Тема 6. Тестирование гипотез. Часть 2

Пример: как вычисляются вероятности ошибок I и II рода

Рассмотрим снова пример "Завышенная зарплата", в котором проверялась гипотеза о среднемесячной зарплате:

$$H_0: \mu = 55\,000$$
 $H_a: \mu < 55\,000$

Ошибка І рода

Предположим, что кто-то задал следующее правило принятия решения:

Отклонить
$$H_0$$
, если $ar{X} < 50\,969$.

Что это значит?

- Если в выборке зарплата окажется **меньше 50 969**, то мы **отвергаем** H₀.
- Но если на самом деле µ=55 000, то при таком правиле возможна ошибка І рода
 отклонение истинной гипотезы.

Вероятность ошибки І рода:

Это вероятность того, что $\bar{X} < 50\,969$, **при условии, что Н**₀ **верна**, т.е. μ =55 000:

$$lpha = P(ar{X} < 50\,969 \mid \mu = 55\,000) = P\left(Z < rac{50\,969 - 55\,000}{rac{15\,500}{\sqrt{40}}}
ight) = P(Z < -1.645) = \boxed{0.05}$$

Вывод:

- Ошибка I рода происходит **в 5% случаев**, если Н₀ верна.
- Это и есть заданный **уровень значимости** α=0.05.
- Здесь порог 50 969 был выбран **искусственно**, чтобы показать, **как находить** α, если известны правило отклонения и параметры.

Ошибка II рода

Теперь предположим, что **истинное значение средней зарплаты** — **40 000**, и мы всё ещё используем **то же самое правило отклонения**: отвергать H_0 , если $\bar{X} < 50\,969$.

Что произойдёт?

• При такой ситуации возможна **ошибка II рода**: H₀ **не будет отклонена**, хотя она **ложна**, и верна альтернативная гипотеза µ < 55 000.

Вероятность ошибки II рода:

Обозначим её через β:

$$eta = P(ar{X} > 50\,969 \mid \mu = 40\,000) = P\left(Z > rac{50\,969 - 40\,000}{rac{15\,500}{\sqrt{40}}}
ight) = P(Z > 4.476) pprox \boxed{3.8 \cdot 10^{-6}}$$

Это крайне малая вероятность — около 0.0000038.

Мощность критерия (power of the test):

Мощность показывает, насколько хорошо тест **обнаруживает отклонение от H₀**, когда оно действительно есть.

Power =
$$1 - \beta = 1 - 0.0000038 = \boxed{0.9999962}$$

То есть, **в 99.9996% случаев тест верно отклонит Н**₀, если зарплата действительно ниже 55 000.

Вывод и переход

Таким образом, мы:

- Рассчитали α: вероятность отклонения истинного H₀;
- Рассчитали β: вероятность не отвергнуть ложный H₀;
- Посчитали мощность теста = 1-β.

В следующих разделах мы будем рассматривать четыре типа статистических тестов:

- 1. ◆ Тесты для среднего µ
- 2. Тесты для доли р
- 3. **♦ Тесты для разности средних** µ1−µ2

1. Проверка гипотез для параметров генеральной совокупности µ и р

Тестирование гипотез о среднем значении µ

Случай 1: **Известное стандартное отклонение** σ (sigma)

Если $X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2)$, и σ известна, то:

- ullet Выборочное среднее: $ar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$,
- Тогда:

$$Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

• Это и есть z-статистика — она следует стандартному нормальному распределению.

Теоретическое обоснование:

Это частный случай более общей формулы:

Тестовая статистика =
$$\frac{\text{Оценка} - 3$$
начение из $H_0}{\text{Стандартная ошибка оценки}}$

- **Оценка** выборочная статистика (например, \bar{X}),
- Параметр гипотетическое значение, утверждаемое в Н₀,
- Стандартная ошибка стандартное отклонение выборочной статистики.

📌 В нашем случае:

- Оценка = \overline{X} ,
- Параметр = μ_0 ,
- SE = σ/\sqrt{n} (по закону распределения выборочного среднего при известной σ).

Случай 2: **Неизвестное стандартное отклонение** σ (sigma)

В реальной жизни σ почти никогда не известна, поэтому её заменяют на выборочное стандартное отклонение s. Тогда z-распределение **больше не применимо**.

Вместо него используется **t-статистика**, и она подчиняется **распределению Стьюдента с n-1 степенью свободы**:

$$t_{ exttt{ct}} = rac{ar{X} - \mu_0}{s/\sqrt{n}} \sim t(n-1)$$

Теоретическое обоснование:

Если $X_1,...,X_n \sim \mathcal{N}(\mu,\sigma^2)$, но σ неизвестна, и мы используем s, то:

- $ar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$,
- ullet s^2 несмещённая оценка дисперсии,
- Тогда случайная величина:

$$T=rac{ar{X}-\mu}{s/\sqrt{n}}\sim t(n-1)$$

Это классический результат, вытекающий из свойства того, что числитель — нормально распределён, а знаменатель (включающий s) — корень из независимой χ 2-распределённой величины.

Условия применимости:

Условие	Пояснение
SRS	Выборка должна быть простой случайной
$n \geq 30$	Тогда по ЦПТ можно считать $ar{X} \sim \mathcal{N}$
n < 30	Нужно предполагать, что $X \sim \mathcal{N}$
σ известна	Используется z-статистика
σ неизвестна	Используется t-статистика

Проверка гипотез для доли в генеральной совокупности p

Основная идея

Методика тестирования гипотез для доли аналогична тесту для среднего значения μ . Разница — в **оценке параметра** и **формуле стандартной ошибки**.

Шаги проверки гипотезы для доли

(1) Формулируем гипотезы

• Нулевая гипотеза:

$$H_0: p = p_0$$

— утверждает, что доля в популяции равна какому-то конкретному значению.

- Альтернативная гипотеза:
 - $H_a: p > p_0$ односторонняя (вправо),
- $H_a: p < p_0$ односторонняя (влево),
- $H_a: p \neq p_0$ двусторонняя.

(2) Задаём уровень значимости а

• Стандартные значения: 0.05, 0.01, 0.1

(3) Собираем выборку, рассчитываем выборочную долю \widehat{p}

- Объём выборки: n
- Количество успехов: X
- Выборочная доля:

$$\hat{p} = \frac{X}{n}$$

(4) Проверяем условия нормального приближения

Для применения нормального распределения (через ЦПТ), выборка должна быть достаточно большой:

5

$$n\cdot\hat{p}\geq 5,\quad n\cdot(1-\hat{p})\geq 5$$

Если это выполнено — используем z-распределение.

(5) Формируем тестовую статистику

Если нулевая гипотеза верна, то $\widehat{\pmb{p}}$ распределена нормально:

$$\hat{p} \sim \mathcal{N}\left(p_0, \; rac{p_0(1-p_0)}{n}
ight)$$

Следовательно, **z-статистика** будет:

$$z_{ exttt{ct}} = rac{\hat{p} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$$

Интерпретация:

- $z_{\text{ст}}$ показывает, **на сколько стандартных отклонений** выборочная доля \hat{p} отличается от заявленной доли p_0 .
- Если $|z_{\tt CT}|$ слишком велико, результат считается маловероятным, и H_0 отвергается.

Решение задачи: два подхода

- 1. Сравнение с критическим значением:
- Если H_a односторонняя:

Отклоняем
$$H_0$$
 если $z_{\rm cr} > z_{\rm kp}$ (или $< z_{\rm kp})$

• Если H_a двусторонняя:

Отклоняем
$$H_0$$
 если $|z_{ exttt{ct}}|>z_{1-lpha/2}$

- 2. Сравнение с p-value:
- Если p-value < lpha, то H_0 отвергается.