Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on October 18, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 12. The Black-Scholes Formula

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.4 Problems

The Black-Scholes formula is a limiting case of the binomial formula (infinitely many periods) for the price of a European option.

TABLE 12.1

Binomial option prices for different numbers of binomial steps. As in Figure 10.3, all calculations assume that the stock price S = \$41, the strike price K = \$40, volatility $\sigma = 0.30$, risk-free rate r = 0.08, time to expiration T = 1, and dividend yield $\delta = 0$.

Number of Steps (n)	Binomial Call Price (\$)
1	7.839
4	7.160
10	7.065
50	6.969
100	6.966
500	6.960
∞	6.961

Check Python code Figure 12-1.py

- ► Consider an European call (or put) option written on a stock
- \blacktriangleright Assume that the stock pays dividend at the continuous rate δ

$$d_1 = rac{\ln(\mathcal{S}/\mathcal{K}) + (r - \delta + rac{1}{2}\sigma^2)\mathcal{T}}{\sigma\sqrt{\mathcal{T}}}$$
 and $d_2 = rac{\ln(\mathcal{S}/\mathcal{K}) + (r - \delta - rac{1}{2}\sigma^2)\mathcal{T}}{\sigma\sqrt{\mathcal{T}}}$

Put-call Parity
$$P=C+\mathit{Ke}^{-\mathit{rT}}-\mathit{Se}^{-\delta \mathit{T}}$$
 $d_1-d_2=\sigma\sqrt{\mathit{T}}$

5

$$N(z)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^{z}e^{-rac{x^{2}}{2}}dx$$

Example 12.1-1 Verify that the Black-Scholes formula for call and put

$$C := C(S, K, \sigma, r, T, \delta) = Se^{-\delta T}N(d_1) - Ke^{-rT}N(d_2)$$

$$P := P(S, K, \sigma, r, T, \delta) = Ke^{-rT}N(-d_2) - Se^{-\delta T}N(-d_1)$$

with

$$d_i = rac{\ln(\mathcal{S}/\mathcal{K}) + (r - \delta - (-1)^i rac{1}{2} \sigma^2) \mathcal{T}}{\sigma \sqrt{\mathcal{T}}}, \quad i = 1, 2$$

satisfies the call-put parity: $C - P = Se^{-\delta T} - Ke^{-rT}$.

Solution.

Example 12.1-2 Let S = \$41, K = \$40, $\sigma = 0.3$, r = 8%, T = 0.25 (3 months), and $\delta = 0$. Compute the Black-Scholes call and put prices. Compare what you obtained with the results obtained from the binomial tree.

Check code Example12-1.py

When is the Black-Scholes formula valid?

Assumptions about stock return distribution

- ► Continuously compounded returns on the stock are normally distributed and independent over time (no "jumps")
- ► The volatility of continuously compounded returns is known and constant
- ► Future dividends are known, either as dollar amount or as a fixed dividend yield

Assumptions about the economic environment

- ► The risk-free rate is known and constant
- ► There are no transaction costs or taxes
- ▶ It is possible to short-sell costlessly and to borrow at the risk-free rate