PHT / 2021 - INF 280 - Prova 1 - ID: 43

Werikson Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

23 de dezembro de 2021

Problema 1

Numa empresa, quatro processos diferentes são usados para produzir três produtos químicos. Esses produto são depois vendidos para outras indústrias.

- O primeiro processo fornece como resultado 3 unidades de hidrogênio, 2 de nitrogênio e 1 de cloro por hora.
- O segundo processo fornece como resultado 1 unidades de hidrogênio e 2 de cloro por hora.
- O terceiro processo fornece como resultado 2 unidades de hidrogênio e 1 de nitrogênio por hora.
- O quarto processo fornece como resultado 2 unidades de nitrogênio e 1 de cloro por hora.

Cada hora de funcionamento dos processos custa \$4, \$3, \$3 e \$5, respectivamente. A empresa precisa produzir pelo menos 900 unidades de hidrogênio, 1100 de nitrogênio e 1200 de cloro.

1. Escreva o modelo de PL para esse problema e resolva o modelo usando algum software apropriado, e preencha a tabela abaixo com a solução ótima do problema.

Solução

Tabela 1: Dados do problema 1.

Processos]	Preço por hora		
	Hidrogênio	Nitrogênio	Cloro	
x1	3	2	1	\$4
x2	1	0	2	\$3
x3	2	1	0	\$3
x4	0	2	1	\$5
Unidades				
mínimas produzidas	900	1100	1200	

Primeiro devemos determinar as variáveis, a função objetivo e as restrições a serem usadas. Depois, inserindo estes dados no software disponibilizado no PVANet Moodle, *Simplex method tool: v 2.0*, encontraremos a solução ótima para este problema.

Variáveis:

• $x1 \rightarrow Quantidades de horas do primeiro processo;$

• $x2 \rightarrow$ Quantidades de horas do segundo processo;

• $x3 \rightarrow$ Quantidades de horas do terceiro processo;

• $x4 \rightarrow$ Quantidades de horas do quarto processo;

Objetivo:

Minimizar: $4 \cdot x1 + 3 \cdot x2 + 3 \cdot x3 + 5 \cdot x4$

Restrições:

i- $3 \cdot x1 + 1 \cdot x2 + 2 \cdot x3 + 0 \cdot x4 \ge 900$

ii- $2 \cdot x1 + 0 \cdot x2 + 1 \cdot x3 + 2 \cdot x4 \ge 1100$

iii- $1\cdot x1 + 2\cdot x2 + 0\cdot x3 + 1\cdot x4 \geq 1200$

Tablea	u 1:								ı.	Tablea	u 3:								
	x1	x2	<i>x</i> 3	x4	s 1	52	s 3	-p			x1	x2	x3	x4	s1	s2	s3	-p	
*s1	3	1	2	0	-1	0	0	0	900	x1	1	1/3	2/3	0	-1/3	0	0	0	300
*s2	2	0	1	2	0	-1	0	0	1100	x4	0	-1/3	-1/6	1	1/3	-1/2	0	0	250
*s3	1	2	0	1	0	0	-1	0	1200	*s3	0	2	-1/2	0	0	1/2	-1	0	650
-p	4	3	3	5	0	0	0	1	0	-p	0	10/3	7/6	0	-1/3	5/2	0	1	-2450
p = 0;	x1 = 0,	×2 = 0, ×	3 = 0, x4	= 0					1	p = 24	50; x1 =	300, x2 =	0, x3 =	0, x4 = 2	250				1
	Tableau 2:																		
Tablea	u 2:									Tablea	u 4:								
Tablea	u 2: <i>x</i> 1	x2	<i>x</i> 3	x4	s1	s2	s3	-p		Tablea	u 4: <i>x</i> 1	x2	х3	x4	s1	s2	s3	-p	
Tablea x1		x2 1/3	x3	x4 0	s1 -1/3	s2	s3	-p 0	300	Tablea		x2 0	x3 3/4	x4 0	s1 -1/3	s2 -1/12	s3	-p 0	575/3
	x1								300		x1								575/3 1075/3
x1	x1	1/3	2/3	0	-1/3	0	0	0		x1	x1	0	3/4		-1/3	-1/12	1/6	0	
x1 *s2	x1 1 0	1/3	2/3	0 2	-1/3 2/3	0 -1	0	0	500	x1 x4	x1 1 0	0	3/4	0	-1/3 1/3	-1/12 -5/12	1/6 -1/6	0	1075/3

Tableau 5:									
	x1	x2	х3	x4	s1	52	s3	-p	
x1	1	0	1/2	1	0	-1/2	0	0	550
s1	0	0	-3/4	3	1	-5/4	-1/2	0	1075
x2	0	1	-1/4	0	0	1/4	-1/2	0	325
-р	0	0	7/4	1	0	5/4	3/2	1	-3175
p = 3	175; x1 =	550, x2	= 325, x3	= 0, x4 :	= 0				

Figura 1: Tabela simplex fornecida pelo software.

Quantidade de horas usadas em cada Processo								
P1	P2	P3	P4					
550	325	0	0					
Custo total:	\$ 3175							

2. Indique quais são as Variáveis Básicas obtidas na solução ótima, e monte a matriz B correspondente à BASE ótima do problema.

Solução

As variáveis básicas obtidas na solução ótima, para este problemas são x1, s1 e x2, onde s1 é a variável de folga das unidades de hidrogênio.

$$\mathbf{B} = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

3. Qual deveria ser o custo por hora máximo para do Processo 4 para que seu uso não cause um aumento do custo total?

Solução

Para que o uso do processo 4 não cause um aumento do custo total, o custo por hora máximo desse processo deveria ser reduzido em 1, o qual é seu valor de custo reduzido, ou seja, o novo valor será dado por $P_{x4} = 5 - 1 = 4$, portanto deveria ser de \$4.

4. Se você pudesse reduzir a necessidade mínima de produção de apenas um dos produtos químicos, qual deles traria uma vantagem maior, considerando apenas o resultado fornecido pelo software, ou seja, sem resolver novamente o problema? Justifique.

Solução

Considerando os valores obtidos pelo software apresentado na Figura 1, vemos que o produto químico a ser escolhido deve ser o Cloro, pois ele é o produto com maior preço dual (3/2), demonstrando que para cada unidade a menos produzida de cloro faria o custo total diminuir em \$1.5.

Problema 2

Um confeiteiro pode produzir cookies e bolinhos. Cada cookie fornece lucro de \$0.20 e requer 1.0 minuto de mão de obra e 18g de chocolate. Cada bolinho fornece lucro de \$0.40 e requer 1.5 minutos de mão de obra e 15g de chocolate. O confeiteiro dispõe de 24h de mão de obra e 21kg de chocolate por mês, e conseguirá vender tudo que for produzido. Quantos cookies e bolinhos deverão ser produzidos por mês de modo a maximizar o lucro?

Modele e resolva o problema graficamente, mostrando claramente o espaço de soluções viáveis, a inclinação da reta da F.O. e sua direção de otimização, e o ponto correspondente à solução ótima.

Variáveis:

• $x1 \rightarrow$ Quantidades de cookies;

• $x2 \rightarrow$ Quantidades de bolinhos;

Objetivo:

Maximizar: $L = 0.2 \cdot x1 + 0.4 \cdot x2$

Restrições:

Para as retraições, necessita-se colocar as variáveis nas mesmas unidades, logo 24h \rightarrow 1440 min e 21kg \rightarrow 21000g.

i-
$$18 \cdot x1 + 15 \cdot x2 \le 21000$$

ii-
$$1 \cdot x1 + 1.5 \cdot x2 \le 1440$$

Utilizando os gráficos das equações acima encontramos o espaço de soluções apresentado abaixo.

Figura 2: Solução gráfica para o problema 2.

Para este problema, a solução ótima é dada pelo ponto x^* , já que este é o último ponto em que a reta da função objetivo toca o espaço de soluções, sendo assim, a solução ótima é x1=0 e x2=960.

$$x^* = (0; 960)$$

 $Lucro = 0 \cdot 0.2 + 960 \cdot 0.4 = $384,00$

O confeiteiro deverá produzir 960 bolinhos e nenhum cookie para obter um lucro máxima, com isto seu lucro será de R\$384,00, tendo um gasto de 24h de mão de obra e 14.4Kg de chocolate, tendo então uma folga de 6.6Kg em relação ao máximo permitido.