Binomial Identity in Arbitrary Bases

Lin Jiu

Research Institute for Symbolic Computation Johannes Kepler University Linz @ Beijing Institute of Technology

July 26th 2016

Introduction

Binomial Identity

$$(X+Y)^n = \sum_{k=0}^n \binom{n}{k} X^k Y^{n-k}.$$

Generalization.

Multi-nomial Identity

$$(X_1 + \dots + X_m)^n = \sum_{k_1 + \dots + k_m = n} {n \choose k_1, \dots, k_m} X_1^{k_1} \dots X_m^{k_m}$$

Introduction

Binomial Identity

$$(X+Y)^n = \sum_{k=0}^n \binom{n}{k} X^k Y^{n-k}.$$

Generalization.

Multi-nomial Identity

$$(X_1 + \dots + X_m)^n = \sum_{k_1 + \dots + k_m = n} {n \choose k_1, \dots, k_m} X_1^{k_1} \dots X_m^{k_m}$$

Introduction

Binomial Identity

$$(X+Y)^n = \sum_{k=0}^n \binom{n}{k} X^k Y^{n-k}.$$

Generalization.

Multi-nomial Identity

$$(X_1 + \cdots + X_m)^n = \sum_{k_1 + \cdots + k_m = n} {n \choose k_1, \ldots, k_m} X_1^{k_1} \cdots X_m^{k_m}.$$

n	1	2	3	4	5	6	7	
$(n)_{2}$	1	10	11	100	101	110	111	

DEF

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n.

$$\begin{cases} S_2(3) = 2 \\ S_2(4) = 1 \\ S_2(7) = 3 \end{cases}$$

n	0	1	2	3	4	5	6	7	
$(n)_2$	0	1	10	11	100	101	110	111	

DEF

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n.

$$\begin{cases} S_2(3) = 2 \\ S_2(4) = 1 \\ S_2(7) = 3 \end{cases}$$

n	0	1	2	3	4	5	6	7	
$(n)_2$	0	1	10	11	100	101	110	111	

DEF.

 $S_2(n) = \#$ of 1's in the binary expansion of n.

$$S_2(3) = 2$$

 $S_2(4) = 1$
 $S_2(7) = 3$

n	0	1	2	3	4	5	6	7	
$(n)_2$	0	1	10	11	100	101	110	111	

DEF.

 $S_2(n) = \#$ of 1's in the binary expansion of n.

$$\begin{cases} S_2(3) = 2 \\ S_2(4) = 1 \\ S_2(7) = 3 \end{cases}$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{0 \le k \le n \& \& \text{some condition}} X^{S_2(k)} Y^{S_2(n-k)}$$

some condition = there is no carry when adding k + (n - k) = n.

$$k + (n - k) = n$$
 is carry free $\Leftrightarrow S_2(k) + S_2(n - k) = S_2(n)$.

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{0 \le k \le n \& \& \text{some condition}} X^{S_2(k)} Y^{S_2(n-k)},$$

some condition = there is no carry when adding k + (n - k) = n.

$$k + (n - k) = n$$
 is carry free $\Leftrightarrow S_2(k) + S_2(n - k) = S_2(n)$.

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

Theorem

$$(X + Y)^{S_2(n)} = \sum_{0 \le k \le n \& \& \text{some condition}} X^{S_2(k)} Y^{S_2(n-k)}$$

some condition = there is no carry when adding k + (n - k) = n.

In fact,

$$k + (n - k) = n$$
 is carry free $\Leftrightarrow S_2(k) + S_2(n - k) = S_2(n)$.

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

Theorem

$$(X + Y)^{S_2(n)} = \sum_{0 \le k \le n \& \& \text{some condition}} X^{S_2(k)} Y^{S_2(n-k)}$$

some condition = there is no carry when adding k + (n - k) = n. In fact,

$$k + (n - k) = n$$
 is carry free $\Leftrightarrow S_2(k) + S_2(n - k) = S_2(n)$.

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

Theorem

$$(X + Y)^{S_2(n)} = \sum_{0 \le k \le n \& \& \text{some condition}} X^{S_2(k)} Y^{S_2(n-k)}$$

some condition = there is no carry when adding k + (n - k) = n. In fact,

$$k + (n - k) = n$$
 is carry free $\Leftrightarrow S_2(k) + S_2(n - k) = S_2(n)$.

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

Example

 $n = 6 = (110)_2$. Therefore,

$$LHS = (X + Y)^{S_2(2)} = (X + Y)^2$$

On the other hand,

k + (n - k)	0+6	1 + 5	2+4		4+2	5 + 1	6+0
		001	010	011	100	101	110
	110	101	100	011	010	001	
Carry-free		X	√		√	X	√

RHS =
$$X^{S_2(0)}Y^{S_2(6)} + X^{S_2(2)}Y^{S_2(4)} + X^{S_2(4)}Y^{S_2(2)} + X^{S_2(6)}Y^{S_2(0)}$$

= $Y^2 + XY + XY + X^2$.

Remark

Example

 $n = 6 = (110)_2$. Therefore,

$$LHS = (X + Y)^{S_2(2)} = (X + Y)^2.$$

On the other hand,

k+(n-k)	0+6	1 + 5	2 + 4		4+2	5+1	6+0
		001	010	011	100	101	110
	110	101	100	011	010	001	
Carry-free	√	×	√	×	\checkmark	×	\checkmark

RHS =
$$X^{S_2(0)}Y^{S_2(6)} + X^{S_2(2)}Y^{S_2(4)} + X^{S_2(4)}Y^{S_2(2)} + X^{S_2(6)}Y^{S_2(0)}$$

= $Y^2 + XY + XY + X^2$.

Remark

Example

 $n = 6 = (110)_2$. Therefore,

$$LHS = (X + Y)^{S_2(2)} = (X + Y)^2.$$

On the other hand,

k+(n-k)	0+6	1+5	2+4	3+3	4+2	5 + 1	6+0
	000	001	010	011	100	101	110
Binary	110	101	$\frac{100}{110}$	$\frac{011}{110}$	$\frac{010}{110}$	001	000
Carry-free	√ V	X	√ V	X	√ V	110 X	√ 110

RHS =
$$X^{S_2(0)}Y^{S_2(6)} + X^{S_2(2)}Y^{S_2(4)} + X^{S_2(4)}Y^{S_2(2)} + X^{S_2(6)}Y^{S_2(0)}$$

= $Y^2 + XY + XY + X^2$.

Remark

Example

 $n = 6 = (110)_2$. Therefore,

$$LHS = (X + Y)^{S_2(2)} = (X + Y)^2.$$

On the other hand,

k+(n-k)	0+6	1+5	2+4	3+3	4+2	5 + 1	6+0
	000	001	010	011	100	101	110
Binary	110	101	100	011	010	001	000
Billary	110	110	110	110	110	110	110
Carry-free	✓	×	\checkmark	×	\checkmark	×	√

RHS =
$$X^{S_2(0)}Y^{S_2(6)} + X^{S_2(2)}Y^{S_2(4)} + X^{S_2(4)}Y^{S_2(2)} + X^{S_2(6)}Y^{S_2(0)}$$

= $Y^2 + XY + XY + X^2$.

Remark

Example

 $n = 6 = (110)_2$. Therefore,

LHS =
$$(X + Y)^{S_2(2)} = (X + Y)^2$$
.

On the other hand,

k+(n-k)	0+6	1+5	2+4	3+3	4+2	5 + 1	6+0
	000	001	010	011	100	101	110
Binary	110	101	$\frac{100}{110}$	$\frac{011}{110}$	$\frac{010}{110}$	001	000
Carry-free	√ V	X	√ V	X	√ V	110 X	√ 110

RHS =
$$X^{S_2(0)}Y^{S_2(6)} + X^{S_2(2)}Y^{S_2(4)} + X^{S_2(4)}Y^{S_2(2)} + X^{S_2(6)}Y^{S_2(0)}$$

= $Y^2 + XY + XY + X^2$.

Remark

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ????$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3,

$$1 + 1 = 2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ????$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0+1, 0+0 are OK and 1+1 is not. \Leftrightarrow Carry Free. In base 3.

$$1 + 1 = 2$$
?

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ????$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0+1, 0+0 are OK and 1+1 is not. \Leftrightarrow Carry Free. In base 3.

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ????$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3.

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

- # of 1's? # of 2's? # of non-zero digits?
- In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3,

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3.

$$1 + 1 = 2$$
?

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3.

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3,

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0+1, 0+0 are OK and 1+1 is not. \Leftrightarrow Carry Free. In base 3.

$$1+1=2?$$

Theorem

$$(X+Y)^{S_2(n)} = \sum_{S_2(k)+S_2(n-k)=S_2(n)} X^{S_2(k)} Y^{S_2(n-k)}.$$

carry-free $\Leftrightarrow \binom{S_2(n)}{l}$, i.e., distributing 1's in $\binom{n}{2}$.

- How to generalize this result to other bases rather than 2, for example 3?
- How to define

$$S_3(n) = ???$$

of 1's? # of 2's? # of non-zero digits?

■ In binary, 0 + 1, 0 + 0 are OK and 1 + 1 is not. \Leftrightarrow Carry Free. In base 3,

$$1 + 1 = 2$$
?

 $S_2(n) = \#$ of 1's in the binary expansion of n = sum of all digits.

Thus,

 $S_b(n) = \text{sum of all digits of } n \text{ in its expansion of base } b.$

Unfortunately
$$(X + Y)^{S_3(n)} \neq \sum_{\text{carry-free}} X^{S_3(k)} Y^{S_3(n-k)}$$

$$S_3(2) = S_3((2)_3) = 2.$$
Binary

Carry-free $\sqrt{}$

$$LHS = (X + Y)^2 \neq X^2 + XY + Y^2 = RHS.$$

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n= sum of all digits.

Thus

 $S_b(n) = \text{sum of all digits of } n \text{ in its expansion of base } b.$

Unfortunately
$$(X+Y)^{S_3(n)}
eq \sum_{\text{carry-free}} X^{S_3(k)} Y^{S_3(n-k)}$$

$$S_3(2) = S_3((2)_3) = 2$$

k + (n - k)	0+2	1 + 1	2+0
		1	2
	$\frac{2}{2}$	$\frac{1}{2}$	
Carry-free	√	√	√

$$LHS = (X + Y)^2 \neq X^2 + XY + Y^2 = RHS.$$

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n= sum of all digits.

Thus,

 $S_b(n) = \text{sum of all digits of } n \text{ in its expansion of base } b.$

Unfortunately
$$(X+Y)^{S_3(n)}
eq \sum_{\text{carry-free}} X^{S_3(k)} Y^{S_3(n-k)}$$

$$S_3(2) = S_3((2)_3) = 2$$

k + (n - k)	0+2	1 + 1	2+0
		1	2
	$\frac{2}{2}$	$\frac{1}{2}$	
Carry-free	√	√	√

$$LHS = (X + Y)^2 \neq X^2 + XY + Y^2 = RHS.$$

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n= sum of all digits.

Thus,

 $S_{b}(n) = \text{sum of all digits of } n \text{ in its expansion of base } b.$

Unfortunately
$$(X + Y)^{S_3(n)} \neq \sum_{\text{carry-free}} X^{S_3(k)} Y^{S_3(n-k)}$$

$$S_3(2) = S_3((2)_3) = 2.$$

$$\begin{array}{c|cccc}
R + (n-k) & 0+2 & 1+1 \\
0 & 1 \\
\hline
Binary & \frac{2}{2} & \frac{1}{2} \\
\hline
Carry-free & \checkmark & \checkmark
\end{array}$$

$$LHS = (X + Y)^2 \neq X^2 + XY + Y^2 = RHS.$$

 $S_{2}\left(n\right) =\#$ of 1's in the binary expansion of n= sum of all digits.

Thus,

 $S_b(n) = \text{sum of all digits of } n \text{ in its expansion of base } b.$

This also implies 1 + 1 = 2 is allowed.

Unfortunately
$$(X + Y)^{S_3(n)} \neq \sum_{\text{carry-free}} X^{S_3(k)} Y^{S_3(n-k)}$$

$$S_3(2) = S_3((2)_3) = 2.$$

$$\begin{vmatrix} k + (n-k) & 0 + 2 & 1 + 1 \\ & 0 & 1 \\ & & \frac{2}{2} & \frac{1}{2} \\ & & & Carry-free & \checkmark & \checkmark$$

$$LHS = (X + Y)^2 \neq X^2 + XY + Y^2 = RHS.$$

2 + 0

Result

Result

$$(X + Y)^{S_b(n)} = \sum_{\square_1} \square_2 X^{S_b(k)} Y^{S_b(n-k)}$$

$$\begin{cases} \square_1 = \text{carry-free} & \mapsto ? \\ \square_2 = 1 & \mapsto ? \end{cases}$$

Modify \square_2 :

$$(X+Y)^{S_b(n)} = \sum_{\text{carry-free}} \left(\prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} \right) X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$S_{b}^{(j)}(m) = \# \text{ of } j \text{'s in } m.$$

Result

Result

$$(X+Y)^{S_b(n)} = \sum_{\square_1} \square_2 X^{S_b(k)} Y^{S_b(n-k)}$$

$$\left\{ egin{array}{ll} \Box_1 = \mathsf{carry-free} & \mapsto ? \ \Box_2 = 1 & \mapsto ? \end{array} \right.$$

Modify \square_2 :

$$(X+Y)^{S_b(n)} = \sum_{\text{carry-free}} \left(\prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} \right) X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$S_{b}^{(j)}(m) = \# \text{ of } j$$
's in m .

Result

Result

$$(X + Y)^{S_b(n)} = \sum_{\square_1} \square_2 X^{S_b(k)} Y^{S_b(n-k)}$$

$$\begin{cases} \square_1 = \text{carry-free} & \mapsto ? \\ \square_2 = 1 & \mapsto ? \end{cases}$$

Modify \square_2 :

$$(X+Y)^{S_b(n)} = \sum_{\text{carry-free}} \left(\prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} \right) X^{S_b(k)} Y^{S_b(n-k)}$$

where

$$S_{b}^{(j)}(m) = \# \text{ of } j$$
's in m .

Result

$$(X + Y)^{S_b(n)} = \sum_{\square_1} \square_2 X^{S_b(k)} Y^{S_b(n-k)}$$

$$\begin{cases} \square_1 = \text{carry-free} & \mapsto ? \\ \square_2 = 1 & \mapsto ? \end{cases}$$

Modify \square_2 :

$$(X+Y)^{S_b(n)} = \sum_{\mathsf{carry-free}} \left(\prod_{j=0}^{b-1} \left(j! \right)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} \right) X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$S_{b}^{(j)}(m) = \# \text{ of } j$$
's in m .

$$n = 2$$

$$\begin{cases} LHS = (X + Y)^2 \\ RHS = X^2 + Y^2 + (2!)^{1-0-0} XY \end{cases}$$

Next

Define the b-ary binomial coefficients:

$$\binom{n}{k}_b := \begin{cases} \prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{if carry-free} \\ 0 & \text{otherwise} \end{cases}$$

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}.$$

n=2

$$\begin{cases} LHS = (X + Y)^2 \\ RHS = X^2 + Y^2 + (2!)^{1-0-0} XY \end{cases}$$

Next

Define the b-ary binomial coefficients:

$$\begin{pmatrix} n \\ k \end{pmatrix}_b := \begin{cases} \prod_{j=0}^{b-1} \left(j!\right)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{if carry-free} \\ 0 & \text{otherwise} \end{cases}$$

$$(X + Y)^{S_b(n)} = \sum_{k=0}^{n} \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}.$$

DQC

$$n=2$$

$$\begin{cases} LHS = (X + Y)^2 \\ RHS = X^2 + Y^2 + (2!)^{1 - 0 - 0} XY \end{cases}$$

Next

Define the b-ary binomial coefficients:

$$\binom{n}{k}_b := \begin{cases} \prod_{j=0}^{b-1} \left(j!\right)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{if carry-free} \\ 0 & \text{otherwise} \end{cases}$$

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}.$$

$$n=2$$

$$\begin{cases} LHS = (X + Y)^2 \\ RHS = X^2 + Y^2 + (2!)^{1 - 0 - 0} XY \end{cases}$$

Next

Define the b-ary binomial coefficients:

$$\binom{n}{k}_b := \begin{cases} \prod_{j=0}^{b-1} \left(j!\right)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{if carry-free} \\ 0 & \text{otherwise} \end{cases}$$

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}.$$

Binomial Identity in Arbitrary Bases

```
Triangle
```

```
Triangle
b = 4
                                           3
                                                                                      3
                          1
                              2
                          3
                                                                     6
                                   3
                                                    2
                                                                                     1
              1
                                                                                     3
                                           3
                                                    3
                                                                             3
         1
                  1
             2
                                       3
                                                                         3
                                                                                          3
         3
                                           9
```

Generating Function

Define

$$f(n,b,x) := \sum_{k=0}^{n} \binom{n}{k}_{b} x^{k},$$

n	f (n, 4, x)
1	1 + x
2	$(1+x)^2$
3	$(1 + x)^3$
4	$1 + x^4$
5	$(1+x)\left(1+x^4\right)$
6	$(1+x)^2 (1+x^4)$
7	$(1+x)^3 (1+x^4)$
8	$\left(1+x^4\right)^2$

Generating Function

Define

$$f(n,b,x) := \sum_{k=0}^{n} \binom{n}{k}_{b} x^{k}$$

Generating Function

Define

$$f(n,b,x) := \sum_{k=0}^{n} \binom{n}{k}_{b} x^{k},$$

Generating Function

Define

$$f(n,b,x) := \sum_{k=0}^{n} \binom{n}{k}_{b} x^{k},$$

n	f (n, 4, x)
1	1 + x
2	$(1+x)^2$
3	$(1+x)^3$
4	$1 + x^4$
5	$(1+x)\left(1+x^4\right)$
6	$(1+x)^2 (1+x^4)$
7	$(1+x)^3 (1+x^4)$
8	$(1+x^4)^2$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^{n} \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}.$$

where

$$\binom{n}{k}_b = \begin{cases} \prod\limits_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{cases} = \prod_{l=0}^{N-1} \binom{n_l}{k_l}.$$

In base b

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free
$$\Leftrightarrow k_i \leq n_i$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$\binom{n}{k}_{b} = \begin{cases} \prod_{j=0}^{b-1} (j!)^{S_{b}^{(j)}(n) - S_{b}^{(j)}(k) - S_{b}^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{cases} = \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}}$$

In base b

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free
$$\Leftrightarrow k_i \leq n_i$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$\binom{n}{k}_b = \begin{Bmatrix} \prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{Bmatrix} = \prod_{l=0}^{N-1} \binom{n_l}{k_l}.$$

In base b

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free
$$\Leftrightarrow k_i \leq n_i$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$\binom{n}{k}_b = \left\{ \begin{matrix} \prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{matrix} \right\} = \prod_{l=0}^{N-1} \binom{n_l}{k_l}.$$

In base b,

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free
$$\Leftrightarrow k_i \leq n_i$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$\binom{n}{k}_{b} = \begin{cases} \prod_{j=0}^{b-1} (j!)^{S_{b}^{(j)}(n) - S_{b}^{(j)}(k) - S_{b}^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{cases} = \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}}.$$

In base b,

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

i.e.,

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free $\Leftrightarrow k_i \leq n_i$

$\mathsf{Theorem}$

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)},$$

where

$$\binom{n}{k}_b = \begin{cases} \prod_{j=0}^{b-1} (j!)^{S_b^{(j)}(n) - S_b^{(j)}(k) - S_b^{(j)}(n-k)} & \text{carry-free} \\ 0 & \text{otherwise} \end{cases} = \prod_{l=0}^{N-1} \binom{n_l}{k_l}.$$

In base b,

$$n = n_{N-1}n_{N-2}\cdots n_0$$
 and $k = k_{N-1}k_{N-2}\cdots k_0$

$$n = n_{N-1}b^{N-1} + n_{N-2}b^{N-2} + \dots + n_0b^0$$
 and $k = \sum_{j=0}^{N-1} k_j b^j$.

carry-free
$$\Leftrightarrow k_i \leq n_i$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}, \ \binom{n}{k}_b = \prod_{l=0}^{N-1} \binom{n_l}{k_l}_b$$

Implies:

$$\sum_{k=0}^{n} \binom{n}{k}_{b} x^{k} = \prod_{l=0}^{N} \left(1 + x^{b^{l}}\right)^{n_{l}}.$$

Remark[Lucas Theorem]

$$\binom{n}{k}_{p} \equiv \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}} \pmod{p}$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}, \ \binom{n}{k}_b = \prod_{l=0}^{N-1} \binom{n_l}{k_l}$$

Implies:

$$\sum_{k=0}^{n} \binom{n}{k}_{b} x^{k} = \prod_{l=0}^{N} \left(1 + x^{b'} \right)^{n_{l}}.$$

Remark[Lucas Theorem

$$\binom{n}{k}_{p} \equiv \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}} \pmod{p}.$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}, \ \binom{n}{k}_b = \prod_{l=0}^{N-1} \binom{n_l}{k_l}$$

Implies:

$$\sum_{k=0}^{n} \binom{n}{k}_{b} x^{k} = \prod_{l=0}^{N} (1 + x^{b^{l}})^{n_{l}}.$$

Remark[Lucas Theorem

$$\binom{n}{k}_{p} \equiv \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}} \pmod{p}.$$

Theorem

$$(X+Y)^{S_b(n)} = \sum_{k=0}^n \binom{n}{k}_b X^{S_b(k)} Y^{S_b(n-k)}, \ \binom{n}{k}_b = \prod_{l=0}^{N-1} \binom{n_l}{k_l}$$

Implies:

$$\sum_{k=0}^{n} \binom{n}{k}_{b} x^{k} = \prod_{l=0}^{N} \left(1 + x^{b^{l}} \right)^{n_{l}}.$$

Remark[Lucas Theorem]

$$\binom{n}{k}_{p} \equiv \prod_{l=0}^{N-1} \binom{n_{l}}{k_{l}} \pmod{p}.$$

Thank You!