(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. Mai 2003 (22.05.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/042292 A2

- (51) Internationale Patentklassifikation⁷: C08K 5/5435, C08L 23/18, 23/10, C09D 123/10, C09J 123/10
- (21) Internationales Aktenzeichen:

PCT/EP02/12487

(22) Internationales Anmeldedatum:

8. November 2002 (08.11.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 56 623.9 17. November 2001 (17.11.2001) DE 102 49 563.7 24. Oktober 2002 (24.10.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CREAVIS GESELLSCHAFT FÜR TECH-NOLOGIE UND INNOVATION MBH [DE/DE]; Paul-Baumann-Strasse 1, 45772 Marl (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KÜHNLE, Adolf [DE/DE]; Greisenberger Strasse 30, 45770 Marl (DE). JOST, Carsten [DE/DE]; Bebelstrasse 14 a, 45770 Marl (DE). ABBENHUIS, Hendrikus, Cornelis, Louis [NL/NL]; Het Puyven 49, NL-5672 RB Nuenen (NL). WEY, Hans, Günther [DE/DE]; Stiftstrasse 37, 45470 Mülheim (DE). VORNHOLT, Marion [DE/DE]; Paul-Gerhardt-Strasse 34, 45701 Herten (DE).

- (74) Gemeinsamer Vertreter: CREAVIS GESELLSCHAFT FÜR TECHNOLOGIE UND INNOVATION MBH; INTELLECTUAL PROPERTY MANAGEMENT, PATENTE u. MARKEN, Bau 1042/PB 15, Paul-Baumann-Strasse 1, 45772 Marl (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: POLYOLEFIN COMPOSITIONS, METHOD FOR THE PRODUCTION THEREOF AND THE USE OF THESE COMPOSITIONS
- (54) Bezeichnung: POLYOLEFINZUSAMMENSETZUNGEN, VERFAHREN ZU DEREN HERSTELLUNG UND VERWEN→ DUNG DIESER ZUSAMMENSETZUNGEN
 - (57) Abstract: The invention relates to polyhedral oligomeric polyolefin compositions comprising silicon-oxygen cluster units and exhibiting an improved adherence. Polyolefin compositions that comprise, in particular, 0.1 to 20.0 wt. % of polyhedral oligomeric silicon-oxygen cluster units are particularly well-suited for use in hot-melts and coating compounds, hot-melt adhesives, hygiene articles, polyolefin films and fibers that can be embossed, hot-melt-type adhesives, carpet-back coatings, cable filling compounds, master batches and bituminous coatings of all types.
 - (57) Zusammenfassung: Die vorliegende Erfindung betrifft polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweisende Polyolefinzusammensetzungen mit verbesserter Haftung. Polyolefinzusammen-setzungen, die insbesondere von 0,1 bis 20,0 Gew.-% an polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten aufweisen, sind besonders gut für die Anwendung in Hotmelts und Beschichtungsmassen, Hotmeltadhesives, Hygieneartikeln, prägbaren Polyolefinfolien und -fasern, Haftschmelzklebstoffen, Teppichrückenbeschichtungen, Kabelfüllmassen, Master-batches sowie bituminösen Beschichtungen aller Art geeignet.

Polyolefinzusammensetzungen, Verfahren zu deren Herstellung und Verwendung dieser Zusammensetzungen

Gegenstand der vorliegenden Erfindung ist eine Polyolefinzusammensetzung mit verbesserter Haftung, die zumindest ein Polyolefin und zumindest eine polyedrische oligomere Silizium-Sauerstoffclustereinheit aufweist sowie ein Verfahren zur Herstellung dieser Polyolefinzusammensetzung und deren Verwendung.

Polyolefine sind unpolare polymere Kohlenwasserstoffe. Da sie keine funktionellen Gruppen aufweisen, sind sie nicht befähigt, mit einem Untergrund z. B. durch chemische Bindung oder durch Wasserstoffbrückenbindung in Wechselwirkung zu treten, um so eine Haftung zu ermöglichen. Aus diesem Grund beschränkt sich ihre Anwendung als Klebstoff auf wenige Fälle. Beispielsweise werden bei der Papierbeschichtung durch Auftrag aus der Schmelze auf eine raue Oberfläche[†] (d. h. Papier) Polyolefine quasi mechanisch verankert. Eine weitere Möglichkeit bietet die Verwendung eines amorphen Polyolefins mit niedriger Schmelzviskosität, wie z. B. ataktisches Polypropylen (APP). In Kombination mit (Kleb-) Harzen und andere Zusatzstoffen, wie Ölen und/oder Wachsen, kann dieses amorphe Polyolefin beim Auftrag aus der Schmelze mit dem Substratuntergrund in Wechselwirkung treten, wobei im wesentlichen eine Haftung über van der Waals-Kräfte erreicht wird.

20

25

10

Da die über van der Waals-Kräfte erzielbare Haftung jedoch relativ niedrig ist, wird versucht, Polyolefine zu modifizieren bzw. polar zu machen. Marktgängige Produkte sind beispielsweise Elvax[®] (Dupont), das durch Copolymerisation von Ethylen mit Vinylacetat hergestellt wird (EVA-Typen). Weiterhin können Polyolefine mit Maleinsäureanhydrid (MSA) oder mit Acrylsäure bzw. Acrylsäurederivaten gepfropft werden. Diese Methode ist jedoch – u. a. wegen ihrer geringen Effizienz und der erforderlichen Entfernung von Restmonomeren – aufwendig und teuer. Derartige Produkte werden z. B. unter den Bezeichnungen Hercoprime[®] (Himont), Primacor[®] (Dow) oder Exxelor[®] (Exxon) vermarktet und sind in **DE** 39 12 949 (1989) in ihrer Wirkung beschrieben.

30

Amorphe bzw. ataktische Polyalphaolefine sind wegen ihrer niedrigen Schmelzviskosität zwar weitaus leichter zu handhaben, aufgrund der starken Verzweigung bzw. des hohen Gehaltes an

DEST AVAILIBLE COPY

tertiären Kohlenstoffatomen kommt es aber bei einer Pfropfung über Radikalbildung häufig zu einem starken Abbau des Molekulargewichtes. Aus diesem Grund wurde in der Vergangenheit – wie in DE 39 12 949 (1989) beschrieben – zweckmäßigerweise ein bereits gepfropftes isotaktisches Polymer auf Polypropylenbasis zugemischt. Dieses hat jedoch verschiedene Nachteile. Die funktionelle Gruppe ist nur im kristallinen bzw. isotaktischen Anteil enthalten, was die Adhäsion, für die in erster Linie der amorphe Anteil verantwortlich ist, nicht ausreichend verbessert. Insbesondere wird aber durch die Zugabe eines isotaktischen Polypropylenderivats der Erweichungspunkt (Ring- und Kugel-Methode, gemäss DIN 52 011) auf über 160 °C angehoben, was das homogene Einmischen in dampfbeheizten Mischanlagen, die in der Regel ihre obere Grenze bei 180 °C haben, problematisch macht.

Aus diesem Grund war es immer schon ein Ziel, amorphe Polyolefine mit Schmelzpunkten unter 145 °C zu verwenden. Es hat sich gezeigt, dass in besonderen Fällen doch amorphe Polyalphaolefine verwendet werden können. **DE 40 00 695 (1990)** beschreibt die Herstellung weitgehend amorpher Polyalphaolefine mit enger Molekulargewichtsverteilung. Diese lassen sich mit doppelbindungshaltigen Monomeren, wie z. B. 3-Methacryloxypropyltrimethoxysilan (MEMO) oder Vinyltrimethoxysilan (VTMO), pfropfen. **DE 197 24 835 (1997)** verwendet diese Produkte als feuchtigkeitsvernetzende Klebstoffe.

Nachteilig bei vielen Silanverbindungen ist deren Flüchtigkeit, so dass eine erhöhte Sorgfalt erforderlich ist, um z. B. die MAK-Werte (= Maximale Arbeitsplatzkonzentration) einzuhalten. So beschreibt **DE 197 24 835 (1997)** zum einen flüchtige Silanverbindungen, zum andern die Tatsache, dass nach erfolgter Pfropfung das überschüssige VTMO im Extruder verdampft und in Kühlfallen kondensiert werden muss.

25

30

10

15

Aufgabe der vorliegenden Erfindung war es deshalb, Polyolefine mit verbesserten Hafteigenschaften bereitzustellen, wobei kein Pfropfprozess notwendig ist, bei welchem Silanverbindungen freigesetzt werden, die nach dem Pfropfvorgang ein Kondensieren von überschüssigen Silanverbindungen in Kühlfallen erforderlich machen. Der Erweichungspunkt (Ring- und Kugel-Methode, gemäss DIN 52 011) solcher Polyolefine sollte unter 145 °C liegen, um eine universelle Einmischbarkeit zu gewährleisten.

10

15

30

Überraschenderweise wurde gefunden, dass Polyolefinzusammensetzungen, die polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweisen, eine verbesserte Haftung aufweisen und keine Silanverbindungen freisetzen. Außerdem weisen diese Polyolefinzusammensetzungen bei einer Verklebung eine hohe Adhäsion, hohe Kohäsion und eine hohe Wärmestandfestigkeit auf. Der Erweichungspunkt ist leicht auf Temperaturen unterhalb von 145 °C einstellbar.

Gegenstand der vorliegenden Erfindung sind deshalb Polyolefinzusammensetzungen, die dadurch gekennzeichnet sind, dass sie zumindest ein Polyolefin und zumindest eine polyedrische oligomere Silizium-Sauerstoffclustereinheit aufweisen.

Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von erfindungsgemäßen Polyolefinzusammensetzungen, welches sich dadurch auszeichnet, dass zumindest ein Polymer und zumindest eine polyedrische oligomere Silizium-Sauerstoffclusterverbindung so gemischt werden, dass eine homogene Mischung entsteht.

Außerdem ist Gegenstand der vorliegenden Erfindung eine Verwendung der erfindungsgemäßen Polyolefinzusammensetzungen für die Herstellung von Hotmelts, Schmelzbeschichtungsmassen, Hotmeltadhesives, Hygieneartikeln, prägbare Polyolefinfolien und -20 fasern, Haftschmelzklebstoffen, Teppichrückenbeschichtungen oder Kabelfüllmassen sowie bituminösen Beschichtungen aller Art.

Ebenso ist Gegenstand der vorliegenden Erfindung eine Verwendung der erfindungsgemäßen Polyolefinzusammensetzung für die Herstellung von Masterbatches für LLDPE, LDPE, Ethylen-Propylen-Copolymerisate, Ethylen-Butylen-Copoly-Polypropylen, Polybuten, merisate, Ethylen-Propylen-Butylen-Terpolymerisate oder amorphe Polyalphaolefine.

Im übrigen sind Gegenstand der vorliegenden Erfindung auch Hotmelts, Schmelzbeschichtungsmassen, Hotmeltadhesives, Hygieneartikel, prägbare Polyolefinfolien und -fasern, Haftschmelzklebstoffe, Teppichrückenbeschichtungen, Kabelfüllmassen und bituminöse Beschichtungen, die dadurch gekennzeichnet sind, dass sie eine erfindungsgemäße Polyolefinzusammensetzung aufweisen.

Die erfindungsgemäßen Polyolefinzusammensetzungen weisen deutlich bessere Hafteigenschaften als Polyolefinzusammensetzungen gemäß dem Stand der Technik auf. Neben den verbesserten Hafteigenschaften weisen die erfindungsgemäßen Polymerzusammensetzungen relativ niedrige Erweichungstemperaturen auf, weshalb sie vielseitig einsetzbar sind.

5

Die erfindungsgemäßen Polyolefinzusammensetzungen sind über ein einfaches Verfahren zugänglich, bei welchem eine homogene Mischung von Polyolefin und zumindest einer Silizium-Sauerstoffclusterverbindung hergestellt wird.

ol ol

Als vorteilhaft stellte sich weiterhin heraus, dass bei der Verwendung von polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen mit Alkoxyresten, wie z. B. Methoxyund Ethoxygruppen, auf einen zusätzlichen Pfropfprozess, initiiert durch Peroxide oder
Azoverbindungen, mittels eines Extruders verzichtet werden kann und die Herstellung durch
ein direktes Einmischen der polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen in die Polyolefinschmelze möglich ist. Dies kann in bestimmten Fällen wichtig
sein, da nach erfolgter Pfropfung peroxidische Strukturen bzw. Radikale in der
Polyolefinzusammensetzung zurückbleiben, was bei Lagerung in der Schmelze zu
thermischem Abbau bzw. einem weiteren Abfall des Molekulargewichts führen kann und
generell eine Verschlechterung der Alterungseigenschaften zur Folge hat. Hinzu kommt, dass
diese Pfropfung eine Extrudiereinrichtung und damit einen zusätzlichen aufwendigen
Verfahrensschritt benötigt. Nicht zuletzt bedeutet die Anschaffung eines Extruders ein
Investment, das ein Vielfaches dessen einer Schmelz- und Mischeinrichtung beträgt.

20

15

Die erfindungsgemäße Polyolefinzusammensetzung sowie ein Verfahren zur Herstellung dieser Polyolefinzusammensetzung wird nachfolgend beschrieben, ohne dass die Erfindung auf die beschriebenen Ausführungsarten beschränkt sein soll.

30

Die erfindungsgemäße Polyolefinzusammensetzung zeichnet sich dadurch aus, dass sie Einheiten zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist. Vorzugsweise weist die erfindungsgemäße Polyolefinzusammensetzung von 0,01 bis 50 Gew.-%, bevorzugt von 0,1 bis 20 Gew.-%, besonders bevorzugt von 1 bis 15 Gew.-% und ganz besonders bevorzugt von 2 bis 10 Gew.-

% an Einheiten einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung auf. Die Polyolefinzusammensetzung kann die Einheiten des Polyolefins und der polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung als chemisch gebundene Einheiten aufweisen oder aber als getrennt voneinander vorliegende Einzelverbindungen. Vorzugsweise weist die Polyolefinzusammensetzung eine homogene Mischung von getrennt voneinander vorliegenden Einzelverbindungen auf.

Die Polyolefinzusammensetzung weist vorzugsweise eine Dichte von kleiner 0,94 g/ml, bevorzugt von kleiner 0,92 g/ml auf. Es kann vorteilhaft sein, wenn die Polyolefinzusammensetzung einen MVI-Wert (Volumenfließindex, melt volume index) gemäss DIN ISO 1133 von größer 10 ml/10 min aufweist.

Die erfindungsgemäße Polyolefinzusammensetzung weist vorzugsweise Einheiten eines Polyolefins, ausgewählt aus Polyethylen, Polypropylen, Polybuten oder den amorphen Polyalphaolefinen, auf.

Ganz besonders bevorzugt umfasst die erfindungsgemäße Polyolefinzusammensetzung Einheiten zumindest eines Polyolefins, welches eine Dichte gemäss ISO 1183 von kleiner 0,94 g/ml und einem MVI-Wert gemäss DIN ISO 1133 größer 70 ml/10 min aufweist.

20

25

10

15

Weist die Polyolefinzusammensetzung-zumindest-Einheiten eines amorphen Polyalphaolefins auf, so weist dieses amorphe Polyalphaolefin vorzugsweise einen Erweichungspunkt gemäss DIN 52 011 von 70 bis 165 °C, eine Schmelzviskosität bei 190 °C von 1 000 bis 200 000 mPa s, eine Dichte gemäss ISO 1183 kleiner 0,90 g/ml und einer Nadelpenetration in Anlehnung an DIN 52 010 (bei 25 °C, 100 g Belastung, 5 sec.) von 2 bis 30 mm 10⁻¹ auf.

Solche Einheiten amorpher Polyalphaolefine können z. B. Polyalphaolefine mit einer Monomerzusammensetzung

von 0 bis 100 Gewichtsteilen C₄-C₁₀-Olefinen,

von 0 bis 100 Gewichtsteilen Propen und von 0 bis 20 Gewichtsteilen Ethen,

besonders bevorzugt mit einer Monomerzusammensetzung

von 3 bis 95 Gewichtsteilen C₄-C₁₀-Olefinen, von 5 bis 97 Gewichtsteilen Propen und von 0 bis 20 Gewichtsteilen Ethen sein.

5

10

Ganz besonders bevorzugt weist die erfindungsgemäße Polyolefinzusammensetzung zumindest Einheiten eines amorphen Polyalphaolefins mit einer Schmelzviskosität von 1 000 bis 100 000mPa s (bei 190 °C, Rotationsviskosimeter), einer Penetration in Anlehnung an DIN 52 010 (bei 25 °C, 100 g Belastung, 5 sec.) von 2 bis 30 mm 10 ⁻¹ und einer Viskositätszahl gemäss DIN 53 728 von 30 bis 120 cm³/g auf.

Die in der Polyolefinzusammensetzung vorhandenen Einheiten einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung sind oligomer und weisen vorzugsweise ein Molekulargewicht größer 400 g/mol, bevorzugt von 700 bis 3 000 g/mol, besonders bevorzugt von 800 bis 1 500 g/mol auf.

Unter einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung werden vorzugsweise die beiden Verbindungsklassen der Silasesquioxane und der Sphärosilikate verstanden.

20

25

30

15

Silasesquioxane sind oligomere oder polymere Stoffe, deren vollständig kondensierte Vertreter die allgemeine Formel $(SiO_{3/2}R)_n$ besitzen, wobei $n \geq 4$ und der Rest R ein Wasserstoffatom sein kann, meist jedoch einen organischen Rest darstellt. Die kleinste Struktur eines Silasesquioxans ist der Tetraeder. Voronkov und Lavrent'yev (Top. Curr. Chem. 102 (1982), 199-236) beschreiben die Synthese von vollständig kondensierten und unvollständig kondensierten oligomeren Silasesquioxanen durch hydrolytische Kondensation trifunktioneller RSiY₃-Vorstufen, wobei R für einen Kohlenwasserstoffrest steht und Y eine hydrolisierbare Gruppe, wie z. B. Chlorid, Alkoxid oder Siloxid, darstellt. Lichtenhan et al. beschreiben die basenkatalysierte Herstellung von oligomeren Silasesquioxanen (WO 01/10871). Silasesquioxane der Formel $R_8Si_8O_{12}$ (mit gleichen oder unterschiedlichen Kohlenwasserstoffresten R) können basenkatalysiert zu funktionalisierten, unvollständig kondensierten Silasesquioxanen, wie z. B. $R_7Si_7O_9(OH)_3$ oder auch $R_8Si_8O_{11}(OH)_2$ und

15

20

25

30

R₈Si₈O₁₀(OH)₄, umgesetzt werden (Chem. Commun. (1999), 2309-10; Polym. Mater. Sci. Eng. **82** (2000), 301-2; WO 01/10871) und damit als Stammverbindung für eine Vielzahl verschiedener unvollständig kondensierter und funktionalisierter Silasesquioxane dienen. Insbesondere die Silasesquioxane (Trisilanole) der Formel R₇Si₇O₉(OH)₃ lassen sich durch Umsetzung mit funktionalisierten, monomeren Silanen (corner capping) in entsprechend modifizierte oligomere Silasesquioxane überführen.

Oligomere Sphärosilikate sind ähnlich aufgebaut wie die oligomeren Silasesquioxane. Auch sie besitzen eine "käfigartige" Struktur. Im Unterschied zu den Silasesquioxanen, bedingt durch ihre Herstellungsmethode, sind die Siliziumatome an den Ecken eines Sphärosilikates mit einem weiteren Sauerstoffatom verbunden, welches wiederum weiter substituiert ist. Oligomere Sphärosilikate lassen sich durch Silylierung geeigneter Silikat-Vorstufen herstellen (D. Hoebbel, W. Wieker, Z. Anorg. Allg. Chem. 384 (1971), 43-52; P. A. Agaskar, Colloids Surf. 63 (1992), 131-8; P. G. Harrison, R. Kannengiesser, C. J. Hall, J. Main Group Met. Chem. 20 (1997), 137-141; R. Weidner, Zeller, B. Deubzer, V. Frey, Ger. Offen. (1990), DE 38 37 397). So kann beispielsweise ein Sphärosilikat aus einer Silikat-Vorstufe synthetisiert werden, welche ihrerseits über die Umsetzung von Si(OEt)4 mit Cholinsilikat bzw. durch die Umsetzung von Abfallprodukten der Reisernte mit Tetramethylammoniumhydroxid zugänglich ist (R. M. Laine, I. Hasegawa, C. Brick, J. Kampf, Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, United States, August 26-30, 2001, MTLS-018).

Die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten der erfindungsgemäßen Polyolefinzusammensetzung können z. B. auf einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung der Formel

 $[(R_aX_bSiO_{1,5})_m (R_cX_dSiO)_n (R_eX_fSi_2O_{2,5})_o (R_gX_hSi_2O_2)_p]$

basieren, mit a, b, c = 0-1; d = 1-2; e, f, g = 0-3; h = 1-4; m+n+o+p \geq 4; a+b = 1; c+d = 2; e+f = 3 und g+h = 4, \mathbf{R} = Wasserstoffatom, Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylgruppe oder Polymereinheit, die jeweils substituiert oder unsubstituiert sind oder weitere funktionalisierte polyedrische oligomere Silizium-Sauerstoffclustereinheiten, die über eine Polymereinheit oder eine Brückeneinheit angebunden sind, \mathbf{X} = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Halogen-,

BEST AVAILABLE COOM

Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, blockierte Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe oder mindestens eine solche Gruppe vom Typ X aufweisenden Substituenten vom Typ R, wobei die Substituenten vom Typ R gleich oder unterschiedlich sind und die Substituenten vom Typ X gleich oder unterschiedlich sind.

Vorzugsweise basieren die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten der erfindungsgemäßen Polyolefinzusammensetzung auf einer oligomeren Silasesquioxanverbindung der Formel

$$[(R_aX_bSiO_{1,5})_m (R_cX_dSiO)_n],$$

mit a, b, c = 0-1; d = 1-2; m+n ≥ 4; a+b = 1; c+d = 2; R = Wasserstoffatom, substituierter oder unsubstituierter Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest und X = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder Phosphingruppe oder ein solche Gruppen aufweisender substituierter oder unsubstituierter Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest, wobei die Reste R gleich oder unterschiedlich und die Reste X ebenfalls gleich oder unterschiedlich sind.

20 Bevorzugte polyedrische oligomere Silizium-Sauerstoffclustereinheiten basieren auf oligomeren Silasesquioxanen mit einer Struktur, ausgewählt aus

 $[(RSiO_{1,5})_n]_z$ (= homoleptische Struktur),

 $[(RSiO_{1,5})_m(RXSiO_{1,0})_n]_z$ (= funktionalisierte homoleptische Struktur),

 $[(RSiO_{1,5})_m(R'SiO_{1,5})_n]_z$ (= heteroleptische Struktur) und

[(RSiO_{1,5})_m(R'XSiO_{1,0})_n]_z (= funktionalisierte heteroleptische Struktur)
mit m + n = z und z ≥ 4, wobei z der Anzahl der Si-Atome in der Gerüststruktur des oligomeren Silasesquioxans entspricht, R und R' jeweils ein Wasserstoffatom, einen substituierten oder unsubstituierten, funktionalisierten oder unfunktionalisierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest darstellen und X eine Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Alkoxysilylalkyl-, Alkoxysilyl-, Halogen-, Isocyanat-,

Nitril-, Amino- oder Phosphingruppe darstellt, mit der Maßgabe, dass die Reste R gleich oder unterschiedlich, die Reste R' gleich oder unterschiedlich und die Reste X ebenfalls gleich oder unterschiedlich sind.

Ganz besonders bevorzugt weist die erfindungsgemäße Polyolefinzusammensetzung polyedrische oligomere Silizium-Sauerstoffclustereinheiten auf, die auf funktionalisierten Silasesquioxanen der Formel 1

basieren, mit X = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-,

Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-,
Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder
Phosphingruppe oder ein Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-,
Cycloalkinyl-, Aryl- oder Heteroarylrest, der mit mindestens einer dieser Gruppen
funktionalisiert ist und R = Wasserstoffatom, substituierter oder unsubstituierter Alkyl-,

15- Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest-oder-ganzoder teilweise eine Gruppe X.

Besonders bevorzugt können die erfindungsgemäßen Polyolefinzusammensetzungen polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweisen, die auf polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen basieren, die mindestens eine Alkoxysilylalkyl-Gruppe oder mindestens eine Alkoxysilylalkyl-Gruppe und/oder eine Alkoxysilyl-Gruppe und mindestens eine vinylische Gruppe enthalten. Durch diese Gruppen wird eine besonders gute Haftung der erfindungsgemäßen Polyolefinzusammensetzungen erreicht, da diese mit Hydroxy-Gruppen-haltigen Substraten reagieren können.

25

20

Die erfindungsgemäßen Polyolefinzusammensetzungen können auch Silizium-Sauerstoff-

clustereinheiten aufweisen, die auf einem vollständig kondensierten Silasesquioxan der Formel R₈Si₈O₁₂ mit der Struktur 2 basieren,

wobei die Reste R gleich oder verschieden sind und ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen.

Ebenso können die erfindungsgemäßen Polyolefinzusammensetzungen auch polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweisen, die auf einem unvollständig kondensierten Silasesquioxan basieren. Beispiele für ein unvollständig kondensiertes Silasesquioxan zeigen die Strukturen 3, 4 oder 5, wobei die unvollständig kondensierten Silasesquioxane nicht auf diese Strukturen ausschließlich beschränkt sein sollen.

15

20

25

Die Reste R sind hierbei gleich oder verschieden und stellen ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest dar.

Insbesondere kann es vorteilhaft sein, wenn die erfindungsgemäße Polyolefinzusammensetzung zumindest polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweist, die auf oligomeren Silasesquioxanen basieren, die durch Umsetzung von unvollständig kondensierten Silasesquioxanen z.B. der Struktur 3, 4 und 5 mit monomeren funktionalisierten Silanen der Struktur Y₃Si-X¹, Y₂SiX¹X² und YSiX¹X²X³ erhalten werden, wobei die Gruppe Y eine Abgangsgruppe mit Y = Alkoxy-, Carboxy-, Halogen-, Silyloxy-oder Aminogruppe, die Gruppe X eine Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkoxysilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder Phosphingruppe darstellt, wobei die Gruppen X¹, X² und X³ gleich oder verschieden sind und ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen.

Die erfindungsgemäßen Polyolefinzusammensetzungen lassen sich z. B. durch das erfindungsgemäße Verfahren zur Herstellung von Polyolefinzusammensetzungen herstellen, welches dadurch gekennzeichnet ist, dass zumindest ein Polyolefin und zumindest eine polyedrische oligomere Silizium-Sauerstoffclusterverbindung so gemischt werden, dass eine

homogene Mischung entsteht. Vorzugsweise werden für die Mischungen von 0,01 bis 50

20

25

30

Gew.-%, bevorzugt von 0,1 bis 20 Gew.-%, besonders bevorzugt von 1 bis 15 Gew.-% und ganz besonders bevorzugt von 2 bis 10 Gew.-% an polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung bezogen auf die herzustellende Polyolefinzusammensetzung eingesetzt. Für das Verfahren werden vorzugsweise maximal 95 Gew.-%, bevorzugt maximal 90 Gew.-% und besonders bevorzugt maximal 80 Gew.-% an Polyolefin bezogen auf die herzustellende Polyolefinzusammensetzung eingesetzt.

Vorzugsweise wird die homogene Mischung thermisch behandelt, wobei die thermische Behandlung so durchgeführt werden kann, dass eine Schmelze zumindest eines Polymeren vorliegt.

Bei amorphen bzw. weitgehend amorphen Polyalphaolefinen kann die Zugabe der polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung bereits vor der Konfektionierung bei dem in der Schmelze gelagertem Produkt erfolgen. Es ist aber auch möglich, dass – sofern ein Klebstoff formuliert wird – die Zugabe beim Klebstoffhersteller durchgeführt wird, der den Klebstoff durch Aufschmelzen und Zugabe verschiedener Additive den speziellen Anforderungen des Endanwenders anpasst.

Es kann vorteilhaft sein, das Verfahren so durchzuführen, dass die polyedrische oligomere Silizium-Sauerstoffclusterverbindung mit einem Initiator auf das Polyolefin aufgepfropft wird. Dabei kann z. B. so verfahren werden, wie es in **DE 197 24 835** beschrieben wird. Bei diesem Verfahren wird in einem Doppelschneckenextruder (Berstorff Z 40) z. B. eine Mischung aus 95 Gew.-% Polyolefin und 5 Gew.-% einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung mit mindestens einer vinylischen Gruppe unter Zugabe von 1 - 2 Gew.-% eines Peroxids, wie z. B. Dicumylperoxid, unter Luft- und Feuchtigkeitsausschluss bei einer Temperatur von 155 bis 160 °C gemischt und über eine Verweilzeit von 90 s auf dieser Temperatur gehalten. Das Endprodukt wird abschließend mit Irganox[®] 1076 stabilisiert.

Das Aufpfropfen der polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung auf die Polyolefine, initiiert durch Peroxide oder Azoverbindungen, kann z. B. mittels eines Extruders erfolgen. Es ist aber auch möglich das Aufpfropfen durch direktes Einmischen der polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung in eine Polyolefinschmelze

durchzuführen, also auf einen zusätzlichen Extrudiervorgang zu verzichten. Dies kann in bestimmten Fällen wichtig sein, da nach erfolgter Pfropfung peroxidische Strukturen bzw. Radikale im Polyolefin zurückbleiben, was bei längerer Verweilzeit in der Schmelze zu einem thermischen Abbau bzw. einem weiteren Abfall des Molekulargewichts führen kann und generell eine Verschlechterung der Alterungseigenschaften zur Folge hat. Hinzu kommt, dass diese Pfropfung eine Extrudiereinrichtung und damit einen zusätzlichen aufwendigen Verfahrensschritt benötigt. Bei der Durchführung des erfindungsgemäßen Verfahrens durch Aufpfropfen wird eine Polymerzusammensetzung erhalten, bei welcher die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten und die Polymereinheiten chemisch miteinander verbunden sind.

Überraschenderweise lassen sich durch das erfindungsgemäße Verfahren auch höhermolekulare bzw. handelsübliche Polyolefine – für die sinnvollerweise kein Viskositätswert sondern stattdessen ein MVI- oder (veraltet) MFI-Wert angegeben wird – mit polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen modifizieren, so dass eine erfindungsgemäße Polyolefinzusammensetzung erhalten wird. Die Zugabe erfolgt dann zweckmäßigerweise direkt im Anschluss an die Polymerisation selbst, wenn das Polyolefin durch sog. Granulierung mit Stabilisatoren, Füllstoffen, Pigmenten etc. konfektioniert wird.

Für das erfindungsgemäße Verfahren besonders geeignete Polyolefine weisen vorzugsweise eine Dichte gemäss ISO 1183 von kleiner 0,94 g/ml, bevorzugt kleiner 0,93 g/ml, besonders bevorzugt kleiner 0,92 g/ml und einen MVI-Wert gemäss DIN ISO 1133 größer 10 ml/10 min, insbesondere größer 50 ml/10 min, vorzugsweise größer 70 ml/10 min auf. Diese Bedingungen erfüllen z. B. bestimmte Typen von Linear-Low-Density-Polyethylen (LLDPE),

Low-Density-Polyethylen (LDPE oder Hochdruckpolyethylen) sowie Polypropylen (PP).

Ganz besonders geeignet für das erfindungsgemäße Verfahren sind Polybuten, ataktisches Polypropylen (APP) sowie amorphe bzw. weitgehend amorphe Polyalphaolefine mit einer Monomerzusammensetzung

von 3 bis 95 Gewichtsteilen C₄-C₁₀-Olefinen, von 5 bis 97 Gewichtsteilen Propen und von 0 bis 20 Gewichtsteilen Ethen.

Derartige Produkte sind unter den Handelsnamen VESTOPLAST[®] (Degussa) sowie DURAFLEX[®] (Shell) und REXTAC[®] (Rexene) erhältlich. Die Herstellung derartiger Polyalphaolefine ist z. B. in **DE 23 06 667** und **DE 29 30 108** beschrieben.

- Die für das erfindungsgemäße Verfahren verwendeten Sphärosilikate sind bei Tal Materials 5 Inc., Ann Arbor (USA), die oligomeren Silasesquioxane bzw. ihre Ausgangsverbindungen sind bei den einschlägigen Handelsfirmen (Sigma-Aldrich, Gelest, Fluka) erhältlich. Die polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen besitzen vorzugsweise eine Molekülgröße von 0,5 bis 50 nm, bevorzugt von 1 bis 3 nm. Das Molekulargewicht der verwendeten polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen beträgt 10 vorzugsweise größer 400 g/mol, bevorzugt von 700 bis 3 000 g/mol, besonders bevorzugt von 800 bis 1 500 g/mol. Es ist sowohl möglich mehrere Moleküle zu einem größeren Molekül zu kondensieren, z.B. über Spacer und/oder funktionelle Gruppen, als auch die Moleküle zu homo- und copolymerisieren oder durch Reaktion selbst an einem größeren Molekül bzw. sogar Polymer zu fixieren (Grafting). Beispielsweise können polyedrische oligomere 15 Silizium-Sauerstoffclusterverbindungen über eine Hydrosilylierung mit Polymeren zur Reaktion gebracht werden.
- Die erfindungsgemäßen Polyolefinzusammensetzungen können z. B. für die Herstellung von Hotmelts, Schmelzbeschichtungsmassen, Hotmeltadhesives, Hygieneartikeln, prägbare Polyolefinfolien und fasern, Haftschmelzklebstoffen, Teppichrückenbeschichtungen oder Kabelfüllmassen sowie bituminösen Beschichtungen aller Art verwendet werden oder direkt als solche eingesetzt werden.
- Werden ein Hotmelt bzw. eine Schmelzbeschichtungsmasse, Hotmeltadhesive bzw. ein Schmelzklebstoff oder Haftschmelzklebstoffe unter Verwendung der Polyolefinzusammensetzung formuliert, können zur Einstellung der notwendigen Eigenschaften, wie Klebkraft, Anfangshaftung, Viskosität, Härte, Elastizität, Temperatur- und Oxidationsstabilität usw., weitere Substanzen zugesetzt werden, wie Klebharze (von 0,1 bis 50 Gew.-%), Wachse (von 0,1 bis 50 Gew.-%), andere Polymere (von 0,1 bis 95 Gew.-%), Weichmacher (von 0,1 bis 20 Gew.-%) sowie darüber hinaus die für Kunststoffe üblichen Additive, wie Wärme- und Lichtstabilisatoren, optische Aufheller, Antistatika, Gleitmittel, Antiblockmittel,

Nukleierungsmittel, Füll- und Farbstoffe, Pigmente sowie flammhemmende Mittel. Bei Verwendung bestimmter polyedrischer oligomerer Silizium-Sauerstoffclusterverbindungen, z. B. mit Alkoxy-Gruppen, ist darauf zu achten, dass in den Zuschlagstoffen enthaltenes Wasser die Vernetzungscharakteristik des Klebstoffes beeinflussen kann.

5

10

15

Geeignete Klebharze sind synthetische Terpenharze, modifizierte Terpenharze, aliphatische Kohlenwasserstoffharze, vollständig oder teilweise hydrierte Kolophoniumglycerinharze, cyclische Kohlenwasserstoffharze, aliphatisch-aromatische hydrierte Flüssigharze, Kohlenwasserstoffharze, hydrierte Pentaerythritester des Kolophoniumharzes oder aromatisch modifizierte Kohlenwasserstoffharze. Solche (Kleb-)Harze sind beispielsweise unter den Handelsnamen Escorez®, Hercurez®, Foral® und Wingtack® erhältlich und werden u. a. von den Firmen Hercules und Exxon vertrieben. Als Wachse können grundsätzlich alle üblichen Typen verwendet werden, wie mikrokristalline Wachse, synthetische Wachse vom Fischer-Tropsch- oder Polyolefin-Typ, Tafelparaffine und Amidwachse. Als gegebenenfalls zugesetzte Polymere kommen in erster Linie andere Polyolefine, Kautschuke, Butylkautschuk, hochmolekulares Polyisobutylen (Oppanol®), nicht oder teilhydrierte Styroi-Butadien- oder Styrol-Isopren-Blockcopolymere (SBS, SIS, SEBS, z. B. Kraton®, Cariflex®) in Betracht. Geeignete Weichmacher sind paraffinische oder naphthenische Öle sowie niedermolekulares Poly-1-buten (Napvis®) bzw. Polyisobutylen (Oppanol®).

20

25

30

Erfindungsgemäße-Hotmeltadhesives und Haftschmelzklebstoffe weisen von 20 bis 60 Gewichtsteile der erfindungsgemäßen Polyolefinzusammensetzung auf Basis von Polyalphaolefin, von 10 bis 40 Gewichtsteile (Kleb-)Harz und von 5 bis 40 Gewichtsteile Weichmacher, wie Öle und/oder niedermolekulare Polyisobutylene, sowie zusätzlich Wachse und Additive auf.

Bei Verwendung von polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen, die Alkoxysilylgruppen enthalten, in den erfindungsgemäßen Polyolefinzusammensetzungen ist eine nachträgliche Feuchtigkeitsvernetzung (z. B. über die Luftfeuchtigkeit) möglich. D. h. die anfängliche niedrige Viskosität der Polyolefinzusammensetzung führt zu einer guten Anfangshaftung (sog. "green strength"), während die nachträgliche Feuchtigkeitsvernetzung das Molekulargewicht und damit die Kohäsion der Polyolefinzusammensetzung erhöht.

Neben diesen Anwendungen in amorphen Polyalphaolefinen ist auch die Verwendung von polyedrischen oligomeren Silizium-Sauerstoffclusterverbindungen in hochmolekularen Polyolefinen (für die in der Regel kein Viskositäts- sondern ein MVI-Wert angeben wird) möglich. Insbesondere können die erfindungsgemäßen Polyolefinzusammensetzungen auf Basis von LLDPE oder LDPE für die Papierbeschichtung oder als Trägerfolie für Hygieneartikel bzw. die Windelherstellung verwendet werden. Durch geeignete Formulierung der Polyolefinzusammensetzung für den Träger kann auf den für die Fixierung der darüber angeordneten Komponenten verwendeten Klebstoff verzichtet werden. Das Kleben wird dann durch einen Prägevorgang bei Temperaturen von 100 bis 200 °C – z. B. in Wasserdampfatmosphäre bei Verwendung eines entsprechend modifizierten Produktes – ersetzt.

Ähnliche Zusammensetzungen können in Schwerbeschichtungsmassen für die Teppichrückenbeschichtung bzw. bei der Herstellung von Teppichfliesen oder die Herstellung von Kabelfüllmassen eingesetzt werden. Diese Zusammensetzungen enthalten vorzugsweise von 60 bis 90 Gewichtsteile an mineralischen Füllstoffen, wie z. B. Kalksteinmehl, von 10 bis 40 Gewichtsteile der erfindungsgemäßen Polyolefinzusammensetzung und von 0 bis 5 Gewichtsteile Additive (Wärme- und Lichtstabilisatoren, optische Aufheller, Antistatika, Gleitmittel, Antiblockmittel, Nukleierungsmittel, Füll- und Farbstoffe, Pigmente, flammhemmende Mittel, Wachse, Harze und andere Polymere).

20

25

30

15

10

Wird Bitumen mit einer erfindungsgemäßen Polyolefinzusammensetzung modifiziert, Bitumentypen für die Dachbahnherstellung (Zusatzmenge sowohl kommen erfindungsgemäßen Polyolefinzusammensetzung von 0,1 bis 20 Gew.-%) als auch im die Asphaltherstellung eingesetztes Bitumen (Zusatzmenge für Straßenbau erfindungsgemäßen Polyolefinzusammensetzung von 0,1 bis 10 Gew.-%) in Betracht. Insbesondere ergibt die Verwendung von Polyolefinzusammensetzungen mit polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung mit Alkoxysilylgruppen eine Verbesserung der Haftung von Bitumen auf mineralischen Untergründen. Gleiches gilt für bituminöse Anstriche (Zusatzmenge der erfindungsgemäßen Polyolefinzusammensetzung von 0,1 bis 20 Gew.-%). Mögliche Mischungen für den Dachbahnbereich weisen beispielsweise von 15 bis 30 Gewichtsteile erfindungsgemäße Polyolefinzusammensetzung und von 70 bis 85 Gew.-% an Destillationsbitumen (z. B. Bitumen B 200), sowie mineralische Füllstoffe, Stabilisatoren,

15

20

25

30

sonstige Additive etc. nach Bedarf auf.

Die im Straßenbau verwendeten Asphaltmischungen enthalten vorzugsweise von 85 bis 97 Gew.-% mineralische Füllstoffe unterschiedlicher Körnung und von 3 bis 15 Gew.-% an Destillationsbitumen, welches mit von 3 bis 15 Gew.-% der erfindungsgemäßen Polyolefinzusammensetzung modifiziert ist.

Auch alle anderen Arten bituminöser Anstrichmittel weisen vorzugsweise Destillationsbitumen auf, welches von 3 bis 15 Gew.-% der erfindungsgemäßen Polyolefinzusammensetzung aufweist.

Ebenso können die erfindungsgemäßen Polyolefinzusammensetzungen für die Herstellung von Masterbatches für LLDPE, LDPE, Polypropylen, Polybuten, Ethylen-Propylen-Copolymerisate, Ethylen-Butylen-Copolymerisate, Ethylen-Propylen-Butylen-Terpolymerisate oder amorphe Polyalphaolefine verwendet werden.

Bei einem Einsatz als Masterbatch dient die erfindungsgemäße Polyolefinzusammensetzung als Konzentrat, um beispielsweise über eine Extrudierung andere Polyolefine zu modifizieren, um deren Haftungseigenschaften zu verbessern. Die Zusammensetzung solcher Masterbatches beträgt vorzugsweise von 3 bis 50 Gewichtsteile an polyedrischer oligomerer Silizium-Sauerstoffclusterverbindung, von 50 bis 97 Gewichtsteile an amorphem Polyalphaolefin (z. B. VESTOPLAST® 408) und von 0 bis 30 Gewichtsteile Additive (z. B. Wärme- und Lichtstabilisatoren, optische Aufheller, Antistatika, Gleitmittel, Antiblockmittel, Nukleierungsmittel, Füll- und Farbstoffe, Pigmente, flammhemmende Mittel, Wachse, Harze und andere Polymere).

Ein solcher Masterbatch kann z. B. zur Modifizierung der Hafteigenschaften von LLDPE, LDPE, Polypropylen, Polybuten, Ethylen-Propylen-Copolymerisate, Ethylen-Butylen-Copolymerisate, Ethylen-Propylen-Butylen-Terpolymerisate oder der verwendeten amorphen Polyalphaolefine selbst verwendet. Für die Herstellung der Masterbatches sind alle Arten von Knetern, wie z. B. Banbury-Kneter, Mischextruder, aber auch herkömmliche Schmelzeinrichtungen mit nachfolgender Granuliervorrichtung geeignet. Die Einarbeitung des

Masterbatches kann z. B. über eine Extrudiereinrichtung erfolgen.

Durch die beschriebene Verwendung der erfindungsgemäßen Polyolefinzusammensetzungen sind Hotmelts, Schmelzbeschichtungsmassen, Hotmeltadhesives, Hygieneartikel, prägbare Polyolefinfolien und –fasern, Haftschmelzklebstoffe, Teppichrückenbeschichtungen, Kabelfüllmassen sowie bituminöse Beschichtungen erhältlich, die sich dadurch auszeichnen, dass sie eine erfindungsgemäße Polyolefinzusammensetzung aufweisen. Solche Klebstoffe bzw. Beschichtungen zeigen eine deutlich bessere Haftung als herkömmliche Klebstoffe bzw. Beschichtungen.

10

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne ihren Schutzumfang einzuschränken.

1. Herstellung der Silasesquioxane

15

20

Beispiel 1.1: Synthese von (Isobutyl)₈Si₈O₁₂ aus (Isobutyl)Si(OMe)₃

Zu einer Lösung von 446 g (2,5 mol) Isobutyltrimethoxysilan ((Isobutyl)Si(OMe)₃) in 4300 ml Aceton wird unter Rühren eine Lösung von 6,4 g (0,11 mol) KOH in 200 ml Wasser gegeben. Das Reaktionsgemisch wird daraufhin 3 Tage bei 30 °C gerührt. Der entstehende Niederschlag wird abfiltriert und bei 70 °C im Vakuum getrocknet. Das Produkt (Isobutyl)₈Si₈O₁₂ wird in einer Ausbeute von 262 g (96 %) erhalten.

Beispiel 1.2: Synthese von (Isobutyl)₇Si₇O₉(OH)₃ aus (Isobutyl)₈Si₈O₁₂ (Beispiel für die Synthese eines unvollständig kondensierten Silasesquioxans)

Bei einer Temperatur von 55 °C werden 55 g (63 mmol) (Isobutyl)₈Si₈O₁₂ in 500 ml eines Aceton-Methanol-Gemisches (Volumenverhältnis 84 : 16) gegeben, welches 5,0 ml (278 mmol) Wasser und 10,0 g (437 mmol) LiOH enthält. Das Reaktionsgemisch wird daraufhin 18 Stunden bei 55 °C gerührt und danach zu 500 ml 1n Salzsäure gegeben. Nach 5 Minuten Rühren wird der erhaltene Feststoff abfiltriert und mit 100 ml CH₃OH gewaschen. Nach Trocknen an Luft werden 54,8 g (96 %) (Isobutyl)₇Si₇O₉(OH)₃ erhalten.

Beispiel 1.3: Funktionalisiertes Silasesquioxan mit einer Alkoxysilylalkyl-Endgruppe

10

15

20

25

$((Isobutyl)_7Si_8O_{12}(CH_2)_2Si(OEt)_3)$

Zu einer Lösung von 10,0 g (12,6 mmol) (Isobutyl)₇Si₇O₉(OH)₃ in 20 ml 1. Schritt: Tetrahydrofuran (THF) bei 20 °C werden 2,0 ml Trimethoxyvinylsilan Et₄NOH-Lösung 0,5 ml einer Danach werden zugegeben. (Tetraethylammoniumhydroxid) in Wasser (35 Gew.-%- Lösung in Wasser) eingerührt. Dies entspricht 1,2 mmol Base und 18 mmol Wasser. Diese Mischung wird über Nacht gerührt. Danach wird das Produkt durch Zugabe von 200 ml CH₃OH ausgefällt. Nach Abfiltrieren wird das Produkt mit 30 ml Aceton gewaschen und durch Trocknen an Luft werden 6,1 g (57 %) eines weißen Pulvers an (Isobutyl)₇Si₈O₁₂(CH=CH₂) erhalten.

2. Schritt: Zu einer Lösung von 5,0 g (5,9 mmol) (Isobutyl)₇Si₈O₁₂(CH=CH₂) in 15 ml Toluol werden bei 20 °C 1,2 ml (6,4 mmol) Triethoxysilan und 50 mg eines Platin-Divinyltetramethyldisiloxan-Komplexes in Xylol (Lieferung: Fa. Gelest) gegeben. Die Mischung wird über Nacht gerührt. Danach wird das Endprodukt durch Zugabe von 150 ml Acetonitril ausgefällt. Nach Abfiltrieren wird das Produkt mit 2 x 20 ml Acetonitril gewaschen. Die Ausbeute ist beim 2. Schritt 100 %.

Man erhält ein Silasesquioxan der Struktur 1, wobei X einen Ethoxysilylethyl-Rest darstellt.

Beispiel 1.4: Funktionalisiertes Silasesquioxan – mit- Dimethylvinylsilyl-Endgruppen (Synthese von (Isobutyl)₇Si₇O₁₂(SiMe₂CH=CH₂)₃

Zu einer Lösung von 10 g (12,6 mmol) (Isobutyl)₇Si₇O₉(OH)₃ in 100 ml THF (Tetrahydrofuran), das 20 ml Et₃N (Triethylamin) enthält, werden bei 20 °C 5,68 ml Vinyldimethylchlorsilan (41,6 mmol) zugegeben. Diese Mischung wird am Rückflusskühler 15 Minuten erhitzt. Das Lösemittel wird im Vakuum abgezogen und das Produkt mit 2 x 100 ml n-Hexan extrahiert. Der Extrakt wird im Vakuum angedickt und dann in 20 ml Toluol gelöst. Nach dem Ausfällen durch Zugabe von 100 ml Acetonitril erhält man (Isobutyl)₇Si₇O₁₂(SiMe₂CH=CH₂)₃ in einer Ausbeute von 85 %.

30

2. Herstellung erfindungsgemäßer Polyolefinzusammensetzungen

Beispiele 2.1

Einsatzstoff in den Beispielen 2.1 ist ein amorphes Polyalphaolefin A (VESTOPLAST® 708, Degussa AG), mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 104 °C

setzung in den Versuchen gemäß der Beispiele 3 eingesetzt.

Viskosität (bei 190 °C, Rotationsviskosimeter): 8300 mPa s
Penetration (in Anlehnung an DIN 52 010): 19 mm · 10⁻¹
Dieses Polyalphaolefin wird auch direkt als nicht erfindungsgemäße Polyolefinzusammen-

- Beispiel 2.1.1 (erfindungsgemäß): Von dem Polyalphaolefin A werden 90 Gew.-% mit 10 Gew.-% Silasesquioxan aus Beispiel 1.3 gemischt (ölbeheizter Laborkneter der Fa. Meili bei einer Temperatur von 180 °C). Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 105 °C.
- Beispiel 2.1.2 (erfindungsgemäß): Von dem Polyalphaolefin A werden 95 Gew.-% mit 5 Gew.-% Silasesquioxan aus Beispiel 1.4 unter Zusatz von 1 Gew.-% Dicumylperoxid in einem Doppelschneckenextruder (Berstorff ZE 40) unter Luft- und Feuchtigkeitsauschluss bei einer Temperatur von 160 °C gemischt und über eine Verweilzeit von 90 s auf dieser Temperatur gehalten. Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 107 °C.

Beispiel 2.2

30

Einsatzstoff in den Beispielen 2.2 ist ein amorphes Polyalphaolefin B (VESTOPLAST® 408, Degussa AG), der Zusammensetzung

25 100 Gew.-% Buten-1,

mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 122 °C

Viskosität (bei 190 °C, Rotationsviskosimeter): 8 700 mPa s

Penetration (in Anlehnung an DIN 52 010): 4 mm · 10⁻¹

Dieses Polyalphaolefin wird auch direkt als nicht erfindungsgemäße Polyolefinzusammensetzung in den Versuchen gemäß der Beispiele 3 eingesetzt.

Beispiel 2.2.1 (erfindungsgemäß): Von diesem Polyalphaolefin B werden 93 Gew.-% mit 7 Gew.-% Silasesquioxan aus Beispiel 1.3 gemischt (ölbeheizter Laborkneter der Fa. Meili bei einer Temperatur von 180 °C). Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 122 °C.

5

Beispiel 2.3

Einsatzstoff ist ein amorphes Polyalphaolefin C (VESTOPLAST ®703, Degussa AG), mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 128 °C

10 Viskosität (bei 190 °C, Rotationsviskosimeter): 2 900 mPa s

Penetration (in Anlehnung an DIN 52 010): 11 mm · 10⁻¹

Dieses Polyalphaolefin wird auch direkt als nicht erfindungsgemäße Polyolefinzusammensetzung in den Versuchen gemäß der Beispiele 3 eingesetzt.

Beispiel 2.3.1 (erfindungsgemäß): Von diesem Polyalphaolefin C werden 92 Gew.-% mit 8 Gew.-% Silasesquioxan aus Beispiel 1.2 gemischt (ölbeheizter Laborkneter der Fa. Meili bei 'einer Temperatur von 180 °C). Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 128 °C.

20 Beispiel 2.4

- Einsatzstoff ist ein amorphes Polyalphaolefin D, der Zusammensetzung _____

71 Gew.-% Buten-1,

24 Gew.-% Propen und

5 Gew.-% Ethen,

dem zur Erhöhung des Erweichungspunktes 4 Gew.-% isotaktisches Polypropylen gemäß Beispiel 2.6 als Additiv zugemischt wird.

Man erhält ein Polyolefin mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 159 °C

Viskosität (bei 190°C, Rotationsviskosimeter): 8 100 mPa s

Penetration (in Anlehnung an DIN 52 010): 20 mm · 10⁻¹.

Dieses Polyolefin wird auch direkt als nicht erfindungsgemäße Polyolefinzusammensetzung in den Versuchen gemäß der Beispiele 3 eingesetzt.

Beispiel 2.4.1 (erfindungsgemäß): Von diesem Polyolefin gemäß 2.4 werden 90 Gew.-% mit 10 Gew.-% Silasesquioxan aus Beispiel 1.1 gemischt (ölbeheizter Laborkneter der Fa. Meili bei einer Temperatur von 180 °C). Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 160 °C.

5

20

30

Beispiel 2.5

Einsatzstoff ist ein amorphes Polyalphaolefin E, der Zusammensetzung

70 Gew.-% Buten-1,

27 Gew.-% Propen und

10 3 Gew.-% Ethen,

mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 131 °C

Viskosität (bei 190 °C, Rotationsviskosimeter): 98 000 mPa s

Penetration (in Anlehnung an DIN 52 010): 24 mm · 10⁻¹

Dieses Polyalphaolefin wird auch direkt als nicht erfindungsgemäße Polyolefinzusammensetzung in den Versuchen gemäß der Beispiele 3 eingesetzt.

Beispiel 2.5.1 (nicht erfindungsgemäß): 40 Gew.-% dieses Polyalphaolefin E werden mit 30 Gew.-% aliphatischem Kohlenwasserstoffharz Escorez[®] 1102 (Exxon) und mit 30 Gew.-% Polyisobutylen Oppanol[®] B 3 (BASF) gemischt (ölbeheizter Laborkneter der Fa. Meili bei einer Temperatur von 180 °C).

Beispiel 2.5.2 (erfindungsgemäß): Von der Mischung aus Beispiel 2.5.1 werden 95 Gew.-% mit 5 Gew.-% Silasesquioxan aus Beispiel 1.3. gemischt (ölbeheizter Laborkneter der Fa. Meili bei einer Temperatur von 180 °C). Erweichungspunkt des Endproduktes (Ring u. Kugel-Methode, DIN 52 011): 130 °C.

Beispiel 2.6

Einsatzstoff zur Verwendung in Beispiel 4 ist ein isotaktisches Polypropylen VESTOLEN® P 2000 (DSM-Polyolefine GmbH) mit den Spezifikationen:

Erweichungspunkt (Ring u. Kugel-Methode, DIN 52 011): 162 °C MVI-Wert (gemäss DIN ISO 1133): > 50 ml/10 min

3. Herstellung der Prüfkörper für Verklebungsversuche

Beispiel 3.1

Erfindungsgemäße bzw. nicht erfindungsgemäße Polymerzusammensetzungen gemäß der Beispiele 2 werden bei 170 °C im Trockenschrank in einer N₂-Atmosphäre 1 Stunde lang aufgeschmolzen. Anschließend werden 5 Gew.-% eines Beschleunigers in Form eines Masterbatches aus 98 Gew.-% eines amorphen Polyalphaolefins (VESTOPLAST© 408) und 2 Gew.-% Dibutylzinnlaurat zugegeben. Nach Homogenisieren der Schmelze wird diese Mischung bei einer Temperatur von 170 °C auf einem Holzprüfkörper appliziert. Dieser wird innerhalb von 0,5 Minuten auf einer Fläche von 4 cm² mit einem weiteren Holzprüfkörper einfach überlappend zusammengefügt und 5 Minuten mit einem Gewicht von 2 kg aneinandergepresst. Anschließend lagert man das Verklebungsmuster 14 Tage bei 23 °C und 60 % relativer Luftfeuchtigkeit und führt dann eine Zugprüfung und eine Wärmestandfestigkeit durch. Die Ergebnisse sind in Tabelle 1 dargestellt.

15

10

Beispiel 3.2

Man verfährt wie in Beispiel 3.1, nur dass man mit Aceton entfettete Glasprüfkörper verwendet, die bei einer Temperatur von 150 °C beschichtet werden.

20 Beispiel 3.3

Man verfährt wie in Beispiel-3.1, nur dass man mit Aceton entfettete Aluminiumprüfkörper verwendet, die bei einer Temperatur von 150 °C beschichtet werden.

Beispiel 3.4

25 Man verfährt wie in Beispiel 3.1, nur dass man Prüfkörper aus Kraftpapier verwendet, die bei einer Temperatur von 190 °C beschichtet werden.

Beispiel 3.5

Man verfährt wie in Beispiel 3.1, nur dass man aus Polyamid 12 bestehende Prüfkörper verwendet, die bei einer Temperatur von 150 °C beschichtet werden.

Tabelle 1: Messergebnisse

Polyolefinzusam mensetzung	Prüfkörper	Nicht Erfindungs- gemäß	Erfindungs- gemäß	Wärmestand- festigkeit nach WPS 68 (°C)	Zugscher- festigkeit nach DIN 53 283 (N/mm²)
2.1.	3.1.	X		72	0,6
2.1.1.	3.1.		X	167	3,1
2.1.2.	3.1.		X	188	3,9
2.2.	3.4.	X		-	0,4
2.2.1.	3.4.		X	-	1,6
2.3.	3.5.	X		-	2,2
2.3.1.	3.5.		X	-	2,7
2.4.	3.4.	X		-	1,3
2.4.1.	3.4.		X		1,7
2.5.1.	3.3.	X		Re	0,9
2.5.2.	3.3.		X	-	1,3
2.1.	3.2.	X		_	0,5
2.1.1.	3.2.		X	-	3,7

Es zeigt sich, dass durch Verwendung der erfindungsgemässen Produkte die Zugscherfestigkeit und die Wärmestandfestigkeit gegenüber herkömmlichen Produkten deutlich verbessert werden.

5

10

4. Herstellung von Schwerbeschichtungsmassen für die Teppichrückenbeschichtung

95 Gew.-% erfindungsgemäße bzw. nicht erfindungsgemäße Polyolefinzusammensetzung gemäß der Beispiele 2.1, 2.1.1 und 2.1.2 werden in einem ölbeheizten Behälter mit Stickstoff überlagert, mit 0,2 Gew.-% Stabilisator Irganox® B 225 (Ciba-Geigy) vermengt und bei 200 °C zum Schmelzen gebracht. Über ein Rührwerk werden 5 Gew.-% des Einsatzstoffes aus Beispiel 2.6 (VESTOLEN® P 2000) eingearbeitet. Man versetzt das fertige Bindemittel im Verhältnis 30:70 mit Kalksteinmehl und homogenisiert die Mischung. Diese Mischung wird als Teppichrückenbeschichtung eingesetzt. Die nachfolgende Tabelle 2 zeigt die Ergebnisse der Prüfung der Teppichrückenbeschichtungen.

Tabelle 2: Messergebnisse der Teppichrückenbeschichtungen aus Beispiel 5

Zusammensetzung	Nicht erfindungs-	Erfindungs-	Erfindungs-
	gemäß	gemäß	gemäß
Polyolefinzusammensetzung 2.1	28,5 Gew%		
Polyolefinzusammensetzung 2.1.1		28,5 Gew%	
Polyolefinzusammensetzung 2.1.2			28,5 Gew%
VESTOLEN P 2000	1,5 Gew%	1,5 Gew%	1,5 Gew%
Kalksteinmehl	70 Gew%	70 Gew%	70 Gew%
Eigenschaften des Bindemittels			
(d. h. ohne Kalksteinmehl)			
Schmelzviskosität bei 190°C	12 800 mPa s	12 900 mPa s	13 100 mPa s
Penetration (DIN 52 010)	17 mm ·10-1	16 mm ·10 ⁻¹	14 mm · 10 ⁻¹
Erweichungspunkt (DIN 52 011)	158°C	160°C	159°C
Eigenschaften der			
Teppichrückenbeschichtung			
Eindringtiefe eines 1 cm ² -Stempels nach 4	1,5 mm	0,7 mm	0,5 mm
in Belastung mit 490,5 N/cm² in eine			
2 mm Pressplatte der gesamten			
Beschichtungsmasse analog der Prüfung			
in EP 0 309 674 (1988)			
Verbleibende Eindringtiefe nach 10 min	1,2 mm	0,3 mm	0,2 mm
Entlastung, Rückstellung auf			

Die erfindungsgemäße Teppichrückenbeschichtung mit einer erfindungsgemäßen Polyolefinzusammensetzung hat eine deutlich höhere Standfestigkeit und eine höheres Rückstellvermögen als die Teppichrückenbeschichtung mit einer nicht erfindungsgemäßen Polyolefinzusammensetzung.

Patentansprüche:

15

20

25

30

- Polyolefinzusammensetzung, dadurch gekennzeichnet,
- dass die Zusammensetzung Einheiten zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.
- Polyolefinzusammensetzung gemäß Anspruch 1,
 dadurch gekennzeichnet,
 dass sie von 0,1 bis 20 Gew.-% an Einheiten einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.
 - Polyolefinzusammensetzung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie eine Dichte von kleiner 0,94 g/ml aufweist.
 - Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie einen MVI-Wert gemäss DIN ISO 1133 größer 10 ml/10min aufweist.

5. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass sie Einheiten zumindest eines Polyolefins, ausgewählt aus Polyethylen,
Polypropylen, Polybuten oder den amorphen Polyalphaolefinen, aufweist.

6. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,

dass sie Einheiten zumindest eines Polyolefins umfasst, welches eine Dichte gemäss ISO 1183 von kleiner 0,94 g/ml und einem MVI-Wert gemäss DIN ISO 1133 größer 70 ml/10 min aufweist.

7. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 6,

CEST AVAILABLE 688Y

dadurch gekennzeichnet,

dass sie zumindest Einheiten eines amorphen Polyalphaolefins mit einem Erweichungspunkt gemäss DIN 52 011 von 70 bis 165 °C, einer Schmelzviskosität bei 190 °C von 1000 bis 200 000 mPa s, einer Dichte gemäss ISO 1183 kleiner 0,90 g/ml und einer Nadelpenetration in Anlehnung an DIN 52 010 (bei 25 °C, 100 g Belastung, 5 sec.) von 2 bis 30 mm $\cdot 10^{-1}$ aufweist.

- 8. Polyolefinzusammensetzung gemäß Anspruch 7, dadurch gekennzeichnet,
- dass sie zumindest Einheiten eines amorphen Polyalphaolefins mit einer Monomerzusammensetzung von

0 bis 100 Gewichtsteilen C₄-C₁₀-Olefinen,

0 bis 100 Gewichtsteilen Propen und

0 bis 20 Gewichtsteilen Ethen

15 aufweist.

5

9. Polyolefinzusammensetzung gemäß Anspruch 7, dadurch gekennzeichnet,

dass sie zumindest Einheiten eines amorphen Polyalphaolefins mit einer Monomerzusammensetzung von

-3-bis 95-Gewichtsteilen C₄-C₁₀-Olefinen,

5 bis 97 Gewichtsteilen Propen und

0 bis 20 Gewichtsteilen Ethen

aufweist.

25

30

20

10. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,

dass sie zumindest Einheiten eines amorphen Polyalphaolefins mit einer Schmelz-viskosität von 1 000 bis 100 000 mPa s (bei 190 °C, Rotationsviskosimeter), einer Penetration in Anlehnung an DIN 52 010 (bei 25 °C, 100 g Belastung, 5 sec.) von 2 bis 30 mm · 10 ⁻¹ und einer Viskositätszahl gemäss DIN 53 728 von 30 bis 120 cm³/g aufweist.

PEST AVAILABLE COPY

11. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, dass sie Einheiten einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung mit einem Molekulargewicht größer 400 g/mol aufweist.

5

12. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 11 dadurch gekennzeichnet,

dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung gemäß der Formel

[$(R_aX_bSiO_{1,5})_m (R_cX_dSiO)_n (R_eX_fSi_2O_{2,5})_o (R_gX_hSi_2O_2)_p$] basieren,

mit a, b, c = 0-1; d = 1-2; e, f, g = 0-3; h = 1-4; m+n+o+p \geq 4; a+b = 1; c+d = 2; e+f = 3 und g+h = 4;

R = Wasserstoffatom, Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylgruppe oder Polymereinheit, die jeweils substituiert oder unsubstituiert sind oder weitere polyedrische oligomere Silizium-Sauerstoffclustereinheiten, die über eine Polymereinheit oder eine Brückeneinheit angebunden sind,

X = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, blockierte Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-, Phosphingruppe oder mindestens eine solche Gruppe vom Typ X-aufweisenden Substituenten vom Typ R,

wobei die Substituenten vom Typ R gleich oder unterschiedlich sind und die Substituenten vom Typ X gleich oder unterschiedlich sind.

25

20

15

13. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 12, dadurch gekennzeichnet,

dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einer oligomeren Silasesquioxanverbindung der Formel

 $[(R_aX_bSiO_{1,5})_m (R_cX_dSiO)_n]$

basieren, mit a, b, c = 0-1; d = 1-2; $m+n \ge 4$; a+b = 1; c+d = 2; $\mathbf{R} = \text{Wasserstoffatom}$,

substituierter oder unsubstituierter Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest und X = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder Phosphingruppe oder eine solche Gruppen aufweisender substituierter oder unsubstituierter Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest, wobei die Reste R gleich oder unterschiedlich und die Reste X ebenfalls gleich oder unterschiedlich sind.

- 14. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 13, dadurch gekennzeichnet,
 dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einer oligomeren Silasesquioxanverbindung mit einer Struktur, ausgewählt aus [(RSiO_{1,5})_n]_z (= homoleptische Struktur),
- [(RSiO_{1,5})_m(RXSiO_{1,0})_n]_z (= funktionalisierte homoleptische Struktur),

 [(RSiO_{1,5})_m(R'SiO_{1,5})_n]_z (= heteroleptische Struktur) und

 [(RSiO_{1,5})_m(R'XSiO_{1,0})_n]_z (= funktionalisierte heteroleptische Struktur)

 mit m + n = z und z ≥ 4, wobei z der Anzahl der Si-Atome in der Gerüststruktur des oligomeren Silasesquioxans entspricht, R und R' jeweils ein Wasserstoffatom, einen substituierten oder unsubstituierten, funktionalisierten oder unfunktionalisierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest darstellen und X eine Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Alkoxysilylalkyl-, Alkoxysilyl-, Halogen-, Isocyanat-, Nitril-, Amino- oder Phosphingruppe darstellt, mit der Maßgabe, dass die Reste R gleich oder unterschiedlich, die Reste R' gleich oder unterschiedlich und die Reste X ebenfalls gleich oder unterschiedlich sind, basieren.
 - 15. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 14, dadurch gekennzeichnet,
- dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einer funktionalisierten oligomeren Silasesquioxanverbindung der Formel 1

basieren, mit X = Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino-oder Phosphingruppe oder ein Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl- oder Heteroarylrest, der mit mindestens einer dieser Gruppen funktionalisiert ist und R = Wasserstoffatom, substituierter oder unsubstituierter Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest oder ganz oder teilweise eine Gruppe X.

10

5

16. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 15, dadurch gekennzeichnet,

dass die polyedrische oligomere Silizium-Sauerstoffclustereinheit mindestens eine Alkoxysilylalkyl-Gruppe enthält.

15

20

25

17. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 16, dadurch gekennzeichnet,

dass die polyedrische oligomere Silizium-Sauerstoffclustereinheit mindestens eine Alkoxysilylalkyl-Gruppe und/oder eine Alkoxysilyl-Gruppe und mindestens eine vinylische Gruppe enthält.

18. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 11,

dadurch gekennzeichnet,
dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einer funktionalisierten oligomeren Silasesquioxanverbindung der Formel R₈Si₈O₁₂ mit der Struktur 2 basieren,

wobei die Reste R gleich oder verschieden sind und ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen.

5

19. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die polyedrische oligomere Silizium-Sauerstoffclustereinheit mindestens eine freie Hydroxy-Gruppe enthält

ĺŨ

20. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten auf einem oligomeren unvollständig kondensierten Silasesquioxan der Struktur 3, 4 oder 5 basieren,

- 15

10

15

20

5

wobei die Reste R gleich oder verschieden sind und ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen.

21. Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,

dass die polyedrischen oligomeren Silizium-Sauerstoffelustereinheiten auf einer funktionalisierten oligomeren Silasesquioxanverbindung basieren, die durch Umsetzung von Silasesquioxanen mit freien Hydroxygruppen mit monomeren funktionalisierten Silanen der Struktur Y₃Si-X¹, Y₂SiX¹X² und YSiX¹X²X³ erhalten wird, wobei die Gruppe Y eine Abgangsgruppe mit Y = Alkoxy-, Carboxy-, Halogen-, Silyloxy- oder Aminogruppe, die Gruppe X eine Oxy-, Hydroxy-, Alkoxy-, Carboxy-, Silyl-, Alkylsilyl-, Alkoxysilyl-, Siloxy-, Alkylsiloxy-, Alkoxysiloxy-, Silylalkyl-, Alkoxysilylalkyl-, Alkylsilylalkyl-, Halogen-, Epoxy-, Ester-, Fluoralkyl-, Isocyanat-, Acrylat-, Methacrylat-, Nitril-, Amino- oder Phosphingruppe darstellt, wobei die Gruppen X¹, X² und X³ gleich oder verschieden sind, sowie die Reste R gleich oder verschieden sind und ein Wasserstoffatom oder einen substituierten oder unsubstituierten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Alkinyl-, Cycloalkinyl-, Aryl-, Heteroarylrest darstellen.

- 22. Verfahren zur Herstellung von Polyolefinzusammensetzungen gemäß zumindest einem der Ansprüche 1 bis 21, dadurch gekennzeichnet,
- dass zumindest ein Polyolefin und zumindest eine polyedrische oligomere Silizium-

25

Sauerstoffclusterverbindung so gemischt werden, dass eine homogene Mischung entsteht.

- 23. Verfahren gemäß Anspruch 22, dadurch gekennzeichnet, dass die homogene Mischung thermisch behandelt wird.
- 24. Verfahren gemäß Anspruch 23,
 dadurch gekennzeichnet,
 dass die homogene Mischung thermisch so behandelt wird, dass eine Schmelze zumindest
 eines Polymeren vorliegt.
- 25. Verfahren nach zumindest einem der Ansprüche 22 bis 24,
 dadurch gekennzeichnet,
 dass die polyedrische oligomere Silizium-Sauerstoffclusterverbindung mit einem Initiator
 auf das Polyolefin aufgepfropft wird.
- Verwendung von Polyolefinzusammensetzungen gemäß zumindest einem der Ansprüche
 1 bis 21 für die Herstellung von Hotmelts, Schmelzbeschichtungsmassen,
 Hotmeltadhesives, Hygieneartikeln, prägbare Polyolefinfolien und Polyolefinfasern,
 Haftschmelzklebstoffen, Teppichrückenbeschichtungen oder Kabelfüllmassen sowie bituminösen Beschichtungen aller Art.
 - 27. Verwendung von Polyolefinzusammensetzungen gemäß zumindest einem der Ansprüche 1 bis 21 für die Herstellung von Masterbatches für LLDPE, LDPE, Polypropylen, Polybuten, Ethylen-Propylen-Copolymerisate, Ethylen-Butylen-Copolymerisate, Ethylen-Propylen-Butylen-Terpolymerisate oder amorphen Polyalphaolefine.
 - 28. Hotmelts, dadurch gekennzeichnet,
- dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

29. Schmelzbeschichtungsmassen,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

5

30. Hotmeltadhesives,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

10

31. Hygieneartikel,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

15

32. Prägbare Polyolefinfolien und Polyolefinfasern,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen und die Prägetemperatur maximal 200 °C beträgt.

20

33. Haftschmelzklebstoffe,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

25

34. Teppichrückenbeschichtungen,

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

30

35. Kabelfüllmassen

dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

36. Bituminöse Beschichtungen

5 dadurch gekennzeichnet,

dass sie eine Polyolefinzusammensetzung gemäß zumindest einem der Ansprüche 1 bis 21 aufweisen.

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. Mai 2003 (22.05.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/042292 A3

- (51) Internationale Patentklassifikation⁷: C08K 5/5435, C08L 23/18, 23/10, C09D 123/10, C09J 123/10
- (21) Internationales Aktenzeichen:

PCT/EP02/12487

(22) Internationales Anmeldedatum:

8. November 2002 (08.11.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 56 623.9 17. November 2001 (17.11.2001) DE 102 49 563.7 24. Oktober 2002 (24.10.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CREAVIS GESELLSCHAFT FÜR TECH-NOLOGIE UND INNOVATION MBH [DE/DE]; Paul-Baumann-Strasse 1, 45772 Marl (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KÜHNLE, Adolf [DE/DE]; Greisenberger Strasse 30, 45770 Marl (DE). JOST, Carsten [DE/DE]; Bebelstrasse 14 a, 45770 Marl (DE). ABBENHUIS, Hendrikus, Cornelis, Louis [NL/NL]; Het Puyven 49, NL-5672 RB Nuenen (NL). WEY, Hans, Günther [DE/DE]; Stiftstrasse 37, 45470 Mülheim (DE). VORNHOLT, Marion [DE/DE]; Paul-Gerhardt-Strasse 34, 45701 Herten (DE).

- (74) Gemeinsamer Vertreter: CREAVIS GESELLSCHAFT FÜR TECHNOLOGIE UND INNOVATION MBH; INTELLECTUAL PROPERTY MANAGEMENT, PATENTE u. MARKEN, Bau 1042/PB 15, Paul-Baumann-Strasse 1, 45772 Marl (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 20. November 2003

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: POLYOLEFIN COMPOSITIONS, METHOD FOR THE PRODUCTION THEREOF AND THE USE OF THESE COMPOSITIONS

(54) Bezeichnung: POLYOLEFINZUSAMMENSETZUNGEN, VERFAHREN ZU DEREN HERSTELLUNG UND VERWENDUNG DIESER ZUSAMMENSETZUNGEN

- (57) Abstract: The invention relates to polyhedral oligomeric polyolefin compositions comprising silicon-oxygen cluster units and exhibiting an improved adherence. Polyolefin compositions that comprise, in particular, 0.1 to 20.0 wt. % of polyhedral oligomeric silicon-oxygen cluster units are particularly well-suited for use in hot-melts and coating compounds, hot-melt adhesives, hygiene articles, polyolefin films and fibers that can be embossed, hot-melt-type adhesives, carpet-back coatings, cable filling compounds, master batches and bituminous coatings of all types.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft polyedrische oligomere Silizium-Sauerstoffclustereinheiten aufweisende Polyolefinzusammensetzungen mit verbesserter Haftung. Polyolefinzusammen-setzungen, die insbesondere von 0.1 bis 20,0 Gew.-% an polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten aufweisen, sind besonders gut für die Anwendung in Hotmelts und Beschichtungsmassen, Hotmeltadhesives, Hygieneartikeln, prägbaren Polyolefinfolien und -fasern, Haftschmelzklebstoffen, Teppichrückenbeschichtungen, Kabelfüllmassen, Master-batches sowie bituminösen Beschichtungen aller Art geeignet.

Internal Application No PCT/EP 02/12487

STAVAILABLE CA

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8K5/5435 CO8L CO8L23/18 CO8L23/10 CO9D123/10 CO9J123/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO8K CO8L CO9D CO9J IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. WO 01 72885 A (HYBRID PLASTICS LLP) X 1-28,30,4 October 2001 (2001-10-04) 33 abstract; claims 1-22 page 3, line 25-32 page 4, line 15-32 page 6, line 25 page 7, line 1-25 page 11; example 1 page 12; example 2 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" tater document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to *L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an Inventive step when the *O* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docuother means ments, such combination being obvious to a person skilled in the art. "P" document published prior to the International filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 2 MAT 2003 25 April 2003 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Bergmans, K Fax: (+31-70) 340-3016

Interna ipplication No
PCT/EY U2/12487

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	
X Y	US 2001/018486 A1 (LICHTENHAN JOSEPH D ET AL) 30 August 2001 (2001-08-30) column 2, paragraphs 10-14 abstract; claims 1-13 page 2, column 4; table 1 page 2, column 4, paragraph 26 page 3, column 5, paragraph 31	1-28,30, 32,33 1-28,30, 32,33
	page 3, column 6, paragraph 36 page 4, column 7, paragraphs 40,41; example 1 page 3, column 6, paragraph 35	
Y	WO 00 78540 A (TRITON SYSTEMS INC) 28 December 2000 (2000-12-28) abstract; claims 1-63 page 39, line 15	1-28,30, 32,33
X	US 5 939 576 A (LICHTENHAN JOSEPH D ET AL) 17 August 1999 (1999-08-17) abstract; claims 1-18 column 6, line 55-63	1-21
Α	WO 01 10871 A (HYBRID PLASTICS) 15 February 2001 (2001-02-15) cited in the application abstract; claims 1-7	1-27
E	US 2003/018109 A1 (FU XUAN ET AL) 23 January 2003 (2003-01-23) abstract; claims 1-25 page 1, column 2, paragraph 16 page 2, column 3, paragraph 23 page 3, column 5 page 3, column 6	1-27

International application No.

PCT/EP 02/12487

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	. •						
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:							
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:	7						
	SEE ADDITIONAL SHEET							
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.							
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
3. X	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:							
1-28, 30, 32, 33								
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:							
Remark	on Protest The additional search fees were accompanied by the applicant's protest.							
	No protest accompanied the payment of additional search fees.							

The International Searching Authority has determined that this international application contains multiple (groups of) inventions, namely

1. Claims 1-27

polyolefin compositions and method of preparing polyolefin compositions and use of these compositions characterized in that the polyolefin composition has units of at least one polyolefin and at least one polyhedral oligomeric siliconoxygen cluster compound.

2. Claims 28, 30, 33

hot melts, hot-melt adhesives and pressure-sensitive hot-melt adhesives characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

3. Claim 29

hot-melt coating compounds characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

4. Claim 31

hygiene articles characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

5. Claim 32

embossable polyolefin films and polyolefin fibers characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric siliconoxygen cluster compound.

6. Claim 34

carpet backings characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

7. Claim 35

cable fillers characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

8. Claim 36

bituminous coatings characterized in that they have a polyolefin composition with units of at least one polyolefin and at least one polyhedral oligomeric silicon-oxygen cluster compound.

in that hation on patent family members

Interna Application No
PCT/EY U2/12487

Patent document cited in search report			Publication date	n Patent family member(s)			Publication date	
WO	0172885	Α	04-10-2001	AU EP WO US	4946501 1268635 0172885 2002052434	A1 A1	08-10-2001 02-01-2003 04-10-2001 02-05-2002	
US	2001018486	A1	30-08-2001	NONE				
WO	0078540	Α	28-12-2000	AU EP WO	5488400 1200254 0078540	A1	09-01-2001 02-05-2002 28-12-2000	
US	5939576	Α	17-08-1999	NONE	·			
WO	0110871	Α	15-02-2001	AU CN EP JP WO	6524400 1377361 1208105 2003510337 0110871	T A1	05-03-2001 30-10-2002 29-05-2002 18-03-2003 15-02-2001	
US	2003018109	A1	23-01-2003	NONE			. — — — — — — — — — — — — — — — — — — —	

s Aktenzeichen Interna

PCT/EP 02/12487 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08K5/5435 C08L23/18 CO8L23/10 C09D123/10 CO9J123/10 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO8K CO8L CO9D CO9J IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evt), verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der In Betracht kommenden Teile Betr. Anspruch Nr. WO 01 72885 A (HYBRID PLASTICS LLP) X 1-28,30, 4. Oktober 2001 (2001-10-04) 33 Zusammenfassung; Ansprüche 1-22 Seite 3, Zeile 25-32 Seite 4, Zeile 15-32 Seite 6, Zeile 25 Seite 7, Zeile 1-25 Seite 11; Beispiel 1 Seite 12; Beispiel 2 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum Besondere Kategorien von angegebenen Veröffentlichungen : oder dem Prioritätsdatum veröffentlicht worden ist und mit der *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, Anmeldung nicht kollidiert, sondern nur zum Verständnis des der aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Theorie angegeben ist Anmeldedatum veröffentlicht worden ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweitelhaft erscheinen zu tassen, oder durch die das Veröffentlichungsdatum einer erfinderischer Täligkeit beruhend betrachtet werden anderen im Recherchenbericht genannten Veröffentlichung belegt werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet ausgeführt) werden, wenn die Veröttentlichung mit einer oder mehreren anderen *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend ist Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach *&* Veröffentlichung, die Mitglied derselben Patentfamilie Ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 1 2 MAY 2003 25. April 2003 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Bergmans, K

Fax: (+31-70) 340-3016

Interna : Aktenzelchen
PCT/EP 02/12487

		02/1240/
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Dotr Approach Nr.
Kategorie°	Bezeichnung der Veröttentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Υ	US 2001/018486 A1 (LICHTENHAN JOSEPH D ET AL) 30. August 2001 (2001-08-30) Spalte 2, Absätze 10-14 Zusammenfassung; Ansprüche 1-13	1-28,30, 32,33 1-28,30, 32,33
	Seite 2, Spalte 4; Tabelle 1 Seite 2, Spalte 4, Absatz 26 Seite 3, Spalte 5, Absatz 31 Seite 3, Spalte 6, Absatz 36 Seite 4, Spalte 7, Absätze 40,41; Beispiel 1 Seite 3, Spalte 6, Absatz 35	
	WO 00 78540 A (TRITON SYSTEMS INC) 28. Dezember 2000 (2000-12-28) Zusammenfassung; Ansprüche 1-63 Seite 39, Zeile 15	1-28,30, 32,33
(US 5 939 576 A (LICHTENHAN JOSEPH D ET AL) 17. August 1999 (1999-08-17) Zusammenfassung; Ansprüche 1-18 Spalte 6, Zeile 55-63	1-21
4	WO 01 10871 A (HYBRID PLASTICS) 15. Februar 2001 (2001-02-15) in der Anmeldung erwähnt Zusammenfassung; Ansprüche 1-7	1-27
E	US 2003/018109 A1 (FU XUAN ET AL) 23. Januar 2003 (2003-01-23) Zusammenfassung; Ansprüche 1-25 Seite 1, Spalte 2, Absatz 16 Seite 2, Spalte 3, Absatz 23 Seite 3, Spalte 5 Seite 3, Spalte 6	1-27

nales Aktenzeichen PCT/EP 02/12487

Feld I	Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß	Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche keln Recherchenbericht erstellt:
1.	Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2.	Ansprüche Nr. weil sie sich auf Telle der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
з	Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II	Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die interi	nationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
	siehe Zusatzblatt
1.	Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2.	Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsautwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
	en e
البيط	Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr. $1-28,30,32,33$
<u> </u>	Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der Internationale Recher- chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- faßt:
Bemerku	Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-27

Polyolefinzusammensetzungen und Verfahren zur Herstellung von Polyolefinzusammensetzungen und Verwendung dieser Zusammensetzungen dadurch gekennzeichnet, daß die Polyolefinzusammensetzung Einheiten zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

2. Ansprüche: 28,30,33

Hotmelts, Hotmeltadhesives und Haftschmelzklebstoffe dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

3. Anspruch: 29

Schmelzbeschichtungsmassen dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

4. Anspruch: 31

Hygienartikel dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

5. Anspruch: 32

Prägbare Polyolfinfolien und Polyolefinfasern dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

6. Anspruch: 34

WEITERE ANGABEN

PCT/ISA/ 210

Teppichrückenbeschichtungen dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

7. Anspruch: 35

Kabelfüllmassen dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

8. Anspruch: 36

Bituminöse Beschichtungen dadurch gekennzeichnet, daß sie eine Polyolefinzusammensetzung Einheiten mit zumindest eines Polyolefins und zumindest einer polyedrischen oligomeren Silizium-Sauerstoffclusterverbindung aufweist.

BEST AVAILABLE COPY

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interna ; Aktenzeichen
PCT/EP 02/12487

Im Recherchenbericht ngeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
WO 01	72885	A	04-10-2001	AU EP WO US	4946501 1268635 0172885 2002052434	A1	08-10-2001 02-01-2003 04-10-2001 02-05-2002
US 20	01018486	A1	30-08-2001	KEINĖ			ے در میں
WO 00	78540	Α	28-12-2000	AU EP WO	5488400 1200254 0078540	A1	09-01-2001 02-05-2002 28-12-2000
US 59	39576	A	17-08-1999	KEINE			
WO 01	10871	A	15-02-2001	AU CN EP JP WO	6524400 1377361 1208105 2003510337 0110871	T A1 T	05-03-2001 30-10-2002 29-05-2002 18-03-2003 15-02-2001
US 20	003018109	A1	23-01-2003	KEIN	IE		

Louis d'acin est d'anon faction

THIS PAGE BLANK (USPTO)