Subobject Classifiers

Following

Sheaves in Geometry and Logic Chapter I, Sections 3 & 4

Guide: Josh Chen

17 June '22 Notts-Bergen SGL reading group meeting

We begin with the ur-example. Recall that in Set, for any $A \subseteq S$ we have

$$A \xrightarrow{!} * \begin{cases} 0 \\ \downarrow i \end{cases} \downarrow 0$$

$$S \xrightarrow{\chi_A} \{0,1\}$$

where

$$\chi_A(s) = \begin{cases} 0 \text{ if } s \in A\\ 1 \text{ otherwise.} \end{cases}$$

That is, the mono $A \stackrel{i}{\hookrightarrow} S$ is a pullback of the mono $* \stackrel{0}{\hookrightarrow} 2$ along the characteristic function χ_A . From this we can already extract the ideas for the following two definitions:

Definition 1. A subobject of X is an isomorphism class of monos into X.

To elaborate: for any category \mathcal{C} and $X \in \mathcal{C}$, the monos into X form a full subcategory $\mathrm{Mono}_{\mathcal{C}}(X)$ of \mathcal{C}/X . This is a preorder, so "being isomorphic" is a property (not structure). Such an isomorphism class is a subobject.

Example 2. In Set, $\{0,1\} \subset \{0,1,2\}$, and the inclusion $i: \{0,1\} \hookrightarrow \{0,1,2\}$ witnesses $\{0,1\}$ as a subobject of $\{0,1,2\}$. But also the injection

$$f: \{2,3\} \rightarrow \{0,1,2\},\$$

where f(2) = 1, f(3) = 0, represents ("is") the same subobject.

Definition 3. A subobject classifier in a category \mathcal{C} with terminal 1 consists of an object Ω and a mono $\top \colon \mathbf{1} \to \Omega$, such that any mono arises as the pullback of \top along a unique arrow into Ω .

Explicitly: for any $X \in \mathcal{C}$ and mono $m \colon S \rightarrowtail X$, there's a unique *characteristic* or classifying map $\chi_S \colon X \to \Omega$ making

$$S \xrightarrow{!} \mathbf{1}$$

$$m \downarrow \qquad \downarrow^{\top}$$

$$X \xrightarrow{\chi_S} \Omega$$

a pullback.

Exercise 4. If $T \rightarrow X$ represents the same subobject as $S \rightarrow X$ then

$$T \xrightarrow{!} \mathbf{1}$$

$$\downarrow \qquad \qquad \downarrow^{\top}$$

$$X \xrightarrow{-\bar{\chi}_{S}} \Omega$$

is also a pullback square. That is, the characteristic map χ is the same for isomorphic monos. This justifies the name "subobject" classifier (as opposed to "mono" classifier).

For every preorder \lesssim we get a partial order by quotienting by

$$\sim := (\leq \cap \geq).$$

Applying this to $\operatorname{Mono}_{\mathcal{C}}(X)$ gives $\operatorname{Sub}_{\mathcal{C}}(X)$, the poset of subobjects of X. Forgetting the poset structure, for every object X we have a class $\operatorname{Sub}_{\mathcal{C}}(X)$ of subobjects of X. This is functorial: for $X \xrightarrow{f} Y$ we have the pullback map

$$f^* \colon \mathcal{C}/Y \to \mathcal{C}/X$$

which restricts to

$$f^* \colon \mathrm{Mono}_{\mathcal{C}}(Y) \to \mathrm{Mono}_{\mathcal{C}}(X)$$

(because pullbacks of monos are mono), and which further passes to the quotient

$$f^* \colon \mathrm{Sub}_{\mathcal{C}}(Y) \to \mathrm{Sub}_{\mathcal{C}}(X),$$

acting via $f^*[g] = [f^*g]$ (one can check that this is well defined). The upshot is that

$$\operatorname{Sub}_{\mathcal{C}} \colon \mathcal{C}^{op} \to \operatorname{Set}$$

is a (possibly large) presheaf on \mathcal{C} .

Definition 5. \mathcal{C} is well powered if for all $X \in \mathcal{C}$, $Sub_{\mathcal{C}}(X)$ is small.

What's the significance of all this to subobject classifiers? Well, the definition of a subobject classifier as

"A mono $\mathbf{1} \xrightarrow{\top} \Omega$ (representing a subobject), such that every subobject (represented by) $S \xrightarrow{m} X$ arises uniquely as a pullback of \top "

amounts to saying that there is a bijection

$$\operatorname{Hom}(X,\Omega) \cong \operatorname{Sub}_{\mathcal{C}}(X).$$

Furthermore, by properties of pullback, this isomorphism ends up being natural in X. That is, the (target of the) subobject classifier Ω is a representing object for the subobject functor. In fact, the converse is also true.

Proposition 6 (Proposition 1, SGL I§3). A locally small category C with terminal object and "enough" pullbacks has a subobject classifier if and only if

$$\operatorname{Sub}_{\mathcal{C}} \colon \mathcal{C}^{op} \to \operatorname{Set}$$

is representable.

Proof. (\Rightarrow) Let $\mathbf{1} \xrightarrow{\top} \Omega$ be a subobject classifier for \mathcal{C} . We claim that Ω is a representing object for Sub_{\mathcal{C}}. Firstly, for any $X \in \mathcal{C}$ the map

$$\varphi \colon \operatorname{Hom}(X,\Omega) \to \operatorname{Sub}_{\mathcal{C}}(X)$$

$$f \mapsto [f^*\top]$$

that sends f to the subobject represented by $f^*\top$ is a bijection, since, by the universal property of Ω , f is the unique preimage of $[f^*\top]$ under φ .

One also easily checks that φ is also natural: for any $g\colon X\to Y$ in \mathcal{C} , the commutativity of

$$\begin{array}{ccc} \operatorname{Hom}(Y,\Omega) & \stackrel{\varphi}{\longrightarrow} \operatorname{Sub}_{\mathcal{C}}(Y) \\ & \stackrel{-\circ g}{\downarrow} & & \downarrow g^* \\ \operatorname{Hom}(X,\Omega) & \stackrel{\varphi}{\longrightarrow} \operatorname{Sub}_{\mathcal{C}}(X) \end{array}$$

boils down to the fact that for any k, $g^*(f^*k)$ is isomorphic to $(f \circ g)^*k$ in \mathcal{C}/X .

 (\Leftarrow) Conversely, assume that Ω is a representing object for $\mathrm{Sub}_{\mathcal{C}}$ via a natural isomorphism

$$\psi \colon \mathrm{Sub}_{\mathcal{C}} \xrightarrow{\cong} \mathrm{Hom}(-, \Omega).$$

Define our candidate "true" subobject, represented by some mono

$$\top : \Omega' \rightarrow \Omega$$
.

to be the correspondent of id_{Ω} under ψ , i.e. $[\top] := \psi^{-1}(\mathrm{id}_{\Omega})$.

Now let $[m] \in \operatorname{Sub}_{\mathcal{C}}(X)$ be a subobject of X. Take its candidate characteristic map $\chi \in \operatorname{Hom}(X,\Omega)$ to be its correspondent under ψ , i.e.

$$\chi \coloneqq \psi([m]).$$

Naturality of ψ means that

$$id_{\Omega} \circ \chi = \psi([\top]) \circ \chi = \psi([\chi^* \top]),$$

so that m and $\chi^* \top$ represent the same subobject and are thus isomorphic, and so χ is an arrow along which m is a pullback. Furthermore χ is the unique such arrow since ψ is an isomorphism.

Finally it remains to show that Ω' is terminal. One easily checks that for any $X \in \mathcal{C}$ and $f, g: X \to \Omega'$, the two squares

$$\begin{array}{cccc} X & \xrightarrow{f} & \Omega' & & X & \xrightarrow{g} & \Omega' \\ \parallel & & \downarrow^\top & & \parallel & \downarrow^\top \\ X & \xrightarrow{\top \circ f} & \Omega & & X & \xrightarrow{\top \circ g} & \Omega \end{array}$$

are pullbacks, so that $\top \circ f = \top \circ g$ by uniqueness of the bottom arrows, and hence f = g by monocity of \top .

Corollary 6.1. A locally small category with subobject classifier is well powered.¹

Corollary 6.2. Subobject classifiers are unique up to isomorphism.

¹i.e. each object has set-many subobjects, which I think means (later) that the power object is nice and can be defined.

Addendum

In the meeting Elisabeth pointed out that $\operatorname{Sub}_{\operatorname{Set}}$ is the contravariant powerset functor, whose action on maps is to take $f \colon X \to Y$ to the map $\mathcal{P}(Y) \to \mathcal{P}(X)$ that sends $A \subseteq Y$ to the preimage $f^{-1}(A) \subseteq X$.

There is also the *covariant* powerset functor that sends $f: X \to Y$ to the *direct* image map

$$\mathcal{P}(X) \to \mathcal{P}(Y)$$

 $A \mapsto f(A).$

It should be possible to generalize this to arbitrary toposes using the (regular) epi-mono factorization. We'll possibly discuss this in the next meeting.