

INR - Introduction aux Réseaux INT1GIR

Année 2015-2016 PMA

Octobre 2015

5. Les techniques de transmission

- Généralités
- Transmission en bande de base
- Transmission en large bande

Généralités

Adaptation du spectre du signal à la BP du canal

- Communication DTE $\leftarrow \rightarrow$ DCE
 - signal numérique → largeur spectrale importante avec composante continue
- Codage de canal \rightarrow 2 familles de techniques
 - Bande de base
 - codage du signal de la DTE sans translation du spectre (signal numérique) mais amélioré
 - Large bande
 - codage et translation du spectre du signal = modulation (signal transmis sous forme analogique)

Transmission en bande de base

- Principaux codes utilisés
- Limitations de la bande de base

ERBdB

- DCE : « Emetteur Récepteur en Bande de Base »
- Ex. carte réseau du PC, switch ou hub de LAN
- Utilisée sur de courtes distances (qq Kms)
 - Dégradation rapide du signal sur le canal
- Objectifs du trancodage de signal
 - Eliminer la composante continue inutile
 - Réduire la largeur de bande consommée
 - Maintenir la synchronisation des horloges
- Trois types de codes
 - Codage des 1 <u>ET</u> des 0
 - Codage des 1 <u>OU</u> des 0
 - Codages nBmB ou codages de blocs

NRZ (No Return to Zero)

- Base de tous les codes en bande de base
- Réduire la composante continue du spectre
- Inconvénients
 - Spectre large, composante continue encore importante, perte de synchronisation si longue série de 1 ou de 0

Manchester

- Transition du signal au milieu de chaque temps bit
- Augmente l'information de synchronisation
 - Inconvénients : spectre + large, problème d'inversion des fils
 - Usage: Ethernet coaxial et UTP

Manchester différentiel

- But : problème d'inversion des fils
 - Inconvénients : spectre + large
 - Usage: Ethernet UTP et Token Ring

Code Miller

• But : réduire la largeur du spectre

• Suppression d'une transition du signal sur 2 par rapport au

Manchester

 Meilleur optimum entre LB et synchronisation bit

Codes bipolaires

- Codage d'un seul type de bit ex. le '1'
- Alternance de polarité : annulation de la composante continue du signal
- Avantage : réduction de la LB
- Inconvénient : perte de synchronisation si longues séries de 0
- ★ → idem que NRZ

Codes bipolaires HDBn (Haute Densité Binaire ordre n)

- Problème des longues suites de 'o' (non codés)
- Solution : Bit de viol et bit de bourrage eux-mêmes en alternance
- Ex. : « 0000 » remplacé par « 000V » ou « B00V »

Les codes des réseaux à hauts débits : codes nBmB

- Substitution binaire par blocs : n bits \rightarrow m bits , avec m > n
- Optimisation des 3 points + autocorrection
- Ex. d'utilisation (code 4B/5B) : 100Mbps Ethernet et FDDI

Symbole	Valeur binaire	code 4B/45	Symbole	Valeur blnaire	code 4B/6B
0	0000	11110	8	1000	10010
1	0001	01001	9	1001	10011
2	0010	10100	Α	1010	10110
3	0011	10101	В	1011	10111
4	0100	01010	С	1100	11010
5	0101	01011	В	1101	11011
6	0110	01110	Ε	1110	11100
7	0111	01111	F	1111	11101

Figure 45 - Codage 4B5B de FDDI.

Limitations de la Bande de base

- BP du canal → déformation du signal transmis
- rapport S/B : si la cadence d'émission des bits augmente il y a risque d'interférence dû à l'étalement du signal

Critère de Nyquist

• Vitesse de modulation ou de signalisation et BP

$$V_{\text{mod max}} \leq 2*BP \text{ (bauds)}$$

Figure 5.14 L'étalement du signal ne permet plus la récupération d'horloge.

Vitesse de modulation et débit binaire d'un canal

Multiple de la vitesse de modulation

$$\mathbf{D}_{\text{max}} = \mathbf{v}_{\text{mod max}} * \mathbf{Q} \text{ (bps)}$$

 $Avec: Q = \log_2 V$

Q : quantité d'information en bits d'une alternance du signal

V : valence = nbre d'états possibles du signal par alternance

- Si V=2 \rightarrow D_{max}= $v_{\text{mod max}}$
- Si V=4 \rightarrow D_{max}=2* v_{mod max}
- Si V=8 \rightarrow D_{max}=3* $v_{mod max}$
- Si V=16 \rightarrow D_{max}=4* $v_{mod max}$

La valence du signal est limitée par le bruit sur le canal et le rapport de puissance S/B

Théorème de Shannon et Notion de bruit

- Bruit blanc et bruit impulsionnel perturbent les signaux transmis sur un canal
- Décibel : $S/N_{(db)} = 10 log_{10} S/N_{(en val)}$
- Capacité max. de canal selon Shannon : $D_{max} = 2.BP.log_2 V \rightarrow = BP.log_2 (1+S/N)$
 - Avec : $V = \sqrt{1 + S/N}$
- Exemple : canal téléphonique
 - BP : 300 Hz $\leftarrow \rightarrow$ 3400 Hz
 - D_{max} si rapport signal sur bruit de 1000?
 - Réponse : 30.876 bps

En résumé

- L'augmentation de la BP du canal:
 - Est limitée par la qualité physique du support
- L'augmentation de la valence du signal :
 - Est limitée par le bruit du canal
- Domaines d'utilisation de la bande de base
 - Lignes louées privées
 - Ligne d'accès aux réseaux des opérateurs
 - Les LAN d'entreprise

Transmission en large bande

- Principe
- > Types de modulations

Principe

- Modulation du signal porteur de l'information
 - Transfert du spectre autour d'une fréquence porteuse
 - Modem = DCE effectuant la modulation-démodulation

Large bande

Types de modulations d'un signal sinusoïdal

- ASK : Amplitude Shift Keying
- FSK: Frequency Shift Keying
- PSK : Phase Shift Keying

$$u = A_0 \sin(\omega_0 t + \varphi_0)$$

avec $\omega_0 = 2\pi f_0$

Large bande

(a) Signal binaire

(b) Modulation d'amplitude

(c) Modulation de fréquence

(d) Modulation de phase

Différentes modulations d'un signal sinusoïdal

Représentation des signaux modulés élémentaires dans le plan complexe

- (a) QPSK
- (b) QAM-16.
- (c) QAM-64.

Différentes modulations d'un signal sinusoïdal

- Constellation QAM8 (3 bits)
- Exemple de codage de la suite binaire 1 0 0 0 0 1 0 1 1 1 1 0

Modulations mixtes ou en treillis

- (a) Modem V.32 \rightarrow 9600 bps.
- (b) Modem V32 bis \rightarrow 14.400 bps.

