1. Objective

To disambiguate word pairs using a Naive-Bayesian technique and answer to some questions.

2. Installation

Programming language: Python

Source code location: /home/sbillah/nlp2/

<u>Corpus Selection:</u> I select "senseval" corpus, which is specially designed for WSD. Here is the download link: http://www.senseval.org/.

3. Design (Naive Bayesian Approach)

3.1 Algorithm:

I use two in-memory Hash-tables to store conditional probabilities of contexts associated with the pseudowords.

2. extract the context words in both side of the pseudoword, and store the contexts in two files: training, and testing by 8:2 ratio.

```
//training
For each training file f:
   for each line in f:
```

1. update C(context-words), C(word), & sense sk in respected hash-tables.

from the counts, compute $P(c_i|s_k)$, $p(s_k)$ and store in hash-tables.

```
//testing
for each testing file f:
    for each line in f:
```

- 1. apply Laplace smoothing on conditional probabilities.
- 2. compute argmax $score(s_k)$ using the formula in the book.
- 3. compare the predicted value with actual value.

return accuracy in percentage.

Time Complexity:

- Preprocessing phase: O(# of lines containing word1) + O(#of lines containing word2)
- Training phase: 2*O(2*context size * #lines in training file)
- **Testing phase:** O(2*context size * #lines in testing file)
- Overall: O(2*context size*(#of word1+ #of word2)

Space Complexity:

• Overall: O(2 * context_size * (#of word1 + #of word2))

3.2 Corpus Description:

The **Senseval** WSD corpus has total 35 sense-tagged words. Each word has more than 5 senses. But due to the simplified requirement of our homework, I ignore all those senses. Therefore, for a word pair, I consider only two senses (0,1). Here are my selected word-pairs and their individual occurrence in the corpus.

Pair	Words	Word Counts
1	amaze	319
1	behaviour	1003
2	sack	296
2	sanciton	101
3	knee	477
3	onion	29
4	accident	1303
	wooden	370

Below is a snapshot of some lines from "accident.cor" file (context for word, 'accident'):

800001

Late on Thursday night it was travelling at about three metres a second in wind blowing at 20 to 25 knots when an empty car fell off just as it reached the top.

The <tag "532675">accident</> appeared to have little effect on the Christmas party, except to lengthen it considerably.

800002

An image of earnest Greenery is almost tangible.

Eighteen years ago she lost one of her six children in an <tag

"532675">accident</> on Stratford Road, a tragedy which has become a pawn in the pitiless point-scoring of small-town vindictiveness.

```
800003

It's a sentiment I recommend to you all.

The <tag "532675">accident</> occurred on the Saturday of the annual Popular Flying Association (PFA) rally at Cranfield.

...
```

3.3 Context Selection:

I varied context length from 1 to 19 (on both side) as shown in the figure below:

Different level of accuracy is obtained under different context size. The results are given in the next chapter.

3.4 Laplace Smoothing:

During testing phase, some context-words are not seen before in training phase. Instead of assigning zero probability for them, I use Laplace Smoothing. The Laplace Smoothing is given below:

```
• If P(ci|s_1) > 0:

o P(ci|s_1)' = (P(ci|s_1)*10000+1)/(10000 + context\_size)
• Else:

o P(ci|s_1)' = 1.0/(10000 + context\_size)
```

4 Experimental Result

Here, I provide the experimental results for different context size and word-pairs. After the table, I also present these data graphically for better understanding.

Context	Pair 1 accuracy	Pair 2 accuracy	Pair 3 accuracy	Pair 4 accuracy
Size	{accident, wooden}	{knee, onion}	{sack, sanction}	{amaze, behaviour}
1	88.09524	95.65217	85.48387	88.04781
2	89.68254	100	85.48387	88.04781
3	89.28571	100	77.41935	83.66534
4	90.47619	100	77.41935	82.47012
5	90.07937	100	79.03226	82.07171
6	90.87302	100	79.03226	81.67331
7	88.88889	100	85.48387	83.26693
8	86.50794	100	87.09677	82.86853
9	86.90476	100	82.25806	81.2749

10	88.88889	100	82.25806	80.47809
11	87.69841	97.82609	82.25806	80.07968
12	87.69841	97.82609	80.64516	80.87649
13	86.90476	97.82609	82.25806	79.68127
14	84.92063	97.82609	82.25806	80.87649
15	85.31746	97.82609	80.64516	78.88446
16	84.52381	97.82609	80.64516	78.88446
17	83.73016	97.82609	79.03226	77.68924
18	82.14286	95.65217	79.03226	77.29084
19	81.74603	97.82609	75.80645	77.68924

Discussion:

- 1. Accuracy always decrease with the increase of context size.
- 2. For different word-pairs, maximum accuracy is obtained in different context size.
- 3. The overall performance of Naive Bayesian disambiguation is around 90%.

Q&A

2.9 Relative frequency:

File: DavidBowie.html
Entropy: 3.52728218653

1	2370
0	1909
3	885
2	1502
5	784
4	750
7	881
6	721
9	1358

8	917
а	19075
С	8595
b	4576
е	23268
d	8301
g	3754
f	5294
i	20024

h	7057
k	3306
j	423
m	4891
1	11101
0	11614
n	13074
q	144
р	7083

S	14664
r	12658
u	4556
t	16047
w	5067
V	2178
У	2469
х	1038
Z	232

 $\textbf{File:} \ \ \textbf{Genghis} \ \ \textbf{Khan - Wikipedia, the free encyclopedia.html}$

Entropy: 3.55870437955

1844
1870
873
1562
686
566
505
610
624

594
20479
7362
3328
21399
7111
6384
4749
20236

h	9353
k	4675
j	848
m	5568
I	11457
0	11204
n	14745
q	263
р	6122

S	13442
r	11698
u	4415
t	15763
W	4265
V	1788
у	2359
Х	1218
Z	392

File: Steve Jobs - Wikipedia, the free encyclopedia.html
Entropy: 3.61251296863

1	7046
0	7798
3	1564
2	6815
5	1808
4	1605
7	1667
6	1966
9	2120

1811
36239
18155
7692
47051
11058
6116
10656
31138

h	14120
k	4429
j	2588
m	9194
1	22943
0	23755
n	26050
q	179
р	16747

S	31064
r	23907
u	6540
t	32956
W	9403
V	5120
У	4506
Х	3221
Z	504

 $\textbf{File:} \ \ \textbf{Winston Churchill - Wikipedia, the free encyclopedia.html}$

Entropy: 3.54645118781

1	6843
0	5721
3	1761
2	3863
5	2560
4	1703
7	1273
6	1797
9	2795

8	1769
a	45163
С	21142
b	9324
е	56370
d	19968
g	9962
f	13635
i	49316

Н	21543
K	8332
J	1441
М	12329
L	34877
0	29943
N	34098
Q	445
Р	16278

S	34129
r	35857
u	10682
t	43826
w	12176
٧	5852
у	7013
Х	3895
Z	654

Finally, the total Corpus frequency:

1	18103
0	17298
3	5083
2	13742
5	5838
4	4624
7	4326
6	5094
9	6897

8	5091
а	120956
С	55254
b	24920
е	148088
d	46438
g	26216
f	34334
i	120714

Н	52073
K	20742
J	5300
М	31982
L	80378
0	76516
N	87967
Q	1031
Р	46230

S	93299
r	84120
u	26193
t	108592
W	30911
٧	14938
У	16347
х	9372
Z	1782

2.10 KL Divergence

KL-divergence <1,2>	0.003688
KL-divergence <2,1>	0.003688
KL-divergence <1,3>	0.03306
KL-divergence <3,1>	0.03306
KL-divergence <2,3>	0.028468
KL-divergence <3,2>	0.028468

So, the corpus 1(english1) and corpus 3 (french1) have the highest score. In fact, these two corpus are same and translation of each other, which justifies the result.