Fiche technique sur les limites

1 Fonctions élémentaires

Les résultats suivants font référence dans de très nombreuses situations.

1.1 Limite en $+\infty$ et $-\infty$

f(x)	χ^n	$\frac{1}{x^n}$	\sqrt{x}	$\frac{1}{\sqrt{x}}$	ln(x)	e^x
$\lim_{x\to +\infty} f(x)$	+∞	0	+∞	0	+∞	+∞
$\lim_{x \to -\infty} f(x)$	n pair $+\infty$ n impair $-\infty$	0	aefini defini	non défini	non défini	0

1.2 Limite en 0

f(x)	$\frac{1}{x^n}$	$\frac{1}{\sqrt{x}}$	ln(x)
$\lim_{\substack{x \to 0 \\ x > 0}} f(x)$	+∞	+∞	-∞
$\lim_{\substack{x \to 0 \\ x < 0}} f(x)$	n pair $+\infty$ n impair $-\infty$	non défini	uou défiui

2 Asymptotes parallèles aux axes

Résultat sur f	Interprétation géométrique sur la courbe \mathscr{C}_f
$ \lim_{x \to \infty} f(x) = l $	La droite $y=l$ est asymptote horizontale à \mathscr{C}_f
$ \lim_{x \to a} f(x) = \infty $	La droite $x=a$ est asymptote verticale à \mathscr{C}_f

3 Opération sur les limites et formes indéterminées

3.1 Somme de fonctions

Si f a pour limite	l	l	l	+∞	$-\infty$	+∞
Si g a pour limite	l'	+∞	$-\infty$	+∞	$-\infty$	-∞
Alors $f + g$ a pour limite	l + l'	+∞	$-\infty$	+∞	$-\infty$	F. Ind.

3.2 Produit de fonctions

Si f a pour limite	l	<i>l</i> ≠ 0	0	∞
Si g a pour limite	l'	∞	∞	∞
alors $f \times g$ a pour limite	$l \times l'$	∞*	F. ind.	∞ *

^{*}Appliquer la règle des signes

3.3 Quotient de fonctions

Si f a pour limite	l	<i>l</i> ≠ 0	0	l	∞	∞
Si g a pour limite	$l' \neq 0$	0	0	∞	l	∞
alors $\frac{f}{g}$ a pour limite	$\frac{l}{l'}$	∞ *	F. ind.	0	∞ *	F. ind.

^{*}Appliquer la règle des signes

4 Polynômes et les fonctions rationnelles

4.1 Fonction polynôme

Théorème 1 Un polynôme a même limite en $+\infty$ et $-\infty$ que son monôme du plus haut degré.

$$Si P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 x_0 alors$$

$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} a_n x^n \quad et \quad \lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} a_n x^n$$

4.2 Fonction rationnelle

Théorème 2 Une fonction rationnelle a même limite en $+\infty$ et $-\infty$ que son monôme du plus degré de son numérateur sur celui de son dénominateur.

$$Si f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 x_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0 x_0} alors$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{a_n x^n}{b_m x^m} \quad et \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{a_n x^n}{b_m x^m}$$

Paul Milan 2 sur 3 Terminale ES

4.3 Asymptote oblique

Théorème 3 Dans une fonction rationnelle lorsque le degré du polynôme du numérateur est égale à celui de son dénominateur plus un, alors la représentation de cette fonction \mathscr{C}_f admet une asymptote oblique (D) en $+\infty$ et $-\infty$.

Soit
$$f(x) = \frac{P(x)}{Q(x)}$$
 et $d^{\circ}P = d^{\circ}Q + 1$
Soit la droite (D) d'équation $y = ax + b$ alors $\lim_{x \to \infty} [(f(x) - (ax + b))] = 0$

5 Fonctions logarithme et exponentielle

5.1 Fonction logarithme

Comparaison de la fonction logarithme avec la fonction puissance en $+\infty$ et en 0.

$$\text{En} + \infty \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \qquad ; \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\text{En} \quad 0 \qquad \lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0 \qquad ; \qquad \lim_{\substack{x \to 0 \\ x > 0}} x^n \ln(x) = 0$$

5.2 Fonction exponentielle

Comparaison de la fonction exponentielle avec la fonction puissance en $+\infty$ et en $-\infty$.

En
$$+\infty$$
 $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$; $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$
En $-\infty$ $\lim_{x \to -\infty} xe^x = 0$; $\lim_{x \to \infty} x^n e^x = 0$

Paul Milan 3 sur 3 Terminale ES