ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА»

Физический факультет

Отчет по практическому заданию №2 Основы математического моделирования.

> студента 327 группы Иванова Ивана Ивановича

1. Постановка задачи.

Используя метод переменных направлений, решите краевую задачу:

переменных направлений, решите краевую задачу:
$$\begin{cases} \frac{\partial u}{\partial t} = \triangle u + t \sin x \cos y, \ 0 < x < \pi, \ 0 < y < \pi, \ t > 0 \\ u \bigg|_{x=0} = u \bigg|_{x=\pi} = 0, \\ \frac{\partial u}{\partial y} \bigg|_{y=0} = \frac{\partial u}{\partial y} \bigg|_{y=\pi} = 0, \\ u \bigg|_{t=0} = 0 \end{cases}$$

2. Аналитическое решение задачи.

Для решения поставленной краевой задачи необходимо решить следующую вспомогательную задачу Штурма-Луивилля:

$$\begin{cases} \triangle v + \lambda v = 0, \ 0 < x < \pi, \ 0 < y < \pi \\ v \Big|_{x=0} = v \Big|_{x=\pi} = 0, \\ \frac{\partial v}{\partial y} \Big|_{y=0} = \frac{\partial v}{\partial y} \Big|_{y=\pi} = 0 \end{cases}$$

Решением поставленной задачи Штурма-Луивилля являются следующие собственные функции $v_{m,n}$ и собственные значения $\lambda_{m,n}$.

$$v_{m,n} = \sin nx \cos my$$
, $n = 1, 2, ..., m = 0, 1, 2, ...$

$$\lambda_{m,n} = n^2 + m^2$$

Разложим неоднородность f(x, y, t) в уравнении теплопроводности и начальное условие $\phi(x, y)$ в ряд Фурье по системе функций $v_{n,m}$.

$$f(x, y, t) = t \sin x \cos y = t v_{1,1}(x, y)$$

$$\phi(x,y) = 0$$

Будем искать решение уравнения в следующем виде:

$$u(x, y, t) = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} T_{n,m}(t) v_{n,m}(x, y)$$

Подставляя в исходную задачу представления функций через ряды по системе функций $v_{n,m}$, получим следующие задачи Коши:

$$\begin{cases} \frac{\partial T_{n,m}}{\partial t} + \lambda_{n,m} T_{n,m} = f_{n,m} \\ T_{n,m}(0) = 0 \end{cases}$$

 $T_{n,m}$ не равно нулю только при n=m=1. Решение задачи в данном случае можно записать через импульсную функцию Коши.

$$T_{1,1} = \int_0^t \tau e^{-2(t-\tau)} d\tau = \frac{1}{4} (e^{-2t} + 2t - 1)$$

Аналитическое решение данного уравнения теплопроводности имеет следующий вид:

$$u(x, y, t) = \frac{1}{4}(e^{-2t} + 2t - 1)\sin x \cos y$$

3. Разностная схема Писмена-Рэкфорда.

Для решения задачи воспользуемся методом переменных направлений. Для начала введем двумерную пространственную сетку и одномерную временную сетки области $\Omega = G \otimes [0, T]$.

$$G = \{(x,y) : 0 \le x \le \pi, 0 \le y \le \pi\}$$

$$\omega_{h_x,h_y,\tau} = (x_i = ih_x, i = 0, 1, ..., N_x; N_x h_x = \pi;$$

$$y_j = jh_y, y = 0, 1, ..., N_y; N_y h_y = \pi;$$

$$t_k = k\tau, k = 0, 1, ..., N_t; N_t\tau = T)$$

Здесь шаг по х равен h_x ,по у - h_y ,а по времени - τ . На введенной сетке будем рассматривать сеточную функцию $v_{i,j}^k = u(x_i, y_j, t^k)$.

Заменим дифференциальные операторы конечноразностными: $\triangle u \to \Lambda_1 v + \Lambda_2 v$, где

$$\Lambda_1 v = \frac{v_{n-1,m} - 2v_{n,m} + v_{n+1,m}}{h_x^2}$$

$$\Lambda_1 v = \frac{v_{n,m-1} - 2v_{n,m} + v_{n,m+1}}{h_y^2}$$

$$\frac{\partial u}{\partial t} \to \frac{v^{k+1} - v^k}{\tau}$$

Согласно схеме Писмена-Рэкфорда нужно осуществлять переход со слоя k на слой k+1 в два шага, используя промежуточный (дробный) слой $k+\frac{1}{2}$. Пусть значения на слое j уже известны (на самом первом шаге значения $u_{n,m}^0=u(x_n,y_m,t_0)$ известны из начального условия). Перейдем на вспомогательный слой $k+\frac{1}{2}$, используя неявную схему по переменной x и явную по переменной y, то есть заменяя дифференциальный оператор $\frac{\partial^2 u}{\partial x^2}$ его разностным аналогом, взятым на новом слое $k+\frac{1}{2}$, а выражение $\frac{\partial^2 u}{\partial x^2}$ — разностным аналогом, взятым на слое k. При этом функцию f(x,y,t) в правой части уравнения аппроксимируем на полуцелом слое. В результате придем к разностному уравнению:

$$\frac{v^{k+\frac{1}{2}} - v^k}{0.5\tau} = \Lambda_1 v^{k+\frac{1}{2}} + \Lambda_2 v^k + f^{k+\frac{1}{2}}$$

$$f^{k+\frac{1}{2}} = t^{k+\frac{1}{2}} \sin x \cos y$$

Переход со слоя $k+\frac{1}{2}$ на новый целый слой k+1 осуществим по явной схеме по направлению x и неявной по направлению y, по-прежнему аппроксимируя функцию f(x, y, t) на промежуточном полуцелом слое:

$$\frac{v^{k+1} - v^{k+\frac{1}{2}}}{0.5\tau} = \Lambda_1 v^{k+\frac{1}{2}} + \Lambda_2 v^{k+1} + f^{k+\frac{1}{2}}$$

Следовательно, получаем следующие 2 задачи:

$$\begin{cases} \frac{v^{k+\frac{1}{2}-v^k}}{0.5\tau} = \Lambda_1 v^{k+\frac{1}{2}} + \Lambda_2 v^k + f^{k+\frac{1}{2}} \\ v^{k+\frac{1}{2}}_{0,j} = v^{k+\frac{1}{2}}_{N_x,j} = 0, \ j = 0,...,N_y \end{cases}$$

$$\begin{cases} \frac{v^{k+1}-v^{k+\frac{1}{2}}}{0.5\tau} = \Lambda_1 v^{k+\frac{1}{2}} + \Lambda_2 v^{k+1} + f^{k+\frac{1}{2}} \\ v^{k+1}_{i,0} = v^{k+1}_{i,1}, \ i = 0,...,N_x \\ v^{k+1}_{i,N_y-1} = v^{k+1}_{i,N_y}, \ i = 0,...,N_x \end{cases}$$

В последней задаче граничные условия Неймана были аппроксимированы разностным оператором с первым порядком аппроксимации по координате x. Сама же схема переменных направлений имеет второй порядок аппроксимации по времени и координатам.

Используя явный вид операторов, получим задачи: $t^m o t^{m+\frac{1}{2}}$.

$$\frac{0.5\tau}{h_x^2}v_{i-1,j}^{k+\frac{1}{2}}-(1+\frac{\tau}{h_x^2})v_{i,j}^{k+\frac{1}{2}}+\frac{0.5\tau}{h_x^2}v_{i+1,j}^{k+\frac{1}{2}}=-F_{i,j}^{k+\frac{1}{2}}$$

$$F_{i,j}^{k+\frac{1}{2}} = \frac{0.5\tau}{h_y^2}(v_{i,j-1}^k + v_{i,j+1}^k) + (1 - \frac{\tau}{h_y^2})v_{i,j}^k + 0.5\tau f_{i,j}^{k+\frac{1}{2}}$$

$$v_{0,j}^{k+\frac{1}{2}} = v_{N_x,j}^{k+\frac{1}{2}} = 0, \ j = 0, ..., N_y$$

Это СЛАУ относительно переменных $v_{i+1,j}^{k+\frac{1}{2}},\ v_{i,j}^{k+\frac{1}{2}},\ v_{i-1,j}^{k+\frac{1}{2}}$. Для нахождения решения но новом слое, необходимо перебрать все j, и при каждом j решаем систему уравнений методом прогонки. $i=0,...,N_x,\ j=0,...,N_y$.

Рассмотрю переход на следующий слой: $t^{m+\frac{1}{2}} \to t^{m+1}$.

$$\frac{0.5\tau}{h_y^2}v_{i,j-1}^{k+1} - (1+\frac{\tau}{h_y^2})v_{i,j}^{k+1} + \frac{0.5\tau}{h_y^2}v_{i,j+1}^{k+1} = -F_{i,j}^{k+1}$$

$$F_{i,j}^{k+1} = \frac{0.5\tau}{h_x^2}(v_{i-1,j}^{k+\frac{1}{2}} + v_{i+1,j}^{k+\frac{1}{2}}) + (1 - \frac{\tau}{h_x^2})v_{i,j}^{k+\frac{1}{2}} + 0.5\tau f_{i,j}^{k+\frac{1}{2}}$$

$$v_{i,0}^{k+1} = v_{i,1}^{k+1}, \ v_{i,N_v-1}^{k+1} = v_{i,N_v}^{k+1}, \ i = 0,...,N_x$$

Это СЛАУ относительно переменных $v_{i,j+1}^{k+1}$, $v_{i,j}^{k+1}$, $v_{i,j-1}^{k+1}$. Для нахождения решения но новом слое, необходимо перебрать все i, и при каждом i решаем систему уравнений методом прогонки. $i=0,...,N_x,\ j=0,...,N_y$.

Важно отметить, что разностная схема Писмена-Рэкфорда является экономичной разностной схемой, т.е. она является безусловно устойчивой и требует при переходе со слоя на слой числаарифметических операций, пропорционального числу узлов сетки.

4. Метод прогонки.

Необходимо решить следующую систему уравнений:

$$Ay_{m+1} - Cy_m + By_{m-1} = F_m$$

$$y_0 = k_1 y_1 + \mu_1, \ y_M = k_2 y_{M-1} + \mu_2$$

Метод прогонки годится, если $B_m > A_m + C_m, 0 \le k_{1,2} \le 1$, либо $B_m \ge A_m + C_m, 0 \le k_{1,2} < 1$. Для выписанной выше СЛАУ это условие выполняется.

Ищем решение в виде: $y_m = d_{m+1}y_{m+1} + \sigma_{m+1}$. Подставляя решения в исходное уравнение, получаем рекуррентные формулы для определения прогоночных коэффициентов:

$$d_{m+1} = \frac{C_m}{B_m - A_m d_m}, \ m = 0, ..., M - 1$$

$$\sigma_{m+1} = \frac{F_m - A_m \sigma_m}{A_m d_m - B_m}, \ m = 0, ..., M - 1$$

Из того, что $y_0 = k_1$, $y_1 + \mu_1$ находим, что $d_1 = k_1$, $\sigma_1 = \mu_1$.

Из рекуррентных формул находим (прямая прогонка) $d_M,\ \sigma_M.$ Отсюда находим, что:

$$y_M = \frac{k_2 \sigma_M + \mu_2}{1 - k_2 d_M}$$

Далее производим обратную прогонку: $y_m = d_{m+1}y_{m+1} + \sigma_{m+1}$ и находим все y_m решения линейной системы уравнений.

Этот метод уникален тем, что арифметическая сложность данного алгоритма пропорциональна количеству неизвестных O(N), в то время, как арифметическая сложность метода Гаусса пропорциональна квадрату количества неизвестных $O(N^2)$.

Рассмотрю два типа начальных условий: 1) Условия Дирихле $y_0=0,\ y_M=0,$ из этого следует, что $d_1=0,\ \sigma_1=0.$

2) Условия Неймана

Воспользуемся приближением производной с помощью разностного оператора:

$$\frac{y_1 - y_0}{h} = 0, \ \frac{y_M - y_{M-1}}{h} = 0$$

Из вида граничных условий имеем, что $d_1=d_M=1,\;\sigma_1=\sigma_M=0.$

5. Проверка сходимости по спектральному критерию Неймана.

Пусть в начальные условия внесена некоторая ошибка: $\phi \to \phi + \delta \phi$. Тогда в решении тоже появится появится ошибка: $u \to u + \delta u$. Раскладываем ошибку в ряд Фурье и исследуем поведение каждой отдельной гармоники при переходе с одного слоя на последующий. Для поставленной задачи имеем следующее уравнение для ошибки:

$$\delta u_t = \triangle \delta u$$

Для этого уравнения напишем разностную схему Писмена-Рэкфорда. Обозначу ошибку следующим образом: $\delta u \to v$

$$\frac{0.5\tau}{h_x^2}(v_{i-1,j}^{k+\frac{1}{2}}+v_{i+1,j}^{k+\frac{1}{2}})-(1+\frac{\tau}{h_x^2})v_{i,j}^{k+\frac{1}{2}}+\frac{0.5\tau}{h_y^2}(v_{i,j-1}^k+v_{i,j+1}^k)+(1-\frac{\tau}{h_y^2})v_{i,j}^k=0$$

$$\frac{0.5\tau}{h_{y}^{2}}(v_{i,j-1}^{k+1}+v_{i,j+1}^{k+1})-(1+\frac{\tau}{h_{y}^{2}})v_{i,j}^{k+1}+\frac{0.5\tau}{h_{x}^{2}}(v_{i-1,j}^{k+\frac{1}{2}}+v_{i+1,j}^{k+\frac{1}{2}})+(1-\frac{\tau}{h_{x}^{2}})v_{i,j}^{k+\frac{1}{2}}=0$$

Подставляем в первое разностное уравнение $v_{i,j}^k = \lambda_1^k \exp(I(\omega_1 i + \omega_2 j))$, во второе $v_{i,j}^k = \lambda_2^k \exp(I(\omega_1 i + \omega_2 j))$. После некоторых преобразований получаем следующие уравнения:

$$\frac{0.5\tau}{h_x^2}\lambda_1^{0.5}(e^{I\omega_1}+e^{-I\omega_1})-(1+\frac{\tau}{h_x^2})\lambda_1^{0.5}+\frac{0.5\tau}{h_y^2}(e^{I\omega_2}+e^{-I\omega_2})+(1-\frac{\tau}{h_y^2})=0$$

$$\frac{0.5\tau}{h_{y}^{2}}\lambda_{2}^{0.5}(e^{I\omega_{2}}+e^{-I\omega_{2}})-(1+\frac{\tau}{h_{y}^{2}})\lambda_{2}^{0.5}+\frac{0.5\tau}{h_{x}^{2}}(e^{I\omega_{1}}+e^{-I\omega_{1}})+(1-\frac{\tau}{h_{x}^{2}})=0$$

В итоге получаем следующие выражения для множителей роста:

$$\lambda_1^{0.5} = \frac{1 - \frac{2\tau}{h_y^2} \sin^2(\frac{\omega_2}{2})}{1 + \frac{2\tau}{h^2} \sin^2(\frac{\omega_1}{2})}$$

$$\lambda_2^{0.5} = \frac{1 - \frac{2\tau}{h_x^2} \sin^2(\frac{\omega_1}{2})}{1 + \frac{2\tau}{h_x^2} \sin^2(\frac{\omega_2}{2})}$$

Из вида выражений для множителей роста видно, что λ_1 и λ_2 меньше единицы $\forall h_x, h_y, \tau, \omega_1, \omega_2$. Из этих соотношений получаем, что $|\lambda_1\lambda_2|<1$ $\forall h_x, h_y, \tau, \omega_1, \omega_2$. Это означает, что необходимое условие

устойчивости (спектральный критерий Неймана) разностной схемы выполнено. Схема является безусловно устойчивой.

6. Порядок аппроксимации разностной схемы.

Вычислим порядок аппроксимации (невязку) для этого шаблона. Для этого выберем некоторую функцию u(x,y,t) непрерывных переменных. Подставляем эту функцию в разностную схему, выбираем точку $(x_i,y_j,t^{k+0.5})$. Разложим функции в ряд Тейлора в этой точке.

Для краткости обозначу функцию $u(x_i, y_j, t^{k+0.5}) = u$

$$u(x_{i\pm 1}, y_j, t^k) = u + \left(-\frac{\partial}{\partial t} \frac{\tau}{2} \pm \frac{\partial}{\partial x} h_x\right) u + \frac{1}{2} \left(-\frac{\partial}{\partial t} \frac{\tau}{2} \pm \frac{\partial}{\partial x} h_x\right)^2 u + \frac{1}{6} \left(-\frac{\partial}{\partial t} \frac{\tau}{2} \pm \frac{\partial}{\partial x} h_x\right)^3 u + \frac{1}{24} \left(-\frac{\partial}{\partial t} \frac{\tau}{2} \pm \frac{\partial}{\partial x} h_x\right)^4 u + \dots$$

$$\begin{split} u(x_i,y_{j\pm 1},t^{k+1}) &= u + (\frac{\partial}{\partial t}\frac{\tau}{2} \pm \frac{\partial}{\partial y}h_y)u + \frac{1}{2}(\frac{\partial}{\partial t}\frac{\tau}{2} \pm \frac{\partial}{\partial y}h_y)^2u + \frac{1}{6}(\frac{\partial}{\partial t}\frac{\tau}{2} \pm \frac{\partial}{\partial y}h_y)^3u + \frac{1}{24}(\frac{\partial}{\partial t}\frac{\tau}{2} \pm \frac{\partial}{\partial y}h_y)^4u + \dots \\ u(x_i,y_j,t^k) &= u - \frac{\partial u}{\partial t}\frac{\tau}{2} + \frac{1}{2}\frac{\partial^2 u}{\partial t^2}\frac{\tau^2}{4} - \frac{1}{6}\frac{\partial^3 u}{\partial t^3}\frac{\tau^3}{8} + \frac{1}{24}\frac{\partial^4 u}{\partial t^4}\frac{\tau^4}{16} + \dots \\ u(x_i,y_j,t^{k+1}) &= u + \frac{\partial u}{\partial t}\frac{\tau}{2} + \frac{1}{2}\frac{\partial^2 u}{\partial t^2}\frac{\tau^2}{4} + \frac{1}{6}\frac{\partial^3 u}{\partial t^3}\frac{\tau^3}{8} + \frac{1}{24}\frac{\partial^4 u}{\partial t^4}\frac{\tau^4}{16} + \dots \\ u(x_{i\pm 1},y_j,t^{k+0.5}) &= u \pm \frac{\partial u}{\partial x}h_x + \frac{1}{2}\frac{\partial^2 u}{\partial x^2}h_x^2 \pm \frac{1}{6}\frac{\partial^3 u}{\partial x^3}h_x^3 + \frac{1}{24}\frac{\partial^4 u}{\partial x^4}h_x^4 + \dots \\ u(x_i,y_{j\pm 1},t^{k+0.5}) &= u \pm \frac{\partial u}{\partial y}h_y + \frac{1}{2}\frac{\partial^2 u}{\partial y^2}h_y^2 \pm \frac{1}{6}\frac{\partial^3 u}{\partial y^3}h_y^3 + \frac{1}{24}\frac{\partial^4 u}{\partial y^4}h_y^4 + \dots \end{split}$$

подставляем найденные выражения в разностную схему:

$$\frac{\partial^2 u}{\partial x^2} + \frac{h_x^2}{12} \frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial y^2} - \frac{1}{2} \frac{\partial^3 u}{\partial t \partial y^2} \tau + \frac{1}{8} \frac{\partial^4 u}{\partial t^2 \partial y^2} \tau^2 + \frac{h_y^2}{12} \frac{\partial^4 u}{\partial y^4} - \frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial t^2} \frac{\tau}{2} - \frac{1}{6} \frac{\partial^3 u}{\partial t^3} \frac{\tau^2}{4} + \frac{1}{24} \frac{\partial^4 u}{\partial t^4} \frac{\tau^3}{8} = 0$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{h_x^2}{12} \frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial y^2} + \frac{1}{2} \frac{\partial^3 u}{\partial t \partial y^2} \tau + \frac{1}{8} \frac{\partial^4 u}{\partial t^2 \partial y^2} \tau^2 + \frac{h_y^2}{12} \frac{\partial^4 u}{\partial y^4} - \frac{\partial u}{\partial t} - \frac{1}{2} \frac{\partial^2 u}{\partial t^2} \frac{\tau}{2} - \frac{1}{6} \frac{\partial^3 u}{\partial t^3} \frac{\tau^2}{4} - \frac{1}{24} \frac{\partial^4 u}{\partial t^4} \frac{\tau^3}{8} = 0$$

Найдём невязку, вычитая из каждого уравнения точный дифференциальный оператор уравнения теплопроводности

$$\frac{h_{x}^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}} - \frac{1}{2} \frac{\partial^{3} u}{\partial t \partial y^{2}} \tau + \frac{1}{8} \frac{\partial^{4} u}{\partial t^{2} \partial y^{2}} \tau^{2} + \frac{h_{y}^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}} + \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}} \frac{\tau}{2} - \frac{1}{6} \frac{\partial^{3} u}{\partial t^{3}} \frac{\tau^{2}}{4} + \frac{1}{24} \frac{\partial^{4} u}{\partial t^{4}} \frac{\tau^{3}}{8}$$

$$\frac{h_{x}^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}} + \frac{1}{2} \frac{\partial^{3} u}{\partial t \partial y^{2}} \tau + \frac{1}{8} \frac{\partial^{4} u}{\partial t^{2} \partial y^{2}} \tau^{2} + \frac{h_{y}^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}} - \frac{1}{2} \frac{\partial^{2} u}{\partial t^{2}} \frac{\tau}{2} - \frac{1}{6} \frac{\partial^{3} u}{\partial t^{3}} \frac{\tau^{2}}{4} - \frac{1}{24} \frac{\partial^{4} u}{\partial t^{4}} \frac{\tau^{3}}{8}$$

Складывая эти два выражения, получим порядок аппроксимации разностной схемы Писмена-Рэкфорда.

$$\frac{h_x^2}{6} \frac{\partial^4 u}{\partial x^4} + \frac{h_y^2}{6} \frac{\partial^4 u}{\partial y^4} + \frac{1}{4} \frac{\partial^4 u}{\partial t^2 \partial y^2} \tau^2 - \frac{1}{3} \frac{\partial^3 u}{\partial t^3} \frac{\tau^2}{4} = O(h_x^2 + h_y^2 + \tau^2)$$

Таким образом, разностная схема Писмена-Рэкфорда имеет второй порядок аппроксимации по пространственным координатам и времени. Так как данная схема обладает безусловной устойчивостью, то тогда она сходится со вторым порядком по пространственным координатам и времени.

7. Результаты.

В результате выполнения программы получены следующие графики:

Рис. 1. Численное решение уравнения при разных значениях t

Также численное решение сравнили с точным на разных сетках. Из рисунков 2,3 видно, что численное решение приближается к точному при уменьшении шага сетки, что соответствует теоретическим выкладкам. Стоит ещё раз отметить, что разностная схема Писмена-Рэкфорда имеет порядок второй аппроксимации, а граничные условия Неймана по оси y аппроксимировались односторонней разностью, то порядок точности всей схемы не второй, а первый. Это можно увидеть и по графикам расчета при разных шагах сетки.

На рисунках 4, 5, 6 продемонстрирована проверка граничных и начальных условий численного рещения.

Рис. 2

Рис. 3

Рис. 4

Рис. 5

Рис. 6