

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

GRADE/GRAAD 12

TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1

2022

FINAL MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

	Marking Codes/Nasienkodes		
A	Accuracy/Akkuraatheid		
CA	Consistent Accuracy/Volgehoue Akkuraatheid		
M	Method/Metode		
R	Rounding/Afronding		
NPR	No Penalty for Rounding/Geen Penalisering vir Afronding nie		
NPU	No Penalty for Units omitted/Geen Penaliseering vir Eenhede Weggelaat nie		
S	Simplification/Vereenvoudiging		
SF	Substitution in Correct Formula/Vervanging in Korrekte Formule		
AO	Answer only/ Slegs antwoord		

These marking guidelines consist of 21 pages. *Hierdie nasienriglyne bestaan uit 21 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies to all aspects of the marking guidelines where indicated.
- If a candidate strikes off a response to a question and does not attempt the question again, then the struck off question should be marked.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is deurgaans op alle aspekte van die nasienriglyne van toepassing.
- Indien 'n kandidaat 'n antwoord deurhaal en nie poog om die vraag weer te beantwoord dan moet die deurgehaalde antwoord gemerk word.

QUESTION/VRAAG 1

1.1.1
$$x^2 - 3x - 10 = 0$$
 $(x - 5)(x + 2) = 0$ **OR**/**OF** $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-10)}}{2(1)}$ $\sqrt{\frac{11.2}{x^2 - 3x - 10}}$ $\sqrt{\frac{11.2}{$

1.2
$$2x^2 - 11 = -7x$$

 $2x^2 + 7x - 11 = 0$ \checkmark standard form/standaardvorm A
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-7 \pm \sqrt{7^2 - 4(2)(-11)}}{2(2)}$$

$$x = -4,68 \text{ or/of } x = 1,18$$
 \checkmark SF CA
$$\checkmark$$
 both values of x correctly rounded/beide waardes van x korrek afgerond

CA

OR/OF

$$0 = -2x^{2} - 7x + 11$$

$$\therefore x = \frac{-(-7) \pm \sqrt{(-7)^{2} - 4(-2)(11)}}{2(-2)}$$

$$\therefore x = -4,68 \text{ or/} of x = 1,18$$

Penalty for Rounding/ Penalisering vir Afronding

OR/OF

✓ standard form/standaardvorm

✓ SF CA

✓ both values of *x* correctly rounded/ beide waardes van x korrek afgerond

CA

(3)

A

OR/OF

$$x = y + 1$$

$$y + 7 = (y + 1)^{2} + 2(y + 1)$$

$$y + 7 = y^{2} + 2y + 1 + 2y + 2$$

$$y^{2} + 3y - 4 = 0$$

$$(y + 4)(y - 1) = 0 \text{ or/of } y = \frac{-(3) \pm \sqrt{(3)^{2} - 4(1)(-4)}}{2(1)}$$

$$\therefore y = -4 \text{ or/of } y = 1$$

$$x = -4 + 1 \text{ or/of } x = 1 + 1$$

$$\therefore x = -3 \text{ or/of } x = 2$$

✓ y subject of formula/onderwerp van formule \boldsymbol{A}

CA ✓ substitution/vervanging ✓ standard form/standaardvorm CA

✓ factors/ faktore or/of **SF** CA

✓ both/beide x-values/-waardes

✓both/beide y-values/-waardes CA

OR/OF

✓ x subject of formula/onderwerp van formule \boldsymbol{A} CA

✓ substitution/vervanging

✓ correct standard form/korrekte standaardvorm CA

✓ factors/ faktore or/of **SF** CA

✓ both/ beide y-values/-waardes CACA

✓ both/ beide x-values/-waardes

(6)

1.4.1	$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ $\frac{1}{R_{P}} = \frac{R_{1} + R_{2}}{R_{1} \cdot R_{2}}$ $R_{P} = \frac{R_{1} \cdot R_{2}}{R_{2} + R_{1}}$	✓ simplification/vereenvoudiging A ✓ subject/onderwerp CA	
	$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	OR/OF	
	$R_{p}\left(\frac{1}{R_{p}}\right) = R_{p}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)$	✓ simplification/vereenvoudiging A	A
	$R_{P} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}}$	✓ subject/onderwerp CA	4
		AO: full marks/volpunte (2)	2)
1.4.2	$R_{P} = \frac{40 \times 45}{45 + 40} = \frac{1800}{85}$	✓ SF CA	
	$R_{P} = \frac{360}{17} \Omega \mathbf{OR/OF} 21,18\Omega$	✓ value of/waarde van R _P CA	4
	OR/OF	OR/OF	
	$\frac{1}{R_P} = \frac{1}{40} + \frac{1}{45} = \frac{17}{360}$	✓ SF A	1
	$R_{P} = \frac{360}{17} \Omega \qquad \mathbf{OR/OF} 21,18 \Omega$	✓ value of/waarde van R _P CA	4
	OR/OF	OR/OF	
	$R_{P} = \frac{1}{\frac{1}{40} + \frac{1}{45}}$	✓ SF CA	4
	$R_{P} = \frac{360}{17} \Omega$ OR/OF 21, 18 Ω	✓ value of/waarde van R _P CA	4
		AO: full marks/volpunte (2)	2)

1.5	11011	$00_2 \div 1$	100 ₂ =	1001 ₂						
	2^6	2 ⁵	2^4	2^3	2^2	21	2°			
	1	1	0	1	1	0	0			
				1	1	0	0	✓	M	\mathbf{A}
	61 ± 3	2+8+4	1 – 108	<u>!</u>						
	8+4=		- 100							
	0 + 4 -		÷12 =	- O						
	0 10		· + 12 -	- 9						
	9 = 10)O1 ₂						√	1001 ₂	CA
				OF	R/OF				OR/OF	
	1100	100						./	M	A
		110110 1 <u>100</u>	J O					•	IVI	A
		11								
		0								
		110								
		0 110								
		11								
			_ _							
	11011	00 . 1	100	1001					1001	~ .
	11011	$00_2 \div 1$	100 ₂ =	1001 ₂				~	1001 ₂	CA
								A	O: full marks/volpunte	(2)
									1	$\begin{bmatrix} 20 \end{bmatrix}$

2.1.1	e=4	✓ Value of/Waarde van e	A (1)
2.1.2	e < 4	✓ Value of/Waarde van e	A (1)
2.2	$mx^2 - 12x + 9 = 0$ $\Delta = b^2 - 4ac$		
	$\Delta = (-12)^2 - 4(m)(9)$ $\Delta = 144 - 36m$	✓ SF ✓ S	A CA
	For equal roots /Vir gelyke wortels: $\Delta = 0$ 144-36m = 0	✓ Δ=0	A
	m = 4	✓ Value of/ <i>Waarde van m</i>	CA
			(4) [6]

3.1.1	$\frac{3^x \times 3^{x-2}}{9^{x-3}}$	
	$= \frac{3^x \times 3^{x-2}}{3^{2x-6}}$	✓ prime base/priembasis 3² A
	$= 3^{x+x-2-2x+6}$ $= 3^4 = 81$	✓ exponent properties/eksponent- eienskap CA
	OR/OF	\checkmark 3 ⁴ or/of 81 CA OR/OF
	$\frac{3^{x} \times 3^{x-2}}{9^{x-3}}$	
	$= \frac{3^x \times 3^{x-2}}{3^{x-3} \times 3^{x-3}}$	✓ prime base/priembasis A
	$= 3^{x+x-2-x+3-x+3}$ $= 3^4 = 81$	✓ exponent properties/eksponent- eienskap CA ✓ 3 ⁴ or/of 81 CA
	OR/OF	OR/OF
	$\frac{3^x \times 3^{x-2}}{9^{x-3}}$	
	$= \frac{3^x \times 3^x \times 3^{-2}}{9^x \times 9^{-3}}$	✓ Split powers /Verdeel magte A
	$= \frac{9^x \times 9^{-1}}{9^x \times 9^{-3}}$	✓ exponent properties/eksponent- eienskap CA
	$=9^2=81$	✓ $9^2 \text{ or/of } 81$ CA (3)
3.1.2	$\left(\sqrt{5}+4\right)^2-\sqrt{45}$	\\ \frac{\frac{1}{2}}{2}
	$= 5 + 8\sqrt{5} + 16 - 3\sqrt{5}$	✓ squaring binomial/kwadreer binoom A
	$=21+5\sqrt{5}$	$\checkmark 3\sqrt{5}$ A CA
		$\begin{array}{c} \mathbf{V} & 21 + 3\sqrt{3} \\ \end{array} \tag{3}$

3.1.3 $\log_{33} 8 + \log_{10} 10$ $= \frac{\log_{3} 8}{\log_{3} 2} + 1$ $= \frac{\log_{2} 3}{\log_{2} 3} + 1$ $= \frac{3 \log_{2} 2}{5 \log_{2} 3} + 1$ $= \frac{3}{5} + 1$ $= \frac{8}{5} = 1.6$ $3.2 \log_{4} x + \log_{4} (x - 6) = \log_{5} 5^{2}$ $\log_{4} (x^{2} - 6x) = 2$ $x^{2} - 6x = 4^{2} OR / OF \log_{4} (x^{2} - 6x) = \log_{4} 4^{2}$ $x^{2} - 6x = 16 = 0$ $(x - 8)(x + 2) = 0 OR / OF x = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(-16)}}{2(1)}$ $x = 8 \text{ or /of } 1.6$ $x = $				
3.2 $\log_4 x + \log_4 (x-6) = \log_5 25$ $\log_4 x(x-6) = \log_5 5^2$ $\log_4 (x^2-6x) = 2$ $\log_4 (x^2-6x) = 2$ $\log_4 (x^2-6x) = \log_4 4^2$	3.1.3	$= \frac{\log 8}{\log 32} + 1$ $= \frac{\log 2^{3}}{\log 2^{5}} + 1$ $= \frac{3 \log 2}{5 \log 2} + 1$ $= \frac{3}{5} + 1$	basis wet $\checkmark 1$ $\checkmark \log \text{ property/-}eienskap$ $\checkmark \frac{8}{5} \text{ or/}of 1,6$	A A A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			AO: zero marks/punte	(4)
$= 4\sqrt{2}\cos 225^{\circ} + 4\sqrt{2}\sin 225^{\circ}.i$ $= -4 - 4i$ $= -4 - 4i$ $= -4 - 4i$ $= -4 - 4i + 3 - 4i$ $= -1 - 8i$ $\neq \text{ polar expansion/polêre uitbrei}$ $\Rightarrow \text{ A}$ $\Rightarrow \text{ CA}$ $AO: \text{ full marks/volpunte}$ $\Rightarrow \text{ Substitution/Vervanging}$ $\Rightarrow \text{ CA}$	3.2	$\log_4 x(x-6) = \log_5 5^2$ $\log_4 \left(x^2 - 6x\right) = 2$ $x^2 - 6x = 4^2 \mathbf{OR} / \mathbf{OF} \log_4 \left(x^2 - 6x\right) = \log_4 4^2$ $x^2 - 6x - 16 = 0$ $(x-8)(x+2) = 0 \mathbf{OR} / \mathbf{OF} x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-16)}}{2(1)}$ $x = 8 or/of x \neq -2$	✓ log definition/prop./ -definisie/-eiensk. ✓ factors/ faktore or/of SF	A CA CA CA CA
$ = -4-4i $ $ = -4-4i $ $ AO: full marks/volpunte $ $ = (-4-4i)+(3-4i) $ $ = -4-4i+3-4i $ $ = -1-8i $ $ \checkmark Substitution/Vervanging CA $ $ \checkmark -1-8i $ $ CA $	3.3.1	$z_1 = 4\sqrt{2}cis(225^\circ)$		
3.3.2 $z_1 + z_2$ = $(-4-4i)+(3-4i)$ = $-4-4i+3-4i$ = $-1-8i$ \checkmark Substitution/Vervanging CA				
$= (-4-4i)+(3-4i)$ $= -4-4i+3-4i$ $= -1-8i$ Substitution/Vervanging CA $\checkmark -1-8i$ CA			AO: full marks/volpunte	(2)
	3.3.2	$= \left(-4 - 4i\right) + \left(3 - 4i\right)$	✓ Substitution/Vervanging	CA
		=-1-8i	✓ -1-8 <i>i</i>	CA
				(2)

3.4	$-p + qi = 4i^5 - 2(7+3i)$	()2	
	$-p+qi = 4(i^2)^2i-14-6i$	\checkmark rewriting/herskryf i^5 as $(i^2)^2 i$	A
		✓ replacing/vervang i^2 with/met -1	A
	-p + qi = -14 - 2i	✓ S	CA
	$\therefore p = 14 \text{ and/} en \ q = -2$	✓ p value/-waarde	CA
		✓ q value/-waarde	CA
			(5)
		[2	25]

4.1.1	$f(x) = \frac{a}{x} + 2$	✓ substituting/vervang. 2 A
	$4 = \frac{a}{-2} + 2$	\checkmark subt./verv. $(-2;4)$ A
	$\frac{a}{2} = -2$	
	a = -4	✓ value of/waarde van a CA
	$\therefore f(x) = -\frac{4}{x} + 2$	(3)
4.1.2	g(x) = x + 2	✓ equation/vergelyking A (1)
4.1.3	$y \in \mathbb{R}$, $y \neq 2$	✓ critical value/kritiese waarde A ✓ notation/notasie A
	OR/OF	OR/OF
	$y \in (-\infty; 2) \cup (2; \infty)$	✓ critical value/kritiese waarde A ✓ notation/notasie A
	OR/OF	OR/OF
	y > 2 or/of $y < 2$	✓ critical value/kritiese waarde A ✓ notation/notasie A
		(2)
4.1.4	$f(x) = -\frac{4}{x} + 2$ $0 = -\frac{4}{x} + 2$	
	$0 = -\frac{4}{x} + 2$	$\checkmark 0 = -\frac{4}{x} + 2$
	$\frac{4}{x} = 2$	
	2x = 4	
	x = 2	✓ x-coordinate of/koördinaat van W CA
	OR/OF	OR/OF
	W(2;0)	\checkmark x-coordinate /koördinaat A
		✓ y-coordinate /koördinaat A
		(2)

4.1.5	g(x) = 2 + 2 = 4	✓ substitution of <i>x</i> -value of W CA
4.1.3		✓ coordinates of/koördinate van
	∴ V(2; 4)	V CA
	OR/OF	OR/OF
	∴ V(2; 4)	✓ x -coordinate / $ko\ddot{o}rdinaat$ A
		✓ y-coordinate /koördinaat A (2)
4.2.1	y = -4	✓ equation/vergelyking A (1)
4.2.2	$p(x) = 2^{x} - 4$ y-intercept/-afsnit; $x = 0$ $p(0) = 2^{0} - 4$	
	y = -3 x- intercept/-afsnit; $y = 0$	$\checkmark y = -3 $ A
	$0 = 2^{x} - 4$ $2^{x} = 4$ $2^{x} = 2^{2}$ OR/OF $\therefore x = \log_{2} 4$	$\checkmark 2^x = 2^2 \text{ or/of } x = \log_2 4 \qquad \mathbf{A}$
	$\therefore x = 2 \qquad \qquad \therefore x = 2$	$\checkmark x = 2$ CA
		AO: full marks/volpunte (3)
4.2.3		✓ shape/vorm A ✓ both intercepts/beide afsnitte CA ✓ asymptote/asimptoot CA
121	$L = (A)^2 - 2(A) + A$	✓ substitution/vervanging A
4.3.1	$k = (4)^2 - 2(4) + 4$	
	$\therefore k = 12$	✓ value of/waarde van k CA
		AO: full marks/volpunte (2)

4.3.2	g(x) = x + 1	
	C(4; y) $v_0 = 4 + 1 = 5$	/1/ I
	$y_{\rm C} = 4 + 1 = 5$ OR / OF AC = $\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$	\checkmark y _C value/-waarde A
	$AC = y_A - y_C$	✓ M A
	$= 12 - 5 \qquad = \sqrt{(4-4)^2 + (5-12)^2}$	✓ M ✓ length of/lengte van AC CA
	= 7 units/eenhede = 7 units/eenhede	
	OR/OF	OR/OF
	$AC = (x^2 - 2x + 4) - (x+1)$	✓ M A
	$= x^2 - 3x + 3$	
	$=(4)^2-3(4)+3$	✓ substitution/vervanging CA
	= 7 units/eenhede	✓ length of/lengte van AC CA (3)
4.3.3	$f(x) = x^2 - 2x + 4$	
	$x = -\frac{b}{2a} \qquad \mathbf{OR/OF} \qquad f'(x) = 0$	
	$x = -\frac{(-2)}{2(1)} \qquad 2x - 2 = 0$	$\checkmark \mathbf{SF} \text{ or/of } 2x - 2 = 0 \qquad \mathbf{A}$
	x = 1 $x = 1$	✓ value of /waarde van x CA
	$\therefore = \frac{x_P + 4}{2} = 1$	
	$\therefore x_p = -2$ $f(-2) = (-2)^2 - 2(-2) + 4 = 12$	✓ value of/ waarde van x_p CA
	$\therefore P(-2;12)$	✓ coordinate/koördinaat CA
	OR/OF	OR/OF
	$f(x) = x^2 - 2x + 4$ P(x;12)	
	$12 = x^{2} - 2x + 4$ $x^{2} - 2x - 8 = 0$ $-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-8)}$	✓ equating/gelykstelling CA
	$(x-4)(x+2) = 0$ OR / OF $x = \frac{(x-4)(x+2)}{2(1)}$	✓ standard form/standaardvorm CA
	$\therefore x = 4 \text{ or/} of x = -2$ \therefore P(-2;12)	✓ factors/ faktore or/of SF CA
		$\checkmark x = -2$ CA
		(4) [26]
		[26]

Note: in Q5 the use of wrong formula must be regarded as a breakdown

QUESTION/VRAAG 5

Nota: in V5 moet die gebruik van verkeerde formule as 'n afbreek

5.1	A = P(1+in)		
	$A = R15350 \left(1 + \frac{21}{100} \times 2 \right)$	✓ SF	A
	A = R21797	✓ value of/waarde van A	CA
	Monthly payment/ Maandelikse paaiement $=\frac{R21797}{24} = R908,21$	✓M divide by/deel deur 24 ✓ monthly payment/maandelikse paaiement	CA CA
	\mathbf{OR}/\mathbf{OF} $\mathbf{SI} = \mathbf{P} \times \mathbf{i} \times \mathbf{n}$	OR/OF	
	$SI = 15350 \times 21\% \times 2 = R6447$ $\therefore A = 15350 + 6447 = R21797$	✓ SF ✓ value of/waarde van A	A CA
	Monthly payment/ Maandelikse paaiement $=\frac{R21797}{24} = R908,21$	✓M divide by/deel deur 24 ✓monthly payment/maandelikse paaiement	CA CA
			NPR (4)
5.2.1	$500 \times 1,25 = 625$	✓ value/waarde	A (1)
5.2.2	$A = P (1+i)^{n}$ $= 500 (1+0.25)^{10}$ $= 4656.61$	✓ F ✓ SF	A A
	≈ 4656	✓ value of/waarde van	CA (3)
5.3	$A = P (1+i)^n$	√24	A
	$50962,58 = P\left(1 + \frac{6,78\%}{12}\right)^{24} \left(1 + \frac{5,20\%}{4}\right)^{6}$	$\checkmark \left(1 + \frac{6,78\%}{12}\right)$	A
	$P = \frac{50962,58}{\left(1 + \frac{6.78\%}{12}\right)^{24} \left(1 + \frac{5,20\%}{4}\right)^{6}}$	$\checkmark 6$ $\checkmark \left(1 + \frac{5,20\%}{4}\right)$	A A
	$(12)(4)$ $\approx R41197,43$	✓P the subject/ <i>die onderwerp</i> ✓value/ <i>waarde</i>	CA CA

A

CA

A

CA

OR/OF

OR/OF

$$A = P (1+i)^{n}$$

$$A_{2} = P \left(1 + \frac{6,78\%}{12}\right)^{24}$$

$$= (1,144....)P$$

$$A_{3,5} = 1,145P \left(1 + \frac{5,20\%}{12}\right)^{24}$$

$$A_{3,5} = 1,145P \left(1 + \frac{5,20\%}{4}\right)^6$$

$$\frac{50962,58}{1,237} = P$$

$$P \approx R41197, 43$$

√24

√6

OR/OF

OR/OF

$$P_{1} = \frac{50962,58}{\left(1 + \frac{5,20\%}{4}\right)^{6}}$$
$$= R 47162,27$$

$$P_2 = \frac{47162,27}{\left(1 + \frac{6,78\%}{12}\right)^{24}}$$

$$\approx R 41197,43$$

$$\checkmark 6$$

$$\checkmark \left(1 + \frac{5,20\%}{4}\right)$$

$$\checkmark 24$$

$$\checkmark \left(1 + \frac{6,78\%}{12}\right)$$

CA

NPR (6)

[14]

6.1	f(x) = 5 + x		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ definition/definisie	A
	$= \lim_{h \to 0} \frac{5 + x + h - (5 + x)}{h}$	✓ Substitution/Verv.	CA
	$= \lim_{h \to 0} \frac{5 + x + h - 5 - x}{h}$	✓ S Penalty of one mark for incorrect notation	CA
	$= \lim_{h \to 0} \frac{h}{h}$ $= \lim_{h \to 0} (1)$	✓ S Penaliseer een punt indien notasie foutief is.	CA
	$\therefore f'(x) = 1$	AO: zero marks/punte	
6.2.1	y = x(x+9)		— (<i>3</i>)
	$=x^2+9x$	✓ expansion/ontwikkeling	A
	$\frac{dy}{dx} = 2x + 9$	✓ 2 <i>x</i> ✓ 9	CA CA
			(3)
6.2.2	$D_x \left[\sqrt[7]{x} + \pi p^3 \right]$		(3)
	$= D_x \left[x^{\frac{1}{7}} + \pi p^3 \right]$	$\checkmark x^{\frac{1}{7}}$	A
	$=\frac{1}{7}x^{-\frac{6}{7}}$	$\sqrt{\frac{1}{7}}x^{-\frac{6}{7}}$	CA
		7	(3)
6.2.3	$f(x) = \frac{1 - x^9}{x^2}$		
	$=x^{-2}-x^{7}$	$\checkmark x^{-2}$	A
	$= x^{-2} - x^{7}$ $f'(x) = -2x^{-3} - 7x^{6}$	$\checkmark x^{-2}$ $\checkmark - x^{7}$ $\checkmark - 2x^{-3}$ $\checkmark - 7x^{6}$	A
		$\checkmark -2x^{-3}$	CA
		$\checkmark -7x^6$	CA (4)
6.3.1	$g(x) = -4x^2$		('')
	$g(2) = -4(2)^2 = -16$	√ – 16	A (1)

6.3.2	g'(x) = -8x	✓ derivative/afgeleide	A
	g'(x) = -8x m = g'(2) = -8(2) m = -16		
		✓ gradient/gradiënt ✓ substitution/verv.	CA
	y + 16 = -16(x - 2) OR/OF $-16 = -16(2) + c$	✓ substitution/verv.	CA
	∴ <i>c</i> = 16		
	$\therefore y = -16x + 16$	✓ equation/verg.	CA
			(4)
			[20]

7.1	C(3; 0)	√3	A
			A
		(2	2)
7.2	h(x) = 2x + p subst. point/verv. punt C		
	0 = 2(3) + p		
	0 = 6 + p	✓ value/ waarde p	4
	$\therefore p = -6$ OR/OF	·	
	OR/OF	OR/OF	
	g(x) = -(x+2)(x-1)(x-3)		
	y-int./afsn.; $x = 0$		
	g(0) = -(0+2)(0-1)(0-3) = -6		
	$D(0; -6)$ $\therefore p = -6$		
	P	✓ value/ waarde p	4
		AO: full marks/volpunte	1)
7.3	g(x) = -(x+2)(x-1)(x-3)		1)
	A(-2;0)		
	$AC = 2 + 3$ OR / OF $AC = \sqrt{(3+2)^2 + (0-0)^2}$	/ N/I	
			A
	= 5 units/eenhede = 5 units/eenhede	✓ length of/lengte van AC CA	A
		AO: full marks/volpunte (2)	2)
		,	,
7.4	g(x) = -(x+2)(x-1)(x-3)		
	$g(x) = -(x+2)(x^2-4x+3)$	✓ quadratic bracket/kwadratiese	
	$g(x) = -x^3 + 2x^2 + 5x - 6$	hakie ✓ cubic form/derdegraadse vorm Ca	A A
	OR/OF	· cubic form/derdegraduse vorm Ci	A
	g(x) = -(x+2)(x-1)(x-3)		
	$g(x) = -(x-1)(x^2-x-6)$	✓ quadratic bracket/kwadratiese	
	$g(x) = -x^3 + 2x^2 + 5x - 6$	hakie ✓ cubic form/derdegraadse vorm Ca	A A
	OR/OF	- Cubic forminger degraduse vorm Ci	1 1
	g(x) = -(x+2)(x-1)(x-3)		
	$g(x) = -(x-3)(x^2 + x - 2)$	✓ quadratic bracket/kwadratiese	
	$g(x) = -x^3 + 2x^2 + 5x - 6$	hakie ✓ cubic form/derdegraadse vorm Ca	A A
			A 2)
		,	

7.5	$g(x) = -x^{3} + 2x^{2} + 5x - 6$ $g'(x) = -3x^{2} + 4x + 5$ $-3x^{2} + 4x + 5 = 0$ $x = \frac{-4 \pm \sqrt{(4)^{2} - 4(-3)(5)}}{2(-3)}$ $x = 2,12 \text{ or/of } x = -0,79$ $g(2,12) = -(2,12)^{3} + 2(2,12)^{2} + 5(2,12) - 6$	 ✓ derivative/afgeleide ✓ equating derivative to 0/ stel afgeleide gelyk aan 0 ✓ SF
7.6	$= 4,06$ $g(-0,79) = -(-0,79)^{3} + 2(-0,79)^{2} + 5(-0,79) - 6$ $= -8,21$ $E(-0,79; -8,21) \text{ and/en } F(2,12;4,06)$ $x < -2 \text{ or/of } 1 < x < 3$	✓ both values of /beide waardes van y CA NPR (5) ✓ $x < -2$ CA
		✓ critical values/kritiese waardes CA ✓ correct notation/korrekte notasie A
	OR/OF	OR/OF
	$x \in (-\infty; -2)$ or/of $x \in (1; 3)$	✓ $x \in (-\infty; -2)$ CA ✓ critical values/kritiese waardes ✓ notation/notasie A
	OR/OF	OR/OF
	x < -2 or/of $x > 1$ and $/en$ $x < 3$	 ✓ x < -2 ✓ critical values/kritiese waardes ✓ correct notation/korrekte notasie A (3) [15]

$h(t) = -5t^2 + 25t$		
$h(1) = -5(1)^2 + 25(1)$	✓ substitution/verv	A
$= 20 \mathrm{m}$	✓ height/hoogte	CA
		NPU
1/4) 10 25	104 + 25	(2) A
	V = 10i + 23	A
	✓ substituting/verv. 0	CA
= 25 m/s	✓ initial velocity/aanvangsnelhe	
		NPU (3)
-10t + 25 = 0	$\checkmark h'(t) = 0 \text{ or/of } \mathbf{SF}$	A
10t = 25		
2,00	✓ value of/waarde van t	CA
$h(2,5) = -5(2,5)^2 + 25(2,5)$		
$= 31,25 \mathrm{m}$	✓ max. height/maks. hoogte	CA
OR/OF	OR/OF	
$\int_{a}^{b} 4ac - b^2$	✓ F	A
$n = {4a}$		
$h = \frac{4(-5)(0) - (25)^2}{(-5)^2}$	✓ SF	A
h = 31,25 m	✓ max. height/maks. hoogte	CA NPU
	Note: The 3 rd mark (CA) should not be awarded if the <i>t</i> -value is not calculated using optimisation. Nota: Die 3 ^{de} punt (CA) moet nie toegeken word indien die waarde van t nie vanuit optimalisering.	
	$h(1) = -5(1)^{2} + 25(1)$ $= 20 \text{ m}$ $h'(t) = -10t + 25$ $h'(0) = -10(0) + 25$ $= 25 \text{ m/s}$ $-10t + 25 = 0$ $10t = 25$ $t = \frac{5}{2} = 2,5 \text{ s}$ $h(2,5) = -5(2,5)^{2} + 25(2,5)$ $= 31,25 \text{ m}$ OR/OF $h = \frac{4ac - b^{2}}{4a}$ $h = \frac{4(-5)(0) - (25)^{2}}{4(-5)}$	$h(1) = -5(1)^{2} + 25(1)$ $= 20 \text{ m}$

8.4
$$h(t) = -5t^{2} + 25t$$

$$30 = -5t^{2} + 25t$$

$$0 = -5t^{2} + 25t - 30$$

$$0 = t^{2} - 5t + 6$$

$$0 = (t - 2)(t - 3)\mathbf{OR} / \mathbf{OF} \ t = \frac{-(-5) \pm \sqrt{(-5)^{2} - 4(1)(6)}}{2(1)}$$

$$t = 2\mathbf{s} \ \text{or} / \mathbf{of} \ t = 3\mathbf{s}$$

- ✓ equating to/gelykstelling aan 30 A
- ✓ factors/ faktore or/of **SF** CA
 ✓ both values of/beide waardes van t CA

CA

NPU

(3)

[11]

9.1.1	(hor c)	
7.1.1	$\int (10^x + 6) dx$	10 %
	$=\frac{10^x}{\ln 10} + 6x + C$	$\checkmark \frac{10^x}{\ln 10}$
	$=\frac{1}{\ln 10} + 6x + C$	
		$\checkmark 6x$ A
		✓ C
		(3)
9.1.2	$\int (x^{4}(x+2) - 2x^{-3}) dx$	
	$= \int (x^5 + 2x^4 - 2x^{-3}) dx$	$\checkmark x^{5} + 2x^{4}$ $\checkmark \frac{x^{6}}{6}$ $\checkmark \frac{2x^{5}}{5}$ $\checkmark \frac{-2}{5}$ A
	$=\frac{x^6}{6} + \frac{2x^5}{5} + x^{-2} + C$. x ⁶
	$=\frac{-}{6}+\frac{-}{5}+x+C$	$\sqrt{\frac{\pi}{6}}$ CA
	Note: No penalty if C is omitted	2x ⁵
		$\checkmark \frac{2x}{5}$ CA
	Nota: Geen penaliseering indien C	5
	weggelaat is	\mathbf{A}
	(-	(4)
9.2	$A = -\int_2^4 \left(\frac{3}{x} - 4\right) dx$	✓ Area notation using integrals/
		Oppervlakte-notasie met gebruik van integrale A
	$=-\left(3\ln x - 4x\right)_{2}^{4}$	$\checkmark 3 \ln x$
		$\sqrt{-4x}$
	$= - \left[- \left[3\ln(4) - 4(4) \right] - \left[3\ln(2) - 4(2) \right] \right]$	✓✓ SF CA
	≈ 5.92 square units/vierkante eenhede	✓ Shaded area/gearseerde oppervaklte
	~ 5,32 square units/vierkunie eenneue	CA
	OR/OF	OR/OF
	$\int_{\Lambda} \int_{\Lambda}^{4} \left(3\right) \int_{\Lambda}^{4} \int_$	✓ Area notation using integrals/
	$A = \int_2^4 \left(\frac{3}{x} - 4\right) dx$	Oppervlakte-notasie met gebruik van
		integrale A
	$= \left(3\ln x - 4x\right)\Big _{2}^{4}$	$\checkmark 3 \ln x$
	$= [3\ln(4) - 4(4)] - [3\ln(2) - 4(2)]$	$\checkmark -4x$
	$\approx -5,92$	✓✓ SF CA
	\therefore A $\approx 5,92$ square units/vierkante eenhede	✓ positive shaded area/positiewe
		gearseerde oppervaklte CA
		NPU NPR
		(6)
		[13]

TOTAL/TOTAAL: 150