Einführung in die Integralrechnung: Teil 1

Andreas Henrici

MANIT2 IT18ta_ZH

19.02.2019

Überblick

- Das unbestimmte Integral
 - Stammfunktion und unbestimmtes Integral
 - Integrale der elementaren Funktionen
 - Elementare Integrationsregeln

Unbestimmtes Integral: Ein Beispiel zur Einführung

Beispiel

Ein Objekt bewegt sich längs der *x*-Achse. Zum Zeitpunkt *t* beträgt seine momentane Geschwindigkeit

$$v(t) = 4t^2 + 5t + 6.$$

Bestimmen Sie den Standort x(t) dieses Objekts zur Zeit t.

Stammfunktion

Definition

Sei f(x) eine auf einem Intervall *I* definierte Funktion. Eine Funktion F(x) heisst *Stammfunktion* von f(x), falls für alle $x \in I$ gilt:

$$F'(x) = f(x)$$
.

Beispiel

Bestimmen Sie eine Stammfunktion F(x) für die Funktionen

a)
$$f(x) = 3(x-2)^2$$

b)
$$f(z) = 2e^{\frac{z}{2}}$$

Verschiedene Stammfunktionen der gleichen Funktion

Abbildung: Verschiedene Stammfunktionen der gleichen Funktion

Verschiedene Stammfunktionen der gleichen Funktion

Satz

 Voraussetzung: F(x) ist eine Stammfunktion von f(x) auf dem Intervall I, d.h.

$$F'(x) = f(x)$$
.

• Aussage: Für eine beliebige Konstante $C \in \mathbb{R}$ ist die Funktion

$$G(x) = F(x) + C$$

ebenfalls eine Stammfunktion von f(x).

Beweis.

- Voraussetzung: F'(x) = f(x)
- Also: (F(x) + C)' = F'(x) + 0 = f(x)
- Dies bedeutet: F(x) + C ist auch eine Stammfunktion von f(x).

Verschiedene Stammfunktionen der gleichen Funktion

Satz

• Voraussetzung: F(x) und G(x) sind zwei verschiedene Stammfunktionen von f(x) auf dem Intervall I, d.h.

$$F'(x) = f(x),$$
 $G'(x) = f(x)$

 Aussage: F(x) und G(x) unterscheiden sich nur um eine Konstante, d.h. es gibt eine Konstante C ∈ ℝ, so dass gilt:

$$F(x) = G(x) + C.$$

Beweis.

- Voraussetzung: F'(x) = f(x), G'(x) = f(x).
- Für die Differenz F(x) G(x) gilt dann: (F(x) - G(x))' = f(x) - f(x) = 0
- Dies bedeutet: F(x) G(x) muss konstant sein!
- D.h. es gibt eine Konstante $C \in \mathbb{R}$ mit der Eigenschaft: F(x) G(x) = C.

Unbestimmtes Integral: Definition

Definition

- Das *unbestimmte Integral* einer Funktion f(x) auf einem Intervall I ist die Menge aller Stammfunktionen von f(x).
- Notation:

$$\int f(x)\,\mathrm{d}x.$$

• Die Funktion f(x) heisst auch der *Integrand* des Integrals.

Unbestimmtes Integral: Beispiele

Beispiel

Das unbestimmte Integral das Funktion $f(x) = x^3$ ist

$$\int x^3 dx = \frac{1}{4}x^4 + C \quad (C \in \mathbb{R}).$$

Beispiel

Bestimmen Sie das unbestimmte Integral

$$\int \sin(3x) \, \mathrm{d}x.$$

Satz

Unbestimmte Integrale von Potenzfunktionen:

a)
$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \qquad (\alpha \neq -1)$$

$$b) \int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

Beweis.

Nachrechnen durch Ableiten!

Bemerkung

- Man beachte das Betragszeichen bei $\int \frac{1}{x} dx = \ln |x| + C!$
- Die Funktion $\frac{1}{x}$ ist auf $\mathbb{R} \setminus \{0\}$ definiert, die Funktion $\ln(x)$ nur auf $\mathbb{R}_{>0}$, aber die Funktion $\ln|x|$ auf $\mathbb{R} \setminus \{0\}$.

Satz

Unbestimmte Integrale von Exponential- und Logarithmusfunktionen:

$$c) \int e^x dx = e^x + C$$

$$d) \int a^x dx = \frac{a^x}{\ln(a)} + C \quad (a > 0)$$

e)
$$\int \ln(x) dx = x \cdot \ln(x) - x + C$$

f)
$$\int \log_a(x) dx = \frac{x \cdot \ln(x) - x}{\ln(a)} + C \quad (a > 0)$$

Beweis.

Satz

Unbestimmte Integrale von trigonometrischen Funktionen:

$$\mathbf{g)} \int \cos(x) \, \mathrm{d}x = \sin(x) + C$$

$$\mathbf{h)} \int \sin(x) \, \mathrm{d}x = -\cos(x) + C$$

i)
$$\int \tan(x) \, \mathrm{d}x = -\ln|\cos(x)| + C$$

Beweis.

Satz

Unbestimmte Integrale von weiteren Funktionen:

$$\mathbf{j)} \int \frac{1}{1+x^2} \, \mathrm{d}x = \arctan(x) + C$$

$$k) \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin(x) + C$$

$$\int \frac{-1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arccos(x) + C$$

Beweis.

Integrale von Linearkombinationen

Satz

• Voraussetzung: Es seien die unbestimmten Integrale F(x) + C und G(x) + C der Funktionen f(x) bzw. g(x) bekannt, d.h.

$$\int f(x) dx = F(x) + C, \qquad \int g(x) dx = G(x) + C$$

• Aussage: Das unbestimmte Integral der Linearkombination $\lambda_1 f(x) + \lambda_2 g(x)$ ist

$$\int (\lambda_1 f(x) + \lambda_2 g(x)) dx = \lambda_1 F(x) + \lambda_2 G(x) + C \quad (\lambda_1, \lambda_2 \in \mathbb{R}).$$

Beweis.

Integrale von verschobenen Funktionen

Satz

• Voraussetzung: Es sei das unbestimmte Integral F(x) + C der Funktion f(x) bekannt, d.h.

$$\int f(x)\,\mathrm{d}x=F(x)+C$$

• Aussage: Das unbestimmte Integral der um den Betrag k in x-Richtung verschobenen Funktion g(x) = f(x - k) ist

$$\int f(x-k)\,\mathrm{d}x = F(x-k) + C \quad (k\in\mathbb{R}).$$

Beweis.

Integrale von gestreckten Funktionen

Satz

• Voraussetzung: Es sei das unbestimmte Integral F(x) + C der Funktion f(x) bekannt, d.h.

$$\int f(x)\,\mathrm{d}x=F(x)+C$$

• Aussage: Das unbestimmte Integral der um den Faktor k in x-Richtung gestreckten/gestauchten Funktion $g(x) = f(k \cdot x)$ ist

$$\int f(k \cdot x) \, \mathrm{d}x = \frac{1}{k} F(k \cdot x) + C \quad (k \neq 0).$$

Beweis.

Integrationsregeln: Beispiele

Beispiel

Bestimmen Sie die folgenden unbestimmten Integrale:

- a) $\int 25e^x dx$
- **b)** $\int (-13x^3) \, dx$
- c) $\int e^{\frac{3}{2}x} dx$
- **d)** $\int \frac{1}{x-6} \, \mathrm{d}x$
- **e)** $\int (8x^3 4x + 2) dx$