Pesquisa Operacional

Introdução

 Otimização: maximizar ou minimizar uma quantidade específica, chamada objetivo, que depende de um número finito de variáveis de entrada.

- As variáveis de entrada podem ser:
 - Independentes uma das outras.
 - Relacionadas uma com as outras por meio de uma ou mais restrições.
- Algumas aplicações:
 - mix de produtos, escalonamento de tarefas, grade horária, roteamento e logística, planejamento financeiro, dentre outros.

Pesquisa Operacional

- A Pesquisa Operacional (PO) trata da modelagem matemática de fenômenos estáticos ou dinâmicos.
 - Os problemas estáticos são denominados por determinísticos. Nestes problemas, todos os componentes são conhecidos *a priori* e nenhuma aleatoriedade em sua ocorrência é admitida.
 - Os problemas dinâmicos são denominados estocásticos, e seus elementos apresentam uma probabilidade de ocorrência em uma determinada forma.

Etapas para o processo de PO

- Etapa 1: Observar o ambiente do problema.
 - Inclui diferentes atividades: reuniões, visita in loco, pesquisa,
 observações. Visa obter informações para a formulação do problema.
- Etapa 2: analisar e definir o problema.
 - Neste passo, além da definição explícita do problema, são analisados os objetivos, utilidade e limitações da PO.
- Etapa 3: Desenvolver um modelo.
 - Um modelo é uma representação de algo abstrato ou de uma situação real. Basicamente, são modelos matemáticos, os quais descrevem sistemas e processos na forma de equações e relacionamentos. O modelo pode ser testado sob diferentes restrições do ambiente.

Etapas para o processo de PO

- Etapa 4: Selecionar uma entrada de dados apropriada.
 - O objetivo é fornecer dados de entrada suficientes para operar e testar o modelo desenvolvido na etapa anterior.
- Etapa 5: Fornecer uma solução e verificar sua razoabilidade.
 - Este passo visa obter uma função tendo como base o modelo e os dados de entrada. A solução obtida não é implementada imediatamente, mas é usada para testar e encontrar possíveis limitações.
- Passo 6: Implementar a solução.
 - A implementação da solução envolve a aplicação da solução ao problema real.

Aplicações Reais

A plicação	Resultados
Cobertura de arcos: rotas para leitura de água	105.793 metros para 97.839 metros
Alocação de vagas docentes nos departamentos de ensino	Distribuição mais adequada de vagas por departamento

Pesquisa Operacional

- Os problemas determinísticos de PO podem ser classificados em duas categorias genéricas: <u>problemas de programação</u> <u>linear e não-linear</u>.
- Um problema qualquer de programação linear é um problema de otimização com as seguintes características:
 - o problema possui um conjunto de variáveis manipuláveis no procedimento de busca pelo ótimo - variáveis de decisão do problema.
 - uma função objetivo compõe o critério de otimalidade, sendo escrita em termos das variáveis de decisão do problema. A função objetivo é uma função linear das variáveis de decisão, devendo ser otimizada.
 - os valores assumidos pelas variáveis de decisão devem satisfazer um conjunto de restrições - região de soluções viáveis do problema.
 - as variáveis de decisão podem assumir valores pré-estabelecidos no domínio dos números reais.