Intermediate Microeconomics

Examples: Substitution & Income Effects

Instructor: Xiaokuai Shao shaoxiaokuai@bfsu.edu.cn

Cobb-Douglas Utility

- Utility: $U = x^{1/2}y^{1/2}$
- Budget line: let $p_x=p_y=1$ and I=10, hence $p_xx+p_yy=I\Rightarrow x+y=10$
- Solving the utility-maximization problem

$$\max_{x,y} x^{1/2} y^{1/2}$$
s.t. $x + y \le 10$

The Lagrangian:

$$\mathcal{L} = x^{1/2}y^{1/2} + \lambda(10 - x - y)$$

$$\mathcal{L}'_x = (1/2)x^{-1/2}y^{1/2} - \lambda = 0$$

$$\mathcal{L}'_y = (1/2)x^{1/2}y^{-1/2} - \lambda = 0$$

$$\mathcal{L}'_\lambda = 10 - x - y = 0$$

• The Marshallian demand (solutions): $x^* = y^* = 5$, $V = \sqrt{x^*y^*} = 5$.

00000

- Consider an increase in p_x , from 1 to 2.
- The budget becomes 2x + y = 10
- Solving the utility-maximization problem

$$\max_{x,y} x^{1/2} y^{1/2}$$

$$s.t. 2x + y \le 10$$

• The solution (Mashallian demand after price change) is $x^* = 5/2, y^* = 5, V = \frac{5}{2}\sqrt{2} \approx 3.54$

Comparing the solutions before price change and after price change:

The horizontal distance of x between the two solutions is the **total effect** from a an increase of p_x on the consumption in x

- Now let's decompose total effect into substitution and income effects.
- According to Slutsky equation: total effect = substitution effect + income effect.
 - The substitution effect (of x) is the difference between the optimal x evaluated at the original p_x , and the optimal x after an increase in p_x , fixing the original utility level.

Perfect Complements

- The optimal x after an increase in p_x , is the Hicksian demand evaluated at the new price p_x and the original utility level.
- Solve the expenditure minimization problem (to obtain Hicksian demand h_x):

$$\min 2x + y$$

$$s.t. \ x^{1/2}y^{1/2} = 5$$

$$\Rightarrow h_x = \frac{5\sqrt{2}}{2} \approx 3.54, h_y = 5\sqrt{2}$$

Apply EMP evaluated at new price and old utility (hx,hy)=(3.54,7.07),u=5 6 (x*,y*)=(5,5) У $(x^*,y^*)=(2.5,5)$ V=5 2

- Total effect: $x^* \to x^*$
- Substitution effect: x* → h_x
- Income effect: $h_x \to x^*$

8

10

6

х

0

2

- Utility: U = ax + by, or $y = -\frac{a}{b}x + \frac{1}{b}u$
- Original budget line: $p_x x + p_y y = I$. Assume $\frac{p_x}{p_y} < \frac{a}{b}$.
- By comparing the relative slopes (the budget line is flatter; the indifference curve is steeper), the Mashallian demand is $y^* = 0 \Rightarrow x^* = \frac{I}{p_x}$. The indirect utility is $V = \frac{aI}{p_x}$

Perfect Substitutes: slight change in price

- Now consider a "slight" increase in p_x , from p_x to p_x'
- Assume that the price change is not large enough such that the relative size of slopes is unchanged: $\frac{p_x'}{p_y} < \frac{a}{b}$.
- The solution (Mashallian) after the price change is $y^{*'} = 0 \Rightarrow x^{*'} = \frac{I}{p_x'}, V' = \frac{aI}{p_x'}$

Find the substitution effect: by solving the expenditure minimization problem, evaluated at

Perfect Complements

- The original utility level $u = V = \frac{aI}{r_-}$
- New price p'_r
- Solve EMP (Hicksian):

$$\min_{x,y} p'_x x + p_y y$$

$$s.t. \ ax + by = u = V = \frac{aI}{p_x}$$

$$\Rightarrow h_x = \frac{u}{a} = \frac{I}{p_x}, h_y = 0$$

The solution is obtained by comparing the slopes of $\frac{a}{b}$ and $\frac{p'_x}{p_y}$

Apply EMP evaluated at new price and old utility

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x$, zero
- Income effect: $h_x \to x^*$, = total effect

Perfect Substitutes: drastic change in price

- Now, consider a "drastic" price increase in p_x , from p_x to p_x'' such that the relative size of slopes is changed: $\frac{p_x''}{p_y} > \frac{a}{b}$
- Comparing the slopes, we obtain the Mashallian demand evaluated at p''_x : $x^{*''}=0, y^{*''}=\frac{I}{p_y}, V''=\frac{bI}{p_y}$

 p_x'' , compute Hicksian demand evaluated at:

Perfect Complements

- Original utility $u = V = \frac{aI}{n}$
- New price p_x''
- Solve EMP (Hicksian):

Cobb-Douglas

- Minimize expenditure: $p''_x x + p_y y$
- Subjected to utility at $u = V = \frac{aI}{n_{\pi}}$: $ax + by = \frac{aI}{h} \Leftrightarrow y = -\frac{a}{h}x + \frac{aI}{h}$
- By comparing the slopes, the Hicksian demand is $h_x = 0, h_y = \frac{u}{h} = \frac{aI}{hn_y}$

Apply EMP evaluated at new price and old utility

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x$, = total effect
- Income effect: $h_x \to x^*$, zero

Perfect Complements

- Utility: $min\{ax, by\}$
- Budget: $p_x x + p_y y = I$.
- Solve the UMP problem by checking the relative positions of ax and by:
 - If you buy ax > by, the utility is by, where the money spent on ax by is unnecessary (shaded region).
 - If you buy ax < by, the utility is ax, where the money spent on by ax is unnecessary (shaded region).
 - You should buy ax = by.
- Plug ax = by into the budget line $p_x x + p_y y = I$, the Marshallian demand is

$$(x^*, y^*) = \left(\frac{bI}{bp_x + ap_y}, \frac{aI}{bp_x + ap_y}\right), V = \frac{abI}{bp_x + ap_y}.$$

- Note that the shaded region denote for $ax > by^*$ and $ax^* < by$.
- Now consider an increase in p_x , from p_x to p'_x .
- Combing ax = by and $p'_x x + p_y y = I$, the new Marshallian demand is $(x^{*'}, y^{*'}) = \left(\frac{bI}{bp' + ap_x}, \frac{aI}{bp' + ap_x}\right)$

- To decompose the effect due to a change in p_x into substitution and income effects, we need to solve the Hicksian demand (EMP problem) evaluated at
 - The original utility level u = V
 - New price level p'_x
- The expenditure minimization problem is

$$\min_{x,y} p'_x x + p_y y$$

$$s.t. \min\{ax, by\} = u = V = \frac{abI}{bp_x + ap_y}$$

- ax=u and by=u imply $h_x=\frac{u}{a}=\frac{bI}{bp_x+ap_y}=x^*$ and $h_y=y^*$, and the minimized expenditure is $p_x'h_x+p_yh_y$.
- That is, we plot the budget line $p'_x x + p_y y = p'_x h_x + p_y h_y$ through the original indifference curve (here, is a point at (x^*, y^*)).

Perfect Complements

0000

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x$, zero
- Income effect: $h_x \to x^* = \text{total effect}$

х

- Utility: U = u(x) + y
- The initial price is p_x and p_y
- UMP is solved by:

$$\max_{x,y} u(x) + y$$
s.t. $p_x x + p_y y = I$

- If we apply Lagrangian and solve the first-order condition and find $y^* < 0$, then the solution is not interior.
- Corner solution is obtained by plugging y=0 into the budget line: $x^* = \frac{I}{n}, y^* = 0.$

Quasi-linear: from corner to corner

- The corner solutions will exist as long as $MRS > rac{p_x}{p_y}$
- Now consider a slight increase in p_x , from p_x to p_x' .
- The term "slight" means the p_x' is not so high that $MRS > \frac{p_x'}{p_y}$ and you still spend all your money on x.
- At p_x' , we still get corner solutions: $(x^{*'},y^{*'})=\left(\frac{I}{p_x'}\right),V'$

- To obtain substitution effect, solve the EMP (Hicksian) evaluated at
 - Original utility level $V = u(x^*) + y^* = u\left(\frac{I}{n_n}\right)$
 - New price level p'_x
- EMP:

$$\min_{x,y} p_x' x + p_y y$$

$$s.t. \ u(x) + y = V = u\left(\frac{I}{p_x}\right)$$

Plug y = V - u(x) into the objective, the first-order condition

$$u'(h_x) = \frac{p_x'}{p_y}$$

We can verify that $h_x < x^*$ and $h_y > 0$ (interior solution, why?).

Total effect = substitution effect + income effect

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x$
- Income effect: $h_x \to x^*$

Next, consider a further increase in p_x to p_x'' such that interior solution emerges (i.e., a positive amount of y will be purchased evaluated at the first-order condition).

At p_x'' , solve the UMP:

Cobb-Douglas

$$\max_{x,y} u(x) + y$$
s.t. $p_x'' x + p_y y = I$

The interior solution is

The interior solution is
$$u'(x^{*''}) = \frac{p_x''}{p_y}$$
 and $(x^{*''}, y^{*''}) > (0, 0)$

- To see the substitution & income effects, we should solve the Hicksian demand evaluated at the
 - Original utility level: $V = u\left(\frac{I}{p_x}\right)$
 - New price level: p_x"

Solve the EMP (Hicksian)

$$\min_{x,y} p_x'' x + p_y y$$
s.t. $u(x) + y = V$

The Hicksian demand is $u'(h_x) = \frac{p_x''}{p_{xy}}$ and $(h_x, h_y) > (0, 0)$.

Therefore, $x^{*''} = h_x$, i.e., no income effect.

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x = \text{total effect}$
- Income effect: $h_x \to x^*$, zero

Quasi-linear: price change (from interior to interior)

- Original utility: U = u(x) + y.
- Original budget line: $p_x x + p_y y = I$.
- Assume that evaluated at the initial price p_x , the interior solution is valid $(MRS = \frac{p_x}{p_y})$, and is equal to:

$$u'(x^*) = \frac{p_x}{p_y}$$

- Consider p_x increases from p_x to p_x'
- Evaluated at the new price level p'_x , we still have interior solutions

$$u'(x^{*\prime}) = \frac{p_x'}{p_y}$$

Before: p_x ; After: p'_x

- To measure the income & substitution effect, solve the Hicksian demand evaluated at:
 - ullet Original utility: V
 - New price: p'_x
- The Lagrangian of EMP:

$$\min_{x,y} p'_x x + p_y y$$
s.t. $u(x) + y = V$

The interior solution is $u'(h_x) = \frac{p_x'}{p_y} = u'(x^{*'}) \Rightarrow h_x = x^{*'}$

Total effect = substitution effect + income effect

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x = \text{total effect}$
- Income effect: $h_x \to x^*$, zero

Quasi-linear: income change (from corner to corner)

- For quasi-linear utilities, another interesting issue is to consider the effect
 of income I on the optimal choice of x*.
- Still, let's begin with the corner solution, i.e., the parametric values satisfy $MRS>\frac{p_x}{p_y}$.
- The original solution is: $(x^*, y^*) = \left(\frac{I}{p_x}, 0\right)$
- Now consider I decreases to I', then you should confirm that we still cannot apply the interior solution. (why?)
- The corner solution after change is $(x^*, y^*) = \left(\frac{I'}{p_x}, 0\right)$

Quasi-linear: income change (from interior to interior)

- Now let's check the income effects within interior solutions.
- Assume initially, $MRS = \frac{p_x}{p_y}$.
- Solve the UMP:

$$\max_{x,y} u(x) + y$$

$$s.t. \ p_x x + p_y y = I$$

The solution is $u'(x^*) = \frac{p_x}{p_y}$

UMP:

Cobb-Douglas

$$u'(x^{*'}) = \frac{p_x}{p_y}, \ u'(x^{*''}) = \frac{p_x}{p_y}$$

Perfect Complements

- The optimal x is orthogonal to income: $x^* = x^{*'} = x^{*''}$
- From the budget line, $y = -\frac{p_x}{p_u}x + \frac{I}{p_u}$ is decreasing in I:

$$y^* = -\frac{p_x}{p_y}x^* + \frac{I}{p_y}$$

•
$$y^{*'} = -\frac{p_x}{p_y} x^{*'} + \frac{I'}{p_y}$$

• $y^{*''} = -\frac{p_x}{p_y} x^{*''} + \frac{I''}{p_y}$

•
$$y^{*''} = -\frac{p_x}{p_y} x^{*''} + \frac{I''}{p_y}$$

Because $x^* = x^{*'} = x^{*''}$ and I > I' > I'', hence $y^* > y^{*'} > y^{*''}$

