MC404: Organização de Computadores e Linguagem de Montagem 1º Prova (18/04/2013)

Questão Valor Nota

		1	0,8	
Nome:	ĺ	2	1,2	
		3	3,5	
RA:	[4	2,0	
		5	2,5	
		Total	10,0	

Instruções: A duração da prova é de uma hora e quarenta minutos. Qualquer tentativa de fraude será punida com zero para todos os envolvidos.

Questão 1. (0,8 pontos) Preencha as lacunas com os valores na base decimal.

Valor em Decimal	Representação	# de bits	Valor binário
	Complemento de 2	20	1110 0001 1100 1111 1010
	Complemento de 1	16	1111 1111 1111 1111
	Sinal e Magnitute	12	1101 1010 1010
	Sem sinal	12	0011 1101 1111

Questão 2. (1,2 pontos)

Responda verdadeiro (V) ou falso (F).

[] é possível expressar o valor 1024 com 11 bits na representação complemento de 2.
[] é possível expressar o valor -1024 com 11 bits na representação complemento de 2.
[] é possível expressar o valor 1024 com 10 bits na representação sem sinal.
[] é possível expressar o valor -511 com 10 bits na representação sinal e magnitude.
[] é possível expressar o valor 8192 com 13 bits na representação sem sinal.
[] é possível expressar o valor 4095 com 13 bits na representação complemento de 2.

Figura 1: Organização detalhada do computador IAS

Questão 3. (3,5 ponto	s) Considere o seguinte	mapa de memória,	que descreve um	n programa do IA	S em linguagem
de máquina:					

a) (2.0) Preencha a tabela a seguir com o valor dos registradores ao término do **ciclo de busca** da instrução à esquerda da palavra de memória no endereço 0x011? (Para sua referência, a Figura 1 mostra a organização detalhada do computador IAS.)

AC	MBR	IBR	IR	MAR	PC

b) (1.5) Substitua o conteúdo da memória no endereço 0x104 pelo valor "00 00 00 xx", onde xx corresponde aos dois últimos dígitos do seu RA. Por exemplo, para o RA 001387, o mapa de memória deve ser atualizado para:

104 00 00 00 00 87

Dada a modificação acima, preencha o tabela a seguir com o valor dos registradores ao término do **ciclo de execução** da instrução à esquerda da palavra de memória no endereço 0x013?

AC	MBR	IBR	IR	MAR

Questão 4. (2 pontos)

- a) Quando ficou pronto e quem liderou a construção do computador do instituto de estudos avançados de princeton (IAS)?
- b) O que acontece com o registrador IR no ciclo de busca da instrução ADD M(0x100)?
- c) Quais as vantagens de se utilizar transistores em vez de válvulas para o desenvolvimento de computadores?
- d) O que é a "Lei de Moore" e o que ela diz?
- e) O que é o "Tear de Jacquard" e porque ele é importante?

 $\mathbf{Quest\~ao}$ 5. (2,5 pontos) Monte o programa abaixo e, utilizando o mapa de memória gerado, responda às seguintes perguntas

L THEFT A 400
.set INICIO 0x100
.org INICIO
LOAD M(x1)
rotulo1:
RSH
align 1
rotulo2:
ADD M(x2)
STOR M(rotulo1)
JUMP M(cont)
.align 2
cont:
RSH
STOR M(av)
JUMP+ M(rotulo2)
.align 1
x1: .word 0000000000
x2: .word 0000000002
.align 2
av: .word 0000000000
vet: .wfill 0x10, 0000000001
.align 2
vm: .word x1
a) Qual o valor, em hexadecimal, da palavra de memória associada ao endereço 0x100?
b) Qual o endereço, em hexadecimal, do rótulo vm?
c) Qual o valor, em hexadecimal, da palavra de memória associada ao endereço 0x104?
c) Quai o valor, em nexadecimai, da paravra de memoria associada ao endereço 0x104:
d) Qual o valor, em hexadecimal, da palavra de memória gerada pelo montador associada ao maior endereço?

e) Considerando o processo de montagem em dois passos, como visto em aula, preencha a tabela abaixo com os rótulos e as posições associadas a cada ródulo ao término do primeiro passo de montagem:

| Posiçõe | Posiçõe

Rótulo	Posição

Conjunto de Instruções do Computador IAS

Tipo da Instrução	Código da operação	Representação Simbólica	Descrição
Transferência de Dados	00001010	LOAD MQ	Transfere o conteúdo do registrador MQ para o registrador AC
	00001001	${\rm LOAD~MQ,M(X)}$	Transfere o conteúdo da memória no endereço X para o registrador MQ
	00100001	STOR $M(X)$	Transfere o conteúdo do registrador AC para a memória no endereço X
	00000001	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X})$	Transfere o conteúdo da memória no endereço X para o registrador AC
	00000010	LOAD - M(X)	Transfere o negativo do valor armazenado no endereço X da memória para o registrador AC
	00000011	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X}) $	Transfere o absoluto do valor armazenado no endereço X da memória para o registrador AC
Salto incondicional	00001101	JUMP M(X,0:19)	Salta para a instrução da esquerda na palavra contida no endereço X da memória
meondicionar	00001110	JUMP M(X,20:39)	Salta para a instrução da direita na palavra contida no endereço X da memória
Salto condicional	00001111	JUMP+M(X,0:19)	Se o número no registrador AC for não negativo então salta para a instrução à esquerda da
	00010000	JUMP+M(X,20:39)	palavra contida no endereço X da memória Se o número no registrador AC for não negativo então salta para a instrução à direita da palavra contida no endereço X da memória
Aritmética	00000101	ADD M(X)	Soma o valor contido no endereço X da memória
	00000111	$\mathrm{ADD}\ \mathrm{M}(\mathrm{X}) $	com o valor em AC e coloca o resultado em AC Soma o absoluto do valor contido no endereço X da memória com o valor em AC e armazena o
	00000110	SUB M(X)	resultado em AC Subtrai o valor contido no endereço X da memória
	00001000	SUB M(X)	do valor em AC e coloca o resultado em AC Subtrai o absoluto do valor contido no endereço X da memória do valor em AC e armazena o
	00001011	MUL M(X)	resultado em AC Multiplica o valor no endereço X da memória pelo valor em MQ e armazena o resultado em AC e MQ.
	00001100	DIV M(X)	AC contém os <i>bits</i> mais significativos do resultado Divide o valor em AC pelo valor no endereço X da
	00010100	LSH	memória. Coloca o quociente em MQ e o resto em AC Desloca os <i>bits</i> do registrador AC para a esquerda.
	00010101	RSH	Equivale à multiplicar o valor em AC por 2 Desloca os <i>bits</i> do registrador AC para a direita. Equivale à dividir o valor em AC por 2
Modificação	00010010	STOR M(X,8:19)	Move os 12 bits à direita de AC para o campo endereç
de endereço	00010011	STOR M(X,28:39)	da instrução à esquerda da palavra X na memória Move os 12 <i>bits</i> à direita de AC para o campo endereç da instrução à direita da palavra X na memória