Simple Random Sample

SurvMeth/Surv 625: Applied Sampling

Yajuan Si

University of Michigan, Ann Arbor

1/15/25

Simple random sample (SRS)

- Implementation: Selection
- Inference: Analysis
- Projection: Future collection
- Sampling frame

Implementation

- SRS is the most basic form of probability sampling and provides the basis for the more complicated forms.
- ullet Select a random sample of size n from a population of N
 - ① SRS with replacement (SRSWR): the same unit can be included more than once in the sample, with the equal selection probability $\pi_i=n/N$
 - ② SRS without replacement (SRS): all units in the sample are distinct with the equal selection probability $\pi_i=n/N$
- Uniform random number generator
 - R functions: sample(), sampling::srswor(), sampling::srswr(), etc.
- Reproducible: set.seed()

Inference: Population mean

- Support we collect the systolic blood pressure (SBP) measurements of the five individuals selected via SRSWOR from a population of 20 and would like to estimate the population average SBP value: 110, 125, 145, 90, 135
- The finite population correction factor fpc = 1 f = 1 n/N = 1 5/20 = 15/20
- The sample total t = 110 + 125 + 145 + 90 + 135 = 605
- \bullet The sample mean $\bar{y}=t/n=605/5=121$
- \bullet The element variance estimate $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \bar{y})^2 = 467.5$
- The standard deviation $s = \sqrt{s^2} = 21.622$

Inference: Population mean cont.

- \bullet The sampling variance estimate $var(\bar{y}) = (1-f)\frac{s^2}{n} = 70.125$
- The standard error $se(\bar{y}) = \sqrt{var(\bar{y})} = 8.374$
- The 95% confidence interval

$$\bar{y} \pm t_{1-\alpha/2,n-1} * se(\bar{y}) = 121 \pm t_{0.975,t} * 8.374,$$

where the critical t-score $t_{0.975,t}=2.776$ (NOTE: not 1.96)

Inference: Population total

- Population total estimate: $\hat{t} = N\bar{y} = 20*121$
- The sampling variance of the population total estimate:

$$var(\hat{t}) = N^2 var(\bar{y}) = N^2 (1 - f) \frac{s^2}{n} = 20^2 * 70.125$$

The standard error:
$$se(\hat{t}) = \sqrt{var(\hat{t})} = N\sqrt{var(\bar{y})} = 20*8.374$$

 \bullet The $1-\alpha$ confidence interval: $\hat{t}\pm t_{1-\alpha/2,n-1}se(\hat{t})$

Inference: Population proportion

- Now we are interested in estimating the proportion of individuals with hypertension, and hypertension indicator values are: 0, 0, 0, 1, 0
- The proportion estimate: $p = \bar{y} = 1/5$
- The theoretical sampling variance (UNKNOWN):

$$Var(p) = (1-f)\frac{S^2}{n} = \frac{1-f}{n}\frac{N}{N-1}P(1-P)$$

The sampling variance estimate:

$$var(p) = \frac{1 - f}{n} \frac{n}{n - 1} p(1 - p) = (1 - 5/20)/4 * 1/5 * (1 - 1/5)$$

- The sampling error: $se(p) = \sqrt{var(p)}$
- The $1-\alpha$ confidence interval: $p \pm t_{1-\alpha/2,n-1} se(p)$

R Code

```
library(survey)
library(sampling)
library(SDAResources)
library(tidyverse)
data(agpop)
n <- length(agsrs$acres92)
ybar <- mean(agsrs$acres92,na.rm = T)
ybar</pre>
```

[1] 297897

```
hatvybar<-(1-n/3078)*var(agsrs$acres92,na.rm = T)/n
seybar<-sqrt(hatvybar); seybar
```

[1] 18898.43

```
# Calculate confidence interval by direct formula using t distribution Mean_CI <- c(ybar - qt(.975, n-1)*seybar, ybar + qt(.975, n-1)*seybar) names(Mean_CI) <- c("lower", "upper"); Mean_CI
```

```
lower upper
260706.3 335087.8
```

```
# To obtain estimates for the population total,
# multiply each of ybar, seybar, and Mean_CI by N = 3078
seybar*3078; Mean_CI*3078
```

[1] 58169381

```
lower upper
802453859 1031400361
# Calculate coefficient of variation of mean
seybar/ybar
```

Projection

- When designing a new survey data collection, investigators often focus on one or two key variables of interest, decide the amount of sampling error, and must balance the estimation precision with survey costs.
- Specify the tolerable error: What is expected of the sample, and how much precision do I need? The **desired precision** is often expressed as $P(|\bar{y}-\bar{y}_u|\leq e)=1-\alpha$, where e is called the *margin of error*, as one-half of the width of a 95% CI. Sometimes you like to achieve a desired relative precision, such as a desired CV.
- $oldsymbol{0}$ Find an equation: Relating the sample size n to the desired precision.
- **3** Estimate any unknown quantities and solve for n.
- Adjust expectations and re-calculate.

Example of sample size projection

- Desired precision
 - **1** $var(\bar{y}) = \hat{V} = 2.5;$
 - 2 Requested 95% CI: (L,U)=(10,20), we have $e=(U-L)/2=z_{0.975}*\hat{V}$ and then $\hat{V}=2.5$
- Find an equation

 - **2** SRS: $n = \frac{n_0}{1 + \frac{n_0}{N}}$
- Solve for n: If $\hat{S}^2=6250,\,\hat{V}=2.5,$ and N=100000, then $n_0=1000$ and n=991.

Design effects

- Design effect: Ratio of the variance under a new design to SRS variance with the same sample size
- Depend on the estimated quantity (e.g., mean, regression coefficient)
- Depend on the examined variable
- Often used as a comparison to SRS when evaluating complex sample survey designs
- Inflate the projected SRS sample size by the design effect for complex sample survey sample size projection

Sampling frame

- Frame: Set of materials used to designate a sample of units
- Rule links frame elements to population elements
- Accurate and up-to-date frames located in one location preferred
- Numbered, computerized lists are best
- The population and the list/frame may not match up

Frame problems: Nonconverage

- Some population elements are not on the frame
 - Have zero chance of selection
- Potential solutions
 - Use supplemental frames that cover noncovered elements
 - ② Use noncoverage weighting adjustments (will be discussed later)

Frame problems: Blanks

- Frame elements do not have corresponding population elements
- Know frame element is blank after selection
 - Screening to find eligible list elements
- Potential solutions
 - Reject blanks by adjusting the sampling rate and size
 - Substitute with the next element on the listing

Frame problems: Duplicates

- Occur when a single population element is linked to two or more frame elements
- Potential solutions
 - If only a few readily identified, remove from the list before selection
 - Eliminating duplicates from the sample still leaves unequal probabilities of selection
 - 2 Choose unique listing
 - First, last, largest, or randomly chosen frame listing
 - 3 Determine how many duplicates for a given selected element and weight

Frame problems: Clustering

- Occurs when more than one population element can be selected by a sample frame element
- Potential solutions
 - 1 Take all elements within selected clusters
 - The sample size varies with unequal-size clusters (discuss later)
 - Can adjust the sample size in advance
 - ② Use cluster sampling (discuss later)
 - Weighting adjustment

Objective respondent selection

- In the social sciences, sampling a single element from small clusters of unequal size occurs often
 - Sampling individuals from households
- Techniques for households:
 - Nearest birthday method
 - Objective Respondent Selection proposed by Kish

Within household selection: The Kish method

- Interviewers list eligible household members by gender and age
- Use selection table
- Selection tables "rotated" across households
- Maximum of four eligibles per household can be handled
 - Can be expanded to handle households with five/six eligibles

Respondent selection tables

Table A (1/4)		
If number of eligible subjects is	Select subject number	
1	1	
2	1	
3	1	
4	1	

Table B (1/12)		
If number of eligible subjects is	Select subject number	
1	1	
2	1	
3	1	
4	2	

Table C (1/6)		
If number of eligible subjects is	Select subject number	
1	1	
2	1	
3	2	
4	2	

Table D (1/6)	
If number of eligible subjects is	Select subject number
1	1
2	2
3	2
4	3

Table E (1/12)		
If number of eligible subjects is	Select subject number	
1	1	
2	2	
. 3	3	

Table F (1/4)		
If number of eligible subjects is	Select subject number	
1	1	
2	2	
3	3	
4	4	

Frame problems: Many-to-many matching

- Occurs when more than one population element can be selected by more than one frame element
- Potential solutions
 - Combinations of weighting and subsampling

Frame problems: Summary

- Non-coverage
- Blanks
- Duplicates
- Clustering
 - Many to many

Example: Address-based sample of families

- A survey about families and their use of credit to finance purchases of durable goods (for example, cars, household appliances) is to be given to a sample of families in a large metropolitan area.
- A random sample of n=5,000 addresses is selected from the list of N=872,000 "Delivery Sequence File" addresses for the metropolitan area purchased from a vendor of the United States Postal Service.
- The addresses are in order by zip code (approximately 15,000 addresses each), carrier route, and delivery sequence (the sequence through a carrier route followed to deliver mail).

Potential frame problems and solutions

- Noncoverage: families at addresses where the USPS does not deliver mail (for example, address uses a PO box only).
 - Remedy: adjust the estimates through weighting to compensate for non-coverage.
- Blanks: addresses that are not residential units, and do not contain families.
 - Remedy: skip the non-residential units, and increase the sample number of addresses slightly to account for blank listings.
- Clustering: addresses might be clusters of families (e.g., an apartment building with one address).
 - Remedy: Select all families at an address.

Summary: When to use SRS?

- SRS is the simplest of all probability sampling methods: Objective, randomized selection
- Every element has an equal chance of selection, called as epsem, or self-weighting
- However, the practical use of SRS is rare as it requires
 - A list of population observation units
 - 2 Little extra information is available
 - Analysis assuming independent observations and using SRS formulas
 - 4 High cost
- Even "bad" samples have an equal chance of being selected