Metoda Programării Dinamice

-3-

Se consideră un rucsac de capacitate (greutate) maximă G (număr <u>natural</u>) și n obiecte caracterizate prin:

- greutățile lor (numere naturale) g₁,...,g_n;
- câştigurile v₁,...,v_n obţinute la încărcarea lor în totalitate în rucsac.

Un obiect nu poate fi fracționat.

Se cere o modalitate de încărcare de obiecte în rucsac, astfel încât câștigul total să fie maxim.

Caz particular

Date n obiecte cu ponderile $w_1, w_2,..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maxime, fără a depăși însă ponderea W

Caz particular

Date n obiecte cu ponderile $w_1, w_2, ..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maxime, fără a depăși însă ponderea W

Interpretări

- Submulţime de sumă maximă mai mică sau egală cu o valoare M dată (v. Greedy)
- n activități cu duratele $w_1, w_2, ..., w_n$ necesită o resursă. Știind că timpul maxim de funcționare a resursei este W, să se selecteze o submulțime de activități care țin resursa ocupată un timp cât mai lung (maxim)

Exemplu:

```
G = 8
n = 4 obiecte
g: 3 4 4 6
v: 3 9 10 18
```

Exemplu:

```
G = 8
n = 4 objecte
g: 3  4  4  6
v: 3  9  10  18
```

Greedy - în ordinea descrescătoare a raportului v/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Exemplu:

```
G = 8

n = 4 objecte

g: 3 4 4 6

v: 3 9 10 18
```

Greedy – în ordinea descrescătoare a raportului v/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Soluţia optimă:

- Alegem obiectele 2 şi 3
- Câştigul total 10 + 9 = 19

Principiu de optimalitate

Dacă S este soluție optimă pentru greutatea g și obiectele {1,2,...,n} care

conţine n

<u>nu</u> conţine n

Principiu de optimalitate

Dacă S este soluție optimă pentru greutatea g și obiectele {1,2,...,n} care

- conţine n atunci S-n este soluție optimă pentru
 greutatea g g_n și
 obiectele {1,2,..., n-1}
- nu conţine n atunci S este soluție optimă pentru greutatea g și obiectele {1,2,..., n-1}

- Subproblemă
- Soluţie
- Ştim direct
- Relație de recurență
- Ordinea de calcul
- Afișarea obiectelor din soluția optima

```
for (int q = 0; q \le G; q++) c[0][g]= 0;
for (int i = 1; i \le n; i + +) {
     c[i][0]=0;
      for (int qr = 1; qr <= G; qr ++) {
             if (q[i]<= qr)
                   if (v[i]+c[i-1][qr-q[i]]>c[i-1][qr])
                          c[i][qr]=v[i]+c[i-1][qr-q[i]];
                   else
                          c[i][qr]=c[i-1][qr];
              else
                   c[i][qr]=c[i-1][qr];
System.out.println("Castigul total "+c[n][G]);
```

- Afişarea obiectelor
 - din relația de recurență

Afişarea obiectelor – recursiv

```
void afis(int i, int gr) {
     if(i==0 | | qr==0)
            return;
     if((g[i] \le gr) \&\&(c[i][gr] == v[i] + c[i-1][gr-g[i]]))
            afis (i-1, gr-g[i]);
            System.out.print(i+" ");
     else
            afis (i-1,qr);
afis(n,G);
```

Afişarea obiectelor – nerecursiv

```
gr = G;
i = n;
while(gr>0 && i>0){
   if((g[i] \le gr) \&\&(c[i][gr] == v[i] + c[i-1][gr-g[i]]))
            System.out.print(i+" ");
            gr=gr-g[i];
   i--;
```

▶ Exemplu G = 8, n = 4 objecte

 \mathbf{C} :

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0								
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

 \mathbf{C} :

```
g: 3 4 4 6 v: 3 9 10 18
c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3					
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

 \mathbf{C} :

```
g: 3 4 4 6 v: 3 9 10 18
c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

C:

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9				
0								
0								

▶ Exemplu G = 8, n = 4 objecte

C:

```
g: 3 4 4 6 v: 3 9 10 18
c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	
0								
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6 v: 3 9 10 18
c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10				
0								

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	
0								

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	19
0	0	0	3	10	10	18	18	19

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

Traseu:

C:

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	19
0	0	0	3	10	10	18	18	19

▶ O(nG)

Alte aplicații

Distanțe de editare. Alinierea secvențelor

Putem măsura similaritatea între secvențe (ADN) prin

- Elemente comune cel mai lung subşir comun pentru două secvențe
- **Distanțe de editare** numărul minim de inserări și modificări (eventual și ștergeri) de caractere necesar pentru transforma prima secvență în cea de a doua
- + aplicații în procese de căutare de cuvinte sugestii de cuvinte similare

Exemplu

Aliniere – punerea pozițiilor (caracterelor) din cele două secvențe a și b în corespondență 1 la 1, cu posibilitatea de a insera spații (păstrând ordinea literelor)

```
a = AGGGCT b = AGGCA
```

AGGGCT

AGG-CA

penalizarea = penalizarea spațiului + penalizarea pentru diferența T/A

Exemplu

Aliniere – punerea pozițiilor (caracterelor) din cele două secvențe a și b în corespondență 1 la 1, cu posibilitatea de a insera spații (păstrând ordinea literelor)

```
a = AGGGCT
                   b = AGGCA
    AGGGCT
    AGG-CA
    penalizarea = penalizarea spațiului + penalizarea pentru
    diferența T/A
sau
    AGGGCT-
    AGG-C-A
    penalizarea = 3*penalizarea spațiului
```

Date două secvențe, $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n$ și $\mathbf{Y} = \mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_m$ aliniem secvențele inserând în ele caracterul ''astfel încât secvențele să devină de aceeași lungime și penalizând pozițiile pe care diferă secvențele obținute.

Formulare echivalentă:

Aliniere = formarea de perechi (x_i,y_j) astfel încât fiecare caracter apare în cel mult o pereche şi nu există perechi încrucișate:

– dacă avem perechile (x_i,y_j) şi (x_k,y_t) şi $i < k \Rightarrow j < t$ AGG-CA

Scorul (penalizarea) alinierii = suma penalizărilor alinierilor de caractere diferite şi alinierilor caracter-spaţiu (**scorul Needleman-Wunsch**).

- Penalizări diferite pentru diferențe de litere, spaţiu (de exemplu diferenţa A-G poate fi mai grava decât A-T)
- Notaţii:
 - p_{spatiu}
 - p_{XY} penalizarea alinierii caracterului X cu caracterul Y

- ADN alfabet A,C,G,T
- Asemănări ADN poate semnifica apropiere în arborele genealogic
- Esențial să fie rapizi se aplică pentru volum mare de date

Principiu de optimalitate:

$$\mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n$$

$$\mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_m$$

aliniere cu penalizare minimă

Evidenţiem ultima pereche din aliniere

Cazuri

- x_n aliniat cu y_m
- x_n aliniat cu spaţiu
- y_m aliniat cu spaţiu

- Subprobleme
- Ştim direct
- Relaţie de
- Ordinea de calcul
- Determinarea unei soluţii

Exemplu

C:

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

GATC

-> G-ATC

TCAG TCAG- scor 6

U	I	Z	3	4
0	2	4	6	8
2				
4				
6				
8				

 $j * p_{spațiu}$

Exemplu

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

C:

	•			7
0	2	4	6	8
2	1			
4				
6				
8				

Exemplu

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

TCAG TCAG- scor 6

C:

0	2	4	6	8
2	1	3		
4				
6				
8				

aliniem G cu C, rămâne de aliniat secvența vidă cu T cu cost c[0][1] aliniem - cu C, rămâne de aliniat secvența G cu T cu cost c[1][1] aliniem G cu -, rămâne de aliniat secvența vidă cu TC cu cost c[0][2]

Exemplu

C:

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC GATC

TCAG TCAG- scor 6

U	ı	Z	3	4
0	2	4	6	8
2	1	3	5	
4				
6				
8				

aliniem G cu A, rămâne de aliniat secvența vidă cu TC cu cost c[0][2] aliniem - cu A, rămâne de aliniat secvența G cu TC cu cost c[1][2] aliniem G cu -, rămâne de aliniat secvența vidă cu TCA cu cost c[0][3]

Alinierea secvențelor

Exemplu

$$\begin{aligned} p_{spațiu} &= 2,\\ p_{AC} &= p_{GT} = 1\\ p_{XY} &= 3 \text{ pentru } X \neq Y \text{ în rest} \end{aligned}$$
 GATC -> G-ATC

TCAG TCAG- scor 6

U	ı	2	3	4
0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	6

Alinierea secvențelor

Exemplu

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

$$p_{XY} = 3$$
 pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

Soluţia:

C:

0	1	2	3	4
0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	6

Alinierea secvențelor

Exemplu

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

Soluţia:

C:

0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	6

aliniere GT

aliniere -C aliniere AA

aliniere TG

Distanța de ediare - Levenstein

Similar (generalizare)

carte

Laborator

Alte probleme de numărare

Numărul de şiruri binare de lungime n care nu conțin două valori egale cu 1 pe poziții consecutive

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

Analizăm structura unui șir soluție evidențiind primul element

- Începe cu 0
- Începe cu 1

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

Analizăm structura unui șir soluție evidențiind primul element

- Începe cu 0 poate continua cu orice şir binar valid de lungime n-1
- Începe cu 1 poate continua cu orice şir binar valid de lungime n-1 care începe cu 0

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

- Subprobleme
 - Nr0[i] numărul de şiruri binare valide care încep cu 0
 - Nr1[i] numărul de şiruri binare valide care încep cu 1
- Recurenţe
- Soluţie

Numărul de şiruri de lungime n peste alfabetul {1,2,3} care respectă constrângerile:

- orice 1 are pe poziţiile alăturate în stânga şi dreapta valoarea 3
- orice 2 are pe poziţia din stânga (altă variantă: pe cel puţin una dintre poziţiile din stânga) valoarea 3

```
3132331332 - DA
313223133 - NU/DA
132331332 - NU
```

Temă

Numărul permutări ale mulțimii {1,2,..., n} care au exact k inversiuni (n, k date)

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

- n
- n-1
- n−2
- •
- •

 Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

• \mathbf{n} - în $x_1x_2...x_{n-1}$ sunt k inversiuni, deoarece nu există inversiune de forma (x,n)

 Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

- \mathbf{n} în $x_1x_2...x_{n-1}$ sunt k inversiuni, deoarece nu există inversiune de forma (x,n)
- n-1 -în $x_1x_2...x_{n-1}$ sunt k-1 inversiuni, deoarece unica inversiune determinată de $x_n = n-1$ este (n, n-1)

· ... n-k...1

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

- ➤ Subprobleme
 - Nr[i][t] numărul de permutări cu i elemente având t inversiuni, i ≤ n, t ≤ k
- ➤ Recurenţe

```
Nr[i][t] = Nr[i-1][t] + Nr[i-1][t-1] + ... + Nr[i-1][max{t-i+1,0}]

t < = i(i-1)/2
```

➤ Soluţie Nr[n][k]

- Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)
 - Mahonian numbers

 $Nr[n][k]=T(n,k) = coeficientul lui x^k din produsul$

$$\prod_{i=0}^{n-1} (1 + x + \dots + x^i)$$

$$Nr[n][k]=Nr[n][\binom{n}{2}-k]$$

1										
1	1									
1	2	2	1							
1	3	5	6	5	3	1				
1	4	9	15	20	22	20	15	9	4	1

Suplimentar

Horia Georgescu. Tehnici de programare. Editura Universității din București 2005

Fie G = (N, T, S, P) o gramatică independentă de context și $w \in T^*$.

Se cere să se determine dacă $w \in L(G)$.

▶ Gramatica este în forma normală a lui Chomsky: producţiile au numai formele $A\rightarrow BC$ şi $A\rightarrow a$, cu A, $B\in N$ şi $a\in T^*$.

$$w=a_1a_2...a_n$$

$$w=a_1a_2...a_n$$

Subproblemă: $M(i,j) = \{ A \in N \mid A \Rightarrow a_i...a_j \}$, unde \Rightarrow semnifică derivare în oricâți pași

$$w=a_1a_2...a_n$$

Subproblemă: $M(i,j) = \{ A \in N \mid A \Rightarrow a_i...a_j \}$, unde \Rightarrow semnifică derivare în oricâți pași

Soluţie: $w \in L(G) \Leftrightarrow S \in M(1,n)$

 $\mathbf{\hat{S}tim} : M(i,i) = \{ A \in N \mid A \rightarrow a_i \in P \}$

Recurențe: $M(i,j) = \{ A \in N \mid \exists k \in i...j-1, astfel încât \}$

 $\exists B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P$

```
Recurențe: M(i,j) = \{ A \in N \mid \exists k \in i...j-1, astfel încât \}
\exists B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P 
M(i,j) \leftarrow \emptyset
for k=i, j-1
     for toţi B \in M(i,k)
          for toţi C \in M(k+1,j)
               if A \rightarrow BC \in P
                    M(i,j) \leftarrow M(i,j) \cup \{A\}
```

Descompunerea unui dreptunghi în pătrate

Se consideră un dreptunghi cu laturile de m, respectiv n unităţi (m<n). Asupra sa se pot face tăieturi *complete* pe orizontală sau verticală. Se cere numărul minim de pătrate (cu laturi numere întregi) în care poate fi descompus dreptunghiul.

Descompunerea unui dreptunghi în pătrate

Exemplu. Un dreptunghi 5 x 6 poate fi descompus în două pătrare de latură 3 și 3 pătrate de latură 2.

