CS109A Alzheimer's Disease Project EDA

December 12, 2018

- Tatyana Zyabkina
- Joanna Guo
- John Liang
- Ray Ortigas

This notebook contains a preliminary EDA looking at data provided by ADNI (Alzheimer's Disease Neuroimaging Initiative).

Styling

```
In [44]: #RUN THIS CELL
import requests
from IPython.core.display import HTML
styles = requests.get("https://raw.githubusercontent.com/Harvard-IACS/2018-CS109A/master/co
HTML(styles)
```

Out[44]:

Imports

```
In [45]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import scipy
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Load ADNIMARGE

For the preliminary EDA we will examine ADNIMERGE.csv, which contains some of the key variables in one table.

```
In [46]: adni_df = pd.read_csv("../data/ADNIMERGE.csv")
```

ApoE4 Exploration

Out[51]:

RID

APOE4	AD_any	
0.0	False	74.126638
	True	25.873362
1.0	False	47.648903
	True	52.351097
2.0	False	32.748538
	True	67.251462

```
In [52]: # Chart to visually present the breakdown by APOE type

for i in range(3):
    ax = APOE_pcts[APOE_pcts.index.get_level_values(0)==i].plot.bar()
    ax.set_xticklabels(['No AD', 'AD'])
    ax.set_ylim(0, 100)
    ax.set_xlabel('Diagnosis')
    ax.set_ylabel('Percent Patients')
    ax.set_title('Patients with {} APOE4 Alleles'.format(i))
```


TOMM40 Genotype and AD ¶

In [53]: ## LOAD TOMM40 DATA

tomm40 = pd.read_csv('../data/TOMM40.csv')
tomm40.head()

Out[53]:

	PTID	RID	TOMM40_A1	TOMM40_A2	update_stamp
0	002_S_0295	295	16.0	21.0	2011-04-25 18:14:08.0
1	002_S_0413	413	16.0	34.0	2011-04-25 18:14:08.0
2	002_S_0559	559	35.0	35.0	2011-04-25 18:14:08.0
3	002_S_0619	619	28.0	28.0	2011-04-25 18:14:08.0
4	002_S_0685	685	33.0	34.0	2011-04-25 18:14:08.0

In [54]: tomm40.shape

Out[54]: (757, 5)

Out[55]:

	PTID_x	RID	TOMM40_A1	TOMM40_A2	update_stamp	PTID_y	AD_any	Month_AD
0	002_S_0295	295	16.0	21.0	2011-04-25 18:14:08.0	002_S_0295	False	NaN
1	002_S_0413	413	16.0	34.0	2011-04-25 18:14:08.0	002_S_0413	False	NaN
2	002_S_0559	559	35.0	35.0	2011-04-25 18:14:08.0	002_S_0559	False	NaN
3	002_S_0619	619	28.0	28.0	2011-04-25 18:14:08.0	002_S_0619	True	0.0
4	002_S_0685	685	33.0	34.0	2011-04-25 18:14:08.0	002_S_0685	False	NaN

Long poly-T lengths were associated with late onset AD among those with most common ε3 APOE allele. From the chart above we can observe that for those with diagnosed with AD, there is a higher proportion of people with a A1 allele length of more than 25 T repeats.

RNA Microarray Data

```
In [60]:
         # to convert all gene columns to float, export, then import
         #pat_genes.to_csv('../data/all_genes_transposed.csv')
         # load and process gene name index file
         gene_ind = pd.read_csv("../data/Gene_expression_index.csv", index_col = 'index')
         gene_ind.index = gene_ind.index.astype('str')
         pat genes1 = pd.read csv('../data/all genes transposed.csv', index col='Unnamed: 0')
In [62]: pat genes1.columns = pat genes1.columns.astype('str')
In [63]: pat_genes1.columns
Out[63]: Index(['phase', 'VISCODE', 'PTID', '260/280', '260/230', 'RIN', 'Affy Plate',
                 'YearofCollection', '1', '2',
                 '49380', '49381', '49382', '49383', '49384', '49385', '49386', 'RID',
                'AD any', 'Month AD'],
               dtype='object', length=49397)
In [64]: pat_genes1['AD_any'].value_counts()
Out[64]: False
                  529
         True
                   215
         Name: AD_any, dtype: int64
In [65]: gene_ind.head()
Out[65]:
                ProbeSet
                            LocusLink Symbol
          index
                              LOC8355 HIST1H3G
             1
                 11715100 at
             2 11715101_s_at
                              LOC8355 HIST1H3G
             3 11715102 x at
                              LOC8355
                                      HIST1H3G
             4 11715103_x_at LOC126282 TNFAIP8L1
             5 11715104 s at LOC92736
                                         OTOP2
         mean = pat_genes1.drop(['RID', 'Month_AD', 'YearofCollection'], axis = 1).groupby(['AD_any'
In [66]:
         var = pat_genes1.drop(['RID', 'Month_AD', 'YearofCollection'], axis = 1).groupby(['AD_any']
         gene_means = gene_ind.join(mean, how = 'inner')
In [68]:
```

gene_means = gene_means.join(var, how = 'inner', lsuffix='_mean', rsuffix='_var')

```
11715100_at
                             LOC8355
                                      HIST1H3G
                                                   2.418318
                                                              2.422465
                                                                       0.039466 0.037855
            11715101_s_at
                             LOC8355
                                      HIST1H3G
                                                   2.442100
                                                              2.453060
                                                                       0.052385 0.047083
            11715102_x_at
                             LOC8355
                                      HIST1H3G
                                                   2.032457
                                                              2.042353
                                                                       0.031818 0.030819
             11715103_x_at LOC126282
                                     TNFAIP8L1
                                                   3.567664
                                                              3.560767
                                                                       0.092021 0.099353
            11715104_s_at
                          LOC92736
                                         OTOP2
                                                   2.290786
                                                              2.292986
                                                                       0.026649 0.025547
In [71]:
          gene_means['diff'] = gene_means.True_mean - gene_means.False_mean
          gene_means['diff_std'] = np.sqrt(gene_means.False_var/pat_genes1['AD_any'].value_counts()[0
          gene_means['t_score'] = np.abs(gene_means['diff'])/gene_means['diff_std']
```

Symbol False_mean True_mean False_var True_var

Genes mentioned in the literature

In [43]:

Out[43]:

gene_means.head()

ProbeSet

LocusLink

Out[85]:

	ProbeSet	LocusLink	Symbol	False_mean	True_mean	False_var	True_var	diff	diff_std
752	11715851_s_at	LOC1191	CLU	3.603888	3.604888	0.232341	0.211790	0.001000	0.037740
1747	11716846_a_at	LOC64231	MS4A6A	10.453051	10.506181	0.052240	0.048863	0.053130	0.018056
4532	11719631_s_at	LOC274	BIN1	10.218176	10.181498	0.066621	0.057589	-0.036678	0.019844
4810	11719909_s_at	LOC8301	PICALM	7.444168	7.505586	0.130809	0.120210	0.061418	0.028397
4811	11719910_a_at	LOC8301	PICALM	10.191151	10.219535	0.048408	0.053012	0.028384	0.018387
8274	11723373_a_at	LOC2041	EPHA1	4.716879	4.704526	0.172294	0.176620	-0.012353	0.033870
8750	11723849_a_at	LOC64231	MS4A6A	9.412533	9.474014	0.127903	0.125510	0.061481	0.028732
8934	11724033_s_at	LOC23607	CD2AP	7.024234	6.883814	0.713603	0.737287	-0.140420	0.069125
8935	11724034_at	LOC23607	CD2AP	5.570701	5.501084	0.209158	0.276445	-0.069618	0.041002
8936	11724035_at	LOC23607	CD2AP	2.408144	2.433442	0.040439	0.041396	0.025298	0.016401
18488	11733587_a_at	LOC1378	CR1	8.738042	8.803451	0.172686	0.200265	0.065410	0.035467
25862	11740961_a_at	LOC945	CD33	8.821975	8.892274	0.107731	0.091429	0.070299	0.025078
26711	11741810_x_at	LOC274	BIN1	7.527707	7.488805	0.108938	0.102577	-0.038902	0.026135
31796	11746895_a_at	LOC274	BIN1	7.066788	7.038047	0.109583	0.108382	-0.028742	0.026669
32449	11747548_a_at	LOC8301	PICALM	6.514709	6.603893	0.176714	0.179636	0.089184	0.034199
32450	11747549_x_at	LOC8301	PICALM	6.757866	6.828149	0.168210	0.166491	0.070283	0.033051
33566	11748665_a_at	LOC8301	PICALM	6.172826	6.238079	0.155734	0.147086	0.065253	0.031281
33774	11748873_x_at	LOC945	CD33	7.300272	7.394479	0.148763	0.123117	0.094207	0.029221
34194	11749293_x_at	LOC64231	MS4A6A	10.323142	10.369758	0.064783	0.068077	0.046616	0.020955
34252	11749351_a_at	LOC10347	ABCA7	3.080724	3.102628	0.057781	0.068392	0.021904	0.020672
36197	11751296_a_at	LOC2041	EPHA1	2.592268	2.592158	0.034676	0.031917	-0.000110	0.014629
39992	11755091_a_at	LOC10347	ABCA7	6.621416	6.772209	0.350762	0.280720	0.150793	0.044370
40407	11755506_a_at	LOC8301	PICALM	7.424017	7.479172	0.126163	0.125429	0.055155	0.028669
40408	11755507_x_at	LOC8301	PICALM	7.261488	7.305623	0.102401	0.101789	0.044136	0.025827
41448	11756547_a_at	LOC1191	CLU	9.506669	9.487158	0.407001	0.420220	-0.019511	0.052191
42336	11757435_x_at	LOC274	BIN1	9.924622	9.890056	0.080348	0.069653	-0.034566	0.021814
45611	11760710_a_at	LOC64231	MS4A6A	6.830062	6.898056	0.227996	0.267472	0.067993	0.040927
47084	11762183_at	NaN	CR1	5.656081	5.785042	0.274681	0.288713	0.128961	0.043152

In [84]: fig, axs = plt.subplots(5,5, figsize = (18,18))
 fig.suptitle('Gene Expression Density Hystograms by Diagnosis', y = 0.91)
 for i, ax in enumerate(axs.ravel()):
 ax.hist(pat_genes1[pat_genes1['AD_any']][ref_results.index[i]], alpha = 0.3, density =
 ax.hist(pat_genes1[pat_genes1['AD_any']==False][ref_results.index[i]], alpha = 0.3, den
 ax.set_title('ProbeSet={}, Symbol={}'.format(ref_results['ProbeSet'][ref_results.index[i]]),
 ref_results['Symbol'][ref_results.index[i]]), fontsize = 8)
 ax.legend()

Genes with the Largest Difference between Means and Variance

```
In [90]: sig_genes = gene_means[gene_means['t_score']>5]
```

In [91]: # note that gene MARC1 was labeled 1-Mar in the original data.
sig_genes.Symbol.replace(to_replace = '1-Mar', value = 'MARC1', inplace=True)
sig_genes

Out[91]:

	ProbeSet	LocusLink	Symbol	False_mean	True_mean	False_var	True_var	diff	diff_std
3308	11718407_a_at	LOC7009	TMBIM6	10.750635	10.812237	0.021280	0.018298	0.061602	0.011195
4203	11719302_a_at	LOC5836	PYGL	10.299535	10.427302	0.105805	0.082318	0.127767	0.024143
4381	11719480_a_at	LOC1475	CSTA	10.945331	11.047158	0.077256	0.047931	0.101827	0.019209
11484	11726583_s_at	LOC10970	CKAP4	10.361824	10.476456	0.076474	0.066306	0.114632	0.021283
13711	11728810_a_at	LOC79746	ECHDC3	5.551469	5.790763	0.350896	0.313129	0.239294	0.046041
16478	11731577_a_at	LOC6580	SLC22A1	6.426066	6.723144	0.546331	0.398996	0.297078	0.053745
16679	11731778_a_at	LOC64757	MARC1	8.000922	8.199567	0.265960	0.213427	0.198645	0.038671
31790	11746889_a_at	LOC10970	CKAP4	6.734922	6.916921	0.209646	0.186775	0.181998	0.035567
32056	11747155_s_at	LOC53826	FXYD6	4.617622	4.821177	0.260835	0.223847	0.203555	0.039169
38066	11753165_a_at	LOC5873	RAB27A	8.711078	8.861819	0.129715	0.117481	0.150741	0.028136
4									•

CKAP4 is found to have a significant difference in two probe sets, suggesting that the difference means for this gene is consistent.

A large difference in the variance of the gene expression may suggest that there is a presence of an AD subtype that is driven by the outliers or rare mutations. We found three genes with a large difference in the standard deviation.

In [89]: gene_means['std_diff'] = np.sqrt(gene_means['True_var'])/np.sqrt(gene_means['False_var'])
 std_change = pd.concat([gene_means[gene_means['std_diff']>2.5], gene_means[gene_means['std_std_change])

Out[89]:

	ProbeSet	LocusLink	Symbol	False_mean	True_mean	False_var	True_var	diff	diff_std	
9989	11725088_at	LOC4619	MYH1	1.906482	1.935470	0.011982	0.193429	0.028988	0.030370	(
21323	11736422_s_at	LOC10631	POSTN	2.118631	2.134526	0.018120	0.115872	0.015894	0.023941	(
49186	11764285_at	NaN	NaN	2.168304	2.159740	0.117581	0.016761	-0.008565	0.017327	(

Gene Expression Density Hystograms by Diagnosis Valriables Different by Mean

In []: