

Зміст

1	Kon	иплексні числа і числа комплексної змінної	2
	1.1	Комплексні числа. основні визначення	2
	1.2	Послідовності комплексних чисел	3
	1.3	Комплексні числа. основні визначення	4
	1.4	Послідовності комплексних чисел	F

Розділ 1

Комплексні числа і числа комплексної змінної

1.1 Комплексні числа, основні визначення

Уявна одиниця — це спеціальне число в математиці з незвичайними властивостями.

Властивість уявної одиниці $i^2 = -1$.

Якщо ми маємо щось схоже на $\frac{x}{iy}$, то, $\frac{x}{iy} = -\frac{ix}{y}$.

Комплексне число (уявне число) — це число виду $z = x + iy; x, y \in \mathbb{R}$, а число i — це уявна одиниця.

Множина комплексних чисел $\mathbb C$ – множина усіх дійсних чисел та комплексних чисел.

Спряжене число до комплексного числа — це $\bar{z} = x - iy$.

Дійсна частина комплексного числа z=x+iy — це Re(z)=x.

$$Rez = \frac{z + \bar{z}}{2}.$$

Уявна частина комплексного числа z = x + iy — це Im(z) = y.

$$Imz = \frac{z - \bar{z}}{2i}.$$

Комплексне число можна подати як вектор. В Декартовій системі координат дійсна частина зображається на осі Ox, а уявна на осі Oy, при чому за одиницю на уявній осі, ми беремо число i. В полярній системі координат все те ж саме, але вектор ми подаємо не як дійсна та уявна частина, x та y, а як довжина вектора ρ і кут його повороту ϕ , відносно додатнього напрямку осі Ox.

Нехай $x, y, \rho, \phi \in \mathbb{R}$, тоді:

Алгебраїчна форма комплексного числа — z = x + iy.

Показникова форма комплексного числа — $z = |z|e^{i\phi}$.

Тригонометрична форма комплексного числа — $z = |z|(\cos \phi + i \sin \phi)$.

Модуль комплексного числа $-|z|=
ho=\sqrt{x^2+y^2}.$

Формула Ейлера(Ойлера) $-s^{i\phi} = \cos\phi + i\sin\phi$.

Аргумент комплексного числа — кут ϕ .

Argz — множина значень аргумента z.

 $Argz = \arg z + 2\pi k, k \in \mathbb{Z}.$

Головне значення аргумента комплексного числа — $\arg z = \phi, \ \phi \in (-\pi; \pi].$

$$\arg z = \begin{cases} \arctan \frac{y}{x}, & x > 0, \quad (1, 4 \text{ чверті}) \\ \arctan \frac{y}{x} + \pi, & x < 0, y > 0, \quad (2 \text{ чверть}) \\ \arctan \frac{y}{x} - \pi, & x < 0, y < 0, \quad (3 \text{ чверть}) \end{cases}$$

 $\arg z$ визначений для $z \neq 0$, а для випадків коли x чи y рівні 0, дивишся куди направлений вектор вручну.

Корінь комплексного числа —
$$\sqrt[n]{z} = \sqrt[n]{|z|}(\cos\frac{\phi+2\pi k}{n}+i\sin\frac{\phi+2\pi k}{n}), k=0,1,...,n-1.$$

1.2 Послідовності комплексних чисел

Послідовність комплексних чисел – це комплекснозначна функція натурального аргумента $f(n)=z_n, n\in\mathbb{N}, z_n\in\mathbb{C}.$

 $\{z_n\}$ – послідовність.

Ліміт послідовності комплексних чисел:

$$\lim_{n\to\infty}z_n=z_0\Leftrightarrow \forall \varepsilon>0\;\exists N=N(\varepsilon)\in\mathbb{N}:\forall n\geqslant N(\varepsilon)\;|z_n-z_0|<\varepsilon.$$
 $\{z_n\}$ — обмежена, якщо $\exists M>0\;\forall n\in\mathbb{N}\;|z_n|< M.$

Теорема 1.1.

Hexaŭ:
$$z_n = x_n + iy_n; \ z_0 = x_0 + iy_0; \ (x_n, y_n, x_0, y_0 \in \mathbb{R})$$

Todi:
$$\lim_{n \to \infty} z_n = z_0 \Leftrightarrow \begin{cases} \lim_{n \to \infty} x_n = x_0 \\ \lim_{n \to \infty} y_n = y_0 \end{cases}$$

▶ Очевидно.

Твердження 1.1.
$$\lim_{n\to\infty} z_n = z_0 \Leftrightarrow \lim_{n\to\infty} |z_n - z_0| = 0$$

Теорема 1.2. Якщо $\lim_{n\to\infty}z_n=z_0,\ mo\lim_{n\to\infty}|z_n|=|z_0|$

Теорема 1.3.

$$\begin{cases} \lim_{n \to \infty} |z_n| = |z_0| \\ \lim_{n \to \infty} \varphi_n = \varphi_0 \end{cases} \Rightarrow \lim_{n \to \infty} z_n = z_0$$

1.3 Комплексні числа. основні визначення

Уявна одиниця — це спеціальне число в математиці з незвичайними властивостями.

Властивість уявної одиниці $i^2 = -1$.

Якщо ми маємо щось схоже на $\frac{x}{iy}$, то, $\frac{x}{iy} = -\frac{ix}{y}$.

Комплексне число (уявне число) — це число виду $z = x + iy; x, y \in \mathbb{R}$, а число i — це уявна одиниця.

Множина комплексних чисел \mathbb{C} – множина усіх дійсних чисел та комплексних чисел.

Спряжене число до комплексного числа — це $\bar{z} = x - iy$.

Дійсна частина комплексного числа z=x+iy — це Re(z)=x.

$$Rez = \frac{z + \bar{z}}{2}.$$

Уявна частина комплексного числа z=x+iy — це Im(z)=y.

$$Imz = \frac{z - \bar{z}}{2i}.$$

Комплексне число можна подати як вектор. В Декартовій системі координат дійсна частина зображається на осі Ox, а уявна на осі Oy, при чому за одиницю на уявній осі, ми беремо число i. В полярній системі координат все те ж саме, але вектор ми подаємо не як дійсна та уявна частина, x та y, а як довжина вектора ρ і кут його повороту ϕ , відносно додатнього напрямку осі Ox.

Нехай $x, y, \rho, \phi \in \mathbb{R}$, тоді:

Алгебраїчна форма комплексного числа — z = x + iy.

Показникова форма комплексного числа $-z=|z|e^{i\dot{\phi}}.$

Тригонометрична форма комплексного числа $-z = |z|(\cos \phi + i \sin \phi)$.

Модуль комплексного числа $-|z|=\rho=\sqrt{x^2+y^2}$.

Формула Ейлера(Ойлера) — $s^{i\phi} = \cos \phi + i \sin \phi$.

Аргумент комплексного числа — кут ϕ .

Argz — множина значень аргумента z.

 $Argz = \arg z + 2\pi k, k \in \mathbb{Z}.$

Головне значення аргумента комплексного числа $-\arg z = \phi, \ \phi \in (-\pi; \pi].$

$$\arg z = \left\{ \begin{array}{ll} \arctan \frac{y}{x}, & x>0, & (1,4 \text{ чверті}) \\ \arctan \frac{y}{x} + \pi, & x<0, y>0, & (2 \text{ чверть}) \\ \arctan \frac{y}{x} - \pi, & x<0, y<0, & (3 \text{ чверть}) \end{array} \right.$$

 $\arg z$ визначений для $z\neq 0,$ а для випадків коли x чи yрівні 0, дивишся куди направлений вектор вручну.

Корінь комплексного числа —
$$\sqrt[n]{z} = \sqrt[n]{|z|}(\cos\frac{\phi+2\pi k}{n}+i\sin\frac{\phi+2\pi k}{n}), k=0,1,...,n-1.$$

1.4 Послідовності комплексних чисел

Послідовність комплексних чисел – це комплекснозначна функція натурального аргумента $f(n) = z_n, n \in \mathbb{N}, z_n \in \mathbb{C}$.

 $\{z_n\}$ – послідовність.

Ліміт послідовності комплексних чисел:

$$\lim_{n\to\infty}z_n=z_0\Leftrightarrow \forall arepsilon>0\ \exists N=N(arepsilon)\in \mathbb{N}: \forall n\geqslant N(arepsilon)\ |z_n-z_0| $\{z_n\}$ - обмежена, якщо $\exists M>0\ \forall n\in \mathbb{N}\ |z_n|< M.$$$

Теорема 1.4.

Hexaŭ:
$$z_n = x_n + iy_n; \ z_0 = x_0 + iy_0; \ (x_n, y_n, x_0, y_0 \in \mathbb{R})$$

Todi:
$$\lim_{n \to \infty} z_n = z_0 \Leftrightarrow \begin{cases} \lim_{n \to \infty} x_n = x_0 \\ \lim_{n \to \infty} y_n = y_0 \end{cases}$$

▶ Очевидно.

Твердження 1.2. $\lim_{n\to\infty} z_n = z_0 \Leftrightarrow \lim_{n\to\infty} |z_n - z_0| = 0$

Теорема 1.5. Якщо $\lim_{n\to\infty} z_n = z_0$, то $\lim_{n\to\infty} |z_n| = |z_0|$

Теорема 1.6.

$$\begin{cases} \lim_{n \to \infty} |z_n| = |z_0| \\ \lim_{n \to \infty} \varphi_n = \varphi_0 \end{cases} \Rightarrow \lim_{n \to \infty} z_n = z_0$$