Deep Learning basics

Optimization and Gradient Descent

Learning goals

- Recall the concept of optimization
- Understand basics of gradient descent

OPTIMIZATION

- Optimization: Minimize some function $J(\vec{\theta})$ by altering $\vec{\theta}$.
- Maximize $f(\vec{\theta})$ by minimizing $J(\vec{\theta}) = -f(\vec{\theta})$
- $J(\vec{\theta})$:
 - "criterion", "objective function", "cost function", "loss function", "error function"
 - In a probabilistic machine learning setting often (conditional) negative log-likelihood:

$$-\log p(\vec{X};\vec{\theta})$$

or

$$-\log p(\vec{y}|\vec{X};\vec{\theta})$$

as a function of $\vec{\theta}$

 \bullet $\vec{ heta}^* = \operatorname{arg\,min}_{\vec{ heta}} J(\vec{ heta})$

OPTIMIZATION

- $\bullet \;\; \mbox{If} \; J(\vec{\theta}) \; \mbox{is convex, it is minimized where} \; \nabla_{\vec{\theta}} J(\vec{\theta}) = \vec{0}$
- If $J(\vec{\theta})$ is not convex, the gradient can help us to improve our objective nevertheless (and find a local optimum).
- Many optimization techniques were originally developed for convex objective functions, but are found to be working well for non-convex functions too.
- Use the fact that gradient indicates the slope of the function in the direction of steepest increase.

OPTIMIZATION

GRADIENT-BASED OPTIMIZATION

 Derivative: Given a small change in input, what is the corresponding change in output?

$$f(x + \epsilon) \approx f(x) + \epsilon f'(x)$$

• $f(x - \epsilon \operatorname{sign} f'(x)) < f(x)$ for small enough ϵ

GRADIENT DESCENT

- For $J(\vec{\theta}): \mathbb{R}^n \to \mathbb{R}$
- If partial derivative $\frac{\partial J(\vec{\theta})}{\partial \theta_j} > 0$, $J(\vec{\theta})$ will increase for small increases of θ_j

⇒ go in opposite direction of gradient (since we want to minimize)

Steepest descent: iterate

$$\vec{\theta}_{t+1} \leftarrow \vec{\theta}_t - \eta \nabla_{\vec{\theta}} J(\vec{\theta}_t)$$

where $\vec{\theta_t}$ is the actual parameter, $J(\vec{\theta_t})$ is the objective function evaluated at $\vec{\theta_t}$ and $\vec{\theta_{t+1}}$ is the updated parameter.

- η is the learning rate (set to small positive constant).
- ullet Converges if $abla_{ec{ heta}} J(ec{ heta})$ is (close to) $ec{0}$

LOCAL MINIMA

• If the function is non-convex, different results can be obtained at convergence, depending on initialization of $\vec{\theta}$.

LOCAL MINIMA

Minima can be global or local:

• Critical (stationary) points: f'(x) = 0

 For neural networks, only good (not perfect) parameter values can be found.

GRADIENT DESCENT FOR LOGISTIC REGRESSION

$$\begin{split} \nabla_{\vec{\theta}} \textit{NLL}(\vec{\theta}) &= -\nabla_{\vec{\theta}} \sum_{i=1}^{m} y^{(i)} \log \sigma(\vec{\theta}^T \vec{x^{(i)}}) + (1 - y^{(i)}) \log(1 - \sigma(\vec{\theta}^T \vec{x^{(i)}})) \\ &= -\sum_{i=1}^{m} (y^{(i)} - \sigma(\vec{\theta}^T \vec{x^{(i)}})) \vec{x^{(i)}} \end{split}$$

• The gradient descent update becomes:

$$\vec{\theta}_{t+1} := \vec{\theta}_t + \eta \sum_{i=1}^m (y^{(i)} - \sigma(\vec{\theta}_t^T \vec{x}^{(i)})) \vec{x}^{(i)}$$

• Note: Which feature weights are increased, which are decreased?

DERIVATION OF GRADIENT FOR LOGISTIC REGRESSION

This is a great exercise! Use the following facts:

Gradient
$$(\nabla_{\vec{\theta}} f(\vec{\theta}))_j = \frac{\partial f(\vec{\theta})}{\partial \theta_j}$$

Derivative of a sum $\frac{d}{dz} \sum_i f_i(z) = \sum_i \frac{df_i(z)}{dz}$

Chain rule $F(z) = f(g(z)) \Rightarrow F'(z) = f'(g(z))g'(z)$

Derivative of logarithm $\frac{d \log z}{dz} = 1/z$

D. of logistic sigmoid $\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$

Partial d. of dot-product $\frac{\partial \vec{\theta}^T \vec{x}}{\partial \theta_j} = \vec{x}_j$

GRADIENT DESCENT: SUMMARY

- Iterative method for function minimization.
- Gradient indicates rate of change in objective function, given a local change to feature weights.
- Substract the gradient:
 - decrease parameters that (locally) have positive correlation with objective
 - increase parameters that (locally) have negative correlation with objective
- Gradient updates only have the desired properties in a small region around previous parameters $\vec{\theta_t}$. Control locality by step-size η .
- Gradient descent is slow: For relatively small step in the right direction, all of training data has to be processed.
- This version of gradient descent is often also called batch gradient descent.

STOCHASTIC GRADIENT DESCENT (SGD)

 Batch gradient descent is slow: For relatively small step in the right direction, all of training data has to be processed.

$$\vec{\theta}_{t+1} \leftarrow \vec{\theta}_t + \eta \nabla_{\vec{\theta}} \sum_{i=1}^m \log p(y_i | \vec{x}_i; \vec{\theta})$$

- Stochastic gradient descent in a nutshell:
 - For each update, only use random sample \mathbb{B}_t of training data (mini-batch).

$$\vec{\theta}_{t+1} \leftarrow \vec{\theta}_t + \eta \nabla_{\vec{\theta}} \sum_{i \in \mathbb{B}_t} \log p(y_i | \vec{x}_i; \vec{\theta})$$

Mini-batch size can also just be 1.

$$\vec{\theta}_{t+1} \leftarrow \vec{\theta}_t + \eta \nabla_{\vec{\theta}} \log p(y_t | \vec{x}_t; \vec{\theta})$$

→ More frequent updates.

STOCHASTIC GRADIENT DESCENT (SGD)

- The actual gradient is approximated using only a sub-sample of the data.
- For objective functions that are highly non-convex, the random deviations of these approximations may even help to escape local minima.
- Treat batch size and learning rate as hyper-parameters.