

Towards Adaptive Resilience

Managing uncertainties and exploiting predictability across timescales

James Doss-Gollin Upmanu Lall Jonathan Lamontagne Columbia University

9 December 2019

AGU Fall Meeting 2019, Abstract H11G-07 San Francisco, CA

Conceptual Framing

Motivating example

How much to raise levees in the Netherlands (Eijgenraam et al., 2014; Oddo et al., 2017; van Dantzig, 1956)?

Figure 1: Construction workers raise a 12 km stretch of a sea dike by 2 m to meet new safety standards. Source: Teake Zuidema via PBS.

Tools for flood risk management

- Integrate financial, structural, operational instruments
- Permanent structures → debt → fragility
- Preserving future options increases adaptive capacity

Figure 2: Adapted from Doss-Gollin et al. (2019, fig. 2)

Numerical Experiments

Deterministic DP ⇒ **optimal construction policy**

State variables height of the levee

Decision variables how much to raise levee (A_t)

State transition let $p_f(S_t, t)$ be probability of flood; then

$$S_{t+1} = \begin{cases} S_t + A_t & \text{with probability} \quad 1 - p_f \\ 0 & \text{with probability} \quad p_f \end{cases}$$

Economics Capital costs of levee construction plus fair insurance premium for residual risk

Objective minimize expected cost of decision pathway

Modeling flood risk

Does it matter which scenario we converge to?

What is sensitivity to decadal variability?

Model LFV as damped sine wave, vary phase ϕ :

Wrapup

Next steps

Decisions sensitive to rate at which uncertainties resolved

What have we learned?

- Premise: deferring capital costs can support flexibility.
- Magnitude of risk in the distant future matters a lot for our total costs, not much for optimal decision today
- If low-frequency variability dominates your near-term risk, adjust your decisions accordingly

Deferring investment \neq be reactive

Acknowledgements

Thanks to co-authors:

- Upmanu Lall (Columbia)
- Jonathan Lamontagne (Tufts)

funders:

- NSF GRFP
- Columbia University

and many insightful colleagues!

Thanks!

¥,**○** @jdossgollin

Dowload annotated slides: https://jamesdossgollin.me

References i

- Cook, Edward R et al. (2010). "Megadroughts in North America: Placing IPCC Projections of Hydroclimatic Change in a Long-Term Palaeoclimate Context". Journal of Quaternary Science 25.1. DOI: 10.1002/jqs.1303.
- Doss-Gollin, James et al. (2018). "Heavy Rainfall in Paraguay during the 2015-2016 Austral Summer: Causes and Sub-Seasonal-to-Seasonal Predictive Skill". *Journal of Climate* 31.17. DOI: 10.1175/JCLI-D-17-0805.1.
- Doss-Gollin, James et al. (2019). "Robust Adaptation to Multiscale Climate Variability". *Earth's Future* 7.7. DOI: 10.1029/2019EF001154.
- Eijgenraam, Carel et al. (2014). "Economically Efficient Standards to Protect the Netherlands Against Flooding". INFORMS Journal on Applied Analytics 44.1. DOI: 10.1287/inte.2013.0721.
- Oddo, Perry C. et al. (2017). "Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management". Risk Analysis 0.0. DOI: 10.1111/risa.12888.
- Van Dantzig, D. (1956). "Economic Decision Problems for Flood Prevention". *Econometrica* 24.3. DOI: 10.2307/1911632.

Supplemental Figures

LFV Matters I

Figure A1: Río Paraguay at Asunción (Doss-Gollin et al., 2018)

James Doss-Gollin. AGU FM19, H11G-07.

LFV Matters II

Figure A2: Fig. 8 of Cook et al. (2010)

LFV Matters III

Figure A3: Fig. 1 of Doss-Gollin et al. (2019)

James Doss-Gollin. AGU FM19, H11G-07.

Case Study I

Figure A4: GEV Distribution of Storm Surges

Case Study li

Figure A5: A more realistic parameterization of mean sea level Oddo et al. (based on 2017)

James Doss-Gollin. AGU FM19, H11G-07.