EESC 6349 / MECH 6312

Test 3 (Question Set A), Oct. 19, 2020 Instructor: Dr. Minn

1. Two sensing devices provide the following 2×1 real-valued random vectors \boldsymbol{X} and \boldsymbol{Y} :

$$egin{aligned} oldsymbol{X} &= oldsymbol{S} + oldsymbol{V} \ oldsymbol{Y} &= oldsymbol{S} + oldsymbol{W} \end{aligned}$$

where $S = [S_1, S_2]^T$, $V = [V_1, V_2]^T$, $W = [W_1, W_2]^T$, $E[S] = [0.1, 0.1]^T$, $E[S_1^2] = E[S_2^2] = 1$, and $E[S_1S_2] = 0.01$. V_1 , V_2 , W_1 , and W_2 are mutually independent random variables, each with mean 0 and variance 0.1, and they are uncorrelated from S_1 and S_2 . If Z = X + Y, find the covariance matrix of Z. [40 points]

2. The received real-valued signal vector $\boldsymbol{X} = [X_1, X_2]^T$ from a WiFi receiver has the following statistics: $E[\boldsymbol{X}] = \boldsymbol{0}$, $E[\boldsymbol{X}\boldsymbol{X}^T] = \begin{bmatrix} 4, & 1 \\ 1, & 2 \end{bmatrix}$. For data detection, a whitening transformation is done on \boldsymbol{X} , yielding \boldsymbol{Y} with $E[\boldsymbol{Y}] = \boldsymbol{0}$ and $E[\boldsymbol{Y}\boldsymbol{Y}^T] = \boldsymbol{I}$. Find the required transformation based on the eigen-decomposition approach. [60 points]

Note: The roots of $ax^2 + bx + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.