Protein design Part 1: structure prediction

Anastassia Vorobieva

Workshop Schedule

•			
TIME	WEDNESDAY 28 MAY	THURSDAY 29 MAY	FRIDAY 20 MAY
09:00 - 10:30	Protein modelling and structure prediction: Intro to key concepts, from physics-based modelling to Al	De novo protein design: introduction, minimal sequence design, structure-based design principles	De novo design with Al models: RFDiffusion, ProteinMPNN, and ColabFold
10:30 - 11:00	Break and questions	Break and questions	Break and questions
11:00 - 12:00	Introduction to protein design: predicting the effect of mutations on protein stability	Structure-based de novo design: How to generate new structures? The chicken-and-egg problem	Practical session: De novo design of a SARS- CoV-2 RBD binder using RFDiffusion and ProteinMPNN
12:00 - 13:30	Lunch	Lunch	Lunch
13:30 – 15:00	Practical session: AlphaFold hands-on	Practical session: Parametric design of alpha-helical bundles	Practical session: Data analysis and group slide preparation
15:15 – 17:45	Practical session: In silico mutational scanning and ΔΔG calculations	Practical session: Sequence design for parametric bundles with PyRosetta	Practical session: Group presentations and results discussion

Structure prediction - outline

- 1. Introduction to protein folding and structure:
 - Backbone torsion and secondary structure
 - Levinthal's paradox
 - The thermodynamic hypothesis of protein folding
 - Structure prediction/design vs molecular dynamics simulations
- 2. Predicting the structure of proteins from their sequence
 - Physics-based models:
 - Scoring
 - Sampling
 - Building a prediction pipeline
 - Co-evolution and contacts prediction
 - AI models: AlphaFold 1 and 2 architectures
 - AI models: protein language models

Introduction - protein folding and structure

Accelerated in vitro evolution, inspired by natural selection.

Polypeptide folding: torsion around several degrees of freedom

 Φ – rotation around the N-C_{α} bond

 Ψ – rotation around the C_{α} -C bond

 Ω – peptide bond

The torsion in the backbone is stabilized by the side chains

The torsion in the backbone is stabilized by the side chains

20 letters

The torsion in the backbone is stabilized by the side chains

The folded state of a protein is likely the energy minima for its sequence (C. Anfinsen)

The native state of a protein is key to its function

Image from: "The protein-folding problem, 50 years on." science 338, no. 6110 (2012): 1042-1046.

Levinthal's paradox

An unfolded protein has an astonishing number of possible conformations.

Yet, most proteins fold on a µs-ms timescale.

→ Protein folding is driven by a few stable interaction formed early-on (folding pathway).

Molecular Dynamics simulations are used to study the dynamics and the stability of an existing state

Image from: "The protein-folding problem, 50 years on." *science* 338, no. 6110 (2012): 1042-1046.

Structure prediction(ab initio) and design

Image from: "The protein-folding problem, 50 years on." science 338, no. 6110 (2012): 1042-1046.

Modelling and predicting protein structures

From physics-based modelling to deep learning

"Classic" physics-based models

- Both MD simulations and protein structure prediction/design
- Explicit modeling of possible conformations
- <u>Sampling</u> conformations from the energy landscape
 Proteins can fold into an astronomically large number of conformations, and sampling methods aim to explore these efficiently.
- <u>Scoring</u> the sampled conformations with an energy function or force field Estimate the free energy of a state or a conformation as accurately as possible.

- Mathematical models used to evaluate the stability or quality of a protein model
 - → Models ranking and comparison tools
- Trade-off between speed (e.g. energy functions for design) and accuracy (e.g. MD simulations force fields)

- Mathematical models used to evaluate the stability or quality of a protein model
 - → Models ranking and comparison tools
- Trade-off between speed (e.g. energy functions for design) and accuracy (e.g. MD simulations force fields)

 Electrostatic interactions
- Physics-based parameters

- Mathematical models used to evaluate the stability or quality of a protein model
 - → Models ranking and comparison tools
- Trade-off between speed (e.g. energy functions for design) and accuracy (e.g. MD simulations force fields) Electrostatic interactions
- Physics-based parameters
- Statistical potentials (from PDB)

Sidechain conformations

Backbone conformations

- Mathematical models used to evaluate the stability or quality of a protein model
 - → Models ranking and comparison tools
- Trade-off between speed (e.g. energy functions for design) and accuracy (e.g. MD simulations force fields)
 Electrostatic interactions
- Physics-based parameters
- Statistical potentials (from PDB)
- Hybrid potentials: e.g. Rosetta

Hydrogen bond

Training an energy function

- Adjusting the weights of the parameters in the energy function to fit experimental data
- Example: training the Rosetta energy function

Sampling vs minimization

Sampling: random exploration

minimization: rolling down the energy gradient

Sampling methods

- Approaches and algorithms to efficiently navigating the conformational landscape
- Monte Carlo algorithm to simulate random sampling of a normal distribution

Sampling methods

- Approaches and algorithms to efficiently navigating the conformational landscape
- Monte Carlo algorithm to simulate random sampling of a normal distribution
- Genetic algorithm

Example modelling trajectory

Predicting the structure of a protein based on its sequence (ab initio)

Image from: "The protein-folding problem, 50 years on." science 338, no. 6110 (2012): 1042-1046.

Classic structure prediction: **Monte Carlo sampling** of existent conformations

MNIFEMLRIDEGLRLKI
YKDTEGYYTIGIGHLLT
KSPSLNASKSELDKAIG
RNTNGVITKDEAEKLFN
QDVDAAVRGILRNAKLK
PVYDSLDAVRRAALINM
VFQMGETGVAGFTNSLR
MLQQKRWDEAAVNLAKS
RWYNQTPNRAKRVITTF
RTGTWDAYKNL

Primary Sequence

Tertiary Structure

Ab initio folding

Rosetta structure prediction (state-of-the-art years ago)

This is not a folding pathway simulation, but one successful trajectory of random exploration of the conformational space.

Structure

Ab initio Relax

Ab initio Relax

Lowest energy structures converge to same solution

BUT... for many proteins **no** convergence

Why would you see no convergence?

What is the major driving force of protein folding?

The hydrophobic effect

- Entropic effect
- Water-mediated (water molecules are not explicitely represented to save computing)
- long-range interactions in the protein
- → The hydrophobic effect is missing from the energy function

Solution? Use a homologous protein with a known structure as a template

What happens if there is no homolog with a known structure?

We can **CHEAT** by using evolutionary information!

Search against a database of sequences

Database of sequences

Generate a multiple sequence alignment

Analyze the MSA for conservation

PSSM = Position-specific-scoring matrix

Analyze the MSA for coevolution

** Coevolution Coevolution

Use the as restraints in folding simulations!

._____

The Contact map is correlated to physical contacts

CASP-11 (2014)

Sergey Ovchinnikov, David Baker

Structure prediction: Introducing Al

AlphaFold1: coevolution contacts from MSA

Contacts prediction module

AlphaFold2 on CASP-13 competition (2020)

AlphaFold 2 - Architecture

3. Recursive architecture

1. Contacts prediction module

The **TRANSFORMER** that predicts contacts from evolution relationships → **EVOFORMER**

2. Structure prediction module

All residues move independently in the space to satisfy the predicted contacts

3. Recursive architecture to refine the solution

A multiple sequence alignment is a **HYPOTHESIS**

RECYCLING to refine the predicted structure based on local confidence assignments

Other AI models: Structure prediction with a protein language model (e.g. ESMFold from Meta AI)

Less accrate than AlphaFold2 but predicts structure from a single sequence (rather than from MSA)