Introduction to Machine Learning

Lecture 15: Elementary Reinforcement Learning – Deterministic Environment Dec 2, 2019

Jie Wang

Machine Intelligence Research and Applications Lab Department of Electronic Engineering and Information Science (EEIS) http://staff.ustc.edu.cn/~jwangx/

jiewangx@ustc.edu.cn

Learning Scenarios

Contents

- Learning Scenarios
- Markov Decision Process
- Planning Algorithms
- Learning Algorithms

Grid World

Snooker

Three Kingdoms

Three Kingdoms

Three Kingdoms

Three Kingdoms

Agent & Environment

Agent & Environment

Interactions between Agent & Environment

Three Kingdoms

Agent & Environment

Agent & Environment

Interactions between Agent & Environment

Interactions between Agent & Environment

Goal State of the Agent

Agent & Environment

 The system consists of an agent (may be more) and an environment, interacting with each other.

Actions

• At each state, the agent can pick and perform certain action to alter the state.

Interactions between Agent & Environment

Markov Decision Process

States

• From the perspective of the agent, the environment is described by a set of states.

States: $\mathcal{S} = \{(i,j): i = 0,1,2,3, j = 0,1,2\}$

Goal State

• No matter starting from which state, the agent would like to achieve certain goal state.

The game will terminate if the agent arrives at (3,2) (win) or (3,1) (lose).

Policy

 To achieve the goal state, the agent needs to pick and perform a sequence of actions according to the observed state

Policy: $\pi: \mathcal{S} \to \mathcal{A}$

The Learning Task

How can we find a desired policy to direct the agent's move?

Reward

· We assume that the goals of the agent can be defined by a reward function

The Optimal Policy

Under a MDP, we shall look for the (optimal) policy that leads to the greatest (expected) accumulated reward no matter

The Learning Task

• Find a policy that can direct the agent to its goal state no matter which state the agent would have been at the very first beginning.

Reward

• We assume that the goals of the agent can be defined by a reward function

$$r: S \times A \rightarrow \mathbb{R}$$

· Starting from an arbitrary state, the desired policy would pick for the agent the actions that maximize the reward accumulated over time.

Markov Decision Process (MDP)

- Indeed, we have already introduced the so-called MDP, which is defined (rigorously) by
 - a set of states S, possibly infinite
 - lacksquare a set of actions \mathcal{A} , possibly infinite
 - an initial state $s_0 \in \mathcal{S}$
- - a transition probability $\mathbf{P}[s'|s,a]$: distribution over destination states $s'=\delta(s,a)$ a reward probability $\mathbf{P}[r|s,a]$: distribution over rewards r'=r(s,a)
- · This model is Markovian because the transition and reward probabilities only depend on the current state and the action picked and performed at the current state, instead of the previous sequence of states and actions performed.
- In this lecture, we assume that
 - the states and the actions are finite
 - the environment is $\ensuremath{\text{\textbf{deterministic}}}$, i.e., the destination state and the reward are completely determined by the current state and the action performed at the current state

Value Function

- Suppose that a policy π is given.
- Starting from an arbitrary state s_t , the cumulative reward by following π is given by

$$V^{\pi}(s_t) := r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$
 discounted factor, $\gamma \in [0,1)$

Value Function

$$\begin{array}{c} -0.9 \\ V^{\pi_1}((0,0)) = 0.9^4 \times 100 = 65.61 \\ V^{\pi_1}((1,0)) = 0.9^3 \times 100 = 72.9 \\ V^{\pi_1}((2,0)) = 0.9^2 \times 100 = 81.0 \\ V^{\pi_1}((3,0)) = 0.9^3 \times 100 = 72.9 \\ V^{\pi_1}((0,1)) = 0.9^3 \times 100 = 72.9 \\ V^{\pi_1}((2,1)) = 0.9 \times 100 = 90.0 \\ V^{\pi_1}((2,1)) = 0.9^2 \times 100 = 81.0 \\ V^{\pi_1}((1,2)) = 0.9 \times 100 = 90.0 \\ V^{\pi_1}((1,2)) = 0.9 \times 100 = 90.0 \\ V^{\pi_1}((2,2)) = 100.0 \end{array}$$

 $\begin{array}{l} V^{\pi_2}((0,0)) = 0 \\ V^{\pi_3}((1,0)) = 0.9^2 \times (-100) = -81.0 \\ V^{\pi_2}((2,0)) = 0.9 \times (-100) = -90.0 \\ V^{\pi_2}((3,0)) = 0.9^2 \times (-100) = -81 \\ V^{\pi_2}((0,1)) = 0 \\ V^{\pi_2}((2,1)) = -100.0 \\ V^{\pi_2}((0,2)) = 0.9^2 \times 100 = 81.0 \\ V^{\pi_2}((1,2)) = 0.9 \times 100 = 90.0 \\ V^{\pi_2}((1,2)) = 0.9 \times 100 = 90.0 \\ V^{\pi_2}((2,2)) = 100.0 \end{array}$

Value Function – Bellman Equation

Bellman Equation

$$V^\pi(s) = r(s,a) + \gamma V^\pi(\delta(s,a))$$

Value Function - Bellman Equation

Bellman Equation

$$V^\pi(s) = r(s,a) + \gamma V^\pi(\delta(s,a))$$

 $V = R + \gamma TV$

Value Function - Bellman Equation

· Bellman Equation

$$V^{\pi}(s) = r(s, a) + \gamma V^{\pi}(\delta(s, a))$$

Value Function - Bellman Equation

• Starting from an arbitrary state s_t , the cumulative reward by following π is given by

$$V^{\pi}(s_t) := r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

$$s_{t} \xrightarrow{a_{t}} s_{t+1} \xrightarrow{x_{t+1}} s_{t+2} \xrightarrow{a_{t+2}} s_{t+2} \xrightarrow{r_{t+2}} \cdots$$

$$a_{t} = \pi(s_{t}) \quad r_{t} = r(s_{t}, a_{t}) \quad s_{t+1} = \delta(s_{t}, a_{t})$$

Bellman Equation

$$V^{\pi}(s_t) = r_t + \gamma \left(r_{t+1} + \gamma r_{t+2} + \ldots \right)$$
$$= r_t + \gamma V^{\pi}(s_{t+1})$$
$$= r_t + \gamma V^{\pi}(\delta(s_t, a_t))$$

Value Function - Bellman Equation

Bellman Equation

$$V^{\pi}(s) = r(s, a) + \gamma V^{\pi}(\delta(s, a))$$

$V^{\pi_1}((0, 0))$	/ o \		70	0	0	0	1	0	0	0	0	0	0	0\		$V^{\pi_1}((0,0))$
$V^{\pi_1}((1,0))$	0		0	0	1	0	0	0	0	0	0	0	0	0	١	$V^{\pi_1}((1,0))$
$V^{\pi_1}((2,0))$	0		0	0	0	0	0	0	1	0	0	0	0	0		$V^{\pi_1}((2,0))$
$V^{\pi_1}((3,0))$	0		0	0	1	0	0	0	0	0	0	0	0	0		$V^{\pi_1}((3,0))$
$V^{\pi_1}((0,1))$	0		0	0	0	0	0	-0	0	0	1	0	-0	0	L	$V^{\pi_1}((0,1))$
$V^{\pi_1}((1,1))$	0		0	0	0	0	0	1	0	0	0	0	0	0		$V^{\pi_1}((1,1))$
$V^{\pi_1}((2,1))$	0	+ 7	0	0	0	0	0	0	0	0	0	0	1	0		$V^{\pi_1}((2,1))$
$V^{\pi_1}((3,1))$	- 0		0	0	0	0	0	0	0	1	0	0	0	0	П	$V^{\pi_1}((3,1))$
$V^{\pi_1}((0,2))$	- 0		0	0	0	0	0	0	0	0	0	1	-0	0	Г	$V^{\pi_1}((0,2))$
$V^{\pi_1}((1, 2))$	0		0	0	0	0	0	0	0	0	0	0	1	0	П	$V^{\pi_1}((1,2))$
$V^{\pi_1}((2,2))$	100		0	0	0	0	0	0	0	0	0	0	0	1		$V^{\pi_1}((2,2))$
$V^{\pi_1}((3,2))$	(0 /		0	0	0	0	0	0	0	0	0	0	-0	1/		$V^{\pi_1}((3,2))$

Value Function - Bellman Equation

Bellman Equation

$$V^\pi(s) = r(s,a) + \gamma V^\pi(\delta(s,a))$$

Value Function - Bellman Equation

Bellman Equation

$$V^{\pi}(s) = r(s, a) + \gamma V^{\pi}(\delta(s, a))$$

Theorem: For a finite MDP, Bellman's equation admits a unique solution that is given by

$$V = (I - \gamma T)^{-1}R$$

- The vector \boldsymbol{R} and matrix \boldsymbol{T} depend on the policy

The Learning Task Revisited

• The learning task for RL scenarios is to learn an optimal policy in the sense that

For π₁ and π₂, we have

$$V^{\pi_1}(s) \ge V^{\pi_2}(s), \,\forall \, s.$$

Indeed, π₁ is the optimal policy.

Planning Algorithms

Value Iteration

· Value iteration aims to find the optimal value function and thus the optimal policy

Initialize V(s) to arbitrary values while termination conditions does not hold For $s \in \mathcal{S}$ For $a \in \mathcal{A}$ $Q(s,a) \leftarrow r(s,a) + \gamma V(\delta(s,a))$ $V(s) \leftarrow \max_{a} Q(s,a)$

Value Iteration

· Value iteration aims to find the optimal value function and thus the optimal policy

Example

$$\begin{split} V \leftarrow 0 \\ &Q((2,2), \text{up}) \leftarrow 0 + 0.9 \times V((2,2)) = 0 \\ &Q((2,2), \text{down}) \leftarrow 0 + 0.9 \times V((2,1)) = 0 \\ &Q((2,2), \text{left}) \leftarrow 0 + 0.9 \times V((1,2)) = 0 \\ &Q((2,2), \text{right}) \leftarrow 100 + 0.9 \times V((3,2)) = 100 \\ &V((2,2), \text{right}) \leftarrow \max\{Q((2,2), \text{up}), Q((2,2), \text{down}), Q((2,2), \text{left}), Q((2,2), \text{right})\} = 100 \end{split}$$

The Q Function

- Learning the optimal policy is challenging
- An alternative approach to find the optimal policy indirectly is by computing the state-action value function (Q function)

$$Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

Q(s,a) is the accumulated reward by performing the action a first and then following the optimal policy

· The definition of the optimal policy implies that

$$\pi^*(s) = \operatorname{argmax}_a Q(s, a) = \operatorname{argmax}_a r(s, a) + \gamma V^*(\delta(s, a))$$

· Notice that

$$V^*(s) = \max Q(s, a) = \max r(s, a) + \gamma V^*(\delta(s, a))$$

All together, we have

$$Q(s, a) = r(s, a) + \gamma \max_{s'} Q(\delta(s, a), a')$$

Planning

 Planning: to find the optimal policy, there is no need for the agent to actually perform actions and interact with the environment

Value Iteration

Value iteration aims to find the optimal value function and thus the optimal policy

Example

$$\begin{split} V &\leftarrow 0 \\ &Q((0,0), \operatorname{up}) \leftarrow 0 + 0.9 \times V((0,1)) = 0 \\ &Q((0,0), \operatorname{down}) \leftarrow 0 + 0.9 \times V((0,0)) = 0 \\ &Q((0,0), \operatorname{left}) \leftarrow 0 + 0.9 \times V((0,0)) = 0 \\ &Q((0,0), \operatorname{right}) \leftarrow 0 + 0.9 \times V((1,0)) = 0 \\ &V((0,0), \operatorname{right}) \leftarrow 0 + 0.9 \times V((1,0)) = 0 \\ &V((0,0)) \leftarrow \max\{Q((0,0), \operatorname{up}), Q((0,0), \operatorname{down}), Q((0,0), \operatorname{left}), Q((0,0), \operatorname{right})\} = 0 \end{split}$$

Nothing happens

Value Iteration

· Value iteration aims to find the optimal value function and thus the optimal policy

Theorem: For any initial value V, the sequence generated by the value iteration algorithm converges to V^* .

• The key to the proof is the contraction mapping theorem

Policy Iteration

· Policy iteration improves the policy directly

Initialize
$$\pi, \pi'$$
 to two different policies
$$\begin{aligned} \mathbf{while} &(\pi \neq \pi') \\ V \leftarrow &(I - \gamma T^\pi)^{-1} R^\pi \\ \pi' \leftarrow &\pi \end{aligned}$$
 For $s \in \mathcal{S}$
$$\pi(s) \leftarrow \operatorname{argmax}_a r(s, a) + \gamma V(\delta(s, a))$$

Policy Iteration

· Policy iteration improves the policy directly

11 states in total

Policy Iteration

· Policy iteration improves the policy directly

Policy Iteration

· Policy iteration improves the policy directly

 1^{st} iteration: update the policy

$$\begin{split} \pi((0,0)) &= \operatorname{argmax}_a\{r((0,0),\operatorname{up}) + \gamma V((0,1)),\\ &\quad r((0,0),\operatorname{down}) + \gamma V((0,0)),\\ &\quad r((0,0),\operatorname{left}) + \gamma V((0,0)),\\ &\quad r((0,0),\operatorname{right}) + \gamma V((1,0))\}\\ &= \operatorname{argmax}_a\{0,0,0,0\} \end{split}$$

We can randomly select one action from $\mathcal{A} = \{\mathrm{up,\ down,\ left,\ right}\}$. However, it is better select one action from up and right (why?).

Policy Iteration

Policy iteration improves the policy directly

Policy Iteration

· Policy iteration improves the policy directly

Policy Iteration

· Policy iteration improves the policy directly

Policy Iteration

· Policy iteration improves the policy directly

We can indeed assign negative rewards for actions that will not alter the states when these states are not the goal states. Or, we can simply ignore these actions.

 $r((0,0), \text{down}) + \gamma V((0,0)),$

 $r((0,0), \mathsf{right}) + \gamma V((1,0))\}$

 $r((0,0), left) + \gamma V((0,0)),$

Policy Iteration

· Policy iteration improves the policy directly

Learning

Learning: as the environment model, i.e., the transition and reward, is unknown, the
agent may need to learn them based on the training information.

 $\pi((0,0)) = \mathrm{up}$

The Q-learning Algorithm

- Initialize the matrix \hat{Q} to zero
- Observe the current state s
- Do forever:
 - Pick and perform an action a
 - Receive immediate reward r
 - Observe the new state s'
 - Update

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

s ← s'

A sufficient condition for $\hat{Q}(s,a)$ to converge is to visit each state-action pair infinitely often

Exploitation vs Exploration

Multi-armed bandit

- Which machine next?
 - Exploitation: the machine with the largest reward at present
 - · Exploration: randomly select a machine

Learning Algorithms

Learning

- Learning: as the environment model, i.e., the transition and reward, is unknown, the agent may need to learn them based on the training information.
 - Model-free approach: the agent learns the optimal policy directly, e.g., Q-learning
 - Model-based approach: the agent first learns the environment model and then the
 optimal policy

Examples of training data

$$(0,0) \frac{up}{0} (0,1) \frac{up}{0} (0,2) \frac{right}{0} (1,2) \frac{right}{0} (2,3) \frac{right}{100} (3,2)$$

$$(1,0) \frac{right}{0} (2,0) \frac{up}{0} (2,1) \frac{right}{-100} (3,1)$$

The Q-learning Algorithm

- Initialize the matrix \hat{Q} to zero
- Observe the current state \boldsymbol{s}
 - Do forever:
 Pick and perform an action a
 - Receive immediate reward r
 - Observe the new state s'
 - Update

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

s ← s'

Exploitation vs Exploration

· Multi-armed bandit

- ε-greedy
 - with probability 1ϵ , we do exploitation
 - with probability ϵ , we do exploration, i.e., we uniformly randomly select an action from all possible actions
- Tips for ε-greedy
 - At the beginning, the agent does not know the environment very well. Thus, it need to do more exploration and a large value of ϵ is needed.
 - When the environment model is well explored, the agent can do more exploitation. Thus, we favor a small value of ε.

Exploitation vs Exploration

· Multi-armed bandit

- · A soft sampling strategy
 - Given a state, we can choose action probabilistically

$$\mathsf{P}[a|s] = \frac{e^{\hat{Q}(s,a)/T}}{\sum_{a'} e^{\hat{Q}(s,a')/T}}$$

- Smaller values of ${\it T}$ will assign higher probabilities for actions with high
- Q̂, leading to an exploitation strategy.
 Larger values of T will encourage the agent to explore actions that do not currently have high Q̂ values.

The Q-learning Algorithm

 $\epsilon = 0.3$

The Q-learning Algorithm

- an example episodethe initial state in each episode could NOT be fixed (why?)

 $\epsilon=0.3$

Questions

