Student ID: IT24100543

Lab Sheet: 08

Exercise

Instructions: Create a folder in your desktop with your registration number (Eg: "IT.

- ."). You need to save the R script file and take screenshots of the command prompt with answers and save it in a word document inside the folder. Save both R script file and word document with your registration number (Eg: "IT."). After you finish the exercise, zip the folder and upload the zip file to the submission link.
- 1. Calculate the population mean and population standard deviation of the laptop bag weights.

Population Mean	2.468
Population Standard Deviation	0.2561069

- > popmn<-mean(Weight.kg.)</pre>
- > popsd<-sd(Weight.kg.)
- > popmn
- [1] 2.468
- > popsd
- [1] 0.2561069
- 2. Draw 25 random samples of size 6 (with replacement) and calculate the sample mean and sample standard deviation for each sample.

Sample	Mean	SD	Sample	Mean	SD
1	2.528333	0.18313019	14	2.596667	0.27089974
2	2.493333	0.23627667	15	2.376667	0.39550811
3	2.571667	0.25568861	16	2.520000	0.17064583
4	2.338333	0.21084750	17	2.463333	0.24451312
5	2.601667	0.16773988	18	2.388333	0.21572359
6	2.473333	0.12754084	19	2.628333	0.29403515
7	2.338333	0.15765997	20	2.603333	0.21294757
8	2.638333	0.26430412	21	2.500000	0.16260381
9	2.540000	0.31240999	22	2.445000	0.28119388
10	2.540000	0.33553937	23	2.548333	0.09887703
11	2.528333	0.21141586	24	2.598333	0.09600347
12	2.538333	0.29123301	25	2.396667	0.22259081
13	2.643333	0.16120380			

```
samples<-c()
n<-c()
for(i in 1:25){
 s<-sample(Weight.kg.,6,replace=TRUE)</pre>
 samples<-cbind(samples,s)
 n<-c(n,paste('5',i))</pre>
}
colnames(samples)=n
samples
s.means<-apply(samples,2,mean)</pre>
s.sd<-apply(samples,2,sd)</pre>
> s.means
                                 > s.sd
           5 2 5 3 5 4
    5 1
                                       5 1 5 2
                                                        5 3
2.528333 2.493333 2.571667 2.338333
                                 0.18313019 0.23627667 0.25568861 0.21084750
    55 56 57 58
                                       S 5 S 6 S 7
2.601667 2.473333 2.338333 2.638333
                                 0.16773988 0.12754084 0.15765997 0.26430412
    5 9 5 10 5 11 5 12
                                       5 9
                                               5 10 5 11
                                                               5 12
2.540000 2.313333 2.528333 2.538333
                                 0.31240999 0.33553937 0.21141586 0.29123301
   5 13 5 14 5 15 5 16
                                      5 13
                                               5 14
                                                        5 15
2.643333 2.596667 2.376667 2.520000
                                 0.16120380 0.27089974 0.39550811 0.17064583
                                      S 17
   5 17 5 18 5 19 5 20
                                               5 18 5 19 5 20
2.463333 2.388333 2.628333 2.603333
                                 0.24451312 0.21572359 0.29403515 0.21294757
                                               5 22 5 23 5 24
   5 21 5 22 5 23 5 24
                                      5 21
2.500000 2.445000 2.548333 2.598333
                                 0.16260381 0.28119388 0.09887703 0.09600347
   5 25
                                      5 25
                                 0.22259081
2.396667
```

3. Calculate the mean and standard deviation of the 25 sample means and state the relationship of them with true mean and true standard deviation.

Mean	2.504467
Standard Deviation	0.09975516

```
> samplemean<-mean(s.means)
> samplesd<-sd(s.means)
> samplemean
[1] 2.504467
> samplesd
[1] 0.09975516
```

Population mean vs. sample mean

True mean vs. sample mean

> popmn [1] 2.468 > samplemean [1] 2.504467

The two values are approximately similar.

True SD vs. sample SD

> truesd<-popsd/6
> truesd
[1] 0.04268449
> samplesd
[1] 0.09975516

Both values differ in size because the samplesd covers only a few entries while truesd covers the entire dataset.