Теоретическое ДЗ

Дифференциальные уравнения и динамические системы

Глеб Минаев @ 204 (20.Б04-мкн)

5 сентября 2021 г.

Задача (№1). Пусть $y:(a;b)\to\mathbb{R}$ — некоторое решение дифференциального уравнения y'=f(y).

Лемма 1. Пусть имеются точки $x_1, x_2 \in (a; b)$, где $y(x_1) = y(x_2) = \alpha$. Если $f(\alpha) \neq 0$, то есть точка $x_3 \in (x_1; x_2)$, что $y(x_3) = \alpha$.

Доказательство. WLOG $f(\alpha) > 0, x_1 < x_2$. Тогда

$$y'(x_0) = y'(x_1) = f(\alpha) > 0,$$

а значит x_0 и x_1 имеют некоторые окрестности I_1 и I_2 , где

$$\forall x \in I_1 \quad \frac{y(x) - y(x_1)}{x - x_1} \in (\frac{1}{2}\alpha; \frac{3}{2}\alpha) \qquad \text{if} \qquad \forall x \in I_2 \quad \frac{y(x) - y(x_2)}{x - x_2} \in (\frac{1}{2}\alpha; \frac{3}{2}\alpha).$$

Тогда выберем любые точки $t_1 \in I_1$ и $t_2 \in I_2$, что $x_1 < t_1 < t_2 < x_2$. В таком случае

$$y(t_1) > y(x_1) = \alpha$$
 $y(t_2) < y(x_2) = \alpha$.

Тогда по теореме о промежуточном значении есть точка $x_3 \in (t_1; t_2)$, где $y(x_3) = \alpha$.

Лемма 2. Пусть имеются точки $x_1, x_2 \in (a; b)$, где $y(x_1) = y(x_2) = \alpha$. Тогда $f(\alpha) = 0$.

Доказательство. Предположим противное. Тогда $f(\alpha) \neq 0$. Значит между x_1 и x_2 есть точка x_3 , где y имеет то же значение α . Повторяя операцию для отрезков $[x_1;x_3]$ и $[x_3;x_2]$, получаем ещё 2 такие же точки и т.д.: повторяя такую операцию счётное число раз, получаем, что на отрезке $[x_1;x_2]$ есть счётное число точек, где y принимает значение α . Это значит, что есть какая-то последовательность точек $(t_i)_{i=0}^{\infty}$, сходящаяся к некоторой точке t, где $y(t_i) = \alpha$. Значит $y(t) = \alpha$ по непрерывности y. При этом y'(t) = 0, так как

$$\lim_{i \to \infty} \frac{y(t_i) - y(t)}{t_i - t} = \lim_{i \to \infty} 0 = 0.$$

Значит

$$f(\alpha) = f(y(t)) = y'(t) = 0$$

— противоречие. Следовательно $f(\alpha) = 0$ с самого начала.

Следствие 2.1. Если какое-то значение принимается дважды, то во всех точках, где оно принимается, производная у' зануляется.

Лемма 3. Пусть имеются точки $x_1, x_2 \in (a; b)$, где $y(x_1) = y(x_2) = \alpha$. Тогда $y \equiv \alpha$ на $(x_1; x_2)$.

Доказательство. Пусть $S = \sup_{[x_1;x_2]} y$ и $I = \inf_{[x_1;x_2]} y$. Поскольку y непрерывна, а $[x_1;x_2]$ компактен, то S является не просто супремумом, а максимумом и принимается в некоторой точке $t_S \in [x_1;x_2]$; аналогично для I. WLOG $x_1 \leqslant t_S \leqslant t_I \leqslant x_2$. Тогда множество значений y на $[x_1;x_2]$ есть [I;S]. При этом каждое значение из $(\alpha;S)$ принимается на $(x_1;t_S)$ и $(t_S;t_I)$, каждое значение из $(I;\alpha)$ — на $(t_S;t_I)$ и $(t_I;x_2)$.

Значит всякое значение из $(S;I)\setminus\{\alpha\}$ принимается дважды на $(x_1;x_2)$, а значит во всех точках, где оно принимается y'=0. Аналогично можно сказать про α , так как оно принимается в x_1 и x_2 , и S и I, так как они являются супремумом и инфимумом, а производная в экстремальных точках равна 0.

Таким образом $y' \equiv 0$ на $(x_1; x_2)$, откуда следует, что $y \equiv \alpha$ на $(x_1; x_2)$.

Теперь мы можем показать монотонность y на (a;b). Немонотонность y означает, что есть какие-то точки $x_1, x_2, x_3 \in (a;b)$, что WLOG

$$y(x_1) < y(x_2) > y(x_3).$$

Но это значит, что есть некоторые точки $t_1 \in (x_1; x_2)$ и $t_2 \in (x_2; x_3)$, где y принимает одно и то же значение, меньшее $y(x_2)$. Тогда мы получаем противоречие с последней леммой. Значит y (нестрого) монотонна.