

Tracking a moving sound source from a multi-rotor drone

Lin Wang, Ricardo Sanchez Matilla, Andrea Cavallaro

{lin.wang, ricardo.sanchezmatilla, a.cavallaro}@qmul.ac.uk

1. Introduction

- Sound source tracking with a microphone array mounted on a mini-drone
 - human robot interaction
 - surveillance, serach & rescue
- Signal model
 - *M* microphones: x(n) = s(n) + v(n)
 - microphone location: R
 - direction of arrival (DOA) of the target sound: $\theta_d(n)$
 - θ_d is time-varying and unknown
 - objective: to estimate and track $\theta_d(n)$ given x and R
- Main challenge [3]
 - ego-noise generated by rotating rotors and propellers
 - extremely low signal-to-noise ratio (e.g. SNR < -15 dB)
 - dynamics due to time-varying DOA
- Solution
 - block-wise processing
 - time-frequency spatial filtering for DOA estimation
 - particle filtering to smooth the estimation

Hardware prototype

- Auditory drone [1]
 - 3DR IRIS Quadcopter
 - Circular microphone array
 - M = 8 elements with diameter 0.2m
- Spatial characteristics of ego-noise [4]
 - · the location of the rotors and propellers are fixed
 - · ego-noise tends to arrive from the back side
 - noisy sector vs noiseless sector ($\theta_L = [-45^\circ, 45^\circ]$)
- This noiseless sector will be exploited in the proposed method (peak detection and tracking)

3. Time-frequency spatial filtering for source localization

- Based on the time-frequency sparsity of ego-noise and target sound [2]
- Workflow
 - to estimate the DOA at individual time-frequency bins
 - to formulate a set of spatially informed filters pointing at candidate directions
 - the output signal tends to show a high Kurtosis value when the spatial filter points at the target direction

 $\theta \in [\theta_1, \cdots, \theta_D]$: candidate directions

References

- [1] L. Wang and A. Cavallaro, "Ear in the sky: Ego-noise reduction for auditory micro aerial vehicles," *Proc. AVSS*, 2016.
- [2] L. Wang and A. Cavallaro, "Time-frequency processing for sound source localization from a micro aerial vehicle," Proc. ICASSP, 2017.
- [3] L. Wang and A. Cavallaro, "Microphone-array ego-noise reduction algorithms for auditory micro aerial vehicles," IEEE Sensors. J., 2017.
- [4] L. Wang and A. Cavallaro, "Acoustic sensing from a multi-rotor drone", *IEEE Sensors. J.*, 2018. [5] R. Sanchez-Matilla, L. Wang, and A. Cavallaro, "Multi-modal localization and enhancement of multiple sound sources

from a micro aerial vehicle", Proc. ACM Multimedia, 2017.

· Peak detection in the noiseless sector

4. Tracking framework

- · assuming speakers always in front of the drone

5. Experimental results

- Setup
 - open space: auditory drone on tripod
 - · operating with stationary and dynamic power
 - loudspeaker moving: constrained (noiseless sector) or unconstrained area
 - camera on the drone to capture the moving loudspeaker: video groundtruth [5]
- Dataset
 - composite (ego-noise and speech recorded separately)
 - natural (ego-noise and speech recorded simultaneously)
 - · four scenarios:

Drone Loudspeaker	Stationary	Dynamic
Constrained	S1	S2
Unconstrained	S3	S4

- Evaluation measure
 - localization error in comparison with video ground-truth
- Source localization result comparison
 - SRP-PHAT and time-frequency spatial filtering (TF) [2]

- Tracking result comparison
 - · no filtering, median filtering, particle filtering
 - block size: 2 seconds with half overlap

6. Conclusions

- Moving sound source tracking by combining:
 - · time-frequency spatial filtering
 - peak detection in the noiseless sector
 - particle filtering
- Verified with real data and video groundtruth

Audio Demos & Datasets

http://www.eecs.gmul.ac.uk/~andrea/sst.html http://www.eecs.qmul.ac.uk/~andrea/ear-in-the-sky.html http://cis.eecs.qmul.ac.uk/projects/multimodalmav/ http://www.eecs.gmul.ac.uk/~andrea/auditory-mav.html

Acknowledgment

This work is supported by the ARTEMIS-JU and the UK Technology Strategy Board (Innovative UK) through the COPCAMS Project, under grant 332913; and also supported by the UK EPSRC project NCNR (EP/R02572X/1).