Algebra/Geometrie II, Übungsblatt 10

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 22.6. oder am 24.6. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Sei V ein \mathbb{K} -Vektorraum, nicht unbedingt endlichdimensional, und sei $U \subseteq V$ ein Unterraum. Zeigen Sie, dass $(V/U)^* \cong \operatorname{Ann}(U)$.

Aufgabe 2. Sei $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ eine injektive Abbildung, nicht unbedingt linear. Gegeben ist, dass das Bild jeder Gerade in \mathbb{R}^2 wieder eine Gerade ist. (Zum Beispiel, die Menge $\{\varphi((1,a)) \mid a \in \mathbb{R}\}$ ist eine Gerade.) Zeigen Sie, dass es eine Matrix $A \in \mathrm{GL}_2(\mathbb{R})$ und ein Vektor $w \in \mathbb{R}^2$ existieren, s.d. $\varphi(v) = Av + w$ für jeden Vektor $v \in \mathbb{R}^2$.

Aufgabe 3. In \mathbb{R}^n ist eine nichtleere Teilmenge S gegeben, $a \in S$. Die lineare Hülle $U(a) := \langle x - a \mid x \in S \rangle$ ist, nach der Definition, ein Unterraum von \mathbb{R}^n . Wir setzen $\langle S \rangle_{\mathrm{af}} := \{a + \bar{u} \mid \bar{u} \in U(a)\}$. Zeigen Sie, dass $\langle S \rangle_{\mathrm{af}}$ nicht von dem Wahl des Punktes a abhängt und dass

$$\langle S \rangle_{\text{af}} = \left\{ \sum_{i=1}^k \alpha_i s_i \mid k \in \mathbb{N}, \sum_{i=1}^k \alpha_i = 1, s_i \in S, \alpha_i \in \mathbb{R} \right\}.$$

Aufgabe 4. Finden Sie die Ecken des Polytops, das durch die Ungleichungen

$$x_1 \le 1$$
, $x_2 \le 1$, $x_3 \le 1$, $x_1 + x_2 \ge -1$, $x_1 + x_3 \ge -1$, $x_2 + x_3 \ge -1$

in \mathbb{R}^3 gegeben ist.