Лекции по математическому анализу для 1 курса ФН2, 3

Власова Елена Александровна 2024-2025 год.

Содержание

1	Вве	дение	4	
	1.1	Элементы теории множеств	4	
	1.2	Кванторные операции	5	
	1.3	Метод математической индукции	5	
2	Множество действительных чисел			
	2.1	Аксиоматика действительных чисел	6	
	2.2	Интерпретации \mathbb{R}	7	
	2.3	Числовые промежутки	8	
	2.4	Бесконечные числовые промежутки (лучи)	8	
	2.5	Окрестности точки	8	
	2.6	Принцип вложенных отрезков (Коши-Кантора)	6	
	2.7	Ограниченные и неограниченные числовые множества	10	
	2.8	Точные грани числового множества	10	
	2.9	Принцип Архимеда	10	
3	Функции или отображения			
	3.1	Понятие функции	11	
	3.2	Ограниченные и неограниченные числовые множества	11	
	3.3	Обратные функции	11	
	3.4	Чётные и нечётные функции	11	
	3.5	Периодические функции	11	
	3.6	Сложная функция (композиция)	11	
	3.7	Основные элементарные функции	11	
4	Чис	ловые последовательности и их пределы	12	
	4.1	Ограниченные и неограниченные числовые последователь-		
		ности	12	
	4.2	Предел числовой последовательности	12	
	4.3	Бесконечные пределы	13	
	4.4	Свойства сходящихся последовательностей	13	
	4.5	Монотонные числовые последовательности	14	
	4.6	Число е	16	
	4.7	Гиперболические функции	17	
	4.8	Предельные точки числового множества	17	
	4.9	Предельные точки числовых последовательностей	20	
	4 10	Фундаментальные последовательности	22	

5	Πpe	делы функций	26
	5.1	Определение предела по Коши	26
	5.2	Бесконечно малые функции	31
	5.3	Свойства бесконечно малых функций	32
	5.4	Арифметические операции с функциями, имеющими пре-	
		делы	
	5.5	Бесконечно большие функции	37
	5.6	Первый замечательный предел	38
	5.7	Второй замечательный предел	39
	5.8	Сравнение бесконечно малых	41
	5.9	Таблица эквивалентных бесконечно малых	41
	5.10	Свойства эквивалентных бесконечно малых	42
	5.11	О-символика	42
	5.12	Сравнение бесконечно больших	42
	5.13	Свойства эквивалентных бесконечно больших	42
6	Неп	рерывность	43
	6.1	Непрерывность функции в точке	43
	6.2	Приращение аргумента в точке и приращение функции	43
	6.3	Точки разрыва	43
	6.4	Классификация точек разрыва	43
	6.5	Односторонняя непрерывность	43
	6.6	Свойства функций, непрерывных в точке	44

Элементарные функции и их пределы

1 Введение

1.1 Элементы теории множеств

"Множество есть многое, мыслимое как единое."

(Г. Kантор)

Множество — то же, что и класс, семейство, совокупность, набор; может состоять из любых различимых объектов; однозначно определяется набором составляющих его объектов.

Важные обозначения:

- A, B, C множества;
- $a \in A$ элемент a принадлежит множеству A;
- $a \notin A$ элемент a не принадлежит множеству A;
- $A \subset B A$ является подмножеством множества B, т.е. любой элемент множества A будет являться элементом множества B;
- \emptyset пустое множество или множество, не содержащее элементов;
- Если x объект, P свойство, P(x) обозначение того, что x обладает свойством P, то через $\{x:P(x)\}$ или $\{x\mid P(x)\}$ обозначают все множество объектов, обладающих свойством P.

Пять основных операций над множествами:

- 1. $A \cup B = C \iff C = \{c \in C : c \in A$ или $c \in B\};$
- 2. $A \cap B = C \iff C = \{c \in C : c \in A \text{ if } c \in B\};$
- 3. $A \setminus B = C \iff C = \{c \in C : c \in A \text{ if } c \notin B\};$
- 4. $\overline{A} = X \backslash A$. Говорят, что \overline{A} дополнение A до X;
- 5. Декартово произведение множеств.

$$X \times Y = \{(x, y) : x \in X, y \in Y\},\$$

 $X_1 \times X_2 \times \ldots \times X_n = \{(x_1, x_2, \ldots, x_n) : x_k \in X_k, k \in 1, \ldots, n\}.$

1.2 Кванторные операции

Высказывание, содержащее переменную, называется предикатом и обозначается P(x). Отрицание P(x) обозначается $\overline{P}(x)$.

- \forall квантор общности. $\forall x \in X : P(x)$ "для любого элемента x из множества X выполняется высказывание P(x)".
- \exists квантор существования. $\exists x \in X : P(x)$ "существует элемент x из множества X, для которого выполняется высказывание P(x).
- \exists ! квантор существования и единственности. $\exists x \in X : P(x)$ "существует единственный элемент x из множества X, для которого выполняется высказывание P(x). Например, \exists ! $x \in \mathbb{R} : \log_2 x = 1$.

Следующая выкладка иллюстрирует правило построения отрицаний высказываний, содержащих кванторы.

$$Q = \forall x \in X : P(x), \quad \overline{Q} = \exists x \in X : \overline{P}(x),$$

 $R = \exists x \in X : P(x), \quad \overline{R} = \forall x \in X : \overline{P}(x),$

1.3 Метод математической индукции

Пусть A(n) — некоторое высказывание. Докажем, что $\forall n \in \mathbb{N} : A(n)$.

- 1. Проверяем истинность A(n) при n = 1 (или $n = n_1$, где n_1 число, с которого целесообразно начать).
- 2. Полагаем, что A(n) верно для некоторого $n \in \mathbb{N}$.
- 3. Доказываем, что A(n+1) верно, используя 2). $A(1) \implies A(2) \implies \dots \implies A(n) \implies A(n+1)$

Пример 1.1. Докажем по индукции неравенство Бернулли:

$$\forall n \in \mathbb{N} : (1+x)^n > 1 + nx, x > 0.$$

- 1. Проверим верность для n = 1. Неравенство $1 + x \ge 1 + x$ верно.
- 2. Пусть $(1+x)^n \ge 1 + nx$ для некоторого $n \in \mathbb{N}$.
- 3. Используя верность для n, докажем верность для n+1:

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) =$$

= 1+nx+x+nx² > 1+nx+1 \Longrightarrow (1+x)ⁿ⁺¹ > 1+(n+1)x.

2 Множество действительных чисел

2.1 Аксиоматика действительных чисел

Определение 2.1. Множество \mathbb{R} называется множеством действительных чисел, если элементы этого множества удовлетворяют следующему комплексу условий:

(I) Аксиомы сложения

На \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+y и удовлетворяющий следующим аксиомам:

- 1. $\exists 0 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : x + 0 = 0 + x = x$;
- 2. $\forall x \exists npomusonoложный элемент -x, такой, что <math>x+(-x)=(-x)+x=0$;
- 3. Ассоциативность. $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z);$
- 4. Коммутативность. $\forall x, y \in \mathbb{R} : x + y = y + x$.

(II) Аксиомы умножения

На \mathbb{R} определена операция умножения "·", то есть $\forall (x,y) \in \mathbb{R}^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb{R}$.

- 1. \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : 1 \cdot x = x \cdot 1 = x$;
- 2. $\forall x \in \mathbb{R} \setminus \{0\}$ \exists обратный элемент " x^{-1} ", такой, что $x \cdot x^{-1} = x^{-1} \cdot x = 1$;
- 3. Ассоциативность. $\forall x, y, z \in \mathbb{R} \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$
- 4. Коммутативность. $\forall x, y \in \mathbb{R} \setminus \{0\} : x \cdot y = y \cdot x$.

(I, II) Связь операций сложения и умножения

Операция умножения дистрибутивна по отношению к операции сложения.

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

(III) Аксиомы порядка

Для \mathbb{R} определено отношение " \leq ".

- 1. $\forall x \in \mathbb{R} : x < x$;
- 2. $\forall x, y \in \mathbb{R} : (x < y \land y < x) \implies x = y$;
- 3. Транзитивность. Если $x \le y$ и $y \le z$, то $x \le z$;
- 4. $\forall x, y \in \mathbb{R}(x \leq y) \ u \ (y \leq x)$.

(I, III) Связь сложения с неравенством

Если $x \leq y$, то $\forall z \in \mathbb{R} : x + z \leq y + z$.

(II, III) Связь умножения с неравенством

Eсли $0 \le x$ и $0 \le y$, то $0 \le x \cdot y$.

(IV) Аксиома полноты $\mathbb R$

Для любых ненулевых подмножеств X и Y множества \mathbb{R} , таких, что $\forall x \in X, \ \forall y \in Y : x \leq y$, существует $c \in \mathbb{R}$, такое, что $(\forall x \in \mathbb{R} \ u \ \forall y \in \mathbb{R}) : x \leq c \leq y$.

2.2 Интерпретации $\mathbb R$

Геометрическая

Между прямой и \mathbb{R} существует взаимно-однозначное соответствие, т.е. отображение из \mathbb{R} на прямую биективно. Для задания этого отображения определяется

- 1. начальное положение, которому соответствует $0 \in \mathbb{R}$,
- 2. положительное направление,
- 3. масштаб, то есть положение $1 \in \mathbb{R}$.

Ox — числовая прямая. Каждое действительное число можно найти на числовой оси и для каждой точки числовой оси существует действительное число.

Десятичная форма записи чисел из **R**

$$a \in \mathbb{R} \iff a = a_0, a_1, \dots, a_n : a_0 \in \mathbb{Z}, a_k \in \{0, 1, \dots, 9\}.$$

Если $a \in \mathbb{Q}$, то в десятичной форме записи $a = a_0, a_1, \dots, a_n$ представляется конечной или бесконечной периодической дробью.

2.3 Числовые промежутки

Возьмем числа $a, b \in \mathbb{R}$, такие, что a < b.

- $(a;b) = \{c \in \mathbb{R} : a < c < b\}$ интервал;
- $[a;b] = \{c \in \mathbb{R} : a \le c \le b\}$ отрезок;
- $(a; b] = \{c \in \mathbb{R} : a < c < b\}$ полуинтервал;
- $[a;b) = \{c \in \mathbb{R} : a \le c < b\}$ полуинтервал.

2.4 Бесконечные числовые промежутки (лучи)

Возьмем $a \in \mathbb{R}$.

- $(a; +\infty) = \{c \in \mathbb{R} : c > a\}$ открытый луч;
- $[a; +\infty) = \{c \in \mathbb{R} : c > a\}$ замкнутый луч;
- $(-\infty; a) = \{c \in \mathbb{R} : c < a\}$ открытый луч;
- $(-\infty; a] = \{c \in \mathbb{R}; c \le a\}$ замкнутый луч.

2.5 Окрестности точки

Пусть ε — некоторое положительное число.

Определение 2.2. Окрестностью точки $a \in \mathbb{R}$ называется любой интервал, содержащий точку a и обозначается U(a).

Определение 2.3. ε -окрестностью точки $a \in \mathbb{R}$ называется интервал $(a - \varepsilon; a + \varepsilon)$ и обозначается $U_{\varepsilon}(a)$.

$$c \in U_{\varepsilon}(a) \iff |a - c| < \varepsilon.$$

Определение 2.4. Проколотой ε -окрестностью точки $a \in \mathbb{R}$ называется множество $(a-\varepsilon;a) \cup (a;a+\varepsilon) = U_{\varepsilon}(a) \setminus \{a\}$ и обозначается $\mathring{U}_{\varepsilon}(a)$.

Определение 2.5. Окрестностью бесконечности называют любое множество вида $(-\infty; a) \cup (b; +\infty)$.

Определение 2.6. ε -окрестностью бесконечности называют множество $(-\infty; -\varepsilon) \cup (\varepsilon; +\infty)$.

Замечание. $U_{\varepsilon}(\infty) = \mathring{U}_{\varepsilon}(\infty)$.

2.6 Принцип вложенных отрезков (Коши-Кантора)

Определение 2.7. Пусть $\{X_n\}_{n=1}^{\infty}$ — последовательность некоторых множеств. Если $\forall n \in \mathbb{N} : X_n \supset X_{n+1}$, то эта последовательность называется последовательностью вложенных отрезков.

Теорема 2.1 (принцип Коши-Кантора). Во всякой последовательности $\{I_n\}_{n=1}^{\infty}$, $I_n = [a_n, b_n]$ вложенных отрезков найдется точка $c \in \mathbb{R}$, принадлежащая всем этим отрезкам. Или, что то же,

$$\forall \{I_n\}_{n=1}^{\infty}, \ I_n = [a_n, b_n] \quad \exists c \in \mathbb{R} : (\forall n \in \mathbb{N} : c \in I_n).$$

Если, кроме того, известно, что для любого $\varepsilon > 0$ в последовательности можно найти отрезок I_k , длина которого $|I_k| < \varepsilon$, то c - eдинственная общая точка всех отрезков.

Доказательство. Заметим сначала, что для любых двух отрезков $I_m = [a_m;b_m],\ I_n = [a_n,b_n]$ нашей последовательности имеет место $a_n \leq b_m$, т.е. $\forall n,m \in \mathbb{N}: a_n \leq b_m$. Докажем "от противного". Предположим, что $\exists n,m \in \mathbb{N}: a_n > b_m$

 $a_m < b_m < a_n < b_n \implies I_n \cap I_m = \varnothing$, что противоречит условию $\forall n,m \in \mathbb{N}: a_n \leq b_m$.

Пусть $A = \{a_n, n \in \mathbb{N}\}, B = \{b_m, m \in \mathbb{N}\}, A, B \neq \emptyset, A \subset \mathbb{R}, B \subset \mathbb{R}$. По аксиоме полноты IV $\forall n, m \in \mathbb{N}: a_n \leq b_m$ существует $c \in \mathbb{R}: \forall n, m \in \mathbb{N}: a_n \leq c \leq b_m$. Следовательно, $c \in [a_n; b_n] = I_n$, т.е. c — общая точка всех отрезков.

Пусть $\forall \varepsilon > 0 \; \exists n \in \mathbb{N} : |I_n| = b_n - a_n < \varepsilon$. Докажем "от противного". Предположим, что общая точка не является единственной, то есть существуют $c_1, c_2, c_1 \neq c_2$, такие, что $c_1 \in I_n$ и $c_2 \in I_n$. Пусть для определенности $c_1 < c_2$.

Выберем $\varepsilon=\frac{c_2-c_1}{2}$. $\forall n\in\mathbb{N}: a_n\leq c_1< c_2\leq b_n$, следовательно, $b_n-a_n\geq c_2-c_1$. По условию $\exists n\in\mathbb{N}: |I_n|=b_n-a_n<\varepsilon=\frac{c_2-c_1}{2}$, но $c_2-c_1\leq b_n-a_n<\frac{c_2-c_1}{2}$ — противоречие, следовательно, $c_1=c_2$. Единственность доказана.

- 2.7 Ограниченные и неограниченные числовые множества
- 2.8 Точные грани числового множества
- 2.9 Принцип Архимеда

- 3 Функции или отображения
- 3.1 Понятие функции
- 3.2 Ограниченные и неограниченные числовые множества
- 3.3 Обратные функции
- 3.4 Чётные и нечётные функции
- 3.5 Периодические функции
- 3.6 Сложная функция (композиция)
- 3.7 Основные элементарные функции

4 Числовые последовательности и их пределы

Определение 4.1. $f: \mathbb{N} \to \mathbb{R}$ — числовая последовательность, т.е. $\{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{R}$.

4.1 Ограниченные и неограниченные числовые последовательности

Определение 4.2. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M$;
- 2. ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M$;
- 3. ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4. неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.2 Предел числовой последовательности

Определение 4.3. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер n, зависящий от ε , что \forall натурального числа N > n верно неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a$$

Пример:

$$\lim_{n\to\infty}\frac{1}{n}=0\iff \forall \varepsilon>0 \exists N=N(\varepsilon)\in \mathbb{N}\quad \forall n>N:\frac{1}{n}<\varepsilon.$$

$$\frac{1}{n} < \varepsilon \implies n > \frac{1}{\varepsilon}$$
. Возьмем $N(\varepsilon) = [\frac{1}{\varepsilon}]$. Тогда $\forall n > [\frac{1}{\varepsilon}] : \frac{1}{n} < \varepsilon$.

Определение 4.4. Если $\{x_n\}_{n=1}^{\infty}$ имеет конечный предел a, то эта последовательность называется сходящейся, в противном случае — расходящейся.

Определение 4.5. Если $\lim_{n\to\infty} x_n = 0$, то последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой (б.м.).

4.3 Бесконечные пределы

4.4 Свойства сходящихся последовательностей

Теорема 4.1 (о единственности предела). Любая сходящаяся последовательность имеет только один предел.

Доказательство. "От противного". Пусть $\{x_n\}_{n=1}^{\infty}$ — сходящаяся последовательность. Предположим, что $\exists \lim_{n\to\infty} x_n = a$ и $\exists \lim_{n\to\infty} x_n = b$, причем $a \neq b$. Пусть для определенности a < b.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \forall n > N_1 : |x_n - a| < \varepsilon,$$

$$\lim_{n \to \infty} x_n = b \iff \forall \varepsilon > 0 \quad \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \forall n > N_2 : |x_n - b| < \varepsilon.$$

$$N = \max\{N_1, n_2\} \implies \forall n > N : \begin{cases} |x_n - a| < \varepsilon, \\ |x_n - b| < \varepsilon. \end{cases}$$

Выберем $\varepsilon=\frac{b-a}{4}>0$. Найдем $N_1(\varepsilon),N_2(\varepsilon),N=\max\{N_1,N_2\},$ тогда

$$\forall n > N \quad |x_n - a| < \frac{b - a}{4}, \quad |x_n - b| < \frac{b - a}{4}.$$

Следовательно,

$$0 < b - a = |b - a| = |b - x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b - a}{2},$$

то есть

$$0 < b - a < \frac{b - a}{2}.$$

Мы пришли к противоречию, следовательно, $a = b \implies \{x_n\}_{n=1}^{\infty}$ имеет единственный предел.

Теорема 4.2 (об ограниченности сходящейся последовательности). Любая сходящаяся последовательность является ограниченной.

Доказательство. Если $\{x_n\}_{n=1}^{\infty}$ сходится, то

$$\exists \lim_{n \to \infty} = a \in \mathbb{R} \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |x_n - a| < \varepsilon$$

Пусть $\varepsilon = 1 \implies \exists N = N(1) \quad \forall n > N : |x_n - a| < 1$. Следовательно,

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < 1 + |a|.$$

Пусть $M_0 = 1 + |a| \implies \forall n > N : x_n < M_0$. Пусть $M = \max\{|x_1|, |x_2|, \dots, |x_n|, M_0\}$, тогда $\forall n \in \mathbb{N} : x_n \leq M \implies \{x_n\}_{n=1}^{\infty}$ является ограниченной.

Замечание. Ограниченность является необходимым условием сходимости числовой последовательности. В то же время условие ограниченности не является достаточным для сходимости числовой последовательности. Например, $\{(-1)^n\}_{n=1}^{\infty}$ — ограниченная, но не сходящаяся числовая последовательность.

Теорема 4.3 (об арифметических операциях со сходящимися последовательностями). $\Pi y cmb \; \exists \lim_{n\to\infty} x_n = a \in \mathbb{R}, \; \exists \lim_{n\to\infty} y_n = b \in \mathbb{R}. \; Tor \partial a$

$$\exists \lim_{n \to \infty} (x_n \pm y_n) = a \pm b;$$

$$\exists \lim_{n \to \infty} (x_n \cdot y_n) = ab;$$

если $y_n \neq 0 \ \forall n \in \mathbb{N}, b \neq 0, mo$

$$\exists \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}.$$

4.5 Монотонные числовые последовательности

Определение 4.6. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей, если $\forall n \in \mathbb{N} : x_n < x_{n+1};$
- 2. убывающей, если $\forall n \in \mathbb{N} : x_n > x_{n+1};$

- 3. неубывающей, если $\forall n \in \mathbb{N} : x_n \leq x_{n+1};$
- 4. невозрастающей, если $\forall n \in \mathbb{N} : x_n \geq x_{n+1}$

Для монотонных числовых последовательностей ограниченность является достаточным условием для сходимости.

Теорема 4.4 (Вейерштрасса о сходимости монотонных числовых последовательностей). Если последовательность не убывает и ограничена сверху, то она является сходящейся. Если последовательность не возрастает и ограничена снизу, то она является сходящейся. В общем, любая монотонная последовательность сходится.

 \mathcal{A} оказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ не убывает и ограничена сверху $\Longrightarrow \exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M \Longrightarrow$

- \Longrightarrow множество значений этой последовательности $\{x_1, x_2, \dots, x_n, \dots\} = A$ является ограниченным сверху числовым множеством \Longrightarrow $\exists \sup A \in \{x_n\}_{n=1}^{\infty} = a$, то есть
- 1. $\forall n \in \mathbb{N} : x_n \leq a;$
- 2. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : x_N > a \varepsilon$.

 $\{x_n\}_{n=1}^{\infty}$ — неубывающая последовательность, то есть

$$\forall n > N = N(\varepsilon) : x_n \ge x_N \implies$$

$$\implies a - \varepsilon < x_N \le x_n \le a < a + \varepsilon \implies$$

$$\implies a - \varepsilon < x_n < a + \varepsilon \implies |x_n - a| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N : |x_n - a| < \varepsilon \implies$$

$$\implies \exists \lim_{n \to \infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty} \text{ сходится.}$$

Если $\{x_n\}_{n=1}^{\infty}$ — невозрастающая и ограниченная снизу последовательность, то

$$\exists \lim_{n \to \infty} x_n = \inf A, A = \{x_1, x_2, \dots, x_n, \dots\}.$$

Доказательство аналогично.

4.6 Число *е*

Теорема 4.5. Числовая последовательность $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ является сходящейся, т.е. $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n = e.$

Доказательство. $x_n = (1 + \frac{1}{n})^n, n \in \mathbb{N}$. Рассмотрим последовательность $\{y_n\}_{n=1}^{\infty}, y_n = (1 + \frac{1}{n})^{n+1}$. Докажем, что $\{y_n\}_{n=1}^{\infty}$ ограничена снизу. Т.к. $\forall n \in \mathbb{N} : (1 + \frac{1}{n})^{n+1} > 0 \implies \{y_n\}_{n=1}^{\infty}$ ограничена снизу. Теперь докажем, что $\{y_n\}_{n=1}^{\infty}$ убывает.

$$\forall n \ge 2 \quad \frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(1 + \frac{1}{n-1}\right)}{\left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right)} = \left(\frac{\frac{n}{n-1}}{\frac{n+1}{n}}\right)^n \cdot \frac{n}{n+1} = \left(\frac{n^2}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1}.$$

Воспользуемся неравенством $\forall n \in \mathbb{N} : (1+x)^n \ge 1+nx, x \ge 0$, известным как неравенство Бернулли.

$$\left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} \ge \left(1 + \frac{n}{n^2 - 1}\right) \cdot \frac{n}{n+1} > \left(1 + \frac{n}{n^2}\right) \cdot \frac{n}{n+1} = \frac{n+1}{n} \cdot \frac{n}{n+1} = 1.$$

Таким образом, $\forall n \geq 2 \quad \frac{y_{n-1}}{y_n} > 1 \implies y_{n-1} > y_n \implies \{y_n\}_{n=1}^{\infty}$ убывает и ограничена снизу \implies по теореме Вейерштрасса $\exists \lim_{n \to \infty} y_n = e \in \mathbb{R}$. Вернемся к x_n :

$$x_n = \left(1 + \frac{1}{n}\right)^n = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)} = \frac{y_n}{\left(1 + \frac{1}{n}\right)},$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \frac{y_n}{\left(1 + \frac{1}{n} \right)} = \frac{e}{1 + 0} = e \implies$$

$$\implies \exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Замечание. $x_n = (1 + \frac{1}{n})^n$ — возрастающая последовательность и ограничена сверху: $2 < x_n < 3$; e — иррациональное число, т.е. $e \in \mathbb{R} \setminus \mathbb{Q}$; $e \approx 2.718281828459045$.

4.7 Гиперболические функции

4.8 Предельные точки числового множества

Определение 4.7. Точка $a \in \mathbb{R}$ называется предельной точкой множества $X \subset \mathbb{R} \iff$ любая окрестность U(a) содержит бесконечно много элементов множества X.

Замечание. Множество A называется бесконечным или содержащим бесконечно много элементов, если при вычитании из A любого его конечного подмножества получается непустое множество.

Множество всех предельных точек множества X называется производным множеством для X и обозначается X'.

Утверждение 4.1. Точка $a \in \mathbb{R}$ является предельной для $X \subset \mathbb{R} \iff$ в любой проколотой δ -окрестности точки а содержится хотя бы один элемент множества X, т.е.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Доказательство. (\Longrightarrow) Необходимость.

a — предельная для $X \subset \mathbb{R} \implies$

 \Longrightarrow любая U(a) содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow $\mathring{U}(a)$ тоже содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow любая \mathring{U} содержит хотя бы один элемент $x\in X$. (\Longleftrightarrow) Достаточность.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Выберем любую U(a). Тогда

$$\exists \delta_1 > 0 : \mathring{U}(a) \subset U(a) \implies \exists x_1 \in X : x_1 \in \mathring{U}_{\delta_1}(a).$$

Пусть $\delta_2 = \frac{|x_1 - a|}{2} > 0$. Тогда

$$\exists x_2 \in \mathring{U}_{\delta_2}(a) : x_2 \neq x_1.$$

Пусть $\delta_3 = \frac{|x_2 - a|}{2} > 0$. Тогда

$$\exists x_3 \in \mathring{U}_{\delta_3}(a) : x_3 \neq x_2$$

и т.д. На шаге n:

$$\delta_n = \frac{|x_{n-1} - a|}{2} > 0 \implies \exists x_n \in \mathring{U}_{\delta_n}(a) : x_n \neq x_k, k = 1, 2, \dots, n - 1.$$

Таким образом,

$$\exists \{x_n\}_{n=1}^{\infty} \in U(a) : x_n \in X, x_n \neq x_k, n \neq k,$$

а значит, любая окрестность U(a) содержит бесконечно много элементов из $X\implies a$ — предельная точка.

Утверждение 4.2. Если точка $a \in \mathbb{R}$ является предельной точкой для множества $X \subset \mathbb{R}$, то

$$\exists \{x_n\}_{n=1}^{\infty} \subset X : \lim_{n \to \infty} x_n = a.$$

Доказательство. a — предельная точка для $X \subset \mathbb{R} \iff \forall \delta > 0$ $\mathring{U}_{\delta}(a)$ содержит хотя бы одну точку множества X (по утверждению 1). Выберем $\{\delta_n\}_{n=1}^{\infty}, \delta_n = \frac{1}{n} > 0$, тогда

$$\forall n \in \mathbb{N} \quad \exists x_n \in X : x_n \in \mathring{U}_{\delta_n}(a),$$

то есть

$$0<|x_n-a|<\frac{1}{n}.$$

T.K. $\lim_{n\to\infty}\frac{1}{n}=0$,

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : \frac{1}{n} < \varepsilon,$$

а значит,

$$|x_n - a| < \frac{1}{n} < \varepsilon \implies \lim_{n \to \infty} x_n = a.$$

Теорема 4.6 (принцип Больцано-Вейерштрасса). Любое ограниченное бесконечное числовое множество имеет хотя бы одну предельную точку.

Доказательство. Пусть X — бесконечное ограниченное множество, то есть $\exists I_1 = [a_1, b_1] : X \subset [a_1, b_1]$. Пусть $c_1 = \frac{a_1 + b_1}{2}$, т.е. середина отрезка I_1 .

Так как множество X бесконечное, то либо отрезок $[a_1, c_1]$, либо отрезок $[c_1, b_1]$ содержит бесконечно много элементов множества X. Обозначим ту половину отрезка I_1 , которая содержит бесконечно много элементов множества X через $I_2 = [a_2, b_2], I_2 \subset I_1$. Выразим длину отрезка I_2 :

$$|I_2| = b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{|I_1|}{2}.$$

На отрезке I_2 содержится бесконечно много элементов множества X. Пусть $c_2=\frac{a_2+b_2}{2}$ — середина I_2 , тогда либо $[a_2,c_2]$, либо $[c_2,b_2]$ содержит бесконечно много элементов множества X. Обозначим ту половину I_2 , где бесконечно много элементов множества X через $I_3=[a_3,b_3]$. Тогда

$$|I_3| = \frac{|I_1|}{2^2}$$

и т.д. На шаге n: $I_n = [a_n, b_n], c_n = \frac{a_n + b_n}{2}$ — середина I_n, I_n содержит бесконечно много элементов из X, тогда либо $[a_n, c_n]$, либо $[c_n, b_n]$ содержит бесконечно много элементов из $X \implies I_{n+1} = [a_{n+1}, b_{n+1}] \subset I_n$ и содержит бесконечно много элементов из X. Таким образом, мы получили последовательность вложенных отрезков $\{I_n\}_{n=1}^\infty: I_1\supset I_2\supset\ldots\supset I_n\supset I_{n+1}\supset\ldots$

$$|I_n| = \frac{|I_1|}{2^{n-1}} \implies \lim_{n \to \infty} \frac{|I_1|}{2^{n-1}} = 0 \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |I_n| < \varepsilon.$$

По принципу Коши-Кантора $\exists !$ общая точка c, т.е. $\forall n \in \mathbb{N} : c \in I_n$.

$$\forall U(c) \quad \exists \varepsilon > 0 \quad U_{\varepsilon}(c) \subset U(c) \implies \exists n \in \mathbb{N} : I_n = [a_n, b_n] \subset U_{\varepsilon}(c)$$
 (например, $|I_n| < \frac{\varepsilon}{2}$).

Отрезок I_n содержит бесконечно много элементов множества X по построению последовательности $\{I_n\}_{n=1}^{\infty} \implies$ окрестность U(c) содержит бесконечно много элементов из $X \implies c$ — предельная.

4.9 Предельные точки числовых последовательностей

Определение 4.8. Точка $a \in \mathbb{R}$ называется предельной точкой числовой последовательно $\{x_n\}_{n=1}^{\infty} \iff$ любая окрестность U(a) содержит бесконечно много элементов последовательности $\{x_n\}_{n=1}^{\infty}$.

Замечание. Если a — предельная точка $\{x_n\}_{n=1}^{\infty}$, то любая U(a) содержит какую-либо подпоследовательность $\{x_n\}_{n=1}^{\infty}$.

Пример: $\{x_n\}_{n=1}^{\infty}, x_n = (-1)^n$.

$$\begin{array}{c|cccc}
 & x_{2n-1} & x_{2n} \\
 & -1 & 1 & 1
\end{array}$$

Теорема 4.7. Точка $a \in \mathbb{R}$ является предельной для $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда $\exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = a.$

Доказательство. Докажем необходимость. Пусть a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$. Выберем $\{\varepsilon_n\}_{n=1}^{\infty}, \varepsilon_n = \frac{1}{n} > 0$.

Для n=1 $U_{\varepsilon_1=1}(a)$ содержит ∞ много элементов \Longrightarrow $\exists x_{n_1} \in U_{\varepsilon_1}(a)$, т.е. $|x_{n_1}-a|<1$.

Для n=2 $U_{\varepsilon_2=\frac12}(a)$ содержит ∞ много элементов $\implies \exists n_2>n_1: x_{n_2}\in U_{\varepsilon_2}(a),$ т.е. $|x_{n_2}-a|<\frac12.$

Для n=3 $U_{\varepsilon_3=\frac{1}{3}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_3>n_2: x_{n_3}\in U_{\varepsilon_3}(a)$, т.е. $|x_{n_3}-a|<\frac{1}{3}$ и т.д. Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k>n_{k-1}:$

Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k > n_{k-1}: x_{n_k} \in U_{\varepsilon_k}(a)$, т.е. $|x_{n_k}-a|<\frac{1}{k} \Longrightarrow \{x_{n_k}\}_{k=1}^{\infty}$ является подпоследователь-

ностью последовательности $\{x_n\}_{n=1}^{\infty} \implies \forall k \in \mathbb{N} : |x_{n_k} - a| < \frac{1}{k}.$

$$\lim_{k \to \infty} \frac{1}{k} = 0 \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall k > N : \frac{1}{k} < \varepsilon \implies$$

$$\implies \forall k > N \quad |x_{n_k} - a| < \frac{1}{k} < \varepsilon \implies \exists \lim_{k \to \infty} x_{n_k} = a.$$

Докажем достаточность.

Пусть $\exists \{x_{n_k}\}_{k=1}^{\infty}: \lim_{k\to\infty} x_{n_k}=a$. Выберем любую U(a) и найдем такое $\varepsilon>0$, что $U_{\varepsilon}(a)\subset U(a)$:

$$\exists N = N_{\ell}(\varepsilon) \in \mathbb{N} \quad \forall k > N : |x_{n_k} - a| < \varepsilon \implies x_{n_k} \in U_{\varepsilon}(a) \subset U(a).$$

Следовательно, U(a) содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а значит, a — предельная.

Теорема 4.8. Если $\exists \lim_{n\to\infty} x_n = a$, то а является предельной точкой для $\{x_n\}_{n=1}^{\infty}$, причем единственной.

Доказательство. a — предельная, если $\lim_{n\to\infty} x_n = a$ (по теореме 1).

Докажем единственность предельной точки для $\{x_n\}_{n=1}^{\infty}$ "от противного". Пусть $\exists b \neq a, b$ — предельная точка $\{x_n\}_{n=1}^{\infty}$, тогда $|b-a| \geq \delta > 0$. Т.к. $a = \lim_{n \to \infty} x_n$, любая ε -окрестность точки содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а именно все, начиная с номера $N(\varepsilon)+1$, т.е. $\forall n > n(\varepsilon)$. Вне $U_{\varepsilon}(a)$ может содержаться не более конечного числа элементов $\{x_n\}_{n=1}^{\infty}$ (возможно x_n с номерами $1, 2, \ldots, N(\varepsilon)$).

Выберем $\varepsilon = \frac{\delta}{4} > 0$. Тогда $\forall n > N(\varepsilon) : x_n \in U_{\varepsilon}(a)$.

Но $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$, что противоречит тому, что b — предельная точка для $\{x_n\}_{n=1}^{\infty}$, т.е. $U_{\varepsilon}(b)$ должна содержать бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а туда может попасть не более конечного. Следовательно, a=b.

Теорема 4.9. Любая ограниченная числовая последовательность имеет хотя бы одну предельную точку.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ — ограниченная, $X = \{x_1, x_2, \dots, x_n, \dots\} \subset \mathbb{R}$, X — множество значений числовой последовательность $\{x_n\}_{n=1}^{\infty}$. Т.к. $\{x_n\}_{n=1}^{\infty}$ — ограниченная числовая последовательность, X — ограниченное числовое множество. Рассмотрим два случая.

Первый: X — бесконечное числовое множество. Тогда X по принципу Больцано-Вейерштрасса имеет хотя бы одну предельную точку a, т.е. в любую U(a) попадает бесконечно много элементов множества X, а значит, и бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$. Следовательно, a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$.

Второй: X — конечное числовое множество. Тогда хотя бы один элемент последовательности $\{x_n\}_{n=1}^{\infty}$ повторяется бесконечно много раз, т.е. \exists подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ (постоянная $\forall k \in \mathbb{N}$), $x_{n_k} = a \in X \Longrightarrow$ а — предельная точка $\{x_n\}_{n=1}^{\infty}$, $\lim_{k \to \infty} x_{n_k} = a$.

Теорема 4.10 (критерий сходимости числовой последовательности). Для того, чтобы точка $a \in \mathbb{R}$ была пределом $\{x_n\}_{n=1}^{\infty}$, необходимо и достаточно, чтобы $\{x_n\}_{n=1}^{\infty}$ была ограниченной и имела единственную предельную точку.

Доказательство. Докажем необходимость. $\exists \lim_{n\to\infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty}$ ограничена (по свойству сходящейся последовательности), а значит, $\{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку (по теореме 2).

Докажем достаточность. Пусть a — единственная предельная точка ограниченной последовательности $\{x_n\}_{n=1}^{\infty}$. Докажем, что $\lim_{n\to\infty} x_n = a$.

Будем доказывать "от противного". Предположим, что $\{x_n\}_{n=1}^\infty$ не имеет предела. Тогда

$$\forall b \in \mathbb{R} \quad \exists \varepsilon > 0 \quad N \in \mathbb{N} \quad \exists n > N : |x_n - b| \ge \varepsilon,$$

а значит, вне $U_{\varepsilon}(a)$ лежит бесконечное множество элементов $\{x_n\}_{n=1}^{\infty}$. Тогда существует $\{x_{n_k}\}_{k=1}^{\infty}: |x_{n_k}-a|\geq \varepsilon$, т.е. $x_{n_k}\not\in U_{\varepsilon}(a)$. Следовательно, $\{x_{n_k}\}_{k=1}^{\infty}$ — ограниченная последовательность, лежащая вне $U_{\varepsilon}(a)$. У этой последовательности есть предельная точка b (по теореме 3). $U_{\varepsilon}(a)$ не содержит ни одного элемента $\{x_{n_k}\}_{k=1}^{\infty}\implies b\neq a$, что противоречит условию. Тогда $\lim_{n\to\infty}x_n=a$.

4.10 Фундаментальные последовательности

Определение 4.9. Последовательность $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ называется фундаментальной тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N, \ \forall m > N : |x_n - x_m| < \varepsilon.$$

Теорема 4.11. Если числовая последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна, то она ограничена.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ — фундаментальная, т.е.

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N, \ \forall m > N : |x_n - x_m| < \varepsilon.$$

Пусть $\varepsilon = 1$, тогда

$$\exists N = N(1) \implies \forall n > N, \ m = N + 1 : |x_n - x_{N+1}| < 1 \implies$$

$$\implies \forall n > N : |x_n| = |x_n - x_{N+1} + x_{N+1}| \le$$

$$\le |x_n - x_{N+1}| + |x_{N+1}| < 1 + |x_{N+1}| = M_0 \implies$$

$$\implies \forall n > N : |x_n| < M_0.$$

Пусть $M = \max\{|x_1|, |x_2|, \dots, |x_N|, M_0\}$, тогда $\forall n \in \mathbb{N}: |x_n| \leq M$, следовательно, $\{x_n\}_{n=1}^{\infty}$ ограничена.

Пример 4.1. В обратную сторону Теорема 4.11 не работает. Например, $\{(-1)^n\}_{n=1}^{\infty}$ ограничена, но не фундаментальна.

$$\begin{array}{c|c}
x_{2n-1} & x_{2n} \\
\hline
-1 & 1
\end{array}$$

Теорема 4.12 (критерий Коши сходимости числовой последовательности). Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. Докажем необходимость. По условию $\{x_n\}_{n=1}^{\infty}$ сходится $\Longrightarrow \exists \lim_{n\to\infty} x_n = a \in \mathbb{R}$. По числу $\varepsilon > 0$ найдем номер N так, чтобы при n > N иметь $|x_n - a| < \frac{\varepsilon}{2}$. Если теперь m > N и n > N, то $|x_m - x_n| < |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ и, таким образом, проверено, что сходящаяся последовательность фундаментальна.

Докажем достаточность. По условию $\{x_n\}_{n=1}^{\infty}$ фундаментальна, следовательно, ограничена, а значит, у нее есть хотя бы одна предельная точка. Докажем, что эта предельная точка единственна "от противного". Предположим, что существует две предельные точки b и b_1 , $b \neq b_1$ последовательности $\{x_n\}_{n=1}^{\infty}$. По определению предельной точки для любого числа $\varepsilon > 0$ окрестности $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ содержат бесконечно много членов последовательности $\{x_n\}_{n=1}^{\infty}$.

Выберем удобный для дальнейших рассуждений ε . $b_1 \neq b$, следовательно, $\varepsilon = \frac{|b_1 - b|}{6} > 0$. Для выбранного ε найдем соответствующий номер $N = N(\varepsilon)$. По определению фундаментальной последовательности для этого номера выполняется, что $\forall n, m > N : |x_n - x_m| < \frac{|b_1 - b|}{6}$.

Т.к. в $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ попадает бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$,

$$\exists n_1 > N : x_{n_1} \in U_{\varepsilon}(b) \quad \text{и} \quad \exists m_1 > N : x_{m_1} \in U_{\varepsilon}(b_1).$$

А значит, выполняется следующее неравенство:

$$0 < |b - b_1| = |b - x_{n_1} + x_{n_1} - x_{m_1} + x_{m_1} - b_1| \le$$

$$\le |x_{n_1} - b| + |x_{n_1} - x_{m_1}| + |x_{m_1} - b_1| < 3\varepsilon =$$

$$= \frac{3|b - b_1|}{6} = \frac{|b - b_1|}{2} \implies 0 < |b - b_1| < \frac{|b - b_1|}{2}$$

Получено противоречие $\implies b = b_1 \implies \{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку $\implies \{x_n\}_{n=1}^{\infty}$ сходится (по теореме 4 о предельной точке последовательности).

Пример 4.2. $\{x_n\}_{n=1}^{\infty}, x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. Существует ли $\lim_{n \to \infty} x_n$? Возьмем $m = 2n > n \quad \forall n \in \mathbb{N}$.

$$|x_n - x_{2n}| = |x_{2n} - x_n| = |1 + \frac{1}{2} + \dots + \frac{1}{2n} - 1 - \frac{1}{2} - \dots - \frac{1}{n}| =$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2} \implies$$

$$\implies \exists \varepsilon = \frac{1}{2} \quad \forall N \in \mathbb{N} \quad \exists n > N, \ \exists m = 2n > N : |x_n - x_{2n}| > \frac{1}{2}$$

Следовательно, $\{x_n\}_{n=1}^{\infty}$ не является фундаментальной. Значит, конечный $\lim_{n\to\infty}x_n$ не существует, т.е. последовательность не является сходящейся.

Определение 4.10. Число b или $+\infty(-\infty)$ называют частичным пределом числовой последовательности $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда

$$\exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = b.$$

Причем, если частичный предел есть конечное число, то это число является предельной точкой $\{x_n\}_{n=1}^{\infty}$.

Наибольший частичный предел (может быть $\pm \infty$) называют верхним пределом числовой последовательности и обозначают $\overline{\lim}_{n\to\infty} x_n$. Наименьший частичный предел (может быть $\pm \infty$) называют нижним пределом числовой последовательности и обозначают $\lim_{n\to\infty} x_n$.

Пример 4.3. Для последовательности $\{(-1)^n\}_{n=1}^{\infty}=x_n$ частичными пределами будут $\overline{\lim_{n\to\infty}}x_n=1$ и $\underline{\lim_{n\to\infty}}x_n=-1$.

Пример 4.4. Для последовательности $\{(-1)^n n\}_{n=1}^{\infty} = x_n$ частичными пределами будут $\overline{\lim_{n\to\infty} x_n} = +\infty$ и $\underline{\lim_{n\to\infty} x_n} = -\infty$.

Теорема 4.13. Верхний и нижний частичные пределы удовлетворяют неравенству

$$\underline{\lim_{n\to\infty} x_n} \le \overline{\lim_{n\to\infty} x_n}.$$

Теорема 4.14. Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда

$$\overline{\lim_{n\to\infty} x_n} = \lim_{n\to\infty} x_n,$$

и является конечным числом.

5 Пределы функций

5.1 Определение предела по Коши

Будем пользоваться следующими обозначениями:

*:
$$a$$
; $a + 0$; $a - 0$; ∞ ; $+\infty$; $-\infty$

**:
$$b; \infty; +\infty; -\infty$$

Пусть функция f(x) определена в некоторой проколотой окрестности *.

Определение 5.1 (предела функции по Коши). $\lim_{x\to *} f(x) = ** mor\partial a$ и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies f(x) \in U_{\varepsilon}(**).$$

*	$x \in \mathring{U}_{\delta}(*)$
a	$x \in \mathbb{R} : 0 < x - a < \delta$
a+0	$x \in \mathbb{R} : a < x < a + \delta$
a-0	$x \in \mathbb{R} : a - \delta < x < a$
∞	$x \in \mathbb{R} : x > \delta$
$+\infty$	$x \in \mathbb{R} : x > \delta$
$-\infty$	$x \in \mathbb{R} : x < -\delta$

**	$f(x) \in U_{\varepsilon}(**)$
b	$ f(x) - b < \varepsilon$
∞	$ f(x) > \varepsilon$
$+\infty$	$f(x) > \varepsilon$
$-\infty$	$f(x) < -\varepsilon$

$$x \in \mathring{U}_{\delta}(a)$$

$$x \in \mathring{U}_{\delta}(a+0)$$

$$x \in \mathring{U}_{\delta}(a-0)$$

$$\lim_{x \to a} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies \\ \implies |f(x) - b| < \varepsilon.$$

 $x \approx a$ с точностью $< \delta = \delta(\varepsilon) \implies f(x) \approx b$ с точностью $< \varepsilon$.

$$\lim_{x \to +\infty} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : x > \delta \implies \\ \implies |f(x) - b| < \varepsilon.$$

Пример 5.1. $\lim_{x\to+\infty} \operatorname{arctg} x = \frac{\pi}{2}$.

$$\lim_{x \to -\infty} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : x < -\delta \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Пример 5.2. $\lim_{x\to-\infty} \arctan x = -\frac{\pi}{2}$.

Если $*=a; \infty$, то $\lim_{x\to *} f(x)$ называется двусторонним пределом. Если $*=a+0; a-0; +\infty; -\infty$, то $\lim_{x\to *} f(x)$ называется односторонним пределом. Если **=b (конечное число), то $\lim_{x\to *} f(x)=b$ называют конечным пределом. Если $**=\infty; +\infty; -\infty$, то $\lim_{x\to *} f(x)$ называют бесконечным.

Теорема 5.1 (о связи двустороннего предела с односторонними).

$$\exists \lim_{x \to a} f(x) = b \iff \exists \lim_{x \to a + 0} f(x) = b \ u \ \exists \lim_{x \to a - 0} f(x) = b.$$

Доказательство. Докажем необходимость. Распишем определение двустороннего предела по Коши.

$$\exists \lim_{x \to a} f(x) = b \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Рассмотрим неравенство $0 < |x - a| < \delta$.

$$0 < |x - a| < \delta \iff x \in (a - \delta, a) \cup (a; a + \delta) \implies$$

$$\implies \begin{cases} \forall x \in \mathbb{R} : a < x < a + \delta \implies |f(x) - b| < \varepsilon, \\ \forall x \in \mathbb{R} : a - \delta < x < a \implies |f(x) - b| < \varepsilon. \end{cases} \implies$$

$$\implies \begin{cases} \exists \lim_{x \to a + 0} f(x) = b, \\ \exists \lim_{x \to a - 0} f(x) = b. \end{cases}$$

Докажем достаточность. Распишем определения односторонних пределов по Коши.

$$\lim_{x \to a+0} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a < x < a + \delta_1 \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

$$\lim_{x \to a \to 0} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a - \delta_2 < x < a \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Пусть
$$\delta = \min\{\delta_1, \delta_2\} > 0$$
. Тогда $\mathring{U}_{\delta}(a) \subset (\mathring{U}_{\delta_1}(a) \cap \mathring{U}_{\delta_2}(a)) \implies$ $(\forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies |f(x) - b| < \varepsilon) \implies \exists \lim_{x \to a} f(x) = b$.

Замечание (1).

$$\lim_{x \to a} f(x) = \infty \iff \lim_{x \to a+0} f(x) = \infty, \lim_{x \to a-0} f(x) = \infty.$$

29

Замечание (2).

$$\lim_{x \to \infty} f(x) = \infty \iff \lim_{x \to +\infty} f(x) = b \ (\infty), \lim_{x \to -\infty} f(x) = b \ (\infty).$$

Определение 5.2 (Определение предела по Гейне). Пусть f(x) определена в некоторой $\mathring{U}(*)$.

$$\lim_{x \to *} f(x) = ** \iff \forall \{x_n\}_{n=1}^{\infty} \subset \mathring{U}(*) : \lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x) = **,$$

$$e \partial e \ x_n \neq * \ \forall n \in \mathbb{N}.$$

Теорема 5.2 (об эквивалентности определений предела по Коши и Гейне). Определения предела по Коши и по Гейне эквивалентны.

Пример 5.3. $\lim_{x\to 0} \sin \frac{1}{x}$ не определен.

Пример 5.4.

$$x_n = \frac{1}{\pi n} \quad \lim_{n \to \infty} x_n = 0 \quad \lim_{n \to \infty} \sin x_n = \lim_{n \to \infty} \sin \pi n = 0.$$

$$y_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \quad \lim_{n \to \infty} y_n = 0 \quad \lim_{n \to \infty} \sin y_n = \lim_{n \to \infty} \sin \frac{\pi}{2} + 2\pi n = 1.$$

 $0 \neq 1 \implies \lim_{x \to 0} f(x)$ не существует.

Теорема 5.3 (о единственности предела функции). *Если существует* $\lim_{x\to *} f(x) = b \in \mathbb{R}$, то этот предел единственный (при $x\to *$).

Доказательство. Воспользуемся определением предела по Гейне.

$$\exists \lim_{x \to *} f(x) = b \in \mathbb{R} \implies \forall \{x_n\}_{n=1}^{\infty}, x_n \neq *, \lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x_n) = b.$$

Числовая последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится, следовательно, имеет единственный предел b (по теореме о единственности предела последовательности).

Определение 5.3. Функция f(x) называется локально ограниченной $npu\ x \to *$ (в точке * или в окрестности *), если существуют такие $\mathring{U}(*)\ u\ M>0$, что f(x) определена в $\mathring{U}(*)\ u\ \forall x\in\mathring{U}(*):|f(x)|\leq M$. Замечание: Если функция f локально ограничена $npu\ x\to *$, то в точке * такая функция может быть как определена, так u не определена.

Теорема 5.4 (о локальной ограниченности функции, имеющей конечный предел). Пусть $\exists \lim_{x\to *} f(x) = b \in \mathbb{R}$. Тогда f(x) локально ограниченна при $x\to *$.

Доказательство. По определению предела функции по Коши,

$$\lim_{x \to *} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon \implies$$

$$\implies \forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < \varepsilon + |b| = M.$$

Выберем любой $\varepsilon > 0$, например, $\varepsilon = 1$. Для соответствующей ему $\delta > 0$ будет верно, что $\forall x \in \mathring{U}_{\delta}(*) : |f(x)| < 1 + |b| = M$, а значит, f(x) локально ограниченна при $x \to *$.

5.2 Бесконечно малые функции

Определение 5.4. Функцию $\alpha(x)$ называют бесконечно малой (б.м.) при $x \to *$ тогда и только тогда, когда

$$\lim_{x \to *} \alpha(x) = 0 \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon.$$

Пример: Рассмотрим функцию $y=2^{\frac{1}{x}}$. Если $x\to 0+0$, то

$$\lim_{x \to 0+0} 2^{\frac{1}{x}} = [2^{+\infty}] = +\infty.$$

Если же $x \to 0 - 0$, то

$$\lim_{x \to 0-0} 2^{\frac{1}{x}} = [2^{-\infty}] = 0 \implies f(x)$$
 бесконечно малая при $x \to 0-0$.

Теорема 5.5 (о связи функции, ее предела и бесконечно малой).

$$\lim_{x\to *} f(x) = b \iff \\ \iff f(x) = b + \alpha(x), \ \textit{где } \alpha(x) \ - \ \textit{бесконечная малая при } x\to *.$$

Доказательство. Докажем необходимость.

$$\exists \lim_{x \to *} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathring{U}_{\delta}(*) : |f(x) - b| < \varepsilon.$$

Положим
$$\alpha(x) = f(x) - b$$
, тогда $\forall x \in \mathring{U}_{\delta}(*) : |\alpha(x)| < \varepsilon \Longrightarrow \lim_{x \to *} \alpha(x) = 0 \Longrightarrow \alpha(x)$ — бесконечно малая при $x \to * \Longrightarrow f(x) = b + \alpha(x)$ при $x \to *$.

Докажем достаточность. Пусть $f(x)=b+\alpha(x),\ \alpha(x)$ — бесконечно малая при $x\to *\implies$, тогда $\alpha(x)=f(x)-b\to 0$ при $x\to *$. По определению бесконечно малой,

$$\lim_{x \to *} \alpha(x) = 0 \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon \implies$$

$$\implies \exists \lim_{x \to *} f(x) = b.$$

5.3 Свойства бесконечно малых функций

Теорема 5.6. Пусть $\alpha(x)$ и $\beta(x)$ - бесконечно малые при $x \to *$. Тогда $\alpha(x) + \beta(x)$ — бесконечно малые при $x \to *$.

Доказательство. $\alpha(x)$ и $\beta(x)$ бесконечно малые при $x \to *$

$$\lim_{x \to *} \alpha(x) \implies \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) \implies |\alpha(x)| < \frac{\varepsilon}{2}.$$

$$\lim_{x \to *} \alpha(x) \implies \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\beta(x)| < \frac{\varepsilon}{2}.$$

Пусть $\delta = \min\{\delta_1, \delta_2\}$, если *: a; a + 0; a - 0 и $\delta = \max\{\delta_1, \delta_2\}$, если $*: \infty; +\infty, -\infty$.

$$\implies \mathring{U}_{\delta}(*) = \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*) \implies .$$

$$\implies \forall .$$

Следствие 5.6.1. Сумма конечного числа бесконечно малой $npu \ x \to *$ есть бесконечно малая $npu \ x \to *$.

Теорема 5.7 (произведение бесконечно малой на ограниченную). Пусть α - бесконечно малая при $x \to *$, f(x) локально ограниченна при $x \to *$. Тогда $\alpha(x) \cdot f(x)$ есть бесконечно малая при $x \to *$.

 \mathcal{A} оказательство. f(x) — локально ограниченна при $x \to * \implies \exists \mathring{U}_{\delta_1}(*) = \exists M > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) : |f(x)| < M; \ \alpha(x)$ — бесконечно малая при $x \to * \implies \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\alpha(x)| < \frac{\varepsilon}{M} \implies \mathring{U}_{\delta} = \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$

$$\lim_{x \to 0} x \sin \frac{1}{x} = .$$

$$\lim_{x \to 0} x^2 \arctan \frac{1}{x^{100}} = 0.$$

Теорема 5.8 (о произведении двух бесконечно малых). Пусть $\alpha(x)$, $\beta(x)$ — бесконечно малые $npu \ x \to *$. Тогда $\alpha(x)\beta(x)$ — бесконечно малая $npu \ x \to *$

Доказательство. $\beta(x)$ — бесконечно малая при $x \to * \implies \lim_{x \to *} \beta(x) = 0 \implies$ по теореме о локальной ограниченной функции, имеющей конечный предел $\implies \beta(x)$ локально ограниченна при $x \to * \implies \alpha(x) \cdot \beta(x)$ — произведение бесконечно малой на локально ограниченную при $x \to * \implies$ по теореме $2 \alpha \cdot \beta$ — бесконечно малые при.

Следствие 5.8.1. Произведение конечного числа бесконечно малых при $x \to *$ есть бесконечно малая при $x \to *$.

5.4 Арифметические операции с функциями, имеющими пределы

Теорема 5.9. Пусть $\exists \lim_{x\to *} f(x) = A \in \mathbb{R}, \lim_{x\to *} g(x) = B \in \mathbb{R}$ Тогда

- 1. $\exists \lim_{x\to *} (f(x) \pm g(x)) = A \pm B$
- 2. $\exists \lim_{x \to *} (f(x)q(x)) = AB$
- 3. $B \neq 0 \implies \exists \lim_{x \to *} \frac{f(x)}{g(x)} = \frac{A}{B}$

Доказательство. $\exists \lim_{x\to *} f(x) = A; \exists \lim_{x\to *} g(x) = B \implies$ по теореме о связи функции, ее предела и бесконечно малой $\implies f(x) = A + \alpha(x), g(x) = B + \beta(x),$ где $\alpha(x), \beta(x)$ — бесконечно малые при $x \to *$.

- 1. $f(x) \pm g(x) = (A + \alpha(x)) \pm (B + \beta(x)) = A \pm B + \alpha(x) \pm \beta(x) = A \pm B + \gamma(x)$, где $\gamma(x)$ бесконечно малая при $x \to *$
- 2. $f(x) \cdot g(x) = (A + \alpha(x))(B + \beta(x)) = AB + B\alpha(x) + A\beta(x) + \alpha(x)\beta(x) = AB + \gamma(x) \implies$ по теореме о связи предела функции, ее предела и бесконечно малой $\implies \lim_{x \to *} f(x)g(x) = AB$

3.
$$\frac{f(x)}{g(x)} = \frac{A + \alpha(x)}{B + \beta(x)} = \frac{A}{B} + \frac{A + \alpha(x)}{B + \beta(x)} - AB$$
$$\gamma(x) = \frac{AB + B\alpha(x) - AB - A\beta(x)}{B(B + \beta(x))} = \frac{B\alpha(x) - A\beta(x)}{B} \cdot \frac{1}{B + \beta(x)}.$$

 $\frac{B\alpha(x)-A\beta(x)}{B}$ — бесконечно малая при $x\to *$ по свойствам бесконечно малых.

Докажем, что $\phi(x) = \frac{1}{B+\beta(x)}$ локально ограниченна при $x \to *$. $\beta(x)$ — бесокнечно малая при $x \to * \Longrightarrow \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |\beta(x)| < \varepsilon$. Выберем $\varepsilon = \frac{|B|}{2} > 0$, найдем соответствующее $\delta = \delta(\varepsilon) > 0 \Longrightarrow \forall x \in \mathring{U}_{\delta}(*) : |\beta(x)| < \frac{|B|}{2}$

$$\implies |B + \beta(x)| \ge |B| - |\beta(x)| > |B| - \frac{|B|}{2} = \frac{|B|}{2} \implies .$$

$$\implies \forall x \in \mathring{U}_{\delta}(*) : |B + \beta(x)| > \frac{|B|}{2} > 0 \implies .$$

$$\frac{1}{B + \beta(x) < \frac{2}{|B|}} \implies .$$

 $\implies \phi(x) = \frac{1}{B+\beta(x)}$ локально ограниченна при $x \to *\gamma(x)$ — произведение бесконечно малой на локально ограниченную при $x \to *$ по свойству бесконечно малой является бесконечно малой при $x \to *$.

Теорема 5.10 (о знакопостоянстве функции, имеющей ненулевой предел). Пусть $\exists \lim_{x\to *} f(x) = b \neq 0$. Тогда $\exists \mathring{U}_{\delta}(*) \quad \forall x \in \mathring{U}_{\delta}(*) : |f(x)| > \frac{|b|}{2}$ Кроме того, если b > 0, то $\forall x \in \mathring{U}_{\delta}(*) : f(x) > \frac{b}{2} \implies f(x) > 0$, т.е. имеет тот эке знак, что и предел; если b < 0, то $\forall x \in \mathring{U}_{\delta}(*) : f(x) < \frac{b}{2} \implies f(x) < 0$, т.е. имеет тот эке знак, что и предел.

Доказательство.

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon.$$

Или $b-\varepsilon < f(x) < b+\varepsilon$. Выберем $\varepsilon = \frac{|b|}{2} > 0$, найдем соответствующий $\delta = \delta(\varepsilon) > 0 \implies$

$$\forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |b + f(x) - b| \ge |b| - |f(x) - b| > |b| - \frac{|b|}{2}.$$

$$\implies |f(x)| > \frac{|b|}{2}.$$

Пусть
$$b>0$$
, тогда $\varepsilon=\frac{|b|}{2}=\frac{b}{2}>0\implies \forall x\in \mathring{U}_{\delta}(*)\quad f(x)>b-\varepsilon=b-\frac{b}{2}=\frac{b}{2}>0$

Теорема 5.11 (о предельном переходе в неравенстве). Если существуют два предела $\lim_{x\to *} f(x) = b_1$, $\lim_{x\to *} g(x) = b_2$ и проколотая окрестность $\mathring{U}(*)$, такая, что для любого x из этой окрестности выполняется неравенство $f(x) \leq g(x)$, то $b_1 \leq b_2$.

Доказательство. Пусть существуют $\lim_{x\to *} f(x) = b_1$ и $\lim_{x\to *} g(x) = b_2$. Т.к. пределы конечны, по теореме об арифметических операциях с функциями, имеющими пределы, для разности $\phi(x) = g(x) - f(x)$ существует предел $\lim_{x\to *} \phi(x) = b_2 - b_1$.

Будем доказывать "от противного". Предположим, что $b_1 > b_2$. Из этого следует, что $b_2 - b_1 < 0$, тогда по теореме о знакопостоянстве функции, имеющей ненулевой предел, существует такая проколотая окрестность $\mathring{U}_1(*)$, что $\forall x \in \mathring{U}_1(*): \phi(x) = g(x) - f(x) < \frac{b_2 - b_1}{2} < 0$. Таким образом, g(x) < f(x), а тогда $\forall x \in \mathring{U}(*) \cap \mathring{U}_1(*)$ выполняются сразу два неравенства: $f(x) \leq g(x)$ и g(x) < f(x), что является противоречием. Значит, $b_1 \leq b_2$.

Замечание. Если существует $\mathring{U}(*)$, такая, что $\forall x \in \mathring{U}(*)$ верно неравенство f(x) < g(x), то для пределов $\lim_{x \to *} f(x) = b_1$ и $\lim_{x \to *} g(x) = b_2$ выполняется $b_1 \leq b_2$.

Теорема 5.12 (о пределе промежуточной функции или лемма о двух милиционерах). Если слева и справа от правонарушителя находится по милиционеру, каждый из которых держит его и идет в отделение милиции, то правонарушитель тоже придет в отделение милиции. Или, говоря простым языком, если существует $\lim_{x\to *} f(x) = b$, $\lim_{x\to *} g(x) = b$ и $\mathring{U}(*)$, такая, что $\forall x \in \mathring{U}(*)$ выполняется неравенство $f(x) \leq \phi(x) \leq g(x)$, то существует $\lim_{x\to *} \phi(x) = b$.

Доказательство. Пусть существуют $\lim_{x\to *} f(x) = b$ и $\lim_{x\to *} g(x) = b$. Распишем эти пределы по определению Коши:

$$\exists \lim_{x \to *} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) \implies b - \varepsilon < f(x) < b + \varepsilon,$$

$$\exists \lim_{x \to *} g(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies b - \varepsilon < g(x) < b + \varepsilon.$$

Пусть $\delta > 0$ таково, что $\mathring{U}_{\delta}(*) \subset \mathring{U}(*) \cap \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$. Тогда $\forall x \in \mathring{U}_{\delta}(*)$ выполняются неравенства $f(x) \leq \phi(x) \leq g(x), \, b - \varepsilon < f(x)$ и $g(x) < b + \varepsilon$. Записав их вместе, получим, что

$$b - \varepsilon < f(x) \le \phi(x) \le g(x) < b + \varepsilon \implies \exists \lim_{x \to *} \phi(x) = b.$$

Теорема 5.13 (о пределе сложной функции). Если существуют пределы $\lim_{x\to *} f(x) = A$ и $\lim_{y\to A} g(y) = B$, в некоторой окрестности $\mathring{U}(*)$ $f(x) \neq A$, и в этой окрестности определена сложная функция g(f(x)), то существует $\lim_{x\to *} g(f(x)) = B$.

Обратим внимание на то, как осуществляется замена:

$$(y = f(x), x \to *, y \to A) \implies \lim_{y \to A} g(y) = B.$$

Доказательство. По определению предела по Гейне

$$\exists \lim_{x \to *} f(x) = A \implies$$

$$\implies \forall \{x_n\}_{n=1}^{\infty} \subset \mathring{U}(*) : (\lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x_n) = A), \quad (\Delta)$$

$$\exists \lim_{y \to A} g(y) = B \implies$$

$$\implies \forall \{y_n\}_{n=1}^{\infty}, y_n \neq A : (\lim_{n \to \infty} y_n = A \implies \lim_{n \to \infty} g(y_n) = B). \quad (\Delta\Delta)$$

Выберем любую $\{x_n\}_{n=1}^{\infty}: x_n \in \mathring{U}(*)$, тогда по (Δ) из того, что $\lim_{n\to\infty} x_n = *$, следует, что $\lim_{n\to\infty} f(x_n) = A$. Обозначим $y_n = f(x_n)$, по условию теоремы $y_n \neq A$, причем $\lim_{n\to\infty} y_n = \lim_{n\to\infty} f(x_n) = A$. Тогда по $(\Delta\Delta)$ существует $\lim_{n\to\infty} g(y_n) = \lim_{n\to\infty} g(f(x_n)) = B$. Следовательно, по определению предела по Гейне, существует $\lim_{x\to *} g(f(x)) = B$. \square

Замечание. Условие $f(x) \neq A$ в окрестности $\mathring{U}(*)$ является существенным. Если это условие отсутствует, то теорема может не выполниться.

Пример 5.5.

$$f(x) = \begin{cases} x, x \neq \frac{1}{n}, n \in \mathbb{N}, \\ 0, x = \frac{1}{n}, n \in \mathbb{N}. \end{cases} g(y) = \begin{cases} 2, y \neq 0, \\ 5, y = 0. \end{cases}$$

 $\lim_{x\to 0} f(x) = 0$. x = 0 в любой точке $x = \frac{1}{n}$, следовательно, в любой $\mathring{U}(0)$ есть точки, где f(x) = 0.

Рассмотрим последовательность $\{x_n\}_{n=1}^{\infty} = \{\frac{1}{n}\}.$

$$\lim_{n \to \infty} x_n = 0 \implies \lim_{n \to \infty} f(x_n) = 0 \implies \lim_{n \to 0} g(f(x_n)) = \lim_{n \to 0} g(0) = 5.$$

Рассмотрим последовательность $\{\tilde{x_n}\}_{n=1}^{\infty} = \{e^{-n}\}.$

$$\lim_{n \to \infty} \tilde{x_n} = 0, \ e \notin \mathbb{N} \implies \lim_{n \to \infty} g(f(\tilde{x_n})) = \lim_{n \to \infty} g(e^{-n}) = 2.$$

Подведем итог:

$$\begin{cases} \lim_{n\to\infty} x_n = \lim_{n\to\infty} \tilde{x_n}, \\ \lim_{n\to0} g(f(x_n)) \neq \lim_{n\to\infty} g(f(\tilde{x_n})). \end{cases} \implies \exists \lim_{x\to0} g(f(x)).$$

5.5 Бесконечно большие функции

Определение 5.5. Функция f(x) называется бесконечно большой (б.б.) $npu \ x \to * morda \ u moлько morda, когда \ f(x) onpedenena в некоторой <math>\mathring{U}(*) \ u$ ее $npeden \ npu \ x \to * pasen бесконечности, <math>m.e.$

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}(*) : |f(x)| > \varepsilon.$$

Пример 5.6. Рассмотрим функцию $y = \frac{1}{x}$. $\lim_{x\to 0} y = \infty$, следовательно, y — бесконечно большая при $x\to 0$.

Теорема 5.14 (о связи бесконечно большой с бесконечно малой).

- 1. Если f(x) бесконечно большая при $x \to *$, то $\frac{1}{f(x)}$ является бесконечно малой при $x \to *$.
- 2. Если $\alpha(x)$ бесконечно малая при $x \to *$ и существует такая проколотая окрестность $\mathring{U}(*)$, что $\forall x \in \mathring{U}(*): \alpha(x) \neq 0$, то $\frac{1}{\alpha(x)}$ является бесконечно большой при $x \to *$.

Доказательство.

- 1. f(x) бесконечно большая при $x \to *$, тогда для любого $\varepsilon_1 > 0$ найдется $\delta = \delta(\varepsilon) > 0$, такая, что для любого x из $\mathring{U}_{\delta}(*)$ выполняется неравенство $|f(x)| > \varepsilon_1$. Выберем любой $\varepsilon > 0$, найдем $\varepsilon_1 = \frac{1}{\varepsilon}$ и $\delta = \delta(\varepsilon_1) = \delta(\frac{1}{\varepsilon})$. Тогда для любого x из $\mathring{U}_{\delta}(*)$ выполняется неравенство $|f(x)| > \frac{1}{\varepsilon}$, или, что то же, $\frac{1}{|f(x)|} < \varepsilon$. Положим $\alpha(x) = \frac{1}{f(x)}$, тогда для любого x из $\mathring{U}_{\delta}(*)$ верно, что $|\alpha(x)| < \varepsilon$, из чего следует, что предел $\alpha(x)$ при $x \to *$ равен нулю. Таким образом, $\alpha(x)$ бесконечно малая при $x \to *$.
- 2. Пусть $\alpha(x)$ бесконечно малая при $x \to *$ и для любого x из $\mathring{U}(*)$ верно, что $\alpha(x) \neq 0$. Предел $\alpha(x)$ при $x \to *$ равен нулю, т.е. для любого $\varepsilon_1 > 0$ найдется $\delta > 0$, зависящая от ε , такая, что для любого x из $\mathring{U}_{\delta}(*) \subset \mathring{U}(*)$ выполняется неравенство $|\alpha(x)| < \varepsilon_1$. Выберем любой $\varepsilon > 0$, найдем $\varepsilon_1 = \frac{1}{\varepsilon} > 0$ и соответствующую $\delta = \delta(\varepsilon_1) = \delta(\frac{1}{\varepsilon}) > 0$.

3амечание. Рассмотрим функцию $y=x\sin\frac{1}{x}$ при $x\to 0$. $\sin\frac{1}{x}$ — ограниченная, x — бесконечная малая, следовательно, $y=\alpha(x)$ — бесконечно малая.

Теперь рассмотрим функцию $f(x) = \frac{1}{x \sin x}$. В любой $\mathring{U}(0)$ есть хотя бы один x, следовательно, $\alpha(x)$ равна нулю, а значит, f(x) не существует.

5.6 Первый замечательный предел

Теорема 5.15.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Утверждение 5.1. Если f(x) — элементарная функция, $a \in D_{(f)}$ — область определения f, то существует предел f(x), равный f(a) при $x \to a$.

Следствие 5.15.1.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = 1 * 1 = 1.$$

Следствие 5.15.2.

$$\lim_{x\to 0} \frac{\arcsin x}{x} =$$

$$= |\mathit{Замена}\ y = \arcsin x, x = \sin y, x \to 0 \implies y \to 0| =$$

$$= \lim_{y\to 0} \frac{y}{\sin y} = \lim_{y\to 0} \left(\frac{\sin y}{y}\right)^{-1} = 1.$$

Следствие 5.15.3.

$$\lim_{x\to 0} \frac{\arctan x}{x} =$$

$$= |Замена \ y = \arctan x, x = \operatorname{tg} y, x \to 0 \implies y \to 0| =$$

$$= \lim_{y\to 0} \frac{y}{\operatorname{tg} y} = \left(\lim_{y\to 0} \frac{\operatorname{tg} y}{y}\right)^{-1} = 1.$$

Следствие 5.15.4.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 / 2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x^2 / 2} = \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{x / 2}\right)^2 = 1.$$

5.7 Второй замечательный предел

Теорема 5.16.

$$\lim_{x \to \infty} \left(\frac{1}{x} + 1\right)^x = [1^\infty] = e.$$

Доказательство. Докажем, что предел функции $(1+\frac{1}{x})^x$ при $x\to +\infty$ равен e. . . .

Теперь докажем, что предел функции $(1+\frac{1}{x})^x$ при $x\to -\infty$ равен e. . . .

По теореме о связи двустороннего предела с односторонним существует предел функции $(1+\frac{1}{x})^x$ при $x\to\infty$, равный e.

Следствие 5.16.1.

$$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=[1^\infty]=$$

$$=|\mathit{Замена}\;x=\frac{1}{y},\;x\to 0\implies y\to \infty|=$$

$$=\lim_{y\to \infty}\left(1+\frac{1}{y}\right)^y=e.$$

Следствие 5.16.2.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0}$$

Следствие 5.16.3 (Частный случай следствия 2).

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Следствие 5.16.4.

$$\begin{split} \lim_{x\to 0} \frac{a^x-1}{x} &= \\ &= |\mathit{Замена}\ y = a^x-1,\ x = \log_a(y+1),\ x\to 0 \implies y\to 0| = \\ &= \lim_{y\to 0} \frac{y}{\log_a(y+1)} = \lim_{y\to 0} \frac{1}{\frac{\log_a(y+1)}{y}} = \\ &= \frac{1}{\log_a e} = \ln a. \end{split}$$

Следствие 5.16.5 (Частный случай следствия 4).

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Следствие 5.16.6.

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha x} = \lim_{x \to 0} \left(\frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)}\right) \cdot \left(\frac{\alpha \ln(1+x)}{\alpha x}\right) = 1$$

Замечание.

$$\lim_{x \to *} (U(x))^{V(x)} = [1^{\infty}].$$

$$\begin{split} &\lim_{x\to *}(U(x))^{V(x)} = \lim_{x\to *} e^{\ln(U(x))^{V(x)}} = \lim_{x\to *} e^{V(x)\ln(U(x))} = \\ &= \lim_{x\to *} e^{V(x)\ln(1+U(x)-1)} = \lim_{x\to *} e^{\frac{V(x)\ln(1+U(x)-1)}{U(x)-1}\cdot(U(x)-1)} = \\ &= \begin{cases} e^{\lim_{x\to *} V(x)(U(x)-1)}, \text{ если } \lim_{x\to *} V(x)(U(x)-1) = A \in \mathbb{R}, \\ +\infty, \text{ если } \lim_{x\to *} V(x)(U(x)-1) = +\infty, \\ 0, \text{ если } \lim_{x\to *} V(x)(U(x)-1) = -\infty. \end{cases} \end{split}$$

Пример 5.7.

$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2} = [1^{\infty}] = e^{\lim_{x \to \infty} x^2 \left(\frac{x^2 + 1}{x^2 + 3} - 1 \right)} = e^{\lim_{x \to \infty} \frac{x^2 - 2}{x^2 + 3} = e^{-2}}.$$

5.8 Сравнение бесконечно малых

Определение 5.6. Пусть $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to *$.

- 1.
- 2.
- 3. $\alpha(x)$ бесконечно малая более высокого порядка малости по сравнению с $\beta(x)$ при $x \to *$ тогда и только тогда, когда предел $\frac{\alpha(x)}{\beta(x)}$ при $x \to *$ равен 0. Обозначается $\alpha(x) = \overline{o}(\beta(x)), \ x \to *$.

5.9 Таблица эквивалентных бесконечно малых

- 1. $\sin x \sim x$
- 2. $\operatorname{tg} x \sim x$
- 3. $\arcsin \sim x$
- 4. $arctg \sim x$
- 5. $1 \cos x \sim \frac{x^2}{2}$
- 6. $\log_a(1+x) \sim \frac{x}{\ln a}$
- 7. $\ln(1+x) \sim x$

- 8. $a^x 1 \sim \ln a$
- 9. $e^x 1 \sim x$
- 10. $(1+x)^{\alpha} \sim \alpha x$

5.10 Свойства эквивалентных бесконечно малых

Теорема 5.17. Пусть $\alpha_0(x), \alpha_1(x), \ldots, \alpha_n(x)$ — бесконечно малые при $x \to *$, причем $\forall k = 1, \ldots, n : \alpha_k(x) = \overline{o}(\alpha_0(x)),$ т.е. $\alpha_0(x)$ — бесконечно малая самого низкого порядка малости по сравнению с $\alpha_k(x), k = 1, \ldots, n$. Тогда $\alpha_0(x) + \sum_{k=1}^n \alpha_k(x) \sim \alpha_0(x)$ при $x \to *$.

5.11 О-символика

Правила работы с \bar{o}

5.12 Сравнение бесконечно больших

5.13 Свойства эквивалентных бесконечно больших

6 Непрерывность

6.1 Непрерывность функции в точке

Определение 6.1. Пусть функция f(x) определена в некоторой окрестности точки x_0 . Функцию f(x) называют непрерывной в точке x_0 тогда и только тогда, когда существует предел f(x) при $x \to x_0$, равный $f(x_0)$.

Приведем формально-логическую запись этого определения в формулировке по Kouu:

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon),$$

и в формулировке по Гейне:

$$\forall \{x_n\}_{n=1}^{\infty} \subset D(f) : (\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)).$$

6.2 Приращение аргумента в точке и приращение функнии

Определение 6.2. Пусть f(x) определена в некоторой окрестности точки x_0 , т.е. в некотором интервале (a;b), содержащем x_0 . Выберем любую $\Delta x \in \mathbb{R}: x_0 + \Delta x \in (a;b)$. Таким образом, $\Delta y = f(x_0 + \Delta x) - f(x_0) - \phi$ ункция, зависящая от Δx .

 Δx — приращение аргумента в точке x_0 . Δy — приращение функциии f(x) в точке x_0 , отвечающее приращению аргумента Δx .

6.3 Точки разрыва

Определение 6.3. Пусть функция f(x) определена в некоторой проколотой окрестности точки а и в точке а f(x) не является непрерывной. Тогда точку а называют точкой разрыва. В самой точке функция f(x) может быть как определена, так и не определена.

6.4 Классификация точек разрыва

6.5 Односторонняя непрерывность

Не будем забывать, что если функция определена в окрестности точки, то она определена и в самой точке тоже.

Определение 6.4. Пусть функция f(x) определена в некоторой окрестности U(a+0). Если предел f(x) при $x \to a+0$ равен f(a), то говорят, что f(x) непрерывна в точке а справа.

Пусть функция f(x) определена в некоторой окрестности U(a-0). Если предел f(x) при $x \to a-0$ равен f(a), то говорят, что f(x) непрерывна в точке а слева.

6.6 Свойства функций, непрерывных в точке

Теорема 6.1. Функция f(x) непрерывна в точке а тогда и только тогда, когда f(x) непрерывна в точке и а и слева, и справа.

Доказательство. f(x) непрерывна в точке $a \iff$ предел f(x) при $x \to a$ равен $f(a) \iff$ по теореме о связи двустороннего предела с односторонними существуют $\lim_{x\to a-0} f(x) = f(a)$ и $\lim_{x\to a+0} f(x) = f(a)$ \iff f непрерывна в a и слева, и справа.

Теорема 6.2 (о знакопостоянстве непрерывной функции). Пусть функция f(x) непрерывна в точке a и f(a) > 0 (f(a) < 0). Тогда существует такая окрестность точки a, что для любого x из этой окрестности f(x) > 0 (f(x) < 0).

Теорема 6.3 (локальная ограниченность). Если f(x) непрерывна в точке $a, mo \ f(x)$ локально ограничена при $x \to a$.