Харьковский Национальный Университет Радиоэлектроники

Методы повышения качества обслуживания на основе потоковых агентов на стыке мобильных и стационарных сетей

Аспирант: Кобрин А. В. Научный руководитель: д.т.н., проф. Поповский В.В.

Харьков 2013

Уровни архитектуры сети NGN:

- Уровень управления услугами;
- Уровень сетевого контроля и управления;
- Транспортный уровень;
- Уровень доступа;
- Уровень терминального оборудования.

Цель и задачи исследования

Цель и задача исследования состоит в повышении качества обслуживания в гибридных сетях, содержащих мобильную и стационарную компоненту.

Объект исследования: процесс передачи трафика реального времени через гибридные сети.

Предмет исследования: метод повышения качества обслуживания на основе потоковых агентов на стыке мобильных и стацонарных сетей.

Научная задача состоит в повышении качества обслуживания в гибридных сетях, содержащих мобильную и стационарную компоненту.

Частные задачи исследования:

- Провести анализ статистических характеристик джиттера в стационарных и беспроводных сетях.
- Определить основные причины формирования джиттера.
- Определить статистические характеристики нестационарности джиттера и произвести классификацию нестационарных явлений задержки.
- Обосновать и разработать математическую модель джиттера, позволяющую отображать динамику нестационарных изменений состояний сетевой задержки.
- Разработать алгоритмы стохастической оценки параметров джиттера и управления с целью его минимизации.
- Разработать практические предложения по выбору параметров и мест установки потокового агента минимизации джиттера на границе стационарной и мобильной сети.

Научная новизна полученных результатов

- Получены более общие результаты анализа состояния составных каналов связи, включая мобильную и стационарную компоненту, выявлены причины возникновения нестационарностей и большого разброса параметров джиттера. Проанализированы механизмы формирования джиттера в гибридных сетях, получены статистические данные характеристик джиттера.
- Разработана более общая, по сравнению с известными, адекватная нестационарная математическая модель задержки прибытия пакетов, позволяющая учитывать засоренность представления наблюдаемого процесса случайными выбросами и скачками.
- Разработан новый адаптивный метод компенсации джиттера на базе робастных процедур инвариантных к распределению вероятностей процесса задержки.
- Разработаны новые рекомендации по применению буфера компенсации джиттера в сетях LTE на основе потоковых агентов, устанавливаемых на границе проводной и беспроводной сети.

В результате анализа состояния составных каналов связи, включая мобильную и стационарную компоненту, выявлены причины возникновения нестационарностей и большого разброса параметров джиттера. Проанализированы механизмы формирования джиттера в гибридных сетях, получены статистические данные характеристик джиттера.

Градация типов джиттера

Основные типы джиттера:

- Постоянный джиттер;
- Джиттер содержащий выбросы задержки;
- Джиттер содержащий скачки задержки.
- Смешанный джиттер содержащий выбросы и скачки задержки.

Причины возникновения джиттера

Причины возникновения джиттера характерные для стационарных сетей:

- Пакетное планирование на стороне отправителя (тип 1);
- Перегрузка в локальной сети (тип 2);
- Перегрузки в канале доступа (тип 3);
- Распределение нагрузки между несколькими линиями доступа или сервис-провайдерами (тип 1);
- Распределение нагрузки между несколькими маршрутами(тип 1);
- Неравномерное внутреннее разделение нагрузки в маршрутизаторах (тип 1);
- Влияние высокоприоритетного служебного трафика на менее приоритетный (тип 2).

Причины возникновения джиттера характерные для беспроводных сетей:

- Хэндовер (тип 2);
- Изменение расстояния между абонентом и базовой станцией (перемешение абонента) (тип 4);
- Внутрисистемные и внесистемные помехи (тип 4);
- Замирания в канале (тип 4).

Обзор архитектуры имитационной модели сети LTE в сетевом симуляторе NS3

Моделирование причин возникновения нестационарного джиттера в сети LTE

Изменение задержки прибытия пакетов при хэндовере между базовыми станциями

Зависимость а) SINR 6) MCS в) размера TBS г) скорости передачи нисходящего канала передачи от расстояния между абонентом и базовой станцией

Зависимость джиттера от расстояния до источника внутрисистемной помехи

Зависимость пакетных потерь от расстояния до источника внутрисистемной помехи

10/10//12/12/2

Разработана более адекватная общая, по сравнению с известными, нестационарная математическая модель задержки прибытия пакетов, позволяющая учитывать засоренность представления наблюдаемого процесса случайными выбросами и скачками.

Синтез математической модели процесса задержки

Уравнение состояния системы:

$$x(k+1) = \Phi x(k) + G\xi(k), \tag{1}$$

где Φ - коэффициент (в многомерном случае матрица перехода состояний); G - порождающий коэффициент; $\xi(k)$ - порождающая последовательность.

Уравнение наблюдения системы:

$$y(k) = Hx(k) + \nu(k), \tag{2}$$

где $\nu(k)$ - фазовый шум, некоррелированный с процессом $\xi(k)$.

Синтез математической модели процесса задержки

Фазовый шум для уравнения наблюдения процесса, содержащего выбросы:

$$\nu_{re}(k) = (1 - r_v(k))\nu_{id}(k) + r_v(k)\nu_{di}(k), \tag{3}$$

$$P[\nu_{re}(k)] = (1 - \varepsilon)N[0, R_1(k)] + \varepsilon N[0, R_2(k)], \tag{4}$$

где $\nu_{di}(k)$ - случайный процесс выброса, P - плотность распределения вероятностей, $r_v(k)$ - случайная величина, принимающая значения 0 и 1 с вероятностями:

$$P[r_v(k) = 1] = \varepsilon, P[r_v(k) = 0] = 1 - \varepsilon, ||R_2|| >> ||R_1||.$$
 (5)

Синтез математической модели процесса задержки

Порождающая последовательность для уравнения состояния процесса, содержащего скачки:

$$\xi_{re}(k) = (1 - r_s(k))\xi_{id}(k) + r_s(k)\xi_{di}(k),$$
 (6)

$$P[\xi_{re}(k)] = (1 - \varepsilon)N[0, R_3(k)] + \varepsilon N[0, R_4(k)], \tag{7}$$

где $\xi_{di}(k)$ - случайный процесс скачка, $r_s(k)$ - случайная величина, принимающая значения 0 и 1 с вероятностями:

$$P[r_s(k) = 1] = \varepsilon, P[r_s(k) = 0] = 1 - \varepsilon, ||R_2|| >> ||R_1||.$$
 (8)

Моделирование последовательностей задержек

Моделирование ряда задержек а) с выбросами, б) со скачками

Третий научный результат

Разработан новый адаптивный метод компенсации джиттера на базе робастных процедур инвариантных к распределению вероятностей процесса задержки.

Фильтр Калмана-Бьюси (ФКБ)

ФКБ синтезирован с учетом того, что наблюдаемый процесс соответствует уравнению (1) и наблюдается на фоне гауссовского белого шума. Уравнение оценки в виде условного среднего значения задержки с использованием ФКБ имеет вид:

$$\hat{x}(k+1) = \Phi \hat{x}(k) + K(k)\Delta y, \tag{9}$$

где $\Delta y = H\Phi \hat{x}(k) - y(k)$ - невязка, K(k) - коэффициент усиления ФКБ:

$$K(k) = V(k)H^T N_{\nu}^{-1},$$
 (10)

$$V(k) = [I - K(k-1)H(k)]V(k, k-1),$$
(11)

$$V(k, k-1) = \Phi^{T} V(k-1) \Phi + N_{\xi},$$
(12)

где V(k) - апостериорная дисперсия ошибки оценки, V(k,k-1) - априорная дисперсия ошибки оценки, I - единичная матрица.

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + K(k)\Delta y \cdot min\left\{1, \frac{b}{|K(k)\Delta y|}\right\}, \quad (13)$$

где b аргумент, ограничивающий изменение значения функции.

Схема РФКБ для фильтрации случайных процессов содержащих выбросы

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + H(k)[I - H(k)K(k)\Delta y] \times \min\left\{1, \frac{b}{|I - H(k)K(k)\Delta y|}\right\},\tag{14}$$

Схема РФКБ для фильтрации случайных процессов содержащих скачки

Гибридный Робастный Фильтр Калмана-Бьюси

$$\hat{x}(k+1) = \Phi(k+1,k)\hat{x}(k) + (1-\eta)K(k)\Delta y min\left\{1, \frac{b}{|K(k)\Delta y|}\right\} + \eta H(k)[I - H(k)K(k)\Delta y]\left\{1, \frac{b}{|I - H(k)K(k)\Delta y|}\right\},$$
(15)

$$\eta = \begin{cases} 0, \ cond(k) \\ 1, \ cond(k), \end{cases}$$
(16)

где cond(k) - функция, которая определяет, произошел ли скачок задержки:

```
def cond(arr, w. b):
     try:
       arr[-w]
     except IndexError:
       return False
6
     if arr[-w]<b:
       return False
     if w==1 and arr[-w]>=b:
9
       return True
     if k==1 and arr[-w] < b:
10
11
       return False
12
     else:
13
       if cond(arr, w-1, b):
         return True # detected nonstationary delay
14
15
       else ·
16
         return False # no detected nonstationary delay
                                               4 D > 4 A > 4 B > 4 B > B 9 9 9
```

Сравнительный анализ алгоритмов фильтрации

СКО оценки фильтров в разных ситуациях зашумленности

Тип филь-	Условия без	Условия с	Условия со	Условия с
тра	выбросов и	выбросами	скачками	выбросами
	скачков			и скачками
ФКБ	0,1327	0,1722	0,6024	0,2371
РФКБ (для выбросов)	0,1685	0,163	0,6515	0,3052
РФКБ (для скачков)	0,135	0,19	0,5024	0,2630
ГРФКБ	0,139	0,168	0,5523	0,1869

Управления буфером компенсации джиттера (управление состоянием)

Размер буфера Δt^i рассчитывается только для первого пакета каждого речевого потока на основе оценки отклонения $\hat{V}(k)$ от условного среднего значения сетевой задержки:

$$\hat{V}(k) = \alpha \cdot \hat{V}(k-1) + (1-\alpha) \cdot V(k), \tag{17}$$

$$V^{i}(k) = \begin{cases} |\hat{x}(k) - x(k)|, & K(k)\Delta y \le b; \\ V(k-1), & K(k)\Delta y > b, \end{cases}$$
 (18)

$$\Delta t^{i} = \begin{cases} \gamma \cdot \hat{V}^{i-1}, \ \hat{V}^{i-1} \ge \Delta t_{min}; \\ \gamma \cdot \Delta t_{min}, \ \hat{V}^{i-1} < \Delta t_{min}, \end{cases}$$
(19)

где γ - константа для управления процентом отбрасываемых пакетов и задержкой.

Управления буфером компенсации джиттера (управление состоянием)

Блок схема метода управления буфером компенсации джиттера

Управления буфером компенсации джиттера (управление наблюдением)

Метод управления буфером компенсации джиттера с помощью управления наблюдением

Рис. : Зависимость качества передачи речи от вероятности появления выброса задержки

Рис. : Зависимость качества передачи речи от амплитуды выброса задержки

Зависимость качества передачи речи от вероятности появления скачка задержки

Зависимость качества передачи речи от амплитуды скачка задержки

Четвертый научный результат

Разработаны новые рекомендации по применению буфера компенсации джиттера в сетях LTE на основе потоковых агентов, устанавливаемых на границе проводной и беспроводной сети.

Концепции потоковых агентов (ПА)

Блок схема фукционирования потокового агента

ПА позволяет выполнять множество функций для улучшения качества предоставления мультимедийных услуг:

- ПА предоставляет дополнительную обратную связь для контент сервера с границы между проводной и беспроводной частью сети;
- ПА дает возможность определить место пакетной ошибки, что позволяет корректно реагировать на потери и задержки в сети;
- предварительное отбрасывание пакетов, которые передаются сверх возможностей беспроводной сети;
- ретрансляция на прикладном уровне позволяет уменьшить пакетные искажения для приложений не восприимчивых к задержке;
- прямая коррекция ошибок позволяет уменьшить битовые искажения для приложений восприимчивых к задержке.

В рамках диссертационной работы решена актуальная научная задача, которая заключается в повышении качества предоставления мультмедийной информации в гибридных сетях за счет внедрения буфера предварительной компенсации джиттера на границе проводной и беспроводной сети.

- В результате анализа состояния составных каналов связи, включая мобильную и стационарную компоненту, выявлены причины возникновения нестационарностей и большого разброса параметров джиттера. Проанализированы механизмы формирования джиттера в гибридных сетях, получены статистические данные характеристик джиттера.
- Разработана более адекватная общая, по сравнению с известными, нестационарная математическая модель задержки прибытия пакетов, позволяющая учитывать засоренность представления наблюдаемого процесса случайными выбросами и скачками.
- Разработан новый адаптивный метод компенсации джиттера на базе робастных процедур инвариантных к распределению вероятностей процесса задержки.
- Фазработаны новые рекомендации по применению буфера компенсации джиттера в сетях LTE на основе потоковых агентов, устанавливаемых на границе проводной и беспроводной сети.

Основные результаты диссертационной работы отражены в 10 научных трудах, из которых 5 статей опубликованы в специализированных изданиях Украины и 1 статья — в заграничном журнале. Апробация основных результатов проводилась в ходе 4 конференций и форумов.

Полученные результаты внедрены:

- в научно-исследовательской работы №1261-1 «Методи підвищення продуктивності безпроводових мереж наступного покоління»
- В раздел 5.12 книги «Методы научных исследований в телекоммуникациях». Харьков: СМИТ, 2013.
- в учебном процессе кафедры телекоммуникационных систем Харьковского национального университета радиоэлектроники (ХНУРЭ), а именно в дисциплине "Мобильные системы связи" при выполнении лабораторных работ