Dirichlet Potpourri

Youth EUCLID

April 14, 2022

Dirichlet's arith prog theorem

For any a, b with $a \perp b$, there are an infinite number of primes congruent to $a \pmod{b}$.

Recall the Riemann zeta:

$$\zeta(s) = \sum_{n \geq 1} 1/n^s.$$

$$\Rightarrow A(s) = \sum_{n \ge 1} a_n / n^s$$

Properties

Vanilla convolution: $a_n, b_n \rightarrow$

$$\sum_{k\in[0,n]}a_kb_{n-k}$$

Convolve $A, B \Rightarrow$

$$(A*B)(s) = \sum_{n\geq 1} n^{-s} \sum_{d|n} a_d b_{n/d}$$

Notable series

$$\mu$$
: $\sum_{d|n} \mu(d) = [n = 1]$

$$M(s)\zeta(s)=1\Rightarrow M=1/\zeta.$$

$$\sigma(n) = \sum_{d|n} d; \rightarrow$$

$$\sum_{n>1} \sigma(n)/n^s = \zeta(s) \sum_{n>1} n/n^s = \zeta(s)\zeta(s-1).$$

$$d(n) = \sum_{d|n} 1 \Rightarrow$$

$$\sum_{n>1} d(n)/n^s = \zeta(s)^2.$$

$$\sum_{d|n} \phi(d) = n \Rightarrow$$

$$\left(\sum_{n\geq 1} \phi(n)/n^{s}\right) \zeta(s) = \sum_{n\geq 1} n/n^{s} = \zeta(s-1).$$

$$\Rightarrow \sum_{n\geq 1} \phi(n)/n^{s} = \zeta(s-1)/\zeta(s).$$

More functions

Von Mangoldt lambda:

Bounding zeta

Zeta bounds

$$\forall s > 1$$
, ζ :

$$\zeta(s) = 1/(s-1) + O(1).$$

 ζ' :

$$\zeta'(s) = -1/(s-1)^2 + O(1).$$

 ζ'/ζ :

$$(-\zeta'/\zeta)(s)=1/(s-1)+\mathit{O}(1).$$

Proof

As earlier set real s > 1. Bound term-by-term:

$$\int_{n-1}^{n} u^{-s} du \le n^{-s} \le \int_{n-1}^{n} u^{-s} du + 1.$$

Sum $\forall n \geq 1$:

$$\zeta(s) \geq \int_1^\infty du/u^s + smth \Rightarrow 1/(s-1) + O(1)$$

For ζ' , do d/ds and observe that all sides monotonic (decreasing wrt x).

Characters

A $\mathit{Dirichlet}$ character mod n is an NT function χ such that

 χ totally multiplicative;

 χ determined by mod n; that is,

$$a \equiv b \pmod{n} \iff \chi(a) = \chi(b)$$

Hence $\chi \in 0, \pm 1$.

$$a \not\perp n \iff \chi(a) = 0$$

Basic char mod n: only 0 or 1, no negatives.

L-series:

$$L(s,\chi)=\sum_{\chi>1}(n)/n^{s}.$$

Euler's factoring: for totally multiplicative f, we have

$$F(s) = \prod_{p} (1 + f(p)/p^s).$$

Mod 4 example

Lemma

There are $\phi(n)$ characters mod n.

Proof left as an exercise for the reader.

There are two chars mod 4, say the basic/main/principal one, χ_0 , and the 'other' one, say χ_1 .

- * $(\chi_0 + \chi_1)/2 = [n \equiv 1 \pmod{4}];$
- * $(\chi_0 \chi_1)/2 = [n \equiv 3 \pmod{4}];$

Needed result:

$$\ln L(s,\chi) = \sum_{\frac{\geq}{1}} \Lambda(n) \ln n \chi(n) / n^{s}.$$

Proof cont'd

Claim: $L(s, \chi_0)$ diverges as $s \to 1$.

Proof

By a known result, $\sum_p \chi(p)/p^s = \ln L(s,\chi) + O(1)$, which implies the result.

Claim: $L(s, \chi_1)$ is finite.

Proof

Simply apply alternating series test or whatever.

Taking linear combos we get both cases of Dirichlet in one go for mod 4.

Generalisation to general n

l emma

For a nonprincipal char $\chi \pmod{n}$, $\sum_{k=1}^{n} \chi(k) = 0$.

Proof

Simply observe that all such χ are totally multiplicative and there is at least one -1 val. This implies the result.

Hence $L(s,\chi)=O(1)$ for all nonprinicpal χ and s>0 (not 1). Finally, it takes a bit more work to show that

$$L(1,\chi)=\infty$$

for principal $\chi \pmod{n}$.

After taking linear combos and using the O(1) bound from earlier, we finally get Dirichlet's arith prog theorem :0

The end?

Have a good sleep everyone :D