Klasyfikator gatunków muzycznych

Sprawozdanie z projektu indywidualnego

Kacper Aleksander

Spis treści

1.	Omowienie projektu	2
	Zbiór danych	
3.	Ekstraktowanie cech	
4.	Macierz korelacji cech	7
5.	Wybór modelu	7
6.	Sposób użycia	10
7.	Napotkane problemy	10
8.	Niedociągnięcia	10
9.	Plany dalszego rozwoju	11
10	Źródła	11

1. Omówienie projektu

Założeniem mojego projektu jest stworzenie modelu sztucznej inteligencji pozwalającego skutecznie przewidywać gatunek muzyczny podanego utworu. W tym celu wykorzystałem klasyfikator K-najbliższych sąsiadów. Projekt napisałem w języku Python – wykorzystałem m.in. biblioteki NumPy, Pandas, Matplotlib, Librosa, Scikit-learn. Całość połączyłem z botem w komunikatorze Telegram, by zapewnić odbiorcy wygodny interfejs.

2. Zbiór danych

Zbiór danych składa się z 10 gatunków, każdy po 100 piosenek. Każda piosenka trwa 30 sekund. Jedna była wadliwa, więc ją usunąłem, co daje 999 utworów. Program zapewnia edytowalność zbioru danych, to znaczy, że można dodać oraz usunąć gatunki i utwory bez zmian w kodzie.

Link do zbioru umieściłem na końcu sprawozdania.

3. Ekstraktowanie cech

Z każdego utworu wyekstraktowałem i zapisałem średnią na przestrzeni czasu dla każdego z 11 współczynników cepstralnych (zwanych dalej MFCC) oraz tempo – razem 12 wartości. Za pomocą wykresów zweryfikowałem, czy te cechy nadają się do odróżniania gatunków od siebie.

Poniżej przedstawiam wykres pudełkowy tempa dla każdego gatunku:

Przedstawiam również wykresy pudełkowe MFCC dla poszczególnych gatunków:

Na podstawie powyższych wykresów widać różnice w wartościach MFCC oraz tempa pomiędzy gatunkami, zatem te cechy nadają się do odróżniania gatunków od siebie.

4. Macierz korelacji cech

Zwiększanie ilości MFCC, od pewnej ich ilości, nie zwiększało znacząco dokładności klasyfikacji. Jak można zauważyć, poszczególne cechy są ze sobą skorelowane w dosyć przewidywalny sposób – na zmianę raz dodatnio, raz ujemnie. Kolejne, silnie skorelowane cechy nie są zatem użyteczne dla algorytmu klasyfikującego, ponieważ jest to powtórzenie informacji, które niosą poprzednie cechy.

5. Wybór modelu

Wypróbowałem 3 algorytmy uczenia maszynowego: maszynę wektorów nośnych, las losowy oraz k-najbliższych sąsiadów. Przedstawiam rezultaty dla każdego z nich.

Maszyna wektorów nośnych (SVM):

Fitting 5 fold	s for each	of 32 can	didates, to	talling 160	fits
	precision	recall	f1-score	support	
	2 72	2 22	2 02	0.3	
blues	0.78	0.88	0.83	92	
classical	0.91	0.93	0.92	108	
country	0.64	0.69	0.66	96	
disco	0.73	0.82	0.77	94	
hiphop	0.75	0.74	0.75	107	
jazz	0.76	0.74	0.75	100	
metal	0.91	0.86	0.89	99	
рор	0.89	0.84	0.86	105	
reggae	0.76	0.77	0.76	92	
rock	0.76	0.64	0.70	106	
accuracy			0.79	999	
macro avg	0.79	0.79	0.79	999	
weighted avg	0.79	0.79	0.79	999	

Las losowy (RF):

	precision	recall	f1-score	support
blues	0.96	0.81	0.88	110
classical	0.83	0.87	0.85	95
country	0.75	0.74	0.74	96
disco	0.70	0.79	0.74	92
hiphop	0.79	0.77	0.78	95
jazz	0.77	0.81	0.79	98
metal	0.80	0.94	0.86	93
рор	0.84	0.89	0.87	110
reggae	0.78	0.80	0.79	101
rock	0.84	0.64	0.73	109
accuracy			0.80	999
macro avg	0.81	0.81	0.80	999
weighted avg	0.81	0.80	0.80	999

K-najbliższych sąsiadów (KNN):

Fitting 5 fold	s for each	of 42 cand	idates, tot	alling 210	fits
	precision	recall	f1-score	support	
blues	0.90	0.88	0.89	52	
classical	0.93	0.89	0.91	64	
country	0.89	0.79	0.84	42	
disco	0.85	0.97	0.91	36	
hiphop	0.92	0.89	0.91	55	
jazz	0.77	0.90	0.83	40	
metal	0.90	0.97	0.94	37	
рор	0.94	0.92	0.93	66	
reggae	0.92	0.94	0.93	48	
rock	0.93	0.87	0.90	60	
accuracy			0.90	500	
macro avg	0.90	0.90	0.90	500	
weighted avg	0.90	0.90	0.90	500	

Jak można zauważyć, klasyfikator KNN oferuje dla mojego zbioru danych najwyższą skuteczność spomiędzy powyższych algorytmów, więc to z niego zdecydowałem się skorzystać.

6. Sposób użycia

Telegramowy interfejs pozwala na intuicyjne korzystanie z programu. Należy przesłać plik w formacie mp3.

7. Napotkane problemy

Sporadyczne niepoprawne odczytywanie MFCC z plików mp3 (wartości równe 0).
Wstępnie dostrzegłem, że nie dotyczy to plików wav, jednak tych nie obsługuję poprzez Telegramowy interfejs. Można użyć konwertera z mp3 na wav i sprawdzić, czy problem zostanie rozwiązany.

8. Niedociągnięcia

• Brak wyświetlania użytkownikowi informacji o błędzie (np. timeout).

9. Plany dalszego rozwoju

- Poprawienie skuteczności klasyfikacji zamieniając klasyfikator KNN na sieć neuronową oraz poszerzając zbiór danych do trenowania.
- Przejście z plików w formacie JSON na bazę danych.
- Wprowadzenie możliwości uczenia programu z pozycji użytkownika gdy program źle sklasyfikuje utwór, użytkownik jest proszony o sklasyfikowanie utworu. Program zapisuje utwór i jego gatunek, następnie dodaje go do zbioru danych, z którego ponownie się uczy.
- Dodanie obsługi plików wav bezpośrednio poprzez Telegramowy interfejs, bez konieczności konwertowania ich na mp3.

10. Źródła

GitHub projektu: https://github.com/kacperfin/music-genre-prediction

Zbiór danych: https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification