19 日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A) 昭61-112886

@int_Cl_1

識別記号

庁内整理番号

母公開 昭和61年(1986)5月30日

F 16 L 19/08

7244-3H

審査請求 未請求 発明の数 1 (全4頁)

図発明の名称 管の結合方法

> 创特 陌 昭59-234171

20世 頣 昭59(1984)11月8日

砂発 明 者 辺 良 成 諏訪市湖岸通り5-11-90 東洋バルヴ株式会社諏訪工場

個発 明 者 荻 原 長 久

諏訪市湖岸通り5-11-90 東洋バルヴ株式会社諏訪工場

内

②発 明 者 宮 下 久 王 諏訪市湖岸通り5-11-90 東洋バルヴ株式会社諏訪工場

内

仍発 明者 小 坂 萬 夫

諏訪市湖岸通り5-11-90 東洋バルヴ株式会社諏訪工場

⑪出 願 人 東洋バルヴ株式会社 20代 理 人

東京都中央区日本橋室町1丁目8番地

弁理士 箕 浦

.1. 発明の名称 管の結合方法

2. 特許詳求の範囲

あらかじめ管にユニオンナットとスリープとを通 した後、該管の端部を継手端部に挿入し、該継手端 部に設けた雄ねじと、該ユニオンナットに設けた雌 ねじによつて、眩管と眩離手端部を結合するメカニ カルな結合方法において、

- イ) 該スリーブのユニオンナット 側端部に管軸と直 交する被押圧面を設け、
- ロ)該ユニオンナットに前配被押圧面を押圧するた めの押圧面を前記被押圧面と平行に設け、
- ハ)眩極手端部に該管の結合時に発生する管移動を、 吸収するテーパ部を設ける

ことを特徴とした管の結合方法。

3. 発明の詳細な説明

A. 産業上の利用分野

本発明は管機に管用テーパねじ又は平行ねじを 設けることができない海い肉厚(以下溶肉と含り) の金属管(例えば JISH 3300 網及び 銅合金継 目無管やJISG 3459 配管用ステンレス鋼鋼管 たど)の結合方法に関するものである。

B. 従来の技術

一般的に建築設備の給湯ラインには耐蝕性の優 れた薄肉の銅管が使用されており、近年は薄肉の ステンレス銅鋼管の使用も増えている。そしてこ れら配管ラインには青銅製パルブが取付けられて おり、その鋼管との接続方式はロウ付けが主な接 統方式であつた。ところがこのロウ付けによる接 祝方式はパルブ取替え時に於て管を切断して取替 えなければならず、またロク付け作業も現場作業 に於ては熱影響も考慮するので熟練作業が要求さ

そこで殻近はメカニカルな結合方法が種々発明 されている。公知公用のメカニカルな結合方法を 第2A図に示す。継手端部1に設けられた段部9 に管4の端部6を登し込み、テーパ部10,11を その両端に設けたスリープ 3bを継手 端部 1 とユ ニオンナット2の間に設ける。継手機部1の雄ね

じ12とユニオンナット2の雌ねじ13が螺合することにより、腱手端部1のテーパ部14がスリーブ3bのテーパ部10を押圧するとともに、ユニオンナット2のテーパ部15が、スリーブ3bのテーパ部11を押圧するので、第2B図に示すようにスリーブ3bが管4を圧縮し結合を行う。

C. 発明が解決しようとする問題

公知公用の結合方法は次の欠点を有している。

- (1) 結合には高トルクを要する(換食すれば溺れ 易い。
- (2) 管を継手本体に不注意に挿入した状態で結合すると、結合不良を起こし補係ができない。

特に②について述べると、公知公用の結合方法では、予め締付前に管端6と継手の段部9との間に空隙7を設けることが必須条件で、不注意に空隙7を設けずにユニオンナット2を締付けると結合不良を起こし、スリーブ3b及び管4が異常を塑性変形をするので補修は不可能となる(第2B図の締付後の状態を参照)。

この原因はユニオンナット 2 の締付によつてス

ハ) 継手端部に管の結合時に発生する管移動を 吸収するテーバ部を設ける。

E. 契施例

以下図面に基づき本発明の一実施例を示す。第 1 A図はユニオンナット締付前の状態を示し、第 1 B図はユニオンナット締付後の状態を示す。

スリーブ3aはユニオンナット2の側に管軸と 直交する被押圧面16を有し、ユニオンナット2 には上記被押圧面16と平行を押圧面17が設け られている。またスリーブ3aの継手端部1の側 にはテーパ部10を設け、継手端部1にはこれと 対応するテーパ部14が設けられている。更に継 手端部1はユニオンナット2を締め付ける際に生 ずる微量の管移動を吸収するテーパ部8を有している。

F. 作用および発明の効果

第1B図により、継手端部1の雄ねじ12にユニオンナット2の雌ねじ13をねじ込んだ場合について述べると、ユニオンナット2の押圧面17 はスリーブ3aの被押圧面16を押圧し、スリー リーブ3bが管に喰い込み管が微量前進するためで、との微量前進を可能ならしめるために空隙7が必要となる。このため公知の方法では、まず管 端6を継手段部9に当接した状態で手締め(仮締め)を行い、次に必要な空隙7を設けるために管を若干引き抜いた後、レンチ等によつて本締めを行うのである。

このよりに配管作業が煩わしいので、不注意に 空隙7を設けない状態で結合し、継手自体を換し てしまうことが多々発生する。従つて本発明の目 的は低トルクでの結合状態でも強れがなく、かつ 結合強度の高い。平易な結合方法。を提供するこ とにある。

D. 問題点を解決するための手段

本発明は次の点を特徴とする。

- イ) スリーブのユニオンナット 側烙部に、管軸 と直交する被押圧面を設ける。
- ロ) ユニオンナットにスリープの被押圧面を押 圧するための押圧面を前記被押圧面と平行に 設ける。

ブ3aのテーパ部10は継手端部1のテーパ部14に沿つて内側に滑り、管4を圧縮し校る。この管を圧縮する状態を公知公用の方法と比較すると、
第2B図に示すように公知公用の方法がスリープ全体で管を圧縮するのに対して、本発明の方法ではスリーブの増部5のみが管を圧縮するので、管の校りが公知公用の方法によるものより大きく、
従つて結合時の強度は高いものとなる。加えて管内の流体が外部へ帰れにくくなる。

次に本発明の結合に要するトルクについて述べる。 ここに、

₩ …… 荷重

R,7 …… 半径

2α …… 円錐の頂角

μ …… 摩擦係数

と置けば、公知公用の結合方法による必要トルク To (但し、継手端部1とユニオンナット2に設けたなじ部の摩擦トルクは除外する)は、

次に、本発明の結合方法による必要トルクTN (但し、継手端部1とユニオンナット2に設けたねじ部の摩擦トルクは除外する)は、

$$T_{N} = \frac{2}{3} \mu W \frac{R^{s} - r^{s}}{R^{s} - r^{s}} \qquad \dots \dots \dots (2)$$

式[1]及び式[2]から

スリーブ 3b の円錐の頂角を 60° と仮定すれば $\alpha=30$ ° だから式 (3) より

$$T_{N} = \frac{T_{0}}{2} \qquad \dots (4)$$

となり、式 [4]から明らかた通り、本発明による管の結合方法に公知公用の結合方法に比し、値 めて低トルクの結合が可能である。また両者を同 一のトルクで結合すると、本発明による場合はス リーブによる管の絞りが公知の場合より着しいた め、結合強度の高い備れにくい結合状態を得ると とができる。

次の表は参考さでにその実験結果を示す。

同図 A はユニオンナット統付け前の状態を示す断面 図、同図 B はユニオンナット統付け後の断面図、集 2 A 図及び第 2 B 図は公知公用の結合方法における 統付け前後の断面を示す。

1… 継手端部, 2…ユニオンナット,

3 a , 3 b … スリープ , 4 … 管 ,

5 …スリーブ機部, 6 …管端, 7 …空隙,

8 …テーパ部, 9 … 段部, 10,11 … テーパ部,

12…堆ねじ,13…雌ねじ,14,15…テーパ部,

16…被押圧面,17…押圧面

代理人 弁理士 龚 浦 清(記)

ユニオンナフト 2 値付ト~タ	6 (E qf)	8	1 0	1 2
本発明による智の 引き抜き荷重	190 (Kqf)	2 4 5	300	330
公知の方法による 智の引き抜き荷倉	150 (Kaf)	190	240	300

また公知の方法では、管備6を挿入する際に空隙7を設けなければならず作業に煩わしさがあつたが、本発明は第1A図及び第1B図に示す通り、継手浴部に前述の"レンチ締めによる微量前進"を許容するためのテーパ部8を設けてあるので、平易に接続できる。即ち、本発明は管備6を継手端部1のテーパ部8に当接するまでいつばいに挿入しレンチで締付ければよく、予め空隙7を設ける必要がない。

以上本発明は容易に低トルクで管と接続でき作業 性も良いので、作業単価も下り非常に経済的であり 利点が大きい。

4. 図面の簡単な説明

第1図は本発明の管の結合方法を示す実施例で、

第1A 网

郑 I B 図

第2A図

