ICA ES TSAI

ANDRIS, BARNA, AND CSABA

Abstract.

1. Elozmenyek

Unsupervised learning-et szeretnenk individualis framework-ben modellezni. Az otlet az, hogy az eddigi framework-ot a feje tetejere allitjuk: A tanulo mondja a loss fuggvenyt, a kornyezet prezental egy mintat. A loss fuggveny valami megszoritott osztalybol jon. Ha pl. surusegfuggveny becslest akarunk ebben a framework-ben modellezni, akkor a loss fuggvenyek halmaza olyan l fuggvenyeket tartalmaz, amelyekre

(1.1)
$$\int \exp(-l(x))dx = 1, \quad (\text{vagy konstans})$$

[CS: Szerintem ez onmagaban eleg szep dolog, emlekszel, hogy mit szenvedtunk azon, hogy hogyan lehetne nyelvtanulast individualis sorozatos framework-ben kezelni? Hat igy lehetne..)]

Nomost, klasszikusan az ICA arrol szol, hogy van d fuggetlen forrasod, ezek surusegfuggvenyei p_{S_1}, \ldots, p_{S_d} . Legyen $p_{\mathbf{S}}$ ezek szorzata. Dobjuk S-t ebbol (S tehat d-dim vektor). Van egy ismeretlen nemszingularis \mathbf{A}^* matrix. A megfigyelesed

$$\mathbf{X} = \mathbf{A}^* \mathbf{S}$$

keverek. A cel, hogy talaljunk egy olyan **W** matrixot, hogy **WX** komponensei fuggetlenek. Az adatok $\mathbf{X}_1, \dots, \mathbf{X}_T$, ahol $\mathbf{X}_i = \mathbf{A}^* \mathbf{S}_i, \mathbf{S}_1, \dots, \mathbf{S}_T$ fuggetlen mintak $p_{\mathbf{S}}$ -bol.

Tegyuk fel hogy van valamilyen $p_{\tilde{\mathbf{S}}} = \prod_{i=1}^d p_{\tilde{S}_i}$ tippunk a $p_{\mathbf{S}}$ eloszlasra. Idealis esetben persze $p_{\tilde{S}_i} = p_{S_i}$ lenne. A tovabbiakban a $p_{\tilde{S}_i}$ eloszlasokat modeling eloszlasoknak fogjuk hivni. Ekkor a problemat meg lehet egy ML formalizmussal kozeliteni:

Hasznaljuk ki, hogy ha $\mathbf{X} = \mathbf{A}\tilde{\mathbf{S}}$, akkon

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{x}) = \frac{p_{\tilde{\mathbf{S}}}(\mathbf{A}^{-1}\mathbf{x})}{|\det \mathbf{A}|} = p_{\tilde{\mathbf{S}}}(\mathbf{W}\mathbf{x})|\det \mathbf{W}|$$

Keressunk tehat egy olyan $\mathbf{W} \doteq \mathbf{A}^{-1}$ matrixot, amelyre

$$L_T(\mathbf{W}) = -\frac{1}{T} \log p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{X}_1, \dots, \mathbf{X}_T)$$

minimalis.

Date: March 4, 2009.

1

Tegyuk fel, hogy a mintak iid-k. [B: ez nem feltelenul kellene, vannak eredmenyek stacinoarius sorozatokra is]. Kihasznalva, hogy

$$\log p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{X}_t) = \log p_{\tilde{\mathbf{S}}}(\mathbf{W}\mathbf{X}_t) + \log |\det \mathbf{W}|,$$

kapjuk hogy

(1.3)
$$L_T(\mathbf{W}) = -\log|\det \mathbf{W}| - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{d} \log p_{\tilde{S}_i}(\mathbf{w}_i^T \mathbf{X}_t)$$

ahol \mathbf{w}_i^T az i^{th} sora W-nek. [B: ez a keplet megtalalhato [Hyv99] 13.oldalan, eredetileg pedig talan [PGJ92] cikkben.]

Ha az (1.3) egyenlet $\mathbf{W} = (\mathbf{w}_1^T, ..., \mathbf{w}_d^T)$ -ben szigoruan konvex, akkor valamely konvex tartomanyon, akkor a [CBL06] konyv Thm 3.1 ad egy regret korlatot a follow the leader algoritmus regret jere.

[CS: Ezzel persze meg nem oldottuk meg a teljes puzzle-t. De errol meg majd kesobben. Eloljaroban annyit, hogy nem is azt banom, hogy p_1, \ldots, p_d -t ismertnek tetelezzuk fel ehhez az analizishez, hanem inkabb az erdekel (es erre nem tudom a valaszt), hogy egy algoritmus, ami a fentieket implementalja, miert mukodik "jol" meg akkor is, ha az S_1, \ldots, S_n sorozat korrelalt, es a marginalisok nem is a p_1, \ldots, p_d-t kovetik. (Tudod, amikor egy sinust es egy negyszogjelet kettevalaszt az algoritmus.)]

[B: A sinus es negyszogjel szetvalasztasahoz erdemes lenne a Wiskott fele Slow Feature Analizist (SFA) tanulmanyozni [WS02]. Ez arrol szol, hogy ha 2 sima fuggvenyt osszekeverunk, akkor a keverek kevesbe lesz ezek utan sima, emiatt a visszallitashoz a becsult komponensek simasagat kell minimalizalni. E modszer bizonyitottan kapcsolatban all az ICAval [BBW06], es vannak erdekes alkalmazasai pl bizonyos invarianciak tanulasa [WS02]. Az, hogy a keverekbol pontosan mikor allithatok vissza az eredeti sima komponensek viszont tudtommal meg nem ismert. Erdekes lenne egy Darmois-Skitowich tetel szeru elmeletet kidolgozni SFA-ra is.]

2. Az ICA egyertelmusegi kerdesei

E fejezetben osszefoglaljuk hogy mikor, es milyen undeterminanciaval allithatok vissza az ICA komponensek.

A Darmois Skitowich tetel, Cardoso eredmenyei, Fabain Theis eredmenyei. Max 1 forras lehet Gauss i.i.d estben. Bizonyos idosorok eseten tobb Gauss forras is lehet. Review on iid and on non-iid cases.

Definition 2.1 (2 matrix ekvivalens). Azt mondjuk, hogy \mathbf{W}_1 es \mathbf{W}_2 matrixok ekvivalensek ($\mathbf{W}_1 \sim \mathbf{W}_2$), ha megkaphatok egymasbol a sorok permutalasaval es a sorok atskalazasaval, ahol e skalaparameterek valosak.

3. Az ML koltsegfuggveny tulajdonsagai

3.1. Az ML koltsegfuggveny konvexitasarol.

Lemma 3.1. A positive definite matrixok halmaza konvex.

[B: szigoruan? konvex]

Lemma 3.2. $-\log|\det(\mathbf{W})|$ fuggveny szigoruan konvex a positive definite \mathbf{W} matrixok halmazan.

Proof. A konvexitas bizonyitasa megtalalhato pl itt: 8. tetel a [DCT91] cikknek az 1506. oldalan, valamint [Fan50]. A szigorusag belathato az eredeti bizonyitas elemzesevel: Let $\mathbf{X}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_1)$, $\mathbf{X}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_2)$, where $\mathbf{K}_1 \neq \mathbf{K}_2$ are positive definite matrices. Kepezzunk mixture eloszlast ezekbol, azaz legyen θ val. valtozo $\mathbf{P}(\theta=1)=\lambda, \ \mathbf{P}(\theta=2)=1-\lambda$ eloszlassal valamilyen $0\leq \lambda\leq 1$ ertekkel. Legyen $\theta, \mathbf{X}_1, \mathbf{X}_2$ fuggetlenek, es legyen a \mathbf{Z} mixture eloszlas $\mathbf{Z}=\mathbf{X}_{\theta}$. Ekkor \mathbf{Z} surusegfuggvenye:

$$p_{\mathbf{Z}}(\mathbf{z}) = \lambda \mathcal{N}_{\mathbf{z}}(\mathbf{0}, \mathbf{K}_1) + (1 - \lambda) \mathcal{N}_{\mathbf{z}}(\mathbf{0}, \mathbf{K}_2)$$

mig a kovariancia matrixa pedig: $\mathbf{K} = \lambda \mathbf{K}_1 + (1 - \lambda)\mathbf{K}_2$. Fix varianciaju eloszlasok kozott a normalisnak a legnagyobb az entropiaja, ezert

$$(3.1) \frac{1}{2} \log(2\pi e)^{n} |\lambda \mathbf{K}_{1} + (1 - \lambda)\mathbf{K}_{2}| \geq H(\mathbf{Z})$$

$$\geq H(\mathbf{Z}|\theta)$$

$$= \frac{\lambda}{2} \log(2\pi e)^{n} |\mathbf{K}_{1}| + \frac{1 - \lambda}{2} \log(2\pi e)^{n} |\mathbf{K}_{2}|$$

Emiatt $\log |\lambda \mathbf{K}_1 + (1 - \lambda)\mathbf{K}_2| \ge \lambda \log |\mathbf{K}_1| + (1 - \lambda) \log |\mathbf{K}_2|$, tehat $\log |\det(\mathbf{K})|$ konkav. Tovabba akkor lehetne csak nem szigoruan konkav, ha (3.1) egyenletben egyenloseg allna, azaz a \mathbf{Z} mixture of Gauss is Gauss eloszlasu lenne:

$$\lambda \mathcal{N}_{\mathbf{z}}(\mathbf{0}, \mathbf{K}_1) + (1 - \lambda) \mathcal{N}_{\mathbf{z}}(\mathbf{0}, \mathbf{K}_2) = \mathcal{N}_{\mathbf{z}}(\mathbf{0}, \lambda \mathbf{K}_1 + (1 - \lambda) \mathbf{K}_2), \quad \mathbb{R}^n$$

$$\lambda C_{\mathbf{K}_1} \exp(-\frac{1}{2}\mathbf{z}^T\mathbf{K}_1^{-1}\mathbf{z}) + (1-\lambda)C_{\mathbf{K}_2} \exp(-\frac{1}{2}\mathbf{z}^T\mathbf{K}_2^{-1}\mathbf{z}) = C_{\mathbf{K}} \exp(-\frac{1}{2}\mathbf{z}^T\mathbf{K}^{-1}\mathbf{z})$$

$$\lambda C_{\mathbf{K}_1} \exp(-\frac{1}{2}\mathbf{z}^T(\mathbf{K}_1^{-1} - \mathbf{K}^{-1})\mathbf{z}) + (1 - \lambda)C_{\mathbf{K}_2} \exp(-\frac{1}{2}\mathbf{z}^T(\mathbf{K}_2^{-1} - \mathbf{K}^{-1})\mathbf{z}) = C_{\mathbf{K}}$$

A jobb oldal konstans **z**-ben. A bal oldal viszont csak akkor lehet konstans, ha $\mathbf{K}_1 = \mathbf{K}, \ \mathbf{K}_2 = \mathbf{K}$ azaz $\mathbf{K}_1 = \mathbf{K}_2$ ami ellentmondas.

Theorem 3.3 ($L(\mathbf{W})$ konvex). Ha a p_i szigoruan log-konkav $\forall i = 1, \ldots, d$, akkor $L(\mathbf{W})$ (1.3) koltsegfuggveny konvex a positive definite \mathbf{W} matrixok konvex halmazan.

[B: sziguran? konvex. illetve kell-e itt a szigorusag a konkavsagban? ... eleg lenne ha a $\log |\det(\mathbf{W})|$ szigoruan konvex...]

3.2. Az ML koltsegfuggveny aszimptotikus tulajdonsagai. Felmerul a kerdes, hogy a (1.3) ML koltsegfuggveny mennyire jo, azaz globalis minimuma vissza adja-e az eredeti \mathbf{A}^* kevero matrixot, es a \mathbf{S} rejtett forrasokat. E kerdessel kapocsolatban Cardoso a kovetkozo eredmenyre jut [Car97] cikkben:

(3.2)
$$L_T(\mathbf{W}) = -\frac{1}{T} \sum_{t=1}^{T} \log p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{X}_t) \quad \underline{T \to \infty} \quad -\int p_{\mathbf{X}}(\mathbf{x}) \log p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{x}) d\mathbf{x}$$

$$L_{\infty}(\mathbf{W}) = -\int p_{\mathbf{X}}(\mathbf{x}) \log p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{x}) d\mathbf{x}$$

$$= \int p_{\mathbf{X}}(\mathbf{x}) \log \frac{p_{\mathbf{X}}(\mathbf{x})}{p_{\mathbf{A}\tilde{\mathbf{S}}}(\mathbf{x})} d\mathbf{x} + \int p_{\mathbf{X}}(\mathbf{x}) \log p_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

$$= D(p_{\mathbf{X}}||p_{\mathbf{A}\tilde{\mathbf{S}}}) + H(p_{\mathbf{X}})$$

$$= D(\mathbf{A}^*\mathbf{S}||\mathbf{A}\tilde{\mathbf{S}}) + H(\mathbf{A}^*\mathbf{S})$$

ahol $D(\cdot||\cdot)$ a Kullback-Leibler tavolsag, H a differential entropy. Mivel az $\mathbf{A}^*\mathbf{S}$ eloszlas, es igy $H(\mathbf{A}^*\mathbf{S})$ konstans, ezert $L_{\infty}(\mathbf{W})$ pontosan akkor minimalis ha az $\mathbf{A}^*\mathbf{S}$ és $\mathbf{A}\tilde{\mathbf{S}}$ eloszlasa azonos.

- Corollary 3.4. Ha az $p_{\tilde{\mathbf{S}}} = p_{\mathbf{S}}$, tehat a modeling density perfect, es az osszes marginalis eloszlas egyforma $p_{S_i} = p_{S_j}$, asszimptotikusan meg akkor is visszatudunk allitani egy $\mathbf{W} \sim (\mathbf{A}^*)^{-1}$ matrixot az ML koltsegfuggveny globalis minimumakent, azaz az ML koltsegfuggveny konzisztens. Ha a p_{S_i} eloszlasok kulonboznek es sorrendjuk rogzitett, akkor raadasul meg a \mathbf{W} soraiban sincs permutacios bizonytalansag.
- 3.3. Az ML koltsegfuggveny kapcsolata egyeb koltsegfuggvenyekkel. Vannak mas ICA koltsegfuggvenyek is: Mutual Information kriterium, marginalis entropia osszeg kirterium, kurtozis osszeg, infomax ICA, stb. Vizsgaljuk meg ezek kapcsolatat az ML koltsegfuggvennyel. [Car97] [HO00]
- 3.4. Az ML becslesben levo forrasok sorrendjerol. Az ICAban levo permutacios bizonytalansag azt jelenti, hogy adott koltsegfuggveny eseten az optimalis W mtx sorainak tetszoleges permutacioja is globalis optimuma a koltsegfuggvenynek.

Theorem 3.5 (Positive definite halamazon konvex L_T eseten a szeparacio egyertelmu). Tegyuk fel, hogy maximum egy forras Gauss, es a $p_{\tilde{\mathbf{S}}}$ surusegfuggvenyek legalabb annyira pontosak, hogy L_{∞} minden globalis minimuma szeparalja a forrasokat, azaz $\mathbf{W} \sim (\mathbf{A}^*)^{-1}$, es ezek kozott letezik legalabb egy positive definite. Valamelyiket jelolje \mathbf{W}_1 . Megmutatjuk, hogy abban az esetben ha a \mathbf{W} matrixokat megszoritjuk a positivie definte matrixok halmazara, es azokat a $p_{\tilde{\mathbf{S}}}$ surusegfuggveneket tekintjuk melyek mellett $L_T(\mathbf{W})$ konvex ezen a konvex tartomanyon, akkor ez esetben mar nem lesz igaz a permutacios bizonytalansag, azaz hogy szeparacio eseten \mathbf{W} sorainak sorrendje tetszoleges lehetne, hanem pontosan egy ilyen \mathbf{W} letezik (\mathbf{W}_1) , meg abban az esetben is ha az osszes $p_{\tilde{S}_i}$ azonos.

Proof. Mivel $L_T(\mathbf{W})$ konvex minden T-re, ezert $L_\infty(\mathbf{W}) = \lim_{T \to \infty} L_T(\mathbf{W})$ is konvex \mathbf{W} -ben. Ebbol kovetkezoen vagy 1 darab, vagy vegtelen sok globalis minuma van, es a globalis minimumok konvex tartomanyt alkotnak. Azt kell belatnunk, hogy a \mathbf{W}_1 sorainak semelyik permutaltja nem lehet globalis minimum. Ha ugyanis \mathbf{W}_2 a \mathbf{W}_1 sorainak egy ilyen globalis minimot ado permutaltja lenne, akkor $\lambda \mathbf{W}_1 + (1-\lambda)\mathbf{W}_2$ is globalis minimum lenne, s igy ICA szeparalo matrix minden $\lambda \in [0,1]$ eseten. Ez azonban ellentmondas mert tudjuk hogy az osszes ICA megoldas a \mathbf{W}_1 -gyel ekivalens matrix – azaz sorainak permutacioja es estleg atskalozottja – kell hogy legyen, mig a $\lambda \mathbf{W}_1 + (1-\lambda)\mathbf{W}_2$ matrixok kozott nyilvan van amelyik nem ilyen alaku.

Osszefoglalva az a helyzet, hogy ha az A^* kevero matrix egy permutacioja pozitiv definit, akkor letezik pozitiv definit megoldas a W-re, es ez egyertelmu. Ebben az esetben lehet hatekony az algoritmus. [B: az latom, hogy ha A^* positive

definit az jo, hisz akkor inverze is az. De miert jo az is, ha valamely P permutacios mtxra PA* positive definite?]

[B: Egyebekent az is eleg lenne, ha tudnank ugy tovabb keverni vmilyen B matrixszal X = A*S megfigyeleseket (preprocessing), hogy a BX = BA*S-ben BA mar positive definite legyen, meg ha A nem is volt az.]

[CS: Mik azok a matrixok amiknek van olyan permutacioja ami pozitiv definit? (Ugy ertem, intuitive.. Vagy valami ekvivalens atfogalmazas-ban..)]

Megoldas lehetne meg, hogy feltetelezzuk a forrasok mar feherek, es akkor nem kellene a log $|\det \mathbf{W}|$ -t hasznalni az (1.3) egyenletben, ekkor azonban az ortogonalis mtxok kozt kellene keresni, ez a manifold viszont nem konvex...

[B: erdekes, hogy altalaban az ICA algoritmusok azzal kezdodnek, hogy feheritsuk az adatokat, mert ezutan mar csak egy ortogonalis matrixot kell keresni. A mi modszerunkben viszont nem szabad feheriteni, mert azutan a domain amin optimalizalnuk mar nem lenne konvex:)]

[Cs: Lehet, hogy tobbszoros sajatertekek vannak es minden p_i azonos. Pl. legyen A=I. Ekkor minden paros permutaciohoz tartozo permutacios matrix is megoldas, nem? A determinansa ezeknek a mx-oknak 1, es a kriterium masodik reszet nem valtoztatjak tegyuk fel, hogy a minta szimmetrikus, vagy vegtelen sok van belole, vagy $\sum_i -E[logp_i((WX)_i)]$ -re csereltuk ezt. Azaz ki mondta, hogy $log \det(W)$ szigoruan konkav? Nem az. Mint ahogy a masodik resz sem az. Ugy tunik legalabbis. Hmm, ez erdekes. Megjegyzem a paros permutaciokhoz tartozo matrixok nem pozitiv definitek, vegyuk pl azt aki 1 < -> 2 3 < -> 4 cseret csinalja. Az 1x1-es minor a (0) matrix, igy nem pozitiv definit, stb. Viszont mivel a paratlan permutaciok determinansa -1, ezekre a kriterium vegtelent ad. Ezek nem jonnek szoba sem! Hu de furcsa ez.]

4. Egy Linearis Algebrai Kovetkezmeny

Theorem 4.1 (Positive definit matriox sorainak permutaciojarol). Legyen adott egy tetszoleges positive definite \mathbf{W}_1 matrix, es egy tetszoleges σ permutacio. Ha \mathbf{W}_1 sorait megpertaljuk σ szerint akkor a keletkezo \mathbf{W}_2 matrix pontosan akkor lesz positive definite, ha a σ permutacio az identias volt.

Proof. A feladathoz hozzarendelheto egy olyan ICA feladat melyben $\mathbf{A}^* = \mathbf{W}_1^{-1}$, es minden p_{S_i} surusegfuggveny azonos log-konkav, de nem Gauss. Ekkor \mathbf{W}_1 globalis minimuma lesz L_{∞} -nek, ami permutacio invarians \mathbf{W} soraira nezve, igy \mathbf{W}_2 is globalis minimum lesz. No de L_{∞} konvex, igy $\lambda \mathbf{W}_1 + (1-\lambda)\mathbf{W}_2$ is globalis minimum lenne, s igy ez ICA szeparalo matrix lenne minden $\lambda \in [0,1]$ eseten. Ez viszont ellentmondas, mert e matrixok kozott kell lenni olyannak ami nem ekvivalens \mathbf{W}_1 -gyel, es igy nem lehet szeparalo matrix. Emiatt \mathbf{W}_2 nem lehet eleme a positive definite matrixok halmazanak. □

[B: Ismert ennek az allitasnak mas elemi bizonyitasa is?... Kihasznalva pl. valahogy, hogy tudjuk, a permutacio utan is W-nek szimmetrikusnak kell maradnia, es minden principa minorjal positive definite kell hogy legyen...]

[B: Vajon itt kell e szimmetria W-ben, vagy eleg az, hogy a sajatertkek mind pozitivak?]

5. ICA-BAN LOKALIS ES GLOBALIS OPTIMUMOK VIZSGALATA

Irodalmi attekintes, one bit matching problema, ML-ICA with modelling density (amikor az igazi denisty-t nem tudjuk). Eredmenyek, and open questions.

Bizonyos forrasokra es koltsegfuggvenyekre egyebken van eredmeny arra, hogy annak a koltsegfuggvenynek minden lokalis optimum jo ICA megoldast ad, tehat gradiens modszerek hasznalhatok. De ez egyelore meg csak 2 forras eseten bizonyitott, tobb forras eseten nyitott problema [GM08]. Ez a cikk arra az esetre bizonyit, amikor a koltsegfuggveny a kurtozis, es a forrasok kozott nincs zero kurtozisu. E cikkben szinten a lokalis optimumokat akarjak elkerulni: [BZBJ05]

Az ismert, hogy bizonyos ICA koltegfuggvenyek bizonyos forrasokon sok lokalis es not feasible optimummal rendelkeznek. A feladatunk az hogy olyan koltsegfuggvenyt, eloszlasokat, es a kevero matrixra domaint allapitsunk meg, ahol a keletkezo feladat egy konvex halmazon torteno konvex optimalizalas lesz.

6. CSABA OSOREG KERDESE, NON-IID SOURCES

Hogy lehet, hogy az iid sorozatokra (azaz minden forras egy iid sorozat) kigyezett ICA algoritmusok nagyon jol mukodnek akkor is, ha a sorozatok nem iid-k?

[CS: Asszem ezt most megertettem, legalabbis egy aspektusat (egy csomo mindent irtam kozben, amitol megertettem, amit most kitoroltem, mert mar ertem mi van.. milyen jo, hogy levelezunk;) Nyilvan ez is kozismert, stb. Mindegy.. Itt van amit kigondoltam:

[B: Latom, jo hangulatban voltal $\ddot{\sim}$]

[B: errol a kerdesrol lasd meg a Section 1 beli SFA-s megjegyzesem.]

Legyen az egyszeruseg kedveert ket forrasunk: $\{X_1, X_2, ...\}$ es $\{Y_1, Y_2, ...\}$. Lehet, hogy ezek nem iid sorozatok. Viszont tegyuk fel, hogy azert fuggetlenek, hiszen ICA-rol van szo.

A konkretsag kedveert vegyuk a korabban diszkutalt modszert. Legyen az X_t , Y_t marginalisai a t-edik pillanatban $p_{X,t}$, illetve $p_{Y,t}$ (lehet, hogy ezek azonosak, de ezt most nem tesszuk fel). Itt most feltettuk, hogy a surusegfuggvenyek leteznek stb.

Ha a **W**-vel visszeforgatott folyamatok X'_t , Y'_t , akkor egy lehetseges minimalizalando kriterium **W**-ben

$$J_n(\mathbf{W}) = F(\mathbf{W}) - \sum_{t=1}^n \log(p_{X,t}(X_t')p_{Y,t}(Y_t')).$$

Itt $F(\mathbf{W})$ az ominozus log det-es tag. Itt a csavar az elozoekhez kepest az, hogy ez nem ugyanaz, mint ami a maximum likelihood-bol kijonne. Ugyanis ez

$$F(\mathbf{W}) - \log p_{X,1:n}(X'_1,...,X'_n)p_{Y,1:n}(Y'_1,...,Y'_n),$$

lenne, ahol $p_{X,1:n}$ (ill. $p_{Y,1:n}$) az $(X_1,..,X_n)$ (ill. $(Y_1,..,Y_n)$) egyuttes surusegfuggvenyei.

(6.1)
$$J_n(\mathbf{W}) = F(\mathbf{W}) - \sum_{t=1}^n \log(p_{X,t}(X_t')p_{Y,t}(Y_t')),$$

$$(6.2) J'_n(W) = F(\mathbf{W}) - \log p_{X,1:n}(X'_1,..,X'_n) p_{Y,1:n}(Y'_1,..,Y'_n)$$

Azt allitom, hogy (*) megis ertelmes kriterium. Ez mindosszesen annyin mulik, hogy minden rogzitett t-re az X_t , Y_t egyuttes surusegfuggvenye is szorzat alakra bomlik, amikben $p_{X,t}$ es $p_{Y,t}$ fognak szerepelni. Ez ugye trivi. Nomost, miert ne vehetnek ezek szorzatat, annak a logaritmusat, stb.

Ebbol talan kijon, hogy minden olyan \mathbf{W} , ami valoban visszaallitja az X_t , Y_t t $J_n(\mathbf{W})$ -t minimalizalja (tartassuk n-t vegtelenbe, tegyunk fel mindenfele korlatossagot, legyen ergodicitas, stb., mittomen). Azaz $J_n(\mathbf{W})$ ertelmes kriterium.

A kulcs valahogy az ebben a gondolatmenetben, hogy a marginalisok szorzata minden rogzitett t-re eloallitja X_t , Y_t egyuttes eloszlasfuggvenyet. Es ehhez nem kell semmit feltenni arrol, hogy X_t (vagy Y_t) maga iid. A masik kulcs, hogy **W**-ben nincs olyan sok szabadsagi fok (ezt meg nem hasznaltuk). Emiatt az ember azt gondolja, hogy ahogy $n \to \infty$, a kriteriumfuggveny egyre definitebb feluletet ad. Meg azt is megkockaztatom, hogy ertelmes esetekben arg $\max_{\mathbf{W}} J_n(\mathbf{W})$ egy valoszinuseggel tart az ICA feladat megoldasainak halmazahoz (azaz a modszer konzisztens).

Ez egy kicsit arra is ramutatna, hogy ha az iid esetre be tudja azonositani az ember azokat a kriteriumokat, amik konzisztenciahoz vezetnek, akkor ebbol mellesleg kijohet a nem iid folyamatokra is egy-egy konzisztencia bizonyitas.

Azaz, altalanosabban, tegyuk fel hogy a kriteriumunk

$$J_n(\mathbf{W}) = F(\mathbf{W}) - \sum_{t=1}^n L_t(X'_t, Y'_t)$$

alaku es belattuk, hogy iid folyamatokra $argmax_{\mathbf{W}}J_n(\mathbf{W})$ konzisztens. Kerdes: Kovetkezik-e ebbol, hogy nem iid de pl. (stac) ergodikus folyamatokra is konzisztens a becsles. [CS:Barna: Van ilyen eredmeny? Vagy nem igaz?] [B: Ugy emlekszem Pham-nak vannak eredmenyei ezzel kapcsolatban, megnezem, beirom majd hogy pontosan mit csintalt]

[CS:Most eltavolodtunk az individualis sorozat temakortol, de talan nem baj. Majd meg visszaterhetunk rajuk, de asszem eloszor ilyen dolgokat erdemes tisztazni.]

Folytatva az elozo gondolatmenetet nezzuk csak, mi lesz, ha $n\to\infty$. Ekkor, ergodicitast felteve,

(6.3)
$$\lim_{n \to \infty} J'_n(\mathbf{W})/n =$$

$$\lim_{n \to \infty} -1/n \sum (\log P_{X_i}(X'_i) - \log P_{X'_i}(X'_i) + \log P_{X'_i}(X'_i) + \text{ugyanez Y-ra}$$

$$= D(P_{X'_i}|P_X) + H(X') + D(P_{Y'_i}|P_Y) + H(Y')$$

ahol D(p||q) a KL-divergencia-rata, H pedig az (differential)entropy-rate. Ennek a minimuma pedig a H(X,Y)=H(X)+H(Y) - legalabbis diszkret esetben -, hiszen az eredeti J koltsegfuggvenyunk (az eltuno $F(\mathbf{W})$ tagtol eltekintve) eppen az, hogy milyen hosszan tudjuk tomoriteni az X',Y' sorozatot, ami viszont - mivel \mathbf{W} invertalhato - ugyanannyi kell legyen, mint amennyire az X,Y-t tudjuk.

Ha a J_n - betunkenti vagy fuggetlenseget feltetelezo - kriteriumot vesszuk, akkor (*)-ban nem a ratakat, hanem az 1D marginalisok divergenciajat es entropiajat kapjuk. Mivel a $P_X = P_X'$ es $P_Y = P_Y'$ minimalizalja (*)-ot, az igazi fuggetlenito \mathbf{W} mindket esetben jo megoldas, es nagyjabol az is latszik, hogy ugyanolyan feltetelek mellett nem lesz mas megoldas. [A: de azt most nem latom, hogy ez miert lenne mindig egyedi. Az a gyanum, hogy erre eleg sok eredmenyt lehetne talalni (kicsit beleneztem ica-s cikkekbe - blind source separation cimszo alatt), es ott az latszik, hogy jo sokat foglalkoznak azzal, hogy az algoritmusok mikor kerulnek lokalis minimumba.]

[B: igen sok cikk vizsgalja ezeket, es sok reszeredmeny van. Megprobalok majd utana nezni ezeknek. De nagy altalanossagban eredmenyek meg nem ismertek szerintem.]

[B: Vannak olyan eredmenyek is, amik az ICA ML megkozeliteseben azt vizsgaljak, hogy mi tortenik ha a surusegfugvenyeket nem ismerjuk pontosan csak kozelitoleg. Lasd pl Cardoso eredmenyei: [Car97].

A feltelezett suruseg fuggvenyeket szokas modeling surusegfuggvenyeknek is hivni. A sejtes az, hogy eleg azt tudni (jol megbecsulni) hogy a surusegfuggvenyek sub vagy supergauss-ok. Cardoso and Laheld, 1996; Hyvärinen and Oja, 1998; Lee et al., 1999]

References

- [BBW06] T. Blaschke, P. Berkes, and L. Wiskott. What is the relation between slow feature analysis and independent component analysis? *Neural Computation*, 18(10):2495-2508, 2006
- [BZBJ05] M. Babaie-Zadeh, B. Bahmani, and C. Jutten. Ica by mutual information minimization: An approach for avoiding local minima. In *EUSIP CO 2005*, 2005.
- [Car97] J. F. Cardoso. Infomax and maximum likelihood for source separation. IEEE Signal Processing Letters, 4(4):112 – 114, 1997.
- [CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [DCT91] A. Dembo, T. M. Cover, and J. A. Thomas. Information theoretic inequalities. IEEE Transactions on Information Theory, 37(6):1501-1518, 1991.
- [Fan 50] K. Fan. Information theoretic inequalities. Proc. Natl. Acad. Sci. USA, 36(1):31Ũ-35,
- [GM08] F. Ge and J. Ma. Analysis of the kurtosis-sum objective function for ica. In ISNN '08: Proceedings of the 5th international symposium on Neural Networks, pages 579–588, Berlin, Heidelberg, 2008. Springer-Verlag.
- [HO00] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.
- [Hyv99] A. Hyvarinen. Survey on independent component analysis. Neural Computing Surveys, 2:94-128, 1999.
- [PGJ92] D. T. Pham, Ph. Garat, and C. Jutten. Separation of mixture of independent sources through a maximum likelihood approach. Signal Processing, Proceeding EUSIPCO '92, 6:771-774, 1992.
- [WS02] L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning of invariances. *Neural Computation*, 14(4):715-770, 2002.