

Scheduling Policies

Lecture 13 Klara Nahrstedt

CS241 Administrative

- Read Chapter 9. 1 and 9.2 Stallings
- SMP3 is ON this week (2/12-2/19)

Content of This Lecture

Why CPU Scheduling?

Basic scheduling algorithms

FIFO (FCFS)

Shortest job first

Round Robin

Priority Scheduling

Goals:

Understand how your program is executed on the machine together with other programs

SMP4

Review: State Process Model

Figure 3.6 Five-State Process Model

OS Representation of Process via Process Control Block (PCB)

Process management	Memory management	File management
Registers	Pointer to text segment	Root directory
Program counter	Pointer to data segment	Working directory
Program status word	Pointer to stack segment	File descriptors
Stack pointer		User ID
Process state		Group ID
Priority		
Scheduling parameters		
Process ID		
Parent process		
Process group		
Signals		
Time when process started		
CPU time used		
Children's CPU time		
Time of next alarm		

Fields of a process table entry

Process Scheduling

Deciding which process/thread should occupy the resource (CPU, disk, etc)

Process Scheduling

Objective of multiprogramming – maximal CPU utilization, i.e., have always a process running

Objective of time-sharing – switch CPU among processes frequently enough so that users can interact with a program which is running

Need:

Scheduling Mechanisms:

Context Switching between Processes

Queueing Capabilities

Scheduling Policies:

Which process to select for running at CPU?

Context Switch

Need hardware support

Switch CPU from one process to another Performed by scheduler It includes: save PCB state of the old process; load PCB state of the new process; Flush memory cache; Change memory mapping (TLB); Context switch is expensive (1-1000 microseconds) No useful work is done (pure overhead) Can become a bottleneck Real life analogy?

Process Context Switch

PCB-1

9

When to schedule?

A new process starts
The running process exits
The running process is blocked
I/O interrupt (some processes will be ready)
Clock interrupt (every 10 milliseconds)

Queuing Diagram for Processes

Preemptive vs. Non-preemptive

Non-preemptive scheduling:

The running process keeps the CPU until it

voluntarily gives up the CPU

process exits

switches to blocked state

1and 4 only (no 3)

Preemptive scheduling:

The running process can be interrupted and must release the CPU (can be forced to give up CPU)

What are the scheduling objectives?

Scheduling Objectives

Fair (nobody cries)

Priority (lady first)

Efficiency (make best use of equipment)

Encourage good behavior (good boy/girl)

Support heavy loads (degrade gracefully)

Adapt to different environments (interactive, real-time, multi-media)

Performance Criteria

Fairness

Efficiency: keep resources as busy as possible

Throughput: # of processes that completes in unit time

Turnaround Time (also called elapse time)

amount of time to execute a particular process from the time its entered

Waiting Time

amount of time process has been waiting in ready queue

Response Time

amount of time from when a request was first submitted until first response is produced.

predictability and variance

Policy Enforcement:

seeing that stated policy is carried out

Proportionality.

meet users' expectation

Meeting Deadlines: avoid losing data

Process Profiles

I/O - Bound

Does too much I/O to keep CPU busy

CPU – Bound

Does too much computation to keep I/O busy

Process Mix

Scheduling should load balance between I/O bound and CPU-bound processes

Ideal would be to run all equipment at 100% utilization but that would not necessarily be good for response time

CPU Scheduler

Proc 1: 14 time units

Proc2: 8 time units

Proc3: 8 time units

Dispatcher
Preemptive vs.
non-preemptive

Ready queue

blocked queue

Simple Processor Scheduling Algorithms

```
Batch systems
First Come First Serve (FCFS)
Shortest Job First
Interactive Systems
Round Robin
Priority Scheduling
...
```

First Come First Serve (FCFS)

Process that requests the CPU FIRST is allocated the CPU FIRST.

Also called FIFO

Preemptive or Non-preemptive?

Used in Batch Systems

Real life analogy?

Fast food restaurant

Implementation

FIFO queues

A new process enters the tail of the queue

The schedule selects from the head of the queue.

Performance Metric: Average Waiting Time.

Given Parameters:

Burst Time (in ms), Arrival Time and Order

FCFS Example

Process	Duration	Order	Arrival Time
P1	24	1	0
P2	3	2	0
P3	4	3	0

The final schedule:

P1 waiting time: 0

P2 waiting time: 24

P3 waiting time: 27

The average waiting time:

$$(0+24+27)/3 = 17$$

Problems with FCFS

Non-preemptive

Not optimal AWT

Cannot utilize resources in parallel:

Assume 1 process CPU bounded and many I/O bounded processes

result: Convoy effect, low CPU and I/O Device utilization

Why?

Summary

Why Scheduling?
Scheduling objectives
Scheduling Algorithms
FCFS (FIFO)