MATH 7320, Functional Analysis I

HOMEWORK 1

Notation: For each $1 \leq p < \infty$ we denote by ℓ^p the set of all sequences $(c_n)_{n=1}^{\infty}$ of complex numbers such that $\sum_{n=1}^{\infty} |c_n|^p < \infty$. We denote by ℓ^{∞} the set of all bounded sequences of complex numbers, and by \mathbf{c}_0 the of all convergent sequences of complex numbers. We equip ℓ^{∞} and \mathbf{c}_0 with the sup-norm $\|\cdot\|_{\infty}$.

- 1. Read/recall the Minkowski's inequality from your previous courses or from the literature. It implies that the formula $\|(c_n)\|_p := \left(\sum_{n=1}^{\infty} |c_n|^p\right)^{\frac{1}{p}}$ defines a norm on ℓ_p .
- 2. Determine, and prove which of the following normed spaces is a Banach space (i.e. a complete normed space): $(\ell^1, \|\cdot\|_1)$, $(\ell^{\infty}, \|\cdot\|_{\infty})$, $(\mathbf{c}_0, \|\cdot\|_{\infty})$, $(\mathbf{c}_{00}, \|\cdot\|_{\infty})$.
- 3. Define the linear map $f: \mathbf{c}_0 \to \mathbb{C}$ by

$$f((c_n)) = \sum_{n=1}^{\infty} \frac{c_n}{2^n}$$

for all $(c_n) \in \mathbf{c}_0$. Show that f is continuous, and find its norm.

- 4. Let \mathcal{X} and \mathcal{Y} be normed spaces.
 - a) Show that $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ is a normed space.
 - b) Show that if \mathcal{Y} is a Banach space, then $\mathcal{B}(\mathcal{X},\mathcal{Y})$ is a Banach space.
 - c) Assume that $\mathcal{B}(\mathcal{X}, \mathbb{C}) \neq \{0\}$ (this follows from the Hahn-Banach Theorem as we discussed in the last lecture). Show that if $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ is a Banach space then \mathcal{Y} is a Banach space.
- 5. Prove that a normed space \mathcal{X} is a Banach space if and only if whenever (x_n) is a sequence in \mathcal{X} such that $\sum ||x_n|| < \infty$, then $\sum x_n$ is convergent in \mathcal{X} .

(**Definition:** A normed space is said to be separable if it has a countable dense subset.) Prove \mathbf{c}_0 and ℓ^1 are separable, but ℓ^∞ is not.

- 6. Prove that every Banach space has a Hamel basis (i.e. a basis in the sense of linear algebra). (Hint: use Zorn's lemma).
- 7. Show that if \mathcal{X} is an infinite dimensional Banach space, then any Hamel basis of \mathcal{X} is uncountable. (Hint: use the Baire category theorem).
- 8. Let \mathcal{X} is an inner product space. Show that the formula $||x|| := \sqrt{\langle x, x, \rangle}$ defines a norm on \mathcal{X} .

(**Definition:** A complete inner product space is called a Hilbert space. Given an inner product space \mathcal{X} , a subset $\mathcal{E} \subset \mathcal{X}$ is said to be an orthonormal basis for

 \mathcal{X} , if ||e|| = 1 for all $e \in \mathcal{E}$, $\langle e, e' \rangle = 0$ for all $e \neq e' \in \mathcal{E}$, and for every $x \in X$ there is a sequence (e_n) in \mathcal{E} and a sequence (c_n) in \mathbb{F} such that $x = \sum c_n e_n$.

9. Show that if \mathcal{H} is an infinite dimensional Hilbert space, then an orthonormal basis cannot be a Hamel basis.