6T1: Harmonic Model

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University

Index

- Harmonic model
- Sinusoids-partials-harmonics
- Polyphonic-monophonic signals
- Harmonic detection (after F0 detection)
- Harmonic model system

Harmonic model

$$yh[n] = \sum_{r=1}^{R} A_r[n]\cos(2\pi r f_0[n]n)$$

R: number of harmonic components

 $A_r[n]$: instantaneous amplitude

 $f_0[n]$: fundamental frequency (Hz)

Spectral view

$$Yh_{l}[k] = \sum_{r=1}^{R_{l}} A_{(r,l)} W[k-r \hat{f}_{(0,l)}]$$

W: spectrum of analysis window

R: number of harmonics

A: amplitude of harmonic

 \hat{f}_0 : normalized fundamental frequency

l: frame number

r: harmonic number

Sinusoids-partials-harmonics

Sinusoids-partials-harmonics

Polyphonic-monophonic signals

Polyphonic-monophonic signals

Polyphonic-monophonic signals

Harmonic detection

Harmonic → stable spectral peak whose frequency is close to a **multiple** of the fundamental frequency.

Condition for a peak f_p to be a harmonic f_h :

$$f_p[l] = f_h[l]$$
 if $(|f_p[l] - (h * f_0[l])| < threshold)$
and exists $f_h[l-2], f_h[l-3], ..., f_h[l-L]$

Harmonic model system

References and credits

- More information in:
 - https://en.wikipedia.org/wiki/Harmonic_series_(music)
 - https://en.wikipedia.org/wiki/Harmonic
- Sounds from: http://www.freesound.org/people/xserra/packs/13038/
- Slides and code released using the CC Attribution-Noncommercial-Share Alike license or the Affero GPL license and available from https://github.com/MTG/sms-tools

6T1: Harmonic Model

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University