# Оглавление

| Занятие 2. Характеристики случайного процесса | 1  |
|-----------------------------------------------|----|
| Контрольные вопросы и задания                 | 3  |
| Аудиторные задачи                             | 3  |
| Домашнее задание                              | 15 |

# Занятие 2. Характеристики случайного процесса

# Контрольные вопросы и задания

Приведите определение случайного процесса.

Случайный процесс  $\xi\left(t\right),\,t\in T$  — это параметризированная совокупность случайных величин.

Что называют конечномерными распределениями случайного процесса?

 $\{\mu_{t_1,\dots,t_n};\,t_1,\dots,t_n\in T,\,n\geq 1\}$  — набор конечномерных распределений процесса  $\xi$ , где  $\mu_{t_1,\dots,t_n}$  — распределение вектора  $(\xi\left(t_1\right),\dots,\xi\left(t_n\right))$  в  $\mathbb{R}^n$ , то есть для борелевского  $\Delta\in\mathcal{B}\left(\mathbb{R}^n\right),\,\mu_{t_1,\dots,t_n}\left(\Delta\right)=P\left\{(\xi\left(t_1\right),\dots,\xi\left(t_n\right))\in\Delta\right\}.$ 

Приведите определение функции математического ожидания, дисперсии и ковариационной функции случайного процесса.

```
m\left(t\right)=M\xi\left(t\right),\,t\in T— функция среднего. D\xi\left(t\right),\,t\in T— функция дисперсии. K\left(t,s\right)=M\left[\xi\left(t\right)-m\left(t\right)\right]\!\cdot\!\left[\xi\left(s\right)-m\left(s\right)\right],\,t,s\in T— функция ковариации.
```

# Аудиторные задачи

2.2

Задание. Пусть

$$\xi(t) = X \cdot e^{-t}, t > 0,$$

где X — случайная величина, которая имеет нормальное распределение с параметрами  $a,\,\sigma^2$ . Найдите математическое ожидание, дисперсию, ковариационную функцию и одномерную плотность распределения случайного процесса  $\xi=\{\xi\left(t\right),\,t>0\}.$ 

Peшeнue. Сейчас  $T=(0,\infty)$ .

Случайная величина X имеет распределение  $N\left(a,\sigma^{2}\right)$ . Нужно найти  $M\xi\left(t\right)=m\left(t\right),\,D\xi\left(t\right),\,$  ковариационную функцию  $K\left(t,s\right)$  и одномерную плотность распределения  $p_{\xi}\left(t\right)$ .

Найчнём с математического ожидания

$$m\left(t\right) = M\left(X \cdot e^{-t}\right) = e^{-t}MX = e^{-t} \cdot a.$$

Далее — функция дисперсии  $D\xi\left(t\right)=D\left(X\cdot e^{-t}\right)=e^{-2t}\cdot DX$ . Дисперсия X — известная:  $e^{-2t}\cdot DX=e^{-2t}\cdot \sigma^2$ .

Далее — ковариационная функция

$$K(t,s) = M\left[\xi(t) - m(t)\right] \cdot \left[\xi(s) - m(s)\right] = cov\left[\xi(t), \xi(s)\right].$$

Вместо  $\xi(t)$ ,  $\xi(s)$  подставляем их значения

$$cov [\xi (t), \xi (s)] = cov (Xe^{-t}, Xe^{-s}).$$

Множители выносятся

$$cov(Xe^{-t}, Xe^{-s}) = e^{-t-s}cov(X, X) = e^{-t-s}DX = e^{-t-s}\sigma^2.$$

Последнее — это плотность  $\xi(t) \sim N(e^{-t}a, e^{-2t}\sigma^2)$ .

Нужно написать нормальную плотность с заданными математическим ожиданием и дисперсией

$$p_{\xi(t)}(x) = \frac{1}{\sqrt{2\pi e^{-2t}\sigma^2}} \cdot e^{-\frac{\left(x - e^{-t}a\right)^2}{2e^{-2t}\sigma^2}}.$$

Траектория процесса изображена на рисунке 1 и имеет разный вид в зависимости от значения случайной величины X.



Рис. 1: Траектория процесса

2.3

Задание. Пусть

$$\xi\left( t\right) =e^{-Xt},\,t>0,$$

где X — случайная величина, которая имеет показательное распределение с параметром  $\lambda$ . Запишите конечномерные распределения случайного процесса  $\{\xi\left(t\right),\,t>0\}$ . Найдите его математическое ожидание, дисперсию и ковариационную функцию.

Решение.  $\xi(t) = e^{-Xt}$ , где  $X \sim Exp(\lambda)$ , t > 0.

Нужно найти m(t), K(t,s), конечномерные распределения.

Найдём математическое ожидание в момент t. По определению

$$m(t) = Me^{-Xt} = \int_{0}^{+\infty} \lambda e^{-\lambda x} e^{-Xt} dX = \frac{\lambda}{\lambda + t}.$$

Траектории такого процесса изображены на рисунке 2: чем больше X, тем быстрее эта функция убывает.



Рис. 2: Траектория процесса

Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t)M\xi(s) = Me^{-Xt - Xs} - \frac{\lambda}{\lambda + t} \cdot \frac{\lambda}{\lambda + s}.$$

Подставим найденное значение фунцкии математического ожидания

$$Me^{-Xt-Xs} - \frac{\lambda}{\lambda+t} \cdot \frac{\lambda}{\lambda+s} = \frac{\lambda}{\lambda+t+s} - \frac{\lambda^2}{(\lambda+t)(\lambda+s)}.$$

Считаем функцию распределения случайного вектора  $(\xi(t_1), \dots, \xi(t_n))$  — рис. 3.

 $F_{(\xi(t_1),\dots,\xi(t_n))}(\vec{x}) = P\left\{\xi\left(t_1\right) \leq x_1,\dots,\xi\left(t_n\right) \leq x_n\right\}$ . Вместо  $\xi$  напишем формулу  $P\left\{\xi\left(t_1\right) \leq x_1,\dots,\xi\left(t_n\right) \leq x_n\right\} = P\left(e^{-Xt_1} \leq x_1,\dots,e^{-Xt_n} \leq x_n\right)$ . Величины зависимы, потому что все они выражаются через X. Все неравенства решаем относительно X

$$P(e^{-Xt_1} \le x_1, \dots, e^{-Xt_n} \le x_n) = P\{X \ge -\frac{\ln x_1}{t_1}, \dots, X \ge -\frac{\ln x_n}{t_n}\}.$$

Перепишем через максимум

$$P\left\{X \ge -\frac{\ln x_1}{t_1}, \dots, X \ge -\frac{\ln x_n}{t_n}\right\} = P\left\{X \ge \max\left(-\frac{\ln x_1}{t_1}, \dots, -\frac{\ln x_n}{t_n}\right)\right\}.$$



Рис. 3: Выбираем точки, в которых ищем распределение случайного процесса

Обозначим максимум буквой т

$$P\left\{x \ge \max\left(-\frac{\ln x_1}{t_1}, \dots, -\frac{\ln x_n}{t_n}\right)\right\} = \int_{m}^{+\infty} \lambda e^{-\lambda X} dX = -e^{-\lambda X}\Big|_{m}^{+\infty}.$$

На бесконечности получаем ноль

$$-e^{-\lambda X}\Big|_{m}^{+\infty} = e^{-\lambda m} = e^{-\lambda \max\left(\ln x_{1}^{-\frac{1}{t_{1}}}, \dots, \ln x_{n}^{-\frac{1}{t_{n}}}\right)}$$

Выносим логарифм

$$e^{-\lambda \max\left(\ln x_1^{-\frac{1}{t_1}}, \dots, \ln x_n^{-\frac{1}{t_n}}\right)} = e^{-\lambda \ln \max\left(x_1^{-\frac{1}{t_1}}, \dots, x_n^{-\frac{1}{t_n}}\right)}$$

Экспонента и логарифм уничтожают друг друга

$$e^{-\lambda ln\max\left(x_1^{-\frac{1}{t_1}},\dots,x_n^{-\frac{1}{t_n}}\right)} = \max\left(x_1^{-\frac{1}{t_1}},\dots,x_n^{-\frac{1}{t_n}}\right)^{-\lambda} = \min\left(x_1^{\frac{\lambda}{t_1}},\dots,x_n^{\frac{\lambda}{t_n}}\right).$$

Все выкладки были законные, только когда  $0 < x_1, \dots, x_n < 1$ .

Плотности у такого векора  $(\xi(t_1),\ldots,\xi(t_n))$  быть не может, потому что  $\xi(t_1)^{\frac{1}{t_1}}=e^{-X}=\xi(t_2)^{\frac{1}{t_2}}.$  Сейчас у нас только одна случайная величина. Это можно переписать как  $\xi(t_2)=\xi(t_1)^{\frac{t_2}{t_1}},\,y=x^{\frac{t_2}{t_1}}.$ 

С вероятностью  $1(\xi(t_1), \xi(t_2)) \in L$  — рис. 4.

Значения вектора всегда попадают на такую линию. Площадь кривой — ноль.

Плотность — производная от функции распределения, а минимум нельзя дифференцировать.

# 2.4

Задание. Рассмотрим случайный процесс

$$X(t) = A\cos(\varphi + \lambda t)$$
,



где A и  $\varphi$  являются независимыми случайными величинами такими, что  $MA^2<\infty,$  а  $\varphi$  имеет равномерное распределение на отрезке  $[0,2\pi].$  Найдите математическое ожидание и ковариационную функцию процесса

$$\{X(t), t \geq 0\}.$$

Решение.  $\varphi \sim U([0, 2\pi])$ .

Траектория такого процесса изображена на рисунке 5.



Рис. 5: Траектория процесса

Тут случайная амплитуда и случайный сдвиг по фазе.

 $MX\left(t\right)=M\left[A\cos\left(\varphi+\lambda t\right)\right]$ . Случайные величины A и  $\varphi$  — независимые.  $M\left[A\cos\left(\varphi+\lambda t\right)\right]=MAM\cos\left(\varphi+\lambda t\right)$ . Математическое ожидание косинуса можем найти, потому что у  $\varphi$  известна плотность

$$MAM\cos\left(\varphi + \lambda t\right) = MA \cdot \int_{0}^{2\pi} \cos\left(\varphi + \lambda t\right) \cdot \frac{1}{2\pi} \cdot d\varphi.$$

Интеграл косинуса по периоду — ноль.

Ковариационная функция  $K\left(t,s\right)=MX\left(t\right)X\left(s\right)-MX\left(t\right)MX\left(s\right)=$  Произведение математических ожиданий мы знаем

$$=MX\left( t\right) X\left( s\right) =M\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda t\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi +\lambda s\right) \cos \left( \varphi +\lambda s\right) \right] =% \frac{1}{2}\left[ A^{2}\cos \left( \varphi$$

Используем независимость

$$=MA^{2}\cdot M\left[\cos\left(\varphi+\lambda t\right)\left(\varphi+\lambda s\right)\right]=$$

Применяем формулу для произведения косинусов

$$=MA^{2}\cdot M\left\{ \frac{1}{2}\cdot\cos\left[ 2\varphi+\lambda\left( t+s\right) \right] +\frac{1}{2}\cdot\cos\left[ \lambda\left( t-s\right) \right] \right\} =$$

Математическое ожидание первого слагаемого — ноль

$$= \frac{1}{2} \cdot MA^{2} \cdot \cos \left[\lambda \left(t - s\right)\right].$$

Двумерная характеристика процесса зависит только от расстояния между двумя точками. Это стационарный процесс. Его характеристики не меняются при сдвиге.

#### 2.5

 $\it 3adanue.$  Пусть  $\tau$  — случайная величина, которая имеет равномерное распределение на отрезке [0,1], и пусть  $\{X(t), t\in [0,1]\}$  — процесс ожидания, связанный с этой случайной величиной, то есть

$$X(t) = 1\{t \ge \tau\}, t \in [0, 1].$$

Запишите конечномерные распределения процесса  $\{X(t), t \in [0,1]\}$ , найдите его математическое ожидание и ковариационную функцию.

Решение.  $\tau$  — случайная величина с распределением U([0,1]).

Сначала нарисуем траекторию такого процесса (рис. 6). Случайное au выпало.



Рис. 6: Траектория процесса

$$m(t) = MX(t) = M1\{t \ge \tau\} = P(t \ge \tau) = F_{\tau}(t) = \frac{t-a}{b-a} = t.$$

Ковариационная функция K(t,s) = M[X(t)X(s)] - MX(t)MX(s). Произведение индикаторов — это индикатор пересечения

$$M[X(t) | X(s)] - MX(t) MX(s) = P\{\tau \le \min(t, s)\} - ts = \min(t, s) - t \cdot s.$$

Конечномерные распределения — распределение вектора  $(X(t_1), \ldots, X(t_n))$ . Каждый X — это 0 или 1.

$$P\{(X(t_1),\ldots,X(t_n))=(0,\ldots,0)\}=P\{\tau\in(t_n,1]\}=1-t_n.$$

Точки  $t_n$  изображены на рисунке 7.

Рис. 7: Временная ось

У вектора получается (n+1)-но значение

$$(X(t_1), \dots, X(t_n)) = \begin{cases} (0, \dots, 0), & 1 - t_n, \\ (0, \dots, 0, 1), & t_n - t_{n-1}, \\ \dots, \\ (0, \dots, 0, 1, \dots, 1), & t_{k+1} - t_k, \\ \dots, \\ (1, \dots, 1), & t_1. \end{cases}$$

2.6

Задание. Пусть  $\xi_1, \xi_2, \dots, \xi_n$  — независимые одинаково распределённые случайные величины с функцией распределения F, и пусть

$$X(t) \equiv F_n^*(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{\xi_i \le t\}, t \in \mathbb{R}.$$

Запишите конечномерные распределения процесса  $\{X(t), t \in \mathbb{R}\}$ , найдите его математическое ожидание и ковариационную функцию.

Решение.

$$X(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ \xi_i \le t \}$$

— это эмпирическая функция распределения (рис. 8).

Эмпирическая функция распределения — это несмещённая оценка функции распределения.

$$cov\left(X\left(t\right),X\left(s\right)\right) = cov\left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\xi_{i} \leq t\right\}, \frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\xi_{i} \leq s\right\}\right) =$$

Нужно вынести константы

$$= \frac{1}{n^2} \sum_{i,j=1}^{n} cov \left( \mathbb{1} \left\{ \xi_i \le t, \ \mathbb{1} \left\{ \xi_j \le s \right\} \right\} \right) =$$



Рис. 8: Эмпирическая функция распределения

Случайные величины  $\xi_1,\dots,\xi_n$  — независимые. Ковариация независимых величин — ноль

$$= \frac{1}{n^2} \sum_{i=1}^{n} (\mathbb{1} \{ \xi_i \le t \}, \, \mathbb{1} \{ \xi_i \le s \}).$$

Посчитаем ковариацию двух индикаторов

$$cov(1\{\xi_i \le t\}, 1\{\xi_i \le s\}) = M1\{\xi_i \le t \land s\} - F(t)F(s) =$$

Математическое ожидание индикатора событие — вероятность этого события, которая в данном случае по определению равна функции распределения

$$= F(t \wedge s) - F(t) F(s),$$

где ∧ означает минимум.

Все слагаемые в сумме раны этому выражению

$$K(t,s) = \frac{1}{n} \left[ F(t \wedge s) - F(t) F(s) \right].$$

Теперь нужно написать конечномерные распределения этого процесса. Фиксируем  $t_1, t_2, \ldots, t_m$  (рис. 9).

$$X(t) \in \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}.$$

По t, X увеличивается. Эта функция монотонна.

Рис. 9: Фиксируем моменты времени

$$0 \le k_1 \le k_2 \le \ldots \le k_m \le n.$$

Конечномерные распределения имеют вид

$$P\left\{X\left(t_{1}\right)=\frac{k_{1}}{n},\,X\left(t_{2}\right)=\frac{k_{2}}{n},\ldots,X\left(t_{m}\right)=\frac{k_{m}}{n}\right\}=$$

P(для  $k_1$  наблюдений  $\xi \leq t_1$ , для  $k_2-k_1$  наблюдений  $t_1 < \xi \leq t_2,\ldots$ , для  $n-k_m$  наблюдений  $\xi > t_m$ ) Имеем мультиномиальное распределение

$$= \frac{n!}{k_1! (k_2 - k_1)! \dots (n - k_m)!} \cdot F(t_1)^{k_1} \cdot [F(t_2) - F(t_1)]^{k_2 - k_1} \cdot \dots,$$

где первое слагаемое — количество способов разбить n величин на группы.

# 2.7

 $3 a \partial a n u e$ . Найдите характеристическую функцию случайной величины  $X\left(\eta\right)$ , где  $\{X\left(t\right),\,t\in\left[0,1\right]\}$  — процесс из задачи 2.5, а  $\eta$  — независимая от X случайная величина, которая принимает значения 0 и 1 с вероятностями  $\frac{1}{3}$  и  $\frac{2}{3}$  соответственно.

Peшение.  $X(t) = 1 \{t \geq \tau\}.$ 

Задана случайная величина

$$\eta = \begin{cases} 0, & \frac{1}{3}, \\ 1, & \frac{2}{3}. \end{cases}$$

Интересуемся  $\varphi_{X(\eta)}$ . Траектория случайного процесса изображён на рисунке 10.



Рис. 10: Траектория случайного процесса

Случайная величина принимает значения 0 и 1:  $X\left(0\right)=0,\,X\left(1\right)=1,$  значит,  $X\left(\eta\right)=\eta.$ 

$$\varphi_{X(\eta)}\left(\lambda\right)=\varphi_{\eta}\left(\lambda\right)=Me^{i\lambda\eta}=\frac{1}{3}\cdot1+\frac{2}{3}\cdot e^{i\lambda}.$$

То, что они независимы, тут не важно.

 $3 a \partial a n u e$ . Значение случайного телеграфного сигнала  $\xi = \{\xi (t), t \in \mathbb{R}\}$  в произвольный момент времени с одинаковыми вероятностями равно 0 или 1. Прыжки происходят случайным и независимым образом. Вероятность P(k,T) того, что в интервале времени длины T произойдёт k прыжков, задаётся распределением Пуассона, то есть:

$$P(k,T) = \frac{(\lambda T)^k}{k!} \cdot e^{-\lambda T},$$

где  $\lambda$  — среднее количество прыжков за единицу времени. Найдите математическое ожидание и ковариационнуб функцию случайного процесса  $\xi$ . *Pewerue*.

$$P\{\xi(t) = 1\} = P\{\xi(t) = 0\} = \frac{1}{2}.$$

Одномерные распределения даны. Это распределение Бернулли.

P(k,T) — это вероятность того, что на отрезке времени длины T было k прыжков, то есть траектория процесса выглядит как на рисунке 11.



Рис. 11: Траектория случайного процесса

Математическое ожидание тут ищется просто

$$M\xi(t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

Теперь нужно ещё найти ковариационную функцию

$$K(s,t) = M\xi(s)\xi(t) - \frac{1}{4}.$$

Нужно математическое ожидание совместного процесса.  $\xi\left(s\right)$  и  $\xi\left(t\right)$  зависимы.

Попробуем найти математическое ожидание произведения. Произведение принимает значения 0 и 1. Получаем

$$M\xi(t)\xi(s) = 0 \cdot P\{\xi(t)\xi(s) = 0\} + 1 \cdot P\{\xi(t)\xi(s) = 1\} =$$

Слагаемое с нулём пропадает

$$= P \{ \xi(s) = 1, \xi(t) = 1 \}.$$

Значения в точках совпадаю, если между ними произошло чётное количество скачков  $M\xi(t)\xi(s)=P\{\xi(s)=1\}P$  (на отрезке [s,t] будет чётное

количество прыжков). Мы знаем, с какой вероятностью происходит число прыжков.

Подходят любые чётные прыжки, то есть это вероятность объединения. Число скачков обозначим буковокой N. Тогда P(на [s,t] чётное число скачков) =  $P(N_{[s,t]}$  чётное)=

$$\sum_{k=0}^{\infty}P\left(2k=N_{[s,t]}\right)=\sum_{k=0}^{\infty}P\left(2k,t-s\right)=\sum_{k=0}^{\infty}\frac{\left[\lambda\left(t-s\right)\right]^{2k}}{\left(2k\right)!}\cdot e^{-\lambda\left(t-s\right)}=$$

Экспонента выносится за сумму. Остаётся

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}.$$

Для того, чтобы это было экспонента, нужны ещё и нечётные степени

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = e^x.$$

Если мы вычтем вторую сумму, то получится

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} - \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = e^{-x}.$$

Теперь нужно сложить эти два выражения и поделить на 2, то есть

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = \frac{e^x + e^{-x}}{2}, \ x = \lambda (t - s).$$

Получили гиперболический косинус.

$$=\frac{e^{\lambda(t-s)}+e^{-\lambda(t-s)}}{2}\cdot e^{-\lambda(t-s)}=$$

Умножим один сомножитель на другой

$$=\frac{1+e^{-2\lambda(t-s)}}{2}.$$

Это вероятность чётного числа скачков.

Выпишем, чему равна ковариационная функция

$$K(t,s) = \frac{1 + e^{-2\lambda(t-s)}}{4} - \frac{1}{4} = \frac{e^{-2\lambda(t-s)}}{4}, s < t.$$

Окончательный ответ:

$$K(t,s) = \frac{1}{4} \cdot e^{-2\lambda|t-s|}.$$

3aдание. Пусть  $\eta_1$  и  $\eta_2$  — независимые случайные величины, которые имеют равномерное распределение на отрезке [-1,1]. Найдите значения a, при которых почти все реализации случайной функции  $t\left(\eta_1+a\left(\eta_2+2a\right)\right)$  монотонно возрастают по t.

 $Peшение.\ \xi\left(t\right)=t\left(\eta_{1}+a\left(\eta_{2}+2a\right)\right)$  — процесс. Известно, что траектория этого процесса монотонно возрастает по t.

Реализация такого процесса выглядит как прямая линия (рис. 12), при этом  $\eta_1+a$  ( $\eta_2+2a$ ) >0. Это случайная величина, так что

$$P \{ \eta_1 + a (\eta_2 + 2a) > 0 \} = 1.$$



Рис. 12: Траектория случайного процесса

При  $a=0\,\eta_1>0$  — правая часть квадратика. Тогда событие выполняется с вероятностью

$$\frac{1}{2} \neq 1$$
,

то есть  $a \neq 0$ .

Следующий случай: a > 0. Получается

$$\eta_2 + 2a > -\frac{\eta_1}{a},$$

откуда

$$\eta_2 > -\frac{\eta_1}{a} - 2a,$$

то есть на картинке это будет прямая. Мы возьмём всё, что над этой прямой

$$y = -\frac{x}{a} - 2a.$$

Вероятность не будет равна 1. a должно быть таким, чтобы прямая прошла через точку (-1,-1), то есть  $-1+a\,(2a-1)>0$ . Теперь можно найти a из неравенства  $2a^2-a-1>0$ . Сейчас скажем, при каких a это выполнено.  $D=1+8=9=3^2$ , значит

$$a_1 = -\frac{1}{2}, a_2 = 1.$$

Задавали a > 0, то есть при a > 1 вероятность такого события — единица.

Теперь нужно задать a < 0. Отличие будет в том, как пройдёт прямая.

$$-\frac{\eta_1}{a} - 2a > \eta_2,$$

то есть нужно нарисовать прямую

$$y = -\frac{x}{a} - 2a$$
.

Нужно будет выбрать всё, что ниже этой прямой.

Нужно, чтобы прямая прошла над точкой (-1,1). Имеем неравенство  $-1+a\left(1+2a\right)>0$ , откуда

$$a^1 + \frac{1}{2} \cdot a - 1 > 0.$$

Решая соответствующее уравнение находим, что

$$a_1 = \frac{1}{2}, a_2 = 1.$$

При a < 0 получаем ответ: a < -1.

Ответ к задаче:  $a \in (-\infty, -1) \cup (1, +\infty)$ , то есть |a| > 1.

# Домашнее задание

#### 2.12

Задание. Пусть

$$\xi(t) = Xt + a, t \in \mathbb{R},$$

где X — равномерно распределённая на отрезке (a,b) случайная величина. Запишите конечномерные распределения случайного процесса  $\{\xi\,(t)\,,\,t\in\mathbb{R}\}$ . Найдите его математическое ожидание, дисперсию и ковариационную функцию

Решение.  $\xi(t) = Xt + a, t \in \mathbb{R}$ , где  $X \sim U(a, b)$ .

Нужно найти m(t),  $D\xi(t)$ , K(t,s), конечномерные распределения.

Найдём математическое ожидание в момент t

$$m\left(t\right)=M\xi\left(t\right)=M\left(Xt+a\right)=M\left(Xt\right)+Ma=tMX+a=t\cdot\frac{a+b}{2}+a.$$

Траектории такого процесса изоражены на рисунке 13: чем больше X, тем больше угол наклона прямой к оси 0t.

$$D\xi\left(t\right)=D\left(Xt+a\right)=D\left(Xt\right)+Da=t^{2}DX=t^{2}\cdot\frac{\left(b-a\right)^{2}}{12}.$$

Ковариационная функция считается по определению

$$K(t,s) = M[\xi(t)\xi(s)] - M\xi(t)M\xi(s) =$$



Рис. 13: Траектории случайного процесса

Подставляем выражение для случайного процесса, раскрываем скобки и вычисляем математическое ожидание

$$= M \left[ (Xt + a) (Xs + a) \right] - M (Xt + a) M (Xs + a) =$$

$$= M \left[ X^2 ts + Xa (t + s) + a^2 \right] - \left( t \cdot \frac{a + b}{2} + a \right) \left( s \cdot \frac{a + b}{2} + a \right) =$$

$$= ts \cdot \frac{a^2 + ab + b^2}{3} + a (t + s) \cdot \frac{a + b}{2} + a^2 - ts \cdot \frac{(a + b)^2}{4} - ta \cdot \frac{a + b}{2} - a^2 -$$

$$-as \cdot \frac{a + b}{2} =$$

$$= ts \left( \frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4} \right) + (t + s) a \cdot \frac{a + b}{2} - \frac{a + b}{2} \cdot a (t + s) =$$

$$= ts \cdot \frac{4a^2 + 4ab + 4b^2 - 3a^2 - 6ab - 3b^2}{12} = ts \cdot \frac{a^2 - 2ab + b^2}{12} = ts \cdot \frac{(a - b)^2}{12}.$$

Считаем функцию распределения случайного вектора  $(\xi(t_1), \dots, \xi(t_n))$  — рис. 14.



Рис. 14: Выбираем точки, в которых ищем распределение случайного процесса

$$F_{(\xi(t_1),\dots,\xi(t_n))}\left(\vec{x}
ight) = P\left\{\xi\left(t_1
ight) \leq x_1,\dots,\xi\left(t_n
ight) \leq x_n
ight\}$$
. Вместо  $\xi$  напишем формулу  $P\left\{\xi\left(t_1
ight) \leq x_1,\dots,\xi\left(t_n
ight) \leq x_n
ight\} = P\left(Xt_1+a \leq x_1,\dots,Xt_n+a \leq x_n
ight)$ . Ве-

личины зависимы, потому что все они выражаются через X. Все неравенства решаем относительно X

$$P(Xt_1 + a \le x_1, ..., Xt_n + a \le x_n) = P(Xt_1 \le x_1 - a, ..., Xt_n \le x_n - a) =$$

Делим на константы левые части неравенств

$$= P\left(X \le \frac{x_1 - a}{t_1}, \dots, X \le \frac{x_n - a}{t_n}\right) =$$

Перепишем через минимум

$$=P\left\{X\leq\min\left(\frac{x_1-a}{t_1},\ldots,\frac{x_n-a}{t_n}\right)\right\}=$$

Обозначим минимум буквой m для удобства

$$= P(X \le m) = \int_{a}^{m} \frac{1}{b-a} \cdot \mathbb{1} \{X \in (a,b)\} dX = \frac{1}{b-a} \int_{a}^{m} dX = \frac{1}{b-a} \cdot X|_{a}^{m} =$$

Подставляем пределы интегрирования

$$= \frac{1}{b-a} \cdot (m-a) = \frac{1}{b-a} \cdot \left[ \min \left( \frac{x_1 - a}{t_1}, \dots, \frac{x_n - a}{t_n} \right) - a \right]$$

при  $m \in (a, b)$ , иначе — ноль.

# 2.13

Задание. Пусть

$$\xi(t) = U\cos\theta t + V\sin\theta t, t \in T,$$

где U,V — независимые случайные величины с заданными характеристиками:  $MU=MV=0,\,DU=DV=\sigma^2,\,\theta$  — неслучайная величина. Найдите математическое ожидание, дисперсию и ковариационную функцию случайного процесса  $\{\xi\,(t)\,,\,t\in T\}.$ 

Peшeнue. Нужно найти m(t),  $D\xi(t)$ , K(t,s).

Найдём математическое ожидание в момент t. По свойствам

$$m(t) = M\xi(t) = M(U\cos\theta t + V\sin\theta t) = \cos\theta t \cdot MU + \sin\theta t \cdot MV = 0.$$

Можно сделать преобразование  $U\cos\theta t+V\sin\theta t=C\sin(\theta t+\omega)$ , где  $C=\sqrt{U^2+V^2}$ . Траектории такого процесса изображены на рисунке 15: график синуса сжимается к оси ординат, когда модули случайных величин U и V растут.

Найдём дисперсию в момент t. По свойствам

$$D\xi(t) = D(U\cos\theta t + V\sin\theta t) = \cos^2\theta t \cdot DU + \sin^2\theta t \cdot DV =$$



Рис. 15: Траектория процесса

Подставим известные значения дисперсии

$$=\cos^2\theta t \cdot \sigma^2 + \sin^2\theta t \cdot \sigma^2 = \sigma^2 \left(\cos^2\theta t + \sin^2\theta t\right) = \sigma^2.$$

Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t)M\xi(s) =$$

Подставим выражения для случайного процесса в первое слагаемое, а второе равно нулю

$$= M \left[ (U \cos \theta t + V \sin \theta t) \cdot (U \cos \theta s + V \sin \theta s) \right] =$$

Раскроем скобки

$$= M(U^{2}\cos\theta t \cdot \cos\theta s + UV\cos\theta t \cdot \sin\theta s + VU\sin\theta t \cdot \cos\theta s + VU\sin\theta t \cdot \cos\theta s + VU\sin\theta t \cdot \sin\theta s) = DU \cdot \cos\theta t \cdot \cos\theta s + MU \cdot MV \cdot \cos\theta t \cdot \sin\theta s + MV \cdot MU \cdot \sin\theta t \cdot \cos\theta s + DV \cdot \sin\theta t \cdot \sin\theta s = \sigma^{2}\cos\theta t \cdot \cos\theta s + \sigma^{2}\sin\theta t \cdot \sin\theta s = \sigma^{2}\cdot(\cos\theta t \cdot \cos\theta s + \sin\theta t \cdot \sin\theta s) = \sigma^{2}\cos(\theta t - \theta s) = \sigma^{2}\cos[\theta(t - s)].$$

# 2.14

Задание. Определите математическое ожидание, дисперсию и ковариационную функцию процесса

$$\xi(t) = 2u \sin \nu t + 3vt^2 + 5, t \in T,$$

где  $\nu$  — известный неслучайный параметр, а u,v — случайные величины с известными характеристиками:

$$Mu = 1, Mv = 2, Du = 0.1, Dv = 0.9, cov(u, v) = -0.3.$$

Peшение. Нужно найти  $m\left(t\right),\,D\xi\left(t\right),\,K\left(t,s\right)$ .

Найдём математическое ожидание в момент t. По свойствам

$$m(t) = M(2u\sin\nu t + 3vt^2 + 5) = 2\sin\nu t \cdot Mu + 3t^2Mv + 5 = 2\sin\nu t + 6t^2 + 5.$$



Рис. 16: Траектория процесса

Траектория такого процесса изображена на рисунке 16. Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t) \cdot M\xi(s) =$$

Подставим выражения для случайного процесса и его математические ожидания

$$= M \left[ \left( 2u\sin\nu t + 3vt^2 + 5 \right) \left( 2u\sin\nu s + 3vs^2 + 5 \right) \right] - \\ - \left( 2\sin\nu t + 6t^2 + 5 \right) \left( 2\sin\nu s + 6s^2 + 5 \right) = \\ = M (4u^2\sin\nu t \cdot \sin\nu s + 6uv\sin\nu t \cdot s^2 + 10u\sin\nu t + 6vt^2u\sin\nu s + 9v^2t^2s^2 + \\ + 15vt^2 + 10u\sin\nu s + 15vs^2 + 25 \right) - 4\sin\nu t \cdot \sin\nu s - 12\sin\nu t \cdot s^2 - 10\sin\nu t - \\ - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ = 4\sin\nu t \cdot Mu^2 + 6t^2\sin\nu s \cdot M \left( uv \right) + 10\sin\nu t \cdot Mu + 6t^2\sin\nu s \cdot M \left( uv \right) + \\ + 9t^2s^2Mv^2 + 15t^2Mv + 10\sin\nu s \cdot Mu + 15s^2 \cdot Mv + 25 - 4\sin\nu t \cdot \sin\nu s - \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 = \\ - 12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 30t^2 - 30t$$

Вычислим вторые моменты

$$Mu^2 = Du + (Mu)^2 = 0.1 + 1 = 1.1, Mv^2 = Dv + (Mv)^2 = 0.9 + 4 = 4.9.$$

По определению ковариации  $cov\left(u,v\right)=M\left(uv\right)-Mu\cdot Mv$ , откуда

$$M(uv) = cov(u, v) + Mu \cdot Mv = -0.3 + 1 \cdot 2 = 2 - 0.3 = 1.7.$$

Подставим полученные значения в функцию ковариации

$$= 4 \sin \nu t \cdot \sin \nu s \cdot 1.1 + 6 \sin \nu t \cdot s^{2} \cdot 1.7 + 10 \sin \nu t + 6t^{2} \sin \nu s \cdot 1.7 +$$

$$+9t^{2}s^{2} \cdot 4.9 + 15t^{2} \cdot 2 + 10 \sin \nu s + 15s^{2} \cdot 2 - 4 \sin \nu t \cdot \sin \nu s - 12 \sin \nu t \cdot s^{2} -$$

$$-10 \sin \nu t - 12t^{2} \cdot \sin \nu s - 36t^{2}s^{2} - 30t^{2} - 10 \sin \nu s - 30s^{2} =$$

$$= 0.4 \sin \nu t \cdot \sin \nu s - 1.8 \sin \nu t \cdot s^{2} - 1.8t^{2} \sin \nu s + 8.1t^{2}s^{2}.$$

Найдём дисперсию в момент t. Из формулы для ковариации

$$D\xi(t) = K(t, t) = 0.4 \sin^2 \nu t - 3.6 \sin \nu t \cdot t^2 + 8.1 t^4$$
.

#### 2.15

Задание. Найдите ковариационную функцию процесса

$$Y(t) = \psi_1(t) X_1 + \ldots + \psi_n(t) X_n,$$

где  $\psi_1, \ldots, \psi_n$  — произвольные числовые функции от t, а  $X_1, \ldots, X_n$  — некоррелируемые случайные величины с дисперсиями  $D_1, \ldots, D_n$ .

Решение. Нужно найти

$$K(t,s) = cov(\psi_1(t) X_1 + ... + \psi_n(t) X_n, \psi_1(s) X_1 + ... + \psi_n(s) X_n) =$$

Распишем по определению

$$= M [(\psi_{1}(t) X_{1} + \dots + \psi_{n}(t) X_{n}) (\psi_{1}(s) X_{1} + \dots + \psi_{n}(s) X_{n})] -$$

$$-M (\psi_{1}(t) X_{1} + \dots + \psi_{n}(t) X_{n}) \cdot M (\psi_{1}(s) X_{1} + \dots + \psi_{n}(s) X_{n}) =$$

$$= \sum_{i,j=1}^{n} \psi_{i}(t) \psi_{j}(s) M (X_{i}X_{j}) - \sum_{i,j=1}^{n} \psi_{i}(t) \psi_{j}(s) MX_{i} \cdot MX_{j} =$$

$$= \psi_{1}(t) \psi_{1}(s) DX_{1} + \dots + \psi_{n}(t) \psi_{n}(s) DX_{n} =$$

$$= \psi_{1}(t) \psi_{1}(s) D_{1} + \dots + \psi_{n}(t) \psi_{n}(s) D_{n}.$$

# 2.16

3адание. Пусть  $\eta$  и  $\zeta$  — независимые нормально распределённые случайные величины с нулевым математическим ожиданием и дисперсиями 1/2. Найдите конечномерные распределения случайного процесса

$$\xi(t) = \frac{\eta + \zeta}{t}, \ t > 0.$$

Решение. Для произвольных натуральных  $n \ge 1$ , произвольных моментов времени  $t_1, \ldots, t_n \in T$  и произвольных действительных чисел  $x_1, \ldots, x_n$  находим

$$F_{t_1,t_2,...,t_n}(x_1,x_2,...,x_n) = P\{\xi(t_1) \le x_1,\xi(t_2) \le x_2,...,\xi(t_n) \le x_n\} =$$

Подставляем выражения для случайного процесса

$$= P\left(\frac{\eta + \zeta}{t_1} \le x_1, \frac{\eta + \zeta}{t_2} \le x_2, \dots, \frac{\eta + \zeta}{t_n} \le x_n\right) =$$

Переносим моменты времени вправо

$$= P(\eta + \zeta \le x_1 t_1, \eta + \zeta \le x_2 t_2, \dots, \eta + \zeta \le x_n t_n) =$$

Независимые случайные величины  $\eta$  и  $\zeta$  имеют нормальное распределение с параметрами a=0 и

$$\sigma^2 = \frac{1}{2}.$$

Их сумма имеет стандартное нормальное распределение. Пусть

$$\eta + \zeta = X \sim N(0,1)$$
.

Тогда

$$= P\left(X \le x_1 t_1, X \le x_2 t_2, \dots, X \le x_n t_n\right) = P\left(X \le \min_{i=1,n} x_i t_i\right) =$$

Запишем через плотность

$$= \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{y^2}{2}} dy,$$

где обозначено

$$z = \min_{i = \overline{1,n}} x_i t_i.$$

# 2.17

 $3 a \partial a n u e$ . Найдите характеристическую функцию случайной величины  $\xi\left(\tau\right)$ , где  $\{\xi\left(t\right),\ ,t\geq0\}$  — процесс из предыдущей задачи, а  $\tau$  — независимая от  $\xi$  случайная величина, которая принимает значения +1 и -1 с вероятностями 1/2.

Решение.

$$\xi\left(t\right) = \frac{\eta + \zeta}{t}.$$

Задана случайная величина

$$\tau = \begin{cases} 1, & \frac{1}{2}, \\ -1, & \frac{1}{2}. \end{cases}$$

Интересует

$$\varphi_{\xi(\tau)}(\lambda) = Me^{i\xi(\tau)\lambda} = Me^{i\cdot\frac{\eta+\zeta}{\tau}\cdot\lambda} =$$

Как и в предыдущей задаче  $\eta + \zeta = X \sim N(0,1)$ . Получаем

$$= Me^{i \cdot \frac{X}{\tau} \cdot \lambda} = Me^{-\frac{\lambda^2}{2\tau^2}} = e^{-\frac{\lambda^2}{2}}.$$