On purely pub/sub security protocols

— or — vice versa?

Pekka Nikander, Ericsson Research Nomadic Lab Giannis F. Marias, Athens University of Econ. and Business

16th SPW, April 17 2008, Cambridge, UK

Outline

- Why pure publish/subscribe?
 - DoS, applications, optics & radio
- What is pure publish/subscribe?
 - Only information names
 - No receiver/sender names
- Security in pure pub/sub
 - Mostly open questions

Why?

- Better resistance against flooding DoS
 - Receiver's consent needed
- More natural to many applications
 - Content delivery, asynchronous message delivery (e.g. e-mail), even transactions
 - Maybe efficient for all traffic (incl. interactive)
- Better fit with modern physical layers
 - All optical, mesh radio, sensor, ...

The real reasons...

- A project for doing something really interesting
- Clean slate (get rid of IP)
- Apply state of the art
 - Econosec, mechanism design, Theory U, ...

- Try to be as different as possible
 - Re-doing IP would be boring...

What?

- Network as a (rough)
 extension of the
 blackboard IPC paradigm
- Each scribble (piece of info)
 tagged with a unique tag
- Receivers and senders are anonymous (to the net)
- We'll handle scalability
 - scoping, recursion, multicast, caching, some clever tricks, ...

Some characteristics

- Network does more
 - Matching pubs and subs
 - Caching messages
- Network has many parts
 - Do we need to trust some of them?
 - If so, how much and why?
- Tags can be long, becoming semi-private
 - Work as "weak" cryptographic keys

Forwarding and caching

Rendezvous (e.g. broadcast in a LAN)

Bob

Forwarding and caching

Security

- Early ideas
 - Integrity and modification of messages
 - Message composition
 - Algorithmically computed message IDs
- Some open questions

Integrity and modification of individual messages

- Static, immutable data
 - ID = hash(data)
 - Algorithm agility? (Have multiple IDs?)
- Mutable messages
 - ID = pk:tag
 - Or use hash(pk) if it pk doesn't fit
 - message = < ID, data, ..., timestamp, seq#, sig >

Message composition

- Immutable, large publications
 - ID = hash(metadata)
 - metadata = $\langle ID_1, ID_2, ..., ID_n, hash(content) \rangle$
- Mutable large publications
 - ID = pk:tag
 - metadata = $\langle ID, ID_1, ..., ID_n, ..., seq\#, sig \rangle$
- Sequences (e.g. real time voice): next slide

Sequences

- Sequence of messages to be sent
 - Content not known beforehand

- ID = hash(metadata)
- metadata = an algorithm for creating IDs

Open questions 1: Fundamentals

- How to model authentication of (complex) data instead of authentication of principals?
 - How does this translate to transactions?
 - What is the semantics of message composition?
- Group communication questions
 - How to model multicast? Concast?
 - How to secure concast against DoS?
- What is the role of the infrastructure?
 - Resource control? Fairness? Compensation?

Open questions 2: Modelling

- How to model the assumptions, goals, and beliefs?
 - Some principals may be anonymous or pseudonymous
 - Even the basic communication beliefs may change, e.g.

$$A \models \{ \exists B: B \vdash sub(ID) \land \dots \}$$

- How to model the network?
 - Seems fairly easy with Spi calculus or strand spaces...
- Information theoretic models?
 - We've got no clue here

Summary

- Think different
- Network as a rough extension of the (tagged) blackboard
 - No principal names
- Lots of open questions
 - Read the paper 🙂

Backup slide: a bootleg formal model for OR

```
(or_1) \rightarrow: (N_1). I_R; A; B; \{|N_1; I_R; A; B|\}_{K_A}^s
(or_2) \rightarrow: (N_2). \quad I_R; A; B; \{|N_1; I_R; A; B|\}_{K_{AS}}^s; \{|N_2; I_R; A; B|\}_{K_{BS}}^s
(or_3) \rightarrow : (K). \quad I_R; \{|N_1;K|\}_{K_{AS}}^s; \{|N_2;K|\}_{K_{BS}}^s
              I_R;\{|N_1;K|\}_{K_AS}^s
(or_4) \rightarrow :
                             r(I_{AB}, I_{B}; A; B; \gamma_1).
                             f(N_2).
                             p(I_{BS}, I_R; A; B; \gamma_1; \{|N_2; I_R; A; B|\}_{K_{BS}}^s).
                             r(I_{SB}, I_R; \gamma_2; \{|N_2; K|\}_{K_{BS}}^s).
                             p(I_{BA}, I_{B}; \gamma_2)
```