FYS-MEK 1110 / Vår 2018 / Diskusjonsoppgaver #8 (13.-16.3.)

- D1. En liten og en stor bil kolliderer.
 - a. Hvilken av de to får en større endring i bevegelsesmengde, den store, den lille, eller er endingen i bevegelsesmengden den samme for begge?
 - b. Basert på svaret i a), hvorfor er passasjerene i den lille bilen utsatt for en større fare for å bli skadet?
- D2. En radioaktiv atomkjerne kan henfalle ved å sende ut en α partikkel, for eksempel 210 Po \rightarrow 208 Pb + α . I så fall får den lette α partikkelen mer kinetisk energi enn den tunge 208 Pb kjernen. Dette skyldes bevaring av bevegelsesmengden. Kan du forklare det også ved bruk av Newtons lover?
- D3. Den kinetiske energien til en partikkel er gitt ved $K=\frac{1}{2}mv^2$, og bevegelsesmengden ved $\vec{p}=m\vec{v}$. Det er lett å vise at $K=\frac{p^2}{2m}$. Hvordan er det mulig å ha en kollisjon hvor den totale bevegelsesmengden i systemet er bevart, men hvor den totale kinetiske energien endrer seg?