Случайные величины, векторы. Распределение случайных величин

Банк задач

Задача 1. Есть три стрелка. Первый попадает в мишень с вероятностью 0.2, второй 0.3, третий 0.4. Они вместе выстрелили по мишени (каждый один раз). Случайная величина X — число пуль, попавших в мишень. Запишите ее функцию масс.

Задача 2. Игрок подбрасывает пару кубиков, пока не выпадут одновременно две шестерки. Случайная величина X – число подбрасываний. Составьте функцию масс. Как называется такая случайная величина?

Задача 3. Первый стрелок попадает в мишень с вероятностью 0.4, а второй — с вероятностью 0.75. Они стреляют по очереди, начиная с первого, до первого попадания. Случайная величина X — число сделанных выстрелов. Найдите ее функцию масс.

Задача 4. Функция масс двумерного случайного вектора имеет вид:

Y / X	0	1	2
-1	0.2	0.05	0.15
0	0.05	0.1	0.05
1	0.05	0.15	0.2

Найдите функцию масс X, функцию масс Y, функцию масс X + Y, функцию масс XY.

Задача 5. В ящике три красных, четыре синих и пять зеленых шаров. Наугад (без возвращения) достали четыре шара. Случайная величина X — число красных шаров в выборке. Случайная величина Y — число синих. Зависимы ли они? Найдите функцию масс случайного вектора (X,Y).

Задача 6. Случайные величины X, Y независимы и $\mathbb{P}(X=k)=\mathbb{P}(Y=k)=2^{-k}, k=1,2,...$ Найти вероятности $\mathbb{P}(X\leq k), \ \mathbb{P}(X=Y), \ \mathbb{P}(\min(X,Y)\leq k).$

Задача 7. У меня в кармане две монеты достоинством 10 рублей и три монеты по 2 рубля. Я достаю две монеты на ощупь (считаем, что на ощупь монеты неразличимы). Случайная величина X – сумма денег, которую я достал. Запишите ее функцию масс.

Задача 8. На пространстве $\Omega = \{1, 2, \dots, 8\}$, $\mathbb{P}(\omega_i) = 1/8$ заданы случайные величины X и Y:

Найти a) распределения этих случайных величин, b0) распределение вектора (X,Y) (составить табличку).

Задача 9. По окружности расставили 2 единицы и N-2 нолика в случайном порядке. Случайная величина X — число ноликов между парой единиц (минимальное среди двух дуг). Найдите ее функцию масс.

Задача 10. Случайная величина X не постоянна u не равномерна. Привидите пример такой случайной величины, что случайные величины $\sin(X)$ $u\cos(X)$ иметь одинаковые функции масс?

Задача 11. Совместное распределение случайных величин ξ, η , имеет вид

$$\mathbb{P}(\xi = x, \eta = y) = \frac{C(x+y)a^{x+y}}{x! \ y!}, \ x, y \ge 0$$

Найти а) константу C, б) распределение (функцию масс) с.в. $\xi + \eta$.

Задача 12. Найти распределение (функцию масс) суммы $X_1 + X_2$, где а) $X_i \sim Geom(p)$, б) $X_i \sim Poiss(\lambda_i)$, X_i независимы.

Задача 13. Найти распределение (функцию масс) суммы $X_1 + X_2$, где X_i н.о.р. из распределения $Poiss(\lambda_i)$

Задача 14. Брошено N одинаковых несимметричных монет, затем монеты, которые упали орлом вверх, бросают еще раз. Найти распределение итогового количества решек (которое получилось в результате процедуры из двух подбрасываний).

Задача 15. Найти распределение суммы $X_1 + \cdots + X_n$, где $X_i - \text{н.o.p.}$ а) $X_i \sim Geom(p)$, б) $X_i \sim Poiss(\lambda_i)$.

Задача 16. Найти распределение суммы случайного числа слагаемых $X_1 + \cdots + X_\eta$, если слагаемые н.о.р. и $X_i \sim Poiss(\lambda_i)$, $\eta \sim Geom(p)$.

Задача 17. X_1, X_2 – н.о.р. $Geom(p_i)$ случайные величины. Исследуйте на независимость случайные величины $\min(X_1, X_2)$ и $X_1 - X_2$.