一、选择题

Γ

- 1. 3165: 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中
- (A) 传播的路程相等, 走过的光程相等
- (B) 传播的路程相等, 走过的光程不相等
- (C) 传播的路程不相等, 走过的光程相等
- (D) 传播的路程不相等, 走过的光程不相等 7
- 2. 3611: 如图, S_1 、 S_2 是两个相干光源,它们到 P 点的距离分别为 r_1 和 r_2 。路径 S_1P 垂直穿过一块厚度为 t_1 ,折射率为 n_1 的介质板,路径 S_2 P 垂直穿过厚度为 t_2 ,折射率为 n_2 的另一介质板,其余部分可看作真空,这两条路径的光程差等于

- 3. 3664: 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生 干涉,若薄膜的厚度为e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长,则两束反射光在相遇点的相位差为
 - (A) $2\pi n_2 e / (n_1 \lambda_1)$
- (B) $[4\pi n_1 e / (n_2 \lambda_1)] + \pi$
- (C) $[4\pi n_2 e / (n_1 \lambda_1)] + \pi$
- (D) $4\pi n_2 e / (n_1 \lambda_1)$

- 4. 3169: 用白光光源进行双缝实验,若用一个纯红色的滤光片遮底一条缝, 蓝色的滤光片遮盖另一条缝,则:

 - (A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹
- (C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹
- 5.3171: 在双缝干涉实验中, 两条缝的宽度原来是相等的。若其中一缝的宽度略变窄(缝 中心位置不变),则
 - (A) 干涉条纹的间距变宽
- (B) 干涉条纹的间距变窄
- (C) 干涉条纹的间距不变, 但原极小处的强度不再为零 (D) 不再发生干涉现象

 - 6. 3172: 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是
 - (A) 使屏靠近双缝
- (B) 使两缝的间距变小
 - (C) 把两个缝的宽度稍微调窄

- (D) 改
- 长
- 的

- ٦
- 波
- 较 小
- 单
- 7. 3498: 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻 璃纸中光程比相同厚度的空气的光程大 2.5 2,则屏上原来的明纹处
 - (A) 仍为明条纹
- (B) 变为暗条纹
- (C) 既非明纹也非暗纹;
- (D) 无法确定是明纹,还是暗纹

用

- 8. 3612: 在双缝干涉实验中, 若单色光源 S 到两缝 S_1 、 S_2 距离 相等,则观察屏上中央明条纹位于图中O处。现将光源S向下移动 到示意图中的S位置,则

- (A) 中央明条纹也向下移动, 且条纹间距不变
- (B) 中央明条纹向上移动, 且条纹间距不变
- (D) 中央明条纹向上移动, (C) 中央明条纹向下移动,且条纹间距增大
- 9. 3677: 把双缝干涉实验装置放在折射率为 n 的水中, 两缝间距离为 d, 双缝到屏的 距离为D(D>>d),所用单色光在真空中的波长为 λ ,则屏上干涉条纹中相邻的明纹之间的距 离是
- (A) λD / (nd)
- (B) $n\lambda D/d$
- (C) λd / (nD)
- (D) λD / (2nd)

Γ	(E)	向 T	远	离	棱 :	边	的	方	向	平	移	,	条	纹	间	隔	变	小
_	玻璃	5326:	力轴	,沿	逆时铊	計方向	可作							行光	垂直	入射。	若上	二面
	(B) (C)	间隔变 间隔变 间隔不	大, 变,	并向。	远离核 边方向	鼓边方 可平移	i向 ^s			`~	_1.	L	,	ı			- 	74
	(D)]	隔	变				并				棱			•		平	移
	0.00	7936: 02 cm。 莫的上表	现用	波长	为 70	0 nm	(1ni	m = 1										
[(A)	27			(B)	40				(C)	50	6			(D) [100
放入		3200: ⁵ 这条为					一条	光路	中,於	改入-	一折身	寸率グ	n,	厚度	为 d f	的透明	月薄片	Ϊ,
Γ		2 (n-			(B)		(C) 2	(n-	1)	d+λ /	2	(I	D) nd	((E) (<i>n</i> -1) d
_		- <mark>3</mark> 516: 〔光的分											すると	为n的	的透明	介质	薄膜	后,
1V.1 IT	1 I. 1 N.	C) L H J)	J /J.E./_L.	. 11 7 12	人 至/	. 3	1 1/2	(270)	V11-4	/JOC H 3	厅汉	<i></i>					$\frac{\lambda}{2(n-1)}$	-1
Γ	(A)	λ /]	2		(B)	λ	/	(2 <i>n</i>)		((C)	λ /	n		(I	O)	2(n –	-1)
的首		- 3353: :,对应															a =	4 λ
[(A)		^ ^	211711				, _一 . 个	ÆÆ.		(C)		个	10× 111 3	х н <i>7</i> :	(D)	8	个
L		7	4 B	Ì	L Д			D_{p}			i	当 <i>公</i> 久	i	L			屏幕	
		λ	A A					_ '			<u>.</u> λ	半月		\setminus			/ /	•
		_	B	C		f	,			-	-							
	24.	3355:	一束	:波段		平行	单色	7	直入	射到	一单	缝 A.	B 上	v × 、装			主屏幕	$\vec{k} D$
上形		∫射图样	羊,如	果 <i>P</i>				侧第-	一个旧					356 则 B C	■ ~的长			2.1
		λ/2		- XX	`	3) ,		~ -#• ∆:	- 41.		(C)			2	.1.4.1	`	D)	2λ
移,	则屏	<mark>3</mark> 356: 孝幕上的 间距变	的衍射	条纹								将单:	缝沿	透镜	光轴ブ	方向區	可透镜	色半
Ε	(D)	间]	距	不	变	,	但	明	暗	条	纹	的	位	置	交	替	变	化
点 <i>F</i>	的判	3520: 允强度没 振动振	快定于	波阵		上所有	有面	积元	发出的	的子衫	皮各自	自传到	$\parallel P$	点的				
針在	27.	3523:	波长	为2的	勺单色	平行		, ,						, ,				
別 圧	(A)			廷见	ⅎⅎ୵∖୕	(B)	7	ł			(C)	2	!A			(Σ))	3 λ

28. 3631: 在天垠木费里缝竹射实验中,对于给定的人射里色光,当缝宽度变小时,除
中央亮纹的中心位置不变外,各级衍射条纹
(A) 对应的衍射角变小 (B) 对应的衍射角变大 (C) 对应 (C) 对应 (B) 对应的衍射角变大
(C) 对应的衍射角也不变 (D) 光强也不变
29. 3715: 一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上,在缝后放一焦距为 2.0
m 的会聚透镜。已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm,则入射光波
长约为
(A) 100 nm (B) 400 nm (C) 500 nm (D) 600 nm
30. 3718: 在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹
(A) 宽度变小 (B) 宽度变大 (C) 宽度不变,且中心强度也不变
(D) 宽 度 不 变 , 但 中 心 强 度 增 大
31. 5327: 波长 λ =500nm(1nm= 10^9 m)的单色光垂直照射到宽度 a =0.25 mm 的单缝上,
单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕
上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为 $d=12$ mm,则凸透镜
的焦距 f 为
(A) 2 m (B) 1 m (C) 0.5 m (D) 0.2 m (E) 0.1 m
32. 5648: 在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度 a 稍梢变宽,同时使单
缝沿 y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕 C 上的
中央衍射条纹将
(A) 变窄,同时向上移;
(B) $\mathfrak{S}^{\mathfrak{P}}$, 同时向下移; $\longrightarrow a$
(C) 变窄,不移动;
(D) 变宽,同时向上移; ————————————————————————————————————
(E) 变宽,不移
55. 5047. 在知图//小的八球小页的别表直下,有平规处
度 a 稍稍变窄,同时使会聚透镜 L 沿 y 轴正方向作微小平移(单缝与屏幕 64 置不 649 、则 据 原图
C上的中央衍射条纹将
(A) 变宽,同时向上移动 (B) 变宽,同时向下移动 (C) 变宽,不移动
(D) 变窄,同时向上移动 (E) 变窄,不移动
24 5550 大地图第三数卷放土拉了典绘的壮盟市,况中中国徐始终的各世国伊耳,世
34. 5650: 在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小。若
$\frac{3}{2}$
使单缝宽度 a 变为原来的 2 ,同时使入射的单色光的波长 λ 变为原来的 3 / 4 ,则屏幕 C 上单
缝衍射条纹中央明纹的宽度Δx 将变为原来的
(A) 3 / 4 倍 (B) 2 / 3 倍 (C) 9 / 8 倍 (D) 1 / 2 倍 (E) 2 倍
35. 3204: 测量单色光的波长时,下列方法中哪一种方法最为准确?
(A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射
36. 3212: 一束平行单色光垂直入射在光栅上, 当光栅常数(a+b)为下列哪种情况时(a
36. 3212: 一東平行单色光垂直入射在光栅上,当光栅常数 $(a+b)$ 为下列哪种情况时 $(a+b)$ 发行。 代表每条缝的宽度), $k=3$ 、6、9 等级次的主极大均不出现?
36. 3212: 一束平行单色光垂直入射在光栅上,当光栅常数 $(a+b)$ 为下列哪种情况时 $(a+b)$ 0 完成的定度, $(a+b)$ 0 完成的定度, $(a+b)$ 0 完成的定理。 (A) $(a+b)$ 1 (B) $(a+b)$ 2 $(a+b)$ 3 $(a+b)$ 4 $(a+b)$ 5 $(a+b)$ 6 $(a+b)$ 7 $(a+b)$ 8 $(a+b)$ 9 完成的定理。 (B) $(a+b)$ 9 完成的定理。 (C) $(a+b)$ 9 $(a+b$
36. 3212: 一東平行单色光垂直入射在光栅上,当光栅常数 $(a+b)$ 为下列哪种情况时 $(a+b)$ 发行。 (A) $a+b=2$ a (B) $a+b=3$ a (C) $a+b=4$ a (D) $a+b=6$ a
36. 3212: 一東平行单色光垂直入射在光栅上,当光栅常数 $(a+b)$ 为下列哪种情况时 $(a+b)$ 发行, $(a+b)$ 发行, $(a+b)$ 发行, $(a+b)$ 发行, $(a+b)$ ($(a+b)$) $(a+b)$ ($(a+b$
36. 3212: 一東平行单色光垂直入射在光栅上,当光栅常数 $(a+b)$ 为下列哪种情况时 $(a+b)$ 发行。 (A) $a+b=2$ a (B) $a+b=3$ a (C) $a+b=4$ a (D) $a+b=6$ a

- (D) 部 分 偏 振 光 且 折 射 角 是 30 °
 - 49.3639: 自然光以布儒斯特角由空气入射到一玻璃表面上, 反射光是
 - (A) 在入射面内振动的完全线偏振光
 - (B) 平行于入射面的振动占优势的部分偏振光
 - (C) 垂直于入射面振动的完全线偏振光
- (D) 垂 直 于 入 射 面 的 振 动 占 优 势 的 部 分 偏 振 光 []
- 二、填空题
- 1. 3619: 波长为 λ 的单色光垂直照射如图所示的透明薄膜。膜厚度为 e,两束反射光的光程 δ =。

- 2. 3671: 单色蛋白为生生点,这双缝上。观察屏上 P 点到两缝的距离分别为 r_1 和 r_2 。设双缝和屏之间充满折射率为 n 的媒质,则 P 点处二相干光线的光程差为_____。
- 3. 3178: 一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm。若整个装置放在水中,干涉条纹的间距将为_____mm。(设水的折射率为 4/3)
- 4. 3500: 在双缝干涉实验中,所用单色光波长为 λ =562.5 nm (1nm= 10^{-9} m),双缝与观察屏的距离 D=1.2 m,若测得屏上相邻明条纹间距为 Δx =1.5 mm,则双缝的间距 d=
- 5. 3504: 在双缝干涉实验中,所用光波波长 λ =5.461× 10^{-4} mm,双缝与屏间的距离 D=300 mm,双缝间距为 d=0.134 mm,则中央明条纹两侧的两个第三级明条纹之间的距离为。
- 6. 3683: 在双缝干涉实验中,双缝间距为 d,双缝到屏的距离为 D (D>>d),测得中央零级明纹与第五级明之间的距离为 x,则入射光的波长为_____。
- 7. 3684 在双缝干涉实验中,若两缝的间距为所用光波波长的 N 倍,观察屏到双缝的距离为 D,则屏上相邻明纹的间距为。
- 8. 3189: 用波长为 λ 的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环。若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平 λ 面玻璃接触到两者距离为d的移动过程中,移过视场中某固定观察点的条 2 公数日等于
- 9. 3190 一个平凸透镜的顶点和一平板玻璃接触,用单色光垂直照射, 观察反射光形成的牛顿环,测得中央暗斑外第 k 个暗环半径为 r₁。现将透 3189 图 镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第 k 个暗环的半径变为 r₂,由此可知该液体的折射率为_____。
- 10. 7938: 空气中一玻璃劈形膜其一端厚度为零另一端厚度为 0.005 cm,折射率为 1.5。现用波长为 600nm(1nm=10 9 m)的单色平行光,沿入射角为 30 $^\circ$ 角的方向射到劈的上表面,则在劈形膜上形成的干涉条纹数目为______。
- 11. 3194: 在空气中有一劈形透明膜,其劈尖角 θ = 1.0×10^{-4} rad,在波长 λ =700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距 l=0.25 cm,由此可知此透明材料的折射率 n=
- 12. 3509: 图 a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为 λ 的单色光垂直照射。看到反射光干涉条纹(实线为暗条纹)如图 b 所示。则干涉条纹上 A 点处所对应的空气薄膜厚度为 e=
- 13. 3510: 折射率分别为 n_1 和 n_2 的两块平板玻璃构成空气劈尖,用波长为 λ 的单色光垂直照射。如果将该劈尖装置浸入折射率

缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角 φ 应满足的条件)为

- 34. 3638: 波长为 500 nm(1nm= 10^{-9} m)的单色光垂直入射到光栅常数为 1.0×10^{-4} cm 的平面衍射光栅上,第一级衍射主极大所对应的衍射角 $\varphi=$ _____。
- 35. 3731: 波长为 λ =550 nm(1nm= 10^{-9} m)的单色光垂直入射于光栅常数 d= 2×10^{-4} cm 的平面衍射光栅上,可能观察到光谱线的最高级次为第 级。
- 36. 5656: 用波长为 λ 的单色平行光垂直入射在一块多缝光栅上,其光栅常数 d=3 μ m,缝宽 a=1 μ m,则在单缝衍射的中央明条纹中共有_____条谱线(主极大)。
- 37. 5659: 可见光的波长范围是 400 nm 760 nm。用平行的白光垂直入射在平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第_____级光谱。(1 nm = 10^9 m)
- 38. 3164: 若一双缝装置的两个缝分别被折射率为 n_1 和 n_2 的两块厚度均为 e 的透明介质 所 遮 盖 , 此 时 由 双 缝 分 别 到 屏 上 原 中 央 极 大 所 在 处 的 两 束 光 的 光 程 差 δ =
- 39. 3233: 一束自然光从空气投射到玻璃表面上(空气折射率为 1), 当折射角为 30°时, 反射光是完全偏振光, 则此玻璃板的折射率等于
- 40. 3640: 自然光以布儒斯特角 i_0 从第一种介质(折射率为 n_1)入射到第二种介质(折射率为 n_2)内,则 tg i_0 =_____. 三、计算题
- 1. 3182: 在双缝干涉实验中,波长 λ =550 nm 的单色平行光垂直入射到缝间距 a=2× 10^{-4} m 的双缝上,屏到双缝的距离 D=2 m。求:
 - (1) 中央明纹两侧的两条第 10 级明纹中心的间距;
- (2) 用一厚度为 $e=6.6\times10^{5}$ m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? (1 nm = 10^{-9} m)
- 2. 3198: 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e_0 。现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为R,求反射光形成的牛顿环的各暗环半径。
- - (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹, A^3 处是明条纹还是暗条纹?
 - (3) 在第(2)问的情形从棱边到 A 处的范围内共有几条明纹? 几条暗纹?
- 4. 0470: 用每毫米 300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱。已知红谱线波长 λ_R 在 0.63—0.76 μ m 范围内,蓝谱线波长 λ_B 在 0.43—0.49 μ m 范围内。当光垂直入射到光栅时,发现在衍射角为 24.46°处,红蓝两谱线同时出现。
 - (1) 在什么角度下红蓝两谱线还会同时出现?
 - (2) 在什么角度下只有红谱线出现?
- 5. 3211: (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, λ_1 =400 nm, λ_2 =760 nm (1 nm=10⁻⁹ m)。已知单缝宽度 a=1.0×10⁻² cm,透镜焦距 f=50 cm。求两种光第一级衍射明纹中心之间的距离。
- (2) 若用光栅常数 $d=1.0\times10^{-3}$ cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离。
- 6. 3220: 波长 λ =600nm(1nm= 10^{-9} m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30°,且第三级是缺级。
 - (1) 光栅常数(a+b)等于多少?
 - (2) 透光缝可能的最小宽度 a 等于多少?

部主极大的级次。

- 7.3221: 一束平行光垂直入射到某个光栅上,该光束有两种波长的光, λ_1 =440 nm, λ_2 =660 nm (1 nm = 10^{-9} m)。实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角 φ =60° 的方向上。求此光栅的光栅常数 d。
 - 8. 3738: 用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为 60°。
 - (1) 若换用另一光源测得其第二级光谱的衍射角为30°, 求后一光源发光的波长。
- (2) 若以白光(400 nm 760 nm) 照射在该光栅上,求其第二级光谱的张角。($1 \text{ nm} = 10^{-9} \text{ m}$)
- 9. 5536: 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有 5000 条刻线,用它来观察钠黄光(λ =589 nm)的光谱线。
 - (1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次 k_m 是多少?
- (2)当光线以 30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次 k'_m 是多少? ($1nm=10^{-9}m$)
- 10. 3530: 一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 $a=2\times10^{-3}$ cm,在光栅后放一焦距 f=1 m 的凸透镜,现以 $\lambda=600$ nm (1 nm= 10^{-9} m)的单色平行光垂直照射光栅,求:
 - (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少?
 - (2) 在该宽度内,有几个光栅衍射主极大?

一、选择题

- 1. 3165; C; 2. 3611; B; 3. 3664; C; 4. 3169; D; 5. 3171; C; 6. 3172; B;
- 7. 3498: B; 8. 3612: B; 9. 3677: A; 10. 3185: D; 11. 3186: B; 12. 3187: C;
- 13. 3188: C; 14. 3507: C; 15. 3689: B; 16. 5208: B; 17. 5324: B; 18. 5325: C;
 - 19. 5326: A; 20. 7936: A; 21. 3200: A; 22. 3516: D; 23. 3353: B; 24. 3355:
- B; 25. 3356; C: 26. 3520; D: 27. 3523; C: 28. 3631; B: 29. 3715; C: 30. 3718;
- A; 31. 5327: B; 32. 5648: C; 33. 5649: A; 34. 5650: D; 35. 3204: D; 36. 3212:
- B; 37. 3213: D; 38. 3214: B; 39. 3361: D; 40. 3525: D; 41. 3635: B; 42. 3636:
- 43. 5534: B; 44. 3162: A; 45. 3246: A; 46. 3368: B; 47. 3542: A; 48. 3545: D:
 - 49. 3639: C;

二、填空题

В:

- 1. 3619: 2.60 *e*
- 2. 3671: $n(r_2-r_1)$
- 3. 3178: 0.75
- 4. 3500: 0.45 mm
- 5. 3504: 7.32 mm
- 6. 3683: xd/(5D)
- 7. 3684: D/N
- 8. 3189: $2d/\lambda$
- 9. 3190: r_1^2/r_2^2
- 10. 7938: 236
- 11. 3194: 1.40
 - $\frac{3}{2}\lambda$
- 12. 3509:
- 13. 3510: $2(n-1)e-\lambda/2$ 或者 $2(n-1)e+\lambda/2$

```
3\lambda
    14. 3621:
                 λ
                 2nl
    15. 3622:
    16. 3693:
                105
    17. 3699:
                5\lambda / (2n\theta)
    18. 7946:
                225
    19. 3201:
                539.1
    20. 3203:
                0.664mm
    21. 3378:
                4I_0
    22. 3517:
                2(n-1)h
    23. 3711:
                2d/1
    24. 3713:
                2d/N
    25. 3207:
    26. 3357:
                3.0mm
    27. 3524:
                500nm
    28. 3633:
                \lambda / \sin \theta
    29. 3720:
    30. 3742:
                30°
    31. 5219:
                0.36mm
    32. 3362:
                6250Å (或 625 nm)
                d \sin \varphi = k\lambda  (k=0, \pm 1, \pm 2, \dots)
    33. 3637:
                30°
    34. 3638:
    35. 3731:
                3
    36. 5656:
                5
    37. 5659:
    38. 3164:
                (n_1-n_2)e 或(n_2-n_1)e 均可
    39. 3233:
    40. 3640:
                n_2 / n_1
三、计算题
                       \Delta x = 20 \, D\lambda / a = 0.11 \, \text{m}
    1. 3182: 解: (1)
    (2) 覆盖云玻璃后,零级明纹应满足: (n-1)e+r_1=r_2------2分
设不盖玻璃片时,此点为第 k 级明纹,则应有: r_2 - r_1 = k\lambda ------2 分
所以: (n-1)e = k\lambda \Rightarrow k = (n-1)e/\lambda = 6.96 \approx 7
零级明纹移到原第7级明纹处-----2分
    2. 3198: 解: 设某暗环半径为 r, 由图可知, 根据几何关系, 近似有:
              e = r^2 / (2R)
                             ①-----3分
再根据干涉减弱条件有:
            2e + 2e_0 + \frac{1}{2}\lambda = \frac{1}{2}(2k+1)\lambda
式中 k 为大于零的整数. 把式①代入式②可得: r = \sqrt{R(k\lambda - 2e_0)}____
        (k 为整数,且 k > 2e_0 / \lambda)------1 分
    3. 3660: 解: (1) 棱边处是第一条暗纹中心, 在膜厚度为 e_2 = \frac{1}{2} \lambda处是第二条暗纹中心,
```

依此可知第四条暗纹中心处, 即 A 处膜厚度: e_4 =

```
\theta = e_4 / l = 3\lambda / (2l)_{=4.8 \times 10^{-5} \text{ rad}}
    (2) 由上问可知 A 处膜厚为: e_4 = 3 \times 500 / 2 \text{ nm} = 750 \text{ nm},对于\lambda' = 600 \text{ nm} 的光,连
同附加光程差,在 A 处两反射光的光程差为: 2e_4 + \frac{1}{2}\lambda' ,它与波长 \lambda' 之比为
2e_4/\lambda' + \frac{1}{2} = 3.0
    A'+-=3.0 。所以 A 处是明纹------3 分 (3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹。------2
分
    4. 0470: 解: \cdot: a+b=(1/300) \text{ mm} = 3.33 \mu \text{m}------1 分
    (1) (a+b) \sin \psi = k\lambda; k\lambda = (a+b) \sin 24.46^{\circ} = 1.38 \,\mu m
          \lambda_R = 0.63 - 0.76 \,\mu\text{m}; \quad \lambda_B = 0.43 - 0.49 \,\mu\text{m}
对于红光,取 k=2,则: \lambda_R=0.69 \, \mu \text{m}------2 分
对于蓝光,取 k=3,则: \lambda_B=0.46 \mum-----1 分
红光最大级次 k_{\text{max}}= (a + b) / \lambda_{\text{R}}=4.8------1 分
取 k_{\text{max}}=4 则红光的第 4 级与蓝光的第 6 级还会重合. 设重合处的衍射角为 \psi', 则:
     \sin \psi' = 4\lambda_R / (a+b) = 0.828
                                                      ψ′=55.9° -----2 分
    (2)红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级
将出现。
     \sin \psi_1 = \lambda_R / (a+b) = 0.207
                                     w_1 = 11.9^{\circ} -----2 \%
     \sin \psi_3 = 3\lambda_R / (a+b) = 0.621
                                      \psi_3 = 38.4^{\circ} ------1 分
    5. 3211: 解: (1) 由单缝衍射明纹公式可知: a\sin \varphi_1 = \frac{1}{2}(2k+1)\lambda_1 = \frac{3}{2}\lambda_1 (取 k=1 )--1
        tg\varphi_1 = x_1/f \quad tg\varphi_2 = x_2/f
        由于: \sin \varphi_1 \approx \operatorname{tg} \varphi_1 , \sin \varphi_2 \approx \operatorname{tg} \varphi_2
所以: x_1 = \frac{3}{2} f \lambda_1 / a \qquad x_2 = \frac{3}{2} f \lambda_2 / a \qquad 1 分 所以: \Delta x = x_2 - x_1 = \frac{3}{2} f \Delta \lambda / a \qquad = 0.27 \text{ cm}则两个第一级明纹之间距为: a_1 = \frac{3}{2} f \lambda_1 / a \qquad = 0.27 \text{ cm}
   且有: \sin \varphi \approx \operatorname{tg} \varphi = x/f
   所以: \Delta x = x_2 - x_1 = f\Delta \lambda / d_{=1.8 \text{ cm}}
    6. 3220: 解: (1) 由光栅衍射主极大公式得: a+b=\sin\varphi=2.4\times10^{-4} cm------3 分
                                               (a+b)\sin \varphi' = 3\lambda
    (2) 若第三级不缺级,则由光栅公式得
    由于第三级缺级,则对应于最小可能的a,\phi'方向应是单缝衍射第一级暗纹:a\sin \phi' = \lambda
    两式比较,得: a = (a+b)/3 = 0.8 \times 10^{-4} cm-----3 分
            (a+b)\sin\varphi=k\lambda, (主极大); a\sin\varphi=k'\lambda, (单缝衍射极小) (k'=1,2,3,.....)
    又因为 k_{\text{max}}=(a+b) / \lambda=4, 所以实际呈现 k=0,±1,±2 级明纹. (k=±4 在\pi / 2 处看
```

2 分
7. 3221: 解:由光栅衍射主极大公式得: $d\sin\varphi_1=k_1\lambda_1$, $d\sin\varphi_2=k_2\lambda_2$
$\sin \omega$, $k \cdot \lambda$, $k \cdot \times 440 \cdot 2k$.
$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_1 \lambda_1}{k_2 \lambda_2} = \frac{k_1 \times 440}{k_2 \times 660} = \frac{2k_1}{3k_2}$
当两谱线重合时有: $\varphi_1 = \varphi_2$ 1 分
$\frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6}$
中: - · · · · · · · · · · · · · · · · · ·
两谱线第二次重合即是: $\frac{k_1}{k_2} = \frac{6}{4}$, $k_1=6$, $k_2=4$
两谱线第二次重合即是: k_2 4 , k_1 =6 , k_2 =42 分
$d = 6\lambda_1$
由光栅公式可知 $d \sin 60^\circ = 6\lambda_1$; $d = \frac{6\lambda_1}{\sin 60^\circ} = 3.05 \times 10^{-3} \text{ mm} - 25$
8. 3738: 解: (1) $(a+b)\sin\varphi = 3\lambda$ $a+b=3\lambda/\sin\varphi$, $\varphi=60^{\circ}$ 2 分
$a+b=2\lambda'\sin\varphi'$; $\varphi'=30^{\circ}$
$3\lambda/\sin\varphi=2\lambda'/\sin\varphi'$
λ =510.3 nm
(2) $(a+b) = 3\lambda / \sin \varphi = 2041.4 \text{ nm} - 2 \%$
$\varphi'_{2=\sin^{-1}(2\times400/2041.4)}$ ($\lambda=400$ nm)1 \Rightarrow
$\varphi_2'' = \sin^{-1}(2 \times 760 / 2041.4)$ ($\lambda = 760$ nm)1 \Rightarrow
白光第二级光谱的张角: $\Delta \varphi = \varphi_2'' - \varphi_2' = 25$ 。1 分
9. 5536: 解: 光栅常数 <i>d</i> =2×10 ⁻⁶ m1 分
(1) 垂直入射时,设能看到的光谱线的最高级次为 k_m ,则据光栅方程有: $d\sin\theta = k_m\lambda$
$\sin \theta \leq 1$ $\therefore k_{\text{m}} \lambda / d \leq 1$, $\therefore k_{m} \leq d / \lambda = 3.39$ $\therefore k_{m} $ 为整数,有: $k_{m} = 3$
(2) 斜入射时,设能看到的光谱线的最高级次为 k'_m ,则据斜入射时的光栅方程有:
$d(\sin 30^{\circ} + \sin \theta') = k'_{m}\lambda \Rightarrow \frac{1}{2} + \sin \theta' = k'_{m}\lambda/d$
$\therefore \sin \theta' \leq 1 \qquad \therefore \qquad k'_m \lambda / d \leq 1.5$
$$ $k'_m \leq 1.5d/\lambda_{=5.09};$ $$ k'_m 为整数,有 $$ $k'_{m=5}$
10. 3530: 解: (1) $a \sin \varphi = k\lambda$ $tg \varphi = x/f$ 2 分
当 $x << f$ 时, $tg \varphi \approx \sin \varphi \approx \varphi$, $a \times f = k\lambda$, 取 $k = 1$ 有: $x = fl/a = 0.03$ m
分
∴中央明纹宽度为
分 1/2
$(2) (a+b)\sin\varphi = k'\lambda$
$k' = (a+b) x / (f\lambda) = 2.5 $
取 $k'=2$,共有 $k'=0$, ± 1 , ± 2 等 5 个主极大2 分