Lecture

Designing Gestural Interaction

Baptiste Caramiaux

Designing gestural interactions

Imagine you are a designer

You have a list of 24 commands ...

...and you want (have) to build a gestural interface

What do you have to do?

Designing gestural interactions

. . .

Steps

Designing gestural interactions

- 1. Create a **gesture set**
- 2. Define a gesture-command mapping
- 3. Build a gesture recognizer
- 4. Provide a **teaching** method
- 5. Evaluate your design

Create a gesture set

No Grammar

Gestures as symbols

Create a gesture set

Grammar

Hierarchy, articulatory meaning

Orientation + Curvature

Steps

Designing gestural interactions

- 1. Create a gesture set
- 2. Define a gesture-command mapping
- 3. Build a gesture recognizer
- 4. Provide a **teaching** method
- 5. **Evaluate** your design

User-centred approach

Goal

Capture "natural" mappings

User-centred approach

Goal

Capture "natural" mappings

Procedure:

- Several users
- The experimenter shows the effect
- Users have to guess the gesture
- For each command, keep the most frequent gesture

User-centred approach

Select Single₁:tap

Cut: slash

Examples on a touch surface

Select

Select Single₂: lasso

Move

• Cut

(Wilson et al. User-Defined Gestures for Surface Computing. CHI'2009)

Is it a good technique?

Advantage: used expectation from users ("natural" mappings)

Is it a good technique?

Advantage: used expectation from users ("natural" mappings)

Problem: does work for a tiny set of gestures

Is it a good technique?

Advantage: used expectation from users ("natural" mappings)

Problem: does work for a tiny set of gestures

Example with mobile interaction

(Ruiz et al. User-Defined Motion Gestures for Mobile Interaction. CHI'2011)

Questioning the mapping

If no agreement, is gestural interaction needed at all?

Other approaches

Semantic relationships

Focus on the relationship between gestures and commands

Highlight:

- Similarity
- Opposition
- Etc

Steps

Designing gestural interactions

- 1. Create a gesture set
- 2. Define a gesture-command mapping
- 3. Build a gesture recognizer
- 4. Provide a **teaching** method
- 5. Evaluate your design

Gesture recognition

A gesture **recognizer** is a system able to take an **unknown input gesture** and **classify** it as being one element of a predefined **set of gestures** (**vocabulary**).

Two important strategies

- Template-based approach
- Training-based approach

> Designing gestural interactions

Template-based

Record a set of gestures (**vocabulary**) and assign a label to each gesture

> Designing gestural interactions

Template-based

Record a set of gestures (vocabulary) and assign a label to each gesture

Each recorded gesture can be recorded once or multiple times (with the **same label**)

Template-based

Record a set of gestures (vocabulary) and assign a label to each gesture

Each recorded gesture can be recorded once or multiple times (with the **same label**)

For an input unknown gesture, compute distance between the input gesture and the pre-recorded gestures

Template-based

Record a set of gestures (vocabulary) and assign a label to each gesture

Each recorded gesture can be recorded once or multiple times (with the **same label**)

For an input unknown gesture, compute distance between the input gesture and the pre-recorded gestures

Return gesture label w.r.t smallest distance value

Examples

HCI literature

- Rubine (Rubine, 1991)
- \$1 recognizer (Wobbrock et al. 2007)

Machine-learning literature

- k-Nearest Neighbor
- Dynamic Time Warping for classification

\$1 recognizer

http://depts.washington.edu/madlab/proj/dollar/index.html

\$1 recognizer

Advantages:

- Technically: Invariants to change of dynamics, scale and orientation
- HCI: enable novice programmers to incorporate gestures into their UI prototypes

Training-based approach

Training-based approach

gestures and assign a label to each "circle" gesture

Build a **model** allowing for discriminating "square" data from "circle" data

Training-based approach

gestures and assign a label to each "circle" gesture

Build a **model** allowing for discriminating "square" data from "circle" data

For an unknown gesture, take decision based on the model

Examples

Mostly used in the HCI literature

- Support Vector Machine (SVM)
- Naive Bayes (NB)
- Gaussian Mixture Model(GMM) for classification
- Hidden Markov Model (HMM), for temporal sequences

Cf. Lecture on "Gesture Recognition and Machine Learning"

Choosing a gesture recognizer

Complexity of the input data

- 2-d drawn gestures
- Accelerometers/gyroscopes
- Video-based ...

Pose gestures or dynamic gestures

Need for a lot of examples for training

Generalisability etc...

Choosing a gesture recognizer

Complexity of the input data

- 2-d drawn gestures
- Accelerometers/gyroscopes
- Video-based ...

Pose gestures or dynamic gestures

Need for a lot of examples for training

Generalisability etc...

=> Keep track of the state of the art!

Steps

Designing gestural interactions

- 1. Create a gesture set
- 2. Define a gesture-command mapping
- 3. Build a gesture recognizer
- 4. Provide a **teaching** method
- 5. **Evaluate** your design

Learning curve

Learning curve

Learning curve

Criteria?

Learning technique 1: Cheat sheet

1st modality: menu

2nd modality: gesture

Level of learning 1

1st modality: menu

2nd modality: gesture

Time

Example

Guidance through feedforward

Bau, O., Mackay, W. OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets. *UIST'08*

https://vimeo.com/2116172

Steps

Designing gestural interactions

- 1. Create a gesture set
- 2. Define a gesture-command mapping
- 3. Build a gesture recognizer
- 4. Provide a teaching method
- 5. Evaluate your design

Recognizer evaluation

Recognition accuracy: How many times the system the recognise the correct gestures?

Recognizer evaluation

Recognition accuracy: How many times the system the recognise the correct gestures?

Gesture Spotting: can your system spot when a gesture

starts and stops?

Figure 3: The DoubleFlip true positive rate versus distance threshold level.

Ruiz, J., Li, Y. DoubleFlip: A Motion Gesture Delimiter for Mobile Interaction. CHI'2011

Motor control: model of performance

Gesture characteristics impact gesture timing

Motor control: model of performance

Gesture characteristics impact gesture timing

$$T = \sum T(\text{line}) + \sum T(\text{corner}) + \sum T(\text{curve}).$$

Cao, X., Zhai, S. Modeling Human Performance of Pen Stroke Gestures. CHI'07

Motor control: model of performance

Cao, X., Zhai, S. Modeling Human Performance of Pen Stroke Gestures. CHI'07

Don't forget user experience!

Don't forget user experience!

Figure 7. Installation description.

Movement quality-based vs. Point-based interaction

Fdili Alaoui, S., Caramiaux B., Serrano, M., Bevilacqua, F. Movement Qualities as Interaction Modality. DIS'12

Lab study

Assessing learning criteria speed, accuracy?

Procedure

- Target participants (novices, experts, etc...)
- Ask the participants to perform varying tasks (variations are usually controlled, "independent variables", and can be different interaction techniques)
- Compute speed and accuracy for each task ("dependent variables")
- Conclude on the effect of the interaction technique on speed/accuracy

Pros: controlled, replicable, "cheap"

Cons: does not always reflect real world situations

Guidelines

- 1. Motivate the use of gestures in your interactive design
- 2. Review state of the art
- 3. Make gestures accessible to novices
- 4. Make gestures as simple as possible for immediate usability, make gestures learnable otherwise
- 5. Monitor recognizer accuracy and gesture spotting
- 6. Make consistent feedback and feedforward processes
- 7. Assess not only usability, also user experience, attractiveness, expressiveness and skill acquisition