Stochastic Gradient Descent

Su Chen

September 17, 2016

function to calculate negative likelihood function

```
Neg_ll = function(x, y, b, m)
{
    xb = x %*% b
    Neg_ll = sum(m*log(1+exp(- xb))) + sum((m-y)*xb) #used simplified version
    return (Neg_ll)
}
```

function to calculate Gradient of negative likelihood function

```
Gradient_Cal = function(x, y, beta, m)
{
    w = 1/(1+exp(- (x %*% beta))) #saving w as a vector instead of diag matrix
    Gradient = t(x) %*% (m*w - y) #use m*w here to save computation time
    return (Gradient)
}
```

function to calculate Robbins-Monro step size

```
RM_Step_Cal = function(C, t, t0, alpha)
{
   Step = C*(t+t0)^(-alpha)
   return (Step)
}
```

function of stochastic gradient decsent with decaying step size by Robbins-Monro rule

Note: Sto_Gradient_Desc is the function of stochastic gradient decsent with constant step size, the R code is almost identical so it's hidden in the output.

```
Sto_Gradient_Desc_RM = function(x, y, m, precision, C, t0, alpha, lambda, iter_max)
{
   N = nrow(x)
   P = ncol(x)
   #initialize all the variables
   beta = matrix(0, P, iter_max)
   nll_ini = Neg_ll(x, y, rep(0,P), m)
   nll = rep(nll_ini, iter_max)
   nll_avg = rep(nll_ini, iter_max)
   nll_ex_avg = rep(nll_ini, iter_max)
```

```
delta = 1
iter = 1
while ( (iter < iter_max) && (delta > precision) )
  #step=Step[iter]
  s = RM_Step_Cal(C, iter, t0, alpha)
  index = sample(1:N, 1) #sample 1 data point from the whole data set
  xi = x[index,,drop=F]
  yi = y[index]
  mi = m[index,]
  g = Gradient_Cal(xi, yi, beta[,iter], mi)
  beta[,iter+1] = beta[,iter] - s*g #update beta
  delta = sqrt(sum((beta[,iter+1] - beta[,iter])^2))/ sqrt(sum(beta[,iter]^2)) #calculat absolute err
  nll[iter+1] = Neg_ll(x, y, beta[,iter+1], m) #calculate neg log likelihood for whole data set
  nll_xi = Neg_ll(xi, yi, beta[,iter+1], mi)*N #calculate neg log likelihood for single data sacle to
  nll_avg[iter+1] = (nll_xi + iter*nll_avg[iter])/(iter+1)
  nll_ex_avg[iter+1] = lambda*nll_xi + (1-lambda)*nll_ex_avg[iter]
  iter = iter + 1 #keep track of iteration
return (list(iter, beta[, 1:iter], nll[1:iter], nll_avg[1:iter], nll_ex_avg[1:iter]))
```

Simulate data and run stochastic gradient descent

```
N = 500
P = 3
X_sim = as.matrix(cbind(rep(1,N), rnorm(N), rnorm(N)))
beta_sim = c(1, 2, -3)
W_sim = 1/(1+exp(-X_sim %*% beta_sim))  # pass through an inv-logit function
Y_sim = matrix(rbinom(N,1,W_sim), N, 1)
M_sim = matrix(1, N, 1)

#run glm and save output for comparision later
glm_sim = glm(Y_sim~X_sim-1, family='binomial')
result_glm = as.vector(glm_sim$coefficients)
nll_glm = Neg_ll(X_sim, Y_sim, result_glm, M_sim)
```

stochastic gradient decsent constant step

compare sgd result with glm output

compare sgd result with glm output

compare sgd result with glm output

stochastic gradient decsent RM decaying step

compare sgd_rm result with glm output

compare sgd_rm result with glm output

compare sgd_rm result with glm output

compare final beta with output from glm and sgd