"Calculus: Early Trancendentals" Notes

Samuel Lindskog

April 18, 2024

Calc 1

Definition 1.1 (Average Rate of Change). The average rate of change of y = f(x) with respect to x over the interval (x_1, x_2) is:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Theorem 1.1 (Limit Laws). If L, M, c, k are real numbers and $\lim_{x\to c} f(x) = L$, and $\lim_{x\to c} g(x) = M$, then:

Sum rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$

Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L - M$

Constant Multiple Rule: $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$

Product Rule: $\lim_{x \to \infty} (f(x) \cdot g(x)) = L \cdot M$

Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$

Power Rule: $\lim_{x \to a} [f(x)]^n = L^n$, *n* a positive integer

Root Rule: $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$, n a positive integer

(For the root rule, if n is even, we assume that $f(x) \ge 0$ for x in an interval containing c.)

Theorem 1.2 (Sandwich Theorem). Suppose that $g(x) \le f(x) \le h(x)$ for all x in some neighborhood of c. Suppose also that:

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = L$$

Then $\lim_{x\to c} f(x) = L$.

Definition 1.2 (Limit). Let f(x) be defined on an open neighborhood of c not necessarily including c. We say that the limit of f(x) as x approaches c is the number L if for every number $\epsilon > 0$, there exits a corresponding number $\delta > 0$ such that:

$$0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$$