Increasing the Efficiency of Neutral Atoms

Reducing Qubit Waste from Measurement-related Ejections

Jason Ludmir, Tirthak Patel (Advisor)

Rice University

Introduction

Background and Motivation

- Quantum computing offers speedups for HPC applications such as cryptography, optimization, ML and molecular simulation
- Neutral atom quantum computers offer customizable qubit topologies, lower decoherence rates, and improved scalability compared to other quantum technologies

The Problem: Measurements require physically ejecting atoms in the |1| state, leading to substantial time waste in reloading arrays

The Challenge: To reduce this waste, the primary challenge is to identify and address qubits that are likely to be measured in the |1⟩ state before the quantum circuit is fully executed

Our Solution: Leverage the probabilistic nature of quantum programs to reduce qubit ejections and atom array reloads

Our Approach: Our technique flips qubits likely to be in the |1| state before measurement by using adaptive scheduling, and efficiently moves atoms to refill ejected positions, thereby reducing qubit ejections and minimizing atom array reloads

Design & Implementation

Workflow: Reducing Atom Ejections via Output Distribution

Workflow: To reduce qubit ejections, we first execute and measure the output after a batch of shots. Using the joint output distribution, we derive marginal distributions for each qubit. Based on these probabilities, we insert X gates (also known as bit-flip gates) before measurement for qubits likely to be in the |1> state. This process is repeated for subsequent iterations.

How often are output probabilities recomputed?

- Constant, proportional, linear, quadratic, and entropic schedules
- Different schedules allow for optimization of different circuit types

How does it minimize array reloads?

- Maps circuit qubits to center of atom array for efficient refilling
- Moves nearby available atoms to fill ejected positions

Experimental Details

Methodology:

- 525 random circuits
 (16-30 qubits, 4-15 depth)
- 12 real algorithms from the QASMBench suite
- 1024 shots per circuit run
- IBM's Qiskit library with QASM Simulator backend
- Comparison with Oracle (best-case) and No Policy (baseline) scenarios

Oubits Lost or Ejected Qubits Oubits Lost or Ejected Qubits Nearby Qubits To Replace with Nearby Qubits Oubits No Qubits To Replace with Nearby Qubits Oubits Oubits

Atom Array Simulation:

- 256 atom array, mimicking the QuEra Aquila system (AWS cloud)
- Active qubits mapped to the atoms at the center of the atom array
- Idle qubits surround the active region of quantum computation
- Ejected qubits are replaced by nearby idle qubits (as shown above)
- Full array reload when insufficient idle qubits remain

Results & Analysis

We reduce the median num. of atom ejections & reloads by 25% and atom moves by 24% compared to the baseline for random

Entropic intervention technique performs best, nearly matching the performance of the Oracle – lower is better for all except subplot (d)

circuits

Our technique achieves better results on real algorithms, with 53% reduction in median atom ejections, 54% reduction in array reloads, and 53% reduction in atom moves

Discussion and Conclusion

- Effectiveness increases with more structured quantum algorithms with realistic characteristics
- Entropic intervention efficiently balances performance gains with the computational overhead of analysis and updates
- Significant reductions in atom ejections translate to substantial time savings in neutral atom quantum computers