Precalculus Quadratic inequality part 1

Todor Miley

2019

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0$$

Solve the inequality.

$$\begin{array}{ccc} 2x^2 + 3x - 5 & \geq & 0 \\ (? &)(? &) & \geq & 0 \end{array}$$

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$			

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2}, 1 \right)$			
$(1,\infty)$	(?)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2}, 1 \right)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, \infty).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2}, 1 \right)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)		

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, \infty).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2}, 1 \right)$			
$(1,\infty)$	(+)(+)	?	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(?)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(+)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(+)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	
ĺ	$\left(-\infty,-\frac{5}{2}\right)$			
ĺ	$(-\frac{5}{2},1)$	(+)(-)		
ĺ	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(+)(-)	?	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	
ĺ	$\left(-\infty,-\frac{5}{2}\right)$			
	$(-\frac{5}{2},1)$	(+)(-)	-	
	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(?)(?)		
$(-\frac{5}{2},1)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(−)(?)		
$\left(-\frac{5}{2}, 1\right)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(?)		
$(-\frac{5}{2},1)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)		
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	?	
$\left(-\frac{5}{2},1\right)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	
$\left(-\frac{5}{2}, 1\right)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

	Interval	Factor signs	Final sign	Sample pt	Value at sample pt
Ì	$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
	$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
	$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$2x^{2} + 3x - 5 \geq 0$$

$$(2x + 5)(x - 1) \geq 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),(1,\infty).$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$\begin{array}{ccc} 2x^2+3x-5 & \geq & 0 \\ (2x+5)(x-1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	Sample pt	Value at sample pt
	$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
Ī	$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
Ī	$(1,\infty)$	(+)(+)	+	100	f(100) > 0