Ray Tracing, Part III

Geoffrey Matthews

Department of Computer Science Western Washington University

Fall 2015

Random spheres

Fog: depth cueing with distance

Colored Fog for Effects

George de La Tour, St. Joseph

Gerrit Van Honthorst, de Koppelaarster

Rembrandt World

It would be nice to have some shapes other than spheres.

- ▶ Plane defined by point and normal.
- ▶ Use same strategy as sphere? What is the equation to solve?

- ▶ Plane defined by point and normal.
- ▶ Use same strategy as sphere? What is the equation to solve?
- ▶ Solve for t: $n \cdot ((p + tv) q) = 0$

$$n \cdot (p + tv - q) = 0$$

$$n \cdot p + t(n \cdot v) - n \cdot q = 0$$

$$t(n \cdot v) + n \cdot (p - q) = 0$$

$$t = \frac{n \cdot (q - p)}{n \cdot v}$$

▶ The intersection point is p + tv

$$n \cdot (p + tv - q) = 0$$

$$n \cdot p + t(n \cdot v) - n \cdot q = 0$$

$$t(n \cdot v) + n \cdot (p - q) = 0$$

$$t = \frac{n \cdot (q - p)}{n \cdot v}$$

- ▶ The intersection point is p + tv
- But there's other ways.

- $\mathbf{v} \cdot \mathbf{n} < 0$ tests for intersection (one-sided plane).
- ▶ Need to find the distance from *p* to intersection point.
- ► Can we find the sides of the triangle? What is the height?

▶ $h = (p - q) \cdot n$ gives us the height h of p from the plane.

► Any ideas?

• $v \cdot -n$ gives us: $\cos \theta = 1/\sec \theta$

$$t = h \sec(\theta) = \frac{h}{\cos \theta} = \frac{(q - p) \cdot n}{v \cdot n}$$

- ▶ Desired point is p + tv
- ▶ The same result as the other method.

Plane delimited shapes

Plane delimited shapes

- Plane normals all point outward.
- ► Intersect the ray with all planes of the object.
- Ray should hit every plane. (And if not?).
- Ray hits object if it enters all entering planes before leaving first exit plane.
- If the last plane entered is nearer the eye than the first plane exited, the ray hits the object.
- ▶ The hit point is the last plane *entered*.
- Special case of intersection. Think about intersecting all the other shapes we can raytrace.

Further Reading

- https://www.siggraph.org/education/materials/ HyperGraph/raytrace/rtinter0.htm
- ▶ https://en.wikipedia.org/wiki/Quadric
- http: //marctenbosch.com/photon/mbosch_intersection.pdf
- http://www.emeyex.com/site/projects/raytorus.pdf
- http://www.geisswerks.com/ryan/BLOBS/blobs.html
- http://www.cs.cornell.edu/courses/cs465/2003fa/ homeworks/raytri.pdf