Visual Perception!

Daniel Anderson Week 4, Class 1

Agenda

- Aesthetic mappings and visual encodings of data
- data/ink ratio
- Some do's and don't's (which are all rules <a>_

Learning Objectives

• Understand how decisions you make may help or hinder comprehension

Disclaimer

I'm not a psychologist

I don't really know/care why we percieve things certain ways.

I mainly care that we do, and that your visualizations should account for them.

Visual Cues

- Position: Numeric. Where in relation to other things?
- Length: Numeric. How big (in one dimension)?
- Angle: Numeric. How wide? Parallel to something else?
- Direction: Numeric. At what slope? In a time series, going up or down?
- **Shape**: *Categorical*. Belonging to which group?
- **Area**: *Numeric*. How big (in two dimensions)?
- Volumne: Numeric. How big (in three dimensions)?
- Shade: Numeric or Categorical. To what extent? How Severely?
- Color: Numeric or Categorical. To what extent? How Severely?

Different ways of encoding data

Other elements to consider

- Text
 - How is the text displayed (e.g., font, face, location)?
 - What is the purpose of the text?
- Transparency
 - Are there overlapping pieces?
 - Can transparency help?
- Type of data
 - Continuous/categorical
 - Which can be mapped to each aesthetic?
 - e.g., shape and line type can only be mapped to categorical data, whereas color and size can be mapped to either.

Talk with a neighbor

How would you encode each column of data?

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3

Scales

A scale defines a unique mapping between data and aesthetics. Importantly, a scale must be one-to-one, such that for each specific data value there is exactly one aesthetics value and vice versa. If a scale isn't one-to-one, then the data visualization becomes ambiguous.

• Which data values correspond to specific aesthetic values?

Basic Scales

Putting it to practice

Alternative representation

Comparison

- Both represent three scales
 - Two position scales (x/y axis)
 - One color scale (categorical for the first, continuous for the second)
- More scales are possible

Additional scales can become lost without high structure in the data

Data ink ratio

What is it?

Above all else, show the data

-Edward Tufte

- Data-Ink Ratio = Ink devoted to the data / total ink used to produce the figure
- Common goal: Maximize the data-ink ratio

Example

• First thought -might be Cool!

Minimize cognitive load

- Empirically, Tufte's plot was **the most difficult** for viewers to interpret.
- Visual cues (labels, gridlines) reduce the data-ink ratio, but can also reduce cognitive load.

Another example

Which do you prefer?

Advice from Wilke

Whenever possible, visualize your data with solid, colored shapes rather than with lines that outline those shapes. Solid shapes are more easily perceived, are less likely to create visual artifacts or optical illusions, and do more immediately convey amounts than do outlines.

Another example

The takeaway?

- It can often be helpful to remove "chart junk"
 - Remove background
 - Unnecessary frills
 - Certainly don't use 3D when it's not clearly warranted

But...

• Infographics can often be more memorable

Quick/easy compromise

In some cases, it may be easy and more memorable to use glyphs instead of points or squares

Install packages

```
install.packages("extrafont")
devtools::install_github("wch/extrafontdb")
devtools::install_github("wch/Rttf2pt1")
devtools::install_github("hrbrmstr/waffle")
```

Create data

Basic plot

Glyph plot

- Download and install fontawesome-webfont.ttf on your machine locally (see here)
- Import new fonts (including glyphs, via font awesome)

use_glyph = "medkit")

```
library(extrafont)
font_import()
loadfonts()

waffle(parts/10,
    rows = 3,
    colors = c("#969696", "#1879bf", "#009bda"),
```


#rstats aren't early morning grinders

the average number of retweets and hashtags per #rstats tweet, by day and time

In general, more hashtags = more retweets. Early morning tweets usually contain more hashtags than tweets later in the day. Fewer people are on twitter at this time, so the apparent effectiveness of hashtags at provoking retweets is reduced. This begs the question: Why do people use more hashtags in the morning?

Hashtags used in the mid-afternoon, when most people are on twitter. are almost twice as effective at provoking retweets! Also. while most days see a single pronounced increase in tweets, Sunday afternoon sees two distinct bumps in #rstats tweets.

A #TidyTuesday adventure
Data from rtweet.info
Analysis @Tanner Koomar
Design @Tanner Koomar
https://github.com/tkoomar/
tidytuesday/blob/master# | 58
work/2019-01-01.md

You can create them!

- Create plots
- Use illustrator or similar to put them together
- Add some annotations
- Consider using glyphs for greater memory

Consider pagedown!

More visual properties

What "pops"?

Where's the blue circle in each plot?

What are we good at perceiving?

Cleveland & McGill's Results

Crowdsourced Results

Ordered data mappings: Ranked

Some things to avoid

Line drawings

As discussed earlier

Much worse

Unnecessary 3D

Much worse

Unnecessary 3D

Horrid example

Used relatively regularly

The left bar is 80; the right is 105

Pie charts

Especially w/lots of categories

Alternative representation

A case for pie charts

- *n* categories low,
- differences are relatively large
- familiar for some audiences

The anatomy of a pie chart

Pie charts are just stacked bar charts with a radial coordinate system

My preference

Or one of these

Dual axes

One exception - if second axis is a direct transformation of the first
 e.g., Miles/Kilometers, Fahrenheit/Celsius

DUAL AXES

More examples

tylervigen.com about | twitter | email | subscribe Spurious correlations Now a ridiculous book! Spurious charts Spurious correlation Fascinating factoids CORRELATION DOES NOT EQUAL CAUSATION • Commentary in the footnotes TYLER VIGEN Amazon | Barnes & Noble | Indie Bound

Truncated axes

TRUNCATED AXIS

The value axis starts at zero. Good.

Not always a bad thing

It is tempting to lay down inflexible rules about what to do in terms of producing your graphs, and to dismiss people who don't follow them as producing junk charts or lying with statistics. But being honest with your data is a bigger problem than can be solved by rules of thumb about making graphs. In this case there is a moderate level of agreement that bar charts should generally include a zero baseline (or equivalent) given that bars encode their variables as lengths. But it would be a mistake to think that a dot plot was by the same token deliberately misleading, just because it kept itself to the range of the data instead.

Scaling issues

AREA SIZED BY SINGLE DIMENSION

Thirty is three times ten, but that third rectangle looks a lot bigger than the first.

Might be trying to inflate significance.

Poor binning choices

ODD CHOICE OF BINNING

Two bins. What's really in the 1+ category?

Might be hiding something.

That's better. It can show more variation.

Conclusions

- Essentially never
 - Use dual axes (produce separate plots instead)
 - Use 3D unnecessarily
- Be wary of
 - Truncated axes
 - Pie charts (usually (always?) use bars instead)
- Do
 - Minimize cognitive load
 - Be as clear as possible