Khôlles de Mathématiques $\mathbb{H}\mathbb{XII}$ Suites

N. CLOAREC

Du 7-11-16 au 19-11-16

Exercice 1 Soient K un réel strictement supérieur à 1 et (ε_n) une suite de réels positifs convergeant vers 0. Soit (u_n) une suite de réels de [0;1] vérifiant

$$\forall n \in \mathbb{N}, 0 \le u_{n+1} \le \frac{u_n + \varepsilon_n}{K}$$

La suite (u_n) converge-t-elle vers 0?

Exercise 2 Soit (u_n) une suite complexe telle que $u_{n+1} - u_n \to a \in \mathbb{C}$. Montrer que $\frac{u_n}{n} \to a$

- a) Démontrer que $\lim_{n \to +\infty} \sum_{k=0}^n \frac{(-1)^k}{k!}$ existe. On la note l.
- b) Soit $(x_0, x_1) \in \mathbb{R}^2$. Montrer que la suite (x_n) définit par

$$x_{n+1} = \left(1 - \frac{1}{n}\right)x_n + \frac{1}{n} x_{n-1}$$

converge et exprimer sa limite limite en fonction de l.

Exercice 4 Soit (u_n) une suite réelle convergente. Étudier la limite de la suite $v_n = \sup_{p>n} u_p$.

Exercice 5 Déterminer la limite de

$$u_n = \sum_{k=0}^n \binom{n}{k}^{-1}$$

Exercice 6 Soient (u_n) une suite dans \mathbb{C} et (λ_n) une suite dans \mathbb{R}_+^* . On suppose que $u_n \to l \in \mathbb{C}$ et $\sum_{k=1}^n \lambda_k \to +\infty$. Montrer que

$$\frac{\sum_{k=1}^{n} \lambda_k u_k}{\sum_{k=1}^{n} \lambda_k} \to l$$

Exercice 7 Soit $a \in \mathbb{R}_+^*$. On définit une suite (u_n) par

$$u_0 = a \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{\sum_{k=0}^n u_k}$$

- a) Déterminer la limite de (u_n) .
- b) Déterminer la limite de $u_{n+1} u_n$.

Exercice 8 Soit (H_n) la suite définie pour $n \in \mathbb{N}^*$ par

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

- a) Montrer que $H_n \to +\infty$.
- b) Soit (u_n) une suite telle que $n(u_{n+1}-u_n)\to 1$. Montrer que $u_n\to +\infty$.

Exercice 9 Soit (u_n) une suite bornée et sous-convexe, i.e vérifiant

$$\forall n \in \mathbb{N}, u_{n+2} \leq \lambda u_{n+1} + (1-\lambda)u_n$$

avec $\lambda \in]0,1[$. Montrer que (u_n) converge.

(On pourra introduire $v_n = \max(u_n, u_{n+1})$).

Exercice 10 Soit a et b deux réels strictement positifs. On définit la suite (a_n) par $a_0 = a$, $a_1 = b$

$$a_{n+2} = \frac{a_{n+1}^2 + a_n^2}{a_{n+1} + a_n}$$

pour tout $n \in \mathbb{N}$. Étudier la convergence de (a_n) .