Einführung in die Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

11. Übungsblatt - Lösungsskizzen

Aufgabe 40 (Anwendung des SGGZ, 4 = 1 + 1 + 2 Punkte).

Ein Spieler startet mit dem Anfangskapital $K_0 = 1$. Bei jeder Runde setzt er sein gesamtes Kapital ein. Es wird eine faire Münze geworfen, bei Kopf erhält er den anderthalbfachen Einsatz zurück, bei Zahl nur den halben.

- (a) Stellen Sie das Kapital nach der n-ten Runde als $K_n = \prod_{i=1}^n R_i$ mit geeigneten unabhängigen Zufallsvariablen R_i dar.
- (b) Weisen Sie nach, dass das Spiel fair ist in dem Sinne, dass $\mathbb{E}(K_n) = 1$ für alle $n \in \mathbb{N}$ gilt.
- (c) Zeigen Sie, dass trotzdem $\lim_{n\to\infty} K_n = 0$ fast sicher gilt. *Hinweis*: Betrachten Sie $\log(K_n)$.

Lösung 40.

(a) Formal können wir den Münzwurf durch $X_i \stackrel{\text{iid}}{\sim} \operatorname{Ber}_{1/2}$ modellieren, dann wird R_i definiert durch

$$R_i := \frac{3}{2} \mathbb{1}_{\{X_i = 1\}} + \frac{1}{2} \mathbb{1}_{\{X_i = 0\}}.$$

Dies entspricht gerade

$$R_i = \begin{cases} \frac{3}{2} & \text{falls in der } i\text{-ten Runde } Kopf \text{ geworfen wird,} \\ \frac{1}{2} & \text{falls in der } i\text{-ten Runde } Zahl \text{ geworfen wird.} \end{cases}$$

Da R_i jeweils nur von X_i abhängt, folgt die Unabhängigkeit der $(R_i)_{i\in\mathbb{N}}$ aus der Unabhängigkeit der $(X_i)_{i\in\mathbb{N}}$. Es gilt weiterhin

$$\mathbb{P}(R_i = 3/2) = \mathbb{P}(X_i = 1) = \frac{1}{2} = \mathbb{P}(X_i = 0) = \mathbb{P}(R_i = 1/2),$$

also $R_i \stackrel{\text{iid}}{\sim} U_{\{3/2,1/2\}}$.

(b) Da die $(R_i)_{i\in\mathbb{N}}$ unabhängig sind, faktorisiert der Erwartungswert

$$\mathbb{E}(K_n) = \prod_{i=1}^n \mathbb{E}(R_i).$$

Wir müssen nun also die Erwartungswert der einzelnen R_i s berechen:

$$\mathbb{E}(R_i) = \frac{1}{2} \cdot \mathbb{P}(R_i = 1/2) + \frac{3}{2} \cdot \mathbb{P}(R_i = 3/2) = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{2}\right) = 1,$$

insgesamt erhalten wir

$$\mathbb{E}(K_n) = \prod_{i=1}^n 1 = 1.$$

(c) Wir betrachten (wie im Hinweis)

$$\frac{1}{n}\log(K_n) = \frac{1}{n}\log\left(\prod_{i=1}^n R_i\right) = \frac{1}{n}\sum_{i=1}^n\log(R_i).$$

Da die $(R_i)_{i\in\mathbb{N}}$ stochastisch unabhängig und identisch verteilt sind, sind es auch die Zufallsvariablen $L_i := \log(R_i)$. Es gilt

$$\mathbb{E}|L_i| = \frac{1}{2}|\log(1/2)| + \frac{1}{2}|\log(3/2)| < \infty,$$

d.h. $L_i \in \mathcal{L}_1$ und

$$\mathbb{E}L_i = \frac{1}{2}\log(1/2) + \frac{1}{2}\log(3/2) = \frac{1}{2}\log(3/4) \in (-1,0).$$

Damit folgt mit dem starken Gesetz der großen Zahlen:

$$\frac{1}{n} \sum_{i=1}^{n} L_i - \mathbb{E}(L_i) \stackrel{\mathbb{P}-\text{f.s.}}{\longrightarrow} 0$$

also auch (beachte, dass $\mathbb{E}(L_i) \in (-1,0)$)

$$\log(K_n) \stackrel{\mathbb{P}-\text{f.s.}}{\longrightarrow} -\infty$$

und somit

$$K_n \stackrel{\mathbb{P}-\text{f.s.}}{\longrightarrow} 0.$$

Aufgabe 41 (Konvergenz in Verteilung, 4 = 1 + 1 + 2 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $(X_n)_{n \in \mathbb{N}}$ eine Folge von Zufallsvariablen.

- (a) Zeigen Sie: Das schwache Gesetz der großen Zahlen folgt aus dem Zentralen Grenzwertsatz!
- (b) Für $n \in \mathbb{N}$ besitze X_n die Wahrscheinlichkeitsdichte $\mathbb{f}_n(x) = \frac{n+1}{2}|x|^n\mathbb{1}_{(-1,1)}(x), x \in \mathbb{R}$. Existiert eine Zufallsvariable Z mit $X_n \stackrel{D}{\to} Z$?
- (c) Entscheiden Sie jeweils, ob eine Zufallsvariable Z existiert mit $X_n \stackrel{D}{\to} Z$, indem Sie die Verteilungsfunktionen berechnen und deren Grenzwerte bestimmen:
 - $Imes X_n \sim U_{[0,1+\frac{1}{n}]},$
 - $ightharpoonup X_n \sim \operatorname{Exp}_n,$
 - $ightharpoonup X_n \sim \operatorname{Exp}_{1/n}.$

Lösung 41.

(a) Sind die $(X_n)_{n\in\mathbb{N}}$ eine iid Folge von Zufallsvariablen mit $\mathbb{V}\mathrm{ar}(X_1)<\infty$, so gilt nach dem Zentralen Grenzwertsatz:

$$\sqrt{n} \frac{\overline{X_n} - \mathbb{E}[X_1]}{\sqrt{\mathbb{V}\mathrm{ar}(X_1)}} \overset{D}{\to} \mathrm{N}_{(0,1)}$$

bzw.

$$\sqrt{n}(\overline{X_n} - \mathbb{E}[X_1]) \stackrel{D}{\to} \mathrm{N}_{(0,\mathbb{V}\mathrm{ar}(X_1))}.$$

Es gilt $\frac{1}{\sqrt{n}} \stackrel{\mathbb{P}}{\longrightarrow} 0$. Aus den Rechenregeln für stochastische und schwache Konvergenz folgt

$$\overline{X_n} - \mathbb{E}[X_1] = \frac{1}{\sqrt{n}} \cdot \sqrt{n} (\overline{X_n} - \mathbb{E}[X_1]) \xrightarrow{\mathbb{P}} 0.$$

Damit folgt $\overline{X_n} \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}[X_1]$, das schwache Gesetz der großen Zahlen.

(b) Um die schwache Konvergenz zu untersuchen, müssen wir zunächst die Verteilungsfunktion von X_n bestimmen: Für $x \in (-1,1)$ gilt:

$$\mathbb{F}_n(x) = \int_{-\infty}^x \mathbb{f}_n(y) \, dy = \frac{n+1}{2} \int_{-1}^x |y|^n \, dy.$$

Im Falle $x \in (-1,0]$ folgt nun:

$$\mathbb{F}_n(x) = \frac{n+1}{2}(-1)^n \int_{-1}^x y^n \, \mathrm{d}y = \frac{(-1)^n}{2} \left[y^{n+1} \right]_{-1}^x = \frac{(-1)^n}{2} \left(x^{n+1} - (-1)^{n+1} \right) = \frac{1}{2} (1 - (-x)^{n+1}).$$

Insbesondere folgt daher $F_n(0) = \frac{1}{2} = \frac{n+1}{2} \int_{-1}^0 |y|^n dy$. Für $x \in (0,1)$ gilt:

$$\mathbb{F}_n(x) = \frac{n+1}{2} \int_{-1}^x |y|^n \, \mathrm{d}y = \frac{n+1}{2} \int_{-1}^0 |y|^n \, \mathrm{d}y + \frac{n+1}{2} \int_0^x y^n \, \mathrm{d}y = \frac{1}{2} + \frac{1}{2} \left[y^{n+1} \right]_0^x = \frac{1}{2} (1 + x^{n+1}).$$

Alternative für $x \in (0,1)$: Da \mathbb{f}_n achsensymmetrisch zum Ursprung ist, wissen wir, dass $\mathbb{F}_n(x) = 1 - \mathbb{F}_n(-x)$ gelten muss. Daraus kann das Ergebnis für $x \in (0,1)$ direkt aus dem Ergebnis für $x \in (-1,0)$ abgelesen werden.

Zur schwachen Konvergenz: Um zu ermitteln, ob X_n schwach konvergiert, untersuchen wir den punktweisen Limes von F_n für $n \to \infty$. Hier ist:

$$\mathbb{F}_n(x) = \begin{cases} 0, & x \le -1, \\ \frac{1}{2}(1 - (-x)^{n+1}), & x \in (-1, 0], \\ \frac{1}{2}(1 + x^{n+1}), & x \in (0, 1), \\ 1, & x \ge 1 \end{cases} \longrightarrow \begin{cases} 0, & x \le -1, \\ \frac{1}{2}, & x \in (-1, 1), \\ 1, & x \ge 1 \end{cases} =: \tilde{\mathbb{F}}(x).$$

 $\tilde{\mathbb{F}}$ ist noch keine Verteilungsfunktion, da sie nicht rechtsseitig stetig ist. Wir können \mathbb{F} aber an der Unstetigkeitsstellen x=-1 so modifizieren, dass sie rechtsseitig stetig und damit zur Verteilungsfunktion wird. Definiere

$$\mathbb{F}(x) := \begin{cases} 0, & x < -1, \\ \frac{1}{2}, & x \in [-1, 1), \\ 1, & x \ge 1. \end{cases}$$

 \mathbb{F} ist eine Verteilungsfunktion und es gilt $\mathbb{F}_n(x) \to \mathbb{F}(x)$ für alle Stetigkeitspunkte x von \mathbb{F} (d.h. für alle $x \in \mathbb{R} \setminus \{-1,1\}$). Damit ist gezeigt, dass $X_n \stackrel{D}{\to} Z$, wobei Z eine Zufallsvariable mit Verteilungsfunktion \mathbb{F} ist.

Genauer ist Z eine diskrete Zufallsvariable mit $\mathbb{P}(Z=-1)=\mathbb{P}(Z=1)=\frac{1}{2}$, wie man leicht aus der Verteilungsfunktion \mathbb{F} abliest.

- (c) Wir ermitteln nun wie in (b) jeweils die Verteilungsfunktion \mathbb{F}_n von X_n und deren Limes $\tilde{\mathbb{F}}$, und nehmen evtl. Modifikationen vor, damit $\tilde{\mathbb{F}}$ zur Verteilungsfunktion wird.
 - $ightharpoonup X_n \sim \mathrm{U}_{[0,1+\frac{1}{n}]}$: Hier ist die Dichte $\mathbb{f}_n(x) = \frac{1}{1+\frac{1}{n}}\mathbb{1}_{[0,1+\frac{1}{n}]}(x)$ und

$$\mathbb{F}_n(x) = \begin{cases} 0, & x < 0, \\ \frac{x}{1 + \frac{1}{n}}, & 0 \le x \le 1 + \frac{1}{n}, \longrightarrow \begin{cases} 0, & x < 0, \\ x, & 0 \le x \le 1, =: \tilde{\mathbb{F}}(x). \\ 1, & x > 1 \end{cases}$$

 $\tilde{\mathbb{F}}$ ist an der Stelle x=1nicht rechsseitig stetig: Modifiziere zu

$$\mathbb{F}(x) := \begin{cases} 0, & x < 0, \\ x, & 0 \le x < 1, \\ 1, & x \ge 1 \end{cases}$$

dann ist \mathbb{F} rechtsseitig stetig (es ist die Verteilungsfunktion einer $U_{[0,1]}$ -Verteilung) und es gilt $\mathbb{F}_n(x) \to \mathbb{F}(x)$ für alle Stetigkeitspunkte x von \mathbb{F} . Das bedeutet, es gibt $Z \sim U_{[0,1]}$ mit $X_n \stackrel{D}{\to} Z$.

► $X_n \sim \operatorname{Exp}_n$: Hier ist $\mathbb{F}_n(x) = \left(1 - e^{-nx}\right) \mathbb{1}_{[0,\infty)}(x)$. Es gilt $\mathbb{F}_n(x) = \left(1 - e^{-nx}\right) \mathbb{1}_{[0,\infty)}(x) \to \mathbb{1}_{(0,\infty)}(x) =: \tilde{\mathbb{F}}(x),$

 $\tilde{\mathbb{F}}$ ist an der Stelle x=0 nicht rechtsseitig stetig: Modifiziere zu $\mathbb{F}(x):=\mathbb{1}_{[0,\infty)}(x)$, dann ist \mathbb{F} rechtsseitig stetig (es ist die Verteilungsfunktion einer konstante Zufallsvariable Z=0). Das bedeutet $X_n \stackrel{D}{\to} 0$.

▶ $X_n \sim \operatorname{Exp}_{1/n}$: Hier ist $\mathbb{F}_n(x) = \left(1 - e^{-x/n}\right) \mathbb{1}_{[0,\infty)}(x)$. Es gilt $\mathbb{F}_n(x) = \left(1 - e^{-x/n}\right) \mathbb{1}_{[0,\infty)}(x) \to 0 =: \tilde{\mathbb{F}}(x),$

Angenommen, es gäbe eine Zufallsvariable Z mit $X_n \stackrel{D}{\to} Z$. Dann müsste $\mathbb{F}_n(x) \to 0 = \mathbb{F}_Z(x)$ für alle Stetigkeitspunkte x von \mathbb{F}_Z gelten.

Da \mathbb{F}_Z nur abzählbar viele Unstetigkeitsstellen hat (Übungsaufgabe 4(d)), gilt also sicher $\mathbb{F}_Z(x) = 0$ für beliebig große $x \in \mathbb{R}$. Aufgrund der Monotonie von \mathbb{F}_Z folgt dann aber schon $\mathbb{F}_Z \equiv 0$. Das ist ein Widerspruch zu der Eigenschaft $\lim_{x\to\infty} \mathbb{F}_Z(x) = 1$ einer Verteilungsfunktion. Daher kann X_n nicht schwach konvergieren.

Aufgabe 42 (Charakteristische Funktionen, 4 = 1 + 2 + 1 Punkte).

- (a) Berechnen Sie die charakteristische Funktion φ_X einer auf dem Intervall $[a,b],\ a< b,$ gleichverteilten Zufallsvariable $X\sim \mathrm{U}_{[a,b]}.$
- (b) Zeigen Sie, dass für die charakteristischen Funktionen φ_Y, φ_Z zweier unabhängiger Zufallsvariablen Y, Z

$$\varphi_{Y+Z}(t) = \varphi_Y(t) \cdot \varphi_Z(t) \quad \forall t \in \mathbb{R} \quad \text{und} \quad \varphi_{-Y}(t) = \overline{\varphi_Y(t)} \quad \forall t \in \mathbb{R}$$

gilt und folgern Sie:

Die Differenz zweier unabhängiger und identisch verteilter Zufallsvariablen kann **nicht** $U_{[-1,1]}$ -verteilt sein.

Hinweis: Es gilt $\sin(t) = \frac{1}{2i} (\exp(it) - \exp(-it))$.

(c) Seien X_1, X_2 unabhängige und identisch verteilte Zufallsvariablen. Es gelte: $X_1 + X_2$ hat dieselbe Verteilung wie X_1 . Zeigen Sie, dass dann schon $X_1 = 0 = X_2$ fast sicher gilt.

Lösung 42.

(a) Für $X \sim U_{[a,b]}$ gilt für $t \neq 0$

$$\varphi_X(t) \stackrel{\text{Def}}{=} \mathbb{E}[\exp(itX)] = \frac{1}{b-a} \int_a^b \exp(itx) \, \mathrm{d}x = \frac{1}{it(b-a)} (e^{itb} - e^{ita})$$

und für t = 0 gilt $\varphi_X(0) = 1$.

(b) Es gilt

$$\varphi_{Y+Z}(t) \stackrel{\text{Def}}{=} \mathbb{E}[\exp(it(Y+Z))] = \mathbb{E}[\exp(itY)\exp(itZ)]$$

$$\stackrel{\text{unabh.}}{=} \mathbb{E}[\exp(itY)]\mathbb{E}[\exp(itZ)] = \varphi_Y(t) \cdot \varphi_Z(t)$$

Außerdem

$$\varphi_{-Y}(t) = \mathbb{E}[\exp(-itY)] = \mathbb{E}[\overline{\exp(itY)}] = \overline{\mathbb{E}[\exp(itY)]} = \overline{\varphi_Y(t)}$$

Seien nun Y und Z zusätzlich identisch verteilt: Dann gilt

$$\varphi_{Z-Y}(t) = \varphi_Z(t) \cdot \varphi_{-Y}(t) = \varphi_Z(t) \cdot \overline{\varphi_Y(t)} = |\varphi_Z(t)|^2 \ge 0,$$

aber $\varphi_{U_{[-1,1]}}(t) = \frac{\sin(t)}{t} < 0$ für einige $t \in \mathbb{R}$.

(c) Es gilt nach Voraussetzung $\varphi_{X_1}(t) = \varphi_{X_1+X_2}(t) \stackrel{\text{unabh.}}{=} \varphi_{X_1}(t) \varphi_{X_2}(t) \stackrel{\text{ident. vlt.}}{=} \varphi_{X_1}^2(t)$. D.h. $\varphi_{X_1}(t) \in \{0,1\}$ für alle $t \in \mathbb{R}$. Da $\varphi_{X_1}(t)$ stetig in t ist und $\varphi_{X_1}(0) = 1$, folgt $\varphi_{X_1}(t) \equiv 1$ für alle $t \in \mathbb{R}$. Dies ist gerade die charakteristische Funktion einer konstanten Zufallsvariablen $Y \equiv 0$, also muss $X_1 \equiv 0$ \mathbb{P} -fast sicher gelten.

Aufgabe 43 (ZGWS und empirische Vtlgsfunktion, 4 = 2 + 1 + 1 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $n \in \mathbb{N}$ und $X_1, ..., X_n : \Omega \longrightarrow \mathbb{R}$ unabhängig und identisch verteilte Zufallsvariablen mit $\mathbb{E}(X_1) = \mu$, $\mathbb{V}ar(X_1) = \sigma^2$ und Verteilungsfunktion \mathbb{F} . Seien für $x \in \mathbb{R}$

$$\hat{\mathbb{F}}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}$$

die empirische Verteilungsfunktion.

- (a) Bestimmen Sie die Verteilung von $n \cdot \hat{\mathbb{F}}_n(x)$ und geben Sie dann $\mathbb{E}(\hat{\mathbb{F}}_n(x))$ und \mathbb{V} ar $(\hat{\mathbb{F}}_n(x))$ in Termen von n und $\mathbb{F}(x)$ an.
- (b) Zeigen Sie, dass $\hat{\mathbb{F}}_n(x) \stackrel{\mathbb{P}-\text{f.s.}}{\longrightarrow} \mathbb{F}(x)$ gilt.
- (c) Zeigen Sie, dass $\sqrt{n} \left(\hat{\mathbb{F}}_n(x) \mathbb{F}(x) \right) \stackrel{D}{\to} N_{(0,\mathbb{F}(x)(1-\mathbb{F}(x)))}$ gilt.

Lösung 43.

(a) Es gilt $\mathbb{P}(\mathbb{1}_{\{X_i \leq x\}} = 1) = \mathbb{P}(X_i \leq x) = \mathbb{F}(x)$. Daher ist $\mathbb{1}_{\{X_i \leq x\}} \sim \text{Bin}_{(1,\mathbb{F}(x))}$. Da die X_i (i = 1, ..., n) unabhängig sind, sind auch $\mathbb{1}_{\{X_i \leq x\}}$ (i = 1, ..., n) unabhängig. Es folgt nach der Vorlesung (Faltung von Binomialverteilungen):

$$n \cdot \hat{\mathbb{F}}_n(x) = \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}} \sim \operatorname{Bin}_{(n,\mathbb{F}(x))}.$$

Aus den bekannten Formeln für Erwartungswert und Varianz für eine Binomialverteilung erhalten wir $\mathbb{E}[n \cdot \hat{\mathbb{F}}_n(x)] = n \cdot \mathbb{F}(x)$ und $\mathbb{V}\operatorname{ar}(n \cdot \hat{\mathbb{F}}_n(x)) = n \cdot \mathbb{F}(x) \cdot (1 - \mathbb{F}(x))$, womit

$$\mathbb{E}[\hat{\mathbb{F}}_n(x)] = \mathbb{F}(x), \qquad \mathbb{V}\operatorname{ar}(\hat{\mathbb{F}}_n(x)) = \frac{\mathbb{F}(x) \cdot (1 - \mathbb{F}(x))}{n}$$

folgt.

(b) Nach dem Starken Gesetz der großen Zahlen (SGGZ, 28.13.) folgt für die iid Zufallsvariablen $Y_i := \mathbbm{1}_{\{X_i \leq x\}}$ mit $\mathbb{E}(|Y_i|) \leq 1$:

$$\hat{\mathbb{F}}_n(x) = \frac{1}{n} \sum_{i=1}^n Y_i \stackrel{\mathbb{P}-\text{f.s.}}{\longrightarrow} \mathbb{E}(Y_1) = \mathbb{F}(x).$$

(c) Nach dem Zentralen Grenzwertsatz 31.02 folgt für die iid Zufallsvariablen $Y_i := \mathbb{1}_{\{X_i \geq x\}}$ mit $\mathbb{E}(Y_i) = \mathbb{F}(x)$, $\mathbb{V}ar(Y_i) = \mathbb{F}(x)(1 - \mathbb{F}(x))$:

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_i - \mathbb{E}(Y_i)}{\sqrt{\mathbb{V}\mathrm{ar}(Y_i)}} = \sqrt{n} \frac{\hat{\mathbb{F}}_n(x) - \mathbb{F}(x)}{\sqrt{\mathbb{F}(x)(1 - \mathbb{F}(x))}} \stackrel{D}{\to} N_{(0,1)}$$

bzw.

$$\sqrt{n}(\hat{\mathbb{F}}_n(x) - \mathbb{F}(x)) \stackrel{D}{\to} N_{(0,\mathbb{F}(x)(1-\mathbb{F}(x)))}.$$

Aufgabe 44 (Asymptotische Konfidenzintervalle und Tests, $4 = 4 \times 1$ Punkte).

Sie haben eine Maschine, die bei Betätigung eines Knopfes eine (reelle) Zufallszahl X_i zwischen 0 und b ausgibt. Die Generierung der Zufallszahlen ist unabhängig voneinander und jede Zahl zwischen 0 und b ist gleichwahrscheinlich, d.h. $X_i \sim \mathrm{U}[0,b]$. Sie beobachten n Ergebnisse der Maschine, X_1, \ldots, X_n .

(a) Weisen Sie nach, dass $\hat{b}_n := 2\overline{X}_n$ für $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$ ein erwartungstreuer Schätzer für den Parameter b ist. Zeigen Sie, dass \hat{b}_n folgendes erfüllt:

$$\sqrt{n}(\hat{b}_n - b) \stackrel{d}{\to} N_{(0,b^2/3)}$$

- (b) Leiten Sie ein asymptotisches (1α) -Konfidenzintervall $C_n^{(b)}$ für b für die richtigen Parameter $\mathcal{R}_b = [b, \infty)$ her.
- (c) Sie wollen testen:

$$H_0: b = b_0$$
 vs. $H_1: b > b_0$

Zeigen Sie, dass ein Test zum asymptotischen Niveau α durch

$$\phi_n^{(b)}(X_1, \dots, X_n) = \begin{cases} 1, & \hat{b}_n - \frac{\hat{b}_n}{\sqrt{3n}} q_{1-\alpha} > b_0 \\ 0, & \text{sonst} \end{cases}$$

gegeben ist.

(d) Sie haben nun konkret n = 10 Realisierungen der Maschine in folgender Tabelle gegeben:

Beobachtung	1	2	3	4	5	6	7	8	9	10
Wert	42.09	64.91	24.61	42.38	42.08	46.67	31.92	54.96	59.16	99.98

Sie vermuten, dass $b_0 = 100$, sind sich aber nicht sicher, ob nicht $b > b_0$ ist. Berechnen Sie das Intervall aus (b) und das Testergebnis aus (c). Wie lautet schließlich Ihre Testentscheidung basierend auf den angegebenen Daten?

Hinweis: Das 95%-Quantil der Standardnormalverteilung ist gegeben durch $q_{0.95} = 1.64$.

Lösung 44. (a) Weil alle X_i stetig gleichverteilt auf [0,b] sind gilt: $\mathbb{E}X_1 = \frac{b}{2}$ und \mathbb{V} ar $(X_1) = \frac{b^2}{12}$. Es gilt also auch $\mathbb{E}(\hat{b}_n) = 2\mathbb{E}(\overline{X}_n) = b$, d.h. \hat{b}_n ist ein erwartungstreuer Schätzer für b. Mit dem ZGWS erhalten wir:

$$\sqrt{n} \frac{2\overline{X}_n - b}{\sqrt{b^2/3}} = \sqrt{n} \frac{\overline{X}_n - \frac{b}{2}}{\sqrt{b^2/12}} \stackrel{D}{\to} \mathcal{N}_{(0,1)}$$

Beachte, dass $\hat{b}_n = 2\overline{X}_n$. Mit dem Satz von Slutsky erhalten wir

$$\sqrt{n} \left(\hat{b}_n - b \right) \stackrel{D}{\to} \mathcal{N}_{(0,b^2/3)}$$

(b) Um ein asymptotisches Konfidenzintervall angeben zu können, benötigen wir einen konsistenten Schätzer für die Varianz der Grenzverteilung $b^2/3$ (vgl. Lemma 32.13). Wir wählen $\hat{\sigma}_n^2 := \frac{\hat{b}_n^2}{3}$. Weil $\hat{b}_n \stackrel{\mathbb{P}}{\longrightarrow} b$ folgt mit dem Stetigkeitssatz, dass $\hat{\sigma}_n^2 \stackrel{\mathbb{P}}{\longrightarrow} b^2/3$. Damit ist das asymptotische Konfidenzintervall gegeben durch

$$C_n^{(b)} = \left[\hat{b}_n - \frac{\hat{b}_n}{\sqrt{3n}}q_{1-\alpha}, +\infty\right),$$

wobei $q_{1-\alpha}$ das $1-\alpha$ -Quantil der Standardnormalverteilung ist.

(c) Aus der Vorlesung ist bekannt, dass

$$\psi_n^{(b)}(X_1, \dots, X_n) = \begin{cases} 1, & b_0 \notin C_n^{(b)} \\ 0, & b_0 \in C_n^{(b)} \end{cases}$$

ein Test zum asymptotischen Niveau α ist. Nun gilt

$$b_0 \notin C_n^{(b)} \Leftrightarrow b_0 < \hat{b}_n - \frac{b_n}{\sqrt{3n}} q_{1-\alpha}$$

Das ist aber genau die Bedingung damit $\phi_n^{(b)}(X_1,\ldots,X_n)=1$ und damit ist $\phi_n^{(b)}=\psi_n^{(b)}$ ein Test zum asymptotischen Niveau α für das angegebene Testproblem.

(d) $\hat{b}_n = 101.752$, $\hat{\sigma}_n/\sqrt{n} = \hat{b}_n/\sqrt{30} = 18.577$. Das Konfidenzintervall ist wegen $q_{1-\alpha} = 1.64$ gegeben durch $[71.29, \infty)$. Damit verwirft der Test die Nullhypothese, dass b = 100 nicht, weil 71.29 < 100.

Abgabe:

In Zweiergruppen, bis spätestens Montag, den 15. Februar 2021, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/