Máquina de Turing III

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de março de 2020

Plano de Aula

Revisão

2 Exemplos

Sumário

Revisão

2 Exemplos

Configuração de uma MT

A configuração C_1 **origina** a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$.
- os estados q_i e q_i,
- as configurações uaqibv e uqiacv.

Digamos que

 uaq_i bv origina uq_i acv

se na função de transição $\delta(q_i, b) = (q_i, c, E)$.

Configuração de uma MT

Mais formalmente...

Digamos que

 uaq_i bv origina uq_i acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_i$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Configuração de uma MT

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- configuração de parada.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de **linguagem reconhecida por** M e denotada por L(M).

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Corolário

Toda linguagem Turing-decidível é Turing-reconhecível.

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

 M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não e outro sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, *rejeite*.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Sumário

Revisão

2 Exemplos

Descrição Formal de M₂

$$M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}, q_{reieita})$$
:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0\}$,
- $\Gamma = \{0, x, \bot\},\$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

FIGURA 3.8 Diagrama de estados para a máquina de Turing M_2

$L(M_1)$

Uma máquina de Turing M_1 que decide $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$

$L(M_1)$

Uma máquina de Turing M_1 que decide $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$

Descrição Formal de M_1

 $M_3 = (Q, \Sigma, \Gamma, \delta, q_1 q_{aceita}, q_{rejeita})$:

- $Q = \{q_1, \dots, q_{14}, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0, 1, \#\},\$
- $\Gamma = \{0, 1, \#, x, \sqcup\}$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

FIGURA 3.10 Diagrama de estados para a máquina de Turing M_1

Problema

Problema 3.15 (a)

Mostre que a coleção de linguagens decidíveis é fechada sob a operação de união.

Problema

Problema 3.15 (a)

Mostre que a coleção de linguagens decidíveis é fechada sob a operação de união.

- 3.15 (a) Para quaisquer duas linguagens decidíveis L_1 e L_2 , sejam M_1 e M_2 as MTs que as decidem. Construimos uma MT M' que decide a união de L_1 e L_2 :
 - "Sobre a entrada w:
 - 1. Rode M_1 sobre w. Se ela aceita, aceite.
 - 2. Rode M_2 sobre w. Se ela aceita, aceite. Caso contrário, rejeite."

M' aceita w se M_1 ou M_2 a aceita. Se ambas rejeitam, M' rejeita.

Sumário

Revisão

2 Exemplos

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

• cada fita tem sua própria cabeça de leitura e escrita;

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração inicial consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração inicial consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;
- a função de transição permite ler, escrever e mover as cabeças em algumas ou em todas as fitas simultaneamente

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D, P\}^k$$

em que k é o número de fitas.

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração inicial consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;
- a função de transição permite ler, escrever e mover as cabeças em algumas ou em todas as fitas simultaneamente

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D, P\}^k$$

em que k é o número de fitas.

Exemplo

$$\delta(q_i, a_1, \ldots, a_k) = (q_i, b_1, \ldots, b_k, P, D, \ldots, E)$$

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

FIGURA 3.14

Representando três fitas com apenas uma


```
S = "Sobre a entrada w = w_1 \cdot \cdot \cdot w_n:
```

 Primeiro S ponha sua fita no formato que representa todas as k fitas de M. A fita formatada contém

$$\#w_1^{\bullet}w_2 \cdots w_n \#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\# \cdots \#_{\sqcup}^{\bullet}$$

2. Para simular um único movimento, S faz uma varredura na sua fita desde o primeiro #, que marca a extremidade esquerda, até o (k+1)-ésimo #, que marca a extremidade direita, de modo a determinar os símbolos sob as cabeças virtuais. Então S faz uma segunda passagem para atualizar as fitas conforme a maneira pela qual a função de transição de M estabelece.

3. Se em algum ponto S move uma das cabeças virtuais sobre um #, essa ação significa que M moveu a cabeça correspondente para a parte previamente não-lida em branco daquela fita. Portanto, S escreve um símbolo em branco nessa célula da fita e desloca o conteúdo da fita, a partir dessa célula até o # mais à direita, uma posição para a direita. Então ela continua a simulação tal qual anteriormente."

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

PROVA Uma linguagem Turing-reconhecível é reconhecida por uma máquina de Turing comum (com uma única fita), o que é um caso especial de uma máquina de Turing multifita. Isso prova uma direção desse corolário. A outra direção segue do Teorema 3.13.

Máquina de Turing III

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de março de 2020

