Algebra 2R, lista 4

Wiktor Kuchta

4/1

Pierwiastki F_m to dokładnie m-te pierwiastki pierwotne z jedynki, tzn.

$$F_m(x) = \prod_{\substack{1 \le k \le m \\ \gcd(k,m)=1}} \left(x - \exp(2\pi i \frac{k}{m}) \right).$$

Łatwo sprawdzić, że

$$F_1(x) = x - 1,$$

$$F_2(x) = x + 1,$$

$$F_3(x) = (x - \exp(\frac{4}{3}\pi i))(x - \exp(-\frac{4}{3}\pi i)) = x^2 - 2x\cos\frac{4\pi}{3} + 1$$

$$= x^2 + x + 1.$$

Natomiast dla m > 1

$$F_{2^m}(x) = \prod_{1 \le k \le 2^{m-1}} \left(x - \exp(2\pi i \frac{2k-1}{2^m}) \right),$$

bo $\{1,3,\ldots,2^m-1\}$ to wszystkie liczby naturalne $\leq 2^m$ względnie pierwsze z 2^m . Zauważmy, że

$$\exp(2\pi i \frac{2k-1}{2^m})^{2^{m-1}} = \exp(\pi i \frac{2k-1}{2^{m-1}} 2^{m-1}) = \exp(\pi i (2k-1)) = \exp(-\pi i) = -1,$$

czyli 2^m -te pierwiastki pierwotne z 1 to 2^{m-1} -e pierwiastki z -1. Jest ich 2^{m-1} , więc są to wszystkie takie pierwiastki i $F_{2^m}(x)=x^{2^{m-1}}+1$. W szczególności

$$F_4(x) = x^2 + 1,$$

 $F_8(x) = x^4 + 1,$
 $F_{16}(x) = x^8 + 1.$

Ze wzoru

$$W_m(x) = x^m - 1 = \prod_{d|m} F_d(x)$$

otrzymujemy

$$F_{15}(x) = \frac{x^{15} - 1}{F_1(x)F_3(x)F_5(x)} = \frac{(x^5)^3 - 1^3}{F_3(x)(x^5 - 1)} = \frac{x^{10} + x^5 + 1}{x^2 + x + 1}$$
$$= x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

Dla homomorfizmu ilorazowego $j: \mathbb{Z} \to \mathbb{Z}_3$, $j(F_m)$ to wielomian F_m , w którym nałożono j na współczynniki.

Wielomiany F_1 i F_2 są liniowe, a więc nierozkładalne. Można sprawdzić, że $F_4(x) = x^2 + 1$ nie ma pierwiastków w \mathbb{Z}_3 , a może się rozłożyć tylko na czynniki liniowe, więc jest nierozkładalny.

Niech a to 2^m -ty pierwotny pierwiastek z jedynki w pewnym rozszerzeniu \mathbb{Z}_3 . Element a generuje rozszerzenie stopnia n, gdzie n to najmniejsza liczba taka, że $2^m|3^n-1$. Dla m=3 jest to n=2, dla m=4 jest to n=4. W obu przypadkach wielomian minimalny a nad \mathbb{Z}_3 ma stopień mniejszy od stopnia F_{2^m} , więc są one rozkładalne.

Mamy $x^{15} - 1 = (x^5 - 1)^3$, więc pierwiastki F_{15} w $\hat{\mathbb{Z}}_3$ są pierwiastkami $x^5 - 1$. Zatem wielomian minimalny każdego pierwiastka F_{15} nad \mathbb{Z}_3 ma stopień co najwyżej $5 < \deg F_{15} = 8$. Możemy podzielić F_{15} przez ten wielomian minimalny, otrzymując nietrywialny rozkład F_{15} nad \mathbb{Z}_3 .

4/3

Załóżmy, że [L:K]=2, $a\in L\setminus K$. Mamy [L:K(a)][K(a):K]=2 i stąd [K(a):K]=2, bo inaczej K(a) byłoby równe K. Zatem L=K(a) jest algebraicznym rozszerzeniem K. Element a ma wielomian minimalny W_a stopnia 2 nad K. Ale $W_a(x)=(x-a)g(x)$, gdzie g jest liniowy z pierwiastkiem w L, więc W_a rozkłada się na czynniki liniowe. Zatem z rozszerzenie $K\subseteq L$ jest normalne.

4/5

Załóżmy, że $K\subset L\subset \hat{K}$ i rozszerzenie $K\subset L$ jest radykalne.

Każdy homomorfizm, który jest identycznością na L, jest w szczególności identycznością na K, więc $G(\hat{K}/K) \supseteq G(\hat{K}/L)$.

Każdy automorfizm $f: \hat{K} \to \hat{K}$ stały na K permutuje pierwiastki wielomianów z K[X]. Wielomian minimalny nad K elementu radykalnego nad K ma tylko jeden pierwiastek, więc jest on zachowywany przez f. Każdy element L jest radykalny nad K, więc każdy taki f jest identycznością na L. Zatem $G(\hat{K}/K) \subseteq G(\hat{K}/L)$.