QUIZ # 01

Roll #:

Q.1: Let $V = R^2$ & If $u = (u_1, u_2)$ and $v = (v_1, v_2)$, then $u + v = (u_1 + v_1, u_2 + v_2)$ and if k is any real number, then $ku = (ku_1, 0)$. Let u = (2, 4), v = (-3, 5), and k = 7. Check all 10 axioms and decide whether V is a vector space or not?

Q.2: Determine whether given type of matrix is a subspace of M_{22} . The set U consisting of all matrices of the form

$$\begin{bmatrix} x & 0 \\ 2x & y \end{bmatrix}$$

Q.3: Consider the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v}

Name:

QUIZ # 01

Roll #: _

Q.1: Determine whether the vectors $v_1 = (1, -2, 3)$, $v_2 = (5, 6, -1)$, $v_3 = (3, 2, 1)$ are linearly independent or linearly dependent in \mathbb{R}^3 .

Q.2: Use the Subspace Test to determine which of the sets are subspaces of M_{22} . All matrices of the form

$$\begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}$$

Q.3: Find bases for the null space and row space of A. Find dimension of A as well.

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$$

Name:

QUIZ # 01

Roll #:

Q.1: Determine whether the vectors $v_1 = (1, 2, 2, -1)$, $v_2 = (4, 9, 9, -4)$, $v_3 = (5, 8, 9, -5)$ in \mathbb{R}^4 are linearly dependent or linearly independent

 $\underline{\mathbf{Q.2:}}$ Use the Subspace Test to determine which of the sets are subspaces of M_{22} . All matrices of the form

$$\begin{bmatrix} a & 1 \\ b & 1 \end{bmatrix}$$

Q.3: Find bases for the null space and row space of A. Find dimension of A as well.

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$