

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Travail Dirigé: Robot à deux moteurs

Ressources de Jean-Pierre Pupier.

Mise en situation

Le système étudié est un robot industriel à deux moteurs destiné à la manutention de pièces lourdes. Ce robot a une structure en parallélogramme déformable qui lui permet de déplacer son poignet dans l'aire de travail.

Le schéma ci-dessus représente la cinématique simplifiée du robot à deux moteurs. L'outil faisant le travail est fixé au point J et le socle est le solide $\mathbf{0}$. La pièce $\mathbf{3}$ est rectiligne et a une longueur CJ.

Au point A il y a:

- une liaison pivot entre 0 et 1 motorisée par un moteur M1,
- une liaison pivot entre 0 et 2 motorisée par un moteur M2.

Ces deux motorisations sont, bien sûr, indépendantes.

La géométrie est telle que : AB = EC = L; EA = CB = D; BJ = H.

Question 1

Quel est le nom du quadrilatère AECB? Donner la propriété de ce quadrilatère.

On donne:

- $-\mathscr{R}_0 = (A; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$ repère lié au solide $\mathbf{0}$;
- $-\mathscr{R}_A = (A; \overrightarrow{x_A}; \overrightarrow{y_A}; \overrightarrow{z_0})$ repère lié au solide 1;
- $-\mathscr{R}_2 = (A; \overrightarrow{x_2}; \overrightarrow{y_2}; \overrightarrow{z_0})$ repère lié au solide 2;
- $-\mathscr{R}_3 = (C; \overrightarrow{x_2}; \overrightarrow{y_2}; \overrightarrow{z_0})$ repère lié au solide **3**;
- $-\mathscr{R}_4 = (E; \overrightarrow{x_1}; \overrightarrow{y_1}; \overrightarrow{z_0})$ repère lié au solide 4.

Question 2

A partir de la définition des repères associés aux quatre autres solides indiquer les noms des axes manquants.

Première partie : $\beta = 0$ et moteur M2 arrêté

Remarque

Il est nécessaire de refaire sur votre copie le schéma du robot dans la configuration imposée par la question.

1

Question 3

Écrire, dans l'ordre demandé, les torseurs cinématiques des mouvements suivants aux points indiqués : il faudra les exprimer en utilisant les paramètres géométriques ou leur dérivée définis précédemment. Utiliser la base de projection donnant l'expression la plus simple :

- mouvement de **2** par rapport à **0**, au point A;
- mouvement de 1 par rapport à 0, au point A;
- mouvement de **4** par rapport à **0**, au point E ;
- mouvement de 3 par rapport à 0, au point B;
- mouvement de **3** par rapport à **1**, au point B ;
- mouvement de 3 par rapport à 4, au point C.

Question 4

Donner le nom des mouvements 1/0 et 3/0.

Question 5

Déterminer $\overline{V(J \in 3/0)}$.

Question 6

Définir et tracer la trajectoire $T_{J \in 3/0}$.

Deuxième partie : $\alpha = 60^{\circ}$ et moteur M1 arrêté

Remarque

Il est nécessaire de refaire sur votre copie le schéma du robot dans la configuration imposée par la question.

Question 7

Écrire, dans l'ordre demandé, les torseurs cinématiques des mouvements suivants aux points indiqués :

- mouvement de 1 par rapport à 0, au point A;
- mouvement de 2 par rapport à 0, au point A;
- mouvement de **4** par rapport à **0**, au point E ;
- mouvement de **3** par rapport à **0**, au point B ;
- mouvement de **3** par rapport à **1**, au point B ;
- mouvement de **4** par rapport à **2**, au point E ;.

Question 8

Déterminer $\overline{V(J \in 3/0)}$.

Question 9

Définir et tracer la trajectoire $T_{J \in 3/0}$.

Troisième partie : les deux moteurs fonctionnent

Question 10

Déterminer $V(J \in 3/0)$.

On donne: $L = 70 \ mm$; $D = 32 \ mm$; $H = 59 \ mm$.

Question 11

Tracer sur une figure à l'échelle 1 la surface liée à 0 dans laquelle se déplace le point J lorsque α varie de 60° à 60° et β de -45° à 45° . Cette surface sera la surface de travail du robot.