

Kurs Prawdopodobieństwo

Wzory

Elementy kombinatoryki

	Kolejność ma znaczenie	Kolejność nie ma znaczenia	
Te same elementy nie mogą się powtarzać	Reguła mnożenia	Wzór z dwumianem Newtona $\binom{n}{k}$	
Te same elementy mogą się powtarzać		Wzór:	

"Klasyczna" definicja prawdopodobieństwa

$$P(A) = \frac{\overline{A}}{\overline{A}}$$

gdzie:

 $\overline{\overline{A}}$ - liczba zdarzeń sprzyjających A

 $\bar{\bar{\Omega}}$ - liczba wszystkich zdarzeń

Prawdopodobieństwo – definicja Kołmogorowa

 Ω - zbiór wszystkich zdarzeń elementarnych

S – "sigma-ciało" na zbiorze $\,\Omega$, czyli zbiór jego podzbiorów spełniający warunki:

- 1) $\phi \in S$
- $2) \quad A \in S \Longrightarrow A' \in S$
- 3) $A_1, A_2, A_3, ... \in S \Rightarrow A_1 \cup A_2 \cup A_3 \cup ... = \bigcup_{n=1}^{\infty} A_n \in S$

P – funkcja o argumentach ze zbioru S i wartościach będących liczbami rzeczywistymi, spełniająca warunki ("aksjomaty"):

- 1. $\forall_{A \in S} P(A) \ge 0$
- 2. $P(\Omega)=1$
- 3. $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$ dla zdarzeń parami rozłącznych, tzn. $(A_i \cap A_j = \phi \ dla \ i \neq j)$

Wartości funkcji P(A) możemy nazywać "prawdopodobieństwem"

Własności prawdopodobieństwa

- 1. $P(A) \in <0,1>$
- $2. \quad P(\phi) = 0$
- 3. $A \subseteq B \Rightarrow P(A) \le P(B)$
- 4. P(A')=1-P(A)
- 5. $A \subseteq B \Rightarrow P(B \setminus A) = P(B) P(A)$
- 6. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Niezależność zdarzeń

Zdarzenia A i B są niezależne, gdy:

$$P(A \cap B) = P(A) \cdot P(B)$$

Prawdopodobieństwo warunkowe

Prawdopodobieństwo warunkowe zajścia zdarzenia A pod warunkiem zajścia zdarzenia B oznaczamy jako $P(A \mid B)$ i liczymy ze wzoru:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Prawdopodobieństwo całkowite i wzór Bayesa

Zakładając, że
$$B_i \cap B_j = \emptyset$$
 $\left(dla\ i \neq j\right)\ i\ P(B_1) + P(B_2) + ... + P(B_n) = 1$:

Prawdopodobieństwo całkowite

$$P(\mathbf{A}) = P(\mathbf{B}_1)P(\mathbf{A}|\mathbf{B}_1) + P(\mathbf{B}_2)P(\mathbf{A}|\mathbf{B}_2) + \dots + P(\mathbf{B}_n)P(\mathbf{A}|\mathbf{B}_n)$$

Wzór Bayesa

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{P(A)}$$

Schemat Bernoulliego

Prawdopodobieństwo zajścia k "sukcesów" w n niezależnych i identycznych doświadczeniach, z których każde może zakończyć się tylko na dwa sposoby (z prawdopodobieństwami p dla "sukcesu" i q dla "porażki") wynosi:

$$P(S=k) = \binom{n}{k} p^{k} q^{n-k}$$

Dyskretne zmienne losowe

Rozkład

$$\sum p_i = 1$$

Dystrybuanta

$$F(x) = P(X < x)$$

Wartość oczekiwana

$$EX = \sum x_i p_i$$

Mediana $x_{0.5}$, Me

Wartość zmiennej losowej, dla której skumulowane prawdopodobieństwa "przekraczają" $\frac{1}{2}$

Dominanta, moda D

Wartość zmiennej losowej osiągana z największym prawdopodobieństwem

Kwantyl rzędu p x_n

Wartość zmiennej losowej, dla której skumulowane prawdopodobieństwa "przekraczają" p

Wariancja $D^2(X)$, σ^2

$$D^{2}(X) = \sum (x_{i} - EX)^{2} p_{i}, D^{2}(X) = EX^{n} - (EX)^{n}$$

Odchylenie standardowe D(X), σ

$$D(X) = \sqrt{D^2(X)}$$

Współczynnik zmienności V

$$V = \frac{D(X)}{E(X)}$$

Moment zwykły n-tego rzędu EX^n, α_n

$$EX^{n} = \sum x_{i}^{n} p_{i}$$

Moment centralny n-tego rzędu $\mu_{\scriptscriptstyle n}$

$$\mu_n = \sum (x_i - EX)^n p_i$$

Współczynnik asymetrii

$$\gamma_1 = \frac{\mu_3}{\left(D(X)\right)^3}$$

Współczynnik koncentracji

$$K = \frac{\mu_4}{\left(D(X)\right)^4}$$

Przykłady rozkładów dyskretnych zmiennych losowych

Rozkład Bernoulliego

W rozkładzie Bernoulliego prawdopodobieństwa określane są ze wzoru:

$$P(X=k) = \binom{n}{k} p^k q^{n-k}$$

$$EX = np$$

$$D^2(X) = npq$$

Rozkład Poissona

W rozkładzie Poissona prawdopodobieństwa określane są ze wzoru:

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$EX = \lambda$$

$$D^2(X) = \lambda$$

Dla dużych n i małych p rozkład Bernoulliego można zastępować rozkładem Poissona

Rozkład hipergeometryczny

W rozkładzie hipergeometrycznym prawdopodobieństwa określane są ze wzoru:

$$P(X=k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

Gdzie N to ilość wszystkich elementów w populacji, M to ilość wszystkich elementów w populacji o określonej cesze, n to ilość elementów w próbce, k to ilość elementów w próbce o określonej cesze

$$EX = \frac{M \cdot n}{N}$$

$$D^{2}X = n \cdot \frac{M}{N} \left(1 - \frac{M}{N} \right) \frac{N - n}{N - 1}$$

Dla dużych N i M, oraz $\frac{M}{N} \to p$ rozkład Bernoulliego można zastępować rozkładem hipergeometrycznym.

Funkcja gęstości

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Dystrybuanta

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(t) dt$$

Wartość oczekiwana

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$

Mediana $x_{0.5}$, Me

Wartość $x_{0,5}$, dla której $F\left(x_{0,5}\right) = 0,5$

Dominanta, moda D

Maksimum globalne funkcji gęstości f(x)

Kwantyl rzędu p x_p

Wartość
$$x_p$$
, dla której $F(x_p) = p$

Wariancja
$$D^2(X)$$
, σ^2

$$D^{2}(X) = \int_{-\infty}^{\infty} (x - EX)^{2} f(x) dx, D^{2}(X) = EX^{n} - (EX)^{n}$$

Odchylenie standardowe D(X), σ

$$D(X) = \sqrt{D^2(X)}$$

Współczynnik zmienności $\it V$

$$V = \frac{D(X)}{E(X)}$$

Moment zwykły n-tego rzędu $\mathit{EX}^{n}, \alpha_{\!\scriptscriptstyle n}$

$$EX^{n} = EX = \int_{-\infty}^{\infty} x^{n} f(x) dx$$

Moment centralny n-tego rzędu $\mu_{\scriptscriptstyle n}$

$$\mu_n = \int_{-\infty}^{\infty} (x - EX)^n f(x) dx$$

Współczynnik asymetrii

$$\gamma_1 = \frac{\mu_3}{\left(D(X)\right)^3}$$

Współczynnik koncentracji

$$K = \frac{\mu_4}{\left(D(X)\right)^4}$$

Przykłady rozkładów ciągłych zmiennych losowych

Rozkład normalny

W rozkładzie normalnym prawdopodobieństwa określane są z funkcji gęstości o wzorze:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-(x-m)^2}{2\sigma^2}}$$

$$EX = m$$

$$D^2(X) = \sigma^2$$

Standaryzacja rozkładu normalnego:

$$Z = \frac{X - m}{\sigma}$$

Rozkład jednostajny

W rozkładzie jednostajnym prawdopodobieństwa określane są z funkcji gęstości o wzorze:

$$f(x) = \begin{cases} \frac{1}{b-a} & w \text{ przedziale } x \in \langle a, b \rangle \\ 0 & \text{dla pozostalych } x \end{cases}$$

Rozkład wykładniczy

W rozkładzie wykładniczym prawdopodobieństwa określane są z funkcji gęstości o wzorze:

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & dla \ x \ge 0 \\ 0 & dla \ x < 0 \end{cases}$$

$$EX = \lambda$$

$$D^2(X) = \lambda$$

Zmienne losowe dwuwymiarowe

Dyskretne zmienne losowe dwuwymiarowe

Rozkład

X	Y_{x_i}	y_1	\mathcal{Y}_2		${\cal Y}_j$	
	x_1	p_{11}	p_{12}	•••	p_{1j}	$\sum p_{1.}$
	\mathcal{X}_{2}	p_{21}	p_{22}	:	p_{2j}	$\sum p_{2.}$
	•••	•••	•••	•••	•••	•••
•	\mathcal{X}_{i}	p_{i1}	p_{i2}	•••	p_{ij}	$\sum p_{i.}$
		$\sum p_{.1}$	$\sum p_{.2}$		$\sum p_{.j}$	1

Rozkłady brzegowe

$$\sum_i p_{i.}$$
 , $\sum_i p_{.j}$

Prawdopodobieństwo warunkowe

$$P(X = x_i | Y = y_j) = \frac{p_{ij}}{p_i}, P(Y = y_j | X = x_i) = \frac{p_{ij}}{p_i}$$

Niezależność zmiennych losowych

Dwie zmienne losowe X i Y nazywamy niezależnymi, gdy:

$$\forall P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$

Dystrybuanta

$$F(x, y) = P(X < x, Y < y) = \sum_{x_i < x} \sum_{y_j < y} p_{ij}$$

Wartości oczekiwane

Wartości oczekiwane EX , EY liczymy z rozkładów brzegowych

Wariancje

Wariancje $\,D^2\!\left(X\right)D^2\!\left(Y\right)$, liczymy z rozkładów brzegowych.

Kowariancja

$$C(X,Y) = \sum_{i} \sum_{j} (x_i - E(X))(y_j - E(Y))p_{ij}$$

Współczynnik korelacji

$$\rho = \frac{C(X,Y)}{D(X) \cdot D(Y)}$$

Jeśli ho=0 zmienne losowe nazywamy "nieskorelowanymi". Nie oznacza to jednak, że są niezależne. Jeśli jednak zmienne losowe są niezależne, to na pewno ho=0.

Ciągłe zmienne losowe dwuwymiarowe

Funkcja gęstości

$$P(a \le X \le b, c \le Y \le d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$$

Rozkłady brzegowe

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
, $f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Rozkłady warunkowe

$$f(X|Y) = \frac{f(x,y)}{f_2(y)}, f(Y|X) = \frac{f(x,y)}{f_1(x)}$$

Niezależność zmiennych losowych

Dwie zmienne losowe X i Y nazywamy niezależnymi, gdy dla dowolnych x i y:

$$f(x,y) = f_1(x) \cdot f_2(y)$$

Dystrybuanta

$$F(x,y) = P(X < x, Y < y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

Wartości oczekiwane

$$E(X) = \int_{-\infty}^{\infty} x f_1(x) dx$$

$$E(Y) = \int_{-\infty}^{\infty} y f_2(y) dy$$

Wariancje

$$D^{2}(X) = \int_{-\infty}^{\infty} (x - EX)^{2} f_{1}(x) dx$$

$$D^{2}(Y) = \int_{-\infty}^{\infty} (y - EY)^{2} f_{2}(y) dx$$

Kowariancja

$$C(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - E(X))(y - E(Y)) f(x,y) dxdy$$

Współczynnik korelacji

$$\rho = \frac{C(X,Y)}{D(X) \cdot D(Y)}$$

Jeśli $\,
ho=0\,$ zmienne losowe nazywamy "nieskorelowanymi". Nie oznacza to jednak, że są niezależne. Jeśli jednak zmienne losowe są niezależne, to na pewno $\,
ho=0\,$.