Lab4 732A51 Bioinformatics Group 9

Duc Duong, Martin Smelik, Raymond Sseguya

8 December 2018

Question 1

In overall, the code provided will analysis of gene expression data from HUVEC1 and Ocular Vascular Endothelial2 Cells.

The first step is to download the data with the code GSE20986 using getGEOsuppFiles function. Then untar, unzip it to data folder. A data frame called phenodata is created to hold the metadata of the data. It's also written to a file with the same name.

```
library(GEOquery)
#The data folder should be empty
x = getGEOSuppFiles("GSE20986")
##
size
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics_Labs/Lab
4/GSE20986/GSE20986_RAW.tar 56360960
##
isdir
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics_Labs/Lab
4/GSE20986/GSE20986 RAW.tar FALSE
##
mode
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics Labs/Lab
4/GSE20986/GSE20986_RAW.tar 666
##
mtime
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics Labs/Lab
4/GSE20986/GSE20986 RAW.tar 2018-12-13 18:00:21
##
ctime
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics Labs/Lab
4/GSE20986/GSE20986_RAW.tar 2018-12-13 17:59:41
##
atime
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics Labs/Lab
4/GSE20986/GSE20986_RAW.tar 2018-12-13 17:59:41
##
exe
```

```
## C:/Users/Duong Minh Duc/Documents/GitHub/Bioinformatics Labs/Lab
4/GSE20986/GSE20986_RAW.tar no
untar("GSE20986/GSE20986_RAW.tar", exdir = "data")
cels = list.files("data/", pattern = "[gz]")
sapply(paste("data", cels, sep = "/"), gunzip)
## data/GSM524662.CEL.gz data/GSM524663.CEL.gz data/GSM524664.CEL.gz
##
                13555726
                                       13555055
                                                              13555639
## data/GSM524665.CEL.gz data/GSM524666.CEL.gz data/GSM524667.CEL.gz
                13560122
                                       13555663
                                                              13557614
## data/GSM524668.CEL.gz data/GSM524669.CEL.gz data/GSM524670.CEL.gz
##
                13556090
                                       13560054
                                                              13555971
## data/GSM524671.CEL.gz data/GSM524672.CEL.gz data/GSM524673.CEL.gz
##
                13554926
                                       13555042
                                                              13555290
phenodata = matrix(rep(list.files("data"), 2), ncol =2)
class(phenodata)
## [1] "matrix"
phenodata <- as.data.frame(phenodata)</pre>
colnames(phenodata) <- c("Name", "FileName")</pre>
phenodata$Targets <- c("iris",</pre>
                        "retina"
                        "retina",
                        "iris",
                        "retina",
                        "iris",
                        "choroid",
                        "choroid",
                        "choroid",
                        "huvec",
                        "huvec",
                        "huvec")
#Write the list of downloaded content to a file
write.table(phenodata, "data/phenodata.txt", quote = F, sep = "\t", row.names
```

The, they use the read.affy function to read the data and stored it in an object called celfiles. The boxplot function will display the microarray distributions. The values in boxplots are the log base 2 intensities of both pm and mm probes.

```
library(simpleaffy)
#Using read.affy function to read..
celfiles <- read.affy(covdesc = "phenodata.txt", path = "data")
boxplot(celfiles)
##</pre>
```


The second boxplot is still the same. But, it is couloured and the labels are made verticaled for easier reading.

```
library(RColorBrewer)
cols = brewer.pal(8, "Set1")
eset <- exprs(celfiles)
samples <- celfiles$Targets
colnames(eset)

## [1] "GSM524662.CEL" "GSM524663.CEL" "GSM524664.CEL" "GSM524665.CEL"
## [5] "GSM524666.CEL" "GSM524667.CEL" "GSM524668.CEL" "GSM524669.CEL"
## [9] "GSM524670.CEL" "GSM524671.CEL" "GSM524672.CEL" "GSM524673.CEL"

colnames(eset) <- samples
boxplot(celfiles, col = cols, las = 2) #las=2 make the axis labels horizontal</pre>
```


In the next step, they use dist function to calculate the distance of the data from 12 samples. Then, use hclust function to analysis hierarchical clusters and then plot it as a cluster dendrogram.

```
distance <- dist(t(eset), method = "maximum")
clusters <- hclust(distance)
plot(clusters)</pre>
```

Cluster Dendrogram

distance hclust (*, "complete")

The below block will convert celfiles objects (AffyBatch type) into an ExpressionSet though gcrma function. This function will use the robust multi-array average (RMA) expression measure with help of probe sequence. When converting, the data is being normalized. Two boxplots show the data before and after normalized is drawn to compare.

```
require(simpleaffy)
require(affyPLM)
celfiles.gcrma = gcrma(celfiles)

## Adjusting for optical effect..........Done.
## Computing affinities.Done.
## Adjusting for non-specific binding.......Done.
## Normalizing
## Calculating Expression

par(mfrow=c(1,2))
boxplot(celfiles.gcrma, col = cols, las = 2, main = "Post-Normalization")
boxplot(celfiles, col = cols, las = 2, main = "Pre-Normalization")
```

Post-Normalization

Pre-Normalization

And then, they draw the cluster dndrogram of the normilizated data.

```
dev.off()
## null device
## 1
distance2 <- dist(t(exprs(celfiles.gcrma)), method = "maximum")
clusters2 <- hclust(distance2)
plot(clusters2)</pre>
```

In the next step, a matrix call design is created. It contains the name of the names of genes and which samples it belongs to. A contrast matrix is also created by the makeContrasts function. It includes three pairs of having versus the others.

```
library(limma)
phenodata
##
                         FileName Targets
               Name
## 1
      GSM524662.CEL GSM524662.CEL
                                     iris
      GSM524663.CEL GSM524663.CEL
                                   retina
## 2
## 3
     GSM524664.CEL GSM524664.CEL
                                   retina
## 4 GSM524665.CEL GSM524665.CEL
                                     iris
      GSM524666.CEL GSM524666.CEL
                                   retina
## 5
## 6 GSM524667.CEL GSM524667.CEL
## 7
      GSM524668.CEL GSM524668.CEL choroid
## 8 GSM524669.CEL GSM524669.CEL choroid
## 9 GSM524670.CEL GSM524670.CEL choroid
```

```
## 10 GSM524671.CEL GSM524671.CEL
                                     huvec
## 11 GSM524672.CEL GSM524672.CEL
                                     huvec
## 12 GSM524673.CEL GSM524673.CEL
                                     huvec
samples <- as.factor(samples)</pre>
design <- model.matrix(~0+samples)</pre>
colnames(design)
## [1] "sampleschoroid" "sampleshuvec"
                                           "samplesiris"
                                                             "samplesretina"
colnames(design) <- c("choroid", "huvec", "iris", "retina")</pre>
design
##
      choroid huvec iris retina
## 1
                  0
                        1
                               1
## 2
            0
                  0
                        0
## 3
            0
                  0
                        0
                               1
## 4
            0
                  0
                        1
                               0
## 5
            0
                  0
                        0
                               1
## 6
            0
                  0
                        1
                               0
            1
                               0
## 7
                        0
                        0
                               0
## 8
            1
                  0
                               0
## 9
            1
                  0
                        0
                               0
## 10
            0
                  1
                        0
            0
                               0
## 11
                  1
                        0
## 12
            0
                        0
                               0
## attr(,"assign")
## [1] 1 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$samples
## [1] "contr.treatment"
contrast.matrix = makeContrasts(
  huvec_choroid = huvec - choroid,
  huvec_retina = huvec - retina,
  huvec iris = huvec - iris,
  levels = design)
```

In this step. They use the design matrix to fit the linear model celfiles.gcrma expressionSet created before by using the LMFit function. The result called fit is used in contrasts.fit function with the contrast matrix. They continue with extracting some t value, F value. by the eBayes function.

```
fit = lmFit(celfiles.gcrma, design)
huvec_fit <- contrasts.fit(fit, contrast.matrix)
huvec_ebay <- eBayes(huvec_fit)</pre>
```

In the next step, the topTable function with number = 100000 will extract the top-ranked genes from the result before. getSYMBOL function is called to map that 100000 genes with the hgu133plus2. The final result is printed below.

```
library(hgu133plus2.db)
library(annotate)
probenames.list <- rownames(topTable(huvec ebay, number = 100000))</pre>
getsymbols <- getSYMBOL(probenames.list, "hgu133plus2")</pre>
results <- topTable(huvec ebay, number = 100000, coef = "huvec choroid")
results <- cbind(results, getsymbols)</pre>
summary(results)
##
        logFC
                          AveExpr
                                                               P.Value
                                              t
## Min.
          :-9.19111
                       Min.
                            : 2.279
                                        Min.
                                              :-39.77473
                                                            Min.
                                                                   :0.0000
## 1st Qu.:-0.05967
                       1st Qu.: 2.281
                                        1st Qu.: -0.70649
                                                            1st Qu.:0.1523
## Median : 0.00000
                       Median : 2.480
                                       Median : 0.00000
                                                            Median :0.5079
## Mean
                       Mean
                                       Mean
                                                            Mean
         :-0.02353
                            : 4.375
                                                  0.07441
                                                                   :0.5346
##
   3rd Qu.: 0.03986
                       3rd Qu.: 6.241
                                        3rd Qu.:
                                                  0.67455
                                                            3rd Qu.:1.0000
##
   Max. : 8.67086
                       Max.
                              :15.541
                                        Max. :296.84201
                                                            Max.
                                                                   :1.0000
##
##
      adj.P.Val
                                         getsymbols
## Min.
          :0.0000
                     Min.
                            :-7.710
                                      YME1L1 :
                     1st Qu.:-7.710
##
   1st Qu.:0.6036
                                      HFE
                                                  15
## Median :1.0000
                     Median :-7.451
                                                  14
                                      CFLAR
## Mean
                                                  14
           :0.7436
                     Mean
                            :-6.582
                                      NRP2
                                      ARHGEF12:
## 3rd Qu.:1.0000
                     3rd Qu.:-6.498
                                                  13
## Max.
           :1.0000
                                      (Other):41857
                     Max.
                            :21.290
##
                                      NA's :12740
```

The results are grouped into three groups. Group 3 includes genes that adj.P.Val < 0.05 and logFC < -5. Group 2 contains gene that adj.P.Val < 0.05 and logFC > 5, and the rest is group 1. Number of gene in each groups is printed. Data in group 1 means Not Significant, group 2 means "Upregulated" and group 3 means "Downregulated". A scatter plot is draw, in which x = logFC and y = -1*log10(adj.P.Val)

```
results$threshold <- "1"
a <- subset(results, adj.P.Val < 0.05 & logFC > 5)
results[rownames(a), "threshold"] <- "2"</pre>
b <- subset(results, adj.P.Val < 0.05 & logFC < -5)
results[rownames(b), "threshold"] <- "3"</pre>
table(results$threshold)
##
##
             2
                    3
## 54587
            33
                   55
library(ggplot2)
volcano <- ggplot(data = results,</pre>
                   aes(x = logFC, y = -1*log10(adj.P.Val),
                       colour = threshold,
                       label = getsymbols))
volcano <- volcano +
```


Question2

The three constrast are: + huvec - choroid,

- + huvec retina,
- + huvec iris

We will choose the first sample of each type to make analysis. Here is the plots of raw data.

```
iris <- eset[,1]
retina <- eset[,2]
choroid <- eset[,7]
huvec <- eset[,10]

plot(x=huvec ,y=iris,xlab="huvec",ylab="iris", main="Scatterplot of raw data")</pre>
```

Scatterplot of raw data

plot(x=huvec ,y=retina,xlab="huvec",ylab="retina", main="Scatterplot of raw
data")

Scatterplot of raw data

plot(x=huvec ,y=choroid,xlab="huvec",ylab="choroid", main="Scatterplot of raw
data")

Scatterplot of raw data

And here, for the normalized data:

```
huvec_iris <- pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "iris"))
huvec_retina <-
pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "retina"))
huvec_choroid <-
pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "choroid"))
plot(huvec_iris, main="Scatterplot of normalized data")</pre>
```

Scatterplot of normalized data

plot(huvec_retina, main="Scatterplot of normalized data")

Scatterplot of normalized data

plot(huvec_choroid, main="Scatterplot of normalized data")

Scatterplot of normalized data

And here is log-scaled graph

```
plot(x=huvec ,y=iris,xlab="huvec",ylab="iris", main="Scatterplot of log raw
data",log=c('x','y'))
```

Scatterplot of log raw data

plot(x=huvec ,y=retina,xlab="huvec",ylab="retina", main="Scatterplot of log
raw data",log=c('x','y'))

Scatterplot of log raw data

plot(x=huvec ,y=choroid,xlab="huvec",ylab="choroid", main="Scatterplot of log
raw data",log=c('x','y'))

Scatterplot of log raw data

Here is log-scaled graph tirh normalized data

```
huvec_iris <- pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "iris"))
huvec_retina <-
pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "retina"))
huvec_choroid <-
pairwise.comparison(celfiles.gcrma, "Targets", c("huvec", "choroid"))
plot(huvec_iris, log=c('x', 'y'), main="Scatterplot of log normalized data")</pre>
```

Scatterplot of log normalized data

plot(huvec_retina, log=c('x','y'), main="Scatterplot of log normalized data")

Scatterplot of log normalized data

plot(huvec_choroid,log=c('x','y'), main="Scatterplot of log normalized data")

Scatterplot of log normalized data

Here is MA plot

```
iris_huvec <- eset[,c(1,10)]
retina_huvec <- eset[,c(2,10)]
chronoid_huvec <- eset[,c(7,10)]
library(affy)
#inspired by wiki

ma.plot( rowMeans(log2(iris_huvec)), log2(iris_huvec[, 1])-log2(iris_huvec[, 2]), cex=1 , main="MA plot of raw data")</pre>
```

MA plot of raw data

ma.plot(rowMeans(log2(retina_huvec)), log2(retina_huvec[, 1])log2(retina_huvec[, 2]), cex=1, main="MA plot of raw data")

MA plot of raw data


```
ma.plot( rowMeans(log2(chronoid_huvec)), log2(chronoid_huvec[, 1])-
log2(chronoid_huvec[, 2]), cex=1, main="MA plot of raw data" )
```

MA plot of raw data

And MA plot with normalized data

```
#do a quantile normalization
norm_iris_huvec <- normalize.quantiles(iris_huvec)
norm_retina_huvec <- normalize.quantiles(retina_huvec)
norm_chronoid_huvec <- normalize.quantiles(chronoid_huvec)

##normalized
ma.plot( rowMeans(log2(norm_iris_huvec)), log2(norm_iris_huvec[, 1])-
log2(norm_iris_huvec[, 2]), cex=1, main="MA plot of normalized data" )</pre>
```

MA plot of normalized data

ma.plot(rowMeans(log2(norm_retina_huvec)), log2(norm_retina_huvec[, 1])log2(norm_retina_huvec[, 2]), cex=1 , main="MA plot of normalized data")

MA plot of normalized data


```
ma.plot( rowMeans(log2(norm_chronoid_huvec)), log2(norm_chronoid_huvec[, 1])-
log2(norm_chronoid_huvec[, 2]), cex=1 , main="MA plot of normalized data")
```

MA plot of normalized data

And here is the heat map:

```
par(mfrow=c(1,2))
heatmap(as.matrix(distance), main = "Raw data")
```


heatmap(as.matrix(distance2), main = "Normalized data")

Question 3

Volcano plots:

```
results <- topTable(huvec ebay, number = 100000, coef = "huvec retina")
results <- cbind(results, getsymbols)</pre>
summary(results)
##
                                                 t
                                                                   P.Value
        logFC
                            AveExpr
                                : 2.279
## Min.
           :-10.97621
                         Min.
                                          Min.
                                                :-40.23456
                                                                Min.
                                                                       :0.0000
## 1st Ou.: -0.05050
                         1st Ou.: 2.281
                                           1st Ou.: -0.60778
                                                                1st Ou.:0.1564
## Median : 0.00000
                         Median : 2.480
                                          Median : 0.00000
                                                                Median :0.5238
## Mean : -0.03205
                         Mean
                                : 4.375
                                          Mean
                                                : 0.08621
                                                                Mean
                                                                       :0.5414
                         3rd Qu.: 6.241
## 3rd Qu.: 0.04602
                                           3rd Qu.: 0.72396
                                                                3rd Qu.:1.0000
## Max.
          : 8.67086
                         Max.
                                :15.541
                                          Max.
                                                  :296.84201
                                                               Max.
                                                                       :1.0000
##
##
      adi.P.Val
                            В
                                           getsymbols
                           :-7.710
## Min.
           :0.0000
                                       YME1L1 :
                      Min.
                                                    22
## 1st Qu.:0.6128
                      1st Qu.:-7.710
                                                    15
                                       HFE
## Median :1.0000
                     Median :-7.469
                                       CFLAR
                                                    14
## Mean
           :0.7525
                      Mean
                             :-6.614
                                       NRP2
                                                    14
                                                    13
## 3rd Qu.:1.0000
                      3rd Qu.:-6.522
                                       ARHGEF12:
## Max.
           :1.0000
                      Max.
                             :21.290
                                        (Other) :41857
##
                                       NA's
                                                :12740
results$threshold <- "1"
a <- subset(results, adj.P.Val < 0.05 & logFC > 5)
results[rownames(a), "threshold"] <- "2"
b <- subset(results, adj.P.Val < 0.05 & logFC < -5)</pre>
results[rownames(b), "threshold"] <- "3"</pre>
table(results$threshold)
##
##
             2
                    3
       1
## 54557
            24
                   94
library(ggplot2)
volcano <- ggplot(data = results,</pre>
                   aes(x = logFC, y = -1*log10(adj.P.Val),
                       colour = threshold,
                       label = getsymbols))
volcano <- volcano +
  geom point() +
  scale_color_manual(values = c("black", "red", "green"),
                      labels = c("Not Significant", "Upregulated",
"Downregulated"),
                      name = "Key/Legend")
volcano +
  geom_text(data = subset(results, logFC > 5 & -1*log10(adj.P.Val) > 5),
```

```
aes(x = logFC, y = -1*log10(adj.P.Val), colour = threshold, label =
getsymbols) )
```



```
results <- topTable(huvec_ebay, number = 100000, coef = "huvec_iris")</pre>
results <- cbind(results, getsymbols)</pre>
summary(results)
##
        logFC
                           AveExpr
                                               t
                                                                 P.Value
##
   Min.
           :-8.26243
                       Min.
                              : 2.279
                                         Min.
                                                :-42.52934
                                                              Min.
                                                                      :0.0000
##
    1st Qu.:-0.08709
                        1st Qu.: 2.281
                                         1st Qu.: -1.14547
                                                              1st Qu.:0.1252
                       Median : 2.480
##
    Median : 0.00000
                                         Median : 0.00000
                                                              Median :0.3678
                       Mean
                                         Mean
##
   Mean
           :-0.02251
                             : 4.375
                                                : -0.00841
                                                              Mean
                                                                      :0.4888
    3rd Qu.: 0.03905
                        3rd Qu.: 6.241
##
                                         3rd Qu.:
                                                    0.66164
                                                              3rd Qu.:1.0000
    Max.
           : 8.67086
                       Max.
                               :15.541
                                         Max.
                                                :296.84201
                                                              Max.
                                                                      :1.0000
##
##
##
      adj.P.Val
                            В
                                          getsymbols
                             :-7.710
                                       YME1L1 :
##
   Min.
           :0.0000
                     Min.
                                                    22
                     1st Qu.:-7.710
##
    1st Qu.:0.5008
                                       HFE
                                                    15
##
   Median :0.7355
                     Median :-7.230
                                       CFLAR
                                                    14
                             :-6.440
##
    Mean
           :0.6798
                     Mean
                                       NRP2
                                                    14
    3rd Qu.:1.0000
                      3rd Qu.:-6.319
                                       ARHGEF12:
                                                    13
##
                             :21.290
##
    Max.
           :1.0000
                     Max.
                                       (Other) :41857
##
                                       NA's
                                                :12740
results$threshold <- "1"
a <- subset(results, adj.P.Val < 0.05 & logFC > 5)
results[rownames(a), "threshold"] <- "2"</pre>
```

```
b <- subset(results, adj.P.Val < 0.05 & logFC < -5)
results[rownames(b), "threshold"] <- "3"</pre>
table(results$threshold)
##
##
             2
                   3
            25
                  49
## 54601
library(ggplot2)
volcano <- ggplot(data = results,</pre>
                  aes(x = logFC, y = -1*log10(adj.P.Val),
                       colour = threshold,
                       label = getsymbols))
volcano <- volcano +
  geom point() +
  scale_color_manual(values = c("black", "red", "green"),
                     labels = c("Not Significant", "Upregulated",
"Downregulated"),
                     name = "Key/Legend")
volcano +
  geom_text(data = subset(results, logFC > 5 & -1*log10(adj.P.Val) > 5),
aes(x = logFC, y = -1*log10(adj.P.Val), colour = threshold, label =
getsymbols) )
```


The most indicate significantly differentially expressed genes in all vocano plots is "HOXB7" and "IL1RL1" $\,$

Question 4

HOXB7: This protein is a member of the Antp homeobox family. It encodes a protein with a homeobox DNA-binding domain. It is included in a cluster of homeobox B genes located on chromosome 17.

	Qualified GO
GO ID	term
GO:0000978	RNA polymerase II proximal promoter sequence- specific DNA binding
GO:0000981	RNA polymerase II transcription factor activity, sequence- specific
GO:0001077	transcriptional activator activity, RNA polymerase II proximal promoter sequence- specific DNA binding
GO:0003677 GO:0003700	DNA binding DNA binding transcription
	factor activity

IL1RL1 A a member of the interleukin 1 receptor family. This receptor can be induced by proinflammatory stimuli, and may be involved in the function of helper T cells This gene is in a cluster in a region mapped to chromosome 2q12.

GO ID	Qualified GO term
GO:0002113	interleukin-33 binding
GO:0002114	interleukin-33 receptor activity
G0:0004896	cytokine receptor activity

G0:0004908 interleukin-1 receptor activity
G0:0005057 obsolete signal transducer activity, downstream of receptor