Calculus III Workshop questions: 10/19/16

Problem 1 (15.7, #36). Write five other iterated integrals that are equal to the iterated integral

$$\int_0^1 \int_y^1 \int_0^z f(x, y, z) \, dx \, dy \, dz.$$

Problem 2 (15.8, #19). Evaluate $\iiint_E (x+y+z) dV$ where E is the solid in the first octant that lies under the paraboloid $z=4-x^2-y^2$.

Problem 3 (15.8, #20). Evaluate $\iiint_E x \, dV$ where E is enclosed by the planes z = 0 and z = x + y + 5, and by the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.

Problem 4 (15.8, #25).

- (a) Find the volume of the region E bounded by the paraboloids $z = x^2 + y^2$ and z = $36 - 3x^2 - 3y^2$.
- (b) Find the centroid of E (center of mass assuming constant density).

Problem 5 (15.8, #29, #30). Evaluate the integrals by changing to cylindrical coordinates:

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz \, dx \, dy$$
(b)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dy \, dx.$$

(b)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} dz dy dx$$