Dihedral Groups

Definition

A dihedral group, denoted D_n , represents the symmetries (rotation and reflection) of a regular polygon with n vertices by permutations of the vertices.

Example: D_3

e = ()	no action
r = (123)	rotate CCW
$r^{-1} = (132)$	rotate CW
$f_1 = (23)$	flip about ℓ_1
$f_2 = (13)$	flip about ℓ_2
$f_3 = (12)$	flip about ℓ_3

$$r^{2} = r^{-1}$$

$$r^{3} = (r^{-1})^{3} = e$$

$$f_{1} = f_{1}^{-1}$$

$$f_{2} = f_{2}^{-1}$$

$$f_{3} = f_{3}^{-1}$$

$$f_{1}^{2} = f_{2}^{2} = f_{3}^{2} = e$$

Example: D_4

e = ()	no action
$r_1 = (1234)$	rotate once CCW
$r_2 = (13)(24)$	rotate twice CCW
$r_3 = (1432)$	rotate thrice CCW
$f_1 = (24)$	flip about ℓ_1
$f_2 = (13)$	flip about ℓ_2
$f_3 = (12)(34)$	flip about ℓ_3
$f_4 = (14)(23)$	flip about ℓ_4

$$|D_3| = |S_3| = 6$$

 $|D_4| = 8$

In general:

$$|D_n| = 2n = (n \text{ rotations}) + (n \text{ reflections})$$

where:

$$n \text{ reflections} = \begin{cases} \frac{n}{2} \text{ opposite vertices} + \frac{n}{2} \text{ opposite sides}, & n \text{ even} \\ n \text{ vertex-opposite side}, & n \text{ odd} \end{cases}$$

Hasse Diagram for D_4 :

$$\begin{split} \langle e \rangle &= \{e\} \\ \langle r_1 \rangle &= \langle r_3 \rangle = \{e, r_1, r_2, r_3\} \\ \langle r_2 \rangle &= \{e, r_2\} \\ \langle f_1 \rangle &= \{e, f_1\} \\ \langle f_2 \rangle &= \{e, f_2\} \\ \langle f_3 \rangle &= \{e, f_3\} \\ \langle f_4 \rangle &= \{e, f_4\} \\ K &= \{e, r_2, f_1, f_2\} \\ K' &= \{e, r_2, f_3, f_4\} \\ D_4 &= \{e, r_1, r_2, r_3, f_1, f_2, f_3, f_4\} \end{split}$$

