CMPUT 466/566: Machine Learning, Winter 2024 Tutorial 3

Shuai Liu

1 Multivariate Calculus

Definition 1 (partial derivative). For a function $f : \mathbb{R}^d \to \mathbb{R}$, and standard Euclidean basis $\{e_i\}_{i=1}^d$, if the following limit of function exists at a, we say f has partial derivative w.r.t. x_i at a

$$\lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h}.$$

We denote the above limit by $\frac{\partial f(a)}{\partial x_i}$ or $\frac{\partial}{\partial x_i} f(a)$.

Remark 1. In this course, it is ok to treat everything else as a constant and only take derivative w.r.t. the target variable.

Example 1. Let $a \in \mathbb{R}^d$ and $f(x) = a^{\top}x$. Then

$$\frac{\partial}{\partial x_i} f(x) = \frac{\partial}{\partial} (\sum_{j=1}^d a_j x_j) = a_i.$$

Definition 2 (gradient). For a function $f: \mathbb{R}^d \to \mathbb{R}$, assume the partial derivatives of f all exist in a neighborhood of x and are also continuous at x. Then f is differentiable and its gradient satisfies

$$\nabla_x f(x) = \left(\frac{\partial f}{\partial x}\right)^{\top} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$

Example 2. Let
$$a \in \mathbb{R}^d$$
 and $f(x) = a^{\top}x$. Then $\nabla_x f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} \left(\sum_{i=1}^d a_i x_i \right) \\ \frac{\partial f}{\partial x_2} \left(\sum_{i=1}^d a_i x_i \right) \\ \vdots \\ \frac{\partial f}{\partial x_d} \left(\sum_{i=1}^d a_i x_i \right) \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_d \end{bmatrix}$

Definition 3 (Jacobian). For a differentiable function $f \in \mathbb{R}^n \to \mathbb{R}^m$, let the output of function be $(f_1(x),...,f_m(x))^{\top}$ the Jacobian of the function is defined as

$$J_f(x) = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x} \\ \frac{\partial f_2}{\partial x} \\ \vdots \\ \frac{\partial f_m}{\partial x} \end{bmatrix}$$

Proposition 1 (Chain rule). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ are both differentiable with Jacobians $J_q(f(x))$ and $J_f(x)$. Then the derivative

$$\frac{\partial g \circ f}{\partial x} = \sum_{j=1}^{m} \frac{\partial g(f_1(x), ..., f_m(x))}{\partial f_j(x)} \frac{\partial f_j(x)}{\partial x}.$$

Proposition 2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ are both differentiable with Jacobians $J_g(f(x))$ and $J_f(x)$. Then $g \circ f$ has Jacobian $J_{g \circ f}(x) = J_g(f(x))J_f(x)$.

Proof. By definition of function composition, $g \circ f$ is a function that maps from $\mathbb{R}^n \to \mathbb{R}^p$. As usual, we denote the output of $g \circ f$ as $((g \circ f)_1(x), ..., (g \circ f)_p(x))^{\top}$. Then the *j*-th element in the *i*-th row of the Jacobian of $J_{g \circ f}$ is that

$$[J_{g \circ f}(x)]_{ik} = \frac{\partial (g \circ f)_i}{\partial x_k}$$

$$= \frac{\partial g_i(f(x))}{\partial x_k}$$

$$= \frac{\partial g_i(f_1(x), ..., f_m(x))}{\partial x_k}$$

$$= \sum_{j=1}^m \frac{\partial g_i(f_1(x), ..., f_m(x))}{\partial f_j(x)} \frac{\partial f_j(x)}{\partial x_k}$$

$$= \sum_{j=1}^m [J_g(f(x))]_{ij} [J_f(x)]_{jk}$$

$$= [J_g(f(x))J_f(x)]_{ik}$$
(Chain rule)

Definition 4 (Hessian). Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice differentiable, the Hessian is defined to be

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}.$$

If f is twice continuously differentiable, then $\nabla^2 f(x)$ is symmetric.

2 Convex Analysis

Definition 5 (Convex set). A set $V \subseteq \mathbb{R}^d$ is convex if for all $x, y \in V$ and $\gamma \in (0,1)$, we have that $\gamma x + (1 - \gamma)y \in V$.

Remark 2. See Wikipedia on convex sets for examples of convex sets.

Definition 6 (Convex function). A function $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$ is convex if V is a convex set and for all $x, y \in V$, $f(\gamma x + (1 - \gamma)y) \leq \gamma f(x) + (1 - \gamma)f(y)$.

For definitions of neighborhood, open set, interior and some simple examples, please refer to the appendix. A good reference is Page 32 of Baby Rudin.

Proposition 3 (First order condition). Assume $f: \mathcal{V} \subset \mathbb{R}^d \to \mathbb{R}$ is differentiable in the interior of V, which we denote by V° , then f is convex if and only if for all $x \in V, y \in V^{\circ}$

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x)$$

Remark 3. The reason why we introduce the interior is because f cannot be differentiable on the boundary. Think about if a function $g:[a,b]\to\mathbb{R}$ can be differentiable on the endpoint (a or b).

Proposition 4 (Second order condition). Assume $f: V \subset \mathbb{R}^d \to \mathbb{R}$ is twice-continuously-differentiable in the interior of V, which we denote by V° , then f is convex if and only if for all $x \in V^{\circ}$

$$\nabla^2 f(x) \succeq 0$$

Definition 7 (Local minima). For a function $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$, $x^* \in V$ is a local minima of f if there exists a neighborhood $U \subseteq V$ of x^* such that for all $y \in U$, $f(y) \geq f(x^*)$.

Definition 8 (Global minima). For a function $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$, $x^* \in V$ is a global minima of f if for all $y \in V$, $f(y) \geq f(x^*)$.

Proposition 5. For a convex function $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$, any local minima of f is a global minima.

Proposition 6 (Condition 1 for minima). Let $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$ be a function that is differentiable on V° . If x^* is a local minima of f then

$$\nabla f(x^*) = 0.$$

Furthermore, if f is convex, then x^* is a global minima of f if and only if

$$\nabla f(x^*) = 0.$$

Proposition 7 (Condition 2 for minima). Let $f: V \subseteq \mathbb{R}^d \to \mathbb{R}$ be a function that is twice-continuously-differentiable on V° and $\nabla^2 f(x) \succeq 0$ for all x in a neighborhood $\mathcal{U} \subseteq V$ of $x^* \in V$. Then x^* is the local minima of f if and only if

$$\nabla f(x^*) = 0.$$

3 Appendix

Let $\|\cdot\|$ be a norm on \mathbb{R}^d and consider the space $(\mathbb{R}^d, \|\cdot\|)$.

Definition 9 (Neighborhood). For a point $v \in \mathbb{R}^d$, \mathcal{U} is called a neighborhood of v if $v \in \mathcal{U}$ and there exists r > 0 such that the open ball centered at v with radius being r subsets \mathcal{U} .

$$B(r) := \{x : ||x - v|| < r\} \subseteq \mathcal{U}$$

Remark 4. For example, an open ball centered at v is a neighborhood of v. This is a generalization of open interval in \mathbb{R} . Think about \mathbb{R} , the neighborhood of $x \in \mathbb{R}$ is an open interval that contains \mathbb{R} .

Definition 10 (Open set). A set $V \subseteq \mathbb{R}^d$ is an open set if for all $v \in V$, there exists a neighborhood U_v of v such that $U_v \subseteq V$.

Remark 5. An open ball centered at v is an open set. Think about \mathbb{R} , an union of open intervals, $\bigcup_{i=1}^{\infty} \mathcal{I}_i$ where \mathcal{I}_i are open intervals, is an open set. In fact, all open sets in \mathbb{R} can be written as the union of open intervals.

Definition 11 (Interior). For a set $V \subseteq \mathbb{R}^d$, the interior V° is the set of points that have a neighborhood that subsets V, that is,

$$\mathcal{V}^{\circ} = \{x \in \mathcal{V} : \exists \mathcal{U}_x \text{ neighborhood of } x \text{ s.t. } \mathcal{U}_x \subseteq \mathcal{V}\}.$$

Remark 6. Picture whatever closed shape in your mind, for example, a heart. Then exclude the boundaries, every point inside forms the interior of that shape. For a closed ball,

$$K(r) := \{x : ||x - v|| < r\},\$$

the interior is B(r). Think about \mathbb{R} , the interior of a closed interval is just the open interval version of it (which is the largest open interval subsets it) and the interior of \mathbb{N} is empty.

Definition 12 (Boundary). For a set $\mathcal{V} \subseteq \mathbb{R}^d$, the boundary of \mathcal{V} , which we denote by $\partial \mathcal{V}$, is $\partial \mathcal{V} := \mathcal{V} \setminus \mathcal{V}^{\circ}$.