RFSoC and Xilinx SDK - QUICK GUIDE

What do yo need from Vivado:

- -Bitstream
- -Hardware Definition (hdf)
- -Debug Nets

How to generate the hdf:

Select export Hardware and you will find the file at .\Nameoftheproject.sdk

What do yo need at SDK?

- -Hardware Specification Platform
- -Board Package Support (BSP)
- -Main project

You will need to generate each of them. Go to File\New\Application Project. The OS platform should be freertos10_xilinx. Also, you will need to define if you are going to create a new BSP or use one that already exists.

In order to generate a new Hardware Specification, click new Target Hardware and select the bitstream and hdf of your project.

Choose an empty application for your project. You can move the files (.c and .h) to the src of the new project.

Board Support Settings

Right click in the BSP generated in the project explorer and select *Board Support Package Settings*. This screen will come up:

Make sure these libraries are included: libmetal, lwip211 (TCP\IP stack) and xilffs (SD driver).

Go to lwip211 configuration and change the api_mode to SOCKET.

Configuration for library: xilffs				
Name	Value	Default	Type	Description
enable_exfat	false	false	boolean	0:Disable exFAT, 1:Enable
enable_multi_partition	false	false	boolean	0:Single partition, 1:Enable
fs_interface	1	1	integer	Enables file system with se
num_logical_vol	2	2	integer	Number of volumes (logic
read_only	false	false	boolean	Enables the file system in
set_fs_rpath	0	0	integer	Configures relative path fe
use_chmod	false	false	boolean	Enables use of CHMOD fu
use_lfn	1	0	integer	Enables the Long File Nan
use_mkfs	true	true	boolean	Disable(0) or Enable(1) f_
use_strfunc	2	0	integer	Enables the string function
word_access	true	true	boolean	Enables word access for n
> ramfs_size	3145728	3145728	integer	RAM FS size

For the xilffs library you need to modify use_strfunc to 2 and use_lfn to 1.

Project Settings

Go to project properties (Right click/Properties), then in the C/C++ Build Menu go to settings. Make sure the linker flags of the libraries appear in the Software Platform Inferred Flags Menu.

Debug Configurations

Its time to setup the debug configurations. Select the System Debugger mode.

You need to define the Hardware platform, the bitstream and the application. An .elf file must be generated by building the project before going to debug mode. To select the application you are going to flash to the PS, select the Application tab and choose the executable file.

Flash the Board

Connect the board by JTAG through its micro USB port. Put the SW6 to this configuration in order to switch to JTAG Flash Mode.

Click the debug button * and the project will change to Debug perspective. The FPGA will be programed. To run the application click to start.