ABES

ABES Engineering College, Ghaziabad

Department of Applied Sciences & Humanities

Session: 2023-24 Semester: II Section: All

Code: BAS 203 Course Name: Engineering Mathematics II

Assignment 5

Date of Assignment:

Date of submission:

S.N o.	KL, CO		Question	Mark s
1	K ₃ ,CO5	1.3.1,2.1.3 2.4.4,4.3.4	Integrate $f(z) = Re(z)$ from $z = 0$ to $z = 1 + 2i$. Along the real axis from $z = 0$ to $z = 1$ and then along a line parallel to imaginary axis from $z = 1$ to $z = 1 + 2i$.	5
2/	$V_{\alpha}CO5$	2.1.3,2.4.1 2.4.4,4.3.4	at $1\pm i$, $-1\pm i$.	5
3/	K ₃ ,CO5	1.3.1,2.1.3 2.4.1,5.2.2	Evaluate. (1) $\psi = \frac{1}{12} dz$, where c is the chelet $z_1 = \frac{1}{2}$,	5
4	′K3,CO5	4.3.4, 2.4.1	Evaluate following by Cauchy's Integral Formula: $\oint_c \frac{4-3z}{z(z-1)(z-2)} dz$, where c is the circle $ z = \frac{3}{2}.6$. $\oint_c \frac{z^2+1}{z^2+1} dz$, where c is the circle $ z-1 = 1$.	5
5	K ₃ ,CO5	1.3.1,2.1.3 2.4.1,2.4.4	Expand $\frac{1}{(z+1)(z+2)}$ in the regions. (i) $ z < 1$, (ii) $1 < z < 3$,	5
6	K ₃ ,CO5	1.3.1,2.1.3 2.4.1,4.3.4	Expand $f(z) = \frac{1}{2}$ in Laurent series valid for the regions:	5
A	K ₃ ,CO5	4.3.3 4.3.4	Find the residue of $f(z) = \frac{z^2}{z^2 + 3z + 2}$ at the pole -1	5
_8/	K ₃ ,CO5	4.3.4	Evaluate the integral $\oint_c \frac{24z-7}{(z-1)^2(2z+3)} dz$, using Cauchy's residue theorem where c is the circle of radius 2 with Centre at origin.	5
9	K ₃ ,CO5	1.2.1,1.3.1 2.4.1	Evaluate the integrals using Cauchy's residue theorem $\oint_c \frac{z^2+4}{z(z^2+2z+2)} dz, \text{ where c is the circle } z+1+i = 1.$	5
10	K ₃ ,CO5	2.4.1,4.3.4	Evaluate the following integral using contour integration: $\int_0^{\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$	5

Answers

1.
$$\frac{1}{2} + 2i$$
.

2. 0

3. (i) 0

(ii) 0

4. $2\pi i$

5. (i)
$$f(z) = \frac{1}{2} \left[\sum_{0}^{\infty} (-1)^{n} z^{n} - \frac{1}{3} \sum_{0}^{\infty} (-1)^{n} \left(\frac{z}{3} \right)^{n} \right]$$

(iii)
$$f(z) = \frac{1}{2} \left[\frac{1}{z} \sum_{0}^{\infty} (-1)^{n} \left(\frac{1}{z} \right)^{n} - \frac{1}{z} \sum_{0}^{\infty} (-1)^{n} \left(\frac{3}{z} \right)^{n} \right]$$
 (iv) $f(z) = \frac{1}{2(z+1)} \left[\sum_{0}^{\infty} (-1)^{n} \left(\frac{z+1}{z} \right)^{n} \right]$
6. (i) $f(z) = \frac{2}{z} + \frac{1}{3} \sum_{0}^{\infty} (-1)^{n} \left(\frac{z}{3} \right)^{n} - \frac{4}{3} \sum_{0}^{\infty} \left(\frac{z}{3} \right)^{n}$ (ii) $f(z) = \frac{2}{z} + \frac{1}{z} \sum_{0}^{\infty} (-1)^{n} \left(\frac{3}{z} \right)^{n} + \frac{4}{z} \sum_{0}^{\infty} \left(\frac{3}{z} \right)^{n}$

7. 1

8. 0

9. $\pi(3-i)$,

10. $\frac{\pi}{12}$.

6. (i)
$$f(z) = \frac{2}{z} + \frac{1}{3} \sum_{0}^{\infty} (-1)^{n} \left(\frac{z}{3}\right)^{n} - \frac{4}{3} \sum_{0}^{\infty} \left(\frac{z}{3}\right)^{n}$$

5. (i)
$$f(z) = \frac{1}{2} \left[\sum_{0}^{\infty} (-1)^{n} z^{n} - \frac{1}{3} \sum_{0}^{\infty} (-1)^{n} \left(\frac{z}{3} \right)^{n} \right]$$
 (ii) $f(z) = \frac{1}{2} \left[\frac{1}{z} \sum_{0}^{\infty} (-1)^{n} \left(\frac{1}{z} \right)^{n} - \frac{1}{3} \sum_{0}^{\infty} (-1)^{n} \left(\frac{z}{3} \right)^{n} \right]$

(iv)
$$f(z) = \frac{1}{2(z+1)} \left[\sum_{0}^{\infty} (-1)^n \left(\frac{z+1}{2} \right)^n \right]$$

(ii)
$$f(z) = \frac{2}{z} + \frac{1}{z} \sum_{0}^{\infty} (-1)^{n} \left(\frac{3}{z}\right)^{n} + \frac{4}{z} \sum_{0}^{\infty} \left(\frac{3}{z}\right)^{n}$$

3. 0 9.
$$\pi(3)$$

10.
$$\frac{\pi}{12}$$