Optimisation

Cours		2
1	Optii	misation: étude au premier ordre
	1.1	Extremums d'une fonction numérique
	1.2	Condition nécessaire du premier ordre
	1.3	Optimisation sous contrainte
2	Appl	lications de classe \mathcal{C}^k
	2.1	Dérivées partielles d'ordre $k\geqslant 2$
	2.2	Théorème de Schwarz
	2.3	Opérations sur les applications de classe \mathcal{C}^k
	2.4	Exemples d'équations aux dérivées partielles
3	Optii	misation: étude au second ordre ordre 5
	3.1	Matrice hessienne
	3.2	Formule de Taylor-Young à l'ordre 2
	3.3	Conditions du second ordre
4	Anne	exes
	4.1	Annexe : théorème de Schwarz
	4.2	Annexe : formule de Taylor-Young à l'ordre 2
		g
Exercic		·
Exe		et résultats classiques à connaître
		fonction qui n'est pas \mathcal{C}^2
		fonction harmonique
		recherche d'extremum sur un ouvert
		recherche d'extremum sur un compact
_		optimisation sous contrainte
		du CCINP
Pet	its prol	blèmes d'entrainement

Sauf mention contraire, E et F designent des espaces vectoriels normés de dimension finie sur \mathbb{R} .

1 Optimisation : étude au premier ordre

1.1 Extremums d'une fonction numérique

Définition. Soit $f:E\to\mathbb{R}$ une fonction numérique, définie sur une partie U de E.

• Pour $a \in U$, on dit que f atteint un maximum global en a lorsque :

$$\forall x \in U, \ f(x) \leqslant f(a)$$

• Pour a intérieur à U, on dit que f atteint un maximum (local) en a s'il existe un voisinage V de a dans U tel que :

$$\forall x \in V, \ f(x) \leqslant f(a)$$

• On définit de façon analogue minimum global et minimum local.

Remarque. Sans autre précision, un extremum est un extremum local.

<u>Définition</u>. Soit $f: E \to \mathbb{R}$ une fonction numérique, différentiable sur U ouvert, et $a \in U$. On dit que a est un point critique lorsque $\mathrm{d} f(a) = 0_{\mathcal{L}(E,\mathbb{R})}$.

Remarque. La différentielle de f en a est nulle si et seulement si les dérivées de f en a selon tous les vecteurs sont nulles, si et seulement si toutes les dérivées partielles (selon une base de E) de f en a sont nulles.

1.2 Condition nécessaire du premier ordre

Théorème.

Soit $f: E \to \mathbb{R}$ une fonction numérique définie sur U et $a \in U$.

Si:

- f est différentiable sur U
- a est intérieur à U
- f admet un extremum local en a

alors:

 \circ a est un point critique de f.

Exemple. Déterminer les points critiques de :

$$(x,y) \mapsto x^3 - y^2 - x$$

Exemple. Où sont les extremums de :

$$(x,y) \mapsto x^2 + y^2$$

sur
$$[-1,1] \times [-1,1]$$
?

1.3 Optimisation sous contrainte

Présentation. Soit $f: E \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 sur un ouvert U.

Soit $g: E \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 , et :

$$X = \{x \in U, \ g(x) = 0\}$$

L'équation g(x) = 0 s'appelle **une contrainte**, et on s'intéresse à la recherche des extremums de $f_{|X}$.

Exemple. Si g est affine, c'est-à-dire de la forme : $x \mapsto c + \ell(x)$ où $c \in \mathbb{R}$ et $\ell \in \mathcal{L}(E, \mathbb{R})$, on parle de **contrainte** linéaire.

<u>Lemme.</u> Soit $f: E \to \mathbb{R}$ une fonction de différentiable sur U ouvert. Soit X une partie de U et $x \in X$. Si $f_{|X}$ admet un extremum local en x, alors $\mathrm{d} f(x)$ s'annule sur $T_x X$:

$$\forall v \text{ tangent à } X, df(x) \cdot v = 0$$

Théorème.

Soit $f, g: E \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 sur un ouvert U. On note : $X = \{x \in U, g(x) = 0\}$. Si :

- $x \in X$
- $f_{|X}$ admet un extremum en x
- $dg(x) \neq 0$

alors:

 \circ df(x) et dg(x) sont colinéaires.

Remarque. La condition de colinéarité peut encore s'écrire :

$$\exists \lambda \in \mathbb{R}, \ \mathrm{d}f(x) = \lambda \mathrm{d}g(x)$$

Le coefficient λ s'appelle un multiplicateur de Lagrange associé à la contrainte g(x) = 0.

Proposition. Dans le cas où E est euclidien, par exemple lorsque $E = \mathbb{R}^n$, la conclusion du théorème s'écrit :

 $\nabla f(x)$ et $\nabla g(x)$ sont colinéaires

ou encore, puisque $\nabla g(x) \perp T_x X$:

$$\nabla f(x) \in (T_x X)^{\perp}$$

Exemple. Déterminer le maximum de $f:(x,y)\mapsto xy$ sur Γ d'équation $x^3+y^3=1$.

2024-2025 http://mpi.lamartin.fr 3/12

73. Optimisation

2 Applications de classe C^k

2.1 Dérivées partielles d'ordre $k \geqslant 2$

Définition. Soit $f: E \to F$ une fonction définie sur un ouvert U. On considère $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

- Lorsqu'elles existent, les $\partial_i f = \frac{\partial f}{\partial x_i}$ sont les **dérivées partielles premières** de f.
- Lorsqu'elles existent, on définit les **dérivées partielles secondes** comme dérivées partielles des dérivées partielles premières :

$$\frac{\partial^2 f}{\partial x_j \, \partial x_i}(a) = \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(a)$$

que l'on note encore $\partial_j \partial_i f(a)$ ou encore $\partial_{ij} f(a)$.

- On dit que f est de classe C^2 sur U lorsque toutes ses dérivées partielles secondes existent et sont continues sur U.
- On définit par récurrence les dérivées partielles d'ordre k, et la classe \mathcal{C}^k .
- f est de classe C^{∞} lorsqu'elle est de classe C^k pour tout k.

2.2 Théorème de Schwarz

Théorème de Schwarz.

Soit $f: E \to F$ une fonction définie sur un ouvert U. On considère $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Si f est de classe \mathcal{C}^2 sur U, alors pour tout i, j:

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Remarque. Plus généralement, si f est de classe C^k , les dérivées partielles k-ièmes ne dépendent pas de l'ordre des dérivations.

Exemple. On considère la fonction :

$$\begin{array}{cccc} p: \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & \begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases} \end{array}$$

Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$. Qu'en déduire?

2.3 Opérations sur les applications de classe C^k

Proposition. Une combinaison linéaire d'applications \mathcal{C}^k est \mathcal{C}^k ; une composée d'applications de classe \mathcal{C}^k est \mathcal{C}^k ; une composée d'application \mathcal{C}^k sur U avec un arc \mathcal{C}^k à valeurs dans U est \mathcal{C}^k .

Proposition. L'ensemble $C^k(U,\mathbb{R})$ est une \mathbb{R} -algèbre.

2.4 Exemples d'équations aux dérivées partielles

Remarque. Aucun résutlat spécifique n'est à connaître. Fréquemment, on applique un changement de variable (et donc un changement de fonction inconnue) pour se ramener à une équation plus simple, ne faisant intervenir que les dérivées partielles par rapport à une seule variable, comme par exemple :

$$\frac{\partial f}{\partial x} = 0$$

Les fonctions solutions de cette équation sont, sur un ouvert convexe, les fonctions « constantes en x_1 », c'est-à-dire telles qu'il existe φ :

$$\forall x, y, \ f(x, y) = \varphi(y)$$

Exemple. Effectuer le changement de variable $\begin{cases} u=x \\ v=y-x \end{cases}$ pour résoudre sur \mathbb{R}^2 l'équation aux dérivées partielles :

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$$

Exemple. Résoudre sur $U=\mathbb{R}_+^* \times \mathbb{R}$ l'équation aux dérivées partielles :

$$x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = \frac{y}{x}f$$

en passant en coordonnées polaires.

Exemple. Pour $c \in \mathbb{R}$, poser $\begin{cases} u = x - ct \\ v = x + ct \end{cases}$ pour ré

pour résoudre l'équation de d'Alembert :

$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$

3 Optimisation : étude au second ordre ordre

3.1 Matrice hessienne

<u>Définition.</u> Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^2 sur U ouvert. Pour $a \in U$, on définit la matrice hessienne de f en a:

$$H_f(a) = \left(\frac{\partial^2 f}{\partial x_j \partial x_i}\right)_{1 \leqslant i,j \leqslant n}$$

Remarque. Ainsi, pour n = 2:

$$H_f(a) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

Proposition. Pour tout $a \in U$, $H_f(a) \in \mathcal{S}_n(\mathbb{R})$.

3.2 Formule de Taylor-Young à l'ordre 2

Théorème.

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathbb{C}^2 sur U ouvert, et $a \in U$. Alors:

$$f(a+h) = f(a) + \langle \nabla f(a), h \rangle + \frac{1}{2} \langle H_f(a)h, h \rangle + \underset{h \to 0}{o} (\|h\|^2)$$
$$= f(a) + \nabla f(a)^\top h + \frac{1}{2} h^\top H_f(a) h + \underset{h \to 0}{o} (\|h\|^2)$$

Remarque. Sous forme développée avec les dérivées partielles, l'expression s'écrit :

$$f(a+h) = f(a) + \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(a) h_i + \frac{1}{2} \sum_{1 \le i, j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(a) h_i h_j + \underset{h \to 0}{o} (\|h\|^2)$$

On reconnaît la différentielle de f en a dans le terme linéaire. Le terme suivant s'appelle « quadratique ».

3.3 Conditions du second ordre

Théorème.

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^2 sur U ouvert, et $a \in U$.

Si:

• f admet un minimum local en a

alors:

 $\circ \nabla f(a) = 0$

 \circ $H_f(a) \in \mathcal{S}_n^+(\mathbb{R})$

Remarque. De façon équivalente, on peut conclure que les valeurs propres de $H_f(a)$ sont ≥ 0 .

Remarque. On peut adapter le résultat dans le cas d'un maximum : les valeurs propres de $H_f(a)$ sont ≤ 0 .

Théorème.

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 sur U ouvert, et $a \in U$.

ullet a est un point critique de f

• $H_f(a) \in \mathcal{S}_n^{++}(\mathbb{R})$

alors:

o f admet un minimum local strict en a

Remarque. De façon équivalente, on peut supposer que les valeurs propres de $H_f(a)$ sont > 0.

Remarque. On peut adapter le résultat dans le cas d'un maximum : les valeurs propres de $H_f(a)$ sont < 0.

Corollaire. Dans le cas où n = 2, on note :

$$H_f(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$$

où
$$r=rac{\partial^2 f}{\partial x^2}(a),\, s=rac{\partial^2 f}{\partial x \partial y}(a)=rac{\partial^2 f}{\partial y \partial x}(a)$$
 et $t=rac{\partial^2 f}{\partial y^2}(a).$

On suppose que a est un point critique : $\frac{\partial f}{\partial x}(a) = \frac{\partial f}{\partial y}(a) = 0$.

- Si det $H_f(a) = rt s^2 > 0$ et $\operatorname{tr} H_f(a) = r + t > 0$, alors $H_f(a) \in \mathbb{S}_n^{++}(\mathbb{R})$ donc f présente un minimum local strict en a.
- Si $\det H_f(a) = rt s^2 > 0$ et $\operatorname{tr} H_f(a) = r + t < 0$, alors $-H_f(a) \in \mathbb{S}_n^{++}(\mathbb{R})$ donc f présente un maximum local strict en a.
- Si $\det H_f(a) = rt s^2 < 0$, f présente un point col en a.
- Si det $H_f(a) = rt s^2 = 0$, on ne peut rien dire.

4 Annexes

4.1 Annexe : théorème de Schwarz

On se place dans le cas particulier des fonctions numériques de deux variables.

Théorème de Schwarz.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction définie et \mathcal{C}^2 sur U ouvert. Alors

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Preuve. Soit $a=(x_0,y_0)\in U.$ Pour h,k>0 et assez petits pour que $[x_0,x_0+h]\times [y_0,y_0+k]\subset U,$ on pose :

$$\delta(h,k) = \left(f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) \right)$$

$$- \left(\underbrace{f(x_0, y_0 + k) + f(x_0, y_0)}_{\text{noté } \varphi(x_0)} \right)$$

$$= \varphi(x_0 + h) - \varphi(x_0) \text{ à } k \text{ fixé}$$

$$= h\varphi'(x_0 + \theta_1 h) \text{ où } \theta_1 \in]0, 1[$$

$$\text{par l'égalité des accroissements finis, } \varphi C^1$$

$$= h \left(\frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0 + k) - \underbrace{\frac{\partial f}{\partial x}(x_0 + \theta_1 h, y_0)}_{\text{noté } \psi(y_0)} \right)$$

$$= h \left(\psi(y_0 + k) - \psi(y_0) \right) \text{ à } h \text{ fixé}$$

$$= h \left(k \psi'(y_0 + \theta_2 k) \right) \text{ où } \theta_2 \in]0, 1[$$

$$\text{par l'égalité des accroissements finis, } \psi C^1$$

$$= hk \underbrace{\frac{\partial^2 f}{\partial y_0 \partial x}}(x_0 + \theta_1 h, y_0 + \theta_2 k)$$

Par continuité de $\frac{\partial^2 f}{\partial u \partial x}$, on a donc :

$$\frac{1}{hk}\delta(h,k) \xrightarrow[(h,k)\to(0,0)]{} \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0)$$

De façon symétrique:

$$\begin{split} \delta(h,k) &= \left(f(x_0+h,y_0+k) - f(x_0,y_0+k) \right) \\ &- \left(\underbrace{f(x_0+h,y_0) + f(x_0,y_0)}_{\text{noté } \phi(y_0)} \right) \\ &= k \left(\frac{\partial f}{\partial y}(x_0+h,y_0+\theta_3 k) - \underbrace{\frac{\partial f}{\partial y}(x_0,y_0+\theta_3 k)}_{\text{noté } \Psi(x_0)} \right) \\ & \text{où } \theta_3 \in]0,1[\text{ par accroissements finis} \end{split}$$

$$= k \left(h \frac{\partial^2 f}{\partial x \partial y} (x_0 + \theta_4 h, y_0 + \theta_3 k) \right)$$

où $\theta_4 \in]0,1[$ par accroissements finis

Par continuité de $\frac{\partial^2 f}{\partial x \partial u}$, on a donc :

$$\frac{1}{hk}\delta(h,k)\xrightarrow[(h,k)\to(0,0)]{}\frac{\partial^2 f}{\partial x\partial y}(x_0,y_0)$$

On conclut alors, par unicité de la limite :

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

4.2 Annexe : formule de Taylor-Young à l'ordre 2

On se place dans le cas où n=2.

Théorème.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathbb{C}^2 sur U ouvert, et

$$f(a+h) = f(a) + h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a)$$
$$+ \frac{1}{2} \left(h_1^2 \frac{\partial^2 f}{\partial x^2}(a) + 2h_1 h_2 \frac{\partial^2 f}{\partial x \partial y}(a) + h_2^2 \frac{\partial^2 f}{\partial y^2}(a) \right) + \underset{h \to 0}{o} (\|h\|^2)$$

Preuve. Fixons $a \in U$, et h au voisinage de 0, suffisamment petit pour que $B(a, 2||h||) \subset U$. On définit :

$$\varphi : t \mapsto f(a+th)$$

et on a:

$$f(a+h) - f(a) = \varphi(1) - \varphi(0)$$

Par composition, φ est de classe \mathcal{C}^1 sur [0,1] et :

$$\varphi'(t) = df(a+th) \cdot h$$
$$= h_1 \frac{\partial f}{\partial x}(a+th) + h_2 \frac{\partial f}{\partial y}(a+th)$$

On peut dériver à nouveau, car $t \mapsto \partial_i f(a+th)$ est de classe \mathcal{C}^1 par composition :

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial x}(a+th) \right) &= h_1 \frac{\partial \left(\frac{\partial f}{\partial x} \right)}{\partial x}(a+th) + h_2 \frac{\partial \left(\frac{\partial f}{\partial x} \right)}{\partial y}(a+th) \\ &= h_1 \frac{\partial^2 f}{\partial x^2}(a+th) + h_2 \frac{\partial^2 f}{\partial y \partial x}(a+th) \\ \mathrm{et} \ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial y}(a+th) \right) &= h_1 \frac{\partial^2 f}{\partial x \partial y}(a+th) + h_2 \frac{\partial^2 f}{\partial y^2}(a+th) \end{split}$$

On en déduit que φ est de classe \mathcal{C}^2 et, pour tout $t \in [0,1]$:

$$\begin{split} \varphi''(t) &= h_1 \left(h_1 \frac{\partial^2 f}{\partial x^2}(a+th) + h_2 \frac{\partial^2 f}{\partial y \partial x}(a+th) \right) \\ &+ h_2 \left(h_1 \frac{\partial^2 f}{\partial x \partial y}(a+th) + h_2 \frac{\partial^2 f}{\partial y^2}(a+th) \right) \\ &= h_1^2 \frac{\partial^2 f}{\partial x^2}(a+th) + 2h_1 h_2 \frac{\partial^2 f}{\partial y \partial x}(a+th) \\ &+ h_2^2 \frac{\partial^2 f}{\partial y^2}(a+th) \text{ par le th. de Schwarz} \end{split}$$

2024-2025 7/12 http://mpi.lamartin.fr

On peut appliquer à φ la formule de Taylor avec reste-intégral :

$$\varphi(1) = \varphi(0) + (1 - 0)\varphi'(0) + \int_0^1 (1 - t)\varphi''(t) dt$$

$$= \varphi(0) + \varphi'(0) + \int_0^1 (1 - t)\varphi''(0) dt$$

$$+ \int_0^1 (1 - t)(\varphi''(t) - \varphi''(0)) dt$$

$$= \varphi(0) + \varphi'(0) + \frac{1}{2}\varphi''(0) + \int_0^1 (1 - t)(\varphi''(t) - \varphi''(0)) dt$$

ce qui s'écrit, en utilisant les expressions de φ à l'aide de f :

$$f(a+h) = f(a) + \left(h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a)\right)$$

+
$$\frac{1}{2} \left(h_1^2 \frac{\partial^2 f}{\partial x^2}(a) + 2h_1 h_2 \frac{\partial^2 f}{\partial x \partial y}(a) + h_2^2 \frac{\partial^2 f}{\partial y^2}(a)\right) + R_a(h)$$

avec

$$\begin{split} R_a(h) &= \int_0^1 (1-t) \Big(-h_1^2 \Big(\frac{\partial^2 f}{\partial x^2} (a+th) - \frac{\partial^2 f}{\partial x^2} (a) \Big) \\ &+ 2h_1 h_2 \Big(\frac{\partial^2 f}{\partial y \partial x} (a+th) - \frac{\partial^2 f}{\partial y \partial x} (a) \Big) \\ &+ h_2^2 \Big(\frac{\partial^2 f}{\partial y^2} (a+th) - \frac{\partial^2 f}{\partial y^2} (a) \Big) - \Big) \, \mathrm{d}t \end{split}$$

Il s'agit maintenant de montrer que $R_a(h) = \underset{h \to 0}{o} (\|h\|^2)$. On revient pour cela à la définition. Fixons $\varepsilon > 0$. Par continuité de $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$ et $\frac{\partial^2 f}{\partial y^2}$ appliqué à 2ε , il existe $\eta > 0$ tel que :

$$\|u - a\| \leqslant \eta \implies \begin{cases} \left| \frac{\partial^2 f}{\partial x^2}(u) - \frac{\partial^2 f}{\partial x^2}(a) \right| \leqslant 2\varepsilon \\ \left| \frac{\partial^2 f}{\partial y \partial x}(u) - \frac{\partial^2 f}{\partial y \partial x}(a) \right| \leqslant 2\varepsilon \\ \left| \frac{\partial^2 f}{\partial y^2}(u) - \frac{\partial^2 f}{\partial y^2}(a) \right| \leqslant 2\varepsilon \end{cases}$$

Lorsque $||h|| \leq \eta$, pour tout $t \in [0,1]$, $||(a+th)-a|| = t||h|| \leq \eta$, et donc :

$$|R_a(h)| \le 2\varepsilon \int_0^1 (1-t) (h_1^2 + 2|h_1||h_2| + h_2^2) dt$$

$$= 2\varepsilon \int_0^1 (1-t) (|h_1| + |h_2|)^2 dt$$

$$= 2\varepsilon ||h||_1^2 \int_0^1 (1-t) dt$$

$$= \varepsilon ||h||_1^2$$

On a montré que $R_a(h) = \underset{h \to 0}{o} (\|h\|_1^2)$. Les normes étant toutes équivalentes sur \mathbb{R}^2 , le choix de $\|\cdot\|_1$ n'est pas restrictif. \square

Exercices et résultats classiques à connaître

Une fonction qui n'est pas \mathcal{C}^2

73.1

On considère l'application définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par :

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$

- (a) Prolonger f par continuité en (0,0).
- (b) Montrer l'existence et comparer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Une fonction harmonique

73.2

Soit $\sum a_n z^n$ une série entière de la variable complexe, de rayon de convergence R>0. On note $D=\{(x,y)\in\mathbb{R}^2,\ x^2+y^2< R\}$ et on définit sur D la fonction f par :

$$f(x,y) = \sum_{n=0}^{+\infty} a_n (x + iy)^n$$

Montrer que f admet des dérivées partielles d'ordre 2 sur D, et qu'elle vérifie :

$$\forall (x,y) \in D, \ \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

Une recherche d'extremum sur un ouvert

73.3

Déterminer les extremums locaux de :

$$f: (x,y) \mapsto x^2 - 2x + 2 + \cos(y)$$

Une recherche d'extremum sur un compact

73.4

On considère $f \,:\, (x,y) \mapsto xy(1-x-y)$ définie sur :

$$A = \{(x, y) \in \mathbb{R}^2, \ x \ge 0, \ y \ge 0, \ x + y \le 1\}$$

- (a) Justifier que f admet un maximum sur A.
- (b) Montrer que ce maximum est atteint en un point intérieur à A.
- (c) Déterminer la valeur de ce maximum.

Une optimisation sous contrainte

73.5

Soit Γ la courbe d'équation $x^3 + y^3 = 1$. Déterminer le maximum de $f: (x,y) \mapsto xy$ sur Γ .

2024-2025 http://mpi.lamartin.fr 9/12

MPI*

73. Optimisation

73.6

Exercices du CCINP

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par $f:(x,y)\mapsto 4x^2+12xy-y^2$. Soit $C=\{(x,y)\in\mathbb{R}^2,\ x^2+y^2=13\}$.

- 1. Justifier que f atteint un maximum et un minimum sur C.
- 2. Soit $(u, v) \in C$ un point où f atteint un de ses extremums.
 - (a) Justifier avec un théorème du programme qu'il existe un réel λ tel que le système (S) suivant soit vérifié :

$$(S) : \begin{cases} 4u & +6v = \lambda u \\ 6u & -v = \lambda v \end{cases}$$

- (b) Montrer que $(\lambda 4)(\lambda + 1) 36 = 0$. En déduire les valeurs possibles de λ .
- 3. Déterminer les valeurs possibles de (u, v), puis donner le maximum et le minimum de f sur C.

73.7

Soit f la fonction définie sur \mathbb{R}^2 par : $\forall (x,y) \in \mathbb{R}^2, f(x,y) = 2x^3 + 6xy - 3y^2 + 2$.

- 1. f admet-elle des extrema locaux sur \mathbb{R}^2 ? Si oui, les déterminer.
- 2. f admet-elle des extrema globaux sur \mathbb{R}^2 ? Justifier.
- 3. On pose $K = [0,1] \times [0,1]$. Justifier, oralement, que f admet un maximum global sur K puis le déterminer.

Exercices

73.8

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 . On définit $g: \mathbb{R}^2 \to \mathbb{R}$ par :

$$g(u,v) = f(uv, u^2 + v^2)$$

- (a) Exprimer les dérivées partielles de g en fonction de celles de f.
- (b) Exprimer les dérivées partielles secondes de g en fonction des dérivées partielles de f.

73.9

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 et F définie sur $\mathbb{R}_+^* \times \mathbb{R}$ par :

$$F(x,y) = xf\left(\frac{y}{x}\right)$$

- (a) Exprimer $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$ à l'aide de f.
- (b) Déterminer les fonctions f telles que $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} = 0$.
- (c) Déterminer les fonctions f telles que $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} = \frac{1}{x}$.

73.10

Déterminer les extremums sur \mathbb{R}^2 de :

$$f: (x,y) \mapsto x^2 + xy + y^2 + 2x - 2y$$

73.11

Déterminer les extremums sur \mathbb{R}^2 de :

$$f: (x,y) \mapsto x^2 + 4xy + y^2 - 2x - 4y$$

73.12

Déterminer les extremums de la fonction définie par :

(a)
$$f(x,y) = x^2 + xy + y^2 + 2x + 3y$$

(b)
$$g(x,y) = x^3 + y^3$$

(c)
$$h(x,y) = x^2 + y^2 + x^3$$

73.13

Déterminer les extremums de la fonction définie par :

$$f(x,y,z) = x^2 + y^2 + z^2 + xy + xz + yz - 4(x+y+z)$$

73.14

Déterminer les extremums de :

$$f: (x,y) \mapsto xy$$

sous la contrainte $x^2 + y^2 = 1$.

Petits problèmes d'entrainement

73.15

Justifier l'existence et déterminer le maximum global sur $K=[0,1]\times [0,1]$ de la fonction :

$$f: (x,y) \mapsto \frac{x+y}{(1+x^2)(1+y^2)}$$

73.16

Soit $f:]0,+\infty[\to \mathbb{R}$ une fonction de classe C^2 , et g définie sur $U = \mathbb{R}^3 \setminus \{(0,0,0)\}$ par :

$$g(x, y, z) = f(\sqrt{x^2 + y^2 + z^2})$$

Montrer que g est de classe C^2 et :

$$\Delta g(x, y, z) = f''(\rho) + \frac{2}{\rho} f'(\rho)$$

où
$$\rho = \sqrt{x^2 + y^2 + z^2}$$
 et $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

73.17

Déterminer les extremums sur \mathbb{R}^2 de :

$$f: (x,y) \mapsto x^2 + xy + y^2 + 2x - 2y$$

73.18

Déterminer les extremums sur \mathbb{R}^2 de :

$$f: (x,y) \mapsto x^2 + 4xy + y^2 - 2x - 4y$$

73.19

On travaille dans \mathbb{R}^n euclidien muni de son produit scalaire usuel. On considère f un endomorphisme autoadjoint défini positif, $u \in \mathbb{R}^n$ et $g: \mathbb{R}^n \to \mathbb{R}$ définie par :

$$g(x) = \frac{1}{2} \langle f(x), x \rangle - \langle u, x \rangle$$

- (a) Calculer le gradient de g en tout $x \in \mathbb{R}^n$.
- (b) Montrer que q admet un unique point critique.
- (c) Montrer que g admet un minimum global.

73.20

On considère f définie sur $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \leq 1\}$ par :

$$f(x,y) = \frac{1}{2} \left(\operatorname{ch}(2y) - \cos(2x) \right)$$

- (a) Justifier que f admet sur D un maximum et un minimum. Que vaut le minimum?
- (b) Déterminer les points critiques de f sur l'intérieur de D. Montrer qu'il existe $\theta_0 \in [-\pi, \pi]$ tel que :

$$\operatorname*{Max}_{(x,y)\in D} f(x,y) = f(\cos\theta_0, \sin\theta_0)$$

(c) Justifier rapidement que:

$$\forall t \geq 0, \ \operatorname{sh}(t) \geq t \ \operatorname{et} \ \sin(t) \leq t$$

Montrer que $\theta \mapsto f(\cos \theta, \sin \theta)$ est croissante sur $[0, \pi/2]$.

(d) Donner la valeur du maximum de f sur D.

73.21

On considère :

$$f: (x,y) \to x^2 e^{-(x^2+y^2)}$$

- (a) Soit $S = \{(x, y, z) \in \mathbb{R}^3, z = f(x, y)\}$. Déterminer le plan tangent à S au point $(1, 1, e^{-2})$.
- (b) Soit P(1,-1,3). Pour $Q \in S$, on note $d_P(Q)$ la distance de Q à P. Montrer que la fonction d_P admet un minimum sur S.

73.22

Déterminer les extremums de :

$$f: (x,y) \mapsto xy + z^2$$

sous la contrainte $x^2 + y^2 + z^2 = 9$.

73.23

Déterminer les extremums de :

$$f: (x,y) \mapsto e^{xy}$$

sous la contrainte $x^5 + 2x + y^5 + 2y - 6 = 0$.

73.24

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction \mathcal{C}^2 telle que:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

(a) Montrer qu'il existe $g: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 telle que :

$$\frac{\partial g}{\partial x} = -\frac{\partial f}{\partial y}$$
 et $\frac{\partial g}{\partial y} = \frac{\partial f}{\partial x}$

(b) Pour $r \in \mathbb{R}$, on pose :

$$\varphi(r) = \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) d\theta$$

Montrer que φ est de classe \mathcal{C}^1 et expliciter φ .

73.25

Déterminer les extremums de la fonction définie sur \mathbb{R}^n par :

$$f(x_1, \dots, x_n) = \sum_{k=1}^n x_k^2 + \left(\sum_{k=1}^n x_k\right)^2 - \sum_{k=1}^n x_k$$

73.26

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^2 . On suppose que $\Delta f > 0$ sur la boule unité $B = \{x, ||x|| < 1\}$. Montrer que f admet un maximum sur \overline{B} , et qu'il est atteint sur la sphère $\overline{B} \setminus B$.

73.27

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que :

$$\forall x, ||x|| \geqslant 1 \implies \mathrm{d}f(x) \cdot x \geqslant 0$$

Montrer que f admet un minimum global.

73.28

On considère f définie sur $[0,1]^2$ par :

$$f(x,y) = \begin{cases} x(1-y) & \text{si } x \leq y \\ y(1-x) & \text{si } y < x \end{cases}$$

Montrer que f admet un maximum atteint en un unique point que l'on précisera.

73.29

Soit $U =]0,1[^n$ ouvert de \mathbb{R}^n , et h définie sur U par :

$$h(x_1, \dots, x_n) = -\sum_{k=1}^n x_k \ln(x_k)$$

- (a) Calculer en tout point $x \in U$ le gradient grad h(x) et la hessienne $H_h(x)$.
- (b) Montrer que h admet un unique extremum sous la contrainte $x_1 + \cdots + x_n = 1$.