

Al5090/EE5817: PROBABILITY AND STOCHASTIC PROCESSES

QUIZ 01

DATE: 12 AUGUST 2025

Question	1	2	Total
Marks Scored			

You may use any result covered in class without proof. Do not use any result from the homework unless suggested as a hint.

- 1. Suppose sets A and B are equicardinal.
 - (a) (1 Mark)

Prove or give a counterexample: every injective function from A to B must also be surjective.

(b) (1 Mark)

Prove or give a counterexample: every surjective function from A to B must also be injective.

Name:

Roll Number: Department:

Program: BTech / MTech TA / MTech RA / PhD (Tick one)

2. For each $k \in \mathbb{N}$, let $\mathscr{C}_k \subset \{0,1\}^{\mathbb{N}}$ denote the set of all infinite binary strings containing **exactly** k ones in them. Furthermore, let $\mathscr{C} \subset \{0,1\}^{\mathbb{N}}$ denote the set of all infinite binary strings containing **finitely** many ones in them.

(a) (2 Marks)

Show that \mathscr{C}_k is countably infinite for every $k\in\mathbb{N}$. You may use the fact that $\mathbb{N}^k:=\mathbb{N}\underbrace{\times\cdots\times}_{k\text{ times}}\mathbb{N}$ is countably infinite for every $k\in\mathbb{N}$.

(b) (1 Mark)

Express $\mathscr C$ in terms of $\mathscr C_1,\mathscr C_2,\ldots$, and argue that $\mathscr C$ is countably infinite.