integracion, pruebas y resultados

27 de septiembre de 2023

Índice

1.	Primer grafo							
	1.1.	Resultados de Qiskit	2					
		1.1.1. Solución del artículo	2					
		1.1.2. Modificaciones a la solución del artículo	4					
	1.2.	Resultados de D-Wave						
2.	Tercer grafo							
	2.1.	Resultados de Qiskit	7					
	2.2.	Resultados de D-Wave	7					

En las ejecuciones de QAOA, con el fin de medir la eficacia de los resultados obtenidos entre métricas distintas, se han realizado los siguientes tipos de pruebas:

- Estadística máxima: Con este método se busca obviar el ruido presente en cada ejecución. Para ello se realizan n iteraciones distintas sobre el algoritmo y para cada una de ellas:
 - 1. Se ejecuta el optimizador clásico para hallar los parámetros óptimos (esto supone la ejecución del circuito cuántico el número de veces necesario para que el optimizador encuentre un mínimo local).
 - 2. Se ejecuta el circuito una vez más con los parámetros óptimos.
 - 3. Se obtiene el camino dado por el algoritmo para recorrer el grafo y se añade dicho camino a un diccionario para su posterior revisión. En el caso de la figura 2 el resultado sería 10101, es decir, el camino con mayor valor.
- Estadística global: A diferencia de la estrategia previamente explicada, al realizar el paso 3 se toman todos los caminos resultantes de la ejecución del circuito con los parámetros β_{opt} y γ_{opt} . De esta forma, una ejecución como la dada en la figura 2 se ve condicionada por todos los resultados, no únicamente por el camino con valor máximo.
- Función gamma: Se ha utilizado para comprobar la forma general que tiene la función $execute_circuit$, a minimizar por el optimizador clásico. Para ello se han realizado circuitos de una sola capa y se ha mantenido el parámetro $\beta=1$. Se ha decidido así porque dicho parámetro se encarga del ángulo de rotación de los operadores σ_x , de construcción trivial en comparación con los operadores dependientes de γ . Al variar γ y graficar la función resultante se puede intuir la probabilidad de encontrar mínimos locales en lugar del mínimo global. Esto se traduce como la posibilidad de encontrar un resultado subóptimo para el problema, es decir, que el algoritmo falle.

A continuación se mostrarán los resultados de ejecución utilizando ambos paradigmas, esto es, QAOA y Quantum Annealing, además de explorar el rendimiento de las ejecuciones en Qiskit variando los métodos para construir la función de coste.

1. Primer grafo

1.1. Resultados de Qiskit

1.1.1. Solución del artículo

En las siguientes muestras se ha buscado replicar los resultados del artículo. Esto ha sido probado ya que, empleando los parámetros $\beta=0.28517317$ y

Figura 1: Primer grafo. Artículo [2]

 $\gamma = -5,05969577$ dados como óptimos, se obtiene un gráfico muy similar al dado:

Figura 2:

De esta forma, se tiene que los resultados del artículo deberían ser equivalentes a los obtenidos en esta instancia del algoritmo.

nº Capas	Estadística máxima (%)	Estadística global (%)
p = 1	91.3%	39.34%
p=2	64.6%	24.16%
p = 3	63.4%	18.82 %

Cuadro 1: Resultados de la ejecución de la versión de QAOA del artículo

El primer resultado a resaltar en la tabla 1 es un empeoramiento de los resultados a medida que se aumenta el número de capas, lo cual es contrario a lo esperado teóricamente.

Además, la gran diferencia entre los resultados dados por la estadística máxima y la estadística global denotan una gran cantidad de ruido al ejecutar el algoritmo, lo cual se corrobora viendo los resultados de ejecuciones concretas, como los dados en la figura 2.

El resultado de la función gamma es el siguiente:

Figura 3: Función gamma. Caso del artículo

Se puede ver que existen un gran número de mínimos locales, lo cual dificulta la tarea del optimizador clásico. Esto se corrobora ya que, al inicializar los parámetros como $\beta=1,0$ $\gamma=0,5$, para p=1 se obtiene el camino óptimo el $100\,\%$ de las ejecuciones.

Este proceso de inicializar los parámetros con valores concretos no sería una solución válida, ya que se trata de una metodología no automática en la que, para ejecutar correctamente el algoritmo, se necesitaría conocer antes su propio resultado. Además la ejecución correcta sucede para p=1, pero al igual que el caso por defecto ($\beta=1,0$ $\gamma=1,0$), no escala correctamente al aumentar el número de capas.

1.1.2. Modificaciones a la solución del artículo

Partiendo de la solución del artículo descrita en la sección 1.1.1, se han realizado cambios a la función de coste y a la construcción del circuito cuántico con el fin de encontrar el mejor resultado. Esto se ha realizado para poder comparar el rendimiento de la mejor solución encontrada con el rendimiento del algoritmo de Quantum Annealing de D-Wave.

Las modificaciones empleadas han sido las siguientes:

 Al construir el circuito cuántico, utilizar para los operadores lineales los ángulos obtenidos teóricamente, en lugar de los vistos en el artículo.

P=40 Incrementar el valor del parámetro P (correspondiente al modificador de Lagrange) al construir la función de coste, para así aumentar la penalización en caso de fallo.

Restricción extra Añadir una restricción a la función de coste, que especifique que solo se puede acceder al último nodo por una de las aristas que lleguen a este.

$$X_{13} + X_{23} = 1 (1)$$

nº Capas	Estadística máxima (%)	Estadística global (%)
p = 1	93.8%	37.83%
p=2	64.6%	26.16%
p = 3	84.8 %	27.82%
p=4	56.0%	23.47%
p = 5	88.1 %	46.40%
p = 6	88.1 %	21.83%

Cuadro 2: Resultados de la ejecución de QAOA añadiendo la restricción de la fórmula 1

Los resultados ($tabla\ 2$) presentan una ligera mejora con respecto a los presentes en la $tabla\ 1$, tanto para las estadísticas máximas como globales.

La función gamma resultante (figura 4) toma, en comparación con la original (figura 3), unos valores elevados. Se distingue un incremento en la diferencia entre los mínimos globales y los mínimos locales (no globales).

Figura 4: Función gamma. Con restricción extra

1.2. Resultados de D-Wave

Con respecto a los resultados de aplicar Quantum Annealing utilizando los sistemas de D-Wave se ha obtenido el resultado de la tabla 3

Camino	Energía	Número de ocurrencias
10101 (Óptimo)	11	348
10010	12	373
01001	12	294
00000	54	4
10000	58	1
00001	59	1
10100	60	1
00101	61	1
01010	69	1

Cuadro 3: Resultados de la ejecución del primer grafo en D-Wave

La energía se refiere al coste de dicho camino de acuerdo con la función de coste utilizada. Se puede ver cómo, aunque se encuentre el camino óptimo un menor número de veces que en QAOA, existe una mayor coherencia en los resultados. Esto es así porque los caminos con mayores ocurrencias son los que tienen menor energía, mientras en las ejecuciones de Qiskit se pueden ver ejemplos, como es el camino 00111 en la figura 2 con un gran número de ocurrencias pero también una energía elevada. ¹

2. Tercer grafo

Figura 5: Tercer grafo. Artículo [1]

Camino	Energía	Número de ocurrencias
1010 (Óptimo)	7	776
0101	12	247
0010	46	1

Cuadro 4: Resultados de la ejecución del tercer grafo en D-Wave

2.1. Resultados de Qiskit

2.2. Resultados de D-Wave

Al igual que en anteriores ejecuciones utilizando Quantum Annealing, se mantiene la coherencia en los resultados. El resultado más producido es el camino óptimo, mientras que el segundo camino más producido es el otro único camino válido sin romper ninguna restricción.

Referencias

- [1] Zhiqiang Fan, Jinchen Xu, Guoqiang Shu, Xiaodong Ding, Hang Lian, and Zheng Shan. Solving the shortest path problem with qaoa. *SPIN*, 13, 12 2022.
- [2] Helen Urgelles Pérez, Pablo Picazo-Martinez, David Garcia-Roger, and J.F. Monserrat. Multi-objective routing optimization for 6g communication networks using a quantum approximate optimization algorithm. *Sensors*, 22:7570, 10 2022.

¹En la ejecución de Qiskit, la energía del camino "00111" es 150. Esto se debe a que se rompen varias restricciones presentes en la función de coste. Este valor puede variar dependiendo del multiplicador de Lagrange empleado y las restricciones utilizadas.