

RELATÓRIO DO PROJETO COMPUTACIONAL

Disciplina: Matemática Computacional

Curso: Mestrado Integrado em Engenharia Aeroespacial

Ano Letivo 2019/2020

Nº Grupo: 38

Nome: Gonçalo da Câmara Correia, Nº 92681

Nome: Leonor Grenho Leal Cordeiro, № 93288

Nome: Sara Filipa Dinis Marques, № 93342

Enunciado

AA-10

Em probabilidades e estatística, a distribuição normal reduzida ou padrão é de utilização comum, cuja função densidade de probabilidade f(z) é dada pela expressão:

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

A primitiva desta função não tem uma expressão fechada, isto é, não é possível encontrar uma expressão analítica para a primitiva, pelo que é necessário recorrer a integração numérica para avaliar a função primitiva F(z), definida como:

$$F(z) = \int_{-\infty}^{z} f(t)dt$$

Em termos práticos é usual a consulta de tabelas como a disponível em:

https://fenix.tecnico.ulisboa.pt/downloadFile/3779572243487/TabelaNormal.pdf

Reproduza uma tabela semelhante à disponível, através de um método de integração numérica que utilize as regras de Gauss-Lobato.

Sugestão: Utilize a propriedade da função f(z) ser uma função par.

Assinaturas:
Data: 29/11/2019

1

ÍNDICE

1.	INTE	RODUÇÃO E FUNDAMENTOS TEÓRICOS	. 3
2.	ALG	ORITMOS DO MÉTODO E ASPETOS DA SUA IMPLEMENTAÇÃO	. 5
	2.1	Método de Gauss-Lobatto	5
	2.2	Função Main	5
	2.3	Tabela de Distribuição Normal Padrão	5
	2.4	Análise do erro	
	2.4.1 2.4.2	-,,	
3.	APLI	ICAÇÃO DO MÉTODO E DISCUSSÃO DE RESULTADOS	. 6
	3.1	Majorante do erro	6
	3.2 3.2.1 3.2.2		. 7
4.	CON	ICLUSÃO	. 9
5.	REF	ERÊNCIAS BIBLIOGRÁFICAS	. 9
6.	ANE	XOS	10
	6.1	Tabela de Distribuição Normal Padrão	10
	6.2	Outros Gráficos	11
	6.3	Demonstrações	12
	6.4	Código	19

1. INTRODUÇÃO E FUNDAMENTOS TEÓRICOS

Considere-se a função densidade de probabilidade, dada pela expressão seguinte:

Figura 1 - Função distribuição de probabilidade

Sabe-se que não se pode obter uma primitiva para f(z), pelo que se recorre à integração numérica de forma a avaliar a função primitiva F(z).

$$F(z) = \int_{-\infty}^{z} f(t) dt$$
 (2)

A integração numérica corresponde ao processo de obtenção de valores aproximados para o integral de uma função real f definida no intervalo $\overline{\Omega} = [a,b] \subset \mathbb{R}$. De um modo geral, é o processo de obter aproximações para:

$$I(f;\overline{\Omega}) = \int_{a}^{b} f(x) \, dx \tag{3}$$

Nas regras de Gauss não se fixa a priori a localização dos nós. Na verdade, o que se faz é "jogar" com a localização de forma a obter um grau de exatidão que seja máximo.

A função integranda f, por vezes, assume valores num dos extremos do intervalo de integração, ou em ambos. No caso das *regras de Gauss-Lobatto*, têm-se em consideração ambos os extremos do intervalo de integração $\overline{\Omega}$. Logo, o valor de I_h é dado pela seguinte expressão:

$$I_h = Af(a) + Bf(b) + \sum_{i=1}^{n} A_i f(x_i)$$
 (4)

Esta regra possui grau de exatidão $\leq 2n + 1$.

As regras de integração podem ser aplicadas depois de uma subdivisão do intervalo de integração $\overline{\Omega}$ em N subintervalos $\overline{\Omega}_i = [a_{i-1}, a_i]$, com i = 1, ..., N, $a_0 = a$, $a_N = b$. Nestes casos, as regras com pontos nos extremos do intervalo são de grande interesse, uma vez que os pontos de ligação dos subintervalos são comuns.

Verifica-se que nas expressões do erro para cada regra de integração, este depende de uma potência de comprimento b-a. Se o comprimento do intervalo diminuir, o erro também diminui, e será tanto menor, quanto mais elevado for o expoente. O erro nas *regras de Gauss-Lobatto* é dado pela fórmula:

$$E_h(f) = c_p(b-a)^{2p-1} f^{(2p-2)}(\xi), \text{ com } c_p = \frac{-p(p-1)^3 ((p-2)!)^4}{(2p-1)((2p-2)!)^3}$$
(5)

em que p é o número de pontos da regra de integração.

Para p=2 tem-se a Regra do Trapézio:

$$I_h(f) = \frac{b-a}{2} (f_0 + f_1) \tag{6}$$

$$E_h(f) = -\frac{1}{12}f''(\xi)(b-a)^3, \operatorname{com} f''(\xi) = \frac{1}{\sqrt{2\pi}} \left((\xi^2 - 1)e^{-\frac{\xi^2}{2}} \right)$$
(7)

Para p=3 tem-se a Regra de Simpson :

$$I_h(f) = \frac{b-a}{6} (f_0 + 4f_1 + f_2)$$
(8)

$$E_h(f) = -\frac{1}{2880} f^{(4)}(\xi) (b-a)^5, \operatorname{com} f^{(4)}(\xi) = \frac{1}{\sqrt{2\pi}} \left((\xi^4 - 6\xi^2 + 3)e^{-\frac{\xi^2}{2}} \right)$$
(9)

Para p=4 tem-se a Regra de Gauss-Lobatto para 4 pontos:

$$I_h(f) = \frac{b-a}{12} \left(f_0 + 5f_1 + 5f_2 + f_3 \right) \tag{10}$$

$$E_h(f) = -\frac{1}{1512000} f^{(6)}(\xi) (b-a)^7, \operatorname{com} f^{(6)}(\xi) = \frac{1}{\sqrt{2\pi}} \left((\xi^6 - 15\xi^4 + 45\xi^2 - 15)e^{-\frac{\xi^2}{2}} \right) \tag{11}$$

em que ξ representa um dado ponto pertencente ao intervalo [a,b].

Neste trabalho, pretende-se calcular o seguinte integral:

$$F(z) = \int_{-\infty}^{z} f(t) dt$$
 (12)

O extremo inferior de integração é $-\infty$. Sendo assim, não se pode aplicar diretamente o método, uma vez que o intervalo de integração não é fechado. Contudo, tendo em atenção o facto de a função f ser par e que o valor do integral de f é 1, dado que se trata da função densidade de probabilidade, tem-se:

$$\int_{-\infty}^{0} f(z) dz = \frac{1}{2} \Leftrightarrow \int_{-\infty}^{0} f(z) dz + \int_{0}^{x} f(z) dz = \frac{1}{2} + \int_{0}^{x} f(z) dz$$
(13)

Obtém-se, assim, um intervalo fechado [0,x].

Um integral sobre [a, b] deve ser alterado para um integral sobre [-1, 1] antes de aplicar as regras de Gauss-Lobatto. Essa mudança de intervalo efetua-se da seguinte forma:

$$x(\xi) = \frac{a}{2}(1-\xi) + \frac{b}{2}(1+\xi)$$
(14)

Assim, o integral é dado, aproximadamente, por:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) dx \iff$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) dx$$
(15)

2. ALGORITMOS DO MÉTODO E ASPETOS DA SUA IMPLEMENTAÇÃO

2.1 Método de Gauss-Lobatto

Criaram-se as funções Gauss_0.m, Gauss_1.m, Gauss_2.m, correspondendo, respetivamente, às regras do Trapézio, Simpson e Gauss-Lobatto com 4 pontos, expressões (6), (8) e (10). Para cada função implementou-se um algoritmo correspondente à sua respetiva expressão de integração. Estas funções recebem o comprimento do intervalo de integração z, bem como o número N de subintervalos.

Sendo assim, começou-se por inicializar a variável I_i a 0.5, em que i=0,1,2 (para cada função, respetivamente). Fez-se a implementação de um ciclo *for* para calcular todos os a's e b's e a soma da área de todos os n segmentos.

De forma a realizar o cálculo do integral, as três funções invocam a função f.m, que é a função densidade de probabilidade, expressão (1) e a função g.m, que consiste numa transformação linear de mudança de coordenadas, expressão (14).

Por fim, a função Gauss_i.m retorna o valor da expressão l_i com i=0,1,2 que é uma aproximação ao valor real do integral até z.

2.2 Função Main

Cria-se a função main.m que reúne todas as funções criadas, permitindo ao utilizador executar integralmente o seu programa. Seguidamente, estas funções serão explicadas em pormenor.

2.3 Tabela de Distribuição Normal Padrão

Para a criação da tabela de distribuição normal criou-se a função tabela.m. O programa usa a função fopen. Esta abre um ficheiro denominado de "Tabela De Distribuicao Normal Padrao", no qual serão escritos os resultados obtidos pela função Gauss_2.m, através da função fprintf.

A razão pela qual foi escolhida a função Gauss_2.m, assenta no facto de esta possuir uma maior precisão em relação às outras, visto que esta usa um maior número de pontos.

Por fim, é utilizada a função fclose, garantindo que o ficheiro é fechado.

2.4 Análise do erro

Ao longo deste trabalho, foram estudados alguns tipos de erro, tais como: majorante do erro, erro exato para N fixo e erro exato para z fixo.

2.4.1 Majorante do erro

Criaram-se as funções Erromax_0.m, Erromax_1.m, Erromax_2.m, correspondendo respetivamente às regras Gauss-Lobatto com 2, 3 e 4 pontos, expressões (7), (9) e (11). A cada função implementou-se um algoritmo correspondente à sua respetiva expressão, fazendo depois o plot dos gráficos.

Para calcular o máximo do erro e a que ponto z está associado criou-se uma condição if que vai percorrendo todos os pontos da função do erro e vai comparando-os, guardando sempre o valor máximo.

2.4.2 Erro exato

Tanto para N fixo como para z fixo, o erro absoluto é calculado através da diferença entre a função Gauss i.m desejada e a função cdf (cumulative distribution function) da Statistics

Toolbox, aplicada à distribuição normal reduzida N(0,1) usada para obter o valor real da função distribuição.

2.4.2.1 Para N fixo

Tal como para o erro máximo, para o erro exato com z a variar, também foram criadas as funções Erroex_0.m, Erroex_1.m, Erroex_2.m, correspondendo, respetivamente, às regras do trapézio, Simpson e Gauss-Lobatto com 4 pontos.

Como N é fixo, atribuíram-se alguns valores discretos a N e fez-se o plot dos gráficos em simultâneo, através das funções hold on e hold off, facilitando a análise do erro quando z aumenta e para certos valores de N.

Para o cálculo do erro exato máximo foi utilizado o mesmo procedimento que foi usado para o cálculo do majorante do erro máximo.

2.4.2.2 Para z fixo

Como se pretende analisar o comportamento do erro nos diferentes métodos em função de N, foi criada a função ErroexN.m no qual se aplicou novamente a função plot para fazer o gráfico.

3. APLICAÇÃO DO MÉTODO E DISCUSSÃO DE RESULTADOS

Ao aplicar as regras de Gauss-Lobatto ao cálculo do integral, vai estar associado um erro, como foi referido anteriormente. Analisou-se, assim, a variação do majorante do erro e do erro efetivamente cometido, com o número N de subintervalos em que se dividiu o intervalo de integração, e o ponto z até onde se efetuou a integração.

3.1 Majorante do erro

Começou-se por analisar a relação entre o majorante do erro para a regra de Gauss-Lobatto com 2, 3 e 4 pontos dado pelas expressões (7), (9) e (11), respetivamente, e o z, para um N constante igual a 10.

Nos três casos existe uma zona inicial, até um certo z, na qual o valor do majorante do erro é, aproximadamente 0. Tal acontece, uma vez que, para os primeiros valores de z, a função não está sujeita à propagação do erro.

Para valores cada vez maiores de z, o erro propaga-se e a função afasta-se do valor exato. Daí o facto de os gráficos das três figuras oscilarem tanto a partir desse ponto.

Analisou-se, então o comportamento das 3 derivadas de f que são usadas no erro no intervalo [0,3.49]. A derivada de ordem 2 apresenta o maior valor absoluto de $\frac{1}{\sqrt{2\pi}}$ (em z = 0) e um zero em z = 1. A derivada de ordem 4 tem um máximo em $\frac{3}{\sqrt{2\pi}}$ (em z = 0) e dois zeros em z \approx 0.742 e z \approx 2.334. A derivada de ordem 6 tem o maior valor absoluto de $\frac{15}{\sqrt{2\pi}}$ (em z = 0) e três zeros em z \approx 0.617, z \approx 1.889 e z \approx 3.324. Assim, é de esperar que, aumentando p, ou seja, o número de pontos utilizados, o majorante do erro diminua (devido, essencialmente, ao denominador de cada expressão do erro ter diferentes ordens de grandeza). Os pontos em que a derivada é zero são também os zeros da função do erro, já que b-a \neq 0 para todo o z \neq 0. A função tem também um zero em z = 0 (a = b). Tal como é esperado, isto verifica-se nos gráficos obtidos nas figuras 2, 3 e 4. Com o aumento do número de pontos o erro diminui cerca de 4 ordens de grandeza, ou seja, a integração é cada vez mais exata.

3.2 Erro exato

De seguida, analisou-se a variação do erro efetivamente cometido com z e o N.

3.2.1 Em função de z

Ao analisar a relação entre o erro e o z usou-se diferentes N's (N = 1, N = 5, N = 10, N = 50 e N = 100) e obteve-se os seguintes gráficos:

(Tal como para o majorante do erro, para cada regra calculou-se o erro máximo cometido e o respetivo z para N=10 (linha amarela), por este se comportar como a maioria em cada caso)

Nos três casos verificou-se que para os primeiros valores de z, o erro aumenta até atingir um valor máximo, decrescendo, rapidamente, até um determinado ponto onde volta a repetir este comportamento. Isto pode ser justificado pelo facto de o majorante do erro apresentar zeros (onde as derivadas de uma certa ordem da função é zero) em [0,3.49], o que leva a que o erro exato, que é majorado por este, também decresça rapidamente. É de notar que todos os erros exatos máximos são inferiores aos respetivos majorantes do erro máximos.

A função do erro exato comporta-se da mesma forma, no geral, para os diferentes valores de N, exceto para N = 1 e para N = 100 na regra de Gauss-Lobatto 2. Sendo assim, tirando estes casos, o máximo verifica-se aproximadamente para o mesmo ponto que N = 10. Quando N = 1, a função afasta-se um pouco das restantes, sendo esse afastamento mais acentuado no primeiro caso (figura 5). Isto pode ser explicado porque, sendo N = 1, não estamos a dividir a função, ou seja,

estamos a usar as regras de Gauss-Lobato para a função entre 0 e z na totalidade, o que leva a um erro muito maior e que evolui de uma maneira muito diferente dos outros.

À medida que o N aumenta, o erro vai diminuindo (os respetivos gráficos aparecem cada vez mais em baixo). Para N = 100 no terceiro caso (figura 7), observa-se um comportamento errático (linha verde), que é justificado pelo facto de 100 já ser um número elevado de divisões para o qual a regra de Gauss-Lobatto 2 (regra mais exata das três) já não consegue efetuar os cálculos com a exatidão normal. Aliás, isto já se verifica para N = 50 e no início do segundo caso (figura 2) para N = 100, mas não tão acentuado. Como seria de esperar o erro exato máximo diminui para as regras de Gauss-Lobatto de maior grau.

3.2.2 Em função de N

Analisou-se a relação entre o erro e o N e obteve-se o seguinte gráfico:

(Para obter este gráfico usou-se z = 1.73, dado se ter verificado o maior erro exato dos três analisados anteriormente, tornando-se mais notória a diferença entre os gráficos visualizados)

Nos três casos é possível aproximar o gráfico a uma reta com declive negativo (erro diminui com o aumento do N) que iremos analisar. Teoricamente, usando a expressão (7), (8) e (9) para o majorante do erro obtém-se:

Figura 8 — Gráfico do logaritmo do erro em função do logaritmo de N, com z=1.73, para as três regras de Gauss-Lobatto

$$\log |E| = -2 \log N + \log \left| \frac{(b-a)^3}{12} f''(\xi) \right|$$
 , para a Regra do Trapézio (16)

$$\log |E| = -4 \log N + \log \left| \frac{(b-a)^5}{2880} f^{(4)}(\xi) \right|$$
 , para a Regra de Simpson (17)

$$\log |E| = -6 + \log \left| \frac{(b-a)^7}{1512000} f^{(6)}(\xi) \right|$$
, para a Regra de Gauss-Lobatto com 4 pontos

Aproximando os gráficos a uma reta, conseguimos calcular o declive (m) usando as coordenadas de 2 pontos. Assim, fazendo isto para as três retas obtém-se:

$$m = \frac{-2.368 - (-5.187)}{0.477 - 1.886} \approx -2.001 \approx -2$$
, para a Regra do Trapézio

$$m = \frac{-10.68 - (-13.11)}{1.279 - 1.908} \approx -3.863 \approx -4, \text{ para a Regra de Simpson}$$

$$m = \frac{-7.61 - (-12.46)}{0.477 - 1.279} \approx -6.048 \approx -6$$
, para a Regra de Gauss-Lobatto com 4 pontos

Os declives obtidos são muito próximos dos esperados teoricamente. É de notar que as derivadas de f se mantêm constantes para os vários N's e diferente de zero, não ocorrendo um decréscimo acentuado da função erro como anteriormente. Existe, no entanto, um pico na Regra de Simpson (linha laranja) para N \approx 9. Observando as zonas em que as funções começam a ter um comportamento errático, consegue-se encontrar o N máximo (entre 0 e 300) para o qual a Regra em questão deixa de funcionar. Como isto não acontece na primeira (linha azul), conclui-se que $N_{máx}$ é superior a 300 na Regra do Trapézio. Para a Regra de Simpson, $N_{máx} \approx 41$ e para a Regra de Gauss-Lobatto com 4 pontos, $N_{máx} \approx 138$. Testou-se também o N mínimo suficiente para que cada regra consiga reproduzir a tabela de distribuição normal exatamente como está no enunciado e obteve-se $N_{mín}$ = 313 para a Regra do Trapézio, $N_{mín}$ = 13 para a Regra de Simpson e $N_{mín}$ = 3 para a Regra de Gauss-Lobatto com 4 pontos.

4. CONCLUSÃO

Depois de uma análise do método de integração proposto, a regra de Gauss-Lobatto, foi possível tirar algumas conclusões quanto à sua aplicação no cálculo, aproximado, do integral da função densidade de probabilidade. Conseguimos comparar não só as diferenças entre as três regras de Gauss-Lobatto utilizadas, mas também a variação do erro na utilização destas regras para diferentes pontos até onde é feita a integração e para diferentes números de subintervalos em que é dividida a função.

Concluímos que com o aumento do número de pontos usados (dependendo da regra utilizada), o grau de exatidão da regra aumenta. Ou seja, obtivemos maior exatidão para a regra de Gauss-Lobatto com 4 pontos. Para além disso, o grau de exatidão aumenta também com o número de subintervalos em que se divide a função. No entanto, é de notar que para um certo número de subintervalos (que varia consoante a regra utilizada) deixa de se observar esta exatidão nos resultados, uma vez que a função começa a apresentar um comportamento errático

5. REFERÊNCIAS BIBLIOGRÁFICAS

[1] B. D. HAHN and D. T. VALENTINE. ESSENTIAL MATLAB for Engineers and Scientists. Academic Press, 2019

[2] H. PINA. Métodos Numéricos. Escolar Editora, 2010.

[3] A. QUARTERONI. Scientific Computing with MATLAB and Octave. Springer-Verlag, 2014.

[4]https://www.mathworks.com/matlabcentral/answers/index

[5]https://fenix.tecnico.ulisboa.pt/downloadFile/1126518382214237/Acetatos Capitulo 4.pdf

[6]https://fenix.tecnico.ulisboa.pt/downloadFile/1126518382214244/Exercicios Capitulo 4 2010-11.pdf

6. ANEXOS

6.1 Tabela de Distribuição Normal Padrão

Tabela obtida quando se executa a função tabela.m. Os valores da tabela foram calculados para a Regra de Gauss-Lobatto com 4 pontos para N=10.

	Tabela De	Distribuicao	Normal Padra	0			
z 0.00 0.01	0.02 0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0 0.500000 0.503989	0.507978 0.511966	0.515953	0.519939	0.523922	0.527903	0.531881	0.535856
0.1 0.539828 0.543795	0.547758 0.551717	0.555670	0.559618	0.563559	0.567495	0.571424	0.575345
0.2 0.579260 0.583166	0.587064 0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3 0.617911 0.621720	0.625516 0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4 0.655422 0.659097	0.662757 0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5 0.691462 0.694974	0.698468 0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6 0.725747 0.729069	0.732371 0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7 0.758036 0.761148	0.764238 0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8 0.788145 0.791030	0.793892 0.796731	0.799546	0.802337	0.805105	0.807850	0.810570	0.813267
0.9 0.815940 0.818589	0.821214 0.823814	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0 0.841345 0.843752	0.846136 0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1 0.864334 0.866500	0.868643 0.870762	0.872857	0.874928	0.876976	0.879000	0.881000	0.882977
1.2 0.884930 0.886861	0.888768 0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3 0.903200 0.904902	0.906582 0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4 0.919243 0.920730	0.922196 0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5 0.933193 0.934478	0.935745 0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6 0.945201 0.946301	0.947384 0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7 0.955435 0.956367	0.957284 0.958185	0.959070	0.959941	0.960796	0.961636	0.962462	0.963273
1.8 0.964070 0.964852	0.965620 0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9 0.971283 0.971933	0.972571 0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0 0.977250 0.977784	0.978308 0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1 0.982136 0.982571	0.982997 0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2 0.986097 0.986447	0.986791 0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3 0.989276 0.989556	0.989830 0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4 0.991802 0.992024	0.992240 0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5 0.993790 0.993963	0.994132 0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6 0.995339 0.995473	0.995604 0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7 0.996533 0.996636	0.996736 0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8 0.997445 0.997523	0.997599 0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9 0.998134 0.998193	0.998250 0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3.0 0.998650 0.998694	0.998736 0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1 0.999032 0.999065	0.999096 0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2 0.999313 0.999336	0.999359 0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3 0.999517 0.999534	0.999550 0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999651
3.4 0.999663 0.999675	0.999687 0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758

6.2 Outros Gráficos

Obteve-se, também, os gráficos do logaritmo do erro exato em função do logaritmo de z para as três regras de Gauss-Lobatto. Todos os gráficos obtidos podem ser aproximados, numa zona inicial, a uma reta com um certo declive, que não depende de N, uma vez que os gráficos do logaritmo do erro em função de z apresentam, em geral, comportamentos semelhantes entre si. Assim, estudou-se apenas os declives das retas para N = 5.

Para a Regra do Trapézio tem-se:

$$\log|E_h(f)| = 3\log z + \log\left|\frac{f''(\xi)}{12N^3}\right| \tag{19}$$

Comprova-se, assim, a linearidade da relação entre o logaritmo do erro, e o logaritmo de z, bem como o facto de o declive não depender de N.

Aproximando o gráfico obtido a uma reta, calcula-se o seu declive, m, a partir das coordenadas de dois pontos.

Figura 9 – Gráfico do logaritmo do erro em função do logaritmo de z, com N=5,, para a Regra do Trapézio

$$m = \frac{-7.973 - (-4.344)}{-1.699 - (-0.482)} \approx 2.981 \approx 3$$

Para Regra de Simpson tem-se:

$$log|E_h(f)| = 5 log z + log \left| \frac{f^{(4)}(\xi)}{2880N^5} \right|$$
 (20)

Aproximando o gráfico a uma reta, calcula-se novamente o declive.

Figura 10 – Gráfico do logaritmo do erro em função do logaritmo de z, com N=5,, para a Regra de SImpson

$$m = \frac{-8.386 - (-13.170)}{-0.432 - (-1.398)} \approx 4.952 \approx 5$$

Finalmente para a regra de Gauss-Lobato com 4 pontos obtém-se

$$\log|E_h(f)| = 7\log z + \log\left|\frac{f^{(6)}(\xi)}{1512000N^7}\right|$$
 (21)

Aproximando o gráfico a uma reta, calcula-se novamente o declive.

Figura 11 — Gráfico do logaritmo do erro em função do logaritmo de z, com N=5,, para a Regra de Gauss-Lobatto com 4 pontos

$$m = \frac{-11.520 - (-14.090)}{-0.252 - (-0.638)} \approx 6.649 \approx 7$$

Nas três situações, obteve-se, aproximadamente, o declive que era esperado teoricamente. As zonas onde estas funções decrescem acentuadamente, correspondem às zonas em que a derivada de uma certa ordem, da função de densidade de probabilidade, se aproxima dos seus zeros, o que leva a este decréscimo, cujos valores não dão para calcular teoricamente com grande precisão.

6.3 Demonstrações

Regras de Gauss-Lobatto (demonstração dos w_i e dos ξ_i)

Momento de ordem m no intervalo [-1, 1]:

$$I_m = \int_{-1}^1 \xi^m \, d\xi = \left[\frac{\xi^{m+1}}{m+1}\right]_{-1}^1 = \begin{cases} 0 & , & m \, \text{impar} \\ \frac{2}{m+1}, & m \, par \end{cases}$$

$$I_0 = \frac{2}{0+1} = 2 \qquad I_1 = 0 \qquad I_2 = \frac{2}{2+1} = \frac{2}{3} \qquad I_3 = 0 \qquad I_4 = \frac{2}{4+1} = \frac{2}{5} \quad \dots$$

$$f(\xi) = \xi^m$$

• Para a regra de Gauss-Lobatto com 2 pontos (p=2):

$$f(\xi) = \xi^{0} = 1$$

$$I_{0} = w_{0}f(-1) + w_{0}f(1)$$

$$2 = w_{0}(1) + w_{0}(1)$$

$$w_{0} = 1$$

• Para a regra de Gauss-Lobatto com 3 pontos (p=3):

$$f(\xi) = \xi^0 = 1$$

$$I_0 = w_0 f(-1) + w_1 f(0) + w_0 f(1)$$

$$2 = w_0 (1) + w_1 (1) + w_0 (1)$$

$$2 = (2) w_0 + w_1 \rightarrow w_1 = 2 - (2) \frac{1}{3} \rightarrow w_1 = \frac{4}{3}$$

$$f(\xi) = \xi^{1} = \xi$$

$$I_{1} = w_{0}f(-1) + w_{1}f(0) + w_{0}f(1)$$

$$0 = w_{0}(-1) + w_{1}(0) + w_{0}(1)$$

$$0 = 0$$

$$f(\xi) = \xi^{2}$$

$$I_{1} = w_{0}f(-1) + w_{1}f(0) + w_{0}f(1)$$

$$\frac{2}{3} = w_{0}(-1)^{2} + w_{1}(0)^{2} + w_{0}(1)^{2}$$

$$\frac{2}{3} = 2 w_{0}$$

$$w_{0} = \frac{1}{3}$$

• Para a regra de Gauss-Lobatto com 4 pontos (p=4):

$$f(\xi) = \xi^{0} = 1$$

$$I_{0} = w_{0}f(-1) + w_{1}f(-\xi) + w_{1}f(\xi) + w_{0}f(1)$$

$$2 = w_{0}(1) + w_{1}(1) + w_{1}(1) + w_{0}(1)$$

$$2 = (2) w_{0} + (2)w_{1}$$

$$w_{0} = 1 - w_{1}$$

$$f(\xi) = \xi^{1} = \xi$$

$$I_{1} = w_{0}f(-1) + w_{1}f(-\xi) + w_{1}f(\xi) + w_{0}f(1)$$

$$0 = w_{0}(-1) + w_{1}(-\xi) + w_{1}(\xi) + w_{0}(1)$$

$$0 = 0$$

$$f(\xi) = \xi^{2}$$

$$I_{1} = w_{0}f(-1) + w_{1}f(-\xi) + w_{1}f(\xi) + w_{0}f(1)$$

$$\frac{2}{3} = w_{0}(-1)^{2} + w_{1}(-\xi)^{2} + w_{1}(\xi)^{2} + w_{0}(1)^{2}$$

$$\frac{2}{3} = (2)w_{0} + (2)w_{1}(\xi)^{2}$$

$$\frac{1}{3} = w_{0} + w_{1}(\xi)^{2}$$

$$f(\xi) = \xi^{3}$$

$$I_{1} = w_{0}f(-1) + w_{1}f(-\xi) + w_{1}f(\xi) + w_{0}f(1)$$

$$0 = w_{0}(-1)^{3} + w_{1}(-\xi)^{3} + w_{1}(\xi)^{3} + w_{0}(1)^{3}$$

$$0 = 0$$

$$f(\xi) = \xi^{4}$$

$$I_{1} = w_{0}f(-1) + w_{1}f(-\xi) + w_{1}f(\xi) + w_{0}f(1)$$

$$\frac{2}{5} = w_{0}(-1)^{4} + w_{1}(-\xi)^{4} + w_{1}(\xi)^{4} + w_{0}(1)^{4}$$

$$\frac{2}{5} = (2)w_{0} + (2)w_{1}(\xi)^{4}$$

$$\begin{cases} w_0 = 1 - w_1 \\ \frac{1}{3} = w_0 + w_1(\xi)^2 \\ \frac{1}{5} = w_0 + w_1(\xi)^4 \end{cases} \iff \begin{cases} w_0 = 1 - w_1 \\ \frac{1}{3} - \frac{1}{5} = w_1(\xi)^2 - w_1(\xi)^4 \\ \frac{1}{5} = (1 - w_1) + w_1(\xi)^4 \end{cases}$$

$$\Leftrightarrow \begin{cases} w_0 = 1 - w_1 \\ \frac{2}{15} = w_1[(\xi)^2 - (\xi)^4] \\ \frac{1}{5} = (1 - w_1) + w_1(\xi)^4 \end{cases} \iff \begin{cases} w_0 = 1 - w_1 \\ w_1 = \frac{2}{15[(\xi)^2 - (\xi)^4]} \\ \frac{1}{5} = 1 - \frac{2}{15[(\xi)^2 - (\xi)^4]} + \frac{2}{15[(\xi)^2 - (\xi)^4]}(\xi)^4 \end{cases}$$

$$\frac{1}{5} = 1 - \frac{2}{15[(\xi)^2 - (\xi)^4]} + \frac{2}{15[(\xi)^2 - (\xi)^4]} (\xi)^4$$

$$-\frac{4}{5} = \frac{2\xi^4 - 2}{15[(\xi)^2 - (\xi)^4]}$$

$$-12[(\xi)^2 - (\xi)^4] = 2\xi^4 - 2$$

$$10\xi^4 - 12\xi^2 + 2 = 0$$

$$5\xi^4 - 6\xi^2 + 1 = 0$$

 $\frac{1}{5} = w_0 + w_1(\xi)^4$

Substituindo ξ por 1, podemos concluir que 1 é um zero da equação:

$$5(1)^4 - 6(1)^2 + 1 = 0$$
$$5 - 6 + 1 = 0$$
$$0 = 0$$

Como já sabemos que 1 é um zero da equação, iremos utilizar a regra de Ruffini para diminuir o grau:

Seja:

$$\xi^2 = y$$

Então:

$$5\xi^4 - 6\xi^2 + 1 = 0$$

$$5y^2 - 6y + 1 = 0$$

$$(y-1)(5y-1) = 0$$

$$y = 1 \lor y = \frac{1}{5} \to \xi^2 = 1 \lor \xi^2 = \frac{1}{5} \to \xi = \pm 1 \lor \xi = \pm \sqrt{\frac{1}{5}}$$

$$w_1 = \frac{2}{15[(\xi)^2 - (\xi)^4]} = \frac{2}{15\left[\left(\sqrt{\frac{1}{5}}\right)^2 - \left(\sqrt{\frac{1}{5}}\right)^4\right]} = \frac{5}{6}$$

$$w_0 = 1 - w_1 = 1 - \frac{5}{6} = \frac{1}{6}$$

Integral de função real f(z) com mudança de variável

• Transformar o intervalo [a,b] no intervalo normalizado ou de referência [-1,1] para o qual existem tabelas de regras de integração:

$$I_h = \int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f(x(\xi)) d\xi \cong \frac{b-a}{2} \sum_{i=1}^p w_i f(\xi_i)$$

 $w_i \rightarrow pesos correspondentes$

 $\xi_i \rightarrow pontos de integração$

• Transformação linear:

$$x(\xi) = \frac{a}{2}(1-\xi) + \frac{b}{2}(1+\xi) \qquad \xi \in [-1,1]$$

• Para a regra de Gauss-Lobatto com 2 pontos (p=2), expressão (6):

$$I_{-}0 = \frac{b-a}{2}(w_0 f(x(-1)) + w_0 f(x(1)))$$
$$I_{-}0 = \frac{b-a}{2}(f(x(-1)) + f(x(1)))$$

• Para a regra de Gauss-Lobatto com 3 pontos (p=3), expressão (8):

$$I_{-1} = \frac{b-a}{2} (w_0 f(x(-1)) + w_1 f(x(0)) + w_0 f(x(1)))$$

$$I_{-1} = \frac{b-a}{2} \left[\frac{1}{3} f(x(-1)) + \frac{4}{3} f(x(0)) + \frac{1}{3} f(x(1)) \right]$$

• Para a regra de Gauss-Lobatto com 4 pontos (p=4), expressão (10):

$$I_{-2} = \frac{b-a}{2} (w_0 f(x(-1)) + w_1 f(x(-\xi)) + w_1 f(x(\xi)) + w_0 f(x(1)))$$

$$I_{-}2 = \frac{b-a}{2} \left[\frac{1}{6} f(x(-1)) + \frac{5}{6} f\left(x\left(-\frac{\sqrt{5}}{5}\right)\right) + \frac{5}{6} f\left(x\left(\frac{\sqrt{5}}{5}\right)\right) + \frac{1}{6} f(x(1)) \right]$$

Derivadas da função densidade de probabilidade f(z)

$$f(z) = \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}\right)$$

$$f'(z) = \frac{d}{dz} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = -\frac{1}{\sqrt{2\pi}} \left(z e^{-\frac{z^2}{2}} \right)$$

•
$$f''(z) = \frac{d^2}{dz^2} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = -\frac{1}{\sqrt{2\pi}} \left(e^{-\frac{z^2}{2}} \right) + \frac{1}{\sqrt{2\pi}} \left(z^2 e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left((z^2 - 1) e^{-\frac{z^2}{2}} \right)$$

$$f'''(z) = \frac{d^3}{dz^3} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left(2ze^{-\frac{z^2}{2}} - z(z^2 - 1)e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left((-z^3 + 3z)e^{-\frac{z^2}{2}} \right)$$

•
$$f^{(4)}(z) = \frac{d^4}{dz^4} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left(-z(-z^3 + 3z)e^{-\frac{z^2}{2}} + (-3z^2 + 3)e^{-\frac{z^2}{2}} \right)$$

= $\frac{1}{\sqrt{2\pi}} \left((z^4 - 6z^2 + 3)e^{-\frac{z^2}{2}} \right)$

$$f^{(5)}(z) = \frac{d^5}{dz^5} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left((4z^3 - 12z)e^{-\frac{z^2}{2}} - z(z^4 - 6z^2 + 3)e^{-\frac{z^2}{2}} \right)$$
$$= \frac{1}{\sqrt{2\pi}} \left((4z^3 - 12z)e^{-\frac{z^2}{2}} + (-z^5 + 6z^2 - 3z)e^{-\frac{z^2}{2}} \right)$$
$$= \frac{1}{\sqrt{2\pi}} \left((-z^5 + 10z^2 - 15z)e^{-\frac{z^2}{2}} \right)$$

•
$$f^{(6)}(z) = \frac{d^6}{dz^6} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left((-5z^4 + 30z^2 - 15)e^{-\frac{z^2}{2}} - z(-z^5 + 10z^3 - 15z)e^{-\frac{z^2}{2}} \right)$$

 $= \frac{1}{\sqrt{2\pi}} \left((-5z^4 + 30z^2 - 15)e^{-\frac{z^2}{2}} + (z^6 - 10z^4 + 15z^2)e^{-\frac{z^2}{2}} \right)$
 $= \frac{1}{\sqrt{2\pi}} \left((z^6 - 15z^4 + 45z^2 - 15)e^{-\frac{z^2}{2}} \right)$

As derivadas da função f(z) que estão indicadas serão utilizadas na expressão do erro nas regras de Gauss-Lobatto:

$$E_h(f) = c_p (b-a)^{2p-1} f^{(2p-2)}(\xi)$$
$$c_p = \frac{-p(p-1)^3 ((p-2)!)^4}{(2p-1)((2p-2)!)^3}$$

Em que p é o número de pontos na regra de integração.

Para:

• p=2, expressão (7):

$$c_p = \frac{-2(2-1)^3((2-2)!)^4}{(2(2)-1)((2(2)-2)!)^3} = -\frac{1}{12}$$

$$E_h(f) = c_p(b-a)^3 f''(\xi) = -\frac{(b-a)^3}{12} f''(\xi)$$

• p=3, expressão (9):

$$c_p = \frac{-3(3-1)^3((3-2)!)^4}{(2(3)-1)((2(3)-2)!)^3} = -\frac{1}{2880}$$

$$E_h(f) = c_p(b-a)^5 f^{(4)}(\xi) = -\frac{(b-a)^5}{2890} f^{(4)}(\xi)$$

• p=4, expressão (11):

$$c_p = \frac{-4(4-1)^3((4-2)!)^4}{(2(4)-1)((2(4)-2)!)^3} = -\frac{1}{1512000}$$

$$E_h(f) = c_p(b-a)^7 f^{(6)}(\xi) = -\frac{(b-a)^7}{1512000} f^{(6)}(\xi)$$

Logaritmo do erro absoluto em função de N

Tendo em conta que $h = \frac{(b-a)}{N}$:

• Para a regra de Gauss-Lobatto com 2 pontos (p=2), expressão (16):

$$\begin{split} \log|E_h(f)| &= \log \left| -\frac{(b-a)}{12} f''(\xi) h^2 \right| = \log \left| \frac{(b-a)}{12} f''(\xi) \frac{(b-a)^2}{N^2} \right| \\ &= \log \left| \frac{(b-a)^3}{12N^2} f''(\xi) \right| = \log \left(\frac{|b-a|^3}{12} |f''(\xi)| \frac{1}{N^2} \right) \\ &= \log \left(\frac{|b-a|^3}{12} |f''(\xi)| \right) + \log N^{-2} = \log \left(\frac{|b-a|^3}{12} |f''(\xi)| \right) - 2 \log N \end{split}$$

• Para a regra de Gauss-Lobatto com 3 pontos (p=3), expressão (17):

$$\begin{split} & \log |E_h(f)| = \log \left| -\frac{(b-a)}{2880} f^{(4)}(\xi) h^4 \right| = \log \left| \frac{(b-a)}{2880} f^{(4)}(\xi) \frac{(b-a)^4}{N^4} \right| \\ & = \log \left| \frac{(b-a)^5}{2880N^4} f^{(4)}(\xi) \right| = \log \left(\frac{|b-a|^5}{2880} \left| f^{(4)}(\xi) \right| \frac{1}{N^4} \right) \\ & = \log \left(\frac{|b-a|^5}{2880} \left| f^{(4)}(\xi) \right| \right) + \log N^{-4} = \log \left(\frac{|b-a|^5}{2880} \left| f^{(4)}(\xi) \right| \right) - 4 \log N \end{split}$$

• Para a regra de Gauss-Lobatto com 4 pontos (p=4), expressão (18):

$$\begin{split} & \log |E_h(f)| = \log \left| -\frac{(b-a)}{1512000} f^{(6)}(\xi) h^6 \right| = \log \left| \frac{(b-a)}{1512000} f^{(6)}(\xi) \frac{(b-a)^6}{N^6} \right| \\ & = \log \left| \frac{(b-a)^7}{1512000N^6} f^{(6)}(\xi) \right| = \log \left(\frac{|b-a|^7}{1512000} \left| f^{(6)}(\xi) \right| \frac{1}{N^6} \right) \\ & = \log \left(\frac{|b-a|^7}{1512000} \left| f^{(6)}(\xi) \right| \right) + \log N^{-6} = \log \left(\frac{|b-a|^7}{1512000} \left| f^{(6)}(\xi) \right| \right) - 6\log N \end{split}$$

Logaritmo do erro absoluto em função de z

Tendo em conta que $b-a = \frac{z}{N}$ e $h = \frac{(b-a)}{N}$:

• Para a regra de Gauss-Lobatto com 2 pontos (p=2), expressão (19):

$$\begin{aligned} \log|E_h(f)| &= \log\left| -\frac{(b-a)}{12}f''(\xi)h^2 \right| = \log\left| \frac{(b-a)}{12}f''(\xi) \frac{(b-a)^2}{N^2} \right| \\ &= \log\left| \frac{(b-a)^3}{12N^2}f''(\xi) \right| = \log\left| \frac{(z'/N)^3}{12N^2}f''(\xi) \right| = \log\left| \frac{z^3}{12N^5}f''(\xi) \right| \\ &= \log(z)^3 + \left| \log\frac{f''(\xi)}{12N^5} \right| = 3\log z + \log\left| \frac{f''(\xi)}{12N^5} \right| \end{aligned}$$

• Para a regra de Gauss-Lobatto com 3 pontos (p=3), expressão (20):

$$\begin{aligned} & \log |E_h(f)| = \log \left| -\frac{(b-a)}{2880} f^{(4)}(\xi) h^4 \right| = \log \left| \frac{(b-a)}{2880} f^{(4)}(\xi) \frac{(b-a)^4}{N^4} \right| \\ & = \log \left| \frac{(b-a)^5}{2880N^4} f^{(4)}(\xi) \right| = \log \left| \frac{(z/N)^5}{2880N^4} f^{(4)}(\xi) \right| = \log \left| \frac{z^5}{2880N^9} f^{(4)}(\xi) \right| \\ & = \log \left(z \right)^5 + \log \left| \frac{f^{(4)}(\xi)}{2880N^9} \right| = 5 \log z + \log \left| \frac{f^{(4)}(\xi)}{2880N^9} \right| \end{aligned}$$

• Para a regra de Gauss-Lobatto com 4 pontos (p=4), expressão (21):

$$\begin{split} & \log |E_h(f)| = \log \left| -\frac{(b-a)}{1512000} \, f^{(6)}(\xi) h^6 \right| = \log \left| \frac{(b-a)}{1512000} \, f^{(6)}(\xi) \frac{(b-a)^6}{N^6} \right| \\ & = \log \left| \frac{(b-a)^7}{1512000N^6} \, f^{(6)}(\xi) \right| = \log \left| \frac{(Z/N)^7}{1512000N^6} \, f^{(6)}(\xi) \right| = \log \left| \frac{Z^7}{1512000N^{13}} \, f^{(6)}(\xi) \right| \\ & = \log \left| (Z)^7 + \log \left| \frac{f^{(6)}(\xi)}{1512000N^{13}} \right| = 7 \log \, Z + \log \left| \frac{f^{(6)}(\xi)}{1512000N^{13}} \right| \end{split}$$

6.4 Código

• main.m

```
% Unidade Curricular: Matemática Computacional - 1° semestre 2019/2020
% Curso: MEAer (Mestrado Integrado em Engenharia Aeroespacial)
% Grupo:38
% Enunciado AA-10
% Gonçalo da Câmara Correia, N.º 92681
% Leonor Grenho Leal Cordeiro, N.º 93288
% Sara Filipa Dinis Marques, N.º 93342
%Professor Orientador: António Andrade
function main()
%funcao main - invoca todas as funcoes usadas no trabalho
   fprintf('\nO majorante do erro máximo com N=10 é:\n\n');
   subplot(3,3,1)
   Erromax 0
   subplot(3,3,2)
   Erromax 1
   subplot(3,3,3)
   Erromax 2
   fprintf('\n\n');
   fprintf('\nO erro máximo cometido com N=10 é:\n\n');
   subplot(3,3,4)
   Erroex 0
   subplot(3,3,5)
   Erroex 1
   subplot(3,3,6)
   Erroex 2
   fprintf('\n\n');
   subplot(3,3,8)
   ErroexN
   tabela
```

```
end
```

• f.m

• g.m

• Gauss_0.m

• Gauss_1.m

end

```
%regra de gauss-lobatto para p=3 (regra de simpson)
function y = Gauss 1(z, N)
   %inicializacao da variavel I 1 a 0.5
   I_1 = 0.5;
        %ciclo for
        %calcula o integral da funcao f para cada subintervalo e vai somando
        %n corresponde ao numero do intervalo, de 1 a N
        %a e b correspondem aos extremos do intervalo
        for n = 1:1:N
            b = (z./N) *n;
            a = (z./N) * (n-1);
            I 1 = I 1 + (((b-a)/2).*((1/3).*f(g(-
(1,a,b) + (4/3) \cdot (g(0,a,b)) + (1/3) \cdot (g(1,a,b)));
        end
        %valor do integral da funcao f no intervalo de integracao
        y=I 1;
```

• Gauss 2.m

```
%regra de gauss-lobatto para p=4
function y = Gauss_2(z, N)
   %inicializacao da variavel I 2 a 0.5
   I 2=0.5;
        %ciclo for
        %calcula o integral da funcao f para cada subintervalo e vai somando
        %n corresponde ao numero do intervalo, de 1 a N
        %a e b correspondem aos extremos do intervalo
        for n = 1:1:N
            b = (z./N) *n;
            a = (z./N) * (n-1);
            I 2 = I 2 + (((b-a)/2).*((1/6).*f(g(-1,a,b))+(5/6).*f(g((-1,a,b)))
1.* \operatorname{sqrt}(5)/5, a,b) + (5/6).* f(g((sqrt(5)/5),a,b)) + (1/6).* f(g(1,a,b))));
        %valor do integral da funcao f no intervalo de integracao
        y=I 2;
end
```

• cp.m

```
%funcao que determina o termo cp, dependente de p, da expressao do erro %das regras de gauss-lobatto function w = cp(p) %expressao de cp(p) w = (-p*((p-1)^3)*(factorial(p-2))^4)/((2*p-1)*(factorial(2*p-2))^3); end
```

• Erromax 0.m

```
%funcao do majorante do erro, com N=10, para a regra de gauss-lobatto com p=2
(regra do
%trapezio)
function Erromax 0()
%inicializacao da variavel Emax a 0
Emax=0;
z = 0:0.01:3.49;
%expressao do majorante do erro
y= cp(2)*((z/10).^3).*((-1/sqrt(2*pi))*exp(-1/sqrt(2*pi))
(z.^2)./2)+(1/sqrt(2*pi))*z.^2.*exp(-(z.^2)./2))*10;
%plot do grafico
plot(z, y)
hold on
xlabel('z'); %eixo dos x's
ylabel('E'); %eixo dos y's
%titulo do grafico
title ('Majorante do erro em função de z para Regra do Trapézio');
%ciclo for
%calculo do majorante do erro maximo
for z = 0:0.01:3.49
```

```
%expressao do majorante do erro
    y = cp(2)*((z/10).^3).*((-1/sqrt(2*pi))*exp(-
(z.^2)./2)+(1/sqrt(2*pi))*z.^2.*exp(-(z.^2)./2))*10;
    %condicao para determinar o majorante do erro maximo e o respetivo z
    if Emax> y
        Emax=y;
        zmax=z;
    end

end
%apresenta os valores do majorante do erro maximo e do respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra do Trapézio\n',Emax,zmax);
end
```

• Erromax 1.m

```
%funcao do majorante do erro para a regra de gauss-lobatto com p=3 (regra
%de simpson)
function Erromax 1()
%inicializacao da variavel Emax a 0
Emax=0;
z = 0:0.01:3.49;
%expressao do majorante do erro
y = cp(3)*((z/10).^5).*(1/sqrt(2*pi)).*(exp(-(z.^2)./2)).*(3-
6*(z.^2)+z.^4).*10;
%plot do grafico
plot(z, y)
hold on
xlabel('z'); %eixo dos x's
ylabel('E'); %eixo dos y's
%titulo do grafico
title ('Majorante do erro em função de z para Regra de Simpson');
%ciclo for
%calculo do majorante do erro maximo
for z = 0:0.01:3.49
    %expressao do majorante do erro
   y = cp(3)*((z/10).^5).*(1/sqrt(2*pi)).*(exp(-(z.^2)./2)).*(3-
6*(z.^2)+z.^4).*10;
    %condicao para determinar o majorante do erro maximo e o respetivo z
    if Emax> y
          Emax=y;
          zmax=z;
    end
%apresenta os valores do majorante do erro maximo e do respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra de Simpson\n',Emax,zmax);
end
```

• Erromax 2.m

```
%funcao do majorante do erro para a regra de gauss-lobatto com p=4 \frac{1}{2} function \frac{1}{2} Erromax_2() %inicialização da variavel \frac{1}{2} Emax a 0
```

```
Emax=0;
z = 0:0.01:3.49;
%expressao do majorante do erro
y = cp(4)*((z/10).^7).*(1/sqrt(2*pi)).*(exp(-(z.^2)./2)).*(-15+45*(z.^2)-
15*z.^4+z.^6).*10;
%plot do grafico
plot(z, y)
xlabel('z'); %eixo dos x's
ylabel('E'); %eixo dos y's
%titulo do grafico
title ('Majorante do erro em função de z para Regra de Gauss-Lobatto com 4
pontos');
%ciclo for
%calculo do majorante do erro maximo
for z = 0:0.01:3.49
     %expressao do majorante do erro
     y = cp(4)*((z/10).^7).*(1/sqrt(2*pi)).*(exp(-(z.^2)./2)).*(-15+45*(z.^2)-(2.^2)./2)
15*z.^4+z.^6).*10;
    %condicao para determinar o majorante do erro maximo e o respetivo z
    if Emax < y</pre>
          Emax=y;
          zmax=z;
    end
%apresenta os valores do majorante do erro maximo e do respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra de Gauss-Lobatto com 4
pontos\n', Emax, zmax);
end
      • Erroex 0.m
%funcao do erro exato para a regra de gauss-lobatto com p=2 (regra do
%trapezio)
function Erroex 0 ()
%inicializacao das variaveis Emax=0 e zmax=0
Emax=0:
zmax=0;
z=0:0.01:3.49;
%calculo do erro exato quando N=1
%efetua a diferenca entre o valor obtido do integral com a regra de
%gauss-lobatto ate um z e o valor real
Eex 1 = abs(Gauss_0(z,1) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=1, em funcao de z
plot(z, log10 (Eex 1))
hold on
%legenda dos eixos do gr·fico
xlabel('z'); %eixo dos x's
ylabel('Log |E|'); %eixo dos y's
%titulo do grafico
title('Logaritmo do erro exato em função de z para Regra do Trapézio');
%calculo do erro exato quando N=5
Eex 5 = abs(Gauss 0(z,5) - cdf('normal', z, 0, 1));
```

%plot do grafico do logaritmo do erro exato, quando N=5, em funcao do

%logaritmo de z

```
%plot(log10(z), log10(Eex 5))
%plot do grafico do logaritmo do erro exato, quando N=5, em funcao de z
plot(z, log10(Eex 5))
%calculo do erro exato quando N=10
Eex_10 = abs(Gauss_0(z,10) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=10, em funcao de z
plot(z, log10(Eex 10))
%calculo do erro exato quando N=50
Eex_50 = abs(Gauss_0(z,50) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=50, em funcao de z
plot(z, log10(Eex_50))
%calculo do erro exato quando N=100
Eex 100 = abs(Gauss 0(z,100) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=100, em funcao de z
plot(z,log10(Eex_100))
%legenda
legend('N=1','N=5','N=10','N=50','N=100');
hold off
%ciclo for
%calculo do erro maximo
for z = 0:0.01:3.49
    %diferenca entre o valor obtido e o valor real
   Eex 10 = abs(Gauss 0(z,10) - cdf('normal', z, 0, 1));
    %condicao para determinar o erro maximo e o respetivo z
    if Emax< Eex 10</pre>
          %valor maximo do erro
          Emax=Eex_10;
          %valor de z para o qual o erro e maximo
          zmax=z;
    end
%apresenta o valor do erro m·ximo e o respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra do Trapézio\n', Emax, zmax);
end
```

• Erroex 1.m

```
%funcao do erro exato para a regra de gauss-lobatto com p=3 (regra de
%simpson)
function Erroex_1()
%inicializacao das variaveis Emax=0 e zmax=0
Emax=0;
zmax=0;
z=0:0.01:3.49;
%calculo do erro exato quando N=1
%efetua a diferenca entre o valor obtido do integral com a regra de
%gauss-lobatto ate um z e o valor real
Eex_1 = abs(Gauss_1(z,1) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=1, em funcao de z
plot(z,log10(Eex 1))
```

```
hold on
%legenda dos eixos do grafico
xlabel('z'); %eixo dos x's
ylabel('Log |E|'); %eixo dos y's
%titulo do grafico
title('Logaritmo do erro exato em função de z para Regra de Simpson');
%calculo do erro exato quando N=5 \,
Eex_5 = abs(Gauss_1(z,5) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=5, em funcao do
%logaritmo de z
%plot(log10(z), log10(Eex 5))
%plot do grafico do logaritmo do erro exato, quando N=5, em funcao de z
plot(z, log10(Eex_5))
%calculo do erro exato quando N=10
Eex 10 = abs(Gauss 1(z,10) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=10, em funcao de z
plot(z,log10(Eex_10))
%calculo do erro exato quando N=50
Eex 50 = abs(Gauss_1(z,50) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=50, em funcao de z
plot(z, log10(Eex 50))
%calculo do erro exato quando N=100
Eex 100 = abs(Gauss 1(z,100) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=100, em funcao de z
plot(z, log10(Eex 100))
%legenda
legend('N=1','N=5','N=10','N=50','N=100');
hold off
%ciclo for
%calculo do erro maximo
for z = 0:0.01:3.49
    %diferenca entre o valor obtido e o valor real
    Eex_{10} = abs(Gauss_{1}(z,10) - cdf('normal', z, 0, 1));
    %condicao para determinar o erro maximo e o respetivo z
    if Emax< Eex_10</pre>
          %valor maximo do erro
          Emax=Eex 10;
          %valor de z para o qual o erro e maximo
          zmax=z;
    end
end
%apresenta o valor do erro maximo e o respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra de Simpson\n',Emax,zmax);
end
        Erroex 2.m
%funcao do erro exato para a regra de gauss-lobatto com p=4
function Erroex 2()
%inicializacao das variaveis Emax=0 e zmax=0
Emax=0;
zmax=0;
```

```
z=0:0.01:3.49;
%calculo do erro exato quando N=1
%efetua a diferenca entre o valor obtido do integral com a regra de
%gauss-lobatto ate um z e o valor real
Eex 1 = abs(Gauss 2(z,1) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=1, em funcao de z
plot(z, log10(Eex 1))
hold on
%legenda dos graficos
xlabel('z'); %eixo dos x's
ylabel('Log |E|'); %eixo dos y's
%titulo do grafico
title('Logaritmo do erro exato em função de z para Regra de Gauss-Lobatto com
4 pontos');
%calculo do erro exato quando N=5
Eex 5 = abs(Gauss 2(z, 5) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=5, em funcao do
%logaritmo de z
%plot(log10(z), log10(Eex 5))
%plot do grafico do logaritmo do erro exato, quando N=5, em funcao de z
plot(z, log10(Eex 5))
%calculo do erro exato quando N=10
Eex_10 = abs(Gauss_2(z,10) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=10, em funcao de z
plot(z, log10 (Eex 10))
%calculo do erro exato quando N=50
Eex 50 = abs(Gauss 2(z,50) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=50, em funcao de z
plot(z, log10(Eex 50))
%calculo do erro exato quando N=100
Eex 100 = abs(Gauss 2(z,100) - cdf('normal', z, 0, 1));
%plot do grafico do logaritmo do erro exato, quando N=100, em funcao de z
plot(z, log10(Eex 100))
%legenda
legend('N=1','N=5','N=10','N=50','N=100');
hold off
%ciclo for
%calculo do erro maximo
for z = 0:0.01:3.49
    %diferenca entre o valor obtido e o valor real
    Eex 10 = abs(Gauss 2(z,10) - cdf('normal', z, 0, 1));
    %condicao para determinar o erro maximo e o respetivo z
    if Emax< Eex_10</pre>
          %valor maximo do erro
          Emax=Eex 10;
          %valor de z para o qual o erro e maximo
          zmax=z:
    end
end
%apresenta o valor do erro maximo e o respetivo z
fprintf('-> %E para z=%0.2f, usando a Regra de Gauss-Lobatto com 4
pontos\n',Emax,zmax);
```

• ErroexN.m

```
%funcao do erro de N
function ErroexN()
%inicializacao dos vetores
y_0=[];
y_1=[];
y_2=[];
%ciclo for
%calcula o erro exato em funcao do N para cada regra
for N=1:1:300
%erro exato em funcao do N para a regra do trapezio
EexN 0 = abs(Gauss 0(1.73,N) - cdf('normal', 1.73, 0, 1));
%erro exato em funcao do N para a regra de simpson
EexN_1 = abs(Gauss_1(1.73,N) - cdf('normal', 1.73, 0, 1));
%erro exato em funcao do N para a regra de gauss-lobatto de 4 pontos
EexN_2 = abs(Gauss_2(1.73,N) - cdf('normal', 1.73, 0, 1));
y_0 = [y_0, EexN_0];
y_1 = [y_1, EexN_1];
y^2 = [y^2, EexN^2];
end
N=1:1:300;
%plot do grafico
plot(log10(N),log10(y_0))
hold on
xlabel('Log N'); %eixo dos x's
ylabel('Log |E|'); %eixo dos y's
%titulo do grafico
title ('Logaritmo do erro exato em função do N');
%plot do graficos
plot(log10(N),log10(y 1))
plot(log10(N),log10(y_2))
%legenda
legend('Regra Trapézio', 'Regra Simpson', 'Regra GL 4 pontos');
hold off
end
```

• tabela.m

```
function tabela()
%abre o ficheiro
fp = fopen ('Tabela De Distribuicao Normal Padrao', 'w');

%titulo e primeira linha da tabela
fprintf (fp, 'Tabela De Distribuicao Normal Padrao \n\n');
fprintf(fp, 'z || 0.00| 0.01| 0.02| 0.03| 0.04| 0.05|
0.06| 0.07| 0.08| 0.09|\n');
```