5. Linear Regression with Deterministic Design Linear Regression with Deterministic Design

So I know that y has this form under this assumption.

So I certainly know what the distribution of this guy

is, because it's just taking a Gaussian and hitting it with a matrix.

And we know this, right?

We know that if I take an n mu capital sigma

and I hit it with a matrix a, get an n a times mu and a sigma

a transpose for the covariance matrix.

Fnd of transcript Skin to the start

Video

<u>Download video file</u>

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Deterministic Design

1/1 point (graded)

In the setting of **deterministic design** for linear regression, we assume that the design matrix \mathbb{X} is deterministic instead of random. The **model** still prescribes $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)$ is a random vector that represents noise. Take note that the only random object on the right hand side is $\boldsymbol{\varepsilon}$, and that Y is **still random**.

For the rest of this section, we will always assume $\left(\mathbb{X}^T\mathbb{X}\right)^{-1}$ exists; i.e. $\operatorname{\mathbf{rank}}\left(\mathbb{X}\right)=p$.

Recall that the Least-Squares Estimator $\hat{m{eta}}$ has the formula

$$\hat{\boldsymbol{\beta}} = \left(\mathbb{X}^T \mathbb{X}\right)^{-1} \mathbb{X}^T \mathbf{Y}.$$

If we assume that the vector ϵ is a random variable with mean $\mathbb{E}\left[\epsilon\right]=0$, then in the deterministic design setting: "The LSE $\hat{\boldsymbol{\beta}}$ is a random variable, with mean..." (choose all that apply)

0

$$^{\bullet} \ \left(\mathbb{X}^{T}\mathbb{X}\right)^{-1}\mathbb{X}^{T}\mathbb{E}\left[\mathbf{Y}\right] \checkmark$$

$$\square \mathbb{X}^T \mathbb{X} \beta$$

₩ β ∀	
□ €	
✓	
olution:	
$ullet$ The model is $\mathbf{Y}=\mathbb{X}eta+arepsilon$, an	nd $arepsilon$ is a random variable. So ${f Y}$ should in fact be considered as a random variable.
$ullet$ Using the formula for $oldsymbol{\hat{eta}}$ and a	pplying linearity of expectation, we obtain:
	$\mathbb{E}\left[\hat{oldsymbol{eta}} ight] \ = \mathbb{E}\left[\left(\mathbb{X}^T\mathbb{X} ight)^{-1}\mathbb{X}^T\mathbf{Y} ight]$
	$= \mathbb{E}\left[\left(\mathbb{X}^T\mathbb{X}\right)^{-1}\mathbb{X}^T\mathbb{X}\beta + \left(\mathbb{X}^T\mathbb{X}\right)^{-1}\mathbb{X}^T\epsilon\right]$
	$egin{aligned} &=eta + \left(\mathbb{X}^T \mathbb{X} ight)^{-1} \mathbb{X}^T \mathbb{E}\left[arepsilon ight] \ &=eta \end{aligned}$
Submit You have used 2 of 2	attempts
Answers are displayed withi	n the problem
Uniform Noise 3/3 points (graded) Assume that $m{n}=m{p}$, so that the no Squares Estimator $\hat{m{eta}}$ has the form	umber of samples matches the number of covariates, and that $\mathbb X$ has rank $m n$. Recall that the Least- nula
	$\hat{oldsymbol{eta}} = \left(\mathbb{X}^T\mathbb{X} ight)^{-1}\mathbb{X}^T\mathbf{Y}.$
f we assume that the vector $oldsymbol{arepsilon}=$	$(\epsilon_1,\ldots,\epsilon_n)$ is uniformly distributed in the n -dimensional box $[-1,+1]^n$, then:
The model is homoscedastic ; i.e	$arepsilon_1,\ldots,arepsilon_n$ are i.i.d."
● True	
False	
"In the deterministic design sett	ting, ${f Y}$ is also deterministic."
O True	
● False ✔	
"In the deterministic design set	ting, the LSE $\hat{m{eta}}$ is a uniformly distributed random variable."
● True	
False	
distribution of $b=\lambda a$ is uniform	in the 1 -dimensional case, consider $a\sim \mathrm{Uniform}([0,1])$ and let $\lambda>0$. Intuitively enough, the over the interval $[0,\lambda]$. More generally, if a is uniformly distributed over a rectangular region trix of full rank, then b is uniformly distributed over the region $M\left(R\right)\subset\mathbb{R}^n$, the image of R under

Solution:

- "The model is homoscedastic; i.e. $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d." is true. The uniform distribution over $[-1, +1]^n$ is the product distribution of n uniform distributions over [-1, +1]. Therefore, each component is i.i.d.
- "In the deterministic design setting, \mathbf{Y} is also deterministic" is false. The model is $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, so \mathbf{Y} is a random variable that is a translation of $\boldsymbol{\varepsilon}$ by $\mathbb{X}\boldsymbol{\beta}$.
- "In the deterministic design setting, the LSE \hat{eta} is a uniformly distributed random variable" is true. Note that

$$(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbf{Y} = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{X}\beta + (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\epsilon) = \beta + (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\epsilon$$
把译差从n维变换成内线

The random variable $(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\epsilon$ is uniformly distributed over the region $(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\left([-1,+1]^n\right)$. Uniformity is preserved under translation by β , as well.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 5. Linear Regression with Deterministic Design

© All Rights Reserved