This print-out should have 46 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

#### 001 10.0 points

Determine

$$\lim_{x \to 0} \left( \frac{1}{x^2 + x} - \frac{1}{x} \right) .$$

- 1. limit =  $-\frac{1}{2}$
- **2.**  $\lim_{x \to 0} 1$
- 3. limit =  $\frac{1}{3}$
- **4.** limit =  $\frac{1}{2}$
- **5.** limit =  $-\frac{1}{3}$
- **6.**  $\lim_{x \to 0} 1 = -1$

### 002 10.0 points

When f is the function defined by

$$f(x) = \begin{cases} 3x - 4, & x \le 4, \\ 2x - 1, & x > 4, \end{cases}$$

determine if

$$\lim_{x \to 4^+} f(x)$$

exists, and if it does, find its value.

- 1.  $\lim_{x \to 0} 1 = 9$
- 2.  $\lim_{\to} 1 = 5$
- **3.** limit does not exist
- **4.**  $\lim_{x \to 0} f(x) = 6$
- 5.  $\lim_{n \to \infty} 1 = 8$
- **6.**  $\lim_{x \to 0} 1 = 7$

#### 003 10.0 points

Consider the function

$$f(x) = \begin{cases} 3 - x, & x < -1 \\ x, & -1 \le x < 3 \\ (x - 1)^2, & x \ge 3. \end{cases}$$

Find all the values of a for which the limit

$$\lim_{x \to a} f(x)$$

exists, expressing your answer in interval notation.

- 1.  $(-\infty, -1) \cup (-1, 3) \cup (3, \infty)$
- **2.**  $(-\infty, -1) \cup (-1, \infty)$
- **3.**  $(-\infty, 3) \cup (3, \infty)$
- **4.**  $(-\infty, -1] \cup [3, \infty)$
- 5.  $(-\infty, \infty)$

#### 004 10.0 points

Functions f and g are defined on (-10, 10) by their respective graphs in



Find all values of x where the product, fg, of f and g is continuous, expressing your answer in interval notation.

1. 
$$(-10, 5) [ ](5, 10)$$

**2.** 
$$(-10, -4] \bigcup [5, 10)$$

**3.** 
$$(-10, -4)$$
  $\bigcup (-4, 5)$   $\bigcup (5, 10)$ 

**4.** 
$$(-10, 10)$$

5. 
$$(-10, -4) \bigcup (-4, 10)$$

## 005 (part 1 of 3) 10.0 points

A Calculus student leaves the RLM building and walks in a straight line to the PCL Library. His distance (in multiples of 40 yards) from RLM after t minutes is given by the graph



- i) What is his speed after 3 minutes, and in what direction is he heading at that time?
  - 1. away from RLM at 30 yds/min
  - 2. away from RLM at 40 yds/min
  - 3. away from RLM at 20 yds/min
  - 4. towards RLM at 20 yds/min
  - 5. towards RLM at 40 yds/min

## 006 (part 2 of 3) 10.0 points

- ii) What is his speed after 9 minutes, and in what direction is he heading at that time?
  - 1. towards RLM at 40 yds/min
  - 2. away from RLM at 5 yds/min.
  - 3. away from RLM at 10 yds/min.
  - 4. away from RLM at 20 yds/min.
  - 5. towards RLM at 20 yds/min.

#### 007 (part 3 of 3) 10.0 points

- iii) How far is he from RLM when he turns back?
- 1. distance = 320 yards
- **2.** distance = 160 yards
- 3. distance = 200 yards
- 4. distance = 240 yards
- 5. distance = 280 yards

### 008 (part 1 of 6) 10.0 points

Consider the angle t defined by the point  $\left(\frac{8}{17}, \frac{15}{17}\right)$ 



on the unit circle.

Find  $\sin(t)$ .

- 1.  $\frac{8}{15}$
- 2. None of these
- 3.  $\frac{17}{15}$
- 4.  $\frac{17}{8}$
- 5.  $\frac{8}{17}$
- 6.  $\frac{15}{8}$
- 7.  $\frac{15}{17}$

 $009 \; (\mathrm{part} \; 2 \; \mathrm{of} \; 6) \; 10.0 \; \mathrm{points}$ 

Find  $\cos(t)$ .

- 1.  $\frac{17}{8}$
- 2.  $\frac{15}{17}$
- 3.  $\frac{8}{15}$
- 4. None of these
- 5.  $\frac{8}{17}$
- 6.  $\frac{17}{15}$
- 7.  $\frac{15}{8}$

010 (part 3 of 6) 10.0 points

Find tan(t).

- 1.  $\frac{8}{17}$
- 2. None of these
- 3.  $\frac{8}{15}$
- 4.  $\frac{17}{15}$

- 5.  $\frac{15}{17}$
- **6.**  $\frac{17}{8}$
- 7.  $\frac{15}{8}$

011 (part 4 of 6) 10.0 points

Find  $\csc(t)$ .

- 1.  $\frac{17}{15}$
- 2.  $\frac{8}{15}$
- 3.  $\frac{8}{17}$
- 4. None of these
- 5.  $\frac{17}{8}$
- 6.  $\frac{15}{8}$
- 7.  $\frac{15}{17}$

012 (part 5 of 6) 10.0 points

Find sec(t).

- 1.  $\frac{15}{8}$
- 2. None of these
- 3.  $\frac{15}{17}$
- 4.  $\frac{8}{15}$
- 5.  $\frac{17}{15}$
- 6.  $\frac{17}{8}$
- 7.  $\frac{8}{17}$

013 (part 6 of 6) 10.0 points

Find  $\cot(t)$ .

1.  $\frac{17}{15}$ 

2. 
$$\frac{8}{15}$$

3. 
$$\frac{8}{17}$$

4. 
$$\frac{15}{17}$$

5. None of these

6. 
$$\frac{15}{8}$$

7. 
$$\frac{17}{8}$$

## 014 (part 1 of 3) 10.0 points

A certain function f is given by the graph



(i) What is the value of

$$\lim_{x \to -\infty} f(x)$$

- 1.  $\lim_{t \to 0} t = -1$
- **2.**  $\lim_{x \to 0} 1 = -2$
- 3. limit does not exist
- **4.**  $\lim_{t \to 0} t = 1$
- 5.  $\lim_{x \to 0} 1 = 2$

# 015 (part 2 of 3) 10.0 points

(ii) What is the value of

$$\lim_{x \to \infty} f(x)?$$

- 1. limit does not exist
- **2.**  $\lim_{x \to 0} 1$
- 3.  $\lim_{\to} 1$
- **4.**  $\lim_{x \to 0} 1 = -2$
- 5.  $\lim_{x \to 0} 1 = 2$

### 016 (part 3 of 3) 10.0 points

(iii) What is the value of

$$\lim_{x \to -2} f(x)?$$

- 1.  $\lim_{x \to 0} 1 = -2$
- **2.**  $\lim_{x \to 0} 1 = -1$
- **3.**  $\lim_{x \to 0} 1 = 2$
- 4.  $\lim_{n \to \infty} 1$
- **5.**  $\lim_{t \to 0} 1$

#### 017 10.0 points

Below is the graph of a function f.



Use the graph to determine all the values of x on (-6, 6) at which f fails to be continuous.

1. 
$$x = -3, 3$$

- 2. none of the other answers
- **3.** no values of x

**4.** 
$$x = 3$$

5. 
$$x = -3$$

### 018 (part 1 of 3) 10.0 points

Determine the value of

$$\lim_{x \to 5+} \frac{x-6}{x-5}.$$

- 1. limit =  $\infty$
- 2. limit  $= -\infty$
- **3.** none of the other answers

4. limit = 
$$-\frac{6}{5}$$

**5.** 
$$\lim_{x \to 0} \frac{6}{5}$$

## 019 (part 2 of 3) 10.0 points

Determine the value of

$$\lim_{x \to 5-} \frac{x-6}{x-5}.$$

- 1.  $\lim_{x \to 0} 1 = -\frac{6}{5}$
- 2. none of the other answers
- 3. limit =  $\frac{6}{5}$
- 4. limit  $= -\infty$
- 5.  $\lim_{n \to \infty} 1$

# $020 \; (\mathrm{part} \; 3 \; \mathrm{of} \; 3) \; 10.0 \; \mathrm{points}$

Determine the value of

$$\lim_{x \to 5} \frac{x - 6}{x - 5}.$$

- 1.  $\lim_{n \to \infty} 1$
- **2.** limit =  $\frac{6}{5}$
- 3.  $\lim_{n \to \infty} 1$
- **4.** limit =  $-\frac{6}{5}$
- **5.** none of the other answers

### 021 10.0 points

Below is the graph of a function f.



Use the graph to determine  $\lim_{x \to 3} f(x)$ .

- **1.**  $\lim_{x \to 0} 1 = 0$
- 2. does not exist
- **3.**  $\lim_{x \to 0} 1$
- **4.**  $\lim_{\to} 1 = -2$
- **5.**  $\lim_{x \to 0} 1 = -1$

#### 022 10.0 points

Find the value of

$$\lim_{x \to \infty} \frac{2 + 3x + 2x^4}{3 - 5x^3}.$$

- 1. none of the other answers
- 2. limit  $= -\infty$

- 3.  $\lim_{n \to \infty} 1$
- 4.  $\lim_{x \to 0} \frac{2}{3}$
- 5. limit =  $-\frac{2}{5}$
- **6.**  $\lim_{t \to 0} t = 0$

## 023 (part 1 of 3) 10.0 points

If  $t = \frac{\pi}{4}$ , evaluate (if possible)

- a)  $\sin t$ 
  - 1.  $\frac{1}{2}$
  - 2.  $-\frac{\sqrt{3}}{2}$
  - **3.** 1
  - 4. None of these
- 5.  $\frac{\sqrt{3}}{2}$
- 6.  $\frac{1}{\sqrt{2}}$
- **7.** 0

### 024 (part 2 of 3) 10.0 points

- b)  $\cos t$ 
  - **1.** 0
  - 2. -1
  - 3.  $\frac{1}{2}$
  - 4. None of these
- 5.  $\frac{\sqrt{3}}{2}$
- 6.  $-\frac{\sqrt{3}}{2}$
- 7.  $\frac{1}{\sqrt{2}}$

#### 025 (part 3 of 3) 10.0 points

- $c) \tan t$ 
  - **1.** −1
  - **2.**  $-\frac{\sqrt{3}}{2}$
- 3. None of these
- 4.  $\frac{1}{2}$
- **5.** 0
- **6.** 1
- 7.  $\frac{\sqrt{3}}{2}$

#### 026 10.0 points

Determine where

$$f(x) = \begin{cases} 20 - x, & x \le -5, \\ x^2, & -5 < x < 2, \\ 2 + x, & x \ge 2. \end{cases}$$

is continuous, expressing your answer in interval notation.

- 1.  $(-\infty, -5) \cup (2, \infty)$
- **2.**  $(-\infty, \infty)$
- 3.  $(-\infty, -5) \cup (-5, 2) \cup (2, \infty)$
- **4.**  $(-\infty, 2) \cup (2, \infty)$
- **5.**  $(-\infty, -5) \cup (-5, \infty)$

## 027 10.0 points

Find the largest value of c so that the function g defined by

$$g(x) = \begin{cases} x^2 + x - c^2, & x > -1, \\ cx - 12, & x \le -1, \end{cases}$$

is continuous for all x.

- 1. c = 7
- **2.** c = -3

**3.** 
$$c = 3$$

- 4. none of these
- 5. c = -7

#### 028 10.0 points

Find the solution of the exponential equation

$$3^{2x} = 9^{\frac{5}{2}x-3}$$
.

- 1. none of these
- **2.** x = 3
- 3. x = -2
- **4.** x = 2
- 5. x = -3

#### 029 10.0 points

Let F be the function defined by

$$F(x) = \frac{x^2 - 4}{|x - 2|}.$$

Determine if

$$\lim_{x \to 2^{-}} F(x)$$

exists, and if it does, find its value.

- 1.  $\lim_{x \to 0} 1 = 2$
- **2.**  $\lim_{x \to 0} 1 = -2$
- 3.  $\lim_{\to} 1 = 4$
- 4. limit does not exist
- **5.**  $\lim_{\to} 1 = -4$

### 030 10.0 points

Find all values of x at which the function f defined by

$$f(x) = \frac{x-6}{x^2 - 4x - 12}$$

is continuous, expressing your answer in interval notation.

- 1.  $(-\infty, -2) \cup (-2, \infty)$
- **2.**  $(-\infty, -2) \cup (-2, 6) \cup (6, \infty)$
- **3.**  $(-\infty, 6) \cup (6, \infty)$
- **4.**  $(-\infty, -2) \cup (-2, -6) \cup (-6, \infty)$
- 5.  $(-\infty, -6) \cup (-6, 2) \cup (2, \infty)$

#### 031 10.0 points

Find the value of

$$\lim_{x \to 3} \frac{2x - 6}{\sqrt{x} - \sqrt{3}}$$

if the limit exists.

- 1. limit =  $3\sqrt{3}$
- **2.** limit =  $2\sqrt{3}$
- **3.**  $\lim_{x \to 0} 12$
- **4.** limit =  $6\sqrt{3}$
- **5.** limit =  $4\sqrt{3}$
- 6. limit does not exist

#### 032 (part 1 of 5) 10.0 points

At which point on the graph



is the slope greatest (*i.e.*, most positive)?

- **1.** S
- **2.** *P*
- **3.** *R*
- **4.** *U*
- **5.** *T*
- **6.** Q

# 033 (part 2 of 5) 10.0 points

At which point is the slope smallest (*i.e.*, most negative)?

- **1.** *U*
- **2.** *S*
- **3.** *P*
- **4.** *R*
- **5.** *T*
- **6.** Q

## 034 (part 3 of 5) 10.0 points

At which point does the slope change from

positive to negative?

- **1.** *P*
- **2.** *T*
- **3.** *U*
- **4.** Q
- **5.** *R*
- **6.** *S*

## 035 (part 4 of 5) 10.0 points

At which point does the slope change from negative to positive?

- **1.** *P*
- **2.** *R*
- **3.** *U*
- **4.** Q
- **5.** *T*
- **6.** S

# 036 (part 5 of 5) 10.0 points

At which point is the tangent line parallel to the secant line  $\overline{PT}$ ?

- **1.** *S*
- **2.** *P*
- **3.** *R*
- **4.** *U*
- **5.** Q
- **6.** *T*

#### 037 10.0 points

Determine

$$\lim_{x \to 3} \left\{ \frac{1}{x-3} - \frac{3}{x^2 - 3x} \right\}.$$

- 1. limit does not exist
- **2.**  $\lim_{x \to 0} 1 = -3$
- 3.  $\lim_{x \to 0} \frac{1}{2}$
- 4. limit =  $-\frac{1}{2}$
- 5.  $\lim_{x \to 0} 1 = 3$
- **6.** limit =  $\frac{1}{3}$
- 7. limit =  $-\frac{1}{3}$

### 038 10.0 points

#### Which function has



as its graph?

- 1.  $f(x) = 2 2^{-x-1}$
- **2.**  $f(x) = 2^{x-1} 3$
- 3.  $f(x) = 2 3^{-x}$
- **4.**  $f(x) = 2^{-x-1} 2$
- 5.  $f(x) = 3^{-x} 2$
- **6.**  $f(x) = 3^x 3$

### 039 10.0 points

If the function f is continuous everywhere and

$$f(x) = \frac{x^2 - 16}{x + 4}$$

when  $x \neq -4$ , find the value of f(-4).

- 1. f(-4) = -4
- **2.** f(-4) = 8
- 3. f(-4) = 16
- **4.** f(-4) = -16
- 5. f(-4) = -8
- **6.** f(-4) = 4

### 040 (part 1 of 2) 10.0 points

Write the polynomial

$$1 - 2x + 8x^2 - 4x^3$$

in standard form.

a) What is its degree?

### 041 (part 2 of 2) 10.0 points

**b)** What is the leading coefficient?

#### 042 10.0 points

Shown are the graphs of distance versus time for three runners A, B, and C who run a 125 -m race and finish in tie. Which of the following statements about the runners is **false**?



1. Runner C gradually speeds up throughout the race.

**2.** At t = 7, runner B has a lower velocity than runner A.

**3.** At t = 1, runner A has a higher velocity than B.

**4.** Runner B runs as a constant speed throughout the race.

**5.** Runner A gradually slows down throughout the race.

#### 043 10.0 points

Find the value of

$$\lim_{x \to 2} \frac{2}{x-2} \left( 1 + \frac{6}{x-8} \right)$$

if the limit exists.

- 1. limit =  $-\frac{1}{3}$
- **2.** limit  $=\frac{1}{2}$
- 3. limit  $= -\frac{1}{2}$
- 4. limit does not exist

**5.** limit = 
$$\frac{1}{3}$$

## 044 10.0 points

Below is the graph of a function f.



Use the graph to determine  $\lim_{x \to -3} f(x)$ .

1. 
$$\lim_{x \to -3} f(x) = 1$$

2. 
$$\lim_{x \to -3} f(x) = 9$$

3. 
$$\lim_{x \to -3} f(x) = 12$$

**4.**  $\lim_{x \to -3} f(x)$  does not exist

5. 
$$\lim_{x \to -3} f(x) = 6$$

#### 045 10.0 points

Find the value of  $b, b \geq 0$ , for which

$$\lim_{x \to 0} \left\{ \frac{\sqrt{6x+b}-1}{x} \right\}$$

exists.

1. 
$$b = 3$$

**2.** 
$$b = 4$$

**3.** 
$$b = 2$$

**4.** 
$$b = 1$$

**5.** 
$$b = 0$$

## 046 10.0 points

Below is the graph of a function f.



Use the graph to determine

$$\lim_{x \to 3} f(x).$$

- 1. limit does not exist
- 2.  $\lim_{x \to 0} 1 = 7$
- 3. limit = 4
- 4.  $\lim_{x \to 0} 1 = 3$
- 5. limit = 12