What is... a combinatorial presheaf Zurich Graduate Coloquium 2019, Zurich Switzerland

Raul Penaguiao

University of Zurich

26th November, 2019

Slides can be found at

http://user.math.uzh.ch/penaguiao/

Patterns on graphs

A graph G on the vertex set V is a pair (V, E).

If $I \subseteq V$, we can define the **restriction** $G|_I$ by considering only the edges between points in I.

We can count how many ways we can restrict a graph G to obtain a graph isomorphic to a pattern H: $\mathbf{p}_H(G)$.

 $\mathbf{p}_{\triangle}(G)$ counts triangles in G .

Patterns on permutations

A permutation π on the set X is a pair of orders (\leq_P, \leq_V) . If $I \subseteq X$, we can define the **restriction** $\pi|_I$ by considering only the orders in I.

We can count how many ways we can restrict a permutation G to obtain a permutation isomorphic to a pattern τ : $\mathbf{p}_{\tau}(\pi)$.

 $\mathbf{p}_{321}(G)$ counts decreasing seqs. of size 3 in the permutation π .

$$= (b <_P e <_P a <_P c <_P f <_P d, f <_V b <_V a <_V e <_V d <_V c)$$

$$= 243615$$

The inversion graphs

Given a permutation π in X, we can consider its **inversion graph**.

This mapping **is stable wrt patterns**. That is, if π is a patterns in τ , then $\mathbf{Inv}(\pi)$ is a pattern in $\mathbf{Inv}(\tau)$ (corresponding to the same set of indices).

Phenomenal phenomena on pattern algebras

For any graphs G,H_1,H_2 there exists a finite family of graphs J_1,\dots,J_k and coefficients $\begin{pmatrix}J_i\\H_1,H_2\end{pmatrix}$ (independent of G) such that

$$\mathbf{p}_{H_1}(G)\,\mathbf{p}_{H_2}(G) = \sum_{i=1}^k \binom{J_i}{H_1, H_2}\,\mathbf{p}_{J_i}(G).$$

Example: if H_1 is the path with one edge, and H_2 is the path with two edges, then

$$\mathbf{p}_{H_1}(G)\,\mathbf{p}_{H_2}(G) = 4\,\mathbf{p}_{\text{\tiny M}}(G) + 6\,\mathbf{p}_{\text{\tiny M}}(G) + 8\,\mathbf{p}_{\text{\tiny M}}(G) + 4\,\mathbf{p}_{\text{\tiny M}}(G)$$

Phenomenal phenomena on combinatorial patterns

For any permutations σ, π_1, π_2 there exists a finite family of graphs τ_1, \ldots, τ_k and coefficients $\binom{\tau_i}{\pi_1, \pi_2}$ (independent of σ) such that

$$\mathbf{p}_{\pi_1}(\sigma)\,\mathbf{p}_{\pi_2}(\sigma) = \sum_{i=1}^k \begin{pmatrix} \sigma_i \\ \pi_1, \pi_2 \end{pmatrix} \mathbf{p}_{\tau_i}(\sigma).$$

Example: if $\pi_1 = 1$, $\pi_2 = 21$ then

$$\begin{aligned} \mathbf{p}_{\pi_1}(\sigma) \, \mathbf{p}_{\pi_2}(\sigma) &= 2 \, \mathbf{p}_{21}(\sigma) + 3 \, \mathbf{p}_{321}(\sigma) \\ &+ \mathbf{p}_{213}(\sigma) + 2 \, \mathbf{p}_{231}(\sigma) + \mathbf{p}_{132}(\sigma) + 2 \, \mathbf{p}_{312}(\sigma) \, . \end{aligned}$$

Outline of the talk

- Introduction
- Algebraic concepts
 - Hopf algebra
 - Species and category theory
 - Combinatorial presheaves
- Free pattern Hopf algebras
 - Marked permutations
- The freeness conjecture

Hopf algebras - Algebras

Let k be a field and A a vector space over \mathbb{K} .

- Associative map $\cdot : A \otimes A \rightarrow A$
- Unit map $1: \mathbb{K} \to A$

Ex: The polynomial algebra k[x].

Hopf algebras - Coalgebras and Bialgebras

- Cossociative map $\Delta: A \to A \otimes A$
- Counit map $\epsilon: A \to k$

A **bialgebra** is both an algebra and a coalgebra, where Δ, ϵ are multiplicative maps.

Ex: The polynomial algebra $\boldsymbol{k}[\boldsymbol{x}]$ with the coproduct

$$\Delta(x) := 1 \otimes x + x \otimes 1$$
 and counit $\epsilon(p) = p(0)$.

Hopf algebras - Antipodes

H is a Hopf algebra if $(H,\cdot,1,\Delta,\epsilon)$ is a bialgebra and has an antipode S such that

Example: k[x] is a Hopf algebra with $S(x^n) = (-x)^n$.

Hopf algebras - Examples

• $k\{G| \text{ graphs } \}$. Product: disjoint union \uplus .

$$\Delta G = \sum_{I \subset V} G|_{I} \otimes G|_{I^{c}}.$$

• $k\{\pi | \text{ permutations }\}$. Product: sum of all the shuffles of two permutations.

$$\Delta \pi = \sum_{\pi = \tau_1 \oplus \tau_2} \tau_1 \otimes \tau_2 \,,$$

where \oplus is the diagonal product of permutations.

Category theory - Functors between categories

Categories are a triple $(\mathcal{O},\mathcal{M},\circ)$ of objects, morphisms and compositions.

- <u>Set</u> is the category of all sets and all functions.
- <u>fSet</u> is the category of all finite sets and all functions between them.
- $fSet^{\hookrightarrow}$ is the category of all finite sets and all injective functions.
- $fSet^{\times}$ is the category of all finite sets and all bijections.

Functors $F:\mathcal{C}\to\mathcal{D}$ map objects and morphisms. It is a **covariant** functor if $F(f)\circ F(g)=F(f\circ g)$, and **contravariant** if $F(f)\circ F(g)=F(g\circ f)$.

Functors - Examples

Example: T a topological space. $\mathcal{C}(T,\mathbb{R})$ the space of all continuous real functions. If $f:T_1\to T_2$ is a continuous map, this defines a function

$$C(f, \mathbb{R}) : C(T_2, \mathbb{R}) \to C(T_1, \mathbb{R})$$
,

so the functor $C(\cdot, \mathbb{R})$ is contravariant.

Natural transformations

For $F_1, F_2: \mathcal{C} \to \mathcal{D}$ functors, $\mu: F_1 \Rightarrow F_2$ is a natural transformation if for $A \in \mathcal{O}(\mathcal{C})$ object it assigns a morphism $\mu(A): F_1(A) \to F_2(A)$ and for any $f \in \mathcal{M}(\mathcal{C})$ morphism we have

Natural Transformations - Example

Category of groups \underline{Gr} , the identity functor id and the op functor that sends a group G=(G,*) to the opposite group G^{op} , with group operation defined as $a*^{\mathit{op}}b=b*a$.

" Any group is naturally isomorphic to its opposite group "

This means that there is a natural transformation μ , where each μ_G is an isomorphism, between op and id. This natural transformation is $\mu_G(a) := a^{-1}$.

Species and monoids in category theory

A combinatorial species is a contravariant functor $a: fSet^{\times} \to fSet$. Examples:

$$\mathtt{Gr}[I] = \{ \text{ graphs with vertex set } I \},$$
 $\mathtt{Per}[I] = \{ \text{ permutations on the set } I \}.$

Product of species and monoids in species

Given a, b species, its product,

$$a \odot b[I] = \biguplus_{I = A \bowtie B} a[A] \times b[B].$$

A product structure on a species a is, thus, a natural transformation $a \odot a \Rightarrow a$. Examples:

$$\exists : \mathsf{Gr} \odot \mathsf{Gr} \to \mathsf{Gr}.$$

$$\uplus : \mathsf{Gr} \odot \mathsf{Gr} \to \mathsf{Gr}, \qquad \oplus : \mathsf{Per} \odot \mathsf{Per} \to \mathsf{Per}.$$

Species and monoids in category theory

A **combinatorial presheaf** is a contravariant functor

$$a: \underline{fSet}^{\hookrightarrow} \to \underline{fSet}.$$
 Examples:

$$\mathtt{Gr}[I] = \{ \text{ graphs with vertex set } I \} \,,$$

$$\mathtt{Per}[I] = \{ \text{ permutations on the set } I \}.$$

If $A\subseteq B$, the inclusion map $i:A\to B$ corresponds to a map ${\tt Per}[i]:{\tt Per}[B]\to {\tt Per}[A.$ Thus, we can define for $b\in a[B],$

$$\mathbf{p}_a(b) \coloneqq \{I \subseteq B \middle| b|_I \cong a\}.$$

Notation:
$$\mathcal{G}(a) = \frac{ \uplus_I a[I]}{\simeq}$$

Algebras on combinatorial presheaves

Theorem

Fix a combinatorial presheaf h. For any objects $a,b_1,b_2\in\mathcal{G}(h)$ there exists a family c_1,\ldots,c_k and coefficients $\begin{pmatrix}c_i\\b_1,b_2\end{pmatrix}$ such that

$$\mathbf{p}_{b_1}(a)\,\mathbf{p}_{b_2}(a) = \sum_{i=1}^k \binom{c_i}{b_1, b_2}\,\mathbf{p}_{c_i}(a)\,,$$

In particular, $A(h) := k\{\mathbf{p}_a\}_{a \in \mathcal{G}(h)}$ is an algebra. This is the **pattern** algebra of a combinatorial presheaf.

Algebras on combinatorial presheaves

Sketch of proof of theorem

Fix $x \in h[I]$, and note that $\mathbf{p}_a(x) \mathbf{p}_b(x)$ counts the following

$$\begin{split} \mathbf{p}_{a}(x)\,\mathbf{p}_{b}(x) &= \#\{A \subseteq I \text{ s.t. } x|_{A} \sim a\} \times \{B \subseteq I \text{ s.t. } x|_{B} \sim b\} \\ &= \#\{(A,B) \text{ s.t. } A,B \subseteq I,\, x|_{A} \sim a,\, x|_{B} \sim b\} \\ &= \sum_{C \subseteq I} \#\{(A,B) \text{ s.t. } A \cup B = C,\, x|_{A} \sim a,\, x|_{B} \sim b,\} \\ &= \sum_{C \subseteq I} \binom{x|_{C}}{a,b} = \sum_{c \in G(h)} \binom{c}{a,b} \, \mathbf{p}_{c}(x) \,. \end{split}$$

Hopf algebras on combinatorial presheaves

If h=(h,*,1) is an associative presheaf, then we can define a coproduct Δ on $\mathcal{A}(h)$

$$\Delta \mathbf{p}_a = \sum_{a=a_1*a_2} \mathbf{p}_{a_2} \otimes \mathbf{p}_{a_2} \ .$$

Theorem

Fix an associative presheaf h. Then $\mathcal{A}(h)\coloneqq k\{\mathbf{p}_a\}_{a\in\mathcal{G}(h)}$ is a Hopf algebra.

Simple example - The presheaf of sets Set

For each $n \geq 0$, Set[n] is defined to have a unique element $*_n$ of size n.

$$\mathbf{p}_{*_n}(*_m) = \binom{m}{n} \qquad \binom{*_d}{*_a, *_b} = \binom{d}{a} \binom{a}{a+b-d}.$$

So

$$\mathbf{p}_{*_a} \, \mathbf{p}_{*_b}(*_c) = \sum_{d \ge 0} \binom{d}{a} \binom{a}{a+b-d} \, \mathbf{p}_{*_d}(*_c)$$

Monoidal structure - Disjoint union: $*_n \cdot *_m = *_{n+m}$.

$$\Delta \, \mathbf{p}_{*_a} = \sum_{k=0}^a \mathbf{p}_{*_k} \otimes \mathbf{p}_{*_{a-k}}, \quad \mathcal{A}(\mathtt{Set}) = k[\mathbf{p}_{*_1}]$$

Graphs and permutations

Graphs and permutations - The inversion graph

Inversion graph, that can be seen as a natural transformation

 $\mathbf{Inv}: \mathtt{Per} \Rightarrow \mathtt{Gr}.$

For any set I, \mathbf{Inv}_I is a map from permutations on the set I to graphs with vertex set I.

This is a natural transformation that preserves the products: sends $\pi \oplus \tau$ to $\mathbf{Inv}(\pi) \uplus \mathbf{Inv}(\tau)$.

$$\mathbf{Inv}: \mathcal{A}(\mathtt{Gr}) \to \mathcal{A}(\mathtt{Per})$$
,

$$\mathbf{Inv}(\mathbf{p}_G) = \sum_{\mathbf{Inv}(\pi) = G} \mathbf{p}_{\pi} \ .$$

Pattern functions on marked permutations

Marked permutation π^* on a set S (a pair of orders on $S \sqcup \{*\}$).

The **restriction to** I is $\pi|_{I}$, a marked permutation in I.

We can count occurrences! We have a combinatorial presheaf.

Marked permutation pattern algebra

We write

$$\mathbf{p}_{2\bar{3}1}(24\bar{3}1) = 1, \ \mathbf{p}_{\bar{1}23}(\bar{1}23456) = 20, \ \mathbf{p}_{2\bar{4}13}(762341\bar{8}95) = 0 \,.$$

Pattern function p_{π^*} are in the space of functions $\mathcal{F}(\mathcal{G}(\mathtt{MPer}), \mathbb{R})$ The linear span of all pattern functions - $\mathcal{A}(\mathtt{MPer})$ - is closed for pointwise multiplication.

Unique factorization theorem on graphs

Any graph can be uniquely decomposed into the disjoint union of connected graphs

$$G = \biguplus_i G_i$$
.

So the product of the pattern functions \mathbf{p}_{G_i} decomposes as

$$\prod_i \mathbf{p}_{G_i} = \mathbf{p}_G + \text{terms that have fewer connected components}$$
 .

Thus

$$\left\{\prod_{i}\mathbf{p}_{G_{i}}\left|G_{i} \text{ connected graphs }
ight\}$$
 ,

is linearly independent.

Unique factorization theorem on permutations

The \oplus product on permutations provides a unique factorization theorem on permutations:

• For any permutation π , there is a unique k and unique τ_1, \ldots, τ_k indecomposable permutations such that $\pi = \tau_1 \oplus \cdots \oplus \tau_k$.

Unique factorization theorem on marked permutations

• The factorization is **not unique** as $\sigma=21\bar{3}\star\bar{1}3524=\bar{1}3524\star21\bar{3}.$ For any permutations τ_1,τ_2 ,

$$(\bar{1} \oplus \tau_1) \star (\tau_2 \oplus \bar{1}) = (\tau_2 \oplus \bar{1}) \star (\bar{1} \oplus \tau_1) = \tau_2 \oplus \bar{1} \oplus \tau_1$$
.

• The order of the factors **does matter** to some extent.

Freeness conjecture - current state

The end

