

Indian Institute of Technology, Kharagpur

Instruction: Answer all questions. Notations used are as explained in the class.

Question 1 $[2 \times 5 = 10 \text{ marks}]$

Either prove each of the following statements or show a counter example.

- a) Every finite subset of a nonregular set is regular.
- b) The expressions $P = (1^{\circ}0 + 001)^{\circ}01$ and $Q = (1^{\circ}001 + 00101)^{\circ}$ are equivalent.
- c) Let R denotes a regular set. Then the set consisting of all the strings in R that are identical to their own reverses is also a regular set.
- d) Every subset of a regular set is also regular.
- e) Let L_1 and L_2 be regular languages over the alphabet Σ . Define the language

$$L = \{\alpha\beta\gamma : \alpha\gamma \in L_1, \beta \in L_2\}$$

that is, L is obtained by inserting strings in L_2 inside strings in L_1 . Then L is also regular.

Question 2 [3+2+2=7 marks]

a) (i) Construct an ϵ -NFA equivalent to the regular expression

$$0(11 + 0(00 + 1)^{\circ})^{\circ}$$

- (ii) Convert the ε-NFA obtained above to a DFA.
- b) Consider the following two deterministic finite automata with transition functions δ_1 and δ_2 .

δ_1	a	b
$\rightarrow 1$	1	2
*2	2	1

δ_2	a	b
$\rightarrow 1$	2	3
2	3	1
*3	1	2

Use the product construction to produce deterministic automata accepting the union of the two sets accepted by these automata.

c) Give a decision algorithm to determine if the set accepted by a DFA is the set of all strings over a given alphabet.

Question 3 [3 + 3 = 6 marks]

a) Write an algorithm for converting a finite automaton to regular expression. Hence, or otherwise, find a regular expression on the alphabet $\{0, 1.2\}$ for the set of strings recognized by the automaton M given in Figure 1.

Figure 1: Automaton M

b) For the following DFA:

δ	a	b
$\rightarrow 1$	1	3
*2	6	3
3	6 5	7
*4	6	î
5	,1	7
*6	2	7
7	5	3

(i) list the equivalence classes of the collapsing relation ≡ defined in the class as:

$$p \equiv q \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall x \in \Sigma^* \ (\widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F);$$

(F being the set of accepting states of the DFA)

(ii) draw the quotient DFA obtained by collapsing equivalent states and removing inaccessible states.

Question 4 [3+4=7 marks]

á) Let $\Sigma = \{0, 1, \approx, \boxplus\}$, and let

 $L = \{a \approx b \boxplus c \mid a, b, c \in (0+1)^* \text{ and } a = b+c \text{ if } a, b, c \text{ are interpreted}$ as unsigned binary integers \}.

Note that the string $10 \approx 01 \boxplus 01$ is in L since 2 = 1 + 1, but the string $10 \approx 11 \boxplus 01$ is not since $2 \neq 3 + 1$. Show that L is not regular.

(Any standard results you use should be clearly stated, but need not be proved.)

- b) (i) State the Myhill-Nerode theorem.
 - (ii) Find the distinguishable classes of the language $L = \{a^nba^n|0 \le n \le 3\}$. Using Myhill-Nerode theorem design a DFA D such that L(D) = L.

T	he	End	
	110	LIIU	