

Lecture 13 | Part 1

Bayes with Multiple Features

Recap

- **▶ Bayes Classifier:** predict y that maximizes $\mathbb{P}(Y = y \mid X = x)$
- ► **Alternatively:** predict y that maximizes

$$p_X(x \mid Y = y)\mathbb{P}(Y = y)$$

We must estimate these probabilities/densities.

Example: NBA Players

Guard and Forward are two positions in basketball.

Forwards tend to be larger than guards.

Example: NBA Players

- Suppose we have a data set of n NBA players:
 - X_1 : the player's height
 - \triangleright X_2 : the player's weight
 - Y: the player's position (1 = guard, 0 = forward)
- ► **Given:** a new player's height and weight, predict their position.

Bayes in ≥ 2 Dimensions

With one feature, Bayes said to pick y maximizing:

$$p_x(x \mid Y = y)\mathbb{P}(Y = y)$$

▶ With *k* features, pick *y* maximizing:

$$p_{\vec{x}}(\vec{x} \mid Y = y)\mathbb{P}(Y = y)$$

- \vec{x} is the **feature vector**. Here: (height, weight)^T
- We need to estimate density $p(\vec{x} \mid Y = y)$ for each class.

Estimating with Histograms

Estimating with Histograms

Estimating with Histograms

Predicting with Histograms

To predict the class of an input \vec{x} :

- 1. Use histograms to estimate $p_{\vec{X}}(\vec{x} \mid Y = y)$ for each class separately.
- 2. Predict the class y maximizing

$$p_{\vec{X}}(\vec{X} \mid Y = y) \mathbb{P}(Y = y)$$

Histogram Estimators

- Histogram density estimators are very flexible.
- But suffer heavily from curse of dimensionality.
- Not feasible for estimating density in more than a few dimensions.

Today

- ► **Last time:** we saw the **parametric** approach to density estimation.
 - Pick a parametric distribution (e.g., Gaussian)
 - Find parameters by maximizing likelihood
- We saw how to do this for one-dimensional data.
- ► **Today:** multidimensional data.

In particular...

- ► **Today:** multivariate Gaussian density estimation.
- ► That is: fitting multivariate Gaussians to data with maximum likelihood.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 13 | Part 2

Multivariate Gaussians

Multivariate Gaussians

- In 1 dimension, a Gaussian seemed to describe distribution of heights.
- Does a multivariate Gaussian describe distribution of heights and weights?

"Deriving" Multivariate Gaussians

- Suppose we have d independent random variables $X_1, ..., X_d$.
- Assume that each is Gaussian; different mean, but same variance:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma^2), \dots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma^2).$$

- ▶ What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- \triangleright Since we assumed $X_1, ..., X_d$ are independent:

$$p(x_1, x_2, ..., x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right)$$

- ▶ What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- ► Since we assumed $X_1, ..., X_d$ are independent:

$$p(x_1, x_2, ..., x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right)$$

$$= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 + \dots + (x_d - \mu_d)^2}{2\sigma^2}\right)$$

- ▶ What is the **joint density** $p(x_1, x_2, ..., x_d)$?
- \triangleright Since we assumed $X_1, ..., X_d$ are independent:

$$\begin{split} p(x_1, x_2, \dots, x_d) &= p(x_1) p(x_2) \cdots p(x_d) \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right) \\ &= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 + \dots + (x_d - \mu_d)^2}{2\sigma^2}\right) \\ &= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|\vec{x} - \vec{\mu}\|^2}{2\sigma^2}\right) \end{split}$$

Setting #1: Spherical Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2} \frac{\|\vec{x} - \vec{\mu}\|^2}{\sigma^2}\right)$$

- Contours are (hyper)spheres.
- Every slice through middle gives same Gaussian.

- ► Still assume $X_1, ..., X_d$ are independent, Gaussian.
- But they now have different variances:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2), \ldots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma_d^2).$$

$$p(x_1, x_2, ..., x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma_2^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma_d^2}\right)$$

$$p(x_1, x_2, ..., x_d) = p(x_1)p(x_2) \cdots p(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma_2^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma_d^2}\right)$$

$$= \frac{1}{(2\pi)^{d/2} \sigma_1 \cdot \sigma_2 \cdots \sigma_d} \exp\left(-\frac{1}{2} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} + \dots + \frac{(x_d - \mu_d)^2}{\sigma_d^2}\right]\right)$$

Define

$$C = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \sigma_d^2 \end{pmatrix}$$

Then:

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

where |C| is the **determinant** of C.

Setting #2: Axis-Aligned Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

- Contours are axis-aligned (hyper)ellipses.
- C is the covariance matrix.
 - Diagonal.
 - Entries are variances.

Setting #3: General Gaussians

- \triangleright We have assumed that $X_1, ..., X_d$ are independent.
- Now assume that they're not. Define **covariance**:

$$Cov(X_i, X_i) = \mathbb{E}[(X_i - \mu_i)(X_i - \mu_i)]$$

Note:

$$Var(X_i) = Cov(X_i, X_i)$$

Covariance

Covariance measures how much two quantities vary together.

$$Cov(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

Setting #3: General Gaussians

Now the **covariance matrix** has off-diagonal elements:

$$C = \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & \cdots & Cov(X_1, X_d) \\ Cov(X_2, X_1) & Var(X_2) & \cdots & Cov(X_2, X_d) \\ \cdots & \cdots & \cdots & \cdots \\ Cov(X_d, X_1) & Cov(X_d, X_2) & \cdots & Var(X_d) \end{pmatrix}$$

► Since $Cov(X_i, X_j) = Cov(X_j, X_i)$, C is symmetric.

Setting #3: General Gaussians

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

Contours are general (hyper)ellipses. *C* need not be diagonal.

Overview

The probability density function for a multivariate Gaussian distribution is:

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

Here, C is the covariance matrix.

Overview

- There are three cases:
- 1. C is diagonal, with all the same entries.
- 2. C is diagonal, with different entries.
- 3. C is not diagonal.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 13 | Part 3

Fitting Multivariate Gaussians

Fitting Multivariate Gaussians

Suppose $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$ came from a multivariate Gaussian.

- What were the parameters of that Gaussian?
- ▶ We can use the principle of maximum likelihood.

What are the parameters?

$$p(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

- $\triangleright \vec{\mu}$: controls Gaussian's location
- C: controls Gaussian's shape

Estimating $\vec{\mu}$

 \triangleright The maximum likelihood estimator for μ is:

$$\vec{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}$$

Estimating *C*

- First: make assumptions on covariance matrix.
- In order from strict to weak:
 - Spherical: C is diagonal, with all the same entries.
 - Axis-Aligned: C is diagonal, with different entries.
 - ► General: *C* is not diagonal.

The weaker the assumptions, the more parameters to estimate.

Fitting Spherical Gaussians

- ▶ Only one variance parameter: σ^2 .
- ► The density function becomes:

$$p(\vec{x}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(\vec{x} - \vec{\mu})^T (\vec{x} - \vec{\mu})}{2\sigma^2}\right)$$

► The maximum likelihood estimator:

$$\sigma_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n \|\vec{x}^{(i)} - \vec{\mu}_{\text{MLE}}\|^2$$

Example: NBA Data

What if we fit a spherical Gaussian to the NBA data?

Fitting Spherical Gaussians

Fitting Spherical Gaussians

Example: NBA Data

- Spherical Gaussians are not well-suited to this data.
- Perhaps if the data were standardized...
- Instead, try axis-aligned Gaussians.

Fitting Axis-Aligned Gaussians

- ▶ Variance for each axis: σ_1^2 and σ_2^2 .
- Maximum likelihood estimates:

$$\sigma_1^2$$
 = sample variance of heights σ_2^2 = sample variance of weights

Fitting Axis-Aligned Gaussians

Fitting Axis-Aligned Gaussians

Example: NBA Data

Axis-aligned Gaussian does not capture correlation between height and weight.

Try general Gaussian with full covariance.

Fitting General Gaussians

Must compute covariance for each pair of dimensions.

Maximum likelihood estimate for covariance of feature i and j:

$$C_{ij} = \left(\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}\right) - \mu_{i} \mu_{j}$$

Computing the Covariance Matrix

Step 1. Make matrix with heights in first column, weights in second:

```
height 1 weight 1 height 2 weight 2 ... height n weight n
```

Computing the Covariance Matrix

Step 2. Subtract sample mean height, mean weight from each column. Call this matrix X:

$$X = \begin{pmatrix} \text{height 1 - mean height} & \text{weight 1 - mean weight} \\ \text{height 2 - mean height} & \text{weight 2 - mean weight} \\ \dots & \dots \\ \text{height } n - \text{mean height} & \text{weight } n - \text{mean weight} \end{pmatrix}$$

Computing the Covariance Matrix

The empirical covariance matrix is then:

$$C = \frac{1}{n}X^TX$$

Fitting General Gaussians

Fitting General Gaussians

. .

Up next...

Making predictions using these fitted Gaussians.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 13 | Part 4

Discriminant Analysis

Bayes Classifier with MV Gaussians

- 1. Fit Gaussian for $p(\vec{X} \mid Y = y)$ for each class, y.
- 2. For new point, predict y maximizing:

$$p(\vec{X} = \vec{x} \mid Y = y) \mathbb{P}(Y = y)$$

Decision Boundary

- For every point in space, we have a classification.
- ► The decision boundary: surface between different classifications.
 - \triangleright On one side, prediction is y_1 ;
 - \triangleright on the other, prediction is y_2 .

- Assume:
 - ightharpoonup classes equally likely: $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 0)$
 - identical covariance matrices

Choose class 1 if $\vec{w} \cdot \frac{(\vec{\mu}_1 - \vec{\mu}_2)}{\sigma^2} \ge \theta$.

- Assume:
 - covariance matrices identical, diagonal
 - that is: axis-aligned Gaussians

Predict class 1 if $\vec{x} \cdot \vec{w} \ge \theta$.

- Use to predict position given height and weight.
- How do we get one covariance matrix?
- Don't lump data together...
- Instead, compute covariance matrix for each class, perform weighted average:

$$C = \frac{n_1 C_1 + n_2 C_2}{n_1 + n_2}$$

Linear Discriminant Analysis

- When covariance matrices are equal, decision boundary is linear.
- ► This procedure is called linear discriminant analysis (LDA).
- True even if the Gaussians have full covariance.

- Assume:
 - \triangleright covariance matrices C_1 , C_2 different, non-diagonal

- Assume:
 - \triangleright covariance matrices C_1 , C_2 different, non-diagonal

Quadratic Discriminant Analysis

- When covariance matrices are equal, decision boundary is quadratic (ellipsoidal, paraboloidal, hyperboloidal).
- ► This procedure is called quadratic discriminant analysis (QDA).

In practice...

- A full covariance requires estimating $Θ(d^2)$ parameters; needs more data.
- Gaussian assumption may be a poor match for data.