

Famous Last Question

Wie könnte man linearen Filter benutzen, um (nahezu) randparallele Ecken (Winkel 90° oder kleiner) zu finden?

Kanten und Rauschen

- Bestimmung von Kantenstärke und Kantenrichtung
 - Gradienten und Gradientenoperatoren
- Kantenerhaltende Rauschunterdrückung
 - Trennung von Rauschen und Kanten
 - Medianfilter
 - Varianten des Medianfilters

Bildzeile

Kanten und Nulldurchgänge

- Vorzeichenwechsel ist leichter zu erkennen, als ein Minimum oder Maximum.
 - Gradient (Länge) als Kennzeichen für die Wichtigkeit einer Kante
 - zweite Ableitung für den Ort der Kante (Nulldurchgang)

Erinnerung: Gradienten

Pseudo-3D Eindruck:

Differenzbildung in *n*-Richtung

Differenzbildung in *m*-Richtung

Gradientenschätzung über Konvolution

- Gradient im N-dimensionalen Raum ist ein N-dimensionaler Vektor aus N partiellen Ableitungen.
- Jede partielle Ableitung kann durch eine Differenz abgeschätzt werden, die durch Konvolution berechnet werden kann.
- Beispiele:

$$\vec{G}(m,n) = \begin{pmatrix} G_x(m,n) \\ G_y(m,n) \end{pmatrix}, \quad G_x(m,n) \approx \begin{bmatrix} f * g_x \end{bmatrix} (m,n), \quad G_y(m,n) \approx \begin{bmatrix} f * g_y \end{bmatrix} (m,n).$$

$$g_x = \begin{bmatrix} -1 & 1 \end{bmatrix} \quad g_y = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad g_{R1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad g_{R2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
Wieso kann man den Gradienten entlang der Diagonale bestimmen?
$$g_x = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \quad g_y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad \text{(symmetrischer Konvolutionskern)}$$

Elemente des Gradienten

Rauschen und Kanten

Hintergrundartefakte (Rauschen) wird verstärkt.

Rauschen und Kanten

Wie kommt es zur Verstärkung des Rauschens?

- ullet Rauschen ist additiver Zufallsprozess mit Erwartungswert 0 und Standardabweichung σ
- Stärke des Rauschens ist gegeben durch die Größe der Standardabweichung (Erinnerung: Definition des SNR)
- Subtraktion zweier Zufallsfunktionen f_1 und f_2 mit E()=0 und Standardabweichungen σ_1 und σ_2 ergibt eine neue Funktion f_{diff} mit $E(f_{diff})=0$ und $\sigma(f_{diff})=(\sigma_1+\sigma_2)/2$
- Signal von $f_{\it diff}$ ist in der Regel geringer als das von f_1 und f_2
- Abhilfe: Reduktion des Rauschens durch Glättung

Sobel Operator

- Glättung orthogonal zur Differenzierungsrichtung
- Glättung durch gewichtete Mittelung (ähnlich wie beim Binomialfilter)
- Faltungskerne:

Einfache Differenz

Sobel-Operator

Ableitungen der Gaußfunktion

Wesentlich größerer Faltungskern Größe (und Maß der Glättung) ist abhängig von σ

Vergleich der Differenzfilter im Frequenzbereich

Gradient und Laplace-Operator

- Gradient: Stärke und Richtung einer Kante
- Laplace-Operator: Kantenorte an den Nulldurchgängen
- Kombination
 - Berechnung von Gradient und Laplace-Faltung
 - Gradienteninformation nur an den Nulldurchgängen erhalten (eine Art von Non-Maximum-Supression)

Kantendetektion

- Annahmen
 - Nachbarschaft um die Kante hat lokal konstante Intensität
 - Rauschen hat Erwartungswert 0
- dann
 - Glättung so, dass Kantensignal das Rauschen überwiegt
 - Kantenselektion durch Laplace-Operator
 - Unschärfe stört bei der Kantenbestimmung nicht

Mehr als eine Kante

• Ungenaue Kantenlokalisation bei Kantenabstand, der geringer als die Größe des Faltungskerns ist.

 Umfang der Glättung ist ein Kompromiss zwischen Rauschunterdrückung und Detailierungsgrad

Kanten und Rauschunterdrückung

- Grenzen einer Kantenbestimmung durch Glättung + Differenzoperatoren
 - Zu verrauschtes und/oder zu detailreiches Bild: Es gibt keinen Kompromiss für die Größe des Faltungskerns
 - Kanten sollen im Bild verschärft werden (ähnlich wie Unsharp Masking): Unschärfe wirkt auf den Betrachter unangenehmer als das Bildrauschen
- Alternative
 - Kantenerhaltende Rauschunterdrückung
 - Setzt voraus, dass Unterschiede zwischen Merkmalen von Kanten und von Rauschen herausgearbeitet werden

Strategie I: Kombination von Linearen Filtern

- Rauschunterdrückung, gefolgt von Kantenverstärkung
 - Rauschunterdrückung reduziert Amplituden in hohem Frequenzbereich
 - Kantenverstärkung verstärkt mittleren Frequenzbereich
 - Niedriger Frequenzbereich bleibt unverändert
- Beispiel: Unsharp Masking
- Resultat ist heuristisch und produziert "künstlerische" Effekte vom Originalbilds

Beispiel

Strategie II: Charakteristik der Grauwertverteilung

- Rauschen und Kanten haben im Frequenzbereich ähnliche Attribute.
- Ist ein nichtlineares Filter denkbar, dass für Rauschen und Kanteneigenschaften unterschiedlich sensitiv ist?
 - Rauschen sind räumlich gleichverteilte Grauwertvariationen.
 - Grauwertvariationen an Kanten sind nicht räumlich gleichverteilt.
 - Filter muss diesen Unterschied berücksichtigen.

Rangordnungsfilter

Vorgehen:

- Sortierung der Elemente in einer Filtermaske
- Auswahl des an einer bestimmten Stelle einsortierten Werts
- Eintragung des ausgewählten Werts in die zentrale Position

Eigenschaften:

- Es entstehen keine neuen Werte
- Filter ist nichtlinear, nicht kommutativ, nicht assoziativ

Gebräuchlichstes Rangordnungsfilter ist das Medianfilter

Medianfilter

Annahmen:

- Medianfilter ist quadratisch mit ungerader Seitenlänge.
- Kantensignal ist größer als das Rauschsignal
- Kante im Filterbereich verläuft in diesem Bereich (nahezu) gerade.
- Grauwert ist (nahezu) konstant in einer Umgebung von Größe des Filters.

- Der Mittelpunkt des Filters liegt auf der gleichen Seite der Kante wie die Mehrzahl der Pixel (z.B. rechts von der Kante).
- Pixel von dieser Seite (z.B. rechts) wird selektiert (kantenerhaltend).
- Keine Kante im Filterbereich:
 - Median nähert sich dem Erwartungswert mit Anzahl der Stichproben (rauschunterdrückend).

Medianfilter und Impulsrauschen

- Impulsrauschen:
 - Wenige Pixel sind gestört
 - Gestörte Pixel sind entweder maximal positiv oder negativ
 - Wird auch "Salt-and-Pepper-Noise" genannt
- Glättung von Impulsrauschen
 - Zu große Nachbarschaft notwendig, um Erwartungswert zu schätzen

Medianfilter zur Entfernung von Salt & Pepper Rauschen (5 x 5)

Median- vs. Mittelwertfilter

Differenz zum Original

Medianfilter in verrauschten Bildern

Mittelwert 7x7

Median 7x7

Kanten bleiben scharf

Artefakt

Varianten: Gewichtetes Median Filter

- Isotrope, mit Abstand zum Zentrum abnehmende Gewichtung
- (Indirekte) Berücksichtigung des Umstands, dass Korrelation zwischen Pixeln mit der Entfernung abnimmt.
- Beispiel

1	2	1	
2	3	2	
1	2	1	

1	3	1
1	6	6
1	6	7

ohne Gewichtung

1,1,1,1,3,6,6,6,7

mit Gewichtung

1,1,1,1,1,3,3,6,6,6,6,6,6,6,6,7

Beispiel

Varianten: Anisotropes Medianfilter

- Zerlegung in verschiedene Richtungen
- Medianfilterung auf allen Richtungen
- Berechnung des Medians aller Mediane
 - $m_i = Median(r_i)$
 - $M = Median(m_1, m_2, m_3, m_4)$
- Besserer Erhalt von Bilddetails nach Medianfilterung

Beispiel

Kombination der Medianfilterstrategie mit Rauschunterdrückung

- Für jedes Pixel
 - Bestimme eine Reihe von Regionen, die das Pixel enthalten
 - Bestimme Durchschnittswert und Varianz jeder Region
 - Ersetze den Pixelwert durch den Durchschnittswert derjenigen Region, für die die Varianz am geringsten ist
- Einfaches und schnelles Verfahren aus der Frühzeit der Bildverarbeitung
 - setzt voraus, dass die Regionen kleiner sind als die Bilddetails
 - Annahme: Kantenregionen haben h\u00f6here Varianz

Beispiel

Kleine Subregionen

Beispiel

Zu große Subregionen

Fortgeschritte Methoden

- Mean Shift Smoothing
 - Jedes Pixel wird durch Ort (x,y) und Grauwert in 3-d Raum repräsentiert
 - Pixel wird mit Grauwert näher zum Clusterzentrum geschoben
- Anisotrope Diffusion
 - Bildhelligkeit wird als Konzentration einer diffundierenden Flüssigkeit betrachtet
 - Diffusion an Kanten wird eingeschränkt
 - Filterresultat ergibt sich aus Simulation der Diffusion über die Zeit
- Bayesian Smoothing
 - Bildhelligkeit wird als Resultat eines stochastischen Prozesses betrachtet, bei dem die Bildhelligkeit zufällig von der unbekannten, tatsächlichen Helligkeit variiert
 - A-Priori-Wissen: benachbarte Pixel haben wahrscheinlich ähnliche Grauwerte
 - Suche nach der wahrscheinlichsten Ursache des wahrgenommenen Bildes

Was sollten Sie heute gelernt haben?

- Gradientenberechnung durch Faltung
 - Filtervarianten
 - Kombination mit Laplacefilter
- Kantenerhaltende Rauschfilterung:
 - Medianfilter
 - Varianten des Medianfilters

Famous Last Question

Wie könnte eine kantenerhaltene Rauschunterdrückung aussehen, die ausnutzt, dass Kanten ihre Richtung nur langsam ändern?

