ВВЕДЕНИЕ В МАШИННОЕ ОБУЧЕНИЕ

Лекция №1

Осень 2024/2025

Формат курса

Оценка за курс:

- устный ответ по программе курса
 - 2 вопроса из программы (на зачёте)
- 3 дополнительных балла
 - работа на семинарах
 - решение дополнительных заданий

- Лекционные занятия: онлайн/оффлайн + запись
- Семинарские занятия (по группам): онлайн/оффлайн + запись
- Домашние задания с фиксированным дедлайном
 - Проверка семинаристами по группам

Программа курса

- 1. Naive Bayes, kNN
- 2. Линейные модели
- 3. Логистическая регрессия
- 4. SVM, PCA
- 5. BVD, k
- 6. Деревья решений. Методы ансамблирования моделей
- 7. Градиентный бустинг
- 8. Введение в нейронные сети
- 9. Методы кластеризации и понижения размерности
- 10. Неградиентная оптимизация
- 11.Задачи ранжирования и матчинга

Введение

Три основных области исследований в ML (Machine learning)

- 1. CV (Computer Vision)
- 2. NLP (Natural Language Processing)
- 3. RL (Reinforcement Learning)

Коротко о задачах в ML

Решим задачу

Сколько минут в 3 часах?

Коротко о задачах в ML

Решим задачу

Сколько минут в 3 часах?

$$f(x) = 60 * x$$

 $f(3) = 60 * 3 = 180$

Решим другую задачу

Мальчик на санках едет с горки. Масса мальчика вместе с санками составляет 40 кг, угол наклона горы 30°. Найдите ускорение, с которым съезжает мальчик, если коэффициент трения скольжения равен 0,2.

Решим другую задачу

Мальчик на санках едет с горки. Масса мальчика вместе с санками составляет 40 кг, угол наклона горы 30°. Найдите ускорение, с которым съезжает мальчик, если коэффициент трения скольжения равен 0,2.

Дано:

$$m = 40 \text{ кг}$$

 $\alpha = 30^{\circ}$
 $\mu = 0.2$
 $a = 7$

$$m\vec{a} = \vec{N} + m\vec{g} + \vec{F}_{Tp}$$
 $X: ma = -F_{Tp} + mg_x$
 $Y: 0 = N - mg_y$
 $N = mg_y$
 $m\vec{g}$
 mg_y
 mg_y

 $ma = mg_x - \mu mg_v$

А что если?

- система сложнее?
- процесс сложнее?
- мы не имеем представления, как он устроен?
- мы не понимаем, как параметры внутри влияют друг на друга?

Просто "потрясающий" фильм. Про него даже сказать нечего. Не то, чтобы он мне не понравился, он просто никакой.

Проанализируйте окрас текста

позитивный / нейтральный / негативный

Просто потрясающий фильм. У меня даже слов нет. Не шедевр десятилетия, но открытие этого года - точно.

Предположим, что...

Есть некоторая "магическая коробка" которая:

- получает текст
- выдает 1, 0, -1

Предположим, что...

Есть некоторая "магическая коробка" которая:

- получает текст
- выдает 1, 0, -1

... вот только такую f(x) мы не можем придумать

01

Основные понятия и термины

Пускай есть задача открыть новый ресторан, есть несколько вариантов размещения, какой из них принесет максимальную прибыль?

- x объект для которого делаем предсказание конкретное расположение ресторана
- X пространство объектов все возможные расположения ресторанов
- у ответ, целевая переменная / метка, target (что предсказываем)

прибыль в течение первого года работы

• ¥ - пространство ответов (все возможные значения ответа) все вещественные числа

Обучающая выборка

- мы не разбираемся в области той задачи, которую решаем
- у нас есть множество объектов с известными ответами
- X = (xⁱ, yⁱ)^{i = 1} обучающая выборка
- I размер выборки

Признаки

- каждый объект как либо описан в числовом виде
- признаки (features) числовые характеристики объекта
- $x = (x^i, ... x^d)$ признаковое описание объекта (x вектор)
- d количество признаков

Обучающая выборка

- мы не разбираемся в области той задачи, которую решаем
- у нас есть множество объектов с известными ответами
- X = (xⁱ, yⁱ)^{i = 1} обучающая выборка
- I размер выборки
 Пример: существующие данные по расположению и выручке

Признаки

- каждый объект как либо описан в числовом виде
- признаки (features) числовые характеристики объекта
- $x = (x^i, ... x^d)$ признаковое описание объекта (x вектор)
- d количество признаков

Пример: удаленность от дороги / метро, стоимость квадратного метра жилья поблизости, количество бизнес-центров вокруг, средняя проходимость за день

Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)	Target (passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some student	23	3	3	NA	Esperanto	2	FALSE

Алгоритм

- a(x) алгоритм, модель функция, на входе принимающая числа и выдающая ответ для любого объекта
- отображает в
- линейная модель: $a(x) = w^0 + w^1 x^1 + ... + w^d x^d$

Функция потерь

- позволяет понять полезность алгоритма, a(x) = 0 нам не поможет
- функция потерь мера корректности ответа алгоритма
- что лучше предсказать больше или меньше? предсказали 100.000, а на деле 90.000 это хорошо или плохо?

Алгоритм

- a(x) алгоритм, модель функция, на входе принимающая числа и выдающая ответ для любого объекта
- отображает 🛚 в 🖞
- линейная модель: $a(x) = w^0 + w^1 x^1 + ... + w^d x^d$

Пример: a(x) = 90.000 + 10.000 * (кол-во бизнес-центров вокруг) - 2.000 * (удаленность от метро)

Функция потерь

- позволяет понять полезность алгоритма, a(x) = 0 нам не поможет
- функция потерь мера корректности ответа алгоритма
- что лучше предсказать больше или меньше? предсказали 100.000, а на деле 90.000 это хорошо или плохо?

Пример: квадратичное отклонение: (a(x) - y)

Функционал ошибки

- функционал ошибки , метрика качества мера качества работы алгоритма на выборке
- чем меньше, тем лучше
- выбирается исходя из бизнес-требований конкретной задачи

Обучение алгоритма

- производится с использованием обучающей выборки и функционала ошибки
- ullet есть некоторое семейство алгоритмов $oldsymbol{\mathcal{A}}$
- из семейства выбираем алгоритм
- обучение поиск оптимального алгоритма с точки зрения функционала ошибки
- с точки зрения функционала ошибки = минимизируем ошибку

Функционал ошибки

- функционал ошибки , метрика качества мера качества работы алгоритма на выборке
- чем меньше, тем лучше
- выбирается исходя из бизнес-требований конкретной задачи

Пример: Среднеквадратичная ошибка (MSE): $\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$

Обучение алгоритма

- производится с использованием обучающей выборки и функционала ошибки
- ullet есть некоторое семейство алгоритмов $oldsymbol{\mathcal{A}}$
- из семейства выбираем алгоритм
- обучение поиск оптимального алгоритма с точки зрения функционала ошибки
- с точки зрения функционала ошибки = минимизируем ошибку Пример: линейные модели; $\mathcal{A} = \{w_0 + w_1x_1 + \dots + w_dx_d \mid w_0, w_1, \dots, w_d \in \mathbb{R}\}$

тогда обучение: $a(x) = \arg\min_{a \in \mathcal{A}} Q(a, X)$

02

Какие бывают признаки?

Признаки

Бинарные

- $D_i = \{0,1\}$
- Ресторан находится в бизнес-центре?
- Пол клиента
- Компания вышла на IPO?

Вещественные

- $D_i = \mathbb{R}$
- Средний доход жильцов дома
- Средняя выручка компании за последние 5 лет
- Возраст клиента

Признаки

Категориальные

- D_i = неупорядоченное множество
- Район / город расположения квартиры
- Цвет глаз / волос человека
- Статус работы человека

Порядковые

- D_i = упорядоченное множество
- Воинское звание
- Должность на работе (может быть и не упорядоченным)
- Тип населенного пункта

Признаки

Категориальные

- D_i = неупорядоченное множество
- Район / город расположения квартиры
- Цвет глаз / волос человека
- Статус работы человека

Вещественные

- D_i = упорядоченное множество
- Воинское звание
- Должность на работе (может быть и не упорядоченным)
- Тип населенного пункта

А как с ними работать? Помним: компьютер оперирует только числами

Машинное обучение это...

• Нахождение зависимостей из конечного набора примеров.

• Написание алгоритма, способного решать задачи, которые не явно запрограммированы

(последовательность из if-else не подойдет)

03

Какие есть типы задач?

Обучение с учителем (supervised learning)

Х - множество объектов

Ү - множество ответов

y:X o Y - истинная зависимость

Обучающий датасет - множество наборов из фичей и значений целевой переменной.

Мы обозначим его:

$$X_{train} \subset X$$

$$X_{train} = \left(egin{array}{cccc} x_{11} & x_{12} & ... & x_{1m} \ & ... & ... & \ x_{n1} & x_{n2} & ... & x_{nm} \end{array}
ight) \hspace{0.5cm} y_{train} = \left(egin{array}{c} y_1 \ ... \ y_n \end{array}
ight)$$

Типы признаков (features):

- Числовые (Numerical)
- Категориальные (Categorical)
- □ Порядковые (Ordinal)

Типы задач:

Классификация (Classification)

$$Y = \{0, 1\}, Y = \{1, 2, \dots, n\}, Y = \{0, 1\}^n$$

Регрессия (Regression)

$$Y=\mathbb{R}$$
 (числа упорядочены)

Ранжирование (Ranking)

$$Y = \{1, 2, \dots, n\}$$

Примеры задач (Ирисы Фишера)

Iris Data (red=setosa,green=versicolor,blue=virginica)

Какая это задача?

$$Y = \{1, 2, 3\}$$

Задача классификации.

Какие есть признаки?

$$X = \mathbb{R}^4$$

Есть только числовые признаки.

Примеры задач (стоимость дома)

Нужно предсказать стоимость дома. Есть обучающий датасет со следующими признаками:

- ✓ Удаленность от метро;
- ✓ Оценка состояния дома (плохое, среднее, хорошее, отличное);
- ✓ Количество комнат;
- ✓ Площадь;
- ✓ Год строительства;
- ✓ Название района, в котором находится дом.

Какая это задача?

$$Y = \mathbb{R}$$

Задача регрессии.

Какие есть признаки?

Числовые, порядковые, категориальные.

Примеры задач (поиск страницы в Интернете)

Получив запрос от пользователя нужно найти наиболее полезные документы из некоторой базы.

Что нам известно:

- ✓ Запрос пользователя;
- ✓ Текст документа;
- ✓ Какие ключевые слова есть в каждом документе;
- ✓ Насколько каждый документ популярен.

Какая это задача?

$$Y = \{1, 2, \dots, n\}$$
 (числа упорядочены) Задача ранжирования.

Какие есть признаки?

Данные намного сложнее и требуют предобработки.

04 Обучение моделей

Обучение с учителем (supervised learning)

Наша задача:

найти функцию хорошо приближающую реальную зависимость у(х).

2

Назовем такое решение:

 ${}^{igotimes}\hat{y}:X o Y$ (эта функция должна быть вычислима на компьютере).

3

Обычно мы выбираем решение из некоторого параметризованного семейства.

 Θ $\mathcal{F} = \{\hat{y}_{\theta} \mid \theta \in \Theta\}, \Theta$ — множество параметров.

Обучение — процесс выбора параметра θ , которому соответствует наиболее подходящее нам решение задачи: $\hat{y}_{\theta} = (x_1, x_2)$

Пример семейства моделей (функции порога)

3a,

Задача:

⊘ Определить, можно ли ребенку пройти на аттракцион? Причем мы знаем его рост и возраст.

Множество, в котором мы будем искать решения состоит из функций вида:

 $\hat{y}_{(a,b)}(x_1, x_2) = \begin{cases} 1 & x_1 \ge a, x_2 \ge b \\ 0 & otherwise \end{cases}$

igotimes Параметр в данном случае heta = (a, b). А множество возможных значений параметра $oldsymbol{\Theta} = \mathbb{R}$

Обучение с учителем (supervised learning)

1

Функция потерь (loss):

Определим функцию:

 $L(y, \hat{y}(x)),$

ее значение показывает насколько сильно наше предсказание отличается от реального значения.

2)____

Пример:

Задача предсказания цены дома из предыдущих примеров.

Возможные функции потерь:

$$L(y_{\text{true}}, \hat{y}(x)) = (y_{\text{true}} - \hat{y}(x))^2$$
 (квадратичная функция потерь)

$$L(y_{\text{true}}, \hat{y}(x)) = |y_{\text{true}} - \hat{y}(x)|$$
 (абсолютная функция потерь)

Эмпирический риск:

Определим эмпирический риск как среднее значение функции потерь на обучающем датасете. Часто функцию эмпирического риска также называют лоссом.

4)

Обучение:

$$\theta_{\text{best}} = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{\operatorname{dataset size}} \sum_{i} L(y_{\text{true}}^{i}, \hat{y}_{\theta}(x^{i}))$$

Это просто математическое определение. Конкретный алгоритм получения лучшего параметра для каждой модели свой.

Резюме

- 1. У нас есть набор объектов и ответов
- 2. Из них формируется обучающая выборка
- 3. Запоминаем примеры
- 4. Получаем новый объект, сравниваем некоторой функцией
- 5. Выдаем ответ
- 6. Радуемся результатам

05 Гипотеза компактности и алгоритм KNN

Гипотеза

компактности

- классы образуют компактно локализованные подмножества объектов в пространстве признаков
- похожие объекты находятся "рядом" в пространстве признаков

Пример: классификация фруктов. С какими проблемами мы тут можем столкнуться?

Алгоритм KNN

- Knn k nearest neighbours
- классифицируем объект исходя из к "похожих" на него

Алгоритм работы

- запоминаем обучающую выборку (да, это всё обучение)
- для каждого нового объекта выводим к какому классу он принадлежит

Алгоритм поиска ответа

- для нового объекта x считаем расстояние до других объектов $\rho(x, x^{(1)}) \le \rho(x, x^{(2)}) \le ... \le \rho(x, x^{(l)})$
- сортируем расстояния
- выбираем k ближайших: x ⁽¹⁾, x ⁽²⁾, ..., x ^(l)
- выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{\kappa} [y_{(i)} = y]$$

Алгоритм KNN

Алгоритм KNN

Метрики

- р функция с двумя аргументами
- $\rho(x, z) = 0$, тогда и только тогда, когда x = z
- $\rho(x, z) = \rho(z, x)$
- $\rho(x, z) \le \rho(x, v) + \rho(v, z)$ неравенство треугольника

Примеры

• Евклидова:

$$\rho(x,z) = \sqrt{\sum_{j=1}^{d} (x_j - z_j)^2}$$

• Манхетенская:

$$\rho(x,z) = \sum_{j=1}^{d} |x_j - z_j|$$

ullet метрика Минковского: $ho(x,z) = \sqrt[p]{\sum_{j=1}^d |x_j - z_j|^p}$ задачу

06

Наивный Байес

Теория

- Теорема Байеса: $P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$
- P(A | B) вероятность (что A из B истинно)
- Р(А) вероятность (независимая вероятность А)
- Р(В | А) вероятность данного значения признака при данном классе. (что В из А истинно)
- Р(В) вероятность при значении нашего признака. (независимая вероятность В)

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)} \qquad C^* = \arg\max_k P(y_i = C_k | \mathbf{x}_i)$$

$$P(\mathbf{x}_i | y_i = C_k) = \prod_{l=1}^p P(x_i^l | y_i = C_k) \qquad P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Задача

- определить является ли письмо спамом
- рассчитаем оценку для каждого класса и выберем максимальную по формуле:

$$arg \max[P(Q_k) \prod_{i=1}^n P(x_i|Q_k)]$$

$$P(Q_k) = \frac{\text{число документов класса } Q_k}{\text{общее количество документов}}$$

- \bullet $P(x_i|Q_k) = \frac{\alpha + N_{ik}}{\alpha M + N_k}$ вхождение слова х ів документа класса Q k
- N^k количество слов входящих в документ класса Q^{-k}
- М количество слов из обучающей выборки
- N количество вхождений слова х в документ класса Q
- α параметр для сглаживания; мы не можем обучить алгоритм всем словам,
 и если его не применять, то оценка будет равна 0; 0 < α ≤ 1 (сглаживание Лапласа)

Спам

- "Путевки по низкой цене"
- "Акция! Купи шоколадку и получи телефон в подарок"

Не спам

- "Завтра состоится собрание"
- "Купи килограмм яблок и шоколадку"

Требуется определить

• "В магазине гора яблок. Купи семь килограмм и шоколадку"

Спам

• Оценка: $\frac{2}{4} \cdot \frac{2}{23} \cdot \frac{2}{23} \cdot \frac{1}{23} \cdot \frac{1}{23} \cdot \frac{1}{23} \cdot \frac{1}{23} \cdot \frac{1}{23} \approx 0,000000000587$

Не спам

• Оценка: $\frac{2}{4} \cdot \frac{2}{21} \cdot \frac{2}{21} \cdot \frac{2}{21} \cdot \frac{2}{21} \cdot \frac{1}{21} \cdot \frac{1}{21} \cdot \frac{1}{21} \cdot \frac{1}{21} \approx 0,00000000444$

Итог

• Спам < не спам -> письмо не спам!

		Кол-во	Кол-во		
	Слово	вхождений	вхождений	$P(x_i $ Спам)	$P(x_i \text{He спам})$
		в «Спам»	в «Не спам»		
Слова из обучающей выборки	Путевки	1	0		
	Низкой	1	0		
	Цене	1	0		
	Акция	1	0		
	Купи	1	1	$\frac{1+1}{14+9}$	$\frac{1+1}{14+7}$
	Шоколадку	1	1	$\frac{1+1}{14+9}$	$\frac{1+1}{14+7}$
	Получи	1	0		
	Телефон	1	0		
	Подарок	1	0		
	Завтра	0	1		
	Состоится	0	1		
	Собрание	0	1		
	Килограмм	0	1	$\frac{1+0}{14+9}$	$\frac{1+1}{14+7}$
	Яблок	0	1	$\frac{1+0}{14+9}$	$\frac{1+1}{14+7}$
	Магазине	0	0	$\frac{1+0}{14+9}$	$\frac{1+0}{14+7}$
	Гора	0	0	$\frac{1+0}{14+9}$	$\frac{1+0}{14+7}$
	Семь	0	0	$\frac{1+0}{14+9}$	$\frac{1+0}{14+7}$

Место для ваших вопросов