Controle 4

3 décembre 2010

Exercice 1:

Calculer

$$I = \int_{4}^{5} \frac{1}{u^4 - 1} du$$

Exercice 2:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_0 > 0$ et $\forall n \in \mathbb{N}$ $u_{n+1} \ge 2u_n$. Montrer que $\frac{u_n}{n} \xrightarrow[n \to \infty]{} +\infty$.

Controle 5

Exercice 1:

1) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et $u_1=4$ et vérifiant pour tout $n\in\mathbb{N}$ $u_{n+2}=5u_{n+1}-6u_n$. Calculer une expression pour u_n et montrer que $\forall n\in\mathbb{N}$ $u_n>0$. 2) Montrer que $\frac{\ln(u_n)}{n}$ a une limite en $+\infty$ et la calculer.

Controle 6

Exercice 1:

Soit u_n la suite définie par, $u_0=-5,\ u_1=-8$ et $\forall n\in$

 \mathbb{N} $u_{n+2} = 4(u_{n+1} - u_n)$. Montrer que $\forall n \geq 4$ on a $u_{n+1} > u_n$.

Exercice 2:

Soit (E) l'équation différentielle $y'+2y=2x^2-1$. Trouver la solution de (E) telle que y(0)=1.