TD n°8

Lemme de l'Étoile & Propriétés de Clôture

Exercice 1 (Lemme de l'étoile) On rappelle le lemme de l'étoile :

Soit \mathcal{L} un langage reconnaissable. Il existe un entier N tel que tout mot $u \in \mathcal{L}$ de taille supérieure ou égale à N admet une factorisation u = xyz satisfaisant :

- $-y \neq \epsilon \ et \ |xy| \leq N$
- $-xy^kz \in \mathcal{L} \text{ pour tout entier } k \geq 0.$

Pour chacun des langages suivants, montrer s'il est reconnaissable ou non.

- 1. $\{a^mb^n: m, n \in \mathbb{N}\}$
- 2. $\{a^m b^n : m < n\}$
- 3. $\{a^nb^n\}$
- 4. $\{u^2 : u \in \{a, b\}^*\}$
- 5. $\{a^{2n} : n \in \mathbb{N}\}$
- $6. \{a^{n^2} : n \in \mathbb{N}\}$
- 7. $\{a^p: p \ premier\}$

Pour aller plus loin dans la non-rationalité...

Démontrer la non-rationalité d'un langage en utilisant les propriétés de clôture de Rat=Rec.

Le lemme d'itération n'est pas le seul outil pour montrer qu'un langage n'est pas rationnel. Pour cela on peut aussi utiliser les propriétés de clôture de la famille Rat = Rec à condition de connaître déjà quelques langages non rationnels.

Vous connaissez déjà beaucoup de ces propriétés dont certaines dérivent de la définition même de Rat = Rec alors que d'autres ont été démontrées ou indiquées en cours ou en TD.

On sait notamment que Rat = Rec est clos sous : \cup , \cdot , * , \cap , \mathcal{C} (complémentaire), \setminus (différence d'ensembles), Δ (différence symétrique), \sim (miroir), par préfixes, ...

Vous connaissez déjà également certains langages non rationnels dont vous pourrez vous servir, par exemple le langage $L_0 = \{a^n b^n | n \in \mathbb{N}\}$ que l'on a déjà démontré non rationnel par le lemme de l'étoile (Exo1 ci-dessus).

Exemple d'application.

On veut montrer que $L_1 = \{w \in \{a,b\}^* | |w|_a = |w|_b\}$ n'est pas rationnel.

On remarque que : $L_1 \cap a^*b^* = L_0$. Or, si L_1 était rationnel alors son intersection avec un autre langage rationnel (dans ce cas a^*b^*) le serait aussi car Rat = Rec est clos sous intersection. Mais on sait que cette intersection est L_0 , qui n'est pas rationnel, donc L_1 ne peut pas l'être.

Note. Pour appliquer cette principe, il faut exprimer un langage dont on <u>a déjà montré</u> la non-rationnalité (dans l'exemple L_0) en fonction du langage dont on <u>veut montrer</u> la non-rationnalité (dans l'exemple L_1), de langages rationnels (dans l'exemple a^*b^*) et d'opérations sous lesquelles Rat = Rec est fermée (dans l'exemple \cap , mais parfois on a besoin d'utiliser plusieurs opérations).

Exercice 2 Utiliser les propriétés de clôture pour montrer que les langages décrits ci-dessous ne sont pas rationnels.

```
 \begin{array}{lll} 1. & \{a^p: p \ non \ premier\} \\ 2. & \{a^mb^n: m+n \ est \ un \ carr\'e\} \\ 3. & \{a^mb^n: m\neq n\} \\ 4. & \{u\in \{a,b,c\}^*: |u|_a=|u|_b\} \\ 5. & \{a^mb^nc^{m+n}: m,n\in \mathbb{N}\} \\ \end{array} \begin{array}{lll} 9. & \{u^2: u\in \{a,b\}^*\} \\ 10. & \{a^mb^n: m\geq n\} \\ 11. & \{a^mb^n: m< n\} \\ \end{array}
```

Exercice 3 Démontrer que le langage $\{a^nba^{2n}:n\in\mathbb{N}\}$ n'est pas rationnel en utilisant uniquement les propriétés de fermeture de la classe Rec=Rat et le fait que $\{a^nb^n:n\in\mathbb{N}\}$ n'est pas rationnel.

Suggestion: combiner l'inverse d'un morphisme $\varphi: \{a,b,c\}^* \longrightarrow \{a,b\}^*$, l'intersection avec un langage rationnel de $\{a,b,c\}^*$ et un autre morphisme $\psi: \{a,b,c\}^* \longrightarrow \{a,b\}^*$. Un telle combinaison d'opérations préservant la rationalité est dite une transduction.