

TMA4183 Opt. II Spring 2017

Exercise set 7

Norwegian University of Science and Technology Department of Mathematical Sciences

Please read sections 4.3–4.4 in [Tr].

Exercise 4.4 (ii) in [Tr]: Show that Nemytskii operator $y(\cdot) \mapsto \sin(y(\cdot))$ is Frechet differentiable from $L^{p_1}(0,T)$ into $L^{p_2}(0,T)$ whenever $1 \le p_2 < p_1 \le \infty$.

Hint: convergence in $L^{p_1}(0,T)$ implies convergence in measure; that is if $||h_n||_{L^{p_1}(0,T)} \to 0$ then for any $\varepsilon > 0$: $\mathcal{L}(\{x \in (0,T) : |h_n(x)| > \varepsilon\}) \to 0$ where \mathcal{L} is the Lebesgue measure (think of an "area") of the set.

Solution: Let us put $\Psi(y) = \sin(y(\cdot))$. The directional derivative

$$\Psi'(y;h) = \lim_{\varepsilon \downarrow 0} \frac{\Psi(y + \varepsilon h) - \Psi(y)}{\varepsilon} = \cos(y(\cdot))h(\cdot),$$

is linear with respect h.

Thus we need to check that $\|\Psi(y+h) - \Psi(y) - \Psi'(y;h)\|_{L^{p_2}(0,T)} / \|h\|_{L^{p_1}(0,T)} \to 0$ when $\|h\|_{L^{p_1}(0,T)} \to 0$.

Let $\{h_n\}_{n=1}^{\infty} \in L^{p_1}(0,T)$ be a sequence converging to zero, and let us put $r_n = \Psi(y+h_n) - \Psi(y) - \Psi'(y;h_n)$. Additionally, let us chose an arbitrary small $\varepsilon > 0$. We will divide $\Omega = (0,T)$ into two parts: $\omega_n = \{x \in \Omega \mid |h_n(x)| < \varepsilon\}$ and $\Omega_n = \Omega \setminus \omega_n$. We will denote the characteristic functions of ω_n (respectively, Ω_n) with χ_{ω_n} (resp. χ_{Ω_n} .

On ω_n we can use the second order Taylor series expansion of $\sin(\cdot)$ combined with the fact that the second derivative of $\sin(\cdot)$ is bounded by 1 to get the estimate $|r_n(x)| \leq |h_n(x)|^2/2 \leq \varepsilon |h_n(x)|/2$.

On the other hand, Ω_n will be very small in measure for large n (since convergence to zero in $L^{p_1}(0,T)$ implies convergence in measure). Furthermore, on Ω_n we can write $|r_n(x)| \leq |\sin(y(x) + h_n(x)) - \sin(y(x))| + |\cos(y(x))h_n(x)| \leq 2|h_n(x)|$, because $\sin(\cdot)$ is a Lipschitz function with constant 1 (derivative is bounded by 1).

Thus on ω_n we use the Taylor's series and Hölder's inequality to get the estimate:

$$\|\chi_{\omega_n} r_n\|_{L^{p_2}(0,T)} \le \varepsilon/2 \|\chi_{\omega_n} h_n\|_{L^{p_2}(0,T)} = \varepsilon/2 \left(\int_0^T \chi_{\omega_n}(x) |h_n(x)|^{p_2} dx \right)^{1/p_2}$$

$$\le \varepsilon/2 \left(\|\chi_{\omega_n}\|_{L^{p_1/(p_1-p_2)}(0,T)} \||h_n|^{p_2}\|_{L^{p_1/p_2}(0,T)} \right)^{1/p_2}$$

$$= \varepsilon/2 |\omega_n|^{(p_1-p_2)/(p_1p_2)} \|h_n\|_{L^{p_1}(0,T)},$$

where $|\omega_n|$ denotes the Lebesgue measure of ω_n , which is bounded by $|\Omega| = T$ in our case.

Similarly, on Ω_n we get

$$\|\chi_{\Omega_n} r_n\|_{L^{p_2}(0,T)} \le 2\|\chi_{\Omega_n} h_n\|_{L^{p_2}(0,T)} \le 2|\Omega_n|^{(p_1-p_2)/(p_1p_2)}\|h_n\|_{L^{p_1}(0,T)}.$$

In summary,

$$||r_n||_{L^{p_2}(0,T)} = ||\chi_{\omega_n} r_n + \chi_{\Omega_n} r_n||_{L^{p_2}(0,T)} \le ||\chi_{\omega_n} r_n||_{L^{p_2}(0,T)} + ||\chi_{\Omega_n} r_n||_{L^{p_2}(0,T)}$$
$$\le (\varepsilon |\Omega|^{(p_1 - p_2)/(p_1 p_2)}/2 + 2|\Omega_n|^{(p_1 - p_2)/(p_1 p_2)}) ||h_n||_{L^{p_1}(0,T)},$$

and therefore

$$0 \leq \lim_{n \to \infty} \frac{\|r_n\|_{L^{p_2}(0,T)}}{\|h_n\|_{L^{p_1}(0,T)}} \leq \varepsilon |\Omega|^{(p_1-p_2)/(p_1p_2)}/2,$$

since $\lim_{n\to\infty} |\Omega_n|^{(p_1-p_2)/(p_1p_2)} = 0$ for an arbitrary $\varepsilon > 0$, **because** $p_1 > p_2$. It remains to let $\varepsilon \to 0$ in the last inequality.

Compact embedding of $H^1(\Omega)$ into $L^2(\Omega)$ (Rellich-Kondrachov Theorem, Theorem 7.4 in [Tr]) plays an important role in the proof of Theorem 4.15 (existence of optimal controls for semi-linear elliptic PDEs). There are many other examples of compact embeddings.

Let $-\infty < a < b < +\infty$, and consider the spaces of continuous functions $C^0[a,b]$ and Hölder continuous functions $C^{0,\gamma}[a,b]$, $0 < \gamma \le 1$. These spaces are equipped with the norms

$$||f||_{C^0[a,b]} = \sup_{x \in [a,b]} |f(x)|,$$

$$||f||_{C^{0,\gamma}[a,b]} = ||f||_{C^0[a,b]} + \sup_{x \neq y \in [a,b]} \frac{|f(x) - f(y)|}{|x - y|^{\gamma}}.$$

We will use Arzela–Ascoli characterization of relative compactness in $C^0[a,b]$ (it is not difficult to prove either) The set $S \subset C^0[a,b]$ is relatively compact (i.e. a set whose closure is compact) if and only if it is bounded and equicontinuous. That is, there is M>0 such that $\forall f\in S: \|f\|_{C^0[a,b]}\leq M$, and for every $\varepsilon>0$ there is $\delta>0$: $\forall f\in S, x,y\in [a,b]: |x-y|<\delta \Longrightarrow |f(x)-f(y)|<\varepsilon$.

a) Show that $C^{0,\gamma}[a,b]$ is continuously embedded into $C^0[a,b]$.

Solution: Per definition of $\|\cdot\|_{C^{0,\gamma}[a,b]}$: $\forall f \in C^{0,\gamma}[a,b]$

$$||f||_{C^0[a,b]} \le ||f||_{C^{0,\gamma}[a,b]} = ||f||_{C^0[a,b]} + \text{something non-negative.}$$

Therefore the operator $i: C^{0,\gamma}[a,b] \to C^0[a,b]$ defined by i(f)=f is linear and bounded.

b) Show that every bounded subset in $C^{0,\gamma}[a,b]$ is bounded and equicontinuous in $C^0[a,b]$. Conclude that from any bounded sequence in $C^{0,\gamma}[a,b]$ one can extract a subsequence, which is Cauchy in $C^0[a,b]$.

Solution: Assume that $S \subset C^{0,\gamma}[a,b]$ is such that $\exists M>0: \forall f\in S, \|f\|_{C^{0,\gamma}[a,b]}\leq M$. By definition $\|f\|_{C^0[a,b]}\leq \|f\|_{C^{0,\gamma}[a,b]}\leq M$ and thus S is also a bounded set in $C^0[a,b]$. Furthermore from the definition of the norm we have that $|f(x)-f(y)|\leq |x-y|^{\gamma}\|f\|_{C^{0,\gamma}[a,b]}$. Thus as long as $|x-y|<\delta$ it follows that $\forall f\in S: |f(x)-f(y)|<\delta^{\gamma}M$. Thus is is sufficient to choose $\delta=(\varepsilon/M)^{1/\gamma}$ in the definition of equicontinuity.

c) Let V_1 , V_2 be two Banach spaces, and assume that V_1 is continuously embedded into V_2 . Show that V_2' is continuously embedded into V_1' if we simply consider restrictions of functionals in V_2 onto V_1 .

Conclude that if $v_k \rightharpoonup \bar{v}$, weakly in V_1 then also $v_k \rightharpoonup \bar{v}$, weakly in V_2 .

Solution: Let $f \in V'_2$, and define $g: V_1 \to \mathbb{R}$ as a restriction of f onto V_1 That is, for all $v \in V_1$ we have g(v) = f(v) = f(i(v)) = i'(f)(v), $v \in V_1$, where $i: V_1 \to V_2$ is the continuous embedding map. Then clearly g = i'(f) is linear and bounded, since $i': V'_2 \to V'_1$ is the adjoint of a bounded linear operator. Alternatively one can estimate the norm of g directly:

$$|g(v)| = |f(v)| \le ||f||_{V_2} ||v||_{V_2} \le ||f||_{V_2} ||v||_{V_1},$$

where the last inequality is owing to the continuous embedding of V_1 into V_2 . Therefore $||g||_{V'_1} \leq ||f||_{V'_2}$, and in this sense V'_2 is continuously embedded into V'_1 .

Assume now that $v_k \to \bar{v}$ in V_1 . Then, for all $g \in V_1'$: $\lim_{k \to \infty} g(v_k - \bar{v}) = 0$. By the previous discussion the restrictions of $f \in V_2'$ onto V_1 are in V_1' and therefore for all $f \in V_2'$: $\lim_{k \to \infty} f(v_k - \bar{v}) = 0$.

d) Show that any sequence $f_n \in C^{0,\gamma}[a,b]$, which converges weakly to some limit $\bar{f} \in C^{0,\gamma}[a,b]$, must satisfy $||f_n - \bar{f}||_{C^0[a,b]} \to 0$.

Hint: weakly convergent sequences are bounded (uniform boundedness principle); weak limit is unique (consequence of Hanh–Banach theorem); use the proof by contradiction and a)-c).

Solution: Suppose that $f_n \rightharpoonup \bar{f} \in C^{0,\gamma}[a,b]$. Weakly convergent sequences are bounded (uniform boundedness principle), and thus the set $S := \{f_n, n = 1, 2, ...\}$ is relatively compact in $C^0[a,b]$ according to $\mathbf{a})$ - \mathbf{b}) and Arzela-Ascolli theorem.

Finally, assume that $||f_n - \bar{f}||_{C^0[a,b]} \not\to 0$, that is, for some $\varepsilon > 0$ there is a subsequence n' of n such that $||f_{n'} - \bar{f}||_{C^0[a,b]} \ge \varepsilon$. Since $\{f_{n'}\}$ is a sequence in S, a relatively compact set in $C^0[a,b]$, we can extract a further subsequence n'' from it, such that $||f_{n''} - \tilde{f}||_{C^0[a,b]} \to 0$, for some $\tilde{f} \in C^0[a,b]$.

Thus we end up with a sequence $f_{n''}$ with the following properties. First, $f_{n''}$ converges weakly to \bar{f} in $C^0[a,b]$ (because it is a subsequence of f_n ; $f_n \rightharpoonup \bar{f}$ in $C^{0,\gamma}[a,b]$ and finally because of f_n). Second, $f_{n''}$ converges weakly to f_n in $C^0[a,b]$ (in fact is even converges strongly to f_n).

Owing to the assumptions on n', we have $\tilde{f} \neq \bar{f}$. Thus the subsequence $f_{n''}$ has two distinct weak limits in $C^0[a,b]$. This contradicts the uniqueness of the weak limit (consequence of Hahn–Banach theorem).