EJERCICIOS correspondientes a Capítulo 5 CURSO PROPEDÉUTICO DE ANÁLISIS REAL DCA - CINVESTAV, Mayo-Junio 2013

1.) De las siguientes funciones, determinar D_f , V_f , y los intervalos de continuidad (intervalos sobre los cuales la función es continua). Además: determinar y analizar sus discontinuidades (determinar cada punto c donde la función no es continua, analizar el tipo de discontinuidad, determinar los límites unilaterales de la función en cada discontinuidad):

$$\mathbf{a})$$

$$f(x) = \begin{cases} 1, & x \neq 3 \\ 2, & x = 3 \end{cases}$$

$$f(x) = \begin{cases} 1, & x \in (0, \infty) \\ 0, & x = 0 \\ -1, & x \in (-\infty, 0) \end{cases}$$

c)
$$f(x) = sen(x)$$

d)
$$f(x) = cos(\frac{2}{x}).$$

e)
$$f(x) = \frac{\sqrt{2 + |cos(x)|}}{x}$$

f)
$$f(x) = tan(x) - 4$$
.

g)
$$f(x) = \frac{(x-1)^2 - 1}{x}$$
 (para $x > 0$)

h)
$$f(x) = \frac{x+1}{x^2+2}$$
.

2.) Demuestra (aplicando la definición de continuidad) que $f(x) = 3x^2$ es continua sobre \mathbb{R} .

3.) Encontrar un ejemplo de funciones f y g definidas sobre \mathbb{R} , las cuales (ambas) **no** son continuas en un (mismo) punto c, pero con la propiedad que la suma (por puntos) f + g da una función continua sobre todo \mathbb{R} .

4.) Encontrar un ejemplo de funciones f y g definidas sobre \mathbb{R} , las cuales (ambas) **no** son continuas en un (mismo) punto c, pero con la propiedad que el producto (por puntos) $f \cdot g$ da una función continua sobre todo \mathbb{R} .

5.) Estudiar el capítulo 3 de las Notas de Curso "Análisis Real" de Dr. Gabriel Villa, y considerar los ejercicios correspondientes (sección 3.4).
