

Mes notes dans celles de corps_locaux/decomposition_extensions sont vraiment bien.

0.1 Résumé

On se place sur L/K galoisienne de corps complets avec Gal(L/K) = G, en particulier $G = D_{\mathfrak{m}_L}$. On déf G_i via

$$G_i = \ker(Gal(L/K) \to \mathcal{O}_L/\mathfrak{m}_L^{i+1})$$

i.e. $G_{-1} = G$ et $G_0 = I_{\mathfrak{m}_L}$, et $G_i \supset G_{i+1}$ ça se traduit en $v_L(g(x) - x) \ge i + 1$ pour tout $x \in \mathcal{O}_L$. Si $\mathcal{O}_L = \mathcal{O}_K[\alpha]$, dans le cas des corps locaux de car 0 c'est vrai, on peut juste regarder sur α . On déf

$$i_G(g) := v_L(g(\alpha) - \alpha)$$

pour $g \in G_0$, on a $\mathcal{O}_L = \mathcal{O}_{L^{G_0}}[\pi_L]$ d'où

$$i_G(g) := v_L(g(\pi_L) - \pi_L)$$

et même $g(\pi_L)/\pi_L \in U_L^{(i_G(g))}$

Chapitre 1

Remarques

1.1 Le cas complet où $k_L - k_K$ est purement inséparable.

On s'y en retrouve fait souvent : $L^I - L$ pour le cas galoisien complet, $K^{un} - L$, $K^{tam} - L$.

1.2 Descriptions des G_i

On a pour $g \in G_i$ la déf générale : pour tout $x : v_L(gx - x) \ge i + 1$, pour $\mathcal{O}_L = \mathcal{O}_K[\alpha]$, $v_L(g\alpha - \alpha) \ge i + 1$, et sinon pour $i \ge 0$ dans le cas des corps locaux ma préf :

$$v_L(g(\pi_L)/\pi_L - 1) \ge i$$

pour la troisième g fixe L^I et $L-L^I$ est totalement ramifiée (hypothèse corps local, $k_I - k_L$ est purement inséparable donc triviale) d'où $\mathcal{O}_L = \mathcal{O}_{L^I}[\pi_L]$, puis $x = \sum a_i \pi_L^i$ et (!)

$$gx - x = \sum a_i((g\pi_L)^i - \pi_L)$$

et $i_{L/K}(g) = i_{L/L^{I}}(g)$.

1.3 Comparaison avec les $U_L^{(i)}$

On regarde $i \ge 0!!$ Donc la troisième description est plus claire là. On regarde

$$U_L^{(i)} = \ker(\mathcal{O}_L^{\times} \to (\mathcal{O}_L/\mathfrak{m}_L^i)^{\times})$$

1.4 Les
$$U_L^{(i)}$$
 et k_{L_0}

on a
$$U_L^{(i)} = \begin{cases} \mathcal{O}_L^{\times}, & i = 0\\ 1 + \mathfrak{m}_L^i & sinon \end{cases}$$
 on a $g \in G_i \equiv g(\pi_L)/\pi_L \in U_L^{(i)}$. Et en plus

$$G_i \rightarrow U_L^{(i)}/U_L^{(i+1)}$$

via $g \mapsto g(\pi_L)/\pi_L$ est un m.g. L'idée clé c'est que $\sigma(x)/x \in 1 + x^{-1}\mathfrak{m}_K^{(i+1)}$ d'où $U_L^{(i+1)}$ si $x = u \in \mathcal{O}_K^{\times}$ et $U_L^{(i)}$ si $x = \pi_K$ (!).

1.4 Les $U_L^{(i)}$ et k_{L_0}

Remarque 1. Pour l'incompréhension, en fait pour G_i , $i \geq 0$ on se restreint à $K = L_0$ d'où la flèche

$$U_L^{(i)}/U_L^{(i+1)} \to k_K$$

a la bonne image parce que $k_{L_0} = k_L$.

On a
$$U_L^{(i)}/U_L^{(i+1)} \to \begin{cases} k_K^{\times}, & i=0\\ k_K, & i>0 \end{cases}$$
. Donnés par $x\mapsto x$ et $1+\pi_K^i x\mapsto x$. En particulier $G_0/G_1=I/P\hookrightarrow k_K^{\times}$ d'où d'ordre $\land p=1$ et $G_i/G_{i+1}\hookrightarrow k_K^{\times}$

En particulier $G_0/G_1 = I/P \hookrightarrow k_K^{\times}$ d'où d'ordre $\wedge p = 1$ et $G_i/G_{i+1} \hookrightarrow k_K$ d'où un p-groupe. En particulier |I| = |I/P|. $\prod_{i=1}^{\infty} |G_i/G_{i+1}| = t.p^{v_p(|I|)}$. Enfin, $L^I - L^P$ a pour groupe de galois G_0/G_1 est totalement ramifiée et cyclique vu que sous-groupe fini multiplicatif d'un corps. Ou sinon, vu que tame et a les racines de l'unité.

Remarque 2. Penser que pour $g \neq g'$, $g(\pi_L)/\pi_L \neq g'(\pi_L)/\pi_L$ d'où des racines de l'unité différente quand $\pi_L^e = \pi_K$.