Teoria współbieżnosci - Sieci Petriego

Dawid Majchrowski

Sprawozdanie 06.12.2019

 Zadanie 1 - wymyślić wlasną maszynę stanów, zasymulować przyklad i dokonac analizy grafu osiagalnosci oraz niezmiennikow.

Symulacja gry w kręgle bez punktów, z nieskończoną liczbą rund, z jedną kulą, maxymalnie 2 rzuty na rundę (1 gdy zbijemy za pierwszym wszystkie).

- P0 mamy dostępną kulę
- T0 rzucamy kulą i nie zbijamy wszystkich kręgli
- T0 rzucamy kulą i zbijamy wszystkie kręgli
- P1 czekam na 2 rzut w danej rundzie
- P3 czekamy na nową rundę
- T1 czekamy na kulę
- P2 mamy dostępną kulę
- T2 rzucamy kulą
- T3 czekamy na kulę

Petri net state space analysis results

Bounded	true
Safe	true
Deadlock	false

Ograniczony, bezpieczny i bez deadlocka.

Graj osiągalności:

- 1) Osiągane znakowania (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
- 2) Maxymalna liczba znaczników to 1 zatem sieć bezpieczna i ograniczona.
- 3) Każde z przejść możliwych {T0, T1, T2, T3, T4} oznaczone jako krawędź w grafie, czyli sieć jest żywa.
- 4) Z każdego znakowania możemy z niego wyjść, zatem sieć nie ma zakleszczeń.

Analiza niezmienników.

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P3) + M(P2) = 1$$

Analysis time: 0.0s

T-Invariants. Z każdego znakowania wrócimy do początkowego, zatem sieć jest odwracalna. P-Invariants. Sieć jest zachowawcza, liczba występujących znaczników jest stale równa 1 w całej sieci, również 1-ograniczona i bezpieczna.

• Zadanie 2 - zasymulowac zadaną siec

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Analysis time: 0.0s

Z T-Invariants wynika, że sieć nie jest odwracalna. Nie da się powrócić do stanu początkowego.

Sieć jest żywa, każde przejście znajdują się w grafie osiągalności. Nie jest ogarniczona, w P0, P1, P2 może się pojawić maksymalnie 1 znacznik, natomiast w P4 liczba ta nie jest ograniczona, zatem sieć również.

• **Zadanie 3** - zasymulować wzajemne wykluczanie dwoch procesow na wspolnym zasobie. Dokonac analizy niezmiennikow. Wyjasnij znaczenie rownan (P-invariant equations). Które równanie pokazuje działanie ochrony sekcji krytycznej?

T0, T2 - Wait T1, T3 - Signal P0, P1 - 2 Procesy

P-Invariants

P	0	P1	P2	P3	P4	P5	P6
	1	0	1	0	1	0	0
()	1	0	1	0	1	0
()	0	1	1	0	0	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P2) + M(P4) = 1$$

 $M(P1) + M(P3) + M(P5) = 1$
 $M(P2) + M(P3) + M(P6) = 1$

P2+P3+P6 = 1 pokazuje działanie ochrony, tylko 1 proces wewnątrz sekcji krytycznej.

 Zadanie 4 - uruchomić problem producenta i konsumenta z ograniczonem buforem (mozna posluzyc sie przykladem, menu:file, examples). Dokonac analizy niezmiennikow. Czy siec jest zachowawcza ? Ktore rownanie mowi nam o rozmiarze bufora ?

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Analysis time: 0.0s

Sieć jest zachowawcza, liczba znaczników jest stale równa 5. M(P0) + ... + M(P7) = 1 + 1 + 3 = 5.

O rozmiarze bufora mówi ostatnie równanie, M(P6) + M(P7) = 3.

 Zadanie 5 - stworzyć symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonac analizy niezmiennikow. Zaobserwowac brak pelnego pokrycia miejsc.

Usuwamy bufor z poprzedniego zadania.

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Z T-invariants widać, że sieć jest odwracalna, każde przejście wystarczy odpalić raz, aby powrócić do stanu początkowego. Obserwujemy również brak pełnego pokrycia miejsc, co widać w P-Invariants przy P6 (co jest zgodne z naszymi oczekiwaniami, w końcu usunęliśmy ogarniczenie w buforze).

 Zadanie 6 - zasymulować prosty przyklad ilustrujacy zakleszczenie. Wygenerowac graf osiagalnosci i zaobserwowac znakowania, z ktoroch nie mozna wykonac przejsc. Zaobserwowac wlasciwosci sieci w "State Space Analysis". Ponizej przyklad sieci z mozliwoscia zakleszczenia (mozna wymyslic inny)

Graf osiągalności

Znakowania na czerwono nie mają krawędzi wychodzących, zatem mamy deadlock.

Petri net state space analysis results

Bounded true Safe true Deadlock true

Shortest path to deadlock: T0 T4

Ograniczona, bezpieczna ale może dojść do zagłodzenia.