Optimization Methods (CS1.404), Spring 2024 Lecture 14

Naresh Manwani

Machine Learning Lab, IIIT-H

March 4th, 2024

Basic Conjugate Direction Algorithm

Given starting point \mathbf{x}_0 and H conjugate directions $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1} \in \mathbb{R}^n$, the Conjugate Direction Algorithm works as follows:

- For (k = 0, 1, ..., n 1)
 - $\nabla f(\mathbf{x}_k) = H\mathbf{x}_k + \mathbf{c}$
 - $\alpha_k = -\frac{\nabla f(\mathbf{x}_k)^T \mathbf{d}_k}{\mathbf{d}_k^T H \mathbf{d}_k}$
 - $\bullet \ \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$

Theorem

Consider minimization problem $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2}\mathbf{x}^T H \mathbf{x} + \mathbf{c}^T \mathbf{x}$, where H is symmetric positive definite matrix. For any starting point \mathbf{x}_0 and H conjugate directions $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1} \in \mathbb{R}^n$, the **Basic Conjugate Direction Algorithm** converges to the unique \mathbf{x}^* (that solves $H\mathbf{x}^* + \mathbf{c} = \mathbf{0}$) in n-steps; that is $\mathbf{x}_n = \mathbf{x}^*$.

Basic Conjugate Algorithm: Example

•
$$f(x_1, x_2) = 4x_1^2 + x_2^2 - 2x_1x_2$$

• Step 1:
$$\mathbf{d}_0 = (1,0)^T$$
, $\mathbf{x}_0 = (-1,-1)^T$

• Find $x_1 = x_0 + \alpha_0 \mathbf{d}_0$ where $\alpha_0 = \arg\min_{\alpha>0} f(\mathbf{x}_0 + \alpha \mathbf{d}_0)$

• Let
$$\phi(\alpha) = f(\mathbf{x}_0 + \alpha \mathbf{d}_0) = f(-1 + \alpha, -1) = 4(\alpha - 1)^2 + 1 + 2(\alpha - 1)$$

- $\phi'(\alpha) = 0 \Rightarrow 8(\alpha 1) + 2 = 0 \Rightarrow \alpha_0 = \frac{3}{4}$
- $\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 \mathbf{d}_0 = (-1, -1)^T + \frac{3}{4}(1, 0)^T = (-\frac{1}{4}, -1)^T$.
- **Step 2:** Choosing $\mathbf{d}_1 = (1,4)^T$, as it becomes *H*-conjugate for \mathbf{d}_0 .
 - Find $x_2 = x_1 + \alpha_1 \mathbf{d}_1$ where $\alpha_1 = \arg\min_{\alpha > 0} f(\mathbf{x}_1 + \alpha \mathbf{d}_1)$
 - Let $\phi(\alpha) = f(\mathbf{x}_1 + \alpha \mathbf{d}_1) = f(-\frac{1}{4} + \alpha, -1 + 4\alpha) = 4(\alpha \frac{1}{4})^2 + (4\alpha 1)^2 2(\alpha \frac{1}{4})(4\alpha 1) = \frac{3}{4}(4\alpha 1)^2$
 - $\bullet \ \phi'(\alpha) = 0 \Rightarrow \alpha_1 = \frac{1}{4}$
 - $\mathbf{x}_2 = \mathbf{x}_1 + \alpha_1 \mathbf{d}_1 = (-\frac{1}{4}, -1)^T + \frac{1}{4}(1, 4)^T = (0, 0)^T$.
- Because f is quadratic function in two variables, $\mathbf{x}_2 = \mathbf{x}^*$.

March 4th. 2024

Expanding Subspace Theorem

Theorem

Let $\mathbf{g}_k = \nabla f(\mathbf{x}_k)$. In the Conjugate Direction algorithm,

- $\mathbf{g}_{k+1}^T \mathbf{d}_i = 0$ for all $k, 0 \le k \le n-1$, and $0 \le i \le k$.
- $\mathbf{x}_{k+1} = \arg\min \ f(\mathbf{x}) \text{ s.t. } \mathbf{x} \in \mathbf{x}_0 + \mathcal{B}_k.$
- ullet Let \mathcal{B}_k be the subspace spanned by $\mathbf{d}_0,\mathbf{d}_1,\ldots,\mathbf{d}_k$
- By this lemma, \mathbf{g}_{k+1} is orthogonal to any vector from the subspace spanned \mathcal{B}_k .

Figure: Illustration of Lemma

The Conjugate Gradient Algorithm

- Conjugate direction method uses pre-specified directions.
- Conjugate gradient algorithm does not use pre-specified directions.
- At each stage, the conjugate gradient algorithm, the direction is calculated as a linear combination of the previous direction and the current gradient in such a way that all the directions are mutually H-conjugate.

The Conjugate Gradient Algorithm

- Consider the quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T H \mathbf{x} + \mathbf{c}^T \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and H is a symmetric positive definite $n \times n$ matrix.
- At \mathbf{x}_0 , we choose \mathbf{d}_0 as the steepest descent direction. I.e., $\mathbf{d}_0 = -\nabla f(\mathbf{x}_0) = -\mathbf{g}_0$.
- Thus, $\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 \mathbf{d}_0$, where $\alpha_0 = \arg\min_{\alpha \geq 0} f(\mathbf{x}_0 + \alpha \mathbf{d}_0) = -\frac{\mathbf{g}_0^T \mathbf{d}_0}{\mathbf{d}_0 H \mathbf{d}_0}$.
- Next, we search direction \mathbf{d}_1 that is H conjugate of \mathbf{d}_0
- We choose \mathbf{d}_1 as linear combination of \mathbf{d}_0 and \mathbf{g}_1 .
- In general, at the step (k+1), we choose \mathbf{d}_{k+1} as linear combination of \mathbf{d}_k and \mathbf{g}_{k+1} .
- Specifically, we choose $\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{d}_k, \ k = 0, 1, 2, \dots$
- The coefficients β_k , $k=0,1,2,\ldots$, are chosen such that \mathbf{d}_{k+1} is H-conjugate to $\mathbf{d}_0,\mathbf{d}_1,\ldots,\mathbf{d}_k$.
- This is accomplished by choosing $\beta_k = \frac{\mathbf{g}_{k+1}^T H \mathbf{d}_k}{\mathbf{d}_k^T H \mathbf{d}_k}$.

Naresh Manwani OM March 4th, 2024 6

The Conjugate Gradient Algorithm

For quadratic function, $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T H \mathbf{x} + \mathbf{c}^T \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and H is a symmetric positive definite $n \times n$ matrix.

The Conjugate Gradient Algorithm

- Initialize: x_0 , $\epsilon > 0$, $d_0 = -g_0$, k = 0
- While $(\|\mathbf{g}_k\| > \epsilon)$
 - Choose $\alpha_k = \arg\min_{\alpha > 0} f(\mathbf{x}_k + \alpha \mathbf{d}_k) = -\frac{\mathbf{g}_k^l \mathbf{d}_k}{\mathbf{d}_k \mathbf{d}_k}$
 - $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$
 - $\mathbf{g}_{k+1} = \nabla f(\mathbf{x}_{k+1}) = H\mathbf{x}_{k+1} + \mathbf{c}$
 - $\beta_k = \frac{\mathbf{g}_{k+1}^T H \mathbf{d}_k}{\mathbf{d}_k^T H \mathbf{d}_k}$
 - $\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{d}_k$
 - k = k + 1
- Output: $\mathbf{x}^* = \mathbf{x}_k$, global minimum of $f(\mathbf{x})$.

Naresh Manwani OM March 4th. 2024

Conjugate Gradient Algorithm: Conjugate Property of Directions Generated

Proposition

In the conjugate gradient algorithm, the directions $\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}$ are H-conjugate.

