Name of Department:- Computer Science and Engineering

1.	Subject Code:	TCS 632		Course Title:	Artificial Intelligence
2.	Contact Hours:	L: 3	T:	P:	

- 3. Semester: VI
- 4. Pre-requisite: Basics of mathematics and database are required
- 5. Course Outcomes: After completion of the course students will be able to
 - 1. Understand the basics of the theory and practice of Artificial Intelligence.
 - 2. Learn the basics of Artificial Intelligence programming.
 - 3. Understand various searching techniques use to solve the Al problems.
 - 4. Apply knowledge representation techniques and problem solving strategies to common Al applications.
 - 5. Build self-learning and research skills to tackle a topic of interest on his/her own or as part of a team.
 - 6. Apply the knowledge of AI and agents in developing multidisciplinary real world projects

6. Detailed Syllabus

UNIT	CONTENTS	Contact Hrs
Unit - I	IntroductionIntroduction to Artificial Intelligence, Simulation of sophisticated & Intelligent Behavior indifferent area, problem solving in games, natural language, automated reasoning visualperception, heuristic algorithm versus solution guaranteed algorithms.	10
Unit - II	Understanding Natural Languages Parsing techniques, context free and transformational grammars, transition nets, augmentedtransition nets, Fillmore's grammars, Shanks Conceptual Dependency, grammar free analyzers, sentence generation, and translation.	9
Unit – III	Knowledge Representation First order predicate calculus, Horn Clauses, Introduction to PROLOG, Semantic NetsPartitioned Nets, Minskey frames, Case Grammar Theory, Production Rules KnowledgeBase, The Inference System, Forward & Backward Deduction	10
Unit – IV	Expert System Existing Systems (DENDRAL, MYCIN), domain exploration, Meta Knowledge, ExpertiseTransfer, Self Explaining System	9
Unit – V	Pattern Recognition Introduction to pattern Recognition, Structured Description, Symbolic Description, Machineperception, Line Finding, Interception, Semantic, & Model, Object Identification, SpeechRecognition. Programming Language: Introduction to programming Language, LISP, PROLOG	8
	Total	46

Text/ Reference Books:

- Charnick "Introduction to Artificial Intelligence." Addision Wesley.
 Rich & Knight, "Artificial Intelligence". TMH
 Winston, "LISP", Addison Wesley.
 Marcellous, "Expert Systems Programming", PHI.