SWARM ROBOTICS

CSE446: TEAM 2

MICHAEL MU, ROMIKA SAIRAM & SACHIN GEORGE

OUR MAIN TOPICS TODAY

Project Overview

Background

Design Process

Demo

Findings

Summary

PROJECT OVERVIEW

- Combination of swarm robotics and reinforcement learning
- Multiple agents are controlled by the same reinforcement learning algorithm
- Agents must cooperate with each other to find a target and move it to a specified location
- Compared the performance of different algorithms

Image retrieved from The New Stack

BACKGROUND

- Inspired by the SWARM-BOTS project from 2002
- Search and retrieval is useful after disasters
- DQN value based method
- A2C actor-critic method
- Reinforcement learning with swarm robotics is a relatively unexplored area

Youtube: swarm-bots pulling a child https://www.youtube.com/watch?v=CJOubyilTsE

ENVIRONMENT DESIGN

- Environment: custom designed MuJoCo simulation
 - Cooperative multi-agent
 - Partially observable
 - Decentralized
 - Once found, position and velocity of agents and targets are provided to agents
- Rewards:
 - Small negative for accomplishing nothing
 - Reward for finding and moving towards target
 - Positive or negative reward based on distance of target to a specified location

AGENT DESIGN

- Agents:
 - Placed in random location near the starting area
 - Implemented with DQN and A2C algorithms
 - Goal: Find target
- Goal:
 - Find the target/victim
 - Navigate to the target
 - Push the target to a specified destination

DEMO [A2C]

DEMO [DQN]

TRAINING RESULTS

DQN

- Faster convergence
- Performance drops off after convergence

A2C

- Slower convergence
- Performance oscillates upwards

OPTIMAL EVALUATION

- Final A2C performed better and was able to synthesize a plan
- DQN was less prone to complete failure

SUMMARY

- A2C backed agent was able to accomplish its task very often but was less reliable and more prone to complete failure
- DQN works well for location finding and general initial exploration, but deriving a long-term plan in a continuous environment with random motions is unlikely
- Decentralized multi-agents must learn to deal with more noise in their rewards
 from the actions of other agents

CONTRIBUTION SUMMARY

Michael Mu:

Sachin George:

Romika Sairam:

Thank you for your time and attention!

