Package 'kgen'

December 19, 2023

December 19, 2023				
Type Package				
Title A Tool for Calculating Stoichiometric Equilibrium Constants (Ks) for Seawater				
Version 0.3.1				
License MIT + file LICENSE				
Description A unified software package simultaneously implemented in 'Python', 'R', and 'Matlab' providing a uniform and internally-consistent way of calculating stoichiometric equilibrium constants in modern and palaeo seawater as a function of temperature, salinity, pressure and the concentration of magnesium, calcium, sulphate, and fluorine.				
Encoding UTF-8				
Depends R (>= 4.0)				
Imports rjson (>= 0.2.21), reticulate (>= 1.26), rappdirs (>= 0.3.3), checkmate (>= 2.1.0), pbapply (>= 1.7.0), data.table (>= 1.14.6)				
Suggests testthat (>= 3.0.0)				
RoxygenNote 7.2.3				
Config/testthat/edition 3				
NeedsCompilation no				
Author Dennis Mayk [aut, cre] (https://orcid.org/0000-0002-5017-1495)				
Maintainer Dennis Mayk <dm807@cantab.ac.uk></dm807@cantab.ac.uk>				
Repository CRAN				
Date/Publication 2023-12-19 14:10:02 UTC				
R topics documented:				
calc_fluorine calc_ionic_strength calc_K calc_K0 calc_K1 calc_K2				

2 calc_fluorine

	calc_KB	
	calc KP1	
	calc_KP2	
	calc_KP3	
	calc KS	
	calc_KSi	9
	calc_Ksp	10
	calc_KW	10
	calc_pc	11
	calc_pressure_correction	11
	calc_seawater_correction	12
	calc_sulphate	13
	install_pymyami	13
	is_linux	13
	is_osx	14
	is_windows	14
	kgen_poly	14
	K_fns	15
	mc_exists	15
	miniconda_conda	15
	miniconda_path	16
	miniconda_path_default	16
	pymyami_exists	16
Index		17

calc_fluorine

Calculate fluorine

Description

Calculate fluorine

Usage

calc_fluorine(sal)

Arguments

sal

Salinity

Value

fluorine

References

From Dickson et al., 2007, Table 2, Note: Sal / 1.80655 = Chlorinity

calc_ionic_strength 3

 $calc_ionic_strength$

Ionic strength after Dickson (1990a); see Dickson et al. (2007)

Description

Ionic strength after Dickson (1990a); see Dickson et al. (2007)

Usage

```
calc_ionic_strength(sal)
```

Arguments

sal

Salinity

Value

Ionic strength

calc_K

Calculate a single equilibrium constant

Description

Calculate **a single** specified stoichiometric equilibrium constant at given temperature, salinity, pressure and the concentration of magnesium, calcium, sulphate, and fluorine.

Usage

```
calc_K(
  k,
  temp_c = 25,
  sal = 35,
  p_bar = NULL
 magnesium = 0.0528171,
  calcium = 0.0102821,
  sulphate = NULL,
  fluorine = NULL,
  method = "r_polynomial"
)
calc_Ks(
  ks = NULL,
  temp_c = 25,
  sal = 35,
  p_bar = NULL,
```

4 calc_K

```
magnesium = 0.0528171,
 calcium = 0.0102821,
  sulphate = NULL,
  fluorine = NULL,
 method = "r_polynomial"
)
calc_all_Ks(
  temp_c = 25,
 sal = 35,
 p_bar = NULL,
 magnesium = 0.0528171,
 calcium = 0.0102821,
  sulphate = NULL,
 fluorine = NULL,
 method = "r_polynomial"
)
```

Arguments

k	K to be calculated
temp_c	Temperature (Celcius)
sal	Salinity
p_bar	Pressure (Bar) (optional)
magnesium	magnesium concentration in mol/kgsw. If None, modern is assumed (0.0528171). Should be the average magnesium concentration in seawater - a salinity correction is then applied to calculate the magnesium concentration in the sample.
calcium	calcium concentration in mol/kgsw. If None, modern is assumed (0.0102821). Should be the average calcium concentration in seawater - a salinity correction is then applied to calculate the magnesium concentration in the sample.
sulphate	Sulphate concentration in mol/kgsw. Calculated from salinity if not given.
fluorine	Fluorine concentration in mol/kgsw. Calculated from salinity if not given.
method	string describing method which should be either 'myami', 'myami_polynomial', or 'r_polynomial' (Default: 'r_polynomial').
ks	character vectors of Ks to be calculated e.g., c("K0", "K1") (Default: NULL, calculate all Ks)

Value

A single K at given conditions

Data.table of multiple Ks at given conditions

Data.table of all Ks at given conditions

calc_K0 5

Functions

• calc_Ks(): Wrapper to calculate **multiple** stoichiometric equilibrium constants at given temperature, salinity, pressure and the concentration of magnesium, calcium, sulphate, and fluorine.

• calc_all_Ks(): Wrapper to calculate **all** stoichiometric equilibrium constants at given temperature, salinity, pressure and the concentration of magnesium, calcium, sulphate, and fluorine.

Author(s)

Dennis Mayk

calc_K0

Calculate K0

Description

Calculate K0

Usage

```
calc_K0(coefficients, temp_c, sal)
```

Arguments

 ${\tt coefficients} \quad Coefficients \ for \ K \ calculation$

temp_c Temperature (Celcius)

sal Salinity

Value

K0

calc_K1

Calculate K1

Description

Calculate K1

Usage

```
calc_K1(coefficients, temp_c, sal)
```

6 calc_KB

Arguments

 ${\tt coefficients} \quad Coefficients \ for \ K \ calculation$

temp_c Temperature (Celcius)

sal Salinity

Value

K1

calc_K2

Calculate K2

Description

Calculate K2

Usage

```
calc_K2(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

Value

K2

calc_KB

Calculate KB

Description

Calculate KB

Usage

```
calc_KB(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

calc_KF

Value

KΒ

calc_KF Calculate KF

Description

Calculate KF

Usage

```
calc_KF(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

Value

KF

calc_KP1 Calculate KP1

Description

Calculate KP1

Usage

```
calc_KP1(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

Value

KP1

8 calc_KP3

calc_KP2

Calculate KP2

Description

Calculate KP2

Usage

```
calc_KP2(coefficients, temp_c, sal)
```

Arguments

 ${\tt coefficients} \quad Coefficients \ for \ K \ calculation$

temp_c Temperature (Celcius)

sal Salinity

Value

KP2

calc_KP3

Calculate KP3

Description

Calculate KP3

Usage

```
calc_KP3(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

Value

KP3

calc_KS 9

calc_KS

Calculate KS

Description

Calculate KS

Usage

```
calc_KS(coefficients, temp_c, sal)
```

Arguments

 ${\tt coefficients} \quad Coefficients \ for \ K \ calculation$

temp_c Temperature (Celcius)

sal Salinity

Value

KS

calc_KSi

Calculate KSi

Description

Calculate KSi

Usage

```
calc_KSi(coefficients, temp_c, sal)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

sal Salinity

Value

KSi

10 calc_KW

calc_Ksp

Calculate Ksp

Description

Calculate Ksp

Usage

```
calc_Ksp(coefficients, temp_c, sal)
```

Arguments

 ${\tt coefficients}$

Coefficients for K calculation

temp_c

Temperature (Celcius)

sal

Salinity

Value

Ksp

calc_KW

Calculate KW

Description

Calculate KW

Usage

```
calc_KW(coefficients, temp_c, sal)
```

Arguments

coefficients

Coefficients for K calculation

temp_c

Temperature (Celcius)

sal

Salinity

Value

KW

calc_pc 11

calc_pc

Calculate pressure correction factor for Ks

Description

Calculate pressure correction factor for Ks

Usage

```
calc_pc(coefficients, temp_c, p_bar)
```

Arguments

coefficients Coefficients for K calculation

temp_c Temperature (Celcius)

p_bar Pressure (Bar)

Value

Pressure correction factor

References

From Millero et al. (2007, doi:10.1021/cr0503557), Eqns 38-40

calc_pressure_correction

Calculate pressure correction factor

Description

Calculate pressure correction factor for a specified equilibrium constant.

Usage

```
calc_pressure_correction(k, temp_c, p_bar)
```

Arguments

 $\begin{array}{ll} k & K \text{ to be calculated} \\ \text{temp_c} & \text{Temperature (Celcius)} \\ \text{p_bar} & \text{Pressure (Bar)} \end{array}$

Value

pressure correction factor

Author(s)

Dennis Mayk

```
calc_seawater_correction
```

Kgen seawater composition correction function

Description

Kgen seawater composition correction function

Usage

```
calc_seawater_correction(
   k,
   sal,
   temp_c,
   magnesium = 0.0528171,
   calcium = 0.0102821,
   method = "r_polynomial"
)
```

Arguments

k	K to be calculated

sal Salinity

temp_c Temperature (Celcius)

magnesium concentration in mol/kgsw. If None, modern is assumed (0.0528171).

Should be the average magnesium concentration in seawater - a salinity correction is then applied to calculate the magnesium concentration in the sample.

calcium calcium concentration in mol/kgsw. If None, modern is assumed (0.0102821).

Should be the average calcium concentration in seawater - a salinity correction

is then applied to calculate the magnesium concentration in the sample.

method string describing method which should be either 'myami', 'myami_polynomial',

or 'r_polynomial' (Default: 'r_polynomial').

Value

list of seawater correction factors

Author(s)

Dennis Mayk

calc_sulphate 13

calc_sulphate

Calculate sulphate

Description

Calculate sulphate

Usage

```
calc_sulphate(sal)
```

Arguments

sal

Salinity

Value

sulphate

References

From Dickson et al., 2007, Table 2, Note: Sal / 1.80655 = Chlorinity

install_pymyami

Install MyAMI from pypi

Description

Function to install pymyami in a default location.

Usage

```
install_pymyami()
```

is_linux

Check if OS is Linux

Description

Check if OS is Linux

Usage

is_linux()

14 kgen_poly

is_osx

Check if OS is OSX

Description

Check if OS is OSX

Usage

is_osx()

is_windows

Check if OS is Windows

Description

Check if OS is Windows

Usage

is_windows()

kgen_poly

Kgen R polynomial function

Description

Kgen R polynomial function

Usage

```
kgen_poly(sal, temp_c, magnesium = 0.0528171, calcium = 0.0102821)
```

Arguments

sal Salinity

temp_c Temperature (Celcius)

magnesium concentration in mol/kgsw. If None, modern is assumed (0.0528171).

Should be the average magnesium concentration in seawater - a salinity correction is then applied to calculate the magnesium concentration in the sample.

calcium calcium concentration in mol/kgsw. If None, modern is assumed (0.0102821).

Should be the average calcium concentration in seawater - a salinity correction

is then applied to calculate the magnesium concentration in the sample.

K_fns 15

Author(s)

Dennis Mayk

 K_fns

List of all functions

Description

List of all functions

Usage

K_fns

Format

An object of class list of length 13.

mc_exists

Check if miniconda exists

Description

Check if miniconda exists

Usage

```
mc_exists(path = miniconda_path())
```

Arguments

path

Path to miniconda

miniconda_conda

Check if miniconda is installed

Description

Check if miniconda is installed

Usage

```
miniconda_conda(path = miniconda_path())
```

Arguments

path

Path to miniconda

pymyami_exists

 $miniconda_path$

Get miniconda path

Description

Get miniconda path

Usage

```
miniconda_path()
```

miniconda_path_default

Get miniconda default path

Description

Get miniconda default path

Usage

```
miniconda_path_default()
```

pymyami_exists

Check if pymyami is installed

Description

Check if pymyami is installed

Usage

```
pymyami_exists()
```

Index

```
* datasets
    K_fns, 15
calc_all_Ks (calc_K), 3
calc_fluorine, 2
{\tt calc\_ionic\_strength, 3}
calc_K, 3
calc_K0, 5
calc_K1, 5
calc_K2, 6
calc_KB, 6
calc_KF, 7
calc_KP1, 7
calc_KP2, 8
calc_KP3, 8
calc_KS, 9
calc_Ks (calc_K), 3
calc_KSi, 9
calc_Ksp, 10
calc_KW, 10
calc_pc, 11
calc_pressure_correction, 11
calc_seawater_correction, 12
calc_sulphate, 13
install_pymyami, 13
is_linux, 13
is_osx, 14
is\_windows, 14
K_fns, 15
kgen_poly, 14
mc_exists, 15
miniconda_conda, 15
miniconda_path, 16
miniconda_path_default, 16
pymyami_exists, 16
```