Factors influencing the bond strength of additively manufactured crown materials in dentistry - A systematic review of in vitro studies

#zotero

(i) Bibliography

1. Kagaoan Z, Liu X, Cameron A, Aarts J, Choi JJE. Factors influencing the bond strength of additively manufactured crown materials in dentistry: A systematic review of in vitro studies. *Journal of Dentistry*. 2024;144:104908. doi:10.1016/j.jdent.2024.104908

Information

Key	Value
Date	2024-05
Author	Zei Kagaoan, Xiaoyun Liu, Andrew Cameron, John Aarts, Joanne Jung Eun Choi
Tags	
Journal	#Journal-of-Dentistry
DOI	<u>10.1016/j.jdent.2024.104908</u>
Extra	
Type	journalArticle
Others	DOI.org (Crossref)
Zotero Link	<u>PDF</u>

Abstract

Annotations

Imported on 2024-08-20 20:00

/ Highlight

cleaning method, type of airborneparticle, airborne-particle abrasion pressure, crown taper, type of cement, artificial aging, and bond strength testing mechanism (p.8)

Highlight

Resin-based temporary cements performed better than zinc oxidebased temporary cements. (p.8)

/ Highlight

To evaluate the permanent cementation of additively manufactured crowns, an increased number of thermocycles is required to assess the bond strength long-term. (p.8)

Zotero-Notes

本系统评价分析了六项体外研究,探讨了不同干预对增材制造冠材料粘结强度的影响,涉及光聚合树脂和3D打印氧化锆材料。结果显示,增材制造的冠材料粘结强度较高,能与铣制材料相媲美。虽然未发现绝对优越的水门汀类型,但普遍推荐使用铝氧化物喷砂处理。文献中关于增材制造冠的粘结强度研究仍存在明显空白,需进一步研究其在永久修复中的临床适用性,以帮助牙科专业人士采用更强的粘结程序。

<u>Go to annotation</u> "Resin-based temporary cements performed better than zinc oxidebased temporary cements." (<u>Kagaoan 等, 2024, p. 8</u>)

我们课题的不足(做不到):

<u>Go to annotation</u> "To evaluate the permanent cementation of additively manufactured crowns, an increased number of thermocycles is required to assess the bond strength long-term." (<u>Kagaoan 等, 2024, p. 8</u>)

Notes

NEVER MODIFY ANYTHING BELOW