COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 10 DYNAMIC PROGRAMMING ALPTEKİN KÜPÇÜ

Based on slides of David Luebke, Jennifer Welch, and Cevdet Aykanat

DRAWBACK OF DIVIDE AND CONQUER APPROACH

Fibonacci numbers:

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$ for n > 1
- Sequence is 0, 1, 1, 2, 3, 5, 8, 13, ...
- Obvious recursive algorithm:
- Fib(*n*)
 - if n = 0 or n = 1 then return n
 - else return (Fib(*n*-1) + Fib(*n*-2))

RECURSION TREE FOR FIB(5)

COMPLEXITY OF RECURSIVE FIBONACCI ALGORITHM

- If all leaves had the same depth, then there would be about 2ⁿ recursive calls.
- With careful counting it can be shown that the running time of the recursive Fibonacci algorithm is $\Omega((1.6)^n)$
 - Exponential!
- Wasteful approach repeated work
 - e.g., Fib(2) is computed three times
- Instead, compute once, store the result in a table, and access it when needed

MEMOIZATION

Initialization:

```
Create a lookup table F
F[0] \leftarrow 0
F[1] \leftarrow 1
F[k] \leftarrow \text{NULL for } n \ge k \ge 2
```

Fib(n)

```
if n = 0 or n = 1 then return F[n]
if F[n-1] = NULL then Fib(n-1)
if F[n-2] = NULL then Fib(n-2)
F[n] \leftarrow F[n-1] + F[n-2]
return F[n]
```

Computes each F[i] only once

If already computed, just uses the result O(n)

MEMOIZED FIB(5)

GET RID OF THE RECURSION

- Memoization is very useful
 - Linear-time algorithm instead of exponential!!
- Recursion adds overhead
 - extra time for function calls
 - extra space to store information on the runtime stack about each currently active function call
- Avoid the recursion overhead by filling in the table entries bottom-up, instead of top-down.
- Find which sub-problems rely on which other sub-problems
 - This leads to an order for computing the sub-problems that respects the dependencies
 - When solving a sub-problem, you must have already solved all the subproblems on which the current one depends

BOTTOM-UP APPROACH: DYNAMIC PROGRAMMING

- Dependency-Respecting Order: Find Fibonacci numbers sequentially
 - $F_0, F_1, F_2, F_3, \dots$
- Fib(*n*)
 - $F[0] \leftarrow 0$
 - F[1] ← 1
 - for i = 2 to n do
 - F[i] ← F[i-1] + F[i-2]
 - return F[n]
- Optimization: save space by only keeping last two numbers computed

MATRIX CHAIN MULTIPLICATION PROBLEM

- Multiplying non-square matrices:
 - A is p x r, B is r x s
 - AB is $p \times s$ whose $(i,j)^{th}$ entry is $\sum a_{ik} b_{kj}$
- Computing AB takes prs scalar multiplications and p(r-1)s scalar additions (using basic algorithm).
 - Thus O(prs)
- We have a sequence of matrices to multiply. What is the best order of multiplication?
 - Remember, matrix multiplication is associative.

MATRIX CHAIN MULTIPLICATION PROBLEM

- Input: A sequence (chain) < A₁, A₂, A_n > of n matrices
 - A_i is of size p_{i-1} x p_i
- Goal: Compute the product A₁ · A₂ · A_n optimally
- A product of matrices is fully parenthesized if it is
 - a single matrix
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.
- All parenthesizations yield the same product
 - $(A_i (A_{i+1} A_{i+2} A_i))$
 - $((A_i A_{i+1} A_{i+2} A_{j-1}) A_j)$
 - $((A_i A_{i+1} A_{i+2} ... A_k)(A_{k+1} A_{k+2} ... A_j))$ for $i \le k \le j-1$

ORDER MATTERS

- Example: Compute $< A_1, A_2, A_3 >$ where
 - A₁: 10×100
 - A_2 : 100×5
 - $A_3: 5 \times 50$
- Best parenthesization?
- Two options
 - $((A_1 A_2) A_3) : 10x100x5 + 10x5x50 = 7500$
 - Compute A₁₂ = (A₁ A₂) and then A₁₂ A₃
 - $(A_1 (A_2 A_3)) : 100x5x50 + 10x100x50 = 75000$
 - Compute A₂₃ = (A₂ A₃) and then A₁ A₂₃
- First parenthesization yields 10 times faster computation

BRUTE FORCE SOLUTION

- Brute force approach: exhaustively check all parenthesizations
- P(n): # of parenthesizations of a sequence of n matrices
- We can split sequence between kth and (k+1)st matrices for any k ∈ {1, 2,..., n-1}, then parenthesize the two resulting sequences independently

$$(A_1 A_2 A_3 ... A_k)(A_{k+1} A_{k+2} A_n)$$

We obtain the recurrence

• P(1) = 1 and P(n) =
$$\sum_{k=1}^{n-1} P(k)P(n-k)$$

EXPONENTIAL!!

DYNAMIC PROGRAMMING DESIGN

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution based on optimal solution to sub-problems.
- 3. Compute the value of an optimal solution in a bottomup fashion, respecting dependencies.
- 4. Construct an optimal solution from the information computed in step 3 by remembering the optimal choices you have made along the path.

Alptekin Küpçü

STEP 1: CHARACTERIZE

- Given an optimal parenthesization
 - $(A_1 A_2 A_3 \dots A_k) \cdot (A_{k+1} A_{k+2} A_{k+3} \dots A_n)$
- Parenthesization of the two sub-chains
 - A₁ A₂ A₃ A_k
 - $A_{k+1} A_{k+2} A_{k+3} \dots A_n$
- should both be optimal
- Thus, a globally-optimal solution contains optimal solutions to sub-problems
- Optimal substructure property exists.

- Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the sub-problems
- Subproblem: The problem of determining the minimum cost of multiplying sub-chain A_{i..i}
 - i.e., finding optimal parenthesization of $A_i A_{i+1} A_{i+2} \dots A_j$
- m_{ij} : min # of scalar multiplications and additions needed to multiply sub-chain $A_{i...i}$
 - The value of a (global) optimal solution is m_{1n}
 - $m_{ii} = 0$, since subchain $A_{i..i}$ contains just one matrix A_i
 - no multiplication at all
 - $m_{ij} = ?$ recursively ?

- For i < j, optimal parenthesization splits subchain $A_{i...j}$ as $A_{i...k}$ and $A_{k+1...j}$ where $i \le k < j$
 - Optimal cost of computing $A_{i..k}$: m_{ik}
 - Optimal cost of computing $A_{k+1,j}$: $m_{k+1,j}$
 - Cost of multiplying $A_{i..k}A_{k+1..j}$: $p_{i-1} \times p_k \times p_j$ ($A_{i..k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1..j}$ is a $p_k \times p_j$ matrix)
- $\Rightarrow m_{ij} = ?$

- For i < j, optimal parenthesization splits subchain $A_{i...j}$ as $A_{i...k}$ and $A_{k+1...j}$ where $i \le k < j$
 - Optimal cost of computing $A_{i..k}$: m_{ik}
 - Optimal cost of computing $A_{k+1,j}$: $m_{k+1,j}$
 - Cost of multiplying $A_{i..k}A_{k+1..j}$: $p_{i-1} \times p_k \times p_j$ ($A_{i..k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1..j}$ is a $p_k \times p_j$ matrix)
- $\Rightarrow m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$

- For i < j, optimal parenthesization splits subchain $A_{i...j}$ as $A_{i...k}$ and $A_{k+1...j}$ where $i \le k < j$
 - Optimal cost of computing $A_{i..k}$: m_{ik}
 - Optimal cost of computing $A_{k+1,j}$: $m_{k+1,j}$
 - Cost of multiplying $A_{i..k}A_{k+1..j}$: $p_{i-1} \times p_k \times p_j$ ($A_{i..k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1..j}$ is a $p_k \times p_j$ matrix)
- $\Rightarrow m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$
- The equation assumes we know the value of k, but we do not know it. How can we find it?

- $m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j$
- We do not know k, but there are j i possible values for k
 - k = i, i + 1, i + 2, ..., j 1
- Since optimal parenthesization must be one of these k values we need to check them all to find the best

$$m_{ij} = \begin{cases}
0 \text{ if } i = j \\
MIN_{ik} + m_{k+1,j} + p_{i-1} p_k p_j \end{cases} \text{ if } i < j$$

$$i \le k \le j-1$$

OVERLAPPING SUB-PROBLEMS

- An important observation:
 - One sub-problem for each choice of i and j satisfying $1 \le i \le j \le n$
 - Total $n + (n-1) + \dots + 2 + 1 = \frac{1}{2}n(n+1) = \Theta(n^2)$
- We have relatively few subproblems (definitely not exponential)
- We can write a recursive algorithm based on this recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- When there are overlapping sub-problems, a dynamic programming approach performs much better.

STEP 3: FIND DEPENDENCIES AMONG SUB-PROBLEMS

M:

	1	2	3	4	5
1	0				
2	n/a	0			
3	n/a	n/a	0		
4	n/a	n/a	n/a	0	
5	n/a	n/a	n/a	n/a	0

GOAL!

computing the gray square requires the yellow ones: to the left and below.

Computing M(i,j) requires everything in same row to the left:

M(i,i), M(i,i+1), ..., M(i,j-1)

and everything in same column below:

M(i,j), M(i+1,j),...,M(j,j)

21

STEP 3: IDENTIFY ORDER FOR SOLVING SUB-PROBLEMS

M:

GOAL!

Other possible orderings?

STEP 3: COMPUTE THE VALUE

```
for i := 1 to n do
                                   // initialization
        M[i,i] := 0
for d := 1 to n-1 do
                                  // go diagonally
                                  // rows with an entry on dth diagonal
        for i := 1 to n-d do
            i := i + d
                                  // column of row i on dth diagonal
            M[i,j] := infinity
            for k := i to j-1 do
                 M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+p_{i-1}p_kp_i)
```

Running time $O(n^3)$

EXAMPLE

M:

	Α	В	С	D
Α	0			
В	n/a	0		
С	n/a	n/a	0	
D	n/a	n/a	n/a	0

A: 30x1

B: 1x40

C: 40x10

D: 10x25

Solve the optimal cost of computing A.B.C.D

EXAMPLE

M:

	A	В	С	D
Α	0	1200	700	1400
В	n/a	0	400	650
С	n/a	n/a	0	10000
D	n/a	n/a	n/a	0

A: 30x1

B: 1x40

C: 40x10

D: 10x25

STEP 4: CONSTRUCT

- It's fine to know the cost of the cheapest order, but what is that cheapest order?
- When sub-problems are optimized, keep track of the optimal solution (e.g., optimal parenthesis point k).
- At the end, call a recursive algorithm to print out the actual order.

STEP 4: CONSTRUCT

```
for i := 1 to n do
                                    // initialization
        M[i,i] := 0
                                   // go diagonally
for d := 1 to n-1 do
        for i := 1 to n-d do
                                   // rows with an entry on dth diagonal
            j := i + d
                                   // column of row i on dth diagonal
            M[i,j] := infinity
            for k := i to j-1 do
                 x := min(M[i,j], M[i,k] + M[k+1,j] + p_{i-1}p_kp_i)
                 if x < M[i,j] then
                          M[i,j] := x
                          S[i,j] := k // remember optimal sub-solution
```

Running time still $O(n^3)$

EXAMPLE

M	
---	--

U	

	Α	В	С	D
Α	0	1200	700 ₁	1400 1
В	n/a	0	400 ₂	650 ₃
С	n/a	n/a	0	10000 ₃
D	n/a	n/a	n/a	0

A: 30x1

B: 1x40

C: 40x10

D: 10x25

Initial call Print(S,1,n)

Print(*S*,*i*,*j*)

if
$$i = j$$
 then

output "A" + i // + is string concatenation

else

$$k := S[i,j]$$
output "(" + Print(S i k) +

output "(" + Print(S,i,k) + Print(S,k+1,j) + ")" Alptekin Küpçü

Output:

 $(A_1(A_2A_3)A_4)$

Equivalently: (A(BC)D)

DYNAMIC PROGRAMMING

- Two key ingredients
- Optimal Sub-structure
 - A problem exhibits optimal sub-structure if an optimal solution to a problem contains within it optimal solutions to sub-problems
 - Example: matrix-chain-multiplication
 - Optimal parenthesization of $A_1A_2 \dots A_n$ that splits the product between A_k and A_{k+1} , contains within it optimal solutions to the problems of parenthesizing $A_1A_2 \dots A_k$ and $A_{k+1}A_{k+2} \dots A_n$
- Overlapping Sub-problems
 - Total number of distinct sub-problems must be polynomial in the input size.
 - When a recursive algorithm revisits the same problem over and over again we say that the optimization problem has overlapping subproblems.

RECURSIVE MATRIX CHAIN MULTIPLICATION

Alptekin Küpçü 30

DYNAMIC PROGRAMMING

- Dynamic Programming algorithms typically take advantage of overlapping sub-problems
 - by solving each problem once
 - then storing the solutions in a table where it can be looked up when needed
 - using constant time per lookup
- These two properties already exist in Greedy Algorithms. But they
 require a third property, the greedy choice property, which
 Dynamic Programming does not require.

MEMOIZATION VS. DYNAMIC PROGRAMMING

- Memoization offers the asymptotic efficiency of Dynamic Programming while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm
 - Maintains an entry in a table for the solution to each sub-problem
 - Each table entry contains a special value to indicate that the entry has yet to be filled in (e.g., NULL)
 - When the sub-problem is encountered for the first time, its solution is computed and then stored in the table
 - Each subsequent time that the sub-problem is encountered, the value stored in the table is simply looked up and returned
- Complicated lookups are possible using hashing with sub-problem parameters as key

MEMOIZATION VS. DYNAMIC PROGRAMMING

- Matrix-chain multiplication can be solved in O(n³) time
 - by either a top-down memoized recursive algorithm
 - or a bottom-up dynamic programming algorithm
- Both methods exploit the overlapping sub-problems property
 - There are only Θ(n²) different sub-problems in total
 - Both methods compute the solution to each problem once
- Without memoization, the regular recursive algorithm runs in exponential time since sub-problems are solved repeatedly
- Overall, Dynamic Programming may be harder to program compared to memoization
- But avoids recursion overheads, and therefore is faster in practice.

- 33

OPTIMAL SUB-STRUCTURE

- Showing optimal sub-structure property usually follows the following proof-by-contradiction outline:
 - We show that the solutions to the sub-problems must be optimal for the global solution to be optimal:
 - Suppose that one of the sub-problem solutions is not optimal.
 - Cut it out.
 - Paste in an optimal solution.
 - Get a better solution to the original problem.
 - This contradicts optimality of global solution.

DYNAMIC PROGRAMMING VS. GREEDY ALGORITHMS

- Dynamic Programming uses optimal sub-structure bottom-up.
 - First find optimal solutions to sub-problems.
 - Then choose which to use in optimal solution to the problem.
- Greedy Algorithms work top-down
 - First make a choice that looks best
 - Then solve the resulting sub-problem.
- · Knapsack:
 - Fractional Knapsack solvable by a Greedy Algorithm
 - 0-1 Knapsack requires Dynamic Programming
 - Difference: Greedy choice does not guarantee optimal solution in 0-1 Knapsack

0-1 KNAPSACK PROBLEM

15 kg \$2 2

- There are n different items in a store
- Item i weighs w_i kilograms and is worth b_i

- We can carry up to W kilograms in a knapsack
 - w_i, b_i, W all integers
- An item must be taken as a whole or left behind.
- Problem: What should we take to maximize the total value?
- We have already showed that the 0-1 Knapsack problem exhibits optimal sub-structure property and has many overlapping sub-problems.

Alptekin Küpçü

0-1 KNAPSACK PROBLEM: EXAMPLE

Knapsack Max weight: W = 20

	<u>Weight</u>	<u>Benefit</u>
<u>Items</u>	$\mathbf{W_{i}}$	b _i
	2	3
	3	4
	4	5
	5	8
	9	10

Alptekin Küpçü

- Goal: $\max \sum_{i \in T} x_i b_i$ subject to $\sum_{i \in T} w_i \le W$ and $x_i \in \{0,1\}$
- The problem is called a *0-1* Knapsack problem, because each item must be entirely accepted or rejected.
 - x_i values are either 0 or 1
- Let items be labeled 1..n, and define $S_k = \{items \ labeled \ 1, \ 2, ... \ k\}$
- Then the problem is picking best haul from S_n , and a sub-problem would be to find an optimal solution for S_k
 - A valid sub-problem definition
 - Can we describe the final solution S_n in terms of sub-problems S_k ?
 - Unfortunately, we <u>cannot</u>...

$w_1 = 2$ $w_3 = 4$ $b_1 = 3$ $b_3 = 5$			
---	--	--	--

Optimal S_4 : {1,2,3,4}

Total weight: 14

Total benefit: 20

$ w_1 = 2 w_3 = 4 w_4 = 5 w_5 = 9 b_1 = 3 b_3 = 5 b_4 = 8 b_5 = 10$

Optimal S_5 : {1,3,4,5}

Total weight: 20

Total benefit: 26

Solution for S_4 is not part of the solution for S_5

Attempt #2:

- Add a weight parameter w to sub-problem definition.
- The sub-problem now is to compute the total benefit of choosing from the first k items with weight limit w: B[k,w]
- The best subset of S_k that has the total weight w either contains item k or not. It is one of the two:
 - 1) The best subset of S_{k-1} that has total weight w, or
 - 2) The best subset of S_{k-1} that has total weight $w-w_k$ plus the item k

- First case: $w_k > w$. Item k cannot be part of the solution, since if it was, the total weight would be more than w, which is unacceptable.
 - Thus, we need to fill the same weight using first *k-1* items.
- Second case: $w_k \le w$. Then the item k may or may not be in the optimal solution, and we choose the case with greater benefit value.

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{otherwise} \end{cases}$$

0-1 KNAPSACK ALGORITHM

```
for w = 0 to W do
                                            Running Time: O(nW)
        B[0,w] = 0
                                                      VS.
                                        Brute Force: EXPONENTIAL
for i = 0 to n do
        B[i,0] = 0
        for w = 0 to W do
                if w<sub>i</sub> <= w then // item i can be part of the solution
                         B[i,w] = \max(b_i + B[i-1,w-w_i], B[i-1,w])
                else
                                 // W_i > W
                         B[i,w] = B[i-1,w]
```

0-1 KNAPSACK PROBLEM: EXAMPLE

Knapsack			
Max weight:	W	=	5

$$W = 5$$

	Weight	Benefit
<u>Items</u>	$\mathbf{W_{i}}$	b _i
	2	3
	3	4
	4	5
	5	6

for
$$w = 0$$
 to W do $B[0,w] = 0$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$\label{eq:continuous_series} \begin{aligned} &\text{if } w_i <= w \text{ then } \quad \text{// item i can be part of the solution} \\ &B[i,w] = \max(\ b_i + B[i\text{-}1,w\text{-}w_i]\ , B[i\text{-}1,w]\) \\ &\text{else} \qquad \quad \text{//}\ w_i > w \\ &B[i,w] = B[i\text{-}1,w] \end{aligned}$$

Items:

i	0	1	2	3	4		1: (2,3)
W		•	_		•	1	2: (3,4)
0	0、	0	0	0	0		3: (4,5)
1	0	\ 0				i=1	4: (5,6)
2	0	3				b _i =3 w _i =2	• • •
3	0						
4	0					w=2	
5	0					$w-w_i =$	0

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i=3$$

 $w_i=2$

i=1

$$W=3$$

$$w-w_i=1$$

Items:

W i=1 $b_i=3$ $w_i=2$ W=4 $W-W_i=2$

if
$$w_i \le w$$
 then // item i can be part of the solution
$$B[i,w] = \max(b_i + B[i-1,w-w_i], B[i-1,w])$$
 else // $w_i > w$
$$B[i,w] = B[i-1,w]$$

Items:

1: (2,3) 2: (3,4) 3: (4,5)

4: (5,6)

i=1

 $b_i=3$ $w_i=2$

w=5

 $W-W_i=2$

$$if \ w_i <= w \ then \qquad /\!/ \ item \ i \ can \ be \ part \ of \ the \ solution$$

$$B[i,w] = \max(\ b_i + B[i\text{-}1,w\text{-}w_i] \ , \ B[i\text{-}1,w] \)$$

$$else \qquad \qquad /\!/ \ w_i > w$$

$$B[i,w] = B[i\text{-}1,w]$$

1: (2,3) 2: (3,4) W 3: (4,5) i=2 b_i=4 4: (5,6) $w_i=3$ W=1 $W-W_i=-2$

$$if \ w_i <= w \ then \qquad /\!\!/ item \ i \ can \ be \ part \ of \ the \ solution$$

$$B[i,w] = \max(\ b_i + B[i\text{-}1,w\text{-}w_i]\ , B[i\text{-}1,w]\)$$

$$else \qquad /\!\!/ w_i > w$$

$$B[i,w] = B[i\text{-}1,w]$$

Items:

1: (2,3) 2: (3,4) W 3: (4,5) i=2 4: (5,6) $b_i=4$ $w_i=3$ **w=2** $w-w_i=-1$

Items:

W

Items: 1: (2,3)

2: (3,4)
3: (4,5)
4: (5,6)
b_i=4
w_i=3

W=3

 $W-W_i=0$

1: (2,3) 2: (3,4) W 3: (4,5) i=2 b_i=4 4: (5,6) $w_i=3$ W=4

Items:

 $w-w_i=1$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

1: (2,3) 2: (3,4) W 3: (4,5) i=3 4: (5,6) $b_i=5$ $w_i=4$

Items:

W = 1...3

1: (2,3) 2: (3,4) W 3: (4,5) i=3 4: (5,6) $b_i=5$ $w_i=4$ W=4 $W-W_i=0$

Items:

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$if \ w_i \mathrel{<=} w \ then \qquad /\!/ \ item \ i \ can \ be \ part \ of \ the \ solution \\ B[i,w] = max(\ b_i + B[i-1,w-\ w_i]\ , B[i-1,w]\) \\ else \qquad /\!/ \ w_i > w \\ B[i,w] = B[i-1,w]$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i=5$

 $w_i=4$

w=1..4

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0 —	→ 0
2	0	3	3	3 —	→ 3
3	0	3	4	4 —	→ 4
4	0	3	4	5 —	→ 5
5	0	3	7	7	

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i=5$ $w_i=4$

W=5

if
$$w_i \le w$$
 then // item i can be part of the solution $B[i,w] = max(b_i + B[i-1,w-w_i], B[i-1,w])$

else
$$// w_i > w$$

$$B[i,w] = B[i-1,w]$$

STEP 4: CONSTRUCT

- This algorithm only finds the optimal value that can be carried in the knapsack.
- To know the items that make this maximum value, an addition to this algorithm is necessary.
- Just as what we did for Matrix-Chain Multiplication, we need to remember at each cell what was the sub-problem leading to the best solution (which other cell lead to the best solution).
- Can Dynamic Programming solve all optimization problems?
 - NO!!
 - Check Shortest Path vs. Longest Path problems in graphs