

Natural Language Processing

Lecture 18: Spell Correction

Amirkabir University of Technology

Dr Momtazi

Outline

- Introduction
- Definition of Minimum Edit Distance
- Computing Minimum Edit Distance
- Backtrace for Computing Alignments

Who cares about spelling?

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

(See for the story behind this supposed research report.)

Detection vs. Correction

- Two distinct tasks:
 - Error detection = simply find the misspelled words
 - Error correction = correct the misspelled words

• It might be easy to tell that "ater" is a misspelled word, but what is the correct word?

water? later? after?

What causes errors?

- Keyboard mistyping Space bar
- Keyboard proximity
- Similarity of shape
- Phonetic errors
- Knowledge problems

Keyboard Space Bar and Keyboard Proximity

- Space bar issues
 - Run-on errors = two separate words become one
 - e.g., the fuzz becomes thefuzz
 - Split errors = one word becomes two separate words
 - e.g., equalization becomes equalization
- Keyboard proximity
 - e.g., Jack becomes Hack since h, j are next to each other on a typical American keyboard

Similarity of Shape

- Physical similarity
 - Similarity of shape, e.g., mistaking two physically similar letters when typing up something handwritten
 - e.g., tight for fight

Phonetic Errors

- Errors based on the sounds of a language (not necessarily on the letters)
 - Homophones = two words which sound the same
 - e.g., red/ read (past tense), cite/ site/ sight, they're/ their/ there
 - Spoonerisms = switching two letters/sounds around
 - e.g., It's a ravy(vary) grain with biscuit wheels.
 - Letter substitution = replacing a letter (or sequence of letters) with a similar-sounding one
 - e.g., John kracked his nuckles. instead of John cracked his knuckles
 - e.g., I study sikologee

Knowledge Problems

- Cases of not knowing how to spell:
 - Not knowing a word and guessing its spelling (can be phonetic)
 - e.g., sientist
 - Not knowing a rule and guessing it
 - e.g., Do we double a consonant for ing words? jog -> joging?

Spell Checking Approaches

- Minimum edit distance
- Language Modeling
- Sequence to Sequence Models
- •

Outline

- Introduction
- Definition of Minimum Edit Distance
- Computing Minimum Edit Distance
- Backtrace for Computing Alignments

How similar are two strings?

- Spell correction
 - The user typed "graffe" Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Minimum Edit Distance

Two strings and their alignment:

Minimum Edit Distance

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was appointed

H Spokesman said the senior adviser was appointed

S I D
```

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisited states.

Outline

- Introduction
- Definition of Minimum Edit Distance
- Computing Minimum Edit Distance
- Backtrace for Computing Alignments

Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i(0 < i < n) and j(0 < j < m)

Defining Min Edit Distance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i = 1...M

For each j = 1...N

D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}
2; \quad \text{if } X(i) \neq Y(j)
0; \quad \text{if } X(i) = Y(j)
```

Termination:

D(N,M) is distance

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	Ι	0	N

N	9									
0	8			(D/i	1 (1)	1				
Ι	7	D(<i>i,j</i>) = min	D(i	·1,j) + ,j-1) +	1				
Т	6			D(i-	·1,j-1) -	+ [2;	if S ₁ (i)	≠ S ₂ (j)	
N	5			(if S ₁ (i)			
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	С	U	T	I	0	N

Outline

- Introduction
- Definition of Minimum Edit Distance
- Computing Minimum Edit Distance
- Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \end{cases} \end{cases}$$

۷,	$11 \ \mathcal{I}_1(1) \neq$	J_2U
0;	if $S_1(i) =$	$S_2(j)$

N	9									
0	8									
Ι	7									
Т	6									
Ν	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	<u>/</u> ←↓9	<u>√</u> ↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	√8	← 9	
i	7	↓ 6	∠ ←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠ ←↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓ 8	<u> </u>	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	√ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓8	√ 7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓ 3	∠ ←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠7	
i	1	∠←↓2	∠ ←↓ 3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

$$D(i,0) = i$$
 $D(0,j) = j$ $D(N,M)$ is distance

Recurrence Relation:

```
For each i = 1...M
                    For each j = 1...N
                  D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}
ptr(i,j) = \begin{cases} LEFT & \text{insertion} \\ DOWN & \text{deletion} \\ DIAG & \text{substitution} \end{cases}
```

Result of Backtrace

Two strings and their alignment:

Performance

• Time:

O(nm)

• Space:

O(nm)

Backtrace

O(n+m)

Much More Space to Work

- Contextual information
- Language models
- Sources of errors
- Domain knowledge
- Common mistakes

Further Reading

- Speech and Language Processing (3rd ed. draft)
 - Chapter 2 + Appendix B