0.0.1 Terzo esercizio

L'impianto di sollevamento in figura è posto nel piano verticale ed è azionato attraverso un gruppo motore-riduttore di caratteristiche note: rapporto di riduzione τ e rendimento μ_D (per condizione di moto diretto) e μ_R (per condizione di moto retrogrado). È inoltre assegnata l'equazione che definisce la curva caratteristica del motore: $C_m = C_{m_0} - A\omega_m$.

Una fune inestensibile di massa trascurabile si avvolge su una puleggia di raggio R_2 : a un'estremità della fune è collegata la massa la massa M_1 che si muove su un piano inclinato (30 deg), scabro (coefficiente di attrito statico e dinamico assegnati). All'altro estremo della fune è appeso il contrappeso M_3 .

Si chiede di calcolare:

- 1. La coppia che deve fornire il motore nel caso di salita della massa M_1 lungo il piano inclinato a velocità costante.
- 2. La velocità della massa M_1 per la condizione di funzionamento di cui al punto 1.
- 3. La coppia motrice che deve fornire il motore affinchè la massa M_1 si muova in discesa, rallentando con una decelerazione pari a 0.5 m/s2.

0.0.2 Soluzione terzo esercizio

Osservazioni

- 1. La velocità costante implica che al primo primo ci si trova in condizioni di regime.
- 2. La massa M1 è sempre in moto, per cui va sempre usato il coefficiente di attrito dinamico f_d .
- 3. Nel terzo punto viene fornita una **decelerazione**, per cui andrà inserita come negativa.

Primo punto

Identifico il legame cinematico La velocità con cui i baricentri di M_1 , M_3 ed un punto sulla circonferenza della puleggia è pari a $\nu = R_2 \tau \omega_m$.

Potenza motrice

$$W_m = C_m \omega_m$$

Potenza resistente Per calcolare la potenza resistente prendo in considerazione tutti gli oggetti in moto su cui venga applicata una forza, quindi M_1 con la forza peso e la forza d'attrito dinamico ed M_3 con la sola forza peso.

$$W_r = \vec{F}_{g_{M_3}} \bullet \vec{v}_3 + \vec{F}_{g_{M_1}} \bullet \vec{v}_1 + \vec{F}_{d_{M_3}} \bullet \vec{v}_1$$

- 1. La forza peso agente su M_3 è concorde con la direzione della velocità v_3 , cioè forma un angolo di 0 deg.
- 2. La forza peso agente su M_1 forma un angolo di $\frac{\pi}{2} + \frac{\pi}{6}$ con la velocità v_1 .
- 3. La forza di attrito dinamico agente su M_1 agisce in direzione opposta a v_1 , cioè forma un angolo di π . La forza d'attrito dinamico è definita come: $\vec{F}_{d_{M_3}} = M_1 g f_d \sin(\frac{\pi}{2} + \frac{\pi}{6})$

Risolvo il prodotto **scalare**:

$$W_r = F_{g_{M_3}} v_3 + F_{g_{M_1}} v_1 \cos\left(\frac{\pi}{2} + \frac{\pi}{6}\right) - F_{d_{M_1}} v_1$$

$$= M_3 g v - \frac{1}{2} M_1 g v - M_1 g f_d \cos\left(\frac{\pi}{6}\right) v$$

$$= v g (M_3 - \frac{1}{2} M_1 - M_1 f_d \cos\left(\frac{\pi}{6}\right))$$

$$= v g (M_3 - M_1(\frac{1}{2} + f_d \cos\left(\frac{\pi}{6}\right)))$$

$$= v g (M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2}))$$

Identifico il tipo del moto Siccome siamo in condizioni di regime, non è necessario calcolare la variazione di energia cinetica. Utilizzo la disequazione della potenza resistente per identificare il tipo di moto:

$$W_r > 0$$

Se essa risulta vera, il moto è **retrogrado**, altrimenti **diretto**.

$$vg(M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2})) > 0$$

$$-75.9vg > 0$$

L'equazione risulta falsa, per cui il moto è **diretto**.

Potenza perduta Essendo in condizioni di regime e di moto diretto, uso la formula della potenza perdura seguente:

$$W_p = -(1 - \mu_D)W_m$$

Bilancio di potenze

$$W_m + W_r + W_p = 0$$

$$W_m + W_r - (1 - \mu_D)W_m = 0$$

$$W_r + \mu_D W_m = 0$$

$$vg(M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2})) + \mu_D C_m \omega_m = 0$$

$$\tau R_2 \omega_m g(M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2})) + \mu_D C_m \omega_m = 0$$

$$\tau R_2 g(M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2})) + \mu_D C_m = 0$$

$$C_m = -\frac{\tau R_2 g(M_3 - M_1(\frac{1}{2} + f_d \frac{\sqrt{3}}{2}))}{\mu_D}$$

$$C_m = 4.86 Nm$$

Secondo punto

Curva caratteristica del motore Utilizzando l'equazione fornita, calcolo la velocità angolare del motore alla coppia calcolata al punto precedente. Quindi, sostituisco il valore ottenuto nel legame cinematico della velocità.

$$\omega_m = \frac{C_{m_0} - C_m}{A} = 313 \, m/s$$

$$v = R_2 \tau \omega_m = 2.5 \, m/s$$

Terzo punto

Ora, avendo una decelerazione non siamo più in condizioni di regime ma di transitorio. È quindi necessario calcolare la variazione di energia cinetica.

Inoltre la direzione della velocità è invertita, quindi sarà necessario invertire i segni del prodotto scalare della potenza resistente.

Sarà infine necessarrio re-identifare il tipo di moto in cui si trova il sistema.

Legame cinematico della decelerazione Per utilizzare il dato della decelerazione vado a identificare un legame cinematico tra essa e l'accelerazione angolare.

$$a = -R_2 \tau \dot{\omega}_m$$

Energia cinetica

$$E_c = \frac{1}{2}M_3v^2 + \frac{1}{2}M_1v^2 + \frac{1}{2}J_2(\tau\omega_m)^2 + \frac{1}{2}J_m\omega_m^2$$

$$E_c = \frac{1}{2}M_3(R_2\tau\omega_m)^2 + \frac{1}{2}M_1(R_2\tau\omega_m)^2 + \frac{1}{2}J_2(\tau\omega_m)^2 + \frac{1}{2}J_m\omega_m^2$$

$$E_c = \omega_m^2(\frac{1}{2}M_3(R_2\tau)^2 + \frac{1}{2}M_1(R_2\tau)^2 + \frac{1}{2}J_2(\tau)^2 + \frac{1}{2}J_m)$$

Derivo l'espressione ed ottengo:

$$\frac{dE_c}{dt} = \omega_m \dot{\omega}_m ((M_3 + M_1)(R_2 \tau)^2 + J_2(\tau)^2 + J_m)$$

Potenza resistente

- 1. La forza peso agente sulla massa M_3 ora agisce in direzione opposta alla velocità di discesa.
- 2. La forza peso agente sulla massa M_1 forma un angolo di $\pi/3$ con la velocità.
- 3. La forza di attrito dinamico agisce sempre in direzione opposta alla velocità.

$$\begin{split} W_r &= -F_{g_{M_3}} v_3 + F_{g_{M_1}} v_1 \cos\left(\frac{\pi}{6}\right) - F_{d_{M_3}} v_1 \\ &= -M_3 g v + M_1 g v \cos\left(\frac{\pi}{3}\right) - M_1 g f_d \cos\left(\frac{\pi}{6}\right) v \\ &= g v (-M_3 + M_1 \cos\left(\frac{\pi}{3}\right) - M_1 f_d \cos\left(\frac{\pi}{6}\right)) \\ &= g v (M_1 (\cos\left(\frac{\pi}{3}\right) - f_d \cos\left(\frac{\pi}{6}\right)) - M_3) \end{split}$$

Identifico il tipo di moto

$$W_r - \frac{dE_{c_r}}{dt} > 0$$

$$gR_2\tau(M_1(\cos\left(\frac{\pi}{3}\right)-f_d\cos(\frac{\pi}{6}))-M_3)-\dot{\omega}_m((M_3+M_1)(R_2\tau)^2+J_2(\tau)^2+J_m)>0$$

Per la condizione di decelerazione, $\dot{\omega}_m = -\frac{a}{R_2 \tau} = -62.5 \, rad/s^2$.

Tutti i termini della disequazione risultano quindi positivi e il moto è da considerarsi **retrogrado**.

Potenza perduta Siamo in condizioni di transitorio e moto retrogrado. La formula da usare è quindi:

$$W_p = -(1 - \mu_r)(W_r - \frac{dE_{c_r}}{dt})$$

Bilancio di potenze

$$W_m + W_r + W_p = \frac{dE_{c_r}}{dt} + \frac{dE_{c_m}}{dt}$$

$$W_m + W_r - (1 - \mu_r)(W_r - \frac{dE_{c_r}}{dt}) = \frac{dE_{c_r}}{dt} + \frac{dE_{c_m}}{dt}$$

$$W_m + \mu_r(W_r - \frac{dE_{c_r}}{dt}) = \frac{dE_{c_m}}{dt}$$

$$W_m + \mu_r W_r = \frac{dE_{c_m}}{dt} + \mu_r \frac{dE_{c_r}}{dt}$$

$$C_m \omega_m + \mu_r W_r = \frac{dE_{c_m}}{dt} + \mu_r \frac{dE_{c_r}}{dt}$$

$$C_m = \frac{\frac{dE_{c_m}}{dt} + \mu_r \frac{dE_{c_r}}{dt}}{\omega_m}$$

$$C_{m} = \frac{\omega_{m}\dot{\omega}_{m}(\mu_{r}M_{3}(R_{2}\tau)^{2} + \mu_{r}M_{1}(R_{2}\tau)^{2} + \mu_{r}J_{2}(\tau)^{2} + J_{m}) - \mu_{r}gv(M_{1}(\cos\left(\frac{\pi}{3}\right) - f_{d}cos(\frac{\pi}{6})) - M_{3})}{\omega_{m}}$$

$$C_m = \dot{\omega}_m(\mu_r \tau^2((M_3 + M_1)R_2^2 + J_2) + J_m) - \mu_r g R_2 \tau(M_1(\cos\left(\frac{\pi}{3}\right) - f_d \cos(\frac{\pi}{6})) - M_3)$$