Exploring a larger array

```
import matplotlib.pyplot as plt
import numpy as np
```

Load the data

```
In [4]: data2 = np.load('datasets/009ExerciseFile2.npy')
```

```
In [5]: data2.shape
```

Out[5]: (200, 50)

Plot the 5th row

```
In [6]: plt.plot(data2[4,:])
```

Out[6]: [<matplotlib.lines.Line2D at 0x117043773d0>]

Plotting the first 20 rows of all columns.

Added the semicolon to ignore the list of objects drawn.

```
In [7]: plt.plot(data2[0:20,:]);
```


Sum all the rows within a column

```
In [8]: columnsum = data2.sum(0)

In [9]: columnsum.shape
Out[9]: (50,)

In [10]: plt.plot(columnsum)
```

Out[10]: [<matplotlib.lines.Line2D at 0x11704560d90>]


```
In [11]: columnmean = data2.mean(0)
In [12]: plt.plot(columnmean)
```

Out[12]: [<matplotlib.lines.Line2D at 0x117045d0400>]

There's no pattern in the columns, so now I'm going to sum all the columns within a row.

```
In [13]:
           rowsum = data2.sum(1)
In [14]:
           rowsum.shape
          (200,)
Out[14]:
In [15]:
           plt.plot(rowsum)
          [<matplotlib.lines.Line2D at 0x11704630880>]
Out[15]:
            60
            50
            40
            30
            20
            10
           -10
           -20
                      25
                            50
                                  75
                                       100
                                             125
                                                   150
                 Ó
                                                         175
                                                               200
In [16]:
           rowmean = data2.mean(1)
In [17]:
           rowmean.shape
          (200,)
Out[17]:
```

Found the Pattern!

```
In [20]:
```

```
plt.plot(rowmean, color='r')
plt.title("Averages of the Data Rows")
plt.xlabel("Row Number")
plt.ylabel("Average of the Rows")
```

Out[20]: Text(0, 0.5, 'Average of the Rows')


```
In [2]: import seaborn as sns
```

Smoothed out the plot using kde

```
In [26]:
    sns.displot(rowmean, kind='kde')
    plt.title("Average of the Data Rows")
```

Out[26]: Text(0.5, 1.0, 'Average of the Data Rows')

It seems that some of the rows have much higher means than the others!

Playing with the data (you can ignore this, haha)

First low point

```
In [39]:
          lowmeans = data2[0:21,:].mean(1)
         array([-0.0251328, 0.10726637, 0.07337289, 0.00927616, -0.06908646,
Out[39]:
                -0.04630807, 0.01446104, 0.09168802, 0.16978231, -0.01864572,
                 0.06339427, 0.12478528, 0.06516282, 0.03420841, 0.11464579,
                 0.03567118, -0.10314474, 0.15952553, -0.1460444, 0.15566669,
                 0.99078288])
         First high point
In [40]:
          data2[21:51,:].mean(1)
         array([ 1.16534946,
                              0.55411187,
                                           0.99156294, 1.09054282,
                                                                     0.98656534,
Out[40]:
                 0.99806951,
                                           0.94431689, 0.95793851,
                              0.90702361,
                                                                     0.89697224,
                 1.02868572, 0.82551507, 1.01393924, 0.87848582,
                                                                     0.94088343,
                 1.10603627, 1.08553242, 1.15359628, 0.92851204,
                                                                     0.88358015,
                 1.08050061, 0.22567801, 0.01940809, 0.13890886, -0.16799382,
                 0.14532003, 0.06151215, 0.06441102, 0.00301188,
                                                                     0.03614316])
        Second low
In [41]:
          data2[51:71,:].mean(1)
         array([-0.05028922,
                              0.04695551, 0.03121346, 0.07603283,
Out[41]:
                -0.02125817, 0.11661108, -0.00352865, -0.00510528, -0.14005433,
                -0.25623949, 0.14051726, -0.35937381, 0.16177683, 0.13918086,
                -0.12830265, -0.13105285, -0.07857281, 0.03409052, -0.16267873])
         Different view of the data
In [38]:
          plt.imshow(data2, cmap="bone")
         <matplotlib.image.AxesImage at 0x2827fb1a070>
Out[38]:
           0
          25
          50
          75
         100
         125
         150
         175
```

In []: