Introduction to Reinforcement Leanring Lecture 3b

Dr. Apurva Narayan

http://anarayan.com

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $\blacksquare \ v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_*$
- Using synchronous backups
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration (2)

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k$$

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to v_{π} will be proven at the end of the lecture

Iterative Policy Evaluation (2)

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

Evaluating a Random Policy in the Small Gridworld

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

How to Improve a Policy

- Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

• Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \operatorname{greedy}(v_{\pi})$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Policy evaluation Estimate v_π Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Jack's Car Rental

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2

Policy Iteration in Jack's Car Rental

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can *improve* the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax}_{a \in A} q_{\pi}(s, a)$$

■ This improves the value from any state *s* over one step,

$$q_\pi(s,\pi'(s)) = \max_{\mathsf{a}\in\mathcal{A}} \, q_\pi(s,\mathsf{a}) \geq q_\pi(s,\pi(s)) = v_\pi(s)$$

lacksquare It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$egin{aligned} & v_{\pi}(s) \leq q_{\pi}(s,\pi'(s)) = \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi'(S_{t+1})) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2},\pi'(S_{t+2})) \mid S_t = s
ight] \ & \leq \mathbb{E}_{\pi'}\left[R_{t+1} + \gamma R_{t+2} + ... \mid S_t = s
ight] = v_{\pi'}(s) \end{aligned}$$

Policy Improvement (2)

If improvements stop,

$$q_\pi(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_\pi(s,a) = q_\pi(s,\pi(s)) = v_\pi(s)$$

■ Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$$

- lacksquare Therefore $v_\pi(s)=v_*(s)$ for all $s\in\mathcal{S}$
- lacksquare so π is an optimal policy

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \blacksquare e.g. ϵ -convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to *value iteration* (next section)

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_{*}
- lacktriangle Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- \blacksquare π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Example: Shortest Path

Example of Value Iteration in Practice

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative
		Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
- Complexity $O(m^2n^2)$ per iteration

Asynchronous Dynamic Programming

- DP methods described so far used *synchronous* backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected