Actividad 3.1: Trayectorias en lazo abierto (Cuadrado)

En esta actividad se implementa el código requerido para generar las siguientes trayectorias a partir de las velocidades angulares y lineales en un plano 2D. En este primer ejercicio se busca trazar un **cuadrado**.

```
%Limpieza de pantalla clear all close all clc
```

Se declara el tiempo de ejecución

Se declaran las condiciones iniciales a tomar en cuenta

Se declara el punto de control en referencia al robot

Se declaran las velocidades de referencia

La lógica para cada trayectoria se define de la siguiente manera, haciendo un total de 8 pasos:

```
Tramo 3 (v=1 m/s, w=0 rad/s) - Avanza 1 metro
Tramo 4 (v=0 m/s, w=pi/2 rad/s) - Gira 90°

Tramo 5 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 6 (v=0 m/s, w=pi/2 rad/s) - Gira 90°

Tramo 7 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 8 (v=0 m/s, w=pi/2 rad/s) - Gira 90°

v = [1*ones(1,10) 0*ones(1, 10) 1*ones(1,10) 0*ones(1, 10) 1*ones(1, 10) 0*ones(1, 10) pi/2*
v = [0*ones(1,10) pi/2*ones(1,10) 0*ones(1, 10) pi/2*ones(1, 10) 0*ones(1, 10) pi/2*
```

Se inicia bucle de simulación en el cual se declara el modelo cinemático

Tramo 1 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 2 (v=0 m/s, w=pi/2 rad/s) - Gira 90°

```
for k=1:N

%Aplico la integral a la velocidad angular para obtener el angulo
% "phi" de la orientación
phi(k+1)=phi(k)+w(k)*ts; % Integral numérica (método de Euler)

xpl=v(k)*cos(phi(k));
ypl=v(k)*sin(phi(k));

%Aplico la integral a la velocidad lineal para obtener las cordenadas
%"xl" y "yl" de la posición
x1(k+1)=x1(k)+ ts*xp1; % Integral numérica (método de Euler)
y1(k+1)=y1(k)+ ts*yp1; % Integral numérica (método de Euler)

% Posicion del robot con respecto al punto de control
hx(k+1)=x1(k+1);
hy(k+1)=y1(k+1);
end
```

Ahora se inicia con la simulación virtual en 3D

Para esta parte se importan los archivos compartidos por el profesor: MobilePlot.m, MobileRobot.m y Uniciclo.mat que se encuentran en la misma carpeta que este código, esto con el fin de poder graficar el entorno en 3D simultáneamente con este programa.

A continuación se muestran los pasos para la visualización:

a) Configuracion de escena

```
scene=figure; % Crear figura (Escena)
set(scene,'Color','white'); % Color del fondo de la escena
```

```
set(gca,'FontWeight','bold') ;% Negrilla en los ejes y etiquetas
sizeScreen=get(0,'ScreenSize'); % Retorna el tamaño de la pantalla del computador
set(scene,'position',sizeScreen); % Configurar tamaño de la figura
camlight('headlight'); % Luz para la escena
axis equal; % Establece la relación de aspecto para que las unidades de datos
% sean las mismas en todas las direcciones.
grid on; % Mostrar líneas de cuadrícula en los ejes
box on; % Mostrar contorno de ejes
xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)'); % Etiqueta de los eje

view([135 35]); % Orientacion de la figura
axis([-3 3 -3 3 0 2]); % Ingresar limites minimos y maximos en los ejes x y z
% [minX maxX minY maxY minZ maxZ]
```

b) Graficar robots en la posicion inicial

```
scale = 4;
MobileRobot;
H1=MobilePlot(x1(1),y1(1),phi(1),scale);hold on;
```

c) Graficar Trayectorias

```
H2=plot3(hx(1),hy(1),0,'r','lineWidth',2);
```

d) Bucle de simulacion de movimiento del robot

```
step=1; % pasos para simulacion

for k=1:step:N

    delete(H1);
    delete(H2);

    H1=MobilePlot(x1(k),y1(k),phi(k),scale);
    H2=plot3(hx(1:k),hy(1:k),zeros(1,k),'r','lineWidth',2);
    pause(ts);
end
```


Este ejercicio nos ayuda a visualizar como funciona la manipulación de un robot modular declarándole la distancia y el ángulo que debe ejecutar para lograr la trayectoria deseada.