Pure1 Chapter 11: Vectors

Chapter Practice

Key Points

- 1 If $\overrightarrow{PQ} = \overrightarrow{RS}$ then the line segments \overrightarrow{PQ} and \overrightarrow{RS} are equal in length and are parallel.
- **2** $\overrightarrow{AB} = -\overrightarrow{BA}$ as the line segment AB is equal in length, parallel and in the opposite direction to BA.
- 3 Triangle law for vector addition: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ If $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$ and $\overrightarrow{AC} = \mathbf{c}$, then $\mathbf{a} + \mathbf{b} = \mathbf{c}$
- 4 Subtracting a vector is equivalent to 'adding a negative vector': $\mathbf{a} \mathbf{b} = \mathbf{a} + (-\mathbf{b})$
- **5** Adding the vectors \overrightarrow{PQ} and \overrightarrow{QP} gives the zero vector **0**: $\overrightarrow{PQ} + \overrightarrow{QP} = 0$.
- **6** Any vector parallel to the vector **a** may be written as λ **a**, where λ is a non-zero scalar.
- 7 To multiply a column vector by a scalar, multiply each component by the scalar: $\lambda \binom{p}{q} = \binom{\lambda p}{\lambda q}$
- **8** To add two column vectors, add the x-components and the y-components $\binom{p}{q} + \binom{r}{s} = \binom{p+r}{q+s}$
- **9** A unit vector is a vector of length 1. The unit vectors along the x- and y-axes are usually denoted by \mathbf{i} and \mathbf{j} respectively. $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- **10** For any two-dimensional vector: $\binom{p}{q} = p\mathbf{i} + q\mathbf{j}$

Key Points

- **11** For the vector $\mathbf{a} = x\mathbf{i} + y\mathbf{j} = \begin{pmatrix} x \\ y \end{pmatrix}$, the magnitude of the vector is given by: $|\mathbf{a}| = \sqrt{x^2 + y^2}$
- **12** A unit vector in the direction of **a** is $\frac{\mathbf{a}}{|\mathbf{a}|}$
- **13** In general, a point P with coordinates (p, q) has position vector:

$$\overrightarrow{OP} = p\mathbf{i} + q\mathbf{j} = \begin{pmatrix} p \\ q \end{pmatrix}$$

- **14** $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$, where \overrightarrow{OA} and \overrightarrow{OB} are the position vectors of A and B respectively.
- **15** If the point *P* divides the line segment *AB* in the ratio λ : μ , then

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$$
$$= \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} (\overrightarrow{OB} - \overrightarrow{OA})$$

16 If **a** and **b** are two non-parallel vectors and $p\mathbf{a} + q\mathbf{b} = r\mathbf{a} + s\mathbf{b}$ then p = r and q = s

Chapter Exercises

1 Two forces \mathbf{F}_1 and \mathbf{F}_2 act on a particle.

$$\mathbf{F}_1 = -3\mathbf{i} + 7\mathbf{j}$$
 newtons

$$\mathbf{F}_2 = \mathbf{i} - \mathbf{j}$$
 newtons

The resultant force **R** acting on the particle is given by $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$.

a Calculate the magnitude of R in newtons.

(3 marks)

(2 marks)

- b Calculate, to the nearest degree, the angle between the line of action of R and the vector i.
- 2 A small boat S, drifting in the sea, is modelled as a particle moving in a straight line at constant speed. When first sighted at 09:00, S is at a point with position vector (-2i 4j) km relative to a fixed origin O, where i and j are unit vectors due east and due north respectively. At 09:40, S is at the point with position vector (4i 6j) km.
 - a Calculate the bearing on which S is drifting.
 - **b** Find the speed of S.
- 3 A football player kicks a ball from point A on a flat football field. The motion of the ball is modelled as that of a particle travelling with constant velocity (4i + 9j) m s⁻¹.
 - a Find the speed of the ball.
 - **b** Find the distance of the ball from A after 6 seconds.
 - c Comment on the validity of this model for large values of t.
- 4 ABCD is a trapezium with AB parallel to DC and DC = 4AB.

M divides DC such that DM: MC = 3:2, $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$.

Find, in terms of **a** and **b**:

a \overrightarrow{AM}

 \mathbf{b} \overrightarrow{BD}

 $\overrightarrow{a} \overrightarrow{B}$

d \overrightarrow{DA}

Chapter Exercises

5 The vectors $5\mathbf{a} + k\mathbf{b}$ and $8\mathbf{a} + 2\mathbf{b}$ are parallel. Find the value of k.

(3 marks)

- 6 Given that $\mathbf{a} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 10 \\ -2 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$ find:

- $a \ a + b + c$ $b \ a 2b + c$ $c \ 2a + 2b 3c$
- 7 In triangle \overrightarrow{ABC} , $\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j}$ and $\overrightarrow{AC} = 6\mathbf{i} + 3\mathbf{j}$, find:
 - a \overrightarrow{BC}

(2 marks)

b ∠BAC

(4 marks)

c the area of the triangle.

(2 marks)

- 8 The resultant of the vectors $\mathbf{a} = 4\mathbf{i} 3\mathbf{j}$ and $\mathbf{b} = 2p\mathbf{i} p\mathbf{j}$ is parallel to the vector
 - c = 2i 3j. Find:
 - a the value of p

(3 marks)

b the resultant of vectors **a** and **b**.

(1 mark)

- 9 For each of the following vectors, find
 - i a unit vector in the same direction
- ii the angle the vector makes with i
- **a** a = 8i + 15j **b** b = 24i 7j **c** c = -9i + 40j

- $\mathbf{d} \ \mathbf{d} = 3\mathbf{i} 2\mathbf{i}$
- 10 The vector $\mathbf{a} = p\mathbf{i} + q\mathbf{j}$, where p and q are positive constants, is such that $|\mathbf{a}| = 15$. Given that a makes an angle of 55° with i, find the values of p and q.

Chapter Exercises

11 Given that $|3\mathbf{i} - k\mathbf{j}| = 3\sqrt{5}$, find the value of k.

- (3 marks)
- 12 \overrightarrow{OAB} is a triangle. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M divides OA in the ratio 3:2. MN is parallel to OB.
 - a Express the vector \overrightarrow{ON} in terms of a and b. (4 marks)
 - **b** Find vector \overrightarrow{MN} .

(2 marks)

c Show that AN: NB = 2:3.

(2 marks)

- 13 Two forces, \mathbf{F}_1 and \mathbf{F}_2 , are given by the vectors $\mathbf{F}_1 = (4\mathbf{i} 5\mathbf{j}) \,\mathrm{N}$ and $\mathbf{F}_2 = (p\mathbf{i} + q\mathbf{j}) \,\mathrm{N}$. The resultant force, $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$ acts in a direction which is parallel to the vector $(3\mathbf{i} - \mathbf{j})$
 - a Find the angle between R and the vector i.

(3 marks)

b Show that p + 3q = 11.

(4 marks)

c Given that p = 2, find the magnitude of **R**.

- (2 marks)
- 14 A particle P is accelerating at a constant speed. When t = 0, P has velocity $\mathbf{u} = (3\mathbf{i} + 4\mathbf{j}) \,\text{m s}^{-1}$ and at time $t = 2 \,\text{s}$, P has velocity $\mathbf{v} = (15\mathbf{i} 3\mathbf{j}) \,\text{m s}^{-1}$.

The acceleration vector of the particle is given by the formula: $\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{t}$

Find the magnitude of the acceleration of P.

(3 marks)

Challenge

The point *B* lies on the line with equation 3y = 15 - 5x.

Given that $|\overrightarrow{OB}| = \frac{\sqrt{34}}{2}$, find two possible expressions for \overrightarrow{OB} in the form $p\mathbf{i} + q\mathbf{j}$.

Chapter Answers

```
a 2\sqrt{10} newtons
```

b
$$9.48 \, \text{km} \, \text{h}^{-1}$$

c The model ignores friction and air resistance. The model will become less accurate as t increases.

4 a
$$b - \frac{3}{5}a$$
 b $b - 4a$ c $\frac{8}{5}a - b$ d $3a - b$

$$c = \frac{8}{5}a - b$$

1.25

6 a
$$\binom{12}{-1}$$

a
$$\begin{pmatrix} 12 \\ -1 \end{pmatrix}$$
 b $\begin{pmatrix} -18 \\ 5 \end{pmatrix}$ **c** $\begin{pmatrix} 49 \\ 13 \end{pmatrix}$

8 **a**
$$p = -1.5$$
 b i -1.5 **j**

$$bi-1$$

9 **a** i
$$\frac{1}{17}(8i + 15j)$$
 ii 61.9° above

b i
$$\frac{1}{25}(24i - 7j)$$
 ii 16.3° below

c i
$$\frac{1}{41}(-9\mathbf{i} + 40\mathbf{j})$$
 ii 102.7° above

d i
$$\frac{1}{\sqrt{13}}(3i - 2j)$$
 ii 33.7° below

10
$$p = 8.6, q = 12.3$$

12 a
$$\frac{3}{5}$$
a + $\frac{2}{5}$ b b $\frac{2}{5}$ b

b
$$\frac{2}{5}$$
b

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}, \overrightarrow{AN} = \frac{2}{5}(\mathbf{b} - \mathbf{a}) \text{ so } AN : NB = 2 : 3$$

b
$$\mathbf{R} = (4+p)\mathbf{i} + (5-q)\mathbf{j}, 4+p = 3\lambda \text{ and } 5-q = -\lambda \\ 4+p = 3(q-5) \text{ so } p+3q=11$$

c
$$2\sqrt{10}$$
 newtons

14
$$\frac{\sqrt{193}}{2}$$

Challenge

$$\overrightarrow{OB} = \frac{3}{2}\mathbf{i} + \frac{5}{2}\mathbf{j} \text{ or } \frac{99}{34}\mathbf{i} + \frac{5}{34}\mathbf{j}$$