TABLE 2-1 Laplace Transform Pairs

	f(t)	F(s)	
1	Unit impulse $\delta(t)$	1	
2	Unit step 1(t)	south $\frac{1}{s}$ and	
3	t t	$\frac{1}{s^2}$	
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	$\frac{1}{s^n}$	
5	$t^n \qquad (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$	
6	e^{-at} $\frac{1}{T}e^{-t}/T$ e^{-t}	$\frac{1}{s+a}$	
7	te ^{-at}	$\frac{1}{(s+a)^2}$	
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$	
9	$t^n e^{-at}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$	
10	sin ωt	$\frac{\omega}{s^2 + \omega^2}$	
11	COS ωt	$\frac{s}{s^2 + \omega^2}$	
12	sinh ωt	$\frac{\omega}{s^2-\omega^2}$	
13	cosh ωt	$\frac{s}{s^2-\omega^2}$	
14	$\frac{1}{a}(1-e^{-at})\bigg]\bigg(\bigg -e^{-t/T}\bigg)\bigg $	$\frac{1}{s(s+a)}$	
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$	
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$	
17	$\frac{1}{ab}\bigg[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\bigg]$	$\frac{1}{s(s+a)(s+b)}$	

(t-1(1-e-t/r)

TABLE 2-1	(continued)
I ADLE 4-1	(continued)

TABLE 2-1	(continued)		
	f(t)	F(s)	
18	$\frac{1}{a^2}(1-e^{-at}-aie^{-at})$	$\frac{1}{s(s+a)^2}$	
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$	1 2°(T1+1)
20	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	
21	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	/ Impulse
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	Impulse t
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$	$\frac{s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	7/75+ 3-02+00
	$\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$		3/3+3/4
24	$1 - \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t+\phi)$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$	step Asin
	$\phi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta} = \sin^{-1} \sqrt{l-\zeta^2}$	$s(s^2 + 2\zeta\omega_n s + \omega_n^2)$	
25	$1-\cos\omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$	
26	$\omega t - \sin \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$	
27	$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$	
28	$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2+\omega^2)^2}$	
29	t cos wt	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$	
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \qquad (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2+\omega_1^2)(s^2+\omega_2^2)}$	
31	$\frac{1}{2\omega}(\sin\omega t + \omega t \cos\omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$	

Scanned by CamScanner 4/523

TABLE 2-2 Properties of Laplace Transforms

TABLE	2-2 Properties of Laplace Water		
	$\mathscr{L}[Af(t)] = AF(s)$		
2	$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$		
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$		
4	$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$		
5	$\mathcal{L}_{\pm}\left[\frac{d^n}{dt^n}f(t)\right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f(0\pm)$		
	where $f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$		
6	$\mathcal{L}_{\pm}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t) dt\right]_{t=0\pm}}{s}$		
7	$\mathcal{L}_{\pm} \left[\iint f(t) dt dt \right] = \frac{F(s)}{s^2} + \frac{\left[\iint f(t) dt \right]_{t=0\pm}}{s^2} + \frac{\left[\iint f(t) dt dt \right]_{t=0\pm}}{s}$		
8	$\mathcal{L}_{\pm}\left[\int\cdots\int f(t)(dt)^{n}\right] = \frac{F(s)}{s^{n}} + \sum_{k=1}^{n} \frac{1}{s^{n-k+1}} \left[\int\cdots\int f(t)(dt)^{k}\right]_{t=0\pm}$		
9	$\mathscr{L}\left[\int_0^t f(t) dt\right] = \frac{F(s)}{s}$		
10	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \qquad \text{if } \int_0^\infty f(t) dt \text{ exists}$		
11	$\mathcal{L}[e^{-at}f(t)] = F(s+a)$		
12	$\mathcal{L}[f(t-\alpha)1(t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$		
13	$\mathcal{L}[tf(t)] = -\frac{dF(s)}{ds}$		
14	$\mathcal{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$		
15	$\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s) \qquad n = 1, 2, 3, \dots$		
16	$\mathcal{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds \qquad \text{if } \lim_{t \to 0} \frac{1}{t} f(t) \text{ exists}$		
17	$\mathscr{L}\left[f\left(\frac{t}{a}\right)\right] = aF(as)$		