Языки образцов и анализ Рефал-программ

Антонина Непейвода

Рабочее совещание МГТУ им. Н.Э. Баумана и ИПС РАН по Рефалу 12 июня 2020

Определение

Состояние C_1 вкладывается в состояние C_2 графа вычислений программы, если все пути вычислений, порождаемые C_1 , могут порождаться также и C_2 .

Определение

Состояние C_g является обобщением состояний C_1 и C_2 графа вычислений программы, если все пути вычислений, порождаемые C_1 и C_2 , могут порождаться также и C_g .

Наиболее точные, но семантические понятия.

Вложение и обобщение в суперкомпиляции

Определение

Состояние C_1 вкладывается в состояние C_2 графа вычислений программы, если существует подстановка σ такая, что $C_2\sigma=C_1$.

Определение

Состояние C_g является обобщением состояний C_1 и C_2 графа вычислений программы, если существуют подстановки σ_1 и σ_2 такие, что $C_g\sigma_1=C_1$, $C_g\sigma_2=C_2$.

- Синтаксическое
- Легко верифицируемое
- Запрещает бесконечные нисходящие цепочки для lisp-подобных данных

Суперкомпиляция Рефал-программ

Наличие ассоциативной конкатенации порождает ряд сложностей.

- Теряется однозначность наилучшего обобщения. У терма T может быть бесконечно много обобщений: e.x₁ T, e.x₁ e.x₂ T, ...
- Теряется свойство конечности цепочек обобщающих выражений: $e.x_1 e.x_1$, $e.x_2 e.x_1 e.x_1 e.x_2$, ..., $e.x_n$, ... $e.x_n$...
- Отсутствие подстановки может быть обусловлено формой записи состояния (а не множеством путей вычисления, порождаемом этим состоянием): e.x t.y и t.y e.x.

Естественный подход: найти альтернативные конкретизации понятий обобщения и вложения состояний в графе вычислений, подходящие для ассоциативного типа данных.

От состояний к образцам

 $\mathcal{V}_{\mathcal{T}}$ — множество переменных типа \mathcal{T} , $\mathcal{V} = \bigcup^{\mathcal{T}} \mathcal{V}_{\mathcal{T}}$. Σ — достаточно большой алфавит констант.

Определение

Плоский образец Р — строка в алфавите $\mathcal{V} \cup \Sigma$. Образец Р (плоский или нет) линеен, если кратность каждой е-переменной в нем равна 1. Подстановка σ — морфизм из $(\mathcal{V} \cup \Sigma)^*$ в $(\mathcal{V} \cup \Sigma)^*$, сохраняющий константы (т.е. для всех $\mathbf{A} \in \Sigma$ $\sigma(\mathbf{A}) = \mathbf{A}$).

Пример

Образец е.х А е.х плоский, но не линейный.

Образец $(e.x_0 s.z e.x_1) e.x_2 s.z -$ линейный и не плоский.

Языки, распознаваемые образцами

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым образцом P (англ. — pattern language, сокращенно PL), назовем множество элементов $\Phi \in \Sigma^*$, для которых существует подстановка $\sigma \colon \sigma(\mathsf{P}) = \Phi$. Образец P_1 сводится к образцу P_2 , если $\mathcal{L}(\mathsf{P}_1) \subseteq \mathcal{L}(\mathsf{P}_2)$. Плоский образец P — краткий, если все образцы P' такие, что $\mathcal{L}(\mathsf{P}) = \mathcal{L}(\mathsf{P}')$, не короче образца P .

Если $\sigma(e.x) = \varepsilon$ допустимо — стирающий (erasing) PL (EPL). Если недопустимо — нестирающий (non-erasing) PL (NePL).

- ullet EPL, распознаваемый образцом-строкой $P\in \Sigma^*$, есть $\{P\}.$
- EPL, распознаваемый образцом $P = e.x_1 e.x_2 ... e.x_n$, есть все множество Σ^* . NePL, распознаваемый этим образцом множество слов, имеющих не меньше, чем п букв.

Языки образцов и суперкомпиляция

Рассмотрим состояние дерева вычислений как образец в языке, расширенном конструкторами вызовов функций.

Определение

Состояние C_1 вкладывается в состояние C_2 графа вычислений программы, если $\mathscr{L}(C_1) \subseteq \mathscr{L}(C_2)$.

Определение

Состояние C_g является обобщением состояний C_1 и C_2 графа вычислений программы, если $\mathscr{L}(C_1)\subseteq \mathscr{L}(C_g)$ и $\mathscr{L}(C_2)\subseteq \mathscr{L}(C_g)$.

Полностью согласуются с определением вложения и обобщения состояний в семантическом смысле.

Свойства «образцового» понятия обобщения

 Бесконечные цепочки обобщаемых выражений все еще существуют:

$$\begin{split} \mathscr{L}(\textbf{e}.\textbf{x}_1\,\textbf{e}.\textbf{x}_1) &\subset \mathscr{L}(\textbf{e}.\textbf{x}_2\,\textbf{e}.\textbf{x}_1\,\textbf{e}.\textbf{x}_1\,\textbf{e}.\textbf{x}_2) \subset \dots \\ \dots &\subset \mathscr{L}(\textbf{e}.\textbf{x}_n\,\dots\,\textbf{e}.\textbf{x}_1\,\textbf{e}.\textbf{x}_1\,\dots\,\textbf{e}.\textbf{x}_n) \end{split}$$

 В случае линейных образцов состояний — такие цепочки невозможны, при условии, что вложение строгое. Невозможно и существование бесконечного множества обобщений состояния, если потребовать, чтобы соответвующие этим обобщениям образцы были краткими.

Отношение Хигмана-Крускала и языки образцов

Типичная ситуация при анализе двух состояний C_1 и C_2 в графе вычислений Рефал-программы: $C_1 \leq C_2$, но $\mathcal{L}(C_1) \subseteq \mathcal{L}(C_2)$. Свидетельство того, что предпочтительно обобщать состояние C_2 , а не C_1 (либо не трогать его, если образец, соответствующий C_2 , линейный и краткий).

Пример

- < F **A** e.x $> \le <$ F e.y₁ **A** e.y₂>. Можно спокойно продолжать развертку < F e.y₁ **A** e.y₂>, не боясь, что она будет продолжаться бесконечно.
- < F **A** e.x $> \le <$ F e.y₁ e.y₂> а вот тут обобщать снизу уже имеет смысл, поскольку соответствующий образец не краткий.

А если нет разницы...

В каких случаях $\mathscr{L}(\mathsf{P}_1)\subseteq\mathscr{L}(\mathsf{P}_2)$ влечет существование подстановки σ такой, что $\mathsf{P}_2\sigma=\mathsf{P}_1$?

- Если образец P_2 плоский и не содержит t-переменных.
- Если образец P₂ линейный и не содержит «плавающих» t-переменных.

Пример

Образец $t.y_1 \mathbf{A} e.x t.y_2 - «плохой», переменная <math>t.y_2$ плавающая.

Образец $e.x_1$ t.y t.y $t.z_1$ $t.z_2$ $t.z_3$ $e.x_2$ t.y $e.x_3$ — совсем «плохой», переменные $t.z_1$ плавающие и разбивают разные вхождения переменной t.y.

Плавающие t-переменные

Определение

Назовем переменную t.x в плоском линейном образце P якорной, если

- t.x имеет кратность, не меньшую 2;
- или в P существует подслово α , не содержащее е-переменных, такое, что $\alpha=\alpha_1$ t.х α_2 , причем α_1 и α_2 оба содержат хотя бы один символ, s-переменную, или t-переменную, имеющую кратность не меньше 2.

В противном случае назовем t.x плавающей.

Пример

Рассмотрим образец $t.y_1 t.y_2 e.x_1 t.y_3 t.y_4 t.y_2 e.x_2 t.y_5$. Якорными переменными являются $t.y_2$ и $t.y_1$.

Плавающие переменные и языки образцов

Плавающая переменная в образце — указатель на то, что в соответствующий фрагмент образца нельзя подставить пустое слово. Аналог v-переменных Рефала-4.

Плавающий сегмент образца P — подслово P, содержащее только плавающие t-переменные и e-переменные.

Образец, в котором все е-переменные входят в плавающие сегменты — аналог образца, определяющего NePL. Достаточно заменить е-переменные на v-переменные, и можно искать подстановки. Если это верно только для некоторых е-переменных — получаем образец, определяющий смешанный язык — не NePL, но и не EPL.

Насколько это плохо?

Multi-pattern languages (Kari, Salomaa)

Определение

Языком $\mathcal{L}(\mathsf{P})$, распознаваемым множеством образцов P_i (англ. — multi-pattern language, сокращенно MPL), назовем множество элементов $\Phi \in \Sigma^*$, для которых существует $i \in \mathbb{N}$ и подстановка σ : $\sigma(\mathsf{P}_i) = \Phi$.

Множество MPL-объединений EPL совпадает с множеством MPL-объединений NePL. Образец с плавающими t-переменными тоже определяет MPL.

Пример MPL в стиле Рефал

```
Пусть P_1 = e.x_1 AAC e.x_2 CAB e.x_3 BBC, P_2 = e.z_1 t.n t.n e.z_2 t.m 1 e.z_3 t.m 2 e.z_4 t.m 3 e.z_5 t.n 2 e.z_6.
```

Множество образцов NePL, порождающих P₂:

Множество образцов NePL, порождающих P_1 , и обобщающие их подобразцы из P_2 :

```
A A C C A B B B C

A A C C A B V.Z<sub>3</sub> B B C

A A C V.Z<sub>2</sub> C A B B B C

A A C V.Z<sub>2</sub> C A B V.Z<sub>3</sub> B B C

V.Z<sub>1</sub> A A C C A B B B C

V.Z<sub>1</sub> A A C C A B B C

V.Z<sub>1</sub> A A C C A B V.Z<sub>3</sub> B B C

V.Z<sub>1</sub> A A C V.Z<sub>2</sub> C A B B B C

V.Z<sub>1</sub> A A C V.Z<sub>2</sub> C A B B B C

V.Z<sub>1</sub> A A C V.Z<sub>2</sub> C A B V.Z<sub>3</sub> B B C
```

$$\begin{array}{l} \mathsf{P}_{2}^{3}\sigma_{1}, \ \mathsf{t.n}\sigma_{1} = \mathsf{C} \\ \mathsf{P}_{2}^{3}\sigma_{2}, \ \mathsf{t.n}\sigma_{2} = \mathsf{C} \\ \mathsf{P}_{2}^{2}\sigma_{3}, \ \mathsf{t.n}\sigma_{3} = \mathsf{A} \\ \mathsf{P}_{2}^{2}\sigma_{4}, \ \mathsf{t.n}\sigma_{4} = \mathsf{A} \\ \mathsf{P}_{3}^{2}\sigma_{5}, \ \mathsf{t.n}\sigma_{5} = \mathsf{C} \\ \mathsf{P}_{3}^{2}\sigma_{6}, \ \mathsf{t.n}\sigma_{6} = \mathsf{C} \\ \mathsf{P}_{2}^{4}\sigma_{7}, \ \mathsf{t.n}\sigma_{7} = \mathsf{A} \\ \mathsf{P}_{3}^{4}\sigma_{8}, \ \mathsf{t.n}\sigma_{8} = \mathsf{A} \end{array}$$

Неплоские образцы и размер алфавита

Все хорошие свойства образцов, позволяющие работать с ними обычными методами суперкомпиляции (поиск подстановки) — следствие того, что мы подразумеваем $|\Sigma| = O(|\Sigma_{\text{Prog}}|^2)$, где Σ — алфавит входных данных, Σ_{Prog} — множество символов, явно входящих в левые части Рефал-программы.

Если разрешить вхождения структурных скобок в образцы — это допущение пропадает. Для любого значения, подставляемого в e.x, истинна одна из альтернатив: e.x \rightarrow s.n e.x', e.x \rightarrow (e.x'₁)e.x'₂, e.x \rightarrow ε . Так неявно задается алфавит входных данных.

Сравнение языков неплоских образцов

Определим класс образцов P_t следующим образом.

- $\varepsilon \in P_t$, $e.x \in P_t$, $s.x \in P_t$, $(e.x) \in P_t$;
- ullet если $\mathsf{P}_1 \in \mathsf{P}_t$, $\mathsf{P}_2 \in \mathsf{P}_t$, то $\mathsf{P}_1 \, \mathsf{P}_2 \in \mathsf{P}_t$.

В классе P_t могут быть нелинейные образцы.

Предложение (Следствие теоремы Jiang-а для EPL)

Для образцов из P_t задача сводимости неразрешима.

Неплоские линейные образцы

Предложение (следствие теоремы Kari-Salomaa для линейных MPL)

Если образцы P_1 и P_2 — линейные и не содержат повторных t-переменных, задача сводимости $(\mathcal{L}(P_1) \subseteq \mathcal{L}(P_2))$ для них разрешима.

Здесь перебор всех подобразцов для поиска подстановок уже не помогает.

Пример

Вложение $\mathscr{L}((e.w_1)e.w_2\,s.z\,e.w_3)\subset\mathscr{L}(e.x_1\,(e.x_2)\,s.z\,e.x_3)$ выполнено, но построить соответствующие этому вложению подстановки можно, только если доказать следующее тождество для $e.w_2$:

$$\mathtt{e.w}_2 = \mathtt{s.n}\,\mathtt{e.y}\,\vee\,\mathtt{e.w}_2 = \mathtt{e.y}_1\,(\mathtt{e.y}_2)\,\vee\,\mathtt{e.w}_2 = \varepsilon\,\vee\,\mathtt{e.w}_2 = \mathtt{e.y}_1\,(\mathtt{e.y}_2)\,\mathtt{s.n}\,\mathtt{e.y}_3.$$

Finite subword characterization

Если линейный образец MPL можно представить как объединение образцов вида e.x T e.y, где T не содержит e-переменных на внешнем скобочном уровне, скажем, что такой образец имеет finite subword characterization (FSC).

Предложение

Задача поиска FSC для линейных образцов из MPL разрешима.

Выводы

- Многие частные (и часто используемые) случаи анализа Рефал-программ поддаются анализу на вложение языков образцов.
- Вложение состояний можно осуществлять не только по одной, а по нескольким подстановкам (возможно, с порождением вспомогательной функции в остаточной программе).
- При построении обобщений, включающих повторные вхождения е-переменных, открыт большой простор для исследований и импровизации.