BLAKE BORDELON

29 Oxford St. Pierce Hall 309 \diamond Cambridge, MA blake_bordelon@g.harvard.edu \diamond 713-876-1914 \diamond blakebordelon.github.io

EDUCATION

Harvard University

July 2019 - Present

Program: PhD in Applied Mathematics Washington University in St. Louis

August 2015 - May 2019

Majors: Systems Engineering and Physics. Minor: Computer Science GPA: 4.0/4.0

PAPERS

Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks, B. Bordelon, A. Canatar, and C. Pehlevan, *International Conference of Machine Learning*, 2020.

Statistical Mechanics of Generalization in Kernel Regression, A. Canatar, B. Bordelon, and C. Pehlevan, *Arxiv* 2020 (under review).

Dispersive optical model analysis of Pb-208 generating a neutron-skin prediction beyond the mean field, M. C. Atkinson, M. H. Mahzoon, M. A. Keim, B. A. Bordelon, C. D. Pruitt, R. J. Charity, and W. H. Dickhoff, *Phys. Rev. C* 101, 044303, 2020.

Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks, B.Bagley, B. Bordelon, B. Moseley, R. Wessel, *PLOS ONE* 15(2): e0229083, 2020

PRESENTATIONS AND SUMMER SCHOOLS

Robustness Efficiency Trade-offs in Population Coding Neuromatch 2020.

Optimal Population Spectrum for Robust Linear Readout, Cosyne 2020.

Generalization of Wide Neural Networks Harvard Q-Bio Seminar 2020.

CNeuro: Computational Neuroscience Summer School, Tsinghua University, August 2019.

AWARDS

McKelvey School of Engineering Valedictorian	May 2019
Nishi Luthra Senior Prize in Physics	May 2019
Systems Engineering Student of the Year Award	May 2017-2019

TEACHING EXPERIENCE

Teaching Fellow for APMTH 226: Neural Computation	$August\ 2020\text{-}Present$
Teaching Assistant for Engineering Math	August 2017-May 2018

RELEVANT COURSEWORK

Neural Computation, Advanced Machine Learning, Physical Mathematics, Computing At Scale, High Dimensional Statistics, Mathematical Physics, Probability and Stochastic Processes, Control Systems

PROGRAMMING LANGUAGES

Strong Proficiency in Python (numpy, scipy, JAX, Pytorch, etc). Proficient in Matlab and C++.

RESEARCH INTERESTS

Deep Learning, Population Codes, Statistical Physics, Kernel Methods, Optimization, Representations