Pipelining

Readings: 4.5-4.8

Example: Doing the laundry

Ann, Brian, Cathy, & Dave

each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

"Folder" takes 20 minutes

Sequential Laundry

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry take?

Pipelined Laundry: Start work ASAP

Pipelining Lessons

Pipelining doesn't help latency of single task, it helps throughput of entire workload

Pipeline rate limited by slowest pipeline stage

Multiple tasks operating simultaneously using different resources

Potential speedup = Number pipe stages

Unbalanced lengths of pipe stages reduces speedup

Time to "fill" pipeline and time to "drain" it reduces speedup

Stall for Dependences

Pipelined Execution

Now we just have to make it work

Single Cycle vs. Pipeline

Why Pipeline?

Suppose we execute 100 instructions

Single Cycle Machine

45 ns/cycle x 1 CPI x 100 inst = ____ ns

Ideal pipelined machine

10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ____ ns

CPI for Pipelined Processors

Ideal pipelined machine

10 ns/cycle x (**1 CPI** x 100 inst + 4 cycle drain) = ____ ns

CPI in pipelined processor is "issue rate". Ignore fill/drain, ignore latency.

Example: A processor wastes 2 cycles after every branch, and 1 after every load, during which it cannot issue a new instruction. If a program has 10% branches and 30% loads, what is the CPI on this program?

Pipelined Datapath

Divide datapath into multiple pipeline stages

Pipelined Control

The Main Control generates the control signals during Reg/Dec Control signals for Exec (ALUOp, ALUSrc, ...) are used 1 cycle later Control signals for Mem (MemWE, Mem2Reg, ...) are used 2 cycles later Control signals for Wr (RegWE, ...) are used 3 cycles later

Can pipelining get us into trouble?

Yes: Pipeline Hazards

structural hazards: attempt to use the same resource two different ways at the same time

E.g., combined washer/dryer would be a structural hazard or folder busy doing something else (watching TV)

data hazards: attempt to use item before it is ready

E.g., one sock of pair in dryer and one in washer; can't fold until get sock from washer through dryer

instruction depends on result of prior instruction still in the pipeline

control hazards: attempt to make decision before condition evaluated

E.g., washing football uniforms and need to get proper detergent level; need to see after dryer before next load in

branch instructions

Can always resolve hazards by waiting
pipeline control must detect the hazard
take action (or delay action) to resolve hazards

Pipelining the Load Instruction

The five independent functional units in the pipeline datapath are:

Instruction Memory for the Ifetch stage

Register File's Read ports (bus A and busB) for the Reg/Dec stage

ALU for the Exec stage

Data Memory for the Mem stage

Register File's Write port (bus W) for the Wr stage

The Four Stages of R-type

Ifetch: Fetch the instruction from the Instruction Memory

Reg/Dec: Register Fetch and Instruction Decode

Exec: ALU operates on the two register operands

Wr: Write the ALU output back to the register file

Structural Hazard

Interaction between R-type and loads causes structural hazard on writeback

Important Observation

Each functional unit can only be used once per instruction

Each functional unit must be used at the same stage for all instructions:

Load uses Register File's Write Port during its 5th stage

R-type uses Register File's Write Port during its 4th stage

Solution: Delay R-type's register write by one cycle:

Now R-type instructions also use Reg File's write port at Stage 5 Mem stage is a NOOP stage: nothing is being done.

_	1	2	3	4	5
R-type	Ifetch	Reg/Dec	Exec	Mem	Wr

Pipelining the R-type Instruction

The Four Stages of Store

Ifetch: Fetch the instruction from the Instruction Memory

Reg/Dec: Register Fetch and Instruction Decode

Exec: Calculate the memory address

Mem: Write the data into the Data Memory

Wr: NOOP

Compatible with Load & R-type instructions

The Stages of Conditional Branch

Ifetch: Fetch the instruction from the Instruction Memory

Reg/Dec: Register Fetch and Instruction Decode, compute branch target

Exec: Test condition & update the PC

Mem: NOOP

Wr: NOOP

Control Hazard

Branch updates the PC at the end of the Exec stage.

Accelerate Branches

When can we compute branch target address? When can we compute the CBZ condition?

Control Hazard 2

Branch updates the PC at the end of the Reg/Dec stage.

Solution #1: Stall

Delay loading next instruction, load no-op instead

CPI if all other instructions take 1 cycle, and branches are 20% of instructions?

Solution #2: Branch Prediction

Guess all branches not taken, squash if wrong

CPI if 50% of branches actually not taken, and branch frequency 20%?

Solution #3: Branch Delay Slot

Redefine branches: Instruction directly after branch always executed Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

ADD X1, X0, X4 CBZ X2, FOO SUB X2, X0, X3 ADD X1, X0, X4 CBZ X1, FOO ADD X1, X0, X4 CBZ X1, FOO

ADD X1, X3, X3

F00:

ADD X1, X2, X0

ADD X1, X0, X4 CBZ X1, FOO

Data Hazards

Design Register File Carefully

Forwarding

Forward the ALU output to later instructions ADD X0, X1, X2 SUB X3, X0, X4 AND X5, X0, X6 ORR X7, X0, X8 EOR X9, X0, X10 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Clock **ADD Ifetch** Reg/Dec Exec Mem Wr **SUB** Ifetch Reg/Dec Exec Mem Wr AND Ifetch Reg/Dec Exec Mem Wr **Ifetch ORR** Reg/Dec Exec Mem Wr **EOR Ifetch** Reg/Dec Exec Mem Wr

Add logic to pass last two values from ALU output to ALU input(s) as needed

Forwarding (cont.)

Requires values from last two ALU operations.

Remember destination register for operation.

Compare sources of current instruction to destinations of previous 2.

Data Hazards on Loads

LDUR X0, [X31, 0] SUB X3, X0, X4 AND X5, X0, X6 ORR X7, X0, X8 EOR X9, X0, X10

Data Hazards on Loads (cont.)

Solution:

Use same forwarding hardware & register file for hazards 2+ cycles later Force compiler to not allow register reads within a cycle of load Fill delay slot, or insert no-op.

Pipelined CPI, cycle time

CPI, assuming compiler can fill 50% of delay slots

Instruction Type	Type Cycles	Type Frequency	Cycles * Freq
ALU		50%	
Load		20%	
Store		10%	
Branch		20%	
		CPI:	

Pipelined: cycle time = 1ns.

Delay for 1M instr:

Single cycle: CPI = 1.0, cycle time = 4.5ns.

Delay for 1M instr:

Pipelined CPU Summary