

定义 6 (自反) 设 R 是集合 X 上的二元关系, R 是自反的 $\Leftrightarrow \forall x (x \in X \to \langle x, x \rangle \in R)$

$$X=\{1, 2, 3, 4\}$$

1	1	0	0
0	1	0	1
0	1	1	1 1 1
_1	0	1	1

- □ 在R的关系图中,每个顶点均有自环;
- □ 在R的关系矩阵中,主对角线的元素均为 1。

定义7(反自反) 设 R是集合X上的二元关系。R是 反自反的 $\Leftrightarrow \forall x \ (x \in X \to \langle x, x \rangle \notin R)$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- □ 在R的关系图中,每个顶点均无自环;
- □ 在R的关系矩阵中,主对角线的元素均为 0。

定义8(对称) 设 R是集合X上的二元关系。 R 是对称的

 $\Leftrightarrow \forall x \ \forall y \ (x \in X \land y \in X \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$

0	1	0	1
1	1	1	1
0	1	0	1
1	1	1	1

- □ 在 R 的关系图中,任意两个不同顶点之间:或者 无弧 或者 有两条方向相反的弧;
- □ R 的关系矩阵是 对称矩阵.

定义9(反对称) 设 R是集合X上的二元关系。 R 是反对称的

$$\Leftrightarrow \forall x \forall y \ (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$$

$$\Leftrightarrow \forall x \forall y \ (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \rightarrow \langle y, x \rangle \notin R)$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- □ 在 R 的关系图中,任意不同顶点之间至多有一条弧
- □ 在 R 的矩阵中,若 $\mathbf{i} \neq \mathbf{j}$ 且 $\mathbf{r}_{ij} = 1$,则 $\mathbf{r}_{ji} = 0$ 或 \mathbf{r}_{ii} · $\mathbf{r}_{ii} = 0$ ($\mathbf{i} \neq \mathbf{j}$)

定义10(传递) 设 R是集合X上的二元关系。 R是传递的

 $\Leftrightarrow \forall x \forall y \forall z \ (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in \mathbb{R}$

 $\land <\mathbf{y},\,\mathbf{z}\mathbf{>}\in\mathbf{R}\rightarrow <\mathbf{x},\,\mathbf{z}\mathbf{>}\in\mathbf{R}$

[0	1	0	1
$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	0	0	1
0	1	0	1 1
1	1	1	0_

- □ 在 R 的关系图中,若顶点 x 到顶点 y有一条路径,则必有从 x 到 y 的一条边
- □ 在关系矩阵: 若有k使 r_{ik} · r_{kj} =1, 则 r_{ij} = 1

关系图和关系矩阵中五种性质的表述

R	自反	反自反	对称	反对称	传递
$\mathbf{M}_{\mathbf{R}}$	对角线 元素 <mark>全1</mark>	对角线 元素全0	对称矩阵	r_{ij} . $r_{ji}=0$ $(i \neq j)$	若有k使 r _{ik} . r _{kj} =1, 则 r _{ij} = 1
G_{R}	所有结点 都有 <mark>自环</mark>	所有结点 都 <mark>无自环</mark>	结点间 有向边都 成对出现	结点间无 成对出现 的有向边	若x到y有一条路径,则必有从x 到y的一条边

- 例: (1) 夫妻关系是反自反,反对称的
- (1) 配偶关系是反自反,对称的
- (2) 祖先关系是反自反,反对称,传递的
- 例 (1) X上的恒等关系 I_x 是自反、对称、反对称、传递的
 - (2) X上的"<"是反自反、反对称、传递的

思考题

- (1) 非空集 X 上的空关系 Ø 反自反、对称、反对称、传递
- (2) 空集 Ø上的空关系 Ø 自反、反自反、对称、反对称、传递

例:设 $X = \{1, 2, 3\}$ 判断X上的以下二元关系的性质

$$R_1 = \{ <1, 2>, <2, 3>, <3, 1> \}$$
 反自反,反对称的

例:指出R上的下列二元关系的性质:

- (1) $S = \{\langle x, y \rangle | x, y \in R \perp x \cdot y > 0\};$
- (2) $S=\{\langle x,y\rangle|x,y\in R, 4整除|x-y| 且|x-y| < 10\}$ 。

解: (1) 由于0 0=0, 因此<0,0> ∉S, 因此S不是自反;

由于 $<1,1> \in S$, 因此S不是反自反的;

由于对任意的 $x, y \in R$, 有 $x \cdot y > 0$ 当且仅当 $y \cdot x > 0$,因此 $\langle x, y \rangle \in S$ 且 $\langle y, x \rangle \in S$ 。所以S是对称的,且不是反对称的;

假设对任意的x, y, z $\in R$, $x \cdot y > 0$ 且 $y \cdot z > 0$ 。若x为正实数,则y, z必为正实数,且若x为负实数,且y, z必为负实数,因此x $\cdot z > 0$ 。因此 $\langle x, y \rangle \in S$, $\langle y, z \rangle \in S$ 且 $\langle x, z \rangle \in S$ 。因此S是传递的。

综上所述,S是对称、传递的。

例:指出以下关系图给定的关系所具有的性质,并写出对应的关系矩阵。

例: 举例说明满足以下性质的二元关系。

- (1) 既是自反的,又是反自反的;
- (2) 既不是自反的,又不是反自反的;
- (3) 既是对称的,又是反对称的;
- (4) 既不是对称的,又不是反对称的。

解:(1) 空集上的空关系

- (2) 整数上的关系 $R=\{<1,1>\}$
- (3) 集合{1, 2, 3}上的关系 {<1,1>, <2, 2>, <3, 3>}
- (3) 集合{1, 2, 3}上的关系{<1, 2>, <2, 1>, <1, 3>}

- - 例: 设A为恰有n个元素的有限集,
 - (1) A 上共有多少个 不同的自反关系?
 - (2) A 上共有多少个 不同的反自反关系?
 - (3) A 上共有多少个 不同的对称关系?
 - (4) A 上共有多少个 不同的反对称关系?
 - (5) A 上共有多少个 不同的既是对称又反对称的关系?
 - 解: (1) 设R是A上的自反关系,则对任意 $a \in A$, $\langle a, a \rangle \in \mathbb{R}$ 。对于A上的其他序偶 $\langle b, c \rangle$, $b \neq c$, $\langle b, c \rangle$ 可能属于 \mathbb{R} , $\langle b, c \rangle$ 也可能不属于 \mathbb{R} .
 - 已知A上的其他序偶个数为n(n-1),因此A上的自反关系的个数为 $C^1_{n(n-1)}+C^2_{n(n-1)}+...+C^{n(n-1)}_{n(n-1)}=2^{n(n-1)}$

例: 设A为恰有n个元素的有限集,

(3) A 上共有多少个 不同的对称关系?

解: (3) 设R是A上的对称关系,则对任意的a \in A, <a, a>可能属于R,也可能不属于R,且对于A上的其他序偶<b, c>, b \neq c, <b, c> 属于R当且仅当<c, b>R.

即A上的序偶对<b, c>和<c, b>, b \neq c, 必须成对出现。

已知A上的序偶对<b, c>和<c, b>个数为n(n-1)/2,

因此A上的对称关系的个数为 $2^{n(n-1)/2+n} = 2^{n(n+1)/2}$ 。

例: 设A为恰有n个元素的有限集,

(5) A 上共有多少个 不同的既是对称又反对称的关系?

解: (5) 设R是A上的关系, 且既是对称又反对称, 则R只

可能包含以下序偶: $\langle a, a \rangle, a \in \mathbb{R}$.

因此,关系R的个数为2n。

2 关系的运算

重点:

- □ 作为集合时的运算
- □ 关系的逆、合成运算
- □ 自反闭包、对称闭包、传递闭包

м

定义11 设R和S是从集合A到B的关系,取全集为A×B,则 $R\cap S$, $R\cup S$, R-S, $\sim R$, $R\oplus S$ 仍是A到B的关系,并且对于任意 $x\in A$, $y\in B$:

$$x (R \cap S) y \Leftrightarrow x R y \wedge x S y$$
 $x (R \cup S) y \Leftrightarrow x R y \vee x S y$
 $x (R - S) y \Leftrightarrow x R y \wedge x \overline{S} y$
 $x (\sim R) y \Leftrightarrow x \overline{R} y$
 $x (R \oplus S) y \Leftrightarrow x (R - S) y \vee x (S - R) y$
 $\Leftrightarrow (x R y \wedge x \overline{S} y) \vee (x S y \wedge x \overline{R} y)$

例:设R和S是集合A= $\{1,2,3,4\}$ 上的关系, $R = \{\langle x, y \rangle | x - y \in 2 \text{ 的非零整倍数 } \}$ $S = \{\langle x, y \rangle | x - y \in 3 \text{ 的非零整倍数 } \}$ 求: $R \cap S$, $R \cup S$, R - S和 $\sim R$ 。 解: $R = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>\}$ $S = \{<1, 4>, <4, 1>\}$ 则 $R \cap S = \emptyset$, $R \cup S = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>, <1, 4>, <4, 1>\},$ $R-S = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>\}$ \sim R={<1, 1>,<1, 2>,<1, 4>,<2, 1>,<2, 2>,<2, 3>, <3, 2>, <3, 3>,<3, 4>,<4, 1>,<4, 3>,<4, 4>}.

- 例:设R₁和R₂是从集合A到集合B的二元关系。证明
- $(1) \operatorname{dom}(R_1 \cup R_2) = \operatorname{dom}(R_1) \cup \operatorname{dom}(R_2)$
- (2) $\operatorname{ran}(\mathbf{R}_1 \cap \mathbf{R}_2) \subseteq \operatorname{ran}(\mathbf{R}_1) \cap \operatorname{ran}(\mathbf{R}_2)$
 - 解: (1) 对任意的 $x \in dom(R_1 \cup R_2)$, 存在 $y \in ran(R_1 \cup R_2)$,
 - 使得 $\langle x, y \rangle \in R_1 \cup R_2$ 。
 - 若 $\langle x, y \rangle \in R_1$, 则 $x \in dom(R_1)$;
 - 若 $\langle x, y \rangle \in \mathbb{R}_2$,则 $x \in dom(\mathbb{R}_2)$ 。
 - 因此 $x \in dom(R_1) \cup dom(R_2)$ 。
 - (2) 略
- $ran(\mathbf{R}_1 \cap \mathbf{R}_2) = ran(\mathbf{R}_1) \cap ran(\mathbf{R}_2) ?$
- $A=B=\{1,2,3\}, R_1=\{<1,2>,<2,3>\}, R_2=\{<1,2>,<1,3>\},$
- $R_1 \cap R_2 = \{<1,2>\}, ran(R_1 \cap R_2) = \{2\}, ran(R_1) \cap ran(R_2) = \{2,3\}$

例: 若R和S都是非空集X上的自反(反自反、对称、反对称、传递)的,判断 $R\cap S$, $R\cup S$, R-S, $\sim R$, $R\oplus S$ 是否是自反(反自反、对称、反对称、传递)的。

R, S	R∩S	RUS	R-S	$R \oplus S$	~R
自反	$\sqrt{}$				
反自反	V	V	V	V	
对称		V	V	V	V
反对称	V		V		
传递	V				