SALARY PREDICTION ARPITA BAYEN

CONTENTS	PAGE NO.
1. Introduction	
- Brief introduction about the problem statement and the need of solving it.	4
2. EDA and Business Implication	
- Both visual and non-visual understanding of the data.	5
- Uni-variate / Bi-variate / Multi-variate analysis to understand relationship b/w variables. How your analysis is impacting the business?	8
3. Data Cleaning and Pre-processing	
- Approach used for identifying and treating missing values and outlier treatment (and why)	19
- Variables removed or added and why (if any)	19
- Need for variable transformation (if any)	21
4. Model building	
- Clear on why was a particular model(s) chosen.	26
- Effort to improve model performance.	26
5. Model validation	
- How was the model validated? Just accuracy, or anything else too?	26
6. Final interpretation / recommendation	
- Detailed recommendations for the management/client based on the analysis done.	34

Table 1:Data Dictionary

Table 2:First few row of the dataset

Table 3:Statistical description of the dataset

Table 4:Unique vales of the categorical variables

Table 5:Missing values in percentage

Table 6:First few rows of the dataset after scaling

Table 7: First few rows of the dataset after label encoding

Table 8- X_train first few rows of dataset

Table 9- X_test first few rows of dataset

Table 10- Y_train first few rows of dataset

Table 11-Y_test first few rows of Dataset

Table 12:Important features using RFE

Table 13:R² and RMSE values of Linear Regression

Table 14: OLS Regression result on Train set

Table 15: OLS Regression result on Test set

Table 16:R² and RMSE values of OLS

Table 17:R² and RMSE values of LASSO

Table 18:R² and RMSE values of Polynomial Regression

Table 19:R² and RMSE values of Random Forest Regression

Table 20:R² and RMSE values of Bayesian linear Regression

Table 21:R² and RMSE values (Consolidated)

Fig 1:Offered Salary Distribution

Fig 2:All the Countplot of Categorical Variable(Descending Order)

Fig 3:All the Histplot of all Numerical Variables

Fig 4- Bivariate Graph

Fig 5-Pairplot of all the variables

Fig 6:Outliers of Numerical Variable

Fig 7:Boxplots After removing Outliers

Fig 8-Elbow Curve WSS plot

Fig 9: Current CTC VS Cluster (Kmeans)

1) Introduction of the business problem

DEFINING PROBLEM STATEMENT

The Dataset consists of The Dataset Contains historical datas of various salary ranges of old employees. The purpose of this project is to Predict the salary of the new employees. The dataset contains various factors which determines the salary of an individual.

NEED OF THE STUDY/PROJECT

The purpose of this research is to create a strong machine learning model that can predict future employee wages. This project will help to avoid biasness in offering salary to candidates. It will keep the salary of the future employees standardised.

To ensure there is no discrimination between employees.

UNDERSTANDING BUSINESS/SOCIAL OPPORTUNITY

From the perspective of recruiters, a salary prediction model is beneficial for improving recruitment and salary standards, as well as for providing more reasonable salaries to attract and discover talents.

2)Data Report

UNDERSTANDING HOW DATA WAS COLLECTED IN TERMS OF TIME, FREQUENCY AND METHODOLOGY.

Ans :As No date is mentioned in the dataset, it is not possible to say for how long has been collected and what was the frequency .

The data should not be very old as the standard of living and value of rupees also matters in determining the salary.

The methodology used was to collect all the details of any employee during their joining in the company.

This can be taken by asking them or by telling them to fill the tracker containing these variables.

The experience of employee ranges from 0 years of exp to 25 years of exp. The data was collected from different department, different hierarchy and of different experience.

<u>VISUAL INSPECTION OF DATA (ROWS, COLUMNS, DESCRIPTIVE DETAILS).</u>

- 1)The Data Consists of 25000 employees and 29 variables which determines the salary of an employee.
- 2) There are 3 float type, 10 integer type and 16 object type variables.
- 3)There are no duplicate variables.
- 4)There are many missing values in the dataset.

Table 1:Data Dictionary

IDX	Index
Applicant_ID	Application ID
Total_Experience	Total industry experience
	Total experience in the field applied for (past work experience that
Total_Experience_in_field_applied	is relevant to the job)
Department	Department name of current company
Role	Role in the current company
Industry	Industry name of current field
Organization	Organization name
Designation	Designation in current company
Education	Education
Graduation_Specialization	Specialization subject in graduation
University_Grad	University or college in Graduation
Passing_Year_Of_Graduation	Year of passing Graduation
PG_Specialization	Specialization subject in Post-Graduation
University_PG	University or college in Post-Graduation
Passing_Year_Of_PG	Year of passing Post Graduation
PHD_Specialization	Specialization subject in Post-Graduation
University_PHD	University or college in Post Doctorate
Passing_Year_Of_PHD	Year of passing PHD
Curent_Location	Curent Location
Preferred_location	Preferred location to work in the company applied
Current_CTC	Current CTC
Inhand_Offer	Holding any offer in hand (Y: Yes, N:No)
Last_Appraisal_Rating	Last Appraisal Rating in current company
No_Of_Companies_worked	No. of companies worked till date
Number_of_Publications	Number of papers published
Certifications	Number of relevant certifications completed
International_degree_any	Hold any international degree (1: Yes, 0: No)
Expected_CTC	Expected CTC (Final CTC offered by Delta Ltd.)

Table 2:First few row of the dataset

X	oplican t_ID		otal_Experie nce_in_field _applied	epartm ent	Role	ndustry	rganiz ation	esignatio n		raduation _Specializ ation
1	22753	0	0	aΝ	эN	aΝ	϶N	϶N	ì	ts
2	51087	23	14	₹	onsultant	nalytics		₹	octora :e	nemistry
3	38413	21	12	op Manage ment	onsultant	aining		aΝ	octora :e	ology
4	11501	15	8	ınking	nancial Analyst	/iation		₹	octora :e	:hers
5	58941	10	5	les	oject Manager	surance		edical Officer	ad .	ology
X	niversi ty_Gra d	assing_Yea r_Of_Grad uation	G_Specializa tion	niversit y_PG	assing_Ye ar_Of_PG	HD_Speci alization	nivers ity_P HD	assing_Ye ar_Of_PH D	urent _Loca tion	
1	icknow	2020	϶N	aΝ	϶N	϶N	aΝ	϶N	uwah ati	
2	ırat	1988	thers	ırat	1990	nemistry	angal ore	1997	ingalo e	
3	ipur	1990	ology	ipur	1992	ology	ckno v	1999	nmed abad	
4	ingalor e	1997	ology	ingalore	1999	nemistry	uwah ati	2005	inpur	
5	umbai	2004	ology	umbai	2006	ology	ingal ore	2010	nmed abad	
X	referre d_loca tion	urrent_CT C	ihand_Offer	ast_App raisal_R ating	lo_Of_Co mpanies_ worked	umber_o i_Publica tions	ertific ation s	ternation al_degre e_any	specte	
1	ıne	0		aΝ	0	0	0	0	84551	
2	agpur	2702664		y_Perf ormer	2	4	0	0	78372 9	
3	ipur	2236661		y_Perf ormer	5	3	0	0	13132 5	
4	olkata	2100510			5	3	0		60883	
5	nmeda pad	1931644			2	3	0	0	22139	

UNDERSTANDING OF ATTRIBUTES (VARIABLE INFO, RENAMING IF REQUIRED)

Table 3:Statistical description of the dataset

	IDX	Applicant_ID	Total_Experi	Total_Experience	Passing_Year_	Passing_Ye	Passing_Ye
			ence	_in_field_applied	Of_Graduation	ar_Of_PG	ar_Of_PHD
cou	25000	25000	25000	25000	18820	17308	13119
nt							
	12500. 5	34993.24	12.49308	6.2582	2002.194	2005.154	2007.396
an std	7217.0	14390.27	7.471398	5.819513	8.31664	9.022963	7.493601
	23	11050127	71172330	3.013313	0.01001	3.022303	71.133001
mi	1	10000	0	0	1986	1988	1995
n	6250.7	22563.75	6	1	1006	1007	2001
25 %	5	22303.73	0	1	1996	1997	2001
	12500.	34974.5	12	5	2002	2006	2007
%	5						
75 %	18750. 25	47419	19	10	2009	2012	2014
ma	25000	60000	25	25	2020	2023	2020
X		33333					
			Number_of_	Certifications	International_	Expected_	
		No_Of_Comp anies_worked	Number_of_ Publications	Certifications	International_ degree_any	Expected_ CTC	
				Certifications	_	_	
				Certifications 25000	_	_	
cou nt	t_CTC 2.50E+ 04	anies_worked 25000	Publications 25000	25000	degree_any	2.50E+04	
cou nt me	2.50E+ 04 1.76E+	anies_worked	Publications		degree_any	стс	
cou nt me an	2.50E+ 04 1.76E+ 06	25000 3.48204	25000 4.08904	25000 0.77368	25000 0.08172	2.50E+04 2.25E+06	
cou nt me an	2.50E+ 04 1.76E+	anies_worked 25000	Publications 25000	25000	degree_any	2.50E+04	
cou nt me an	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+	25000 3.48204	25000 4.08904	25000 0.77368	25000 0.08172	2.50E+04 2.25E+06	
cou nt me an std mi	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+	25000 3.48204 1.690335	25000 4.08904 2.606612	25000 0.77368 1.199449 0	25000 0.08172 0.273943	2.50E+04 2.25E+06 1.16E+06 2.04E+05	
cou nt me an std mi n 25	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+ 00 1.03E+	25000 3.48204 1.690335	25000 4.08904 2.606612	25000 0.77368 1.199449	25000 0.08172 0.273943	2.50E+04 2.25E+06 1.16E+06	
cou nt me an std mi n 25 %	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+	25000 3.48204 1.690335	25000 4.08904 2.606612	25000 0.77368 1.199449 0	25000 0.08172 0.273943	2.50E+04 2.25E+06 1.16E+06 2.04E+05	
cou nt me an std mi n 25 %	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+ 00 1.03E+ 06 1.80E+	25000 3.48204 1.690335 0 2	25000 4.08904 2.606612 0 2	25000 0.77368 1.199449 0 0	25000 0.08172 0.273943 0	2.50E+04 2.25E+06 1.16E+06 2.04E+05 1.31E+06 2.25E+06	
:ou nt me an std mi n 25 % 50 %	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+ 00 1.03E+ 06 1.80E+ 06 2.44E+	25000 3.48204 1.690335 0	25000 4.08904 2.606612 0	25000 0.77368 1.199449 0	25000 0.08172 0.273943 0	2.50E+04 2.25E+06 1.16E+06 2.04E+05 1.31E+06	
cou nt me an std mi n 25 %	2.50E+ 04 1.76E+ 06 9.20E+ 05 0.00E+ 00 1.03E+ 06 1.80E+	25000 3.48204 1.690335 0 2	25000 4.08904 2.606612 0 2	25000 0.77368 1.199449 0 0	25000 0.08172 0.273943 0	2.50E+04 2.25E+06 1.16E+06 2.04E+05 1.31E+06 2.25E+06	

Total Experience ranges from 0 to 25 .Expected Salary ranges upto 60 LPA.

Table 4:Unique vales of the categorical variables

Department	12	PF Specialization	11
Role	24	University PG	13
Industry	11	PHD Specialization	11
Organisation	16	University PHD	13
Designation	18	Current Location	15
Education	4	Preferred Location	15
Graduation Specialization	11	Inhand Offer	2
University Grad	13	Last Appraisal Rating	5

3) Exploratory data analysis

UNIVARIATE ANALYSIS (DISTRIBUTION AND SPREAD FOR EVERY CONTINUOUS ATTRIBUTE, DISTRIBUTION OF DATA IN CATEGORIES FOR CATEGORICAL ONES)

Fig1:Offered Salary Distribution

Offered salary ranges upto 60 LPA

Fig 2:Countplot of All Categorical Variable

Marketing Department has the highest employee number .IT software department has the lowest number of employee in the dataset.

Researcher,Lab executives ,Research Scientist,Professor are the lowest among all the roles in the dataset

There are 11 industry taken into account.

There are 16 Organisations taken into account.

There are 18 Designations

There are 4 Education and Everyone has equally participated

There are 11 Graduation specializations

There are 13 state universities.

There are 11 PG Specialisation

There are 13 state PG universities.

There are 11 PHD Specialization

There are 13 PHD State Universities

There are 15 Current and Preferred Locations.

Some Candidates already had Offer in hand before getting selected in this company.

Last Appraisal rating is also taken into consideration

Fig 3:Histplot of all Numerical Variables

The Experience range is from 0 years to 25 years.

Relevant experience is not same as total experience as the person may be having less relevant experience but he is experienced in other domain.

The passing year of graduation is from 1985 to 2020.

The passing year of graduation is from 1990 to 2023

The passing year of PHD is from 1995 to 2020.

The data set also contains how many companies an employee has changed . This will give the stability of the employee

Number of publications will be helpful in recruiting a scientist or researcher .

Candidates have also show their certificates.

Candidates have given if they have any international degree or not.

BIVARIATE ANALYSIS (RELATIONSHIP BETWEEN DIFFERENT VARIABLES, CORRELATIONS)

Fig 4:Bivariate Graph

Expected CTC is increasing with total experience but many less experienced candidates are getting higher than more experienced candidate. Total Experience and relavant experience are not related.

Graduate and under Graduate candidates are getting less than PG .Doctorate employees are getting more than PG employees.

Fig 5:Pairplot

Observations:

There are positive relations and negatve relations among variables, but many are obvious relations like 1)earlier the passing year more is the experience.

- 2)the current ctc and expected ctc will increase at a same rate.
- 3) Relevant Experience is not related to expected CTC.

REMOVAL OF UNWANTED VARIABLE

The variables Index and Applicant ID are removed from the dataset.

MISSING VALUE TREATMENT

Table 5: Missing values in percentage

Total Experience	0.000
Total Experience in field applied	0.000
Department	11.112
Role	3.852
Industry	3.632
Organization	3.632
Designation	12.516
Education	0.000
Graduation_Specialization	24.720
University_Grad	24.720
Passing_Year_Of_Graduation	24.720
PG_Specialization	30.768
University_PG	30.768
Passing_Year_Of_PG	30.768
PHD_Specialization	47.524
University_PHD	47.524
Passing_Year_Of_PHD	47.524
Curent_Location	0.000
Preferred_location	0.000
Current_CTC	0.000
Inhand_Offer	0.000
Last_Appraisal_Rating	3.632
No_Of_Companies_worked	0.000
Number_of_Publications	0.000
Certifications	0.000
<pre>International_degree_any</pre>	0.000
Expected_CTC	0.000

There are so many columns where the percentage of missing values are equal to or more than 30%.3 variables has 24% of missing values which are almost close to 30%. It is better to drop those variables as imputing those missing values will create a synthetic data.

After removing variables containing more than 24 % missing values the dataset contains 25000rows and 18 variables.

Dropping all the rows containing null values.-The dataset contains 20307 rows and 18 variables.

Around 18.72 % of data are removed from the dataset.

ADDITION OF NEW VARIABLE

One new variables is added –Percentage increament which is the percentage of increament given on the Current CTC .

The formula used is -Percentage_Increament=[(Expected CTC-Current CTC)/Current CTC]*100

OUTLIER TREATMENT

There are outliers present in some variables

Fig 6:Outliers of Numerical Variable

Outliers are removed from the dataset by replacing them by 0.25 or 0.75 of the values.

Fig 7:After removing Outliers

SCALING OF DATA

As every numerical variable except Current CTC and Expected CTC have 1 or 2 digit value so they do not need to be scaled.

So only Current CTC and Expected CTC has been scaled by using standard scaler.

Table 6:First few rows of the dataset after scaling

	Total _Expe rienc e	Total_Exper ience_in_fie Id_applied	Depart ment	Role	Industry	Org aniz atio n	Designat ion	Educ atio n	Curent_ Locatio n
1	23	14	HR	Consulta nt	Analytics	Н	HR	Doct orat e	Bangalo re
3	15	8	Banking	Financial Analyst	Aviation	F	HR	Doct orat e	Kanpur
4	10	5	Sales	Project Manager	Insuranc e	Е	Medical Officer	Grad	Ahmeda bad
5	16	3	Top Manag ement	Area Sales Manager	Retail	G	Director	Doct orat e	Pune
6	1	1	Enginee ring	Team Lead	FMCG	L	Marketin g Manager	Grad	Delhi
Prefer	Curre	Inhand_Off	Last_A	No_Of_C	Number	Cert	Internati	Expe	percent
red_lo	nt_CT	er	ppraisa	ompanie	_of_Pub	ifica	onal_de	cted	age_inc
cation	С		I_Ratin	s_worke	lications	tion	gree_an	_CTC	reamen
			g	d		S	У		t
Nagpu r	1.007 712	Υ	Key_Pe rformer	2	4	0	0	1.29 5859	39.9999 8
Kolkat a	0.313 262	N	С	5	3	0	0	0.25 7249	24.1999 8
Ahme dabad	0.118 513	N	С	2	3	0	0	- 0.08 525	14.9999 7
Bhuba neswa r	1.940 138	Υ	С	5	4	0	0	1.94 883	28.8
Pune	- 1.540 74	Υ	В	3	3	0	0	1.49 122	27.9998 5

LABEL ENCODING

As there are many categorical variables so they needs to be changed to numerical for easiness in making models.

Here Label encoder is used

Table 7: First few rows of the dataset after label encoding

	Total _Expe rienc e	Total_Exper ience_in_fie Id_applied	Depart ment	Role	Industry	Orga niza tion	Designati on	Educ atio n	Curent_ Location
1	23	14	5	6	0	7	5	0	1
3	15	8	2	8	2	5	5	0	7
4	10	5	10	14	6	4	8	1	0
5	16	3	11	1	8	6	4	0	13
6	1	1	4	23	4	11	7	1	4
Prefer red_lo cation	Curre nt_CT C	Inhand_Off er	Last_A ppraisa I_Ratin g	No_Of_C ompanies _worked	Number _of_Pub lications	Cert ifica tion s	Internati onal_deg ree_any	cted _CTC	percent age_incr eament
12	1.007 712	1	4	2	4	0	0	1.29 5859	39.9999 8
8	0.313 262	0	2	5	3	0	0	0.25 7249	24.1999 8
0	0.118 513	0	2	2	3	0	0	- 0.08 525	14.9999 7
2	1.940 138	1	2	5	4	0	0	1.94 883	28.8
13	1.540 74	1	1	3	3	0	0	- 1.49 122	27.9998 5

All the categorical variables are changed to numerical label.

SPLITTING DATA INTO TRAIN AND TEST

The dataset is splitted with test set 70 %.

```
X_train Shape- (6092, 18)
X_test Shape- (14215, 18)
Y-train Shape- (6092,1)
Y test Shape- (14215,1)
```

Table 8-X_train first few rows of datasets

	Total_Exp	Total_Exp	Departme	Role	Industry	Organizat	Designati	Education	Curent_L	Preferred	Current_C TC	Inhand_0	Last_Appr	No_Of_C	Number_	Certificati	Internatio	percentag e_increa
2070 8	12	4	5	21	9	14	13	1	8	3	0.2	0	3	2	7	0	0	15.0 0
1155	7	3	9	11	10	0	10	3	0	3	1.0 4	0	2	1	3	2	0	15.0 0
1630	20	20	11	22	3	3	10	2	10	4	8.0	1	0	5	1	1	0	32.0 0
1987 3	15	3	3	23	3	8	0	2	3	14	0.2 8	1	0	2	3	0	0	32.0
1729 5	20	12	7	23	7	14	16	2	11	9	1.5 2	1	1	3	3	2	0	32.0 0

Table 9 X_test first few rows of datasets:

	Total_Exp	Total_Exp	Departme	Role	Industry	Organizat	Designati	Education	Curent_L	Preferred	Current_C TC	Inhand_0	Last_Appr	No_Of_C	Number	Certificati	Internatio	percentag e_increa
1635	25	6	0	17	1	11	5	1	1	14	- 0.3 8	0	2	4	8	0	0	15.0
8940	22	9	8	17	3	5	2	3	11	0	0.5	0	2	2	5	2. 5	0	15.0 0
1451 1	23	0	1	6	10	8	6	1	9	5	0.6	1	4	3	7	0	0	28.0
1899 5	17	9	2	18	6	2	5	2	7	4	0.5 4	0	0	6	6	0	0	30.0
1530 4	20	1	10	3	6	10	7	0	13	10	0.6 7	1	2	3	7	0	0	28.8

Table 10-Y_train first few rows of dataset:

20708	-0.004609	
11551	-1.110210	
1630	0.972763	
19873	-0.194590	
17295	1.620325	

Table 11-Y_test first few rows of Dataset:

16352	-0.525811
8940	0.256427
14511	0.684480
18995	0.587614
15304	0.698102

IMPORTANT FEATURE SELECTION

As there are 19 variables in the dataset ,it will lead to curse of dimensionality. To reduce the number of features RFE method is used .It will reduce the multicollinearity.

Feature selection is done to speed up the model execution time and make the process easy to handle.

With estimator Random Forest-Important variables are:

Table 12-

```
1 Total Experience
1 Department
1 Organization
1 Designation
1 Education
1 Curent Location
1 Preferred location
1 Current CTC
1 Inhand Offer
1 percentage_increament
2 Role
3 Total Experience in field applied
4 Industry
5 Number of Publications
6 Last Appraisal Rating
7 No Of Companies_worked
8 Certifications
9 International_degree_any
```

CLUSTERING(K-means)

The dataset has been clustered by K-Means.

WSS Value of clusters 1-10 are:

```
Cluster1 - 1383934.51,

Cluster2 - 1072401.27,

Cluster3 - 916831.38,

Cluster4 - 839085.96,

Cluster5 - 785194.76,

Cluster6 - 749169.30,

Cluster7 - 716021.24,

Cluster8 - 690068.85,

Cluster9 - 669021.15,

Cluster10 - 652407.63.
```

Fig 8-Elbow Curve WSS plot:

Elbow Curve is not clearly showing the break .So I will try the silhouette score.

Silhoutte Score of Cluster 2-0.2017 Silhoutte Score of Cluster 3-0.1780 Silhoutte Score of Cluster 4-0.1508 Silhoutte Score of Cluster 5-0.1478 Silhoutte Score of Cluster 6-0.1457

Cluster 4 is the breaking point.4 clusters are suitable here.

A new files is prepared with cluster labelling data named 'ArpitaBayen_Salary Predictions_K-Means.csv' Fig 9-Current CTC VS Cluster (Kmeans)

It shows the number of clusters and Current CTC.

Model building and interpretation.

a. Build various models (You can choose to build models for either or all of descriptive, predictive or prescriptive purposes) b. Test your predictive model against the test set using various appropriate performance metrics c.Interpretation of the model(s)

The Dataset is preprocessed.

MODEL BUILDING:

Reason to use Regression-It is a Supervised Learning model. It means it has a labelled datasets and a target output. As we have to predict the target variables so Regression Models are used.

This is <u>Regression Model</u>. Regression models describe the relationship between variables by fitting a line to the observed data.

<u>Regression</u> is a tool that allows you to estimate how the dependent variable changes as the independent variable(s) change.

Regression models can be used for many purposes:

- Evaluating the effect of an independent variable on a dependent variable.
- Forecasting future values of the dependent variable based on prior observations of both variables.

SIMPLE LINEAR REGRESSION:

Simple linear regression is a statistical method for establishing the relationship between two variables using a straight line. The line is drawn by finding the slope and intercept, which define the line and minimize regression errors.

Reason-One of the main advantages of using linear regression for predictive analytics is that it is easy to understand and interpret.

 $y = \beta 0 + \beta 1x + \varepsilon$ is the formula used for simple linear regression.

- y is the predicted value of the dependent variable (y) for any given value of the independent variable (x).
- B0 is the intercept, the predicted value of y when the x is 0.
- B1 is the regression coefficient how much we expect y to change as x increases.
- x is the independent variable (the variable we expect is influencing y).

 e is the error of the estimate, or how much variation there is in our regression coefficient estimate.

The Simple Linear Regression library is imported from scikit Learn module

The data is fitted to both test set and train set.

The coefficients for each of the independent attributes of the data:

The coefficient for Total_Experience is -0.0016283949877708979

The coefficient for Total_Experience_in_field_applied is -1.229695122647198e-05

The coefficient for Organization is 3.773289454316433e-06

The coefficient for Designation is 1.254819215709172e-05

The coefficient for Education is -0.001016816768916053

The coefficient for Curent_Location is -0.00015226460764011964

The coefficient for Preferred location is -0.00011115522661619285

The coefficient for Current CTC is 0.9847694559882453

The coefficient for Inhand Offer is 0.0005962556758171019

The coefficient for percentage_increament is 0.015582788554075647

The intercept for the set model:

The intercept for our model is -0.3850670231797762

we can write our Linear model as:

Y=-0.385-0.0016*(Total Experience)-(1.2296e-05) *(Total Experience in field applied)+(3.77e-06)*(Organisation)+(1.25e-05)*(Designation)-0.00101*(Education)-0.000152*(Current Location)-0.00011*(Preferred Location)+0984*(Current CTC)+0.005*(Inhand Offer)+0.0155*(percentage increament)

Fitting and predicting the Model on Test dataset

The coefficients for each of the independent attributes in test dataset

The coefficient for Total Experience is -0.0016837313142405393

The coefficient for Total_Experience_in_field_applied is 5.177701944692249e-05

The coefficient for Organization is 5.677609206226164e-05

The coefficient for Designation is -5.9238794124578736e-05

The coefficient for Education is -0.003661168331945236

The coefficient for Curent_Location is 2.6473697327251974e-05

The coefficient for Preferred_location is 7.00570291232028e-05

The coefficient for Current_CTC is 0.9834772526046177

The coefficient for Inhand_Offer is 0.0029165304793320797

The coefficient for percentage increament is 0.015503556696892072

we can write our linear model(test set) as:

Y=-0.385-0.0016($Total\ Experience$)+(5.177e-05)(Total Experience in field applied)+(5.677e-05)(Organisation)-(5.92e-05)(Designation)-0.003(Education)+(2.647e-05)(Current Location)+(7.005e-05)($Preferred\ Location$)+0.984(Current CTC)+0.0029($Inhand\ Offer$)+0.0155(percentage increament)

Table 13: R² and RMSE values of Linear Regression

Linear Regression					
R Square RMSE					
Train Set	0.9969665363118088	0.054989256584532215			
Test Set	0.9968765513845881	0.05596938424534416.			

<u>Inferences:</u> R² is almost equal to 1 RMSE of both set are almost equal ,which means the train set and test set are equally distributed.

ORDINARY LEAST SQUARES (OLS)

Ordinary least squares (OLS) regression is an optimization strategy that helps to find a straight line as close as possible to your data points in a linear regression model.

Reason:-OLS is considered the most useful optimization strategy for linear regression models as it can help you find unbiased real value estimates for your alpha and beta. To be more precise, the model will minimize the squared errors.

OLS is imported using statsmodel module.

OLS Regression result on Train set:

Table 14: OLS Regression result on Train set

OLS Regression Results					
Dep. Variable:	Expected_CTC	R-squared (uncentered):	0.994		
Model:	OLS	Adj. R-squared (uncentered):	0.994		
Method:	Least Squares	F-statistic:	9.500e+04		
Date:	Sun, 22 Oct 2023	Prob (F-statistic):	0.00		
Time:	10:17:14	Log-Likelihood:	6781.7		
No. Observations:	6092	AIC:	-1.354e+04		
Df Residuals:	6082	BIC:	-1.348e+04		
Df Model:	10				
Covariance Type:	nonrobust				

			coef		std err	t	P> t	[0.025	0.975]
Total_Experience		-0.0098		0.000	-38.188	0.000	-0.010	-0.009	
Total_Experience	_in_field	_applied	7.468e-0)5	0.000	0.328	0.743	-0.000	0.001
Organ	ization		-0.0031		0.000	-14.580	0.000	-0.004	-0.003
Desig	nation		-0.0025		0.000	-12.682	0.000	-0.003	-0.002
Educ	ation		-0.0144		0.001	-13.899	0.000	-0.016	-0.012
Curent_Location		-0.0033		0.000	-14.408	0.000	-0.004	-0.003	
Preferred_location		-0.0034		0.000	-15.005	0.000	-0.004	-0.003	
Current_CTC		1.0347		0.002	570.018	0.000	1.031	1.038	
Inhand	Inhand_Offer		0.0253		0.002	11.013	0.000	0.021	0.030
percentage	percentage_increament (0.0091		0.000	81.276	0.000	0.009	0.009
Omnibus:	15.750	Durbin-\	Watson:	1.	.988				
Prob(Omnibus):	0.000	Jarque-B	era (JB):	18	8.919				
Skew:	0.045	Prob(JB): 7		7.	79e-05				
Kurtosis:	3.258	Cond	. No.	7	7.5				

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 15: OLS Regression result on Test set

Dep. Variable: Expected_CTC 0.994 **R-squared** (uncentered): **Model:** OLS Adj. R-squared (uncentered): 0.994 **Method:** Least Squares F-statistic: 2.211e+05Sun, 22 Oct 2023 **Prob** (F-statistic): Date: 0.00 23:08:11 Log-Likelihood: 15731. Time: No. Observations: 14215 -3.144e+04AIC: **Df Residuals:** 14205 BIC: -3.137e+04**Df Model:** 10

Covariance Type: nonrobust

- J I						
	coef	std err	t	P> t [0.025	0.975]
Total_Experience	-0.0097	0.000	-57.727	0.000 -	0.010	-0.009
Total_Experience_in_field_appl	lied -6.183e-05	0.000	-0.415	0.678 -	-0.000	0.000
Organization	-0.0031	0.000	-22.053	0.000 -	-0.003	-0.003
Designation	-0.0027	0.000	-20.725	0.000 -	-0.003	-0.002
Education	-0.0175	0.001	-25.679	0.000 -	0.019	-0.016
Curent_Location	-0.0029	0.000	-19.135	0.000 -	-0.003	-0.003
Preferred_location	-0.0033	0.000	-21.619	0.000 -	0.004	-0.003
Current_CTC	1.0339	0.001	863.361	0.000	1.032	1.036
Inhand_Offer	0.0294	0.002	19.348	0.000	0.026	0.032

percentage_increament 0.0091 7.5e-05 121.426 0.000 0.009 0.009

 Omnibus:
 14.305
 Durbin-Watson:
 1.980

 Prob(Omnibus):
 0.001
 Jarque-Bera (JB):
 16.301

 Skew:
 0.016
 Prob(JB):
 0.000289

 Kurtosis:
 3.163
 Cond. No.
 77.7

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Get the value of coefficient of determination

The variation in the independent variable which is explained by the dependent variable is 99.3638 % Table 16:R² and RMSE values of OLS

Ordinary least squares (OLS)				
R Square RMSE				
Train Set	0.994	0.07948752886451363		
Test Set	0.994	0.08013799514078769		

<u>Inference:</u> R² is almost equal to 1 and RMSE is higher than Linear Regression.Linear regression is better model than OLS.

The graph is linear.

LASSO REGRESSION:

Lasso regression is a regularization technique. It is used over regression methods for a more accurate prediction. This model uses shrinkage. Shrinkage is where data values are shrunk towards a central point as the mean.

The word "LASSO" stands for Least Absolute Shrinkage and Selection Operator. It is a statistical formula for the regularisation of data models and feature selection.

Reason- The main advantage of a LASSO regression model is that it has the ability to set the coefficients for features it does not consider interesting to zero. This means that the model does some automatic feature selection to decide which features should and should not be included on its own.

Mathematical equation of Lasso Regression

Residual Sum of Squares + λ * (Sum of the absolute value of the magnitude of coefficients)

Where,

- λ denotes the amount of shrinkage.
- λ = 0 implies all features are considered and it is equivalent to the linear regression where only the residual sum of squares is considered to build a predictive model
- $\lambda = \infty$ implies no feature is considered i.e, as λ closes to infinity it eliminates more and more features
- The bias increases with increase in λ
- variance increases with decrease in λ

Lasso Coefficients:

```
Lasso model: [ 0.02898297 0. 0. -0. -0. -0. 0. 0.70031259 -0. 0.01984192]
```

Observe, many of the coefficients have become 0 indicating drop of those dimensions from the model.

Table 17:R² and RMSE values of LASSO

LASSO Regression					
R Square RMSE					
Train Set	0.9717537590492116	0.17060677652170506			
Test Set	0.9713596902266868	0.16948146197751796			

<u>Inference:</u> R² is almost equal to 1 here too and RMSE is higher than Linear Regression.Linear regression is better model than LASSO Regression.

POLYNOMIAL REGRESSION

Reason-A polynomial regression model is a machine learning model that can capture nonlinear relationships between variables by fitting a non-linear regression line, which may not be possible with simple linear regression.

First of all both the test data and train data was transformed to polynomial features.

<u>Shape of train dataset after polynomial transformation:</u>

Before -(6092, 10) After-(6092, 56)

Shape of test dataset after polynomial transformation:

Before-(14215, 10) After-(14215, 56)

Table 18:R² and RMSE values of Polynomial Regression

Polynomial Regression				
R Square RMSE				
Train Set	1	5.069148711350037e-14		
Test Set	1	5.0380742515126526e-14		

<u>Inference:</u> R² is equal to 1 and RMSE is lesser than Linear Regression.Polynomial regression is better model than Linear Regression.

RANDOM FOREST REGRESSION

Random forest regression is an invaluable tool in data science. It enables us to make accurate predictions and analyze complex datasets with the help of a powerful machine-learning algorithm.

A Random forest regression model combines multiple decision trees to create a single model. Each tree in the forest builds from a different subset of the data and makes its own independent prediction. The final prediction for input is based on the average or weighted average of all the individual trees' predictions.

Reason- The random forest technique can also handle big data with numerous variables running into thousands. It can automatically balance data sets when a class is more infrequent than other classes in the data. The method also handles variables fast, making it suitable for complicated tasks.

Random forest is imported using scikit learning: Table 19:R² and RMSE values of Random Forest Regression

Random Forest Regression					
R Square RMSE					
Train Set	0.9866661512352104	0.11507734224295219			
Test Set	0.9859365306699769	0.11876256843496513			

<u>Inference:</u> R² is almost equal to 1 and RMSE is higher than polynomial Regression.Polynomial regression is better model than Random Forest Regression.

BAYESIAN REGRESSION

Bayesian linear regression is a statistical technique that utilizes Bayesian methods to estimate the parameters of a linear regression model. In Bayesian linear regression, we assume that the regression coefficients have a prior probability distribution, which is updated based on the observed data to produce a posterior probability distribution.

Reason:-The primary distinction between Bayesian linear regression and traditional linear regression is that Bayesian linear regression enables the incorporation of prior knowledge or assumptions about the data into the model. This can be especially useful when data is limited or when we want to incorporate expert knowledge into the model.

Table 20:R² and RMSE values of Bayesian linear Regression

Bayesian Regression					
R Square RMSE					
Train Set	0.9969665362118418	0.054888513350202665			
Test Set	0.9968873603611399	0.05587245675686155			

Inference: R² is almost equal to 1 and RMSE is higher than polynomial Regression.Polynomial regression is better model than Bayesian Regression.

Comparing all the RMSE value It is found that Polynomial Regression model is the best one among all the regression model.

MODEL VALIDATION:

Each model is tested with testing dataset and their statistical value of R² and RMSE are checked .From the R² and RMSE values .

Table 21:R² and RMSE values (Consolidated)

Linear Regression					
	R Square	RMSE			
Train Set	0.997	0.055			
Test Set	0.997	0.055			
	Ordinary least squ	ares (OLS)			
	R Square	RMSE			
Train Set	0.994	0.079			
Test Set	0.994	0.080			
	LASSO Regre	ssion			
	R Square	RMSE			
Train Set	0.972	0.171			
Test Set	0.971	0.169			
	Polynomial Reg	ression			
	R Square	RMSE			
Train Set	1	5.07E-14			
Test Set	1	5.04E-14			
	Random Forest R	egression			
	R Square	RMSE			
Train Set	0.987	0.115			
Test Set	0.986	0.119			
	Bayesian Regression				
	R Square	RMSE			
Train Set	0.997	0.055			
Test Set	0.997	0.056			

Polynomial regression has the highest R² and lowest RMSE among all the models.

INSIGHTS FROM ANALYSIS

The salary is depending on so many factors. More the number of total experience more will be the offered salary. Similarly it also depends on department, organization etc.

Our Evaluation Metric is R^2 and RMSE(Root Mean Squared Error).

As we can see that R^2 of Polynomial Regression is 1 and more than the other model R^2.So Polynomial Regression model is the best model here.

RMSE Value of Polynomial Regression is the least RMSE value among other models ,which makes the Polynomial Regression as the best model again.

RECOMMENDATIONS

This model should check for new data, once in a month, and incorporate them to expand the dataset and produce better results.

More factors like number of company changed in the last 3 years should be added to check the stability of the candidate.

Fixed Salary and Variable Salary should be properly mentioned in the dataset to reduce discrepancies.