$$\Delta Q = \Delta U + A,\tag{1}$$

где ΔQ — количество теплоты, сообщенное газу, ΔU — изменение его внутренней энергии, A — совершенная газом работа.

$$\Delta U = \frac{3}{2} R \left(T_2 - T_1 \right). \tag{2}$$

$$A = \sum_{i} P_{i} \Delta V_{i} = \sum_{i} (P_{0} + \alpha V_{i}) \Delta V_{i} =$$

$$= (\eta - I) V \frac{P_{1} + P_{2}}{2} = \frac{R}{2\eta} (\eta - I) (\eta T_{1} + T_{2})$$
(3)

И с учетом (2) и (3)

$$\Delta Q = \frac{R}{2} \left[3(T_2 - T_1) + \frac{\eta - 1}{\eta} (\eta T_1 + T_2) \right] = 1520$$
 Джс.

10-4. Заметим, что искомый угол β — это угол между прямыми, которым принадлежат вектор \vec{F}_k (силы Кулона) и проекция $m\vec{g}$ на наклонную плоскость.

Допустим, шайба находится в состоянии равновесия. Сумма сил, действующих на нее при этом, должна быть равна нулю. Для построения треугольника поступим

следующим образом. Отложим постоянную компоненту $mg \sin \alpha$ первой, так как она не меняется при любых положениях шайбы. Теперь от конца вектора $mg \sin \alpha$ мы должны отложить вектор силы

трения. Подчеркнем, что значение $|\vec{F}_{mp}| = \mu mg \cos \alpha$, а направление его может быть любым, то есть множество концов всевозможных векторов \vec{F}_{mp} образуют окружность. Вектор \vec{F}_k должен замкнуть треугольник сил (иначе силы не уравновесят друг друга). Мысленно вращая \vec{F}_{mp} , видим, что максимальный угол реализуется

в случае касания \vec{F}_k окружности сил трения (в точке C), то есть

$$\sin \beta = \frac{\mu mg \cos \alpha}{mg \sin \alpha} = \mu ctg \alpha$$

следовательно,

$$\beta \leq arcsin(\mu ctg\alpha)$$
.

Пользуясь изложенным подходом, можете попробовать определить вид области "покоя" шайбы на наклонной плоскости. (На границе области \vec{F}_k будет направлен вдоль проекции силы тяжести на наклонную плоскость).

11-1. Для тепловой машины, работающей по идеальному тепловому циклу (циклу Карно) с температурами нагревателя T_H и холодильника T_X , коэффициент полезного действия можем рассчитать по формуле:

$$\eta = \frac{P}{Q_H} = \frac{T_H - T_X}{T_H} \approx \frac{21}{315},$$

$$P = \eta Q_H = \frac{\eta}{1 - \eta} Q_X = \frac{T_H - T_X}{T_X} Q_X.$$

Если цикл обратить (то есть за счет мощности электродвигателя P забирать в единицу времени Q_X теплоты у комнаты и отдавать Q_H), то соотношения между механической и тепловой мощностями останутся прежними. Понятно, что в первом случае нужно забирать из комнаты на $150\ Bm$ меньше, чем после включения лампы:

$$\Delta P = P_2 - P_1 = P_n (Q_{X_2} - Q_{X_1}) \frac{T_H - T_X}{T_X} = P_n \frac{T_H - T_X}{T_X} = 10.7 \, Bm$$
.

11-2. Пусть в некоторый момент одна бусинка находится на расстоянии x_1 от угла, вторая — на расстоянии x_2 . Так как $\left|\vec{F}_I\right| = \left|\vec{F}_2\right|$, то из второго закона Ньютона следует:

$$m_{1}a_{1} = F_{1}\cos\alpha_{1} = F_{1}\frac{x_{1}}{\sqrt{x_{1}^{2} + x_{2}^{2}}}$$

$$m_{2}a_{2} = F_{2}\cos\alpha_{2} = F_{2}\frac{x_{2}}{\sqrt{x_{1}^{2} + x_{2}^{2}}}$$

$$\Rightarrow \frac{a_{1}}{a_{2}} = \frac{x_{1}}{x_{2}},$$