Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе №218

Измерение емкости конденсатора

Выполнил студент 420 группы Сарафанов Ф.Г.

Содержание

Bı	веден	ие		2	
1	Выв	вод фо	ррмул	3	
	1.1	Напря	ижение на диагонали моста	3	
	1.2	Откло	онение стрелки в баллистическом режиме	4	
2	Результаты эксперимента				
2.1 Зависимость времени заряда от R_1C_1					
		2.1.1	Измерение при сигнале типа «меандр»	6	
		2.1.2	Измерение при постоянном напряжении $U=15~{ m B}$	7	
		2.1.3	Измерение при постоянном напряжении $U=45~{\rm B}$	8	
3	Выв	волы		8	

Введение

Существует лишь то, что можно измерить.

Цитата приписывается Максу Планку

Для измерения сопротивлений, емкостей и индуктивностей часто применяют компенсационный метод, заключающийся в компенсации измеряемой величины некой эталонной величиной.

В схеме типа «мост» элементы цепи соединяют «четырехугольником», в одну диагональ которого включают источник напряжения, а в другую – измерительный прибор. При определенном соотношении между параметрами элементов измерительный прибор показывает отсутствие напряжения в диагонали (баланс моста).

Рис. 1: Принципиальная схема установки

1 Вывод формул

1.1 Напряжение на диагонали моста

Применяя к контуру DATD второе правило Кирхгофа, получаем

$$i_1 R_1 + \frac{q_1}{C_1} = \varepsilon \tag{1}$$

где i_1 – ток, текущий через сопротивление R_1 , а q_1 – заряд конденсатора C_1 . Поскольку ток через измерительный прибор пренебрежимо мал (R_G велико), то $i_1 = \frac{\mathrm{d}q_1}{\mathrm{d}t}$ и уравнение (1) принимает вид:

$$i_1 = \frac{\mathrm{d}q_1}{\mathrm{d}t} + \frac{q_1}{R_1 C_1} = \frac{\varepsilon}{R_1} \tag{2}$$

Разделяя переменные и интегрируя:

$$\int_{0}^{q_1} \frac{\mathrm{d}q_1}{q_1 - \epsilon C_1} = -\int_{0}^{t} \frac{\mathrm{d}t}{R_1 C_1} \tag{3}$$

$$q(t)_1 = C_1 \varepsilon \cdot \left(1 - \exp\left[-\frac{t}{R_1 C_1} \right] \right) \tag{4}$$

Отсюда следует, что

$$U_1(t) = \varepsilon \cdot \left(1 - \exp\left[-\frac{t}{R_1 C_1}\right]\right) \tag{5}$$

Аналогично рассматривая контур DBTD:

$$i_2 R_2 + \frac{q_2}{C_r} = \varepsilon \tag{6}$$

$$i_2 = \frac{\mathrm{d}q_2}{\mathrm{d}t} + \frac{q_2}{R_2 C_x} = \frac{\varepsilon}{R_2} \tag{7}$$

$$\int_{0}^{q_2} \frac{\mathrm{d}q_2}{q_2 - \varepsilon C_x} = -\int_{0}^{t} \frac{\mathrm{d}t}{R_2 C_x} \tag{8}$$

$$q_x(t) = C_x \varepsilon \cdot \left(1 - \exp\left[-\frac{t}{R_2 C_x}\right]\right) \tag{9}$$

$$U_x(t) = \varepsilon \cdot \left(1 - \exp\left[-\frac{t}{R_2 C_x}\right]\right) \tag{10}$$

Напряжение U_G на измерительном приборе можно получить из соотношений $\phi_1 - \phi_2 = U_1$; $-(\phi_2 - \phi_3) = U_x$.

Получаем, что

$$\phi_1 - \phi_3 = U_G(t) = U_1(t) - U_x(t) = \varepsilon \cdot \left(\exp\left[-\frac{t}{R_2 C_x} \right] - \exp\left[-\frac{t}{R_1 C_1} \right] \right)$$
 (11)

1.2 Отклонение стрелки в баллистическом режиме

Пусть мы знаем колличество витков на рамке N

Рамка помещена в постоянное магнитном поле и может поворачиваться вокруг своей оси. На неё подаётся ток $I\equiv I_G$

Сила Ампера, действующая на один виток равна $F_A=IBL$, где L — ширина рамки Момент, создаваемый этой силой равен $\overrightarrow{M}=\left[\overrightarrow{r};\overrightarrow{F_A}\right]$

Сила Ампера, действующая на всю рамку в целом тогда будет равна $F_{AO}=NIBL$

Таким образов, равнодействующий момент по модулю будет равен $M_o = HNF_A = HNIBL = IBSN$, где S – площадь рамки

В гальванометре положение рамки фиксируется пружинами специальной формы, по которым к ней подводится измеряемый ток. На рамку действует момент сил Ампера и момент упругих сил пружинок, пропорциональный углу отклонения этой рамки от положения равновесия.

$$J\frac{\mathrm{d}\omega_z}{\mathrm{d}t} = I_G NSB - D \cdot \alpha \tag{12}$$

J – момент инерции рамки, $\omega_z=\frac{\mathrm{d}\alpha}{\mathrm{d}t}$ – её угловая скорость вращения.

Если ток протекает кратковременно, рамка практически не успевает отклониться. В этом случае уравнение легко проинтегрируется:

$$Jd\omega_z = I_G N S B dt, \tag{13}$$

$$\omega_{z0} = \frac{NSB}{J} \cdot \int I_G dt = \frac{NSB}{J} Q, \tag{14}$$

где ω_{z0} – угловая скорость, полученная рамкой, Q – заряд, прошедший через гальванометр. После прекращения действия сил Ампера рамка, продолжая вращаться, отклоняется на некоторый угол, который можно найти, используя закон сохранения энергии:

$$\frac{J\omega_{z0}^2}{2} = \frac{D\alpha_{max}^2}{2} \tag{15}$$

Откуда

$$\alpha_{max} = \frac{NSB}{\sqrt{JD}} \cdot Q \tag{16}$$

Принципиально важно, что отклонение пропорционально заряду, протекшему через гальванометр.

2 Результаты эксперимента

${f 2.1}$ Зависимость времени заряда от R_1C_1

R_1 , кОм	t/k, MC	Множитель k	Δt , MC	ν, Гц	t, MC
1	1	1	0.1	100	1
2	1.8	1	0.1	90	1.8
3	2.5	1	0.1	80	2.5
4	3	1	0.1	70	3
5	1.8	2	0.2	60	3.6
6	2.2	2	0.2	50	4.4
7	2.5	2	0.2	40	5
8	1.2	5	0.5	30	6
9	1.4	5	0.5	20	7

Расчетная формула (условие баланса)

$$C_2 = C_1 \frac{R_1}{R_2} \tag{17}$$

Откуда

$$\Delta C_2 = \frac{R_1}{R_2} \Delta C_1 + \frac{C_1}{R_2} \Delta R_1 + \frac{C_1 R_1}{R_2^2} \Delta R_2$$
 (18)

2.1.1 Измерение при сигнале типа «меандр»

R_1 , OM	R'_1 , Om	R_1'' , Om	ΔR_2 , Om	$\langle R_2 \rangle$, Om	C_2 , мк Φ	ΔC_2 , мк Φ
150	22.3	21.4	0.45	21.85	6.86	0.14
1500	222.4	218.2	2.9	221.1	6.78	0.08
3000	450	435	7.5	442.5	6.78	0.11
6000	855	918	31.5	886.5	6.77	0.24

2.1.2 Измерение при постоянном напряжении $U=15~{ m B}$

R_1 , Om	R'_1 , Om	R_1'' , Om	ΔR_2 , Om	$\langle R_2 \rangle$, Om	C_2 , мк Φ	ΔC_2 , MK Φ
150	27	17	5	22	6.81	1.54
1500	210	226	8	218	6.88	0.25
3000	428	449	11	434	6.91	0.17
6000	860	891	15.5	875	6.85	0.12

Рис. 2: Погрешность определения емкости при $U=15~{
m B}$

 $6\,000$

868

R_1 , Om	R'_1 , Om	R_1'' , Om	ΔR_2 , Om	$\langle R_2 \rangle$, Ом	C_2 , мк Φ	ΔC_2 , мк Φ
150	20	24	2	22	6.81	0.61
1500	215	222.4	3.7	218.7	6.85	0.11
3000	434	443	4.5	438.5	6.84	0.07

876

6.84

0.06

8

2.1.3 Измерение при постоянном напряжении $U = 45 \ \mathbf{B}$

884

Рис. 3: Погрешность определения емкости при $U=45~{
m B}$

3 Выводы

Мы измерили ёмкость неизвестного конденсатора $C_2 = 6.84 \pm 0.06$ мк Φ с помощью измерительного моста в двух режимах: инерционном и безинерционном.

Инерционный способ в нашем эксперименте давал меньшую погрешность, чем баллистический.

В инерционном способе использовался гальванометр, у которого соотношение $R_G \gg R_2$ не выполнялось, и из-за того что напряжение на измерительном приборе было отличным от нуля (разбаланс моста), что вносило дополнительную погрешность определения R_2 .