

# **GaAlAs Hermetic Infrared Emitting Diodes** Types OP223, OP224





### **Features**

- · Narrow irradiance pattern
- · Enhanced temperature range
- Small package size permits high device density mounting
- Mechanically and spectrally matched to the OP640SL and OP300SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response

### Description

The OP223 and OP224 devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed "Pill" type packages. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency.

# **Absolute Maximum Ratings** (T<sub>A</sub> = 25° C unless otherwise noted)

| Reverse Voltage                                          | 2.0 V                    |
|----------------------------------------------------------|--------------------------|
| Continuous Forward Current                               | 100 mA                   |
| Peak Forward Current (2 μs pulse width, 0.1% duty cycle) |                          |
| Storage Temperature Range                                | o +150° C                |
| Operating Temperature Range65° C t                       | o +125° C                |
| Soldering Temperature (5 sec. with soldering iron)       | :60° C <sup>(1)(2)</sup> |
| Power Dissipation                                        | 150 mW <sup>(3)</sup>    |
| Notes:                                                   |                          |

- (1) Refer to Application Bulletin 202 which discusses proper techniques for soldering Pill type devices into PC boards.
- (2) No clean or low solids, RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
- (3) Derate linearly 1.50 mW/° C above 25° C.

Percent Changes in Radiant Intensity

(4) E<sub>e(APT)</sub> is measured using a 0.031" (0.787 mm) diameter apertured sensor placed 0.50" (12.7 mm) from the mounting plane. E<sub>e(APT)</sub> is not necessarily uniform within the measured area.

# **Typical Performance Curves**

# VS Time 10 0 -IF = 50 mA, TA = 55 °C A E & % A E & % 10 100 1K 10K 100K 1 - TIME - Hours



# Types OP223, OP224

Electrical Characteristics (T<sub>A</sub> = 25° C unless otherwise noted)

| SYMBOL              | PARAMETER                                    | MIN           | TYP   | MAX  | UNITS                                    | TEST CONDITIONS                                                                |
|---------------------|----------------------------------------------|---------------|-------|------|------------------------------------------|--------------------------------------------------------------------------------|
| E <sub>e(APT)</sub> | Apertured Radiant Incidence OP223<br>OP224   | 1.00<br>.3.50 |       |      | mW/cm <sup>2</sup><br>mW/cm <sup>2</sup> | I <sub>F</sub> = 50 mA <sup>(4)</sup><br>I <sub>F</sub> = 50 mA <sup>(4)</sup> |
| V <sub>F</sub>      | Forward Voltage                              |               |       | 1.80 | ٧                                        | I <sub>F</sub> = 50 mA                                                         |
| IR                  | Reverse Current                              |               |       | 100  | μΑ                                       | V <sub>R</sub> = 2.0 V                                                         |
| λр                  | Wavelength at Peak Eission                   |               | 890   |      | nm                                       | I <sub>F</sub> = 10 mA                                                         |
| В                   | Spectral Bandwidth Between Half Power Points |               | 80    |      | nm                                       | I <sub>F</sub> = 10 mA                                                         |
| Δλρ/ΔΤ              | Spectral Shift with Temperature              |               | +0.18 |      | nm/° C                                   | I <sub>F</sub> = Constant                                                      |
| θнр                 | Emission Angle at Half Power Points          |               | 24    |      | Deg.                                     | I <sub>F</sub> = 50 mA                                                         |
| tr                  | Output Rise Time                             |               | 500   |      | ns                                       | I <sub>F(PK)</sub> = 100 mA,                                                   |
| tf                  | Output Fall Time                             |               | 250   |      | ns                                       | PW = 10 μs, D.C. = 10.0%                                                       |



# **Typical Performance Curves**

## Forward Voltage vs Forward Current



# Forward Voltage and Radiant Incidence vs Forward Current



## Forward Voltage vs Ambient Temperature



### Rise Time and Fall Time vs Forward Current



# Normalized Power Output vs Ambient Temperature



Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.