

SAL Engineering & Technical Institute

IT Department

DATA SCIENCE PRACTICALS Year:2021-2022

Name: Patel Ayushkumar

Enrollment no.: 191260116029

import pandas as pd

In [2]:

```
columns = ['Sr. No.', 'Enrollment Number', 'Name', 'Gender', 'Mobile Number', 'City', 'COA',
sr_no = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
Enrollment_Number = [191260116001, 191260116002, 191260116003, 191260116004, 191260116005,
Name = ['ANSARI ASHFAK HUSSAIN ABRAR AHMED', 'BARIA LEVIN SANTOSHBHAI', 'CHAUHAN ABHISHEK R
Gender = ['Male', 'Male', 'Male',
```

In [3]:

```
df = pd.DataFrame(columns = columns)

df['Sr. No.'] = sr_no
    df['Enrollment Number'] = Enrollment_Number

df['Name'] = Name
    df['Gender'] = Gender

df['Mobile Number'] = Mobile_no

df['City'] = City
    df['COA'] = COA
    df['OS'] = OS
    df['PEM'] = PEM
    df['OOP-1'] = OOP_1
    df['DM'] = DM
    df['DE-1B'] = DE_1B
    df
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0
71	73	201260116515	PATEL HEET JAYESHBHAI	Male	9.834835e+09	Narmada	69.0	64.0	65.0
72	74	201260116516	PATEL ANVI DINESHBHAI	Female	9.883401e+09	jamnagar	94.0	71.0	87.0
73	75	201260116517	HIRPARA ANIKET	Male	9.898055e+09	Bhavnagar	81.0	61.0	88.0
74	76	201260116518	MEWADA HITEN	Male	9.871237e+09	jamnagar	79.0	87.0	73.0
75	77	201260116519	BAROT JAY KAMALBHAI	Male	9.873119e+09	kheda	94.0	66.0	61.0

76 rows × 12 columns

◆

In [4]:
df.to_csv('Dataset.csv', index=False)
In []:

```
# Practical 2
```

Perform descriptive analysis and identify the data type.

In [2]:

```
import pandas as pd
import numpy as np
import statistics as stats
```

In [3]:

```
df = pd.read_csv('Dataset.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	COA	os	PEM	OOP- 1	DM	
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	88.0	72.0	81.0	92.0	56.0	-
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	91.0	69.0	85.0	66.0	90.0	{
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	64.0	93.0	86.0	63.0	86.0	{
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	85.0	62.0	71.0	74.0	77.0	-
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	89.0	77.0	88.0	90.0	63.0	ŧ
4										•	•

```
In [4]:
df.dtypes
Out[4]:
Sr. No.
                        int64
Enrollment Number
                        int64
Name
                       object
Gender
                       object
Mobile Number
                      float64
COA
                      float64
0S
                      float64
PEM
                      float64
00P-1
                      float64
                      float64
DM
                      float64
DE-1B
City
                       object
dtype: object
In [5]:
np.mean(df['COA'])
Out[5]:
78.77631578947368
In [6]:
stats.mode(df['COA'])
Out[6]:
89.0
In [7]:
np.min(df['COA'])
Out[7]:
60.0
In [8]:
np.max(df['COA'])
Out[8]:
98.0
In [9]:
np.percentile(df['COA'], 25)
Out[9]:
```

69.75

	Sr. No.	Enrollment Number	Mobile Number	COA	os	PEM	OOP-1	
count	76.000000	7.600000e+01	7.600000e+01	76.000000	76.000000	76.000000	76.000000	76.0
mean	38.986842	1.937601e+11	9.864197e+09	78.776316	76.684211	78.789474	75.065789	74.8
std	22.520209	4.358899e+09	2.948073e+07	10.768595	10.570664	11.979222	14.501803	12.4
min	1.000000	1.912601e+11	9.812817e+09	60.000000	60.000000	60.000000	51.000000	55.0
25%	19.750000	1.912601e+11	9.834689e+09	69.750000	68.000000	66.750000	63.000000	64.0
50%	38.500000	1.912601e+11	9.869449e+09	78.000000	77.000000	81.000000	75.500000	76.0
75%	58.250000	1.937601e+11	9.891906e+09	89.000000	86.250000	89.250000	89.000000	86.0
max	77.000000	2.012601e+11	9.909774e+09	98.000000	97.000000	98.000000	98.000000	95.0
4								•

In []:

```
# Practical 3
# Implement a method to find out variation in data. For example the difference
# between highest and lowest marks in each subject semester wise.
```

In [2]:

```
import pandas as pd
import numpy as np
import statistics as stats
```

In [3]:

```
df = pd.read_csv('Dataset.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM (
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0
4									•

In [4]:

```
for i in list(df.columns)[5:]:
   if(df[i].dtype == 'float64'):
       print(i,"---", np.max(df[i] - np.min(df[i])))
```

```
COA --- 38.0
OS --- 37.0
PEM --- 38.0
OOP-1 --- 47.0
DM --- 40.0
DE-1B --- 25.0
```

```
In [5]:
# Variance using numpy
np.var(df['COA'])
Out[5]:
114.43680747922438
In [6]:
np.var(df['OS'])
Out[6]:
110.26869806094184
In [7]:
np.var(df['PEM'])
Out[7]:
141.6135734072022
In [8]:
np.var(df['00P-1'])
Out[8]:
207.5351454293629
In [9]:
np.var(df['DM'])
Out[9]:
152.5152354570637
In [10]:
np.var(df['DE-1B'])
Out[10]:
54.78324099722991
In [ ]:
```

```
# Practical 4
# 4 Plot the graph showing result of student in each semester.
```

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [3]:

```
df = pd.read_csv('Dataset.csv')
df
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0
71	73	201260116515	PATEL HEET JAYESHBHAI	Male	9.834835e+09	Narmada	69.0	64.0	65.0
72	74	201260116516	PATEL ANVI DINESHBHAI	Female	9.883401e+09	jamnagar	94.0	71.0	87.0
73	75	201260116517	HIRPARA ANIKET	Male	9.898055e+09	Bhavnagar	81.0	61.0	88.0
74	76	201260116518	MEWADA HITEN	Male	9.871237e+09	jamnagar	79.0	87.0	73.0
75	77	201260116519	BAROT JAY KAMALBHAI	Male	9.873119e+09	kheda	94.0	66.0	61.0

76 rows × 12 columns

∢

In [4]:

```
for i in list(df.columns)[6:11]:
    df[i].fillna(df[i].mean(), inplace=True)

df.head()
```

Out[4]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM	(
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0	_
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0	
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0	
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0	
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0	
4									•	

In [6]:

```
Enroll_no = float(input("Enter Enrollment number: "))
temp_df = df.loc[df['Enrollment Number'] == Enroll_no]

x = list(temp_df.columns)[6:]
df_list = list(temp_df.values)
y = df_list[0][6:]

fig = plt.figure(figsize = (10, 5))

plt.bar(x, y, color ='maroon', width = 0.4)

plt.xlabel("Subject")
plt.ylabel("Marks")
plt.title(f"{df_list[0][1:3]}")
plt.title(f"{df_list[0][1:3]}")
plt.show()
```

Enter Enrollment number: 191260116029

In []:

In []:

```
# Practical 5
# Plot the graph showing the geographical location of students.
```

In [2]:

```
import pandas as pd
import numpy as np
import statistics as stats
import matplotlib.pyplot as plt
```

In [3]:

```
df = pd.read_csv('Dataset.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	COA	os	PEM	OOP- 1	DM	DE 1
0	1	1.912600e+11	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9825672577	NaN	72.0	81.0	92.0	56.0	73.
1	2	1.912600e+11	BARIA LEVIN SANTOSHBHAI	Male	9884375747	91.0	69.0	85.0	66.0	90.0	84.
2	3	1.912600e+11	CHAUHAN ABHISHEK RAMKUNVAR	Male	9876428544	64.0	93.0	86.0	63.0	86.0	88.
3	4	1.912600e+11	DESAI JIGAR ANILBHAI	Male	9828909545	85.0	62.0	71.0	74.0	77.0	Na
4	5	1.912600e+11	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9831362615	89.0	77.0	NaN	90.0	63.0	88.
4											•

In [4]:

```
City_list = list(df['City'].unique())
print(City_list)
```

['Panchmahal', 'Anand', 'Amreli', 'Ahmedabad', 'Porbandar', 'Gandhinagar', 'Bhavnagar', 'Somnath', 'Lucknow', 'kheda', 'Ratlam', 'Dahod', 'Gondal', 'Surat', 'junagadh', 'Narmada', 'Palanpur', 'Botad', 'Morbi', 'Patan', 'Navsari', 'Bharuch', 'Vadodra', 'Rangpur', 'jamnagar', 'kutch']

In [5]:

```
dd = {}

for i in City_list:
    temp = 0
    for j in list(df['City']):
        if i==j:
            temp = temp + 1
    dd[i] = temp
```

In [6]:

```
city = list(dd.keys())
city_count = list(dd.values())
```

In [7]:


```
# Practical 6
# 6 Plot the graph showing number of male and female students.
```

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [3]:

```
df = pd.read_csv('Dataset.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	COA	os	PEM	OOP- 1	DM	DE 1
0	1	1.912600e+11	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9825672577	NaN	72.0	81.0	92.0	56.0	73.
1	2	1.912600e+11	BARIA LEVIN SANTOSHBHAI	Male	9884375747	91.0	69.0	85.0	66.0	90.0	84.
2	3	1.912600e+11	CHAUHAN ABHISHEK RAMKUNVAR	Male	9876428544	64.0	93.0	86.0	63.0	86.0	88.
3	4	1.912600e+11	DESAI JIGAR ANILBHAI	Male	9828909545	85.0	62.0	71.0	74.0	77.0	Na
4	5	1.912600e+11	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9831362615	89.0	77.0	NaN	90.0	63.0	88.
4											•

In [4]:

```
male = 0
female = 0

for i in df['Gender']:
    if i == 'Male':
        male = male + 1
    if i == 'Female':
        female = female + 1

dd = {}
dd['male'] = male
dd['female'] = female
dd
```

Out[4]:

```
{'male': 54, 'female': 15}
```

In [5]:

In []:

```
# Practical 7
```

Implement a method to treat missing value for gender and missing value for marks.

In [2]:

import pandas as pd
import numpy as np

In [3]:

df = pd.read_csv('Dataset.csv')
df

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	COA	os	PEM	OOP- 1	DM	С
0	1	1.912600e+11	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9825672577	NaN	72.0	81.0	92.0	56.0	7;
1	2	1.912600e+11	BARIA LEVIN SANTOSHBHAI	Male	9884375747	91.0	69.0	85.0	66.0	90.0	84
2	3	1.912600e+11	CHAUHAN ABHISHEK RAMKUNVAR	Male	9876428544	64.0	93.0	86.0	63.0	86.0	81
3	4	1.912600e+11	DESAI JIGAR ANILBHAI	Male	9828909545	85.0	62.0	71.0	74.0	77.0	N
4	5	1.912600e+11	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9831362615	89.0	77.0	NaN	90.0	63.0	8;
71	73	2.012600e+11	PATEL HEET JAYESHBHAI	Male	9834834778	69.0	64.0	65.0	57.0	88.0	81
72	74	2.012600e+11	PATEL ANVI DINESHBHAI	Female	9883401326	NaN	71.0	87.0	93.0	68.0	8;
73	75	2.012600e+11	HIRPARA ANIKET .	Male	9898054882	81.0	61.0	88.0	82.0	76.0	9:
74	76	2.012600e+11	MEWADA HITEN .	Male	9871237130	79.0	87.0	73.0	NaN	95.0	7.
75	77	2.012600e+11	BAROT JAY KAMALBHAI	Male	9873119124	94.0	66.0	61.0	60.0	86.0	8:
76 r	76 rows × 12 columns										

In [4]:

print(df.isnull().sum())

Sr. No.	0
Enrollment Number	0
Name	0
Gender	7
Mobile Number	0
COA	6
OS	5
PEM	7
00P-1	6
DM	6
DE-1B	2
City	0
dtype: int64	

In [5]:

```
for i in list(df.columns)[5:11]:
    print(i)
    df[i] = df[i].replace(0, np.nan)
df
```

COA 0S PEM 00P-1 DM DE-1B

Out[5]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	COA	os	PEM	00P- 1	DM	С
0	1	1.912600e+11	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9825672577	NaN	72.0	81.0	92.0	56.0	7:
1	2	1.912600e+11	BARIA LEVIN SANTOSHBHAI	Male	9884375747	91.0	69.0	85.0	66.0	90.0	8,
2	3	1.912600e+11	CHAUHAN ABHISHEK RAMKUNVAR	Male	9876428544	64.0	93.0	86.0	63.0	86.0	8
3	4	1.912600e+11	DESAI JIGAR ANILBHAI	Male	9828909545	85.0	62.0	71.0	74.0	77.0	N
4	5	1.912600e+11	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9831362615	89.0	77.0	NaN	90.0	63.0	8
71	73	2.012600e+11	PATEL HEET JAYESHBHAI	Male	9834834778	69.0	64.0	65.0	57.0	88.0	81
72	74	2.012600e+11	PATEL ANVI DINESHBHAI	Female	9883401326	NaN	71.0	87.0	93.0	68.0	8:
73	75	2.012600e+11	HIRPARA ANIKET .	Male	9898054882	81.0	61.0	88.0	82.0	76.0	9:
74	76	2.012600e+11	MEWADA HITEN .	Male	9871237130	79.0	87.0	73.0	NaN	95.0	7,
75	77	2.012600e+11	BAROT JAY KAMALBHAI	Male	9873119124	94.0	66.0	61.0	60.0	86.0	8;

76 rows × 12 columns

In [6]:

```
for i in list(df.columns)[5:11]:
    df[i].fillna(df[i].mean(), inplace=True)
# df['COA'].isnull.sum
```

In [7]:

df.isnull().sum()

Out[7]:

Sr. No.	0
Enrollment Number	0
Name	0
Gender	7
Mobile Number	0
COA	0
OS	0
PEM	0
00P-1	0
DM	0
DE-1B	0
City	0
dtype: int64	

```
# Practical 8
# Implement simple regression. Implement linear regression to predict the 5th
# semester result of student.
```

In [2]:

```
import pandas as pd
import numpy as np
from sklearn import linear_model
```

In [3]:

```
df = pd.read_csv('Semester_result_dataset.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	SEM_1	SEM_2	SE
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	8.8	7.2	
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	9.1	6.9	
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	6.4	9.3	
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	8.5	6.2	
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	8.9	7.7	
4									•

In [4]:

```
reg = linear_model.LinearRegression()
```

In [5]:

```
reg.fit(df[['SEM_1', 'SEM_2', 'SEM_3', 'SEM_4']], df.SEM_5)
```

Out[5]:

LinearRegression()

```
In [6]:
reg.coef_
Out[6]:
array([-4.22178281e-17, 1.11022302e-16, -9.71445147e-17, 1.000000000e+00])
In [7]:
reg.predict([[8.17, 9.57, 8.78, 7.98]])
Out[7]:
array([8.98])
In []:
```

```
# Practical 9
# Implement Logistic regression to classify the student as average or clever.
```

In [2]:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np
```

In [3]:

```
df = pd.read_csv("Dataset1.csv")
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM	(
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0	_
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0	
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0	
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0	
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0	
4									•	

In [4]:

```
df['Performance'] = df['PERFORMANCE'].apply(lambda x: True if (x == 'CLEVER') else False)
df.head()
```

Out[4]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	COA	os	PEM (
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	88.0	72.0	81.0
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	91.0	69.0	85.0
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	64.0	93.0	86.0
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	85.0	62.0	71.0
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	89.0	77.0	88.0

→

In [5]:

```
X = df[['COA', 'OS', 'PEM', 'OOP-1', 'DM', 'DE-1B']]
y = df.Performance
```

In [6]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

In [7]:

```
model = LogisticRegression()
```

In [8]:

```
model.fit(X_train, y_train)
```

Out[8]:

LogisticRegression()

In [9]:

```
model.score(X_test, y_test)
```

Out[9]:

0.8846153846153846

```
In [10]:
```

```
dd = np.array([80, 89, 75, 45, 63, 41])
result = model.predict(dd.reshape(1,-1))

if result[0] == True:
    print('CLEVER')
else:
    print('AVERAGE')
# print(dd, type(dd))
```

AVERAGE

_	-	-	
Tn		- 1	•
TII		- 1	

```
# Practical 10
```

10 Implement decision tree to classify the student as average or clever.

In [2]:

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn import tree
from sklearn.model_selection import train_test_split
```

In [3]:

```
df = pd.read_csv('Semester_result_dataset1.csv')
df.head()
```

Out[3]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	SEM_1	SEM_2	SE
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	8.8	7.2	
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	9.1	6.9	
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	6.4	9.3	
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	8.5	6.2	
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	8.9	7.7	
4									•

In [4]:

```
df['Performance'] = df['PERFORMANCE'].apply(lambda x: True if x=='CLEVER' else False)
df.head()
```

Out[4]:

	Sr. No.	Enrollment Number	Name	Gender	Mobile Number	City	SEM_1	SEM_2	SE
0	1	191260116001	ANSARI ASHFAK HUSSAIN ABRAR AHMED	Male	9.825673e+09	Panchmahal	8.8	7.2	
1	2	191260116002	BARIA LEVIN SANTOSHBHAI	Male	9.884376e+09	Anand	9.1	6.9	
2	3	191260116003	CHAUHAN ABHISHEK RAMKUNVAR	Male	9.876429e+09	Amreli	6.4	9.3	
3	4	191260116004	DESAI JIGAR ANILBHAI	Male	9.828910e+09	Ahmedabad	8.5	6.2	
4	5	191260116005	DHARAJIYA JIGNESHKUMAR GOPALBHAI	Male	9.831363e+09	Ahmedabad	8.9	7.7	
4									•

In [5]:

```
inputs = df[['SEM_1', 'SEM_2', 'SEM_3', 'SEM_4']]
target = df['Performance']
```

In [6]:

```
X = inputs
y = target
```

In [7]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

In [8]:

```
model = tree.DecisionTreeClassifier()
```

In [9]:

```
model.fit(X_train, y_train)
```

Out[9]:

DecisionTreeClassifier()

model.score(X_test, y_test)

Out[10]:

0.7692307692307693