⑩ 日本 国特許庁(JP)

◎ 公 開 特 許 公 報(A) 平3−282586

⑤Int. Cl. 5

識別記号

庁内整理番号

④公開 平成3年(1991)12月12日

G 09 G 5/14 G 06 F 3/14 G 09 G 5/10

350 A Z 8121-5G 8323-5B 8121-5G

審査請求 未請求 請求項の数 3 (全6頁)

60発明の名称

マルチウインドウ表示装置の輝度制御方式

②特 願 平2-83875

②出 願 平2(1990)3月30日

⑫発 明 者

奥 住 亮 一

東京都港区芝5丁目33番1号 日本電気株式会社内

勿出 願 人 日本

日本電気株式会社

東京都港区芝5丁目7番1号

個代 理 人 弁理士 境 廣 巳

明細書

1. 発明の名称

マルチウィンドウ表示装置の輝度制御方式 2.特許請求の範囲

(I)表示装置の画面に複数のウィンドウを表示 するマルチウィンドウ表示装置において、

前記表示装置の画面に表示されたウィンドウの うちのアクティブウィンドウの表示位置を保持す るアクティブウィンドウ表示位置格納手段と、

前記表示装置の画面の現走査位置を保持する現 走査位置格納手段と、

該現走査位置格納手段に保持された現走査位置と前記アクティブウィンドウ表示位置格納手段に保持された表示位置とを比較して輝度制御信号を生成する位置比較手段と、

該位置比較手段で生成された輝度制御信号に従って前記表示装置の画面におけるアクティブウィンドウ以外の領域の輝度を下げる輝度制御手段とを具備したことを特徴とするマルチウィンドウ表示装置の輝度制御方式。

(2)前記現走査位置格納手段は、現走査位置を 示す座標値を保持し、

前記アクティブウィンドウ表示位置格納手段は、 アクティブウィンドウを構成する四辺形の四隅の うちの対向する2点の座標値を保持し、

前記位置比較手段は、前記現走査位置格納手段に保持された座標値と前記アクティブウィンドウ表示位置格納手段に保持された2点の座標値との間で比較を行い、比較結果を論理処理することにより輝度制御信号を生成する請求項1記載のマルチウィンドウ表示装置の輝度制御方式。

(3) アクティブウィンドウ以外の領域の輝度を低下させるか否かを切り替える切り替え手段を有する請求項1または2記載のマルチウィンドウ表示装置の輝度制御方式。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明はマルチウィンドウ表示装置の輝度制御方式に関する。

〔従来の技術〕

(発明が解決しようとする課題)

ところで、マルチウィンドウ表示装置の利点は 画面に表示された各ウィンドウを通じてそれぞれ 別個の処理を進めることができることにあるが、 その時点で動作しているウィンドウ(アクティブ

うちのアクティブウィンドウの表示位置を保持するアクティブウィンドウ表示位置格納手段と、

前記表示装置の画面の現走査位置を保持する現 走査位置格納手段と、

この現走査位置格納手段に保持された現走査位置と前記アクティブウィンドウ表示位置格納手段に保持された表示位置とを比較して輝度制御信号を生成する位置比較手段と、

この位置比較手段で生成された輝度制御信号に 従って前記表示装置の画面におけるアクティブウ ィンドウ以外の領域の輝度を下げる輝度制御手段 とを有している。

また、本発明の好ましい実施例においては、前記現走査位置格納手段は現走査位置を示す座標値を保持し、前記アクティブウィンドウ表示位置格納手段はアクティブウィンドウを構成する四辺形の四隅のうちの対向する2点の座標値を保持し、前記位置比較手段は前記現走査位置格納手段に保持された2点の座標値との間で

ウィンドウ)以外に他のウィンドウも同一画面に 表示されているため、アクティブウィンドウの内 容が見ずらいという不都合がある。上述の如く、 従来のマルチウィンドウ表示装置においても面 の輝度を変更することは可能であったが、それは 画面全体に対するものであるので、輝度を上げる とアクティブウィンドウのみならず他の部分の輝 度も高くなってしまい、上記のような不都合を解 消する有効な手段にはなり得ない。

本発明はこのような事情に鑑みて為されたもので、その目的は、複数のウィンドウが表示された 画面中からアクティブウィンドウの内容のみを見 易くするように、アクティブウィンドウ以外の部 分の輝度を自動的に低下させるマルチウィンドウ 表示装置の輝度制御方式を提供することにある。

〔課題を解決するための手段〕

本発明は上記の目的を達成するために、

表示装置の画面に複数のウィンドウを表示する マルチウィンドウ表示装置において、

前記表示装置の画面に表示されたウィンドゥの

比較を行いその比較結果を論理処理することにより輝度制御信号を生成している。更に、アクティブウィンドウ以外の領域の輝度を低下させるか否かを切り替える切り替え手段が設けられている。 「作用〕

本発明のマルチウィンドウ表示装置の輝度制御方式においては、アクティブウィンドウ表示位置格納手段が表示装置の画面に表示された複数の位置を保持すると共にな、現走査位置格納手段の画の現走査位置を保持された現走査位置を保持された現走査位置を保持された現走査位置とでは、でクティブウィンドウ以外の領域の輝度を下げ、アクティブウィンドウの内容を見易くする。

〔実施例〕

次に、本発明の実施例について図面を参照して

詳細に説明する。

第1図を参照すると、本発明のマルチウィンド ウ表示装置の輝度制御方式の一実施例は、CRT 等の表示装置10の画面の現走査位置を保持する 現走査位置格納部1と、表示装置10の画面に表 示されたウィンドウのうちのアクティブウィンド ウの表示位置を保持するアクティブウィンドウ表 示位置格納部2と、現走査位置格納部1から出力 される現走査位置情報5とアクティブウィンドウ 表示位置格納部2から出力される表示位置情報6 とを比較して輝度制御信号?を生成する位置比較 部3と、図示しないVRAMから読み出された内 容に従って生成された表示信号8と輝度制御信号 7とを入力し輝度制御信号7に従って表示信号8 に処理を加えて表示装置 100 画面におけるアク ティブウィンドウ以外の領域の輝度を下げる輝度 制御部4とを含んでいる。

第2図を参照すると、表示装置10の画面10 0には複数のウィンドウ101~103が表示される。本実施例の輝度制御方式はそのような複数

対の端点たとえば同図の左上の端点Aのx, y座標値X1, Y1を保持する始点x軸レジスタ20. 始点y軸レジスタ21と、右下の端点Bのx, y座標値X2, Y2を保持する終点x軸レジスタ2 2,終点y軸レジスタ23とを含んで構成される。 なお、各レジスタ20~23への座標値の設定は 図示しないグラフィックコントローラやホストコンピュータ等から信号線24を介して行われる。

第5図を参照すると、位置比較部3の一例は、現走査位置格納部1から走査位置情報5として現 走査位置の座標値(CX、CY)を入力すると共 にアクティブウィンドウ表示位置格納部2からア クティブウィンドウ101の左上の端点Aの座標 値(X1、Y1)と右下の端点Bの座標値(X2、 Y2)とを入力し、

 $(X 1 \le C X \le X 2)$ OR $(Y 2 \le C Y \le Y 1)$

が成立する期間中だけ論理"1"となる輝度制御信号7を出力する構成を有する。具体的には、X1≦CXの期間中のみ出力を論理"1"とする比

のウィンドウ101~103の内のアクティブなウィンドウ101以外の部分の輝度を自動的に低下せしめるものである。なお、第2図において、104は表示装置10において定義された座標系であり、走査方向と平行な画面横方向が×軸、走査方向と垂直な画面縦方向がy軸にとられている。

第3図を参照すると、現走査位置格納部1の一例は、表示装置10の画面走査に同期したクロックCKによってカウント動作を行い第2図の保持するx軸カウンタ10と、x軸カウンタ10の出力によってカウント動作を行い現在の走査位置のyによってカウント動作を行い現在の走査位置のyを準値CYを保持するy軸カウンタ11とを含んで構成される。なお、現走査位置格納部1はられたで構成される。なお、現走査位置格納部1はられたはないグラフィックコントローラ内に設けられた相当する機能部を利用して実現することも可能である。

第4図を参照すると、アクティブウィンドウ表 示位置格納部2の一例は、第2図のアクティブな ウィンドウ101を構成する四辺形の対向する一

較器 3 0 と、 C X ≤ X 2 の期間中のみ出力を論理
"1"とする比較器 3 1 と、 Y 2 ≤ C Y の期間中
のみ出力を論理 "1"とする比較器 3 2 と、 C Y
≤ Y 1 の期間中のみ出力を論理 "1"とする比較
器 3 3 と、比較器 3 0 、 3 1 の出力を入力して、
X 1 ≤ C X ≤ X 2 の期間中のみ出力を論理 "1"
とするナンド回路 3 4 と、比較器 3 2 、 3 3 の出力を入力して、
Y 2 ≦ C Y ≦ Y 1 の期間中のみ出力
力を論理 "1"とするナンド回路 3 5 と、ナンド
回路 3 4 、 3 5 の出力のオア (O R)をとって輝
度制御信号 7 を出力するオア回路 3 6 とで構成されている。

第6図を参照すると、輝度制御部4の一例は、 輝度制御信号7が論理"1"を示す期間中のみ表 示信号8のレベルを予め定められた値まで低下せ しめて輝度調節後の表示信号9を出力するアッテ ネータ40を含んで構成される。なお、この例の 輝度制御部4は表示信号8がアナログ信号の場合 のものであるが、本発明はディジタルな信号の段 階で輝度を調整することも勿論可能である。 次に、上述のように構成された本実施例の動作 を各図を参照して説明する。

第2図に示すような複数のウィンドウ101~ 103を表示装置10の画面100に表示する場 合、公知のように各ウィンドウ101~103に 表示すべき内容がVRAMに格納され、その後V RAMの内容が一定周期で読み出されて表示信号 8 が生成され、表示装置10の画面走査によって 各ウィンドウ101~103の内容が画面100 に表示される。このとき、現走査位置格納部1の x 軸カウンタ10および y 軸カウンタ11は表示 装置10の現走査位置を示す座標値(CX, CY) を時々刻々と表示しており、それが位置比較部3 に出力される。他方、ウィンドウ101~103 のうちのアクティブなウィンドウ101の左上の 点Aの座標値(X1、Y1)と右下の点Bの座標 値(X2、Y2)とがアクティブウィンドウ表示 位置格納部2のレジスタ20~23に保持され、 それらの座標値 X 1、 Y 1、 X 2、 Y 2 が位置比 較部3に出力される。

されている。このような切り替え回路を第1図の位置比較部3と輝度制御部4との間に設け、図示しないキーボードの操作等により外部信号70を論理"1"にすれば、輝度制御部4に与える輝度制御信号7を常に論理"0"にして輝度低下制御を無効化することができる。このときは、複数のウィンドウ101~103を含む画面100全体が予め設定された輝度で表示されることになる。 (発明の効果)

以上説明したように、本発明のマルチウィンドウ表示装置の輝度制御方式は、表示装置の画面に表示されたアクティブウィンドウ以外の部分の輝度を自動的に低下させるので、複数のウィンドウが表示された画面上においてアクティブウィンドウの内容が見易くなる効果がある。

また、本発明ではアクティブウィンドウ以外の部分の輝度を下げてアクティブウィンドウとそれ以外の部分とに輝度差を持たせるようにした為、低下させる以前の輝度を程よく調整しておけば、アクティブウィンドウ以外の領域の輝度を低下さ

位置比較部3ではその内部の比較器30~33 において現走査位置の座標値(CX,CY)とア クティブウィンドウ101の座標値(X1, Y1, X2, Y2)とが第5図に示すような関係で比較 され、その比較結果がナンド回路34,35およ びオア回路36で論理処理されて、前記の式(1)を 満たす期間中すなわち表示装置10の画面領域の うちアクティブウィンドウ101以外の部分が走 査されている期間中だけ論理"1"となる輝度制 御信号7が生成される。輝度制御部4のアッテネ ータ40は輝度制御信号7が論理"1"となる期 間中は表示信号8のレベルを低下させて出力する ので、結局、表示装置10の画面100において はアクティブウィンドウ101の領域は予め定め られた輝度で表示され、それ以外の部分は予め定 められた量だけ低い輝度で表示されることになる。

第7図は本発明の別の実施例で使用する切り替え回路の構成例を示すプロック図であり、第1図の位置比較部3から出力される輝度制御信号7を外部信号70によって抑止するゲート71で構成

せない状態に切り替えた場合でも何らの再調整無 しに画面全体の輝度を良好なものとすることがで きる。

4. 図面の簡単な説明

第1図は本発明の一実施例の要部ブロック図、 第2図は表示装置10の画面100の表示例を 示す図。

第3図は現走査位置格納部Iの構成例を示すプロック図、

第4図はアクティブウィンドウ表示位置格納部 2の構成例を示すプロック図、

第5図は位置比較部3の構成例を示すプロック 図。

第6図は輝度制御部4の構成例を示すプロック図および、

第7図は本発明の別の実施例で使用する切り替え回路の構成例を示すブロック図である。

図において、

1 … 現走查位置格納部

2…アクティブウィンドウ表示位置格納部

- 3 …位置比較部
- 4 …輝度制御部
- 5 … 走查位置情報
- 6 …表示位置情報
- 7 … 輝度制御信号
- 8 … 表示信号
- 9 … 輝度調節後の表示信号
- 10 … 表示装置

特許出願人 日本電気株式会社 代理人 弁理士 境 廣 巳

本発明の一実施例の要部ブロック図 第 1 図

表示装置10の画面100の表示例 第 2 図

現走査位置格納部1の構成例 第 3 図

位置比較部3の構成例 第 5 図

PAT-NO: JP403282586A DOCUMENT-IDENTIFIER: JP 03282586 A

TITLE: BRIGHTNESS CONTROL SYSTEM OF

MULTIWINDOW DISPLAY DEVICE

PUBN-DATE: December 12, 1991

INVENTOR-INFORMATION:

NAME COUNTRY

OKUZUMI, RYOICHI

ASSIGNEE-INFORMATION:

NAME COUNTRY

NEC CORP N/A

APPL-NO: JP02083875 APPL-DATE: March 30, 1990

INT-CL (IPC): G09G005/14, G06F003/14, G09G005/10

US-CL-CURRENT: 342/357.12

ABSTRACT:

PURPOSE: To make the contents of an active window easy to see on a screen where plural windows are displayed by decreasing the brightness of a part other than the active window displayed on the screen automatically.

CONSTITUTION: Contents to be displayed in the windows 101 - 103 are stored in a VRAM are read out thereafter at a constant period to generate a display signal 8, which is displayed on the screen 100 by the screen scanning of the display device 10. At this time, a current scanning position storage part 1 holds the current scanning position on the screen 100 and outputs its position information 5 to a position comparison part 3, and an active window display position storage part 2 holds the display position of the active window 101 among the displayed windows and outputs its position information 6 to the comparison part 3, which compares the pieces of information 5 and 6 to generate a brightness control signal 7. Then a brightness control part 4 processes the signal 8 according to the signal 7 and lowers the brightness of the area other than the active

window on the screen 100.

COPYRIGHT: (C)1991,JPO& Japio