瞬时速度

- 微积分(Calculus) 包括微分(Differential Calculus)和积分(Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为s(t), 求 $t=t_0$ 时的瞬时速度. (应用: 测速仪)设 $\Delta t \neq 0$, 从 t_0 到 $t_0+\Delta t$ ($\Delta t>0$ 时)或 $t_0+\Delta t$ 到 t_0 ($\Delta t<0$ 时)的平均速度为

$$ar{v}_{\Delta t} = rac{\Delta s}{\Delta t} = rac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = rac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}$$

瞬时速度

- 微积分(Calculus) 包括微分(Differential Calculus)和积分(Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为s(t), 求 $t=t_0$ 时的瞬时速度. (应用: 测速仪)设 $\Delta t \neq 0$, 从 t_0 到 $t_0 + \Delta t (\Delta t > 0$ 时)或 $t_0 + \Delta t$ 到 t_0 ($\Delta t < 0$ 0)

$$\bar{v}_{\Delta t} = \frac{\Delta s}{\Delta t} = \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = \frac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}$$

瞬时速度

- 微积分(Calculus) 包括微分(Differential Calculus)和积分(Integral Calculus).
- 求物体沿直线运动的瞬时速度. 若物体随时间变化的函数为s(t), 求 $t=t_0$ 时的瞬时速度. (应用:测速仪)设 $\Delta t \neq 0$, 从 t_0 到 $t_0+\Delta t$ ($\Delta t>0$ 时)或 $t_0+\Delta t$ 到 t_0 ($\Delta t<0$ 时)的平均速度为

$$ar{v}_{\Delta t} = rac{\Delta s}{\Delta t} = rac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = rac{s(t_0) - s(t_0 + \Delta t)}{-\Delta t}$$

则有 $v(t_0) = \lim_{\Delta t \to 0} v_{\Delta t}$. $t = t_0$ 时的瞬时加速度

$$a(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}.$$

瞬时速度-例

例: S(t) = tⁿ,

$$v(t_0) = \lim_{\Delta t \to 0} \frac{(t_0 + \Delta t)^n - t_0^n}{\Delta t} = \lim_{\Delta t \to 0} \frac{n\Delta t \cdot t_0^{n-1} + o(\Delta t)}{\Delta t} = nt_0^{n-1}$$

• 例:自由落体运动: $s(t) = \frac{1}{2}gt^2$, v(t) = gt, 瞬时加速度

$$a(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - gt}{\Delta t} = g.$$

瞬时速度-例

• 例: $S(t) = t^n$.

$$v(t_0) = \lim_{\Delta t \to 0} \frac{(t_0 + \Delta t)^n - t_0^n}{\Delta t} = \lim_{\Delta t \to 0} \frac{n\Delta t \cdot t_0^{n-1} + o(\Delta t)}{\Delta t} = nt_0^{n-1}$$

• 例:自由落体运动: $s(t) = \frac{1}{2}gt^2$, v(t) = gt, 瞬时加速度

$$a(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - gt}{\Delta t} = g.$$

- P和Q是曲线上邻近的两点,P是定点,当Q点沿着曲线无限地接近P点时,割线PQ的极限位置叫做曲线在点P的切线,P点叫做切点。
- 平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;切线和曲线可以有不止一个交点;相反,和曲线只有一个交点的直线不一定是曲线的切线.
- 17世纪,为了设计透镜,需要求 切线.牛顿发明了反设式望远镜.

- P和Q是曲线上邻近的两点,P是定点,当Q点沿着曲线无限地接近P点时,割线PQ的极限位置叫做曲线在点P的切线,P点叫做切点。
- 平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;切线和曲线可以有不止一个交点;相反,和曲线只有一个交点的直线不一定是曲线的切线.
- 17世纪,为了设计透镜,需要求 切线.牛顿发明了反设式望远镜.

- P和Q是曲线上邻近的两点,P是定点,当Q点沿着曲线无限地接近P点时,割线PQ的极限位置叫做曲线在点P的切线,P点叫做切点。
- 平面几何中,将和圆只有一个公共交点的直线叫做圆的切线。这种定义不适用于一般的曲线;切线和曲线可以有不止一个交点;相反,和曲线只有一个交点的直线不一定是曲线的切线。
- 17世纪,为了设计透镜,需要求 切线.牛顿发明了反设式望远镜.

• 求曲线y = f(x)在一点 $(x_0, f(x_0))$ 处的切线,只要求出该切 线的斜率即可. $\Delta x \neq 0$, 过 $(x_0, f(x_0))$ 和 $(x_0 + \Delta x, f(x_0 +$ Δx))两点的斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

若切线与x轴不垂直、则切

线斜率为 $k = \tan \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

例: V = V₀ + kx的斜率为k.

• 求曲线y = f(x)在一点 $(x_0, f(x_0))$ 处的切线,只要求出该切 线的斜率即可. $\Delta x \neq 0$, 过 $(x_0, f(x_0))$ 和 $(x_0 + \Delta x, f(x_0 +$ Δx))两点的斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

若切线与x轴不垂直,则切

线斜率为 $k = \tan \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

例: v = v₀ + kx的斜率为k.

导数 (微商) 的定义

- 设函数y = f(x)在 x_0 的附近 $(x_0 r, x_0 + r)$ 上有定义,若极限 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ 存在,则称f(x)在 x_0 处可导,称极限 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ 为f(x)在 x_0 处的导数(或微商). 记着 $f'(x_0)$ 或 $\frac{df}{dx}|_{x=x_0}$. 若(a,b)上的函数f(x)在(a,b)上处处可导,则f'(x) 是(a,b)上的函数,称为f(x)的导函数.
- 若f(x)在[x₀,b)上有定义,可定义x₀点的右导数定义为

$$f'(x_0 + 0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

左导数类似定义

导数 (微商) 的定义

- 设函数y = f(x)在 x_0 的附近 $(x_0 r, x_0 + r)$ 上有定义,若极限 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ 存在,则称f(x)在 x_0 处可导,称极限 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ 为f(x)在 x_0 处的导数(或微商). 记着 $f'(x_0)$ 或 $\frac{df}{dx}|_{x=x_0}$. 若(a,b)上的函数f(x)在(a,b)上处处可导,则f'(x)是(a,b)上的函数,称为f(x)的导函数.
- 若f(x)在[x0,b)上有定义,可定义x0点的右导数定义为

$$f'(x_0 + 0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

左导数类似定义.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 \pm 0)$ 均存在且相等.
- 注: $f'(x_0)$ 是 $f(x_0)$ 在 x_0 出的变化率. 当 $f'(x_0)$ 越大, $f(x_0)$ 在 x_0 变化越快,它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{\substack{x \to x_0 + 0 \\ \text{ }}} f'(x)$ 和右导数 $f'(x_0 + 0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$ $\lim_{x \to 0+0} f'(x)$ 不存在.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 \pm 0)$ 均存在且相等.
- 注: $f'(x_0)$ 是 $f(x_0)$ 在 x_0 出的变化率. 当 $f'(x_0)$ 越大, $f(x_0)$ 在 x_0 变化越快,它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{x\to x_0+0} f'(x)$ 和右导数 $f'(x_0+0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$ $\lim_{x \to 0 \to 0} f'(x)$ 不存在.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 \pm 0)$ 均存在且相等.
- 注: $f'(x_0)$ 是 $f(x_0)$ 在 x_0 出的变化率. 当 $f'(x_0)$ 越大, $f(x_0)$ 在 x_0 变化越快,它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{\substack{x \to x_0 + 0}} f'(x)$ 和右导数 $f'(x_0 + 0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin\frac{1}{x} - \cos\frac{1}{x}$ $\lim_{x \to 0+0} f'(x)$ 不存在.

- $f'(x_0)$ 存在的充分必要条件是左右导数 $f'(x_0 \pm 0)$ 均存在且相等.
- 注: $f'(x_0)$ 是 $f(x_0)$ 在 x_0 出的变化率. 当 $f'(x_0)$ 越大, $f(x_0)$ 在 x_0 变化越快,它的图像在 $(x_0, f(x_0))$ 处的切线越陡.
- 注: 导函数的右极限 $\lim_{\substack{x \to x_0 + 0}} f'(x)$ 和右导数 $f'(x_0 + 0)$ 是两个不同的概念. 事实上右导数存在时,导函数的右极限不一定存在.

例:
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin \frac{1}{\Delta x} - 0}{\Delta x} = 0$, 因此 $f'(0+0) = 0$. 但 $x \neq 0$ 时, $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, $\lim_{x \to 0+0} f'(x)$ 不存在.

• y = |x|,

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是Dirichlet函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(x)}{\Delta x} = 0.$$

$$\bullet \ y=|x|,$$

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是Dirichlet函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(x)}{\Delta x} = 0.$$

$$\bullet \ y=|x|,$$

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}}-0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是Dirichlet函数.

$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(x)}{\Delta x} = 0.$$

• y = |x|,

$$f'(0+0) = \lim_{\Delta x \to 0+0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta x - 0}{\Delta x} = 1$$
$$f'(0-0) = \lim_{\Delta x \to 0-0} \frac{f(0+\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{-\Delta x - 0}{\Delta x} = -1$$

•
$$y = |x|^3$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{|0 + \Delta x|^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|^3}{\Delta x} = 0$.

•
$$y = x^{\frac{3}{2}}$$
, $f'(0+0) = \lim_{\Delta x \to 0+0} \frac{(0+\Delta x)^{\frac{3}{2}} - 0}{\Delta x} = 0$.

•
$$y = x^2 D(x)$$
, 其中 $D(x)$ 是Dirichlet函数.
$$f'(0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 D(x)}{\Delta x} = 0.$$

•
$$y = x^{\frac{1}{3}}$$
, $f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\frac{1}{3}} - 0}{\Delta x}$. 极限不存在.

• y = xD(x), 其中D(x)是Dirichlet函数.

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x D(x)}{\Delta x} = \lim_{\Delta x \to 0} D(x)$$

f(x)在0点不可导

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x},$$

极限不存在

- $y = x^{\frac{1}{3}}$, $f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\frac{1}{3}} 0}{\Delta x}$. 极限不存在.
- y = xD(x), 其中D(x)是Dirichlet函数.

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x D(x)}{\Delta x} = \lim_{\Delta x \to 0} D(x),$$

f(x)在0点不可导.

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x},$$

极限不存在

- $y = x^{\frac{1}{3}}$, $f'(0) = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\frac{1}{3}} 0}{\Delta x}$. 极限不存在.
- y = xD(x), 其中D(x)是Dirichlet函数.

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x D(x)}{\Delta x} = \lim_{\Delta x \to 0} D(x),$$

f(x)在0点不可导.

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x},$$

极限不存在.

- $y \equiv C, f'(x) = 0.$
- (sin x)' = cos x. (cos x)' = sin x 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

m是自然数, (x^m) = mx^{m-1}.
 证明:

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C, f'(x) = 0.$
- $(\sin x)' = \cos x$. $(\cos x)' = -\sin x$ 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

m是自然数, (x^m) = mx^{m-1}.
 证明:

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}$$

- $y \equiv C$, f'(x) = 0.
- (sin x)' = cos x. (cos x)' = sin x
 证明:

$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x} = \cos x$$

m是自然数, (x^m) = mx^{m-1}.
 证明:

$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^m - x^m}{\Delta x} = \lim_{\Delta x \to 0} \frac{m x^{m-1} \Delta x + o(\Delta x)}{\Delta x} = m \cdot x^{m-1}.$$

(e^x)' = e^x. (a^x)' = a^x ln a
 证明:

$$\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x$$

$$\lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} a^x \frac{e^{\ln a \Delta x} - 1}{\Delta x} = a^x \ln a$$

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

(e^x)' = e^x. (a^x)' = a^x ln a
 证明:

$$\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = \lim_{\Delta x \to 0} e^x \frac{e^{\Delta x} - 1}{\Delta x} = e^x$$

$$\lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} a^x \frac{e^{\ln a \Delta x} - 1}{\Delta x} = a^x \ln a$$

(ln x)' = ½
 证明:

$$\lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x})}{\Delta x} = \frac{1}{x}$$

• f(x)在 x_0 处可导,则f在 x_0 处连续. 证明: 若f(x)在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$ 存在,极限为 $f'(x_0)$.则存在 δ ,使得当 $|\Delta x| < \delta$ 时,

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x\to x_0} f(x) = \lim_{\Delta x\to 0} f(x_0 + \Delta x) = f(x_0).$$

- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

• f(x)在 x_0 处可导,则f在 x_0 处连续. 证明: 若f(x)在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$ 存在,极限为 $f'(x_0)$.则存在 δ ,使得当 $|\Delta x| < \delta$ 时,

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x\to x_0} f(x) = \lim_{\Delta x\to 0} f(x_0 + \Delta x) = f(x_0).$$

- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

• f(x)在 x_0 处可导,则f在 x_0 处连续. 证明: 若f(x)在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$ 存在,极

限为 $f'(x_0)$. 则存在 δ ,使得当 $|\Delta x| < \delta$ 时,

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x\to x_0} f(x) = \lim_{\Delta x\to 0} f(x_0 + \Delta x) = f(x_0).$$

- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

f(x)在x₀处可导,则f在x₀处连续.

证明: 若f(x)在 x_0 处可导,则有 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}$ 存在,极限为 $f'(x_0)$. 则存在 δ ,使得当 $|\Delta x| < \delta$ 时,

$$|f(x_0 + \Delta x) - f(x_0)| \le (|f'(x_0)| + 1)|\Delta x| \to 0,$$

因此有
$$\lim_{x\to x_0} f(x) = \lim_{\Delta x\to 0} f(x_0 + \Delta x) = f(x_0).$$

- 注:初等函数在定义域内可以有不可导点.如 $y = |x|, x^{\frac{1}{3}}$.

Weierstrass函数

- Weierstrass函数: b为奇数, 0 < a < 1, $ab > 1 + \frac{3\pi}{2}$. 则函
- 。一般人会直觉上认为连续的

具有分形特性,某些部分会和整体白相似。

Weierstrass函数

- Weierstrass函数: b为奇数, 0 < a < 1, $ab > 1 + \frac{3\pi}{2}$. 则函
- 。一般人会直觉上认为连续的 函数必然是近乎可导的。即 使不可导, 不可导的点也必 然只占整体的一小部分。 早期的许多数学家、包括 高斯,都曾经假定连续函数 不可导的部分是有限或可数 的。这可能是因为直观上想 象一个连续但在不可数个点

上不可导的函数是很困难的事。

具有分形特性,某些部分会和整体白相似。

微商的四则运算1

设f(x), g(x)在(a,b)上可导,则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x). 证明:

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$. 证明:

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\to f'(x)g(x) + f(x)g'(x)$$

微商的四则运算1

设f(x), g(x)在(a,b)上可导,则有

• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$, (cf(x))' = cf'(x). 证明:

$$\frac{\Delta(f+g)}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x} + \frac{g(x+\Delta x) - g(x)}{\Delta x}.$$

• $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$. 证明:

$$\frac{\Delta(fg)}{\Delta x} = \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta}$$

$$= \frac{f(x + \Delta x) - f(x)}{\Delta x}g(x + \Delta x) + f(x)\frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\rightarrow f'(x)g(x) + f(x)g'(x)$$

微商的四则运算2

设
$$f(x)$$
, $g(x)$ 在 (a,b) 上可导,则有
$$g(x) \neq 0$$
, $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$.
证明:
$$\frac{\Delta(\frac{f}{g})}{\Delta x} = \frac{\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}}{\Delta x}$$

$$= \frac{\frac{f(x + \Delta x) - f(x)}{\Delta x}g(x) - f(x)\frac{g(x + \Delta) - g(x)}{\Delta x}}{g(x + \Delta x)g(x)}$$

$$\rightarrow \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

利用四则运算求导数

•
$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \frac{1}{\cos^2 x} = \sec^2 x$$

• $(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} \frac{-1}{\sin^2 x} = -\csc^2 x$
• $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, where $f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

利用四则运算求导数

•
$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \frac{1}{\cos^2 x} = \sec^2 x$$

•
$$(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} \frac{-1}{\sin^2 x} = -\csc^2 x$$

•
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则有

$$f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

利用四则运算求导数

•
$$(\tan x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \frac{1}{\cos^2 x} = \sec^2 x$$

• $(\cot x)' = \frac{-\cos^2 x - \sin^2 x}{\sin^2 x} \frac{-1}{\sin^2 x} = -\csc^2 x$
• $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 则有

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

复合函数的微商

• 定理: $y = f(x): (a,b) \to (A,B), z = g(y): (A,B) \to \mathbb{R}.$ f(x)在 $x_0 \in (a,b)$ 处可导,g(y)在 $y_0 = f(x_0)$ 处可导,则有复合函数 $g \circ f$ 在 x_0 处可导,且

$$\frac{dg \circ f}{dx}\Big|_{x_0} = g'(y_0)f'(x_0) \, \, \text{ if } \, \text{ if } \, \frac{dz}{dx}\Big|_{x_0} = \frac{dz}{dy}\Big|_{y=f(x_0)} \frac{dy}{dx}\Big|_{x=x_0}.$$

定理的证明1

- 令 $\Delta y = f(x_0 + \Delta x) f(x_0), y_0 = f(x_0), 则有<math>f(x_0 + \Delta x) = y_0 + \Delta y.$ 由于g(y)在 y_0 处连续, $\Delta x \to 0$ 时, $\Delta y \to 0$.
- 若 $f'(x_0) \neq 0$, $\lim_{\Delta x \to 0} |\frac{\Delta y}{\Delta x}| > 0$, 则存在 $\delta > 0$, 使得当 $0 < |\Delta x| < \delta$ 时, $\Delta y \neq 0$,从而有

$$\frac{\Delta z}{\Delta x} = \frac{g(f(x_0 + \Delta x)) - g(f(x_0))}{\Delta x} = \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y} \frac{\Delta y}{\Delta x}$$

求极限得 $\frac{dz}{dx}|_{x_0} = g'(y_0)f'(x_0).$

定理的证明2

• 若 $f'(x_0) = 0$,由于 $f(x_0) = g(y)$ 在 $f(x_0)$ 处可导,则存在 $f(x_0) = 0$,以 $f(x_0) = 0$,由于 $f(x_0) = 0$,因此 $f(x_0) = 0$,则存在 $f(x_0) = 0$,因此 $f(x_0) = 0$,对任给 $f(x_0) = 0$,使得 $f(x_0) = 0$,以 $f(x_0) = 0$

$$\left|\frac{\Delta z}{\Delta x}\right| \leq \frac{(|g'(y_0)|+1)|\Delta y|}{|\Delta x|} \leq (|g'(y_0)|+1)\epsilon.$$

因此 $\Delta x \to 0$ 时, 极限为0, 即 $\frac{dz}{dx}|_{x_0} = 0 = g'(y_0)f'(x_0)$.

定理的另一证明

定义 Δy 的函数(存在 $\delta > 0$, 下面函数在 $|\Delta y| < \delta$ 上有定义)

$$\eta(\Delta y) = \begin{cases} \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y} - g'(y_0), & \Delta y \neq 0 \\ 0, & \Delta y = 0 \end{cases}$$

则由g在 $y_0 = f(x_0)$ 处可导,有 $\lim_{\Delta y \to 0} \eta(\Delta y) = 0$. 即 $\eta(\Delta y)$ 在 $\Delta y = 0$ 处连续,且有 $g(y_0 + \Delta y) - g(y_0) = (\eta(\Delta y) + g'(y_0))\Delta y$.

$$\frac{\Delta z}{\Delta x} = \frac{g(f(x_0 + \Delta x)) - g(f(x_0))}{\Delta x} = g'(y_0)\frac{\Delta y}{\Delta x} + \eta(\Delta y)\frac{\Delta y}{\Delta x}$$

求极限即得.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例:设f(x),g(x)可导,f(x)>0,

$$(f(x)^{g(x)})' = (e^{g(x) \ln f(x)})' = f(x)^{g(x)} (g(x) \ln f(x))'$$

$$= f(x)^{g(x)} (g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)} g'(x) \ln f(x) + f(x)^{g(x)-1} g(x) f'(x)$$

•
$$\mathfrak{P}$$
: $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{G} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例:设f(x),g(x)可导,f(x)>0,

$$(f(x)^{g(x)})' = (e^{g(x) \ln f(x)})' = f(x)^{g(x)} (g(x) \ln f(x))'$$

$$= f(x)^{g(x)} (g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)} g'(x) \ln f(x) + f(x)^{g(x)-1} g(x) f'(x)$$

•
$$\mathfrak{P}$$
: $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例:设f(x),g(x)可导,f(x)>0,

$$(f(x)^{g(x)})' = (e^{g(x)\ln f(x)})' = f(x)^{g(x)}(g(x)\ln f(x))'$$

$$= f(x)^{g(x)}(g'(x)\ln f(x) + g(x)\frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)}g'(x)\ln f(x) + f(x)^{g(x)-1}g(x)f'(x)$$

•
$$\{g(x)\}' = a^{g(x)}g'(x) \ln a, (f(x)^a)' = af(x)^{a-1}f'(x).$$

- 例: $(e^{x^2})' = e^y 2x = e^{x^2} 2x$, 这里 $y = x^2$.
- \mathfrak{P} : $(e^{\sin(x^2)})' = e^{\sin(x^2)}(\sin(x^2))' = e^{\sin(x^2)}\cos(x^2)2x$
- 例:设f(x),g(x)可导,f(x)>0,

$$(f(x)^{g(x)})' = (e^{g(x)\ln f(x)})' = f(x)^{g(x)}(g(x)\ln f(x))'$$

$$= f(x)^{g(x)}(g'(x)\ln f(x) + g(x)\frac{f'(x)}{f(x)})$$

$$= f(x)^{g(x)}g'(x)\ln f(x) + f(x)^{g(x)-1}g(x)f'(x)$$

• \mathfrak{G} : $(a^{g(x)})' = a^{g(x)}g'(x) \ln a$, $(f(x)^a)' = af(x)^{a-1}f'(x)$.

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

• 例:
$$f(x) = (1+x)^{\frac{1}{x}}$$

解: $f'(x) = (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2}\right)$. 若利用

$$1 = x \cdot \frac{1}{x} < \frac{\ln(1+x)}{x} = \frac{1}{x} \int_{1}^{1+x} \frac{1}{t} dt > \frac{1}{1+x}$$

可证明
$$f'(x) < 0$$
.

• 例:
$$f(x) = (1+x)^{\frac{1}{x}+1}$$
.
解: $f'(x) = (1+x)^{\frac{1}{x}+1}(\frac{1}{x} - \frac{\ln(1+x)}{x^2}) > 0$

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

• 例:
$$f(x) = (1+x)^{\frac{1}{x}}$$

解: $f'(x) = (1+x)^{\frac{1}{x}} (\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2})$. 若利用

$$1 = x \cdot \frac{1}{x} < \frac{\ln(1+x)}{x} = \frac{1}{x} \int_{1}^{1+x} \frac{1}{t} dt > \frac{1}{1+x},$$

可证明f'(x) < 0.

• 例:
$$f(x) = (1+x)^{\frac{1}{x}+1}$$
.
解: $f'(x) = (1+x)^{\frac{1}{x}+1}(\frac{1}{x} - \frac{\ln(1+x)}{x^2}) > 0$

•
$$\mathfrak{H}$$
: $(x^x)' = x^x(\ln x + 1)$. $(x^a)' = ax^{a-1}$

• 例:
$$f(x) = (1+x)^{\frac{1}{x}}$$

解: $f'(x) = (1+x)^{\frac{1}{x}} (\frac{1}{x(1+x)} - \frac{\ln(1+x)}{x^2})$. 若利用

$$1 = x \cdot \frac{1}{x} < \frac{\ln(1+x)}{x} = \frac{1}{x} \int_{1}^{1+x} \frac{1}{t} dt > \frac{1}{1+x},$$

可证明
$$f'(x) < 0$$
.

• 例:
$$f(x) = (1+x)^{\frac{1}{x}+1}$$
.
解: $f'(x) = (1+x)^{\frac{1}{x}+1}(\frac{1}{x}-\frac{\ln(1+x)}{x^2}) > 0$.

反函数的微商

- 定理: y = f(x): $(a,b) \to (A,B)$ 连续,严格单调,双射. 若 反函数x = g(y) 在 $y_0 \in (A,B)$ 处可导,且 $g'(y_0) \neq 0$,则y = f(x)在 $x_0 = g(y_0)$ 处可导,且 $f'(x_0) = \frac{1}{g'(y_0)} = \frac{1}{g'(f(x_0))}$.
- 证明: 当 $\Delta x \neq 0$ 时, $\Delta y = f(x_0 + \Delta x) f(x_0) \neq 0$, 且 $\Delta x \rightarrow 0$ 时, $\Delta y \rightarrow 0$, $\Delta x = g(y_0 + \Delta y) g(y_0)$,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{g'(y_0)}$$

反函数的微商

- 定理: y = f(x): $(a,b) \to (A,B)$ 连续,严格单调,双射. 若 反函数x = g(y) 在 $y_0 \in (A,B)$ 处可导,且 $g'(y_0) \neq 0$,则y = f(x)在 $x_0 = g(y_0)$ 处可导,且 $f'(x_0) = \frac{1}{g'(y_0)} = \frac{1}{g'(f(x_0))}$.
- 证明: 当 $\Delta x \neq 0$ 时, $\Delta y = f(x_0 + \Delta x) f(x_0) \neq 0$, 且 $\Delta x \rightarrow 0$ 时, $\Delta y \rightarrow 0$, $\Delta x = g(y_0 + \Delta y) g(y_0)$,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{g'(y_0)}.$$

关于反函数微商的注记

- 很容易用几何方法证明图中反函数和原函数图像对应点处切线和x轴的夹角之和为90度.
- 定理的如下证法是否 正确:由于g = f⁻¹, x = g(f(x)),两边对x求 导,得1 = g'(f(x))f'(x).

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, 证明: 设 $y = \arcsin x$, 则有 $x = \sin y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由arctanx+arccotx= 5得到.

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, 证明: 设 $y = \arcsin x$, 则有 $x = \sin y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

第二个等式由 $\arcsin x + \arccos x = \frac{\pi}{2}$ 得到.

• $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$, 证明: 设 $y = \arctan x$, 则有 $x = \tan y$,

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

第二个等式由 $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ 得到.

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln |x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ 解: $x \neq 2, -1$ 时, $\ln |y| = \frac{1}{3}(2\ln |x+1| + \ln |2-x| - 2\ln |3-x| - \ln |x-4|)$,从而有 $y' = y \cdot \frac{1}{3}(\frac{2}{x+1} - \frac{1}{2-x} + \frac{2}{3-x} - \frac{1}{x-4})$ x = 2, -1时,函数不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{5}{3}} g(x_0 + \Delta x)}{\Delta x}$$

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln |x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ 解: $x \neq 2, -1$ 时, $\ln |y| = \frac{1}{3}(2\ln |x+1| + \ln |2-x| 2\ln |3-x| \ln |x-4|)$,从而有 $y' = y \cdot \frac{1}{3}(\frac{2}{x+1} \frac{1}{2-x} + \frac{2}{3-x} \frac{1}{x-4}).$ x = 2, -1时,函数不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{5}{3}} g(x_0 + \Delta x)}{\Delta x}$$

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln |x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ 解: $x \neq 2, -1$ 时, $\ln |y| = \frac{1}{3}(2\ln |x+1| + \ln |2-x| 2\ln |3-x| \ln |x-4|)$,从而有 $y' = y \cdot \frac{1}{3}(\frac{2}{x+1} \frac{1}{2-x} + \frac{2}{3-x} \frac{1}{x-4}).$ x = 2, -1时,函数不可导.

证明:
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{(\Delta x)^{\frac{2}{3}} g(x_0 + \Delta x)}{\Delta x}$$

- $(\ln x)' = \frac{1}{x}$, $(\ln(-x))' = \frac{1}{-x}(-1) = \frac{1}{x}$, 从而 $(\ln |x|)' = \frac{1}{x}$. 证明: 设 $y = \ln x$, 则有 $x = e^y$, $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.
- $y = \sqrt[3]{\frac{(x+1)^2(2-x)}{(3-x)^2(x-4)}} = (x+1)^{\frac{2}{3}}(2-x)^{\frac{1}{3}}(3-x)^{-\frac{2}{3}}(x-4)^{-\frac{1}{3}}.$ 解: $x \neq 2, -1$ 时, $\ln |y| = \frac{1}{3}(2\ln |x+1| + \ln |2-x| 2\ln |3-x| \ln |x-4|)$,从而有 $y' = y \cdot \frac{1}{3}(\frac{2}{x+1} \frac{1}{2-x} + \frac{2}{3-x} \frac{1}{x-4}).$ x = 2, -1时,函数不可导.

无穷小量的定义

- 牛顿和菜布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.
- 复习无穷大量: $\ddot{a} \lim_{\substack{x \to x_0 \\ n \to \infty}} f(x_0) = \infty$, 则称 $x \to x_0$ 时,f(x)为无穷大量; $\ddot{a} \lim_{\substack{n \to \infty \\ n \to \infty}} a_n = \infty$, 则称 $(n \to \infty$ 时,) a_n 为无穷大量.
- 无穷小量是以0为极限的变量. 若 $\lim_{\substack{x \to x_0 \ n \to \infty}} f(x_0) = 0$, 则称 $x \to x_0$ 时,f(x)为无穷小量;若 $\lim_{\substack{n \to \infty \ n \to \infty}} a_n = 0$,则称 $(n \to \infty$ 时, $)a_n$ 为无穷小量.

无穷小量的定义

- 牛顿和菜布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.
- 复习无穷大量: 若 $\lim_{x \to x_0} f(x_0) = \infty$, 则称 $x \to x_0$ 时, f(x)为无 穷大量; 若 $\lim_{n \to \infty} a_n = \infty$, 则称 $(n \to \infty$ 时, $)a_n$ 为无穷大量.
- 无穷小量是以0为极限的变量. 若 $\lim_{\substack{x \to x_0 \\ n \to \infty}} f(x_0) = 0$, 则称 $x \to x_0$ 时,f(x)为无穷小量;若 $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = 0$,则称 $(n \to \infty$ 时, $)a_n$ 为无穷小量.

无穷小量的定义

- 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.
- 复习无穷大量: 若 $\lim_{x \to x_0} f(x_0) = \infty$, 则称 $x \to x_0$ 时, f(x)为无穷大量; 若 $\lim_{x \to x_0} a_n = \infty$, 则称 $(n \to \infty$ 时, $)a_n$ 为无穷大量.
- 无穷小量是以0为极限的变量. 若 $\lim_{x\to x_0} f(x_0) = 0$, 则称 $x\to x_0$ 时,f(x)为无穷小量;若 $\lim_{n\to\infty} a_n = 0$, 则称 $(n\to \infty$ 时, $)a_n$ 为 无穷小量.

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设f(x) = x,则 $x \to 0$ 时, f(x)为无穷小量, $x \to \infty$ 时, f(x)为无穷大量.
- $x \to x_0$ 时,f(x)是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x)是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x)是无穷小量,则f(x) 生 g(x), f(x)g(x)是无穷小量; $x \to x_0$ 时,f(x)是无穷小量,g(x)有 界,则f(x)g(x)是无穷小量,序列无穷小量也有类似结论.

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设f(x) = x,则 $x \to 0$ 时, f(x)为无穷小量, $x \to \infty$ 时, f(x)为无穷大量.
- $x \to x_0$ 时,f(x)是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x)是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x)是无穷小量,则 $f(x) \pm g(x), f(x)g(x)$ 是无穷小量; $x \to x_0$ 时,f(x)是无穷小量,g(x)有界,则f(x)g(x)是无穷小量,序列无穷小量也有类似结论.

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设f(x) = x,则 $x \to 0$ 时, f(x)为 无穷小量, $x \to \infty$ 时, f(x)为无穷大量.
- $x \to x_0$ 时,f(x)是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x)是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x)是无穷小量,则f(x)生 g(x), f(x)g(x)是无穷小量; $x \to x_0$ 时,f(x)是无穷小量,g(x)有 界,则f(x)g(x)是无穷小量,序列无穷小量也有类似结论.

- 注: 无穷小量和无穷大量都是变量, 不是数.
- 例: $\frac{1}{n}$, $q^n(|q| < 1)$ 是无穷小量. 设f(x) = x,则 $x \to 0$ 时, f(x)为 无穷小量, $x \to \infty$ 时, f(x)为无穷大量.
- $x \to x_0$ 时,f(x)是无穷大量,则 $\frac{1}{f(x)}$ 是无穷小量;f(x)是无穷小量,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大量.
- 四则运算: $x \to x_0$ 时,f(x), g(x)是无穷小量,则f(x)生 g(x), f(x)g(x)是无穷小量; $x \to x_0$ 时,f(x)是无穷小量,g(x)有 界,则f(x)g(x)是无穷小量,序列无穷小量也有类似结论.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称f(x)和g(x)是等价无穷小量. 记为 $f(x) \sim g(x)$.
- $\ddot{x} \lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称f(x)和g(x)是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称f(x)是g(x)的高阶无穷小量.
- $\exists x \to a$ 时,f(x)与 $(x-a)^n$ 是同阶无穷小,则称f(x)是(x-a)的n阶无穷小.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称f(x)和g(x)是等价无穷小量. 记为 $f(x) \sim g(x)$.
- 若 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称f(x)和g(x)是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称f(x)是g(x)的高阶无穷小量.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称f(x)和g(x)是等价无穷小量. 记为 $f(x) \sim g(x)$.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称f(x)和g(x)是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称f(x)是g(x)的高阶无穷小量.
- $\exists x \to a$ 时,f(x)与 $(x-a)^n$ 是同阶无穷小,则称f(x)是(x-a)的n阶无穷小.

- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, 则称f(x)和g(x)是等价无穷小量. 记为 $f(x) \sim g(x)$.
- 若 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = I \neq 0$, 则称f(x)和g(x)是等阶无穷小量.
- 若 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, 则称f(x)是g(x)的高阶无穷小量.
- 若x → a时, f(x)与(x a)ⁿ是同阶无穷小,则称f(x)是(x a)的n阶无穷小.

- 注:若g(x)可以取0, 可如下定义:若存在h(x), 使得 $x \neq x_0$ 时,f(x) = h(x)g(x). 当 $\lim_{x \to x_0} h(x) = 1$, 则称f(x)和g(x)是等价无穷小量;当 $\lim_{x \to x_0} h(x) = 1 \neq 0$,则称f(x)和g(x)是等阶无穷小量;当 $\lim_{x \to x_0} h(x) = 0$,则称f(x)是g(x)的高阶无穷小量,记为f(x) = o(g(x)), $x \to x_0$.
- 严格地说,记号o(g(x))表示一类函数 (g(x))的高阶无穷小量构成的集合),上面的记号f(x) = o(g(x))应该写成 $f(x) \in o(g(x))$. 因此由 $f_1(x) = o(g(x))$, $f_2(x) = o(g(x))$ 不能得出 $f_1 = f_2$.

- 严格地说,记号o(g(x))表示一类函数 (g(x))的高阶无穷小量构成的集合),上面的记号f(x) = o(g(x))应该写成 $f(x) \in o(g(x))$. 因此由 $f_1(x) = o(g(x))$, $f_2(x) = o(g(x))$ 不能得出 $f_1 = f_2$.

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是g(x)的高阶无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x)$. 证明: $\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0$.
- $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明: $\frac{\sin x - x}{x} \to 0$, $\frac{\ln(1+x) - x}{x} \to 0$.

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是g(x)的 高阶无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x)$. 证明: $\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0$.
- $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明: $\frac{\sin x - x}{x} \rightarrow 0$, $\frac{\ln(1+x) - x}{x} \rightarrow 0$.

- 我们用记号 $f(x) = f_0(x) + o(g(x))$ 表示 $f(x) f_0(x)$ 是g(x)的 高阶无穷小.
- 例: $\sqrt{1-x} = 1 \frac{1}{2}x + o(x)$. 证明: $\frac{\sqrt{1-x}-1+\frac{1}{2}x}{x} = \frac{\sqrt{1-x}-1}{x} + \frac{1}{2} = \frac{-1}{\sqrt{1-x}+1} + \frac{1}{2} \to 0$.
- $\sin x = x + o(x)$, $\ln(1+x) = x + o(x)$. 证明: $\frac{\sin x - x}{x} \to 0$, $\frac{\ln(1+x) - x}{x} \to 0$.

- 例: $x \to 0$ 时, $x \sim \sin x \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- 例: $x \to +\infty$ 时, $\frac{1}{e^x} = o(\frac{1}{x^n}), \frac{1}{x} = o(\frac{1}{\ln x}).$ $\frac{1}{n!} = o(\frac{1}{e^n}), \frac{1}{e^n} = o(\frac{1}{n})$
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{6}$.

- 例: $x \to 0$ 时, $x \sim \sin x \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- 例: $x \to +\infty$ 时, $\frac{1}{e^x} = o(\frac{1}{x^n}), \frac{1}{x} = o(\frac{1}{\ln x}).$ $\frac{1}{n!} = o(\frac{1}{e^n}), \frac{1}{e^n} = o(\frac{1}{n})$
- \emptyset : $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{6}$.

- 例: $x \to 0$ 时, $x \sim \sin x \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- 例: $x \to +\infty$ 时, $\frac{1}{e^x} = o(\frac{1}{x^n}), \frac{1}{x} = o(\frac{1}{\ln x}).$ $\frac{1}{n!} = o(\frac{1}{e^n}), \frac{1}{e^n} = o(\frac{1}{n})$
- \emptyset : $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{6}$.

- 例: $x \to 0$ 时, $x \sim \sin x \ln(1+x) \sim e^x 1 \sim \arctan x \sim \arcsin x$, $1 \cos x \sim \frac{1}{2}x^2$.
- 例: $x \to +\infty$ 时, $\frac{1}{e^x} = o(\frac{1}{x^n}), \frac{1}{x} = o(\frac{1}{\ln x}).$ $\frac{1}{n!} = o(\frac{1}{e^n}), \frac{1}{e^n} = o(\frac{1}{n})$
- \emptyset]: $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1 \cos x}{x^2 \cos x} = \frac{1}{2}$.
- 注: $\sin x \sim x$, 但是 $\lim_{x \to 0} \frac{\tan x \sin x}{x^3} \neq \lim_{x \to 0} \frac{\tan x x}{x^3} = \frac{1}{6}$.

- 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
- 微分也是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数的自变量有一个微小的改变△x时,函数的变化可以分解为两个部分。一个部分是线性部分,另一部分是比更高阶的无穷小。当改变量很小时,第二部分可以忽略不计.
- 微分和导数是两个不同的概念。但是,对一元函数来说,可 微与可导是完全等价的。

- 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性 逼近。
- 微分也是对函数的局部变化率的一种线性描述。微分可以 近似地描述当函数自变量的取值作足够小的改变时,函数 的值是怎样改变的。当某些函数的自变量有一个微小的改 变Δx时,函数的变化可以分解为两个部分。一个部分是线 性部分,另一部分是比更高阶的无穷小。当改变量很小时, 第二部分可以忽略不计.
- 微分和导数是两个不同的概念。但是,对一元函数来说,可 微与可导是完全等价的。

- 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
- 微分也是对函数的局部变化率的一种线性描述。微分可以 近似地描述当函数自变量的取值作足够小的改变时,函数 的值是怎样改变的。当某些函数的自变量有一个微小的改 变Δx时,函数的变化可以分解为两个部分。一个部分是线 性部分,另一部分是比更高阶的无穷小。当改变量很小时, 第二部分可以忽略不计.
- 微分和导数是两个不同的概念。但是,对一元函数来说,可 微与可导是完全等价的。

微分的定义

• y = f(x)在 x_0 附近有定义,若存在常数A,使得

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x),$$

则称y = f(x)在 x_0 处可微, $A\Delta x$ 称为y = f(x)在 x_0 处的微分,记为 $dy|_{x=x_0} = df|_{x=x_0} = A\Delta x = Adx.若$ f(x)在(a,b)上处处可微,则称f(x)在(a,b)中可微,此时常数A与x有关,df = A(x)dx.

 种自变量x, 规定dx = Δx. 事实上, y = x是一个函数, 利用上面的定义, 得dy = dx = Δx.

- $df \, \exists x \pi \Delta x (dx)$ 的函数, $df|_{x=x_0} = A\Delta x \, \exists \Delta x$ 的函数.
- f(x)在 x_0 处可徽的几何意义: 若f(x)在 x_0 处可徽, $f(x)-f(x_0) = A(x-x_0)+o(x-x_0)$, $x \to x_0$. 即 $f(x)-(f(x_0)-A(x-x_0)) = o(x-x_0)$. 即y = f(x) 与直线 $y = f(x_0)-A(x-x_0)$ 在 $x = x_0$ 处相切
- y = f(x)在 x_0 处可微 $\Leftrightarrow y = f(x)$ 在 x_0 处可导,且 $A = f'(x_0)$. 证明: y = f(x)在 x_0 处可微 \Leftrightarrow 存在A, 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$ $\Leftrightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$

- $df \, \exists x \, \pi \Delta x (dx)$ 的函数, $df|_{x=x_0} = A\Delta x \, \exists \Delta x$ 的函数.
- f(x)在 x_0 处可微的几何意义: 若f(x)在 x_0 处可微, $f(x)-f(x_0) = A(x-x_0)+o(x-x_0), x \to x_0$. 即 $f(x)-(f(x_0)-A(x-x_0)) = o(x-x_0)$. 即y=f(x)与直线 $y=f(x_0)-A(x-x_0)$ 在 $x=x_0$ 处相切.
- y = f(x)在 x_0 处可微 $\Leftrightarrow y = f(x)$ 在 x_0 处可导,且 $A = f'(x_0)$. 证明: y = f(x)在 x_0 处可微 \Leftrightarrow 存在A, 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$ $\Leftrightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$

- $df \, \exists x \, \pi \Delta x (dx)$ 的函数, $df|_{x=x_0} = A\Delta x \, \exists \Delta x$ 的函数.
- f(x)在 x_0 处可徽的几何意义: 若f(x)在 x_0 处可徽, $f(x)-f(x_0) = A(x-x_0)+o(x-x_0)$, $x \to x_0$. 即 $f(x)-(f(x_0)-A(x-x_0)) = o(x-x_0)$. 即y = f(x) 与直线 $y = f(x_0)-A(x-x_0)$ 在 $x = x_0$ 处相切.
- y = f(x)在 x_0 处可微 $\Leftrightarrow y = f(x)$ 在 x_0 处可导,且 $A = f'(x_0)$. 证明: y = f(x)在 x_0 处可微 \Leftrightarrow 存在A, 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$ $\Leftrightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$

- $df \, \exists x \, \pi \Delta x (dx)$ 的函数, $df|_{x=x_0} = A\Delta x \, \exists \Delta x$ 的函数.
- f(x)在 x_0 处可微的几何意义: 若f(x)在 x_0 处可微, $f(x)-f(x_0) = A(x-x_0)+o(x-x_0), x \to x_0$. 即 $f(x)-(f(x_0)-A(x-x_0)) = o(x-x_0)$. 即y=f(x)与直线 $y=f(x_0)-A(x-x_0)$ 在 $x=x_0$ 处相切.
- y = f(x)在 x_0 处可微 $\Leftrightarrow y = f(x)$ 在 x_0 处可导,且 $A = f'(x_0)$. 证明: y = f(x)在 x_0 处可微 \Leftrightarrow 存在A, 使得 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$ $\Leftrightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A$

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$.
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. $e^x \triangle x = 0$ 处的微分为 $de^x|_{x=0} = dx$, $\sin x \triangle x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$
$$= u(x)dv(x) + v(x)du(x).$$

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$.
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. $e^x \triangle x = 0$ 处的微分为 $de^x|_{x=0} = dx$, $\sin x \triangle x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$
$$= u(x)dv(x) + v(x)du(x).$$

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$.
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. $e^x \triangle x = 0$ 处的微分为 $de^x|_{x=0} = dx$, $\sin x \triangle x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),
 - $d(\frac{u(x)}{v(x)}) = \frac{v(x)du(x) u(x)dv(x)}{v(x)^2}$

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$

= $u(x)dv(x) + v(x)du(x)$.

- df = f'(x)dx, $df|_{x=x_0} = f'(x_0)dx$.
- 例: $de^x = e^x dx$, $d\sin x = \cos x dx$. $e^x \triangle x = 0$ 处的微分为 $de^x|_{x=0} = dx$, $\sin x \triangle x = \frac{\pi}{2}$ 处的微分为 $d\sin x|_{x=\frac{\pi}{2}} = 0 dx = 0$.
- 微分的四则运算:
 - $d(u(x) \pm v(x)) = du(x) \pm dv(x)$,
 - d(u(x)v(x)) = u(x)dv(x) + v(x)du(x),

$$d(u(x)v(x)) = (u(x)v'(x) + u'(x)v(x))dx$$

= $u(x)dv(x) + v(x)du(x)$.

微分与近似计算

若f(x)在x0处可微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- 例: $\tan(\frac{\pi}{4} + 0.01) \approx \tan\frac{\pi}{4} + \sec^2\frac{\pi}{4} \cdot 0.01 = 1.02$. 事实上 $\tan(\frac{\pi}{4} + 0.01) = 1.0202\cdots$.
- 例: 当x靠近0时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1+\alpha x$.

微分与近似计算

• 若 f(x) 在 x₀ 处 可 微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- 例: $\tan(\frac{\pi}{4} + 0.01) \approx \tan\frac{\pi}{4} + \sec^2\frac{\pi}{4} \cdot 0.01 = 1.02$. 事实上 $\tan(\frac{\pi}{4} + 0.01) = 1.0202\cdots$.
- 例: 当x靠近0时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1+\alpha x$.

微分与近似计算

● 若f(x)在xn处可微,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \approx f(x_0) + f'(x_0)(x - x_0).$$

- 例: $\tan(\frac{\pi}{4} + 0.01) \approx \tan\frac{\pi}{4} + \sec^2\frac{\pi}{4} \cdot 0.01 = 1.02$. 事实上 $\tan(\frac{\pi}{4} + 0.01) = 1.0202\cdots$.
- 例: 当x靠近0时, $\sin x \approx x$, $(1+x)^{\alpha} \approx 1+\alpha x$.

• 命题:设z = g(y)是可微函数,则有不论y是自变量还是可微函数,均有dz = g'(y)dy.

证明: 若y = f(x)是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有dz = g'(f(x))f'(x)dx = g'(y)dy.

例: 求微分d(e^{sin x²}).
 解法1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

解法2. 利用一阶微分形式的不变性

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

• 命题:设z = g(y)是可微函数,则有不论y是自变量还是可微函数,均有dz = g'(y)dy.

证明: 若y = f(x)是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有dz = g'(f(x))f'(x)dx = g'(y)dy.

● 例: 求微分d(e^{sin x²}).

解法1.
$$(e^{\sin x^2})' = e^{\sin x^2} \cos x^2(2x)$$
,因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx$$

解法2. 利用一阶微分形式的不变性

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$

= $e^{\sin x^2} \cos x^2 \cdot 2x dx$.

• 命题:设z = g(y)是可微函数,则有不论y是自变量还是可微函数,均有dz = g'(y)dy.

证明: $\dot{a} = f(x)$ 是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$, 故有dz = g'(f(x))f'(x)dx = g'(y)dy.

例: 求微分d(e^{sin x²}).
 解法1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

解法2. 利用一阶微分形式的不变性

$$d(e^{\sin x^2}) = e^{\sin x^2} d(\sin x^2) = e^{\sin x^2} \cos x^2 d(x^2)$$
$$= e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

- 命题:设z = g(y)是可微函数,则有不论y是自变量还是可微函数,均有dz = g'(y)dy.
 - 证明: $\dot{a} = f(x)$ 是可微函数,则有 $\frac{dz}{dx} = g'(f(x))f'(x)$,故有dz = g'(f(x))f'(x)dx = g'(y)dy.
- 例: 求微分d(e^{sin x²}).
 解法1. (e^{sin x²})' = e^{sin x²} cos x²(2x), 因此

$$d(e^{\sin x^2}) = e^{\sin x^2} \cos x^2 \cdot 2x dx.$$

解法2. 利用一阶微分形式的不变性,

$$d(e^{\sin x^{2}}) = e^{\sin x^{2}} d(\sin x^{2}) = e^{\sin x^{2}} \cos x^{2} d(x^{2})$$
$$= e^{\sin x^{2}} \cos x^{2} \cdot 2x dx.$$

- 若 $y = f(x), x \in X$ 代入方程F(x,y) = 0恒成立,即 $F(x,f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程F(x,y) = 0确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确 定的隐函数.
- 注: F(x,y) = 0确定的隐函数的存在性和唯一性以后在多元 函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程F(x,y) = 0恒成立,即 $F(x,f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程F(x,y) = 0确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确定的隐函数.
- 注: F(x,y) = 0确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程F(x,y) = 0恒成立,即 $F(x,f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程F(x,y) = 0确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确 定的隐函数.
- 例:若f是双射,则y = f⁻¹(x)是由方程x f(y) = 0确定的 隐函数.
- 注: F(x,y) = 0确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 若 $y = f(x), x \in X$ 代入方程F(x,y) = 0恒成立,即 $F(x,f(x)) \equiv 0, x \in X$,则称 $y = f(x), x \in X$ 是由方程F(x,y) = 0确定的隐函数.
- 例: $y = \pm \sqrt{R^2 x^2}$, $x \in (-R, +R)$ 是由 $x^2 + y^2 R^2 = 0$ 确 定的隐函数.
- 例: 若f是双射,则 $y = f^{-1}(x)$ 是由方程x f(y) = 0确定的 隐函数.
- 注: F(x,y) = 0确定的隐函数的存在性和唯一性以后在多元函数部分讨论.

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出处。
- $xx^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导,得2x + 2yy' = 0,因此 $y' = -\frac{x}{y}$.
 - 解法2: 方程两边求微分,得2xdx + 2ydy = 0,两边除以dx,得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注:上面计算中不需要解出y(x).

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出 $\frac{dy}{dx}$.
- $xx^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导, 得2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$.
 - 解法2: 方程两边求微分,得2xdx + 2ydy = 0,两边除以dx,得 $dx = -\frac{x}{v}$.
- 注:上面计算中不需要解出y(x).

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出 $\frac{dy}{dx}$.
- $xx^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导, 得2x + 2yy' = 0, 医此 $y' = -\frac{x}{y}$.
 - 解法2: 方程两边求徽分,得2xdx + 2ydy = 0,两边除以dx,得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注:上面计算中不需要解出y(x).

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出 $\frac{dy}{dx}$.
- 求 $x^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导, 得2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$.
 - 解法2: 方程两边求微分,得2xdx + 2ydy = 0,两边除以dx,得 $\frac{dy}{dx} = -\frac{x}{v}$.
- 注:上面计算中不需要解出y(x).

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出 $\frac{dy}{dx}$.
- $xx^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导, 得2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$. 解法2: 方程两边求微分,得2xdx + 2ydy = 0, 两边除以dx, 得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注:上面计算中不需要解出y(x).

- 隐函数的求导方法1: 把y看成x的函数,方程F(x,y) = 0两边对x求导,再解出f'(x).
- 隐函数的求导方法2: 方程F(x,y) = 0两边求微分,再除以dx,解出 $\frac{dy}{dx}$.
- $xx^2 + y^2 = R^2$ 确定的隐函数的导数. 解法1: $x^2 + y^2 = R^2$ 两边对x求导, 得2x + 2yy' = 0, 因此 $y' = -\frac{x}{y}$. 解法2: 方程两边求微分,得2xdx + 2ydy = 0,两边除以dx,得 $\frac{dy}{dx} = -\frac{x}{y}$.
- 注:上面计算中不需要解出y(x).

- 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 x^2}$ 都适应. 事实上 $y' = \mp \frac{x}{\sqrt{R^2 x^2}} = -\frac{x}{y}$. 由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为-1,此时并不需要解出y的表达式.
- 例: 求f的反函数的导数. 解: f的反函数时是由方程x - f(y) = 0确定的隐函数. 方程 两边对x求导, ${q}_1 - {f'(y)}y' = 0$, 即 ${q}_2 y'(x)|_{x=f(y)} = \frac{1}{f'(y)}$.
- 例:求方程 $y x \epsilon \sin y = 0$ (0 < ϵ < 1)确定的隐函数的导数.

- 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 x^2}$ 都适应. 事实上 $y' = \mp \frac{x}{\sqrt{R^2 x^2}} = -\frac{x}{y}$. 由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为-1,此时并不需要解出y的表达式.
- 例: 求f的反函数的导数. 解: f的反函数时是由方程x - f(y) = 0确定的隐函数. 方程 两边对x求导, 得1 - f'(y)y' = 0, 即得 $y'(x)|_{y=f(y)} = \frac{1}{2(x)}$.
- 例:求方程 $y x \epsilon \sin y = 0$ (0 < ϵ < 1)确定的隐函数的导数.
 - 解: 方程 $y x \epsilon \sin y = 0$ 两边求徽分得 $dy dx \epsilon \cos dy = 0$, 再除以dx得 $\frac{dy}{dx} = \frac{1}{1 \epsilon \cos y}$.

- 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 x^2}$ 都适应. 事实上 $y' = \mp \frac{x}{\sqrt{R^2 x^2}} = -\frac{x}{y}$. 由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为-1,此时并不需要解出y的表达式.
- 例:求f的反函数的导数.
 解:f的反函数时是由方程x f(y) = 0确定的隐函数.方程两边对x求导,得1 f'(y)y' = 0,即得y'(x)|x=f(y) = 1/f(y).
- 例:求方程 $y x \epsilon \sin y = 0$ (0 < ϵ < 1)确定的隐函数的导数.

- 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 x^2}$ 都适应. 事实上 $y' = \mp \frac{x}{\sqrt{R^2 x^2}} = -\frac{x}{y}$. 由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为-1,此时并不需要解出y的表达式.
- 例:求f的反函数的导数.
 解:f的反函数时是由方程x f(y) = 0确定的隐函数.方程两边对x求导,得1 f'(y)y' = 0,即得y'(x)|x=f(y) = 1/f(y).
- 例:求方程 $y x \epsilon \sin y = 0$ (0 < ϵ < 1)确定的隐函数的导数.

- 上例中的导数公式 $y' = -\frac{x}{y}$ 对 $y = \pm \sqrt{R^2 x^2}$ 都适应. 事实上 $y' = \mp \frac{x}{\sqrt{R^2 x^2}} = -\frac{x}{y}$. 由上述公式可知 $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ 处的切线斜率为-1,此时并不需要解出y的表达式.
- 例:求f的反函数的导数.
 解:f的反函数时是由方程x f(y) = 0确定的隐函数.方程两边对x求导,得1 f'(y)y' = 0,即得y'(x)|x=f(y) = 1/f(y).
- 例:求方程 $y x \epsilon \sin y = 0$ (0 < ϵ < 1)确定的隐函数的导数.

解: 方程 $y - x - \epsilon \sin y = 0$ 两边求微分得 $dy - dx - \epsilon \cos dy = 0$, 再除以dx得 $\frac{dy}{dx} = \frac{1}{1 - \epsilon \cos y}$.

• 函数y = f(x) 和参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $\alpha < t < \beta$. 若参数 方程代入y = f(x)是恒等,即 $\psi(t) \equiv f(\phi(t))$. 设 ϕ , ψ , f均 可微,且 $\phi'(t) \neq 0$,则有y = f(x)在 $x = \phi(t)$ 处可导,且 $\frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{\psi'(t)}{\phi'(t)}$. 证明:由于 $\phi'(t) \neq 0$,任意固定 t_0 ,则 $x = \phi'(t)$ 在 t_0 附近可逆,设 $x_0 = \phi(t_0)$, $y = f(x) = \psi(t) = \psi(\phi^{-1}(x))$,因此有 $\frac{dy}{dx}\Big|_{x=\phi(t_0)} = \psi'(t_0) \frac{1}{\phi'(t_0)}$.

• 例:
$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{-\cos t}{\sin t} = -\frac{x}{y}.$$
• 例:
$$\begin{cases} x = f(t) \\ y = t \end{cases}, \frac{dy}{dx}\Big|_{x=f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}.$$
• 例:
$$\begin{cases} x = R(t) \cos t \\ y = R(t) \sin t \end{cases}, \frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{R'(t) \sin t + R(t) \cos t}{R'(t) \cos t - R(t) \sin t}.$$

• 例:
$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{-\cos t}{\sin t} = -\frac{x}{y}.$$
• 例:
$$\begin{cases} x = f(t) \\ y = t \end{cases}, \frac{dy}{dx}\Big|_{x=f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}.$$
• 例:
$$\begin{cases} x = R(t) \cos t \\ y = R(t) \sin t \end{cases}, \frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{R'(t) \sin t + R(t) \cos t}{R'(t) \cos t - R(t) \sin t}.$$

•
$$\{\emptyset\}$$
:
$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}$$
, $\frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{-\cos t}{\sin t} = -\frac{x}{y}$.
• $\{\emptyset\}$:
$$\begin{cases} x = f(t) \\ y = t \end{cases}$$
, $\frac{dy}{dx}\Big|_{x=f(t)} = \frac{1}{f'(t)} = \frac{1}{f'(y)}$.
• $\{\emptyset\}$:
$$\begin{cases} x = R(t) \cos t \\ y = R(t) \sin t \end{cases}$$
, $\frac{dy}{dx}\Big|_{x=\phi(t)} = \frac{R'(t) \sin t + R(t) \cos t}{R'(t) \cos t - R(t) \sin t}$.