Πεπερασμένες Διαφορές

Προσέγγιση της πρώτης παραγώγου

Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης $f:[a,b] o \mathbb{R}$ σε ένα σημείο δίνεται από τον τύπο

$$f'(x_0)=\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

Για μικρές θετικές τιμές της παραμέτρου h, μπορούμε να προσεγγίσουμε την τιμή της $f'(x_0)$ με τον ακόλουθο λόγο

$$f'(x_0)pprox rac{f(x_0+h)-f(x_0)}{h},\quad h>0.$$

Ανάλογα, η $f'(x_0)$ μπορεί να προσεγγισθεί από τον λόγο

$$f'(x_0)pprox rac{f(x_0-h)-f(x_0)}{-h}=rac{f(x_0)-f(x_0-h)}{h}, \quad h>0.$$

Επίσης, ένας άλλος τρόπος ώστε να προσεγγισθεί η $f'(x_0)$ για μικρά h, είναι

$$f'(x_0)pprox rac{f(x_0+h)-f(x_0-h)}{h},\quad h>0.$$

Ορίζουμε τις ποσότητες

$$egin{aligned} \delta_h^+f(x_0)&=rac{f(x_0+h)-f(x_0)}{h}, & h>0,\ \delta_h^-f(x_0)&=rac{f(x_0)-f(x_0-h)}{h}, & h>0,\ \delta_h^cf(x_0)&=rac{f(x_0+h)-f(x_0-h)}{2h}, & h>0. \end{aligned}$$

Η διαφορά $\delta_h^+f(x)$ ονομάζεται διαφορά προς τα εμπρός, η διαφορά $\delta_h^-f(x)$ ονομάζεται διαφορά προς τα πίσω και η διαφορά $\delta_h^cf(x)$ ονομάζεται κεντρική διαφορά. Οι παραπάνω διαφορές για την προσέγγιση των παραγώγων μιας συνάρτησης f καλούνται και πεπερασμένες διαφορές.

Ασκηση 1 : Θεωρούμε την συνάρτηση $f(x)=\ln(x)$ και το σημείο $x_0=1.1$. Υπολογίστε τις πεπερασμένες διαφορές στο σημείο x_0 για h=[0.5,0.1,0.05,0.01].

```
In [1]:
```

```
Approximations
Forward Difference = [0.749387, 0.870114, 0.889035, 0.904984]
Backward Difference = [1.21227, 0.9531, 0.9304, 0.91325]
Central Difference = [0.98083, 0.91161, 0.90972, 0.90912]
```

Έστω ότι το σφάλμα ϵ μιας προσέγγισης ικανοποιεί $\epsilon pprox Ch^p,$ για μικρό βήμα h, με C μια θετική σταθερά ανεξάρτητη του h.

Αν θεωρήσουμε δύο προσεγγίσεις με ϵ_1 και ϵ_2 με βήματα h_1 και h_2 , αντίστοιχα, έχουμε ότι ο λόγος των αντίστοιχων σφαλμάτων θα ικανοποιεί

$$rac{\epsilon_1}{\epsilon_2} = \left(rac{h_1}{h_2}
ight)^p, \quad o$$
πότε $p pprox rac{\log\left(rac{\epsilon_1}{\epsilon_2}
ight)}{\log\left(rac{h_1}{h_2}
ight)}$

 $\mathbf{A} \boldsymbol{\sigma} \boldsymbol{\kappa} \boldsymbol{\eta} \boldsymbol{\sigma} \boldsymbol{\eta} \, \mathbf{2}$: Θεωρήστε τα δεδομένα της άσκησης 1. Βρείτε την "πειραματική" τάξη σύγκλισης των πεπερασμένων διαφορών. Ποιο είναι το p στις παραπάνω τρεις περιπτώσεις;

```
In [13]:
```

```
Forward Difference = [0.1597, 0.03897, 0.02005, 0.00411]
Backward Difference = [0.30318, 0.04401, 0.02131, 0.00416]
Central Difference = [0.07174, 0.00251, 0.0006, 3e-05]
```

Προσέγγιση της δεύτερης παραγώγου

Από τον ορισμό της δεύτερης παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η δεύτερη παράγωγος μιας συνάρτησης $f:[a,b] o \mathbb{R}$ σε ένα σημείο δίνεται από τον τύπο $f''(x_0)=\lim_{h o 0}rac{f'(x_0+h)-f'(x_0)}{h}$

$$f''(x_0) = \lim_{h o 0} rac{f'(x_0 + h) - f'(x_0)}{h}$$

Επομένως, μπορούμε να προσεγγίσουμε την $f''(x_0)$ χρησιμοποιώντας μια από τις προσεγγίσεις $\delta_h^+ f'(x_0),\, \delta_h^- f'(x_0)$ ń $\delta_h^c f'(x_0)$.

Αν, όμως, θέλουμε να χρησιμοποιήσουμε μόνο τιμές της f, θα πρέπει να αντικαταστήσουμε την $f'(x_0)$ με κάποια προσέγγισή της. Έτσι, ένας τρόπος είναι,

$$f''(x_0)pprox \delta_h^+f'(x_0)pprox rac{f'(x_0+h)-f'(x_0)}{h} \ pprox rac{\delta_h^-f'(x_0+h)-\delta_h^-f'(x_0)}{h}:=\delta_h^+\delta_h^-f(x_0),$$

όπου από τον ορισμό της δ_h^- έχουμε ότι

$$\delta_h^+ \delta_h^- f(x_0) = rac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2}$$

Ανάλογα μπορορούμε να ορίσουμε τις πεπερασμένες διαφορές $\delta_h^- \delta_h^+ f(x_0)$ και $\delta_{h/2}^c \delta_{h/2}^c f(x_0)$. Στην πραγματικότητα, μπορούμε να δείξουμε (κάνοντας τις πράξείς) ότι όλες οι παραπάνω είναι ίσες.

 $\mathbf{A} \sigma \kappa \eta \sigma \eta \mathbf{3}$: Επαναλάβετε τις ασκήσεις 1 και 2 για τις πεπερασμένες διαφορές για την προσέγγισης της δεύτερης παραγώγου.