1 Operations

higher order roots	$\sqrt[mn]{x+y}$ $\sqrt[3]{2}$	\sqrt[mn]{x+y} \sqrt[3]{2}
root sign	$\sqrt{[x+y]}$	\surd[x+y]
force large fraction	$\frac{a+b}{x+\log\frac{Y}{Z}}$	\frac{a+b}{x+\log\dfrac{Y}{Z}}
Continued fraction	$1 + \frac{2}{3 + \frac{4}{5 + \frac{6}{7 + \cdots}}} = \frac{1}{\sqrt{e} - 1}$	1+\cfrac{2}{
prime	y'' + y' + y = u	y'' + y' + y = u
mod	$a \bmod n = b$ $a \equiv b \pmod n$ $a \equiv b \mod n$ $a \equiv b \pmod n$	<pre>\begin{array}{1} a\bmod n = b \\ a\equiv b\pmod n \\ a\equiv b\mod n \\ a\equiv b\pod n \end{array}</pre>

2 Subscripts and superscripts

multilevel scripts	sub-	$\sum_{\substack{1 \le m \le N, \\ m \text{ odd}}} P(m)$	<pre>\sum_{\substack{ 1 \le m \le N, \\ m\text{ odd}}} P(m)</pre>
-----------------------	------	--	---

sub- and super- scripts before the symbol	$_{n}C_{k}$	{}_n C_k
subscripts and superscripts for large symbols	$_{b}^{a}\sum_{c}^{\prime}$	\sideset{^a_b}{'_c} \sum

3 Sums, integrals, and products

contour integral	\oint_C	\oint_C
double and triple integrals	$\iint_{S} \iint_{S}$	\iint_S \iiint_S
even more integrals	$\iiint_S \int \cdots \int_S$	\iiiint_S \idotsint_S
integrals with alternative limit placement	$\int\limits_{lpha}^{eta}\int\limits_{S}$	\int\limits_\alpha^\beta \iint\limits_S
Unions and inter- sections	$\bigcup_{\alpha \in S} \bigcap_{V \in \mathfrak{V}}$	\bigcup_{\alpha\in S} \bigcap_{V\in\mathfrak{V}}
Direct sums, co- products, and so on	⊙ ⊕ ⊗ ∐ ∀ ∧	<pre>\begin{array}{c} \bigodot \bigoplus\\ \bigotimes \bigsqcup\\ \biguplus \coprod\\ \bigvee \bigwedge\\ \end{array}</pre>

4 Brackets

pairing brackets	(),[],{} , , 	(\;), [\;], \{ \; \} \lvert\;\rvert, \lVert\;\rVert \lceil\;\rceil, \lfloor\;\rfloor
Bracket size can be specified ex- plicitly	$\left(\left(\left(\left(\begin{array}{c} \left(\begin{array}{c} \\ \end{array}\right)\right)\right)\right)\right)$	\Biggl(\biggl(\Bigl(\bigl(\Biggr\}\biggr\}\Bigr\}\bigr\}
visually to large	$\left[\sum_{j} \left \sum_{i} x_{ij}\right ^{2}\right]^{1/2}$	<pre>\left[\sum_j \left \sum_i x_{ij}\right ^2 \right]^{1/2}</pre>
manually-sized	$\left[\sum_{j}\left \sum_{i}x_{ij}\right ^{2}\right]^{1/2}$	\biggl[\sum_j \Bigl \sum_i x_{ij}\Bigr ^2 \biggr]^{1/2}

5 Multiline formulas and piecewise functions

plecewise func- tion/cases	$a_k = \begin{cases} k & \text{for } k \le n/2\\ n & \text{for } k = n/2\\ k - 1 & \text{otherwise} \end{cases}$	<pre>a_k = \begin{cases} k & \text{for \$k \le n/2\$}\\ n & \text{for \$k=n/2\$}\\ k-1 & \text{otherwise}</pre>
multiline equa- tions	$\tan^2 x = \sin^2 x / \cos^2 x$ $= 1/\cos^2 x - 1$	\begin{align*}\tan^2 x
Systems of equations	$\begin{cases} ax + by = r_1 \\ cx + dy = r_2 \end{cases}$	<pre>\left\{\begin{array}{1} ax+by=r_1\\ cx+dy=r_2 \end{array}\right.</pre>

6 Arrows

Implication	$x^2 = 4 \implies x = \pm 2$	$x^2=4 \in x = pm 2$
If and only if	$x^2 = 4 \iff x = \pm 2$	x^2=4 \iff x = \pm 2
Tends to	$x \to +\infty$	x \to +\infty
gets	$A \leftarrow B + C$ $A \xleftarrow{\text{today}} B$ $B \xrightarrow{\text{tomorrow}} C$	A\gets B+C A \xleftarrow{\rm today} B B\xrightarrow{\rm tomorrow}C
Sizable single horizontal arrow	$C \xrightarrow{\text{every day}} D$ (exception Fridays)	<pre>C \xrightarrow [\text{(exception Fridays)}] {\text{every day}} D</pre>
Sizeable single vertical arrows	$\uparrow \Sigma \downarrow \uparrow$	\left\uparrow\sum \right\downarrow\; \Big\updownarrow
Sizable double vertical arrows	$\uparrow \Sigma \downarrow \uparrow$	\left\Uparrow\sum \right\Downarrow \; \Big\Updownarrow

7 Over and underbraces and other embellishments

overline	$\overline{A+B}$	\overline{A+B}
underline	$\underline{A+B}$	\underline{A+B}

			_
Hat	$\widehat{A+B}$		
	\widehat{A+B}		
Tilde	$\widetilde{A+B}$	\widetilde{A+B}	
Vector markers	\overrightarrow{AB} and \overleftarrow{BA}	\overrightarrow{AB}\text{ \overleftarrow{BA}	and }
' Overbrace	$\underbrace{x_1 + x_2 + \dots + x_k}^{k \text{ in total}}$	\overbrace(x_1+x_2+\cdots {k \text{ in total}}	+ x_k}^
Underbrace	$m^n = \underbrace{m \cdot m \cdots m}_{n}$	<pre>m^n = m\cd</pre>	dot m\cdots m}_{n}
Affixing arbitrary symbols	$x\stackrel{?}{\geq} y$	x\overset{?}{\ge}y	