Tutorial 4

Łukasz Magnuszewski

3 kwietnia 2023

1 Exercise 1

Show that if r and s are two series recognisable by weighted automata, then their sum r+s, defined by (r+s)(w)=r(w)+s(w) for every $w\in \Sigma^*$, also is.

r,s are recognised are regular, so they have corensponding automata A_r,A_s . We can just make single automaton which containts both automata. and beetwen these two subautomatas there is no edge with weight diffrent than 0.

2 Exercise 2

We need to take smart product of both automatas

$$Q = Q_a \times Q_b$$

$$\lambda((x,y)) = \lambda_a(x) * \lambda_b(y)$$

$$\mu((x,y)) = \mu_a(x) * \lambda_b(y)$$

$$\delta((p,q)_l, (r,s))_l = \delta_a(p,r)_l * \delta_b(q,s)$$

$$weight(w) = \sum_{roverrunsonw} \lambda_a(p_0) * lambda_b(p_0) * (\prod_{i \in [0,n-1)} \delta_a(p_i,p_{i+1})_{w_i} * \delta_b(p_i,p_{i+1})_{w_i}) * \mu_a(p_{n-1}) * \mu_b(p_{n-1})$$

We can rearrenge it, to product of two automata A,B, because we are in ring.

3 Exercise 3

Consider the following two famous De Morgan's laws:

3.1
$$\neg(\alpha \lor \psi) \equiv \neg\alpha \land \neg\psi$$

The law dont work if there are two non zero elements which sum to 0. Example of such case is any ring. Suppose we have such elements x, y (Note that is possible that x = y).

Then take $\alpha=x$ and $\psi=y.$ Left side evaluates to 1. And right side evaluates to $0 \clubsuit.$

3.2
$$\neg(\alpha \land \psi) \equiv \neg\alpha \lor \neg\psi$$

Consider $\mathbb Z$ as our semiring. Suppose that $\alpha=\psi=0$. Then left side evaluates to 1. And right side evaluates to 2 \clubsuit .

4 Exercise 4

Construct a weighted automaton over $\Sigma = \{0,1\}$ and $\langle \mathbb{N},+,*,0,1 \rangle$ recognising the series s_bin sending a word w over Σ to the number it represents in binary.

There is only one decision in this automata, and is when to cross to accepting state. We can cross between q_0 and q_1 only when our letter is one. So the weight of run in which we crossed is 2^k , where k is number of times we looped before crossing.

5 Exercise 6

What is the series defined by the wMSO formula $\forall x. \exists y. 1$? Can you construct a weighted automaton recognising this series?

There are no free formulas in every subformula, so we don't need to take care of substitution. The evaluation of this formula is $\prod_{w \in \Sigma^*} \sum_{v \in \Sigma^*} 1$. Which is equal to $|\Sigma^*|^{|\Sigma^*|}$. And there is no such weighted automaton(Tutorial 5, Exercise 6).