$$\underline{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} \longrightarrow E(\underline{X}) = \begin{pmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{pmatrix} \longrightarrow \operatorname{cov}(\underline{X}) = \operatorname{var}(X) = \begin{pmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_n) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) & \cdots & \operatorname{cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \operatorname{cov}(X_n, X_2) & \cdots & \operatorname{var}(X_n) \end{pmatrix}$$

kovariančna matrika (simetrična, spd)

 $E(X^2) = \operatorname{var}(X) + E(X)^2$

$$cov(\underline{X}) = E[(\underline{X} - E(\underline{X}))(\underline{X} - E(\underline{X}))^T] = E(\underline{X}\underline{X}^T) - E(\underline{X})E(\underline{X})^T$$

 $\begin{array}{l} \operatorname{cov}(\underline{X}) = E[(\underline{X} - E(\underline{X}))(\underline{X} - E(\underline{X}))^T] = E(\underline{X}\underline{X}^T) - E(\underline{X})E(\underline{X})^T \\ \operatorname{korelacijski koeficient: } \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sqrt{\operatorname{var}(X_1)\operatorname{var}(X_2)}} \end{array}$

Ce je A deterministična matrika (konstantna), velja: $E(\underline{A}\underline{X}) = AE(\underline{X})$, $cov(\underline{A}\underline{X}) = Acov(\underline{X})A^T$ $\operatorname{cov}(\langle \underline{X}, \underline{u} \rangle, \langle \underline{X}, \underline{v} \rangle) = \langle \operatorname{cov}(\underline{X})\underline{u}, \underline{v} \rangle, \operatorname{cov}(\underline{u}^T \underline{X}, \underline{v}^T \underline{X}) = \underline{v}^T \operatorname{cov}(\underline{X})\underline{u}$

Standardna p-razsežna normalna porazdelitev je porazdelitev slučajnega vektorja (Z_1, Z_2, \dots, Z_n) ,

kjer so $Z_1, \ldots, Z_p \sim N(0,1)$ in neodvisne.

Če je Q ortogonalna matrika in Z standarden normalen vektor, potem je W = QZ tudi standarden normalen. Splošna n-razsežna normalna porazdelitev je vsaka porazdelitev slučajnega vektorja W = AZ + u, kjer je Z standarden p-razsežni normalni vektor, A matrika $n \times p$ polnega ranga in $u \in \mathbb{R}^n$.

 $E(\underline{Z}) = 0$, $cov(\underline{Z}) = I$, $E(\underline{W}) = \underline{u}$, $cov(\underline{Z}) = AA^T$

Če $A \in \mathbb{R}^{n \times p}$ polnega ranga, je AA^T polnega ranga (in obrnljiva).

 $\sigma > 0, X \sim N(\mu, \sigma^2) \Longrightarrow P(X \le a) = \Phi(\frac{a-\mu}{\sigma})$

$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$
, potem $X_1 + \cdots + X_n \sim N(n\mu, \frac{\sigma^2}{n})$, $\overline{X} \sim N(\mu, \sigma^2)$, $\overline{X} - \mu \sim N(0, \frac{\sigma^2}{n})$

$$\begin{aligned} & \textbf{Pogojna gostota:} \ f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)} \\ & \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \end{pmatrix} \Longrightarrow X_2|X_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}) \\ & ||X||^2 = X^TX = sl(XX^T) \end{aligned}$$

Če poznamo porazdelitev slučajne spremenljivke Y in $f_{X|Y}$, potem velja $f_X(x) = E[f_{X|Y}(x)]$.

Pogojne pričakovane vrednosti: $E(X) = E[E(X|Y)], \quad E[Xg(Y)|Y] = E(X|Y)g(X), \text{ v abstraktnem smislu}$ definiramo E[Y|X] kot funkcijo $\Psi(x)$, za katero za vsako omejeno zvezno funkcijo g velja $E[Yg(x)] = E[\Psi(x)g(x)]$. $\operatorname{cov}(X,Y) = \operatorname{cov}(E(X|Z), E(Y|Z)) + E(\operatorname{cov}(X,Y|Z)), \text{ med drugim } \operatorname{var}(X) = \operatorname{var}(E(X|Z)) + E(\operatorname{var}(X|Z))$ Če so X_1, \ldots, X_n neodvisne med seboj in tudi od Y_1, \ldots, Y_n), potem so X_1, \ldots, X_n neodvisne tudi pogojno na Y.

CENTRALNI LIMITNI IZREK

Izrek: Naj bodo X_1, X_2, \ldots neodvisne, enako porazdeljene z $E(X_i^2) < \infty$ in $E(X_i) = \mu_1$ ter $var(X_i) = \sigma_1^2$. $S_n = X_1 + X_2 + \cdots + X_n$. Tedaj:

$$\frac{S_n - n\mu_1}{\sigma_1 \sqrt{n}} \xrightarrow[n \to \infty]{\text{šibko}} N(0, 1),$$

kjer $n\mu_1 = E(S_n)$ in $\sigma_1 \sqrt{n} = \sigma(S_n)$.

Bolj ohlapno:
$$n$$
 velik $\Longrightarrow S_n \sim N(n\mu_1, n\sigma^2)$
 $P(a \le S_n \le b) \approx \Phi(\frac{b-n\mu_1}{\sigma_1\sqrt{n}}) - \Phi(\frac{a-n\mu_1}{\sigma_1\sqrt{n}})$

Če slučajna spremenljivka živi v celih številih, lahko namesto ≤ vzamemo < in mejo povečamo za 1, ali pa vzamemo

Natančnost sredine je odvisna od asimetrije, ki jo meri $A(X) = \frac{E[(X-E(X))^3]}{(var(X))^{\frac{3}{2}}}$.

Naj bodo X_1, \ldots, X_n neodvisne in identično porazdeljene, $\sigma_1 = \sqrt{\operatorname{var}(X_i)}, \ \gamma_1 = E[|X_i - E(X_i)|^3]^{\frac{1}{3}}, \ S_n = X_1 + X_1 + X_2 + X_2 + X_3 + X_4 + X$ $\cdots + X_n$. Ko $n \longrightarrow \infty$, $P(a_n \le S_n \le b_n)$ aproksimiramo z ustreznimi normalnimi. Zadosten pogoj, da gre:

- absolutna napaka $\to 0$: $n \gg \frac{\gamma_1^0}{\sigma_1^0}$
- relativna napaka $\to 0$: $n \gg \frac{\gamma_1^6}{\sigma_1^6}$ in $\min\{|a_n E(S_n)|, |b_n E(S_n)|\} \ll \frac{n^{\frac{2}{3}}\sigma_1^2}{\gamma_1}$

$$\mu_1 = E(X_i), \sup_{x \in \mathbb{R}} |P(S_n \le x) - \Phi(\frac{x - n\mu_1}{\sigma_1 \sqrt{n}})| \le \frac{0.4774}{\sqrt{n}} \frac{\gamma_1^3}{\sigma_1^3}$$

Porazdelitev χ^2 :

Če so Z_1, \ldots, Z_n neodvisne standardno normalne, potem je $Z_1^2 + \cdots + Z_n^2 \sim \chi^2(n), \ \chi^2(n) \xrightarrow{n \to \infty} N(0, 1).$ $\chi^2(n) = \Gamma(\frac{n}{2}, \frac{1}{2})$

Če $U \sim \Gamma(a, \lambda)$ in $V \sim \Gamma(b, \lambda)$, potem $U + V \sim \Gamma(a + b, \lambda)$ Če $U_1, \ldots, U_m \sim \Gamma(\frac{n}{2m}, \frac{1}{2})$ neodvisne, potem $U_1 + \cdots + U_m \sim \chi^2(n)$.

Razmerje Ljapunova:

$$S = X_1 + \dots + X_n$$
, $\mu = E(S)$, $\sigma^2 = \text{var}(S)$, X_1, \dots, X_n neodvisne. $P(a \le S \le b) \approx \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$

 $\sup_{x \in \mathbb{R}} |P(S \le x) - \Phi(\frac{x-\mu}{\sigma})| \le \frac{0.5591}{\sigma^3} \sum_{k=1}^n E[|X_k - E(X_k)|^3]$ Če desna stran konvergira k 0, imamo konvergenco k N(0, 1).

Dejanska statistika – vzročenje

 \widehat{a} je nepristranska cenilka za a, če je $E(\widehat{a}) = a$, srednja kvadratična napaka: $q(\widehat{a}) = E[(\widehat{a} - a)^2]$, standardna napaka: $\sqrt{q(\widehat{a})} = se(\widehat{a})$.

Slučajne spremenljivke X_1, \ldots, X_n so <u>izmenljive</u>, če velja: $(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}) \stackrel{d}{=} (X_1, X_2, \ldots, X_n) \quad \forall \pi \in S_n$. Za izmenljive sl. spr. X_1, \ldots, X_n s pričakovano vrednosti $E(X_i) = \mu$, varianco var $(X_i) = \sigma^2$, korelacijo corr $(X_i, X_j) = \rho$, za $i \neq j$ je vzorčno povprečje $\overline{X} = \frac{X_1 + \cdots + X_n}{n}$ nepristranska cenilka za μ , var $(\overline{X}) = \frac{\sigma^2}{n}(1 + \rho(n+1))$, nepristranska cenilka za σ^2 pa je $\hat{\sigma}^2 = \frac{1}{(n-1)(1-\rho)} \sum_{i=1}^n (X_i - \overline{X})^2$

Enostavno slučajno vzorčenje

Populacija: 1, 2, ..., N, vzorec: $K_1, K_2, ..., K_n$. Vrednosti spremenljivk na populaciji $x_1, x_2, ..., x_N$ (ne poznamo vseh). Poznamo vrednosti na vzorcu: $X_i = x_{K_i}$ (izmenljive, ker je vsaka n-terica enako verjetna)

Stratificirano vzorčenje:

Populacijo velikosti N razdelimo na k stratumov velikosti N_1, \ldots, N_k , kjer w_1, w_2, \ldots, w_k ($w_i = \frac{N_i}{N}$ in $w_1 + \cdots + w_k = 1$) predstavljajo delež populacije v stratumih, μ_1, \ldots, μ_k povprečja stratificiranih spremenljivk, $\sigma_1, \ldots, \sigma_k$ standardne odklone. Povprečje na celotni populaciji je $\mu = w_1 \mu_1 + \cdots + w_k \mu_k$.

standardne odklone. Povprečje na celotni populaciji je $\mu = w_1 \mu_1 + \cdots + w_k \mu_k$. Varianca na celi populaciji: $\sigma^2 = \sigma_b^2 + \sigma_w^2$, kjer $\sigma_b^2 = \sum_{i=1}^k w_i (\mu_i - \mu)^2$ in $\sigma_w^2 = \sum_{i=1}^k w_i \sigma_i^2$.

Enostavni slučajni vzorci po stratumih:

$$X_{11},\ldots,X_{1n_1}$$
 \overline{X}_1 X_{21},\ldots,X_{2n_2} \overline{X}_2 , kjer so \overline{X}_i vzorčna povprečja po stratumih. $\overline{X}=\sum_{i=1}^k w_i \overline{X}_i$ je nepristranska cenilka za μ ,

 $\sigma_i^2 = \frac{1}{n_i - 1} \frac{N_i - 1}{N_i} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 \text{ nepristranska cenilka za } \sigma_i^2, \ \widehat{\sigma}_w^2 = \sum_{i=1}^k \frac{w_i}{n_i - 1} \frac{N_i - 1}{N_i} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 \text{ nepristranska cenilka za } \sigma_w^2 \text{ in } \widehat{\sigma}_b^2 = \sum_{i=1}^k w_i (\overline{X}_i - \overline{X})^2 - \sum_{i=1}^k (w_i - w_i^2) \frac{N_i - n_i}{N_i - 1} \frac{1}{n_i} \widehat{\sigma}_i^2 \text{ nepristranska cenilka za } \sigma_b^2.$

Intervali zaupanja

a bi radi ocenili: $a_{min} < a < a_{max}$, kjer je (a_{min}, a_{max}) interval zaupanja. $P(a_{min} < a < a_{max}) \ge 1 - \alpha$, kjer je $1 - \alpha$ stopnja zaupanja (95%, 99%) in α stopnja tveganja (5%, 1%).

Določanje IZ: pivotna funkcija $T(\underline{X}, a)$, kjer je \underline{X} opažanje in a ocenjevani parameter.

IZ za μ , kjer je σ znan: $P(|\overline{X} - \mu| < M_{\alpha}) = 1 - \alpha$, $M_{\alpha} = \frac{\sigma}{\sqrt{n}} \Phi^{-1}(1 - \frac{\alpha}{2})$

Če tudi σ ne poznamo in če so $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, potem $T(\underline{X}, \mu) = \frac{\overline{X} - \mu}{S^2} \sqrt{n}$, kjer $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Za velike n je $\frac{\overline{X} - \mu}{S} \sqrt{n} \sim N(0, 1)$, v splošnem pa je $\frac{\overline{X} - \mu}{S} \sqrt{n} \sim \text{Student}(n-1)$.

OCENJEVANJE PARAMETROV

Metoda momentov:

Vzorec = $(X_1, \ldots, X_n)^T$ je iz neke porazdelitve $f_X(x|\underline{\vartheta})$. Nastavimo parametre $\underline{\vartheta}$, da bo povprečje enako vzorčnemu povprečju, varianca vzorčni varianci.... Rešimo sistem enačb: $E[X] = \bar{X}$, $var(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Metoda največjega verjetja: Postavimo se na stališče, da je vzorec $\underline{x} = (x_1, \dots, x_n)^T$ neke porazdelitve $f_X(x|\underline{\vartheta})$, ki smo ga dobili verjetno eden izmed bolj verjetnih, in nastavimo parametre $\underline{\vartheta}$ tako, da bo najbolj verjeten. Kako verjeten je vzorec je podano s funkcijo verjetja L. Če so vzorci neodvisni, je $L(\underline{\vartheta}|\underline{x}) = \prod_{i=1}^n f_X(x_i|\underline{\vartheta})$. V diskretnem primeru je to $L(\underline{\vartheta}|\underline{x}) = \prod_{i=1}^n P_{\underline{\vartheta}}(X = x_i)$.

Definiramo tudi logaritemsko funkcijo verjetja $\ell(\underline{\vartheta}|\underline{x}) = \log(L(\underline{\vartheta}|\underline{x})).$

Cenilka po metodi največjega verjetja (MLE) je vrednost $\underline{\hat{\vartheta}}$, kjer je dosežen maksimum L, ali ekvivalentno, ℓ . Cenilka je nepristranska. Ponavadi jo dobimo tako da rešimo sistem $\frac{\partial \ell}{\partial \vartheta}(\underline{\vartheta}|\underline{x}) = 0$ za $\underline{\vartheta}$.

Za MLE velja: $\sqrt{n}(\vartheta - \hat{\underline{\vartheta}}) \stackrel{.}{\sim} N(0, I^{-1}(\underline{\vartheta})).$

Fisherjeva matrika informacije:

Varianca MLE je dana s Fisherjevo matriko informacije.

Matrike je dana z
$$I_{kl}(\underline{\vartheta}) = -E\left[\frac{\partial^2}{\partial \vartheta_k \partial \vartheta_l}(\log(f_X(x|\underline{\vartheta})))\right], I(\underline{\vartheta}) = -E[\operatorname{hesse}(\log(f_X(x|\underline{\vartheta})))].$$

Velja:
$$\operatorname{var}(\underline{\hat{\vartheta}}_k) = \frac{(I^{-1})_{kk}}{n}, \operatorname{se}(\underline{\hat{\vartheta}}_k) = \sqrt{\frac{(I^{-1})_{kk}}{n}}.$$

Za primer, ko je ϑ skalar, se formule poenostavijo: $I(\vartheta) = E[\frac{\partial^2}{\partial \vartheta^2} \log(f_X(x|\vartheta))],$

$$\operatorname{se}(\hat{\vartheta}) = \frac{1}{\sqrt{nI(\vartheta)}}. \text{ Aproksimativni interval zaupanja: } \vartheta \in \left(\hat{\vartheta} \pm z_{1-\frac{\alpha}{2}}\sqrt{\frac{1}{nI(\hat{\vartheta})}}\right).$$

TESTIRANJE HIPOTEZ

Naredimo si testno statistiko in hipotezo zavrnemo, če ima preveč ekstremno vrednost. p-vrednosti imenujemo verjetnost, da dobimo še bolj ekstremen rezultat. Če je p-vrednost manjša od stopnje tveganja α , hipotezo zavrnemo.

$$\frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} \sim N(0, 1)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{n-1}{\sigma^2} \hat{\sigma}^2 \sim \chi^2(n-1)$$
Če $Z \sim N(0, 1), H \sim \chi^2(m) \Longrightarrow \frac{Z}{\sqrt{H}} \sqrt{m} \sim Student(m).$

T-test: Recimo, da so podatki $X_1, \ldots X_n$ vzorec iz $N(\mu, \sigma^2)$. Testiramo $H_0: \mu = \mu_0$ proti $H_1: \mu \neq \mu_0$.

Testna statistika: $T = \frac{\bar{X} - \mu_0}{\hat{\sigma}_+} \sqrt{n} \sim \text{Student}(n-1)$, kjer $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

 H_0 zavrnemo proti:

- $H_1: \mu \neq \mu_0$, če $|T| \geq t_{1-\frac{\alpha}{2}}(n-1)$
- $H_1: \mu > \mu_0$, če $T \ge t_{1-\alpha}(n-1)$ $H_1: \mu < \mu_0$, če $T \le -t_{1-\alpha}(n-1)$.

Podobno deluje Z-test, samo da uporabljamo normalno porazdelitev.

Primerjava dveh povprečij: $X_1, \ldots, X_m \sim N(\mu_1, \sigma^2)$ neodvisne in $Y_1, \ldots, Y_n \sim N(\mu_2, \sigma^2)$ neodvisne.

Testiramo $H_0: \mu_1 = \mu_2$, ki ga zavrnemo proti:

- $H_1: \mu_1 \neq \mu_2$, če $|T| \geq t_{1-\frac{\alpha}{2}}(m+n-2)$
- $H_1: \mu_1 > \mu_2$, če $T > t_{1-\alpha}(m+n-2)$ $H_1: \mu_2 < \mu_1$, če $T \ge t_{1-\alpha}(m+n-2)$.

 χ^2 test: Denimo, da imamo podatek n_1, \ldots, n_r , ki je realizacija slučajne multinomsko porazdeljene spremenljivke

s parametri n= št. poskusov in $p_1,\ldots,p_r=$ kako verjeten je kateri izid. Testna statistika je definirana kot $\chi^2=\sum_{k=1}^r\frac{(n_k-np_k)^2}{np_k}$ in je porazdeljena $\chi^2(r-1)$.

Hipotezo zavrnemo, če je $\chi^2 > \chi_{\alpha}$, kjer je α stopnja tveganja in χ_{α} kvantil.

Uporabimo razmerje verjetij: $\Lambda = \frac{\sup_{\vartheta \in \Omega} L(\vartheta|x)}{\sup_{\vartheta \in \Omega_0} L(\vartheta|x)}$

Wilksov izrek: $\lambda = 2\log(\Lambda) = \sup_{\vartheta \in \Omega} \ell(\vartheta|x) - \sup_{\vartheta \in \Omega_0} \ell(\vartheta|x)$ ima porazdelitev $\chi^2(r)$, za $r = \dim \Omega - \dim \Omega_0$. Hipotezo zavrnemo, če je $\lambda > \chi_{1-\alpha}(r)$.

LINEARNA REGRESIJA

Predpostavljamo, da so opaženi slučajni podatki $\underline{Y} = (Y_1, \dots, Y_n)^T$ nastali kot $\underline{Y} = X\underline{\beta} + \underline{\varepsilon}$, kjer je X znana deterministična $n \times m$ matrika, β neznan determinističen m vektor, $\underline{\varepsilon}$ neznan slučajen vektor napak, za katerega predpostavimo standardni regresijski model, ki pravi: $E[\underline{\varepsilon}] = 0$ in $var(\underline{\varepsilon}) = \sigma^2 I$. Drugače povedano, napake ε_i so nekorelirane, varianca vsake posamezne pa je σ^2 .

Za $\beta = (\alpha, \beta)^T$ in $X = (1, x_1; 1, x_2; \dots; 1, x_n)$ preidemo na standardno ocenjevanje s premico.

Nepristranska cenilka za β je cenilka po metodi najmanjših kvadratov $\hat{\beta} = (X^T X)^{-1} X^T Y$.

Varianca cenilke: $var(\beta) = \sigma^2(X^TX)^{-1} = \sigma^2C$.

Nepristranska cenilka za σ^2 je $\hat{\sigma}^2 = \frac{1}{n-m} \sum_{i=1}^n \hat{\underline{\varepsilon}}_i^2$, kjer je $\hat{\underline{\varepsilon}} = \underline{Y} - X\underline{\beta}$.

Če gledamo samo posamezne komponente je cenilka za β_i enaka $\hat{\beta}_i = (\hat{\beta})_i$ in $var(\hat{\beta}_i) = \sigma^2 C_{ii}$, $se(\hat{\beta}_i) = \sigma \sqrt{C_{ii}}$.

Za lin. kombinacijo komponent je cenilka enaka $a^T\hat{\beta}$ in njena varianca je var $(a^T\hat{\beta}) = a^TCa$, za poljuben vektor a. Izrek (Gauss-Markov): Cenilka po metodi najmanjših kvadratov je najboljša med vsemi linearnimi nepristranskimi cenilkami (ima najmanjšo varianco). Za vsako linearno cenilko $\dot{\beta}=L\underline{Y}$ mora veljati LX=I in posledično $\operatorname{var}(\tilde{\beta}) = \operatorname{var}(\tilde{\beta} - \hat{\beta}) + \operatorname{var}(\hat{\beta})$, saj je $\operatorname{cov}(\tilde{\beta} - \hat{\beta}, \hat{\beta}) = 0$. Enako velja tudi za cenilko $a^T\hat{\beta}$ za vsak vektor a, v posebnem za $a = e_i$ tudi za cenilke po komponentah.

Če za $\underline{\varepsilon}$ predpostavljamo var $(\underline{\varepsilon}) = \sigma^2 \Sigma$ za neko pd. matriko Σ , potem to prevedemo na standardni model z množenjem z leve s $(\Sigma)^{-\frac{1}{2}}$. Cenilka za β postane $\hat{\beta} = (X^T \Sigma X)^{-1} X^T \Sigma^{-1} \underline{Y}$.

Za testiranje hipoteze $\beta_i = 0$ proti $\beta_i \neq 0$ uporabimo testno statistiko $t = \frac{\hat{\beta}_i}{\hat{\sigma}\sqrt{C_{i:}}} \sim t_{n-m}$.

Inverzi matrik - molimo k Raiču, da jih ne rabimo

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}$$