

2A High Efficiency Boost DC/DC Voltage Regulator

ÿ Product Overview

The HX3608 is a tiny, high-efficiency, step-up DC/DC regulator.

The circuit consists of current mode PWM control loop, error amplifier, ramp compensation circuit,

Comparator and power switch and other modules. The chip can be used in a wide load range

Efficient and stable work, built-in a 4A power switch and soft-start protection

road. Up to 93% conversion efficiency can effectively extend battery life. can pass

The output voltage is set by adjusting two external resistors.

- ÿ Purpose
- ÿ Portable mobile devices
- ÿ Wireless communication equipment
- ÿ Battery backup power
- ÿ Ordering Information

НХ3608ӱӱ

- ÿ Product Features
- ÿ Efficiency up to 92%
- ÿ The output voltage can be raised to 28V
- ÿ Input voltage range 2-24V
- ÿ 1.2MHz fixed switching frequency
- ÿ Automatic PWM/PFM switching mode
- ÿ Power path supports short circuit protection
- ÿ Package
- ÿ SOT23-6L

number bullet		describe	
ÿ	A Extern	al feedback, feedback voltage 0.6V	
ÿ	R Tape o	irection is positive	
	L Revers	e tape direction	

ÿ Pin Configuration

ÿ Pin Description

pin order	pin name	Function description	
5	VIN	input	
3	FB	Feedback	
2	GND	ground terminal	
1	SW	switch pin	
4	IN	Enable terminal, high effective	
6	NC	dangling	

1

ÿ Typical application circuit

VOUT VFB
$$\ddot{y}$$
 \ddot{y} $\frac{R + y}{y}$ $\frac{R}{y}$ $\frac{R}{R}$ $\frac{2}{y}$

Note: The VIN terminal of pin 5 of the chip can be connected to VOUT or VIN. When VIN<5V, it is recommended to connect VOUT to enhance the driving capability.

ÿ Printing information

Note: ÿÿÿÿÿÿ code point is the product quality information code

ÿ Functional block diagram

ÿ Absolute Maximum Ratings

project	symbol	Absolute Maximum Ratings	unit	
Input voltage	VIN	Vss-0.3ÿVss+24	IN	
	VOUT	Vss-0.3ÿVss+28		
The output voltage	VSW	Vss-0.3ÿVss+28		
SW terminal switch current	ISW	3.5	А	
Allowable power consumption	PD	250	mW	
Working temperature	Topr	-40ÿÿ80	ÿ	
storage temperature	Tstg	-40ÿÿ125	y	

ÿ Electrical characteristic parameters

(VIN=5V, Ta=25ÿ, unless otherwise specified)

project	symbol	condition	Min Typ Max U	nits		
The output voltage	VOUT		2.5		28	
Input voltage	VIN		2		24	IN
Input undervoltage protectio	า UVLO_F -		1.7		2	IN
Undervoltage protection hys	teresis UVLO_HYS -		-	110		mV
off current	IOFF	VEN <venl< td=""><td>-</td><td></td><td>1</td><td>μA</td></venl<>	-		1	μA
no load current	IC	VIN=4.2VÿVOUT=5V	-	90		ÿA
Feedback reference voltage	VR	VOUT=5V	588	600	612 mV	
On-off level	FS	IOUT=1A	-	1.2		MHz
maximum duty cycle	DMAX VFB=0V			90		%
Power tube internal resistance	RDSON VIN=5V		-	80	150 mÿ	
switch current	ISW	VIN=5V	3.5			А
Linear adjustment	ÿVLINE	IOUT=1.2A, VIN=3V to 4.2V	-	0.38		%
Load regulation ÿVLOAD '	/IN=3.6V, IOUT=10mA to 1	.2A		0.41		%
EN high level	VENH	VIN=3.6V	1.2			IN
EN low level	VENL	VIN=3.6V	-		0.5	IN
SW leakage current	ISW_L	VSW=20V	-		1	uA
Thermal shutdown temperature	TSHD	VIN=3.6VÿIOUT=10mA	-	160		ÿ

ÿ Typical characteristic curve

ÿ Efficiency

Line Regulation and Load Regulation

ÿ Application Information

ÿ Output voltage setting

By dividing the voltage by the external resistor of FB, the output voltage value can be calculated according to the following formula:

VOUT VFB
$$\ddot{y}$$
 \ddot{y} 1 $\frac{R + \dot{y}}{R + 2}$ \ddot{y} , R1 takes a hundred K-class resistance

ÿ Inductor selection

The recommended inductance range is 3.3uH to 22uH. Inductor selection mainly considers smaller DCR resistance to ensure higher efficiency.

ÿ Input and output capacitance

The capacitance value of the input capacitor and output capacitor is recommended to be above 22uF. In order to obtain a smaller output ripple, it is recommended to use a ceramic capacitor for the output.

 \ddot{y} SW pin has high frequency switching signal, pay attention to isolation from other components on the board.

The 5-pin terminal needs a 1uF capacitor for voltage regulation. It is recommended to use a ceramic capacitor.

ÿ Diode

ÿ For the freewheeling diode, please use a fast-response Schottky diode. The lower the forward voltage drop, the higher the load efficiency. For different output voltages, pay attention to the reverse direction of the freewheeling diode

The withstand voltage selection should be high enough (>VOUT+5V) to prevent reverse leakage or breakdown.

ÿ PCB layout

ÿ In order to get better use effect, the main precautions for PCB layout are as follows:

ÿ Input capacitors and output capacitors as close as possible to the chip pins;

ÿ The power path from VIN to inductor L to VOUT should be as short and thick as possible;

ÿ Package information

ÿ **SOT-23-6L**

Ch a l	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	