

Plane truss Laboratory course Matlab

Emely Schaller, M.Sc. (emely.schaller@fau.de)

Prof. Dr.-Ing. habil. Kai Willner

October 25th, 2024

Content:

- 1. Theory about plane trusses
- 2. Notes on the task

Task in the laboratory course

Assumption of an **ideal truss**:

- The bar axes are straight.
- ii. The bar axes intersect in one point, the so-called **nodes**.
- iii. At the intersection, the bar axes are connected by frictionless joints.

 Thus, **no moments** can be initiated in the bars.
- iv. The active forces only act on the nodes.

Condition for static determination (1):

Degree of freedom of the bounded system:

$$f = 2k - (a+s)$$

k number of **nodes**

f = 2k - (a + s) a number of **support connections**

number of **bars**

• External degree of freedom:
$$f_a = 3 - a$$

• Internal degree of freedom:
$$f_i = f - f_a = 2k - (3 + s)$$

• Necessary condition for the rigidity:
$$f \leq 0$$

Condition for static determination(2): Exceptional cases

Condition for static determination (3):

Necessary and sufficient condition for the rigidity and load-bearing capacity of the truss (no exceptional case)

$$f \leq 0$$
 and

$$f_a \leq 0$$

2k equilibrium conditions for the determination of the (a + s) support connections and bar forces

$$f \begin{cases} > 0 & \text{movable (not stable)} \\ = 0 & \text{statically determined} \\ < 0 & \text{statically undetermined} \end{cases}$$

Method of joints (1):

- Cutting all nodes free
- Setting up the equilibrium of forces at all nodes:
 - equilibrium of forces in x-direction
 - equilibrium of forces in y-direction
 - equilibrium of moments is not necessary, since no moments are initiated in the bars

$$\sum F_{x} \doteq 0$$

$$\sum F_{y} \doteq 0$$

$$\sum M = 0$$

$$\sum M_n = 0$$

Summarising the equilibrium conditions in a linear and inhomogeneous system of equations with the dimension:

$$2k \times (a+s)$$

Alternative: Method of sections

Sign convention:

Tension bar (S > 0 N)

Compression bar (S < 0 N)

Method of joints (2) - **Task 1 in the script as preparation for the programming task**:

Cutting free and setting up the linear system of equations

Arctangent:

Method of joints (3) - Task 1 in the script:

Result $Ar = -f \longrightarrow r = -A^{-1}f$

									•	
Kn.	A_H	A_V	B	S_1	S_2	S_3	S_4	S_5	S_6	S_7
т	T 1	0	0	$\sqrt{2}/2$	1	0	0	0	0	0
I	0	1	0	$\sqrt{2}/2$	0	0	0	0	0	0
	0	0	0	$-\sqrt{2}/2$	0	$\sqrt{2}/2$	1	0	0	0
II	0	0	0	$-\sqrt{2}/2$	0	$-\sqrt{2}/2$	0	0	0	0
						• • •				• • •
	0	0	0	0	-1	$-\sqrt{2}/2$	0	$\sqrt{2}/2$	1	0
III	0	0	0	0	0	$\sqrt{2}/2$	0	$\sqrt{2}/2$	0	0
	0	0	0	0	0	0	-1	$-\sqrt{2}/2$	0	$\sqrt{2}/2$
IV	0	0	0	0	0	0	0	$-\sqrt{2}/2$	0	$-\sqrt{2}/2$
V	0	0	0	0	0	0	0	0	-1	$-\sqrt{2}/2$
·	0	0	1	0	0	0	0	0	0	$\sqrt{2}/2$

 S_2 S_4 S_6

 $\mathbf{r} = -\mathbf{f}$

Data structure (e.g. truss_3.mat)

Connectivity

(conn)

local node 1	local node 2
1	2
1	3
2	3
2	4
3	4
3	5
4	5

Coordinates

(coord)

x	У
0	0
2	2
4	0
6	2
8	0

Bearing

(bearing)

node	dof
1	1
1	2
5	2

External loading

(F)

node	F_x	Fy
3	0	-1.5

Reading and saving variables

- [filename , pathname] = uigetfile opens a graphic dialog box to select a file that, for example, can subsequently be loaded with the load function. The uigetfile function gives back two output-variables: the filename and the pathname to the folder that contains the file
- concatenation: filepath = [pathname, filename]
- input = load(filepath)
 loads variables of a .mat-file in the Matlab workspace
- save(`results.mat`)saves the entire workspace in a . mat-file called results

Access to data in structure arrays

• s = struct(field1, value1, field2, value2, ...) summarises different field arrays, denoted by field1 and field2, with the values value1 and value2 in one structure s. The same can be obtained by using

```
s.field1 = value1;
s.field2 = value2;
```

Access to the values of a structure field via a dot

```
input = load(filename);
forces = input.F;
```


Access to data in matrices

Saving data in principle by a matrix or multidimensional array,
 e.g.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} \longrightarrow A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Access and assignment via indices A(i,j) (row i und column j)

$$A(1,2) = 5 \longrightarrow A = \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}$$

l = length(v) or [m , n] = size(A)
 query the length l of a vector v or the number of rows m and columns n of a [m x n] matrix A.
 Using length(A) returns the maximum value of m and n.

Generating graphs (1)

- figure
 generates a new window to plot graphs;
 plotting multiple graphs is only possible with the command
 hold on
- p1 = plot([x1 , x2] , [y1 , y2]) draws a 2D line plot from point (x1, y1) to point (x2, y2)
- legend([p1 , p2] , `bar`, `force`)
 creates legend of the line plots of the current window

Generating graphs (2)

- text(x1, y1, `node 1`)
 adds the text node 1 to the data point (x1, y1)
- quiver(x2, y2, force(1), force(2))
 draws the vector force at point (x2, y2)
- Uniform arrow size with the additional option quiver(x2, y2, force(1), force(2), ... `MaxHeadSize`, 1/norm(force))

Angle calculation and solving the linear system of equation

- atan(dy/dx)
 - Arctangent in rad for the value range $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$
 - → Function with **only one** input parameter
- atan2(dy , dx)
 - Arctangent in rad for the value range $[-\pi,+\pi]$
 - → Function with **two** input parameters
- x = A/b

solves the linear system of equations Ax = b for the vector x

Hard vs. generic coding for plane truss code

Hard coding:

The script is explicitly coded for the trusses given in the input files, e.g. for truss 3:

Nnodes =
$$5;$$

•••

Generic coding:

The script is coded in a general way, such that any input file defining a truss can be evaluated

• • •

Thank you for your attention!

If you have any questions on the lecture, please use the forum "Forum: experiment LTM" on StudOn.

You can also contact me via email emely.schaller@fau.de.

LTM-task

on November 8th (group A) on November 15th (group B) from 10 am to 4 pm in the MB & CBI CIP-Pool