Génie Logiciel 2

Chapitre 4 : Conception

Dr. Sahar SMAALI

sahar.smaali@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
NTIC	TLSI	Licence 3 GL	

Université Constantine 2 2019/2020. Semestre 5

Conception vs Analyse

Analyse

- focalise sur l'aspect métier des fonctionnalités
- détermine les éléments intervenant dans le système à construire, ainsi que leur structure et leurs relations.
- Ne tient pas compte des contraintes techniques (Implémentation et déploiement).

Conception

- s'intéresse à comment ces fonctionnalités seront implémentées.
- repose sur le domaine métier et le domaine technique.
- apporte des solutions techniques aux descriptions définies lors de l'analyse
- architecture technique, performances et optimisation, stratégies de programmation.

Conception vs Analyse

Identification des objectifs de conception

1. Identification des objectifs de conception

- la définition d'un nombre de propriétés et de critères du système que le reste de la conception doit prendre en compte.
- Ils peuvent être déduits des besoins non fonctionnelles, du domaine d'application ou obtenus auprès du client.
- Exemple : Objectifs de conception : Système de gestion des hospitalisation
 - Tolérance aux pannes : le système doit fournir un backup de la BD en cas de panne.
 - Sécurité: les données pertinentes des patients doivent être cryptées.
 - Portabilité: Le système doit être compatible avec les différentes machines de l'hopital.

1. Identification des objectifs de conception

Décomposition du système

2. Décomposition du système

Un système complexe est composé de sous-systèmes qui interagissent entre eux.

Sous-système :

- représente une partie du système qui est assez petite et simple
- implémentée par une seule équipe de développement ou même par un seul développeur.
- encapsule l'état et le comportement des classes et paquetages qui le constituent.

Décomposition du système :

- utilise les mêmes techniques de recherche des objets et classes lors de l'analyse.
- Processus itératif où plusieurs opérations peuvent être appliquées telles que fusionner ou diviser des sous-systèmes.
- Le modèle de sous-systèmes (diagramme de classes) doit être raffiné chaque fois un nouveau problème est abordé ou un nouveau objectif est fixé ou un nouveau problème est affronté.

2. Décomposition du système

- Exemple
- Décomposition selon les fonctionnalités du systèmes
- 3 sous-systèmes

2. Décomposition du système

Exemple

Un sous-Système contenant toutes les classes participantes dans la gestion des patients (classes dialogues, contrôles, entités et autres)

Spécification des interfaces

3. Spécification des interfaces

- Une interface représente un contrat permettent de connecter des sous-systèmes entre eux sans connecter des classes spécifiques dans ces sous-systèmes.
- Définition des sous-systèmes en termes de services qu'il exposent aux autres soussystèmes.
- Un service se définit par un ensemble d'opérations qui partagent le même objectifs.
- Concentrer sur l'interface plutôt que sur sa mise en œuvre : minimiser la quantité d'informations fournies sur l'implémentation.
- Séparer la spécification de fonctionnalité (l'interface) de son implémentation par une classe ou un sous-système.

Université Constantine 2 © Dr. Sahar Smaali

3. Spécification des interfaces

- Deux types d'interface :
- Interfaces requise: Ce sont des interfaces qui fournissent un service au composant et dont il a besoin pour fonctionner.
- ✓ Interfaces fournies: Ce sont des interfaces par lesquels le composant fourni lui-même un service

Diagramme de composants

4. Diagramme de composants

 Les diagrammes de composants permettent de modéliser les composants et leurs interactions

Composant :

- est une unité autonome dans un système
- définit un système ou un sous-système de n'importe quelle taille ou complexité
- est une partie physique remplaçable d'un système.
- est facilement réutilisé ou remplacé
- Tous les artefacts énumérés ci-dessous peuvent être considérés comme des composants :
 - fichiers source;
 - sous-systèmes de mise en œuvre ;
 - Contrôles ActiveX;
 - JavaBeans;
 - Entreprise JavaBeans;
 - servlets Java;
 - Pages du serveur Java

Université Constantine 2 © Dr. Sahar Smaali

4. Diagramme de composants

- Les composants fournissent des services via des interfaces.
- Un composant peut être remplacé par n'importe quel autre composant compatible c'est-à-dire ayant les mêmes interfaces.
- Un composant peut évoluer indépendamment des applications ou des autres composants qui l'utilise à partir du moment ou les interfaces sont respectées.

Université Constantine 2 © Dr. Sahar Smaali

4. Diagramme de composants

Un composant peut être vu de 2 manières :

- Boite noire dont nous ne connaissons pas le contenu et auquel nous accédons via les interfaces qui sont la seule partie visible.
- Boite blanche en spécifiant les objets qui constituent le composant et en indiquant leurs relations.

18

4. Diagramme de composants

Exemple

19

Diagramme de déploiement

5. Diagramme de déploiement

Diagramme de déploiement décrit:

- la disposition physique des ressources matérielles qui composent le système et montre la répartition des composants sur ces matériels.
- la nature des connexions de communication entre les différentes ressources matérielles.

• Eléments de Diagramme de déploiement:

- Nœuds
- chemins de communications

Université Constantine 2 © Dr. Sahar Smaali

5. Diagramme de déploiement

Nœud

- une ressource matérielle du système possédant au minimum de la mémoire et parfois aussi des capacités de calcul.
- possède des attributs (quantité de mémoire, vitesse de processeur, marque, type...)

Chemin de communication

 un lien qui permet de modéliser de façon simpliste la communication entre 2 nœuds (liaison Ethernet, USB, série...)

Université Constantine 2 © Dr. Sahar Smaali

5. Diagramme de déploiement

Exemple

