学习资料

```
官方网站
```

- # https://docs.nvidia.com/cuda
- ! 安装指南(installation guides)
 - 编程指南(Programming guides)
 - # 《CUDA C++ Programming Guide》
 - # 《CUDA C++ Best Practices Guide》
- ! CUDA API手册

Outline

- Heterogeneous Computing
- GPU

The Death of CPU Scaling

- Increase of transistor density ≠ performance
 - > The power consumption and clock speed improvements collapsed
 - Non-CPU bottleneck: memory and disk access speed

Trend of Parallel Computers

Single-Core Era Enabled by: Constrain

Moore's Law
Voltage Scaling

Constraint by:
Power
Complexity

Assembly → C/C++→Java ...

Muti-Core Era

Enabled by:
Moore's Law
SMP

Constraint by:
Power
Parallel SW
Scalability

Pthread → OpenMP ...

Heterogeneous Systems Era

Enabled by:
Abundant data
parallelism
Power efficient GPUs

Constraint by:
Programming
models
Comm. overhead

Shader → CUDA → OpenCL ...

Distributed System Era

Enabled by: Networking Constraint by:
Synchronization
Comm. overhead

MPI → MapReduce ...

Heterogeneous Computing

- Heterogeneous computing is an integrated system that consists of different types of (programmable) computing units.
 - DSP (digital signal processor)
 - FPGA (field-programmable gate array)
 - ASIC (application-specific integrated circuit)
 - GPU (graphics processing unit)
 - Co-processor (Intel Xeon Phi)
- A system can be a cell phone or a supercomputer

Shift of Computing Paradigm

GPU/Xeon Phi in Top 500 list (rank world's fastest Supercomputer)

- Jaguar was upgraded with GPU and renamed to Titan
 - ➤ Increase computation power by a factor of 10!!!
- 62 systems have accelerator(GPU) or co-processor (Phi)
- http://www.top500.org/lists/

2014 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)
1	Tianhe-2	China	NUDT	Xeon Phi	3,120K	33.8K
2	Titan	US	Cray	NVIDIA K20x	560K	17.6K
3	Sequoia	US	IBM	N.A	1,572K	17.2K
4	K computer	Japan	Fujitsu	N.A	705K	10.5K
2012 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)
6	Jaguar	US	Cray	N.A	298K	1.9K

GPU Servers

■ Same HW architecture as commodity server, but memory copy between CPU and GPU becomes the

main bottleneck Disk **PCIe Bus** CPU Main Memory **GPU Video** CPU Caches Memory **CPU Registers GPU Caches GPU Constant GPU Temporary** Registers Registers GPU NTHU LSA Lab

Heterogeneous System Architecture (HSA)

Aim to provide a common system architecture for designing higher-level programming models for all

devices

- Unified coherent memory
 - Single virtual memory address space
 - Prevent memory copy

AMD Accelerated Processing Unit (APU)

A.k.a *Fusion:* a series of 64-bit microprocessors from
 AMD designed to act as a CPU and GPU on a single chip

> 2011: Llano, Brazos

> 2012: Trinity, Brazos-2

> 2013: Kabini, Temash

> 2014: Kaveri

DDR3 Controller

GMC

UNB

L2 Cache

L2 Cache

GPU

Dual

Core x86

Module

PCIe

PCIe

Display

DP/HDMI

Display Controller

Display Controller

Display Controller

HSA Accelerated Processing Unit

NTHU LSA Lab

Outline

- Heterogeneous Computing
- GPU

GPU (Graphic Processing Unit)

- A specialized chip designed for rapidly display and visualization
 - > SIMD architecture
- Massively multithreaded manycore chips
 - > NVIDIA Tesla products have up to 5120 scalar processors
 - Over 12,000 concurrent threads
 - ➤ Over 470 GFOLPS sustained performance
- Two major vendors: NVIDIA and ATI (now AMD)

NTHU LSA Lab

GPGPU (General-Purpose Graphic Processing Unit)

- Expose the horse power of GPUs for general purpose computations
 - Exploit data parallelism for solving embarrassingly parallel tasks and numeric computations
 - Users across science & engineering disciplines are achieving
 100x or better speedups on GPUs
- Programmable
 - ➤ Early GPGPU: using the libraries in computer graphics, such as OpenGL or DirectX, to perform the tasks other than the original hardware designed for.
 - Now CUDA and openCL provides an extension to C and C++ that enables parallel programming on GPUs

System Architecture

NTHU LSA Lab

Manycore GPU – Block Diagram

- Consist of multiple stream multi-processors (SM)
- Memory hierarchic:
 - ▶ global memory → PBSM/shared memory → local register Slow, but large & shared Fast, but small & local Host **Input Assembler GPU** (Device) Thread Execution Manager SM **SM** SM **SM SM** SM SM **PBSM PBSM PBSM PBSM PBSM PBSM PBSM** Load/Store **Global Memory & Constant Memory**

NTHU LSA Lab

Stream Multiprocessor

- Each SM is a vector machine
- Shared register files
 - > Store local variables
- Programmable cache (shared memory)
 - > Shared with a normal L1 cache.
- Hardware scheduling for thread execution and hardware context switch

http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview/

NVIDIA CUDA-Enabled GPUs Products

Architecture & CUDA-Enabled NVIDIA GPUs HPC (double precisi						
Volta Architecture (compute capabilities 7.x)	Deep learning Inference	Visualization (single precision)		Tesla V Series V100		
Pascal Architecture (compute capabilities 6.x)	Tegra X2, Jetson TX2	GeForce 1000 Series GTX 1080	Quadro P Series P6000	Tesla P Series P100		
Maxwell Architecture (compute capabilities 5.x)	Tegra X1 Jetson TX2	GeForce 900 Series	Quadro M Series	Tesla M Series		
Kepler Architecture (compute capabilities 3.x)	Tegra K1	GeForce 700 Series GeForce 600 Series	Quadro K Series	Tesla K Series		
Applications	Embedded	Consumer Desktop/Laptop	Professional Workstation	Data Center		

NVIDIA GPU HW Specification

		Tesla K40	Tesla P100	Tesla V100	GeForce GTX1080	
Launch	Date	2013 Oct	2016 Jun 2017 Jun		2016 May	
Archited	ture	Kepler	Pascal Volta		Pascal	
CUDA C	ores	2888	3584	3584 5120		
Core Clock		745MHz	1126MHz	1370MHz	1607MHz	
GPU Memory Bandwidth		288GB/s	732GB/s	900GB/s	320GB/s	
GPU Memory Size		12GB	16GB	16GB	8GB	
Interconnect	PCle3x16	32GB/s	32GB/s	32GB/s	32GB/s	
Bandwidth	NV Link		160GB/s	300GB/s		
Single Precision		4.29 TFLOPS	9.3 TFLOPS	14 TFLOPS	8.8 TFLOPS	
Double Precision		1.43 TFLOPS	4.7 TFLOPS	7.0 TFLOPS	0.2 TFLOPS	
TDP		235W	250W	250W	180W	
Compute Ca	apability	3.5	6.0	7.0	6.1	
Launch Pric	e (USD)	\$5499	\$7374/\$9428(NV)	8GPU: 150K	\$550	

GPU Compute Capability

Programming ability of a GPU device

Technical specifications		Compute capability (version)						
		1.1	1.2	1.3	2.x 3.0	3.5	5.0	
Maximum dimensionality of grid of thread blocks		2			3			
Maximum x-, y-, or z-dimension of a grid of thread blocks		65535			2 ³¹ -1			
Maximum dimensionality of thread block		3						
Maximum x- or y-dimension of a block		512				1024		
Maximum z-dimension of a block		64						
Maximum number of threads per block	512			1024				
Warp size	32							

source: http://en.wikipedia.org/wiki/CUDA

NTHU LSA Lab

CUDA SDK Device Query

deviceQuery.cpp

```
Device 0: "Tesla M2090"
  CUDA Driver Version / Runtime Version
                                                  5.0 / 5.0
 CUDA Capability Major/Minor version number:
                                                  2.0
 Total amount of global memory:
                                                  5375 MBytes (5636554752 bytes)
  (16) Multiprocessors x ( 32) CUDA Cores/MP:
                                                  512 CUDA Cores
 GPU Clock rate:
                                                  1301 MHz (1.30 GHz)
 Memory Clock rate:
                                                  1848 Mhz
 Memory Bus Width:
                                                  384-bit
 L2 Cache Size:
                                                  786432 bytes
 Max Texture Dimension Size (x,y,z)
                                                  1D=(65536), 2D=(65536,65535), 3D
 Max Layered Texture Size (dim) x layers
                                                  1D=(16384) x 2048, 2D=(16384,163
 Total amount of constant memory:
                                                  65536 bytes
 Total amount of shared memory per block:
                                                  49152 bytes
 Total number of registers available per block: 32768
 Warp size:
                                                  32
                                                  1536
 Maximum number of threads per multiprocessor:
 Maximum number of threads per block:
                                                  1024
 Maximum sizes of each dimension of a block:
                                                 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                  65535 x 65535 x 65535
```


CUDA Toolkits

- Software Development Kit(SDK) for CUDA Programming
 - ➤ The CUDA-C and CUDA-C++ compiler, nvcc
 - > Tools: IDE, Debugger, Profilers, Utilities
 - ➤ Library: BLAS, CUDA Device Runtime, FFT, ...
 - > Sample Code
 - Documentation

CUDA SDK Version	Compute Capability	Architecture
6.5	1.X	Tesla
7.5	2.0-5.x	Fermi, Kepler, Maxwell
8.0	2.0-6.x	Fermi, Kepler, Maxwell, Pascal
9.0	3.0-7.x	Kepler, Maxwell, Pascal, Volta

Reference

Cyril Zeller, NVIDIA Developer Technology slides