Applicant: Makoto Minakata

Appl. No.: 10/594,929

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) An image wavelength conversion device, wherein one end and the

other end of each of a multitude of quasi-phase-matching sum frequency generating optical

waveguides are aligned in a two-dimensional plane to form an optical waveguide array, wherein

one plane of the optical waveguide array forms an incident plane which includes respective

waveguides as elements thereof, and the other plane of the optical waveguide array forms an exit

plane which includes waveguides corresponding to the waveguides of the incident plane as

elements thereof, and wherein, from an incident light (λ_1) and an excitation light (λ_2) incident to

an arbitrary element of the incident plane, an output light (λ_3) is generated in the corresponding

waveguide element, the output light (λ_3) having the relationship of $(\lambda_1)^{-1} + (\lambda_2)^{-1} = (\lambda_3)^{-1}$ in which

 λ_1 , λ_2 , and λ_3 represent the wavelength of the incident light, the wavelength of the excitation

light, and the wavelength of the output light, respectively,

wherein the incident light is an invisible light ranging from the infrared light to the

millimeter wave and the excitation light has a wavelength for making the output light a visible

light, and

wherein the incident light is most preferably an infrared light of 3.5 µm and the excitation

light and the output light are 0.8 µm and 0.65 µm, respectively.

2. (Cancelled)

-5-

Applicant: Makoto Minakata

Appl. No.: 10/594,929

3. (Currently Amended) The image wavelength conversion device according to claim 1,

wherein the optical waveguide array having a constant opening corresponding to the incident

light is arranged in an m x n matrix state, and the mixing for generating the sum frequency is

performed in each of the waveguides.

4. (Cancelled)

5. (Currently Amended) An image wavelength conversion device system comprising:

an image wavelength conversion device including an incident plane and an exit plane formed by two-dimensionally aligning one end and the other end of each of a multitude of quasi-phase-matching sum frequency generating optical waveguides;

an image forming optical system for forming an image (wavelength λ_1) on the incident plane of the image wavelength conversion device;

an excitation light optical system for applying an excitation light (wavelength λ_2) to the incident plane of the image wavelength conversion device; and

image receiving means for receiving an image of a third wavelength (wavelength λ_3) appeared on the exit plane of the image wavelength conversion device,

wherein the incident light is an invisible light ranging from the infrared light to the millimeter wave and the excitation light has a wavelength for making the output light a visible light, and

wherein the incident light is most preferably an infrared light of 3.5 µm and the excitation

Applicant: Makoto Minakata Appl. No.: 10/594,929

light and the output light are 0.8 μm and 0.65 μm, respectively.