# **MULTIMEDIA UNIVERSITY**

# FINAL EXAMINATION

TRIMESTER 1, 2018/2019

## **DIM5068 – MATHEMATICAL TECHNIQUES 2**

(For DIT students only)

25 OCTOBER 2018 2.30 p.m. – 4.30 p.m. (2 Hours)

### INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 2 pages with 4 questions excluded the cover page and Appendix. Key formulae are given in the Appendix.
- 2. Answer ALL questions.
- 3. Write your answers in the answer booklet provided.
- 4. All necessary working steps must be shown.

### Question 1

a. Differentiate the following functions with respect to x by using Chain Rule.

i) 
$$f(x) = \ln(2x^3 - 4x^2 - 4x)$$
. (5 marks)

ii) 
$$y = -\frac{6}{\sqrt[3]{2x^3 + 4x}}$$
. (6 marks)

b. If 
$$7y^2 - 4x^5 + 2xy^2 = x^4y$$
, show that  $\frac{dy}{dx} = \frac{20x^4 - 2y^2 + 4x^3y}{14y + 4xy - x^4}$ . (6 marks)

- c. Given  $f(x) = x^3 6x^2$ 
  - i) Find the intervals on which the function is increasing and decreasing. (6 marks)
  - ii) Identify the function's local extreme values. (2 marks)

### [TOTAL 25 MARKS]

### Question 2

- a. Use Substitution Rule to find  $\int (3x^3 1)(3x^4 4x + 11)^{10} dx$ . (7 marks)
- b. Determine  $\int (2x-1)e^{2x-1}dx$  by using the **Integration by Parts**. (7 marks)
- c. The diagram below shows the curve of  $y = -x^2 2x + 15$  and the straight line of y = x + 11.



i) Show that the value of m = -4 and n = 1.

(5 marks)

ii) Find the area of the shaded region.

(6 marks)

[TOTAL 25 MARKS]

Continued...

### Question 3

- a. Solve the differential equation,  $\frac{dy}{dx} = \frac{7 3x^2 + \sec^2 x}{y^3}$  by using separable method. (5 marks)
- b. Use the **method of integrating factors** to solve the differential equation,  $x^5 \frac{dy}{dx} + 3x^4 y = x^9 + x^2 e^x \text{ given that } y(0) = 100. \tag{11 marks}$
- c. Find the general solution of non-homogeneous equation, y''+8y'-33y=66 which consists of complementary solution,  $y_c$  and particular solution,  $y_p$ . (9 marks)

[TOTAL 25 MARKS]

### Question 4

- a. Let a = 4i 2k and b = 6i + 2j + 3k
  - i) Compute  $2\mathbf{b} \bullet (-3\mathbf{a})$ . (4 marks)
  - ii) Find the value of x and y if  $a + b = \langle y + 3x, x, 1 \rangle$ . (3 marks)
- b. Andy wants to sketch a triangular shape. Given the vertices of the triangle A = (2, 1, 0), B = (3, 5, 7), and C = (4, 3, 10).
  - i) Determine  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ . (2 marks)
  - ii) Calculate the cross product of  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ . (3 marks)
  - iii) Compute the total area of the triangle. Round your answer to 2 decimal places. (3 marks)
- c. If a line passing through the points (-2, 1, -6) and (0, 4, -2), compute the
  - i) parametric equations of the line. (4 marks)
  - ii) symmetric equations of the line. (3 marks)
- d. Find an equation of the plane that passes through the point (3,8,-5) and is perpendicular to  $5\vec{i} + 4\vec{j} 6\vec{k}$ . (3 marks)

[TOTAL 25 MARKS]

End of page.

### APPENDIX

Derivatives: 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

### **Differentiation Rules**

### General Formulae

1. 
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

1. 
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 2.  $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$ 

3. 
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

4. 
$$\frac{d}{dx}[f(u)] = \frac{dy}{du} \cdot \frac{du}{dx}$$

### Exponential and Logarithmic Functions

$$1. \frac{d}{dx}(e^x) = e^x$$

$$2. \frac{d}{dx}(a^x) = a^x \ln a$$

$$3. \frac{d}{dx}(\ln x) = \frac{1}{x}$$

4. 
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

### Trigonometric Functions

$$1. \ \frac{d}{dx}(\sin x) = \cos x$$

$$2. \frac{d}{dx}(\cos x) = -\sin x$$

3. 
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$4. \ \frac{d}{dx}(\csc x) = -\csc x \cot x$$

5. 
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$6. \frac{d}{dx}(\cot x) = -\csc^2 x$$

### **Table of Integrals**

1. 
$$\int u \ dv = uv - \int v \ du$$

2. 
$$\int u^n \ du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$3. \int \frac{du}{u} = \ln|u| + C$$

$$4. \int e^u du = e^u + C$$

$$5. \int \sin u \ du = -\cos u + C$$

$$6. \int \cos u \ du = \sin u + C$$

$$7. \int \sec^2 u \ du = \tan u + C$$

$$8. \int \csc^2 u \ du = -\cot u + C$$

9. 
$$\int \sec u \tan u \ du = \sec u + C$$

10. 
$$\int \csc u \cot u \ du = -\csc u + C$$

### Application of Integrals:

Areas between Curve, 
$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

### **Differential Equations**

### Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = q(x)$$
  $\Rightarrow$   $\mu y = \int \mu q(x) dx$ , where  $\mu = e^{\int p(x) dx}$ 

### Constant Coefficient of Homogeneous Equations

Roots of Auxiliary Equation, 
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

### General Solutions to the Auxiliary Equation:

2 Real & Unequal Roots 
$$(b^2 - 4ac > 0)$$
  $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$   
Repeated Roots  $(b^2 - 4ac = 0)$   $y = c_1 e^{r_1 x} + c_2 x e^{r_2 x}$   
2 Complex Roots  $(b^2 - 4ac < 0)$   $y = e^{ax} (c_1 \cos bx + c_2 \sin bx)$ 

### Constant Coefficient of Non-Homogeneous Equations

$$y = y_c + y_p$$
 [  $y_c$ : complementary solution,  $y_p$ : particular solution]

### Vector

### Length of Vector

The length of the vector 
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 is  $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$ .

### **Dot Product**

If 
$$\theta$$
 is the angle between the vector  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  and  $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ , then  $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 = |\mathbf{a}||\mathbf{b}||\cos\theta$ 

#### Cross Product

If 
$$\theta$$
 is the angle between the vector  $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$  and  $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ , then  $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$   $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$ 

#### Area for parallelogram PORS

$$= \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|$$

### Area for triangle PQR

$$=\frac{1}{2}\left|\overrightarrow{PQ}\times\overrightarrow{PR}\right|$$

### Equation of Lines

Vector equation: 
$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Parametric equations: 
$$x = x_0 + at$$
  $y = y_0 + bt$   $z = z_0 + ct$ 

Symmetric equation: 
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

#### Equation of Planes

Vector equation: 
$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Scalar equations: 
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Linear equation: 
$$ax + by + cz + d = 0$$

Angle between Two Planes: 
$$\theta = \cos^{-1} \left( \frac{\mathbf{n}_1 \bullet \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} \right)$$