Beyond Competitive Analysis: Loose Competitiveness

Networking Theory Seminar Summer 2021 University of Vienna

Competitive Analysis

• An online Algorithm ALG against offline algorithm OPT on an input sequence σ .

$$\inf_{ALG}(sup_{\sigma} \frac{ALG(\sigma)}{OPT(\sigma)})$$

- Disadvantages of basic approach:
 - On all possible inputs, even unrealistic ones
 - With an OPT having full-knowledge about *ALG* and future
 - No ranking between algorithms with same ratio

Beyond Completive Analysis

• Limiting the input:

$$\inf_{ALG}(sup_{\sigma^*} \frac{ALG(\sigma^*)}{OPT(\sigma^*)})$$

Examples:

- Locality of Reference: A recent item in σ^* appears again soon
- Access Graph Model: Items in σ^* describe a walk in a graph
- Stochastic Model: σ^* comes from a priorly known distribution

Beyond Completive Analysis

• Empowering the algorithm:

$$\inf_{ALG}(sup_{\sigma} \frac{ALG^*(\sigma)}{OPT(\sigma)})$$

Examples:

- Randomness: ALG* has a random coin (that OPT doesn't know about)
- Advice: An expert gives *ALG** information about future
- Augmentation: ALG* has additional resources in comparison to OPT

Paging

- Large slow memory with size n, small cache with size k
- Items with uniform size, uniform cost of moving
- Sequence $\sigma = (\sigma_1, ..., \sigma_m)$ of page requests
- Cost of an algorithm: number of *page faults*
- Algorithms:
 - Furthest in Future(FIF)
 - Marking algorithms: Least Recently Used(LRU)

Lower Bound

- **Theorem 1:** Competitive ratio of any deterministic online paging algorithm is at least *k*.
 - \circ Consider a sequence of k + 1 elements, at each point in time request page that is not in cache!
- Increasing cache size also increases the competitive ratio!
- 100% cache fault rate is unavoidable!

Upper Bound

- **Theorem 2:** Any marking algorithm ALG has a competitive ratio at most *k* with an additive error.
 - Partition input sequence σ into phases $(\delta_1, ... \delta_b)$, each with access to k distinct page.
 - ALG has k page fault in each phase

Upper Bound

- Theorem 2: Any marking algorithm ALG has competitive ratio at most k with an additive error that goes to zero.
 - Shift phases by one to $(\delta'_1, ... \delta'_h)$,
 - OPT has at least 1 page fault in each shifted phase, $OPT(\sigma) = (b-1)+k$
 - $\circ \quad ALG(\sigma) \le k \cdot OPT(\sigma) + \frac{k}{h-1+k}$

Resource Augmentation

- ALG^a has additional cache with size a
- **Theorem 3:** Any marking algorithm ALG^a has competitive ratio $\frac{k+a}{a+1}$ with an additive error that goes to zero.
 - In each shifted phase, *OPT* has at least a + 1 page faults, $OPT(\sigma) = (b 1)(a + 1) + k$
 - $O ALG(\sigma) \le \frac{(k+a)}{(a+1)} \cdot OPT(\sigma) + \frac{k}{(b-1)(a+1)+k}$

Resource Augmentation

- Two step approach:
 - Find a cache size that optimal algorithm preforms well
 - Competitive ratio drops to 2 with doubling cache size!

- For a given input sequence, there could not be many "bad" cache sizes ©
- **Theorem 4:** For every request sequnce σ , each cache size k in $\{1, 2, ..., n\}$, the LRU algorithm either has.
 - A Competitve ratio $O(\frac{1}{\delta}\log \frac{1}{\epsilon})$, or
 - At most $\epsilon \cdot |\sigma|$ page fault, or
 - No better gurantee, but for at most δ fraction of

• Proof. Fix an additional augmentation a, First assume cache size k such that

$$LRU(k) > 2LRU(k+a)$$

• Assume that we have δn bad cache sizes, then consider the following cache sizes that are at least a apart:

$$1 < k_1 \le k_2 + a \le \dots \le k_{\frac{\delta n}{a}} + (\ell - 1)a \le t$$

Then for each i we have

$$LRU(\mathbf{k_i}) < \frac{1}{2}LRU(\mathbf{k_{i-1}})$$

• Therefore we have:

$$LRU(t) < \frac{1}{2\frac{\delta n}{a}}LRU(1)$$

• Therefore we have:

$$LRU(t) < \frac{1}{2^{\frac{\delta n}{a}}} LRU(1)$$
 We want to have $\epsilon \le \frac{1}{2^{\frac{\delta n}{a}}}$, therefore $a \le \frac{\delta n}{\log_e^1}$ and for every $k \ge t$
$$LRU(k) < \epsilon \cdot |\sigma|$$

• Proof. Now assume cache sizes that have the following property:

$$LRU(k) \le 2LRU(k+a,\sigma)$$

Then using Theorem 3, we have

$$LRU(k) \le 2 \frac{k+a}{a+1} OPT(k) = 2(1 + \frac{k-1}{a+1}) OPT(k)$$

Having
$$a \le \frac{\delta n}{\log_{e}^{\frac{1}{2}}}$$
, then $LRU(k)$ is $O(\frac{1}{\delta}\log_{e}^{\frac{1}{2}})$ -competitive

• Any $\tau(k,a)$ -competitve algorithm, for some function τ that is increasing in k and decreasing in a, for any $\delta, \epsilon, t, \ell$ with $\ell < \delta n + 1$, algorithm is c-loosely competitve for

$$c = \tau(n, \ell) \epsilon^{\frac{-b+1}{\delta n - b - 1}}$$

Thank you

