Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики».

Институт когнитивных нейронаук

## Kinematic 4

Система кинематического анализа движения кисти.

Руководство пользователя

#### Аннотация

Настоящий документ является руководством пользователя по эксплуатации система кинематического анализа движения кисти - Kinematic 4 [кинематик фор]. В данном руководстве приводится следующая информация:

- Область применения программы
- Краткое описание возможностей программы
- Уровень подготовки пользователя
- -Перечень эксплуатационной документации
- Назначение и условия применения программы
- -Описание этапа подготовки к работе
- -Описание операций
- Аварийные ситуации
- -Рекомендации по освоению
- Термины и сокращения

Настоящий документ разработан в соответствии с ГОСТ 34 РД 50-34.698-90 «Автоматизированные системы. Требования к содержанию документов» — в части структуры и содержания документов, и в соответствии с ГОСТ 19 «Единая система программной документации (ЕСПД)» — в части общих требований и правил оформления программных документов.

## Содержание

| Аннотация                                               | 1  |
|---------------------------------------------------------|----|
| 1 ВВЕДЕНИЕ                                              | 3  |
| 1.1 Область применения                                  | 4  |
| 1.2 Краткое описание возможностей                       | 5  |
| 1.3 Уровень подготовки пользователя                     | 6  |
| 1.4 Перечень эксплуатационной документации              | 7  |
| 2 НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ                       | 8  |
| 3 ПОДГОТОВКА К РАБОТЕ                                   | 10 |
| 3.1 Состав и содержание дистрибутивного носителя данных | 10 |
| 3.2 Порядок загрузки данных и программ                  | 10 |
| 3.3 Порядок проверки работоспособности                  | 11 |
| 4 ОПИСАНИЕ ОПЕРАЦИЙ                                     | 12 |
| 5 АВАРИЙНЫЕ СИТУАЦИИ                                    | 27 |
| 6 РЕКОМЕНДАЦИИ ПО ОСВОЕНИЮ                              | 30 |
| 7 ТЕРМИНЫ И СОКРАЩЕНИЯ                                  | 32 |

## 1 ВВЕДЕНИЕ

Настоящая программа является десктопным приложением и предназначена для выполнения автоматизированного анализа кинематических данных о движении руки человека. Система работает с данными, сбор которых осуществляется в рамках лабораторных экспериментов, в ходе которых испытуемого просят схватить объект, который ставят перед ним, и поставить на заданное место. Движение повторяется 64 раза (меняется сам объект, его ориентация, ориентация пластинки, на которую надо поставить объект). Система кинематического анализа с частотой 250Гц записывает 3D координаты "трекеров", которые крепятся на испытуемом и на объекте. В эксперименте используется 7 трекеров, наклеенных на следующие точки:

- 1) Ногтевая пластина большого пальца;
- 2) Ногтевая пластина указательного пальца;
- 3) Наружная сторона кости предплечья (дистальный отдел, область головки лучевой кости) вспомогательные данные для анализа целостного движения руки;
- 4) Внутренняя сторона кости предплечья (дистальный отдел, область шиповидного отростка) вспомогательные данные для анализа целостного движения руки;
  - 5) Трекер наклеенный на недвижимую часть очков;
  - 6) Трекер наклеенный на движимую часть очков;
  - 7) Объект, который испытуемый должен схватить.

В результате записи имеются 3D координаты этих трекеров, изменяемые во времени на протяжении всего эксперимента (записаны в открытом формате). Основной задачей программы является обработка данных о движении руки и объекта с указанных трекеров, включая выявление ключевых моментов:

- Начало эксперимента (Start);
- Начало движения (поднятие руки) (Hand lifting);
- -Начало раскрытия пальцев (GA opening);
- Максимальная апертура раскрытие пальцев (GA max);
- -Подъем объекта (Object lifting);
- Опускание объекта (Object placed);

Также программа фиксирует значений следующих показателей в рамках эксперимента для каждого момента времени:

- -Открытие очков расстояние между трекерами 5 и 6;
- Положение руки по оси Z изменения координаты средней точки между трекерами 3 и 4 по оси Z;

- Апертура захвата расстояние между трекерами 1 и 2;
- -Положение объекта по оси Z изменения координаты трекера 7 по оси Z;

На основе значений указанных моментов времени система осуществляет расчет следующих метрик, интерпретируемых пользователями:

- Hand lifting время между началом эксперимента и началом движения (поднятия руки);
  - -GA opening время между началом эксперимента и началом раскрытия пальцев;
  - Object lifting время между началом эксперимента и подъемом объекта;
- -GA тах время между началом эксперимента и максимальной апертурой раскрытия пальцев;
  - Total movement time время между началом эксперимента и опусканием объекта;
  - Reaction time равняется параметру Hand lifting;
  - Time of max GA значение разности параметров GA max Hand lifting;
  - Time to reach значение разности параметров GA max Object lifting;
- -GA% значение процентного соотношения параметров *Time of max GA/Time to reach*;
- -Time of object movement значение разности параметров *Total movement time* Object lifting.

#### 1.1 Область применения

Программа для автоматизированного анализа кинематических данных о движении руки человека может применяться в сферах, где требуется точное измерение и анализ моторики. Программа требует работы с экспериментальными данными, записанными в открытом формате. Возможность настройки параметров анализа делает ее гибкой для различных исследовательских целей. Поддержка обработки данных с частотой записи 250 Гц обеспечивает высокую точность и детализацию результатов. Возможные области применения программы:

#### 1) Научные исследования

- 1) Нейрофизиология: Анализ процессов моторного планирования, выявление особенностей движений при различных неврологических заболеваниях.
- 2) Биомеханика: Изучение координации движений, разработка моделей человеческой моторики.
- 3) Экспериментальная психология: Исследования реакции человека на различные типы стимулов и задачи.

#### 2) Медицинская диагностика и реабилитация

- 1) Диагностика: Оценка качества движений у пациентов с нарушениями моторики, включая инсульты, болезни Паркинсона и другие неврологические заболевания.
- 2) Реабилитация: Мониторинг прогресса пациентов при восстановлении движений после травм или операций.

#### 3) Робототехника и инженерия

- 1) Разработка алгоритмов управления: Использование данных кинематического анализа для обучения систем управления роботами, имитирующими движения человека.
- 2) Кибернетика: Создание протезов и экзоскелетов, взаимодействующих с биологической моторикой.

#### 4) Образование

- 1) Обучение и тренировки: Использование программы в образовательных учреждениях для обучения студентов основам кинематики, моторного анализа и обработки данных.
- 2) Демонстрация экспериментов: Визуализация экспериментов для объяснения сложных теорий и концепций, связанных с движением человека.

#### 5) Спортивные исследования

- 1) Оптимизация движений: Анализ моторики спортсменов для повышения эффективности их движений и снижения риска травм.
- 2) Тренировочные процессы: Оценка прогресса спортсменов в выполнении тренировочных задач, связанных с моторикой.

#### 1.2 Краткое описание возможностей

#### 1) Главная страница и элементы интерфейса

При запуске программы открывается главная страница с интуитивно понятным интерфейсом. Основные элементы:

- 1) Шапка программы содержит кнопки, предоставляющие доступ к следующему функционалу:
  - 1) "Импорт" для загрузки данных в файле mat формата;
  - 2) "Экспорт" для сохранения обработанных данных в формате xlsx (Excel);
  - 3) "Настройки" для конфигурации параметров расчетных алгоритмов.
  - **2) Просмотр параметров в табличном виде** отображает рассчитанные параметры загруженных данных в табличном формате;
  - **3) Визуализация** данных программа предоставляет возможность построения графиков по выбранным данным;

**4) Фильтры визуализации** — предоставляет чекбоксы для выбора параметров, которые должны быть отображены на графике.

#### 2) Функции управления графиком (панель инструментов)

На графике предусмотрены следующие инструменты:

- 1) Reset to original view возврат к исходному виду графика;
- 2) Back to previous view и Forward to next view перемещение между сохраненными состояниями отображения;
  - 3) Move tool интерактивное перемещение графика;
  - 4) Zoom to rectangle увеличение выделенной области графика;
- 5) Configure subplots настройка расположения отдельных графиков и их элементов;
- 6) Edit axis, curve and image parameters редактирование параметров осей, кривых и изображения;
  - 7) Save the figure сохранение графика в файл.

#### 1.3 Уровень подготовки пользователя

Для работы с программой **Kinematic 4** требуется следующий уровень подготовки:

#### 1) Технические навыки:

Пользователю достаточно обладать базовыми навыками работы с компьютером, такими как:

- 1) Умение открывать и сохранять файлы.
- 2) Понимание принципов работы с графическим интерфейсом, включая использование кнопок, чекбоксов и модальных окон.
  - 3) Навыки работы с файловыми системами (выбор и управление файлами).

#### 2) Научные знания:

Для эффективного использования результатов программы и их интерпретации необходимы специализированные знания в области кинематики движения. Пользователь должен понимать:

- 1) Основные принципы движения и их параметры (например, положение объектов, скорость, апертура захвата).
- 2) Логику и значение ключевых событий, таких как "Начало эксперимента", "Подъем кисти" или "Размыкание пальцев".
- 3) Методы анализа и интерпретации графиков для проведения научных исследований и принятия решений.

Таким образом, базовые навыки работы с компьютером позволяют использовать программу, но для глубокого понимания и интерпретации результатов потребуется соответствующий научный или профессиональный бэкграунд в изучаемой предметной области.

## 1.4 Перечень эксплуатационной документации

Для работы с программой **Kinematic 4** достаточно данной документации — **Руководство пользователя**, которое содержит всю необходимую информацию о функционале и возможностях системы, а также пошаговые инструкции для выполнения операций.

Дополнительно, для специалистов, занимающихся доработкой программы или исследованием её внутреннего устройства, доступна документация разработчика, включающая технические детали реализации и архитектуры.

#### 2 НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ

#### 1) Назначение:

Программа **Kinematic 4** предназначена для автоматизации процессов анализа и визуализации данных, связанных с кинематикой движений человека. Основные функции системы включают:

- 1) Импорт и обработку данных экспериментов в формате .mat;
- 2) Автоматический расчет ключевых параметров движения, таких как положение кисти, апертура захвата и другие метрики;
- 3) Визуализацию данных экспериментов в виде графиков для анализа изменений параметров во времени;
- 4) Настройку параметров расчета и фильтрацию данных для гибкой работы с информацией;
  - 5) Экспорт данных для дальнейшей обработки или отчетности.

Система нацелена на специалистов, работающих в научно-исследовательской сфере, в частности в области кинематики, нейрофизиологии и биомеханики.

#### 2) Условия применения:

Для корректной работы системы необходимо выполнение следующих условий:

#### 1) Технические средства:

- 1) Совместимость с ПК, поддерживающими операционную систему **Windows 10** и выше.
  - 2) Минимальная конфигурация:
    - 1) Процессор: не менее 2 ГГц.
    - 2) Оперативная память: рекомендуемо 4 ГБ и более.
    - 3) Свободное место на диске: не менее 200 Мб.

#### 2) Входная информация:

1) Исходные данные экспериментов в формате .mat, содержащие корректные параметры, необходимые для расчета и визуализации.

#### 3) Требования к пользователям:

- 1) Базовые навыки работы с компьютером и операционной системой Windows для работы с интерфейсом программы.
- 2) Научные знания в области кинематики движения, нейрофизиологии или биомеханики для интерпретации результатов и понимания визуализированных данных.

## 4) Ограничения:

- 1) Программа не предназначена для работы с другими форматами данных, кроме .mat.
- 2) Для обработки некорректных или неполных данных требуется их предварительная подготовка.

**Примечание:** Программа может быть адаптирована для более сложных научных исследований или интегрирована в другие системы при наличии дополнительных доработок, с использованием документации разработчика.

## 3 ПОДГОТОВКА К РАБОТЕ

### 3.1 Состав и содержание дистрибутивного носителя данных

Архив с программным обеспечением **Kinematic4** содержит следующие элементы:

- -Папка Application основные файлы для работы программы:
  - *Kinematic4.exe* исполняемый файл программы.
- -Папка *SourceCode* − исходные коды программы, предназначенные для разработчиков, желающих модифицировать или изучить внутреннее устройство программы (также расположены в GitLab: <a href="https://git.miem.hse.ru/1905/kinematic4">https://git.miem.hse.ru/1905/kinematic4</a>).
  - -Папка *Documentation* справочная документация:
    - *UserManual.chm* Руководство пользователя в формате СНМ.
    - *UserManual.pdf* Руководство пользователя в формате PDF.
    - -**DeveloperManual.pdf** Руководство разработчика в формате PDF.
  - -Папка *TestData* тестовые данные для контрольного примера.

#### 3.2 Порядок загрузки данных и программ

#### 1) Распаковка дистрибутива

- 1) Получите архив *Kinematic4.zip* и сохраните его на локальный диск компьютера;
- 2) Распакуйте архив в выбранную директорию, используя любой архиватор (например, WinRAR, 7-Zip);
  - 3) Убедитесь, что структура папок сохранилась, как указано выше.

#### 2) Запуск программы

- 1) Перейдите в папку Application;
- 2) Найдите файл *Kinematic4.exe*;
- 3) Дважды щелкните на файл, чтобы запустить программу (при необходимости разрешите запуск приложения для установленных антивирусов).

#### 3) Работа с документацией

- 1) Если необходимо, откройте файл *UserManual.chm/UserManual.pdf* из папки *Documentation*, чтобы изучить функциональные возможности программы или получить инструкции по ее использованию;
- 2) Если необходимо, откройте файл *DeveloperManual.chm* из папки *Documentation*, чтобы изучить внутреннее устройство программы и модифицировать при необходимости

(для модификации рекомендуется использовать стандартные инструменты разработчика Python).

#### Примечания:

- —Для работы программы **не требуется** запуск исходных кодов, расположенных в папке *SourceCode*. Эти данные предназначены исключительно для разработчиков;
- При запуске программы рекомендуется использовать папку с установленной программой, не перемещая файлы в другие директории, чтобы избежать ошибок.

## 3.3 Порядок проверки работоспособности

#### 1) Первичный запуск программы

- 1) После запуска файла **Kinematic4.exe** убедитесь, что открывается главное окно программы с элементами интерфейса:
  - 1) "Шапка" с названием программы и кнопками "Импорт", "Экспорт", "Настройки";
  - 2) Область просмотра рассчитанных метрик данных (на этапе первого запуска она должна быть пустой);
  - 3) Область визуализации данных и настройки параметров (пустая до импорта и обработки данных).

#### 2) Импорт данных

- 1) Нажмите кнопку "Импорт" и выберите тестовый файл формата .mat;
- 2) Убедитесь, что данные успешно отображаются в табличной форме в области просмотра рассчитанных метрик.

#### 3) Проверка визуализации

- 1) Выберите строку в таблице рассчитанных метрик и нажмите кнопку "Визуализация данных";
  - 2) Убедитесь, что отображается график с корректными линиями и точками данных.

#### 4) Функциональность настроек

- 1) Проверьте доступ к модальному окну настроек, нажав кнопку **"Настройки"**, внесите изменения в параметры и сохраните их;
  - 2) Убедитесь, что изменения применяются корректно и отображаются в расчетах.

#### 5) Проверка документации

- 1) Откройте файл *UserManual.chm* и убедитесь, что доступен текст документации и навигация по разделам;
  - 2) Если все этапы проверки прошли успешно, система готова к эксплуатации.

## 4 ОПИСАНИЕ ОПЕРАЦИЙ

#### Функции и задачи системы:

Программное обеспечение **Kinematic 4** предназначено для анализа кинематических данных экспериментов с возможностью гибкой настройки и визуализации результатов. Основные функции системы включают:

- -Импорт данных загрузка данных экспериментов в формате .mat.
- -**Визуализация** данных построение графиков и настройка отображаемых элементов.
- -**Настройка параметров расчёта** модификация параметров, используемых алгоритмами обработки данных.
- Экспорт данных сохранение результатов в формате, объединённом с конфигурационными параметрами.

#### Описание операции 1: Импорт данных

Наименование: Импорт данных экспериментов.

#### Условия выполнения:

- -Программа запущена и находится в главном окне;
- Наличие корректного файла в формате .mat.

#### Подготовительные действия:

- Убедиться, что файл данных находится в доступной директории;
- -Проверить, что структура файла соответствует требованиям программы.

#### Основные действия:

—Нажать кнопку "Импорт" в главном окне (Pucyhok 4.1);



Рисунок 4.1 - Кнопка "Импорт" в главном окне

 $-\mathbf{B}$  модальном окне выбрать файл формата .mat и подтвердить выбор (*Рисунок 4.2*).



Рисунок 4.2 - Модальное окно выбора .mat файла

#### Заключительные действия:

- Убедиться, что данные отображены в таблице параметров эксперимента в левой части окна (*Рисунок 4.3*).



Рисунок 4.3 - Таблица параметров эксперимента в левой части окна

#### Ресурсы:

-Время обработки файла при импорте: до 10 секунд.

#### Описание операции 2: Визуализация данных

Наименование: Построение графиков параметров эксперимента.

#### Условия выполнения:

- -Данные эксперимента успешно загружены;
- -Выбрана строка с экспериментом в таблице метрик.

#### Подготовительные действия:

- Импортировать данные;
- —Выбрать строку, содержащую данные эксперимента, с помощью нажатия ЛКМ на интересующей строке (*Рисунок 4.4*).



Рисунок 4.4 - Выбранная строка в таблице параметров эксперимента

#### Основные действия:

- -Нажать кнопку **"Визуализация данных"** (*Рисунок 4.5*);
- -График будет построен с параметрами по умолчанию.



Рисунок 4.5 - Кнопка и область визуализации данных

#### Работа с фильтрами:

- В области фильтров (справа от графика) доступны флажки для включения/отключения параметров визуализации:
  - 1) Линии графиков (например, "Открытие очков", "Положение кисти");

- 2) Точки событий (например, "Начало эксперимента", "Подъем объекта").
- -Отметьте или снимите галочки для желаемых параметров;
- Нажмите кнопку "**Применить фильтры**", чтобы обновить график (*Рисунок* 4.6).



Рисунок 4.6 - Настройка фильтров визуализации данных

#### Функции управления графиком:

На графике предусмотрены следующие инструменты (Рисунок 4.7):

- Reset to original view возврат к исходному виду графика;
- -Back to previous view и Forward to next view перемещение между сохранёнными состояниями отображения;
  - -Move tool интерактивное перемещение графика;
  - -Zoom to rectangle увеличение выделенной области графика;
- **Configure subplots** настройка расположения отдельных графиков и их элементов (*Рисунок 4.8*);
- -Edit axis, curve and image parameters редактирование параметров осей, кривых и изображения (*Рисунок 4.9*);
  - -Save the figure сохранение графика в файл (например, в формате PNG, PDF).



Рисунок 4.7 - Функции управления графиком



Рисунок 4.8 - Окно настроек управления графиком Configure subplots



Рисунок 4.9 - Окно настроек управления графиком Edit axis, curve and image parameters (Вкладка Curves)

#### Заключительные действия:

Убедиться, что график корректно отображает выбранные параметры и изменения в отображении.

#### Ресурсы:

-Время обработки: до 1 секунды.

#### Описание операции 3: Настройка параметров расчета

Наименование: Настройка параметров алгоритмов.

#### Условия выполнения:

Программа находится в главном окне.

#### Подготовительные действия:

Ознакомиться с описанием влияния настройки каждого параметра в документации ниже:

**Параметр:** *Расстояние между пиками* - определяет расстояние между точками старта эксперимента. При работе с качественными входными данными без артефактных точек допустимо очень малого значения (1.0).

Возможные значения: от 1 до *без ограничений* (точность до 16 знаков включительно в дробной части). Значение по умолчанию -  $410 (410/250\Gamma \mu = 1.64 \text{ сек})$ .

-Влияние увеличения: Позволяет исключать артефактные (некорректно определенные) точки начала эксперимента для длительных экспериментов. Значение определяет расстояние в кадрах (с частотой 250 Гц) до следующей точки, которую необходимо рассматривать, как точку начала эксперимента, точки найденные в пределах указанной области от предыдущей точки будут проигнорированы, т.е. при указании количества кадров более чем фактически между эксперимента, то некоторые фактические точки начала экспериментов будут не найдены!

-**Влияние уменьшения:** Позволяет учитывать более частые пики, что подходит для анализа коротких экспериментов, где расстояния во входных данных между точками начала экспериментов.

**Параметр:** *Пороговое значение скорости подъема кисти* - коэффициент ускорения поднятия кисти руки, при котором "срабатывает" (устанавливается) точка начала поднятия кисти.

Возможные значения: от 0 до 0.09 (точность до 16 знаков включительно в дробной части). Значение по умолчанию - 0.005.

-**Влияние увеличения:** Позволяет учитывать более сильное ускорение при поднятии кисти руки (*Рисунок 4.10*).



Рисунок 4.10 - Влияние увеличения параметра Пороговое значение скорости подъема кисти

— Влияние уменьшения: Позволяет реагировать на более слабое ускорение при поднятии кисти руки. Слишком низкое значение фиксирует артефактные (некорректно определенные) точки (Рисунок 4.11).



Рисунок 4.11 - Влияние уменьшения параметра Пороговое значение скорости подъема кисти

**Параметр:** *Пороговое значение открытия пальцев* - коэффициент ускорения (изменение апертуры) при раскрытии пальцев, при котором "срабатывают" (устанавливаются) точка раскрытия пальцев и точка максимальной апертуры раскрытия пальцев.

Возможные значения: от 0 до 1.5 (точность до 16 знаков включительно в дробной части). Значение по умолчанию - 1.2.

-**Влияние увеличения:** Позволяет учитывать более сильное ускорение (изменение апертуры) при раскрытии пальцев (*Рисунок 4.12*).



Рисунок 4.12 - Влияние увеличения параметра Пороговое значение открытия пальцев

-**Влияние уменьшения:** Позволяет реагировать на более слабое ускорение (изменение апертуры) при раскрытии пальцев. Слишком низкое значение фиксирует артефактные (некорректно определенные) точки (*Рисунок 4.13*).



Рисунок 4.13 - Влияние уменьшения параметра Пороговое значение открытия пальцев

**Параметр:** *Пороговое значение скорости подъема предмета* - коэффициент ускорения при поднятии объекта, при котором "срабатывает" (устанавливается) точка начала подъема предмета.

Возможные значения: от 0 до без ограничений (точность до 16 знаков включительно в дробной части). Значение по умолчанию - 0.01.

-**Влияние увеличения:** Позволяет учитывать более сильное ускорение при поднятии предмета (*Рисунок 4.14*).



Рисунок 4.14 - Влияние увеличения параметра **Пороговое значение скорости подъема предмета**— **Влияние уменьшения:** Позволяет реагировать на более слабое ускорение при поднятии предмета. Слишком низкое значение фиксирует артефактные (некорректно определенные) точки (*Рисунок 4.15*).



Рисунок 4.15 - Влияние уменьшения параметра Пороговое значение скорости подъема предмета

**Параметр:** *Пороговое значение скорости опускания предмета* - определяет коэффициент ускорения при опускании предмета, при котором "срабатывает" (устанавливается) точка опускания предмета.

Возможные значения: от 0 до *без ограничений* (точность до 16 знаков включительно в дробной части). Значение по умолчанию - 0.005.

-**Влияние увеличения:** Позволяет определять точку опускания предмета ранее. Слишком низкое значение фиксирует артефактные (некорректно определенные) точки (*Рисунок 4.16*).



Рисунок 4.16 - Влияние увеличения параметра **Пороговое значение скорости опускания предмета** 

-**Влияние уменьшения:** Позволяет определять точку опускания предмета позднее. Слишком высокое значение не фиксирует точки опускания предмета (*Рисунок 4.17*).



Рисунок 4.17 - Влияние уменьшения параметра **Пороговое значение скорости опускания предмета** 

**Параметр:** *Максимальное и минимальное значение Frame-Glasses* - определяют расстояние между трекерами на движимой и недвижимой частях очков испытуемого (*Рисунок 4.18*). Необходимо изменять только при изменении очков (маски), используемых в ходе эксперимента.

Возможные значения: от 0 до *без ограничений* (точность до 16 знаков включительно в дробной части). Значения по умолчанию: *Максимальное значение Frame-Glasses* - 0.07; *Минимальное значение Frame-Glasses* - 0.051.



Рисунок 4.18 - Пояснение логики применения параметров **Максимальное и минимальное значение Frame-Glasses** 

#### Основные действия:

- -Нажать кнопку "Настройки".
- -Ввести значения интересующего параметра/-ов, согласно логике описанной в пункте **3 Подготовительные действия**.

#### Заключительные действия:

- Нажать "Обновить отчёт" для пересчёта данных;
- Убедиться в обновлении метрик в таблице;
- Для обновления графика необходимо повторно нажать кнопку
   "Визуализация данных", предварительно выбрав интересующую запись в таблице.

#### Описание операции 4: Экспорт данных

Наименование: Сохранение результатов анализа.

#### Условия выполнения:

- Данные загружены и обработаны;
- -Пользователь подготовил файл конфигурационных параметров.

#### Подготовительные действия:

-Проверить корректность файла конфигурации в формате .xlsx.

#### Основные действия:

-Нажать кнопку **"Экспорт"** (*Рисунок 4.19*).



Рисунок 4.19 - Кнопка "Экспорт" для экспорта данных в xlsx

– Указать номер эксперимента для сохранения и нажать "**ОК**" (*Рисунок 4.20*).



Рисунок 4.20 - Окно указания номера экспортируемого эксперимента

-Выбрать файл конфигурации .xlsx и нажать "Открыть" (Рисунок 4.21).



#### Рисунок 4.21 - Окно выбора файла конфигурации испытания

- Указать директорию для сохранения итогового .xlsx в следующем окне (*Рисунок 4.22*).



Рисунок 4.22 - Окно сохранения итогового файла испытания с рассчитанными метриками

#### Заключительные действия:

 Проверить, что файл сохранён и содержит объединённые данные эксперимента и конфигурации.

#### Ресурсы:

-Системное время выполнения операции экспорта до 1 секунды.

## 5 АВАРИЙНЫЕ СИТУАЦИИ

#### 1) Действия при несоблюдении условий выполнения технологического процесса

- 1) Продолжительные отказы технических средств:
- 1) Убедиться в исправности оборудования (компьютер, операционная система).
  - 2) Перезапустить приложение, если проблема не устранена.

#### 2) Отсутствие необходимых данных:

- 1) Убедитесь, что загруженные данные содержат все параметры, необходимые для расчётов.
  - 2) Если параметры отсутствуют, повторите загрузку корректного файла.

#### 2) Действия по восстановлению программ и/или данных

#### 1) При отказе магнитных носителей:

- 1) Убедиться в наличии резервной копии программного обеспечения и данных.
  - 2) Переустановить программу из дистрибутива.
  - 3) Использовать резервную копию данных для восстановления.

#### 2) При обнаружении ошибок в данных:

- 1) Перепроверьте корректность исходного файла.
- 2) Исправьте данные в исходном файле и повторите загрузку.

#### 3) Действия в других аварийных ситуациях

#### 1) Предупреждения и ошибки, возникающие в программе:

-Предупреждение: при импорте не выбран файл (*Pucyнok 5.1*).

Действия: Выберите файл для импорта и повторите попытку.



Рисунок 5.1 - Окно предупреждения: Файл не выбран

—**Ошибка:** указаны некорректные параметры настройки (например, отсутствуют данные для параметров Максимальное и минимальное значение Frame-Glasses)(*Рисунок 5.2*).

Действия: Проверьте параметры настройки и убедитесь, что данные соответствуют заданным условиям.



Рисунок 5.2 - Окно ошибки: Отсутствуют данные, соответствующие указанным настройкам

#### -Ошибка: не указан номер эксперимента при экспорте.

Действия: Укажите номер эксперимента в запросе и повторите экспорт.



Рисунок 5.3 - Окно ошибки: Номер эксперимента не был введен

#### -Ошибка: импортирован некорректный файл.

Действия: Проверьте, что файл соответствует формату .mat и содержит необходимые данные. Загрузите корректный файл.



Рисунок 5.4 - Окно ошибки: Произошла ошибка при загрузке файла

# -Ошибка: при экспорте выбран некорректный файл конфигурационных данных.

Действия: Проверьте файл конфигурации, выберите корректный файл и повторите операцию.



Рисунок 5.5 - Окно ошибки: Не удалось сохранить файл

## 4. Общие рекомендации

- 1) Всегда сохраняйте резервные копии данных.
- 2) При возникновении повторяющихся или неописанных ошибок обращайтесь к разработчику.

## 6 РЕКОМЕНДАЦИИ ПО ОСВОЕНИЮ

Для успешного освоения и эксплуатации программы **Kinematic4** рекомендуется придерживаться следующего порядка действий:

#### 1) Ознакомление с документацией

- 1) Руководство пользователя (СНМ-файл): Изучите основные возможности программы, описание интерфейса и порядок выполнения операций. Обратите внимание на разделы, посвящённые:
  - 1) Импорту данных;
  - 2) Настройке параметров визуализации и алгоритмов расчёта;
  - 3) Экспорту данных.

#### 2) Запуск программы

- 1) Распакуйте архив с дистрибутивом;
- 2) Перейдите в папку Application;
- 3) Запустите файл Kinematic4.exe.

#### 3) Работа с контрольным примером

Для освоения программы рекомендуется использовать предоставленный **контрольный пример**, который включает тестовые данные. Контрольный пример представляет собой файл в формате .mat, содержащий данные эксперимента с различными параметрами движения. Название файла: *ExampleData.mat*.

#### Порядок выполнения контрольного примера:

#### 1) Импорт данных:

- 1) Нажмите кнопку "Импорт" на главной странице;
- 2) Выберите файл ExampleData.mat из папки TestData;
- 3) Проверьте, что данные успешно загрузились и отобразились в таблице.

#### 2) Визуализация данных:

- 1) Выберите строку таблицы, соответствующую эксперименту;
- 2) Нажмите кнопку "Визуализация данных";
- 3) Убедитесь, что график отображает параметры эксперимента, включая ключевые точки (например, подъём кисти, захват объекта).

#### 3) Настройка параметров фильтрации:

1) Включите или отключите чекбоксы для параметров визуализации (например, "Положение кисти (Z)" или "Апертура захвата");

2) Нажмите "Применить фильтры", чтобы обновить график с учётом выбранных параметров.

#### 4) Настройка алгоритмов расчёта:

- 1) Перейдите в настройки алгоритмов расчёта;
- 2) Измените значения, например, "Пороговое значение скорости подъёма кисти":
  - 3) Нажмите "Обновить отчёт", чтобы пересчитать данные.

#### 5) Экспорт данных:

- 1) Нажмите кнопку "Экспорт";
- 2) Укажите номер эксперимента и выберите файл конфигурации в формате .xlsx;
  - 3) Сохраните результирующий файл.

#### 4) Правила эксплуатации

- 1) Используйте актуальные версии ПО для работы с данными в формате .mat;
- 2) Обеспечьте соответствие минимальным системным требованиям;
- 3) При возникновении ошибок обращайтесь к разделу "Аварийные ситуации" в документации.

#### 5) Рекомендуемые знания

- 1) Для интерпретации результатов анализа полезно обладать базовыми знаниями в области кинематики движения;
- 2) Ознакомьтесь с ключевыми терминами, такими как "апертура захвата", "положение кисти", "скорость подъёма" и др.

# 7 ТЕРМИНЫ И СОКРАЩЕНИЯ

| Термин         | Полная форма                                                              |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------|--|--|--|--|--|
|                | Физический процесс, проводимый в лаборатории, в ходе которого             |  |  |  |  |  |
| Испытание      | испытуемого просят схватить объект, который ставят перед ним, и поставить |  |  |  |  |  |
|                | на заданное место. Движение повторяется 64 раза (эксперимента).           |  |  |  |  |  |
|                | Часть Испытания, в рамках которой выполняется одно из 64 движений в       |  |  |  |  |  |
| Эксперимент    | лаборатории                                                               |  |  |  |  |  |
|                | Раздел механики, изучающий движение тел без учета их массы и              |  |  |  |  |  |
| Кинематика     | действующих на них сил. Основной целью кинематического анализа является   |  |  |  |  |  |
| Кинематика     | нахождение значений и направлений скоростей и ускорений точек механизма,  |  |  |  |  |  |
|                | а также угловых скоростей и ускорений его звеньев.                        |  |  |  |  |  |
| Кинематический | Процесс определение положений звеньев, траекторий отдельных точек         |  |  |  |  |  |
|                | механизма, угловых скоростей и ускорений звеньев, линейных скоростей и    |  |  |  |  |  |
| анализ         | ускорений отдельных точек механизма                                       |  |  |  |  |  |
| Моторное       | Способность понять, спланировать и реализовать незнакомое двигательное    |  |  |  |  |  |
| планирование   | действие или последовательность действий.                                 |  |  |  |  |  |
|                | Процесс объединения различных компонентов или систем с целью создания     |  |  |  |  |  |
|                | единого и функционального целого. В контексте разработки программного     |  |  |  |  |  |
| Интеграция     | обеспечения и информационных технологий интеграция подразумевает          |  |  |  |  |  |
| интеграция     | взаимодействие между различными программами, приложениями или             |  |  |  |  |  |
|                | сервисами для обеспечения их взаимной совместимости и эффективной         |  |  |  |  |  |
|                | работы вместе.                                                            |  |  |  |  |  |
| Десктопное     | Программа, которая устанавливается на компьютер пользователя и работает   |  |  |  |  |  |
| приложение     | под управлением операционной системы.                                     |  |  |  |  |  |
|                | Правая кнопка мыши. Операция нажатия правой кнопки мыши для вызова        |  |  |  |  |  |
| ПКМ            | контекстного меню или выполнения других действий, предусмотренных         |  |  |  |  |  |
|                | программой.                                                               |  |  |  |  |  |
| пим            | Операция нажатия левой кнопки мыши для выбора объектов, запуска           |  |  |  |  |  |
| ЛКМ            | функций или выполнения других действий.                                   |  |  |  |  |  |
|                | Всплывающее окно, которое требует обязательного взаимодействия            |  |  |  |  |  |
| Модальное окно | пользователя перед выполнением других операций. Например, окно            |  |  |  |  |  |
|                | подтверждения или предупреждения.                                         |  |  |  |  |  |

| Контекстное      | Выпадающий список команд или параметров, отображаемый при нажатии       |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| меню             | ПКМ на объекте или рабочей области.                                     |  |  |  |  |  |
| Панель           | Группа кнопок или иконок на экране, предоставляющих быстрый доступ к    |  |  |  |  |  |
| инструментов     | часто используемым функциям или командам.                               |  |  |  |  |  |
| Пользовательский | Визуальная часть программы, с которой взаимодействует пользователь.     |  |  |  |  |  |
| интерфейс (UI)   | Включает кнопки, поля ввода, окна и другие элементы.                    |  |  |  |  |  |
| Кнопка           | Элемент интерфейса, на который можно нажать для выполнения              |  |  |  |  |  |
| KHOIIKa          | определенной функции (например, "ОК", "Отмена", "Сохранить").           |  |  |  |  |  |
| Φ                | Экран или окно, предназначенное для ввода данных пользователем. Может   |  |  |  |  |  |
| Форма ввода      | содержать текстовые поля, флажки, переключатели и другие элементы.      |  |  |  |  |  |
| Флажок (чекбокс) | Элемент интерфейса в виде квадрата, который пользователь может включить |  |  |  |  |  |
| Planok (Ackooke) | или выключить для выбора параметра.                                     |  |  |  |  |  |
| Поле ввода       | Элемент интерфейса, где пользователь может ввести текст или данные.     |  |  |  |  |  |
| Уведомление      | Сообщение на экране, информирующее пользователя о текущем состоянии     |  |  |  |  |  |
| э ведомиение     | системы, результатах выполнения действия или ошибке.                    |  |  |  |  |  |
| Логирование      | Процесс записи действий программы, ошибок и других событий для          |  |  |  |  |  |
| логирование      | последующего анализа.                                                   |  |  |  |  |  |
| Диалоговое окно  | Окно, предназначенное для взаимодействия пользователя с программой,     |  |  |  |  |  |
| диалоговое окно  | например, для ввода данных или выбора опций.                            |  |  |  |  |  |
| Загрузка         | Процесс открытия файла, программы или данных в систему.                 |  |  |  |  |  |
| Ошибка           | Сообщение о некорректной работе программы, возникающее во время ее      |  |  |  |  |  |
| выполнения       | использования.                                                          |  |  |  |  |  |
| (runtime error)  | использования.                                                          |  |  |  |  |  |

|     | Лист регистрации изменений |           |           |        |                      |    |                          |      |      |  |
|-----|----------------------------|-----------|-----------|--------|----------------------|----|--------------------------|------|------|--|
|     | Номе                       | ра листов | (страниц) | аннули | Всего                | No | Входящий<br>№<br>сопрово |      |      |  |
| Изм | изменен<br>ных             | но        | новых     |        | (страниц)<br>в докум |    |                          | Подп | Дата |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |
|     |                            |           |           |        |                      |    |                          |      |      |  |