CS5841/EE5841 Machine Learning

Lecture 7: Ensemble methods

Evan Lucas

Overview

- Course updates
- Ensemble Methods

Class updates

Course zoom link on Canvas page

Ensemble learning

- If different models make different mistakes, can we simply average the predictions?
- Voting Classifier: gives every model a vote on the class label
 - Hard vote: majority class wins (class order breaks ties)
 - ullet Soft vote: sum class probabilities $p_{m,c}$ over M models: $rgmax \sum_{m=1}^{M} w_c p_{m,c}$
 - Classes can get different weights w_c (default: $w_c = 1$)

Why does this work?

 Different models may be good at identifying utility of different features of data

Bias-variance approach to understanding model combining

- If model underfits (high bias, low variance): combine with other low-variance models
 - Need to be different, consider them to be 'experts' on different aspects of feature space
 - Reduces bias
 - Boosting technique for combining these models
- If model overfits (low bias, high variance): combine with other low-bias models
 - Need to be different, mistakes have to be different
 - Reduces variance
 - **Bagging** how we combine these models
- Stacking learned method of combining predictions

Bagging (bootstrap aggregating)

- Build different models
 - Train same model architecture on different training samples
 - Base models should be unstable
- Predict by averaging predictions of multiple base models
 - Soft voting for classification
 - Mean value for regression
- Random forests common example of bagging

Random Forests

- Uses randomized trees to make models even less correlated (more unstable)
 - At every split, only consider max_features features, randomly selected
- Extremely randomized trees: considers 1 random threshold for random set of features (faster)

Effect on bias and variance

- Increasing the number of models (trees) decreases variance (less overfitting)
- Bias is mostly unaffected, but will increase if the forest becomes too large (oversmoothing)

Strength and weaknesses

- RandomForest are among most widely used algorithms:
 - Don't require a lot of tuning
 - Typically very accurate
 - Handles heterogeneous features well (trees)
 - Implictly selects most relevant features
- · Downsides:
 - less interpretable, slower to train (but parallellizable)
 - don't work well on high dimensional sparse data (e.g. text)

Boosting

- Weak learners are combined in series
- Four main methods
 - AdaBoost (adaptive boosting) reweights data points iteratively to weight incorrectly classified points higher for next classifier in sequence
 - Gradient Boosting (GB) optimizes loss function to create a new base model that is better than the past one
 - XGBoost (extreme gradient boosting) GB that's been parallelized
 - Others
 - LightGBM gradient based sampling
 - CatBoost for categorical variables

GB in action

• Size of the samples represents the residual weights: most quickly drop to (near) zero

Examples

Bias-variance analysis

- Gradient Boosting is very effective at reducing bias error
- Boosting too much will eventually increase variance

Gradient Boosting: strengths and weaknesses

- Among the most powerful and widely used models
- · Work well on heterogeneous features and different scales
- Typically better than random forests, but requires more tuning, longer training
- Does not work well on high-dimensional sparse data

Main hyperparameters:

- n estimators: Higher is better, but will start to overfit
- learning_rate: Lower rates mean more trees are needed to get more complex models
 - Set n estimators as high as possible, then tune learning rate
 - Or, choose a learning rate and use early stopping to avoid overfitting
- max depth: typically kept low (<5), reduce when overfitting
- max_features: can also be tuned, similar to random forests
- n_iter_no_change: early stopping: algorithm stops if improvement is less than a certain tolerance tol for more than n iter no change iterations.

Stacking

- Choose M different base-models, generate predictions
- Stacker (meta-model) learns mapping between predictions and correct label
 - Can also be repeated: multi-level stacking
 - Popular stackers: linear models (fast) and gradient boosting (accurate)
- Cascade stacking: adds base-model predictions as extra features
- Models need to be sufficiently different, be experts at different parts of the data
- Can be very accurate, but also very slow to predict

Base-Learners Model 1 Stacker y 1 y 2 y N Output

Other ensembling methods

- Hyper-ensembles: same basic model but with different hyperparameter settings
 - Can combine overfitted and underfitted models
- Deep ensembles: ensembles of deep learning models
- Bayes optimal classifier: ensemble of all possible models (largely theoretic)
- Bayesian model averaging: weighted average of probabilistic models, weighted by their posteric probabilities
- ullet Cross-validation selection: does internal cross-validation to select best of M models
- Any combination of different ensembling techniques

Questions + Comments?

Slide source

https://ml-course.github.io/master/05%20-%20Ensemble%20Learning.slides.html