Critical Joints in Large Composite Primary Aircraft Structures

Volume III — Ancillary Test Results

B. L. Bunin and R. L. Sagui

Douglas Aircraft Company Long Beach, California 90846

Contract NAS1-16857 June 1985

(NASA-CR-172588) CRITICAL JOINTS IN LARGE COMPOSITE PRIMARY AIRCRAFT STRUCTURES. VOLUME 3: ANCILLARY TEST RESULTS (Douglas Aircraft Co.) 338 F

N88-289 16

Unclas G3/05 0164886

HATIAS 1. Hear & Devide 2761 Date Bright Pilot

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

PREFACE

This test report was prepared by Douglas Aircraft Company, McDonnell Douglas Corporation, under contract NAS1-16857, "Critical Joints in Large Composite Aircraft Structure." This program was conducted as part of the NASA Aircraft Energy Efficiency (ACEE) program.

The research program was monitored by Andrew J. Chapman, ACEE Composites Project Office, Langley Research Center, NASA. Bruce L. Bunin was the Douglas Project Manager.

In addition to the author, Douglas personnel contributing to this program included D. J. Watts and W. D. Nelson, prior Project Managers,
L. J. Hart-Smith and J. B. Black, Stress Analysis, L. P. Marius, Design,
J. V. Walker, and E.P. Moenning, Materials, G. C. Janicki and P. J. Marra,
Manufacturing R&D, and R. L. Oswald, Program Administration.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	SPECIMEN DESCRIPTION	3
2.1 2.1.1 2.1.2 2.1.3	Phase I Test Specimens	3 4 5 5
2.2 2.2.1 2.2.2 2.2.3	Phase II Test Specimens	6 6 7 7
3.0	TEST SETUP AND PROCEDURE	8
4.0	TEST RESULTS	10
4.1 4.1.1 4.1.2	Unloaded Hole Tests - Phase I Unloaded Hole Tension Tests Unloaded Hole Compression Tests	11 11 12
4.2 4.2.1 4.2.2	Double Shear Tests - Phase I	12 12 14
4.3	Single Shear Tension & Compression Tests - Phase II	14
4.4	Composite Stress Concentration Factors	15
4.5 4.5.1	Unloaded Hole Tests - Phase II	16 16
4.6 4.6.1 4.6.2 4.6.3	Double Shear Tests - Phase II Double Shear Tension Double Shear Compression Composite Stress Concentration Factors Phase II	16 16 17 17
4.7	Elastic Spring Rates	18
4.8	NASA Standard Tests	18
5.0	BASIC MECHANICAL PROPERTY TESTS	19
5.1 5.2	Phase I Tests	19 19
6.0	SUMMARY AND CONCLUSIONS	20
7.0	REFERENCES	22

LIST OF ILLUSTRATIONS

Figure		Page
1	Unloaded Hole Tension Specimens	23
2	Unloaded Hole Tension Specimens	24
3	Unloaded Hole Tension Specimens	25
4	Unloaded Hole Compression Specimens	26
5	Unloaded Hole Compression Specimens	27
6	Unloaded Hole Compression Specimens	28
7	Double Shear Tension Specimens	29
8	Double Shear Tension Specimens	30
9	Double Shear Compression and Tension Specimens .	31
10	Double Shear Compression Specimens	32
11	Double Shear Compression Specimens	33
12	Double Shear Compression Specimens	34
13	Single Shear Specimens	35
14	Single Shear Specimens	36
15	Single Shear Specimens	37
16	Bolt Head Angle Change Measurement	38
17	Double Shear Tension Specimen - Phase II	39
18	Double Shear Tension Specimen - Phase II	40
19	Unloaded Hole Tension Test Specimen Configuration	41
20	Bolted Double Shear Specimen Configuration	42
21	Test Set-up - Double Shear Tension Test	43
22	Single Shear Test Set-up	44
23	Definition of Relative Deflection Measurement	45

24	Deflection Measurement Device	46
25	Single Shear Test - Measurement System for Bolt Head Rotation	47
26	Unloaded Hole Tension Test - Net-Section Failures	48
27 .	Unloaded Hole Tension Test - Bonded Doubler Failure	49
28	Unloaded Hole Tension Test - Net-Section Failure .	50
29	Unloaded Hole Tension Test - (w/d = 6) - Net Section Failure	51
30	Unloaded Hole Tension Test - Bonded Doubler and End Hole Failure	52
31	Unloaded Hole Compression Test - Net-Section Failure	53
32	Double Shear Tension Tests - Net-Section Failures	54
33	Double Shear Tension Tests - Net-Section Failures	55
34	Double Shear Tension Tests - Bolt Bending Failure	56
35	Double Shear Tension Tests - Bearing Failure	57
36	Double Shear Tension Tests - Bonded Doubler Failure	58
37	Double Shear Tension Tests - Net-Section Failure	59
38	Double Shear Compression Test - Bearing Failure ·	60
39	Double Shear Compression Test - Bolt Bending Failure	61
40	Open-hole Compression Test ST-4	62
41	Compression After Impact Specimens - ST-1	63
42	Specimen Configuration - Mechanical Property Tests	64
43	Unnotched Compression Specimen	65
ЛΛ	Unnotched Tonsion Specimens	66

LIST OF TABLES

TABLE		Page
1	Ancillary Test Specimen Coding - Phase I	67
2	Unloaded Hole Ancillary Test Specimen	88
3	Double Shear Ancillary Tension Specimen	.69
4	Double Shear Ancillary Compression Specimen	70
5	Single Shear Ancillary Tension Specimen	71
6	Single Shear Ancillary Compression Specimen	72
7	Unloaded Hole Tension Specimen Description - Phase II	73
8	Bolted Double Shear Specimen Description - Phase II	74
9	NASA Standard Tests - Specimen Identification	75
10	Ancillary Test Specimen Loading Rates	76
11	Unloaded Hole Tension Specimen, Fiber Pattern A, U.S. Customary Units	77
12	Unloaded Hole Tension Specimens, Fiber Pattern B, U.S. Customary Units	78
. 13	Unloaded Hole Compression Specimens, Fiber Pattern A, U. S. Customary Units	. 79
14	Unloaded Hole Compression Specimens, Fiber Pattern B, U. S. Customary Units	80
15	Double Shear Tension Specimens, Fiber Pattern A, U. S. Customary Units	81
16	Double Shear Tension Specimens, Fiber Pattern B, U. S. Customary Units	82
17	Double Shear Compression Specimens, Fiber Pattern A, U. S. Customary Units	83
18	Double Shear Compression Specimens, Fiber Pattern B, U. S. Customary Units	. 84
19	Single Shear Tension Specimens, Fiber Pattern A, U. S. Customary Units	85
20	Single Shear Tension Specimens, Fiber Pattern B, U. S. Customary Units	86

LIST OF TABLES (CONT'D)

TABLE		PAGE
21	Single Shear Compression Specimens, Fiber Pattern A, U. S. Customary Units	87
22	Single Shear Compression Specimens, Fiber Pattern B, U. S. Customary Units	88
23	Composite Stress Concentration Factors - Unloaded Hole Tension Tests - Pattern A	89
24	Composite Stress Concentration Factors - Unloaded Hole Tension Tests - Pattern B	90
25	Composite Stress Concentration Factors - Unloaded Shear Tension Tests	91
26	Unloaded Hole Tension Test Results (Phase II)	92
27	Unloaded Hole Tension Test Results (Phase II)	93
28	Unloaded Hole Tension Test Results (Phase II)	94
29	Double Shear Test Results (Phase II)	95, 96
30	Load-Deflection Data - Phase I	97
31	Load-Deflection Data - Phase I	98
32	Load-Deflection Data - Phase II	99
33	ST-1 - Compression After Impact Test Results Ciba-Geigy 914/T300-10-mil Tape	100
34	ST-2 - Edge Delamination Test Results Ciba-Geigy 914/T300 - 10-mil Tape	101
35	ST-3 - Unloaded Hole Tension Test Results 914/T300 - 10-mil Tape	102
36	ST-4 - Unloaded Hole Compression Test Results 914/T300 - 10-mil Tape	103
37	ST-5 - Hinged Double Cantilever Beam Test Results 914/T300 - 10-mil Tape	103
38	ST-1 - Compression After Impact Test Results Ciba-Giegy 2566/Celion High Strain Fibers (CHS)	104

LIST OF TABLES (CONT'D)

TABLE		PAGE
39	ST-2 - Edge Delamination Tension Test Results 914/T300 - 5-mil Tape	105
40	ST-3 - Unloaded Hole Tension Test Results CHS/2566 - 5-mil Tape	106
41	ST-4 - Unloaded Hole Compression Test Results CHS/2566 - 5-mil Tape	106
42	ST-5 - Hinged Double Cantilever Beam Test Results CHS/2566 - 5-mil Tape	107
43	ST-5 - Edge Delamination Tension Test Results 914/T300 - 5-mil Tape	108
44	ST-5 - Hinged Double Cantilever Beam Test Results 914/T300 - 5-mil Tape	109
45	Unnotched Tension Test Results	110
46	Unnotched 914/T300 Tensile Strength and Stiffness	111

1.0 INTRODUCTION

The design and analysis of bolted joints in fibrous composite structures continues to be an area of concern with respect to the safe and efficient use of composite materials in aircraft structures. Douglas Aircraft Company, under NASA contract NAS1-16857, has developed technology for critical composite joints in large primary aircraft structures. The program contained a comprehensive test program including basic coupon tests, subcomponent multirow joint tests, and large technology demonstration specimens. This report contains an account of the test specimens, procedures, and results for the Ancillary Test Program, consisting of single hole joint tests and laminate property tests. The report also contains the results of NASA Standard Tests performed as part of this program on several new material systems.

A series of single row bolted joint specimens were tested in a variety of configurations to establish strength and stiffness properties for bolted joints in composite structures. Stress concentration factors for composite bolted joints were obtained by measuring the section strengths of single row loaded and unloaded hole coupon specimens. Bearing strengths were also measured by testing loaded hole coupons of sufficient width to force a bearing failure mode. The data obtained from these tests provide the necessary information to construct bearing-bypass interaction curves which serve as failure envelopes for multirow bolted joint analyses.

Loaded hole specimens also provided the load-deflection properties for single-bolt composite joints in both the linear and non-linear range of behavior. Bolted joint elastic spring rates were measured for all loaded hole tests. This data is essential to performing accurate load-sharing analyses of multirow bolted joints.

This report contains test results from Phase I and Phase II ancillary testing. The Phase I tests were conducted on loaded hole and unloaded hole specimens in single and double shear, with tension and compression loading. Unnotched tests were conducted for strength and stiffness properties of the two selected fiber patterns. Phase II ancillary tests were conducted for data recovery purposes

from unsuccessful Phase I tests) or to examine specific configurations which were not investigated in Phase I.

2.0 SPECIMEN DESCRIPTION

2.1 Phase I Test Specimens

A total of 180 specimens was fabricated and tested at the Douglas Aircraft Company in Long Beach, California. These included a variety of configurations and geometries selected to generate a sufficient data base to support analysis methods.

Tension and compression tests were performed on three types of specimens:
Double Shear Tension and Compression (DST and DSC), Single Shear Tension and
Compression (SST and SSC), and Unloaded Hole Tension and Compression (UHT and UHC).
Figures 1 through 15 present dimensioned drawings of each specimen type. The
hole or bolt diameters were limited to 0.25 in. (6.35 mm), 0.50 in. (12.70 mm),
and 0.75 in. (19.05 mm). Laminate widths and thicknesses were varied among
specimen groups and will be discussed in subsequent sections.

Load was introduced to the tension specimens and single shear compression specimens through pin-loaded holes at each end which were reinforced with graphite/epoxy doublers. These doublers were constructed using the same layup pattern as the base laminate. Potted ends were used on double shear and unloaded hole compression specimens for the introduction of load. The ends were machined flat and parallel to stabilize and align the specimens.

Critical dimensions of each specimen were measured and recorded before testing. Specimens were visually inspected for any flaws or damage which could affect test results. Three identical specimens were tested for each configuration. Table 1 lists the coding or numbering system for all of the ancillary test specimens for Phase I.

The material system used in this program is the Ciba-Geigy Fiberdux 914/Toray T-300 graphite epoxy. The 914 resin is a so-called "toughened resin". The basic epoxy is modified with a polysulfone thermoplastic to create a more flexible, impact resistant matrix relative to established composite material systems. The Toray T-300 (hereafter T-300) was provided as a "thick ply" tape (approximately

0.01 in/ply). This consisted of two plies of 5 mil dry tape which were combined during the vendor preimpregnation process.

There were two fiber patterns used to build the laminates from which test specimens were made. Pattern A was $(25\% 0^{\circ}, 50\% \pm 45^{\circ}, 25\% 90^{\circ})$ and Pattern B was $(37.5\% 0^{\circ}, 50\% \pm 45^{\circ}, 12.5\% 90^{\circ})$. Laminates were inspected by C-scan for voids and delaminations prior to fabrication of test specimens.

Test laminate balanced layup sequences provided zero degree fibers at the surfaces of all parts. Only ±45 degree angle changes were allowed between adjacent interior plies. There were no stacked plies except two (2) 45-degree plies at the laminate mid-plane of symmetry and no 0°/90° interfaces except at the mid-plane of the 24-ply, 37.5 percent zero degree pattern (with 8-ply unit sequencing).

2.1.1 Unloaded Hole Specimens

Table 2 lists the nominal dimensions and characteristics of the unloaded hole tension and compression specimens. The narrow specimens maintained a w/d (width/hole diameter) ratio of 2.0, while for the wide specimens the w/d ratio was 8.0 with one exception. For the unloaded hole tension tests, the -533 specimens (UHT 16, 17, 18) were cut down from w = 6.0 in. (152.4 mm) to w = 4.5 in. (114.3 mm) giving a w/d ratio of 6.0 (to prevent recurrent doubler failure).

Figures 1 through 6 present dimensioned drawings for the unloaded hole specimens. The central holes were filled with 1/16 in. (1.59 mm) undersized bolts and tightened to moderate torque values. This provided some clamp-up effect at the hole without allowing load transfer through the bolt itself. All the unloaded hole specimens were fabricated from 24-ply laminates. Sixteen-ply tapered doublers were bonded to all UHT specimens for reinforcement at the load introduction holes, with one exception. As noted in Figure 2, the -531 specimens were inadvertently fabricated with 24-ply instead of 16-ply doublers.

2.1.2 Double Shear Specimens

Tables 3 and 4 depict the double shear tension and compression specimen configurations. The narrow and wide specimens maintained w/d ratios of 3.0 and 8.0 respectively, but again with one exception. The -529 compression specimens (DSC 10, 11, 12) had (inadvertently drilled) 0.50 in. (12.7 mm) central holes with a w/d ratio of 4.0. Torque levels for the three bolt sizes were:

<u>Diameter</u>	<u>Torque</u>		
0.25 in. (6.35 mm)	25-30 in1b. (2.82-3.39 N-m)		
0.50 in. (12.7 mm)	50-60 in1b. (5.65-6.78 N-m)		
0.75 in. (19.05 mm)	75-90 in1b. (8.47-10.17 N-m)		

Figures 7 through 12 contain dimensioned drawings of all double shear test specimens. In some cases there were slight clearances between the blade and the clevis plates and shims were used to eliminate the gap.

2.1.3 Single Shear Specimens

A general description of the single shear specimens is presented in Tables 5 and 6, including nominal dimensions. These specimens utilize a special aluminum fitting for one side of the joint (Figure 16) to reduce possible joint rotation due to eccentric loading and to assure the shear load application at the interface.

All of the single shear specimens had a w/d ratio of 8.0 and were generally free of flaws and defects. Bolts were torqued to the same values presented for the double shear specimens. Figures 13 through 15 contain dimensioned drawings of these specimens.

The bolts are installed in cup-shaped retainers in the loading fixture, rather than in a simple through-the-thickness hole, so that any fastener rotation would be more representative of a composite-to-composite single-shear joint.

2.2 Phase II Test Specimens

Ancillary tests in Phase II were conducted for data recovery purposes from inconclusive Phase I tests or to investigate joint configurations which were previously untested.

Tests were performed on three different configurations: Double Shear Tension and Compression, Unloaded Hole Tension and Unnotched Tension. Hole diameters of 0.375 in., 0.50 in., and 0.75 in. were used with specimens of varying width and thickness. The width to diameter ratios were chosen to ensure the desired mode of failure and were more representative of actual structure than prior tests. In addition, NASA standard resin toughness tests (NASA RP-1092) were run on two different material systems.

All tests were performed on a 100,000 pound capacity MTS test machine equipped with hydraulic grips to apply test loads. Reusable aluminum loading fixtures were used for the double shear tests. Figures 17 and 18 show typical double shear specimens.

The material system used was the 914/T-300 system with 5 mil or 10 mil tape. Patterns A (25%, 50%, 25%) and B (37.5%, 50%, 12.5%) were both tested. All laminates were inspected by C-scan for voids and delaminations prior to testing.

2.2.1 Unloaded Hole Specimens

Table 7 lists the specimen identifications and dimensions for Phase II unloaded hole tests. Figure 19 shows the specimen geometry.

These tests differ from Phase I tests in several respects. This is the first set of sepcimens fabricated with 5-mil tape as well as 10-mil. The w/d ratios of 3 and 5 used are more representative of bolted joint designs. In addition, these specimens were tested with filled holes (net fit) at roughly one-half the standard torque-up values, as opposed to open holes.

2.2.2 Double Shear Specimens

Table 8 lists the double shear specimen identifications and dimensions for Phase II testing. Figure 20 shows the specimen geometry.

The double shear tests include 12 tension and compression tests to be repeated from Phase I. The remainder of double shear tests concentrated on determining bolt flexibility effects in Pattern B laminates with carbon/epoxy and titanium splice members, and bearings strengths for central blade members in a double shear joint.

2.2.3 NASA Standard Tests

Table 9 lists the NASA Standard Toughness Tests (NASA RP-1092) that were used to evaluate material systems in Phase II. The new toughened resin/high strain fiber system chosen was the Ciba-Geigy 2566 resin with Celion high strain (CHS) fiber. Standard tests ST-1 through ST-5 were run for this material. In addition, ST-2 and ST-5 tests were run on 914/T300 laminates made with 5-mil tape for comparison to data from Phase I testing on 10-mil tape laminates.

3.0 TEST SETUP AND PROCEDURE

All ancillary test specimens were tested in a 100,000 pound capacity servo-hydraulic MTS test machine. For the double shear and unloaded hole specimens tested in Phase I, load was applied to theDST and UHT tension specimens through the combination of pin loading and clamping forces on the end fittings. Phase II tension tests were loaded through hydraulic grips. Compression specimens for the DSC and UHC tests were loaded directly through the potted ends. A spherical support was used for alignment of the compression specimens to minimize eccentric loads. Stabilizing plates were mounted to those compression specimens susceptible to premature buckling failure. Figure 21 shows a double shear tension specimen mounted in the MTS machine.

The single shear specimens (tension and compression) were loaded through bookend loading clevises. One clevis attached directly to the end of the specimen. The other clevis was attached to the steel test fixture which was then bolted to the test specimen. Figure 22 displays a single shear specimen and test fixture mounted in the MTS machine.

All specimens were loaded to failure using the stroke control (machine head travel) mode of loading. For the narrow specimens (w/d = 2,3) the stroke loading rate was varied between different configurations to induce a strain rate of 0.003 in./min. The wider, bearing critical specimens (w/d = 5,8) were loaded at one-half the rate of the narrow specimens. Loading rates for the ancillary tests are presented in Table 10. ZCA10193 (Reference 1).

For the single shear and double shear tests a load deflection (P-8) plot was continuously recorded to failure for each specimen. The deflection measurement for the double shear specimens is a record of the relative displacement between the clevis and the blade at the side edge of the specimen at the centerline of the central hole (Figure 23). The single shear deflection measurement is essentially the same except that the relative movement is between the test specimen and the aluminum test fixture (Figure 23).

The deflection recorded for the unloaded hole tests is head travel of the MTS machine.

Deflection measurements were recorded using MTS clip gages which were attached to specially designed adapters mounted on the specimens. These adapters attached to the specimens at the mid-thickness of each plate at the bolt centerline and were designed to insure that the true relative deflection was measured (Figure 24). These devices were used for both the single shear and double shear tests. Load versus deflection or load versus head travel plots were continuously recorded using a Hewlett-Packard X-Y plotter.

For the single shear tests, bolt head rotation (versus load and/or deflection) was also recorded. A laser beam was reflected from the bolt head to a graduated scale, from which readings were taken throughout each test. This data was then converted to angle change or rotation of the bolt head. The test setup is shown in Figure 25 (and Figure 20).

4.0 TEST RESULTS

The ancillary test program was primarily intended to provide the data necessary for the anlaysis of multi-row bolted joints (fabricated with Ciba-Geigy 914/T300) using the A4EJ computer program (Reference 1). The development of a sufficient data base to facilitate strength predictions at individual bolt locations in a bolted joint was of primary importance. This required a variety of specimens designed to exhibit a variety of failure modes. The three modes of failure to be examined were unloaded hole net-section failure, loaded hole net-section failure, and loaded hole bearing failure. Tension and compression specimens were tested for all cases.

In addition to strength data, the load-deflection behavior of bolted joints in both single and double shear was also examined. The prediction or determination of bolt load distributions in multi-row bolted joints is dependent upon the joint flexibility at each bolt location within the joint both in the linear (elastic) and non-linear (plastic) range.

Although most of the tests proceeded to failure as expected, many specimens displayed failure modes contrary to what had been planned. This was primarily the result of tapered bonded doublers attached to the specimens at the load introduction holes which occasionally failed prior to failure at the center test section. This occurred on both the double shear and unloaded hole tests as noted in the data and was, of course, limited to tension specimens. However, the basic problem was relatively steep machined tapers on the doublers. In a few instances, use of inadequate bond surface preparation and/or use of EA934 rather than higher strain to failure EA9320 adhesive was at fault. Subsequent analytic investigation provided design guidelines for future bonded and tapered doubler design (Reference 2).

The load-deflection curves are contained in Appendices A through D. Relative deflection measurements for the loaded hole tests were generally successful. The regions of elastic and plastic deformation are clearly defined along with

the transition point between the two behavior modes. The test data are summarized in Tables 11 through 34. Bearing, net-section, and gross-section stresses at failure are calculated for all loaded hole specimens regardless of the failure mode noted. The area used in bearing was the specimen thickness times the hole diameter. For the double-shear tests, virtually all of the failures occurred in the outer clevis members. Stress calculations were made using the thickness of the two outer members.

4.1 Unloaded Hole Tests - Phase I

4.1.1 Unloaded Hole Tension Tests

Most of the unloaded hole tension tests resulted in net-section tension failures. However, out of 36 total UHT specimens, 13 of them failed in the tapered doublers and progressively through the net-section at the load introduction hole. All of the narrow specimens (w/d = 2) failed in net-tension through the central hole (Figure 26). The ultimate loads attained by these specimens were somewhat lower than expected, possibly as a result of the side edge effects involved in such narrow coupons. It has been concluded that a w/d ratio of 3 would be a more appropriate minimum for any future tests. The tapered doubler failures occurred in the wider (w/d = 8) specimens which resulted in 13 out of 18 specimens failing in this mode (Figure 27). Those that did fail in net-tension through the center experienced excessive delaminations and fiber separations at failure (Figure 28). These specimens also reached comparatively high load levels at failure, indicating relatively high bypass strength for this material system. Three of the wide specimens (UHT 16, 17, 18) were cut down in width from 6.0 in. to 4.5 in. to prevent early doubler failure. With 0.75 in. diameter central holes, these specimens then had a w/d ratio of 6.0 and all three failed in net-tension at the central hole (Figure 29). On three other specimens (UHT 34, 35, 36) the end holes were relocated and "C" clamps were mounted at the ends of the tapered doublers to add resistance to the high peel forces. Despite this modification, all three specimens failed in the doublers and end holes (Figures 27 and 30).

The load-deflection curves for the unloaded hole tension tests are presented in Appendix A. The test data are summarized in Tables 11 and 12.

4.1.2 Unloaded Hole Compression Tests

The unloaded hold compression specimens all failed through the net-section at the central hole (Figure 31). All tests proceeded without difficulties except for the UHC 13, 14, 15 series of three specimens. A malfunction in the data acquisition system occurred during the testing of UHC-13, with the result that no data was recorded for that specimen. Stabilizing plates were mounted on all wide (w/d = 8) specimens to prevent premature buckling failure. These plates were inadvertently omitted during the testing of UHC-14 and UHC-15. Both specimens failed at a much lower ultimate load than expected due to compressive buckling failures at the central hole net-section.

Plots of load versus head travel for the UHC tests are contained in Appendix A. Tables 13 and 14 summarize the test data.

4.2 Double Shear Tests - Phase I

4.2.1 Double Shear Tension Tests

The double shear tension tests resulted in a variety of failure modes for both the narrow (w/d = 3) and wide (w/d = 8) specimens. Figures 32 through 37 show several of the failed specimens with different modes of failure.

The narrow specimens were intended to provide data regarding loaded hole net-section strength. Approximately 50 percent of these specimens resulted in net-tension failures (Figure 32). Nearly all of the w/d = 3 specimens with 0.75 in. diameter bolts failed the tapered doublers at the end fittings, followed by a net-tension failure at the load introduction hole (Figure 33). Some of the narrow specimens also failed in bearing, and those that did fail in tension were working to a relatively high bearing stress.

The wider specimens were designed to fail in bearing and did so with reasonable consistency (Figure 34). The specimens with 0.25 in. diameter bolts actually failed in bolt bending with minor bearing deformation due to the bending of the bolts (Figure 35). The load-deflection curves for these specimens display a smooth transition from elastic to plastic behavior, clearly representative of the bolt bending failure. One wide specimen (DST 14) resulted in an adhesive failure of the bonded doubler between the two clevises, but not before the ultimate bearing strength had essentially been reached.

For virtually all the specimens that failed in net-tension or in bearing, the ultimate failure occurred in the two outer members (Figure 36). For this reason, the thicknesses of the two outer plates were used for stress calculations. In all cases the outer laminates were one-half the number of plies of the central member. The buckling and delamination of outer plies (in the strap members) associated with bearing failures was restricted in the central member due to clamp-up effects. This phenomenon contributed to the bearing deformation occurring predominantly in the outer members. In addition, any eccentricities causing unequal loading between the outer plates would result in failure of those members prior to the central blade.

One area of concern was the apparently high level of scatter between the slopes of the load deflection curves for identical specimens. In response to this, a number of steps were taken to ensure that the data acquisition system was not the cause of this scatter. More frequent checks were made to ensure that load and deflection scales on the plotter correctly represented the actual measurements. A total of 12 runs were made with DST specimen 14, all within the elastic range of behavior (see Appendix B). Sets of 3 runs were made with the extensometer adapter mounted on the plate centerline, 1/8 in. over the centerline, 1/8 in. under the centerline, and with the bolt torque increased from 50 to 90 in.-lb. The load-deflection curves yielded very consistent results throughout the repeated loadings despite these varied conditions. Suggesting the cause of this scatter would still be speculation at this time.

Appendix B contains the load-deflection curves for the double shear tension tests. A summary of the test data is presented in Tables 15 and 16.

4.2.2 Double Shear Compression Tests

The double shear compression tests were completed without any deviations from the anticipated behavior. Approximately 50 percent of the narrow (w/d = 3) specimens failed in compression, the remainder consisting of bearing failures (Figure 38). Compression failures for these specimens usually consisted of a shear/buckling failure occurring immediately at the boundary of the washer at the central hole. All of the specimens that failed in compression were working to a very high bearing stress. The remainder of the narrow specimens did, in fact, fail in bearing.

Most of the wide specimens (w/d = 8) resulted in bearing failures. The only exceptions were the three wide specimens with 0.25 in. diameter bolts (DSC-28, 29, 30) which failed in bolt bending with some minor bearing damage (Figure 39). Three specimens (DSC 10, 11, 12) which had 0.50 in. rather than the planned 0.25 in. holes also failed in bearing at a w/d ratio of 4.0. As was the case for the DST tests, failures occurred consistently in the outer clevis plates of the DSC specimens.

The slopes of the load deflection curves for the DSC tests were notably more consistent among identical specimens than they were for the DST tests. The load-deflection curves are presented in Appendix B. The test data are summarized in Tables 17 and 18.

4.3 Single Shear Tension & Compression Tests - Phase I

The single shear test results were consistent for both tension and compression tests. All the single shear specimens had a w/d ratio of 8.0 and all failed in bearing. Examination of the load deflection curves clearly indicates the yield point at which plastic bearing deformation begins. This change in

stiffness was generally less severe than that observed for the double shear tests. Bearing strengths were fairly consistent between SST and SSC tests of the same geometry.

The plastic range of bearing deformation was also clearly audible from the initial ply failures through to ultimate load.

Measurements of bolt head rotation were taken for all single shear tests. Although readings of the laser beam deflection were taken incrementally, the variation of bolt head rotation with load appeared essentially bilinear and analogous to the path of each load-deflection curve. These data were gathered in anticipation of their potential significance to the load-deflection characteristics of single-shear joints. A measurable amount of permanent bearing deformation was sustained by the aluminum bushings as well as the graphite plates. The aluminum bushing bearing areas were the same as the graphite for each hole. Bearing yield deformation of both members must be considered when making use of the load-deflection data.

The load-deflection curves for the single-shear tests are presented in Appendix C. The test data are summarized in Tables 19 through 22.

4.4 Composite Stress Concentration Factors - Phase I

The composite stress concentration factors for all Phase I double shear tests that experienced net-section tension failures and for unloaded hole tests appear in Tables 23 through 25. Elastic stress concentration factors are calculated for each w/d ratio by the methods given in Reference 3. The composite stress concentration factors are calculated from the test data using the formula:

$$K_{tc} = \frac{(F_{tu})(w-d)(t)}{P_{ult}}$$

where F_{tu} is the unnotched tension allowable, P_{ult} is the specimen failure load, and w, d and t are the specimen width, diameter and thickness, respectively. Thus, the composite stress concentration factor is the ratio of the peak stress at the side of the hole (where failure occurs) to the average net-section stress.

4.5 Unloaded Hole Tests - Phase II

Tests were performed successfully on all 48 unloaded hole tension coupons. The results of these tests appear in Tables 26 through 28.

4.5.1 Unloaded Hole Tension

The unloaded hole tension testing consisted of two sets of 18 specimens. Specimen geometries used in each set were identical, the only difference being the 5 mil versus 10 mil tape prepreg used for laminate fabrication. Test results among geometrically identical specimens were generally consistent, with no significant difference between laminates of differing ply thickness. The 5 mil specimens did generally exhibit a more uniform net-section failure as compared to the 10 mil specimens which were more severly damaged and delaminated around the hole. The stress concentration factors derived from these tests provided an adequate data base to support analytical strength predictions for multirow bolted joints (Reference 3).

4.6 Double Shear Tests - Phase II

All but two of the 36 double shear specimens planned were successfully fabricated and tested, generating the requisite data. Table 29 contains the test results for the double shear tests. Load deflection curves for Phase II tests are contained in Appendix D.

4.6.1 Double Shear Tension

Test results for net-section tension strength and associated stress concentration factors are consistent with Phase I results. The stress concentration relief

factors (C-factors) are equivalent to earlier test-generated values. They are approximately 0.25 for fiber pattern A and 0.41 for pattern B.

Two sets of specimens were bearing critical. Those with composite splice plates had simultaneous bearing failures in the splice and central skin, and reached ultimate bearing stress levels of 126 to 128 ksi. Those with titanium splices failed in the central composite skin at bearing stresses of 154 to 162 ksi. The results are attributed to clamp-up provided by the splices and somewhat higher fastener torque which may have prevented delamination in the surface plies of external composite splices.

4.6.2 Double Shear Compression

The compression tests were designed to provide bearing strength data not obtained by Phase I tests due to bolt bending. This series used 0.375 in. diameter bolts with w/d ratios of five.

The compression specimens with composite splices one half the thickness of the central skin experienced simultaneous bearing failures with bearing stress levels of 104 to 115 ksi. Specimens with thicker splices failed in the central skin at bearing stresses of 131 to 132 ksi, while experiencing some bolt bending with 0.375 in. diameter bolts. The early bearing failures can be attributed to a lack of clamp-up as the external splices begin to fail in bearing.

4.6.3 Composite Stress Concentration Factors - Phase II

Composite stress concentration factors were calculated for all Phase II double shear tests that experienced net-section tension failures and for unloaded hole tests. The Phase II values appear in those tables referenced in Sections 4.4 and 4.5. These values are used to predict the bearing-bypass strength in composite multi-row bolted joints.

4.7 Elastic Spring Rates

The measured elastic spring rate values from all of the Phase I and II loaded hole tension and compression tests appear in Table 30, 31 and 32. These values, found by taking the slope of the linear portion in the load-deflection plots for double shear tests (Appendix B and D), provide the data necessary for accurate solutions of bolt load distributions in multi-row bolted joints.

4.8 NASA Standard Tests

The NASA ST-1 through ST-5 tests were performed on several new material systems. The tests, as documented in NASA Reference Publication 1092, are Compression After Impact, Edge Delamination, Open Hole Tension, Open Hole Compression and Hinged Double Cantilever Beam Tests. In Phase I, the NASA Standard Tests were performed using the 914/T300 system with 10-mil tape (used through the joints development program). The results for these tests appear in Tables 33 through 37. As part of the Phase II effort a new toughened system using the Ciba Geigy 2566 resin with Celion High Strain Fibers was evaluated. Results from these tests appear in Tables 38 through 42. In addition, the ST-2 and ST-5 tests were performed on 914/T300 laminates fabricated with 5 mil tape for comparison to tests with 10 mil tape laminates from Phase I. Results of these tests appear in Tables 43 and 44.

The 5 mil specimens resulted in similar G_{IC} values to 10 mil tape laminates, but much higher Gc values obtained from the Edge Delamination Test, apparently due to the resulting lower interlaminar stresses. The 2566/CHS laminates demonstrated good properties for all toughness measurements. Figure 40 shows an open hole ST-3 specimen. Figure 41 shows three ST-1 compression after impact specimens.

5.0 BASIC MECHANICAL PROPERTY TESTS

5.1 Phase I Tests

The ancillary test program included a series of tests to determine basic laminate strength allowables and modulus values. A total of six (6) tension and six (6) compression tests was fabricated as in Figure 42 Among each set of specimens, three (3) consisted of layup Pattern A, and three (3) of layup Pattern B.

The tension tests were run using self-tightening friction grips at the ends with an extensometer attached to the specimen along the constant section to measure Young's Modulus. One specimen of each group (Pattern A, B) had strain gauges at the minimum section. The extensometer was removed from each specimen at approximately 2/3 the anticipated failure load, and the test was then continued to failure.

The compression tests provided ultimate compression strength data only. The specimens were made with potted ends similar to all previous compression specimens (Figure 43).

Table 45 summarizes the results for the tension and compression tests. Ultimate tension stresses are calculated based on the minimum width section. In addition, these stress values are multiplied by the appropriate stress concentration factor associated with this type of specimen.

Several tension specimens failed at some distance away from the minimum crosssection (Figure 44). This result suggests that the stresses presented in Table 45 may be considered minimum allowable stresses in tension.

5.2 Phase II Tests

An additional series of tests to find basic laminate properties were run in Phase II. Three tension specimens made with 5 mil tape and three with 10 mil tape were tested in order to compare strength and stiffness properties. The results of these tests are presented in Table 46.

6.0 SUMMARY AND CONCLUSIONS

Basic unloaded hole and single bolt loaded hole test data are presented which support the analysis of multirow bolted joints in thick, highly loaded composite structures. The results characterize the strengths and failure modes of composite joint specimens loaded in tension and compression. Unnotched laminate tests were also run to provide a basis from which the notched specimen strengths can be evaluated.

The measured section strengths for unloaded and loaded hole specimens provide the data necessary to calculate the stress concentration factors at failure for notched composite laminates. This data also reaffirms that composite cross-ply laminates do exhibit substantial relief from strength reductions associated with linear elastic stress concentration factors. The notched strength data also indicates that the B pattern laminate (37.5, 50, 12.5) is more notch sensitive (or, shows less stress concentration relief) than the quasi-isotropic pattern A, when compared to their respective unnotched strengths. Despite the greater sensitivity to discontinuities, the B pattern notched strengths are substantially higher than the quasi-isotropic A pattern.

The series of tests comparing the unloaded hole tensile performance of laminates fabricated with 5-mil and with 10-mil tape did not show any difference in strength levels between the two laminates. However, the appearance of the two specimen types after failure are quite different. The 5-mil tape laminates sustain a relatively "clean" net-section failure through the hole while the 10-mil tape specimens suffer extensive delamination and interlaminar fracture. This may be attributed to the higher interlaminar stresses that arise from the use of thick ply material.

The bearing strengths of composite joints were measured for single and double shear configurations. Phase I double shear specimens were all tested with splice plates that were one-half the thickness of the central blade. Thus, all failures occurred in the external splices which were not afforded any additional clamp-up beyond the washer surface area, providing less resistance

to the buckling or delamination of outer plies; a failure mode which is typically associated with bearing failures in composite laminates. Phase II tests designed to fail the central blade of a double shear joint in bearing demonstrated bearing strength increases of 30 to 60 percent above that of an external splice.

Γ

Joint load-deflection properties were measured for a variety of laminate thicknesses, bolt diameters, and fiber patterns. The magnitude of these values vary considerably between configurations, and in many cases, an apparently large degree of scatter between elastic spring rates for identical specimens was shown. These measurements also indicated that composite joints may undergo substantial nonlinear deformations prior to failure, particularly in the case of bearing failures. In some cases, bolt bending failures were observed prior to the occurrence of any significant damage to the composite material.

NASA Standard Test results provide a basis for comparison between different material systems. The edge delamination test results for the 914/T300 material for 5-mil and 10-mil tape laminates show that significant differences in performance exist between laminates with a relatively small change in the basic ply thickness. The results of standard tests on the CHS/2566 material indicate that there are substantial benefits available from the improved material properties of new systems which will have a significant impact on the design of composite aircraft structure. In the case of joints technology, the new high strength/high strain fibers used with toughened resin systems are yielding higher notched (and unnotched) strengths, which translate directly into improved joint performance.

7.0 REFERENCES

- 1. Hart-Smith, L.J., "Design Methodology for Bonded-Bolted Composite Joints Analysis Derivations and Illustrative Solutions", Air Force Wright Aeronautical Laboratories Report Number AFWAL-TR-81-3154, February 1982.
- 2. Hart-Smith, L.J. and Bunin, B.L., "Selection of Taper Angles For Doublers, Splices, and Thickness Transitions in Fibrous Composite Structures", Douglas Paper 7299, presented to Sixth Conference on Fibrous Composites in Structural Design.
- 3. Bunin, B.L., "Critical Composite Joint Subcomponents Analysis and Test Results", NASA CR 3711, September 1983.

ORIGINAL PAGE IS OF POOR QUALITY

UHT 7,8,9 UHT 25,26,27

UHT 1,2,3 UHT 19,20,21

FIGURE 1 - UNLOADED HOLE TENSION SPECIMENS

YTUNG, W. W.

UHT 13,14,15 UHT 31,32,33

FIGURE 2 - UNLOADED HOLE TENSION SPECIMENS

UHT 16,17,18 UHT 34,35,36

FIGURE 3 - UNLOADED HOLE TENSION SPECIMEN

ORIGINAL PAGE IS OF POOR QUALITY

UHC 7,8,9 UHC 25,26,27

UHC 4,5,6 UHC 22,23,24

UHC 1,2,3 UHC 19,20,21

FIGURE 4 - UNLOADED HOLE COMPRESSION SPECIMENS

UHC 13,14,15 UHC 31,32,33

UHC 10,11,12 UHC 28,29,30

FIGURE 5 - UNLOADED HOLE COMPRESSION SPECIMENS

UHC 16,17,18 UHC 34,35,36

FIGURE 6 - UNLOADED HOLE COMPRESSION SPECIMEN

DST 7,8,9 DST 25,26,27

3125 JIA 2 HOLES

3165 JIA 2 HOLES

2 PLUS

3165 JIA 2 HOLES

2 PLUS

2 PLUS

2 PLUS

2 PLUS

3 PLUS

2 PLUS

3 PLUS

4 .50

2 PLUS

3 PLUS

3 PLUS

4 .50

7 .50

DST 1,2,3 DST 19,20,21

FIGURE 7 - DOUBLE SHEAR TENSION SPECIMENS

ORIGINAL PAGE IS OF POOR QUALITY - 1.500żooo DST 13,14,15 DST 31,32,33 - 2250 -2 ft.cs 2300

DST 16,17,18 DST 34,35,36

FIGURE 8 - DOUBLE SHEAR TENSION SPECIMENS

2 703

DSC 7,8,9 DSC 25,26,27

DST 10,11,12 DST 28,29,30

FIGURE 9 - DOUBLE SHEAR COMPRESSION AND TENSION SPECIMENS

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 10 - DOUBLE SHEAR COMPRESSION SPECIMENS

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 11 - DOUBLE SHEAR COMPRESSION SPECIMENS

ORIGINAL PAGE IS OF POOR QUALITY

DSC 16,17,18 DSC 34,35,36

FIGURE 12 - DOUBLE SHEAR COMPRESSION SPECIMEN

SST 1,2,3 SST 10,11,12

SSC 1,2,3 SSC 10,11,12

FIGURE 13 - SINGLE SHEAR SPECIMENS

SSC 7,8,9 SSC 16,17,18

FIGURE 14 - SINGLE SHEAR SPECIMENS

SST 4,5,6 SST 13,14,15

FIGURE 15 - SINGLE SHEAR SPECIMENS

FIGURE 16 - BOLT HEAD ANGLE CHANGE MEASUREMENT

FIGURE 17 DOUBLE SHEAR TENSION SPECIMEN - PHASE II

FIGURE 18 DOUBLE SHEAR TENSION SPECIMEN - PHASE II

FIGURE 19
UNLOADED HOLE TENSION TEST SPECIMEN CONFIGURATION
PHASE II

FIGURE 21 TEST SET-UP - DOUBLE SHEAR TENSION TEST

FIGURE 22. SINGLE SHEAR TEST SET-UP

FIGURE 23
DEFINITION OF RELATIVE DEFLECTION MEASUREMENT

FIGURE 24 DEFLECTION MEASUREMENT DEVICE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 25 SINGLE SHEAR TEST - MEASUREMENT SYSTEM FOR BOLT HEAD ROTATION

FIGURE 26 UNLOADED HOLE TENSION TEST - NET-SECTION FAILURES

FIGURE 27 UNLOADED HOLE TENSION TEST - BONDED DOUBLER FAILURE

FIGURE 28 UNLOADED HOLE TENSION TEST - NET-SECTION FAILURE

FIGURE 29 UNLOADED HOLE TENSION TEST - (w/d = 6) - NET-SECTION FAILURE

FIGURE 3C UNLOADED HOLE TENSION TEST - BONDED DOUBLER AND END HOLE FAILURE

FIGURE 31 UNLOADED HOLE COMPRESSION TEST - NET-SECTION FAILURE

FIGURE 32 DOUBLE SHEAR TENSION TESTS - NET-SECTION FAILURES

FIGURE 33 DOUBLE SHEAR TENSION TESTS - NET-SECTION FAILURES

FIGURE 34 DOUBLE SHEAR TENSION TESTS - BOLT BENDING FAILURE

FIGURE 35 DOUBLE SHEAR TENSION TESTS - BEARING FAILURE

FIGURE 36 DOUBLE SHEAR TENSION TESTS - BONDED DOUBLER FAILURE

FIGURE 37 DOUBLE SHEAR TENSION TESTS - NET-SECTION FAILURE

FIGURE 38 DOUBLE SHEAR COMPRESSION TEST - BEARING FAILURE

FIGURE 39 DOUBLE SHEAR COMPRESSION TEST - BOLT BENDING FAILURE

The transfer of M-Hole COMPRESSION TEST ST-4

FI - : 41 COMPRESSION AFTER IMPACT SPECIMENS - ST-1

UNNOTCHED TENSION SPECIMEN

SPECIMEN CODING:

MPT 1, 2, 3 - PATTERN A MPT 4, 5, 6 - PATTERN B

 $R = 5.0^{\circ}$

FIGURE 42

SPECIMEN CODING: MPC 1, 2, 3, - PATTERN A MPT 4, 5, 6, - PATTERN B

ORIGINAL PAGE IS OF POOR QUALITY

019C

NO HOLE WARRESSION

FIGURE 43 UNNOTCHED COMPRESSION SPECIMEN

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 44 UNNOTCHED TENSION SPECIMENS

Specimen Coding	Layup Patt.		Layup Patt.	Specimen Coding	Layup Patt.
DST 1,2,3 4,5,6		SST 1,2,3 4,5,6	A	UHC 1,2,3 4,5,6	
7,8,9 10,11,12 13,14,15 16,17,18		7,8,9 10,11,12 13,14,15 16,17,18	В	7,8,9 10,11,12 13,14,15 16,17,18	A
19,20,21 22,23,24 25,26,27		SSC 1,2,3 4,5,6	A	19,20,21 22,23,24 25,26,27	В
28,29,30 31,32,33 34,35,36		7,8,9 10,11,12 13,14,15	В	28,29,30 31,32,33 34,35,36	
DSC 1,2,3 4,5,6 7,8,9	Α .	SST - Single Shear SSC - Single Shear		UHT 1,2,3 4,5,6 7,8,9	A
10,11,12 13,14,15 16,17,18		Layup Pattern A 0°, ±45°, 90	·	10,11,12 13,14,15 16,17,18	
19,20,21 22,23,24		25%, 50%, 25		19,20,21 22,23,24	
25,26,27 28,29,30 31,32,33 34,35,36	-	Layup Pattern B 0°, ±45°, 90 37.5%, 50%,		25,26,27 28,29,30 31,32,33 34,35,36	В

DST - Double Shear Tension DSC - Double Shear Compression

UHT - Unloaded Hole Tension
UHC - Unloaded Hole Compression

Table 1. Ancillary Test Specimen Coding - Phase I

Table 2
Unloaded Hole Ancillary Test Specimen
Dimensions in Customary Units (Inches)
Tension Specimen Shown

SPECIMEN I.D. #	Edge Distance (e)	Center Attachment Diameter (D)	End Attachment Diameter (d)	Thickness (t)	Width (w)	Layup Pattern	Load Direction
DST 1,2,3	0.75	0.250	0.312	0.333	0.75	0°, 45°, 90°	4
4,5,6	1.50	0.500	0.625	0.500	1.50	25%, 50%, 25%	Ţ
7,8,9	2.25	0.750	1.000	0.666	2.25	A	
10,11,13	2 2.00	0.250	0.500	0.333	2.00	I	
13,14,1		0.500	U.750	0.500	4.00	₹	ł
16,17,18	6.00	0.750	2.000	0.666	6.00	0°, 45°, 90°	I
						25%, 50%, 25%	Tension
19,20,2	0.75	0.250	0.312	0.333	0.75	0°, 45°, 90°	l
22,23,24	1,50	0.500	0.625	0.500	1.50	37.5%, 50%, 12.5%	Ì
25,26,27		0.750	1.000	0.666	2.25	A	
28,29,30		0.250	0.500	0.333	2.00	I	}
31,32,33		0.500	0.750	0.500	4.00	▼	
DST 34,35,36	6.00	0.750	2.000	0.666	6.00	0°, 45°, 90°	1
				•		37.5%, 50%, 12.5%	7
36	Total		The state of the s	Participation of the second of			

Table 3.

Double Shear Ancillary Tension Specimen
Dimensions Shown in Customary Units (Inches)
(Tension Specimen Shown)

SPECIMEN I.D. #			Distance Diameter Thi		Edge Attachment Distance Diameter Thickness Width			Load Direction	
DSC 1,2,3	0.750	0.250	0.333	0.75	0°, 45°, 90°	A			
4,5,6	0.750	0.500	0.500	1.50	25%, 50%, 25%	Ť			
7,8,9	1.125	0.750	0.666	2.25	· •				
10,11,12	0.750	0.250	0.333	2.00	1				
13,14,15		0.500	0.500	4.00	▼	` 			
16,17,18		0.750	0.666	6.00	0°, 45°, 90° 25%, 50%, 25%	l Compression			
19,20,21	0.750	0.250	0.333	0.75	0°, 45°, 90°				
22,23,24	0.750	0.500	0.500	1.50	37.5%, 50%, 12.5%				
25,26,27	1.125	0.750	0.666	2.25	Ā				
28,29,30	0.750	0.250	0.333	2.00	· T	`			
31,32,33	0.750	0.500	0.500	4.00	•				
DSC 34,35,36	1.125	0.750	0.666	6.00	0°, 45°, 90° 37.5%, 50%, 12.5%	*			

36 TOTAL

Table 4.

Double Shear Ancillary Compression Specimen
Dimensions Shown in Customary Units (Inches)
(Tension Specimen Shown)

SPECIMEN I.D. #	Edge Distance (e)	Attachment Diameter (D)	Thickness (t)	Width (w)	Layup Pattern	Load Direction
SST 1,2,3	2.00	0.250	0.333	2.00	0°, 45°, 90° 25%, 50%, 25%	À.
4,5,6	4.00	0.500	0.500	4.00	23%, 30%, 23%	
7,8,9	6.00	0.750	0.666	6.00	0°, 45°, 90° 25%, 50%, 25%	Tension
10,11,12	2.00	0.250	0.333	2.00	0°, 45°, 90° 37.5%, 50%, 12.5%	161151011
13,14,15	4.00.	0.500	0.500	4.00		
SST 16,17,18	6.00	0.750	0.666	6.00	0°, 45°, 90° 37.5%, 50%, 12.5%	†
18	Total					

Table 5
Single Shear Ancillary Tension Specimen
Dimensions Shown in Customary Units (Inches)

1

SPECIMEN I.D. #	Edge Distance (e)	Attachment Diameter (D)	Thickness (t)	Width (w)	Layup Pattern	Load Direction
SSC 1,2,3	1.00	0.250	0.333	2.00	0°, 45°, 90°	
4,5,6	2.00	0.500	0.500	4.00	25%, 50%, 25%	
7,8,9	3.00	0.750	0.666	6.00	0°, 45°, 90° 25%, 50%, 25%	Compression
.10,11,12	1.00	0.250	0.333	2.00	0°, 45°, 90° 37.5%, 50%, 12.5%	
13,14,15	2.00	.0,500	0.500	4.00	1	
SSC 16,17,18	3.00	0.750	0.666	6.00	0°, 45°, 90° 37.5%, 50%, 12.5%	+
18	TOTAL					

Table 6
Single Shear Ancillary Compression Specimen
Dimensions Shown in Customary Units (Inches)

TABLE 7 UNLOADED HOLE TENSION SPECIMEN DESCRIPTION - PHASE II

Dimensions in inches: L,W tolerances ± .015

SPECIMEN CODING	NUMBER OF SPECIMENS	LAYUP PATT.	LENGTH L	WIDTH W	NOM. HOLE DIA. d	HYDR. GRIP LENGTH g	PLY THICKNESS	NUMBER OF PLIES
UHT5-19,20,21 22,23,24 25,26,27 31,32,33 34,35,36 UHT5-37,38,39	3 3 3 3 3	. B5	14.000	1.125 1.500 2.250 2.500 3.750 3.000	.375 .500 .750 .500 .750 1.000	3.000	.0055	48
UHT10-19,20,21 22,23,24 25,26,27 31,32,33 34,35,36 UHT10-37,38,39	3 3 3 3 3	B10	14.000	1.125 1.500 2.250 2.500 3.750 3.000	.375 .500 .750 .500 .750 1.000	3.000	.0104	24
UHT10-4,5,6 7,8,9 13,14,15 UHT10-16,17,18	3 3 3 3	A	14.000	1.500 2.250 2.500 3.750	.500 .750 .500 .750	3.000	.0104	24

Total =48

MATERIAL: CIBA - GEIGY 914/T300

THICKNESS: 0.250 in. Nominal (All tests)

LAYUP PATTERNS: A - $(45/0/-45/90)_{3}$ S, 24 Ply , 10 mil tape

 $B5 - (45/0/-45/0/45/0/-45/90)_{35}$, 48 Ply, 5 mil tape

B10 - $[(45/0/-45/0/45/0/-45/90) + (45/0/-45/0/90/-45/0/45) + (90/-45/0/45/0/-45/0/45)]_{T}$, 24 Ply. 10 mil tape

TABLE 8
BOLTED DOUBLE SHEAR SPECIMEN DESCRIPTION - PHASE II

Dimensions in inches: L, W, e tolerances $^{+}$.015

SPECIMEN CODING	NUMBER OF SPECIMENS	LAYUP PATT.	LENGTH L	WIDTH	EDGE DIST. e	NOM. HOLE DIA. d	HYDR. GRIP LENGTH 9	BLADE THICKNESS t ₁	SPLICE THICKNESS t ₂
DSC 10,11,12 DSC 28,29,30 DSCA 28,29,30		А В В	9.25	1.875	3.0	. 375 . 375 . 375	3	. 333	.167 .167, .250
DST 7,8,9 DST 25,26,27		A B	9.25	2.25	3.0	. 750 . 750	3	.666	.333
DSTA 7,8,9 DSTA 25,26,27	3 each	A B	9.25	2.25	3.0	. 750 . 750	3	.666	.499
DSTB 25,26,27 DSTB 22,23,24 DSTB 31,32,33		В В	9.25	2.25 1.50 2.50	3.0	.750 .500 .500	3	. 666 . 499 . 499	.375* .250* .250*
DSTA 22,23,24 DSTA 31,32,33		В В	9.25	1.50 2.50	3.0	. 500 . 500	3	. 499 . 499	.333 .333

Total = 36

- * For DSTB25 through DSTB33, splice plates are to be made of 6al-4V titanimum
- ** Stacking sequences for each thickness are given in Table III

See fabrication criteria section 3.0

TABLE 9
NASA STANDARD TESTS - SPECIMEN IDENTIFICATION

ST x B = STANDARD TEST NUMBER X, B MATERIAL (EPOXY)
ST x C = STANDARD TEST NUMBER X, C MATERIAL (BISMALEAMIDE)

TEST NAME	TEST NUMBER (per RD1092)		SPECIMEN CODES	NUMBER OF TESTS AT DAC	COMMENTS	
Compression After Impact	ST-1		ST1B -1,-2,-3 ST1C -1,-2,-3	3	NASA makes theirs from 22 x 22 panel	
Edge Delamination			ST2B -1 thru -5 ST2C -1 thru -5	5 5	NASA tests 5 each also, make 10 each	
			ST2B -6 thru -10 ST2C -6 thru -10	5 5	NASA tests 5 each also, make 10 each	
Supporting	Directional		ST25B -0	3	Same	
Data	Properties 0		ST25C -0	3	Material batch as	
			ST25B -90	3	ST-2 specimens	
		30	ST25C -90	3		
		I 1 / C	ST25B - 45 ST25C - 45	3 3		
Open Hole	ST-3	• • •	ST3B -1,-2,-3	3		
Tension	İ	Ī	ST3C -1,-2,-3	3	1	
Open Hole	ST-4		ST4B -1,-2,-3	3	NASA makes theirs from	
Compression			ST4C -1,-2,-3	3	22 x 22 panel	
Hinged Double	ST-5		ST5B -1,-2,-3	. 3		
Cantilever Beam			ST5C -1,-2,-3	3	7	

Table 10 Ancillary Test Specimen Loading Rates

Double Shear

Single Shear

Unloaded Hole

SPECIMEN	δ	Р	SPECIMEN	δ	Р	CDDCTMDN	δ	Р
I.D. #	(in/min)	(lb/min)	I.D. #	(in/min)	(lb/min)	SPECIMEN I.D. #	·(in/min)	(lb/min)
DST 1,2,3	.02		SST 1,2,3	.010	4,360			3,000
		6,000				UHC 1,2,3		•
4,5,6	.022	18,000	4,5,6	.021	17,500	4,5,6	_	6,000
7,8,9	.034	36,000	7,8,9	.024	35,000	7,8,9		9,000
10,11,12		12,000		12 .010	4,368		,12 .015	12,000
13,14,15		35,000	13,14,		17,500		,15.03	24,000
16,17,18		70,000	SST 16,17,		35,000		,18.056	36,000
19,20,21	•	7,500	SSC 19,20,		4,368		,21 .007	3,750
22,23,24	-	22,500	22,23,	24 .021	17,500	22,23	,24 .009	7,500
25,26,27		45,000	25,26,	27 .024	35,000	25,26	,27 .010	11,250
28,29,30	.015	12,000	28,29,	.010	4,368	28,29	,30 .015	15,000
31,32,33	.022	35,000	31,32,	33 .021	17,500		,33 .03	30,000
DST 34,35,36	.035	70,000	SSC 34,35,3	36 .024	35,000	UHC 34,35	.36 .045	45,000
DSC 1,2,3	.015	6,000			•	UHT 1,2,3		3,000
4,5,6	.015	18,000				4,5,6		6,000
7,8,9	.015	36,000				7,8,9		9,000
10,11,12		12,000				10.11	,12.019	12,000
13,14,15		35,000				13.14	,15.036	24,000
16,17,18		70,000	•			16.17	,18.048	36,999
19,20,21	.015	.7,500				19.20	,21 .018	3,750
22,23,24	.015	22,500				22.23	,24.018	7,500
25,26,27	.015	45,000				25 26	,27.021	11,250
28,29,30		12,000				22,20	,30.019	15,000
31,32,33		35,000				20,23	,33.036	30,000
DSC 32,35,36		70,000			•	21,32 21,32	26 048	45,000
DEC 32130	.010	70,000				UHT 34,35	0,30.040	45,000

 $[\]delta$: is the stroke loading rate - inches per minute

P : is the estimated rate of applied load in pounds per minute for the specified δ

TABLE 11

-4.

UNLOADED HOLE TENSION SPECIMENS FIBER PATTERN A - (25% 0°,50% ±45°,25% 90°) U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	W/D RATIO	PANEL THICK. IN.	FAILURE LOAD L3	FAILURE MODE	STRESS KSI	GROSS-SECT. STRESS KSI	50 J
UHT- 1 UHT- 3 UHT- 3	0.250 0.250 0.250	0.503 0.503	2.0 2.0 2.0	0.254	3040.0 3220.0 3160.0	TENS TENS TENS	47.31 50.11 49.17	23.79 25.20 24.73	š.
UHT- 5 UHT- 6	0.500 0.500	0.995 0.995 0.998	2.0	0.245 0.240 0.245	5680.0 6000.0 6075.0	TENS TENS TENS	46.34 50.51 49.79	23.30 25.13 24.85	dy G
UHT- 7 UHT- 5 UHT- 9	0.750 0.750 0.750	1.493 1.493 1.493	2000	0.247 0.247 0.244	9965.0 9510.0 3700.0	TENS TENS TENS	43.95 51.32 47.99	24.31 25.79 23.88	ORIG OF P
UHT-10 UHT-11 UHT-12	0.250	2.001 2.005 2.006	88.0 0.0 0.0	0.245 0.250 0.250	27200.0 23000.0 25625.0	TENS DOLR DOLR	63.40 52.42 53.57	55.43 45.89 51.25	oricinate fi of poor qu
UHT-13 UHT-14 UHT-15	0.500	4.002 4.005 4.000	000 000	0.244 3.244 0.243	32100.0 38500.0 50000.0	DSLR OBLR TENS	37.57 45.38 53.79	32-87 39-45 51-44	PAGE IS
UHT-16 UHT-17 UHT-18	0.750 0.750 0.750	4.500 4.500 4.500	6666	0.245 0.244 0.245	49303.0 51100.0 50600.0	TENS TENS TENS	53.66 55.85 55.07	44.72 46.54 45.90	

TENS = TENSION

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING

DBLR = DOUBLER

TABLE 12

UNLOADED HOLE TENSION SPECIMENS

FIBER PATTERN 8 - (37.5% 0°.50% ±45°.12.5% 90°)

U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	W/D RATIO	PANEL THICK. IN.	FAILURE LOAD LB	FAILURE MODE	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI	
UHT-19 UHT-20 UHT-21	0.250 0.250 0.250	0.485 0.490 0.495	2.0	0.251 0.251 0.251	4190.3 4503.0 4500.0	TENS TENS TENS	71.04 74.70 73.18	34.42 36.59 36.22	
UHT-22 UHT-23 UHT-24	0.500 0.500 0.500	0.999 1.000 0.995	2.0	0.242 0.242 0.240	8470.0 8500.0 3520.0	TENS TENS TENS	70.14 71.07 71.72	35.04 35.54 35.68	<u></u>
UHT-25 UHT-26 UHT-27	0.750 0.750 0.750	1.446 1.445 1.444	2.00	0.246 0.243 0.246	125CO.C 129CO.O 1282O.O	TENS TENS TENS	73.01 76.38 75.09	35.14 36.74 36.09	IGINAL POOR
UHT-28 UHT-29 UHT-30	0.250	1.995 1.998 2.000	0000	0.246 0.242 0.244	20750.0 25400.0 28650.0	DBLR DBLR DBLR	43.34 60.05 67.10	42.28 52.53 58.71	PAGE IS QUALITY
UHT-31 UHT-32 UHT-33	0.500 0.500 0.500	4.000 3.999 4.002	8.0 8.0	0.240 0.241 0.239	49350.0 47300.0 53000.0	DELR DBLR DBLR	53.75 56.09 63.32	51.41 49.03 55.41	
UHT-34 UHT-35	0.750 0.750 0.750	5.003	3.0 0.0	0.240 0.243	66800.0 49300.0	D8L8 D8L8	53.09 33.70	45.44 33.86	

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING

DBLR = DOUBLER

TABLE 13. UNLOADED HOLE COMPRESSION SPECIMENS (25% 0°,50% ±45°,25Y 90°)

U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	PATIC	PANEL THICK. IN.	FAILURE LOAD LB	FAILURE MOSE	VET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI
UHC- 1 UHC- 2 UHC- 3	0.250	0.510 0.507 0.505	2000	G.246 O.253 O.253	4490.0 4320.0 3490.0	COMP COMP	70.20 60.44 54.10	35.79 33.69 27.32
UHC- 5 UHC- 5	0.500 0.500 0.500	1.003 1.001 1.002	222 000	0.255	7350.0 9100.0 7900.0	COMP COMP	57.30 63.40 61.96	26.74 31.73 31.04
UHC- 7 UHC- 8 UHC- 9	0.750 0.750 0.750	1.490	2.00 2.00 2.00	C.253 0.255 0.254	9700.0 10340.5 9600.0	COMP COMP COMP	51.91 54.72 51.14	25.73 27.20 25.38
UHC-13 UHG-11 UHC-12	0.250 0.250 0.250	1.993 1.996 2.002	0000 0000	0.253 0.254 0.253	26250.0 25250.0	COMP COMP COMP	59.36 56.94 57.30	51.93 49.80 50.15
UHC-13 UHC-14 UHC-15	0.500 0.500 0.500	3.995 3.997	() () () () () () () () () () () () () (2.252 3.251 3.253	26550.0	COMP COMP COMP	0.00 30.27 29.39	0.00 * 26.48 ** 25.71 **
UHC-16 UHC-17 UHC-18	3.750 0.750 0.750	5.993	(300)	0.252 0.253 0.252	65000.0 67100.0 58700.0	COMP COMP	49.20 50.63 44.41	43.04 44.34 33.36

TENS = TENSION

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING DBLR = DOUBLER

* Malfunction of data acquisition system ** Anti-buckling plates omitted during test

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 14 UNLCADED HOLE COMPRESSION SPECIMENS (37.5% 0°,50% ±45°,12.5% 90°) U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	RATIO	PANEL THICK. IN.	FATLURE LOAD LB	FAILURE	VET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI
UHC-19 UHC-20 UHC-21	0.250 0.250	0.506 506 506	22.0 	0.252 0.251 0.250	4520.0 4670.0 5070.0	COMP COMP COMP	69.25 72.68 75.60	35.24 36.77 39.92
UHC-22 UHC-23 UHC-24	0.500 0.500	1.030 1.020 1.020	222 200 000	0.254 0.250 0.254	8770.0 9020.0 8760.0	COMP COMP COMP	65.15 69.38 65.37	33.52 35.37 33.58
UHC-25 UHC-26 UHC-27	0.750 0.750 0.750	1.500 1.504 1.504	55.50 0.00 0.00	G.251 C.251 C.254	12780.0 12930.0 12980.0	9403 9403 9403	68.42 68.32 67.78	34.21 34.25 33.98
UHC-28 UHC-27 UHC-30	0.250 0.250 0.250	2.120 2.130 2.150	3000 0000	0.254 9.251 0.254	33450.0 30950.0 23500.0	COMP COMP	70.42 65.59 59.06	62.12 57.89 52.19
UHC-31 UHC-32 UHC-33	0.500 0.500 0.500	4.090 4.090 4.090	 	0.258 0.256 0.256	53400.0 43900.0 47500.0	COMP COMP	57.65 53.21 51.65	50.61 46.70 45.37
UHC-35 UHC-35 UHC-36	0.750 0.750 0.750	6.030 6.030	000	0.257 0.252 0.249	72200.0 72100.0 67200.0	COMP COMP COMP	53.01 54.50 51.11	45.44 47.69 44.76

OF POOR QUALITY

TENS = TENSION COMP = COMPRESSION

BRNG = BEARING
B/B = BOLT BENDING
DBLR = DOUBLER

DOUBLE-SHEAR TENSION SPECIMENS
FIBER PATTERN A - (25% 0°,50% ±45°,257 90°)
U.S. CUSTOMARY UNITS

S P (ECIMEN Umber ,	HOLE DIAM. IN.	PANEL WIDTH IN.	RATIO	CENTER THICK. IN.	SPLICE THICKX2 IN.	FAILURE LOAD L3	FAILURE MODE	SEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI	
000	ST- 1 ST- 2 ST- 3	0.250	G.755 Q.745 C.752	000 000	0.350 0.352	0.335 0.326 0.326	7410.0 6323.0 7080.0	TENS TENS TENS	88.21 84.42 56.87	43.67 42.51 43.25	29.21 29.40 28.89	
000	ST - 5 ST - 5	0.500	1.500	3.00 000 000	0.512	0.506 0.506 0.497	23175.0 23050.0 23600.0	TENS BRNG TENS	91.60 91.11 94.97	45.90 45.55 47.48	30.53 30.37 31.66	
000	ST- 7 ST- 3 ST- 9	0.75G 2.750 3.75G	2.243	Cicia	0.630	0.697 0.694 0.699	36900.0 30800.0 43800.0	03LR 03LR 03LR	70.39 59.00 53.55	35.19 29.52 41.83	23.46 19.68 27.87 Q Q	
0.3	ST-10 ST-11 ST-12	0.250	2.005 2.005	000	0.349 0.348 0.346	0.337	9875.0 3500.0 8400.0	3/5 9/8 5/3	117.21 101.47 99.12	16.70 14.45 14.11	27.87 ORIGINAL 14.61 12.655 12.35	
55	ST-13 ST-14 ST-15	0.500 0.500 0.500	4.001	0000 0000	0.508 0.512 0.508	3.504	27200.0 27500.0 26150.0	ERNG DBLR BRNG	107.94 108.91 102.75	15.42 15.55 14.63	QUALITY	
D :	ST-16 ST-17 ST-18	0.750 0.750 0.750	6.000 6.004 5.000	000 000	0.652 0.637 0.687	0.694 0.694 0.695	43000.0 51150.0 49500.0	BRNG BRNG BRNG	92.22 95.27 94.96	13.17 14.03 13.57	11.53 12.28 11.87	

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING

DBLR = DOUBLER

TABLE 16 DOUBLE-SHEAR TENSION SPECIMENS FIBER PATTERN 8 - (37.5% 0°,50% ±45°,12.5% 90°)

U.S. CUSTOMARY UNITS

	NUMBER	DIAM.	PANEL WICTH	24TI0	CENTER THICK. IN.	SPLICE THICKX2 IN.	FAILURE LOAD L3	FAILURE MODE	BEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI
	037-19 031-20 031-21	0.250 0.250 0.250	0.750 0.750 0.750	3.0 3.0	0.343	0.333 0.343 0.339	8090.0 8420.0 7700.0	TENS TENS TENS	97.18 98.19 92.56	48.59 43.80 44.62	32.39 32.60 29.93
82	DST-22 DST-23 DST-24	0.500 0.500 0.500	1.497 1.495 1.495	3.0 3.0	0.513 0.513 0.516	0.519 0.509 0.511	23400.0 20725.0 24850.0	RRNG DBLR TENS	90.17 31.59 97.25	45.22 45.96 48.33	30.12 27.27 32.51
	DST-25 DST-26 DST-27	0.750 0.750 0.750	2.250	3.0 0.0 3.0	0.578 0.681 0.573	0.535 0.531 0.579	45000.0 26000.0 26500.0	BRNG DBLR DBLR	37.59 50.91 52.04	43.50 25.49 25.05	29.20 16.93 17.36
ORIGINAL OF POOR	051-28 051-30	0.250	2.003	8999 • • • • • • • • • • • • • • • • • •	0.344	0.342 0.344 0.343	9775.0 8650.0 9075.0	a/6 6/8 9/3	102.63 100.58 105.83	14.64 14.35 15.09	12.81 12.56 13.21
AL PAGE IS	051-31 051-32 051-33	0.500 0.500 0.500	3.987 3.987 3.987	000 •••	0.512 0.512 0.511	0.503 0.511 0.503	2570C.0 26250.0 26250.0	BRNG BRNG BRNG	101.18 102.74 103.35	14.51 14.73 14.82	12.69 12.83 12.96
ALI SI 3	DST-34 DST-35 DST-35	0.750 6.750 9.750	6.001 6.000 6.000	000 000	3.678 0.574 3.671	0.690 0.685 0.634	49600.0 50100.0 52700.0	BRNG BRNG BRNG	95.85 97.29 102.73	13.69 13.87 14.63	11.98 12.14 12.84

TENS = TENSION

COMP = COMPRESSON BRNG = BEARING

B/B = BOLT BENDING
DBLR = DOUBLER

TABLE 17 DOUBLE-SHEAR COMPRESSION SPECIMENS FIBER PATTERN A - (25% 0°,50% ±45°,25% 90°) U.S. CUSTOMARY UNITS

	SPECIMEN	HOLE DIAM. IN.	PANEL WIDTH IN.	CVK	CENTER THICK. IN.	SPLICE THICKX2 IN.	FAILURE LOAD LB	FAILURE	EEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI	
	DSC- 1 DSC- 2 DSC- 3	0.250 9.250 0.250	0.752 0.754 0.757	3.0 3.0	0.335	0.329 0.333	8200.0 8230.0 8530.0	COMP COMP ERNG	99.70 98.86 102.46	49.65 49.04 50.52	33.14 32.79 33.84	
83	DSC- 4 DSC- 5 DSC- 6	0.500 0.500 0.500	1.497	3.00	0.515 0.512 0.513	0.503 0.506 0.507	25950.0 26450.0 25050.0	COMP SRNG COMP	103.18 104.55 98.82	51.64 52.27 49.41	34.42 34.35 32.94	ORIGINAL OF POOR
	DSC- 7 DSC- 5 DSC- 9	0.750 0.750 0.750	2.493 2.492 2.492	3.0 3.0	0.654 0.658 0.655	C.676 C.675 C.673	48900.0 51700.0 51900.0	BRNG BRNG BRNG	96.45 102.12 102.82	41.57 43.97 44.27	29.05 30.74 30.95	GINAL PAGE POOR QUAL
	DSC-10 DSC-11 DSC-12	0.500 0.500 0.300	2.003 2.005 2.005	4.0 4.0 4.0	0.339 0.333 0.335	0.336 0.339 0.340	16400.0 16300.0 18400.0	BRNG BRNG BRNG	97.62 96.17 108.24	32.47 31.95 35.96	24.37	SE IS
	CSC-13 OSC-14 OSC-15	0.500 0.500 0.500	4.002 4.003 4.003	000	0.508 0.513 0.512	0.510 0.509 0.507	26500.0 27900.0 28900.0	ERNG BRNG BRNG	103.92 109.23 114.00	14.84 15.59 16.29	12.99 13.64 14.25	
	DSC-16 DSC-17 DSC-18	0.750 0.750 0.750	5.997 5.997 5.995	 000	0.651 0.645 0.545	0.675 0.677 0.675	54800.0 53000.0 52000.0	BRNG BRNG SRNG	103.25 104.38 102.72	15.47 14.92 14.69	13.54	

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING

DBLR = DOUBLER

TABLE 18 DOUBLE-SHEAR COMPRESSION SPECIMENS (37.5% 0°,50% ±45°,12.5% 90°) U.S. CUSTOMARY UNITS

	SPECIMEN	HOLE DIAM. IN.	PANEL WIDTH IN.	W/D RATIO	CENTER THICK. IN.	SPLICE THICKX2 IN.	FAILURE LOAD LE	FAILURE	SEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI	
	DSC-19 DSC-20 DSC-21	0.250 0.250 0.250	0.761 0.760 0.755	3.0 3.0 3.0	0.335 0.337 0.335	0.337 0.339 0.320	7970.0 7316.6 7900.0	COMP	94.60 86.25 98.75	46. 42. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40	31.08 23.37 32.70	
84	DSC-22 DSC-23 DSC-24	0.500 0.500 0.500	1.505 1.503 1.504	000	0.517 0.518 0.515	C.494 C.500 C.493	25200.0 24550.0 23500.0	COMP COMP BRNG	102.02 98.20 94.38	50.76 48.95 47.00	33.90 32.67 31.35	
	35C-25 05C-26 35C-27	0.750 3.750 0.750	2.493	300 000	0.676 0.675 0.682	0.679 0.678 0.679	46350.0 46950.0 45500.0	SPN3 BRNG BRNG	91.02 92.33 39.35	39.14 39.80 38.45	27.37 27.81 26.83	
	DSC-29 DSC-29 DSC-30	0.250 0.250 0.250	2.005 2.005 2.005	0000	0.337 0.335 0.335	0.343 0.343 0.341	9575.0 9400.0 9440.0	8/9 8/3 3/8	111.66 109.62 110.73	15.90 15.62 15.76	13.92 13.67 13.80	
	DSC-31 DSC-32 DSC-33	0.500 0.500 0.500	4.005 4.000 4.003	000 agea	0.510 0.513 0.510	0.477 C.492 O.500	25950.0 26450.0 27550.0	BRNG BRNG BRNG	108.81 107.52 110.20	15.52 15.36 15.73	13.53 13.44 13.76	
	05C-34 05C-35 05C-36	0.750 0.750 0.750	5.996 5.996 5.997	3.0 8.0 8.0	0.650 0.652 0.655	0.676° 0.678 0.678	50800.0 52300.0 52000.0	BRNG BRNG BRNG	100.20 102.85 102.26	14.32 14.70 14.62	12.53 12.97 12.79	

COMP = COMPRESSION BRNG = BEARING

B/B = BOLT BENDING DBLR = DOUBLER

TABLE 19 SINGLE-SHEAR TENSION SPECIMENS FIBER PATTERN A - (25% 0°,50% ±45°,257 90°) U.S. CUSTOMARY UNITS

85	SPECIMEN NUMBER	HOLE STAM. IN.	PANEL WIDTH IN.	GITAR	PANEL THICK IN.	FAILURE LOAD L3	FAILURE MODE	BEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI	
	SST- 1 SST- 2 SST- 3	0.250 0.250 0.250	2.300 1.996 1.996	000 •••	0.133 0.133 0.132	3100.0 3600.0 3710.0	BRNG BRNG BRNG	93.27 103.27 112.47	13.32 15.50 16.10	11.65 13.56 14.08	ORIG OF P
	\$\$T- 4 \$\$T- 5 \$\$T- 6	C.500 0.500 0.500	3.995 3.999 3.999	9000	D.245 C.247 D.245	13725.0 13400.0 13025.0	BRNG BRNG BRNG	111.5? 103.57 105.8?	15.96 15.50 15.13	13.97 13.57 13.24	ORIGINAL PA
	\$\$T- 7 \$\$T- 3 \$\$T- 9	0.750 0.750 0.750	5.998	0.000 0.000	C.322 J.325 O.325	25700.0 24320.0 25350.0	BRNG BRNG BRNG	106.42 99.47 104.03	15.21 14.22 14.85	13.31 12.44 13.00	C PAGE IS

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING DBLR = DOUBLER

TABLE 20 SINGLE-SHEAR TENSION SPECIMENS FIBER PARTERN B - (37.5% 0°,50% ±45°,12.5% 90°) U.S. CUSTOMARY UNITS

86	SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WICIW	C\W CITAR	PANEL THICK In.	FAILURE LOAD LB	FAILURE MODE	BEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI
	\$\$T-10 \$\$T-11 \$\$T-12	0.250	1.993	99.00 000	C.133 C.133 C.134	3770.0 3160.0 4190.0	ERNG BRNG BRNG	113.3° 95.04 124.7°	16.22 13.65 17.84	14.19 11.94 15.60
	\$\$1-13 \$\$1-14 \$\$1-15	0.500 0.500 0.500	4.001	86.9 000	0.248	12350.0 14200.0 13620.0	BRNG BRNG BRNG	103.67 115.97 110.77	14.80 16.56 15.93	12.95 14.49 13.35
	SST-16 SST-17 SST-18	3.750 3.753 3.750	5.997	0000 0000	0.327 0.327 0.326	26500.0 24300.0 24250.0	BRNG BRNG BRNG	103.05	15.44 14.15 14.16	13.51 12.38 12.39

TENS = TENSION

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING

DBLR = DOUBLER

TABLE 21

SINGLE-SHEAR COMPRESSION SPECIMENS FIBER PATTERN A - (25% 0°,50% ±45°,257 90°)

U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	W/J	PANEL THICK IN.	EAILURE LCAD LB	FAILURE MODE	BEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT. STRESS KSI
SSC- 1 SSC- 3	0.250 0.250 0.250	1.399 2.002 2.300	3000 0000	0.133 0.134 0.134	3740.0 2500.0 3300.0	SRNG BRNG BRNG	112.4° 74.63 113.4°	16.09 10.65 16.20	14.07 9.32 14.15
520- 4 530- 5 530- 6	0.500 0.500 0.500	4.001 4.003 4.003	0000 0000	0.238 0.248 0.247	12580.0 11820.0 12880.0	BRNG BRNG BRNG	105.71 95.32 104.22	15.10 13.60 14.89	13.21 11.90 13.03
SSC- 7 SSC- 8 SSC- 9	0.750 0.750 0.750	5.001 5.000 6.000	000	G.325 G.327 G.323	26750.0 26200.0 26600.0	åRNG BRNG BRNG	109.74 106.53 103.17	15.67 15.26 15.45	13.72 13.35 13.52

TENS = TENSION

COMP = COMPRESSION

BRNG = BEARING

B/B - BOLT BENDING DBLR = DOUBLER

SINGLE-SHEAR COMPRESSION SPECIMENS FIBER PATTERN 8 - (37.5% 0°,50% ±45°,12.5% 90°)

U.S. CUSTOMARY UNITS

SPECIMEN NUMBER	HOLE DIAM. IN.	PANEL WIDTH IN.	4/7. P4TIO	PANEL THICK IN.	FAILURE LOAD LB	FAILURE MODE	EEARING STRESS KSI	NET-SECT. STRESS KSI	GROSS-SECT STRESS KSI
SSC-10 SSC-11 SSC-12	0.250 0.250 0.250	2.002 1.997 2.003	000	0.133	3860.0 4200.0 4070.0	BRNG BRNG BRNG	116.0? 124.44 122.41	16.57 17.31 17.46	14.5C 15.59 15.29
\$ 5 C - 1 3 \$ 5 C - 1 4 \$ 5 C - 1 5	0.500 0.500 0.500	3.996 4.001 4.003	0000	0.249 0.246 0.255	12940.0 12320.0 12200.0	BRNG BRNG BRNG	103.94 100.14 95.67	14.96 14.30 13.66	13.00 12.52 11.95
SSC-16 SSC-17 SSC-18	0.750 0.750 0.750	6.002 6.001 6.000	000 868	C.326	2540C.0 23950.0 23650.0	BRNG BRNG BRNG	103.67 97.94 96.73	14.94 13.82	12.99 12.24 12.09

TENS = TENSION

COMP = COMPRESSION

BRNG = BEARING

B/B = BOLT BENDING
DBLR = DOUBLER

TABLE 23

COMPOSITE STRESS CONCENTRATION FACTORS

UNLOADED HOLE TENSION TESTS - PATTERN A

(PHASE I)

Test Number	Diameter (in)	Width (in)	Thickness (in)	Layup Pattern	Failure Mode	K _{te}	K _{tc}
Number	(111)	(111)	(1,11)	ractern	Mode	Net Area	Net Area
UHT 1		·	·	25% 0°	Net-Sect	2.125	1.44
UHT 2	0.25	0.50	0.25	50% ±45°	Net-Sect	2.125	1.34
UHT 3				25% 90°	Net-Sect	2.125	1.38
UHT 4					Net-Sect	2.125	1.45
UHT 5	0.50	1.0	0.25	11	Net-Sect	2.125	1.35
UHT 6					Net-Sect	2.125	1.37
7							
UHT 7					Net-Sect	2.125	1.39
UHT 8	0.75	1.50	0.25		Net-Sect	2.125	1.31
UHT 9					Net-Sect	2.125	1.42
UHT 10					Net-Sect	2.125	1.07
UHT 11	0.25	2.0	0.25	п	Doubler	-	
UHT 12			!		Doubler	-	
UHT 13					Doubler	-	
UHT 14	0.50	4.0	0.25	11	Doubler	-	
UHT 15					Net-Sect	2.125	1.16
UHT 16					Net-Sect	2.58	1.27
UHT 17	0.75	4.5*	0.25	ti .	Net-Sect	2.58	1.22
UHT 18					Net-Sect	2.58	1.23

^{*}Cut down from 6" width - new w/d = 6

TABLE 24

COMPOSITE STRESS CONCENTRATION FACTORS

UNLOADED HOLE TENSION TESTS - PATTERN B

Test Number	Diameter (in)	Width (in)	Thickness (in)	Layup Pattern	Failure Mode	K _{te} Net Area	K _{tc} Net Area
UHT 19 UHT 20 UHT 21	0.25	0.50	0.25	37.5% 0° 50% ±45°	Net-Sect	2.125 2.125 2.125	1.34 1.27 1.30
UHT 22 UHT 23 UHT 24	0.50	1.0	0.25	"	Net-Sect Net-Sect Net-Sect	2.125 2.125 2.125	1.35 1.34
UHT 25 UHT 26 UHT 27	0.75	1.50	0.25	п	Net-Sect Net-Sect Net-Sect	2.125 2.125 2.125 2.125	1.32 1.30 1.24 1.27
UHT 28 UHT 29 UHT 30	0.25	2.0	0.25	11	Doubler Doubler Doubler	-	-
UHT .31 UHT 32 UHT 33	0.50	4.0	0.25		Doubler Doubler Doubler & Net-Sect	-	-
UHT 34 UHT 35 UHT 36	0.75	6.0	0.25	O	Doubler End Beari Doubler	ng –	~

 $F_{tu_A} = 68 \text{ ksi}$

 $F_{tu_B} = 95 \text{ ksi}$

TABLE 25 COMPOSITE STRESS CONCENTRATION FACTORS DOUBLE-SHEAR TENSION TESTS

(PHASE I)

(w/d - 3)

			(v:/d - 3)				
Test Number	Diameter (in)	Width (in)	Thickness (in)	Layup Pattern	Failure Mode	K _{tc} (Net Area	K _{tc} (Net Area
DST 1 DST 2 DST 3	0.25	0.75	0.33	25% 0° 50% ±45° 25% 90°	Tension Tension Tension	3.25 3.25 3.25	1.64 1.76 1.71
DST 4 DST 5 DST 6	0.50	-1.50	0.50	25% 0° 50% ±45° 25% 90°	Tension Bearing Tension	3.25	1.59 - 1.56
DST 7 DST 8 DST 9	(1.00)* 0.75 (1.00)*	2.25	0.67	25% 0° 50% ±45° 25% 90°	Doubler Doubler Doubler	2.93** - 2.93**	1.66** - 1.40**
DST 19 DST 20 DST 21	0.25	0.75	0.33	37.5% 0° 50% ±45° 12.5% 90	Tension	3.25 3.25 3.25	1.97 1.89 2.07
DST 22 DST 23 DST 24	0.50 (0.625)* 0.50	1.50	0.50	37.5% 0° 50% ±45° 12.5% 90	Tension	- 2.78** 3.25	- 2.04** 1.94
DST 25 DST 26 DST 27	0./5	2.25	0.67	37.5% 0° 50% ±45° 12.5% 90	•	- - erred	-

^{*}Based on End Load Pin Diameter

 F_{tu_A} = 68,000 psi

F_{tuB} = 95,000 psi

^{**}Based on Net-Section Failure at Load Introduction Pin After Doubler Failure.

Ktc values are determined using tested unnotched laminate allowables:

TABLE 26
UNLOADED HOLE TENSION TEST RESULTS
(PHASE II)

		·	<u></u> `	111102 11)			
Specimen Number	Width W (in.)	Diameter d (in.)	w/d	Failure Load ^P ult (1b)	Gross Stress f _{tu} (psi)	K _{te}	K _{tc}
UHT 19-5	1.125	375	3	12,600	44,800	2.30	1.41
UHT 20 ↑	1.125	. 375	3	12,860	45,725	2.30	1.39
UHT 21	1.125	. 375	3	13,460	47,860	2.30	1.32
UHT 22	1.50	.500	3	17,460	46,560	2.30	1.36
UHT 23	1.50	.500	3	17,440	46,510	2.30	1.36
UHT 24	1.50	.500	3	18,640	49,710	2.30	1.27
UHT 25	2.25	. 750	3	25,750	45,720	2.30	1.38
UHT 26	2.25	. 750	3-	27,100	48,120	2.30	1.31
UHT 27	2.25	. 750	3	26,550	47,200	2.30	1.34
UHT 31	2.50	.500	5	30,400	48,640	2.51	1.56
UHT 32	2.50	.500	5	30,250	48,400	2.51	1.57
UHT 33	2.50	.500	5	32,050	51,280	2.51	1.48
UHT 34	3.75	. 750	5	46,150	49,225	2.51	1.54
UHT 35	3.75	. 750	5	49,500	52,800	2.51	1.44
UHT 36	3.75	. 750	5	45,500	48,535	2.51	1.57
UHT 37	3.00	00.1	3	37,000	49,330	2.30	1.28
UHT 38	3.00	00.1	3	36,750	49,000	2.30	1.29
UHT 39-5	3.00	00.1	3	38,150	50,870	2.30	1.25

Fiber Pattern B = $(37.5\% 0^{\circ}, 50\% \pm 45^{\circ}, 12.5\% 90^{\circ})$ Ply Thickness = 0.0055 in. Laminate Thickness = 0.25 in. (Nominal)

*Based on $F_{tu} = 95 \text{ ksi}$

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 27 UNLOADED HOLE TENSION TEST RESULTS

·	,	*		(PHASE II)			
Specimen Number	Width W (in.)	Diameter d (in.)	w/d	Failure Load ^P ult (lb)	Gross Stress f _{tu} (psi)	K _{te}	* Ktc
UHT 19-10	1.125	. 375	3	13,940	49,560	2.30	1.29
UHT 20 1	1.125	. 375	3	14,420	51,270		1.24
UHT 21	1.125	. 375	3	13,640	48,500		1.31
UHT 22	1.50	.500	. 3 ·	17,700	47,200	2.30	1.34
UHT 23	1.50	.500	3	16,660	44,430		1.43
UHT 24	1.50	.500	3	15,580	41,550		1.52
UHT 25	2.25	. 750	3	26,250	46,670	2.30	1.36
UHT 26	2.25	. 750	3	26,500	47,110		1.34
UHT 27	2.25	. 750	3	25,700	45,690		1.39
UHT 31	2.50	.500	5	30,800	49,280	2.51	1.54
UHT 32	2.50	.500	5	31,050	49,680		1.53
UHT 33	2.50	.500	5	31,400	50,240		1.51
UHT 34	3.75	. 750	5	47,150	43,930	2.51	1.51
UHT 35	3.75	. 750	5	46,650	49,760		1.53
UHT 36	3.75	. 750	5	45,050	48,050		1.58
UHT 37	3.00	1.00	3	32,950	43,930	2.30	1.44
UHT 38	3.00	1.00	3	34,800	46,400		1.36
UHT 39 _ 10	3.00	1.00	3	37,100	49,470		1.28

Fiber Pattern B - $(37.5\%~0^{\circ},~50\%~\pm45^{\circ},~12.5\%~90^{\circ})$ Ply Thickness - **0.0104 in**. Laminate Thickness - 0.25 in. (Nominal)

*Based on $F_{tu} = 95 \text{ ksi}$

TABLE 28
UNLOADED HOLE TENSION TEST RESULTS
(PHASE II)

Specimen Number	Width W (in.)	Diameter d (in.)	 w/d	Failure Load Pult (lb)	Gross Stress f _{tu} (psi)	K _{te}	K _{tc}
UHT 4-10 5 6	1.50	.50	3 14,660 39,090 14,820 39,520 2.30 14,540 38,770		2.30	1.16 1.15 1.17	
7 8 9	2.25	.750	3	23,150 23,200 22,400 41,240 39,820		2.30	1.10 1.10 1.14
13 14 15	2.50	.50	5	25,700 27,350 27,150	42,720 43,760 43,440	2.51	1.27 1.24 1.25
16 17 18-10	3.75	.750	5	35,950 39,550 38,600	38,350 42,190 41,170	2.51	1.42 1.29 1.32

Fiber Pattern A - $(25\% 0^{\circ}, 50\% \pm 45^{\circ}, 25\% 90^{\circ})$ Ply Thickness - 0.0104 in. Laminate Thickness - 0.25 in. (Nominal)

*Based on $F_{tu} = 68 \text{ ksi}$

TABLE 29A DOUBLE SHEAR TEST RESULTS (PHASE II)

					(.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
SPECIMEN NUMBER	FIBER PATTERN	HOLE DIA. (IN.)	WIDTH (IN.)	SKIN THICKNESS (IN.)	SPLICE THICKNESS (IN.)	FAILURE LOAD (LB)	FAILURE MODE	GROSS-SECT. STRESS (PSI)	BEARING STRESS+ (PSI)
DSC 10 11 12	Α	. 375	1.875	.333	.167	13,000 13,980 14,420	BEARING	21,010 22,595 23,305	104,100 112,000 115,500
DSC 28 29 30	В	. 375	1.875	.333	.167	13,650 13,780 12,940	BEARING	22,060 22,270 22,530	109,300 110,400 103,600
DSCA 28 29 30*	В	. 375	1.875	. 333	. 250	16,460 16,320	BEARING	26,360 26,140	131,800 130,700
DST 7 8 9	A	. 750	2.25	. 666	.333	44,200 46,200 44,600	NET TENSION	29,495 30,830 29,765	89,290 93,330 90,100
DST 25 26 27	В	. 750	2.25	.666	.333	48,400 49,200 49,000	NET TENSION	32,300 32,835 32,700	97,780 99,390 98,990
DSTA 7 8 9	A	. 750	2.25	.666	. 499	46,200 43,300 44,100	NET TENSION	30,830 28,895 29,430	93,330 87,470 89,090
DSTA 25 26 27	В	.750	2.25	.666	. 499	48,400 49,700 50,200	NET TENSION	32,300 33,170 33,500	97,780 100,400 101,410

No Data Recovered or Defective Specimen Titanium Bearing Stress in Central Blade

96

TABLE 29B DOUBLE SHEAR TEST RESULTS

(PHASE II)

SPEC IN NUMBI		FIBER PATTERN	HOLE DIA. (IN.)	WIDTH (IN.)	SKIN THICKNESS (IN.)	SPLICE THICKNESS (IN.)	FAILURE LOAD (LB)	FAILURE MODE	GROSS SECT. STRESS (PSI)	BEARING STRESS+ (PSI)
DSTB	25 26 27	В	. 750	2.25	.666	. 375**	50,000 50,800 49,100	NET TENSION	33,365 33,900 32,765	100,100 101,700 98,300
DSTB	22 23 24	В	.500	1.50	. 499	. 250**	25,950 25,850 25,500	NET TENSION	34,670 34,535 34,070	104,000 103,600 102,200
DSTB	31 32 33	В	.500	2.50	.499	. 250**	40,500 39,150 38,450	BEARING	32,465 31,385 30,820	162,000 156,600 153,800
DSTA	22 23 24	В	. 500	1.50	. 499	.333	24,950 26,150 26,350	NET TENSION	33,330 34,935 35,205	100,000 104,800 105,600
DSTA	31 32 33*	В	. 500	2.50	. 499	.333	31,950 31,500	BEARING	25,610 25,250	127,800 126,000

No Data Recovered or Defective Specimen

Titanium Bearing Stress in Central Blade

TABLE 30

LOAD DEFLECTION DATA - SPRING RATES (ELASTIC)

DOUBLE-SHEAR TENSION TESTS

(PHASE I)

Test	Spring Rate		Test .	Spring Rate
Number	(lb/in)·		Number	(1b/in)
DST 1	342,900, 377,800		DST 19	700,000
DST 2	550,000		DST 20	542,900*
DST 3	333,300		DST 21	287,900
DST 4 DST 5 DST 6	2.5 x 10 ⁶ 1.39 x 10 ⁶ 960,000		DST 22 DST 23 DST 24	1.5 x 10 ⁶ 933,000 1.25 x 10 ⁶ *
DST 7	1.37 x 10 ⁶	·	DST 25	1.27 x 10 ⁶
DST 8	1.50 x 10 ⁶		DST 26	1.20 x 10 ⁶
DST 9	1.70 x 10 ⁶		DST 27	
DST 10	385,700		DST 28	**
DST 11	787,500*		DST 29	371,400
DST 12	525,000*		DST 30	362,500
DST 13	1.11 x 10 ⁶		DST 31	729,700*
DST 14	1.04 x 10 ⁶ *		DST 32	818,200
DST 15	866,700		DST 33	848,800
DST 16	1.35 x 10 ⁶		DST 34	1.60 x 10 ⁶
DST 17	1.73 x 10 ⁶ *		DST 35	1.04 x 10 ⁶
DST 18	1.14 x 10 ⁶		DST 36	1.17 x 10 ⁶

^{*}Average Value over Elastic Range

^{**}Slope in Elastic Range not Discernible

TABLE 31

LOAD DEFLECTION DATA - SPRING RATES (ELASTIC)

DOUBLE SHEAR COMPRESSION TESTS

	PHA
Test Number	Spring Rate (1b/in)
OSC 1	1.0 x 10 ⁶
DSC 2	509,100
DSC 3	857,100
DSC 4	1.23 x 10 ⁶
DSC 5	1.58 x 10 ⁶
DSC 6	1.44 x 10 ⁶
DSC 7	1.38 x 10 ⁶
DSC 8	1.38 x 10 ⁶
DSC 9	1.43 x 10 ⁶
DSC 10	816,700*
DSC 11	755,600*
DSC 12	760,000*
DSC 13	812,500
DSC 14	1.0 x 10 ⁶
DSC 15	944,400
DSC 16	1.23 x 10 ⁶
DSC 17	1.18 x 10 ⁶
DSC 18	1.28 x 10 ⁶

ASE I)	
	Test Number	Spring Rate (1b/in)
	DSC 19	600,000
	DSC 20	661,500
	DSC 21	472,700
	DSC 22	1.19 x 10 ⁶
	DSC 23	1.35 x 10 ⁶
	DSC 24	1.22 x 10 ⁶
1	DSC 25	1.11 x 10 ⁶
	DSC 26	1.0 x 10 ⁶
	DSC 27	1.15 x 10 ⁶
	DSC 28	485,700
	DSC 29	466,700
	DSC 30	438,100
	DSC 31	1.0 x 10 ⁶
1	DSC 32	973,700
	DSC 33	968,800
1	DSC 34	1.07 x 10 ⁶
	DSC 35	1.27 x 10 ⁶
	DSC 36	1.27 x 10 ⁶
_ '		

^{*}Specimens inadvertently drilled to 1/2" diameter. Resulting Specimens - t = 0.33", d = 0.50", w/d = 4.0

TABLE 32

LOAD DEFLECTION DATA - SPRING RATES (ELASTIC)

DOUBLE SHEAR TESTS

(PHASE II)

TEST	SPRING RATE
NUMBER	(lb/in)
DSC 10	763,300
DSC 11	811,400
DSC 12	858,200
DSC 28	981,200
DSC 29	921,100
DSC 30	698,100
DSCA 28	810,000
DSCA 29	866,700
DST 7	1.479 × 10 ⁶
DST 8	1.365
DST 9	1.452
DST 25	1.422 x 10 ⁶
DST 26	1.533 ·
DST 27	1.446
DSTA 7	1.600 x 10 ⁶
DSTA 8	1.442
DSTA 9	1.596

TEST NUMBER	SPRING RATE (1b/in)
DSTA 25 DSTA 26 DSTA 27	1.468 × 10 ⁶ 1.596 1.609
031A 27	1.009
DSTB 25 DSTB 26	1.904 × 10 ⁶ 1.844
DSTB 27	1.984
DSTB 22 DSTB 23 DSTB 24	1.431 × 10 ⁶ 1.599 1.335
DSTB 31 DSTB 32 DSTB 33	1.491 × 10 ⁶ 1.308 1.230
DSTA 22 DSTA 23 DSTA 24	1.045 × 10 ⁶ 1.200 1.117
DSTA 31 DSTA 32	1.035 × 10 ⁶ 1.072

TABLE 33

ST-1 - COMPRESSION AFTER IMPACT TEST RESULTS

CIBA -GEIGY 914/T300 - 10-mil Tape

	Resin content: 29.5%								
Specimen identification	Thickness,	Width,	Impact energy, ft-lb	Impact width, in.	Impact area, in. ²	Failure load, kips	Failure stress, ksi	Failure strain, μin/in.	Modulus, msi
ST-1A	0.247	5.031	30		3.0	-23.00	-18.51	-2620	7.06
ST-1B	.243	5.031	30		3.0	-23.20	-18.97	-2610	7.27
Average	·				3.0		-18.74	-2615	7.17

TABLE 34

ST-2 - EDGE DELAMINATION TENSION TEST RESULTS

CIBA-GEIGY 914/T300 - 10-mil Tape

(g) T300/914 edge delamination test results, ply thickness = 0.010 in.

	Laminate orientation (±35/0/90) _s Resin content: 29.5%													
Specimen identification	Thickness,		Delaminonset s	strain,	Pailure strain,	Tensile modulus,	l							
Identification	in.	in.	(a)	(b)	μin./in.	msi	$G_c, \frac{\text{inlb}}{\text{in.}^2}$							
ST-2F	0.0700	1.5374	3060		8250	8.80	0.496							
-2G	.0712	1.5331	3130		6000	9.03	.527							
-2H	.0708	1.5337	3060		6750	9.37	.501							
-2I	.0699	1.5365	3060		7000	8.87	.495							
-2 J	.0706	1.5340	3000		7000	8.62	.480							
Average			3062				0.500							

	Laminate orientation (±30/±30/90/90) Resin content: 29.5%												
Specimen identification	Thickness,		Delamin onsets µin.,	strain,	Tensile modulus,	Secant modulus,	1						
Identifica (10)	i in.	in.	(a)	(b)	msi	msi	G _c , inlb						
ST-2A	0.1082	1.5043	2630		7.45		0.949						
-2B	.1133	1.5042	2500		7.25		.898						
-2C	.1042	1.4917	3000		7.51		1.190						
-2D	.1140	1.4956	2750		7.44		1.090						
-2E	.1103	1.5012	2840		7.64		1.130						
Average	·		2744				1.050						

^aStrain at first deviation from linear stress-strain curve. ^bStrain at first visible delamination.

TABLE 35

ST-3 - UNLOADED HOLE TENSION TEST RESULTS

914/T300 - 10-mil Tape

Resin content: 29.5%												
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus mși					
ST 3-1	0.238	2.000	0.250	19.75	41.492	5730	7.6					
-2	.248	2.003	.250	24.00	48.290	6750	7.5					
-3	.248	2.000	. 250	21.50	43.347	5910	7.3					
Average					44.376	6130	7.47					

TABLE 30

ST-4 - UNLOADED HOLE COMPRESSION TEST RESULTS

914/T300 - 10-mil Tape

	Resin content: 29.5%												
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi						
ST-4A	0.2432	5.000	1.000	-42.50	-34.95	-5100	6.85						
-4B	.2499	5.000	1.000	-46.70	-37.37	-5900	6.33						
-4C	.2473	5.000	1.000	-43.50	-35.18	-5200	6.77						
Average			[-35.83	-5401	6.65						

	Laminate orientation: [0] _n Resin content: <u>%</u> by weight Test condition: 75°F dry																	
Coupon ID	Total thickness, 2t, in.	Width, in.	a ₁ , in.	δ ₁ ; in.	P ₁ , lb	a ₂ , in.	λ ₂ , in.	P ₂ , 1b	a ₃ , in.	δ ₃ , in.	P ₃ , lb	a ₄ , in.	δ ₄ , in.	P ₄ , lb	a ₅ , in.	δ ₅ , in.	P ₅ , 1b	GIC' in-1b in ²
1	0.138	1.500			14.1	[]						1 1						1.140
2	0.128	1.500		1	11.7		i		1			1 1						1.070
3	0.139	1.500	2.34	0.21	12.8	3.34	0.40	9.7	0.62	7.1	5.11	0.84	6.1					1.010
	•						.,											
										,				,				
,					į.													

103

TABLE 38

ST-1 - COMPRESSION AFTER IMPACT TEST RESULTS
CIBA-GIEGY 2566/CELION HIGH STRAIN FIBERS (CHS)

	Resin content: 30.0%												
Specimen identification	Thickness,	Width, in.	Impact energy, ft-lb	Impact width, in.	Impact area, in. ²	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi				
ST1-B1	0.276	5.024	20	2.68	1.387	-49.00	-35.34	-5251					
-B2	.276	5.052	20	2.14	1.394	-47.90	-34.35						
-B3	.276	5.000	20	1.76	1.365	-47.80	-35.02	-5283					
Average					1.38		-34.90	-5267					

TABLE 39 ST-2 - EDGE DELAMINATION TENSION TEST RESULTS 914/T300 - 5-mil Tape

	Laminate orientation (±35/0/90) _s Resin content: 30%												
Specimen	Thickness,		Delamin onset s µin.,	strain,	Failure strain,	Tensile modulus,	l 1						
identification	in.	in.	(a)	(b)	µin./in.	msi	$G_c, \frac{inlb}{in.^2}$						
ST25-6	0.0424	1.512	6500		9 125	9.14	1.35						
-7	.0449	1.509	6200		7 500	8.86	1.30						
-8	.0450	1.514	6825		11 250	8.92	1.58						
-9	.0451	1.509	6300		9 750	8.82	1.35						
-10	.0443	1.503	7000	·	9 750	8.88	1.64						
Average			6565		9 475	8.92	1.44						

	Laminate orientation (±30/±30/90/90) Resin content: 30%												
Specimen identification	Thickness,	Width,	Delamin onset s µin.,	strain,	Tensile modulus, msi	Secant modulus, msi	1 7						
			(a)	(b)			$G_c, \frac{\text{inlb}}{\text{in.}^2}$						
ST25-1	0.0633	1.509	5875		6.98	6.42	2.77						
-2	.0633	1.507	5000		6.71	6.76	2.01						
-3	.0580	1.510	5375		7.25	7.27	2.12						
-4	.0623	1.512	5000	;	7.17	7.00	1.97						
-5	.0613	1.511	5125		7.37	7.24	2.04						
Average	-		5275	_	7.10	6.94	2.18						

 $^{^{\}rm a}{\rm Strain}$ at first deviation from linear stress-strain curve. $^{\rm b}{\rm Strain}$ at first visible delamination.

TABLE 40 ST-3 - UNLOADED HOLE TENSION TEST RESULTS CHS/2566 - 5-mil Tape

	Resin content: 30.0%												
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Mođulus, msi						
ST 3-1	0.132	1.900	0.250	15.05	60.01								
-2	.135	1.950	.250	16.20	61.53		·						
-3	.131	2.009	.250	15.26	57.76		;						
Average					59.77								

TABLE 41
ST-4 - UNLOADED HOLE COMPRESSION TEST RESULTS
CHS/2566 - 5-mil Tape

·	Resin content: 30.0%												
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	•	Failure strain, µin./in.	Compression modulus, msi						
ST4-B1	0.281	5.031	1.000	-55,00	-38.91	-6100							
-B2	.278	5.039	1.000	-54.20	-38.69	-5837							
-B3	. 281	5.042	1.000	-55.00	-38.91	-5852							
Average	·	·	·	,	-38.84	-5930							

TABLE 42

ST-5 - HINGED DOUBLE CANTILEVER BEAM TEST RESULTS

CHS/2566 - 5-mil Tape

	Laminate orientation: (0) _n														•			
Specimen identification	Thickness,	Width,	A ₁ , in.		P ₁ , 1b	A ₂ , in.	_	P ₂ ,	A ₃ , in.	δ ₃ , in.	P ₃ , lb	A ₄ , in.	δ ₄ , in.	P ₄ ,	A ₅ , in.	δ ₅ , in.	P ₅ ,	in-1b in ²
ST5-B1	0.130	1.512	2.71	0.432	14.40	3.74	0.78	1,1.3	5.07	1.45	9.10	6.09	2.03	7.60				2.19
-B2	.131	1.508	2.70	.424	15.20	3.87	.808	10.80	5.18	1.40	8.30	6.38	2.08	6.95				2.10
-B3	.136	1.508	2.72	.400	15.70	3.80	.780	12.40	4.98	1.324	10.30	6.06	1.86	8.10				2.29
Average				,														2.19

TABLE 43 ST-5 - EDGE DELAMINATION TENSION TEST RESULTS 914/T300 - 5-mil Tape

Laminate Laminate Test cond	orientation: resin conten lition: 75°F	(±35/0/ it: 30 %	90] _s by weight	ε _{lam} = 9.7			.75 × 10 ⁶ psi 0.57 × 10 ⁶ psi
Specimen ID	Thickness,	Width,	1	tion onset µin/in.	Failure strain,	Tensile modulus,	Interlaminar fracture toughness,
10	14.		0	2	μin/in.	psi	$G_{c}, \frac{\text{in-lb}}{\text{in}^2}$
ST-25-6 ST-25-7 ST-2 5 -8 ST-25-9 ST- 26 -10	.0424 .0449 .0450 .0451 .0443	1.512 1.509 1.514 1.509 1.503	6500 6200 6825 6300 7000		9125 7500 11250 9750 9750	9.14 8.86 8.92 8.82 8.88	1.35 1.30 1.58 1.35 1.64
Average:	.0443	1.509	6565		9475	8.92	1.44

 $(G_{IC} = 1.30)$

 $E_{11} = 20.27 \times 10^6 \text{ psi}$ $E_{22} = 1.36 \times 10^6 \text{ psi}$

 $G_{12} = 0.80 \times 10^6 \text{ psi}$

V12 = 0.21

 $E_{lam} = 8.28 - 10^6 \text{ psi}$ $E^* = 8.27 \times 10^6 \text{ psi}$ Laminate orientation: $[\pm 30/\pm 30/90/90]_5$ Laminate resin content: 30 + by weight $E(\pm 30)_s = 7.39 \times 10^6 \text{ psi}$ Test condition: 75°F dry Delamination onset Interlaminar Tensile Secant Specimen Thickness, Width. strain, µin/in. fracture modulus, modulus, toughness, G_c , $\frac{in-1b}{i-2}$ in. in. psi psi (1) (2) ST-25-1 .0633 1.509 5875 6.98 2.77 6.42 ST-25-2 .0633 1.507 5000 6.71 2.01 6.76 ST-25-3 .0580 1.510 5375 7.25 2.12 7.27 ST-25-4 .0623 1.512 5000 1.97 7.17 7.00 ST-25-5 .0613 1.511 2.04 5125 7.37 7.24 .0616 1.510 5275 7.10 6.94 Average: 2.18

(1)Strain at first deviation from linear stress-strain curve.

Strain at first visible delamination.

 $(G_{IC} = 1.24)$

TABLE 44 ST-5 - HINGED DOUBLE CANTILEVER BEAM TEST RESULTS 914/T300 - 5-mil Tape

	Laminate orientation: [0] _n Resin content: % by weight Test condition: 75°F dry																	
Coupon ID	Total thickness, 2t, in.	Width, in.	a _l , in.	δ ₁ , in.	P ₁ , 1b	a ₂ , in.	δ ₂ , in.	P ₂ ,	a ₃ , in.	δ ₃ , in.	P ₃ , 1b	a ₄ , in.	δ ₄ , in.	P ₄ , lb	a ₅ , in.	δ ₅ , in.	P ₅ , 1b	G _{IC} , in-lb in ²
1D 1E IF	0.243 0.248 0.244	1.480 1.480 1.490	2.40	0.14	24.05 28.65 25.65	3.43	0.23	21.85	4.31	0.33	18. 15	5.44	0.46	14.65			,	0.963 1.095 1.173

TABLE 45
UNNOTCHED TENSION TEST RESULTS

SPECIMEN NUMBER	LAYUP PATTERN	WIDTH (IN.)	THICKNESS (IN.)	FAILURE LOAD (LB)	FAILURE STRESS (PSI)	F _{tu} x K _t * (PSI)	YOUNG'S MODULUS (PSI)
MPT-1	A	0.737	0.253	12,200	65,525	68,146	7.625 x 10 ⁶
MPT-2	Α .	0.756	0.254	12,600	65,738	68,368	7.224 x 10 ⁶
MPT-3	А	0.756	0.250	12,450	65,890	68,526	7.322 x 10 ⁶
MPT-4	В	0.764	0.253	16,850	87,254	90,744	9.31 x 10 ⁶
MPT-5	В	0.762	0.250	17,450	91 ,626	95,291	9.33 x 10 ⁶
MPT-6	В	0.759	0.254	18,250	94,677	98,464	9.34 x 10 ⁶

*K_{t,} = 1.04

UNNOTCHED COMPRESSION TEST RESULTS

SPECIMEN NUMBER	LAYUP PATTERN	WIDTH (IN.)	THICKNESS (IN)	FAILURE LOAD (LB)	FAILURE STRESS (PSI)
MPC-1	Α	2.0	0.333	46,850	70,362
MPC-3	Α	2.0	0.332	47,850	72,139
MPC-4	. А	2.0	0.332	43,000	64,827
MPC-2	В	2.0	0.325	62,200	95,692
MPC+5	В	2.0	0.325	65,500	100,769
MPC-6	В	2.0	0,325	62,150	95,615

TABLE 46
UNNOTCHED 914/T300 TENSILE STRENGTH
AND STIFFNESS

ID (1)	WIDTH (IN.)	THICK (IN.)	LOAD (KIP)		STRESS (KSI)	STRAIN AT FAIL (µ)	MODULUS (MSI)
MPT 5-1	2.492	.273	74.0		108.77	12,150	8.70
MPT 5-2	2.487	.274	72.4		106.25	11,510	9,23
MPT 5-3	2.492	. 260	65.7		101.99	10,730	9.51
				AVG.	105.67	11,463	9.15
	1		,				
MPT 10-1	2.504	.274	63.8		92.99	10,900	8.43
MPT 10-2	2.509	.272	65.1		95.39	11,020	8.66
MPT 10-3	2.509	,261	57.3		87.67	10,390	8.43
				AVG.	92.02	10,770	8.53

NOTES: (1) MPT 5 is 0.0055 in/ply MPT 10 is 0.0113 in/ply

(2) Pattern: 37.5% 0°, 50% ±45° ("B")

APPENDIX A

PHASE I UNLOADED HOLE TESTS

SPECIMEN CODING:

UHT - UNLOADED HOLE TENSION UHC - UNLOADED HOLE COMPRESSION

FAILURE MODES

UHT	
7	Net Section Failure
2	Net-Section Failure
3	Net-Section Failure
4	Net-Section Failure
5	Net-Section Failure
6	Net-Section Failure
7	Net-Section Failure
8	Net-Section Failure
9	Net-Section Failure
10	Net-Section Failure. Visible failure along 45° lines
11	Doubler failure and net-section failure at load pin
12	Tapered doubler failure and net-section failure at load pin
13	Tapered doubler failure and net-section failure at load pin
14	Tapered doubler failure and net-section failure at load pin
15	Net-Section Failure. Vibisle along 45° line.
16	Net-Section Failure. Severe delaminations, inter-fiber failures and lateral displacement at test hole (specimen cut down to width = 4.5 ", (W/D = 6).
17	Net-Section Failure. Severe delaminations, inter-fiber failures and lateral displacement at test hole (specimen cut down to width = 4.5 ", W/D = 6).
18	Net-Section Failure. Severe delaminations, inter-fiber failures and lateral displacement at test hole (specimen cut down to width = 4.5 ", W/D = 6).
19	Net-Section Failure
20	Net-Section Failure
21	Net-Section Failure
22	Net-Section Failure
23	Net-Section Failure
24	Net-Section Failure
25	Net-Section Failure
26	Net-Section Failure
27	Net-Section Failure

UHT	(Continued)
28	Tapered-Doubler Failure
29	Tapered-Doubler Failure
30	Tapered-Doubler Failure
31	Tapered Doubler Failure and net section failure at load pin primarily through 45° lines on side away from test hole
32	Tapered doubler failure and net-section failure at load pin
33	Tapered doubler failure and net section failure at load pin. Near complete failure at test hole area. Extensive delaminations along length of specimen and throughout thickness
34	Extra holes drilled at ends. Failed in bearing/shearout at outer holes for load introduction
35	Tapered doubler failure at load pin
36	Tapered doubler failure. Shearout at load pin hole. Some oneset of failure at net-section.
UHC	
3	Compression failure at net-section
2	Compression failure at net-section
3	Compression failure at net-section
4	Compression failure at net-section
5	Compression failure at net-section
6	Compression failure at net-section

3	compression) a) rai c	a c	nec-section						
4	Compression	failure	at	net-section					•	
5	Compression	failure	at	net-section						
6	Compression	failure	at	net-section						
7 .	Compression	failure	at	net-section						
8	Compression	failure	at	net-section						
9	Compression	failure	at	net-section						
10	Compression	failure	a t	net-section						
11	Compression	failure	at	net-section						
12	Compression	failure	at	net-section						
13	Compression	failure	at	net-section	with	ply	buckling	and	delamination	ns.
14	Compression	failure	at	net-section	wi th	p1y	buckling	and	delamination	ns.
15	Compression	failure	a t	net-section	with	ply.	buckling	and	delamination	ns.
16	Compression	failure	at	net-section						
17	Compression	failure	a t	net-section						
18	Compression	failure	at	net-section						

UHC (Continued)

19		Compression	failure	at	net-section
20		Compression	failure	at	net-section
21		Compression	failure	at	net-section
22		Compression	failure	at	net-section
23		Compression	failure	at	net-section
24		Compression	failure	at	net-section
25		Compression	failure	at	net-section
26		Compression	failure	at	net-section
27		Compression	failure	at	net-section
28		Compression	failure	at	net-section
29		Compression	failure	at	net-section
30		Compression	failure	at	net-section
31		Compression	failure	at	net-section
32		Compression	failure	at	net-section
33		Compression	failure	at	net-section
34	•	Compression	failure	at	net-section
35		Compression	failure	at	net-section
36		Compression	failure	at	net-section

OF POOR QUALITY

DEFLECTION (INCHES)

100000

90000

ORIGINAL PAGE IS
OF POOR QUALITY

DEFLECTION (INCHES)

OF POOR OUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS

APPENDIX B

PHASE I DOUBLE SHEAR TESTS

SPECIMEN CODING:

DST - DOUBLE SHEAR TENSION
DSC - DOUBLE SHEAR COMPRESSION

FAILURE MODES

DST	
1	Net-section failure. Most 0° plies sheared out. Cross plies failed in inter-fiber tension/shear. Some bolt bending.
2	Net-section failure. Most 0° plies sheared out. Cross plies failed in inter-fiber tension/shear. Some bolt bending.
3	lst run - doubler initiated de-bond but no catastrophic failure. 2nd run - net-section failure and doubler failure leading to net-section failure of specimen at load pin. Net-section failure at bolt occurred on nut side. Failure at load pin occurred on opposite side.
4	Net-section failure. Slightly more damage on head side of bolt. Some shear-out of 0° plies.
5	Bearing failure. Slight washer dig-in.
6	Net-section failure. Slightly more damage on head side. Some shear-out of 0° plies.
7	Tapered doubler failure and net-section failure at load pin.
8	Tapered doubler failure and net-section failure at load pin.
9	Tapered doubler failure and net-section failure at load pin. Slight buckling of plies on head side of bolt.
10	Bolt bending failure with bearing damage. Washer dig-in.
11	Bolt bending failure with bearing damage. Washer dig-in. Adhesive failure occurred on doubler (1 side) between outer plates
12	Bolt bending and slight bearing failure
13	Bearing failure. Washer dig-in, both sides.
14	Doubler bond failure (adhesive failure). Some bearing damage in outer plates.
15	Bearing failure. Slight washer dig in. Buckling of outer plies.
16	Bearing failure. Hole elongated approximately 3d (3/4" dia). Extensive brooming and bearing damage.
17	Bearing failure. Washer dig in.
18	Bearing failure. Washer dig in.
19	Net-section failure. Bolt bending. Most of the 0° plies sheared out and cross plies failed in inter-fiber tension/shear along 45° and 90° lines.
20	Net-section failure. Bolt bending. Most of the 0° plies sheared out and cross plies failed in inter-fiber tension/shear along 45° and 90° lines.

DST (Continued)

- Net-section failure. Bolt bending. Most of the 0° plies sheared out and cross plies failed in inter-fiber tension/shear along 45° and 90° lines.
- Apparent bearing failure. No ply buckling or delaminations on nut side. Outer ply buckling and delaminations on bolt side head. Inner ply buckling.
- Tapered doubler failure and net-section failure at load pin
- Net-section failure on nut side. Inner and outer 0° plies sheared out. Washer dig-in with outer buckling on head side. Also inner ply delaminations.
- Bearing failure. Head-side washer dig-in. Nut side slight washer dig-in. Outer ply delaminated to edge of plate.
- 26 Tapered doubler failure
- 27 Tapered doubler failure.
- Bolt bending failure. Slight bearing damage. Some washer dig-in.
- 29 Bolt bending failure. Slight bearing damage. Some washer dig-in.
- 30 Bolt bending failure. Slight bearing damage. Some washer dig-in.
- Bearing failure. Not much visible damage besides cracks in outer plies and slight hole elongation.
- 32 Bearing failure. Washer dig-in both sides.
- 33 Bearing failure. Washer dig-in. Buckled plies.
- Bearing failure. Washer dig-in. Damaged primarily in outer plates.
- 35 Bearing failure. Washer dig-in. Damaged primarily in outer plates.
- 36 Bearing failure. Washer diq-in. Damaged primarily in outer plates.

DSC

- Failed below washer in compression on head side of outer plate. Bolt bending also occurred.
- Failed below washer in compression on head side of outer plate.
 Slight bolt bending.
- Bolt bending and some bearing damage showing.
- Buckling of outer plies with moderate shear/buckling failure.

 Occurred away from hole at edge of washer.
- Apparent bearing failure. Slight fiber splitting and delaminations of plies.
- Buckling and delamination of outer plies with shear/buckling failure. Occurred away from hole at edge of washer.

DSC	(Continued)
7	Bearing failure
8	Bearing failure
9	Bearing failure
10	Bearing failure
11	Bearing failure
12	Bearing failure
13	Bearing failure
14	Bearing failure
15	Bearing failure
16	Bearing failure
17	Bearing failure
18	Bearing failure
19	Failed in compression above bolt, somewhat along 45° line. Slight bolt bending.
20	Failed in compression above bolt, somewhat along 45° line. Slight bolt bending.
21	Failed in compression above bolt, somewhat along 45° line. Slight bolt bending.
22	Outer plates buckled, delaminated and failed in shear/buckling below bolt at edge of washer.
23	Outer plates buckled, delaminated and failed in shear/buckling below bolt at edge of washer. Damage on head side of bolt.
24	Bearing failure. Some plies failed along 45° line.
25	Bearing failure.
26	Bearing failure.
27	Bearing failure.
28	Bolt bending and bearing failure
29	Bolt bending and bearing failure
30	Bolt bending and bearing failure
31	Bearing failure
32	Bearing failure
33	Bearing failure
34	Bearing failure
35	Bearing failure
36	Bearing failure.

enzadavekcia egudanin -

ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX C

PHASE I SINGLE SHEAR TESTS

SPECIMEN CODING:

SST - SINGLE SHEAR TENSION SSC - SINGLE SHEAR COMPRESSION

FAILURE MODES

SST 1 - 18 Bearing Failures.

SSC 1 - 18 Bearing Failures.

ORIGINAL FACE IS

5-7

APPENDIX D

ANCILLARY TEST DATA PHASE II TESTS

1. Report No. NASA CR-172588	2. Government Accession No.	3. Recipient's Catalog No.
4 Title and Subtitle Critical Joints in Large Composite Primary Aircraft Structure Volume III - Ancillary Test Results		5. Report Date June 1985
		6. Performing Organization Code
7 Author(s) B. L. Bunin and R. L. Sagui		8. Performing Organization Report No.
		ACEE-26-TR-3958A
		10. Work Unit No.
9. Performing Organization Name and Address		
Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, Ca. 90846		11. Contract or Grant No.
		NAS1-16857
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Contractor Report
National Aeronautics & Space Administration Washington, D.C. 20546		14. Sponsoring Agency Code
for critical structural;	joints for composite wing	ny to develop the technology structure that meets all the taircraft. This report
for critical structural design requirements of a summarizes the results of single-bolt composite jo These tests were conducted properties that are requiremental was Toray 300 for 0.010-inch thick unidirected double shear for loaded as	joints for composite wing 1990 commercial transport for a comprehensive ancillar int specimens tested in a sed to characterize the strined for multirow joint ariber and Ciba-Geigy 914 rectional tape. Tests were and unloaded hole configurations	structure that meets all the taircraft. This report ry test program, consisting of variety of configurations. rength and load-deflection nalysis. The composite esin, in the form of 0.005 and

19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of Pages

22. Price

Unclassified

Unclassified

341

Advanced Composite Structures

Structural Joints Test Results