VIENNA UNIVERSITY OF TECHNOLOGY

184.725 High Performance Computing

TU WIEN INFORMATICS

Exercise 1

Authors: Camilo Tello Fachin 12127084

Supervisor: Prof. Dr. Jesper Larsson Träff

December 4, 2022

HPC Exercise 1

Abstract

Here documented the results of exercise 1.

Contents

1	Exercise 1 - Closed Form Expressions	1
	1.1 $\sum_{i=0}^{d} k^{i}$ for $k > 0$ (Ex1.1)	1
	1.2 $\sum_{i=1}^{d} ik^{i}$ for $k > 0$ (Ex1.4)	
	1.3 $\sum_{i=1}^{d} i2^{d-i}$ (Ex1.3)	
	1.4 $\sum_{i=1}^{d} i2^{i}$ (Ex1.2)]
2	Exercise 2 - Graph Tree's with Canonical Numbering	2
	2.1 T_k^d with $k=3$ and $d=3$	4
	2.2 B_k^d with $k=3$ and $d=4$	2
3	Exercise 3 - Planar Graph H_d	2
4	Exercise 4 - Gray Code Embedding	2
5	Exercise 5 - Inverse Gray Code	2
6	Exercise 6 -	2
7	Exercise 7 -	2

1 Exercise 1 - Closed Form Expressions

1.1 $\sum_{i=0}^{d} k^{i}$ for k > 0 (Ex1.1)

$$\sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - \sum_{i=1}^{d+1} k^{i}$$

$$\sum_{i=0}^{d} k^{i} (1 - k) = 1 - k^{d+1}$$

$$\sum_{i=0}^{d} k^{i} = \frac{k^{d+1} - 1}{k - 1}$$
(1)

1.2 $\sum_{i=1}^{d} ik^{i}$ for k > 0 (Ex1.4)

$$\sum_{i=1}^{d} ik^{i} = \sum_{i=0}^{d} ik^{i} = \sum_{i=0}^{d} k \frac{\mathrm{d}}{\mathrm{d}k} k^{i} = k \frac{\mathrm{d}}{\mathrm{d}k} \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=1}^{d} ik^{i} = k \frac{\mathrm{d}}{\mathrm{d}k} \frac{1 - k^{d+1}}{1 - k} = \frac{dk^{d+2} - (d+1)k^{d+1} + k}{(1-k)^{2}}$$
(2)

1.3 $\sum_{i=1}^{d} i 2^{d-i}$ (Ex1.3)

$$\sum_{i=1}^{d} i 2^{d-i}, \text{ use k instead of 2}$$

$$\sum_{i=1}^{d} i k^{d-i} = \sum_{i=0}^{d} dk^{d-i} - \sum_{i=0}^{d} (d-i)k^{d-i}$$

$$= d \sum_{i=0}^{d} k^{j} - \sum_{i=0}^{d} j k^{j} \text{ with } j := d-1$$

$$= \frac{d(k^{d+1} - 1)}{k - 1} - \frac{dk^{d+2} - (d+1)k^{d+1} + k}{(1 - k)^{2}} \text{ set } k \text{ back to 2}$$

$$= d2^{d+1} - d - d2^{d+2} + d2^{d+1} + 2^{d+1} - 2$$

$$\sum_{i=1}^{d} i 2^{d-i} = 2^{d+1} - 2 - d$$
(3)

1.4 $\sum_{i=1}^{d} i2^{i}$ (Ex1.2)

$$\sum_{i=1}^{d} i2^{i} = d2^{d+2} - (d+1)2^{d+1} + 2 \quad \text{with use of (2)}$$

December 4, 2022

2 Exercise 2 - Graph Tree's with Canonical Numbering

- **2.1** T_k^d with k = 3 and d = 3
- $\textbf{2.2} \quad B_k^d \text{ with } k=3 \text{ and } d=4$
- 3 Exercise 3 Planar Graph H_d
- 4 Exercise 4 Gray Code Embedding
- 5 Exercise 5 Inverse Gray Code
- 6 Exercise 6 -
- 7 Exercise 7 -