UNIVERSITY OF BRISTOL

January 2021 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30039J Types and Lambda Calculus

TIME ALLOWED: 2 Hours

This paper contains *two* questions, answer *both*. Each question is worth 25 marks. The maximum for this paper is *50 marks*. Credit will be given for partially correct answers.

PLEASE WRITE YOUR 7 DIGIT STUDENT NUMBER (NOT CANDIDATE NUMBER) ON THE ANSWER BOOKLET. YOUR STUDENT NUMBER CAN BE FOUND ON YOUR UCARD.

Other Instructions:

You may use the lecture notes to help you, but you may not collaborate.

YOU MAY START IMMEDIATELY

Page 1 of 3

Q1. This question concerns the pure, untyped λ -calculus.

It will be useful to recall the combinators $\underline{id} = \lambda x. x$ and $\underline{const} = \lambda xy. x$

- (a) Give the set of free variables for each of the following terms:
 - i. $\lambda xyz.xz(yz)$
 - ii. $z(\lambda x. xy)$
 - iii. $\lambda z.(\lambda x.y)(xz)$
 - iv. $(\lambda x. x (\lambda y. xy))(\lambda x. y)$

[4 marks]

- (b) For each of the following, give a term M that satisfies the statement.
 - i. $Mx \approx xx$
 - ii. $M \underline{n} \approx \underline{2 * n}$
 - iii. $M \approx MM$
 - iv. $Mx \approx MM$

[8 marks]

(c) Define combinator sub as follows:

$$\underline{\operatorname{sub}} := \operatorname{fix} (\lambda f \, m n. \, \operatorname{ifz} n \, m \, (f \, (\operatorname{pred} m) \, (\operatorname{pred} n)))$$

Prove, by induction on n, that <u>sub</u> satisfies:

$$\underline{\mathsf{sub}} \ \underline{m} \ \underline{n} \ \approx \ \begin{cases} \underline{0} & \text{if } m \leq n \\ \underline{m-n} & \text{otherwise} \end{cases}$$

[6 marks]

(d) Prove that there does not exist a term M such that, for all terms N:

$$MN \approx \begin{cases} \underline{id} & \text{if } N \text{ is in normal form} \\ \underline{\text{const}} & \text{otherwise} \end{cases}$$

[3 marks]

(e) Find a finite sequence of *closed* terms M_1, M_2, \ldots, M_k for $k \ge 0$ such that the following two equations are both satisfied:

$$(\lambda x. \times \underline{id} (x \underline{id} \underline{id})) M_1 M_2 \cdots M_k \times y \approx x (\lambda x. \times \underline{id} (x \times \underline{id})) M_1 M_2 \cdots M_k \times y \approx y$$

[3 marks]

- **Q2**. This question concerns type systems.
 - (a) Give a typing derivation for each of the following judgements:
 - i. $\vdash \lambda xy.x: a \rightarrow b \rightarrow a$
 - ii. $\vdash \lambda x. x(\lambda y. y) : ((a \rightarrow a) \rightarrow b) \rightarrow b$
 - iii. $y : c \vdash (\lambda x. y)(\lambda xz. x) : c$

[6 marks]

- (b) For each of the following types, find a closed pure term that inhabits the type:
 - i. $a \rightarrow b \rightarrow b$
 - ii. $(a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow c) \rightarrow a \rightarrow c$
 - iii. $c \to ((a \to b \to a) \to c \to d) \to d$

[6 marks]

(c) Prove, by induction M, that: for all M, A, Γ , Γ' , if $\Gamma \vdash M : A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash M : A$.

[7 marks]

- (d) i. Prove that the only closed normal form of type $a \to b \to a$ is $\lambda xy. x$.
 - ii. Give a closed normal form of type $a \rightarrow b \rightarrow a$ which is not itself an abstraction.

[7 marks]