6. Остовы и паросочетания

Остовы

Опр. Граф G'(X',U') называется остовным подграфом графа G(X,U) ($X'=X,U'\subseteq U$). Если остовный подграф является деревом, его называют остовным деревом или просто остовом.

То есть остов - это дерево построенное на множестве вершин графа, множество рёбер которого является подмножеством множества вершин исходного графа.

Теорема. Число рёбер произвольного неографа G, которое нужно удалить для получения остова, не зависит от порядка их удаления и равно m-n+k, где m=|U|, n=|X|, k - число компонент связности.

- $\nu(G) = m n + k$ циклический ранг (циклическое число), число рёбер, которые нужно удалить, чтобы получить остов
- $u^*(G) = n k$ коциклический ранг (коранг), число рёбер в остове

Задача Штейнера

На плоскости задано n точек, нужно соединить эти точки отрезками прямых так, что сумма длин этих отрезков была минимальной. Разрешается добавлять точки и длина определяется весом ребра. Постановка задачи в теории графов:

Дан граф $G_0(X_0,\varnothing)$ (задаёт n точек). Требуется найти неограф G(X,U) такой, что:

- каждому ребру соответствует некоторое число (вес) ≥ 0
- G(X,U) дерево
- множество вершин X_0 является подмножество нового множества вершин X: $X_0 \subseteq X$
- ullet сумма весов рёбер дерева G должна быть минимальной из возможных

G - неориентированное дерево, потому что каждую пару вершин должна соединять только одна цепь, иначе сумма весов будет не минимальной, так как, если существуют 2 цепи, возникают альтернативные пути и неоднозначность решения.

Решения задачи Штейнера в общем случае не существует.

Решения при некоторых ограничениях: алгоритм Прима и алгоритм Краскала.

Алгоритм Прима

Ограничение: в ходе работы алгоритма не меняется множество вершин. В результате работы получается остовное дерево макс./мин. веса.

Дан граф $G(X, U, \Omega)$ (Ω - множество весов)

$$|U|=|\Omega|$$
 , $\Omega=\{\omega_1,\ldots,\omega_n\}$

В основе алгоритма лежит расширение исходного поддерева до остовного. Алгоритм итерационный, на каждой итерации число вершин дерева увеличивается не менее, чем на 1.

Множество вершин X разбивается на 2 подмножества:

$$X = X_1 \cup X_2, X_1 \cap X_2 = \varnothing$$

Введём понятие расстояния между X_1 и X_2 :

$$d(X_1,X_2)=\min\{\omega(x_i,x_j):x_i\in X_1,x_j\in X_2\}$$

Ход работы алгоритма:

- 1. $X_1 = \{x_1\}, X_2 = X \setminus X_1, U = \varnothing$
- 2. Находим ребро $(x_i,x_j):x_i\in X_1,x_j\in X_2,\omega(x_i,x_j)=d(X_1,X_2)$ и полагаем $X_1=X_1\cup\{x_j\},$ $X_2=X_2\setminus\{x_j\},\,U'=U'\cup\{(x_i),x_j\}$

3. Если $X_1 = X$, то конец алгоритма, иначе повторить шаг 2.

Если требуется найти остовное дерево наибольшего веса, то изменяем формулу расстояния (с \min на \max).

Паросочетания

Например, для графа из последовательно соединённых 6 вершин: $x_1 - x_2 - x_3 - x_4 - x_5 - x_6$ возможны паросочетания:

•
$$\{(x_1, x_2), (x_3, x_4), (x_5, x_6)\}$$

• $\{(x_2, x_3), (x_4, x_5)\}$

Опр. Максимальным паросочетание называется паросочетание, в которое больше нельзя добавить ребро.

Опр. Паросочетание наибольшей мощности называется паросочетание из наибольшего возможного количества рёбер.

Опр. Совершенным пваросочетанием называется паросочетание, охватывающее все вершины.

Например, распределение задач между работниками может производиться как поиск паросочетаний в двудольном графе.