

Нейронные сети прямого распространения

*Новосибирский государственный университет *НАСТОЯЩАЯ НАУКА

* НЕЙРОННАЯ СЕТЬ

***** ОБУЧАЕМОСТЬ

- * Способность делать прогнозы относительного большого набора данных путем выборки небольшого числа точек данных
- * Однако, существует бесконечно много способов выбора меньшего множества, но размер этой бесконечности неизвестен
- * Обобщение отражение основной взаимосвязи между признаками и классами
- * Алгоритм должен хорошо работать на новых данных, которых он раньше не видел, а не только на тех, что использовались для обучения модели

* ТЕОРЕТИЧЕСКАЯ ОШИБКА КЛАССИФИКАТОРА

- ⋆ D распределение вероятностей образцов
- ***** Есть функция пометки, неизвестная алгоритму обучения, $f: X \to Y$ такая, что $y_i = f(x_i)$ для любых i.
- * Ошибка классификатора (ошибка обобщения, риск, потеря) вероятность предсказания неправильной метки для случайно точки, выбранной из D ($h(x) \neq f(x)$).

$$L_{D,f}(h) \stackrel{\text{def}}{=} P_{x \sim D}[h(x) \neq f(x)] \stackrel{\text{def}}{=} D(\{x: h(x) \neq f(x)\})$$

***** НЕПРАВИЛЬНОЕ ОБУЧЕНИЕ

N*

***** НЕДООБУЧЕНИЕ

- ★ Недообучение (underfitting) когда модель, построенная с помощью алгоритма, является слишком упрощенной, чтобы представлять базовую взаимосвязь между признаками и классом в обучающей выборке.
- ★ Это явление можно заметить по большой ошибке на обучающей выборке (еще говорят, что «не удаётся настроиться на выборку»). Помимо простоты модели, недообучение может возникать еще и из-за малого количества эпох обучения.

***** ПЕРЕОБУЧЕНИЕ

- ★ Переобучение (overfitting) когда модель, построенная с помощью алгоритма, настолько сложна, что модель слишком точно приближает обучающую выборку и становится чувствительной к шуму.
- * Это явление можно заметить по увеличивающейся разнице между ошибкой на обучающей выборке и тестовой выборке с каждой эпохой обучения. Поэтому при обучении строится график изменения ошибки на обучающей и тестовой выборках. Переобученная модель обладает низкой обобщающей способностью, в эксплуатации она будет часто ошибаться.

* ПРИНЦИП РАЗДЕЛИМОСТИ

- * некоторые не пересекающиеся множества могут быть некоторым образом разделены в пространстве
- ***** принцип разделимости требует доказательства обоснованности применения в каждом конкретном случае.
- \star Виды:
 - ***** Линейная
 - ***** Нелинейная

***** РАЗДЕЛИМОСТЬ

***** ФОРМАЛЬНЫЙ НЕЙРОН

***** ФОРМАЛЬНЫЙ НЕЙРОН

$$u_k = \sum_{j=1}^m w_{kj} x_j$$
 $y_k = \varphi(u_k + b_k)$ Сигмоида $f(S) = (1 + e^{-aS})^{-1}$ Гиперболический тангенс $f(S) = \tanh(S) = \frac{e^S - e^{-S}}{e^S + e^{-S}}$ ReLU $f(S) = \max(0, S)$ Пороговая (Хевисайда) $f(S) = \begin{cases} 1, \ S > T \\ 0, \ else \end{cases}$

N*

***** СИГМОИДА

* УНИВЕРСАЛЬНАЯ ТЕОРЕМА АППРОКСИМАЦИИ

* Нейронная сеть прямого распространения с одним скрытым слоем может аппроксимировать любую непрерывную функцию многих переменных с любой точностью.

* КРОСС-ВАЛИДАЦИЯ (СКОЛЬЗЯЩИЙ КОНТРОЛЬ)

- ★ Метод отложенных данных (holdout method) разделение 70-30 или 60-40 или 80-20.
- * Оценка ошибки близка к ошибке модели на новых данных, но сильно зашумлена.
- * Для борьбы с шумом многократно случайно разделяют обучающую и тестовую выборку, параметр ошибки при этом усредняют.
- ★ Но в процессе итераций каждая точка данных будет попадать в тестовое подмножество различное число раз, что может привести к смещению оценки.

***** КРОСС-ВАЛИДАЦИЯ (СКОЛЬЗЯЩИЙ КОНТРОЛЬ)

★ Контроль по k-блокам (k-fold cross-validation) - данные случайным образом делятся на k непересекающихся подмножеств (5, 10 или 20). После циклического перебора всех k подмножеств полученная оценка усредняется.

* ОЦЕНКА НЕЙРОСЕТЕЙ

Y=1	Y=-1	
True positive	False positive	A(x)=1
False negative	True negative	A(x)=-1

N = TP + FP + FN + TN

Полнота (способность обнаруживать данный класс, sensitivity)

$$recall = \frac{TP}{TP + FN}$$

Точность (способность отличать этот класс от других) TP

$$precision = \frac{IP}{TP + FP}$$

Достоверность (правильность)

$$accuracy = \frac{TP + TN}{N}$$

* ОЦЕНКА НЕЙРОСЕТЕЙ

★ Специфичность (specificity), чаще всего применяется в медицинской статистике. Высокая специфичность позволяет отсеять людей, у которых действительно нет этого заболевания.

$$TNR = \frac{TN}{TN + FP}$$

★ Коэффициент корреляции Мэтьюса (в статистике известен как фи-коэффициент) может применяться как мера качества для бинарной классификации при высоком дисбалансе классов. Принимает значение в диапазоне [-1,1], где 1 – идеальное предсказание, 0 – случайное предсказание, -1 – полное расхождение между предсказанием и наблюдением.

$$MCC = \frac{TP * TN - FP * FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

***** ROC-КРИВАЯ

- * Вектора вероятностей классов, порог позволяет разделить классы, кривая строится для разных значений порога. Выбор порога обусловлен задачей, можно сдвинуть в сторону того или иного класса.
- * Для каждого класса своя ROC-кривая при многоклассовой классификации

Клиент	Вероятность невозврата		
Mike	0.78		Отказ
Jack	0.45		
Larry	0.13		p*=0.15
Kate	0.06		
William	0.03		
Jessica	0.02	Ot	добрение

***** ROC-КРИВАЯ

$$TPR = recall$$

 $FPR = \frac{FP}{FP + TN}$ - доля объектов negative класса, предсказанных неверно Каждая точка на кривой соответствует значению порога

Средняя абсолютная ошибка (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |a(x_i) - y_i|$$

- * Среднеквадратическая ошибка (MSE) применяется когда надо подчеркнуть большие ошибки, но поэтому она более чувствительна к выбросам, чем МАЕ.
- ★ Чем ошибка меньше, тем лучше, но важно учитывать масштаб данных. Чтобы MSE имел размерность исходных данных, из него извлекают корень и получают RMSE, что затрудняет сравнение на разных наборах.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (a(x_i) - y_i)^2$$

$$RMSE = \sqrt{MSE}$$

* Коэффициент детерминации (R^2) — доля дисперсии, объясненная моделью, в общей дисперсии целевой переменной. Чем ближе к 1, тем модель лучше объясняет данные. Модели с коэффициентов детерминации больше 0,8 можно считать хорошими. \bar{y} — среднее арифметическое y_i .

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

* SMAPE (Symmetric Mean Absolute Percentage Error) рассматривает не абсолютные, а относительные ошибки на объектах

$$SMAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{2|a(x_i) - y_i|}{y_i + a(x_i)}$$