TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com

> 학생 - 문한나 mhn97@naver.com

학생 - 장성환 redmk1025@gmail.com

조도센서를 활용한 수동주행

HCG 설정

tart Page TMS	570LC4357ZWT_I	FREERTOS	OS PINMUX	GIO ES	M SCI1	SCI2 SC	CI3
General							
Configuration							_
	ptions will set macro	s in FreeRTOS	Config.h				
₩ Hea Tack P	reemption	Use Mutexes		☑ Hee Vert	oose Stack Cl	hacking	
Use Task Preemption Use Idle Hook		Use Recursive Mutexes		Use Time		lecking	
Use Tick Hook		Use Counting Semaphores			e Runtime Sta	tistics	
Use Co-Routines		✓ Idle Task Should Yeild			oc Failed Hoo		
Use Trace I		Use Stack Ov					
	_						
Task Configuration	on —						
RTI Clock (H	75000000		Tick Rate (Hz): 1000			
Max Prioritie	es: 5		Total Heap S	ize: 8192			
Task Name Leng	th: 16		Min Stack S	ize: 128			
_							
Coroutine Configu	uration ————						
Coroutine Prioritie	es: 2						
Timer Task Priorit	y: 0 Queu	e Length: 0	Stack Si	ize: 0			
Muxing Input Pin M	uxing Special Pin Muxi	ng					
Enable / Disable Periph			Not	e			
■ HET1		IIBSPI1 SCI3) pins are mapped to l alternate terminals.			
■ EMIF ■ EQE ▼ ETPWM ■ ECAI			RM	have dedicated pina II and MII checkbox ecial Pinmuxing tab			
Ball Default Mux	Mux Option 1	Mux Option 2	Mux Option 3	Mux Opti	ion 4 Mu	ux Option 5	Conflict?
N2HET1[16]	NONE	NONE	ETPWM1SYN			TPWM1SYNCO	
A4	FMIS - OF	CCLARY				NE	
N2HET1[17] A13	EMIF_nOE	SCI4RX	NONE	NONE		ONE	
N2HET1[26]	NONE	MII_RXD[1]	RMII_RXD[1]	NONE		DNE	
A14						-	
B2 MIBSPI3NCS[2]	12C1_SDA	NONE	N2HET1[27]	NONE	nT	Z1_2	-
N2HET1[22]	EMIF_nDQM[3]	NONE	NONE	NONE		ONE -	
N2HET1[12]	MIBSPI4NCS[5]	MII_CRS	RMII_CRS_D\	/ NONE	NC	ONE	
B4						-	_
GIOA[5] B5	NONE	NONE	EXTCLKIN — — — — — — — — — — — — —	NONE		PWM1A	_

ccs 코드

```
/* Include Files */
#include <include/FreeRTOS.h>
#include <include/FreeRTOSConfig.h>
#include <include/HL_adc.h>
#include <include/HL_etpwm.h>
#include <include/HL_gio.h>
#include <include/HL_hal_stdtypes.h>
#include <include/HL_reg_etpwm.h>
#include <include/HL_reg_gio.h>
#include <include/HL_reg_sci.h>
#include <include/HL_sci.h>
#include <include/os_mpu_wrappers.h>
#include <include/os_portmacro.h>
#include <include/os_projdefs.h>
#include <include/os_queue.h>
#include <include/os_semphr.h>
#include <include/os_task.h>
#include <stdlib.h>
#include <string.h>
xTaskHandle xTask1Handle;
xTaskHandle xTask2Handle;
xTaskHandle xTask3Handle;
xTaskHandle xTask4Handle;
xTaskHandle xTask5Handle;
QueueHandle t mutex = NULL;
void vTask1(void* pvParameters);
void vTask2(void* pvParameters);
void vTask3(void* pvParameters);
void vTask4(void* pvParameters);
void vTask5(void* pvParameters);
#define MAX 10
uint32 fir[10] = { 0, };
uint32 ave = 0;
uint8 x[32] = \{ 0, \};
char flag = 0;
int i;
adcData_t data;
uint8 msg[32] = { 0, };
void send_data(sciBASE_t *sci, uint8* byte, uint32 length)
{
    int i;
    for (i = 0; i < length; i++)</pre>
        sciSendByte(sciREG1, byte[i]);
   sciSendByte(sciREG1, '\r');
sciSendByte(sciREG1, '\n');
}
void delay(uint32 delay)
    int i;
    for (i = 0; i < delay; i++)</pre>
}
```

```
int main(void)
   gioInit();
   sciInit();
   adcInit();
   etpwmInit();
   etpwmStartTBCLK();
   gioSetDirection(gioPORTA, 0xE);
   gioSetPort(gioPORTA, 0xffffffff);
   gioSetBit(gioPORTA, 0, 0);
   gioSetBit(gioPORTA, 1, 1);
   gioSetBit(gioPORTA, 2, 1);
   gioSetBit(gioPORTA, 3, 1);
   gioSetBit(gioPORTB, 0, 0);
   adcStartConversion(adcREG1, adcGROUP1);
   etpwmREG1->CMPA = 1500; // 정지
   vSemaphoreCreateBinary(mutex)
   if (xTaskCreate(vTask1, "Task1", configMINIMAL_STACK_SIZE, NULL, 1,
                  &xTask1Handle) != pdTRUE)
   {
       while (1)
           ;
   if (xTaskCreate(vTask2, "Task2", configMINIMAL_STACK_SIZE, NULL, 1,
                  &xTask2Handle) != pdTRUE)
       while (1)
   if (xTaskCreate(vTask3, "Task3", configMINIMAL_STACK_SIZE, NULL, 1,
                  &xTask3Handle) != pdTRUE)
   {
       while (1)
   if (xTaskCreate(vTask4, "Task4", configMINIMAL_STACK_SIZE, NULL, 1,
                  &xTask3Handle) != pdTRUE)
   {
       while (1)
   if (xTaskCreate(vTask5, "Task5", configMINIMAL_STACK_SIZE, NULL, 1,
                  &xTask3Handle) != pdTRUE)
   {
       while (1)
           ;
   }
   vTaskStartScheduler();
   while (1)
       ;
   return 0;
}
```

```
void vTask1(void *pbParameters)
   while (1)
   {
       //delay(10000000);
       if (flag == 1)
           if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
              for (i = 0; i < 10; i++)
              {
                  gioSetBit(gioPORTB, 0, 1);
                  while (adcIsConversionComplete(adcREG1, adcGROUP1) == 0)
                  adcGetData(adcREG1, adcGROUP1, &data);
                  fir[i] = data.value;
                  gioSetBit(gioPORTB, 0, 0);
              }
              //필터 생성
              ave = (fir[0] + fir[1] + fir[2] + fir[3] + fir[4] + fir[5]
                     + fir[6] + fir[7] + fir[8] + fir[9]) / MAX;
              //필터값 출력
              ltoa(ave, x);
              send_data(sciREG1, x, strlen(x));
              gioSetBit(gioPORTB, 0, 1);
              while (adcIsConversionComplete(adcREG1, adcGROUP1) == 0)
              adcGetData(adcREG1, adcGROUP1, &data);
              ltoa(data.value, x);
              //현재값 출력
              send_data(sciREG1, x, strlen(x));
              gioSetBit(gioPORTB, 0, 0);
              flag = 5;
              //vTaskDelay(portMAX_DELAY);
              xSemaphoreGive(mutex);
              vTaskDelay(10);
           }
           else
           { //키를 받아오지 못하는 경우에 실행 코드를 작성
            //flag = 1;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
           }
       }
   }
}
void vTask2(void *pbParameters)
   while (1)
   {
       if (flag == 2)
           if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
           {
              //현재값
              gioSetBit(gioPORTB, 0, 1);
```

```
while (adcIsConversionComplete(adcREG1, adcGROUP1) == 0)
              adcGetData(adcREG1, adcGROUP1, &data);
              ltoa(data.value, x);
              //현재값 출력
              send_data(sciREG1, x, strlen(x));
              gioSetBit(gioPORTB, 0, 0);
              if ((data.value - ave) > 0 && (data.value - ave) <= 200)</pre>
                  flag = 3;
              else if ((ave - data.value) > 200)
                  flag = 4;
              }
              //vTaskDelay(portMAX_DELAY);
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
          else
          { //키를 받아오지 못하는 경우에 실행 코드를 작성
            //flag = 1;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
       }
   }
}
void vTask3(void *pbParameters)
   while (1)
   {
       if (flag == 3)
          if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
          {
              etpwmREG1->CMPA -= 1;
              flag = 0;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
          else
          { //키를 받아오지 못하는 경우에 실행 코드를 작성
            //flag = 1;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
       else if (flag == 4)
          if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
```

```
{
              etpwmREG1->CMPA -= 2;
              flag = 0;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
          else
           { //키를 받아오지 못하는 경우에 실행 코드를 작성
            //flag = 1;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
       }
   }
}
void vTask4(void *pbParameters)
   while (1)
   {
       if (flag == 5)
          if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
              etpwmREG1->CMPA += 5;
              if ((etpwmREG1->CMPA) >= 1500)
                  etpwmREG1->CMPA = 1500;
              }
              flag = 0;
              xSemaphoreGive(mutex);
              vTaskDelay(10);
          }
          else
           {
              xSemaphoreGive(mutex);
              vTaskDelay(10);
       }
   }
}
void vTask5(void *pbParameters)
{
   while (1)
   {
       if (flag == 0)
          if (xSemaphoreTake(mutex, ( TickType_t ) 10) == pdTRUE)
              if (gioGetBit(gioPORTA, 0) == 0)
                  flag = 1;
                  vTaskDelay(10);
```

```
}
else if (gioGetBit(gioPORTA, 0) == 1)
{

    flag = 2;
    vTaskDelay(10);
}

    xSemaphoreGive(mutex);
    vTaskDelay(10);
}
else
{
    xSemaphoreGive(mutex);
    vTaskDelay(10);
}
}
}
}
```

ADC 의 조도 센서는 주변환경의 영향을 많이 받는다. 밝은 곳으로 가면 기본 ADC 값이 높은 상태가 되어 버리고 어두운 곳으로 가면 기본 ADC 값이 낮은 상태가 된다.

최대한 ACC 페달 주변에 빛의 영향을 받지 않도록 밀폐 시켰지만, 장소에 따라 값의 변화가 커서 어느 ADC 값의 기준점을 가지고 알고리즘을 쓸 수 없었다.

<FIR 필터>

위 그림처럼 노이즈가 있는 상황에서 피드백이 없는 시스템의 경우 FIR 필터를 사용하면 좋은 결과를 얻을 수 있다.

FIR 필터를 사용하여 현재 상태의 ADC 값을 저장해 두고, 현재 상태의 값에서 변동이 생기는 크기에 따라서 주행 가속도가 결정되는 방식을 사용하니 안정적으로 동작하였다.

결과

