

example 1) In words Let us consider the function that associates to each real number its square 2) Algebraically $f(x) = x^2$ f: 1R - 1R **9** X Lo X2 domain: D= IR or I can write $D = (-\infty, \infty)$ Indeed for each real number I con compute its square (so each real number is an (nput for my function f) range $= [0, +\infty)$ Indeed the square of each real number is non-negative. In formulas: for all $x \in \mathbb{R}$, $x^2 \ge 0$. 3) Table of values 4 output input $\sum \times |\{x\} = x^2$

4) Geometrically Def: The graph of a function f is the set of points of the plane of the form (x, g(x)), where x is in the domain X-coordinate y-coordinate Remark: The curve of the graph of a fundion of has courtesian especiation. $y = \{(x)$ If $f(x) = x^2$, we have from the previous table of voices that: P₁ (-3) 9) P₂ (-2, 4) P₃ (-1, 1) P₄ (0, 0) P₅ (1, 1) P₆ (2, 4) P₇ (3, 9) our points on the graph of of. RANGE prozection of the graph on the projection of the graph on the x-axis: (-∞, ∞) -3-2-1 123 Also, from a geometrical point of view, we have donoin = projection of the graph of the fun n range = projection of the graph of the function

EXERCISE: Find the donain of the following $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \frac{x}{x^2 + 2x}$ Solution Note: f(x) is called a rational function since it is the quotient of two polynomials: wherefor obenowing for Now, the donain of a rational function is given by the set of all real numbers that donainator equal to zero. In our case: D= {x \in IR such that x \neq 0} denominator $= \rangle D = (-\infty, 0) \cup (0, \infty)$ or I can write D = 1R/103 Adifference of sets: this rueans all real numbers except o. Now let us consider q(x) = x+2. Question: Is it of = }? This is a good question, since we can rewrite $\begin{cases} \langle x \rangle = \frac{\times^2 + 2 \times}{\times} = \frac{\times (x+2)}{\times} \end{cases}$ ourd if now we simplify without thinking we

Operation with	Junchons		
Now that we can "play" w	Know the	essential to obtain	functions le
Let 1 or be respectively Dy	two funchiand Da	Miw zne	donuains
· <u>sum</u> : (1+9)($() = \{(x) + 0\}$ is defined a	th Su	his means that a value of the m at some point al to the sum
The domain : function ft q of the two		2	La Volume of Ma
Dgtg = Dg n C			huchius har fined for comp value of their
DIFFERENCE:	(f-g)(x):		
Dg-og = Dg n D	72		
PRODUCT: (j.	g)(x) = f(x)	3(x)	
Dfa = Df U Da	8		
. OUSTENT: \frac{1}{8}	$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} (x) = \frac{\partial}{\partial x} (x)$	(x) /	indeed if $g(x) = \frac{1}{2}$ the function $\frac{1}{2}$ is not obline
Di = lxe D	Hiw , go n go	n g(x) = 0	
There exists of	operation	of compos	of combining

COMPOSITION

We can compose I and g in two different ways (which are not the same)

$$(3 \circ 3)(x) := 3(3(x))$$

The best way to inderstand the composition of function is with an example:

ex: Let
$$f(x) = x^2$$
 and $g(x) = x+1$. Then:

$$(g \circ g)(x) = g(g(x)) = (g(x))^2 = (x+1)^2 = x^2 + 2x + 1$$

$$(g - g)(x) - g(g(x)) = g(x) + 1 = x + 1 + 1 = x + 2$$

Since fog is in general different from gof (as in our case) we have that the operation of composition is not committee!

$$= \begin{cases} \int g(x) = f(g(x)) = \cos(g(x)) = \cos(\sqrt{x}) \\ g(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{\cos(x)} \end{cases}$$

With all these operations we can built very complicated functions:

$$\overline{ex}$$
: $\sqrt{\frac{x^2+e^x}{x^2+e^x}}$ + $torn(1x^3/sin(x))$

for which we have to make more efforts for finding for example the domain.