

PowerPoint® Lecture
Presentations prepared by
Mindy Miller-Kittrell,
North Carolina State
University

CHAPTER 16

Adaptive Immunity

Test # 1

- Test 1: October 3 October 5, 2017
 - Reattempt: October 6 October 11, 2017
- Reattempt will be available ONLY if you take the first attempt in the mentioned period
- There must be min 48 hours between the two attempts
- The test will be based on the material presented or discussed in the classroom and textbook chapters that students are required to review independently.
- Check the Moodle for more info on testing center and the exam process

Test # 1

- Content: chapter 14 [Infection, infectious disease, and epidemiology], chapter 15 [Innate immunity], and chapter 16 [Adaptive immunity].
- 20 multiple choice questions and/or true-false questions.
- Duration: 40 minutes
- Location: Testing Centre

- Adaptive immunity is the body's ability to recognize and defend itself against distinct invaders and their products
- Five attributes of adaptive immunity
 - Specificity
 - Inducibility
 - Clonality
 - Unresponsiveness to self
 - Failure can lead to autoimmune disorders or hypersensitivities
 - Memory

- Involves activity of lymphocytes
 - Form in the red bone marrow where blood stem cells (hemopoietic stem cells) produce all types of blood cells
- Two main types of lymphocytes:
 - B lymphocytes (B cells)
 - Mature in the bone marrow
 - T lymphocytes (T cells)
 - Mature in the thymus
- Two types of adaptive immune responses:
 - Cell-mediated immune responses
 - Antibody immune responses

- Long-lived B and T lymphocytes retain the ability to fight specific pathogens as long as they live aka Immunological memory
- Cell-mediated immune responses often act against intracellular pathogens such as viruses replicating inside a cell
 - Controlled and carried out by T cells
- Antibody immune responses are often directed against extracellular pathogens and toxins
 - Carried out by B cells, though T cells play roles in regulating and fulfilling antibody immune responses

- An antibody is a protein secreted by the descendant of a B cell that recognizes a specific biochemical shape
- Humoral immune responses, another term for antibody immune responses, recognizes that most antibody molecules circulate in the blood.
- The adaptive immune response must be regulated to prevent damage to uninfected healthy tissues.

Host Defenses: The Big Picture

PLAY

Host Defenses: The Big Picture

Cell-Mediated Immunity: Overview

© 2017 Pearson Education, Inc.

- The Tissues and Organs of the Lymphatic System
 - Composed of lymphatic vessels and lymphatic cells, tissues, and organs
 - Screen the tissues of the body for foreign antigens

- The Tissues and Organs of the Lymphatic System
 - The Lymphatic Vessels and the Flow of Lymph
 - Lymphatic vessels
 - One-way system that conducts lymph from tissues and returns it to the circulatory system

- The Tissues and Organs of the Lymphatic System
 - The Lymphatic Vessels and the Flow of Lymph
 - Lymph
 - Colorless, watery liquid with similar composition to blood plasma
 - Arises from fluid leaked from blood vessels into surrounding tissues
 - Intercellular fluid flows into lymphatic capillaries, through larger vessels with one-way valves into lymphatic ducts.
 - On its way, it passes through lymph nodes, which contain B and T cells, allowing for immune surveillance and interaction.

Figure 16.2 The lymphatic system.

- The Tissues and Organs of the Lymphatic System
 - Lymphoid Organs
 - Primary lymphoid organs: (Arise)
 - Red bone marrow
 - Thymus
 - Secondary lymphoid organs: (Migrate)
 - Lymph nodes
 - Spleen
 - Tonsils
 - Mucosa-associated lymphoid tissue (MALT)

Antigens

- Portions of cells, viruses, and molecules the body recognizes as foreign
- Properties of Antigens
 - Recognized by three-dimensional regions called epitopes on antigens
 - Large foreign macromolecules make the best antigens
 - Include various bacterial components as well as proteins of viruses, fungi, and protozoa
 - Food and dust can also contain antigenic particles
 - Antigens called allergens provoke allergic reactions

Figure 16.3a Antigens, molecules that provoke a specific immune response.

(a) Epitopes (antigenic determinants)

Antigens

- Types of Antigens:
 - Exogenous antigens include toxins and other components of microbial cell walls, membranes, flagella, and pili
 - Endogenous antigens produced by microbes that reproduce inside a body's cells. The immune system can respond to these antigens only if they are incorporated into the cell's cytoplasmic membrane.

Antigens

- Types of Antigens:
 - Autoantigens / Self-antigens derived from normal cellular processes. Immune cells that treat autoantigens as foreign are normally eliminated during the development of the immune system. This phenomenon, called self-tolerance, prevents the body from mounting an immune response against itself.

Figure 16.3b-d Antigens, molecules that provoke a specific immune response.

Preparation for an Adaptive Immune Response

- The Roles of the Major Histocompatibility Complex (MHC) and Antigen-Presenting Cells
 - Group of antigens first identified in graft patients
 - Important in determining compatibility of tissues for tissue grafting
 - Major histocompatibility antigens are glycoproteins found in the membranes of most cells of vertebrate animals
 - Antigens on the surface of cells known as major histocompatibility antigens are how the body can distinguish "self" from "non-self."
 - Hold and position antigenic epitopes for presentation to immune cells

- Preparation for an Adaptive Immune Response
 - The Roles of the Major Histocompatibility Complex (MHC) and Antigen-Presenting Cells
 - Antigens bind in the antigen-binding groove of MHC molecules
 - Two classes of MHC proteins:
 - MHC class I
 - Present on all cells except red blood cells
 - MHC class II
 - Present on antigen-presenting cells (APCs)
 - Include macrophages and dendritic cells (aka Professional Antigen Presenting Cells)
 - Nonprofessional antigen-presenting cells: microglia and stellate macrophages

Figure 16.4 The two classes of major histocompatibility complex (MHC) proteins.

Figure 16.5 Dendritic cells.

Preparation for an Adaptive Immune Response

- Antigen Processing
 - Antigens must be processed before MHC proteins can display epitopes
 - Different processes for endogenous and exogenous antigens

Antigen Processing and Presentation: Overview

Antigen Processing and Presentation: Overview

Antigen Processing and Presentation: Steps

PLAY

Antigen Processing and Presentation: Steps

Antigen Processing and Presentation: MHC

Antigen Processing and Presentation: MHC

- Produced in the red bone marrow and mature in the thymus
- Act against endogenous antigens, producing cellmediated immune responses
- Circulate in the lymph and blood
- Migrate to the lymph nodes, spleen, and Peyer's patches
- Have T cell receptors (TCRs) on their cytoplasmic membrane for every possible epitope

- Specificity of the T Cell Receptor (TCR)
 - TCRs do not recognize epitopes directly
 - TCRs only bind epitopes associated with an MHC protein
 - T cells act primarily against cells that harbor intracellular pathogens
 - Some T cells act against body cells that produce abnormal cell-surface proteins

- Types of T Lymphocytes
 - Based on surface glycoproteins and characteristic functions, three types:
 - Cytotoxic T lymphocyte 9 (Tc or CD8 cells)
 - Kill infected cells, as well as abnormal body cells such as cancer cells.
 - Helper T lymphocyte (Th or CD4 cells)
 - Helps regulate B cells and cytotoxic T cells
 - Includes type 1 and type 2 helper T cells
 - Regulatory T lymphocyte (Tr cells or suppressor T cells)
 - Represses adaptive immune responses

Cell-Mediated Immunity: Helper T Cells

Cell-Mediated Immunity: Helper T Cells

- Clonal Deletion of T Cells
 - Vital that immune responses not be directed against autoantigens
 - Body eliminates self-reactive lymphocytes
 - Cells with receptors that respond to autoantigens are selectively eliminated via apoptosis in a process known as clonal deletion (because potential offspring clones—are deleted)

- Clonal Deletion of T Cells
 - Clonal deletion of T cells occurs in the thymus, where thymus cells process and present all the body's autoantigens to young T cells
 - T cells that do not recognize MHC are also deleted
 - Surviving lymphocytes and their descendants respond only to foreign antigens (except for a small number of regulatory T cells).
 - When self-tolerance is impaired, the result is an autoimmune disease

- T Lymphocytes (T Cells)
 - Clonal Deletion of T Cells: Summary
 - Immature T cells undergo one of four fates
 - T cells that do not recognize body's MHC protein undergo apoptosis
 - T cells that recognize autoantigen die by apoptosis
 - Some "self-recognizing" T cells become regulatory T cells
 - T cells that recognize MHC protein and foreign epitopes become repertoire of protective T cells

Figure 16.9 Clonal deletion of T cells.

