HALEU Demand in No and Low Growth Transitions to Advanced Reactors HALEU Demand Analysis

Nathan Ryan Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

Sept 2, 2021

Outline

- 1 Background Small Modular Reactors X-Energy Xe-100 USNC MMR
- 2 Methods Cyclus
- 3 Conclusion

TABLE II: Mico-reactor design specifications

Design Criteria	USNC MMR TM	X-Energy
		$Xe-100^{TM}$
Reactor type	Modular HTGR	Modular HTGR
Power Output (MWth)	15	200
Enrichment (% ²³⁵ U)	13	15.5
Cycle Length (years)	20	online refuel
Fuel form	TRISO compacts	TRISO pebbles
Reactor Lifetime	20 years	60 years
Coolant	Не	He

- TRIstructural ISOtropic fuel has core of uranium, carbon, and oxygen: and is coated in layers of ceramic
- Roughly the size of billiard balls
- Load follows
- Fuel transitions directly to dry-cask storage

Figure: DOE HALEU Overview [1]

X-energy xe-100 Reactor

Figure: Side view of the X-energy xe-100 reactor. [3]

Figure: UNSC Nuclear Plant side view. [4]

Figure: UNSC Plant Box View. [6]

- 1 Background Small Modular Reactors X-Energy Xe-100 USNC MMR
- 2 Methods
 Cyclus
 Scenarios
- 3 Conclusion

Figure: [2]

Transition Scenarios

Scenario Details:

- SMR deployments begin in 2025
- Scenarios run from 1965 to 2090
- UF₆ processing capacity limits enrichment facilities
- All scenarios incorporate existing reactors, decommissioning on current timelines (e.g. Dresden generating station is active until 2029)

TABLE I: Fuel cycle scenarios

Scenario No.	Advanced Reactor	Demand Growth
1	None	N/A
2	USNC MMR	No growth
3	X-energy Xe-100	No growth
4	USNC MMR	1% growth
5	X-energy Xe-100	1% growth

Figure: [5]

- 1 Background Small Modular Reactors X-Energy Xe-100 USNC MMR
- 2 Methods
 Cyclus
 Scenarios
- 3 Conclusion

Figure: Mass of Enriched Uranium.

Figure: Seperative Work Units needed for enrichment.

- Transition will require a mixture of HALEU production methods and deployments
- Scenario 2 never reaches required power level
- Scenario 3 requires more SWU than 2 due to higher enrichment

Figure: Energy use in each year. [5]

- [1] Infographic: What is high-assay low-enriched uranium (haleu)?, 2020.
- [2] Cyclus, 2021.
- [3] Reactor: Xe-100, 2021.
- [4] Ultra safe nuclear corporation, 2021.
- [5] Amanda M. "Bachmann and Kathryn D. Huff". Comparing haleu demand among advanced reactor fuel cycle transitions. Proceedings of the 2021 ANS Virtual Annual Meeting, pages 134–37, 2021.
- [6] Francesco Venneri.Micro modular reactor (mmr) energy systems, 2019.