

МЕТОДЫ ВТОРОГО ПОРЯДКА МЕТОД НЬЮТОНА

Стратегия поиска

Стратегия метода Ньютона (Newton) состоит в построении последовательности точек $\left\{x^k\right\}, k=0,1,\ldots$, таких, что $f\left(x^{k+1}\right) < f\left(x^k\right), \ k=0,1,\ldots$. Точки последовательности вычисляются по правилу

$$x^{k+1} = x^k - H^{-1}(x^k) \nabla f(x^k), \qquad k = 0, 1, \dots,$$

где x^0 — задается пользователем, а направление спуска d^k определяется для каждого значения k по формуле $d^k = -H^{-1}(x^k)\nabla f(x^k)$, величина шага $t_k = 1$.

МЕТОД НЬЮТОНА

Алгоритм

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M — предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

Шаг 2. Положить k = 0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение критерия окончания $\|\nabla f(x^k)\| \le \varepsilon_1$:

- а) если неравенство выполнено, то расчет окончен и $x^* = x^k$;
- б) в противном случае перейти к шагу 5.

Шаг 5. Проверить выполнение неравенства $k \ge M$:

- а) если неравенство выполнено, расчет окончен и $x^* = x^k$;
- б) если нет, перейти к шагу 6.

Шаг 6. Вычислить элементы матрицы $H(x^k)$.

Шаг 7. Найти обратную матрицу $H^{-1}(x^k)$.

Шаг 8. Проверить выполнение условия $H^{-1}(x^k) > 0$:

- а) если $H^{-1}(x^k) > 0$, то перейти к шагу 9;
- б) если нет, то перейти к шагу 10, положив $d^{k} = -\nabla f(x^{k})$.

Шаг 9. Определить
$$d^k = -H^{-1}(x^k)\nabla f(x^k)$$
.

Шаг 10. Найти точку $x^{k+1} = x^k + t_k d^k$,

положив
$$t_k = 1$$
, если $d^k = -H^{-1}(x^k)\nabla f(x^k)$,

или выбрав t_k из условия $f(x^{k+1}) < f(x^k)$, если $d^k = -\nabla f(x^k)$.

Шаг 11. Проверить выполнение условий

$$||x^{k+1}-x^k|| < \varepsilon_2, \qquad |f(x^{k+1})-f(x^k)| < \varepsilon_2:$$

- а) если оба условия выполнены при текущем значении k и k = k 1, то расчет окончен, $x^* = x^{k+1}$;
- б) в противном случае положить k = k + 1 и перейти к шагу 3.

МЕТОД НЬЮТОНА-РАФСОНА

Алгоритм

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M – предельное число итераций. Найти градиент $\nabla f(x)$ и матрицу Гессе H(x).

Шаг 2. Положить k = 0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение условия $\|\nabla f(x^k)\| \le \varepsilon_1$:

- а) если неравенство выполнено, то расчет закончен и $x^* = x^k$;
- б) если нет, перейти к шагу 5.

Шаг 5. Проверить выполнение условия $k \ge M$:

- а) если неравенство выполнено, расчет окончен и $x^* = x^k$;
- б) если нет, перейти к шагу 6.

Шаг 6. Вычислить элементы матрицы $H(x^k)$.

Шаг 7. Найти обратную матрицу $H^{-1}(x^k)$.

Шаг 8. Проверить выполнение условия $H^{-1}(x^k) > 0$:

- а) если условие выполняется, то найти $d^{k} = -H^{-1}(x^{k})\nabla f(x^{k});$
- б) если нет, то положить $d^k = -\nabla f(x^k)$.

Шаг 9. Определить $x^{k+1} = x^k + t_k d^k$.

Шаг 10. Найти шаг t_k^* из условия $\varphi(t_k) = f(x^k + t_k d^k) \rightarrow \min_{t_k}$.

Шаг 11. Вычислить $x^{k+1} = x^k + t_k^* d^k$.

Шаг 12. Проверить выполнение неравенств

$$||x^{k+1}-x^k|| < \varepsilon_2, \qquad |f(x^{k+1})-f(x^k)| < \varepsilon_2$$
:

- а) если оба условия выполнены при текущем значении k и k=k-1, то расчет окончен и $x^*=x^{k+1}$;
- б) в противном случае положить k = k + 1 и перейти к шагу 3.

МЕТОДЫ НУЛЕВОГО ПОРЯДКА

методы одномерной минимизации

Постановка задачи. Требуется найти безусловный минимум функции f(x) одной переменной, т.е. такую точку $x^* \in R$, что

$$f(x^*) = \min_{x \in R} f(x).$$

Стратегия поиска включает в себя три этапа:

- 1. Выбор начального интервала неопределенности. Границы a_0, b_0 интервала должны быть такими, чтобы функция f(x) была унимодальной.
 - 2. Уменьшение интервала неопределенности.
- 3. Проверку условия окончания. Поиск заканчивается, когда длина текущего интервала неопределенности $[a_k, b_k]$ оказывается меньше установленной величины.

Ответом является множество точек, принадлежащих последнему интервалу неопределенности, среди которых каким-либо образом выбирается решение задачи x^* .

В некоторых методах заранее задается или находится количество N вычислений функции. В этом случае продолжительность поиска ограничена

Замечания.

- **1.** Для методов одномерной минимизации типично задание априорной информации о положении точки минимума с помощью начального *интервала* неопределенности $L_0 = [a_0, b_0]$. Предполагается, что точка минимума x^* принадлежит интервалу L_0 , но ее точное значение неизвестно.
- 2. Большинство известных методов одномерной минимизации применяется для класса унимодальных функций.

Определение. Функция f(x) называется унимодальной на интервале $L_0 = [a_0, b_0]$, если она достигает глобального минимума на $[a_0, b_0]$ в единственной точке x^* , причем слева от x^* эта функция строго убывает, а справа от x^* – строго возрастает.

3. Методы одномерной минимизации широко применяются в методах первого и второго порядков для нахождения оптимальной величины шага. При этом левая граница начального интервала неопределенности, как правило, совпадает с началом координат, т.е. $a_0 = 0$.

Метод дихотомии Стратегия поиска

Задаются начальный интервал неопределенности и требуемая точность. Алгоритм опирается на анализ значений функции в двух точках (см. рис. 1). Для их нахождения текущий интервал неопределенности делится пополам и в обе стороны от середины откладывается по $\frac{\varepsilon}{2}$, где ε – малое положительное число.

Условия окончания процесса поиска стандартные: поиск заканчивается, когда длина текущего интервала неопределенности оказывается меньше установленной величины.

Алгоритм

Шаг 1. Задать начальный интервал неопределенности $L_0 = [a_0, b_0]$, $\varepsilon > 0$ — малое число, I > 0 — точность.

Uаг 2. Положить k = 0.

Шаг 4. Сравнить $f(y_k)$ с $f(z_k)$:

- а) если $f(y_k) \le f(z_k)$, положить $a_{k+1} = a_k$, $b_{k+1} = z_k$ (рис. 1, a) и перейти к шагу 5;
- б) если $f(y_k) > f(z_k)$, положить $a_{k+1} = y_k$, $b_{k+1} = b_k$ (рис. 1, б).

Шаг 5. Вычислить $|L_{2(k+1)}| = |b_{k+1} - a_{k+1}|$ и проверить условие окончания:

- а) если $\left|L_{2(k+1)}\right| \leq I$, процесс поиска завершить. Точка минимума принадлежит интервалу: $\mathbf{x}^* \in L_{2(k+1)} = \left[a_{k+1}, b_{k+1}\right]$. В качестве приближенного решения можно взять середину последнего интервала: $\mathbf{x}^* \cong \frac{a_{k+1} + b_{k+1}}{2}$;
- б) если $|L_{2(k+1)}| > I$, положить k = k+1 и перейти к шагу 3.

Метод золотого сечения

В методе золотого сечения в качестве точек вычисления функции выбираются точки золотого сечения.

Определение. Точка производит *золотое сечение отрезка*, если отношение длины всего отрезка к большей части равно отношению большей части к меньшей.

На отрезке $\left[a_{_{\!0}},b_{_{\!0}}\right]$ имеются две симметричные относительно его концов точки $y_{_{\!0}}$ и $z_{_{\!0}}$:

$$\frac{b_0 - a_0}{b_0 - y_0} = \frac{b_0 - y_0}{y_0 - a_0} = \frac{b_0 - a_0}{z_0 - a_0} = \frac{z_0 - a_0}{b_0 - z_0} = \frac{1 + \sqrt{5}}{2} \cong 1,618.$$

При этом точка y_0 производит золотое сечение отрезка $[a_0, z_0]$, а точка z_0 – отрезка $[y_0, b_0]$ (рис. 2).

$$a_0$$
 y_0 z_0 b_0 x

Puc. 2

Стратегия поиска

Задаются начальный интервал неопределенности и требуемая точность. Алгоритм уменьшения интервала опирается на анализ значений функции в двух точках (см. рис. 2). В качестве точек вычисления функции выбираются точки золотого сечения. Тогда с учетом свойств золотого сечения на каждой итерации, кроме первой, требуется произвести только одно новое вычисление функции. Условия окончания процесса поиска стандартные: поиск заканчивается, когда длина текущего интервала неопределенности оказывается меньше установленной величины.

Алгоритм

Шаг 1. Задать начальный интервал неопределенности $L_0 = [\mathbf{a}_0, \mathbf{b}_0]$, точность l > 0.

Шаг 2. Положить k = 0.

Шаг 3. Вычислить

$$y_0 = a_0 + \frac{3-\sqrt{5}}{2}(b_0 - a_0); \quad z_0 = a_0 + b_0 - y_0, \quad \frac{3-\sqrt{5}}{2} = 0.38196.$$

Шаг 4. Вычислить $f(y_k)$, $f(z_k)$.

Шаг 5. Сравнить $f(y_k)$ и $f(z_k)$:

- а) если $f(y_k) \le f(z_k)$, то положить $a_{k+1} = a_k$, $b_{k+1} = z_k$ и $y_{k+1} = a_{k+1} + b_{k+1} y_k$, $z_{k+1} = y_k$ (рис. 3, a) и перейти к шагу 6;
- б) если $f(y_k) > f(z_k)$, то положить $a_{k+1} = y_k$, $b_{k+1} = b_k$ и $y_{k+1} = z_k$, $z_{k+1} = a_{k+1} + b_{k+1} z_k$ (рис. 3, б).

Шаг 6. Вычислить $\Delta = |a_{k+1} - b_{k+1}|$ и проверить условие окончания:

- а) если $\Delta \leq I$, процесс поиска завершить. Точка минимума принадлежит интервалу: $x^* \in [a_{k+1}, b_{k+1}]$. В качестве приближенного решения можно взять середину последнего интервала: $x^* \cong \frac{a_{k+1} + b_{k+1}}{2}$;
- б) если $\Delta > I$, положить k = k + 1 и перейти к шагу 4.

Метод квадратичной интерполяции

Стратегия поиска

Задается начальная точка и с помощью пробного шага находятся три опорные точки таким образом, чтобы они располагались как можно ближе к искомой точке минимума. В полученных точках вычисляются значения функции. Затем строится интерполяционный полином второй степени, проходящий через имеющиеся три точки. В качестве приближения точки минимума берется точка минимума полинома. Процесс поиска заканчивается, когда полученная точка отличается от наилучшей из трех опорных точек не более чем на заданную величину.

Алгоритм

Шаг 1. Задать начальную точку x_1 , величину шага $\Delta x > 0$, ϵ_1 и ϵ_2 — малые положительные числа, характеризующие точность.

Шаг 2. Вычислить $x_2 = x_1 + \Delta x$.

Шаг 3. Вычислить
$$f(x_1) = f_1$$
 и $f(x_2) = f_2$.

Шаг 4. Сравнить $f(x_1)$ с $f(x_2)$:

а) если
$$f(x_1) > f(x_2)$$
, положить $x_3 = x_1 + 2\Delta x$ (рис. 4, a);

б) если
$$f(x_1) \le f(x_2)$$
, положить $x_3 = x_1 - \Delta x$ (рис. 4, δ).

Шаг 5. Вычислить
$$f(x_3) = f_3$$
.

Шаг 6. Найти
$$F_{\min} = \min\{f_1, f_2, f_3\}, x_{\min} = x_i : f(x_i) = F_{\min}.$$

Шаг 7. Вычислить точку минимума интерполяционного полинома, построенного по трем точкам:

$$\overline{x} = \frac{1}{2} \frac{\left(x_2^2 - x_3^2\right) f_1 + \left(x_3^2 - x_1^2\right) f_2 + \left(x_1^2 - x_2^2\right) f_3}{\left(x_2 - x_3\right) f_1 + \left(x_3 - x_1\right) f_2 + \left(x_1 - x_2\right) f_3},$$

и величину функции $f(\overline{x})$ (рис. 4).

Если знаменатель в формуле для \bar{x} на некоторой итерации обращается в нуль, то результатом интерполяции является прямая. В этом случае рекомендуется обозначить $x_1 = x_{\min}$ и перейти к шагу 2.

Шаг 8. Проверить выполнение условий окончания:

$$\left| \frac{F_{\min} - f(\overline{x})}{f(\overline{x})} \right| < \varepsilon_1, \quad \left| \frac{x_{\min} - \overline{x}}{\overline{x}} \right| < \varepsilon_2.$$

Тогда:

- а) если оба условия выполнены, процедуру закончить и положить $x^* \cong \overline{x}$;
- б) если хотя бы одно из условий не выполнено и $\overline{x} \in [x_1, x_3]$, выбрать наилучшую точку $(x_{min} \, \text{или} \, \overline{x})$ и две точки по обе стороны от нее. Обозначить эти точки в естественном порядке и перейти к шагу 6;
- в) если хотя бы одно из условий не выполнено и $\overline{x} \notin [x_1, x_3]$, то положить $x_1 = \overline{x}$ и перейти к шагу 2.