MS317 - Matemática Financeira

Projeto 2

Fernando Gubitoso Marques	RA: 171524
Henrique Reis Campos	RA: 172232
Victor Cesar Casquet	RA: 177905
Nicolas Toledo de Camargo	RA: 242524

1 Parte Primeira

1.1 Questão Dada

Considere duas aplicações (mesmo capital) com as seguintes modalidades:

- (A) Juros compostos anuais de 5% nos anos 1-5, de 6% para os anos 6-10 e de 7% nos anos 11-20.
 - (B) Juros compostos anuais de 6% nos anos 1-10 e x% nos anos 11-20.
 - (1.1) Determine o juro x% que levará a ter o mesmo capital ao final do ano 20.
 - (1.2) Calcule, para ambas as aplicações, o capital ao final do ano 20.
- (1.3) Monte, considerando um capital de 100 mil reais, a tabela contendo juros obtidos e capitais a disposição no final de cada ano.
 - (1.4) Esboce o gráfico dos capitais anuais em função do tempo.

1.2 Automatização da solução

(1.1) Note que para a questão 1.1 dada, podemos descobrir a taxa faltante ao resolver a seguinte equação:

$$x = 100 \cdot \left[\frac{\left(1 + \frac{5}{100}\right)^5 \left(1 + \frac{6}{100}\right)^5 \left(1 + \frac{7}{100}\right)^5}{\left(1 + \frac{6}{100}\right)^{10}} \right]^{\frac{1}{5}} - 100$$
 (1)

Podemos generalizá-la para:

$$x = 100 \cdot \left[\frac{\prod_{j=1}^{N} \frac{(1+i_A)_j}{100}}{\prod_{j=1}^{N-p_k} \frac{(1+i_B)_j}{100}} \right]^{\frac{1}{N-p_k}} - 100$$
 (2)

Onde i_{Aj} e i_{Bj} são as taxas de juros respectivas aos casos A e B no ano j; N é o período desejado para equalizar os capitais de A e B; e p_k é o tempo que falta para completar o período N.

Implementamos então uma função que resolve esta equação para descobrir a taxa faltante ao fornecer como argumentos os períodos de cada taxa para cada aplicação, as taxas dos periodos (faltando a taxa que procuramos) e o período em que queremos o mesmo capital das aplicações.

Para quantias iguais no ano 15, chegamos que o valor de x deve ser de: 5,99%.

(1.2) Criamos uma função que calcula o juros composto de uma unica aplicação com taxas periódicas ao se fornecer os periodos, taxas e capital.

Entao, com a taxa desconhecida encontrada, calculamos o montante de cada aplicacao no ano 20, obtendo:

Capital A: R\$ 335 980.13 Capital B: R\$ 320 428.23

(1.3 & 1.4) Além disso, a partir da função que calculou os juros periódicos, criamos uma tabela com os juros e capitais ao fim de cada ano para cada aplicação e um gráfico indicando o capitais anuais:

Ano	$Juros_A(\%)$	$Montante_A$	$Juros_B(\%)$	$Montante_B$
1	105.00	105 000.00	106.00	106 000.00
2	110.25	110 250.00	112.36	112 360.00
3	115.76	115 762.50	119.10	119 101.60
4	121.55	121 550.62	126.24	126 247.69
5	127.62	127 628.15	133.82	133 822.55
6	135.28	135 285.84	141.85	141 851.91
7	143.40	143 402.99	150.36	150 363.02
8	152.00	152 007.17	159.38	159 384.80
9	161.12	161 127.60	168.94	168 947.89
10	170.79	170 795.26	179.08	179 084.76
11	182.75	182 750.93	189.81	189 812.96
12	195.54	195 543.49	201.18	201 183.83
13	209.23	209 231.54	213.23	213 235.88
14	223.87	223 877.74	226.00	226 009.91
15	239.54	239 549.19	239.54	239 549.19
16	256.31	256 317.63	253.89	253 899.54
17	274.25	274 259.86	269.10	269 109.56
18	293.45	293 458.06	285.23	285 230.75
19	314.00	314 000.12	302.31	302 317.68
20	335.98	335 980.13	320.42	320 428.22

1.3 Questão Criada

Considere agora outras duas apliações (ainda de mesmo capital) com as seguintes modalidades:

- (A) Juros compostos anuais de 10% nos anos 1-20, de 12% 21-30 e de 14% 31-40.
- (B) Juros compostos anuais de 12% nos anos 1-20 e x% nos anos 21-40.
 - (1.1)* Determine o juro x% que levará a ter o mesmo capital ao final do ano 32.
 - (1.2)* Calcule, para ambas as aplicações, o capital ao final do ano 40.
- (1.3)* Monte, agora considerando um capital de 10 mil reais, a tabela contendo juros obtidos e capitais a disposição no final de cada ano.
 - (1.4)* Esboce o gráfico dos capitais anuais em função do tempo.

1.4 Questão Criada - Resolução

(1.1)* Usando a mesma função implementada encontramos a taxa faltante fornecendo agora como argumentos períodos e taxas maiores.

Chegamos que o novo valor da taxa x é: 9.00%

 $(1.2)^*$ Usando a fórmula encontrada no problema dado anteriormente calculamos o montante de cada aplicação no ano 40, obtendo:

Capital A: R\$774 608.83 Capital B: R\$541 376.10

(1.3 & 1.4)* A tabela com os novos valores para os juros e capitais ao fim de cada ano, e o gráfico contendo os capitais anuais:

Ano	$Juros_A(\%)$	$Montante_A$	$\int Juros_B(\%)$	$Montante_{B}$
1	110.00	11 000.00	112.00	11 200.00
2	121.00	12 100.00	125.44	12 544.00
3	133.10	13 310.00	140.49	14 049.28
4	146.41	14 641.00	157.35	15 735.19
5	161.05	16 105.10	176.23	17 623.41
6	177.15	17 715.61	197.38	19 738.22
7	194.87	19 487.17	221.06	22 106.81
8	214.35	21 435.88	247.59	24 759.63
9	235.79	23 579.47	277.30	27 730.78
10	259.37	25 937.42	310.58	31 058.48
11	285.31	28 531.16	347.85	34 785.49
12	313.84	31 384.28	389.59	38 959.75
13	345.22	34 522.71	436.34	43 634.93
14	379.74	37 974.98	488.71	48 871.12
15	417.72	41 772.48	547.35	54 735.65
16	459.49	45 949.72	613.03	61 303.93
17	505.44	50 544.70	686.60	68 660.40
18	555.99	55 599.17	768.99	76 899.65
19	611.59	61 159.09	861.27	86 127.61
20	672.74	67 274.99	964.62	96 462.93
21	753.47	75 347.99	1051.51	105 151.96
22	843.89	84 389.75	1146.23	114 623.67
23	945.16	94 516.53	1249.48	124 948.55
24	$1\ 058.58$	105 858.51	1362.03	136 203.47
25	1 185.61	118 561.53	1484.72	148 472.18
26	$1\ 327.88$	$132\ 788.92$	1618.46	161 846.02
27	$1\ 487.23$	$148\ 723.59$	1764.24	176 424.53
28	$1\ 665.70$	$166\ 570.42$	1923.16	192 316.21
29	$1\ 865.58$	186 558.87	2096.39	209 639.36
30	$2\ 089.45$	208 945.93	2285.22	228 522.92
31	$2\ 381.98$	$238\ 198.36$	2491.07	249 107.44
32	2715.46	$271\ 546.13$	2715.46	271 546.13
33	$3\ 095.62$	309 562.59	2960.06	296 006.03
34	3 529.01	$352\ 901.36$	3226.69	322 669.18
35	$4\ 023.07$	$402\ 307.55$	3517.34	351 734.06
36	4 586.30	458 630.61	3834.16	383 416.99
37	5 228.38	522 838.89	4179.53	417 953.81
38	5 960.36	596 036.34	4556.01	455 601.58
39	6 794.81	679 481.42	4966.40	496 640.52
40	7 746.08	774 608.82	5413.76	541 376.10

2 Parte Segunda

2.1 Questão Dada

Considere dois investimentos (mesmo capital) com as seguintes modalidades:

- (A) Renda de C/10 no final de cada ano para os anos 1-5 e renda C/10 no final dos anos 6-10.
- (B) Renda de c/10 nos anos 1-6, c/10 nos anos 7-9 e c/x no ano 10.
- (2.1) Determine que x levará a ter a mesma renda final.
- (2.2) Calcule neste caso a taxa interna de retorno dos dois investimentos.
- (2.3) Para qual valor de x a renda final será duas vezes o capital?
- (2.4) Calcule a taxa interna cuja renda final é 2c.

2.2 Automatização da solução

(2.1) Criamos uma funcao que ao receber a renda de cada fluxo de cada periodo, cria uma lista com o fluxo de caixas da aplicacao.

Para descobrir o x que leva à mesma renda final das aplicações, criamos outra função que ao receber o fluxo ja conhecido, os periodos e rendas da aplicação que queremos descobrir a renda faltante, faz a diferença da renda total da aplicação conhecida e a renda obtida com as conhecidas da aplicação incompleta. Entao divide a renda faltante pelo numero de periodos da renda faltante e calcula qual o valor x adequado para somar o valor da diferenca. Note que o processo é geral para qualquer capital C (pois podemos dividir tudo por C), então para um capital C o x encontrado foi 3.33.

(2.2) Para descobrir a taxa interna de retorno (TIR), recorremos a formula do fluxo de caixas:

$$C = \sum_{j=1}^{n} \frac{F_j}{(1 + TIR)^j}$$
 (3)

Podemos fazer algumas manipulacoes para transformar a expressão em um polinômio e utilizar uma função para encontrar suas raízes:

Definimos então
$$1 + TIR = q$$
, e também $p = \frac{1}{q}$, (4)

consequentemente, achando a TIR através da nova expressão:

$$\sum_{j=1}^{n} F_j \cdot p^j - C = 0 \tag{5}$$

Criamos uma função para calcular a raiz do polinomio dado o fluxo da aplição:

```
Import numpy as np
2
     def TIR(fluxo):
         q=[]
         coef = fluxo
         coef=np.flip(coef)
         p=np.roots(coef)
         for j in p:
             q.append(1/j)
         cadidatos_q=[]
10
         for i in q:
11
             if i.imag==0:
12
                  cadidatos_q.append(i)
13
         for i in cadidatos_q:
14
             if ((i-1) >= -1) and ((i-1) <= 1):
15
                 return i -1
16
```

Usando essa função, para o problema proposto obtivemos TIR para A: 0.0690, e para B: 0.0662.

- (2.3) Para o item 2.3, com intuito de reutilizar a função que criamos que compara aplicações e descobre a taxa x para a renda faltante dado certo período, podemos criar uma aplicação artificial que ao fim de todo o período renda duas vezes o capital (por exemplo rendendo zero em todos exceto no ultimo período, e rendendo 2C no periodo final). A partir dessa construção descrita acima, para o problema proposto chegamos em x = 1.25.
 - (2.4) Calculando a TIR para a aplicação B que rende 2C no final, temos TIR = 0.104.

2.3 Questão Criada

Considere agora outros dois investimentos (mesmo capital) com as seguintes modalidades:

- (A) Renda de C/20 no final de cada ano para os anos 1-10 e renda C/10 no final dos anos 11-20.
- (B) Renda de C/20 nos anos 1-10, C/15 nos anos 11-19 e C/x no ano 20.
 - (2.1)* Determine que x levará a mesma renda final.
 - (2.2)* Calcule neste caso a taxa interna de retorno dos dois investimentos.
 - (2.3)* Para qual valor de x a renda final será quatro vezes o capital?
 - (2.4)* Calcule a taxa interna cuja renda final é 4c.

2.4 Questão Criada - Resolução

- $(2.1)^*$ Usando os mesmos métodos utilizados no problema (2.1) anterior, encontramos para os novos argumentos um x=2.5.
- $(2.2)^*$ Usando a mesma função definida no problema (2.2) dado anteriormente obtivemos TIR para A: 0.0355, e para B: 0.0329.
- $(2.3)^*$ Seguindo o mesmo raciocínio de encontrar um x dado um valor faltante, chegamos agora em x=0.345.
 - (2.4)* Calculando a TIR para a aplicação B que rende 4C no final, temos TIR = 0.0905.

3 Parte Terceira

3.1 Questão Dada

Deseja-se criar tabelas de amortização italiana para uma dívida de R\$ 100.000 paga durante o período de 10 anos e com juros anuais de 5%.

(3.1) Se não houver quaisquer mudanças às condições dadas, a tabela fica

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	100 000	0
1	5%	15 000	5 000	10 000	90 000	10 000
2	5%	14 500	4 500	10 000	80 000	20 000
3	5%	14 000	4 000	10 000	70 000	30 000
4	5%	13 500	3 500	10 000	60 000	40 000
5	5%	13 000	3 000	10 000	50 000	50 000
6	5%	12 500	2 500	10 000	40 000	60 000
7	5%	12 000	2 000	10 000	30 000	70 000
8	5%	11 500	1 500	10 000	20 000	80 000
9	5%	11 000	1 000	10 000	10 000	90 000
10	5%	10 500	500	10 000	0	100 000

e o total pago é

$$\sum_{k=1}^{10} R_k = R\$ \ 127500$$

(3.2) Se na quinta parcela o pagamento for R\$ 0, a tabela fica

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	100 000	0
1	5%	15 000	5 000	10 000	90 000	10 000
2	5%	14 500	4 500	10 000	80 000	20 000
3	5%	14 000	4 000	10 000	70 000	30 000
4	5%	13 500	3 500	10 000	60 000	40 000
5	5%	0	3 000	-3 000	63 000	37 000
6	5%	15 750	3 150	12 600	50 400	49 600
7	5%	15 120	2 520	12 600	37 800	62 200
8	5%	14 490	1 890	12 600	25 200	74 800
9	5%	13 860	1 260	12 600	12 600	87 400
10	5%	13 230	630	12 600	0	100 000

e o total pago é

$$\sum_{k=1}^{10} R_k = R\$ \ 129450$$

.

(3.3) Se na quinta parcela o pagamento for o dobro do que deveria ser – isto é, $R_5=2\times13.000=26.000$ – então a tabela fica

	k	i_k	R_k	I_k	C_k	D_k	E_k
	0	-	-	-	-	100 000	0
	1	5%	15 000	5 000	10 000	90 000	10 000
	2	5%	14 500	4 500	10 000	80 000	20 000
	3	5%	14 000	4 000	10 000	70 000	30 000
	4	5%	13 500	3 500	10 000	60 000	40 000
	5	5%	26 000	3 000	23 000	37 000	63 000
	6	5%	9 250	1 850	7 400	29 600	70 400
	7	5%	8 880	1 480	7 400	22 200	77 800
	8	5%	8 510	1 110	7 400	14 800	85 200
	9	5%	8 140	740	7 400	7 400	92 600
-	10	5%	7 770	370	7 400	0	100 000

e o total pago é

$$\sum_{k=1}^{10} R_k = R\$ \ 125550$$

.

(3.4) O valor total pago encontra-se ao final de cada respectiva situação.

3.2 Automatização da solução

A solução deste problema foi automatizada usando o *script* Python enviado em conjunto com este relatório. Chamando a função amortização_it pode-se reproduzir as soluções acima com as seguintes chamadas:

```
t1 = amortização_it(100_000, 10, 5)
t2 = amortização_it(100_000, 10, 5, (5, 0))
3    t3 = amortização_it(100_000, 10, 5, (5, 26_000))
4
5    print(f"{t1}\n\nTotal a pagar = {t1.R.sum()}\n")
6    print(f"{t2}\n\nTotal a pagar = {t2.R.sum()}\n")
7    print(f"{t3}\n\nTotal a pagar = {t3.R.sum()}\n")
```

3.3 Questão Criada

Prepare agora uma tabela de amortização italiana para uma dívida de R\$ 10.000 a ser devolvida em 5 anos com juros anuais de 10% nas seguintes condições:

- (3.1) Cada rata segue a regra de amortização italiana.
- (3.2) Na rata 2 a quota capital é nula.
- (3.3) Na rata 3 a quota capital é o dobro do valor que deveria ser pago.
- (3.4) Determinar também o valor total pago em cada uma das três amortizações.

3.4 Questão Criada - Resolução

Agora usando um capital de R $10\,000.00$ durante 5 anos com juros de 10%, temos:

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	10 000	0
1	10%	3 000	1 000	2 000	8 000	2 000
2	10%	2 800	800	2 000	6 000	4 000
3	10%	2 600	600	2 000	4 000	6 000
4	10%	2 400	400	2 000	2 000	8 000
5	10%	2 200	200	2 000	0	10 000

O total pago é

$$\sum_{k=1}^{5} R_k = R\$ \ 13\,000$$

.

(3.2)* Se na segunda parcela não houver pagamento, a tabela fica:

k	$ i_k $	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	10 000	0
1	10%	3 000.00	1 000.00	2 000.00	8 000.00	2 000.00
2	10%	0.00	800.00	-800.00	8 800.00	1 200.00
3	10%	3 813.33	880.00	2 933.33	5 866.67	4 133.33
4	10%	3 520.00	586.67	2 933.33	2 933.33	7 066.67
5	10%	3 226.67	293.33	2 933.33	0.00	10 000.00

Nessa situação o total pago é

$$\sum_{k=1}^{5} R_k = R\$ \ 13560$$

.

 $(3.3)^*$ Caso a segunda parcela tivesse de ser o dobro do que deveria ser – $R_5 = 2 \times 2.600 = 5.200$ – então a tabela ficaria:

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	_	-	-	10 000	0
1	10%	3000.0	1000.0	2000.0	8000.0	2000.0
2	10%	2800.0	800.0	2000.0	6000.0	4000.0
3	10%	5200.0	600.0	4600.0	1400.0	8600.0
4	10%	840.0	140.0	700.0	700.0	9300.0
5	10%	770.0	70.0	700.0	0.0	10000.0

O total pago é

$$\sum_{k=1}^{5} R_k = R\$ \ 12610$$

.

 $(3.4)^*$ O valor total de cada configuração se encontra ao final de cada exemplo.

4 Parte Quarta

4.1 Questão Dada

Deseja-se criar tabelas de amortização francesa para uma dívida de R\$ 100.000 paga durante o período de 10 anos e com juros anuais de 5%.

 $\left(4.1\right)$ Se não houver quaisquer mudanças às condições dadas, a tabela fica

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	100 000.00	0.00
1	5%	12 950.46	5 000.00	7 950.46	92 049.54	7 950.46
2	5%	12 950.46	4 602.48	8 347.98	83 701.56	16 298.44
3	5%	12 950.46	4 185.08	8 765.38	74 936.18	25 063.82
4	5%	12 950.46	3 746.81	9 203.65	65 732.53	34 267.47
5	5%	12 950.46	3 286.63	9 663.83	56 068.70	43 931.30
6	5%	12 950.46	2 803.44	10 147.02	45 921.68	54 078.32
7	5%	12 950.46	2 296.08	10 654.37	35 267.31	64 732.69
8	5%	12 950.46	1 763.37	11 187.09	24 080.22	75 919.78
9	5%	12 950.46	1 204.01	11 746.45	12 333.77	87 666.23
10	5%	12 950.46	616.69	12 333.77	0.00	100 000.00

e o total pago é

$$\sum_{k=1}^{10} R_k = R\$ 129504.60$$

.

(4.2) Se na quinta parcela o pagamento for nulo, a tabela fica

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	100 000.00	0.00
1	5%	12 950.46	5 000.00	7 950.46	9 2049.54	7 950.46
2	5%	12 950.46	4 602.48	8 347.98	8 3701.56	16 298.44
3	5%	12 950.46	4 185.08	8 765.38	7 4936.18	25 063.82
4	5%	12 950.46	3 746.81	9 203.65	6 5732.53	34 267.47
5	5%	0.00	3 286.63	-3 286.63	6 9019.16	30 980.84
6	5%	15 941.69	3 450.96	12 490.73	5 6528.43	43 471.57
7	5%	15 941.69	2 826.42	13 115.27	4 3413.17	56 586.83
8	5%	15 941.69	2 170.66	13 771.03	2 9642.14	70 357.86
9	5%	15 941.69	1 482.11	14 459.58	1 5182.56	84 817.44
10	5%	15 941.69	759.13	15 182.56	0.00	100 000.00

e o total pago nesse caso é

$$\sum_{k=1}^{10} R_k = R\$ \ 131510.29$$

.

(4.3) Se na quinta parcela o pagamento for o dobro do que deveria ser – isto é, $R_5=2\times 12\,960.46=25\,920.92$ – então a tabela fica

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	_	-	100 000.00	0.00
1	5%	12 950.46	5 000.00	7 950.46	92 049.54	7 950.46
2	5%	12 950.46	4 602.48	8 347.98	83 701.56	16 298.44
3	5%	12 950.46	4 185.08	8 765.38	74 936.18	25 063.82
4	5%	12 950.46	3 746.81	9 203.65	65 732.53	34 267.47
5	5%	25 920.92	3 286.63	22 634.29	43 098.24	56 901.76
6	5%	9 954.61	2 154.91	7 799.70	35 298.55	64 701.45
7	5%	9 954.61	1 764.93	8 189.68	27 108.87	72 891.13
8	5%	9 954.61	1 355.44	8 599.16	18 509.70	81 490.30
9	5%	9 954.61	925.49	9 029.12	9 480.58	90 519.42
10	5%	9 954.61	474.03	9 480.58	0.00	100 000.00

e o total pago é

$$\sum_{k=1}^{10} R_k = R\$ \ 127 \ 495.81$$

.

(4.4) O valor total pago em cada situação é encontrado ao final de cada item correspondente

4.2 Automatização da solução

A solução deste problema foi automatizada usando o *script* Python enviado em conjunto com este relatório. Chamando a função amortização_fr pode-se reproduzir as soluções acima com as seguintes chamadas:

```
t1 = amortização_fr(100_000, 10, 5)
t2 = amortização_fr(100_000, 10, 5, (5, 0))
t3 = amortização_fr(100_000, 10, 5, (5, 25_920.92))

print(f"{t1}\n\nTotal a pagar = {t1.R.sum()}\n")
print(f"{t2}\n\nTotal a pagar = {t2.R.sum()}\n")
print(f"{t3}\n\nTotal a pagar = {t3.R.sum()}\n")
```

4.3 Questão Criada

Prepare agora uma tabela de amortização seguindo o modelo francês para uma dívida de R\$ 10.000 a ser devolvida em 5 anos com juros anuais de 10% nas seguintes condições:

- (3.1)* Cada rata segue a regra de amortização francesa.
- (3.2)* Na rata 2 a quota capital é nula.
- $(3.3)^*$ Na rata 3 a quota capital é o dobro do quota que deveria ser paga.
- (3.4)* Determinar também o valor total pago ao final de cada uma das três amortizações.

4.4 Questão Criada - Resolução

(4.1)* Usando as novas condições obtemos os seguintes dados:

k	i_k	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	10 000.00	0.00
1	10%	2637.97	1000.00	1637.97	8362.03	1637.97
2	10%	2637.97	836.20	1801.77	6560.25	3439.75
3	10%	2637.97	656.03	1981.95	4578.30	5421.70
4	10%	2637.97	457.83	2180.14	2398.16	7601.84
5	10%	2637.97	239.82	2398.16	0.00	10000.00

O valor total pago nessa configuração é

$$\sum_{k=1}^{5} R_k = R\$ \ 13189.85$$

(4.2)* Se na segunda parcela o pagamento for R\$ 0, a tabela fica

k	$ i_k $	R_k	I_k	C_k	D_k	E_k
0	-	-	-	_	10 000.00	0.00
1	10.0	2637.97	1000.00	1637.97	8362.03	1637.97
2	10.0	0.00	836.20	-836.20	9198.23	801.77
3	10.0	3698.74	919.82	2778.92	6419.31	3580.69
4	10.0	3698.74	641.93	3056.81	3362.49	6637.51
5	10.0	3698.74	336.25	3362.49	0.00	10000.00

Nesse caso o total pago é

$$\sum_{k=1}^{5} R_k = R\$ \ 13\,734.18$$

 $(4.3)^*$ Se na segunda parcela o pagamento for o dobro do que deveria ser – isto é, $R_5=2\times 2\,637.97=5\,275.94$ – então a tabela fica:

k	$ i_k $	R_k	I_k	C_k	D_k	E_k
0	-	-	-	-	10 000.00	0.00
1	10%	2637.97	1000.00	1637.97	8362.03	1637.97
2	10%	5275.94	836.20	4439.74	3922.29	6077.71
3	10%	1577.21	392.23	1184.98	2737.31	7262.69
4	10%	1577.21	273.73	1303.48	1433.83	8566.17
5	10%	1577.21	143.38	1433.83	0.00	10000.00

 ${\bf E}$ nesse caso o total pago é

$$\sum_{k=1}^{5} R_k = R\$ \ 12645.53$$

 $(4.4)^{\ast}$ A soma de cada caso encontra-se ao final de cada exemplo.