MAT137 Lecture 4

Huan Vo

University of Toronto

September 18, 2017

Agenda

- ▶ Definitions and Proofs.
- ► Induction proofs.

Definition

A function f defined on a domain D is called **injective** on D (or **one-to-one** on D) if different inputs to the function always yield different outputs.

Huan Vo (UofT) MAT137 Lecture 4 September 18, 2017 3 / 10

Choose the correct definition of one-to-one functions.

Let f be a function with domain $D \subseteq \mathbb{R}$. We say that f is **one-to-one** if

- $f(x_1) \neq f(x_2).$
- **2** $\exists x_1, x_2 \in D$ s.t. $f(x_1) \neq f(x_2)$.
- **3** $\forall x_1, x_2 \in D, \quad f(x_1) \neq f(x_2).$

- **6** $\forall x_1, x_2 \in D \ f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2.$

Show that the function $f(x) = x^2$, $x \in [0, 1]$ is one-to-one.

Proof.

Using definition **7**, take $x_1, x_2 \in [0,1]$ and suppose that $f(x_1) = f(x_2)$, i.e.

$$x_1^2 = x_2^2$$
.

Since $x_1, x_2 \ge 0$, taking square root of both sides we obtain $x_1 = x_2$. So f is one-to-one, as required.

Show that the function $f(x) = x^2$, $x \in [-1, 1]$ is not one-to-one.

Proof.

To show that f is not one-to-one, we negate definition 7, i.e.

$$\exists x_1, x_2 \in D \text{ s.t. } f(x_1) = f(x_2), \text{ but } x_1 \neq x_2.$$

We can simply choose $x_1=-1$, $x_2=1$, then f(-1)=f(1)=1, but $x_1\neq x_2$.

Induction

To prove a statement S_n is true for all $n \ge 1$, we can proceed as follows.

- **9** Base Case: Prove that S_1 (or some other starting point) is true.
- **2** Induction Hypothesis: Prove that $\forall n \geq 1$,

 S_n is true $\Longrightarrow S_{n+1}$ is true.

Induction

Suppose we have some statements S_n for all $n \ge 1$.

In each of the following cases, which S_n 's will we know are true?

- **① Case 1:** Suppose we have shown that:
 - $ightharpoonup S_7$ is true.
 - \lor \forall $n \ge 1$, S_n is true $\Longrightarrow S_{n+1}$ is true.
- 2 Case 2: Suppose we have shown that:
 - \triangleright S_1 is true.
 - $\forall n \geq 7, S_n \text{ is true} \Longrightarrow S_{n+1} \text{ is true}.$
- **3** Case 3: Suppose we have shown that:
 - $ightharpoonup S_1$ is true.
 - $\forall n \geq 1$, S_{n+1} is true $\Longrightarrow S_n$ is true.
- Case 4: Suppose we have shown that:
 - \triangleright S_1 is true.
 - $\forall n \geq 1, S_n \text{ is true} \Longrightarrow S_{n+3} \text{ is true}.$

Induction

Figure out what goes wrong in the following induction proof.

Theorem

All aliens have the same color??

Proof?

We will prove this by induction on the number of aliens.

- ▶ Base Case: S₁ is true, since with just one alien, all aliens have the same color.
- ▶ Induction Step: Assume S_n , which is the statement that all n aliens have the same color. Now given a set of n+1 aliens $\{a_1,a_2,\ldots,a_{n+1}\}$, we can conclude by the induction hypothesis that $\{a_1,a_2,\ldots,a_n\}$ all have the same color, and $\{a_2,a_3,\ldots,a_{n+1}\}$ all have the same color. Since $\{a_2,\ldots,a_n\}$ belongs to both sets, it follows that $\{a_1,\ldots,a_{n+1}\}$ have the same color, as required.

Next Class: Thursday Sept 21

Watch videos 1, 2, 3, 4 in Playlist 2.