

Verteilte Systeme

Vorlesung 02

22. März 2017

Administratives

Kapitel 1: Grundlagen

Kapitel 3: Basiskonzepte, Eigenschaften,

Architekturen

Prof. Dr. Rainer Mueller

SS 2017

Vorlesung: Übersicht

Threads Basiskonzepte Eigenschaften Architekturen Sockets Sockets Sockets RMI 9 MOM 10 JMS Aufgabenblatt 3 11 SOA 13 LAUfgabenblatt 3 14 EDA EDA	KONZEPTE & ARCHITEKTUREN	OFFLINE	TECHNOLOGIEN	ÜBUNGEN
Basiskonzepte Eigenschaften Architekturen Sockets Sockets Sockets Sockets Sockets Sockets Aufgabenblatt 2 7 8 RMI 9 MOM JMS Aufgabenblatt 3 11 SOA 13 14 EDA EDA Aufgabenblatt 3 15	Grundlagen			1
Eigenschaften Architekturen 4 Sockets 5 N-Tier Aufgabenblatt 2 7 RMI 9 MOM 10 Aufgabenblatt 3 11 SOA 13 EDA 15		Threads		2
Architekturen Sockets N-Tier Aufgabenblatt 2 RMI 9 MOM JMS Aufgabenblatt 3 11 SOA 13 EDA 15	Basiskonzepte Eigenschaften			Aufgabenblatt 1 3
N-Tier RMI 9 MOM JMS Aufgabenblatt 3 11 SOA 13 EDA Aufgabenblatt 3 11 14	Architekturen			4
N-Tier RMI 9 MOM JMS Aufgabenblatt 2 7 8 RMI 9 Aufgabenblatt 3 11 12 SOA 13 14 EDA		Sockets		5
RMI 9 MOM 10 JMS Aufgabenblatt 3 11 SOA 13 EDA 15				6
MOM 10 JMS Aufgabenblatt 3 11 SOA 13 EDA 15	N-Tier			Aufgabenblatt 2 7
MOM JMS Aufgabenblatt 3 11 SOA 13 EDA 15				8
MS Aufgabenblatt 3 12 SOA 13 14 EDA 15			RMI	9
SOA 13 14 EDA 15	MOM			10
SOA 13 EDA 15			JMS	Aufgabenblatt 3 11
EDA 15				12
EDA 15	SOA			13
				14
16	EDA			15
				16

KAPITEL 1

Grundlagen

1 Grundlagen Übersicht

1.1 MOTIVATION

1.1.1 Lokale Schranken

1.1.2 Netzausbau

1.1.3 Verteiltere Welt

1.1.4 Technologischer Fortschritt

1.2 DEFINITION

1.2.1 Zitate

1.2.2 Verteilt vs. zentralisiert

1.3 KONSEQUENZEN, VORTEILE UND NACHTEILE

- 1.3.1 Konsequenzen aus der Definition
- 1.3.2 Unterstützung verteilter Aufgabenstellungen
- 1.3.3 Robustheit, Zuverlässigkeit, Verfügbarkeit
- 1.3.4 Unterstützung von Spezial-Hardware
- 1.3.5 Ausnutzung freier Rechenressourcen
- 1.3.6 Kosten für Kommunikation
- 1.3.7 Komplexität bei Entwicklung
- 1.3.8 Komplexität bei Betrieb

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.1 Konsequenzen aus der Definition

Essenz aus der Definition "Verteiltes System":

Komponenten auf vernetzen Rechnern kommunizieren (ausschließlich über Nachrichten)

NEBENLÄUFIGKEIT

- Nebenläufige Ausführung von Komponenten mit geteiltem Ressourcenzugriff
 - → Synchronisierung der Komponenten erforderlich
 - → Zusätzliche Ressourcen steigern Gesamtkapazität des verteilten Systems

FEHLENDE GLOBALE UHR

- Kein globales Zeitkonzept: Synchronisierung der Uhren auf Teilnehmersystemen schwierig
 - → Koordination von Komponenten nur über Nachrichteninhalt, nicht über Nachrichtenzeitpunkt
 - → Keine Koordination von Komponenten ohne Nachrichten (also z.B. nur durch Zeit)

KOMPONENTENAUSFALL

- Komponenten fallen unabhängig aus: Andere Komponenten funktionieren weiter
 - → Komponenten bemerken Ausfall nicht und reagieren nicht darauf
 - → Einzelkomponenten isoliert
 - → Gesamtsystem wird langsamer oder fällt aus

1 Grundlagen

1.3 Konsequenzen, Vor- und Nachteile

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.2 Unterstützung verteilter Aufgabenstellungen

AUFGABEN/FUNKTIONEN MIT GEOGRAPHISCHER VERTEILUNG

Aufgaben meist inhärent verteilt

- Videokonferenz-Systeme
- Internet-Telefonie
- Fahrzeugleit-Systeme (Autonomens Fahren)

AUFGABEN/FUNKTIONEN MIT ORGANISATORISCHER VERTEILUNG

- Systeme zur Unterstützung von verteilten Geschäftsprozessen
- Entfernter Zugriff auf zentralisierte Unternehmensinformationssysteme (Beispiel: ERP-Systeme)
- Verteilte Unternehmensinformationssysteme (Beispiel: Information entsteht an unterschiedlichen Standorten)

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.3 Robustheit, Zuverlässigkeit, Verfügbarkeit
- Verwendung von redundanten Datenkopien (verteilte Datenbanken)
- Zusätzliche Standby-Rechner
- Lastverteilung durch Rechner-Cluster
 - → Kürzere Antwortzeiten durch Parallelisierung im Vergleich zu zentraler Lösung

verteilung Möglich

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.4 Unterstützung spezieller Hardware

GRÜNDE FÜR SPEZIELLE HARDWARE

- Rechenleistung: Hochleistungsrechner für rechenintensive Aufgaben
- Daten mit eingeschränktem Zugriff: Verwendung von vertraulichen Daten/Information mit Zugriffsschutz macht es sinn Server zu kaufen? oder macht es eher Sinn viele kleine zu Nutzen?
- Kosten: Ausnutzung günstigerer Hardware-/Rechen-/Softwareressourcen (→ Cloud Computing)
- Wirtschaftlichkeit: Zentrales leistungsstarkes Einzelsystem teurer, als viele verteilte leistungsschwache Systeme

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.5 Ausnutzung freier Rechenressourcen

GRID COMPUTING/DISTRIBUTED COMPUTING

- @home-Projekte: Simulation, Wetter, Pharma
- seti@home (Berkeley): Search for extraterrestrial intelligence at home
 - > 1 Mio. teilnehmende Computer
 - Über 700 TeraFLOPS (Größenordnung eines Höchstleistungsrechners, Wert von 2009)
 - Seit 1999: 2,3 Mio. Jahre Rechenzeit
 - o setiathome.ssl.berkeley.edu
- BOINC-Plattform (Berkeley Open Infrastructure for Network Computing) für Projekte im Bereich Distributed Computing (Grid-Computing)
 - Plattform f
 ür projektweise Bereitstellung von ungenutzter (privater) Rechnerleistung

Startschuss in Stuttgart: Schnellster ziviler Supercomputer Europas eingeweiht

27. Februar 2012

Hermits Rechenleistung liegt im Petaflop-Bereich und dient Forschung, Entwicklung und Industrie.

Mit einem feierlichen Festakt wurde vergangenen Freitag am Höchstleistungsrechenzentrum Stuttgart (HLRS) der schnellste Supercomputer Deutschlands und zugleich schnellste zivil genutzte Rechner Europas offiziell für die Nutzer freigegeben. Bundesforschungsministerin Annette Schavan und Ministerpräsident Winfried Kretschmann gaben im Beisein des Rektors der Universität Stuttgart, Wolfram Ressel, den Startschuss für die Inbetriebnahme des Rechnersystems Hermit. Mit einer Leistung von mehr als 1 Petaflop pro Sekunde (1 Billiarde Rechenoperationen pro Sekunde) zählt es zu den leistungsfähigsten Supercomputern der Welt.

Quelle: www.nachrichten.de

Quelle: Badische Zeitung

L Grundlagen

1.3 Konsequenzen, Vor- und Nachteile

Distribution means Sharing Verteilen bedeutet auch Teilen

Duden: verteilen

Wortart: i schwaches Verb

Häufigkeit: ill []

Synonyme

- 1. sich ausbreiten, auseinandergehen, auseinanderlaufen, ausschwärmen, sich verlaufen, sich zerstreuen
- 2. abgeben, ausgeben, aushändigen, austeilen, geben, vergeben; (bildungssprachlich) distribuieren
- 3. aufteilen, einteilen, zuteilen, zuweisen

Bedeutungsübersicht

- 1. [aufteilen und in einzelnen Anteilen, Portionen o. Ä.] an mehrere Personen vergeben, austeilen
- 2. aufteilen und in gleicher Menge oder Anzahl an verschiedene Stellen bringen, legen, stellen usw., irgendwo unterbringen

•••

1 Grundlagen

1.3 Konsequenzen, Vor- und Nachteile

Distribution means Sharing Verteilen bedeuten auch Teilen

Grundlagen Übersicht

1.1 MOTIVATION

1.1.1 Lokale Schranken

1.1.2 Netzausbau

1.1.3 Verteiltere Welt

1.1.4 Technologischer Fortschritt

1.2 DEFINITION

1.2.1 Zitate

1.2.2 Verteilt vs. zentralisiert

1.3 KONSEQUENZEN, VORTEILE UND NACHTEILE

1.3.1 Konsequenzen aus der Definition

1.3.2 Unterstützung verteilter Aufgabenstellungen

1.3.3 Robustheit, Zuverlässigkeit, Verfügbarkeit

1.3.4 Unterstützung von Spezial-Hardware

1.3.5 Ausnutzung freier Rechenressourcen

1.3.6 Kosten für Kommunikation

1.3.7 Komplexität bei Entwicklung

1.3.8 Komplexität bei Betrieb

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.6 Kosten für Kommunikation

GRÜNDE FÜR KOSTEN

- Latenzzeit (ggf. relevant für Echtzeit-Daten)
- Jitter (ggf. relevant für Echtzeit-Daten)
- Netzbelastung
- Ausfall

Nachteile: Kommunikation kostet (kein Geld aber Zeit)

Typische Klausurfrage Jitter

- -> schwankungen bei der Datenübertragung pro Zeiteinheit
- -> Problemstellung bei Echtzeit Anwendungen (z.B. Aktienhandel)
- -> Bei Ton/ Bild übertragen

1.3 Konsequenzen, Vor- und Nachteile

1.3.7 Komplexität bei Entwicklung

ENTWURF	Vorlesung	Übung
 Verteilungsmodell: Geeignete Wahl 	Х	X
 Kommunikationsmechanismen 	х	Х
IMPLEMENTIERUNG		
 Neue Fehlerquellen: Ausbleiben der Antwort (Timer erforderlich); Unerwartete Nachricht 		Х
 Nebenläufigkeit: (Thread-)Synchronisierung für asynchr. Verarbeitung 	X	Х
TESTEN		
 Simulation entfernter Prozesse (inklusive Ausnahmenbehandlung) 		Х
 Integrationstest mit komplexen Setups der Komponenten 		
 Vielzahl von möglichen Interaktionen, Fehlerfällen, Konfigurationen 		Х
FEHLERSUCHE/WARTUNG		
Fehlerreproduktion: Komplexe Interaktion vieler Prozesse erforderlich		X
Beispiel Breakpoints: Anhalten problematisch, wenn entfernte Prozesse		
mit Timern auf Antwort warten		

- 1.3 Konsequenzen, Vor- und Nachteile
- 1.3.8 Komplexität bei Betrieb

PROBLEME BEI BETRIEB

- Verfügbarkeit: Fehlende Reaktion, Absturz, undefinierter Zustand der Anwendung (Rechnerausfall?)
- Sicherheit: Komponenten und Kommunikationswege angreifbar

PROBLEME BEI VERSIONIERUNG UND KONFIGURATION

- Ggf. unterschiedliche Versionierungszyklen für einzelne Komponenten
 - o Ggf. Abwärtskompatibilitäten erforderlich
 - o Ggf. Austausch von Komponentenversionsnummern bei Kommunikation erforderlich

1 Grundlagen

1.3 Konsequenzen, Vor- und Nachteile

1 Grundlagen Übersicht

1.1 MOTIVATION

- 1.1.1 Lokale Schranken
- 1.1.2 Netzausbau
- 1.1.3 Verteiltere Welt
- 1.1.4 Technologischer Fortschritt

1.2 DEFINITION

- 1.2.1 Zitate
- 1.2.2 Verteilt vs. zentralisiert

1.3 KONSEQUENZEN, VORTEILE UND NACHTEILE

- 1.3.1 Konsequenzen aus der Definition
- 1.3.2 Unterstützung verteilter Aufgabenstellungen
- 1.3.3 Robustheit, Zuverlässigkeit, Verfügbarkeit
- 1.3.4 Unterstützung von Spezial-Hardware
- 1.3.5 Ausnutzung freier Rechenressourcen
- 1.3.6 Kosten für Kommunikation
- 1.3.7 Komplexität bei Entwicklung
- 1.3.8 Komplexität bei Betrieb

Vorlesung: Übersicht

KAPITEL 3

Basiskonzepte, Eigenschaften und Architekturen

KAPITEL 3

Übergeordnete Frage

Worin unterscheidet sich der verteilte Fall vom zentralisierten Fall, den wir gut kennen?

3

KAPITEL 3

Vom zentralen Fall übertragbare Basiskonzepte, daraus ableitbare grundlegende Eigenschaften, erste teilweise auch zentral gültige Strukturen und Architekturelemente

3

KAPITEL 3

Vom zentralen Fall übertragbare Basiskonzepte, daraus ableitbare grundlegende Eigenschaften, erste teilweise auch zentral gültige Strukturen und Architekturelemente

3

BASISKONZEPTE

3.1 RESSOURCEN UND DIENSTE

- 3.1.1 Prinzipien und Phasen für Verteilung
- 3.1.2 Ressource
- 3.1.3 Dienst
- 3.1.4 Anbieter und Konsument

3.2 CLIENT UND SERVER

- 3.2.1 Fundamentalverteilung: Client-Server
- 3.2.2 Netzwerkebene

3.3 INTERAKTIONSMODELLE

3.4 (A)SYNCHRONITÄT

- 3.4.1 Anfrage und Antwort
- 3.4.2 Multiple Anfragen

EIGENSCHAFTEN

3.4 KOHÄRENZ UND TRANSPARENZ

- 3.4.1 Definition
- 3.4.2 Transparenz von Verteilungseigenschaften
- 3.4.3 Bedeutung und Realisierbarkeit

3.5 SKALIERBARKEIT

- 3.5.1 Definition und Typen
- 3.5.2 Typ: Größe
- 3.5.3 Typ: Geographie
- 3.5.4 Typ: Administration

3.6 NEBENLÄUFIGKEITS-GRAD

- 3.6.1 Bedeutung und Konsequenz
- 3.6.2 Ausschlussverfahren
- 3.6.3 Grad und Auswirkung

3.7 KOMMUNIKATIONS-GRAD

- 3.7.1 Schalenmodell
- 3.7.2 Sockets
- 3.7.3 Nachrichten
- 3.7.4 Entfernter Prozeduraufruf
- 3.7.5 Entfernter Methodenaufruf
- 3.7.6 Runtime, Dienste, Komponenten

ARCHITEKTUREN

3.8 SOFTWARE- UND SYSTEM-ARCHITEKTUR

3.8.1 Software-Architektur

Basiskonzepte, Eigenschaften und Architekturen Übersicht

- 3.8.2 System-Architektur
- 3.8.3 Software-Architektur →
 Systemarchitektur

3.9 ZENTRALISIERTE SOFTWARE-ARCHITEKTUREN

- 3.9.1 Architekturstile
- 3.9.2 Zugehörige System-Architekturen

3.10 ROLLENAUFLÖSUNG VON CLIENT-SERVER

- 3.10.1 Funktionen eines VSYS und Client-Server
- 3.10.2 Client-Server: Aufgabenverteilung
- 3.10.3 Von Client-Server zu Mehrschicht-Architekturen
- 3.10.4 Vom Server zum Service
- 3.10.5 Von der Web-Anwendung zur RIA
- 3.10.6 Von der Dienstverteilung zur Komponentenverteilung
- 3.10.7 Vertauschbare Client-/Server-Rollen
- 3.10.8 Schrittweise Aufweichung des C-/S-Prinzips

3.1 Ressourcen und Dienste

3.1.1 Prinzipien und Phasen für Verteilung

3.1 Ressourcen und Dienste

3.1.1 Ressourcen

RESSOURCE: DEFINITION

- Ressource: Beliebige physikalische oder virtuelle Komponente (Objekt) eines Rechnersystems, welche nur in begrenzter Form zur Verfügung steht
- Synonyme: System-Ressource, Betriebsmittel
- Abgrenzung: Ressource bei der Software-Entwicklung
 - Daten, Dateien oder Codebestandteile, die vom algorithmischen Kern (dem eigentlichen Quelltext) der Software verwendet werden, aber nicht Bestandteil des Quelltexts sind.

3.1.1 Ressourcen

RESSOURCE: BEISPIELE

- Physisch: Hardware-Betriebsmittel physische Ressource
 - Prozessoren (CPU, E/A-Prozessoren): Zeitl.
 Aufteilung, Nebenläufige Nutzung
 - Speicher (Hauptspeicher, Sekundärspeicher, Festplatten): Räumliche Aufteilung
 - E/A-Geräte (Monitor/Tastatur, Maus, Netzwerkkarten, Drucker, CD/DVD): Exklusive Nutzung (meistens)
- Virtuell: Software-Betriebsmittel
 - Speicher (Festplatten-Partitionen, Dateisysteme, Dateien, Datenbanken)
 - Systemprogramme (Gerätetreiber, DLLs, Dienstprogramme, Systemkommandos)
- Funktional: Daten, Datensätze, Information,
 Funktionen funktionelle Ressource z.B Ressource
 - Mail, Drucker-Spooling
 - o Daten: Dateien, Datenbanken, Web-Seiten
 - Funktionen: Suchen, Nachschlagen, Umrechnen
- Keine Ressourcen im engeren Sinne: Web Services, Portlets, Widgets, Beans, etc.

3.1.1 Ressourcen

PRINZIPIEN DES GEMEINSAMEN ZUGRIFFS

Gültigkeitsbereich

- Wo? Von wo?
- Ressourcen für einen (nahezu) uneingeschränkten Gültigkeitsbereich
 - Beispiel: Web-Seiten
- Ressourcen für einen sehr eingeschränkten Gültigkeitsbereich
 - Beispiel: Dokumente eines unternehmensinternen CMS (Content Management System); nur im Intranet bzw. mit VPN verfügbar
- Anwenderkreis

Wer?

- Alle Anwender
 - Beispiel: Web-Anwender der Welt
- Sehr eingeschränkter Anwenderkreis
 - Beispiel: Angemeldete Anwender eines unternehmensinternen CMS

3.1.3 Ressourcen

RESSOURCEN-VERWALTUNG

- Wer verwaltet Ressourcen?
 - Hardware/Firmware/Mikroprogramme: Nur indirekt
 - Betriebssystem/Treiber: Ja, auf einem hardware-nahen Niveau als Schnittstelle
 - Nur für lokale Applikationen
 - o Applikationen: Ja, für Anwender
 - Nur für lokalen Einsatz
 - Beispiele: Spezifische Software für Peripherie-Geräte od. Sekundärspeicher, lokale Benutzerverwaltung

3.1.3 Dienste

RESSOURCEN-BEREITSTELLUNG

- Definition Dienste
 - Dienste (Services) sind Applikationen auf einem Rechner
 - Dienste verwalten verwandte Ressourcen
 - Dienste stellen Ressourcen (entfernten)
 Prozessen zur Verfügung
- Beispiele auf verschiedensten Ebenen
 - Dateidienst fuer Dateien/Dateisysteme (NFS), Druckdienste (Druckerspooler)
 - Zahlungsdienst (Paypal, giroPay)
 - Web: Interaktive Seiten über CGI, Servlets,
 JSP, etc. → Web-Formulare,
 Suchmaschinen, Web Services
- Zugriff auf Dienste: Dienstschnittstelle (Contract) als Menge exportierter Operationen
 - Beispiel: Lesen, schreiben, löschen bei Dateidienst

3.1 Ressourcen

3.1.4 Anbieter und Konsument

DIENST-KAPSELUNG DURCH ANBIETER

- Applikation bietet einen oder mehrere Dienste an
 - → Dienst-Anbieter

DIENST-NUTZUNG DURCH KONSUMENT

- Applikation nutzt einen oder mehrere Dienste von einem oder mehrere Anbietern
 - → Dienst-Konsument

BASISKONZEPTE

3.1 RESSOURCEN UND DIENSTE

- 3.1.1 Prinzipien und Phasen für Verteilung
- 3.1.2 Ressource
- 3.1.3 Dienst
- 3.1.4 Anbieter und Konsument

3.2 CLIENT UND SERVER

- 3.2.1 Fundamentalverteilung: Client-Server
- 3.2.2 Netzwerkebene

3.3 INTERAKTIONSMODELLE

3.4 (A)SYNCHRONITÄT

- 3.4.1 Anfrage und Antwort
- 3.4.2 Multiple Anfragen

EIGENSCHAFTEN

3.4 KOHÄRENZ UND TRANSPARENZ

- 3.4.1 Definition
- 3.4.2 Transparenz von Verteilungseigenschaften
- 3.4.3 Bedeutung und Realisierbarkeit

3.5 SKALIERBARKEIT

- 3.5.1 Definition und Typen
- 3.5.2 Typ: Größe
- 3.5.3 Typ: Geographie
- 3.5.4 Typ: Administration

3.6 NEBENLÄUFIGKEITS-GRAD

- 3.6.1 Bedeutung und Konsequenz
- 3.6.2 Ausschlussverfahren
- 3.6.3 Grad und Auswirkung

3.7 KOMMUNIKATIONS-GRAD

- 3.7.1 Schalenmodell
- 3.7.2 Sockets
- 3.7.3 Nachrichten
- 3.7.4 Entfernter Prozeduraufruf
- 3.7.5 Entfernter Methodenaufruf
- 3.7.6 Runtime, Dienste, Komponenten

ARCHITEKTUREN

3.8 SOFTWARE- UND SYSTEM-ARCHITEKTUR

3.8.1 Software-Architektur

3.2 Client und Server

3.2.1 Fundamentalverteilung: Client-Server

GRUNDLAGEN

- Definition
 - Anbieter (Server): Bietet Funktionalität (Ressourcen) in Form eines od. mehrerer Dienste(s) an
 - Konsument (Client): Nutzt den/die Dienst(e) eines Servers
- Begriffsklärung
 - Server
 - Hardware/Rechner/OS: Ja, aber nicht im Sinne verteilter Systeme
 - Applikationen: Ja, stellen Zugriff auf einen oder mehrere Dienste für externe Applikationen/Dienste zur Verfügung
 - Client
 - Hardware/Rechner/OS: Ja, aber nicht im Sinne verteilter Systeme
 - Applikation: Ja, nimmt Dienste eines oder mehrerer Server in Anspruch
- Beispiele
 - Server: Web-Server à la Apache, IIS; Datenbankmanagementsystem, etc.
 - Client: Web-Browser à la Firefox, Opera, Safari, Chrome, IE
- Anwendung
 - Reinform: Unabhängiges Client-Server-System
 - o Übliche Verwendung: Bestandteil komplexer Systemarchitekturen
- Einordnung/Bewertung
 - o Grundlegendstes Konzept der Verteilung von Systemen oder Aufgaben
 - Sehr viele, aber nicht alle VSYSe basieren auf Client-Server-Prinzip

3.2.1 Fundamentalverteilung: Client-Server

UNTERSCHIEDE ZWISCHEN CLIENT UND SERVER

- Clients sind aktiv und Server passiv
 - Clients initiieren die Kommunikation
 - Server warten auf Clients
- Laufzeit
 - Server sind dauerhaft verfügbar
 - O Clients existieren idR nur zur Laufzeit der zugehörigen Applikationen
 - o Beispiel: E-Mail-Programm, FTP-Client, Remote Desktop Verbindung, X Window System
- Rollen von Client und Server können wechseln

Rollen: Verantwortlichkeit/Verpflichtungen/Einschränkungen/Rechten

Impliziert Rechte und Pflichten

3.2 Client und Server

3.2.2 Netzwerkebene

TECHNOLOGIEN FÜR CLIENT-SERVER AUF UNTERSCHIEDLICHEN NETZWERK-EBENEN

Nr.	Schichten		Einordnung		Einheiten	Protokoll-Beispiele	Netzwerk-
	OSI	DoD	System	Verbindung			Komponenten
7	Anwendung	Anwendung	Anwendung	Ende-zu-Ende (Multihop) Segmente Pakete	Daten	FTP, LDAP, NFS, SMTP, IMAP, DHCP, DB LOCK (2PL, TL, TO, SGT)	Gateway Content-Switch
6	Darstellung					HTTP(S), MIME, SSL, TLS, XDR	
5	Sitzung					NetBIOS, Named Pipes, RTP, etc.	
4	Transport	Transport	Transport		Segmente	TCP Sockets, UDP SCTP SPX	RPC, RMI
3	Vermittlung	Vermittlung			Pakete	IP IPsec IPX ICMP IGMP	Router Layer 3-Switch
2	Sicherung	Netzzugriff		Punkt-zu-Punkt	Rahmen	Ethernet FDDI	Bridge Switch
1	Bitübertragung				Bits	Token Ring	Repeater Hub

Konzeptuelle Ausrichtung auf Client-Server

Schwach

Stark

BASISKONZEPTE

3.1 RESSOURCEN UND DIENSTE

- 3.1.1 Prinzipien und Phasen für Verteilung
- 3.1.2 Ressource
- ✓ 3.1.3 Dienst
- 3.1.4 Anbieter und Konsument

3.2 CLIENT UND SERVER

- 3.2.1 Fundamentalverteilung: Client-Server
- 3.2.2 Netzwerkebene

3.3 INTERAKTIONSMODELLE

3.4 (A)SYNCHRONITÄT

- 3.4.1 Anfrage und Antwort
- 3.4.2 Multiple Anfragen

EIGENSCHAFTEN

3.4 KOHÄRENZ UND TRANSPARENZ

- 3.4.1 Definition
- 3.4.2 Transparenz von Verteilungseigenschaften
- 3.4.3 Bedeutung und Realisierbarkeit

3.5 SKALIERBARKEIT

- 3.5.1 Definition und Typen
- 3.5.2 Typ: Größe
- 3.5.3 Typ: Geographie
- 3.5.4 Typ: Administration

3.6 NEBENLÄUFIGKEITS-GRAD

- 3.6.1 Bedeutung und Konsequenz
- 3.6.2 Ausschlussverfahren
- 3.6.3 Grad und Auswirkung

3.7 KOMMUNIKATIONS-GRAD

- 3.7.1 Schalenmodell
- 3.7.2 Sockets
- 3.7.3 Nachrichten
- 3.7.4 Entfernter Prozeduraufruf
- 3.7.5 Entfernter Methodenaufruf
- 3.7.6 Runtime, Dienste, Komponenten

ARCHITEKTUREN

3.8 SOFTWARE- UND SYSTEM-ARCHITEKTUR

3.8.1 Software-Architektur

3.3 Interaktionsmodelle

INTERAKTION DER PROZESSE

 A distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages.

Quelle: Coulouris et al., Distributed Systems – Concepts and Design

- Warum Interaktion?
 - → Realisierung der verteilten Funktionalität durch Interaktion der Prozesse/Rechner
- Grundsätzliche Konzepte
 - Kooperation und Kommunikation
 - Symmetrische und asymmetrische Interaktion

Interaktion durch gemeinsame Daten

Quelle: A. S. Tanenbaum, Verteilte Systeme

SYMMETRIE ODER ASYMMETRIE IN DER INTERAKTION

- - Erweiterung der Definition: Komponenten oder Partner haben gleichwertigen Ressourcenzugriff

3.3 Interaktionsmodelle

... SYMMETRIE ODER ASYMMETRIE IN DER INTERAKTION

Erweiterung der Defintion: ...

Beispiele:

Client-Server → Nein
Peer-To-Peer → Meistens

 Asymmetrie: Komponenten haben keine gleichwertigen Interaktionsrollen

unterschiedliche Rollen
Rollenwechesel bei Peer-to-Peer

KOOPERATION

Beispiel gemeinsames bearbeiten von Daten

 Interaktion auf Basis gemeinsamer Ressourcen/Daten

Beispiel: Shared Memory

- IdR. symmetrische Interaktion, da alle Prozesse gleichberechtigt beim Zugriff auf Daten
- Verwendung: Häufig nur bei lokalen, auf Prozesse verteilten Anwendungen
- Selten: Reale verteilte Kooperation
 Bsp.: Linda, JavaSpaces
- Häufig: Verteilte Kooperation durch Kommunikation

Kooperation durch Kommunikation (Page transfer)

Quelle: A. S. Tanenbaum Verteilte Systeme

Asymmetrische Kommunikation

Quelle: A. S. Tanenbaum Verteilte Systeme

- Basiskonzepte, Eigenschaften und Architekturen
- 3.3 Interaktionsmodelle

KOMMUNIKATION

- Häufig asymmetrische Interaktion, da
 - Anfrager-Antworter-Beziehung
 - Noch allgemeiner: Nachrichtenmuster (Message Patterns)
 - Ggf. mehrere Anfrager pro Antworter
- Übliches Interaktionsmodell für verteilte Systeme

FAZIT

- Kommunikation üblich, Kooperation eher in Ausnahmefällen
- Interaktion idR. asymmetrisch
- Kooperation durch Kommunikation denkbar

3.4.1 Anfrage und Antwort

REQUEST-RESPONSE-MODELL

- Server wartet auf Anfrage
- Client initiiert Kommunikation → Anfrage (Request)
- Server empfängt und bearbeitet Anfrage
- Server sendet Antwort → Antwort (Response)

- Synchron: Client wartet auf Antwort
- Asynchron: Client wartet nicht und wird vom Server über Verfügbarkeit der Antwort benachrichtigt

3.4.1 Anfrage und Antwort

- Ressourcen: Web-Seiten
- Anfragen und Antworten
 - URL (Uniform Resource Locator): Server-Adresse[+Port]+Ressourcenbezeichnung
 - Browser: URL → HTTP-GET-Request
 - Optional: Umsetzung des DNS-Namens in IP-Adresse
 - o Server: Prüfen und ggf. Senden der Ressourcen → HTTP-Response

3.4.1 Anfrage und Antwort

- Request-Response-Zyklus gemäß HTTP zustandslos
 - → Zustandsbehaftete Kommunikation (Bsp.: Session) erfordert Protokoll-Zusätze
- Weitere HTTP-Anfragen neben GET
 - o POST: Übermittlung von Daten an den Server

- HEAD: Wie GET, aber ohne eigentliche Übermittlung der Ressource
- PUT: Übermittlung einer Ressource an den Server
- DELETE: Löschen einer Ressource auf dem Server → Verwendung bei REST oder WEBDAV
- TRACE: Server liefert eigene Anfrage zurück → Wurde eigene Anfrage verändert (Debugging)
- OPTIONS: Liste mit unterstützten Methoden und Features
- CONNECT: Verwendung in SSL-Tunnels
- Authentifizierung
 - Server: Statuscode "401 Unauthorized" + Header mit WWW-Authenticate
 - Client: Header mit WWW-Authenticate und User + Passwort (Base64-codiert) an Server

3.4.2 Multiple Anfrage

MULTI-REQUEST UND MULTI-CLIENT

- Mehrere Request-Response-Paare pro Kommunikation → Evtl. Verbindungskontext erforderlich
- Multi-Client
 - Angebot eines Dienstes für nur einen Client idR nicht sinnvoll
 - Server bedient mehrere Clients gleichzeitig (ggf. mit Verbindungskontext pro Client)

3.4.2 Multiple Anfrage

DIENSTKOMPOSITION DURCH MEHRSTUFIGE SERVER-ANFRAGE

- Server benötigt zur Beantwortung einer Anfrage Dienste anderer Server
 - → Server tritt als Client für weiteren Server auf
- Bereitstellung komplexerer Dienste durch Zusammensetzung anderer Dienste
 - → Dienststrukturierung durch Schachtelungsprinzip (entspricht Modularisierung bei imperativer Programmierung)
- Nachteile
 - Erhöhter Kommunikationsaufwand
 - Synchronisierungsaufwand bei (gängiger) gleichzeitiger Subdienst-Ausführung

BASISKONZEPTE

3.1 RESSOURCEN UND DIENSTE

- 3.1.1 Prinzipien und Phasen für Verteilung
- 3.1.2 Ressource
- ✓ 3.1.3 Dienst
- 3.1.4 Anbieter und Konsument

3.2 CLIENT UND SERVER

- 3.2.1 Fundamentalverteilung: Client-Server
- 3.2.2 Netzwerkebene

3.3 INTERAKTIONSMODELLE

3.4 (A)SYNCHRONITÄT

- 3.4.1 Anfrage und Antwort
- 3.4.2 Multiple Anfragen

EIGENSCHAFTEN

3.4 KOHÄRENZ UND TRANSPARENZ

- 3.4.1 Definition
- 3.4.2 Transparenz von Verteilungseigenschaften
- 3.4.3 Bedeutung und Realisierbarkeit

3.5 SKALIERBARKEIT

- 3.5.1 Definition und Typen
- 3.5.2 Typ: Größe
- 3.5.3 Typ: Geographie
- 3.5.4 Typ: Administration

3.6 NEBENLÄUFIGKEITS-GRAD

- 3.6.1 Bedeutung und Konsequenz
- 3.6.2 Ausschlussverfahren
- 3.6.3 Grad und Auswirkung

3.7 KOMMUNIKATIONS-GRAD

- 3.7.1 Schalenmodell
- 3.7.2 Sockets
- 3.7.3 Nachrichten
- 3.7.4 Entfernter Prozeduraufruf
- 3.7.5 Entfernter Methodenaufruf
- 3.7.6 Runtime, Dienste, Komponenten

ARCHITEKTUREN

3.8 SOFTWARE- UND SYSTEM-ARCHITEKTUR

3.8.1 Software-Architektur

3

KAPITEL 3

Vom zentralen Fall übertragbare Basiskonzepte, daraus ableitbare grundlegende Eigenschaften, erste teilweise auch zentral gültige Strukturen und Architekturelemente

Übertragung

Übertragung

Verteiltes Szenario

Zentralisiertes Szenario

3

KAPITEL 3

Vom zentralen Fall übertragbare Basiskonzepte, daraus ableitbare grundlegende Eigenschaften, erste teilweise auch zentral gültige Strukturen und Architekturelemente

Verteiltes Szenario

Übertragung

Zentralisiertes Szenario