Analysis II

Sommersemester 2014

Prof. Dr. D. Lenz

Blatt 12

Abgabe Donnerstag 03.07.2014

(1) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

Zeigen Sie:

- (a) f ist stetig differenzierbar für $x \in \mathbb{R}^2 \setminus \{(0,0)\}.$
- (b) Die Richtungsableitungen von f in (0,0) existieren für alle Richtungen.
- (c) f ist in (0,0) nicht stetig.
- (2) Sei $g: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$g(x,y) = \begin{cases} (x^2 + y^2)^{3/2} \sin \frac{1}{x^2 + y^2} & \text{für } (x,y) \neq 0, \\ 0 & \text{für } (x,y) = 0. \end{cases}$$

Zeigen Sie:

- (a) f ist für alle $x \in \mathbb{R}^2$ differenzierbar.
- (b) Die partiellen Ableitungen sind bei (0,0) nicht stetig.

Bemerkung: Stetigkeit der partiellen Ableitungen ist also nur ein hinreichendes Kriterium für Differenzierbarkeit!

(3) Sei $g:[0,\infty)\longrightarrow\mathbb{R}$ gegeben. Sei $f:\mathbb{R}^m\longrightarrow\mathbb{R}$ definiert durch

$$f(x) \equiv g(|x|)$$
 für alle $x \in \mathbb{R}^m$.

- (a) Beweisen Sie, daß f genau dann differenzierbar ist, wenn g differenzierbar ist mit g'(0) = 0.
- (b) Berechnen Sie den Gradienten von f unter der Bedingung das f differenzierbar ist.

- (4) Sei $A\subseteq\mathbb{R}^m$ offen und zusammenhängend. Zeigen Sie:
 - (a) Ist $f: A \longrightarrow \mathbb{R}$ stetig, so ist f(A) ein Intervall.
 - (b) Ist $f:A\longrightarrow \mathbb{R}$ stetig differenzierbar mit $Df(x)\neq 0$ für alle $x\in A,$ so ist f(A) offen.

Zusatzaufgabe

Charakterisieren Sie die Menge der Funktionen $f: \mathbb{R} \to \mathbb{R}$ für die es eine Metrik auf \mathbb{R} gibt, so dass f nicht stetig ist.

Viel Erfolg!