Лекция 4. СТАНДАРТ AES. АЛГОРИТМ RIJNDAEL.

Стандарт AES (Advanced Encryption Standard) представляет собой новый стандарт шифрования с одним ключом, который заменил стандарт DES. Алгоритм Rijndael (рейн-дал) стал победителем конкурса на создание нового стандарта шифрования и был выбран для стандарта AES. Он представляет собой еще один алгоритм, не использующий сетей Фейстела. Для того, чтобы описать этот алгоритм нам понадобятся некоторые сведения из теории полей Галуа и их расширений, которые и рассматриваются ниже.

Некоторые сведения из теории полей Галуа

Введем некоторые определения.

Группой называется множество элементов с определенной для каждой пары элементов операцией (сложение или умножение), для которой справедливы следующие аксиомы:

- 1. Группа замкнута по определенной на ней операции, т.е. для любых элементов группы a, b элемент c = a * b тоже принадлежит группе. Здесь * обозначает операцию, определенную на группе.
- 2. Ассоциативность. Для любых a,b,c, принадлежащих группе выполняется (a*b)*c = a*(b*c)
- 3. В группе существует единичный элемент e такой, что a*e=e*a=a. Если групповая операция это сложение, то e ноль группы, если операция умножение, то e это единица группы.
- 4. Существует обратный элемент a^{-1} для каждого элемента a группы, т.е. $a^{-1}*a=e$.

Группа называется коммутативной или абелевой, если для ее элементов выполняется a*b=b*a.

Если групповая операция * это умножение, то группа называется мультипликативной. Если * – это сложение, то группа называется аддитивной.

Примеры: целые числа относительно сложения, положительные рациональные числа относительно умножения – это группы с бесконечным числом элементов. Двухэлементное множество {0,1} относительно операции сложения по модулю два образует группу с конечным числом элементов.

 $extbf{Konbuo}$ — это абелева группа, наделенная дополнительными свойствами. $extbf{Konbuom}$ R называется множество с двумя, определенными на нем операциями. Первая называется сложением, вторая умножением. При этом имеют место следующие аксиомы:

- 1. Относительно сложения (+) кольцо является абелевой группой.
- 2. Замкнутость относительно операции умножения: для любых a и b из кольца c = ab тоже принадлежит кольцу.
- 3. Дистрибутивность: a(c+b) = ac + ab
- 4. Ассоциативность: a(bc) = (ab)c

Коммутативным называется кольцо, для которого выполняется ab = ba для любых элементов a и b , принадлежащих кольцу.

Операция сложения в кольце, очевидно, имеет единичный элемент, называемый нулем. Операция умножения не обязательно имеет единичный элемент. Кольцо, обладающее единичным элементом по умножению, называется кольцом с единицей. Если единичный элемент по умножению существует, то он – единственный и обозначается символом 1. Тогда для всех a из кольца имеет место 1a = a1 = a. Относительно операции сложения каждый элемент имеет обратный. Относительно операции умножения элемент обратный данному элементу не обязательно существует, но в кольце с единицей обратные элементы могут существовать. Например, множество вещественных коммутативное кольцо с единицей относительно обычных операций сложения и Множество (включая умножения. всех целых чисел положительные, отрицательные и нуль), образует коммутативное кольцо с единицей.

Нестрого говоря, абелевой группой является множество, в котором можно складывать и вычитать, а кольцом – множество, в котором можно складывать, вычитать и умножать. Более сильной алгебраической структурой, называемой полем, является множество, в котором можно складывать, вычитать, умножать и делить.

Полем называется алгебраическая структура, для которой справедливы следующие аксиомы:

- 1. Поле это коммутативное кольцо с единицей по умножению.
- 2. Для любого ненулевого элемента поля a существует обратный элемент a^{-1} такой, что $aa^{-1}=1$.

Например, множество вещественных чисел представляет собой поле. Множество рациональных чисел тоже представляет собой поле. Эти поля содержат бесконечное число элементов. Далее мы будем рассматривать только поля с конечным числом элементов.

Поле с p элементами, если оно существует (а оно существует не при всех p), называется конечным полем или полем Галуа и обозначается через GF(p). Наименьшее поле состоит из двух элементов 0 и 1 при следующих правилах выполнения операций сложения и умножения:

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

Это поле GF(2). Можно показать, что для любого *простого* p существует поле, содержащее p различных элементов. Таким полем является числовое поле с элементами $\{0,1,2,...,p-1\}$, операции сложения и умножения в котором выполняются по модулю p.

Пример. Пусть p=5. Элементами поля являются 0,1,2,3,4. Таблицы сложения и умножения имеют вид

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
3	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Примитивным элементом поля GF(p) называется такой элемент α , что первые p-1 степеней этого элемента задают все ненулевые элементы поля. Например, в поле GF(5) получаем $2^1=2$, $2^2=4$, $2^3=3$, $2^4=1$. Таким образом 2 является примитивным элементом поля GF(5). Говорят, что примитивный элемент имеет порядок p-1. Для примитивного элемента α справедливо, что $\alpha^{p-1}=1$. В общем случае порядок элемента это такое наименьшее целое положительное число, что элемент, возведенный в степень равную этому числу, дает 1. Порядок любого элемента β является делителем порядка примитивного элемента, т.е. p-1.

Например, $4^1 = 4$, $4^2 = 1$, порядок элемента 4 равен 2, p-1=4. Очевидно, что $\boldsymbol{\beta}^{p-1} = 1$.

Пусть теперь $q=p^m$, где p – простое, а m – положительное целое. Можно показать, что при числе элементов $q=p^m$, m>1, множество чисел $\{0,\dots q-1\}$ не является полем. Рассмотрим пример. Пусть $q=2^2$. Зададим таблицы сложения и умножения вида

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

X	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Нетрудно видеть, что элемент 2 не имеет обратного по умножению, т.е. структура является кольцом, но не полем. Однако, поле из четырех элементов GF(4) можно построить. Алгебраическая структура поля $GF(p^m)$ вытекает из рассмотрения кольца многочленов переменной x с коэффициентами из поля GF(p) по модулю некоторого многочлена p(x) степени m. Говорят, что полином $a(x) = b(x) \operatorname{mod} p(x)$, если b(x) = a(x) + Q(x)p(x), где Q(x) - некоторый многочлен.

Известно, что кольцо многочленов с коэффициентами из поля GF(p) по модулю некоторого многочлена p(x) степени m является полем тогда и только тогда, когда многочлен p(x) неприводим, т.е. не может быть разложен на множители с коэффициентами из этого поля. Число элементов этого поля равно p^m . Если корнем неприводимого многочлена является примитивный элемент поля $GF(p^m)$, то такой многочлен называется примитивным, а порождаемое им поле содержит p^m различных элементов, а каждый элемент может быть представлен в виде линейной комбинации m степеней примитивного элемента. Заметим, что рассмотренное поле называют *полем характеристики* p, т.к. коэффициенты полиномов принадлежат GF(p) и, соответственно, все операции над ними выполняются по модулю p.

Пример. Выберем примитивный полином $p(x) = x^2 + x + 1$. Тогда элементами поля $GF(2^2)$ будут полиномы:

$$0, 1, x, x^2 = x+1.$$

Для выполнения операции сложения элементы поля удобно представлять в виде векторов длины m, т.е., в данном примере, в виде последовательностей 00, 01, 10, 11. Сложение полиномов сводится к покомпонентной сумме по модулю два соответствующих последовательностей. Еще одно представление элементов поля можно получить, используя примитивный элемент поля α . Неприводимый полином p(x) в нашем примере является также примитивным полиномом и примитивный элемент поля α - это его корень. Другими словами, α удовлетворяет соотношению $\alpha^2 = \alpha + 1$. Все ненулевые элементы поля могут быть получены как степени примитивного элемента, т.е.

$$\alpha^0 = 1$$
, $\alpha^1 = \alpha$, $\alpha^2 = \alpha + 1$.

Нетрудно видеть, что два представления элементов поля эквивалентны с точностью до замены переменной. Представление элементов поля в виде степеней примитивного элемента обычно используется для умножения в этом поле. Порядок примитивного элемента равен p^m-1 . В нашем примере $\alpha^3=\alpha^2+\alpha=1$.

Заметим, что порядок любого элемента поля является делителем порядка примитивного элемента, т.е. числа p^m-1 . Следовательно, для любого элемента β имеет место тождество $\beta^{p^m-1}=1$. Если (p^m-1) - простое число, то все ненулевые элементы поля (кроме 1) примитивны, в противном случае в поле найдутся элементы, имеющие порядки делящие число (p^m-1) . Например, в поле $GF(2^4)$ существуют элементы порядка 1, 3, 5, 15.

Найдем обратный элемент к элементу x+1. Так как $x(x+1)=x^2+x=1$, то обратным элементом к x+1 будет x.

Для нахождения обратного к данному элементу в поле Галуа или его расширении используют алгоритм деления Евклида. Рассмотрим вначале алгоритм деления Евклида для целых чисел и обсудим, как он может быть применен для нахождения обратного элемента в поле Галуа GF(p), где p- простое. Суть алгоритма Евклида состоит в нахождении наибольшего общего делителя (НОД) двух целых положительных чисел (a_0,a_1) , $a_0 \ge a_1$ путем вычисления последовательности остатков

$$a_{i+1} = a_{i-1} - Q_i a_i$$
, $i = 1, 2, ..., k$ (1)

где $Q_i = \left[\frac{a_{i-1}}{a_i}\right]$, $[\cdot]$ обозначает целую часть. Вычисления прекращаются, когда остаток $a_{k+1} = 0$, что означает, что a_k делит нацело a_{k-1} . Тогда НОД $(a_0, a_1) = a_k$. Так называемый расширенный алгоритм Евклида позволяет находить не только НОД

двух целых положительных чисел, но и его представление в виде $HO\mathcal{I}(a_0,a_1)=xa_0+ya_1$, где x,y - это целые (необязательно положительные) числа. Для нахождения x,y алгоритм Евклида модифицируется следующим образом:

1. Инициализация $x_0 = 1$, $x_1 = 0$, $y_0 = 0$, $y_1 = 1$, i = 1

$$2. \quad Q_i = \left[\frac{a_{i-1}}{a_i}\right]$$

3.
$$a_{i+1} = a_{i-1} - Q_i a_i$$

4. Если a_{i+1} =0, то $HOД(a_0,a_1)=a_i$, $x=x_i$, $y=y_i$ и закончить вычисления, иначе

$$X_{i+1} = X_{i-1} - Q_i X_i$$

$$y_{i+1} = y_{i-1} - Q_i y_i$$

$$i = i + 1$$

Перейти к шагу 2.

Пример. Найдем НОД(57,33) и его разложение $HOД(57,33) = x \cdot 57 + y \cdot 33$. Результаты вычислений сведены в таблицу

i	a_i	Q_{i}	x_i	\mathcal{Y}_i
0	57	_	1	0
1	33	[57/33]=1	0	1
2	57–1×33=24	[33/24]=1	1-1×0=1	0-1×1=-1
3	33–1×24=9	[24/9]=2	0-1×1=-1	1-1×(-1)=2
4	24-2×9=6	[9/6]=1	1-2×(-1)=-1	-1-2×2=-5
5	9–1×6=3	[6/3]=2	-1-1×3=-4	2-1×(-5)=7
6	6-2×3=0	НОД(57,33)=3		
		3=57×(-4)+33×7		

Таким образом, получаем, что $HOД(57,33) = 3 = 57 \cdot (-4) + 33 \cdot 7$

Нахождение обратного элемента в поле Галуа и его расширении.

Теперь рассмотрим, как расширенный алгоритм Евклида может быть применен для нахождения обратного элемента к заданному в GF(p). Пусть a –некоторый элемент поля GF(p), тогда обратный к нему элемент a^{-1} , очевидно, удовлетворяет уравнению

$$aa^{-1} = 1 \operatorname{mod} p . (2)$$

Уравнение (2) эквивалентно уравнению

$$aa^{-1} + py = 1,$$
 (3)

где y- некоторое целое число. Тогда с помощью расширенного алгоритма Евклида мы находим $HO\mathcal{J}(p,a)=1=x\cdot a+y\cdot p$, где $x=a^{-1}$. Например, пусть p=5 , a=3. Получаем

$$a_2 = 5 - 1 \cdot 3 = 2$$

$$x_2 = 1 - 0 \cdot 1 = 1$$

$$y_2 = 0 - 1 \cdot 1 = -1$$

$$a_3 = 3 - 1 \cdot 2 = 1$$

$$x_3 = 0 - 1 \cdot 1 = -1$$

$$y_3 = 1 - 1 \cdot (-1) = 2$$

Таким образом, имеем $1 = (-1) \cdot 5 + 2 \cdot 3$, т.е. $a^{-1} = 2$.

Расширенный алгоритм Евклида легко обобщается для полиномов и может быть использован для нахождения обратного элемента в расширении поля Галуа $GF(p^m)$.

Теорема. Пусть $r_0(x)$ и $r_1(x)$ — два полинома, причем $\deg(r_0(x)) \geq \deg(r_1(x))$, тогда существуют такие два полинома U(x) и V(x), что имеет место равенство $HO \mathcal{J}(r_0(x),r_1(x)) = U(x)r_0(x) + V(x)r_1(x)$ и $\deg(U(x))$ и $\deg(V(x)) < \deg(r_0(x))$.

Рассмотрим снова поле $GF(2^2)$, построенное по модулю полинома $p(x) = x^2 + x + 1$. Найдем элемент обратный к элементу x. Положим $r_0(x) = p(x)$ и

 $r_1(x) = x$. Аналогично рассмотренным выше примерам, выполним следующие вычисления

$$r_2(x) = x^2 + x + 1 - (x+1)x = 1$$

$$U_2(x) = 1 - (x+1) \cdot 0 = 1$$

$$V_2(x) = 0 - (x+1) \cdot 1 = x+1$$

Таким образом, получаем, что $HO\!\mathcal{J}(p(x),x) = 1 = 1 \cdot (x^2 + x + 1) + (x + 1) \cdot x$, т.е. обратным к элементу x является (x+1). Заметим, что, так как рассматриваемое поле является расширением поля GF(2), то все поразрядные операции между векторами (коэффициентами полиномов) выполняются по модулю 2 u, следовательно, в данном поле имеет место равенство -1=1.