Proof of that

Homeomorphisms are isomorphisms of memBers

Shigeo Hattori

December 14, 2019

First revision: September, 2019 $bayship.org@gmail.com\\ https://github.com/bayship-org/mathematics$

1 Notations

Definition 1.1 (Restriction of binary relation). Take $\forall (L, X, Y)$ as a binary relation L and sets (X, Y). $L[X] := \{(x, y) \in L \mid x \in X\}.$ $L[Y] := \{(x, y) \in L \mid y \in Y\}.$

2 Properties of equivalence relation

Proposition 1 (Reflexive, symmetry, transitive properties).

The relation by isomorphisms of memBers has properties of reflexive, symmetry and transitive.

Proof.

- *1 has been proved in graph theory.
- It is trivial that (*2 $_{and} \land \dots \quad _{and} \land$ *5) holds.
- Hence this proposition holds.
- 1 The relation by graph isomorphisms has properties of reflexive, symmetry and transitive.

```
2 Take \forall f_1, f_2, f_3 as graph isomorphisms such that domain(f_2) = image(f_1) and \land f_3 is the identity function on domain(f_3).
```

- **3** relate-constant-memBer (f_3) and \land
- 4 relate-constant-memBer (f_1) = relate-constant-memBer (f_1^{-1}) and \land
- 5 (relate-constant-memBer (f_1) and \land relate-constant-memBer (f_2)) \equiv relate-constant-memBer $(f_2 \circ f_1)$

3 Homeomorphic topological spaces as isomorphic memBers

Definition 3.1.

```
Take \forall (m1,m2,c) such that ( c is a chain of set membership {}_{and} \land m1 is the {}^{1}minimum member of c m2 is the {}^{2}maximum member of c.).

Then define (*1 {}_{and} \land \ldots \ldots {}_{and} \land *5).
```

1 m1 is said a deep member of m2.

Hence all memBer is a deep member of itself.

- 2 |c| 1 is said a power of (m1, m2).
- **3** It is written as $m1 \in |c|-1$ m2.
- 4 Let p be the maximum power of (m1, m2). Then depth(m1, m2) := p.
- **5** Let $S := \{d \mid \text{there exists } \exists m \text{ such that } d = depth(m, m2)\}.$ Then depth(m2) :="the maixmum member of S".

¹No member of c is a member of m1.

 $^{^2}$ No member of c has m2 as a member.

Definition 3.2 (Space of memBer).

Take $\forall m$.

Then define that

 $Deep(m) := \{d \mid d \text{ is a deep member of } m \}.$ $Space(m) := \{p \in Deep(m) \mid p \text{ is a point } \}.$

Proposition 2 (Isomorphism of vertices).

```
Take \forall (m1, m2, f, v1) such that ( (m1, m2) are isomorphic by f _{and} \land \ v1 \in Deep(m1) ).
```

Then v1, f(v1) are isomorphic by f[Deep(v1)].

Proof.

- Let v2 := f(v1).
- As C1, claim that $Deep(v2) \subset image(f[Deep(v1)])$.
- Assume that the claim fails.
- There exists $\exists w2 :\in Deep(v2)$ as a minimum counterexample to *C1 compared by depth(w2, v2).
- It is trivial that $w2 \neq v2$.
- There exists $\exists x2 :\in Deep(v2)$ such that $w2 \in x2$.
- Hence x2 is not a counterexample to *C1 because depth(w2, v2) < depth(x2, v2).
- Hence There exists $\exists x1 :\in Deep(v1)$ such that f(x1) = x2.
- Hence There exists $\exists w1 :\in x1$ such that $(f(w1) = w2 \quad and \land \ w1 \in Deep(v1))$. A contradiction.
- Hence The assumption on $(\neg *C1)$ is false.
- As C2, claim that ($Deep(v1) \subset image(f^{-1}[Deep(v2)])$).
- Though it is trivial that the same logic for the proof of *C1 proves *C2.
- Hence Deep(v2) = image(f[Deep(v1)]).
- Hence f[Deep(v1)] is a graph isomorphism from*to Deep(v1) * Deep(v2).

• And it is trivial that relate-constant-memBer $(f) \Rightarrow$ relate-constant-memBer(f[Deep(v1)]).

Proposition 3 (Isomorphism of Spaces).

Take $\forall (m1, m2, f)$ such that (m1, m2) are isomorphic by f. Then f[Space(m1)] is a bijection from*to Space(m1) * Space(m2).

Proof.

- Assume it is false.
- $image(f[Space(m1)]) \neq Space(m2)$.
- $image(f[Space(m1)]) \not\subset Space(m2)$ $_{or} \lor image(f[Space(m1)]) \not\supset Space(m2).$
- Then there exists ∃(m1, m2, f, p1, p2) as a counterexample such that (*A0 and ∧ (*A1 or ∨ *A2)) holds.
 A0 (p1, p2) :∈ Space(m1) * Space(m2).
 A1 f(p1) ∉ Space(m2).
 A2 p2 ∉ image(f[Space(m1)]).
- Assume *A1 holds.
- Then f(p1) is either a constant-memBer (or a non-constant-memBer as a set).
- Though f(p1) can not be a constant-memBer by that relate-constant-memBer(f).
- Hence f(p1) is a non-constant-memBer as a set.
- Though it contradicts to that f is a graph isomorphism because f(p1) has edge to some its member.
- Hence the assumption of *A1 is false $_{and} \land$ *A2 holds.
- There exists $\exists c1 : \notin Space(m1)$ such that f(c1) = p2.
- Hence $f^{-1}(p2) = c1$
- Though this condition has been denied in the disproof of *A1.
- Hence the assumption of *A2 is false $and \land$ the main assumption is false.

Proposition 4 (Pair of member's isomorphisms).

```
Take \forall (I := \{1, 2, 3, 4\}, \{m_i\}_{i \in I}, f_{1,2}, f_{3,4}) such that (*1 _{and} \land \dots \quad _{and} \land *4) holds.
Then (*5 _{and} \land *6) holds.
```

- 1 (m1, m2) are isomorphic by $f_{1,2}$.
- **2** (m3, m4) are isomorphic by $f_{3,4}$.
- **3** Let $f := f_{1,2} \cup f_{3,4}$ and $f_s := f[Space(f)]$.
- 4 Then f_s is a bijection.
- **5** f is a function.
- **6** f is a bijection.
- 7 relate-constant-memBer(f).

Proof of *5.

- Let $(V, E)_{i \in \{1,2,3,4\}}$ be the deep graph of m_i .
- Assume it is false.
- Then there exists $\exists ((m1, m3), (m2, m4))$ as a minimum counterexample by depth((m1, m3)) such that f is not a function.

- Let us make sure that f is a union of a set of bijections.
- There exists $\exists v :\in V_1 \cap V_3$ such that $|f[\{v\}]| \geq 1$ and $\forall v \notin \{m1, m3\}$.
- By the way, this proposition accepts the following $args_v$ in place of $(m1, m2, m3, m4, f_{1,2}, f_{3,4})$.

```
• args_v := (v, f_{1,2}(v), v, f_{3,4}(v), f_{1,2}[Deep(v)], f_{3,4}[Deep(v)]
```

- In the rest, this $args_v$ is proved to be a counterexample smaller than a minimal counterexample.
- As the first step, the such-that clause of this proposition holds for args_v
 as follows.
- Equivalently (*1 $_{and} \land$ $_{and} \land *4$) holds for $args_v$ as follows.
- Assume *1 fails for $args_v$.
- Hence $(v, f_{1,2}(v))$ is not isomorphic by $f_{1,2}[Deep(v)]$.
- Though it contradicts to the proposition titled as "Isomorphism of vertices".
- Hence the last assumption is false.
- Hence *1 holds for $args_v$.
- Hence *2 holds for $args_v$ because (for $args_v$, *1 and *2 are logically equivalent).
- Assume *4 fails for $args_v$.
- Let $f_v := f_{1,2}[Deep(v)] \cup f_{3,4}[Deep(v)]$ $_{and} \wedge$ let $f_{v,s} := f_{1,2}[Deep(v)][Space(f_v)] \cup f_{3,4}[Deep(v)][Space(f_v)].$
- Then $f_{v,s}$ is not a bijection.
- Though it is false because $f_{v,s} \subset f_s$. Hence *4 holds for $args_v$.
- Hence (*1 $_{and} \land$ $_{and} \land *4$) holds for $args_v$.
- Moreover *5 fails for $args_v$ as follows.
- Assume *5 holds for $args_v$.
- Then f_v is a function.
- Though $v \in Deep(v) \quad and \land$ $f_v[\{v\}] = f[\{v\}] \quad and \land$ $|f_v[\{v\}]| = |f[\{v\}]| \ge 1.$
- Hence *5 fails for $args_v$.
- $args_v$ is a counterexample.

- And the size as a counterexample of $args_v$ equals to depth((v, v)).
- Though depth((v,v)) < depth((m1,m3)) ³because $depth((v,v)) = depth(v) + 2 < depth(m1) + 2 \le depth(m1,m3)$.
- Hence arg_v is a counterexample smaller than a minimum counterexample.
- Hence the main assumption is false.

Proof of *6.

• Consider the proposition *P_S titled as "Reflexive,symmetry,transitive properties".

- \bullet Consider the proposition *P_I titled as "Isomorphism of spaces".
- Then ((*P_{S and} \wedge *P_I) and \wedge (*1 and \wedge and \wedge *4)) implies (*S1 and \wedge and \wedge *S4).
- **S1** (m2, m1) are isomorphic by $f_{1,2}^{-1}$ as an isomorphism.
- **S2** (m4, m3) are isomorphic by $f_{3,4}^{-1}$ as an isomorphism.
- **S3** Let $f_{-1} := f_{1,2}^{-1} \cup f_{3,4}^{-1}$ and \land let $f_{s,-1} := f_{-1}[Space(f_{-1})]$.
- **S4** Then $f_{s,-1}$ is a bijection.
 - For *S4, it holds because (it is trivial that ($f_{-1}=f^{-1}$ and $f_{s,-1}=f_s^{-1}$).
 - Moreover *5 implies that f_{-1} is a function.
 - Hence f^{-1} is a function.
 - Hence *5 implies that f is an injection.
 - By the way, f is surjective because f is not defined the codomain.
 - \bullet Hence f is a bijection.

Proof of *7.

 $3(x,y) := \{\{x\}, \{x,y\}\}$

- Assume it is false.
- There exists $\exists (x, y) :\in f$ such that (either x or y is a constant-memBer) $and \land (x \neq y)$.
- Though $f = f_{1,2} \cup f_{3,4}$.
- Hence $(x, y) \in f_{1,2}$ or $(x, y) \in f_{3,4}$.
- There exists $\exists g :\in \{f_{1,2}, f_{3,4}\}$ such that \neg (relate-constant-memBer(g)).
- It contradicts to (*1 $_{and} \land$ *2).
- The assumption is false.

Definition 3.3 (Constant space).

A constant space D is most likely a function to be used to state conditions on variables.

For example, let D be a function and let $x,y,z:\in Z*Z*Z$ such that x=D(z) and y=D(z).

Then x = y.

In this case, D is used to make sure that variables hold equal values.

Be careful that all constant space is just a usual variable but a global constant.

Proposition 5 (Isomorphism by member's isomorphisms).

Let *P_P denote the proposition titled as "Pair of member's isomorphisms".

Take $\forall (S1, S2, f, F)$ as sets (S1, S2) such that (*A1 $_{and} \land \dots \quad _{and} \land *A7)$.

Then (*10 $_{and} \land _{and} \land 12$) holds.

A1 | $Deep(\{S1, S2\})$ | \leq continuum.

A2 f is a bijection from*to S1 * S2.

A3 There exists $\exists D$ as a function and as a constant space.

A4 Take $\forall ((m1, m2), (m3, m4)) :\in f^2$.

A5 There exists $\exists f_{1,2}, f_{3,4}$ such that $f_{1,2} = D((m1, m2))$ and $f_{3,4} = D((m3, m4))$.

```
A5 Let args := (m1, m2, m3, m4, f_{1,2}, f_{3,4}).

Then *P<sub>P</sub> accepts args in place of (m1, m2, m3, m4, f_{1,2}, f_{3,4}).

A6 *P<sub>P</sub>.(*1 and \land ..... and \land *4) holds for args.

A7 Let D_{1,2} := \{D((m1, m2)) \mid (m1, m2) \in f\}. Then F = \text{union } D_{1,2}.

C10 F[Space(F)] is bijective.

C11 F is a function.

C12 F is bijective.

C13 relate-constant-memBer(F).

C14 (S1, S2) are isomorphic by F \cup \{S1, S2\}.
```

Proof of *C10.

- First of all, it is trivial that $domain(F[Space(F)]) = Space(S1) \quad and \land image(F[Space(F)]) = Space(S2).$
- Assume it is false.
- There exists $\exists (p1, p2) :\in Space(S1) * Space(S2)$ such that $|F(p1)| \ge 1$ or $\lor |F^{-1}(p2)| \ge 1$.
- Though it implies that the antecedent of this proposition have failed.
- Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, *P_P.(*4) have failed for ((m1, m2), (m3, m4)).
- \bullet Hence the assumption is false.

Proof of (*C11 $_{and} \land *C12$ $_{and} \land *C13$).

- First of all, consider the proposition titled as "Pair of member's isomorphisms".
- The proposition implies that the antecedent of this proposition implies that *A6 can be modified as the following *A6 typed in red.
- That is, the original "*4" has been replaced with "*7".
- A6 *P_P.(*1 $_{and} \land$ $_{and} \land *7$) holds for args.
- Call this modified antecedent as the modified antecedent.
- By the way, assume (*C11 $_{and} \land$ *C12 $_{and} \land$ *C13) is false.
- (*B1 _{or}∨ *B2) holds.
- **B1** There exists $\exists (x1, x2) :\in S1 * S2$ such that $|F(x1)| \geq 1$ $_{or} \lor |F^{-1}(x2)| \geq 1$.
- **B2** There exists $\exists f_{1,2} :\in D_{1,2}$ such that \neg relate-constant-memBer $(f_{1,2})$.
- Though it implies that the modified antecedent have failed.
- Namely, there exists $\exists ((m1, m2), (m3, m4))$ which has been taken as $\forall ((m1, m2), (m3, m4))$ in *A4 such that, of *A6, $P_P.(*5_{and} \land *6_{and} \land *7)$ have failed for ((m1, m2), (m3, m4)).
- Hence the assumption is false.

Proof of *C14.

- Assume it is false.
- Let $F_{+}:=F \cup \{S1, S2\}$, Then (*B1 $_{or} \lor *B2$) holds.
- As **B1**, (S1, S2) are not graph-isomorphic by F_+ .
- As **B2**, \neg relate-constant-memBer(F_+).
- Assume *B2 holds.
- Hence \neg relate-constant-memBer($\{S1, S2\}$).

- Hence there exists $\exists (T1, T2) :\in \{(S1, S2), (S2, S1)\}$ such that T1 is a constant-memBer $and \land T2$ is not a constant-memBer.
- There exists $\exists (c_1, p_2) :\in F$ such that $(c_1 \text{ is a constant-memBer } and \land p_2)$ is not a point. By this contradiction, the assumption on *B2 is false.
- Hence *B1 holds.
- There exists $\exists (v1, v2) :\in S1 * S2$ such that $F(v1) \notin S2$ or $\forall F^{-1}(v2) \notin S1$.
- Though there exists $\exists f_{1,2} :\in D_{1,2}$ such that ($(v1, F(v1)) \in f_{1,2} \quad and \land f_{1,2}$ is a bijection from*to Deep(v1)*Deep(F(v1))).
- Moreover $F \supset f_{1,2}$.
- Hence the assumption on *B1 is false.
- The main assumption is false.

Definition 3.4 (Variations of Indexed set).

```
As you know, for example, \{x_i\}_{i\in\{1,2\}} := \{x_1, x_2\}, in mathematics. In this article,
```

analogously, $(x_i)_{i \in \{1,2\}} := (x_1, x_2)$.

As an alternative simplified form, $(x)_{i \in \{1,2\}} := (x_1, x_2)$.

As one of many variations, $(\{x\})_{i \in \{1,2\}} := (\{x_1\}, \{x_2\}).$

As a comment, the order on the composed sequence should respect the most natural order on the index set.

Proposition 6 (Isomorphisms by spaces).

```
Take \forall (S)_{i:\in\{1,2\}}, \forall (f,g) such that ( (S)_{i:\in\{1,2\}} are isomorphic by f and also by g _{and} \land f[\operatorname{Space}(f)] = g[\operatorname{Space}(g)] ).
Then f = g.
```

Proof.

• Assume it is false.

- There exists $\exists v_1 :\in Deep(S1)$ as a minimum counterexample compared by $depth(v_1)$ such that $f(v_1) \neq g(v_1)$.
- It is trivial that $depth(v_1) > 0$.
- Hence v_1 is a set.
- $f[v_1] = g[v_1]$ because (
 take $\forall w_1 :\in v_1$,
 then $(\operatorname{depth}(w_1) < \operatorname{depth}(v_1)$ and \wedge w_1 is not a counterexample)
).

- Hence $f(v_1) = image(f[v_1]) = image(g[v_1]) = g(v_1)$.
- The assumption is false.

Definition 3.5 (Isomorphism by spaces).

Take $\forall (S)_{i:\in\{1,2\}}, \forall (f,F)$ such that $(S)_{i:\in\{1,2\}}$ are isomorphic by F and \land $Space(F) \subset f \subset F$. Then $(S)_{i:\in\{1,2\}}$ are also said isomorphic by f.

Proposition 7 (Homeomorphism as isomorphism).

As you know, the set theory defines that $(x,y) := \{\{x\}, \{x,y\}\}.$ Take $\forall ((X,T))_{i:\in\{1,2\}}, \forall H$ such that ($((X,T))_{i:\in\{1,2\}} \text{ is a pair of topological spaces} \quad and \land H \text{ is a bijection from*to } X_1 * X_2 \quad and \land \\ ((X,T))_{i:\in\{1,2\}} \text{ are homeomorphic by } H \text{)}.$ Then $(*1 \quad and \land \dots \quad and \land *5)$ holds.

- 1. $(X)_{i:\in\{1,2\}}$ are isomorphic by H.
- **2.** Take $\forall (t_1, t_2) :\in T1 * T2$ such that $t_2 = image(H[t_1])$. Then $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1]$.
- **3.** $(T)_{i:\in\{1,2\}}$ are isomorphic by H.
- **4.** $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by H.
- **5.** $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by *H*.

6. $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic by H.

Proof of *1.

- Consider the proposition titled as "Isomorphism by member's isomorphisms".
- $(X)_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1, X2)\}.$

Proof of *2.

• Consider the proposition titled as "Isomorphism by member's isomorphisms".

• $(t)_{i:\in\{1,2\}}$ are isomorphic by $H[t_1] \cup \{(t1,t2)\}.$

Proof of *3.

- Consider the proposition titled as "Isomorphism by member's isomorphisms".
- Consider *2.
- Let $t_{1,2} := \{(t_1, t_2) \in T1 * T2 \mid t_2 = image(H[t_1])\}.$
- $(T)_{i:\in\{1,2\}}$ are isomorphic by $H \cup t_{1,2} \cup \{(T1,T2)\}.$

Proof of *4.

- Consider the proposition titled as "Isomorphism by member's isomorphisms".
- Consider *1.
- $(\{X\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(\{X1\},\{X2\})\}.$

Proof of *5.

- Consider the proposition titled as "Isomorphism by member's isomorphisms".
- Consider *1 and *3.
- $(\{X,T\})_{i:\in\{1,2\}}$ are isomorphic by $H \cup \{(X1,X2),(T1,T2),(\{X1,T1\},\{X2,T2\})\}.$

Proof of *6.

• Consider the proposition titled as "Isomorphism by member's isomorphisms".

- Consider *4 and *5.
- $(\{\{X\}, \{X, T\}\})_{i:\in\{1,2\}}$ are isomorphic

```
• by H \cup \{

(X1, X2),

(T1, T2),

(\{X1, T1\}, \{X2, T2\}),

(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})

\}.
```