TUGAS AKHIR

ANALISA DAN PERAMALAN DATA PENUMPANG TRANSJAKARTA DENGAN ARIMA SERTA VISUALISASI DENGAN METODE FOUR-STEP KIMBALL MENGGUNAKAN POWER BI

065002100021 - ALDIS TAMARA PUTRI ISKANDAR

DAFTAR ISI

Bab I:

Latar Belakang
Rumusan Masalah
Batasan Masalah
Tujuan Penelitian
Manfaat Penelitian

Bab IV:

Perolehan Raw Data Pre-processing Perancangan OLAP Proses ETL Analisa Prediksi Visualisasi Data

Bab II:

Tinjauan Pustaka Penelitian Terdahulu

Bab V:

Kesimpulan Saran

Bab III:

Metodologi Penelitian
Studi Literatur & Observasi
Perolehan Raw Data
Analisa Kebutuhan
Pre-processing
Perancangan OLAP
Proses ETL
Analisa Prediksi
Pembuatan Visualisasi

LATAR BELAKANG

DKI Jakarta, meskipun provinsi terkecil, memiliki tingkat kepadatan penduduk yang tinggi dan menjadi pusat ekonomi, sosial, dan pendidikan di Indonesia. Perkembangan pesat wilayah ini mendorong kebutuhan akan transportasi umum yang aman dan nyaman.

Transjakarta, sebagai penyedia layanan Bus Rapid Transit (BRT) dan non-BRT sejak 2004, kini melayani wilayah Jabodetabek dengan jaringan sepanjang 251,2 km, 273 halte, dan 14 koridor. Pada 2023, jumlah penumpang harian Transjakarta mencapai 1.174.098, dengan armada 4.348 bus, yang ditargetkan bertambah menjadi 4.728 pada 2024.

Sumber: Transjakarta

LATAR BELAKANG

- Transjakarta merupakan salah satu moda transportasi publik utama di Jakarta.
- Setiap tahun, **jumlah penumpang** Transjakarta mengalami **fluktuasi** akibat berbagai faktor seperti kebijakan transportasi, pandemi, dan perubahan pola mobilitas masyarakat.
- Data penumpang Transjakarta dapat digunakan untuk menganalisis tren penggunaan transportasi.
- Analisis data yang efektif dapat membantu dalam pengambilan keputusan strategis, seperti perencanaan rute dan penambahan armada di rute tertentu.
- Memanfaatkan **Power BI** untuk menampilkan data dalam bentuk visualisasi interaktif, dan **ARIMA** untuk memprediksi penumpang sehingga memudahkan pengambilan keputusan berbasis data.
- Menghasilkan dashboard interaktif yang menampilkan tren jumlah penumpang, distribusi berdasarkan jenis trayek, serta analisis lainnya untuk mendukung evaluasi layanan Transjakarta.

RUMUSAN MASALAH

Bagaimana pengelola Transjakarta menghadapi kendala dalam memperoleh informasi perkembangan jumlah penumpang per trayek dengan cepat untuk pengaturan rute armada?

Bagaimana mengatur data sehingga bisa dihasilkan analisis prediksi dan visualisasi interaktif?

BATASAN MASALAH

- 1. Penelitian ini hanya akan memfokuskan pada data penumpang Transjakarta pada tahun **2020- 2024.**
- 2. Data yang digunakan adalah data yang berkaitan dengan Transjakarta seperti, **trayek, kode trayek, jenis dan jumlah penumpang.**
- 3. Data yang dianalisis berasal dari **Transjakarta** tanpa melibatkan moda transportasi umum lainnya.
- 4. Visualisasi yang dirancang akan dibatasi pada data penumpang, trayek, dan jenis trayek.
- 5. Penelitian ini **tidak** mencakup **analisis kinerja finansial** atau **operasional lainnya** dari Transjakarta.
- 6. Analisis Prediksi hanya menggunakan 1 sample dari kode trayek.

TUJUAN PENELITIAN

Penelitian ini bertujuan merancang visualisasi data untuk memprediksi jumlah penumpang Transjakarta dengan metode *Four Step Kimball.* Tujuannya adalah membantu manajemen memahami tren penggunaan, mengidentifikasi rute padat, dan memperkirakan kebutuhan armada. Dengan teknologi seperti OLAP, Pentaho, Power BI, dan ARIMA, penelitian ini mendukung pengambilan keputusan strategis di sektor transportasi umum DKI Jakarta.

MANFAAT PENELITIAN

Transjakarta

Transjakarta dapat mengoptimalkan alokasi armada dan penjadwalan trayek, sehingga meningkatkan efisiensi operasional dan kualitas pelayanan. 2

Masyarakat

Penggunaan transportasi umum yang lebih efisien dan terkelola dengan baik dapat meningkatkan kenyamanan dan mengurangi kemacetan di Jakarta.

3

Penelitian Selanjutnya

Penelitian ini dapat menjadi referensi bagi studi selanjutnya terkait prediksi jumlah penumpang, visualisasi manajemen transportasi, dan pemanfaatan data untuk perencanaan transportasi perkotaan.

BAB IIPENELITI TERDAHULU

Penelitian	Metode Penelitian	Sumber Data	Hasil Pembahasan
"Analisis Business Intelligence Data Penjualan Elektronik 2014 - 2017"	Nine Step Kimball dan Power Bl	Penjualan elektronik dari periode 2014 hingga 2017	Peningkatan penjualan produk elektronik antara 2014-2017 dengan pola musiman.
"The Implementation of Business Intelligence to Analyze Sales Trends in the Indofishing Online Store Using Power BI"	Kimball's Nine Steps dan Power Bl	Indofishing Online Store	Dashboard visualisasi ini memungkinkan Indofishing untuk memahami tren permintaan produk, termasuk kota asal pembeli yang terbanyak.
"Implementation of Business Intelligence In Analyzing Data Using Tableau at PT Global Bintan Permata"	Nine-step Technology Ralph Kimball dan Tableau	Transaction data from January 2021 to December 2021 and marketing data on PT Global Bintan Permata.	Dashboard ini menyajikan data penjualan dan transaksi pemasaran pada tahun 2021.
"Perancangan Sistem Data Warehouse menggunakan Four-step Methodology Kimball Dengan Talend Open Studio Dan Posgre SQL"	Nine-step Methodology dan Tableau	Perusahaan Bank X	Merancang Data Warehouse terpusat memungkinkan bank mengatasi perbedaan data antar cabang.
"Penerapan Model Seasonal Autoregressive Integrated Moving Average (SARIMA) pada Jumlah Penumpang Kereta Api di Sumatera Barat"	Metode Seasonal Autoregressive Integrated Moving Average (SARIMA)	Jumlah Penumpang Kereta Api di Sumatera Barat	SARIMA(0,1,1)(0,1,0) menghasilkan model terbaik dengan AIC terkecil dan memenuhi uji signifikansi.

TINJAUAN PUSTAKA

DATA WAREHOUSE

Data warehouse adalah gudang data yang mendukung pengambilan keputusan dengan menyimpan data terintegrasi, lengkap, dan cepat diakses.

ETL

ETL (Extract, Transform, Load) adalah proses mengintegrasikan data dari berbagai sumber, mengubahnya sesuai kebutuhan, dan menyimpannya dalam format konsisten di data warehouse.

OLAP

OLAP adalah teknologi analisis data multidimensi untuk mendukung keputusan strategis dan memahami tren bisnis.

FOUR-STEP DESIGN PROCESS METHODOLOGY KIMBALL

Metode Kimball adalah pendekatan bottom-up untuk Data Warehouse dengan pemodelan dimensi, meliputi langkah identifikasi proses bisnis, grain, dimensi, dan fakta.

TINJAUAN PUSTAKA

PENTAHO DATA INTEGRATION

Pentaho Data Integration (PDI) adalah perangkat lunak ETL untuk mengumpulkan, membersihkan, dan memuat data ke sistem target, mendukung integrasi dan pemrosesan data besar.

ANALISIS TIME SERIES

Analisis Time Series memprediksi pola data waktu, seperti tren dan musiman, untuk mendukung proyeksi pasar, pendapatan, dan deteksi anomali. Model ARIMA dan SARIMA memanfaatkan data historis untuk perencanaan berbasis data.

ARIMA

Model ARIMA memadukan autoregressive (AR), differencing (I), dan moving average (MA) untuk menganalisis data time series. Cocok untuk data dengan tren sederhana, ARIMA digunakan dalam peramalan penjualan, analisis risiko, dan prediksi penumpang.

TINJAUAN PUSTAKA

POWER BI

Power BI mengubah data menjadi wawasan terintegrasi untuk analisis dan pelaporan dengan visualisasi dari berbagai sumber data.

VISUALISASI DATA

Visualisasi data menyajikan data secara grafis untuk memudahkan pemahaman, mengungkap pola, dan membantu pengambilan keputusan.

SARIMA

SARIMA (Seasonal ARIMA) mengembangkan ARIMA dengan menambahkan komponen musiman: Seasonal AR, Differencing, dan MA (P, D, Q), serta periode musiman (s). Model ini unggul dalam menangkap pola musiman, seperti fluktuasi jumlah penumpang.

METODOLOGI PENELITIAN

ANALISA KEBUTUHAN

Kebutuhan Tampilan	Visualisasi yang digunakan	Tujuan Visualisasi	
Trend Jumlah Penumpang per Bulan atau Tahun	Line chart	Menunjukkan pola perubahan jumlah penumpang dari waktu ke waktu. Membantu mengidentifikasi tren dan pola musiman.	
Distribusi Penumpang Berdasarkan Jenis	Pie chart	Menampilkan proporsi atau persentase kontribusi dari masing-masing jenis penumpang terhadap total.	
Distribusi Penumpang Berdasarkan Tahun	Donut chart	Menampilkan proporsi atau persentase kontribusi dari masing-masing tahun terhadap total.	
Analisis Jenis Trayek per Bulan	Ribbon chart	Memvisualisasikan perubahan jumlah penumpang berdasarkan jenis trayek setiap bulannya, sekaligus menunjukkan dominasi atau perbandingan antar jenis trayek.	
Analisis Quartal dan Jumlah Penumpang	Stacked column chart	Menunjukkan kontribusi jumlah penumpang dari berbagai kategori atau periode dalam setiap kuartal	
Top 5 Rata-rata Penumpang tertinggi	Clustered bar chart	Mengidentifikasi trayek atau jenis penumpang dengan rata-rata tertinggi untuk fokus pada performa terbaik.	

ANALISA KEBUTUHAN

Kebutuhan Tampilan	Visualisasi yang digunakan	Tujuan Visualisasi	
Top 5 Rata-rata Penumpang terendah	Clustered bar chart	Mengidentifikasi trayek atau jenis penumpang dengan performa terendah untuk mengevaluasi potensi perbaikan.	
Filter Tanggal	Slicer	Memungkinkan untuk melihat data berdasarkan rentang tanggal tertentu untuk analisis waktu yang lebih spesifik.	
Filter Tahun	Slicer	Mempermudah pemfilteran data berdasarkan tahun tertentu untuk analisis tahunan.	
Filter Bulan	Slicer	Mempermudah pemfilteran data berdasarkan bulan tertentu untuk analisis bulanan.	
Filter Jenis Trayek	Slicer	Memberikan fleksibilitas untuk memfilter data berdasarkan jenis trayek yang diinginkan.	
Filter Trayek	Slicer	Memungkinkan analisis mendetail berdasarkan trayek tertentu.	
Jumlah Penumpang	Card	Memberikan gambaran cepat tentang total jumlah penumpang.	
Jenis Trayek	Card	Menyajikan informasi ringkas tentang jenis trayek yang tersedia atau sedang dianalisis.	
Trayek	Card	Memberikan informasi mengenai trayek spesifik yang menjadi fokus analisis.	

PRE-PROCESSING

Pre-processing dimulai dengan menggabungkan data penumpang 2020-2023 dan 2024 menggunakan pd.concat. Selanjutnya, baris dengan jumlah penumpang 0 dihapus. Dataset hasil filter disimpan sebagai file CSV untuk analisis lanjutan.

FOUR-STEP PROCESS METHODOLOGY KIMBALL

Setelah menggabungkan data, struktur tabel data warehouse dirancang dengan model *Star Schema*, mencakup:

3 tabel dimensi: waktu, trayek, jenis

1 tabel fakta: jumlah penumpang

FOUR-STEP METHODOLOGY KIMBALL

IDENTIFY THE BUSINESS PROCESS

Proses bisnis yang diidentifikasi adalah analisis jumlah penumpang Transjakarta dan kinerja trayek dari tahun 2020 hingga 2024. Tujuan dari proses ini adalah pada pola perjalanan penumpang, volume penumpang per trayek, serta penggunaan layanan yang paling padat berdasarkan waktu bulan.

DECLARE THE GRAIN

Grain atau tingkat granularitas data dalam penelitian ini ditetapkan pada tingkat jumlah penumpang yang tercatat untuk setiap trayek tertentu berdasarkan jenis transportasi tertentu pada periode waktu. Dengan demikian, setiap baris data pada tabel fakta merepresentasikan jumlah total penumpang yang menggunakan trayek tertentu dengan jenis transportasi spesifik selama satu bulan tertentu, yang memungkinkan analisis performa trayek dan pola penggunaan transportasi dalam rentang waktu tersebut.

- Informasi Jumlah Penumpang
- Informasi Jenis Trayek
- Informasi Kode Trayek

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI WAKTU

No	Nama	Tipe Data	Panjang
1	sk	Integer	11
2	tanggal	Date	
3	tahun	Integer	11
4	quarter	Char	2
5	bulan	Integer	11
6	bulan_nama	Varchar	50
7	hari	Integer	11

TABEL DIMENSI JENIS TRAYEK

No	Nama	Tipe Data	Panjang
1	jenis	Varchar	100
2	jenisID	Integer	100

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI TRAYEK

No	Nama	Tipe Data	Panjang
1	kode_trayek	Varchar	255
2	trayek	Varchar	255
3	trayekID	Integer	11

TABEL FAKTA PENUMPANG

No	Nama	Tipe Data	Panjang
1	sk	Integer	11
2	jenisID	Integer	100
3	trayekID	Integer	100
4	jumlah_penu mpang	Integer	255

PROSES ETL

Pada tahap ETL, data yang telah dinormalisasi diolah menggunakan Spoon dari Pentaho Data Integration dan MySQL di XAMPP melalui proses *extract, transform, dan load.*

ANALISA PREDIKSI

Analisa prediksi dilakukan dengan memproses data, mengubah kolom tanggal menjadi indeks, dan memvisualisasikan pola awal. **Stasioneritas** diuji menggunakan **Dickey-Fuller Test,** dengan **differencing** jika diperlukan. Model **ARIMA dan SARIMA** digunakan untuk memprediksi jumlah penumpang, diikuti **visualisasi hasil.** Prediksi digabungkan dengan data asli dan disimpan dalam file Excel untuk analisis lebih lanjut di Power BI.

PEMBUATAN VISUALISASI

Pada tahap akhir, visualisasi data penumpang Transjakarta menggunakan Power BI menampilkan grafik tren jumlah penumpang berdasarkan bulan dan tahun, analisis jenis rute berdasarkan jumlah penumpang dan bulan, distribusi penumpang berdasarkan jenis trayek, analisis kuartal dan jumlah penumpang, top lima rata-rata penumpang tertinggi dan terendah berdasarkan trayek, serta card yang menampilkan jumlah total penumpang, jumlah jenis trayek, dan jumlah trayek.

PEROLEHAN RAW DATA

PRE-PROCESSING

```
import pandas as pd
# Data from the two datasets
data = pd.read excel('Data Penumpang aldis.xlsx')
data_2024 = pd.read_excel('Penumpang 2024.xlsx')
# Creating dataframes
df_data = pd.DataFrame(data)
df_2024 = pd.DataFrame(data_2024)
# Merging both dataframes
merged_df = pd.concat([df_data, df_2024], ignore_index=True)
df_filtered = merged_df[merged_df["jumlah_penumpang"] != 0].reset_index(drop=True)
print(df_filtered)
df_filtered.info()
# Save to Excel file with proper filename
file_path_corrected = 'G:/My Drive/Universitas Trisakti/Skripsi/DATA BARU/Penumpang.csv'
df_filtered.to_csv(file_path_corrected, index=False)
file_path_corrected
```

RAW DATABASE

STRUKTUR RAW DATABASE TABLE PENUMPANG

STRUKTUR RAW DATABASE TABLE RUTE

FOUR-STEP METHODOLOGY KIMBALL MYSQL DATABASE

DATABASE OLAP

STAR SCHEMA

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE MYSQL DATABASE

STRUKTUR TABEL DIM DATE

INDEKS TABEL DIM DATE

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

TRANSFORMASI PEMBUATAN TABEL DIMENSI WAKTU

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

1.STEP GENERATE ROWS

2.STEP ADD SEQUENCE Add sequence Step name | Hari Selanjutnya Name of value hari_selanjutnya Use a database to generate the sequence Use DB to get sequence? Connection Transjakarta ▼ Edit... New... Wizard... Schema name Schemas... Sequence name SEQ Sequences... Use a transformation counter to generate the sequence Use counter to calculate sequence? Counter name (optional) Start at value 1 Increment by 1 Maximum value 999999999 ? Help OK Cancel

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

3.STEP CALCULATOR

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

4.STEP DATA GRID META

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

5.STEP STREAM LOOKUP

6.STEP MODIFIED JAVASCRIPT VALUE

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE
PENTAHO DATA INTEGRATION

7.STEP SELECT VALUES

8.STEP TABLE OUTPUT

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM DATE MYSQL DATABASE

DIM DATE

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS MYSQL DATABASE

STRUKTUR TABEL DIM JENIS

INDEKS TABEL DIM JENIS

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM TRAYEK MYSQL DATABASE

STRUKTUR TABEL DIM TRAYEK

INDEKS TABEL DIM TRAYEK

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS & TRAYEK PENTAHO DATA INTEGRATION

TRANSFORMASI PEMBUATAN
TABEL DIMENSI JENIS

TRANSFORMASI PEMBUATAN TABEL DIMENSI TRAYEK

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS & TRAYEK
PENTAHO DATA INTEGRATION

1.STEP TABLE INPUT

2.STEP UNIQUE ROWS (HASHSET)

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS & TRAYEK
PENTAHO DATA INTEGRATION

3.STEP ADD SEQUENCE

4.STEP SELECT VALUES

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS & TRAYEK
PENTAHO DATA INTEGRATION

5. STEP INSERT/UPDATE

FOUR-STEP METHODOLOGY KIMBALL

TABEL DIMENSI - DIM JENIS & TRAYEK MYSQL DATABASE

DIM JENIS

DIM TRAYEK

←Τ			∇	kode_trayek	trayek	trayekID
	🥜 Ubah	≩ Salin	Hapus	1	BLOK M - KOTA	1
	<i>⊘</i> Ubah	≩ Salin	Hapus	2	PULO GADUNG - MONUMEN NASIONAL	2
	🥜 Ubah	≩≟ Salin	Hapus	3	KALIDERES - MONUMEN NASIONAL VIA VETERAN	3
	<i>⊘</i> Ubah	≩ Salin	Hapus	4	PULO GADUNG - GALUNGGUNG	4
	🥜 Ubah	≩ Salin	Hapus	5	KAMPUNG MELAYU - ANCOL	5
	<i>⊘</i> Ubah	≩ Salin	Hapus	6	RAGUNAN - GALUNGGUNG	6
	🥜 Ubah	≩ Salin	Hapus	7	KAMPUNG MELAYU - KAMPUNG RAMBUTAN	7
	<i>⊘</i> Ubah	≩ Salin	Hapus	8	LEBAK BULUS - PASAR BARU	8
	🌽 Ubah	≩ Salin	Hapus	9	PINANG RANTI - PLUIT	9
	<i>⊘</i> Ubah	34 Salin	Hapus	10	TANJUNG PRIOK - PGC	10
	🥜 Ubah	≩ Salin	Hapus	11	PULO GEBANG - KAMPUNG MELAYU	11
	<i>⊘</i> Ubah	≩ Salin	Hapus	12	PLUIT - TANJUNG PRIOK	12
	<i>⊘</i> Ubah	≩ Salin	Hapus	13	PURI BETA - TEGAL MAMPANG	13
	<i>⊘</i> Ubah	≩ Salin	Hapus	14	JAKARTA INTERNATIONAL STADIUM - SENEN	14
	🌽 Ubah	≩ Salin	Hapus	[14225]	HALTE NON BRT BEKASI BARAT	15
	<i>⊘</i> Ubah	≩ Salin	Hapus	[14226]	HALTE NON BRT BULAK KAPAL	16
	🥜 Ubah	≩ Salin	Hapus	[14227]	HALTE NON BRT BEKASI TIMUR	17
	<i>⊘</i> Ubah	≩ Salin	Hapus	[14229]	HALTE NON BRT SUMMARECON BEKASI	18
	<i>⊘</i> Ubah	≩ € Salin	Hapus	[14230]	HALTE NON BRT PLAZA STASIUN MANGGARAI	19
	<i>⊘</i> Ubah	≩ Salin	Hapus	[14246]	TANAH ABANG	20
	<i>⊘</i> Ubah	≩ Salin	Hapus	10A	RUSUN MARUNDA - TANJUNG PRIOK	21
	<i>⊘</i> Ubah	≩ € Salin	Hapus	10B	RUSUN CIPINANG BESAR SELATAN - PENAS KALIMALANG	22
	<i></i> ⋃bah	≩ Salin	Hapus	10C	PELABUHAN TANJUNG PRIOK - TANJUNG PRIOK	23
	<i>⊘</i> Ubah	≩ Salin	Hapus	10D	TANJUNG PRIOK - KP RAMBUTAN	24
	<i>⊘</i> Ubah	≩ Salin	Hapus	10E	PULO GEBANG - TANJUNG PRIUK	25

FOUR-STEP METHODOLOGY KIMBALL

TABEL FAKTA - FACT PENUMPANG MYSQL DATABASE

STRUKTUR TABEL FAKTA

INDEKS TABEL FAKTA

FOUR-STEP METHODOLOGY KIMBALL

TABEL FAKTA - FACT PENUMPANG PENTAHO DATA INTEGRATION

TRANSFORMASI PEMBUATAN TABEL FACT

FOUR-STEP METHODOLOGY KIMBALL

TABEL FAKTA - FACT PENUMPANG PENTAHO DATA INTEGRATION

1.STEP TABLE INPUT

2.STEP STREAM LOOKUP

FOUR-STEP METHODOLOGY KIMBALL

TABEL FAKTA - FACT PENUMPANG PENTAHO DATA INTEGRATION

3.STEP TABLE INPUT

4.STEP INSERT/UPDATE

FOUR-STEP METHODOLOGY KIMBALL

TABEL FAKTA - FACT PENUMPANG MYSQL DATABASE

FACT PENUMPANG

sk	jenisID	trayekID	jumlah_penumpang
20200131	1	1	2539866
20200131	1	2	813240
20200131	1	3	1059350
20200131	1	4	774443
20200131	1	5	1092746
20200131	1	6	1079883
20200131	1	7	932231
20200131	1	8	1070869
20200131	1	9	1583719
20200131	1	10	989878
20200131	1	11	356512
20200131	1	12	300058
20200131	1	13	790517
20200131	5	21	44393
20200131	5	22	8780
20200131	3	23	748
20200131	3	26	3759
20200131	3	28	57716

DASHBOARD PENUMPANG TRANSJAKARTA

TREN JUMLAH PENUMPANG BERDASARKAN BULAN DAN TAHUN

DASHBOARD PENUMPANG TRANSJAKARTA

DISTRIBUSI PENUMPANG BERDASARKAN JENIS TRAYEK

Distribusi Penumpang Berdasarkan Jenis Trayek

DISTRIBUSI PENUMPANG BERDASARKAN TAHUN

Distribusi Penumpang Berdasarkan Tahun

DASHBOARD PENUMPANG TRANSJAKARTA

ANALISIS JENIS RUTE BERDASARKAN JUMLAH PENUMPANG DAN BULAN

Analisis Jenis Trayek per Bulan

ANALISIS KUARTAL DAN JUMLAH PENUMPANG

Analisis Quartal dan Jumlah Penumpang

DASHBOARD PENUMPANG TRANSJAKARTA

TOP 5 RATA-RATA PENUMPANG TERTINGGI BERDASARKAN TRAYEK

Top 5 Rata-rata Penumpang Tertinggi

TOP 5 RATA-RATA PENUMPANG TERENDAH BERDASARKAN TRAYEK

Top 5 Rata-rata Penumpang Terendah

DASHBOARD PENUMPANG TRANSJAKARTA

CARD JUMLAH TOTAL

Jenis Trayek

1 6

Trayek **548**

Penumpang

1103717345

DASHBOARD PENUMPANG TRANSJAKARTA

FILTERING DASHBOARD

DASHBOARD PENUMPANG TRANSJAKARTA

ANALISA PREDIKSI

SETELAH DATA CLEANING

jumlah_penumpang

tanggal	
2021-01-01	782966
2021-02-01	799708
2021-03-01	1013221
2021-04-01	1003534
2021-05-01	937452

ANALISA PREDIKSI

UJI STASIONERITAS

Results of Dickey-Fuller Test: Test Statistic -1.234184p-value 0.658721 #Lags Used 1.000000 Number of Observations Used 46.000000 Critical Value (1%) -3.581258 Critical Value (5%) -2.926785 Critical Value (10%) -2.601541 dtype: float64 result : Non stationary

SETELAH DIFFERENCING

Results of Dickey-Fuller Test:
Test Statistic -9.473117e+00
p-value 4.056047e-16
#Lags Used 0.000000e+00
Number of Observations Used 4.600000e+01

Critical Value (1%) -3.581258e+00 Critical Value (5%) -2.926785e+00 Critical Value (10%) -2.601541e+00

dtype: float64

result : Stationary

MENENTUKAN MODEL ARIMA

		SA	RIMAX F	Resul	ts			
Dep. Vari	able:		=====: у	No.	Observations:	:======== :	48	
Model:	S	ARIMAX(1, 1	, 0)	Log	Likelihood		-633.056	
Date:	M	on, 27 Jan	2025	AIC			1270.113	
Time:		15:4	8:56	BIC			1273.813	
Sample:		01-01- - 12-01-		HQIC			1271.505	
Covarianc	e Type:		opg					
======	coef	std err	=====	Z	P> z	[0.025	0.975]	
	-0.2211 2.882e+10							
_	(L1) (Q):	=======		.43	Jarque-Bera	(JB):	16	6.7
Prob(Q):					Prob(JB):		(0.0
Heteroskedasticity (H):			0	. 25	Skew:		-(0.9
Prob(H) (two-sided):		0	. 01	Kurtosis:			5.2

ARIMA - Forecast Penumpang Transjakarta Kode Trayek 1 Blok M - Kota

ANALISA PREDIKSI

MENENTUKAN MODEL SARIMA

Best model: ARIMA(0,1,0)(1,0,0)[12]

Total fit time: 3.615 seconds

SARIMAX Results

Dep. Variable:	у	No. Observations:	48				
Model:	SARIMAX(0, 1, 0)x(1, 0, 0, 12)	Log Likelihood	-631.617				
Date:	Tue, 28 Jan 2025	AIC	1267.233				
Time:	07:27:24	BIC	1270.934				
Sample:	01-01-2021	HQIC	1268.626				
	- 12-01-2024						
Covariance Type:	opg						

	coef	std err	Z	P> z	[0.025	0.975]
ar.S.L12	0.3542	0.102	3.486	0.000	0.155	0.553
sigma2	2.213e+10	1.8e-12	1.23e+22	0.000	2.21e+10	2.21e+10
Ljung-Box	(L1) (Q):		1.28	Jarque-Bera	(JB):	10.20
Prob(Q):			0.26	Prob(JB):		0.01
Heteroskedasticity (H):			0.16	Skew:		-0.71
Prob(H) (two-sided):			0.00	Kurtosis:		4.78

SARIMA - Forecast Penumpang Transjakarta Kode Trayek 1 Blok M - Kota

HASIL PREDIKSI

	jumlah_penumpang	prediksi_arima	prediksi_sarima
2021-01-01	782966.0	NaN	NaN
2021-02-01	799708.0	NaN	NaN
2021-03-01	1013221.0	NaN	NaN
2021-04-01	1003534.0	NaN	NaN
2021-05-01	937452.0	NaN	NaN
2025-01-01	NaN	1.925489e+06	1.951691e+06
2025-02-01	NaN	1.932171e+06	1.883738e+06
2025-03-01	NaN	1.930693e+06	1.876709e+06
2025-04-01	NaN	1.931020e+06	1.846904e+06
2025-05-01	NaN	1.930948e+06	1.963159e+06
2025-06-01	NaN	1.930964e+06	1.974585e+06
2025-07-01	NaN	1.930960e+06	2.014089e+06
2025-08-01	NaN	1.930961e+06	2.000433e+06
2025-09-01	NaN	1.930961e+06	1.989707e+06

DASHBOARD PREDIKSI PENUMPANG TRANSJAKARTA KODE TRAYEK 1 BLOK M - KOTA

FORECAST POWER BI

FORECAST ARIMA & SARIMA

DASHBOARD PREDIKSI PENUMPANG TRANSJAKARTA KODE TRAYEK 1 BLOK M - KOTA

TABEL PREDIKSI ARIMA DAN SARIMA

Year	Month	Prediksi ARIMA	Prediksi SARIMA
2025	January	1925489	1951691
2025	February	1932171	1883738
2025	March	1930693	1876709
2025	April	1931020	1846904
2025	May	1930948	1963159
2025	June	1930964	1974585
2025	July	1930960	2014089
2025	August	1930961	2000433
2025	September	1930961	1989707
2025	October	1930961	2031773
2025	November	1930961	1992374
2025	December	1930961	2040764

PREDIKSI ARIMA & SARIMA

Prediksi ARIMA & SARIMA

DASHBOARD PREDIKSI PENUMPANG TRANSJAKARTA KODE TRAYEK 1 BLOK M - KOTA

KESIMPULAN

- Tren penumpang Transjakarta meningkat setiap tahun setelah penurunan tajam pada awal 2020 akibat COVID-19 berdasarkan visualisasi data.
- Prediksi SARIMA untuk trayek "Blok M Kota" menunjukkan penurunan dalam 4 bulan ke depan dan kenaikan dalam 8 bulan setelahnya. MAPE sebesar 13.86% menunjukan model cukup akurat.
- Rute dengan jumlah penumpang tertinggi adalah "Blok M Kota", diikuti
 "Pinang Ranti Pluit" dan "Lebak Bulus Pasar Baru", sementara rute dengan
 penumpang terendah termasuk "Stasiun Tanah Abang Stasiun Angke". Jenis
 trayek BRT mendominasi (44,27%), diikuti oleh Mikrotrans dan Angkutan Umum
 Integrasi, sedangkan Transjabodetabek memiliki porsi terkecil. Tahun 2024
 mencatat jumlah penumpang tertinggi pascapandemi. Distribusi kuartalan cukup
 merata, dengan Q3 dan Q4 sedikit lebih tinggi.

SARAN

Penelitian selanjutnya dapat mengintegrasikan data operasional seperti waktu kedatangan, keterlambatan armada, dan kepadatan halte untuk analisis faktorfaktor yang mempengaruhi pola penumpang. Penggunaan lisensi Power Bl Pro atau Premium juga disarankan agar memungkinkan akses laporan yang lebih fleksibel, berbagi dataset, dan penggunaan melalui aplikasi mobile. Selain itu, model prediksi lain seperti LSTM, Prophet, Exponential Smoothing dapat dikembangkan untuk meningkatkan akurasi peramalan jumlah penumpang dengan menangani data musiman yang lebih kompleks.

