Домашня робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання ОЗ

Умова.

Довести, що

- 1. кільце є замкненим відносно операцій \cap та Δ ;
- 2. об'єднання та перетин скінченної сукупності елементів кільця належать до кільця.

Розв'язок.

- 1. Нехай маємо кільце \mathcal{H} . Тоді, згідно означенню, справедливо:
 - 1. $\forall A, B \in \mathcal{H} : A \cup B \in \mathcal{H}$
 - 2. $\forall A, B \in \mathcal{H} : A \setminus B \in \mathcal{H}$

Кільце є замкненим відносно \cap якщо $\forall A, B \in \mathcal{H}$ буде справедливо $A \cap B \in \mathcal{H}$. Цю властивість було доведено на лекції наступним чином: запишемо

$$A \cap B = A \setminus (A \setminus B)$$

Згідно означенню 1 різниця множин буде належати \mathcal{H} , а отже після двічі застосування різниці знову опиняємось у \mathcal{H} .

Доведемо тепер, що $\forall A, B \in \mathcal{H} : A \Delta B \in \mathcal{H}$. Згідно означенню:

$$A\,\Delta\,B = (B\setminus A) \cup (A\setminus B)$$

Згідно властивості 2, маємо $B \setminus A \in \mathcal{H}$, $A \setminus B \in \mathcal{H}$. Згідно властивості 1, об'єднання елементів з кільця дасть елемент кільця, а отже весь вираз $A\Delta B$ знаходиться в кільці.

2. Нехай маємо $\{H_k\}_{k=1}^n \subset \mathcal{H}, n > 1$. Потрібно довести $\bigcup_{k=1}^n H_k, \bigcap_{k=1}^n H_k \in \mathcal{H}$.

Випадок n=2 доведений з поперднього пункту (для операції \cap) та з означення (для операції \cup).

Якщо n>2, то можна довести, наприклад, за індукцією. База в нас вже є. Отже, нехай твердження справедливе для m>2, тобто $\bigcup_{k=1}^m H_k=:S_m\in\mathcal{H}$. Тоді це справедливо і для m+1, оскільки $\bigcup_{k=1}^{m+1} H_k=S_m\cup H_{m+1}\in\mathcal{H}$, що випливає з означення кільця. Аналогічно можна довести і для \cap .

Завдання С3

Умова. Довести, що сукупність усіх обмежених підмножин прямої \mathbb{R} утворює кільце, але не є ані σ -кільцем, ані σ -алгеброю.

Розв'язок. Нехай маємо сукупність обмежених підмножин $\mathcal H$ прямої $\mathbb R$. Тоді

$$\forall H \in \mathcal{H} \ \exists \rho > 0 \ \forall x, y \in H : d(x, y) < \rho$$

Доведемо, що \mathcal{H} є кільцем. Спочатку доведемо, що $\forall A, B \in \mathcal{H} : A \cup B \in \mathcal{H}$. Тобто, нехай ми знаємо, що

$$\exists \rho_A > 0 \ \forall x, y \in A : d(x, y) < \rho_A$$
$$\exists \rho_B > 0 \ \forall x, y \in B : d(x, y) < \rho_B$$

Нам потрібно знайти таке $\rho_{A\cup B}>0$, що $\forall x,y\in A\cup B:d(x,y)<\rho_{A\cup B}$. Для цього покладемо $\rho_{A\cup B}:=\rho_A+\rho_B$. Тоді, який елемент б ми не взяли, будь це з A або B, все одно відстань між ними буде менша за $\rho_A+\rho_B$.

Тепер покажемо, що $A \setminus B \in \mathcal{H}$. Тобто знайдемо таке $\rho_{A \setminus B} > 0$, що $\forall x, y \in A \setminus B$: $d(x,y) < \rho_{A \setminus B}$. Для цього достатньо покласти $\rho_{A \setminus B} := \rho_A$, оскільки віднімання від A якоїсь частини не збільшує "радіус" множини.

Доведемо, що ${\cal H}$ не ${\varepsilon}$ σ -кільцем. Згідно означенню, ма ${\varepsilon}$ виконуватись:

- 1. $\forall \{H_k\}_{k=1}^{\infty} \subset \mathcal{H} : \bigcup_{k=1}^{\infty} H_k \in \mathcal{H}$
- 2. $\forall A, B \in \mathcal{H} : A \setminus B \in \mathcal{H}$

Друга властивість, як ми довели вище, виконується. Доведемо, що

$$\exists \{H_k\}_{k=1}^{\infty} \subset \mathcal{H} : \bigcup_{k=1}^{\infty} H_k \notin \mathcal{H}$$

Дійсно, візьмем $H_k := [k, k+1]$. Тоді якщо позначити $S_n := \bigcup_{k=1}^n H_k$, то $S_n = [1, n+1]$. В такому разі $\lim_{n\to\infty} S_n = [1, +\infty)$, що звичайно не є обмеженою множиною, тобто вона не належить \mathcal{H} .

Оскільки \mathcal{H} не ε σ -кільцем, то вона і не ε σ -алгеброю. Окрім цього, $\mathbb{R} \notin \mathcal{H}$, оскільки \mathbb{R} не ε обмеженою.

Завдання Д1

Умова. Довести, що клас множин є кільцем, якщо він замкнений відносно 1. (\cup, Δ) та 2. (\cap, Δ) .

Розв'язок.

1. Нехай маємо \mathcal{H} , що є замкненою відносно (\cup, Δ) . Нам потрібно довести замкнення відносно (\cup, \setminus) , тобто лише відносно \setminus . Візьмемо дві множини $A, B \in \mathcal{H}$. Тоді помітимо, що:

$$A \setminus B = (A \cup B)\Delta B$$

Дійсно,

$$(A \cup B)\Delta B = ((A \cup B) \setminus B) \cup (B \setminus (A \cup B)) = (A \setminus B) \cup \emptyset = A \setminus B$$

Оскільки $A \cup B \in \mathcal{H}$, то і $A \setminus B = (A \cup B)\Delta B \in \mathcal{H}$.

2. Нехай ${\cal H}$ замкнена відносно (\cap, Δ) . Доведемо замкнення відносно \setminus . Маємо

$$A \setminus B = (A\Delta B) \cap A$$

Знову, ми виразили все через операції (Δ, \cap) , тому звідси випливає замкненість через \backslash .

Об'єднання можемо записати як:

$$A \cup B = \underbrace{(A\Delta B)}_{\in \mathcal{H}} \Delta \underbrace{(A \cap B)}_{\in \mathcal{H}} \in \mathcal{H}$$

Отже, ми довели замкненість по (\cup, \setminus) , що означає, що \mathcal{H} є кільцем.