Economics 101A (Lecture 13)

Stefano DellaVigna

March 2, 2017

Outline

- 1. Time Consistency
- 2. Time Inconsistency
- 3. Health Club Attendance
- 4. Production: Introduction
- 5. Production Function

1 Time consistency

- Intertemporal choice
- ullet Three periods, t=0, t=1, and t=2

- At each period *i*, agents:
 - have income $M_i^\prime = M_i + {\rm savings/debts}$ from previous period
 - choose consumption c_i ;
 - can save/borrow $M_i'-c_i$
 - no borrowing in last period: at $t=2\ M_2'=c_2$

• Utility function at t = 0

$$u(c_0, c_1, c_2) = U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$$

• Utility function at t=1

$$u(c_1, c_2) = U(c_1) + \frac{1}{1+\delta}U(c_2)$$

• Utility function at t=2

$$u(c_2) = U(c_2)$$

• U' > 0, U'' < 0

- Question: Do preferences of agent in period 0 agree with preferences of agent in period 1?
- Period 1.
- Budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_1) + \frac{1}{1+\delta}U(c_2)$$

$$s.t. \ c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- Back to **period 0**.
- Agent at time 0 can commit to consumption at time 1 as function of uncertain income M_1 .
- Anticipated budget constraint at t = 1:

$$c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

• Maximization problem:

$$\max U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$$

$$s.t. \ c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1)}{U'(c_2)} = \frac{1+r}{1+\delta}$$

- The two conditions coincide!
- **Time consistency.** Plans for future coincide with future actions.
- To see why, rewrite utility function $u(c_0, c_1, c_2)$:

$$U(c_0) + \frac{1}{1+\delta}U(c_1) + \frac{1}{(1+\delta)^2}U(c_2)$$

$$= U(c_0) + \frac{1}{1+\delta}\left[U(c_1) + \frac{1}{1+\delta}U(c_2)\right]$$

- ullet Expression in brackets coincides with utility at t=1
- Is time consistency right?
 - addictive products (alcohol, drugs);
 - good actions (exercising, helping friends);
 - immediate gratification (shopping, credit card borrowing)

2 Time Inconsistency

- Alternative specification (Akerlof, 1991; Laibson, 1997;
 O'Donoghue and Rabin, 1999)
- Utility at time t is $u(c_t, c_{t+1}, c_{t+2})$:

$$u(c_t) + \frac{\beta}{1+\delta}u(c_{t+1}) + \frac{\beta}{(1+\delta)^2}u(c_{t+2}) + \dots$$

Discount factor is

$$1, \frac{\beta}{1+\delta}, \frac{\beta}{(1+\delta)^2}, \frac{\beta}{(1+\delta)^3}, \dots$$

instead of

$$1, \frac{1}{1+\delta}, \frac{1}{(1+\delta)^2}, \frac{1}{(1+\delta)^3}, \dots$$

- What is the difference?
- Immediate gratification: $\beta < 1$

- Back to our problem: **Period 1**.
- Maximization problem:

$$\max U(c_1) + \frac{\beta}{1+\delta}U(c_2)$$

$$s.t. \ c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^*)}{U'(c_2^*)} = \beta \frac{1+r}{1+\delta}$$

- Now, **period 0** with commitment.
- Maximization problem:

$$\max U(c_0) + \frac{\beta}{1+\delta}U(c_1) + \frac{\beta}{(1+\delta)^2}U(c_2)$$

$$s.t. \ c_1 + \frac{1}{1+r}c_2 \le M_1' + \frac{1}{1+r}M_2$$

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_1^{*,c})}{U'(c_2^{*,c})} = \frac{1+r}{1+\delta}$$

- The two conditions differ!
- \bullet Time inconsistency: $c_1^{*,c} < c_1^*$ and $c_2^{*,c} > c_2^*$
- The agent allows him/herself too much immediate consumption and saves too little

Ok, we agree. but should we study this as economists?

• YES!

- One trillion dollars in credit card debt;
- Most debt is in teaser rates;
- Two thirds of Americans are overwight or obese;
- \$10bn health-club industry

- Is this testable?
 - In the laboratory?
 - In the field?

3 Health Club Attendance

- Health club industry study (DellaVigna and Malmendier, American Economic Review, 2006)
- 3 health clubs
- Data on attendance from swiping cards

- Choice of contracts:
 - Monthly contract with average price of \$75
 - 10-visit pass for \$100

Consider users that choose monthly contract. Attendance?

TABLE 3—PRICE PER AVERAGE ATTENDANCE AT ENROLLMENT

	Sample: No subsidy, all clubs			
	Average price per month (1)	Average attendance per month (2)	Average price per average attendance (3)	
	Users initially enrolled with a monthly contract			
Month 1	55.23 (0.80) $N = 829$	3.45 (0.13) $N = 829$	$ \begin{array}{c} 16.01 \\ (0.66) \\ N = 829 \end{array} $	
Month 2	N = 629 80.65 (0.45) N = 758	N = 629 5.46 (0.19) N = 758		
Month 3	70.18 (1.05) $N = 753$	4.89 (0.18) $N = 753$		
Month 4	81.79 (0.26) $N = 728$	4.57 (0.19) N = 728	$ \begin{array}{c} 17.89 \\ (0.75) \\ N = 728 \end{array} $	
Month 5	81.93 (0.25) $N = 701$	4.42 (0.19) N = 701	$ \begin{array}{c} 18.53 \\ (0.80) \\ N = 701 \end{array} $	
Month 6	81.94 (0.29) $N = 607$	4.32 (0.19) N = 607	18.95 (0.84) $N = 607$	
Months 1 to 6	75.26 (0.27) $N = 866$	4.36 (0.14) N = 866		
	Users initially enrolled with an annual contract, who joined at least 14 months before the end of sample period			
Year 1	66.32 (0.37) $N = 145$	4.36 (0.36) $N = 145$	$ \begin{array}{c} 15.22 \\ (1.25) \\ N = 145 \end{array} $	

- Attend on average 4.8 times per *month*
- Pay on average over \$17

B. Price per average attendance (Monthly contracts with monthly fee \geq \$70)

- Average delay of 2.2 months (\$185) between last attendance and contract termination
- Over membership, user could have saved \$700 by paying per visit

- Health club attendance:
 - immediate cost c
 - delayed benefit b
- At sign-up (attend tomorrow):

$$NB^{t} = -\frac{\beta}{1+\delta}c + \frac{\beta}{(1+\delta)^{2}}b$$

ullet Plan to attend if $NB^t>0$

$$c < \frac{1}{(1+\delta)}b$$

• Once moment to attend comes:

$$NB = -c + \frac{\beta}{(1+\delta)}b$$

• Attend if NB > 0

$$c < \frac{\beta}{(1+\delta)}b$$

•	Interpretations?
•	Users are buying a commitment device
•	User underestimate their future self-control problems: - They overestimate future attendance - They delay cancellation

4 Production: Introduction

• Second half of the economy. **Production**

- Example. Ford and the Minivan (Petrin, 2002):
 - Ford had idea: "Mini/Max" (early '70s)
 - Did Ford produce it?
 - No!
 - Ford was worried of cannibalizing station wagon sector
 - Chrysler introduces Dodge Caravan (1984)
 - Chrysler: \$1.5bn profits (by 1987)!

• Why need separate treatment?

• Perhaps firms maximize utility...

- ...we can be more precise:
 - Competition
 - Institutional structure

5 Production Function

- Nicholson, Ch. 9, pp. 303-310; 313-318
- Production function: $y = f(\mathbf{z})$. Function $f: \mathbb{R}^n_+ \to \mathbb{R}_+$
- Inputs $\mathbf{z} = (z_1, z_2, ..., z_n)$: labor, capital, land, human capital
- Output y: Minivan, Intel CPU, mangoes (Philippines)
- Properties of f:
 - no free lunches: f(0) = 0
 - positive marginal productivity: $f_i'(\mathbf{z}) > 0$
 - decreasing marginal productivity: $f_{i,i}''(\mathbf{z}) < 0$

- Isoquants $Q(y) = \{\mathbf{x} | f(\mathbf{x}) = y\}$
- ullet Set of inputs ${f z}$ required to produce quantity y
- Special case. Two inputs:

$$-z_1 = L$$
 (labor)

$$-z_2 = K$$
 (capital)

- Isoquant: f(L,K) y = 0
- Slope of isoquant dK/dL = MRTS

- Convex production function if convex isoquants
- Reasonable: combine two technologies and do better!

ullet Mathematically, convex isoquants if $d^2K/d^2L>0$

• Solution:

$$\frac{d^2K}{d^2L} = -\frac{f_{L,L}''f_K' - 2f_{L,K}''f_L' + f_{K,K}''\left(f_L'\right)^2/f_K'}{\left(f_K'\right)^2}$$

• Hence, $d^2K/d^2L>0$ if $f_{L,K}^{\prime\prime}>0$ (inputs are complements in production)

6 Next Lecture

- Production
- Cost Minimization