Chapter 5: Mean-Variance Analysis

Kerry Back BUSI 521/ECON 505 Rice University

Standard Deviation - Mean Plots

Notation

- *n* risky assets with returns \widetilde{R}_i . $\widetilde{\mathbf{R}} = (\widetilde{R}_1 \cdots \widetilde{R}_n)'$
- \bullet $\mu=$ vector of expected returns. At least two of the assets have different expected returns.
- $\Sigma =$ covariance matrix. Assume no redundant assets, so Σ is positive definite.
- $\iota = n$ -vector of 1's.
- $\pi \in \mathbb{R}^n$ is a portfolio (of risky assets). If the portfolio is fully invested in risky assets, then $\iota'\pi=1$. Otherwise, $1-\iota'\pi$ is the fraction of wealth invested in the risk-free asset.

Portfolio Mean and Standard Deviation

- Two assets with expected returns μ_i , standard deviations σ_i , and correlation ρ .
- Portfolio (π_1, π_2) with $\pi_1 + \pi_2 = 1$.
- Portfolio return is

$$\pi'\widetilde{\mathbf{R}} = \pi_1 \widetilde{R}_1 + \pi_2 \widetilde{R}_2$$

Portfolio expected return is

$$\pi'\mu = \pi_1\mu_1 + \pi_2\mu_2$$

Write the covariance matrix as

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

• The portfolio variance is

$$\pi' \Sigma \pi = \pi_1^2 \sigma_1^2 + \pi_2^2 \sigma_2^2 + 2\pi_1 \pi_2 \rho \sigma_1 \sigma_2$$

Portfolios of Two Risky Assets

Portfolios of a Risky and Risk-Free Asset

GMV Portfolio

Global Minimum Variance Portfolio

- The portfolio of risky assets with minimum variance is called the Global Minimum Variance (GMV) portfolio.
- It solves the optimization problem

min
$$\frac{1}{2}\pi'\Sigma\pi$$
 subject to $\iota'\pi=1$

• The Lagrangean for this problem is

$$\frac{1}{2}\pi'\Sigma\pi - \gamma(\iota'\pi - 1)$$

• The FOC is

$$\Sigma \pi = \gamma \iota \quad \Leftrightarrow \quad \pi = \gamma \Sigma^{-1} \iota$$

• Impose the constraint $\iota'\pi=1$ and solve for γ to obtain

$$\pi = \frac{1}{\iota' \Sigma^{-1} \iota} \Sigma^{-1} \iota$$

• In other words, take the vector $\Sigma^{-1}\iota$ and divide by the sum of its elements, so the rescaled vector sums to 1.

Frontier Portfolios

Mean-Variance Frontier of Risky Assets

- We continue to look at only risky assets so we continue to require portfolio weights to sum to 1 ($\iota'\pi=1$).
- A frontier portfolio is a portfolio that achieves a target expected return with minimum risk.
- It solves an optimization problem

$$\mbox{min} \quad \frac{1}{2}\pi' \Sigma \pi \quad \mbox{subject to} \quad \mu' \pi = \mu_{\rm targ} \quad \mbox{and} \quad \iota' \pi = 1$$

where μ_{targ} denotes the given target expected return.

By varying the target expected return, we trace out the frontier.

Solving for Frontier Portfolios

• The Lagrangean for the optimization problem is

$$\frac{1}{2}\pi'\Sigma\pi - \delta(\mu'\pi - \mu_{\mathsf{targ}}) - \gamma(\iota'\pi - 1)$$

• The FOC is

$$\Sigma\pi - \delta\mu - \gamma\iota \ = \ 0 \, .$$

• The solution is

$$\pi = \delta \Sigma^{-1} \mu + \gamma \Sigma^{-1} \iota$$

- This means that π is a linear combination of the two vectors $\Sigma^{-1}\mu$ and $\Sigma^{-1}\iota$.
- Use constraints to solve for δ and γ .

More Notation

• Denote the GMV portfolio by $\pi_{\rm gmv}$. It is $\Sigma^{-1}\iota$ rescaled to sum to 1:

$$\pi_{\mathsf{gmv}} = \frac{1}{\iota \Sigma^{-1} \iota} \Sigma^{-1} \iota$$

• Let's also rescale the vector $\Sigma^{-1}\mu$ to sum to 1 and call it π_{μ} :

$$\pi_{\mu} = \frac{1}{\iota \Sigma^{-1} \mu} \Sigma^{-1} \mu$$

- To simplify, define $A = \mu' \Sigma^{-1} \mu$, $B = \mu' \Sigma^{-1} \iota$, and $C = \iota' \Sigma^{-1} \iota$.
- Then,

$$\pi_{\mathsf{gmv}} = \frac{1}{C} \Sigma^{-1} \iota$$

$$\pi_{\mu} = \frac{1}{B} \Sigma^{-1} \mu$$

Solution of Frontier Portfolio

We saw that a frontier portfolio is

$$\pi = \delta \Sigma^{-1} \mu + \gamma \Sigma^{-1} \iota$$

for some δ and γ .

• We can write this as

$$\pi = \delta B \frac{1}{B} \Sigma^{-1} \mu + \gamma C \frac{1}{C} \Sigma^{-1} \mu$$
$$= \delta B \pi_{\mu} + \gamma C \pi_{gmv}$$

• The constraint $\iota'\pi=1$ implies

$$\delta B + \gamma C = 1$$

• Set $\lambda = \delta B$. Then, $\gamma C = 1 - \lambda$, so the frontier portfolio is

$$\pi = \lambda \pi_{\mu} + (1 - \lambda) \pi_{\mathsf{gmv}}$$

• To find the particular frontier portfolio meeting the target return constraint, we can calculate

$$\mu'\pi = \lambda \mu'\pi_{\mu} + (1-\lambda)\mu'\pi_{\mathsf{gmv}} \ = \ \lambda rac{\mathcal{A}}{\mathcal{B}} + (1-\lambda)rac{\mathcal{B}}{\mathcal{C}}$$

 $\lambda = \frac{\mu_{\text{targ}} - B/C}{A/B - B/C} = \frac{BC\mu_{\text{targ}} - B^2}{AC - B^2}$

• Set this equal to μ_{targ} to obtain

Two Fund Spanning

Two Fund Spanning

- The characterization $\pi = \lambda \pi_{\mu} + (1 \lambda) \pi_{\text{gmv}}$ means that π lies on the line through π_{μ} and π_{gmv} in \mathbb{R}^n .
- Every frontier portfolio is a combination of π_{μ} and π_{gmv} . We say that these two portfolios span the frontier.
- We can consider the portfolios to be funds like mutual funds. If you want a frontier portfolio, you can just invest in these two funds.
 We call this two-fund spanning.
- Any other two points on the line also span the line. So, any two frontier portfolios can serve as the funds.

Risk-Free Asset

Mean-Variance Frontier with a Risk-Free Asset

- Now, we add a risk-free asset. We continue to let $\pi \in \mathbb{R}^n$ denote the portfolio of risky assets.
- We no longer require $\iota'\pi=1$. The weight on the risk-free asset is $1-\iota'\pi$. This can be negative (borrowing).
- A portfolio's expected return is

$$(1-\iota'\pi)R_f + \mu'\pi = R_f + (\mu - R_f\iota)'\pi$$

ullet A frontier portfolio solves the following for some μ_{targ} :

min
$$\frac{1}{2}\pi'\Sigma\pi$$
 subject to $R_f + (\mu - R_f\iota)'\pi = \mu_{\mathsf{targ}}$

FOC is

$$\Sigma \pi - \delta(\mu - R_f \iota) = 0 \quad \Leftrightarrow \quad \pi = \delta \Sigma^{-1}(\mu - R_f \iota)$$

- So, all frontier portfolios are scalar multiples of the vector $\Sigma^{-1}(\mu R_f \iota)$.
- In other words, the frontier portfolios form a line through the origin and the vector $\Sigma^{-1}(\mu R_f \iota)$.

Tangency Portfolio

- We can probably divide the vector $\Sigma^{-1}(\mu R_f \iota)$ by the sum of its elements to form a portfolio of purely risky assets (satisfying $\iota'\pi = 1$).
- We can do that as long as the sum is nonzero. That is, we need

$$\iota'\Sigma^{-1}(\mu-R_f\iota)\neq 0$$

• This expression is $B - R_f C$. It is nonzero if and only if $B/C \neq R_f$.

• The term B/C is the expected return of the GMV portfolio:

 $\mu' \pi_{\mathsf{gmv}} = \mu' \left(\frac{1}{\iota' \Sigma^{-1} \iota} \Sigma^{-1} \iota \right) = \frac{1}{\iota' \Sigma^{-1} \iota} \mu' \Sigma^{-1} \iota = \frac{B}{C}$

So, when the expected return of the GMV portfolio is different from

$$R_f$$
, we can define $\pi_{\mathsf{tang}} \ = \ rac{1}{\iota' \Sigma^{-1} (\mu - R_f \iota)} \Sigma^{-1} (\mu - R_f \iota)$

- We call this the tangency portfolio because it is on two frontiers: the frontier including the risk-free asset and the frontier of only risky assets.
- How do we know it is on the frontier of only risky assets?
 - 1. It is a portfolio constructed from the two vectors $\Sigma^{-1}\mu$ and $\Sigma^{-1}\iota$.
 - 2. Also, anything that solves a less constrained optimization problem (not requiring $\iota'\pi=1$) and satisfies the constraints of a more constrained problem (satisfies $\iota'\pi=1$ anyway) must solve the more constrained problem too.
- Thus, the two frontiers (in std dev/mean space) must be tangent at this point.

Mean-Variance Frontier: $B/C > R_f$

Mean-Variance Frontier: $B/C < R_f$

What if $B/C = R_f$?

- If $B/C = R_f$, then
 - The weights of each frontier portfolio sum to zero.
 - This means investing 100% in the risk-free asset and then go long and short equal dollars worth of risky assets.
- The cone and hyperbola never touch.

Two-Fund Spanning Again

Two Fund Spanning with a Risk-Free Asset

- All frontier portfolios lie on the line through the origin and the vector $\Sigma^{-1}(\mu R_f \iota)$ in \mathbb{R}^n .
- Any vector on the line is a portfolio, because we are not requiring $\iota'\pi=1.$
- The origin represents 100% in the risk-free asset.
- Any two portfolios on the line span the frontier in the sense that any frontier portfolio is a combination λ and (1λ) of the portfolios.

Maximum Sharpe Ratio

Maximum Sharpe Ratio

- What is the risk premium of the portfolio $\Sigma^{-1}(\mu R_f \iota)$?
- What is the variance of the return of the portfolio $\Sigma^{-1}(\mu-R_f\iota)$?
- What is its Sharpe ratio (risk premium divided by standard deviation)?

SDFs and Mean-Variance

Efficiency

- Project any SDF onto the span of the assets. There is a unique projection, and it is an SDF. Call it \tilde{m}_{p} .
- \tilde{m}_p is the payoff of some portfolio (that's what it means to be in the span of the assets).
- Set $\tilde{R}_p = \tilde{m}_p / \mathbb{E}[\tilde{m}_p^2]$. This is \tilde{m}_p divided by its cost, so it has a cost of 1 and is a return.
- The return \widetilde{R}_p is an inefficient frontier return.
- If there is a risk-free asset, then for any frontier return R, $\widetilde{R}_p = \lambda R_f + (1-\lambda)\widetilde{R}$ for some λ (by two-fund spanning). So, $\tilde{m}_p = a + b\tilde{R}$, where $a = \lambda E[\tilde{m}_p^2]$ and $b = (1 - \lambda)E[\tilde{m}_p^2]$.
- Even without a risk-free asset (with one trivial exception),
- SDF = affine function of return ⇒ return is on MV frontier.
 - return \widetilde{R} on MV frontier $\Rightarrow \widetilde{m}_p = a + b\widetilde{R}$.