CLAIMS

1	1. A composition of matter comprising;
2	a vascularized densely collagenous tissue structure performing a
3	biomechanical function in a body, the collagenous tissue structure having been
4	treated in wo in the body with a measurable amount of thermal energy which
5	increased a cross-sectional diameter of a collagen fibrils in the collagenous tissue
6-	structure and decreased a longitudinal length of the collagen fibrils while
7	preserving at least a portion of the biomechanical function performed by the
8	collagenous tissue structure in the body.
1	2. The composition of claim 1, wherein the vascularized densely
2	collagenous tissue structure was treated in vivo with sufficient and measurable
3	thermal energy to create a scaffold for remodeling the collagen fibrils and/or the
4	creation of new collagen fibrils.
	$\lambda_{\mathbf{i}}$
1	3. The composition of claim 1, wherein application of the thermal
2	energy changes the conformation of the collagen protein molecules from an
3	extended organized conformation to a random coil, contracted conformation in
4	order to achieve a macroscopic shrinkage along a longitudinal length of tissue.
1	4. The composition of claim, wherein the collagen fibrils were
2	treated with sufficient thermal energy to increase a cross-sectional diameter of
3	the collagen fibrils, decrease a longitudinal length of the collagen protein
4	molecules and produce a substantially uniform histology.
1	5. The composition of claim 1 wherein the thermal energy was
2	produced by an energy source selected from the group consisting of RF,
3	microwave, resistive heating, ultrasonic and liquid thermal jet.

1	29. The composition of claim 15, wherein the collagen containing
2	ligament or tendon structure is a connecting tendon.
1	30. A composition of matter comprising:
2	a vascularized densely collagenous tissue structure positioned within a
3	region of a body which naturally attaches a first portion of the body to a second
4 ,	portion of the body, the collagenous tissue structure having collagen fibrils which
5	were treated in vive in the body with a measurable amount of thermal energy to
6	modify a position of the first portion of the body relative to the second portion of
7	the body.
1	The composition of claim 30, wherein the collagen fibrils were
2	treated in vivo with sufficient thermal energy to create a scaffold for remodeling
3	the collagen fibrils and/or the creation of new collagen fibrils.
1	32. The composition of claim 30, wherein the thermal energy
2	increased a cross-sectional diameter of the fibrils and reduced a longitudinal
3	length of the fibrils.
1	33. The composition of claim 30, wherein the thermal energy changed
2	a conformation of the collagen fibrils from an extended structure with a linear
3	configuration to a random coil, contracted state.
1	34. The composition of claim 30, wherein the thermal energy
2	increased a cross-sectional diameter of the collagen fibrils, decreased a
3	longitudinal length of the collagen fibrils and produced a substantially uniform
4 .	histology.

1	The composition of claim 30, wherein the thermal energy was
2	from an energy source is selected from the group consisting of RF, microwave,
3	resistive heating, ultrasonic and a liquid thermal jet.
1	36. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo.
1	The composition of claim 30, wherein the geometry of the fibrils
2	was modified by delivering thermal energy in vivo to the vascularized densely
3	collagenous tissue structure at a temperature of 80 °C or less.
1	38. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified by heating the collagen fibrils in vivo at a
3	temperature range of 45 to $\sqrt{5}$ °C.
1	39. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo at a temperature range of 50 to 70 °C.
1	40. The composition of claim 30, wherein the geometry of the
2	collagen fibrils was modified in vivo at a temperature of 55 to 65 °C.
1	The composition of claim 30, wherein the collagen containing
2 .	tissue is a collagen connecting tissue.
1	42. The composition of claim 30, wherein the collagen containing
2	tissue is a medial side ligament of the patella.
1	43. The composition of claim 30, wherein the collagen containing
2	tissue is a patellar tendon allograft.

1	The composition of claim 30, wherein the collagen containing
2	tissue is a patellar tendon autograft
1	45. The composition of claim 30, wherein the collagen containing
2	tissue is a connecting tendon.
	\.
1	46. The composition of claim 30, wherein the region of the body is a
2	joint surface.
1	47. The composition of claim 30, wherein the region of the body is a
2	shoulder.
	\times \int .
1	48. The composition of claim 30, wherein the region of the body is
2	selected from the group consisting of a shoulder, a spinal disc, an elbow, an
3	ankle, a wrist and a knee.
1	49. The composition of claim 30, wherein the first portion of the
2	body was brought closer to the second portion of the body.
Ial	> P1
00	
/ h	7
-10°	/