# Sequence Learning with Neural Networks

Carolina Zheng

University of Pennsylvania STAT 991

October 25, 2018

#### Overview

- Motivation
- Sequence Models
  - RNNs
  - Training Challenges
  - LSTM and GRU
- Machine Translation
  - Attention
  - Transformer Model

# Examples of problems involving sequence data

- Speech recognition
- Music generation
- Time series forecasting
- Machine translation
- Conversation agents
- Image captioning

#### Limitations of feedforward networks

Recall the structure of a basic feedforward network:



Problem: How to learn from a sequence of inputs  $x_1, x_2, \dots, x_{\tau}$ ?

# Sequence Models



We will focus on the many-to-many cases. Requirements:

- **①** Output  $\hat{y}_t$  should depend on the sequence so far,  $x_1, \ldots, x_t$ .
- We may not know the length of a particular input sequence ahead of time.

# A Simple Recurrent Neural Network



$$h_t = \sigma_1(b + Wh_{t-1} + Ux_t)$$

$$o_t = c + Vh_t$$

$$\hat{y}_t = \text{softmax}(o_t)$$

## A Simple Recurrent Neural Network

RNNs allow us to learn a single model, rather than a separate one for each time step.

- The model is specified in terms of *transitions* from one state  $h_t$  to the next.
- 2 Parameters are shared across time.

Loss function is a sum of losses at each time step t:

$$L(\hat{y}, y) = \sum_{t=1}^{T} \ell(\hat{y}_t, y_t)$$

#### Training RNNs

Training proceeds as before using **backpropagation through time** on the unrolled computation graph.

We cannot easily parallelize training since each step is dependent on the one before it.

**Teacher forcing** can be used when there are output-to-hidden recurrent connections. Ground truth is fed to the model instead of its own output.



# Modeling Joint Probability Distributions

When we use a negative log-likelihood training objective,

$$\ell(\hat{y}_t, y_t) = -\log \Pr(y_t \,|\, x_1, \dots, x_t)$$

we train the RNN to estimate the conditional distribution of the next sequence element  $y_t$  given the past inputs.

We typically use the softmax function as the output layer to obtain normalized probabilities for each class.

$$\mathsf{softmax}(o)_i = \frac{e^{o_i}}{\sum_{j=1}^{\tau} e^{o_j}}$$

# Modeling Joint Probability Distributions

RNNs can model arbitrary probability distributions of some sequence y over another sequence x.

$$\Pr(y_1, \ldots, y_\tau \,|\, x_1, \ldots, x_\tau) = \prod_{t=1}^{\tau} \Pr(y_t \,|\, x_1, \ldots, x_t)$$

To remove the conditional independence assumption, we can add output-to-hidden connections.

$$\Pr(y_1,\ldots,y_{\tau}\,|\,x_1,\ldots,x_{\tau}) = \prod_{t=1}^{r} \Pr(y_t\,|\,y_1,\ldots,y_{t-1},x_1,\ldots,x_t)$$

# Modeling Joint Probability Distributions

#### Some challenges:

- What if we want a given output  $y_t$  to depend on the entire sequence  $x_1, \ldots, x_\tau$ ?
- When they can differ in length from each other?

We will see the solutions later in the context of machine translation.

First, a fundamental problem:

RNNs have trouble learning long-term dependencies.

## Learning Long-Term Dependencies

Sentence 1: "Jane walked into the room. John walked in too. Jane said hi to..."

Sentence 2: "Jane walked into the room. John walked in too. It was late in the day, and everyone was walking home after a long day at work. Jane said hi to..."



RNNs have trouble learning dependencies from inputs with a large time difference from the predicted output.

# Vanishing or Exploding Gradients

Suppose we have an RNN with state  $h_t$ , input  $x_t$ , and cost  $\mathcal{E}^{1}$ .

$$h_t = W\sigma(h_{t-1}) + Ux_t + b$$
  
 $\mathcal{E} = \sum_{1 \le t \le \tau} \mathcal{E}_t, \quad \mathcal{E}_t = \mathcal{L}(h_t)$ 

Let's calculate the gradient over one input sequence.

$$\frac{\partial \mathcal{E}}{\partial W} = \sum_{1 \le t \le \tau} \frac{\partial \mathcal{E}_t}{\partial W} \tag{1}$$

$$\frac{\partial \mathcal{E}_t}{\partial W} = \sum_{1 \le k \le t} \left( \frac{\partial \mathcal{E}_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial W} \right) \tag{2}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i \ge k} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{t \ge i \ge k} W^{\top} \operatorname{diag}(\sigma'(h_{i-1}))$$
(3)

Carolina Zheng (UPenn) Sequence Learning October 25, 2018 13 / 48

<sup>&</sup>lt;sup>1</sup>The original paper uses this formulation instead of  $h_t = \sigma(Wh_{t-1} + Ux_t + b)$  and says they are equivalent.

# Vanishing or Exploding Gradients

The cause is the Jacobian matrix J. We have a product of t - k Jacobians.

$$J = \frac{\partial h_{k+1}}{\partial h_k} = W^{\top} \operatorname{diag}(\sigma'(h_k))$$
$$||J|| = \left| \left| \frac{\partial h_{k+1}}{\partial h_k} \right| \right| \leq \underbrace{\left| \left| W^{\top} \right| \right|}_{\lambda_1} \underbrace{\left| \left| \operatorname{diag}(\sigma'(h_k)) \right| \right|}_{\gamma} = \lambda_1 \gamma$$

 $\lambda_1$  is the largest singular value of W.  $\gamma=1$  for tanh and  $\gamma=\frac{1}{4}$  for sigmoid.

$$\left\| \prod_{i=k}^{t-1} \frac{\partial h_{i+1}}{\partial h_i} \right\| \le (\lambda_1 \gamma)^{t-k}$$

When  $t \gg k$ :

- If  $\lambda_1 < \frac{1}{\gamma}$ , the gradients will vanish.
- If  $\lambda_1 > \frac{1}{\gamma}$ , the gradients may explode.

## How to deal with gradient problems?

- Modify the training algorithm: gradient clipping.
  - Commonly used when training all variants of RNNs.
- Use a different activation function: ReLUs.
  - Primarily used for deep neural nets (e.g. computer vision).
- Use a more complex neural architecture: LSTMs and GRUs.

# Gradient Clipping



Addresses the problem of exploding gradients by preventing parameter updates from being too large.

$$\begin{array}{l} g \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \text{if } \|g\| \geq \text{threshold then} \\ g \leftarrow \frac{\text{threshold}}{\|g\|} g \\ \text{end if} \end{array}$$

Does gradient clipping affect convergence?



#### ReLU



Since the derivative is 1 when z>0, gradients flow more easily compared to sigmoid or tanh units. Also computationally efficient.

Can lead to "dead neurons" during training. Is this a problem?

Empirically, ReLU has been shown to be very effective.

#### New Recurrent Architectures

We will introduce the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures.

- Address the problem of vanishing gradients.
- Considered the state of the art for many deep learning tasks.
  - Image captioning, parsing, speech recognition, machine translation, reinforcement learning

# Long Short-Term Memory Network (Hochreiter 1997)



# LSTM and Backpropagating Gradients

Recall the equation to update the cell state:

$$c_t = i_t \odot a_t + f_t \odot c_{t-1}$$

The original LSTM did not have a forget gate, allowing error to flow unchanged from  $c_t$  to  $c_{t-1}$ .

Referred to as the constant error carousel.

With a forget gate, if  $f_t \approx 1$ , we achieve the same effect.

Can initialize the forget gate bias to 1 before training.

# Gated Recurrent Unit (Cho et. al 2014)

$$u_{t} = \sigma(W_{u}x_{t} + U_{u}h_{t-1} + b_{u})$$

$$r_{t} = \sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_{r})$$

$$a_{t} = \sigma_{t}(W_{i}x_{t} + r_{t} \odot U_{i}h_{t-1} + b_{i})$$

$$h_{t} = u_{t} \odot h_{t-1} + (1 - u_{t}) \odot a_{t}$$

Hidden units that learn to capture...

- short-term dependencies will tend to have reset gates that are frequently active.
- longer-term dependencies will have update gates that are mostly active.

Takeaway: Similar performance to LSTM, but fewer parameters.

#### Overview

- Motivation
- 2 Sequence Models
  - RNNs
  - Training Challenges
  - LSTM and GRU
- Machine Translation
  - Attention
  - Transformer Model

#### Neural Machine Translation in 2016

#### TRANSLATE

# Found in translation: More accurate, fluent sentences in Google Translate

#### Barak Turovsky Product Lead, Google

Translate

Published Nov 15, 2016

In 10 years, Google Translate has gone from supporting just a few languages to 103, connecting strangers, reaching across language barriers and even helping people find love. At the start, we pioneered large-scale statistical machine translation, which uses statistical models to translate text. Today, we're introducing the next step in making Google Translate even better. Revarl Machine Translation.



# History

A bilingual translation task:

"The cat sat on the mat."  $\rightarrow$  "Le chat s'est assis sur le tapis."

\* \* \*

2003: Neural language model introduced by Bengio et al. This was incorporated into existing phrase-based statistical machine translation (SMT) systems.

2014: Encoder-decoder RNN introduced by Cho et. al for use in SMT.

2015: Attention model proposed by Bahdanu et. al for end-to-end neural machine translation (NMT).

2017: Transformer model proposed by Vaswani et. al. This is the current state-of-the-art.

## Word Representations

How should the model encode a word token in a sequence?

Attempt 1: One-hot vectors. Represent every word as an  $\mathbb{R}^{|V| \times 1}$  vector with all zero's except for a single one depending on the index of the word in the vocabulary V.

- $e(cat) = [000...1...0]^{\top}$
- Does not capture semantic similarity between words!
- Scales poorly with size of vocabulary.

# Word Representations

Attempt 2: Word embeddings. Model each word in a low-dimensional continuous space with dimension M.

- $e(cat) = [0.1 \ 0.33 \ 0.72 \dots \ 0.59]^{\top}$
- Intuition: "A word is defined by the company it keeps."

Has revolutionized natural language processing (NLP) tasks since 2010.

Popular word embeddings: word2vec, GloVe, ELMo

#### Encoder-Decoder Model

How to map an input sequence to an output sequence where the lengths are not necessarily the same?

**Encoder** RNN processes the input sequence and emits a context vector c, which is the model's final hidden state,  $h_{\tau_x}$ .

$$h_t = f(h_{t-1}, e(x_t))$$

**Decoder** RNN generates the output sequence based on c and the previous output.

$$s_t = f(s_{t-1}, e(y_{t-1}), c)$$
  
 $Pr(y_t) = g(s_t, e(y_{t-1}), c)$ 

Jointly trained to maximize  $\log \Pr_{\theta}(y_1, \dots, y_{\tau_y} | x_1, \dots, x_{\tau_x})$ .

#### Encoder-Decoder Model

Task: English-to-French translation.

Training data: 348M sentences from Europarl, news commentary, etc.

Test data: 3000 sentences from a standard newstest dataset.



Figure: Translation quality vs. sentence length. RNN left, SMT right.

#### Encoder-Decoder Model

| Source    | She explained her new position of foreign affairs and security policy representative as a reply to a question: "Who is the European Union? Which phone number should I call?"; i.e. as an important step to unification and better clarity of Union's policy towards countries such as China or India.                                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference | Elle a expliqué le nouveau poste de la Haute représentante pour les affaires étrangères et la politique de défense dans le cadre d'une réponse à la question: "Qui est qui à l'Union européenne?" "A quel numéro de téléphone dois-je appeler?", donc comme un pas important vers l'unicité et une plus grande lisibilité de la politique de l'Union face aux états, comme est la Chine ou bien l'Inde. |
| RNNEnc    | Elle a décrit sa position en matière de politique étrangère et de sécurité ainsi que la politique de l'Union européenne en matière de gouvernance et de démocratie.                                                                                                                                                                                                                                     |
| grConv    | Elle a expliqué sa nouvelle politique étrangère et de sécurité en réponse à un certain nombre de questions : "Qu'est-ce que l'Union européenne ? " .                                                                                                                                                                                                                                                    |
| Moses     | Elle a expliqué son nouveau poste des affaires étrangères et la politique de sécurité représentant en réponse à une question: "Qui est l'Union européenne? Quel numéro de téléphone dois-je appeler?"; c'est comme une étape importante de l'unification et une meilleure lisibilité de la politique de l'Union à des pays comme la Chine ou l'Inde.                                                    |

Figure: Sample output of two RNN models compared to the SMT system, Moses.

Problem: the neural network must compress all information in the source sentence into a single, fixed-length vector.

Decoder RNN is similar to before, but each context vector  $c_t$  is distinct for each target word  $y_t$ :

$$s_t = f(s_{t-1}, e(y_{t-1}), c_t)$$
  
 $Pr(y_t) = g(s_t, e(y_{t-1}), c_t)$ 

 $c_t$  is a weighted sum of annotations  $h_1, \ldots, h_{\tau_x}$  to which the encoder maps the input sentence.

$$c_t = \sum_{j=1}^{\tau_{\mathsf{x}}} \alpha_{tj} h_j$$

How are  $\alpha$  and h computed?

The encoder is a "bidirectional RNN."

Forward RNN reads the input as ordered and computes a sequence of forward hidden states  $\overrightarrow{h}_1, \ldots, \overrightarrow{h}_{\tau_x}$ .

Backward RNN reads the input in reverse and computes a sequence of backward hidden states  $\overleftarrow{h}_1,\ldots,\overleftarrow{h}_{\tau_{\times}}$ .

An annotation for a word  $x_j$  is the concatenation of the two hidden states.

$$h_j = \left[\overrightarrow{h}_j, \overleftarrow{h}_j\right]$$

Due to the tendency of RNNs to better represent recent inputs, the annotation  $h_j$  will be focused on the words around  $x_j$ .



To compute the weight  $\alpha_{ij}$  of each annotation  $h_j$ , we use an **alignment model**. This is just a single-layer feedforward NN.

$$e_{ij} = a(s_{i-1}, h_j)$$
  
 $\alpha_{ij} = \text{softmax}(e_{ij})$ 

The alignment model scores how well the inputs around position j and the output at position i match.

Same training and test data as before (English-to-French).



The encoder-decoder model with attention does much better on longer sentences.



Figure: A sample alignment found by RNNsearch-50.

#### Transformer Model

"Attention is All You Need"

\* \* \*

The transformer model utilizes an encoder/decoder architecture with attention, but no recurrent connections!

Recall that training RNNs is not parallelizable and requires more memory for each example due to the recurrence.

Also achieves state-of-the-art performance on translation tasks.

# NMT Model Comparison (December 2017)

| Layer Type                  | Complexity per Layer     | Sequential<br>Operations | Maximum Path Length |
|-----------------------------|--------------------------|--------------------------|---------------------|
| Self-Attention              | $O(n^2 \cdot d)$         | O(1)                     | O(1)                |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                     | O(n)                |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                     | $O(log_k(n))$       |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                     | O(n/r)              |

Figure: n is sequence length, d is representation dimension, k is kernel size of convolutions, r is the size of the neighborhood in restricted self-attention.

Self-attention allows the Transformer to be trained in a more parallel fashion on GPU hardware. Typically, d>n.

#### Transformer Model



#### Transformer Model

No recurrent connections: the entire input sequence/output sequence so far is sent into the model at once (demo).

- 1 Input words get transformed into "positional embeddings."
- For each encoder layer:
  - Apply multi-headed self-attention.
  - 2 Send outputs through feedforward network.
- For each output word:
  - Transform all previous output words into positional embeddings.
    - Apply masked multi-headed self-attention.
    - Apply attention using the encoder outputs.
    - Send output through feedforward network.
  - Transform output vector into the next word using linear and softmax layers.

Intuition: When the model processes a word, self-attention allows it to look at other positions in the input sequence to help it determine the optimal encoding for the word.

Example: "The animal didn't cross the street because it was too tired."

Visualization



Step 1: Generate query, key, and value vectors for each embedding using learned matrices  $W^Q$ ,  $W^K$ ,  $W^V$ .

| Input     | Thinking       | Machines              |    |
|-----------|----------------|-----------------------|----|
| Embedding | X <sub>1</sub> | X <sub>2</sub>        |    |
| Queries   | q <sub>1</sub> | <b>q</b> <sub>2</sub> | Mơ |
| Keys      | k <sub>1</sub> | k <sub>2</sub>        | Wĸ |
| Values    | V1             | V <sub>2</sub>        | wv |

Step 2: Compute a score for each key-value pair. Normalize these weights to sum to 1, and compute the output as the weighted sum of the values.



**Multi-headed attention** means learning M attention layers in parallel (with different weight matrices).

Step 3 is combining the results using another learned matrix  $W^O$ .

1) Concatenate all the attention heads



2) Multiply with a weight matrix W° that was trained jointly with the model

Χ

3) The result would be the  ${\mathbb Z}$  matrix that captures information from all the attention heads. We can send this forward to the FFNN



#### Transformer Model



## NMT Model Comparison (December 2017)

| Model                           | BLEU  |       | Training Co         | Training Cost (FLOPs) |  |
|---------------------------------|-------|-------|---------------------|-----------------------|--|
| Model                           | EN-DE | EN-FR | EN-DE               | EN-FR                 |  |
| ByteNet [18]                    | 23.75 |       |                     |                       |  |
| Deep-Att + PosUnk [39]          |       | 39.2  |                     | $1.0 \cdot 10^{20}$   |  |
| GNMT + RL [38]                  | 24.6  | 39.92 | $2.3 \cdot 10^{19}$ | $1.4 \cdot 10^{20}$   |  |
| ConvS2S [9]                     | 25.16 | 40.46 | $9.6 \cdot 10^{18}$ | $1.5 \cdot 10^{20}$   |  |
| MoE [32]                        | 26.03 | 40.56 | $2.0 \cdot 10^{19}$ | $1.2 \cdot 10^{20}$   |  |
| Deep-Att + PosUnk Ensemble [39] |       | 40.4  |                     | $8.0 \cdot 10^{20}$   |  |
| GNMT + RL Ensemble [38]         | 26.30 | 41.16 | $1.8 \cdot 10^{20}$ | $1.1 \cdot 10^{21}$   |  |
| ConvS2S Ensemble [9]            | 26.36 | 41.29 | $7.7 \cdot 10^{19}$ | $1.2 \cdot 10^{21}$   |  |
| Transformer (base model)        | 27.3  | 38.1  | $3.3\cdot10^{18}$   |                       |  |
| Transformer (big)               | 28.4  | 41.8  | 2.3 ·               | $2.3\cdot 10^{19}$    |  |

Figure: The Transformer outperforms other state-of-the-art models at a fraction of the training cost. FLOPS is floating point operations.

#### Future Directions for NMT

Explore attention and CNNs as an alternative to RNNs.

Many active research areas in NMT, including:

- Sub-word or character-level models.
- Rare word problem.
- Output
  Low-resource languages.
- Efficient decoding.

#### References I



Goodfellow, Bengio, Courville

Deep Learning

The MIT Press, 2017



Pascanu, Mikolov, Bengio (2013)

On the difficulty of training recurrent neural networks arXiv preprint arXiv:1211.5063



Cho, Bahdanau, Bougares, Schwenk, Bengio (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

arXiv preprint arXiv:1406.1078



Bahdanau, Cho, Bengio (2015)

Neural Machine Translation by Jointly Learning to Align and Translate arXiv preprint arXiv:1409.0473

### References II



Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2017)

Attention Is All You Need

arXiv preprint arXiv:1706.03762

# Thank you!