In order to apply the Newton-Raphson method, first from (11) we define six scalar functions:

$$f_i(\mathbf{a}) = (\bar{x}_i + u_i)^2 + (\bar{y}_i + v_i)^2 + (\bar{z}_i + w_i)^2 - l_i^2 = 0,$$
(18)

for i = 1, 2, ..., 6, where the vector **a** is defined as:

$$\mathbf{a} = [a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6]^T = [x \ y \ z \ \alpha \ \beta \ \gamma]^T$$
 (19)

and then employ the following algorithm [20] to solve for a:

Newton-Raphson Algorithm

- Step 1 Select an initial guess a.

- Step 2 Compute the elements r_{ij} of ${}^B_i\mathbf{R}$ using (17) for i, j = 1, 2, 3. Step 3 Compute \bar{x}_i , \bar{y}_i \bar{z}_i using (7) and u_i , v_i , w_i using (9) for i = 1, 2, ..., 6. Step 4 Compute $f_i(\mathbf{a})$ and $A_{ij} = \frac{\partial f_i}{\partial a_j}$ using (18) for i, j = 1, 2, ..., 6. Step 5 Compute $B_i = -f_i(\mathbf{a})$ for i = 1, 2, ..., 6. If $\sum_{j=1}^{6} |B_j| < \text{tolf (tolerance)}$, stop and select \mathbf{a} as the solution.
- Step 6 Solve $\sum_{j=1}^{6} A_{ij} \delta a_j = B_i$ for δa_j for i, j = 1, 2, ..., 6 using LU decomposition. If $\sum_{i=1}^{6} \delta a_j < \text{tola}$ (tolerance), stop and select **a** as the solution.
- Step 7 Select $\mathbf{a}^{\text{new}} = \mathbf{a} + \delta \mathbf{a}$ and repeat Steps 1 7.

Step 2 Compute the elements r_{ij} of ${}^{B}_{P}\mathbf{R}$ using (17) for i, j = 1, 2, 3.

$${}_{P}^{B}\mathbf{R} = \mathbf{R}_{RPY} = \begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix}. \tag{17}$$

 $c\alpha \equiv \cos \alpha$ and $s\alpha \equiv \sin \alpha$.

Step 3 Compute \bar{x}_i , \bar{y}_i \bar{z}_i using (7) and u_i , v_i , w_i using (9) for i = 1, 2, ..., 6.

$$=\begin{bmatrix} x - b_{ix} \\ y - b_{iy} \\ z - b_{iz} \end{bmatrix} = \begin{bmatrix} x - b_{ix} \\ y - b_{iy} \\ z \end{bmatrix} = \begin{bmatrix} \bar{x}_i \\ \bar{y}_i \\ \bar{z}_i \end{bmatrix}, \tag{7}$$

Analysis and implementation of a 6 DOF Stewart Platform-based robotic wrist

ed vector of Bd and

$${}^{B}\mathbf{p}_{i} = {}^{B}\mathbf{R} \quad {}^{P}\mathbf{P}_{i} \tag{8}$$

195

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} p_{ix} \\ p_{iy} \\ p_{it} \end{bmatrix} = \begin{bmatrix} r_{11}p_{ix} + r_{12}p_{iy} \\ r_{21}p_{ix} + r_{22}P_{iy} \\ r_{31}p_{ix} + r_{32}p_{iy} \end{bmatrix} = \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix},$$
(9)

Step 4 Compute $f_i(\mathbf{a})$ and $A_{ij} = \frac{\partial f_i}{\partial a_j}$ using (18) for i, j = 1, 2, ..., 6.

$$f_i(\mathbf{a}) = (\bar{x}_i + u_i)^2 + (\bar{y}_i + v_i)^2 + (\bar{z}_i + w_i)^2 - l_i^2 = 0,$$
(18)

- Step 5 Compute $B_i = -f_i(\mathbf{a})$ for i = 1, 2, ..., 6. If $\sum_{j=1} |B_j| < \text{tolf (tolerance)}$, stop and select \mathbf{a} as the solution.

 Step 6 Solve $\sum_{j=1}^{6} A_{ij} \delta a_j = B_i$ for δa_j for i, j = 1, 2, ..., 6 using LU decomposition. If $\sum_{j=1}^{6} \delta a_j < \text{tola (tolerance)}$, stop and select \mathbf{a} as the solution.

 Step 7 Select $\mathbf{a}^{\text{new}} = \mathbf{a} + \delta \mathbf{a}$ and repeat Steps 1 7.