MO433

Alunos:

- Gian Franco Joel Condori Luna (RA 234826)
- Jarol Vijay Butron Soria (RA 234833)
- Walter Augusto Perez Casas (RA 187990)

Problema

Os dados em dados3.csv contem 900 dados "normais" e até 7 outliers.

Use pelo menos 3 algoritmos/técnicas diferentes para detectar os outliers.

Leitura de dados

```
In [1]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.decomposition import PCA
In [2]:
          df = pd.read csv('https://www.ic.unicamp.br/~wainer/cursos/2s2021/433/dados3.
In [3]:
          df.head()
                                          V5
              V1
                     V2
                            V3
                                   V4
                                                 V6
                                                        V7
                                                               V8
                                                                     V9
                                                                           V10
Out[3]:
            -2.97
                   1.020 -2.340
                                 3.460
                                        1.630
                                               0.157 -2.660
                                                             0.559
                                                                   -5.27
                                                                          1.960
             4.30
                  -0.817
                          1.410 -2.160
                                        0.673
                                               0.870
                                                     -1.220
                                                             1.620
                                                                    3.43
                                                                         -0.771
         2 -2.62
                   0.378 -1.010
                                 1.430
                                       -0.278
                                              -0.384
                                                      0.613
                                                            -0.880
                                                                   -2.14
                                                                          0.465
                  -0.356
                                                     -0.817
         3
             2.38
                          0.731 -1.250
                                        0.391
                                               0.362
                                                             1.000
                                                                    1.85 -0.260
            1.87 -0.568
                         0.440 -0.856
                                        0.401
                                               0.576 -0.568
                                                             0.793
                                                                    1.55 -0.412
```

Algoritmo 1: DBSCAN

In [4]:	<pre>df.describe()</pre>												
Out[4]:		V1	V2	V3	V4	V5	V6	V7					
	count	907.000000	907.000000	907.000000	907.000000	907.000000	907.000000	907.000000	907.0				
	mean	1.457850	-0.307068	0.449542	-0.718637	0.247354	0.324393	-0.425596	0.5				
	std	2.847931	0.604886	0.976490	1.423629	0.488978	0.657623	0.837753	1.0				

	V1	V2	V3	V4	V5	V6	V7	
min	-3.680000	-2.540000	-4.730000	-2.480000	-1.930000	-2.070000	-2.660000	-1.5
25%	-2.075000	-0.830000	-0.581500	-2.170000	-0.219000	-0.283500	-1.200000	-0.6
50%	2.240000	-0.471000	0.699000	-1.100000	0.375000	0.501000	-0.645000	3.0
75%	4.420000	0.263500	1.385000	0.979500	0.678500	0.890500	0.446000	1.6
max	4.860000	1.500000	1.750000	3.460000	2.160000	2.690000	3.400000	2.0

In [5]: sns.pairplo

Do gráfico anterior é possível observar os pontos que seriam os outliers

O algoritmo de DBSCAN é baseado em densidades. Os valores que não pertencem a um cluster são considerados como outliers.

In [6]: **from** sklearn.cluster **import** DBSCAN

In [7]: samples_list = [7, 8, 9, 10, 11, 12]

```
eps_list = [0.8, 0.85, 0.9, 0.95, 1, 1.05]
for eps, sample in zip(eps list, samples list):
    print(f"eps: {eps} - minSample: {sample}")
    model = DBSCAN(eps=eps, min samples=sample).fit(df)
    labels = model.labels
    labels df = pd.DataFrame(labels, columns=['cluster'])
    quantityOutliers = labels df['cluster'].value counts()[-1]
    print("\tQuantidade de Outliers:", quantityOutliers)
eps: 0.8 - minSample: 7
        Quantidade de Outliers: 8
eps: 0.85 - minSample: 8
        Quantidade de Outliers: 8
eps: 0.9 - minSample: 9
        Quantidade de Outliers: 8
eps: 0.95 - minSample: 10
       Quantidade de Outliers: 7
eps: 1 - minSample: 11
       Quantidade de Outliers: 7
```

Testamos diferentes combinações de raio e número mínimo de amostras. A quantidade de outliers fica entre 8 e 7.

Agora escolhemos um dos casos testados para olhar os outliers que achou.

eps: 1.05 - minSample: 12

Ouantidade de Outliers: 7

```
In [8]:
         model = DBSCAN(eps=0.95, min samples=9).fit(df)
         model
        DBSCAN(eps=0.95, min samples=9)
Out[8]:
In [9]:
         labels = model.labels
         labels df = pd.DataFrame(labels, columns=['cluster'])
         labels df['cluster'].value counts()
              300
Out[9]:
         2
              300
         0
              300
        - 1
        Name: cluster, dtype: int64
```

Finalmente, o algoritmo indetificou 3 clusters e os outliers, definido com o label "-1", onde é possível observar que têm 7 outliers.

Faremos uma redução de dimensionalidade para mostrar os outliers.

```
In [11]:
    outliersIndex = labels_df[labels_df['cluster'] == -1].index

    pca = PCA(2)
    pca.fit(df)
    df_2d = pd.DataFrame(pca.transform(df))

    plt.title("DBSCAN")
    plt.scatter(df_2d[0], df_2d[1], c='green', s=20, label="normal points")
    plt.scatter(df_2d.iloc[outliersIndex,0], df_2d.iloc[outliersIndex,1], c='greer
    plt.legend(loc="upper left")
    plt.show()
```


Algoritmo 2: Isolation forest

Isolation forest é um algoritmo de aprendizagem não supervisionado que identifica anomalias isolando outliers nos dados. Utilizando árvores binárias identifica quão isolado é um ponto de dados do resto dos dados.

```
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest

data = df.copy()
```

Para a criação do modelo lhe enviamos como parâmetros: **n_estimators** que é o número de estimadores de base ou árvores no conjunto, **max_samples** que é o número de amostras que serão retiradas para treinar cada estimador de base, **contamination** que é a proporção esperada de outliers no conjunto de dados e o **max_features** que é o número de características a extrair das características totais para treinar cada estimador de base ou árvore.

```
In [13]:
                                  # Criação do modelo
                                  model=IsolationForest(n estimators=50, max samples='auto', contamination=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=floation=fl
                                  model.fit(data[['V1','V2','V3','V4','V5','V6','V7','V8','V9','V10']])
                                  # Agregação de colunas de pontuações e anomalias
                                  data['scores']=model.decision_function(data[['V1','V2','V3','V4','V5','V6','V
                                  data['anomaly']=model.predict(data[['V1','V2','V3','V4','V5','V6','V7','V8',
                                  # Análise das anomalias previstas
                                  outliers=data.loc[data['anomaly']==-1]
                                  outlier_index=list(outliers.index)
                                  print(data['anomaly'].value counts())
                                  # Visualização de os resultados - 3D
                                  pca = PCA(n components=3)
                                  scaler = StandardScaler()
                                  X = scaler.fit_transform((data[['V1','V2','V3','V4','V5','V6','V7','V8','V9',
                                  X_reduce = pca.fit_transform(X)
                                  fig = plt.figure()
                                  ax = fig.add_subplot(111, projection='3d')
                                  ax.set_zlabel("x_composite_3")
```

```
ax.scatter(X_reduce[:, 0], X_reduce[:, 1], zs=X_reduce[:, 2], s=4, lw=1, labe
ax.scatter(X_reduce[outlier_index,0], X_reduce[outlier_index,1], X_reduce[outl
ax.legend()
plt.show()

# Visualização de os resultados - 2D
pca = PCA(2)
pca.fit(data[['V1','V2','V3','V4','V5','V6','V7','V8','V9','V10']])
res=pd.DataFrame(pca.transform(data[['V1','V2','V3','V4','V5','V6','V7','V8',
Z = np.array(res)
plt.title("IsolationForest")
b1 = plt.scatter(res[0], res[1], c='green',s=20,label="normal points")
b1 =plt.scatter(res.iloc[outlier_index,0],res.iloc[outlier_index,1], c='greer
plt.legend(loc="upper left")
plt.show()
```

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:446: UserWarning: X do es not have valid feature names, but IsolationForest was fitted with feature names

"X does not have valid feature names, but" 1 897

-1 10

Name: anomaly, dtype: int64

Algoritmo 3: LOF

O Fator de Anomalia Local é um algoritmo para detectar anomalias em dados observacionais. Medir a pontuação da densidade local de cada amostra e ponderar suas pontuações é o principal conceito do algoritmo. Ao comparar a pontuação da amostra com seus vizinhos, o algoritmo define elementos de menor densidade como anomalias nos dados. O Fator de Anomalia Local é um algoritmo para detectar anomalias em dados observacionais. Medir a pontuação da densidade local de cada amostra e ponderar suas pontuações é o principal conceito do algoritmo. Ao comparar a pontuação da amostra com seus vizinhos, o algoritmo define elementos de menor densidade como anomalias nos dados.

```
In [14]:
          from sklearn.neighbors import LocalOutlierFactor
In [15]:
          df lof = df.copy()
In [16]:
          range = [5, 10, 15, 20, 25]
          for i in range:
            clf = LocalOutlierFactor(n neighbors=i, contamination=0.01)
            outlier_lof = clf.fit_predict(df_lof)
            print((outlier lof == -1).sum())#Outlier
         10
         10
         10
         10
         10
         Ao testar com números diferentes de vizinhos [5, 10, 15, 20, 25] vemos que o resultado não
         varia, portanto, neste caso, usaremos 20 vizinhos.
In [17]:
          clf = LocalOutlierFactor(n neighbors=20, contamination=0.01)
          outlier lof = clf.fit predict(df lof)
          print((outlier lof == -1).sum())#Outlier
         10
In [18]:
          labels df = pd.DataFrame(outlier lof, columns=['Result'])
          labels df['Result'].value counts()
                897
Out[18]:
          - 1
                 10
         Name: Result, dtype: int64
In [19]:
          # Visualização de os resultados - 2D
          pca_lof = PCA(2)
          pca_lof.fit(df_lof[['V1','V2','V3','V4','V5','V6','V7','V8','V9','V10']])
          res_lof = pd.DataFrame(pca_lof.transform(df_lof[['V1','V2','V3','V4','V5','V6
          y pred = clf.fit predict(res lof)
          lofs index = np.where(y pred==-1)
          plt.title("LOF")
          b2 = plt.scatter(res lof[0], res lof[1], c='blue', s=20, label="normal points
          b2 = plt.scatter(res_lof.iloc[lofs_index][0],res_lof.iloc[lofs_index][1], c='
          plt.legend(loc="upper left")
          plt.show()
```


O gráfico mostra os 10 outliers vermelhos.