Listing of the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

1. (PREVIOUSLY PRESENTED) A compound of the following Formula 1:

$$\begin{array}{c} R_{10} \\ R_{10} \\ R_{11} \\ R_{13} \\ R_{13} \\ R_{14} \\ R_{13} \\ R_{14} \\ R_{15} \\ R_{15} \\ R_{16} \\ R_{16} \\ R_{17} \\ R_{18} \\ R_{18} \\ R_{19} \\ R_{19$$

wherein

R_A is a C₂ to C₃₀ saturated or unsaturated hydrocarbon chain;

 R_{10} , R_{11} , R_{13} , R_{14} and R_3 each independently represent H, OH, a C_{1-6} ether, or a saturated or unsaturated hydrocarbon chain which may be substituted with one or more of nitro, halogen, amino, hydroxyl, ketone or aldehyde group, and wherein at least one of R_{10} , R_{11} and R_{13} represents OH;

optionally there is a double bond between C₂ and C₃ of the C ring;

n represents 0 or 1; and

 R_B is a C_2 to C_{15} saturated or unsaturated hydrocarbon chain, and where R_B is present, R_A and R_B are both C_2 to C_{12} aliphatic alkyl chains.

- 2. (CANCELLED)
- 3. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_{10} and/or R_{11} represents OH.
- 4. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_3 , R_{11} and R_{13} all represent OH.
- 5. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_3 , R_{10} and R_{13} all represent OH.
- 6. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein there is a double bond between C_2 and C_3 of the C ring.
- 7. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein the backbone of R_A has eight, nine or ten carbon atoms.
- 8. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_A is attached to position 7 of the A ring of the flavonoid group.
- 9. (Previously presented) The compound of claim 1, wherein R_A has the following structure:

$$H_3C$$
 CH_3
 CH_2
 CH_2

wherein

n is an integer from 1 to 7; and m is an integer from 1 to 7.

10. (Previously presented) The compound of claim 1, wherein R_A has the following structure:

$$CH_3$$
 CH_3 CH_2

11. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_A has the following structure:

wherein n is an integer from 2 to 27.

12. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_A has the following

structure:

wherein

x is an integer from 1 to 25;

y is an integer from 1 to 25;

and wherein x + y = 25 or less.

13. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein R_A has the following

$$H_3C$$
 CH_3
 CH_2
 CH_2

structure:

wherein

n is an integer from 1 to 7; and

m is an integer from 1 to 7.

14. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein the flavonoid group has one of the following structures:

15. (PREVIOUSLY PRESENTED) The compound of claim 1 having one of the following structures:

Amendment Submitted March 23, 2009 (In re: Non-Final OA mailed on January 23, 2009)

U.S. Serial No. 10/521,232

Attorney Docket No.: 044950-056330-US

Amendment Submitted March 23, 2009 (In re: Non-Final OA mailed on January 23, 2009)

16. (PREVIOUSLY PRESENTED) A composition comprising a compound of claim 1 and at least one pharmaceutical excipient or carrier.

- 17. (Previously presented) The composition of claim 16 which is a sunscreen.
- 18. (ORIGINAL) A method of preventing UV damage to the skin of a mammalian animal, said method comprising administering a therapeutically effective amount of the composition of Claim 17 to said skin prior to UV exposure.
- 19. (ORIGINAL) The method as claimed in Claim 18 wherein said mammalian animal is a human.
- 20. (PREVIOUSLY PRESENTED) The method of claim 18, wherein said composition is applied topically to said skin.
- 21. (PREVIOUSLY PRESENTED) The composition of claim 16 which is a skincare composition.
- 22. (PREVIOUSLY PRESENTED) The composition of claim 21, wherein said composition further comprises emollients and moisturisers.
- 23. (CANCELLED)
- 24. (PREVIOUSLY PRESENTED) A foodstuff stabiliser composition comprising a compound of claim 1.
- 25. (PREVIOUSLY PRESENTED) The composition of claim 24, wherein said composition is in the form of an emulsion having a low fat:high water content.

26-35. (CANCELLED)

36. (PREVIOUSLY PRESENTED) A method of manufacturing a compound of Formula 1 as claimed in claim 1, said method comprising providing an intermediate compound A and an intermediate compound B, wherein intermediate compound A has the structure R_AM wherein M is a metal or metalloid group where the metal is directly attached to R_A , and R_A is a C_2 to C_{30} saturated or unsaturated alkyl chain; and R_AM is capable of participating in transition metal catalysed cross-coupling reactions; and intermediate compound B has the following structure: wherein

$$(X)_{m}$$
 $(X)_{m}$
 $(X)_$

 R_{12} represents OH or an O-protecting group

 R_3 , R_{10} , R_{11} , R_{13} , and R_{14} each independently represent H, OH, C_1 to C_4 aliphatic alkyl group or an O-protecting group where required, and optionally there is a double bond between C_2 and C_3 of the C ring;

X is a halogen, O-trifluoromethane sulphonate or any other group used in cross-coupling reactions; and

$$m = 1 \text{ or } 2$$
,

and reacting intermediate compound A with intermediate compound B by transition metal catalysed cross-coupling reactions and subsequently deprotecting at least one OH group.

37. (PREVIOUSLY PRESENTED) The method of claim 36, wherein R_AM is selected from the group consisting of an organomagnesium, organozinc, organoboron and an organotin compound.

- 38. (Previously presented) The method of claim 36, wherein the catalyst is a palladium, nickel or iron complex.
- 39. (PREVIOUSLY PRESENTED) A method of manufacturing a compound of Formula 1 as claimed in claim 1, said method comprising providing an intermediate Compound C and an intermediate Compound D, wherein said intermediate Compound C has the structure R_ACHCHR wherein R_A is as defined in Formula 1, and wherein intermediate Compound D has a structure:

40. (PREVIOUSLY PRESENTED) The method of claim 39, wherein the catalyst is:

41. (PREVIOUSLY PRESENTED) A method of manufacturing a compound of Formula 1 as claimed in claim 1, said method comprising providing an intermediate Compound E of formula:

$$R_{A_{n_1}}$$
 $O-R_C$ $R_{A_{n_2}}$ $O-R_C$

and constructing a flavonol core on said intermediate Compound E.

- 42. (PREVIOUSLY PRESENTED) The method of claim 41, wherein said flavonol core is formed by Algar-Flynn-Oyamada (AFO) oxidation.
- 43. (PREVIOUSLY PRESENTED) The method of claim 41, wherein said flavanol core is formed by Baker-Verkataraman rearrangement.
- 44. (PREVIOUSLY PRESENTED) The method of claim 41, wherein said intermediate Compound E is formed by a transition metal catalysed cross-coupling reaction.
- 45. (PREVIOUSLY PRESENTED) The method of claim 41, wherein said intermediate Compound E is formed by alkene cross-metathesis.
- 46. (PREVIOUSLY PRESENTED) The compound of claim 1, wherein the backbone of R_A has from 6 to 15 carbon atoms.