Circuit Laboratory 2 by Ho-jin Song

Student Number	20210207	Student Name	이지현

Report Due: 4/5 Wed

1. 실험 목표

- weighted summer 의 역할을 이해하고, 직접 구현해 본다.
- 구현된 LPF, HPF, weighted summer 를 가지고 간단한 equalizer 를 만들어 직접 audio 소리를 입력하고 들으며 그 차이를 확인한다.

2. 실험 관련 이론

Weighted Summer

[Fig 1] weighted summer

Weighted summer 는 negative input 에 여러 개의 input V_1 , V_2 ,..., V_n 이 각각 R_1 , R_2 ..., R_n 에 을통해 들어간다. 각각의 input 에 흐르는 전류는

$$i_1 = \frac{V_1}{R_1},$$
 $i_2 = \frac{V_2}{R_2},$..., $i_n = \frac{V_n}{R_n},$

로 주어진다.

 R_f 로 흐르는 전류 $I_t = i_1 + i_2 + ... + i_n$ 이고, 따라서 $V_o = -I_t R_f$ 가 된다. 각각의 전류 값을 대입하면,

$$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \dots + \frac{R_f}{R_3}V_n\right)$$

으로 각각 input 의 합이 되는 것을 알 수 있다.

3. 사용 기기 및 준비물

- Oscilloscope, Power supply, Function generator, Breadboard, Multimeter, Electric wire
- Op-amp(uA741C) 3ea

[Fig 2] Op-amp pin configurations

• Resistor: 10kΩ 5ea, 10kΩ 가변저항 2ea

[Fig 3] variable resistor

가변저항은 2 번 핀을 이동시켜 1 번과 3 번 사이의 저항 값을 변화시키는 저항이다. $10k\Omega$ 가변저항은 최대 $10k\Omega$, 최소 0Ω 의 범위를 가진다.

- Capacitor: 10nF 2ea, 100uF 2ea
- 3.5Φ Aux-Aux cable, 3.5Φ Aux connector, Speaker, PC with 3.5Φ Aux

[Fig. 4] 3.5Ф Aux connector pin configuration, breadboard example 세번째 사진과 같이, 가운데 pin 에 GND, L 혹은 R pin 에 회로의 input 연결

4. 실험 과정 및 결과

주의!

실험 시 power supply 의 양과 음의 출력 전압의 크기를 각각 +15V, -15V 가 되게 하여야한다. 이 전압은 op-amp 의 공급 전원으로 사용된다. 그리고, 모든 실험에서 실험 회로를 변경할 때에는 sudden spark 등의 위험을 사전에 방지하기 위해 항상 power supply 의 전원을 먼저 끄고 변경해야 한다. 실제 실험에서 이 주의사항을 따르지 않는 것을 발견 시보고서에서 감점 처리를 할 것이다.

[Fig. 5] LPF 와 HPF 를 포함한 Equalizer 전체 회로

- 1. LPF, HPF, weighted summer 의 동작을 수식적으로 이해한다.
 - (1) LPF 와 HPF 의 전달함수 식을 적는다. $(R_1, R_2, R_3, R_4, C_1, C_2$ 를 이용해서)

$$\frac{V_L}{V_{in}} = -\frac{R_3}{R_4} \frac{1}{jwCR_3 + 1}$$

$$\frac{V_H}{V_{in}} = -\frac{R_1}{R_2} \frac{jw}{(jw + \frac{1}{R_2C})}$$

(2) LPF 와 HPF 의 전달함수의 Amplitude(Gain)[dB]-Frequency[log] 그래프를 그린다.

(3) LPF 와 HPF 의 전달함수의 Phase[°]-Frequency[log] 그래프를 그린다.

- (4) 마지막 summer amplifier의 input 은 V_L 와 V_H 이다.
 - 이 때 V_{out} 을 두개의 input 에 대한 식으로 표현한다. $(R_L,\ R_H,\ R_5$ 을 이용해서)

$$V_{out} = -(\frac{R_5}{R_L}V_L + \frac{R_5}{R_H}V_H)$$

2. 위 (4)식에서 V_L 과 V_H 의 계수의 크기를 각각 weighting factor w_L , w_H 라고 한다. LPF 와 HPF 의 w_L , w_H 가 1 혹은 10 으로 되기 위한 R_L 과 R_H 값을 각각 계산한다.

	(a)	(b)	(c)
	$w_L = 10, \ w_H = 1$	$w_L = 1, \ w_H = 10$	$w_L = 10, \ w_H = 10$
R_L , R_H	$R_L = \frac{R_5}{10} = 1k$ $R_H = R_5 = 10k$	$R_L = R_5 = 10k$ $R_H = \frac{R_5}{10} = 1k$	$R_L = \frac{R_5}{10} = 1k$ $R_H = \frac{R_5}{10} = 1k$
	11.H 115 10h	10	10

- **3.** C=10nF, R=10kΩ, 가변저항으로 위 Fig.4 전체 회로를 breadboard 에 구성한다. (C1=C2=C, R1=R2=R3=R4=R5=R)
 - ※ 전선을 길이에 맞게 잘라 사용해 회로도를 깔끔하게 구성
 - ※ 전체 회로가 구성된 breadboard 사진을 첨부

- 4. Function generator 를 통해 input 에 peak to peak 500mV 의 sine wave 를 넣어준다. 가변저항 값을 위의 2 번에서 계산한 R_L , R_H 값으로 설정하고, Vin 과 Vout 을 측정한다.
 - (1) LPF 와 HPF 의 $f_{\it c}$ 이론값 계산

$$f_{C} = ___1600___$$
 Hz (유효 숫자 2 개로 반올림하여 표현)

- (2) 계산한 f_c 에 대해, $\mathbf{0.01} f_c$, $\mathbf{0.1} f_c$, f_c , $\mathbf{10} f_c$, $\mathbf{20} f_c$ 에서의 Vin & Vout 측정
 - \times Only for case (a) w_L =10, w_H =1

 - Measure the peak-to-peak voltage
 - ※ Show 3 cycles

Vin = 5V

Vout = 4.70V

Vin = 5V

Vout = 3.05V

Vin = 5V

Vout = 560mV

- 5. 모든 case 에 대해서 Vin & Vout 을 측정하여 Gain-Frequency 그래프를 그린다.
 - ※ gain 값을 명시할 것
 - ※ frequency 는 log scale

6. 위의 Gain-Frequency 그래프에서 이론 값과 비교하여 다른 것이 있다면, (1) 어떻게 다른지, (2) 왜 다른지 분석하시오. (분량 자유)

(1) 어떻게 다른지

RL RH을 조정함으로써 LPF HPF 이 차지하는 비중 WL WH를 조정할 수 있다. (a)는 LPF 의 영향을 10 배 더 크게 받고, (b)는 HPF 의 영향을 10 배 더 크게 받고 (c)는 동일하게 영향을 받는다는 것을 알 수 있다. 따라서 이론적으로 (a)는 LPF 와 유사한 그래프, (b)는 HPF 와 유사한 그래프, (c)는 두 그래프의 상쇄로 인한 직선형 그래프가 나와야한다.

전체적으로 유사한 결과 그래프들이 도출되었음을 확인할 수 있고, 실험적 오차를 제외하고 눈에 띄는 다른점은 (b)와 (c)의 high frequency 에서 감소한다는 점인데 이는 다음과 같은 이유로 설명할 수 있다.

(2) 왜 다른지

앞선 5 주차 실험에서도 분석했듯이 HPF 실험에서 높은 주파수에서도 OP Amp의 Slew Rate 제약 때문에 output 이 input을 따라가지 못해 HPF에서도 cut off가 발생한다. (Slew Rate 란 OP amp의 동작 속도를 나타내는 파라미터로, 출력전압이 규정한 단위 시간당 변화 가능한 비율을 나타낸다.) 그렇기에 HPF비중이 큰 (b) 실험에서 HPF 그래프 양상을 띠면서도 높은 주파수에서 살짝내려가는 모습을 관측할 수 있다. 마찬가지로 LPF와 HPF가 반씩 비중을 차지하고 있는 (c)에서 이상적인 두 그래프를 더한다면 직선이 될테지만 높은 주파수에서 살짝 감소하는 이유도 설명할 수 있다.

이외에 발견할 수 있는 약간의 실험적 오차들은 브레드보드 회로의 자체적 저항에 의해 실제 fc와는 차이가 생겼고, 이에 따른 gain 측정 구간에 오차가 생겼을 것이다. 이외에 발생하는 여러 손실과 노이즈에 의해 오차가 발생하는 것으로 보인다.

7. [For fun]

Vout 을 스피커에 연결하고(두 전선을 각각 Vout, GND 에 연결), **(NO oscilloscope)**, frequency 를 바꾸며 소리를 들어본다.

바꿀 frequency 범위: 0Hz ~ 20kHz

사람과 여러 동물들이 들을 수 있는 소리의 진동수 범위

[Fig 6] 가청주파수

8. 만든 회로의 **input 에 Aux connector** 를 연결하고, **cable 로 pc 와 연결**한다. 원하는 노래를 실행한다.

가변저항 R_L , R_H 을 바꾸며 노래가 어떻게 변하는지 확인한다. 간단한 설명과 함께 노래 재생을 조교에게 확인받는다.