lus.

Name: _____

Read each question carefully and be sure to SHOW ALL WORK. Correct answer without proper justification will not receive a "Complete" grade. Paç fat! Good luck!

LO 5. Integrals Challenge. I deeply understand the concepts behind Riemann sums, definite integrals, and their connection to antiderivatives and indefinite integrals through the Fundamental Theorem of Calcu-

	Criteria for Success: I can solve conceptual questions related to Rie	
	the Fundamental Theorem of Calculus that lie on the top half of Bloom's breate).	Taxonomy (analyze, evaluate, and
usiı	Question: Scientists have mapped out a 200-km path on the surface have collected satellite data about the composition of the Martian surfaction a LiDAR Spectrometer. If the position p along the path takes values amount of dust per distance traveled using the function $R(p) = 6(p/50 + 1)$	e at various points along the route s on [0, 200] km, we can model the
(a)	Approximate the total amount of dust accumulated along the route for p on the interval $[0,200]$ using any Riemann Sum you wish with 4 rectangles of equal base lengths. Make sure to draw a sketch of the function and the rectangles clearly indicating your choice of left, right, or midpoint Riemann sum. Use desmos https://www.desmos.com/calculator/oceoomwdiy to help with visualization.	
	Sketch of function with rectangles: Rieman	n sum computation:
(b)	b) Express the above Riemann sum computation using sigma notation sigma symbol is suppose to be an explicit function of k.	, where the expression inside the

- (c) As n gets larger and larger in the above expression, we end up getting closer and closer to $\int_0^{200} R(p)dp = \int_0^{200} 6(p/50+1)^{-2}dp$. Circle all that apply and for each option explain why you chose to circle it or not. Clearly state u and du if needed. The integral $\int_0^{200} 6(p/50+1)^{-2}dp$ is equal to
 - (I) 240(II) $-\frac{300}{u} + C$
 - (III) $\left(-\frac{300}{5}\right) \left(-\frac{300}{1}\right)$
 - (IV) $-\frac{300}{p/50+1} + C$
 - (V) $\left(-\frac{300}{200/50+1}\right) \left(-\frac{300}{0/50+1}\right)$
 - (VI) $\int_{1}^{5} 300u^{-2} du$
 - (VII) $\int_0^{200} 300u^{-2} du$
 - (VIII) $\int_0^4 300(u+1)^{-2} du$

(d) Explain in your own words the meaning of the numerical value of the above integral in terms of the rover data collected.