

MICRO-MEMBRAN-GASFÖRDERPUMPEN NMP 830, NMP 850 und NMP 850.1.2

NMP 850 KNDC

DATENBLATT D 005

NMP 850.1.2 KNDC B

Konzept

Die Micro-Membran-Gasförderpumpen von KNF basieren auf einem einfachen Prinzip: Eine elastische, an ihrem Rand geklemmte Membrane wird in ihrem Zentrum durch einen Exzenter auf- und abbewegt. Auf diese Weise wird das Medium über selbsttätige Ventile gefördert.

Die Pumpen sind mit einer spannungsoptimierten Membrane ausgerüstet - das Ergebnis: hohe pneumatische Leistung, lange Lebensdauer und geringe Baugröße. Spezielle Ventile sorgen für geringe Strömungsverluste.

Über das KNF-Baukastensystem lassen sich für die gasführenden Teile unterschiedlich beständige Materialien wählen. Für den Pumpenantrieb stehen bürstenbehaftete und bürstenlose Gleichstrommotoren in verschiedenen Spannungen sowie Wechselstrommotoren zur Auswahl.

Merkmale

Unverfälschtes Fördern Keine Verunreinigung der Medien dank des ölfreien Betriebs

Wartungsfrei

Geringe Baugröße

Hohe pneumatische Leistung

Geringe Strömungsverluste durch neues Ventilsystem

Hohe Gasdichtigkeit

dank der geschlossenen Membranoberfläche und speziellem Dichtsystem

Lange Lebensdauer

Einbaufertig

In allen Einbaulagen zu betreiben

Für die Version mit bürstenlosem DC-Motor gilt weiter:

- Keine Funkenbildung
- Sicherer Dauerbetrieb
- Besonders lange Lebensdauer

Einsatzgebiete

KNF-Micro-Membranpumpen kommen häufig in der Analysen- und der Medizintechnik zum Einsatz.

So als Meßgaspumpen etwa bei der Probenahme von Umgebungsluft an Arbeitsplätzen, bei der Abgas- und Rauchgasanalyse oder eingebaut in Blutdruckmeßgeräte.

Mit Gleichstromantrieb eignen sich die Micro-Membranpumpen für tragbare und netzunabhängige Geräte. Die Wechselstromausführungen bieten sich für den Einbau in netzgespeiste Geräte und für sonstigen stationären Einsatz an.

LEISTUNGSBEREICHE							
Тур	Förderleistung (l/min)	Vakuum (mbar absolut)	atm. Druck	Überdruck (bar)	Gewicht (g)		
NMP 830 KNE	1,8	250		1	590		
NMP 830 KNDC B	2,5	240		1,4	270		
NMP 830 KNDC	3,1	250		1	195		
NMP 850 KNDC B	4,2	230		1,5	360		
NMP 850 KNDC	4,5	230		1,5	210		
NMP 850.1.2 KNDC B	8,0	230		1,5	430		

NMP 830 _ E

NMP 830 _ _ DC

LEISTUNGSBEREICHE

Typ und Bestell-Nr. 3)	Förderleistung bei atm. Druck (I/min) 1)	Max. Betriebs- überdruck (bar) ²⁾	Endvakuum (mbar abs.)
NMP 830 KNE	1,8	1	250
NMP 830 KVE	1,8	1	250
NMP 830 KTE	1,6	1	310

1) Liter im Normzustand 2) im Dauerbetrieb

MOTORDATEN

Schutzart		IP 00	
Spannung/Frequen	z (V/Hz)	230/50	
Leistung P ₁	(W)	25	
Stromaufnahme	(A)	0.3	

MATERIALAUSFÜHRUNG

Typ und Bestell-Nr. 3)	Pumpenkopf	Membrane	Ventile		
NMP 830 KNE	Ryton 4) (PPS)	EPDM	CR		
NMP 830 KVE	Ryton 4) (PPS)	FPM	FPM		
Chemiefeste Ausführung					
NMP 830 KTE	Ryton 4) (PPS)	PTFE-beschichtet	FFPM		

³⁾ Siehe auch Text "TYPEN-BEZEICHNUNG FÜR DIE EINFACHE BESTELLUNG".

Maße 5) (mm)

LEISTUNGSBEREICHE

Typ und Bestell-Nr. ³⁾	Gleichstrom- motor (V)	Förderleistung bei atm. Druck (I/min) 1)	Max. Betriebs- überdruck (bar) 2)	Endvakuum (mbar abs.)
NMP 830 KNDC	6	3,1	1	250
NMP 830 KVDC	6	2,7	1	250
NMP 830 KTDC	6	2,6	1	350
NMP 830 KNDC	12	3,1	1	250
NMP 830 KVDC	12	2,7	1	250
NMP 830 KTDC	12	2,6	1	350
NMP 830 KNDC	24	3,1	1	250
NMP 830 KVDC	24	2,7	1	250
NMP 830 KTDC	24	2,6	1	350

1) Liter im Normzustand 2) im Dauerbetrieb

MATERIALAUSFÜHRUNG

Typ und Bestell-Nr. 3)	Pumpenkopf	Membrane	Ventile		
NMP 830 KNDC	Ryton 4) (PPS)	EPDM	CR		
NMP 830 KVDC	Ryton 4) (PPS)	FPM	FPM		
Chemiefeste Ausführung					
NMP 830 KTDC	Ryton 4) (PPS)	PTFE-beschichtet	FFPM		

⁴⁾ Phillips Petroleum, eingetragenes Warenzeichen

HINWEISE ZU FUNKTION, INSTALLATION UND SERVICE

FUNKTION VON KNF-MICRO-MEMBRAN-GASFÖRDERPUMPEN

Eine elastische Membrane wird durch einen Exzenter auf- und abbewegt (siehe Abbildung). Im Abwärtshub saugt sie das zu fördernde Gas oder die Luft über das Einlaßventil an. Im Aufwärtshub drückt die Membrane das Medium über das Auslaßventil aus dem Kopf hinaus. Der Förderraum ist vom Pumpenantrieb durch die Membrane hermetisch getrennt. Die Pumpen fördern, evakuieren und verdichten völlig ölfrei.

Membranpumpe

INSTALLATIONS- UND BETRIEBSHINWEISE

- Anwendungsbereich: Fördern von Luft und Gasen mit einer Temperatur von + 5 °C ... + 40 °C.
- Bitte die Verträglichkeit der Materialien von Pumpenkopf, Membrane und Ventilen gegenüber dem Medium prüfen.
- Für die Förderung von aggressiven Gasen und Dämpfen stehen geeignete Pumpen aus dem KNF-Produktprogramm zur Verfügung - bitte sprechen Sie uns an.
- Zulässige Umgebungstemperatur:
 + 5 °C ... + 40 °C.
- Die Pumpen sind nicht für explosionsgefährdete Umgebungen geeignet; für diesen Einsatz stehen Pumpen aus dem KNF-Produktprogramm zur Verfügung - bitte sprechen Sie uns an.
- Die Pumpen sind nicht ausgelegt für das Anlaufen gegen Druck oder Vakuum: beim Einschalten muß in den Leitungen der normale atmosphärische Druck herrschen. Pumpen, die gegen Druck oder Vakuum anlaufen können, auf Anfrage.
- Drosselung oder Regulierung der Gasmenge sollte nur in der saugseitigen Leitung erfolgen, um ein Überschreiten des maximal zulässigen Pumpen-Betriebsdruckes zu vermeiden.

- Die an die Pumpe anzuschließenden Komponenten müssen auf die pneumatischen Daten der Pumpe ausgelegt sein
- Die Pumpe derart montieren, daß ausreichend Kühlluftzufuhr gewährleistet ist
- Damit sich kein Kondensat im Pumpenkopf sammelt, die Pumpe an die höchste Stelle im System montieren.

TECHNISCHE HINWEISE

Motoren mit anderen Spannungen und Frequenzen auf Anfrage.

SERVICE-HINWEISE

Einzige Verschleißteile der KNF-Membranpumpen sind Membranen und Ventilplatten. Sie lassen sich einfach und ohne Spezialwerkzeug wechseln.

KNF, Ihr kompetenter Partner für die Vakuum- und Kompressortechnik. Gerade bei individuellen Problemstellungen. Rufen Sie uns an und sprechen Sie mit Ihrem Vertriebsingenieur.

TYPEN-BEZEICHNUNG FÜR DIE EINFACHE BESTELLUNG

Die Typenbezeichnung ist identisch mit der Bestellnummer. Sie setzt sich folgendermaßen zusammen, zum Beispiel:

NMP 830	KN	E oder		//50Hz oder 6 V
Grundtyp				
Materialausfü	ihrung			
OEM-Version	mit We	chsel- (E)		
oder Gleichstrommotor (DC)				
• gewünschte Motordaten z.B.				

Zusätzlich müssen bei der Bestellung die Motorversion und die Spannung angegeben werden (siehe oben).

Innerhalb unseres umfangreichen Programmes finden Sie sicher den Pumpentyp für Ihre individuelle Anwendung.

ZUBEHÖR					
Benennung	Bemerkung	Bestell-Nr.			
Geräuschdämpfer bzw. Ansaugfilter	für NMP 830	024805			