Riemann; Complex Analysis

- HW1 -

Ji, Yong-hyeon

April 20, 2025

We cover the following topics in this note.

- Vector Fields
- Line Integrals for Vector Fields
- Surface Integrals for Vector Fields
- TBA

Scalar Function and Vector Fields

A **scalar function** on \mathbb{R}^n is a real-valued function of an n-tuple; that is,

$$f: \mathbb{R}^n \to \mathbb{R}, \quad \mathbf{x} \mapsto f(\mathbf{x}) = f(x_1, x_2, \dots, x_n).$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$.

A **vector field** on \mathbb{R}^n is a function

$$\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$$
, $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), F_2(\mathbf{x}), \dots, F_n(\mathbf{x}))$,

where each component $F_i : \mathbb{R}^n \to \mathbb{R}$ is itself a scalar function.

Line Integral of Vector Fields

Definition (Line Integral of Scalar Function over Arc Length). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a scalar function, and let C be a piecewise smooth curve in \mathbb{R}^n given by a smooth parameterization:

$$\gamma: [a,b] \to \mathbb{R}^n, \quad t \mapsto \gamma(t) = (x_1(t), x_2(t), \dots, x_n(t)).$$

Then the *arc length* of the curve C from t = a to t = b is defined by

$$L(\gamma) := \int_a^b \left\| \frac{d\gamma}{dt} \right\| dt$$
, where $\left\| \frac{d\gamma}{dt} \right\| = \sqrt{\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 + \dots + \left(\frac{dx_1}{dt} \right)^2}$.

The **line integral of the scalar function** f along the curve C with respect to arc length is defined by

$$\int_C f \ ds := \int_a^b f(\gamma(t)) \| \gamma'(t) \| \ dt.$$

Here, $ds = ||\gamma'(t)|| dt$ is the *infinitesimal arc length*.

Excellent — this is a key question for understanding how **vector calculus** connects with **differential forms** and notation. Let's walk through how to **rigorously deduce**:

$$\int_C F_1 dx + F_2 dy \quad \text{from} \quad \int_C \mathbf{F} \cdot d\mathbf{r}$$

for a vector field $\mathbf{F}(x, y) = (F_1(x, y), F_2(x, y)).$

Step 1: Parametrize the Curve C

Let $\gamma : [a, b] \to \mathbb{R}^2$ be a smooth parameterization of the curve *C*, given by:

$$\gamma(t)=(x(t),y(t)),\quad t\in [a,b].$$

Then the **derivative of the curve** is:

$$\gamma'(t)=(x'(t),y'(t)),$$

and the **differential displacement** is:

$$d\mathbf{r} = \gamma'(t) dt = (dx, dy) = (x'(t) dt, y'(t) dt).$$

^{**}Step 2: Write the Line Integral of F^{**}

The **vector line integral** is defined as:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\gamma(t)) \cdot \gamma'(t) dt = \int_a^b \left[F_1(x(t), y(t)) x'(t) + F_2(x(t), y(t)) y'(t) \right] dt.$$

Step 3: Recognize the Total Differentials

From calculus, we know:

$$dx = x'(t) dt$$
, $dy = y'(t) dt$.

Substitute into the integral:

$$\int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy.$$

So we have:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} F_{1}(x(t), y(t)) dx + F_{2}(x(t), y(t)) dy = \int_{C} F_{1} dx + F_{2} dy.$$

Final Deduction

Thus:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C F_1 \, dx + F_2 \, dy$$

where: $-\mathbf{F} = (F_1, F_2)$, $-d\mathbf{r} = (dx, dy)$, - The dot product $\mathbf{F} \cdot d\mathbf{r} = F_1 dx + F_2 dy$.

Interpretation

- The vector line integral becomes an integral of a **1-form**:

$$\mathbf{F} \cdot d\mathbf{r} \quad \leftrightarrow \quad F_1 \, dx + F_2 \, dy.$$

- The dot product turns into a sum of **components times differentials**.

Would you like to go one step further and express this in terms of pullbacks or show how it generalizes to \mathbb{R}^3 ?

Let $U \subseteq \mathbb{R}^n$ be an open set and $\mathbf{F}: U \to \mathbb{R}^n$ a continuous vector field. Suppose $C \subset U$ is a smooth curve parametrized by

$$\mathbf{r} \colon [a,b] \longrightarrow \mathbb{R}^n, \quad t \mapsto \mathbf{r}(t),$$

with nonzero velocity $\mathbf{r}'(t)$. Then the *line integral* of \mathbf{F} along C is defined by

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_a^b \sum_{i=1}^n F_i(\mathbf{r}(t)) x_i'(t) dt,$$

where $\mathbf{r}(t) = (x_1(t), ..., x_n(t))$ and $\mathbf{F} = (F_1, ..., F_n)$.

This integral "accumulates" at each infinitesimal step dt the projection of \mathbf{F} onto the tangent vector $\mathbf{r}'(t)$, yielding a single real number that captures the *circulation* or *work* of \mathbf{F} along C.

Example. Take n=2 and $\mathbf{F}(x,y)=\left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ on $U=\mathbb{R}^2\setminus\{(0,0)\}$. Let C be the unit circle $x^2+y^2=1$, counterclockwise. Parametrize $\mathbf{r}(t)=(\cos t,\sin t),\,t\in[0,2\pi]$. Then

$$\mathbf{r}'(t) = (-\sin t, \cos t), \qquad \mathbf{F}(\mathbf{r}(t)) = (-\sin t, \cos t),$$

so

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left(-\sin t, \cos t \right) \cdot \left(-\sin t, \cos t \right) dt = \int_0^{2\pi} \left(\sin^2 t + \cos^2 t \right) dt = 2\pi.$$

Thus the total circulation (or "work") of F around the unit circle is 2π .

Problem #1 (Line Integral around Unit Circle). Let $C \subset \mathbb{R}^2$ be the unit circle defined by

$$C: x^2 + y^2 = 1,$$

traversed in the *counterclockwise direction*. Let the vector field $\mathbf{F}: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ be defined by

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Evaluate the *line integral* of **F** along *C*:

$$\oint_C \mathbf{F} \cdot d\mathbf{r}.$$

Sol.

Consider the vector field:

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \ \frac{x}{x^2 + y^2}\right),$$

and the curve *C* is the unit circle $x^2 + y^2 = 1$, traversed counterclockwise.

Step 1. (Parametrization) Define a function

$$\begin{array}{cccc} \gamma & : & [0,2\pi] & \longrightarrow & \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\} \\ \theta & \longmapsto & \gamma(\theta) = (\cos\theta, \sin\theta) \end{array} \, .$$

Here, $\frac{d\gamma}{d\theta} = (-\sin\theta, \cos\theta)$.

Step 2. (Evaluate $F(\gamma(\theta))$ and the dot product) We have

$$\mathbf{F}(\gamma(\theta)) = \mathbf{F}(\cos\theta, \sin\theta) \stackrel{\sin^2\theta + \cos^2\theta = 1}{=} \left(\frac{-\sin\theta}{1}, \frac{\cos\theta}{1} \right) = (-\sin\theta, \cos\theta).$$

and

$$\mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} = (-\sin\theta)(-\sin\theta) + (\cos\theta)(\cos\theta) = \sin^2\theta + \cos^2\theta = 1.$$

Step 3. (Integral)

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\gamma(\theta)) \cdot \frac{d\gamma}{d\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi.$$