by se mohlo jednat.

V souboru U-I-mereni. dat jsou výsledky opakovaného měření napětí a proudu na drátu.
Určete elektrický odpor drátu a jeho chybu.
Měření bylo prováděno na homogenním drátu o délce l = 0.625(2) m a průměru d = 1.4(1) mm.
Určete měrný elektrický odpor materiálu, z kterého je drát vyroben. Odhadněte o jaký materiál

Excel soubor U-I-mereni.xlsx

	- (- /	()	
	0.141	0.601	
	0.104	0.454	
	0.110	0.554	
	0.112	0.501	
	0.111	0.566	
	0.117	0.505	
	0.108	0.411	
	0.098	0.497	
	0.087	0.498	
	0.094	0.465	
	0.151	0.668	
	0.105	0.377	
	0.085	0.519	
	0.058	0.330	
	0.069	0.394	
	0.066	0.364	
	0.116	0.569	
	0.099	0.452	
	0.107	0.578	
	0.095	0.472	
	0.40465	0.40075	
mean		0.48875	
st dev		0.086609	
err-mean		0.019366	
rel-err	4.95	3.96 %	
R	0.20798		
err-R	0.013192		
rel-err	6.34	%	

U(V)

I(A)

Excel soubor U-I-mereni.xlsx

U(V)	I(A)	R(Ohm)
0.141	0.601	0.234609
0.104	0.454	0.229075
0.110	0.554	0.198556
0.112	0.501	0.223553
0.111	0.566	0.196113
0.117	0.505	0.231683
0.108	0.411	0.262774
0.098	0.497	0.197183
0.087	0.498	0.174699
0.094	0.465	0.202151
0.151	0.668	0.226048
0.105	0.377	0.278515
0.085	0.519	0.163776
0.058	0.330	0.175758
0.069	0.394	0.175127
0.066	0.364	0.181319
0.116	0.569	0.203866
0.099	0.452	0.219027
0.107	0.578	0.185121
0.095	0.472	0.201271

mean	0.10165	0.48875	0.208011	Ohm
st dev	0.022516	0.086609	0.030122	Ohm
err-mean	0.005035	0.019366	0.006735	Ohm
rel-err	4.95	3.96 %	3.24	%
R	0.20798	Ohm		
err-R	0.013192	Ohm		
rel-err	6.34	%		

Excel soubor U-I-mereni.xlsx

elektrický odpor drátu

$$R=\varrho\frac{l}{S}$$
měrný elektrický odpor
$$\varrho=\frac{\pi R d^2}{4l}$$

$$S=\frac{1}{4}\pi d^2$$

chyba měrného elektrického odporu σ_{ρ}

$$\left(\frac{\sigma_{\varrho}}{\varrho}\right)^{2} = \left(\frac{\sigma_{R}}{R}\right)^{2} + 4\left(\frac{\sigma_{d}}{d}\right)^{2} + \left(\frac{\sigma_{l}}{l}\right)^{2}$$

$$\varrho = (0.51 \pm 0.08) \times 10^{-6} \,\Omega\,\mathrm{m}$$

Konstantan Cu 55% + Ni 45% měrný elektrický odpor: ρ = 0.51 μΩ m

U(V)	I(A)	R(Ohm)
0.141	0.601	0.234609
0.104	0.454	0.229075
0.110	0.554	0.198556
0.112	0.501	0.223553
0.111	0.566	0.196113
0.117	0.505	0.231683
0.108	0.411	0.262774
0.098	0.497	0.197183
0.087	0.498	0.174699
0.094	0.465	0.202151
0.151	0.668	0.226048
0.105	0.377	0.278515
0.085	0.519	0.163776
0.058	0.330	0.175758
0.069	0.394	0.175127
0.066	0.364	0.181319
0.116	0.569	0.203866
0.099	0.452	0.219027
0.107	0.578	0.185121
0.095	0.472	0.201271

6.34 %

rel-err

Extrapolace

2. Naměřená data na obrázku byla nafitována lineární závislostí y = ax + b. Hodnoty odhadů parametrů získané z fitu jsou $\hat{a} = -0.98 \pm 0.08$ a $\hat{b} = 29 \pm 1$. Odhad kovariance parametrů je $\cos(\hat{a}, \hat{b}) = -0.071 \pm 0.005$. Určete hodnotu veličiny y extrapolovanou do bodu $x_0 = 25$ a chybu této extrapolace.

Extrapolace

2. Naměřená data na obrázku byla nafitována lineární závislostí y = ax + b. Hodnoty odhadů parametrů získané z fitu jsou $\hat{a} = -0.98 \pm 0.08$ a $\hat{b} = 29 \pm 1$. Odhad kovariance parametrů je $cov(\hat{a}, \hat{b}) = -0.071 \pm 0.005$. Určete hodnotu veličiny y extrapolovanou do bodu $x_0 = 25$ a chybu této extrapolace.

chyba extrapolace: $V[y(\boldsymbol{x})] \approx \sum_{i=1}^{n} \sum_{j=1}^{n} \left. \frac{\partial y}{\partial x_i} \right|_{\boldsymbol{x} = \boldsymbol{\mu}} \left. \frac{\partial y}{\partial x_j} \right|_{\boldsymbol{x} = \boldsymbol{\mu}} \cos(x_i, x_j)$

X

Extrapolace

2. Naměřená data na obrázku byla nafitována lineární závislostí y = ax + b. Hodnoty odhadů parametrů získané z fitu jsou $\hat{a} = -0.98 \pm 0.08$ a $\hat{b} = 29 \pm 1$. Odhad kovariance parametrů je $\operatorname{cov}(\hat{a},\hat{b}) = -0.071 \pm 0.005$. Určete hodnotu veličiny y extrapolovanou do bodu $x_0 = 25$ a chybu této extrapolace.

chyba extrapolace: $\sigma_{y_0}^2 = x_0^2 \sigma_{\hat{a}}^2 + \sigma_{\hat{b}}^2 + 2x_0 \operatorname{cov}(\hat{a}, \hat{b})$

