Pratik Rathore

Education

Stanford University

September 2021 - Present

PhD Candidate in Electrical Engineering

Stanford, CA

University of Maryland

August 2017 - May 2021

B.S. in Electrical Engineering (summa cum laude), B.S. in Mathematics (summa cum laude)

College Park, MD

Experience

Stanford University, Department of Management Science & Engineering

June 2022 - Present

Research Assistant (advised by Madeleine Udell)

Stanford, CA

- Developing optimization algorithms leveraging randomized numerical linear algebra to address scalability and stability challenges in training machine learning models
- Creating and maintaining high-quality, open-source implementations of these methods; adopted in popular machine learning libraries such as DeepXDE
- Applying scientific machine learning to solve PDE-governed problems in geophysics

Skyworks Solutions, Technology & Manufacturing Data Analytics Team

June 2025 - August 2025

Machine Learning & AI Intern

Irvine, CA

- Led development of a Python library that automates circuit topology generation and simulation configuration for designing radio frequency (RF) filters, reducing design times from one to two weeks to 7-8 hours
- Collaborated with software engineers to build a web application allowing circuit designers to interface with the automated topology library
- Designed an AI-driven circuit design automation system and implemented prototype workflows

Gridmatic, Power Trading & Optimization Team

June 2024 - September 2024

Research Scientist Intern

Cupertino, CA

- Applied scenario reduction to speed up linear programs in battery scheduling, while preserving profits
- Developed a new backtest framework that accounts for Gridmatic's price impact in ERCOT market
- Formulated, implemented, and tested price impact models based on residual demand curves
- Proposed an ADMM-based algorithm for price impact-aware portfolio optimization

Publications

- P. Rathore, Z. Frangella, S. Garg, S. Fazliani, M. Dereziński, and M. Udell. Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project. NeurIPS, 2025, arxiv:2505.13723
- P. Rathore, Z. Frangella, J. Yang, M. Dereziński, and M. Udell. Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression. Submitted, 2025, arxiv:2407.10070
- Z. Frangella, P. Rathore, S. Zhao, and M. Udell. SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates. SIMODS, 2024, arxiv:2211.08597
- P. Rathore, W. Lei, Z. Frangella, L. Lu, and M. Udell. Challenges in Training PINNs: A Loss Landscape Perspective. ICML, 2024, arxiv:2402.01868 (Oral, top 1.5% of all submissions)
- Z. Frangella*, P. Rathore*, S. Zhao, and M. Udell. PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates. JMLR, 2024, arxiv:2309.02014

Awards & Honors

	3.5
University of Maryland Department of Mathematics High Honors Medal	May 2021
NSF Graduate Research Fellowship Honorable Mention	Marc h~2021
University of Maryland Department of Electrical and Computer Engineering Chair's Award	March 2021
University of Maryland Dan Shanks Award for research in number theory	April 2019
University of Maryland Putnam Team Member (individually ranked top 3% in 2019, top 5% in 2020)	2019, 2020
Banneker-Key Scholar – a full merit scholarship awarded to top 1% of undergraduates	August 2017 - May 2021
United States of America Mathematical Olympiad (USAMO) Qualifier	May 2017

Programming Skills

Proficient: Python, PyTorch, NumPy, MATLAB, LATEX Familiar: Pandas, C/C++, Julia, Java, R, Simulink

Relevant Coursework

Machine Learning, Machine Learning for Sequence Modeling, Machine Learning for Discrete Optimization, Reinforcement Learning, Convex Optimization, Theory of Statistics, Numerical Linear Algebra, Parallel Computing

 $^{^{1*}}$ denotes equal contribution.