

Exercícios sobre Análise Combinatória

Quer ver esse material pelo Dex? Clique aqui.

Exercícios

1. Seis times de futebol disputaram um torneio no qual cada time jogou apenas uma vez contra cada adversário. A regra de pontuação consistia em marcar 0 ponto para o time perdedor, 3 pontos para o vencedor e, no caso de empate, 1 ponto para cada time. A tabela mostra a pontuação final do torneio.

Times	Α	В	С	D	Е	F
Pontos	9	6	4	2	6	13

O número de empates nesse torneio foi igual a:

- a) 4
- **b)** 5
- **c)** 6
- **d)** 7
- 2. O número de ternos (x, y, z) de números inteiros positivos, maiores do que cinco, que cumprem a condição x + y + z = 30 é
 - a) 71.
 - **b)** 91.
 - **c)** 61.
 - **d)** 81.
- **3.** O número de triângulos que podem ser formados unindo o vértice A a dois dos demais vértices do paralelepípedo é

- **a)** 15
- **b)** 18
- **c)** 21
- **d)** 24
- **e)** 27

4. A bandeira a seguir está dividida em 4 regiões. Cada região deverá ser pintada com uma cor, e regiões que fazem fronteira devem ser pintadas com cores diferentes.

Sabendo que dispomos de 6 cores, de quantas maneiras distintas podemos pintar essa bandeira?

- a) 20.
- **b)** 24.
- **c)** 120.
- **d)** 600.
- e) 720.
- **5.** Em um programa de televisão que revela novos talentos para a música, cada candidato faz uma breve apresentação para os 4 jurados que, inicialmente, ficam de costas, apenas ouvindo. Durante a apresentação, todos os jurados que gostarem da voz daquele candidato viram-se para ele. <u>Se pelo menos um jurado se virar, o candidato é selecionado.</u> Em certa edição do programa, n candidatos tiveram pelo menos um dos 4 jurados se virando durante sua apresentação. O conjunto de todos os jurados que se viraram, porém, nunca foi o mesmo para dois quaisquer desses n candidatos. Dessa forma, n pode valer, no máximo,
 - a) 4.
 - **b)** 6.
 - **c)** 12.
 - **d)** 15.
 - **e)** 24.

6. Observe a tirinha abaixo:

Passando por uma sorveteria, Magali resolve parar e pedir uma casquinha. Na sorveteria, há ⁶ sabores diferentes de sorvete e ³ é o número máximo de bolas por casquinha, sendo sempre uma de cada sabor. O número de formas diferentes com que Magali poderá pedir essa casquinha é igual a

- a) 20.
- **b)** 41.
- **c)** 120.
- **d)** 35.

7. Como prêmio pela vitória em uma competição, serão distribuídas 12 moedas de ouro idênticas entre as três pessoas da equipe vencedora, e cada uma deverá receber, pelo menos, duas moedas. O número de maneiras distintas de efetuarmos essa distribuição é

- **a)** 12.
- **b)** 28.
- **c)** 38.
- **d)** 40.
- **e)** 120.

8. Em uma sala estão presentes n pessoas, com n > 3. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos de mão entre si, e um único aperto por dupla de pessoas. Nessas condições, o número máximo de apertos trocados pelas n pessoas é igual a

a)
$$\frac{n^2 + 3n - 2}{2}$$

b)
$$\frac{n^2 - n + 2}{2}$$

c)
$$\frac{n^2 + 2n - 2}{2}$$

d)
$$\frac{n^2 - 3n + 2}{2}$$

e)
$$\frac{n^2 - n - 2}{2}$$

- **9.** Um fotógrafo foi contratado para tirar fotos de uma família composta por pai, mãe e quatro filhos. Organizou as pessoas lado a lado e colocou os filhos entre os pais. Mantida essa configuração, o número de formas em que poderão se posicionar para a foto é
 - **a**) 4
 - **b)** 6
 - **c)** 24
 - **d)** 36
 - **e)** 48
- 10. Numa cidade, cinco escolas de samba (I, II, III, IV e V) participaram do desfile de Carnaval. Quatro quesitos são julgados, cada um por dois jurados, que podem atribuir somente uma dentre as notas 6, 7, 8, 9 ou 10. A campeã será a escola que obtiver mais pontuação na soma de todas as notas emitidas. Em caso de empate, a campeã será a que alcançar a maior soma das notas atribuídas pelos jurados no quesito Enredo e Harmonia. A tabela mostra as notas do desfile desse ano no momento em que faltava somente a divulgação das notas do jurado B no quesito Bateria.

Quesitos	1. Fantasia e Alegoria		2. Evolução e Conjunto		3. Enredo e Harmonia		4. Bateria		Total
Jurado	Α	В	Α	В	Α	В	Α	В	
Escola I	6	7	8	8	9	9	8		55
Escola II	9	8	10	9	10	10	10		66
Escola III	8	8	7	8	6	7	6		50
Escola IV	9	10	10	10	9	10	10		68
Escola V	8	7	9	8	6	8	8		54

Quantas configurações distintas das notas a serem atribuídas pelo jurado B no quesito Bateria tornariam campeã a Escola II?

- **a)** 21
- **b)** 90
- **c)** 750
- **d)** 1.250
- **e)** 3.125

Gabarito

1. B

Calculando:

vitória ⇒ 3 pontos

empate \Rightarrow 2 pontos (1 para cada time)

$$C_{6,2} = \frac{6!}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15 \Rightarrow \text{máx. pontos} = 15 \cdot 3 = 45 \text{ pontos}$$

$$9+6+4+2+6+13 = 40 \text{ pontos} \Rightarrow 5 \text{ empates}$$

2. B

Tomando x = a + 6, y = b + 6 e z = c + 6, com a, b, $c \in \mathbb{N}$, vem

$$x + y + z = 30 \Leftrightarrow a + b + c = 12$$
.

Logo, queremos calcular o número de soluções inteiras e não negativas da equação acima. Tal resultado é dado pelo número de combinações completas de 3 objetos tomados 12 a 12, ou seja,

$$CR_3^{12} = \begin{pmatrix} 14 \\ 12 \end{pmatrix}$$
$$= \frac{14!}{12! \cdot 2!}$$
$$= 91.$$

3. (

O resultado corresponde ao número de combinações simples de 7 vértices tomados 2 a 2, isto é,

$$\binom{7}{2} = \frac{7!}{2! \cdot 5!} = 21.$$

4. D

Há 6 escolhas para a cor do triângulo, 5 para a região compreendida entre a curva e o triângulo, 5 para uma das regiões compreendidas entre o retângulo e a curva, e 4 para a região restante.

Portanto, pelo Princípio Multiplicativo, segue que a resposta é $6 \cdot 5 \cdot 5 \cdot 4 = 600$.

5. E

Sabendo que temos duas opções para cada jurado, virar ou não virar sua cadeira.

Portanto, o número n de candidatos pedido será dado por:

$$n = 2 \cdot 2 \cdot 2 \cdot 2 - 1 = 2^4 - 1 = 15.$$

Observação: foi subtraído 1 para desconsiderar a situação em que todos os jurados não viraram as cadeiras.

6. B

Como uma casquinha pode ter no máximo 3 bolas e os sabores devem ser distintos, segue-se que o resultado pedido é dado por

$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 6 + \frac{6!}{2! \cdot 4!} + \frac{6!}{3! \cdot 3!}$$
$$= 6 + 15 + 20$$
$$= 41.$$

7. B

Como cada pessoa receberá no mínimo duas moedas, devemos calcular o número de maneiras de distribuir 6 moedas para 3 pessoas. Assim, o resultado pedido corresponde ao número de soluções inteiras e não negativas da equação x+y+z=6, isto é, $CR_3^6=\binom{8}{6}=\frac{8!}{2!\cdot 6!}=28$.

O resultado pedido se dá quando uma das pessoas não troca aperto de mão com exatamente uma das outras n-1 pessoas presentes.

Portanto, a reposta é:

$$\binom{n}{2} - 1 = \frac{n!}{2!(n-2)!} - 1 = \frac{n(n-1)-2}{2} = \frac{n^2 - n - 2}{2}$$

9. E

Há 2 possibilidades para o posicionamento dos pais e $P_4 = 4! = 24$ modos de posicionar os filhos. Desse modo, pelo Princípio Multiplicativo, segue que o resultado é $2 \cdot 24 = 48$.

10. C

Observando a diferença entre a pontuação total da Escola II e a das outras escolas, tem-se que a Escola II será campeã quaisquer que sejam as notas das Escolas I, III e V. Logo, em relação a essas escolas, há 5 notas favoráveis para cada uma.

Por outro lado, como a Escola II vence a Escola IV em caso de empate, e tendo a Escola IV uma vantagem de dois pontos em relação à Escola II, a última será campeã nos seguintes casos:

6 para a Escola IV e 8,9 ou 10 para a Escola II;

7 para a Escola IV e 9 ou 10 para a Escola II;

8 para a Escola IV e 10 para a Escola II.

Em consequência, a resposta é $3 \cdot 5 \cdot 5 \cdot 5 + 2 \cdot 5 \cdot 5 + 1 \cdot 5 \cdot 5 \cdot 5 = 750$.