$Nume____$	$Grupa_{}$	Nr de paqini
	C	- : · · · · · · · · · · · · · · · · · ·

Examen Introducere in Inteligenta Artificiala

1. [21p] Short questions

- (a) 3p Explicati pe scurt notiunea de planificare contingenta (Contingent Planning)
- (b) 3p Marcati pe desenul de mai jos care literali trebuie sa fie mutual exclusivi (mutex) pentru a putea spune despre cele doua actiuni ca sunt mutex datorita efectelor inconsistente? Explicati.

- (c) 3p Ce inseamna propozitie satisfiabila?
- (d) 3p Descrieti in max 3 randuri ce este DBpedia.
- (e) 6p Fie urmatoarea CSP, cu 2 variabile X si Y; domeniul $D_X = \{1, 2, 3\}$, $D_Y = \{3, 4, 5, 6\}$. Singurele perechi permise sunt $(X, Y) \in \{(1, 3), (1, 5), (3, 3), (3, 6)\}$. Este variabila X arcconsistent relativ la Y? Dar Y relativ la X? Explicati. Mentionati rezultatul aplicarii algoritmului de propagare a consistentei arcelor (AC 3).
- (f) 3p Daca A, B sunt constante, F(aritate 1), G(aritate 2) sunt functii si P si Q sunt predicate, spuneti care sunt formule corecte (well formed formula) in FOL. Explicati!
 - i. R(A, G(A, A))
 - ii. G(A, G(A, A))
 - iii. $\exists A \ r(A, A)$
 - iv. $\exists x \ Q(x, F(x), B) \rightarrow \forall x \ R(A, x)$
 - v. $\exists x \ P(R(A,x))$
 - vi. $\neg \neg P(A)$

2. 18p. Logica de ordinul intai. FOL

Consideram urmatoarea baza de cunostinte:

$$Road(Ego, R_1) \wedge Road(C_2, R_2) \wedge Road(C_3, R_2)$$
 (1)

$$Traffic_sign(Ego, Give_way)$$
 (2)

$$T_intersection(R1, R2)$$
 (3)

$$\forall c, r_1, r_2 \ Road(c, r_1) \land Traffic_sign(c, Give_way) \land T_intersection(r_1, r_2) \land \tag{4}$$

$$\exists c_2 \ (Road(c_2, r_2) \land Before_intersection(c_2) \land \neg Signals(c_2, Right)) \rightarrow Action(c, Stop))$$

$$(5)$$

 $\forall c, r \ Road(c, r) \land Road(Ambulance, r) \rightarrow Action(c, Stop)$ (6)

- (a) 3p Pentru formulele date mentionati intelesul lor in limbaj natural, daca semnificatia predicatelor este urmatoarea: Road(c,r) masina c se afla pe drumul r, Signals(c,d) masina c semnalizeaza directia d, $Before_intersection$ masina se indreapta catre intersectie, $Traffic_sign$ masina "vede" semnul de circulatie, $T_intersection$ drumurile r_1 si r_2 se intersecteaza intr-o intersectie de tip T (drum secundar cu drum principal), Action masina "decide" sa faca actiunea a.
- (b) 3p Daca la formulele **1-5** se adauga si formulele

$$\neg Signals(C_3, Right) \land Signals(C_2, Right)$$
 (7)

$$(Before_intersection(C_2) \lor Before_intersection(C_3))$$
 (8)

masina Ego va decide sa se opreasca? Explicati raspunsul.

(c) 3p Dar daca la formulele 1-5 se adauga

$$\neg Signals(C_3, Right) \land Signals(C_2, Right)$$
 (9)

$$(Before_intersection(C_2) \land Before_intersection(C_3))$$
 (10)

- (d) 9p Daca la formulele **1-6** se adauga $Road(Ambulance, R_1)$ folositi rezolutia pentru a demonstra ca masina Ego decide sa se opreasca.
- 3. 12p Constraint satisfaction problem Planificati desfasurarea meciurilor de tenis pe parcusul a 4 zile, tinand cont de urmatoarele constrangeri:
 - (a) Participa 6 jucatoare: A, B, C, D, E, F, G, H impartite in 2 grupe: A, B, C, D in prima grupa. Jucatoarele dintr-o grupa trebuie sa joace fiecare cu fiecare.
 - (b) Exista 2 terenuri: T1, T2.
 - (c) Jucatoarele A, D si F pot juca doar pe terenul T1.
 - (d) Jucatoarele D si F nu pot juca in aceeasi zi datorita pozitiei lor in clasamentul WTA.
 - (e) Nicio jucatoare nu poate juca 2 meciuri in aceeasi zi.
 - (f) Pe orice teren se pot defasura maxim 2 partide pe zi.
 - (g) Intre 2 partide succesive ale oricarei jucatoare trebuie sa existe o zi libera.
 - 6p Modelati aceasta problema drept o problema de satisfacere a constrangerilor, mentionand variabilele si constrangerile.
 - 3p Exemplificati un pas de aplicare a euristicii MRV (minimum remaining values).
 - 3p Exemplificati un pas de aplicare e verificarii inainte (Forward checking) pe o situatie intermediara la alegerea voastra.
- 4. 15p Planificare clasica Dintre problemele de mai jos, alegeti una si descrieti actiunile necesare in PDDL. Mentionati si descrieti predicatele folosite.
 - (a) 3 misionari si 3 canibali se afla la marginea unui rau, cu scopul de a trece pe celalalt mal. Ei au la dispozitie o barca de doua persoane. Daca la un moment dat, pe un mal sau pe celalalt numarul canibalilor intrece pe cel al misionarilor, misionarii sunt in pericol de a fi mancati de canibali. Cum vor trece?
 - (b) Exista 11 copii aliniati intr-o linie. Starea initiala este BFBFBFBFBFB unde B este baiat, F este fata. O mutare valida consta in interschimbarea a doi copii asezati unul langa altul dintre care unul este baiat si unul este fata $BF \to FB$ sau $FB \to BF$. Cum se poate atinge starea scop BBBBBFFFFFF?
 - (c) Un om, ducând la târg un lup, o capră și o varză ajunge în dreptul unui râu pe care trebuie să-l treacă peste o punte îngustă. Cum va proceda el, știind că: lupul mănâncă capra și capra mănâncă varza; omul nu poate să-i treacă pe toți o dată și nici câte doi.