

Deep Reinforcement Learning

Deep Learning, Spring 2017

Deep Reinforcement Learning

- Plays Atari video games
- Beats human champions at Poker and Go
- Robot learns to pick up, stack blocks
- Simulated quadruped learns to run

What is reinforcement learning?

Deep Reinforcement Learning

Types of learning

Unsupervised

Reinforcement

Supervised learning

- model receives input x
- also gets correct output y
- predictions do not change future inputs

Supervised learning: (in arbitrary order of examples)

This is not how humans learn!

Reinforcement learning

- agent receives input x, chooses action
- gets R (reward) after T time steps
- actions affect the next input (state)

Reinforcement learning:

Input is the "world's" state

- Current game board layout
- Picture of table with blocks
- Quadriped position and orientation

Output is an action

- Which game piece to move where (discrete)
- Orientation and position of robot arm (continuous)
- Joint angles of quadruped legs (continuous)

Actions affect state!

action→reward

some rewards are negative

Reward examples

- Wining the game (positive)
- Successfully picking up block (positive)
- Falling (negative)

Goal of reinforcement learning

- Learn to predict actions that maximize future rewards
- Need a new mathematical framework

Reinforcement learning:

Markov Decision Process

Deep Reinforcement Learning

Markov Decision Process (MPD)

Definition: a mathematical framework for modeling <u>decision</u> making in situations where outcomes are partly <u>random</u> and partly under the control of a decision maker.

MDP notation

- S set of States
- A set of Actions
- $R: S \to \mathbb{R}$ (Reward)
- Psa transition probabilities $(p(s, a, s') \in \mathbb{R})$
- γ discount factor

MDP = (S, A, R, Psa,
$$\gamma$$
)

	1	2	3	4
1				#
2				74
3				

- States S = locations
- Actions A = $\{ \uparrow, \rightarrow, \leftarrow, \downarrow \}$

	1	2	3	4	
1				#	/
2				٦,	X
3					

- States S = locations
- Actions A = $\{ \uparrow, \rightarrow, \leftarrow, \downarrow \}$
- Reward $R: S \to \mathbb{R}$

	1	2	3	4	
1	0	0	0	+1	√
2	0		0	-1	X
3	0	0		0	

- States S = locations
- Actions A = $\{ \uparrow, \rightarrow, \leftarrow, \downarrow \}$
- Reward $R: S \to \mathbb{R}$

	1	2	3	4
1	02	02	02	+1
2	02		02	-1
3	02	02		02

- States S = locations
- Actions A = $\{ \uparrow, \rightarrow, \leftarrow, \downarrow \}$
- Reward $R: S \to \mathbb{R}$
- Transition Psa

$P_{(3,3),\uparrow}((2,3)) = 0.8$
$P_{(3,3),\uparrow}((3,4)) = 0.1$
$P_{(3,3),\uparrow}((3,2)) = 0.1$
$P_{(3,3),\uparrow}((1,3)) = 0$

	1	2	3	4
1	02	02	02	+1
2	02		02	-1
3	02	02		02

MDP - Dynamics

- Start from state S_0
- Choose action A_0
- Transit to $S_1 \sim P_{S_0 a_0}$
- Continue...

	1	2	3	4
1	02	02	02	+1
2	02		02	-1
3				02

-.02 -.02 -.02

Total payoff:

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

How do we choose good actions?

Choosing actions in MDP

States S = locations

Actions A = $\{\uparrow, \rightarrow, \leftarrow, \downarrow\}$

Reward $R: S \to \mathbb{R}$

Transition Psa

	1	2	3	4
1	02	02	02	+1
2	02		02	-1
3	02	02		02

Goal - Choose actions as to maximize expected total payoff:

$$E\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots\right]$$

• In our example:

R – get to charge station, avoid stairs

 γ – discourage long paths

MDP – Policy π

States S = locations

Actions A = $\{\uparrow, \rightarrow, \leftarrow, \downarrow\}$

Reward $R: S \to \mathbb{R}$

Transition Psa

• Goal - Choose actions as to maximize expected total payoff:

$$E\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots\right]$$

• Policy $\pi: S \to A$

MDP – Policy value function

States S = locations

Actions A = $\{\uparrow, \rightarrow, \leftarrow, \downarrow\}$

Reward $R: S \to \mathbb{R}$

Transition Psa

Policy $\pi: S \to A$

	1	2	3	4
1	+	←		+1
2	(1	-1
3	\rightarrow	\	1	\

• Value function - $V: S \to \mathbb{R}$

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \mid s_0 = s, \pi\right]$$

Expected sum of discounted rewards

MDP – Policy value function

$$V^{\pi}(s) = \operatorname{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \middle| s_0 = s, \pi\right]$$

$$\Rightarrow V^{\pi}(s) = E[R(s_0)] + E[\gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$
this is recursion!

Bellman's equation:

$$V^{\pi}(s) = R(s) + \gamma E_{s' \sim P_{s,\pi(s)}}[V(s')]$$

$$\bigoplus \text{ expectation over values of next state}$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

MDP – Policy value function

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$\begin{cases} V_1 = R(1) + \gamma P_{1,\downarrow}(2) V_2 + \dots \\ V_2 = \dots \\ \dots \\ V_{10} = R(10) + \gamma (P_{10,\uparrow}(6) V_6 + P_{10,\uparrow}(9) V_9 + P_{10,\uparrow}(11) V_{11}) \\ \dots \end{cases}$$

1	2	3	4
1	2	3	4
5		6	7
8	9	10	11
1	2	3	4
4	\rightarrow	\rightarrow	+1
←		1	-1
\rightarrow	←	1	1
	1 5 8	1 2 5 8 9	1 2 3 5 6 8 9 10

Policy π

MDP – ways to solve

Optimal value function

need to define π

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^*(s) = \max_{\pi} V^\pi(s)$$
 Bellman:
$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

Optimal policy

need to define Psa

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

Optimal state-action value function Q:

easier!

Define $Q: S \times A \to \mathbb{R}$

Bellman: $Q(s_t, a) = R(s_t) + \gamma \max_{a} Q(s', a')$

Q-learning

The agent interacts with the environment, updates Q recursively

```
initialize Q[num\_states, num\_actions] arbitrarily observe initial state s reward s select and carry out an action a observe reward r and new state s' Q[s,a] = Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a]) s = s' until terminated s current value discount largest increase over all possible actions in new state learning rate
```

Q-learning example

https://www.youtube.com/watch?v=R88CiN7dTZc

Continuous state

Deep Reinforcement Learning

Continuous state - Pong

https://www.youtube.com/watch?v=YOW8m2YGtRg

MDP for Pong

In this case, what are these?

- S set of States
- A set of Actions
- $R: S \to \mathbb{R}$ (Reward)
- Psa transition probabilities $(p(s, a, s') \in \mathbb{R})$

Can we learn Q-value?

- Can discretize state space, but it may be too large
- Can simplify state by adding domain knowledge (e.g. paddle, ball), but it may not be available
- Instead, use a neural net to learn good features!

Deep RL

Deep Reinforcement Learning

Deep RL

- V, Q or π can be approximated with deep network
- Deep Q-Learning
 - Input: state, action
 - Output: Q-value
- Alternative: learn a Policy Network
 - Input: state

Output: distribution over actions

Cover today

Policy network for pong

- define a policy network that implements the player
- takes the state of the game and decides what to do (move UP or DOWN)
- 2-layer neural network that takes the raw image pixels*
 (100,800 = 210x160x3), outputs the probability of going UP

^{*}feed at least 2 frames to the policy network so that it can detect motion.

Policy gradient

Suppose network predicts

- Can sample an action from this distribution and execute it
- Can immediately use gradient of 1.0 for DOWN and backprop to find the gradient vector that would encourage the network to predict DOWN

Problem: do not yet know if going DOWN is good!

Solution: simply wait until the end of the game, then take the reward we get (either +1 if we won or -1 if we lost), and enter that as the gradient for taken actions

Policy gradient

Policy gradient vs supervised

Problems with this?

- what if we made a good action in frame 50 (bouncing the ball back correctly), but then missed the ball in frame 150?
- If every single action is now labeled as bad (because we lost), wouldn't that discourage the correct bounce on frame 50?
- Yes, but after thousands/millions of games, network will learn a good policy

Want to maximize

$$E_{x \sim p(x|\theta)}[f(x)]$$

f(x) is the reward function

p(x) is the policy network with parameters θ

(i.e. change the network's parameters so that action samples get higher rewards)

$$abla_{ heta} E_x[f(x)] =
abla_{ heta} \sum_x p(x) f(x)$$

$$egin{aligned}
abla_{ heta} E_x[f(x)] &=
abla_{ heta} \sum_x p(x) f(x) \ &= \sum_x
abla_{ heta} p(x) f(x) \end{aligned}$$

$$egin{aligned}
abla_{ heta} E_x[f(x)] &=
abla_{ heta} \sum_x p(x) f(x) \ &= \sum_x
abla_{ heta} p(x) f(x) \ &= \sum_x p(x) rac{
abla_{ heta} p(x)}{p(x)} f(x) \end{aligned}$$

$$egin{aligned}
abla_{ heta} E_x[f(x)] &=
abla_{ heta} \sum_x p(x) f(x) \ &= \sum_x
abla_{ heta} p(x) f(x) \ &= \sum_x p(x) rac{
abla_{ heta} p(x)}{p(x)} f(x) \ &= \sum_x p(x)
abla_{ heta} \log p(x) f(x) \end{aligned}$$

use the fact that
$$abla_{ heta} \log(z) = rac{1}{z}
abla_{ heta} z$$

$$egin{aligned}
abla_{ heta} E_x[f(x)] &=
abla_{ heta} \sum_x p(x) f(x) \ &= \sum_x
abla_{ heta} p(x) rac{
abla_{ heta} p(x)}{p(x)} f(x) \ &= \sum_x p(x)
abla_{ heta} \log p(x) f(x) \ &= E_x [f(x)
abla_{ heta} \log p(x)] \end{aligned}$$

Policy gradient

Learned weights for Pong

Deep Mind's bot playing Atari Breakout

https://www.youtube.com/watch?v=TmPfTpjtdgg

References

Andrew Ng's Reinforcement Learning course, lecture 16 https://www.youtube.com/watch?v=RtxI449ZjSc

Andrej Karpathy's blog post on policy gradient http://karpathy.github.io/2016/05/31/rl/

Mnih et. al, Playing Atari with Deep Reinforcement Learning (DeepMind) https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

Intuitive explanation of deep Q-learning https://www.nervanasys.com/demystifying-deep-reinforcement-learning/

 Human-level control through deep reinforcement learning (Mnih et al. 2015)

• Action-value: $Q^*(s,a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s',a') | s,a \right]$

• Loss function:

$$L_i(\theta_i) = \mathbb{E}_{s,a,r} \left[\left(\mathbb{E}_{s'} [y|s,a] - Q(s,a;\theta_i) \right)^2 \right]$$

= $\mathbb{E}_{s,a,r,s'} \left[\left(y - Q(s,a;\theta_i) \right)^2 \right] + \mathbb{E}_{s,a,r} [\mathbb{V}_{s'} [y]].$

• Graulent.

$$\nabla_{\theta_i} L(\theta_i) = \mathbb{E}_{s,a,r,s'} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \nabla_{\theta_i} Q(s,a;\theta_i) \right].$$


```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
            Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
   end for
```

