

TMA4230 Functional
Analysis

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 7: Solutions

- 1 Let \mathcal{H} be a Hilbert space and (x_n) a sequence in \mathcal{H} converging weakly to x. Show that the following statements are equivalent:
 - 1. x_n converges strongly to x.
 - 2. $||x_n||$ converges to ||x||.

Solution. x_n converges strongly to x if and only if $||x - x_n|| \to 0$ as $n \to \infty$. Of course, this is equivalent to $||x - x_n||^2 = \langle x - x_n, x - x_n \rangle \to 0$ as $n \to \infty$. Let us expand this expression:

$$\langle x - x_n, x - x_n \rangle = ||x||^2 - \langle x, x_n \rangle - \langle x_n, x \rangle + ||x_n||^2. \tag{1}$$

Since $x_n \to x$ weakly, we have that $\langle x, x_n \rangle \to ||x||^2$ and $\langle x_n, x \rangle \to ||x||^{2-1}$ It should now be clear that the expression in equation (1) converges to 0 if and only if $||x_n||$ converges to ||x||. Hence $x_n \to x$ if and only if $||x_n|| \to ||x||$.

- $\boxed{2}$ Let A be a subset of a Banach space X.
 - a) Show that if A is relatively sequentially compact, then A is bounded.

Solution. Assume that A is relatively sequentially compact. If A were unbounded, we could find a sequence (x_n) in A with $||x_n|| > n$ for every $n \in \mathbb{N}$. Since A is relatively sequentially compact, (x_n) has a subsequence converging to some $x \in \overline{A}$, ² and this convergent subsequence must in particular be bounded. But this is clearly impossible, since we constructed (x_n) such that any subsequence of (x_n) is unbounded.

- $\boxed{\bf 3}$ Show the following statement about sets A in a Banach space X.
 - a) A bounded set A is relatively weakly compact if and only if the weak-* closure of A in X^{**} is in X.

Solution. We will use three facts, all of which may be found in the book by Bowers and Kalton.

¹Here we use Riesz' representation theorem to identify the dual space of $\mathcal H$ with $\mathcal H.$

 $^{{}^{2}\}overline{A}$ denotes the closure of A in the norm topology.

- 1. The Banach-Alaoglu theorem says that the closed unit ball in X is weak*-compact. In fact, one can easily show that this implies that any closed ball centered at 0 is weak* compact in X.
- 2. The weak topology of A agrees with the weak* topology of $\iota(A)$, where $\iota: X \to X^{**}$ is the natural embedding of X into its double dual.
- 3. The embedding $\iota:X\to X^{**}$ is continuous from the weak topology to the weak* topology.

Assume first that the weak* closure of A in X^{**} is in X. By Banach-Alaoglu, the weak*-closure of A is weak* compact³. However, by fact (2), this is the same as saying that the weak closure is weakly compact.

If A is weakly relatively compact, let \tilde{A} denote its weak closure. We wish to show that the weak*-closure of $\iota(A)$ is a subset of $\iota(X)$, where $\iota: X \to X^{**}$ is the natural embedding (This is just a rephrasing of the statement we wish to prove). Since \tilde{A} is assumed to be weakly compact, $\iota(\tilde{A})$ must be weak*-compact by fact (3). But the weak*-closure of $\iota(A)$ must then be a subset of $\iota(\tilde{A})$, since $\iota(\tilde{A})$ is a weak* closed subset containing $\iota(A)$. In particular $\iota(A)$ is a subset of $\iota(X)$, which is what we wanted to prove.

4 Give an example of a set Y in a normed space X that is closed but not sequentially weakly closed.

Solution. We will find some inspiration in example 5.28 in the book. This example gives a sequence converging weakly, but not strongly.

Let (e_n) be the standard basis for ℓ^2 , given by $e_1 = (1, 0, 0, 0, ...)$, $e_2 = (0, 1, 0, 0, ...)$ etc. Then $\{e_n : n \in \mathbb{N}\}$ is closed in the norm topology(Why?). However, as example 5.28 in the book shows, $e_n \to 0$ weakly. To see this, let $x^* = (x_n) \in (\ell^2)^* = \ell^2$. Then clearly $x^*(e_n) = x_n \to 0$, hence $e_n \to 0$ weakly. It follows that $\{e_n : n \in \mathbb{N}\}$ is not sequentially weakly closed.

³Why? Since A is bounded, it is contained in a closed ball $B_r = \{x \in X : ||x|| \le r\}$, and B_r is weak* compact by Banach-Alaoglu. The weak* closure of A is closed subset of B_r , and therefore itself weak*-compact.