Машинное обучение. Задание 1

Сергей Володин, 374 гр.

19 марта 2016 г.

Задача 1

Пусть $x \in \mathbb{R}^2$. Для этой точки упорядочим объекты выборки x_i по увеличению $\rho(x,x_i)$: $x^{(1)},...,x^{(6)}$. +1 — синий класс. $y_1 = +1$ Алгоритм классификации: $a(x,X^l) = \underset{y \in \{-1,+1\}}{\operatorname{argmax}} \sum_{i=1}^l [y^{(i)} = y][i \leqslant k]$. Точка x на границе классов $\Leftrightarrow \sum_{i=1}^k [y^{(i)} = -1] = \sum_{i=1}^k [y^{(i)} = +1]$.

- 1. Пусть k > 1. Расмотрим последовательность $y^{(1)}, ..., y^{(k)}$. Поскольку $k \ge 2$, в ней должно быть не менее 2 элементов класса +1, что невозможно (их всего 1). Значит, границе не принадлежит ни одна точка, т.е. всё \mathbb{R}^2 классифицируется как -1.
- 2. Пусть k=1. Точка лежит на границе $\Leftrightarrow \min_{i \in \overline{2.6}} ||x-x_i|| = ||x-x_1||$. Получаем ломаную на плоскости (donucamb)

Задача 2

- 1. Индекс Джини $Q_G(x) = \#\{(x_i,x_j)\colon i\neq j, x(x_i)=x(x_j), y(x_i)=y(x_j)\}$. Для первого правила $Q_G(x^1)=200\cdot 199\cdot 2+100\cdot 99=89500$, для второго $Q_G(x^2)=100\cdot 99\cdot 2+300\cdot 299=109500$
- 2. Энтропийный (для класса c и правила x и выборки длины l). $h(q) \stackrel{\text{def}}{=} -q \log_2 q (1-q) \log_2 (1-q)$. $P = \#\{x_i = c\}$. $p = \#\{x_i : x(x_i) = 1, y_i = c\}$, $n = \#\{x_i : x(x_i) = 1, y_i \neq c\}$. $Q_H(x) = h(\frac{P}{l}) \frac{p+n}{l}h(\frac{p}{p+n}) \frac{l-p-n}{l}h(\frac{P-p}{l-p-n})$. В нашем случае P = 200, l = 500. Для первого правила (считаем, что оно предсказвыет первый класс) p = 200, n = 200. $Q_H(x^1) \approx 0.1709$, Для второго правила p = 100, n = 0, $Q_H(x^2) \approx 0.3219 \Rightarrow$ берем второе.
- 3. Что такое Q_E ???

Задача 3

- 1. Выборка разделима при всех h: гиперплоскость $(x,w)-w_0$ при $w=(0,1)-\frac{1}{2}$.
- 2. Картинка не соответствует условию. Какое правильное условие???

Задача 4а

Рассмотрим $K(x,y) - K(y,x) = (y+x,2y+x) - (x+y,2x+y) = (x+y,y-x) \neq 0$ в случае $x=0, y\neq 0$. Получаем, что функция K не симметрична \Rightarrow не ядро.

Задача 4а

$$K(x,y) \stackrel{\text{def}}{=} \underbrace{\operatorname{ch}(x,y)}_{K_1(x,y)} + 3\underbrace{\operatorname{sh}(x,y)}_{K_2(x,y)}$$

- 1. . Докажем, что K_1, K_2 ядра. Функции ch t и sh t разлагаются в сходящийся на $\mathbb R$ ряд с неотрицательными коэффициентами, (x,y) ядро $\Rightarrow K_1 = \operatorname{ch}(x,y)$ и $K_2 = \operatorname{sh}(x,y)$ ядра.
- 2. K(x,y) ядро как сумма K_1 и K_2 с положительными коэффициентами 1 и 3.

Задача 5

- 1. Нет. Склонность к переобучению уменьшается, т.к. увеличивается «усреднение» по объектам (меньше чувствительность к выбросам).
- 2. Нет. При увеличении количества элементов в листе наоборот получается «огрубление» модели.
- 3. Да. $C \to +\infty \Rightarrow$ вес регуляризатора $\to 0$. В предельном случае регуляризатор отсутствует, т.е. величина весов может быть сколь угодно большой, что как раз приводит к переобучению на мультиколлинеарной обучающей выборке.

Задача 6

Обозначим $n \stackrel{\text{def}}{=} |R_m|$. $p_k \stackrel{\text{def}}{=} \frac{n_k}{n}$, где $n_k \equiv \sum_{x_i \in R_m} [y_i = k]$ — количество объектов класса k в R_m . $k \in \overline{1,l}$ — всего l классов. По условию,

$$P\{a(x) = k\} = p_k$$

Частота ошибок — случайная величина $\xi=\frac{1}{n}\sum_{i=1}^n[a(x_i)\neq y_i]=\frac{1}{n}\sum_{i=1}^n\xi_i$, где $\xi_i=[a(x_i)\neq y_i]$ — также случайная величина. Эта величина принимает только значения 0 и 1, откуда находим $M\xi_i=1\cdot P\{\xi_i=1\}+0\cdot P\{\xi_i=0\}=P\{\xi_i=1\}=P\{a(x_i)\neq y_i\}$ y_i } = 1 - P{ $a(x_i) = y_i$ } = 1 - p_{y_i}

Найдем $M\xi = \frac{1}{n}\sum_{i=1}^n M\xi_i = \frac{1}{n}\sum_{i=1}^n (1-p_{y_i}) = 1-\sum_{i=1}^n \frac{p_{y_i}}{n} = \boxed{\equiv}$. Запишем $1=\sum_{k=1}^l [y_i=k]$, подставим это выражение в сумму: $= 1 - \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{i} [y_i = k] p_{y_i}$. Переставим суммы местами и воспользуемся тем, что при $y_i \neq k$ слагаемое равно 0:

$$\boxed{ = 1 - \frac{1}{n} \sum_{k=1}^{l} p_k \sum_{i=1}^{n} [y_i = k] = 1 - \frac{1}{n} \sum_{k=1}^{l} p_k n_k = \boxed{ 1 - \sum_{i=1}^{l} p_k^2 }. }$$

Поскольку решающее правило как функция $a:\overline{1,n}\to\overline{1,l}$ определено неоднозначно, индекс Джини правила a(x) — также случайная величина $\eta=\#\{(x_i,x_j)\in R_m^2|y_i=y_j,a(x_i)=a(x_j)\}=\sum_{i,j\in\overline{1,n}^2,y_i=y_j}\underbrace{[a(x_i)=a(x_j)]}_{\mathcal{E}_{i,i}}$. $\xi_{i,j}$ принимает значения

только 0 и 1, откуда выразим $M\xi_{ij}=P\{\xi_{ij}=1\}=P\{a(x_i)=a(x_j)\}=\sum\limits_{k=1}^lP\{a(x_i)=a(x_j)|a(x_i)=k\}$ [=].

Случайные величины $a(x_i)$ и $a(x_j)$ независимы при $i \neq j$, поэтому $= \sum_{k=1}^l p_k^2$. При i=j $M\xi_{ij}=1$. Вернемся к $M\eta=$

$$\sum_{i,j\in\overline{1,n^2}}[y_i=y_j]\cdot[i=j]\cdot 1 + \sum_{i,j\in\overline{1,n^2}}\sum_{k=1}^l[i\neq j][y_i=y_j]p_k^2 = n + \sum_{k=1}^lp_k^2\sum_{i,j\in\overline{1,n^2}}[y_i=y_j][i\neq j].$$
 Рассмотрим последнюю сумму:

 $\sum_{i=1}^{n}\sum_{j=1}^{n}[i\neq j][y_i=y_j]=\sum_{k=1}^{l}n_k(n_k-1)=\sum_{k=1}^{l}p_k^2n^2-n$ — количество пар различных объектов, принадлежащих одному классу.

Получаем $M\eta = n + (\sum_{k=1}^l p_k^2)(n^2 \sum_{k=1}^l p_k^2 - n) \neq M\xi$. ??? проверил для k=2, тоже не равно.