MALIS

Group Exercise

November 29 2022

Group Name:	
Group Members:	

1 Bias Variance Decomposition

[3 points] Suppose you collected a sufficiently large dataset generated by a polynomial of degree 4. Characterize the bias-variance of the estimates of the following models on the data with respect to the true model by choosing the appropriate entry.

Model	Bias	Variance
Linear regression	low/high	low/high
Polynomial regression with degree 4	low/high	low/high
Polynomial regression with degree 10	low/high	low/high

2 Support Vector Machines and Kernels

Consider a training set consisting of points in the 2D space $x = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}$ with labels $y = \{1, -1, -1, 1\}$.

- (a) $\left[\frac{1}{2} \text{ point}\right]$ Is the dataset linearly separable in the original space? Justify your answer.
- (b) $[1\frac{1}{2} \text{ points}]$ Consider the following feature transformation: $\phi(\mathbf{x}) = [1, x_1, x_2, x_1x_2]$, where x_1 and x_2 are the first and second coordinates of x. Your prediction function in this feature space is $\hat{y}(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$. Give the coefficients, \mathbf{w} , of a maximum-margin decision surface separating the positive from the negative examples.

Hint: You should be able to do this by inspection, without the need of any significant computation.

- (c) [1½ points] Plot the training set in the original space. Add one training sample to the plot so that the five samples can no longer be linearly separated in the feature space $\phi(\mathbf{x})$ using the coefficients \mathbf{w} you estimated in the previous question.
- (d) [1½ points] What kernel $K(\mathbf{u}, \mathbf{v})$ does this feature transformation ϕ correspond to?

Note: These 2 questions were part of the final exam in 2019.