aws re: Invent

NET201-R

AWS networking fundamentals

Alan Halachmi

Director, Public Sector AWS Solutions Architecture Amazon Web Services

Steve Seymour

WW Tech Leader, Networking AWS Solutions Architecture Amazon Web Services

AWS global infrastructure

AWS Region

Availability Zone (AZ)

AVAILABILITY ZONE

Data center

Rack, host, EC2 instance

AVAILABILITY ZONE

DATA CENTER, RACK, HOST

AVAILABILITY ZONE

DATA CENTER, RACK, HOST

Amazon Virtual Private Cloud (Amazon VPC)

	Availability Zone US-EAST-1A	1 	Availability Zone US-EAST-1B	
♠ VPC				

Subnets

Availability Zone US-EAST-1A	Availability Zone US-EAST-1B	
Public subnet	Public subnet	
Private subnet	Private subnet	
i	i	

EC2 instances

Gateways, endpoints & peering

Example web application

IP addressing

Private IP address range for your VPC – IPv4

"CIDR" Range ?

- Classless Inter-domain Routing
- No more Class A, B, C

• RFC1918

- 192.168.0.0 /16
- 172.16.0.0 /12
- 10.0.0.0 /8

How much?

- /16
- /28

Updated by: 6761 BEST CURRENT PRACTICE Errata Exist Network Working Group Y. Rekhter Request for Comments: 1918 Cisco Systems Obsoletes: 1627, 1597 B. Moskowitz BCP: 5 Chrysler Corp. Category: Best Current Practice D. Karrenberg RIPE NCC G. J. de Groot RIPE NCC E. Lear Silicon Graphics, Inc. February 1996

Address Allocation for Private Internets

Status of this Memo

This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited.

1. Introduction

For the purposes of this document, an enterprise is an entity autonomously operating a network using TCP/IP and in particular determining the addressing plan and address assignments within that network.

This document describes address allocation for private internets. The allocation permits full network layer connectivity among all hosts inside an enterprise as well as among all public hosts of different enterprises. The cost of using private internet address space is the potentially costly effort to renumber hosts and networks between public and private.

Where to use IPv4 addresses?

IPv6 basics

IPv6: Colon-Separated Hextet Notation + CIDR

2001:0db8:0ec2:0000:0000:0000:0000:0001/64

0000:0000:0000:0000:0000:0000:0000:0001/128

2001:db8:ec2:0:0:0:0:1/64

0:0:0:0:0:0:0:1/128

2001:db8:ec2::1/64

::1/128

Unicast Addresses

Loopback Address

...1

fe80::/10 (fe80::/64 in practice)

Link Local Address (LLA)

2600:1f16:14d:6300::/64

Global Unicast Address (GUA)

Multicast Addresses (ff00::/8)

All Nodes

ff02::1

All Routers

ff02::2

Solicited Node

ff02::1:ff00:0/104

IPv6 on AWS

- /56 VPC
- /64 Subnets
- Dualstack
- Link Local Address and Global Unicast Address required

Where to use IPv6 addresses?

The "5 Things" required for Internet traffic

- 1. Public IP Address
- 2. Internet Gateway Attached to a VPC
- 3. Route to an Internet Gateway
- 4. NACL Allow Rule
- 5. Security Group Allow Rule

Public IP addresses for your instances

Auto-assign public IP addresses

Elastic IP Addresses (EIP)

Amazon EIP Pool

Bring Your Own IP (BYOIP) Pool

Public IP addresses

Gateways, endpoints & peering

VPN Gateway

NAT Gateway

Internet Gateway

AWS Transit Gateway

Endpoints

Peering connection

Internet access

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	igw-09ef761d872bd7540	Active	No

"To get to the IPv4 Internet (0.0.0.0/0) go via the Internet Gateway (IGW)" "To get to the IPv6 Internet (::/0) go via the Internet Gateway (IGW)"

Internet access

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	eigw-063d49ed7bb0f8c36	Active	No

"To get to the IPv6 Internet (::/0) go via the Egress Only Internet Gateway (EIGW)"

Different routes for different subnets

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	igw-09ef761d872bd7540	Active	No

"To get to the Internet go via the Internet Gateway (IGW)"

172.31.0.0/16 local Active No	Destination	Target	Status	Propagated
	172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	2600:1f16:14d:6300::/56	local	Active	No

"To get to anything in the VPC – stay local. No route anywhere else."

Public & private subnets

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	igw-09ef761d872bd7540	Active	No

"Instance A has a path to and from Instance B."
"Instance B has a path to and from the Internet."

Network Address Translation (NAT) Gateway

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
0.0.0.0/0	nat-0964c62a07d6491f5	Active	No

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	igw-09ef761d872bd7540	Active	No

The Route Table for the Private Subnet says to send all IPv4 Internet Traffic to the NAT Gateway.

The NAT Gateway translates all traffic it receives such that it appears to come from itself.

The Route Table for the Public Subnet says to send all Internet Traffic to the Internet Gateway.

Network security

Network security

- Network ACLs
- Security Groups
- VPC Flow Logs
- Amazon VPC Traffic Mirroring

Network ACLs

HTTPS (TCP/443)

Rule #	Туре	Protocol	Port Range	Source	Allow / Deny
100	ALL Traffic	ALL	ALL	0.0.0.0/0	ALLOW
101	ALL Traffic	ALL	ALL	::/0	ALLOW
*	ALL Traffic	ALL	ALL	0.0.0.0/0	DENY
*	ALL Traffic	ALL	ALL	::/0	DENY

(TCP/8443)

Rule #	Туре	Protocol	Port Range	Destination	Allow / Deny
100	ALL Traffic	ALL	ALL	0.0.0.0/0	ALLOW
101	ALL Traffic	ALL	ALL	::/0	ALLOW
*	ALL Traffic	ALL	ALL	0.0.0.0/0	DENY
*	ALL Traffic	ALL	ALL	::/0	DENY

Security groups – Inbound

HTTPS (TCP/443)

Security groups – Outbound

VPC flow logs

Amazon CloudWatch Logs or Amazon S3

Does not impact throughput or latency

Apply to VPC, Subnet, or ENI

Accepted, Rejected, or All traffic

version	3
account-id	384767312345
interface-id	eni-0b62d5e000e412345
srcaddr	108.56.192.231
dstaddr	172.31.0.202
srcport	50565
dstport	80
protocol	6
packets	7
bytes	751
start	1573704396
end	1573704455
action	ACCEPT
log-status	OK
vpc-id	vpc-0af48868ceeb12345
subnet-id	subnet-02ab634d2e4c12345
instance-id	i-0a998a68301112345
tcp-flags	3
type	IPv4
pkt-srcaddr	108.56.192.231
pkt-dstaddr	172.31.0.202

Amazon VPC traffic mirroring

- Mirror to another ENI or Network Load Balancer with UDP listener
- Packet copy. Shares interface bandwidth.
- Traffic mirror filters to define "interesting traffic"
- Traffic mirror session is the combination of source, target, and filter

Elastic Load Balancing

High availability & scale

Elastic Load Balancing

Elastic Load Balancing (ELB) distributes incoming application or network traffic across multiple targets, such as Amazon EC2 instances, containers, Lambda functions, and IP addresses, in multiple Availability Zones.

ELB: Options

Application Load Balancer

- IPv4, Dualstack front-end
- Layer 7
- HTTP, HTTPS
- Host-, Path-based routing
- Integrated authentication
- Supported Targets
 - EC2 instances
 - Containers
 - AWS Lambda
 - Private IP addresses

Network Load Balancer

- IPv4
- Layer 4
- TCP, UDP, TLS
- Supported Targets
 - EC2 instances
 - Containers
 - Private IP addresses

Classic Load Balancer

- IPv4, Dualstack front-end
- Layer 4/7
- HTTP, HTTPS, TCP, TLS
- Supported Targets
 - EC2 Instances

ALB: Components

Example web application

Example web application – Final

Connecting to other VPCs

Connecting between VPCs

VPC peering – different region

VPC peering – different account

VPC peering – things to know

- Can reference security groups from the peer VPC in the same region
- Can enable DNS hostname resolution to return private IP addresses
- Can peer for both IPv4 & IPv6 addresses
- Cannot have overlapping IP addresses
- Cannot have multiple peers between the same pair of VPCs
- Cannot use jumbo frames across inter-region VPC peering

Connectivity to on-premises networks

AWS site-to-site VPN setup – VGW

AWS site-to-site VPN – CGW

Create Customer Gateway

(A)

Specify the Internet-routable IP address for your gateway's external interface; the address must be static and may be behind a device performing network address translation (NAT). For dynamic routing, also specify your gateway's Border Gateway Protocol (BGP) Autonomous System Number (ASN); this can be either a public or private ASN (such as those in the 64512-65534 range).

Corporate Data Center 172.16.0.0/16

mer vay

AWS site-to-site VPN

1x VPN Connection = 2x VPN Tunnels

AWS site-to-site VPN

1x VPN Connection = 2x VPN Tunnels

AWS site-to-site VPN

1x VPN Connection = 2x VPN Tunnels
1x VPN Tunnel = 1.25Gbps

AWS Direct Connect – physical connection

AWS Direct Connect – Interface types

- Private VIF Used to connect to Amazon VPCs using private IP addresses; directly or via Direct Connect gateway
- Transit VIF Used to connect to AWS Transit Gateways via Direct Connect gateway
- Public VIF Used to access all AWS public services using public IP addresses

All Virtual Interfaces are 802.1Q VLANs with BGP peering

AWS Direct Connect gateway – Private VIF

Route propagation

- Enable propagation on the Route Table
- Automatically populates with anything the VGW learns via BGP

AWS Direct Connect – Public VIF

AWS Transit Gateway

Interconnecting VPCs at scale – VPC peering

Interconnecting VPCs at scale – VPC peering

Multiple VPCs access models – AWS Transit Gateway

AWS Transit Gateway with AWS site-to-site VPN

AWS Transit Gateway with DX gateway

Name resolution (DNS)

Amazon Route 53 Resolver

- VPC+2 Resolver
- enableDnsHostnames
- enableDnsSupport
- Private Hosted Zones
- Inbound and Outbound Endpoints

VPC DNS options

Amazon Route 53 private hosted zones

Associating private hosted zones to multiple VPCs

Resolving AWS domains from on-premises — Route 53 Resolver

Resolving on-premise domains from AWS – Route 53 Resolver

Connecting to other AWS services

Amazon Relational Database Service (Amazon RDS)

Amazon Relational Database Service (Amazon RDS)

Amazon WorkSpaces

Amazon WorkSpaces

AWS Lambda

VPC endpoints

s3.us-east-1.amazonaws.com 52.216.229.141 etc

s3.us-east-1.amazonaws.com 52.216.229.141 etc

s3.us-east-1.amazonaws.com 52.216.229.141 ... etc.

AWS PrivateLink – your own services

AWS PrivateLink – Your own services – On-prem

Endpoint policies

- A VPC endpoint policy is an AWS Identity and Access Management (IAM) resource policy that you attach to an endpoint
- An endpoint policy does not override or replace IAM user policies or servicespecific policies (such as S3 bucket policies)

Example for S3

- IAM policy at VPC endpoint: You may only access the "Data" bucket
- IAM policy at S3 bucket: Access to this bucket is only allowed from VPCE-X

Bringing it all together

Related sessions

Tuesday

- NET317-R Connectivity to AWS and hybrid AWS network architectures
- NET320-R1 The right AWS network architecture for the right reason

Wednesday

- NET305-R1 Advanced VPC design and new capabilities for Amazon VPC
- NET203-L Leadership session: Networking

Thursday

- NET339 Innovation and operation of the AWS global network infrastructure
- NET322-R1 Shared VPC: Simplify your AWS Cloud scale network with VPC sharing

Learn networking with AWS Training and Certification

Resources created by the experts at AWS to help you build and validate networking skills

Free digital courses cover topics related to networking and content delivery, including Introduction to Amazon CloudFront and Introduction to Amazon VPC

Validate expertise with the AWS Certified Advanced Networking - specialty exam

Visit aws.amazon.com/training/paths-specialty

Thank you!

Alan Halachmi

Director, Public Sector AWS Solutions Architecture Amazon Web Services

Steve Seymour

WW Tech Leader, Networking AWS Solutions Architecture Amazon Web Services

Please complete the session survey in the mobile app.

