

Benchmarking Entity Linking for Question Answering over Knowledge Graphs

Guillermo Echegoyen Blanco

Álvaro Rodrigo Anselmo Peñas {gblanco, alvarory, anselmo} **at** lsi.uned.es

NLP & IR Group Universidad Nacional de Educación a Distancia

Overview

- 1. Introduction
- 2. Benchmark
- 3. Results
- 4. Outcomes
- 5. Conclusions & Future Work
- 6. References

Introduction

Introduction | UNED

Entity Linking

Def: Link parts of a Natural Language passage to their corresponding node in a Knowledge Graph. Usually comprises:

- Recognize the entity mention in the text.
- Disambiguate the mention.

Motivation

- Lots of QA systems do perform an EL step with good results.
- Is the task easy or datasets are?
- Asses impact of EL Task on QA systems over KG.
- · Actual collections for QA are easy for Entity Linking.

Q: List all episodes of the of the HBO television series

Benchmark

Benchmark

Objective: Complex dataset for Entity Linking

Input Datasets

- QALD {1-4} Unger et al. 2014) ≤ 200 QA pairs each
- LC-QuAD (Trivedi et al. 2017) 5K QA pairs

Example

```
"id": "37",
"query": { "sparql": "SELECT ?uri ... },
"answers": {
 "answer": [{ ...
 }, ...]
},
"question": [
    "string": "List all episodes of the first season of the
        HBO television series The Sopranos!",
    "language": "en"
```

Difficulty?

• Given the Question, how easy is the Entity Linking?

Cases	QALD-1	QALD-2	QALD-3	QALD-4
Identical to DBP uri	73.33%	85.71%	84.27%	79.21%
Missing tokens		4.76%	5.62%	9.9%
Additional tokens	20.0%	1.19%	1.12%	0.5%
Lexical variation	6.67%	5.95%	5.62%	8.42%
Other		2.38%	3.37%	1.98%

Strategy

- 1. Develop method to detect easy mentions
- 2. Remove easy mentions from collection

Methods

- Trigram based mention detection
- Distance based mention detection

Results

Developed method removed between 50% and 70% of each dataset.

Released Datasets

- QALD-{1-4}-EL: QALD-X version for EL ≤ 45 samples each.
- LC-QuAD-EL: LC-QuAD version for EL ≤ 1.3K samples.
- C-EL4QA: Complex compilation of EL versions ≤ 1.5K samples.

Outcomes

Outcomes UNED

Our main contributions are:

- QA Datasets characterization
- Semi-automatic method to generate EL dataset.
- Release large benchmark dataset and baseline for EL in QA.

Conclusions & Future Work

Conclusions

- We found QA collections to be very easy
- QA Systems go for automated solutions

Research Questions

- If Entity Linking were more difficult, how QA system would perform?
- · How can we create more difficult Entity Linking collections?

Thank you! Questions?

References

References i

References

Priyansh Trivedi et al. "Lc-quad: A corpus for complex question answering over knowledge graphs". In: *International Semantic Web Conference*. Springer. 2017, pp. 210–218.

Christina Unger et al. "Question Answering over Linked Data (QALD-4)". In: (2014). URL: https://hal.inria.fr/hal-01086472/.