Plots

Contents

Intro	1
Helper Functions img(): A wrapper to make image() more convenient	3
The Data	5
Figure 2: facial and digital masculinity by age TD male and female trends for digit ratio TD male and AFF male trends for digit ratio TD female and AFF female trends for digit ratio TD male and female trends for facial masculinity TD male and AFF male trends for facial masculinity TD female and AFF female trends for facial masculinity	9 10 11 12
Figure 3: Relationships with diagnosis and parent-reported problems Top: Boxplots showing masculinity scores distribution and barplots showing significance Bottom: Parent-report Factors	
Figure 4: PRS in devGenes Left: PRS Associations	

Intro

This document illustrates the process used to create Figures 2-4 in from the paper Genetic and morphological estimates of androgen exposure predict social deficits in multiple neurodevelopmental disorder cohorts. These figures and data relate only to the study's DevGenes cohort, as raw data from the other cohort — SPARK – cannot be publicly released. SPARK data may be obtained by researchers approved by the Simons Foundation Autism Research Initiative, through SFARI Base: https://www.sfari.org/resource/sfari-base.

All code referenced in this document can be found in either helper_functions.R or devGenes_final_figures_code.R, and the data on which they are based can be found in table_S1_final.txt and devGenes_final_factor_model_loadings.txt.

Helper Functions

img(): A wrapper to make image() more convenient

```
img = function(x,ylab,xlab,axes,col,na.zero=F,breaks,do.breaks=T,...){
cc = colorRampPalette(c("black","chartreuse"))
if (any(x<0) & any(x>0)){
    cc = colorRampPalette(c("royalblue","royalblue4","black","orangered","goldenrod1"))
}
 if(missing(ylab)) ylab=""
 if(missing(xlab)) xlab=""
 if(missing(axes)) axes=F
 if(missing(col)) col=cc(256)
 if(na.zero) x[is.na(x)] = 0
 if(do.breaks & missing(breaks)){
 mx = max(abs(x))
 qt = max(abs(quantile(x,c(0.01,0.99))))
 bk = c(-1*mx, seq(-1*qt, qt, length.out=255), mx)
  image(0:ncol(x),0:nrow(x),t(x),ylim=c(nrow(x),0),ylab=ylab,
  xlab=xlab,axes=axes,col=col,breaks=bk,...)
 }else{
 image(0:ncol(x),0:nrow(x),t(x),ylim=c(nrow(x),0),ylab=ylab,
 xlab=xlab,axes=axes,col=col,breaks=breaks,...)
}
box()
}
```

bootlM() and lboot(): wrappers for bootstrapping to get confidence intervals

```
bootlM = function(x,y){
keep = !is.na(x) & !is.na(y)
x0 = x[keep]
y0 = y[keep]
these = sample(length(x0),replace=T)
x0 = x0[these]
y0 = y0[these]
approx(lowess(x0,y0),xout=seq(0,80,1),rule=2)$y
}
### with input x and y, generate a lowess trend with 95% confidence intervals
lboot = function(x,y,subset,nboot=1000,return.boot=F){
 if(length(x)!=length(y)) stop("x and y have different lengths")
if(missing(subset)){
 subset=1:length(x)
}
x = x[subset]
y = y[subset]
 ### generate nboot lowess fits
b = replicate(nboot,bootlM(x,y))
 qu = apply(b,1,quantile,0.975)
 ql = apply(b,1,quantile,0.025)
 qm = rowMeans(b)
 xq = 0:80
 out = list()
 out$x = xq
 out$y = qm
 out$ci = list(upr=qu,lwr=ql)
 out$points = list(x=x,y=y)
 if(return.boot){
 out$boot = b
}
return(out)
}
```

plot1(): A function to plot the output of lboot()

```
plot1 = function(obj,pt.col,l.col,shade.col,plot.points=F,xlim=c(0,80),
    ylim,add=F,plot.ci=T,...){
 if(missing(ylim)){
ylim = (c(-1,1)*abs(diff(ylim))) + ylim
}
 ylim=range(obj$y,na.rm=T)
 if(!add){
  plot(obj,xlim=xlim,ylim=ylim,xlab="age (years)",type='l',col=l.col,...)
  if(plot.ci){
  polygon(c(obj$x,rev(obj$x)),c(obj$ci$lwr,rev(obj$ci$upr)),col=shade.col,border=1.col)
 }else{
 lines(obj,col=1.col,...)
  if(plot.ci){
  polygon(c(obj$x,rev(obj$x)),c(obj$ci$lwr,rev(obj$ci$upr)),col=shade.col,border=1.col)
 }
 if(plot.points){
 points(obj$points,pch=16,col=pt.col)
```

The Data

Table 1: Factor Loadings

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8	Factor9	Factor10	Factor11
social.eyecontact	0.1086367	0.4292602	0.0736042	0.1643372	0.1736255	0.2835086	0.3685458	0.0500302	0.3016591	-0.0381764	-0.1280986
social.init_conv	0.2852887	0.1512008	-0.0289435	0.2374517	0.1630843	0.1924666	0.3787394	0.1478946	0.3381085	-0.1800359	-0.0218842
social.uncomf_interact	0.0323974	0.1196371	0.1070747	0.0389679	0.1181215	-0.0130980	0.7039691	0.0786045	0.1543321	0.1342962	0.1714935
social.socializes	0.3813110	0.1493706	0.0620354	0.1495534	0.1271815	0.2526992	0.2149606	0.1206623	0.6884145	0.1012796	0.0045308
social.friends	0.3434447	0.1418500	0.0275180	0.2335482	0.1205117	0.2219378	0.3614091	0.0736616	0.4371931	0.0024861	0.1186012
social.soc_distress	0.1096375	0.4893621	0.1654568	0.2474608	0.1396017	0.0147531	0.2339567	0.3326524	0.1006547	0.2147951	0.0654177
rrb.rep_movies_music	0.1670886	0.2920419	-0.0919332	0.2194842	0.0383111	0.3441104	0.0827352	0.0789571	0.0574445	0.0407191	0.2013055
rrb.stim	0.0940111	0.0946858	0.1010345	0.1692635	0.0848560	0.6685771	-0.0039240	0.0493594	0.0793625	0.0849339	0.0940771
rrb.odd_beh	0.1920686	0.1746066	0.0410817	0.1308004	0.1261518	0.6093322	0.1252416	0.1198064	0.1153548	0.0220056	-0.0016797
rrb.needs_order	0.1072012	0.5804600	0.1458211	0.1302481	0.1316813	0.4224700	0.1504641	0.0069998	0.0805807	-0.0668679	0.0391601
rrb.mann_dis	0.2085801	0.4004670	0.2380111	0.2814674	0.1339018	0.2065598	0.1224160	0.2120164	0.2078487	-0.0718538	0.0339855
acad_abil.reading	0.7848285	-0.0728949	0.0362335	-0.0035160	0.0639259	0.0002604	0.0412783	0.1181537	-0.0802478	-0.0071809	0.0419540
acad_abil.writing	0.7846123	-0.0081306	0.0607637	0.1270829	0.0435566	0.1352355	0.0993364	0.0671456	0.0394453	0.0315433	0.0119071
acad_abil.math	0.7563774	-0.0338151	0.0059640	0.0075421	-0.0136599	0.0259029	-0.0296449	0.0331907	0.0727043	0.0293438	0.0651270
acad_abil.learn_new	0.7870456	0.0843797	0.0244262	0.1027442	0.0682323	0.2443105	0.0618290	0.0465394	0.1059697	0.0560536	0.0777145
language_level	0.3400045	0.0130433	0.0216755	0.0084760	0.0450168	-0.0001328	0.0560722	-0.0791267	0.1504180	0.0417985	-0.0546323
sensory.hugs	0.1222776	0.2781454	0.0307162	0.0001138	0.0805599	0.1131940	0.4283590	-0.0150713	0.0113038	0.0459380	-0.0261927
sensory.dizzy	0.0384089	0.2590796	0.0094119	-0.0782908	0.0850323	-0.0267729	-0.0426067	0.0648256	0.0563114	0.4826593	-0.0125189
sensory.clothing_atypical_temp	-0.0390338	0.3678003	0.1262807	0.1767642	0.1084653	0.2196858	0.1698069	0.0433369	0.0212022	0.1592841	0.0179347
sensory.haircut	0.2101859	0.1548386	0.0864475	0.4056075	0.0711193	0.1067211	-0.0284708	0.2599561	0.0451728	-0.1783465	0.1346923
sensory.sound	0.1398517	0.4147963	0.0862448	0.1823873	0.1136146	0.1883913	0.1382956	0.0570491	-0.0051759	-0.0393394	0.7303652
sensory.light	-0.0252027	0.4886829	0.1337168	0.1389714	0.1124484	0.0124121	0.1744358	0.0888327	0.0354690	0.1784304	0.2433216
sensory.odors	-0.0355109	0.6244332	0.2799430	-0.0409266	-0.0500753	-0.0192315	0.0718177	-0.0431105	0.0257336	0.2679002	0.1102792
sensory.tags	-0.1265136	0.5004148	0.0504564	0.1201747	0.0787497	0.0966972	0.0325400	0.0221242	0.0279833	0.0652394	0.0333144
sensory_distress	0.0684386	0.4845109	0.2534815	0.3501328	0.1500137	0.3044825	0.1266181	0.2022210	0.0810342	0.0174690	0.2931485
aggression.anger	0.0528586	0.1249831	0.9554577	0.1005087	0.1520969	0.0604562	0.0695452	-0.0275343	0.0657477	0.1146180	0.0611632
aggression.violence	0.0661081	0.2906201	0.5465781	0.1746469	0.1326751	0.0623793	0.0564477	0.2158469	-0.0436690	-0.0161480	-0.0258320
aggression_aggression_social_impact	0.0199923	0.2912773	0.6635470	0.1480428	0.1527398	0.0612080	0.0485477	0.2797050	0.0287037	0.1894996	0.0444737
selfharm.cutting	0.0399613	0.0877897	0.2340288	-0.0368726	0.3146753	0.2450929	0.0672675	0.4197677	0.1298342	0.0982396	-0.0057725
selfharm.hitting	0.0797972	0.0858401	0.1367376	0.0445167	0.8390454	0.0929194	0.0064543	0.0318419	0.1594575	0.1839177	0.1189593
selfharm.banging_head	0.0807096	0.0983643	0.0572073	0.0092898	0.7102043	0.1095340	0.0749824	0.0861172	0.0622817	0.0834091	0.0316940
selfharm.throwing_self	0.0449241	0.1546198	0.1532955	0.0758152	0.5785241	0.0367246	0.2636664	0.1271626	-0.0926529	-0.1439024	-0.0427580
selfharm.self_harm_distressing	0.1064328	0.0671795	0.3480908	0.0962328	0.3101966	0.1344785	0.1155804	0.6190053	0.0372422	0.3273024	0.0738414
eating_GI.eatnorm	0.0403232	0.1350088	0.0722995	0.7802575	0.0716180	0.2193817	-0.0071309	-0.0537625	0.1281635	0.0888874	0.0522333
eating_GI.eat_impact	0.0264519	0.1603731	0.1436861	0.7767861	-0.0006521	0.0813644	0.1240521	0.0083003	0.0056154	0.1118477	0.0158114
eating_GI.constipated	0.0796142	0.0645222	0.1765971	0.1482022	-0.0069866	0.0723587	0.0922520	0.0378867	-0.0410081	0.3774085	0.0243725
eating_GI.GI_distress	0.0473416	0.0822622	0.0445915	0.1934545	0.2245463	0.1958065	0.2322892	0.1143314	0.0423597	0.3633752	-0.0659286
sleep_impact	0.1206532	0.1246777	0.1821075	0.2781920	-0.0321715	0.1153745	0.0484484	0.2086078	0.0985251	0.0364789	0.0884538

Table 2: Supplementary Table S1

rears sex_male	Index_finger_mean	adhd asd	ID	lang epi	lepsy depres	esion bipe	dar azccie	y affected	dx_bed	digit_ratio_raw	facial_mass	_raw Zdr	THE .	22tm	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8	Factor9	Factor10	Factor11	PC1	PC2	PC3	PC4	PC5	UKBB_testr	seterome.p0.01 morel
15-13315065-133 0	7.07163855421687	TRUE FAI					SE FALS		1	0.9734127241881	0.95343601	633652 0.4	00775391823678	0.539541315107178	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
301309953014 0		FALSE TRU		FALSE FA				E TRUE	1	0.9489851241948	1.54329400	99365 0.58	29102935231653	0.498654418374079	0.74794643179529	0.665669421534571	-0.870063379520946	0.210091885909834	-0.109073522445655	1.16837748280975	0.4498G8Z358058Z3	-0.477221294657069	-0.194070086841541	-0.158950331520898	-0.107665405553904	4.68806426397683	-4.41687861785199	0.997208892612168	7.61791784934	6.20452958000375	2	
095890410959 0		FALSE TRU			LSE FALSI			E TRUE	1	0.9863125349535	96 2.48631305	59503 -0.7	750542901497614	1.64019839636647	0.563010712917452	-1.7142140467899	1.60503931115742	-1.14372806208396	1.27682055553298	-0.337218807248497	0.501624586481267	1.64305131009462	1.39022709914793	0.158208107094537	0.804315512775778	-6.10069572527619	3.68271060938101	6.81724862835369	3.80656741128771	-3.67835200411538	2	
G36164383362 1		FALSE FAI			LSE FALSE			E TRUE	3+	NA	-1.9899090	23309 N.A	l .	-2.9256921282714	0.746629236403936	-0.68942911036888	2.0065682866666	-0.896443219863074	-0.522133128146468	-0.764829496205654	-0.361602012703098	-0.877113921067531	0.829290094474239	-1.35805352797041	-0.855452976089128	NA	NA	NA	NA	NA	NA	
712328767123 0	7.34821174277248	FALSE FAI	SE FALSE	FALSE FA	LSE FALSI	E FAI	SE FALS	E FALSE	0	0.9318617502770	IS 1.01329003	18098 1.58	0552234201163	0.266457649470293	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
01399630137 1	6.44106626506024	TRUE TRU	E TRUE	FALSE FA	LSE TRUE	E FAI	SE TRU		3+	0.9207330858144	5 -0.18782122	1200723 1.7.	3159497586992	-1.21791774922545	-0.50472715325401	0.35999399323113	-1.07077792366996	0.500151565221687	1.16443045754248	0.24910108883881	0.35357799356032	2.72823328088742	-0.750882631917685	1.50132327324671	1.42795636318665	-5.85607919435734	-2.78379802226688	-6.66298051659031	4.61501331499839		2	-
671232876712 1	6.973	TRUE TRU	E FALSE	TRUE FA	LSE FALSI	E FAI		E TRUE	3+	0.9859608138849	13 1.87565988	0194 -1.0	0388723529922	0.434570067338832	0.235631969738386	0.922412555766098	1.52673030432309	0.155859417660592	-0.0656681027574641	-0.229428850922798	-0.332918614003887	-1.07142629087257	0.319498093508234	-0.275540597921467	-0.00608693624367651	-8.4946334050943	-3.67149754617962	-5.00938468118347	-2.6375318494995	-2.02700185187395	. 1	
232976712329 0		FALSE FAI						E FALSE		1.0084352944632				-0.761409978463409		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
123257671233 1		TRUE FAI						E TRUE		0.9413242916065				0.0942955476620577		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
831506949315 1	7.652	FALSE FAI	SE FALSE	FALSE FA	LSE FALSE	E FAI	SE FALS	E FALSE	0	0.9449990768149	35 3.11846854E	1177 0.6	37196039643411	0.418433942948714	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
675342465753 1		TRUE FAI			LSE FALSE			E TRUE		0.9633628190299		225339 -0.3	217455014787433	-3.35714992648995	0.273054934212572	-0.128896859349288	-0.446762486047632	-0.751151751572259	-0.519584746769638	-1.27825862453032	-0.401500339476722	-0.0405095739342565	0.356441528090258	0.704476505266229	-0.761845274548114	0.0815510600689723	9.80800295947389	-0.734077427633503	-2.37810924780002	3.88390694436289	1	-
082191780822 1		FALSE FAI						E FALSE	0	0.9002345551626	57 -0.0ZXXXZX	75048846 1.87	754847424057	-0.812563491329942	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
219178082192 1		FALSE FAI		FALSE FA	LSE FALSE	E FAI		E FALSE	0	0.9677300463956	29 1.103179512	04349 -0.1	196943035313841	-1.23542543330735	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
013099530137 1	5.549	FALSE TRU	E TRUE	TRUE FA	LSE FALSE	E FAI	SE FALS	E TRUE	3+	0.9932237035841	18 -2.00765528	510858 -1.4	41614295394516	-2.54736149055488	0.749942930357023	0.22246365176742	-0.724165110968692	1.01525682648325	-0.686793349713914	1.41076746743627	0.0153962997714685	-0.435977218547416	-0.30787365205358	-0.449164997650758	-0.35138293171344	NA	NA	NA	NA	NA	NA	
576712325767 0	5.78165813253012	FALSE FAI	SE FALSE	TRUE FA	LSE FALSI	E FAI	SE FALS	E TRUE	1	0.9935601270276	5 1.294504100	38147 -1.5	52201275783408	0.232758280199612	-0.147688686971538	0.532464923935945	-0.4036600246582	-0.636234699565456	-0.412330596947784	-1.16333395414781	-0.857749783939987	0.144728553094064	-0.916227374962392	-0.262642036745638	0.844951212412659	9.15413754411236	9.73204544123858	1.8353418883636	-3.85085851966184	-5.63114736309893		
061643833616 1		FALSE FAI			LSE FALSE			E TRUE	1	0.9943296523684	9.91657716	783636 -1.4	40605338853687	-0.296632037057392	0.208908987429305	-0.970579166650667	-0.382822616917866	-0.774547636088409	-0.37663122770295	0.188053000802065	-0.383523848577554	-0.2404999998288248	-1.1358833219222	0.854167766835362	-0.567915888530976	-2.08889695546891	-3.33026964213117	0.727527909419126			2	_
191780821918 1		FALSE TRU			LSE FALSE		SE FALS		2	0.9373082034255	1.20053037	23437 0.3	20830222518341	1.90331412394252	0.493547499194733	-0.889237018074268	-0.463993293526893	0.404322656996703	-0.74967321167227	1.25111882120996	-0.703781372617959	3.80941008214173	1.19294400225505	0.441917022530338	-1.02444301250718	-2.91286286802258	6.48034704148293	7.08055246871024	-7.19033304080407	0.542997546906937	/ 1	
092739729927 1		FALSE FAI			LSE FALSE			E TRUE	1	1.0045212709983	2.99772741	85312 -1.8		0.279683290166662	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
2955301309553 0		FALSE FAI			LSE FALSI	E FAI	SE FALS		0	0.949529032905676	91 -0.34147777	7819007 0.5	1173490222564	-1.32171425843539	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
G8904109589 1	NA	FALSE TRU	E FALSE	FALSE FA	LSE FALSE	E FAI	SE FALS	E TRUE	1	NA	3.29069732	11646 N.A	L.	1.8719939618348	-1.29912289729191	-0.405329795584431	-0.515378199456706	0.0231968515487083	-0.643241700939166	1.39144547537222	-0.421978166245403	-0.0503505034797904	0.771830543363825	-0.586532347379006	0.56330200739529	NA	NA	NA	NA	NA	NA	
219178082192 0		FALSE FAI						FALSE	2	NA	0.99641098			0.623999202502293	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
342465753425 0		FALSE FAI				E FAI		E FALSE	0	1.0160361512151	-1.25009440	289456 -1.1	19276799872211	-0.888698224965235	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
205479452055 1		FALSE FAI						E FALSE	0	0.9362112620803	58 2.4G80923G	59897 0.7		1.07434578023895	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
908219178082 0		FALSE FAI						E FALSE	0	NA	2.00883862			1.01850377217185	-1.93570155997193	0.338214534236872	-0.536840532450188	-0.638116306077571	-0.339689835951671	-0.562532594682659	0.739265330610972	0.311368894101221	1.19224635749094	-0.722919579070933	0.719405667974506	NA	NA	NA	NA	NA	NA	
5554931506549 1	7.3	FALSE FAI	SE FALSE	FALSE FA	LSE FALSE	E FAI	SE FALS	E FALSE	0	0.9534906216995	2.96588503	49119 0.3	000537300236753	0.220136901054321	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

Figure 2: facial and digital masculinity by age

```
### lboot() returns the lowess trend of the
### data as well as its 95% CI; the object returned by lboot()
### can be visualized using plotl() as shown below
set.seed(1283)
### get the trends for TD males
idx = !dat$affected & dat$sex_male==1
tdM_flm = lboot(dat$ageyears,dat$facial_masc_raw,subset=idx,return.boot=T)
tdM_drm = lboot(dat$ageyears,dat$digit_ratio_raw,subset=idx,return.boot=T)
### get the trends for TD females
idx = !dat$affected & dat$sex_male==0
tdF_flm = lboot(dat$ageyears,dat$facial_masc_raw,subset=idx,return.boot=T)
tdF_drm = lboot(dat$ageyears,dat$digit_ratio_raw,subset=idx,return.boot=T)
set.seed(7751)
### get the trends for affected males
idx = dat$affected & dat$sex_male==1
affM_flm = lboot(dat$ageyears,dat$facial_masc_raw,subset=idx,return.boot=T)
affM_drm = lboot(dat$ageyears,dat$digit_ratio_raw,subset=idx,return.boot=T)
### get the trends for affected females
idx = dat$affected & dat$sex_male==0
affF_flm = lboot(dat$ageyears,dat$facial_masc_raw,subset=idx,return.boot=T)
affF_drm = lboot(dat$ageyears,dat$digit_ratio_raw,subset=idx,return.boot=T)
```

TD male and female trends for digit ratio

```
plotl(tdM_drm,1.col="blue",shade.col=rgb(0,0,1,0.2),pt.col=rgb(0,0,1,0.2),
plot.points=T,ylab="2D:4D ratio",ylim=c(0.85,1.1))
plotl(tdF_drm,1.col="red",shade.col=rgb(1,0,0,0.2),pt.col=rgb(1,0,0,0.2),
plot.points=T,ylab="2D:4D ratio",ylim=c(0.85,1.1),add=T)
```


TD male and AFF male trends for digit ratio

```
plotl(tdM_drm,1.col="grey",shade.col=rgb(0.2,0.2,0.2,0.2),pt.col=rgb(0.2,0.2,0.2),
plot.points=F,ylab="2D:4D ratio",ylim=c(0.85,1.1))
plotl(affM_drm,1.col="blue",shade.col=rgb(0,0,1,0.2),pt.col=rgb(0,0,1,0.2),
plot.points=T,ylab="2D:4D ratio",ylim=c(0.85,1.1),add=T,plot.ci=F)
```



```
### look at the empirical p value for Ha: aff > masc. than TD
### (for digit ratio, lower value is more masculine)
sum(colSums(tdM_drm$b)<sum(affM_drm$y))/1000 ### this is the empirical p-value</pre>
```

[1] 0.991

TD female and AFF female trends for digit ratio

```
plotl(tdF_drm,1.col="grey",shade.col=rgb(0.2,0.2,0.2,0.2),pt.col=rgb(0.2,0.2,0.2),
plot.points=F,ylab="2D:4D ratio",ylim=c(0.85,1.1))
plotl(affF_drm,1.col="red",shade.col=rgb(1,0,0,0.2),pt.col=rgb(1,0,0,0.2),
plot.points=T,ylab="2D:4D ratio",ylim=c(0.85,1.1),add=T,plot.ci=F)
```



```
### look at the empirical p value for Ha: aff > masc. than TD
### (for digit ratio, lower value is more masculine)
sum(colSums(tdF_drm$b)<sum(affF_drm$y))/1000 ### this is the empirical p-value</pre>
```

[1] 1

TD male and female trends for facial masculinity

```
plotl(tdM_flm,1.col="blue",shade.col=rgb(0,0,1,0.2),pt.col=rgb(0,0,1,0.2),
plot.points=T,ylab="facial masculinity",ylim=c(-6,6))
plotl(tdF_flm,1.col="red",shade.col=rgb(1,0,0,0.2),pt.col=rgb(1,0,0,0.2),
plot.points=T,ylab="facial masculinity",ylim=c(-6,6),add=T)
```


TD male and AFF male trends for facial masculinity

```
plot1(tdM_flm,1.col="grey",shade.col=rgb(0.2,0.2,0.2,0.2),pt.col=rgb(0.2,0.2,0.2),
plot.points=F,ylab="facial masculinity",ylim=c(-6,6))
plot1(affM_flm,1.col="blue",shade.col=rgb(0,0,1,0.2),pt.col=rgb(0,0,1,0.2),
plot.points=T,ylab="facial masculinity",ylim=c(-6,6),add=T,plot.ci=F)
```


look at the empirical p value for Ha: aff > masc. than TD
sum(colSums(tdM_flm\$b)>sum(affM_flm\$y))/1000 ### this is the empirical p-value

[1] 0.002

TD female and AFF female trends for facial masculinity

```
plotl(tdF_flm,1.col="grey",shade.col=rgb(0.2,0.2,0.2,0.2),pt.col=rgb(0.2,0.2,0.2),
plot.points=F,ylab="facial masculinity",ylim=c(-6,6))
plotl(affF_flm,1.col="red",shade.col=rgb(1,0,0,0.2),pt.col=rgb(1,0,0,0.2),
plot.points=T,ylab="facial masculinity",ylim=c(-6,6),add=T,plot.ci=F)
```


[1] 0

Figure 3: Relationships with diagnosis and parent-reported problems

Top: Boxplots showing masculinity scores distribution and barplots showing significance

```
### pull out the Dx indicators
dxlab = c("adhd", "asd", "ID", "lang", "epilepsy", "depression", "bipolar", "anxiety")
dx = as.data.frame(sapply(dat[,dxlab],as.integer))
rownames(dx) = rownames(dat)
cc = c("grey",rep("orangered",5),rep("mistyrose",3))
### structure the masculinity data according to Dx
11 = lapply(dx,function(x) dat$Zdrm[x==1])
11 = c(list(TD=dat$Zdrm[rowSums(dx)==0]),11)
11 drm = 11
11 = lapply(dx,function(x) dat$Zflm[x==1])
ll = c(list(TD=dat\$Zflm[rowSums(dx)==0]), ll)
11_flm = 11
## t-tests comparing TD to all other Dxs
td_vs_dx = function(x) {
p = sapply(x[-1], function(y) t.test(x[[1]],y)p.v)
fdr = p.adjust(p,'fdr')
out = cbind(p,fdr)
rownames(out) = names(x)[-1]
return(out)
}
p_drm = td_vs_dx(ll_drm)
p_flm = td_vs_dx(ll_flm)
layout(matrix(c(1,3,2,4),2,2), heights=c(1,5))
par(mar=c(0,4,1,2))
  barplot(-log10(t(rbind(c(NA,NA),p_drm))),
  beside=T,
 las=2.
  ylim=c(0,2.5),
  ylab="-log10 P or FDR",
  names.arg=rep("",9),
  legend.text=c("p","FDR"),
  args.legend=list(x="topleft",bty="n",border=NA,inset=0.03))
  abline(h=-log10(0.05),col='red',lty=2)
  barplot(-log10(t(rbind(c(NA,NA),p_flm))),
  beside=T,
  las=2,
  ylim=c(0,2.5),
  ylab="-log10 P or FDR",
  names.arg=rep("",9),
  legend.text=c("p","FDR"),
  args.legend=list(x="topright",bty="n",border=NA,inset=0.03))
```

```
abline(h=-log10(0.05),col='red',lty=2)
## the boxplots showing the distribution of the masculinity scores within
par(mar=c(5,4,0.5,2))
  bp = boxplot(ll_drm, las=2, ylim=c(-4, 4),
  col=c("grey",rep("white",8)),
  ylab="DRM (age and sex-corrected)",
  xaxs="i")
  ### pattern fills to emphasize (non)significance
  rect((2:9)-.4,
  bp\$stats[2,-1],
  (2:9)+.4,
  bp\$stats[4,-1],
  density=c(rep(30,8)), ## tweaked according to which comparisons are sig.
  col=cc[-1],border="black")
  bp = boxplot(ll_flm, las=2, ylim=c(-4, 4),
  col=c("grey",rep("orangered",3),rep("white",5)),
  ylab="FLM (age and sex-corrected)",
  xaxs="i")
  ### pattern fills to emphasize (non)significance
  rect((2:9)-.4,
  bp\$stats[2,-1],
  (2:9)+.4,
  bp\$stats[4,-1],
  density=c(0,0,0,rep(30,6)), ## tweaked according to which comparisons are siq.
  col=cc[-1],border="black")
```


Bottom: Parent-report Factors

```
# Xs is the matrix of parent-reported items (we are only distributing factor scores)
# fac = factanal(scale(Xs), factors=11, scores="regression")
### grab the factor scores from the supplemental table
S = dat[,grep("Factor",colnames(dat))]
### look at the correlations
cors = cor(dat[,c("Zdrm","Zflm")],S,use="pairwise.complete.obs",method="spearman")
 ### set layout
 layout(matrix(c(1,2,3),1,3),widths=c(1.5,5,5))
 ### set colors, labels, and breaks for loadings
 cp = colorRampPalette(c("steelblue","ivory","red"))
 flab = c("F1:ability", "F2:sens/order", "F3:aggression", "F4:feeding",
    "F5:self-harm", "F6:stimming", "F7:social anxiety", "F8:cutting",
    "F9:social/friends", "F10:GI", "F11:sound sensitivity")
bk = c(-1, seq(-1, -0.1, length.out=127), 0, seq(0.1, 1, length.out=127), 1)
 ### the key for the factor loadings
 par(mar=c(5,7,12,1))
 img(as.matrix(seq(1,-1,length.out=256)),col=cp(256),breaks=bk)
 axis(2,at=c(0,256/2,256),labels=c(1,0,-1))
mtext("factor loadings",side=2,at=256/0,line=3,cex=0.8)
 ### the factor loadings
 par(mar=c(5,1,12,1))
 img(t(1),breaks=bk,col=cp(256))
 mtext(rownames(1), side=3, at=c(1:nrow(1))-0.5, las=2, line=0.5, cex=0.5)
 abline(h=c(0:12),col='grey')
 box()
 ### the barplot of correlations w/ factor scores
 par(mar=c(5,9,12,2))
 bp = barplot(cors[2:1,11:1],beside=T,las=2,yaxs="i",names.arg=flab[11:1],axes=F,
   ylab="",col=c("darkseagreen","cadetblue"),
   legend.text=c("FLM","DRM"),
    args.legend=list(x="topleft",inset=0.03,border=NA,bty='n',density=-1),
   border=NA, xlim=c(-0.2,0.22),
    density=rev(c(rep(30,16),-1,-1,rep(30,4))),horiz=T)
 axis(1,line=1.5)
 mtext("Spearman's rho", side=1, at=0.025, line=4, cex=0.8)
 text(c(0.21,0.21),bp[1:2,3],rep("*",2),col='red',cex=2)
```


Bottom: Statistics

Table 3: Digit Ratio Masculinity

Factor	ρ	FDR
Factor1	0.0393443	0.9946875
Factor2	0.0041213	0.9946875
Factor3	-0.1663960	0.0976235
Factor4	0.0279256	0.9946875
Factor5	-0.0743621	0.8014244
Factor6	-0.0004705	0.9946875
Factor7	0.0629893	0.8176376
Factor8	-0.0179701	0.9946875
Factor9	0.2012962	0.0444052
Factor10	-0.0083417	0.9946875
Factor11	0.1202564	0.3206328

Table 4: Facial Landmark Masculinity

Factor	ρ	FDR
Factor1	0.1413869	0.1648585
Factor2	-0.0356959	0.8390477
Factor3	-0.0612753	0.7664615
Factor4	0.1089886	0.3476934
Factor5	-0.0783222	0.6338121
Factor6	-0.0333277	0.8390477
Factor7	-0.0071165	0.9133422
Factor8	0.0088366	0.9133422
Factor9	0.1886747	0.0403774
Factor10	0.0394948	0.8390477
Factor11	-0.0226260	0.8913875

Figure 4: PRS in devGenes

Left: PRS Associations

```
### pull out the PRS and covariates from the main table for convenience
prs = dat[,grep("p0",colnames(dat))]
covars = dat[,c(2:3,grep("PC",colnames(dat)))]
covars[[1]] = log(covars[[1]])
### wrapper to grab the PRS-related effect (x) and associated statistics
### from a linear model
fsig = function(x,y) summary(lm(y~.,data=data.frame(covars,x)))$coef[9,]
cfsoc = t(apply(prs,2,fsig,S[,9]))
cfdrm = t(apply(prs,2,fsig,dat$Zdrm))
cfflm = t(apply(prs,2,fsig,dat$Zflm))
### add FDR
cfsoc = cbind(cfsoc,FDR = p.adjust(cfsoc[,4],'fdr'))
cfdrm = cbind(cfdrm,FDR = p.adjust(cfdrm[,4],'fdr'))
cfflm = cbind(cfflm,FDR = p.adjust(cfflm[,4],'fdr'))
### assemble the t-statistics and arrange for the barplot
p1 = cbind(drm=cfdrm[grepl("0\\.1$",rownames(cfdrm)),3],
    flm=cfflm[grepl("0\\.1$",rownames(cfflm)),3],
   F9=cfsoc[grep1("0\\.1$",rownames(cfsoc)),3])
p01 = cbind(drm=cfdrm[grepl("0\\.01$",rownames(cfdrm)),3],
    flm=cfflm[grep1("0\\.01$",rownames(cfflm)),3],
   F9=cfsoc[grepl("0\\.01$",rownames(cfsoc)),3])
### this is what will be plotted
pdrm = cbind(p01[,1],p1[,1])
pflm = cbind(p01[,2],p1[,2])
psoc = cbind(p01[,3],p1[,3])
### helper function to pattern fill according to significance
fdens = function(x) ifelse(t(abs(x)>=1.96),-1,30)
### define colors and labels
cc = c("steelblue1","steelblue4")
plab = c("UKBB\ntestosterone","UKBB\nSHBG","UKBB\nsoc. dissatis.","PGC\nASD","PGC\nADHD","UKBB\nCog","S
```

Digit Ratio Masculinity

```
par(mar=c(1,5,2,2))
bp = barplot(t(pdrm),
    beside=T,
    las=2,
    ylim=c(-4.2,4),
    names.arg=rep("",7),
    density=fdens(pdrm),
    col=cc,border=NA,
    legend.text=c("Psnp<0.01","Psnp<0.1"),
    args.legend=list(x="topright",bty='n',border=NA,density=-1),
    ylab="DRM vs. PRS association\n(t-statistic)")
    rect(t(bp)[,1]-1,-4.20,t(bp)[,2]+1,-3.55)
    text(bp[1,]+0.5,rep(-3.88,7),plab,cex=0.85)
    abline(h=c(-1.96,1.96),col='red',lty=2)</pre>
```


Facial Landmark Masculinity

```
par(mar=c(1,5,2,2))
barplot(t(pflm),
    beside=T,
    las=2,
    ylim=c(-4.2,4),
    names.arg=rep("",7),
    density=fdens(pflm),
    col=cc,border=NA,
    ylab="FLM vs. PRS association\n(t-statistic)")
    abline(h=c(-1.96,1.96),col='red',lty=2)
    rect(t(bp)[,1]-1,-4.20,t(bp)[,2]+1,-3.55)
    text(bp[1,]+0.5,rep(-3.88,7),plab,cex=0.85)
```


Factor 9 (social)

```
par(mar=c(1,5,2,2))
barplot(t(psoc),
  beside=T,
  las=2,
  ylim=c(-4.2,4),
  names.arg=rep("",7),
  density=fdens(psoc),
  col=cc,border=NA,
  ylab="F9 (social/friends) vs. PRS association\n(t-statistic)")
  abline(h=c(-1.96,1.96),col='red',lty=2)
  rect(t(bp)[,1]-1,-4.20,t(bp)[,2]+1,-3.55)
  text(bp[1,]+0.5,rep(-3.88,7),plab,cex=0.85)
```


Right: Categorical PRS Comparison

```
## set up colors, layout, and labels
par(mfrow=c(3,2), mar=c(4,4,3,2))
cc1 = colorRampPalette(c("ivory", "orangered1"))(3)
cc2 = colorRampPalette(c("ivory", "paleturquoise3"))(3)
nn = c("bottom 20%","middle 60%","top 20%")
boxplot(dat$Zdrm~prs[,1],
   names=nn,
   ylab="DRM",
   main="testosterone PRS",
   col=cc1)
boxplot(dat$Zdrm~prs[,9],
   names=nn,
   ylab="DRM",
   main="SHBG PRS",
   col=cc2)
 boxplot(dat$Zflm~prs[,1],
   names=nn,
   ylab="FLM",
   main="testosterone PRS",
   col=cc1)
 boxplot(dat$Zflm~prs[,9],
   names=nn,
   ylab="FLM",
   main="SHBG PRS",
   col=cc2)
 boxplot(S[,9]~prs[,1],
   names=nn,
   ylab="Factor 9 (social)",
   main="testosterone PRS",
   col=cc1)
boxplot(S[,9]~prs[,9],
   names=nn,
   ylab="Factor 9 (social)",
   main="SHBG PRS",
   col=cc2)
```

