考试时长:

考试科目:

线性代数A

120 分钟

命题教师:

	题	号	1	2	3	4	5	6	7	8
ſ	分	值	15 分	25 分	10 分	16 分	10 分	6 分	16 分	12 分

本试卷共 (8)大题,满分 (110)分. 请将所有答案写在答题本上.

This exam includes 8 questions and the score is 110 in total. Write all your answers on the examination book.

- 1. (15 points, 3 points each) Multiple Choice. Only one choice is correct.
 - (共 15 分, 每小题 3 分) 选择题, 只有一个选项是正确的.
 - (1) Let A and B be $n \times n$ complex matrices. Which of the following statements is correct?
 - (A) If A and B are diagonalizable, so is A + B.
 - (B) If A and B are diagonalizable, so is AB.
 - (C) If A is invertible and A^2 is diagonalizable, then A is diagonalizable.
 - (D) If the distinct eigenvalues of A are 1 and 0, then A is diagonalizable.
 - 设 A 和 B 为 n 阶复方阵. 下列陈述中哪个是正确的? (
 - (A) 如果 A 和 B 都可对角化, 则 A+B 也可对角化.
 - (B) 如果 A 和 B 都可对角化,则 AB 也可对角化.
 - (C) 如果 A 为可逆且 A^2 可对角化, 则 A 也可对角化.
 - (D) 如果 A 的互不相同的特征值为 0 或 1,则 A 可对角化.
 - (2) The equation $2x_1x_2 2x_1x_3 + 2x_2x_3 = 1$ represents a graph of (
 - (A) An ellipsoid.
 - (B) Hyperboloid of one sheet.
 - (C) Hyperboloid of two sheets.
 - (D) Hyperbolic paraboloid.

 $2x_1x_2 - 2x_1x_3 + 2x_2x_3 = 1$ 表示的曲面是 (

- (A) 椭球面.
- (B) 单叶双曲面.
- (C) 双叶双曲面.

- (D) 双曲抛物面.
- (3) Let A be a 3×3 matrix, and let B be the matrix formed by adding the second column of A to its first column. Suppose that after exchanging the second and third rows of B, the

resulting matrix is the
$$3 \times 3$$
 identity matrix. Let $P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$ Then $A = ($

- (A) P_1P_2 .
- (B) $P_1^{-1}P_2$.
- (C) P_2P_1 .
- (D) $P_2P_1^{-1}$.

可以得到 3 阶单位矩阵. 记
$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}. 则 A = ()$$

- (A) P_1P_2 .
- (B) $P_1^{-1}P_2$.
- (C) P_2P_1 .
- (D) $P_2P_1^{-1}$.

(4) Let
$$A = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 6 & 8 \\ 2 & -4 & t \end{bmatrix}$$
, where $t \in \mathbb{R}$. Suppose rank $(A) = 2$. Then $($

- (A) t = -6.
- (B) t = 6.
- (C) $t \neq 0$.
- (D) t can be any real number.

设
$$A = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 6 & 8 \\ 2 & -4 & t \end{bmatrix}$$
, 其中 $t \in \mathbb{R}$. 假设 $\mathrm{rank}(A) = 2$. 则 ()

- (A) t = -6.
- (B) t = 6.
- (C) $t \neq 0$.
- (D) t 可以是任意实数.
- (5) Which of the following statements is incorrect? ()
 - (A) For any matrix A, rank(A) = dim C(A).
 - (B) If v_1, \dots, v_m are pairwise orthogonal nonzero vectors, then the vectors v_1, \dots, v_m are linear independent.

- (C) If A is an upper triangular $n \times n$ matrix such that $A^2 = 0$, then A = 0.
- (D) Let A, B be $n \times n$ matrices such that AB is invertible. Then both A and B are invertible.

下列哪个论断是错误的?()

- (A) 对于任意矩阵 A, rank(A) = dim C(A).
- (B) 如果 v_1, \dots, v_m 是一组两两正交的非零向量, 则向量组 v_1, \dots, v_m 线性无关.
- (C) 如果 $A \stackrel{\cdot}{=} n \times n$ 上三角矩阵且 $A^2 = 0$, 则 A = 0.
- (D) 设 A, B 为 n×n 矩阵且 AB 可逆. 则 A 和 B 都可逆.
- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.
 - (1) Let A, B be invertible $n \times n$ matrices. Then the inverse of the block matrix $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ is

设 A, B 均为 $n \times n$ 可逆矩阵. 则分块矩阵 $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ 的逆为 _____

- (4) Let u, v be vectors in \mathbb{R}^n such that ||u|| = 3, ||v|| = 4 and $u^T v = -3$.

Then ||2u + 3v|| =_____

设 u, v 为 \mathbb{R}^n 中的向量, 满足 $\|u\| = 3$, $\|v\| = 4$ 以及 $u^T v = -3$. 则 $\|2u + 3v\| =$ ______

(5) Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$.

Then the least squares solution to Ax = b is $\hat{x} =$

设
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}.$$

则 Ax = b 的最小二乘解是 $\hat{x} =$ ______

3. (10 points) Let

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ v_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}.$$

- (a) Find an orthonormal basis, q_1, q_2, q_3 , for the subspace V of \mathbb{R}^4 spanned by the column vectors v_1, v_2, v_3 .
- (b) Let

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \ b = \begin{bmatrix} 2020 \\ 2021 \\ 2022 \\ 2023 \end{bmatrix}.$$

Find the least-squares solution of Ax = b.

假定

$$v_1 = \left[egin{array}{c} 1 \ 0 \ 1 \ 0 \end{array}
ight], \; v_2 = \left[egin{array}{c} 3 \ 0 \ 1 \ 0 \end{array}
ight], \; v_3 = \left[egin{array}{c} 3 \ 1 \ 2 \ 1 \end{array}
ight].$$

- (a) 设 V 为由 v_1, v_2, v_3 生成的 \mathbb{R}^4 的子空间, 求 V 的一组标准正交基.
- (b) 记

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \ b = \begin{bmatrix} 2020 \\ 2021 \\ 2022 \\ 2023 \end{bmatrix}.$$

求 Ax = b 在最小二乘意义下的解.

4. (16 points) Compute the nth order determinant:

(16 分) 计算如下的 n 阶行列式:

5. (10 points) Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$, and A is similar to B . Find an

orthogonal matrix Q, such that $Q^{-1}AQ = B$.

(10
$$\mathcal{H}$$
) Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$, and A is similar to B . Find an

orthogonal matrix Q, such that $Q^{-1}AQ = B$.

- 6. (6 points) Let A, B be $n \times n$ matrices. Suppose A and B are both symmetric. Is AB necessarily symmetric? If yes, please give a proof. Otherwise please give a counterexample.
 - $(6 \ \mathcal{G})$ 设 A, B 均为 $n \times n$ 矩阵. 假设 A 和 B 都是对称矩阵. AB 是否一定是对称矩阵? 若是, 请给出证明. 否则请给出一个反例.
- 7. (16 points)

(16分)

- 8. (12 points) Let A be a 3×3 matrix such that rank(A) = 2 and $A^3 = 0$.
 - (a) Prove that $rank(A^2) = 1$.
 - (b) Let $\alpha_1 \in \mathbb{R}^3$ be a nonzero vector such that $A\alpha_1 = 0$. Prove that there exist vectors α_2 , α_3 such that $A\alpha_2 = \alpha_1$, $A^2\alpha_3 = \alpha_1$.
 - (c) For any vectors α_2, α_3 described as above, show that $\alpha_1, \alpha_2, \alpha_3$ are linearly independent.

(In this problem, you are allowed to assume the statements of some questions to answer sub-sequent questions.)

- (12 分) 设 A 是 3×3 矩阵, 它满足 rank(A) = 2 及 $A^3 = 0$.
- (a) 证明 $rank(A^2) = 1$.
- (b) 设 $\alpha_1 \in \mathbb{R}^3$ 是满足 $A\alpha_1 = 0$ 的非零向量. 证明: 存在向量 α_2 , α_3 使得 $A\alpha_2 = \alpha_1$, $A^2\alpha_3 = \alpha_1$.
- (c) 证明: 对于任意满足上述条件的向量 α_2,α_3 , 向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

(本题中,允许承认前面小题的结果来用于后续问题的解答.)