulting value, which is stored back in Z. The value of Z is then written to the STK at location B.

10 When the value of Y reaches 240, all bytes of C will have been written to separate locations within the STK such that the date range is embedded in the key file structure in random locations.

Just as messages may be secured in such a way as to render them time specific, they may also be made recipient specific. The allowed recipients may be anyone 15 having suitable decryption software (GLOBAL), only persons having copies of the software having serial numbers with a specific prefix (GROUP), only a person having a copy with a single specified serial number (SPECIFIC) or only the sender, using the same software copy used for encryption (PRIVATE).

During decryption, the software user must select the appropriate decryption 20 option. Even though the user may be using the right software, if he or she chooses the wrong decryption option, decryption will produce only binary garbage. Likewise the user may also be required to supply one or several other parameters used during encryption (e.g., source identifier, destination identifier, original filename, key generation filename, etc.). If any of the parameters is supplied incorrectly, then 25 decryption will produce only binary garbage.

Referring now to Figure 10, during specification of the encryption parameters, the user specifies the target type as being, in the illustrated example, Global, Group, or Individual. Depending on the selection, a variable U is set to 0, 8 or 16, respectively. The serial number of the software copy being used is input to a variable R. Then, the 30 random number generator is reseeded and a loop counter X is initialized to minus one.

The loop is executed U times. Within the loop, X is incremented. Then a random number is generated, multiplied by 16, multiplied by the Xth value of R (the serial number) and the result added to the identifier I. The identifier I is initially null, and contains U number of bytes of the serial number.

5 When X = U, the loop concludes. The value of I is used to reseed the random number generator, and a random number is obtained and multiplied by 2^{20} to give a key value K. The key value K functions as one of the main keys and is used in conjunction with other keys to reseed the random number generator within all of the algorithms. Hence, without the key K, generated based on the target type and corresponding 10 identifier, there is no hope of successfully decrypting the encrypted message.

15 The foregoing data security methods may be implemented in software running on a personal computer. In one embodiment, the software is written as a DOS program that may be called from within any of various computing environments. The data security methods may also, if desired be implemented in dedicated hardware, for example within a cellular telephone.

The present data security methods and apparatus having been described, it will be appreciated by those of ordinary skill in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore intended in all respects to 20 be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and the range of equivalents thereof are intended to be embraced therein.

VIRTUAL MATRIX ENCRYPTION LEGEND

VME	VIRTUAL MATRIX ENCRYPTION
VM	VIRTUAL MATRIX
PVM	PROGRESSIVE VIRTUAL MATRIX
RVM	REGRESSIVE VIRTUAL MATRIX
VKC	VIRTUAL KEY CRYPTOGRAPHIC
VMP	VIRTUAL MATRIX POINTER
MBK	MILLION BIT VIRTUAL KEY
STK	SPECIFIC TRANSACTION KEY
DLA	DATE LIMIT ALGORITHM
MMM	MULTIPLICATION MODULO MATRIX
TDS	TARGETED DELIVERY SYSTEM
SMM	SUBTRACTION MODULO MATRIX
MAM	MULTIPLE ALGORITHMS MATRIX
BLE	BIT LEVEL ENCRYPTION
UNSECURE	UNSECURED DELIVERY CHANNEL

12/1

19

Claims:

1. A method of encrypting a data message comprising a series of unencrypted data values, the method comprising the steps of:
 - generating a matrix of possible unencrypted data values; and
 - 5 for a given unencrypted data value:
 - locating the unencrypted data value in the matrix and substituting for the given unencrypted data value a pointer to the unencrypted data value within the matrix; and
 - changing a location of a given unencrypted data value within the matrix.
2. The method of claim 1 comprising the further steps of:
 - successively subtracting from one of an unencrypted data value and a previously encrypted data value each of a plurality of predetermined parameters;
 - wherein the predetermined parameters are selected so as to ensure that an underflow will occur.
3. A method of encrypting a data message comprising a series of unencrypted data values, the method comprising the steps of:
 - encrypting an unencrypted data value multiple times using a plurality of encryption algorithms arranged in pipeline fashion, at least one of said encryption algorithms using a random number obtained from a random number generator seeded with a predetermined parameter of the encryption process;
 - wherein one of a plurality of encryption algorithms comprises generating a matrix of possible unencrypted data values and, for a given unencrypted data value:
 - locating the unencrypted data value in the matrix and substituting for the given unencrypted data value a pointer to the unencrypted data value within the matrix; and
 - changing a location of a given unencrypted data value within the matrix.

4. A method of securely exchanging a data message between a first user and a second user using a common cryptographic key without exchanging the key, the method comprising the steps of:

specifying through an out-of-band channel a computer file commonly available to both the first user and the second user;

the first user using the computer file to generate the common key and encrypt the data message;

transmitting the encrypted message to the second user through an in-band channel; and

the second user using the computer file to generate the common key and decrypt the data message.

5. The method of claim 4, comprising the further steps of:
generating a session specific key;
transmitting the session specific key through the in-band channel; and
using the session specific key to scramble the common key prior to using the common key.

6. Using a copy of a program having an assigned serial number, a method of encrypting a data message so as to allow decryption of the data message only by a specified target audience, the method comprising the steps:

specifying a target audience and selecting a variable length portion of the serial number;

performing a sequence of operations on the variable length portion to form a key; and

using the key during encryption of the data message.

7. The method of claim 6 wherein the variable length portion is of 0 length, and the specified target audience includes all users of said program, regardless of serial number.

8. The method of claim 6 wherein the variable length portion is of maximum length, and the specified target audience includes only the user of a copy of said program bearing a specific serial number.

9. The method of claim 6 wherein the variable length portion is of an intermediate length, and the specified target audience includes users of copies of said program bearing serial numbers having a common portion and a distinct portion.

10. A method of encrypting a data message comprising a series of unencrypted data values, comprising the steps of:

generating a random number;
deriving a random value using said random number; and
logically combining said random value with a data value to be encrypted,
wherein different bits of the data value to be encrypted are randomly toggled from one logical state to another logical state.

11. A method of encrypting a data message comprising a series of unencrypted data values, the method comprising the steps of:

providing a multiplicity N of encryption algorithms;
generating a random number;
deriving a random value using said random number; and
performing an N-way branch and encrypting the data value to be encrypted using a random one of said N encryption algorithms.

12. A method of encrypting a data message comprising a series of unencrypted data values, the method comprising the steps of:

building a matrix of paired values, values of a pair being multiplicative inverses of one another in accordance with modulo arithmetic;
scrambling the matrix;
generating a random number;

deriving a random value using said random number;
selecting a pair of values based on said random number; and
encrypting a data value to be encrypted by multiplying it by one value of said
pair of values.

13. A method of encrypting a data message comprising a series of data values to produce an encrypted data message, the method comprising the steps of:
a user specifying a date limit restricting the dates on which the data message may be decrypted; and
encrypting and combining the date limit with the encrypted data message.

14. A method of decrypting an encrypted data message having combined therewith an encrypted date limit restricting the dates on which the encrypted data message may be decrypted, the method comprising the steps of:
extracting and decrypting the date limit;
comparing the date limit with a current date obtained from a real-time clock;
and
if the current date does not agree with the date limit, preventing the encrypted data message from being successfully decrypted.

1/11

SUBSTITUTE SHEET (RULE 26)**FIG. 1**

2/11

VM—Virtual Matrix

PVM=Progressive Virtual Matrix

RVM=Regressive Virtual Matrix

VMP=Virtual Matrix Pointer

FIG. 2A

3/11

FIG. 2B**FIG. 2C**

4/11

FIG. 3A

MAM - Multiple Algorithms Matrix

272 Procedures

256 Unique Encryption Algorithms

256 Unique Decryption Algorithms

FIG. 3B

FIG. 3C

MBK—Million Bits Virtual Key
VKC=Virtual Key Cryptographic
1,048,576 Bits=131,072 Bytes

5/11

FIG. 4

6/11

MMM - Multiplication Module MatrixKeys Generation Phase -

Once per Session

Encryption Phase -

Multiple times per Session

Decryption Phase -

Multiple times per Session

P = Changing Variable

FIG. 5B

FIG. 5C

FIG. 5A

7/11

STK-Specific Transaction Key
2,048 Bits=256 Bytes

FIG. 6

BLE-Bit Level Encryption 8/11

*RND reseed for every Byte
with different parameters*

FIG. 7

9/11

SMM-Subtraction Module Matrix
A,B,C,D,E are Changing Flow Parameters

FIG. 8A**FIG. 8B**

DLA-Data Limit Algorithm 10/11
 Date Format: YYYY/MM/DD

FIG. 9

TDS-Targeted Delivery System 11/11

Global Identifier=NULL

Group Identifier=XXXX.XXXX

Individual Identifier=
XXXX.XXXX.XXXX.XXXX

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB98/01698

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :H04L 9/28

US CL :380/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 380/28

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
News items retrieved by Electronic Information Center

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	US 5,771,291 A (NEWTON et al) 23 June 1998, col. 2, line 35- col. 3, line 46.	4
Y	US 4,157,454 A (BECKER) 05 June 1979, col. 3, line 35-col. 4, line 5	6
X, P	US 5,787,172 A (ARNOLD) 28 July 1998, col. 17, line 17-24, col. 17, line 58-col. 18, line 2.	13, 14
Y, T	US 5,835,600 A (RIVEST) 10 November 1998, col. 3, lines 14-53.	6
Y, P	US 5,712,800 A (AUCSMITH) 27 January 1998, col. 4, line 54-col. 5, line 9.	6

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance		
B earlier document published on or after the international filing date	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	*&*	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

05 JANUARY 1999

Date of mailing of the international search report

03 FEB 1999

Name and mailing address of the ISA US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

Gail O. Hayes

Telephone No. (703) 305-9711

Joni Hill

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB98/01698

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG

search terms: Virtual Matrix, Virtual Key, encryption, random number generator, time limit, multiplication modulo, multiplicative inverse, variable length key, logic state, toggle, multi- algorithm, polyalgorithmic, N-fold, pointer, matrix, and one xxxx per cycle

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB98/01698

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG

search terms: Virtual Matrix, Virtual Key, encryption, random number generator, time limit, multiplication modulo, multiplicative inverse, variable length key, logic state, toggle, multi- algorithm, polyalgorithmic, N-fold, pointer, matrix, and one xxxx per cycle