

Nguyen Thoi Minh Quan

My name "Quan" is a prefix of quantum

- □ To have non-zero "knowledge" about zero-knowledge proof (ZKP) ⊕
- ☐ To have fun with number 0

- Everything in modern ZKP is related to polynomials.
- **□** Learn polynomials!!!

- Background: introduce **intuition** of ideas, techniques and terminologies in ZKP
- How theory guides the attack's direction?
- Why does the attack work in practice?

 \Box Find integers x, y, z \geq 0 such that

$$x^n + y^n = z^n$$
, $n > 2$, $n \in \mathbb{N}$

Find integers x, y, $z \ge 0$ such that

$$x^n + y^n = z^n, n > 2$$

$$x = y = z = 0$$

☐ Given "unknown" random number r, find x such that

$$r * x = 0$$

☐ Given "unknown" random number r, find x such that

$$r * x = 0$$

$$\Box$$
 $x = 0$

- Using Fermat's little theorem: given p prime and x, find x^{-1} mod p
- $x^{p-1} = 1 \mod p \rightarrow x^{p-2} * x = 1 \mod p \rightarrow x^{p-2} = x^{-1} \mod p$
- What will happen when x = 0? $x^{-1} = x^{p-2} = 0^{p-2} = 0 \mod p$ → Inverse of 0 mod p is 0 ?!?

To bypass zero knowledge/signature verification, the attacker has to find x, y, ... such that f(x, y, ...) = 0

Elliptic Curve

Elliptic Curve Group Structure

- \Box Addition: P + Q
- \Box Zero (infinity) point: P + 0 = 0 + P = P
- \blacksquare qG = G + G + ... + G = 0, q is the order of the point.
- Group (0, G, 2G, ..., (q 1)G)

0 in Elliptic Curve

$$x.0 = 0, \forall x$$

Pairing

Pairing

- Arr e(P + Q, R) = e(P, R) * e(Q, R)
- \Box e(aP, bQ)= e(P, Q)ab
- = e(aP, bQ) = e(P, Q)^{ab} = e(abP, Q) = e(bP, aQ): pairing helps checking multiplication relation

Pairing with 0

$$e(0, X) = 1 = e(Y, 0), \forall X, Y$$

Basic ZKP protocol and terminologies

Interactive Schnorr protocol

Prover has private key w, public key W = wG.

The prover wants to convince the verifier that it "knows" the private key w without revealing any information about w.

Prover

w, W= wG

Verifier

W

Interactive Schnorr protocol

Prover wants to convince the verifier that it "knows" the private key w without revealing any information about w

Note: zG = (r + c.w) G = rG + c.w.G = R + cW

This protocol is the basis of digital signature

Why does verifier know nothing about w?

Prover wants to convince the verifier that it "knows" the private key w without revealing any information about w

r is random so r + c.w masks out any information related to c.w or w

How is verifier convinced that prover "knows" w?

Prover wants to convince the verifier that it "knows" the private key w without revealing any information about w

If the verifier "manipulates" the prover's execution and can "extract w" from the manipulation process then the prover must have use w in its execution, i.e.,, the prover knows w

How is verifier convinced that prover "knows" w?

If the verifier "manipulates" the prover's execution and can "extract w" from the manipulation process then the prover must have use w in its execution, i.e., the prover knows w.

Note c≠c', but r does not changes. The verifier extracts w as follow

$$z = r + wc, z' = r + w.c'$$

 $(z - z') = w(c - c')$
 $w = (z - z')/(c - c')$

Fiat-Shamir transform

Fiat-Shamir transform: to transform public coin interactive protocol to an non-interactive one.

The challenge c is hash of transcript, i.e., *public* ZKP statement and all public values computed in the proof (e.g. commitments).

Note: the attacker can not control the output of c = Hash(W, R)

ZKP terminologies

- In cryptography, instead of saying proof, we use *argument* that is based on *computational* assumption (e.g. discrete log problem).
- The prover wants to convince the verifier that F(x, w) = 0 is true where x the public input, w is private input or witness.
- In Schorr protocol:
 - \Box x is W, w = w
 - \Box F(x, w) = wG W = 0

ZKP terminologies

- If the prover convince the verifier that it "knows" w then we say that it's "argument of knowledge".
- If the verifier only learns that F(x, w) = y is correct without learning any information about the witness w then we call the protocol "zero-knowledge".
- □ NARK: Non-interactive ARgument of Knowledge
- SNARK: Succinct NARK if the proof (e.g. R, z) is short
- □ zk-SNARK: **z**ero-**k**nowledge SNARK

SNARK software system

 x_2

SNARK prover

——— SNARK verifier verifies π

Arithmetic circuit

Arithmetic circuit

* is called a gate Left input: x_1 Right input: x_2 Output: o_1 Constraint: $0 = output_1 - left_1 * right_1 = o_1 - x_1 * x_2$

Note that output of gate 1 (*) equals to left input of gate 3 (+) Permutation/Copy constraint: o_1 = left₃

Polynomial commitment

- \Box p(x) = p₀ + p₁x + ... + p_dx^d where p_d \in F_p, p ~ 2²⁵⁶
- ightharpoonup Prover ightharpoonup Verifier: c = commit(p, r)
- → Verifier → Prover: random z
- \Box Prover \rightarrow Verifier: Evaluation proof π that p(z) = y

Polynomial Interactive Oracle Proof (PIOP)

Polynomial Identity Lemma

- $Arr Pr_{z \in S}[p(z) = 0] \le d/|S| \text{ where } p(x) = p_0 + p_1 x + ... + p_d x^d, p_d \in F_p$
- \Box Why? Polynomial p(x) has at most d roots in finite field F_p

Checking zero polynomial

- \Box Check whether p(x) ?= 0 (i.e. p(x) is zero polynomial or all coefficients are 0)
- Prover \rightarrow Verifier: proof π that p(z) = 0 and the verifier accepts the proof then p(x) = 0 with high probability. Why? The probability that p(z) = 0 is d/p which is negligible (d \sim millions, p $\sim 2^{256}$)

Checking multiple zero polynomials

 $\Box \quad \text{Check whether } f_1(x_1, ..., x_m) ?= 0, f_2(x_1, ..., x_m) ?= 0, ..., f_n(x_1, ..., x_m) ?= 0$

Checking multiple zero polynomials (Random linear combination)

- $\Box \quad \text{Check whether } f_0(x_1, ..., x_m) ?= 0, f_1(x_1, ..., x_m) ?= 0, ..., f_{n-1}(x_1, ..., x_m) ?= 0$
- ☐ Verifier \rightarrow Prover: random r_0 , ..., $r_{n-1} \in F_p$, $p \sim 2^{256}$
- Now need to check **1** polynomial $f(x) = r_{0*}f_0(x_1, ..., x_m) + r_1*f_1(x_1, ..., x_m) + r_{n-1}*f_{n-1}(x_1, ..., x_m) ?= 0$

Checking multiple zero polynomials (Random combination)

- $\Box \quad \text{Check whether } f_1(x_1, ..., x_m) ?= 0, f_2(x_1, ..., x_m) ?= 0, ..., f_{n-1}(x_1, ..., x_m) ?= 0$
- □ Verifier \rightarrow Prover: random $r \in F_r$
- Now need to check **1** polynomial $f(x) = f_0(x_1, ..., x_m) + r^*f_1(x_1, ..., x_m) + r^{n-1}*f_{n-1}(x_1, ..., x_m) ?= 0$

Quotient polynomial

 \blacksquare Polynomial p(x) has root at z iff exists quotient polynomial q(x):

$$p(x) = q(x).(x - z)$$

 \Box To check the multiplication relation q(x).(x-z)?= p(x), we can use pairing

Vanishing polynomial & roots of unity

- Polynomial p(x) has roots at z_1 , ..., z_n iff $\exists q: p(x) = q(x)(x z_1)...(x-z_n)$
- The polynomial $Z_H(x) = (x z_1)... (x z_n)$ is called the vanishing polynomial
- If $z_i = w^i$ where $w^n = 1$ (roots of unity) then $Z_H(x) = x^n 1$

- zkSNARK: **z**ero-**k**nowledge **S**uccinct **N**on-interactive **AR**gument of **K**nowledge
- Polynomial commitment
- ☐ Random (linear) combination
- ☐ Fiat-Shamir transform
- Pairing

PLONK

- Pairing maps 2 points in 2 curves to finite field where G_1 , G_2 are base points in 2 curves
- Notation: $[x]_1 = xG_1$, $[x]_2 = xG_2$ where x is secret that no one knows
- Important observation: $[x]_1 = xG_1$ protects the **confidentiality** of x, but the attacker can **modify** $[x]_1$

$$e([W_z]_1 + u \cdot [W_{z\omega}]_1, [x]_2) \cdot e(-(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1), [1]_2) \stackrel{?}{=} 1$$

$$e([W_z]_1 + u \cdot [W_{z\omega}]_1, [x]_2) \cdot e(-(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1), [1]_2) \stackrel{?}{=} 1$$

- ☐ Which parameters that an attacker can *manipulate*?
- ☐ What is the *least effort* way to manipulate parameters?

$$e([W_z]_1 + u \cdot [W_{z\omega}]_1, [x]_2) \cdot e(-(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1), [1]_2) \stackrel{?}{=} 1$$

- [Wz]₁, [Wzω]₁are under the attacker's control. To be clear, the attacker can **modify** [Wz]₁, [Wzω]₁but the attacker does **not know** the inside true values Wz, Wzω
- \Box u = hash(transcript): Fiat-Shamir transform so it's **outside the attacker's control**
- \Box x is secret that no one knows
- F and E are computed by the verifier (not attacker) in a **complicated** multi-steps process, so let's **ignore** them (lazy attacker's mindset)

$$e([W_z]_1 + u \cdot [W_{z\omega}]_1, [x]_2) \cdot e(-(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1), [1]_2) \stackrel{?}{=} 1$$

 $[Wz]_1$, $[Wz\omega]_1$ are natural attack targets

$$e([W_z]_1 + u \cdot [W_{z\omega}]_1, [x]_2) \cdot e(-(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1), [1]_2) \stackrel{?}{=} 1$$
 Denote

$$\begin{split} P[1] &= [W_z]_1 + u \cdot [W_{z\omega}]_1 \\ P[0] &= -(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1) \\ e(P[1], [x]_2) \cdot e(P[0], [1]_2) &\stackrel{?}{=} 1 \end{split}$$

 $[Wz]_1$, $[Wz\omega]_1$ are natural attack targets

$$P[1] = [W_z]_1 + u \cdot [W_{z\omega}]_1$$

$$P[0] = -(z \cdot [W_z]_1 + uz\omega \cdot [W_{z\omega}]_1 + [F]_1 - [E]_1)$$

$$e(P[1], [x]_2) \cdot e(P[0], [1]_2) \stackrel{?}{=} 1$$

What if $[Wz]_1 = 0$, $[Wz\omega]_1 = 0$?

- \blacksquare P[1] = 0 + u.0 = 0: **neutralize** the role of Fiat-Shamir transform
- Arr e(P[1], [x]₂) = e(ho, [x]₂) = 1 : yay!
- $P[o] = -(z.[Wz]_1 + uz\omega.[Wz\omega]_1 + [F]_1 [E]_1) = -(z.o + uz\omega.o + [F]_1 [E]_1) = -(o + uz\omega.o + [F]_1 [E]_1) \neq o \rightarrow e(P[o], [1]_2) \neq 1$
- \Box So, the attack *doesn't* work? *No, in theory*

The attack in practice

- Sends $[Wz]_1 = 0$, $[Wz\omega]_1 = 0$ to the verifier program
- The verifier computes $e(P[o], [1]_2) = 1$ and it accepts the proof!

Security's consequence

- ☐ The prover can **forge** proof for **incorrect** circuit
- Even if the prover does **not** know the witness, it can convince the verifier that it knows the witness.

Why does the attack work in practice?

The attack falls through a chain of perfectly aligned software cracks

Elliptic Curve Point Representation

- Byte array: on the wire or storage
- \Box Affine coordinate: P = (x, y)
- □ Projective coordinate: P = (x, y, z). If $z \ne 0$, $P \sim (x/z, y/z, 1)$

Attack

- [Wz]₁= o = (o, o), [Wz ω]₁= o = (o, o) where o = (o, o) means its affine coordinate (x, y) = (o, o)
- $P[0] \neq 0, P[1] = 0$

Code vulnerabilities (1)

- The verifier checks whether $[Wz]_1$, $[Wz\omega]_1$ are on the elliptic curve or not. $[Wz]_1 = 0$, $[Wz\omega]_1 = 0$ are not valid points on the curve
- The verifier does *not stop* immediately when it sees invalid points. It continues the execution, but it excludes the invalid opoints in *some* further computations
- \square [Wz]₁, [Wz ω]₁ are *included* in the crucial computation with pairing which allows the attack to work

Code vulnerabilities (2)

- ☐ Elliptic curve code *rejects* the *infinity point*
- However, according to the code, P[1] = o is *not infinity*. The is_point_at_infinity method checks whether the most significant bit of the P[1] is 1, but P[1] = o's most significant bit is o

Code vulnerabilities (3)

- ☐ Computes the inverse of o mod p and it *doesn't* check for o input.
- Uses Fermat's little theorem: $x^(p-1) = 1 \mod p$ or $x^(p-2)$. $x = 1 \mod p$ or $x^(p-2)$ is the inverse of $x \mod p$. When x = 0, $x^(p-2) = 0$ which means that the inverse of $x \mod p$.

Code vulnerabilities (4)

- The array (P[0], P[1]) = (P[0] \neq 0, P[1] = 0) are in projective coordinates (x, y, z)
- Normalization process to eliminate z (i.e. to make z = 1) \rightarrow affine coordinate (x/z, y/z) \sim (x, y, 1)
- Montgomery batch inversion technique: to compute $1/x_1$, ..., $1/x_n$, compute only **1 inversion** $I = 1/(x_1...x_n)$ and the rest are multiplication with I. For instance: $1/x_1 = x_2...x_n/(x_1...x_n) = x_2...x_n * I$.
- What will happen if I = 0? **All** $1/x_1$, ..., $1/x_n$ are **0** although x_1 may not be **0**.

Code vulnerabilities (4)

Batch-normalizes with Montgomery batch inversion algorithm where P[1].z = $\frac{0}{1}$ will affect P[0]. The vulnerable code outputs (P[0], P[1]) = $\frac{0}{1}$, i.e., it turns non-zero point P[0] into a $\frac{0}{1}$ point.

Code vulnerabilities (4)

```
Before batch normalize
 P[0]:{0x12270675066dbf202e8766f5fa48648f95032fbff46996a08e05
 e427ed0fffb9.0x2cce89ca786bd0a3db55776a24aa3253bce3b8ef689
 849f93596b5b26afec90f,0x04ae1f4cd5f84a484acc4ba115fbd02a879
 d2e30b8cd97e18f3865887213823b}
 After batch normalize
```

Code vulnerabilities (5)

P[1] = $\frac{0}{1}$ is not on the curve and P[1] = $\frac{0}{1}$ is *not* infinity according to step 2, the *pairing* code considers P[1] = $\frac{0}{1}$ as infinity, in the sense that $e(\frac{0}{1}, R) = 1$ for all R.

Thanks for your attention!