情報セキュリティ

~暗号通貨とブロックチェーン~

安永 憲司 2017.6.27

様々な暗号通貨

Crypto-Currency Market Capitalizations

		, , ,	,					
^ #	Na	ame	Market Cap	Price	Circulating Supply	Volume (24h)	% Change (24h)	Price Graph (7d)
1	B	Bitcoin	\$44,222,564,865	\$2698.46	16,388,075 BTC	\$2,713,170,000	-9.14%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	*	Ethereum	\$36,226,580,229	\$391.90	92,439,270 ETH	\$3,134,760,000	10.20%	
3	•\$	Ripple	\$9,799,864,062	\$0.255695	38,326,381,283 XRP *	\$130,502,000	-7.81%	my my
4	0	Ethereum Classic	\$1,873,091,624	\$20.24	92,549,997 ETC	\$301,845,000	-5.91%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5	⊗	NEM	\$1,840,122,000	\$0.204458	8,999,999,999 XEM *	\$15,461,000	-13.29%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6	0	Litecoin	\$1,522,938,522	\$29.56	51,524,082 LTC	\$365,955,000	-8.47%	my
7	Ð	Dash	\$1,317,550,159	\$179.03	7,359,341 DASH	\$85,760,900	-7.72%	~~~
8	ь	BitShares	\$984,101,445	\$0.379075	2,596,060,000 BTS *	\$294,081,000	2.33%	
9	•	Stratis	\$812,481,407	\$8.26	98,422,348 STRAT *	\$16,999,500	-5.78%	my my m
10	②	Monero	\$751,743,961	\$51.42	14,618,316 XMR	\$25,592,600	-10.83%	M. 3h

暗号通貨の歴史

- 1980年代: David Chaum の電子現金 (ecash)
 - 銀行発行の現金を電子的に実現
 - ブラインド署名等の暗号技術が基盤
 - 支払・発行証明 → 電子署名
 - 匿名性付き電子署名 → ブラインド署名
- 2008年: Satoshi Nakamoto の Bitcoin
- 2011-2013年:シルクロード(闇サイト)事件
- 2013年: Bitcoin への注目

2

ビットコイン (Bitcoin)

■ Satoshi Nakamoto (2008) が提案

- 信頼できる第三者を置かずに実現可能な暗号通貨
 - 非中央集権的に実現
- 基礎となる技術はブロックチェーン (公開台帳・ 分散台帳) などと呼ばれる

ブロックチェーン・公開台帳・分散台帳

- 非中央集権的に台帳を管理
 - 台帳:追記専用のログ。情報に順序があり、 記録後は内容・順序の変更不可
 - 公開・分散型:誰でも書き込み・読み取り可能
 - 非許可型 (permissionless) と呼ばれることも

ブロックチェーンの実現方法

- チェーンにブロックを接続するためにパズルを 解くことを必要とする
 - Proof-of-Work と呼ばれる
- チェーンを少しずつ伸ばすことにより、 全員が同じ台帳を共有できる

Bitcoin の実現方法

- 公開台帳にすべての取引内容を記載
 - 追記の際に、過去の取引を見て、二重支払い 等の不正をチェック
 - 送金者の電子署名が必要なため、送金偽造は 不可
 - 電子署名の公開鍵(検証鍵) = Bitcoin 上の ID

Proof-of-Work (PoW)

- 仕事の証明 [Dwork, Naor 1992]
 - 解くために少し時間の掛かるパズル (答えの正当性は簡単に確認できる)
 - Bitcoin では、PoW に成功すれば報酬としてコインを受け取れるため採掘 (mining) とも呼ばれる
 - 実際は、ハッシュ関数を使った探索

ナカモトプロトコル [Nakamoto 2008]

■ [Pass, Seeman, shelat 2017] によるモデル化

 $\forall i = 1, 2, ..., h_i = H(h_{i-1}, m_i, n_i) < D$ $h_{-1} = H(0, 0, \perp)$

- H はランダムオラクルとしてモデル化
- \forall (h, m), $Pr_n[H(h, m, n) < D] = p$

ビットコインにおける調整・報酬

- システム全体で PoW が 10 分に 1 回しか成功しないよう困難性パラメータ D を調整
 - 2016 ブロック(約2週間)毎に再調整
- PoW 実行誘因として成功者にブロック報酬を付与
 - 12.5 BTC = 3,200 USD, 数年に一度しか成功しない
 - インフレ対策として 210000 ブロック(約4年)毎に 報酬は半減
- 取引をブロックへ取り込む誘因として PoW 成功者に取引報酬を付与
 - 取引の当事者から支払われる

チェーンの枝分かれ

- 枝分かれは存在しうるが、 「長いチェーンが正当なもの」というルール
 - 過半数が正しく実行するとき、 一定時間経てば書き換えはほぼ不可能
- Bitcoin では深さ 6 で確定とみなすことが多い

ブロックチェーンの応用

- 「非中央集権的に維持できる台帳」と考えれば 応用範囲は広い
 - 分散管理のため、安定したシステムが実現
 - 中央組織における情報集約が不要
 - 中央組織を介さずに情報共有可能
- スマートコントラクト等も活用可能

ブロックチェーンの活用例

■ ブロックチェーン技術活用のユースケース

出典:経済産業省 商務情報政策局 情報経済課「平成27年度 我が国経済社会の情報化・サービス化に係る 基盤整備 (ブロックチェーン技術を利用したサービスに関する国内外動向調査)報告書概要資料」

ブロックチェーン技術の展開が有望な事例とその市場規模

出典:経済産業省 商務情報政策局 情報経済課「平成27年度 我が国経済社会の情報化・サービス化に係る 基盤整備 (ブロックチェーン技術を利用したサービスに関する国内外動向調査)報告書概要資料」

ブロックチェーンの活用の実例

出典:金融庁未来投資会議構造改革徹底推進会合「第4次産業革命(Society5.0)・イノベーション」会合(第4次産業革命)(第4回)配布資料「フィンテックに関する現状と金融庁における取り組み」。

Hyperledger プロジェクト

- Linux Foundation がオープンソースソフトウェアによる ブロックチェーン技術の整備を目指したもの
 - IBM, Intel, Fujitsu, Hitachi, NTT Data, NEC 等参加
- 現在5つのフレームワーク
 - Burrow, Fabric, Iroha, Sawtooth, Indy
- (おそらく) いずれもプライベート・コンソーシアム型 ブロックチェーンであり、パブリック型でない
 - Byzantine fault-tolerant プロトコルベース (非許可型ではない分散計算プロトコル)
- ビットコインの思想には反するが、企業受けがよさそう

ビットコイン・ブロックチェーンの課題 (1/3)

- 51%攻撃(過半数正直者ハッシュパワーが必要)
 - 計算資源の半数を不正者が占めると破綻の可能性
 - 不正者に都合のよい分岐が正しいチェーンとなる
- マイニングの専門化(専用ハードウェア等)
- マイニングのためのエネルギー消費が膨大
 - Proof of Useful Work
 - 代替パズル: Proof of Stake, Proof of Space 等

ビットコイン・ブロックチェーンの課題 (3/3)

- インセンティブ設計
 - ビットコインでは、ブロック報酬と取引報酬
 - 報酬の設定方法・妥当性は?
 - 暗号通貨以外で利用するときの報酬は?
- 様々な暗号通貨をどのように選択すべきか
 - 800以上存在
 - 機能性・安全性の指標

ビットコイン・ブロックチェーンの課題 (2/3)

- マイニングプールの構成
 - 単独マイニングでは報酬を獲得しにくいため
 - プール管理者が力を持ち非中央集権化に逆行
- 取り引きの最終が確率的であり、時間がかかる
 - 分岐が正しくなる可能性が常に残る
- 匿名性の確保
 - ビットコインは取引内容をすべて公開・共有
 - 匿名性の高い暗号通貨: Zerocoin, Zerocash

マイニングプール

- ビットコインマイニングは報酬は高いが難しい
 - 12.5 BTC = 3,200 USD, 数年に一回成功
 - 専用ハードウェアでも3ヶ月に一回程度
 - 無記憶過程であり、1年費やしても成功率は不変
- 多くのマイナーはマイニングプールに参加して 安定した報酬を受け取ることを望む
 - 参加者はブロック(=解)とともにシェア(=解に 近いもの)を提出し、その内容を元に報酬分割
 - プール管理者は参加者から手数料をとることも
- 報酬の分け方はプール毎に様々
 - 報酬の分け方は「誘因両立」であるか?

マイニングプールにおける報酬の分配方法

■比例報酬

- ブロックが見つかった時に、それまでに提出されたシェアの割合に応じて分配を行う
- 問題点:ブロックが見つかっても、それまでに期待値通りのシェアを提出できていない場合、ブロックをすぐに提出しない可能性

■ シェア毎支払い

- シェア 1 つにつき固定した額を支払う
- 問題点:管理者のリスクが増える。マイナーはブロックを提出するインセンティブがない