Curs 12

Algoritmi de decizie pentru limbaje independente de context (CFG)

Teoremă:

Este decidabil dacă limbajul lui L(G) pentru G dat este:

- (a) vid
- (b) finit
- (c) infinit

Demonstrație:

Fie G = (N, T, S, P) o gramatică independentă de context.

Pentru a), în forma normală Chomsky se identifică neterminalele folositoare (accesibile din S și terminating). Dacă S este terminating, atunci $L(G) \neq \emptyset$.

Pentru b) și c) transformăm G în gramatica G' în forma normală Chomsky cu $L(G') = L(G) - \{\lambda\}$. G' = (N', T, S, P').

Considerăm un graf orientat pentru G'. Nodurile sunt neterminalele din G'(N'). Pentru $A, B \in N'$, avem muchia $(A, B) \iff \exists A \to BC$ sau $A \to CB$ în P'.

Exemplu:

Demonstrăm că L(G') e finit $(b) \iff$ graful nu are cicluri.

Observație:

G' este în FNC \Rightarrow nu avem simboluri nefolositoare. Dacă graful are cicluri $\Rightarrow L(G')$ nu este finit.

Luăm un ciclu $A_0A_1...A_nA_0$, deci în gramatică avem: $A_0 \to \alpha_1A_1\beta_1 \to \alpha_2A_2\beta_2 \to ... \to \alpha_nA_n\beta_n \to \alpha_{n+1}A_0\beta_{n+1}$ unde $\alpha_i, \beta_i \in N'^*$ cu proprietatea că $|\alpha_i\beta_i| = i$ (din forma normala Chomsky).

 $G' \text{ nu are simboluri nefolositoare} \Rightarrow \alpha_{n+1} \stackrel{*}{\Rightarrow} w_1, \ \beta_{n+1} \stackrel{*}{\Rightarrow} w_2, \ w_1, w_2 \in T^*$ și $\exists y, z \in T^*$ astfel încât $S \stackrel{*}{\Rightarrow} yA_0z$ și $\exists v \in T^*$ astfel încât $A_0 \stackrel{*}{\Rightarrow} v$. Deci, $S \stackrel{*}{\Rightarrow} yA_0z, A_0 \stackrel{*}{\Rightarrow} w_1A_0w_2, A_0 \stackrel{*}{\Rightarrow} v$. Așadar, $\forall i \geq 1 \ S \stackrel{*}{\Rightarrow} yA_0z \stackrel{*}{\Rightarrow} yw_1A_0w_2z \stackrel{*}{\Rightarrow} yw_1^2A_0w_2^2z \stackrel{*}{\Rightarrow} yw_1^iA_0w_2^iz \stackrel{*}{\Rightarrow} yw_1^ivw_2^iz \in L(G') = L(G) - \{\lambda\}$

Demonstrăm că dacă graful nu are cicluri $\Rightarrow L(G')$ e finit. Presupunem că graful nu are cicluri, definim rank(A) = cel mai lung drum în graf care pleacă din $A(A \in N')$. Este bine definit pentru că nu avem drumuri infinite (fără cicluri).

Observatie:

Dacă $A \to BC \Rightarrow rank(A) > rank(B)$ și rank(A) > rank(C). Demonstrăm prin inducție că din A nu putem deriva șiruri mai lungi de 2^r unde r = rank(A). $r = 0 \Rightarrow rank(A) = 0 \Rightarrow outdegree(A) = 0$. CNF ne spune că A este folositor, deci avem producții $A \to a$, $a \in T \Rightarrow$ orice șir derivat are lungimea $1 = 2^0$

Presupunem că r > 0 și proprietatea adevărată pentru neterminalele de rank < r. Fie $A \in N'$ cu rank(A) = r. Fie $w \in T^*$ astfel încât $A \stackrel{*}{\Rightarrow} w$. A se rescrie în w cu anumite producții.

Dacă prima derivare este $A \to a, a \in T \Rightarrow |w| = 1$. Dacă primul pas este $A \to BC$ cu rank(B) < r și $rank(c) < r \Rightarrow w = w_1w_2, B \stackrel{*}{\Rightarrow} w_1, C \stackrel{*}{\Rightarrow} w_2$ și $|w_1| \le 2^{r-1}, |w_2| \le 2^{r-1} \Rightarrow |w| = |w_1| + |w_2| \le 2^{r-1} + 2^{r-1} = 2^r$. În gramatica G luăm S (neterminalul de rank maxim). $rank(S) = r_0 \Rightarrow$

În gramatica G luăm S (neterminalul de rank maxim). $rank(S) = r_0 \Rightarrow \forall w \in T^*$ derivat din S $(S \stackrel{*}{\Rightarrow} W)$ avem că $|w| \leq 2^{r_0} \Rightarrow L(G')$ e finit. \mathcal{QED}

Teoremă:

Pentru cuvântul w și gramatica G = (N, T, S, P) este decidabil dacă $w \in L(G)$. Demonstrație: algoritmul Cocke-Younger-Kasami cu complexitatea $\mathcal{O}(n^3)$.

Problema corespondenței lui Post (PCP)

Se dau două liste de cuvinte $A=x_1,x_2,...,x_k$ și $B=y_1,y_2,...,y_k$ cu $x_i,y_i\in\Sigma^*$, $\forall i=\overline{1,k}$. Spunem că avem o soluție dacă există o secvență de numere $i_1,i_2,...,i_n$ cu $n\geq 1$ și $i_j\in\{1,2,..,k\}\forall j=\overline{1,n}$ astfel încât $x_{i_1}x_{i_2}...x_{i_n}=y_{i_1}y_{i_2}...y_{i_n}$

Exemplu: $A = \{1, 10111, 10\}, B = \{111, 10, 0\}$. O soluție este $\{2, 1, 1, 3\}$. $A: 10111\ 1\ 1\ 0 = 101111110$, $B = 10\ 111\ 111\ 0 = 101111110$.

Exemplu: $A = \{10, 011, 101\}, B = \{101, 11, 011\}$ NU are solutie.

Teoremă:

PCP nu este decidabilă.

Reformulare: nu există un algoritm care să decidă dacă PCP are sau nu soluție (chiar și pentru cazul liniar $\Sigma = \{a, b\}$).

Folosim PCP pentru a arăta că anumite proprietăți ale CFG nu sunt decidabile.

Teoremă:

Nu se poate decide algoritmic dacă o gramatică independentă de context este ambiguă.

Demonstrație: Fie $A = \{x_1, x_2, ..., X_k\}$ și $B = \{y_1, y_2, ..., y_k\}$ o instanță a PCP. Fie $\$, 0, 1 \notin \Sigma$ trei simboluri noi. Fie $L_A = \{x_{i_1}x_{i_2}...x_{i_n}\$01^{i_1}01^{i_2}...01^{i_n}|1 \le i_1, i_2, ..., i_n \le k\}$,și $L_B = \{y_{i_1}y_{i_2}...y_{i_n}\$01^{i_1}01^{i_2}...01^{i_n}|1 \le i_1, i_2, ..., i_n \le k\}$. Fie gramatica $G = (\{S, S_a, S_b\}, \Sigma \cup \{\$, 0, 1\}, S, P)$ unde $P = \{x_i, x_i, ..., x_i \le k\}$.

$$S \to S_A | S_B, S_A \to x_i S_A 01^i | \$ \ \forall i \in \{1..k\}, S_B \to y_i S_B 01^i | \$ \ \forall i \in \{1..k\} \}.$$

Evident, G este independentă de context și $L(G) = L_A \cup L_B$ instanța PCP(A,B) are soluție $\iff \exists i_1,i_2,...i_n$ astfel încât $x_{i_1}x_{i_2}...x_{i_n} = y_{i_1}y_{i_2}...y_{i_n}$. Deci în G producem $x_{i_1}x_{i_2}...x_{i_n}\$01^{i_n}01^{i_{n-1}}...01^{i_1}$ pe partea S_A și $y_{i_1}y_{i_2}...y_{i_n}\$01^{i_n}01^{i_{n-1}}...01^{i_1}$ pe partea S_B . Deci avem un cuvânt cu două derivări stângi diferite (reguli liniare). $S \Rightarrow S_A \Rightarrow x_{i_1}S_A01^{i_1} \Rightarrow x_{i_1}x_{i_2}S_A01^{i_2}01^{i_1} \stackrel{*}{\Rightarrow} x_{i_1}x_{i_2}...x_{i_n}\$01^{i_n}...01^{i_1}$ analog pe partea S_B , deci G este ambiguă dacă PCP(A,B) are soluție .

Reciproc, arătăm că dacă G este ambiguă, PCP(A,B) are soluție. Deoarece cuvintele 01^i de la dreapta lui \$ ne spun exact ce producții s-au folosit este evident că din S_A (sau S_B) avem o derivare unică. G este ambiguă, deci ambiguitatea provine din alegerea S_A sau S_B la primul pas. Deci există cuvântul W_{AB} astfel încât $S_A \stackrel{*}{\Rightarrow} W_{AB}$ și $S_B \stackrel{*}{\Rightarrow} W_{AB}$.

Descompunem W_{AB} și aflăm $i_1, i_2, ..., i_n$ a.î. $x_{i_1}x_{i_2}...x_{i_n} = y_{i_1}y_{i_2}...y_{i_n}$. Deci am găsit o soluție pentru PCP(A, B). QED

Probleme nedecidabile:

 G_1 și G_2 gramatici independente de context, R expresie regulată. Următoarele întrebări sunt nedecidabile:

- (a) G_1 este ambiguă?
- (b) $L(G_1) \cap L(G_2) \neq \emptyset$?
- (c) $L(G_1) \neq L(G_2)$?
- (d) $L(G_1) \neq L(R)$?

- (e) $L(G_1) \neq T^*$?
- (f) $L(G_2) L(G_1) \neq \emptyset$?
- (g) $L(R) L(G_1) \neq \emptyset$?

Ierarhia lui Chomsky

Limbajul	Gramatica	Automatul/mașina
Reg. tip 3	regulată	$\overline{\mathrm{DFA/NFA}/\lambda - NFA/\mathrm{RE}}$
CF tip 2	CFG	' PDA '
CS tip 1	CSG	TM linear bounded
RE tip 0	arbitrară	TM