1. (0, -1)

考点	牛顿方向					
优化类型	无约束优化问题					
思路	二次函数近似目标函数,求近似最优值。 (对负梯度方向进行旋转)					
	$\nabla^2 f(X^k) P^k = -g^k$					

2. $\{P \mid AP \geq 0\}$

考点	可行方向
问题定义	存在 $\delta \geq 0$ 对于 $\lambda \in (0,\delta)$,满足 $X^{k+1} = X^k + \lambda P^k$ 在可行域内
思路	保证可行方向与 积极约束 的梯度夹角小于 90 度

3.
$$-\frac{\nabla f(\boldsymbol{X}^k)^T \boldsymbol{P}^k}{2 \cdot (\boldsymbol{P}^k)^T \boldsymbol{Q} \boldsymbol{P}^k}$$

考点	最优步长					
问题定义	对一元函数 $\varphi(t) = f(X^k + tP^k)$ 沿方向 P^k 求极小值的问题(一维					
	搜索或直线搜索)					
思路	最优质在梯度为 0 的地方取得					

4.都是

考点	凸函数 (凸函数和严格凸函数)					
问题定义	函数任意两点的连线在对应曲线的上方					
思路	对应 Hesse 矩阵为正定矩阵,为严格凸函数; 半正定为凸函数					

5. $(1,1)^T$.

考点	对偶线性规划 松弛定理						
	▶ 对偶规划有最优解的充要条件: 两者都有可行解						
	$ ho$ $C^TX = b^TW$,则 X 与 W 为两个优化问题的最优解						
思路	一个规划有最优解,则另一个必有最优解,且相等松弛定理,X,W是可行解,则是最优解的充要条件:						
	$(A^T W - C)^T X = 0$						
	$W^T(AX - b) = 0$						

▶ 无最优解

考点	两阶段法						
思路	▶ 构造辅助线性规划,求原规划初始可行解▶ 单纯型法求原规划可行解						

7.0 一维搜索

8. newton 共轭梯度 DPF Powell SR1

考点	二次收敛性(二次终止性),不同于二次收敛速度					
定义	在有限步数内达到最优解					
算法	牛顿法: 对于二次凸函数,一步达到 共轭方向系列算法:共轭梯度法,DFP, SR1, Powell,n 个 共轭梯度向量组, 最多 n 次达到最优解					

9. $[3-\sqrt{5},2]$.

考点	黄金分割法						
	无约束优化问题,精确一维搜索						
优化类型	适用于单峰函数						
	且函数要求不连续						
	$\int \varphi(t1) > \varphi(t2)$ if $t_2 \le t^*$						
	$\begin{cases} \varphi(t1) > \varphi(t2) & \text{if } t_2 \leq t^* \\ \varphi(t1) < \varphi(t2) & \text{if } t_1 \geq t^* \end{cases}, t_1 < t_2$						
思路	在可行域[a,b]内插入两点,比较对应处函数值,每次迭代						
	删除相同比例的区间。						

10 二阶收敛

考点	收敛速度					
问题定义	对于迭代点构成的序列 $\{X^k\}$ 收敛到最优点的速度					
思路	$\lim_{k \to \infty} \frac{\ X^{k+1} - X^*\ }{\ X^k - X^*\ ^p} = \beta \begin{cases} p = 1, \beta = 0 & 超线性收敛\\ p = 1, \beta = 1 & 次线性收敛\\ p = 1, 0 < \beta < 1 & 线性收敛\\ p > 1 & p阶收敛,必为超线性收敛$					

11. [3,2]

考点	KTT 点(优化问题)						
问题定义	一阶必要条件, 潜在的最优解						
思路	一所必要条件,潜在的最优解 $\begin{cases} $						

涉及几种算法的解题步骤

一大型,一个大型,一个大型,一个大型,一个大型,一个大型,一个大型,一个大型,一						
算法	优化类型	思路	解题步骤			
外点法 (罚函数的一种)	约束优化问题	利用罚因子将约束	1. 构建罚函数			
	(可包含等式约束和	化问题转化为非约	2. 分情况讨论确定非约束优化问			
	不等式约束)	束优化问题	题,并进行舍去讨论			
			3. 计算惩罚因子 m 构成的通项			
Fletcher-Reeves 共轭梯度法	度法 无约束优化问题	构造共轭方向,沿 共轭方向搜索求最	1. 确定迭代点 <i>X ^{k+1}</i> 处的 共轭方向			
		优解	$P^{k+1} = -g^{k+1} + \alpha P^k$			
			$P^0 = -g^0$			
			2. 沿共轭方向进行一维搜索, 求下一个迭代点:			
			$X^{k+1} = X^k + tP^k$			
			终止条件判断: $\left\ g^{^{k+1}} ight\ $			
D	45年44八万時		1 +6,7+1+1, P./. hC l7+			
Rosen 梯度投影法	约束优化问题 分性的表 对京的非维	构造投影矩阵,将	1. 构建投影矩阵,			
	线性约束 对应的非线性优化问题	不在可行域内的负 梯度方向投影到约	$Q = I - N^{T} (NN^{T})^{-1} N$			
		束条件的交线上, 然后沿投影方向进	2. 求 <i>X^k</i> 处梯度 <i>g^k</i> , 和投影向量			
		行一维搜索,重复 该过程。	$P^k = -Qg^k$ (该方向如果为			
			0,判断当前点是否为 KTT 点, 如果不是,构造新的投影矩阵			
			3. 沿 <i>P ^k</i> 进行一维搜索			
			$\min_{0 \le t_k \le t_k} f(X^k + tP^k)$			
			得到下一个迭代点 X^{k+1}			

$$egin{aligned} &\min -3\pmb{x}_1 - 5\pmb{x}_2 \ \pmb{s.t.} \ &\pmb{x}_1 + \pmb{x}_3 \, = \, 4 \ &\pmb{x}_2 + \pmb{x}_4 \, = \, 6 \ &3\pmb{x}_1 + 2\pmb{x}_2 + \pmb{x}_5 \, = \, 18 \ &\pmb{x}_i \geq 0, \pmb{i} = 1, 5. \end{aligned}$$

P1	P2	Р3	P4	P5	
1	0	1	0	0	4
0	(1)	0	1	0	6
3	2	0	0	1	18
3	5	0	0	0	0

1	0	1	0	0	4
0	1	0	1	0	6
(3)	0	0	-2	1	6
3	0	0	-5	0	-30

0	0	1	2/3	-1/3	2
0	1	0	1	0	6
1	0	0	-2/3	1/3	2
0	0	0	-3	-1	-36

(1) 要以 $(2,3)^T$ 为唯一最优解,则直线 $f(X) = x_1 + \beta x_2 = 0 - x_1 + 2x_2 = 4$ 的斜率 $k = -\frac{1}{\beta}$ 必须小于直线 $-x_1 + x_2 = 1$ 的斜率 $k_1 = 1$,大于直线的斜率

$${m k}_{\!\scriptscriptstyle 2} = rac{1}{2}, \;\; \mathbb{I}\!\!\!\! rac{1}{2} < -rac{1}{m eta} < 1 \;\! , \;\; \mathbb{M}\, \mathbb{U}\!\!\!\! \, \mathrm{f} \; , \;\; -2 < m eta < -1 \;\! .$$

(2)显然除了 $\boldsymbol{\beta}=0$ 外, $\boldsymbol{k}=1$ 或 $\frac{1}{2}$ 时,问题取得无穷多个最优解,即 $\boldsymbol{\beta}=0,-1,-2.$

(3) 不存在有界最优解,就要
$$-\frac{1}{\beta} < \frac{1}{2}$$
,即 $\beta < -2$

四、解:第一阶段:引入人工变量 x_5 ,构造辅助线性规划,

$$egin{aligned} &\min \, m{x}_{\!\scriptscriptstyle{5}} \ m{s.t.} \ &-2m{x}_{\!\scriptscriptstyle{1}} + m{x}_{\!\scriptscriptstyle{2}} - m{x}_{\!\scriptscriptstyle{3}} + m{x}_{\!\scriptscriptstyle{4}} = 4 \ &m{x}_{\!\scriptscriptstyle{1}} + 2m{x}_{\!\scriptscriptstyle{2}} + m{x}_{\!\scriptscriptstyle{5}} = 6 \ &m{x}_{\!\scriptscriptstyle{i}} \geq 0, m{i} = 1, \cdots, 4. \end{aligned}$$

用单纯形法求解,

<i>P1</i> 1	P2	Р3	P4	P5	b
-2	1	-1	1	0	4
(1)	2	0	0	1	6

1	2	0	0	0	6
0	5	-1	1	2	16
1	2	0	0	1	6
0	0	0	0	-1	0

第二阶段:

<i>X</i> 1	X 2	X 3	<i>X</i> 4	
0	0	-1	0	-6
0	5	-1	1	16
1	2	0	0	6

所以最优解为 $\boldsymbol{X}^* = (6,0,0,16)^T$, $\boldsymbol{f}(\boldsymbol{X}^*) = -6$ 。