

هوش مصنوعی پاییز ۱۳۹۹ استاد: محمدحسین رهبان

دانشگاه صنعتی شریف دانشکدهی مهندسی کامپیوتر

شبکههای عصبی و یادگیری ژرف مهلت ارسال: _

پاسخ تمرین ششم، بخش دوم

سوالات نظری (۳۵ نمره)

۱. (۱۵ نمره)

- a_j می دانیم که یک رابطه منطقی را می توان به صورت جمع p_i هایی نوشت که هر یک به صورت ضرب p_i ها و not آنها نوشته می شوند. نورونهای ورودی را a_j ها تعریف می کنیم که درصورتی که خودشان به کار رفته باشد، با وزن یک و درصورتی که not شان به کار رفته باشد با وزن 1 مشخص می کنیم و اگر آن ورودی در عبارت ضربی اصلا به کار نرفته باشد، وزن آن را صفر قرار می دهیم. بایاس هر جمله هم به اندازه یکی کمتر از تعداد نورونهایی است که در ساخت جمله ضربی کاربرد دارند البته به صورت منفی. در لایه اول ضربها یعنی p_i ها را میسازیم. در لایه دوم هم از هر p_i با وزن یک به نورون خروجی متصل میکنیم و بایاس نمیگذاریم تا در صورتی که حداقل یکی از p_i ها یک شد، مقدار خروجی مثبت شود.
- SOP وقتی یک است که تعداد فردی از متغیرهای ما یک باشند و آن را میتوان به صورت SOP نوشت بنابراین طبق الف ساخته می شود. تعداد جملاتی که در ساخت XOR دخالت دارند، معادل خواهد بود با تعداد زیر مجموعههای فرد عضوی، یعنی دو به توان n-1 عبارت ضربی در لایه اول داریم که همکی به خروجی متصل هستند. پس در مجموع تعداد پارامترهای شبکه از اردر دو به توان n خواهد بود
- (ج) برای این قسمت، جملات را دو به دو با هم XOR میکنیم، و نتیجهها رو دو به دو با هم و به همین منوال ادامه میدهیم. به ازای هر مرحله از XOR هم که به دو لایه نیاز داریم، پس نهایتا لایه های شبکه از اردر x + log(n) ۲ خواهد شد.

اما تعداد يارامترها:

وقتی دو متغیر اول را با هم XOR میکنیم، برای ساخت عبارات ضربی به ۶ پارامتر (با احتساب بایاس) و برای جمع زدن آنها به ۳ پارامتر نیاز داریم. و چون متغیرها را دو به دو با هم به این شکل جمع میکنیم، در کل n/r تا قسمت داریم که در لایه اول و دوم هر یک ۹ پارامتر دارند. پس در لایه اول و دوم n/r ، در لایه سوم و چهارم n/r و به همین ترتیب تعداد پارامترها مشخص میشود که جمع اینها از اردر n

 y_1 نمره) پیش از هرچیز به این نکته دقت میکنیم که برای انتخاب x_1 به عنوان ماکسیموم و یک شدن y_1 باید هر دو شرط زیر برقرار باشند:

 $x_1 \geq x_1$

 $x_1 \ge x_7$

پس اگر بتوانیم g_1 و g_7 را به گونهای تشکیل دهیم که هر کدام، یکی از دو شرط بالا را ایجاد کنند، (یعنی با مطرقرار شدن شرط مقدار ۱ و در غیر این صورت مقدار ۰ برگردانند) کافی است که بر روی g_1 و g_2 تابع and پیاده سازی کنیم.

برای این کار کافی است که به g_1 و g_7 وزن یک بدهیم، و از بایاس ۱.۵ ستفاده کنیم. به این ترتیب، تنها در شرایطی که هر دوی آنها یک شده باشند، این خروجی یک میشود.

حال باید سعی کنیم g_1 و g_2 را به گونهای بسازیم که شرط مورد نظر را ایجاد کنند. نحوه ایحاد g_1 را بررسی میکنیم، مشابه آن برای g_2 هم برقرار است.

فرض کنید که h_1 و h_7 را به این شکل تعریف کنیم:

$$h_{1} = ReLU(x_{1} - x_{1})$$

$$h_{2} = ReLU(x_{1} - x_{2} + 1)$$

. و را نیز به صورت $ReLU(h_{
m Y}-h_{
m 1})$ تعریف می کنیم.

با توجه به آن که میدانیم ورودیهای ما اعداد صحیح هستند، میتوانیم بگوییم که در صورتی که $x_1 \geq x_2$ باشد اختلاف این دو ورودی یک عدد مثبت است پس بعد از عبور از تابع فعالسازی، مقدارش خودش باقی می ماند و خروجی h_1 و h_2 هر دو مقادیر مثبتی هستند. پس با کم کردن این دو از هم، حاصل یک میشود و با عبور از تابع فعالسازی یک باقی می ماند.

همچنین درصورتی که $x_{1}>x_{1}$ باشد، خروحی h_{1} و h_{2} صفر میشود. این کار را برای تشکیل بقیه خروجیها هم تکرار میکنیم.