INTG - Chapter 2

Nasko Karamanov

September 14, 2023

In this RMD session ...

The question that will guide this lecture :

Question

If f_n is a family of functions, when do we have

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx?$$

In this RMD session ...

The question that will guide this lecture :

Question

If f_n is a family of functions, when do we have

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx?$$

Towards the answer:

- We recall *piecewise continuity*
- We define simple convergence of sequences of functions
- Dominated convergence theorem

Dominated convergence theorem

• So far we have studied continuous functions defined on an open, semi-open, closed, or infinite interval.

- So far we have studied continuous functions defined on an open, semi-open, closed, or infinite interval.
- Now we will study a larger family of functions by allowing some points of discontinuity. This leads to the notion of piecewise continuous function

Flashback to Video 2

Wooclap 1

Question — How can one integrate a piecewise continuous function over 1?

Question

How can one integrate a piecewise continuous function over *I*?

Réponse

Définition

Let f be piecewise continuous over I. We say that the integral $\int_I f(t) dt$ converges if $\int_{x_i}^{x_{i+1}} f(t) dt$ converges as a generalized integral on each interval $]x_i, x_{i+1}[\subset I]$ on which f is continuous.

Question

How can one integrate a piecewise continuous function over *1*?

Réponse

Définition

Let f be piecewise continuous over I. We say that the integral $\int_I f(t) dt$ converges if $\int_{x_i}^{x_{i+1}} f(t) dt$ converges as a generalized integral on each interval $]x_i, x_{i+1}[\subset I]$ on which f is continuous.

Remarque

If f is piecewise continuous on a closed interval then it has a finite number of points of discontinuity. On any interval it has a countable number of such points.

Wooclap 2

Crossover with APXF

Now we study simple(pointwise) convergence of functions. Recall :

Definition

The sequence of functions is said to converge simply (pointwisely) towards f on I if for each $x \in I$

$$\lim_{n\to+\infty}f_n(x)=f(x)$$

Wooclap 3

Dominated convergence theorem

Towards $\int \lim f_n = \lim \int f_n$

Question

If f_n is a family of piecewise continuous functions. When do we have

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx$$

Towards $\int \lim f_n = \lim \int f_n$

Question

If f_n is a family of piecewise continuous functions. When do we have

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx$$

First attempt :

It f_n is a family of piecewise continuous functions pointwisely converging to f then

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx$$

Wooclap 4

Towards
$$\int \lim f_n = \lim \int f_n$$

Deuxième tentative

It f_n is a family of piecewise continuous functions bounded pointwisely converging to f then

$$\lim \int_I f_n(x) dx = \int_I \lim f_n(x) dx = \int_I f(x) dx$$

Towards
$$\int \lim f_n = \lim \int f_n$$

Deuxième tentative

It f_n is a family of piecewise continuous functions bounded pointwisely converging to f then

$$\lim \int_{I} f_{n}(x) dx = \int_{I} \lim f_{n}(x) dx = \int_{I} f(x) dx$$
Wooclap 5

Third attempt

 \dots f_n uniformly bounded \dots

Integrable function

Définition

Let f be a piecewise continuous function on I containing possibly improper borders. We say that f is **integrable** over I if the integral $\int_{I} |f(x)| dx$ converges.

Integrable function

Définition

Let f be a piecewise continuous function on I containing possibly improper borders. We say that f is *integrable* over I if the integral $\int_{I} |f(x)| dx$ converges.

Remark

When f is contunuous on I sans with no improper borders then this is a classical Riemann integral, thus finite.

Dominated convergence theorem

Théorème

Let f_n be a sequence of piecewise continuous functions over I.

- $\lim f_n = f$ (pointwisely), f piecewise continuous
- there existe integrablle function φ piecewise continuous over/ such that

for all
$$x \in I$$
, $|f_n(x)| \le \varphi(x)^a$

Then $\int_{t}^{t} f_{n}(x) dx$ and $\int_{t}^{t} f(x) dx$ converge absolutely and

$$\lim_{n \to +\infty} \int_{I} f_n(x) dx = \int_{I} \lim_{n \to +\infty} f_n(x) d = \int_{I} f(x) dx$$

^adomination hypothesis

Wooclap 6-8

To keep in mind

- Dominated convergence theorem allows us to study limites od sequences of integrals of a family of functions
- When using it, one needs to pay attention on all hypothesis.