

Eigenspaces (II)

CS510 Lecture #15 March 4, 2002 Bruce A. Draper

Covariance → Principle Components

- The principle components can be computed from the covariance matrix.
- The exponent of the 2D Gaussian has the form: $f(x,y) = V^T M V = \begin{vmatrix} x & y \\ b & c \end{vmatrix} y \begin{vmatrix} a & b \\ b & c \end{vmatrix} y$ = $ax^2 + 2bxy + cy^2$
- Singular value decomposition tells us that: $M = R\Delta R^{-1}$

$$= \begin{vmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{vmatrix} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{vmatrix} \begin{vmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{vmatrix}$$

© Bruce A. Draper

Back to Image Eigenspaces

- Entire set of training images treated as one set of points.
- The sample covariance matrix is computed.
- You may think of covariance in terms of a Gaussian r.v.
 - The theory of principle components is more general, but the Gaussian model helps understanding.

© Bruce A. Draper

More Image Eigenspaces

- The Eigensystem associated with Covariance tells us:
 - The rotation of the principle components (Eigenvectors)
 - Variance along each component (Eigenvalues)
- The maximum number of eigenvectors with nonzero variance is Max(samples-1, orig. dimensions)
 - Low variance means little change disregard.
- Eigenspace is cheap way to find highest correlation!

© Bruce A. Draper

Assumptions

- Each image contains one object.
- Objects imaged by a fixed camera under weak perspective.
- Images are normalized with respect to size.
- Images are zero-mean
- The energy of the pixel values is normalized to 1. $\sum_{i=1}^{N} \sum_{j=1}^{N} f(z_{i})^{2}$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} I_1(i,j)^2 = 1$$

- The object is completely visible.
- Each image is represented as a vector.

Visualization

- An aside to test your visualization skills
 - Images are points on an NxN dimensional hyper sphere.
 - Cross correlation is the cosine of the angle between the vector from the origin to that point.

© Bruce A. Draper

- Class 1 is dark around the edges and bright in the middle.
- Class 2 is light with dark vertical bars.
- Class 3 is light with dark horizontal bars.
- All classes initially use 2 for low value, 7 for high value.
- Each instance is corrupted by sigma=1 Guassian Noise.

© Bruce A. Draper

The Image Matrices

- Consider 9 training images, 3 from each class.

L	OHSI	uei 5	uan	nng	Ша	ges, :	0 110	III ea	CII CIA	
			2.25							
	3.22	5.79	3.09 2.96	2.91	3.88	.71	1.59	8.17	.79 ,	
	1.10	2.47	2.96	2.35	3.60	2.46	.69	1.96	4.34	
	6.36	2.39	9.36	6.43	1.43	7.01	6.52	.89	7.74	
	6.05	.55	6.60	7.66	3.20	6.66	4.80	1.97	7.58	
	5.97	3.49	7.33	6.96	1.82	7.52	5.75	1.06	7.74 7.58 7.24	
	8.11	8.94	5.85	6.94	6.68	5.99	7.02	7.73	7.08	
	2.63	2.60	5.16	3.63	3.15	1.37	2.75	2.10	7.08	
	7.20	6.09	6.12	8.50	6.89	6.49	5.92	6.85	7.16	

© Bruce A. Draper

Normalized Image Vectors

- Each element is a 9x1 vector representing an image.
- Each vector is normalized to have magnitude (length) one.
 - Mistake: not zero-meaned

Each vector has the centroid for the set subtracted from it.

	133	117	231	.0480	.0530	0840	.126	.0810	0900		
	.0500	.127	.0450	149	202	229	.197	.0930	.157		
	102	141	143	.184	.0520	.124	0290	.00600	0600		
	.0750	.0930	114	.0710	.162	0200	129	0660	113		
X=	.324	.186	.505	266,	116,	178	157,	120	177		
	.0910	152	163	.131	.135	.217	.0370	163	132		
	188	0140	239	.0300	.0860	0410	.0800	.172	0310		
	00100	.185	.0710	0670	161	200	.0630	.124	.126		
	0630	0740	.0450	.0320	.0440	0570	0520	0150	0270		
© Bruce A. Draper											

Brute Force Correlation

Correlation is now the dot product of elements in X

© Bruce A. Draper

Eigenspace Theorem

Let $x_1, ..., x_n$ be vectors in \Re^{NxN} , and $\overline{x} = \frac{1}{n} \sum_{j=1}^n x_j$ their average.

Given the $N^2 \times n$ matrix

$$X = \left[\left(x_1 - \overline{x} \right) \right] \dots \left(x_n - \overline{x} \right)$$

we can write each x_i as

$$x_{j} = \overline{x} + \sum_{i=1}^{n} g_{j,i} e_{j}$$

where $e_1, ..., e_n$ are the eigen vectors of $Q = XX^T$, and $g_j = |g_1, ..., g_n|$ are the vector components of x_i in eigenspace

First k Principle Axes

Now consider using only the first *k* eigenvectors.

$$x_j \approx \sum_{i=1}^{K} g_{j,i} e_i + \overline{x}$$

■ This assumes an ordering such that:

$$\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$$
 and $\lambda_i \approx 0$ for $i > k$

- Consider the following case
 - 100 training images.
 - 100x100 pixels for each image.
 - What is the maximum possible value for k?
 - A typical value is even smaller.

- The first two Principle Components carry no information with respect to image class.
- However, Principle Components 3 and 4 carry all the information necessary for a nearest neighbors classifier.
- The Eigenvalues, which record variance along each axis, show higher PC's have more variance:

 Even when the first principle components are irrelevant to classification task, this does not mean lessor components will be irrelevant as well.

