Engineering Mathematics I-(BAS-103)

Unit 1 Matrices

Tutorial 7

Que 1. Find the inverse of matrix by employing elementary transformation

(i)
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
 [2020-21] (ii) $B = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ [2018-19] (iii) $C = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ [2017-18]

Que 2. Reduce matrix A into normal form and hence find its rank

(i)
$$A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$$
 [2019-20] (ii) $B = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & -2 & 6 & 7 \end{bmatrix}$ [2018-19]

Que 3. Find the value of b for which the rank of matrix $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & b \end{bmatrix}$ is 2. [2019-20]

Que 4. Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank. [2021-

[2021-22],[2017-18]

Que 5. Find the rank of matrix by employing elementary transformation $A = \begin{bmatrix} 2 & -1 & 3 & -1 \\ 1 & 2 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ [2017-18]

Que 6. Test the consistency of the following system of equations and if system is consistent, solve them x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30

[2022-23]= 10, $x + 2y + \omega z = \mu$

Que 7. For what values of μ and ω the simultaneous equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \omega z = \mu$ have (a) No solution (b) Unique solution (c) Infinite many solutions.

[2019-20] [2017-18] [2015-16]

Que 8. Find the value of k for which the system of equations (3k-8)x+3y+3z=0, 3x+(3k-8)y+3z=0,

$$3x + 3y + (3k - 8)z = 0$$
 has a non-trivial solution. [2021-22]

Que 9. Solve the system of homogenous equations $x_1 + x_2 + x_3 + x_4 = 0$, $x_1 + 3x_2 + 2x_3 + 4x_4 = 0$, $2x_1 + x_3 - x_4 = 0$

[2023-24]

Que 10. For what values of λ and μ the system of linear equations x + y + z = 6, x + 2y + 5z = 10, $2x + 3y + \lambda z = \mu$ have (a) No solution (b) Unique solution (c) Infinite many solutions. Also find the solution when $\lambda = 2 \& \mu = 10$. [2021-22]

Que 11. Find the non singular matrix P and Q s.t. PAQ is in normal form where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ [2020-21]

1. (i)
$$A^{-1} = \frac{1}{5} \begin{bmatrix} -10 & 4 & 9 \\ 15 & -4 & -14 \\ -5 & 1 & 6 \end{bmatrix}$$
 (ii) $B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$ (iii) $C^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$

$$B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$

$$(iii)C^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$$

2. (*i*) Rank A=3

3.
$$b = \frac{3}{5}$$

4. Rank A=2

5. Rank A=4

6.x = k - 2, y = 8 - 2k, z = k, where k is arbitrary

7. (i) No solution $\omega = 3$, $\mu \neq 10$ (ii) Unique solution $\omega \neq 3$, μ may have any value (iii) Infinite many solution $\omega = 3$, $\mu = 10$

8. $k = \frac{2}{3}, \frac{11}{3}, \frac{11}{3}$

9. $x_1 = k_1 + 2k_2$, $x_2 = k_1$, $x_3 = -2k_1 - 3k_2$ and $x_4 = k_2$

10. (i) No solution $\lambda = 6$, $\mu \neq 16$ (ii) Unique solution $\lambda \neq 6$, μ may have any value

(iii) Infinite many solution $\lambda=6$, $\mu=16$. $x=\frac{13}{2}$, y=-2 , $z=\frac{3}{2}$

11.
$$P = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$