Numeros Complejos [Ok]

sea $z\in\mathbb{C},a,b\in\mathbb{Z}$:

$$z = a + bi$$

$$Re(z) = a$$
 $Im(z) = b$

$$Im(z) = 0$$

• conjugado : $\bar{z}=a-bi$

• modulo : $|z| = \sqrt{a^2 + b^2}$

• argumento: $arg(z) = \theta \Leftrightarrow 0 \leq \theta \leq 2\pi$

• inverso : $z^{-1}=rac{ar{z}}{|z|^2}$

Argumento:

sea
$$heta = Arg(z) \Rightarrow 0 \leq heta \leq 2\pi$$

$$a = Re(z), b = Im(z)$$

• $cos\theta = \frac{a}{|z|} \Rightarrow \theta = cos^{-1}(\frac{a}{|z|})$

• $sen\theta = \frac{b}{|z|} \Rightarrow \theta = sen^{-1}(\frac{b}{|z|})$

Sea $w,z\in\mathbb{C}$:

• $Arg(z^n) = n * Arg(z)$ • Arg(z.w) = Arg(z) + Arg(w)

Operaciones

sea $z_lpha, w_ heta \in \mathbb{C}, a,b \in \mathbb{Z}$

z = a + bi

w = c + di

• suma : z + w = Re(z) + Re(z) + i(Im(z) + Im(w))

• resta : z-w=Re(z)-Re(z)-i(Im(z)-Im(w))

• division : $rac{z}{w} = rac{|z|}{|w|}(cos(lpha - heta) + isen(lpha - heta))$ • producto : $z*w = |z|*|w|(cos(\alpha+\theta)+isen(\alpha+\theta))$

Forma de Moivre

sea $z=|z|e^{ heta i}$

• division : $\frac{z}{w} = \frac{|z|}{|w|} |z| e^{(\alpha - \theta)i}$

• producto : $z*w=|z||w|e^{(\alpha+\theta)i}$

• potencia : $z^n = |z|^n e^{n(\theta)i}$

Igualdad de Complejos:

sea $w_{ heta}, z_{lpha} \in \mathbb{C}, z = W$

$$\Leftrightarrow egin{cases} |z| = |w| \ arg(z) = arg(w) \end{cases} . \Leftrightarrow egin{cases} |z| = |w| \ lpha = heta \end{cases}$$

Raices n-esimas:

busco $w_{ heta} \in \mathbb{C}: w^n = z$

sea $z_{lpha} \in \mathbb{C}$ y sea $w_{ heta}$ una **raiz n-esima** de z:

$$\Leftrightarrow egin{cases} |w|^n = |z| \ n*arg(w) = arg(z) \end{cases} \Leftrightarrow egin{cases} |w| = \sqrt[n]{|z|} \ heta = rac{lpha + 2k\pi}{n} \end{cases}$$

 $\Rightarrow w=w_k=\sqrt[n]{|z|}e^{rac{ heta+2k\pi}{n}}\ con\ k\in\{0,..,n-1\}$

sea w_k una **raiz n-esima** de la unidad:

 $ullet w_k = e^{rac{2k\pi}{n}} \; , \; k \in \{1,2,...n-1\}$

sea $w \in G_n \Rightarrow w^n = 1$ • $w^k=w^{r_n(k)}$, $k\in\mathbb{Z}$

nota: observar que w_k es lo mismo que w^k y que si $w \in G_n$ entonces es una raiz n-esima de

Grupo G_n

Sea $w \in G_n \Rightarrow w^n = 1$

unidad!

 $ullet w \in G_n \Rightarrow w^m = w^{r_n m}$ • $w \in G_n \Rightarrow |w| = 1$

• $w \in G_n \Rightarrow \bar{w} \in G_n \land \bar{w} = w^{-1}$ • $w \in G_n \Rightarrow \bar{w} = w^{-1}$

Sean $n,m\in\mathbb{N}$,

• $n|m \Rightarrow G_n \subset G_m$. • $G_n \cap G_m = G_{(m:n)}$.

• $G_n \subset G_m \Leftrightarrow n|m|$

Propiedades importantes

• $i^2 = -1$

• $z.\bar{z} = |z|^2$

sea
$$z\in\mathbb{C}$$
:

• $\bar{z} = z \Leftrightarrow z \in \mathbb{R}$

• $z + \bar{z} = 2Re(z)$

• $z-\bar{z}=2Im(z)i$ • $|Re(z)| \leq |z|$

sea $w,z\in\mathbb{C}$:

• $|Im(z)| \leq |z|$

• $\overline{z+w} = \bar{z} + \bar{w}$

• $\overline{z.w} = \bar{z}.\bar{w}$ • $si \ z \neq 0 \Rightarrow \overline{z^{-1}} = \overline{z}^{-1}$

• $si \ z \neq 0 \Rightarrow \overline{z^k} = \overline{z}^k, \forall k \in \mathbb{Z}$

• $|z+w| \le |z| + |w|$

• $|z.w| \leq |z|.|w|$

• $si \ z \neq 0 \Rightarrow |z^{-1}| = |z|^{-1}$ • $si \ z
eq 0 \Rightarrow |z^k| = |z|^k, orall k \in \mathbb{Z}$

Tabla de sen & cos

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sen $lpha$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
000 0	$\sqrt{4}$	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{1}$	$\sqrt{0}$