Index

3DES, see triple DES	Alice, 1
3GPP, 381, 389	Alice's Restaurant, 2
3rd Generation Partnership Project,	Almes, Guy, 511
$see~3\mathrm{GPP}$	Amis, Kingsley, 531
	Anderson, Ross, 476, 497, 503-505
A3/A5/A8, 53–55, 80, 384–386	anomaly detection, 427, 429
access control, xvi, 4, 6–7, 229	anonymity, 342
and operating system, 494	anti-debugging, 456
access control list, see ACL	anti-disassembly, 455
access control matrix, 271–272	Apple II, 95, 210
ACK scan, 290, 306	application layer, 513–515
ACL, 272, 302	Aristophanes, 242
${\bf Address\ Resolution\ Protocol},see\ {\bf ARP}$	Aristotle, 51
Address Space Layout	ARP, 522
Randomization, see ASLR	cache poisoning, 522
Adleman, Leonard, 95, 422	ASLR, 417
Adobe, 464	asymmetric cryptography, 89
eBooks, 471	ATM, 13
Advanced Encryption Standard, see	card, 231
AES	machine, 315
AES, 67–69, 82, 117, 466	attack tree, 478
AddRoundKey, 69	authentication, 3, 229–231, 394
block size, 67	and TCP, 332–334
ByteSub, 68	two-factor, 252
confusion and diffusion, 83	Authentication Header, see AH
key length, 67	authorization, 3, 6, 230
key schedule, 69	availability, 3
MixColumn, 69	avalanche effect, 133
number of rounds, 67	Aycock, John, xviii, 421
ShiftRow, 69	
subkey, 69	backdoor, 421
AFS Software, Inc., 146	Ballantyne, Sheila, 265
AH, 359, 371–372	Bell-LaPadula, see BLP
and Microsoft, 372	Biba's model, 278–279, 303, 304
Ali Baba's Cave, 335	low water mark policy, 278

write access rule, 278	botmaster, 433
Biham, Eli, 186	botnet, 433, 443
biometric, 242–251	Brain, 422
attack, 250	break once break everywhere resistant,
authentication, 242	$see \mathrm{BOBE}$
enrollment phase, 243	British Medical Association, 280
equal error rate, 244	buffer overflow, 9, 407–414, 440
error rate, 250	example, $411-415$
errors, 244	prevention, 415–417
${\rm fingerprint},\ 244$	Burleson, Donald Gene, 436
fraud rate, 244	
hand geometry, 246	C-list, see capabilities
ideal, 242	C#, 416
identification, 242	CA, see certificate authority
insult rate, 244	Caesar's cipher, 22, 43
iris scan, 246–249	Caesar, Julius, 22
recognition phase, 243	canary, 416, 417
birthday paradox, see birthday	capabilities, 272, 302
$\operatorname{problem}$	and digital signatures, 303
birthday problem, 128–129	delegate, 302
and hash functions, 129	CAPTCHA, 13, 285–287, 305
block cipher, 40, 57–76	Gimpy, 304
bit errors, 75	Carroll, Lewis, 1, 19, 51, 125, 313, 317
cut-and-paste attack, 75, 84, 86	Catch-22, 363
$\mathrm{design},\ 202–203$	CBC mode, 73–76, 78, 85, 236
modes of operation, 72–76	and random access, 84
round function, 57	cut-and-paste attack, 84
Blowfish, 70	repeated IV, 84
S-box, 70	residue, 77, 85
BLP, 276–279, 303, 304	cell phone
simple security condition, 276	cloning, 381, 399
star property, 276	first generation, 381
strong tranquility, 277	second generation, 381
system Z, 277	third generation, 381
weak tranquility, 277	CERT, 424
BMA, see British Medical Association	certificate
Bob, 1	authority, 112
Bob's Cave, 335–336, 348	revocation, 113
Bobcat hash, 155	certificate revocation list, see CRL
BOBE, 459	challenge-response, 316, 319, 320
resistance, 467, 486	change detection, 427–428
Boeing 777, 405	Chinese Remainder Theorem, 100, 217
Bonaparte, Napoleon, 203	chosen plaintext attack, 212
r ,	

Churchill, Winston, 38	adaptively chosen plaintext, 42
CIA, 2	chosen plaintext, 41
cipher, 20	depth, 30–31, 36, 181
cipher block chaining mode, see CBC	differential, 187–190
mode	forward search, 42, 48, 122, 236
ciphertext, 20	known plaintext, 41
Civil War, 35	linear, 190–191
Clinton, President, 505	related key, 42
Clipper chip, 39, 143	taxonomy, 41
clock arithmetic, 524	crypto, 20
clock skew, 330, 346	as a black box, 20
closed system, 462, 485	terminology, 20
Cocks, Cliff, 95	CRYPTO conferences, 39
Code Red, 422, 424	cryptography, xvi, 3, 5, 20
codebook cipher, 32–35, 46	taxonomy, 40
additive, 34	cryptology, 20
Cohen, Fred, 422	cryptosystem, 20
Common Criteria, 269–271	CTR mode, 76, 83, 84
compartments, 6, 279–281, 303	and random access, 76
Computer Emergency Response Team,	
see CERT	cyclic redundancy check, see CRC
computer virus, see virus	• ,
confidentiality, 2, 10, 11, 109	DAC, see discretionary access control
and integrity, 78	data confidentiality, see
confused deputy, 273–274	${f confidentiality}$
confusion, see confusion and diffusion	Data Encryption Standard, see DES
confusion and diffusion, 39, 44, 51	data integrity, see integrity
in AES, 82	Daugman, John, 247
in DES, 81	DDoS, 433
cookie, 253, 258, 515	debit card protocol, 440
Coral Sea, 38	debugger, 448
counter mode, see CTR mode	decrypt, 20
Coventry, 38	defense in depth, 293, 308
covert channel, 7, 281–283, 303, 304	demilitarized zone, see DMZ
and TCP, 282, 283	denial of service, see DoS
existence, 282	Denver airport, 404
Covert_TCP, 283	Department of Defense, see DoD
CRC, 131–132, 155, 379	depth, 30–31, 36, 181
collision, 155	DES, 23, 39, 58–64, 67, 82, 85, 117,
crib, 177, 179	186–187
Cringely, Robert X., 403	confusion and diffusion, 81
CRL, 113	double, see double DES
cryptanalysis, 20	${\rm group}, 225$

key schedule, 62–64	analog hole, 463
S-box, 60, 62, 64, 188	and cryptography, 462
subkey, 57, 60, 62, 63, 82	and human nature, 463
triple, see triple DES	and Kerckhoffs' Principle, 463
Descartes, Rene, 491	and P2P, 469–470
differential cryptanalysis, 186–190	and PDF, 465
and TDES, 194-199	and POS, 469
Diffie, Whitfield, 91, 458	and SRE, 464
Diffie-Hellman, 91, 100–102, 117	as hide and seek, 463
and MiM, 119	enterprise, 470–471
ECC, 105–106, 117	Exploit Systems, 469
elliptic curve, 102	failure, 471
ephemeral, 328, 329, 361	MediaSnap system, 464–467
MiM attack, 102	persistent protection, 461, 485
diffusion, see confusion and diffusion	streaming media, 467–469
digital certificate, 112–113, 115	•
digital doggie, 261	ECB mode, 72–73, 75
digital rights management, see DRM	ECC, 91, 102
digital signature, 40, 90, 109, 115, 117,	Diffie-Hellman, 102, 105–106, 117,
123, 324, 325, 361, 379	123
protocol, 118	EFF, see Electronic Frontier
digital watermark, 148–150	Foundation
and Kerckhoffs' Principle, 152	election of 1876
fragile, 149	cipher, $35-37$, 43 , 44
invisible, 149	electoral college, 35
robust, 149	electronic codebook mode, see ECB
visible, 149	mode
disassembler, 413, 448	Electronic Frontier Foundation, 23
discrete log, 101, 102	Elgamal, 123
discretionary access control, 495–496	elliptic curve, 103–106
distributed denial of service, $see~\mathrm{DDoS}$	addition, 103
DMZ, 293	example, 106
DNS, 515	elliptic curve cryptography, see ECC
DoD, 275, 277	email, 422, 497, 510, 514
and covert channel, 282	spoofed, 515
classifications and clearances, 275	virus, 421
dog track problem, see voucher	Encapsulating Security Payload, see
Domain Name Service, see DNS	ESP
DoS, 3, 366	encrypt, 20
double DES, 65–66, 82	encrypt and sign, see public key
attack, 65	$\operatorname{cryptography}$
double transposition cipher, 26–27, 45	encryption
DRM. 460-472, 485	weak, 284

little, 414 stateful packet filter, 288, 290– Enigma, 12, 38, 168–174, 176–179, 218– 221 flash worm, 431–432 attack, 176–179 conjectured defense, 431 cycles, 177 FMEA, 478 encryption, 170 Ford, Henry, 266 key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254 reflector, 171 freshness, 319
221 flash worm, 431–432 attack, 176–179 conjectured defense, 431 cycles, 177 FMEA, 478 encryption, 170 Ford, Henry, 266 key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
attack, 176–179 conjectured defense, 431 cycles, 177 FMEA, 478 encryption, 170 Ford, Henry, 266 key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
cycles, 177 FMEA, 478 encryption, 170 Ford, Henry, 266 key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
encryption, 170 Ford, Henry, 266 key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
key, 169 formal methods, 477 keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
keyspace, 172–174 Franklin, Benjamin, 89, 495 movable ring, 172 fraud rate, 254
movable ring, 172 fraud rate, 254
reflector, 171 freshness, 319
rotor, 171 FTA, 478
stecker, 169, 173, 178
Ultra, 169 gait recognition, 261
ENORMOUS, 31 Galton, Sir Francis, 244
entropy, 148 GCHQ, 90, 95, 100
ephemeral Diffie-Hellman, 328, 329 generator, 101
ESP, 359, 371–372 Global System for Mobile
null encryption, 371 Communications, see GSM
Ethernet, 521 Gram-Schmidt, 207, 209
Euclidean Algorithm, 525 Greenglass, David, 31
Euler's Theorem, 96 Groupe Speciale Mobile, see GSM
exact cover, 204 GSM, 8, 53, 381–389, 399
exhaustive key search, 23, 24, 26, 43 air interface, 381
extended TEA, see XTEA anonymity, 383–384
authentication, 384
Feistel cipher, 57–58, 67, 71, 81, 192 authentication center (AuC), 382
Feistel, Horst, 57 authentication protocol, 385
Feller, William, 527 base station, 381
fence address, 492 COMP128, 386
Fiat-Shamir, 335–339, 348, 349 confidentiality, 384–385
challenge, 337 crypto flaws, 386
commitment, 337 design goals, 383
response, 337 fake base station, 387–388
fingerprint, 244, 260 flashbulb, 387
minutia, 245 home location registry (HLR), 382
Firewalk, 292, 307 IMSI, 382, 384
firewall, 7, 287–294, 306, 307, 426 invalid assumptions, 386–387
and defense in depth, 293 key, 382
and MLS, 276 mobile, 381
application proxy, 288, 291–293, optical fault indection, 387
307 partitioning attack, 387
packet filter, 288–290 PIN, 382

security architecture, 383

SIM attacks, 387 Hellman, Martin, 91, 458 SIM card, 382 Herodotus, 148 system architecture, 381 hex editor, 449 visited network, 381 high water mark principle, 277, 303 VLR, 382 HIPAA, 470 Hiss, Alger, 31 Hamming distance, 247 HMAC, 78, 136–139, 379 hand geometry, 246–247 RFC 2104, 138 hash function, 40, 41, 126–132 Honeywell, 498 and CRC, 131 hosts, 511 and digital signature, 127 HTTP, 253, 353, 515 and encryption, 157 hybrid cryptosystem, 108, 117 and symmetric cipher, 129 Hypertext Transfer Protocol, see as fingerprint, 127 HTTP avalanche effect, 133 birthday problem, 129 ICMP, 292 Bobcat, see Bobcat hash IDEA, 70 coin flip, 158 identify friend or foe, see IFF collision, 126, 154, 155 IDS, 7, 294–296 collision resistance, 126 anomaly-based, 295, 297–301, 310 compression, 126 host-based, 295 efficiency, 126 network-based, 295 incremental, 158 signature-based, 295–297 k-way collision, 155 IFF, 315, 316, 346 non-cryptographic, 130 IKE, 359-366, 396 one-way, 126 Phase 1, 360–366 online auction, 156 Phase 2, 367-368 online bid, 139–140 security association, 360 secure, 129 IMAP, 515 spam reduction, 140–141 incomplete mediation, 418–419 Tiger, see Tiger hash incremental transformation, 158 uses, 139 inference control, 7, 283–284, 304 hashed MAC, see HMAC information hiding, 148 hashed message authentication code, initialization vector, see IV see HMAC insult rate, 254 Hayes, Rutherford B., 35–37 integer overflow, 439 hazard analysis, 477 HAZOP, 478 integrity, 2, 10, 76–78, 117 International Data Encryption Health Insurance Portability and Algorithm, see IDEA Accountability Act, see **HIPAA** Internet, 511, 512, 515 Internet Key Exchange, see IKE heap, 408

heap overflow, 439

Internet Message Access Protocol, see	TGT, 373-376
IMAP	ticket, 373, 375
Internet Protocol, see IP	TTP, 373
intrusion detection system, see IDS	Kerckhoffs' Principle, 21, 41, 151, 152,
intrusion prevention, 294	386, 463, 466, 472, 474, 495
intrusion response, 295	key, 20, 53
IP, 519–521	key diversification, 158, 399
address, 332, 515, 519	key escrow, 143–144
best effort, 519	keystream, 52
fragmentation, 520	King, Stephen, 461
header, 520	knapsack, 224
version 4, 521	cryptosystem, 91-95, 118, 119
version 6, 358, 521	problem, 92
IPSec, 7, 332, 359	superincreasing, 92, 207
and IP header, 368	Kocher, Paul, 210
cookie, 362, 366, 396	Konheim, Alan, 186
security association, 367	
transport mode, 369–370	L0phtCrack, 241
tunnel mode, 369–370, 397	Lai-Massey multiplication, 70
versus SSL, 358	LAN, 521
IPv6, see IP	lattice, 203, 204
iris scan, 246–249	lattice reduction, 95, 203–207
iris code, 247	$\rm attack,\ 203-210$
IsDebuggerPresent, 483	Lennon, John, xv
iTunes, 426	LFSR, see shift register
IV, 35, 74, 83, 236, 355	Liberty Alliance, 253
repeated, 84	Lincoln, Abraham, 37
ropowou, or	linear algebra, 527–529
Java, 416, 448	linear cryptanalysis, 186, 190–191
bytecode, 450	and TDES, 199–202
JVM, 450	linear feedback shift register, see shift
SRE, 450, 481	register
John the Ripper, 241	linear independence, 529
vo 0.10 10.Pp 01, 2.11	linearization attack, 434–436, 445
Kahn, David, 37	TENEX, 436
Karatsuba multiplication, 217	link layer, 513, 521–522
Kerberos, 8, 330, 372–374, 509	Linux, 405
KDC, 373, 375, 376	LLL algorithm, 207, 208, 224
key, 393	local area network, see LAN
login, 374–375	logging, 497
replay prevention, 377	Longhorn, 500
security, 376–377	low water mark principle, 303
stateless, 373	Lucifer cipher, 58–60
30000000, 010	nucher cipiter, 90-70

Luftwaffe, 38 lunchtime attack, 42 MAC, 379 and integrity, 77–78, 85, 86, 117, 136 and repudiation, 109 MAC address, 521–522 Mac OS X, 334, 475 MAGIC, see Purple magnetic remanence, 496 majority vote function, 53, 80 malware, 4, 8, 14, 421 detection, 427–429 encrypted, 429 future, 429 metamorphic, 430 polymorphic, 430 mandatory access control, 495–496 Mars lander, 404 Massey, James L., 70, 73 matrix, 527 addition, 528 block, 528–529 identity, 528 multiplication, 528 square, 528 Matsui, Mitsuru, 186 McCartney, Paul, xv McLean, John, 277 MD5, 70, 132 collision, 132, 159 mean time between failure, see MTBF MediaSnap, Inc., 462, 464 memory protection, 492–494 Merkle, Ralph, 91, 92	canary, 417 Death Star, 488 fallacy, 474 knowledge base article 276304, 231 MS-DRM, 472 Passport, 253 Midway, 38 MiG-in-the-middle attack, 316, 317 MiM attack, 102, 117, 328 mkdir, 419, 420 MLS, 6-7, 274-276, 280, 303 modular arithmetic, 95, 524-526 addition, 524 exponentiation, 96, 98 inverse, 94, 525 multiplication, 93, 524 repeated squaring, 211 Montgomery multiplication, 217 Monty Python, 229 more eyeballs, 21, 473 Morris Worm, 422-424 and NSA, 423 mp3, 426 MTBF, 475-476, 480, 487 multilateral security, see compartments multilevel security, see MLS Musashi, Miyamoto, 210 mutual authentication, 321-323, 325, 329, 341 MV-22 Osprey, 404 National Bureau of Standards, see NBS National Institute of Standards and Technology, see NIST National Security Agency, see NSA
MediaSnap,Inc.,462,464	National Institute of Standards and
Merkle-Hellman knapsack, see	native code, 448
knapsack cryptosystem	NBS, 39, 59, 67
message authentication code, see	need to know, 279, 303
MAC	Netscape, 357, 405
message indicator, see MI	network
MI, 34	circuit switched, 512
Microsoft	client, 514

core, 511	one-time pad, 27–31, 46, 79
edge, 511	VENONA, 31
P2P, 469, 470, 514	opaque predicate, 458
packet switched, 512	open system, 454, 486
server, 514	operating system, 4, 8
network economics, 473, 480	trusted, 8, 495–499
network interface card, see NIC	orange book, 266–269
network layer, 513, 519–521	OS, see operating system
Next Generation Secure Computing	OSI reference model, 513
Base, see NGSCB	obi reference model, 910
NGSCB, 339, 462, 500–506	P2P, 433, 514
and closed systems, 500	paging, 493–494
and DRM, 500, 508	Palladium, 500
and TTP, 503	Pascal, 147
and ZKP, 503	password, 6, 231–241, 319
applications, 503–504	and passphrase, 233
attestation, 503, 509	attack, 235, 255, 256
criticisms, 504–506	dictionary, 232, 236
design goals, 501	generator, 251, 252, 258, 263, 264
feature groups, 502	hash, 235
malware, 509	keystroke logging, 241
NCA, 501, 504	LANMAN, 257
Nexus, 501, 504	math of cracking, 237-240
overview, 501	salt, 236
process isolation, 502	selection, 232–234
sealed storage, 502	social engineering, 241
secure path, 502	verification, 235–237
NIC, 521	versus key, 232
NIDES, 300	Pearl Harbor, 37
NIST, 39, 59, 67	Peer-to-Peer, see P2P
non-repudiation, 109-111, 117	penetrate and patch, 472, 480
nonce, 319, 330, 355	fallacy, 472
NP-complete, 92, 101	perfect forward secrecy, see PFS
NSA, xix, 59, 64, 67, 90, 186, 315	permutation, 526
and DES, 59	and DES, 60–63
and SIGINT, 59	and RC4, 55
NULL cipher, 371	and TDES, 192
number used once, see nonce	PFS, 327–329, 340, 347
NX bit, 416, 438	PGP, 114
,	photo ID, 256
object, 271	physical layer, 513
Office Space, 14	PIN, 231, 241, 252, 255, 315
one way function, 90	PKI, 108, 112–114

anarchy model, 114	Różycki, Jerzy, 176
monopoly model, 113	rabbit, 421
oligarchy model, 114	race condition, 419–420, 440
trust model, 113–114	random numbers, 145–148
•	
plaintext, 20 Plankton 421	cryptographic, 146
Plankton, 421	randomness, see random numbers
plausible deniability, 342, 365	Ranum, Marcus J., 351
Poe, Edgar Allan, 19, 43	RC4, 55–56, 70, 80, 148, 168, 179–
Pokémon, 233	185, 378
Toyog hold 'om 146 147	attack, 56, 181–185
Texas hold 'em, 146–147	initialization, 56, 180, 181
Polish cryptanalysts, 38	key, 180
poly-alphabetic substitution cipher, 177	
POP3, 515	RC6, 70
port number, 520	reference monitor, 498
port scan, 289	Rejewski, Marian, 176
POS, 470	related key attack, 180
Post Office Protocol, see POP3	relatively prime, 525
prime number, 525	repeated squaring, 98–99, 211, 212,
privacy, 11	214
probability, 526–527	replay attack, 319, 346
protocol, xvi, 3, 7–8	return-to-libc, 415
header, 513	reversing, see SRE
$\mathrm{stack},512514$	RFC, 512
stateful, 512	RFC 2104, 138
stateless, 512	RFC 2407, 359
PSTN, 382	RFC 2408, 359
public key certificate, see digital	RFC 2409, 359
certificate	RFC 2410, 371
public key cryptography, 20, 323	RFID tags, 11
encrypt and sign, 110, 111, 326,	RGB colors, 163
330-332, 340	Rijndael, 67
forward search, 122	Ritchie, Dennis, 491
key pair, 90	Rivest, Ron, 70, 95, 167, 500
notation, 107	Rosenberg, Ethyl, 31
private key, 20, 90	Rosenberg, Julius, 31
public key, 20, 90	rotors, 174–176, 221
sign and encrypt, 110, 326, 330	router, 511, 516
uses, 107	routing protocols, 519
public key infrastructure, see PKI	RSA, 70, 91, 95–97, 117, 120
public switched telephone	common encryption exponent, 100
network, see PSTN	cube root attack, 100, 116
Purple, 37–38	decryption exponent, 96
	==== J Person surprise, ov

efficiency, 99	Shannon, Claude, 39, 51, 148
encryption exponent, 96	shift register, 53
example, 97–98	initial fill, 53
key pair, 96	side channel attack, 210–211, 217
modulus, 96	SIGINT, 59
private key, 96	sign and encrypt, see public key
public key, 96	cryptography
signature verification, 115, 116	signature detection, 427–428
timing attack, 211-218, 224	Silicon Valley, xix
Rubin, Theodore I., 10	Simple Mail Transfer Protocol, see
Rueppel, Rainer, 52	SMTP
, , , , , , , , , , , , , , , , , , ,	simple substitution cipher, 22–25, 44
S-box	cryptanalysis, 24–25
analysis, 190	simplified TEA, see STEA
salami attack, 434, 446	single sign-on, 252–253
salt, 255	slow worm, 443
SAML, 253	smartcard, 251
Sarbanes-Oxley Act, see SOA	reader, 251
Scherbius, Arthur, 169	smash the stack, see buffer overflow
Schneier, Bruce, 58, 70, 447, 478	SMTP, 515
SCOMP, 498	SOA, 470
Screamer, Beale, 472	socket, 520
script kiddie, 295	socket layer, 353
SDMI, 153, 471	software, xvi, 4, 8
secrecy, 11	active fault detection, 479
secret key, 20	and trust, 436
secret sharing, 142–143	bug injection, 479, 488
secure cipher, 25	bugs, 404
Secure Digital Music Initiative, see	cloned, 459
SDMI	closed source, 473, 476, 488
Secure Sockets Layer, see SSL	configuration management, 479
Security Assertion Markup Language,	design, 477
$see \; \mathrm{SAML}$	${\rm development},472480$
security by obscurity, 463	error, 405
security kernel, 498	failure, 406
security modeling, 6, 274	fault, 406
segmentation, 493–494	fault injection, 479
Seneca, 265	flaws, 8, 404, 476
separation, 492	genetic diversity, 460
session key, 325, 329, 331	guards, 457, 484
SHA-1, 133	metamorphic, 430, 459
Shamir, Adi, 67, 95, 143, 180, 181,	obfuscation, 458
186, 335, 378	open source, 473, 488

peer review, 478	Syrus, Publilius, 89
postmortem analysis, 480	system Z, 277
tamper resistance, 457	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
testing, 478–479	tagging, 493
software reverse engineering, see SRE	TCB, 498–499, 507
space shuttle, 405	TCG, 500-501
SQL Slammer, 422, 425–426	TCP, 353, 517-518
and Internet traffic, 425	ACK, 518
and UDP, 426	ACK scan, 290
square and multiply, see repeated	authentication, 332–334, 340
squaring	congestion control, 517
SRE, 8, 448–454, 474, 481, 484	connection oriented, 517
example, 451	DoS attack, 518
Java, 450, 481	FIN, 518
SSH, 7, 352–353	flow control, 517
SSL, 7, 51, 56, 353–356, 392	half-open connection, 518
and HTTP, 357	header, 517
connection, 357	RST, 518
MiM attack, 356, 393	SEQ number, 333, 334
pre-master secret, 355	SYN, 518
session, 357	SYN-ACK, 518
versus IPSec, 358	three-way handshake, 332, 518
stack, 408, 409	TCPA, 500
pointer, 408	TCSEC, 266–269
$\mathrm{STEA},71,225$	TDES, 192–194, 223
steganography, 148–149	differential cryptanalysis, 222
and HTML, 151–152	linear cryptanalysis, 223, 224
and RGB colors, 150–152	TEA, 70-71, 81, 83
collusion attack, 153	decryption, 72
Stimson, Henry L., 37	encryption, 71
stream cipher, 40, 52, 56, 79	TENEX, 436
strong collision resistance, 126	Texas hold 'em poker, 146–147
subject, 271	Thomborson, Clark, 505
substitution cipher	Tiger hash, 133–136
Vigenère, 47	inner round, 134, 136
superincreasing knapsack, 92	key schedule, 135, 137
Swiss cheese, 179	outer round, 134, 135, 155 S-boxes, 135
symmetric cipher, 20	
symmetric key	Tilden, Samuel J., 35–37 time bomb attack, 436
key diversification, 158 storage, 157	time to live, see TTL
symmetric key cryptography, 320	time to five, see 1112 timestamp, 330–332, 340, 341
notation, 65	timing attack
notation, of	uning awark

Kocher's, 214-217 Tiny DES, see TDES Tiny Encryption Algorithm, see TEA Torvalds, Linus, 504 totient function, 525 transport layer, 513, 516-519 trap door one way function, 90 trapdoor, see backdoor trinity of trouble, 438 triple DES, 65–66, 86 trojan, 421, 426–427, 441 Trudy, 1 trust versus security, 495 trusted computing base, see TCB Trusted Computing Group, see TCG Trusted Computing Platform Alliance, see TCPA Trusted Computing System Evaluation Criteria, see TCSEC

trusted OS, see operating system trusted path, 497 trusted third party, see TTP TTL, 292, 307, 368, 371, 520 TTP, 112 Turing test, 285 Turing, Alan, 38, 177, 285 Twain, Mark, 244, 351

two-factor authentication, 252

U.S. Postal Service, 516 UDP, 303, 519 ULTRA, see Enigma

VENONA, 31
decrypt, 32
VeriSign, 113
Vernam cipher, 27, see one-time pad virus, 421, 422
boot sector, 421
memory resident, 422
Vista, 500
visual cryptography, 144–145

voucher, 394

Walker spy ring, 40 Warhol worm, 430–431 watermark, see digital watermark weak collision resistance, 126 Web cookies, see cookies Welchman, Gordon, 177 WEP, 8, 51, 56, 132, 168, 179–180, 377–381, 398 initialization vector, 180, 181, 379 Whitehead, Alfred North, 313 Williamson, Malcolm J., 100 Windows, 405, 498, 500 PE file format, 449 Wonka, Willy, 447 worm, 421, 422, 424, 425, 430 wu-ftp, 474

XTEA, 71

zero knowledge prof, see Stamp, Mark zero knowledge proof, see ZKP Zimmermann telegram, 32–34 Zimmermann, Arthur, 32 ZKP, 335–339 zombie, 433 Zygalski, Henryk, 176