Learning Deep Features for Discriminative Localization

TONTENTS

- 1 Introduciton
- 2 C A M
- 3 Application
- 4 conclusion

Introduction

Introduction

- ◆ FC替换成GAP:减少参数,保存空间信息
- ◆ Class Activation Mapping: 定位input image中的discriminative region
- ◆ CNN学到的generic localizable deep features可以应用于不同的任务中
- ◆ 结构固定:GAP与分类层直接相连

引言

GAP结合CAP可以让CNN网络不仅进行图片分类, 而且可以定位图片中判别区域 (只通过一次前向传播) 2 C A M

$$F_k = \sum_{x,y} f_k(x,y)$$

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y)$$
$$= \sum_k \sum_k w_k^c f_k(x,y).$$

class confidence score

$$M_c(x,y) = \sum_k w_k^c f_k(x,y).$$
 CAM

$$S_c = \sum_{x,y} M_c(x,y)$$

Mc(x,y):让图片分为c类时激活 (x,y)位置

上的值的重要性

C A M

3

Application

♦setup

- 1、AlexNet, VGGnet, and GoogLeNet(使用GAP替代FC)
- 2、GAP有更高的空间分辨率——mapping resolution
- 3、对不同模型移除(增加)不同的卷积层

classify:

original AlexNet, VGGnet, and GoogLeNet, and Network in Network

♦localize:

original GoogLeNet3, NIN and using backpropagation

♦GAP vs GMP:

GoogLeNet-GAP, GoogLeNet-GMP

Table 1. Classification error on the ILSVRC validation set.

Networks	top-1 val. error	top-5 val. error
VGGnet-GAP	33.4	12.2
GoogLeNet-GAP	35.0	13.2
AlexNet*-GAP	44.9	20.9
AlexNet-GAP	51.1	26.3
GoogLeNet	31.9	11.3
VGGnet	31.2	11.4
AlexNet	42.6	19.5
NIN	41.9	19.6
GoogLeNet-GMP	35.6	13.9

♦classification results:

表现下降了大约1-2%,观察

到AlexNet对移除FC最敏感;

总的来说,移除FC对分类性

能影响不大

Table 2. Localization error on the ILSVRC validation set. *Back-prop* refers to using [22] for localization instead of CAM.

Method	top-1 val.error	top-5 val. error
GoogLeNet-GAP	56.40	43.00
VGGnet-GAP	57.20	45.14
GoogLeNet	60.09	49.34
AlexNet*-GAP	63.75	49.53
AlexNet-GAP	67.19	52.16
NIN	65.47	54.19
Backprop on GoogLeNet	61.31	50.55
Backprop on VGGnet	61.12	51.46
Backprop on AlexNet	65.17	52.64
GoogLeNet-GMP	57.78	45.26

◆localization results:在

CAM中生成bounding

box——阈值技术;**与**

Backprop比较

Table 3. Localization error on the ILSVRC test set for various weakly- and fully- supervised methods.

Method	supervision	top-5 test error
GoogLeNet-GAP (heuristics)	weakly	37.1
GoogLeNet-GAP	weakly	42.9
Backprop [22]	weakly	46.4
GoogLeNet [24]	full	26.7
OverFeat [21]	full	29.9
AlexNet [24]	full	34.2

弱监督:标签为整张图片的类别,不包括BB的定位标签

♦localization results:

weakly vs full

◆ Fine-grained Recognition:从 判别性区域(CAM BBox)中提 取特征进行分类会提升模型表现

高激活区域与特定场景的标志性物体一致

▶ Discovering informative
objects in the scenes: 对于
每个场景种类训练了一个 SVM
并且使用线性SVM的权重计算
CAMs;

Concept localization in weakly labeled images :

正样本:图片+概念短语;

负样本:图片

使用hard-negative mining学

习到concept detectors,并用

CAM技术定位图片中的概念;

♦Weakly supervised text

detector:

正样本:图片+文本;

负样本:图片(只包括风景)

没有BB标注训练的情况下可

以准确标注出文本

Prediction: brown

Prediction: on the grass

◆Interpreting visual question answering:

准确标注出与预测

回答相关的图像区域

Visualizing Class-Specific Units

- ◆ 即可视化哪一些channel的feature map (final conv) 对给定类别最具有判别性
- ◆ 使用GAP与softmax之间生成的权重对feature map进行排序
- ◆ 观察出物体的哪些部分最具有**判别性**以及是哪些feature map探测到了这些部分
- ◆ 具有判别性的feature map的组合引导CNN进行分类

Visualizing Class-Specific Units

Trained on Places Database

TOP-3 units

4

conclusion

总 结

- ◆提出了一种基于普通分类CNN的GAP改良,并提出CAM技术 使得定位任务可以**融合**进普通的分类任务中。
- ◆对于只有分类标签而**无定位标签**的数据集,网络的训练不仅能保持原基础网络的分类性能,还能得到分类物体在原图的定位。(弱监督)
- ◆其中CAM可以**可视化**预测类在任何给定图片上的**得分**,并标出CNN检测到的物体的判别性区域。

THANKS!