CSCI3170 Introduction to Database Systems Midterm Examination (Spring 2015)

Date : March 12, 2015

Time : 10:35 am - 12:05 pm

Time allowed: 1 hour and 30 minutes

Question	Marks
1	15
2	12
3	11
4	17
5	18
6	8
7	12
8	7
Total	

Student ID	·
Student Name	•

(Please do not turn over this page until you are told to do so)

- 1. Complete the following ER-diagram according to the following conditions: (15 marks)
 - 1. A fire station has an fsID, an address and a phoneNo.
 - 2. A fire station can be uniquely identified by its fsID.
 - 3. A staff member has an sID, a name, an age and a salary attribute.
 - 4. A staff member can be uniquely identified by its sID.
 - 5. Staff members can be classified into 2 subclasses, namely fire station officer and firefighter.
 - 6. A fire truck has an ftID and an equipment list (a string attribute).
 - 7. A fire truck can be uniquely identified by its ftID.
 - 8. A fire truck must be owned by exactly 1 fire station, and a fire station must own at least 1 fire truck.
 - 9. A staff member must be employed by exactly 1 fire station and a fire station must employ at least 1 staff member.
 - 10. A firefighter must be able to operate at least 1 fire truck and a fire truck must be operated by at least 1 firefighter as well.
 - 11. A building has an address, a name and a bID.
 - 12. A building can be uniquely identified by its bID.
 - 13. A fire extinguisher has an expireDate and an felD.
 - 14. A fire extinguisher can only be uniquely identified by using a pair of bid of a building and its felD.
 - 15. Each Installation of a fire extinguisher in its building must be inspected by a fire station officer but a fire station officer may not need to inspect any installations of any fire extinguishers.

2. Consider the relation instances and the SQL statements for creating the relations. (12 marks)

Insurance Plan

cid	account_no	plan_type	monthly_pay
1	196-8612806-539	Life	5000
1	196-4184622-310	Life	4800
2	196-1487410-443	MPF	6000
4	196-1974547-590	Life	1500
4	196-5895553-731	MPF	2400

Customer

id	name	salary
1	Rose Lee	40000
2	Fannie Chan	35000
3	Larry Wong	22000
4	Robert Leung	35000
5	Jessica Lau	22000

CREATE TABLE Customer (
id INTEGER,
name CHAR(12),
salary INTEGER,
PRIMARY KEY (id));

Determine if the following SQL statements can be executed successfully. If not, write down the reasons. You may assume that there is **no syntax error**.

a. INSERT INTO Insurance_Plan VALUES (5, '196-97263573-381818', 'health', 76400); (3 marks)

Answer

No, because the input value of "account no" is too long.

b. INSERT INTO Insurance_Plan VALUES (1, '196-8612806-539', 'Life', 7500); (3 marks) Answer

No, because a tuple with the same primary key already exists.

c. INSERT INTO Insurance_Plan VALUES (7, '196-588950-266', 'MPF', 12900); (3 marks)

Answer

No, because the input value of "cid" does not exist in the relation "Customer".

d. DELETE FROM **Customer** WHERE **salary** = 40000; (3 marks)

Answer

Yes, the SQL statement can be executed successfully.

- 3. For each of the following ER-diagram, write a relational schema with the smallest number of tables which are in BCNF (proof is not required). If necessary, state your assumptions to avoid ambiguity. (11 marks)
 - a. Diagram 1 (3 marks)

Answer

Professor (<u>staffID</u>, name, department) Student (<u>studentID</u>, name, major) Supervise (<u>staffID</u>, <u>studentID</u>)

b. Diagram 2 (4 marks)

Answer

Farmer (farmer id, name, address, phone_no)

Fruit(<u>fruit_id</u>, type, weight, size, farmer_id)

FoodProcessingPlant(plant id, name, address, phone no)

Process(plant id, fruit id, date)

c. <u>Diagram 3</u> (4 marks)

Answer

Tester (<u>testerID</u>, name, salary)
Programmer (<u>programmerID</u>, name, salary)
Software (<u>softwareID</u>, title, version)
Test (<u>softwareID</u>, programmerID, testerID)

4. Suppose we have the following schema: (17 marks)

```
Teacher = {tid, tname, title, dept}
Student = {sid, sname, dept, year, gpa}
Course = {cid, cname, tid}
Enroll = {sid, cid, marks}
```

The primary key in each relation is underlined. Please use **relational algebra** to:

a. Find the name of courses which are taught by "MH Wong". (3 marks)

Answer

```
\Pi_{cname}\left(Course \bowtie \sigma_{tname='MHWong'}(Teacher)\right)
```

b. Find the Student ID of year 3 students who have never enrolled the course named "Final Project". (4 marks)

<u>Answer</u>

$$\Pi_{sid}\left(\sigma_{year=3}(Student)\right) - \Pi_{sid}\left(Enroll \bowtie \sigma_{cname='Final\ Project'}(Course)\right)$$

c. Find the Student ID of the student(s) with the highest GPA from those who are in CSE department and enrolled in the course "Advanced Topics in AI". (5 marks)

Answer

```
\rho\left(S1, \sigma_{dept='CSE'}(Student) \bowtie Enroll \bowtie \sigma_{cname='Advanced\ Topics\ in\ AI'}(Course)\right)
\rho(S2, S1)
\Pi_{S1.sid}(S1) - \Pi_{S1.sid}\left(S1 \bowtie_{S1.gpa>S2.gpa} S2\right)
```

d. Find the Student ID of the student(s) who have taken all courses taught by the teachers from EE department. (5 marks)

Answer

```
\Pi_{sid,cid}(Enroll)/\Pi_{cid}\left(Course \bowtie \sigma_{dept='EE'}(Teacher)\right)
```

5. Consider the following schemas for a CD-shop: (18 marks)

```
Customer = {cid, name, age, sex}

CD = {cdid, title, language, singer, category, price}

Purchase = {cid, cdid, date}
```

The Purchase relation stores the purchase records of CDs. The primary key in each schema is underlined. Write down the **SQL statements** to:

a. Find the name(s) of customer(s) whose have bought CD(s) with a title called "Thriller". (4 marks)

Answer

```
SELECT C.name
FROM Customer C, Purchase P, CD D
WHERE C.cid = P.cid AND D.cdid = P.cdid AND D.title = 'Thriller';
```

b. Find cid(s), name(s) and the total price of CD(s) purchased by each customer. (4 marks)

Answer

```
SELECT C.cid, C.name, SUM(D.price)
FROM Customer C, CD D, Purchase P
WHERE C.cid = P.cid AND D.cdid = P.cdid
GROUP BY C.cid, C.name;
```

c. Find the title and price of the CD(s) that are bought by the oldest female customer(s). (5 marks)

<u>Answer</u>

d. Find the name(s) of customer(s) who have never bought CD(s) with price ranging from 100 to 200 inclusively. (5 marks)

Answer

```
SELECT C.name

FROM Customer C

WHERE C.cid NOT IN (

SELECT P.cid

FROM Purchase P, CD D

WHERE P.cdid = D.cdid AND D.price <= 200 AND D.price >= 100);
```

- 6. Prove the following properties by using **Armstrong's Axiom ONLY**. In your answers, you have to **clearly state the rules applied**. No mark will be given if the properties are proved by finding out the closure of any attribute. (8 marks)
 - a. If $M \to NO$ and $M \to P$, then $M \to NP$. (4 marks)

```
Answer

M \rightarrow NO \cdots (1) (Given)

M \rightarrow P \cdots (2) (Given)

NO \rightarrow N \cdots (3) (Reflexivity)

M \rightarrow N \cdots (4) (Transitivity on (1) and (3))

MP \rightarrow NP \cdots (5) (Augmentation on (4))

MM \rightarrow MP \cdots (6) (Augmentation on (2))

M \rightarrow MP \cdots (7) (Simplify (6))
```

b. If $X \to YZ$ and $Y \to P$, then $X \to P$. (4 marks)

 $M \rightarrow NP \cdots (8)$ (Transitivity on (5) and (7))

```
Answer
```

```
X \rightarrow YZ \cdots (1) (Given)

Y \rightarrow P \cdots (2) (Given)

YZ \rightarrow PZ \cdots (3) (Augmentation on (2))

X \rightarrow PZ \cdots (4) (Transitivity on (1) and (3))

PZ \rightarrow Z \cdots (5) (Reflexivity)

X \rightarrow P \cdots (6) (Transitivity on (4) and (5))
```

- 7. Consider a relation R with five attributes MNOPQ. You are given the following dependencies: $F=\{P \rightarrow O, O \rightarrow Q, MN \rightarrow O, PQ \rightarrow N\}$. (12 marks)
 - a. Please find (MN)⁺ (2 marks)

<u>Answer</u>

MNOQ

b. Please find (MNP)⁺ (2 marks)

Answer

MNOPQ

c. Please find (MNPQ)⁺ (2 marks)

<u>Answer</u>

MNOPQ

d. Is MNPQ a superkey for R? Please explain your answer. (3 marks)

Answer

Yes. It is because MNPQ \rightarrow R.

e. Is MNPQ a candidate key for R? Please explain your answer. (3 marks)

Answer

No. It is because MNP \rightarrow R, where MNP is a subset of MNPQ. Hence, MNPQ does not satisfy the minimal requirement.

8. Consider the following relation schema of the database that stores the information of the teaching staff in a university (7 marks):

TeachingStaff (name, gender, courseList, educationLevel, experience, ranking)

Assumption:

- i. name → gender
- ii. {experience, ranking} → salary
- iii. salary → ranking

The 2 candidate keys of this schema are:

- i. {name, courseList, educationLevel, experience, ranking}
- ii. {name, courseList, educationLevel, experience, salary}
- a. Is the schema in BCNF? Please formally proof your answer. (3 marks)

Answer

No.

name → gender is not trivial name is not a superkey

OR

{experience, ranking} → salary is not trivial {experience, ranking} is not a superkey OR

```
salary → ranking is not trivial salary is not a superkey
```

b. Is the schema in 3rd normal form? Please formally proof your answer. (4 marks)

Answer

No. Consider name → gender name → gender is not trivial name is not a superkey gender is not part of some key

- End -