IEOR 4703 - Monte Carlo Simulation Solutions for Assignment 2

Weilong Fu

Spring 2018

1 Problem 1

The $1-\lambda$ confidence interval given by Chebyshev's Inequality is $\left[\hat{\theta}_n - \sqrt{\frac{\mathrm{var}(\hat{\theta}_n)}{\lambda}}, \hat{\theta}_n + \sqrt{\frac{\mathrm{var}(\hat{\theta}_n)}{\lambda}}\right]$. The confidence interval by CLT is $\left[\hat{\theta}_n - z_{1-\frac{\lambda}{2}}\sqrt{\mathrm{var}(\hat{\theta}_n)}, \hat{\theta}_n + z_{1-\frac{\lambda}{2}}\sqrt{\mathrm{var}(\hat{\theta}_n)}\right]$. $z_{1-\frac{\lambda}{2}}$ is smaller than $\frac{1}{\sqrt{\lambda}}$. So Chebyshev's Inequality usually gives a conservative confidence interval. (Any sensible answer is OK.)

2 Problem 2

(a) The exact solution given by BS formula is approximately 18.9586. The steps of simulation is following:

Set the parameters as the problem says n=10000 for i=1 to nGenerate a standard normal variable R_i $C_i=\exp(-rT)\max\{S_0\exp((r-q-\frac{\sigma^2}{2})T+\sigma\sqrt{T}R_i)-K,0\}$ $\hat{C}_n=\frac{1}{n}\sum_{i=1}^n C_i$

Delta hedging is also acceptable in this question. It just replaces the calculation of C_i in the algorithm. The details can be found in the answer to homework 1.

(b)
$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (C_i - \hat{C}_n)^2}{n-1}}$$
. The confidence interval is $\left[\hat{C}_n - z_{0.975} \frac{\hat{\sigma}}{\sqrt{n}}, \hat{C}_n + z_{0.975} \frac{\hat{\sigma}}{\sqrt{n}}\right]$.

(c) Let $\hat{F}(x)$ be the empirical distribution function of $R_i, 1 \leq i \leq 10000$ n = 10000 B = 1000 (for example)for k = 1 to Bfor i = 1 to nGenerate $R_{i,k}$ from $\hat{F}(x)$ $C_{i,k} = \exp(-rT) \max\{S_0 \exp((r - q - \frac{\sigma^2}{2})T + \sigma\sqrt{T}R_{i,k}) - K, 0\}$ $\tilde{C}_k = \frac{1}{n} \sum_{i=1}^n C_{i,k}$ $\alpha = 0.05$ Let $\tilde{C}_{(\alpha/2)}$ and $\tilde{C}_{(1-\alpha/2)}$ be the $\alpha/2$ and $1 - \alpha/2$ percentiles of \tilde{C}_k .

The confidence interval is $\left[2\hat{C}_n - \tilde{C}_{(1-\alpha/2)}, 2\hat{C}_n - \tilde{C}_{(\alpha/2)}\right]$.

3 Problem 3

(a) Set the parameters as the problem says
$$n = 50000$$

$$\mathbf{for} \ i = 1 \ \mathbf{to} \ n$$

$$S_{i,0} = S_0$$

$$\mathbf{for} \ j = 1 \ \mathbf{to} \ m$$
 Generate a standard normal variable $R_{i,j}$
$$S_{i,j} = S_{i,j-1} \exp((r - q - \frac{\sigma^2}{2})\Delta t + \sigma \sqrt{\Delta t} R_{i,j})$$

$$\bar{S}_i = \frac{1}{m} \sum_{j=1}^m S_{i,j}$$

$$\theta_i = \exp(-rT) \max\{\bar{S}_i - K, 0\}$$

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n \theta_i$$

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (\theta_i - \hat{\theta}_n)^2}$$

The confidence interval is $\left[\hat{\theta}_n - z_{0.995} \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\theta}_n + z_{0.995} \frac{\hat{\sigma}}{\sqrt{n}}\right]$

(b) Set the parameters as the problem says n = 50000 for i = 1 to n/2 $S_{2i-1,0} = S_0$ $S_{2i,0} = S_0$ for j = 1 to m Generate a standard normal variable $R_{i,j}$ $S_{2i-1,j} = S_{2i-1,j-1} \exp((r - q - \frac{\sigma^2}{2})\Delta t + \sigma\sqrt{\Delta t}R_{i,j})$ $S_{2i,j} = S_{2i,j-1} \exp((r - q - \frac{\sigma^2}{2})\Delta t - \sigma\sqrt{\Delta t}R_{i,j})$ $\bar{S}_{2i-1} = \frac{1}{m}\sum_{j=1}^{m} S_{2i-1,j}$ $\bar{S}_{2i} = \frac{1}{m}\sum_{j=1}^{m} S_{2i,j}$ $\theta_i = \frac{1}{2} \exp(-rT) \left(\max\{\bar{S}_{2i-1} - K, 0\} + \max\{\bar{S}_{2i} - K, 0\} \right)$ $\hat{\theta}_n = \frac{2}{n}\sum_{i=1}^{n/2} \theta_i$ $\hat{\sigma}_A = \sqrt{\frac{1}{n/2-1}}\sum_{i=1}^{n/2} (\theta_i - \hat{\theta}_n)^2$

The confidence interval is $\left[\hat{\theta}_n - z_{0.995} \frac{\hat{\sigma}_A}{\sqrt{n/2}}, \hat{\theta}_n + z_{0.995} \frac{\hat{\sigma}_A}{\sqrt{n/2}}\right]$.

4 Problem 4

- (a) This is the same as the question (a) in Problem 3.
- (b) Set the parameters as the problem says n = 50000 p = 1000 (for example)// pilot simulation $\mathbf{for} \ i = 1 \ \mathbf{to} \ p$ $S_{i,0} = S_0$ $\mathbf{for} \ j = 1 \ \mathbf{to} \ m$ Generate a standard normal variable $R_{i,j}$ $S_{i,j} = S_{i,j-1} \exp((r q \frac{\sigma^2}{2})\Delta t + \sigma \sqrt{\Delta t} R_{i,j})$ $\bar{S}_i = \frac{1}{m} \sum_{j=1}^m S_{i,j}$ $\theta_i = \exp(-rT) \max{\{\bar{S}_i K, 0\}}$ $Z_i = S_{i,m}$

$$\begin{split} \hat{\theta}_p &= \frac{1}{p} \sum_{i=1}^p \theta_i \\ E(Z) &= S_0 \exp((r-q)T) \\ \operatorname{var}(Z) &= \frac{1}{p} \sum_{i=1}^p (Z_i - E(Z))^2 \\ \operatorname{cov}(Z, \theta) &= \frac{1}{p-1} \sum_{i=1}^p (Z_i - E(Z))(\theta_i - \hat{\theta}_p) \\ c &= -\frac{\operatorname{cov}(Z, \theta)}{\operatorname{var}(Z)} \\ \text{$/'} \text{ main simulation} \\ \text{for } i &= 1 \text{ to } n \\ S_{i,0} &= S_0 \\ \text{for } j &= 1 \text{ to } m \\ \operatorname{Generate a standard normal variable } R_{i,j} \\ S_{i,j} &= S_{i,j-1} \exp((r-q-\frac{\sigma^2}{2})\Delta t + \sigma \sqrt{\Delta t} R_{i,j}) \\ \bar{S}_i &= \frac{1}{m} \sum_{j=1}^m S_{i,j} \\ \theta_i &= \exp(-rT) \max\{\bar{S}_i - K, 0\} \\ Z_i &= S_{i,m} \\ \hat{\theta}_n &= \frac{1}{n} \sum_{i=1}^n \theta_i \\ \operatorname{var}(\theta) &= \frac{1}{n-1} \sum_{i=1}^n (\theta_i - \hat{\theta}_n)^2 \\ \tilde{\theta} &= \hat{\theta}_n + \frac{c}{n} \sum_{i=1}^n (Z_i - E(Z)) \\ \hat{\sigma} &= \sqrt{\operatorname{var}(\theta) - \frac{\operatorname{cov}(Z, \theta)^2}{\operatorname{var}(Z)}} \\ (\operatorname{Or define } \tilde{\theta}_i &= \theta_i + c(Z_i - E(Z)) \text{ and } \hat{\sigma} &= \sqrt{\frac{\sum_{i=1}^n (\tilde{\theta}_i - \tilde{\theta})^2}{n-1}}) \end{split}$$

The confidence interval is $\left[\tilde{\theta} - z_{0.995} \frac{\hat{\sigma}}{\sqrt{n}}, \tilde{\theta} + z_{0.995} \frac{\hat{\sigma}}{\sqrt{n}}\right]$.

- (c) Replace $Z_i = \exp(-rT) \max\{S_{i,m} K, 0\}$ and $E(Z) = \text{BSFormula}(S_0, K, r, q, T, \sigma)$ in the former algorithm.
- (d) Replace $Z_i = \exp(-rT) \max\{ \sqrt[m]{\prod_{j=1}^m S_{i,j}} K, 0 \}$ in the former algoritm. The key to calculate E(Z) is that $\sqrt[m]{\prod_{j=1}^m S_{i,j}}$ is lognormal. Let

$$G = \log(\sqrt[m]{\prod_{j=1}^{m} S_{i,j}}) = \log S_0 + \sum_{j=1}^{m} \frac{m+1-j}{m} ((r-q-\frac{\sigma^2}{2})\Delta t + \sigma\sqrt{\Delta t}R_j)$$

Its expectation is $\mu_G = \log S_0 + \frac{m+1}{2m}(r-q-\frac{\sigma^2}{2})T$ and its variance is $\sigma_G^2 = \frac{(m+1)(2m+1)}{6m^2}\sigma^2T$. In the same way as calculating BS Formula, we get

$$E(Z) = e^{\mu_G + \frac{1}{2}\sigma_G^2 - rT} \Phi(d_1) - Ke^{-rT} \Phi(d_2),$$

where $d_1 = \frac{\mu_G - \log K + \sigma_G^2}{\sigma_G}$ and $d_2 = \frac{\mu_G - \log K}{\sigma_G}$. There are other ways to calculate E(Z).

• Conclusion: The control variate in (d) is the best.