Audio Source Separation Report

Group 16

1 Algorithm Analysis

1.1 AoA Estimation

The AoA Estimation is based on the Delay-and-Sum Algorithm which has been described in the lab document and will not be repeated here.

1.2 Source Separation

Our Source Separation is also based on the Delay-and-Sum Algorithm, and the basic analysis is as follows. There are 4 microphones $m_0 - m_3$, 2 audio sources signals $s_1(t), s_2(t)$, and 4 signals $s_1(t), s_2(t)$, will be received, as shown below.

First we take the Fourier Transforms of the sources signals and the received signals.

$$s(t) \stackrel{FFT}{\Longrightarrow} S(f) \qquad x(t) \stackrel{FFT}{\Longrightarrow} X(f)$$

If the AoA between of source 1 and source 2 are θ_1 , θ_2 , then the delay is $\phi_1 = \frac{2\pi dcos(\theta_1)f_ik}{c}$, $\phi_2 = \frac{2\pi dcos(\theta_2)f_ik}{c}$, k = 0, 1, 2, 3

So the received signals can be written as

$$\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} e^0 & e^0 \\ e^{j\phi_1} & e^{j\phi_2} \\ e^{j2\phi_1} & e^{j2\phi_2} \\ e^{j3\phi_1} & e^{j3\phi_2} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$

The purpose of the part 4 is to solve S_1 and S_2 . According to the previous part, we already get θ_1 and θ_2 by AoA estimation, and then we preced as follows.

$$\begin{bmatrix} e^0 & e^{-j\phi_1} & e^{-j\phi_2} & e^{-j\phi_3} \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} e^0 & e^{-j\phi_1} & e^{-j\phi_2} & e^{-j\phi_3} \end{bmatrix} \begin{bmatrix} e^0 & e^0 \\ e^{j\phi_1} & e^{j\phi_2} \\ e^{j2\phi_1} & e^{j2\phi_2} \\ e^{j3\phi_1} & e^{j3\phi_2} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$

$$= 4S_1 + \sum_{k=1}^3 e^{jk(\phi_2 - \phi_1)} S_2$$

$$\approx 4S_1$$

Thus we successfully separate S1 and in the same way we can separate S2.

$$S_{1}(f_{i}) \approx \frac{1}{4} \left[e^{0} \quad e^{-j\frac{2\pi d\cos(\theta_{1})1f_{i}}{c}} \quad e^{-j\frac{2\pi d\cos(\theta_{1})2f_{i}}{c}} \quad e^{-j\frac{2\pi d\cos(\theta_{1})3f_{i}}{c}} \right] \begin{bmatrix} X_{0}(f_{i}) \\ X_{1}(f_{i}) \\ X_{2}(f_{i}) \\ X_{3}(f_{i}) \end{bmatrix}$$

$$\approx \frac{1}{4} \sum_{k=0}^{3} e^{-j\frac{2\pi d\cos(\theta_{1})f_{i}k}{c}} \cdot X_{k}(f_{i})$$

Finally, we take the inverse Fourier transform of \mathcal{S}_1 and \mathcal{S}_2 to complete the separation.

$$S(f) \stackrel{IFFT}{\Longrightarrow} s(t)$$

2 Results

2.1 Part 1 and Part 2

Figure 1: 4-1-v1

Figure 3: 4-1-v3

Figure 2: 4-1-v2

Figure 4: 4-1-v4

And the estimated AoA of each part is

	v1	v2	v3	v4
Clean	2.466	1.791	0.927	0.660
Noise	2.466	1.791	0.911	0.675

2.2 Part 3

Figure 5: Multiple Source Data

And the estimated AoA is

	source 1	source 2
Clean	1.005	2.011
Noise	1.005	2.011