Contrôle Terminal

Durée 2h.

Documents, calculatrices, smartphones interdits. Il sera tenu compte de la clarté de la rédaction et du soin apporté à la copie.

Exercice I(10 points) Il est proposé à une population de N individus de s'abonner à un nouveau service pour une durée de 2 ans renouvelable. Les abonnés sont de deux sortes : ceux qui en sont à la première année de l'abonnement en cours et on note u_n leur nombre la n-ième année ; ceux qui en sont à la seconde année de l'abonnement en cours et on note v_n leur nombre la n-ième année. On note w_n le nombre de personnes qui ne sont pas abonnées la n-ième année. On pose $u_0 = 0$, $v_0 = 0$ et $w_0 = N$. On suppose que 8 abonnés sur 10 en fin de contrat renouvellent leur abonnement en fin d'année, que 8 non abonnés sur 10 d'une année s'abonnement l'année suivante et qu'aucune personne ne résilie le contrat en cours d'abonnement.

1. Soit n un entier naturel. Exprimer u_{n+1} , v_{n+1} et w_{n+1} en fonction de u_n , v_n et w_n . Justifier. Soit A la matrice

$$\frac{1}{5} \begin{pmatrix} 0 & 4 & 4 \\ 5 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Pour tout entier naturel n, on note X_n la matrice colonne

$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix},$$

- 2. Pour tout entier naturel n, exprimer X_{n+1} en fonction de A et de X_n .
- 3. En déduire l'expression de X_n en fonction des matrices A, X_0 et de l'entier naturel n.
- 4. Montrer que la matrice A est diagonalisable.
- 5. Déterminer une matrice D diagonale et une matrice P inversible dont la dernière ligne est (111) telles que $A = PDP^{-1}$. On admettra dans la suite de l'exercice que

$$\begin{pmatrix} 0 & 4 & 4 \\ -1 & 4 & -5 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1/4 & 0 & 1 \\ 1/9 & 1/9 & 1/9 \\ 5/36 & -1/9 & -1/9 \end{pmatrix}$$

- 6. Démontrer que pour tout entier naturel $n, A^n = PD^nP^{-1}$.
- 7. Déterminer les expressions de u_n , v_n , w_n en fonction de l'entier naturel n.
- 8. Que peut-on dire de la somme $u_n + v_n + w_n$?
- 9. Déterminer la limite des trois suites (u_n) , (v_n) , (w_n) .

Dans la suite du sujet, on note

Exercice II (4 points) En utilisant la transformée de Laplace, déterminer la fonction causale y(t) vérifiant l'équation différentielle

$$y'' + 16y = e^{2t}\gamma(t)$$
 où $y(0) = 0$ et $y'(0) = 4$.

Exercice III(3 points) La fonction de transfert d'un système linéaire, continu et invariant est $H(p) = \frac{p}{p^2 + 6p + 10}$.

- 1. Quelle est la réponse y(t) à une impulsion de Dirac $x(t) = \delta(t)$.
- 2. Quelle est la réponse y(t) à une entrée échelon $x(t) = 2\gamma(t)$.

Exercice IV (3 points) On considère la fonction 2-périodique causale définie de la manière suivante :

$$f(t) = \begin{cases} 0 & \text{si } t < 0\\ 2t & \text{si } 0 \le t < 1\\ 4 - 2t & \text{si } 1 \le t < 2 \end{cases}$$

- 1. Donner la représentation graphique de f sur [-2, 4].
- 2. Calculer la transformée de Laplace de f.

Transformées de Laplace usuelles

Domaine temporel	Domaine de Laplace
$\gamma(t)$	$\frac{1}{p}$
$\delta(t)$	1
$t^n \gamma(t) (n \in \mathbb{N})$	$\frac{n!}{p^{n+1}}$
$e^{at}\gamma(t)(a\in\mathbb{C})$	$\frac{1}{p-a}$
$\cos(\omega t)\gamma(t)(\omega\in\mathbb{R}_+^*)$	$\frac{p}{p^2 + \omega^2}$
$\sin(\omega t)\gamma(t)(\omega \in \mathbb{R}_+^*)$	$\frac{\omega}{p^2 + \omega^2}$

Propriétés de la transformation de Laplace

Propriétés	Domaine temporel	Domaine de Laplace
	$f(t)\gamma(t), g(t)\gamma(t)$	F(p), G(p)
Linéarité	$(\alpha f(t) + \beta g(t))\gamma(t), (\alpha, \beta \in \mathbb{R})$	$\alpha F(p) + \beta G(p)$
Changement d'échelle de t	$f(at)\gamma(t)(a \in \mathbb{R}_+^*)$	$\frac{1}{a}F\left(\frac{p}{a}\right)$
Changement d'échelle de p	$\frac{1}{a}f\left(\frac{t}{a}\right)\gamma(t)(a\in\mathbb{R}_{+}^{*})$	F(ap)
Translation de t	$f(t-a)\gamma(t-a) \ (a \in \mathbb{R}_+^*)$	$e^{-ap}F(p)$
Translation de p	$e^{-at}f(t)\gamma(t) \ (a \in \mathbb{R}_+^*)$	F(p+a)
Périodicité de période $T>0$	Motif: $f_0(t)\gamma(t)$	$F_0(p)$
	$f(t) = \sum_{n=0}^{+\infty} f_0(t - nT)\gamma(t - nT)$	$F(p) = \frac{F_0(p)}{1 - e^{-pT}}$
Dérivation de $f(t)$	$f'(t)\gamma(t)$	$pF(p) - f(0^+)$
	$f^{(n)}(t)$	$p^n F(p) - p^{n-1} f(0^+)$
		$-p^{n-2}f'(0^+) - \dots - f^{(n-1)}(0^+)$
Dérivation de $F(p)$	$-tf(t)\gamma(t)$	$F'(p), p \in \mathbb{R}$
Intégration de $f(t)$	$\int_0^t f(x)dx$	$\frac{F(p)}{p}$
Intégration de $F(p)$	$rac{f(t)}{t}$	$\int_{p}^{+\infty} F(u) du$
Produit de convolution	$f(t)\gamma(t)*g(t)\gamma(t)$	F(p)G(p)
	$= \int_0^t f(u)g(t-u)du$	