

Universidad Nacional Autónoma de México Facultad de Ciencias Redes Neuronales

Examen 03 Carlos Emilio Castañon Maldonado

- 1 Seleccione la razón más importante por la cual las redes recurrentes son particularmente eficientes para aprender a modelar series de tiempo.
 Selecciona una con ★:
 - a) Porque el gradiente es más rápido de calcular que con una red multicapa.
 - b) Porque se utilizan los mismos parámetros para procesar los datos en todo tiempo $t \star$
 - c) Porque separan las dependencias entre los elementos de la serie a la entrada.
 - d) Porque los gradientes no explotan ni se desvanecen si las series son largas.
 - e) Porque fueron diseñadas especialmente para eso.
- 2 Dado el sistema de ecuaciones ordenadas siguiente, seleccionar todos aquellos términos con respecto a los cuales se debe calcular una derivada ordenada, para completar la derivada indicada. Selecciona una o mas con ★:

$$\begin{split} z_2 &= 5z_1 \\ z_3 &= 7z_1 - 8z_2 \\ z_4 &= -7z_1 - z_2 + 5z_3 \\ z_5 &= -17z_1 - 5z_2 + 15z_3 + 2z_4 \\ z_6 &= -13z_1 - 7z_2 - 3z_3 + 2z_4 + 6z_5 \end{split}$$

- a) z_1
- b) z_2
- $\mathbf{c}) z_3$
- d) $z_4 \star$
- e) $z_5 \star$
- 3 Dadas las afirmaciones siguientes, correspondientes al método de entrenamiento conocido como forzamiento del profesor, indicar si son verdaderas o falsas.

	Verdadero	Falso
Es imposible recuperar la precisión perdida durante el entrenamiento.		*
Este método de entrenamiento es no supervisado porque la salida de la red se		*
convierte en su propia retroalimentación.		
El entrenamiento es menos preciso que si no se usa el forzamiento.	*	
Durante el entrenamiento es como si la red no fuera recurrente, porque no	*	
recibe información de lo procesado en el tiempo anterior.		
Permite entrenar a la red realizando procesamiento en paralelo para varios	*	
datos de entrada a la vez.		

4 Dado el esquema siguiente para una red recurrente, seleccione la fórmula que hace explícitas todas las dependencias del estado oculto.

Selecciona una con ★:

a)
$$\vec{h}^{(t)} = g^{(t)}(\vec{x}^{(t)}, \vec{x}^{(t-1)}, \vec{x}^{(t-2)}, ..., \vec{x}^{(2)}, \vec{x}^{(1)}) \star$$

b)
$$\vec{s}^{(t)} = f(\vec{s}^{(t-1)}, \vec{x}^{(t)}; \vec{\theta})$$

c)
$$\vec{h}^{(t)} = f(\vec{h}^{(t-1)}, \vec{x}^{(t)}; \vec{\theta})$$

d)
$$\vec{s}^{(t)} = f(\vec{s}^{(t-1)}; \vec{\theta})$$

e)
$$\vec{h}^{(t)} = g^{(t)}(\vec{h}^{(t-1)}, \vec{h}^{(t-2)}, ..., \vec{h}^{(2)}, \vec{x}^{(1)})$$

5 Asocie la red más adecuada con la aplicación indicada.

Traductor universal de lenguajes.	RNR Codificadora-Decodificadora
Dada una imagen, generar el texto que la describa.	RNR con Contexto Único
Dada una señal de audio, reconocer qué frase fue pronunciada.	RNR Bidireccional
Dada una secuencia de fonos/fonemas, identificar la letra con que se es-	RNR Condicional
cribe cada uno (pasar a texto escrito).	

6 Responde con Verdadero o Falso si el siguiente algoritmo sobre entrenamiento de una red neuronal recurrente con varias entradas y una salida esta bien ordenado.

- 1. Inicializar los valores de las neuronas ocultas siguiendo algún criterio preestablecido.
- 2. Proporcionar el dato correspondiente a un solo paso de tiempo a la entrada de la red.
- 3. Calcular el estado actual utilizando el dato de entrada actual y el estado anterior.
- 4. El h_{t} actual se convierte en h_{t-1} para el siguiente paso de tiempo.

- 5. Repetir tantas veces como datos haya en las secuencias de entrada y salida.
- 6. Una vez que se completan todos los pasos de tiempo, el estado actual final se utiliza para calcular la salida.
- La salida completa se compara con la salida deseada y se calcula el error.
- 8. Se propaga la información del error sobre la red expandida, calculando las componentes del gradiente con respecto a los pesos.
- 9. Se actualizan los pesos y se repite todo hasta encontrar un buen mínimo del error.
- > Verdadero
- 7 Asocie el nombre de la compuerta en una célula LSTM con su función.

Afecta la proporción en la que contribuirá el estado anterior (conexión	Compuerta del olvido f_i
recurrente) al estado nuevo s_i que tendrá la celda.	
Determina qué tanto contribuirá el resultado calculado por la celda en	Compuerta de salida q_i
este tiempo al cómputo de la red completa (si la neurona hablará con el	
exterior).	
Determina qué tanto influirá en la celda el dato recibido x_i .	Compuerta de entrada g_i

- 8 ¿Qué formato se da a los textos de longitud variable para que los puedan analizar los transformadores y generar la representación Z?
 - \triangleright El código de cada componente léxico es una entrada en la matriz X.
- 9 Al analizar un texto con transformadores ¿Cuáles de los elementos siguientes permiten que la representación para cada palabra cambie dependiendo del contexto en el que se encuentra? Selecciona una o mas con ★:
 - a) La codificación posicional
 - b) Concatenación de las salidas de todas las cabezas.
 - c) El incrustador (embedding)
 - d) Autoatención: producto de la matriz de atención por la matriz de valores. *
 - e) El producto de las matrices consulta y transpuesta de llave para determinar las entradas a la matriz de atención. ★

10 Dado el siguiente texto y las siguientes opciones, completa el texto:

❖ discriminativo
 ❖ posterior
 ❖ generativo
 ❖ variables latentes

El autocodificador variacional es modelo de tipo — capaz de producir datos evidencia X a partir de — utilizando la distribución de probabilidad conocida como — .

Para entrenarlos se agrega una parte conocida como codificador, encargada de aproximar a la distribución conocida como — .

La función que se debe optimizar, en lugar de una función de pérdida es — .

El autocodificador variacional es modelo de tipo **generativo** capaz de producir datos evidencia X a partir de **variables latentes** utilizando la distribucion de probabilidad conocida como **verosimilitud**.

Para entrenarlos se agrega una parte conocida como codificador, encargada de aproximar a la distribución conocida como **posterior**.

La función que se debe optimizar, en lugar de una función de pérdida es -ELBO.