2024.07.20(토)

정규세션 1주차

기초통계(1)

21기 이소영, 22기 정혜정

CONTENTS

목차

01 확률의 관점

빈도주의와 베이지안 베이즈정리 03 몬테카를로

몬테카를로 개념

02 확률적 모델링을 위한 확률론

> 이산확률분포와 연속확률분포 모수 추정 과정

04 회귀분석

회귀분석 단순 선형 회귀 분석 회귀 진단 CHAPTER 01

호는 를 이 권 점

빈도주의와 베이지안

빈도주의(Frequentist)

베이지안(Bayesian)

확률을 <u>사건의 빈도</u>로 보는 관점

확률을 <u>주장에 대한 신뢰도</u>로 해석하는 관점

확률을 해석하는 관점의 차이

동전의 앞면이 나올 확률이 50%

빈도주의: 100번 동전을 던졌을 때 50번은 앞면이 나온다 베이지안: 동전의 앞면이 나왔다는 주장의 신뢰도가 50%이다

빈도주의와 베이지안

빈도주의(Frequentist)

베이지안(Bayesian)

확률을 <u>사건의 빈도</u> 로 보는 관점	확률을 <u>주장에 대한 신뢰도</u> 로 해석하는 관점
<u>모수(parameter)는 고정된 상수</u>	<u>모수</u> (parameter)는 <u>변하는 수</u>
데이터가 분포를 가짐	데이터는 관찰된 sample (고정)
→ <u>데이터 분포를 가정</u> 하여 <u>모수에 대한 추론</u>	→ <u>데이터를 기반 정보를 업데이트</u> 하여 <u>모수를 추정</u>
데이터가 부족할 경우	사전지식의 확실성/불확실성 관련
→ 신뢰도가 낮고 잘못된 추론을 할 수 있음	→ 사전확률에 따라 결과가 크게 바뀔 수 있음

베이즈정리

가능도(likelihood) 사전확률(prior)
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
사후확률(posterior)

[사전확률과 사후확률의 관계를 나타내는 정리]

불확실성 하에서 의사결정을 하는데 있어 중요한 도구

특히 새로운 정보가 주어졌을 때 이전에 믿었던 것을 어떻게 업데이트할지 알려줌

예측, 분류, 의사결정 문제 등 다양한 분야에서 응용

베이즈정리

가능도(likelihood) 사전확률(prior)
$$P(H|E) = \frac{P(E|H) P(H)}{P(E)}$$
사후확률(posterior)

- H (Hypothesis): 가설 or '어떤 사건이 발생했다는 주장'을 의미
- E (Evidence): 새로운 정보
- P(H): 어떤 사건이 발생했다는 주장에 관한 신뢰도 = 사전확률
- P(H|E): 새로운 정보를 받은 후 갱신된 신뢰도 = 사후확률
- P(E|H) : 추가정보 = 가능도

베이즈정리

삼색이 고양이 성별?

성염색체와 관련된 이유로 삼색이 고양이는 거의 대부분이 암컷이라고 알려져 있다.

고양이의 크기, 행동 등의 정보(feature)가 없이도 사전 지식만 가지고 판별O

이러한 판별에 도움을 주는 확률값

베이즈정리

[키(특정 정보)에 따라 이 사람이 여자인지 남자인지 판별하기]

키 175cm

여자라고 생각하는 것 보다 남자라고 생각하는 것이 더 "가능성"이 커 보인다는 것을 알 수 있음

베이즈정리

예시1)

질병 A의 발병률은 0.1%로 알려져있음. 이 질병이 실제로 있을 때 질병이 있다고 검진할 확률(민감도)은 99%, 질병이 없을 때 없다고 실제로 질병이 없다고 검진할 확률(특이도)는 98%라고 함. 만약 어떤 사람이 질병에 걸렸다고 검진 받았을 때, 이 사람이 정말로 질병에 걸렸을 확률은?

베이즈정리

예시2)

예제1에서 한 번 양성 판정을 받았던 사람이 두 번째 검진을 받고 또 양성 판정을 받았을 때, 이 사람이 실제로 질병에 걸린 확률은?

CHAPTER 02

확률적 모델링을 위한 확률론

이산확률분포 vs 연속확률분포

이산확률분포

확률변수가 가질 수 있는 값이 셀 수 있는 경우의 분포

> 베르누이 분포 이항 분포 포아송 분포

연속확률분포

확률변수가 가질 수 있는 값이 연속적인 실수인 경우의 분포

> 정규 분포 지수 분포 감마 분포

이산확률분포

베르누이 분포 (Bernoulli Distribution)

두 가지 가능한 결과 중 하나가 나오는 실험 실험 결과 → "성공", "실패"로 구분

> 예) 동전 던지기 1번 → 앞면 / 뒷면 ?

이항 분포 (Binomial Distribution)

베르누이 시행을 n번 반복했을 때 k번 성공할 확률

> 예) 동전을 10번 던져서 앞면(성공)이 나오는 횟수?

포아송 분포 (Poisson Distribution)

단위시간 또는 단위공간에서 어떤 사건이 몇 번 발생할 것인가 표현

예) 특정 시간동안 걸려오는 전화의 수 ?

연속확률분포

정규 분포 (Normal distribution)

데이터가 평균을 중심으로 대칭적으로 분포하는 경우

지수 분포 (Exponential Distribution)

포아송 분포
: 일정 시간동안 발생하는 사건의 횟수
→ 지수 분포
: 특정 사건이 발생할 때까지의
대기 시간이나 간격

예)

하루 평균 3명의 환자가 내원한다고 했을 때, 첫번째 환자가 5시간 안에 내원할 확률

감마 분포 (Poisson Distribution)

지수분포의 일반화 된 형태 = 감마분포는 지수분포의 합예)

낚시를 하는데 어부가 물고기를 30분에 한 마리씩 잡음. 어부가 4마리 물고기를 잡을 때까지 걸리는 시간이 2~4시간일 확률은?

- 물고기 한 마리 잡는데 시간 : 지수함수

- 물고기 4마리 잡는데 시간: 감마함수

모수 추정 과정

MLE (최대우도법, Maximum Likelihood Estimation)

어떤 확률변수에서 표집한 값들을 토대로 각 가설마다 계산된 우도값 중 가장 큰 값을 고르는 방법

x={1,4,5,6,9} 데이터를 얻었다고 가정

데이터 xx는 주황색 곡선과 파란색 곡선 중 어떤 곡선으로부터 추출되었을 확률이 더 높을까?

모수 추정 과정

MLE (최대우도법, Maximum Likelihood Estimation)

어떤 확률변수에서 표집한 값들을 토대로 각 가설마다 계산된 우도값 중 가장 큰 값을 고르는 방법

x={1,4,5,6,9} 데이터를 얻었다고 가정

데이터 xx는 **주황색 곡선**과 파란색 곡선 중 어떤 곡선으로부터 추출되었을 확률이 더 높을까?

모수 추정 과정

MLE (최대우도법, Maximum Likelihood Estimation)

어떤 확률변수에서 표집한 값들을 토대로 각 가설마다 계산된 우도값 중 가장 큰 값을 고르는 방법

x={1,4,5,6,9} 데이터를 얻었다고 가정

우리가 데이터를 관찰함으로써 이 데이터가 추출되었을 것으로 생각되는 분포의 특성을 추정할 수 있음

모수 추정 과정

MLE (최대우도법, Maximum Likelihood Estimation)

어떤 확률변수에서 표집한 값들을 토대로 각 가설마다 계산된 우도값 중 가장 큰 값을 고르는 방법

likelihood : 지금 얻은 데이터가 이 분포로부터 나왔을 가능도

$$P(x|\theta) = \prod_{k=1}^{n} P(x_k|\theta)$$

각 포인트로부터 해당 분포에 대한 높이들 계산

- → 데이터들이 갖는 확률밀도함수(pdf)에 대한 높이를 알 수 있음
 - →높이들을 모두 곱함
 - → 높이 하나하나를 likelihood에 기여하는 기여도라고 함.

모수 추정 과정

MLE (최대우도법, Maximum Likelihood Estimation)

어떤 확률변수에서 표집한 값들을 토대로 각 가설마다 계산된 우도값 중 가장 큰 값을 고르는 방법

likelihood : 지금 얻은 데이터가 이 분포로부터 나왔을 가능도

$$P(x|\theta) = \prod_{k=1}^{n} P(x_k|\theta)$$

주황색 likelihood 기여도 계산한 값과 파란색 likelihood 기여도 계산한 값 다름

→ 최대화 할 수 있는 θ 값 찾는 것이 목표

CHAPTER 03

03 몬테카를로

몬테카를로 기본 개념

몬테카를로 (Monte Carlo)

통계적인 수치를 얻기 위해 수행하는 '시뮬레이션' 같은 것 반복된 무작위 추출을 이용하여 함수의 값을 근사하는 알고리즘

왜 굳이 이런 시뮬레이션을 하는가?

→ 통계학의 특성상 무한히 많은 시도를 거쳐야만 진짜 정답이 무엇인지 알 수 있으나 그렇게 하기가 현실적으로 어렵기 때문에 유한한 시도만으로 정답을 추정하는데 의미가 있음

03 몬테카를로

몬테카를로 기본 개념

몬테카를로 (Monte Carlo)

통계적인 수치를 얻기 위해 수행하는 '시뮬레이션' 같은 것 반복된 무작위 추출을 이용하여 함수의 값을 근사하는 알고리즘

가장 유명한 예제 : 원의 넓이 계산

가로, 세로의 길이가 2인 정사각형 안에 점을 무수히 많이 찍으면서 중심으로부터의 거리가 1이하이면 빨간색으로 칠하고, 그렇지 않으면 파란색으로 칠해줌

- → 전체적으로 찍은 점의 개수와 빨간색으로 찍힌 점의 개수의 비율을 계산하여 원래의 사각형 면적인 4를 곱해주면 반지름이 1인 원의 넓이 대략적으로 추정 가능
- → 점이 많이 찍힐 수록 3.14에 수렴

CHAPTER 04

회귀분석

회귀분석

- 설명변수(X)에 대응하는 반응변수(Y)와 가장 비슷한 값(\hat{Y})을 출력하는 함수를 찾는 과정
- 변수들의 관계를 기술하고 형태를 파악하는 통계적인 기법

선형회귀분석

- 반응변수와 한 개 이상의 설명변수와의 선형 상관관계를 모델링하는 회귀분석 기법
- 예) 해당 연도 수확량(X)에 따른 열매 개수(Y)

단순 선형 회귀 분석

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

β0, β1 : 회귀계수, ε : 오차항

→ 3가지 변수를 추정하는 것이 단순 선형 회귀 분석의 목표

단순 선형 회귀 분석

최소제곱추정(LSE, Least Squares Estimation)

Simple Linear Regression Model

잔차(e = y - \hat{y})의 제곱합을 최소화

- → 최적의 회귀계수(모수) 추정
- → 값이 작을수록 좋은 모델

회귀진단

1. 선형성

2. 독립성

3. 등분산성

4. 정규성

회귀진단

1. 선형성

• 종속 변수 Y와 독립 변수 X 간에 선형 관계가 있다는 것 = Y와 X 사이의 관계를 직선으로 설명할 수 있어야 함

- 검증 방법
 - 산점도 → X, Y 사이의 관계를 시각적으로 확인

회귀진단

2. 독립성

• 독립 변수 X의 각 관측값이 서로 독립적 = 한 관측값의 X가 다른 관측값의 X에 영향을 주지 않아야 함

- 패턴을 보이면 X
 - → (a)를 제외한 나머지는 독립성 가정 위배
- 검증 방법
 - Durbin-Watson 검정(듀런 왓슨), ACF

회귀진단

3. 등분산성

• 독립 변수 X의 값에 대해 종속변수 Y의 분산이 일정하다는 것을 의미 = 회귀 모델이 다양한 X값에 대해 일관된 예측 정확도 유지해야 함

점점 넓어짐 = 잔차에 정보가 남아있음

잔차에 2차 함수 형태가 남아있음 = 잔차에 정보가 남아있음

잔차가 0에 대해서 대칭, 무작위 형태 잔차에 아무런 정보도 남아있지 않음

회귀진단

4. 정규성

- 회귀모형의 오차항이 정규 분포를 따름
- 정규성 가정이 무너지면 t-검정 등을 할 수 없게 됨
 - 회귀분석의 진단

- 검증 방법
 - QQ-plot, Shapiro-Wilk 검정, Kolmogorov-Smirnov 검정

- 회귀모델을 잘 만들었을 경우, 잔차는 정규분포를 따른다.

THANK YOU

감사합니다