УТВЕРЖДЕНО

Проректор по учебной работе и довузовской подготовке А.А. Воронов

2018 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Вычислительная математика

по направлению подготовки: 03.03.01 «Прикладные математика и

физика»

физтех-школа: ФАКТ факультет: ФАКИ

кафедра: вычислительной физики

курс: 3 семестр: 5

Трудоемкость: базовая часть – 3 зач. ед.

лекции – 30 часов Экзамен – нет

практические (семинарские)

занятия – нет Диф. зачет – 5 семестр

лабораторные занятия – 30 часов

Самостоятельная работа – 75 часов.

ВСЕГО ЧАСОВ - 60

Программу и задание составила к.ф.-м.н. Н.А. Завьялова

Программа принята на заседании кафедры вычислительной физики 28 мая 2019 года.

Заведующий кафедрой чл.-корр. РАН, профессор

И.Б. Петров

1. Предмет вычислительной математики

Специфика машинных вычислений. Элементарная теория погрешностей.

2. Методы решения нелинейных уравнений Локализация корней.

Принцип сжимающих отображений. Метод простой итерации. Условие сходимости метода простой итерации. Теорема о достаточных условиях сходимости метода простой итерации для системы нелинейных уравнений.

Метод Ньютона. Порядок сходимости и условия достижения заданной точности итерационных методов. Теоремы о сходимости метода Ньютона для скалярного уравнения и системы уравнений в окрестности корня.

*Методы высших порядков сходимости и наискорейшего спуска для системы уравнений.

3. Функции, заданные на дискретном множестве

Задача алгебраической интерполяции. Существование и единственность алгебраического интерполяционного полинома. Остаточный член интерполяции. Оценка погрешности интерполяции для функций, заданных с ошибками. Кусочномногочленная интерполяция. Интерполяция сплайнами.

Численное интегрирование. Квадратурные формулы Ньютона– Котеса (прямоугольников, трапеций, Симпсона) и оценка их погрешности. Правило Рунге, апостериорная оценка порядка.

Квадратурные формулы Гаусса и их погрешность.

Вычисление несобственных интегралов. Интегрирование быстро осциллирующих функций.

Численное дифференцирование. Оценка погрешности формул.

4. Задача Коши для ОДУ

Аппроксимация, устойчивость, сходимость. Теорема о связи аппроксимации, устойчивости, сходимости.

Методы Рунге–Кутты решения Задачи Коши для ОДУ. Устойчивость методов Рунге-Кутты. Барьеры Бутчера.

Методы Адамса.

Оценки погрешности и управление длиной шага при численном интегрировании систем ОДУ.

Понятия о жёстких уравнениях и системах ОДУ. А-устойчивые схемы. Функции и области устойчивости наиболее употребительных разностных схем.

5. Краевые задачи.

Алгоритм прогонки. Методы решения нелинейных краевых задач (метод стрельбы, метод квазилинеаризации).

*Вариационно-разностные и проекционные методы построения приближенного решения.

ЛИТЕРАТУРА

Основная

- 1. *Рябенький В.С.* Введение в вычислительную математику. М.: Наука—Физматлит, 1994. 335 с.; 3-е изд. М.: Физматлит, 2008. 288 с. (Физтеховский учебник).
- 2. *Калиткин Н.Н.*, *Альшина Е.А*. Численные методы. Книга I. Численный анализ М.: Изд. центр Академия, 2013 299 с.
- 3. *Косарев В.И.* 12 лекций по вычислительной математике. 2-е изд. М.: Изд-во МФТИ, 2000. 224 с.
- 4. *Лобанов А.И.*, *Петров И.Б.* Лекции по вычислительной математике М.: Интернет–Университет информационных технологий, 2006. 522 с.
- 5. Аристова Е.Н, Завьялова Н.А., Лобанов А.И. Практические занятия по вычислительной математике. Часть І. М.: Изд-во МФТИ, 2014. 242 с.
- 6. *Аристова Е.Н, Лобанов* А.И. Практические занятия по вычислительной математике в МФТИ. Часть II. М.: Изд-во МФТИ, 2015. 310 с.

<u>Дополнительная</u>

- 1. *Хайрер Э., Нёрсетт С.П., Ваннер Г.* Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990. 512 с.
- 2. *Хайрер Э, Ваннер Г*. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999. 685 с.

Задачи в заданиях из п.5 и п.6 основной литературы

1-я практическая проверочная работа — 21-25 октября **1-я контрольная работа** — вторая декада октября

ЗАДАНИЕ 1 (срок сдачи 14-19 октября)

Теоретические задачи:

I.6.4, I.6.5, I.8.3, I.8.7, I.8.18, I.8.23, I.8.32, IV.9.6, IV.9.9, IV.11.1 г, д), IV.11.9, IV.11.13, IV.11.17, IV.11.24, IV.12.8 б), VI.8.6, VI.8.10, VI.8.13, VI.8.16, VI.8.17, VI.8.18 а), VII.6.4, VII.6.6*, VII.8.1, VII.8.6, VII.8.14 а), VII.8.19, VII.8.25 б),

Практические задачи:

I.8.19 IV.12.8 δ), VI.9.32

Задача 1.

Найти все корни системы уравнений

$$\begin{cases} x^2 + y^2 = 1 \\ y = \lg x \end{cases}$$

С точностью 10-6.

Примечание: корни отделить графическим методом.

Задача 2

Для сеточной функции в условиях предыдущей задачи вычислить производную в точке 1 с максимально возможной точностью.

Задача 3

Вычислить интеграл

$$I = \int_{0}^{3} \sin(100x) \cdot e^{-x^2} \cdot \cos(2x) dx$$

2-я контрольная работа — вторая декада декабря **2-я практическая проверочная работа** — 2-6 декабря

ЗАДАНИЕ 2 (срок сдачи 9-13 декабря)

Теоретические задачи *:

VIII.9.1, VIII.9.2, VIII.9.4, VIII.9.8, VIII.9.11, VIII.9.17. IX.7.7, IX.7.11*, IX.7.15 7), X.7.1, X.7.2, X.7.3, X.7.4, X.7.5, X.7.10, X.7.12, X.7.13, X.7.19, XI.8.1, XI.8.2 в, XI.8.3, XI.8.4 в, д, XI.8.5, XI.8.10 б

Практические задачи:

XI.9.3a.

X.9.3.

Задача 4.

Решить краевую задачу

$$y'' + (x^2 - 2)y' - (x^2 - 2)\cos x \cdot y$$

$$= e^x x^2 \cos x + 2 + 2x^3 - x^4 + 2x^2$$

$$y(0) = 0 \quad y(\pi) = \pi^2$$

Ответ представить в виде вывода значения функции в 6 точках $\{0.5, 1, 1.5, 2, 2.5, 3\}$.

Задача 5

Решить краевую задачу методами пристрелки и квазилинеаризации

$$(y'')^{2} + e^{y'}y - \frac{e}{\ln x}y^{2} = \frac{1}{x^{2}}$$
$$y(0) = 0 \quad y(e) = e$$

Ответ представить в виде вывода значения функции в 5 точках $\{0.5, 1, 1.5, 2, 2.5\}$.

Задача 6

Вокруг Земли вращается спутник на круговой орбите радиуса $r_c=10^4\,$ км. Проработав короткое время, двигатель сообщил спутнику скорость u в направлении, противоположном движению. Рассчитайте новую траекторию спутника. При какой u спутник коснётся поверхности Земли?

Уравнение движения спутника:

$$\ddot{x} = -\gamma \frac{M}{r^3} x, \qquad \ddot{y} = -\gamma \frac{M}{r^3} y, \qquad r = \sqrt{x^2 + y^2},$$

$$x(0) = r_c$$
, $r_c = 10^4$ km, $y(0) = 0$, $\dot{y}(0) = v_c - u$, $\dot{x}(0) = 0$.

Параметры задачи: $M=5{,}99\cdot10^{24}$ кг (масса Земли), $\gamma=6{,}67\cdot10^{-11}\frac{\text{м}^3}{\text{кг}\cdot\text{c}^2}, \qquad R=6380 \text{ км (радиус Земли)}$

<u>Задание.</u> а) Построить график траектории в плоскости (x, y).

- б) Проверить третий закон Кеплера: $T = \frac{2\pi a^{3/2}}{\sqrt{\gamma M}}$
- в) Провести исследования сходимости численного решения по сетке.

Задача 7

Задача трех тел.

$$\begin{cases} \ddot{x} = 2\dot{y} + x - \frac{\bar{\mu}(x+\mu)}{r_1^3} - \frac{\mu(x-\bar{\mu})}{r_2^3} - f\dot{x} \\ \dot{y} = -2\dot{x} + y - \frac{\bar{\mu}y}{r_1^3} - \frac{\mu y}{r_2^3} - f\dot{y} \end{cases}$$

Здесь $\mu = \frac{1}{82,45}$ (отклонение масс Луны и Земли); Земля и Луна находятся в точках $(1-\mu,0)$ и $(-\mu,0)$ соответственно, масса спутника пренебрежимо мала по сравнению с массами Земли и Луны (координаты спутника – (x,y)); первые производные

появляются вследствие вращения системы координат и трения, пропорционального скорости с коэффициентом пропорциональности f .

Параметры задачи:

$$\bar{\mu} = 1 - \mu$$
, $r_1^2 = (x + \mu)^2 + y^2$, $r_2^2 = (x - \bar{\mu})^2 + y^2$, $x(0) = 1,2$, $\dot{x}(0) = 0$, $y(0) = -1,05$

При f = 0 периодическое движение с периодом $T \approx 6.2$.

 $\underline{3$ адание.</u> а) Провести расчеты с f=0, f=1/10, f=1 при $0 \le t \le 8$ вложенными методами Рунге-Кутты.