

24 avril, 2018

Assembleur en ligne et mémoire

TP5 – INF1600 : Architecture des micro-ordinateurs Groupe 1 (B1)

Présenté à Mohamed-Essaddik Benyahia

Exercice 2 - Mémoire cache

1.

Placement direct

```
1024 ko de mémoire principale = 2^20

16 ko de mémoire cache = 2^14

16o par ligne = 2^4 → 4 bits pour l'octet

# de blocs (placement direct) = 2^14 (octets) / 2^4 (octets/bloc) = 2^10 blocs

2^10 blocs → 10 bits pour l'ensemble

mémoire principale = mem cache * # lignes

# lignes = mémoire principale / mem cache

# lignes = 2^20 / 2^14

= 2^6 lignes

2^6 lignes → 6 bits pour la tag

Taille de l'adresse = # bits pour la tag + # bits pour l'ensemble + # bits pour l'octet

= 10 + 6 + 4

= 20 bits
```

Placement associative par ensemble de 2

```
1024 ko de mémoire principale = 2^20
16 ko de mémoire cache = 2^14
160 par ligne = 2^4 → 4 bits pour l'octet

# d'ensembles = 2^14 (octets) / 2^4 (octets/bloc) / 2^1 (bloc/ensemble) = 2^9
→ 9 bits pour l'ensemble

# bits pour la tag = # bits total - # bits pour l'octet - # bits pour l'ensemble
= 20 - 4 - 9
= 7 bits pour la tag
```

Placement associative par ensemble de 4

```
1024 ko de mémoire principale = 2^20
16 ko de mémoire cache = 2^14
16o par ligne = 2^4 → 4 bits pour l'octet
```

d'ensembles =
$$2^14$$
 (octets) / 2^4 (octets/bloc) / 2^2 (bloc/ensemble) = 2^8 \rightarrow 8 bits pour l'ensemble

bits pour la tag = # bits total - # bits pour l'octet - # bits pour l'ensemble = 20 - 4 - 8

=8 bits pour la tag.

	Tag	Ensemble	Octet
Direct	6 bits	10 bits	4 bits
Associative par ensemble de 2	7 bits	9 bits	4 bits
Associative par ensemble de 4	8 bits	8 bits	4 bits

2.

Direct				Associative par ensemble de 2			Associative par ensemble de 4					
Accès	Tag	Set	Hit	w-b	Tag	Set	Hit	w-b	Tag	Set	Hit	w-b
WR 0x5EF1D	0x17*	0x2F1			0x2F*	0x0F1			0x5E*	0xF1		
WR 0x19C7C	0x06*	0x1C7			0x0C*	0x1C7			0x19*	0xC7		
RD 0x5EF1B	0x17*	0x2F1	х		0x2F*	0x0F1	х		0x5E*	0xF1	х	
RD 0x8CDB0	0x23	0x0DB			0x46	0x0DB			0x8C	0xDB		
WR 0x3CDB3	0x0F*	0x0DB			0x1E*	0x0DB			0x3C*	0xDB		
WR 0x5EF15	0x17*	0x2F1	х		0x2F*	0x0F1	х		0x5E*	0xF1	х	
RD 0x68DBF	0x1A	0x0DB		х	0x34	0x0DB			0x68	0xDB		
WR 0x CAF1C	0x32*	0x2F1		х	0x65*	0x0F1			0xCA*	0xF1		
RD 0x39C7E	0x0E	0x1C7		х	0x1C	0x1C7			0x39	0xC7		
WR 0xCAF1A	0x32*	0x2F1	х		0x65*	0x0F1	х		0xCA*	0xF1	х	

3.

Direct 2 blocs				4 blocs					
Set	Tag0	Set	Tag0	Tag1	Set	Tag0	Tag1	Tag2	Tag3
0x0DB	1A	0x0DB	34	1E*	0xC7	19*	39		
0x1C7	0E	0x0F1	2F*	65*	0xDB	8C	3C*	68	
0x2F1	32*	0x1C7	0C*	1C	0xF1	5E*	CA*		

4.

Directe

- 10 copies de blocs sont faites (w-b = 2 transferts entre cache et mémoire, plus les défauts d'accès)
 - = 10*100ns
 - = 1000ns
- 3 succès d'accès
 - = 3*8ns
 - = 24ns
- Temps total / # d'accès total = temps effectif d'accès
 - = 1024ns / 10
 - = 102,4 ns

2 blocs

- 7 copies de blocs sont faites (w-b = 2 transferts entre cache et mémoire, plus les défauts d'accès)
 - = 7*100ns
 - = 700ns
- 3 succès d'accès
 - = 3*8ns
 - = 24ns
- Temps total / # d'accès total = temps effectif d'accès
 - = 724 ns / 10
 - = 72,4 ns

4 blocs

- 7 copies de blocs sont faites (w-b = 2 transferts entre cache et mémoire, plus les défauts d'accès)
 - = 7*100ns
 - = 700 ns
- 3 succès d'accès
 - = 3*8ns
 - = 24ns
- Temps total / # d'accès total = temps effectif d'accès
 - = 724 ns / 10
 - = 72.4 ns

5.

Quand une mémoire cache est complètement associative, les blocs mémoire sont écrits à n'importe quelle adresse dans la cache, contrairement à ce qu'on retrouve dans notre tp où nous utilisons des associations de placement directe et par ensembles. Ceci oblige à placer les blocs mémoire à un endroit précis (pour le placement direct et associative par ensembles), d'où la nécessité d'adresser l'ensemble. La structure ne diffère pas en taille entre les différentes politiques, par contre un placement complètement associative n'aura pas à préciser d'ensemble, mais aura plus de bits réservés pour l'étiquette. La politique de placement complètement associative a un meilleur taux de succès, de nombreuses possibilités et ainsi une plus grande flexibilité. Cependant, cette façon de faire requiert beaucoup de logique et donc une plus grande gestion, ce qui est un gros désavantage. Tandis que l'associativité direct est simple, peu coûteuse et est un bon choix pour les caches larges. Quant à l'associativité par ensembles, elle est un bon compromis entre les deux.