08.09.2020

Spatial vs. Transform Domain Processing

Spatial Domain Input Image Output Image Processing Inverse **Transform Processing** Transform **Transform Domain**

Simple periodic signals

•
$$x(t) = A \cos(t)$$

•
$$x(t) = A\cos(2t)$$

•
$$x(t) = A\cos(t/2)$$

Angular frequency

Signal and Frequency Domains

Periodic Images

 $I(x, y) = 128 \sin(2\pi x/16)$

Sinus oid pattern repeats every 16 pixels f = 1/16 cycles/pixel

Х

Periodic Images

Spatial period = Minimal # of pixels between two identical patterns in a "periodic" image

Sinusoid patternrepeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

Sinusoid pattern repeats every 4 pixels f = 1/4 cycles/pixel

Spatial domain

Frequency domain

Sinus oid pattern repeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

$$I(x,y) = 128 + 64 \sin(2\pi x/16)$$

Sinusoid patternrepeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

Intensity images for $s(x,y) = \sin[2\pi(u_0x + v_0y)]$

 $u_0 = 4, v_0 = 1$

 $u_0 = 4, v_0 = 2$

 $u_0 = 4, v_0 = 4$

Many natural phenomena (signals) are periodic but not necessarily sinusoidal

https://commons.wikimedia.org/wiki/File:Cardiac-Cycle-Animated.gif

Fourier Series

Approximate **periodic signals** with sines and cosines

Fourier Series

Fourier Series, visually

Example: Periodic Square Wave as Sum of Sinusoids

$$f(t) = \frac{4}{\pi} \left[\sin(\pi t) + \frac{1}{3} \sin(3\pi t) + \frac{1}{5} \sin(5\pi t) + \frac{1}{7} \sin(7\pi t) + \cdots \right]$$

$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$

$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$

$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$

$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$
Forty-nine terms
$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2$$
Forty-nine terms

http://ceng.gazi.edu.tr/dsp/fourier_series/description.aspx

$$e^{it} = \cos t + i \sin t$$

$$i = \sqrt{-1}$$

t -> 0 to so Complex sinusoid

$$e^{it} = \cos t + i \sin t$$

$$i = \sqrt{-1}$$

$$\cos t = e^{it} + e^{-it}$$

$$\sin t = e^{it} - e^{-it}$$

$$= e^{it} - e^{-it}$$

Fourier Series in terms of complex coefficients

sin (21171)

$$f(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

$$= \sum_{m=0}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

$$= \sum_{m=0}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-t\frac{2\pi nt}{T}} dt$$

What if f(t) is non-periodic?

Fourier Transform

Approximate non-periodic signals with complex sinusoids

Definition: Fourier Transform

t(4)

t(f)

• the Fourier Transform of a function f(t) is defined by:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
The result is a function of ω (frequency)

The result is a function of ω (frequency).

5 magnitude 5 pectrum

Intuition for FT

- f(t) = Single number
- How much of frequency ω signal is present for all values of t?

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$F(\omega) = \mathcal{F}[f(t)]$$

Fourier Transform and Inverse Fourier Transform

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \qquad F(\omega) = \mathcal{F}[f(t)]$$

Inverse Fourier Transform

$$f(t) = \int_{\omega = -\infty}^{\omega = \infty} \frac{1}{2\pi} F(\omega) e^{i\omega t} d\omega \qquad f(t) = \mathcal{F}^{-1} [F(\omega)]$$

Fourier Transform vs Series

Fourier Series (periodic only)

Impulse Function

$$\delta(t) = 0, \ for \ t \neq 0.$$

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$
 Note: height= ∞ , value shown is area.

$$\delta(t) = 0, \text{ for } t \neq 0.$$

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$
Note: height=\infty, value shown is area.
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$
Time

 $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$

Impulse Function – Some properties

$$\delta(t) = 0$$
, for $t \neq 0$.

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{\infty} \delta(t) dt =$$
Note: height= ∞ , value shown is area.

$$\int_{-\infty}^{\infty} \delta(t)dt = 1 \qquad \rightarrow \int_{a}^{b} \delta(t)dt = \begin{cases} \underline{1}, & \underline{a} < 0 < \underline{b} \\ \underline{0}, & \text{otherwise} \end{cases}$$

$$\int_{a}^{b} \delta(t) \cdot f(t) dt = \int_{a}^{b} \delta(t) \cdot f(0) dt$$

$$= \int_{a}^{b} \delta(t) \cdot \int_{a}^{b} \delta(t) dt$$

$$= \begin{cases} f(0), & a < 0 < b \\ 0, & \text{otherwise} \end{cases}$$

Impulse Function – Some properties

FT of impulse function

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \qquad e \qquad = 1$$

$$\delta(t) \qquad \qquad \int_{-\infty}^{\infty} F(\omega) = 1$$

$$\delta(t) \qquad \qquad \delta(t) \qquad \qquad \delta(t)$$

FT of time-shifted impulse

Symmetry property of FT

$$\mathcal{F}[f(t)] = F(\omega)$$

$$\Rightarrow \mathcal{F}[F(t)] = 2\pi f(-\omega)$$

$$\frac{1}{\tau} = \frac{1}{\tau} \frac{1}{\tau} \frac{3}{\tau}$$

$$\frac{-\tau}{2} \frac{\tau}{2} \qquad \frac{1}{\tau} \frac{3}{\tau}$$

$$\frac{-\tau}{2} \frac{\tau}{2} \qquad \frac{1}{\tau} \frac{3}{\tau}$$

$$\frac{1}{\tau} \frac{3}{\tau} \qquad \frac{2}{\tau} \qquad \frac{2}{\tau} \qquad \frac{2}{\tau} \qquad \frac{2}{\tau}$$
What does this imply?

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\omega = \infty} F(\omega) e^{i\omega t} d\omega$$

Symmetry property of FT

$$\mathcal{F}[f(t)] = F(\omega)$$

$$\Rightarrow \mathcal{F}[F(t)] = 2\pi f(-\omega)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\omega = \infty} F(\omega) e^{i\omega t} d\omega$$

FT of complex exponential

FT of cosine

$$e^{j\omega_0 t} \Leftrightarrow 2\pi \delta(\omega - \omega_0)$$

$$e^{-j\omega_0 t} \Leftrightarrow 2\pi \delta(\omega + \omega_0)$$

$$\cos \omega_0 t = \frac{1}{2} (e^{-j\omega_0 t} + e^{j\omega_0 t})$$

FT of impulse train(G&W, 4.2.4)

FT of impulse train

f = 1/16 cycles/pixel

7/4/2016 Copyright © 2011, Dan Boschen

10

Sampling = f(t) x Impulse Train

Sampling = f(t) x Impulse Train

FT of sampled function

FT of sampled function (G&W 4.2.4)

Digital processing of frequencies

- Need discrete frequency samples, but FT of sampled function is continuous
- OBSERVATION: Characterizing one period $(\frac{1}{\Lambda T})$ is enough
- How do we get frequency 'samples'?

FT of sampled function (G&W 4.4.1)

(Some) Properties of FT

	Name:	Condition:	Property:
1	Amplitude scaling	$f(t) \leftrightarrow F(\omega)$, constant K	$Kf(t) \leftrightarrow KF(\omega)$
2	Addition	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega), \cdots$	$f(t) + g(t) + \cdots \leftrightarrow F(\omega) + G(\omega) + \cdots$
3	Hermitian	Real $f(t) \leftrightarrow F(\omega)$	$F(-\omega) = F^*(\omega)$
4	Even	Real and even $f(t)$	Real and even $F(\omega)$
5	Odd	Real and odd $f(t)$	Imaginary and odd $F(\omega)$
6	Symmetry	$f(t) \leftrightarrow F(\omega)$	$F(t)\leftrightarrow 2\pi f(-\omega)$
7	Time scaling	$f(t) \leftrightarrow F(\omega)$, real s	$f(st) \leftrightarrow \frac{1}{ s } F(\frac{\omega}{s})$
8	Time shift	$f(t) \leftrightarrow F(\omega)$	$f(t-t_o)\leftrightarrow F(\omega)e^{-j\omega t_o}$
9	Frequency shift	$f(t) \leftrightarrow F(\omega)$	$f(t)e^{j\omega_o t} \leftrightarrow F(\omega - \omega_o)$
10	Modulation	$f(t) \leftrightarrow F(\omega)$	$f(t)\cos(\omega_o t)\leftrightarrow \frac{1}{2}F(\omega-\omega_o)+\frac{1}{2}F(\omega+\omega_o)$
11	Time derivative	Differentiable $f(t) \leftrightarrow F(\omega)$	$rac{df}{dt} \leftrightarrow j\omega F(\omega)$
12	Freq derivative	$f(t) \leftrightarrow F(\omega)$	$-jtf(t)\leftrightarrow \frac{d}{d\omega}F(\omega)$
13	Time convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t) * g(t) \leftrightarrow F(\omega)G(\omega)$
14	Freq convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t)g(t) \leftrightarrow \frac{1}{2\pi}F(\omega) * G(\omega)$
15	Compact form	Real $f(t)$	$f(t) = rac{1}{2\pi} \int_0^\infty 2 F(\omega) \cos(\omega t + \angle F(\omega))d\omega$
16	Parseval, Energy W	$f(t) \leftrightarrow F(\omega)$	$W \equiv \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$

References & Fun Reading/Viewing

- GW DIP textbook, 3rd Ed.
 - 4.1 to 4.2
 - 4.2.4, 4.2.5, 4.3.1, 4.3.2, 4.4.1
- https://betterexplained.com/articles/intuitive-understanding-ofsine-waves/
- A visual introduction to Fourier Transform: https://www.youtube.com/watch?v=spUNpyF58BY
- Fourier Transform, Fourier Series and Frequency Spectrum: https://www.youtube.com/watch?v=r18Gi8lSkfM

Scribe List