Некоторые распределения случайных величин

Распределение	График	pdf или cdf	параметры	Числовые характеристики	Применяется
Равномерное Uniform	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{cases} rac{1}{b-a} & ext{for } x \in [a,b] \ 0 & ext{otherwise} \end{cases}$	а, b — минимально е и максимальн ое значение	M(X) = (b+a)/2 D(X) = (b-a)/12	
Нормальное normal	$ \begin{array}{c} 7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		$M(X) = \mu$ $D(X) = \sigma^2$	СВ зависящая от множества независимых факторов. В т.ч. ошибки измерений.
Биномиальное binomial	0.2 0.18 0.16 0.16 0.14 0.12 0.1 0.06 0.06 0.06 0.00 0.	$P(X) = C_n^m p^m q^{n-m}$	n — число испытаний, m — число положитель ных исходов.	M=np D=npq	
Пуассона poisson	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P(X) = \frac{\lambda}{X!} e^{-\lambda}$	λ=пр, п—число испытаний, р - вероятность появления события в испытании.	$M(X) = \lambda$ $D(X) = \lambda$	Число редких событий во времени или пространстве

Экспоненциальное exponential	$f(x) = \lambda e^{-\lambda x}$ $f(x) = \lambda e^{-\lambda x}$ $F(x) = 1 - \lambda e^{-\lambda x}$ $F(x) = 1 - \lambda e^{-\lambda x}$	λ - интенсивнос ть некоторого события (число событий в ед. времени)	$M = \lambda^{-1}$ $D = \lambda^{-2}$	время между двумя последовательными свершениями одного и того же события
t-распределени (Стьюдента)	$\Gamma(z)=\int\limits_{0}^{\infty}t^{z-1}e^{-t}dt, z\in\mathbb{C}$: Re $(z)>0$		$M=0$, если $n>1$ $D=\frac{n}{n-2}$	Распределение выборочных средних. $T = \frac{Z}{\sqrt{V/n}} = Z\sqrt{\frac{n}{V}},$ Где, Z — NORM(0,1) V — с.в. распределённая по закону хиквадрат с n степенями свободы.
F-распределение (Фишера)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d ₁ , d ₂ — число степеней свободы	$M = \frac{d_2}{d_2 - 2}$, если $d_2 > 2$ $D = \frac{2d_2^2(d_1 + d_2 - 1)}{d_1(d_2 - 2)^2(d_2 - 4)}$ если $d_2 > 4$	Распределение отношений с.в. распределённых по закону Стьюдента
Хи-квадрат	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	k — число степеней свободы	M=k $D=2k$	Распределение суммы квадратов нормально распределенной с.в.