湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——函数零点(2)

隐零点

导函数零点按能否求精确解可以分为两类:一类是数值上能精确求解的,称之为"显零点";另一类是能够判断其存在但无法直接求值的,称之为"隐零点".对于隐零点问题,由于涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧,对学生综合能力的要求较高,成为考查的热点.。

类型一 导函数隐零点中的(整体)代换

- 1.设函数 $f(x) = e^{2x} a \ln x$.
- (1)讨论 f(x)的导函数 f(x)的零点的个数;
- (2)证明: 当 a>0 时, $f(x) \ge 2a + a \ln \frac{2}{a}$
- 2.已知函数 $f(x) = x \ln x \frac{1}{2} a(x+1)^2$, $a \in \mathbf{R}$ 恰好有两个极值点 x_1 , $x_2(x_1 < x_2)$.
- (1)求证:存在实数 $m \in \left(\frac{1}{2}, 1\right)$,使 0 < a < m;
- (2)求证: $-\frac{5}{4} < f(x_1) < -\frac{1}{e}$.

类型二 导函数零点的设而不求技巧

- 3. 已知函数 $f(x) = e^{x+a} \ln x$ (其中 e = 2.718 28…是自然对数的底数).求证: 当 $a > 1 \frac{1}{e}$ 时,f(x) > e + 1.
- 4. 已知函数 $f(x) = (x-1)\ln x x 1$.

证明: (1)f(x)存在唯一的极值点;

- (2)f(x)=0有且仅有两个实根,且两个实根互为倒数.
- 5.已知函数 $f(x) = ax + x \ln x (a \in \mathbf{R})$.
- (1)若函数 f(x)在区间[e, +∞)上为增函数,求 a 的取值范围;
- (2)当 a=1 且 $k \in \mathbb{Z}$ 时,不等式 k(x-1) < f(x)在 $x \in (1, +\infty)$ 上恒成立,求 k 的最大值.

6.记 f'(x), g'(x)分别为函数 f(x), g(x)的导函数.若存在 $x_0 \in \mathbf{R}$,满足 $f(x_0) = g(x_0)$ 且 $f'(x_0) = g'(x_0)$,则称 x_0 为函数 f(x)与 g(x)的一个"S 点".

- (1)证明:函数 f(x)=x与 $g(x)=x^2+2x-2$ 不存在"S点";
- (2)若函数 $f(x) = ax^2 1$ 与 $g(x) = \ln x$ 存在 "S 点", 求实数 a 的值;
- (3)已知函数 $f(x) = -x^2 + a$, $g(x) = \frac{be^x}{x}$.对任意 a > 0,判断是否存在 b > 0,使函数 f(x)与 g(x)在区间(0, $+\infty$)内存在 "S点",并说明理由.
- 7.已知函数 $f(x) = x \ln x \frac{e^x}{x}$.
- (1)求 f(x)的最大值;
- (2)若 $f(x)+\left(x+\frac{1}{x}\right)e^{x}-bx\geq 1$ 恒成立,求实数 b 的取值范围.
- 8.已知函数 $f(x) = xe^x a(x + \ln x)$.
- (1)讨论 f(x)极值点的个数;
- (2)若 x_0 是f(x)的一个极小值点,且 $f(x_0)>0$,证明: $f(x_0)>2(x_0-x_0^3)$.

最值函数的零点问题

- 1. 已知函数 $f(x) = lnx x^2 + ax$, $g(x) = e^x e$, 其中 a > 0.
- (I)证明: $lnx \leqslant x-1$;
- (II) 若a=2, 证明 $f(x) < \frac{5}{4}$;
- (Ⅲ) 用 $max\{m, n\}$ 表示 m 和 n 中的较大值,设函数 $h(x) = max\{f(x), g(x)\}$,讨论函数 h(x) 在 $(0, +\infty)$ 上的零点的个数.
- 2. 已知函数 $f(x) = (x-4)e^{x-3} \frac{1}{2}x^2 + 3x \frac{7}{2}$, $g(x) = ae^x + \cos x$, 其中 $a \in R$.
- (1) 讨论函数 f(x) 的单调性,并求不等式 f(x) > 0 的解集;
- (2) 若a=1, 证明: 当x>0时, g(x)>2;
- (3) 用 $max\{m, n\}$ 表示 m , n 中的最大值,设函数 $h(x) = max\{f(x), g(x)\}$,若 $h(x) \ge 0$ 在 $(0, +\infty)$ 上恒成立,求实数 a 的取值范围.
- 3. 已知函数 $f(x) = x^2 x x \ln x$, $g(x) = x^3 3ax + e$.
- (1) 证明 $f(x) \ge 0$ 恒成立;
- (2) 用 $max\{m, n\}$ 表示 m , n 中的最大值. 已知函数 $h(x) = \frac{f(x)}{x} x + 2$,记函数 $\varphi(x) = max\{h(x), g(x)\}$,若函数 $\varphi(x)$ 在 $(0,+\infty)$ 上恰有 2 个零点,求实数 α 的取值范围.

- **4.** 已知函数 $f(x) = \frac{2}{3}x^3 2x^2 + \frac{4}{3}$, $g(x) = e^x ax(x \in R)$.
- (1) 若 f(x) 在区间 [a-5, a-1] 上的最大值为 $\frac{4}{3}$, 求实数 a 的取值范围;
- (2) 设 $h(x) = \frac{3}{2} f(x) x + 1$, $F(x) = \begin{cases} h(x), h(x) \leqslant g(x) \\ g(x), h(x) > g(x) \end{cases}$, 记 x_1 , x_2 , ... x_n 为 F(x) 从小到大的零点,当 $a \geqslant e^3$ 时,讨论 F(x) 的零点个数及大小.

零点差问题解答

- 5. 已知函数 $f(x) = (x^3 + 3x^2 + ax + b)e^{-x}$.
- (1) 如 a = b = -3, 求 f(x) 的单调区间;
- (2) 若 f(x) 在 $(-\infty,\alpha)$, $(2,\beta)$ 单调增加,在 $(\alpha,2)$, $(\beta,+\infty)$ 单调减少,证明: $\beta-\alpha>6$.
- **6.** 已知函数 $f(x) = \frac{1}{2}ae^{2x} x^2 ax$, $a \in R$.
- (1) 当 a = 1 时,求函数 $g(x) = f(x) + x^2$ 的单调区间;
- (2) 当 $0 < a < \frac{4}{e^4 1}$, 时,函数 f(x) 有两个极值点 x_1 , $x_2(x_1 < x_2)$, 证明: $x_2 x_1 > 2$.
- 7. 已知函数 f(x) = lnx ax.
- (1) 讨论 f(x) 的单调性;
- (2) 若 x_1 , x_2 , $(x_1 < x_2)$ 是f(x)的两个零点.证明:

(i)
$$x_1 + x_2 > \frac{2}{a}$$
;

(ii)
$$x_2 - x_1 > \frac{2\sqrt{1 - ea}}{a}$$
.

- 8. 已知函数 f(x) = ax + lnx.
- (1) 讨论 f(x) 的单调性;
- (2) 若 x_1 , $x_2(x_1 < x_2)$ 是f(x)的两个零点.证明:

(i)
$$x_1 + x_2 > -\frac{2}{a}$$
;

(ii)
$$x_2 - x_1 > -\frac{2\sqrt{1 + ea}}{a}$$
.

同构法解零点问题

- 9. 已知函数 $f(x) = \frac{ax}{e^{x-1}} + x \ln(ax) 2(a > 0)$,若函数 f(x) 在区间 $(0, +\infty)$ 内存在零点,求实数 a 的取值范围
- **10.** 已知 $f(x) = x \ln x + \frac{a}{2}x^2 + 1$.
- (1) 若函数 $g(x) = f(x) + x\cos x \sin x x \ln x 1$ 在 $(0, \frac{\pi}{2}]$ 上有 1 个零点,求实数 a 的取值范围.
- (2) 若关于 x 的方程 $xe^{x-a} = f(x) \frac{a}{2}x^2 + ax 1$ 有两个不同的实数解,求 a 的取值范围.
- 11. 已知函数 $f(x) = e^{2x+a} \frac{1}{2} lnx + \frac{a}{2}$.
- (1) 若函数 y = f(x) 在 $(0, \frac{1}{2})$ 上单调递减,求 a 的取值范围;
- (2) 若函数 y = f(x) 在定义域内没有零点,求 a 的取值范围.
- 12. 已知函数 $f(x) = e^{x-1} mx^2 (m \in R)$.
- (1) 选择下列两个条件之一: ① $m = \frac{1}{2}$; ②m = 1; 判断 f(x) 在区间 $(0, +\infty)$ 是否存在极小值点,并说明理由;
- (2) 已知m>0, 设函数g(x)=f(x)+mxln(mx). 若g(x)在区间 $(0,+\infty)$ 上存在零点, 求实数m的取值范围.

最值函数的零点问题

- 4. 已知函数 $f(x) = \ln x x^2 + ax$, $g(x) = e^x e$, 其中 a > 0.
- (I)证明: *lnx*≤*x*−1;
- (II) 若a=2, 证明 $f(x) < \frac{5}{4}$;
- (III) 用 $max\{m, n\}$ 表示 m 和 n 中的较大值,设函数 $h(x) = max\{f(x), g(x)\}$,讨论函数 h(x) 在 $(0, +\infty)$ 上的零点的个数.

【解答】(I)证明:设函数 $\varphi(x) = \ln x - x + 1$,则 $\varphi'(x) = \frac{1}{x} - 1, x > 0$.

令 $\varphi'(x) = 0$ 得 x = 1,则在 (0,1) 上, $\varphi'(x) > 0$, $\varphi(x)$ 递增,在 $(1,+\infty)$ 上, $\varphi'(x) < 0$, $\varphi(x)$ 递减. 所以 $\varphi(x) \leqslant \varphi(1) = 0$,即 $\ln x \leqslant x - 1$.

(II) 证明: 当
$$a = 2$$
时, $f(x) = lnx - x^2 + 2x \le x - 1 - x^2 + 2x = -(x - \frac{3}{2})^2 + \frac{5}{4} \le \frac{5}{4}$,

前面的 " \leq " 仅当 x=1 时取等号后面的 " \leq " 仅当 $x=\frac{3}{2}$ 时取等号,不能同时取到.

所以 $f(x) < \frac{5}{4}$.

(III)解:在区间(1,+ ∞)上,g(x)>0,所以 $h(x)=max\{f(x), g(x)\}\geqslant g(x)>0$,

所以 $h(x) = max\{f(x), g(x)\} \geqslant g(x) > 0$ 在区间 $(1,+\infty)$ 上不可能有零点.

下面只考虑区间(0,1))上和x=1处的情况.

由题意 f(x) 的定义域为 $(0,+\infty)$, $f'(x) = \frac{1}{x} - 2x + a = \frac{-2x^2 + ax + 1}{x}$.

令
$$f'(x_0) = 0$$
 可得 $x_0 = \frac{a + \sqrt{a^2 + 8}}{4}$ (负值舍去).

在 $(0,x_0)$ 上f'(x)>0,f(x)递增,在 $(x_0,+\infty)$ 上f'(x)<0,f(x)递减, $f(x)_{max}=f(x_0)$.

① $\exists a = 1 \forall , x_0 = 1, \exists f(x)_{max} = f(1) = 0.$

因为在区间(0,1)上,g(x)<0,且g(1)=0,所以此时h(x)存在唯一的零点x=1.

②当
$$0 < a < 1$$
时, $x_0 = \frac{a + \sqrt{a^2 + 8}}{4} < 1$. 因为 $f'(x_0) = \frac{1}{x_0} - 2x_0 + a = 0$,所以 $a = 2x_0 - \frac{1}{x_0}$.

所以
$$f(x_0) = lnx_0 - x_0^2 + x_0(2x_0 - \frac{1}{x_0}) = lnx_0 + x_0^2 - 1 < ln1 + 1^2 - 1 = 0$$
.

于是 f(x) < 0恒成立.

结合函数 g(x) 的性质, 可知此时 h(x) 存在唯一的零点 x=1.

③当
$$a>1$$
时, $x_0=\frac{a+\sqrt{a^2+8}}{4}>1$,所以 $f(x)$ 在(0,1)上递增.

又因为
$$f(1) = a - 1 > 0$$
, $f(\frac{1}{2a}) = \ln \frac{1}{2a} - \frac{1}{4a^2} + \frac{1}{2} < \frac{1}{2a} - 1 - \frac{1}{4a^2} + \frac{1}{2} = -(\frac{1}{2a} - \frac{1}{2})^2 - \frac{1}{4} < 0$,

所以 f(x) 在区间 (0,1) 上存在唯一的零点 $x=x_1$.

结合函数 g(x) 的性质, 可知 x = x 是 h(x) 唯一的零点.

综上所述: 当 $0 < a \le 1$ 时, h(x)在 $(0,+\infty)$ 上有唯一的零点x=1;

当 a > 1 时,h(x) 在 $(0,+\infty)$ 上也有 1 个零点.

5. 己知函数
$$f(x) = (x-4)e^{x-3} - \frac{1}{2}x^2 + 3x - \frac{7}{2}$$
, $g(x) = ae^x + \cos x$, 其中 $a \in R$.

- (1) 讨论函数 f(x) 的单调性,并求不等式 f(x) > 0 的解集;
- (3) 用 $max\{m, n\}$ 表示 m, n 中的最大值,设函数 $h(x) = max\{f(x), g(x)\}$,若 $h(x) \ge 0$ 在 $(0, +\infty)$ 上恒成立,求实数 a 的取值范围.

【解答】解: (1)
$$f'(x) = (x-3)e^{x-3} - x + 3 = (x-3)(e^{x-3} - 1)$$
, (1分)

当
$$x < 3$$
时, $x - 3 < 0$, $e^{x - 3} - 1 < 0$, $\therefore f'(x) > 0$,

当x=3时,f'(x)=0,(2分)

所以当 $x \in R$ 时, $f'(x) \ge 0$,即f(x)在R上是增函数;(3分)

又 f(3) = 0,所以 f(x) > 0 的解集为 $(3,+\infty)$. (4 分)

(2)
$$g'(x) = e^x - \sin x$$
. (5 $\frac{1}{2}$)

由x>0, 得 $e^x>1$, $\sin x \in [-1, 1]$, (6分)

则 $g'(x) = e^x - \sin x > 0$,即 g(x) 在 $(0,+\infty)$ 上为增函数. (7分)

故
$$g(x) > g(0) = 2$$
,即 $g(x) > 2$. (8分)

(3)由(1)知,

当 $x \ge 3$ 时, $f(x) \ge 0$ 恒成立,故 $h(x) \ge 0$ 恒成立;

当 x < 3 时, f(x) < 0, 因为 $h(x) = max\{f(x), g(x)\}$, 要使得 $h(x) \ge 0$ 恒成立,

只要 $g(x) \ge 0$ 在 (0,3) 上恒成立即可. (9 分)

$$\pm g(x) = ae^x + \cos x \geqslant 0, \quad \text{$\exists a \geqslant -\frac{\cos x}{e^x}$.}$$

设函数
$$r(x) = -\frac{\cos x}{e^x}$$
, $x \in [0, 3]$,

则
$$r'(x) = \frac{\sin x + \cos x}{e^x}$$
. (10 分)

随着x变化,r'(x)与r(x)的变化情况如下表所示:

x	$(0,\frac{3\pi}{4})$	$\frac{3}{4}\pi$	$(\frac{3\pi}{4},3)$
r'(x)	+	0	_
r(x)	单调递增	极大值	单调递减

所以r(x)在 $(0,\frac{3\pi}{4})$ 上单调递增,在 $(\frac{3\pi}{4},3)$ 上单调递减. (11 分)

$$r(x)$$
 在 (0,3) 上唯一的一个极大值,即极大值 $r(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$,故 $a \geqslant \frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$.

综上所述,所求实数a的取值范围为[$\frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}}$, + ∞). (12 分)

- 6. 已知函数 $f(x) = x^2 x x \ln x$, $g(x) = x^3 3ax + e$.
- (1) 证明 *f*(*x*)≥0恒成立;
- (2) 用 $max\{m, n\}$ 表示 m , n 中的最大值. 已知函数 $h(x) = \frac{f(x)}{x} x + 2$,记函数 $\varphi(x) = max\{h(x), g(x)\}$,若函数 $\varphi(x)$ 在 $(0,+\infty)$ 上恰有 2 个零点,求实数 a 的取值范围.

【解答】(1) 证明: 由题得 f(x) 的定义域为 $(0,+\infty)$,

则 $x^2 - x - x \ln x \ge 0$ 在 $x \in (0, +\infty)$ 上恒成立等价于 $x - 1 - \ln x \ge 0$ 在 $x \in (0, +\infty)$ 上恒成立,. (1分)

当 $\phi'(x) < 0$ 时,0 < x < 1; $\phi'(x) > 0$ 时,x > 1,

(2) 解: 由题得 h(x) = 1 - lnx,

② $\stackrel{\text{def}}{=} x = e \text{ pr}$, h(e) = 0, $g(e) = e^3 - 3ae + e$

$$a.$$
 当 g (e) = $e^3 - 3ae + e \le 0$, 即 $a \ge \frac{e^2 + 1}{3}$ 时, $x = e \neq \varphi(x)$ 的一个零点;

③当x > e时,h(x) < 0恒成立,因此只需考虑g(x)在 $(e,+\infty)$ 上的零点情况.

 $\oplus g'(x) = 3x^2 - 3a$

$$a$$
. 当 $a \le e^2$ 时, $g'(x) > 0$, $g(x)$ 在 $(e, +\infty)$ 上单调递增,且 $g(e) = e^3 - 3ae + e$,

当
$$a < \frac{e^2 + 1}{3}$$
 时, g (e) > 0,则 $g(x)$ 在 $(e, +\infty)$ 上无零点,故 $\varphi(x)$ 在 $(0, +\infty)$ 上无零点;

当
$$a = \frac{e^2 + 1}{3}$$
 时, $g(e) = 0$,则 $g(x)$ 在 $(e, +\infty)$ 上无零点,故 $\varphi(x)$ 在 $(0, +\infty)$ 上有 1 个零点;

当 $\frac{e^2+1}{3} < a \le e^2$ 时,由 g(e) < 0 , $g(2e) = 8e^3 - 6ae + e \ge 8e^3 - 6e^3 + e > 0$,得 g(x) 在 $(e,+\infty)$ 上仅有一个零点,故 $\varphi(x)$ 在 $(0,+\infty)$ 上有 2 个零点;

所以
$$\frac{e^2+1}{3} < a \le e^2$$
,.....(9分)

b. 当 $a > e^2$ 时,由 g'(x) = 0 得 $x = \pm \sqrt{a}$,

曲 g'(x) < 0 时, $e < x < \sqrt{a}$; 当 g'(x) > 0 时 $x > \sqrt{a}$, g'(x) < 0,

故 g(x) 在 (e,\sqrt{a}) 上单调递减, g(x) 在 $(\sqrt{a},+\infty)$ 上单调递增;

由 g (e) <0, $g(2a)=8a^3-6a^2+e>2a^2+e>0$,得 g(x) 在 $(e,+\infty)$ 上仅有一个零点,故 $\varphi(x)$ 在 $(0,+\infty)$ 上有 2 个零点;

所以 $a > e^2$,......(11 分)

- 7. 已知函数 $f(x) = \frac{2}{3}x^3 2x^2 + \frac{4}{3}$, $g(x) = e^x ax(x \in R)$.
- (1) 若 f(x) 在区间 [a-5, a-1] 上的最大值为 $\frac{4}{3}$,求实数 a 的取值范围;
- (2) 设 $h(x) = \frac{3}{2} f(x) x + 1$, $F(x) = \begin{cases} h(x), h(x) \leq g(x) \\ g(x), h(x) > g(x) \end{cases}$, 记 x_1 , x_2 , ... x_n 为 F(x) 从小到大的零点,当 $a \geqslant e^3$ 时,讨

论 F(x) 的零点个数及大小.

【解答】解: (1) :: $f'(x) = 2x^2 - 4x = 2x(x-2)$,

 $\therefore f(x)$ 在($-\infty$,0)和(2,+ ∞)上单调递增,在(0,2)上单调递减,

f(x) 的极大值为 $f(0) = \frac{4}{3}$, f(x) 的极小值为 $f(2) = -\frac{4}{3}$,

又 $f(3) = \frac{4}{3}$, .. 若 f(x) 在区间 [a-5, a-1] 上的最大值为 $\frac{4}{3}$,

则 $\begin{cases} a-5 \leqslant 0 \\ 0 \leqslant a-1 \leqslant 3 \end{cases}$,解得 $1 \leqslant a \leqslant 4$;

(2)
$$h(x) = \frac{3}{2}f(x) - x + 1 = x^3 - 3x^2 - x + 3 = (x+1)(x-1)(x-3)$$
,

当 $x \le -1$ 时, $g(x) = e^x - ax > 0$,此时F(x) = h(x),

 $\therefore F(x)$ 在($-\infty$, -1]上有一个零点, $x_1 = -1$;

当x > -1时, $g'(x) = e^x - a$, $\therefore g(x)$ 在(0,lna)上单调递减,在 $(lna,+\infty)$ 上单调递增,

 $\mathbb{Z} a \geqslant e^3$, :: $lna \geqslant 3$,

由于g(0)=1>0, g(1)=e-a<0, $x\in (-1,1)$ 时, f(x)>0,

 $\therefore F(x)$ 在 (0,1) 上有一个零点 x_2 ;

 $\mathbb{Z} g(lna) = a(1-lna) < 0$,

 $\Rightarrow k(x) = x - lnx(x \ge e^3)$, $k'(x) = \frac{x-1}{x} > 0$,

 $\therefore k(x)$ 在[e^3 , + ∞) 上单调递增, $k(x) = x - \ln x \geqslant k(e^3) = e^3 - 3 > 0$,

 $\therefore a > lna, \quad g \quad (a) = e^a - a^2.$

再令 $\varphi(x) = e^x - x^2(x \ge 2)$, $\varphi' = e^x - 2x$, $\varphi''(x) = e^x - 2 > 0$,

 $\therefore \varphi'$ 在[2, +\infty] 上单调递增,从而 $\varphi'(x) > \varphi'$ (2) = $e^2 - 4 > 0$,

 $\therefore \varphi(x)$ 在[2, +∞)上单调递增, $\varphi(x) > \varphi$ (2) = $e^2 - 4 > 0$, 则 g (a) > 0.

 $\therefore F(x)$ 在 (lna,a) 上有一个零点 x_2 ,

综上所述, 当 $a \ge e^3$ 时, F(x)有三个零点 $x_1 = -1$, $0 < x_2 < 1$, $lna < x_3 < a$.

 $\mathbb{E} x_1 < x_2 < x_3$.

零点差问题解答

- 1. 已知函数 $f(x) = (x^3 + 3x^2 + ax + b)e^{-x}$.
- (1) 如 a = b = -3, 求 f(x) 的单调区间;
- (2) 若 f(x) 在 $(-\infty,\alpha)$, $(2,\beta)$ 单调增加,在 $(\alpha,2)$, $(\beta,+\infty)$ 单调减少,证明: $\beta-\alpha>6$.

【解答】解: (I) 当 a=b=-3 时, $f(x)=(x^3+3x^2-3x-3)e^{-x}$,

故
$$f'(x) = -(x^3 + 3x^2 - 3x - 3)e^{-x} + (3x^2 + 6x - 3)e^{-x} = -e^{-x}(x^3 - 9x) = -x(x - 3)(x + 3)e^{-x}$$

当x < -3或0 < x < 3时,f'(x) > 0;

当-3 < x < 0或x > 3时,f'(x) < 0.

从而 f(x) 在 $(-\infty, -3)$, (0,3) 单调增加,在 (-3,0) , $(3,+\infty)$ 单调减少;

(II)
$$f'(x) = -(x^3 + 3x^2 + ax + b)e^{-x} + (3x^2 + 6x + a)e^{-x} = -e^{-x}[x^3 + (a - 6)x + b - a]$$
.

由条件得: f'(2) = 0, 即 $2^3 + 2(a-6) + b - a = 0$, 故 b = 4 - a,

从前 $f'(x) = -e^{-x}[x^3 + (a-6)x + 4 - 2a]$.

因为 $f'(\alpha) = f'(\beta) = 0$,

所以
$$x^3 + (a-6)x + 4 - 2a = (x-2)(x-\alpha)(x-\beta) = (x-2)(x^2 - (\alpha+\beta)x + \alpha\beta)$$
.

将右边展开,与左边比较系数得, $\alpha+\beta=-2$, $\alpha\beta=a-2$.

故
$$\beta - \alpha = \sqrt{(\beta + \alpha)^2 - 4\alpha\beta} = \sqrt{12 - 4a}$$
.,

又 $(\beta-2)(\alpha-2)<0$,即 $\alpha\beta-2(\alpha+\beta)+4<0$. 由此可得a<-6. 于是 $\beta-\alpha>6$.

2. 已知函数 $f(x) = \frac{1}{2}ae^{2x} - x^2 - ax$, $a \in R$.

(1) 当 a = 1 时,求函数 $g(x) = f(x) + x^2$ 的单调区间;

(2) 当 $0 < a < \frac{4}{e^4 - 1}$, 时,函数f(x)有两个极值点 x_1 , $x_2(x_1 < x_2)$, 证明: $x_2 - x_1 > 2$.

【解答】(1) 解: 当a=1时, $f(x)=\frac{1}{2}e^{2x}-x^2-x$,

$$g(x) = f(x) + x^2 = \frac{1}{2}e^{2x} - x$$
, $g'(x) = e^{2x} - 1$,

所以 g(x) 的单调递增区间为 $(0,+\infty)$, 单调递减区间为 $(-\infty,0)$.

(2) 证明: 函数 $f(x) = \frac{1}{2}ae^{2x} - x^2 - ax$ 的定义域为 R , $f'(x) = ae^{2x} - 2x - a$,

$$\diamondsuit h(x) = f'(x) = ae^{2x} - 2x - a,$$

因为函数 f(x) 有两个极值点 x_1 , $x_2(x_1 < x_2)$,

所以 x_1 , x_2 是函数h(x)的两个零点,

$$h(x_1) = h(x_2) = 0$$
,

$$h'(x) = 2ae^{2x} - 2$$
, $\diamondsuit h'(x) > 0$, $\overline{\Box} = \frac{1}{2} \ln \frac{1}{a}$, $\diamondsuit h'(x) < 0$, $\overline{\Box} = \frac{1}{2} \ln \frac{1}{a}$

所以h(x)在 $(-\infty, \frac{1}{2}ln\frac{1}{a})$ 上单调递减,在 $(\frac{1}{2}ln\frac{1}{a}, +\infty)$ 上单调递增,

所以
$$x_1 < \frac{1}{2} ln \frac{1}{a}$$
 , $x_2 > \frac{1}{2} ln \frac{1}{a}$,

由
$$0 < a < \frac{4}{e^4 - 1}$$
,可得 $\frac{1}{2}ln\frac{1}{a} > \frac{1}{2}ln\frac{e^4 - 1}{4} > 0$,

因为h(0) = 0, 所以 $x_1 = 0$,

所以要证 $x_1 - x_1 > 2$,即证 $x_2 > 2$,只需证h(2) < 0,

因为
$$0 < a < \frac{4}{e^4 - 1}$$
,

所以
$$h(2) = ae^4 - 4 - a = a(e^4 - 1) - 4 < \frac{4}{e^4 - 1}(e^4 - 1) - 4 < 4 - 4 = 0$$

所以 $x_2 - x_1 > 2$,得证.

- 3. 已知函数 f(x) = lnx ax.
- (1) 讨论 f(x) 的单调性;
- (2) 若 x_1 , x_2 , $(x_1 < x_2)$ 是f(x)的两个零点.证明:

$$(i) x_1 + x_2 > \frac{2}{a};$$

(ii)
$$x_2 - x_1 > \frac{2\sqrt{1 - ea}}{a}$$
.

【解答】解: (1) 函数 f(x) 的定义域为 $(0,+\infty)$,

$$f'(x) = \frac{1}{x} - a = \frac{1 - ax}{x}$$
,

当 $a \leqslant 0$ 时,f'(x) > 0,

所以 f(x) 在 $(0,+\infty)$ 上单调递增.

当a > 0时,令g(x) = 1 - ax,

所以在 $(0,\frac{1}{a})$ 上,g(x)>0,f'(x)>0,f(x)单调递增,

在 $(\frac{1}{a}, +\infty)$ 上,g(x)<0,f'(x)<0,f(x)单调递减,

综上, 当 $a \le 0$ 时, f(x)在 $(0,+\infty)$ 上单调递增.

当 a > 0 时,在 $(0, \frac{1}{a})$ 上 f(x) 单调递增,在 $(\frac{1}{a}, +\infty)$ 上 f(x) 单调递减.

(2) 证明: (i) 由 (1) 可知,要使由函数 f(x) 有两个零点,需 a > 0,且 $f(x)_{max} = f(\frac{1}{a}) > 0$,则 $0 < a < \frac{1}{a}$,

又
$$x_1 < x_2$$
,故 $0 < x_1 < \frac{1}{a}, x_2 > \frac{1}{a}$,则 $\frac{2}{a} - x_1 > \frac{1}{a}$,

$$\therefore g(x)$$
 在 $(0,\frac{1}{a})$ 上单减,

$$\therefore g(x_1) > g(\frac{1}{a}) = 0,$$

$$\nabla f(x_1) = 0$$
,

$$\therefore f(\frac{2}{a} - x_1) = \ln(\frac{2}{a} - x_1) - a(\frac{2}{a} - x_1) - f(x_1) = g(x_1) > 0,$$

$$\nabla f(x_2) = 0$$
,

$$\therefore x_2 > \frac{2}{a} - x_1$$
, $\mathbb{R}^2 x_1 + x_2 > \frac{2}{a}$;

(ii) 要证
$$x_2 - x_1 > \frac{2\sqrt{1-ea}}{a}$$
, 由(1)可知,只需证 $x_1 + x_2 + x_2 - x_1 > \frac{2}{a} + \frac{2\sqrt{1-ea}}{a}$, 即证 $x_2 > \frac{1+\sqrt{1-ea}}{a} > \frac{1}{a}$

:. 只需证
$$f(\frac{1+\sqrt{1-ea}}{a}) > 0$$
,即证 $\ln \frac{1+\sqrt{1-ea}}{a} - (1+\sqrt{1-ea}) > 0$,

所以上述不等式等价于 $\ln \frac{et}{1-(t-1)^2} - t > 0$,即 $\ln \frac{e}{2-t} - t > 0$,亦即 $\ln (2-t) + t < 1$,

$$\Leftrightarrow \varphi(t) = \ln(2-t) + t$$
, $\psi(t) = -\frac{1}{2-t} + 1 = \frac{1-t}{2-t} < 0 \ (t \in (1,2))$,

 $\therefore \varphi(t)$ 在 (1,2) 上单调递减,即 $\varphi(t) < \varphi$ (1) =1,即得证.

- 4. 已知函数 f(x) = ax + lnx.
- (1) 讨论 f(x) 的单调性;
- (2) 若 x_1 , x_2 ($x_1 < x_2$) 是f(x)的两个零点.证明:

(i)
$$x_1 + x_2 > -\frac{2}{a}$$
;

(ii)
$$x_2 - x_1 > -\frac{2\sqrt{1 + ea}}{a}$$
.

【解答】解: (1) 由题意可知, f(x) 的定义域为 $(0,+\infty)$,

因为
$$f(x) = ax + lnx$$
,所以 $f'(x) = \frac{1}{x} + a = \frac{1 + ax}{x}$,

当 $a \ge 0$ 时, f'(x) > 0 ,则 f(x) 在 (0,+∞) 上单调递增;

当a < 0时, 当 $0 < x < -\frac{1}{a}$ 时, f'(x) > 0, 则f(x)单调递增,

当 $x > -\frac{1}{a}$ 时, f'(x) < 0 ,则 f'(x) 单调递减.

综上所述, 当 $a \ge 0$ 时, f(x)在 $(0,+\infty)$ 上单调递增;

当a < 0时,f(x)在 $(0, -\frac{1}{a})$ 上单调递增,在 $(-\frac{1}{a}, +\infty)$ 上单调递减.

(2) 证明: (i) 原不等式等价于 $\frac{x_1 + x_2}{2} > -\frac{1}{a}$,

因为 $-ax_1 = lnx_1$ ①, $-ax_2 = lnx_2$ ②,

曲②-①,可得-
$$a(x_2-x_1)=lnx_2-lnx_1$$
,故- $a=\frac{lnx_2-lnx_1}{x_2-x_1}$,

则
$$\frac{x_1 + x_2}{2} > -\frac{1}{a}$$
 等价于 $\frac{x_1 + x_2}{2} > \frac{x_2 - x_1}{lnx_2 - lnx_1}$,

因为 $x_2 > x_1 > 0$,所以 $lnx_2 - lnx_1 > 0$,

即证明
$$lnx_2 - lnx_1 > \frac{2(x_2 - x_1)}{x_1 + x_2}$$
③,

等价于证明
$$\ln \frac{x_2}{x_1} - \frac{2(\frac{x_2}{x_1} - 1)}{1 + \frac{x_2}{x_1}} > 0$$
,

令
$$t = \frac{x_1}{x_1}(t > 1)$$
 , 设 $g(t) = Int - \frac{2(t-1)}{1+t}(t > 1)$, 即证明 $g(t) > 0$,

因为
$$g'(t) = \frac{1}{t} - \frac{4}{(1+t)^2} = \frac{(t-1)^2}{t(t+1)^2} > 0$$
,

则 g(t) 在 $(1,+\infty)$ 上单调递增,且 g(t) > g (1) = 0,

因此
$$x_1 + x_2 > -\frac{2}{a}$$
;

所以 h(x) 在 (0,e) 上单调递增,在 $(e,+\infty)$ 上单调递减,

因为-a = h(x)有两个不相等的实数根,且h(e) $=\frac{1}{e}$,

则
$$0 < -a < \frac{1}{e}$$
 且 $1 < x_1 < e < x_2$,

因为lnx < 1-x对于 $x \in (0, 1) \cup (1, +\infty)$ 恒成立,

则
$$\ln \frac{1}{x} > 1 - x$$
 对于 $x \in (0,1)$ 恒成立,

所以
$$-ax_1-1=lnx_1-1=ln\frac{x_1}{e}>1-\frac{e}{x_1}$$
,

因为
$$x_1 > 0$$
,所以 $-ax_1^2 - 2x_1 + e > 0$,

又因为a < 0, $\triangle = 4 + 4ae > 0$,

所以
$$x_1 < -\frac{1}{a} + \frac{\sqrt{1+ea}}{a}$$
或 $x_1 > -\frac{1}{a} - \frac{\sqrt{1+ea}}{a}$,

因为
$$0 < x_1 < e$$
且 $-\frac{1}{e} < a < 0$,所以 $x_1 < -\frac{1}{a} + \frac{\sqrt{1+ea}}{a}$,

因为
$$\frac{x_1+x_2}{2}$$
> $-\frac{1}{a}$,所以 $\frac{x_1+x_2}{2}$ - x_1 > $-\frac{1}{a}$ - $(-\frac{1}{a}+\frac{\sqrt{1+ea}}{a})$,

所以
$$x_2 - x_1 > -\frac{2\sqrt{1+ea}}{a}$$
.

- 5. 设函数 $f(x) = \ln x a(x-1)e^x$, 其中 $a \in R$ 且 $0 < a < \frac{1}{4}$.
- (1) 证明 f(x) 恰有两个零点;
- (2) 设 x_0 为f(x)的极值点, x_1 为f(x)的零点,且 $x_1 > x_0$,证明: $3x_0 x_1 > 2$.

【解答】证明: (1) 由已知条件得 $f'(x) = \frac{1 - ax^2 e^x}{x}$,

令 $g(x) = 1 - ax^2 e^x$,由 $0 < a < \frac{1}{4} < \frac{1}{e}$,可知 g(x) 在 $(0, +\infty)$ 内单调递减,

$$\mathbb{Z} g (1) = 1 - ae > 0$$
, $\mathbb{E} g(\ln \frac{1}{a}) = 1 - a(\ln \frac{1}{a})^2 \cdot \frac{1}{a} = 1 - (\ln \frac{1}{a})^2 < 0$,

故 g(x) = 0 在 $(0,+\infty)$ 内有唯一解,

从而 f'(x) = 0 在 $(0,+\infty)$ 内有唯一解,不妨设为 x_0 .

则 $1 < x_0 < ln \frac{1}{a}$, 当 $x \in (0, x_0)$ 时, $f'(x) = \frac{g(x)}{x} > \frac{g(x_0)}{x} = 0$, 所以 f(x) 在 $(0, x_0)$ 内单调递增;

当
$$x \in (x_0, +\infty)$$
 时, $f'(x) = \frac{g(x)}{x} < \frac{g(x_0)}{x} = 0$, 所以 $f(x)$ 在 $(x_0, +\infty)$ 内单调递减.

所以 x_0 是f(x)的唯一极值点.

令 $h(x) = \ln x - x + 1$,则当 x > 1时, $h'(x) = \frac{1}{x} - 1 < 0$, 故 h(x) 在 $(1, +\infty)$ 内单调递减,

从而当x > 1时,h(x) < h(1)=0,所以lnx < x - 1,

又因为 $f(x_0) > f(1) = 0$,所以f(x)在 $(x_0, +\infty)$ 内有唯一零点,

又因为f(x)在 $(0,x_0)$ 内有唯一零点 1,从而f(x)在 $(0,+\infty)$ 内有两个零点.

(2) 由题意,
$$\begin{cases} f'(x_0) = 0 \\ f(x_1) = 0 \end{cases}$$
,即
$$\begin{cases} ax_0^2 \cdot e^{x_0} = 1 \\ lnx_1 = a(x_1 - 1)e^{x_1} \end{cases}$$
,从而 $lnx_1 = \frac{x_1 - 1}{x_0^2}e^{x_1 - x_0}$,

即
$$e^{x_1-x_0} = \frac{{x_0}^2 ln x_1}{x_1-1}$$
 , 因为 $x > 1$ 时, $ln x < x-1$, 又 $x_1 > x_0 > 1$,故 $e^{x_1-x_0} < \frac{{x_0}^2 (x_1-1)}{x_1-1} = x_0^2$.

两边取对数,得 $lne^{x_1-x_0} < lnx_0^2$,

于是,
$$x_1 - x_0 < 2lnx_0 < 2(x_0 - 1)$$
,整理得 $3x_0 - x_1 > 2$.

同构法解零点问题

1. 已知函数 $f(x) = \frac{ax}{e^{x-1}} + x - \ln(ax) - 2(a > 0)$, 若函数 f(x) 在区间 $(0, +\infty)$ 内存在零点, 求实数 a 的取值范围

【解答】解: 方法一: 由
$$f(x) = \frac{ax}{e^{x-1}} + x - \ln(ax) - 2(a > 0)$$
 可得 $f'(x) = \frac{x-1}{e^{x-1}} (\frac{e^{x-1}}{x} - a)$,

设 $y = \frac{e^{x-1}}{x} - a$, x > 0 , a > 0 , 则 $y' = \frac{e^{x-1}(x-1)}{x^2}$, 令 $y' = 0 \Rightarrow x = 1$, ∴ $y \in x \in (0,1)$ 单调递减,在 $x \in (1,+\infty)$ 单调递增,

故 $y_{min} = y$ (1) = 1-a.

①当0 < a < 1时,令 $f'(x) = 0 \Rightarrow x = 1$,当 $x \in (0,1)$ 时,f(x)单调递减,当 $x \in (1,+\infty)$ 时,f(x)单调递增,

 $\therefore f(x)_{min} = f$ (1) = a - 1 - lna > 0, 此时 f(x) 在区间 $(0, +\infty)$ 内无零点;

②当a=1时,f(1)=a-1-lna=0,此时f(x)在区间 $(0,+\infty)$ 内有零点;

③当
$$a>1$$
时,令 $f'(x)=\frac{x-1}{e^{x-1}}(\frac{e^{x-1}}{x}-a)=0$,解得 $x=x_1$ 或 1 或 x_2 ,且 $0,$

此时 f(x) 在 $x \in (0, x_1)$ 单减, $x \in (x_1, 1)$ 单增, $x \in (1, x_2)$ 单减, $x \in (x_2, +\infty)$ 单增,

当 $x = x_1$ 或 x_2 时, $f(x)_{\text{Whú}} = 0$,此时 f(x) 在区间 $(0, +\infty)$ 内有两个零点;

综合①②③知 f(x) 在区间 $(0,+\infty)$ 内有零点 $\Rightarrow a \ge 1$.

方法二: 由题意可得

$$e^{-x+1+ln(ax)} = ln(ax) - x + 2$$
, $\mathbb{P}\left[e^{-x+1+ln(ax)} - [-x+1+ln(ax)] - 1 = 0\right]$

因为 $e^x \ge x + 1$ 当x = 0时等号成立,

所以-x+1+ln(ax)=0, 即 $ax=e^{x-1}$,

$$a = \frac{e^{x-1}}{r}$$
, $\Leftrightarrow g(x) = \frac{e^{x-1}}{r}$, $g'(x) = \frac{1}{e} \times \frac{(x-1)e^x}{r^2}$,

易知 g(x) 在 (0,1) 单减,在 $(1,+\infty)$ 上单增,所以 $g(x) \geqslant g$ (1) =1,

又x趋近于0和正无穷时,g(x)趋近于正无穷,

所以 $a \ge 1$.

- 3. 己知 $f(x) = x \ln x + \frac{a}{2}x^2 + 1$.
- (1) 若函数 $g(x) = f(x) + x\cos x \sin x x\ln x 1$ 在 $(0, \frac{\pi}{2}]$ 上有 1 个零点,求实数 a 的取值范围.
- (2) 若关于 x 的方程 $xe^{x-a} = f(x) \frac{a}{2}x^2 + ax 1$ 有两个不同的实数解,求 a 的取值范围.

【解答】解: (1)
$$g(x) = \frac{a}{2}x^2 + x\cos x - \sin x$$
, $x \in (0, \frac{\pi}{2}]$,

所以 $g'(x) = x(a - \sin x)$,

当 $a\geqslant 1$ 时, $a?\sin x\geqslant 0$,所以g(x)在 $(0, \frac{\pi}{2}]$ 单调递增,

又因为g(0) = 0,所以g(x)在 $(0, \frac{\pi}{2}]$ 上无零点;

当
$$0 < a < 1$$
时, $\exists x_0 \in (0, \frac{\pi}{2})$,使得 $\sin x_0 = a$,

所以 g(x) 在 $(x_0, \frac{\pi}{2}]$ 单调递减,在 $(0, x_0)$ 单调递增,

又因为
$$g(0) = 0$$
, $g(\frac{\pi}{2}) = \frac{a\pi^2}{8} - 1$,

所以若 $\frac{a\pi^2}{8}$ -1>0,即 $a>\frac{8}{\pi^2}$ 时,g(x)在 $(0,\frac{\pi}{2}]$ 上无零点,

若
$$\frac{a\pi^2}{8}$$
?1 \leqslant 0,即 $0 < a \leqslant \frac{8}{\pi^2}$ 时, $g(x)$ 在 $(0, \frac{\pi}{2}]$ 上有一个零点,

当 $a \le 0$ 时, $g'(x) = a - x \sin x < 0$, g(x) 在 $(0 , \frac{\pi}{2}]$ 上单调递减, g(x) 在 $(0 , \frac{\pi}{2}]$ 上无零点,

综上当 $0 < a \le \frac{8}{\pi^2}$ 时,g(x)在 $(0, \frac{\pi}{2}]$ 上有一个零点;

(2)
$$\boxplus xe^{x-a} = f(x) - \frac{a}{2}x^2 + ax - 1(x > 0)$$
,

 $\mathbb{E} xe^{x-a} = xlnx + ax, \quad \mathbb{E} e^{x-a} = lnx + a,$

则有 $e^{x-a} + (x-a) = x + lnx$,

$$\Rightarrow h(x) = x + lnx$$
, $x > 0$, $\emptyset h(e^{x-a}) = e^{x-a} + (x-a)$,

$$h'(x) = 1 + \frac{1}{x} > 0$$
, 所以函数 $h(x)$ 在 $(0,+\infty)$ 上递增,

所以 $e^{x-a}=x$,则有x-a=lnx,即a=x-lnx,x>0,

因为关于 x 的方程 $xe^{x-a} = f(x) - \frac{a}{2}x^2 + ax - 1$ 有两个不同的实数解,

则方程a=x-lnx, x>0有两个不同的实数解,

$$\Rightarrow \varphi(x) = x - \ln x$$
, $\emptyset \varphi'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x}$,

所以函数 $\varphi(x) = x - \ln x$ 在 (0,1) 上递减,在 $(1,+\infty)$ 上递增,

所以 $\varphi(x)_{min} = \varphi(1) = 1$,

所以 $\{a \mid a > 1\}$.

- 5. 已知函数 $f(x) = e^{2x+a} \frac{1}{2} lnx + \frac{a}{2}$.
- (1) 若函数 y = f(x) 在 $(0, \frac{1}{2})$ 上单调递减,求 a 的取值范围;
- (2) 若函数 y = f(x) 在定义域内没有零点,求 a 的取值范围.

【解答】解: (1) 因为函数 y = f(x) 在 $(0,\frac{1}{2})$ 上单调递减,所以 $f'(x) \le 0$ 在 $(0,\frac{1}{2})$ 上恒成立,

可得
$$f'(x) = 2e^{2x+a} - \frac{1}{2x} = \frac{4xe^{2x+a} - 1}{2x}$$
,

由于x>0,则 $4xe^{2x+a}-1\leqslant 0$ 在 $(0,\frac{1}{2})$ 上恒成立,

$$\Rightarrow F(x) = 4xe^{2x+a} - 1$$
, $F'(x) = (8x+4)e^{2x+a} > 0$,

故F(x)在 $(0,\frac{1}{2})$ 上单调递增,

所以只需 $F(\frac{1}{2}) \leq 0$ 即可, $F(\frac{1}{2}) = 2e^{1+a} - 1 \leq 0$,

所以 $a \leq -1 - ln2$,

所以a的取值范围是 $(-\infty, -1-ln2]$.

(2)
$$f(x) = e^{2x+a} - \frac{1}{2} lnx + \frac{a}{2}$$
的定义域为(0,+∞),

$$f'(x) = 2e^{2x+a} - \frac{1}{2x}$$
, $\Rightarrow g(x) = 2e^{2x+a}$, $h(x) = \frac{1}{2x}$,

当 x > 0 时, g(x) 单调递增, $g(x) \in (2e^a, +\infty)$, $h(x) \in (0, +\infty)$,

故存在
$$x_0 \in (0,+\infty)$$
,使得 $f'(x_0) = 0$,即 $2e^{2x_0+a} - \frac{1}{2x_0} = 0$,

即
$$4e^{2x_0+a} = \frac{1}{x_0}$$
 ①,两边取对数得 $\ln 4 + 2x_0 + a = -\ln x_0$ ②,

而 f(x) 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,

故
$$f(x)_{min} = f(x_0) > 0$$
,故 $e^{2x_0+a} - \frac{1}{2}lnx_0 + \frac{a}{2} > 0$,

将①②代入上式得
$$\frac{1}{4x_0} + \frac{ln4 + 2x_0 + a}{2} + \frac{a}{2} > 0$$
, 化简得 $a > -\frac{1}{4x_0} - x_0 - ln2$,

因为
$$\frac{1}{4x_0} + x_0 \ge 1$$
, 当且仅当 $\frac{1}{4x_0} = x_0$, 即 $x_0 = \frac{1}{2}$ 时取等号,

所以
$$-\frac{1}{4x_0}-x_0-ln2\leqslant -1-ln2$$
,

故a>-1-ln2,

即 a 的取值范围是 $(-1-ln2,+\infty)$.

- 6. 已知函数 $f(x) = e^{x-1} mx^2 (m \in R)$.
- (1) 选择下列两个条件之一: ① $m = \frac{1}{2}$; ②m = 1; 判断 f(x) 在区间 (0, +∞) 是否存在极小值点,并说明理由;
- (2) 已知m>0, 设函数g(x)=f(x)+mxln(mx). 若g(x)在区间 $(0,+\infty)$ 上存在零点,求实数m的取值范围.

【解答】解: (1) 若选①:
$$m = \frac{1}{2}$$
, 则函数 $f(x) = e^{x-1} - \frac{1}{2}x^2$,

所以
$$f'(x) = e^{x-1} - x$$
, $f''(x) = e^{x-1} - 1$,

因为 f''(x) 单调递增,且 f''(1) = 0,

所以 f'(x) 在 (0,1) 上单调递减, $(1,+\infty)$ 上单调递增,

则 $f'(x) \ge f'(1) = 0$,

故 f(x) 在 (0,+∞) 上单调递增,

所以不存在极小值点;

若选②: m=1, 则 $f(x)=e^{x-1}-x^2$,

所以
$$f'(x) = e^{x-1} - 2x$$
, $f''(x) = e^{x-1} - 2$,

由 f''(x) 单调递增,且 f''(1+ln2)=0,

所以 f'(x) 在 (0,1+ln2) 上单调递减,在 $(1+ln2,+\infty)$ 上单调递增,

故 $f'(x) \ge f'(1 + ln2) = -2ln2 < 0$,

$$\sum f'(4) = e^3 - 8 > 0$$

所以存在极小值点 $x_0 \in (1 + \ln 2, 4)$.

(2)
$$\Rightarrow g(x) = 0$$
, $\bigoplus e^{x-1} - mx^2 + mx \ln(mx) = 0$,

 $\mathbb{Z}mx > 0$,

$$\text{Freq} \frac{e^{x-1}}{mx} - x + \ln(mx) = \frac{e^{x-1}}{e^{\ln(mx)}} - x + \ln(mx) = e^{x-\ln(mx)-1} - [x - \ln(mx)] = 0 ,$$

 $\diamondsuit t = x - ln(mx) ,$

故 $e^{t-1}-t=0$ 有解,

设 $h(t) = e^{t-1} - t$,

则
$$h'(t) = e^{t-1} - 1$$
, 令 $h'(t) = 0$, 解得 $t = 1$,

所以h(t)在 $(-\infty,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增,

所以 $h(t) = e^{t-1} - t$ 有唯一的零点t = 1,

若 g(x) 在区间 $(0,+\infty)$ 上存在零点,

即1 = x - ln(mx)在 $(0,+\infty)$ 上有解,

整理可得1+lnm=x-lnx,

 $\diamondsuit l(x) = x - lnx,$

则
$$l'(x) = 1 - \frac{1}{x}$$
, 令 $l'(x) = 0$, 解得 $x = 1$,

所以l(x)在(0.1)上单调递减,在(1.+ ∞)上单调递增,

故 $l(x) \ge l$ (1) =1,

所以1+*lnm*≥1,

解得 $m \ge 1$,

所以m的取值范围为 $[1, +\infty)$.

隐零点

导函数零点按能否求精确解可以分为两类:一类是数值上能精确求解的,称之为"显零点";另一类是能够判断其存在但无法直接求值的,称之为"隐零点".对于隐零点问题,由于涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧,对学生综合能力的要求较高,成为考查的热点.

类型一 导函数隐零点中的(整体)代换

- 1.设函数 $f(x) = e^{2x} a \ln x$.
- (1)讨论 f(x)的导函数 f'(x)的零点的个数;
- (2)证明: 当 a > 0 时, $f(x) \ge 2a + a \ln \frac{2}{a}$.
- (1)解 f(x)的定义域为(0, + ∞), $f'(x) = 2e^{2x} \frac{a}{x}(x>0)$.由 f'(x) = 0 得 $2xe^{2x} = a$.令 $g(x) = 2xe^{2x}$, $g'(x) = (4x+2)e^{2x} > 0(x \ge 0)$, 从而 g(x)在[0, + ∞)上单调递增,所以 x>0 时,g(x)>g(0)=0.

故当 a>0 时,方程 g(x)=a 有一个根,即 f'(x)存在唯一零点;

当 $a \le 0$ 时,方程 g(x) = a 没有根,即 f'(x)没有零点.

(2)证明 由(1)可设 f'(x)在(0, + ∞)上的唯一零点为 x_0 , 当 $x \in (0, x_0)$ 时,f'(x) < 0;当 $x \in (x_0, + \infty)$ 时,f'(x) > 0.

故 f(x)在 $(0, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增,所以 $f(x)_{min} = f(x_0)$.

由
$$2e2x_0 - \frac{a}{x_0} = 0$$
 得 $e2x_0 = \frac{a}{2x_0}$,又 $x_0 = \frac{a}{2e2x_0}$,得 $\ln x_0 = \ln \frac{a}{2e2x_0} = \ln \frac{a}{2} - 2x_0$,所以 $f(x_0) = e2x_0 - a\ln x_0 = \frac{a}{2x_0}$ $-a\left(\ln \frac{a}{2} - 2x_0\right) = \frac{a}{2x_0} + 2ax_0 + a\ln \frac{2}{a} \ge 2\sqrt{\frac{a}{2x_0} 2ax_0} + a\ln \frac{2}{a} = 2a + a\ln \frac{2}{a}$.当且仅当 $x_0 = \frac{1}{2}$ 时取等号.

故当 a>0 时, $f(x) \ge 2a + a \ln \frac{2}{a}$

2.已知函数 $f(x) = x \ln x - \frac{1}{2} a(x+1)^2$, $a \in \mathbb{R}$ 恰好有两个极值点 x_1 , $x_2(x_1 < x_2)$.

(1)求证:存在实数 $m \in \left(\frac{1}{2}, 1\right)$, 使 0 < a < m;

(2)求证:
$$-\frac{5}{4} < f(x_1) < -\frac{1}{e}$$
.

证明 $(1)f'(x) = \ln x + 1 - a(x+1)$, x > 0,

结合题意, $\ln x + 1 - a(x + 1) = 0$,

即 $\ln x + 1 = a(x + 1)$ 存在 2 个不同正根,

先考虑 y = a(x + 1)与 $y = \ln x + 1$ 相切,记切点横坐标为 x_0 ,

则
$$\left\{ a \ (x_0 + 1) = \ln x_0 + 1, \atop a = \frac{1}{x_0}, \right.$$
 解得 $\left\{ ax_0 = 1, \atop x_0 \ln x_0 = 1, \right.$

记 $g(x) = x \ln x - 1$, x > 0 ,

则 $g'(x) = 1 + \ln x$,令 g'(x) = 0,解得 $x = \frac{1}{e}$,

故 y = g(x)在 $\left(0, \frac{1}{e}\right)$ 上单调递减,在 $\left(\frac{1}{e}, + \infty\right)$ 上单调递增,

且 g(1) = -1 < 0 , $g(2) = \ln 4 - 1 > 0$,

故存在唯一 $x_0 \in (1, 2)$,使得 $x_0 \ln x_0 = 1$ 成立,

取
$$m = \frac{1}{x_0} \in \left(\frac{1}{2}, 1\right)$$
,

则 0 < a < m 时,f(x)恰有 2 个极值点,得证.

(2)由(1)知,
$$f(x_1) = \ln x_1 + 1 - a(x_1 + 1)$$
,且 $\frac{1}{e} < x_1 < x_0 < 2$,

故
$$a = \frac{\ln x_1 + 1}{x_1 + 1}$$
, 代入 $f(x_1)$,

得
$$f(x_1) = \frac{1}{2}(x_1 \ln x_1 - x_1 - \ln x_1 - 1)$$
,

设
$$h(x) = \frac{1}{2}(x \ln x - x - \ln x - 1)$$
 , $\frac{1}{e} < x < 2$,

$$h'(x) = \frac{1}{2} \left(\ln x - \frac{1}{x} \right)$$
,

由
$$h'(x_0) = 0$$
 , 得 $\ln x_0 = \frac{1}{x_0}$, 即 $x_0 \ln x_0 = 1$,

则
$$x \in \left(\frac{1}{e}, x_0\right)$$
时, $h'(x) < 0$, $x \in (x_0, 2)$, $h'(x) > 0$,

故 h(x)在 $\left(\frac{1}{e}, x_0\right)$ 上单调递减,在 $(x_0, 2)$ 上单调递增,

$$h(x) > h(x_0) = \frac{1}{2} (x_0 \ln x_0 - \ln x_0 - x_0 - 1)$$

$$= \frac{1}{2} \left(1 - \frac{1}{x_0} - x_0 - 1 \right) = -\frac{1}{2} \left(x_0 + \frac{1}{x_0} \right) ,$$

:
$$x_0 \in (1, 2)$$
, : $x_0 + \frac{1}{x_0} \in (2, \frac{5}{2})$,

$$\therefore h(x_0) \in \left(-\frac{5}{4}, -1\right),$$

故
$$h(x) > -\frac{5}{4}$$
,即 $f(x_1) > -\frac{5}{4}$,

而
$$h(x) < h(\frac{1}{e}) = -\frac{1}{e} > h(2) = \frac{1}{2} (\ln 2 - 3)$$
 ,

故 -
$$\frac{5}{4} < f(x_1) < -\frac{1}{6}$$
.

类型二 导函数零点的设而不求技巧

3. 己知函数 $f(x) = e^{x+a} - \ln x$ (其中 $e = 2.718\ 28$ ····是自然对数的底数).求证: 当 $a > 1 - \frac{1}{e}$ 时,f(x) > e + 1.

证明 ::
$$f'(x) = e^{x+a} - \frac{1}{x}(x>0)$$
,

设 g(x) = f'(x) , 则 $g'(x) = e^{x+a} + \frac{1}{x^2} > 0$,

∴ g(x)是增函数.

$$: e^{x+a} > e^a$$
, 又由 $e^a > \frac{1}{x} \Rightarrow x > e^{-a}$,

∴当 *x*>e^{-a}时 , *f*′(*x*)>0 ;

若
$$0 < x < 1 \Rightarrow e^{x_+ a} < e^{a_+ 1}$$
 , 由 $e^{a_+ 1} < \frac{1}{x} \Rightarrow x < e^{-a_- 1}$,

∴当 0<x<min{1 , e^{-a-1} }时 , f(x)<0 ,

故 f'(x) = 0 仅有一解,记为 x_0 ,则当 $0 < x < x_0$ 时,f'(x) < 0,f(x)递减;

当 $x>x_0$ 时,f'(x)>0,f(x)递增;

$$f(x)_{\min} = f(x_0) = ex_0 + a - \ln x_0$$
,

$$\overline{\text{m}} f(x_0) = ex_0 + a - \frac{1}{x_0} = 0 \Rightarrow ex_0 + a = \frac{1}{x_0} \Rightarrow a = -\ln x_0 - x_0$$

 $illowed h(x) = \ln x + x$,

$$III f(x_0) = \frac{1}{x_0} - \ln x_0 = h\left(\frac{1}{x_0}\right) ,$$

$$a>1 - \frac{1}{e} \Leftrightarrow -a < \frac{1}{e} - 1 \Leftrightarrow h(x_0) < h(\frac{1}{e})$$
,

而 h(x)显然是增函数,

$$\therefore 0 < x_0 < \frac{1}{e} \Leftrightarrow \frac{1}{x_0} > e ,$$

$$h\left(\frac{1}{x_0}\right) > h(e) = e + 1.$$

综上,当 $a>1 - \frac{1}{e}$ 时,f(x)>e+1.

4. 己知函数 $f(x) = (x-1) \ln x - x - 1$.

证明: (1)f(x)存在唯一的极值点;

(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.

证明 (1)f(x)的定义域为 $(0, +\infty)$.

$$f'(x) = \frac{x-1}{x} + \ln x - 1 = \ln x - \frac{1}{x}.$$

记
$$g(x) = \ln x - \frac{1}{x}$$
,则 $g'(x) = \frac{1}{x} + \frac{1}{x^2} > 0$,

所以 f'(x)在 $(0, + \infty)$ 上单调递增.

$$\nabla f(1) = -1 < 0$$
, $f'(2) = \ln 2 - \frac{1}{2} = \frac{\ln 4 - 1}{2} > 0$,

故存在唯一 $x_0 \in (1, 2)$, 使得 $f'(x_0) = 0$.

又当 $x < x_0$ 时,f'(x) < 0,f(x)单调递减,

当 $x>x_0$ 时,f'(x)>0,f(x)单调递增,

因此, f(x)存在唯一的极值点.

(2)由(1)知
$$f(x_0) < f(1) = -2$$
,又 $f(e^2) = e^2 - 3 > 0$,

所以 f(x) = 0 在 $(x_0, +\infty)$ 内存在唯一根 $x = \alpha$.

由 $\alpha > x_0 > 1$ 得 $\frac{1}{\alpha} < 1 < x_0$.

$$\nabla f\left(\frac{1}{\alpha}\right) = \left(\frac{1}{\alpha} - 1\right) \ln \frac{1}{\alpha} - \frac{1}{\alpha} - 1 = \frac{f(\alpha)}{\alpha} = 0,$$

故 $\frac{1}{\alpha}$ 是 f(x) = 0 在 $(0, x_0)$ 的唯一根.

综上, f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

- 3.已知函数 $f(x) = ax + x \ln x (a \in \mathbf{R})$.
- (1)若函数 f(x)在区间[e,+∞)上为增函数,求 a 的取值范围;
- (2)当 a=1 且 k ∈ **Z** 时,不等式 k(x-1) < f(x)在 x ∈ (1, +∞)上恒成立,求 k 的最大值.

解 (1) : 函数 f(x) 在区间[e, +∞)上为增函数,

$$\therefore f(x) = a + \ln x + 1 \ge 0$$
 在区间 $[e, +\infty)$ 上恒成立,

∴
$$a$$
 \geq $(- \ln x - 1)_{\text{max}} = -2.$

∴a 的取值范围是[- 2 , + ∞).

(2)当 a = 1 时 , $f(x) = x + x \ln x$, $k \in \mathbb{Z}$ 时 , 不等式 k(x - 1) < f(x)在 $x \in (1 + \infty)$ 上恒成立 ,

$$: k < \left(\frac{x + x \ln x}{x - 1} \right) \min^{-1}$$

令
$$g(x) = \frac{x + x \ln x}{x - 1}$$
, 则 $g'(x) = \frac{x - \ln x - 2}{(x - 1)^2}$,

则
$$h'(x) = 1 - \frac{1}{x} = \frac{x-1}{x} > 0$$
 ,

∴h(x)在(1, +∞)上单调递增.

 $h(3) = 1 - \ln 3 < 0$, $h(4) = 2 - 2\ln 2 > 0$,

∴存在 x_0 ∈ (3, 4), 使 $h(x_0)$ = 0,

即当 $1 < x < x_0$ 时,h(x) < 0,即 g'(x) < 0,

当 $x>x_0$ 时,h(x)>0,即 g'(x)>0,

g(x)在 $(1, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增.

 $\Rightarrow h(x_0) = x_0 - \ln x_0 - 2 = 0$, $\text{Im } \ln x_0 = x_0 - 2$,

$$g(x)_{\min} = g(x_0) = \frac{x_0 \left(1 + \ln x_0\right)}{x_0 - 1} = \frac{x_0 \left(1 + x_0 - 2\right)}{x_0 - 1} = x_0 \in (3, 4).$$

 $k < g(x)_{\min} = x_0 \in (3, 4)$, $\coprod k \in \mathbb{Z}$,

 $\therefore k_{\text{max}} = 3.$

4.记 f'(x), g'(x)分别为函数 f(x), g(x)的导函数.若存在 $x_0 \in \mathbf{R}$,满足 $f(x_0) = g(x_0)$ 且 $f'(x_0) = g'(x_0)$,则称 x_0 为函数 f(x)与 g(x)的一个 "S 点".

- (1)证明:函数 f(x)=x 与 $g(x)=x^2+2x-2$ 不存在"S点";
- (2)若函数 $f(x) = ax^2 1$ 与 $g(x) = \ln x$ 存在 "S 点", 求实数 a 的值;
- (3)已知函数 $f(x) = -x^2 + a$, $g(x) = \frac{be^x}{x}$.对任意 a > 0,判断是否存在 b > 0,使函数 f(x)与 g(x)在区间(0, $+\infty$)内存在 "S 点",并说明理由.
- (1)证明 函数 f(x) = x, $g(x) = x^2 + 2x 2$,

则 f'(x) = 1 , g'(x) = 2x + 2.

由 f(x) = g(x)且 f'(x) = g'(x) , 得

$$\begin{cases} x = x^2 + 2x - 2, \\ & \text{此方程组无解}. \\ 1 = 2x + 2, \end{cases}$$

因此, f(x)与 g(x)不存在 "S 点".

(2)解 函数 $f(x) = ax^2 - 1$, $g(x) = \ln x$,

则
$$f'(x) = 2ax$$
 , $g'(x) = \frac{1}{x}$.

设
$$x_0$$
 为 $f(x)$ 与 $g(x)$ 的 " S 点",由 $f(x_0) = g(x_0)$ 且 $f'(x_0) = g'(x_0)$,得
$$\begin{cases} ax_0^2 - 1 = \ln x_0, \\ 2ax_0 = \frac{1}{x_0}, \end{cases}$$

$$\mathbb{E} \begin{cases} ax_0^2 - 1 = \ln x_0 ,\\ 2ax_0^2 = 1 , \end{cases}$$
 (*)

得
$$\ln x_0 = -\frac{1}{2}$$
, 即 $x_0 = e^{-\frac{1}{2}}$, 则 $a = \frac{1}{2(e^{-\frac{1}{2}})^2} = \frac{e}{2}$.

当 $a = \frac{e}{2}$ 时, $x_0 = e^{-\frac{1}{2}}$ 满足方程组(*),即 x_0 为 f(x)与 g(x)的 "S 点".

因此,a 的值为 $\frac{e}{2}$.

(3)解 对任意 a>0,设 $h(x)=x^3-3x^2-ax+a$.

因为 h(0) = a > 0, h(1) = 1 - 3 - a + a = -2 < 0, 且 h(x)的图象是不间断的.

所以存在 $x_0 \in (0, 1)$, 使得 $h(x_0) = 0$.

令
$$b = \frac{2x_0^3}{ex_0(1-x_0)}$$
 , 则 $b>0$.

函数
$$f(x) = -x^2 + a$$
 , $g(x) = \frac{be^x}{x}$.

由
$$f(x) = g(x)$$
且 $f'(x) = g'(x)$,

得
$$-x^2 + a = \frac{be^x}{x},$$

$$-2x = \frac{be^x (x-1)}{x^2},$$

此时, x_0 满足方程组(**),即 x_0 是函数 f(x)与 g(x)在区间(0,1)内的一个"S 点". 因此,对任意 a>0,存在 b>0,使函数 f(x)与 g(x)在区间(0,+ ∞)内存在"S 点".

【典例 1】 (2021 徐州模拟)已知函数 $f(x) = x - \ln x - \frac{e^x}{x}$.

(1)求 f(x)的最大值;

(2)若 $f(x)+\left(x+\frac{1}{x}\right)e^{x}-bx\geq 1$ 恒成立,求实数 b 的取值范围.

解
$$(1)f(x)=x-\ln x-\frac{e^x}{x}$$
, 定义域为 $(0, +\infty)$,

$$f(x)=1-\frac{1}{x}-\frac{e^{x}(x-1)}{x^{2}}=\frac{(x-1)(x-e^{x})}{x^{2}}.$$

$$\Leftrightarrow g(x) = x - e^x(x > 0), \quad \text{If } g'(x) = 1 - e^x < 0,$$

所以 g(x)在 $(0, +\infty)$ 上单调递减,

故
$$g(x) < g(0) = -1 < 0$$
,

当 $x \in (0, 1)$ 时, f(x)>0, f(x)在(0, 1)上单调递增;

当 $x \in (1, +\infty)$ 时,f(x) < 0,f(x)在 $(1, +\infty)$ 上单调递减.

所以 $f(x)_{max} = f(1) = 1 - e$.

$$(2)f(x) + \left(x + \frac{1}{x}\right)e^x - bx \ge 1,$$

$$\Leftrightarrow$$
 $-\ln x + x - \frac{e^x}{x} + xe^x + \frac{e^x}{x} - bx \geqslant 1$,

$$\Leftrightarrow \frac{xe^x - \ln x - 1 + x}{x} \geqslant b \text{ 恒成立},$$

$$\Leftrightarrow \varphi(x) = \frac{xe^x - \ln x - 1 + x}{x}, \quad \text{if } \varphi'(x) = \frac{x^2e^x + \ln x}{x^2}.$$

令 $h(x) = x^2 e^x + \ln x$,则 h(x)在 $(0, +\infty)$ 上单调递增, $x \to 0, h(x) \to -\infty$,且 h(1) = e > 0,

所以 h(x)在(0, 1)上存在零点 x_0 ,

$$\mathbb{P} h(x_0) = x_0^2 e x_0 + \ln x_0 = 0,$$

$$x_0^2 e x_0 + \ln x_0 = 0 \Leftrightarrow x_0 e x_0 = -\frac{\ln x_0}{x_0} = \left(\ln \frac{1}{x_0}\right) (e^{\ln \frac{1}{x_0}}),$$

由于 $y=xe^x$ 在 $(0, +\infty)$ 上单调递增,

故
$$x_0 = \ln \frac{1}{x_0} = -\ln x_0$$
, 即 $ex_0 = \frac{1}{x_0}$,

所以 $\varphi(x)$ 在 $(0, x_0)$ 上单调递减,在 $(x_0, +\infty)$ 上单调递增,

$$\varphi(x)_{\min} = \varphi(x_0) = \frac{x_0 e x_0 - \ln x_0 - 1 + x_0}{x_0}$$

$$= \frac{1 + x_0 - 1 + x_0}{x_0} = 2,$$

因此 $b \le 2$, 即实数 b 的取值范围是($-\infty$, 2].

点津突破 1.虚设函数 h(x)的零点 x_0 ,利用特殊点处函数值、零点存在性定理、函数的单调性、函数的图象等,判断零点存在,并通过数值估算零点 x_0 所在区间(0,1).

2.把函数零点处函数值为 0 作为条件回代,使得 $h(x_0) = 0$,从而 $x_0^2 e x_0 + \ln x_0 = 0$,化简消参,用单调性计算 $\varphi(x)_{\min} = \varphi(x_0) = 2$.

【典例 2】 已知函数 $f(x) = xe^x - a(x + \ln x)$.

- (1)讨论 f(x)极值点的个数;
- (2)若 x_0 是f(x)的一个极小值点,且 $f(x_0)>0$,证明: $f(x_0)>2(x_0-x_0^3)$.

(1)
$$\mathbf{f}(x) = (x+1)e^x - a\left(1 + \frac{1}{x}\right)$$

$$= (x+1)\left(e^x - \frac{a}{x}\right) = \frac{(x+1) (xe^x - a)}{x}, \quad x \in (0, +\infty).$$

- ①当 $a \le 0$ 时,f'(x) > 0,f(x)在 $(0, +\infty)$ 上为增函数,不存在极值点;

显然函数 h(x)在 $(0, +\infty)$ 上是增函数,

又因为当 $x\to 0$ 时, $h(x)\to -a<0$, $h(a)=a(e^a-1)>0$,

必存在 $x_0>0$,使 $h(x_0)=0$.

当 $x \in (0, x_0)$ 时, h(x) < 0, f(x) < 0, f(x)为减函数;

当 x∈(x_0 , +∞)时, h(x)>0, f(x)>0, f(x)为增函数,

所以, $x=x_0$ 是 f(x)的极小值点.

综上, 当 $a \le 0$ 时, f(x)无极值点, 当 a > 0 时, f(x)有一个极值点.

(2)证明 由(1)得, $f(x_0)$ =0,即 x_0 e x_0 =a,

 $f(x_0) = x_0 ex_0 - a(x_0 + \ln x_0) = x_0 ex_0 (1 - x_0 - \ln x_0),$

因为 $f(x_0)>0$,所以 $1-x_0-\ln x_0>0$,

$$\Leftrightarrow g(x) = 1 - x - \ln x, \ g'(x) = -1 - \frac{1}{x} < 0,$$

g(x)在 $(0, +\infty)$ 上是减函数,且 g(1)=0,

由 g(x)>g(1)得 x<1, 所以 $x_0 \in (0, 1)$,

设 $\varphi(x) = \ln x - x + 1$, $x \in (0, 1)$,

$$\varphi'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x},$$

当 x∈(0, 1)时, $\varphi'(x)>0$, 所以 $\varphi(x)$ 为增函数,

 $\varphi(x) < \varphi(1) = 0$, $\forall \varphi(x) < 0$,

即 $\ln x < x - 1$,所以 $-\ln x > 1 - x$,

所以 $\ln(x+1) < x$,所以 $e^x > x+1 > 0$,则 $e^x > x_0 + 1$.

因为 $x_0 \in (0, 1)$, 所以 $1-x_0-\ln x_0>1-x_0+1-x_0=2(1-x_0)>0$.

相乘得 $ex_0(1-x_0-\ln x_0)>(x_0+1)(2-2x_0)$,

所以 $f(x_0) = x_0 e x_0 (1 - x_0 - \ln x_0)$

$$>2x_0(x_0+1)(1-x_0)=2x_0(1-x_0^2)=2(x_0-x_0^3).$$

故 $f(x_0) > 2(x_0 - x_0^3)$ 成立.

点津突破 1.满足 $f'(x_0) = 0$ 的 x_0 是 y = f(x)取得极值的必要不充分条件,因此以零点 x_0 为分界点,要判定 f'(x)的正负.

2.求解该类题目,虚设零点,将零点方程适当变形,必要时要将零点的范围适当缩小.本题第(2)问运用两个重要不等式 $e^x \ge x + 1 > 0$ 及 $x - 1 \ge \ln x$ 和不等式的性质,思维能力要求较高.

[跟踪演练]

1.已知函数 $f(x) = 2x + x \ln x(x > 1)$,若不等式 f(x) > t(x - 1) + 1 恒成立,求正整数 t 的最大值.

解 不等式 f(x)>t(x-1)+1 化为 $2x+x\ln x-1>t(x-1)$,

由于 x>1,得 $t<\frac{2x+x\ln x-1}{x-1}(x>1)$ 恒成立.

$$\Leftrightarrow g(x) = \frac{2x + x \ln x - 1}{x - 1} (x > 1),$$

则由题意知 $t < g(x)_{min}, x \in (1, +\infty)$.

$$g'(x) = \frac{x-2-\ln x}{(x-1)^2}, \ x \in (1, +\infty),$$

再令 $h(x) = x - 2 - \ln x(x > 1)$,

则 $h'(x)=1-\frac{1}{x}=\frac{x-1}{x}>0$,所以 h(x)在 $(1, +\infty)$ 上为增函数.

 $\mathbb{X} h(3) = 1 - \ln 3 < 0, \ h(4) = 2 - \ln 4 > 0,$

所以存在唯一的 $x_0 \in (3, 4)$,使得 $h(x_0) = 0$,即 $x_0 - 2 = \ln x_0$,

当 x∈(1, x_0)时, h(x)<0, g'(x)<0, 所以 g(x)在(1, x_0)上单调递减;

当 x∈(x_0 , +∞)时, h(x)>0, g'(x)>0, 所以 g(x)在(x_0 , +∞)上单调递增,

可知
$$g(x)_{\min} = g(x_0) = \frac{2x_0 + x_0 \ln x_0 - 1}{x_0 - 1}$$

$$=\frac{2x_0+x_0(x_0-2)-1}{x_0-1}=x_0+1,$$

所以 $t < x_0 + 1$.

又 $3 < x_0 < 4$,知 $4 < x_0 + 1 < 5$.

因为 t 为正整数, 所以 t 的最大值为 4.

2.已知函数
$$f(x) = \ln x - \frac{x+1}{x-1}$$
.

- (1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;
- (2)设 x_0 是f(x)的一个零点,证明曲线 $y=\ln x$ 在点 $A(x_0,\ln x_0)$ 处的切线也是曲线 $y=e^x$ 的切线.
- (1)**解** f(x)的定义域为(0, 1)∪(1, +∞).

因为
$$f(x) = \frac{1}{x} + \frac{2}{(x-1)^{-2}} > 0$$
,

所以 f(x)在(0, 1), $(1, +\infty)$ 上单调递增.

因为
$$f(e)=1-\frac{e+1}{e-1}=\frac{-2}{e-1}<0$$
, $f(e^2)=2-\frac{e^2+1}{e^2-1}=\frac{e^2-3}{e^2-1}>0$,

所以 f(x)在(1, + ∞)上有唯一零点 x_1 (e $< x_1 <$ e²),

即 $f(x_1) = 0$.

$$\mathbb{X} = 0 < \frac{1}{x_1} < 1, f\left(\frac{1}{x_1}\right) = -\ln x_1 + \frac{x_1 + 1}{x_1 - 1} = -f(x_1) = 0,$$

故 f(x)在(0, 1)上有唯一零点 $\frac{1}{x_1}$.

综上, f(x)有且仅有两个零点.

(2)证明 因为
$$e - \ln x_0 = \frac{1}{x_0}$$
,

所以点
$$B\left(-\ln x_0, \frac{1}{x_0}\right)$$
在曲线 $y=e^x$ 上.

由题设知 $f(x_0)=0$,即 $\ln x_0=\frac{x_0+1}{x_0-1}$,

故直线 AB 的斜率
$$k = \frac{\frac{1}{x_0} - \ln x_0}{-\ln x_0 - x_0} = \frac{\frac{1}{x_0} - \frac{x_0 + 1}{x_0 - 1}}{-\frac{x_0 + 1}{x_0 - 1} - x_0} = \frac{1}{x_0}.$$

又曲线 $y=e^x$ 在点 $B\left(-\ln x_0, \frac{1}{x_0}\right)$ 处切线的斜率是 $\frac{1}{x_0}$,曲线 $y=\ln x$ 在点 $A(x_0, \ln x_0)$ 处切线的斜率也是 $\frac{1}{x_0}$,所以曲线 $y=\ln x$ 在点 $A(x_0, \ln x_0)$ 处的切线也是曲线 $y=e^x$ 的切线.