САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №4

«ПРОВЕРКА ПРИНЦИПА ЭКВИВАЛЕНТНОСТИ МАСС»

Выполнил студент: Почерникова Елизавета Кирилловна группа: 23.Б12-мм

> Проверил: Морозов Виктор Александрович

Содержание

1	Введение					
	1.1	Цель работы				
		Решаемые задачи				
2		овная часть				
	2.1	Теоретическая часть				
	2.2	Экспериментальная часть				
		2.2.1 Используемые материалы				
		2.2.2 Методика измерений				
	2.3	Обработка данных и обсуждение результатов				
		2.3.1 Исходный код				
		2.3.2 Таблицы				
		2.3.3 Графики				
3	Выі	ОЛЫ	Ī			

1 Введение

Принцип эквивалентности масс гласит, что все тела в гравитационном поле падают с одинаковым ускорением независимо от их массы. В данной работе проводится экспериментальная проверка этого принципа путём измерения времени свободного падения тел разной плотности. Измерения выполняются с использованием частотомера, что позволяет точно определить ускорение и подтвердить или опровергнуть равенство инертной и гравитационной масс.

1.1 Цель работы

- Проверка принципа эквивалентности масс;
- Измерение ускорения свободного падения тел;
- Знакомство с методом измерения интервалов времени между импульсами частотомером хронометром ЧЗ-32;
- Определение погрешности косвенных измерений.

1.2 Решаемые задачи

Провести серию измерений времени пролета шариков из различных материалов.

Рассчитать ускорение свободного падения по формуле движения с начальной скоростью.

Вычислить массы шариков на основе их плотности и геометрии.

Определить статистическую погрешность измерений времени.

Оценить погрешности вычисленного ускорения свободного падения.

Сравнить значения ускорения для тел разной массы и сделать вывод о справедливости принципа эквивалентности.

2 Основная часть

2.1 Теоретическая часть

Согласно наблюдениям Галилея, все тела в однородном гравитационном поле падают с одинаковым ускорением независимо от их массы. Это утверждение означает равенство инертной и гравитационной масс:

$$M_{\text{\tiny NH}} = M_{\text{\tiny FD}}$$
.

Инертная масса определяется из второго закона Ньютона:

$$M_{\text{ин}} = \frac{F}{a}$$

а гравитационная — из закона всемирного тяготения:

$$F = G \frac{M_{\rm rp} M}{R^2}.$$

Сравнив ускорения двух тел различной массы в поле Земли и воспользовавшись законом Галилея $(a_1 = a_2 = g)$, получаем:

$$\frac{M_{\rm rp}^{(1)}}{M_{\rm иH}^{(1)}} = \frac{M_{\rm rp}^{(2)}}{M_{\rm иH}^{(2)}} = {\rm const.}$$

При правильном выборе гравитационной постоянной G, эту константу можно считать равной 1, что и означает равенство масс.

Уравнение движения при свободном падении с начальной скоростью v_0 :

$$h = v_0 t + \frac{1}{2}gt^2.$$

Решив относительно g, получаем:

$$g = \frac{2(h - v_0 t)}{t^2}.$$

Таким образом, измеряя время пролёта t тел разной массы на фиксированном расстоянии h, можно определить ускорение свободного падения и проверить, зависит ли оно от массы, т.е. проверить принцип эквивалентности.

2.2 Экспериментальная часть

Перед началом эксперимента была собрана установка, позволяющая регистрировать время пролёта шариков разной массы при свободном падении. В состав установки входят:

- Лазерный генератор (ЛГ);
- Призмы полного внутреннего отражения (П1 и П2);
- Трубка с шариком;
- Два световых луча, фиксирующих верхнюю и нижнюю границы измеряемого участка;
- Фотоэлектронный датчик (ФД);
- Усилитель и частотомер Ч3-32;
- Источник питания УПУ-1У4.

Принцип работы установки следующий: при отведении заслонки шарик падает и поочерёдно пересекает два световых луча. Пересечение верхнего луча запускает частотомер, а нижнего — останавливает. Таким образом, прибор регистрирует интервал времени t пролёта шарика на участке длины h.

Измерения проводились для шариков диаметром 10 мм, изготовленных из различных материалов (дерево, плексиглас, дуралюминий, сталь, латунь, свинец). Для каждого шарика было выполнено не менее 30 измерений.

После проведения эксперимента значения времени были занесены в таблицу, вычислены средние значения времени, отклонения и ускорения свободного падения g по формуле:

$$g = \frac{2(h - v_0 t)}{t^2},$$

где $h=0.272\pm0.001$ м — расстояние между световыми лучами, $v_0=1.050\pm0.005$ м/с — начальная скорость.

Также была произведена оценка погрешностей методом косвенных измерений и построены таблицы результатов.

2.2.1 Используемые материалы

В работе применялись шарики из следующих материалов с указанной плотностью:

№ п/п	Вещество	Плотность
		$\left(10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}\right)$
1	Дерево (берёза)	0,7
2	Плексиглас	1,18
3	Алюминий	2,79
4	Сталь	7,9
5	Латунь	8,5
6	Свинец	11,34

Таблица 1: Плотность материалов шариков, использованных в эксперименте

Рис. 1: Схема экспериментальной установки: $\Pi\Gamma$ - лазерный генератор, $\Pi1$, $\Pi2$ - призмы, $\Phi\Pi$ - фотодиод, $\Psi3$ -32 - частотомер, $\Psi\Pi\Psi$ -1 Ψ 4 - источник питания

Была собрана установка, состоящая из:

- Лазерного генератора ЛГ-75
- Призм полного внутреннего отражения П1 и П2
- Фотодиода ФД-24К
- Усилителя сигнала УП-65
- Цифрового частотомера Ч3-32

2.2.2 Методика измерений

1. Шарик помещался в вертикальную направляющую трубку T с удерживающей заслонкой 3.

- 2. После отодвигания заслонки шарик начинал свободное падение и последовательно пересекал:
 - верхний световой луч, при пересечении которого формировался импульс, запускающий счёт на частотомере Ч3-32;
 - нижний световой луч, при пересечении которого счёт останавливался.
- 3. Расстояние между световыми лучами, т.е. путь свободного падения, составлял $h=(0.272\pm0.001)$ м.
- 4. Перед началом опыта на установке была задана начальная скорость шарика при входе в зону верхнего луча: $v_0 = (1,050 \pm 0,005) \text{ м/c}$.
- 5. Для каждого материала проводилось не менее 30 независимых измерений времени пролёта между лучами.
- Полученные данные были обработаны методами статистического анализа: определены средние значения времени, их погрешности, рассчитаны ускорения свободного падения и соответствующие погрешности.

2.3 Обработка данных и обсуждение результатов

2.3.1 Исходный код

Основные функции:

```
double calculateAverage(const double measurements[30]) {
       double sum = 0.0;
2
      for (int i = 0; i < 30; ++i) {</pre>
          sum += measurements[i];
      return sum / 30.0;
   }
8
   double calculateTimeError(const double measurements[30]) {
       double mean = calculateAverage(measurements);
10
       double sumSquaredDeviations = 0.0;
       for (int i = 0; i < 30; ++i) {</pre>
          double deviation = measurements[i] - mean;
          sumSquaredDeviations += deviation * deviation;
14
      return sqrt(sumSquaredDeviations / (30 * 29));
16
   }
17
18
   double calculateGravity(double t_ms) {
19
       const double h = 0.272;
20
       const double v0 = 1.050;
21
       double t = t_ms / 1000.0;
22
       return 2.0 * (h - v0 * t) / (t * t);
23
  }
24
25
   double calculateGravityError(double t_ms, double deltaT_ms) {
26
       const double h = 0.272;
27
       const double v0 = 1.050;
28
```

```
const double deltaH = 0.001;
       const double deltaV0 = 0.005;
30
31
       double t = t_ms / 1000.0;
32
       double deltaT = deltaT_ms / 1000.0;
33
      double term1 = pow(1.0 / (t * t), 2);
35
       double term2 = pow(1.0 / t, 2);
36
       double term3 = pow((v0 * t - 2 * h) / (t * t * t), 2);
37
38
      return 2 * sqrt((deltaH * deltaH) * term1 / 9 +
39
                      (deltaV0 * deltaV0) * term2 / 9 +
40
                      term3 * deltaT * deltaT);
41
42
43
  double calculateMass(double density, double diameter) {
44
      return density * M_PI * pow(diameter, 3) / 6.0;
  }
46
```

Листинг 1: Основные функции расчета среднего времени падения, погрешности времени, ускорения свободного падения и погрешности ускорения свободного падения

Исходный код программы доступен в репозитории по ссылке:

https://github.com/st117160/Worshop2

2.3.2 Таблицы

	Время падения шарика для различных материалов, мс					
№	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
1	152.776	153.586	152.734	154.611	154.091	153.440
2	153.243	153.461	152.731	156.017	153.697	152.809
3	153.533	153.103	152.660	154.099	153.487	152.978
4	152.820	153.070	152.655	153.997	153.675	153.283
5	153.449	153.037	152.640	154.811	153.737	152.815
6	153.864	152.847	152.772	154.322	153.605	152.866
7	153.372	153.107	152.763	153.996	154.165	152.957
8	154.098	153.586	152.799	155.114	153.854	153.045
9	152.993	153.166	152.720	154.689	153.573	153.385
10	153.220	153.200	152.799	153.917	153.401	153.017
11	152.910	153.205	152.780	154.475	153.769	153.179
12	153.265	152.938	153.084	153.983	154.044	153.323
13	153.165	152.913	152.692	154.369	153.620	154.022
14	153.274	152.891	152.850	154.453	153.804	154.285
15	153.258	153.032	153.504	154.228	153.907	153.192
16	153.654	153.142	152.861	154.164	154.061	153.105
17	153.535	153.203	152.784	154.257	154.735	152.816
18	153.571	153.229	152.708	153.865	153.565	154.573
19	152.653	153.402	152.749	154.119	154.301	152.668
20	153.201	153.236	152.811	154.726	154.389	153.206
21	153.151	153.636	152.724	154.122	153.621	152.870
22	153.115	153.182	153.823	153.617	153.775	153.921
23	152.984	154.250	152.722	154.535	153.450	152.852
24	153.000	153.061	152.791	153.975	154.115	153.107
25	152.671	153.085	152.669	154.428	153.495	152.852
26	153.183	153.176	152.743	154.438	154.290	153.007
27	152.691	153.025	152.703	154.082	153.642	153.513
28	154.378	153.284	152.658	154.578	153.724	152.984
29	153.027	152.855	152.704	154.589	154.063	152.943
30	153.554	153.615	153.096	155.054	153.816	153.622

Таблица 2: Результаты измерений времени падения шарика

Вещество	t, mc
Алюминий	153.254
Латунь	153.217
Сталь	152.824
Дерево	154.388
Плексиглас	153.85
Свинец	153.221

Таблица 3: Среднее время падения шариков для различных материалов

Масса шариков вычисляется по формуле:

$$m = \rho \cdot \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 \tag{1}$$

Вещество	т, г
Алюминий	1.46084
Латунь	4.45059
Сталь	4.13643
Дерево	0.366519
Плексиглас	0.617847
Свинец	5.93761

Таблица 4: Массы шариков для различных материалов

Погрешность измерения времени вычислена по формуле:

$$\Delta t = \sqrt{\frac{\sum d_i^2}{n(n-1)}} \tag{2}$$

где n – число измерений, d_i – отклонения от среднего значения.

Вещество	Δt , MC
Алюминий	0.07401
Латунь	0.05382
Сталь	0.04645
Дерево	0.08524
Плексиглас	0.05783
Свинец	0.08427

Таблица 5: Погрешности измерения времени для различных материалов

Ускорение свободного падения вычислено по формуле:

$$g = \frac{2(h - v_0 t)}{t^2} \tag{3}$$

где:

- $v_0 = (1,050 \pm 0,005)$ м/с начальная скорость шарика
- $h = (0, 272 \pm 0, 001)$ м расстояние между лучами
- t среднее время падения

Вещество	g , M/c^2
Алюминий	9.4593
Латунь	9.4670
Сталь	9.5511
Дерево	9.2209
Плексиглас	9.3333
Свинец	9.4664

Таблица 6: Значения ускорения свободного падения для различных материалов

Погрешность измерения ускорения свободного падения вычисляется по формуле:

$$\Delta g = 2\sqrt{\left(\frac{1}{t^2}\right)^2 \Delta h^2 + \left(\frac{1}{t}\right)^2 \Delta v_0^2 + \left(\frac{v_0 t - 2h}{t^3}\right)^2 \Delta t^2} \tag{4}$$

где:

- $\Delta h = 0,001$ м погрешность измерения расстояния
- $\Delta v_0 = 0,005$ м/с погрешность начальной скорости
- Δt погрешность измерения времени

Вещество	Δg , m/c ²
Алюминий	0.03908
Латунь	0.03757
Сталь	0.03729
Дерево	0.03951
Плексиглас	0.03755
Свинец	0.04002

Таблица 7: Погрешности измерения ускорения свободного падения

2.3.3 Графики

Рис. 2: Зависимость ускорения свободного падения от массы шарика

3 Выводы

В работе проведена экспериментальная проверка принципа эквивалентности масс путём многократных измерений времени свободного падения шариков из различных материалов. Основные результаты:

• Для металлических шариков (сталь, латунь, свинец) получены статистически эквивалентные значения ускорения свободного падения:

$$g_{\text{сталь}} = (9.55 \pm 0.04) \text{M/c}^2, \quad g_{\text{латунь}} = (9.47 \pm 0.04) \text{M/c}^2, \quad g_{\text{свинец}} = (9.47 \pm 0.04) \text{M/c}^2$$

что подтверждает принцип эквивалентности масс для тел высокой плотности.

• Для лёгких материалов (дерево, плексиглас) зафиксировано систематическое отклонение:

$$g_{\text{дерево}} = (9.22 \pm 0.04) \text{м/c}^2, \quad g_{\text{плексиглас}} = (9.33 \pm 0.04) \text{м/c}^2$$

обусловленное влиянием сопротивления воздуха, которое возрастает при уменьшении массы тел.

- Основной вклад в погрешность измерений внесли:
 - Систематическая погрешность расстояния между лучами ($\Delta h = 0.001 \text{ м}$)
 - Влияние сопротивления воздуха (особенно для лёгких шариков)
 - Конечная точность частотомера Ч3-32 ($\Delta t \sim 0.05-0.08$ мс)
- Освоен метод измерения временных интервалов с помощью частотомера-хронометра Ч3-32, погрешность измерений времени не превышает 0.5%.

Экспериментально подтверждён принцип эквивалентности масс для тел с высокой плотностью: инертная и гравитационная массы равны с точностью до 10^{-2} . Отклонения для лёгких материалов объясняются влиянием среды, что согласуется с предсказаниями Галилея.