6783

Delivery Order No. 0001 Environmental Services Program Support Contract Number DACA31-94-D-0064

U.S. ARMY ENVIRONMENTAL CENTER

WOODBRIDGE RESEARCH FACILITY REMEDIAL INVESTIGATION/FEASIBILITY STUDY

19951115 172

HEALTH AND SAFETY PLAN

Unlimited Distribution Approved for Public Release

FINAL DOCUMENT

DTIC QUALITY INSPECTED 5

SEPTEMBER 1995

This document is printed on recycled paper

[PII Redacted]

Delivery Order No. 0001 Environmental Services Program Support Contract Number DACA31-94-D-0064

U.S. ARMY ENVIRONMENTAL CENTER

WOODBRIDGE RESEARCH FACILITY REMEDIAL INVESTIGATION/FEASIBILITY STUDY

HEALTH AND SAFETY PLAN

FINAL DOCUMENT

SEPTEMBER 1995

This document is printed on recycled paper

HEALTH AND SAFETY ADDENDUM WOODBRIDGE RESEARCH FACILITY RI/FS CONTRACT NUMBER DACA31-94-D-OO64

Patricia Mayer
Patricia Thompson
Project Manager
Gary McKown Program Manager
Jeff Waugh USAEC Project Officer
William Houser USAEC My Chelean for Gerald Joy ICF KE Director
Industrial Hygiene
Accesion For
NTIS CRA&I DTIC TAB

ICF KAISER ENGINEERS 1301 CONTINENTAL DRIVE SUITE 101 ABINGDON, MD 21009

Accesion	n For								
NTIS DTIC Unanno Justifica	TAB unced	X							
	By								
A	vailability	Codes							
Dist	Avail and/or Special								
A-1									

HEALTH AND SAFETY PLAN ADDENDUM WOODBRIDGE ARMY RESEARCH LABORATORY RI/FS CONTRACT NUMBER DACA31-94-D-0064

Prepared By:

ICF KAISER ENGINEERS, INC.

September 15, 1995

This Addendum modifies the existing Health and Safety Plan for the Woodbridge Research Facility prepared by the Earth Technology Corporation under Contract Number DAAA15-91-D-0009, Delivery Order 0001, dated November, 1994; and the initial Addendum to that Plan, dated December, 1994; prepared by the Earth Technology under Delivery Order DA0014.

This Addendum has been prepared to incorporate the current scope of work, and additional information about site contaminants identified during the Preliminary, and Phase I Supplemental Site Investigations. Material in the original Plan, and the initial Addendum, not replaced or modified by this Addendum will remain in effect, with the exception of Earth Technology Corporation standard procedures and policies, which are superseded in all cases by ICF Kaiser Engineers, Inc. policies and procedures.

Approved:

Gerald J. Joy, CIH, CSP

Director, Industrial Hygiene

REPLACE HASP SECTION 3 WITH THE FOLLOWING

3.0 SCOPE OF WORK

The Scope of Work for the Woodbridge Army Research Laboratory RI/FS includes the following hazardous waste-related operations:

- 3.1 Site Reconnaissance
- 3.2 Field Investigation
 - 3.2.1 Install 29 shallow (35'bgs) groundwater monitoring wells
 - 3.2.2 Install 2 deep (75'bgs) groundwater monitoring wells
 - 3.2.2 Complete 18 soil borings to 25' bgs or water table
 - 3.2.3 Excavate 12 test pits to 6' bgs or water table
 - 3.2.4 Convert 10 borings to piezometers
- 3.3 Sampling
 - 3.3.1 Sample 45 groundwater wells twice at 2 month interval
 - 3.3.2 Collect 62 surface water and 12 surface water runoff samples
 - 3.3.3 Collect 50 sediment samples associated with surface water samples
 - 3.3.4 Collect 3 subsurface soil samples from 35 monitoring wells, 20 borings, and 2 samples from 12 test pits
 - 3.3.5 Collect 65 surface soil samples
 - 3.3.6 Analyze 120 biota tissue samples
- 3.4 Ecological Assessment
 - 3.4.1 Site walkover
 - 3.4.2 Bioassessment sampling at approximately 25 locations
 - 3.4.3 Measure water quality parameters at the 25 sampling locations
- 3.5 Hydrologic Assessment
 - 3.5.1 Install 10 staff gauges
 - 3.5.2 Determine groundwater elevations at 60 locations during groundwater sampling
- 3.6 Survey
 - 3.6.1 Survey all monitoring well, soil boring and piezometer locations.

REPLACE HASP SECTION 4 WITH THE FOLLOWING

MEDICAL SURVEILLANCE

The requirements set forth in 29 CFR 1910.120(f), shall be met for all employees performing or supervising hazardous waste operations. Medical exams shall be conducted as soon as possible upon notification by an employee that he/she has developed signs or symptoms indicating possible health hazards or overexposure to hazardous substances. Subcontractor personnel shall provide documentation of current status of participation in a medical surveillance program as required by 29 CFR 1910.120(f). Subcontractors unable to provide such documentation shall have successfully completed a medical examination as described in the above referenced OSHA standard prior to beginning work in a contaminated zone.

Specific protocols for medical examinations are designed by an occupational physician. Common components include:

- a. medical history and physical examination
- b. dipstick urinalysis, vision screen and vital signs
- c. spirometry
- d. audiometry
- e. blood chemistry (complete blood count, liver function, kidney function, lipid metabolism, carbohydrate metabolism)
- f. resting EKG (with approval)
- g. chest radiograph (P/A).

No project-specific medical examinations, or biological monitoring is required for this project.

TRAINING

All ICF Kaiser staff working onsite have completed the OSHA mandatory 40-hours hazardous waste operations training and are trained annually in accordance with 29 CFR 1910.120. ICF Kaiser staff are also trained and receive annual training in CPR and first-aid (every 3 years), Hazard Communication, and Bloodborne Pathogens.

Bloodborne Pathogens

ICF Kaiser personnel trained in CPR and first-aid have the potential for exposure to bloodborne pathogens therefore they are trained annually in accordance with 29 CFR 1910.1030. Exposure to bloodborne pathogens is prevented through the use of universal precautions, engineering and work practice controls, and personal protective equipment. Each ICF Kaiser work area shall be equipped with an industrial first-aid kit supplemented by a bloodborne pathogen exposure control kit. Personnel will follow appropriate decontamination and disposal procedures in the event of

a potential exposure to bodily fluids potentially infected with bloodborne pathogens. All incidents must be immediately reported to the SSO and corporate health and safety director.

Hazard Communication

ICF Kaiser trains employees in accordance with the Hazard Communication Standard (29 CFR 1910.1200) in the law, material safety data sheets (MSDSs) and labeling requirements. As part of the hazard communication standard, ICF Kaiser is required to provide MSDSs of chemicals brought to the WRF and have them readily accessible to ICF Kaiser personnel as well as to WRF, and USAEC representatives, and subcontractors.

Table 4-1 below lists the training and compliance status of field personnel working on this project. Training documentation for all personnel can be found in Appendix I of this document.

TABLE 4-1
HEALTH AND SAFETY COMPLIANCE STATUS

NAME	MEDICAL CURRENT	FIT TEST CURRENT	CERTIFICATION LEVEL A B C D	TRAININ CURRE 40HR		CPR	ВВР
Jack Choynowski	1	1	В	1	1	1	1
Margaret Ehlers	1	1	В	1	1		1
Mike Elias	1	1	В	1	1		1
Marilyn Garcia	1	1	В	1	1	1	1
Carol Henry	/	1	В	1	1	1	1
Joe Neubauer	J	1	В	1	1	1	1
Debbie Romano	1	/	В	1	1	1	1
Larry Thebeau	/	1	В	1	1	1	1
Mark Thomas		1	В	1	N/A	1	1
Patricia Thompson	1	1	В	1	1	1	1
Tammy Williams	/	1	В	1	1	1	1
Diane Wisbeck	1	1	В	1	1	1	1

/ Indicates compliance

N/A Not applicable; recently completed 40-hour training

ADD THE FOLLOWING TO HASP SECTION 5

HAZARD ANALYSIS

A hazard analysis and recommended control measures for each task are presented below.

TASK HAZARD ANALYSES

TASK	HAZARD	CONTROL
Hollow-stem auger, mud rotary drilling, and Soil Sampling	Physical hazards: - Heavy equipment	Establish work zones Site coordination/control hardhats, steel-toed boots
	Overhead hazardNoiseHeat/stressUneven terrain	Appropriate placement of rig Hearing protective devices Personnel monitoring and adequate hydration Appropriate placement of rig; use outriggers Monitoring of breathing zone; personal protective equipment
	Biological hazards - Copperhead Snakes - Poison - Spiders, ticks	Personal protective equipment (coverall), personnel awareness of animal behavior, insect repellant

FINAL 5-1

TASK	HAZARD	CONTROL
Groundwater Well Installation	Physical hazards: - Heavy equipment	Establish work zones Site coordination/control hardhats, steel-toed boots (vests)
	- Overhead hazard	Appropriate placement of rig
	- Noise	Hearing protective devices
	- Heat/stress	Personnel monitoring and adequate hydration
	- Uneven terrain	Appropriate placement of rig; use outriggers
	Biological hazards:	Monitoring of breathing zone; personal protective equipment
*	- Copperhead Snakes	Personal protective equipment
	- Poison	(coverall), personnel awareness of animal behavior, insect repellant
	- Spiders, ticks	
Ecological Assessment	Physical: - Rough terrain	Steel toed boots
	- Heat stress	Personnel monitoring, adequate hydration
	Biological - Copperhead Snakes	PPE coverall & gloves - personnel awareness of
	- Spiders, ticks, etc Poison Ivy/Oak	animal behavior, insect repellant
Hydrologic Assessment	Physical: - Rough terrain	Steel toed boots
	- Heat stress	Personnel monitoring, adequate hydration
	Biological - Copperhead Snakes	PPE coverall & gloves -
	- Spiders, ticks, etc.	personnel awareness of animal behavior, insect repellant
	- Poison Ivy/Oak	·

FINAL 5-2

TASK	HAZARD	CONTROL
Survey	Physical: - Rough terrain	Steel toed boots
	- Heat stress	Personnel monitoring, adequate hydration
	Biological	İ
	- Copperhead Snakes	PPE coverall & gloves - personnel awareness of
	- Spiders, ticks, etc.	animal behavior, insect repellant
	- Poison Ivy/Oak	

Chemical Hazards

The following table summarizes chemicals identified during the Site Investigation, or suspected to be present based on reported past use.

CHEMICALS OF CONCERN AT THE WOODBRIDGE RESEARCH FACILITY

CHEMICAL CAS NUMBER	EXPOSURE LIMIT	IDLH LEVEL	ROUTES OF EXPOSURE	SYMPTOMS OF ACUTE EXPOSURE	IONIZA TION POTEN TIAL (ev)
Asbestos 1332-21-4	PEL = 0.1 f/cc	N.D.	Inhalation, ingestion	Minimal, asbestosis/cancer on long term exposure	NA
Polychlorinated biphenyl (PCB)	PEL = 0.5- 1mg/m3 REL 10-hr TWA = 1 ug/m3	5 mg/m3	Inhalation, absorption, ingestion, contact	Irritates eyes, chloracne, liver damage.	NE
Chlorobenzene 108-90-7	PEL = 75 ppm	1000 ppm	Inhalation, ingestion, contact	Eye, nose, & throat irritation; CNS depression, liver, kidney, & lung injury	9.07 ev
Acetone 67-64-1	PEL = 1,000 ppm	2,500 ppm	Inhalation, ingestion, contact	Eye, nose & throat irritation, headache, CNS depression.	9.69 ev
Bis Ethylhexyl phthalate 117-81-7	PEL = 5 mg/m3 STEL = 10 mg/m3	NE	Inhalation, ingestion	Respiratory and skin irritation, nausea.	NE
Di Octyl phthalate 117-84-0	NE	NE	Inhalation, ingestion, contact	Severe eye irritation, headache, nausea.	NE

FINAL

CHEMICAL CAS NUMBER	EXPOSURE LIMIT	IDLH LEVEL	ROUTES OF EXPOSURE	SYMPTOMS OF ACUTE EXPOSURE	IONIZA TION POTEN TIAL (ev)
Wood Creosote 8021-39-4	PEL = NE, use coal tar pitch volatiles	NE	Inhalation, absorption, skin and eye contact	Skin, eye, respiratory irritation, skin rash and burns, visual effects/sensitivity to light.	NE
Beryllium 7440-41-7	PEL = .002 mg/m3 Ceil = .005 mg/m3	10 mg/m3 Carcin ogen	Inhalation	Respiratory symptoms, weakness, fainting, weight loss (carcinogen).	NA
Cadmium (dust) 7440-43-9	PEL = .005 mg/m3	9 mg/m3	Inhalation	Pulmonary edema, dyspnea, cough, chills, nausea	NA
Cobalt 7440-48-4	PEL = 0.05 mg/m3	20 mg/m3	Inhalation, ingestion and skin and eye contact	Cough, decrease in pulmonary function; weight loss; dermatitis; diffuse nodular fibrosis and respiratory hypersensitivity.	NA
Lead 7439-92-1	PEL = 0.05 mg/m3	N.A.	inhalation, ingestion, Contact	Lassitude, insomnia, pallor, eye grounds, anorexia, low weight, malnutrition, constipation, abdominal pain, colic, hypotension, anemia, gingival lead line, tremors, paralysis of the wrist.	NA
Mercury as Hg vapor 7439-97-6	PEL = 0.05 mg/m3 Ceil = 0.1 mg/m3 Skin	10 mg/m3	Inhalation, absorption, contact	Cough, dyspnea, bronchial pneumonia, tremor, insomnia, irritability, indecision, headache, fatigue, weakness, stomatitis, salvation, Gl, anorexia, low-weight, proteinuria, irritated eyesskin.	NA.

Permissible Exposure Limit, OSHA.

Immediately Dangerous to Life and Health Level, NIOSH Publication # 94-116, June 1994. Skin - Skin notation, absorption through intact skin can result in appreciable dose.

NA - Not applicable.

NE - Not established.

DISTRIBUTION OF CONTAMINANTS IDENTIFIED IN OU 1 DURING THE PRELIMINARY AND PHASE 1 SUPPLEMENTAL SITE INVESTIGATION

Jes									
Pesticides					×				
Mercury									×
Lead			×						
Cobalt								×	
Cadmium									×
Beryllium								×	
Total Petroleum Hydrocarbons				X	X		X		
Wood									
Di-n-Octyl Phthalate									
Bis-2- Ethylhexyl Phthalate									
Acetone									
Chloro- benzene									
PCBs	×	×		×	×	×			
Toluene									
AREE	Ŀ	2	8	4	5	6 A	6B	7	88

Pesticides are not further identified; based on the period of use, organo-chlorine pesticides (DDT, DDE) would be expected.

5-5

DISTRIBUTION OF CONTAMINANTS IDENTIFIED IN OU 2 DURING THE PRELIMINARY AND PHASE 1 SUPPLEMENTAL SITE INVESTIGATION

Pesticides													
Mercury													
Lead													
Cobait													
Cadmium													
Beryllium													
Total Petroleum Hydrocarbons	×		×	×	×	×				×	×		
Wood Creosote													×
Di-n-Octyl Phthalate						×							
Bis-2- Ethylhexyl Phthalate						×							
Acetone	×			i									
Chloro- benzene	×												
PCBs	×		×				·					X?	
Toluene							×						
AREE	11	17	22	8	13	14	18	19	20	23	24	82	37

Medium Sampled ^L	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing	
	I		<u> </u>		
Surface Soil	5	RIBK1-RIBK5	TCL VOCs, SVOCs,	NA	5 background surfac
Subsurface Soil	9	MW-52, 53, 54 (3 samples/boring)	pesticides/PCBs, TAL inorganics, TPH, PCTs, PAHs (surface soil and groundwater).	sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	3 soil borings will be completed as monito 35 feet below ground on the northwest side Inner Perimeter Road
Groundwater	8 ³	Shallow wells: MW-52, 53, 54 Deep well: MW-63		Temp, pH, redox, D.O., cond. salinity	thereafter until total of for deep well boring. table; and one samp
					Downgradient Lo
Subsurface soil	surface soil 9 MW-75, 76, an (3 samples/bo		TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PCTs.	sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	Two monitoring wells samples will be collectable for well borings. table; and one samples the facility hydrogeological samples with the facility hydrogeological samples will be collected as the facility hydrogeological samples with th
Piezometers	1	PZ-13	NA	NA	
Groundwater	4 ³	MW-75, 76	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PCTs and PAHs.	Temp, pH, redox, D.O., cond. salinity	

¹ Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCB

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with Na

³ Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

Physical Testing			Rationale	
		Background		
NA	5 background surface so	oil samples will be collected from 0 to 6-inches	bgs.	
sample/boring will be unalyzed TOC, Atterberg imits, USCS, Grain size listribution,and percent noisture. Temp, pH, redox, D.O., cond. salinity	35 feet below ground su on the northwest side of Inner Perimeter Road to thereafter until total dept for deep well boring. 3:	iled and completed as monitoring wells to access wells. Two soil borings/monitoring wells, MW- inface and 75 feet below ground surface, respect WRF and completed to approximately 35 feet be assess background subsurface soil and ground this reached. Total depth will be the water table samples will be selected and sent to the laboration each boring will be selected based on obvious transport of the selected based on obvious transport in the selected based on the	53 and MW-81, will be drilled alor ctively. Deep well boring MW-81 vancelow ground surface. An upgrad water conditions in this area. Sp le for soil borings and 7 feet below tory as follows: one sample from the	ng the northern boundary of WRF. The pr will not split-spooned sampled. 1 boring/r lient background monitoring well (MW-54) blit-spoon samples will be collected from 0 with the water table for shallow well borings: the 0 to 2 ft below ground surface (bgs); or
	Downgradient Locat	ions From Former Dump Areas		
sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture. NA emp, pH, redox, D.O., cond. salinity	table for well borings. 3	W-75, and MW-76) will be installed in downgradd from 0-2 ft bgs, 5-7 ft bgs and every 5 ft there samples will be selected and sent to the laboration each boring will be selected based on obvious model.	after until total depth is reached. Itory as follows: one sample from t	Total depth will be the water table for soil the 0 to 2 ft below ground surface (bos):

will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

CI; TAL metals pH < 2 with NHO $_3$; CN $^-$ pH> 12 with NaOH.

n of 2 months apart.

	c	_	_	_	16		P	٠.	_	~	٠.		
е.	Э.	a	m	Ð	Ш	ΠO	ľ	r	o	а	ra	ш	п

Rationale

ected from 0 to 6-inches bgs.

monitoring wells to access site background subsurface soil characteristics and groundwater quality. The background borings will be is/monitoring wells, MW-53 and MW-81, will be drilled along the northern boundary of WRF. The proposed total depths of these wells are y ground surface, respectively. Deep well boring MW-81 will not split-spooned sampled. 1 boring/monitoring well, MW-52, will be drilled approximately 35 feet below ground surface. An upgradient background monitoring well (MW-54) will be installed on the south side of psurface soil and groundwater conditions in this area. Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft of the water table for soil borings and 7 feet below the water table for shallow well borings and 10 feet below the confining unit d and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water selected based on obvious soil staining or elevated PID reading.

mp Areas

be installed in downgradient locations from the former dump areas to evaluate groundwater quality prior to off-site flow. Split-spoon bgs and every 5 ft thereafter until total depth is reached. Total depth will be the water table for soil borings and 7 feet below the water d and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water selected based on obvious soil staining or elevated PID reading. One soil boring will be converted to a piezometer (PZ-13), for use in

and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

Medium Sampled ¹	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing	
		· · · · · · · · · · · · · · · · · · ·			T
Surface Soil	ace Soil 4 RISS1-4	TCL VOCs,	NA NA	4 soil samples will collected from	
Test Pits	4	TP1 and TP2 (2 samples/test pit)	SVOCs, pesticides/PCBs, TAL inorganics, PCTs and PAHs (groundwater only).	NA	Two test pits (TP1 and TP2) will be extent of PCB contamination. Two
Subsurface Soil	12	MW-77,78,79,80. (3 samples/ boring)		1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	4 soil borings will be drilled and se total depth is reached. Total depth sample from the 0 to 2 ft below groreading.
Groundwater	20 ³	New Wells: MW- 77,78,79,80. Existing Wells: MW- 7,8,9,10,11,12		Temp, pH, redox, D.O., cond. salinity	Four downgradient soil borings concentration and are located to fi
Surface Soil	5	RISS5-9	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, PCTs and PAHs.	NA	5 soil samples will collected from t

FINAL

¹ Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PC temperature, pH, redox, dissolved oxygen, conductivity, and salinity.

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with I

³ Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Table 3-1 (Continued) WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

Physical Testing	Rationale						
	AREE 1						
NA	4 soil samples will collected from the 0 to 6-inch depth interval for site characterization.						
NA	Two test pits (TP1 and TP2) will be excavated downgradient from the two trenches (Trenches 20 and 21) previously excavated and sampled during the extent of PCB contamination. Two soil samples will be collected from each test pit. Each sample will be selected based on obvious soil staining or P						
t sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	4 soil borings will be drilled and samples collected to further characterize subsurface soil contamination. Split-spoon samples will be collected from 0-total depth is reached. Total depth will be the water table for soil borings and 7 feet below the water table for well borings. 3 samples will be selecte sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one sample from each boring will be selected bas reading.						
Temp, pH, redox, D.O., cond. salinity	Four downgradient soil borings completed as monitoring wells will be drilled (MW-78, MW-79, and MW-80). The proposed locations are closer than the contamination and are located to further characterize and evaluate subsurface soil and groundwater contamination in AREE 1. Existing wells (MW-7)						
-	AREE 2 & 5						
NA	5 soil samples will collected from the 0 to 6-inch depth interval for site characterization.						
:							

iese samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution a

 $\rm H < 2$ with HCl; TAL metals pH < 2 with NHO $_3$; CN $^-$ pH> 12 with NaOH.

ed a minimum of 2 months apart.

e Sampling Program	
Rationale	
ral for site characterization.	
from the two trenches (Trenches 20 and 21) previously cted from each test pit. Each sample will be selected	ly excavated and sampled during the 1993 USAEC SI to determine the downgradient based on obvious soil staining or PID hit.
is soil bottings and it teet below the water table for well	on samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until borings. 3 samples will be selected and sent to the laboratory as follows: one or each boring will be selected based on obvious soil staining or elevated PID
s will be drilled (MW-78, MW-79, and MW-80). The paluate subsurface soil and groundwater contamination	woposed locations are closer than the existing wells to the known area of PCB in AREE 1. Existing wells (MW- 7 through MW- 12) will be sampled for the RI/FS.

Hs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water samples will measured for

al for site characterization.

Medium Sampled ¹	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing	
	.			T	Al
Test Pits	4	TP3 and TP4 (2 samples/test pit)	TCL VOCs, SVOCs, pesticides/PCBs.	NA	One test pit (TP3) will be excavate excavated in AREE 5 to character
Subsurface Soil	30	MW-68, 69, 70, 71, 72, 73, 74, 81, RISB6, and PZ-12.	TAL inorganics, PCTs, and TPH.	sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	Seven shallow soll boring/monitoring and pesticide contamination in the additional monitoring well (MW-69) area. Proposed soil boring/monitor placement of existing well MW-1.
Piezometers	1	PZ-12.	NA	NA	to existing monitoring wells MW-2 a MW-82 will be located adjacent to installed adjacent to prior sample (if bgs, 5-7 ft bgs and every 5 ft the and sent to the laboratory as follow
Groundwater	30 ³	New Shallow Wells: MW-68, 69, 70, 71, 72, 73, 74, 81. Deep wells:MW-82,83 Existing Wells: MW-1, 2, 3, 4, 5	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, PCTs, PAHs and TPH.	Temp, pH, redox, D.O., cond. salinity	obvious soil staining or elevated Pl sediment sample location to investi boring (RISB5) will be installed adj piezometer (PZ-12).
					•
Surface Soil	3	RISS10-12	TCL VOCs, SVOCs, pesticides/PCBs,	NA	3 soil samples will be collected from
Test Pit	2	TP13 and TP14. (2 samples/test pit).	TAL inorganics, PCTs, PAHs (surface soil only) and TPH.	NA	

FINAL

Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCI for temperature, pH, redox, dissolved oxygen, conductivity, and salinity.

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with N

³ Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Table 3-1 (Continued) WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

Physical Testing	Rationale
	AREE 2 & 5 (Continued)
	One test pit (TP3) will be excavated in AREE 2 to delineate the extent of PCB contamination remaining on the site after the 1984 remedial action performed excavated in AREE 5 to characterize the site of a former disposal pit where metal debris is partially buried. Two soil samples will be collected from each to
nple/boring will be zed for TOC, berg limits, USCS, size distribution, and ant moisture. NA PH, redox, D.O., salinity	Seven shallow soil boring/monitoring wells (one upgradient and 6 downgradient) located to encompass AREEs 2 and 5, will be drilled to identify potential s and pesticide contamination in the soil. These borings will be completed as monitoring wells (MW-68 and MW-70 through MW-74, and MW-81) to investigate additional monitoring well (MW-69) will be installed at the former sediment sample location 02SE02 (SI sample location) to investigate potential subsurface area. Proposed soil boring/monitoring well MW-71 will address the PCB contamination found at 05DP0101, and soil boring/monitoring well MW-68 will serve placement of existing well MW-1. The top of the screen of existing well MW-1 is below the water table, thereby rendering it unable to provide monitoring did to existing monitoring wells MW-3 and completed such that the screens are placed to intercept light phase compounds, if present. In addition, 2 MW-82 will be located adjacent to MW-2 (forming a well cluster with MW-81) to evaluate if PCBs have migrated downward in an area where PCBs have be installed adjacent to prior sample 05DP0101 where PCBs were detected. Deep well MW-83 will form a well cluster with shallow monitoring well MW-71. Sp. ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be the water table for soil borings and 7 feet below the water table for and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one sample for obvious soil staining or elevated PID reading. These borings will be completed as monitoring wells (MW-70 through MW-74). An additional monitoring wells (make the prior sediment sample location to Investigate potential subsurface soil and groundwater contamination in this area. Existing monitoring wells (MW-1 through MW boring (RISB5) will be installed adjacent to the SI sample location where PCBs were detected in AREE2. One soil boring will be installed by prior sediment piezometer (PZ-12).
	AREE 3
	3 soil samples will be collected from the 0 to 6 inch depth interval and 2 test pits will be excavated in the disposal area at AREE 3.for site characterization.
NA	

amples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and su

with HCI; TAL metals pH < 2 with NHO₃; CN^- pH > 12 with NaOH.

ninimum of 2 months apart.

lace	Sampling	Program
------	----------	---------

- Retionale			
e the extent of PCB contamination remaining on the disposal pit where metal debris is partially buried.	he site after the 1984 remedial ac Two soil samples will be collect	ction performed	d by Weston. One test pit (TP4) will be test pit.
It and 6 downgradient) located to encompass ARE be completed as monitoring wells (MW-68 and M former sediment sample location 02SE02 (SI sampleress the PCB contamination found at 05DP0101, a fexisting well MW-1 is below the water table, there ad such that the screens are placed to intercept lights uster with MW-81) to evaluate if PCBs have migral were detected. Deep well MW-83 will form a well of a reached. Total depth will be the water table for 10 to 2 ft below ground surface (bgs); one sample a ligs will be completed as monitoring wells (MW-70 to 2 soil and groundwater contamination in this area. Scation where PCBs were detected in AREE2. One	EEs 2 and 5, will be drilled to ider MW-70 through MW-74, and MW-8 ple location) to investigate potenti and soil boring/monitoring well M eby rendering it unable to provide ght phase compounds, if present ated downward in an area where cluster with shallow monitoring w rocil borings and 7 feet below the at the top of the water table; and through MW-74). An additional	entify potential set it is in control of the contro	source areas and the extent of PCB, TPH, pate potential groundwater contamination. An e soil and groundwater contamination in this rive as an upgradient well due to the screen data for TPH. MW-81 will be located adjacent 2 deep monitoring wells will be installed. een detected in the past. MW-83 will be Split-spoon samples will be collected from 0-2 for well borings. 3 samples will be selected from each boring will be selected based on ell (MW-69) will be installed at the former
nterval and 2 test pits will be excavated in the disp	xosal area at AREE 3.for site char	racterization.	

AHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water samples will measured

Medium Sampled ¹	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing		
Surface Soil	4	FIISS13-16	TCL VOCs,	NA	Four soil samples wil	
Test Pits	16	TP5-12 (2 samples/test pit)	SVOCs, pesticides/PCBs, TAL inorganics, PCTs, PAHs (surface soil and groundwater only), TPH.	NA	10 geophysical anon evaluate the potentia PID hit.	
Subsurface Soil	9	MW-64, 66, 67. (3 samples/boring)		sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	5 monitoring wells (Nextent of subsurface depth is reached. To one sample from the elevated PID reading	
Groundwater	6 ³	MW-64, 66, 67.		Temp, pH, redox, D.O., cond. salinity		
	<u> </u>					
Surface Soil	7	RISS17-23	TCL VOCs, SVOCs, pesticides/PCBs,	NA	7 soil samples will c boring/monitoring w contamination in do Total depth will be t	
Test Pits	6	TP15, 16, and 17	TAL metals and PAHs (surface soil and groundwater only).	NA	the 0 to 2 ft below g	
	3	MW-65 (3	1	1 sample/boring will be analyzed for TOC, Atterberg	1	
Subsurface Soil		samples/boring)		limits, USCS, Grain size distribution, and percent moisture.		

¹Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCE

FINAL

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with I

³ Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Table 3-1 (Continued)
WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

mical yses ²	Physical Testing	Rationale						
		AREE 4						
Os,	NA .	Four soil samples will collected from the 0 to 6-inch depth interval for site characterization.						
ss/PCBs, ganics, \Hs soil and	NA	10 geophysical anomalies previously identified west of AREE 4 will be investigated. Test pits (TP5 through TP12) will be excavate evaluate the potential for subsurface soil contamination. 2 subsurface soil samples will be collected from each test pit. Each sar						
ater H.	sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	5 monitoring wells (MW-64 through MW-68) will be installed around the previously trenched area, one upgradient and four downs extent of subsurface soil and groundwater contamination associated with this AREE. Split-spoon samples will be collected from (one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one sample from each be elevated PID reading.						
	Temp, pH, redox, D.O., cond. salinity							
		AREE 6A						
s, :/PCBs, s and	NA	7 soil samples will collected from the 0 to 6-inch depth interval for site characterization. In addition, 3 test pits will be excavated to boring/monitoring well (MW-65) will be installed downgradient of AREE 6A to evaluate downgradient groundwater quality and the contamination in downgradient areas associated with this AREE. Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs						
face ter	NA	Total depth will be the water table for soil borings and 7 feet below the water table for well borings. 3 samples will be selected as the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one sample from each boring will be selected as reading.						
·	1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.							
	Temp, pH, redox, D.O., cond. salinity							

e samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution

I < 2 with HCI; TAL metals pH < 2 with NHO3; CN $^{-}$ pH > 12 with NaOH.

d a minimum of 2 months apart.

nued)		
ubsurface	Sampling	Progra

the 0 to 6-inch depth interval for site characterization.
identified west of AREE 4 will be investigated. Test pits (TP5 through TP12) will be excavated at the previously identified geophysical anomalies to soil contamination. 2 subsurface soil samples will be collected from each test pit. Each sample will be selected based on obvious soil staining or
AW-68) will be installed around the previously trenched area, one upgradient and four downgradient. These wells are designed to evaluate the water contamination associated with this AREE. Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total 3 the water table for soil borings and 7 feet below the water table for well borings. 3 samples will be selected and sent to the laboratory as follows: ground surface (bgs); one sample at the top of the water table; and one sample from each boring will be selected based on obvious soil staining or
0 to 6-inch depth interval for site characterization. In addition, 3 test pits will be excavated to characterize the old landfill. One soil installed downgradient of AREE 6A to evaluate downgradient groundwater quality and the extent of subsurface soil and groundwater associated with this AREE. Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. soil borings and 7 feet below the water table for well borings. 3 samples will be selected and sent to the laboratory as follows: one sample from ps); one sample at the top of the water table; and one sample from each boring will be selected based on obvious soil staining or elevated PID

Rationale

CTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

Medium Sampled ¹	Number of Samples	Sample (Ds	Chemical Analyses ²	Physical Testing	
Surface Soil 2 RISS24, RISS25 TCL VOCs, NA				2 soil samples will c	
Test Pits	3	TP18, 19, 20.	SVOCs, pesticides/PCBs, TAL inorganics, PAHs, (surface soil and groundwater only) and TPH.	NA	Two test pits (TP18 will be excavated ea
Subsurface Soil	3	MW-60		sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	pit. A soil boring/me boring/monitoring we this area. Split-sport feet below the water top of the water table
Groundwater	2 ³	MW-60		Temp, pH, redox, D.O., cond. salinity	
Subsurface Soil	3	MW-59 (3 samples/boring)	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PAHs (GW only).	sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture.	Soil boring/monitoring monitoring well MW contamination down collected from 0-2 ft borings. 3 samples
Groundwater	2 ³	MW-59		Temp, pH, redox, D.O., cond. salinity	sample from each b
					Downgradient
Subsurface Soil	3	MW-61 (3 samples/boring)	TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, TPH.	sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	One soilboring/monithe northeast portion upgradient sources.

¹Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs temperature, pH, redox, dissolved oxygen, conductivity, and salinity.

FINAL

²Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with Na

³Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Table 3-1 (Continued) WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

Physical Testing	Rationale
*	AREE 6B
NA	2 soil samples will collected from the 0 to 6-inch depth interval for site characterization.
NA NA	Two test pits (TP18 and TP19) will be excavated to investigate and characterize metal debris found in an area west of Deephole Point Roac will be excavated east of Deephole Point Road to investigate a suspected disposal area where TPH was detected during the 1993 SI. Two
1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	pit. A soil boring/monitoring well (MW-60) will be installed upgradient of this AREE (which is also upgradient of AREE 7) to evaluate ground boring/monitoring well, MW-75, (also discussed below in AREE 7) will be installed downgradient from AREEs 6B, and 7 to evaluate ground this area. Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth feet below the water table for well borings. 3 samples will be selected and sent to the laboratory as follows: one sample from the 0 to 2 ft top of the water table; and one sample from each boring will be selected based on obvious soil staining or elevated PID reading.
Temp, pH, redox, D.O., cond. salinity	
	AREE 7
sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent molsture.	Soil boring/monitoring well (MW-59) will be installed in AREE 7. Subsurface soil and groundwater data collected from MW-59 will be evaluate monitoring well MW-59, monitoring well MW-75 (to be installed downgradient of AREEs 6B and 7) will be used to evaluate groundwater qual contamination downgradient of this AREE (MW-75 will also be used to evaluate groundwater quality downgradient of AREE 6B, as previousl collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be the water table for soil borings borings. 3 samples will be selected and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sail
Temp, pH, redox, D.O., cond. salinity	sample from each boring will be selected based on obvious soil staining or elevated PID reading.
	Downgradient Location From Facility Compound
sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	One sollboring/monitoring well (MW-61) will be installed in a downgradient location at the corner of the Bayview Road and Charlie Road. The northeast portion of the compound. This monitoring well will be installed to determine whether groundwater or subsurface soils have bee upgradient sources.
	NA NA 1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture. Temp, pH, redox, D.O., cond. salinity 1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent moisture. Temp, pH, redox, D.O., cond. salinity 1 sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution, and percent

apples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and sur

with HCl; TAL metals pH < 2 with NHO $_3$; CN $^-$ pH> 12 with NaOH.

himum of 2 months apart.

ampling Program
Rationale
depth interval for site characterization. In investigate and characterize metal debris found in an area west of Deephole Point Road in this AREE. An additional test pit (TP20) investigate a suspected disposal area where TPH was detected during the 1993 Sl. Two soil samples will be collected from each test installed upgradlent of this AREE (which is also upgradient of AREE 7) to evaluate groundwater quality. Downgradient soil elow in AREE 7) will be installed downgradient from AREEs 6B, and 7 to evaluate groundwater quality and subsurface soil conditions in om 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be the water table for soil borings and 7 iples will be selected and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the boring will be selected based on obvious soil staining or elevated PID reading.
id in AREE 7. Subsurface soil and groundwater data collected from MW-59 will be evaluated to characterize the site. In addition to be installed downgradient of AREEs 6B and 7) will be used to evaluate groundwater quality and the extent of groundwater will also be used to evaluate groundwater quality downgradient of AREE 6B, as previously discussed). Split-spoon samples will be thereafter until total depth is reached. Total depth will be the water table for soil borings and 7 feet below the water table for well e laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one notions soil staining or elevated PID reading.
ound
alled in a downgradient location at the corner of the Bayview Road and Charlie Road. This area receives surface water runoff from ring well will be installed to determine whether groundwater or subsurface soils have been impacted by run off or other potential

d TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water samples will measured for

Medium Sampled ¹	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing	
			-		Downgradient Location
Groundwater	2 ³	MW-61	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PAHs	Temp, pH, redox, D.O., cond. salinity	(See Above)
				AREEs In T	he Vicinity of Building 20
Test Pits	NA	TP21 and TP22	NA	NA	Four shallow soil boring the extent of subsurface and is also downgradie during the removal actic samples collected from detected in this area. A wells MW-37, MW-38, a Drum Storage Area (AR model. In addition, 2 so and to characterize and contamination in the sail encountered and the lobe verified by excavatin be drilled to intercept the
Subsurface Soil	27	MW-55, 56, 57, 58, and RISB1-RISB5 (3 samples/boring)	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, PCTs, PAHs	sample/boring will be analyzed for TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	
Groundwater	12 ³	New shallow wells: MW- 55, 56, 57, 58. Deep well: MW-62 Existing well: MW-39	(groundwater only), TPH	Temp, pH, redox, D.O., cond. salinity	

¹Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, temperature, pH, redox, dissolved oxygen, conductivity, and salinity.

²Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with NaOh

³Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Physical Testing	Rationale
	Downgradient Location From Facility Compound (Continued)
emp, pH, redox, D.O., cond. alinity	(See Above)
AREEs In TI	ne Vicinity of Building 202 (AREEs 11, 17, 22, 23(b), 24(a), 24(c), And 24(d))
iample/boring will be alyzed for TOC, Atterberg its, USCS, Grain size tribution, and percent isture. ap, pH, redox, D.O., cond. Inity	Four shallow soil boring/monitoring wells (MW-55 - MW-58) and a deep monitoring well (MW-62) will be installed in downgradient locations from the the extent of subsurface soil and groundwater contamination. MW-55 is located in an area where stressed vegetation has been observed in an area and is also downgradient from the former Oil/Water Separator. As previously discussed, a sand lens, which is believed to trend northwest from the during the removal action. Shallow monitoring well MW-56 and deep monitoring well MW-62 will be installed in a downgradient location to intercept samples collected from wells MW-56 and MW-62 will be analyzed to evaluate whether upper and lower groundwater zones are contaminated from the detected in this area. Monitoring wells MW-57 and MW-58 are located adjacent to Ditch 22 to evaluate groundwater quality prior to potential dischawells MW-37, MW-38, and MW-39, which were installed as part of a Phase II Site Characterization, will be sampled for this RI to investigate groundw Drum Storage Area (AREE 12) and AREEs 11 and 23. Water level measurements will be collected from all existing wells in this area to extend the dimodel. In addition, 2 soil borings (RISB1 and RISB2) will be drilled in the paved area west of the oil/water separator to evaluate the extent of contamination in AREE 17. AREE 17 is also being sampled in the Phase II SSI. Soil borings will be contamination in the sand lens which was encountered during the PCB removal action. One soil boring (RISB3) will be drilled adjacent to the excaven encountered and the location has been verified. The suspected trend of the sand lens is toward the northwest toward monitoring wells MW-56 and is be drilled to intercept the sand lens to characterize subsurface lithologic properties and evaluate the extent of contamination in the lens.

be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water

TAL metals pH < 2 with NHO $_3$; CN $^-$ pH> 12 with NaOH.

2 months apart.

	Retionale
d (Continued)	
	·
b), 24(a), 24(c), And 24(d))	
ontamination. MW-55 is located in an iter Separator. As previously discussivell MW-56 and deep monitoring well will be analyzed to evaluate whether ind MW-58 are located adjacent to Dinstalled as part of a Phase II Site Chard d 23. Water level measurements will (32) will be drilled in the paved area contamination in AREE 17. AREE 17 intered during the PCB removal action. The suspected trend of the sand lend TP22) perpendicular to the suspected trend of the suspected trend trend trends	ell (MW-62) will be installed in downgradient locations from the suspected source areas to evaluate area where stressed vegetation has been observed in an area which receives surface water runoff ed, a sand lens, which is believed to trend northwest from the Oil/Water Separator was encountered MW-62 will be installed in a downgradient location to intercept the sand lens. Groundwater rupper and lower groundwater zones are contaminated from the migration of PCBs and TPH itch 22 to evaluate groundwater quality prior to potential discharge to Ditch 22. Existing monitoring tracterization, will be sampled for this RI to investigate groundwater quality downgradient of the be collected from all existing wells in this area to extend the data base for the hydrogeologic west of the oil/water separator to evaluate the extent of subsurface soil contamination in this area is also being sampled in the Phase II SSI. Soil borings will be drilled to evaluate the extent of the occidence of the oil/water separator to evaluate the extent of the excavated ditch where the sand lens was is toward the northwest toward monitoring wells MW-56 and MW-62. The trend and location will ted trend. Once the location has been confirmed, 2 additional soil borings (RISB4 and RISB5) will and evaluate the extent of contamination in the lens.

and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water samples will measured for

Medium Sampled ¹	Number of Samples	Sample IDs	Chemical Analyses ²	Physical Testing	
Groundwater	43	Existing wells: MW-33 and MW-34	TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PAHs, and TPH.	Temp, pH, redox, D.O., cond. salinity	Existing monitoring v
Groundwater	43	Existing wells: MW-37 and MW-38	TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PAHs, and TPH.	Temp, pH, redox, D.O., cond. salinity	Existing monitoring v
Groundwater	2 ³	Existing well; MW-35	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PAHs	NA	Existing monitoring v
Subsurface Soil	3	RISB13 (3 samples/boring)	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH.	1 sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	One soil boring will b

FINAL

¹Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs temperature, pH, redox, dissolved oxygen, conductivity, and salinity.

²Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with NaC

³Total number of samples includes two rounds of groundwater samples collected a minimum of 2 months apart.

Table 3-1 (Continued) WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

*	
Physical Testing	Rationale
·	AREE 8
Temp, pH, redox, D.O., cond. salinity	Existing monitoring wells MW-33 and MW-34 will be sampled during the RI to evaluate groundwater quality downgradient of AREE 8.
	AREE 12
Temp, pH, redox, D.O., cond. salinity	Existing monitoring wells MW-37 and MW-38 will be sampled during the RI to evaluate groundwater quality downgradient of AREE 12.
	AREE 14
NA 	Existing monitoring well MW-35 will be sampled to investigate groundwater quality downgradient of AREE 14.
	AREE 23A
1 sample/boring will be analyzed TOC, Atterberg imits, USCS, Grain size distribution, and percent noisture.	One soil boring will be installed at the prior location of an UST adjacent to Building 101. Drilling will proceed through the soil fill and the soil cutti of the prior excavation is reached. A split-spoon sample will be collected from the bottom of the boring.

vill be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface v

I; TAL metals pH < 2 with NHO $_3$; CN $^-$ pH> 12 with NaOH.

of 2 months apart.

rface Sampling Program
Rationale
'-34 will be sampled during the RI to evaluate groundwater quality downgradient of AREE 8.
38 will be sampled during the RI to evaluate groundwater quality downgradient of AREE 12.
npled to investigate groundwater quality downgradient of AREE 14.
r location of an UST adjacent to Building 101. Drilling will proceed through the soil fill and the soil cuttings will be monitored until the bottom spoon sample will be collected from the bottom of the boring.

'AHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution and surface water samples will measured for

Medium Sampled 1	Number of Samples	Sample ID	Chemical Analyses ²	Physical Testing	
Subsurface Soil	6	RISB4, PZ-5 (3 samples/boring)	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH.	1 sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	Two soil borings will be i groundwater elevation da soil borings and 7 feet be sample at the top of the t
Piezometers	1	PZ-5	NA	NA	
7					Facility- Wide Characteriz
Surface Soil	25	RISS26-RISS50	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PCTs (optional), PAHs.	NA	Twenty-five surface soil salaboratory will be instructed
					Site I
Subsurface Soil	8	PZ-3, 4, 6, 7, 8, 9, 10, 11	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics Samples collected from PZ-3 will also be analyzed for TPH.	sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	8 soll borings will be insta samples will be collected will be selected and sent to be selected based on obv plezometers to use for the
Piezometers	8	PZ-3, 4, 6, 7, 8, 9, 10, 11	·	NA	

FINAL

¹ Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCE

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with NHO₃; CN⁻ pH> 12 with Na

Table 3-1 (Continued) WRF RI/FS Groundwater, Surface And Subsurface Sampling Program

-ìs	Physical Testing	Rationale
		AREE 24 e, 1
	1 sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	Two soil borings will be installed downgradient from the USTs to examine subsurface soil conditions in this area (RISB4). One of these soil borings groundwater elevation data (PZ-5). Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is rea soil borings and 7 feet below the water table for well borings. 3 samples will be selected and sent to the laboratory as follows: one sample from the sample at the top of the water table; and one sample from each boring will be selected based on obvious soil staining or elevated PID reading.
		Facility- Wide Characterization Which Includes AREEs 25, 26, 27, and 35
	NA	Twenty-five surface soil samples will be collected from 0 to 6-inches bgs throughout these areas to identify potential sources of contamination. If Pollaboratory will be instructed to analyze for PCTS.
		Site Hydrogeologic Evaluation
	1 sample/boring will be analyzed TOC, Atterberg limits, USCS, Grain size distribution,and percent moisture.	8 soil borings will be installed to further characterize the soil at WRF. These borings will be converted to piezometers to develop the hydrogeologic samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be 7 feet below the water will be selected and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water be selected based on obvious soil staining or elevated PID reading. In addition, water level measurements will be collected from newly-installed an piezometers to use for the facility hydrogeologic model.
	NA	

nples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

with HCl; TAL metals pH < 2 with NHO3; CN PH > 12 with NaOH.

Continued)		
And Subsurface	Sampling	Program

Rationale

14 - 4

ungradient from the USTs to examine subsurface soil conditions in this area (RISB4). One of these soil borings will be completed as a piezometer for Split-spoon samples will be collected from 0-2 ft bgs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be the water table for table for well borings. 3 samples will be selected and sent to the laboratory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one and one sample from each boring will be selected based on obvious soil staining or elevated PID reading.

Includes AREEs 25, 26, 27, and 35

be collected from 0 to 6-inches bgs throughout these areas to identify potential sources of contamination. If PCBs are detected in a soil sample then the

gic Evaluation

er characterize the soil at WRF. These borings will be converted to piezometers to develop the hydrogeologic characteristics of the site. Split-spoon ogs, 5-7 ft bgs and every 5 ft thereafter until total depth is reached. Total depth will be 7 feet below the water table for piezometer borings. 3 samples atory as follows: one sample from the 0 to 2 ft below ground surface (bgs); one sample at the top of the water table; and one sample from each boring will regeologic model.

tals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

Medium Sampled ¹	Number of Samples	Sample ID	Chemical Analyses ²	Physical Testing	
				•	Bac
Surface Water	5	RIBKSW1 - RIBKSW5	TCL VOCs, SVOCs, pesticides/PCBs.	Temp, pH, redox, D.O., cond. salinity	
Sediment	5	RIBKSED1 - RIBKSED5	TAL inorganics, TPH, PCTs, PAHs.	All samples will be analyzed for TOC and Grain size distribution.	5 background surface water and
					Marum
Surface Water	8	RISW1, 2, 5, 6, 13, 19, 20, 21.	TCL VOCs, SVOCs,	Temp, pH, redox, D.O., cond. salinity	Ten surface water and ten sedimare 1, 2, 3, 4, 5, 6a, and 6b. Oti
Sediment	8	RISED1, 2, 5, 6, 13, 19, 20, 21.	pesticides/PCBs, TAL inorganics, TPH, PCTs	TOC & Grain size distribution	
	9 (1000000000000000000000000000000000000				
Medium Sampled	Number of Samples		Chemical Analyses	Physical Testing	
					Drainage Creek Between tl
Surface Water	3 7	RISW10, 11, 12	TCL VOCs, SVOCs, pesticides/PCBs,	Temp, pH, redox, D.O., cond. salinity	
Sediment	3	AISED,10, 11, 12	TAL inorganics, TPH, PCTs, PAHs.	All samples will be analyzed for TOC and Grain size distribution.	Three surface water and three se 3, 4, 5, and 6a.
					The
Surface Water	3	RISW7, 8, 9.	TCL VOCs, SVOCs,	Temp, pH, redox, D.O., cond. salinity	Three surface water and three se
Sediment	3	RISED7, 8, 9.	pesticides/PCBs, TAL inorganics, TPH, PCTs	TOC & Grain size distribution	

FINAL

¹ Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs,

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with HNO₃; CN⁻ pH> 12 with NaO

WRF RI/FS Sediment and Surface Water Sampling Program

Physical Testing	Rationale
3	Background
emp, pH, redox, D.O., cond. alinity	
Il samples will be analyzed or TOC and Grain size listribution.	5 background surface water and sediment samples will be collected from Raccoon Creek on Mason Neck National Wildlife Refuge.
	Marumaco Creek
emp, pH, redox, D.O., cond.	Ten surface water and ten sediment samples will be collected in Marumsco Creek to address the potential for contamination from WRF. The AREES are 1, 2, 3, 4, 5, 6a, and 6b. Other sites in the Marumsco Creek watershed include a pistol range and a sewage sludge injection field.
OC & Grain size distribution	
Physical Testing	Rationale
Physical Testing	Rationale Drainage Creek Between the Pond and Marumsco Creek
Physical Testing emp, pH, redox, D.O., cond. alinity	
emp, pH, redox, D.O., cond.	
emp, pH, redox, D.O., cond. alinity Il samples will be analyzed or TOC and Grain size	Drainage Creek Between the Pond and Marumsco Creek Three surface water and three sediment samples will be collected from the creek that drains the area below the pond and leads to Marumsco Creek
emp, pH, redox, D.O., cond. alinity Il samples will be analyzed or TOC and Grain size	Drainage Creek Between the Pond and Marumsco Creek Three surface water and three sediment samples will be collected from the creek that drains the area below the pond and leads to Marumsco Creel 3, 4, 5, and 6a.

samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

2 with HCl; TAL metals pH < 2 with HNO $_3$; CN $^-$ pH> 12 with NaOH.

Rationale	
ed from Raccoon Creek on Mason Neck Nat	tional Wildlife Refuge.
arumsco Creek to address the potential for atershed include a pistol range and a sewa	contamination from WRF. The AREES in the Marumsco Creek watershed
a pistor range and a sewa	age studge injection field.
Rationale	
Rationale	
	e pond and leads to Marumsco Creek. This creek runs between AREES 2,
om the creek that drains the area below the	

H. Sediment samples will also be tested for TOC and Grain size distribution.

Medium Sampled ¹	Number of Samples		Chemical Analyses ²	Physical Testing	
					Western V
Surface Water	17	RISW25 - RISW38, 40, 41, 42.	TCL VOCs, SVOCs, pesticides/PCBs,	Temp, pH, redox, D.O., cond. salinity	Three surface water and three sed
Sediment	17	RISED25 - RISED38, 40, 41, 42.	TAL inorganics, TPH, PCTs, PAHs.	All samples will be analyzed for TOC and Grain size distribution.	that drains the western portion of V
					Occoqu
Surface Water	8	RISW3, 14, 15, 16, 17, 18, 24, 39.	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PCTs, PAHs.	Temp, pH, redox, D.O., cond. salinity	Eight surface water and eight sed Bay locations from AREEs 1, 6B, a
Sediment	8	RISED3, 14, 15, 16, 17, 18, 24, 39.		All samples will be analyzed for TOC and Grain size distribution.	
					Southern Drai
Surface Water	3	RISW4, 22, 23.	TCL VOCs, SVOCs, pesticides/PCBs, TAL inorganics, TPH, PCTs, PAHs.	Temp, pH, redox, D.O., cond. salinity	Three surface water and sediment
Sediment	3	RISED4, 22, 23.		All samples will be analyzed for TOC and Grain size distribution.	Timee surface water and secument
					Northern W
Surface Water	3	RISW43, 44, 45	TCL VOCs, SVOCs,	Temp, pH, redox, D.O., cond. salinity	Three surface water and three sedi ditch itself and one sediment/surfac
Sediment	3	RISED43, 44, 45	pesticides/PCBs, TAL inorganics, TPH, PCTs	TOC & Grain size distribution	ditch.

FINAL

¹ Forty-five surface water and sediment samples will be collected site wide. These samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, T.

² Upon collection, groundwater samples shall be preserved as follows: VOCs pH < 2 with HCl; TAL metals pH < 2 with HNO₃; CN⁻ pH> 12 with NaOH.

WRF RI/FS Sediment and Surface Water Sampling Program

Retionale				
Western WRF Creek				
Three surface water and three sediment samples will be called to 1				
Three surface water and three sediment samples will be collected from the creek that runs through the western portion of WRF. This creek exithat drains the western portion of WRF. A field test facility and sewage sludge injection site are within the drainage of this creek.				
Occoquan Bay				
Eight surface water and eight sediment samples will be collected from Occoquan Bay. The proposed surface water and sediment samples are locations from AREEs 1, 6B, and 7.				
Southern Drainage Creeks				
Three surface water and sediment samples will be collected from the ditches which drain the southern portion of the facility east of AF				
Northern WRF Creek				
Three surface water and three sediment samples will be collected from the ditch that drains the northern portion of WRF. Two sediment/surface ditch itself and one sediment/surface water sample will be collected from Belmont Bay near the mouth of the creek. A field test area and an eth				
ditch. A field test area and an eth				

se samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, TAL metals, PCTs, PAHs and TPH. Sediment samples will also be tested for TOC and Grain size distribution.

< 2 with HCl; TAL metals pH < 2 with HNO $_3$; CN $^-$ pH> 12 with NaOH.

Rationale	
ne creek that runs through the western portion of WAF. This creek ludge injection site are within the drainage of this creek.	ek exists within an extensive wetland complex
scoquan Bay. The proposed surface water and sediment sample	e locations are upgradient and downgradient
nes which drain the southern portion of the facility east of AREE	1.
e ditch that drains the northern portion of WPE. Two codiments	
e ditch that drains the northern portion of WRF. Two sediment/s Belmont Bay near the mouth of the creek. A field test area and	unace water samples will be collected from the an ethylene glycol filled hose area drain to this

liment samples will also be tested for TOC and Grain size distribution.

REPLACE HASP SECTION 6, TABLE 6-2 WITH THE FOLLOWING

ACTION LEVELS

The following instrument-based action levels (consistent readings in the breathing zone for 1 minute) are to be used at all times:

ORGANIC VAPORS - PID or FID (FID Recommended)

Level D Background levels to 5 ppm above background

Level C 5 - 25 ppm above background unless Drager tubes identify Benzene

Level B >25 ppm above background levels

(Only the SSO has the authority to downgrade the level of protection).

OXYGEN METER*

Level D or C ≥19.5% and ≤23%

Level B <19.5% or >23.5%

*Oxygen content is determined first, and is the fundamental criteria for respiratory protection. Deficient or enriched oxygen content is not anticipated during this scope of work. For oxygen deficient atmospheres, Level B protection must include an escape SCBA as part of the respirator. Oxygen enriched atmospheres do not pose health hazards for short exposures, but do increase the likelihood and severity of fires and other oxidation reactions.

In addition to the PID/FID, a Drager pump and indicator tubes will also be used to identify known contaminants in the work area. For this scope of work, Benzene Drager tubes (Drager tube Benzene 2/a) will be used when the PID/FID Level C action level is exceeded.

Personal air sampling will be conducted for chemicals in accordance with the OSHA standards. Personal protective measures will be used during sampling periods to minimize exposure to workers. Sampling results will be made available to personnel and information will be used to determine whether the time weighted average values are being exceeded.

REPLACE SECTION 11, EXCEPT TABLE 11-1 WITH THE FOLLOWING

EMERGENCY ACTION PLAN/EMERGENCY RESPONSE PLAN

General

In order to reduce the impact of an accident related to environmental activities at the WRF, an Emergency Action Plan is necessary. This plan consists of an emergency response system designed to reduce the impact of an accident by rapid containment. The procedure will depend on the exact location of work. Accordingly, this Emergency Action Plan is designed to make optimum use of all available resources for speedy containment of the incident, so that the threat to people, the environment, and site property is minimized. The following sections provide a description of the responsibilities, emergency actions, contacts, and procedures necessary for an effective emergency response system.

Responsibilities

As a result of the potential hazards at the site, and conditions under which operations are conducted, the possibility of an emergency situation developing is real, although not likely. Should an emergency develop while environmental personnel are onsite, lines of authority have been established for supervising the situation. The Site Emergency Coordinator for this project are the SSOs.

The Emergency Coordinator shall implement the contingency plan whenever conditions at the site warrant such action. The coordinator will be responsible for assuring the evacuation, emergency treatment, emergency transport of site personnel as necessary, and notification of the appropriate emergency response units and management staff.

All project personnel will be instructed in the functions of the Emergency Response Plan. Because an incident can occur anywhere at any time, each individual may become the first observer of an incident and as such has definite responsibilities. These incidents include hazardous material spills, fires and explosions, personnel injuries, and transportation accidents. Any individual who discovers any of these situations becomes the first-responder. The Emergency Coordinator should be notified as soon as possible.

Emergency Procedures

In the event of a fire or explosion, or potential fire/explosion, immediately notify the local fire or emergency authority by radio or by phone at 911. Second, call the ARL emergency telephone number (301-394-1117) and report the incident and/or emergency.

FINAL

First Aid and Emergency Equipment

During onsite investigation activities at the WRF, a variety of first aid and emergency equipment will be maintained in the support zone. All environmental personnel will have access to this equipment in the event an injury or an exposure occurs. The various types of first aid equipment that will be available include:

- Fire Extinguisher
- First Aid Kit
- Instant Coldpacks
- Scissors
- Sterile Eye Wash
- Bloodborne Pathogen Kit

Personnel Injury

Emergency first aid will be applied onsite as deemed necessary, followed by decontamination and transport of the individual to the nearest medical facility, if needed. The SSO will supply medical information to the appropriate medical personnel. An ambulance/rescue squad shall be contacted for transport as necessary in an emergency.

General First Aid

Generic first aid procedures are included in this section. Typical responses may include:

Skin Contact: Use copious amounts of soap and water. Wash/rinse affected area thoroughly,

then provide appropriate medical attention. An eyewash system will be provided onsite at the support zone as appropriate. Eyes should be rinsed for 15 minutes

upon chemical contamination.

Inhalation: Move the victim to fresh air immediately. If necessary, restore breathing.

Decontaminate and transport to hospital if required.

Ingestion: Decontaminate and transport the victim to emergency medical facility immediately.

Fire/Explosion

In the event of fire or explosion, or potential fire/explosion, WRF security should be immediately notified either by radio or by phone at 911.

Spread of Contamination

In the event of the spread of contaminants beyond the work area, WRF security should be immediately notified.

Adverse Weather Conditions

In the event of adverse weather conditions, the SSO will assess if work can continue without

FINAL

sacrificing the health and safety of any field workers. Items to be considered prior to assessing if work should continue include:

- Potential for heat stress and heat-related injuries,
- Limited visibility,
- Potential for electrical storms,
- Potential for flash floods, and
- Potential for high winds resulting in contaminant transport.

ADD THE FOLLOWING TO HASP TABLE 11-1

Emergency Information

TABLE 11-2
WRF AND ICF KAISER EMERGENCY CONTACTS

NAME	mle	TELEPHONE
Jeff Waugh	USAEC Project Officer	(410) 671-1610
Patricia Thompson	ICF KE Project Manager	(410) 612-6371
Jack Choynowski	Health and Safety Officer	(410) 612-6370
Patricia Thompson	Field Team Leader	(410) 612-6371
William Houser	USAEC Industrial Hygiene	(410) 671-4811
Gerald Joy, CIH, CSP	ICF KE Director Industrial Hygiene	(412) 497-2056
Todd Waltemyer	WRF Facility Manager	(703) 490-2511
Robert Craig	ARL Environmental Officer	(301) 394-4511

An accident report form must be completed and submitted to the office health and safety officer.

REPLACE HASP APPENDIX A WITH THE FOLLOWING

INITIAL LEVEL OF PROTECTION

PCBs, the contaminant of primary concern, are semi-volatile, and in the concentrations identified in the Preliminary Site Investigation, and Phase I Site Supplemental Site Investigation, should not present a substantial inhalation hazard. Inhalation of PCBs bound to dust can contribute to overall dose, but maintenance of airborne dust levels below 2.5 mg/M³, and use of organic vapor/HEPA combination respirator cartridges will control this route of exposure.

PCBs can be absorbed through intact skin in amounts large enough to contribute to overall dose. This route of entry is not likely to be significant at this site, but localized skin irritation could occur in sensitive individuals from skin contact with contaminated soils. Direct skin contact with contaminated soils shall be avoided, and field team members shall field wash when leaving the contaminated zone, and whenever skin exposure occurs.

Materials brought onto the site may also present hazards, examples are preservative chemicals for water samples, bentonite and grout mixes, and fuels. These materials will be used in accordance with their MSDS information.

All site activities will be initiated in a modified Level D. The components of this modification are as follows:

Dry Operations (without exposure to potentially contaminated groundwater or other hazardous liquids)

Hardhat (within 25 feet, or length of longest drill stem component, from the rig) Safety glasses with side-shield Steel toe shoes (polymeric material or leather with disposable cover) Disposable permeable coverall (Kleenguard or equivalent)

Gloves (for protection against physical hazards)

Wet Operations (where exposure to potentially contaminated groundwater or other hazardous liquids could occur)

Hardhat (within 25 feet, or length of longest drill stem component, from the rig)

Safety glasses with side-shield with a faceshield, or goggles

Steel toe shoes (polymeric material or leather with disposable cover)

Disposable coated coverall (CPF II or equivalent; when sampling installed monitoring wells, a full length apron of PVC, CPF II or other liquid proof material can be used in lieu of coveralls)

Gloves (nitrile, neoprene, PVC, or latex)

Level C will consist of the above Level D equipment with the addition of an air purifying respirator with organic vapor/HEPA combination cartridges.

Level B will consist of the above Level D equipment with the addition of a pressure demand airline respirator, or pressure demand SCBA. An escape SCBA is required when using an airline respirator in oxygen deficient atmospheres.

Level A will not be used on this project.

FINAL

APPENDIX D, REPLACE ETC FORMS WITH ICF KAISER FORMS

ADD THE FOLLOWING AS APPENDIX I

APPENDIX I ICF KAISER PERSONNEL DOCUMENTATION OF TRAINING

CERTIFICATE OF COMPLETION

This is to certify that

JOHN P. CHOYNOWSKI

has successfully completed

HAZARDOUS MATERIALS SITE WORKER COURSE (40-HOUR)

4

January 11 - 15, 1993

(93-00

KUISES ENGINEERS TO BOUNTO-OTROS

2014 - 0010780778--15298190 - 01 HOH ERBENTONE RESTAN HOT - 10948-83:588 2551-97-

ICF KAISER ENGINEERS, INC.

This is to Certify That

Jack Choynowski

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Hay Webell

Date April 5,7,1995

This certifies that

Jack Chovnowski

Jack Chovnowski

has completed the requirements for

STANDARD FIRST AID
sponsored by

CENTRAL MARYLAND CHAPTER
I.C.F. Kaiser Engineers

This certifies that

Date completed 04/06/95

RESPIRATOR TRAINING COMPLETION FORM

OCOL USED:		ecify)
IT TEST PROTOCOL USED:	X Standard	Other (Specify

BUSINESS UNIT 1/547 ET TEST CONDUCTED BY: $\frac{La_R \mu_y}{La_R \mu_y} \frac{1}{1} \rho \Omega \rho \rho \omega_{\rm c}$

LOCATION MOOC DATE 3/3/85

NAME	NAME TACLE Chayaeuski (please print)	SCBA Model:	AIRLINE PRESSURE	PAPR Model:	AIR PURIFYING FULL FACE	AIR PURIFYING HALF MASK	OTHER
SIG.	Tack Chymoush.	Size: S M L	Size: S M L	Sizo: S M L	Size: S (M.A. Brand:	Size: S M L Brand:	·
* SS	053-44-1316		סופוס.	•			
÷	I understand why respiratory protection is needed and where and when it should be used.	·			3		
2.	I know how to use this respirator properly.		-				
6.	I know how to clean and inspect this respirator.						
4	I understand the limitations and restrictions of the respirators I will be using.				CO)		
ເດ່	I wore this respiratory equipment in normal air and checked the faceplece fit.						
	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.		•	٠		·	
7.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).			•	200		

CERTIFICATE OF COMPLETION

This is to certify that

MICHAEL ELIAS

has successfully completed

HAZARDOUS MATERIALS SITE WORKER COURSE (40-HOUR)

HAZMAT T.I.S.I.; COLUMBIA, MARYLAND

ENC Shew Manager, Training Service Department

October 14 - 18, 1991

CERTIFICATE OF COMPLETION

This is to certify that

MICHAEL C. ELIAS

has successfully completed

OSHA HAZ-MAT SITE WORKER (Annual Recertification)

HAZMAT T.I.S.I; COLUMBIA, MARYLAND

Chlef Operating Office

Chief Executive Officer

January 5, 1995 REF-9501A

January 18, 1995

[PII Redacted]

Ms. Samantha Brooks

Type of Exam: Annual Engineer/Field Personnel ICF VA01A Exam: 01/11/95.132155 Employee: Michael Elias -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None

CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials.

CLEARANCE FOR WORK WITH ASBESTOS - This individual has been examined in compliance with 29 CFR 1926.58. This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment from exposure to asbestos, tremolite, anthophylite, or actinolite.

USE OF RESPIRATORY EQUIPMENT - In compliance with 29 CFR 1910.134, medical clearance is issued for unrestricted use of respiratory protective equipment. This regulation stipulates:

Contact lenses shall not be worn when using respiratory. protective equipment.

Facial hair shall not be interposed between the face and the sealing surface of the respirator. EXPOSURE TO TEMPERATURE EXTREMES

- Exposures to temperature extremes are acceptable providing that reasonable precautions are taken.

PUBLIC LAW 100-690

Not a requirement of this examination.

DEPARTMENT OF TRANSPORTATION CERTIFICATION - Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

6.27 • 8 2 • 62 • Month Charge, 2021 • 361 (175, c); (1 • 6)

Elaspe F. Therianes, M. B Elayne F. Theriault, M.D.

Medical Director

October 11, 1994

PII Redacted

Ms. Samantha Brooks

Type of Exam: Annual Engineer/Field Personnel ICF VA01A
Exam: 09/29/94.119168 Employee: Marilyn Garcia -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None
 - CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS
- In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials.
- CLEARANCE FOR WORK WITH ASBESTOS

 This individual has been examined in compliance with 29 CFR 1926.58.

 This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment from exposure to asbestos, tremolite, anthophylite, or actinolite.

 USE OF RESPIRATORY EQUIPMENT

 In compliance with 29 CFR 1910.134, medical clearance is issued for
- In compliance with 29 CFR 1910.134, medical clearance is issued for unrestricted use of respiratory protective equipment. This regulation stipulates:
 - Contact lenses shall not be worn when using respiratory protective equipment.
 - » Facial hair shall not be interposed between the face and the sealing surface of the respirator.
- EXPOSURE TO TEMPERATURE EXTREMES
 Exposures to temperature extremes are acceptable providing that
- reasonable precautions are taken.
 PUBLIC LAW 100-690
- Not a requirement of this examination.

 DEPARTMENT OF TRANSPORTATION CERTIFICATION
- Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

Elage F. Therianti, M. S.

Elayne F. Theriault, M.D. Medical Director

LETTER OF SATISFACTORY COMPLETION

HAZMAT Training, Information and Services, Inc. (Hazmat TISI) hereby certifies that Marilyn Garcia satisfactorily completed a 40-hour course of instruction titled "The Hazardous Materials Site Worker" on October 8, 1993.

The course addressed the training needs of employees working hazardous material sites where there is significant threat of exposure to hazardous substances, health hazards, or safety hazards.

Hazmat TISI certifies that the course satisfies the initial off-site training requirements for employees specified by the Department of Labor, Occupational Safety and Health Administration, as found in 29 CFR 1910.120(e) Final Rule dated March 6, 1989.

Hazmat TISI provides this certificate based on this individual's demonstration of practical skills and the successful completion of a written examination.

Hazmat TISI recommends that this letter be made a part of the employee's personnel file.

The Department of Labor requires that this individual undergo annual refresher training and recertification.

Edward E. Hartin

Vice President of Operations .

Hazmat TISI

TRAINING & CONSULTATION IN HAZARDOUS MATERIALS CONTROL

9017 Red Branch Road ▲ Columbia Maryland 21045

Balt. 410-964-0940 A Wash. 301-621-5349

1-800-777-8474 A FAX 410-964-2331

ICF KAISER ENGINEERS, INC.

This is to Certify That

Marilyn Garcia

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Appl Maller

Date April 5,7,1995

RESPIRATOR TRAINING COMPLETION FORM

•		٠
IT, TEST PROTOCOL USED:	Standard Standard	Other (Specify)

BUSINESS UNIT 1/5 47	FIT TEST CONDUCTED BY: Larry The bear	nitial only the appropriate blocks
BUSINE	FIT TEST	Initial on

LOCATION MD06 DATE 3/3/95

NAME	(pleaso print)	SCBA Model:	AIRLINE PRESSURE	PAPR Model:	AIR PURIFYING FULL FACE	AIR PURIFYING HALF MASK	OTHER
SIG.	Marilya Spacera	Size: S M L	DEMAND Size: S M L Brand:	Size: S M L	Sizo: (ह्यूगल L. Brand:	Brand:	•
* SS	214-96-5930				-		
-	I understand why respiratory protection is needed and where and when it should be used.	·	·		Au		
25	I know how to use this respirator properly.				Alm		
က်	I know how to clean and inspect this respirator.				Mfr		
4	I understand the limitations and restrictions of the respirators I will be using.				the		
5.	I wore this respiratory equipment in normal air and checked the facepiece fit.	·			AUL		
6.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.			·	ALL		
7.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).			-	MA		

LETTER OF SATISFACTORY COMPLETION

HAZMAT Training, Information and Services, Inc. (Hazmat TISI) hereby certifies that Carol Henry satisfactorily completed a 40-hour course of instruction titled "The Hazardous Materials Site Worker" on September 17, 1993.

The course addressed the training needs of employees working hazardous material sites where there is significant threat of exposure to hazardous substances, health hazards, or safety hazards.

Hazmat TISI certifies that the course satisfies the initial off-site training requirements for employees specified by the Department of Labor, Occupational Safety and Health Administration, as found in 29 CFR 1910.120(e) Final Rule dated March 6, 1989.

Hazmat TISI provides this certificate based on this individual's demonstration of practical skills and the successful completion of a written examination.

Hazmat TISI recommends that this letter be made a part of the employee's personnel file.

The Department of Labor requires that this individual undergo annual refresher training and recertification.

Edward E. Hartin Vice President of Operations Hazmat TISI

TRAINING & CONSULTATION IN HAZARDOUS MATERIALS CONTROL

9017 Red Branch Road ▲ Columbia Maryland 21045

Balt. 410-964-0940 A Wash. 301-621-5349

1-800-777-8474 A FAX 410-964-2331

This is to Certify That

Carol Henry

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor May Cheker

Date April 5,7,1995

FIT TEST PROTOCOL USED:

Slandard

Other (Specify)

BUSINESS UNIT 11347 FIT TEST CONDUCTED BY: LOVICE Thabaau Initial only the appropriate blocks

LOCATION MDOLE
DATE 3/3/90

OTHER							
AIR PURIFYING HALF MASK Size: S M L Brand:.							
AIR PURIFYING FULL FACE Size: (§) M L Brand:	САН	CAH	CAH	САН	CAFI	CAH	CAH
PAPR Model: Size: S M L							
AIRLINE PRESSURE DEMAND Size: S M L Brand:						·	
SCBA Model: Size: S M L	·	·					
	I understand why respiratory protection is needed and where and where and when it should be used.	I know how to use this respirator properly.	I know how to clean and inspect this respirator.	I understand the limitations and restrictions of the respirators I will be using.	I wore this respiratory equipment in normal air and checked the faceplece fit.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).
II		2	3.	4.	r,	9	7.

h No. 11-001

September 12, 1994

[PII Redacted]

Mr. Richard Neubauer

Type of Exam: Annual Engineer/Field Personnel ICF VA01A Exam: 08/29/94.114832 Employee: Richard Neubauer -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None

- CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS
 In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials.

 CLEARANCE FOR WORK WITH ASBESTOS
- This individual has been examined in compliance with 29 CFR 1926.58.

 This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment
- from exposure to asbestos, tremolite, anthophylite, or actinolite.

 USE OF RESPIRATORY EQUIPMENT

 In compliance with 29 CFR 1910.134, medical clearance is issued for unrestricted use of respiratory protective equipment. This regulation stipulates:

Contact lenses shall not be worn when using respiratory

protective equipment.

- Facial hair shall not be interposed between the face and the sealing surface of the respirator.

 EXPOSURE TO TEMPERATURE EXTREMES
- Exposures to temperature extremes are acceptable providing that reasonable precautions are taken.

PUBLIC LAW 100-690 - Not a requirement of this examination.

DEPARTMENT OF TRANSPORTATION CERTIFICATION

Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

Elapse F. Theriands, M. S. Elayne F. Theriault, M.D. Medical Director

CERTIFICATE OF COMPLETION

This is to certify that

JOSEPH NEUBAUER

has successfully completed

HAZARDOUS MATERIALS SITE WORKER COURSE (40 HOURS)

HAZMAT T.I.S.I.; COLUMBIA, MARYLAND

Wanger, Training Service Department

November 11 - 15, 1991 C91-2748

This is to Certify That

Joe Neubauer

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Mond () Just

Date April 5,7,1995

IT TEST PROTOCOL USED:	X Standard	Other (Specify)

BUSINESS UNIT //547	FIT TEST CONDUCTED BY: LACA THERMAN	Initial only the appropriate blocks
---------------------	-------------------------------------	-------------------------------------

MD06	MHOZEHAIS
LOCATION	DATE 61

•	SCBA Model:	AIRLINE PRESSURE DEMAND	PAPR Model:	AIR PURIFYING FULL FACE SIzo: (\$) M L	AIR PURIFYING HALF MASK Size: S M L	OTHER
Vergerski anne	Size: S M L	Size: S M L Brand:	Size: S M L	Brand: MSA	Brand:,	
212 92 8983						
I understand why respiratory protection is needed and where and when it should be used.	•			ESN		
I know how to use this respirator properly.	٠			753		-
I know how to clean and inspect this respirator.				RJN		
I understand the limitations and restrictions of the respirators I will be using.				Jet J	·	
I wore this respiratory equipment in normal air and checked the facepiece fit.				23		
I wore this respiratory equipment in a test almosphere generated by smoke or other means.				Kza		
I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).			•	RJN		

MEDICAL CLEARANCE

[PII Redacted]

ATTN:	Ms.	Deborah	Romano	

April 24, 1995

RE:

Employee: Deborah Romano

Exam No: 143363 Exam Date: 04/19/95

Ms. Romano has completed a(n) Annual Engineer/Field Personnel Examination for ICF VA01A with the following results and clearances: $\frac{1}{2} \left(\frac{1}{2} \right)

YES	NO	
[X]	[]	To work with HAZARDOUS MATERIALS in accordance with 29 CFR 1910.120.
		To use RESPIRATORY PROTECTIVE EQUIPMENT in accordance with 29 CFR 1910.134.
[X]	[]	To work with ASBESTOS in accordance with 29 CFR 1926.1101.

Work-related limitations and additional recommendations:

NONE.

By separate letter, Ms. Romano has been informed of the medical findings of this examination and their specific health implications.

Elayne F. Theriault, M.D. Medical Director

This is to Certify That

Debbie Romano

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Mun (bol

Date April 5,7,1995

August 9, 1994

PII Redacted

Ms. Margaret Schweighauser

Type of Exam: Annual Engineer/Field Personnel ICF VA01A Exam: 07/26/94.109879 Employee: Margaret Schweighauser -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None
- CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS
- In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials.
- CLEARANCE FOR WORK WITH ASBESTOS - This individual has been examined in compliance with 29 CFR 1926.58. This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment from exposure to asbestos, tremolite, anthophylite, or actinolite.

 USE OF RESPIRATORY EQUIPMENT
- In compliance with 29 CFR 1910.134, medical clearance is issued for unrestricted use of respiratory protective equipment. This regulation stipulates:
 - Contact lenses shall not be worn when using respiratory protective equipment.
 - Facial hair shall not be interposed between the face and the sealing surface of the respirator.
 EXPOSURE TO TEMPERATURE EXTREMES

- Exposures to temperature extremes are acceptable providing that reasonable precautions are taken.
- PUBLIC LAW 100-690 Not a requirement of this examination.

DEPARTMENT OF TRANSPORTATION CERTIFICATION

Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

Elaype F. Theriands, M. S.

Elayne F. Theriault, M.D. Medical Director

FIT TEST PROTOCOL USED:	Standard Standard	Other (Snectiv)

BUSINESS UNIT 11547
FIT TEST CONDUCTED BY: Lary Thubsau.
Initial only the appropriate blocks

LOCATION MD06 DATE 03/03/95

NAME	NAME Deboxah Rowand (Ricaso print)	SCBA Model:	AIRLINE	PAPR Model:	AIR PURIFYING FULL FACE	AIR PURIFYING HALF MASK	отнеп
SIG.	Delmak Tomano	Size: S M L	DEMAND Size: S M L Brand:	Size: S M L	Brand:	Brand:	
# SS	133-62-7187						
-	I understand why respiratory protection is needed and where and when it should be used.	·			She		
2.	I know how to uso this respirator property.	·			×		
က်	I know how to clean and inspect this respirator.				JK.		
4	I understand the limitations and restrictions of the respirators I will be using.		-		DK		
ග්	I wore this respiratory equipment in normal air and checked the facepiece fit.	·			DR		
9	I wore this respiratory equipment in a test almosphere generated by smoke or other means.	•		·	DR.		
7.	I understand that a good gas-tight face seal cannot be achloved with obstruction such as facial hair or glasses (with fullface mask).			·	×		

ecology and environment, inc.

This certifies that

LARRY THEBEAN

has completed the

15-DAY HAZARDOUS WASTE SITE INVESTIGATION TRAINING COURSE

NATIONAL PROJECT MANAGEMENT OFFICE Presented by the

of the

FIELD INVESTIGATIONS OF UNCONTROLLED HAZARDOUS WASTE SITES PROJECT

र्टी Roger J. Gray पि National Project Manager

Robert J. King
Assistant National Project Manager
for Training and Safety

April 1982

35.5

This is to Certify That

Larry Thebeau

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Allwol . Lh

Date April 5,7,1995

TOCOL USED:	Ç	pecify)
FIT TEST PROTOCOL USED:	Standard	Other (Specify

BUSINESS UNIT //5 47
FIT TEST CONDUCTED BY: Kim Masson
Initial only the appropriate blocks

LOCATION 11006 DATE 3/3/97

NAME	(ploygo phini)	SCBA Model:	AIRLINE PRESSURE	PAPR Model:	AIR PURIFYING FULL FACE	AIR PURIFYING HALF MASK	отнеп
SIG.	Hay O. Chiken 418-82-5448	Size: S M L	DEMAND Size: S M L Brand:	Size: S M L	Size: 5 M L. Brand:	Brand:	
<u> </u>	I understand why respiratory protection is needed and where and when it should be used.	·			TW		
23	I know how to use this respirator properly.						
က်	I know how to clean and inspect this respirator.				M		
4	I understand the limitations and restrictions of the respirators I will be using.				M		
ri,	I wore this respiratory equipment in normal air and checked the faceplece fit.	-			Jal		1
6.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.				M		
7.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).		,	•	M		

MEDICAL CLEARANCE

	ATTN:	Mr. Mark Homas	March	14, 1995
PII Reda	acted			
-	RE:	Employee: Mark Thomas	Exam No: Exam Date:	138206 03/06/95
	Mr. Tho Examina	omas has completed a(n) Baseline Engineer/Field Person ation for ICF VAO1A with the following results and cle	nnel earances:	
	YES	NO		•
	[x]	[] To work with HAZARDOUS MATERIAL in accordance v	with 29 CFR	1910.120
	[X]	[] To use RESPIRATORY EQUIPMENT in accordance with	1 29 CFR 191	10.134.
	[X]	[] To work with ASBESTOS in accordance with 29 CFF	₹ 1926.58.	
	Work-re	elated limitations and additional recommendations:		
	NONE.			
	By sepa finding	arate letter, Mr. Thomas has been informed of the medi as of this examination and their specific health impli	cal cations.	
		re F. Acriault, Mo F. Theriault, M.D. Director		·

LETTER OF SATISFACTORY COMPLETION

HAZMAT Training, Information and Services, Inc. (Hazmat TISI) hereby certifies that Mark A. Thomas satisfactorily completed a 40-hour course of instruction titled "The Hazardous Materials Site Worker" on February 27 - March 3, 1995.

The course addressed the training needs of employees working hazardous material sites where there is significant threat of exposure to hazardous substances, health hazards, or safety hazards.

Hazmat TISI certifies that the course satisfies the initial off-site training requirements for employees specified by the Department of Labor, Occupational Safety and Health Administration, as found in 29 CFR 1910.120(e) Final Rule dated March 6, 1989.

Hazmat TISI provides this certificate based on this individual's demonstration of practical skills and the successful completion of a written examination.

Hazmat TISI recommends that this letter be made a part of the employee's personnel file.

The Department of Labor requires that this individual undergo annual refresher training and recertification.

Edmund M. Conaway

President

Hazmat TISI

JSED:	٠	
rest protocol used:	Standard	Other (Specify)

BUSINESS UNIT 11547
FIT TEST CONDUCTED BY: LATRY The beau Initial only the appropriate blocks

LOCATION MD 06
DATE 3 6/30/95

NAME	Mark A. Thomas (please print)	SCBA Model:	AIRLINE	PAPR Model:	AIR PURIFYING FULL FACE	AIR PURIFYING HALF MASK	OTHER
SIG.	Mark a. Thomas	Size: S M L	Size: S M L	Size: S M L	Brand:	Brand:	•
* SS	220-06-1379		Brand:	•	m34		
1.	I understand why respiratory protection is needed and where and when and when				T W		
2.	I know how to use this respirator properly.				MT		
3.	I know how to clean and inspect this respirator.				TW		
4.	I understand the limitations and restrictions of the respirators I will be using.				MT		
ທ່	I wore this respiratory equipment in normal air and checked the facepiece fit.				TW		
. 6.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.	•	•	•	1W	·	
7.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fulface mask).			•	Z -		

AMENDED CLEARANCE

ATTN: Ms. Patricia Thompson

March 23, 1995

[PII Redacted]

RE:

Emoloyee: Patricia .l Thompson

Exam No: 134520 Exam Date: 11/30/94

Ms. Thompson has completed the requirements of a baseline exam. Examination for ICF MD06 with the following results and clearances:

YES NO

To work with HAZARDOUS MATERIALS in accordance with 29 CFR 1910.120. [X]

To use RESPIRATORY PROTECTIVE EQUIPMENT in accordance with 29 CFR 1910.134.

To work with ASBESTOS in accordance with 29 CFR 1926.1101. [X]

Work-related limitations and additional recommendations:

- NOTE: Asbestos clearance is issued based on the B-READ performed on this individual's chest x-ray taken on 01/30/94.

- NOTE: The history portion of Orange Book 1 has been reviewed and filed with this individual's medical records.

Elayne F. Theriault, Mo-Elayne F. Theriault, M.D. Medical Director

Proudly Presents This

Certificate to

Patricia Jean Thompson

for completing the initial 40-hours training in Hazardous Waste Operations and Emergency Response at Oak Ridge, Tennessee on June 4 - 8, 1990 to satisfy OSHA rules, 29 CFR Part 1910.120

Certificate Number: 0690445 SSAN: 560-96-1418

Dr. James F. Betsehart, Director

Daniel J. Steller, Trainer

Waste Management Training Center Roane State Community College 728 Emory Valley Road Oak Ridge TN 37830 Phone 615-481-3493

This is to Certify That

TrishThompson

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor Allwill Like

Date April 5, 1, 1995

FIT TEST PROTOCOL USED:

Standard
Other (Specify)

BUSINESS UNIT 11547
FIT TEST CONDUCTED BY: Lag Thebeau

LOCATION MPOL DATE \$\frac{3}{3}\langle \langle \frac{3}{3}\langle \langle \frac{3}{3}\langle \langle \frac{3}{3}\langle \langle \frac{3}{3}\langle
IG OTHER		-					
AIR PURIFYING HALF MASK Size: S M L Brand:							·
AIR PURIFYING FULL FACE Size: (S)M L Brand: W 5.4	Æ	SOL.	LOL.		, wt	Ŧ	DOG
PAPR Model: Size: S M L							-
AIRLINE PRESSURE DEMAND Size: S M L Brand:						·	
SCBA Model: Size: S M L		·					
NAME Patricia I Therapore (please print) SIG. Proting Thompson	I understand why respiratory protection is needed and where and when and when it should be used.	I know how to use this respirator properly.	I know how to clean and inspect this respirator.	I understand the limitations and restrictions of the respirators I will be using.	I wore this respiratory equipment in normal air and checked the facepiece fit.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).
NAME SIG.	B	23	က်	4	r,	o,	7.

בייך No. היניקן-200

August 4, 1994

[PII Redacted]

Tammy Williams

Type of Exam: Annual Engineer/Field Personnel ICF VA01A Exam: 07/21/94.109880 Employee: Tammy Williams -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS

 In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials. CLEARANCE FOR WORK WITH ASBESTOS

- This individual has been examined in compliance with 29 CFR 1926.58.

This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment from exposure to asbestos, tremolite, anthophylite, or actinolite.

USE OF RESPIRATORY EQUIPMENT

- In compliance with 29 CFR 1910.134, medical clearance is issued for

unrestricted use of respiratory protective equipment. This regulation stipulates:

Contact lenses shall not be worn when using respiratory

protective equipment.

Facial hair shall not be interposed between the face and the sealing surface of the respirator.

EXPOSURE TO TEMPERATURE EXTREMES

- Exposures to temperature extremes are acceptable providing that reasonable precautions are taken. PUBLIC LAW 100-690

- Not a requirement of this examination. DEPARTMENT OF TRANSPORTATION CERTIFICATION

- Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

Theriault, M.S.

Elayne F. Theriault, M.D. Medical Director

CERTIFICATE OF COMPLETION

This is to certify that

TAMMY D. WILLIAMS

has successfully completed

HAZARDOUS MATERIALS SITE WORKER COURSE (40-HOUR)

HAZMAT T.I.S.I.; COLUMBIA, MARYLAND

Chief Operating Officer

AN DO

July 19 - 23, 1993 40S-9307B

This is to Certify That

Tammy Williams

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

Instructor May (boly

Date April 57, 1995

EUSINESS UNIT 1547
FIT TEST CONDUCTED BY: LACKY The Initial only the appropriate blocks

FIT TEST PROTOCOL USED:

Other (Specify)

Standard Standard

LOCATION MDOG DATE 3 MaC95

SCBA AIRLINE PAPR Model: PESSURE Model: DEMAND SIze: S M L Size: S M L Brand:								
Tammy Williams (please print)	17-44-5386	I understand why respiratory protection is needed and where and when it should be used.	I know how to use this respirator properly.	I know how to clean and Inspect this respirator.	I understand the limitations and restrictions of the respirators I will be using.	I wore this respiratory equipment in normal air and checked the faceplece fit.	I wore this respiratory equipment in a test atmosphere generated by smoke or other means.	I understand that a good gas-tight face seal cannot be achieved with obstruction such as facial hair or glasses (with fullface mask).

August 4, 1994

[PII Redacted]

Ms. Diane Harbertson

Type of Exam: Annual Engineer/Field Personnel ICF VACIA Exam: 07/20/94.108891 Employee: Diane Harbertson -

The individual identified above has completed a medical surveillance examination. Review of the data from this examination resulted in the following conclusions:

MEDICAL AND SAFETY RESTRICTIONS / RECOMMENDATIONS

- None
- CLEARANCE FOR WORK WITH HAZARDOUS MATERIALS - In compliance with 29 CFR 1910.120 (f), medical clearance is issued for individual to work with hazardous materials.
- CLEARANCE FOR WORK WITH ASBESTOS - This individual has been examined in compliance with 29 CFR 1926.58.
 This examination has not disclosed the presence of any medical condition that would constitute an increased risk of material health impairment from exposure to asbestos, tremolite, anthophylite, or actinolite.
 USE OF RESPIRATORY EQUIPMENT
- In compliance with 29 CFR 1910.134, medical clearance is issued for unrestricted use of respiratory protective equipment. This regulation stipulates:
 - Contact lenses shall not be worn when using respiratory protective equipment.
 - Facial hair shall not be interposed between the face and the sealing surface of the respirator.

 EXPOSURE TO TEMPERATURE EXTREMES
- Exposures to temperature extremes are acceptable providing that reasonable precautions are taken.
- PUBLIC LAW 100-690 - Not a requirement of this examination.
- DEPARTMENT OF TRANSPORTATION CERTIFICATION

- Not requested

The employee has been informed of the results of this medical examination and also advised of any specific health implications of employment to the extent required by existing law.

Elape F. Theriands, M. S.

Elayne F. Theriault, M.D. Medical Director

CERTIFICATE OF COMPLETION

This is to certify that

DIANE HARBERTSON

has successfully completed

HAZARDOUS MATERIALS SITE WORKER COURSE (40-HOUR)

HAZMAT T.I.S.I.; COLUMBIA, MARYLAND

EVA C Stens
Mannyer, Training Servin Bernard

June 29 - July 3, 1992 C92-1457

CERTIFICATE OF COMPLETION

This is to certify that

PATRICIA J. THOMPSON

has successfully completed

OSHA HAZ-MAT SITE WORKER (Annual Recertification)

HAZMAT T.I.S.I; COLUMBIA, MARYLAND

DA CA

Chief Executive Officer

June 5, 1995 REF-9506A

This is to Certify That

Diane Wisbeck

Has Completed 8 Hours of OSHA Hazardous Materials Site Worker Annual Recertification Training as Required under 29 CFR 1910.120

nstructor Albus Medical

Date April 5,7,1995

