

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Q&A

1. Match the Regular expression with regular grammar.

Regular Expression	Regular Grammar
0*(1(0+1))*	S->0S A \lambda
	A->1B
	B->0A 1A 0 1
0*(10)*1(0)*	S->0A
	A->10A0 B
	B->1
(0+10*10*)*	S->1A 0S λ
	A->1S 0A
(1+0)*10(1+0)*	S->0S 1A
	A->1A 0B
	Β->1Α 0Β λ
(0+1(01*0)*1)*	S->0S 1A λ
	A->1S 0B
	B->0A 1B

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013) **Department of Computer Science & Engineering**

Automata Formal Languages & Logic

2. Convert the automata to regular grammar.

Solution:

S-0A|1C

C->1S|0B

B->0C|1A

 $A \rightarrow 0S|1B|\lambda$

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

3. Convert the regular grammar to finite automata.

S->A|B

 $A \rightarrow 01A \mid \lambda$

 $B \rightarrow 10B \mid \lambda$

Solution:

NFA:

DFA:

