PENINGKATAN PERFORMA INTERNET OF THINGS (IoT) DALAM PEMANTAUAN DAN ANALISIS CUACA REAL-TIME MENGGUNAKAN MIKROKONTROLER ESP32

Diajukan untuk memenuhi tugas

Mata Kuliah:

Metode penelitian

Dosen Pengampu:

Panca Dewi Pamungkasari, S.T., M.T.Ph.D.

Kelas:

R. 02

Disusun oleh:

Muhammad Rauzan Fadhila 217064516085

PROGRAM STUDI INFORMATIKA FAKULTAS TEKNOLOGI KOMUNIKASI DAN INFORMATIKA UNIVERSITAS NASIONAL JAKARTA

2024

KATA PENGANTAR

Assalamu'alaikum wr. wb.

Dengan memanjatkan puji syukur ke hadirat Allah SWT, atas segala rahmat dan

hidayah-Nya, penulis dapat menyelesaikan penelitian yang berjudul "Peningkatan

Performa Internet of Things (IoT) dalam Pemantauan dan Analisis Cuaca Real-Time

Menggunakan Mikrokontroler ESP32". Penelitian ini dilakukan sebagai salah satu syarat

untuk menyelesaikan program studi di universitas ini. Dalam penelitian ini, penulis

membahas upaya-upaya yang dilakukan untuk meningkatkan kinerja sistem IoT dalam

memantau dan menganalisis data cuaca secara real-time, dengan memanfaatkan keunggulan

dari mikrokontroler ESP32.

Penulis menyadari bahwa tanpa bantuan dan dukungan dari berbagai pihak, penelitian

ini tidak akan terselesaikan dengan baik. Oleh karena itu, penulis mengucapkan terima kasih

yang sebesar-besarnya kepada dosen pembimbing, keluarga, dan teman-teman yang telah

memberikan bimbingan, dukungan, dan dorongan selama proses penelitian ini. Penulis

berharap penelitian ini dapat memberikan kontribusi yang bermanfaat bagi perkembangan

teknologi IoT, khususnya dalam bidang pemantauan cuaca real-time.

Wassalamu'alaikum wr.wb.

Jakarta, 27 Mei 2024

Muhammad Rauzan Fadhila

DAFTAR ISI

KAT	TA PENGANTAR	2
DAF	FTAR ISI	3
BAE	В І	4
PEN	NDAHULUAN	4
1.1	Latar Belakang	4
1.2	Rumusan Masalah	4
1.3	Batasan Masalah	5
1.4	Tujuan Penelitian	5
1.5	Manfaat penelitian	5
BAE	В II	6
KAJ	JIAN PUSTAKA	6
2.1	Penelitian Terdahulu	6
2.2	2 Internet of Things (IoT)	15
2.3	3 Mikrokontroler ESP 32	16
	2.3.1 ESP-01	16
	2.3.2 OLED Display I2C 0,96 inch.	16
	2.3.3 ESP32-CAM	17
	2.3.4 Polymer Battery 3.7v	17
2.4	4 Cuaca	17
BAE	B III	18
ME	TODE PENELITIAN	18
3.	1 Jenis Penelitian	18
3.2	2 Metode Penelitian	18
	3.2.1 Studi literatur	19
	3.2.2 Pengumpulan Data	19
3.3	3 Rancangan Diagram Blok Alat	19
Doft	tor Ductoko	22

BAB I

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi Internet of Things (IoT) telah membuka peluang besar dalam berbagai bidang, termasuk pemantauan dan analisis cuaca secara real-time. Dengan kemampuan untuk menghubungkan berbagai perangkat dan mengumpulkan data secara kontinu, IoT memungkinkan sistem pemantauan cuaca yang lebih efisien dan akurat. Salah satu perangkat yang sering digunakan dalam implementasi *Internet Of Things* (IoT) adalah mikrokontroler ESP32, yang dikenal dengan kinerjanya yang tinggi dan konsumsi daya yang rendah. Penelitian ini bertujuan untuk meningkatkan performa sistem *Internet Of Things* (IoT) dalam pemantauan dan analisis cuaca real-time dengan menggunakan mikrokontroler ESP32, sehingga dapat memberikan data yang lebih akurat dan responsif terhadap perubahan kondisi cuaca. Upaya peningkatan performa ini mencakup optimasi algoritma pemrosesan data, peningkatan efisiensi jaringan, serta integrasi sensor cuaca yang lebih canggih. Berdasarkan penelitian yang dilakukan oleh Smith et al. (2020), penggunaan ESP32 dalam sistem *Internet Of Things* (IoT) telah terbukti mampu meningkatkan efisiensi pemrosesan data hingga 30%, yang menunjukkan potensi besar dalam aplikasi pemantauan cuaca.

1.2 Rumusan Masalah

- 1. Bagaimana sistem pemantauan cuaca real-time berbasis mikrokontroler ESP32 yang berbasis Internet of Things (IoT) dapat dibuat lebih akurat dan efisien?
- 2. Apa saja kendala teknis yang harus diatasi untuk mengintegrasikan sensor cuaca dengan mikrokontroler ESP32?
- 3. Seberapa besar kecepatan yang dapat diperoleh pada sistem *Internet of Things* berbasis ESP32 melalui optimasi jaringan dan algoritma pengolahan data?
- 4. Bagaimana kinerja sistem IoT yang ditingkatkan memengaruhi keakuratan data cuaca yang dihasilkan dan kapasitasnya untuk beradaptasi dengan perubahan kondisi cuaca?
- 5. Bagaimana cara terbaik untuk menilai efektivitas sistem pemantauan dan analisis cuaca real-time *Internet of Things* berbasis mikrokontroler ESP32?

1.3 Batasan Masalah

- Sistem IoT(Internet Of Things) untuk pemantauan dan analisis cuaca secara realtime dalam penelitian ini hanya akan menggunakan mikrokontroler ESP32 sebagai komponen utamanya.
- 2. Hanya sensor meteorologi, termasuk sensor tekanan udara, suhu, kelembapan, dan intensitas cahaya, yang akan digunakan. Kami tidak akan membahas sensor lain yang tidak secara langsung terhubung dengan pemantauan cuaca.
- 3. Hanya data yang dikumpulkan di wilayah geografis tertentu dan selama periode waktu yang telah ditentukan yang disertakan dalam studi data meteorologi.
- 4. spek teknis dari peningkatan kinerja, seperti efisiensi jaringan dan optimasi algoritma pemrosesan data, akan menjadi penekanan utama dari penelitian ini. peneliti tidak akan membahas topik-topik non-teknis seperti masalah sosial, politik, atau ekonomi.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui performa atau peningkatan *Internet Of Things (IOT)* menggunakan Mikrokontroler ESP 32 dalam pemantauan cuaca serta pengaruhnya dalam menganalisis cuaca

1.5 Manfaat penelitian

Diharapkan penelitian ini dapat menambah wawasan dan pengetahuan bagi penulis serta informasi bagi pihak lain mengenai peningkatan performa ESP32 dalam pemantauan dan analisis cuaca secara *real time*.

BAB II KAJIAN PUSTAKA

2.1 Penelitian Terdahulu

no	Penulis	Judul	Permasalahan	Solusi	Hasil
1	Ahmad	Internet Of	Pembacaan	Keakuratan	Pembaca cuaca
	Pakhrul	Things untuk	cuaca dari alat	pembacaan	IoT bertenaga
	Islam ,et al.	informasi	di Desa Anjani	cuaca dapat	Node MCU di
		сиаса	berbeda dengan	dijamin	Desa Anjani telah
		menggunaka	prakiraan	melalui	diuji secara
		n Node MCU	BMKG, dengan	verifikasi dan	efektif, membaca
			variasi suhu 1-	kalibrasi rutin	data hujan, suhu,
			5°C dan	sensor.	kelembaban, dan
			kelembapan 0-	Penggunaan	cahaya secara real
			20% RH.	teknologi	time.
			Perbedaan ini	canggih dan	Data ditampilkan
			menunjukkan	sensor yang	dengan jelas di
			potensi	tepat akan	halaman web
			ketidakakuratan	meningkatkan	meski ada
			data cuaca lokal.	keakuratan	ketidaksesuaian
			Hal ini	data cuaca	dengan prediksi
			meningkatkan	lokal.	BMKG.
			kemungkinan	Dengan	Alat ini tetap
			pelanggan	demikian,	memberikan
			menerima	pengguna	informasi cuaca
			informasi cuaca	dapat	bermanfaat yang
			yang salah.	mengandalkan	mudah diakses
				informasi	masyarakat
				cuaca untuk	melalui internet.
				aktivitas	
				sehari-hari.	
2	Nugra	Penerapan	adanya potensi	dengan	sistem monitoring
	Zurus	Metode	kesalahan dalam	melakukan	cuaca dan
	Pratama, et	Regresi	prediksi	peningkatan	peringatan dini

al.	Linear	Pada	ketinggian air	akurasi	banjir berbasis
	Sistem		meskipun	prediksi	Internet of Things
	Pering	atan	metode regresi	ketinggian air	(IoT) yang
	Dini	Banjir	linear memiliki	melalui	menggunakan
	Berbas	sis	akurasi sebesar	penerapan	metode regresi
	Interne	et Of	94,4%. Selain	metode	linear untuk
	Things	(IoT)	itu, pengguna	prediksi	memprediksi
			perlu	lainnya selain	ketinggian air
			mengizinkan	regresi linear	memiliki akurasi
			penerimaan	dan	sebesar 94,4%
			notifikasi untuk	penambahan	dengan nilai error
			menerima	parameter	5,6%. Sistem
			informasi dari	tambahan	memberikan
			sistem, yang	dalam analisis	notifikasi secara
			dapat membatasi	statistika.	otomatis ketika
			efektivitas	Selain itu,	ketinggian air
			sistem dalam	perlu	mencapai level
			memberikan	diperbaiki	siaga, waspada,
			peringatan dini	sistem	dan bahaya.
			kepada	notifikasi agar	Implementasi
			pengguna.	pengguna tidak	sensor BME280,
			Diperlukan	perlu	sensor curah
			peningkatan	mengizinkan	hujan, dan sensor
			akurasi prediksi	penerimaan	ultrasonik HC-
			ketinggian air	notifikasi,	SR04 dilakukan
			dengan	sehingga	dengan
			menerapkan	peringatan dini	menggunakan
			metode prediksi	dapat diterima	perangkat lunak
			lainnya dan	dengan lebih	seperti Firebase
			menambahkan	efisien.	Realtime
			parameter	Dengan	Database,
			tambahan dalam	demikian,	Arduino IDE,
			analisis	sistem	Visual Studio

			statistika untuk	peringatan dini	Code, dan
			memastikan	banjir berbasis	Nodejs. Regresi
			kehandalan	IoT dapat	linear digunakan
			sistem	menjadi lebih	untuk analisis
			peringatan dini	handal dan	statistika, dan
			banjir berbasis	efektif dalam	MAPE digunakan
			IoT.	memberikan	untuk mengukur
				informasi	kesalahan
				kepada	peramalan. Proses
				pengguna.	pengiriman data
					sensor ke firebase
					dilakukan oleh
					ESP32 melalui
					jaringan internet
					setiap 30 menit,
					menunjukkan
					keberhasilan
					sistem yang telah
					dirancang.
3	Rasoul Ali	A review of	Tanpa pelatihan	Pentingnya	Pemantauan iklim
	Mahdi, et al.	weather	yang tepat, sulit	pendekatan	real-time melalui
		conditions	untuk	mudah dalam	sistem IoT
		monitoring	mempromosikan	pengembangan	memungkinkan
		system based	dan menjelaskan	sistem,	pengumpulan data
		on iot	sistem informasi	perencanaan	akurat untuk
			yang kompleks.	yang cermat	suhu,
			Merencanakan	untuk integrasi	kelembapan, dan
			dan merancang	IoT dalam	cuaca. Dengan
			infrastruktur IoT	kontrol iklim	sensor terhubung,
			dalam sistem	& pemantauan	pengguna dapat
			kontrol iklim	cuaca, serta	memantau
			dan pemantauan	penekanan	lingkungan secara
			cuaca	pada efisiensi	efektif untuk

			menghadirkan	& pelatihan	analisis dan
			tantangan besar.	pengguna.	prakiraan cuaca
			Perlu ada		yang lebih baik.
			mekanisme		
			untuk		
			meminimalkan		
			kesulitan dan		
			memastikan		
			pemulihan		
			sistem yang		
			efisien setiap		
			saat.		
4	Dr.P.	A Cost-	bagaimana	Maksimalkan	Penelitian
	Manikandap	Effective IoT-	meningkatkan	penggunaan	mengusulkan
	rabhu ,et al.	Based	kinerja	sensor dan	sistem
		Weather	algoritme	algoritme	pemantauan cuaca
		Monitoring	ARIMA dan	ARIMA untuk	berbasis IoT
		and	sensor untuk	prakiraan	dengan ARIMA
		Forecasting	menghasilkan	cuaca yang	untuk prakiraan
		using Arima	prakiraan cuaca	lebih akurat.	cuaca yang
		Algorithm	yang lebih andal	Kalibrasi rutin	terjangkau. Data
			dan akurat.	sensor dan	sensor diproses di
				integrasi	awan dan tren
				teknologi	cuaca di masa
				pembelajaran	depan
				mesin dapat	diramalkan.
				meningkatkan	Penekanan pada
				kemampuan	teknologi IoT
				sistem	untuk mengurangi
				memberikan	dampak
				informasi	perubahan iklim.
				meteorologi	
				yang	

				bermanfaat.	
5	Kazi	IoT Based	Membuat sistem	Membangun	Pembuatan sistem
	Sultanabanu	Arduino-	pemantauan	sistem	pemantauan cuaca
	Sayyad, et	Powered	cuaca IoT	pemantauan	IoT dengan
	al.	Weather	berbasis	cuaca IoT	Arduino
		Monitoring	Arduino dengan	dengan	memungkinkan
		System	sensor yang	Arduino	pengumpulan data
			mengumpulkan	membutuhkan	real-time seperti
			data real-time.	perencanaan,	suhu,
			Data seperti	keamanan, dan	kelembapan,
			suhu,	pemeliharaan	kecepatan angin,
			kelembapan,	yang cermat.	dan curah hujan,
			kecepatan angin,	Langkah-	yang dikirim ke
			dan curah hujan	langkah	server pusat.
			dikirim ke	keamanan	Dengan cara ini,
			server pusat	seperti enkripsi	sistem ini dapat
			untuk analisis.	data dan	mengubah cara
			Perhatian pada	autentikasi	kita memahami
			keamanan	diperlukan,	pola cuaca
			sistem dan	serta	dengan efisien.
			pemeliharaan	pemeliharaan	Keamanan sistem
			penting untuk	rutin untuk	dan pemeliharaan
			menjaga	menjaga	yang tepat
			keandalan dan	kinerja	penting untuk
			efektivitasnya.	optimal.	memastikan
				Dengan	kinerja dan
				demikian,	ketergantunganny
				teknologi ini	a.
				memiliki	
				potensi besar	
				untuk	
				mengubah cara	
				kita	

				memahami	
				cuaca.	
6	Aryan	IOT Based	Interaksi dengan	Integrasi	Industri seperti
	Sharma, et	Weather	rumah pintar,	dengan rumah	pertanian,
	al.	Application	sumber daya	pintar	transportasi, dan
			perangkat keras	memungkinka	energi terbarukan
			yang cukup, dan	n otomatisasi	telah mendapat
			tinjauan literatur	berbasis cuaca,	manfaat dari
			penting untuk	sementara	aplikasi cuaca
			mengetahui	manajemen	berbasis IoT.
			pengetahuan dan	sumber daya	Dengan sensor
			kekurangan	yang efisien	dan algoritme
			dalam sistem	penting untuk	pembelajaran
			pemantauan	kinerja	mesin, sistem ini
			cuaca IoT.	perangkat	memberikan
			caaca 101.	keras. Tinjauan	informasi cuaca
				literatur	real-time yang
				menyeluruh	andal.
				diperlukan	Pengembangan
				untuk	masa depan
				mengidentifika	meliputi integrasi
				si pengetahuan	dengan rumah
				saat ini dan	pintar,
				arah penelitian	pemantauan
				masa depan	bencana alam,
				dalam	dan aplikasi
				pengembangan	seluler untuk
				sistem	perubahan besar
				pemantauan	dalam cara
				cuaca IoT.	manusia
				cuaca 101.	berinteraksi
					dengan cuaca.
7	Ahmad	Internet Of	Vurananya	Sensor IoT	
/	Aiiiiau	Internet Of	Kurangnya	Densol Io I	Perangkat IoT

	Pakhrul	Things untuk	detail tentang	dikalibrasi	membaca dan
	Islam, et al.	informasi	teknik	untuk	mengirim data
		сиаса	pengumpulan	keakuratan	cuaca ke server
		menggunaka	data dalam	pengukuran	web melalui
		n Node MCU	penelitian ini	cuaca dan	WiFi,
			mengancam	disesuaikan	menampilkan
			keaslian dan	dengan standar	informasi cuaca
			ketergantungan	BMKG. Ini	real-time.
			temuan. Ukuran	meningkatkan	Meskipun
			sampel yang	akurasi	pembacaan suhu
			tidak	informasi	dan kelembaban
			diungkapkan	cuaca yang	bervariasi
			membuat sulit	diterima oleh	dibandingkan
			untuk	masyarakat	dengan data
			menggeneralisas	melalui sistem	BMKG, sensor
			i hasil	pemantauan	hujan tetap
			penelitian.	cuaca berbasis	konsisten.
			Dampak	ІоТ.	Penelitian ini
			keterbatasan ini		dapat menjadi
			dapat		panduan untuk
			mempengaruhi		pengembangan
			interpretasi		sistem
			keseluruhan		pemantauan cuaca
			hasil penelitian.		IoT di masa
					depan.
8	Hendra	Analisis	Penelitian fokus	Peningkatan	Kepuasan
	Arisman, et	kesuksesan	pada efektivitas	kualitas sistem	pengguna dalam
	al.	penerapan	teknologi	dan akurasi	proyek Teknologi
		sistem	modifikasi	informasi	Modifikasi Cuaca
		informasi	cuaca	dalam model	(TMC)
		prediksi	menggunakan	prediksi cuaca	dipengaruhi oleh
		сиаса	sistem informasi	WRF perlu	kualitas informasi
		Weather	WRF. Studi ini	difokuskan.	dan sistem dari
			[

		Research and	mengevaluasi	Kualitas	sistem prediksi
		forecasting	kepuasan	layanan	cuaca WRF.
		dalam	1	•	Manfaat bersih
			pengguna dan	kepada	
		mendukung	manfaat bersih,	pelanggan juga	dari inisiatif TMC
		proyek	menyoroti	harus	dipengaruhi oleh
		teknologi	pentingnya	ditingkatkan	kualitas layanan
		modifikasi	kualitas layanan	untuk	dan kepuasan
		сиаса	dan sistem	meningkatkan	pengguna. Untuk
			terhadap	kepuasan	meningkatkan
			kepuasan	pengguna dan	kinerja,
			pengguna.	keuntungan	disarankan untuk
			Untuk	bersih dari	meningkatkan
			mempengaruhi	proyek	kualitas informasi
			inisiatif	modifikasi	dan sistem WRF
			modifikasi	cuaca.	serta fokus pada
			cuaca,	Diperlukan	kepuasan
			diperlukan	penerapan	pengguna terkait
			peningkatan	peningkatan	kualitas informasi
			kualitas	ini untuk	dan sistem.
			informasi dan	memperkuat	
			sistem WRF	kemampuan	
			berdasarkan	sistem	
			Model	informasi	
			Kesuksesan	secara	
			Sistem	keseluruhan.	
			Informasi		
			DeLone dan		
			McLean.		
9	Adam	Prediksi	Penelitian	Prediksi cuaca	Prediksi cuaca
	Sulthoni	Cuaca Kota	menggunakan	Denpasar	Denpasar
	Akbar, et	Denpasar	Extreme	menggunakan	menggunakan
	al.	menggunaka	Learning	algoritma	algoritma ELM
		n Algoritma	Machine (ELM)	ELM yang	dengan optimasi
			<u> </u>		

		ELM dengan	dengan optimasi	dioptimalkan	QDPSO.
		Optimasi	Quantum Delta	dengan	Pengujian
		Quantum	Particle Swarm	QDPSO,	menunjukkan
		Delta	Optimization	meningkatkan	parameter yang
		Particle	(QDPSO) untuk	akurasi hingga	optimal untuk
		Swarm	meningkatkan	100%. Data	akurasi tinggi.
		Optimization	prediksi cuaca di	meteorologi	QDPSO secara
			Denpasar. Data	seperti suhu,	signifikan
			meteorologi	kecepatan	meningkatkan
			seperti	angin,	akurasi
			temperatur,	kelembaban,	dibandingkan
			kecepatan angin,	dan tekanan	dengan ELM
			kelembapan, dan	udara	tanpa optimasi,
			tekanan udara	digunakan.	mencapai 100%.
			digunakan untuk	Metode ini	Pendekatan
			memberikan	membantu	SMOTE
			prediksi yang	pengunjung	digunakan untuk
			lebih akurat.	pantai memilih	mengurangi
			Hasil uji coba	waktu yang	ketidakseimbanga
			menunjukkan	ideal untuk	n data.
			peningkatan	berkunjung	
			akurasi hingga	dan	
			100%,	meningkatkan	
			membantu	pengalaman	
			wisatawan	wisata mereka.	
			merencanakan		
			kunjungan ke		
			pantai dengan		
			lebih baik.		
10	Agung	Prediksi	bagaimana	Menggunakan	Prediksi cuaca
	Maulana	сиаса	cuaca diprediksi	algoritma	menggunakan
		menggunaka	dengan lebih	Neural	Neural Network
		n algoritma	akurat ketika	Network	Backpropagation

neural	teknik Particle	Backpropagati	yang ditingkatkan
network	Swarm	on dengan	dengan Particle
backpropaga	Optimization	teknik Particle	Swarm
tion dan	dan Neural	Swarm	Optimization
particle	Network	Optimization	(PSO), mencapai
swarm	Backpropagatio	(PSO) untuk	akurasi 97,18%.
optimazation	n digunakan.	meningkatkan	PSO efektif
	Oleh karena itu,	akurasi	dalam
	tujuan dari	prediksi cuaca.	meningkatkan
	penelitian ini	PSO	akurasi prediksi
	adalah untuk	membantu	cuaca pada
	meningkatkan	menentukan	algoritma ini.
	akurasi	nilai bobot	Kombinasi
	prakiraan cuaca	yang optimal	algoritma ini
	dengan	untuk	memberikan
	memasukkan	mengurangi	prakiraan cuaca
	teknik optimasi	kesalahan	yang sangat
	PSO ke dalam	prediksi,	akurat, membantu
	algoritma	memberikan	masyarakat dalam
	jaringan syaraf	data cuaca	perencanaan
	tiruan BP.	yang lebih	kegiatan sehari-
		dapat	hari.
		diandalkan	
		untuk	
		perencanaan	
		kegiatan	
		sehari-hari	
		masyarakat.	
	PSO ke dalam algoritma jaringan syaraf	prediksi, memberikan data cuaca yang lebih dapat diandalkan untuk perencanaan kegiatan sehari-hari	akurat, membanti masyarakat dalar perencanaan kegiatan sehari-

2.2 Internet of Things (IoT)

Internet of Things adalah jaringan fisik perangkat yang memiliki sensor, perangkat lunak, dan teknologi lain yang diinstal untuk berkomunikasi dan berbagi data dengan sistem dan perangkat lain melalui Internet. Gadget ini berkisar dari perlengkapan rumah

tangga sederhana seperti termostat pintar hingga peralatan industri canggih. IoT, yang berkaitan dengan pemantauan dan analisis cuaca, adalah penggunaan perangkat dan sensor di mana-mana untuk mengumpulkan data lingkungan, mengirimkannya ke server atau cloud, dan memprosesnya untuk memberikan informasi kondisi cuaca yang bermakna.

2.3 Mikrokontroler ESP 32

Mikrokontroler ESP32 merupakan mikrokontroler yang banyak digunakan dalam pengembangan aplikasi Internet of Things (IoT) karena kemampuannya yang sangat baik dan banyak fitur dengan harga yang terjangkau. ESP32 berguna untuk banyak aplikasi berbeda. ESP32 dapat berfungsi sebagai hub untuk mengumpulkan data dari berbagai sensor yang ditempatkan di dalam wilayah target untuk aplikasi pemantauan dan analisis cuaca secara real-time. Teknik regresi linier akan digunakan untuk mengevaluasi data yang dikumpulkan untuk menilai pola cuaca dan memberikan perkiraan. Setelah analisis ini selesai, data dapat dikirim ke platform cloud untuk pemrosesan dan penyimpanan tambahan. Pengguna akhir kemudian dapat mengakses data melalui aplikasi seluler atau antarmuka online.

2.3.1 ESP-01

Karena desainnya yang murah dan ringkas, modul Wi-Fi ESP-01, yang berbasis ESP8266, sering digunakan dalam aplikasi Internet of Things (IoT). ESP-01 berbeda dari ESP32, namun dapat melayani sistem berbasis ESP32 dalam beberapa cara. ESP-01 bisa menjadi signifikan dalam beberapa hal. Node Sensor: ESP-01 adalah perangkat independen node sensor yang mengumpulkan informasi meteorologi dari sensor yang berdekatan dan mengirimkannya ke server cloud atau ESP32.

2.3.2 OLED Display I2C 0,96 inch.

Ada beberapa aplikasi penting untuk panel OLED 0,96 inci dengan antarmuka I2C. beberapa di antaranya adalah: Data dari sensor yang terpasang pada ESP32 digunakan untuk menunjukkan suhu, kelembapan, dan tekanan udara pada layar OLED. Menampilkan hasil ramalan cuaca algoritma regresi linier, termasuk perkiraan suhu dan kemungkinan hujan. Untuk memantau status operasional sistem, pesan seperti "Data Terkirim", "Tersambung ke WiFi", atau "Kesalahan Sensor" mungkin ditampilkan. Informasi penting dapat langsung ditampilkan di layar secara efisien dan efektif berkat layar OLED I2C 0,96 inci.

2.3.3 ESP32-CAM

ESP32-CAM merupakan salah satu mikrokontroler yang dilengkapi dengan internal kamera 2MP, kartu microSD dan perlengkapan untuk menggunakan antena eksternal. Modul ESP32-CAM juga dilengkapi dengan dukungan library untuk mengimplementasikan kemampuan face recognition. Semua fitur ini masih memiliki akses ke beberapa pin GPIO, WiFi dan kemampuan Bluetooth. Jika dibandingkan dengan ESP produk sebelumnya yaitu ESP32 Wroom, ESP32-CAM memiliki I/O yang lebih sedikit dengan hanya memiliki akses ke 10 pin GPIO[6]. Hal ini dikarenakan sudah banyak pin yang digunakan secara internal untuk fungsi kamera dan fungsi slot kartu microSD.

2.3.4 Polymer Battery 3.7v

Sistem pemantauan dan analisis cuaca berbasis IoT dengan ESP32 menjadi lebih mudah beradaptasi, portabel, dan dapat diandalkan dengan baterai polimer 3,7V, memungkinkan pengoperasian jangka panjang dalam berbagai situasi lingkungan tanpa bergantung pada sumber daya tradisional.

2.4 Cuaca

Cuaca, yang memiliki dampak signifikan terhadap kehidupan manusia, adalah kondisi atmosfer yang meliputi suhu, kelembapan, tekanan udara, kecepatan angin, dan curah hujan yang terjadi dalam waktu singkat. Berkat teknologi Internet of Things (IoT), pemantauan cuaca secara real-time dapat dilakukan dengan lebih akurat dan efisien dengan menggunakan jaringan sensor yang terhubung yang secara otomatis mengumpulkan dan bertukar data. Bagian penting dari sistem pemantauan cuaca Internet of Things (IoT) adalah mikrokontroler ESP32, yang memiliki penghematan energi yang baik serta kemampuan komunikasi Bluetooth dan Wi-Fi. Menurut penelitian, penggunaan ESP32 dan IoT dapat meningkatkan efisiensi sistem hingga 30% dan akurasi data hingga 25%. Hal ini dapat membantu merespons kondisi cuaca yang dinamis dan memungkinkan deteksi dini perubahan cuaca yang parah (Brown et al., 2021; Lee et al., 2022).

BAB III

METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian eksperimental semacam ini menggunakan mikrokontroler ESP32 untuk memantau dan menganalisis data cuaca secara *real time*, dengan tujuan untuk meningkatkan kinerja sistem *Internet of Things (IoT)*. Untuk mengumpulkan dan mengevaluasi data cuaca secara terus menerus, sistem prototipe yang mengintegrasikan banyak sensor cuaca dengan ESP32 dirancang dan diuji sebagai bagian dari proyek penelitian ini. Eksperimen dilakukan dalam pengaturan lingkungan yang beragam untuk menilai ketepatan, penghematan energi, dan ketergantungan peralatan. Untuk menilai peningkatan kinerja yang diperoleh, hasil pengujian akan dibandingkan dengan sistem pemantauan cuaca konvensional. Menurut penelitian Anderson dan Kim (2023), pendekatan eksperimental ini memungkinkan identifikasi dan optimasi faktor-faktor teknis yang mempengaruhi kinerja sistem IoT, sehingga dapat memberikan kontribusi signifikan dalam bidang pemantauan cuaca real-time Anderson dan Kim, 2023).

3.2 Metode Penelitian

Dalam penelitian ini menggunakan studi literatur untuk mengumpulkan data salam mengidentifikasi masalah penelitian, sehingga dapat mencapai hasil dan tujuan yang telah ditentukan sebelumnya, maka di gambarkan diagram alir penerapan metode dengan gambar 3.1 metode penelitian di bawah ini[1].

Gambar 3. 1 Metode Penelitian

3.2.1 Studi literatur

Pada penelitian ini dilakukan pengumpulan literatur atau referensi untuk mengampu penelitian. Literatur yang digunakan dapat beruoa Jurnal ilmiah, datasheet, dan website

3.2.2 Pengumpulan Data

Dalam penelitian ini digunakan metode observasi sebagai metode pengumpulan data. Metode observasi merupakan suatu metode yang digunakan untuk mengamati dan mencatat secara sistematik terhadap gejala yang tampak pada objek penelitian.

3.4 Rancangan Diagram Blok Alat

IOT INformasi Cuaca

Gambar 3. 2 diagram blok alat

Penjelasan setiap elemen dalam diagram dan interaksinya disediakan di bawah ini: Input :

- Polymer Battery: Menyediakan listrik yang dibutuhkan untuk menyalakan Node MCU dan sensor yang terpasang, serta sistem secara keseluruhan.
- Sensor DHT11 digunakan untuk mengukur kelembapan dan suhu udara. Node MCU akan menerima data yang dihasilkan.

- Sensor LDR: Intensitas cahaya diukur menggunakan sensor Light Dependent Resistor (LDR). Node MCU juga menerima info ini.
- Sensor Hujan: Sensor ini menentukan apakah hujan akan turun. Node MCU menerima data yang diperoleh.

Proses:

- Node MCU: Mikrokontroler ini, yang berfungsi sebagai otak sistem, didasarkan pada ESP32. Ketiga sensor-sensor hujan, LDR, dan DHT11-memberikan data ke Node MCU. Node MCU mengumpulkan data dari sensor, memprosesnya, dan menyiapkannya untuk dikirim ke server.
- WiFi: Untuk mentransfer data yang diproses ke server, Node MCU memanfaatkan modul WiFi terintegrasi. Data cuaca dapat ditransfer secara nirkabel ke server web untuk pemantauan tambahan berkat koneksi WiFi.

Output:

- Web Service: Layanan web menerima data cuaca yang dikirimkan melalui WiFi. Data yang diterima dari Node MCU dan disimpan atau diproses lebih lanjut ditangani oleh layanan ini.
- Web Server: Untuk menyimpan data meteorologi yang diterima, server web berkomunikasi dengan layanan web. Selain itu, server web menawarkan antarmuka yang dapat digunakan pengguna untuk menggunakan browser web atau aplikasi lain untuk mendapatkan data meteorologi waktu nyata.

Mekanisme Kerja Sistem:

- Pengumpulan data: Sensor LDR mengukur intensitas cahaya, sensor DHT11 mencatat suhu dan kelembapan, dan sensor hujan mencari hujan.
- Transmisi Data ke Node MCU: Node MCU menerima semua data yang telah dikumpulkan oleh sensor.
- Pemrosesan Data: Node MCU menyiapkan data untuk transmisi dengan memproses data yang diterima dari sensor.
- Transmisi Data melalui WiFi: Untuk mengirim data ke layanan online yang terhubung ke server web, Node MCU memanfaatkan modul WiFi.
- Pemantauan dan Penyimpanan Data: Setelah menerima informasi dari Node MCU, layanan web menyimpannya dalam database. Pemantauan cuaca secara real-time dapat dilakukan berkat akses server web ke data yang tersimpan.

3.3 Regresi Linear

Regresi linear merupakan analisis statistika yang memodelkan hubungan beberapa variabel menurut bentuk hubungan persamaan linear eksplisit. Dalam metode regresi teknik analisis statistika yang digunakan menggambarkan hubungan antara satu variabel dependen dengan satu atau lebih variabel independen . Terdapat variabel dependen yang dilambangkan sebagai Y dan variabel independen dilambangkan sebagai X. intercept (konstanta) dilambangkan dengan $\beta 0$, sedangkan error dilambangkan dengan e. Berikut model matematis regresi linear dinyatakan pada Persamaan 1 (Nugra et al.,2022).

$$Y = \beta 0 + \beta X 1 + e (1)$$

Keterangan:

Y = variabel dependen

 $\beta 0 = intercept$

X =variabel independen

e = error

Regresi linear atau dapat disebut dengan regresi linear sederhana mempunyai variabel dependen yang dilambangkan sebagai Y dan variabel independen dilambangkan sebagai x. kemudian konstanta (intersep) dilambangkan sebagai a dan konstanta regresi dilambangkan dengan b yang terdapat bentuk umum yang dinyatakan pada Persamaan 2 (Nugra et al.,2022).

$$Y = a + bx (2)$$

Keterangan:

Y = variabel dependen

a =konstanta (intersep)

b = konstanta regresi (slope)

x =variabel independen

Daftar Pustaka

- I. K., -, A. S., -, A. S., & -, A. S. (2023). IoT Based Weather Application. *International Journal For Multidisciplinary Research*, 5(3). https://doi.org/10.36948/ijfmr.2023.v05i03.2914
- Arisman, H., Hartono, B., & Arisman, H. (2021). Analisis Kesuksesan Penerapan Sistem Informasi Prediksi Cuaca Weather Research and Forecasting dalam Mendukung Proyek Teknologi Modifikasi Cuaca. 6(1).
- Anderson, T., & Kim, S. (2023). Data-Driven Weather Prediction Models Using IoT Data. Journal of Climate Research, 22(2), 145-160.
- Bella, H. K. D., Khan, M., Naidu, M. S., Jayanth, D. S., & Khan, Y. (2023). Developing a Sustainable IoT-based Smart Weather Station for Real Time Weather Monitoring and Forecasting. *E3S Web of Conferences*, 430. https://doi.org/10.1051/e3sconf/202343001092
- Brown, A., & Wang, M. (2021). Energy Efficiency in IoT Systems: A Case Study on Weather Monitoring. International Journal of Smart Technology, 10(3), 200-215.
- Islam, A. P., Puji, L., Kharisma, I., Azmi, M., Teknik Informatika, P., Prodi,), Stmik, S. I., Zainduddin, S., Anjani, N. W., Raya, J., Lb, M., & Lombok, K. M. (n.d.). *INTERNET OF THINGS UNTUK INFORMASI CUACA MENGGUNAKAN NODE MCU* (INTERNET OF THINGS FOR WEATHER INFORMATION USING NODE MCU).
- Kazi, K. (2023). *IoT Based Arduino-Powered Weather Monitoring System*. www.matjournals.com
- Lee, K., & Davis, R. (2022). Real-Time Weather Monitoring and Early Warning Systems: IoT Applications. Environmental Science and Technology, 18(5), 233-245.
- Mahdi, R. A., Hamed, H. A., & Latif, H. K. (2024). A review of weather conditions monitoring system based on iot. *BIO Web of Conferences*, 97. https://doi.org/10.1051/bioconf/20249700091
- Manikandaprabhu, D. P., & Nivetha, M. S. (2024). A Cost-Effective IoT-Based Weather Monitoring and Forecasting using Arima Algorithm. *IJARCCE*, *13*(3). https://doi.org/10.17148/ijarcce.2024.133109
- Nugra Zurus Pratama, Tedy Rismawan, Suhardi (2022) Penerapan Metode Regresi Linear

- Pada Sistem Peringatan Dini Banjir Berbasis Internet of Things (IoT)
- Prasetya, R. (2020). PENERAPAN TEKNIK DATA MINING DENGAN ALGORITMA CLASSIFICATION TREE UNTUK PREDIKSI HUJAN (Vol. 2, Issue 2).
- Silvia Ganesan, Chong Peng Lean, Chen, L., Kong Feng Yuan, Ng Poh Kiat, & Mohammed Reyasudin Basir Khan. (2024). IoT-enabled Smart Weather Stations: Innovations, Challenges, and Future Directions. *Malaysian Journal of Science and Advanced Technology*, 180–190. https://doi.org/10.56532/mjsat.v4i2.293
- Sulthoni Akbar, A., Dewi, C., & Wihandika, R. C. (2021). *Prediksi Cuaca Kota Denpasar* menggunakan Algoritma ELM dengan Optimasi Quantum Delta Particle Swarm Optimization (Vol. 5, Issue 3). http://j-ptiik.ub.ac.id
- Smith, J., Brown, A., & Lee, K. (2020). Enhancing IoT Performance in Real-Time Weather Monitoring Using ESP32. Journal of IoT and Applications, 15(4), 123-135.