Academia Sabatina de Jóvenes Talento

Colinealidad y Concurrencia Clase #10

Encuentro: 24 Nivel: 5

Curso: Colinealidad y Concurrencia

Semestre: II

Fecha: 30 de septiembre de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Clase práctica #4

En esta cuarta clase práctica se presentan los últimos diez de los veinte problemas para el trabajo de Concurrencia y Colinealidad.

1. Problemas propuestos

Los diez problemas restantes para el de trabajo de concurrencia y colinealidad.

Problema 1.1. Sea P un punto en el plano del triángulo $\triangle ABC$ y sea Q su conjugado isogonal respecto a $\triangle ABC$. Probar que

$$\frac{AP \cdot AQ}{AB \cdot AC} + \frac{BP \cdot BQ}{BA \cdot BC} + \frac{CP \cdot CQ}{CA \cdot CB} = 1.$$

Problema 1.2. Sea el triángulo $\triangle ABC$ y P un punto en su interior. Sea A_1 , B_1 y C_1 las intersecciones de AP, BP y CP con los lados BC, CA y AB, respectivamente. Considerando a X, Y y Z como la intersecciones de BC con B_1C_1 , CA con C_1A_1 y AB con A_1B_1 , respectivamente. Probar que X, Y y Z son colineales.

Problema 1.3. Sea el triángulo $\triangle ABC$ con incentro I. Sean D, E, F puntos de tangecias de su circuncírculo con los lados BC, CA y AB, respectivamente. Probar que los circuncírculos de los triángulos $\triangle AID$, $\triangle BIE$ y $\triangle CIF$ tiene dos puntos en común.

Problema 1.4. Sea BCXY un rectángulo construido fuera del triángulo $\triangle ABC$. Sea D pie de altura desde A hacía BC y sean U y V los puntos de intersección de DY con AB y DX con AC, respectivamente. Probar que UV||BC.

Problema 1.5. Sea el triángulo $\triangle ABC$ con AB < AC, el punto H denota el ortocentro. Los puntos A_1 y B_1 son pies de alturas desde A y B, respectivamente. El punto D es la reflexión de C respecto al punto A_1 . Si $E = AC \cap DH$, $F = DH \cap A_1B_1$ y $G = AF \cap BH$, probar que las rectas CH, EG y AD concurren.

Problema 1.6. Las circunferencias C_1 y C_2 son tangentes externamente. Las rectas tangentes desde O_1 hacia C_2 la tocan en A y B; mientras que las rectas tangentes desde O_2 hacia C_1 la tocan en C y D, respectivamente. Sean $E = O_1A \cap O_2C$ y $F = O_1B \cap O_2D$. Demostrar que EF, O_1O_2 , AD y BC concurren.

Problema 1.7. Sea el triángulo $\triangle ABC$, y sean los puntos B_1 , C_1 sobre los lados CA y AB respectivamente. Sea Γ el incírculo del $\triangle ABC$ y sean E y F los puntos de tangencias de Γ con los mismos lados CA y AB, respectivamente. Además, se dibujan las tangentes desde B_1 y C_1 a $\triangle ABC$ y se toma los puntos de tangecias Z y Y, respectivamente. Probar que las rectas B_1C_1 , EF y YZ son concurrentes.

Problema 1.8. Sea el triángulo $\triangle ABC$ y sea P un punto en el interior del triángulo pedal $\triangle DEF$. Suponga que las rectas DE y DF son perpendiculares. Probar que si Q es el conjugado isogonal de P con respecto al triángulo $\triangle ABC$, entonces Q es el ortocentro del triángulo $\triangle AEF$.

Problema 1.9. Sea $\triangle ABC$ un triángulo cualquiera y D, E y F puntos cualesquiera sobre las rectas BC, CA y AB tal que las rectas AD, BE y CF concurren. La paralela a AB por E interseca a la recta DF en el punto Q, la paralela a AB por D interseca a EF en T. Probar que la rectas CF, DE y QT son concurrentes.

Problema 1.10. El punto D está sobre el lado AB del triángulo $\triangle ABC$. Sea ω_1 y Ω_1 , ω_2 y Ω_2 los incírculos y los excírculos (tangentes al segmento AB) de los triángulos $\triangle ACD$ y $\triangle BCD$, respectivamente. Probar que las tangentes externas comunes a ω_1 y ω_2 , Ω_1 y Ω_2 se intersecan en AB.

Nota: los problemas no están ordenados por orden de dificultad.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com