1 Introduction

1.1 Definitions and Terminology

Defn 1 (Differential Equation). A differential equation (DE) is an equation with 1 or more derivatives.

Remark 1.1. The highest differential determines the order of the differential equation. This means that the differential equation below is of order 2.

$$y'' + y = 0$$
$$\frac{d^2y}{dx^2} + y = 0$$

Defn 2 (Initial Value Problem). A differential equation with one or more initial conditions is called an *initial value problem* (IVP).

Remark 2.1. To solve an initial value problem, you must have the same number of initial conditions as the order of the differential equation.

Remark 2.2 (Existence of Unique Solution). R is a rectangular region on the xy-plane $a \le x \le b$, $c \le y \le d$ that contains (x_0, y_0) interior. If f(x, y) and $\frac{df}{dy}$ are continuous on R, then an interval exists I_0 such that $(x_0 - h, x_0 + h)$ where h > 0, on the interval [a, b], and a unique function y(x), defined on I_0 that is a solution of the initial value problem.

1.2 Separable Differential Equation

Defn 3 (Separable). A *separable* differential equation allows you to move various elements around to solve the equation. For example,

$$\frac{dP}{dt} = kP$$

$$\frac{1}{P}dP = kdt$$

$$\ln(P) = kt + C$$

$$P = Ce^{kt}$$

Remark 3.1. These are used extensively in modelling phenomena with differential equations. These include: Population Growth, Radioactive Decay, Newton's Law of Cooling/Heating, and Spread of Disease.

1.3 Modeling with Differential Equations

1.3.1 Population Growth

Defn 4 (Population Growth). Population growth can be modelled with a separable differential equation. Namely,

$$\frac{dP}{dt} = kP \tag{1}$$

Remark 4.1 (Population Growth Parameters). The parameters for the Population Growth equation are given below.

- *k* > 0
- *P* > 0

1.3.2 Radioactive Decay

Defn 5 (Radioactive Decay). Radioactive decay is the process that some particularly heave atoms undergo.

Defn 6 (Half-Life). The *half-life* is the usual reported metric, and is defined as the amount of time required for an element to half its mass through Radioactive Decay.

$$\frac{1}{2}A_0 = A_0 e^{kt} (2)$$

Remark 6.1 (Radioactive Decay Parameters). The parameters for the Radioactive Decay equation are given below.

- *k* < 0
- *A* > 0

Newton's Law of Cooling/Heating

Defn 7 (Newton's Law of Cooling/Heating). Newton's Law of Cooling/Heating is the same equation, but some of the parameters change. This equation is defined as:

$$\frac{dT}{dt} = k\left(T - T_m\right) \tag{3}$$

Remark 7.1. The parameters for the Newton's Law of Cooling/Heating equation are given below.

- \$\frac{dT}{dt}\$; The rate of change of temperature in the object per unit time.
 \$k < 0\$; The cooling constant and is unique to every object.
- T; The starting temperature.
- T_m ; The temperature of the surrounding medium.

1.3.4 Spread of Disease

Defn 8 (Spread of Disease). This is used to model the spread of something throughout a society or group of people.

$$\frac{dx}{dt} = kxy\tag{4}$$

Remark 8.1. The parameters for the Spread of Disease equation are given below.

- dx/dt; Change in the number of infected per unit time.
 k < 0; Transmission Constant
- x; Number of Infected
- y; Number of non-infected, y is really a function of x

$$-y = n + 1 - x$$

A Reference Material

A.1 Trigonometry

A.1.1 Trigonometric Formulas

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
 (A.1)

$$\cos(\theta)\sin(\theta) = \frac{1}{2}\sin(2\theta) \tag{A.2}$$

A.1.2 Euler Equivalents of Trigonometric Functions

$$\sin\left(x\right) = \frac{e^{ix} + e^{-ix}}{2} \tag{A.3}$$

$$\cos\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \tag{A.4}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 (A.5)

$$\cosh\left(x\right) = \frac{e^x + e^{-x}}{2} \tag{A.6}$$

A.2 Calculus

A.2.1 Fundamental Theorems of Calculus

Defn 9 (First Fundamental Theorem of Calculus). The first fundamental theorem of calculus states that, if f is continuous on the closed interval [a, b] and F is the indefinite integral of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{A.7}$$

Defn 10 (Second Fundamental Theorem of Calculus). The second fundamental theorem of calculus holds for f a continuous function on an open interval I and a any point in I, and states that if F is defined by

 $F(x) = \int_{a}^{x} f(t) dt,$

then

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

$$F'(x) = f(x)$$
(A.8)