Seems familiar?

Iranian Telecommunication Churn Prediction

Machine Learning

Why should Iranian Telecom Company care?

Touchpoints

- Hard to have engagement with customers
- Importance to build unique customer experiences

Substitutes

- Unemotional utility service
- People have no high brand preference
- Low switching costs

Competition

- Competing on costs
- Important to lower CAC & maximize CLV

Great opportunity to improve retention and create value for the company

Introduction to our dataset

With 3,150 instances and 14 variables - 15% churn

2	Call Failure Con	nplains Subsc	ription Lengt Charg	ge Amour Sec	onds of Us Freq	uency of us Frequ	ency of SM Distinct	Called Numbe Age	Group Tar	riff Plan St	tatus	Age Customer \	/alu Churr	proba_0	proba_1	proba_percentil
3	0	0	35	0	0	0	0	0	4	1	2	45 0.0	1	0.006886980744195	0.993113019255804	100
4	14	1	37	0	3295	47	16	18	3	1	2	30 197.68	1	0.001628280789365	0.9983717192106343	100
5	8	1	11	2	1792	25	7	9	3	1	1	30 100.68	1	0.001549206349206	0.9984507936507936	100
6	6	1	11	2	1548	22	5	9	3	1	1	30 82.8	1	0.01	0.99	100
7	0	1	32	0	0	0	0	0	3	1	2	30 0.0	1	0.004375540415838	0.9956244595841615	100
8	0	0	34	0	0	0	0	0	3	1	2	30 0.0	1	0.006706437698250	0.9932935623017494	100
9	0	0	36	0	0	0	0	0	3	1	2	30 0.0	1	0.013632390585069	0.9863676094149305	100
10	0	1	34	0	0	0	0	0	3	1	2	30 0.0	1	0.002548819833878	10.9974511801661218	100
11	0	0	33	0	0	0	0	0	3	1	2	30 0.0	1	0.007134420603920	0.9928655793960796	100
12	0	1	34	0	0	0	0	0	3	1	2	30 0.0	1	0.002548819833878	0.9974511801661218	100
13	0	1	32	0	0	0	0	0	2	1	2	25 0.0	1	0.004555216329815	0.9954447836701843	100
14	0	0	36	0	0	0	0	0	4	1	2	45 0.0	1	0.008436187093402	0.9915638129065977	100
15	5	1	37	0	2765	37	12	18	2	1	2	25 180.09	1	0.013359677979040	0.9866403220209592	100
16	5	1	9	1	1733	22	7	7	3	1	1	30 98.2	1	0.01	0.99	100
17	14	1	37	0	3295	47	16	18	3	1	2	30 197.68	1	0.001628280789365	0.9983717192106343	100
18	0	1	34	0	0	0	0	0	3	1	2	30 0.0	1	0.002548819833878	10.9974511801661218	100
19	0	1	37	0	503	9	13	7	4	1	2	45 45.3	1	0.036400169012513	0.963599830987487	99
20	23	1	33	0	955	47	16	17	2	1	2	25 117.09	1	0.030079074440159	0.9699209255598406	99
21	12	1	34	0	3115	39	7	13	3	1	2	30 154.16	1	0.023359677979040	0.9766403220209591	99
22	6	1	34	0	2153	39	36	32	3	1	2	30 231.68	1	0.031810471629834	0.9681895283701656	99
23	3	0	9	1	1488	19	0	7	3	1	1.	30 60.28	1	0.022960902961536	0.9770390970384636	99
24	0	0	33	0	0	0	0	0	4	1	2	45 0.0	1	0.017314963649865	0.9826850363501343	99

Exploratory Data Analysis with Correlation Matrix

High correlation

 Frequency of Use & Seconds of Use: 0.95

 Frequency of SMS & Customer Value: 0.92

Substantial correlations with churn

Complaints & Churn: 0.52

Status & Churn: 0.50

Frequency of use & churn : -0.31

Model Selection - Logistic Regression

Logistic Regression, Support Vector Classifier, and Random Forest

Strengths

- Binary probability classification
- Explainability

Weaknesses

- Assumes linear relationships
- Not fitting our dataset

Model Performance

Metric	Score		
Precision	0.7605		
Recall	0.4302		
F1	0.5496		
Added value	13,284.00 €		

Model Selection - Support Vector Classifier

Logistic Regression, Support Vector Classifier, and Random Forest

Strengths

- Handles high-dimensionality
- Robustness against outliers

Weaknesses

- Sensitive to overfitting
- Lack of explainability because of black-box approach

Model Performance

Metric	Score		
Precision	0.9375		
Recall	0.5378		
F1	0.6835		
Added value	13,486.50 €		

Model Selection - Random Forest

Logistic Regression, Support Vector Classifier, and Random Forest

Strengths

- Handling of numerical and categorical variables
- Accounts for non-linear relations
- Interpretability and valid feature importances

Weaknesses

 Complexity in interpreting individual trees from the ensemble

Model Performance

Metric	Score		
Precision	0.8858		
Recall	0.7729		
F1	0.8255		
Added value	23.233,50 €		

Model Selection - Side by Side Comparison

Logistic Regression, Support Vector Classifier, and Random Forest

Metric	Logistic Regression	SVC	Random Forest	
Precision	0.7605	0.9375	0.8858	
Recall	0.4302	0.5378	0.7729	
F1	0.5496	0.6835	0.8255	
Added value	13,284.00 €	13,486.50 €	23.233,50 €	

Optimization for predictability on unseen data

Model Optimization

- Reduces overfitting
- Continuous enhancement in the model's performance
- Mean cross-validation score: 0.947

Key Predictors of Customer Churn

Model Optimization

- Complaints
- Status (Active/Inactive)
- Seconds of use

Maximizing for business value based on cost matrix

1. Assumptions on customer level

Monthly revenue	25,00 €
3 year revenue	900,00 €
Net profit (15%)	135,00 €
Campaign costs (10%)	13,50 €

3. Performance evaluation

Net profit without model	178.740,00 €
Net profit with model	201.973,50 €
Added value	23.233,50 €
Increase in profit	13,00%

2. Assessing the real business impact

Confusion Matrix and Cost an	alysis		
	Predicted (1)	Predicted (0)	Sum
Actually (1)	194	57	251
Actually (0)	25	1299	1324
Sum	219	1356	1575
Payoff Matrix			
	Predicted (1)	Predicted (0)	
Actually (1)	121,50 €	0	
Actually (0)	- 13,50 €	0	
Payoffs Values			
	23571	0	
	-337,5	0	
Added Value	23.233,50 €		
Added Value / customer / 3 years	14,75 €		

^{*}assuming 100% effectiveness of the retention strategies

Lift of 5,66 facilitates effective targeting of probable churners

By targeting the **5% of the churners** with highest probabilities to churn, our model performs **5,66x better** compared to pure chance

Three proactive strategies to address the prevalent factors of churn

Communication strategies

- Effectively gather customer feedback with surveys
- Check-in messages and loyalty program
- Personalized benefits

Continuous improvements

- Analysis of recurring requests
- Addressing high-prio needs
- Service and process optimization

Subscription terms

- Promote cross and up-selling
- Renegotiation of contracts
- Offer special hardware offers

Proactively increasing value for customers (personal cost/benefit analysis) to prevent churn

Potential implementation for service improvement and engagement

Expected results of the implemented strategies

Proactive churn prediction

- Being ahead of time→ mitigation strategies
- Not jeopardizing margins with last minute discounts

Financial added value

- Retaining customers more cost-effectively
- Higher CLV
- Higher loyalty → lower CAC

Service improvement

- Higher customer satisfaction
- Long-term competitive advantage

Great opportunity to improve retention and create value for the company

Thank you

Appendices

Appendix A | Confusion Matrix

Appendix B | Evaluation of different models on the real business impact

Reasoning to choose Random Forest as optimized model

- Best combination of highest lift and highest added value
- Highest Profitability at optimum threshold with the greatest value of 23.233,50€, exceeding the other two models by approximately 10,000€

Appendix C | Precision-Recall Curve

- This curve visualizes the trade-off between precision (the proportion of true positives among all positive predictions) and recall (the proportion of true positives among all actual positives).
- By examining the Precision-Recall curve, we can choose a threshold that balances precision and recall in a way that makes sense for our particular problem.
- Our model's strong performance is highlighted by its Precision-Recall curve, reinforcing its effectiveness in predicting customer churn.

