Chapitre 12: FONCTIONS TRIGONOMÉTRIQUES

I. Rappels

1) Définitions:

Dans le plan muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$ et orienté dans le sens direct, on considère un cercle trigonométrique de centre O.

Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x.

À ce point, on fait correspondre un point M sur le cercle trigonométrique.

On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M.

Définitions:

- Le **cosinus** du nombre réel x est l'abscisse de M et on note cos x.
- Le **sinus** du nombre réel x est l'ordonnée de M et on note sin x.

Propriétés:

Pour tout nombre réel x, on a :

$$1) -1 \le \cos x \le 1$$

$$2) -1 \le \sin x \le 1$$

3)
$$\cos^2 x + \sin^2 x = 1$$

2) Valeurs remarquables des fonctions sinus et cosinus :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cosx	ĺ	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

II. Propriétés des fonctions cosinus et sinus

1) Périodicité

Propriétés:

1) $\cos x = \cos(x + 2k\pi)$ où k entier relatif 2) $\sin x = \sin(x + 2k\pi)$ où k entier relatif

<u>Démonstration</u>:

Aux points de la droite orientée d'abscisses x et $x + 2k\pi$ ont fait correspondre le même point du cercle trigonométrique.

Remarque:

On dit que les fonctions cosinus et sinus sont périodiques de période 2π .

Conséquence :

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

2) Parité

Propriétés :

Pour tout nombre réel x, on a :

$$1)\cos(-x) = \cos x$$

$$2)\sin(-x) = -\sin x$$

Remarque:

On dit que la fonction cosinus est paire et que la fonction sinus est impaire.

Rappels, définitions :

Une fonction f est paire lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = f(x).

Une fonction f est **impaire** lorsque pour tout réel x de son ensemble de définition D,

-x appartient à D et f(-x) = -f(x).

Conséquences :

- Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine.

Méthode: Etudier la parité d'une fonction trigonométrique

Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = \sin x - \sin(2x)$ est impaire.

\(\left(-\frac{1}{2} = \left(-\frac{1}{2}) - \left(-\frac{1}{2}) \\
\[\left(-\frac{1}{2}) = \left(-\frac{1}{2}) - \left(-\frac{1}{2}) \\
\[\left(-\frac{1}{2}) = \left(-\frac{1}{2}) \\
\]
\[\left(-\frac{1}{2}) = \left(-\frac{1}{2}) \\
\]
\[\left(-\frac{1}{2}) = \left(-\frac{1}{2}) = \left(-\frac{1}{2}) \\
\]
\[\l

III. Equations et inéquations trigonométriques (livre p272)

Résolution de l'équation cos(x) = a

On va résoudre graphiquement l'équation $\cos(x) = \frac{\sqrt{2}}{2}$ dans l'intervalle $[-\pi; \pi]$, puis dans l'intervalle $[0:2\pi]$.

Méthode 1 : À l'aide de la courbe représentative de la fonction cosinus

On trace la droite d'équation $y = \frac{\sqrt{2}}{2}$.

Les abscisses des points d'intersection de cette droite et de la courbe représentative de la fonction cosinus sont les solutions de

l'équation $\cos(x) = \frac{\sqrt{2}}{x}$.

Les solutions de cette équation dans

l'intervalle $[-\pi; \pi]$ sont $-\frac{\pi}{4}$ et $\frac{\pi}{4}$;

les solutions dans l'intervalle $[0; 2\pi]$ sont $\frac{\pi}{4}$ et $\frac{7\pi}{4}$.

 Méthode 2 : À l'aide du cercle trigonométrique On place les points du cerde trigonométrique d'abscisse $\frac{\sqrt{2}}{2}$, puis on repère les réels auxquels sont associés ces points.

Dans l'intervalle [-π; π] Dans l'intervalle [0; 2n]

Résolution de l'inéquation $cos(x) \le a$

On va résoudre graphiquement l'inéquation $\cos(x) \le \frac{\sqrt{2}}{2}$ dans l'intervalle $[-\pi; \pi]$, puis dans l'intervalle $[0; 2\pi]$.

• Méthode 1 : À l'aide de la courbe représentative de la fonction cosinus

On colore (en orange) tous les points de la courbe dont l'ordonnée est inférieure ou égale à $\frac{\sqrt{2}}{2}$. Leurs abscisses sont les solutions de l'équation $\cos(x) \leqslant \frac{\sqrt{2}}{2}$. L'ensemble des solutions de cette inéquation dans $[\pi; \pi]$ est :

$$\left[-\pi; -\frac{\pi}{4}\right] \cup \left[\frac{\pi}{4}; \pi\right]$$
; celui dans l'intervalle $[0; 2\pi]$ est $\left[\frac{\pi}{4}; \frac{7\pi}{4}\right]$.

Méthode 2 : À l'aide du cercle trigonométrique

On colore les points du cerde trigonométrique associés à un réel dont le cosinus est inférieur ou égal à $\frac{\sqrt{2}}{2}$, c'està-dire qui ont une abscisse inférieure ou égale à $\frac{\sqrt{2}}{2}$,

Dans l'intervalle [-π ; π] Dans l'intervalle [0 ; 2π]

<u>Ex</u>: 47 p276; 83 à 88 p279; 90, 92, 94, 99, 100, 101 p279

IV. Dérivabilité et variations

1) Dérivabilité

Théorème : Les fonctions cosinus et sinus sont dérivables sur R et on a :

$$(\cos(x))' = -\sin(x)$$

et

 $(\sin(x))' = \cos(x)$

$$(\cos(u(x)))' = -u'(x)\sin(u(x))$$

et

 $(\sin(u(x)))' = u'(x)\cos(u(x))$

Remarque: (cos(x))' se note également cos'(x)

2) Variations

X	0		π
$\cos'(x) = -\sin x$	0	<u>.</u>	0
cos x	1		

X	0		$\frac{\pi}{2}$		π
$\sin'(x) = \cos x$	1	+	0	=	s=1
sin x	0 -		V 1		

3) Représentations graphiques

Méthode: Etudier une fonction trigonométrique

On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos(2x) - \frac{1}{2}$

- 1) Etudier la parité de f.
- 2) Démontrer que la fonction f est périodique de période π .
- 3) Etudier les variations de f sur $\left[0; \frac{\pi}{2}\right]$.
- 4) Représenter graphiquement la fonction f sur $\left[0; \frac{\pi}{2}\right]$ et prolonger de part et d'autre la représentation par symétrie et par translation.

 $\underline{\mathit{Ex}}$: 52, 53, 55, 56 p277 ; 102, 103, 105, 106, 107 p279-280 ; 115 p281