1458

Code: 15EE-2		
---------------------	--	--

Register			_	
Number				

II Semester Diploma Examination, April/May-2016

ELECTRICAL CIRCUITS

1 im	e: 3 Hours Max. Marks: 10	00
Note	(i) Answer any Six questions from Part-A. Each questions carries 5 marks. (ii) Answer any Seven questions from Part-B. Each full questions carries 10 marks.	ks.
	PART - A	
1.	Define Node, Linear circuit and Active circuit.	5
2.	List and explain the electrical circuit elements.	5
3.	Define: (i) flux (ii) reluctance, Write their units.	5
4.	State and explain Faraday's laws of electromagnetic induction.	5
5.	Explain the mid-ordinate method of calculating the RMS. Value of an alternating voltage and current.	5
6.	Draw the sinusoidal waveform and mark peak value, time period & cycle of an alternating quantity.	5
7.	Draw the circuit diagrams waveform and vector diagram for pure inductive circuit.	5
8.	Define: (i) leading power factor (ii) lagging power factor (iii) unity power factor With vector diagram	5
9.	Write the relationship between line voltage, line current, phase voltage, phase current in three phase star and delta connected system, with circuit diagram. 1 of 4 [Turn over	5 er

PART - B

10. (a) State and explain Kirchoff's voltage laws.

5

5

(b) For the circuit shown below find the magnitude of current through an ammeter 'A'. Applying Kirchoff's voltage law.

- 11. For the network shown below determine:
 - (i) Total circuit resistance (ii) Total circuit current

Using $Y - \Delta$ transformation

10

12. (a) State the superposition theorem and explain.

5

5

(b) Find the current through the load resistance 'RL' in the circuit shown below by applying Thevenin's theorem.

- 13. (a) (i) State the law of reluctance
 - (ii) Define magnetizing force and mention it's unit.

5

(b) Compare magnetic circuit and electric circuit.

5

15EE	E-21T	3 of 4	1458
14.	(a) (b)	Explain dynamically induced emf and statically induced emf. Define: (i) Self Inductance (ii) Mutual Inductance	6 4
15.	,	A coil of 50 cms length and 2 sq-cm area of cross section has 1500 turns on it Find the inductance of the coil when the core is iron of μr = 800 Define the following with respect to alternating quantity. (i) Instantaneous value (ii) Amplitude	:. 5
		(iii) Frequency (iv) Cycle	5
16.	(a)	Define : (i) Average value (ii) Form factor And write the equations.	5
	(b)	An alternating current is represented as i = 0.707 sin 400 t. Find: (i) RMS value (ii) Frequency (iii) Current When, t = 0.002 secs after passing through zero in the +ve direction.	5
17.	(a)	Find the form factor of an alternating quantity current which has maximum value of 1.5 Amps.	n 5
	(b)	Derive an equation for power consumed in a pure resistive circuit.	5
18.	(a)	Explain RLC – series circuit with neat circuit diagram, waveform and vecto diagram.	r 5
	(b)	A resistance 5 Ω and an inductance of 0.1 Henry are connected in series across 200 V 50 Hz AC supply, find :	
		(i) Impedance (ii) current in the circuit	5
19.	(a) (b)	Explain the condition for series resonance and draw the resonance curve. Three impedances (5+j4) are connected in STAR across 440 V, 3 \$\phi\$ 50 Hz AC supply. Calculate: (i) Phase current (ii) Line current (iii) Power factor	5
		(iv) Power consumed	5