(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-217007 (P2001-217007A)

(43)公開日 平成13年8月10日(2001.8.10)

(51) Int.Cl.7		識別記号	F I	Ť	テーマコート*(参考)		
H01M	10/40		H01M	10/40	Α	4 J 0 0 2	
C08K	3/32		C08K	3/32		5H029	
	5/109		,	5/109			
	5/1535			5/1535			
	5/1565			5/1565			
			一结 免结土 免绝木类	砂質の数11 OI	(全 0 百)	島終育に続く	

(21)出願番号 特願2000-128241(P2000-128241)

(22) 出顧日 平成12年4月27日(2000.4.27)

(31) 優先権主張番号 特顯平11-334958

(32)優先日 平成11年11月25日(1999.11.25)

(33)優先権主張国 日本(JP)

(71)出願人 000005278

株式会社プリヂストン

東京都中央区京橋1丁目10番1号

(72) 発明者 大月 正珠

東京都武蔵村山市中藤3-36-5

(72)発明者 遠藤 茂樹

埼玉県所沢市下安松1045-2-203

(72) 発明者 荻野 隆夫

埼玉県所沢市東町11-1-906

(74)代理人 100079049

弁理士 中島 淳 (外3名)

最終頁に続く

(54) 【発明の名称】 非水電解液二次電池

(57) 【要約】

【課題】 電池として必要とされる電池容量等の電池 特性を維持しつつ、自己消火性ないし難燃性に優れ、耐 劣化性に優れ、非水電解液の界面抵抗が低く、内部抵抗 が低く、低温放電特性に優れる非水電解液二次電池の提 供。

【解決手段】 正極と、負極と、支持塩及びリチウム塩溶解液(0.5mol/1)の導電率が小さくとも2.0mS/cmのホスファゼン誘導体を含有する非水電解液と、を有することを特徴とする非水電解液二次電池である。リチウム塩溶解液(0.5mol/1)の導電率が、小さくとも4.0mS/cmのホスファゼン誘導体を含有する態様、ホスファゼン誘導体の引火点が、100℃以上である態様、ホスファゼン誘導体が分子構造中にハロゲン元素を含む置換基を有する態様、非水電解液が非プロトン性有機溶媒を含有する態様等が好ましい。

【特許請求の範囲】

正極と、負極と、支持塩及びリチウム塩 【請求項1】 溶解液(0.5mol/1)の導電率が小さくとも2. 0mS/cmのホスファゼン誘導体を含有する非水電解 液と、を有することを特徴とする非水電解液二次電池。 【請求項2】 リチウム塩溶解液(0.5mol/1) の導電率が、小さくとも4.0mS/cmのホスファゼ ン誘導体を含有する請求項1に記載の非水電解液二次電

【請求項3】 ホスファゼン誘導体の引火点が、100 ℃以上である請求項1又は2に記載の非水電解液二次電 池。

【請求項4】 ホスファゼン誘導体が、分子構造中にハ ロゲン元素を含む置換基を有する請求項1から3のいず れかに記載の非水電解液二次電池。

【請求項5】 非水電解液が、非プロトン性有機溶媒を 含有する請求項1から請求項4のいずれかに記載の非水 電解液二次電池。

【請求項6】 非プロトン性有機溶媒が、環状エステル 化合物又は鎖状エステル化合物の少なくともいずれかを 20 含有する請求項5に記載の非水電解液二次電池。

【請求項7】 環状エステル化合物が、エチレンカーボ ネート、プロピレンカーボネート、又は、γーブチロラ クトンの少なくともいずれかである請求項6に記載の非 水電解液二次電池。

【請求項8】 鎖状エステル化合物が、ジエチルカーボ ネートである請求項6に記載の非水電解液二次電池。

【請求項9】 非プロトン性有機溶媒の25℃における 粘度が、10mPa·s (10cP) 以下である請求項 5から8のいずれかに記載の非水電解液二次電池。

【請求項10】 支持塩がLiPF6を含み、非水電解 液がエチレンカーボネートを含み、ホスファゼン誘導体 の非水電解液における含有量が、1、5~2、5体積% である請求項1から9のいずれかに記載の非水電解液二 次電池。

【請求項11】 支持塩がLiPF6を含み、非水電解 液がエチレンカーボネートを含み、ホスファゼン誘導体 の非水電解液における含有量が、2.5体積%を超える 請求項1から9のいずれかに記載の非水電解液二次電 池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、従来の非水電解液 二次電池と同様の電池容量等の電池特性を維持しつつ、 自己消火性ないし難燃性に優れ、耐劣化性に優れ、か つ、内部抵抗の低い非水電解液二次電池に関する。

[0002]

【従来の技術】従来、特に、パソコン・VTR等のAV ・情報機器のメモリーバックアップやそれらの駆動電源

年、高電圧・高エネルギー密度という利点を有し、か つ、優れた自己放電性を示すことから、ニカド電池に代 替するものとして非水電解液二次電池が非常に注目さ れ、種々の開発が試みられて、その一部は商品化されて いる。例えば、ノート型パソコンや携帯電話等は、その 半数以上が非水電解液二次電池によって駆動している。 【0003】これらの非水電解液二次電池においては、 負極を形成する材料としてカーボンが多用されている が、その表面にリチウムが生成した場合の危険性の低減 及び高駆動電圧化を目的として、各種有機溶媒が電解液 として使用されている。又、カメラ用の非水電解液二次 電池としては、負極材料としてアルカリ金属(特に、リ チウム金属やリチウム合金) 等が用いられているため、 その電解液としては、通常エステル系有機溶媒等の非プ ロトン性有機溶媒が使用されている。

【0004】しかし、前記非水電解液二次電池は、高性 能ではあるものの、安全性において以下のように問題が あった。先ず、リチウム金属やリチウム合金等は、水分 に対して非常に高活性であるため、例えば電池の封口が 不完全で水分が侵入した際等には、負極材料と水とが反 応して水素が発生したり、発火する等の危険性が高いと いう問題があった。

【0005】また、リチウム金属は低融点(約170 ℃) であるため、短絡時等に大電流が急激に流れると、 電池が異常に発熱して電池が溶融する等の非常に危険な 状況を引き起こすという問題があった。更に、電池の発 熱につれ前述の有機溶媒をベースとする電解液が気化・ 分解してガスを発生したり、発生したガスによって電池 の破裂・発火が起こるという問題があった。

【0006】前記問題を解決するため、例えば、筒形電 30 池において、電池の短絡時・過充電時に温度が上がって 電池内部の圧力が上昇した際に、安全弁が作動すると同 時に電極端子を破断させることにより、該筒型電池に、 所定量以上の過大電流が流れることを抑止する機構を電 池に設けた技術が提案されている(日刊工業新聞社、 「電子技術」1997年39巻9号)。

【0007】しかし、前記機構が常に正常に作動すると 信頼できるわけではなく、正常に作動しない場合には、 過大電流による発熱が大きくなり、発火等の危険な状態 となることが懸念されるため問題が残る。

【0008】前記問題を解決するためには、前述のよう に安全弁等の付帯的部品を設けることによる安全対策で はなく、根本的に高い安全性を有すると共に、従来の非 水電解液二次電池と同様の優れた電池容量等の電池特性 を有し、内部抵抗の低い非水電解液二次電池の開発が要 求されている。

[0009]

【発明が解決しようとする課題】本発明は、前記従来に おける諸問題を解決、又は、諸要求に応え、以下の目的 用の二次電池としては、ニカド電池が主流であった。近 50 を達成することを課題とする。即ち、本発明は、電池と

して必要とされる電池容量等の電池特性を維持しつつ、 自己消火性ないし難燃性に優れ、耐劣化性に優れ、非水 電解液の界面抵抗が低く、内部抵抗が低く、低温放電特 性に優れる非水電解液二次電池を提供することを目的と する。

[0010]

【課題を解決するための手段】前記課題を解決するため の手段としては、以下の通りである、即ち、

<1> 正極と、負極と、支持塩及びリチウム塩溶解液 (0.5 mo 1/1) の導電率が小さくとも2.0 mS 10/c mのホスファゼン誘導体を含有する非水電解液と、を有することを特徴とする非水電解液二次電池である。
<2> リチウム塩溶解液 (0.5 mo 1/1) の導電率が、小さくとも4.0 mS/c mのホスファゼン誘導体を含有する前記<1>に記載の非水電解液二次電池である。

【0011】<3> ホスファゼン誘導体の引火点が、 100℃以上である前記<1>又は<2>に記載の非水 電解液二次電池である。

<4> ホスファゼン誘導体が、分子構造中にハロゲン 20 元素を含む置換基を有する前記<1>から<3>のいず れかに記載の非水電解液二次電池である。

<5> 非水電解液が、非プロトン性有機溶媒を含有する前記<1>から<4>のいずれかに記載の非水電解液 二次電池である。

【0012】<6> 非プロトン性有機溶媒が、環状エステル化合物又は鎖状エステル化合物の少なくともいずれかを含有する前記<5>に記載の非水電解液二次電池である。

<7> 環状エステル化合物が、エチレンカーボネート、プロピレンカーボネート、又は、γーブチロラクトンの少なくともいずれかである前記<6>に記載の非水電解液二次電池である。

<8> 鎖状エステル化合物が、ジエチルカーボネートである前記<6>に記載の非水電解液二次電池である。<9> 非プロトン性有機溶媒の25℃における粘度が、10mPa・s (10cP)以下である前記<5> から<8>のいずれかに記載の非水電解液二次電池である

【0013】<10> 支持塩がLiPF6を含み、非水電解液がエチレンカーボネートを含み、ホスファゼン 誘導体の非水電解液における含有量が、1.5~2.5 体積%である前記<1>から<9>のいずれかに記載の 非水電解液二次電池である。

<11> 支持塩がLiPF6を含み、非水電解液がエチレンカーボネートを含み、ホスファゼン誘導体の非水電解液における含有量が、2.5体積%を超える前記
1>から<9>のいずれかに記載の非水電解液二次電池である。

[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明の非水電解液二次電池は、正極と、負極と、非水 電解液と、を有し、必要に応じてその他の部材を有す る。

【0015】 [正極] 前記正極の材料としては、特に制限はなく、公知の正極材料から適宜選択して使用できる。例えば、V2O5、V6O13、MnO2、MoO3、LiCoO2、LiNiO2、LiMn2O4等の金属酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられ、これらの中でも、高容量で安全性が高く電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn2O4が特に好適である。これらの材料は、1種単独で使用してもよく、2種以上を併用してもよい。

【0016】前記正極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。

【0017】 [負極] 前記負極は、例えば、リチウム又 はリチウムイオン等を吸蔵・放出可能である。従ってその材料としては、リチウム又はリチウムイオン等を吸蔵・放出可能であれば特に制限はなく、公知の負極材料から適宜選択して使用できる。例えばリチウムを含む材料、具体的には、リチウム金属自体、リチウムと、アルミニウム、インジウム、鉛、又は、亜鉛等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高い点で黒鉛等の炭素材料が好ましい。これらの材料は、1種単独で使用してもよく、2種以上を併用してもよい。前記負極の形状としては、特に制限はなく、前記正極の形状と同様の公知の形状から適宜選択することができる。

【0018】 [非水電解液] 前記非水電解液は、支持塩 及びホスファゼン誘導体を含有し、必要に応じてその他 の成分を含有する。

【0019】-支持塩-

前記支持塩としては、例えば、リチウムイオンのイオン 源等が好ましく、該リチウムイオンのイオン源として は、例えば、LiCl〇4、LiBF4、LiPF6、L iCF3S〇3、及び、LiAsF6、LiC4F9S〇3、 40 Li(CF3S〇2)2N、Li(C2F5S〇2)2N等の リチウム塩が好適に挙げられる。これらは、1種単独で 使用してもよく、2種以上を併用してもよい。

【0020】前記支持塩の前記非水電解液に対する配合 量としては、前記非水電解液(溶媒成分)1kgに対 し、0.2~1モルが好ましく、0.5~1モルがより 好ましい。前記配合量が、0.2モル未満の場合には、 非水電解液の十分な導電性を確保できず、電池の充放電 特性に支障をきたすことがある一方、1モルを超える場 合には、非水電解液の粘度が上昇し、前記リチウムイオ ン等の十分な移動度が確保できないため、前述と同様に

非水電解液の十分な導電性を確保できず、電池の充放電 特性に支障をきたすことがある。

【0021】ーホスファゼン誘導体ー

前記非水電解液が、ホスファゼン誘導体を含有する理由 としては、以下の通りである。従来、非水電解液二次電 池における非水電解液に用いられている非プロトン性有 機溶媒をベースとした非水電解液においては、短絡時等 に大電流が急激に流れ、電池が異常に発熱した際に、気 化・分解してガスが発生したり、発生したガスにより電 池の破裂・発火が起こることがあるため危険性が高い。

【0022】一方、これら従来の非水電解液に、ホスフ ァゼン誘導体が含有されていれば、ホスファゼン誘導体 から誘導される窒素ガス等の作用によって、前記非水電 解液が優れた自己消火性ないし難燃性を発現し得るた め、前述のような危険性を低減することが可能となる。

【0023】前記ホスファゼン誘導体の導電率として は、0.5m01/1濃度のリチウム塩溶解液の導電率 で、小さくとも2.0mS/cmであることが必要とさ れ、4.0~15mS/cmが好ましい。前記導電率 が、2.0mS/cm未満の場合には、電池として必要 とされる十分な導電性を確保できないため、非水電解液 二次電池の内部抵抗が大きくなり、充放電時の電位低 下、又は、電位上昇が大きくなり好ましくない。一方、 前記ホスファゼン誘導体の導電率が2.0mS/cm以 上の場合には、非水電解液の十分な導電性を確保できる ため、非水電解液二次電池の内部抵抗を抑制し、充放電 時の電位降下、又は、電位上昇を抑えることが可能とな る。

【0024】尚、前記導電率は、下記の測定方法により 測定して得られた値である。非水電解液二次電池に、5 mAの定電流を印加しながら、導電率計(商品名:CD M210型、ラジオメータートレーディング(株)製) を用いて、所定条件(温度:25℃、圧力:常圧、水分 率:10ppm以下)下で測定する。尚、理論的には、 先ず非水電解液のコンダクタンス (Gm) を求め、これ からケーブル抵抗(R)の影響を除いて、電解液そのも ののコンダクタンス(G)を求め、得られた(G)と、 既知のセル定数 (K) から、導電率K=G・K (S/c m)を求める方法である。

【0025】前記非水電解液二次電池の内部抵抗 (Ω) としては、 $0.1\sim0.3(\Omega)$ が好ましく、 $0.1\sim$ 0.25(Ω)がより好ましい。

【0026】尚、前記内部抵抗は、公知の測定方法、例 えば下記内部抵抗の測定方法により得ることができる。 --内部抵抗の測定方法--

非水電解液二次電池を作製し、充放電曲線を測定した 際、充電停止 (Charge Rest) 又は放電停止 (Discharge Rest) に伴う電位のふれ幅 を測定して得る。

体の含有量としては、少なくとも20体積%が好まし い。前記含有量が、20体積%未満では、自己消火性が 十分でないことがある。尚、本発明において、自己消火 性とは、下記自己消火性の評価方法において、着火した 炎が25~100mmラインで消火し、かつ、落下物に も着火が認められない状態となる性質をいう。

【0028】また、前記非水電解液におけるホスファゼ ン誘導体の含有量としては、少なくとも30体積%がよ り好ましい。前記含有量が、30体積%以上であれば、 非水電解液に十分な難燃性を発現させることが可能とな る。尚、本発明において、難燃性とは、下記難燃性の評 価方法において、着火した炎が25mmラインまで到達 せず、かつ、落下物にも着火が認められない状態をい

【0029】--自己消火性・難燃性の評価方法--前記自己消火性・難燃性の評価は、UL(アンダーライ ティングラボラトリー)規格のUL94HB法をアレン ジした方法を用い、大気環境下において着火した炎の燃 焼挙動を測定・評価した。その際、着火性、燃焼性、炭 化物の生成、二次着火時の現象についても観察した。具 体的には、UL試験基準に基づき、不燃性石英ファイバ ーに1. 0mlの各種電解液を染み込ませ、127mm ×12.7mmの試験片を作製して行った。

【0030】前記ホスファゼン誘導体の含有量の上限値 としては、特に制限はなく、非水電解液の100体積% が前記ホスファゼン誘導体であってもよい。

【0031】前記ホスファゼン誘導体の引火点として は、発火の抑制等の点で、100℃以上が好ましく、1 50℃以上がより好ましい。

【0032】前記ホスファゼン誘導体としては、分子構 造中にハロゲン元素を含む置換基を有するのが好まし い。前記分子構造中に、ハロゲン元素を含む置換基を有 すれば、前記ホスファゼン誘導体から誘導されるハロゲ ンガスによって、前記ホスファゼン誘導体の含有量の数 値範囲内のうちより少ない含有量でも、より効果的に、 前記非水電解液に自己消火性ないし難燃性を発現させる ことが可能となる。

【0033】また、置換基にハロゲン元素を含む化合物 においてはハロゲンラジカルの発生が問題となることが あるが、本発明における前記ホスファゼン誘導体は、分 子構造中のリン元素がハロゲンラジカルを捕促し、安定 なハロゲン化リンを形成するため、このような問題は発 生しない。

【0034】前記ハロゲン元素のホスファゼン誘導体に おける含有量としては、2~80重量%が好ましく、2 ~60重量%がより好ましく、2~50重量%が更に好 ましい。前記含有量が、2重量%未満では、ハロゲンを 含有させることにより得られる効果が有効に得られない ことがある一方、80重量%を超えると、粘度が高くな 【0027】前記非水電解液におけるホスファゼン誘導 50 り、これを含有させることにより非水電解液の導電性が

低下することがある。前記ハロゲン元素としては、フッ素、塩素、臭素等が好適であり、これらの中でも、特にフッ素が好ましい。

【0035】前記ホスファゼン誘導体としては、非水電解液の導電性の点から、常温(25℃)において液体であれば特に制限はないが、例えば、下記一般式(1)で表される鎖状ホスファゼン誘導体、又は、下記一般式

(2)で表される環状ホスファゼン誘導体が好適に挙げられる。

--【0-0-3 6-】一般式(1)_

【化1】

但し、一般式(1)において、R¹、R²、及び、R³は、一価の置換基又はハロゲン元素を表す。 X は、炭素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、アンチモン、ビスマス、酸素、イオウ、セレン、テルル、及び、ポロニウムからなる群から選ばれる元素の少なくとも1種を含む有機基を表す。 Y¹、Y²、及び、Y³は、2価の連結基、2価の元素、又は、単結合を表す。

【0037】一般式(2) (PNR⁴2) n

但し、一般式 (2) において、 R^4 は、一価の置換基又はハロゲン元素を表す。nは、 $3\sim15$ を表す。

【0038】一般式(1)において、 R^1 、 R^2 、及び、 R^3 としては、一価の置換基又はハロゲン元素であれば特に制限はなく、一価の置換基としては、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられる。又、ハロゲン元素としては、例えば前述のハロゲン元素が好適に挙げられる。これらの中でも、特に前記非水電解液を低粘度化し得る点で、アルコキシ基が好ましい。 $R^1 \sim R^3$ は、総て同一の種類の置換基でもよく、それらのうちのいくつかが異なる種類の置換基でもよい。

【0039】前記アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。これらの中でも、R¹~R³としては、総てがメトキシ基、エトキシ基、メトキシエトキシ基、又は、メトキシエトキシエトキシ基が好適であり、低粘度・高誘電率の観点から、総てがメトキシ基又はエトキシ基であるのが特に好適である

【0040】前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。前記アシル基としては、ホルミル基、アセチル基、

プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられる。前記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。

【0041】これらの置換基中の水素元素は、前述のようにハロゲン元素で置換されているのが好ましい。

【0042】一般式(1)において、Y¹、Y²、及び、Y³で表される基としては、例えば、CH2基のほか、酸素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカンジウム、ガリウム、イットリウム、インジウム、ランクン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウム、ジルコニウム、鉛、リン、パナジウム、ヒ素、ニオブ、アンチモン、タンタル、ビスマス、クロム、モリブデン、テルル、ポロニウム、タングステン、鉄、コバルト、ニッケル等の元素を含む基が挙げられ、これらの中でも、CH2基、及び、酸素、硫黄、セレン、窒素の元素を含む基等が好ましい。特に、Y¹、Y²、及び、Y³が、硫黄、セレンの元素を含む場合には、非水電解液の難燃性が格段に向上するため好ましい。Y¹~Y。 は、総て同一種類でもよく、いくつかが互いに異なる種類でもよい。

【0043】一般式(1)において、Xとしては、有害性、環境等への配慮の観点からは、炭素、ケイ素、窒素、リン、酸素、及び、イオウからなる群から選ばれる元素の少なくとも1種を含む有機基が好ましく、以下の一般式(3)で表される構造を有する有機基がより好ましい。

【0044】一般式(3)

【化2】

30

$$Y^5R^5$$
 O Y^8R^8 Y^6R^6 O Y^9R^9

有機基(A) 有機基(B) 有機基(C)

一般式(3)

但し、一般式(3)において、 $R^5 \sim R^9$ は、一価の置換 基又はハロゲン元素を表す。 $Y^5 \sim Y^9$ は、2 価の連結 基、2 価の元素、又は単結合を表し、Z は 2 価の基又は 2 価の元素を表す。

【0045】一般式(3)において、R⁵~R⁹としては、一般式(1)におけるR¹~R³で述べたのと同様の一価の置換基又はハロゲン元素がいずれも好適に挙げられる。又、これらは、同一有機基内において、それぞれ同一の種類でもよく、いくつかが互いに異なる種類でもよい。R⁵とR⁶とは、及び、R⁸とR⁹とは、互いに結合して環を形成していてもよい。一般式(3)において、Y⁵~Y⁹で表される基としては、一般式(1)における Y¹~Y³で述べたのと同様の2価の連結基又は2価の基

等が挙げられ、同様に、硫黄、セレンの元素を含む基で ある場合には、非水電解液の難燃性が格段に向上するた め特に好ましい。これらは、同一有機基内において、そ れぞれ同一の種類でもよく、いくつかが互いに異なる種 類でもよい。一般式(3)において、ことしては、例え ば、CH2基、CHR (Rは、アルキル基、アルコキシ ル基、フェニル基等を表す。以下同様。)基、NR基の ほか、酸素、硫黄、セレン、ホウ素、アルミニウム、ス カンジウム、ガリウム、イットリウム、インジウム、ラ マニウム、ジルコニウム、鉛、リン、バナジウム、ヒ 素、ニオブ、アンチモン、タンタル、ビスマス、クロ ム、モリブデン、テルル、ポロニウム、タングステン、 鉄、コバルト、ニッケル等の元素を含む基等が挙げら れ、これらの中でも、CH2基、CHR基、NR基のほ か、酸素、硫黄、セレンの元素を含むのが好ましい。特 に、硫黄、セレンの元素を含む場合には、非水電解液の 難燃性が格段に向上するため好ましい。

【0046】一般式(3)において、有機基としては、 特に効果的に自己消火性ないし難燃性を付与し得る点 で、有機基(A)で表されるようなリンを含む有機基が 特に好ましい。また、有機基が、有機基(B)で表され るようなイオウを含む有機基である場合には、非水電解 液の小界面抵抗化の点で特に好ましい。

【0047】前記一般式(2)において、R4として は、一価の置換基又はハロゲン元素であれば特に制限は なく、一価の置換基としては、アルコキシ基、アルキル 基、カルボキシル基、アシル基、アリール基等が挙げら れる。又、ハロゲン元素としては、例えば、前述のハロ ゲン元素が好適に挙げられる。これらの中でも、特に前 30 記非水電解液を低粘度化し得る点で、アルコキシ基が好 ましい。該アルコキシ基としては、例えば、メトキシ 基、エトキシ基、メトキシエトキシ基、プロポキシ基、 フェノキシ基等が挙げられる。これらの中でも、メトキ シ基、エトキシ基、メトキシエトキシ基が特に好まし い。これらの置換基中の水素元素は、前述のようにハロ ゲン元素で置換されているのが好ましい。

【0048】前記一般式(1)~(3)におけるR'~ R⁹、Y¹~Y³、Y⁵~Y⁹、Zを適宜選択することによ り、より好適な粘度、導電性の非水電解液の合成が可能 40 となる。これらのホスファゼン誘導体は、1種単独で使 用してもよく、2種以上を併用してもよい。

【0049】前記ホスファゼン誘導体の25℃における 粘度としては、非水電解液の導電性向上の点で10mP a·s (10cP) 以下が好ましい。

【0050】ーその他の成分ー

前記その他の成分としては、安全性の点で特に非プロト ン性有機溶媒が好ましい。前記非水電解液に、前記非プ ロトン性有機溶媒が含有されていれば、前記負極の材料 た、容易に前記非水電解液の導電性を向上させ得る。

【0051】前記非プロトン性有機溶媒としては、特に 制限はないが、前記非水電解液の低粘度化の点で、エー テル化合物やエステル化合物等が挙げられる。具体的に は、1,2-ジメトキシエタン、テトラヒドロフラン、 ジメチルカーボネート、ジエチルカーボネート、ジフェ ニルカーボネート、エチレンカーボネート、プロピレン カーボネート、ソープチロラクトン、ソーバレロラクト ン、メチルエチルカーボネート、エチルメチルカーボネ ンタン、タリウム、炭素、ケイ素、チタン、スズ、ゲル 10 ート、等が好適に挙げられる。これらの中でも、エチレ ンカーボネート、プロピレンカーボネート、ャーブチロ ラクトン等の環状エステル化合物、1、2-ジメトキシ エタン、ジメチルカーボネート、エチルメチルカーボネ ート、ジエチルカーボネート等の鎖状エステル化合物等 が好適である。特に、環状のエステル化合物は、比誘電 率が高くリチウム塩等の溶解性に優れる点で、鎖状のエ ステル化合物は、低粘度であるため、非水電解液の低粘 度化の点で好適である。これらは1種単独で使用しても よく、2種以上を併用してもよいが、2種以上を併用す るのが好適である。 20

> 【0052】前記非プロトン性有機溶媒の25℃におけ る粘度としては、非水電解液の導電性向上の点で、10 mPa·s (10cP) 以下が好ましく、5mPa·s (5 c P) 以下がより好ましい。

【0053】前記非水電解液としては、ホスファゼン誘 導体、LiPF6、及び、エチレンカーボネートを含む 場合に特に好ましく、この場合、前述の記載にかかわら ず、非水電解液におけるホスファゼン誘導体の含有量が 少量であっても、優れた自己消火性ないし難燃性の効果 を有する。即ち、かかる場合においては、ホスファゼン 誘導体の非水電解液における含有量が1.5~2.5体 積%で自己消火性に優れた非水電解液となり、2.5体 積%を超える含有量で難燃性に優れた非水電解液とな

【0054】 [その他の部材] 前記その他の部材として は、非水電解液二次電池において、正負極間に、両極の 接触による電流の短絡を防止する役割で介在させるセパ レーターが挙げられる。前記セパレーターの材質として は、両極の接触を確実に防止し得、かつ、電解液を通し たり含んだりできる材料、例えば、ポリテトラフルオロ エチレン、ポリプロピレン、ポリエチレン等の合成樹脂 製の不織布、薄層フィルム等が好適に挙げられる。これ らの中でも、厚さ20~50μm程度のポリプロピレン 又はポリエチレン製の微孔性フィルムが特に好適であ

【0055】前記セパレーターのほか、前記その他の部 材としては、通常電池に使用されている公知の各部材が 好適に挙げられる。

【0056】以上説明した本発明の非水電解液二次電池 と反応することなく高い安全性を得ることができる。ま 50 の形態としては、特に制限はなく、コインタイプ、ボタ

ンタイプ、ペーパータイプ、角型又はスパイラル構造の 円筒型電池等、種々の公知の形態が好適に挙げられる。 前記スパイラル構造の場合、例えば、シート状の正極を 作製して集電体を挟み、これに、負極(シート状)を重 ね合わせて巻き上げる等により非水電解液二次電池を作 製することができる。

【0057】以上説明した本発明の非水電解液二次電池 は、電池として必要とされる電池容量等の電池特性を維 持しつつ、自己消火性ないし難燃性に優れ、耐劣化性に 優れ、非水電解液の界面抵抗が低く、内部抵抗が低く、 低温放電特性に優れる非水電解液二次電池である。

[0058]

【実施例】以下、実施例と比較例を示し、本発明を具体 的に説明するが、本発明は下記の実施例に何ら限定され るものではない。

(実施例1)

[非水電解液の調製] γープチロラクトン(非プロトン 性有機溶媒、25℃における粘度: 1. 7mPa・s (1.7cP)) の40mlに、ホスファゼン誘導体 (鎖状EO型ホスファゼン誘導体(前記一般式(1)に 20 おいて、Xが、一般式(3)で表される有機基(A)の 構造であり、 $Y^1 \sim Y^3$ 、及び、 $Y^5 \sim Y^6$ が総て単結合で あり、R¹~R³、及び、R⁵~R⁶が、総てエトキシ基で あり、乙が酸素である化合物)) (引火点:155 ℃))の10mlを添加(20体積%)し、更に、Li BF4 (リチウム塩) を0.5モル/kgの濃度で溶解 させ、非水電解液を調製した。尚、本実施例で用いた前 記ホスファゼン誘導体の0.5mol/lリチウム塩溶 解液の導電率を、前述の測定方法で測定したところ、 7. 5 m S / c m で あった。

【0059】ー自己消火性ないし難燃性の評価ー 得られた非水電解液について、前述の「自己消火性・難 燃性の評価方法」と同様にして、下記に示すように評価 を行った。結果を表1に示す。

【0060】 < 難燃性の評価>着火した炎が、装置の2 5 mmラインまで到達せず、かつ網からの落下物にも着 火が認められなかった場合を難燃性ありと評価した。 <自己消火性の評価>着火した炎が、25~100mm ラインの間で消火し、かつ、網落下からの落下物にも着 火が認められなかった場合を自己消火性ありと評価し た。

<燃焼性の評価>着火した炎が、100mmラインを超 えた場合を燃焼性ありと評価した。

【0061】 [非水電解液二次電池の作製] 化学式Li CoOzで表されるコバルト酸化物を正極活物質として 用い、LiCoO2100部に対して、アセチレンプラ ック(導電助剤)を10部、テフロン(登録商標)バイ ンダー(結着樹脂)を10部添加し、有機溶媒(酢酸エ チルとエタノールとの50/50体積%混合溶媒)で混

mの薄層状の正極シートを作製した。その後、得られた 正極シート2枚を用いて、表面に導電性接着剤を塗布し た、厚さ25μmのアルミニウム箔(集電体)を挟み込 み、これに厚さ25µmのセパレーター(微孔性フィル ム:ポリプロピレン性)を介在させ、厚さ150μmの カーボンフィルム(負極材料)を重ね合わせて巻き上 げ、円筒型電極を作製した。該円筒型電極の正極長さは

【0062】前記円筒型電極に、前記非水電解液を注入 10 して封口し、単三型リチウム電池を作製した。

【0063】一充放電容量の測定ー

約260mmであった。

得られた非水電解液二次電池について、下記充放電容量 の測定方法と同様にして、初期及び50サイクル充電・ 放電後の充放電容量(mAh/g)を測定した。結果を 表1に示す。

【0064】--充放電容量の測定方法--

正極又は負極を用いて、20℃における充放電曲線を測 定し、この時の充電量又は放電量を、前記正極又は負極 の重量で除することにより求めた。結果を表1に示す。 尚、用いた正極 (LiCoO2) では、理論容量は14 5 m A h / g であり、負極 (カーボンフィルム) では、 350mAh/gである。

【0065】-内部抵抗の測定-

前述と同様にして非水電解液二次電池の内部抵抗を測定 した。結果を表1に示す。

【0066】一低温放電特性の評価(低温放電容量の測 定) -

上限電圧4.5V、下限電圧3.0V、放電電流100 mA、充電電流50mAの条件で、50サイクルまで充 放電を繰り返した。この時、充電は20℃にて行い、放 電は、低温 (-20℃、-10℃) にて行った。この時 の低温における放電容量を、20℃における放電容量と 比較し、下記式より放電容量減少率を算出した。結果を

式:放電容量減少率=100-(低温放電容量/放電容 量 (20℃))×100(%)

【0067】 (実施例2) 実施例1の「非水電解液の調 製」において、yープチロラクトンを用いず、前記ホス ファゼン誘導体(鎖状EO型ホスファゼン誘導体(鎖状 40 EO型ホスファゼン誘導体(前記一般式(1)におい て、Xが、一般式(3)で表される有機基(A)の構造 であり、Y¹~Y³、及び、Y⁵~Y6が総て単結合であ り、R1~R3、及び、R5~R6が、総てエトキシ基であ り、2が酸素である化合物)) の含有量を、50mlに 代えた外は、実施例1と同様に非水電解液を調製し、自 己消火性ないし難燃性の評価を行った。尚、本実施例で 用いた前記ホスファゼン誘導体の0.5mol/lリチ ウム塩溶解液の導電率を、前述の測定条件下で測定した ところ、2.0mS/cmであった。又、実施例1と同 練した後、ロール圧延により厚さ100μm、幅40m 50 様にして非水電解液二次電池を作製し、充放電容量、内

部抵抗、低温放電特性を測定・評価した。結果を表1に 示す。

【0068】 (実施例3) 実施例1の「非水電解液の調 製」において、ホスファゼン誘導体を10ml添加(2 0体積%) したことに代え、ホスファゼン誘導体(鎖状 EO型ホスファゼン誘導体(前記一般式(1)におい て、Xが、一般式(3)で表される有機基(A)の構造 であり、 $Y^1 \sim Y^3$ 、及び、 $Y^5 \sim Y^6$ が総て単結合であ り、R1~R3、及び、R5~R6が、総てエトキシ基であ り、乙が酸素である化合物))におけるエトキシ基中の 10 水素元素をフッ素で置換(フッ素元素のホスファゼン誘 導体における含有量:12.4重量%) したホスファゼ ン誘導体を60体積%となるように添加したほかは、実 施例1と同様に非水電解液を調製し、自己消火性ないし 難燃性の評価を行った。尚、本実施例で用いた前記ホス ファゼン誘導体の0.5mol/lリチウム塩溶解液の 導電率を、前述の測定条件下で測定したところ、4.5 mS/cmであった。又、実施例1と同様にして非水電 解液二次電池を作製し、充放電容量、内部抵抗、低温放 電特性を測定した。結果を表1に示す。

【0069】 (実施例4) 実施例1の「非水電解液の調製」において、 γ -ブチロラクトンの40mlを、エチレンカーボネートの48.5mlに代え、ホスファゼン誘導体(鎖状EO型ホスファゼン誘導体(前記一般式(1)において、Xが、一般式(3)で表される有機基(A)の構造であり、 $Y^1 \sim Y^3$ 、X0び、 $Y^5 \sim Y^6$ が総て単結合であり、 $X^1 \sim X^3$ 、 $X^5 \sim X^6$ が総であり、 $X^1 \sim X^3$ 、 $X^5 \sim X^6$ が、総てエトキシ基であり、 $X^1 \sim X^3$ 、 $X^5 \sim X^6$ が、総てエトキシ基であり、 $X^1 \sim X^3$ 0、 $X^5 \sim X^6$ 0、 $X^5 \sim$

解液二次電池を作製し、充放電容量、内部抵抗、低温放 電特性を測定した。結果を表1に示す。

【0070】(比較例1)実施例1の「非水電解液の調製」において、ホスファゼン誘導体(鎖状EO型ホスファゼン誘導体(前記一般式(1)において、Xが、一般式(3)で表される有機基(A)の構造であり、 $Y^1 \sim Y^3$ 、X0、 $X^5 \sim Y^6$ が総て単結合であり、 $X^1 \sim X^3$ 、 $X^5 \sim X^6$ が、総てエトキシ基であり、 $X^1 \sim X^3$ 、 $X^5 \sim X^6$ が、総てエトキシ基であり、 $X^1 \sim X^3$ 、 $X^2 \sim X^6$ が、総てエトキシ基であり、 $X^2 \sim X^6$ が、総てエトキシ基であり、 $X^2 \sim X^6$ が、総でエトキシ基であり、 $X^2 \sim X^6$ が、総でエトキシ基であり、 $X^2 \sim X^6$ が、総でエトキシ基であり、 $X^3 \sim X^6$ を $X^4 \sim X^6$ が、総でエトキシ基であり、 $X^4 \sim X^6$ を問題を表し、 $X^4 \sim X^6$ が、総でエトキシ基であり、 $X^4 \sim X^6$ を問題を表し、 $X^4 \sim X^6$ が、総でエトキシ基であり、 $X^4 \sim X^6$ を開始し、自己は、 $X^4 \sim X^6$ が、のでは、 $X^4 \sim X^6$ が、 $X^4 \sim X^6$ が、

【0071】 (比較例2) 実施例1の「非水電解液の調 製」において、ホスファゼン誘導体(鎖状EO型ホスフ ァゼン誘導体(前記一般式(1)において、Xが、一般 式(3)で表される有機基(A)の構造であり、Y1~ Y^3 、及び、 $Y^5 \sim Y^6$ が総て単結合であり、 $R^1 \sim R^3$ 、 20 及び、R5~R6が、総てエトキシ基であり、Zが酸素で ある化合物))を、メトキシエトキシエトキシエトキシ エトキシホスファゼン誘導体(鎖状MEEEEE型ホスフ ァゼン誘導体(前記一般式(1)において、Xが、一般 式(3)で表される有機基(A)の構造であり、Y¹~ Y^3 、及び、 $Y^5 \sim Y^6$ が総て単結合であり、 $R^1 \sim R^3$ 、 及び、R5~R6が、総てメトキシエトキシエトキシエト キシエトキシ基であり、 Zが酸素である化合物)) に代 えた外は、実施例1と同様に非水電解液を調製し、自己 消火性ないし難燃性の評価を行った。尚、本比較例で用 30 いた前記ホスファゼン誘導体の 0.5 mol/lリチウ ム塩溶解液の導電率を、前述の測定方法で測定したとこ ろ、0.1mS/cmであった。また、実施例1と同様 にして非水電解液二次電池を作製し、充放電容量、内部 抵抗、低温放電特性を測定した。結果を表1に示す。

	ホスファゼン誘導 体の導電率(0.5 mol/リチウム塩 溶解液)(mS/c m)	電池の充放電容量 (mAh/g)の測定		低温放電特性の評価(50サイ クル後の放電容量減少率)		自己消火性な	内部抵抗
		初期充 電·放電 後	50サイク ル充電・ 放電後	放電時の温 度: −10℃	放電時の温度: -20℃	いし難燃性の評 価	の評価 (Ω)
実施例1	7.5	145	145	40%以下	70%以下	自己消火性あり	0.19
実施例2	2.0	145	140	40%以下	70%以下	難燃性あり	0.21
実施例3	4.5	145	142	40%以下	70%以下	難燃性あり	0.22
実施例4	7.5	145	145	40%以下	70%以下	難燃性あり	0.19
比較例1		145	143	50%以上	85%以上	燃烧性	0.18
比較例2	0.1	-	-	-	-	難燃性あり	0.35

* 比較例2で、電池の充放電容量の測定、低温放電特性の評価においては、充放電不能であった。

【0072】実施例1~4では、非水電解液の自己消火 性ないし難燃性が優れており、非水電解液二次電池の充 放電容量にも優れ、内部抵抗が低く、低温放電特性に優 20 し難燃性に優れ、耐劣化性に優れ、非水電解液の界面抵 れることがわかる。

[0073]

【発明の効果】本発明によれば、電池として必要とされ る電池容量等の電池特性を維持しつつ、自己消火性ない 抗が低く、内部抵抗が低く、低温放電特性に優れる非水 電解液二次電池を提供することができる。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

CO8L 85/02

CO8L 85/02

Fターム(参考) 4J002 CQ011 DE197 DH007 ED026

EH006 EL066 EL106 EV257

EV287 GD00 G000

5H029 AJ02 AJ04 AK02 AK03 AK05

AK16 AK18 AL06 AL07 AL12

AL18 AM02 AM03 AM07 DJ09

HJ01 HJ10 HJ14 HJ20