

Generic discrimination

Fritz Henglein henglein@diku.dk

Department of Computer Science University of Copenhagen (DIKU)

Advanced Programming DIKU, 2025-10-21

Slides originally presented at SSGEP, Oxford, 2015-07-06

Some simple problems

- Given a list of pointers, how many unique elements does it contain?
- Given a list of pointers, what are its unique elements.
- Given a list of pointer lists, what are its unique pointer lists.
- Given a list of pointer sets (given as lists considered equal modulo permutations and duplicates), what re its unique pointer sets.
- How efficient are your solutions?
- Do they allow copying garbage collection?

Great speed, no abstraction

The C and Java solution:

- Convert pointers to numbers (casting, hashing)
- Use address arithmetic and table lookups.

Consequences:

- Potentially nondeterministic program behavior: ptr = new
 ...; if ptr < 4000 then ...
- No data abstraction: Cannot change implementation, impedes garbage collection.

Great abstraction, no speed

The ML solution:

- Abstract pointers (references): Allow only equality testing, lookup, allocation, update on pointers.
- Use pairwise comparisons.

Great abstraction, no speed

The ML solution:

- Abstract pointers (references): Allow only equality testing, lookup, assignment, update on pointers.
- Use pairwise comparisons.

Consequence:

Theorem

Determining the number of unique elements in a list of n ML references takes $\Omega(n^2)$ equality tests.

Have your cake and eat it too?

Question: Can you sort and partition

- generically: user-defined orders/equivalences;
- fully abstractly: pairwise comparisons determine output;
- scalably: worst-case linear time¹

expressed with very short and simple program code?

Answer: Yes

¹for standard and many other orders/equivalences

Great abstraction, great speed

```
part :: Equiv k -> [k] -> [[k]]

numUniqElems ps = length (part eqRef ps)
uniqElems ps = [ head b | b <- part eqRef ps ]
uniqPtrLists pss = [ head b | b <- part (listE eqRef) pss]
uniqPtrSets pss = [ head b | b <- part (SetE eqRef) pss ]</pre>
```

- Worst-case linear time(= O(number of pointer occurrences))
- Same order of pointers before and after garbage collection (= as if using only equality tests to compute result)

Key ingredient: Discriminator

Provide *n*-ary "comparison" function

```
discRef :: [(Ref a, v)] -> [[v]]
```

to data type instead of binary comparison function

```
== :: Ref a -> Ref a -> Ref a
```

- Fully abstract: Only pairwise equality can be "observed" through discRef (like having only ==).
- Asymptotically optimal performance: O(n) worst-case time (like treating pointers—internally—as numbers).

Generic discrimination: Method

- Expressive domain-specific language for defining orders and equivalences compositionally.
- Inherently efficient (usually linear-time and fully abstract)
 discriminators by structural recursion ("generically") on order
 and equivalence representations.
- Partitioning, sorted partitioning, sorting, joining functions, etc., as applications of discriminators.

Example: Word occurrences

Word occurrences, alphabetically sorted:

```
occs0 :: [(String, Int)] -> [[Int]]
occs0 = sdisc ordString8
```

Word occurrences, in order of occurrence in input

```
occsE :: [(String, Int)] -> [[Int]]
occsE = disc eqString8
```


Example: Word occurrences, case insensitive

Definition of alphabetic order, but case-insensitive:

```
ordString8Ins :: Order String
ordString8Ins = listL (MapO toUpper ordChar8)
```

Word occurrences, case insensitive, alphabetically sorted:

```
occsCaseIns0 :: [(String, Int)] [[Int]]
occsCaseIns0 = sdisc ordString8Ins
```

Word occurrences, case insensitive, order of occurrence in input:

```
occsCaseInsE :: [(String, Int)] [[Int]]
occsCaseInsE = disc (equiv ordString8Ins)
```


Orders

Definition (Total preorder)

A total preorder (order) (T, \leq) is a type T together with a binary relation $\leq \subseteq T \times T$ that is reflexive, transitive and total.

Order constructions

Constructions for defining new orders from old:

- Trivial order on any type
- Standard total orders on primitive types
- Constructions:
 - Lexicographic order (on pair types)
 - Sum order (on sum types)
 - Induced order on domain type by a function to an ordered range type
 - Recursion
 - Inverse order, etc.
- Let's look at some examples.

Order expressions

data Order t where

A *typed language* of order constructions:

ordChar8 = MapO ord (Nat 255)

listL r = MapO fromList

Nat :: Int -> Order Int

```
Triv :: Order t
     SumL :: Order t1 -> Order t2 -> Order (Either t1 t2)
     PairL:: Order t1 -> Order t2 -> Order (t1, t2)
     MapO :: (t1 -> t2) -> Order t2 -> Order t1
     Inv :: Order t -> Order t
     BagO :: Order t -> Order [t]
     SetO :: Order t -> Order [t]
Implicit recursion is allowed. So order expressions may be infinite.
(Think of them as potentially infinite trees.)
Examples:
```

(SumL ordUnit (PairL r (listL r)))

Generic definition of comparison functions

```
lte :: Order t -> t -> bool
```

- Definitional interpreter (= denotational semantics of order representations)
- Idea: Structural recursion on first argument (the order expression)

Generic definition of sorting functions

- Generic definition of 1te corresponds to compositional definition of comparison functions; e.g.
 - Q: Given comparison functions lte r1 and lte r2, how to construct a comparison function lte (PairL r1 r2) for the product order?
 - A:

```
lte (PairL r1 r2) (x1, x2) (y1, y2) =
    lte r1 x1 y1 &&
    if lte r1 y1 x1 then lte r2 x2 y2 else True
```

- Sorting using a comparison function entails $\Omega(n \log n)$ -lower bound on number of comparisons
- Why not define *sorting functions* generically (by structural recursion on order expressions)?

Generic definition of sorting functions: Problem

```
sort :: Order k \rightarrow [k] \rightarrow [k]
```

• Imagine now we want to define the case for Pair r1 r2:

```
sort (Pair r1 r2) xs =
    ... sort r1 ... sort r2 ...
```

- How to do this?
- We need to sort lists of pairs, but both sort r1 and sort r2 can only sort lists of single components—association of components is lost.
- Does not work!
- Idea: Allow for "satellite data" to be associated with keys to be sorted.

Discriminator

Definition (Discriminator)

A function Δ is a *discriminator* for equivalence relation E if

- it maps a list of key-value pairs to a list of groups, where each group contains the value components that are associated with E-equivalent keys in the input (partitioning property);
- it is parametric in the value components: For all binary relations Q, if \vec{x} ($id \times Q$)* \vec{y} then $\Delta(\vec{x})$ Q^{**} $\Delta(\vec{y})$ (parametricity property).

Order discriminator

Definition (Order discriminator)

 Δ is an *order discriminator* for ordering relation O if it

- is a discriminator for $\equiv_{\mathcal{O}}$, the equivalence relation canonically induced by \mathcal{O} , and
- returns the groups of values in ascending *O*-order on the keys giving rise to them (ordered partitioning property).

Partial abstraction

Definition (Key equivalence)

Let P be an equivalence relation. Lists \vec{x} and \vec{y} are key equivalent under P if \vec{x} $(P \times id)^* \vec{y}$.

Definition (Partially abstract discriminator)

A discriminator Δ for equivalence relation E is partially abstract if $\Delta(\vec{x}) = \Delta(\vec{y})$ whenever \vec{x} and \vec{y} are key equivalent under E.

- Result does not depend on particular equivalence class representative.
 - E.g., the particular list representation under set equivalence: $\Delta([([1,4,5],100),([2,3],200)) = \Delta([([5,1,4],100),([3,2],200))$

Full abstraction

Definition (R-correspondence)

Let R be an equivalence relation. Lists $\vec{x} = [(k_1, v_1), \dots, (k_m, v_m)]$ and $\vec{l} = [(l_1, w_1), \dots, (l_n, w_n)]$ are R-correspondent, written $\vec{x} \cong_R \vec{y}$, if m = n and for all $i, j \in \{1 \dots n\}$ we have $v_i = w_i$ and $k_i R k_j \Leftrightarrow l_i R l_j$.

Definition (Fully abstract equivalence discriminator)

A discriminator is a fully abstract equivalence discriminator for E if it respects E-correspondent inputs: For all \vec{x}, \vec{y} , if $\vec{x} \cong_E \vec{y}$ then $\Delta(\vec{x}) = \Delta(\vec{y})$.

 Result depends only on which pairwise equivalences hold between the input keys.

Full implies partial

Proposition

A fully abstract discriminator is also partially abstract, but not necessarily vice versa.

Example

Let D be a fully abstract equivalence discriminator.

- $(x,y) \in E_0$ iff both x,y even or both odd.
- Possible result:
 D[(5, 100), (4, 200), (9, 300)] = [[100, 300], [200]]
- By parametricity, then also:
 D[(5, "foo"), (4, "bar"), (9, "baz")] = [["foo", "baz"], ["bar"]]
- By partial abstraction, then also:
 D[(3, 100), (8, 200), (1, 300)] = [[100, 300], [200]]
- By full abstraction, then also:
 D[(16, 100), (29, 200), (4, 300)] = [[100, 300], [200]]

Partitioning and sorting from discrimination

Sorted partitioning from order discrimination:

```
spart :: Order t -> [t] -> [[t]]
spart r xs = sdisc r [ (x, x) | x <- xs ]</pre>
```

Sorting from sorted partitioning:

```
dsort :: Order t -> [t] -> [t]
dsort r xs = [ y | ys <- spart r xs, y <- ys ]
```

Unique sorting (no duplicates modulo equivalence) from sorted partitioning:

```
usort :: Order t -> [t] -> [t]
usort r xs = [ head ys | ys <- spart r xs ]
```


Basic order discrimination: Bucket sorting

- sdisc requires basic order discriminator sdiscNat n for (the standard order on) small integers [0...n].
- Use bucketing:
 - **1** Allocate/reuse bucket table T[0...n], initialized to empty lists.
 - ② For each key-value pair (k, v) in input, add v to T[k].
 - **③** For $0 \le i \le n$ in ascending order, if T[i] nonempty, append contents to output and reset T[i] to empty.
- Note: Last step requires n (size of bucket table) steps, even if input is very small.

In Haskell:

```
sdiscNat n xs = filter (not . null) (bucket n update xs)
   where update vs v = v : vs
bucket (n :: Int) update xs =
   reverse (elems (accumArray update [] (0, n) xs))
```

Pair discrimination

- Discriminate on first component of keys.
- For each resulting group, discriminate on second component.

Generic order discrimination

- sdisc : A stable generic order discriminator.
- The complete code (except for Bag0, Set0):

```
sdisc :: Order k \rightarrow [(k, v)] \rightarrow [[v]]
sdisc r []
                        = []
sdisc r [(k, v)] = [[v]]
sdisc (Nat n) xs = sdiscNat n xs
sdisc Triv xs = [map snd xs]
sdisc (SumL r1 r2) xs = sdisc r1 lefts ++ sdisc r2 rights
  where (lefts, rights) = split xs
sdisc (PairL r1 r2) xs
   [ vs | ys <- sdisc r1 [ (k1, (k2, v)) | ((k1, k2), v) <- xs ]
         vs <- sdisc r2 ys ]
sdisc (Map0 f r) xs = sdisc r [ (f k, v) | (k, v) <- xs ]
sdisc (Inv r) xs = reverse (sdisc r xs)
```

Asymptotic time complexity

$\mathsf{Theorem}$

For each finite r the function sdisc r executes in worst-case linear time.

Proof: Induction on r.

Note:

- The linear factor depends on r.
- Applies only to nonrecursive types of elements ("finite").

Asymptotic time complexity

Theorem

Let $R \in \mathcal{R}^{\infty}$ and $R' \in \mathcal{R}[r_1]$ such that

$$R = \mathrm{MapO}\,f\left(R'[R/r_1]\right)$$

where $R :: Order\ T$ and $R' :: Order\ T'$. Furthermore let $f :: T \to T'[T/t_1]$ be such that $|f(k)| \le |k|$ and $\mathcal{T}_f(k) = O(|f(k)|^{T'})$. Then $R \in \mathcal{L}$: R is linear-time discriminable.

Corollary

For all standard orders r on first-order regular recursive types, sdisc r xs executes in linear time.

Nonlinearity

Standard lexicographic ordering:

• Flip-flop ordering on lists: Compare last elements, then first, then next-to-last, then second . . . :

Observe:

- sdisc (listL ordChar8): Linear time.
- sdisc (flipflop ordChar8): Quadratic time.

Linear-time: Idea

The recursive type can be polymorphically abstracted in listL:

- Only parametric polymorphic functions can occur in abstracted constructor R, which cannot "touch" (access) those parts of the input that are passed to the recursive calls of the same discriminator.
- Not possible for flipflop— occurrence of reverse in abstracted version is not typable.

Basic equivalence discrimination

- Instead of bucket sort, use basic multiset discrimination (Cai, Paige 1994).
 - Like bucket sort, but
 - Traverse table in key insertion order.
- Yields a fully abstract integer equality discriminator.
- Performance even better than bucket sorting: Final traversal of whole array avoided.
 - No dynamic bucket table allocation required.
 - Use single static bucket array (per thread).

Basic equivalence discriminator in Haskell

```
discNat :: Int -> [(Int, v)] -> [[v]]
discNat size =
  unsafePerformIN (
  do table <- newArray (0, size) [] :: IO (IOArray Int [v])
     let discNat' xs = unsafePerformTO (
         do ks <- foldM (\keys (k, v) ->
                  do vs <- readArray table k
                     case vs of [] -> do writeArray table k [v]
                                          return (k : keys)
                          _ -> do writeArray table k (v : vs)
                                   return keys)
                            [] xs
             foldM (\vss k -> do elems <- readArray table k
                                 writeArray table k []
                                 return (reverse elems : vss))
                       [] ks )
     return discNat')
```

Generic equivalence discrimination

```
disc :: Equiv k \rightarrow [(k, v)] \rightarrow [[v]]
disc _ [] = []
disc_{[(, v)]} = [[v]]
disc (NatE n) xs =
   if n < 65536 then discNat16 xs else disc eqInt32 xs
disc TrivE xs = [map snd xs]
disc (SumE e1 e2) xs = disc e1 [(k, v) | (Left k, v) <- xs] ++
                        disc e2 [ (k, v) | (Right k, v) <- xs ]
disc (ProdE e1 e2) xs =
   [ vs \mid ys \leftarrow disc e1 [ (k1, (k2, v)) \mid ((k1, k2), v) \leftarrow xs ],
          vs <- disc e2 ys ]
disc (MapE f e) xs = disc e [ (f k, v) | (k, v) \leftarrow xs ]
disc (ListE e) xs = disc (listE e) xs
disc (BagE e) xs = discColl updateBag e xs
disc (SetE e) x = discColl updateSet e xs
```

Abstraction properties

Theorem (Full abstraction of sdisc)

sdisc is fully abstract (for ordering) and stable.

Theorem (Abstraction properties of disc)

disc is partially abstract (for equivalence) for equivalences not containing BagE and SetE.

Theorem (Fully abstract equivalence discrimination)

There is a fully abstract generic discriminator edisc with the same asymptotic performance as disc and sdisc.

MSD run times (short lists)

MSD run times (small bags)

MSD run times (medium bags)

MSD run times (large bags)

Variations, extensions

- Domain-theoretic semantics
- Avoiding sparse bucket table traversals for order discrimination and sorting
- Equivalence expressions (analogous to order expressions)
- Bag and set equivalence discrimination
- Run-time order and equivalence normalization for correctness and efficiency
- Combinatory discriminator library (without order/equivalence expressions, requires rank-2 polymorphic types)
- Comparison with complexity of sorting
- Generic tries
- Nontrivial applications: AC-term equivalence, type isomorphism, equijoins

Select related work

- Paige et al. (1987-97): Basic multiset discrimination for pointers, strings, acyclic graphs; application to lexicographic sorting
- Henglein (2003): Unpublished note on multiset discrimination (top-down, bottom-up) and algorithms for circular data structures
- Ambus (MS thesis, 2004): Java discriminator library, internal and external (disk) data, application to asynchronous data coalescing in P2P-based XML Store (see plan-x.org)
- Henglein (ICFP 2008): Order discriminators
- Henglein (JFP, Nov. 2012): Generic top-down discrimination for sorting and partitioning in linear time
- Henglein, Hinze (APLAS 2013): Generic Sorting and Searching
- Kmett (2015): Generic discrimination, streaming

Open problems ("Homework")

- Generic bottom-up discrimination (for acyclic data structures)
- Generic cyclic discrimination (for cyclic data structures)
- Staged implementation (partial evaluation)
- Parallel discrimination

Take-home message: GAS

Simultaneously:

- Genericity: DSL for orders and equivalences for correctness and safety/limited expressiveness
- Abstraction: Statically guaranteed representation independence
- Scalability: Asymptotically optimal computational performance

All equi-abstract interfaces are equivalent, but some are faster than others.

