Multiple Linear Regression: -

$$y = B_0 + B_1 x_1 + B_2 x_2 + B_3 x_3$$

Y = dependent variable

 B_0 = Constant

 B_1 , B_2 , B_3 = coefficients or weights

 X_1 , X_2 , X_3 = Independent features

$$y = B_0 + B_1 x_1 + B_2 x_2 + B_3 x_3$$

Salary = $B_0 + B_1 *$ years of experience + $B_2 *$ position + $B_3 *$ area of expertise

But choosing the required features is one of the key feature that needs to be followed while building a model

Ridge Regression: -

• Ridge regression adds a regularisation parameter in order to reduce the penalty while having large variables

$$RIDGE = \xi(y - y_i)^2 + \alpha \xi B_i^2$$

- Ridge regression uses a L2 regularization which minimizes the sum of squares of "B" entities.
- ullet The regularization is controlled by using a alpha lpha term
- Higher alpha means more regularization and simpler models

Feature Normalization with MinMaxScaler

Unnormalized data points

Normalized with MinMaxScaler to Wi

Lasso Regression: -

• Ridge regression adds a regularisation parameter in order to reduce the penalty while having large variables

$$LASSO = \xi(y - y_i)^2 + \alpha \xi |B_i|$$

- Lasso regression uses a L1 regularization which minimizes the sum of absolute values of the coefficients.
- Lasso Regression has the effect of setting parameter coefficients/ weights to zero for least influenced variables. This is called sparse solution: a kind of feature selection
- ullet The regularization is controlled by using a alpha lpha term
- Higher alpha means more regularization and simpler models

