Certificate Management for Cloud-Hosted Digital Twins

Nikos Fotiou ExcID

Chalima Dimitra Nassar Kyriakidou, Athanasia Maria Papathanasiou, lakovos Pittaras, Yannis Thomas, <u>George Xylomenos</u>
Mobile Multimedia Laboratory, AUEB

https://mm.aueb.gr/projects/snds

Motivation

Why Certificates for DTs?

- What is a Digital Twin (DT)?
 - Virtual representation of physical IoT device
- How can we trust a cloud-hosted DT?
 - Is it authorized to represent the IoT device?
- Our scheme: short-lived certificates
 - Quick rotation of certificates
 - Resilience against malicious CAs
 - No IoT device secrets kept at the DTs
 - Low overhead and standards-based

Design

System Model

- (IoT) Device owner
 - Identified by Owner_{URL}
- Content consumer
- Cloud provider
- Certificate Authority
 - Identified by CA_{URL}
- DT platform
 - Offers DT instances
 - Identified by Instance_{ID}
 - Implementing API (NGSI-LD)

Trust Relationships

- Consumers know Owner_{URI}
- Owners know Instance_{ID}
 - Attested by cloud provider
 - Example: digest of binary
- Instances get certificates
 - From CA trusted by owner
 - Binding owner to instance
- Consumers will learn
 - The CAs trusted by owner
 - The instance's certificate

Trusted CA Management

- The Update Framework (TUF)
 - Disseminates PKs to consumers
 - PKs stored in target files
- Device owner defines four roles
 - Root: PKs for other roles
 - Its PKs transmitted out-of-band
 - Timestamp: hashes of snapshot
 - Periodically refreshed and signed
 - Snapshot: versions of root and targets
 - Targets: hashes of target files

Platform Bootstrapping

- DT instance requests attestation
 - Proves Instance_{ID} is legit software
 - Signed by cloud provider
- DT instance asks for identity token
 - Uses OpenID connect with owner
 - Sends its attestation as proof
- Owner generates OpenID token
 - Binds Instance_{ID} to owner and CA
 - Token can be used to get certificates

Certificate Issuance

- DT instance asks for certificate
 - Using its OpenID token
 - Creates new key pair and CSR
 - CA uses OpenID to get owner keys
 - Checks token is signed by owner
 - Checks token is new and not expired
- CA issues certificate
 - Indicates Instance_{ID} and Owner_{URL}
 - Certificate is short-lived (10 min)

Signing and Verification

- Consumers ask DT instance for data
 - DT responds with IoT device's state
 - Responses are signed with key corresponding to certificate
- Consumer uses owner as root of trust
 - Uses TUF to get PKs of CAs trusted by owner
 - Uses CA PKs to verify DT instance's certificate
 - Uses DT's PK to verify responses
- The process is completely automated
 - New certificates issued every few minutes

Evaluation

Implementation & Performance

- Publicly available prototype in github
 - · https://github.com/mmlab-aueb/certificate-management
 - DT instance implements NGSI-LD API
 - Platform identified via SPIFFE
 - Attestations use SPIRE
 - Custom OpenID provider for owners
- Performance evaluation
 - Owner and DT in same cloud provider
 - Public instance of Fulcio as CA
 - Measurements on i5 CPU in Ubuntu 22.04

Process	Time (ms)
Attestation issuance	1
Identity token issuance	4
Certificate issuance	390

Security Evaluation

- Man-in-the-Middle attacks
 - DT consumer: cannot create valid signature
 - DT owner: use nonces to avoid CSR replay attacks
- DT platform compromise
 - Only already verified instance are susceptible
- OpenID provider compromise
 - Certificate Transparency to detect third party certificates
- Malicious CA
 - TUF only allows trusted CAs, multiple root keys used

Conclusions

Summary

- Certificate management solution for DTs
 - Automated certificate issuance
 - Securely binds DTs to IoT devices
 - Frequent certificate issuance
 - No IoT device secrets maintained at DT
 - Uses existing protocols and mechanisms
- Future work: integrate transparency services
 - Prevent fake certificates or attestations
 - Enable certificate verification after keys expire

Thank you

https://mm.aueb.gr/projects/snds

