МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Севастопольский государственный университет» Институт информационных технологий и управления в технических системах Кафедра Информационные системы

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для лабораторных занятий по дисциплине «Основы системного анализа» для студентов дневной и заочной формы обучения по направлениям подготовки 09.03.01 — «Информатика и вычислительная техника» 09.03.02 — «Информационные системы и технологии» 09.03.03 — «Прикладная информатика» 27.03.04 — «Управление в технических системах»

Основы системного анализа. Методические указания к выполнению лабораторных работ по дисциплине «Основы системного анализа». Сост. Рябовая В.О., Гончаренко Д.Г., Токарев А.И. – Севастополь: Изд-во СевГУ, 2017. – 24 с.

Основная цель методических указаний — формирование у будущих специалистов системных понятий и навыков, необходимых при решении сложных междисциплинарных научно-технических, социально-экономических и других задач на базе современных компьютерных информационных систем.

Методические указания предназначены для студентов направлений подготовки 09.03.01 – «Информатика и вычислительная техника»,

09.03.02 – «Информационные системы и технологии»,

09.03.03 – «Прикладная информатика»,

27.03.04 – «Управление в технических системах» дневной и заочной форм обучения.

Методические указания рассмотрены и утверждены на заседании кафедры Информационные системы (протокол № от 2017 г.)

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент: Скатков А.В., д.т.н., проф., зав. каф. Кибернетики и вычислительной техники СевГУ.

СОДЕРЖАНИЕ

1. ЛР№1. Критерии эффективности системотехнических комплексов. Количественные оценки

- 1.1 Метод ранжировки
- 1.2 Метод последовательных предпочтений
- 1.3 Контрольные вопросы
- 1.4 Контрольные задания

2. ЛР№2. Анализ систем по структурно-топологическим характеристикам

- 2.1 Контрольные вопросы
- 2.2 Контрольные задания

3. ЛР№3-ЛР№4.Анализ замкнутых информационно-управляющих систем

- 3.1 ЛР№3. Анализ линейных систем. Устойчивость
- 3.2 ЛР№4. Анализ линейных систем. Точность
- 3.3 Контрольные вопросы
- 3.4 Контрольные задания
 - 3.4.1 Контрольные задания к ЛР№3
 - 3.4.2 Контрольные задания к ЛР№4

Библиографический список

1 ЛАБОРАТОРНАЯ РАБОТА №1 КРИТЕРИИ ЭФФЕКТИВНОСТИ СТК. КОЛИЧЕСТВЕННЫЕ ОЦЕНКИ

Построение обобщенного (интегрального) критерия эффективности системотехнических комплексов (СТК) производится в соответствии с теорией полезности на основе аддитивного преобразования:

$$E = \varphi(q_1, ..., q_n) = \sum_{i=1}^{n} b_i q_i , \qquad (1.1)$$

где q_1, \ldots, q_n – частные критерии эффективности, b_i – коэффициенты, отражающие полезность (ценность) критерия.

Определение значений b_i производится группой из m экспертов. В начале каждый j-й эксперт выставляет оценку i-му критерию, затем они масштабируются:

$$b_{ij} = \frac{c_{ij}}{\sum_{i=1}^{n} c_{ij}} \tag{1.2}$$

затем вычисляются коэффициенты b_i :

$$b_{i} = \frac{1}{m} \cdot \sum_{i=1}^{m} b_{ij}, \tag{1.3}$$

где m — количество экспертов.

Существуют два основных метода получения экспертных оценок c_{ij} .

1.1 Метод ранжировки

В этом случае эксперт размещает частные критерии по убыванию ценности слева направо (на одном месте могут стоять несколько критериев), затем проводят новую нумерацию слева направо и определяют ранг r_{ij} , который равен новому номеру критерия (если он на позиции один) или среднеарифметическому новых номеров (если на одной позиции несколько критериев).

Затем вычисляют оценку c_{ij} , по формулам:

$$c_{ij} = 1 - \frac{r_{ij} - 1}{n},\tag{1.4}$$

где n — количество частных критериев.

Пример 1:

Найти интегральный критерий эффективности, пользуясь методом ранжировки, если дано 8 частных критериев, которые эксперт разместил (по столбцам) следующим образом:

В кружках отмечены новые номера критериев. В таблице 1 приведены значения ранга r_{ij} , оценки критериев c_{ij} и весового коэффициента b_{ij} .

Таблица 1 — Значения r_{ij} , c_{ij} и b_{ii}

Ι	1	2	3	4	5	6	7	8
r _{ij}	8.0	3.5	1.5	5.0	1.5	3.5	7.0	6.0
c_{ij}	0,125	0,688	0,94	0,5	0,94	0,688	0,25	0,375
b _{ij}	0,03	0.15	0.21	0,11	0,21	0,15	0,06	0,08

$$E = 0.03q_1 + 0.15q_2 + 0.21q_3 + 0.11q_4 + 0.21q_5 + 0.15q_6 + 0.06q_7 + 0.08q_8$$

Согласованность экспертов определяется коэффициентом конкордации

$$W = \frac{12S}{m^2 (n^3 - n)}, \ 0 < W \le 1, \tag{1.5}$$

где m — количество экспертов, n — количество критериев, коэффициент S определяется по формуле:

$$S = \sum_{i=1}^{n} \left[\sum_{j=1}^{m} k_{ij} - 0.5m(n+1) \right]^{2}.$$
 (1.6)

 k_{ij} – новые номера критериев.

Если W>0,7 — эксперты согласованы, при W<0,7 — не согласованы. Для примера1: W=1.

1.2 Метод последовательных предпочтений

Этот алгоритм предполагает предварительное выставление экспертом оценок c_{ii} , а затем проведение (n-2) сравнений типа

$$C_{ij}R \cdot \sum_{k=i+1}^{n} C_{kj}$$
, где $R \in [>,<,=]$ (1.7)

Условия проверяются от последнего к первому, при этом оценки располагаются изначально так, чтобы ряд слева направо был не возрастающим и начинался с 1. Если какое-либо сравнение не выполняется, изменяется текущая оценка, но при этом должен остаться не возрастающий справа налево ряд.

Пример 2:

Вычислить интегральный критерий, если эксперт выставил следующие оценки восьми частным критериям (Таблица 2).

Таблица 2 – Оценки эксперта

i	1	2	3	4	5	6	7	8
C_{ij}	0.6	1	0.9	0.7	0.8	0.5	0.3	0.2

Система сравнения: R[>, <, >, <, ==, ==].

- 1. Строится невозрастающий ряд.
- 2. Выставленные экспертом оценки проверяются знаками (n-2) отношения R (знаки считываются справа налево).
- 3. Строится таблица уточнения оценок (таблица 3).
- 4. Если знак отношения не выполняется, то меняются не уточненные оценки эксперта, при этом ряд должен оставаться невозрастающим.

Таблица 3 – Уточненные оценки эксперта

i	2	3	5	4	1	6	7	8	R
C	1	0.9	0.8	0.7	0.6	0.5	0.3	0.2	=(0.5=0.5)
$C^{'}$	1	0.9	0.8	0.7	0.6	0.5	0.3	0.2	=(0.6\neq1)
C"	2	1.9	1.8	1.8	<u>1.7</u>	<u>0.5</u>	0.3	0.2	<(1.8<2.7)
$C^{""}$	2	1.9	1.8	1.8	<u>1.7</u>	<u>0.5</u>	0.3	0.2	>(1.8<4.5)
C^{IV}	2.5	2.3	2	<u>1.8</u>	<u>1.7</u>	<u>0.5</u>	0.3	0.2	<(2.3<6.5)
C^{V}	2.5	2.3	<u>2</u>	1.8	<u>1.7</u>	0.5	0.3	0.2	>(2.5<8.8)
C^{VI}	10.1	2.3	2	1.8	1.7	0.5	0.3	0.2	$\sum_{i=1}^{n} C_{ij} = 18,9$
b_{ij}	0.53	0.12	0.11	0.09	0.09	0.03	0.02	0.01	

$$E = 0.09q_1 + 0.53q_2 + 0.12q_3 + 0.09q_4 + 0.11q_5 + 0.03q_6 + 0.02q_7 + 0.01q_8$$

1.3 Контрольные вопросы

- 1. Назовите основные критерии эффективности системотехнических комплексов.
- 2. Назовите методы построения обобщенных критериев эффективности.
- 3. Как определяется согласованность экспертов, имеющих разные квалификации?
- 4. Дайте определение ранга, оценки критериев и весового коэффициента.

1.4 Контрольные задания

1.4.1 Записать интегральный критерий эффективности СТК для m=3 и n=8, если оценки получены методом ранжировки (Таблица 4). Определить согласованность экспертов.

Таблица 4 – Варианты заданий

Крите рий	1 Эксперт					2 Экс	перт		3 Эксперт		
места	1	2	3	4	1	2	3	4	1	2	3
1	1,78	4,6	2,5	3	3,5	6,8	1,4	2,7	1,6,8	4,7	2,3,5
2	3,4	1,5	2,8	6,7	4,5	1,6,8	2,7	3	2,3,7	1,5,6	4,8
3	3,6	4,5,8	1,2	7	1,3	2,5,6	8	4,7	1,4,7	2,5,8	3,6
4	1,5	2,6	3,7	4,8	1,5	3,7	4,8	2,6	1,2,3	4,8	5,6,7
5	1,8	4,5,6	2,7	3	3,5	1,2,7	8	4,6	4,5	1,2,8	3,6,7
6	3,7	2,5	1,6	4,8	4,8	1,2,3	5,7	6	1,2,5	6,7,8	3,4
7	1,2,3	6,8	4,7	5	1,5,6	3,7,8	2	4	1,4,5,6	2,8	3,7
8	2,5	1,4,7,8	3	6	1,3	2,6	4,7	8	3,5	4,6	1,2,7,
9	2,3	5,8	2,6	4,7	1,5,6	8	2,3,4	7	3,4	1,2,5,6	7,8
10	4,5	1,2	3,7,8	6	6,7	1,2,4	8	3,5	1,3	5,6,7,8	2,4
11	1,2,3,4	7	5,6	8	1,4,5	8	2,6	3,7	1,4,5	6,7	2,3,8
12	4,8	3,7	2,6	1,5	3,6,7	1,4	5	2,8	2,5	3,4,6,8	1,7
13	2,4,6	1,8	5	3,7	6	4,7,8	2,3	1,5	4,7	2,8	1,3,5,
14	3	6,8	1,2,5	4,7	5	2,3,6	1,7,8	4	2,3,5,7	1,8	4,6
15	1	4,6,7	3,5,8	2	1,3	4,8	2,6,7	5	2,4,6,8	1	3,5,7
16	2,4,5	1,6	3,7,8		1	4,5,7	6	2,3,8	2	3,4,5	1,6,7,
17	3,7	1,2,4	6,8	5	4,6,7	1,3,8	2,5		1,2,3,4	5,6,7	8
18	1,2,5	6,7	3,8	4	3,7,8	1	2	4,5,6	3,5,6,8	1,2,4,7	
19	4,5	1,6,7	2,3,8		1,2,8	5,6,7	3	4	5,6	3,4,7	1,2,8
20	5,6	2,4,8	1,3	7	2,6	1,3,4	5,7,8		2,5,7	1,3,4	6,8
21	2,3,4	1,5	6,7	8	1.7	2,3	4,5,6	8	3,4,6,7	1,2,5,8	
22	4,5	1,2,3	6,7,8		4,8	6,7	1,2,3	5	3,7,8	1,2	4,5,6

23	1,5	2,6	3,7	4,8	2,3,8	1,6,7	4,5		2,3,4	1,5	6,7,8
24	1,2,3,4	5	8	6,7	2	1,8	3,4,6,	5	4,5,6,7,	1,2,3,8	
25	6,7	4,5	8	1,2,3,4	1,2	3,4	5,6	7,8	4,5	1,2,3	6,7,8

1.4.2 Решить задачу получения экспертных оценок методом последовательных приближений. Число частных критериев n=8, m=1. Придумать первичный ряд оценок самостоятельно (наивысшая оценка -1, наименьшая -0) и уточнить их с помощью системы решений, заданной вариантом (Таблица 5).

Таблица 5 – Варианты заданий

№			Отног	шения		
вар.						
	1	2	3	4	5	6
1	<	^	>	<	<	=
2	<	<	>	>	=	>
3	<	<	<	>	>	>
4	<	<	>	>	<	<
5	>	<	>	<	>	=
6	>	^	<	<	<	<
7	=	Ш	<	>	>	=
8	<	<	>	>	<	<
9	<	Ш	>	>		>
10	<	<	=	=	<	>
11	<	>	<	>	<	>
12	>	Ш	=	<	<	>
13	<	<	<	=	>	=
14	<	<	=	=	>	>
15	>	<	<	<	<	=
16	>	>	<	<	=	<
17	<	<	=	=	>	=
18	<	<	<	>	>	>
19	<	Ш	>	=	<	>
20	<	>	>	>	<	<
21	>	=	<	=	=	<
22	<	<	>	>	>	=
23	<	<	=	=	<	>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	<pre><</pre>	>	3 >> >> >> >> >> >> >> >> >> >> >> >> >>	<	5	6 =
25	<	2	>	<pre></pre>	=	=

2 ЛАБОРАТОРНАЯ РАБОТА №2 АНАЛИЗ СИСТЕМ ПО СТРУКТУРНО-ТОПОЛОГИЧЕСКИМ ХАРАКТЕРИСТИКАМ

Если структурная схема системы представлена в виде графа (ориентированного или неориентированного), то существует ряд количественных оценок для сравнения различных вариантов построения систем.

а) <u>Связность структуры</u> R - характеризует силу (мощность) связей в системе.

$$R \Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \ge n-1$$
,— ориентированный граф (2.1)

$$R \Rightarrow \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \ge n-1$$
,— неориентированный граф (2.2)

где n – число элементов в системе, a_{ii} – элемент матрицы смежности A.

б) <u>Структурная избыточность</u> α - параметр, оценивающий превышение числа связей системы над минимально необходимым:

$$\alpha = \frac{R - R_{\min}}{R_{\min}} = \frac{R}{n - 1} \tag{2.3}$$

 $\alpha = 0$ — минимальная избыточность,

 $\alpha > 0$ – максимальная избыточность,

 α <0 – несвязная система.

в) <u>Структурная компактность</u> Q — характеризует инерционность информационных процессов в системе.

$$Q \Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} , (i \neq j), \qquad (2.4)$$

 d_{ij} — элемент матрицы расстояний D, характеризующий меру близости элементов δ и j.

г) <u>Степень централизации</u> δ – характеризуется индексом центральности. Для структуры типа неориентированный граф:

$$\delta = (n-1) \cdot (2Z_{\text{max}} - n) \cdot \frac{1}{Z_{\text{max}}(n-2)},$$
 (2.5)

где Z_{\max} — максимальное значение величины

$$Z_{i} = \frac{Q}{2} \left(\sum_{j=1}^{n} d_{ij} \right)^{-1}, (i \neq j) \text{ i=1,...,n}$$
(2.6)

Для структуры типа ориентированный граф:

$$\delta = \frac{1}{(n-1)\cdot(V(k)-1)} \sum_{i=1}^{n} (V(k)-V(i)), \qquad (2.7)$$

где V(i) – суммарное число входящих и исходящих ребер i–й вершины V(k)=maxV(i).

Пример

На рис.1 приведена структура с n=5. Определить R, α , Q и δ .

Рис.1 – Структура системы

По формуле (2.1) определяем связность структуры. Для этого строим матрицу смежности А.

$$R = \frac{1}{2}((1+1)+(1+1)+(1+1)+(1+1)+(1+1)) > 4; 5 > 4; \ R = \frac{1}{2} \times 10 > 4; 5 > 4.$$

Система связная.

Структурная избыточность (2.3):
$$\alpha = \frac{R}{n-1} - 1 = \frac{5}{4} - 1 = \frac{1}{4} > 0$$

Это значит, что связей в системе больше, чем это минимально необходимо.

Для определения структурной компактности вводится матрица расстояний между вершинами:

$$0 \ 1 \ 1 \ 2$$

$$1 \ 0 \ 2 \ 1$$

$$D_{5x5}=1 \ 2 \ 0 \ 2$$

$$2 \ 1 \ 2 \ 0$$

$$2 \ 2 \ 1 \ 1$$

$$Q \Rightarrow \sum_{i=1}^{5} \sum_{j=1}^{5} d_{ij}, \ (i \neq j);$$

$$Q = (1+1+2+2) + (1+2+1+2) + (1+2+2+1) + (2+1+2+1) + (2+2+1+1) = 30.$$

Для определения индекса централизации, определяется

Z1 = Z2 = Z3 = Z4 = Z5 =
$$30/2(1/6) = 5/2 = 2,5;$$

 $\delta = (5-1) \times (2 \times 2,5-5) \times \frac{1}{2,5} \times (5-2) = 0.$

Структура абсолютно децентрализованная.

2.1 Контрольные вопросы

- 1. Назовите основные структурно-топологические характеристики системы.
- 2. Какие структурно-топологические характеристики вычисляются тогда, когда структура системы представлена в виде неориентированного графа?
- 3. Дайте определение гиперграфа.

2.2 Контрольные задания

Определить вид и структурно-топологические характеристики структуры системы: R, α , Q и δ по варианту.

Вариант 8 1 2 3 4 5 Вариант 10 2 3 4 5

3 ЛАБОРАТОРНАЯ РАБОТА №3 И №4 АНАЛИЗ ЗАМКНУТЫХ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИХ СИСТЕМ

В случае, если уравнение замкнутой системы задано в нелинейном виде (есть произведения и степени переменных и их производных), то его в большинстве случаев можно линеаризовать с помощью разложения в ряд Тейлора. Приближение получается за счет отбрасывания свободного члена разложения и членов высшего порядка малости.

3.1 ЛР№3. Анализ линейных систем. Устойчивость

<u>Пример 1</u>

Дано уравнение системы: $2x f + 4x^2 f + 2x + 0.1 f x = F(x, f, x, x, f)$ Известно, что x – выходная, f – входная координаты.

Начальные условия: = x = x = 0 ; $x_0 = 1$; $f_0 = 2$; Определяются коэффициенты разложения в ряд Тейлора:

$$\left(\frac{\partial F}{\partial x}\right)^{0} = 2; \left(\frac{\partial F}{\partial x}\right)^{0} = 0, 1 f = 0, 1 \cdot 2 = 0, 2;$$

$$\left(\frac{\partial F}{\partial x}\right)^{0} = 0, 1 f + 8xf = 0 \cdot 2 + 8 \cdot 1 \cdot 2 = 16;$$

$$\left(\frac{\partial F}{\partial x}\right)^{0} = 2 x = 2 \cdot 1 = 2; \left(\frac{\partial F}{\partial f}\right)^{0} = 4x^{2} + 0, 1 \cdot x = 4 \cdot 1 + 0 = 4;$$

В нормальной форме уравнения записываются так: в левой части выходные координаты по убыванию производных слева направо, в правой - входные в таком же порядке:

$$2 + 0.2x + 16x = -2f - 4f$$

Это линеаризованная форма исходного нелинейного уравнения.

Передаточной функцией звена (системы) W(S) называется отношение изображений по Лапласу выходной координаты ко входной.

$$W(S) = \frac{y(S)}{x(S)};$$
(3.1)

Передаточная функция замкнутой системы обозначается $\Phi(S)$.

B этом случае x(t) = g(t) - y(t), (3.2)

где x(t) — ошибка (рассогласование), т.е. параметр, характеризующий точность работы систем.

$$\Phi(S) = \frac{W(S)}{1 + W(S)};$$
(3.3)

 $\Phi(S)$ — передаточная функция замкнутой системы по задающему воздействию (главная).

$$\Phi_{X}(S) = 1 - \Phi(S) = \frac{1}{1 + W(S)} = \frac{X(S)}{G(S)};$$
(3.4)

 $\Phi_{x}(S)$ – передаточная функция замкнутой системы по ошибке.

Для анализа систем дифференциальные уравнения и передаточные функции записываются в символьном виде.

Вводится алгебраический оператор

$$p = \frac{d}{dt}$$
, тогда $\frac{dx}{dt} = px$; $\frac{d^2x}{dr^2} = p^2x$ и т.д.

Получается алгебраическое уравнение вида:

$$(a_0p^n + a_1p^{n-1} + ... + a_n)$$
. $y(t) = (b_0p^m + b_1P^{m-1} + ... + b_m)$. $g(t)$, (3.5)

где a_i и b_j – коэффициенты.

Передаточные функции в этом случае: W(p), $\Phi(p)$, $\Phi_x(p)$. Для уравнения (3.5):

$$\Phi(p) = \frac{a_0 p^n + a_1 p^{n-1} + \dots + a_n}{b_0 p^m + b_1 p^{m-1} + \dots + b_m} = \frac{y(t)}{x(t)}.$$
(3.6)

Для анализа используют левую часть уравнения системы (характеристический полином), которая определяет её динамику (общее решение дифференциального уравнения).

$$D(p) = a_0 p^n + a_1 p^{n-1} + ... + a_n.$$
(3.7)

При переходе из временной области в частотную, производят замену p=j и получают характеристический комплекс:

$$D(i \omega) = a_0(i \omega)n + a_1(i \omega)^{n-1} + ... + a_n.$$
 (3.8)

При этом сам характеристический комплекс и все передаточные функции становятся комплексными числами:

$$D(j\omega) = X(\omega) + jY(\omega); \tag{3.9}$$

$$W(j\omega) = U(\omega) + jV(\omega) = A \cdot \ell^{i\varphi \ \omega}; \tag{3.10}$$

Для анализа устойчивости линейных систем существует множество критериев, один из которых - критерий Гурвица.

По характеристическому полиному (3.7) строится матрица Гурвица $(n \times n)$ следующим образом: по главной диагонали ставят коэффициенты полинома D(p) от a_i до a_n .

Затем заполняются строки, нечетные и четные коэффициенты чередуются так, чтобы их индексы слева направо возрастали, а на места отсутствующих коэффициентов записываются нули:

$$\Gamma = \begin{vmatrix} a_1 & a_3 & a_5 & \cdots & 0 \\ a_0 & a_2 & a_4 & \cdots & 0 \\ 0 & a_1 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & a_{n-2} & a_n \end{vmatrix}$$
 (3.11)

Система считается устойчивой, если все определители матрицы Гурвица больше нуля ($\Delta_i > 0$).

$$\Delta_1 = a > 0; \ \Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} > 0; \ \Delta_3 = \begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{vmatrix};$$
 и т. д.

 $\Delta_{n-1} > 0$; $\Delta_n = a_n \cdot \Delta_{n-1}$, (последний определитель можно не вычислять, определив его знак через a_n и Δ_{n-1}).

Пример 2

Определить устойчивость по критерию Гурвица для уравнения системы, полученной в примере 1.

Характеристический полином: $D(p) = 2p_3 + 0.2p + 16$; $a_0 = 2$; $a_1 = 0$; $a_2 = 0.2$; $a_3 = 16$.

n=3, поэтому получим матрицу 3×3 :

$$\Gamma = \begin{vmatrix} 0 & 16 & 0 \\ 2 & 0.2 & 0 \\ 0 & 0 & 16 \end{vmatrix}; \Delta_1 = 0; \quad \Delta_2 = \begin{vmatrix} 0 & 16 \\ 2 & 0.2 \end{vmatrix} = -32 < 0; \Delta_3 < 0, \text{ т.к. } \Delta \text{ a}_3 > 0, \text{ a } \Delta_2 < 0, \text{ то система}$$

неустойчива.

3.2 ЛР№4. Анализ линейных систем. Точность

Точность такого класса систем оценивают по закону изменения ошибки (рассогласования) во времени x(t) при заданном законе изменения задающего воздействия g(t).

Передаточная функция по ошибке

$$x(t) = \Phi_{x}(p)g(y) \tag{3.12}$$

Разложив $\Phi_{x}(p)$ в степенной ряд, получим коэффициенты ошибок:

$$x(t) = C_0 g(t) + C_1 g(t) + \frac{C_2}{2!} g(t) + \dots + \frac{C_n}{n!} g(t) + \dots$$

$$C_0 = [\Phi x(p)]_{p=0};$$
(3.13)

где: $C_0,...,C_n$ — коэффициенты ошибок, указывающие долю ошибки статической, по скорости, ускорению и т.д.

Пример 3

Дана передаточная функция разомкнутой системы: $W(p) = \frac{100}{0.7 p^2 + 0, p + 0.4}$ и закон изменения входного воздействия: g(t) = 10t + 1.

Найти закон изменения во времени ошибки x(t).

Найдем передаточную функцию замкнутой системы по ошибке:

$$\Phi x(p) = \frac{1}{1+W(p)} = \frac{1}{1+\frac{100}{0.7p^2+0.p+0.4}} = \frac{0.7p^2+0.1p+0.4}{0.7p^2+0.1p+100.4}$$

Определяются производные от g(t) и по их числу — количество коэффициентов ошибок: g(t) = 10; g(t) = 0.

Следовательно, необходимо найти коэффициенты ошибок: C_0 и C_1 .

$$C_0 = \left[\frac{0.7p^2 + 0.1p + 0.4}{0.7p^2 + 0.1p + 100.4} \right]_{p=0} = \frac{0.4}{100.4} = 39.84 \cdot 10^{-4};$$

$$\begin{split} C_1 = & \left[\frac{(1,4p+0.1)(0,7p^2+0,1p+100,4) - (1,4p^2+0.1)(0,7p^2+0,1p+0,4)}{(0,7p^2+0,1p+0,4)^2} \right]_{p=0} = \\ = & \frac{10,04-0,04}{(100,4)^2} = \frac{10}{10080,16} = 99,2 \cdot 10^{-5}; \end{split}$$

Подставляем найденные значения в (13), получим:

$$X(t) = 39.84 \cdot 10^{-4} \cdot (10t+1) + 99.2 \cdot 10^{-5} \cdot 10 = 39.84 \cdot 10^{-3} t + 139.04 \cdot 10^{-4};$$

Подставляя нужные значения t, найдем точность в любой момент времени.

3.3 Контрольные вопросы

- 1. Как называется операция перехода из области изображений в область оригиналов?
- 2. Что такое изображение по Лапласу?
- 3. Как анализируют устойчивость линейных систем?
- 4. Какие процедуры предполагает гармонический анализ нелинейных систем?
- 5. Какие системы называются непрерывными?
- 6. Приведите пример модели системы «вход-выход».
- 7. Что такое передаточная функция?
- 8. Какие системы называются линейными?
- 9. Что такое ошибка рассогласования?
- 10. Сформулируйте критерий устойчивости Гурвица.

3.4 Контрольные задания

3.4.1 Задания к лабораторной работе №3

Дано уравнение разомкнутой системы. Необходимо его линеаризовать, записать передаточную функцию W(p), замкнуть систему, получив $\Phi(p)$ и D(p). Определить устойчивость по Гурвицу. В начальный момент времени все производные равны нулю. X – выходная координата, Y – входная координата.

Варианты:

1.
$$2xy^2 + 4x^{y} + 0$$
, $1^{x}y + 2y^2 + y = 0$; $x^{\circ} = y^{\circ} = 1$;

2.
$$0.3xy + 0.5^{\circ y} + 4xy^2 + x^{2 \circ y} = 0; x^{\circ} = 0.2; y^{\circ} = 0.1;$$

3.
$$0.1x^{y} + 0.2x^{y} + 0.4^{x}y + xy = 0; x^{\circ} = 0.4; y^{\circ} = 0.1;$$

4.
$$0.4x^{y} + 0.3x^{y} + 0.4x^{y} + 0.2xy = 0; x^{\circ} = 0.4; y^{\circ} = 0.5;$$

5.
$$0.9x^{y} + 0.8xy + 0.7xy + 0.1x^{y} = 0; x^{\circ} = 4; y^{\circ} = 1;$$

6.
$$2x^{y} + 3x^{y} + 2x^{y} + x(y^{y})^{2} = 0; x^{\circ} = 2; y^{\circ} = 3;$$

7.
$$0.1y^{2x} + 0.2x^{y} + 0.4x^{y} + 2y^{2} = 0; x^{\circ} = 0.3; y^{\circ} = 0.5;$$

8.
$$0.5^{\circ y} + 0.7y^{\circ x} + 0.8x^{\circ y} + 0.4^{\circ x}y = 0; x^{\circ} = 0.5; y^{\circ} = 0.2;$$

9.
$$0.1x^{y} + 0.2xy + 0.1x^{y} + 0.8^{x}y = 0; x^{\circ} = y^{\circ} = 2;$$

10.
$$0.3x^{y} + 0.7xy + 0.5x^{y} + 0.2^{x}y = 0; x^{\circ} = y^{\circ} = 4;$$

11.
$$0.5^{x}y + 0.7x^{y} + 0.6x^{y} + 0.4xy + y^{2} = 0; x^{\circ} = y^{\circ} = 1;$$

12.
$$4x^{y} + 2x^{2y} + 4x^{y} + x^{2y} + xy^{2} + xy^{2} + xy = 0; x^{\circ} = 2; y^{\circ} = 4;$$

13.
$$x^{y} + 3x^{2y} + 8x^{2y} + 4^{x}y^{2} + 6xy = 0$$
; $x^{\circ} = 3$; $y^{\circ} = 2$;

14.
$$4x^{y} + 0, 1x^{2y} + 4x^{y} + y^{x} + 2^{x}y = 0; x^{\circ} = 1; y^{\circ} = 2;$$

15.
$$0.4x^{y} + 0.2^{y}x + 0.5^{y}x + 0.7^{x}y + 0.7y^{3}x = 0; x^{\circ}=2; y^{\circ}=4;$$

16.
$$2xy+0.3x^{2y}+0.5x^{y}+0.1^{y}x+0.2^{x}y$$
; = 0; $x^{\circ}=y^{\circ}=2$;

17.
$$x^{y} + 0.1x^{y} + 2x^{2}y^{2} + 0.2x^{3y} + 4^{y}x = 0; x^{0} = 0.2; y^{0} = 0.1;$$

18.
$$0.5x^{y} + 3x^{y} + 0.7xy^{2} + = 0.3x^{2y} + 0.2x(^{y})^{2} = 0; x^{\circ} = 3; y^{\circ} = 2;$$

19.
$$3^{y}x + 0.6xy^{2} + 2x^{2y} + 0.1^{x}y + 6x^{y} = 0$$
; $x^{0} = 0.2$; $y^{0} = 0.1$;

20.
$$3x^{y} + y^{2} + 4x^{y} + 0.9^{x}y + 2x^{y} = 0; x^{\circ} = y^{\circ} = 3;$$

21.
$$0.6x^{-y} + 0.3^{-y} + x^{-y}y^2 + 5x^{3-y} + 4y + x^3 = 0; x^{\circ} = 2; y^{\circ} = 1;$$

22.
$$x^{y} + 0.4x^{y}; +0.5^{x}y^{2} + 0.2y^{3}x + y^{3} = 0; x^{9} = 1;$$

24.
$$0.9x^{y} + 3x^{y} + 0.4xy^{2} + 0.8x^{y} + 0.5x^{y} + 0.8x^{3}y = 0$$
; $x^{\circ} = 0$, $y^{\circ} = 0.3$;

25.
$$0.1xy+2x^{0.0}y+0.7^{0.0}xy+5x^{0.0}y+6x^2y+y^3=0; x^{0.0}=1; y^{0.0}=5$$

3.4.2 Задание к лабораторной работе №4

Дана передаточная функция разомкнутой системы: $W(p) = \frac{b_0 p + b}{p(d_0 p^2 + d_1 p + d_2)};$

и закон изменения входного воздействия: $g(t) = m_0 t^2 + m_1 t + m_2$. Найти закон изменения во времени ошибки $\mathbf{x}(t)$.

Таблица 6 – Варианты заданий

рианты задании									
<i>№</i>	\boldsymbol{b}_{0}	\boldsymbol{b}_1	d_0	d_1	d_2	m_o	m_1	m_2	
1	0	10	1	0,9	1	60	4	0,01	
2	0	25	1,1	0,8	1	55	3	0,02	
3	0	45	1,2	0,7	1	50	2	0,03	
4	0	80	1,3	0,6	1	45	1	0,04	
5	0	100	1,4	0,5	1	40	1	0,05	
6	0	120	1,5	0,4	1	35	2	0,06	
7	0	140	1,6	0,3	1	30	3	0,07	
8	0	160	1,7	0,2	1	25	4	0,08	
9	0	180	1,8	0,1	1	20	5	0,09	
10	0	200	1,9	0,15	1	15	6	0,1	
11	0	300	2	0,25	1	10	7	0,2	

12	0	400	2,1	0,35	1	18	8	0,3
13	10	0	2,2	0,4	1	17	1	0,4
14	20	0	2,3	0,55	1	23	2	0,5
15	30	0	2,4	0,6	1	48	6	0,6
16	35	0	2,5	0,7	1	61	7	0,7
17	40	0	2,6	0,8	1	72	9	0,8
18	45	0	2,7	0,9	1	47	1	0,9
19	50	0	2,8	0,7	1	63	3	1
20	60	0	2,9	0,8	1	52	5	1,1
21	65	0	3	0,6	1	41	7	1,2
22	70	0	3,1	0,5	1	80	4	1,3

Библиографический СПИСОК

Основная литература

- 1. Згуровский М. З., Панкратова Н.Д. Системный анализ: проблемы, методология, приложения [Текст] монография / М. З. Згуровский, Н. Д. Панкратова; М-во образования и науки, молодежи и спорта Украины, Нац. акад. наук Украины, Ин-т прикладного систем. анализа. 2-е изд., перераб. и доп. К.: Наукова думка, 2011. 727 с.
- 2. Волкова В. Н. Теория систем и системный анализ [Текст]: учеб. для студ. вузов, обуч. по напр. "Прикладная информатика" / В. Н. Волкова, А. А. Денисов. М.: ${\rm HOPA\Breve{HOPA\Barreve{HOPA\Barreve{HOPA\Barreve{HOPA$
- 3. Губанов В. А. Введение в системный анализ. Л.: Изд-во Ленингр. гос. ун-та, 1988.
- 4. Казиев В. М. Введение в анализ, синтез и моделирование систем. М.: ИНТУИТ, 2007.
- 5. Советов, Б. Я. Информационные технологии. 2-е изд., стер. / Б.Я. Советов, В.В. Цехановский М.: 2006. 223 с.
- 6. Бесекерский В.А. Теория систем автоматического управления [Текст] / В. А. Бесекерский, Е. П. Попов. 4-е изд., перераб. и доп. СПб. : Профессия, 2003. 752 с.
- 7. Анфилатов В.С. Системный анализ в управлении: Учебное пособие для ВУЗов / В. С. Анфилатов, А. А. Емельянов, А. А. Кукушкин. М.: Финансы и статистика, 2003. 368с. Гриф МО "Рекомендовано".
- 8. Гатаулин А.М. Введение в системный анализ. М.: Изд-во ФГОУ ВПО МСХА им. К.А. Тимирязева, 2005.

Дополнительная литература

- 9. Цвиркун, А.Д. Структура многоуровневых и крупномасштабных систем (синтез и планирование развития) / А.Д. Цвиркун, В.И.Акинфиев. М.: Наука, 1993. 157 с. 10. Герасимов Б.И. Основы теории системного анализа: качество и выбор: учебное пособие / Б.И. Герасимов, Г.Л. Попова, Н.В. Злобина. Тамбов: Изд-во ФГБОУ ВПО "ТГТУ", 2011. 80 с. URL: http://window.edu.ru/resource/451/76451/files/gerasimov.pdf 11. Антонов А.В. Системный анализ. Математические модели и методы. Обнинск: ИАТЭ, 2002. 114 с.
- 12. Аполов О. Г. Теория систем и системный анализ//Курс лекций. Уфа, 2012, 274 с. (интернет-ресурс в свободном доступе).
- 13. Данелян Т.Я. Теория систем и системный анализ (ТСиСА): учебно-методический комплекс / Т.Я. Данелян. М.: Изд. центр ЕАОИ, 2010.-303 с. (интернет-ресурс в свободном доступе).

Заказ №	om «	/}/	2017 г.	Тираж	100 экз.
	Изо	д-во (СевГУ		