Universidade Federal de Pernambuco

Centro de Informática - CIn

Registro das Infrações de Trânsito

Relatório do Projeto de Integração Banco de dados - 2025.1

Adriana Theil Melcop Castro - atmc Eduarda Vitória Albuquerque Sales - evas Gustavo Felipe Alves da Silva - gfas2 Júlia Zovka de Souza - jzs Lucas Guimarães Fernandes - Igf Marcela Pereira Raposo - mpr

1. Descrição da Base de Dados Unificada:

A base de dados unificada consolidou informações sobre registros de infrações de trânsito ocorridas na cidade de Recife, nos anos de **2023**, **2024 e 2025**, oriundas de diferentes arquivos CSV, disponíveis no site da prefeitura do Recife. Após o processo de integração, os dados foram organizados em uma única tabela no PostgreSQL hospedado no Supabase.

Bases antes das transformações

1	datainfracao	1064812 non-null	object
2	horainfracao	1064812 non-null	object
3	dataimplantacao	1064812 non-null	object
4	agenteequipamento	1002028 non-null	object
5	infracao	1064812 non-null	int64
6	descricaoinfracao	1064812 non-null	object
7	amparolegal	1064812 non-null	object *
8	localcometimento	1064812 non-null	object *

A base de dados antes de ser tranformada era composta por essas colunas, a maioria tratada como objeto pelo pandas.

- Nas colunas datainfracao e dataimplantacao tinha uma inconsistência relacionada ao ano de 2024. Enquanto 2023 e 2025 demonstravam esse dado como date, 2024 era como datime.
- A coluna agenteequipamente tinha muitas linhas sem valores preenchidos
- A coluna amparolegal tinha muitas linhas com informações sem sentido "SENTIDO OLINDA"

Atributos principais pós-modificação:

- data_infracao
- hora_infracao

- data_implementacao
- agente_equipamento
- cod_infracao
- descricao_infracao
- local_cometimento
- artigo
- subdivisao_artigo

Após o tratamento dos dados definimos que as colunas relacionadas a data ficariam em DATE, a de hora no formato TIME, cod_infracao em int e o restante em string. Fizemos também a padronização dos dados esperados em cada coluna. As linhas que tinham valores nulos ou que não faziam sentido para o dado armazenado na coluna foram trocadas por "Não informado".

Metadados:

Metadados						
Coluna	Tipo	Restrições	Descrição			
data_infracao	DATE	NOT NULL	Data que a infração foi cometida			
hora_infracao	TIME	NOT NULL	Hora que a infração foi cometida			
data_implantacao	DATE	NOT NULL	Data que a infração foi registrada no sistema			
agente_equipamento	TEXT	NOT NULL	O meio ou equipamento utilizado pelo agente de trânsito para registrar a infração			
cod_infracao	BIGINT	NOT NULL	Código que indentifica qual infração foi cometida			
descricao_infracao	TEXT	NOT NULL	Descrição sobre a infração			
local_cometimento	TEXT	NOT NULL	Local onde ocorreu a infração			
artigo	TEXT	NOT NULL	O número do artigo do CTB que foi infringido			
subdivisao_artigo	TEXT	NOT NULL	Inciso ou parágrafo dentro de um artigo do Código de Trânsito Brasileiro			

2. Explicação Detalhada do Processo de Integração:

Passo 1: Coleta de dados

 Os dados foram obtidos a partir de três arquivos CSV, cada um correspondente a um ano (2023, 2024 e 2025), sobre registros de infrações de trânsito. Baixamos os arquivos e alocamos eles na pasta 'datasets' do repositório.

Os passos abaixo mudam de ordem de acordo com ETL e ELT:

Passo 2: Transformação

 As colunas foram tratadas: foram padronizados nomes de colunas, adicionamos o campo subdivisao_artigo, tratamos de valores que não faziam sentido e valores nulos e formatamos os tipos de dados das colunas.

Passo 3: Criação da tabela unificada

 Depois dessas transformações temos uma base mais uniformizada e amigável a consultas, tanto na parte de ETL e ELT.

3. Justificativa da Escolha da Base de Dados:

A escolha pela base de infrações de trânsito se deu por diversos motivos:

- Disponibilidade pública e acessível de dados abertos
- Relevância social e urbana: permite identificar comportamentos de risco e padrões de infração
- Permite análises práticas com impacto real, como bairros com mais infrações ou horários críticos.

Somado a esses motivos, diante de uma análise rápida, a base já parecia ter um certo grau de uniformidade, com número de colunas e tipos de dados iguais nos anos escolhidos para análise.

Além disso, o uso do Supabase com PostgreSQL foi motivado pela facilidade de

4. Descrição dos Processos de Transformação Aplicados:

Como as colunas tinham o mesmo número de colunas, e aparentemente o mesmo tipo de dado, decidimos concatenar as três em uma única tabela no formato csv. Ao analisar de fato a estrutura do arquivo percebemos que existiam umas inconsistências apesar de as informações com df.info() estarem iguais. Nesse sentido, tinham valores nulos em uma das colunas de 2025 e a coluna "datainfracao" estava diferente nos arquivos. Diante disso realizamos as seguinte transformações antes de poder concatenar os arquivos.

• Padronização das datas: em uma inspeção mais detalhada do csv final percebemos que o formato está diferente nos dados referentes ao ano de 2024. 2023 = "2023-10-26;", 2024 = "06/05/2024 00:00", 2025 = "2025-04-22". Por isso, transformamos todas em DATE, tanto no ETL, quanto no ELT.

Diante do arquivo concatenado aplicamos o restante das transformações

- Renomeação das colunas: 'datainfracao' para 'data_infracao', todas as colunas eram nomes concatenados, fizemos essa renomeação em todas para facilitar a leitura e entendimento.
 - o datainfracao -> data infracao
 - o horainfracao -> hora infracao
 - o dataimplementacao -> data implementacao
 - o agenteequipamento -> agente equipamento
 - o infracao -> cod infracao
 - o descricaooinfracao -> descricao infracao
 - localcometimento -> local_cometimento
- **Divisão da coluna amparolegal**: Decidimos dividir a coluna em artigo e subdivisao_artigo para facilitar uma consulta sobre os incisos violados.
- Corrigindo valores inválidos na coluna artigo: existiam valores errados para o artigo. Valores como: 'SENTIDO OLINDA', 'ILHA DO LEITE', 'SENTIDO CIDADE/SUBURBIO.'e 'Art. 244 inciso VIII' esse último pelo fato de não ter o separador que usamos na criação da coluna amparo legal. Então corrigimos as linhas com outros problemas substituindo por 'Não Informado' e separamos 'Art. 244 inciso VIII' e outras ocorrências desse tipo nas colunas correspondentes, artigo e subdivisão artigo.
- Padronização dos valores em subdivisao_artigo: inciso -> Inc. inc. -> Inc. parágrafo único -> § único valores extranhos ou nulos -> Não Informado
- Tratamento de valores nulos ou inconsistentes: a coluna agente_equipamento

do ano de 2025 tinha 62784 valores nulos, como era um valor pequeno em comparação com a soma de linhas dos três anos decidimos manter essa coluna e substituir por "não informado", como fizemos em outras 5 colunas: agente_equipamento, descricao_infracao, local_cometimento, artigo e subdivisao artigo

- Conversão de tipos: Duas colunas foram convertidas para o tipo DATE e uma para o tipo TIME, visando facilitar futuras consultas. A coluna "artigo", embora contenha números, foi mantida como STRING. Dessa forma, quando um campo estiver vazio, ele exibirá "Não informado" em vez de "0", mantendo a consistência com as demais colunas e evitando confusão com um possível Artigo 0.
 - dft['data infracao'] -> DATE
 - o dft['hora infracao'] -> TIME
 - dft['data implantacao'] -> DATE
 - o dft['agente equipamento'] -> STRING
 - o dft['descricao infracao'] -> STRING
 - dft['local_cometimento'] -> STRING
 - dft['artigo'] -> STRING
 - dft['subdivisao_artigo'] -> STRING

5. Comparativo entre ETL e ELT:

ETL (Extract, Transform, Load): Transformações feitas antes de carregar no banco

Vantagens:

- Útil quando o ambiente de destino tem capacidade limitada
- Mais controle durante o pré-processamento

Desvantagens:

 A análise de dados só fica disponível após o processo de transformação, o que demora

ELT (Extract, Load, Transform): Transformações feitas após carregar tabela no banco de dados.

Vantagens:

- Os dados são carregados "crus" no banco e transformados ali mesmo
- Tira proveito da performance do banco (Supabase, no nosso caso)

• Facilita reprocessamentos e pipelines dinâmicos

Desvantagens:

- Só é viável em plataformas de dados que possuem um bom poder de processamento para executar transformações em larga escala de forma eficiente
- Custoso: paga pelo armazenamento usado

No nosso projeto:

- Utilizamos ETL para as transformações iniciais (tratamento, limpeza)
- E também ELT para análises mais pesadas via SQL no Supabase
- → Isso nos permitiu **testar os dois modelos**, entendendo as vantagens de cada um no contexto real de um pipeline híbrido.

6. Apresentação de Três Análises e Insights:

Análise 1: Mês com maior número de infrações

Insight:

ELT:

Ranking dos 3 meses com mais infrações							
n	nes_infracao	total_de_infracoes					
1	2023-01	56669					
2	2023-03	49150					
3	2023-05	46262					

Análise 2: Horários com mais registros

• Insight:

Ranking dos 3 horários com mais registros								
	hora_do_dia	total_de_infracoes						
1	15.0	112099						
2	9.0	104528						
3	10.0	101831						

Análise 3: Tipo de infração mais comum

Insight:

7. Reflexão sobre o Aprendizado

Este projeto proporcionou um aprendizado significativo sobre integração de dados na prática. Alguns pontos marcantes:

- **Desafio:** Configuração inicial do ambiente no Supabase e lidar com inconsistências entre os arquivos dos diferentes anos. Entendimento de como usar pandas para manipular os datasets.
- **Superação:** Compreensão do fluxo de um pipeline de dados completo e uso real de ferramentas como o dbt para organizar a camada transformacional
- **Lição:** A importância de pensar na **qualidade dos dados desde o início** e a vantagem de adotar boas práticas de organização, versionamento e padronização

Além disso, foi um exercício de colaboração e aplicação prática de teorias aprendidas na disciplina, reforçando o valor de projetos que simulam o mercado real.