习题 7.6

只需让最优解取在处于"有限"的那个边界即可。比如:

$$\min x + 3y$$
$$x \ge 0$$
$$y \ge 0$$
$$x + y \ge 1$$

可以看出, 当 x = 1, y = 0 时取得目标函数取得最小值 $1 + 0 \cdot 3 = 1$, 而此时的可行域是无限的。

习题 7.21

求流中的关键边的算法

输入:网络为 (G, s, t, c)输出:G 的关键边集

1. 根据最小路径长度增值法 (MPLA) 等方法, 求得最大流; 记得到的流为 f; 记只存在反向边集的顶点对集为 E, 生成的剩余图为 $R(V, E_f)$, 其中 $E_f = \{(u, r) | r(u, v) = c(u, v) - f(u, v) > 0\}$ 。

2. 令 $C_1 = \emptyset$, 在剩余图 $R(V, E_f)$ 中从 s 开始进行 DFS, 若某个边容量为 0 则 将改边加入 C_1 中。

3. 令 $C_2 = \emptyset$, 把剩余图 $R(V, E_f)$ 中的所有边反向, 从 t 开始进行 DFS, 若某个 边容量为 0 则将改边加入 C 中。

4. 则 $C = C_1 \bigcup C_2$ 就是关键边集。

说明: 步骤 1 指出, 若 $(i,j) \in C$, 则必有 f(i,j) = c(i,j), 即在 R 中仅存在反向边 (j,i); 但是反之不成立,即存在 R 中只有反向边,其对应的原来的流中的边不是关键边。因此需要精化。这样的边 (u,v) 满足 $s \to u$ 存在一条所有的边 > 0 的路径, $v \to t$ 存在一条该路径上所有的边容量都 > 0 的路径。这样的话,增加 $u \to v$ 的容量就可以出现增广路。枚举残余网络中的所有边,用一次从 $S \to T$ 的 DFS 来标记该性质第一种情况的边(步骤 2),从 $T \to S$ 一次 DFS 来标记第二种情况的边(步骤 3)。步骤 2,3 产生的边的并就是所有的关键边。

习题 7.23

证明:由最大流最小割定理,只要将最小顶点覆盖问题规约为最小割就可以了。

设二分图为 $G(U, E, W), W = V \setminus U$,另设图 G 的最小顶点覆盖为 C。令 $C_u = U \cap C, C_w = W \cap C$,且令 $C_{\bar{u}} = U - C_u, C_{\bar{w}} = U - C_w$ 。添加源点 s 和汇点 t,并令 $S = \{s\} \cup C_u \cup C_w, T = \{t\} \cup C_{\bar{u}} \cup C_{\bar{w}}$ 。由于 $C = C_u \cup C_w$,且 $U \cap V = \emptyset$,则 $\forall i \in C_{\bar{u}}, j \in C_{\bar{w}}, \bar{q}(i,j) \notin E$ 。对于 U 和 W 部分,只可能 C_u 和 C_w 之间存在边, $C_{\bar{u}}$ 和 C_w 之间不存在边;而对于 S_v t 和 U_v W 的组合,有两条分割边,正好对应 S_v 和 S_v 作为覆盖顶点。这样, S_v 的边数就是最小顶点覆盖的顶点数。从而,求 S_v 最小顶点覆盖 S_v 就规约成求 S_v S_v 的最小割,其中 S_v S_v S

习题 7.29

1. 分别用 bool 变量 $y_j \in J$ 表示投资商 j 的是否投资,用 bool 变量 $x_i \in I$ 表示是否雇用演员 i。则问题转化为整数线性规划:

$$\max \quad \Sigma y_j p_j - \Sigma x_i s_i$$

$$y_j \le x_i, \forall j \in \{1, 2, \dots, n\}, i \in L_j$$

$$x_i, y_j \in \{0, 1\}, \forall j x_i \in I, y_j \in J$$

2.

$$\max \quad z = \sum y_j p_j - \sum x_i s_i$$

$$y_j \le x_i, \forall j \in \{1, 2, \dots, n\}, i \in L_j$$

$$x_i, y_j \in [0, 1], \forall x_i \in I, y_j \in J$$

不难看出,给定一组 x_i , $i \in I$, 只需取 $y = \min_i \{ \in L_j \} x_i$, 所得的值就是可能的最优解。故只需分析 x_i 的值。下面说明,对于任意非整数解的 $\{x_i, i \in I\}$,总存在更优的整数解 $\{\hat{x}_i, i \in I\}$ 。

若 $x_t = 0$ 则问题可以退化成原问题的子问题,故考虑 $x_i \neq 0, \forall i \in I$ 。

不妨假定 $x_1, x_2, \ldots, x_t \in (0,1)$, 其余 $x_i = 1$ 。对 t 作数学归纳。问题对 t = 1 显然是成立的,因为当 x_1 从原值变为 1 时,对应的 y_1 也变为了原来的 $\frac{1}{x_1}$ 倍(如果存在的话)。这样, $x_i = 1$, $\forall i \in I$ 的解显然比原来的解更优。

假设结论对 t = k 成立。令 $x_0 = f = \max\{x_1, x_2, ..., x_{k+1}\}$,令 $x_i' = x_i/f$, $i \in \{1, 2, ... k+1\}$,则对应的 y_0' 变为了原来的 $\frac{1}{f}$ 倍,新的解 z' 比原来的解 z 更优。而所得的 z' 的解正是由 k 个大于 0 小于 1 的 x_i 生成的,由假设这个解没有全由 0, 1 生成的解更优。从而结论对 t=k+1 也成立。¶

习题 7.30

设 V_1 是男孩的集合, V_2 是女孩的集合, $E = \{(i,j)|i \in V_1, j \in V_2$ 男孩女孩匹配,则 G(V,E) 是一个二分图。完全匹配 $M \subseteq E$ 是 $m = |V_1|$ 条相互独立的边。在完全匹配 M 中, 每个 $v \in V_1$ 都附属于某个 $e \in M$ 。对于 $S \subseteq V_1$,记 $\Gamma(S) = \{v \in V_2,$ 存在u, s.t. $(u,v) \in E\} \in V_2$ 。则问题转化为证明下面的定理:

定理 1 (Hall) 二分图 $G(V_1, V_2, E)$ 包含从 V_1 到 V_2 的完全匹配当且仅当满足 Hall 条件: 对每个 $S \subset V_1, |\Gamma(S)| \ge |S|$

证明:(\Rightarrow) 如果存在完全匹配,则 $S \in V_1$ 必然可以与至少 $|\Gamma(S)|$ 个 V_2 中的元匹配。 (\Leftarrow) 对 m 进行数学归纳。结论对于 m=1 显然成立。假设 m>2 且 Hall 条件满足。

(I) 假设对所有合适的 $\emptyset \neq S \subset V_1$,有

$$|\Gamma(S)| > |S| + 1$$

则可以从任意边 $e = (v_1, v_2) \in E$ 开始,将 e 放入 M 中,图 $G' = G - \{v_1, V_2\}$ 仍然满足 Hall 条件,根据归纳可以完全匹配。

(II) 假设对于某个合适的 $\emptyset \neq T \subset V_1$,有

$$|\Gamma(T)| = |T|$$

对 $G' = G[T \cup \Gamma(T)]$ 和 $G'' = G[(V_1 \setminus T) \cup (V_2 \setminus \Gamma(T))]$,则 G'' 满足 Hall 条件。则我们分别得到了不相交包含 |T| 和 m - |T| 条边的匹配。两者的并正好是从 V_1 到 V_2 的匹配。¶