STM32MP1 Hardware design made easy

Presentation

Agenda 2

15 min

- Main Challenge for HW
- Package optimized to ease HW
- Power Management IC companion STPMIC1
- **DDR ROUTING**
- Documents
- Reference Boards

Main challenges for HW 3

Platform HW definition should be simple

PCB routing should allow low complexity PCB stackup and technology

Platform supplies definition should be as simple as possible

Signal integrity should be easy to manage / test

Package optimized to ease HW

Consumer / DDR3/3L:

Consumer / LPDDR2/3 & DDR3/3L:

Full Features:

LFBGA448 18x18mm pitch 0.8 DDR3/3L 32-bits I/F 176 GPIOs **6 layers PTH PCB**

TFBGA361 12x12mm pitch 0.5 LPDDR2/3, DDR3/3L 32-bits I/F 148 GPIOs 4 lavers PTH + laser via PCB

Pitch 0.65 on inner ball matrix to ease **PCB** supply routing

Low cost:

LFBGA354 16x16mm pitch 0.8 DDR3/3L 16-bits I/F 98 GPIOs 4 layers PTH PCB

TFBGA257 10x10mm pitch 0.5 LPDDR2/3, DDR3/3L 16-bits I/F 98 GPIOs 4 layers PTH PCB

PCB techno for 0.8mm pitch packages

2 traces between 2 balls

PCB techno for 0.5/0.65mm pitch 12x12 package 7

Package	PCB layers	VIA	Trace width / isolation
TFBGA361 12x12	4	Plated Through Hole Ø 400 µm and Laser via Ø 250 µm	90μm / 80μm

4 outer peripheral rings One ball removed to escape 4 traces Some balls are escaped with laser via on top layer

PCB techno for 0.5/0.65mm pitch 10x10 package

Package	PCB layers	VIA	Trace width / isolation
TFBGA257 10x10	4	Plated Through Hole Ø 400 µm	90μm / 80μm

3 outer peripheral rings. One ball removed to escape 4 traces The 3rd outer peripheral ring can be escape without laser via

Power Management IC companion STPMIC1

STM32MP1 with STPMIC1

→ STPMIC1 save external Bucks and LDOs on PCB for Typical Applications

STPMIC1 BOM options 12

STPMIC1 com	ponents	Number of different Passive References	Area	Relative Cost
Industrial profile (full buck converter performance and 2,5r	nm x 2,0mm inductors package)	7	247 mm ²	reference
Consumer profile / low cost (half buck converter performance and 2,5)	nm x 2,0mm inductors package)	6	247 mm²	- 40%
Consumer profile / high integration (half buck converter performance and 2,0r	nm x 1,6mm inductors package)	6	220 mm²	- 20%

DDR ROUTING

DDR TOPOLOGY 14

VTT

LPDDR2/LPDDR3

FLY-BY

DDR length equalization 161

Timing constraints request trace length equalization including package and PCB trace lengths

In order to facilitate the layout of DDR traces, a excel file is proposed. It calculates the total length based on information from package and PCB. It verifies that rules are respected

https://www.st.com/resource/en/board manufacturing specification/stm32mp1 seriesddrmemory rout

ing guidelines examples.zip

DDR tool suite

DDR tuning - Technical information

Lane delay 19

Example of DDR Byte0 tunable signals

DQS0N / DQS0P signals

DQ0[0:7] byte lane

Constrained signals length (e.g. +/-1mm within all signals in a byte including DQS)

Length influences the round trip delay

DDR tuning

DDR tuning: Read DQS gating training

Read DQS gating

The purpose read DQS gating training is to adjust the timing of internal gating signal for DQS signal so that pseudo edges may occur due to glitches, post/preamble periods are eliminated.

DQS gating position is depending on the round trip delay.

Read DQS signal is an input signal

DDR tuning

DDR tuning: Data Bit deskew

Bit de-skew

Data valid window before bit-skew

Data valid window after bit-skew

 Delay to be applied to each data line is computed based on results of several iteration DDR suite algo. This explains the step duration

DDR tuning •

DDR tuning: Read Eye Training

Eye Training

The purpose of eye training is to find middle point of data valid window so that data is sampled/generated in optimum positions for read/write cycles.

Read Eye training is intended for Read access

STM32 DDR tool suite 23

- STM32CubeMX comes along with an exhaustive tool suite for DDR subsystem
 - Configuration of DDR controller and PHY registers is managed automatically based on reduced set of editable parameters
 - Tuning of lanes delays is proposed to compensate design imperfection
 - 17 DDR Testing is offered based on a rich tests list.
 - Basic, perfs and stress tests.
 - User can also develop its own tests.

DDR tuning

CubeMX interface DDR Tuning tool

DDR testing

- 17 tests (functional, perf, stress)
- Parameters used for test are recalled, along with Pass/Fail status and results details
- Test history is available in the output panel

MCUs Sele	ection	Output	DDR Interactive logs
rargeo	1		Dioc of Dec anico D, phase o
Target	>	Host	Byte 1, DQS unit = 3, phase = 3
Target	>	Host	Result: Pass []
Host	>	Target	test 2 1 0xC0000000
Target	>	Host	execute 2:DataBusWalking0
Target	>	Host	running 1 loops at 0xc0000000
Target	>	Host	Result: Pass [no error for 1 loops]

Details

Name	DataBusWalking0
Purpose	Verifies each data bus signal can be driven
Test Sequence	Writes patterns with 'moving' 0 on a 32 data bus width. Example: write '111111111111111111111111111111111111

Execution

Parameter(s)	
Address	0xC0000000
Loop	1

Run test

Verdict

ltem(s)	Info	
Address	0xC0000000	
Loop(s)	1	
Result	Pass	
Result details	no error for 1 loops	

Documents

HW related Application Notes

(only major ones)

 AN5031 Getting started with STM32MP1 Series hardware development

https://www.st.com/resource/en/application_note/dm00389996.pdf

- Power supplies, external clocks and resets, boot configuration, IO speed settings, PCB, ...
- Examples of reference schematics (Debug, STPMIC1, DDR3/DDR3L/LPDDR2/LPDDR3, SD-Card, eMMC, Raw-NAND. Serial-NOR/NAND. USB. Ethernet. DSI. etc...)
- AN5168 DDR configuration on STM32MP1 Series MPUs

https://www.st.com/resource/en/application_note/dm00505673.pdf

- DDR subsystem initialization and configuration
- Configuration sequence and parameters for DDR3/DDR3L/LPDDR2/LPDDR3
- DDR Tuning and Testing
- AN5122 STM32MP1 Series DDR memory routing guidelines

https://www.st.com/resource/en/application_note/dm00462392.pdf

- Memory architecture options
- DDR3/DDR3L schematic implementation for DDR3/DDR3L/LPDDR2/LPDDR3
- PCB design considerations, Memory layout rules
- Provided with "STM32MP1 Series DDR memory routing guidelines examples" Zip file containing multiple Altium® schematics and PCB projects

HW related data 28

- STM32MP1 CAD Symbol and Footprint files
 - To quickly start projects https://www.st.com/resource/en/svd/stm32mp1 svd.zip

- STM32MP1 IBIS file (Input/output Buffer Information Specification)
 - For board signal integrity simulations https://www.st.com/resource/en/bsdl_model/stm32mp1_ibis.zip

- STM32MP1 BSDL file (Boundary Scan Description Language)
 - For board manufacturing tests https://www.st.com/resource/en/bsdl model/stm32mp1 bsdl.zip

- STM32MP1 System View Description (SVD)
 - Ease debugging using abstraction of HW registers address

https://www.st.com/resource/en/cad_symbol_library/stm32mp1_cad.zip 🔽

 Main page https://wiki.st.com/stm32mpu

- Reference documents links
 - Application Notes
 - DataSheets / Reference Manuals / ErrataSheets
 - Boards schematics and users manuals

https://wiki.st.com/stm32mpu/wiki/STM32MP15 ecosystem release note#Reference docu ments

 ROM code HW related information (Boot pins, Flash connections, etc...) https://wiki.st.com/stm32mpu/wiki/STM32MP15_ROM_code_overview

Reference Boards

Reference Boards 1/2

Evaluation board EV1

- with STM32MP157 LFBGA448 (18x18) + STPMIC1A + 2xDDR3L 16-
 - + eMMC + UHS-I SD-Card + ST-LINK/V2-1 + 5.5" DSI touchscreen
 - + 5Mpixels Camera + Ethernet Gigabit

https://www.st.com/en/evaluation-tools/stm32mp157c-ev1.html

- Board design Altium project files
- Manufacturing files
- **Board Schematic**
- Bill of materials

Order code		Board reference	Target STM32	Differentiating feature
STM32MP157A-EV1	•	MB1262: mother board	STM32MP157AAA3	Basic security.
STM32MP157C-EV1		MB1263: MPU subsystem daughterboard MB1230: DSI display board MB1379: camera board	STM32MP157CAA3	Secure Boot and cryptography.

Reference Boards 2/2

- Discovery board DK1/DK2
 - with STM32MP157 TFBGA361 (12x12) + STPMIC1A + DDR3L 16-bits + SD-Card + HDMI Bridge + Gigabit Ethernet + USB Type-C + ST-LINK/V2-1 + + 4" DSI touchscreen + Ethernet Gigabit

https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

- Board design Altium project files
- Manufacturing files
- **Board Schematic**
- Bill of materials

Order code	Board reference	Target STM32	Differentiating feature	
STM32MP157A-DK1	• MB1272	STM32MP157AAC3	Basic security	
STM32MP157C-DK2	 MB1272 MB1407⁽¹⁾ 	STM32MP157CAC3	 Secure Boot and cryptography LCD Wi-Fi[®] Bluetooth[®] Low Energy 	

www.st.com/opla LCD extension board.

Are challenges still seen as complex?

Main challenges for HW (solutions)

Platform HW definition should be simple

• STM32CubeMx, Reference board, Application Notes, Wiki

PCB routing should allow low complexity PCB stackup and technology

• Smart Package definition, DDR Tools, Reference design

Platform supplies definition should be as simple as possible

STPMIC1, Reference design, Application Notes

Signal integrity should be easy to manage / test

DDR Tools, IBIS models, BSDL files

