取整函数

2021年4月3日

目录

1	取整函数															1								
	1.1	定义																						1
	1.2	性质																						2
		1.2.1	不	等式	₿.																			2
	1.3	加法																						2
	1.4	和不等	等式																					2
2	2 代码实现														3									

1 取整函数

1.1 定义

对于 $x \in \mathbb{R}$, 常见有三种取整方式:

• 向上取整 (round up, ceil): 取大于等于 x 的整数中最靠近 x 的, 也可以看作是 朝 $+\infty$ 的方向取整

$$\operatorname{ceil}(x) \equiv \lceil x \rceil \coloneqq \min\{n \in \mathbb{Z} \colon n \geqslant x\}$$

• 向下取整 (round down, floor): 取小于等于 x 的整数中最靠近 x 的, 也可以看作是朝 $-\infty$ 的方向取整

$$floor(x) \equiv \lfloor x \rfloor := \max\{n \in \mathbb{Z} : n \leqslant x\}$$

• 向零取整 (truncate): 朝 0 的方向取离 x 最近的整数

$$truncate(x) := sgn(x) ||x||$$

1 取整函数 2

1.2 性质

1.2.1 不等式

根据定义, 可以得到最基本的不等式:

$$x-1 < |x| \leqslant x \leqslant \lceil x \rceil < x+1$$
.

从上式也可以看到

$$|x| \leqslant \lceil x \rceil$$
.

以及下面的事实:

$$\lceil x \rceil - \lfloor x \rfloor = \begin{cases} 0 & \text{if } x \in \mathbb{Z} \\ 1 & \text{if } x \notin \mathbb{Z} \end{cases}.$$

也就是说,当 $x \notin \mathbb{Z}$ 时, $\lfloor x \rfloor + 1 = \lceil x \rceil$,此时 $\lfloor x \rfloor < x < \lceil x \rceil$;而当 $x \in \mathbb{Z}$ 时, $\lfloor x \rfloor = x = \lceil x \rceil$.

1.3 加法

设 $x \in \mathbb{R}, x \in \mathbb{Z}$, 则有:

$$[x+n] = [x] + n,$$

 $[x+n] = [x] + n.$

证明. 下面以 |x+n| = |x| + n 为例, 其余同理.

记 $\operatorname{frac}(x)$ 为 x 的小数部分. 显然对于任意正实数 x, 都有 $x = \lfloor x \rfloor + \operatorname{frac}(x)$; 而对于 负实数 $x = \lceil x \rceil + \operatorname{frac}(x)$. 当 $x \in \mathbb{Z}$ 时, $\operatorname{frac}(x) = 0$, 而当 $x \in \mathbb{Z}$ 时, $0 < \operatorname{frac}(x) < 1$.

下面分两种情况讨论: (1) 当 $x \in \mathbb{Z}$ 时, $x + n \in \mathbb{Z}$, 此时根据基本不等式: $\lfloor x + n \rfloor = x + n$, $\lfloor x \rfloor = x$, 等式成立. (2) 当 $x \notin \mathbb{Z}$ 时: 若 x > 0, $\lfloor x + n \rfloor = \lfloor \lfloor x \rfloor + \operatorname{frac}(x) + n \rfloor = \lfloor \lfloor x \rfloor + n + \operatorname{frac}(x) \rfloor$. 此时 $\lfloor x \rfloor + n$ 为整数且 $\lfloor x \rfloor + n < \lfloor x \rfloor + n + \operatorname{frac}(x)$. 通过反证法可以得到, $(\lfloor x \rfloor + n, \lfloor x \rfloor + n + \operatorname{frac}(x)]$ 间不存在整数, 故 $\lfloor x \rfloor + n$ 为小于等于 x + n 的最大整数, 这就证明了等式. x < 0 的情况可同理证明.

1.4 和不等式

对于任意 $x, y \in \mathbb{R}$, 有:

$$\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor \leqslant \lfloor x \rfloor + \lfloor y \rfloor + 1,$$
$$\lceil x \rceil + \lceil y \rceil - 1 \leqslant \lceil x + y \rceil \leqslant \lceil x \rceil + \lceil y \rceil.$$

2 代码实现 3

2 代码实现

C++ 的整数除法默认情况会截断小数部分, 效果等同于朝零取整.