Тест к воркшопу по аналитической геометрии

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____
 - с) базис: _____
 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

3. Является ли система векторов базисом в пространстве (а) / на плоскости (b, c)?

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

(a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$
 (b) $\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T$, $(3\ 2\ 1)^T$, $(1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T$, $(5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$
b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
 $\vec{m} = \vec{a} + \vec{b} + \vec{c}$
 $\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

5. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

линейно зависимы.

Дополнительные индивидуальные задания

1. Вычислите детерминант выражения:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 1 & 2 \\ -1 & -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\det(A^3 - A^2B + ABA - AB^2) =$$

2. Найдите количество решений системы линейных уравнений при различных α :

$$\begin{cases} \alpha x + 4y = 2 + \alpha \\ x + \alpha y = 2 \end{cases}$$

Тест к воркшопу по аналитической геометрии

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____
 - с) базис: _____
 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

3. Является ли система векторов базисом в пространстве (а) / на плоскости (b, c)?

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a},\vec{b},\vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и $\vec{b}.$
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

(a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$
 (b) $\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T$, $(3\ 2\ 1)^T$, $(1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T$, $(5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$
b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
 $\vec{m} = \vec{a} + \vec{b} + \vec{c}$
 $\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

5. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

линейно зависимы.

Дополнительные индивидуальные задания

1. Вычислите детерминант выражения:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ -2 & 1 & 2 \\ -1 & -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\det(A^3 - A^2B + ABA - AB^2) =$$

2. Найдите количество решений системы линейных уравнений при различных α :

$$\begin{cases} \alpha x + 4y = 2 + \alpha \\ x + \alpha y = 2 \end{cases}$$