Práctico 7

Daniel Czarnievicz 2019

Ejercicio 4

$$\mathbf{E}(X) = \sum_{x \in \operatorname{Rec}(X)} x \operatorname{Pr}(X = x)$$

$$= \sum_{x \in \operatorname{Rec}(X)} x \operatorname{Pr}\left(\left\{\omega \in \Omega : X(\omega) = x\right\}\right)$$

$$= \sum_{x \in \operatorname{Rec}(X)} x \operatorname{Pr}\left(X^{-1}(x)\right)$$

$$= \sum_{x \in \operatorname{Rec}(X)} x \operatorname{Pr}\left(T^{-1}(X^{-1}(x))\right)$$

$$= \sum_{x \in \operatorname{Rec}(X)} x \operatorname{Pr}\left(\left\{\omega \in \Omega : X(T(\omega)) = x\right\}\right)$$

$$\mathbf{E}\left(X(T)\right) = \sum_{y \in \operatorname{Rec}(X(T))} y \operatorname{Pr}(X(T) = y)$$

La igualdad entre ambos se cumplirá únicamente si los recorridos son iguales. Podemos porbar esto por absurdo. Supongamos que $\exists y$ tal que $y \in \text{Rec}(X(T))$ pero $y \notin \text{Rec}(X)$. Pero si $y \in \text{Rec}(X(T))$ entonces $\exists \omega$ tal que $X(T(\omega)) = y$, por lo que los recorridos deben ser iguales.

Ejercicio 5

Sea $A_n = \left\{ \omega \in \Omega : X(\omega) \geq \frac{1}{n} \right\}$. Entonces existe D_n tal que $\Pr(A_n) = \Pr(D_n)$, por lo que, $\forall \omega \in D_n$, se cumple $\sum_{k=0}^{+\infty} X(T^k(\omega)) = +\infty$. Luego entonces, si definimos al conjunto $A = \bigcup_{n=1}^{+\infty} A_n$ tenemos que:

$$\Pr(A) = \Pr\left(\bigcup_{n=1}^{+\infty} A_n\right) = \Pr\left(\bigcup_{n=1}^{+\infty} D_n\right) = \Pr(D)$$

Ejercicio 6

- Decimos que una transformación $T:\Omega\to\Omega$ es medible si para todo conjunto $A\in\mathcal{A}$ se cumple que $T^{-1}(A)=\left\{\omega\in\Omega:T(\omega)\in A\right\}\in\mathcal{A}$. Es decir, se debe cumplir que, para todo conjunto A en la σ -álgebra, el conjunto de las preimágenes a través de la transformación, también pertenezca a la σ -álgebra.
- Decimos que una transformación T preserva la medida si para todo $A \in \mathcal{A}$ se cumple que $\Pr(A = \Pr(T^{-1}(A)))$. Es decir, la medida de probabilidad (o cualquier otra medida) toma el mismo valor para el conjunto A y para el conjunto de las preimágenes de A a través de la función T.
- Decimos que un conjuto $A \in \mathcal{A}$ es invariante a la tranformración T (siendo T una transformación que preserva la medida), si se cumple que $T^{-1}(A) = A$. Es decir, todo elemento (ω) que pertenece al conjunto A, pertenece también al conjunto de preimágenes de A a través de la transformación T (y viceversa, dado que se trata de una igualdad de conjuntos).
- Decimos que una transformación T que preserva la medida es ergódico, si se cumple que todo conjunto invariante tiene medida 0 o 1.
- Decimos que una transformación T que preserva la medida es mixing, si para todo par de conjuntos $A, B \in \mathcal{A}$ se cumple que:

$$\lim_{n \to +\infty} \Pr\left(A \cap T^{-n}(B)\right) = \Pr(A) \Pr(B)$$

Para demostrar el teorema entonces veamos que:

$$B$$
 es invariante $\Leftrightarrow T^{-1}(B) = B \Leftrightarrow T^{-n}(B) = B \quad \forall n \geq 1$

Luego, por la definición de transformación mixing, tenemos que:

$$\lim_{n \to +\infty} \Pr\left(A \cap \underbrace{T^{-n}(B)}_{-B}\right) = \lim_{n \to +\infty} \Pr(A \cap B) = \Pr(A \cap B)$$

Pero si T es mixing, entonces también debe cumplirse que:

$$\lim_{n \to +\infty} \Pr\left(A \cap T^{-n}(B)\right) = \Pr(A) \Pr(B)$$

Por lo tanto,

$$\Pr(A \cap B) = \Pr(A) \Pr(B) \ \forall A, B \in \mathcal{A}, \ B \text{ invariante}$$

Si elegimos A = B, tenemos que, para todo B invariante:

$$Pr(B \cap B) = Pr(B) Pr(B) = Pr^{2}(B)$$

Pero a su vez, $Pr(B \cap B) = Pr(B)$. Por lo tanto, $Pr(B) = Pr^2(B)$. Pero dado que la probabilidad simpre debe tomar valores entre 0 y 1, Pr(B) solo puede ser 0 ó 1 (dado que son los únicos posibles valores que elevados al cuadrado dan como resultado ellos mismos).