1	
2	
3	
4	
5	
6	
Т	

Arquitetura de Computadores LEI-2011/12

1º Teste – página 1 de 4 16.Nov.2011

1. Considere o seguinte programa escrito em assembly do Y86:

movl \$10, %ecx
ciclo: movl 0(%eax), %edx
addl %edx, %edx
subl 1, %ecx
inz ciclo

Classe	CPI
Aritméticas/movimento de dados	1
Acessos à memória	
Controlo de fluxo	3

	Controlo de Haxo			
jnz ciclo				
Sabendo que o CPI de cada uma das classes de instruções é o indicado na tabela, calcule o CPI global na execução deste programa.				
 Explique qual a diferença entre as métricas ciclos por instrução (CPI) e ciclos por elemento (CPE) e explique a utilidade de cada métrica para avaliar o desempenho de um programa numa dada arquitetura. 				

3.	Um factor importante no desempenho da hierarquia de memória é o impacto de uma <i>miss</i> na <i>cache</i> , designado por <i>miss penalty</i> . Indique as várias formas que conhece para diminuir a grandeza da <i>miss penalty</i> no desenho de uma arquitetura.
4.	Numa nova geração de uma dada arquitetura foi possível duplicar a frequência de relógio. Calcule o ganho obtido nessa nova arquitetura, relativamente à arquitetura base, para um programa, em que CPlcpu é 1, o miss rate de instruções é 3%, o miss rate de dados é 5% e com uma percentagem de acessos à memória de 40%. Considere também que a miss penalty na arquitetura original era de 100 ciclos.

5. Considere o seguinte programa em C.

```
void func(int h[], int I[], int W, int H) {
  for (y=0; y<H; y++) {
    for (x=1; x<(W-1); x++) {
        kernel(h, I, y*W+x);
    }
  }
}</pre>
```

Considere duas opções para a função kernel:

```
a) void kernel(int res[], int inp[], int ndx) {
    res[ndx] = (inp[ndx-1] + inp[ndx])/2;
}

b) void kernel(int res[], int inp[], int ndx) {
    res[ndx] = (inp[ndx-1] + inp[ndx] + inp[ndx+1])/3;
}
```

Indique justificando se este programa apresenta localidade espacial e/ou localidade temporal, e qual das duas opções para a função *kernel* pensa ser mais "amigável" da hierarquia de memória.

6. Considere o seguinte programa em *assembly* do Y86. Apresente o mesmo programa em código máquina, indicando a sua disposição na memória. Inclua o endereço da posição de memória onde se inicia o armazenamento de cada instrução.

.pos 0x00
 jmp main
t: .long 0x10 # 4 bytes de dados
main: irmovl t, %ecx
 mrmovl 0(%ecx), %eax
 addl %eax, %ecx
 rmmovl %ecx, 0(%ebx)
 halt