Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization and Dimensionality Reduction

Class Logistics and Agenda

- Welcome back!!!!
- Dimensionality Reduction
 - PCA
 - Sampling
 - Kernel Methods

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Non-linear PCA
- Stochastic Neighbor Embedding

I invented PCA... and Social Darwinism

Aside: Eigen Vectors are your friend!

Three Blue One Brown:

https://www.youtube.com/watch?v=PFDu9oVAE-g

 Goal is to find a projection that captures the largest amount of variation in data

- Find the eigenvectors of the covariance matrix
- keep the "k" largest eigenvectors

E1	E2
0.85	0.85
0.52	-0.52

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

covariance

37.1	-6.7
-6.7	43.9

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

attribute₂

This projection is called a "Transform" attribute₁ known as the **Karhunen-Loève Transform**

Explained Variance

- Each principle component explains a certain amount of variation in the data.
- This explained variation is embedded in the eigenvalues for each eigenvector

$$r_q = \frac{\sum_{j=1}^q \lambda_j}{\sum_{j=1}^p \lambda_j}$$

Genetic profiles distilled to 2 components

- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb

Or check out PCA for dummies:

https://georgemdallas.wordpress.com/ 2013/10/30/principal-componentanalysis-4-dummies-eigenvectorseigenvalues-and-dimension-reduction/

Explained variance by different principal components

Dimension Reduction

04. Dimension Reduction and Images. ipynb

PCA biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

Dimensionality Reduction: Randomized PCA

- Problem: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - What if the number of dimensions is gigantic?
- What if we partially construct the covariance matrix with a lower rank matrix?
 - By randomly sampling from the dataset and projecting, we can get something representative of covariance matrix, but with lower rank
 - Gives a matrix with typically good enough precision of actual eigenvectors

$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \le \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

source: Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Non-linear Dimensionality Reduction

Dimensionality Reduction: non-linear

- Sometimes a linear transform is not enough
- A powerful non-linear transform has seen a resurgence in past decade: kernel PCA

- Estimate Covariance in higher dimensional space
- Get eigen vectors from nonlinear dot product
- Projecting onto these can be understood as principle components from a higher dimensional space

• **Key insight**: don't need to know the actual principle

components, just the projections

 $\phi(A1)\cdot\phi(A1)$ $\phi(A2)\cdot\phi(A1)$

$$\kappa(A1,A2) = \varphi(A1) \cdot \varphi(A2)$$

 $\Phi(A2)\cdot\Phi(A1)$ $\Phi(A2)\cdot\Phi(A2)$

66

54

69

73

61

3

A2

33.6

26.6

23.3

28.1

43.1

25.6

kernel: defines what the dot product is

in higher dimensional space

attribute₂

some kernels have corresponding transformations with **infinite dimensions**!!

 Never need eigen vectors of full covariance matrix, just how much the vectors co-vary in higher space!

attribute

19

 Key insight: don't need to know the actual principle components, just the projections

ф(А1)•ф(А1)	ф(А2)•ф(А1)
φ(A2)·φ(A1)	ф(А2)•ф(А2)

$$A_1 = [a_1 \ a_2]^T$$

$$\Phi(A_1) = [a_1 \ a_2 \ a_1*a_2 \ a_1^2 \ a_1*a_2^3 \dots]^T$$

k (A ₁ , A ₂) =	= exp(—	$\gamma \parallel A_1 -$	$-A_2 ^2$
---	----------	--------------------------	------------

kernel: radial basis function (rbf) dot product in higher dimensional space

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

attribute₁

For Next Lecture

- Next Lecture:
 - Kernel Methods
 - Dimension Reduction Demo
 - Crash-course Image Feature Extraction

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Dimensionality Reduction and Images**

Class Logistics and Agenda

Logistics:

Next lab due soon!

Agenda

- Common Feature Extraction Methods for Images
- Begin Town Hall

Last time...

E1	E2
0.85	0.85
0.52	-0.52

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

	0.7	4.0
	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

Image Processing and Representation

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels
 - each "pixel" is BGR(A)

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix 2 4 2 8 7 9

image[rows, cols]

	_	П					
	G[1	4	2	5	6	9
B	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	Г
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (also, vectorizing)

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Dimension Reduction with Images

04.Dimension Reduction and Images.ipynb

Features of Images

Image Representation

need a compact representation

hsv

- what we perceive as color (ish)
 - •hue: the color value
 - saturation: the richness of the color relative to brightness
 - value: the gray level intensity

Convolution

- For images:
 - kernel (matrix of values)
 - slide kernel across image, pixel by pixel
 - multiply and accumulate

1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8

input image

output image

Common operations

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$
 $\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)),$
 $\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE **Transactions**

$$\mathcal{D}(u_0, v_0) =$$
 take normalized histogram at point u, v

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{ op}(u_0,v_0), \qquad \widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_1^{\Sigma}(u,v),\ldots,\mathbf{G}_H^{\Sigma}(u,v)\right]^{ op}$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

step, radius, num rings, num histograms per ring, orientations per histogram

Bag of Features Image Representation

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

More Image Processing

Gradients DAISY

(if time)Gabor Filter Banks

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

Common operations: Gabor filter Banks (if time)

common used for texture classification

Matching versus Bag of Features

 Not a difference of vectors, but a percentage of matching points

SURF, ORB, SIFT, DAISY

Town Hall for Lab 2, Images

- Quiz is live: Image Processing!
- Next Time: Logistic Regression

Supplemental Slides

- Peruse these at your own leisure!
- These slides might assist you as additional visual aides
- Slides courtesy of Tan, Steinbach, Kumar
 - Introduction to Data Mining

Dimensionality Reduction: LDA

- PCA tell us variance explained by the data in different directions, but it ignores class labels
- Is there a way to find "components" that will help with discriminate between the classes?

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{ differences between classes}}{\sum \text{ variance within classes}}$$

- called Fisher's discriminant
- ...but we need to solve this using using Lagrange multipliers and gradient-based optimization
- which we haven't covered yet

I invented Lagrange multipliers... and ...nothing impresses me...

Dimensionality Reduction: LDA versus QDA

Dimensionality Reduction: LDA versus QDA

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- "differences between classes" is calculated by trying to separate the mean value of each feature in each class
- Linear discriminant analysis:
 - assume the covariance in each class is the same
- Quadrature discriminant analysis:

• estimate the covariance for each class

Self Test ML2b.2

LDA only allows as many components as there are unique classes in a dataset.

- A. True
- B. False
- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb