РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №8. Целочисленная арифметика многократной точности

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Аронова Юлия Вадимовна, 1032212303

Группа: НФИмд-01-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цел	ь работы	5
2	Зада	ание	6
3	3.1 3.2 3.3 3.4 3.5	Сложение неотрицательных целых чисел	8 8 9
4	3.6 Bып 4.1 4.2 4.3 4.4 4.5	Деление многоразрядных целых чисел олнение лабораторной работы Сложение неотрицательных целых чисел Вычитание неотрицательных целых чисел Умножение неотрицательных целых чисел столбиком Быстрый столбик Деление многоразрядных целых чисел	10 11 12 13 15 17 19
5	Выв	оды	24
Сп	Список литературы		

List of Figures

4.1	Примеры нахождения сумм пар чисел в разных системах счисления	13
4.2	Примеры нахождения разностей пар чисел в разных системах	
	счисления	15
4.3	Примеры нахождения произведения пар чисел в разных системах	
	счисления	17
4.4	Примеры нахождения произведения пар чисел быстрым столби-	
	ком в разных системах счисления	18
4.5	Примеры нахождения частных и остатков от деления пар чисел в	
	разных системах счисления	23

List of Tables

1 Цель работы

Целью данной лабораторной работы является ознакомление с алгоритмами целочисленной арифметики многократной точности, а также их последующая программная реализация.

2 Задание

Рассмотреть и реализовать на языке программирования Python:

- 1. Алгоритм сложения неотрицательных целых чисел;
- 2. Алгоритм вычитания неотрицательных целых чисел;
- 3. Алгоритм умножения неотрицательных целых чисел столбиком;
- 4. Алгоритм умножения неотрицательных целых чисел быстрым столбиком;
- 5. Алгоритм деления многоразрядных целых чисел.

3 Теоретическое введение

3.1 Арифметика многократной точности

Опр. 3.1. Высокоточная (длинная) арифметика — это операции (базовые арифметические действия, элементарные математические функции и пр.) над числами большой разрядности (многоразрядными числами), т.е. числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит) [1].

В современных асимметричных криптосистемах в качестве ключей, как правило, используются целые числа длиной 1000 и более битов [2]. Для задания чисел такого размера не подходит ни один стандартный целочисленный тип данных современных языков программирования. Представление чисел в формате с плавающей точкой позволяет задать очень большие числа (например, тип long double языка C++ – до 10^{5000}), но не удовлетворяет требованию абсолютной точности, характерному для криптографических приложений. Поэтому большие целые числа представляются в криптографических пакетах в виде последовательности цифр в некоторой системе счисления (обозначим основание системы счисления b): $x=(x_{n-1}x_{n-2}\dots x_1x_0)_b$, где $\forall i\in [0,n-1]: 0\leq x_i < b$.

Основание системы счисления b выбирается так, чтобы существовали машинные команды для работы с однозначными и двузначными числами; как правило, b равно 2^8 , 2^{16} или 2^{32} .

При работе с большими целыми числами знак такого числа удобно хранить в отдельной переменной [3]. Например, при умножении двух чисел знак произве-

дения вычисляется отдельно.

Далее при описании алгоритмов квадратные скобки означают, что берётся целая часть числа.

3.2 Сложение неотрицательных целых чисел

Алгоритм 1. Сложение неотрицательных целых чисел [3]

Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$; разрядность чисел n; основание системы счисления b.

 $\mathit{Bыход}.$ Сумма $w=w_0w_1\dots w_n$, где w_0 - цифра переноса, всегда равная 0 либо 1.

- 1. Присвоить j := n, k := 0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j=(u_j+v_j+k)\pmod{b}$, где $k=\left\lceil\frac{u_j+v_j+k}{b}\right\rceil$.
- 3. Присвоить $j \coloneqq j-1$. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0 \coloneqq k$ и результат: w.

3.3 Вычитание неотрицательных целых чисел

Алгоритм 2. Вычитание неотрицательных целых чисел [3]

Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$, u>v; разрядность чисел n; основание системы счисления b.

 $extit{Bыход.}$ Разность $w=w_0w_1\dots w_n=u-v.$

- 1. Присвоить $j \coloneqq n, k \coloneqq 0$ (k заём из старшего разряда).
- 2. Присвоить $w_j=(u_j-v_j+k)\pmod b$; $k=\left[\frac{u_j-v_j+k}{b}\right]$.
- 3. Присвоить $j \coloneqq j-1$. Если j > 0, то возвращаемся на шаг 2; если j = 0, то результат: w.

8

3.4 Умножение неотрицательных целых чисел столбиком

Алгоритм 3. Умножение неотрицательных целых чисел столбиком [3]

Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.

Выход. Произведение $w = uv = w_1w_2...w_{m+n}$.

- 1. Выполнить присвоения: $w_{m+1}:=0, w_{m+2}:=0, \ldots, w_{m+n}:=0, j:=m$ (j перемещается по номерам разрядов числа v от младших к старшим).
- 2. Если $v_{j} = 0$, то присвоить $w_{j} \coloneqq 0$ и перейти на шаг 6.
- 3. Присвоить i := n, k := 0 (значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t := u_i \cdot v_j + w_{i+j} + k, w_{i+j} := t \pmod{b}, k := \left[\frac{t}{b}\right].$
- 5. Присвоить $i \coloneqq i-1$. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_i \coloneqq k$.
- 6. Присвоить $j \coloneqq j-1$. Если j>0, то вернуться на шаг 2. Если j=0, то результат: w.

3.5 Быстрый столбик

Алгоритм 4. Быстрый столбик [3]

Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.

Выход. Произведение $w = uv = w_1w_2 \dots w_{m+n}$.

- 1. Присвоить t := 0.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t \,:=\, t + u_{n-i} \cdot v_{m-s+i}$.

4. Присвоить $w_{m+n-s} \coloneqq t \pmod{b}, t \coloneqq \left[\frac{t}{b}\right]$. Результат: w.

3.6 Деление многоразрядных целых чисел

Алгоритм 5. Деление многоразрядных целых чисел [3]

Вход. Числа $u=u_n\dots u_1u_0$, $v=v_t\dots v_1v_0, n\geq t\geq 1, v_t\neq 0$.

Выход. Частное $q=q_{n-t}\dots q_0$, остаток $r=r_t\dots r_0$.

- 1. Для j от 0 до n-t присвоить $q_j\coloneqq 0$.
- 2. Пока $u \geq vb^{n-t}$, выполнять: $q_{n-t} \coloneqq q_{n-t} + 1, u \coloneqq u vb^{n-t}$.
- 3. Для $i=n,n-1,\ldots,t+1$ выполнять пункты 3.1 3.4:
 - 3.1. если $u_i \geq v_t$, то присвоить $q_{i-t-1} \coloneqq b-1$, иначе присвоить $q_{i-t-1} \coloneqq \frac{u_i b + u_{i-1}}{v_t}.$
 - 3.2. пока $q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2}$ выполнять $q_{i-t-1}\coloneqq q_{i-t-1}-1.$
 - 3.3. присвоить $u \coloneqq u q_{i-t-1}b^{i-t-1}v.$
 - 3.4. если u<0, то присвоить $u:=u+vb^{i-t-1}$, $q_{i-t-1}:=q_{i-t-1}-1$.
- 4. r := u. Результат: q и r.

4 Выполнение лабораторной работы

Реализуем описанные выше алгоритмы на языке **Python** в среде Jupyter Notebook. Для работы нам понадобятся библиотека math, словари, отображающие буквы в их числовые аналоги и наоборот ($A \leftrightarrow 10, B \leftrightarrow 11$ и т.д.), а также функция добавления ведущих нулей к числу fill0(u, n, array):

```
return result
return "".join([str(i) for i in result]) + u
```

4.1 Сложение неотрицательных целых чисел

Создадим функцию addition(u_str, v_str, b) следующего вида:

```
def addition(u_str, v_str, b):
    u = [str2num[letter] for letter in u_str]
    v = [str2num[letter] for letter in v_str]
    if len(u) != len(v): # если разрядности чисел не совпадают...
        if len(u) < len(v): u = fill0(u, len(v), True)
        else: v = fill0(v, len(u), True)
    n = len(u); k = 0
    w = \lceil \rceil \# \text{ сумма}
    for j in range(n - 1, -1, -1): #
        w.append(((u[j] + v[j] + k) % b)) # war 2-3
        k = math.floor((u[j] + v[j] + k) / b) #
```

```
w.append(k); w.reverse() # шаг 3
# преобразуем сумму-массив в строчный вид
return "".join([num2str[digit] for digit in w])
```

Теперь с помощью данной функции найдём суммы пар чисел в разных системах счисления (см. Рис. 4.1).

```
print(addition("321", "1567", 10))
print(addition("01101", "11011", 2))
print(addition("B081", "4ACD", 16))

[12]
... 01888
101000
0FB4E
```

Figure 4.1: Примеры нахождения сумм пар чисел в разных системах счисления

4.2 Вычитание неотрицательных целых чисел

Создадим функцию subtraction(u_str, v_str, b) следующего вида:

```
def subtraction(u_str, v_str, b):
    """
    Bычитает число v_str из u_str, представленных в строчном виде,
    в системе счисления b
    """
```

```
# представляем числа в виде массивов чисел
u = [str2num[letter] for letter in u_str]
v = [str2num[letter] for letter in v_str]
if len(u) != len(v):
   # добавляем к меньшему числу ведущие нули
   if len(u) < len(v): u = fill0(u, len(v), True)
    else: v = fill0(v, len(u), True)
elif u < v: # если и меньше v
    return "и должно быть больше v"
n = len(u); w = []; k = 0 # war 1
for j in range(n - 1, -1, -1):
   w.append(((u[j] - v[j] + k) % b)) # war 2-3
   k = math.floor((u[j] - v[j] + k) / b) #
w.reverse() # записываем массив в обратном порядке
return "".join([num2str[digit] for digit in w])
```

Теперь с помощью данной функции найдём разности пар чисел в разных системах счисления (см. Рис. 4.2).

```
print(subtraction("789", "111", 10))
    print(subtraction("11001", "01011", 2))
    print(subtraction("F630", "1AAA", 16))

[14]
... 678
    01110
    DB86
```

Figure 4.2: Примеры нахождения разностей пар чисел в разных системах счисления

4.3 Умножение неотрицательных целых чисел столбиком

Создадим функцию multiply_column(u_str, v_str, b) следующего вида:

```
def multiply_column(u_str, v_str, b):
    """

Умножает столбиком два неотрицательных числа
в системе счисления b, u_str и v_str,
представленных в строчном виде
    """

# представляем числа в виде массивов чисел

u = [str2num[letter] for letter in u_str]

v = [str2num[letter] for letter in v_str]

# n - разрядность u,
# m - разрядность v
```

```
n = len(u); m = len(v)

# произведение

w = [0] * (m + n) # шаг 1

# шаг 2 опускаем, поскольку весь массив w

# изначально заполнен нулями

for j in range(m - 1, -1, -1):
    if v[j] != 0:
        k = 0 # шаг 3
        for i in range(n - 1, -1, -1): #
            t = u[i] * v[j] + w[i + j + 1] + k # шаг 4
            w[i + j + 1] = t % b #
            k = math.floor(t / b) #

w[j] = k # шаг 5

# преобразуем результат в виде массива в строчный вид
return "".join([num2str[digit] for digit in w]) # шаг 6
```

Теперь с помощью данной функции найдём произведения пар чисел в разных системах счисления (см. Рис. 4.3).

```
print(multiply_column("777", "1234", 10))
    print(multiply_column("1101", "110001100", 2))
    print(multiply_column("FD76", "3AE01A", 16))

[16]
... 0958818
    1010000011100
    3A4A9CFDFC
```

Figure 4.3: Примеры нахождения произведения пар чисел в разных системах счисления

4.4 Быстрый столбик

Создадим функцию multiply_quick(u_str, v_str, b) следующего вида:

```
w = [0] * (m + n)

t = 0 # шаг 1

for s in range(0, m + n): # шаг 2

    for i in range(0, s + 1): #

        if (0 <= n - i - 1 < n) and (0 <= m - s + i - 1 < m): # шаг 3

            t = t + u[n - i - 1] * v[m - s + i - 1] #

    w[m + n - s - 1] = t % b #

    t = math.floor(t / b) # шаг 4

# преобразуем результат в виде массива в строчный вид

return "".join([num2str[digit] for digit in w])</pre>
```

Теперь с помощью данной функции найдём произведения пар чисел в разных системах счисления (см. Рис. 4.4).

```
print(multiply_quick("777", "1234", 10))
    print(multiply_quick("1101", "110001100", 2))
    print(multiply_quick("FD76", "3AE01A", 16))

[18]
... 0958818
    1010000011100
    3A4A9CFDFC
```

Figure 4.4: Примеры нахождения произведения пар чисел быстрым столбиком в разных системах счисления

4.5 Деление многоразрядных целых чисел

Начнём с реализации дополнительных функций: для смены системы счисления числа и для удаления ведущих нулей из его представления.

```
def to10(u_str, b, array = False):
    в десятичную систему исчисления;
    u array = u str if array else [str2num[letter] for letter in u str]
    u = 0
    for i in range(len(u array)):
        u += (b ** i) * u array[len(u array) - i - 1]
    return u
def to_b(number, b, n = 1):
    (q, r) = (math.floor(number / b), number % b); w = num2str[r]
    while q >= b:
```

```
# продолжаем деление
        (q, r) = (math.floor(q / b), q % b)
        w = w + num2str[r]
    if q != 0: w = w + num2str[q]
    while len(w) < n:</pre>
    return w[::-1]
def trim_zero(a):
    while a[0] == '0' and len(a) > 1:
        a = a[1:]
    return a
```

Теперь создадим функцию division(u_str, v_str, b) следующего вида:

```
def division(u_str, v_str, b):
    """
    Производит деление целых неотрицательных чисел,
    записанных в строчном виде (u_str на v_str),
    в системе счисления с основанием b
```

```
u = u_str; v = v_str
n = len(u) - 1; t = len(v) - 1 # разрядности чисел
if v[0] == 0 or not (n >= t >= 1):
   return "Некорректные входные данные"
q = [0] * (n - t + 1) # war 1
while to10(u, b) >= to10(v, b) * (b ** (n - t)): #
   q[n - t] = q[n - t] + 1
   a = to_b(b ** (n - t), b)
   a = multiply_column(v, a, b)
   u = subtraction(u, a, b)
   if len(u) > len(u_str): # сохраняем начальную
       u = u[1:] if u[0] == '0' else u # разрядность числа
u = [str2num[letter] for letter in u]
v = [str2num[letter] for letter in v_str]
for i in range(n, t, -1): # war 3
   if u[n - i] >= v[0]: #
       q[i - t - 1] = b - 1 # war 3.1.
   else:
       q[i - t - 1] = math.floor((u[n - i] * b + u[n - i + 1]) / v[0])
```

```
while q[i - t - 1] * (v[0] * b + v[1]) > u[n - i] * (b ** 2) +
                                       + u[n - i + 1] * b + u[n - i + 2]:
        q[i - t - 1] = q[i - t - 1] - 1
   u_10 = to10(u, b, True); v_10 = to10(v, b, True) #
    a = v_10 * q[i - t - 1] * (b ** (i - t - 1)) # war 3.3
   u_10 = u_10 - a
    if u_10 < 0:
       u_10 = u_10 + v_10 * (b ** (i - t - 1)) # war 3.4
       q[i - t - 1] = q[i - t - 1] - 1
   u = to_b(u_10, b, n + 1); u = [str2num[letter] for letter in u]
(q, r) = ("".join([num2str[digit] for digit in q]),
                          "".join([num2str[digit] for digit in u]))
return (trim_zero(q[::-1]), trim_zero(r))
```

Теперь с помощью данной функции найдём частные и остоток от деления пар чисел в разных системах счисления (см. Рис. 4.5).

```
print(division("1000", "15", 10))
    print(division("1111010111", "10010", 2)) # 983 / 18 = (54, 11)
    print(division("76870", "232", 16)) # 485,488 / 562 = (863, 482)

[21]
... ('66', '10')
    ('110110', '1011')
    ('35F', '1E2')
```

Figure 4.5: Примеры нахождения частных и остатков от деления пар чисел в разных системах счисления

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: было проведено краткое знакомство с алгоритмами целочисленной арифметики многократной точности (сложение неотрицательных целых чисел, вычитание неотрицательных целых чисел, умножение неотрицательных целых чисел столбиком и быстрым столбиком, деление многоразрядных целых чисел), после чего все пять алгоритмов были успешно реализованы на языке программирования **Python**.

Список литературы

- 1. Исупов К.С. Методы и алгоритмы организации высокоточных вычислений в арифметике остаточных классов для универсальных процессорных платформ: phdthesis. Вятский государственный университет, 2014.
- 2. Панкратова И.А. Теоретико-числовые методы в криптографии: учебное пособие. Томск: Томский государственный университет, 2009. С. 120.
- 3. Бубнов С.А. Лабораторный практикум по основам криптографии: учебнометодическое пособие. Саратов; http://elibrary.sgu.ru/uch_lit/656.pdf: Саратовский государственный университет им. Н.Г. Чернышевского, 2012.