Iniziato mercoledì, 28 giugno 2023, 09:32

Stato Completato

Terminato mercoledì, 28 giugno 2023, 10:13

Tempo impiegato 40 min. 35 secondi

Punteggio 19,00/23,00

Valutazione 8,26 su un massimo di 10,00 (83%)

Domanda 1

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Data la funzione $f(x_1,x_2)=x_1e^{x_2}$

Scegli un'alternativa:

- \bigcirc a. $rac{\partial^2 f}{\partial x_1 \partial x_2} = e^{x_2}$.
- $igodesign{array}{ccc} igodesign{array}{ccc} igodesign{array}{ccc} igodesign{array}{ccc} \partial^2 f \ \partial x_2^2 \ = x_1 e^{x_2}. \end{array}$
- \bigcirc C. $rac{\partial^2 f}{\partial x_1 \partial x_2} = x_1 x_2 e^{x_2}.$

La risposta corretta è: $rac{\partial^2 f}{\partial x_1 \partial x_2} = e^{x_2}.$

Domanda 2

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Una macchina automatica produce 43 pezzi in mezz'ora. Qual è la probabilità che produca 86 pezzi in un'ora?

Scegli un'alternativa:

- a. 0.084
- b. 0.042
- o. 0.024

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Considerato il dataset (x_i,y_i) per $i=1,\ldots,N$ con $x_i
eq x_j$ e con $Y_i \sim \mathcal{N}(0,\sigma)$ quale delle seguenti affermazioni è vera?

Scegli un'alternativa:

- a. la retta di <u>regressione lineare</u> esiste ma non è unica.
- b. esiste una sola retta di <u>regressione lineare</u>.
- o. non sempre esiste la retta di <u>regressione lineare</u>.

La risposta corretta è: esiste una sola retta di regressione lineare.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Assegnati i seguenti dati: $x_i=2i$ per $i=1,\ldots,8$ la mediana è

Scegli un'alternativa:

- a. 8,5.
- O b. 8.
- oc. nessuna delle precedenti.

La risposta corretta è: nessuna delle precedenti.

Quale delle seguenti statistiche è ordinata (richiede l'ordinamento dei valori)?

Scegli un'alternativa:

- a. varianza.
- b. mediana.
- oc. deviazione standard

La risposta corretta è: mediana.

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Dati X_1,\ldots,X_N $\mathrm{SRS}(N)$ da una distribuzione Poisson con media e varianza λ allora la variabile aleatoria \bar{X} ha distribuzione per $n\to\infty$:

Scegli un'alternativa:

- a. Nessuna delle precedenti.
- \odot b. $\mathcal{N}(\lambda, \frac{\lambda}{\sqrt{n}})$.
- \bigcirc c. $\mathcal{N}(0,\lambda)$.

La risposta corretta è: $\mathcal{N}(\lambda, \frac{\lambda}{\sqrt{n}})$.

Si consideri come esperimento il lancio di tre monete. L'evento ${\cal A}$ in cui esce almeno una testa ha cardinalità

Scegli un'alternativa:

- a. #(A)=6.
- b. nessuna delle precedenti.
- C. #(A)=9

La risposta corretta è: nessuna delle precedenti.

Domanda **8**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il coefficiente di correlazione tra due variabili aleatorie ha valori in:

Scegli un'alternativa:

- \bigcirc a. in $[0, +\infty]$.
- \bigcirc c. in [0,1].

La risposta corretta è: in [-1,1]..

Domanda 9	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	
Il quantile di ordine p è:	
Scegli un'alternativa:	
a. una misura del centro dei dati.	
■ b. una misura di dispersione dei dati.	
c. una misura di simmetria dei dati.	
La risposta corretta è: una misura di dispersione dei dati.	
Domanda 10	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	

La media e la varianza di una <u>distribuzione normale</u> standard valgono rispettivamente:

Scegli un'alternativa:

- $\bigcirc \ \text{a.} \ 1,1.$
- b. nessuna delle precedenti.
- \circ c. 0, 0.

La risposta corretta è: nessuna delle precedenti.

Risposta non data

Punteggio max.: 1,00

Quale delle seguenti affermazioni riguardo il p-value è corretta?

Scegli un'alternativa:

- igcup a. se $p\circ 1$ l'ipotesi nulla è vera.
- Ob. nessuna delle precedenti
- igcup c. se $p\circ 1$ l'ipotesi nulla è falsa.

La risposta corretta è: nessuna delle precedenti

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data la funzione $f(x_1,x_2)=x_1^3+4x_2^2$:

Scegli un'alternativa:

- \bigcirc a. il punto (-1,4) è un punto stazionario.
- \bigcirc b. il punto (1,-4) è un punto stazionario.
- c. il punto (0,0) è un punto stazionario.

La risposta corretta è: il punto $\left(0,0\right)$ è un punto stazionario.

Domanda 13
Risposta corretta
Punteggio ottenuto 1,00 su 1,00

Calcolare la probabilità che una variabile aleatoria X avente PDF $f_X(x)=2x$ stia in [1,1.2]

Scegli un'alternativa:

- a. 0.440
- o b. 0.340
- o. 0.004

La risposta corretta è: 0.440

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il 75 dei cani in un allevamento è nero. Considerando 15 nuove nascite qual è la probabilità che 7 cani non siano neri?

Scegli un'alternativa:

- a. 0.039
- o b. 0.013
- c. 0.027

La risposta corretta è: 0.039

Sia
$$f(x_1,x_2)=3x_1^2+x_2^2$$
 allora:

Scegli un'alternativa:

- \bigcirc a. (1,1) è una direzione di discesa in (1,1).
- b. (-6,-2) è una direzione di discesa in (1,1).
- \bigcirc c. (6,2) è una direzione di discesa in (1,1).

La risposta corretta è: (-6,-2) è una direzione di discesa in (1,1).

Domanda 16

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data la funzione $f(x_1,x_2)=e^{x_1}-x_2+x_1x_2$ quale delle seguenti affermazioni è vera?

Scegli un'alternativa:

- igotimes a. $rac{\partial f}{\partial x_1}=e^{x_1}+x_2.$
- \bigcirc b. $rac{\partial f}{\partial x_1}=e^{x_1}-x_2.$
- oc. nessuna delle precedenti.

La risposta corretta è: $rac{\partial f}{\partial x_1}=e^{x_1}+x_2.$

Domanda 17
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
Se il coefficiente di correlazione tra due variabili aleatorie X e Y ha valore 0.92 si può affermare che:
Scegli un'alternativa:
\bigcirc a. X e Y non sono correlate.
\odot b. Y ha andamento opposto ad X .
lacktriangledown c. X e Y hanno lo stesso andamento.
La risposta corretta è: X e Y hanno lo stesso andamento.
Domanda 18
Risposta corretta
Punteggio ottenuto 1,00 su 1,00
I residui della <u>regressione lineare</u> devono avere distribuzione:

Scegli un'alternativa:

- O a. normale con media uguale alla media dei valori.
- \bigcirc b. normale con media uguale ad uno.
- oc. nessuna delle precedenti.

La risposta corretta è: nessuna delle precedenti.

Domanda 19
Risposta corretta
Punteggio ottenuto 1,00 su 1,00

Dati X_1,\ldots,X_N $\mathrm{SRS}(N)$ da una distribuzione $\mathcal{N}(\mu,\sigma)$, facendo variare solo σ , l'intervallo di confidenza di \bar{X}

Scegli un'alternativa:

- \bigcirc a. non dipende da σ .
- b. diminuisce al diminuire di σ .
- \odot c. diminuisce all'aumentare di σ .

La risposta corretta è: diminuisce al diminuire di σ .

Domanda 20

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Un insieme di dati:

Scegli un'alternativa:

- a. può non avere outliers.
- O b. ha sempre almeno un outlier.
- oc. ha sempre più di un outlier.

La risposta corretta è: può non avere outliers.

Domanda 21

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile. Quale affermazione è corretta?

Scegli un'alternativa:

- igcup a. x^* punto di minimo locale $\Rightarrow
 abla f(x^*) = 0$.
- igcup b. $abla f(x^*) = 0 \Rightarrow x^*$ punto di minimo locale.
- ${\color{red} lackbox{}}$ c. x^* punto di minimo globale $\Rightarrow
 abla f(x^*) = 0.$

La risposta corretta è: x^* punto di minimo locale $\Rightarrow
abla f(x^*) = 0$.

Domanda 22

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Calcolare la media della distribuzione continua con PDF $f_X(x) = -rac{2}{x}$ per 1 < x < 2

Scegli un'alternativa:

- a. -2.
- b. -1.
- O c. 2.

La risposta corretta è: -2.

×

Domanda 23

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia $f:\mathbb{R}^n ightarrow \mathbb{R}$ differenziabile. Quale affermazione è corretta?

Scegli un'alternativa:

- igcup b. $abla f(x^*) = 0 \Leftrightarrow x^*$ punto di minimo globale.
- ${\color{red} ullet}$ c. ${\color{gray}
 abla} f(x^*) = 0 \Rightarrow x^*$ punto di minimo globale.

La risposta corretta è: x^* punto di minimo globale $\Rightarrow
abla f(x^*) = 0$.

■ Esercitazione 9 Maggio

Vai a...

×