

Curso Técnico de Desenvolvimento de Sistemas

UC: Hardware e Redes (HARE) - Primeiro Termo

Aula 5 - Armazenamento

Prof. Douglas Gaspar

Contextualização com o plano de aula

Nessa aula será(ão) abordado(s) o(s) seguinte(s) assunto(s) - (Conhecimento(s)):

Unidade de armazenamento

Relacionados a(os) seguinte(s) Fundamento(s) Técnico(s) e Científico(s):

• Identificar as arquiteturas de hardware e suas funcionalidades

Armazenamento

- Os dispositivos de armazenamento tem como finalidade a gravação de dados para que possam ser recuperados (lidos) sempre que o computador estiver em uso
 - Os dispositivos mais conhecidos são:
 - Magnéticos (Disquetes e fitas)
 - Discos ópticos (CDs, DVDs, Bluray)
 - Memórias flash (pen drive, cartões de memória, SSD)
 - Disco rígidos (HDD)

Mídias magnéticas

• Por muito tempo o disquete foi a principal forma de se armazenar informações fora do computador. Mas com as novas tecnologias ficou obsoleto e desvantajoso seu uso.

Disquete
Tamanho 3 ½"
Polegadas
Capacidade
1,44MB

Disquete
Tamanho 5 1/4"
Polegadas
Capacidade
360KB e 1,2 MB

Mídias magnéticas

 As fitas de backup tem sua importância principalmente em ambiente empresarial e em servidores. Ainda é um dos principais meios de cópia de arquivos.

Mídias de fita DAT (Digital Audio Tape)

Mídia padrão DLT (Digital Line Tape)

Mídias magnéticas

 Atualmente a tecnologia utilizada em fitas magnéticas é a LTO (Linear Tape Open). Criada pela IBM, HP e Seagate para ser uma alternativa livre ao padrão DLT.

Padrões de funcionamento LTO

Modelo	Capacidade Nativa / Max	Velocidade Máxima	Ano Lançamento	Tempo gravação
LTO-1	100GB / 200GB	20MB/s	2000	1:25 hora
LTO-2	200GB / 400GB	40MB/s	2003	1:25 Hora
LTO-3	400GB / 800GB	80MB/s	2005	1:25Hora
LTO-4	800GB /1,5TB	120MB/s	2007	1:50
LTO-5	1,5TB / 3TB	140MB/s	2010	3:10
LTO-6	2,5TB / 6,25TB	280MB/s	2012	5:30
LTO-7	15TB	480MB/s	2015	5:35
LTO-8	12TB / 30TB	750MB/s	2017	9:00

Vantagens e desvantagens

- Desantagens
 - Desgaste da fita.
 - Não pode receber influência eletromagnética.(imã)
 - Não pode receber luz solar ou calor.
 - Frágil em impactos e quedas.
 - Os dispositivos de leitura e gravação limpos e regulados.
 - Verificar sempre a vida útil do cartucho.
- Vantagens
 - Custo (Economia de Energia, Pessoal, espaço)
 - Tamanho: pode ser levado para qualquer local

- As unidades de armazenamento ópticas usam um feixe de laser para realizar a gravação/alteração na sua superfície de um disco
- Nos CDs, o laser usado é o laser infravermelho DVDs, usa-se luz vermelha. Já no Blu-ray, como o nome sugere, a luz usada é azul-violeta.

Tipo de Mídia	Tamanho	Capacidade
CD	12cm	700MB
CD	8cm	180MB
DVD	12cm	4,7GB
DVD	8cm	1,5GB
DVD Dual Layer (DVD-9)	12cm	8,5GB
Bluray	12cm	25GB
Bluray dual layer	12cm	50GB

Dual Layer significa que a mídia possui duas camadas para gravação

- Velocidade de gravação das mídias e unidades de CD
 - Cada 1x equivale a 150KB/s
 - Exemplo um CD 52x grava na velocidade máxima de 52x150, isto é = 7800kB/s ou 7,8MB/s
- Velocidade de gravação das mídias e unidades de DVD
 - Cada 1x equivale a 1385KB/s
 - Exemplo um DVD de 16x grava na velocidade máxima de 16x1385 = 22160KB/s ou 22MB/s
- Velocidade de gravação das mídias Blu-ray
 - Cada 1x equivale a 4,5MB/s
 - Exemplo um Blu-ray 12x grava na velocidade máxima de 12x4,5 = 54MB/s

Por dentro do CD-ROM

O CD-ROM é composto por quatro camadas, como você pode observar na figura 74. A letra E mostra o canhão de laser do hardware. Confira as funções de cada camada do CD-ROM:

- A. Camada de policarbonato onde os dados são impressos.
- B. Camada refletora, que reflete o raio laser para o sensor.
- C. Camada selada, para evitar danos por contato com ar, umidade e poeira.
- D. Superficie livre, utilizada para imprimir o título.
- E. Canhão de laser, que emite o feixe de luz, e leitor óptico, que identifica os sinais e os converte para bits.

Figura 74

As quatro camadas do CD-ROM.

Unidades flash

- As Unidades Flash Drive ou Flash Memory, são derivadas das memórias EEPROM só que são mais rápidas, em muitos casos estão substituindo os Discos Ópticos.
- EEPROM (*Electrically Erasable Programmable Read-Only Memory*) são dispositivos que tem seus dados alterados eletronicamente.

Unidades flash

- A velocidade de gravação e leitura tem a ver com o padrão da tecnologia USB (1, 2, 3.0)
- As características de velocidade devem ser consultadas no site do fabricante do pen-drive ou cartão de memória.
- Memórias flash são semelhantes as memórias RAM, só que mais lentas e tem a característica de mesmo após desligar do aparelho mantem seus dados.

Disco Rígido ou disco Duro, também chamado de HD
 (Hard Disk) que que vem do termo HDD (Hard Disk Drive) é
 um dispositivo de armazenamento de dados de alta
 capacidade

• Estrutura interna

 Esse tipo de HD iniciou sua comunicação no padrão PATA (Paralela) e depois evolui para o SATA (Serial)

Característica da Comunicação PATA				
Comunicação de dados	PARALELA			
Conector	40 pinos			
Tamanho do disco (polegadas)	3,5" para Desktop 2,5" para Notebook			
Máximo de dispositivo	2 discos em cada Saída IDE			
Taxas de Transferência	133MB/s (ATA-133) 100MB/s (ATA-100)			
Capacidade de armazenamento de dados	Depende do modelo			

Características SATA				
Tipo de Comunicação de dados	SERIAL			
Tamanho do disco (polegadas)	3,5" para Desktop 2,5" para Notebook			
Máximo de dispositivo	1 dispositivo em cada Saída SATA			
Taxas de Transferência	SATA 1.0 – 150MB/s ou 1,5Gbit/s SATA 2.0 – 300MB/s ou 3Gbit/s SATA 3.0 – 600MB/s ou 6Gbit/s SATA 3.2 – 1600MB/s ou 16Gb/s			
Capacidade de armazenar dados	Cada disco tem uma capacidade			

Conexões

SENAI

Conexão PATA

Conexão SATA

Discos SSD

 Tem com base os módulos de memória flash e ganham em vantagem com relação ao HDD pois não possuem partes móveis.

Discos SSD

- Vantagens em relação ao HDD
 - Mais leve
 - Consomem menos energia
 - Geram menos calor
 - Compatível com padrão SATA
 - Mais resistente a impactos
- Desvantagens
 - Vida útil menor
 - Custo mais elevado
 - Capacidade menor de armazenamento

Discos SSD

- Observações
 - Todos os dispositivos de um computador possuem vida útil e está relacionada a quantidade de vezes que o componente é usado
 - Em dispositivos de armazenamento esta vida útil está relacionada a quantidade de vezes que os dados são gravados e apagados
 - SSDs não precisam de desfragmentação pois o acesso aos dados é bem mais rápido que o HDD

- HD SSD M2 pode utilizar tanto o padrão SATA ou PClexpress para comunicação.
- Possui a tecnologia NVMe (Non-Volatile Memory Express)
 para a sua fabricação. Esta tecnologia ocupa menos espaço
 e pode ser acessada mais rápido que o SSD convencional
 pois é conectada direto na placa mãe

- Chave B: utilizada apenas em SSDs com protocolo SATA III
- Chave M: utilizada apenas em SSDs com protocolo PCle NVMe
- Chave B + M: utilizada tanto em SSDs SATA III quanto SSDS PCIe NVMe.

 Caso sua placa mãe não possua entrada para SSD M2, existe no mercado um adaptador, é instalado no Slot PCIe e possui a entrada para instalar o HD SSD M2

Comparação de velocidades

Barramento	Velocidade máxima	Preço por GB*
HDD PATA	133 Mbps	R\$ 0,31
SATA I	150 Mb/s	
SATA II	300 Mb/s	R\$ 1,36
SATA III	600 Mb/s	
SATA III NVMe (M2)	3.000 Mb/s	R\$ 2,33

^{*} Preço médio conforme pesquisa em julho de 2021

Pesquisa

- Para que o armazenamento de arquivos possa ocorrer nos dispositivos, estes devem possuir um padrão para organização de forma que os arquivos possam ser gravados e recuperados corretamente. Este padrão é conhecido como "Sistema de arquivos".
- Pesquise quais os sistemas de arquivos existentes nos sistemas operacionais, como funcionam e as suas principais características.
- Exemplos de sistemas de arquivos: FAT, FAT32, NTFS, ext3