

Projet 'Analyse de données'

Formation Data Scientist ECAM 2018-2019

Antoine LEBLANC Chérif DIALLO Yaroslav KONYSHEV

28.01.2019

Objectifs

- Pour qui?

Gas and Hydrocarbon

- Pour quoi?

Identifier des présences de corps salés sur des images sismiques

- Faire quoi?

Créer un modèle algorithmique efficace et performant.

Plan

- I Introduction Générale et présentation du projet
 - 1. Gas and Hydrocarbon (G&H) et les hydrocarbures
 - 2. Données et premières appréhensions
 - 3. Méthode et méthodologie

II - Le réseau de neurones à convolution

- 1. Schéma du Réseau de neurone à convolution
- 2. Définition des termes et paramètres
 - Convolution
 - Padding et Strides
 - ReLu
 - MaxPooling
 - Dropout
- 3. Exemple

Plan

III - Training

- 1. Train/validation split
- 2. Image preprocessing
- 3. Image augmentation
- 4. Metric
- 5. Model params
- 6. Model fit

IV - Conclusion

- 1. Pistes d'amélioration
- 2. Difficultés rencontrées

I - Introduction et présentation du projet

1 - Gas and Hydrocarbon (G&H) et les hydrocarbures

2 - Données et premières appréhensions

3 - Méthode et méthodologie

1 - Gas and Hydrocarbon (G&H) et les hydrocarbures

G&H, qu'est ce?

Multinationale pétrolière

Hydrocarbures et sel oui, mais quel rapport ?

Roches salines ——piège à hydrocarbures

2 -Données et premières appréhensions

https://www.kaggle.com/c/tgs-salt-identification-challenge

kaggle

4000 images 101x101 pixels

2 -Données et premières appréhensions

2 -Données et premières appréhensions

2 - Données et premières appréhensions

3 - Méthode et méthodologie

1- Réseaux de neurones (artificiels)

3 - Méthode et méthodologie

2- Réseaux de neurones Convolutionnel (CNN)

A Beginner's Guide To Understanding Convolutional Neural Networks bird sunset 0 0 0 cat 0 convolution + max pooling vec nonlinearity convolution + pooling layers fully connected layers Nx binary classification

Convolutional NN Avec U-Net

Classical NN

Reconnaître des formes, des pattern.

Not fully connected layer

Discrimination, reconnaissance

Fully connected layer

II - Le réseau de neurones à convolution et architecture U-Net

- A Schéma du Réseau de neurone à convolution avec U-Net
- B Définition des termes et paramètres
 - Convolution
 - Padding et Striding
 - ReLu
 - MaxPooling
 - Dropout
- C Exemple

A - Architecture U-net

- Convolutions + ReLu
- Déconvolutions + Relu

- -- Downsampling (maxpooling) + dropout
- -- Upsampling

B - Définition des termes - Convolution

Padding et Strides

Activation: ReLU

ReLU Layer

Filter 1 Feature Map

9	3	5	0
0	2	0	1
1	3	4	1
3	0	5	1

MaxPooling

max pool with 2x2 filters and stride 2

Dropout

C - Exemples

http://scs.ryerson.ca/~aharley/vis/
conv/

https://cs.stanford.edu/people/kar pathy/convnetjs/

http://cs231n.github.io/convolutional-networks/

III - Training

- 1. Train/validation split
- 2. Image preprocessing
- 3. Image augmentation
- 4. Metric
- 5. Model params
- 6. Model fit

Train/validation split

Train 80%(3200 images) Validation 20%(800 images); Stratified

Image preprocessing

Scaling from 101 pixels to 128

Image augmentation

Horizontal flip

Image augmentation

Central crop (32x32) and resize

Image augmentation

Shift + flip

Metric

Intersection over Union (IoU)

$$IoU(A,B) = rac{A \cap B}{A \cup B}.$$

$$\frac{TP(t)}{TP(t)+FP(t)+FN(t)}\,.$$

	Prediction	Mask
ТР	1	1
FP	1	0
FN	0	1

Model Params

- 1. Layers: features count (image size): 1(128x128) -> 16(64x64) -> 32(32x32) -> 64(16x16) -> 128(8x8) -> 64(16x16) -> 32(32x32) -> 16(64x64) -> 1(128x128)
- 2. Loss="binary_crossentropy" (https://gombru.github.io/2018/05/23/cross_entropy (<a href="https://gombru.github.io/2018/05/

- 3. Optimizer="adam" The Adam optimization algorithm is an extension to stochastic gradient descent, adopted for deep learning.

 https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
- 4. Metrics=["accuracy"]

Model fit

+Horizontal flip Total = 6400 images

epochs = 100; batch_size = 32

learning_rate = 0.001
early_stopping_patience=10

ReduceLROnPlateau: factor=0.1, patience=5, min_lr=0.00001

IoU = 0.73

Model fit

+Horizontal flip +Central crop Total = 9600 images

epochs = 100; batch_size = 32

learning_rate = 0.001
early_stopping_patience=10

ReduceLROnPlateau: factor=0.1, patience=5, min_lr=0.00001

IoU = 0.70

Model fit

- +Horizontal flip
- +Central crop
- +Shift

Total = 12800 images

epochs = 100; batch_size = 32

learning_rate = 0.001
early_stopping_patience=10

ReduceLROnPlateau: factor=0.1, patience=5, min_lr=0.00001

IoU = 0.709

$$\frac{TP(t)}{TP(t)+FP(t)+FN(t)}\,.$$

$$\frac{TP(t)}{TP(t) + FP(t) + FN(t)}.$$

$$\frac{TP(t)}{TP(t)+FP(t)+FN(t)}\,.$$

$$\frac{TP(t)}{TP(t)+FP(t)+FN(t)}.$$

IV - Pistes d'amélioration

Modifier la fonction d'activation des neurones.

Changer le nombre de convolution successives

Utiliser un padding différent

Changer les valeurs du dropout.

Utiliser Averagepooling

Changer le nombre de filtres / Kernels à chaque convolution

Changer l'architecture du réseau

Difficultés rencontrées

Beaucoup de paramètres + Temps de calcul longs

Masques pas toujours les plus pertinents

Merci

Q&R

