

### Process algebras and network motifs 2

- Introduction
  - Goals
  - Methods
  - Motivations
- Review of π-calculus
  - Syntax
  - Structural Equivalence
  - Semantics
  - Stochastics

- Review of Kinetic Proofreading
  - Origins
  - Dynamics
  - Examples
  - Modeling in π-calculus
- Introduction of reflective calculi
  - Syntax
  - Structural Equivalence
  - Semantics
  - A New Approach to Stochastics
  - Modeling in a reflective calculus

May 04, 2005

Trento Seminar

## $\pi$ -calculus review – syntax

 $N \qquad ::= \qquad \sum_{i} \pi_{i} A_{i}^{\bullet} \qquad Normal \ processes$   $P,Q \qquad ::= N \mid P \mid Q \mid (\text{rec } K.F) \langle a \rangle^{\bullet} \mid K \langle a \rangle \mid (\upsilon x) P \quad Processes$ 

 $F ::= P | (\lambda x)F | (vx)F$  Abstractions

 $C ::= P \mid [x]C \mid (vx)C \qquad Concretions$ 

 $F \mid C$  Agents

 $\therefore = x \mid -x$  Synchronizers

a, b, c, x, y, z range over N, the set of names

a, ..., x range over vectors of names, i.e. over N\*

Denote by N, P, C, 7, A the set of terms formed by the corresponding production

• We denote by 0 the zero-ary summation

 $\bullet |F| = |a|$  (the arity of F equals the length of a)

May 04, 2005

Trento Seminar

### $\pi$ -calculus review - free names

$$FN(\sum_{i} \pi_{i}.A_{i}) = \bigcup_{i} \{x_{i}\} \cup FN(A_{i}), \, \pi_{i} \in \{x_{i}, -x_{i}\}$$

$$FN(P|Q) = FN(P) \cup FN(Q)$$

$$FN((\text{rec } K.F)\langle a \rangle) = FN(F) \cup \{a\}$$

$$FN((\upsilon x)F) = FN(F)/\{x\} \quad FN((\upsilon x)C) = FN(C)/\{x\}$$

$$FN((\lambda x)F) = FN(F)/\{x\}$$

$$FN([x]C) = FN(C) \cup \{x\}$$

 $\{x\}$  denotes the set of names supporting the vector x

May 04, 2005

Trento Seminar

#### $\pi$ -calculus review - structural equivalence

- **Defn.** Two agents, A, B, are  $\alpha$ -equivalent, written  $A \equiv_{\alpha} B$ , iff they differ by the change of a bound name.
- Defn. Structural congruence, ≡, is the smallest congruence containing α-equivalence satisfying the following conditions:
  - § (N/=,0,+) is a commutative monoid
  - §  $(\mathcal{P}/=,0,|)$  is a commutative monoid
  - §  $(\upsilon x)0 = 0$ ,  $(\upsilon x)(\upsilon y)A = (\upsilon y)(\upsilon x)A$
  - §  $((\upsilon x)P)|Q = (\upsilon x)(P|Q)$ , provided  $x \notin FN(Q)$
  - §  $(\operatorname{rec} K. (\lambda x)P)\langle a \rangle = P\{a/x\}\{(\operatorname{rec} K. (\lambda x)P)\langle b \rangle / K\langle b \rangle\}$
  - §  $(\lambda x)(\upsilon y)F = (\upsilon y)(\lambda x)F$ , provided  $x \neq y$
  - §  $[x](\upsilon y)C = (\upsilon y)[x]C$ , provided  $x \neq y$

May 04, 2005

Trento Seminar

### $\pi$ -calculus review - operational semantics

Notation: let 
$$F = (\lambda x)P$$
,  $C = (\upsilon z)[y]Q$ ,  $|x| = |y|$ ,  $x \cap z = \emptyset$   $F \cdot C \otimes (\upsilon z)(P|Q)\{y/x\}$ 

comm: 
$$(...+x.F)|(-x.C+...) \rightarrow F \cdot C$$

$$par: \frac{P \to P'}{P|Q \to P'|Q}$$

$$res: \frac{P \to P'}{(\upsilon z)P \to (\upsilon z)P'}$$

equiv: 
$$\frac{P7P', P' \rightarrow Q', Q'7Q}{P \rightarrow Q}$$

May 04, 2005

Trento Seminar

- 1. Is this theory closed in the same way arithmetic is closed?
- 2. What constitutes a theory of names?
- 3. What roles do names play in this theory?
- 4. Are there computations involved in fulfilling these roles?
- 5. Does the theory account for these computations?
- 6. Could these computations be replaced by others?
- 7. Is name-equality the only basis for synchronization?
- 8. How does this relate to physical interpretations of  $\pi$ -calculus?

May 04, 2005

Trento Seminar

 $x := x \mid -x$  Synchronizers

a, b, c, x, y, z range over N, the set of names

a, ..., x range over vectors of names, i.e. over N\*

Denote by N, P, C, 7, A the set of terms formed by the corresponding production

• We denote by 0 the zero-ary summation

 $|\bullet|F| = |a|$  (the arity of F equals the length of a)

May 04, 2005

Trento Seminar

 $N ::= \sum_{i} \pi_{i} A_{i}^{\bullet}$  Normal processes

P,Q ::=  $N \mid P \mid Q \mid (\text{rec } K.F) \langle a \rangle \circ \mid K \langle a \rangle \mid (vx)P$  Processes

 $F \qquad ::= \qquad P \mid (\lambda x)F \mid (\upsilon x)F \qquad Abstractions$ 

 $::= P \mid [x]C \mid (vx)C \qquad Concretions$ 

 $A ::= F \mid C$ 

N is left unspecified  $x \mid -x$ 

a, b, c, x, y, z range over N, the set of names

a, ..., x range over vectors of names, i.e. over N\*

Denote by N, P, C, 7, A the set of terms formed by the corresponding production

• We denote by 0 the zero-ary summation

 $|\bullet|F| = |a|$  (the arity of F equals the length of a)

May 04, 2005

Trento Seminar

$$FN(\sum_{i} \pi_{i}.A_{i}) = \bigcup_{i} \{x_{i}\} \cup FN(A_{i}), \, \pi_{i} \in \{x_{i}, -x_{i}\}$$

$$FN(P|Q) = FN(P) \cup FN(Q)$$

$$FN((\operatorname{rec} K.F)\langle a \rangle) = FN(F) \cup \{a\}$$

$$FN((\upsilon x)F) = FN(F)/\{x\} \quad FN((\upsilon x)C) = FN(C)/\{x\}$$

$$FN((\lambda x)F) = FN(F)/\{x\}$$

$$FN([x]C) = FN(C) \cup \{x\}$$

 $\{x\}$  denotes the set of names supporting the vector x

May 04, 2005

Trento Seminar

$$FN(\sum_{i} \pi_{i}.A_{i}) = \bigcup_{i} \{x_{i}\} \cup FN(A_{i}), \ \pi_{i} \in \{x_{i}, -x_{i}\}$$

$$FN(P|Q) = FN(P) \cup FN(Q)$$

$$FN((\text{rec } K.F)\langle a \rangle) = FN(F) \cup \{a\}$$

$$FN((\upsilon x)F) = FN(F)/\{x\} \quad FN((\upsilon x)C) = FN(C)/\{x\}$$

$$FN((\lambda x)F) = FN(F)/\{x\}$$

$$FN([x]C) = FN(C) \cup \{x\}$$

 $\{x\}$  denotes the set of names sup

Calculating free/bound names requires 'knowing' name equality

May 04, 2005

Trento Seminar

Notation: let F 7 
$$(\lambda x)P$$
, C 7  $(\upsilon z)[y]Q$ ,  $|x| = |y|, x \cap z = \emptyset$ 

$$F \cdot C \otimes (\upsilon z)(P|Q)\{y/x\}$$

comm: 
$$(...+x.F)|(-x.C+...) \rightarrow F \cdot C$$

par: 
$$P \rightarrow P' \quad P \stackrel{res}{\longrightarrow} P'$$

$$P|Q \rightarrow P' |Q \quad (\upsilon z)P \rightarrow (\upsilon z)P'$$

equiv: 
$$\frac{P 7 P', P' \rightarrow Q', Q' 7 Q}{P \rightarrow Q}$$

May 04, 2005

Trento Seminar



#### $\pi$ -calculus review - questions & observations Completeness Compositionality Concurrency Cost TM V × × V λ-calculus × × Petri Nets V V × CCS/CSP V V × Mobile process algebras $\overline{\mathbf{V}}$ $\overline{\mathbf{V}}$ $\overline{\mathbf{V}}$ $\overline{\mathbf{V}}$ May 04, 2005 Trento Seminar 14

- . The theory accomplishes this by (partially) elucidating the roles of names in computation
- 2. Anything that can conceivably and consistently play those roles can be used as the cornerstone for describing processes over them -- to some approximation -- by the  $\pi$ -calculus

|    | Name                     | Process                   |
|----|--------------------------|---------------------------|
| 1. | Electrons                | Small molecules           |
| 2. | Small molecules Proteins |                           |
| 3. | Proteins                 | Cells                     |
| 4. | Cells                    | Tissues                   |
| 5. | Tcp/ip ports             | Network protocols         |
| 6. | Urls                     | Web applications          |
| 7. | Mail addresses           | Human e-communication     |
| 8. | Objids                   | Object-based applications |

9.

3. Nothing in the theory elucidates how these different -- but inter-related -- phenomena are processes in one description

May 04, 2005

Trento Seminar

## $\pi$ -calculus review - stochastics

 $(x,r) \mid (-x,r)$ 

Synchronizers

r ranges over the real numbers

May 04, 2005

Trento Seminar

#### $\pi$ -calculus review - stochastics

We use the interpretation of Phillips and Cardelli: rates are specified at a more abstract level and interpreted by a machine as pertaining to scheduling

comm: 
$$(...+(x,r).F)|((-x,r).C+...) \rightarrow {}^rF \cdot C$$

$$par: \frac{P \rightarrow^r P'}{P|Q \rightarrow^r P'|Q}$$

$$par: \frac{P \to^r P'}{P|Q \to^r P'|Q} \qquad res: \frac{P \to^r P'}{(vz)P \to^r (vz)P'}$$

equiv: 
$$P = P', P' \rightarrow^r Q', Q' = Q$$
$$P \rightarrow^r Q$$

May 04, 2005

Trento Seminar

#### $\pi$ -calculus review - stochastics

Critique the interpretation of Phillips and Cardelli:

- 1. Is this sufficient?
- 2. How could one develop a correctness criteria in which the only correct interpretation were a stochastic one?
- 3. Should rates be associated with channels or with actions? Critique the design choice that stochasticity arises only at synchronization:
- 1. Is this the only mathematically meaningful choice?
- 2. Is this a physically meaningful choice?

May 04, 2005 Trento Seminar

98

### $\pi$ -calculus review – course check



May 04, 2005

Trento Seminar





## Spatial logic - semantics

### Commitment relation

$$P \to Q \Rightarrow P \to^{\tau} Q$$

$$m, n \notin p \Rightarrow (\upsilon p)(m\langle n \rangle.Q + N|P) \to^{m\langle n \rangle}(\upsilon p)(Q|P)$$

$$m, n \notin p \Rightarrow (\upsilon p)(m(n).Q + N|P) \to^{m(n)}(\upsilon p)(Q|P)$$

$$P = P', P' \to^{\alpha} Q', Q' = Q \Rightarrow P \to^{\alpha} Q$$

Question: Do reductions have unique labels?

May 04, 2005

Trento Seminar

```
Spatial logic - semantics
        [true](v)
        [n = n'](v) =
                                         if n = n' then \mathcal{P} else \emptyset
        [-\varphi](v) = \mathcal{P}/[\varphi](v)
                                        [\varphi](v)\cap [\psi](v)
       [\varphi \wedge \psi](v) = [\varphi](v) \cap [\psi]
[\theta](v) = \{P : P = 0\}
                              = \{P: \exists Q, R. P = Q | R, Q \in [\varphi](v), R \in [\psi]\}
         \begin{array}{c} [\varphi|\psi](v) \\ (v) \end{array} \} 
        [n@\varphi](v)
                                         \{P: \exists Q.P \equiv (v \ n)Q, \ Q \in [\varphi](v)\}
        [\forall n.\varphi](v)
                                                \bigcap_{m} \left[ \varphi\{m/n\} \right] (v)
                                                 \bigcup_{m \in fn(\varphi,\nu)} ([\varphi\{m/n\}](\nu)/\{P : m \in fn(P)\})
        [\ln, \varphi](v)
        [\langle \alpha \rangle \varphi](v)
                                                 \{P: \exists Q.P \rightarrow \alpha Q, Q \in [\varphi]\}
          (v)}
        [X](v)
                                                 v(X)
        [\mu X.\varphi](v)
                                                 \bigcup \{S \subseteq \mathcal{P}: S \subseteq [\varphi](v/X \leftarrow S)\}
May 04, 2005
                                                Trento Seminar
                                                                                                     23
```

### Biologically relevant examples?

Does SYSTEM reach a state where it makes no progress?

$$SYSTEM = \neg \diamond true$$

• Is there a state where input on site  $\alpha$  is not possible?

$$SYSTEM = \Diamond \neg \langle \alpha \rangle true$$

Does it reach a state where the process is spatially divided into two distinct agents?

$$SYSTEM = \Diamond (\neg 0 \mid \neg 0)$$

May 04, 2005

Trento Seminar

### Biologically relevant examples?

It depends on how we interpret SYSTEM ...

... SYSTEM=SignalingPathway|DrugAgent

 $SYSTEM = \neg \diamond true$ 

translates roughly 'does our drug cause the pathway to cease to function?'

or SYSTEM=SignalingPathway | ModifiedGene

 $SYSTEM = \Diamond \neg \langle \alpha \rangle true$ 

translates roughly 'does our gene modification cause the pathway to cease to block a certain protein-protein interaction?'

or SYSTEM=CellCycle

 $SYSTEM = \Diamond (\neg 0 \mid \neg 0)$ 

translates roughly 'does our cell divide?'

May 04, 2005

Trento Seminar

#### Course check

## To be an instance of the proposition-as-types paradigm we need

- a proof object
  - This semantics does not offer one
  - It does however provide a model-checker and identify an interesting class of processes for which checking terminates
- A cut-elimination theorem
  - There are variants of spatial logic (and other proof systems for calculus) offering cut-elimination theorems
  - But they are with respect to the 'wrong' kind of cut, i.e. not correlated to parallel composition

# To be useful in the biological setting we need a logic that is stochastic

- There are stochastic logics (and stochastic model-checkers)
  - None of them support mobility

May 04, 2005 Trento Seminar



#### Course check

#### My answer is 'no, we are not stuck'

- From the proposition—as—types point of view we still have the formula and models and the deep organizing principle of equality
  - We will need the proof-theoretic apparatus when we wish to calculate at the level of formulae

28

- The stochastic/mobility feature trade-off is more serious
  - How far can we get with only mobility?
  - How far can we get with only stochasticity?
  - How hard is it to introduce stochasticity into an HML?

May 04, 2005 Trento Seminar