Práctica 5 – Arreglos

1. Dado el siguiente programa:

```
    program sumador;

2. type
     vnums = array [1..10] of integer;
3.
4. var
    numeros : vnums;
5.
6.
    i : integer;
    for i:=1 to 10 do {primer bloque for}
9.
       numeros[i] := i;
10.
    for i := 2 to 10 do {segundo bloque for}
11.
12.
       numeros[i] := numeros[i] + numeros [i-1]
13. end.
```

Responda las siguientes preguntas:

- a) Qué valores toma la variable numeros al finalizar el primer bloque for?
- b) Al terminar el programa, con qué valores finaliza la variable números?
- c) Si se desea cambiar la línea 11 por la sentencia for i:=1 to 9 do ¿Cómo debe modificarse el código para que la variable **números** contenga los mismos valores que en 1.b)?
- d) Qué valores están contenidos en la variable **numeros** si la líneas 11 y 12 se reemplazan por:

```
for i:=1 to 9 do
  numeros[i+1] := numeros[i];
```

- 2. Dado el siguiente programa, complete las líneas indicadas, considerando que:
 - a) El módulo cargarVector debe leer números reales y almacenarlos en el vector que se pasa como parámetro. Al finalizar debe retornar el vector y su dimensión lógica. La lectura finaliza cuando se ingresa el valor 0 (que no debe procesarse) o cuando el vector está completo.
 - El módulo modificarVectorySumar debe devolver el vector con todos sus elementos incrementados con el valor n y también debe devolver la suma de todos los elementos del vector.

```
program Vectores;
                                                { programa principal }
const
                                                var
                                                  datos : vdatos;
  cant_datos = 150;
type
                                                  i, dim : integer;
  vdatos = array[1..cant_datos] of real;
                                                  num, suma : real;
procedure cargarVector(var v:vdatos;
                                                begin
                      var dimL : integer);
                                                  dim := 0;
                                                   sumaTotal := 0;
. . . { completar }
                                                  cargarVector(...); { completar }
begin
                                                  writeln('Ingrese un valor a sumar');
. . . { completar }
                                                  readln(num);
                                                  modificarVectorySumar(...);{completar}
                                                  writeln('La suma de los valores es: ', suma);
                                                  writeln('Se procesaron: ',dim, ' números')
procedure modificarVectorySumar(var v:vdatos;
dimL : integer; n: real; var suma: real);
                                                end.
var
. . . { completar }
begin
. . . { completar }
end;
```

- 3. Se dispone de un vector con números enteros, de dimensión física dimF y dimensión lógica dimL.
 - a. Realizar un módulo que imprima el vector desde la primera posición hasta la última.
 - b. Realizar un módulo que imprima el vector desde la última posición hasta la primera.
 - c. Realizar un módulo que imprima el vector desde la mitad (dimL DIV 2) hacia la primera posición, y desde la mitad más uno hacia la última posición.
 - d. Realizar un módulo que reciba el vector, una posición X y otra posición Y, e imprima el vector desde la posición X hasta la Y. Asuma que tanto X como Y son menores o igual a la dimensión lógica. Y considere que, dependiendo de los valores de X e Y, podría ser necesario recorrer hacia adelante o hacia atrás.
 - e. Utilizando el módulo implementado en el inciso anterior, vuelva a realizar los incisos a, h v c
- 4. Se dispone de un vector con 100 números enteros. Implementar los siguientes módulos:
 - a. **posicion** : dado un número X y el vector de números, retorna la posición del número X en dicho vector, o el valor -1 en caso de no encontrarse.
 - b. **intercambio**: recibe dos valores **x** e **y** (entre 1 y 100) y el vector de números, y retorna el mismo vector donde se intercambiaron los valores de las posiciones **x** e **y**.
 - c. sumaVector: retorna la suma de todos los elementos del vector.
 - d. **promedio**: devuelve el valor promedio de los elementos del vector.
 - e. **elementoMaximo**: retorna la posición del mayor elemento del vector
 - f. elementoMinimo: retorna la posicion del menor elemento del vector
- 5. Utilizando los módulos implementados en el ejercicio 4, realice un programa que lea números enteros desde teclado (a lo sumo 100) y los almacene en un vector. La carga finaliza al leer el número 0. Al finalizar la carga, se debe intercambiar la posición del mayor elemento por la del menor elemento, e informe la operación realizada de la siguiente manera:

"El elemento máximo ... que se encontraba en la posición ... fue intercambiado con el elemento mínimo ... que se encontraba en la posición ...".

- 6. Dado que en la solución anterior se recorre dos veces el vector (una para calcular el elemento máximo y otra para el mínimo), implementar un único módulo que recorra una única vez el vector y devuelva ambas posiciones.
- 7. Realizar un programa que lea números enteros desde teclado hasta que se ingrese el valor -1 (que no debe procesarse) e informe:
 - la cantidad de ocurrencias de cada dígito procesado.
 - el dígito más leído
 - los dígitos que no tuvieron ocurrencias.

Por ejemplo, si la secuencia que se lee es: 63 34 99 94 96 -1, el programa deberá informar:

Número 3: 2 veces Número 4: 2 veces Número 6: 2 veces Número 9: 4 veces

El dígito más leído fue el 9. Los dígitos que no tuvieron ocurrencias son: 0, 1, 2, 5, 7, 8

- 8. Realice un programa que lea y almacene el salario de los empleados de una empresa de turismo (a lo sumo 300 empleados). La carga finaliza cuando se lea el salario 0 (que no debe procesarse) o cuando se completa el vector. Una vez finalizada la carga de datos se pide:
 - a. Realizar un módulo que incremente el salario de cada empleado en un 15%. Para ello, implemente un módulo que reciba como parámetro un valor real X, el vector de valores reales y su dimensión lógica y retorne el mismo vector en el cual cada elemento fue multiplicado por el valor X.

b.	Realizar un modulo que muestre en pantalla el sueldo promedio de los empleados de la empresa.