IE 522 HW04

Q1

7 Points

Consider a basket call option on two assets. For the first asset,

- the current asset price is \$100,
- it doesn't pay dividend,
- volatility is 50% per year.

For the second asset,

- the current asset price is \$150,
- dividend yield is 3% per year,
- volatility is 40% per year.

The risk free interest rate is 1% per year with continuous compounding. Assume the Black-Scholes-Merton model for both assets. The log returns of the two assets are correlated with coefficient 0.1. The strike price of the basket call is K=\$250. The maturity of the option is 1 year.

Q1.1

1 Point

Suppose $S_T=S_{1T}+S_{2T}$ is approximated by a lognormal random variable $e^{\mu+\sigma Z}$. Using the moment matching method, find μ and σ . Keep four digits after the decimal point.

Please select file(s)

Select file(s)

Save Answer

*Unsaved Changes

_	_
O_{1}	-
U	. /

1 Point

When the moment matching method is used, what's the approximate option value? Keep two digits after the decimal point.

Q1.3

1 Point

When the Monte Carlo method is used to evaluate the option, with n=10,000, estimate the standard deviation of the discounted payoff $e^{-rT}(S_{1T}+S_{2T}-K)^+$. Round your answer to the nearest integer.

Q1.4

1 Point

When you increase n by 4 times, does the standard deviation of $e^{-rT}(S_{1T}+S_{2T}-K)^+$ decreases by 2 times?

No, since it is not standard error, so it will not have to divided bt sqrt(n), which make it unchanged even it the n increase.

Choose Files No file chosen

Q1.5

1 Point

Suppose you start from a sample size of n=10,000 and keep quadrupling the sample size. For what n, the standard error of the sample mean of discounted payoffs is less than \$0.01? What's the corresponding standard error? Keep 3 digits after the decimal point.

Q1.6

1 Point

For the n you obtain in question 1.5, what's the estimated option value? What's the 95% confidence interval for the option value?

Q1.7

1 Point

Choose Files No file chosen

Use the same parameters as in question 1. Consider a basket put option with payoff $\max(0,K-S_{1T}-S_{2T})$. Suppose the Monte Carlo method is used to evaluate this contract. For the same n you use in 1.5-1.7, what's the estimated option value? What's the 95% confidence interval for the option value?

33.79735, [33.79734, 33.79735]

Please select file(s) Select file(s)

Save Answer *Unsaved Changes

Q2

1 Point

Given a random variable U that is uniform on (0,1), how can you simulate from a continuous distribution with cdf $F(x)=1-\left(\frac{c}{x}\right)^a, x\geq c$ for some a,c>0? Show details.

Enter your answer here

Please select file(s) Select file(s)

Save Answer

Q3

1 Point

Suppose the $1-\alpha/2$ quantile of an $F_{p,q}$ distribution is 5. What is the $\alpha/2$ quantile of an $F_{q,p}$ distribution? Show details.

Please select file(s) Select file(s) Save Answer Q4 1 Point Suppose Y has a χ^2_k distribution. What's the limiting distribution of $(Y-k)/\sqrt{2k}$ as $k \to +\infty$? Show details. Enter your answer here	
Q4 1 Point $ \text{Suppose } Y \text{ has a } \chi^2_k \text{ distribution. What's the limiting distribution of } (Y-k)/\sqrt{2k} \text{ as } k \to +\infty? \text{ Show details.} $ Enter your answer here	
Suppose Y has a χ^2_k distribution. What's the limiting distribution of $(Y-k)/\sqrt{2k}$ as $k\to +\infty$? Show details. Enter your answer here	
$(Y-k)/\sqrt{2k}$ as $k o +\infty$? Show details. Enter your answer here	
Please select file(s) Select file(s)	
Save Answer	
Save All Answers Submit & View Submis	ssion