3. Osnove digitalne logike

Sadržaj predavanja

- logika sudova
 - logika sudova i digitalni sklopovi
 - logički kombinatori
 - simboli za logičke kombinatore
- Booleova algebra
- Booleove funkcije
- Booleove funkcije dviju varijabli
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

Logika sudova i digitalni sklopovi

- digitalni sustav
 - sve funkcije (obrade podataka) temeljene na malom skupu "osnovnih logičkih funkcija"
- sklopovi koji ostvaruju osnovne logičke funkcije
 osnovni logički sklopovi:
 obrađuju "logičke varijable"
- elektroničke izvedbe osnovnih logičkih sklopova:
 - "Električke veličine koje odgovaraju logičkim varijablama održavaju se unutar unaprijed definiranih i fiksnih granica (na ulazu i na izlazu)."

- "logičke varijable", "osnovne logičke funkcije"
 ~ terminologija logike sudova
- logika sudova, propozicijska logika (engl. propositional logic)
 - ~ "kombiniranje" *elementarnih* sudova radi dobivanja novih *složenih* sudova, bez obzira na suvislost samih sudova
- osnovni kombinatori sudova
 - ~ "osnovni logički veznici"

Logika sudova i digitalni sklopovi

- sudovi (tvrdnje, iskazi):
 - jednostavne rečenice
 - istiniti ili neistiniti

Primjer:

sud A: "Nema ulja (u motoru)."

sud B: "Temperatura (motora) je previsoka."

Logički kombinatori

- osnovni logički veznici:
 - ~ "kombinatori" I, ILI
- vrijednost složenog suda
 - ~ istinit ili neistinit

Primjer:

Logički kombinatori

- izvedba kombinatora I
 - (mehanički) kontakt:

```
A ≡ <sklopka A uključena>
B ≡ <sklopka B uključena>
f ≡ <žarulja svijetli>
```

izvedba relejima:
 struja = pobuda releja
 (informacija se prenosi strujom)

Interpretacija kombiniranja

algoritamski:

ako (A istinit) i (B istinit)
onda f istinit
inače f neistinit

- "logički produkt"
 - ~ konjunkcija
 - "računarska" notacija: $f = A \cdot B = AB$
 - simbolička logika: $f = A \wedge B$
 - teorija skupova: $f = A \cap B$

Logički kombinatori

- izvedba kombinatora ILI
 - (mehanički) kontakt:

izvedba relejima:
 struja = pobuda releja
 (informacija se prenosi strujom)

Interpretacija kombiniranja

algoritamski
 ako (A istinit) *ili* (B istinit) *(ili oba!)* onda f istinit
 inače f neistinit

- "logička suma"~ disjunkcija
 - "računarska" notacija: f = A + B
 - simbolička logika: $f = A \vee B$
 - teorija skupova: $f = A \cup B$

Tablice istinitosti (kombinacija)

- tablica kombinacija, tablica istinitosti (engl. truth table)
 prikaz djelovanja kombinatora:
 konačni broj mogućih kombinacija
 vrijednosti istinitosti elementarnih sudova
- oznake: T ~ istina, ⊥ ~ neistina
- definiraju odnos ulaza i izlaza digitalnog sustava

funkcija I (konjunkcija)

funkcija ILI (*inkluzivna* disjunkcija)

Α	В	f
Т	F	Τ
Τ	Т	Т
Т	1	Т
Т	Т	Т

Logička negacija

- logička funkcija NE, komplement, inverzija
- nije kombinator (ali je korisni operator ②)
- A A ~A

- algoritamski
 ako (A istinit)
 - onda f neistinit
 inače f istinit

- logički izraz
 - "računarska" notacija: $f = \overline{A}$
 - simbolička logika: $f = \neg A$
 - teorija skupova: $f = A^C$

funkcija NE (negacija)

Α	f
Т	Т
Т	Τ

Simboli za logičke kombinatore

- simboli za kombinator I:
 - američki vojni standard Mil-STD-806B
 - međunarodni standard IEC/ISO, DIN 40900, ANSI/IEEE 91-1984
 - stari standard DIN

Simboli za logičke kombinatore

- simboli za kombinator ILI:
 - američki vojni standard Mil-STD-806B
 - međunarodni standard IEC/ISO, DIN 40900, ANSI/IEEE 91-1984
 - stari standard DIN

Simbol za logičku negaciju

- simboli za operator NE:
 - američki vojni standard Mil-STD-806B

 kombiniranje s drugim operatorima

 međunarodni standard IEC/ISO

Sadržaj predavanja

- logika sudova
- Booleova algebra
 - Huntingtonovi postulati
 - teoremi Booleove algebre
 - dvočlana Booleova algebra
 - teorija skupova kao Booleova algebra
- Booleove funkcije
- Booleove funkcije dviju varijabli
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

Booleova algebra

- osnovni matematički aparat korišten u analizi i projektiranju digitalnih sklopova:
 - G. Boole: formalizam za proučavanje "zakona prosuđivanja": "An Investigation of the Laws of Thought", 1854
 - C. E. Shannon:

 primjena Booleove algebre
 (u analizi relejnih elektromehaničkih sklopova):
 "A Symbolic Analysis of Relay and Switching Circuits",
 1938

Booleova algebra

- izgradnja konzistentnog matematičkog sustava na aksiomatski način
- algebra se definira postavljanjem skupa tvrdnji
- formalna definicija:
 - konačni skup objekata: K
 - dvije binarne operacije: +, *
 - skup osnovnih postulata (aksioma)
 - ~ aksiomatizacija

Booleova algebra

- aksiomatizacija s dobrim svojstvima:
 - E. V. Huntington: "Sets of Independent Postulates for the Algebra of Logic", 1904
 - ~ aksiomatizacija s *minimalnim* brojem postulata:
 - konzistentnost:
 niti jedan postulat iz skupa ne proturječi nekom drugom iz istog skupa
 - nezavisnost:
 niti se jedan postulat ne da dokazati putem ostalih

P1: Postoji skup K objekata ili elemenata podložnih relaciji ekvivalencije, oznakom "=", koja zadovoljava princip supstitucije.

ekvivalencija:

• refleksivnost: $(\forall a \in K)(a = a)$

• simetričnost: $(\forall a, b \in K)(b = a \text{ uvijek kada je } a = b)$

• tranzitivnost: $(\forall a, b, c \in K)(a = b \text{ i } b = c \text{ implicite } a = c)$

P2: Definiraju se dva operatora kombiniranja "+" i "." koji su zatvoreni s obzirom na K:

P2a: $(\forall a, b \in K)(a + b \in K)$

P2b: $(\forall a, b \in K)(a \cdot b \in K)$

P3: Za operatore kombiniranja postoji neutralni element:

P3a: $(\exists 0 \in K)(\forall a \in K \mid a+0=a)$

P3b: $(\exists 1 \in K)(\forall a \in K \mid a \cdot 1 = a)$

P4: Vrijedi zakon *komutacije*:

P4a: $(\forall a, b \in K)(a + b = b + a)$

P4b: $(\forall a, b \in K)(a \cdot b = b \cdot a)$

P5: Vrijedi zakon *distribucije*:

P5a: $(\forall a, b, c \in K)(a + (b \cdot c) = (a + b) \cdot (a + c))$

P5b: $(\forall a,b,c \in K)(a \cdot (b+c) = (a \cdot b) + (a \cdot c))$

P6: Postoji inverzni element – "komplement":

$$(\forall a \in K)(\exists \overline{a} \in K \mid (a + \overline{a} = 1)$$
$$(a \cdot \overline{a} = 0))$$

P7: Skup K sadrži barem dva različita elementa:

$$(\exists \text{ barem } a, b \in K \mid a \neq b)$$

- "operabilni" postulati
 - ~ direktno korištenje u manipulacijama logičkih izraza
 - P3 (neutralni element)
 - P4 (komutativnost)
 - P5 (distributivnost)
 - P6 (inverzni element)

- inverzni element (komplement)
 - ~ interpretacija kao rezultat operacije komplementiranja
- interpretacija "+" i "." u uobičajenom smislu aritmetičkih operatora?
 ~ P5a i P6 ne vrijede!
- dualnost (metateorem o dualnosti):
 - "Zamjenom operatora i neutralnih elemenata u nekom postulatu dobiva se njegov par, ako takav postoji."

- prioriteti operatora:
 - komplement, "—"
 - konjunkcija, "."
 - inkluzivna disjunkcija, "+"
- zagrade mijenjaju redoslijed obavljanja operacija

T1: dominacija

T1a:
$$(\forall a \in K)(a+1=1)$$

T1b:
$$(\forall a \in K)(a \cdot 0 = 0)$$

Dokaz:

$$(a+1) = (a+1) \cdot 1 \qquad (P3b)$$

$$= (a+1) \cdot (a+\overline{a}) \qquad (P6)$$

$$= a + (1 \cdot \overline{a}) \qquad (P5a)$$

$$= a + \overline{a} \qquad (P3b)$$

$$= 1 \qquad (P6)$$

$$(Q.E.D.)$$

T2: idempotencija

T2a:
$$(\forall a \in K)(a+a=a)$$

T2b:
$$(\forall a \in K)(a \cdot a = a)$$

Dokaz:

$$(a+a) = (a+a) \cdot 1 \qquad (P3b)$$

$$= (a+a) \cdot (a+\overline{a}) \qquad (P6)$$

$$= a + (a \cdot \overline{a}) \qquad (P5a)$$

$$= a + 0 \qquad (P6)$$

$$= a \qquad (P3a)$$

$$(Q.E.D.)$$

T3: involucija

$$(\forall a \in K)(a = \overline{(\overline{a})})$$

Dokaz: bez dokaza

T4:

T4a: $(\forall a, b \in K)(a + \overline{a}b = a + b)$

T4b: $(\forall a, b \in K)(a \cdot (\overline{a} + b) = a \cdot b)$

Dokaz:

$$(a + \overline{a}b) = (a + \overline{a}) \cdot (a + b)$$

$$= 1 \cdot (a + b)$$

$$= a + b$$

$$(P5a)$$

$$(P6)$$

$$(P3b)$$

$$\overline{(Q.E.D.)}$$

T5: apsorpcija

T5a:
$$(\forall a,b \in K)(a+ab=a)$$

T5b:
$$(\forall a,b \in K)(a \cdot (a+b) = a)$$

Dokaz:
$$(a+ab) = a \cdot 1 + ab$$
 $(P3b)$
 $= a \cdot (1+b)$ $(P5b)$
 $= a \cdot 1$ $(T1)$
 $= a$ $(P3b)$
 $\overline{(Q.E.D.)}$

L6:
$$(\forall a, b, c \in K)(a \cdot ((a+b)+c) = ((a+b)+c) \cdot a) = a)$$

Dokaz:
$$a \cdot ((a+b)+c) = a \cdot (a+b)+a \cdot c$$
 (P5)
 $= a + a \cdot c$ (T5)
 $= a$ (T5)
 $= ((a+b)+c) \cdot a$ $\overline{(Q.E.D.)}$

T7: asocijativnost

T7a: $(\forall a, b, c \in K)((a+b)+c=a+(b+c))$

T7b: $(\forall a,b,c \in K)((a \cdot b) \cdot c = a \cdot (b \cdot c))$

Dokaz: indirektan

 ako tvrdnja teorema vrijedi, lijeva i desna strana su jednake, pa vrijedi idempotencija (T2):

$$z = ((a+b)+c) \cdot (a+(b+c))$$

$$= ((a+b)+c) \cdot a + ((a+b)+c) \cdot (b+c)$$

$$= a + ((a+b)+c) \cdot (b+c)$$

$$= a + (((a+b)+c) \cdot b + ((a+b)+c) \cdot c)$$

$$= a + (b+((a+b)+c) \cdot c)$$

$$= a + (b+c)$$

$$(P5b)$$

$$(P4, P6)$$

$$(P4, P6)$$

$$(P5b)$$

4

Teoremi Booleove algebre

T8: de Morganovi zakoni

T8a: $(\forall a, b \in K)(\overline{a+b} = \overline{a} \cdot \overline{b})$

T8b: $(\forall a, b \in K)(\overline{a \cdot b} = \overline{a} + \overline{b})$

Dokaz: indirektan

ispitivanjem ispravnosti komplementa (P6)

Dokaz T8:

$$(a+b) + \overline{a} \cdot \overline{b} = ((a+b) + \overline{a}) \cdot ((a+b) + \overline{b}) \quad (P5a)$$

$$= (\overline{a} + (a+b)) \cdot (\overline{b} + (b+a)) \quad (P4)$$

$$= 1 \cdot 1 \quad (T5,T1)$$

$$= 1 \quad (T1)$$

$$(a+b) \cdot (\overline{a} \cdot \overline{b}) = a \cdot (\overline{a} \cdot \overline{b}) + b \cdot (\overline{b} \cdot \overline{a}) \quad (P5b,P4b)$$

$$= 0 + 0 \quad (T7,P6,T1)$$

$$= 0 \quad (T2)$$

Dokaz T8 (nastavak):

• oba zahtjeva P6 su zadovoljena: (a+b) je jedinstveni komplement od $(a \cdot \overline{b})$

$$a+b = \overline{a \cdot b} \rightarrow \overline{a+b} = \overline{a \cdot b}$$

$$a \rightarrow \overline{a}, b \rightarrow \overline{b}$$

$$\overline{a+b} = \overline{a \cdot b}$$

$$= a \cdot b$$

$$\overline{a+b} = \overline{a \cdot b} \rightarrow \overline{a \cdot b} = \overline{a+b}$$

$$(T3)$$

$$\overline{a+b} = \overline{a \cdot b} \rightarrow \overline{a \cdot b} = \overline{a+b}$$

$$(Q.E.D.)$$

Teoremi Booleove algebre

Poopćenje de Morganovih zakona:

$$(\forall a, b, ..., z \in K)(\overline{a+b+...+z} = \overline{a} \cdot \overline{b} \cdot ... \cdot \overline{z})$$

$$(\forall a, b, ..., z \in K)(\overline{a \cdot b \cdot ... \cdot z} = \overline{a} + \overline{b} + ... + \overline{z})$$

Dokaz:

putem asocijativnosti (T7)

$$\overline{a+b+c} = \overline{a+(b+c)} = \overline{a} \cdot \overline{b+c} = \overline{a} \cdot \overline{b} \cdot \overline{c}$$

Teoremi Booleove algebre

T9: simplifikacija

T9a: $(\forall a, b \in K)(a \cdot b + a \cdot \overline{b} = a)$

T9b: $(\forall a, b \in K)((a+b)\cdot(a+\overline{b})=a)$

Dokaz:

 primjenom distributivnosti (P5) i neutralnog elementa (P3)

Dvočlana Booleova algebra

najjednostavnija Booleova algebra: $K = K_2 = \{0,1\}$ ~ 0 i 1 nemaju numerička nego *logička* značenja

⇒ ekvivalentni *termi* (izrazi)

za 1 odnosno 0: $\overline{1} = 0$, $\overline{0} = 1$

$$1 \cdot 1 = 1 + 0 = 0 + 1 = 1 + 1 = 1$$

$$0+0=0\cdot 1=1\cdot 0=0\cdot 0=0$$

FER-Zagreb, Digitalna logika 2020/21

Teorija skupova kao Booleova algebra

- teorija skupova
 - ~ izomorfna dvočlanoj Booleovoj algebri:

pridruživanje:

$$\langle K, +, -, 0, 1 \rangle \longleftrightarrow \langle S, \cap, \cup, \sim, \phi, U \rangle$$

 $K = \{0, 1\} \longleftrightarrow S = \{\phi, U\}$

 ϕ : prazni skup

U: univerzalni skup

definicija operacija:

$$x \in A \cap B, x \in A \cup B, x \in A$$

Teorija skupova kao Booleova algebra

- Vennov dijagram
 - ~ prikaz skupa skupom točaka
 - univerzalni skup U: kvadrat, pravokutnik ili slični lik
 - skup: lik (obično krug) unutar U

Teorija skupova kao Booleova algebra

postulati u skupovnom obliku:

(P3)
$$A \cup \phi = A$$

 $A \cap U = A$
(P4) $A \cup B = B \cup A$
 $A \cap B = B \cap A$
(P5) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
(P6) $A \cup \overline{A} = U$
 $A \cap \overline{A} = \phi$

Sadržaj predavanja

- logika sudova
- Booleova algebra
- Booleove funkcije
 - definicija
 - kanonski oblici
 - Shannonov teorem ekspanzije
 - komplementarna i dualna funkcija
- Booleove funkcije dviju varijabli
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

Booleove funkcije

- logika sudova
 ~ izražavanje složenog
 suda kombiniranjem elementarnih sudova
 operatorima povezivanja (I, ILI)
- Booleova funkcija formalno: "neko pridruživanje funkcijskih vrijednosti (0 ili 1) za svaku kombinaciju vrijednosti argumenata (varijabli)"
- funkcija od *n* varijabli: $f(x_1, x_2, ..., x_n) \rightarrow 2^n$ mogućih kombinacija
- izražavanje ("definiranje") Booleove funkcije
 ~ tablica kombinacija (2ⁿ redaka),
 analogno osnovnim logičkim funkcijama I, ILI, NE

Booleove funkcije

upisivanje funkcije u tablicu

Primjer:
$$f(A,B) = \overline{A} \cdot B + A \cdot \overline{B}$$

A	\boldsymbol{B}	\overline{A}	\overline{B}	$\overline{A}\cdot B$	$A\cdot \overline{B}$	$\overline{A} \cdot B + A \cdot \overline{B}$
0	0	1	1	0	0	0
0				1	0	1
1	0	0	1	0	1	1
1			0		0	0

ako je
$$A=1$$
 "ili" $B=1$ onda $f=1$ inače $f=0$

⇒ isključena kombinacija A=1, B=1 isključivo ILI, ekskluzivna disjunkcija, EX-ILI

Booleove funkcije

definicija:

$$f(A,B) = \overline{A} \cdot B + A \cdot \overline{B}$$

notacija:

$$f(A,B) = A \oplus B$$

- simbol:
 - suma mod 2
 (zbrajanje 2 bita,
 bez prijenosa)
 - 1 za neparni broj 1 na ulazima

A	\boldsymbol{B}	f
0	0	0
0	1	1
1	0	1
1	1	0

čitanje funkcije iz tablice:

• za f = 1:

$$(A = 0) \cdot (B = 1) + (A = 1) \cdot (B = 0)$$

J_ | J_ -

dakle

$$(\overline{A}=1)\cdot (B=1)+(A=1)\cdot (\overline{B}=1)$$

$$\Rightarrow f = \overline{A} \cdot B + A \cdot \overline{B}$$

• za f = 0:

$$(A = 0) \cdot (B = 0) + (A = 1) \cdot (B = 1)$$

$$\overline{(A=0)\cdot(B=0)}\cdot\overline{(A=1)\cdot(B=1)} = \left[\overline{(A=0)} + \overline{(B=0)}\right]\cdot\overline{\left[(A=1) + \overline{(B=1)}\right]}$$
$$= \left[(A=1) + (B=1)\right]\cdot\left[(A=0) + (B=0)\right]$$

$$\Rightarrow f = (A+B) \cdot (\overline{A} + \overline{B})$$

$$f = \alpha_0 \cdot (\overline{A} \cdot \overline{B}) + \alpha_1 \cdot (\overline{A} \cdot B) + \alpha_2 \cdot (A \cdot \overline{B}) + \alpha_3 \cdot (A \cdot B)$$
$$= \alpha_0 \cdot P_0 + \alpha_1 \cdot P_1 + \alpha_2 \cdot P_2 + \alpha_3 \cdot P_3$$

• za tablicu iz primjera (EX-ILI):
$$\alpha_0 = \alpha_3 = 0$$

$$\frac{\alpha_1 = \alpha_2 = 1}{f = P_1 + P_2}$$

općenito za funkciju od n varijabli:

$$f = \alpha_0 \cdot P_0 + \dots + \alpha_{2^n - 1} \cdot P_{2^n - 1} = \sum_{i=0}^{2^n - 1} \alpha_i \cdot P_i, \quad \alpha_i \in \{0, 1\}$$

 α_{\cap}

- čitanje općenite funkcije iz tablice:
 - za f = 1: $\text{oblik} \quad f = \alpha_0 \cdot P_0 + \ldots + \alpha_{2^n 1} \cdot P_{2^n 1} = \sum_{i = 0}^{2^n 1} \alpha_i \cdot P_i, \quad \alpha_i \in \{0, 1\}$

kanonski, standardni oblik: potpuni disjunktivni normalni oblik

- čitanje općenite funkcije iz tablice definicije:
 - *literal* : varijabla ili komplement
 - produkt: niz literala povezanih operacijom I
 - suma: niz literala povezanih operacijom ILI
 - normalni član: produkt/suma u kojoj se niti jedan literal ne pojavljuje više od jednog puta
 - standardni produkt: normalni produkt koji sadrži toliko literala koliko funkcija ima varijabli:
 - kanonski produkt, P_i ili minterm, m_i
 - u tablici kombinacija odgovara mu samo jedna 1
 - standardna suma produkata: kanonski oblik funkcije

• čitanje općenite funkcije iz tablice:

• za f = 0:

$$f = \left[\alpha_0 + (A + B)\right] \cdot \left[\alpha_1 + (A + \overline{B})\right] \cdot \left[\alpha_2 + (\overline{A} + B)\right] \cdot \left[\alpha_3 + (\overline{A} + \overline{B})\right]$$
$$= (\alpha_0 + S_0) \cdot (\alpha_1 + S_1) \cdot (\alpha_2 + S_2) \cdot (\alpha_3 + S_3)$$

za tablicu iz Primjera (EX-ILI):

$$\alpha_0 = \alpha_3 = 0$$

$$\alpha_1 = \alpha_2 = 1$$

$$f = S_0 \cdot S_3$$

općenito za funkciju od n varijabli:

$$f = (\alpha_0 + S_0) \cdot \dots \cdot (\alpha_{2^{n}-1} + S_{2^{n}-1}) = \prod_{i=0}^{2^{n}-1} (\alpha_i + S_i)$$

- čitanje općenite funkcije iz tablice:
 - za f = 0: oblik $f = (\alpha_0 + S_0) \cdot ... \cdot (\alpha_{2^n - 1} + S_{2^n - 1}) = \prod_{i=0}^{2^n - 1} (\alpha_i + S_i)$
 - također *kanonski*, standardni oblik: potpuni konjunktivni normalni oblik
 - oznake:

S_i: *kanonske sume* ili *makstermi*, M_i

• mintermi i makstermi:

$\boldsymbol{\mathcal{X}}$	y	$\boldsymbol{\mathcal{Z}}$	minterm	m_i	$\boldsymbol{\mathcal{X}}$	y	\mathcal{Z}	maksterm	M_{i}
0	0	0	$\overline{x} \cdot \overline{y} \cdot \overline{z}$	m_0	0	0	0	x + y + z	M_0
0	0	1	$\overline{x} \cdot \overline{y} \cdot z$	m_1	0	0	1	$x + y + \overline{z}$	M_1
0	1	0	$\overline{x} \cdot y \cdot \overline{z}$	m_2	0	1	0	$x + \overline{y} + z$	M_2
0	1	1	$\overline{x} \cdot y \cdot z$	m_3	0	1	1	$x + \overline{y} + \overline{z}$	M_3
1	0	0	$x \cdot \overline{y} \cdot \overline{z}$	m_4	1	0	0	$\overline{x} + y + z$	M_4
1	0	1	$x \cdot \overline{y} \cdot z$	m_5	1	0	1	$\overline{x} + y + \overline{z}$	M_5
1	1	0	$x \cdot y \cdot \overline{z}$	m_6	1	1	0	$\overline{x} + \overline{y} + z$	M_6
1	1	1	$x \cdot y \cdot z$	m_7	1	1	1	$\overline{x} + \overline{y} + \overline{z}$	M_{7}

- standardni (kanonski) oblici su ekvivalentni:
 - npr. za EX-ILI: $f = (A+B) \cdot (\overline{A} + \overline{B})$ $= A \cdot \overline{A} + \overline{A} \cdot B + A \cdot \overline{B} + B \cdot \overline{B}$ $= 0 + \overline{A} \cdot B + A \cdot \overline{B} + 0$ $= \overline{A} \cdot B + A \cdot \overline{B}$
 - izbor standardnog oblika za prikaz:
 - mali broj 1 u definiciji funkcije
 kanonska suma standardnih produkata
 - mali broj 0 u definiciji funkcije
 kanonski produkt standardnih suma
 - manji broj članova (terma)
 brže/jednostavnije čitanje iz tablice!

- drugi prikazi:
 - varijabla ~ 1, komplement ~ 0
 - standardni članovi = vektori (n-torke)
 ~ n-bitni brojevi!
 - interpretacija Booleove funkcije:

$$f: \{0, 1\}^n \to \{0, 1\}$$

skraćeno pisanje funkcije
 indeksi minterma/maksterma

$$f = \overline{A} \cdot B + A \cdot \overline{B} = \Sigma(1,2) = \Pi(0,3)$$

Shannonov teorem ekspanzije

- pretvorba nekanonskog oblika Booleove funkcije u kanonski oblik:
 - suma produkata
 - ~ svaki produkt koji nije kanonski logički "množiti" s 1 1 = x + x, x: varijabla koja nedostaje

Primjer:

$$f = \overline{A} + \overline{B} \cdot C$$

$$= \overline{A} \cdot (B + \overline{B}) \cdot (C + \overline{C}) + (A + \overline{A}) \cdot \overline{B}C$$

$$= ...$$

$$= \overline{A}BC + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C$$

Shannonov teorem ekspanzije

- pretvorba nekanonskog oblika Booleove funkcije u kanonski oblik:
 - produkt suma ~ svakoj sumi koja nije kanonska logički "pribrojiti" 0 $x \cdot x = 0$

Primjer:
$$f = (A+C) \cdot (B+\overline{C})$$

 $= (A+B \cdot \overline{B} + C) \cdot (A \cdot \overline{A} + B + \overline{C})$
 $= ...$
 $= (A+B+C) \cdot (A+\overline{B} + C) \cdot (A+B+\overline{C}) \cdot (\overline{A} + B + \overline{C})$

- komplementarna funkcija:
 - ~ funkcija kojoj su vrijednosti komplementarne onima izvorne funkcije $(0 \rightarrow 1, 1 \rightarrow 0)$

$$f = \sum_{i=0}^{2^{n}-1} \alpha_{i} \cdot P_{i} \qquad \overline{f} = \sum_{i=0}^{2^{n}-1} \overline{\alpha}_{i} \cdot P_{i}$$

$$= \prod_{i=0}^{2^{n}-1} (\alpha_{i} + S_{i}) \qquad = \prod_{i=0}^{2^{n}-1} (\overline{\alpha}_{i} + S_{i})$$

vrijedi:
$$f = \sum_{i \in I_P} P_i \rightarrow \overline{f} = \sum_{j \in \{2^n\} - I_P} P_j = \prod_{i \in I_P} S_i$$

Primjer: komplementarna funkcija

$$f(A, B, C) = P_1 + P_3 + P_4 + P_6 + P_7$$
$$= \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$\bar{f}(A,B,C) = \overline{A}\,\overline{B}\,\overline{C} + \overline{A}\,B\,C + A\,\overline{B}\,\overline{C} + A\,B\,\overline{C} + A\,B\,\overline{C}$$

$$= \overline{A}\,\overline{B}\,\overline{C} \cdot \overline{A}\,B\,\overline{C} \cdot \overline{A}\,\overline{B}\,\overline{C} \cdot \overline{A}\,\overline{B}\,\overline{C} \cdot \overline{A}\,B\,\overline{C}$$

$$= (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$= S_1 \cdot S_3 \cdot S_4 \cdot S_6 \cdot S_7$$

$$= ...$$

$$= \overline{A}\,\overline{C} + A\,\overline{B}\,C = \overline{A}\,(B + \overline{B})\,\overline{C} + A\,\overline{B}\,C = \overline{A}\,\overline{B}\,\overline{C} + \overline{A}\,B\,\overline{C} + A\,\overline{B}\,C$$

$$= P_0 + P_2 + P_5$$

- dualna funkcija:
 - ~ funkcija koja se dobiva zamjenom operatora (+,·)
 i konstanti (0, 1) izvorne funkcije

$$f = f(A, B, C, ..., +, \cdot, -, 0, 1) \rightarrow f_D = f_D(A, B, C, ..., \cdot, +, -, 1, 0)$$

vrijedi:
$$(f_D)_D = f$$

Primjer: dualna funkcija

$$f(A, B, C) = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC = P_1 + P_3 + P_4 + P_6 + P_7$$

$$f_D(A, B, C) = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) \cdot (A + B + C)$$

$$= \dots$$

$$= AC + \overline{A}B\overline{C}$$

$$= \overline{A}B\overline{C} + A\overline{B}C + ABC$$

$$= P_2 + P_5 + P_7$$

- izražavanje de Morganovih zakona
 (= komplement funkcije) dualnom funkcijom:
 - de Morgan: $\overline{f} = f(A, B, C, \dots, +, \cdot, \overline{,} 0, 1)$ = $f(\overline{A}, \overline{B}, \overline{C}, \dots, \cdot, +, \overline{,} 1, 0)$
 - komplement funkcije (još jednom):

$$\overline{f}(A,B,C,...) = f_D(\overline{A},\overline{B},\overline{C},...)$$

- postupak komplementiranja:
 - komplementirati varijable
 - izvesti dualnu funkciju
- primjena komplementarne funkcije
 ~ pojednostavljivanje Booleovih izraza

Sadržaj predavanja

- logika sudova
- Booleova algebra
- Booleove funkcije
- Booleove funkcije dviju varijabli
 - klasifikacija
 - osnovne i univerzalne funkcije
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

- kombinacije varijabli
 - uzeti u obzir sve moguće kombinacije vrijednosti
 0 i 1 koje varijable mogu poprimiti:
 - broj kombinacija: $r = 2^n$
 - svakoj kombinaciji moguće pridružiti dvije vrijednosti:
 0 ili 1
 - broj mogućih Booleovih funkcija od n varijabli: $r = 2^{2^n}$

n	2^n	2^{2^n}
1	2	4
2	4	16
3	8	256
4	16	64K = 65.536
5	32	4G = 4.294.967.296

moguće funkcije jedne varijable:

A	f ₀	f_1	f_2	f ₃
0	0	0	1	1
1	0	1	Ο	1

f₀, f₃: konstante (nularne funkcije)

 $f_0=0$

 $f_3 = 1$

f₁, f₂: unarne funkcije

f₁=A: varijabla

 $f_2 = \overline{A}$: komplement

moguće funkcije dvije varijable:

АВ	f ₀	f_1	f_2	f ₃	f_4	f_5	f ₆	f ₇	f ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f_{13}	f_{14}	f ₁₅
0 0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

→ klase funkcija od dvije varijable

1. konstante: f_0 , f_{15}

2. funkcije pojedinačne varijable: f_3 , f_5 , f_{10} , f_{12}

3. konjunkcije literala: f_1, f_2, f_4, f_8

4. disjunkcije literala: f_7 , f_{11} , f_{13} , f_{14}

5. ekvivalencija i ekskluzivna disjunkcija: f6, f9

moguće funkcije dvije varijable:

АВ	f ₀	f_1	f_2	f ₃	f_4	f_5	f_6	f ₇	f ₈	f ₉	f ₁₀	f_{11}	f_{12}	f_{13}	f_{14}	f ₁₅
0 0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

$$f_0 = 0$$

(*)
$$f_1 = AB$$

(*)
$$f_2 = A\overline{B}$$

$$f_3 = A$$

$$f_4 = \overline{A}B$$

$$f_5 = B$$

(*)
$$f_6 = \overline{A}B + A\overline{B}$$
 EX-ILI

(*)
$$f_7 = A + B$$

inhibicija

identitet

ILI

(*)
$$f_8 = \overline{A+B}$$

(*)
$$f_9 = \overline{A}\overline{B} + AB$$

inhibicija (*)
$$f_{10} = \overline{B}$$

identitet (*)
$$f_{11} = A + \overline{B} = (B \Rightarrow A)$$
 implikacija

$$f_{12} = \overline{A}$$

$$f_{13} = A + B = (A \Rightarrow B)$$
 implikacija

(*)
$$f_{14} = \overline{AB}$$

 $f_{15} = 1$

ekvivalencija

komplement

komplement

ΝI

konstanta

^{* -} različite netrivijalne funkcije

- međusobno komplementarne funkcije:
 - I i NI
 - ILI i NILI
 - INHIBICIJA i IMPLIKACIJA
 - ISKLJUČIVO ILI i EKVIVALENCIJA
- međusobno dualne funkcije:
 - I i ILI
 - NI i NILI
 - INHIBICIJA i IMPLIKACIJA
 - ISKLJUČIVO ILI i EKVIVALENCIJA

zapažanje:

- nagli porast broja mogućih funkcija
 hipereksponencijalni zakon
- za $n \ge 3$ već nema smisla pisati tablicu!
 - ograničiti se na f(x₁, x₂)
 - pronaći one f(x₁, x₂) kojima će se moći ostvariti sve ostale funkcije većeg broja varijabli
 "univerzalne" funkcije?
- izražavanje f(x₁, x₂, ..., x_n)
 kao *kompozicija* izvjesnog
 broja φ_i, *i* << *n*f=f'(φ₁, φ₂, ..., φ_t)

- potreba za ograničavanjem broja različitih Booleovih funkcija, odnosno sklopova koji ih ostvaruju:
 - razlozi tehničko-proizvodne prirode:
 - standardizacija funkcija/sklopova
 - masovna proizvodnja samo nekih logičkih sklopova (engl. economy of scale)
 - samo definiranim (malim!) skupom funkcija (sklopova) ostvariti sve (preostale) funkcije (sklopove)

- potpuni sustav funkcija:
 - "skup Booleovih funkcija naziva se *funkcijski potpuni* sustav ako se iz funkcija takvog skupa, korištenjem superpozicije i zamjene, može dobiti svaka Booleova funkcija"
 - "superpozicija" ~ primjena funkcije
 - "zamjena" ~ promjena mjesta varijabli (i načina dekompozicije složene Booleove funkcije)
- elementi potpunog sustava funkcija
 ~ osnovne (primitivne) funkcije

- potpuni sustav funkcija:
 - želja: minimalni potpuni sustav, ekonomski najopravdaniji!
 - provjera potpunosti sustava funkcija: izražavanje {I, ILI, NE}
 - {I, ILI, NE} također jedan potpuni sustav, jedino nije minimalan!

neki potpuni sustavi funkcija:

{I, NE}:
$$\{f_1, f_{10}\}, \{f_1, f_{12}\}$$

{ILI, NE}: $\{f_7, f_{10}\}, \{f_7, f_{12}\}$

⇒ nije potrebno {I, ILI, NE}!

provjera za {I, NE}: de Morganom za ILI

$$ILI (A,B) = ILI (NE (NE (A)), NE (NE (B)))$$
$$= NE (I (NE (A), NE (B)))$$

$$A + B = \overline{\overline{A}} + \overline{\overline{B}} = \overline{\overline{A}}\overline{\overline{B}}$$

neki (drugi) potpuni sustavi funkcija:

{EX-ILI, I, 1}:
$$\{f_1, f_6, f_{15}\}$$

 $EX - ILI(A, B) = A \oplus B = \overline{A}B + A\overline{B}$
 $EX-ILI(A, I) = \overline{A}$
 $EX-ILI(EX-ILI(A, B), I(A, B)) = ILI(A, B)$
{EX-NILI, I, 1}: $\{f_1, f_9, f_{15}\}$
{inhibicija, 1}: $\{f_2, f_{15}\}$
{implikacija, 1}: $\{f_0, f_{11}\}$

 posebno značajni potpuni sustavi funkcija: oni koji sadrže samo jednu funkciju!

$$\{NI\}: \{f_{14}\}$$

$$\{NILI\}$$
: $\{f_8\}$

- minimalni potpuni skup funkcija
- minimalni broj različitih sklopova
- invertor (NI = NE∘I, NILI = NE∘ILI)
 ~ dodatno pojačanje signala

$$\overline{\overline{A \cdot A}} = \overline{A}$$

$$\overline{\overline{A \cdot B}} = A \cdot B$$

$$\overline{\overline{A \cdot B}} = A + B$$

$$\overline{A+A} = \overline{A}$$

$$\overline{\overline{A} + B} = A \cdot B$$

$$\overline{A+B} = A+B$$

Primjer: ostvarivanje {I, ILI, NE} korištenjem {NI}

$$I(A,B) = NE (NE (I(A,B)))$$

 $= NE (NI (A,B))$
 $= NE (I (NI (A,B),NI (A,B)))$
 $= NI (NI (A,B),NI (A,B))$
 $NE (A) = NE (I (A,A))$
 $= NI (A,A)$
 $ILI (A,B) = ILI (NE (NE (A)),NE (NE (B)))$
 $= NE (I (NE (A),NE (B)))$
 $= NI (NI (A,A),NI (B,B))$

Primjer : ostvarivanje {I, ILI, NE} korištenjem
{NI} i {NILI}

- zapažanje:
 - {I, ILI, NE} povoljno pri formuliranju problema/rješenja
 konceptualno blisko
 - {NI}, {NILI} povoljno pri ostvarenju digitalnog sklopa
 blisko električkoj izvedbi
 - potreba za transformacijom izraza kojim je definirana Booleova funkcija
- metode transformacije:
 - metoda supstitucije
 - algebarska metoda

- metoda supstitucije
 za funkcije u obliku sume produkata:
 - zamijeniti osnovne funkcije univerzalnima: $NE \rightarrow NI^{\circ}NI$, $I \rightarrow NE^{\circ}NI$, $ILI \rightarrow NI^{\circ}NE$
 - primijeniti T3 (involucija)
 ~ eliminirati dvostruku primjenu funkcija NE

- metoda supstitucije za funkcije u obliku produkta suma:
 - zamijeniti osnovne funkcije univerzalnima:
 NE → NILI·NILI, ILI → NE·NILI, I → NILI·NE
 - primijeniti T3 (involucija)
 ~ eliminirati dvostruku primjenu funkcija NE

- algebarska metoda za funkcije u obliku sume produkata:
 - primijeniti T3 (involucija) na pojedine produkte izraza kojim je definirana Booleova funkcija
 - primijeniti T8 (de Morganov zakon) na takav izraz

$$f(x_{1}, x_{2}, ..., x_{n}) = \sum_{i=0}^{2^{n}-1} \alpha_{i} P_{i}$$

$$= \overline{\alpha_{0} P_{0}} + \overline{\alpha_{1} P_{1}} + ... + \overline{\alpha_{2^{n}-1} P_{2^{n}-1}}$$

$$= \overline{\alpha_{0} P_{0} \cdot \overline{\alpha_{1} P_{1}} \cdot ... \cdot \overline{\alpha_{2^{n}-1} P_{2^{n}-1}}}$$

- algoritam transformacije za funkcije u obliku sume produkata:
 - svaki produkt (funkcija I) prikazati kao funkciju NI;
 NI pojedinačne varijable reducira se na komplement
 - na dobivene NI članove primijeniti "izlazni" NI član
- dvorazinska logička shema

- algoritam transformacije za funkcije u obliku produkta suma:
 - svaku sumu (funkcija ILI) prikazati funkcijom NILI;
 NILI pojedinačne varijable reducira se na komplement
 - na dobivene NILI članove primijeniti "izlazni" NILI član
- također dvorazinska logička shema

Primjer:
$$f = AB + \overline{A}\overline{B}C$$

= $\overline{\overline{AB}} \cdot \overline{\overline{\overline{A}}\overline{B}C}$

Primjer:
$$f = (A+B) \cdot (\overline{A} + \overline{B} + C)$$

= $\overline{A+B} + \overline{A+B} + \overline{C}$

 transformacija funkcije koja nije u obliku sume produkata ili produkta suma
 višerazinska logička shema

Primjer:
$$f = A \cdot (\overline{B} + C) + \overline{AD} = \overline{A \cdot (\overline{B} + C)} \cdot \overline{\overline{BD}} = \overline{A \cdot BC} \cdot \overline{\overline{AD}}$$

Sadržaj predavanja

- logika sudova
- Booleova algebra
- Booleove funkcije
- Booleove funkcije dviju varijabli
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

- proširivanje (poznatih) funkcija 2 varijable na više njih:
 - generiranje složenijih funkcija opetovanom primjenom funkcija manjeg broja varijabli
 - standardizacija funkcijskih implementacija
 - ~ standardizacija logičkih sklopova: ekonomičnost!
 - treba zadovoljiti:
 - komutativnost (~ "zamjena")
 - asocijativnost (~ "superpozicija")

- proširivanje funkcije I: moguće je!
 - asocijativnost:

$$f(x_1,...,x_n) = \begin{cases} f(f(...(f(x_1,x_2),x_3)...),x_n) \\ f(x_1,f(x_2,...,f(x_{n-1},x_n),...)) \end{cases}$$

$$x_{1} \cdot x_{2} \cdot \dots \cdot x_{n} = (\dots((x_{1} \cdot x_{2}) \cdot x_{3}) \dots) \cdot x_{n})$$
$$= (x_{1} \cdot (x_{2} \cdot \dots \cdot (x_{n-1} \cdot x_{n}) \dots))$$

$$x_1 + x_2 + \dots + x_n = (\dots((x_1 + x_2) + x_3)\dots) + x_n)$$
$$= (x_1 + (x_2 + \dots + (x_{n-1} + x_n)\dots))$$

• komutativnost: "izmiješati" varijable

proširivanje funkcije EX-ILI: promjena definicije!
 Primjer: asocijativnost po stupcima tablice

\boldsymbol{A}	B	$A \oplus B$	A	В	C	$A \oplus B \oplus C$
0	0	0	0	0	0	0
0	1	1	0	0	1	1
1	0	1	0	1	0	1
1	1	0	0	1	1	0
	- 1		1	0	0	1
			1	0	1	0
			1	1	0	0
			1	1	1	1

- proširivanje funkcije EX-ILI: promjena definicije (drugačija semantika)!
 - EX-ILI(A, B) = A "ili" B, ali ne oba!
 - EX-ILI(A, B, C) = neparan broj 1
 oznaka: 2k+1

svojstva funkcije EX-ILI:

- 1. komutativnost
- 2. asocijativnost
- 3. distributivnost
- 4. $A \oplus 0 = A$
- $5. \quad A \oplus 1 = \overline{A}$
- $6. \quad A \oplus A = 0$
- 7. $A \oplus \overline{A} = 1$
- 8. $A \oplus B = \overline{A} \oplus \overline{B}$

- važnost EX-ILI:
 - izvedba aritmetičkih sklopova
 - izvedba sklopova za zaštita podataka od pogrešaka (prilikom prijenosa, pohranjivanja)
 - izvedba sklopova za generiranje pseudo-slučajnih nizova (pri kodiranju i kriptiranju podataka)

- proširivanje funkcije EX-NILI:
 - n = 2: "ekvivalencija" dvije varijable
 - n = 3: neparni paritet (2k+1)
 - n = 4: komplement neparnog pariteta
 - utvrđena definicija: logički identitet svih varijabli!

$$f = \overline{x_1} \overline{x_2} ... \overline{x_n} + x_1 x_2 ... x_n$$

proširivanje univerzalnih funkcija NI, NILI: ne ide!
 ~ slijediti definiciju funkcija

$$NI \equiv NE \circ I \Leftrightarrow NI(x_1, x_2, ..., x_n) \equiv NE(I(x_1, x_2, ..., x_n))$$

$$= \overline{x_1 \cdot x_2 \cdot ... \cdot x_n}$$

$$= \overline{x_1} + \overline{x_2} + ... + \overline{x_n}$$

$$NILI \equiv NE \circ ILI \Leftrightarrow NILI(x_1, x_2, ..., x_n) \equiv NE(ILI(x_1, x_2, ..., x_n))$$

$$= \overline{x_1 + x_2 + ... + x_n}$$

$$= \overline{x_1} \cdot \overline{x_2} \cdot ... \cdot \overline{x_n}$$

- proširivanje univerzalnih funkcija NI, NILI: ne ide!
 - asocijativnost ne vrijedi!

$$NI(A, B, C) = \overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

$$\neq \begin{cases} NI(NI(A, B), C) = \overline{\overline{ABC}} = AB + \overline{C} \\ NI(A, NI(B, C)) = \overline{ABC} = \overline{A} + BC \end{cases}$$

- zato se držati definicije
 (NI = NE°I, NILI = NE°ILI)
- uočiti
 NI i NILI su međusobno dualne

- druge (složene) Booleove funkcije:
 - logički prag [threshold f.]:
 ≥ m varijabli u 1, m < n

majoritet [majority f.]: većinska f, f. glasanja
n/2 varijabli u 1

"samo m":
upravo m varijabli u 1, m < n

Sadržaj predavanja

- logika sudova
- Booleova algebra
- Booleove funkcije
- Booleove funkcije dviju varijabli
- Booleove funkcije tri i više varijabli
- nepotpuno specificirane funkcije

- u nekim se primjenama ne pojavljuju sve ulazne kombinacije:
 - nije važna vrijednost funkcije (engl. don't care)
 - u tablicu definicije upisuje se "X"

Primjer: funkcija koja ispituje je li dekadska znamenka prikazana BCD (8421) kodom neparna

 koristi se samo 10 ulaznih kombinacija, preostalih 6 su X

Nepotpuno specificirane funkcije

Primjer (nastavak):

```
A = a_3 a_2 a_1 a_0: dekadska znamenka
```

$$f = \sum m(1, 3, 5, 7, 9) +$$

 $\sum d(10, 11, 12, 13, 14, 15)$

= $\Pi M(0, 2, 4, 6, 8)$ · $\Pi d(10, 11, 12, 13, 14, 15)$

	a	\mathbf{a}_2	a_1	a_0	f
0	a ₃	a ₂	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
2 3	0	0	1	1	1
4	0	1	0	0	1 0 1 0
5	0	1	0	1	1
6	0	1	1	0	
4 5 6 7 8 9	0	1	1	1	1
Q	1	0	0	0	0
0	1	0			1
9	1	0	0	1	V
	1	0	1	0	Χ
	1	0	1	1	X
	1	1	0	1 0	X
	1	1	0 0 1	1	X
	1	1	1	1 0 1	1 X X X X X
	1	1	1	1	X

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike.
- logika sudova: str. 79-89
- Booleova algebra: str. 89-96
- Booleove funkcije: str. 96-105
- Booleove funkcije dviju varijabli: str. 105-111, 115-120
- Booleove funkcije tri i više varijabli: str. 112-115

Zadaci za vježbu

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike.
- Booleove funkcije: 3.5-3.14
- Booleove funkcije dviju varijabli: 3.15-3.20
- Booleove funkcije tri i više varijabli: 3.21-3.23, 3.25

Zadaci za vježbu

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 3: Booleova algebra.
- riješeni zadaci: 3.1 3.3
- riješeni zadaci: 3.4 3.15
 (bez modeliranja jezikom VHDL)
- zadaci za vježbu: 1 22 (str. 112-114)