

Heaven's Light is Our Guide

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab report

Course Code : ECE 1202

Course Title : Circuits & Systems-II Sessional

Date of experiment : 04-06-2024

Date of Submission : 10-09-2024

Submitted To:	Submitted By:		
Oishi Jyoti Assistant Professor, Department of ECE, RUET	Name : Md. Naimur Rahman Naim Roll : 2210026 Registration : 1080 Session : 2022-2023 Department of ECE, RUET		

Experiment no.: 1

Experiment name: Study of the relation between phase voltage and line voltage in a wye connected $3 - \phi$ balanced system.

Theory: In a balanced $3 - \phi$ Y – Y system, if phase voltage of a phase is considered as ,

$$V_{an} = V_p \angle 0^\circ$$
 and $V_{bn} = V_p \angle - 120^\circ$

Then, line - to - line voltage between phase "a" and "b" is,

$$V_{ab} = V_{an} + V_{nb} = V_{an} - V_{bn}$$
; which is:

$$V_{ab} = \sqrt{3} V_p \angle -30^\circ$$

Now, if we consider the magnitude only, we get the relation between phase and line voltage as,

$$V_L = \sqrt{3}V_P \dots \dots (1)$$

Required Apparatus:

- 1. AC voltage source
- 2. Ammeter
- 3. Multimeter
- 4. Connecting wire
- 5. Clamp meter

Circuit diagram:

Fig. : Wyo connected 3-phase balanced circuit

Calculation:

• Reading 1:

Line voltage, $V_L = 41.7 \text{ V}$

Measured phase voltage, $V_{P(m)} = 23.5 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 24.07 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|24.07 - 23.5|}{24.07} \times 100\% = 2.43\%$$

• Reading 2:

Line voltage, $V_L = 34.1 \text{ V}$

Measured phase voltage, $V_{P(m)} = 19 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 19.69 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|19.69 - 19|}{19.69} \times 100\% = 3.63\%$$

• Reading 3:

Line voltage, $V_L = 55.5 \text{ V}$

Measured phase voltage, $V_{P(m)} = 31.4 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 32.04 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|32.04 - 31.4|}{32.04} \times 100\% = 2.05\%$$

• Reading 4:

Line voltage, $V_L = 63.6 \text{ V}$

Measured phase voltage, $V_{P(m)} = 35.6 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 36.72 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|36.72 - 35.6|}{36.72} \times 100\% = 3.41\%$$

• Reading 5:

Line voltage, $V_L = 71.7 \text{ V}$

Measured phase voltage, $V_{P(m)} = 40.5 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 41.4 \text{ V}$

Error =
$$\frac{|\text{VP(calc)} - \text{VP(m)}|}{\text{VP(calc)}} \times 100\% = \frac{|41.4 - 40.5|}{41.4} \times 100\% = 2.21\%$$

 $\therefore \text{ Average error} = \frac{2.43 + 3.63 + 2.05 + 3.41 + 2.21}{5} = 2.746\%$

Table for Studying Relation Between Line and Phase Voltage:

Serial	Line	Measured	Calculated	Percentage	Line	Phase
No	Voltage,	Phase	Phase	of	Current,	Current,
	$V_L(V)$	Voltage,	Voltage, V-	Error (%)	$I_L(A)$	$I_{P}(A)$
		$V_{P(m)}(V)$	$_{P(calc)}(V)$			
1	41.47	23.5	24.07	2.43	0.24	0.24
2	34.1	19	19.69	3.63	0.21	0.21
3	55.5	31.4	32.04	2.05	0.358	0.35
4	63.6	35.6	36.72	3.14	0.407	0.4
5	71.7	40.5	41.4	2.21	0.462	0.46

Result: Average percentage of error was 2.746%

Discussion: Through the experiment, we proved the relation between phase and line voltage in a $3 - \phi$ balanced Y – Y system. After all the calculations, we figured our error margin was 2.746% which is negligible. This little error margin certifies that, the line voltage is $\sqrt{3}$ times that of phase voltage.

Reference:

Fundamentals of Electric Circuits by Charles K. Alexander and Mathew N. O. Sadiku.