Tarea 1

Juárez Torres Carlos Alberto

February 21, 2023

1 Sea $n \geq 2$ un entero. Por Algebra Superior I sabemos que el anillo de los enteros módulo $n(\mathbb{Z}_n)$ es un anillo conmutativo con unidad. Demuestre que \mathbb{Z}_n es campo si y sólo si n es primo.

Para demostrar que el anillo de los enteros módulo n, denotado por Z_n , es un campo si y sólo si n es primo, necesitamos demostrar dos direcciones.

Dirección hacia adelante:

Supongamos que \mathbb{Z}_n es un campo. Entonces, para todo $a \neq 0$ en \mathbb{Z}_n , existe un elemento b en \mathbb{Z}_n tal que ab=1. Esto implica que a y n son coprimos, es decir, $\mathrm{MCD}(a,n)=1$. De lo contrario, no habría un elemento b en \mathbb{Z}_n tal que ab=1. Entonces, si n no es primo, existen dos enteros positivos a y b tales que a < n, b < n, y n=ab. Entonces, $\mathrm{MCD}(a,n)=\mathrm{MCD}(b,n)=1$. Pero esto significa que ab y n tienen factores comunes y por lo tanto, no puede existir un elemento b en \mathbb{Z}_n tal que ab=1. Esto contradice la suposición de que \mathbb{Z}_n es un campo. Por lo tanto, n debe ser primo.

Dirección hacia atrás:

Supongamos que n es primo. Entonces, para cualquier $a \neq 0$ en \mathbb{Z}_n , $\mathrm{MCD}(a,n) = 1$. Por lo tanto, existe un entero b tal que $ab \equiv 1 \pmod{n}$, que implica que ab - 1 es múltiplo de n. Esto significa que a tiene un inverso multiplicativo en \mathbb{Z}_n . Por lo tanto, \mathbb{Z}_n es un campo.

 $\therefore \mathbb{Z}_n$ es campo $\Leftrightarrow n$ es primo.

2 Demuestre que $\mathbb{Q}(i) = a + bi|a, b \in \mathbb{Q}$ es un subcampo de \mathbb{C} .

- $\mathbb{Q}(i)$ es un subanillo de \mathbb{C} .
- $\mathbb{Q}(i)$ contiene la identidad aditiva de \mathbb{C} .
- Cada elemento no nulo en $\mathbb{Q}(i)$ tiene un inverso multiplicativo en $\mathbb{Q}(i)$.

2.1 Demostrar que $\mathbb{Q}(i)$ es un subanillo de \mathbb{C}

- Suma: Sean $z_1 = a_1 + b_1 i y z_2 = a_2 + b_2 i$ dos elementos en $\mathbb{Q}(i)$, entonces su suma es $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$, que es un número complejo en $\mathbb{Q}(i)$.
- Resta: De manera similar, si z_1 y z_2 son elementos en $\mathbb{Q}(i)$, entonces su diferencia es $z_1 z_2 = (a_1 a_2) + (b_1 b_2)i$, que también es un número complejo en $\mathbb{Q}(i)$.
- Producto: Si z_1 y z_2 son elementos en $\mathbb{Q}(i)$, entonces su producto es $z_1z_2 = (a_1a_2 b_1b_2) + (a_1b_2 + a_2b_1)i$, que es un número complejo en $\mathbb{Q}(i)$

 \mathbb{C} $\mathbb{Q}(i)$ es un subanillo de \mathbb{C}

2.2 $\mathbb{Q}(i)$ contiene la identidad aditiva de \mathbb{C}

Es 0 + 0i. Por lo tanto, esta condición se cumple.

2.3 Cada elemento no nulo en $\mathbb{Q}(i)$ tiene un inverso multiplicativo en $\mathbb{Q}(i)$.

Cada elemento no nulo en $\mathbb{Q}(i)$ tiene un inverso multiplicativo en $\mathbb{Q}(i)$. Si z=a+bi es un elemento no nulo en $\mathbb{Q}(i)$, entonces su inverso multiplicativo es $z^{-1}=1/(a+bi)$. Para encontrar el inverso, podemos multiplicar el numerador y el denominador por el conjugado de z, que es a-bi.

$$\Rightarrow z^{-1} = (1/(a+bi)) * ((a-bi)/(a-bi)) = (a-bi)/(a^2+b^2)$$

Como a y b son racionales, $a^2 + b^2$ es un número racional positivo. Por lo tanto, $(a - bi)/(a^2 + b^2)$ es un número complejo en $\mathbb{Q}(i)$.

Por lo tanto, $\mathbb{Q}(i)$ cumple las tres condiciones para ser un subcampo de \mathbb{C} .

3 Sea S un conjunto y sea K^S el conjunto de todas las funciones de S en $K: K^S = \{f: S \to K | f \text{ es funcion}\}$. Demuestre que K^S con las operaciones usuales es un espacio vectorial sobre el campo K.

Veamos que estas propiedades se cumplen:

- La suma es cerrada: Para cualquier par de funciones f y g en K^S , la función f+g definida por (f+g)(s)=f(s)+g(s) para todo s en S es una función de S en K.
- La suma es conmutativa: (f+g)(s) = f(s) + g(s) = g(s) + f(s) para todo s en S.
- K^S tiene un elemento neutro de suma: La función cero, $0: S \leftarrow K$ tal que 0(s) = 0 para todo s en S es la función neutra de suma.
- K^S tiene inversos de suma: Para cualquier función f en K^S , la función -f tal que (-f)(s) = -f(s) para todo s en S es el inverso aditivo de f.
- La multiplicación por escalar es cerrada: Para cualquier función f en K^S y cualquier escalar a en K, la función af definida por (af)(s) = a * f(s) para todo s en S es una función de S en K.
- La multiplicación por escalar es distributiva con respecto a la suma de vectores: (a*(f+g))(s) = a*(f(s)+g(s)) = af(s)+ag(s) = (af+ag)(s) para todo s en S.
- La multiplicación por escalar es distributiva con respecto a la suma de escalares: ((a + b)f)(s) = (a+b)f(s) = af(s) + bf(s) = (af+bf)(s) para todo s en S
- La multiplicación por escalar es asociativa: ((ab)f)(s) = abf(s) = a*(bf(s)) = (a*(b*f))(s) para todo s en S.
- K^S tiene un elemento neutro de multiplicación: La función identidad, $1: S \leftarrow K$ tal que 1(s) = 1 para todo s en S es la función neutra de multiplicación.

Por lo tanto, K^S cumple las diez propiedades necesarias para ser un espacio vectorial sobre el campo K.

Consideremos el intervalo cerrado $[a,b] \subset \mathbb{R}$ y denotemos por $\mathcal{C} = \mathcal{C}[a,b]$ al conjunto de todas las funciones continuas de [a,b] en los reales. Similarmente, denotemos por $\mathcal{D} = \mathcal{D}[a,b]$ e $\mathcal{I} = \mathcal{I}[a,b]$ a los conjuntos de todas las funciones de [a,b] en los reales que sean derivables e integrables respectivamente. Mencionando los resultados de Cálculo requeridos, demuestre que \mathcal{C} , \mathcal{D} e \mathcal{I} son subespacios vectoriales del espacio vectorial real $\mathbb{R}[a,b]$ y que \mathcal{D} es subespacio de \mathcal{C} , que a su vez es subespacio de \mathcal{I} .

Primero, demostraremos que \mathcal{C} es un subespacio vectorial de $\mathbb{R}[a,b]$. Sean $f,g\in\mathcal{C}$ y $\alpha,\beta\in\mathbb{R}$, entonces tenemos que:

- Cerradura bajo la suma: La suma f+g es continua en [a,b] ya que es la suma de dos funciones continuas en [a,b]. Por lo tanto, $f+g \in \mathcal{C}$.
- Cerradura bajo la multiplicación por escalar: La función αf es continua en [a,b] ya que es una función continua multiplicada por un escalar α . Por lo tanto, $\alpha f \in \mathcal{C}$.
- Contiene al vector cero: La función cero, $0:[a,b]\leftarrow\mathbb{R}$, definida como 0(x)=0 para todo x en [a,b], es continua y pertenece a \mathcal{C} .

Por lo tanto, \mathcal{C} es un subespacio vectorial de $\mathbb{R}[a,b]$.

Luego, demostraremos que \mathcal{D} es un subespacio vectorial de \mathcal{C} . Sean $f, g \in \mathcal{D}$ y $\alpha, \beta \in \mathbb{R}$, entonces tenemos que:

- Cerradura bajo la suma: La suma f+g es derivable en [a,b] ya que es la suma de dos funciones derivables en [a,b]. Por lo tanto, $f+g \in \mathcal{D}$. Además, como f y g son continuas en [a,b], la suma f+g es continua en [a,b], por lo que $f+g \in \mathcal{C}$.
- Cerradura bajo la multiplicación por escalar: La función αf es derivable en [a,b] ya que es una función derivable multiplicada por un escalar α . Por lo tanto, $\alpha f \in \mathcal{D}$. Además, como f es continua en [a,b], la función αf es continua en [a,b], por lo que $\alpha f \in \mathcal{C}$.
- Contiene al vector cero: La función cero, $0:[a,b]\leftarrow\mathbb{R}$, definida como 0(x)=0 para todo x en [a,b], es derivable e integrable, por lo que $0\in\mathcal{D}$ y $0\in\mathcal{C}$.

Por lo tanto, \mathcal{D} es un subespacio vectorial de \mathcal{C} .

Finalmente, demostraremos que \mathcal{C} es un subespacio vectorial de \mathcal{I} . Sean $f, g \in \mathcal{C}$ y $\alpha, \beta \in \mathbb{R}$, entonces tenemos que:

- Cerradura bajo la suma: La suma f+g es integrable en [a,b] ya que es la suma de dos funciones continuas en [a,b]. Por lo tanto, $f+g\in\mathcal{I}$.
- Cerradura bajo la multiplicación por escalar: La función αf es integrable en [a,b] ya que es una función continua multiplicada por un escalar α . Por lo tanto, $\alpha f \in \mathcal{I}$.

• Contiene al vector cero: La función cero, $0:[a,b]\leftarrow\mathbb{R}$, definida como 0(x)=0 para todo x en [a,b], es integrable, por lo que $0\in\mathcal{I}$.

Por lo tanto, $\mathcal C$ es un subespacio vectorial de $\mathcal I$