Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2015

Electrotècnia

Sèrie 5

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Quina és la funció lògica O de la taula de veritat següent?

a)
$$O = a(b+c)$$

b)
$$O = a(b + c)$$

c)
$$O = \overline{a}(b+c)$$

d)
$$O = \bar{a}(b + \bar{c})$$

а	b	С	0
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Qüestió 2

Un transformador monofàsic, que es pot considerar ideal, té les tensions nominals següents: $U_{\rm primari}$ = 400 V i $U_{\rm secundari}$ = 200 V. La potència nominal que figura en la placa de característiques és de 1 200 VA. Quins són els corrents nominals?

- a) 3 A al primari i 6 A al secundari.
- b) 6 A al primari i 3 A al secundari.
- c) $\frac{3}{\sqrt{3}}$ A al primari i $\frac{6}{\sqrt{3}}$ A al secundari.
- d) $\frac{6}{\sqrt{3}}$ A al primari i $\frac{3}{\sqrt{3}}$ A al secundari.

Qüestió 3

Per tal de disminuir la reluctància d'un circuit magnètic, podem

- a) emprar un material amb una permeabilitat relativa inferior.
- **b**) emprar un material amb una permeabilitat absoluta inferior.
- c) disminuir la longitud dels materials del circuit magnètic.
- d) disminuir la secció dels materials del circuit magnètic.

Qüestió 4

La placa de característiques d'un generador síncron indica una velocitat i una freqüència nominals de 600 min⁻¹ i 60 Hz, respectivament. Quants parells de pols té el generador?

- *a*) 3
- **b**) 4
- c) 5
- **d**) 6

Qüestió 5

Connectem en paral·lel dues resistències de $100\,\Omega$ entre la fase a i el neutre d'una xarxa trifàsica simètrica i equilibrada de $400\,\mathrm{V}$ de tensió composta. A més, connectem una tercera resistència de $100\,\Omega$ entre la fase b i el neutre del mateix sistema d'alimentació. Quina és la potència total consumida de la xarxa?

- *a*) 533 W
- **b**) 1 066 W
- c) 1600 W
- d) 4800 W

Exercici 2

[2,5 punts en total]

U_1	= 2	4 V
U_2	= 1	0,1 V
R_1	= 5	Ω
R_2	= 7	Ω

El circuit de la figura mostra una font de tensió, U_1 , que alimenta diverses càrregues i aporta una potència total de 60 W. Les càrregues són tres resistències i una bateria que s'està carregant a la tensió U_2 . Determineu:

a) El corrent I_1 subministrat per la font de tensió.

[0,5 punts]

b) Els valors de la resistència R_3 i el corrent I_2 .

[2 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

El circuit de la figura és alimentat per un sistema trifàsic simètric i equilibrat de tensió composta U. La càrrega trifàsica (simètrica) està formada per tres branques idèntiques connectades en triangle. Determineu:

a) La mesura de l'amperímetre A_1 .	[0,5 punts]
b) La mesura de l'amperímetre A_2 .	[0,5 punts]
c) La mesura del voltímetre V_1 .	[0,5 punts]
d) La mesura del voltímetre V_2 .	[0,5 punts]
e) La potència activa total P consumida per la càrrega.	[0,5 punts]

Exercici 4

[2,5 punts en total]

El generador G_1 de la figura proporciona una tensió alterna quadrada de valor mitjà nul. El valor màxim de la tensió és de 36 V i el valor mínim és de -36 V. En els borns d'aquest generador hi ha connectat un oscil·loscopi la pantalla del qual també es mostra en la figura. La sonda de l'oscil·loscopi té relació 1:1. L'escala de temps de l'oscil·loscopi és de 2 µs/div. Les tres resistències tenen el mateix valor de $10\,\Omega$. Els díodes de la figura es poden considerar ideals. Determineu:

a)	L'escala de tensió de l'oscil·loscopi.	[0,5 punts]
b)	La freqüència f de la tensió d'alimentació.	[0,5 punts]
<i>c</i>)	La potència mitjana consumida pel conjunt de les tres resistències.	[1,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts en total]

Un motor d'inducció trifàsic té les dades següents en la placa de característiques:

$$P_{\rm N} = 110 \,\text{kW}$$
 $U_{\rm N} = 690/400 \,\text{V}$ $I_{\rm N} = 120/208 \,\text{A}$ $n_{\rm N} = 1\,450 \,\text{min}^{-1}$ $\cos \varphi_{\rm N} = 0.84$ $f = 50 \,\text{Hz}$

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η expressat en tant per cent.

[0,5 punts]

b) El parell Γ desenvolupat.

[0,5 punts]

c) La potència reactiva Q consumida pel motor.

[0,5 punts]

Si volem fer servir un arrencador estrella-triangle per a alimentar el motor, determineu:

d) La tensió nominal que ha de tenir la xarxa.

[0,5 punts]

e) El corrent de línia que consumirà el motor quan estigui girant en condicions nominals. [0,5 punts]

Exercici 4

[2,5 punts en total]

$$R_1 = 5 \Omega$$

 $R_2 = 3 \Omega$
 $R_3 = 2 \Omega$
 $U = 100 \text{ V}$
 $W = 187,5 \text{ W}$

El circuit de la figura està alimentat amb una tensió U i a una freqüència $f = 50 \,\mathrm{Hz}$. Determineu:

a) El valor dels corrents I_2 i I_3 .

[1 punt]

b) La mesura de l'amperimetre A_1 .

[0,5 punts]

c) El valor de la inductància L.

[1 punt]