Sayak Chakrabarti

sayak@iitk.ac.in

Recap

Notation 1

The operation P * Q

Recap (Contd.)

Notation 2

The **group** operation P + Q = O * (P * Q)

Objective:

► Simplify the equation

Objective:

► Simplify the equation

Weierstrass Normal Form

$$y^2 = 4x^3 - g_1x - g_2$$

Objective:

► Simplify the equation

Weierstrass Normal Form

$$y^2 = 4x^3 - g_1x - g_2$$

Note: Equivalent to $y^2 = ax^3 + bx^2 + cx + d$

1 Given Homogeneous Equation

$$ax^3 + by^3 + cz^3 + dx^2y + exy^2 + fx^2z + gy^2z + hxz^2 + iyz^2 = 0$$

• Use $x \leftarrow \frac{x}{z}, y \leftarrow \frac{y}{z}$

1 Given Homogeneous Equation

$$ax^3 + by^3 + cz^3 + dx^2y + exy^2 + fx^2z + gy^2z + hxz^2 + iyz^2 = 0$$

- Use $x \leftarrow \frac{x}{z}, y \leftarrow \frac{y}{z}$
- Equation:

$$ax^{3} + by^{3} + dx^{y} + exy^{2} + fx^{2} + gy^{2} + hx + iy + c = 0$$

MTH671

2 Transformation of Coordinates

2 Transformation of Coordinates

• Takes the form $xy^2 + (ax + b)y = cx^2 + dx + e$

3 Multiplying by x and substituting $y \leftarrow xy$ we get $y^2 + (ax + b)y = cx^3 + dx^2 + ex$

Example

▶ Start with cubic form $u^3 + v^3 = \alpha$; $\alpha \in \mathbb{Q}$

Example

- ▶ Start with cubic form $u^3 + v^3 = \alpha$; $\alpha \in \mathbb{Q}$
- ► Substitute $u \leftarrow \frac{36\alpha + y}{6x}$; $y \leftarrow \frac{36\alpha y}{6x}$
- New equation $y^2 = x^3 432\alpha^2$

<u>;;??</u>

But is " + " a group after transformation?

Cubic Curves

Elliptic Curves

Equation of curve: $y^2 = x^3 + ax^2 + bx + c$ such that $f(x) = x^3 + ax^2 + bx + c$ has complex roots as distinct

Cubic Curves: Elliptic Curves

ightharpoonup f(x) has only one real root

Cubic Curves: Elliptic Curves

ightharpoonup f(x) has 3 real roots

$$g(x,y) = y^2 - x^3 + ax^2 + bx + c$$

$$g(x,y) = y^2 - x^3 + ax^2 + bx + c$$

Singular Point:
$$\frac{\partial g}{\partial y} = 0$$
 and $\frac{\partial g}{\partial x} = 0$
 $\implies f(x_0) = 0$ and $f'(x_0) = 0$

$$g(x,y) = y^2 - x^3 + ax^2 + bx + c$$

Singular Point:
$$\frac{\partial g}{\partial y} = 0$$
 and $\frac{\partial g}{\partial x} = 0$
 $\implies f(x_0) = 0$ and $f'(x_0) = 0$

Repeating Root!

Example:

$$y^2 = x^2(x+1)$$

Example:

$$y^2 = x^2(x+1)$$

Cubic Curves: Singularity

Why Singular Curves?

Cubic Curves: Singularity

- ► Singular Curves: Easy like conics
 - ullet From singular point o line, only one point of intersection
 - One-one

Cubic Curves: Singularity

- ► Singular Curves: Easy like conics
 - ullet From singular point o line, only one point of intersection
 - One-one
 - Example: $y^2 = x^2(x+1)$ Let $r = \frac{y}{x}$, we get $x = r^2 - 1$, $y = r^2 - 1$

16 / 18

Conclusion

► Motivation for studying cubic curves

Conclusion

- ► Motivation for studying cubic curves
- ► Group Law for Elliptic Curves

Acknowledgements

Most of the content has been taken from "Rational Points on Elliptic Curves" by Silverman and Tate.