STANISLAS Exercices

Suites & Séries de fonctions Chapitre IX

PSI

2021-2022

I. Suites de fonctions

Exercice 1. (\triangle) Soit $a \in \mathbb{R}$. Étudier la convergence simple et la convergence uniforme des suites de fonctions (f_n) :

1.
$$\mathbb{R}_+ \to \mathbb{R}$$
, $x \mapsto \frac{x}{n(1+x^n)}$

2.
$$\mathbb{R}_+ \to \mathbb{R}, \ x \mapsto \frac{n^a}{n^2+1} x e^{-nx}$$

3.
$$\mathbb{R}_+ \to \mathbb{R}$$
, $x \mapsto e^{-nx} \sin(nx)$

4.
$$\mathbb{R} \to \mathbb{C}$$
. $x \mapsto e^{(1-i)nx}$

5.
$$\mathbb{R}_+ \to \mathbb{R}, x \mapsto \sin \sqrt{x + 4n^2\pi^2}$$

6.
$$\mathbb{R}_+ \to \mathbb{R}_+, x \mapsto (1 + \frac{x}{n})^n e^{-2x} \mathbb{1}_{[0,n]}$$

Exercice 2. (🗷) [CCP] Étudier les convergences simple et uniforme de la suite de fonctions (f_n) définie sur \mathbb{R} par $f_n(x) = \cos \left[\left(1 + \frac{1}{n} \right) x \right]$.

Exercice 3. [CCP] Pour tout $n \in \mathbb{N}$, soit $u_n : x \mapsto \frac{n+2}{n+1} e^{-nx^2}$.

1. Étudier la convergence simple de (u_n) sur \mathbb{R} .

2. Y-a-t-il convergence uniforme sur \mathbb{R}_+ ? sur $[a, +\infty[$ pour a > 0?

Exercice 4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I et à valeurs réelles. On suppose que (f_n) converge uniformément sur I vers une fonction f. Pour tout entier naturel n, on pose $g_n = \frac{f_n}{1+f^2}$.

1. Montrer que (g_n) converge simplement sur I.

2. Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $(1+xy) \leq (1+x^2)(1+y^2)$.

3. Montrer que (g_n) converge uniformément sur I.

Exercice 5. (V) [Centrale] Soit la suite de fonctions définie pour tout $x \in [0, 1] \text{ par}$

$$P_0(x) = 0$$

$$P_{n+1}(x) = P_n(x) + \frac{x - P_n(x)^2}{2}$$

1. Montrer que (P_n) est une suite de restrictions de polynômes dont on précisera le degré.

2. Montrer que cette suite converge simplement vers une fonction f à préciser.

3. Montrer que, pour tout x dans [0,1] et pour tout n dans \mathbb{N} ,

$$0 \leqslant f(x) - P_n(x) \leqslant 2 \frac{f(x)}{2 + nf(x)}.$$

4. Montrer que (P_n) converge uniformément vers f sur [0,1].

Exercice 6. Soient $p \in \mathbb{N}^*$ et $(P_n)_{n \in \mathbb{N}}$ une suite de polynômes de $\mathbb{C}_p[X]$. On suppose que (P_n) converge simplement sur \mathbb{R} vers une fonction f.

1. Montrer qu'il existe des polynômes $(L_i)_{0 \le i \le p}$ telle que pour tout $n \in \mathbb{N}$, $P_n = \sum_{k=1}^{p} P_n(k) L_k.$

2. En déduire que f est un polynôme de degré au plus p.

3. Montrer que (P_n) converge uniformément sur tout segment de \mathbb{R} vers f

Exercice 7. [CCP] On lance un dé à 6 faces. Les lancers sont indépendants et le dé n'est pas pipé. On note X_k la variable aléatoire égale à la valeur obtenue au kème lancer.

1. Déterminer la loi de X_k et la fonction de répartition F associée à X_k .

2. On note Z_n la valeur maximale obtenue au bout de n lancers. Déterminer la fonction de répartition F_n de Z_n en fonction de F.

3. Déterminer la limite de (F_n) lorsque n tend vers l'infini. La convergence est-elle uniforme?

4. On note Y_n la valeur minimale obtenue au bout de n lancers. Déterminer G_n , sa fonction de répartition. Étudier les convergences simple et uniforme de (G_n) .

Exercice 8. (\triangle) [CCP] Pour $n \in \mathbb{N}^*$, on définit sur [0,1] la fonction $G_n: t \mapsto \left(1 - \frac{t}{n}\right)^n e^t$.

1. Montrer que pour tout $(n,t) \in \mathbb{N}^* \times [0,1], |G'_n(t)| \leq \frac{e^t}{n}$.

2. En déduire que pour tout $(n,t) \in \mathbb{N}^* \times [0,1], |G_n(t)-1| \leqslant \frac{te^t}{n}$.

Exercices IX PSI

3. On définit, pour $n \in \mathbb{N}^*$ et $x \in [0,1]$, $I_n(x) = \int_0^x \left(1 - \frac{t}{n}\right)^n e^t dt$. Montrer que la suite de fonctions (I_n) converge simplement sur [0,1].

4. Converge-t-elle uniformément sur [0,1]?

Exercice 9. [Centrale] On note (f_n) la suite de fonctions définie pour tout réel x par $f_0(x) = \sin(x)$ et $f_{n+1}(x) = \int_0^x t f_n(t) dt$.

- **1. a)** Calculer f_1 et f_2 .
- **b)** Montrer que pour tout entier naturel n non nul, $f_{n+1}(x) = (2n + 1)f_n(x) x^2 f_{n-1}(x)$.
- **c)** Montrer qu'il existe P_n et Q_n des polynômes à coefficients entiers de degrés inférieurs à n tels que

$$f_n(x) = Q_n(x^2)\sin(x) + xP_n(x^2)\cos(x)$$

- **2. a)** Montrer que $|f_n(x)| \leq \frac{|x|^{2n}}{2^n n!}$.
- **b)** La suite (f_n) converge-t-elle simplement? uniformément sur tout segment de \mathbb{R} ?
- 3. Montrer que π^2 est irrationnel.

Exercice 10. (Approximation polynomiale de Bernstein, \heartsuit) Soit f une fonction k-lipschitzienne sur [0,1]. Le polynôme de Bernstein d'ordre n associé à f est le polynôme

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Soit $(X_n)_{n\in\mathbb{N}_n}$ une famille de variables aléatoires indépendantes de même loi de Bernoulli de moyenne x et $S_n=\sum\limits_{n=0}^{\infty}X_k$.

- **1.** Exprimer $B_n(x)$ en fonction de $f\left(\frac{S_n^{k=1}}{n}\right)$
- **2.** Soit $\varepsilon > 0$. Montrer qu'il existe $(M, \delta) \in \mathbb{R}_+^*$ tels que

$$\left| \mathbb{E}\left[f\left(\frac{S_n}{n}\right) - f(x) \right] \right| \leqslant \varepsilon \mathbb{P}\left(\left| \frac{S_n}{n} - x \right| < \delta \right) + 2M \mathbb{P}\left(\left| \frac{S_n}{n} - x \right| \geqslant \delta \right)$$

3. En déduire que (B_n) converge uniformément vers f sur [0,1].

II. Séries de fonctions

Exercice 11. [CCP] Soit $F: x \mapsto \sum_{n=0}^{+\infty} \ln(1 + e^{-nx})$.

- **1.** Donner le domaine de définition D de F.
- **2.** La fonction F est-elle continue sur D?
- **3.** Déterminer F(D).

Exercice 12. [IMT] Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}$. On pose $u_n : x \mapsto a^n \frac{\cos(nx)}{n!}$.

- 1. Étudier les convergences simple et uniforme de la série $\sum u_n$.
- 2. Déterminer la somme S de cette série de fonctions.
- **3.** Calculer, pour tout $p \in \mathbb{N}$, $\int_0^{2\pi} S(x) \cos(px) dx$ et $\int_0^{2\pi} S(x) \sin(px) dx$.

Exercice 13. (\heartsuit) On définit $F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$ et $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- **1.** Déterminer l'ensemble de définition de F.
- **2.** Trouver une relation entre F et ζ .
- **3.** Déterminer $\lim_{x\to 1} (x-1)\zeta(x)$.
- **4.** Déterminer $\lim_{x\to +\infty} F(x)$ ainsi qu'un équivalent de ζ en $+\infty$.

Exercice 14. On définit la suite de fonctions (u_n) par

$$u_0(x) = \cos(x)$$
 et $\forall n \in \mathbb{N}^*, u_n(x) = \sin(x)^n \cos(x)$

Étudier le mode de convergence et éventuellement la somme de $\sum u_n$.

Exercice 15. [Mines] Soit $f: x \mapsto \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{x}{n}\right)$.

- 1. Déterminer l'ensemble de définition D de f.
- **2.** Montrer que f est de classe \mathscr{C}^1 sur D.
- **3.** Déterminer un équivalent simple de f en $(-1)^+$.
- **4.** Exprimer f' à l'aide d'une intégrale.

Exercice 16. [Centrale] Soit $a: \mathbb{R}_+^* \to [1, +\infty[$ une fonction continue telle que $\lim_{x \to +\infty} \frac{a(x)}{\ln(x)} = +\infty$. On pose $f(t) = \sum_{n=1}^{+\infty} e^{-a(n)t}$.

Exercices IX PSI

- 1. Déterminer le domaine de définition de f.
- **2.** Trouver un équivalent de f en $+\infty$.
- **3.** Soit b > 0. On suppose que $a(x) = x^b$. Déterminer un équivalent de f en 0.

Exercice 17. [Mines] Pour tout $n \in \mathbb{N}^*$ et pour tout x réel, on pose $u_n(x) = \frac{\arctan(nx)}{n^2}$.

- 1. Déterminer l'ensemble de définition de $S = \sum_{n=1}^{+\infty} u_n$, puis étudier sa continuité.
- **2.** Déterminer un équivalent de S en 0.

III. Avec Python

Exercice 18. [Centrale] Pour tout entier naturel n, on pose $f_n(x) = \frac{x^n}{1+x+\cdots+x^n}$.

- 1. Déterminer le domaine de définition commun D des fonctions f_n et le domaine de convergence E de la suite (f_n) .
- **2.** Avec Python, tracer les courbes des f_n sur $[-5,5] \cap E$ pour $0 \le n \le 10$.
- **3.** Conjecturer le domaine de convergence uniforme de la suite (f_n) puis prouver la conjecture.
- **4.** Étudier la convergence uniforme de la série $\sum f_n$.
- **5.** Tracer la somme de la série sur l'intersection de \mathbb{R}_+ et de son domaine de convergence.

Mathématiciens

BERNSTEIN Segei Natanovich (5 mar. 1880 à Odessa-26 oct. 1968 à Moscou).