TASK 3

Build a decision tree classifier to predict whether a customer will purchase a product or service based on their demographic and behavioral data. Use a dataset such as the Bank Marketing dataset from the UCI Machine Learning Repository

```
In [106]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
   %matplotlib inline
```

Out[107]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_
0	30	blue- collar	married	basic.9y	no	yes	no	cellular	may	
1	39	services	single	high.school	no	no	no	telephone	may	
2	25	services	married	high.school	no	yes	no	telephone	jun	
3	38	services	married	basic.9y	no	unknown	unknown	telephone	jun	
4	47	admin.	married	university.degree	no	yes	no	cellular	nov	

5 rows × 21 columns

```
In [108]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4119 entries, 0 to 4118
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype					
0	age	4119 non-null	int64					
1	job	4119 non-null	object					
2	marital	4119 non-null	object					
3	education	4119 non-null	object					
4	default	4119 non-null	object					
5	housing	4119 non-null	object					
6	loan	4119 non-null	object					
7	contact	4119 non-null	object					
8	month	4119 non-null	object					
9	day_of_week	4119 non-null	object					
10	duration	4119 non-null	int64					
11	campaign	4119 non-null	int64					
12	pdays	4119 non-null	int64					
13	previous	4119 non-null	int64					
14	poutcome	4119 non-null	object					
15	emp.var.rate	4119 non-null	float64					
16	cons.price.idx	4119 non-null	float64					
17	cons.conf.idx	4119 non-null	float64					
18	euribor3m	4119 non-null	float64					
19	nr.employed	4119 non-null	float64					
20	deposit	4119 non-null	object					
dtyp	es: float64(5),	int64(5), object	(11)					
memory usage: 675.9+ KB								

In [109]: df.tail()

Out[109]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_w
4114	30	admin.	married	basic.6y	no	yes	yes	cellular	jul	
4115	39	admin.	married	high.school	no	yes	no	telephone	jul	
4116	27	student	single	high.school	no	no	no	cellular	may	1
4117	58	admin.	married	high.school	no	no	no	cellular	aug	
4118	34	management	single	high.school	no	yes	no	cellular	nov	

5 rows × 21 columns

In [110]: df.shape

Out[110]: (4119, 21)

```
In [111]: | df.columns
Out[111]: Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day of week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
                  'cons.conf.idx', 'euribor3m', 'nr.employed', 'deposit'],
                 dtype='object')
In [112]: df.dtypes
Out[112]: age
                               int64
           job
                              object
          marital
                              object
           education
                              object
           default
                              object
           housing
                              object
           loan
                              object
           contact
                              object
          month
                              object
          day_of_week
                              object
           duration
                               int64
           campaign
                               int64
           pdays
                               int64
                               int64
           previous
           poutcome
                              object
                             float64
           emp.var.rate
           cons.price.idx
                             float64
           cons.conf.idx
                             float64
           euribor3m
                             float64
           nr.employed
                             float64
           deposit
                              object
          dtype: object
In [113]: df.dtypes.value_counts()
Out[113]: object
                      11
           int64
                       5
                       5
           float64
          dtype: int64
In [114]: df.duplicated().sum()
Out[114]: 0
```

```
In [115]: df.isna().sum()
Out[115]: age
                             0
          job
                             0
          marital
                             0
          education
                             0
          default
                             0
          housing
                             0
          loan
                             0
          contact
                             0
          month
                             0
          day of week
                             0
          duration
                             0
          campaign
          pdays
                             0
          previous
                             0
          poutcome
                             0
          emp.var.rate
                             0
          cons.price.idx
                             0
          cons.conf.idx
          euribor3m
                             0
          nr.employed
                             0
          deposit
                             0
          dtype: int64
In [116]: | cat_cols = df.select_dtypes(include='object').columns
          print(cat_cols)
          num_cols = df.select_dtypes(exclude='object').columns
          print(num_cols)
          Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contac
          t',
                  'month', 'day_of_week', 'poutcome', 'deposit'],
                 dtype='object')
          Index(['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate',
                  'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed'],
                 dtype='object')
```

In [117]: df.describe()

Out[117]:

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price
count	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000
mean	40.113620	256.788055	2.537266	960.422190	0.190337	0.084972	93.579
std	10.313362	254.703736	2.568159	191.922786	0.541788	1.563114	0.579
min	18.000000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.20
25%	32.000000	103.000000	1.000000	999.000000	0.000000	-1.800000	93.07{
50%	38.000000	181.000000	2.000000	999.000000	0.000000	1.100000	93.749
75%	47.000000	317.000000	3.000000	999.000000	0.000000	1.400000	93.994
max	88.000000	3643.000000	35.000000	999.000000	6.000000	1.400000	94.767

In [118]: df.describe(include='object')

Out[118]:

	job	marital	education	default	housing	loan	contact	month	day_of_week
count	4119	4119	4119	4119	4119	4119	4119	4119	4119
unique	12	4	8	3	3	3	2	10	5
top	admin.	married	university.degree	no	yes	no	cellular	may	thu
freq	1012	2509	1264	3315	2175	3349	2652	1378	860
4						_			

```
In [119]: import matplotlib.pyplot as plt
    df.hist(figsize=(10, 10), color='#00FFFF', edgecolor='black', bins=15)
    plt.suptitle('Histograms of Numeric Features', fontsize=16)
    plt.xlabel('Value', fontsize=12)
    plt.ylabel('Frequency', fontsize=12)
    plt.tight_layout(rect=[0, 0, 1, 0.95])
    plt.show()
```

Histograms of Numeric Features


```
In [124]:
          numeric_df = df.drop(columns=cat_cols)
          corr = numeric df.corr()
          # Print the correlation matrix
          print(corr)
          # Filter correlations with absolute value >= 0.90
          corr = corr[abs(corr) >= 0.90]
          sns.heatmap(corr,annot=True,cmap='Set3',linewidths=0.2)
          plt.show()
                                    duration campaign
                                age
                                                            pdays
                                                                   previous \
                          1.000000
                                    0.014048 -0.014169 -0.043425
                                                                   0.050931
          age
          duration
                          0.014048
                                    1.000000 -0.218111 -0.093694 0.094206
          campaign
                          -0.014169 -0.218111 1.000000 0.058742 -0.091490
          pdays
                         -0.043425 -0.093694 0.058742 1.000000 -0.587941
                          0.050931 0.094206 -0.091490 -0.587941 1.000000
          previous
          emp.var.rate
                         -0.019192 -0.063870 0.176079
                                                         0.270684 -0.415238
          cons.price.idx -0.000482 -0.013338 0.145021 0.058472 -0.164922
          cons.conf.idx
                          0.098135 0.045889
                                              0.007882 -0.092090 -0.051420
          euribor3m
                          -0.015033 -0.067815 0.159435
                                                        0.301478 -0.458851
          nr.employed
                          -0.041936 -0.097339 0.161037
                                                        0.381983 -0.514853
                                        cons.price.idx cons.conf.idx euribor3m
                           emp.var.rate
          age
                             -0.019192
                                              -0.000482
                                                              0.098135
                                                                        -0.015033
          duration
                              -0.063870
                                              -0.013338
                                                              0.045889
                                                                       -0.067815
          campaign
                              0.176079
                                               0.145021
                                                              0.007882
                                                                         0.159435
          pdays
                              0.270684
                                               0.058472
                                                             -0.092090
                                                                         0.301478
          previous
                              -0.415238
                                              -0.164922
                                                             -0.051420
                                                                        -0.458851
          emp.var.rate
                               1.000000
                                               0.755155
                                                              0.195022
                                                                         0.970308
          cons.price.idx
                              0.755155
                                               1.000000
                                                              0.045835
                                                                         0.657159
          cons.conf.idx
                              0.195022
                                               0.045835
                                                              1.000000
                                                                         0.276595
          euribor3m
                              0.970308
                                               0.657159
                                                              0.276595
                                                                         1.000000
          nr.employed
                              0.897173
                                               0.472560
                                                              0.107054
                                                                         0.942589
                          nr.employed
                             -0.041936
          age
          duration
                             -0.097339
          campaign
                             0.161037
          pdays
                             0.381983
          previous
                             -0.514853
          emp.var.rate
                             0.897173
          cons.price.idx
                             0.472560
          cons.conf.idx
                             0.107054
          euribor3m
                             0.942589
```

nr.employed

1.000000


```
In [125]: high_corr_cols = ['emp.var.rate','euribor3m','nr.employed']
In [126]: | df1 = df.copy()
          df1.columns
Out[126]: Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx',
                  'cons.conf.idx', 'euribor3m', 'nr.employed', 'deposit'],
                dtype='object')
In [127]: df1.drop(high_corr_cols,inplace=True,axis=1) # axis=1 indicates columns
          df1.columns
Out[127]: Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'cons.price.idx', 'cons.conf.idx', 'deposi
          t'],
                dtype='object')
In [128]: df1.shape
Out[128]: (4119, 18)
```

```
In [129]: from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
df_encoded = df1.apply(lb.fit_transform)
df_encoded
```

Out[129]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	durati
0	12	1	1	2	0	2	0	0	6	0	2
1	21	7	2	3	0	0	0	1	6	0	2
2	7	7	1	3	0	2	0	1	4	4	2
3	20	7	1	2	0	1	1	1	4	0	
4	29	0	1	6	0	2	0	0	7	1	
4114	12	0	1	1	0	2	2	0	3	2	
4115	21	0	1	3	0	2	0	1	3	0	2
4116	9	8	2	3	0	0	0	0	6	1	
4117	40	0	1	3	0	0	0	0	1	0	2
4118	16	4	2	3	0	2	0	0	7	4	1

4119 rows × 18 columns

1

```
In [130]: df_encoded['deposit'].value_counts()
```

Out[130]: 0 3668 1 451

Name: deposit, dtype: int64

```
In [131]: x = df_encoded.drop('deposit',axis=1) # independent variable
y = df_encoded['deposit'] # dependent variable
print(x.shape)
print(y.shape)
print(type(x))
print(type(y))
```

(4119, 17)
(4119,)
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.series.Series'>

```
In [132]: from sklearn.model_selection import train_test_split
```

```
In [133]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25,random_stage
          print(x train.shape)
          print(x_test.shape)
          print(y train.shape)
          print(y_test.shape)
          (3089, 17)
          (1030, 17)
          (3089,)
          (1030,)
In [134]: from sklearn.metrics import confusion matrix, classification report, accuracy se
          def eval_model(y_test,y_pred):
              acc = accuracy_score(y_test,y_pred)
              print('Accuracy_Score',acc)
              cm = confusion_matrix(y_test,y_pred)
              print('Confusion Matrix\n',cm)
              print('Classification Report\n',classification_report(y_test,y_pred))
          def mscore(model):
              train_score = model.score(x_train,y_train)
              test_score = model.score(x_test,y_test)
              print('Training Score', train score)
              print('Testing Score',test_score)
In [135]: | from sklearn.tree import DecisionTreeClassifier
          dt=DecisionTreeClassifier(criterion='gini',max_depth=5,min_samples_split=10)
          dt.fit(x_train,y_train)
Out[135]: DecisionTreeClassifier(max_depth=5, min_samples_split=10)
In [136]: mscore(dt)
          Training Score 0.9148591777274199
          Testing Score 0.8990291262135922
In [137]: |ypred_dt = dt.predict(x_test)
          print(ypred_dt)
          [0 0 1 ... 0 0 0]
```

```
In [138]: |eval_model(y_test,ypred_dt)
          Accuracy_Score 0.8990291262135922
          Confusion Matrix
           [[905 25]
           [ 79 21]]
          Classification Report
                          precision
                                       recall f1-score
                                                           support
                              0.92
                                        0.97
                      0
                                                  0.95
                                                              930
                      1
                              0.46
                                        0.21
                                                   0.29
                                                              100
                                                  0.90
                                                             1030
              accuracy
             macro avg
                              0.69
                                        0.59
                                                  0.62
                                                             1030
                                                  0.88
          weighted avg
                              0.87
                                        0.90
                                                             1030
In [139]:
          from sklearn.tree import plot tree
In [140]: | cn = ['no', 'yes']
          fn = x_train.columns
          print(fn)
          print(cn)
          Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
                  'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays',
                  'previous', 'poutcome', 'cons.price.idx', 'cons.conf.idx'],
                dtype='object')
          ['no', 'yes']
In [141]: plt.figure(figsize=(30,10))
          plot_tree(dt,class_names=cn,filled=True)
          plt.show()
In [142]: | dt1=DecisionTreeClassifier(criterion='entropy', max_depth=4, min_samples_split=1
          dt1.fit(x_train,y_train)
Out[142]: DecisionTreeClassifier(criterion='entropy', max_depth=4, min_samples_split=1
          5)
```

```
In [143]: mscore(dt1)
          Training Score 0.9080608611201036
          Testing Score 0.9048543689320389
In [144]: ypred_dt1 = dt1.predict(x_test)
In [145]: eval_model(y_test,ypred_dt1)
          Accuracy_Score 0.9048543689320389
          Confusion Matrix
           [[915 15]
           [ 83 17]]
          Classification Report
                          precision
                                       recall f1-score
                                                          support
                     0
                              0.92
                                        0.98
                                                  0.95
                                                             930
                     1
                              0.53
                                        0.17
                                                  0.26
                                                             100
                                                  0.90
                                                             1030
              accuracy
                              0.72
                                        0.58
                                                  0.60
                                                             1030
             macro avg
          weighted avg
                              0.88
                                        0.90
                                                  0.88
                                                             1030
```