A OPTIMAL CONTROLLED LEPTOSPIROSIS MODEL

DAVID BACA-CARRASCO, SAUL DÍAZ-INFANTE, AND MAUNEUL ADRIAN ACUÑA-ZEGARRA

ABSTRACT. We survey some theoretical results about a family of optimal control problems that arise in epidemiology. We also implement the so-called forward-backward-sweep method in Python to find approximate optimal control policies via the Pontryagin maximum principle. In addition, four specific models are described and simulated.

1. Introduction

2. The uncontrolled leptospirosis model

$$\lambda_{H} := \frac{\beta_{H}B}{k+B}, \qquad \lambda_{A} := \frac{\beta_{A}B}{k+B} + \beta_{AA}I_{A}$$

$$\frac{dS_{H}}{dt} = b(S_{A} + (1-q)I_{A} + R_{A}) - \lambda_{H}S_{H} - (\mu_{H} + m)S_{H}$$

$$\frac{dI_{H}}{dt} = (1-\sigma)qbI_{A} + \lambda_{H}S_{H} - (\mu_{H} + \delta_{H} + \gamma_{H})I_{H}$$

$$\frac{dR_{H}}{dt} = \gamma_{H}I_{H} - (\mu_{H} + m)R_{H}$$

$$\frac{dS_{A}}{dt} = \Lambda + mS_{H} - \lambda_{A}S_{A} - \gamma_{A}dS_{A}$$

$$\frac{dI_{A}}{dt} = \lambda_{A}S_{A} - (\gamma_{H} + \gamma_{A})I_{A}$$

$$\frac{dR_{A}}{dt} = mR_{H} + \gamma_{A}I_{A} - \gamma_{A}R_{A}$$

$$\frac{dB}{dt} = \theta_{H}I_{H} + \theta_{A}I_{A} - kB$$

⁽D. Baca, S. Díaz-Infante,) Departamento de Matemáticas, CONACYT-Universidad de Sonora, Hermosillo, Sonora.

⁽S. Díaz-Infante) DEPARTAMENTO DE MATEMÁTICAS, CONACYT-UNIVERSIDAD DE SONORA, HERMOSILLO, SONORA.

⁽M. A. Acuña) DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE SONORA, HERMOSILLO, SONORA. $E\text{-}mail\ addresses}$: francisco.pa@correo.uady.mx, sdinfante@conacyt.mx, dgonzalezsa@conacyt.mx.

²⁰¹⁰ Mathematics Subject Classification. 49K15, 49M05, 92D30.

Key words and phrases. SIR, SEIR, optimal control, epidemic models, forward-backward-sweep method, Pontryagin maximum principle.

We also consider a simplified version of the above model.

$$\lambda_{H} := \beta_{H}I_{H} + \bar{\beta}_{AH}I_{A}$$

$$\lambda_{A} := \beta_{A}I_{H} + \bar{\beta}_{AA}I_{A} + \beta_{AA}I_{A}$$

$$\frac{dS_{H}}{dt} = b(S_{A} + (1 - q)I_{A} + R_{A}) - \lambda_{H}S_{H} - (\mu_{H} + m)S_{H}$$

$$\frac{dI_{H}}{dt} = (1 - \sigma)qbI_{A} + \lambda_{H}S_{H} - (\mu_{H} + \mu_{ij} + \gamma_{H})I_{H}$$

$$\frac{dR_{H}}{dt} = \gamma_{H}I_{H} - (\mu_{H} + m)R_{H}$$

$$\frac{dS_{A}}{dt} = \Lambda + mS_{H} - \lambda_{A}S_{A} - \gamma_{A}dS_{A}$$

$$\frac{dI_{A}}{dt} = \lambda_{A}S_{A} - (\gamma_{H} + \gamma_{A})I_{A}$$

$$\frac{dR_{A}}{dt} = mR_{H} + \gamma_{A}I_{A} - \gamma_{A}R_{A}$$

3. Control policies for Leptospirosis in Live Stock

Notation n. We denote by $u_1(t)$ the proportion of vaccinated live-stock, and by $u_2(t)$ the bacterial fumigation strategies... Our controlled model reads:

$$\lambda_{H} := u_{2}(t)(\bar{\beta}_{HH}I_{H} + \bar{\beta}_{AH}I_{A})$$

$$\lambda_{A} := u_{2}(t)(\bar{\beta}_{HA} + \bar{\beta}_{AA})I_{A} + \bar{\beta}_{AA}I_{A}$$

$$\frac{dS_{H}}{dt} = b(S_{A} + (1 - q)I_{A} + R_{A}) - \lambda_{H}S_{H} - (\mu_{H} + m)S_{H} - u_{1}(t)S_{H} + \alpha_{H}u_{1}(t)R_{H}$$

$$\frac{dI_{H}}{dt} = (1 - \sigma)qbI_{A} + \lambda_{H}S_{H} - (\mu_{H} + \delta_{H} + \gamma_{H})I_{H} - u_{1}(t)I_{H}$$

$$(3.1) \quad \frac{dR_{H}}{dt} = \gamma_{H}I_{H} - (\mu_{H} + m)R_{H} + u_{1}(t)(S_{H} + I_{H}) - \alpha_{H}u_{1}(t)R_{H}$$

$$\frac{dS_{A}}{dt} = \Lambda + mS_{H} - \lambda_{A}S_{A} - \mu_{A}S_{A} - u_{1}(t)S_{A} + \alpha_{R}u_{1}(t)R_{A}$$

$$\frac{dI_{A}}{dt} = \lambda_{A}S_{A} - (\mu_{A} + \gamma_{A})I_{A} - u_{1}(t)I_{A}$$

$$\frac{dR_{A}}{dt} = mR_{H} + \gamma_{A}I_{A} - \mu_{A}R_{A} + u_{1}(t)(S_{A} + I_{A}) - \alpha_{A}u_{1}(t)R_{A}$$

- 4. Existence and characterization of optimal policies
 - 5. Numerical analysis
 - 6. Numerical experiments
 - 7. Concluding remarks