

Lead Scoring Case Study

X Education

Problem Statement

- > An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- Although X Education gets a lot of leads, its lead conversion rate is very poor. The typical lead conversion rate at X education is around 30%.
- An X Education need help to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires us to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

Approach taken for Solution

- Importing libraries and dataset
- > Data cleaning and data manipulation
 - Check for imbalanced data
 - Check for columns with Select value and Impute the data
 - > Check for duplicate data
 - > Check for missing values and impute/drop the columns
 - > Check for outliers and impute data
- Exploratory data analysis
 - Univariate analysis
 - Bivariate analysis
- Data Preparation
 - Dataset split into Train and Test sets
 - > Feature scaling and Dummy variables and encoding the data
- > Model Building using RFE and make use of StatsModel
 - > Build logistic regression model and delete the variables which are not useful using the p-value and VIF values
- Model Evaluation
 - Confusion Matrix and ROC curve
 - Optimal cutoff point for Accuracy Sensitivity and Specificity
- Model Prediction on test dataset
- Precision and Recall View
 - > Precision and Recall tradeoff
- Model Prediction on test dataset

Data collection, cleaning

- > The dataset used for the problem is "leads.csv" which has 37 columns(features)
- > Initially 5 columns which has more than 40% missing data has been dropped
 - Asymmetrique Activity Index
 - Asymmetrique Profile Index
 - Asymmetrique Activity Score
 - Asymmetrique Profile Score
 - Lead Quality
- > Further 14 columns which are having unique values and highly imbalanced columns has been removed
 - Prospect ID, Lead Number, Magazine, Receive More Updates About Our Courses, Update me on Supply Chain Content, Get updates on DM Content, I agree to pay the amount through cheque, Do Not Call, Search, Newspaper Article, X Education Forums, Newspaper, Digital Advertisement, Through Recommendations
- On few columns the missing values are filled with median or mode accordingly based on datatype of the columns.
 - Page Views Per Visit
 - TotalVisits

EDA: Handling "Select" value in the columns

- > The "Select" value has been treated as same as NaN (As it was not been selected by user(s)). The columns which are having these values are
 - > Specialization
 - How did you hear about X Education,
 - Lead Profile,
 - ➤ City
- > Once the columns are updated, we further performed data missing/imputation treatment to the data
- > 2 columns 'How did you hear about X Education', 'Lead Profile', are having more than 40% missing data has been dropped

Exploratory Data Analysis: Lead Origin

- > Most leads are from API & Landing Page Submission
- Most converted leads are from "Lead Add Form".
- ➤ There are negligible leads from "Lead Import" & "Quick Add Form"

Last Activity

- > The major converted leads are from Email & SMS Channel(s) as we can see the rate of "Email Opened" & "SMS sent"
- > These options can be used efficiently for better converted ratio

Total Time Spent on Website

- ➤ Maximum number of the leads are spent less than 45 mins i.e. ~2650 customers
- ➤ More than 2000 customers spent between 45 mins & 272 mins

Last Notable Activity

- ➤ Most of the leads and converted leads are from Email & SMS Channel(s)
- > High rate of converted leads are via SMS sent
- There are no/negligible leads from Approached upfront, Resubscribed to emails, View in browser link, Form submitted on website, Email received and Email marked as spam

Tags

- ➤ Most of the converted leads ratio are from the customers who "will revert after reading email", "Closed by Horizzon" & "No Response".
- Almost 1000 leads which are received from "Ringing", the converted ratio is very less.
- > Almost 200 leads are converted which are from "Lost to EINS"

Correlation

- > There are no strong correlations between the numerical columns.
- ➤ There is good correlation between "Total time spent on website" and "Converted"
- There is good correlation between "Page Views Per Visit" and "TotalVisits"
- ➤ Least correlation is between Converted and TotalVisits.

Outliers: Numerical columns analysis

The outliers in the "TotalVisits", "Page views per visit" & "Total Time spent on website" has been removed. The datapoints which are above 99% & less than 1% has been considered as an outliers in these columns.

Model building

- > Splitting the dataset into train and test dataset
- > Scaling numerical columns using StandardScaler
- Model building using RFE to find most significant features and use Stats model for analysis
- > Check VIF for the existing features
- > Eliminate the variable with high p-value and high VIF value
- > Rebuild the model after removing the variables which are not useful
- Predict the train dataset
- > Calculate Accuracy, Specificity, Sensitivity using Confusion matrix
- > Plot ROC curve
- > Find the optimal cutoff point and adjust the probabilities if required
- > Predict using test dataset and evaluate metrics Accuracy, Specificity, Sensitivity
- > Perform precision and recall tradeoff
- ➤ Calculate Accuracy, Specificity, Sensitivity using Confusion matrix
- Precision and Recall analysis on test dataset predictions.

Model building – Final Model

Model7 1 # Creating model with resultant col values 2 X train sm = sm.add constant(X train[col]) 3 logm7 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial()) 4 res = logm7.fit() 5 res.summary() Out[527]: Generalized Linear Model Regression Results Dep. Variable: Converted No. Observations: Model: GLM Df Residuals: 4925 Model Family: Binomial Df Model: 9 Link Function: Scale: 1.0000 Logit IRLS Log-Likelihood: -955.87 Method: Date: Tue, 22 Oct 2024 Deviance: 1911.7 Time: 09:15:46 Pearson chi2: 7.32e+03 8 Pseudo R-squ. (CS): 0.6139 No. Iterations: Covariance Type: nonrobust coef std err [0.025 0.975] const -4.5652 -24.873 0.000 -4.925 Total Time Spent on Website 1.1445 0.063 18.121 0.000 Lead Origin Lead Add Form 2.3928 0.556 4.306 0.000 1.304 Last Activity Converted to Lead -1.1530 0.336 -3.434 0.001 -1.811 3.5070 0.276 12.686 0.000 2.965 4.049 Tags_Closed by Horizzon 9.2238 1.027 8.978 0.000 7.210 11.237 Tags Lost to EINS 7.9949 0.635 12.584 0.000 Tags_No Response 2.8151 0.182 15.467 0.000 2.458 3.172 Tags Will revert after reading the email 7.2901 0.249 29.269 0.000 Last Notable Activity SMS Sent 2.0766 0.138 15.006 0.000 1.805 2.348

Checking VIFs

```
# Create a dataframe that will contain the names of all the feature variables and their respective VIFs

vif = pd.DataFrame()

vif['Features'] = X_train[col].columns

vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col].shape[1])]

vif['VIF'] = round(vif['VIF'], 2)

vif = vif.sort_values(by = "VIF", ascending = False)

vif
```

Out[528]:

	Features	VIF
7	Tags_Will revert after reading the email	1.45
8	Last Notable Activity_SMS Sent	1.38
1	Lead Origin_Lead Add Form	1.26
4	Tags_Closed by Horizzon	1.16
0	Total Time Spent on Website	1.15
6	Tags_No Response	1.08
2	Last Activity_Converted to Lead	1.04
3	Tags_Busy	1.04
5	Tags_Lost to EINS	1.01

Model building – ROC curve

➤ The area under ROC curve is 0.97

Model Evaluation(Train Dataset)

Accuracy Sensitivity and Specificity

Accuracy: 92.41% Sensitivity: 91.61% Specificity: 92.53%

Confusion matrix

[[2778, 224], [162, 1771]]

Precision and Recall(After tradeoff)

Precision: 90.72% Recall: 90.11%

Model Evaluation (Test Dataset)

Accuracy Sensitivity and Specificity

Accuracy: 91.11% Sensitivity: 88.55% Specificity: 92.67%

Confusion matrix

[[1215, 96], [92,712]]

Precision and Recall(After tradeoff)

Precision: 90.21% Recall: 87.18%

Conclusions and Recommendations

- > To improve the potential lead conversion rate X-Education will have to mainly focus important features responsible for good conversion rate are :-
 - > Total Time Spent on Website: The customers spending more time on website can turn to be potential leads.
 - > Lead Origin_Lead Add Form: Leads who have engaged through 'Lead Add Form' having higher conversion rate so company can focus on it.
 - > Last Activity_Converted to Lead: The last activity by the customer who successfully converted to lead.
 - > Tags_Closed by Horizzon: The converted leads that are closed by Horizzon as they play major role in conversion.

Thanks

From Team

- Giridhar Challa
- Ganesh Behera
- Vinay Kumar Sharma

