- (1) This is a closed book, closed notes exam. Switch off your cell phone and do not communicate with anyone other than an exam proctor.
- (2) Start writing when instructed. Stop writing when your time is up.
- (3) Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics.

You are given below two functions f and g that map d-dimensional vectors x into scalars. For each of these functions, calculate the gradient and the Hessian. Recall that a function is convex if its Hessian is positive semi-definite at all inputs. Use the Hessian to determine whether each function is convex, and justify your answer.

$$\begin{split} \text{(1) (5 points) } f(x) &= e^{-\frac{1}{2}x^{\top}x}. \\ \nabla f(x) &= -x \cdot e^{-\frac{1}{2}x^{\top}x}. \\ \nabla^2 f(x) &= (xx^{\top} - I) \cdot e^{-\frac{1}{2}x^{\top}x}. \end{split}$$

f(x) is not convex as the Hessian is not PSD at all x. In particular, if x = [0, 0, ..., 0], then the Hessian at x is the matrix diag(-1, -1, -1, ..., -1), which is not PSD – if z = [1, 0, ..., 0], then $z^{\top} \nabla^2 f(x) z = -1 < 0$.

(2) (5 Points) Suppose
$$z^{(i)} \in \mathbb{R}^d$$
, for $i = 1, \dots, n$. $g(x) = \sum_{i=1}^n (e^{x^\top z^{(i)}} - x^\top z^{(i)})$. $\nabla g(x) = \sum_{i=1}^n z^{(i)} \cdot e^{x^\top z^{(i)}} - z^{(i)}$. $\nabla^2 g(x) = \sum_{i=1}^n z^{(i)} \cdot (z^{(i)})^\top \cdot e^{x^\top z^{(i)}}$.

g is convex as the Hessian is PSD at all x. We prove it as follows.

For any x and $z^{(i)}$, $e^{x^{\top}z^{(i)}} > 0$; moreover, $z^{(i)} \cdot (z^{(i)})^{\top}$ is PSD – as for any vector $w \in \mathbb{R}^d$, we have $w^{\top}z^{(i)} \cdot (z^{(i)})^{\top}w = \|w^{\top}z^{(i)}\|^2 \ge 0$.

If c_i are scalars that are > 0 and if A_i are PSD matrices, then $\sum_i c_i A_i$ is also PSD; this is because for any vector w, $w^{\top}(\sum_i c_i A_i)w = \sum_i c_i w^{\top} A_i w \geq 0$ as each individual term $c_i w^{\top} A_i w \geq 0$. Plugging in $c_i = e^{x^{\top} z^{(i)}}$, and $A_i = z^{(i)} \cdot (z^{(i)})^{\top}$, we get that the Hessian is PSD at all x.