IPSec 传输模式下 ESP 报文的装包与拆包过程

—、IPSec

Internet Protocol Security,是通过对IP协议(互联网协议)的分组进行加密和认证来保护IP协议的网络传输协议族。

- 每个 IP 包都得到认证、加密
- 会话开始时建立双方的交互认证
- 会话期间进行密钥协商
- 保护主机到主机之间,网络到网络之间,或网络到主机之间的数据流。
- 应用程序不需要专门设计,而安全套接字层(SSL),传输层安全(TLS)和安全外壳(SSH),则依靠更高层的TCP(OSI的第四层)来管理可靠性和分片。必须将TLS / SSL的使用设计到应用程序中以保护应用程序协议。

二、加密方式

- 传输模式:对 IP 协议报文的有效数据载荷 (payload) 进行了加密,新的IP头并不会被生成,而是采用原来的IP头,保护的也仅仅是真正传输的数据,因此需要对原始 IP报文进行拆装。
- 隧道模式:对整个 IP 报文进行加密,就好像整个 IP 报文封装在一个安全的隧道里传输一样,保持了原始IP报文的完整性。

三、传输模式下的ESP包

IPsec 支持两类协议: AH (Authentication Headers) 和 ESP, 其中ESP (Encapsulating Security Payloads) 协议可以:

- 完整性度量
- 来源认证
- 防止回放保护
- 加密

其限制条件为:

- 完整性检查和认证一起进行
- 仅当与完整性检查和认证一起时才能选择防止回放保护
- 防止回放保护只能由接收方选择。
- 启用加密,则也就同时选择了完整性检查和认证

接下来说一下在传输模式下的具体实现

IP报文首部

Version Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

Header Length Number of 32-bit words in TCP header minimum value

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

Protocol

IP Protocol ID. Including (but not limited to):

1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF 9 IGRP 51 AH 115 L2TP

Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

Header Checksum

Checksum of entire IP header

x D M

IP Flags

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

详细结构

装包过程

- 1、在原IP报文末尾添加尾部(ESP trailer)信息。尾部包含三部分:
 - Padding,由于所选加密算法可能是块加密,那么当最后一块长度不够时就需要进行填充。
 - Pad length, 方便拆包时找出用来填充的那一段数据。
 - Next header,被加密的数据报文的类型,即IP header中的上层协议,例如TCP。
- 2、将原IP报文的payload (有效载荷)以及第1步得到的ESP尾部作为一个整体进行加密。具体的加密算法与密钥由SA给出。

SA(Security Associations 安全关联)介绍:

- IPsec 保护的某个连接的唯一标示。
- 单向的,在一次安全的通信中,通信的双方各需要创建一个 SA。
- 一个 SA 所包含的内容是维护一次安全通信所需要的数据参数。
- 由目的地址、IPsec 所采用的协议 (AH或ESP)和 SPI 来唯一确定。
- 所有的 SA 都被存放在一个数据库中, 称为 SAD。
- SA 的建立和维护通过密钥交换协议 IKE(Internet Key Exchange 互联网密钥交换协议) 实现,默认情况下,IPsec 使用 IKE 自动管理密钥,也可以直接手动管理。

SAD(Security Associations Database 安全关联数据库)介绍:

● 每一个 SA 在SAD 中都会有一个与之对应的条目,保存SA的信息。

SAD 条目字段	解释
顺序号计数器 (Sequence number counter for outbound communications)	在 AH 或 ESP 的头部,占32比特。SA 初次建立时置0, 每发送一个 数据包加1
顺序号溢出计数器 (Sequence number overflow counter)	用来标志这个 SA 是否应被弃用。如果顺序号已经溢出 ,当前的 SA 就应该被抛弃,否则会使得重放攻击成为可能
防止回放窗口 (Anti- replay Window)	占32比特。与 TCP 窗口的概念类似,引进窗口的原因是 为了实现可 靠的传输服务
SA 有效期 (Lifetime of the SA)	通过字节计数 (byte count) 或时间帧 (time frame) 或两者 的结合来记录一个 SA 的使用时间。若两者一起使用的 话,以先到期限的那一个为准。当 SA 使用了一段时间 后就应该被删除以确保安全
AH 协议中所使用的算 法以及密钥	默认情况下,IPsec 至少 要支持 HMAC-MD5 和 HMAC-SHA,算法 需要密钥支持
ESP 协议用于认证以及 完整性度量的算法以及 密钥	如HMAC是密钥相关的哈希运算消息认证码,它可用于同时验证数据完整性和消息验证。任何加密哈希函数,如MD5或SHA-1,都可用于计算HMAC;因此,所得到的MAC算法被称为HMAC-MD5或HMAC-SHA1
ESP 协议用于加密数据 的算法以及密钥	
IPsec 运行的模式	传输模式 (transport mode) 或者是隧道模式 (tunnel mode)
PMTU (Path Maximum Transmission Unit)	由 SA 的 ICMP 数据获得。MTU 值是传送数据包大小的最大上限, PMTU 是两个通信设备间的 MTU

- 3、为第2步得到的加密数据添加ESP头部。 ESP头由两部分组成,SPI和序号(Sequence number)。加密数据与ESP头合称为"enchilada"。
- SPI (Security Parameter Index 安全参数索引): 用于将收到的 IPsec 数据包与其对应的 SA 进行关联。
- 4、附加完整性度量结果(ICV,Integrity check value)。即对第三步得到的"enchilada"做摘要,得到一个完整性度量值用于验证(ESP authentication Data),并附在ESP报文的尾部。
- 5、拿到原本的IP头,其协议号改成50(ESP)。这样就可以发送了。

总体过程:

◆ 红色区域便是加密区,黄色区域是验证区。

拆包过程

- 1、在收到数据报文后,查看IP首部发现协议类型是50,故知道这是一个IPsec包。然后查看ESP头,通过里面的SPI决定数据报文所对应的SA,用于获得加密和HMAC算法等安全参数。
- 2、计算"enchilada"部分的摘要,与附在末尾的ICV做对比,如果一样的话说明数据是完整的。
- 3、检查Seq里的顺序号,保证数据是新的,避免重放攻击
- 4、解密,根据SA所提供的加密算法和密钥,解密被加密过的数据,即"enchilada"。得到原IP报文的 payload与ESP尾部(trailer)。

- 5、去尾部,根据ESP尾部里的填充长度信息,找出填充字段的长度,删去填充字段后得到原来的 payload。
- 6、直接交付给上层协议,如TCP或 UDP,由它们对这个包进行处理。

总的看来, ESP实现以下数据保护的方式为:

- 完整性度量 (enchilada的消息摘要)
- 来源认证(同上利用HMAC)
- 防止回放保护(ESP头部的序号)
- 加密(根据SPI得到相应的SA,根据其中的参数进行加解密)

参考:

- 课件
- https://www.cnblogs.com/2014-cjs/p/4068923.html