@ General equilibrium

Edgeworth Box Economies

· 2: on Rt -

* Strongly monotone : if $\alpha \ge \alpha'$ and $\alpha \ne \alpha'$, then $\alpha \ge \alpha'$

* Strict convexity: if x'zx, x'zx, and x' x x"

then dx'+(-d)x''>x for each $d\in(0,1)$

* continuous: if $\chi^n \to \chi^\infty$, $z^n \to z^\infty$ and for each n $\chi^n \gtrsim z^n$ then $\chi^\infty \gtrsim z^\infty$

* two agents & two goods

I Pure Exchange economies (NO PRODUCTION)

- > No production
- > Firms will not enter explicitly.
- * commodities : l=1,2
- * consumers: i=1,1
 - consumption set of i: X = 1R+
 - preference relation: Zi strongly monotone, strictly convex & continuous

* allocation: $(\chi_1, \chi_2) \in \mathbb{R}^4$ \downarrow $\chi_i = (\chi_{1i}, \chi_{2i})$

XLi A K goods consumers

* Wi = (Wii, Wai) = 1R+

* allocation $(x_1, x_2) \in \mathbb{R}^4$ is feasible if $x_{e1} + x_{e2} \leq \overline{w_e}$ allocation is non-wasteful if $x_{e1} + x_{e2} = \overline{w_e}$ for each $\ell=1,2$

Remark Special case of an economy with one firm J=1

- · An allocation (XI. X2. J) (Only here)
 - standard definition of feasibility: X1+X2 = W+Y
 - Here: (M1, M2) satisfies feasibility according to *

 iff 3 y & T_J s.t. (M1, M2, y) satisfies the standard defin of feasibility:
- · If (x^*, x^*, y^*) and $P^* = (P^*, P^*)$ is a competitive equilibrium, then $P^*_{\epsilon} > 0$ for each l = 1, 2
 - \Rightarrow if $P_2^* \le 0$: then NO consumer would have an optimal X_{λ}^* \Rightarrow Just want to consume more & more.
 - => if y*= (0,0),
 - firm J chooses y to maximize max [p*: y]
 - => (xx*, x2) are non-wasteful.

Think about varying prices

* for each p=(P1,P2) and each i=1.2.

= a unique (Ni, Xxx) that is demanded by i

(max i's preference given the budget constraint) => See MWG 3.D.2 proposition.

Offer curve."

* Nicp) for the unique demand of i at price P= (Pi.P.)

* (At , 12) and p* comprise a competitive equilibrium if

o for each i, Ni = Ni(p*) < Consumers max.

@ M(p*) + M(p*) = W + Market clearing

Since x.(p*) = W-x1(p*), offer curve of i=1,2 must intersect at pot

Remark For each i, 3 p S.t Milp) = Wi

- But there may be no price p s.t Kich & Xip intersect at w.

- Thus, this NOT saying that the competitive equilibrium is the endowment.

Remark

XI(.) and W-X2(.) intersect at the consumption X*:

If xt + WI, then I a unique pt s.t. (xt, w-xt) and pt form a competitive equilibrium.

Remark: With slight amendment to our assumptions about preferences, we may not have a competitive equilibrium.

- offer curve goes though 2 points these prices
- induces a jump in the offer come between these points.
- Consumer 2's offer curve "would" intersect between these points we have a publish for existence.

* 1's prefs are strongly monotone and strictly convex

→ the indifference curve

{\(\times = |R^+: \chi \gamma \omega_1 \omega_1 \)

has an infinit slope at \(\omega_1 \)

* 2 only cases about l=1

- prefs are monotone (not storgly)

e=1 - prefs are convex (hat strictly)

- continuous

case 1) P1 >0

- In this case: 2's best response is to consume $W_1 = (\overline{W}_1, 0)$

- At the endowment, $W_1 = (0, \overline{W}_2)$: MRS₂(W_1) > relative price

=> NO BUNDLE satisfies Market clearing.

(ase 2) $P_2 \le 0$ and $P_1 > 0$ \Rightarrow and $(0, x_2) \in B_2(p) \Rightarrow 2$ has no best response so came have competitive of $P_2 > 0$ and $P_1 \le 0$ \Rightarrow and $(x_1, 0) \in B_2(p) \Rightarrow 2$ has no best response.