Inatel

M020 – Matemática Discreta

1. LÓGICA FORMAL

1.1 Sentenças, Representação Simbólica e Tautologias

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

Proposições

- A lógica formal pode representar afirmações que fazemos em linguagem cotidiana para apresentar fatos ou transmitir informações.
- Uma **proposição** (ou **declaração**) é uma sentença que é falsa ou verdadeira.
- Quais das sentenças a seguir podem ser consideradas proposições?
 - Dez é menor do que sete.
 - Como está você?
 - Ela é muito talentosa.
 - Existe vida em outros planetas do universo.

Proposições

- A lógica formal pode representar afirmações que fazemos em linguagem cotidiana para apresentar fatos ou transmitir informações.
- Uma **proposição** (ou **declaração**) é uma sentença que é falsa ou verdadeira.
- Quais das sentenças a seguir podem ser consideradas proposições?
 - Dez é menor do que sete.
 - Como está você?
 - Ela é muito talentosa.
 - Existe vida em outros planetas do universo.

Conectivos e Valores Lógicos

- Ao falar ou escrever, combinamos frases simples por meio de conectivos, como e, para formar sentenças compostas mais interessantes.
- O valor lógico de uma proposição composta depende dos valores lógicos de seus componentes e dos conectivos usados.
- Exemplo: se combinarmos as seguintes afirmações verdadeiras, "Elefantes são grandes" e "Bolas de futebol são redondas", usando o conectivo e, obtemos a seguinte proposição verdadeira: "Elefantes são grandes e bolas de futebol são redondas".

Conectivos e Valores Lógicos

 Para representar proposições, adotaremos letras maiúsculas do início do alfabeto, como A, B e C. Elas são chamadas de letras de proposição.

Para representar conectivos lógicos, utilizaremos símbolos como
 Λ (e), V (ou), etc.

• Portanto, a proposição $A \wedge B$ pode ser lida como "A e B".

Conjunção (∧)

- Considere a proposição $A \wedge B$.
 - A e B podem ser chamados de **elementos** ou **fatores** da expressão.
 - Se A e B forem ambas verdadeiras, então A ∧ B deve ser considerada verdadeira.

Diante disto:

- Se A é verdadeira e B é falsa, qual seria o valor lógico de $A \wedge B$?
- Se A é falsa e B é verdadeira, qual seria o valor lógico de $A \wedge B$?
- Se A e B são falsas, qual seria o valor lógico de $A \wedge B$?

А	В	$A \wedge B$
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção (V)

- Considere a proposição $A \vee B$.
 - A e B podem ser chamados de elementos ou fatores da expressão.
 - Se A e B são proposições verdadeiras, então $A \lor B$ deve ser considerada verdadeira.
 - A conclusão acima fornece a primeira linha da tabela-verdade. Como podemos completá-la?

А	В	$A \lor B$
V	V	V
V	F	V
F	V	V
F	F	F

Condicional/Implicação (→)

- Proposições podem ser combinadas na forma "se proposição 1, então proposição 2".
- Se A denota a proposição 1 e B a 2, a proposição composta é denotada por A → B (leia-se "A implica B").
- O conectivo lógico aqui é o **condicional** (ou a **implicação**) e significa que a verdade de A implica, ou leva a, a verdade de B.
- No condicional A → B, A é a proposição antecedente e B a consequente.

Condicional/Implicação (→)

- A tabela-verdade para o condicional não é tão óbvia quanto as outras.
- Suponhamos que alguém observe que:

"Se eu passar no teste de economia, então vou ao cinema sexta-feira."

- Se a pessoa não passar no teste, então independente se ele vai ou não ao cinema – não é possível afirmar que a observação é falsa.
- Na dúvida, seria razoável dizer que a afirmação é verdadeira.
- Por convenção, A → B é considerada verdadeira se A for falsa, independentemente do valor lógico de B.

Condicional/Implicação (→)

 Diante do que foi apresentado no slide anterior, eis a tabela-verdade para o operador condicional (→).

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

Bicondicional/Equivalência (↔)

- O conectivo bicondicional (ou equivalência) é simbolizado por ↔.
- A expressão $A \leftrightarrow B$ é uma abreviação de $(A \rightarrow B) \land (B \rightarrow A)$.
- Podemos escrever a tabela-verdade para o bicondicional construindo, passo a passo, a tabela para $(A \rightarrow B) \land (B \rightarrow A)$.

А	В	$A \rightarrow B$	$B \rightarrow A$	$(A \to B) \land (B \to A)$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

• Da tabela vemos que $A \leftrightarrow B$ é verdadeira exatamente quando A é igual a B.

Negação (')

- Os conectivos lógicos vistos até agora são conectivos binários, pois juntam duas expressões, através de um conectivo lógico, produzindo uma terceira expressão.
- Um conectivo unário age em uma expressão para produzir uma segunda expressão.
- A negação de A simbolizada por A' é lida como "não A".

А	A'
V	F
F	V

Conectivos e Valores Lógicos

• Devido à riqueza da língua portuguesa, palavras com significados ligeiramente diferentes são representadas pelo mesmo conectivo lógico. A tabela abaixo mostra expressões comuns em português associadas a diversos conectivos lógicos.

Expressão em Português	Conectivo Lógico	Expressão Lógica
e; mas; também; além disso	Conjunção	$A \wedge B$
ou	Disjunção	$A \lor B$
Se A, então B. A implica B. A, logo B. A só se B; A somente se B. B segue de A. A é uma condição suficiente para B; basta A para B. B é uma condição necessária para A.	Condicional	pasta, a labora su
A se e somente se B A é condição necessária e suficiente para B.	Bicondicional (equivalência)	$A \leftrightarrow B$
não A É falso que A Não é verdade que A	Negação	A'

PROBLEMA PRÁTICO 5

Escreva o antecedente e o consequente de cada uma das proposições a seguir (sugestão: coloque cada proposição na forma se/então).

- a. Se a chuva continuar, então o rio vai transbordar.
- b. Uma condição suficiente para a falha de uma rede elétrica é que a chave desligue.
- c. Os abacates só estão maduros quando estão escuros e macios.
- d. Uma boa dieta é uma condição necessária para um gato ser saudável.

PROBLEMA PRÁTICO 5

Escreva o antecedente e o consequente de cada uma das proposições a seguir (sugestão: coloque cada proposição na forma se/então).

- a. Se a chuva continuar, então o rio vai transbordar.
- b. Uma condição suficiente para a falha de uma rede elétrica é que a chave desligue.
- c. Os abacates só estão maduros quando estão escuros e macios.
- d. Uma boa dieta é uma condição necessária para um gato ser saudável.

Conectivos e Valores Lógicos

 A negação de uma proposição deve ser feita com cuidado, especialmente no caso de uma proposição composta. A tabela a seguir dá alguns exemplos.

Proposição	Negação Correta	Negação Incorreta		
Vai chover amanhã.	É falso que vá chover amanhã. Não vai chover amanhã.			
Pedro é alto e magro.	É falso que Pedro seja alto e magro. Pedro não é alto ou não é magro. Pedro é baixo ou gordo.	Pedro é baixo e gordo. Essa é uma proposição muito forte. Pedro não tem ambas as propriedades (ser alto e ser magro) mas ainda pode ter uma delas.		
O rio é raso ou está poluído.	É falso que o rio seja raso ou esteja poluído. O rio não é raso nem está poluído. O rio é fundo e não está poluído.	O rio não é raso ou não está poluído. Essa é uma proposição muito fraca. O rio não tem nenhuma das duas propriedades, não deixa de ter apenas uma delas.		

PROBLEMA PRÁTICO 6

Quais das proposições a seguir representa A' se A é a proposição "Júlia gosta de manteiga mas detesta creme"?

- a. Júlia detesta manteiga e creme.
- b. Júlia não gosta de manteiga nem de creme.
- c. Júlia não gosta de manteiga mas adora creme.
- d. Júlia odeia manteiga ou gosta de creme.

PROBLEMA PRÁTICO 6

Quais das proposições a seguir representa A' se A é a proposição "Júlia gosta de manteiga mas detesta creme"?

- a. Júlia detesta manteiga e creme.
- b. Júlia não gosta de manteiga nem de creme.
- c. Júlia não gosta de manteiga mas adora creme.
- d. Júlia odeia manteiga ou gosta de creme.

Conectivos e Valores Lógicos

• É possível encadear letras de proposição, conectivos e parênteses (ou colchetes) para formar novas expressões, como:

$$(A \rightarrow B) \land (B \rightarrow A)$$

• É claro que, como em uma linguagem de programação, certas *regras de sintaxe* (regras que dizem quais as cadeias formam expressões válidas) têm que ser obedecidas; por exemplo, a cadeia abaixo não seria considerada válida.

$$A)) \land \land \rightarrow BC)$$

Conectivos e Valores Lógicos

- Uma cadeia que forma uma expressão válida é denominada uma fórmula bem formulada ou fbf.
- Para reduzir o número de parênteses necessários em uma fbf, estipula-se uma ordem de aplicação dos conectivos lógicos. A ordem de precedência é a seguinte:
 - 1. Para conectivos dentro de vários parênteses, efetua-se primeiro as expressões dentro dos parênteses mais internos
 - 2.
 - 3. A, V
 - $4. \rightarrow$
 - $5. \leftrightarrow$
- Em uma fbf com diversos conectivos, o último a ser aplicado é o conectivo principal.

Qual o significado da expressão A V B'?

$$() A \lor (B')$$

$$() (A \lor B)'$$

• Qual o significado da expressão A \vee B \rightarrow C?

$$() (A \lor B) \rightarrow C$$

$$() A \lor (B \rightarrow C)$$

• Identifique os conectivos principais das expressões acima.

Qual o significado da expressão A V B'?

$$(X) A \lor (B')$$

$$() (A \lor B)'$$

• Qual o significado da expressão A ∨ B → C?

$$(X) (A \lor B) \rightarrow C$$

() A
$$\vee$$
 (B \rightarrow C)

• Identifique os conectivos principais das expressões acima.

Conectivos e Valores Lógicos

- Fbfs compostas de letras de proposições e conectivos lógicos têm valores lógicos que dependem dos valores lógicos associados às suas letras de proposições.
- Escrevemos a tabela-verdade para qualquer fbf a partir de seus componentes, da mesma forma como foi feito para a expressão $(A \rightarrow B) \land (B \rightarrow A)$.
- O conectivo principal aparece na última coluna da tabela.
- A tabela abaixo mostra a tabela-verdade para a fbf $A \vee B' \to (A \vee B)'$. O conectivo principal, de acordo com as regras de precedência, é o condicional.

Α	В	B'	$A \lor B'$	$A \lor B$	$(A \lor B)'$	$A \vee B' \to (A \vee B)'$
V	V	F	V	V	F	F
V	F	V	V	V	F	F
F	V	F	F	V	F	V
F	F	V	V	F	V	V

PROBLEMA PRÁTICO 7

Construa tabelas-verdade para as fbfs a seguir:

- a. $(A \rightarrow B) \leftrightarrow (B \rightarrow A)$ (lembre-se que $C \leftrightarrow D$ é verdadeira precisamente quando C e D têm os mesmos valores lógicos)
- b. $(A \lor A') \rightarrow (B \land B')$
- c. $[(A \wedge B') \rightarrow C']'$
- d. $(A \rightarrow B) \leftrightarrow (B' \rightarrow A')$

PROBLEMA PRÁTICO 7

				. n I	D . 4 1		n)	(D \ A)	
a.	\underline{A}	В	A -	$\rightarrow B$	$B \rightarrow A$	(A -) ↔	$(B \to A)$	
	V	V	1	/	V		V		
	V	F	F	7	V		F		
	F	V	1	/	F		F		
	F	F	1	/	V		V		timo E
b.	A	<i>B</i>	A'	B'	$ A \vee A' $	$B \wedge$	B'	$(A \lor A') \rightarrow$	$(B \wedge B')$
	\overline{v}	V	F	F	V	F	7	F	1 - 21 × 19 c- 13
	V	F	F	V	V	F	3	F	fer the principal of
	F	v	V	F	V	I	7	F	· · · · · · · · · · · · · · · · · · ·
	F	F	V	V	V	, I	=	F	ent.
c.	A	B	C	B'	$A \wedge B'$	C'	(A /	$(B') \rightarrow C'$	$[(A \land B') \to C']'$
4	$\overline{\mathbf{v}}$	V	V	F	F	F	934	V	F.
	v	v	F	F	F	V		V	F
	v	F	V	V	V	F	1.00	F-052	no-sb-si V ariation
	v	F	F	V	V	V		V	5 16 S F 26 S B
	F	v	v	F	F	F	-	V	and the Follows
	F	v	F	F	F	V	12	V	inisi or Fogse
	F	F	v	v	F	F	1-13)	V	F
	F	F	F	v	F	V	1 4	V	F
Hov	Г	4.	986.91	Hills	TEO DECL	r hit	10,01	to soom po-	CASSASA B B PARA
d.	\boldsymbol{A}	В	A'	B'	$A \rightarrow B$	B'	$\rightarrow A'$	$(A \rightarrow B)$	$\leftrightarrow (B' \to A')$
200	V	V	F	F	V	THE PERSON	V		V
	V	F	F	V	F	B 23.43	F	The Extended	V
	F	V	V	F	V	1000	V	U MATCHERS	Vicinital topolitical to
	F	F	V	V	V	116	V	A continue	A A SAME OF A PARTY.

- Uma fbf que assume apenas o valor V é denominada uma tautologia.
- Uma tautologia é "intrinsecamente verdadeira" pela sua própria estrutura; ela é verdadeira independentemente dos valores lógicos atribuídos às suas letras de proposição.
- Exemplo:

$A \lor A$ ': "Hoje vai ter sol ou hoje não vai ter sol."

 A proposição acima tem que ser sempre verdadeira, já que uma ou outra das duas coisas tem que acontecer.

Vide problema prático 7d.

- Uma fbf que assume apenas o valor F é denominada uma contradição.
- Uma tautologia é "intrinsecamente falsa" pela sua própria estrutura.

• Exemplo:

 $A \wedge A'$: "Hoje é terça-feira e hoje não é terça-feira."

• A proposição acima tem que ser sempre falsa, independentemente do dia da semana a qual "hoje" esteja se referindo.

Vide problema prático 7b.

- Suponha que P e Q representam duas fbfs e suponha que a fbf P ↔ Q seja uma tautologia.
- Se fizermos uma tabela-verdade usando as letras de proposição P e Q, então os valores lógicos de P e de Q seriam sempre iguais em todas as linhas da tabela.
- Nesse caso, dizemos que P e Q são **fbfs equivalentes**; denotamos essa propriedade por $A \Leftrightarrow B$.

Vide problema prático 7d.

- Abaixo, são listadas algumas equivalências tautológicas.
- Contradições e tautologias são representadas por 0 e 1, respectivamente.

1a.	$A \lor B \Leftrightarrow B \lor A$	1b.	$A \wedge B \Leftrightarrow B \wedge A$	(comutatividade)
2a.	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	2b.	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	(associatividade)
3a.	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	3b.	$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$	(distributividade)
4a.	$A \lor 0 \Leftrightarrow A$	4b.	$A \wedge 1 \Leftrightarrow A$	(elementos neutros)
5a.	$A \lor A' \Leftrightarrow 1$	5b.	$A \wedge A' \Leftrightarrow 0$	(complementares)

- Note que as equivalências estão agrupadas em cinco pares. Em cada par, uma pode ser obtida da outra substituindo ∨ por ∧, ∧ por ∨, 0 por 1 ou 1 por 0.
- Cada equivalência em um dos pares é a dual da outra.

 Duas equivalências adicionais muito úteis são as Leis de De Morgan, assim nomeadas em honra ao matemático inglês do século XIX, Augusto de Morgan, o primeiro a enunciá-las.

Leis de De Morgan: $(A \lor B)' \Leftrightarrow A' \land B' \in (A \land B)' \Leftrightarrow A' \lor B'$

• Cada uma é a dual da outra. As leis de De Morgan auxiliam na negação de uma proposição composta (recapitule o problema prático 6).

- ★1. Quais das frases a seguir são proposições?
 - a. A lua é feita de queijo verde.
 - b. Ele é, certamente, um homem alto.
 - c. Dois é um número primo.
 - d. O jogo vai acabar logo?
 - e. Os juros vão subir ano que vem.
 - f. Os juros vão descer ano que vem.
 - g. $x^2 4 = 0$.
 - **1.** (a), (c), (e), (f)

- ★4. Encontre o antecedente e o consequente de cada uma das proposições a seguir:
 - a. O crescimento sadio de plantas é consequência de quantidade suficiente de água.
 - O aumento da disponibilidade de informação é uma condição necessária para um maior desenvolvimento tecnológico.
 - c. Serão introduzidos erros apenas se forem feitas modificações no programa.
 - d. A economia de energia para aquecimento implica boa insulação ou vedação de todas as janelas.
- 4. a. Antecedente: quantidade suficiente de água Consequente: crescimento sadio de plantas
 - b. Antecedente: maior desenvolvimento tecnológico Consequente: aumento da disponibilidade de informação
 - c. Antecedente: serão introduzidos erros Consequente: foram feitas modificações no programa
 - d. Antecedente: economia de energia
 - Consequente: boa insulação ou vedação de todas as janelas

- 6. Escreva a negação de cada fbf a seguir:
 - ★a. Se a comida é boa, então o serviço é excelente.
 - **★b.** Ou a comida é boa, ou o serviço é excelente.
 - c. Ou a comida é boa e o serviço é excelente, ou então está caro.
 - d. Nem a comida é boa, nem o serviço é excelente.
 - e. Se é caro, então a comida é boa e o serviço é excelente.
- 6. a. A comida é boa mas o serviço é ruim.
 - b. A comida é ruim e o serviço também.

- ★11. Escreva cada uma das proposições compostas a seguir em notação simbólica usando letras de proposição para denotar as componentes.
 - a. Se os preços subirem, então haverá muitas casas para vender e elas serão caras; mas se as casas não forem caras, então, ainda assim, haverá muitas casas para vender.
 - b. Tanto ir dormir como ir nadar é uma condição suficiente para a troca de roupa; no entanto, mudar a roupa não significa que se vai nadar.
 - vai chover ou nevar mas não ambos.
 - Se Jane vencer ou perder, vai ficar cansada.
 - e. Ou Jane irá vencer ou, se perder, ela ficará cansada.
- 11. a. A: os preços subirem; B: haverá muitas casas; C: casas serão caras $[A \to B \land C] \land (C' \to B)$
 - **b.** A: ir dormir; B: ir nadar; C: trocar de roupa $[(A \lor B) \to C] \land (C \to B)'$
 - c. A: vai chover; B: vai nevar $(A \lor B) \land (A \land B)'$
 - **d.** A: Jane vence; B: Jane perde; C: Jane vai ficar cansada $(A \lor B) \to C$
 - e. A: Jane vence; B: Jane perde; C: Jane vai ficar cansada $A \lor (B \to C)$

14. Construa tabelas-verdade para as fbfs a seguir. Note quaisquer tautologias ou contradições.

$$\bigstar$$
a. $(A \rightarrow B) \leftrightarrow A' \lor B$

F

$$\star$$
a. $(A \to B) \leftrightarrow A' \lor B$
 \star b. $(A \land B) \lor C \to A \land (B \lor C)$

F

14	. a.	A I	B A -	$\rightarrow B \mid A' \mid$	$A' \vee B$	1 (4	$\rightarrow R$) $\sim A' \vee I$)	
*14101	a.	hy. The				15 (A)	$\rightarrow D) \leftrightarrow A \lor D$	$\operatorname{na}\left(C\rightarrow\mathcal{F}\right) _{-}$	A impótese tem a forr
		V	Y	/ F	V	4	V	concluir C	ficação. (Não se poda
		V	F I	F F	.F	108	V		
		F	V \	/	V	100	V	qui	(A -> (BVC)
		F	F	/ V	V		V	1311	2. E
								qiri	'D (
			ologia			5		2. 3. cunj	4 B' A C'
	b						HAM!	-4, Lie Mo	S. (BVC)
A	$\mid B \mid$	C	$A \wedge B$	$(A \wedge B) \vee$	$C \mid B$	$\vee C$	$A \wedge (B \vee C)$	$(A \wedge B) \vee$	$C \to A \land (B \lor C)$
V	V	V	V	. V		V		· (()	
V	V	F	V	V	3 14	V	V	1000	V
V	F	V	.F	V		V	V	T H	V
V	F	F	F	F		F	F	री छ	2 1 m (11 - V)
F	V	v	F	V		V	F	Aliel	F
F	V	F	F	F		V	F	(m. £ , 1	V a A
			(C C C C C C C C C C C C C C C C C C C					And the second second	_ 1 mm 2 7

17. Construa tabelas-verdade para verificar que as fbfs a seguir são tautologias.

b.
$$(A')' \leftrightarrow A$$

$$\star c. A \wedge B \rightarrow B$$

d.
$$A \rightarrow A \vee B$$

e.
$$(A \lor B)' \leftrightarrow A' \land B'$$
 (Lei de De Morgan)

f.
$$(A \wedge B)' \leftrightarrow A' \vee B'$$
 (Lei de De Morgan)

g.
$$A \lor A \leftrightarrow A$$

c. A	$B \mid$	$A \wedge B$	$A \wedge B \rightarrow B$
$\overline{\mathbf{v}}$	V	V	V
v	F	F	V
F	V	F	V
F	F	F	V

Referência Bibliográfica

GERSTING, Judith L.; IÓRIO, Valéria de Magalhães, Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. 5 ed. Rio de Janeiro, RJ: LTC, 2004, 597 p. ISBN 978-85-216-1422-7.