PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 23. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 24. do 32. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (1 pkt)

Rozwinięcie dziesiętne nieskończone ma liczba:

A.
$$\frac{3}{12}$$

B.
$$\frac{4}{12}$$

C.
$$\frac{6}{12}$$

D.
$$\frac{24}{12}$$

Zadanie 2. (1 pkt)

Pan Kowalski założył w banku lokatę oprocentowaną w skali roku na 7%. Jeśli po roku otrzymał z banku 13375 złotych, to znaczy, że ulokował kwotę:

Zadanie 3. (1 pkt)

Wartość wyrażenia $W = \log_3 \frac{1}{81} \log_9 3$ jest równa:

$$A. - 8$$

$$B. -3, 5$$

$$C. -3$$

Zadanie 4. (1 pkt)

Suma przedziałów $(-\infty,10) \cup (10,+\infty)$ jest zbiorem rozwiązań nierówności:

A.
$$|x| < 10$$

B.
$$|x| \le 10$$

C.
$$|x| > 10$$

D.
$$|x| \ge 10$$

Zadanie 5. (1 pkt)

Wartość wyrażenia $W = \sqrt{\left(1 + \sqrt{2}\right)^2} - \sqrt{\left(1 - \sqrt{2}\right)^2}$ jest równa:

$$\mathbf{A.0}$$

C.
$$2\sqrt{2}$$

D.
$$2\sqrt{2}-1$$

Zadanie 6. (1 *pkt*)

Rozwiązaniem równania $x + 2\sqrt{3} = 1 + x\sqrt{3}$ jest liczba:

C.
$$\frac{\sqrt{3}+5}{2}$$

D
$$\frac{\sqrt{3}-5}{2}$$

Zadanie 7. (1 pkt)

Jeśli liczbę x powiększymy o 2, to otrzymamy $\frac{7}{3}$ tej liczby. Wynika stąd, że:

A.
$$x = \frac{7}{3}$$

B.
$$x = \frac{3}{2}$$

C.
$$x = \frac{6}{10}$$

D.
$$x = \frac{20}{3}$$

Zadanie 8. (1 pkt)

Równanie $x^2 - 3x + 4 = 0$:

A. nie ma pierwiastków

B. ma pierwiastki $x_1 = -1, x_2 = 4$

 \mathbf{C} . ma pierwiastki $x_1 = 1, x_2 = -4$

D. ma jeden pierwiastek

Zadanie 9. (1 pkt)

Wielomian $W(x) = x^2(x+1) + 25(x+1)$ można przedstawić w postaci:

A.
$$W(x) = (x+5)^2(x+1)$$

B.
$$W(x) = 25x^2(x+1)$$

C.
$$W(x) = (x^2 + 25)(x + 1)$$

D.
$$W(x) = (x+5)(x-5)(x+1)$$

Zadanie 10. (1 pkt)

Dana jest funkcja
$$f(x) = \begin{cases} x & \text{dla } x < 0 \\ -x - 1 & \text{dla } 0 \le x < 2. \end{cases}$$
 Funkcja f :
$$-\frac{1}{2}x - 3 & \text{dla } x \ge 2$$

A. nie ma miejsc zerowych

B. ma jedno miejsce zerowe

C. ma dwa miejsca zerowe

D. ma trzy miejsca zerowe

Zadanie 11. (*1 pkt*)

Równanie $x^2 = 4x$ jest równoważne równaniu:

A.
$$x = 4$$

B.
$$x = 0$$

C.
$$x(x+4) = 0$$
 D. $x(x-4) = 0$

D.
$$x(x-4) = 0$$

Zadanie 12. (*1 pkt*)

Funkcja $f(x) = \left(-\frac{1}{3}m - 6\right)x + 2$ nie ma miejsc zerowych dla: **A.** m = 18 **B.** m = 2 **C.** m = -2

A.
$$m = 18$$

$$\mathbf{B}$$
, $m=2$

$$C_{\cdot \cdot} m = -2$$

D.
$$m = -18$$

Zadanie 13. (*1 pkt*)

Pierwiastki trójmianu kwadratowego są liczbami przeciwnymi. Te warunki spełnia trójmian:

A.
$$f(x) = \left(x - \frac{1}{3}\right)(x - 3)$$

A.
$$f(x) = \left(x - \frac{1}{3}\right)(x - 3)$$
 B. $f(x) = \left(x + \frac{1}{3}\right)(x - 3)$ **C.** $f(x) = \left(x - 3\right)^2$

C.
$$f(x) = (x-3)$$

D.
$$f(x) = x^2 - 9$$

Zadanie 14. (*1 pkt*)

Wykres funkcji $y = \log_2(4x)$ powstaje z przesunięcia wykresu funkcji $y = \log_2 x$:

A. o 2 jednostki w dół

B. o 2 jednostki w górę

C. o 2 jednostki w prawo

D. o 2 jednostki w lewo

Zadanie 15. (*1 pkt*)

Dany jest ciąg o wzorze ogólnym $a_n = \left(-\sqrt{2}\right)^n \left(n^2 - 9\right)$. Piąty wyraz tego ciągu jest równy: **A.** $-64\sqrt{2}$ **B.** $-32\sqrt{2}$ **C.** $32\sqrt{2}$ **D.** $-64\sqrt{2}$

$$A = -64 \sqrt{2}$$

B.
$$-32\sqrt{2}$$

C,
$$32\sqrt{2}$$

$$D = 64 \sqrt{2}$$

Zadanie 16. (*1 pkt*)

Suma n początkowych wyrazów ciągu arytmetycznego wyraża się wzorem $S_n = 2n^2 - 6n$. Wynika stad, że różnica ciągu jest równa:

$$A. -6$$

Zadanie 17. (*1 pkt*)

Liczby x, x + 2, x + 3 tworzą ciąg geometryczny. Wynika stąd, że:

A.
$$x = -\frac{4}{3}$$

B.
$$x = \frac{4}{3}$$

C.
$$x = -4$$

D.
$$x = 4$$

Zadanie 18. (*1 pkt*)

Kąt ostry α jest większy od kąta ostrego β . Wynika stąd, że:

$$\mathbf{A} \cdot \sin \beta < \sin \alpha$$

B.
$$\cos \beta < \cos \alpha$$

$$\mathbf{C} \cdot \mathbf{tg}\boldsymbol{\beta} > \mathbf{tg}\boldsymbol{\alpha}$$

D.
$$tg\beta < cos\alpha$$

Zadanie 19. (*1 pkt*)

Jeśli dla kąta ostrego $\sin \alpha = \frac{2}{3}$, to:

$$\mathbf{A} \cdot \operatorname{tg} \alpha = \frac{1}{2}$$

B.
$$tg\alpha = 2$$

C.
$$tg\alpha = \frac{\sqrt{5}}{5}$$
 D. $\alpha = \frac{2\sqrt{5}}{5}$

D.
$$\alpha = \frac{2\sqrt{5}}{5}$$

Zadanie 20. (*1 pkt*)

Dany jest trójkat równoramienny ABC o kacie między ramionami $|ACB| = 100^{\circ}$. Punkt O jest środkiem okręgu wpisanego w ten trójkąt. Prosta CO przecina podstawę AB w punkcie D. Miara kąta DOB jest równa:

Zadanie 21. (*1 pkt*)

Pole rombu jest równe 18, a kąt ostry ma miarę 30°. Wysokość rombu jest równa:

A.3

B. $3\sqrt{3}$

$$C.3\sqrt{2}$$

Zadanie 22. (*1 pkt*)

Wszystkich liczb dwucyfrowych o różnych cyfrach jest:

A. 79

B. 80

D. 90

Zadanie 23. (1 pkt)

Jeżeli przekrój osiowy walca jest kwadratem o boku 6, to objętość walca jest równa:

 $\mathbf{A.36}\pi$

 $\mathbf{B.54}\pi$

 \mathbf{C} . 72 π

 $\mathbf{D.}\,216\pi$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (2 *pkt*)

Pierwiastkiem wielomianu $W(x) = x^3 - mx^2 - 3x + m$ jest liczba (-2). Wyznacz parametr m.

Zadanie 25. (2 *pkt*)

Proste o równaniach y = -4x - 1 i $y = a^2x + 5$ są prostopadłe. Wyznacz liczbę a.

Zadanie 26. (2 *pkt*)

Wykaż, że prosta l: y = -2x - 1 jest styczna do okręgu $(x - 3)^2 + (y + 2)^2 = 5$.

Zadanie 27. (2 *pkt*)

Dany jest odcinek \overline{AB} , w którym środek ma współrzędne S = (-5, -11), a koniec B = (9, -3). Wyznacz współrzędne punktu A.

Zadanie 28. (2 pkt)

W trójkącie prostokątnym o kącie prostym przy wierzchołku C dane są |BC|=6, |AC|=2. Wyznacz wartość wyrażenia $W=\sin\alpha+\cos\alpha$, gdzie α jest mniejszym kątem ostrym w tym trójkącie.

Zadanie 29. (*2 pkt*) Wykaż, że w trapezie prostokątnym różnica kwadratów długości przekątnych równa jest różnicy kwadratów długości podstaw.

Zadanie 30. (4 pkt)

Na loterię przygotowano 30 losów, z których n jest wygrywających. Kupujemy 2 razy po jednym losie. Wyznacz n, jeśli wiadomo, że prawdopodobieństwo kupienia w ten sposób dwóch losów wygrywających jest równe $\frac{1}{29}$.

Zadanie 31. (*6 pkt*)

Dany jest trójmian kwadratowy $f(x) = ax^2 + bx + c$.

- a) Dla a=2,b=4,c=-5 wyznacz największą i najmniejszą wartość tego trójmianu w przedziale $\langle -3,2\rangle$.
- b) Wyznacz wzór trójmianu w postaci iloczynowej, jeśli wiadomo, że ma on miejsca zerowe $x_1 = -3$, $x_2 = 4$, a do jego wykresu należy punkt A = (2, -20).

Zadanie 32. (*5 pkt*)
Długości trzech krawędzi prostopadłościanu wychodzących z jednego wierzchołka tworzą ciąg geometryczny o sumie 19. Objętość prostopadłościanu jest równa 216. Wyznacz pole powierzchni całkowitej tego prostopadłościanu.

