Lecture Summary: Orthogonality and Linear Independence

Source: Lec48.pdf

Key Points

- Orthogonality in \mathbb{R}^n :
 - Two vectors u and v in \mathbb{R}^n are orthogonal if the angle θ between them is 90° , which implies:

$$\cos(\theta) = 0 \implies u \cdot v = 0.$$

- Example: The vectors (1,2,3) and (2,2,-2) are orthogonal because:

$$1 \cdot 2 + 2 \cdot 2 + 3 \cdot (-2) = 2 + 4 - 6 = 0.$$

- General Definition of Orthogonality:
 - In an inner product space V, two vectors u and v are orthogonal if:

$$\langle u, v \rangle = 0,$$

where $\langle \cdot, \cdot \rangle$ is the inner product.

– Example in \mathbb{R}^2 with a non-standard inner product:

$$\langle u, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2.$$

Vectors (1,1) and (1,0) are orthogonal:

$$\langle (1,1), (1,0) \rangle = 1 \cdot 1 - (1 \cdot 0 + 1 \cdot 1) + 2 \cdot 1 \cdot 0 = 0.$$

- Orthogonality depends on the chosen inner product.
- Orthogonal Sets:
 - A set of vectors $\{v_1, v_2, \dots, v_k\}$ in V is orthogonal if:

$$\langle v_i, v_i \rangle = 0$$
 for all $i \neq j$.

- Example: In \mathbb{R}^3 with the dot product, the set $\{(4,3,-2),(-3,2,-3),(-5,18,17)\}$ is orthogonal:

$$(4,3,-2)\cdot(-3,2,-3) = -12+6+6=0,$$

 $(4,3,-2)\cdot(-5,18,17) = -20+54-34=0,$
 $(-3,2,-3)\cdot(-5,18,17) = 15+36-51=0.$

- Orthogonality and Linear Independence:
 - An orthogonal set of non-zero vectors is always linearly independent.
 - Proof sketch:

- * Assume $\sum_{i=1}^{k} c_i v_i = 0$.
- * Taking the inner product with v_1 , only the term $c_1\langle v_1, v_1\rangle$ remains (since $\langle v_i, v_1\rangle = 0$ for $i \neq 1$).
- $* \langle v_1, v_1 \rangle > 0 \implies c_1 = 0.$
- * Repeating for all v_i , we conclude $c_i = 0$ for all i.

• Orthogonal Basis:

- A basis $\{v_1, v_2, \dots, v_n\}$ of V is orthogonal if it is an orthogonal set.
- A basis is orthogonal if and only if it is a maximal orthogonal set.
- Example:
 - * In \mathbb{R}^3 , $\{(4,3,-2),(-3,2,-3),(-5,18,17)\}$ is an orthogonal basis since it is orthogonal and has size 3, the dimension of \mathbb{R}^3 .
 - * In \mathbb{R}^2 with the non-standard inner product:

$$\langle u, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2,$$

the set $\{(1,1),(1,0)\}$ forms an orthogonal basis.

Simplified Explanation

Orthogonal Vectors: Vectors are orthogonal if their inner product is 0. In \mathbb{R}^n , this corresponds to being at right angles.

Orthogonal Sets: A set of vectors is orthogonal if every pair in the set is orthogonal. Orthogonal sets are always linearly independent.

Orthogonal Basis: An orthogonal basis is an orthogonal set that spans the entire vector space. For example, the standard basis in \mathbb{R}^n is an orthogonal basis with the dot product.

Conclusion

In this lecture, we:

- Defined orthogonality using inner products.
- Explored the relationship between orthogonal sets and linear independence.
- Introduced orthogonal bases and provided examples in different inner product spaces.

Orthogonality simplifies the study of vector spaces, making linear independence checks and computations more efficient.