(Munkres §54) wrap-up of:

<u>Thm</u> let $p : E \rightarrow X$ be a covering, e in E

- 1) for any path $\gamma: [0, 1] \to X$ s.t. $p(e) = \gamma(0)$, a <u>unique</u> $\Gamma: [0, 1] \to E$ s.t. $\Gamma(0) = e$ and $\gamma = p \circ \Gamma$, which we call the lift of γ to E
- 2) for any homotopy $h : [0, 1]^2 \rightarrow X$ s.t. p(e) = h(0, 0),a <u>unique</u> homotopy $H : [0, 1]^2 \rightarrow E$ s.t. H(0, 0) = e and $h = p \circ H$

3) in 2), if h is a path homotopy, then so is H

last time, proved 1) via [what lemma?] the Lebesgue number lemma

Pf of 2) as last time: pick an open cover $\{U_{\alpha}\}_{\alpha}$ s.t. each U_{α} is evenly covered by p

by double application of Lebesgue, can find

$$0 = s_0$$
 < s_1 < ... < $s_n = 1$
 $0 = t_0$ < t_1 < ... < $t_m = 1$

s.t. h : $[0, 1]^2 \rightarrow X$ maps each rectangle $[s_i, s_{i+1}] \times [t_j, t_{j+1}]$ into a single U_α at a time

again, build $H : [0, 1]^2 \rightarrow E$ inductively: set H(0, 0) = eorder the rectangles lexicographically for a given (i, j), let $R_{i, j} = [s_i, s_{i+1}] \times [t_j, t_{j+1}]$ let $A_{i, j}$ be the union of $[0, 1] \times \{0\}$, $\{0\} \times [0, 1]$, all rectangles prior to R

note that $A_{i, j}$ cap $R_{i, j}$ is a subset of $\partial A_{i, j}$ want to extend $H|_{A_{i, j}}$ to $H|_{A_{i, j}}$ cup $R_{i, j}$

similarly to last time:

h maps $R_{i, j}$ into a single U_{α} , U_{α} is evenly covered by p

the key difference from last time: we seek a lift of $h|_{R_{i,j}}$ that extends the subspace $H(A_{i,j} \text{ cap } R_{i,j})$ of $p^{-1}(U_{\alpha})$ not just a single point $\Gamma(s_{i})$ in $p^{-1}(U_{\alpha})$

[what saves us?]

$$\begin{split} H(A_{i,\,j}\;cap\;R_{i,\,j})\;is\;connected\\ so\;inside\;p^{\text{--}1}(U_\alpha),\;it\;must\;be\;contained\;in\\ a\;single\;homeomorphic\;copy\;of\;U_\alpha \end{split}$$

now the rest of the proof is analogous to the proof of 1) \Box

Pf of 3) suppose h is a path homotopy between two paths from x to y in X

then H(1, t) in p⁻¹(y) for all t in [0, 1] but p⁻¹(y) is discrete, since p is a covering so H(1, t) is constant for all t so H is a path homotopy in E

Cor if
$$\gamma_0 \sim_{path} \gamma_1$$
 in X and e in E s.t. $p(e) = \gamma_0(0) = \gamma_1(0)$,

then γ_0 , γ_1 have unique lifts Γ_0 , Γ_1 in E starting at e and $\Gamma_0 \sim_{path} \Gamma_1$

Applications

Cor 1 if
$$p : E \to X$$
 is a covering and $p(e) = x$,
then $p_* : \pi_1(E, e) \to \pi_1(X, x)$ is injective

Pf let
$$\Gamma_0$$
, Γ_1 be loops in E based at e s.t. $p_*([\Gamma_0]) = p_*([\Gamma_1])$

by construction,
$$p_*(\Gamma_i) = [p \circ \Gamma_i]$$

and Γ_0 , Γ_1 are lifts of $p \circ \Gamma_0$, $p \circ \Gamma_1$
so $[\Gamma_0] = [\Gamma_1]$

Ex recall that for any integer
$$n > 0$$

there is an n-fold covering $p_n : S^1 \to S^1$

under $\pi_1(S^1) = Z$, we have $im(p_{n,*}) = nZ$ [draw]

each [γ] in $\pi_1(X, x)$ defines a permutation of $p^{-1}(x)$ as follows:

each e in $p^{-1}(x)$ is the <u>start</u> of a unique lift of γ the permutation sends $e \mapsto e \cdot [\gamma]$, where $e \cdot [\gamma]$ is the <u>end</u> of that lift [draw solenoid]

Cor 2 (Lifting Correspondence) given e in $p^{-1}(x)$:

a) $e \cdot [\gamma] = e$ if and only if $[\gamma]$ in $p_*(\pi_1(E, e))$ thus, an injective map

$$\phi_e : p_*(\pi_1(E, e)) \setminus \pi_1(X, x) \to p^{-1}(x)$$

defined by $\phi_e(p_*(\pi_1(E, e)) * [\gamma]) = e \cdot [\gamma]$

- b) if E is path-connected, then ϕ_{e} is bijective
- c) if E is path-connected and simply-connected, then ϕ_e is a bijection $\pi_1(X, x) \to p^{-1}(x)$

Pf of a) $[\gamma] = p_*([\Gamma])$ for some $[\Gamma]$ in $\pi_1(E, e)$) iff the lift of γ to e is a loop (namely, Γ) iff $e \cdot [\gamma] = e$

Pf of b) for any e' in p⁻¹(x), we can pick a path Γ from e to e' in E let $\gamma = p \circ \Gamma$ then Γ is the lift of γ to e, so e · [γ] = e'

Pf of c) immediate from b)

Ex recall that $RP^2 = S^2/\sim$ where \sim is antipodal identification

 S^2 is simply-conn & $S^2\to RP^2$ is a 2-fold covering so $|\pi_1(RP^2)|=2$ so new proof that $\pi_1(RP^2)=Z/2Z$

Df a pointed covering is a pair (p, e) s.t.p : E → X is a path-conn. coveringe in E

if (p: E → X, e) and (p': E' → X, e') are
 pointed coverings of the same X,
then a pointed equivalence from p to p' is
 a homeo f: (E, e) → (E', e') s.t. p = p' ∘ f

for such f, we write (E, e) ~ (E', e') we also see that f* is an isomorphism $\pi_1(E, e) \to \pi_1(E', e')$ thus $p*(\pi_1(E, e)) = p'*(f*(\pi_1(E, e))) = p'*(E', e')$ [we've proven well-def'ness, but not bijectivity, in:]

Cor 3 (Galois Correspondence)

if X is conn. & <u>locally simply-conn.</u>, then the map $(p : E \rightarrow X, e) \mapsto p_*(\pi_1(E, e))$ is

a bijection {pointed coverings of X}/ \sim \rightarrow {subgroups of $\pi_1(X, x)$ }

Rem if E = E' but e \neq e', then (E, e), (E', e') might not be equivalent

$\underline{\text{Ex}}$ coverings of the figure-eight and corresponding subgroups of its π_1 :

(1) $a \xrightarrow{b} a$ $\langle a, b^2, bab^{-1} \rangle$	(2) $b \qquad \langle a^2, b^2, ab \rangle$
(3) $a \qquad b \qquad a \qquad b$ $\langle a^2, b^2, aba^{-1}, bab^{-1} \rangle$	(4) b a b a b b a b b a b a b a b a a b a a a b a a a b a a a a b a
(5) a $a \qquad \langle a^3, b^3, ab^{-1}, b^{-1}a \rangle$	(6) a b b a $\langle a^3, b^3, ab, ba \rangle$
(7) a b b a $(a^4, b^4, ab, ba, a^2b^2)$	(8) $ \begin{array}{cccc} a & b \\ b & a \\ b & a \end{array} $ $ \langle a^2, b^2, (ab)^2, (ba)^2, ab^2a \rangle $