Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Lecture 7
Design Issues
Power Cycles for Nuclear Plants

Topics to be Covered

- Design Issues for nuclear plants Kneif (8,9 10)
- Rankine Cycle
 - Basic
 - Superheat
 - Multi-fluid cycles
 - Brayton cycle
 - Pressure Ratios

Reactor Design Interactions

Reactor Core Design

- Thermal Analysis
 - Set inlet and outlet temperature
 - Assume radial peaking factor to calculate hot channel coolant temperature
 - Assume axial flux profile and engineering factors to calculate hot channel coolant temperature
 - Calculate clad surface temperature profile for hot channel assuming a clad surface heat flux and empirical heat transfer coefficient

Design Process (2)

- Set clad and gap conductance materials and dimensions
- Calculate fuel surface temperature profile
- Fuel Pin Composition and diameter selection
 - For a given fuel material use thermal conductivity and peak temperature to determine limiting heat rate for hot channel
 - Set pellet diameter based on fuel fabrication cost
 - Recalculate heat fuel and temperature

Reactor Design (3)

- Core sizing
 - Calculate number of fuel pins from core power and length
 - Chose geometry and spacing
 - Calculate physics parameters axial and radial power profiles
 - Assess safety (reactivity coefficients) and power conversion factor (core lifetime)
 - Calculate required coolant velocity

Reactor Design (4)

- Fuel Cycle Economic Analysis
- Fuel Pin Structural Analysis
- Hydraulic Analysis
 - Pressure drops, flow distributions
 - Pumping power requirements
- Safety Analysis
 - Reactivity coefficients for accident analysis
- Fuel element reliability analysis fuel stress etc.
- Post Irradiation handling considerations cooling needs

Fuel Performance

Fuel Design and Utilization

FIGURE 9-4

Mixed-oxide fuel restructuring versus linear heat rate. (Photograph courtesy of the Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company for the U.S. Department of Energy.)

2008

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fuel Designs for LWRs

TABLE 9-1
Representative Fuel Design Parameters for Water-Cooled Reactor Systems

Desi~n parameter	PWR		BWR		CANDU		RBMK
	15 × 15	17 × 17	7 × 7	8 × 8	28-pin	37-pin	18-pin
Rod diameter (mm)	10.7	9.50	14.3	12.5	15.2	13.1	13.6
Active fuel height (m)	3.66	3.66	3.66	3.66	0.495	0.495	3.43
Clad thickness (mm)	0.61	0.58	0.81	0.86	0.38	0.38	0.9
Pellet-clad diametrical gap (mm)	0.19	0.17	0.28	0.23	0.089	0.089	0.18-0.38
Average linear heat rate (kW/m) [†]	23.1	17.8	23.3	19.8	26.5	25.7	15.2
Average power density (kW/1)‡	106	105	51	56	85.2	109	54

[†]Calculated from core thermal power and total length of fuel.

[‡]Calculated from core thermal power and active core volume (for CANDU and RBMK, volume is that for pressure tubes only).

BWR Fuel Assembly

FIGURE 1-6
Fuel assembly for a representative boiling-water reactor. (Adapted courtesy of General Electric Company.)

PWR Fuel Assembly

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Fuel Rod Design Interactions

FIGURE 9-6
Flow chart for representative fuel-rod design interactions. (From D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-PI, 1976.)

Typical Protective System

Light-Water Reactors

FIGURE 10-14

Department o Typical protective system inputs for a pressurized water reactor. (Courtesy of Westinghouse Electric Corporation.)

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Daya Bay PWR - French Design

FIGURE 8-4

Cut-away drawing of the Guangdong pressurized water reactor (Courtesy of Nuclear Engineering International (Sept. 1987), with permission of the action.)

Schematic of Plant Design

FIGURE 8-5
Schematic diagram of the fluid subsystems of the Ringhals, Units 3 and 4 pressurized water reactors (Courtesy of the Swedish State Power Board.).

Key Reactor Systems

- Reactor Coolant System
- Heat Removal Systems
- Nuclear Support Systems
- Plant Service Systems
- Nuclear Safety Systems
- Balance of Plant

Power Conversion Systems

- Carnot Efficiency
- Rankine Cycle Fundamentals
- Superheat
- Muti-Fluid Cycles
- Choices for Efficiency and Cost

ENERGY IN THE FORMS OF HEAT AND WORK

Heat: Energy of a system associated with the unordered motion of the system's molecules (indicated by the system's temperature).

Work: Energy of a system associated with the ordered motion of the system's molecules (Work = Force * Displacement).

IDEAL HEAT ENGINE VAPOR-POWER CYCLES

- Carnot Cycle (Ideal, Reversible Engine)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies
- Rankine Cycle (Two-Phase Working Fluid)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies
- Brayton Cycle (Single-Phase Working Fluid)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies

REVERSIBILITY AND IRREVERSIBILITY

Reversible Process: A process involving the change from system State A to State B, such that the system can be restored to State A with no net change in the status of any other system in the universe.

Irreversibility: Net work that must be supplied by an external system in order to restore the system of interest from State B back to its initial state, A.

Sources of Irreversibility:

- Heat not converted to work in association with heat from a hot body to a colder body.
- Work that is transferred from one system to another without being preserved in the form of work (i.e., work that is converted to heat via friction during a process).

Temperature Entropy Diagrams

FIG. 2-1. TS diagram of Carnot cycle.

FIG. 2-6. TS diagram of cycle with irreversible expansion and irreversible constant-temperature heat addition.

IRREVERSIBILITY IN HEAT TRANSFER

Irreversibility, I, in transferring heat, Q, is the work not performed, $W = \eta_{Carnot}Q$, due to absence of a perfect heat engine.

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Basic Rankine Cycle

Some Thermodynamic Aspects of Nuclear I

FIG. 2-5. Schematic of two-loop nuclear power plant.

FIG. 2-4. Internally reversible Rankine cycle with saturated vapor.

Steam Generators

FIG. 2-10. Heat addition to vaporizing fluid with a variable-temperature source; counterflow heat exchanger.

FIG. 2-11. Heat addition to vaporizing fluid with a variable-temperature source; parallelflow heat exchanger.

Rankine Cycle with Feedwater Heaters

FIG. 2-9. Schematic of Rankine cycle with two closed-type feedwater heaters.

REFINED RANKINE CYCLE USING SUPERHEATING AND REGENERATIVE HEATING

Thermal Efficiency = $\frac{\text{(Heat Added - Heat Rejected)}}{\text{Heat Added}} \cong 0.42_{\text{max}}$

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Power Cycles

FIG. 2-12. Internally reversible Rankine cycle with superheat and a variable-temperature heat source.

FIG. 2-13. Ts diagram of internally reversible supercritical and reheat cycles.

Binary Cycle Plants

FIG. 2-16. Schematic of a mercury-steam binary-vapor power plant.

Gas Reactor Cycles

- Brayton Cycle
- Brayton-Rankine Dual Cycle
- Real Example Pebble Bed
- Choices for Efficiency and Cost
 - Materials
 - Costs
 - Efficiency Trade-offs

Brayton Gas Cycle - Open

FIG. 7-1. The direct open cycle.
(a) Cycle diagram; (b) Ts diagram.

Perfect Gas Relationships

TABLE 2-1 Perfect-gas Relationships

Process	p, v, T relationships	$u_2 - u_1$	$h_1 - h_1$	$s_2 - s_1$	₩ (nonflow)	Q
Isothermal	$T = \text{const}$ $p_1/p_2 = v_2/v_1$	0	0	(R/J) ln (v ₃ /v ₁)	$(p_1v_1/J)\ln(v_2/v_1)$	$(p_1v_1/J) \ln (v_2/v_1)$
Constant pressure	$p = const$ $T_2/T_1 = v_2/v_1$	$c_v(T_2-T_1)$	$c_p(T_2-T_1)$	$c_p \ln (T_2/^{\mathfrak{T}}T_1)$	$p(v_1-v_1)/J$	$c_p(T_2-T_1)$
Constant volume	$v = \text{const}$ $T_2/T_1 = p_2/p_1$	$c_v(T_2-T_1)$	$c_p(T_2-T_1)$	$c_v \ln \left(T_2/T_1\right)$. 0	$c_v(T_2-T_1)$
Isentropic(adiabatic reversible)	$ \begin{array}{c} s = \text{const} \\ p_1 v_1^y = p_2 v_2^y \\ T_2 / T_1 = (v_1 / v_2) y - 1 \\ T_2 / T_1 = (p_2 / p_1) y - 1 / y \end{array} $		$c_p(T_2-T_1)$	0 .	$\frac{p_2v_2-p_1v_1}{J(1-\gamma)}$	0
Throttling	$h = const$ $T = const$ $p_1/p_2 = v_2/v_1$	0	0	$(R/J) \ln (v_2/v_1)$	0	0
Polytropic	$ \begin{vmatrix} p_1 v_1^n = p_2 v_2^n \\ T_2 / T_1 = (v_1 / v_2)^{n-1} \\ T_2 / T_1 = (p_2 / p_1)^{(n-1)/n} \end{vmatrix} $	$c_v(T_2-T_1)$	$c_p(T_2-T_i)$	$c_v \ln (p_2/p_1) + c_p \ln (v_2/v_1)$	$\frac{p_2v_2-p_1v_1}{J(1-n)}$	$c_v\left(\frac{\gamma-n}{1-n}\right) (T_2-$

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Indirect Brayton Open Cycle

Direct Closed Brayton Cycle

FIG. 7-3. The direct closed cycle.

Indirect Closed Cycle – Gas to Gas

Massachusetts Institute of Technology

Department of Nuclear Science & Engineering

Indirect Gas to Steam Generator

FIG. 7-5. The indirect closed cycle, gas to water.

Specific Heats of Gases

FIG. 7-6. Variation of molar c_p with temperature for various gases.

Prof. Andrew C. Kadak, 2008

Page 36

Ideal Brayton Cycle

Non-Ideal Brayton Cycle

FIG. 7-12. Closed nonideal Brayton cycle with regeneration.

Prof. Andrew C. Kadak, 2008

Massachusetts Institute of Technology

Page 38

Turbine Cooling Heat Heat Sink Water Source Regenerative Α Heat Exchanger Compressor

BRAYTON CYCLE WITH REGENERATIVE HEATING

BRAYTON CYCLE WITH REGENERATIVE HEATING

Gas-Steam Reactor Power Plant

FIG. 8-1. Schematic of a simple-cycle gas-steam-reactor power plant.

FIG. 8-2. Temperature-enthalpy diagram of a gas-steam heat exchanger in simple cycle.

COMBINED CYCLE BRAYTON (Topping), RANKINE (Bottoming)

VARIOUS VAPOR POWER CYCLES OPERATING BETWEEN THE SAME TEMPERATURE LIMITS

BRAYTON CYCLE WITH REGENERATIVE HEATING

Reading and Homework Assignment

- 1. Read Knief Chapter 8, 9, 10
- 2. Outside Reading El-Wakil Chapter 2
- 3. Problems 2.7, 7.4

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.