Matrix theory

ai24btech11035 - V.Preethika

6)	If $z = x + iy$ and $\omega = (1 - iz)/(z - i)$, then $\omega = 1$
	implies that, in the complex plane

(1983 - 1 Mark)

- (a) z lies on the imaginary axis
- (b) z lies on the real axis
- (c) z lies on unit circle
- (d) None of these
- 7) The points z_1, z_2, z_3, z_4 in the complex plane are the vertices of a parallelogram taken in order if and only if

(1983 - 1 Mark)

- (a) $z_1 + z_4 = z_2 + z_3$
- (b) $z_1 + z_3 = z_2 + z_4$
- (c) $z_1 + z_2 = z_3 + z_4$
- (d) None of these
- 8) If a,b,c and u,v,w are complex numbers representing the vertices of two triangles such that c = (1 - r)a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles

(1985 - 2 Marks)

- (a) have the same area
- (b) are similar
- (c) are congruent
- (d) none of these

9) If $\omega \neq 1$ is a cube root of unity and $1 + \omega^7 =$ $A + B\omega$ then A and B are respectively

(1995S)

- (a) 0, 1
- (b) 2, 1
- (c) 1,0
- (d) -1, 1

- (a) 1ori
- (b) ior 1
- (c) 1or 1
- (d) ior 1
- 1) 12. For positive numbers n_1, n_2 the value of the expression $1 + i_1^n + 1 + i_1^{3n} + 1 + i_2^{5n} + 1 + i_2^{7n}$, where $i = \sqrt{-1}$ is a real number if and only if (1996 -2 Marks)
 - (a) $n_1 = n_2 + 1$
 - (b) $n_1 = n_2 1$
 - (c) $n_1 = n_2$
 - (d) $n_1 > 0, n_2 > 0$
- 1) 13.If $i = \sqrt{-1}$ then $4 + 5\frac{-1}{2} + \frac{i\sqrt{3}}{2}^3 34 + 3\frac{-1}{2} + \frac{3}{2}^3 65$ is a real number if and only if

(1999 - 2 Marks)

- (a) $1 i\sqrt{3}$
- (b) $-1 + i\sqrt{3}$
- (c) $i\sqrt{3}$
- (d) $-i\sqrt{3}$
- 1) 14.If argz < 0, then arg-z argz =

(2000S)

(a) $\pi - \pi$

1) 15.If z_1 , z_2 and z_3 are complex numbers such that $z_1 = z_2 = z_3 = \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 1$, then $z_1 + z_2 + z_3$

(2000S)

- (a) equal to 1
- (b) less than 1
- (c) greater than 3
- 10) Let z and ω betwoonzerocomplexnumbers such that z \neq d) equal to 3 and $Argz + Arg\omega = \pi$, then z equals

(1995S)

(1995S)

- (a) ω
- (b) $-\omega$
- (c) $\overline{\omega}$
- (d) $-\overline{\omega}$
- 11) let z and ω between omplex numbers such that $z \le 1$, $\omega \le 1$ and $z + i\omega = z - i\overline{\omega} = 2$ then z equals
- 1) 16.Let $z_1 and z_2$ be n^{th} roots of unity which substend a right angle at the origin. Then n must be of the form

(2001S)

- (a) 4k + 1
- (b) 4k + 2
- (c) 4k + 3
- (d) 4k
- 1) 17. The complex numbers z_1, z_2 and z_3 satisfying

 $\frac{z_1-z_3}{z_2-z_3} = \frac{1-i\sqrt{3}}{2}$ are the vertices of a triangle which is

(2001S)

- (a) of area zero
- (b) right angled triangle
- (c) equilateral
- (d) obtuse-angled triangle
- 1) 18.For all complex numbers z_1, z_2 satisfying $z_1 = 12$ and $z_2 3 i = 5$, the minimum value of $z_1 z_2$

(2002S)

- (a) 0
- (b) 2
- (c) 7
- (d) 17
- 1) 19.If z = 1 and $\omega = \frac{z-1}{z+1}$ where $z \neq 1$, then $Re\omega is$ (2003S)
 - (a) (
 - (b) $\frac{-1}{7+1^2}$
 - (c) $\frac{z}{z+1} \cdot \frac{1}{z+1^2}$
 - (d) $\frac{\sqrt{2}}{z+1^2}$
- 1) 20. If $\omega \neq 1$ be a cube root of unity and $1 + \omega^{2^n} = 1 + \omega^{4^n}$, then the least positive value of n is

(2004S)

- (a) 2
- (b) 3
- (c) 5
- (d) 6