Reinforcement Learning Training 2025

Functional Approximation

Motivation

- Up till now, we only deal with problems with **discrete** state space.
 - \circ v and q are represented in a table.
 - Tabular case
- Real problem has too many states.
 - The tabular approach requires too much memory and computation.

Formulation

 Instead of representing values in a table, they are now being represented by

$$\hat{v}(s;w) \approx v_{\pi}(s)$$

$$\hat{q}(s,a;w) \approx q_{\pi}(s,a)$$

• where the parameter w is the parameter of the function that defines the policy $\pi(a|s)$ that the agent follows.

What is w?

$$\hat{v}(s;w) \approx v_{\pi}(s)$$

$$\hat{q}(s,a;w) \approx q_{\pi}(s,a)$$

- Tunable parameters of the function that defines the policy.
- Weights of a deep learning neural network.

Changing w

- ullet When you update the weight vector w based on some update equation for a specific state s or state action pair (s,a)
 - \circ it not only updates the v or q for that specific s or (s,a)
 - \circ but it also updates other *nearby* v and q.
- ullet This is different from the tabular case where you can update each v or q independently.

Functional approach

Figure 5-1. Ways to represent $\hat{v}(s;w)$ or $\hat{q}(s,a;w)$ using the function approximation approach. The first and last ones are the most common ones used in this chapter

How do we find update equation for w?

We used technique from supervised learning.

1 Define a loss function

$$J(w) = [y(t) - \hat{y}(t;w)]^2$$
; where $\hat{y}(t;w) = Model_w[x(t)]$

ullet 2 Update w using gradient descent.

$$W_{t+1} = W_t - \alpha \nabla_w J(w)$$

Monte Carlo

Using the update equation (from before)

$$V_{t+1}(s) = V_{t}(s) + \alpha \left[G_{t}(s) - V_{t}(s) \right]$$

Gives

$$W_{t+1} = W_t + \alpha \cdot \left[G_t(s) - V_t(s;w) \right] \cdot \nabla_w V_t(s;w)$$

Temporal Difference (TD(0))

Using the update equation (from before)

$$V_{t+1}(s) = V_t(s) + \alpha \left[R_{t+1} + \gamma \cdot V_t(s') - V_t(s) \right]$$

Gives

$$w_{t+1} = w_t + \alpha \cdot \left[R_{t+1} + \gamma \cdot V_t(s';w) - V_t(s;w) \right] \cdot \nabla_w V_t(s;w)$$

Linear Model

• State value function.

$$\hat{v}(s;w) = x(s)^T \cdot w = \sum_i x_i(s) \cdot w_i$$

Gradient

$$\nabla_w V_t(s;w) = x(s)$$

Linear Model

• Update equation

$$W_{t+1} = W_t + \alpha \cdot \left[V_{\pi}(s) - V_t(s;w) \right] \cdot x(s)$$

- ullet In MC, $V_\pi=g_t$
- ullet In TD(0), $V_\pi = \overline{R_{t+1} + \gamma \cdot v_t(s')}$

Linear Model

Update equations

MC update:

$$W_{t+1} = W_t + \alpha \cdot \left[G_t(s) - V_t(s;w) \right] \cdot x(s)$$

TD(0) update:

$$W_{t+1} = W_t + \alpha . [R_{t+1} + \gamma . V_t(s'; w) - V_t(s; w)] . x(s)$$

Challenge

• Recalled the loss function.

$$J(w) = \left[y(t) - \hat{y}(t;w) \right]^2$$

- ullet In supervised learning, y(t) are labels that do not change. (No problem)
- ullet In RL, y(t) are v or q which keep changing (because we are finding them)
 - Nonstationarity problem
- Also, in TD(0), we use bootstrapping (target is not a true value).
 - This is even worse.

Table 5-1. Convergence of Prediction/Estimation Algorithms

Policy Type	Algorithm	Table Lookup	Linear	Nonlinear
On-policy	MC	Υ	Υ	Υ
	TD(0)	Υ	Υ	N
	$TD(\lambda)$	Υ	Υ	N
Off-policy	MC	Υ	Υ	Υ
	TD(0)	Υ	N	N
	TD(λ)	Υ	N	N

Control

ullet Similar to how you find v, here we use q

$$\hat{q}(s,a;w) \approx q_{\pi}(s,a)$$

Cost function

$$J(w) = E_{\pi} \left[\left(q_{\pi}(s,a) - \hat{q}(s,a;w) \right)^{2} \right]$$

Update equation

$$W_{t+1} = W_t - \alpha \cdot \nabla_w J(w)$$

Control

Gives

MC update:

$$w_{t+1} = w_t + \alpha \cdot \left[G_t(s) - q_t(s,a;w) \right] \cdot \nabla_w \hat{q}(s,a;w)$$

TD(0) update:

$$w_{t+1} = w_t + \alpha \cdot [R_{t+1} + \gamma \cdot q_t(s',a';w) - q_t(s,a;w)] \cdot \nabla_w \hat{q}(s,a;w)$$

Control

• We use GPI (same as before).

Figure 5-5. Generalized policy iteration with function approximation

Semi Gradient n-Step SARSA

- On policy
 - \circ ϵ -greedy policy for evaluation and control.

Tile Encoding

Tile Encoding

Binary features

$$\hat{q}(S,A;w) = x(S,A)^T.w$$

$$\nabla \hat{q}(S_{\tau}, A_{\tau}; w) = x(S, A)$$

Semi Gradient n-Step SARSA Control (Episodic)

Input:

A differentiable function $\hat{q}(s,a;w)$: $|S| imes |A| imes \mathbb{R}^d o \mathbb{R}$

Other paramters: steps size α , exploration prob. ϵ , number of steps: n

Initialize:

Initialize weight vector $\mathbf{w}: \mathbb{R}^d$ abitrarily like $\mathbf{w} = \mathbf{0}$

Three arrays to store (S_t, A_t, R_t) which access using " $\mod n + 1$ "

```
Loop for each episode:
      Start episode with S_0 (non-termial)
      Select and store A_0, \epsilon-greedy action using \hat{q}(S_0, \bullet; w)
     T \leftarrow \infty
      Loop for t = 1, 2, 3, ...
             if t < T, then:
                  Take action A_t
                  Observe and store R_{t+1} and S_{t+1}
                  if S_{t+1} is termial then:
                         T \leftarrow t + 1
                  else:
                         select and store A_{t+1} using \epsilon-greedy \hat{q}(S_t, \bullet; w)
            	au \leftarrow t - n + 1 (	au is inex whose estimate is being updated)
            If \tau \geq 0:
                  G \leftarrow \sum^{\min(\tau+n,T)} \gamma^{i-\tau-1} \cdot R_i
                  if t+n < T, then G \leftarrow G + \gamma^n \hat{q}(S_{\tau+n}, A_{\tau+n}; w)
                  w \leftarrow w + \alpha \cdot [G - \hat{q}(S_{\tau}, A_{\tau}; w)] \cdot \nabla_w \hat{q}(S_{\tau}, A_{\tau}; w)
      Until \tau = T-1
```

23

Semi-gradient SARSA(λ)

• Skip for now

RL Training 2025

Instability

3 ways that can cause instability

Function approximation: A way to generalize for a very large state space using a model with the number of parameters smaller than the total number of possible states.

Bootstrapping: Forming target values using estimates of state values, for example, in TD(0) the target being the estimate $R_{t+1} + \gamma \cdot V_t(s'; w)$

Off-policy learning: Training the agent using a behavior policy but learning a different optimal policy.

Table 5-3. Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Nonlinear	
MC control	Υ	(Y)	N	
On Policy TD (SARSA)	Υ	(Y)	N	
Off policy Q-Learning	Υ	N	N	
Gradient Q-Learning	Υ	Υ	N	