Abitur 2021 Mathematik Infinitesimalrechnung II

Gegeben ist die Funktion f mit $f(x) = \sqrt{x-2} + 1$ und maximalem Definitionsbereich.

Teilaufgabe Teil A 1a (3 BE)

Zeichnen Sie den Graphen von f im Bereich $2 \le x \le 11$ in ein Koordinatensystem.

Teilaufgabe Teil A 1b (3 BE)

Berechnen Sie den Wert des Integrals
$$\int_{2}^{3} f(x) dx$$
.

Geben Sie jeweils den Term einer in \mathbb{R} definierten Funktion an, die die angegebene Wertemenge W hat.

Teilaufgabe Teil A 2a (2 BE)

$$W =]-\infty;1]$$

Teilaufgabe Teil A 2b (2 BE)

$$W =]3; +\infty[$$

Teilaufgabe Teil A 3a (2 BE)

Betrachtet werden eine in \mathbb{R} definierte ganzrationale Funktion p und der Punkt Q(2|p(2)).

Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von p im Punkt Q ermitteln kann.

Teilaufgabe Teil A 3b (3 BE)

Gegeben ist eine in \mathbb{R} definierte Funktion $h: x \mapsto a\,x^2 + c$ mit $a, c \in \mathbb{R}$, deren Graph im Punkt N(1|0) die Tangente mit der Gleichung y = -x + 1 besitzt. Bestimmen Sie a und c.

Die Abbildung zeigt den Graphen G_f einer in \mathbb{R} definierten Funktion f. G_f ist streng monoton fallend und schneidet die x-Achse im Punkt (1|0).

Betrachtet wird ferner die Funktion g mit $g(x) = \frac{1}{f(x)}$ und maximalem Definitionsbereich D_g .

Teilaufgabe Teil A 4a (2 BE)

Begründen Sie, dass x=1 nicht in D_g enthalten ist, und geben Sie den Funktionswert g(-2) an.

Teilaufgabe Teil A 4b (3 BE)

Ermitteln Sie mithilfe der Abbildung die x-Koordinaten der Schnittpunkte der Graphen von f und g.

Gegeben ist die in \mathbb{R} definierte Funktion $f: x \mapsto (1-x^2) \cdot e^{-x}$. Die Abbildung zeigt den Graphen G_f von f.

Teilaufgabe Teil B 1a (2 BE)

Zeigen Sie, dass f genau zwei Nullstellen besitzt.

Teilaufgabe Teil B 1b (4 BE)

Bestimmen Sie rechnerisch die x-Koordinaten der beiden Extrempunkte von G_f .

(zur Kontrolle:
$$f'(x) = (x^2 - 2x - 1) \cdot e^{-x}$$
)

Teilaufgabe Teil B 1c (4 BE)

Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral $\int_{-1}^{4} f(x) dx$.

Die in \mathbb{R} definierte Funktion F ist diejenige Stammfunktion von f, deren Graph durch den Punkt T(-1|2) verläuft.

Teilaufgabe Teil B 1d (2 BE)

Begründen Sie mithilfe der Abbildung, dass der Graph von F im Punkt T einen Tiefpunkt besitzt.

Teilaufgabe Teil B 1e (3 BE)

Skizzieren Sie in der Abbildung den Graphen von F. Berücksichtigen Sie dabei insbesondere, dass $F(1) \approx 3,5$ und $\lim_{x \to +\infty} F(x) = 2$ gilt.

Teilaufgabe Teil B 1f (2 BE)

Deuten Sie die Aussage $F(2,5) - F(0) \approx 0$ in Bezug auf G_f geometrisch.

Betrachtet wird nun die Schar der in \mathbb{R} definierten Funktionen $h_k: x \mapsto (1 - k x^2) \cdot e^{-x}$ mit $k \in \mathbb{R}$. Der Graph von h_k wird mit G_k bezeichnet.

Für k = 1 ergibt sich die bisher betrachtete Funktion f.

Teilaufgabe Teil B 1g (2 BE)

Geben Sie in Abhängigkeit von k die Anzahl der Nullstellen von h_k an.

Teilaufgabe Teil B 1h (3 BE)

Für einen bestimmten Wert von k besitzt G_k zwei Schnittpunkte mit der x-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

Teilaufgabe Teil B 1i (2 BE)

Beurteilen Sie, ob es einen Wert von k gibt, sodass G_k und G_f bezüglich der x-Achse symmetrisch zueinander liegen.

Betrachtet wird die in \mathbb{R} definierte Funktion $g: x \mapsto \frac{e^x}{e^x + 1}$. Ihr Graph wird mit G_g bezeichnet.

Teilaufgabe Teil B 2a (5 BE)

Zeigen Sie, dass g streng monoton zunehmend ist und die Wertemenge [0;1[besitzt.

(zur Kontrolle:
$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$
)

Teilaufgabe Teil B 2b (3 BE)

Geben Sie g'(0) an und zeichnen Sie G_g im Bereich $-4 \le x \le 4$ unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass G_g in W (0|g(0)) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

Teilaufgabe Teil B 2c (2 BE)

Der Graph der Funktion g^* geht aus G_g durch Strecken und Verschieben hervor. Die Wertemenge von g^* ist]-1;1[. Geben Sie einen möglichen Funktionsterm für g^* an.

Teilaufgabe Teil B 2d (6 BE)

Es wird das Flächenstück zwischen G_g und der x-Achse im Bereich $-\ln 3 \le x \le b$ mit $b \in \mathbb{R}^+$ betrachtet. Bestimmen Sie den Wert von b so, dass die y-Achse dieses Flächenstück halbiert.