538,594

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

f mark bijkana i dabih hak belih belih bibi i i ik bada bilah biji labak kebi dalah bija bilah dala

(43) Internationales Veröffentlichungsdatum 24. Juni 2004 (24.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer

(51) Internationale Patentklassifikation7:

WO 2004/053711 A2

(21) Internationales Aktenzeichen:

PCT/DE2003/004060

G06F 15/16

(22) Internationales Anmeldedatum:

10. Dezember 2003 (10.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 57 672.6

10. Dezember 2002 (10.12.2002) DE

103 37 940.1

18. August 2003 (18.08.2003) DE (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INFINEON TECHNOLOGIES AG [DE/DE]; St.-Martin-Str. 53, 81669 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JUNG, Stefan [DE/DE]; Holzstr. 15d, 80469 München (DE). LAUTERBACH, Christl [DE/DE]; Rosenstr. 6, 85635 Höhenkirchen-Siegertsbrunn (DE). STROMBERG, Guido [DE/DE]; Dreimühlenstr. 11, 80469 München (DE). STURM, Thomas [DE/DE]; Am Sportpark 5, 85551 Kirchheim (DE). STÖHR, Annelie [DE/DE]; Heidelberger Str. 12, 80804 München (DE). WEBER, Werner [DE/DE]; Franz-Marc-Str. 6/3, 80637 München (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: SURFACE PANELING MODULE, SURFACE PANELING MODULE ARRANGEMENT AND METHOD FOR DE-TERMINING THE DISTANCE OF SURFACE PANELING MODULES OF THE SURFACE PANELING MODULE ARRANGE-MENT TO AT LEAST ONE REFERENCE POSITION, PROCESSOR ARRANGEMENT, TEXTILE FABRIC STRUCTURE AND SURFACE PANELING STRUCTURE

(54) Bezeichnung: FLÄCHEN-VERKLEIDUNGSMODUL, FLÄCHEN-VERKLEIDUNGSMODUL-ANORDNUNG UND VERFAHREN ZUM BESTIMMEN EINES ABSTANDS VON FLÄCHEN-VERKLEIDUNGSMODULEN DER FLÄCHEN-VERKLEIDUNGSMODUL-ANORDNUNG ZU MINDESTENS EINER REFERENZPOSITION, PROZESSOR-AN-ORDNUNG, TEXTILGEWEBESTRUKTUR UND FLÄCHEN-VERKLEIDUNGSSTRUKTUR

- (57) Abstract: The invention relates to a surface paneling module that comprises a power supply connection and a data transfer interface as well as a processor that is coupled to the power supply connection and the data transfer interface.
- (57) Zusammenfassung: Flächen-Verkleidungsmodul, Flächen-Verkleidungsmodul-Anordnung und Verfahren zum Bestimmen eines Abstands von Flächen-Verkleidungsmodulen der Flächen-Verkleidungsmodul-Anordnung zu mindestens einer Referenzposition, Prozessor-Anordnung, Textilgewebestruktur Flächen-VerkleidungsstrukturEin Flächen-Verkleidungsmodul weist einen Stromversorgungsanschluss und eine Datenübertragungs-Schnittstelle auf sowie einen Prozessor, der mit dem Stromversorgungsanschluss und der Datenübertragungsschnittstelle gekoppelt ist.

WO 2004/053711 A2

A CONTROL

B CONNECTOR ARRANGEMENT

D DISPLAY ELEMENT

G GROUND

- (74) Anwalt: DOKTER, Eric-Michael; Viering, Jentschura & Partner, Steinsdorfstr. 6, 80538 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU,

TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Flächen-Verkleidungsmodul, Flächen-VerkleidungsmodulAnordnung und Verfahren zum Bestimmen eines Abstands von
Flächen-Verkleidungsmodulen der Flächen-VerkleidungsmodulAnordnung zu mindestens einer Referenzposition, ProzessorAnordnung, Textilgewebestruktur und FlächenVerkleidungsstruktur

Die Erfindung betrifft ein Flächen-Verkleidungsmodul, eine Flächen-Verkleidungsmodul-Anordnung, ein Verfahren zum Bestimmen eines Abstandes von Flächen-Verkleidungsmodulen der Flächen-Verkleidungsmodul-Anordnung zu mindestens einer Referenzposition, eine Prozessor-Anordnung, eine

15 Textilgewebestruktur und eine Flächen-Verkleidungsstruktur.

In vielen Bereichen der Haustechnik und bei vielen Messeaufbauten besteht das Bedürfnis, Sensorik und Aktorik, vorzugsweise Anzeigeelemente, auf einfache Weise in Fußböden, Wänden oder Decken zu verlegen. Dabei sollen Fußböden, Wände oder Decken wahlweise oder in Kombination Berührung und/oder Druck wahrnehmen können und auf die Existenz einer Berührung und/oder eines Drucks mit einer optischen Anzeige oder einer akustischen Anzeige reagieren.

25

30

Die benötigte großflächige Sensorik bzw. die großflächigen Anzeigeeinheiten sollen auf einfache, kostengünstige und fehlertolerante Weise angebracht und betrieben werden können. Insbesondere soll die Installation der Sensorik bzw. Aktorik auf vielfältige Größen und geometrische Formen von einem Fußboden, einer Wand oder einer Decke anpassbar sein.

Zur Integration von Sensorik bzw. Aktorik in einen Fußboden, eine Seitenwand oder die Decke eines Raumes ist es bekannt, in einer kundenspezifischen Lösung die gewünschten Sensoren bzw. Aktoren in den Fußboden, die Wand oder die Decke zu verlegen.

. 5

25

Die Speziallösungen erfordern einen hohen planerischen Aufwand, wobei jeweils noch bei der Planung des Gebäudes genau anzugeben ist, an welchen Orten die jeweilige Sensorik bzw. Aktorik vorzusehen ist.

Ein weiterer Nachteil besteht bei einer solchen Speziallösung darin, dass jeder Sensor bzw. jeder Aktor individuell angesteuert wird und jeweils getrennt mit Stromleitungen und Datenleitungen versehen wird. Die Datenleitungen wurden einzeln oder über gesondert zu installierende Router zu einer zentralen Recheneinheit geführt. Ferner ist gemäß dem Stand der Technik eine komplexe Steuersoftware zum Ansteuern der jeweiligen Sensoren bzw. Aktoren erforderlich, welche auf die spezielle Geometrie der jeweiligen Speziallösung angepasst werden muss, um eine räumliche oder ebene Erfassung von Objekten, insbesondere von Personen zu ermöglichen.

Somit sind solche Speziallösungen für den Massenmarkt 20 ungeeignet, da sie unflexibel und teuer sind.

Ferner ist in [1] eine fehlertolerante Architektur selbstorganisierender Anzeigefelder und Sensorfelder im Bereich der Mikroelektronik, anders ausgedrückt im Bereich eines Mikrosystems, bekannt.

- [2] beschreibt ein Steuerungspaneel mit Tasten und einer Steuerungsplatine.
- Weiterhin ist in [3] ein Fußboden-Verkleidungsmodul beschrieben, in welches Stromkabel oder Datenkabel permanent installiert sind und mit einem Stromkabel oder Datenkabel eines anderen Fußboden-Verkleidungsmoduls gekoppelt sind. In dem Fußboden-Verkleidungsmodul können zusätzlich
- Computerchips und Sensoren enthalten sein, beispielsweise zum Erfassen von Temperatur oder einem auf dem Fußboden-Verkleidungsmodul lastenden Gewicht.

Problematisch ist bei der aus [1] bekannten Prozessor-Anordnung allgemein, dass jeder Prozessor mit vier bzw. sechs voneinander unabhängigen bidirektionalen

5 Kommunikationsverbindungen zu den jeweiligen vier, bzw. sechs Nachbar-Prozessoren ausgestattet sein muss.

Zwar verfügen die meisten heutzutage kommerziell erhältlichen, kostengünstigen Mikrocontroller, d.h.

- Prozessoren, welche sich als zentrales Steuerungselement in den Prozessorelementen, welche die Prozessoren enthalten, anbieten, über standardisierte Kommunikationsschnittstellen, jedoch ist die Anzahl der von einem Mikrocontroller üblicherweise bereitgestellten standardisierten
- 15 Kommunikationsschnittstellen deutlich geringer als die in der oben beschriebenen Prozessor-Anordnung erforderlichen vier, bzw. sechs Kommunikationsschnittstellen.

Daher müssten in der in [1] beschriebenen Prozessor-Anordnung
in jedem Prozessorelement zu den Kommunikationsschnittstellen
der Prozessoren zusätzliche Kommunikationsbausteine
eingesetzt werden, um die zusätzlich erforderlichen
Kommunikationsschnittstellen zu realisieren, wodurch die
Materialkosten und der Integrationsaufwand zum Herstellen
einer Prozessor-Anordnung deutlich erhöht würde.

Ferner sind unterschiedliche Bussysteme bekannt, wie beispielsweise ein Bussystem, bei dem eine Seriell-Parallel-Interface-Schnittstelle (SPI-Schnittstelle) verwendet wird, alternativ ein Bussystem gemäß dem Controller Area Network-Standard (CAN-Standard) oder ein Bussystem, bei dem eine I C-Schnittstelle zum Austausch elektronischer Daten eingesetzt wird (vgl. [4]).

Der Erfindung liegt das Problem zugrunde, auf einfache und kostengünstige Weise Elektronik in einen Fußboden, in eine Wand oder in eine Decke zu integrieren.

30

Das Problem wird durch ein Flächen-Verkleidungsmodul, eine Flächen-Verkleidungsmodul-Anordnung, durch ein Verfahren zum Bestimmen des Abstandes von Flächen-Verkleidungsmodulen der Flächen-Verkleidungsmodul-Anordnung zu mindestens einer Referenzposition mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Ein Flächen-Verkleidungsmodul weist mindestens einen

Stromversorgungsanschluss, mindestens eine DatenübertragungsSchnittelle sowie mindestens eine Prozessoreinheit auf,
welche mit dem Stromversorgungsanschluss und mit der
Datenübertragungs-Schnittstelle gekoppelt ist.

- Anschaulich kann die Erfindung darin gesehen werden, dass ein Modul mit regulärem Aufbau zur Verkleidung einer Fläche, vorzugsweise eines Fußbodens, einer Wand oder einer Decke zusätzlich mit einer Prozessoreinheit zur elektronischen Datenverarbeitung versehen wird, welche Prozessoreinheit über einen ebenfalls vorgesehenen Stromversorgungsanschluss mit Strom versorgt werden kann und welche die zu verarbeitenden Daten mittels der Datenübertragungs-Schnittstelle zugeführt bekommt.
- Anders ausgedrückt bedeutet dies, dass eine Prozessoreinheit in ein reguläres Bauelement zur Verkleidung einer Fläche eingebettet wird. Die einzelnen Flächen-Verkleidungsmodule stellen somit an sich unabhängige Einheiten dar, die jedoch aufgrund der zusätzlich vorgesehenen Komponenten in der Lage sind, in mehrere Flächen-Verkleidungsmodule in einer Flächen-Verkleidungsmodul-Anordnung über die Datenübertragungs-Schnittstelle elektronische Nachrichten auszutauschen und somit beispielsweise eine lokale Positionsbestimmung des jeweiligen Flächen-Verkleidungsmoduls innerhalb der Flächen-Verkleidungsmoduls innerhalb der Flächen-Referenzposition zu ermöglichen.

Somit wird sehr einfach für ein Flächen-Verkleidungsmodul es ermöglicht, dessen Position innerhalb einer Fläche ohne zusätzliche externe Information zu bestimmen.

Damit ist es für den Massenmarkt auf sehr einfache und kostengünstige Weise ermöglicht, jedes FlächenVerkleidungsmodul an sich in gleicher Weise auszugestalten und bei der Verlegung der Flächen-Verkleidungsmodule trotz der zusätzlicher in diese integrierter Elektronik nicht darauf achten zu müssen, an welcher Position die jeweiligen Flächen-Verkleidungsmodule innerhalb der mit diesen bedeckten Fläche angeordnet werden muss, damit das jeweilige FlächenVerkleidungsmodul innerhalb der Flächen-Verkleidungsmodul-

15

Eine Flächen-Verkleidungsmodul-Anordnung weist eine Mehrzahl, vorzugsweise eine Vielzahl von Flächen-Verkleidungsmodulen auf, welche mittels des jeweiligen Stromversorgungsanschlusses und der jeweiligen

20 Datenübertragungs-Schnittstelle miteinander gekoppelt sind.

Anordnung eindeutig adressierbar ist.

Zum Bestimmen eines Abstandes von Flächen eines jeweiligen Flächen-Verkleidungsmoduls der Flächen-Verkleidungsmodul-Anordnung zu mindestens einer Referenzposition unter

- Austausch von elektronischen Nachrichten zwischen Prozessoreinheiten einander benachbarter Flächen-Verkleidungsmodulen wird eine erste Nachricht von einer Prozessoreinheit eines ersten Flächen-Verkleidungsmoduls erzeugt, wobei die erste Nachricht eine erste
- Abstandsinformation enthält, welche den Abstand des ersten Flächen-Verkleidungsmoduls oder den Abstand eines die erste Nachricht empfangenden zweiten Flächen-Verkleidungsmoduls von der Referenzposition enthält. Die erste Nachricht wird von der Prozessoreinheit des ersten Flächen-Verkleidungsmoduls zu der Prozessoreinheit des Ersten Flächen-Verkleidungsmoduls zu
- der Prozessoreinheit des zweiten Flächen-Verkleidungsmoduls gesendet und abhängig von der Abstandsinformation wird der Abstand des zweiten Flächen-Verkleidungsmoduls von der

Referenzposition ermittelt oder gespeichert. Von der Prozessoreinheit des zweiten Verkleidungsmoduls wird ferner eine zweite Nachricht erzeugt, welche eine zweite Abstandsinformation enthält, welche den Abstand des zweiten Flächen-Verkleidungsmoduls oder den Abstand eines die zweite Nachricht empfangenden dritten Flächen-Verkleidungsmoduls von der Referenzposition enthält. Die zweite Nachricht wird von der Prozessoreinheit des zweiten Flächen-Verkleidungsmoduls zu der Prozessoreinheit des dritten Flächen-

- 10 Verkleidungsmoduls gesendet. Abhängig von der zweiten Abstandsinformation wird der Abstand des dritten Flächen-Verkleidungsmoduls von der Referenzposition ermittelt oder gespeichert. Die oben beschriebenen Verfahrensschritte werden für alle in der Flächen-Verkleidungsmodul-Anordnung
- enthaltenen und miteinander über die Datenübertragungs-Schnittstelle gekoppelten Flächen-Verkleidungsmodule durchgeführt.
- Damit ist nach Durchführen dieses Verfahrens lediglich unter
 Verwendung lokaler Information die jeweilige Position jedes
 Flächen-Verkleidungsmoduls innerhalb der FlächenVerkleidungsmodul-Anordnung und dessen Abstand zu mindestens
 einer Referenzposition ermittelt worden.
- Anschaulich kann dieser Aspekt der Erfindung darin gesehen werden, dass eine für Mikrosysteme und dort für MikroDatenanzeigeeinrichtungen und Sensoren, entwickelte
 Architektur und dafür entwickelte Algorithmen auf die
 Makrosysteme für Haustechnik und Messetechnik übertragen
 worden ist, wobei die benötigten Prozessoreinheiten in die
 Flächen-Verkleidungsmodule, welche reguläre Bauelemente
 darstellen, eingebettet sind.

Auf diese Weise öffnet sich eine Fülle neuer

35 Anwendungsmöglichkeiten, welche im Folgenden näher erläutert werden.

Die Referenzposition kann grundsätzlich beliebig sein, vorzugsweise ist die Referenzposition eine Position, an der sich ein im Weiteren beschriebener Portalprozessor befindet, welcher die Prozessoreinheiten in der Flächen-

- Verkleidungsmodul-Anordnung ansteuert und die Kommunikation von außerhalb der Flächen-Verkleidungsmodul-Anordnung anstößt. Die Referenzposition kann ferner eine Position innerhalb der Flächen-Verkleidungsmodul-Anordnung sein, wobei in diesem Fall vorzugsweise ein Flächen-Verkleidungsmodul an
- der Referenzposition angeordnet und dieser zugeordnet ist.
 Vorzugsweise befindet sich in diesem Fall die
 Referenzposition am Rand, d.h. an der obersten oder untersten
 Zeile oder der linken oder rechten Spalte für den Fall, dass
 die Prozessoreinheiten in der Flächen-Verkleidungsmodul-
- Anordnung matrixförmig in Zeilen und Spalten angeordnet sind.
 Die Übertragung von Information in oder aus der FlächenVerkleidungsmodul-Anordnung erfolgt vorzugsweise mittels des
 Portalprozessors ausschließlich über zumindest einen Teil der
 sich am Rand der Flächen-Verkleidungsmodul-Anordnung
- 20 befindenden Flächen-Verkleidungsmodule.

Anschaulich bedeutet diese Vorgehensweise, dass ausgehend von einer "Einleit-Prozessoreinheit" eines "Einleit-Flächen-Verkleidungsmoduls" an der Referenzposition üblicherweise am Rand der Flächen-Verkleidungsmodul-Anordnung, das heißt an 25 einem bezüglich der Flächen-Verkleidungsmodul-Anordnung äußeren Modul, ein erster Abstand zugeordnet wird, beispielsweise der Abstandswert "1", womit angegeben wird, dass das Einleit-Flächen-Verkleidungsmodul einen Abstand "1" von dem Portalprozessor aufweist. Für den Fall, dass jeweils 30 in der jeweiligen Nachricht der Abstand des Flächen-Verkleidungsmoduls mit der die Nachricht sendenden Prozessoreinheit von der Referenzposition in die Nachricht eingefügt wird und an die die Nachricht zu empfangende Prozessoreinheit übertragen wird, wird von der ersten 35 Prozessoreinheit der Abstandswert "1" zu der zweiten

Prozessoreinheit in der ersten Nachricht übermittelt und von

der zweiten Prozessoreinheit wird der empfangene Abstandswert um einen Wert "1" inkrementiert. Der inkrementierte Wert "2" wird nunmehr als aktualisierter zweiter Abstandswert der zweiten Prozessoreinheit gespeichert. Der zweite Abstandswert wird um einen Wert "1" inkrementiert und ein dritter Abstandswert wird erzeugt und an die dritte Prozessoreinheit übertragen und dort gespeichert. Die entsprechende Vorgehensweise wird für Prozessoreinheiten aller Flächen-Verkleidungsmodule in entsprechender Weise durchgeführt und der einem Prozessor jeweils zugeordnete Abstandswert wird nach Empfang einer Nachricht mit einer Abstandsinformation immer dann aktualisiert, wenn der empfangene Abstandswert kleiner ist als der gespeicherte Abstandswert.

Eine Flächen-Verkleidungsmodul-Anordnung weist eine Vielzahl . 15 von Flächen-Verkleidungsmodulen auf. Jedes Flächen-Verkleidungsmodul ist über eine bidirektionale Kommunikationsschnittstelle, der Datenübertragungs-Schnittstelle, mit mindestens einem ihm benachbarten Flächen-Verkleidungsmodul gekoppelt. Zum Ermitteln des jeweiligen 20 Abstands eines Flächen-Verkleidungsmoduls der Flächen-Verkleidungsmodul-Anordnung von einer Referenzposition werden Nachrichten zwischen den Prozessoreinheiten der jeweiligen Flächen-Verkleidungsmodule ausgetauscht, vorzugsweise 25 zwischen Prozessoreinheiten einander benachbarter Flächen-Verkleidungsmodule, wobei jede Nachricht eine Abstandsinformation enthält, welche den Abstand eines Flächen-Verkleidungsmoduls mit einer die Nachricht sendenden Prozessoreinheit oder einer die Nachricht empfangenden Prozessoreinheit, von der Referenzposition, angibt (auch als 30 Abstandswert bezeichnet) und wobei jede Prozessoreinheit derart eingerichtet ist, dass aus der Abstandsinformation einer empfangenen Nachricht der Abstand des eigenen Flächen-

Verkleidungsmoduls zu der Referenzposition ermittelbar oder

35

speicherbar ist.

Aufgrund des Einsatzes lediglich lokaler Informationen und dem Austausch elektronischer Nachrichten insbesondere zwischen Prozessoren einander unmittelbar benachbarten Flächen-Verkleidungsmodulen ist die Vorgehensweise sehr robust gegenüber auftretenden Störungen und Ausfällen einzelner Flächen-Verkleidungsmodule oder einzelner Verbindungen zwischen zwei Flächen-Verkleidungsmodulen.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Die im Weiteren beschriebenen Ausgestaltungen der Erfindung betreffen das erfindungsgemäße Verfahren sowie die erfindungsgemäße Prozessor-Anordnung.

Gemäß einer Ausgestaltung der Erfindung ist es vorgesehen,
15 dass der Stromversorgungsanschluss und die
Datenüberertragungsschnittstelle in einen Steckverbinder
integriert sind.

Die Datenverarbeitung kann elektronisch über in dem FlächenVerkleidungsmodul enthaltene elektronische Leitungen oder optisch mittels in diese integrierte optische Leitungen erfolgen, wobei mindestens eine Stromleitung gemäß einer Ausgestaltung der Erfindung vorgesehen ist, welche die Prozessoreinheit mit dem Stromversorgungsanschluss koppelt und mindestens eine Datenleitung, welche, wie oben dargelegt, auch als optische Datenleitung eingerichtet sein kann, wobei mittels der Datenleitung die Prozessoreinheit mit der Datenübertragungs-Schnittstelle gekoppelt ist.

Das Flächen-Verkleidungsmodul kann ein Wand-Verkleidungsmodul, ein Fußboden-Verkleidungsmodul oder ein Decken-Verkleidungsmodul sein.

In diesem Zusammenhang ist anzumerken, dass die Erfindung 35 nicht auf den Einsatz geschlossener Räume beschränkt ist, sondern die Flächen-Verkleidungsmodule können auch in einem Messeaufbau lediglich einen Fußboden, der nicht von Seitenwänden begrenzt ist, bedecken.

Gemäß einer Ausgestaltung der Erfindung ist das Flächen-Verkleidungsmodul eingerichtet als eine Fliese, als eine Kachel, als ein Parkettelement oder als ein Laminatelement, mit dem jeweils eine Fläche bedeckt wird.

In das Flächen-Verkleidungsmodul kann zusätzlich mindestens
ein Sensor integriert sein. Als Sensor kann ein Schallsensor,
ein Drucksensor (beispielsweise Piezokristall-Sensor) ein
Gassensor, ein Vibrationssensor, ein Verformungssensor oder
ein Zug-Spannungssensor eingesetzt werden.

15 Gemäß einer anderen Ausgestaltung der Erfindung ist es vorgesehen, dass das Flächen-Verkleidungsmodul mindestens einen darin integrierten Aktor aufweist. Der Aktor ist beispielsweise eine bildgebende Einheit oder eine schallerzeugende Einheit, vorzugsweise eine Flüssigkeits-

20 Kristall-Anzeigeeinheit oder eine PolymerelektronikAnzeigeeinheit, allgemein jede Art von Anzeigeeinheit, oder
ein Lautsprecher, der eine Schallwelle erzeugt, allgemein
jedes eine elektromagnetische Welle erzeugendes Element,
vorgesehen ist. Ein weiterer möglicher vorgesehener Aktor ist
ein vibrationserzeugendes Element. Vorgungsweige mind 12

ein vibrationserzeugendes Element. Vorzugsweise sind die Kacheln Keramikkacheln oder feste Teppichfliesen, beispielsweise Kork-Fußboden-Elemente, alternativ ziegelartige Bauelemente, die in Analogie eines Legosteins zur Verkleidung einer Fläche verwendet werden.

30

Das Flächen-Verkleidungsmodul kann eine hexagonale Form aufweisen, in welchem Fall jedes Flächen-Verkleidungsmodul jeweils bis zu sechs benachbarte Flächen-Verkleidungsmodule aufweist, welche jeweils über eine bidirektionale

35 Kommunikationsschnittstelle, in der Datenübertragungs-Schnittstelle, miteinander gekoppelt sind. Bei Einsatz hexagonal-förmiger Flächen-Verkleidungsmodule wird eine sehr hohe Packungsdichte innerhalb der Flächen-Verkleidungsmodul-Anordnung erreicht.

Alternativ kann das Flächen-Verkleidungsmodul jeweils eine rechteckige Form aufweisen, in welchem Fall jedes Flächen-Verkleidungsmodul jeweils bis zu vier benachbarte Flächen-Verkleidungsmodule aufweist, welche jeweils über eine bidirektionale Kommunikationsschnittstelle, der Datenübertragungs-Schnittstelle, miteinander gekoppelt sind.

10

Gemäß einer anderen Ausgestaltung der Erfindung werden vor dem Bestimmen des Abstandes der Flächen-Verkleidungsmodule von der Referenzposition die örtlichen Positionen der Flächen-Verkleidungsmodule innerhalb der Flächen-

- Verkleidungsmodul-Anordnung ermittelt, indem ausgehend von einer Prozessoreinheit eines Flächen-Verkleidungsmoduls an einer Einleitstelle der Flächen-Verkleidungsmodul-Anordnung jeweils Positionsermittlungs-Nachrichten, welche zumindest einen Zeilenparameter z und einen Spaltenparameter s
- aufweisen, welche die Zeilennummer bzw. Spaltennummer des Flächen-Verkleidungsmoduls mit der die Nachricht sendenden Prozessoreinheit oder die Zeilennummer bzw. Spaltennummer der die Nachricht empfangenden Prozessoreinheit innerhalb der Flächen-Verkleidungsmodul-Anordnung enthält, an
- Prozessoreinheiten unmittelbar benachbarter Flächen-Verkleidungsmodulen übermittelt werden und von der Prozessoreinheit des jeweiligen Flächen-Verkleidungsmoduls die folgenden Schritte durchgeführt werden:
- falls der Zeilenparameter in der empfangenen Nachricht größer ist als die bisher gespeicherte Zeilennummer des Flächen-Verkleidungsmoduls, so wird der eigenen Zeilennummer des Flächen-Verkleidungsmoduls der Zeilenparameterwert z der empfangenen Nachricht zugeordnet,
- falls der Spaltenparameter in der empfangenen Nachricht größer ist als die eigene Spaltennummer des Flächen-Verkleidungsmoduls, so wird der gespeicherten

Spaltennummer der Zeilenparameterwert der empfangenen Nachricht zugeordnet,

• falls die eigene Zeilennummer und/oder die eigene Spaltennummer aufgrund der oben dargestellten Verfahrensschritte verändert worden sind, so werden neue Positionsmess-Nachrichten mit neuen Zeilenparametern und neuen Spaltenparametern erzeugt, welche jeweils die Zeilennummer und Spaltennummer des Flächen-Verkleidungsmoduls mit der die Nachricht sendenden Prozessoreinheit oder die Zeilennummer und Spaltennummer der die Nachricht empfangenden Prozessoreinheit enthält, und diese werden über die bidirektionalen Kommunikationsschnittstellen an ein jeweiliges Nachbar-Flächen-Verkleidungsmodul übertragen.

5

10

15

Durch diese Weiterbildung wird das erfindungsgemäße Konzept des lokalen Nachrichtenaustauschs zwischen einander benachbarten Flächen-Verkleidungsmodulen weiter ausgebaut, da schon die örtlichen Positionen der einzelnen Flächen-

Verkleidungsmodule innerhalb der Flächen-VerkleidungsmodulAnordnung gemäß diesem Konzept basierend auf lokaler
Positionsinformation, welche sich lediglich aus einer von dem
unmittelbar benachbarten Flächen-Verkleidungsmodul erhaltenen
Positionsinformation ergibt, basiert. Dies ermöglicht eine
sehr fehlerrobuste Vorgehensweise im Rahmen der
Selbstorganisation der Flächen-Verkleidungsmodul-Anordnung.

Gemäß einer anderen Weiterbildung der Erfindung wird in einem iterativen Verfahren der eigene Abstandswert des Flächen
Verkleidungsmoduls dann verändert wenn der bisher gespeicherte Abstandswert größer ist als der um einen vorgegebenen Wert erhöhte empfangene Abstandswert in der jeweils empfangenen Nachricht, und für den Fall, dass eine Prozessoreinheit den eigenen Abstandswert verändert, erzeugt diese eine Abstandsmess-Nachricht und sendet sie über alle Kommunikationsschnittstellen an Prozessoreinheiten benachbarter Flächen-Verkleidungsmodule, wobei die

Abstandsmess-Nachricht jeweils den eigenen Abstand als Abstandsinformation enthält oder den Abstandswert, den das empfangende Flächen-Verkleidungsmodul von dem Portalprozessor aufweist.

5

Der Abstandswert kann um einen um einen vorgegebenen Wert erhöhten Wert gegenüber dem eigenen Abstandswert verändert werden, vorzugsweise um den Wert "1".

- 10 Die Erfindung eignet sich insbesondere zum Ansatz in folgenden Anwendungsbereichen:
 - Hausautomatisierung, insbesondere zur Erhöhung des häuslichen Komforts,
- Alarmanlagen mit Positionsbestimmung und optionaler
 Gewichtsbestimmung eines Eindringlings,
 - eine automatische Besucherführung auf Messen bei einer Ausstellung oder in einem Museum,
- für ein Leitsystem in einer Notfallsituation, beispielsweise in einem Flugzeug oder in einem Zug, um den Passagieren einen Weg zu einem Notausgang anzuzeigen.

Anschaulich kann die Erfindung darin gesehen werden, dass eine gewünschte elektronische Datenverarbeitung und optional gewünschte Sensorik oder Anzeigeelemente sowie Kommunikationsnetzwerk-Bestandteile in an sich bekannte Wand, Boden- oder Decken-Verkleidungen integriert werden. Die Verkleidungen sind in diesem Zusammenhang reguläre Elemente, welche sich in vorgegebenen Richtungen, vorzugsweise in orthogonaler oder hexagonaler Anordnung zur Bedeckung einer Fläche eignen.

Auch wenn die folgenden Ausführungsbeispiele eine FliesenAnordnung beschreiben, so ist die Erfindung nicht auf Fliesen
oder auch auf Kacheln beschränkt, sondern ist auf jedes zur
Flächenbedeckung bzw. Flächenverkleidung geeignete reguläre
Element anwendbar.

Der Erfindung liegt ferner das Problem zu Grunde eine Prozessor-Anordnung bereitzustellen, bei der die verwendeten Prozessoren nicht mit zusätzlichen

Kommunikationsschnittstellen in den Prozessorelementen ausgestattet werden müssen.

Das Problem wird durch die Prozessor-Anordnung, die Textilgewebestruktur, sowie die Flächenverkleidungsstruktur mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Eine Prozessor-Anordnung weist mindestens einen Schnittstellen-Prozessor auf, der eine Nachrichten-Schnittstelle der Prozessor-Anordnung bereitstellt. Ferner 15 sind eine Vielzahl von Prozessoren vorgesehen, wobei zumindest teilweise nur die einander örtlich direkt benachbart zueinander angeordneten Prozessoren miteinander zum Austausch elektronischer Nachrichten gekoppelt sind. 20 Ferner ist eine Vielzahl von Sensoren und/oder Aktoren in der Prozessor-Anordnung vorgesehen, wobei jedem Prozessor der Vielzahl von Prozessoren ein Sensor und/oder ein Aktor zugeordnet und mit dem jeweiligen Prozessor gekoppelt ist, wobei Sensordaten und/oder Aktordaten in den elektronischen 25 Nachrichten von bzw. zu dem Schnittstellen-Prozessor übertragen werden können. Die einander örtlich direkt benachbart angeordneten Prozessoren sind miteinander zumindest teilweise gemäß einer regulären Kopplungs-Topologie des Grades größer als eins gekoppelt.

30

35

Eine Textilgewebestruktur weist eine oben beschriebene Prozessor-Anordnung auf, wobei die Prozessoren in der Textilgewebestruktur angeordnet sind. Ferner sind in der Textilgewebestruktur elektrisch leitfähige Fäden vorgesehen, welche die Prozessoren miteinander koppeln. Ferner enthält die Textilgewebestruktur leitfähige Datenübertragungs-Fäden, welche die Prozessoren miteinander koppeln. Zusätzlich sind

elektrisch nicht-leitfähige Fäden in der Textilgewebestruktur vorhanden.

Ferner sind die elektrisch leitfähigen Fäden und die leitfähigen Datenübertragungsfäden am Rande der Textilgewebestruktur jeweils mit elektrischen Schnittstellen bzw. Datenübertragungsschnittstellen versehen.

Die Textilgewebestruktur besitzt durch ihren Aufbau gegenüber

dem Stand der Technik den Vorteil, dass sie großflächig
hergestellt werden und einfach in jede gewünschte Form
geschnitten werden kann. Somit kann sie an jede beliebige
Fläche, auf der sie verlegt werden soll, auf einfache Weise
angepasst werden. Es ist nicht notwendig, die einzelnen in

der Textilgewebestruktur vorgesehen Prozessorelemente, wie
beispielsweise Sensoren oder Aktoren (z.B. Leuchtdioden) oder
Prozessoren, nachträglich miteinander zu koppeln, da die
Prozessorelemente schon innerhalb der Textilgewebestruktur
miteinander gekoppelt sind.

20

Anders ausgedrückt bedeutet dies, dass eine Mehrzahl von Prozessorelementen in einer Textilgewebestruktur zur Verkleidung einer Fläche eingebettet wird. Vorzugsweise sind die einzelnen Prozessorelemente innerhalb der

- Textilgewebestruktur aufgrund zusätzlich vorgesehener Komponenten in der Lage, mit anderen Prozessorelementen in der Textilgewebestruktur über die Datenübertragungs-Fäden elektronische Nachrichten auszutauschen und somit beispielsweise eine lokale Positionsbestimmung des jeweiligen
- Prozessorelements innerhalb der Textilgewebestruktur, vorzugsweise gemäß dem in [1] beschriebenen Verfahren, bzw. bezüglich einer vorgegebenen Referenzposition zu ermöglichen, d.h. eine Selbstorganisation durchzuführen.
- 35 Somit wird es für ein Prozessorelement sehr einfach ermöglicht, seine Position innerhalb einer Fläche ohne zusätzliche externe Information zu bestimmen, auch wenn eine

Textilgewebestruktur durch Schneiden in eine vorgegebene Form gebracht wird, wobei durch das Schneiden Prozessorelemente oder Kopplungsleitungen zwischen den einzelnen Mikroelektronikkomponenten zerstört oder entfernt werden können.

5

Damit ist es, im Falle einer Selbstorganisation der Prozessorelemente für den Massenmarkt auf sehr einfache und kostengünstige Weise ermöglicht, eine Textilgewebestruktur auszugestalten und zur Verlegung der Textilgewebestruktur die Textilgewebestruktur gemäß einer vorgegebenen, gewünschten Form zuzuschneiden und trotz der zusätzlichen in der Textilgewebestruktur integrierten Elektronik nicht darauf achten zu müssen, an welchen Positionen die Prozessorelemente innerhalb der mit dieser bedeckten Fläche angeordnet sind, damit das jeweilige Prozessorelement innerhalb der Textilgewebestruktur eindeutig adressierbar ist.

Bei einer Flächenverkleidungsstruktur ist eine oben 20 beschriebene Textilgewebestruktur vorgesehen, auf welcher eine Flächenverkleidung fixiert ist.

Anschaulich kann die Erfindung darin gesehen werden, dass aufgrund der regulären Kopplungs-Topologie des Grades größer als eins innerhalb der Prozessor-Anordnung der 25 Integrationsaufwand und der Handwareaufwand für die Prozessorelemente mit den Prozessoren in der Prozessor-Anordnung dahingehend verringert wird, dass an Stelle der zuvor beispielsweise vier oder sechs bidirektionalen Kommunikationsschnittstellen (vgl. Fig. 2) nunmehr nur noch 30 eine reduzierte Anzahl von Kommunikationsschnittstellen erforderlich ist, so dass es nicht mehr erforderlich ist, in einem Prozessorelement zusätzlich zu den von dem Prozessor selbst schon bereitgestellten Kommunikationsschnittstellen 35 zusätzliche Kommunikationsschnittstellen vorzusehen.

Insbesondere sind nur noch zwei Kommunikationsschnittstellen anstelle der ursprünglich erforderlichen vier, bzw. sechs Kommunikationsschnittstellen erforderlich. Zwei Kommunikationsschnittstellen sind bei vielen heutzutage kommerziell erhältlichen Mikrocontrollern, d.h. Prozessoren vorgesehen sind.

So werden beispielsweise von einigen Mikrocontrollern der Firm Infineon , z.B. die Mikrocontroller XC161 oder XC164,

zwei standardisierte Kommunikationsschnittstellen bereitgestellt. Somit können die Prozessorelemente erheblich kostengünstiger und mit weniger Komponenten hergestellt werden, ohne auf eine standardisierte Kommunikation, d.h. ohne auf dem Einsatz eines standardisierten

15 Kommunikationsprotokolls, verzichten zu müssen.

30

35

Anschaulich wird erfindungsgemäß nicht mehr, wie gemäß dem Stand der Technik, eine Punkt-zu-PunktKommunikationsverbindung zur Kopplung zweier örtlich direkt zueinander benachbart angeordneten Prozessoren verwendet, was einer Kopplungs-Topologie des Grades gleich eins entsprechen würde, sondern es wird eine reguläre Kopplungs-Topologie des Grades größer als eins eingesetzt, vorzugsweise eine reguläre Bus-Kopplungs-Topologie oder eine reguläre Ring-KopplungsTopologie.

Allgemein kann erfindungsgemäß jede reguläre höherwertige (größer als eins) Kopplungs-Topologie zur Kopplung der einander unmittelbar benachbart angeordneten Prozessoren innerhalb der Prozessor-Anordnung verwendet werden.

Anschaulich bedeutet dies, dass die Reduktion der Anzahl benötigter Kommunikationsschnittstellen erreicht wird, indem von einer Punkt-zu-Punkt-Kommunikationsverbindung zu einer regulären höheren (höherwertigen) Topologie mit jeweils vorzugsweise maximal vier Teilnehmern übergegangen wird. Dabei bleibt die Forderung nach lokaler Kommunikation

zwischen einander örtlich unmittelbar benachbart angeordneten Prozessoren weiterhin erfüllt und die Gitterstruktur der bei der ursprünglichen Anordnung vorhandenen Kommunikations-Verbindungsleitungen kann ohne Änderung übernommen werden, so dass die grundsätzliche Anordnung wie sie in [1] beschrieben ist, eingesetzt werden kann.

Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

10

15

Eine besonders einfache, damit kostengünstige und fehlerrobuste reguläre Kopplungs-Topologie des Grades größer als eins ist gemäß einer Ausgestaltung der Erfindung eine reguläre Bus-Kopplungs-Topologie, gemäß der die einander örtlich direkt benachbart angeordneten Prozessoren miteinander gekoppelt sind.

Gemäß einer alternativen Ausgestaltung der Erfindung ist eine einfache und damit kostengünstige reguläre Kopplungs-

Topologie des Grades größer als eins zur Kopplung der einander örtlich direkt benachbart angeordneten Prozessoren eine reguläre Ring-Kopplungs-Topologie.

Gemäß einer Weiterbildung der Erfindung ist es vorgesehen,

25 dass die reguläre Bus-Kopplungs-Topologie gemäß einem der
folgenden Kommunikationsschnittstellen-Standards eingerichtet
ist:

- Serial-Parallel-Interface-Schnittstelle (SPI-Schnittstelle),
- Ontroller Area Network-Schnittstelle (CAN-Schnittstelle), oder
 - eine in [4] beschriebene I²C-Schnittstelle.

Anders ausgedrückt ist gemäß einer Ausgestaltung der Erfindung ein SPI-Bus, ein CAN-Bus oder ein I²C-Bus vorgesehen zur Bereitstellung der regulären Kopplungs-Topologie des Grades größer als eins.

Die Prozessoren können in Zeilen und Spalten in Form einer Matrix angeordnet sein, alternativ in Form einer hexagonalen Struktur.

5

Gemäß einer Ausgestaltung der Textilgewebestruktur sind die elektrisch leitfähigen Fäden derart eingerichtet, dass sie zur Energieversorgung der Mehrzahl von Prozessoren und/oder Aktoren verwendet werden können.

10

Gemäß einer anderen Ausgestaltung der Erfindung sind die leitfähigen Datenübertragungs-Fäden elektrisch leitfähig.

Alternativ können die leitfähigen Datenübertragungs-Fäden optisch leitfähig sein.

Besonders vorzugsweise ist jedes Prozessorelement aus der Mehrzahl von Prozessorelementen mit allen benachbarten Prozessorelementen mittels der leitfähigen Fäden und der leitfähigen Datenübertragungs-Fäden gekoppelt, d.h. bei einem regelmäßigen rechteckigen Raster mit jeweils vier benachbarten Prozessorelementen.

Vorzugsweise ist mindestens ein Sensor mit der Mehrzahl von 25 Prozessoren gekoppelt. Solch ein Sensor kann ein Drucksensor, ein Wärmesensor, ein Rauchsensor, ein optischer Sensor oder ein Geräuschsensor sein.

In einer Weiterbildung weist die Textilgewebestruktur

30 mindestens ein bildgebendes Element und/oder, ein
Schallwellen-Erzeugungselement und/oder ein VibrationsErzeugungselement auf, welches mit mindestens einem Teil der
Mehrzahl von Prozessorelementen gekoppelt ist.

Das heißt, dass die Textilgewebestruktur mindestens einen darin integrierten Aktor aufweist. Der Aktor ist beispielsweise eine bildgebende Einheit oder eine

schallerzeugende Einheit, vorzugsweise eine Flüssigkeits-Kristall-Anzeigeeinheit oder eine Polymerelektronik-Anzeigeeinheit, allgemein jede Art von Anzeigeeinheit, oder ein Lautsprecher, der eine Schallwelle erzeugt, allgemein jedes eine elektromagnetische Welle erzeugende Element. Ein weiterer möglicher vorgesehener Aktor ist ein vibrationserzeugendes Element.

Gemäß einer anderen Ausgestaltung ist bei der

Textilgewebestruktur die Mehrzahl von Prozessoren und/oder Sensoren und/oder Aktoren derart eingerichtet, dass zum Ermitteln eines jeweiligen Abstands eines ersten Prozessorelements von einer Referenzposition elektronische Nachrichten ausgetauscht werden zwischen dem ersten

Prozessorelement und einem zweiten, benachbarten
Prozessorelement der Textilgewebestruktur. Jede Nachricht
enthält eine Abstandsinformation, welche den Abstand eines
die Nachricht sendenden Prozessorelements oder eines die
Nachricht empfangenden Prozessorelements von der

Referenzposition angibt. Ferner ist die Mehrzahl von Prozessorelementen derart eingerichtet, dass aus der Abstandsinformation einer empfangenen Nachricht der eigene Abstand zu der Referenzposition ermittelbar ist oder speicherbar ist.

25

Vorzugsweise ist die Flächenverkleidungsstruktur als Wand Verkleidungsstruktur oder Fußboden-Verkleidungstruktur oder Decken-Verkleidungstruktur ausgebildet.

30 Die Flächenverkleidungsstruktur kann zumindest über Teilbereichen der Textilgewebestruktur ein gleichförmig mit elektrisch leitfähigen Drähten durchzogenes Textil aufweisen.

Das mit elektrisch leitfähigen Drähten durchzogene Textil
35 kann zur Vermeidung von "Elektrosmog" in der Umgebung von
Menschen verwendet werden. Hierdurch kann der "Elektrosmog"
abgeschirmt werden. Dabei ist jedoch zu beachten, dass

gegebenenfalls bestimmte Bereiche, z.B. Bereiche über kapazitiven Sensoren, nicht von der Abschirmung überdeckt werden dürfen.

- 5 Die Erfindung eignet sich insbesondere zum Einsatz in folgenden Anwendungsbereichen:
 - Hausautomatisierung, insbesondere zur Erhöhung des häuslichen Komforts,
- Alarmanlagen mit Positionsbestimmung und optionaler
 Gewichtsbestimmung eines Eindringlings,
 - eine automatische Besucherführung auf Messen bei einer Ausstellung oder in einem Museum,
 - für ein Leitsystem in einer Notfallsituation, beispielsweise in einem Flugzeug oder in einem Zug, um den Passagieren einen Weg zu einem Notausgang anzuzeigen,

15

- in Textilbetonkonstruktionen, in welchen Textilgewebestrukturen dazu dienen können, mögliche Schäden zu detektieren,
- Informationsgewinnung zur Führung einer Statistik, in welchen Bereichen in einem Geschäft sich Kunden wie lange aufhalten.
- Eine erfindungsgemäße Textilgewebestruktur enthält neben
 25 einen vorzugsweise aus Kunstfaser (elektrisch nichtleitfähigen Fäden) bestehenden Grundgewebe leitfähige Fäden,
 vorzugsweise leitfähige Kett- und Schussfäden, die
 vorzugsweise aus Metalldrähten, z.B. Kupfer,
 Polymerfilamenten, Carbonfilamenten oder anderen elektrisch
- leitfähigen Drähten bestehen. Werden Metalldrähte verwendet, wird vorzugsweise eine Beschichtung aus edleren Metallen, z.B. Gold oder Silber als Korrosionsschutz bei Feuchtigkeit oder aggressiven Medien verwendet. Eine andere Möglichkeit besteht darin, Metallfäden durch das Aufbringen eines
- 35 Isolierlackes, z.B. Polyester, Polyamidimid, oder Polyurethan zu isolieren.

Als Datenübertragungs-Fäden können neben elektrisch leitfähigen Fasern auch Lichtwellenleiter aus Kunststoff oder Glas verwendet werden.

Das Grundgewebe der Textilgewebestruktur wird vorzugsweise in einer Dicke hergestellt, welche einer Dicke des zu integrierenden Prozessorelements, im Folgenden auch Mikroprozessormodule genannt, z.B. Sensoren, Leuchtdioden und/oder Mikroprozessoren angepasst ist. Ein Sensor kann z.B. ein Drucksensor, ein Wärmesensor, ein Rauchsensor, ein

optischer Sensor oder ein Geräuschsensor sein. Vorzugsweise wird ein Abstand der optisch und/oder elektrisch leitfähigen Fasern so gewählt, dass es zu einem Anschlussraster der zu integrierenden Prozessorelemente passt.

15

20

Auch wenn in den folgenden Ausführungsbeispielen TeppichAnordnungen beschrieben sind, so ist die Erfindung nicht auf
einen Teppich beschränkt, sondern ist auf jedes zur
Flächenbedeckung bzw. Flächenverkleidung geeignete Element
anwendbar, allgemein auf jede Prozessor-Anordnung, bei denen
einem Prozessor ein Sensor und/oder ein Aktor zugeordnet ist,
angewendet werden.

Die erfindungsgemäße Textilgewebestruktur mit integrierter

Mikroelektronik, Prozessoreinheiten und/oder Sensoren
und/oder Aktoren, z.B. Anzeigelämpchen, ist für sich voll
funktionsfähig und kann unter verschiedenartigen
Flächenverkleidungen fixiert werden. Hierbei sind zum
Beispiel nicht leitende Textilien, Bodenbeläge aus

Teppichboden, Parkett, Kunststoff, Gardinen, Rollos, Tapeten,
Isoliermatten, Zeltdächer, Verputzschichten, Estrich und
Textilbeton zu nennen. Vorzugsweise wird das Fixieren mittels
Klebens, Laminierens, oder Vulkanisierens durchgeführt.

35 Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Weitern näher erläutert. In den

Figuren sind gleiche Komponenten mit identischen Bezugszeichen versehen.

Es zeigen

5

- Figur 1 eine Draufsicht auf eine Fliesen-Anordnung gemäß einem ersten Ausführungsbeispiel der Erfindung;
- Figuren 2a bis 2c Draufsichten auf erfindungsgemäße Fliesen,
 10 eine rechteckigförmige Fliese (Figur 2a), eine
 dreieckigförmige Fliese (Figur 2b) oder eine
 hexagonalförmige Fliese (Figur 2c);
- Figur 3 eine Draufsicht auf eine Fliese der Fliesen-Anordnung 15 aus Figur 1;
 - Figur 4 eine schematisierte Draufsicht auf eine FliesenAnordnung gemäß dem ersten Ausführungsbeispiel der
 Erfindung mit einem Zentral-Steuerrechner;

20

- Figur 5 eine Draufsicht auf eine Fliesen-Anordnung gemäß einem zweiten Ausführungsbeispiel der Erfindung;
- Figur 6 eine Draufsicht auf eine Fliese in hexagonaler Form;

25

- Figuren 7a und 7b einen gerichteten Graphen (Figur 7a) sowie einen ungerichteten Graphen (Figur 7b);
- Figur 8 einen gerichteten Baum;

30

- Figuren 9a und 9b eine Skizze einer Prozessor-Anordnung,
 modelliert als ungerichteter Graph (Figur 9a) und als
 gerichteter Graph (Figur 9b);
- 35 Figur 10 eine Skizze unterschiedlicher Routing-Wege als gerichteter Baum mit einem Eingangsknoten als Wurzel;

Figur 11 eine Skizze eines optimierten Routing-Baums;

- Figuren 12a bis 12j eine Skizze des Routing-Baums aus Figur 11 zu unterschiedlichen
- 5 Ansteuerungszeitpunkten;
 - Figuren 13a bis 13f eine Skizze des Routing-Baums aus Figur 11 zu unterschiedlichen Ansteuerungszeitpunkten;

10

- Figur 14 eine Draufsicht auf zwei hexagonale Fliesen, wobei der bidirektionale Nachrichtenaustausch zwischen den zwei Fliesen dargestellt ist;
- 15 Figur 15 eine Skizze einer inkohärenten Fliese;
 - Figur 16 eine Skizze einer kohärenten Fliese beim Versenden von MessKoherenz-Nachrichten;
- 20 Figur 17 eine Skizze einer Fliese, anhand der das Versenden von MessPosition-Nachrichten erläutert wird;
- Figur 18 eine Skizze einer Fliesen-Anordnung nach erfolgter Positionsbestimmung der einzelnen Fliesen innerhalb der Fliesen-Anordnung;
 - Figur 19 eine Skizze einer Fliese, anhand der das Versenden einer MessDistance-Nachricht erläutert wird;
- 30 Figur 20 die Fliesen-Anordnung nach erfolgter
 Abstandsbestimmung, wobei die Fliesen-Anordnung eine
 Vielzahl von Einleit-Prozessoreinheiten am unteren
 Rand der Fliesen-Anordnung aufweist;
- 35 Figur 21 eine Fliesen-Anordnung nach erfolgter
 Abstandsbestimmung, wobei jeder dritten Fliese in der

untersten Zeile der Fliesen-Anordnung jeweils eine Referenzposition zugeordnet ist;

- Figur 22 eine Skizze einer Fliese, anhand der das Empfangen und das Versenden von MessOrganize-Nachrichten erläutert wird;
- Figur 23 eine Skizze einer Fliese, anhand der die
 Organisationsreihenfolge zum Versenden einer
 MessChannel-Nachricht in einer geradzahligen Spalte
 innerhalb der Fliesen-Anordnung dargestellt ist;
- Figur 24 eine Skizze einer Fliese, anhand der die
 Organisationsreihenfolge zum Versenden einer

 MessChannel-Nachricht in einer ungeradzahligen Spalte
 innerhalb der Fliesen-Anordnung dargestellt ist;
- Figur 25 eine Skizze einer Mehrzahl von Fliesen, anhand der die Organisation und der Nachrichtenaustausch über

 Kanäle, welche die Kommunikationsschnittstellen der Fliesen miteinander koppeln, erläutert werden;
 - Figur 26 eine Fliesen-Anordnung nach erfolgter regulärer
 Rückwärtsorganisation für den Fall, dass allen
 Fliesen in der untersten Zeile der Fliesen-Anordnung
 Informationen von oder zu einem Portalprozessor
 zugeführt werden können oder gesendet werden können;

25

35

Figur 27 eine Fliesen-Anordnung nach erfolgter regulärer

Rückwärtsorganisation für den Fall, dass jeder
dritten Fliese in der untersten Zeile der FliesenAnordnung Informationen von oder zu einem
Portalprozessor zugeführt werden können oder gesendet
werden können;

- Figur 28 eine Skizze einer Prozessoreinheit, anhand der das Empfangen und Versenden von MessCountNodes-Nachrichten erläutert wird,
- 5 Figur 29 eine Skizze einer Fliese, anhand der das Empfangen und das Versenden von MessNodesSize-Nachrichten erläutert wird,
- Figur 30 die Fliesen-Anordnung nach erfolgter Ermittlung des

 10 Durchsatzes der Fliesen für den Fall, dass allen
 Fliesen in der untersten Zeile der Fliesen-Anordnung
 Informationen von oder zu einem Portalprozessor
 zugeführt werden können oder gesendet werden können;
- 15 Figur 31 die Fliesen-Anordnung nach erfolgter Ermittlung des Durchsatzes der Fliesen für den Fall, dass jeder dritten Fliese in der untersten Zeile der Fliesen-Anordnung Informationen von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;
 - Figur 32 eine Skizze einer Fliese, anhand der das Versenden von MessColDistance-Nachrichten erläutert wird;
- 25 Figur 33 eine Skizze einer Fliese, anhand der das Empfangen und das Versenden von MessBlockToken-Nachrichten erläutert wird;
- Figur 34 eine Skizze einer Fliese, anhand der das Empfangen

 einer MessToken-Nachricht durch eine "ungefärbte"

 Fliese dargestellt wird;
- Figur 35 die Fliesen-Anordnung nach erfolgter Ermittlung von Mäanderkanälen in der Fliesen-Anordnung bei erfolgter Tokenvergabe für den Fall, dass allen Fliesen in der untersten Zeile der Fliesen-Anordnung Informationen

von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;

- Figur 36 eine Skizze einer Fliese, anhand der das Empfangen
 und das Versenden von MessDeleteChannels-Nachrichten
 erläutert wird;
- Figur 37 eine Skizze einer Fliese, anhand der das Empfangen und das Versenden von MessColOrganize-Nachrichten erläutert wird;
- Figur 38 die Fliesen-Anordnung nach erfolgter Reorganisation für den Fall, dass jeder dritten Fliese in der untersten Zeile der Fliesen-Anordnung Informationen von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;
- Figur 39 die Fliesen-Anordnung nach erfolgter Reorganisation für den Fall, dass allen Fliesen in der untersten

 Zeile der Fliesen-Anordnung Informationen von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;
- Figur 40 eine Skizze einer Prozessoreinheit, anhand der die Initialisierung der Einleit-Fliesen-Farbe mittels einer MessColDistance-Nachricht erläutert wird;
- Figur 41 die Fliesen-Anordnung nach erfolgter Reorganisation bei einem Gewicht g = 0 für den Fall, dass allen Fliesen in der untersten Zeile der Fliesen-Anordnung Informationen von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;
- Figur 42 die Fliesen-Anordnung nach erfolgter Reorganisation

 35 bei einem Gewicht g = ∞ für den Fall, dass allen

 Fliesen in der untersten Zeile der Fliesen-Anordnung

25

Informationen von oder zu einem Portalprozessor zugeführt werden können oder gesendet werden können;

- Figur 43 eine Skizze einer Fliese, anhand der das Empfangen und das Versenden von MessNumbering-Nachrichten erläutert wird;
- Figur 44 eine Skizze der Fliesen-Anordnung nach erfolgter

 Nummerierung für den Fall, dass allen Fliesen in der

 untersten Zeile der Fliesen-Anordnung Informationen

 von oder zu einem Portalprozessor zugeführt werden
 können oder gesendet werden können;
- Figur 45 die Fliesen-Anordnung nach erfolgter Nummerierung

 für den Fall, dass jeder dritten Fliese in der
 untersten Zeile der Fliesen-Anordnung Informationen
 von oder zu einem Portalprozessor zugeführt werden
 können oder gesendet werden können;
- 20 Figur 46 eine Routing-Tabelle gemäß einem Ausführungsbeispiel der Erfindung;
 - Figur 47 eine Skizze einer Fliesen-Anordnung, anhand der das Routing und die Darstellung von Daten erläutert wird;
 - Figur 48 eine Skizze einer Fliese, anhand der das Empfangen und Versenden von MessRetry-Nachrichten erläutert wird;
- 30 Figur 49 eine Übersicht über die verwendeten Nachrichten;
 - Figur 50 ein schematischer Schaltplan einer Fliese gemäß einem Ausführungsbeispiel der Erfindung;
- 35 Figur 51 eine Draufsicht auf einen Steckverbinder einer Fliese gemäß einem Ausführungsbeispiel der Erfindung; und

5

15

25

- Figuren 52a und 52b eine Querschnittsansicht eines Steckverbinders einer Fliese sowie eines Fliesen-Verbindungsstücks gemäß einem Ausführungsbeispiel der Erfindung;
- Figur 53 eine Prozessor-Anordnung gemäß einem anderen Aspekt der Erfindung;
- 10 Figur 54 einen vergrößerten Ausschnitt A der Prozessor-Anordnung aus Figur 53;
 - Figur 55 eine Prozessor-Anordnung gemäß einem anderen Aspekt der Erfindung;
- Figur 56 eine Skizze eines Prozessorelements, wie es in den erfindungsgemäßen Ausführungsbeispielen vorgesehen ist; und
- 20 Figur 57 eine Prozessor-Anordnung gemäß einem anderen Aspekt der Erfindung;
 - Figur 58 eine Prozessor-Anordnung gemäß einem vierten Ausführungsbeispiel der Erfindung.
- Fig.1 zeigt eine Fliesen-Anordnung 100 mit einer Vielzahl rechteckförmiger Fliesen, welche in Matrixform in Zeilen und Spalten angeordnet sind und welche miteinander, wie im Weiteren näher erläutert wird, über Datenübertragungs30 Schnittstellen gekoppelt sind, wobei jeweils eine Fliese 101 mit einer ihr unmittelbar benachbart angeordneten Fliese 101 gekoppelt ist.
- Jede der Fliesen 101 weist einen identischen Aufbau auf, wie 35 er in vergrößerter Darstellung in **Fig.3** dargestellt ist.

Fig. 3 zeigt die Fliese 101 mit einer Vielzahl von in diesem Ausführungsbeispiel neun Anzeigeelementen 301, 302, wovon acht Anzeigeelemente 301 pfeilförmig eingerichtet sind und eines, das in der Mitte der Fliese 101 angeordnete

5 Anzeigeelement 302 als Kreuz eingerichtet ist. Die Anzeigeelemente 301, 302 dienen zur Anzeige eines Weges, den ein Benutzer, der über die Fliesen-Anordnung 100 geht, einzuschlagen hat, um zu einem gewünschten, vorgegebenen Ziel zu gelangen. Die Richtungspfeil-Anzeigeelemente 301 weisen eine oder mehrere entsprechende Hintergrundbeleuchtungen auf, welche jeweils individuell eines oder mehrere der pfeilförmigen Anzeigeelemente 301 ansteuert, womit jeweils eines oder mehrere der Anzeigeelemente 301 beleuchtet sind.

Zusätzlich zu den Anzeigeeinheiten, allgemein einer bildgebenden Einheit, ist gemäß diesem Ausführungsbeispiel in der Fliese 101, wie in Fig.50 in einem Schaltplan dargestellt, noch ein Sensorelement 5001 vorgesehen, welches gemäß diesem Ausführungsbeispiel als Drucksensor ausgestaltet ist.

Jede Fliese 101 weist ferner einen Prozessor 5002 auf, gemäß diesem Ausführungsbeispiel einen Mikroprozessor, sowie bei rechteckförmiger Ausgestaltung der Fliese 101 an jeder Seite der rechteckförmigen Fliese 101 jeweils einen Steckverbinder 5003, 5004, 5005, 5006.

25

35

Die Steckverbinder 5003, 5004, 5005, 5006 weisen auf jeweils einen Masseanschluss 5007, 5008, 5009, 5010, auf sowie einen Datenübertragungs-Anschluss 5011, 5012, 5013, 5014 als Datenübertragungs-Schnittstelle, wobei die Schnittstelle als bidirektionale Kommunikationsschnittstelle eingerichtet ist, sowie einen Stromversorgungsanschluss 5015, 5016, 5017, 5018, an welche die Versorgungsspannung VDD angelegt wird.

Der Stromversorgungsanschluss 5015, 5016, 5017, 5018 ist mit dem Prozessor 5002 gekoppelt ebenso wie jeder

Datenübertragungs-Anschluss 5011, 5012, 5013, 5014 und jeder Masseanschluss 5007, 5008, 5009, 5010.

Gemäß diesem Ausführungsbeispiel der Erfindung erfolgt die Kopplung der einzelnen Komponenten der Fliese 101 über elektrische Leitungen 5019, 5020, 5021, 5022. Ferner ist der Mikroprozessor 5002 mit den Anzeigeelementen 301, 302 über eine erste Steuerleitung 5023 gekoppelt, über welche dem jeweiligen Anzeigeelement 301, 302 Steuersignale zugeführt werden und mit dem Sensorelement 5001 über eine zweite Steuerleitung 5024, mittels welcher dem Prozessor 5002 von dem Sensorelement 5001 mittels diesem erfasste Daten übermittelt werden.

Jeder Steckverbinder 5003, 5004, 5005, 5006 ist jeweils an der Unterseite der Fliese 101 angeordnet und wird im Folgenden auch als Docking Bay bezeichnet.

Über ein in **Fig.52B** im Querschnitt dargestelltes FliesenVerbindungsstück 5210 kann jeder Steckverbinder 5003, 5004, 5005, 5006 der Fliese 101 mit seinem jeweiligen Gegenstück auf der örtlich unmittelbar benachbart angeordneten Fliese 101 mechanisch und elektrisch verbunden werden.

25 Gemäß diesem Ausführungsbeispiel ist die Anordnung der Steckverbinder rotationssymmetrisch für Vielfache von 90°.

Die oben beschriebene Anordnung kann unmittelbar auf jede beliebige Form einer Fliese oder Kachel 101 angewendet werden bzw. übertragen werden, wobei jedoch die Anordnung der Steckverbinder an den jeweiligen Seiten der Fliese 101 und die entsprechende Verkabelung an die jeweilige Form anzupassen sind; so ist beispielsweise bei einer hexagonalförmigen Fliese 101 an den jeweiligen Seiten jeweils ein Steckverbinder angeordnet, d.h. es sind insgesamt sechs Steckverbinder vorgesehen. Bei dreieckförmiger Ausgestaltung

einer Fliese sind entsprechend drei Steckverbinder an den jeweiligen Seiten der Fliese 101 angeordnet.

Fig.51 zeigt eine vergrößerte Darstellung des Steckverbinders 5003 mit dem Masseanschluss 5007, dem Datenübertragungs-Anschluss 5011 und dem Stromversorgungsanschluss 5015.

Jeweils zwei direkt gegenüberliegende Docking Bays werden mittels des in Fig.52B in Querschnittsansicht dargestellten 10 Fliesen-Verbindungsstücks 5210 miteinander verbunden. Im Rahmen des Verlegens von Fliesen bzw. Kacheln, d.h. bei der Montage wird zunächst das Fliesen-Verbindungsstück 5210 gelegt, beispielsweise in den Putz oder ein Fliesengitter eingelassen, und anschließend wird die Fliese 101 mit dem jeweiligen Docking Bay auf das Fliesen-Verbindungsstück 5210 aufgesteckt.

Diese Situation ist in Fig.52A und Fig.52B dargestellt, in denen die Querschnittsansicht des Steckverbinders 5003 mit den jeweiligen Steckanschlüssen 5007, 5011, 5015 und die korrespondierenden Anschlüsse des Fliesen-Verbindungsstücks 5210, einem korrespondierenden Masseanschluss 5211, einer korrespondierenden Datenübertragungs-Schnittstelle 5212, und einen korrespondierenden Stromversorgungsanschluss 5213 dargestellt sind.

Der Steckverbinder 5003 weist einen Hohlraum 5201 auf, in dem die Anschlüsse 5007, 5011, 5015 angeordnet und ausgebildet sind. An den Seitenwänden 5202 des Hohlraums 5201 sind nasenförmige Aussparungen 5203 vorgesehen, in welche nasenförmige Elemente 5214, 5215 des Fliesen-Verbindungsstücks 5210 als ein Klickverschluss eingreifen, womit die mechanische Kupplung des Steckverbinders 5003 mit dem Fliesen-Verbindungsstück 5210 erreicht ist.

Anstelle der in dem Fliesen-Verbindungsstück 5210 fest eingebrachten Anschlüsse 5007, 5011, 5015 können alternativ

35

33

PCT/DE2003/004060

WO 2004/053711

25

30

Die in der Fliese 101 in Fig.3 dargestellten Leuchtelemente können als Leuchtdiode oder sogar als beliebig komplexer Bildschirm eingerichtet sein und zur Festlegung von fest vorgegebenen oder dynamischen Wegen verwendet werden. Auf einer Messe oder einem Museumsrundgang kann beispielsweise der Weg zu einer nachfolgenden Sehenswürdigkeit gewiesen werden, wobei das Gesamtsystem die Position des jeweiligen Besuchers durch das jeweilige Sensorelement 501 erfährt und ihm somit individuelle Richtungsweisungen geben kann.

In einer Ausgestaltung der Erfindung kann eine Fliese auch ein Funksende-/Empfangssystem aufweisen, über die ein Benutzer beispielsweise mittels eines Funksenders seine Identität übermittelt, welche von dem Funkempfänger in der Fliese 101 empfangen wird und abhängig von der jeweiligen Nutzeridentität kann eine benutzerspezifische Führung durch ein Museum oder durch eine Messe erfolgen.

Der Sensor kann als Drucksensor mit Gewichtsbestimmung, als induktiver Sensor, als Kapazitiver Sensor (Edison Sensor) als optischer Sensor oder als Feuchtigkeitssensor ausgestaltet sein.

Die einzelnen Fliesen 101 können erfindungsgemäß beliebig ausgestaltet sein, beispielsweise wie gemäß Fig.2a rechteckförmig, wie gemäß Fig.2b dreieckförmig, oder wie gemäß Fig.2c hexagonal.

Fig.4 zeigt eine schematische Ansicht der Fliesen-Anordnung 100 mit der Vielzahl von Fliesen 101 und einem an einer Seite 35 der Fliesen-Anordnung 100 angeordnetem Fliesen-Daten-Portal 401 mit mindestens einem Portalprozessor zur Einleitung von Information zu den Prozessoren der jeweiligen Fliesen 101 in der Fliesen-Anordnung 100.

Der Portalprozessor ist mit mindestens einer Fliese 101 5 gekoppelt und führt dieser über die jeweilige Datenübertragungs-Schnittstelle die gewünschten Daten zu bzw. fragt darüber von dieser Fliese 101 die gewünschten Daten ab.

Gemäß diesem Ausführungsbeispiel hat der jeweilige
10 Portalprozessor des Fliesen-Daten-Portals 401 keinerlei
Informationen über Größe und Ausgestaltung der FliesenAnordnung 100.

Auch haben die einzelnen Prozessoreinheiten der Fliesen 101 zu Beginn des Verfahrens keinerlei Informationen über ihre jeweilige Orientierung, d.h. Ausrichtung, oder ihre örtliche Position innerhalb der Fliesen-Anordnung 100.

In einer im Folgenden im Detail erläuterten

20 Initialisierungsphase (vor dem ersten Einsatz der FliesenAnordnung 100 oder nach einem erfolgten Zurücksetzen der
gespeicherten Informationen in der Fliesen-Anordnung 100)
stößt der Portalprozessor des Fliesen-Portals 401 eine
Selbstorganisation der Prozessor-Anordnung an, wie sie im

25 Folgenden näher erläutert wird.

Im Rahmen der Selbstorganisation der Fliesen-Anordnung 100 erlernen die Fliesen 101 der Fliesen-Anordnung 100 ihre Lage und Ausrichtung sowie Informationswege zum Bildaufbau, das heißt zum Zuführen darzustellender Information an die jeweiligen Anzeigeeinheiten, welche die jeweilige Information tatsächlich darstellen sollen.

30

Dieser Lernprozess erfolgt unter Verwendung von Nachrichten,
die zwischen Prozessoreinheiten jeweils einander benachbarten
Fliesen 101 in der Fliesen-Anordnung 100 ausgetauscht werden.
Das erlernte Wissen wird teilweise wieder nach außen, das

heißt an das Fliesen-Portal 401 gegeben, und zwar in dem Maße, wie es das Fliesen-Portal 401 später benötigt, um die Bildinformationen auf den richtigen Wegen und in der richtigen Abfolge der Fliesen-Anordnung 100 zuzuführen zur Darstellung der jeweils darzustellenden Information.

Für die Vorgehensweise bei der Informationsverteilung innerhalb der Fliesen-Anordnung 100 ist die Art der darzustellenden Information zu berücksichtigen.

10

5

Im Rahmen der Informationsverteilung wird jeder Prozessor einer Fliese 101 von dem Portalprozessor des Fliesen-Portals 401 individuell adressiert. Dies führt zu einem im Rahmen der Darstellung der Information erforderlichen Routings der

- 15 Information zu den entsprechenden Fliesen 101 und damit zu den entsprechenden Prozessoreinheiten innerhalb der Fliesen-Anordnung 100. Im Rahmen des Routings von Information sind erfindungsgemäß folgende Besonderheiten des Routing-Problems zu berücksichtigen:
- Es werden Routing-Wege lediglich zwischen dem Portalprozessor des Fliesen-Portals 401 und den einzelnen Prozessoren der Fliesen, das heißt den Prozessoreinheiten der Fliesen-Anordnung 101, nicht aber zwischen den Fliesen 101 untereinander bestimmt.
- Es liegt ein gleichmäßiges Routing-Aufkommen vor, das heißt pro anzuzeigendem digitalisierten Bild ist jedem Prozessor genau ein Bilddatum zu übermitteln.
- Es wird kein globales Wissen über die Gestalt des
 Netzes, das heißt der Vermaschung der einzelnen Fliesen30 Prozessoren innerhalb der Fliesen-Anordnung 101
 vorausgesetzt. Die Wahl von Routing-Wegen innerhalb der
 Fliesen-Anordnung 100 erfolgt auf Basis lokaler
 Informationen, die zwischen den einzelnen FliesenProzessoren unter Verwendung von elektronischen
 Nachrichten ausgetauscht werden.

Somit sind erfindungsgemäß zwei Phasen im Rahmen des Einsatzes einer erfindungsgemäßen Fliesen-Anordnung 100 zu unterscheiden:

- 5 In einer ersten Phase, der so genannten Selbstorganisation, wird durchgeführt eine
 - Selbsterkennung der lokalen Positionen der einzelnen Fliesen-Prozessoren innerhalb der Fliesen-Anordnung und somit der Gesamtform der Fliesen-Anordnung;
- Selbstorganisation von Routing-Wegen ausgehend von dem Portalprozessor, das heißt dem Prozessor des Fliesen-Portals 401 zu jedem Fliesen-Prozessor in der Fliesen-Anordnung 100 derart, dass innerhalb einer vorgegebenen maximalen Zahl von Zeittakten jeder Fliesen-Prozessor von dem Prozessor des Fliesen-Portals 401 eine elektronische Nachricht zugeführt bekommen kann.

In einer zweiten Phase, dem eigentlichen Einsatz der FliesenAnordnung 100 im Rahmen der Erfassung oder/und Darstellung
von Information, werden die Daten von oder zu dem
Portalprozessor zu den Fliesen-Prozessoren übertragen,
wodurch die darzustellende Information in der FliesenAnordnung 100 aufgebaut wird.

- Die Fliesen-Prozessoren 402 sind, wie in Fig.4 dargestellt, für den Fall, dass sie eine rechteckige Form, vorzugsweise eine quadratische Form, aufweisen, jeweils über jede Seite des Vierecks über eine der somit jeweils vier vorgesehenen bidirektionalen Kommunikationsschnittstellen 403 pro Fliesen-Prozessor 402 und darüber über elektrische Leitungen 404 jeweils mit dem unmittelbar zu einem jeweiligen Fliesen-Prozessor 402 benachbarten Fliesen-Prozessor 402 gekoppelt.
- Anders ausgedrückt bedeutet dies, dass jeweils ein

 Nachrichtenaustausch zwischen zwei unmittelbar einander
 benachbarten Fliesen-Prozessoren ermöglicht ist, nicht jedoch
 ein unmittelbarer, d.h. direkter Nachrichtenaustausch über

eine weitere Entfernung hinweg als die unmittelbare Nachbarschaft eines Fliesen-Prozessors 402.

Fig.5 zeigt ein anderes Ausführungsbeispiel, bei dem jede
5 Fliese 101 eine hexagonale Form aufweist und pro Fliese 101
sechs bidirektionale Kommunikationsschnittstellen 501,
ebenfalls an jeder Seite, das heißt Seitenkante, der
jeweiligen Fliese 101 vorgesehen sind. Dies bedeutet, dass
gemäß diesem Ausführungsbeispiel jede Fliese 101 und damit
10 jeder Fliesen-Prozessor sechs Nachbar-Fliesen-Prozessoren
aufweist, mit denen die jeweilige Fliese 101 über eine
bidirektionale Kommunikationsschnittstelle 501 und eine
elektrische Leitung 502 für den Austausch elektronischer
Nachrichten gekoppelt ist.

15

Im Folgenden wird zur einfacheren Darstellung der Erfindung lediglich der Fall der hexagonalen Form einer Fliese 101 beschrieben, jedoch ohne Einschränkung der Allgemeingültigkeit.

20

25

30

Die Fliesen-Anordnung 100 weist somit drei Arten von Einzelkomponenten auf:

- Fliesen 101, denen jeweils bis zu sechs bidirektionale Kommunikationsschnittstellen 501 und elektrische Leitungen 502 zugeordnet sind, und
- bidirektionale Verbindungen, im Weiteren auch als bidirektionale Kommunikationsschnittstelle 501 und der jeweiligen Kommunikationsschnittstelle 501 zugeordnete elektronische Leitung 502, die je zwei Fliesen 101 oder eine Fliese 101 und den Portalprozessor miteinander koppeln, und
- Fliesen-Verbindungsstücke.

Die hexagonale Fliese 101 kann sechs unterschiedliche 35 Ausrichtungen aufweisen, wie in **Fig.6** dargestellt. 10

15

20

Gemäß Fig.6 sind die einzelnen Verbindungen, das heißt damit auch die einzelnen Kommunikationsschnittstellen 501 während der Selbstorganisationsphase, wie sie im Weiteren noch näher erläutert wird, bereits orientiert worden. Die Verbindungen sind gemäß diesem Ausführungsbeispiel durchnummeriert und zum besseren Verständnis mit Himmelsrichtungen identifiziert, wobei gemäß diesem Ausführungsbeispiel folgende Nomenklatur verwendet wird:

- Eine erste Ausrichtung 0 (Ost) (Bezugszeichen 600),
 anders ausgedrückt eine Ausrichtung nach rechts,
 - eine zweite Ausrichtung 1 (Nordost) (Bezugszeichen 601),
 anders ausgedrückt eine Ausrichtung nach rechts oben,
- eine dritte Ausrichtung 2 (Nordwest)
 (Bezugszeichen 602), anders ausgedrückt eine Ausrichtung nach links oben,
- eine vierte Ausrichtung 3 (West) (Bezugszeichen 603),
 anders ausgedrückt eine Ausrichtung nach links,
- eine fünfte Ausrichtung 4 (Südwest) (Bezugszeichen 604),
 anders ausgedrückt eine Ausrichtung nach links unten,
 sowie
- eine sechste Ausrichtung 5 (Südost) (Bezugszeichen 605), anders ausgedrückt eine Ausrichtung nach rechts unten.

Gemäß diesem Ausführungsbeispiel wird vorausgesetzt, dass der 25 Portalprozessor des Fliesen-Portals 401 elektrische Kopplungen zu Fliesen 101 auf ausschließlich einer Seite der Fliesen-Anordnung 100 aufweist.

Definitionsgemäß sei dies die untere Seite der Fliesen30 Anordnung 100, das heißt anschaulich die Südseite, wobei die Kopplungen ebenfalls definitionsgemäß über die Südwest-Seite, das heißt über die fünfte Ausrichtungsrichtung der jeweiligen Fliesen 101 laufen.

35 Es ist in diesem Zusammenhang anzumerken, dass sowohl die Positionierung als auch die Ausrichtung der einzelnen Einleitstellen von Information zu den Fliesen 101 in der

Fliesen-Anordnung 100 als auch die Form und die Ausrichtung der einzelnen Fliesen 101 in der Fliesen-Anordnung 100 grundsätzlich beliebig sind.

- 5 In unterschiedlichen Ausführungsformen der Erfindung ist der Portalprozessor
 - mit allen Fliesen-Prozessoren der Fliesen der untersten Zeile in Form einer Matrix, das heißt in Zeilen und Spalten, angeordneten Fliesen-Prozessoren der Fliesen-Anordnung 100 elektrisch gekoppelt, oder
- mit Fliesen-Prozessoren 101 der Fliesen der untersten Zeile der Fliesen-Anordnung in einem vorgegebenen, regulären, das heißt periodischen Abstand, das heißt beispielsweise jedem dritten, fünften, zehnten, etc.,
 Fliesen-Prozessor innerhalb der untersten Zeile der Fliesen-Anordnung 100.

10

Der Portalprozessor 401 kennt zwar nach erfolgter Fertigung der Fliesen-Anordnung 100 die Anzahl seiner Verbindungen zu 20 den Fliesen-Prozessoren 402, anders ausgedrückt die Anzahl von Einleitstellen zum Zuführen von Information zu Fliesen-Prozessoren 402 innerhalb der Fliesen-Anordnung 100, aber nicht notwendigerweise die Dimension und die Ausgestaltung der Fliesen-Anordnung 100, das heißt die tatsächliche Form 25 und Anordnung der Fliesen 101 innerhalb der Fliesen-Anordnung 100.

Es ist in diesem Zusammenhang anzumerken, dass insbesondere eine Richtungsangabe, beispielsweise die Südseite, nicht notwendigerweise eine gerade Linie innerhalb der Fliesen-Anordnung 100 darstellen muss.

Bei den im Weiteren erläuterten Teil-Verfahren ist lediglich vorzusehen, dass die einzelnen Verbindungen zwischen dem

Portalprozessor und den Fliesen-Prozessoren 101 immer an derselben Stelle erfolgen sollten, gemäß diesem Ausführungsbeispiel über die Südwestseite 604.

Die einzelnen Fliesen-Prozessoren 101 oder die Verbindungen, welche beide als Oberbegriff als Einzelkomponenten der Prozessor-Anordnung bezeichnet werden, können folgende Zustände annehmen:

1. Fehlerfrei:

Die jeweilige Komponente der Fliesen-Anordnung arbeitet ohne Einschränkungen.

10

2. Defekt:

Die jeweilige Komponente der Fliesen-Anordnung ist vollständig ausgefallen. Ist die Komponente eine Prozessoreinheit, so sind ebenfalls alle Verbindungen zu dieser Prozessoreinheit als defekt zu deklarieren.

3. Instabil:

Die Komponente weist Teilausfälle auf, beispielsweise arbeitet eine Richtung einer bidirektionalen Verbindung zwischen der jeweiligen Prozessoreinheit nur zeitweise (das heißt sie weist einen Wackelkontakt auf oder arbeitet methodisch falsch, beispielsweise ein Prozessor, der eine falsche Nachricht versendet).

Im Weiteren wird aus Gründen der einfacheren Darstellung der Erfindung der dritte Zustand nicht betrachtet, das heißt eine Komponente sei im Folgenden entweder fehlerfrei oder defekt. Daher spielt es gemäß diesen Ausführungsbeispielen keine Rolle, ob eine Komponente aufgrund einer speziellen Form der Fliesen-Anordnung nicht existiert (das heißt beispielsweise eine Anzeigeeinheits-Folie, die die Form eines Dreiecks aufweist), oder ob die jeweilige Komponente aufgrund eines Herstellungsfehlers oder aufgrund erfolgter Abnutzung defekt wurde.

35

Bei der im Weiteren noch näher erläuterten Informationsweitergabe, das heißt dem Versenden von WO 2004/053711 PCT/DE2003/004060

elektronischen Nachrichten zwischen zwei Fliesen-Prozessoren 101 innerhalb der Fliesen-Anordnung 100 oder von dem Portalprozessor zu einem Fliesen-Prozessor an einer Einleitstelle der Fliesen-Anordnung 100 wird im Folgenden eine Taktung des Gesamtsystems, das heißt der gesamten Fliesen-Anordnung 100 betrachtet.

Jeder Fliesen-Prozessor in der Fliesen-Anordnung 100 ist derart eingerichtet, dass er innerhalb eines Zeittaktes folgende Aktionen durchführen kann:

- Lesen von einer oder mehreren elektronischen Nachrichten, die an einer oder mehreren Verbindungen, das heißt über eine oder mehrere bidirektionale Kommunikationsschnittstellen des jeweiligen Fliesen-Prozessors anliegen und die im zeitlich vorangegangenen Zeittakt von einem Nachbar-Fliesen-Prozessor versendet wurden.
- Verarbeitung der empfangenen Nachricht.

10

15

30

35

• Gegebenenfalls Versenden von einer oder mehreren

Nachrichten über eine oder mehrere Verbindungen und
damit über eine oder mehrere bidirektionale

Kommunikationsschnittstellen des Fliesen-Prozessors, die
im zeitlich darauf folgenden, das heißt nächsten
Zeittakt von einem Nachbar-Fliesen-Prozessor empfangen
werden können.

Innerhalb eines Zeittaktes kann somit eine elektronische Nachricht nur von einem Fliesen-Prozessor zu einem Nachbar-Fliesen-Prozessor übertragen werden.

Es ist jedoch in diesem Zusammenhang anzumerken, dass erfindungsgemäß keine globale, das heißt für die gesamte Prozessor-Anordnung 100 vorgesehene gemeinsame Taktung der Fliesen-Prozessoren existieren muss, diese jedoch zur einfacheren Darstellung der Erfindung im Weiteren angenommen wird.

Im Weiteren werden zum einfacheren Verständnis der erfindungsgemäßen Vorgehensweise Grundlagen über die mathematische Modellierung der Fliesen-Anordnung erläutert.

- 5 Im Weiteren werden die Fliesen-Prozessoren und das Fliesen-Portal 401 gemeinsam als gerichteter Graph sowie die Routing-Wege als gerichteter Baum modelliert.
- Die Wahl eines Routings ergibt sich somit als diskretes 10 Optimierungsproblem.

Definition 1 (Gerichteter Graph, ungerichteter Graph)

15 (i)

Gegeben sei eine Menge V und eine Menge E. Ist

$$g : E \rightarrow V^2 = V \times V$$

20

eine Abbildung mit den Komponenten

$$g^-: E \rightarrow V \text{ und } g^+: E \rightarrow V$$
,

25 d.h.

$$g: E \rightarrow v^2$$
,

$$e \mapsto (g^-(e), g^+(e)),$$

30

so heißt das Tupel

35 gerichteter Graph mit Eckenmenge (Knotenmenge) V, Kantenmenge E und Inzidenzabbildung g. $g^-(e)$ heißt die initiale Ecke der

Kante $e \in E$ und $g^+(e)$ heißt die terminierende Ecke der Kante $e \in E$.

5 (ii)

Gegeben sei eine Menge V und eine Menge M. Man betrachte die Äquivalenzrelation

10
$$\alpha := \{(x, y), (y, x)\} \in V^2 \times V^2; \text{ mit } x, y \in V\} \subseteq V^2 \times V^2$$

mit den Äquivalenzklassen

$$[x, y] := \{(x, y), (y, x)\}, \text{ für alle } x, y \in V.$$

15

Mit einer Abbildung

$$u : M \rightarrow V^2 / \alpha = \{[x, y]; x, y \in V\}$$

20 heißt das Tupel

(V, M, u)

ungerichteter Graph mit Eckenmenge (Knotenmenge) V,

25 Kantenmenge M und Inzidenzabbildung u.

Fig.7a zeigt einen gerichteten Graphen 700 und Fig.7b zeigt einen ungerichteten Graphen 701.

30

Definition 2 (Terminierte Kanten, initiierte Kanten)

Sei (V, E, g) ein gerichteter Graph und $v \in V$. Dann sei $E_{term}(v)$ die Menge der durch v terminierten Kanten, d.h.

$$E_{term}(v) := \left\{ e \in E; g^+(e) = v \right\},$$

und Einit(v) die Menge der durch v initiierten Kanten, d.h.

5
$$E_{init}(v) := \{ e \in E; g^{-}(e) = v \}.$$

Definition 3 (Weg in einem gerichteten Graphen)

10 Sei (V, E, g) ein gerichteter Graph, $K \subseteq E$.

(i)

Für $a, b \in V$ und $n \in N$ definiere

15

$$\Gamma_{K}^{n}(a, b) := \begin{cases} (k_{1}, \dots, k_{n}) \in K^{n}; a = g^{-}(k_{1})g^{+}(k_{n}) = b, \\ g^{+}(k_{1}) = g^{-}(k_{1+1}) \text{ für } i = 1, \dots, n-1, \\ k_{1}, g^{+}(k_{1}), \dots, g^{+}(k_{n}) = n+1 \end{cases}$$

als die Menge aller Wege von a nach b der Länge n mit Kanten K ($\Gamma_K^n(a,b)=\big\{\big\}$, falls kein solcher Weg existiert).

20

(ii)

Für a, b ∈ V definiere

25

$$\Gamma_{K}(a, b) := \bigcup_{n \in N} \Gamma_{K}^{n}(a, b)$$

als die Menge aller Wege von a nach b mit Kanten aus K.

30

Definition 4 (Gerichteter Baum)

Sei (V, E, g) ein gerichteter Graph, $V\neq 0$. (V, E, g) heißt gerichteter Baum, falls es ein $w\in V$ gibt so dass

 $|\Gamma_E(w, v)| = 1$, für alle $v \in V \setminus \{w\}$

5

und für alle $K \subseteq E, K \neq E$

 $|\Gamma_K(w, v)| = 0$, für mindestens ein $v \in V \setminus \langle w \rangle$.

- Das heißt es gibt genau einen Weg von w zu jeder Ecke $v \neq w$ und die Kantenmenge ist nicht verkleinerbar. Die eindeutige Ecke w heißt die Wurzel des gerichteten Baumes.
- Die zweite Bedingung in der obigen Definition 4 garantiert 15 die Eindeutigkeit der Wurzel, die sonst nicht gegeben wäre und verhindert die Existenz "überflüssiger" Kanten in dem Baum.
- Fig.8 zeigt ein Beispiel eines gerichteten Baumes 800 als 20 einen Teil des in Fig.7a skizzierten gerichteten Graphen.

Lemma 5 (Eigenschaften eines gerichteten Baumes)

- 25 Sei (V, E, g) ein gerichteter Baum. Dann gilt für alle a, b \in V $\left| \Gamma_E(a,b) + \left| \Gamma_E(b,a) \right| \leq 1.$
- 30 Definition 6 (Weglänge, Durchsatz)

Sei (V, E, g) ein gerichteter Baum mit Wurzel $w \in V$. Definiere

(i)

35

Für jedes $v \in V \setminus \{w\}$, sei $\gamma_E(v) \in \Gamma_E(w, v)$ der eindeutige Weg von w nach v, d.h.

$$\Gamma_{E}(w, v) = \{\gamma_{E}(v)\}.$$

5 (ii)

10

Für jedes $v \in V \setminus \{w\}$ gibt es ein $n \in N$ mit

$$\left\{ \gamma_{\rm E}({\rm v}) \right\} \,=\, \Gamma_{\rm E}({\rm w},\,{\rm v}) \,=\, \Gamma_{\rm E}^{\rm n}({\rm w},\,{\rm v}) \,. \label{eq:gamma_energy}$$

Definiere $|\gamma_{\rm E}({
m v})| := {
m n}$ als Weglänge des Weges $\gamma_{\rm E}({
m v})$.

(iii)

Definiere für $|V| < \infty$ und alle $v \in V$ $d_E(v) := 1 + |\{z \in V; \Gamma_E(v, z) \neq \{\}\} \in N$

20 als Durchsatz des Knotens v.

Definition 7 (Ast)

Sei (V, E, g) ein gerichteter Baum. Definiere für alle $v \in V$ $V_E(v) := \{v\} \cup \{z \in V; \Gamma_E(v, z) \neq \{\}\}$

als Ast des Knotens v.

30

Es gilt folgendes Lemma:

35 Lemma 8 (Mächtigkeit des Astes)

Sei (V, E, g) ein gerichteter Baum und $v \in V$. Dann gilt

$$d_{E}(v) = |V_{E}(v)|.$$

- Das Gesamtnetzwerk der Fliesen-Anordnung 100 inklusive dem Portalprozessor 401 wird im Folgenden als ein Graph dargestellt. Um zu modellieren, dass existierende Verbindungen zwischen zwei Knoten stets in zwei Richtungen durchlässig sind, was eine bidirektionale Kommunikation symbolisiert, wird zunächst ein ungerichteter Graph betrachtet. Zur Festlegung des Routings wird anschließend ein gleichwertiger gerichteter Graph abgeleitet.
- 15 Definition 9 (Display-Graph)

Sei (V, M, u) ein ungerichteter Graph mit

- 20 (i)
 - $2 \le |V| < \infty, 1 \le |M| < \infty,$
- 25 (ii)
 - u injektiv (d. h. keine Zweiecke)
- 30 (iii)
 - $u(E) \cap \{[x, x]; x \in V\} = \{\}$ (d. h. schlingenfrei)
- 35 (iv)

 $w \in V$ sei ein ausgezeichneter Knoten und heiße Portal(knoten).

Es sei (V, E, g) der gerichtete Graph, für den gilt: Zu jedem $m \in M$ betrachte neue Elemente m^- und m^+ derart, dass

$$E := \{m^-; m \in M\} \cup \{m^+; m \in M\}, |E| = 2|M|.$$

Wähle die Abbildung g derart, dass

10

$$u(m) = \{g(m^-), g(m^+)\}, \quad \text{für alle } m \in M.$$

Gilt zusätzlich

15 (v)

30

 $\Gamma_{E}(w, v) \neq \left\{ \right\}$ für alle $v \in V \setminus \{w\}$ (d. h. zusammenhängend),

so heiße (V, E, g) ein Anzeigeeinheits-Graph, im Weiteren auch bezeichnet als Display-Graph.

Ein entsprechender ungerichteter Graph 900 (vgl. **Fig.9a**) und der dazu gleichwertige gerichtete Fliesen-Anordnungs-Graph 901 (**Fig.9b**) sind in den Fig.9a und Fig.9b exemplarisch dargestellt.

Gemäß diesem Ausführungsbeispiel wird ein hexagonales 4x4-Fliesenfeld mit einem Defekt gewählt. Die obige Definition 9 ist allgemein gehalten. Die betrachteten Netzwerke besitzen weitere einschränkende Eigenschaften, die hier zunächst aber nur kurz erwähnt werden:

Mit Ausnahme des Portal-Knotens 902 ist die Anzahl der Kanten, denen ein Knoten 903 als initiale
 (terminierende) Ecke angehören kann, durch eine Zahl q E N beschränkt. Bislang wurden q = 4 (Orthogonales Netzwerk) und q = 6 (hexagonales Netzwerk) betrachtet.

• Der gerichtete Graph 901 ist im Allgemeinen ein ebener Graph bzw. ein plättbarer Graph (es sind Erweiterungen denkbar, bei denen dies nur für den Sub-Graphen gilt, der den Portal-Knoten 902 nicht enthält, falls die Zuleitungen 904 nicht am Rand der Fliesen-Anordnung 100 eingespeist werden).

Für die weiteren Erläuterungen ist es sinnvoll, neben dem Portal-Knoten 902 noch diejenigen Knoten 903 auszuzeichnen,

die eine direkte Verbindung zu dem Portal-Knoten 902 aufweisen. Wie oben beschrieben werden diese Knoten als Einleitknoten 903 bezeichnet, das heißt sie repräsentieren die Referenzpositionen, denen die Einleit-Fliesen-Prozessoren der Fliesen-Anordnung zugeordnet sind. Die Kanten von dem Portal-Knoten 902 zu den Einleitknoten 903 werden im Weiteren als Zuleitungen 904 und die Kanten 905 zwischen Fliesen-Prozessoren als Netzwerkverbindungen bezeichnet.

20 Definition 10 (Zuleitungen, Netzwerkverbindungen, Einleitknoten)

Es sei (V, E, g) ein Display-Graph mit Portalknoten w. Die Menge der Zuleitungen ist dann definiert durch

 $E_{port} := \left\{ e \in E; g^{-}(e) = w \right\}$

und die Menge der Netzwerkverbindungen durch

30 $E_{net} := \{ e \in E; g^{-}(e) \neq w \land g^{+}(e) \neq w \}.$

Die Menge der Einleitknoten ist definiert durch

$$V_{port} := g^+(E_{port}).$$

5

Im Weiteren wird die Problemstellung betrachtet, dass jedem Knoten eines Fliesen-Anordnung-Graphen vom Portal-Knoten aus innerhalb eines Zeitrahmens (innerhalb einer Refresh-Rate) eine elektronische Nachricht übermittelt werden soll.

5

10

Geschieht dies, wie es diese Problemstellung nahe legt, auf fest gewählten Wegen und kreuzen sich Wege, die sich getrennt haben, nicht erneut, so bedeutet dies, dass ein gerichteter Baum als Unter-Graph des Fliesen-Anordnungs-Graphen gewählt werden soll. Dieser gerichtete Graph, der auch als Routing-Baum bezeichnet wird, legt dann die Wege des Informationsflusses eindeutig fest, nicht aber die Dynamik des Informationsflusses.

Der Routing-Baum ist nicht eindeutig; im Allgemeinen ist die Menge aller möglichen Bäume unüberschaubar groß.

Definition 11 (Zulässige Baum-Menge, zulässige Kantenmenge)

20

Sei (V, E, g) ein Display-Graph mit Portalknoten $w \in V$. Die Menge aller zulässigen gerichteten Bäume in (V, E, g) ist definiert als

25 $B := \{(V, K, g|_K); \text{ mit } K \subseteq E \text{ und } (V, K, g|_K) \text{ ein gerichteter Baum mit Wurzel } w\}.$

Die Menge aller zulässigen Kantenmengen bezüglich (V, E, g) ist dann definiert als

30

$$\kappa := \{ \mathbb{K} \subseteq \mathbb{E}; (\mathbb{V}, \mathbb{K}, \mathbb{g}|_{\mathbb{K}}) \in \mathbb{B} \}.$$

Ein beispielhafter zulässiger Baum 1000 ist in Fig.10

35 dargestellt mit den entsprechenden Routing-Wegen mit dem Portal-Knoten 1001 als Wurzelknoten des gerichteten Baums 1000.

Basierend auf Definition 10 werden folgende Begriffe eingeführt:

5

Definition 12 (Zuleitungen, Netzwerkverbindungen)

Es sei (V, E, g) ein Display-Graph mit Portalknoten w und sei $K \in K$. Die Menge der Zuleitungen in K ist dann definiert durch

 $K_{port} := E_{port} \cap K$.

Die Menge der Netzwerkverbindungen durch

15

 $K_{\text{net}} := E_{\text{net}} \cap K$.

Zur Bewertung von Bäumen werden im Folgenden eine Reihe von 20 Kriterien aufgeführt:

Definition 13 (Baumbewertungen)

25 Sei (V, E, g) ein Fliesen-Graph mit Portalknoten $w \in V$ und der Menge κ der zulässigen Kantenmengen.

the market of the contract of the specific contract of

(i)

30

Für alle $v \in V \setminus \{w\}$ definiert

$$1_{\min}(v) := \min_{K \in K} \{ \gamma_K(v) \}$$

35 den Abstand des Knotens v von der Wurzel w im Display-Graphen. (ii)

Für alle $K \in K$ definiert

5

$$\text{L(K)} := \max_{\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{w}\}} \ \big\{ \gamma_{K}(\mathbf{v}) \big\}$$

den Maximalabstand im durch K festgelegten Baum $(V, K, g|_K)$.

10 $L_{\min} := \min_{K \in K} \{L(k)\}$

ist dann der Maximalabstand im Fliesen-Graphen.

15 (iii)

Für alle $K \in \kappa$ definiert

$$D(K) := \max_{v \in V \setminus \{w\}} \{d_K(v)\}$$

20

den Maximaldurchsatz im durch K festgelegten Baum $(V, K, g|_{K})$.

$$D_{\min} := \min_{K \in \kappa} \{D(K)\}$$

25 ist dann der Maximaldurchsatz im Fliesen-Graphen.

Zur Auswahl der "besten" Bäume bzw. Kantenmengen sind mindestens die folgenden Probleme betrachtbar:

(i)

Menge der Bäume, deren Knoten jeweils minimalen Abstand zur 35 Wurzel haben:

 $O_1 := \{ K \in \kappa; |\gamma_K(v)| = 1_{\min}(v) \text{ für alle } v \in V \setminus \{w\} \},$

5 (ii)

Menge der Bäume, deren Maximalabstand minimal ist:

$$O_2 := \{ \kappa \in \kappa; L(\kappa) = L_{\min} \},$$

10

(iii)

Menge der Bäume, deren Maximaldurchsatz minimal ist:

15 $O_3 := \{ \kappa \in \kappa; D(\kappa) = D_{\min} \}.$

Es ist leicht einsehbar, dass $O_1 \subset O_2$.

- Falls gilt $O_2 \cap O_3 \neq \big\{\big\}$, so sind alle Bäume aus $O_2 \cap O_3$ Minimierer der Funktionen L und K und als Routing-Baum besonders geeignet.
- 25 Falls $O_2 \cap O_3 \neq \{\}$ nicht gilt, so sind relaxierte Problemstellungen notwendig.

(iv)

Menge der Bäume, deren Maximalabstand höchstens um a $\in \mathbb{N}_0$ größer als minimal ist:

$$O_4^a := \{K \in \kappa; L(K) \le L_{min} + a\}$$

35

30

(v)

Menge der Bäume, deren Maximaldurchsatz höchstens um $b \in N_0$ größer als minimal ist:

5
$$O_5^b := \{K \in \kappa; D(K) \le D_{\min} + b\}.$$

Für eine geeignete Wahl von a, b \in N_0 wird stets $O_4^a\,\cap\,O_5^b\,\neq\,\big\{\big\}$ möglich sein.

- Die Problemstellung lässt sich aber auch als multikriterielles kombinatorisches Optimierungsproblem mit zwei Zielfunktionen auffassen.
- Für den Fliesen-Graphen gemäß Fig.9b ist der Routing-Baum 1000 gemäß Fig.10 sicherlich nicht optimal und zwar nach keiner der obigen Kriterien. Der Baum 1100 gemäß **Fig.11** liegt dagegen sogar in O₁ geschnitten mit O₃.
- Oben wurde erläutert, wie die Wege des Informationsflusses im Fliesen-Netzwerk durch die Auswahl eines Routing-Baums aus einer zulässigen Baum-Menge festgelegt werden können. Um die Anzeigeeinheits-Knoten mit den zum Bildaufbau nötigen Informationen zu versorgen, wird jedem Knoten vom Portal-
- Knoten ausgehend eine elektronische Nachricht entlang dieser Wege übermittelt. Eine parallele Übermittlung aller elektronischen Nachrichten ist im Allgemeinen nicht möglich, da gewisse Kapazitäten, wie viele Nachrichten in einem Zeittakt über eine Kante übertragen werden können und wie
- viele Nachrichten in einem Knoten zwischengespeichert werden können (Queue), nicht überschritten werden dürfen. Eine zeitliche Abfolge (Dynamik) des Informationsflusses sollte daher bestimmt werden.
- Sei im Folgenden (V, E, g) ein Fliesen-Graph mit Portal-Knoten w. Es sei r := |V| 1 und $V = \{v_0, v_1, \dots v_r\}, v_0 = w$.

Ist zudem K \in K vorgegeben, so können gewisse "Gesamt"-Routing-Matrizen τ und anschließend gewisse "Einzel"-Routing-Matrizen σ^1 , 1=1,...,r, eingeführt werden.

- In τ wird die Information enthalten sein, wie viele elektronische Nachrichten über die einzelnen Kanten aus K in den einzelnen Zeittakten zu übertragen sind. Dabei werden Bedingungen an τ so formuliert, dass die Kapazitäten eingehalten werden und am Ende in jedem Knoten eine
- 10 elektronische Nachricht vorhanden ist. Zwischen verschiedenen Nachrichten (das heißt den Einzelfliesendaten) wird in τ noch nicht unterschieden. Wie ein Routing eines speziellen Einzelfliesendatums an die jeweilige Zielfliese erfolgt bzw. erfolgen kann, ist aus τ noch nicht unmittelbar ersichtlich.
- Doch können aus τ gewisse "Einzel"-Routing-Matrizen σ^1 , $l=1,\ldots,r$, abgeleitet werden, die genau dieses Routing der Einzelfliesendaten zu den Zielfliesen v_1 , $l=1,\ldots,r$, beschreiben. Die "Einzel"-Routing-Matrizen σ^1 , $l=1,\ldots,r$, sind dabei nicht notwendigerweise eindeutig, doch wird die
- Bewertung des Routings anhand der Routing-Dauer im Wesentlichen nur von τ abhängen. Im Weiteren wird daher ein Routing als bereits durch τ gegeben betrachtet.

25 Definition 14 (Routing-Abbildung, Routing-Matrix)

Es sei $K = \{k_1, \ldots, k_r\} \in K$ (beachte: |K| = |V| - 1). Es seien $c_{port}, c_{net}, q \in N$. Eine (c_{port}, c_{net}, q) -Routing-Abbildung oder -Matrix über den durch K bestimmten Baum $(V, K, g|_K)$ ist eine

30 Matrix

$$\tau = \left(\tau_{ij}\right)_{i=1,\ldots,n} \in \mathbb{N}_0^{n,r}, n \in \mathbb{N},$$

$$j=1,\ldots,r$$

mit folgenden Eigenschaften

(i)

$$\begin{split} \tau_{\text{ij}} &\leq c_{\text{port}} \text{ für alle j} \in \{1, \dots, r\} \text{ mit } k_{\text{j}} \in K_{\text{port}} \text{ und alle} \\ &\text{i} \in \{1, \dots, n\}, \text{ sowie } \tau_{\text{ij}} \leq c_{\text{net}} \text{ für alle j} \in \{1, \dots, r\} \text{ mit} \\ &\text{5} \quad k_{\text{j}} \in K_{\text{net}} \text{ und alle i} \in \{1, \dots, n\}, \end{split}$$

(ii)

10 für alle $v \in V \setminus \{w\}$ und $1 \le m \le n$ gilt

15 (iii)

für alle $v \in V \setminus \{w\}$ und $1 \le m \le n$ gilt

20

(iv)

für alle $v \in V \setminus \{w\}$ gilt

$$\sum_{\substack{1 \le i \le n}} \sum_{\substack{1 \le j \le r, \\ k_j \in K_{term}(v)}} \tau_{ij} - \sum_{\substack{1 \le i \le n}} \sum_{\substack{1 \le j \le r, \\ k_j \in K_{init}(v)}} \tau_{ij} = 1.$$

c_{port} heißt Kapazität der Zuleitungen, c_{net} heißt Kapazität 30 der Netzwerkverbindungen und q heißt maximale Queue-Länge.

entre de la companya de la companya

heißt Routing-Dauer. Die Menge aller (c_{port}, c_{net}, q) -Routing-Matrizen über $(V, K, g|_K)$ werde mit

5 $\Re_{c_{port},c_{net},q}(\kappa)$

bezeichnet.

15

30

35

Die Erweiterung gegenüber den zuvor betrachteten Routing10 Bäumen besteht in erster Linie darin, dass in τ zusätzlich eine zeitliche Komponente enthalten ist.

Der Matrixeintrag τ_{ij} , $i\in\{1,\ldots n\}$ $j\in\{1,\ldots r\}$ besagt 'dass im i-ten Zeittakt τ_{ij} Nachrichten über die Kante k_j übertragen werden.

Bedingung (i) gewährleistet die Einhaltung von vorgegebenen Zuleitungskapazitäten und Netzwerkkapazitäten.

- 20 Bedingung (ii) sorgt für die nötige Kausalität im Netz.
 Nachrichten können nur dann von einem Knoten aus
 weitergeleitet werden, wenn sie zuvor (das heißt mindestens
 einen Zeittakt früher) an diesen Knoten übermittelt wurden.
- 25 Bedingung (iii) berücksichtigt Speicherplatzbeschränkungen in den Knoten.

Nach Bedingung (iv) schließlich liegt nach n Zeiteinheiten genau eine Nachricht in dem Knoten.

Die Routing-Matrix gibt somit gemeinsam mit dem Routing-Baum ein Routing-Verfahren mit Angabe der zeitlichen Abfolge der einzelnen Schritte an, das das Netz gleichzeitig mit Nachrichten versorgt.

Es wird definiert:

Definition 15 (Routing)

5
 Es seien c_{port}, c_{net}, q ∈ N. Ein (c_{port}, c_{net}, q)-Routing ist
 ein Tupel (K, τ) bestehend aus einer zulässigen Kantenlänge
 K = {k₁,..., k_r} ∈ κ
 und einer Routing-Matrix τ ∈ R_{cport}, c_{net}, q(K). Die Menge
10 aller Routings werde mit R_{cport}, c_{net}, q bezeichnet.

Wie sich nun das dynamische Routing für jeden einzelnen Knoten ergibt, sehen wir im Folgenden.

Bestimme dazu Matrizen $\sigma^1 \in \{0,1\}^{n,r}, 1 = 1, ...r, \text{ nach folgendem}$

15 Algorithmus:

```
\tau^{0} := \tau;
\text{für } 1 = 1, \dots, r :
20 \quad \{ \\ \sigma^{1} := 0^{n,r} \in \{0,1\}^{n,r};
\text{sei } (k_{p_{1}}, \dots, k_{p_{z}}), \ z \in \mathbb{N}, \ \text{der Weg von w nach } v_{1};
i_{z+1} := n+1;
\text{für } y := z, \dots, 1 \ \text{absteigend:}
25 \quad \{ \\ i_{y} := \max \Big\{ i \in \{1, \dots, i_{y+1} - 1\} : \tau_{i,p_{y}}^{1-1} > 0 \Big\};
\sigma^{1}_{i_{y}p_{y}} := 1;
```

30
$$\tau^1 := \tau^{1-1} - \sigma^1;$$

Man zeigt leicht, dass der Algorithmus wohldefiniert ist, und dass $\tau^r = 0^{n,r}$ gilt. Folglich ist

$$\sum_{1 \le 1 \le r} \sigma^1 = \tau.$$

5

Es ist

$$\sum_{\substack{1 \leq i \leq n}} \sum_{\substack{1 \leq j \leq r, \\ k_j \in K_{\texttt{term}} \left(v_{\widetilde{1}} \right)}} \sigma_{\texttt{ij}}^{\texttt{l}} - \sum_{\substack{1 \leq i \leq n}} \sum_{\substack{1 \leq j \leq r, \\ k_j \in K_{\texttt{init}} \left(v_{\widetilde{1}} \right)}} \sigma_{\texttt{ij}}^{\texttt{l}} = \delta_{1\widetilde{1}}.$$

- 10 für alle für alle 1, $\tilde{l} \in \{1, \ldots, r\}$. Ein Matrixeintrag $\sigma_{ij}^l = 1$ besagt, dass die Nachricht an v_l im i-ten Zeittakt über die Kante k_l weitergeleitet wird.
- 15 Als Beweisskizze zu obiger Wohldefiniertheit des Algorithmus werden zwei Lemmata aufgeführt:

Lemma 16 (Wohldefiniertheit von σ^1)

20

Es sei $l \in \{1, \dots, r\}$. Erfüllt $\tau^{l-1} \in \mathbb{N}_0^{n,r}$ die Bedingung (ii) aus Definition 14 für alle $v \in V \setminus \{w\}$ und Bedingung (iv) aus Definition 14 für $v := e_l$, so lässt sich σ^l gemäß dem Algorithmus wählen.

25

Lemma 17 (Eigenschaften von τ^1)

Es sei $l \in \{1, ..., r\}$. Erfüllt $\tau^{l-1} \in N_0^{n,r}$ die Voraussetzungen von Lemma 16 und wird σ^l gemäß obigem Algorithmus gewählt, so erfüllt auch τ^l die Voraussetzungen von Lemma 16.

Definition 18 (Routing-Matrix zu einzelnem Knoten)

Es seien c_{port} , c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, c_{net} , $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in R_{C_{port}}$, $q \in N$. Es sei $(K, \tau) \in R_{C_{port}}$, $q \in R_{C_$

Oft gehen wir bei der Konstruktion der Matrizen τ und $\sigma^1, 1 = 1, \ldots, r \text{ umgekehrt vor. Wir legen Matrizen}$ $\sigma^1, 1 = 1, \ldots, r, \text{ fest, indem wir angeben, in welcher zeitlichen Abfolge die Nachricht an <math>v_1$ über den Weg $\gamma_K(v_1)$ weitergeleitet wird. τ ergibt sich dann aus

15 $\tau := \sum_{1 \le 1 \le r} \sigma^1$.

Die zeitliche Abfolge des Routings zu jedem einzelnen Knoten und damit die σ^1 , $l=1,\ldots,r$, sind dabei so zu wählen, dass die Kapazitäten von Kanten und Knoten nicht überschritten werden, d. h. dass τ die Punkte (i) und (iii) aus Definition 14 erfüllt.

Im Weiteren werden Kriterien zu einem "günstigen" und nach Möglichkeit "optimalen" Auswahl von Routing-Verfahren in einem Anzeigeeinheits-Graphen angegeben. Es wird ein Routing im Weiteren dann als optimal bezeichnet, wenn es die kürzest mögliche Dauer beansprucht. Um dies in mathematische Sprache fassen zu können, werden folgende Begriffe eingeführt.

Sei dabei (V, E, g) stets ein Anzeigeeinheits-Graph und sei wie zuvor V = $\{v_0, \dots v_r\}$ mit $v_0 = w$.

Definition 19 (Minimale Routing-Dauer)

(i)

5

Sei $K = \{k_1, \dots k_r\} \in K$ und seien $c_{port}, c_{net}, q \in N$. Dann definiert

$$T_{c_{\texttt{port}},c_{\texttt{net}},q}^{\texttt{min}}(\texttt{K}) \coloneqq \min_{\substack{\tau \in R_{c_{\texttt{port}},c_{\texttt{net}},q}(\texttt{K})}} \{\!\![\tau]\!\!]$$

10

die minimale Routing-Dauer über den durch K festgelegten Baum $(V, K, g|_K)$.

15 (ii)

Seien c_{port}, c_{net}, q ∈ N. Dann definiert

$$T_{\text{Cport},\text{C}_{\text{net}},q}^{\min} := \min_{K \in \kappa} \left[T_{\text{Cport},\text{C}_{\text{net}},q}(K) \right]$$

20

die minimale Routing-Dauer im Fliesen-Graphen.

Definition 20 (Optimales Routing)

25

(i)

Sei $K = \{k_1, ..., k_r\} \in K$ und seien $c_{port}, c_{net}, q \in N$. Unter 30 einer optimalen Routing-Matrix im durch K festgelegten Baum $(V, K, g|_K)$ wird eine Routing-Matrix verstanden aus folgender Menge

$$\mathbf{R}_{\texttt{Cport},\texttt{C}_{\texttt{net}},\texttt{q}}^{\texttt{min}}(\texttt{K}) \coloneqq \left\{ \tau \in \mathbf{R}_{\texttt{Cport},\texttt{C}_{\texttt{net}},\texttt{q}}(\texttt{K}); |\tau| = \mathbf{T}_{\texttt{C}_{\texttt{port}},\texttt{C}_{\texttt{net}},\texttt{q}}^{\texttt{min}}(\texttt{K}) \right\} \ .$$

(ii)

5 Seien c_{port}, c_{net}, q ∈ N. Unter einem optimalen Routing wird ein Routing verstanden aus folgender Menge

$$\mathbf{R}_{\texttt{Cport},\texttt{Cnet},\texttt{Q}}^{\texttt{min}} \coloneqq \begin{cases} (\texttt{K},\tau); \, \texttt{K} = \{\texttt{k}_1,\ldots,\texttt{k}_r\} \in \; \texttt{K}, \tau \in \; \texttt{R}_{\texttt{Cport},\texttt{C}_{\texttt{net}},\texttt{Q}}(\texttt{K}) \\ & \text{und} |\tau| = T_{\texttt{Cport},\texttt{C}_{\texttt{net}},\texttt{Q}}^{\texttt{min}} \end{cases}$$

10

Die Wahl einer optimalen Routing-Matrix bei bereits festgelegten Routing-Baum im Sinne von Definition 20 (i) ist einfach. Sie wird im vorliegenden Abschnitt für die Sonderfälle $c_{ ext{port}}$ und $c_{ ext{net}} = 1$ und $c_{ ext{port}}$ und $c_{ ext{net}} > 1$

15 erläutert.

Die Lösung des in Definition 20 (ii) gestellten Optimierungsproblems bei freier Wahl des Routing-Baumes ist erheblich schwieriger. Um es exakt zu lösen, ist das Problem meist zu komplex. Im Folgenden werden aus diesem Grund heuristische Verfahren zu seiner Lösung erläutert. Die Lösung des Optimierungsproblems aus Definition 20 (i) bei festgelegtem Routing-Baum liefert dabei wichtige Strategien für die günstige Wahl des Routing-Baums.

25

20

Zunächst wird der Sonderfall erläutert, bei dem gilt $c_{\texttt{port}} = c_{\texttt{net}} = 1$.

30 Es sei q \in N beliebig und $K \in K$. Ohne Beschränkung der Allgemeingültigkeit gelte $K_{port} = E_{port}$ (ansonsten betrachte $u \in V_{port} \setminus g^+(K_{port})$ nicht als Einleitknoten, setze also $V_{port} := g^+(K_{port})$).

Wegen cport = 1 überlegt man leicht, dass

$$T_{Cport,Cnet,Q}^{min}(K) \ge \max_{v \in V_{Port}} d_K(v) = D(K).$$

5 Es liegt sogar Gleichheit vor. Sei dazu

$$n := \max_{v \in V_{Port}} d_K(v) = D(K).$$

Die Idee des folgenden Routings ist, dass in jedem Zeittakt über jede Zuleitung eine elektronische Nachricht in die 10 Einleitknoten gelangt und in den folgenden Zeitintervallen schrittweise an ihren jeweiligen Zielknoten, das heißt den Ziel-Fliesen-Prozessor, weitergeleitet wird. Es werden zunächst die Nachrichten an die weiter entfernten Knoten, später die Nachrichten an die nah am Portal-Knoten liegenden 15 Knoten, das heißt Fliesen-Prozessor, eingespeist. Ein entsprechendes Routing ist in den Fig.12a bis Fig.12i für den Fall $c_{port} = c_{net} = 1$ dargestellt. Mit den kleinen Vierecken ist jeweils eine elektronische Nachricht 1201 symbolisiert, 20 welche über den Portal-Knoten 1202 zu den Einleit-Fliesen-Prozessoren 1203 in die Fliesen-Anordnung 100 geführt wird.

Es wird betrachtet $u \in V_{port}$ und es wird gesetzt $d := d_K(u) = |V_K(u)|$. Es sei

 $V_{K}(u) = \{v_{Q_{1}}, \dots, v_{Q_{d}}\} \text{ mit } v_{Q_{1}} = u \text{ derart angeordnet, dass}$

$$\Gamma_{K}\left(v_{q_{j}}, v_{q_{j}}\right) = \left\{\right\} \tag{1}$$

30 für i > j. Dies ist insbesondere dann erfüllt, wenn

$$\left| \gamma_{K} \left(v_{q_{j}} \right) \right| \left| \gamma_{K} \left(v_{q_{j}} \right) \right|$$

für i > j. Sei nun $l \in \{1, ..., d\}$ beliebig und sei $\{k_{p_1}, ..., k_{p_z}\}$ $z \in N$, der Weg von w nach v_{q_1} . Dann setze für alle $i \in \{1, ..., n\}$ und $j \in \{1, ..., r\}$

5

$$\sigma_{\text{ij}}^{\text{ql}} := \begin{cases} 1 \text{ falls } 1 + (d-1) \leq i \leq z + (d-1) \text{ und } & \text{pi-}(d-1) = j, \\ 0 \text{ sonst.} \end{cases}$$

Um zu zeigen, dass $\sigma^{ ext{ql}}$ eine Routing-Matrix zu $v_{ ext{ql}}$ definiert, 10 genügt es zu zeigen, dass

$$z + (d - 1) \le n,$$

denn dann reichen die n Zeittakte, um die Nachricht gemäß unserer Konstruktion von $\sigma^{\rm ql}$ an ihr Ziel ${\rm v_{\rm ql}}$ zu leiten.

Wegen (1) ist $1 \ge z$ und damit

$$z + (d - 1) \le d \le n$$

20 und damit ist es gezeigt.

Entsprechend obiger Überlegungen lassen sich durch Betrachtung aller Einleitknoten schließlich die σ^1 für alle $1 \in \{1, \ldots, r\}$ bestimmen. Wie üblich wird gebildet

25

$$\tau := \sum_{1=1}^r \sigma^1.$$

Man sieht leicht, dass τ dann wirklich ein (1,1,q)-Routing 30 über (V,K,g|K) für beliebige $q \in N$ definiert und nach obigen Überlegungen optimal ist. Es gilt also

$$T_{Cport,Cnet,Q}^{min}(K) = \max_{v \in V_{port}} d_K(v) = D(K).$$

Fig. 12a zeigt den Ausgangszustand, zu dem alle Nachrichten 1201 in dem Portal-Knoten 1202 gespeichert sind. Nach einem ersten Zeittakt sind die ersten zwei Nachrichten 1201 den 5 Einleit-Fliesen-Prozessoren 1203, das heißt den Fliesen-Prozessoren der Fliesen-Anordnung 100; über welche die Information über die Fliesen-Anordnung zu den jeweiligen Fliesen-Prozessoren zugeführt werden können, zugeführt und dort zwischengespeichert (vgl. Fig. 12b). Nach einem weiteren 10 Zeitschritt (vgl. Fig.12c) sind die ersten beiden Nachrichten schon an erste innere Knoten 1204 der Fliesen-Anordnung übertragen und zwei weitere Nachrichten 1201 sind den Einleit-Fliesen-Prozessoren 1203 zugeführt worden. Nach 15 jeweils einem weiteren Zeitschritt ist die jeweilige elektronische Nachricht 1201 immer um jeweils einen Fliesen-Prozessor weiter übertragen worden und es sind jeweils zwei neue Nachrichten 1201 in die Fliesen-Anordnung 100 zugeführt worden, anders ausgedrückt den Einleit-Fliesen-Prozessoren 20 1203 zugeführt. Die Fig.12d, Fig.12e, Fig.12f, Fig.12g, Fig.12h, Fig.12i zeigen das sukzessive Voranschreiten der Übertragung der Nachrichten bis zu ihrem jeweiligen Ziel-Fliesen-Prozessor nach jeweils einem Zeittakt.

25 Als eine mögliche vorteilhafte Strategie für die Wahl eines optimalen Routings bei freier Wahl des Routing-Baums im Sinne von Definition 20 (ii) kann festgehalten werden:

Wähle den Routing-Baum so, dass alle Einleit-Knoten möglichst gleich großen (genauer: maximal um den Wert 1 unterschiedlichen) Durchsatz besitzen und setze die Routing-Matrix entsprechend obigen Überlegungen.

Im Weiteren wird der zweite Sonderfall kurz erläutert, bei 35 dem gilt:

$$c := c_{port} = c_{net} > 1, q \ge c.$$

Sei $K \in K$. Ohne Beschränkung der Allgemeingültigkeit gelte wiederum $K_{\mbox{port}} = E_{\mbox{port}}$.

In diesem Fall ist es schwieriger, die minimale Routing-Dauer im Voraus anzugeben. Es wird somit eine Routing-Matrix entwickelt, die ein optimales (cport, cnet, q)-Routing über (V, K, g | K) definiert. Aus ihr kann schließlich die minimale Routing-Dauer ermittelt werden. Die Idee für diese Variante des Routings ist gleich der für den Fall cport = cnet = 1 zuvor entwickelten, nur dass in diesem Fall stets c = Cport = Cnet Nachrichten gleichzeitig in einen Einleit-Knoten eingeleitet werden, um von dort aus an die am weitesten entfernten, noch nicht benachrichtigten Knoten weitergeleitet zu werden. Ein solches Routing ist wiederum in den Fig.13a bis Fig.13f skizziert.

Es sei zunächst

20 $\tilde{n} := \max_{v \in V_{port}} d_K(v).$

Es sei $u \in V_{port}$ und es sei $d := d_K(u) = |V_K(u)|$. Es sei $V_K(u) = (v_{q_1}, \dots, v_{q_d})$ mit $v_{q_1} = u$ so angeordnet, dass

$$\left| \gamma_{K} \left(\mathbf{v}_{q_{j}} \right) \geq \left| \gamma_{K} \left(\mathbf{v}_{q_{j}} \right) \right|$$

falls i > j. Sei $l \in \{1, ..., d\}$ und $\hat{d} := \left\lfloor \frac{d-1}{c} \right\rfloor$, d. h. die

nächst kleinere ganze Zahl zu $\frac{d-1}{c}$. Sei (k_{p_1},\ldots,k_{p_z}) der Weg von w nach v_{q_1} . Setze nun für alle $i\in\{1,\ldots,\tilde{n}\}$ und $j\in\{1,\ldots,r\}$

$$\tilde{\sigma}_{\text{ij}}^{\text{ql}} := \left\{ \begin{matrix} 1 & \text{falls } 1 + \hat{d} \leq i \leq z + \hat{d} & \text{und } p_{i} - \hat{d} = j \\ 0 & \text{sonst.} \end{matrix} \right\}.$$

Wie zuvor, bestimme auf die Weise $\tilde{\sigma}^1$ für alle $l \in \{1, \ldots, r\}$ und setze

5

$$\tilde{\tau} := \sum_{1=1}^{r} \tilde{\sigma}^{1}.$$

Streiche nun all diejenigen Zeilen in $\tilde{\tau}$, die gleich 0 sind, d. h. setze

10

n :=
$$\min \{ \hat{n} \in \mathbb{N}; \tau_{ij} = 0 \text{ für alle } \hat{n} < i \leq \tilde{n} \text{ und } j = 1, \dots, r \}$$

und

15
$$\tau := (\tilde{\tau}_{ij})_{i=1,\ldots,n}$$

Man kann zeigen, dass τ ein optimales (c_{port}, c_{net}, q) -Routing über (V, K, g|K) für beliebige $q \ge c$ definiert. Des Weiteren gilt

20

$$\left\lceil \frac{D(K)}{c} \right\rceil = \max_{v \in V_{port}} \left\lceil \frac{d_K(v)}{c} \right\rceil \le n \le \max_{v \in V_{port}} d_K(v) = D(K)$$

und

25 $L(K) \leq n$.

Wie groß n nun tatsächlich ist, hängt von der konkreten Struktur der Äste der Einleitknoten ab, kann aber leicht berechnet werden. Dazu wird zunächst für jedes u \in V_{port} die 30 Anzahl der Zeittakte n_u berechnet, die benötigt wird, um alle Nachrichten an die Knoten des Astes von u zu routen. V_K(u) und d seien dabei wie oben. Dann gilt:

$$n_u = \max_{1 \in \{1, \dots, d\}} \left| \gamma_K \left(v_{q_1} \right) + \left\lfloor \frac{d-1}{c} \right\rfloor \right).$$

Daraus ergibt sich die Routing-Dauer n als

 $\begin{array}{rcl}
n &= & \max \\
u \in V_{port}
\end{array}$

Als alternative Strategie für die Wahl eines optimalen 10 Routings bei freier Wahl des Routing-Baums im Sinne von Definition 20 (ii) ergibt sich somit:

Wähle den Routing-Baum so, dass alle Einleit-Knoten möglichst gleich großen Durchsatz besitzen und der Baum in den Ästen der Einleit-Knoten "ausreichend weit verzweigt" ist, so dass n möglichst nahe an $\left\lceil \frac{D(K)}{c} \right\rceil$ herankommt. Setze die Routing-Matrix entsprechend obigen Überlegungen.

Eine "ausreichend weite Verzweigung" liegt anschaulich dann vor, wenn für alle Einleit-Knoten Folgendes gilt: Betrachte den Ast des Einleit-Knotens, ordne die zugehörigen Knoten nach aufsteigender Weglänge. Dann sollen sich die Weglängen der Knoten nur alle c Knoten um den Wert 1 erhöhen, das heißt c Knoten der Weglänge 2, c Knoten der Weglänge 3,

25

30

15

Bei geringen Kapazitäten der jeweiligen Knoten und der Zuleitungen ist es wichtiger, auf einen gleichmäßigen Durchsatz in dem Einleit-Knoten zu achten, da in diesem Fall üblicherweise der Durchsatz durch die Einleit-Knoten der ausschlaggebende Faktor für die Begrenzung der Routing-Dauer nach unten ist. Die Einleit-Knoten stellen in diesem Falle gewissermaßen eine Engstelle des Baumes dar. Bei höheren Kapazitäten ist es dagegen wichtiger, auf ausreichend viele Verzweigungen im Baum und damit kurze Weglängen zu achten.

Hier sind es üblicherweise die Weglängen, die die Routing-Dauer nach unten begrenzen. Sehr hohe Kapazitäten sind dagegen gar nicht mehr sinnvoll, da das hexagonale Netz die Zahl der Verzweigungen limitiert und gewisse minimale Weglängen von der Topologie des Netzes, das heißt die Topologie der Vermaschung bzw. Verkopplung der Fliesen-Prozessoren in der Fliesen-Anordnung 100 vorgegeben sind.

Im Weiteren werden Ausführungsbeispiele der Verfahren zur 10 Selbstorganisation der Fliesen-Prozessoren in der Fliesen-Anordnung erläutert.

5

Gemäß den Ausführungsbeispielen wird folgende Situation vorausgesetzt:

- Der zentralen externen Einheit, das heißt dem Portalprozessor ist die Topologie des Netzwerkes, das heißt die Anordnung der Fliesen-Prozessoren in der Prozessor-Anordnung unbekannt.
- Die Fliesen-Prozessoren sind durch bidirektionale 20 Verbindungen miteinander vermascht.
 - Eine direkte Kommunikation erfolgt nur zwischen jeweils einander unmittelbar benachbarten Nachbar-Fliesen-Prozessoren.
- Basis der Kommunikation ist der Austausch von 25 elektronischen Nachrichten, wie sie beispielsweise in Fig.14 dargestellt sind.
- Jeder Kontakt mit anderen Komponenten zur
 Selbstorganisation (Positionsbestimmung, Erstellung von
 Routing-Tabellen etc.) und zum Bildaufbau wird durch
 verschiedene Nachrichten abgewickelt. Fig. 14 zeigt
 einen Fliesen-Prozessor einer ersten Fliese 1401 mit
 hexagonaler Form sowie einen Fliesen-Prozessor einer
 zweiten Fliese 1402, welche ebenfalls eine hexagonale
 Form aufweist. Die erste Fliese 1401 weist sechs
 bidirektionale Kommunikationsschnittstellen 1403 auf,
 was durch jeweils einen Doppelpfeil in Fig.14 angedeutet
 ist. Auch die zweite Fliese 1402 weist sechs

WO 2004/053711 PCT/DE2003/004060

5

10

15

20

25

bidirektionale Kommunikationsschnittstellen 1404 auf.
Die erste Fliese 1401 und die zweite Fliese 1402 sind
über eine Zuleitung 1405, das heißt eine elektrisch
leitende Verbindung, welche selbstverständlich auch als
optische Kommunikationsverbindung ausgestaltet sein kann
oder als Funkverbindung miteinander derart gekoppelt,
dass sowohl eine erste Nachricht 1406 von der ersten
Fliese 1401 zu der zweiten Fliese 1402 übermittelt
werden kann als auch eine zweite Nachricht 1407 von der
zweiten Fliese 1402 zu der ersten Fliese 1401.

Gemäß den vorliegenden Ausführungsbeispielen sind in fehlerfreiem Zustand alle Fliesen 1401, 1402 und damit alle Fliesen-Prozessoren miteinander voll vermascht über die entsprechenden Zuleitungen und die bidirektionalen Kommunikationsschnittstellen.

Die oben genannte Problemstellung wird durch Selbstorganisation basierend auf lokalem Nachrichtenaustausch zwischen zwei einander unmittelbar benachbarten Fliesen 1401, 1402 gelöst.

Das Selbstorganisationsverfahren besteht somit aus verteilten uniformen Algorithmen, die diese elektronischen Nachrichten über deren Kommunikationsschnittstellen übertragen.

Im Laufe des Verfahrens erlernen die FliesenProzessoreinheiten die Ausrichtung ihrer Fliese und ihre
ebene Position innerhalb der Fliesen-Anordnung sowie den
30 Abstand der jeweiligen Fliese zu dem Portalprozessor,
allgemein zu einer Referenzposition. Die Referenzposition
kann auch die Position einer Prozessoreinheit, welche sich an
der Einleitstelle der Fliesen-Anordnung 100 befindet, sein.
In weiteren Schritten werden lokal Routing-Wege zwischen den
35 einzelnen Fliesen und dem Portalprozessor geprägt. Die
Algorithmen zur Wahl der Routing-Wege sind dabei derart
ausgelegt, dass bei einem gleichmäßigen Informationsfluss die

Routing-Dauer möglichst minimal wird. Die Selbstorganisation legt auch den Algorithmus zur Verteilung der Information bei Einsatz der Fliesen-Anordnung 100 im Rahmen des Informationsdarstellung mittels der Fliesen-Anordnung 100, fest. Aufgrund der speziellen Konzeption des Verfahrens spielen die Form der Fliesen-Anordnung 100 und damit auch ausgefallene Einzelkomponenten keine Rolle, womit erfindungsgemäß eine hohe Fehlertoleranz erreicht wird.

- 10 Das gesamte Verfahren weist eine Vereinigung folgender Teil-Verfahren auf:
 - Uniforme Teilalgorithmen zur Nachrichtenverarbeitung, die von den Fliesen-Prozessoren ausgeführt werden,
 - dem Steueralgorithmus des Portalprozessors,
- einem Nachrichtenkatalog, welcher die Schnittstelle der Teilalgorithmen darstellt.

Im Folgenden wird ohne Einschränkung der Allgemeingültigkeit eine hexagonale Vermaschung der Fliesen innerhalb der Fliesen-Anordnung 100 angenommen.

Die Übertragung der Algorithmen auf den orthogonalen Fall oder andere ebene Vermaschungen ist aber erfindungsgemäß vollkommen analog zu dieser unten gegebenen Darstellung.

25

20

Gemäß einem Kommunikations-Schichtenmodell unterhalb der erfindungsgemäß benötigten Funktionen liegende Funktionen, beispielsweise Ping-Nachrichten, die Sicherung der Übertragung mittels Prüfsummen, Empfangsbestätigung,

- Neuanforderung defekter Nachrichten etc. werden im Weiteren nicht berücksichtigt. Diese können jedoch ohne Weiteres im Rahmen der Erfindung implementiert sein.
- Generell gilt bei den im Weiteren beschriebenen

 Verfahrensschritten, dass jeder Fliesen-Prozessor aufgrund empfangener Nachrichten für jeden seiner Nachbar-Fliesen-Prozessoren einen Datensatz anlegt, der die gewonnenen

Informationen in einem dem jeweiligen Prozessor zugeordneten Speicher speichert.

In einem ersten Teil-Verfahren lernen die Fliesen-Prozessoren 5 eine gleichmäßige Ausrichtung der Fliesen.

Da alle Verbindungen des Portalprozessors gemäß obiger Konvention mit der Südwest-Seite der entsprechenden Einleit-Fliesen-Prozessoren an den Einleitstellen verknüpft sind, kann dies zur Erzeugung der Kohärenz verwendet werden.

Dazu werden MessKoherenz-Nachrichten versendet, die als Parameter die Anzahl der Verbindungen enthalten, die die Empfangsverbindung gegen den Uhrzeigersinn von der Ostrichtung, wie oben definiert, entfernt ist.

Jeder Fliesen-Prozessor ist zur Initialisierung als inkohärent gesetzt.

10

15

30

- Bei Empfang einer MessKoherenz-Nachricht 1501 (vgl. **Fig.15**) werden von dem die MessKoherenz-Nachricht 1501 empfangenden Prozessoreinheit 1500 die folgenden Schritte durchgeführt:
- 1. Falls die Prozessoreinheit 1500 schon kohärent ist, wird 25 die Verarbeitung beendet.
 - 2. Die Ost-Richtung wird anhand des Nachrichtenparameters bestimmt und alle Verbindungsbezeichnungen / Verbindungsnummerierungen werden entsprechend ausgerichtet.
 - 3. Die Prozessoreinheit 1500 wird als kohärent gesetzt.

and the second of the second o

Über alle Verbindungen werden MessKoherenz-Nachrichten
 1601, 1602, 1603, 1604, 1605, 1606 von der Prozessoreinheit
 1500 ausgesendet, deren Parameter jeweils so gewählt werden,
 dass die die jeweilige MessKoherenz-Nachricht 1601, 1602,

1603, 1604, 1605, 1606 empfangenden Prozessoreinheiten 101 sich auf obige Weise korrekt ausrichten können (vgl. **Fig.16**).

Das Teil-Verfahren zur gleichmäßigen Ausrichtung wird dadurch in Gang gesetzt, dass der Portalprozessor über seine Verbindungen die MessKoherenz-Nachricht(2) mit dem Parameterwert 2 an die jeweiligen Einleit-Fliesen-Prozessoren übermittelt. Das Teil-Verfahren terminiert, wenn die letzte Prozessoreinheit kohärent geworden ist.

10

15

20

25

30

35

5

Die Zahl der benötigten Zeittakte zur Durchführung des Prozesses entspricht der maximalen Distanz eines Fliesen-Prozessors von den Portalprozessor. Bis zum "Ersterben" der letzten Nachrichtenkommunikation können eventuell noch ein bis zwei Zeittakte mehr benötigt werden.

In einem weiteren Teil-Verfahren ermitteln die Fliesen-Prozessoren mittels Austauschs elektronischer Nachrichten untereinander automatisch ihre örtliche Position innerhalb der Fliesen-Anordnung.

Da das hexagonale Feld der Fliesen innerhalb der Fliesen-Anordnung 100 aus jeweils versetzen Zeilen besteht, wird das Koordinatensystem gemäß diesem Ausführungsbeispiel so gewählt, dass die Spaltennummern in den Zeilen abwechselnd geradzahlig oder ungeradzahlig sind.

Es ist in diesem Zusammenhang darauf hinzuweisen, dass bei einem orthogonalen Aufbau der Fliesen-Anordnung das Koordinatensystem sehr einfach kanonisch wählbar ist.

Auf die oben beschriebene Weise wird es bei dem hexagonalen Feld ermöglicht, dass ein Prozessor unabhängig von der Geometrie der Fliesen-Anordnung aus seiner eigenen Position (i, j) mit Zeile i und Spalte j die Positionen seiner Nachbar-Fliesen ermitteln kann.

5

25

30

Die jeweiligen Positionen sind in Fig.17 für die Prozessoreinheit einer Fliese 1500 dargestellt. Wie man in Fig.17 sieht, ist als Konvention vereinbart, dass die Spaltennummern von West nach Ost (von links nach rechts) ansteigen und die Zeilennummern von Süd nach Nord (von unten nach oben) ansteigen.

Zur Positionsbestimmung werden gemäß diesem
Ausführungsbeispiel MessPosition-Nachrichten 1701, 1702,
1703, 704, 1705, 1706 ausgetauscht, die zwei Parameter
enthalten, nämlich die Zeilennummer und die Spaltennummer,
die die MessPosition-Nachricht 1701, 1702, 1703, 1704, 1705,
1706 sendende Prozessoreinheit als von ihr angenommene
Position der die jeweilige Nachricht 1701, 1702 1703, 1704,
15 1705, 1706 empfangenden Prozessoreinheit berechnet hat.

Zur Initialisierung ist die Position jedes Fliesen-Prozessors als (0,0) definiert. Der Prozess der Positionsbestimmung beginnt bei jedem Fliesen-Prozessor, sobald er kohärent geworden ist, wie oben erläutert wurde.

Über alle Verbindungen werden dann die MessPosition-Nachrichten 1701, 1702, 1703, 1704, 1705, 1706 versendet, wie in Fig.17 dargestellt.

Bei Empfang einer Mess-Position-Nachricht 1701, 1702, 1703, 1704, 1705, 1706 mit Zeilenparameter z und Spaltenparameter s werden von der jeweiligen empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

- 1. Falls z > i, wobei i die eigene Zeilennummer darstellt, so wird i = z gesetzt.
 - Falls s > j, wobei j die eigene Spaltennummer darstellt,
 so wird j = s gesetzt.

3. Falls sich aufgrund von Schritt 1 oder Schritt 2 eine Änderung der eigenen Position (i, j) ergeben hat, so werden über alle Verbindungen MessPosition-Nachrichten 1701, 1702, 1703, 1704, 1705, 1706 versendet, wie in Fig.17 dargestellt.

5

Das Teil-Verfahren wird beendet, wenn sich keine Positionsänderungen mehr ergeben.

- rig.18 zeigt ein Beispiel für die Fliesen-Anordnung 1800 mit
 verschiedenen Defekten, welches nach der oben beschriebenen
 Vorgehensweise automatisch die Positionen der einzelnen
 Prozessoren und damit der Fliesen bestimmt hat. Gemäß diesem
 Ausführungsbeispiel wurden sowohl ausgefallene, d.h.
 fehlerhafte Prozessoren als auch ausgefallene Verbindungen
 verwendet. Dieses Ausführungsbeispiel dient auch im Weiteren
 Verlauf dieser Beschreibung in zwei Varianten mit einer
 unterschiedlichen Anzahl von Einleit-Prozessoreinheiten zur
 Beschreibung der weiteren Teil-Verfahren.
- Die Zahl der benötigten Zeittakte zur Durchführung des Prozesses ist nach oben begrenzt durch die maximale Distanz eines Fliesen-Prozessors von einem anderen Fliesen-Prozessor in der Prozessor-Anordnung. Bis zum "Ersterben" der letzten Nachrichtenkommunikation können noch ein bis zwei Zeittakte mehr benötigt werden. Üblicherweise ist jedoch das Teil-Verfahren in Abhängigkeit der Geometrie der Prozessor-Anordnung 1800 in der Regel sogar schneller durchführbar.
- In diesem Zusammenhang ist anzumerken, dass bei der

 Darstellung von Information von dem Portalprozessor eine Abbildung auf das so ermittelte Koordinatensystem der Fliesen-Anordnung 1800 durchgeführt wird. Bei dem in späteren Teil-Verfahren erfolgten Aufbau von Routing-Wegen werden dem Portalprozessor die jetzt lokal gespeicherten Informationen übermittelt, so dass eine entsprechende Abbildung in dem Portalprozessor erfolgen kann.

In Fig.18 ist in der Fliesen-Anordnung jeweils für jede Fliesen 1801 ihre örtliche Position innerhalb der Fliesen-Anordnung 1800 in Form eines Wertetuppels aufgetragen.

- In einem zusätzlichen Teil-Verfahren wird der jeweilige Abstand einer Prozessoreinheit und damit der Fliese von dem Portalprozessor, das heißt die Länge des Weges von dem Fliesen-Prozessor zum Portalprozessor (siehe auch Definition 6) ermittelt, allgemein der Abstand einer Fliese in der Fliesen-Anordnung 1800 von einer vorgegebenen Referenzposition.
- Zur Initialisierung dieses Teil-Verfahrens ist der Abstand jeder Fliese 1801 als "unendlich" definiert. Gemäß diesem

 15 Ausführungsbeispiel ist der Abstand jedes Fliesen-Prozessors zu dem Portalprozessor als ein Wert definiert, der größer ist als ein maximaler Wert, der innerhalb der Fliesen-Anordnung als Abstand angenommen werden kann.
- 20 Es wird-ohne Einschränkung der Allgemeingültigkeit vorausgesetzt, dass die Schritte der oben dargestellten Teil-Verfahren bereits durchgeführt wurden.
- Der Prozess der Abstandsbestimmung wird dann von dem

 25 Portalprozessor mittels Versendens von MessDistance(0)Nachrichten an die Prozessoreinheiten an den Einleit-Stellen
 der Fliesen-Anordnung 1800 gestartet.
- Bei Empfang einer MessDistance-Nachricht mit

 30 Abstandsparameter a werden von der jeweiligen die MessDistance-Nachricht empfangenden Prozessoreinheit die
 folgenden Schritte durchgeführt:
- 1. Falls $d \ge a+1$, wobei d den eigenen Abstand darstellt, so wird d = a + 1 gesetzt.

2. Falls sich aufgrund von Schritt 1 eine Änderung des eigenen Abstandes d ergeben hat, so werden über alle Verbindungen MessDistance-Nachrichten 1901, 1902, 1903, 1904, 1905, 1906 an die jeweils benachbarten Prozessoreinheiten versendet (vgl. Fig.19). Die jeweilige MessDistance-Nachricht 1901, 1902, 1903, 1904, 1905, 1906 enthält jeweils als Parameter den Abstandswert, den die Prozessoreinheit der Fliese 1500 in dem vorangegangenen Schritt ermittelt hat.

10

25

30

5

Das Teil-Verfahren terminiert, wenn sich keine Abstandsänderungen mehr ergeben.

Fig.20 und Fig.21 zeigen die Fliesen-Anordnung 1800 gemäß einem ersten Ausführungsbeispiel und eine Fliesen-Anordnung 2100 gemäß einem zweiten Ausführungsbeispiel, wobei bei der Fliesen-Anordnung 1800 gemäß dem ersten Ausführungsbeispiel alle Prozessoreinheiten 2001 der Fliesen in der untersten Zeile 2002 der Fliesen-Anordnung 1800 mit dem Portalprozessor über deren Südwest-Seite 2003 gekoppelt sind.

Bei der Fliesen-Anordnung 2100 gemäß dem zweiten Ausführungsbeispiel enthält die unterste Zeile 2101 der Fliesen-Anordnung 2100 sowohl Fliesen 2102, welche nicht mit dem Portalprozessor gekoppelt sind als auch Fliesen 2101, welche über deren an der Südwest-Seite angeordneten Kommunikationsschnittstellen 2104 mit dem Portalprozessor gekoppelt sind. Gemäß dem zweiten Ausführungsbeispiel ist jede dritte Fliese in der untersten Zeile 2101 über ihre an der Südwest-Seite liegenden Kommunikationsschnittstelle mit dem Portalprozessor verbunden.

Die Zahl der benötigten Zeittakte zur Durchführung des Prozesses entspricht der maximalen Distanz einer Fliese von dem Portalprozessor. Wiederum können bis zum "Ersterben" der letzten Nachrichtenkommunikation noch ein bis zwei Zeittakte mehr benötigt werden. In diesem Zusammenhang ist anzumerken, dass jede Prozessoreinheit einer Fliese aufgrund der jeweils empfangenen Nachrichten auch die Entfernung seiner direkten Nachbar-Prozessoreinheiten von dem Portalprozessor bei sich lokal zur späteren Verwendung speichern kann.

5

10

15

... 20

25

30

Anschaulich wird in diesem Teil-Verfahren in einem iterativen Verfahren der eigene Abstandswert der Prozessoreinheit dann verändert, wenn der bisher gespeicherte Abstandswert größer ist als der um einen vorgegebenen Wert erhöhte empfangene Abstandswert in der jeweils empfangenen Nachricht. Für den Fall, dass eine Prozessoreinheit den eigenen Abstandswert verändert, erzeugt dieser eine MessAbstands-Nachricht und sendet diese über alle Kommunikationsschnittstellen an benachbarte Prozessoreinheiten, wobei die MessAbstands-Nachricht jeweils den eigenen Abstand als Abstandsinformation enthält oder den Abstandswert, den die empfangene Prozessoreinheit von dem Portalprozessor aufweist, vorzugsweise einen um einen vorgegebenen Wert erhöhten Wert gegenüber dem eigenen Abstandswert, vorzugsweise einem Abstandswert, der um den Wert "1" erhöht ist.

Im Weiteren wird das Teil-Verfahren zur regulären Rückwärtsorganisation beschrieben.

Um die folgenden Verfahrensschritte durchführen zu können, ist es erforderlich, dass der Abstand eines Fliesen-Prozessors zu einer jeweiligen Referenzposition ermittelt worden ist und somit bekannt ist und vorzugsweise als jeweilige Abstandsinformation in dem Speicher des jeweiligen Prozessors gespeichert ist.

In dem im Weiteren beschriebenen Teil-Verfahren werden die Verbindungen zwischen den jeweiligen Prozessoreinheiten im Weiteren als Kanäle bezeichnete Instanzen ausgezeichnet.

Die Mengen der Prozessoreinheiten mit dem Portalprozessor als Wurzel-Knoten und den Kanälen als Kanten zwischen den jeweiligen Prozessoreinheiten bilden einen Baum. Dieser Baum wird für das anschließende Routing verwendet, wie es oben in Zusammenhang mit den graphentheoretischen Grundlagen beschrieben worden ist.

Die Kanäle werden in regulärer Weise so bestimmt, dass jede Prozessoreinheit auf einem kürzesten Weg mit dem Portal-Knoten verbunden wird.

10

Zur Initialisierung ist jeder Fliesen-Prozessor einer Fliese 1500 als "unorganisiert" definiert. Der Prozess der Organisation wird von dem Portalprozessor mittels Versendens von MessOrganize-Nachrichten 2201, 2202, 2203, 2204, 2205, 2206, welche keinerlei Parameter aufweisen, über alle Verbindungen hinweg gestartet.

Bei Empfang einer MessOrganize-Nachricht 2201, 2202, 2203, 20—2204, 2205, 2206 werden von der jeweils die Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

- 1. Falls die Prozessoreinheit schon organisiert ist, wird die Verarbeitung beendet.
- Über alle Verbindungen mit Ausnahme der Empfangsverbindung, das heißt der Verbindung, über die die MessOrganize-Nachricht 2201, 2202, 2203, 2204, 2205, 2206 empfangen worden ist, werden zusätzliche Mess-Organize-Nachrichten versendet (vgl. Fig.22).

 Die Prozessoreinheit ermittelt aufgrund der zuvor ermittelten Abstandsinformationen eine Nachbar Prozessoreinheit, deren Fliese einen geringeren Abstand als sie selbst von der Referenzposition, vorzugsweise somit von dem Portalprozessor, aufweist. Es wird diejenige 5

10

15

--20

30

Nachbar-Prozessoreinheit ausgewählt und als "Vorgänger" definiert, deren Fliese als erste nach der gemäß Fig.23 und Fig.24 festgelegten Reihenfolge einen geringeren Abstand aufweist als die Fliese der Prozessoreinheit selbst. Die Verbindung zwischen der Prozessoreinheit und ihrem "Vorgänger" wird besonders ausgezeichnet und "Kanal" genannt. Die Menge der Fliesen-Prozessoren mit dem Portalprozessor als Knoten und den Kanälen als Kanten bilden dann einen Baum. Bei einem regulären Display ohne Fehler führt diese Vorgehensweise auf ein "Zickzack-Muster" bei der Festlegung der Kanäle.

4. Dem "Vorgänger" wird eine MessChannel-Nachricht geschickt und die Prozessoreinheit wird als organisiert gesetzt.

Bei Empfang einer MessChannel-Nachricht wird von dem die Mess-Channel-Nachricht empfangenden Prozessor der Absender als "Nachfolger" definiert. Entsprechend ist dann die Verbindung zwischen der Prozessoreinheit und dem "Nachfolger" ein Kanal.

Das Teil-Verfahren terminiert, nachdem alle Prozessoreinheiten auf diese Weise sich organisiert haben.

- Fig.25 zeigt beispielhaft eine organisierte Prozessoreinheit einer Fliese 2500, wobei die Verbindungen 2501, welche Kanäle sind, optisch hervorgehoben sind. Über die Kanäle 2501 werden beim Einsatz des Displays die darzustellenden oder erfassten Informationen geroutet.
- Fig.26 und Fig.27 zeigen Beispiele für die Fliesen-Anordnung
 1800 und 2100 nach erfolgter automatischer Organisierung, wie oben beschrieben.
 - Die Zahl der benötigten Zeittakte zur Durchführung des Teil-Verfahrens zur rückwärts gerichteten Selbstorganisation entspricht der maximalen Distanz einer Fliesen vom

Portalprozessor. Bis zum "Ersterben" der letzten Nachrichtenkommunikation können auch in diesem Fall ein bis zwei Zeittakte mehr benötigt werden.

5 Die reguläre Rückwärtsorganisation führt bei fehlerfreien rechteckigen Fliesen zu gut balancierten Bäumen.

Da alle Fliesen innerhalb der Fliesen-Anordnung 1800, 2100 auf jeweils einem kürzesten Weg mit dem Portal verbunden 10 sind, bestimmt dieser Algorithmus ein Element der oben definierten "optimalen Menge" O₁. Im Falle von Horizontalrissen 2600, 2700, wie in den Fig.26 und Fig.27 dargestellt, führt die oben beschriebene Vorgehensweise jedoch dazu, dass die durch den Riss verschatteten Anteile der Fliesen-Anordnung 1800, 2100 im Wesentlichen von einer einzigen Zuleitung vom Portal zum Display versorgt werden. Daher werden im Folgenden noch zusätzliche alternative Möglichkeiten der Organisation beschrieben.

20 Zum Aufstellen von Routing-Tabellen ist der Durchsatz-eines Fliesen-Prozessors von erheblicher Bedeutung.

Der Durchsatz ist die Menge von darzustellender Information, die von diesem Prozessor jeweils verarbeitet oder

25 weitergereicht werden muss.

Die mathematische Definition des Durchsatzes ist in Definition 6 oben gegeben.

Diese Zahl ist identisch mit der Menge der Information, die über den Eingangs-Kanal empfangen werden.

Zum Durchführen der folgenden Teil-Verfahrensschritte muss in der Fliesen-Anordnung 1800, 2100 eine Baumstruktur

35 beispielsweise mittels Kanäle organisiert worden sein, wie oben beschrieben.

Das Teil-Verfahren wird von dem Portalprozessor mittels Versendens von Mess-Count-Notes-Nachrichten, welche keine Parameter aufweisen, über alle Verbindungen zu den jeweiligen Einleit-Prozessoreinheiten gestartet.

5

Bei Empfang einer eingehenden MessCountNodes-Nachricht 2801 über den Eingangs-Kanal werden von dem jeweils die MessCountNodes-Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

10

1. Über alle Ausgangs-Kanäle der die MessCountNodes-Nachricht empfangenden Prozessoreinheit werden wiederum MessCountNodes-Nachrichten 2802 versendet, wie in Fig.28 dargestellt.

15

- 2. Alle Nachbar-Prozessoreinheiten, die über Ausgangs-Kanäle miteinander verbunden sind, werden mit einem Durchsatz mit dem Durchsatzwert "0" markiert.
- 3. Falls keine Ausgangs-Kanäle existieren, wird der eigene Durchsatz auf den Durchgangswert "1" gesetzt und es wird eine MessNodesSize-Nachricht 2901 über den Eingangs-Kanal an die jeweilige Vorgänger-Prozessoreinheit gesendet.
- Fig.29 zeigt für eine Prozessoreinheit 1500 zwei
 25 eingehende MessNodesSize-Nachrichten, eine erste
 eingehende MessNodesSize-Nachricht 2901, welche den Wert
 d1 enthält und eine zweite eingehende MessNodesSizeNachricht 2902 mit dem Parameter d2. Bei Empfang einer
 MessNodesSize-Nachricht mit Durchsatzparameter å über
 einen Ausgangskanal werden von dem die MessNodesSize-
- Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:
 - Die Nachbar-Prozessoreinheit, von der die MessNodesSize-Nachricht 2901, 2902 empfangen wurde, wird mit dem Durchsatzparameter der MessNodesSize-Nachricht markiert.

2. Falls mindestens ein Ausgangs-Kanal mit einem Durchsatz mit dem Durchsatzwert "O" markiert ist, wird die Verarbeitung beendet.

5

- 3. Falls alle Ausgangs-Kanäle mit einem Durchsatzwert > 0 markiert sind, so wird der eigene Durchsatz d als Summe aller Ausgangs-Durchsätze +1 berechnet.
- 4. Es wird eine zusätzliche MessNodesSize-Nachricht 2903 von der Prozessoreinheit erzeugt und mit dem Durchsatzwert d, welche sich ergibt, gemäß folgender Vorschrift: d = d₁ + d₂ +1 gemäß dem oben beschriebenen Ausführungsbeispiel, über den jeweiligen Eingangs-Kanal gesendet.

Das Teil-Verfahren terminiert, nachdem der Portalprozessor über alle Verbindungen eine MessNodesSize-Nachricht erhalten hat.

20

Die Zahl der benötigten Zeittakte zur Durchführung des Teil-Verfahrens entspricht der doppelten maximalen Distanz einer Fliese vom Portalprozessor. Bis zum "Ersterben" der letzten Nachrichtenkommunikation können auch in diesem Fall noch ein bis zwei Takte mehr benötigt werden.

Fig.30 und Fig.31 zeigen Beispiele für die Fliesen-Anordnung 1800 bzw. 2100, nachdem auf die oben beschriebenen Weise die Durchsätze automatisch ermittelt wurden.

30

35

25

In den jeweiligen Fliesen-Prozessoren ist der jeweilige Durchsatzwert angegeben. Diese Beispiele zeigen, dass die Durchsätze derjenigen Einleit-Prozessoreinheiten sehr hoch sind, die das von dem jeweiligen Horizontalriss 2600, 2700 verschattete Gebiet der Fliesen-Anordnung 1800 bzw. 2100

versorgen müssen.

Daher wird im Weiteren ein alternatives Organisationsverfahren beschrieben, welches noch flexibler auf Fehler, das heißt Defekte und unreguläre Formen einer Fliesen-Anordnung 1800, 2100, reagieren kann.

5

Um einen möglichst gleichmäßigen Durchsatz zu erreichen, besteht ein heuristischer Lösungsansatz zur Auswahl eines Routing-Baums im sukzessiven Versenden von so genannten MessToken-Nachrichten, welche in der Fliesen-Anordnung 1800,

10 2100 "Plätze besetzen".

In Analogie zu einer allmählichen Einfärbung der FliesenAnordnung 1800, 2100 mittels Farbströmen wird jede
Einleitstelle mit Token einer anderen "Farbe" beschickt. Auf
diese Weise wird die Fliesen-Anordnung 1800, 2100 in
Farbregionen unterteilt, die jeweils über eine EinleitProzessoreinheit von dem Portal-Knoten versorgt werden.

Anders ausgedrückt bedeutet dies, dass jeweils eine "Farbe"

20 bzw. eine individuelle Markierung für jede von über eine
jeweilige Einleit-Prozessoreinheit versorgte Prozessoreinheit
vorgesehen ist.

Im Weiteren wird der Begriff "Farbe" zur anschaulicheren 25 Darstellung und entsprechend ein mit gleicher Markierung markierter Bereich als "Farbregion" verwendet.

Es kommen folgende heuristische Strategien der Verteilung zum Tragen:

- Fin Tokengewicht bestimmt, um wie viel der Abstand zum Portal-Knoten maximal vergrößert werden darf aufgrund der Einfärbung.
 - Einmal gefärbte Fliesen, das heißt Prozessoreinheiten, bleiben gefärbt, anders ausgedrückt bleiben markiert.
- Die den Token versendende Prozessoreinheit wird zum "Vorgänger" und die Verbindung zu ihm zum Kanal. Im Weiteren nimmt die gefärbte Fliese, das heißt die

markierte Prozessoreinheit, nur noch von dem jeweiligen Vorgänger Token an.

- Token werden bevorzugt über Kanäle versendet.
- Nach der kompletten Einfärbung der Prozessor-Anordnung 1800, 2100 ist eine Reorganisation innerhalb der gefärbten Bereiche erforderlich, da sich aufgrund des Teil-Verfahrens nicht optimale "Mäander-Kanäle" 3501 bilden, wie beispielsweise in Fig.35 dargestellt.

10

- Zunächst werden in den folgenden Unterabschnitten die Teil-Verfahren zur Verarbeitung der bei der Tokenvergabe verwendeten Nachrichten beschrieben.
- Die Abstandsbestimmung innerhalb einer Farbregion ist weitestgehend identisch zur allgemeinen, oben beschriebenen Abstandsbestimmung zu einer Referenzposition.
- Der Farbabstand bestimmt dabei die Länge des kürzesten Weges 20 einer Fliese zum Portalprozessor, wobei alle Fliesen des Weges derselben Farbregion angehören müssen.
- Zur Initialisierung ist der Farbabstand jeder Fliese als unendlich definiert und seine Farbe als undefiniert. Gemäß diesem Ausführungsbeispiel ist der Abstand jeder Fliese zu dem Portalprozessor als ein Wert definiert, der größer ist als ein maximaler Wert, der innerhalb der Fliesen-Anordnung als Abstand angenommen werden kann. Ebenso markiert die Prozessoreinheit seine Nachbar-Prozessoreinheiten und damit seine Nachbar-Fliesen als undefiniert gefärbt mit Farbabstand unendlich.

Bei Empfang einer MessColDistance-Nachricht mit Farbe c und Farbabstandsparameter a werden von der jeweiligen die

35 MessColDistance-Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

20

30

- 1. Die die MessColDistance-Nachricht versendende Prozessoreinheit wird mit der Farbe c und dem Farbabstand a markiert.
- 5 2. Falls die Farbe c nicht mit der eigenen Farbe f übereinstimmt, das heißt der Farbe f der die MessColDistance-Nachricht empfangenden Prozessoreinheit, so wird die Verarbeitung beendet.
- 10 3. Der eigene Farbabstand d wird als Minimum der Farbabstände von gleichfarbig markierten Nachbarn plus den Wert 1 gesetzt.
- 4. Falls sich aufgrund von Schritt 3 eine Änderung des eigenen Farbabstandes d ergeben hat, so werden über alle Verbindungen MessColDistance-Nachrichten 3201, 3202, 3203, 3204, 3205, 3206 mit den Parametern (f, d), das heißt anders ausgedrückt mit dem eigenen Farbabstand d und der eigenen Farbe f versendet (vgl. Fig.32).

Zum Blockieren von Nachbar-Prozessoreinheiten gegenüber empfangenen Token-Nachrichten werden erfindungsgemäß MessBlockToken-Nachrichten verwendet, das heißt nach Empfang einer solchen MessBlockToken-Nachricht dürfen zu diesen

25 blockierten Nachbar-Prozessoreinheiten keine Token mehr versendet werden.

Gleichzeitig werden Farbe und Farbabstand wie bei der MessColDistance-Nachricht mitgeteilt.

Zur Initialisierung sind alle Nachbar-Prozessoreinheiten einer Prozessoreinheit als unblockiert gesetzt.

Bei Empfang einer eingehenden MessBlockToken-Nachricht 3301

35 mit der Farbe c und dem Farbabstandsparameter a als

Nachrichtenparameter werden von der jeweils die

MessBlockToken-Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

- Die die MessBlockToken-Nachricht versendende
 Prozessoreinheit wird als blockiert gesetzt und mit der Farbe c und dem Farbabstand a markiert.
- Falls die Farbe c nicht mit der eigenen Farbe f, das heißt der Farbe des die Mess-Block-Token-Nachricht empfangenden
 Prozessoreinheit übereinstimmt, wird die Verarbeitung mit dem weiter beschriebenen Schritt 5 fortgesetzt.
- Der eigene Farbabstand d wird als Minimum der Farbabstände von gleichfarbig markierten Nachbar-Prozessoreinheiten plus dem Wert 1 gesetzt.
 - 4. Falls sich aufgrund von Schritt 3 eine Änderung des eigenen Farbabstands d ergeben hat, so werden von der Prozessoreinheit MessColDistance-Nachrichten 3201, 3202, 3203, 3204, 3205, 3206 über alle Verbindungen mit Parametern (f, d) versendet, wie in Fig.32 dargestellt.

20

- 5. Falls es einen Eingangs-Kanal gibt und alle NachbarProzessoreinheiten als blockiert gesetzt sind, so wird
 eine MessBlockToken-Nachricht 3302 mit den Parametern (f,
 d) erzeugt und über den Eingangs-Kanal versendet, wie in
 Fig.33 dargestellt.
- Zum Einfärben, das heißt zum Markieren von Prozessoreinheiten
 und somit zum Definieren von Farbregionen, das heißt zu
 markierten Bereichen innerhalb der Prozessor-Anordnung 1800,
 2100 werden erfindungsgemäß so genannte MessToken-Nachrichten
 verwendet.
- Bei der Verarbeitung von Mess-Token-Nachrichten ist zu unterscheiden, ob die Prozessoreinheit noch ungefärbt oder schon von einem Token gefärbt wurden.

Bei Empfang einer eingehenden MessToken-Nachricht 3401 mit dem Gewicht g und der Farbe f als Nachrichtenparameter werden von einer ungefärbten Prozessoreinheit, welche die Mess-Token-Nachricht 3401 empfängt, die folgenden Schritte durchgeführt:

5

10

- 1. Der potentielle eigene Farbabstand pd wird als Minimum der Farbabstände von mit der Farbe f gefärbten Nachbar- Prozessoreinheiten + 1 gesetzt.
- Falls das Gewicht g ≤ pd a ist, wobei a der Abstand (nicht der Farbabstand!) der Prozessoreinheit von dem Portalprozessor ist, so wird der die MessToken-Nachricht
 3401 versendenden Prozessoreinheit eine MessBlock-Token-Nachricht geschickt und die Verarbeitung wird beendet (die Ausbreitung der Tokens wird daher durch einen relaxierten Abstand beschränkt).
- 20 3. Die die MessBlockToken-Nachricht 3401 sendende Prozessoreinheit wird als blockiert gesetzt. Die eigene Farbe wird als f gesetzt und der eigene Farbabstand als pd.
- 25 4. Der die Mess-Token-Nachricht 3401 sendenden Prozessoreinheit wird eine MessChannel-Nachricht geschickt und die Prozessoreinheit wird als organisiert gesetzt. Somit ist der Eingangs-Kanal festgelegt.
- 30 5. Über alle Verbindungen mit Ausnahme des Eingangs-Kanals der Prozessoreinheit 1500 werden MessBlockTokenNachrichten 3402, 3403, 3404, 3405, 3406 versendet, wie in Fig.34 dargestellt, um eine Tokenvergabe von dort zu verhindern.
 - 6. Falls alle Nachbar-Prozessoreinheiten als blockiert gesetzt sind, so wird eine MessBlockToken-Nachricht 3402,

3403, 3404, 3405, 3406 über den Eingangs-Kanal gesendet, wie in Fig.33 dargestellt.

Bei Empfang einer Mess-Token-Nachricht mit dem Gewicht g und 5 der Farbe f über den Eingangs-Kanal wird hingegen von einer schon gefärbten Prozessoreinheit anders vorgegangen.

Man betrachtet bei einer geraden Spaltennummer eine
Reihenfolge R = (SE, SW, E, W, NE, NW), was einer Reihenfolge
10 R entspricht von (Südost, Südwest, Ost, West, Nordost,
Nordwest) und bei einer ungeraden Spaltennummer eine
Reihenfolge R = (SW, SE, W, E, NW, NE), was entspricht einer
Reihenfolge (Südwest, Südost, West, Ost, Nordwest, Nordost)
und führt die folgenden Verfahrensschritte durch:

15

- 1. Falls die empfangene Mess-Token-Nachricht nicht über den Eingangs-Kanal kam oder die Farbe f nicht mit der eigenen Farbe übereinstimmt, wird die Verarbeitung beendet.
- 20 2. Falls es nach der Reihenfolge R einen unblockierten Ausgangs-Kanal gibt, so wird über diesen Ausgangs-Kanal eine MessToken-Nachricht mit den Parametern (g, f) geschickt, das heißt, das Token wird weitergereicht, und die Verarbeitung wird beendet.

25

3. Falls es nach der Reihenfolge R eine unblockierte Verbindung gibt, so wird über diese Verbindung eine MessToken-Nachricht (g, f) versendet und die Verarbeitung wird beendet.

- 4. Über den Eingangs-Kanal wird eine MessBlockToken-Nachricht geschickt, da sich das Token nicht weiterreichen lässt.
- Da bei der Wahl der Farbregionen die Kanäle aufgrund des oben beschriebenen Teil-Verfahrens nicht optimal gesetzt werden können, wie in **Fig.35** dargestellt, werden diese Kanäle mit MessDeleteChannels-Nachrichten gelöscht und später neu

gesetzt. Zur Terminierung des Teil-Verfahrens wird die Nachricht mit einem Parameter "stamp" versehen, dessen Wert nicht identisch ist mit dem entsprechend gespeicherten Parameter in der Prozessoreinheit. In diesem Zusammenhang ist anzumerken, dass der Portalprozessor bei jeder Reorganisation einen anderen Parameter "stamp" verwendet.

Bei Empfang einer eingehenden MessDeleteChannels-Nachricht 3601 mit dem Parameter "stamp" werden von der die jeweilige MessDeleteChannels-Nachricht empfangenden Prozessoreinheit die folgenden Schritte durchgeführt:

- 1. Falls der eigene Stempelparameter identisch zu dem empfangenen Parameterwert "stamp" ist, wird die Verarbeitung beendet.
 - 2. Der eigene Stempelparameter wird auf den Wert in der MessDeleteChannels-Nachricht "stamp" gesetzt.
- 20 3. Alle Kanäle werden gelöscht.

15

25

30

4. Über alle Verbindungen mit Ausnahme der Verbindung zu der die MessDeleteChannels-Nachricht sendenden Prozessoreinheit werden MessDeleteChannels-Nachrichten 3602, 3603, 3604, 3605, 3606 mit dem Parameter "stamp" gesendet, wie in Fig.36 dargestellt.

Nach Löschen der alten Kanäle werden neue Kanäle innerhalb einer Farbregion mittels Verwendens von MessColOrganize-Nachrichten gesetzt.

Die Verarbeitung von eingehenden MessColOrganize-Nachrichten 3701 und das Versenden von MessColOrganize-Nachrichten 3702, 3703, 3704, 3705, 3706 ist weitestgehend identisch zur

Verarbeitung von MessOrganize-Nachrichten, wie oben beschrieben.

5

10

25

35

Ein Unterschied besteht jedoch darin, dass die betrachteten Nachbar-Prozessoreinheiten identisch wie die verarbeitende Prozessoreinheit eingefärbt sein müssen und dass nicht der Abstand, sondern der Farbabstand als Kriterium verwendet wird.

Zur Durchführung des oben beschriebenen Teil-Verfahrens sollten im Fliesen-Array alle beschriebenen Schritte bis zur Abstandsbestimmung wie oben erläutert durchgeführt worden sein.

Wie oben in dem ersten Ausführungsbeispiel werden die Verbindungen speziell als "Kanäle" ausgezeichnet.

In einem ersten Schritt wird von dem Portalprozessor über alle Verbindungen je eine MessColDistance-Nachricht 4001 (vgl. Fig.40) mit den Parametern (f, 0) mit unterschiedlichem Farbparameter f versendet. Somit markieren alle Nachbar-Prozessoreinheiten das Portalprozessor dies mit einer 20 - unterschiedlichen Farbe.

Auf diese Weise ist gewährleistet, dass ausgehend von jeder Einleit-Prozessoreinheit jeweils eine individuelle und eindeutige Markierung erfolgt.

In einem zweiten Schritt werden von dem Portalprozessor über alle Verbindungen sukzessive MessToken-Nachrichten mit den Parametern (g, f) mit identischen Gewicht g \in N $_0$ und unterschiedlichem Farbparameter f versendet, um alle

Prozessoreinheiten der Fliesen-Anordnung 1800, 2100 einzufärben.

Das Teil-Verfahren terminiert, wenn über alle Verbindungen des Fliesen-Prozessors MessBlockToken-Nachrichten eingetroffen sind, das heißt wenn die Fliesen-Anordnung 1800, 2100 komplett eingefärbt wurde.

Es ist in diesem Zusammenhang anzumerken, dass die gesamte Fliesen-Anordnung 1800, 2100 mit diesem Verfahren immer komplett eingefärbt werden kann.

Fig.38 zeigt die Fliesen-Anordnung 2100 für den Fall, dass sie mit dem Gewicht g = 4 eingefärbt wurde und bei der der Durchsatz nach der Organisation dargestellt wurde. Wie man im Vergleich mit Fig.30, die mittels regulärer Rückwärtsorganisation gebildet wurde, sieht, ist der Baum erheblich besser balanciert.

Allerdings bilden sich aufgrund der Konstruktion dieses Teil-Verfahrens innerhalb der gefärbten Bereiche Mäander-Wege 3801, so dass die Prozessoreinheiten nicht durch die kürzest mögliche Distanz mit dem Portalprozessor verbunden sind.

Daher wird in einem dritten Schritt vom Portalprozessor über alle Verbindungen eine MessDeleteChannels-Nachricht, wie oben erläutert, geschickt, um die gebildeten Kanäle zu löschen.

-20 Direkt nach dieser-Nachricht wird über alle Verbindungen eine MessColOrganize-Nachricht geschickt, die innerhalb der gefärbten Bereiche neue Kanäle bildet, welche dann kürzeste Verbindungen darstellen.

15

35

- Das Teil-Verfahren terminiert, nachdem sich alle Prozessoreinheiten auf diese Weise organisiert haben. Die Zahl der benötigten Zeittakte zur Durchführung der Prozesse entspricht dem maximalen Farbabstand eines Fliesen-Prozessors vom Portalprozessor. Bis zum "Ersterben" der letzten
- Nachrichtenkommunikation können auch in diesem Fall noch ein bis zwei Takte mehr benötigt werden.

Der erzeugte Routing-Baum hängt von dem Gewicht g, welcher als Parameter in der jeweiligen Mess-Token-Nachricht enthalten ist, ab.

Fig.39 zeigt die Prozessor-Anordnung 1800 für nach erfolgter Reorganisation mit Gewicht g=4 und die entsprechenden Mäander-Wege 3901.

- Das Gewicht g gibt an, um wie viel der Farbabstand einer Prozessoreinheit größer sein darf als der Abstands selbst. Je größer das Gewicht g ist, desto besser balanciert wird üblicherweise der entstehende Baum sein, aber desto länger sind üblicherweise auch die Pfade in diesem Baum. Zur
- 10 Erläuterung ist auf **Fig.41** hinzuweisen, in der die Fliesen-Anordnung 1800 nach erfolgter Bildung der Mäander-Wege mit dem Gewicht g = 0 und auf die **Fig.42**, in der die Fliesen-Anordnung 1800 nach erfolgter Bildung der Mäander-Wege mit dem Gewicht g = ∞ gezeigt sind.

15

20

25

30

35

Die beste Wahl des Gewichts hängt üblicherweise von den Transporteigenschaften der jeweiligen Verbindungen ab, das heißt davon, wie viele Nachrichten pro Zeittakt über eine Verbindung versendet werden können. Je kleiner diese Zahl ist, desto größer wird üblicherweise da beste Gewicht-sein müssen.

Zuvor wurden zwei Verfahren zur Auswahl eines Routing-Baums beschrieben.

Wenn ein Routing-Baum ausgewählt wurde, das heißt wenn die entsprechenden Kanäle ausgewählt wurden, so kann ein optimales Routing für diesen Baum auf sehr einfache Weise ermittelt werden. Die Grundlagen hierzu wurden im Rahmen der Beschreibung der graphentheoretischen Grundlagen erläutert.

In einem ersten Schritt werden alle Fliesen-Prozessoren, das heißt die Prozessoreinheiten innerhalb der Fliesen-Anordnung 1800, 2100, durchnummeriert.

Die Nummern werden anschließend beim Routing als Zieladressen verwendet. In einem zweiten Schritt werden die gesammelten

lokalen Informationen von den jeweiligen Prozessoreinheiten dem Portalprozessor übermittelt. In dem Portalprozessor wird anschließend die Gesamt-Routingtabelle erstellt.

5 Gemäß diesem Ausführungsbeispiel werden MessNumbering-Nachrichten zur Durchnummerierung aller Prozessoreinheiten in der Fliesen-Anordnung 1800, 2100 verwendet. Voraussetzung ist, dass der Durchsatz der jeweiligen Prozessoreinheiten bereits ermittelt wurde, beispielsweise gemäß dem oben 10 beschriebenen Teil-Verfahren.

Das Teil-Verfahren der Nummerierung wird von dem Portalprozessor mittels Versendens von MessNumbering-Nachrichten 4301 über die Ausgangskanäle des

15 Portalprozessors, welche den Einleit-Prozessoreinheiten übermittelt werden, gestartet.

Wenn für die entsprechenden Nachbarprozessoreinheiten Durchsätze d_1 , d_2 , d_3 , ... ermittelt wurden, so wird der jeweilige MessNumbering-Nachricht 4302 der Parameter 1, $1+d_1$, $1+d_1+d_2$, ... als Nachrichtenparameter mit übertragen.

Nach Empfang einer MessNumbering-Nachricht 4301 mit dem
Parameter n über den jeweiligen Eingangskanal der
Prozessoreinheit (vgl. Fig.43) werden von der die
MessNumbering-Nachricht 4301 empfangenden Prozessoreinheit
die folgenden Schritte durchgeführt:

- 30 1. Die eigene Nummer der Prozessoreinheit wird auf den Wert n, die dem Wert der empfangenen MessNumbering-Nachricht 4301 entspricht, gesetzt.
- 2. Über alle Ausgangskanäle der Prozessoreinheit wird je eine von der Prozessoreinheit erzeugte zusätzliche MessNumbering-Nachricht 4302 erzeugt und mit den Parametern n+1, $n+d_1+1$, $n+d_1+d_2+1$, ...

versendet, wobei d_1, d_2, \ldots die Durchsätze der entsprechenden Nachbar-Prozessoreinheiten sind.

Das Teil-Verfahren terminiert, wenn der letzte Prozessor

durch die letzte Prozessoreinheit durchnummeriert worden ist.
Die Zahl der benötigten Zeittakte zur Durchführung des TeilVerfahrens entspricht der maximalen Distanz einer
Prozessoreinheit über Kanäle vom Portalprozessor. Bis zum
"Ersterben" der letzten Nachrichtenkommunikation können auch
bei diesem Teil-Verfahren noch ein bis zwei Zeittakte mehr
benötigt werden.

Die **Fig.44** und **Fig.45** zeigen die Fliesen-Anordnungen 1800 (Fig.44) und 2100 (Fig.45) nach erfolgter Nummerierung der einzelnen Prozessoreinheiten innerhalb der jeweiligen Fliesen-Anordnung.

Die Nummer einer Prozessoreinheit kann einfacherweise als Adresse zum Routing von Daten oder auch Bildern verwendet werden, da jedem Ausgangskanal eine Prozessoreinheit ein eindeutiges Nummernintervall zugeordnet ist. Jede Prozessoreinheit kann somit eine einfache Routing-Tabelle anlegen.

Im Beispiel von Fig. 45 lautet beispielsweise die Tabelle für die mit der Nummer 123 nummerierte Prozessoreinheit wie in der Routing-Tabelle 4600 in Fig. 46 dargestellt ist.

Die lokal erzeugten Informationen werden dem Portalprozessor 30 mittels MessCollectInfo-Nachrichten mitgeteilt, die die folgenden Nachrichtenparameter enthalten:

- Die Position der jeweiligen Prozessoreinheit innerhalb der jeweiligen Fliesen-Anordnung, das heißt die Zeile und die Spalte, in der sich die Prozessoreinheit
- 35 befindet,

20

die Fliesennummer,

- der Abstandswert, mit dem der Abstand der Prozessoreinheit von dem Portalprozessor angegeben wird,
- der Farbabstand, und
- der Durchsatz der Prozessoreinheit.

5

25

Die MessCollectInfo-Nachrichten werden-von den Prozessoreinheiten jeweils gesendet, sobald die jeweilige Prozessoreinheit durchnummeriert worden ist.

- 10 Mit diesen Informationen kann der Fliesen-Prozessor die darzustellenden Informationen mit Hilfe der Fliesennummern routen.
- Beim Versenden eines Gesamtbildes, das heißt beim Zuführen
 der Daten an alle Prozessoreinheiten, werden dabei die
 Nachrichten zuerst versendet, die den längsten Weg haben, wie
 oben im Rahmen der Beschreibung der graphentheoretischen
 Grundlagen erläutert.
- 20 Aus dieser Routing-Tabelle ergibt sich dann auch unmittelbar die Routing-Dauer, mit der die Routing-Bäume bewertet werden.

Mit Hilfe der Fliesennummern und den vorab beschriebenen Routing-Tabellen kann eine darzustellende Information beim weiteren Betrieb des Displays auf sehr einfache Weise versendet werden. Dazu verschickt der Portalprozessor Nachrichten vom Typ MessRGB die mit folgenden Parametern versehen sind:

- Die Nummer der Fliese, welches adressiert wird, und
- odie Farbinformation für diese Fliese, beispielsweise Rot-Grün-Blau-Werte oder alternative lediglich ein Ansteuerungssignal zum Anschalten einer in der Fliese integrierten Leuchtdiode.
- Fig.47 zeigt ein Beispiel für eine Informationsdarstellung auf der Fliesen-Anordnung. Selbstverständlich ist die Darstellung unabhängig vom gewählten Routing-Baum.

Zuvor wurde die Auswahl und das Bewerten von Routing-Matrizen beschrieben, das heißt im Wesentlichen von Routing-Wegen. Das Bewertungskriterium ist dabei die Routing-Dauer gewesen. Da eine wirkliche kombinatorische Optimierung aufgrund der Komplexität üblicherweise nicht in kurzer Zeit durchführbar ist, wurde oben eine Alternative vorgestellt.

Der frei wählbare Parameter ist das Gewicht g. Zur (Teil)10 Optimierung der Routing-Dauer kann dieser Prozess vom
Portalprozessor auch mehrfach mit unterschiedlichem Gewicht g
durchgeführt werden.

Üblicherweise wird man die Gewichte g = 0, 1, 2, 3, ... 15 betrachten und untersuchen.

5

20

25

30

35

Diese haben sich bei numerischen Betrachtungen als vorteilhaft erwiesen. Dasjenige Routing, welches die kürzeste Routing-Dauer besitzt, kann anschließend endgültig verwendet werden.

Um den Prozess mehrfach durchführen zu können, verwendet der Portalprozessor die Nachricht MessRetry, die alle Kanäle, Farbregionen und Farbabstände löscht, wie in Fig.48 dargestellt ist. Zur Terminierung des Prozesses wird die MessRetry-Nachricht mit dem Parameter "stamp" versehen, dessen Wert nicht identisch ist mit dem entsprechenden gespeicherten Parameter der Prozessoreinheit. Anders ausgedrückt verwendet der Portalprozessor bei jedem erneuten Zurücksetzen einen anderen Parameter "stamp".

Bei Empfang einer eingehenden MessRetry-Nachricht 4801 mit dem Parameter "stamp" werden von dem jeweiligen die MessRetry-Nachricht 4801 empfangenen Prozessoreinheit die folgenden Schritte durchgeführt:

WO 2004/053711 PCT/DE2003/004060

- 1. Falls der eigene Stempelparameter identisch zu dem in der MessRetry-Nachricht enthaltenem Stempelparameter "stamp" ist, wird die Verarbeitung beendet.
- 5 2. Der eigene Stempelparameter wird auf den Wert des in der MessRetry-Nachricht enthaltenen Stempelparameterwerts "stamp" gesetzt.
- 3. Alle Nummerierungen, Kanäle, Farbregionen, Farbabstände und Token-Blockierungen werden gelöscht.
- Über alle Verbindungen mit Ausnahme der Verbindung zu der die MessRetry-Nachricht sendenden Prozessoreinheit werden zusätzliche MessRetry-Nachrichten 4802 übertragen, wie in Fig.48 dargestellt ist.

Während des Betriebs der Fliesen-Anordnung können durch Abnutzung Fehler auftreten, die zum Zeitpunkt der oben beschriebenen Selbstorganisation noch nicht vorhanden waren.

20- Zur Selbsterkennung dieser Fehler können weitere Nachrichtenverwendet werden.

Nach den oben dargestellten Modellannahmen kann aus Sicht eines lokalen Prozessors ein Fehler nur darin bestehen, dass ein bislang verbundener Nachbar-Prozessor nicht mehr erreichbar ist. Er kann hingegen nicht beurteilen, ob nur die Verbindung zu diesem Nachbar-Prozessor oder ob der Nachbarprozessor selber ausgefallen ist. Bei einem solchen Vorkommnis kann aber eine Fehlernachricht, im Weiteren als

30 MessError-Nachricht bezeichnet, an den Portalprozessor senden, die ihn selbst identifiziert, vorzugsweise unter Verwendung der eigenen Fliesennummer als Nachrichtenparameter und die zusätzlich die Nummer der neu ausgefallenen Verbindung enthält.

Eine mögliche Reaktion des Portalprozessors auf eine solche Nachricht ist ein globaler Reset der Fliesen-Anordnung mit Hilfe einer MessReset-Nachricht.

Als Reaktion auf diese Nachricht leitet jeder FliesenProzessor diese Nachricht an alle Nachbar-Prozessoren weiter
und löscht alle Daten, die bei der Organisation ermittelt
wurden. Zur Terminierung dieses Prozesses sollte jeder
Fliesen-Prozessor eine gewisse Totzeit einhalten, vor deren
Ende er nicht auf weitere Nachrichten reagiert. Die Totzeit
verhindert, dass die Verbreitung der MessReset-Nachricht
unendlich oft wiederholt wird.

Zusammenfassend ist in **Fig.49** eine Übersicht über die verwendeten Nachrichten, deren jeweiligen Parameter aufgeführt.

25

30

Es ist in diesem Zusammenhang anzumerken, dass der
Nachrichtenkatalog selbstverständlich funktional um beliebige
zusätzliche Nachrichten erweiterbar ist.

Die technische Ausstattung einer erfindungsgemäßen Fliese 101 ist bei den Sensorelementen und Anzeigeelementen in zahlreichen Einzelvarianten ausführbar.

Elementarer Bestandteil einer Fliese ist jedoch die jeweilige Prozessoreinheit, die mit Stromleitungen und Datenleitungen an die Prozessoreinheiten von unmittelbar benachbarten Fliesen gekoppelt wird. Bei Verlegung eines Fliesenbodens oder einer Fliesenwand entsteht dadurch ein reguläres Netzwerk, wie es oben erläutert wurde.

Am Rand des Netzwerks, d.h. am Rand der Fliesen-Anordnung 100 ist zudem, wie oben dargelegt, der Portalprozessor vorgesehen. Der Portalprozessor ist die zentrale Steuerkomponente der Haustechnik bzw. Messetechnik. Über den Portalprozessor können Informationen in das System, d.h. in

10

15

20 -

35

100

die Fliesen-Anordnung 100 geschickt werden, wie in Fig.4 dargestellt. Es kann aber auch Sensorinformation aus dem System zu dem Portalprozessor 401 herausgeführt werden.

- 5 Die Installation der Fliesen-Anordnung 100 erfolgt gemäß folgenden Einzelschritten:
 - zunächst werden die Kacheln bzw. Fliesen wie üblich verlegt, mit der Abweichung gegenüber dem üblichen Vorgehen, dass zunächst die Fliesen-Verbindungsstücke eingelassen werden und anschließend die Fliesen über die Fliesen-Verbindungsstücke miteinander gekoppelt werden;
 - ferner wird der Portalprozessor an eine oder mehrere Fliesen, welche sich vorzugsweise am Rand des verlegten Bereichs, d.h. am Rand der Fliesen-Anordnung 100 befinden, angeschlossen;
 - schließlich erfolgt auf oben beschriebene Weise die automatische Selbstorganisation des Netzwerkes der Fliesen-Anordnung 100 ohne manuelle Eingriffe des Nutzers.

Auf diese Weise können Installationen ohne technisches Spezialwissen und ohne Planung von Leitungsverläufen oder Programmierung von ebenen Positionen durchgeführt werden.

- 25 Somit sind die Kosten erheblich unter denen einer Speziallösung und daher eignet sich die erfindungsgemäße Anordnung für den Einsatz im Massenmarkt.
- Ferner entsteht ein sehr fehlertolerantes System, das selbst bei mutwilligen Beschädigungen (bei Alarmanlagen) oder in einem Katastrophenfall (beispielsweise zur Einsatzfähigkeit als Leitsystem oder Detektor von Bewusstlosen auch bei progressiver Zerstörung, beispielsweise durch Feuer) sehr gut einsetzbar sind.

In **Fig.53** ist eine schematische Darstellung einer Textilgewebestruktur 5300 gemäß einem Ausführungsbeispiel der

Erfindung gezeigt. Fig.54 zeigt einen vergrößerten Ausschnitt A der Prozessor-Anordnung aus Fig.53.

Die Textilgewebestruktur 5300 weist als Grundstruktur ein grobmaschiges Gewebe auf, welches aus nichtleitfähigen Fäden 5301 ausgebildet ist. Ferner weist die Textilgewebestruktur 5300 elektrisch leitfähige Fäden 5302, 5307 auf. Die elektrisch leitfähigen Fäden 5302 dienen als Erdung für die in die Textilgewebestruktur 5300 zu integrierenden, im Folgenden näher erläuterten Prozessorelemente 5303.

Die elektrisch leitfähigen Fäden 5307 werden für die Stromversorgung der in die Textilgewebestruktur 5300 zu integrierenden Prozessorelemente 5303 verwendet. Ferner weist die Textilgewebestruktur 5300 leitfähige Fäden 5304 auf, welche zur Datenübertragung von und zu den zu integrierenden Prozessorelementen 5303 verwendet werden.

15

35

Die elektrisch leitfähigen Fäden 5302, 5307 und die
leitfähigen Datenübertragungs-Fäden 5304 sind vorzugsweise im
Gewebe in einem quadratischen Raster angeordnet, so dass ein
quadratisches Raster von Kreuzungspunkt-Bereichen 5305
(vergleiche Fig.54) in der Textilgewebestruktur 5300 gebildet
wird. In den Bereichen, in die die Prozessorelemente 5303
eingesetzt sind, sind die Fäden, sowohl die elektrisch
leitfähigen Fäden 5302, 5307, die leitfähigen
Datenübertragungs-Fäden 5304 als auch die nichtleitfähigen
Fäden 5301 entfernt, vorzugsweise ausgeschnitten, wodurch
eine Lücke in der Textilgewebestruktur 5300 gebildet wird, in
welche die Prozessorelemente 5303 eingesetzt werden.

Nach erfolgtem Einsetzen der Prozessorelemente 5303 in die Textilgewebestruktur 5300 werden diese an ihren äußeren Anschlüssen, insbesondere an ihren Kommunikations-Schnittstellen mit den jeweiligen Fäden gekoppelt, insbesondere mit den elektrisch leitfähigen Fäden 5302 und 5307 zur Stromversorgung bzw. Erdung des jeweiligen

Prozessorelements und mit den leitfähigen Datenübertragungs-Fäden 5304 zur Übertragung von Daten zwischen einander benachbart angeordneten Prozessorelementen 5303.

- 5 Mittels der elektrisch leitfähigen Fäden 5302 und 5307 wird somit das jeweilige Prozessorelement 5303 mit elektrischer Energie versorgt und mittels der Datenübertragungs-Fäden 5304 werden gemäß dem jeweiligen Kommunikationsprotokoll, das gemäß der Ausgestaltung der jeweiligen
- 10 Kommunikationsschnittstelle des Prozessorelements verwendet wird, elektronische Nachrichten zwischen den Prozessorelementen 5303 ausgetauscht.
- In den Kreuzungspunkt-Bereichen 5305 ist in Fig.54

 15 angedeutet, dass die jeweils einander entsprechenden
 leitfähigen Fäden 5302, 5304, 5307 miteinander gekoppelt
 sind, so dass gemäß diesem Ausführungsbeispiel der Erfindung
 eine Ringstruktur 5306 der Datenleitungen gebildet wird.
 Somit ist es ermöglicht, dass jedes Prozessorelement 5303 mit
 20 jeweils zwei Kommunikationsschnittstellen zur Übertragung von
 Daten zu allen vier zu dem jeweiligen Prozessorelement 5303
 benachbart angeordneten Nachbar-Prozessorelementen 5303 Daten
 übertragen kann.
- Die Kopplung zwischen dem Prozessorelement 5303 und den elektrisch leitfähigen Fäden 5302 und 5307 und leitfähigen Datenübertragungs-Fäden 5304 kann mittels Kontaktierung durch eine flexible Leiterplatte oder mittels sogenannten Drahtbondens realisiert sein. Die Prozessorelemente 5303 in der Textilgewebestruktur 5300 sind verkapselt, so dass der Kopplungsbereich zwischen dem Prozessorelement 5303 und den elektrisch leitfähigen Fäden 5302 und 5307 und den leitfähigen Datenübertragungs-Fäden 5304 isoliert ist und außerdem ein mechanisch robuster und wasserfester Schutz gewährleistet ist.

Eine solche "intelligente" Textilgewebestruktur 5300 kann als Basis oder als Zwischenlage einer Wandverkleidung oder Bodenverkleidung oder einer anderen Art von technischen Textilien bilden. Sie kann beispielsweise auch als Schicht einer Textilbetonkonstruktion verwendet werden. Die Prozessorelemente 5303 der Textilgewebestruktur 5300 können mit einer Vielzahl von verschiedenartigen Sensoren und/oder Aktoren gekoppelt sein, bzw. diese enthalten. So können in dem Prozessorelement 5303 enthalten sein oder an dieses angeschlossen sein Leuchtdioden, Anzeigelemente oder Displays, um Informationen, welche zu den Prozessorelementen 5303 übertragen werden, anzuzeigen.

Die elektrisch leitfähigen Fäden 5302 und 5307 sowie die
leitfähigen Datenübertragungs-Fäden 5304 sind in die
Textilgewebestruktur 5300 eingewoben. An den vier Seiten der
Textilgewebestruktur 5300 sind die leitfähigen Fäden 5302,
5307 und die leitfähigen Datenübertragungs-Fäden 5304 mit
Versorgungsleitungen und Datenleitungen (nicht dargestellt)
kontaktiert. Auf der-Textilgewebestruktur 5300 ist gemäß
einer bevorzugten Ausgestaltung der Erfindung ein
Teppichboden fixiert.

Die erfindungsgemäße Textilgewebestruktur 5300 mit 25 integrierter Mikroelektronik, Sensoren und/oder Aktoren, beispielsweise Anzeigelämpchen, ist für sich allein genommen funktionsfähig und kann unter verschiedenartigen Flächenverkleidungen fixiert werden. Beispiele solcher Flächenverkleidungen sind nichtleitende Textilien, 30 Bodenbeläge aus Teppichboden, Parkett, Kunststoff, Gardinen, Tapeten, Isoliermatten, Zeltdächer, Verputzschichten, Estrich und Textilbeton. Vorzugsweise erfolgt das Fixieren mittels Klebens, Laminierens oder Vulkanisierens. Zur Vermeidung von "Elektrosmog" in der Umgebung von Menschen kann über die 35 erfindungsgemäße Textilgewebestruktur 5300 zu deren Abschirmung auch ein gleichförmig mit elektrisch leitfähigen Drähten durchzogenes Textil aufgebracht werden. Dabei ist

jedoch zu beachten, dass gegebenenfalls bestimmte Bereiche, beispielsweise Bereiche über Kapazitätssensoren, nicht von der Abschirmung überdeckt werden dürfen.

- Die Textilgewebestruktur 5300 mit integrierter
 Mikroelektronik ist, vorzugsweise an einer Stelle am Rand der
 Textilgewebestruktur 5300, mit einer zentralen Steuereinheit,
 beispielsweise einem einfachen Personal Computer, im
 Folgenden bezeichnet als Schnittstellen-Prozessor 5308,
 mittels einer elektrischen Verbindungsleitung 5309 gekoppelt.
- Mit dem Schnittstellen-Prozessor 5308 ist ein Auswertesystem 5310, eingerichtet als Personal Computer, und/oder ein Steuerungssystem 5310 gekoppelten, mit dem elektronische
- Nachrichten von dem Schnittstellen-Prozessor 5308 eingelesen werden oder in die Prozessor-Anordnung 5300 eingeleitet werden, anders ausgedrückt, zu den Prozessorelementen 5303 der Prozessor-Anordnung 5300 gesendet werden, insbesondere zur Steuerung eines mit dem jeweiligen Prozessor des
- 20 Prozessorelements-5303 gekoppelten Aktors.
 - Gemäß diesen Ausführungsbeispielen der Erfindung, wie sie im Folgenden noch näher erläutert werden, wird zu Beginn des Einsatzes der Textilgewebestruktur 5300 ein
- 25 Selbstorganisationsverfahren durchgeführt, welches oben oder in [1] beschrieben ist.
 - Wird die Textilgewebestruktur 5300, welche somit ein Netzwerk aus Prozessorelementen 5303 aufweist, in Betrieb genommen, so
- beginnt die oben und in [1] beschriebene Lernphase, nach deren Abschluss jedes Prozessorelement 5303 seine exakte physikalische Position innerhalb der Textilgewebestruktur 5300 bezogen auf eine Referenzposition, vorzugsweise bezogen auf die Position des Schnittstellen-Prozessors 5308, kennt.
- Ferner werden automatisch Wege für Datenströme durch das Raster hindurch konfiguriert, wodurch Sensorinformationen oder Displayinformationen um ermittelte defekte Bereiche

innerhalb der Textilgewebestruktur 5300 herum geleitet werden können.

Durch die Selbstorganisation des Netzwerkes werden defekte

Bereiche erkannt und umgangen. Dadurch ist das Netzwerk aus
Prozessorelementen 5303 auch selbst dann noch
funktionstüchtig, wenn die Textilgewebestruktur 5300 in eine
Form geschnitten ist, welche durch den jeweiligen
Verwendungszweck vorgegeben ist.

10

Darüber hinaus bewirkt die erfindungsgemäße Selbstorganisation, dass kein manueller Installationsaufwand für das Netzwerk der Prozessorelemente 5303 innerhalb der Textilgewebestruktur 5300 erforderlich ist.

15

Anschaulich sind somit die Prozessorelemente 5303 gemäß diesem Ausführungsbeispiel der Erfindung mit Hilfe lokaler Ringstrukturen miteinander gekoppelt. Jedes Prozessorelement 5303 ist mit genau zwei Ringen 5306, gebildet von

- 20 Ringleitungen, verbunden, woraus sich ergibt, dass lediglich zwei Kommunikationsschnittstellen pro Prozessorelement 5303 zur Kommunikation mit vier benachbart angeordneten Nachbar-Prozessorelementen ausreicht.
- An den Rändern der Textilgewebestruktur 5300 ist die Ringstruktur zu einer Punkt-zu-Punkt-Verbindung entartet, also anschaulich zu einem Ring aus zwei Teilnehmern, was jedoch keinen Einfluss auf den Aufbau der Prozessorelemente 5303 hat. Zum Aufbau der lokalen Ringtopologien können, wie
- in **Fig.54** dargestellt, die bereits vorher vorhandenen leitfähigen Fäden 5302, 5304, 5307 der Matrixanordnung der Textilgewebestruktur 5300 gemäß Fig.53 verwendet werden.
- Fig.56 zeigt ein beispielhaftes Prozessorelement 5303, wie es in allen Ausführungsbeispielen der Erfindung eingesetzt wird.

Das Prozessorelement 5303 weist einen Sensor 5601 auf sowie einen Prozessor 5602, beispielsweise einen Mikrocontroller XC161 oder XC164 der Firma Infineon Technologies AG.

- Der Prozessor 5602 weist eine erste
 Kommunikationsschnittstelle 5603 sowie eine zweite
 Kommunikationsschnittstelle 5604 auf. Der Sensor 5601 ist mit
 einem Dateneingangsanschluss 5605 mittels einer
 Verbindungsleitung 5606 gekoppelt. Die erste
- 10 Kommunikationsschnittstelle 5603 ist über eine zweite
 Verbindungsleitung 5607 mit einem ersten Eingangs-/AusgangsSchnittstellenanschluss 5608 gekoppelt und die zweite
 Kommunikationsschnittstelle 5604 ist mittels einer dritten
 Verbindungsleitung 5608 mit einem zweiten Eingangs-/Ausgangs15 Schnittstellenanschluss 5610 gekoppelt.

Der Sensor 5601 ist bevorzugt als Drucksensor eingerichtet, so dass es mittels der Textilgewebestruktur 5300 ermöglicht ist, das Betreten des Teppichs, in welchem die

- Textilgewebestruktur 5300 eingebracht ist, lokal aufgelöst festzustellen. Ein solcher Teppich kann bevorzugt in einem Warenhaus eingesetzt werden, in dem die Attraktivität einzelner Warenstandorte aufgrund der Verweildauer der Käufer festgestellt werden soll oder besonders lange Schlangen in einem Kassenbereich automatisch detektiert werden sollen, um weitere Kassen bei Bedarf zu öffnen. Ein anderes Anwendungsgebiet für eine solche Textilgewebestruktur sind
- Die beiden Eingangs-/Ausgangs-Schnittstellenanschlüsse 5608 und 5610 sind an einander gegenüberliegenden Seiten des Prozessorelements 5303 angeordnet.

Alarmanlagen.

Weitere Elemente des Prozessorelements 5303, wie 35 beispielsweise Speicherelemente, Takterzeugungseinrichtungen, Spannungsversorgung, etc. sind aus Gründen der Übersichtlichkeit in Fig.56 nicht dargestellt, jedoch in dem Prozessorelement 5303 vorgesehen.

Der Prozessor 5602 ist vorzugsweise derart eingerichtet, dass von dem Sensor 5601 erfasste und an den Prozessor 5602 übertragene Sensordaten vorverarbeitet werden und anschließend über die leitfähigen Fäden zu dem Schnittstellen-Prozessor 5308 übertragen werden.

- 10 Allgemein ist eine beliebige Anzahl von Schnittstellen-Prozessoren 5308 in der Prozessor-Anordnung, bevorzugt in der Textilgewebestruktur 5300 vorgesehen.
- Es ist in diesem Zusammenhang anzumerken, dass das
 15 Prozessorelement **53**03 alternativ oder zusätzlich zu dem
 Sensor 5601 einen Aktor, beispielsweise ein bildgebendes
 Element, vorzugsweise eine Leuchtdiode, enthalten kann.
- Die Verbindungsstruktur ist in Fig.53 gegenüber der 20 Darstellung in Fig.54 vereinfacht dargestellt, da dort lediglich die Datenleitungen 5302 gezeigt sind.
- Es ist in diesem Zusammenhang anzumerken, dass einige Verbindungsleitungen, d.h. einige Fäden für die

 Funktionalität der Textilgewebestruktur 5300 optional sind, so dass sich eine Reihe von konkreten Umsetzungen durch Weglassen redundanter Verbindungsleitungen in der Textilgewebestruktur 5300 ergibt.
- Fig.55 zeigt eine Prozessor-Anordnung, bevorzugt ebenfalls ausgebildet als Textilgewebestruktur 5500, gemäß einem anderen Ausführungsbeispiel der Erfindung.
- Im Unterschied zu der Textilgewebestruktur 5300 gemäß dem obigen Ausführungsbeispiel der Erfindung sind die Prozessorelemente 5303 der Textilgewebestruktur 5500 gemäß diesem Ausführungsbeispiel der Erfindung mittels einer

zweiwertigen Bus-Kopplungstopologie unter Verwendung eines Standard-Bus-Kommunikationsprotokolls, wie beispielsweise unter Verwendung eines SPI-Busses oder eines I C-Busses oder eines CAN-Busses, miteinander gekoppelt.

5

10

In diesem Fall sind die Kommunikationsschnittstellen 5603, 5604 zur Kommunikation gemäß dem jeweiligen Bus-Kommunikationsprotokoll eingerichtet. Dies bedeutet, dass die Kommunikationsschnittstellen 5603, 5604 beispielsweise als SPI-Schnittstelle (bzw. als SSP-Schnittstelle), als I²C-Schnittstelle oder CAN-Schnittsstelle ausgestaltet sein kann.

Allgemein ist anzumerken, dass die Topologie der lokalen Verbindungen zwischen den Prozessorelementen durch die Art des Anschlusses der Prozessorelemente 5303 an die gitterförmigen Datenleitungen der Textilgewebestruktur, allgemein der Prozessor-Anordnung, bestimmt wird.

Anders ausgedrückt bedeutet dies, dass die

Textilgewebestruktur 5500 gemäß diesem Ausführungsbeispiel
der Erfindung derart eingerichtet ist, dass die
Prozessorelemente unter Verwendung lokaler Busse und der
Benutzung standardisierter Kommunikationsschnittstellen,
welche insbesondere im Mikrocontroller-Bereich bereits weite
Verbreitung gefunden haben, gekoppelt sind.

Die Verbindungsleitungen der Busse gemäß diesem Ausführungsbeispiel sind in Fig.55 mit dem Bezugszeichen 5501 versehen.

30

An jeder Bus-Verbindungsleitung 5501 sind vier bzw. zwei (an dem Rand der Prozessor-Anordnung 5500 angeordneten Prozessorelementen 5303) Prozessorelemente 5303 angeschlossen, von denen jedes zwei

Kommunikationsschnittstellen 5603, 5604 aufweist, wie oben beschrieben.

Fig. 57 zeigt eine Prozessor-Anordnung 5700 gemäß einem anderen Ausführungsbeispiel der Erfindung.

5

10

Auch gemäß diesem Ausführungsbeispiel der Erfindung wird ein Bus 5701 zur Kopplung der Prozessorelemente 5303 vorgesehen.

Wie Fig.57 zu entnehmen ist, genügen unter Verwendung der optionalen Verbindungsleitungen allein zwei Arten von lokalen Verbindungstopologien zur Verbindung der einander örtlich unmittelbar benachbart angeordneten Prozessorelemente 5303, nämlich Verbindungen

- a) von dem jeweiligen Prozessorelement 5303 aus betrachtet zwischen der linken und oberen elektrischen Leitung 5701

 mit dem ersten Eingangs-/Ausgangs-Schnittstellenanschluss 5608 des Prozessorelements 5303 und zwischen der rechten und unteren Leitung 5702 mit dem zweiten Eingangs-/Ausgangs-Schnittstellenanschluss 5610 des Prozessorelements 5303 (im Folgenden auch bezeichnet als erster Typ 5705) und
 - b) von dem jeweiligen Prozessorelement 5303 aus betrachtet zwischen der rechten und oberen Leitung 5703 mit dem ersten Eingangs-/Ausgangs-Schnittstellenanschluss 5708 des Prozessorelements 5303 und zwischen der linken und unteren Leitung 5704 mit dem zweiten Eingangs-/Ausgangs-Schnittstellenanschluss 5710 des Prozessorelements 5303 (im Folgenden bezeichnet auch als zweiter Typ 5706).
 - Die Verbindungstopologien vom ersten Typ 5705 und vom zweiten Typ 5706 sind sowohl vertikal als auch horizontal abwechselnd zueinander angeordnet, d.h. schachbrettmusterartig. Die geringe Typenvielfalt von Verbindungen und die Gleichartigkeit sowie der einfache Aufbau der
 - Prozessorelemente 5303 führt zu einer besonders kostengünstigen Realisierung der Prozessor-Anordnung 5700 gemäß diesem Ausführungsbeispiel der Erfindung.

Fig.58 zeigt eine Prozessor-Anordnung 5800 gemäß einem anderen Ausführungsbeispiel der Erfindung.

Die Prozessorelemente 5303 sind gemäß dem Ausführungsbeispiel der Erfindung hexagonalförmig ausgestaltet, weisen jedoch die gleichen Elemente auf, wie oben beschrieben.

Zur Kopplung der hexagonalförmigen Prozessorelemente 5303

10 sind in der Prozessor-Anordnung 5800 ebenso eine
Ringtopologie, d.h. einer Verbindung von einander
benachbarten Prozessorelementen 5303 mittels einer
Ringstruktur 5801, wie sie in Fig.58 dargestellt ist,
vorgesehen.

In diesem Dokument sind folgende Veröffentlichungen zitiert:

- [1] T.F. Sturm, S. Jung, G. Stromberg, A. Stöhr, A Novel Fault Tolerant Architecture for Self-Organizing Display and Sensor Arrays, International Symposium Digest of Technical Papers, Volume XXXIII, Nr. II, Society for Information Display, Boston, Massachusetts, 22. bis 23. Mai 2002, Seiten 1316 bis 1319, 2002;
- 10 [2] US 4,387,127;

- [3] WO 99/41814 A1;
- [4] C. Fenger, Phillips Semiconductors, Integrated Circuits,

 Application note, AN168: The I C Serial Bus: Theory and

 Practical Consideration Using Philips Low-Voltage

 PCF84Cxx and PCD33xx μC Families, December 1988.

Bezugszeichenliste

- 100 Fliesen-Anordnung
- 101 Fliese
- 301 Anzeigeelement
- 302 Anzeigeelement
- 401 Portalprozessor
- 402 Fliesen-Prozessor
- 403 Anschluss
- 404 Elektrische Leitung
- 501 Bidirektionale Kommunikationsschnittstellen
- 502 Elektrische Leitung
- 600 Erste Ausrichtung
- 601 Zweite Ausrichtung
- 603 Dritte Ausrichtung
- 604 Vierte Ausrichtung
- 605 Fünfte Ausrichtung
- 606 Sechste Ausrichtung
- 700 Gerichteter Graph
- 701 Ungerichteter Graph
- 800 Gerichteter Baum
- 900 Ungerichteter Graph
- 901 Gerichteter Pixel-Anordnungs-Graph
- 902 Portal-Knoten
- 903 Knoten
- 904 Zuleitung
- 905 Kante
- 1000 Zulässiger Baum
- 1001 Portal-Knoten

WO 2004/053711 PCT/DE2003/004060 113

- 1100 Baum
- 1201 Nachricht
- 1202 Portal-Knoten
- 1203 Einleit-Pixelprozessoren
- . . 1204 Erste innere Knoten
 - 1401 Erster Pixelprozessor
 - 1402 Zweiter Pixelprozessor
 - 1403 Bidirektionale Kommunikationsschnittstelle erster
 - Pixelprozessor
 - 1404 Bidirektionale Kommunikationsschnittstelle zweiter
 - Pixelprozessor
 - 1405 Zuleitung
 - 1406 Erste Nachricht
 - 1407 Zweite Nachricht
 - 1500 Prozessoreinheit
 - 1501 MessKoherenz-Nachricht
 - 1601 MessKoherenz-Nachricht
 - 1602 MessKoherenz-Nachricht
 - 1603 MessKoherenz-Nachricht
 - 1604 MessKoherenz-Nachricht
 - 1605 MessKoherenz-Nachricht
 - 1606 MessKoherenz-Nachricht
 - 1701 MessPosition-Nachricht
 - 1702 MessPosition-Nachricht
 - 1703 MessPosition-Nachricht
 - 1704 MessPosition-Nachricht
 - 1705 MessPosition-Nachricht
 - 1706 MessPosition-Nachricht
 - 1800 Prozessor-Anordnung
 - 1801 Pixelprozessor

- 1901 MessDistance-Nachricht
- 1902 MessDistance-Nachricht
- 1903 MessDistance-Nachricht
- 1904 MessDistance-Nachricht
- 1905 MessDistance-Nachricht
- 1906 MessDistance-Nachricht
- 2001 Prozessoreinheit
- 2002 Unterste Zeile Prozessor-Anordnung
- 2003 Südwest-Seite Prozessoreinheit
- 2100 Prozessor-Anordnung
- 2101 Unterste Zeile Prozessor-Anordnung
- 2102 Prozessoreinheiten, welche nicht mit dem Portalprozessor gekoppelt sind
- 2103 Prozessoreinheiten, welche mit dem Portalprozessor gekoppelt sind
- 2201 MessOrganize-Nachricht
- 2202 MessOrganize-Nachricht
- 2203 MessOrganize-Nachricht
- 2204 MessOrganize-Nachricht
- 2205 MessOrganize-Nachricht
- 2206 MessOrganize-Nachricht
- 2600 Horizontalriss
- 2700 Horizontalriss
- 2801 Eingehende MessCountNodes-Nachricht
- 2802 Gesendete MessCountNodes-Nachricht
- 2901 Erste eingehende MessNodesSize-Nachricht
- 2902 Zweite eingehende MessNodesSize-Nachricht
- 2903 Gesendete MessNodesSize-Nachricht

3201	MessColDistance-Nachricht		
3202	MessColDistance-Nachricht		
3203	MessColDistance-Nachricht		
3204	MessColDistance-Nachricht		
3205	MessColDistance-Nachricht		
3206	MessColDistance-Nachricht		
3301	Empfangene MessBlockToken-Nachricht		
3302	Gesendete MessBlockToken-Nachricht		
3401	Eingehende MessToken-Nachricht		
3402	Gesendete MessBlockToken-Nachricht		
3403	Gesendete MessBlockToken-Nachricht		
3404	Gesendete MessBlockToken-Nachricht		
3405	Gesendete MessBlockToken-Nachricht		
3406	Gesendete MessBlockToken-Nachricht		
3601	Eingehende MessDeleteChannels-Nachricht		
3602	Gesendete MessDeleteChannels-Nachricht		
3603	Gesendete MessDeleteChannels-Nachricht		
3604	Gesendete MessDeleteChannels-Nachricht		
3605	Gesendete MessDeleteChannels-Nachricht		

3701 Eingehende MessColOrganize-Nachricht

3606 Gesendete MessDeleteChannels-Nachricht

- 3702 Gesendete MessColOrganize-Nachricht
- 3703 Gesendete MessColOrganize-Nachricht
- 3704 Gesendete MessColOrganize-Nachricht
- 3705 Gesendete MessColOrganize-Nachricht
- 3706 Gesendete MessColOrganize-Nachricht
- 3801 Mäander-Weg
- 3901 Mäander-Weg
- 4301 Eingehende MessNumbering-Nachricht
- 4302 Gesendete MessNumbering-Nachricht

WO 2004/053711 PCT/DE2003/004060 116

4600 Routing-Tabelle

- 4801 Eingehende MessRetry-Nachricht
- 4802 Gesendete MessRetry-Nachricht
- 4900 Pixel-Anordnung
- 4901 Prozessoreinheit
- 4902 Pixel
- 4903 Pixelblock
- 5001 Sensor
- 5002 Prozessor
- 5003 Steckverbinder
- 5004 Steckverbinder
- 5005 Steckverbinder
- 5006 Steckverbinder
- 5007 Masseanschluss
- 5008 Masseanschluss
- 5009 Masseanschluss
- 5010 Masseanschluss
- 5011 Datenübertragungs-Anschluss
- 5012 Datenübertragungs-Anschluss
- 5013 Datenübertragungs-Anschluss
- 5014 Datenübertragungs-Anschluss
- 5015 Stromversorgungsanschluss
- 5016 Stromversorgungsanschluss
- 5017 Stromversorgungsanschluss
- 5018 Stromversorgungsanschluss
- 5019 Elektrische Leitung
- 5020 Elektrische Leitung
- 5021 Elektrische Leitung
- 5022 Elektrische Leitung
- 5023 Erste Steuerleitung
- 5024 Zweite Steuerleitung
- 5201 Hohlraum

WO 2004/053711 PCT/DE2003/004060 117

5201	Seit	enwan	đ
------	------	-------	---

- 5203 Ausnehmung
- 5210 Fliesen-Verbindungsstück
- 5211 Masseanschluss Fliesen-Verbindungsstück
- 5212 Datenanschluss Fliesen-Verbindungsstück
- 5213 Stromversorgungsanschluss Fliesen-Verbindungsstück
- 5214 Einrast-Vorsprung
- 5215 Einrast-Vorsprung
- 5300 Textilgewebestruktur
- 5302 Elektrisch leitfähiger Faden
- 5303 Prozessorelement
- 5304 Datenübertragungs-Faden
- 5305 Kreuzungspunkt-Bereich
- 5306 Ring
- 5307 Elektrisch leitfähiger Faden
- 5308 Schnittstellen-Prozessor
- 5309 Verbindungsleitung
- 5310 Auswertesystem
- 5400 Prozessoranordnung
- 5401 Prozessorelement
- 5402 Verbindungsleitung
- 5403 Schnittstellen-Prozessor
- 5404 Auswertesystem
- 5500 Textilgewebestruktur
- 5501 Busleitung
- 5601 Sensor
- 5602 Prozessor
- 5603 Erste Kommunikationsschnittstelle
- 5604 Zweite Kommunikationsschnittstelle
- 5605 Dateneingangsanschluss
- 5606 Erste Verbindungsleitung
- 5607 Zweite Verbindungsleitung
- 5608 Erster Eingangs-/Ausgangs-Schnittstellenanschluss

WO 2004/053711 PCT/DE2003/004060

- 5609 Dritte Verbindungsleitung
- 5610 Zweiter Eingangs-/Ausgangs-Schnittstellenanschluss
- 5700 Prozessoranordnung
- 5701 Erste Leitung
- ... 5702 Zweite Leitung
 - 5703 Dritte Leitung
 - 5704 Vierte Leitung
 - 5705 Verbindungstopologie erster Art
 - 5706 Verbindungstopologie zweiter Art
 - 5700 Prozessorelement
 - 5701 Ring-Verbindung

20

25

30

Patentansprüche

- 1. Flächen-Verkleidungsmodul
- mit mindestens einem Stromversorgungsanschluss,
- mit mindestens einer Datenübertragungs-Schnittstelle,
 - mit mindestens einer Prozessoreinheit, welche mit dem Stromversorgungsanschluss und mit der Datenübertragungs-Schnittstelle gekoppelt ist,
- bei dem die Prozessoreinheit derart eingerichtet ist,
 dass zum Ermitteln eines jeweiligen Abstands einer Prozessoreinheit von einer Referenzposition elektronische Nachrichten ausgetauscht werden zwischen der Prozessoreinheit und einer Prozessoreinheit eines benachbarten und mit dem Flächen-Verkleidungsmodul
 gekoppelten Flächen-Verkleidungsmodul,
 - wobei jede Nachricht eine Abstandsinformation enthält, welche den Abstand des Flächen-Verkleidungsmoduls einer die Nachricht sendenden Prozessoreinheit oder den Abstand des Flächen-Verkleidungsmoduls einer die Nachricht empfangenden Prozessoreinheit von der Referenzposition angibt, und
 - wobei die Prozessoreinheit derart eingerichtet ist, dass aus der Abstandsinformation einer empfangenen Nachricht der eigene Abstand zu der Referenzposition ermittelbar ist oder speicherbar ist.
 - 2. Flächen-Verkleidungsmodul gemäß Anspruch 1, mit einem Steckverbinder, in den der Stromversorgungsanschluss und die Datenübertragungs-Schnittstelle integriert sind.
 - 3. Flächen-Verkleidungsmodul gemäß Anspruch 1 oder 2, mit mindestens einer Stromleitung und mindestens einer Datenleitung, wobei mittels der Stromleitung die
- Prozessoreinheit mit dem Stromversorgungsanschluss und mittels der Datenleitung mit der Datenübertragungs-Schnittstelle gekoppelt ist.

4. Flächen-Verkleidungsmodul gemäß einem der Ansprüche 1 bis 3,

eingerichtet als eines der folgenden Module:

- Wand-Verkleidungsmodul, oder
 - Fußboden-Verkleidungsmodul, oder
 - Decken-Verkleidungsmodul.
- 5. Flächen-Verkleidungsmodul gemäß einem der Ansprüche 1 10 bis 3,

eingerichtet als

- Fliese, oder
- Kachel, oder
- Parkettelement, oder
- 15 Laminatelement.
 - 6. Flächen-Verkleidungsmodul gemäß einem der Ansprüche 1 bis 5,

mit mindestens einem Sensor, der mit der Prozessoreinheit 20 gekoppelt ist.

7. Flächen-Verkleidungsmodul gemäß einem der Ansprüche 1 bis 6,

mit mindestens einem der folgenden Elemente, welches mit der 25 Prozessoreinheit gekoppelt ist:

- Bildgebendes Element, oder
- Schallwellen-Erzeugungselement, oder
- Vibrations-Erzeugungselement
- 30 8. Flächen-Verkleidungsmodul-Anordnung mit einer Mehrzahl von Flächen-Verkleidungsmodulen gemäß einem der Ansprüche 1 bis 7, welche mittels des Stromversorgungsanschlusses und der Datenübertragungs-Schnittstelle miteinander gekoppelt sind.
- 9. Verfahren zum Bestimmen eines Abstands von Flächen-Verkleidungsmodulen der Flächen-Verkleidungsmodul-Anordnung gemäß Anspruch 1 zu mindestens einer Referenzposition unter

Austausch von elektronischen Nachrichten zwischen Prozessoreinheiten einander benachbarter Flächen-Verkleidungsmodulen,

- bei dem eine erste Nachricht von einer Prozessoreinheit
 eines ersten Flächen-Verkleidungsmoduls erzeugt wird, wobei die erste Nachricht eine erste Abstandsinformation enthält, welche den Abstand des ersten Flächen-Verkleidungsmoduls oder den Abstand eines die erste Nachricht empfangenden zweiten Flächen-
- 10 Verkleidungsmoduls von der Referenzposition enthält,
 - bei dem die erste Nachricht von der Prozessoreinheit des ersten Flächen-Verkleidungsmoduls zu der Prozessoreinheit des zweiten Flächen-Verkleidungsmoduls gesendet wird,
- bei dem abhängig von der Abstandsinformation der Abstand der Prozessoreinheit des zweiten Flächen-Verkleidungsmoduls von der Referenzposition ermittelt oder gespeichert wird, und
- bei dem von der Prozessoreinheit des zweiten FlächenVerkleidungsmoduls eine zweite Nachricht erzeugt wird,
 welche eine zweite Abstandsinformation enthält, welche
 den Abstand des zweiten Flächen-Verkleidungsmoduls oder
 den Abstand eines die zweite Nachricht empfangenden
 dritten Flächen-Verkleidungsmoduls von der
- 25 Referenzposition enthält,
 - bei dem die zweite Nachricht von der Prozessoreinheit des zweiten Flächen-Verkleidungsmoduls zu der Prozessoreinheit des dritten Flächen-Verkleidungsmoduls gesendet wird,
- bei dem abhängig von der zweiten Abstandsinformation der Abstand des dritten Flächen-Verkleidungsmoduls von der
 Referenzposition ermittelt oder gespeichert wird,
 - bei dem die Verfahrensschritte für alle Flächen-Verkleidungsmodule in der Flächen-Verkleidungsmodul-Anordnung durchgeführt werden.
 - 10. Verfahren gemäß Anspruch 9,

bei dem vor Bestimmen des Abstandes der Flächen-Verkleidungsmodule von der Referenzposition die örtlichen Positionen der Flächen-Verkleidungsmodule innerhalb der Flächen-Verkleidungsmodul-Anordnung ermittelt werden, indem ausgehend von einem Flächen-Verkleidungsmodul an einer 5 Einleitstelle der Flächen-Verkleidungsmodul-Anordnung jeweils Positionsermittlungs-Nachrichten, welche zumindest einen Zeilenparameter z und einen Spaltenparameter s aufweisen, welche die Zeilennummer bzw. Spaltennummer der die Nachricht sendenden Prozessoreinheit oder die Zeilennummer bzw. 10 Spaltennummer der die Nachricht empfangenden Prozessoreinheit innerhalb der Flächen-Verkleidungsmodul-Anordnung enthält, an Prozessoreinheiten benachbarter Flächen-Verkleidungsmodule übermittelt werden und von der jeweiligen Prozessoreinheit die folgenden Schritte durchgeführt werden: 15

falls der Zeilenparameter in der empfangenen Nachricht größer ist als-die bisher gespeicherte Zeilennummer der Prozessoreinheit, so wird der eigenen Zeilennummer der Prozessoreinheit der Zeilenparameterwert z der empfangenen Nachricht zugeordnet,

20

- falls der Spaltenparameter in der empfangenen Nachricht größer ist als die eigene Spaltennummer der Prozessoreinheit, so wird der gespeicherten Spaltennummer der Zeilenparameterwert der empfangenen Nachricht zugeordnet,
- falls die eigene Zeilennummer und/oder die eigene Spaltennummer aufgrund der oben dargestellten Verfahrensschritte verändert worden sind, so werden neue Positionsmess-Nachrichten mit neuen Zeilenparametern und neuen Spaltenparametern erzeugt, welche jeweils die Zeilennummer und Spaltennummer der die Nachricht sendenden Prozessoreinheit oder die Zeilennummer und Spaltennummer der die Nachricht empfangenden Prozessoreinheit enthält, und diese werden an eine Prozessoreinheit eines jeweiligen Nachbar-Flächen-Verkleidungsmoduls übertragen.

5

- 11. Verfahren gemäß Anspruch 9 oder 10,
- bei dem in einem iterativen Verfahren der eigene Abstandswert der Prozessoreinheit des Flächen-Verkleidungsmoduls dann verändert wird, wenn der bisher gespeicherte Abstandswert größer ist als der um einen vorgegebenen Wert erhöhte empfangene Abstandswert in der jeweils empfangenen Nachricht, und
- bei dem für den Fall, dass eine Prozessoreinheit eines
 Flächen-Verkleidungsmoduls den eigenen Abstandswert
 verändert, diese eine Abstandsmess-Nachricht erzeugt und
 an Prozessoreinheiten benachbarter FlächenVerkleidungsmodule sendet, wobei die AbstandsmessNachricht jeweils den eigenen Abstand als
 Abstandsinformation enthält oder den Abstandswert, den
 die empfangende Prozessoreinheit von dem Portalprozessor
 aufweist,
- 12. Verfahren gemäß Anspruch 11,bei dem der Abstandswert einen um einen vorgegebenen Wert20 erhöhten Wert gegenüber dem eigenen Abstandswert aufweist.
 - 13. Prozessor-Anordnung,
 - mit mindestens einem Schnittstellen-Prozessor, der eine Nachrichtenschnittstelle der Prozessor-Anordnung bereitstellt,
 - mit einer Vielzahl von Prozessoren, wobei zumindest teilweise nur die einander örtlich direkt benachbart angeordneten Prozessoren miteinander zum Austausch elektronischer Nachrichten gekoppelt sind,
- bei der jedem Prozessor der Vielzahl von Prozessoren ein Sensor und/oder ein Aktor zugeordnet und mit dem jeweiligen Prozessor gekoppelt ist, wobei Sensordaten und/oder Aktordaten in den elektronischen Nachrichten von bzw. zu dem Schnittstellen-Prozessor übertragen werden, und
 - wobei die einander örtlich direkt benachbart angeordneten Prozessoren miteinander zumindest teilweise gemäß einer

regulären Kopplungs-Topologie des Grades größer als eins gekoppelt sind.

- 14. Prozessor-Anordnung gemäß Anspruch 13,
- 5 bei der die einander örtlich direkt benachbart angeordneten Prozessoren miteinander gemäß einer regulären Bus-Kopplungs-Topologie gekoppelt sind.
 - 15. Prozessor-Anordnung gemäß Anspruch 13,
- 10 bei der die einander örtlich direkt benachbart angeordneten Prozessoren miteinander gemäß einer regulären Ring-Kopplungs-Topologie gekoppelt sind.
 - 16. Prozessor-Anordnung gemäß Anspruch 14 oder 15,
- bei der die reguläre Bus-Kopplungs-Topologie gemäß einem der folgenden Kommunikationsschnittstellen-Standards eingerichtet ist:
 - Serial Parallel Interface-Schnittstelle,
 - Controller Area Network-Schnittstelle, oder
- 20 I²C-Schnittstelle.
 - 17. Prozessor-Anordnung gemäß einem der Ansprüche 13 bis 16, bei der die Prozessoren matrixförmig in Zeilen und Spalten angeordnet sind.

25

- 18. Textilgewebestruktur mit einer Prozessor-Anordnung gemäß einem der Ansprüche 13 bis 17,
- bei der die Prozessoren und/oder Sensoren und/oder Aktoren in der Textilgewebestruktur angeordnet sind,
- o mit elektrisch leitfähigen Fäden, welche die Prozessoren miteinander koppeln,
 - mit leitfähigen Datenübertragungs-Fäden, welche die Prozessoren miteinander koppeln, und
 - mit elektrisch nicht-leitfähigen Fäden.

35

19. Textilgewebestruktur gemäß Anspruch 18,

bei der die elektrisch leitfähigen Fäden derart eingerichtet sind, dass sie zur Energieversorgung der Mehrzahl von Prozessoren und/oder Sensoren und/oder Aktoren verwendet werden können.

5

- 20. Textilgewebestruktur gemäß Anspruch 18 oder 19, bei der die leitfähigen Datenübertragungs-Fäden elektrisch leitfähig sind.
- 10 21. Textilgewebestruktur gemäß Anspruch 18 oder 19, bei der die leitfähigen Datenübertragungs-Fäden optisch leitfähig sind.
- 22. Textilgewebestruktur gemäß einem der Ansprüche 18 bis 21,
 15 bei der der Aktor als mindestens eines der folgenden Elemente eingerichtet ist:
 - Bildgebendes Element, oder
 - Schallwellen-Erzeugungselement, oder
 - Vibrations-Erzeugungselement

. 20

- 23. Flächen-Verkleidungsstruktur, bei der auf einer Textilgewebestruktur gemäß einem der Ansprüche 6 bis 10 eine Flächenverkleidung fixiert ist.
- 25 24. Flächen-Verkleidungsstruktur gemäß Anspruch 23, bei der die Flächenverkleidung auf der Textilgewebestruktur aufgeklebt und/oder, auflaminiert und/oder vulkanisiert ist.
- 25. Flächen-Verkleidungsstruktur gemäß Anspruch 23 oder 24,
- 30 bei der die Flächenverkleidungsstruktur ausgebildet ist als:
 - Wand-Verkleidungsstruktur, oder
 - Fußboden-Verkleidungstruktur, oder
 - Decken-Verkleidungstruktur.
- 35 26. Flächen-Verkleidungsstruktur gemäß einem der Ansprüche 23 bis 25,

bei der zumindest über Teilbereichen der Textilgewebestruktur eine gleichförmig mit elektrisch leitfähigen Drähten durchzogene Textillage aufgebracht ist.

2/35 . FIG 3 Tile 301 301 ~101 301 301 302 301 301 301

ERSATZBLATT (REGEL 26)

FIG 5

FIG 6

WO 2004/053711 PCT/DE2003/004060

1406
Nachricht 1405
1401
Nachricht 1407

8/35 (8,40) (7,39) (3,39) (8,36) (7,35) (3,35)(6,34) (7,33) (3,33) (8,32) (6,32) (0,32) (7,31) (9,31) (8,30) (6,30)(0,30) (10,18/1(10,20)|(10,22)|(10,24)|(10,26)|(10,28)| (8,28) (6,28) (0,28) (8,26) (6,26) (0,26)(1,25) (9,25)(8,24) (0,24) (8,22) (0,22) (9,21) (5,21) (3,21) (8,20) (6,20) H (0,20) (6,18)∦ H (0,18) (9,17) (3,17) (8,16) (6,16) (0,16) (0,14) (9,13) (3,13) (8,12) (0,12) (9,11) (8,10) (0,10) (7,9) (8,8) (9,7) (7,7) (0'0) (6,4) (6,2)

FIG 18

12/35 以 (5)

15/35

16/35

-164

FIG 4;

FIG 46

Beispiel: Routing	g-Tabelle Pixel Nr.123	
Nachrichtennummer n	Aktion	
123	selbst Empfänger!	,
124 ≤ <i>n</i> ≤ 135	Versenden über Ausgang 1	~4600
136 ≤ <i>n</i> ≤ 146	Versenden über Ausgang 2	1000
sonst	Fehler	

FIG 48

25/35

26/35

FIG 45

WO 2004/053711 PCT/DE2003/004060

FIG 49

Nachricht	Parameter	
MessBlock Token	Farbe, Farbabstand	
MessChannel		
MessColDistance	Farbe, Farbabstand	
MessCollectinfo	Zeile, Spalte, Pixelnummer, Abstand, Farbabstand, Durchsatz	
MessColOrganize		
MessCountNodes_	-	
MessDeleteChannels	Stempel	
MessDistance	Abstand	
MessError	Pixelnummer, Verbindungsnummer	
MessKoherenz	Richtung	
MessNodesSize	Durchsatz	
MessNumbering	PixeInummer	
MessOrganize	-	
MessPosition	Zeile, Spalte	
MessReset	-	
MessRetry	Stempel	
MessRGB	Pixelnummer, Rot, Grün, Blau	
MessToken	Gewicht, Farbe	

FIG 52A

- 5210

1-1-1-1

1111

1111

