测定空气比热容比

Aozhe Zhang 2313447

2024年5月11日

目录

1	实验	目的	2			
2	2 实验仪器					
3	实验原理					
	3.1	Clement-Desormes 方法测定空气比热容比 γ	2			
4	实验内容和步骤					
5	实验	过程与数据分析	3			
	5.1	原始数据	3			
	5.2	数据处理	4			
	5.3	计算不确定度	4			
	5.4	相对误差	4			
6	分析	与讨论	4			
	6.1	如果从停止打气到读取 p_1' ,以及从停止放气到读取 p_2' 的时间都很短,那么它们分别				
		对测量结果产生什么影响? 若时间都很长, 对测量结果有影响吗? 为什么?	4			
	6.2	现已假定 V_1 、 V_2 分别代表绝热膨胀前、后空气的比容,在此假定下,本实验所考察				
		的热力学系统是什么? 若重新假定绝热膨胀后仍留在 "V"中的那部分空气作为我们				
		所考察的热力学系统,对实验有影响吗?在后一种假定下, V_1 、 V_2 将等于什么?(设容				
		器体积为 V)	5			

1 实验目的

- 1. 学习测定空气比定压热容与比定容热容之比的一种方法。
- 2. 观察热力学过程中状态变化及基本物理规律。
- 3. 学习用传感器精确测定气体压强和温度的原理与方法。

2 实验仪器

FD-NCD-II 空气比热容比测定仪、储气瓶、电流型集成温度传感器 AD590 和扩散硅压力传感器。

3 实验原理

3.1 Clement-Desormes 方法测定空气比热容比 γ

以比大气压 p_a 稍高的压力 p_1 ,向玻璃容器内压入适量空气,并以与外界环境温度 T_e 相等时单位质量的气体体积作为 V_1 ,此时达到状态 I。然后,急速打开放气活塞 "B",使其绝热膨胀,压强降至大气压 p_a ,此时温度小于环境温度,达到状态 II,迅速关闭活塞 "B",并放置一段时间,温度达到环境温度时,此时达到状态 III。

图 1: p-V 图

因状态 $I \rightarrow I$ 的变化是绝热的,故满足泊松公式

$$p_1V_1^{\gamma}=p_{\rm \ a}V_2^{\gamma}$$

$$p_1V_1 = p_2V_2$$

而状态皿与 I' 是等温的, 所以, 玻意耳定律成立, 即消去 V_1 、 V_2 , 并求解得

$$\gamma = \frac{\ln p_1 - \ln p_{\rm a}}{\ln p_1 - \ln p_2} = \frac{\ln(p_1/p_{\rm a})}{\ln(p_1/p_2)}$$

可见, 只要测得压强 p_1 、 p_a p_2 , 就可求出 γ 。如以 p_1' 和 p_2' 分别表示 p_1 与 p_a p_2 与 p_a p_2 与 p_a p_a p_a

$$p_1 = p_a + p_1' p_2 = p_a + p_2'$$

考虑到 $p_a \gg p'_i > p'_2$, 则

$$\ln p_1 - \ln p_a = \ln \frac{p_1}{p_a} = \ln \left(1 + \frac{p_1'}{p_a} \right) \approx \frac{p_1'}{p_a}$$

及

$$\ln p_1 - \ln p_2 = (\ln p_1 - \ln p_a) - (\ln p_2 - \ln p_a) \approx \frac{p_1'}{p_a} - \frac{p_2'}{p_a}$$

所以

$$\gamma = \frac{p_1'}{p_1' - p_2'}$$

4 实验内容和步骤

- 1. 利用内接法连接仪器电路,测定环境温度 T_e 和环境气压 p_a ,开启电源,预热,调节表一至 $0 \mathrm{mV}$ 。
- 2. 顺序完成 I \rightarrow III 的状态变化过程。平稳的向 V 内压入适量气体后关闭进气活塞 A,待表一示数稳定后,记录表一示值 p_1' 和表二示值 T_1 ,之后迅速打开放气活塞 B,待喷气声音停止时立刻关闭,待表一示数稳定后,再记录 p_2' 及 T_2 。
- 3. 在 p_1 数值大致相同的条件下重复实验 8 至 10 次,分别代入公式,求出 γ 及算术平均值。

5 实验过程与数据分析

5.1 原始数据

	東京	南 NANKALI	大 学 INIVERSITY
张冥喆 2313447			Road, Tianjin
	<u>.</u>		epublic of China
Pı'	.7	P2'	1487.2
1 145.6	1487.3	33.0	1401.2
2 153.8	1488.0	36.5	1487.7
3 140.0	1488.3	₹9 33.0	1488.1
4 141.2	1488.7	33.3	1488.4
5 151.7	1489.1	36.2	1 488.6
6 140.4	1489.3	33 · b	1489.0
7 144.3	1489.5	34.0	1489.2
8 148 15a2	1489.7	36	1489.4
9 138.8	1489.9	33.3	1489.6
10 142.5	1490.0.	3 4.7	1489.7
曹江清			

5.2 数据处理

i	p_1'/mV	T_{1i}/mV	p_2'/mV	T_{2i}/mV	$(p_1'-p_2')/mV$	$\gamma = \frac{p_1'}{p_1' - p_2'}$
1	145.6	1487.3	33	1487.2	112.6	1.293072824
2	153.8	1488	36.5	1487.7	117.3	1.311167945
3	140	1488.3	33	1488.1	107	1.308411215
4	141.2	1488.7	33.3	1488.4	107.9	1.308619092
5	151.7	489.1	36.2	1488.6	115.5	1.313419913
6	140.4	1489.3	33.6	1489	106.8	1.314606742
7	144.3	1489.5	34	1489.2	110.3	1.308250227
8	150.2	1489.7	36	1489.4	114.2	1.315236427
9	138.8	1489.9	33.3	1489.6	105.5	1.31563981
10	142.5	1490	34.7	1489.7	107.8	1.321892393
	1.311031659					

答案保留的位数还需要根据不确定度的位数来确定,下面计算不确定度。

5.3 计算不确定度

根据不确定度的公式

$$U_{a\gamma} = t(0.683, 9)S_{\bar{\gamma}}$$

$$S_{\bar{\gamma}} = \sqrt{\frac{\sum_{i=1}^{n} (\gamma_i - \bar{\gamma})^2}{n(n-1)}} = 0.0023998$$

$$U_{a\gamma} = 0.0025$$

故结果表示为

$$\gamma = 1.3110 \pm 0.0025$$

5.4 相对误差

$$E_{\gamma} = \left| \frac{\bar{\gamma} - \gamma_0}{\gamma_0} \right| \times 100\%$$

$$E_{\gamma} = 6.49\%$$

相对误差在 10% 之内, 实验有效。

6 分析与讨论

6.1 如果从停止打气到读取 p'_1 ,以及从停止放气到读取 p'_2 的时间都很短,那么它们分别对测量结果产生什么影响?若时间都很长,对测量结果有影响吗?为什么?

等待时间太短,容器内还没有完全到到稳定的状态,会让 p_1' 的测量值偏大, p_2' 的测量值偏小,增加 γ 的误差。

等待时间太长,容器内都已稳定,但是要考虑散热(室温)的影响,这会让 p_1' 和 p_2' 都偏小,也会影响 γ 的值。

6.2 现已假定 V_1 、 V_2 分别代表绝热膨胀前、后空气的比容,在此假定下,本实验所考察的热力学系统是什么? 若重新假定绝热膨胀后仍留在 "V"中的那部分空气作为我们所考察的热力学系统,对实验有影响吗? 在后一种假定下, V_1 、 V_2 将等于什么?(设容器体积为 V)

本实验考察的热力学系统是容器中的全部空气,其状态变化遵循绝热过程的热力学原理。如果重新定义,系统的质量和能量会发生变化,对实验会有影响。设容器的体积为 V,绝热膨胀前空气的质量为 m,压强为 P_1 ,温度为 T_1 。绝热膨胀后,残留在容器内空气的质量为 m',压强为 P_2 ,温度为 T_2 。根据理想气体状态方程,有:

$$P_1V = mRT_1$$
, $P_2V = m'RT_2$

在这种假定下,

$$V_1 = \frac{V}{m}$$

$$V_2 = \frac{V}{m'}$$