

UNCLASSIFIED

AD NUMBER

AD480384

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Mar 1966.
Other requests shall be referred to Marine
Engineering Lab [Navy], Annapolis, MD
21402.**

AUTHORITY

USNSSC ltr, 17 Sep 1969

THIS PAGE IS UNCLASSIFIED

UNITED STATES NAVY
MARINE ENGINEERING LABORATORY

ANNAPOLIS, MARYLAND — 21402

AREA CODE 301

268-7711

IN REPLY REFER TO:

NP/9820(628 KHK)
Assigt. 62 701
Rept. 110/66

12 APR 1966

From: Commanding Officer and Director
To: Director, Special Projects Office

Subj: MEL Research and Development Phase Report 110/66;
Transmittal of

1. Transmitted herewith is MEL Research and Development Report 110/66, Reliability Prediction for a Deep Submergence Rescue Vehicle; Second Reliability Model, Assignment 62 701.

R. J. Wyde

Copy to:
(See Distribution List, Page ii)

R. J. WYLDE
Director

BEST

AVAILABLE

COPY

Reliability Prediction for a
Deep Submergence Rescue Vehicle;
Second Reliability Model;

Assignment 62 701
MEL R&D Phase Report 110/66
March 1966

By
Robert L. Ragot and
Robert L. Hamilton

Robert L. Ragot
ROBERT L. RAGOT

Robert L. Hamilton
ROBERT L. HAMILTON

Approved by:

R. J. Wyld
R. J. WYLDE
Electrical Systems Division

Each transmittal of this document outside the agencies of the
U. S. Government must have prior approval of Chief, Bureau of
Ships, USN, (Code 210L), Washington, D. C. 20360

ABSTRACT

A second reliability model of the Deep Submergence Rescue Vehicle (DSRV) is defined. On the basis of this model, a prediction is made of the DSRV reliability for a typical rescue mission. The predicted reliability is computed to be 29%, for a 26-hour vehicle-operating time. The major factor contributing to the low predicted reliability of the vehicle is the high failure rate assumed for the forward and skirt (exterior) lamps. A two-orders-of-magnitude decrease in the assumed failure rate for these underwater lamps results in a predicted reliability of about 80%. Recommendations are made for improving future DSRV reliability studies.

MEL Repcrt 110/66

ADMINISTRATIVE INFORMATION

The effort reported herein was funded under Special Projects Fund Category PC 6-0005. MEL Assignment number was 62-701.

REFERENCES

- (a) MEL Reliability Memorandum No. 4, of 14 July 1965, DSRV First-Cut Reliability Analysis; Mission Definition and Scope of the Analysis
- (b) ARINC Research Corp. Report of 1 June 1965, Initial DSRV Rescue Mission Reliability Analysis
- (c) ARINC Research Corp. Report of 30 June 1965, Deep Submergence Rescue Vehicle Equipments Reliability Predictions and Allocations
- (d) SPC Proposal Request SP001-0139-66, of 28 September 1965, Circular of Requirements for Design and Construction of Deep Submergence Rescue Vehicle
- (e) NASL Dwg LP-9500-23 TM-2 of 30 June 1965 (As revised), Sensor Placement (External) Rescue Vehicle
- (f) NASL Lab. Project 9500-23 TM-2 of June 1965, Sensor Suit for the Prototype Deep Submergence Rescue Vehicle
- (g) MEL Dwg. No. SK00001 of 28 August 1965, Single-Thread Drawing Numbering System

RELIABILITY PREDICTION FOR A DEEP SUBMERGENCE RESCUE VEHICLE,
SECOND RELIABILITY MODEL

1.0 INTRODUCTION

This report explains the need for a second reliability model for the Deep Submergence Rescue Vehicle (DSRV), defines the second model, and presents the results of the computer run made with it. It is emphasized that although the second model is considered an improvement over the first model, it in turn has its limitations. Rather than discontinue the reliability prediction effort because an exact representation of the vehicle cannot be achieved, it will be continued as long as there are significant improvements to be made in the reliability prediction.

1.1 Background. The DSRV is currently being developed by the Special Projects Office (SPO) as a means of rescuing personnel from a distressed submarine on the ocean bottom. Under the Task Statement of SPO Project Order No. 5-0009 (Budget Project 20), of 23 April 1965, the U. S. Navy Marine Engineering Laboratory (MEL), Annapolis was requested to conduct studies leading to the prediction of reliability for the entire rescue vehicle (including all electrical/electronic and mechanical subsystems, and structures of the vehicle).

The desired completion date for the initial study was June 30, 1965. Due to a shortage of both available time and personnel, MEL secured contractor support to perform a major part of the initial study. The following study tasks, however, were performed by MEL:

- System definition: based on a U. S. Navy Bureau of Ships (BUSHIPS) concept drawing and equipment lists from Sensors and Navigation and Integrated Control and Display Subsystem managers.
- Definition of mission (rescue trip): phases and phase times for that portion of a rescue mission when the DSRV operates alone (outlined in Appendix A). These times were correlated with the Technical Development Plan (TDP) generated by SPO. The number of rescue trips required to rescue the distressed submarine's personnel complement was determined by correspondence with BUSHIPS Code 525 (Submarines Branch).

MEL Report 110-66

- Definition of the total elapsed mission time: 36½ hours, and total vehicle operating time of 26.2 hours.

- Assignment of use-factors (by means indicated in reference (a)) to each of the vehicle components for each phase of the mission.

Study tasks performed by the contractor were:

- Construction of the first system model (block diagram) and development of reliability equations for the system.

- Development of a computer program to calculate reliabilities for the components, vehicle functions, and the entire vehicle.

- Determination of best available, and most appropriate, failure rate data for DSRV components.

Results of the initial reliability study are reported in references (b) and (c). These references contain the system block diagrams, the computed reliabilities and a basic failure-rate data package. This data package contains many composite failure rates which are supported by a more detailed data package retained by MEL. The computer program (in the form of card decks) was supplied to MEL as part of the contractor's study task, and is on file for record purposes.

2.0 SUMMARY

2.1 The second reliability model for the DSRV incorporates more accurate system structuring plus corrections to several component failure rates. A vehicle reliability of 29% for a 36½-hour rescue mission has been computed for the second model. This is much lower than the 88% (predicted) and 94% (allocated) figures which resulted from the first model. The most significant contribution to this low reliability of 29% is made by the high failure rate assumed for the forward and skirt (exterior) lamps.

2.2 An approximate tradeoff of vehicle reliability versus the failure rate for these lamps (see Figure 1) indicates a reduction in the assumed failure rate (from 166,000 to 1,660 failures per million operating hours) will increase the predicted vehicle reliability to about 80%. No significant increase

U. S. Navy Marine Engineering Laboratory

Figure 1 - Tradeoffs (Approximate) of Lamp Failure Rate versus DSRV Reliability

beyond 80% is realized for further reduction in the lamp failure rate.

2.3 Further improvement in DSRV reliability beyond the 80% value can be effected by:

- Generally decreasing other component failure rates.
- Including system DSRV, or functional redundancies which were not known during the development of the second model.
- Adding redundant equipment.

2.4 Recommendations are made for improving future DSRV reliability studies. These recommendations include:

- Performance of additional detailed studies including operational sequence analysis and sensitivity studies.
- Construction of a reliability model which allows for dependency of component failures.
- Determination of component failure distributions, and summing to yield composite failure-time distributions for subsystems and/or capabilities of the vehicle.
- An output data format which highlights changes and deficiencies. Deficiencies could then be immediately identified with a weak component, subsystem, or equipment of the vehicle - performance weaknesses could also be highlighted.

3.0 NEED FOR NEW MODEL

A new DSRV model is required because the definition of the original model for the DSRV was a simplified expedient to meet a contract deadline. It was admittedly not a good representation of the DSRV as it existed prior to June 1965 and, subsequent to the publication of references (b) and (c), there have been changes in the DSRV concept. Several components have had new failure rates ascribed to them.

Examples of the inadequacies of the first model together with the changes in concept and the changed failure rates are presented in the following paragraphs.

3.1 Inadequacies. In reference (c), Figures 2 and 13 (which are block diagrams of the Navigation function) indicate the vertical obstacle avoidance sonar as an alternate to the short range sonar, televisions and viewports. This is an error. It is a long-range, forward-looking device used to detect obstacles, while the short-range sonar is a downward-looking sonar, used to get a close-range sonar "picture" of the distressed submarine's hatch area. While the televisions and viewports may be forward-looking, they are again short-range.

Figure 13 of reference (c) shows the horizontal obstacle avoidance sonar as an alternate to the short-range sonar, televisions and viewports. Again, this is a misconception.

3.2 Changes in Concept. As stated in reference (d), there will be only two emergency breathing equipments on the DSRV, one for the two operators and one for the medical corpsman. Previously there were to have been three for the DSRV crew, plus fifteen (including three spares) for the rescuees.

The control and rescue sphere hatches will not be required to keep out sea pressure. However, these hatches will be required to seal against a maximum external pressure of five atmospheres (see reference (d)). This is the highest pressure personnel could tolerate (for any appreciable time) inside the distressed submarine.

The first model considered two forward-pointing and six downward-pointing 650-watt lamps plus a single 250-watt skirt lamp. The latest sensor placement drawing (reference (e)) by the Naval Applied Science Laboratory (NAVALAPLSCIENLAB) shows the following (exterior) lamps:

- Two 800-watt, forward-pointing lamps.
- Five 250-watt, downward-pointing lamps (one, located forward, is trainable fore, aft and down).
- A single 85-watt skirt lamp.

3.3 Changes in Failure Rates. According to NAVAPLSCIENLAB the underwater telephone will have a lower failure rate than is assigned in the first model, due to the use of transistorized components. The new failure rate is 222 failures per million

operating hours. (This corresponds to a mean time between failure of 4,500 hours.)

New failure rates have been assigned to the new lamps mentioned above in paragraph 3.2 on the basis of mean, or rated, life figures supplied by NAVAPLUSCENLAB. With no other information available, the assumption is made that these mean-life figures are equivalent to mean time between failures. The (assumed) failure rates (the reciprocals of mean time between failure) are:

(a)	800-watt lamps	16,600 Failures per million operating hours
(b)	250 and 85-watt lamps	166,000 Failures per million operating hours

4.0 DEFINITION OF SECOND MODEL

Definition of the second DSRV model includes the block diagrams, reliability equations, assumptions and limitations and input data which are used to compute vehicle reliability.

4.1 Block Diagrams. Figures 1 through 12 of Appendix B are block diagrams representing the twelve functions which comprise the DSRV. The second model is based on the same basic DSRV concept as the first model. A comparison with Figures 1 through 12 of reference (c), however, shows some significant differences in the logical connections of the two models. These differences are due not to the changes in concept, but to a different and, it is hoped, a more accurate interpretation of the DSRV concept. The degree of accuracy of the second model remains to be determined.

4.2 Reliability Equations. Appendix C contains the FORTRAN statement* used for computing DSRV reliability in the second model. The reliability equations for the twelve figures of Appendix B are listed as sequences (SEQ) 11 through 22. Overall DSRV reliability is computed as the product of these twelve equations. Sequences (SEQ) 34 through 45 are the reliability

* For details of the computer program set up for the second model, see MEL Technical Memorandum 415/66 of December 1965, Deep Submergence Rescue Vessel Reliability Prediction.

equations for the same twelve functions, when considered separately.

4.3 Assumptions and Limitations. Inherent in the definition of the second model are the following considerations:

- Clear water exists at the rescue site. This enables the use of optical aids, as well as the use of short-range sonar in the mating operation.
- Beacons suitable for aiding DSRV navigation are planted prior to the first rescue trip.
- There are active personnel aboard the distressed submarine. This enables DSRV homing on hull noise (hammering).
- A single television camera will be sufficient for manipulator operation.
- Only the three television cameras described in Appendix A of reference (f) are considered. This constitutes a limitation of the model since there are presently four television cameras on the DSRV (See reference (d)).
- The rescue mission is as defined in reference (a), and as abbreviated in Appendix A of this report.
- The viewport optical reliability (probability of no optical degradation) is assumed equal to the viewport structural reliability.
- Emergency breathing equipment reliability is assumed equal to that of the oxygen storage, control and display equipment.
- The helium storage, control and display equipment included in the Life Support function will probably not be in the DSRV. Inclusion of this equipment makes the Life Support function model somewhat conservative.
- DSRV components have an exponential failure distribution.
- DSRV component failures are independent (failure of one does not cause failure of another).

Other components not included in the model are the portable radiation detector, differential pressure gauge, the inverters for the sonars and other Sensor/Navigation equipments, the sonar (mechanical) installation, film cameras, strobe lights, recorder and telemetry and ultra high-frequency radio. The radio, cameras, strobe lights, and recording equipment are not critical in completing the mission, and are therefore not included. Omission of the other components constitutes a limitation of the model. Maintenance of the vehicle is not considered.

4.4 Input Data. Component operating times and failure rates complete the definition of the second model. Appendix D includes a computer listing of all input data in numerical order following the component drawing numbers established in reference (g). Appendix E is a computer listing of the data, in numerical order of assigned* component numbers.

Several changes in component failure rates have been made to correct errors made in transposing them from the data package, which was a working document, to the Reliability Data report, which is part of reference (c). These changes are listed, by assigned number, in Appendix F.

In several instances, changes in component operating times were made to be consistent with the second model or with new battery and hydraulic package power-profiles. These power profiles were changed to agree with operating time estimates of NAVAPLSCIENLAB and Howard Research Corporation. These changes in operating time are listed in Appendix F.

5.0 RESULTS

Appendix D contains the print-out of the computer results for the second model. Pages 1 through 6 present the equipment and component reliabilities. Page 7 lists the twelve function reliabilities and the overall DSRV reliability figure of 29%. In computing these function reliabilities, each component is considered in only one of the twelve functions, during any given time period. This disregards the fact that, operationally, the component could be contributing to more than one function at a time. Since so many components contribute

* Each component is given an identification (or assigned) number, for use in the computer program.

to both the Navigation and the Search and Surveillance functions during the same time period (i.e., the functions overlap in time and in shared components), all components of these systems were considered under Navigation alone. The Search and Surveillance function was then assigned a reliability of unity. This procedure does not affect the overall vehicle reliability, but does make it impossible to separate these two functions.

A list appears on page 8 of Appendix D of the twelve function reliabilities with the functions considered separately. In computing these "functional" reliabilities, all components which operationally affect a function are included. Thus, some components may contribute to several different functions. These functional reliabilities are, therefore, sometimes smaller than the function reliabilities listed on page 7 of Appendix D.

6.0 DISCUSSION OF RESULTS

The study based on the first model (reference (c)) computed a predicted vehicle reliability of 88%, and on the basis of a few changes in the prediction model and the addition of a redundant component (an underwater telephone), an allocated reliability of 94%. Generally, a somewhat lower value than 88% or 94% would be expected for the second model, simply because the structure (block diagram) of the second model is more conservative than the first model. By conservative it is meant the second model considers as series-connected components, several components which were considered as parallel-connected components in the first model. The predicted reliability of 29% for the second model is much lower than was expected.

Table 1 of this report is a comparison of the function reliabilities of the second model with those of the first model. From the values presented for the second model, it is clear that the cause of the low vehicle reliability lies with the Navigation* function (reliability of 66%) and the Mating and Transfer Function (reliability of 46%) either in the structuring of these two functions or in the component reliabilities used in them.

* Note that this is the combined Navigation-Search and Surveillance function mentioned in paragraph 5.0.

TABLE I

A COMPARISON OF THE FUNCTION RELIABILITIES
FOR THE FIRST AND SECOND DSRV RELIABILITY MODELS

<u>Function</u>	<u>First Model</u> <u>Prediction</u>	<u>Allocation</u>	<u>Second Model</u> <u>Prediction</u>
1. Vehicle Control and Propulsion	0.9933	0.9933	0.9884
2. Navigation	0.9434	0.9434	0.6632
3. Structural Integrity	0.9993	0.9993	0.9966
4. Communication	0.9876	0.9968	0.9934
5. Manipulator	0.9896	0.9896	0.9994
6. Mating and Transfer	0.9966	0.9966	0.4646
7. Surveillance and Search	0.9991	0.9991	1.0000*
8. Computer	0.9987	0.9987	0.9988
9. Life Support	0.9911	0.9911	0.9911
10. Power and Distribution	0.9824	0.9824	0.9824
11. Hydraulic Package	0.9976	0.9976	0.9983
12. External Sensors	0.9974	0.9974	0.9999
Vehicle Reliability (Product of twelve function reliabilities)	0.8838	0.9431	0.2925

* In the second model, the Surveillance and Search function is accounted for in the Navigation function.

Examining the component reliabilities in Appendix D reveals that the (exterior) lamps are the only components having lower reliabilities than 92%; most components having reliabilities greater than 99%. At the bottom of Figure 2 (Navigation), of Appendix B, the trainable lamp (123)* is shown to be in parallel with two fore lamps (112). Inserting the corresponding reliabilities in the reliability equation for this combination of components gives roughly 66%. These lamps, then, are the cause of the low reliability computed for the Navigation function.

A similar examination of Figure 6 (Mating and Transfer) of Appendix B indicates that the skirt lamp (146), with a reliability of about 48%, is the primary cause of the low reliability (46%) for the Mating and Transfer function.

Figure 1 of this report presents the (approximate) tradeoffs of lamp failure rate versus the resulting Vehicle, Navigation and Mating and Transfer function reliabilities. No significant increase in vehicle reliability beyond about 80% results from decreasing the failure rate of the lamps more than two orders of magnitude below the value ascribed to them in the second reliability model. For the same decrease in lamp failure rate, the reliability of the Navigation and Mating and Transfer functions will approach maximums of 88% and 96% respectively.

From the above discussion, it is evident that although the low lamp reliabilities are the direct cause of the low reliability in the second model, either (a) the structuring of the Navigation and the Mating and Transfer functions or (b) the component reliabilities (other than the lamp reliabilities) used in these functions become the limiting factors of vehicle reliability, when high lamp reliability is assumed. The determination of the structuring details, or component reliabilities which limit the vehicle reliability in the second model to a maximum of about 80% is not within the scope of this study.

* Numbers in parentheses are assigned numbers for components (See Appendices D & E).

7.0 CONCLUSIONS

On the basis of the DSRV model defined herein, the following conclusions are made:

- The exterior lamps (the skirt and forward lamps specifically) are the most significant contributors to DSRV unreliability. This is due primarily to their high (assumed) failure rates.
- Even with very reliable skirt and forward lamps, the DSRV reliability approaches a maximum of only about 80%.
- Skirt and forward lamp reliability (and the reliability of the other external lamps as well) needs to be improved. A reduction in the skirt and forward lamp failure rate of between one and two orders of magnitude would be worthwhile, in terms of increased vehicle reliability (increasing it from 29% to about 80%).
- Further study is required to improve the Navigation and the Mating and Transfer function reliabilities (exclusive of lamps). This is mandatory if any significant increase in DSRV reliability beyond about 80% is to be attained. Improvement could be made by
 - decreasing component failure rates
 - restructuring the functional models to include redundant paths which may have been missed in the second model, or
 - adding redundant equipment.

8.0 RECOMMENDATIONS AND FUTURE PLANS

Improvements in the present method used to predict DSRV reliability and in the utilization of the information available from DSRV reliability studies are considered necessary. It is, therefore, recommended that all future DSRV reliability studies include the items listed below. Future MEL efforts in reliability prediction will use these improvements to the greatest extent possible within funding and time limitations.

8.1 An operational analysis which emphasizes operations involving the DSRV and its mother vessel only. This analysis will establish better use-factors for the individual components and for the vehicle systems. It is felt that the use-factors can be more readily estimated for vehicle capabilities than for any other defined element in the structural model of the system. The reasoning behind this conclusion is that capabilities can be related to both the mission event-time sequence and to contributing hardware. (See Appendix G for the location of capabilities in the structural model).

8.2 Establishment of procedures for the determination and reporting of failure distributions (versus time) for all vehicle components, subsystems, capabilities and functions.

8.3 A dependency analysis to account for the effect of failure of one component on the operation of another. In combination with this analysis, the construction of a logic-oriented reliability model wherein no vehicle component appears more than once (at any given time) in the total vehicle reliability equation. Examples of such a model (block diagrams) are shown in Appendix G.

8.4 Additional sensitivity analyses, similar to the one which resulted in Figure 1, to determine the sensitivity of all functions, capabilities, and composite failure distributions and parameter values.

8.5 Maintainability and safety analyses which would contribute to tradeoff studies with reliability. Skirt lamps, for example, could be replaced during each light-on (DSRV on mother ship) period. Other lamps cannot be replaced without sacrificing a great deal of mission time.

8.6 An output data format similar to that used in this report, i.e., one which shows computed reliabilities for vehicle components, sub-systems, capabilities, and major vehicle functions. Changes in component failure distribution and other input data, and the addition or deletion of components, should be highlighted under appropriate headlines. With such a format, deficiencies (low reliabilities) in these areas can be readily identified with deficient hardware items, and corrective action initiated. For example, the reliability runoff might indicate that the "look down" capability has a low reliability during the mating phase of the rescue mission, and pin point the primary cause

MEL Report 110/66

to be the low reliability of a particular component. A possible remedy to this problem would be to restrict the use of this particular component to only the mating phase, thus reducing the total component operating time and thereby improving the component reliability.

Appendix A

Mission Phases and Phase Times

MISSION PHASES	PHASE TIME (MINUTES)			
	TRIP 1	TRIP 2	TRIP 3 THRU N-1	TRIP N
1. UNCOUPLE FROM MOTHER SUBMARINE	5	5	5	5
2. DESCENT	13	13	13	13
3. SURVEILLANCE AND APPROACH	20	20	7	7
4. ANCHOR AND ALIGNMENT	7	7	7	7
5. HATCH PREPARATION AND MARKER	13	3	3	3
6. WINCH HOOK AND HAUL DOWN	5	5	5	5
7. SKIRT DEWATERING	5	5	5	5
8. PRESSURE EQUALIZATION	3	3	3	3
9. TRANSFER OF RESCUEES	25	25	25	25
10. UNCOUPLE FROM DISTRESSED SUB.	5	5	5	5
11. ASCENT	13	13	13	13
12. SURVEILLANCE AND APPROACH	7	7	7	7
13. ANCHOR AND ALIGNMENT	7	7	7	7
14. WINCH HOOK AND HAUL DOWN	5	5	5	5
15. SKIRT DEWATERING	5	5	5	5
16. PRESSURE EQUALIZATION	3	3	3	3
SUB TOTALS	141	131	118	118
17. TRANSFER OF RESCUEES AND RECHARGE BATTERIES	50	50	50	25
TOTALS	191	181	168	143

MEL Report 110/66

Appendix B

Second DSRV Model Block Diagrams

FIGURE 1
VEHICLE CONTROL AND PROPULSION

MEL Report 110/66

FIGURE 2

NAVIGATION

Figure 3
Structures

' MEL Report 110/66

FIGURE 4
COMMUNICATION

FIGURE 5

MANIPULATOR

MEL Report 110/66

FIGURE 6
MATING AND TRANSFER

FIGURE 7

SEARCH AND SURVEILLANCE

MEL Report 110/66

FIGURE 8
COMPUTER

FIGURE 9

LIFE SUPPORT

MEL Report 110/66

FIGURE 10
POWER AND DISTRIBUTION

FIGURE 11
HYDRAULIC POWER SYSTEM

FIGURE 12
EXTERNAL SENSORS

MEL Report 110/66

Appendix C

**Second DSRV Model Fortran Computer
Statement**

MEL Report 110/66

PAGE 1

STMT	FORTRAN STATEMENT
C	PROGRAM TO COMPUTE RELIABILITY OF DSRV FOR A 13 TRIP MISSION
C	MODIFIED SEPT. 1, 1965
C	THIS IS WORST CASE. I.E., NO REPAIRS ALLOWED AND
C	ALTERNATE MODES ARE ACTIVE.
1	DIMENSION R(250),DSNO(3),FREL(12),FUNCN(12,2),FREL(12)
2	READ 500,(FUNCN(I,1),FUNCN(I,2),I=1,12)
3	PRINT 100
4	L=0
5	L=L+1
6	IF(L>24)3,3,1
7	READ 200,F,DSNO,T1,T2,T3,T4,TSUM,FR,NAS
8	R(NAS)=EXP(-FR*TSUM)
9	PRINT 300,F,DSNO,T1,T2,T3,T4,TSUM,FR,NAS,R(NAS)
10	IF(SENSE SWITCH 0122,2
11	FREL(1)=R(7)*R(8)*R(12)*R(14)*R(10)*R(195)*R(11)*R(16)*R(17)*R(18)
	* (1.-(1.-R(13)**4)*(1.-(1.-R(13)**2)*(1.-R(13)**2)))*(1.-R(9
	2)*R(110)))
12	FREL(2)=R(28)*R(30)*R(32)*R(22)*R(19)*R(180)*R(181)*(1.-(1.-R(20
	1)*R(24))* (1.-R(13)*R(126))* (1.-R(114))* (1.-R(114)*R(27)*R(23))*
	2 1.-(1.-R(142)*R(143))* (1.-R(115)*R(161))* (1.-(1.-R(116)*R(197))* (
	3 1.-R(120)*R(184)*P(123))* (1.-(1.-R(120)*R(119)*R(182))* (1.-R(1
	4 83)*(1.-(1.-R(117)*(1.-R(118))))*(1.-(1.-R(121)**2)*(1.-R(122)**
	5 2)))*R(111)*R(183)*R(184)*(1.-(1.-R(12)**2)*(1.-R(123)))
X	*R(196)
13	FREL(3)=R(33)*R(126)*R(35)**2*R(36)*R(37)*R(38)*R(39)
14	FREL(4)=R(125)*R(127)*R(128)
15	FREL(5)=R(44)*R(129)*(1.-(1.-R(130)*R(198))* (1.-(R(185)*R(186)*
	1 R(187))* (1.-(1.-R(108))* (1.-R(134)**2)*(1.-R(135)**2))* (1.-(1.-
	2 -R(131))* (1.-(1.-R(186)*(1.-(1.-R(132))* (1.-R(133)))))* (1.-(1.-
	3 R(188)*R(187))* (1.-R(136)**2)*(1.-R(135)**2))
16	FREL(6)=R(136)*R(137)*(1.-(1.-R(139)*R(140)*R(141)*R(162)*R(146)*
	1 *(1.-(1.-R(144)*R(199))* (1.-R(145)*R(201))* (1.-R(147)**2)*(1.-
	2 R(148)**2)))*(1.-(1.-R(150))* (1.-R(150)*R(151)*R(174))* (1.-(R(19
	3))*(1.-(1.-R(189)*R(191))* (1.-R(149))))
X	FREL(7)=1.
17	FREL(8)=R(58)*R(59)*R(60)*R(61)*R(62)*R(64)*R(63)*R(65)
18	FREL(9)=R(71)*R(73)*R(78)*R(80)*R(82)*(1.-(1.-R(69)*R(72)*R(74)*R
19	1 70))* (1.-R(76)*R(69)**2)*(1.-(1.-R(76)*R(77)*R(79)*R(81))* (1.-R(
	2 69)*R(76)))
X	* (1.-(1.-R(202))* (1.-R(203)))
20	FREL(10)=R(85)*R(84)
21	FREL(11)=R(160)
22	FREL(12)=R(163)*R(164)
23	PROD=1.
24	DO 4 I=1,12
25	PROD=PROD+FREL(I)
26	PRINT 600,(FUNCN(I,1),FUNCN(I,2),FREL(I),I=1,12)
27	PRINT 700,PROD
28	FORMAT(1H1,20X,7HLISTING OF COMPONENTS AND FAILURE RATES USED IN
	1 RELIABILITY COMPUTATION //10X,109H FUNCTION DESCRIPTION DRAWING
	2 OPERATING TIMES MINUTES TOT. OPER. FAILURE RATE ASSIGNED NO.
	3 RELIABILITY /20X,53HOF COMP. NO. T1 T2 T3-12 T13
	4 HRS.)

MEL Report 110/66

PAGE 2

Q	STMNT	FORTRAN STATEMENT
9	300	FORMAT(13X,A1,4X,2A8,A8,4F5.0,8X,F5.2,6X,F9.8,BX,[3,11X,F7.6//])
C	200	FORMAT(A1,2A8,A8,4F4.0,F7.2,9XF8.7,[3])
1	500	FORMAT(10A8)
2	600	FORMAT(I1H1,[22H RELIABILITY FOR 2A8,3H IS F9.6//])
3	700	FORMAT(IHO//50HRELIABILITY OF D.S.R.V. FOR 13 TRIP MISSION IS F9.6)
4	42	FREL P (1)= FREL (1)
5		FREL P (2)= FREL (2)
6		FREL P (3)=FREL (3)
7		FREL P (4)=R(170)*R(127)*R(128)
8		FREL P (5)= FREL (5)
9		FREL P (6)= FREL (6)
0		FREL P (7)=(1.-(1.-R(152)*R(200))*((1.-R(177)*R(159)*R(192))+(1.-(1. -1. -R(177)*R(155)*R(158))*((1.-(R(193))+(1.-(1.-R(153))+(1.-R(154) 2 1))))+(1.-(1.-R(175)*2)*(1.-R(176)*2)))*R(156)*R(193)*R(192)*([1. 3 -(1.-R(157)*2)*(1.-R(194)))
1		FREL P (8)=R(58)*R(59)*R(60)*R(61)*R(62)*R(64)*R(63)*R(24)*R(65)
2		FREL P (9)=FREL (9)
3		FREL P (10)=FREL (10)
4		FREL P (11)= R (171)
5		FREL P (12)=R(172)*R(173)
6	800	PRINT 800,(FUNCN (I,I),FUNCN (I,2),FREL P (I),I=1,12)
7		FORMAT(I1H1,[32H FUNCTIONAL RELIABILITY FOR 2A8,3H IS F9.6//])
8		END

MEL Report 110/66

Appendix D

Second DSKV Model Computer Print-out

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION OF COMP.	DESCRIPTION	DRAWING NO.	OPERATING T1	MINUTES	TOT. OPEK. HRS.	FAILURE RATE	ASSIGNED NO.	RELIABILITY
N U/W PHONE	03-0101-01	55.	55.	42.	9.50	0.00002200	113	0.997893
C U/W PHONE	03-0101-01	81.	71.	71.	15.50	0.00002200	125	0.996565
C U/W PHONE	03-0101-01	141.	131.	118.	26.10	0.00002200	170	0.994223
L HATCH PH +	IC03-0101-02	3.	3.	3.	0.65	0.00004000	203	0.999974
S HATCH PH +	IC03-0101-02	14.	14.	14.	3.00	0.00004000	155	0.999880
N HATCH PH +	IC03-0101-02	14.	14.	14.	3.00	0.00004000	119	0.999880
H HATCH PH +	IC03-0101-02	10.	10.	10.	2.20	0.00004000	151	0.999912
C HATCH PH +	IC03-0101-02	141.	131.	118.	26.10	0.00004000	128	0.998957
N DOPP NAV	03-0108-01	49.	49.	36.	8.30	0.00200000	19	0.983537
N DEAD RECK TRC03-0108-02	55.	55.	42.	42.	9.50	0.00010000	20	0.999050
N RATE GYRO PKG03-0108-04	191.	181.	168.	142.	36.50	0.00000090	22	0.997812
N NAV DISP	03-0108-07	55.	55.	42.	9.50	0.00001080	28	0.999897
V MTN + DPTH SEO3-0108-14	100.	90.	77.	77.	17.20	0.000029300	14	0.994973
N FORE TV CAM 03-0123-01	14.	14.	14.	14.	3.00	0.00333300	111	0.990051
S FORE TV CAM 03-0123-01	27.	27.	14.	14.	3.50	0.00333300	156	0.988402
P FORE TV CAM 03-0123-01	-	8.	8.	8.	1.90	0.00001100	185	0.993687
M FORE TV CAM 03-0123-01	10.	10.	10.	10.	2.20	0.00001100	189	0.992694
M SKIRT TV CAM 03-0123-02	20.	20.	20.	20.	4.40	0.00001000	145	0.991921
P SKIRT TV CAM 03-0123-02	18.	8.	8.	8.	1.90	0.00001000	132	0.999966
S SKIRT TV CAM 03-0123-02	14.	14.	14.	14.	3.00	0.00001000	153	0.999946
N SKIRT TV CAM 03-0123-02	14.	14.	14.	14.	3.00	0.00001000	117	0.999946
N AFT TV CAM 03-0123-03	14.	14.	14.	14.	3.00	0.00333300	118	0.990051
P AFT TV CAM 03-0123-03	18.	8.	8.	8.	1.90	0.00333300	133	0.993687
M AFT TV CAM 03-0123-03	20.	20.	20.	20.	4.40	0.00333300	149	0.985442

MEL Report 110/66

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION OF COMP.	DRAWING NO.	OPERATING TIME T1 T2 T3-12 T13	MINUTES	TOT. OPER. HRS.	FAILURE RATE	ASSIGNED NO.	RELIABILITY		
S AFT TV CAN	03-0123-03	14.	14.	14.	3.00	0.00333300	154	0.990051	
M PAN + TLT EQP03-0123-04	10.	10.	10.	10.	2.20	0.00100000	190	0.997802	
P PAN + TLT EQP03-0123-04	18.	8.	8.	8.	1.90	0.00100000	187	0.998102	
N PAN + TLT EQP03-0123-04	14.	14.	14.	14.	3.00	0.00100000	184	0.997005	
S PAN + TLT EQP03-0123-04	14.	14.	14.	14.	3.00	0.00100000	192	0.997005	
N HNG BEAC	03-0131-02	153.	143.	143.	117.	30.70	0.00010000	27	0.996935
N BEAC REL	03-0131-03	7.	7.	7.	7.	1.50	0.00002000	23	0.999970
N FORE LIGHTS	03-0138-01	14.	14.	14.	14.	3.00	0.16660000	112	0.606652
S FORE LIGHTS	03-0138-01	14.	14.	14.	14.	3.00	0.16660000	157	0.606652
N TRAINABLE LIT03-0138-02	14.	14.	14.	14.	3.00	0.16660000	123	0.606652	
S TRAINABLE LIT03-0138-02	14.	14.	14.	14.	3.00	0.16660000	159	0.606652	
P TRAINABLE LIT03-0138-02	16.	8.	8.	8.	1.90	0.16660000	188	0.728666	
S TRAINABLE LIT03-0138-02	10.	10.	10.	10.	2.20	0.16660000	194	0.693142	
N 800 MATT LITS03-0138-03	14.	14.	14.	14.	3.00	0.01666000	121	0.951248	
P 800 MATT LITS03-0138-03	16.	8.	8.	8.	1.90	0.01666000	135	0.968842	
M 800 MATT LITS03-0138-03	20.	20.	20.	20.	4.40	0.01666000	148	0.929318	
S 800 MATT LITS03-0138-03	14.	14.	14.	14.	3.00	0.01666000	175	0.951248	
M SKIRT LIGHT	03-0138-04	20.	20.	20.	4.40	0.16660000	146	0.480446	
N AFT LIGHTS	03-0138-05	14.	14.	14.	3.00	0.16660000	122	0.606652	
P AFT LIGHTS	03-0138-05	18.	8.	8.	1.90	0.16660000	134	0.728666	
M AFT LIGHTS	03-0138-05	20.	20.	20.	4.40	0.16660000	147	0.480446	
S AFT LIGHTS	03-0138-05	14.	14.	14.	3.00	0.16660000	176	0.606652	
N VER O A SONAR03-0146-02	67.	67.	54.	54.	12.10	0.00250000	181	0.970203	
N HOR O A SONAR03-0146-03	67.	67.	54.	54.	12.10	0.00250000	180	0.970203	

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION OF COMP.	DESCRIPTION	DRAWING NO.	OPERATING TIMES T1	MINUTES T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24	T25	T26	T27	T28	T29	T30	T31	T32	T33	T34	T35	T36	T37	T38	T39	T40	T41	T42	T43	T44	T45	T46	T47	T48	T49	T50	T51	T52	T53	T54	T55	T56	T57	T58	T59	T60	T61	T62	T63	T64	T65	T66	T67	T68	T69	T70	T71	T72	T73	T74	T75	T76	T77	T78	T79	T80	T81	T82	T83	T84	T85	T86	T87	T88	T89	T90	T91	T92	T93	T94	T95	T96	T97	T98	T99	T100	T101	T102	T103	T104	T105	T106	T107	T108	T109	T110	T111	T112	T113	T114	T115	T116	T117	T118	T119	T120	T121	T122	T123	T124	T125	T126	T127	T128	T129	T130	T131	T132	T133	T134	T135	T136	T137	T138	T139	T140	T141	T142	T143	T144	T145	T146	T147	T148	T149	T150	T151	T152	T153	T154	T155	T156	T157	T158	T159	T160	T161	T162	T163	T164	T165	T166	T167	T168	T169	T170	T171	T172	T173	T174	T175	T176	T177	T178	T179	T180	T181	T182	T183	T184	T185	T186	T187	T188	T189	T190	T191	T192	T193	T194	T195	T196	T197	T198	T199	T200	T201	T202	T203	T204	T205	T206	T207	T208	T209	T210	T211	T212	T213	T214	T215	T216	T217	T218	T219	T220	T221	T222	T223	T224	T225	T226	T227	T228	T229	T230	T231	T232	T233	T234	T235	T236	T237	T238	T239	T240	T241	T242	T243	T244	T245	T246	T247	T248	T249	T250	T251	T252	T253	T254	T255	T256	T257	T258	T259	T260	T261	T262	T263	T264	T265	T266	T267	T268	T269	T270	T271	T272	T273	T274	T275	T276	T277	T278	T279	T280	T281	T282	T283	T284	T285	T286	T287	T288	T289	T290	T291	T292	T293	T294	T295	T296	T297	T298	T299	T300	T301	T302	T303	T304	T305	T306	T307	T308	T309	T310	T311	T312	T313	T314	T315	T316	T317	T318	T319	T320	T321	T322	T323	T324	T325	T326	T327	T328	T329	T330	T331	T332	T333	T334	T335	T336	T337	T338	T339	T340	T341	T342	T343	T344	T345	T346	T347	T348	T349	T350	T351	T352	T353	T354	T355	T356	T357	T358	T359	T360	T361	T362	T363	T364	T365	T366	T367	T368	T369	T370	T371	T372	T373	T374	T375	T376	T377	T378	T379	T380	T381	T382	T383	T384	T385	T386	T387	T388	T389	T390	T391	T392	T393	T394	T395	T396	T397	T398	T399	T400	T401	T402	T403	T404	T405	T406	T407	T408	T409	T410	T411	T412	T413	T414	T415	T416	T417	T418	T419	T420	T421	T422	T423	T424	T425	T426	T427	T428	T429	T430	T431	T432	T433	T434	T435	T436	T437	T438	T439	T440	T441	T442	T443	T444	T445	T446	T447	T448	T449	T450	T451	T452	T453	T454	T455	T456	T457	T458	T459	T460	T461	T462	T463	T464	T465	T466	T467	T468	T469	T470	T471	T472	T473	T474	T475	T476	T477	T478	T479	T480	T481	T482	T483	T484	T485	T486	T487	T488	T489	T490	T491	T492	T493	T494	T495	T496	T497	T498	T499	T500	T501	T502	T503	T504	T505	T506	T507	T508	T509	T510	T511	T512	T513	T514	T515	T516	T517	T518	T519	T520	T521	T522	T523	T524	T525	T526	T527	T528	T529	T530	T531	T532	T533	T534	T535	T536	T537	T538	T539	T540	T541	T542	T543	T544	T545	T546	T547	T548	T549	T550	T551	T552	T553	T554	T555	T556	T557	T558	T559	T560	T561	T562	T563	T564	T565	T566	T567	T568	T569	T570	T571	T572	T573	T574	T575	T576	T577	T578	T579	T580	T581	T582	T583	T584	T585	T586	T587	T588	T589	T590	T591	T592	T593	T594	T595	T596	T597	T598	T599	T600	T601	T602	T603	T604	T605	T606	T607	T608	T609	T610	T611	T612	T613	T614	T615	T616	T617	T618	T619	T620	T621	T622	T623	T624	T625	T626	T627	T628	T629	T630	T631	T632	T633	T634	T635	T636	T637	T638	T639	T640	T641	T642	T643	T644	T645	T646	T647	T648	T649	T650	T651	T652	T653	T654	T655	T656	T657	T658	T659	T660	T661	T662	T663	T664	T665	T666	T667	T668	T669	T670	T671	T672	T673	T674	T675	T676	T677	T678	T679	T680	T681	T682	T683	T684	T685	T686	T687	T688	T689	T690	T691	T692	T693	T694	T695	T696	T697	T698	T699	T700	T701	T702	T703	T704	T705	T706	T707	T708	T709	T710	T711	T712	T713	T714	T715	T716	T717	T718	T719	T720	T721	T722	T723	T724	T725	T726	T727	T728	T729	T730	T731	T732	T733	T734	T735	T736	T737	T738	T739	T740	T741	T742	T743	T744	T745	T746	T747	T748	T749	T750	T751	T752	T753	T754	T755	T756	T757	T758	T759	T760	T761	T762	T763	T764	T765	T766	T767	T768	T769	T770	T771	T772	T773	T774	T775	T776	T777	T778	T779	T780	T781	T782	T783	T784	T785	T786	T787	T788	T789	T790	T791	T792	T793	T794	T795	T796	T797	T798	T799	T800	T801	T802	T803	T804	T805	T806	T807	T808	T809	T810	T811	T812	T813	T814	T815	T816	T817	T818	T819	T820	T821	T822	T823	T824	T825	T826	T827	T828	T829	T830	T831	T832	T833	T834	T835	T836	T837	T838	T839	T840	T841	T842	T843	T844	T845	T846	T847	T848	T849	T850	T851	T852	T853	T854	T855	T856	T857	T858	T859	T860	T861	T862	T863	T864	T865	T866	T867	T868	T869	T870	T871	T872	T873	T874	T875	T876	T877	T878	T879	T880	T881	T882	T883	T884	T885	T886	T887	T888	T889	T890	T891	T892	T893	T894	T895	T896	T897	T898	T899	T900	T901	T902	T903	T904	T905	T906	T907	T908	T909	T910	T911	T912	T913	T914	T915	T916	T917	T918	T919	T920	T921	T922	T923	T924	T925	T926	T927	T928	T929	T930	T931	T932	T933	T934	T935	T936	T937	T938	T939	T940	T941	T942	T943	T944	T945	T946	T947	T948	T949	T950	T951	T952	T953	T954	T955	T956	T957	T958	T959	T960	T961	T962	T963	T964	T965	T966	T967	T968	T969	T970	T971	T972	T973	T974	T975	T976	T977	T978	T979	T980	T981	T982	T983	T984	T985	T986	T987	T988	T989	T990	T991	T992	T993	T994	T995	T996	T997	T998	T999	T9999

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION OF COMP.	DESCRIPTION	DRAWING NO.	OPERATING T1 T2 T3-12 HRS.	MINUTES	TOT. OPER. HRS.	FAILURE RATE	ASSIGNED NO.	RELIABILITY	
V RES BAL+JET CO3-D0222/24		75.	75.	75.	49.	15.80	0.000001520	18	0.999444
N TV CAM C + D 03-0225/27		14.	14.	14.	14.	3.00	0.000021000	183	0.999370
P TV CAM C + D 03-0225/27		16.	6.	8.	8.	1.90	0.000021000	186	0.999601
M TV CAM C + D 03-0225/27		10.	10.	10.	10.	2.20	0.000021000	191	0.999538
S TV CAM C + D 03-0225/27		14.	14.	14.	14.	3.00	0.000021000	193	0.999370
M TV CAM C + D 03-0225/27		14.	14.	14.	14.	3.00	0.000021000	201	0.999370
V EXT BAL+JET CO3-0236/40		58.	58.	56.	43.	11.90	0.000003520	17	0.999581
N NAV COMP 03-0250		55.	55.	42.	42.	9.50	0.000001700	24	0.999934
K MERC TRIM S M03-0250-01		100.	90.	77.	77.	17.20	0.000001700	58	0.999880
K LIFE SUPPORT 03-0250-02		141.	131.	118.	118.	26.10	0.000001700	59	0.999817
K EXTER BALLAST03-0250-03		8.	8.	8.	8.	1.60	0.000001700	60	0.999989
K CONT PROPPUL 03-0250-04		69.	67.	57.	57.	12.60	0.000001700	61	0.999912
K PWR DISTRIB 03-0250-05		191.	181.	168.	142.	36.50	0.000001700	62	0.999745
K EX SNSRS 03-0250-06		191.	181.	168.	142.	36.50	0.000001700	63	0.999745
K INT SNSR 03-0250-07		191.	181.	168.	142.	36.50	0.000001700	64	0.999745
K STRUCTURES 03-0250-08		49.	39.	39.	39.	8.60	0.000001700	65	0.999940
V MERC TRIM C+D03-0255/59		100.	90.	77.	77.	17.20	0.000005780	11	0.999906
V PRPL SYS C+D 03-0280/84		67.	65.	54.	54.	12.10	0.000016800	12	0.999769
N EXT SENS DISPO3-0285/89		67.	67.	54.	54.	12.10	0.000002100	161	0.999746
V EXT SENS DISPO3-0285/89		100.	77.	77.	77.	17.20	0.000002100	195	0.999639
E EXT SENS DISPO3-0285/89		19.	8.	8.	8.	1.90	0.000002100	164	0.999960
E EXT SENS DISPO3-0285/89		116.	106.	93.	93.	20.40	0.000002100	173	0.999572
M EXT SENS DISPO3-0285/89		31.	31.	31.	31.	6.80	0.000002100	162	0.999857
D CAPSULE STRUC03-0301/10		191.	181.	168.	142.	36.50	0.000001500	32	0.999453

MEL Report 110/66

MEL Report 110/66

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION	DESCRIPTION	DRAWING NO.	OPERATING TIMES	MINUTES	TOT. HRS.	FAILURE RATE	ASSIGNED NO.	RELIABILITY		
D	OF COMP.	T1 T2 T3-T12 T13	191.	181.	168.	142.	36.50	0.00001500	124	0.999453
D	INT STRUCTURE03-0311/20	191.	181.	168.	142.	36.50	0.00001500	35	0.999453	
D	ACCESS HATCH 03-0321/30	191.	181.	168.	142.	36.50	0.00001500	36	0.999453	
D	ELECT PENET	03-0331/40	191.	181.	168.	142.	36.50	0.00001500	120	0.999955
N	VIEWPT OPTICS03-0341	14.	14.	14.	14.	3.00	0.00001500	131	0.999972	
P	VIEWPT OPTICS03-0341	18.	8.	8.	8.	1.90	0.00001500	150	0.999967	
N	VIEWPT OPTICS03-0341	10.	10.	10.	10.	2.20	0.00001500	177	0.999955	
S	VIEWPT OPTICS03-0341	14.	14.	14.	14.	3.00	0.00001500	37	0.999453	
D	OPTICAL PENE1C3-0341/50	191.	181.	168.	142.	36.50	0.00001500	7	0.999392	
V	MAIN PROP SYS03-0601	67.	65.	54.	54.	12.10	0.00005030	38	0.999938	
D	OUT HULL+FRAM03-0405	191.	181.	168.	142.	36.50	0.00000170	85	0.991398	
B	MAIN BATT	03-04101-1	191.	181.	168.	142.	36.50	0.00023670	84	0.990895
B	AUX BATT	03-04101-2	191.	181.	168.	142.	36.50	0.00025060	44	0.999539
P	MANIP+TOOL JE03-0415	18.	8.	8.	8.	1.90	0.00024250	139	0.973688	
N	ANCHORS + MAR03-0425	37.	37.	37.	37.	8.00	0.00333300	10	0.998871	
V	MERCURY TRIM 03-0630	100.	90.	77.	77.	17.20	0.00006570	16	0.999516	
V	BALLAST SYS 03-0635	33.	33.	31.	31.	6.70	0.00007220	39	0.999964	
D	FLOT MATERIAL03-0440	191.	181.	168.	142.	36.50	0.00000100	140	0.999551	
N	SKIRT DEMATER03-0445/49	20.	20.	20.	20.	4.40	0.00010200	110	0.999297	
V	HYDRAULIC PWR03-0450/54	42.	40.	34.	34.	7.50	0.00009380	171	0.997555	
P	HYDRAULIC PWR03-0450/54	18.	8.	8.	8.	1.90	0.00009380	129	0.999822	
H	HYDRAULIC PWR03-0450/54	99.	91.	84.	84.	18.60	0.00009380	160	0.998257	
H	HYDRAULIC PWR03-0450/54	141.	131.	118.	118.	26.10	0.00009380	136	0.999718	
N	MATING SYSTEM03-0455	20.	20.	20.	20.	4.40	0.00006400	137	0.996238	
H	SKIRT SEAL 03-0659	91.	91.	66.	66.	19.30	0.00019530			

LISTING OF COMPONENTS AND FAILURE RATES USED IN RELIABILITY COMPUTATION

FUNCTION OF COMP.	DESCRIPTION	DRAWING NO.	OPERATING TIME MINUTES	TOT. OPER. HRS.	FAILURE RATE	ASSIGNED ND.	RELIABILITY
		T1	T2 T3-12 T13				
		69.	67. 57.	12.60	0.00000300	8	0.999962
V	PROPELLER S+803-0475	42.	40. 34. 34.	7.50	0.00003650	9	0.999726
V	SHROUD RDR+C03-0480/84	42.	40. 34. 34.	7.50	0.00026640	13	0.998004
V	THRUSTERS + C03-0490	42.	40. 34. 34.	7.50	0.00007700	69	0.997992
L	C S 02 ST C+003-0601/04	141.	131. 118. 118.	26.10	0.00001000	70	0.999739
L	C S C02 REMD03-0605/09	141.	131. 118. 118.	26.10	0.00001000	70	0.999739
L	CS TOXICS C+003-0605/09	141.	131. 118. 118.	26.10	0.00001000	74	0.999739
L	R S C02 REMD03-0605/09	141.	131. 118. 118.	26.10	0.00001000	77	0.999739
L	RS TOXICS C+003-0605/09	141.	131. 118. 118.	26.10	0.00001000	81	0.999739
L	C S HUMID C+003-0610/14	141.	131. 118. 118.	26.10	0.00010100	71	0.997363
L	C S HELIUM C+03-0615/19	141.	131. 118. 118.	26.10	0.00000010	72	0.999991
L	C S TEMP+P C+03-0620/24	141.	131. 118. 118.	26.10	0.00008380	73	0.997815
L	ATROS SAMPLE 03-0630/34	3.	3. 3. 3.	0.65	0.00001500	202	0.999990
L	R S 02 ST C+003-0635/39	87.	85. 82. 82.	17.80	0.00007700	76	0.998630
L	R S HUMID C+003-0645/49	87.	85. 82. 82.	17.80	0.00010100	78	0.998204
L	R S HELIUM C+03-0650/54	137.	135. 132. 106.	28.20	0.00000010	79	0.999991
L	R S TEMP+P C+03-0655/59	87.	85. 82. 82.	17.80	0.00008380	80	0.998509
L	R S PRESS SYS03-0665/69	87.	85. 82. 82.	17.80	0.00004400	82	0.999217

MEL Report 110/66

RELIABILITY FOR VEH.CTL.+ PROPUL IS 0.988405
RELIABILITY FOR NAVIG. + HOMING IS 0.663193
RELIABILITY FOR STRUCT.INTEGRITY IS 0.996622
RELIABILITY FOR COMMUNICATION IS 0.993423
RELIABILITY FOR MANIPULATOR IS 0.999360
RELIABILITY FOR MATING + TRANSFR IS 0.464560
RELIABILITY FOR SURVEIL.+SEARCH. IS 1.000000
RELIABILITY FOR COMPUTER IS 0.998772
RELIABILITY FOR LIFE SUPPORT IS 0.991124
RELIABILITY FOR POWER AND DIST IS 0.982371
RELIABILITY FOR HYDRAULIC SYST. IS 0.998257
RELIABILITY FOR EXT SENS1000000+ IS 0.999897

RELIABILITY OF D.S.R.V. FOR 13 TRIP MISSION IS 0.292463

FUNCTIONAL RELIABILITY FOR	VEH.CTL.+ PROPUL IS 0.988405
FUNCTIONAL RELIABILITY FOR	NAVIG. + HOMING. IS 0.663193
FUNCTIONAL RELIABILITY FOR	STRUCT.INTEGRITY IS 0.996622
FUNCTIONAL RELIABILITY FOR	COMMUNICATION IS 0.991088
FUNCTIONAL RELIABILITY FOR	MANIPULATOR IS 0.999360
FUNCTIONAL RELIABILITY FOR	MATING + TRANSFR IS 0.464560
FUNCTIONAL RELIABILITY FOR	SURVEIL.+SEARCH. IS 0.793586
FUNCTIONAL RELIABILITY FOR	COMPUTOR IS 0.998705
FUNCTIONAL RELIABILITY FOR	LIFE SUPPORT IS 0.991124
FUNCTIONAL RELIABILITY FOR	POWER AND DIST IS 0.982371
FUNCTIONAL RELIABILITY FOR	HYDRAULIC SYST. IS 0.997555
FUNCTIONAL RELIABILITY FOR	EXT SENS1000000+ IS 0.998899

Appendix E

**Listing of Second DSRV Model
Input Data in Order of Assigned Number**

(The assigned numbers are contained in the
three right-hand columns.)

MEL Report 110/66

F	DESCRIPTION OF COMP.	DRAWING NUMBER	T1	T2	T3-	T4	TB	TOTAL OPER. TIME	FAILURE RATE	ASSIGNED NUMBER
V	MAIN PROP SYS	03-0401	67.	65.	54.	54.		12.10.00061070.0000503007		
V	PRCPELLER S	+03-0475	69.	67.	57.	57.		12.60.00003790.0000030008		
V	SHROUD ROR+AC	03-0480/84	42.	40.	34.	34.		7.50	.0000365009	
V	MERC TRIM	03-0430	100.	90.	77.	77.		17.20.00113620.0000657010		
V	MERC TRIM C+D	03-0255/59	100.	90.	77.	77.		17.20.00099970.0000578011		
V	PRL SYS C+D	03-0280/84	67.	65.	54.	54.		12.10	.0001680012	
V	THRUSTERS + C	03-0490	42.	40.	34.	34.		7.50.00199980.0002664013		
V	MTN + DPTH SE	03-0108-14	100.90.	77.	77.			17.20	.0002930014	
V	ALLAST SYS	03-0435	33.	33.	31.	31.		6.70.00048810.0000722016		
V	EXT BAL+JET C	03-0236/40	58.	58.	56.	43.		11.90.00042150.0000352017		
VRES	BAL+JET C	03-0222/24	75.	75.	75.	49.		15.80.00055740.0000352018		
NCOPP	NAV	03-0108-01	49.	49.	36.	36.		8.30.01664000.0020000019		
NCEAD	RECK TRC	03-0108-02	55.	55.	42.	42.		9.50.00095330.0001000020		
NRATE	GYRO PKG	03-0108-04	191.181.168.142.					36.50.00219400.0000600022		
NBEAC	REL	03-0131-03	7.	7.	7.	7.		1.50.00003030.0000200023		
NNAV	COMP	03-0250	55.	55.	42.	42.		9.50.00006670.0000070024		
NHMG	BEAC	03-0131-02	153.143.143.117.					30.70.00307170.0001000027		
NNAV	CISP	03-0108-07	55.	55.	42.	42.		9.50.00010270.0000108028		
NGYRO	COMPASS	03-0172-02	191.181.168.142.					36.50.00365670.0001000030		
NVERTICAL	GYR	03-0172-04	191.181.168.142.					36.50.00365670.0001000032		
DCAPSULE	STRUC	0301/10	191.181.168.142.				36.50	.0000150033		
ACCESS	HATCH	03-0321/30	191.181.168.142.				36.50	.0000150035		
SELECT	PENET	03-0331/40	191.181.168.142.				36.50	.0000150036		
OPTICAL	PENET	03-0341/50	191.181.168.142.				36.50	.0000150037		
CCUT	HULL+FRAM	03-0405	191.181.168.142.				36.50.00006110.0000017038			
DFLOT	MATERIAL	03-0440	191.181.168.142.				36.50.00003660.0000010039			
MSKIRT	DEWATER	03-0445/49	20.	20.	20.	20.	4.40	.0001020140		
PMANIP+TOOL	JE	03-0415	18.	8.	8.	8.		1.90.00046070.0002425044		
KMERC	TRIM S	M03-0250-01	100.	90.	77.	77.		17.20.00012100.0000070058		
KLIFE	SUPPORT	03-0250-02	141.131.118.118.					26.10.00018320.0000070059		
KEXTER	BALLAST	03-0250-03	8.	8.	8.	8.		1.60.00001150.0000070060		
KCONT	PROPUL	03-0250-04	69.	67.	57.	57.		12.60.00008880.0000070061		
KPWR	CISTRIB	03-0250-05	191.181.168.142.					36.50.00025600.0000070062		
KEX	SNSRS	03-0250-06	191.181.168.142.					36.50.00025600.0000070063		
KINT	SNSR	03-0250-07	191.181.168.142.					36.50.00025600.0000070064		
KSTRUCTURES		03-0250-08	49.	39.	39.	39.		8.60.00006030.0000070065		
LC S 02 ST	C+D03-0601/04	141.131.118.118.						26.10.00201480.0000770069		
LC S C02	REMOV	03-0605/09	141.131.118.118.					26.10	.0000100070	
LC S HUMID	C+D03-0610/14	141.131.118.118.						26.10.00264280.0001010071		
LC S HELIUM	C+03-0615/19	141.131.118.118.						26.10.00000370.0000001072		

MEL Report 110/66

F	DESCRIPTION OF COMP.	DRAWING NUMBER	T1	T2	T3-	T12	T13	TOTAL OPER. TIME	FAILURE RATE	ASSIGN. NUMBER
	LC S TEMP+P C+03-0620/24	141.131.118.118.						26.10	.00219280	.0000838073
	LCS TOXICS C+D03-0605/09	141.131.118.118.						26.10		.0000100074
	LR S O2 ST C+D03-0635/39	87. 85. 82. 82.						17.80	.00137730	.0000770076
	LR S CO2 REMOV03-0605/09	141.131.118.118.						26.10		.0000100077
	LR S HUMID C+D03-0645/49	87. 85. 82. 82.						17.80	.00180660	.0001010078
	LR S HELIUM C+03-0650/54	137.135.132.106.						28.20	.00000400	.0000001079
	LR S TEMP+P C+03-0655/59	87. 85. 82. 82.						17.80	.00149890	.0000838080
	LRS TOXICS C+D03-0605/09	141.131.118.118.						26.10		.0000100081
	LR S PRESS SYS03-0865/69	87. 85. 82. 82.						17.80	.00078700	.00C0440082
	BAUX BATT	03-04101-2	191.181.168.142.					36.50	.00916360	.00^2506084
	BMAIN BATT	03-04101-1	191.181.168.142.					36.50	.00865390	.0002367085
	VHYCRAULIC PWR03-0450/54	42. 40. 34. 34.						7.50		.0000938110
	NFORE TV CAM	03-0123-01	14. 14. 14. 14.					3.00		.0033330111
	NFORE LIGHTS	03-0138-01	14. 14. 14. 14.					3.00		.1666000112
	NU/W PHONE	03-01C1-01	55. 55. 42. 42.					9.50		.002220113
	NCL HYDROPHCNE03-0162-07	55. 55. 42. 42.						9.50		.0010000114
	MSKIRT PR GAGE03-0162-08	67. 67. 54. 54.						12.10		.0000330115
	MSHORT R SONAR03-0146-06	14. 14. 14. 14.						3.00		.0025000114
	MSKIRT TV CAM	03-0123-02	14. 14. 14. 14.					3.00		.0000180117
	NAFT TV CAM	03-0123-03	14. 14. 14. 14.					3.00		.0033330118
	NMATCH PH + 1C03-0101-02	14. 14. 14. 14.						3.00		.0000400119
	NVIEWPT OPTICS03-0341	14. 14. 14. 14.						3.00		.0000150120
	N800 WATT LITS03-0138-03	14. 14. 14. 14.						3.00		.0166600121
	NAFT LIGHTS	03-0138-05	14. 14. 14. 14.					3.00		.1666000122
	NTRAINABLE LIT03-0138-02	14. 14. 14. 14.						3.00		.1666000123
	DINT STRUCTURE03-C311/20	191.181.168.142.						36.50		.0000150124
	CU/W PHONE	03-01C1-01	81. 71. 71. 71.					15.50		.002220125
	NCCM SYS C + D03-0210/15	55. 55. 42. 42.						9.50		.0000810126
	CCCM SYS C + D03-0210/15	141.131.118.118.						26.10		.0000810127
	CMATCH PH + 1C03-0101-02	141.131.118.118.						26.10		.0000400128
	PHYDRAULIC PWR03-0450/54	18. 8. 8. 8.						1.90		.0000938129
	PSHORT R SONAR03-0146-06	18. 8. 8. 8.						1.90		.0025000190
	PVIEWPT OPTICS03-0341	18. 8. 8. 8.						1.90		.0000150131
	PSKIRT TV CAM	03-0123-02	18. 8. 8. 8.					1.90		.0000180132
	PAFT TV CAM	03-0123-03	18. 8. 8. 8.					1.90		.0033330133
	PAFT LIGHTS	03-0138-05	18. 8. 8. 8.					1.90		.1666000134
	PSOC WATT LITS03-0138-03	18. 8. 8. 8.						1.90		.0166600135
	MMATING SYSTEM03-0455	20. 20. 20. 20.						4.40		.0000640136
	MSKIRT SEAL	03-0459	91. 91. 91. 66.					19.30		.0001953137
	MSKIRT XPR C+003-0232/35	20. 20. 20. 20.						4.40		.0000051138

MEL Report 110/65

DESCRIPTION OF COMP.	DRAWING NUMBER	T1	T2	T3-	T4	TOTAL OPER. TIME	FAILURE RATE	ASME MEL NUMBER
				T12				
MANCHORS + MAR03-0425		37.	37.	37.	37.	8.00	.0033330139	
MSKIRT PR GAGE03-0162-08	31.	31.	31.	31.	6.00	.0000330141		
MALT SONAR 03-0146-04	67.	67.	54.	54.	12.10	.0033330142		
MDEPTH SONAR 03-0146-05	67.	67.	54.	54.	12.10	.0033330143		
MSHORT R SONAR03-0146-06	20.	20.	20.	20.	4.40	.0025000144		
MSKIRT TV CAM 03-0123-02	20.	20.	20.	20.	4.40	.0000180145		
MSKIRT LIGHT 03-0138-04	20.	20.	20.	20.	4.40	.1666000146		
MAFT LIGHTS 03-0138-05	20.	20.	20.	20.	4.40	.1666000147		
M600 WATT LITS03-0138-03	20.	20.	20.	20.	4.40	.0166600148		
MAFT TV CAM 03-0123-03	20.	20.	20.	20.	4.40	.0033330149		
<hr/>								
M VIEWPT/PTICS03-0341	10.	10.	10.	10.	2.20	.0000150150		
MHATCH PH + 1C03-0101-02	10.	10.	10.	10.	2.20	.0000400151		
SSHORT R SONAR03-0146-06	14.	14.	14.	14.	3.00	.0025000152		
SSKIRT TV CAM 03-0123-02	14.	14.	14.	14.	3.00	.0000180153		
SAFT TV CAM 03-0123-03	14.	14.	14.	14.	3.00	.0033330154		
SHATCH PH + 1C03-0101-02	14.	14.	14.	14.	3.00	.0000400155		
SFORE TV CAM 03-0123-01	27.	27.	14.	14.	3.50	.0033330156		
SFORE LIGHTS 03-0138-01	14.	14.	14.	14.	3.00	.1666000157		
SCOM SYS C + 003-0210/15	14.	14.	14.	14.	3.00	.0000810158		
STRAINABLE LIT03-0138-02	14.	14.	14.	14.	3.00	.1666000159		
<hr/>								
MHYDRAULIC PWR03-0450/54	99.	91.	84.	84.	18.60	.0000938160		
M EXT SENS/DISP03-0285/89	67.	67.	54.	54.	12.10	.0000210161		
MEXT SENS DISP03-0285/89	31.	31.	31.	31.	6.80	.0000210162		
ESKIRT PR GAGE03-0162-08	19.	8.	8.	8.	1.90	.0000330163		
EEXT SENS DISP03-0285/89	19.	8.	8.	8.	1.90	.0000210164		
CU/W PHONE 03-0101-01	141.131.118.118.				26.10	.0002220170		
MHYDRAULIC PWR03-0450/54	141.131.118.118.				26.10	.0000938171		
ESKIRT PR GAGE03-0162-08	116.106.93.	93.			20.40	.0000330172		
EEXT SENS DISP03-0285/89	116.106.93.	93.			20.40	.0000210173		
INCOM SYS C + 003-0210/15	10.	10.	10.	10.	2.20	.0000810174		
<hr/>								
S600 WATT LITS03-0138-03	14.	14.	14.	14.	3.00	.0166600175		
SAFT LIGHTS 03-0138-05	14.	14.	14.	14.	3.00	.1666000176		
SVIEWPT OPTICS03-0341	14.	14.	14.	14.	3.00	.0000150177		
MHOR O A SONAR03-0146-03	67.	67.	54.	54.	12.10	.0025000180		
MVER O A SONAR03-0146-02	67.	67.	54.	54.	12.10	.0025000181		
INCOM SYS C + 003-0210/15	14.	14.	14.	14.	3.00	.0000810182		
NTV CAM C + D 03-0225/27	14.	14.	14.	14.	3.00	.0002100183		
NPAN + TLT EQP03-0123-04	14.	14.	14.	14.	3.00	.0010000184		
PFORE TV CAM 03-0123-01	18.	8.	8.	8.	1.90	.0033330185		
PTV CAM C + D 03-0225/27	18.	8.	8.	8.	1.90	.0002100186		

MEL Report 110/66

F	DESCRIPTION OF COMP.	DRAWING NUMBER	T ₁	T ₂	T ₃ - T ₁₂	T ₁₃	TOTAL OPER. TIME	FAILURE RATE	ASIG- NED NUMBER
	PPAN + TLT EQP03-0123-04	18.	8.	8.	8.		1.90		.0010000187
	PTRAINABLE LIT03-0138-02	18.	8.	8.	8.		1.90		.1666000188
	NFORE TV CAN 03-0123-01	10.	10.	10.	10.		2.20		.0033330189
	NPAN + TLT EQP03-0123-04	10.	10.	10.	10.		2.20		.0010000190
	MTV CAN C + D 03-0225/27	10.	10.	10.	10.		2.20		.0002100191
	SPAN + TLT EQP03-0123-04	14.	14.	14.	14.		3.00		.0010000192
	STV CAN C + D 03-0225/27	14.	14.	14.	14.		3.00		.0002100193
	STRAINABLE LIT03-0138-02	10.	10.	10.	10.		2.20		.1666000194
V	EXTSENSOISPO3-0285/89	100.90.	77.	77.			17.20		.0000210195
	NSONAR CTL + D03-0201	67.	67.	54.	54.		12.10		.0020000196
	 NSONAR CTL + D03-0201	14.	14.	14.	14.		3.00		.0020000197
	PSONAR CTL + D03-0201	8.	8.	8.	8.		1.90		.0020000198
	MSONAR CTL + D03-0201	20.	20.	20.	20.		4.40		.0020000199
	SSONAR CTL + D03-0201	14.	14.	14.	14.		3.00		.0020000200
	MTV CAN C + D 03-0225/27	14.	14.	14.	14.		3.00		.0002100201
	LATMOS SAMPLE 03-0630/34	3.	3.	3.	3.		0.65		.0000150202
	L HATCH PH +IC03-0101-02	3.	3.	3.	3.		0.65		.0000400203

MEL Report 110/66

Appendix F

**Changes to Input Data
Used in Second DSRV Reliability Model**

A. Component Failure Rates in Error in First Model

<u>Assigned No.</u>	<u>Description of Component</u>	<u>From</u>	<u>To</u>	<u>Failure Rate (Per 10⁶ Hrs.)</u>	<u>Changed</u>
012	Propulsion System Cont. & Disp.	57.8	168*		
033	Capsule Structure	10	15		
035	Access Hatch	1	15		
036	Electrical Penetrations	0.1	15		
037	Optical Penetrations	0.1	15		
070	Control Sphere CO ₂ Removal	0.2	10		
074	Control Sphere Toxics Cont. and Disp.	0.2	10		
077	Rescue Sphere CO ₂ Removal	0.2	10		
081	Rescue Sphere Toxics Cont. and Disp.	0.2	10		
111	Fore TV Camera	3300	3333		
133	Aft TV Camera	3300	3333		

* The Reliability Data supplement to ARINC's 30 June 1965 report, Deep Submergence Rescue Vehicle Equipments Reliability Predictions and Allocations, is used as the source of correct failure rates for the first reliability model.

MEL Report 110/66

B. Component Failure Rates Changed by Latest Information

Assigned No.	Description of Component	Failure Rate (Per 10^6 Hrs.)	
		From	To
112	Fore Lights*	3300	166,600
157	Fore Lights	3300	166,600
113	Underwater Phone	500	222
125	Underwater Phone	500	222
170	Underwater Phone	500	222
121	800-Watt Light	500	16,660
135	800-Watt Light	500	16,660
148	800-Watt Light	500	16,660
175	800-Watt Light	500	16,660
122	Aft Lights	3333	16,660
134	Aft Lights	3333	16,660
147	Aft Lights	3333	16,660
176	Aft Lights	3333	16,660
123	Trainable Light	3333	16,660
159	Trainable Light	3333	16,660
188	Trainable Light	3333	16,660
194	Trainable Light	3333	16,660
146	Skirt Light	250,000	166,600

* Light failure rate based on information from M. Goodman of NASL. Underwater Phone failure rate from S. Keller of NASL.

MEL Report 110/66

C. Component Failure Rates Added in Second Model

<u>Assigned No.</u>	<u>Description of Component</u>	<u>Failure Rate (Per 10^6 Hrs.)</u>
120	Viewport Optics	15*
131	Viewport Optics	15
150	Viewport Optics	15
177	Viewport Optics	15
137	Skirt Seal	195.3
184	Pan and Tilt Equipment	3.0
187	Pan and Tilt Equipment	1.9
190	Pan and Tilt Equipment	2.2
192	Pan and Tilt Equipment	3.0

* The computer program for the first reliability model, and not the 30 June 1965 ARINC report, defines the components which were included in the first model computations.

MEL Report 110/66

D. Component Operating Times Changed in Second Model

Assigned No.	Description of Component	Operating Times (Hrs.)	
		From	To
110	Hydraulic Power	26.1	7.5*
129	Hydraulic Power	26.1	1.9
160	Hydraulic Power	26.1	18.6
171	Hydraulic Power	26.1	26.1
114	Directional Listening Hydro- phone	6.1	9.5
115	Skirt Pressure Gauge	3.4	12.1
141	Skirt Pressure Gauge	3.4	6.8
163	Skirt Pressure Gauge	3.4	1.9
172	Skirt Pressure Gauge	3.4	20.4
116	Short Range Sonar	6.8	3.0
130	Short Range Sonar	6.8	1.9
144	Short Range Sonar	6.8	4.4
152	Short Range Sonar	6.8	3.0
117	Skirt TV Camera	8.8	3.0
132	Skirt TV Camera	8.8	1.9
145	Skirt TV Camera	8.8	4.4
153	Skirt TV Camera	8.8	3.0
119	Hatch Phone and Intercom	18.5	3.0
128	Hatch Phone and Intercom	18.5	26.1
151	Hatch Phone and Intercom	18.5	2.2
155	Hatch Phone and Intercom	18.5	3.0
124	Internal Structure	18.2	36.5
126	Communication System Cont. and Disp.	22.2	9.5
127	Communication System Cont. and Disp.	22.2	26.1
158	Communication System Cont. and Disp.	22.2	3.0
174	Communication System Cont. and Disp.	22.2	2.2
182	Communication System Cont. and Disp.	22.2	3.0
136	Mating System	5.7	4.4
138	Skirt Transfer Cont. and Display	3.9	4.4
139	Anchors and Markers	5.9	8.0
140	Skirt Dewatering System	5.6	4.4
142	Altitude Sonar	12.6	12.1

* New operating times are based on battery and hydraulic power supply power-profiles in the vehicle RFP.

MEL Report 110/66

D. Component Operating Times Changed in Second Model (cont'd.)

<u>Assigned No.</u>	<u>Description of Component</u>	<u>Operating Times (Hrs.)</u> <u>Changed</u>	
		<u>From</u>	<u>To</u>
143	Depth Sonar	12.6	12.1
161	External Sensors Disp.	7.0	12.1
162	External Sensors Disp.	7.0	6.8
164	External Sensors Disp.	7.0	1.9
173	External Sensors Disp.	7.0	20.4
195	External Sensors Disp.	7.0	17.2
180	Horizontal Obstacle Avoid. Sonar	12.6	12.1
181	Vertical Obstacle Avoid. Sonar	12.6	12.1
183	TV Camera Cont. and Disp.	9.3	3.0
186	TV Camera Cont. and Disp.	9.3	1.9
191	TV Camera Cont. and Disp.	9.3	2.2
193	TV Camera Cont. and Disp.	9.3	3.0
201	TV Camera Cont. and Disp.	9.3	3.0
196	Sonar Cont. and Disp.	13.1	12.1
197	Sonar Cont. and Disp.	13.1	3.0
198	Sonar Cont. and Disp.	13.1	1.9
199	Sonar Cont. and Disp.	13.1	4.4
200	Sonar Cont. and Disp.	13.1	3.0
202	Atmosphere Sampling	6.0	.65
203	Hatch Phone and Intercom	18.5	.65

MEL Report 110/66

Appendix G

**Recommendation for Modeling of the DSRV in
an Advanced Reliability Study**

DERIV SYSTEM STRUCTURE FOR ADVANCED RELIABILITY STUDY

四庫全書

G-1

107

**BOOLEAN EXPRESSION AND PROBABILITY EQUATION
FOR A PORTION OF THE DEPTH CONTROL MODEL**

A. BOOLEAN EXPRESSION

$$141^* = 141 \left\{ [145 (122 \vee 129)] \vee [146 (122 \vee 129)] \vee [148] \right\}$$

Where \vee designates "or", and "and" is indicated by multiplication.

This expression is simplified to the following:

$$141^* = 141 \left\{ (122 \vee 129) (145 \vee 146) \vee 148 \right\}$$

B. RELIABILITY EQUATION

$$\Pr [141^*] = P_{141} \left\{ 1 - \left[1 - \frac{(1 - (1 - P_{122})(1 - P_{129}))}{(1 - (1 - P_{145})(1 - P_{146}))} \right] [1 - P_{148}] \right\}$$

Where \Pr and P represent probability.

Security Classification Unclassified

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) U. S. Navy Marine Engineering Laboratory Deep Submergence Systems Project Interface		2a. REPORT SECURITY CLASSIFICATION Unclassified
		2b. GROUP
3. REPORT TITLE Reliability Prediction for a Deep Submergence Rescue Vehicle; Second Reliability Model		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
5. AUTHOR(S) (Last name, first name, initial) Ragot, Robert L. Hamilton, Robert L.		
6. REPORT DATE March, 1966	7a. TOTAL NO. OF PAGES 47	7b. NO. OF REFS 5
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) 110/66	
b. PROJECT NO. 62-701-300	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) Assignment 62 701	
c.		
d.		
10. AVAILABILITY/LIMITATION NOTICES Each transmittal of this document outside the agencies of the U. S. Government must have prior approval of Chief, Bureau of Ships, USN, (Code 210L), Washington, D. C. 20360		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Special Projects Office NAVSHIPS	
13. ABSTRACT A second reliability model of the Deep Submergence Rescue Vehicle (DSRV) is defined. On the basis of this model, a prediction is made of the DSRV reliability for a typical rescue mission. The predicted reliability is computed to be 29%, for a 26-hour vehicle-operating time. The major factor contributing to the low predicted reliability of the vehicle is the high failure rate assumed for the forward and skirt (exterior) lamps. A two-orders-of-magnitude decrease in the assumed failure rate for these underwater lamps results in a predicted reliability of about 80%. Recommendations are made for improving future DSRV reliability studies.		
(by author)		

Security Classification Unclassified

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Reliability Prediction of system reliability Deep Submergence Submarine Mathematical model Trade-offs						
INSTRUCTIONS						
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.	imposed by security classification, using standard statements such as:					
2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.	(1) "Qualified requesters may obtain copies of this report from DDC."					
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.	(2) "Foreign announcement and dissemination of this report by DDC is not authorized."					
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.	(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _____."					
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.	(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _____."					
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.	(5) "All distribution of this report is controlled. Qualified DDC users shall request through _____."					
6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.	If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.					
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.	11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.					
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.	12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.					
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.	13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.					
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.	It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).					
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.	There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.					
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).	14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.					
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those						

<p>Navy Marine Engineering Laboratory Report 110/66.</p> <p>RELIABILITY PREDICTION FOR A DEEP SUBMERGENCE RESCUE VEHICLE SECOND RELIABILITY MODEL, by R. L. Ragot and R. L. Hamilton</p> <p>March 1966.</p> <p>47 pp.</p> <p>UNCLASSIFIED III.Title Figs.</p>	<p>A second reliability model of the Deep Submergence Rescue Vehicle (DSRV) is defined. On (over)</p>	<p>UNCLASSIFIED</p>	<p>UNCLASSIFIED</p>
<p>1.DSRV - Reliability Pred. 2.Deep Submerge - - Rescue Veh - Reliab. Pred. 3.Rescue Veh. I.Hamilton,R.L. R. L. Ragot and R. L. Hamilton March 1966.</p> <p>47 pp.</p> <p>UNCLASSIFIED III.Title Figs.</p>	<p>Navy Marine Engineering Laboratory Report 110/66.</p> <p>RELIABILITY PREDICTION FOR A DEEP SUBMERGENCE RESCUE VEHICLE SECOND RELIABILITY MODEL, by R. L. Ragot and R. L. Hamilton</p> <p>March 1966.</p> <p>47 pp.</p> <p>UNCLASSIFIED III.Title Figs.</p> <p>A second reliability model of the Deep Submergence Rescue Vehicle (DSRV) is defined. On (over)</p>	<p>UNCLASSIFIED</p>	<p>1.DSRV - Reliability Pred. 2.Deep Submerge - - Rescue Veh - Reliab. Pred. 3.Rescue Veh I.Hamilton,R.L. II.Ragot, R. L. III.Title Figs.</p> <p>the basis of this model, a prediction is made of the DSRV reliability for a typical rescue mission. The predicted reliability is computed to be 29%, for a 26-hour vehicle-operating time. The major factor contributing to the low predicted reliability of the vehicle is the high failure rate assumed for the forward and skirt (exterior) lamps. A two-orders-of-magnitude decrease in the assumed failure rate for these underwater lamps results in a predicted reliability of about 80%. Recommendations are made for improving future DSRV reliability studies.</p>