

OUTLINE

- 1. Pengenalan MING Stack IoT
- 2. MQTT Sebagai Protokol Komunikasi
- 3. Node Red Sebagai Backend Server
- 4. InfluxDB Sebagai Time Series Database
- 5. Grafana Sebagai *User Interface*
- 6. Demo Ming Stack IoT (Hands on)

https://grafana.com/api/dashboards/12921/images/8829/image

TAK KENAL MAKA MARI KENALAN

S1 Kimia Universitas Hasanuddin

- Laboratory Officer Bosowa School Makassar
- Owner Rizky Project
- Trainer IoT & Data Science Indobot Academy
- Pengurus Komunitas ArduMeka
- 085332257589

- (in) Rizky Dermawan
- Rizky Dermawan
- Rizky Dermawan
- Rizky Dermawan

https://github.com/rizkydermawan1992

Rizky Dermawan, S.Si.

Lu yang cuma taunya kirim data sensor ke BLYNK

KESENJANGAN ARSITEKTUR

PENGENALAN MING STACK IOT

ARSITEKTUR IOT

- PERCEPTION LAYER Mengumpulkan data dari lingkungan fisik
- TRANSPORT LAYER Mengirimkan data dari perangkat ke pusat pemrosesan data
- PROCESSING LAYER Mengolah, menyimpan, dan menganalisis Data dari perangkat
- APPLICATION LAYER Menyediakan layanan dan informasi kepada pengguna berdasarkan data yang telah diproses

https://www.altexsoft.com/blog/iot-architecture-layers-components/

APA ITU MING STACK?

- Merupakan gabungan 4 teknologi open-source yang bisa digunakan di perangkat edge untuk mengumpulkan, mengolah, dan menampilkan data langsung dari perangkat IoT, seperti PLC atau sensor LoRaWAN yang mengirim data ke LoRa Network Server (LNS)
- Pertama kali diinisiasi oleh Tim Balena pada tahun 2019 yang terinspirasi dari LAMP stack untuk Web Development
- Menyediakan solusi lengkap end-to-end mulai dari pengumpulan data sampai visualisasi
- Cocok untuk proyek edge computing di lapangan tanpa harus selalu bergantung pada cloud

https://flowfuse.com/blog/2023/02/ming-blog/

https://blog.balena.io/ming-stack-mqtt-influxdb-nodered-grafanaa-balena/

EDGE COMPUTING

- Merupakan paradigma komputasi dimana pemrosesan data dilakukan sedekat mungkin dengan sumber data.
- Respon lebih cepat (*low latency*) karena data tidak perlu dikirimkan *cloud server*
- Meminimalisisr bandwith karena hanya data yang penting saja yang dikrimkan ke cloud server
- Keamanan data dan privasi terjaga karena data sensitif dikelola secara lokal
- Tidak bergantung pada koneksi internet karena pemrosesan data dilakukan secara lokal

https://www.fsp-group.com/en/knowledge-app-42.html

DIAGRAM IMPLEMENTASI MING STACK

MQTT SEBAGAI PROTOKOL KOMUNIKASI

PENGENALAN MQTT

- Merupakan protokol ringan untuk komunikasi machine to machine yang berjalan di atas TCP/IP
- Komunikasi data menggunakan model publish-subscribe
- Perangkat pengirim pesan disebut publisher dan penerima pesan disebut subscriber yang keduanya harus terhubung pada satu broker dan topik yang sama
- Broker merupakan server pusat dalam mengorganisir pesan antara publisher dan subscriber
- Topik adalah jalur komunikasi untuk merutekan pesan antara publisher dan subscriber

ECLIPSE MOSQUITTO

- Eclipse Mosquitto merupakan broker pesan MQTT yang ringan dan bersifat open source
- Mendukung beberapa versi MQTT 3.1, 3.1.1, 5.0
- Cocok digunakan untuk semua jenis perangkat mulai dari SBC berdaya rendah sampai fully server
- Kompatibel dengan berbagai bahasa pemrograman seperti C, Python, dan Javascript
- Dapat dijalankan secara on premise (localhost) atau menggunakan broker publik (cloud)

Port	Protokol	Keterangan
1883	MQTT (tanpa TLS)	Koneksi biasa (unencrypted)
8883	MQTT (dengan TLS)	Koneksi aman (encrypted)
8080	MQTT over WebSockets	Tanpa TLS
8081	MQTT over WebSockets (TLS)	Aman via browser

https://mosquitto.org/

TOPOLOGI PUBLISH-SUBSCRIBE

https://randomnerdtutorials.com/esp32-cloud-mqtt-broker-sim800l/#more-99705

https://randomnerdtutorials.com/esp8266-nodemcu-mqtt-publish-bme280-arduino/#more-96350

CONTOH PENERAPAN MQTT PADA ARSITEKTUR IOT

NODERED SEBAGAI BACKEND SERVER

DASAR NODE RED

- **Node-RED** adalah *flow-based development tool* berbasis web untuk memprogram aplikasi menggunakan *drag-and-drop interface*.
- Dibangun di atas Node.js, sehingga mendukung ekosistem JavaScript.
- Cocok untuk integrasi antara perangkat keras (seperti Arduino, ESP32), API, dan layanan online (seperti MQTT, HTTP, dll).
- Memiliki antarmuka visual berbasis browser yang memungkinkan pengguna membangun logika program tanpa perlu menulis kode secara penuh.
- Bisa dijalankan di berbagai perangkat, mulai dari PC, Raspberry Pi, hingga server cloud atau kontainer Docker.

https://nodered.org/

STRUKTUR UTAMA NODERED

1. Flow Editor (Editor Visual)

- Merupakan antarmuka utama Node-RED berbasis web.
- Digunakan untuk menyusun, menghubungkan, dan mengatur node secara visual dengan cara drag-and-drop.
- Komponen dalam editor: sidebar, canvas, toolbar, debug

2. Flow

- Flow adalah alur logika atau rangkaian proses yang terdiri dari node-node saling terhubung.
- Setiap flow bisa dianggap sebagai satu fungsi atau skenario dalam aplikasi
- Flow dapat di-export dan import sebagai file .json

https://developer.ibm.com/tutorials/i-running-node-red/

https://blog.openenergymonitor.org/2015/11/ambient-wind-energy-indicator-using/

STRUKTUR UTAMA NODERED

3. Node

- Node adalah komponen fungsional utama di Node-RED yang digunakan untuk menerima, memproses, dan mengirim data.
- Setiap node memiliki tugas spesifik, misalnya membaca input, mengolah logika, atau menampilkan output.
- Input Node: digunakan untuk memasukkan data ke dalam flow
- Processing Node: digunakan untuk mengolah dan memfilter data sebelum masuk ke output
- Output Node: digunakan untuk mengirimkan hasil akhir dari flow ke antarmuka

https://www.cloudfoundry.org/blog/100-day-challenge-018-running-node-red-cloud-foundry/

CONTOH PENERAPAN NODERED PADA ARSITEKTUR IOT

INFLUXDB SEBAGAI TIME SERIES DATABASE

PENGENALAN INFLUXDB

- InfluxDB adalah database khusus untuk menyimpan data berdasarkan waktu (*time series*).
- Dirancang untuk menangani banyak data dengan cepat dan efisien.
- Cocok untuk data sensor, pemantauan sistem (DevOps), dan analisis real-time.
- Bisa diatur agar data lama terhapus otomatis untuk menghemat penyimpanan.
- Memiliki bahasa kueri mirip SQL untuk mengambil dan menganalisis data.

https://www.influxdata.com/time-series-platform/

SKEMA DATA INFLUXDB

Tag sifatnya opsional namun berperan untuk mempercepat proses query data

MEKANISME PENYIMPANAN DATA INFLUXDB

Library Client

measurement, tags, fields

url, token, org, bucket

CONTOH PENERAPAN INFLUXDB PADA ARSITEKTUR IOT

GRAFANA SEBA*GAI USER INTERFACE*

PENGENALAN GRAFANA

- Grafana merupakan tools untuk visualisasi dan analisis data.
- Menampilkan data dalam bentuk grafik interaktif yang bisa disesuaikan.
- Pengambilan data dari berbagai *data source* (database, IoT, cloud, dll).
- Tampilan dibagi menjadi **panel**, yang disusun menjadi **dashboard**.
- Mendukung notifikasi otomatis melalui email dan lainnya.
- Mendukung fitur alert untuk mendeteksi perilaku data yang tidak normal.
- Fitur annotate memungkinkan user memberi catatan langsung di grafik.
- Bersifat open-source dan dikembangkan oleh komunitas aktif.

https://grafana.com/blog/2020/09/04/inside-grafana-labs-more-workspaces-revealed/

Grafana

PENGGUNAAN GRAFANA DALAM MONITORING

- Monitoring Infrastruktur: memantau kesehatan server, database, dan jaringan.
- Monitoring Aplikasi: memantau performa aplikasi, seperti waktu respon, error, dan trafik.
- Monitoring Log: menganalisis data log dan menemukan pola atau keanehan.
- Monitoring Perangkat IoT: memantau data dari sensor suhu, kelembaban, gerak, dll.
- Monitoring Data Bisnis: memantau angka penjualan, pendapatan, dan kepuasan pelanggan.

https://medium.com/@james.ralph8555/setting-up-grafana-with-influxdb-for-server-monitoring-7b16c1d0ba0c

https://medium.com/@MetricFire/grafana-vs-powerbi-using-grafana-for-your-business-metrics-360bfe70f06c

ARSITEKTUR GRAFANA

- Beberapa server grafana membentuk *node cluster*
- Traffic disebar ke beberapa server melalui load balancer
- Setiap node server aktif menangani permintaan
- Jika ada node yang gagal maka load balancer mengalihkan traffic ke node yang masih aktif
- **Shared Hostname** diterapkan agar akses ke layanan Grafana hanya melalui satu alamat saja
- Grafana menggunakan database sqlite 3 untuk menyimpan data user, dashboard dan data lainnya
- Arsitektur ini untuk menjaga High Availability dari server

https://grafana.com/docs/grafana/latest/setup-grafana/set-up-for-high-availability/

CONTOH PENERAPAN GRAFANA (+ NGROK) PADA ARSITEKTUR IOT

DEMO MING STACK IOT (HANDS ON)

ALUR KERJA SISTEM MONITORING ESP32-DHT11

- Sensor DHT11 melakukan sensing di lingkungan lalu mengirim sinyal ke ESP32
- 2. ESP32 memproses sinyal menjadi data suhu dan kelembaban lalu mempublish ke broker MQTT (Mosquitto)
- 3. Mosquitto meneruskan data ke Nodered setelah Nodered sebagai client melakukan subscribe
- 4. Nodered melakukan parsing data lalu melakukan write data ke Influxdb
- Influxdb melakukan stream data ke server Grafana setelah request access Grafana diizinkan
- 6. Grafana memvisualisasikan data ke user melalui dashboard

