DMAD - rozwiązywanie rekurencji

Jak przygotować się do rozwiązywania zadań?

Przeczytaj rozdział 4.2 i 4.3 z podręcznika/wykładu.

Co powinnaś/powinieneś wiedzieć:

- Jak rozwiązać rekurencję jednorodną? (lemat 4.1 i twierdzenie 4.2)
- Jak rozwiązać niejednorodną liniową zależność rekurencyjną? (początek rozdziału 4.3)

Proponowane rozwiązania szczególne (tego nie musisz umieć na pamięć!!!)

Jeśli $f(n)$	i $a_n^{(1)}$	to $a_n^{(2)} =$
wielomian (zmiennej n) st. d	1 nie jest pierwiastkiem wiel. char.	$D_d n^d + D_{d-1} n^{d-1} + \ldots + D_0$
wielomian (zmiennej n) st. d	1 jest k -krotnym pierwiastkiem wiel. char.	$n^k(D_d n^d + D_{d-1} n^{d-1} + \ldots + D_0)$
$=Ceta^n$	β nie jest pierwiastkiem wiel. char.	$A\beta^n$
$=Ceta^n$	β jest k -krotnym pierwiastkiem wiel. char.	$An^k\beta^n$

UWAGA: stała f(n) = C jest zarówno wielomianem st. 0 postaci f(n) = C jak i $f(n) = C \cdot 1^n$.

A Zadania treningowe

Zadanie A.1. Znajdź wzór na n-ty wyraz ciągu danego rekurencją

$$a_n = \frac{7a_{n-1}}{n^2}$$
, dla $n \ge 1$, $a_0 = 13$

i udowodnij go indukcyjnie.

Zadanie A.2.

- a) Przeczytaj rozwiązanie przykładu 4.6 i na tej podstawie rozwiąż równanie rekurencyjne $a_n=5a_{n-1}-6a_{n-2}$ dla $n\geqslant 2,\ a_0=1,\ a_1=0.$
- b) Przeczytaj rozwiązanie przykładu 4.7 i na tej podstawie rozwiąż równanie rekurencyjne $a_n=2a_{n-1}-a_{n-2}$ dla $n\geqslant 2,\,a_0=2,\,a_1=5.$

Zadanie A.3. Przeczytaj rozwiązanie przykładu 4.13 i na tej podstawie rozwiąż równanie rekurencyjne $a_n = 5a_{n-1} - 8a_{n-2} + 4a_{n-3}$ dla n = 3, 4, 5, ..., z warunkami początkowymi $a_0 = 1, a_1 = 1, a_2 = 3$. (wsk.: $\alpha_1 = 1$).

Zadanie A.4.

- a) Przeczytaj rozwiązania przykładów 4.16 i 4.17 i na tej podstawie rozwiąż równanie rekurencyjne $a_n=5a_{n-1}-6a_{n-2}-3\cdot 2^n$, dla $n\geqslant 2,\ a_0=1,\ a_1=12$
- b) Przeczytaj rozwiązania przykładów 4.16 i 4.17 i na tej podstawie rozwiąż równanie rekurencyjne $a_n=2a_{n-1}-a_{n-2}+6$ dla $n\geqslant 2,\ a_0=3,\ a_1=10$
- c) Przeczytaj rozwiązanie przykładu 4.18 i na tej podstawie rozwiąż równanie rekurencyjne $a_n=9a_{n-2}-8n+10$ dla $n\geqslant 2,\ a_0=1,\ a_1=20$

Wskazówki do zadań z części A

A.1. Spróbujmy "zgadnąć" wzór:

$$a_n = \frac{7}{n^2} \cdot a_{n-1} = \frac{7}{n^2} \cdot \frac{7}{(n-1)^2} \cdot a_{n-2} = \frac{7}{n^2} \cdot \frac{7}{(n-1)^2} \cdot \frac{7}{(n-2)^2} \cdot a_{n-3} = \dots = \frac{7^n}{(n!)^2} \cdot a_0 = \frac{7^n}{(n!)^2} \cdot 13.$$

Teraz należy udowodnić indukcyjnie następujące stwierdzenie:

$$\forall_{n\geqslant 0} \quad a_n = \frac{7^n}{(n!)^2} \cdot 13.$$

A.2.

a) Równanie charakterystyczne: $x^2 - 5x + 6 = 0$. Ponieważ $x^2 - 5x + 6 = (x - 2)(x - 3)$, mamy rozwiązanie ogólne: $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n$

 $\begin{cases} 1 = a_0 = C_1 + C_2 \\ 0 = a_1 = 2C_1 + 3C_2 \\ \text{odp: } a_n = 3 \cdot 2^n - 2 \cdot 3^n \end{cases}$

b) Równanie charakterystyczne: $x^2 - 2x + 1 = 0$, Ponieważ $x^2 - 2x + 1 = (x - 1)^2$, mamy rozwiązanie ogólne: $a_n = (C_1 n + C_2) \cdot 1^n$

 $\begin{cases} 2 = a_0 = C_2 \\ 5 = a_1 = C_1 + C_2 \\ \text{odp: } a_n = 3n + 2 \end{cases}$

A.3. Równanie charakterystyczne: $x^3 - 5x^2 + 8x - 4 = 0$.

Ponieważ $x^3 - 5x^2 + 8x - 4 = (x - 2)^2(x - 1)$, mamy rozwiązanie ogólne: $a_n = C_1 \cdot 1^n + (C_2n + C_3) \cdot 2^n$

$$\begin{cases} 1 = C_1 + C_3 \\ 1 = C_1 + 2C_2 + 2C_3 \\ 3 = C_1 + 8C_2 + 4C_3 \end{cases}$$
odp: $a_n = 3 + (n-2) \cdot 2^n$

A.4.

a) rozwiązanie ogólne: $a_n^{(1)} = C_1 \cdot 2^n + C_2 \cdot 3^n$;

 $f(n) = -3 \cdot 2^n$, 2- pierwiastek wielomianu char., k = 1;

rozwiązanie szczególne (z tabelki): $a_n^{(2)} = A \cdot n \cdot 2^n$;

po podstawieniu $a_n^{(2)}$ do rekurencji: $A \cdot n \cdot 2^n = 5 \cdot A \cdot (n-1) \cdot 2^{n-1} - 6 \cdot A \cdot (n-2) \cdot 2^{n-2} - 3 \cdot 2^n$;

 $a_n^{(2)} = 6 \cdot n \cdot 2^n$

 $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n + 6 \cdot n \cdot 2^n$ $\begin{cases} 1 = C_1 + C_2 \end{cases}$

$$\int_{1}^{2} 1 = C_1 + C_2$$

$$\begin{cases} 12 = 2C_1 + 3C_2 + 6 \cdot 2 \end{cases}$$

odp: $a_n = 3 \cdot 2^n - 2 \cdot 3^n + 3n2^{n+1}$;

- b) rozwiązanie ogólne: $a_n^{(1)} = C_1 n + C_2$;
 - f(n)=6, wielomian stopnia $d=0,\,a_n^{(1)}$ -wielomian stopnia k=1;

rozwiązanie szczególne (z tabelki): $a_n^{(2)} = An^2$;

po podstawieniu $a_n^{(2)}$ do rekurencji: $a_n^{(2)} = 3n^2$

$$a_n = C_1 \cdot n + C_2 + 3n^2$$

$$\int_{0}^{\infty} 3 = C_2$$

$$\begin{cases} 10 = C_1 + C_2 + 2 \end{cases}$$

odp:
$$a_n = 3n^2 + 4n + 3$$

odp: $a_n = 3n^2 + 4n + 3$; c) rozwiązanie ogólne: $a_n^{(1)} = C_1 3^n + C_2 (-3)^n$;

rozwiązanie szczególne (z tabelki): $a_n^{(2)} = D_1 n + D_0;$

po podstawieniu $a_n^{(2)}$ do rekurencji: $a_n^{(2)} = n + 1$

$$a_n = C_1 3^n + C_2 (-3)^n + n + 1$$

$$\int_{0}^{\infty} 1 = C_1 + C_2 + 1$$

$$20 = 3C_1 - 3C_2 + 2$$

$$\begin{cases} 20 = 3C_1 - 3C_2 + 2 \\ \text{odp: } a_n = 3^{n+1} + (-3)^{n+1} + n + 1; \end{cases}$$

B Zadania dla zainteresowanych

Zadanie B.1. Rozwiąż równanie rekurencyjne $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$, $n \ge 3$ z warunkami początkowymi $a_0 = 3, a_1 = 12, a_2 = 76$.

Wsk.: zastosuj wzory skróconego mnożenia.

Zadanie B.2. Rozwiąż równanie rekurencyjne

- a) $a_n^2=2a_{n-1}^2+10\cdot 7^n, n\geqslant 1, a_0=2$ zakładając, że $a_n\geqslant 0,$ dla wszystkich n;
- b) $a_n = 64 \frac{a_{n-1}^2}{a_{n-2}}, n \ge 2, a_0 = 8, a_1 = 1024;$
- c) $a_n = \frac{1-n}{n} a_{n-1} + \frac{1}{n} 2^n, n \ge 1, a_0 = 3456;$
- d) $a_n = n a_{n-1} + n!, n \ge 1, a_0 = 2.$

C Zadania do samodzielnej pracy w domu

Zadanie C.1. Znajdź wzór na n-ty wyraz ciągu danego rekurencją

- a) $a_n = \frac{2a_{n-1}}{n+2}$, dla $n \ge 1$, $a_0 = 8$;
- b) $a_n = \frac{a_{n-1}}{7} + 1$, dla $n \ge 1$, $a_0 = 1$;
- c) $a_n = a_{n-1} + \frac{1}{n(n+1)}$, dla $n \ge 1$, $a_0 = 0$;
- d) $a_n = 3a_{n-1} + 4$, dla $n \ge 1$, $a_0 = 4$;

i udowodnij go indukcyjnie.

Zadanie C.2. Rozwiąż równanie rekurencyjne.

- a) $a_n = 4a_{n-1} 4a_{n-2}$ dla $n \ge 2$, $a_0 = 6$, $a_1 = 8$
- b) $a_n = 4a_{n-2}$ dla $n \ge 2$, $a_0 = 0$, $a_1 = 4$
- c) $a_n = \frac{8}{3}a_{n-1} + a_{n-2}$, dla $n \ge 2$, $a_0 = -2$, $a_1 = 4$.
- d) $a_n = a_{n-1} \frac{1}{4}a_{n-2}$, dla $n \ge 2$, $a_0 = \frac{1}{2}$, $a_1 = \frac{1}{2}$.

Zadanie C.3. Rozwiąż równania rekurencyjnie:

- a) $a_n = 3a_{n-1} 2a_{n-2} + 2^n$, dla $n \ge 2$, $a_0 = 4$, $a_1 = 9$.
- b) $a_n = 2a_{n-1} a_{n-2} + 16 \cdot 5^n$, dla $n \ge 2$, $a_0 = 0$, $a_1 = 101$.
- c) $a_n = a_{n-1} + 8n$, dla $n \ge 1$, $a_0 = 2$;
- d) $a_n = 3a_{n-1} + 3^n$, dla $n \ge 2$, $a_1 = 15$
- e) $a_n = 2a_{n-1} + 10 \cdot 7^n$, dla $n \ge 1$, $a_0 = 4$;

Zadanie C.4. Rozwiąż równanie rekurencyjne

 $a_n=2a_{n-1}+a_{n-2}-2a_{n-3}$ dla $n=3,4,5,\ldots,$ z warunkami początkowymi $a_0=3,\,a_1=6,\,a_2=0.$ wsk. $\alpha_1=2$

Zadanie C.5. Rozwiaż równanie rekurencyjne

$$a_n = 3a_{n-2} - 2a_{n-3}$$
 dla $n = 3, 4, 5, \dots$

z warunkami początkowymi $a_0 = 1$, $a_1 = 2$, $a_2 = 12$.

wsk. $\alpha_1 = -2$

Odpowiedzi do niektórych zadań

C.1. a)
$$a_n = \frac{2^{n+4}}{(n+2)!}$$
 b) $\frac{7^{n+1}-1}{6\cdot 7^n}$ c) $\frac{n}{n+1}$ d) $2\cdot (3^{n+1}-1)$

C.2.

- a) $a_n = (6 2n)2^n \text{ dla } n \ge 0;$

- b) $a_n = 2^n (-2)^n \text{ dla } n \geqslant 0;$ c) $a_n = 3^n 3(-\frac{1}{3})^n \text{ dla } n \geqslant 0;$ d) $a_n = (1+n)(\frac{1}{2})^{n+1} \text{ dla } n \geqslant 0;$

C.3.

- a) $a_n = (1+2n)2^n + 3 \text{ dla } n \ge 0;$
- b) $a_n = n 25 + 5^{n+2} \text{ dla } n \ge 0;$
- c) $a_n = 4n^2 + 4n + 2 \text{ dla } n \ge 0;$
- d) $a_n = (n+4)3^n$ dla $n \ge 1$; e) $a_n = 2 \cdot 7^{n+1} 5 \cdot 2^{n+1}$ dla $n \ge 0$;

C.4.
$$a_n = 2 \cdot (-1)^{n+1} - 2^n + 6, n \ge 0$$

C.5.
$$a_n = 4n + (-2)^n, n \ge 0$$