Table 1: Comparison of diagnostic methods for SMA

N° tube	SSCP ⁽¹⁾	Our method (radioactive) (3)							
	j	P	robe 1 (exon	7)	Probe 2 (exon 8)				
	Exons (2)	PSL/mm²	R (%) (4)	Exon 7	PSL/mm²	R (%) (4)	Exon 8		
Control (1)	ndel 7/ndel 8	42	0	ndel	22	0	ndel		
Control (2)	ndel 7/ndel 8	41	0.	ndel	23	0	ndel		
Control (3)	ndel 7/ndel 8	43	.0	ndel	22	0	ndel		
Control (4)	ndel 7/ndel 8	41	0	ndel	21	0	ndel		
Control . (5)	ndel 7/ndel 8	. 42	0	ndel	23	0	ndel		
SMA (6)	del 7/del 8	24	43	del	15	32	del		
SMA (7)	del 7/del 8	14	67	del	08	64	del		
SMA (8)	del 7/del 8	10	76	del	07	68	del		
SMA (9)	del 7/del 8	26	38	del	06	73	del		
SMA (10)	del 7/del 8	09	79	del	13	41	del		
SMA (11)	del 7/del 8	27	36	del	12	45	del		
SMA (12)	del 7/del 8	15	64	del	15	32	del		
SMA (13)	del 7/del 8	13	69	del	14	36	del		
SMA (14)	del 7/del 8	25	40	del	11	50	del		
SMA (15)	del 7/del 8	20	52	del	.09	59	del		
SMA (16)	del 7/del 8	19	55	del	13	41	del		
SMA (17)	del 7/del 8	12	71	del	14	36	del		
SMA (18)	del 7/del 8	14	67	del	12	45	del		

⁽¹⁾ single strand conformation polymorphism

The mean value of the control group is used for the calculation of R

⁽²⁾ del: deleted; ndel: non deleted

⁽³⁾ The quantification of results obtained is performed by means of Bio-Imager and expressed as PSL/mm²

⁽⁴⁾ R: difference = 1 - [(PSL/mm²Control - PSL/mm²SMA)/(PSL/mm²Control)]

Table 2 : Comparison of diagnostic methods for SMA

N° tub	e SSCP(1)	Our method (ELISA)								
		Our method (ELISA) Probe 3								
		Probe 1 (exon 7)				Probe 2 (exon 8)			(HUMEF1AB)	
ļ	Exons (2)	Optical density	R(%) ⁽³⁾	Exon 7	Optical density	R(%) ⁽³⁾	Exon 8	Optical density	RT- PCR	
Contro (1)	ndel 7/ ndel 8	0.26	0	ndel	0.28	0	ndel	0.55	positive	
Contro (2)	ndel 7/ ndel 8	0.28	0	ndei	0.29	0	ndel	0.54	positive	
Contro (3)	ndel 7/ ndel 8	0.27	0	ndel	0.26	0	ndel	0.52	positive	
Contro (4)	ndel 7/	0.26	0 .	ndel	0.28	0	ndel	0.51	positive	
Control	ndel 7/	0.27	0	ndel	0.27	0	ndel	0.49	positive	
SMA (6)	del 7/ del 8	0.16	41	del	0.13	54	del	0.51	positive	
SMA (7)	del 7/ del 8	0.16	41	del	0.16	· 43	del	0.48	positive	
SMA (8)	del 7/ del 8	0.11	59	del	0.12	57	đel	0.53	positive	
SMA (9)	del 7/ del 8	0.15	44	del	0.14	50	đel	0.49	positive	
SMA (10)	del 7/ del 8	0.19	30	del	0.16	43	del	0.5	positive	
SMA (11)	del 7/ del 8	0.13	- 52	del	0.12	57	del	0.49	positive	
SMA (12)	del 7/ del 8	0.14	48	del	0.13	54	del	0.48	positive	
SMA _. (13)	del 7/ del 8	0.17	37	del	0.14	50	del	0.55	positive	
SMA (14)	del 7/ del 8	0.12	55	del	0.15	46	del	0.52	positive	
SMA (15)	del 7/ del 8	0.11	59	đel	0.13	54	del	0.5	positive	
SMA (16)	del 7/ del 8	0.13	52	del	0.15	46	del	0.51	positive	
SMA (17)	del 7/ del 8	0.15	44	del ·	0.12	57	del	0.49	positive	
SMA (18)	del 7/ del 8	0.16.	41	del	0.16	43	del	0.5	positive	

⁽¹⁾ single strand conformation polymorphism

The mean value of the control group is used for the calculation of $\ensuremath{\mathsf{R}}$

⁽²⁾ del : deleted ; ndel : non deleted (3) R : difference = 1 - [(OD₄₅₀Control - OD₄₅₀SMA/OD₄₅₀Control)]