Transmission d'electricité sans fil par le biais de systemes de tranfert d'energie inductive (IPTS)

Blaise Ribon, Léo Boudoin, Quentin Boyer

Décembre 2014

Résumé

Suite a l'experience menée en 2007 au MIT , nous savons qu'il est possible de transmettre de l'electricité à travers de moyennes distances, de l'ordre de 5m. Ce type de transmissions d'electricité pourrait simplifier les reseaux electriques domestiques étant donné le nombre de cables demandés par chaque appareil electronique, qui proliferent. Mais nous verrons que cette technologie et celles semblables se heurtent à des freins majeurs dans la pratique et que leur mise en place est assez complexe.

Table des matières

1	Définition et Utilisation de l'electricité			2	
	1.1	Histor	ique de l'electricité	2	
	1.2	Avano	ées technologiques et Utilisation	4	
2	Rai	sons d	e la transmission de l'electricité par des solutions		
	non	cablé	es	5	
	2.1	-TOD	0	5	
3	Les technologies de transmissions d'electricité : cablées et sans-fil				
		3.1.1	Solution majoritaire actuelle : Les technoloogies cablées	6	
		3.1.2	Une solution IPTS limitée : Le systeme de couplage		
			magnetique par resonnace (CMRS)	8	
		3.1.3	Une solution IPTS assez fiable: Une transmission uti-		
			lisant des	10	
	3.2	-TOD	00	10	
	3.3		ages et limitations de –TODO–	10	
	3.4	Techn	logies alternatives pour transmetre de l'energie	10	
4	References et sources principales				
	4.1	Article	es scientifiques	11	
	12	_Et le	s autres trucs	11	

Définition et Utilisation de l'electricité

1.1 Historique de l'electricité

FIGURE 1.1 – Le feu dans la prehistoire

À la Préhistoire déjà, l'Homme a utilisé l'électricité. Par le biais de l'effet Joule, la foudre, en tombant sur le sol, pouvait enflammer des arbres, et parfois créer des incendies dévastateurs. En utilisant ces flammes, les hommes de cette époque on pu se procurer lumière et chaleur, ainsi qu'une

protection efficace contre les prédateurs de l'époque, chose si rare et recherchée qu'elle a donné naissance au mythiques "guerres du feu". Là se résume l'histoire de la domestication de l'électricité pendant des millénaires.

Jusqu'au jour où Thalès de Milet(vers 625-vers 547 anvant JC), un philosophe grec de l'Antiquité observe le fait que l'ambre jaune, frotté, attire des corps légers comme des brins de paille ou des barbes de plumes. Il baptisera ce phénomène du nom grec de l'ambre jaune, "elektron".

Par la suite, ce mot servira à nommer l'électricité ou tous les phénomènes ayant un rapport. Par la suite, les découvertes se sont succédées lentement juqu'au XVIIIe siècle. On pourra citer la première machine à éléctricté statique d'Otto Von Guericke(1602-1686), constitué d'un simple globe de soufre, ou la classification des corps en fonction de leur comportement, idio-électriques(isolants),

de leur comportement, idio-électriques(isolants), FIGURE 1.2 – Thales et anélectriques(conducteurs), par William Gilbert(1544-1600), et est le premier à relier électricité et magnétisme.

Dès 1709 les découvertes s'accélèrent. Francis Hawskbee remplece le globe de soufre de Von Guericke par un cylindre en verre en 1709, et Stephen Grey découvre par hasard que les charges produites par la machine de Hawksbee se déplacent vers le bouchon. Cela amènera, plus tard à la découverte de la portée infinie des charges électriques le long d'un conducteur, avec l'aide de Charles François de Cisternay du Fay. Il découvre aussi que le corps humain est conducteur, et définit deux types d'électricité : la "résineuse" (quand de la résine est frottée) et la "vitreuse" (quand du verre est frotté), qui prépare la découverte de la charge de signes opposés. il créera aussi le premier electroscope connu.

De nombreuses autres découvertes ont été faites durant ce siècle, comme les travaux de Benjamin Franklin (1706-1790) avec la mythique expérience où ce scientifique a sorti un cerf-volant sous un orage(à ne pas reproduire) pour savoir "si les nuages d'où jaillit la foudre sont électrisés ou non", ce qui mènera à la découverte du paratonnerre. Plus tard, Alessandre Volta(1745-1827) multiplie les découvertes dans le domaine de

FIGURE 1.3 – Franklin

l'électricité. Il crée et améliore de nom-

breux appareils de mesure électrique, met au point l'électrophore, capable d'accumuler de grandes charges électriques positives, et crée la preière pile. Charles de Coulomb(1736-1806) établira en 1785 la loi homonyme, quantifiant la force électrostatique. Elle définit la force qu'exercent deux charges l'une sur l'autre $(\vec{F_{1/2}} = \frac{q_1q_2}{4\pi\varepsilon_0} \frac{\vec{r_2}-\vec{r_1}}{\|\vec{r_2}-\vec{r_1}\|^3})$, ou q1 et q2 sont en C, ε_0 en $F.m^{-1}$ et $\vec{r_1}$ et $\vec{r_2}$ sont des points). Elle est attractive si les chragessont de signe contraire, et répulsive si les charges sont de même signe. Au XIXe siècle, la recherche s'accélère encore. Au début du siècle, sir Humphrey Davy(1778-1829) étudie et met au point la promière pile à combustible. Sous la férule de Faraday, il gréere

encore. Au début du siècle, sir Humphrey Davy(1778-1829) étudie et met au point la première pile à combustible. Sous la férule de Faraday, il créera aussi la première source de lumière électrique, l'arc électrique. En même temps, Georg Simon Ohm(1787-1854), découvre la résistance des conducturs et etudie les propriétés quantitatives des courants électriques, dont il formule les lois fondamentales. La loi d'Ohm est une relation simple entre l'intesnité, la tension, et la résistance $I=U\times R$, avec I pour l'intensité, en ampères, U pour les tension, en volts, et R pour la résistance, en Ohms.

En découvrant cette propriété, il affine la notion d'électricité suffisamment pour la rendre utilisable, et ce sera sur cet axe que la recherche scientifique sera axée dès le second quart du siècle.

1.2 Avancées technologiques et Utilisation

Figure 1.4 – Ohm

Raisons de la transmission de l'electricité par des solutions non cablées

2.1 -TODO-

Les technologies de transmissions d'electricité : cablées et sans-fil

3.1 Presentation des technologies présentes

3.1.1 Solution majoritaire actuelle : Les technoloogies cablées

La solution de transmission d'electricité la plus utilisée au monde est sans contestation possible le cable electrique , ceci étant du à un faible coût (jusqu'a 1\$ le métre) , son très haut rendement puisque celui ci avoisine les 100% sur les distances courtes avec de faibles puissances. En plus d'etre simple , elle n'est pas lourde en terme d'installation puisque les cables peuvent etre facilement mis dans les murs à la constuction d'un nouveau batiment, etre mis dans des

Figure 3.1 – Fils du cuivres

gaines si l'on veut en rajouter ensuite et plus simplement on peut utiliser le systeme des prises pour les appareils temporaires et ponctuels. Grâce à ses avantages incontesables elle est devenue le standard , mais ceci entraîne un probleme non negligable qu'es la densité importante des cables electriques à proximité des appareils electroniques.

Les matériau consituant les cables electriques sont generalement du cuivre pour les longues distances, mais dans les circuitis imprimé on peut utiliser l'or pour sa conductivité electrique immense , malgré son coût monstreux de l'ordre de la dizaine de millier d'euros le demi kilo. Voici ici un tableau qui récapitule la conductivité de divers métaux plus ou moins utilisés dans les réseaux cablées.

Materiel	Resistivité électrique en $n\Omega.m$	Prix au Kilo
Cuivre	16.78	1.08 €
Or	22.14	29878 €
Fer	96.1	(Minerai de fer) 0.07 €
Argent	15.87	402 €

FIGURE 3.2 – L'effet joule

Un effet négatif important produit par des cables est l'effet Joule , exprimé dans dans le cadre d'application de la loi d'Ohm par la formule $P=I^2\times R$ ou R est la resitance est liée a la resistivité (ρ) par la formule $R=\rho\frac{\ell}{A}$ dans laquelle ℓ est la longeur et A est la surface de coupe en m^2 . D'ou la resistance d'un cable de 1m de long et de 1mm de diamétre est $17\times 10^{-9}\times \frac{1}{\pi(0.5\times 10^{-3})^2}=0.021\Omega$ et donc l'effect joule produit dans le cas d'un

courant de 1A est de $P = 1^2 \times 0.02 = 0.02W$.

Néamoins d'autres problemes peuvent occurer dans le cas d'une utilisation domstique , comme la profusion de cable qui genrent des nuisances esthetiques et des nuisances magnétiques générés par les cables nombreux qui subissent le phenomene de diaphonie (ou crosstalk)

, qui est une interfernce entre les signaux passant par un cable dans un cable proche. C'est d'ailleur pour cette raison que lorsque les signaux transmis sont importants et ne doivent pas etre corompus on utilise des cables torsadés qui limite le phenomene. La problematique du transport d'objets electroniques de plus en plus consomateurs mais qui se veulent autonomes se pose , ou l'on est obligé de se separer d'eux pour les recharger ceic emepechant de benficier des

FIGURE 3.3 – Diaphonie

avantages majeurs de ces objets autonomes , avec comme exemple le cas des telephones portables , ou la problematique plus importante du reheargement des voitures electriques qui est long , et qu'il ne faut pas oublier de brancher un cable sinon rien n'occure. Les cables electriques que nous utilisons donc depuis la création de l'electricité ne sont plus adapté a un monde qui se veut de plus en plus liberé de toute les contraintes et de s'affranchir des contraites liés au tehenolgies filiares , avec comme exemple le devloppement des telephones portables ou de la wifi pour pallier la dependance cablée de l'ethernet.

3.1.2 Une solution IPTS limitée : Le systeme de couplage magnetique par resonnace (CMRS)

Le MIT, par l'equipe de Marin Soljačić, a developé en 2007 une technolgie inductive utlisant le meme pricipe que les transfomateurs electetriques ou les brosses a dent eletriques. Mais en utilisant des variations de cette tehnologies cette equipe du MIT a reussi a transmettre de l'energie a une television située de l'autre coté de la piece, assez pour l'alimenter. Mais le probleme de cette technologie est qu'elle est extremement dépendante de l'envitonement, une petite variation tel le passage d'un etre humain, un autre champ magnetique

FIGURE 3.4 – Diagramme

qui perturbe les syteme ou une variation de la temperature ou de l'humidité peut invalider l'experience. Cette technologie a aussi un incovenient majeur, partagé par tout les systemes inducifs de tranferts d'energie , plus souvents abregé en IPTS , qui est le rendement grandement inférieur à un cable éléctrique déployé sur la meme distance. Ceci est du a la nature meme de la technolige qui est un champ magnetique non ou peu dirigé contrairement a un cable electrique ou les eletrons n'ont que une suele direction possible pour traverser d'un bout a l'autre du systeme de transmission d'electricté.

La dependance au conditions est du au systeme meme : il exploite la resonnace magnétique des matériaux , c'est a dire la capacité du materiau a produire une réaction energetique lorsque'il est simulé par un champ

magnétique particulier , et ce "champ magnetique de resonnance" est affecté par la temperature , et il est deformé par les obstacle tel qu'un humain. Cette depedance extreme au champ magnetique est duau tres haut facteur de qualité du systeme technique utilisés dans l'experience du MIT. De plus la mise en place des bobines utilisés pour transmetre de l'electricité demande des reglages plutot complexes ou les bobines doivent etre accordées pour reagir au bon champ magnetique.

FIGURE 3.5 – Schema de montage

Dans tout IPTS le principe fondamentale est identique : Le courant traversant une bobine de fil induit un courant proportionel dans une autre bobine. Dans la technologie ici présentée ces deux bobines doivent etre alignées coaxiallement. L'enrée et la sortie est effectuée via des boucles, et celle d'entrée A doit

etre positionée de telle maniere qu'elle n'interfere pas avec la bobine D , l'influence de B sur S étant minimale.

Cette technologie ne pr
sente d'ailleurs que tres peu de danger sur l'etre humain , étant donné que les champs magnetiques n'intergissant pratiquement pas avec les etre vivants , de meme que le reste de l'environement d'ou la ligne de vue entre les bobines S et D n'est pas nessecaire.

D'apres Marin Soljačić cette technolgie à du potentiel puisque il a créé une compagnie , WiTricity , pour promulger sa découverte et il croit que cette technologie pourrait etre largement utilisé dans le cas de transfert de petites quantités d'energie comme recharger des telephones. 7 ans apres cette technologie ne s'est pas enormenet démocratisée meme si en 2011 Toyota a investi dans cette compagnie.

FIGURE 3.6 – WiTricity

- 3.1.3 Une solution IPTS assez fiable : Une transmission utilisant des
- 3.2 -TODO-
- 3.3 Avantages et limitations de -TODO-
- 3.4 Technlogies alternatives pour transmetre de l'energie

References et sources principales

- 4.1 Articles scientifiques
- 4.2 -Et les autres trucs-