

II2021 Entwicklung eines autonomen Fahrzeugs Team 2

Florian Maximilian Dörr, Hendrik Wagner Technische Hochschule Mittelhessen 13. Juli 2022

Inhalt

Bildverarbeitung mit OpenCV

Autonomes Fahrer

Bildtransformation

- 1. Zuschnitt des Inputs auf die Region of Interest
- 2. Ermittlung Kameraposition, FOV (Homographie) für Testtransformationsmatrix
- 3. Perspektivische Transformation mithilfe Zieltransformationsmatrix

Linienerkennung — "Regions of interest"

- ► Aufteilung des tranformierten Bildes in zwei Regionen
- Start in Bereich, in dem Anfang der Linie erwartet wird
- ► Es wird in festen Schritten, Punkte der Linie abgegangen → Auflösung frei wählbar (40 Punkte)
- ▶ Weiteres vorgehen abhängig, ob ein ein weißer Pixel gefunden wurde oder nicht:
 - 1. Weißen Pixel gefunden: Punkt wird in Liste abgespeichert und nächster Suchbereich wird nach diesem Punkt in Verbindung mit dem letzen Punkt (Steigungstendenz) bestimmt
 - 2. Kein Weißer Pixel gefunden: Der nächste Suchbereich ist der jetzige, er wird jedoch erweitert/aufgefächert

Linienerkennung — Steigungsermittlung

- ▶ Bildung einer Gerade über die ermittelten Punkte mithilfe der *Methode der kleinsten* (Fehler-) Quadrate
 - Sucht eine Gerade, dessen quadrierter Distanz zu allen Punkten minimal ist
 - ▶ Resultiert in einen Steigungswert *m*, welcher für den Lenkwinkel und der Geschwindigkeit verwendet werden kann
 - ▶ Dank der Transformation ist die Soll-Steigung m = 0!

Inhalt

Bildverarbeitung mit OpenC\

Autonomes Fahren

PID — Lenkung

- Lenkung wird mittels zwei PID-Reglern gesteuert
 - 1. Kurven-Lenkung: m Wert wird als Eingabe verwendet
 - 2. Positionierung innerhalb der Fahrspur: Es existiert ein Sollwert für den ersten erkannten weißen Pixel, der eingehalten werden soll
- ► Es werden nur 50% der erkannten Punkte und die resultierende Steigung verwendet ↓ Es ist hinderlich für die Lenkung zu weit in die "Zukunft" zu schauen
- ► Werte werden auf 45° bzw. −45° beschränkt
- ightharpoonup PIDs arbeiten "gegeneinander" ightharpoonup Kurven-Lenkung ist der dominante Wert, Positionierung korrigierender Wert

PID — Geschwindigkeit

- ▶ PID-Regler für Geschwindigkeit in Abhängigkeit von vier Faktoren:
 - 1. Die Steigung der ersten 50% der erkannten Punkte (linke und rechte Linie)
 - 2. Die Steigung der hinteren 50% der erkannten Punkte (linke und rechte Linie) \rightarrow hier ist eine Vorausschau sinnvoll und notwendig
- Mindestens 2.55 $\frac{m}{s}$ (9.18 $\frac{km}{h}$), maximal 5.4 $\frac{m}{s}$ (19.44 $\frac{km}{h}$) im normalen Modus
 - \downarrow Drosselung bei Überholmanöver (maximal 2.7 $\frac{m}{s}$)

Überholmanöver

- ▶ Drosselung der Geschwindigkeit 3*m* vor einem Hindernis
- ➤ Spurwechsel 1.6*m* vor dem Hindernis

 ¬ Soll-Werte für Lenkung-PIDs wechseln auf linke Linie
- ➤ Spurwechsel sobald rechts neben dem Auto keine Box detektiert wird ¬ Soll-Werte für Lenkung-PIDs wechseln zurück auf die rechte Linie
- ▶ Problem: Region-of-Interests stimmen nicht mehr!
 ↓ Verschieben der Region-of-Interests nach links nach erstem Wechsel und nach dem Zurückfahren wieder nach rechts

Einparkmanöver

- 1. Parklücke suchen: Rechter Sensor sucht zwei Hindernisse in Folge
- 2. Beim zweiten Hindernis abbremsen und Einparksequenz starten
 - 2.1 Festgelegte Einlenkungswinkel beim Rückwärtsfahren
 - 2.2 Optimierung der Position zwischen den Hindernissen \rightarrow mittig
- 3. Nach kurzer Parkzeit wird die Ausparksequenz gestartet
 - 3.1 Zurückfahren bis zum Wunschabstand zum hinteren Hindernis
 - 3.2 Festgelegtes Ausparkverhalten und Reaktivierung des autonomen Fahrens

Abbildung: Skizziertes Einparkmanöver

"State-Machine" & Remote Controller

- ► Grundkonzept: Stack durch pop von einem Stack in den nächsten
- ► Zustände werden mithilfe eines Enums definiert
- ► Initialbelegung des Stacks mit allen gewünschten Fahrabschnitten, die sich ggf. selbst entfernen können
- Kommunikation mit State-Machine mithilfe vom Remote Controller
 - ▶ w, a, s, d: Manuelles Fahren
 - q Remote Controller wird de/aktiviert, indem der entsprechende State oben drauf gelegt wird bzw. entfernt wird
 - r Zurücksetzen der PID-Werte
 - x Zurücksetzen der Zustandsmaschine durch clear und erneute Belegung des Stacks
 - p Entfernung des obersten Zustands des Stacks

Speed Graph

Quellen

► Least Squared Graph: Krishnavedala, CC BY-SA 3.0 via Wikimedia Commons, modifiziert (Quadrate)