Indian Institute of Science Education and Research Mohali

First Mid Semester Examination

MTH201 (Curves and Surfaces)

Maximum Marks: 20

Instructions: Attempt **ALL** questions. Read the questions carefully. Write all arguments precisely and do not leave anything to the instructor's imagination.

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by $f(x,y) = (\sin x \cos y, x^2 y)$. Determine if the Jacobian $Df_{(0,0)}$ of f at (0,0) is invertible. Find a point in \mathbb{R}^2 where the Jacobian of f is not invertible. [2 + 2]
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by

(4)

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

Determine if f is continuous at (0,0).

3. Let $\gamma: (-1,1) \to \mathbb{R}^3$ be the parametric curve given by [1+2]

$$\gamma(t) = \left(\frac{1}{3}(1+t)^{3/2}, \frac{1}{3}(1-t)^{3/2}, \frac{1}{\sqrt{2}}t\right).$$

- (a) Does γ pass through $(0,0,0) \in \mathbb{R}^3$? Justify.
- (b) Is γ a unit speed curve? Justify.
- 4. Compute the arc length function s of the logarithmic spiral $\gamma:(0,\infty)\to\mathbb{R}^2$ given by

$$\gamma(t) = (ae^{bt}\cos t, ae^{bt}\sin t),$$

[4 + 1]

where a and b are positive real constants. Further show that $b = \log_e \left(\frac{s(2)}{s(1)} - 1 \right)$.

5. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ be a smooth curve with unit speed. Let $\dot{\gamma}$ denote the derivative and $\ddot{\gamma}$ denote the double derivative of γ with respect to t. Show that for each $t\in(\alpha,\beta)$, the vectors $\dot{\gamma}(t)$ and $\ddot{\gamma}(t)$ are orthogonal to each other.