## VERSUCH NUMMER

# TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

## Inhaltsverzeichnis

| 1 | Theorie                                       | 3        |
|---|-----------------------------------------------|----------|
| 2 | Durchführung                                  | 3        |
| 3 | Auswertung   3.1 Emissionsspektrum von Kupfer | <b>3</b> |
|   | 3.2 Bestimmung der Transmission               | 3        |
| 4 | Diskussion                                    | 5        |

#### 1 Theorie

## 2 Durchführung

### 3 Auswertung

Im folgenden wird mit den Konstanten

$$h = 4,136 \cdot 10^{-15} \text{ eVs}$$
$$c = 2,99 \cdot 10^8 \text{ m/s}$$
$$d = 201, 4 \cdot 10^{-12} \text{ m}$$

gerechnet. h ist das Planck'sche Wirkungsquantum, c die Lichtgeschwindigkeit, d die Gitterkonstante des Lithium-Flourid-Kristalls.

Die Beugungsordnung n beträgt n = 1.

#### 3.1 Emissionsspektrum von Kupfer

In Abbildung 1 ist das Bremsspektrum der Röntgenstrahlung, die auf das Kupfer trifft, zu sehen.

Es wird die Zählrate N der Impulse pro Sekunde gegen die Wellenlänge  $\lambda$  in Metern aufgetragen.

Es sind die Peaks  $K_{\alpha}$  und  $K_{\beta}$  bei den Winkeln  $\alpha(K_{\alpha})=22,5^{\circ}$  und  $\alpha(K_{\beta})=20,02^{\circ}$  zu erkennen.

Mit Hilfe der Formel — lassen sich die zu den Peaks gehörigen Energien

$$E(K_{\alpha}) = 8044eV$$
$$E(K_{\beta}) = 8915eV$$

#### 3.2 Bestimmung der Transmission

Die Funktion der Transmisson  $T(\lambda)$  beschreibt die Transmission der Röntgenstrahlung durch die Aluminiumplatte des Aufbaus in Abhängigkeit von der Wellenlänge.

#### 3.3 Bestimmung der Compton-Wellenlänge



**Abbildung 1:** Das Emmissionsspektrum von Kupfer mit gekennzeichneten Peaks. Der erste Peak stellt  $K_\beta$  dar, der zweite  $K_\alpha$ .



**Abbildung 2:** Die Transmission T in Abhängigkeit der Wellenlänge  $\lambda$  mit linearer Ausgleichsgeraden.



Abbildung 3: Die Transmission T in Abhängigkeit der Wellenlänge  $\lambda$  mit linearer Ausgleichsgeraden und Fehlerbalken.

## 4 Diskussion