Степенные ряды

Определение 1. Формальным степенным рядом от переменной t называется бесконечное выражение вида $A(t) = a_0 + a_1 t + a_2 t^2 + \dots = \sum_{k=0}^{+\infty} a_k t^k$, где a_0, a_1, \dots числовая последовательность (коэффициенты

ряда). Два ряда считаются равными, если равны их соответствующие коэффициенты. Слагаемые с нулевыми коэффициентами мы будем, как правило, пропускать. Например, многочлен — это ряд с конечным числом ненулевых коэффициентов.

Сопоставление рядам F, G нового ряда H называется формальной алгебраической операцией, если каждый коэффициент ряда H вычисляется конечным числом арифметических действий над конечным числом коэффициентов рядов F, G. Например, сложение и умножение рядов определяются так же, как для многочленов и являются формальными операциями, а «вычисление значения ряда при данном числовом значении t» не является формальной операцией (и потому здесь не определяется).

Задача 1. Проверьте, что сложение и умножение рядов являются формальными операциями.

Задача 2^{\varnothing} . а) Пусть $F(t) = 1 + t + t^2 + t^3 + \dots$, $G(t) = 1 - t + t^2 - t^3 + \dots$ Найдите F + G и $F \cdot G$. 6) Пусть $F = \sum_{k=0}^{+\infty} \frac{1}{k!} t^k$, $G = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} t^k$. Найдите $F \cdot G$ и F^2 .

Задача 3. (3амена переменной) Является ли формальной алгебраической операцией подстановка в ряд вместо переменной t произвольного ряда с нулевым свободным членом?

Задача 4[©]. Найдите (если это возможно) такой ряд F, что **a)** $(1-t)\cdot F=1;$ **б)** $(2-t)\cdot F=1;$ **в)** $(t^2+t^3+t^4+\dots)\cdot F=t^4-t^6+t^8-\dots;$ **г)** $(t^3+t^4+t^5+\dots)\cdot F=t^2-t^4+t^6-\dots$

Задача 5. Ряд a(t) называется *обратимым*, если существует такой ряд $a^{-1}(t)$, что $a(t)a^{-1}(t)=1$. Докажите, что ряд a(t) обратим тогда и только тогда, когда $a_0 \neq 0$, причём $a^{-1}(t)$ единственен, и его отыскание есть формальная операция.

Задача 6. При каких условиях на числа a и b ряд $\frac{1}{(a-t)(b-t)}$ можно записать в виде $\frac{c}{(a-t)}+\frac{d}{(b-t)}$ (подобрав подходящие числа c и d)?

Задача 7 Вычислите все коэффициенты для ряда, обратного к **a)** (1-t)(2-t); **b)** $(1-t)^2$; **в)** $(1-t)^m$; **г)** (t-1)(t+2)(t-3); **д)** t^2+t-1 .

Задача 8. Сформулируйте условия, при которых ненулевой степенной ряд F можно разделить на ненулевой степенной ряд G (иначе говоря, уравнение $G \cdot X = F$ разрешимо относительно неизвестного степенного ряда X). Всегда ли результат деления определен однозначно?

Задача 9. При каких условиях на степенной ряд F разрешимо уравнение $X^2 = F$ относительно неизвестного степенного ряда X?

1	2 a	2 6	3	4 a	4 6	4 B	4 Г	5	6	7 a	7 б	7 в	7 г	7 д	8	9

Производящие функции

Определение 2. Пусть $(a_k) = (a_0, a_1, \dots)$ — числовая последовательность, а t — формальная переменная. Степенной ряд $\sum a_k t^k$ называется производящей функцией последовательности (a_k) .

Задача 10. Пусть F(t) — производящая функция последовательности (a_k) . Для какой последовательности производящей функцией будет степенной ряд **a)** tF(t); **b)** $t^2F(t)$; **в)** (1+t)F(t)?

Задача 11. а) Напишите, пользуясь рекуррентным соотношением $u_{k+2} = u_{k+1} + u_k$ и начальными условиями $u_0 = 0, u_1 = 1$, уравнение для производящей функции чисел Фибоначчи и решите его. **б)** Найдите формулу для *n*-го числа Фибоначчи.

Задача 12 $^{\varnothing}$. Найдите явную формулу для последовательности (g_n) , если $g_0=g_1=1$ и при $n\geqslant 2$ a) $g_n = 5g_{n-1} - 6g_{n-2}$; 6) $g_n = 6g_{n-1} - 9g_{n-2}$; B) $g_n = g_{n-1} + 2g_{n-2} + (-1)^n$; r) $g_n = g_{n-1} + 2g_{n-2} + \ldots + ng_0$.

Задача 13. Сколькими способами можно замостить прямоугольник $3 \times n$ плашками размера 2×1 ?

Определение 3. Для произвольного числа α и натурального числа k биномиальный коэффициент C_{α}^{k} определяется формулой

$$C_{\alpha}^k = \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-k+1)}{k!}.$$
 Для каждого α рассмотрим следующий степенной ряд:

$$(1+t)^{\alpha} = \sum_{k=0}^{\infty} C_{\alpha}^k t^k.$$

(Для натуральных α это уже знакомая вам формула бинома Ньютона, а для остальных α правая часть равенства является определением левой.)

Задача 14. а) Ряд $(1+t)^{-1}$ определяется теперь двумя способами: как обратный к ряду 1+t и по биномиальной формуле. Согласуются ли эти определения?

б) Докажите, что для любого натурального числа n имеет место равенство $(1+t)^{-n}(1+t)^n=1$.

Задача 15[©]. Рассмотрим два многочлена от двух переменных: $G(x,y) = C_{x+y}^n$ и $F(x,y) = \sum_{i=1}^n C_x^j \cdot C_y^{n-j}$.

- а) Докажите, что F(x,y) = G(x,y) для натуральных x > n, y > n.
- **б)** Используя предыдущий пункт, выведите равенство $(1+t)^{\alpha+\beta}=(1+t)^{\alpha}\cdot(1+t)^{\beta}$.
- в) Пусть $\alpha = \frac{m}{n}$ рациональное число. Докажите, что $(1+t)^m = \left(\sum_{i=1}^{\infty} C_{\alpha}^j t^j\right)^m$.

Задача 16. Пусть $c_0=1$, а при $n\geqslant 1$ пусть c_n — это число правильных расстановок n открывающих и *п* закрывающих скобок (*n*-е число Каталана).

- а) Докажите, что c_n удовлетворяет рекуррентной формуле $c_n = c_0 \cdot c_{n-1} + c_1 \cdot c_{n-2} + \ldots + c_{n-1} \cdot c_0$.
- **б)** Докажите, что производящая функция C(t) чисел Каталана удовлетворяет уравнению $t \cdot C^{2}(t) - C(t) + 1 = 0.$
- в) Решив квадратное уравнение, и использовав формулу для $(1+t)^{1/2}$ покажите, что $c_n = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \ldots \cdot \frac{2n-1}{2} \cdot 4^{n+1}}{2(n+1)!}.$

$$c_n = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \dots \cdot \frac{2n-1}{2} \cdot 4^{n+1}}{2(n+1)!}.$$

г) Докажите, что $c_n = \frac{1}{n+1}C_{2n}^n$.

10 a	10 б	10 B	11 a	11 б	12 a	12 б	12 B	12 Г	13	14 a	14 6	15 a	15 б	15 B	16 a	16 6	16 B	16 Г