Problem Set #1

Graded Assignment • 1h

⊞ English
 ✓ Due May 12, 11:59 PM PDT

1. **Problem 1: Working with Shannon Cofactors**

5 points

Let Boolean function $F(x,y,z,w)=(xy+\bar{x}z)\oplus w$.

Tell us whether each of the following Boolean equations involving Shannon Cofactors of function $F(\)$ are true or false. Please select all correct answers.

(Reminder: $a \oplus b = a\bar{b} + \bar{a}b$; think carefully about what equations like (Boolean stuff) \oplus 1 and (Boolean stuff) \oplus 0 can simplify to.)

$$F_y = (x + \bar{x}z) \oplus w$$

$$lacksquare$$
 $F_w = (ar xar z + xar y + ar yar z)$

$$lacksquare F_{ar{y}} = (x + ar{x}z) \oplus w$$

Problem 1: Working with shannon cofactors - 2 2.

5 points

This question is a continuation of Problem 1.

$$ightharpoonup F_{xy} = \bar{w}$$

$$\square$$
 $F_{xy}=w$

Problem 2: Alternative Shannon Expansion Formulas 3.

8 points

There are other ways of representing the Shannon Expansion theorem. The version we gave you -

$$F(x_1,\ldots x_i,\ldots x_n)=x_i\bullet F(x_i=1)+\bar{x_i}\bullet F(x_i=0)$$
 can be thought of as a "sum of products" form, since the equation is an OR (sum) of two small AND (product) terms. But there must be a "product of sums" form for the Shannon expansion. And perhaps even other forms that use Boolean algebra to express this idea in a different way.

Use Boolean algebra, and the basic properties of cofactors, and tell us which of these equations is a correct alternate form of the Shannon Expansion. Please select all correct answers.

(Hint: when it doubt, it is always a good idea to just make up a little Boolean