Topic 1 Tutorial Questions

Isotopes

1. The isotopes of magnesium and their percentage abundances are:

Isotope	²⁴ Mg	²⁵ Mg	²⁶ Mg
Abundance (%)	78.6	10.1	11.3

Calculate the relative atomic mass of magnesium.

[24.3]

- 2. Calculate the relative atomic mass of gallium given the percentage abundances: 69 Ga 60.2% and 71 Ga 39.8%. [69.8]
- 3. Bromine has two isotopes, 79 Br and 81 Br. At what values of m/z would you expect to find lines in the mass spectrum of bromine, Br₂? (Assume that only 1+ ions are formed). [79, 81, 158, 160, 162]

Mole concept

- 1. What is the mass of 4 mol of sodium chloride, NaCl? [243 g]
- 2. How many moles is 37 g of calcium hydroxide, $Ca(OH)_2$? [0.5]
- 3. 0.004 mole of a substance weighs 1 g. what is the relative molecular mass of compound? [250]
- 4. Titanium is manufactured by heating titanium(IV) chloride with sodium

What mass of sodium is required to produce 1 tonne of titanium? [1.92 tonnes]

5. 2.67 g of aluminium chloride was dissolved in water and an excess of silver nitrate solution was added to give a precipitate of silver chloride :

AlCl3 +
$$3AgNO_3 \rightarrow Al(NO_3)_3 + 3AgCl$$

What mass of silver chloride precipitate would be formed? [8.61]

6. Calcium hydroxide is manufactured by heating calcium carbonate strongly to produce calcium oxide, and then adding a controlled amount of water to produce calcium hydroxide:

$$CaCO_3 \rightarrow CaO + CO_2$$

$$CaO + H_2O \rightarrow Ca(OH)_2$$

(a) What mass of water would you need to add the calcium oxide produced from 1 tonne of calcium carbonate? [0.18 tonnes]

	(b) What mass of calcium hydroxide would you ultimately produce from 1 tonne of calcium carbonate? [0.74 tonnes]
Empiri	cal formula
1.	1.24 g of phosphorus was burnt completely in oxygen to give 2.84 g of phosphorus oxide. Find : a) The empirical formula of the oxide, and $[P_2O_5]$ b) The molecular formula of the oxide given that 1 mole of the oxide weighs 284 g. $[P_4O_{10}]$
2.	An organic compound contained 66.7% C, 11.1% H, 22.2% O by mass. Its relative molecular mass was 72. Find :
	a) The empirical formula of the compound, and [C ₄ H ₈ O] b) The molecular formula of the compound. [C ₄ H ₈ O]
Avoga	dro's constant
1.	How many water molecules are there in 1 drop of water? Assume 1 drop of water is 0.05 cm^3 and that the density of water is 1 g cm ^{-3.} [1.67 x 10^{21}]
2.	Sea water contains about 30 g of ionic sodium chloride in every 1000 cm^3 of water. What volume of sea water contains 10^{20} ion pairs, Na ⁺ Cl ⁻ ? [3.007 x 10^{23}]
3.	Which of the following contains the greatest number of stated particles?
	a. Molecules of hydrogen in 1 g of hydrogen gas,b. Atoms of helium in 1 g of helium gas,c. Atoms of beryllium in 1 g of beryllium.
	[A]
Concer	stration of solutions
1.	What is the minimum volume of 2.00 mol dm $^{-3}$ HCl needed to react with 1.25 g of magnesium carbonate, MgCO $_3$? [14.9 cm 3]

2. When an excess of silver nitrate was added to 10.0 cm³ of sodium chloride solution, 0.780 g of silver chloride was precipitated. Find the concentration of the sodium chloride solution in g dm

[31.8 g dm⁻³]

3. 25.0 cm³ of 0.125 mold dm⁻³ sodium hydroxide was neutralized by 17.5 cm³ of dilute nitric acid of unknown concentration. Calculate the concentration of the nitric acid in mol dm⁻³. [0.179 mol dm⁻³]

Volume of gasses

1. 20 cm^3 of a hydrocarbon needed 90 cm_3 of oxygen for complete combustion. 60 cm^3 of CO_2 was produced. All volumes were measured at room temperature and pressure. Find the formula of the hydrocarbon.

 $[C_3H_6]$

2. 10 cm³ of an unknown hydrocarbon was sparked with 100 cm³ of oxygen (an excess). When the resulting gases were cooled back to the original room temperature, they had a volume of 75 cm³. Exposure of the gasses to sodium hydroxide solution reduced the volume to 35 cm³. Find the formula of the hydrocarbon.

 $[C_4H_{10}]$

3. 2.76 g of a carbonate, X₂CO₃, was treated with an excess of dilute hydrochloric acid, and the carbon dioxide evolved was collected and measure. 480 cm³ was produced at room temperature and pressure.

$$X_2CO_3 + 2HCI \rightarrow 2XCI + CO_2 + H_2O$$

Calculate:

- a) The number of moles of X₂CO₃ in the experiment, [0.02]
- b) The mass of 1 mole of X₂CO₃, and [138 g]
- c) The relative atomic mass of X. [39]

Percentage yield

1. A student had to produce some magnesium sulfate crystals, MgSO4.7H2O. He reacted 1.20 g of magnesium with a slight excess of sulfuric acid to give magnesium sulfate solution and later evaporated off to give 9.48 g of crystals. Calculate the percentage yield.

Making the solution : $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$

Crystallising the solution : $MgSO_4 + 7H_2O \rightarrow MgSO_4.7H_2O$ [80%]

2. A teacher demonstrated the formation of silicon tetrachloride, $SiCl_4$, by passing dry chlorine over 1.0 g of heated silicon powder until all the silicon had reacted. 3.5 cm³ of silicon tetrachloride.

$$Si(s) + 2Cl_2(g) \rightarrow SiCl_4(I)$$

[85%]