```
import pandas as pd
import statsmodels.api as sm
```

mh_df = pd.read_csv('/content/Mental Health Dataset/mental_health_dataset.csv') mh_df.head(5)

→ *		age	gender	employment_status	work_environment	mental_health_history	seeks_treatment	stress_level	sleep_hours	physical_activit
	0	56	Male	Employed	On-site	Yes	Yes	6	6.2	
	1	46	Female	Student	On-site	No	Yes	10	9.0	
	2	32	Female	Employed	On-site	Yes	No	7	7.7	
	3	60	Non- binary	Self-employed	On-site	No	No	4	4.5	
	4	25	Female	Self-employed	On-site	Yes	Yes	3	5.4	

Logistic Regression

This model is built to predict the likelihood of employees seeking mental health treatment

```
# Encoding binary target variable (0 and 1)
mh_df['seeks_treatment'] = mh_df['seeks_treatment'].map({'No': 0, 'Yes': 1})
# Defining predictors and target variables
X = mh_df[['stress_level', 'sleep_hours', 'physical_activity_days',
             'depression_score', 'anxiety_score', 'social_support_score', 'productivity_score']]
y = mh_df['seeks_treatment']
# Adding constant for intercept
X = sm.add\_constant(X)
# Fitting logistic regression model
model = sm.Logit(y, X).fit()
# Summary output
print(model.summary())
 Optimization terminated successfully.
                      Current function value: 0.672375
                      Iterations 4
                                                 Logit Regression Results
        ______
       Dep. Variable: seeks_treatment No. Observations: 10000 Model: Logit Df Residuals: 9992
        ______
                                                   coef std err
                                                                                       z P> z [0.025

        const
        -0.5809
        0.438
        -1.327
        0.184
        -1.439
        0.277

        stress_level
        -0.0063
        0.007
        -0.887
        0.375
        -0.020
        0.008

        sleep_hours
        0.0027
        0.014
        0.192
        0.848
        -0.025
        0.030

        physical_activity_days
        -0.0060
        0.009
        -0.672
        0.502
        -0.024
        0.012

        depression_score
        0.0032
        0.007
        0.487
        0.626
        -0.010
        0.016

        anxiety_score
        0.0035
        0.003
        1.087
        0.277
        -0.003
        0.010

        social_support_score
        -0.0003
        0.001
        -0.496
        0.620
        -0.002
        0.001

        productivity_score
        0.0018
        0.004
        0.431
        0.667
        -0.006
        0.010
```

Observation

Model: Logistic regression predicting *"seeks_treatment"*

Report

Coefficients and p-values were examined for each predictor.

A p-value less than 0.05 indicates that the predictor has a statistically significant effect on the odds of seeking treatment.

Result Interpretation: ALL Predictors

The results for ALL predictors show that they were not statistical significance predictors for "seeking treatment" (P>0.05). In other words, increase or decrease in the analysed predictor variables does not affect the odds of seeking treatment.

General Insight

The model proved that the analysed predictor variables (stress_level sleep_hours, physical_activity_day, depression_score, anxiety_score, social_support_score, and productivity_score) were insignificant predictors of the likelihood of employees to seek treatment for their mental health troubless.

However, although the predictor variables are insignificant, they may still play a role in a multivariate context or interact with others, which could be tested in more advanced models.

Simple Linear Regression

This model is built to investigate the social and lifestyle determinants of mental health among employees in the workplace.

```
# Defining target (outcome) and predictor variables
target_vars = ['depression_score', 'anxiety_score', 'productivity_score']
predictor_vars = ['sleep_hours', 'physical_activity_days', 'social_support_score']

# Run simple linear regression for each pair
for target in target_vars:
    for predictor in predictor_vars:
        print(f"\nSimple Linear Regression: {target} ~ {predictor}")
        X = sm.add_constant(mh_df[predictor])
        y = mh_df[target]
        model = sm.OLS(y, X).fit()
        print(model.summary())
```

 $\overline{\Sigma}$

Show hidden output

Observation

Model: OLS - Simple linear regression

Target Variables: depression_score, anxiety_score, and productivity_score

Predictor Variables: sleep_hours, physical_activity_days, social_support_score

Result showed no statistical significant correlation between the predictor and target variables

Interpretation

The model established that sleep hours, physical activity and having social support were insignificant predictors of mental health outcomes such as depression, anxiety, and productivity.

General Insight

These results suggest that lifestyle factors like sleep and physical activity, and social factors like support, cannot determine or explain variations in mental health status among employees in the work places.

Simple Linear Regression Predicting Productivity Score

From previously noted significant correlation between depression_score vs productivity_score, we built this model to determine causation

```
# work_environment vs anxiety_score
X = sm.add_constant(mh_df['depression_score'])
y = mh_df['productivity_score']
model = sm.OLS(y, X).fit()
print(model.summary())
```

OLS Regression Results										
Dep. Variable:	productivi	-	R-squared:		0.882					
Model:		OLS	Adj. R-squar			882				
Method:	Least	Squares	F-statistic:		7.473e+04					
Date:	Sun, 15	Jun 2025	<pre>Prob (F-statistic): Log-Likelihood: AIC:</pre>		0.00 -29938. 5.988e+04					
Time:		15:29:54								
No. Observations:		10000								
Df Residuals:	9998 1		BIC:		5.989e+04					
Df Model:										
Covariance Type:	n	onrobust								
	coef	std err	t	P> t	[0.025	0.975]				
const	99.4025	0.094	1055.855	0.000	99.218	99.587				
depression_score	-1.4688	0.005	-273.370	0.000	-1.479	-1.458				
Omnibus:	4.752 0.093 -0.040 3.071		Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		 2.002					
Prob(Omnibus):					4.785 0.0914					
Skew:										
Kurtosis:					34.2					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Observation

Model: Simple linear regression

Target Variable: Productivity_score
Predictor Variable: Depression_score

Coefficient (β) = -1.4688, p-value = 0.000

R-squared = 0.882

There is a significant association between Depression_score and Productivity_score.

Interpretation

A significant negative β coefficient for depression_score predicting productivity_score (β = -1.4688, p = 0.000, R² = 0.882) suggests that as depression increases, productivity decreases. Hence indicating a strong linear relationship.

General Insight

The result suggest that depression can explain variations in productivity among employees in the work place.

Start coding or generate with AI.

Start coding or generate with AI.