• Desigualdad del triángulo

En \mathbb{R}^2

$$|\mathbf{u} + \mathbf{v}| \leq |\mathbf{u}| + |\mathbf{v}|$$

- En \mathbb{R}^2 sean $\mathbf{i} = (1, 0)$ y $\mathbf{j} = (0, 1)$; entonces $\mathbf{v} = (a, b)$ se puede escribir como $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$.
- Un vector unitario u en \mathbb{R}^2 es un vector que satisface $|\mathbf{u}| = 1$. En \mathbb{R}^2 un vector unitario se puede escribir como

$$\mathbf{u} = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$$

donde θ es la dirección de **u**.

AUTOEVALUACIÓN 4.1

- I) Un vector es __
 - a) dos puntos en el plano xy.
 - b) un segmento de recta entre dos puntos.
 - c) un segmento de recta dirigido de un punto a otro.
 - d) una colección de segmentos de recta dirigidos equivalentes.
- II) Si P = (3, -4) y Q = (8, 6), el vector \overrightarrow{PQ} tiene longitud ___

a)
$$|3|+|-4|$$

b)
$$(3)^2 + (-4)^2$$

c)
$$(3-8)^2 + (-4-6)^2$$

d)
$$\sqrt{(8-3)^2+(6-(-4))^2}$$

III) La dirección del vector (4, 8) es _____.

b)
$$\tan^{-1}(8-4)$$
 c) $\left(\frac{8}{4}\right)\pi$

c)
$$\left(\frac{8}{4}\right)\pi$$

d)
$$\tan^{-1}\left(\frac{8}{4}\right)$$

IV) Si $\mathbf{u} = (3, 4)$ y $\mathbf{v} = (5, 8)$, entonces $\mathbf{u} + \mathbf{v}$

V) Si $\mathbf{u} = (4, 3)$, entonces el vector unitario con la misma dirección que \mathbf{u} es ____

c)
$$\left(\frac{4}{5}, \frac{3}{5}\right)$$

$$d) \left(\frac{4}{7}, \frac{3}{7}\right)$$

Respuestas a la autoevaluación

$$\mathbf{II}$$
) d)

$$\mathbf{V}$$
) $b=c$

PROBLEMAS 4.1

De los problemas 1 al 19 encuentre la magnitud y dirección del vector dado.

1.
$$\mathbf{v} = (4, 4)$$

1.
$$\mathbf{v} = (4, 4)$$
 2. $\mathbf{v} = (\sqrt{3}, -2)$ **3.** $\mathbf{v} = (7, 9)$

3.
$$\mathbf{v} = (7, 9)$$

4.
$$\mathbf{v} = (-4, -4)$$

5.
$$\mathbf{v} = (-\sqrt{3}, -2)$$
 6. $\mathbf{v} = (-1, \frac{1}{3})$ **7.** $\mathbf{v} = (1, \sqrt{3})$ **8.** $\mathbf{v} = (-2, \sqrt{3})$

6.
$$\mathbf{v} = (-1, \frac{1}{3})$$

7.
$$\mathbf{v} = (1, \sqrt{3})$$

8.
$$\mathbf{v} = (-2, \sqrt{3})$$