CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No : **7.1.5**

Lecture: Least Squares

Topic: Least Squares

Concept: Summary Least Squares Solution

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 2nd July 2020

Solving Least Squares using QR Factorisation and MATLAB

$$M \approx N$$

Say,

- \bullet A is square and invertible (full rank)
- ullet then, b is in column space of A

$$M \ll N$$

Under-determined

- As there are more unknowns than equations, infinitely many solutions exist.
- Hence, the goal then becomes to solve for x, such that, ||x|| is minimised!

 $M \gg N$

- ullet b may not be in col space of A
- Hence, $b = Ax + \epsilon$
- € models error/noise

Solving Least Squares using QR Factorisation and MATLAB

$$M \approx N$$

Solution:

As b in column space of A, unique solution exists. $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, since A is square and has full rank.

Say,

- A is square and invertible (full rank)
- ullet then, b is in column space of A

Solving Least Squares using QR Factorisation and MATLAB

For case 3, b is not in col. space of A.

Hence, an estimate of x, denoted by x, such that least squares error (||b - Ax||) is minimised can be found.

Solving Ax = b:

Three ways to solve for case 3!

$$\hat{x} = pinv(A) \times b$$

Way 2 Inverting Normal Equation

$$\hat{x} = (A^T A)^{-1} A^T b$$

Way 3 **QR**

Let
$$A = QR$$
, where $Q^TQ = I$.

Hence, Ax = b can be rewritten as: $Q^TQRx = Q^Tb$ (or) $Rx = Q^Tb$

Therefore, $x = R^{-1}Q^Tb$

$$M \gg N$$

Over-determined

- ullet b may not be in col space of A
- Hence, $b = Ax + \epsilon$
- € models error/noise

Revisiting QR Factorisation and Solving Ax=b

Consider solving the system of equations: Ax = b

Through QR factorisation, A can be written as:

$$A = QR$$

where,

The Q Factor:

- Q is $m \times n$ with orthonormal columns $(Q^TQ = I)$
- If A is square (m=n), then Q is orthogonal, i.e, $Q^TQ=QQ^T=I$

The R Factor:

- R is $n \times n$ upper triangular, with nonzero diagonal elements
- ullet R is nonsingular (diagonal elements are nonzero)

So, Ax = b can be rewritten as: QRx = b.

Multiplying both sides by Q^T yields:

$$Q^T QRx = Q^T b$$
 (or)
 $Rx = Q^T b$

Since R is an upper triangular matrix, x can be solved by:

- 1. Back-substitution
- 2. On MATLAB: $x = R^{-1}Q^Tb$

Algorithm Complexity

- 1. compute QR factorization $A = QR (2mn^2 \text{ flops if } A \text{ is } m \times n)$
- 2. matrix-vector product $d = Q^T b$ (2mn flops)
- 3. solve Rx = d by back substitution (n^2 flops)

complexity: $2mn^2$ flops

Ref: "Why use QR to solve Ax=b?" by Dr. Peyam https://www.youtube.com/watch?v=J41Ypt6Mftc