# Deep Learning: Brazilian Hospitalization Data

IVETTE M TAPIA

### Motivation & Description

- **Business Case:** Ability to know the procedures that are likely to be performed on a patient at the moment of hospitalization approval brings administrative efficiencies on processing the request and help managers manage capacity. Healthcare data is full complexities.
  - -Stakeholders: administrators, payers and insurers.
- Dependent Variable: Procedure Performed (Group)
- Independent Variables: Sex, Death, Age, ICU Days, Veneral Exam, Intermediate ICU Days, Length of Stay, Companion Nights, Principal Diagnosis, Reason Stay/Exit, Character of Hospitalization, Complexity, Type of ICU.

### Data Acquisition

- •The health ministry of Brazil publishes datasets on hospitalization requests and approvals of their public healthcare system.
- •The hospitalization data was extracted from the DataSUS servers through the web. The website is as follows:

http://www2.datasus.gov.br/DATASUS/index.php?area=0901&item=1&acao=25.

- Data from years 2015 2018 was downloaded (3.5 years of data).
- Data files were as follows:
  - 2015: 325 .dbc files (1.26 GB)
  - 2016: 325 .dbc files (1.71 GB)
  - 2017: 318 .dbc files (1.71 GB)
  - 2018: 189 .dbc files (504 MB)

### Git Hub Repository

### Data Wrangling & Exploratory Analysis Code

- Step 1: <u>Conversion from .dbc to CSV</u>
- Step 2: <u>Proportional Random Sample</u>
- Step 3: <u>Demographic Cleaning & EDA</u>
- Step 4: <u>Diagnosis Cleaning & EDA</u>
- Step 5: <u>Hospitalization Features Cleaning and Exploratory Analysis</u>
- Step 6: Concat all features and make train, test and validation arrays

### Deep Learning Model

Deep Learning Models

### Final Report

Final Report

### Data Management

- **Step 1:** Convert .dbc files to R dataframes
- **Step 2:** Concatenate R dataframes by year
- **Step 3:** Output concatenated files as CSV files
- **Step 4:** Load CSV files to Jupyter notebook and take proportional random sample.
  - Computational resources available did not allow to use all the data available.
  - A sample was taken based on the proportion of the year. Example: if a year's samples were 20% of the total available, from that year a random sample that equals 20% of the target sample will be taken for that year.
- **Step 5:** Concatenate each year's samples into one dataset. Total cases extracted equals 16,614,830.
- **Step 6:** Output resulting dataset as a CSV. This dataset is the combined random sample for all years.

### Data Management Summary

### **Conversion, Sampling & Wrangling**



### Data Cleaning

**Step 1:** Features related to financial payments and metadata not going to be used.

**Step 2: Demographic Features:** Features with serious data quality issues were dropped (example. male and pregnant at risk). Variables with more than 20% missing were dropped as well. Categorical features were recoded.

- Variables Dropped: Instruction Level, Pregnancy at Risk, Patient's Occupation, Patient's Number of Children.
- Variables Cleaned: Sex, Death Indicator, Municipality of the Patient, Patient's Nationality, Patient's Race (replace missing with np.nan), Patient's Ethnicity (replace missing with np.nan), and Patient's Age.
- Output demographic features as CSV

## Data Cleaning cont'

Step 3: Diagnosis: Empty columns dropped and categorical features were recoded.

- Merged with CID codebook to aid on exploratory analysis.
- Variables Dropped: Secondary Diagnosis
- Variables Cleaned: Principal diagnosis. Codebook added to aid on exploratory analysis.
- Output diagnosis features as a CSV

**Step 4: Hospitalization Features:** Features with more than 20% empty dropped and categorical features were recoded.

- Merged with available codebook to aid on exploratory analysis.
- Variables Dropped: Hospital Nights, Hospital ID
- Variables Cleaned: Procedure Realized, Procedure Group, ICU days, Reason Stay/ Exit, Venereal Exam,
   Contraception 1 & 2, Character of Hospitalization, Type of ICU, Intermediate ICU, Hospital ID
- Output hospitalization features as a CSV

## Demographics: Exploratory Data Analysis

- > Gender: More hospitalizations are of females.
- > Race: Majority of hospitalizations are of individuals of white and brown races. Racial breakdown seem to closely follows the overall demographics of Brazil.
- Ethnicity: This field is only used if individual's race is indigenous. There seems to be a overwhelming majority of one indigenous ethnicity.
- Nationality: Overwhelming Brazilian. I have dropped this variable since there does not seem to be great variation.
- ➤ Municipality: There are ~5,000 municipalities. While big cities comprise the top number of hospitalizations, their totals are still not a significant proportion of the overall dataset.
- > Age: Age is not normally distributed. It has three peaks: in young ages, middle age and late middle age.
- > Visuals Used: Histograms, Frequencies, Correlation, ECDF, Bootstrap replicates

### Diagnosis: Exploratory Data Analysis

- > Top diagnosis are related to birth, pneumonia, bacterial diseases, heart disease and vesicular biliary. There are 8,721 unique diagnoses.
- The distribution of principal diagnosis is highly unbalanced. While there are diagnosis that are more common than others, the top diagnosis are still a fraction of the total. As such, there is a lot of heterogeneity in this variable.
- ➤ The point above is evidenced by the large confidence intervals for the mean diagnosis counts.
- > There are 8,721 unique diagnosis.
- > Visuals Used: Histograms, Frequencies, Correlation, ECDF, Bootsrap replicates

## Hospitalization: Exploratory Data Analysis

- Urgent type of hospitalization is by far the most common character of hospitalization.
- Improved is the most common reason reason for stay/exit. \*
- Bootstrap mean replicates shows a 95% confidence interval for days of stay is between 5.388 and 5.396.
   This is a very tight interval. This range contains our sample mean of 5.39.
- Top 5 procedure performed sub-groups are: Clinical Treatment(other specialties), Birth, Obstetric Surgery, Surgery of the Osteomuscular System, Surgery of the Digestive System.
- The top 5 procedures performed are: Normal birth, cesarean birth, influenza treatment, bacterial treatment, psiquiatric treatment.
- Categorical variables are highly unbalanced, notably procedure performed and procedure sub-group.
- Correlations show that: (1) specialty of bed is moderately correlated with procedure realized and (2) venereal exam is moderately correlated with for reasons for stay/exit.
  - Visuals used: Histograms, Frequencies, Correlation, ECDF, Bootstrap replicates

# Feature Selection & Engineering

- Numerical Features were normalized (0 to 1)
- Output variable was one-hot encoded
- •Three arrays were created: numerical, categorical and output variable.
- •Cleaned and not used: Contraception, Hospital ID, municipality, race, ethnicity, nationality. (missing values + ethics)
  - This was a decision based on judgment, resources available and ethics.
- •Data divided on train, validation and test. (88%, 10%, 2%)
  - Training Arrays: 14,621,050 cases
  - Validation Arrays: 1,674,775 cases
  - Testing Arrays: 319,005 cases

# Modeling Part I: Architecture Design

### **DEEP NEURAL NETWORK ARCHITECTURE**



**Baseline Model** 

### Modeling Challenges

- Several categorical features with large number of categories.
  - Embedding layer was used to avoid converting to one-hot encoding and using large amounts of memory.
  - Alternative approach was to use the 'hashing trick'.
- Large number of output categories.
  - Softmax layer with 37 outputs
- Unbalanced Classes: Notably diagnoses & procedures.
  - Random oversampling was used on categories that had less than 100k cases. SMOTE-NC was tested, but performed similarly to random oversampling.

### **Evaluation Strategy**

- Primary metric is accuracy.
  - While accuracy is not the only evaluation metric available and not appropriate for all problems (precision, recall, ROC, & AUC were other options) in this case the main interest is the extent the neural network can predict the correct procedure for a patient.
- Secondary metric is the false positive rate.
- > Tertiary metric is average accuracy (i.e. accuracy by class).
- > Beyond these three-metrics, the extent of model overfitting, complexity, and training time were also taken into account when evaluating models.

### Modeling Part I: Model Architecture Tests

| Model Number | Embedding Layer | Layers | Nodes (at each dense<br>layer) | Regularization | Learning Rate | Oversampling |
|--------------|-----------------|--------|--------------------------------|----------------|---------------|--------------|
| Model 1      | Yes             | 2      | 20                             | No             | 0.001         | No           |
| Model 2      | Yes             | 4      | 20                             | No             | 0.001         | No           |
| Model 3      | Yes             | 2      | 20                             | L2             | 0.001         | No           |
| Model 4      | Yes             | 6      | 20                             | No             | 0.001         | No           |
| Model 5      | Yes             | 2      | 20                             | L1             | 0.001         | No           |
| Model 6      | Yes             | 2      | 20                             | Dropout        | 0.001         | No           |
| Model 7      | Yes             | 2      | 20                             | No             | 0.001         | Random       |
| Model 8      | Yes             | 2      | 20                             | No             | 0.001         | SMOTE        |
| Final Model  | Yes             | 2      | 20                             | Dropout        | 0.001         | Random       |

### Evaluation Results: Model Architectures

| Model Number | Training & Testing Data |                  |                      |                     | Validation Da      |                                        |                        |
|--------------|-------------------------|------------------|----------------------|---------------------|--------------------|----------------------------------------|------------------------|
|              | Training Accuracy       | Testing Accuracy | Average<br>Accuracy* | False Positive Rate | CV (k = 5)         | Diff Cross<br>Validation &<br>Training | Total Training<br>Time |
| Model 1      | 89.95%                  | 89.90%           | 66.1%                | 0.003               | 85.85% (+/-0.74%)  | 4.10                                   | 3.5 hours              |
| Model 2      | 89.56%                  | 89.53%           | 60.5%                | 0.004               | 85.98% (+/- 1.08%) | 3.58                                   | 4.25 hours             |
| Model 3      | 84.21%                  | 84.18%           | 36.6%                | 0.005               | 77.31% (+/- 1.11%) | 6.90                                   | 3.5 hours              |
| Model 4      | 89.97%                  | 89.92%           | 64.1%                | 0.003               | 86.25% (+/- 0.69%) | 3.72                                   | 5.9 hours              |
| Model 5      | 85.43%                  | 85.38%           | 39.6%                | 0.005               | 70.03% (+/- 1.35%) | 15.13                                  | 3.5 hours              |
| Model 6      | 85.96%                  | 88.89%           | 55.3%                | 0.004               | 82.83% (+/- 0.67%) | 3.13                                   | 4.25 hours             |
| Model 7      | 90.30%                  | 90.64%           | 82.6%                | 0.003               | 85.14% (+/- 0.37%) | 5.16                                   | 4 hours                |
| Model 8      | 90.68%                  | 90.66%           | 81.2%                | 0.003               | 85.80%(+/- 0.23%)  | 4.88                                   | 5 hours                |
| Final Model  | 87.96%                  | 90.65%           | 80.4%                | 0.003               | 86.45%(+/- 0.53%)  | 1.51                                   | 19 hours               |

## Modeling Part II. Parameter Testing

- Smaller batch size of 32 and larger embedding dimensions yield better performance in terms of accuracy.
- A smaller learning rate needs a larger number of epochs to learn more, as such the larger learning rate of 0.001 tested yielded higher accuracy in these experiments.

| Batch Size | Learning Rate | Embedding Dimension | 5 fold CV (epochs = 25) |                      |  |
|------------|---------------|---------------------|-------------------------|----------------------|--|
|            |               |                     | Training Accuracy       | 5 Fold CV Evaluation |  |
| 128        | 0.0001        | 10                  | 44.53%                  | 44.54% (+/- 4.41%)   |  |
| 128        | 0.0001        | 30                  | 55.55%                  | 55.80% (+/- 2.77%)   |  |
| 32         | 0.0001        | 10                  | 59.05%                  | 59.23% (+/- 5.23%)   |  |
| 32         | 0.001         | 10                  | 85.80%                  | 85.74% (+/- 0.55%)   |  |
| 32         | 0.0001        | 30                  | 67.64%                  | 67.67% (+/- 0.66%)   |  |
| 32         | 0.001         | 30                  | 88.39%                  | 88.32% (+/- 0.22%)   |  |
| 128        | 0.0001        | 10                  | 44.53%                  | 44.54% (+/- 4.41%)   |  |

## Modeling Part III. Final Model

### DEEP NEURAL NETWORK ARCHITECTURE - Final Model



### Final Model Performance

| Model<br>Number | Training & Testing Data |                     |                      |                        | Validation Data |                       | Total<br>Training<br>Time |
|-----------------|-------------------------|---------------------|----------------------|------------------------|-----------------|-----------------------|---------------------------|
|                 | Training<br>Accuracy    | Testing<br>Accuracy | Average<br>Accuracy* | False Positive<br>Rate | CV (k = 5)      | Diff CV &<br>Training | Time                      |
| Final<br>Model  | 87.96%                  | 90.65%              | 80.4%                | 0.003                  | 86.45%(+/-0.53) | 1.51                  | 19 hours                  |

### LIME Explainer

The LIME explainer suggests that key features driving the predictions are:

- 1. Principal Diagnosis
- 2. Reasons for stay/exit
- 3. Complexity
- 4. Specialty of bed

### Main Findings

- A well performing model in terms of accuracy as constructed.
- Opportunities remain to optimize the model, however costs and trade-offs must be taken into account.
- The network still had instances of having difficulty predicting less common procedures. An
  oversampling strategy improved performance across classes, it did not completely solved it.
- The addition of layers from baseline did not improve model performance.
- The LIME explainer suggests that principal diagnosis, reasons for stay/exit, complexity and specialty of bed are key features.
- Regularization was needed to ameliorate overfitting. The final model ovefitted by 2.69%.

### Recommendation & Next Steps

- Hyper Parameter Tuning and Optimization
  - Dropout Rate
  - Learning Rate
  - Batch Size
  - Embedding Dimensions
  - Nodes
  - Regularization Term
- Further data engineering: from the graph, it is clear that there is a cluster of categories which the network is having difficulty with. It is possible that these maybe profiles of patients or procedures that are related.
- > Pruning the Network: removing nodes that do not contribute much to the predictions.

## Recommendation & Next Steps Cont'

> Develop business processes to review and use predictions, specially on procedures that are less common or 'rare'.

- ➤ Before embarking in further optimization and testing is important to consider the trade-offs and the cost-benefit ratio to the business. Building, training and tuning a neural network is time consuming and computationally expensive.
  - ✓ A key question is how much the business is willing to invest to increase network performance by a few percentage points more.

### Summary

- A deep neural network was built to predict procedures performed given a patient's hospitalization request information.
- The dependent variable was the procedures performed group.
- Independent variables included
- Final model key metrics were as follows:
  - Testing accuracy of 90.3%.
  - False positive rate as 0.003.
  - Overfitting: 2.69%
  - Training Time: 19 hours

# Summary Cont'

- -Opportunities remain to optimize and fine tune parameters, however costs and benefits must be taken into account.
- -The network still has some difficulty predicting less common procedures. An oversampling strategy improved performance across classes, it did not completely solved it.
- -Business procedures regarding review is strongly encouraged, specially for less common procedures.
- Using the Lime explainer we found that: principal diagnosis, reason for stay/exit, specialty of bed, and complexity were key features.
- -It is possible to build a model with more specific procedures, however this model would be more complex and computationally very expensive (1,600+ outputs).