EIE3280: Networks: Technology, Economics, and Society

Jianwei Huang

School of Science and Engineering
The Chinese University of Hong Kong, Shenzhen

Summer 2019

Q1: What makes CDMA work for my smartphone?

(Acknowledgment to Prof. Mung Chiang for sharing the Slides)

Take a Look at Your Smartphone

- Networks (wireless, Internet, web...)
- Chip, touch screen, battery, software, business model...
- Data applications: texting, emailing, web browsing, video streaming, file downloading, ...
- Networking
 - Radio air interface
 - Core and backhaul

History of Wireless

- 1940s: terrestrial wireless communications
- 1970s now: cellular networks
 - ▶ 1G, 2G, 2.5G, 3G, 4G, 5G...
- 1990s now: WiFi networks
- What is a cellular network?

Basic Terminologies

- Cells, Base Station (BS), Mobile Station (MS)
- Each BS has three directional antennas
- Signal attenuation: $\propto 1/d^2$ to $1/d^4 \Rightarrow$ Frequency reuse

Jianwei Huang (SSE) EIE3280 Summer 2019 5 / 35

The Air

- Interference among multiple transmitter-receiver pairs
- Cocktail party
 - Use different languages to separate different conversions

Orthogonal Resource Allocation

- (a) FDMA
- (b) TDMA
- (c) Ideal CDMA

Non-orthogonal Resource Allocation

- (Practical) CDMA
- Starting in 1989, then IS-95 in 2G
- Now part of all 3G standards
- Spread spectrum technique
 - Spreading code: a sequence of 1's and -1's
 - Special design family of orthogonal spreading codes,
 - Non-orthogonal in practice due to not enough codes or imperfect synchronization
- Wikipedia: https: //en.wikipedia.org/wiki/Code-division_multiple_access

Jianwei Huang (SSE) EIE3280 Summer 2019 8 / 35

Interference

- Our first example of negative externality
- Famous special case: near-far problem
- Simple solution by Qualcomm: feedback control
 - Transmit power control
 - Received signal power equalization
- But what if you need to achieve a target signal quality?

Jianwei Huang (SSE) EIE3280 Summer 2019 9 / 35

Uplink Interference

- G_{ij} : channel gain from transmitter j to receiver i
- \bullet G_{ii} is enhanced by CDMA spreading codes

Jianwei Huang (SSE) Summer 2019

10 / 35

SIR

• Signal-to-Interference-noise-Ratio (SIR):

$$SIR_i = \frac{G_{ii} p_i}{\sum_{j \neq i} G_{ij} p_j + n_i}$$

n_i: noise at receiver i

Distributed Power Control

- An iterative, distributed algorithm
- Assume each user i has an SIR target γ_i

$$p_i[t+1] = \frac{\gamma_i}{\mathrm{SIR}_i[t]} p_i[t], \text{ for each } i.$$

Achieve the target SIR with the minimum transmission power

Jianwei Huang (SSE)

DPC

- Simple
 - in communication
 - in computation
 - ▶ in configuration
- Intuitive
 - ► Equilibrium looks good
 - ► Convergence sounds plausible

Jianwei Huang (SSE) EIE3280 Summer 2019 13 / 35

A General Theme

- Individual behaviors driven by self-interest
- Aggregate into a (hopefully fair and efficient) state across all users
- Helped by feedback signals

Jianwei Huang (SSE) EIE3280 Summer 2019 14 / 35

View 1: Optimization

- Objective: power minimization
- Constraints: achieve target SIRs for all users
- Variables: transmit powers
- Constants: channels, noise, target SIRs

Feasible Region (in SINRs)

- The shaded area is the feasible region
- maximum feasible $SIR_i = G_{ii}p_i^{max}/n_i$
- Interference relationship determines the Pareto Optimal boundary

Jianwei Huang (SSE) EIE3280 Summer 2019 16 / 35

Symbolically

- Minimize: $\sum_i p_i$
- Subject to: $SIR_i(\mathbf{p}) \geq \gamma_i, \forall i$
- Variables: $\mathbf{p} = (p_i, \forall i)$

Linear Programming

- Minimize a linear function subject to linear constraints
- How to prove convergence of DPC algorithm to a solution of this optimization?

Jianwei Huang (SSE) EIE3280 Summer 2019 18 / 35

Terminologies

- Infeasible optimization problem
- Feasible optimization problem
- Global optimal and local optimal solution

Jianwei Huang (SSE) EIE3280 Summer 2019 19 / 35

View 2: Game

- Power control is a competition
- Every user tries to minimize his transmission power
 - Subject to the SINR constraint
- Games are models for
 - Competition
 - Cooperation
- There is a formal (mathematical) language for games

Jianwei Huang (SSE) EIE3280 Summer 2019 20 / 35

A Game

- A set of players
- A **strategy space** for each player
- A payoff for each player

Jianwei Huang (SSE) EIE3280 Summer 2019 21 / 35

Prisoner's Dilemma

• 2-user game

	Not Confess	Confess
Not Confess	(-1, -1)	(-5,0)
Confess	(0, -5)	(-3, -3)

22 / 35

Strategies

Best response strategy

$$\textit{a}^*(\textit{b}) = \arg\max_{\textit{a} \in \mathcal{A}} \textit{U}_1(\textit{a},\textit{b})$$

- ▶ Best response might not be unique ⇒ Best Response correspondence
- Dominant strategy
 - A player's strategy that always leads to a payoff no worse than his any other strategies, independent of his opponents' strategies
 - Strictly dominant and weakly dominant

Jianwei Huang (SSE) EIE3280 Summer 2019 23 / 35

Equilibrium

- Equilibrium
 - ► Socially optimal?
 - ► Pareto optimal?
 - Exist?
 - ► Unique?

Coordination Game: Battle of Sexes

• Another 2-user game

	Action Movie	Romance Movie
Action Movie	(2, 1)	(0, 0)
Romance Movie	(0, 0)	(1, 2)

Jianwei Huang (SSE) EIE3280 Summer 2019 25 / 35

Nash Equilibrium

• Best response strategies "match"

Power Control Game

- Let's identify
 - Players
 - Strategy spaces
 - Payoff functions
- DPC is just the best response strategy!
- ullet Monotonicity of strategy space o convergence of algorithm

Jianwei Huang (SSE) Summer 2019 27 / 35

Example

Receiver of Link	Trai	nsmitt	er of l	Link 4
1	1	0.1	0.2	0.3
2	0.2	1	0.1	0.1
3	0.2	0.1	1	0.1
4	0.1	0.1	0.1	1

• Target SNRs: 2, 2.5, 1.5, 2

• Noise level: 0.1 mW

Iteration 0

- Initialize all power levels to be 1 mW
- Let s calculate the corresponding SIRs

Jianwei Huang (SSE) EIE3280 Summer 2019 29 / 35

Iteration 1

• Let's calculate power levels

Let's calculate SIRs

Convergence in Powers

Jianwei Huang (SSE) EIE3280 Summer 2019 31 / 35

Convergence in SNRs

32 / 35

Two Control Loops

In Practice

Asynchronous and discrete

• Frequency: 800 1500

• Granularity: 0.1 dB, 0.2 dB, 0.5 dB

• Power control + handoff made all 3G standards work

Jianwei Huang (SSE) EIE3280 Summer 2019 34 / 35

Summary

- Different users' signals interfere with each other in the air
 - ► Feasible SIR region with a Pareto-optimal boundary
- Interference coordination in CDMA uses DPC with feedback
 - Solves an optimization problem in the form of LP
 - Or viewed as the best response updates of a non-cooperative game

Jianwei Huang (SSE) EIE3280 Summer 2019 35 / 35