Mathematics 3159B

Introduction to Cryptography

Assignment 1, Problem 1

Bradley Assaly-Nesrallah

Due Date: September 22, 2020

Solution

1. Suppose that $ax \equiv c \pmod{m}$ where a,c,m are fixed integers. We want to show that $ax \equiv c \pmod{m}$ for some $x \in \mathbb{Z}$ if and only if $\gcd(a,m)$ divides c. So we prove both directions as follows:

Proof. \to Suppose that $ax \equiv c \pmod{m}$ has a solution for some $x \in \mathbb{Z}$.

We want to show that gcd(a,m) divides c,

So $ax \equiv c \pmod{m} \implies m|(ax-c) \implies ym = ax-c \text{ for some } y \in \mathbb{Z} \implies c = ax - my.$ Note that $\gcd(a,m)|a \text{ and } \gcd(a,m)|m \text{ by definition of gcd so there exists } i, j \in \mathbb{Z} \text{ such that } j \in \mathbb{Z}$

 $a=\gcd(a,m)*i$ and $m=\gcd(a,m)*j$. So

$$c = ax - my = (gcd(a, m) * i) * x - (gcd(a, m) * j) * y = gcd(a, m) * (i * x) - gcd(a, m) * (j * y)$$
$$= gcd(a, m)(ix - jy)$$

So $c=\gcd(a,m)*(ix-jy) \implies \gcd(a,m)|c$ as required.

 \leftarrow Suppose that gcd(a,m)|c.

We want to show that $ax \equiv c \pmod{m}$ for some $x \in \mathbb{Z}$,

By the EEA gcd(a,m) = ax' + my' for some $x', y' \in \mathbb{Z}$,

Thus $(ax' + my')|c \implies k(ax' + my') = c$ for some $k \in \mathbb{Z}$

$$c = k(ax' + my') = kax' + kmy' = akx' + mky' = a(kx') + m(ky')$$
$$\implies m(ky') = a(kx') - c \implies a(x'k) \equiv c \pmod{m}$$

Thus $ax \equiv c \pmod{m}$ with $x=(x'k) \in \mathbb{Z}$ as required.

Thus $ax \equiv c \pmod{m} \iff \gcd(a,m)|c$ so we are done.

2. We now want to show that if there is a solution to the congrence then there are exactly gcd(a, m) distinct solutions in \mathbb{Z}/m .

Proof. Suppose that $ax \equiv c \pmod{m}$ has a solution for some $x \in \mathbb{Z}$.

We want to show there are exactly gcd(a,m)=d solutions in \mathbb{Z}/m .

By the result in part 1 since the congruence has a solution we know that gcd(a,m)|c, so c=gcd(a,m)* for some $k \in \mathbb{Z}$

From the theorem 1.11 if one solution has the form (x',y') for $x',y' \in \mathbb{Z}$ then every solution has the form :

$$x = x' + mk/d$$
 and $y = y' - ak/d$ for some $k \in \mathbb{Z}$

Observe that the solutions must have k=0,+-1,+-2,...

We claim the solutions are of the form x',x'+m/d,x'+2m/d,...,x'+(d-1)m/d, which are all clearly incongruent in \mathbb{Z}/m since the difference between them is all less than m, as ((d-1)/d)<1.

So there must be at least d solutions, now we show there are at most d solutions.

Suppose there was a d+1th solution which is not one of the above d solutions given by x=x'+lm/d $l \in \mathbb{Z}$.

Now by Euclid's division lemma l=qd+r with $0 \le r < d$ and $x=x'+(ld+r)m/d \equiv x'+rm/d$, but $0 \le r < d$ so it must be one of the d solutions.

Thus there are exactly gcd(a,m)=d solutions in \mathbb{Z}/m so we are done.