Noircissez sur la feuille-réponse l'unique bonne réponse à chaque question.

Calculatrice non programmable permise bien que peu utile.

- 1. \mathbf{u} et \mathbf{v} étant deux vecteurs dans l'espace formant entre eux un angle de mesure θ :
 - $\mathbf{u} \cdot \mathbf{v}$ est un réel et $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot \cos \theta$
 - $(\mathbf{u} \cdot \mathbf{v})$ est un réel et $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot \sin \theta$
 - (3) \square $\mathbf{u} \cdot \mathbf{v}$ est un vecteur et $||\mathbf{u} \cdot \mathbf{v}|| = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot |\cos \theta|$
 - $(\mathbf{u})\square$ $\mathbf{u}\cdot\mathbf{v}$ est un vecteur et $||\mathbf{u}\cdot\mathbf{v}|| = ||\mathbf{u}||\cdot||\mathbf{v}||\cdot|\sin\theta|$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 2. \mathbf{u} et \mathbf{v} étant deux vecteurs dans l'espace formant entre eux un angle de mesure θ :
 - (\mathbf{u}) \square $\mathbf{u} \wedge \mathbf{v}$ est un réel et $\mathbf{u} \wedge \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot \cos \theta$
 - $\mathbf{u} \wedge \mathbf{v}$ est un réel et $\mathbf{u} \wedge \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot \sin \theta$
 - $(3)\square$ $\mathbf{u} \wedge \mathbf{v}$ est un vecteur et $||\mathbf{u} \wedge \mathbf{v}|| = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot |\cos \theta|$
 - $\mathbf{u} \wedge \mathbf{v}$ est un vecteur et $||\mathbf{u} \wedge \mathbf{v}|| = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot |\sin \theta|$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 3. Si $\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ et $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ par rapport au repère $(O, \mathbf{i}, \mathbf{j}, \mathbf{k})$, donner l'expression du produit vectoriel $\mathbf{u} \wedge \mathbf{v}$.

$$\begin{bmatrix} ay - bx \\ bz - cy \\ cx - az \end{bmatrix} \qquad \begin{bmatrix} bz - cy \\ cx - az \\ ay - bx \end{bmatrix} \qquad \begin{bmatrix} cx - az \\ ay - bx \\ bz - cy \end{bmatrix}$$

$$(3) \square \qquad \begin{bmatrix} cx - az \\ ay - bx \\ bz - cy \end{bmatrix}$$

$$(4) \square \qquad \begin{bmatrix} cy - bz \\ az - cx \\ bx - ay \end{bmatrix} \qquad (5) \square \qquad \begin{bmatrix} az - cx \\ bx - ay \\ cy - bz \end{bmatrix}$$

- 4. Le produit scalaire de deux vecteurs est nul si et seulement si les deux vecteurs...
 - (1) sont coplanaires
 - $_{(2)}\square$ sont colinéaires
 - (3) sont orthogonaux
 - (4) sont nuls
 - $_{(5)}\square$ sont non nuls
- 5. Le produit vectoriel de deux vecteurs est nul si et seulement si les deux vecteurs...
 - (1) sont coplanaires
 - (2)■ sont colinéaires
 - $_{(3)}\square$ sont orthogonaux
 - $_{(4)}\square$ sont nuls
 - $_{(5)}\square$ sont non nuls
- 6. Le triangle formé des points $A=(-7,2,4),\,B=(-4,5,4)$ et C=(-5,3,2) est :
 - $_{(1)}\square$ quelconque
 - $_{(2)}\square$ équilatéral
 - $_{(3)}\square$ rectangle en A
 - $_{(4)}\square$ rectangle en B
 - $_{(5)}$ rectangle en C

7.	Cocher les équations cartésiennes qui caractérisent le plan passant par O engendré par $\begin{bmatrix} 9 \\ 3 \\ 1 \end{bmatrix}$ et $\begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix}$.
	$_{(1)}\Box x - y - 6z = 0$ $_{(2)}\Box \begin{cases} 9x + 3y + z = 0 \\ 8x + 4y + 2z = 0 \end{cases}$
	(3) \Box $3x - 5y - 12z = 0$ (4) \blacksquare $x - 5y + 6z = 0$ (5) \Box ce n'est pas possible
8.	Même question avec la droite passant par O et dirigée par $\begin{bmatrix} 1 \\ -5 \\ 6 \end{bmatrix}$.
	$_{(1)}\Box x-y-6z=0$ $_{(2)}\blacksquare \left\{ \begin{array}{ll} 9x+3y+z&=&0\\ 8x+4y+2z&=&0 \end{array} \right.$
	(3) \Box $3x - 5y - 12z = 0$ (4) \Box $x - 5y + 6z = 0$ (5) \Box ce n'est pas possible
9.	Donner une équation cartésienne pour le plan passant par $(1,2,3)$, $(2,1,5)$ et $(2,2,6)$.
	$_{(1)}\Box x+y+z=6 \qquad _{(2)}\Box x+2y+3z=0 \qquad _{(3)}\blacksquare 3x+y-z=2$
	$_{(4)}\Box 2x + 3y + z = 6 \qquad _{(5)}\Box 6x + 2y - 2z = 2$
10.	Les droites $\mathcal{D}_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2-t \\ 3+2t \end{bmatrix}$ $(t \in \mathbf{R})$ et $\mathcal{D}_2: \begin{cases} x+y=3 \\ x-y-z=2 \end{cases}$ sont :
	$_{(1)}\square$ confondues $_{(2)}\blacksquare$ parallèles $_{(3)}\square$ sécantes $_{(4)}\square$ disjointes $_{(5)}\square$ perpendiculaires
11.	L'ensemble des triplets $(x,y,z)\in \mathbf{R}^3$ satisfaisant l'inégalité ci-dessous est :
	$x^2 + 2x + y^2 + 2y + z^2 + 2z \leqslant 0$
	une sphère de rayon 1 une sphère de rayon $\sqrt{2}$ une boule de rayon 2 une boule de rayon $\sqrt{3}$ une boule de rayon $\sqrt{3}$ aucune de ces réponses
12.	La conique d'équation cartésienne $x^2 - y^2 + 1 = 0$ est :
	$_{(1)}\square$ une parabole $_{(2)}\square$ une ellipse $_{(3)}\square$ un cercle
	$_{(4)}\blacksquare$ une hyperbole $_{(5)}\Box$ aucune de ces réponses
13.	Soit $\mathcal C$ une conique dont une équation cartésienne dans un repère orthonormé est
	$x^2 + 4y^2 - 4x + 4y + 4 = 0$
	Quel est son centre?
	$_{(1)}\square$ $(-4;1)$ $_{(2)}\square$ $(4;-1)$ $_{(3)}\square$ $(-4;4)$ $_{(4)}\blacksquare$ $(2;-\frac{1}{2})$
	$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
14.	Pour la conique précédente, s'agit-il
	$_{(1)}\square$ de la réunion de deux droites $_{(2)}\blacksquare$ d'une ellipse $_{(3)}\square$ d'une hyperbole
	$_{(4)}\square$ d'une parabole $_{(5)}\square$ aucune des réponses précédentes n'est correcte.