Introduction to Multi-Armed Bandits

From Alexsandrs Slivkins
Microsoft Research NYC

20183160 Kim Tae Hyeon

Contents

1	Ban	dits with IID Rewards (rev. Jul' 18)	1
	1.1	Model and examples	1
	1.2	Simple algorithms: uniform exploration	3
	1.3	Advanced algorithms: adaptive exploration	5
	1.4	Bibliographic remarks and further directions	10
	1.5	Exercises and Hints	12
2	Low	ver Bounds (rev. Jul'18)	15
	2.1	Background on KL-divergence	16
	2.2	A simple example: flipping one coin	19
	2.3	Flipping several coins: "bandits with prediction"	20
	2.4	Proof of Lemma 2.10 for $K \ge 24$ arms	22
	2.5	Instance-dependent lower bounds (without proofs)	23
	2.6	Bibliographic remarks and further directions	24
	2.7	Exercises and Hints	26
In	terlu	de A: Bandits with Initial Information (rev. Jan' 17)	27
3	Tho	ompson Sampling (rev. Jan'17)	29
	3.1	Bayesian bandits: preliminaries and notation	29
	3.2	7	
	3.4	Thompson Sampling: definition and characterizations	30
		Thompson Sampling: definition and characterizations	30
	3.3	Computational aspects	30 31
	3.3	Computational aspects Example: 0-1 rewards and Beta priors	30 31 32
	3.3 3.4 3.5	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors.	30 31 32 33
	3.3 3.4 3.5 3.6	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret	30 31 32 33 34
	3.3 3.4 3.5 3.6 3.7	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs)	30 31 32 33 34 37
	3.3 3.4 3.5 3.6	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret	30 31 32 33 34
4	3.3 3.4 3.5 3.6 3.7 3.8	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs)	30 31 32 33 34 37
4	3.3 3.4 3.5 3.6 3.7 3.8	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions	30 31 32 33 34 37 37
4	3.3 3.4 3.5 3.6 3.7 3.8	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18)	30 31 32 33 34 37 37
4	3.3 3.4 3.5 3.6 3.7 3.8 Lips 4.1	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18) Continuum-armed bandits Lipschitz MAB	30 31 32 33 34 37 37 39
4	3.3 3.4 3.5 3.6 3.7 3.8 Lips 4.1 4.2	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18) Continuum-armed bandits Lipschitz MAB Adaptive discretization: the Zooming Algorithm	30 31 32 33 34 37 37 39 43
4	3.3 3.4 3.5 3.6 3.7 3.8 Lip e 4.1 4.2 4.3	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18) Continuum-armed bandits Lipschitz MAB Adaptive discretization: the Zooming Algorithm Bibliographic remarks and further directions	30 31 32 33 34 37 37 39 43 45
4	3.3 3.4 3.5 3.6 3.7 3.8 Lip : 4.1 4.2 4.3	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18) Continuum-armed bandits Lipschitz MAB Adaptive discretization: the Zooming Algorithm	30 31 32 33 34 37 37 39 43 45 50
4	3.3 3.4 3.5 3.6 3.7 3.8 Lips 4.1 4.2 4.3 4.4	Computational aspects Example: 0-1 rewards and Beta priors Example: Gaussian rewards and Gaussian priors Bayesian regret Thompson Sampling with no prior (and no proofs) Bibliographic remarks and further directions schitz Bandits (rev. Jul'18) Continuum-armed bandits Lipschitz MAB Adaptive discretization: the Zooming Algorithm Bibliographic remarks and further directions	30 31 32 33 34 37 37 39 43 45 50

	5.1	Adversaries and regret	56
	5.2	Initial results: binary prediction with experts advice	58
	5.3	Hedge Algorithm	60
	5.4	Bibliographic remarks and further directions	64
	5.5	Exercises and Hints	64
6		ersarial Bandits (rev. Jun'18)	67
	6.1	Reduction from bandit feedback to full feedback	
	6.2	Adversarial bandits with expert advice	
	6.3	Preliminary analysis: unbiased estimates	69
	6.4	Algorithm Exp4 and crude analysis	70
	6.5	Improved analysis of Exp4	71
	6.6	Bibliographic remarks and further directions	73
	6.7	Exercises and Hints	74
-		Costs 1 Cossiliant add to the cost of the	77
7	_	ar Costs and Combinatorial Actions (rev. Jun'18)	77 77
	7.1 7.2	Bandits-to-experts reduction, revisited	
	7.3	Online routing problem	78 80
	7.4	Follow the Perturbed Leader	82
	7.4	ronow the renumbed Leader	04
8	Con	textual Bandits (rev. Jul' 18)	87
8	Con: 8.1	textual Bandits (rev. Jul' 18) Warm-up: small number of contexts	87 88
8			
8	8.1	Warm-up: small number of contexts	88
8	8.1 8.2	Warm-up: small number of contexts	88 88
8	8.1 8.2 8.3	Warm-up: small number of contexts Lipshitz contextual bandits	88 88 90
8	8.1 8.2 8.3 8.4	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class	88 88 90 91
	8.1 8.2 8.3 8.4 8.5 8.6	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints	88 88 90 91 94 95
9	8.1 8.2 8.3 8.4 8.5 8.6	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18)	88 88 90 91 94 95
	8.1 8.2 8.3 8.4 8.5 8.6 Ban e 9.1	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion	88 88 90 91 94 95 97
	8.1 8.2 8.3 8.4 8.5 8.6 Ban o 9.1 9.2	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions	88 88 90 91 94 95 97 97
	8.1 8.2 8.3 8.4 8.5 8.6 Ban 9.1 9.2 9.3	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BwK (no proofs)	88 88 90 91 94 95 97 97 101 102
	8.1 8.2 8.3 8.4 8.5 8.6 Ban o 9.1 9.2	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions	88 88 90 91 94 95 97 97 101 102
9	8.1 8.2 8.3 8.4 8.5 8.6 Bane 9.1 9.2 9.3 9.4	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BwK (no proofs) Bibliographic remarks and further directions	88 88 90 91 94 95 97 97 101 102
9	8.1 8.2 8.3 8.4 8.5 8.6 Bane 9.1 9.2 9.3 9.4	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BuK (no proofs) Bibliographic remarks and further directions	88 88 90 91 94 95 97 97 101 102 104
9	8.1 8.2 8.3 8.4 8.5 8.6 Bane 9.1 9.2 9.3 9.4 Bane 10.1 10.2	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BwK (no proofs) Bibliographic remarks and further directions dits and Zero-Sum Games (rev. May'17) Basics: guaranteed minimax value Convergence to Nash Equilibrium	88 88 90 91 94 95 97 97 101 102 104 105 106
9	8.1 8.2 8.3 8.4 8.5 8.6 Bane 9.1 9.2 9.3 9.4 Bane 10.1 10.2	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BwK (no proofs) Bibliographic remarks and further directions dits and Zero-Sum Games (rev. May'17) Basics: guaranteed minimax value	88 88 90 91 94 95 97 97 101 102 104 105 106
9	8.1 8.2 8.3 8.4 8.5 8.6 Ban 9.1 9.2 9.3 9.4 Ban 10.1 10.2	Warm-up: small number of contexts Lipshitz contextual bandits Linear contextual bandits: LinUCB algorithm (no proofs) Contextual bandits with a policy class Bibliographic remarks and further directions Exercises and Hints dits with Knapsacks (rev. May'18) Definitions, examples, and discussion Groundwork: fractional relaxation and confidence regions Three algorithms for BwK (no proofs) Bibliographic remarks and further directions dits and Zero-Sum Games (rev. May'17) Basics: guaranteed minimax value Convergence to Nash Equilibrium Beyond zero-sum games: coarse correlated equilibrium	88 88 90 91 94 95 97 97 101 102 104 105 106

Where to use

1. News

Problem a user visits a news site, the site presents it with a news header, and a user either clicks on this header or not.

Goal to maximize the number of clicks

Assumption

each user is drawn independently from a fixed distribution over users

In each round, the click happens independently with a probability that depends only on the chosen header.

2. Ad selection

Problem for a user, if ad a is displayed, the website observes whether the user clicks on the ad, in which case the advertiser pays some amount $v_a \in [0,1]$

Goal to maximize the paid amount (ad = arm, reward = paid amount)

Assumption

The paid amount v_a depends only on the displayed ad, but does not change over time.

Introduction

Problem

Problem protocol: Multi-armed bandits

In each round $t \in [T]$:

- 1. Algorithm picks arm $a_t \in \mathcal{A}$.
- 2. Algorithm observes reward $r_t \in [0,1]$ for the chosen arm.
- 1. The restriction to the interval [0,1]
- 2. The reward for each action is i.i.d. (independent and identically distributed).
- 3. Reward distribution is the Bernoulli distribution.

$$R(t) = \mu^* \cdot t - \sum_{s=1}^t \mu(a_s)$$

Definition of Regret at round t.

R(t) is a random variable, so we should talk about expected regret E[R(T)].

Algorithm

- 1. Uniform exploration
- 2. Adaptive exploration
 - 2.1. Successive elimination algorithm
 - 2.2. UCB1 algorithm
 - 2.3. Thompson sampling

Uniform exploration

- 1 Exploration phase: try each arm N times;
- 2 Select the arm \hat{a} with the highest average reward (break ties arbitrarily);
- 3 Exploitation phase: play arm \hat{a} in all remaining rounds.

Algorithm 1.1: Explore-First with parameter N.

$$N = (T/K)^{2/3} \cdot O(\log T)^{1/3}$$
 Put this to N

Theorem 1.3. Explore-first achieves regret $\underline{\mathbb{E}[R(T)]} \leq T^{2/3} \times O(K \log T)^{1/3}$, where K is the number of arms.

Its performance in the exploration phase is terrible.

Uniform exploration & epsilon greedy

```
1 for each round t = 1, 2, ... do
2 | Toss a coin with success probability \epsilon_t;
3 | if success then
4 | explore: choose an arm uniformly at random
5 | else
6 | exploit: choose the arm with the highest average reward so far
7 end

Algorithm 1.2: Epsilon-Greedy with exploration probabilities (\epsilon_1, \epsilon_2, ...).
```

Theorem 1.4. Epsilon-greedy algorithm with exploration probabilities $\epsilon_t = t^{-1/3} \cdot (K \log t)^{1/3}$ achieves regret bound $\mathbb{E}[R(t)] \leq t^{2/3} \cdot O(K \log t)^{1/3}$ for each round t.

It is the same regret as in uniform exploration, but it holds for all rounds t. To get (epsilon t) ε_t from $\varepsilon_t \sim t^{-1/3}$

Uniform exploration With epsilon greedy

Both exploration-first and epsilon-greedy have a big flaw that the exploration schedule does not depend on the history of the observed rewards

Successive Elimination Algorithm

- 1 Alternate two arms until $UCB_t(a) < LCB_t(a')$ after some even round t;
- 2 Then abandon arm a, and use arm a' forever since.

Algorithm 1.3: "High-confidence elimination" algorithm for two arms

This approach extends to K > 2 arms as follows:

- 1 Initially all arms are set "active";
- 2 Each phase:
- 3 try all active arms (thus each phase may contain multiple rounds);
- 4 deactivate all arms a s.t. ∃arm a' with UCB_t(a) < LCB_t(a');
- 5 Repeat until end of rounds.

Algorithm 1.4: Successive Elimination algorithm

Figure 1.2: t is the last round that the two confidence intervals still overlap

Successive Elimination Algorithm

Lemma 1.6. For two arms, Algorithm 1.3 achieves regret $\mathbb{E}[R(t)] \leq O(\sqrt{t \log T})$ for each round $t \leq T$.

Theorem 1.8. Successive Elimination algorithm achieves regret

$$\mathbb{E}[R(t)] = O(\sqrt{Kt \log T})$$
 for all rounds $t \le T$.

Theorem 1.9. Successive Elimination algorithm achieves regret

$$\mathbb{E}[R(T)] \leq O(\log T) \left[\sum_{\text{arms a with } \mu(a) < \mu(a^*)} \frac{1}{\mu(a^*) - \mu(a)} \right].$$

The existence of logarithmic regret bounds is benefit of adaptive exploration compared to non-adaptive exploration.

UCB1 Algorithm

- 1 Try each arm once;
- 2 In each round t, pick $\underset{a \in \mathcal{A}}{\operatorname{argmax}} \operatorname{UCB}_t(a)$, where $\operatorname{UCB}_t(a) = \bar{\mu}_t(a) + r_t(a)$;

Algorithm 1.5: UCB1 Algorithm

$$r_t(a) = \sqrt{\frac{\alpha \cdot \ln t}{n_t(a)}}$$

Original version of confidence radius

Theorem 1.14. Algorithm UCB1 satisfies regret bounds in (1.9) and (1.11).

$$\mathbb{E}[R(t)] = O(\sqrt{Kt \log T}) \quad \text{for all rounds } t \le T. \tag{1.9}$$

$$\mathbb{E}[R(T)] \le O(\log T) \left[\sum_{\text{arms a with } \mu(a) < \mu(a^*)} \frac{1}{\mu(a^*) - \mu(a)} \right]. \tag{1.11}$$

A regret bound of the form C * f(T), where f(T) does not depend on the mean rewards μ , and the "constant" C does not depend on T.

Instance-independent

C does not depend on T

Instance-dependent Otherwise

$$\mathbb{E}[R(T)] \leq O(\log T) \left[\sum_{\text{arms a with } \mu(a) < \mu(a^*)} \frac{1}{\mu(a^*) - \mu(a)} \right]$$

Instance independent

Theorem 2.14. Fix K, the number of arms. Consider an algorithm such that

$$\mathbb{E}[R(t)] \le O(C_{\mathcal{I},\alpha} t^{\alpha})$$
 for each problem instance \mathcal{I} and each $\alpha > 0$. (2.15)

Here the "constant" $C_{\mathcal{I},\alpha}$ can depend on the problem instance \mathcal{I} and the α , but not on time t. Fix an arbitrary problem instance \mathcal{I} . For this problem instance:

There exists time
$$t_0$$
 such that for any $t \ge t_0$ $\mathbb{E}[R(t)] \ge C_{\mathcal{I}} \ln(t)$, (2.16)

for some constant $C_{\mathcal{I}}$ that depends on the problem instance, but not on time t.

Theorem 2.16. For each problem instance \mathcal{I} and any algorithm that satisfies (2.15), (a) the bound (2.16) holds with

$$C_{\mathcal{I}} = \sum_{a: \Delta(a) > 0} \frac{\mu^* (1 - \mu^*)}{\Delta(a)}.$$

(b) for each $\epsilon > 0$, the bound (2.16) holds with

$$C_{\mathcal{I}} = \sum_{a: \Delta(a) > 0} \frac{\Delta(a)}{\text{KL}(\mu(a), \mu^*)} - \epsilon.$$

Thompson Sampling

Theorem 3.12. Consider IID bandits with no priors. For Thompson Sampling with both approaches (i) and (ii) we have: $\mathbb{E}[R(T)] \leq \mathcal{O}(\sqrt{kT \log T})$.

Theorem 3.13. Consider IID bandits with no priors. For Thompson sampling with approach (i),

$$\mathbb{E}[R(T)] \le (1+\epsilon)(\log T) \underbrace{\sum_{\substack{arms \ a \\ \iota \Delta(a) > 0}} \frac{\Delta(a)}{KL(\mu(a), \mu^*)}}_{(*)} + \frac{f(\mu)}{\epsilon^2},$$

for all $\epsilon > 0$. Here $f(\mu)$ depends on the reward function μ , but not on the ϵ , and $\Delta(a) = \mu(a^*) - \mu(a)$.

Prior work considered two such "fake priors":

- (i) independent, uniform priors and 0-1 rewards,
- (ii) independent, Gaussian priors and Gaussian unit-variance rewards (so each reward is distributed as $\mathcal{N}(\mu(a), 1)$, where $\mu(a)$ is the mean).

Main definition. For each round t, consider the posterior distribution for the best arm a^* . Formally, it is distribution p_t over arms given by

$$p_t(a) = \mathbb{P}[a = a^* \mid H_t]$$
 for each arm a . (3.1)

Thompson Sampling is a very simple algorithm:

In each round
$$t$$
, arm a_t is drawn independently from distribution p_t . (3.2)

Sometimes we will write $p_t(a) = p_t(a|H_t)$ to emphasize the dependence on history H_t .

Alternative characterization. Thompson Sampling can be stated differently: in each round t,

- 1. sample reward function μ_t from the posterior distribution $\mathbb{P}_t(\mu) = \mathbb{P}(\mu|H_t)$.
- 2. choose the best arm \tilde{a}_t according to μ_t .

Let us prove that this characterization is in fact equivalent to the original algorithm.

Lemma 3.1. For each round t and each history H_t , arms a_t and \tilde{a}_t are identically distributed.

Proof. For each arm a we have:

$$\Pr(\tilde{a}_t = a) = \mathbb{P}_t(\operatorname{arm} a \text{ is the best arm})$$
 by definition of \tilde{a}_t

$$= \mathbb{P}(\operatorname{arm} a \text{ is the best arm}|H_t) \qquad \text{by definition of the posterior } \mathbb{P}_t$$

$$= p_t(a|H_t) \qquad \qquad \text{by definition of } p_t.$$

Thus, \tilde{a}_t is distributed according to distribution $p_t(a|H_t)$.