Comparação de Algoritmos para o Problema das 8 Rainhas

Introdução

O problema das 8 rainhas é um clássico problema de otimização combinatória onde o objetivo é posicionar 8 rainhas em um tabuleiro de xadrez 8x8 de forma que nenhuma rainha possa atacar outra. As rainhas podem atacar em linhas, colunas e diagonais. Este relatório compara três abordagens diferentes para resolver este problema: Subida de Encosta, Têmpera Simulada e Algoritmo Genético.

Abordagem Teórica de Cada Algoritmo

Subida de Encosta (Hill Climbing)

A Subida de Encosta é um algoritmo de busca local que começa com uma solução aleatória e tenta iterativamente melhorar esta solução. Em cada iteração, o algoritmo avalia os vizinhos da solução atual e move-se para o vizinho com a melhor avaliação (menor número de conflitos, no caso das 8 rainhas). O processo continua até que não seja possível encontrar uma solução vizinha melhor.

Vantagens:

- Simplicidade e facilidade de implementação.
- Baixo custo computacional.

Desvantagens:

Pode facilmente ficar preso em ótimos locais.

Têmpera Simulada (Simulated Annealing)

A Têmpera Simulada é uma variante do algoritmo de Subida de Encosta que tenta evitar ficar preso em ótimos locais ao permitir, ocasionalmente, movimentos para soluções piores. A probabilidade de aceitar soluções piores diminui ao longo do tempo, simulando o processo de resfriamento de metais.

Vantagens:

- Capacidade de escapar de ótimos locais.
- Flexibilidade para adaptar a taxa de resfriamento.

Desvantagens:

- Parâmetros de resfriamento e temperatura inicial podem ser difíceis de ajustar.
- Pode ser computacionalmente intensivo.

Algoritmo Genético (Genetic Algorithm)

O Algoritmo Genético é inspirado nos processos de seleção natural e genética. Ele começa com uma população de soluções aleatórias e, através de operações como crossover (cruzamento) e mutação, gera novas soluções. As melhores soluções (indivíduos) são selecionadas para formar a próxima geração. O processo continua por um número fixo de gerações ou até que uma solução satisfatória seja encontrada.

Vantagens:

- Eficaz para explorar grandes espaços de busca.
- Capacidade de encontrar soluções globais.

Desvantagens:

- Parâmetros como tamanho da população, taxa de mutação e número de gerações podem ser difíceis de ajustar.
- Pode ser computacionalmente caro.

Comparação

Algoritmo	Tempo de Execução (s)	Iterações	Qualidade da Solução (rainhas)
Subida de Encosta	0.0010	3	5
Têmpera Simulada	0.3247	459	7
Algoritmo Genético	1.7221	1000	7

A tabela abaixo representa a média de 10 resultados

Algoritmo	Subida de Encosta	Têmpera Simulada	Algoritmo Genético
Tempo (s)	0.00077	0.11394	0.3165
Número de Iterações	3.9	428.5	476.6
Qualidade	6.4	6.5	7.6

Conclusão

No contexto do problema das 8 rainhas, a Têmpera Simulada e o Algoritmo Genético apresentaram soluções de melhor qualidade comparadas à Subida de Encosta, conseguindo posicionar 7 rainhas corretamente. No entanto, a Têmpera Simulada demonstrou ser um bom compromisso entre tempo de execução e qualidade da solução, enquanto o Algoritmo Genético mostrou-se o mais robusto, mas ao custo de maior tempo de execução e complexidade computacional.

Para problemas de maior escala ou maior complexidade, o Algoritmo Genético pode ser a escolha mais adequada, enquanto a Subida de Encosta pode ser utilizada para soluções rápidas e menos complexas. A Têmpera Simulada pode ser vista como uma abordagem intermediária eficaz.