

2023 IMI BIGDataAlHub Case Competition

Anti-Money Laundering

Team 35 (William Kwok, Juandiego Morzan, Anny Huang)

Agenda

Task 1 Name Screening

Task 2 Supervised Learning

2A Customer Risk Rating

2B Bad Actors

Task 3 Graph Analytics

Task 1 Name screening

Task 1: Name Screening

2-step screening solution to identify 50 Bad Actors

Data sources for name screening

1m customers

430k sanctioned names

- 260k persons
- 170k previous names and alias

open sanctions

(nested json of 56 datasets)

430bn possible combinations

Need for fuzzy name matching

- Punctuation
- Delimiter (space, hyphen, underscore)
- Extra letter and/or words
- Missing letter and/or words
- Word ordering

2-step screening solution

1

Large-scale fuzzy name matching

3-gram cosine similarity

Sparse matrix multiplication

2

Validate additional information

Date of birth

Gender

Politically Exposed Person (PEP)

Task 1: Name Screening

Step 1: Large-scale fuzzy name matching with 3-gram cosine similarity

youngmariemildren for 3-gram extraction Sanctioned person = Young, Marie Mildren you ung Filter >= 0.5 **Possible matches** Vector space model: 3-gram for flexibility + binary occurrence (1 or 0) for stability aar amr are ari arr ary dre eim emi eny gam gma gmi gmm rei rem ren rie rre rri rym ung ymi you yun Cosine Similarity **Variations** Examples **Exact match** Young, Marie Mildren 1.0000 Young MarieMildren 1.0000 No space 0.8667 Word order Marie Mildren Young 0.8141 Extra letter Young, Maarrie Mildren 1 0.7348 Extra word Young, Mildren 0.7006 Abbreviation Young M Mildren Phonetic Yung Mary Mildren 0.6445 0.5333 Young, aMrei Mildren Typo

Text processing

oun

mil

0.0913

430bn possible combinations reduced to 5.4mio with CSR sparse matrix multiplication + top-n result selection

Wrong person

Arei mr Remi

Task 1: Name Screening

Step 2: Validate additional information to identify 50 Bad Actors

Scotiabank customers	GENDER1	DOB1	OpenSanctions targets	GENDER2	DOB2	Cosine Similarity
Paul Franklin Watson	Male	1950-12-02	PAUL FRANKLIN WATSON	Male	1950-12-02	1.0000
Alexey Alexeyevich Gromov	Male	1960-05-31	Alexey Alexeyevich GROMOV	Male	1960-05-31	1.0000
Emilie Samra Konig	Female	1984-12-09	Emilie Samra Konig	Female	1984-12-09	1.0000
Tetiana Viktorivna Pereverzeva	Female	1964-06-20	Tetiana Viktorivna Pereverzeva	Female	1964-06-20	1.0000
Basova, Lidiya Oleksandrivna	Female	1972-01-01	Lidiya Oleksandrivna Basova	Female	1972	0.9130
Bezrukov, Sergey Vitalyevich	Male	1973-10-18	Sergey Vitalyevich BEZRUKOV	Male	1973-10-18	0.9130
Zheynova, Marina Nikolaevna	Female	1985-02-15	Marina Nikolaevna ZHEYNOVA	Female	1985-02-15	0.9091
Rakhim Azizboevich Azimov	Male	1964-08-16	AZIMOV Rakhim Azizboevich	Male	1964-08-16	0.9000
Oleksin, Alexei Ivanovich	Male	1966-10-29	OLEKSIN Aleksei Ivanovich	Male	1966-10-29	0.8721
Herlinto Chamorro Acosta	Male	1956-01-10	ELIECER HERLINTO CHAMORRO ACOSTA	Male	1956-01-10	0.8607
Jose Benito Cabrera Cuevas	Male	1963-07-06	Jose Benito Cabrera	Male	1963-07-06	0.8452
Poklonskaya, Natalija Vladimirovna	Female	1980-03-18	Natalia Vladimirovna POKLONSKAYA	Female	1980-03-18	0.8422
O Jong Gil	Male	1962-08-30	Jong Gil O	Male	1962-08-30	0.8333
Hlaing, Min Aung	Male	1956-07-03	Min Aung Hlaing	Male	1956-07-03	0.8182

50 Bad Actors

Same gender

DOB <= 2 years

Same **PEP** status

High cosine similarity

High risk rating

Other considerations include

DOB difference, country, target / non-target on sanction list, length of name in database

Name screening practices

Reference

Reference: Monetary Authority of Singapore Strengthening AML / CFT Name Screening Practices Information Paper April 2022

Task 2A Risk rating model

Using KYC and transaction statistics to assign each customer a risk rating

FINTRAC Indicators of a high-risk customer include:

- Anonymity → Multiple transactions below the reporting threshold amount
- Speed over cost-effectiveness → High volume of wire transfers instead of one single large transfer

Type of data

Customers (KYC)

LTM transactions

Provided features

- Name, Customer ID
- Gender
- PEP
- Occupation risk
- Birth date
- Onboarding date
- Country of residence
- Country of income
- Type = CASH or WIRE?
- Direction = IN or OUT?
- Sum of transaction amount
- Count of transactions

Created features

- Time since onboarding
- Age

Target variable = Risk Rating

60% Low 35% Medium 5% High

Avg of transaction amount

- Net balance in LTM
- Ratio of CASH vs WIRES
- Ratio of IN vs OUT

Train / validation / test set

Train / test split = 80% / 20%
5-fold cross validation
Stratify on Risk Rating
Shuffle = True

Reference: FINTRAC Money laundering and terrorist financing indicators—Financial entities

Evaluation metric for ordinal classification to assign customers into 3 risk buckets

Extension of AUROC from bipartite ranking to multipartite ranking (Furnkranz, Hullermeier and Vanderlooy, 2009)

Transparent modelling alternative with binary classifiers instead of multiclass classification

Reference: A Simple Approach to Ordinal Classification (E. Frank and M. Hall, 2001), Learning to Classify Ordinal Data: The Data Replication Method (J. Cardoso and J. Pinto da Costa, 2007)

Data transformation pipeline and modelling

Reference: Thermometer Encoding: Evaluating the Impact of Categorical Data Encoding and Scaling on Neural Network Classification Performance (E. Norris, S. Vahid and C. Hand, 2012)

Model performance evaluation on test set: multipartite AUROC

Macro-averaged AUC: 0.978

Model performance: gain and lift on test data

Gain @ 1st Decile

Low vs Medium: 27%

Low vs High: 100%

Medium vs High: 50%

Lift @ 1st Decile

Low vs Medium: 2.7x (max possible lift)

Low vs High: 10x

Medium vs High: 5x

Model performance: analysis insights on test data

* These are scaled values

FINTRAC ML Indicators

"...transfers on an in and out basis..."

"...structuring amounts to avoid client identification or reporting thresholds..."

Reference: FINTRAC Money laundering and terrorist financing indicators—Financial entities

How does the model predicts high risk customers?

Prescriptive Analytics: applying cost-sensitive structure to improve financial inclusion

Task 2B 50 bad actors

Task 2B: Supervised Learning of Bad Actors

Binary Classification Approach

Highly imbalanced dataset

Top 50 bad actors represent just **0.005**% of all customers. (*)

(*) Balanced class weights during training to deal with class imbalance

Average precision as performance metric

- Measures area under Precision-Recall curve
- Useful when the positive class is rare
- Emphasizes high TPR in top-ranked positive samples
- Less sensitive to class imbalance

Task 2B: Supervised Learning of Bad Actors

Performance Evaluation and Insights

Low AP = 0.0018 (37x baseline)

Classification Tradeoff

Prob. Threshold = 0.0044

100% recall

52% **FPR**

Important features

Task 3 Graph data

Task 3 Graph Analytics

Customer connections: feature engineering with self-supervised learning to enhance risk models

Aggregated Features

Embeddings

Manual feature engineering

neighbour transactions statistics (max, min, std dev, correlation coefficients)

Automated feature extraction node2vec

One-hop neighbourhood

one hop forward/backward

Flexible walk

Breadth and depth search strategies

Figure 2: Illustration of the random walk procedure in node2vec. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases α .

48% Low 40% Medium 12% High

- Customer ID
- EMT (over 12 months)

Created features

Node2vec embeddings

Network Statistics

361k customers (*)

466k directed payments

Edge weights as probability

Reference: node2vec: Scalable Feature Learning for Networks: http://arxiv.org/abs/1607.00653

(*) Followed a random imputation within class for customers not present in the network.

Customers

Connections

Node2Vec directed graph embedding visualization

Bad actors as middle man for layering

Node2Vec directed graph embedding visualization

Bad actors as middle man for layering - Out Transactions

Node2Vec directed graph embedding visualization

Bad actors as middle man for layering – In Transactions

Task 3 Graph Analytics

Performance improvements and importance of graph embeddings

High AP = 0.0184 (368x baseline)

Model performance evaluation on test set (vs 3-fold CV on train set) (Baseline AP = 0.000050) CV AP in train set mean CV AP in train set AP in test set test set AP= 0.0184 368x baseline train set CV AP min = 0.0350max = 0.11150.00 0.02 0.04 0.10 0.12 0.14 0.08 Average Precision (AP) = AUPRC score

Classification Tradeoff

Prob. Threshold = 0.0011

100% recall

41% FPR

Improvement on Task 2B

FPR with 100% Recall

10x improvement

Reduced FPR by 11%

Conclusions and recommendations

Conclusions and Recommendations

Thank you

March 25th, 2023