

ON Semiconductor®

Analysis and Design of Quasi- Square Wave Resonant Converters

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

What is Quasi-Square Wave Resonance?

- \square MOSFET turns on when $V_{DS}(t)$ reaches its minimum value.
- Minimize switching losses
- Improves the EMI signature

MOSFET turns on in first valley

MOSFET turns on in second valley

Quasi-Resonant Operation

- \square In DCM, V_{DS} must drop from $(V_{IN} + V_{reflect})$ to V_{IN}
- \square Because of L_p - C_{lump} network \rightarrow oscillations appear
- \Box Oscillation half period: $t_{\rm x}=\pi\sqrt{L_{p}C_{\rm lump}}$

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

www.onsemi.com

A Need to Limit the Switching Frequency

 \square In a self-oscillating QR, F_{sw} increases as the load decreases

Higher losses at light load if F_{sw} is not limited

- \square 2 methods to limit F_{sw} :
 - Frequency clamp with frequency foldback
 - Changing valley with valley lockout

Frequency Foldback in QR Converters

- ☐ In light load, frequency increases and hits clamp
 - ➤ Multiple valley jumps
 - Jumps occur at audible range
 - > Creates signal instability

Changing Valley

- □ As the load decreases, the controller changes valley (1st to 4th valley in NCP1380)
- □ The controller stays locked in a valley until the output power changes significantly.

- No valley jumping noise
- Natural switching frequency limitation

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

Calculating the QR Inductor

- ☐ Calculation steps:
 - 1. Primary to secondary turns ratio
 - 2. Primary and secondary peak current
 - 3. Inductance value
 - 4. Primary and secondary rms current

Turns Ratio Calculation

 \Box Derate maximum MOSFET BV_{dss} :

$$V_{ds,max} = BV_{dss}(k_D)$$
 k_D : derating factor

☐ For a maximum bulk voltage, select the clamping voltage:

$$V_{clamp} = V_{ds,max} - V_{in,max} - V_{os}$$
: diode overshoot

■ Deduce turns ratio:

$$N_{ps} = \frac{N_s}{N_p} = \frac{k_c (V_{out} + V_f)}{V_{clamp}}$$

 k_c : clamping coef. $k_c = V_{clamp} / V_{reflect}$)

$$k_c = V_{clamp} / V_{reflect}$$

How to Choose k_c

 \square Choose k_c to equilibrate MOS conduction losses and clamping resistor losses.

$$P_{Rclamp} = k_{leak} \frac{P_{out}}{\eta} \frac{k_c}{k_c - 1}$$

$$P_{MOS,on} = R_{dson} \frac{4P_{out}^{2}}{3\eta^{2}V_{in,min}} \left(\frac{1}{V_{in,min}} + \frac{k_{c}}{BV_{dss}k_{D} - V_{in,max} - V_{os}} \right)$$

$$P_{sw,on} = \frac{1}{2} \left(V_{in,max} + \frac{BV_{dss}k_D - V_{in,max} - V_{os}}{k_c} \right)^2 C_{OSS} F_{sw,max}$$

Primary Peak Current and Inductance

$$\square P_{out} = \frac{1}{2} L_{pri} I_{pri,peak} F_{sw} \eta$$

DCM

 C_{oss} contribution alone.

$$I_{\textit{pri},\textit{peak}} = 2\frac{P_{\textit{out}}}{\eta} \left(\frac{1}{V_{\textit{in,min}}} + \frac{N_{\textit{ps}}}{V_{\textit{out}} + V_{\textit{f}}} \right) + \pi \sqrt{\frac{2P_{\textit{out}}C_{\textit{lump}}F_{\textit{sw}}}{\eta}}$$

$$L_{pri} = \frac{2P_{out}}{I_{pri,peak}^2 F_{sw} \eta}$$

RMS Current

 \Box Calculate maximum duty-cycle at maximum P_{out} and minimum V_{in} :

$$d_{max} = \frac{I_{pri,peak}L_{pri}}{V_{in,min}}F_{sw,min}$$

☐ Deduce primary and secondary RMS current value:

$$I_{pri,rms} = I_{pri,peak} \sqrt{\frac{d_{max}}{3}}$$

$$I_{sec,rms} = \frac{I_{pri,peak}}{N_{ps}} \sqrt{\frac{1 - d_{max}}{3}}$$

$$I_{pri,rms}$$
 and $I_{sec,rms}$ Losses calculation

Design Example

☐ Power supply specification:

$$- V_{out} = 19 \text{ V}$$

$$P_{out} = 60 \text{ W}$$

$$F_{sw,min} = 45 \text{ kHz}$$

- 600 V MOSFET
- $V_{in} = 85 \sim 265 \text{ Vrms}$

Design Example

■ Based on equations from slides 11 to 14:

> Turns ratio:
$$N_{ps} = \frac{k_c (V_{out} + V_f)}{B_{Vdec} k_D - V_{in,max} - V_{os}} = \frac{1.5 \times (19 + 0.8)}{600 \times 0.85 - 375 - 20} \Rightarrow N_{ps} \approx 0.25$$

$$\begin{array}{ll} \text{Peak current:} & I_{pri,peak} = \frac{2P_{out}}{\eta} \Biggl(\frac{1}{V_{in,min}} + \frac{N_{ps}}{V_{out} + V_f} \Biggr) + \pi \sqrt{\frac{2P_{out}C_{lump}F_{sw}}{\eta}} \\ & = \frac{2 \times 60}{0.85} \Biggl(\frac{1}{100} + \frac{0.25}{19.8} \Biggr) + \pi \sqrt{\frac{2 \times 60 \times 250 \, p \times 45 k}{0.85}} \quad \Rightarrow \quad I_{pri,peak} = 3.32 \, A \end{array}$$

Max. duty-cycle:
$$d_{max} = \frac{I_{pri,peak}L_{pri}}{V_{in,min}}F_{sw,min} = \frac{3.32 \times 285 \mu}{100}45k \implies d_{max} = 0.43$$

Primary rms current:
$$I_{pri,rms} = I_{pri,peak} \sqrt{\frac{d_{max}}{3}} = 3.32 \sqrt{\frac{0.43}{3}} \implies I_{pri,rms} = 1.26 A$$

Secondary rms current:
$$I_{sec,rms} = \frac{I_{pri,peak}}{N_{ps}} \sqrt{\frac{1 - d_{max}}{3}} = \frac{3.32}{0.25} \sqrt{\frac{1 - 0.43}{3}} \implies I_{sec,rms} = 5.8 A$$

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

www.onsemi.com

MOSFET

□ TO220 package: $R_{\theta JA}$ = 62 °C / W

- \square Ambient temperature: $T_A = 50$ °C, MOS junction temperature: $T_J = 110$ °C
- Power dissipated by TO-220 without heatsink: $P_{TO-220} = \frac{T_J T_A}{R_{\theta IA}} \approx 1W$

MOS
$$R_{DS(on)}$$
 @ $T_J = 110$ °C: $R_{DSon120} = \frac{P_{TO-220}}{I_{pri,RMS}}^2 = \frac{1}{1.3^2} = 0.6 \Omega$

Assume we do not want a heatsink

15 A, 600 V MOSFET

MOS Heatsink

 \Box We choose a 7 A, 600 V MOS: $R_{DS(on)120} = 1.2 \Omega$, $R_{DS(on)25} = 0.6 \Omega$

MOS conduction losses:

$$P_{cond} = R_{DS(on)120} I_{pri,rms}^{2} = 1.2 \times 1.26^{2} = 1.9 W$$

Thermal resistance of the heatsink:

$$R_{\theta SA} = \frac{T_J - T_A}{P_{cond}} - R_{\theta JC} - R_{\theta CS} = \frac{110 - 50}{1.9} - 2.5 - 1.6 = 27 \,^{\circ}C/W$$

Output Diode

□ TO-220 package → power dissipation: 1 W

$$\square$$
 MBR20200: $V_{TO} = 0.60$ V, $R_d = 20$ mΩ

$$ightharpoonup$$
 Diode conduction losses: $P_{diode} = V_{T0}I_{out} + R_dI_{sec,rms}^2$

$$P_{diode} = 0.60 \times 3.2 + 0.02 \times 5.8^2 = 2.60W$$

Heatsink:

$$R_{\theta SA} = \frac{T_J - T_A}{P_{cond}} - R_{\theta JC} - R_{\theta CS} = \frac{110 - 50}{2.6} - 2.0 - 1.6$$

$$R_{\theta SA} \approx 19^{\circ} C/W$$

Output Capacitor Selection

- ☐ Maximum output voltage ripple: $V_{ripple} = 2\% V_{out} = 0.38 \text{ V}$
 - Maximum ESR of output capacitor:

$$R_{Cout} \le \frac{V_{ripple}}{I_{sec,peak}} = \frac{0.38}{13.2} \approx 30 \,\mathrm{m}\Omega$$

RMS current circulating in C_{out}:

$$I_{Cout,RMS} = \sqrt{I_{sec,rms}^2 - I_{out}^2} = \sqrt{5.8^2 - 3.2^2} \approx 4.83 \,\text{A}$$

Two 1200- μ F capacitors (3.2 Arms, 13 m Ω / capacitor)

Losses in C_{out} :

$$P_{Cout} = R_{Cout} I_{Cout,RMS}^{2} = 6.5m \times 4.83^{2} = 0.15W$$

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

Origin of Losses

- ★ Conduction losses in ESR of capacitor, diodes, clamp resistor, sense resistor
- ★ Conduction and switching losses in MOSFET
- ★ Copper and core losses in inductor

Switching Losses at Turn-On

☐ Traditional approach:

$$P_{sw,on} = \frac{1}{2} C_{OSS} \left(V_{in,min} - \frac{V_{out} + V_f}{N_{ps}} \right)^2 F_{sw}$$
$$= \frac{1}{2} 200 p \left(100 - \frac{19 + 0.8}{0.25} \right)^2 45 k = 2 \text{ mW}$$

☐ Use the **variable** capacitor for losses calculation:

$$P_{sw,on} = \frac{2}{3} \left(V_{in,min} - \frac{V_{out} + V_f}{N_{ps}} \right)^{\frac{3}{2}} C_{DO} \sqrt{V_O} F_{sw}$$

$$= \frac{2}{3} \left(100 - \frac{19 + 0.8}{0.25} \right)^{3/2} 200 p \sqrt{25} \, 45k = \boxed{3.6 \,\text{mW}}$$

Bulk Capacitor Losses

 \square Power losses caused by ac current in the bulk capacitor ESR (350 m Ω)

$$P_{bulk} = R_{bulk} \left(I_{bulk,rms}\right)^{2}$$

$$I_{bulk,rms} = I_{in,mean} \sqrt{\frac{2}{3F_{line}(t_c)}} - 1$$

Conduction time of diode bridge

$$t_{c} = \frac{1}{4F_{line}} - \frac{\arcsin\left(\frac{V_{min}}{V_{peak}}\right)}{2\pi F_{line}} = 3 \, ms$$

Diode Bridge Losses

☐ KBU4K

 \Box From datasheet curves: $V_{TO} = 0.70 \text{ V}$, $R_d = 70 \text{ m}\Omega$

☐ There are two diodes conducting at the same time.

☐ Two diodes always conduct during half a cycle:

$$P_{diodes} = 2 \left(V_{T0} \frac{I_{in,mean}}{2} + R_d I_{d,rms}^2 \right) = 2 \times \left(0.7 \times 0.35 + 70m \times 1.04^2 \right) = 640 \, mW$$

$$I_{d,rms} = \frac{I_{in,mean}}{\sqrt{3} F_{line} t_c} = \frac{0.70}{\sqrt{3 \times 50 \times 3m}} = 1.04 \, A$$

☐ As two diodes always conduct, over a cycle, the bridge power is:

$$P_{KBU\,4K} = 2P_{diodes} = 1.28W$$

RCD Clamp Losses

□ Power losses in clamping resistor:

$$P_{Rclamp} = \frac{V_{clamp}^{2}}{R_{clamp}}$$

 \square R_{clamp} can be calculated with:

$$R_{clamp} = \frac{2V_{clamp} \left(V_{clamp} - \frac{V_{out} + V_f}{N_{ps}}\right)}{F_{sw} L_{leak} I_{peak}^{2}}$$

$$R_{clamp} = \frac{2 \times 120 \left(120 - \frac{19 + 0.8}{0.25}\right)}{45k \times 2.8\mu \times 3.32^{2}} = 7 \, k\Omega \Rightarrow R_{clamp} = 7.3 \, k\Omega$$

$$P_{Rclamp} = \frac{120^2}{7.3k} \approx 2W$$

Inductor Losses

$$P_{\mathit{Rpri}} = R_{\mathit{pri},\mathit{dc}} I_{\mathit{in},\mathit{mean}}^2 + R_{\mathit{pri},\mathit{ac}} I_{\mathit{pri},\mathit{ac}}^2$$

$$P_{Rsec} = R_{sec,dc} I_{out}^{2} + R_{sec,ac} I_{sec,ac}^{2}$$

Core losses:

Determined from data provided by the manufacturer

Losses Summary for the 19 V / 60 W Adapter

- \Box Total losses: $P_{loss} = 11.14W$
- □ Estimated efficiency: $\eta = \frac{P_{out}}{P_{out} + P_{loss}} = \frac{60}{60 + 11.14} \approx 84.4\%$

ON

Comparison with Real Adapter

☐ Efficiency measured after the EMI filter at 85 Vrms (120 Vdc)

Measured	P _{out} = 60.1 W	P _{in} = 70.9 W	η = 84.8%
Calculated	P _{out} = 60 W	P _{in} = 71.14 W	η = 84.4%

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

Synchronous Rectification

- ☐ High rms currents in secondary side → increased losses in the output diode.
- \square Replace the diode with a MOSFET featuring a very low $R_{DS(on)}$.

Synchronous Rectification Basics

- \square During (t₂-t₁), current flows into the body diode
- \square Minimize (t_2 - t_1) duration to reduce body diode conduction.

- ☐ Body diode conducts before the MOSFET is turned-on.
 - No switching losses

Losses in the Sync. Rect. Switch

$$P_{\mathit{Qsync}} = P_{\mathit{ON}} + P_{\mathit{Qdiode}}$$

■ Body diode conduction losses

$$P_{Qdiode} = V_f I_{out} F_{sw} t_{delay}$$

Low if t_{delay} small

■ MOSFET conduction losses

$$P_{ON} = R_{DS(on)120} I_{sec,rms}^{2}$$

Body diode and MOS conduction losses for the 19 V/65 W adapter

☐ Losses in the Sync. Rect. switch are mainly conduction losses.

Choosing the Sync. Rect. MOSFET

☐ Target around 1 W conduction losses in Sync. Rect. switch to avoid using an heatsink.

$$R_{DSon120} = \frac{1W}{I_{sec,RMS}^{2}}$$

$$V_{out} = 19 V$$

 $F_{sw,min} = 45 \text{ kHz}$
Universal mains

60 W QR Sync. Rect. Calculations

□ Body diode losses:
$$P_{Odiode} = V_f I_{out} F_{sw} t_{delay} = 0.7 \times 3.2 \times 45000 \times 70n$$

$$P_{Odiode} = 7 \, mW$$

$$\square$$
 MOSFET losses: $P_{ON} = R_{DS(on)120} I_{sec,rms}^2 = 30m \times 5.8^2$

$$P_{ON} = 1W$$

□ Total Sync. Rect switch losses:
$$P_{Qsync} = 1 + 0.007 \approx 1W$$

Power loss saving: 1.6 W

Using NCP4302

Adjust:

- minimum **on-time** of the Sync. MOSFET
- the minimum **off-time** of the Sync. MOSFET to be immune to drain ringing of the primary switch.

Measured Efficiency with Sync. Rect.

☐ Efficiency measured after the EMI filter at 85 Vrms

Measured	P _{out} = 60.1 W	P _{in} = 69.25 W	η = 86.8%
Calculated	P _{out} = 60 W	P _{in} = 69.54 W	η = 86.3%

Measured efficiency with Diode and Sync. Rect.

Standby power	230 Vrms	Diode	P _{in} = 110 mW
		Sync. Rect.	P _{in} = 140 mW
	85 Vrms	Diode	P _{in} = 90 mW
		Sync. Rect.	P _{in} = 122 mW

ON

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

Power Stage

- Borderline Conduction Mode Approximation.
- Neglect the high frequency Right Half Plane Zero (RHPZ)
 - Open loop transfer function of power stage

$$\hat{\frac{v_{out}(s)}{v_{FB}(s)}} = H(s) = \frac{\eta V_{IN} R_{load}}{2\alpha R_{sense} \left(2V_{out} + N_{ps}V_{IN}\right)} \left(\frac{R_{ESR} C_{out} s + 1}{(R_{eq} + R_{ESR})C_{out} s + 1}\right)$$

$$R_{eq} = R_{load} \frac{V_{out} + N_{ps}V_{IN}}{2V_{out} + N_{ps}V_{IN}}$$

a: internal dividing ratio between FB and CS from datasheet (typically 3 or 4)

The Optocoupler Pole

□ Parasitic capacitance of optocoupler → opto pole

$$s_{opto} = \frac{1}{1 + sR_{pullup}C_{opto}}$$

Optocoupler characterization reveals a pole at 5 kHz

- ☐ If f_{opto} close to f_c (R_{pullup} high) → phase margin degradation
 - Include the optocoupler pole in the power stage to calculate the phase shift at the crossover frequency.

$$H(s) = \frac{\eta V_{IN} R_{load}}{2\alpha R_{sense} \left(2V_{out} + N_{ps}V_{IN}\right)} \frac{\left(R_{ESR}C_{out} s + 1\right)}{\left((R_{eq} + R_{ESR})C_{out} s + 1\right)\left(R_{pullup}C_{opto} s + 1\right)}$$

Compensating the QR with TL431

Low frequency zero

ON

Compensating the QR Converter

 \Box Calculate f_c according to specified V_{out} undershoot for an output step load.

$$f_c \approx \frac{\Delta I_{out}}{\Delta V_{out} C_{out} 2\pi}$$

 \Box Calculate R_{LED} to boost the gain at crossover.

$$R_{LED} = CTR \frac{R_{pullup}}{10^{\frac{-H(f_c)}{20}}}$$

K Factor Method

■ Needed phase boost:

$$\begin{array}{ccc} Boost = PM - PS - 90 \\ & \uparrow & \uparrow \\ \\ \text{Selected phase} & \text{Power stage} \\ \text{margin} & \text{phase shift} \end{array}$$

$$k = \tan\left(\frac{Boost}{2} + 45\right)$$

 \square Place the zero at frequency: f_c/k

$$\Box$$
 Place the pole at frequency: k^*f_c

$$C_{zero} = \frac{1}{2\pi R_{upper}} \frac{f_c}{k}$$

$$C_{pole} = \frac{1}{2\pi R_{pullup} k f_c}$$

Loop Compensation Example

□ Specification: ΔV_{out} = 230 mV for ΔI_{out} = 2.8 A

$$f_c \approx \frac{\Delta I_{out}}{\Delta V_{out} C_{out} 2\pi} = \frac{2.8}{230m \times 2.4m \times 2\pi} \Longrightarrow f_c = 800 \, Hz$$

☐ Calculated mid-band gain: 18.6 dB

$$R_{LED} = CTR \frac{R_{pullup}}{10^{\frac{-H(f_c)}{20}}} = 0.6 \frac{18k}{10^{\frac{22}{20}}} \approx 1k\Omega$$

■ Needed Phase Boost:

$$Boost = PM - PS - 90 = 70 - (-101) - 90 = 81^{\circ}$$

$$k = \tan\left(\frac{81}{2} + 45\right) \square 12.5$$

$$C_{zero} = \frac{1}{2\pi R_{upper}} \frac{f_c}{k} = \frac{1}{2\pi \times 66k \times \frac{800}{12.5}} = 38 \, nF \Rightarrow C_{zero} = 47 \, nF$$

$$C_{pole} = \frac{1}{2\pi R_{pullup} k f_c} = \frac{1}{2\pi \times 18k \times 12.5 \times 800} = 0.8 \, nF \Rightarrow C_{pole} = 1 \, nF$$

Frequency (Hz)

Measurement versus Calculation

□ Power stage gain and phase

- -- Measured gain
- -- Measured phase
- -- Calculated gain
- -- Calculated phase

The RHPZ is around 20 kHz.

Measurement versus Calculation

■ Loop gain and phase

- -- Measured gain
- -- Measured phase
- -- Calculated gain
- -- Calculated phase

Agenda

- 1. Quasi-Resonant (QR) Generalities
- 2. Limiting the free-running frequency
- 3. Calculating the QR inductor
- 4. Choosing the Power Components
- 5. Predicting the Losses of a QR Power Supply
- 6. Synchronous Rectification
- 7. Loop Compensation
- 8. NCP1380, our future QR controller

NCP1380 Features

- ☐ Operating modes:
 - QR current-mode with valley lockout for noise immunity
 - VCO mode in light load for improved efficiency
- ☐ Protections
 - Over power protection
 - Soft-start
 - Short circuit protection
 - Over voltage protection
 - Over temperature protection
 - Brown-Out

- ☐ Sampling date: end of January 09
- ☐ Mass production: end of Feb. 09

Control Topology Comparison

	Fixed F _{sw}	Quasi Resonant	Fixed On Time (FOT)(NCP1351)	QR-FOT (NCP1380)
Frequency	Fixed	Variable (max power at min F _{sw})	Variable (max power at max F _{sw})	Variable (min P _{out} at min F _{sw})
Light load efficiencies	Normal (with skip mode or freq foldback)	Valley jumping problem (noise) Max F _{sw} at min P _{out}	Best	Best
Full load efficiencies	Normal	Best	Normal	Best
Operating mode	CCM/DCM	BCM (Borderline)	CCM/DCM	BCM/DCM
Transformer size	Normal	Larger	Normal	Normal
ЕМІ	Normal	Smaller	Normal	Smaller

QR-FOT: your key to improve standby (FOT) and optimize both efficiency and EMI (QR) for a wide output power range !!!

QR Mode with Valley Lockout

- As the load decreases, the controller changes valley (1st to 4th valley)
- □ The controller stays locked in a valley until the output power changes significantly.

- No valley jumping noise
- Natural switching frequency limitation

VCO Mode

- \Box Occurs when $V_{FB} < 0.8 \text{ V}$ (P_{out} decreasing) or $V_{FB} < 1.6 \text{ V}$ (P_{out} increasing)
- \Box Fixed peak current (17.5% of $I_{pk,max}$), variable frequency set by the FB loop.

OPP: How does it Work?

- \Box L_{aux} with flyback polarity swings to $-NV_{IN}$ during the on time.
- \Box Adjust amount of OPP voltage with $R_{opu} // R_{opl}$.

$$\Box V_{CS.max} = 0.8 \text{ V} + V_{OPP}$$

Non dissipative OPP!

NCP1380 Versions

☐ 4 versions of NCP1380: A, B, C and D

	ОТР	OVP	ВО	Auto-Recovery Over current protection	Latched Over current protection
NCP1380 / A	X	X			X
NCP1380 / B	X	X		X	
NCP1380 /		X	X		X
NCP1380 /		X	X	X	

Short-Circuit Protection

- ☐ Internal 80-ms timer for short-circuit validation.
- Additional CS comparator with reduced LEB to detect winding short-circuit.
- \Box $V_{CS(stop)} = 1.5 * V_{ILIMIT}$

Short-Circuit Protection (A and C Versions)

- ☐ A and C versions: the fault is latched.
 - $\succ V_{CC}$ is pulled down to 5 V and waits for ac removal.

Short Circuit Protection (B and D)

- ☐ Auto-recovery short circuit protection: the controller tries to restart
- ☐ Auto-recovery imposes a low burst in fault mode.
 - Low average input power in fault condition

OVP / OTP (A & B Versions)

- OVP and OTP detection are achieved by reading the voltage on the pin 7.
- \Box If the temperature increases, the NTC resistor reduces and V_{Fault} decreases.

When $V_{Fault} < V_{OTP} \rightarrow$ the controller is latched.

 \Box If V_{CC} increases, the zener diode injects current in the clamp circuit.

When $V_{Fault} > V_{OVP} \rightarrow$ the controller is latched.

BO / OVP (C & D Versions)

BO $\begin{cases} & \text{If } V_{pin7} > \text{BO threshold & } V_{CC} > VCC_{on}, \text{ the controller starts pulsing.} \\ & \text{The hysteresis current source is ON when } V_{pin7} > \text{BO threshold.} \end{cases}$

OVP $\begin{cases} & \text{If } V_{CC} > BV_{Dz}, \text{ the zener diode injects current inside the clamp resistor.} \\ & \text{When } V_{pin7} \text{ reaches the OVP threshold, the controller is latched.} \end{cases}$

Conclusion

- ☐ Changing valley as the load decreases is a way to limit the maximum switching frequency in QR power supplies.
- □ Lots of equations to predict the efficiency of the power supply, but good matching between calculations and the measurement.
- ☐ Synchronous rectification increases the efficiency of the QR power supply but increases also the power consumption in standby.
- ☐ Friendly compensation for QR power supply (DCM: 1st order system)
- □ NCP1380 features:
 - QR current-mode with valley lockout for noise immunity for high load.
 - VCO mode in light load for improved efficiency.

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at <u>www.onsemi.com/powersupplies</u>