

COMMS SUPPORT IN INTEL® ETHERNET 800 SERIES

NPG PRC PP SW Team
June 2020

Agenda

- Background
- Programable Pipeline matters in comms
- VNF Use cases

PCIe* Connectivity and Core Usage

Using run-to-completion or pipeline software models

default hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048 isolcpus=1-11,22-33 nohz_full=1-11,22-33 rcu_nocbs=1-11,22-33 Note: nohz_full and rcu_nocbs is to disable Linux* kernel interrupts, and it's important for zero-packet loss test. Generally, 1G huge pages are used for performance test.

Architecture Conversion In Telco Network and Cloud Infrastructure

Meeting Scalable Data Plane Needs

Premises (e.g. 1 Gbps)

Residential CPE

Last-Mile (e.g. 10 Gbps)

Enterprise CPE SD-WAN Mid-Mile (e.g. 10 – 40 Gbps)

vRAN, vBRAS, vCCAP, v-dEPC, vCPE, SDWAN Centralized (e.g. 40+ Gbps)

vEPC, vIMS, vGiLAN

Flexible and Open Industry Standard Software Framework (DPDK)

Common Hardware & Software Solutions Addressing End-to-End Needs

- √ 1G 200G+ performance scaling with common architecture
- ✓ Preservation of customer software investment
- ✓ Hardware and software acceleration options to address specific needs

Workloads

Location	Workloads
Access	Base Station, OLT, Router
Aggregation/Edge	BNG, Gateway, UPF
Core	UPF
Cloud	vSwitch, Load Balancer

NFV Architecture Framework

NFV Management and Orchestration

- Execution Reference Points
- Other Reference Points
- Main Network Functions
 Virtualization (NFV) Reference Points

REFERENCE POINTS:

Or-Vi

- VI-Ha Virtualization Layer Hardware Resources
- Vn-Nf VNF NFV Infrastructure
- Os-Ma OSS/BSS NFV Management and Orchestration
- Se-Ma Service, VNF and Infrastructure Description NFV
 - Management and Orchestration
- Ve-Vnfm VNF/EMS VNF Manager
- Nf-Vi NFVI Virtualized Infrastructure Manager
- Or-Vnfm Orchestrator VNF Manager
- Vi-Vnfm Virtualized Infrastructure Manager VNF Manager
 - Orchestrator Virtualized Infrastructure Manager

Map Network Platform Capability to SW Stack

把网卡上的不同能力map到上页NFV中

云里雾里...问下jingjing

PROGRAMABLE PIPELINE MATTERS IN COMMS

为什么DDP很重要?

OS Protocol vs Comms Protocol

OS Protocols	Comms Protocols			
VLAN	S-VLAN	OSPF		
IPv4	C-VLAN	BGP		
IPv6	MPLS	GTP		
ARP	IPv4	PFCP		
ICMP	IPv6	PPPoE		
UDP	ARP	L2TP		
TCP	ICMP	ESP		
VXLAN	UDP			
	TCP	Customized		
		Protocols		

Programmable Pipeline Matters

Payload

The pipeline parser looks deeper in to the packets

Defined Protocol Source Inner Header Payload Address Address **Outer Header** Parsed fields Payload

Parsed fields

Dynamic Device Personalization (DDP) Profile

NVM Default Package

Is a bare minimum package which allows reliable connectivity with basic protocols

OS Default Package

Baseline support for well known protocols and configurations

Comms Package

Comms protocols and configuration built on top of (incremental) existing OS default package

20.05

Bridge SW Stack to Programable Pipeline

DPDK is the bridge between packet processing workload and hardware programable pipeline capability.

- Download package
- Run time table and rule programing

DPDK需要提供api 维护各种表。

看一下相关的代码。

VNF USE CASES

Simple Pipeline of packet process - Classify

Simple Pipeline of packet process - QoS

vBNG Data Plane Processing Stage Example

汇聚侧,宽带接入网关

vBNG requirement to CVL

对QoS的要求很高,k级的用户。

基于MAC的发送到DP VF。基于PPPoE等发送到CP VF。

vOLT Data Plane Processing Stage Example

vOLT Data Plane Processing Stage Example

vOLT requirement to CVL

一个contrl plane的vm/container。多个data plane的vm/container.

5G UPF – software-based pipeline

新型workload

vEPC/UPF

COMMS PROTOCOL ENABLE IN DPDK

Driver Enabling Software

	Mode	Network Function	Host Driver	VNF HAL I/F	NFVi HAL I/F	Problems
没有virtu 的情况	non- IOV ualization	DPDK PF	N/A	DPDK I/F (e.g. rte_flow, rte_tm & etc.)	N/A	
TAIHWE	IOV	DPDK AVF AVF-Intel VF标准	Kernel LAN	DPDK I/F (e.g. rte_flow, rte_tm & etc.)	Kernel I/F (e.g. ethtools, iprouter, tc & etc.)	VNF Accl. requires extra device advanced features against kernel mainstream readiness. 需要vf配置导流。
×	IOV	DPDK AVF	DPDK PF	DPDK I/F (e.g. rte_flow, rte_tm & etc.)	DPDK I/F (e.g. rte_flow, rte_tm & etc.)	Hard to sustain with incremental complexity of PF/VF co-existence by Host PF PMD kernel mainstream user space driver develop framework does not support SRIOV management.

Driver Enabling SW Strategy

- Minimize replicated effort on device specific function enabling
- Incremental building re-useful SW for multi-gen NIC coverage
- NPG/ND co-design, KMD/UMD co-existence

DCF + iAVF advanced Feature is the way

基于VF:把DPDK的接口暴露到control plane,让客户配置。

Configuration Flow

DCF

- Device Config Function
- Advanced Cap over trust VF
- Functional at named VF
- Single entity per port
- AQ-CMD over virtnnl

iAVF

- Extend virtnnl to support advanced feature
- More protocols
- RSS input set change
- FD supporting

- 1. Load DEF/COMM Package
- 2. PF driver generates SR-IOV VFs echo 4 > /sys/class/net/.../sriov_numvfs
- 3. Turn-on trust mode on a dedicated VF ip link set dev \$eth \$vf_id trust on
- 4. Assign trusted VF (VF0) to network controller agent
 ... options: dpdk-devargs=\$BDF,cap=dcf,representor=[x]
- Assign other VFs to VMs/Containers

Requirements for Comms NFV

				Reference VNF			
				Wireline	Wireless	Cable	
Feature		Details ▼		(vBNG ▼	(vEPC ▼	(vCMT: =	
Forward PPPoE Session signalling packets to VNF Control Plane VF		PPPoE Session packets with non-IP payload (APIs to		X			
Forward packets with specific MAC DA to a User Plane VF		UP VF has no MAC address assigned, switch filter is		v			
		needed to force packets to a VF		Х			
Forward IP multicast packets to VNF Control Plane VF		vOLT requirement, low priority				X	
Forward L2 multicast packets to VNF Control Plane VF		vOLT requirement, low priority				X	
Forward packets with specific MAC DA + VLAN combination to a User Plan	ne VF					X	
Forward packets with specific VLAN to a User Plane VF		For single or outer VLAN incase of QinQ				X	
Forward packets with specific QinQ combination to a User Plane VF						X	
Forward packets with IP protocol to VNF Control Plane VF		Match on IP Protocol only (IGMP, L2TP)				X	
Forward packets with IP protocol tunnels to VNF Control Plane VF		Match on IP Protocol (ESP, L2TP) and IP src/dst addresses			Х	х	
Forward all not-matched traffic to the default VF						Х	
Hardware ACL requirements							
Firewall rules for IP packets							
Deny IP SRC subnet		deny ip 192.0.2.0 0.0.0.255 any		X			
Permit IP DST, TCP DST		permit tcp any host 192.168.201.103 eq smtp		X			
Deny L4 (UDP/TCP) DST		deny tcp any any eq smtp		X			
UPD SRC/DST range		permit uap any gt 1023 192.168.201.0 0.0.0.255 gt					
_		17/15					
Drop L2 packets according to firewall rules							
Drop L2 packets if MAC SA is not in the whitelist		2 to 4 valid MAC SA				X	
Flow Director requirements							
Forward specific UDP DST port to a Queue/Qgroup					PFCP		
Tag packets with specific UDP DST port						DHCP	
Tag packets with specific IP protocol						IGMP	
Tag packets with specific L2 Ethertype						ARP	
Map IPv4 DSCP to RSS Qgroup					Х		
Map IPv6 TC to RSS Qgroup					X		
Map GTP-U QFI to RSS Qgroup					X		
Forward specific IP protocol to a Queue/Qgroup						L2TP	
Forward specific L2TP session to a Queue/Qgroup						L2TP	

