Boostcamp Robotics Study

Pweis Point Wise Wafing North!

Jungwoo Yoon

ndex

Intro Problem Statement / Goal **PVNet** Voting-based Keypoints Localization **PVNet** Uncertainty-driven PnP **Experiment** Performance Evaluation

Conclusion New Approach

〈1교从〉

문제 정의!

옛 방법들의 <mark>문제</mark>를 살펴보자!

> 이번 주 당번: 윤정우 다음 주 당번: ?

INTRO: Problem Statement

	전통적 방법	딥러닝 기반 방법	sor ^{A!} PoseCNN
특징	hand-crafted features 기반 객체 이미지 – 객체 모델 간 매칭	CNN 기반 학습	2D 키포인트 회귀 -> PnP 기반 6D Pose 예측
한계	lmage variation Background Clutter (복잡한 배경)	일반화 문제	Occlusion (가림) Truncation (잘림)

새로운 방법!

논문에서 소개하는 새 구조를 잘 살펴보자!

> 이번 주 당번: 윤정우 다음 주 당번: ?

INTRO: Proposed Approach

1

PVNet

Keypoint Localization

논문에 나오는 벡터<mark>장</mark>이 뭘까!

> 이번 주 당번: 윤정우 다음 주 당번: ?

INTRO: Proposed Approach

벡터장 (Vector-field)

- 벡터: (기하학적) 크기와 방향을 함께 가지는 양
- 벡터장: 유클리드 공간의 각 점에 벡터를 대응시킨 것
- 효과: 네트워크가 객체의 local feature와 객체 부분 간 공간적 관계에 집중 유도

=> 객체의 <u>보이는 부분으로 보이지 않는 부분 예측</u>

〈2교시〉

PVNet의 구조!

PVNet은 2단계!

이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Overall Network Architecture

First Stage

- First Stage: Voting-based Keypoints Localization
- Second Stage: Uncertainty-based PnP

〈2교시〉

PVNet의 1단계!

Backbone으로 2가지 작업을 한대!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoint Localization

Unit Vector를 어떻게 구하지?

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

2

- $v_k(p)$: Unit Vector
- x_k : 객체 키포인트 좌표
- p: 객체의 한 pixel 좌표
- $x_k p$: pixel p 에서 키포인트 x_k 로의 벡터
- $||x_k p||_2$: pixel p와 키포인트 x_k 간 유클리드 거리

〈2교시〉

PVNet 1단계 번외!

논문에 나오는 RANSAC이 뭘까!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

2

RANSAC (RANdom SAmple consensus)

• 정의: 특정 임계값 이상의 <u>outlier 데이터를 무시</u>하고, 샘플을 무작위 추출해 최대 데이터가 일치하는 이상적인 모델을 추출하는 알고리즘

논문에 나오는 RANSAC이 뭘까!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

2

N호

반복

Hypothesis

- 1. dataset에서 N개의 샘플 데이터 선택
- 2. 샘플 데이터를 inlier로 가정하고 모델 파라미터 예측

Verification

- . Dataset에서 예측된 모델과 일치하는 데이터 집계
- 2. 집계된 데이터 수가 이전 최대값보다 큰 경우 새로운 모델 파라미터 생성

RANSAC (RANdom SAmple consensus)

$$p = 1 - (1 - \alpha^m)^N$$

- P: inlier로만 이뤄진 샘플을 획득할 확률
- alpha: dataset에서 inlier의 비율
- m: 회당 추출하는 데이터 수
- N: 알고리즘 반복 회수
- T: inlier / outlier 구분 기준

RANSAC을 기반으로 어떻게 투표할까!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

Voting (Confidence) Score 수식

$$w_{k,i} = \sum_{p \in O} I\left(rac{(h_{k,i}-p)^T}{\|h_{k,i}-p\|_2}v_k(p) \geq heta
ight)$$

- $h_{k,i}$: k번째 키포인트에 대한 i번째 가설
- $w_{k,i}$: 가설 $h_{k,i}$ 의 투표 (신뢰) 점수
- 0: 객체의 모든 픽셀 p의 집합 = 투표에 참여하는 픽셀들
- p: 객체의 한 pixel 좌표
- $v_k(p)$: pixel p 에서 예측한 unit vector
- *θ*: threshold 값
- *I*: indicator 함수 -> 괄호 안 조건이 참이면 1, 거짓일 경우 0 반환

RANSAC을 기반으로 어떻게 투표할까!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

2

Voting (Confidence) Score 수식

$$w_{k,i} = \sum_{p \in O} I\left(rac{(h_{k,i} - p)^T}{\|h_{k,i} - p\|_2} v_k(p) \geq heta
ight)$$

- $v_k(p)$: pixel p 에서 키포인트 $h_{k,i}$ 로의 예측 unit vector
- $\frac{\overline{(h_{k,i}-p)}}{\left\|h_{k,i}-p
 ight\|_2}$: 가설 $h_{k,i}$ 에서 픽셀 p로 향하는 실제 unit vector
- $\frac{(h_{k,i}-p)^4}{\left\|h_{k,i}-p\right\|_2}v_k(p)$: 내적 값 = 실제 unit vector와 예측 unit vector 간 <u>일치도 (방향 유사성) 계산</u>
- $I(\frac{(h_{k,i}-p)^T}{\|h_{k,i}-p\|_2}v_k(p) \geq \theta)$: 일치도가 threshold 이상일 경우 1, 미만일 경우 0 반환
- $w_{k,i}$: 가설 $h_{k,i}$ 의 최종 투표 점수

〈2교시〉

2D Keypoint 공간적 확률분포 Get!

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

예측한 2D Keypoints의 공간적 확률분포 get!

(e) Hypotheses

평균
$$\mu_k = \frac{\sum_{i=1}^N w_{k,i} \mathbf{h}_{k,i}}{\sum_{i=1}^N w_{k,i}},$$
 공분산 $\Sigma_k = \frac{\sum_{i=1}^N w_{k,i} (\mathbf{h}_{k,i} - \mu_k) (\mathbf{h}_{k,i} - \mu_k)^T}{\sum_{i=1}^N w_{k,i}}$

3D Keypoint는 어떻게 구할까?

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Voting-based Keypoints Localization

객체 표면에서 FPS 알고리즘으로 K개의 3D keypoints get!

〈3교川〉

PVNet의 두 번째 단계!

그런데 잠깐?! PnP가 뭐였더라?

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Uncertainty-based PnP

3

PnP (Perspective-n-Point)

정의: 이미지의 3D points 집합과
 이에 대응하는2D 투영이 주어졌을 때,
 카메라의 6DoF Pose를 추정하는 알고리즘

이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Uncertainty-based PnP

J

PVNet PnP 수식

$$\begin{split} & \underset{R,\mathbf{t}}{\text{minimize}} \ \sum_{k=1}^K (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k), \\ & \tilde{\mathbf{x}}_k = \pi (R \mathbf{X}_k + \mathbf{t}), \end{split}$$

- X_k : 3D 모델의 k번째 keypoint 위치
- \tilde{x}_k : X_k 의 2D 투영 keypoint 위치
- R, t: 카메라의 rotation / translation 좌표 = <u>6DoF pose parameter</u>
- π : perspective projection (원근 투영) 함수
- μ_k : 예측한 2D keypoints의 위치 = 예측한 2D keypoints의 공간적 확률분포 평균
- \sum_k : 예측한 2D keypoint의 공분산 행렬 = 해당 keypoint 위치 추정의 불확실 정도 $->\sum_k^{-1}$: 공분산 행렬의 분포를 반영한 <u>가중치</u>

PVNet: Uncertainty-based PnP

<u>პ</u>

PVNet PnP 44

$$\begin{aligned} & \underset{R,\mathbf{t}}{\text{minimize}} & \sum_{k=1}^{K} (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k), \\ & \tilde{\mathbf{x}}_k = \pi (R \mathbf{X}_k + \mathbf{t}), \end{aligned}$$

- · R, t: (초기값) EPnP 기법으로 산출 -> 공분산 행렬에서 불확실성이 가장 작은 4개의 키포인트를 기준으로 초기 6D Pose 추정
- $(\tilde{x}_k \mu_k)^T \Sigma_k^{-1} (\tilde{x}_k \mu_k)$: Mahalanobos 거리 = 두 벡터 간 차이를 공분산 행렬을 반영하여 계산 = 가중치가 반영된 재투영 오차
- $\sum_{k=1}^{K} (\tilde{x}_k \mu_k)^T \Sigma_k^{-1} (\tilde{x}_k \mu_k)$: 키포인트별 가중치가 반영된 재투영 오차 합계
- $minimize_{R,t}$: Levenberg-Marquardt 알고리즘을 사용하여 R, t 최적화 -> 6D pose 추정

그런데 잠깐?! PnP가 뭐였더라?

> 이번 주 당번: 윤정우 다음 주 당번: ?

PVNet: Uncertainty-based PnP

Mahalanobis Distance

- 정의: 데이터들의 분포를 통해 맥락을 조사하고,
 이를 정규화 한 뒤에 유클리드 거리를 계산
- 특징: 분포(맥락) 기반의 상대적인 거리

3

PVNet: Uncertainty-based PnP

<u>პ</u>

PVNet PnP 44

$$\begin{aligned} & \underset{R,\mathbf{t}}{\text{minimize}} & \sum_{k=1}^{K} (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\tilde{\mathbf{x}}_k - \boldsymbol{\mu}_k), \\ & \tilde{\mathbf{x}}_k = \pi (R \mathbf{X}_k + \mathbf{t}), \end{aligned}$$

- · R, t: (초기값) EPnP 기법으로 산출 -> 공분산 행렬에서 불확실성이 가장 작은 4개의 키포인트를 기준으로 초기 6D Pose 추정
- $(\tilde{x}_k \mu_k)^T \Sigma_k^{-1} (\tilde{x}_k \mu_k)$: Mahalanobos 거리 = 두 벡터 간 차이를 공분산 행렬을 반영하여 계산 = 가중치가 반영된 재투영 오차
- $\sum_{k=1}^{K} (\tilde{x}_k \mu_k)^T \Sigma_k^{-1} (\tilde{x}_k \mu_k)$: 키포인트별 가중치가 반영된 재투영 오차 합계
- $minimize_{R,t}$: Levenberg-Marquardt 알고리즘을 사용하여 R, t 최적화 -> 6D pose 추정

이번 주 당번: 윤정우 다음 주 당번: ?

Experiment: Performance Evaluation

2D Projection metric. This metric computes the mean distance between the projections of 3D model points given the estimated pose and the ground-truth pose. A pose is considered as correct if the distance is less than 5 pixels.

ADD metric. We compute the mean distance between two transformed model points using the estimated pose and the ground-truth pose. When the distance is less than 10% of the model's diameter, it is claimed that the estimated pose is correct. For symmetric objects, we use the ADD-S metric [40], where the mean distance is computed based on the closest point distance. When evaluating on the YCB-Video dataset, we compute the ADD(-S) AUC proposed in [40].

〈4교시〉 실습시간~

PVNet으로 실험해보기!

이번 주 당번: 윤정우 다음 주 당번: ?

Experiment: Performance Evaluation

4

8 Tekin 0] [36] 3 92.10 0 95.06 9 93.24 1 97.44	99.23 99.81	BB8 [30] 96.6 90.1 86.0
3 92.10 0 95.06 9 93.24	99.81	96.6 90.1
0 95.06 9 93.24	99.81	90.1
9 93.24		
	99.21	96.0
1 97.44		80.0
	99.90	91.2
.0 97.41	99.30	98.8
.1 79.41	96.92	80.9
2 94.65	98.02	92.2
9 90.33	99.34	91.0
.0 96.53	98.45	92.3
5 92.86	100.0	95.3
9 82.94	99.18	84.8
4 76.87	98.27	75.8
.6 86.07	99.42	85.3
9 90 37	99.00	89.3
	0 96.53 5 92.86 9 82.94 4 76.87 6 86.07	0 96.53 98.45 5 92.86 100.0 9 82.94 99.18 4 76.87 98.27 6 86.07 99.42

	w/o refinement				w/ refinement	
methods	BB8	SSD-6D	Tekin	OURS	BB8	SSD-6D
methods	[30]	[17]	[36]		[30]	[17]
ape	27.9	0.00	21.62	43.62	40.4	65
benchwise	62.0	0.18	81.80	99.90	91.8	80
cam	40.1	0.41	36.57	86.86	55.7	78
can	48.1	1.35	68.80	95.47	64.1	86
cat	45.2	0.51	41.82	79.34	62.6	70
driller	58.6	2.58	63.51	96.43	74.4	73
duck	32.8	0.00	27.23	52.58	44.30	66
eggbox	40.0	8.90	69.58	99.15	57.8	100
glue	27.0	0.00	80.02	95.66	41.2	100
holepuncher	42.4	0.30	42.63	81.92	67.20	49
iron	67.0	8.86	74.97	98.88	84.7	78
lamp	39.9	8.20	71.11	99.33	76.5	73
phone	35.2	0.18	47.74	92.41	54.0	79
average	43.6	2.42	55.95	86.27	62.7	79

《소교기》 실습시간

PVNet으로 실험해보기!

이번 주 당번: 윤정우 다음 주 당번: ?

Experiment: Performance Evaluation

methods	Tekin	PoseCNN	Oberweger	OURS
methods	[36]	[40]	[27]	
ape	7.01	34.6	69.6	69.14
can	11.20	15.1	82.6	86.09
cat	3.62	10.4	65.1	65.12
duck	5.07	31.8	61.4	61.44
driller	1.40	7.4	73.8	73.06
eggbox	-	1.9	13.1	8.43
glue	4.70	13.8	54.9	55.37
holepuncher	8.26	23.1	66.4	69.84
average	6.16	17.2	60.9	61.06

Table 4. The accuracies of our method and the baseline methods on the Occlusion LINEMOD dataset in terms of 2D projection.

methods	Tekin [36]	PoseCNN [40]	Oberweger [27]	OURS
ape	2.48	9.6	17.6	15.81
can	17.48	45.2	53.9	63.30
cat	0.67	0.93	3.31	16.68
duck	1.14	19.6	19.2	25,24
driller	7.66	41.4	62.4	65.65
eggbox	-	22	25.9	50.17
glue	10.08	38.5	39.6	49.62
holepuncher	5.45	22.1	21.3	39.67
average	6.42	24.9	30.4	40.77

Table 5. The accuracies of our method and the baseline methods on the **Occlusion LINEMOD** dataset in terms of the **ADD(-S)** metric, where glue and eggbox are considered as symmetric objects.

《4교시》 실습시간~

PVNet으로 실험해보기!

이번 주 당번: 윤정우 다음 주 당번: ?

Experiment: Performance Evaluation

87.23

44.13

86.64

38.11

2D Projection

ADD(-S)

4

objects	arna.	bene-	cours	can	cat	driller	duck
objects	ape	hvise	cam	can	Call	diffici	duck
2D Projection	52.59	58.19	54.87	57.44	61.66	43.27	54.23
ADD(-S)	12.78	42.80	27.73	32.94	25.19	37.04	12.36
objects	anahar	alma	holep-	incom	lamo	nhone	
objects	eggbox	glue	uncher	iron	lamp	phone	avg

42.01

51.35

30.86

58.06

31.48

〈4교시〉 실습시간~

PVNet으로 실험해보기!

이번 주 당번: 윤정우 다음 주 당번: ?

Experiment: Performance Evaluation

methods	PoseCNN	Oberweger	OURS
methods	[40]	[27]	
2D Projection	3.72	39.4	47.4
ADD(-S) AUC	61.0	72.8	73.4

FoundationPose