

ESERCIZI SVOLTI DI RIEPILOGO DI TERMODINAMICA a.a. 2019/2020

Per gli Allievi dei corsi di laurea L-17 Scienze dell'Architettura e LM-4 Architettura c.u.

Prof. Ing. Marina Mistretta

Un serbatoio rigido contiene un liquido caldo che viene agitato da un agitatore a palette. L'energia interna del liquido è inizialmente 800 [kJ]. Durante il raffreddamento il liquido cede 500 [kJ] di calore e l'agitatore compie 100 [kJ] di lavoro sul liquido. Qual è l'energia interna finale del liquido? Nell'ipotesi in cui, cessato il funzionamento dell'agitatore, il liquido torni al valore iniziale di energia interna, quanto calore deve assorbire? Si trascuri l'energia immagazzinata dall'agitatore.

DATI

 $U_i = 800 [kJ]$

Q = -500 [kJ]

L = -100 [kJ]

Svolgimento

1. Primo quesito: Determinare il valore finale di energia interna U_f.

Dal Primo Principio della Termodinamica: $\Delta U = Q - L$, si ottiene:

$$U_f$$
 - $U_i = Q - L$

Quindi:

$$U_f = Q - L + U_i = -500 - (-100) + 800 = 400 \text{ [kJ]}$$

Pertanto:

$$\Delta U = U_f - U_i = 400 - 800 = -400 \text{ [kJ]}$$

2. Secondo quesito: Nell'ipotesi in cui il sistema torni nella condizione iniziale di energia interna (U_i = 800 [kJ]), determinare il calore assorbito Q' essendo nullo il lavoro (l'agitatore a palette ha smesso di funzionare).

In questa nuova condizione, il sistema subisce un riscaldamento in cui l'energia interna ritorna al valore iniziale U_i, partendo da quello finale U_f. Quindi la variazione di energia interna in questo caso sarà uguale e opposta a quella del primo quesito:

$$\Delta U' = U_i - U_f = -\Delta U' = -(U_f - U_i) = -(400 - 800) = 800 - 400 = 400 \text{ [kJ]}$$

Essendo adesso L = 0, dal Primo Principio della Termodinamica si ricava:

$$Q' = \Delta U' = 400 \text{ [kJ]}$$

Q' è positivo in quanto il sistema riceve calore dall'esterno. Essendo L=0, il calore ricevuto si traduce in una variazione di energia interna, e quindi in un aumento di temperatura.

Si ritenga che una persona a riposo trasferisca mediamente all'ambiente una potenza termica di 100 W e che in un teatro, contenente 1800 persone, l'impianto di condizionamento cessi di funzionare. Si assuma che le pareti esterne del teatro siano adiabatiche.

- 1. Si calcoli la variazione di energia interna dell'aria nel teatro dopo 15,0 minuti.
- 2. Qual è la variazione di energia interna per il sistema contenente aria e persone?

DATI

 $P = Q/\Delta t = 100 [W]$

 $N_p = 1800$

 $\Delta t = 15 \text{ min} = 900 \text{ [s]}$

Svolgimento

1.Primo quesito.

La variazione dell'energia interna si calcola applicando il Primo Principio della Termodinamica:

$$\Delta U = Q - L$$

dove L = 0 perché le pareti del sistema sono rigide e indeformabili, quindi non c'è variazione di volume.

Quindi:

$$\Delta U = Q$$

Q è il calore che una persona scambia con l'ambiente circostante, per effetto dei meccanismi fisiologici e della sua attività meccanica, e il suo valore dipende dal tipo di attività (sedentaria o in movimento). Nell'unità di tempo essa si esprime come potenza $P = Q/\Delta t$ e in questo caso è 100 W (attività sedentaria).

Nell'intervallo di tempo $\Delta t = 900 [s]$ l'energia termica Q scambiata tra 1800 persone e l'ambiente è:

$$Q = N_p \times P \times \Delta t = 1800 \times 100 \times 900 = 162 \times 10^6 \text{ [J]} = 162 \text{ [MJ]}$$

Allora risulta:

$$\Delta U = Q = 162 \ 10^6 \ [J] = 162 \ [MJ]$$

2. Secondo quesito.

La variazione di energia del sistema, inteso nella sua interezza (persone + teatro), è nulla, poiché le pareti esterne del teatro siano adiabatiche (Q=0) e sono rigide e fisse (L=0). Quindi:

$$\Delta U = Q - L = 0$$

In un cilindro orizzontale si abbia nelle condizioni iniziali aria a 20 °C e 58 atm. Il volume iniziale del cilindro sia $V_1 = 0.1 \text{ m}^3$. Si ipotizzi che il sistema passi dallo stato 1 allo stato 2 attraverso le due seguenti trasformazioni:

- 1. Isobara
- 2. Isoterma

Il volume finale V_2 è 0,3 m³. Per ognuna delle trasformazioni calcolare: le proprietà termodinamiche finali, il calore scambiato, la variazione di entalpia, la variazione di energia interna ed il lavoro scambiato. Considerare l'aria come gas perfetto (R = 287 J/kg K, cv = 0.717 kJ/kg K, cp = 1.005 kJ/kg K).

```
\begin{split} &DATI\\ t = 20~^{\circ}C\\ p = 58~atm = 58x101.325 = 5.876.850~[Pa]\\ &V_1 = 0,1~[m^3]\\ &V_2 = 0,3~[m^3]\\ &R = 287~[J/kg~K]\\ &c_v = 0,717~[kJ/kgK]\\ &c_p = 1,005~[kJ/kgK] \end{split}
```

Svolgimento

Si calcola il volume specifico nelle condizioni iniziali, applicando l'equazione di stato dei gas perfetti e ricordando che il volume specifico è il volume *V* per unità di massa:

$$p_1 V_1 = mRT_1 \qquad \frac{V_1}{m} = \frac{RT_1}{p_1}$$
$$v_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 293,15}{58 \cdot 101325} = 0,0143 \left[\frac{m^3}{kg} \right]$$

La massa di aria contenuta nel cilindro è:

$$m = \frac{V_1}{v_1} = \frac{0.1}{0.0143} = 6.99 [kg]$$

Il volume specifico nello stato finale 2 è:

$$v_2 = \frac{V_2}{m} = \frac{0.3}{0.0143} = 0.0429 [kg]$$

Ipotesi 1: Trasformazione isobara 1-2

Assumendo che la trasformazione 1-2 sia isobara (la pressione p è costante lungo tutta la trasformazione), si ha che $p_1 = p_2 = 58$ atm = 5876850 Pa. Applicando l'equazione di stato dei gas perfetti, si può scrivere:

$$p_1 = \frac{RT_1}{V_1} \qquad p_2 = \frac{RT_2}{V_2}$$

ma $p_1 = p_2$, quindi se sono uguali i primi membri saranno uguali anche i secondi membri:

$$p_1 = p_2$$
 $\frac{RT_1}{v_1} = \frac{RT_2}{v_2}$ \rightarrow $\frac{T_1}{v_1} = \frac{T_2}{v_2}$ \rightarrow $T_2 = \frac{v_2}{v_1}T_1 = \frac{0.0429 \cdot 293}{0.0143} = 879 [K]$

Siccome si sta considerando l'aria come gas perfetto, la variazione di entalpia è:

$$\Delta H_{12} = m \Delta h_{12} = m c_p \Delta T = 6.99 \text{ x } 1.005 \text{ x } (879 - 293) = 4116.62 \text{ [kJ]}$$

La variazione di energia interna è:

$$\Delta U_{12} = m c_v \Delta T_{12} = 6.99 \text{ x } 0.717 \text{ x } (879 - 293) = 2936.9 \text{ [kJ]}$$

Trattandosi di trasformazione isobara, il calore scambiato è uguale con la variazione di entalpia:

$$Q_{12} = \Delta H_{12} = 4116,62$$
 [kJ]

Il lavoro è:

$$L_{12} = Q_{12} - \Delta U_{12} = 4116,62 - 2936,9 = 1179,72$$
 [kJ]

Ipotesi 2: Trasformazione isoterma 1-2

Assumendo che la trasformazione 1-2 sia isoterma sia ha la temperatura rimane costante lungo tutta la trasformazione dallo stato 1 iniziale allo stato 2 finale, quindi $T_1 = T_2$.

Analogamente a come si è proceduto per calcolare la temperatura finale T_2 nell'ipotesi di trasformazione isobara, qui operiamo per calcolare la pressione p_2 :

$$T_1 = T_2$$
 $\frac{p_1 v_1}{R} = \frac{p_2 v_2}{R}$ \rightarrow $p_1 v_1 = p_2 v_2$ \rightarrow $p_2 = \frac{v_1}{v_2} p_1 = \frac{0.0143 \cdot 5.876.850}{0.0429} \cong 1.96 [MPa]$

Poiché la trasformazione 1-2 è isoterma, l'entalpia e l'energia interna sono grandezze di stato, dipendenti soltanto della temperatura, se la temperatura è costante lo saranno anche l'entalpia e l'energia interna. Pertanto:

$$\Delta H_{12} = 0$$

$$\Delta U_{12} = 0$$

$$L_{12} = m \int_{v_1}^{v_2} p dV = m \int_{v_1}^{v_2} RT \frac{dv}{v} = mRT \ln \frac{v_2}{v_1} = 6,99 \cdot 287 \cdot 293 \cdot \ln \frac{0,0429}{0,0143} = 645.638 [J] = 645,6 [kJ]$$

Per il Primo Principio della Termodinamica applicato ai sistemi chiusi e stazionari:

$$\Delta U_{12} = Q_{12} - L_{12} = 0 \rightarrow Q_{12} = L_{12} = 645,6 \ [kJ]$$

Un recipiente chiuso a pareti rigide e fisse contiene 700 litri di acqua allo stato liquido alla temperatura di 40°C. Nel recipiente viene successivamente immerso un corpo cilindrico di metallo (diametro D = 45 cm e altezza H= 55 cm) alla temperatura di 95°C, avente densità 4000 kg/m³ e calore specifico 500 J/kgK. Determinare la temperatura dell'acqua e del metallo all'equilibrio, nell'ipotesi di trascurare il calore disperso verso l'ambiente esterno. Si ricorda che per l'acqua la densità è 1000 kg/ m³ e il calore specifico è 4,2 kJ/kgK. Si assuma che il recipiente sia isolato sia termicamente che meccanicamente.

DATI

$$\begin{split} V &= 700 \, 1 = 0,7 \, [m^3] \\ t_1 &= 40 \, ^{\circ} C \\ t_2 &= 95 \, ^{\circ} C \\ D &= 45 \, cm = 0,45 \, [m] \\ H &= 55 \, cm = 0,55 \, [m] \\ R &= 287 \, [J/kg \, K] \\ c_M &= 500 \, [J/kg K] = 0.500 \, [kJ/kg K] \\ c_a &= 4,2 \, kJ/kg K \\ \rho_M &= 4000 \, [kg/m^3] \\ \rho_a &= 1000 \, [kg/m^3] \end{split}$$

Svolgimento

Il volume del cilindro di metallo e la massa del cilindro sono:

$$V_{M} = \pi \left(\frac{D}{2}\right)^{2} \cdot H = \pi \left(\frac{0.45}{2}\right)^{2} \cdot 0.55 = 0.087 \quad [m^{3}]$$

$$m_{M} = \rho_{M} \cdot V_{M} = 4000 \cdot 0.087 \cong 350 \quad [kg]$$

Il volume dell'acqua e la relativa massa sono:

$$V_a = 0,7 \quad [m^3]$$

$$m_a = \rho_a \cdot V_a = 1000 \cdot 0,7 = 700 \quad [kg]$$

Applicando il Primo Principio della Termodinamica all'intero sistema (acqua + metallo) e considerando che le pareti del serbatoio (confine del sistema) sono adiabatiche e fisse, allora si ha che:

$$Q = 0$$
 e $L = 0$

Pertanto, dal Primo Principio della Termodinamica si ha anche che $\Delta U = 0$

Quindi, sfruttando la proprietà additiva dell'energia interna (l'energia interna del sistema è uguale alla somma delle energie interne dei suoi componenti), si può scrivere:

$$\Delta U = \Delta U_a + \Delta U_M = 0$$

Ciò significa che nel processo di scambio termico tra l'acqua e il metallo, il calore ceduto dal metallo all'acqua è esattamente uguale a quello che l'acqua assorbe, senza alcuna dispersione verso l'esterno e la temperatura finale (t_f) sarà quella di equilibrio tra i due corpi. Trattandosi di processi a volume costante la variazione di energia interna è uguale al calore scambiato. Quindi, esplicitando l'energia interna si ha:

$$\begin{split} & m_a c_a \Delta t_a + m_M c_M \Delta t_M = 0 \\ & m_a c_a (t_f - t_a) + m_M c_M (t_f - t_M) = 0 \\ & t_f = \frac{m_a c_a t_a + m_M c_M t_M}{m_a c_a + m_M c_M} = \frac{700 \cdot 4, 2 \cdot 40 + 350 \cdot 0, 5 \cdot 95}{700 \cdot 4, 2 + 350 \cdot 0, 5} = 43,1^{\circ}C \end{split}$$

Esercizio 5

Una massa di 7,2 kg di gas perfetto (aria secca $c_v = 717$ J/kgK; $c_p = 1005$ J/kgK; R = 288 J/kgK) passa dallo stato 1 allo stato 2 lungo la trasformazione isoterma 1-2, passando dal volume $V_1 = 100$ litri a $V_2 = 300$ litri.

Se la pressione iniziale è $p_1 = 60$ atm, calcolare per la <u>trasformazione 1-2</u>:

- 1) $p_2 e T_1$.
- 2) Il lavoro $L_{1,2}$, specificando se esso è di espansione o di compressione.
- 3) La variazione di energia interna $\Delta U_{1,2}$ e il calore assorbito $Q_{1,2}$.

Raggiunto lo stato termodinamico 2 il gas subisce una trasformazione che lo porta, a volume costante costante, alla pressione $p_3 = p_1$. Calcolare per la <u>trasformazione 2-3</u>:

4) Il calore scambiato $Q_{2,3}$ e la variazione di energia interna $\Delta U_{2,3}$, specificando se il sistema si riscalda o si raffredda.

Attraverso la trasformazione 3-1 il sistema torna nello stato iniziale 1 a pressione costante. Nella trasformazione 3-1, calcolare:

5) il lavoro $L_{3,1}$ e il calore $Q_{3,1}$ scambiati.

Inoltre, in relazione alla trasformazione ciclica da 1-2-3-1:

- 6) Quanto valgono: il lavoro del ciclo L_{ciclo} , il calore scambiato Q_{ciclo} e la variazione di energia interna ΔU_{ciclo} ?
- 7) Specificare se il sistema complessivamente si espande o si comprime e se si riscalda o si raffredda, spiegandone le motivazioni.

DATI

m = 7,2 kg

 $c_v = 717 \text{ [J/kgK]}$

 $c_p = 1005 [J/kgK]$

R = 288 [J/kgK]

 $V_1 = 100 \text{ litri} = 0.1 \text{ m}^3$

 $V_2 = 300 \text{ litri} = 0.3 \text{ m}^3$

 $p_1 = 60 \text{ atm}$

Svolgimento

1) Calcolare p_2 e T_1 .

Trasformazione isoterma ($T_1 = T_2$)

Per determinare la temperatura richiesta T₁ si applica l'equazione di stato dei gas perfetti nel punto 1, ricordando di convertire l'unità di misura della pressione da atmosfere a Pascal:

$$p_1 V_1 = mRT_1$$

$$T_1 = \frac{p_1 V_1}{mR} = \frac{60 \cdot 101325 \cdot 0, 1}{7, 2 \cdot 288} = 293 [K]$$

Per determinare la pressione richiesta p_2 si applica l'equazione di stato dei gas perfetti nel punto 2, ricordando che la trasformazione è isoterma e quindi $T_1 = T_2$:

$$p_2V_2 = mRT_2$$

$$p_2 = \frac{mRT_2}{V_2} = \frac{7,2 \cdot 288 \cdot 293}{7,2 \cdot 0,3} = 2.026.500 [Pa]$$

2) Calcolare il lavoro L_{1,2}, specificando se esso è di espansione o di compressione

$$L_{1,2} = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} mRT \frac{dV}{V} = mRT \ln \frac{V_2}{V_1} = 7, 2 \cdot 288 \cdot 293 \ln \frac{0,3}{0,1} = 667.478 \quad [J] = 667.5 \quad [kJ]$$

Il lavoro è di espansione, essendo il volume finale maggiore di quello iniziale. Il valore trovato risulta infatti positivo.

3) Calcolare la variazione di energia interna $\Delta U_{1,2}$ e il calore assorbito $Q_{1,2}$.

La trasformazione 1-2 è isoterma, pertanto non c'è variazione di energia interna, perché l'energia interna è funzione della sola temperatura. Quindi se la temperatura non varia, non varierà nemmeno l'energia interna, ossia:

$$\Delta U_{1,2} = 0$$

Essendo $\Delta U_{1,2} = 0$ e applicando il Primo Principio, risulta:

$$Q_{1,2} = L_{1,2} = 667.478 \text{ [J]} = 667.5 \text{ [kJ]}$$

4) Calcolare il calore scambiato e la variazione di energia interna nella trasformazione 2-3, specificando se il sistema si riscalda o si raffredda.

La trasformazione 2-3 è isocora, quindi il volume è costante ($V_2 = V_3 = 0.3 \text{ m}^3$) e non c'è lavoro scambiato.

Essendo $L_{2,3} = 0$ e applicando il Primo Principio, risulta:

$$Q_{2,3} = \Delta U_{2,3} = mc_v (T_3 - T_2)$$

Prima si deve trovare T_3 .

Per determinare la temperatura T_3 si applica l'equazione di stato dei gas perfetti nel punto 3, ricordando di convertire l'unità di misura della pressione da atmosfere a Pascal e sapendo che $p_3 = p_1$:

$$p_3V_3 = mRT_3$$

 $T_3 = \frac{p_3V_3}{mR} = \frac{60 \cdot 101325 \cdot 0.3}{7.2 \cdot 288} = 879.5 [K]$

$$Q_{2,3} = \Delta U_{2,3} = mc_v (T_3 - T_2) = 7,2x717x (879,5-293) = 3.027.748 [J] \approx 3.028 [kJ]$$

Avendo a disposizione le temperature in Kelvin e dovendo valutare variazioni di temperatura non è necessario convertirle in gradi Celsius. Il sistema si è riscaldato $(Q_{2,3}>0)$.

5) Calcolare il lavoro e il calore nella trasformazione 3-1.

Nella trasformazione 3-1, che è isobara $(p_3 = p_1)$ il sistema torna nello stato iniziale 1 a pressione costante. È noto che in una trasformazione isobara il calore scambiato è uguale alla variazione di entalpia. Pertanto:

$$Q_{3,1} = \Delta H_{3,1} = m c_p (T_1 - T_3) = 7.2 \times 1005 \times (293 - 879, 5) = -4.243.914 [J] \approx -4.244 [kJ]$$

Il lavoro è:

$$L_{3,1} = p_1 (V_1 - V_3) = 60 \times 101325 \times (0,1-0,3) = -1215900 [J] \approx -1.216 [kJ]$$

Ouindi
$$\Delta U_{3,1} = Q_{3,1} - L_{3,1} = -4.244 - (-1.216) = -3.028$$
 [kJ]

6) Calcolare: il lavoro del ciclo, il calore scambiato e la variazione di energia interna

Complessivamente, trattandosi di ciclo la variazione di energia interna è nulla. Lo verifico:

$$\Delta U_{ciclo} = \Delta U_{1,2} + \Delta U_{2,3} + \Delta U_{3,1} = 0 + 3.028 - 3.028 = 0$$

 $\Delta U_{1,2} = 0$ poiché la trasformazione 1-2 isoterma.

$$Q_{ciclo} = Q_{1,2} + Q_{2,3} + Q_{3,1} = 667,5 + 3.028 - 4.244 = -548,5$$
 [kJ]

$$L_{ciclo} = L_{1,2} + L_{2,3} + L_{3,1} = 667,5 + 0 - 1.216 = -548,5$$
 [kJ]

$$\Delta U_{ciclo} = Q_{ciclo} - L_{ciclo} = -548.5 - (-548.5) = -548.5 + 548.5 = 0$$

Il sistema si raffredda e si comprime. Infatti, risultano $Q_{ciclo} < 0$ e $L_{ciclo} < 0$ (ciclo antiorario).