3.)

Evaluate the following limits.

a.)

$$\lim_{x \to 2} \frac{1}{x - 2}$$

b.)

$$\lim_{x \to 2} \frac{1}{(x-2)^2}$$

$$\lim_{x \to \infty} \frac{2 + 5x^2}{1 + x - x^2}$$

$$\lim_{x \to -\infty} \frac{1 - x^6}{1 + x^5}$$

 $\lim_{x\to 2} \frac{1}{x-2}$ Response. $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$, $\lim_{x\to 2^+} \frac{1}{x-2} = \infty$, so $\lim_{x\to 2} \frac{1}{x-2}$ does not exist. \square Response. Multiply through by $\frac{1/x^5}{1/x^5} = 1$ to get $\lim_{x\to -\infty} \frac{1}{x^5} - x$. Note $\lim_{x\to -\infty} (\frac{1}{x^5} - x) = \infty$, while $\lim_{x\to -\infty} \frac{1}{x^5} + 1 = 1$. Thus, $\lim_{x\to -\infty} \frac{1-x^6}{1+x^5} = \infty$.

$$\lim_{x \to \infty} \frac{\sqrt{1 + 4x^6}}{2 - x^3}$$

Response. Multiply through by $1 = \frac{1/\sqrt{x^6}}{1/x^3}$ to Response. $\lim_{x \to 2^{-}} \frac{1}{(x-2)^{2}} = \infty$, $\lim_{x \to 2^{+}} \frac{1}{(x-2)^{2}} = \infty$, so $\lim_{x \to 2^{+}} \frac{1}{(x-2)^{2}} = \infty$, so $\lim_{x \to 2^{+}} \frac{1}{(x-2)^{2}} = \infty$. Note that $\lim_{x \to \infty} \sqrt{\frac{1}{x^{6}} + 4} = \sqrt{\frac{1}{x^{6}$

$$\lim_{x \to \infty} e^{-x} \sin^2(x^2)$$

Response. Squeeze theorem! For any x, it is the case that $0 \le \sin^2(x^2) \le 1$, and $e^{-x} > 0$ for any x, so we can Response. Multiply through by $\frac{1/x^2}{1/x^2} = 1$ to get $\lim_{x \to \infty} \frac{\frac{2}{x^2} + 5}{\frac{1}{x^2} + \frac{1}{x} - 1} = -5$ as each c/x^r term goes to 0. \square $\lim_{x \to \infty} \frac{(x^r) - 1}{(x^2)^2} = 1$ to get multiply through and now now have that $0 = 0 * e^{-x} \le e^{-x} \sin^2(x^2) \le e^{-x}$. The squeeze theorem now says $\lim_{x \to \infty} 0 \le \lim_{x \to \infty} e^{-x} \sin^2(x^2) \le \lim_{x \to \infty} e^{-x}$. Those two outer $\lim_{x \to \infty} \cos^2(x^2) = 0$. $\lim_{x \to \infty} \cos^2(x^2) = 0$.