

ALLOWED CLAIMS/ TJ

1. A process for the preparation of a carbohydrate structure on a material surface comprising the steps of:

(a<sub>1</sub>) photochemically fixing one or more different compounds of formula



onto the material surface.

wherein X is the radical of a mono- or oligosaccharide,

R is a divalent organic radical having from 2 to 30 C-atoms which may be further substituted.

Z is -O-, -S- or a direct bond.

$\text{Y}$  is a functional group linking  $\text{R}$  to the aromatic ring,

$R_1$  is an electron-withdrawing substituent and  $n$  is an integer from 0 to 4,

**Q is a radical of formula**



and R<sub>2</sub> is an electron-withdrawing substituent; or

(a<sub>2</sub>) photochemically fixing a compound of formula



wherein R, R<sub>1</sub>, n, Y, Z and Q are as defined above, onto the material surface and subsequently converting the -ZH groups to -Z-X moieties, wherein X has the above meaning; and

(b) enzymatically attaching one or more further carbohydrates to the X radicals of the modified surface obtained according to step (a<sub>1</sub>) or (a<sub>2</sub>).

**2. A process according to claim 1, comprising steps (a,) and (b).**

3. (Twice Amended) A process according to claim 1, wherein X is the radical of a mono-, di-, tri- or tetrasaccharide.

4. A process according to claim 3, wherein X is the radical of a galactose, lactose mannose, N-acetyl glucosamine, N-acetyl galactosamine or N-acetyl lactosamine.

5. (Twice Amended) A process according to claim 1, wherein R is linear or branched C<sub>2</sub>-C<sub>24</sub>-alkylene, which may be interrupted by -O- or -NR<sub>3</sub>-, and R<sub>3</sub> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl.

6. A process according to any one of claims 1 to 5, wherein Y is a group -C(O)O-, -OC(O)-, -C(O)NR<sub>4</sub>-, -NR<sub>4</sub>C(O)-, -OC(O)-NH-, -NHC(S)NH- or -NHC(O)NH-, and R<sub>4</sub> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl.

7. (Twice Amended) A process according to claim 1, wherein R<sub>1</sub> is fluorine and n is an integer from 0 to 4.

8. A process according to any one of claims 1 to 7, wherein Q is a radical of formula (2a), and R<sub>2</sub> is trifluoromethyl.

9. A process according to any one of claims 1 to 8, wherein in step (b) the carbohydrate(s) are attached to the radicals X by means of a glycosyl transferase or a mixture of different glycosyl transferases.

10. A process according to any one of claims 1 to 9, wherein a monosaccharide or a mixture of different monosaccharides or a derivative thereof is attached to the X radicals in step (b).

11. A process according to any one of claims 1 to 10, wherein sialic acid is attached to the X radicals by means of a sialyl transferase in step (b).

12. A material comprising a carbohydrate structure on its surface obtainable by the process according to any one of claims 1 to 11.

13. A biomedical device comprising a material according to claim 12.

14. Use of a material according to claim 12 for the manufacture of a biomedical device.

15. A biosensor for the detection of carbohydrate related interactions comprising a carbohydrate structure on its surface obtainable by the process according to any one of claims 1 to 11.

16. (New) A process according to claim 3, wherein X is the radical of a mono- or disaccharide.

17. (New) A process according to claim 16, wherein X is the radical of a disaccharide.

18. (New) A process according to claim 5, wherein R is linear C<sub>4</sub>-C<sub>18</sub>-alkylene.

19. (New) A process according to claim 18, wherein R is linear C<sub>6</sub>-C<sub>10</sub>-alkylene.

20. (New) A process according to claim 7, wherein n is 0.

---