착시 현상을 이용한 이미지 CAPTCHA 프레임워크 제시

목차 Table of contents

1 서론

5 실험 결과

2 이론적 배경

6 결론

3 연구 방법

4 실험 설정

Part 1 서론

연구배경

여론조작 도마 오른 '매크로'…서버장애 없으면 처벌도 어려워

입력 2023-10-05 15:48:46 수정 2023.10.05 15:48:46 이승령 기자

매크로로 마스크 싹쓸이, 한쪽에선 죽음의 배송

_ 용 이정호 기자 │ ② 입력 2020.03.18 08:01 │ ② 수정 2020.03.18 08:29 │ 🗐 댓글 4

홈 > 사회 >

[대한민국은 매크로와 전쟁중] '매크로 악용' 처벌 힘들어...기업이 직접 계정 적발해 제재

입력 2018-12-18 17:13:36 수정 2018.12.18 20:39:45 이지윤기자

→ 자동화 프로그램의 등장으로 인한 막대한 피해 발생

연구배경

웹상의자동화프로그램을차단하기위한 다양한CAPTCHA테스트의개발

연구배경

CaptchaAl

성능이뛰어난 Vision Al 및 Multimodal Al의 발전 &이를 이용한 CAPTCHA 피훼서비스의 개발

→ 기존 CAPTCHA 서비스의 효과 상실

Part 2 이론적 배경

Stable Diffusion

ControlNet

다양한종류의레퍼런스이미지사용가능

→ 착시 현상 유발하는 ControlNet 모델 사용

Part 3 연구 방법

Part 3 착시 현상 이미지 생성 방법

QR Monster Control Net

Illusion Diffusion

레퍼런스이미지및텍스트프롬프트생성방법

→ 단색클립아트형식의이미지를사용해 Stable Diffusion 모델 Fine-Tuning 진행

텍스트 프롬프트생성

"Generate a random sentence describing a scenery containing several of the following elements:

- Background Scene
- Objects in the scene (people, trees, etc)
- Time period
- Weather
- Overall structure"

레퍼런스 이미지의 주제

"Suggest a random object that doesn't have a complicated outline. (ex. Panda, Tree, House, etc) Only output the object without any explanation.

(Repeat 10 times)"

gpt-3-turbo의 API를 사용하여텍스트생성

Part 3 생성이미지검증

VQAv2.0데이터셋으로학습된 ViLT-B/32 모델사용

캡차챌린지구성및성능평가

Which of the following can be seen in the image?

- Apple
- Panda
- O Key
- O Hat
- O Car

None

착시캡차챌린지의 구성

$$\textbf{F_{1} Score} = 2 \cdot \frac{1}{\frac{1}{recall} + \frac{1}{precision}} = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Recall =
$$\frac{TP}{TP+FN}$$
 Precision = $\frac{TP}{TP+FP}$

		Predicted	
		Negative (N) -	Positive (P) +
Actual	Negative -	True Negative (TN)	False Positive (FP) Type I Error
	Positive +	False Negative (FN) Type II Error	True Positive (TP)

AI의착시캡차피훼성능평가

Part 4 실험설정

Illusion Diffusion 파라미터 설정

Negative Prompt

worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, jpeg artifacts, signature, username, error, monochrome, horror, mutation, disgusting

Stable Diffusion, ControlNet 파라미터

- Realistic_Vision_V5.1_noVAE
- 이미지 크기 512*512
- Guidance, Conditioning scale: 7.5, 1

실험 데이터

- 50개의 착시 캡차 챌린지 데이터
- 제외된 데이터 없음

실험 평가

- ChatGPT-4 (GPT-4) 및 Google Bard (PaLM) 모델 사용하여 검증
- 정량적 평가 위한 F₁ Score 척도 도입

Part 4 실험데이터

착시캡차챌린지데이터셋일부

착시캡차챌린지데이터셋의일부

Part 5 실험 결과

AI의착시캡차피훼실험결과

검증실패 이미지의 재생성과정

ChatGPT-4 (A) 및 Bard (B) 의 착시캡차 파훼성공사례

ViLT 검증 결과

Answer: no, Confidence: 0.6882 Answer: yes, Confidence: 0.3099

Answer: unknown, Confidence: 0.0004 Answer: not sure, Confidence: 0.0002 Answer: can't tell, Confidence: 0.0002

AI의착시캡차피훼성능에대한정량적평가

텍스트 프롬프트, 틀린 답안의 중복

- 틀린 경우, 대부분 정답 없음 옵션 선택

 → 정답을 맞힌 경우 우연에 의한 것이 아닌,
 확신을 가지고 판단하였다는 것을 확인함
- AI의 오판은 예외적인 데이터를 제외하고 발견되지 않음

실험결과분석

ChatGPT-4 및Bard의착시캡차피훼성능

	ChatGPT-4 (GPT-4)	Bard (PaLM)
F1 Score	0.4	0.2857
Success Rate	4%	2%

→ 파훼가불가능한 수준

Part 6 결론

- 발전하는 AI를 활용한 캡차의 파훼가 심각한 보안 문제임을 파악
- 착시 현상을 이용한 캡차의 개발 방법을 제시
- Stable Diffusion 및 DreamBooth, ControlNet 등을 사용해 착시 캡차 챌린지 개발
- 현존하는 Multimodal AI 모델 중 가장 성능이 좋은 GPT-4 및 PaLM을 사용하여 실험을 진행
- AI는 착시 캡차 챌린지를 파훼 하지 못한다는 사실 입증
- 사람은 큰 문제 없이 해결 가능함을 확인함
- 추후 Universal Adversarial Perturbation 등을 통해 착시 캡차 챌린지의 보안 강화 가능
- 착시 캡차 API를 제공하여 자동화 프로그램에 의한 피해 최소화 도모