

Operating system

徐子川 大连理工大学

内容纲要

3.3 进程调度与上下文切换

- 一、调度基本概念
- 二、调度与进程队列
- 三、上下文切换
- 四、调度算法层次

一、调度基本概念

・为什么要进行调度

- 多任务竞争使用CPU资源,需要对它们进行协调
- 进程不断在变换状态,操作系统需要对不同状态的任务进行管理

・调度的基本要求

- 主要目标: 提高CPU利用率 (Maximize CPU Usage)
- 在不同进程间快速切换,使得多个进程可以分时共享 CPU资源
- 调度器要在合适的时间点,从就绪的进程中选择下一个在CPU上执行的进程

二、调度与进程队列

・调度器需要操作和维护的进程队列包括

二、调度与进程队列

・就绪队列与等待队列示意图

二、调度与进程队列

·在调度过程中,进程在不同队列之间的迁移图

三、上下文切换

· 当进程获取对CPU控制,以及进程退出对CPU控制时,要保存进程执行的现场(又称上下文)

三、上下文切换

・上下文切换细节

四、调度算法层次

・调度分为几个层次

- 长程调度(Long-Term Scheduling): 控制如何将外存中的作业加载到内存
- 中程调度 (Medium-Term Scheduling) : 控制如何对进程 实施换入/换出操作,以便控制内存使用率
- 短程调度 (Short-Term Scheduling) : 从就绪队列中挑选下个在CPU上执行的进程

四、调度算法层次

・调度层次与进程队列关系示意图

本讲小结

- 调度基本概念
- 调度与进程队列
- 上下文切换
- 调度算法层次

