

循序渐进——AQI分析与预测

背景信息

AQI(Air Quality Index),指空气质量指数,用来衡量空气清洁或污染的程度。值越小,表示空气质量越好。近年来,因为环境问题,空气质量也越来越受到人们的重视。

任务说明

我们期望能够对全国城市空气质量进行研究与分析,希望能够解决如下疑问:

- 哪些城市的空气质量较好/较差?
- 临海城市是否空气质量优于内陆城市?
- 空气质量主要受哪些因素影响?
- 是否可以预测城市的空气质量?
- 是否可以预测城市是否临海?

数据集描述

我们现在获取了2015年空气质量指数集。该数据集包含全国主要城市的相关数据以及空气质量指数。

列名 含义 城市名 City AQI 空气质量指数 Precipitation 降雨量 GDP 城市生产总值 温度 Temperature 经度 Longitude Latitude 纬度 Altitude 海拔高度 PopulationDensity 人口密度 Coastal 是否沿海 GreenCoverageRate 绿化覆盖率 Incineration(10,000ton) 焚烧量 (10000吨)

程序实现

导入相关的库

导入需要的库,同时,进行一些初始化的设置。


```
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings

import seaborn as sns
sns.set(style="darkgrid", font="SimHei", rc={"axes.unicode_minus": False})
warnings.filterwarnings("ignore")
```

加载相关的数据集

text-align: right;

- 加载相关的数据集。
- 可以使用head / tail / sample查看数据的大致情况。

```
data = pd.read_csv("CompletedDataset.csv")
print(data.shape)
data.head()
(323, 12)

.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
```

_												
	City	AQI	Precipitation	GDP	Temperature	Longitude	Latitude	Altitude	PopulationDensity	Coastal	GreenCoverageRate	Incineration(10,000ton)
C	Ngawa Prefecture	23	665.1	271.13	8.200000	102.224650	31.899410	2617.0	11	0	36.00	23.00
1	Aksu City	137	80.4	610.00	12.276712	80.263380	41.167540	1108.0	6547	0	33.94	23.00
2	Alxa League	85	150.0	322.58	24.200000	105.728950	38.851920	1673.0	1	0	36.00	23.00
3	Ngari	28	74.2	37.40	1.000000	80.105800	32.501110	4280.0	1	0	36.00	23.00
4	Anqin City	79	2127.8	1613.20	17.291781	117.034431	30.512646	13.0	2271	0	45.80	27.48

数据清洗

缺失值处理

```
data.info()
# data.isnull().sum(axis=0)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 323 entries, 0 to 322
Data columns (total 12 columns):
City
                           323 non-null object
                           323 non-null int64
AQI
Precipitation
                           323 non-null float64
                           323 non-null float64
GDP
Temperature
                           323 non-null float64
Longitude
                           323 non-null float64
                           323 non-null float64
Latitude
Altitude
                           323 non-null float64
PopulationDensity
                           323 non-null int64
                           323 non-null int64
Coastal
GreenCoverageRate
                           323 non-null float64
Incineration(10,000ton)
                           323 non-null float64
dtypes: float64(8), int64(3), object(1)
memory usage: 30.4+ KB
```

异常值处理

```
# data.describe()
sns.boxplot(data=data["Precipitation"])
```


<matplotlib.axes._subplots.AxesSubplot at 0xc80c908>

重复值处理

- 使用duplicate检查重复值。可配合keep参数进行调整。
- 使用drop_duplicate删除重复值。

data.duplicated().sum()

0

数据分析

空气质量最好/最差的5个城市。

空气质量的好坏可以为我们以后选择工作,旅游等地提供参考。

最好的5个城市

```
t = data[["City", "AQI"]].sort_values("AQI")
display(t.iloc[:5])
sns.barplot(x="City", y="AQI", data=t.iloc[:5])
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

-		
	Ci	y AQI
203	Shaoguan City	12
162	Nanping City	12
153	Meizhou City	12
91	Keelung City	13
194	Sanming City	13

<matplotlib.axes._subplots.AxesSubplot at 0xa6c6dd8>

我们发现,空气质量最好的5个城市为:

- 1. 韶关市
- 2. 南平市
- 3. 梅州市
- 4. 基隆市
- 5. 三明市

最差的5个城市

```
display(t.iloc[-5:])
sns.barplot(x="City", y="AQI", data=t.iloc[-5:])
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

		City	AQI
105	Jiaozuo City		199
111	Jinzhou City		202
13	Baoding City		220
26	Chaoyang City		224
16	Beijing City		296

<matplotlib.axes._subplots.AxesSubplot at 0xa71fdd8>

我们得出空气质量最差的5个城市为:

- 1. 北京市
- 2. 朝阳市

- 3. 保定市
- 4. 锦州市
- 5. 焦作市

临海城市是否空气质量优于内陆城市?

我们首先来统计下临海城市与内陆城市的数量。

```
display(data["Coastal"].value_counts())
sns.countplot(x="Coastal", data=data)
0 243
```

0 243 1 80

Name: Coastal, dtype: int64

<matplotlib.axes._subplots.AxesSubplot at 0xa9289b0>

然后, 我们来观察一下临海城市与内陆城市的散点分布。

sns.swarmplot(x="Coastal", y="AQI", data=data)

<matplotlib.axes._subplots.AxesSubplot at 0xdd71c50>

然后,我们再来分组计算空气质量的均值。

display(data.groupby("Coastal")["AQI"].mean())
sns.barplot(x="Coastal", y="AQI", data=data)

Coastal

0 79.045267 1 64.062500

Name: AQI, dtype: float64

<matplotlib.axes._subplots.AxesSubplot at 0xa787400>

柱形图仅能进行均值对比, 我们可以使用箱线图来显示更多的信息。

sns.boxplot(x="Coastal", y="AQI", data=data)

<matplotlib.axes._subplots.AxesSubplot at 0xa7e7470>

我们也可以绘制小提琴图,除了能够展示箱线图的信息外,还能呈现出分布的密度。

sns.violinplot(x="Coastal", y="AQI", data=data)

<matplotlib.axes._subplots.AxesSubplot at 0xb2f1278>

我们可以将散点与箱线图或小提琴图结合在一起进行绘制,下面以小提琴图为例。

```
sns.violinplot(x="Coastal", y="AQI", data=data, inner=None)
sns.swarmplot(x="Coastal", y="AQI", color="g", data=data)
```

<matplotlib.axes._subplots.AxesSubplot at 0xa84d080>

空气质量主要受哪些因素影响?

相关系数

data.corr()

<matplotlib.axes._subplots.AxesSubplot at 0x15067d68>

课堂练习

观察上图显示的结果,综合来

讲,是南方城市空气质量好,还是北方城市空气质量好?

- A 南方城市空气好。
- B 北方城市空气好。
- C南北方空气质量差不多。
- D 无法判断。

结果统计

从结果中可知,空气质量指数主要受降雨量 (-0.40) 与纬度 (0.55) 影响。

- 降雨量越多,空气质量越好。
- 纬度越低,空气质量越好。

此外, 我们还能够发现其他一些明显的细节:

- GDP (城市生产总值) 与Incineration (焚烧量) 正相关 (0.90) 。
- Temperature (温度) 与Precipitation (降雨量) 正相关 (0.69) 。
- Temperature (温度) 与Latitude (纬度) 负相关 (-0.81) 。
- Longitude (经度)与Altitude (海拔)负相关 (-0.74)。
- Latitude (纬度) 与Precipitation (降雨量) 负相关 (-0.66) 。

- Temperature (温度) 与Altitude (海拔) 负相关 (-0.46) 。
- Altitude (海拔) 与Precipitation (降雨量) 负相关 (-0.32) 。

可疑的相关系数值

通过之前的分析,我们得知,临海城市的空气质量,确实好于内陆城市,可是,为什么临海(Coastal)与空气质量指数(AQI)的相关系数(-0.15)并不高呢?

绘制全国城市的空气质量。

我们来绘制一下全国各城市的空气质量指数。

 $sns.scatterplot(x="Longitude", y="Latitude", hue="AQI", palette=plt.cm.RdYlGn_r, data=data)\\$

<matplotlib.axes._subplots.AxesSubplot at 0xaaf69b0>

从结果我们可以发现,从大致的地理位置上看,西部城市好于东部城市,南部城市好于北部城市。

关于空气质量的假设检验

江湖传闻,全国所有城市的空气质量指数均值在71左右,请问,这个消息可靠吗?

问题下的探索

城市平均空气质量指数,我们可以很容易的进行计算。

data["AQI"].mean()

75.3343653250774

此,我们认为,江湖传闻实属一派胡言,不可尽信。请问这样认为正确吗? A 正确

B 不正确

首先,我们要清楚,江湖传闻的,是全国所有城市的平均空气质量指数,而我们统计的,只是所有城市中的一部分抽样而已。因此,我们一次抽样统计的均值,并不 能代表总体(所有城市)的均值。

要弄清江湖传闻是否可靠,最直接有效的方式,就是将全国所有的城市的空气质量指数都测量一下,然后进行求均值。然而,这是非常繁重且不现实的任务。因此,可行的方案是,我们从全国所有城市中进行抽样,使用抽样的均值来估计总体的均值。

总体与样本的分布

在数学上, 我们有如下的定理:

如果总体(分布不重要)均值为\$\mu\$,方差为\$\sigma^2\$,则样本均值服从正态分布:\$\bar{X}\$~\$N(\mu, \sigma^2 / n)\$。其中,n为每次抽样含有个体的数量。

我们可以得到如下结论:

30.12963383167168

- 1. 进行多次抽样(每次抽样包含若干个个体),则每次抽样会得到一个均值,这些均值会围绕在总体均值左右,呈正态分布。
- 2. 样本均值构成正态分布, 其均值等于总体均值。
- 3. 样本均值构成正态分布,其标准差等于总体标准差除以\$\sqrt{n}\$。

```
all = np.random.normal(loc=30, scale=50, size=10000)
mean_arr = np.zeros(2000)
for i in range(len(mean_arr)):
    mean_arr[i] = np.random.choice(all, size=50, replace=False).mean()
display(mean_arr.mean())
sns.kdeplot(mean_arr, shade=True)
```


<matplotlib.axes._subplots.AxesSubplot at 0xc340668>

置信区间

接下来,我们现在根据正态分布的特性,进行概率上的统计,如下图:

- 以均值为中心,在一倍标准差内\$(\bar{x} \sigma, \bar{x} + \sigma)\$,包含68%的样本数据。
- 以均值为中心,在二倍标准差内\$(\bar{x} 2\sigma, \bar{x} + 2\sigma)\$,包含95%的样本数据。
- 以均值为中心,在三倍标准差内\$(\bar{x} 3\sigma, \bar{x} + 3\sigma)\$,包含99.7%的样本数据。

因此,如果多次抽样,则样本均值构成的正态分布。如果我们对总体进行一次抽样,则本次抽样个体的均值有95%的概率会在二倍标准差内,仅有5%的概率会在二倍标准差外。根据小概率事件(很小的概率在一次抽样中基本不会发生),如果抽样的个体均值落在二倍标准差之外,我们就可以认为,本次抽样来自的总体,该总体的均值并非是我们所期望的均值。

通常,我们以二倍标准差作为判定依据,则二倍标准差围成的区间,称为置信区间。该区间,则为接受域,否则为拒绝域。

```
# 定义标准差
scale = 50
# 定义数据。
x = np.random.normal(0, scale, size=100000)
# 定义标准差的倍数,倍数从1到3。
for times in range(1, 4):
    y = x[(x >= -times * scale) & (x <= times * scale)]
    print(len(y) / len(x))

0.68217
0.95436
0.99747
```

假设检验——t检验

假设检验,其目的是通过收集到的数据,来验证某个假设是否成立。在假设检验中,我们会建立两个完全对立的假设,分别为原假设(零假设)\$H_0\$与备则假设(对立假设)\$H_1\$。然后根据样本信息进行分析判断,得出P值(概率值)。

假设检验基于小概率反证法,即我们认为小概率事件在一次试验中是不会发生的。如果小概率事件发生,则我们就拒绝原假设,而接受备择假设。否则,我们就没有充分的理由推翻原假设,此时,我们选择去接受原假设。

t检验,就是假设检验的一种,可以用来检验一次抽样中样本均值与总体均值的比较。其计算方式如下:

\$t = \frac{\bar{x} - \mu_0}{S_\bar{x}} = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}\$

- \$\bar{x}\$为一次抽样中,所有个体的均值。
- \$\mu 0\$为待检验的均值。
- \$S_\bar{x}\$为样本均值的标准差(标准误差)。
- S为一次抽样中,个体的标准差。
- n为一次抽样中,个体的数量。

t值体现的,就是我们一次抽样中,个体均值与待检验的总体均值的偏离程度,如果偏离超过一定范围(通产为2倍的标准差),则拒绝原假设,接受备择假设。

```
mean = data["AQI"].mean()
std = data["AQI"].std()
print(mean, std)
t = (mean - 71) / (std / np.sqrt(len(data)))
print(t)
75.3343653250774 42.99573460517677
1.8117630617496865
```

我们可以看到,偏离均值不足2倍的标准差,因此,P值应该大于5%,我们无法拒绝原假设。因此,江湖传闻还是有一定依据的。此外,我们也可以通过scipy提供的相关方法来进行t检验的计算,无需自行计算。

```
from scipy import stats
stats.ttest_1samp(data["AQI"], 71)
```

Ttest_1sampResult(statistic=1.8117630617496872, pvalue=0.07095431526986647)

同样,我们现在可以来计算下,全国所有城市平均空气质量指数的置信区间。

```
\label{eq:mean-1.96 * (std / np.sqrt(len(data))), mean + 1.96 * (std / np.sqrt(len(data)))}
```

(70.54967198786856, 80.11905866228624)

由此,我们就计算出全国所有城市平均空气质量指数,95%的可能在大致在70.55~80.12之间。此外,我们也可以将计算的值代入ttest_1samp放入中进行验证。

Ttest_1sampResult(statistic=1.95999999999999, pvalue=0.050857948670129036)
Ttest_1sampResult(statistic=-1.9599999999999, pvalue=0.050857948670129036)

结果可知,t值大致为1.96, p值大致为临界值5%。

对空气质量指数进行预测。

对于某城市,如果我们已知降雨量,温度,经纬度等指标,我们是否能够预测该城市的空气质量指数呢?

答案是肯定的。我们可以通过对以往的数据,去建立一种模式,然后将这种模式去应用于未知的数据,进而预测结果。数据建模可以采用很多种机器学习算法来实现,我们以线性回归为例。

一元线性回归

回归分析是用来评估变量之间关系的统计过程。用来解释自变量X与因变量Y的关系。即当自变量X发生改变时,因变量Y会如何发生改变。线性回归,是回归分析的一种,评估的自变量X与因变量Y之间是一种线性关系。当只有一个自变量时,称为一元线性回归,当具有多个自变量时,称为多元线性回归。

我们从简单的一元线性回归开始。这里,我们以房屋面积(x)与房屋价格(y)为例,显而易见,二者是一种线性关系,房屋价格正比于房屋面积,我们假设比例为w:

 $hat{y} = w * x$

然而,这种线性方程一定是过原点的,即当x为0时,y也一定为0。这可能并不符合现实中某些场景。为了能够让方程具有更广泛的适应性,我们这里再增加一个截距,设为b,即之前的方程变为:

 $hat{y} = w * x + b$

而以上方程,就是我们数据建模的模型。方程中的w与b,就是模型的参数。 假定数据集如下:

房屋面积	房屋价格
30	100
40	120
40	115
50	130
50	132
60	147

线性回归是用来解释自变量与因变量之间的关系,但是,这种关系并非严格的函数映射关系。从数据集中,我们也看到了这一点。相同面积的房屋,价格并不完全相同,但是,也不会相差过大。

多元线性回归

然而,现实中的数据可能是比较复杂的,自变量也很可能不只一个。例如,影响房屋价格也很可能不只房屋面积一个因素,可能还有距地铁距离,距市中心距离,房间数量,房屋所在层数,房屋建筑年代等诸多因素。不过,这些因素,对房屋价格影响的力度(权重)是不同的,例如,房屋所在层数对房屋价格的影响就远不及房屋面积,因此,我们可以使用多个权重来表示多个因素与房屋价格的关系:

 $\hat{y} = w\{1\} * x\{1\} + w\{2\} * x\{2\} + w\{3\} * x\{3\} + + w\{n\} * x\{n\} + b$

目标

我们现在的目的就是,从现有的数据(经验)中,去学习(确定)w与b的值。一旦w与b的值确定,我们就能够确定拟合数据的线性方程,这样就可以对未知的数据 x(房屋面积,房屋建筑年代等)进行预测y(房屋价格)。我们求解w与b的依据就是,找到一组合适的w与b,使得模型的预测值可以与真实值的总体差异最小化。


```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

```
X = data.drop(["City","AQI"], axis=1)
y = data["AQI"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
lr = LinearRegression()
lr.fit(X_train, y_train)
y_hat = lr.predict(X_test)
display(lr.score(X_train, y_train))
display(lr.score(X_test, y_test))
0.46833945311548275
```

0.3074830894047438

```
plt.figure(figsize=(15, 5))
plt.plot(y_test.values, "-r", label="真实值")
plt.plot(y_hat, "-g", label="预测值")
plt.legend()
plt.title("线性回归预测结果")
```


Text(0.5,1,'线性回归预测结果')

对是否临海进行预测。

对于某城市,假设是否临海未知,但知道其他信息,我们试图使用其他信息,来预测该城市是否临海。

逻辑回归

逻辑回归,我们不要被其名字所误导,实际上,逻辑回归是一个分类算法。其优点在于,逻辑回归不仅能够进行分类,而且还能够获取属于该类别的概率。这在现实中是非常实用的。例如,某人患病的概率,明天下雨的概率等。

逻辑回归实现分类的思想为:将每条样本进行"打分",然后设置一个阈值,达到这个阈值的,分为一个类别,而没有达到这个阈值的,分为另外一个类别。对于阈值,比较随意,划分为哪个类别都可以,但是,要保证阈值划分的一致性。

算法模型

对于逻辑回归,模型的前面与线性回归类似:

 $z = w_1x_1 + w_2x_2 + + w_nx_n + b$

不过,z的值是一个连续的值,取值范围为 $$(-\liminf y)$ \$我们需要将其转换为概率值,逻辑回归使用sigmoid函数来实现转换,该函数的原型为: $$sigmoid(z) = \frac{1}{1 + e^{-z}}$ \$

当z的值从\$-\infty\$向\$+\infty\$过度时,sigmoid函数的取值范围为[0, 1],这正好是概率的取值范围,

当\$z=0\$时,sigmoid(0)的值为0.5。因此,模型就可以将sigmoid的输出p作为正例的概率,而1 - p作为负例的概率。以阈值0.5作为两个分类的标准,假设真实的分类y的值为1与0,则:

 $\theta = \left(\frac{p}{1 - 1} \right)$

因为概率p就是sigmoid函数的输出值,因此有:


```
from sklearn.linear_model import LogisticRegression

X = data.drop(["City","Coastal"], axis=1)
y = data["Coastal"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
lr = LogisticRegression(C=0.0001)
lr.fit(X_train, y_train)
y_hat = lr.predict(X_test)
display(lr.score(X_train, y_train))
display(lr.score(X_test, y_test))
0.871900826446281

0.8148148148148

plt.figure(figsize=(15, 5))
plt.plot(y_test.values, marker="o", c="r", ms=8, ls="", label="真实值")
plt.plot(y_hat, marker="x", color="g", ms=8, ls="", label="预测值")
plt.legend()
plt.title("逻辑回归预测结果")
```

Text(0.5,1,'逻辑回归预测结果')


```
probability = lr.predict_proba(X_test)
print(probability[:10])
print(np.argmax(probability, axis=1))
index = np.arange(len(X_test))
pro_0 = probability[:, 0]
pro_1 = probability[:, 1]
tick_label = np.where(y_test == y_hat, "0", "X")
plt.figure(figsize=(15, 5))
# 绘制堆叠图
plt.bar(index, height=pro_0, color="g", label="类别0概率值")
# bottom=x,表示从x的值开始堆叠上去。
# tick_label 设置标签刻度的文本内容。
plt.bar(index, height=pro_1, color='r', bottom=pro_0, label="类别1概率值", tick_label=tick_label)
plt.legend(loc="best", bbox_to_anchor=(1, 1))
plt.xlabel("样本序号")
plt.ylabel("各个类别的概率")
plt.title("<mark>逻辑回归分类概率"</mark>)
plt.show()
```



```
[[9.99999954e-01 4.64775907e-08]
 [9.98803126e-01 1.19687377e-03]
 [5.74704962e-01 4.25295038e-01]
 [1.00000000e+00 1.10789721e-12]
 [1.00000000e+00 1.99500254e-10]
 [8.14698215e-01 1.85301785e-01]
 [4.10918815e-01 5.89081185e-01]
 [9.72515147e-01 2.74848527e-02]
 [9.66787627e-01 3.32123726e-02]
 [9.99999815e-01 1.85004397e-07]]
[0\;0\;0\;0\;0\;0\;1\;0\;0\;0\;0\;0\;1\;0\;0\;0\;0\;0\;1\;0\;0\;1\;1\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0
0\;1\;0\;1\;0\;0\;1\;0\;0\;0\;0\;1\;0\;0\;1\;0\;1\;1\;1\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;1\;0\;0\;1
0 1 0 1 0 1 0]
```


总结

- 1. 空气质量总体分布上来说,南部城市优于北部城市,西部城市优于东部城市。
- 2. 临海城市的空气质量整体上好于内陆城市。
- 3. 是否临海,降雨量与纬度对空气质量指数的影响较大。
- 4. 我国城市平均空气质量指数大致在(70.55~80.12)这个区间内,在该区间的可能性概率为95%。
- 5. 通过历史数据, 我们可以对空气质量指数进行预测。
- 6. 通过历史数据, 我们可以对城市是否临海进行预测。