EJERCICIOS A RESOLVER

Parte I (50%): Ejercicios con estructura secuencial

$$perimetro \approx \pi \left[3(a+b) - \sqrt{(3a+b)(3b+a)} \right]$$

En donde a y b

son el radio mayor y menor, Ambos radios son medidos en milímetros.

1. **(10%)** La anterior fórmula, creada por el científico indio Ramanujan, permite determinar un valor muy aproximado del perímetro de una elipse:

Determine la longitud del perímetro de una elipse y muestre su medida en centímetros y en pulgadas.

2. **(10%)** Solicite al usuario los datos necesarios para calcular y mostrar el área (Superficie Total) de cada uno de los siguientes cuerpos geométricos, cuyas medidas se ingresan en centímetros:

ESFERA

PIRÁMIDE

CONO

De la pirámide solamente se debe solicitar la medida del lado de la base (b) y la altura y Del cono, se conoce la generatriz (g) y la altura (h).

3. (10%) La ganancia de voltaje de un amplificador está dado por la siguiente fórmula:

ganancia voltaje =
$$\left[\frac{23}{\sqrt[2]{23^2 + 0.25f^2}}\right]^n$$

En donde f es la frecuencia (en Hertz) y n es el número de etapas en el amplificador. El resultado de la ganancia de voltaje calculada se debe imprimir con este formato:

En un amplificador de xxx Etapas:

A una frecuencia de yyy hertzios, el aumento de voltaje es de zzz voltios.

En donde *xxx* es el número de etapas del amplificador, *yyy* es la frecuencia y *zzz* es la ganancia de voltaje que se obtendrá.

4. **(10%)** La altura máxima (h) en metros que alcanza una pelota lanzada a uno velocidad inicial (Vo en metros por segundo) a un ángulo θ (en grados sexagesimales) está dada por la fórmula:

$$h = (0.5 \, Vo^2 \, (\sin \theta)^2)/9.8$$

Determine la altura máxima h, equivalente en millas que alcanza la pelota al ser lanzada.

Parte II (50%): Ejercicios con estructuras de decisión

5. **(15%)** Ayude a un estudiante de electrónica básica a determinar el resultado de la compuerta lógica XOR y de una NAND.

Las entradas serán las letras (v, f) y pueden ser brindadas en minúsculas y/o mayúsculas. Los valores lógicos de salida a retornar al usuario serán las letras (V, F).

- 6. **(15%)** Un obrero necesita calcular su salario semanal, el cual se obtiene de la sig. manera:
 - Su empleador le define un valor específico por hora laborada de manera normal indicado en su contrato semanal de trabajo.
 - Si trabaja 30 horas o menos se le paga el valor salario/hora normal.
 - Si trabaja más de 30 horas se le paga el valor salario/hora normal por cada una de las primeras 30 horas y cada hora extra se paga con el 125% de la hora normal.
- 7. **(20%)** Brinde su ayuda a un técnico en electrónica, permitiéndole determinar el valor de una resistencia cualquiera, a partir de los colores de las 4 bandas que presentan estos dispositivos. Ejemplo de las bandas de colores de una resistencia:

Debe asegurarse que la medida a retornar al usuario siempre sea igual o mayor de 1 y también menor de 1000, por lo que deberá determinar cuándo usar prefijos (Kilo $[\mathbf{K}]$, Mega $[\mathbf{M}]$, Giga $[\mathbf{G}]$) del Sistema Internacional de medidas. Observe algunos ejemplos de bandas ingresadas por usuario y el valor de resistencia (Ohmios) que debe retornar el algoritmo:

Tome como referencia el siguiente código de colores para las resistencias:

Rúbrica de evaluación

Tabla 1:

		problema							
aspecto	%	1	2	3	4	5	6	7	
А	15%								
В	15%								
С	10%								
D	40%								
E	20%								
Nota de cada solucion:									

Tabla 2:

problema	%	Nota de cada solución:	Total
1	10%		
2	10%		
3	10%		
4	10%		
5	10%		
6	15%		
7	15%		
8	20%		
Nota	Guia de Eje	ercicios =	