

Rendering Curves and Surfaces

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce methods to draw curves
 - Approximate with lines
 - Finite Differences
- Derive the recursive method for evaluation of Bezier curves and surfaces
- Learn how to convert all polynomial data to data for Bezier polynomials

Evaluating Polynomials

- Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline
- For surfaces we can form an approximating mesh of triangles or quadrilaterals
- Use Horner's method to evaluate polynomials

$$p(u)=c_0+u(c_1+u(c_2+uc_3))$$

- 3 multiplications/evaluation for cubic

Finite Differences

For equally spaced $\{u_k\}$ we define *finite differences*

$$\Delta^{(0)} p(u_k) = p(u_k)$$

$$\Delta^{(1)} p(u_k) = p(u_{k+1}) - p(u_k)$$

$$\Delta^{(m+1)} p(u_k) = \Delta^{(m)} p(u_{k+1}) - \Delta^{(m)} p(u_k)$$

For a polynomial of degree n, the nth finite difference is constant

Building a Finite Difference Table

$$p(u)=1+3u+2u^2+u^3$$

Finding the Next Values

Starting at the bottom, we can work up generating new values for the polynomial

t	0	1	2	3	4	5
Р	1	7	23	55→	109-	191
∆ ⁽¹⁾ p	6	16	32—	→ 54	► 82	
∆ ⁽²⁾ p	10	16—	→ 22	→28		
∆ ⁽³⁾ p	6—	→ 6	→ 6			

deCasteljau Recursion

- We can use the convex hull property of Bezier curves to obtain an efficient recursive method that does not require any function evaluations
 - Uses only the values at the control points
- Based on the idea that "any polynomial and any part of a polynomial is a Bezier polynomial for properly chosen control data"

Splitting a Cubic Bezier

p₀, p₁, p₂, p₃ determine a cubic Bezier polynomial

Consider left half l(u) and right half r(u)

l(u) and r(u)

Since l(u) and r(u) are Bezier curves, we should be able to find two sets of control points $\{l_0, l_1, l_2, l_3\}$ and $\{r_0, r_1, r_2, r_3\}$ that determine them

Convex Hulls

 $\{l_0, l_1, l_2, l_3\}$ and $\{r_0, r_1, r_2, r_3\}$ each have a convex hull that that is closer to p(u) than the convex hull of $\{p_0, p_1, p_2, p_3\}$ This is known as the *variation diminishing property*.

The polyline from l_0 to l_3 (= r_0) to r_3 is an approximation to p(u). Repeating recursively we get better approximations.

Equations

Start with Bezier equations $p(u)=\mathbf{u}^{T}\mathbf{M}_{B}\mathbf{p}$

l(u) must interpolate p(0) and p(1/2)

$$l(0) = l_0 = p_0$$

 $l(1) = l_3 = p(1/2) = 1/8(p_0 + 3p_1 + 3p_2 + p_3)$

Matching slopes, taking into account that l(u) and r(u) only go over half the distance as p(u)

$$l'(0) = 3(l_1 - l_0) = p'(0) = 3/2(p_1 - p_0)$$

 $l'(1) = 3(l_3 - l_2) = p'(1/2) = 3/8(-p_0 - p_1 + p_2 + p_3)$

Symmetric equations hold for r(u)

Efficient Form

$$\begin{aligned} &l_0 = p_0 \\ &r_3 = p_3 \\ &l_1 = \frac{1}{2}(p_0 + p_1) \\ &r_1 = \frac{1}{2}(p_2 + p_3) \\ &l_2 = \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)) \\ &r_1 = \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \\ &l_3 = r_0 = \frac{1}{2}(l_2 + r_1) \end{aligned} \quad \textbf{p}_0 = \textbf{l}_0$$

Requires only shifts and adds!

Every Curve is a Bezier Curve

- We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve
- Suppose that p(u) is given as an interpolating curve with control points q

$$p(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{I} \mathbf{q}$$

• There exist Bezier control points p such that

$$p(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{B} \mathbf{p}$$

• Equating and solving, we find $\mathbf{p} = \mathbf{M}_B^{-1} \mathbf{M}_I \mathbf{q}$

Matrices

Interpolating to Bezier
$$\mathbf{M}_{B}^{-1}\mathbf{M}_{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -\frac{5}{6} & 3 & -\frac{3}{2} & \frac{1}{3} \\ \frac{1}{3} & -\frac{3}{2} & 3 & -\frac{5}{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

B-Spline to Bezier

$$\mathbf{M}_{B}^{-1}\mathbf{M}_{S} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}$$

Example

These three curves were all generated from the same original data using Bezier recursion by converting all control point data to Bezier control points

Surfaces

- Can apply the recursive method to surfaces if we recall that for a Bezier patch curves of constant u (or v) are Bezier curves in u (or v)
- First subdivide in u
 - Process creates new points

- Some of the original points are discarded

Second Subdivision

- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

Normals

- For rendering we need the normals if we want to shade
 - Can compute from parametric equations

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

- Can use vertices of corner points to determine
- OpenGL can compute automatically

Utah Teapot

- Most famous data set in computer graphics
- Widely available as a list of 306 3D vertices and the indices that define 32 Bezier patches

Quadrics

- Any quadric can be written as the quadratic form

 p^T**Ap**+**b**^T**p**+c=0 where **p**=[x, y, z]^T

 with **A**, **b** and c giving the coefficients
- Render by ray casting
 - Intersect with parametric ray $\mathbf{p}(\alpha) = \mathbf{p}_0 + \alpha \mathbf{d}$ that passes through a pixel
 - Yields a scalar quadratic equation
 - No solution: ray misses quadric
 - One solution: ray tangent to quadric
 - Two solutions: entry and exit points