Transformer-based TTS embedded implementation

Sian-Yi Chen

Advisors: Tay-Jyi Lin and Chingwei Yeh

Outline

- Action item
 - 使用FPGA實現Transformer-based TTS的embedding system
- Status report
 - 參數量評估與FPGA板選擇
 - 架構為 x-vector + Transformer, 並各別計算參數量
 - 1. 手算
 - 2. 透過程式執行結果
 - ◆ 目前遇到困難,尚未完成
 - ◆ 原因:專案使用pytorch,而pytorch中有一函式(model.parameters())可以印出模型的參數,此函數需新增至神經網路建模處,但專案中建模的程式碼並沒有被使用,而執行的程式使用的是額外載入(import)的程式
 - ◆ 解決方案:尋找其他Transformer專案估計參數,與此版本差別為x-vector,但x-vector參數量很小應可以忽略
 - □ FPGA 老師指示使用 ZedBoard
 - 後續規劃
 - □ 先分別找 Transformer 與 x-vector 的 C code, 並確認是否可順利執行再將兩者合併
 - 1. 目前 Transformer 僅找到 C++版本
 - 2. 尚未找到 x-vector 的 C code 版本
 - ◆ 解決方案
 - ① 若找不到,考慮參考論文架構自行實作,x-vector 架構主要為多層DNN,但每層輸入增加了上下文訊息,輸入為連續的幾個frame

x-vector 參數估計

架構

- 包含多層TDNN (結構與DNN相同)
- pooling層
- embedding層
- softmax

x-vextor 參數量計算

- 輸入層
 - ◆ N=1(輸入層特徵為單個frame提取,每一層的time-delay), J=16(16個單元個數),總共15個frame
- 第一層
 - ◆ N=2 · J=8 · 總共(15-2)13個frame · 參數量8*3*16=384
- 第二層
 - ◆ N=4 · J=3 · (13-4)9個 · 參數量3*4*8=120
- 輸出層
 - ◆ N=8 · J=3 · (9-8)1個 · 參數量3*9*3=81
- 總參數量為384+120+81=585

Transformer 參數估計

Transformer 架構包含

- embedding向量
 - 論文中使用了大小為37000的詞彙表、model為512維
- Multi-heads attention
 - d_{model} = h*d,因此有幾頭並不影響維度變化
 - query與轉置的key做內積,得到512*512的attention,Q、K、V互相獨立、且總共有3塊,最後 N=6
- FeedForward
 - 全連階層公式: $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$
 - W₁與W₂大小相同,為512*(4*512)*總共2層
- (37000+512) * 512+
- 6 * (512 * 512 * 3 * 3 +
- 512 * 512 + 512 * 2048 * 2 * 2) = **60,100,608**

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}			BLEU (dev)	
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65

Transformer 參數量大小 [2]

[2] A. Vaswani, et al., "Attention is all you need." in Proc. NIPS, 2017.

Figure 1: The Transformer - model architecture