IEEE Sistema de Dirección 3.0 CIMB

Campus Ciudad de México

Escuela de Diseño, Ingeniería y Arquitectura Departamento de Ingeniería Mecatrónica

Asesores

Dr. Martín Rogelio Bustamante Bello Ing. Javier Izquierdo Reyes

Proyecto de Ing. Mecánica Eléctrica

Diciembre 2018

IME Miguel Ángel Avilés Cabrera A01333189
 IME Juan Escalona Santiago A01332691
 IME Diego Arroyo Jiménez A01332722
 IME Diego López Bernal A01332642

JUSTIFICACIÓN TÉCNICA >>>

- Actuales sistemas con precio elevado e invasivos para pasajeros AB Dynamics SR60 Torus Steering Robot | Perrone Robotics
- Desarrollo de industria automotriz con tendencia en autos autónomos.

OBJETIVOS

Rediseñar un sistema auxiliar en el control de la dirección que ocupe un menor espacio en comparación al prototipo anterior, sin comprometer la seguridad del piloto o los pasajeros.

- Reducir espacio de instalación
- Reducir Peso
- ➤ Homogeneizar materiales
- > Universalidad del modelo
- Reducir dimensiones
- Reducir desgaste de piezas
- Hacer al prototipo menos invasivo

DESARROLLO

SELECCIÓN DE MOTOR & MATERIALES

- Par necesario (2.94 Nm)
- Reducción en desgaste entre engranes
 - Reducción en peso y dimensiones

Selección de Aluminio 1100 para:

- Piñón
- Corona Dentada
- > Eje
- Estructura A

Material	Deformación
Aluminio 1100 (Original)	$2.131 \times 10^{-4} mm$
ABS	$7.35 \times 10^{-3} mm$
Nylamid	$1.779 \times 10^{-3} mm$
Aluminio 6061	$2.504 \times 10^{-4} mm$
Aluminio 6063	$2.101 \times 10^{-4} mm$
Aluminio 7075	$2.053 \ x10^{-4} \ mm$

' Piñón y Corona Dentada hechas en CNC VF-2 HAAS

MANUFACTURA DE PROTOTIPO 3.0

Jnión entre ventosas
y Motor acoplado
con engranes
a contacto

entre engranes

Maquinado en fresa -

ESCAPE 2011

MAZDA 6 2018

FOCUS 2013

CONCLUSIÓN

Se logró diseñar y manufacturar un prototipo funcional capaz de cambiar la posición del volante de un automóvil. Haciendo considerables mejoras en:

Reducción de dimensiones y peso; reducción en desgaste; homogenización de materiales; universalidad; mayor visibilidad; practicidad de instalación; seguridad; estética.

