IV-Year-I Semester

GREEN BUILDINGS

L	T	P	C
3	1	0	3

Pre-requisite: Basic knowledge of Building Components, Engineering Physics

Course Objectives:

- 1. This course aims to highlight importance of Energy- Efficient Buildings within the context of Energy issues in the 21st century.
- 2. To familiarize students with the concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. To give a fuller understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. To highlight the importance of Environmental Management as well as Environmental Impact Assessment methods in Energy efficient buildings.

Syllabus

UNIT-I: Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Pollution, Better Buildings, Reducing energy consumption, Low energy design. (10 Hours)

UNIT II: Renewable Energy sources that can be used in Green Buildings – Conventional and Non Conventional Energy, Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photovoltaics, Rainwater Harvesting Climate and Energy, Macro and Microclimate. Indian Examples. (14 Hours)

UNIT III: Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, Grouping of buildings. Building Fabrics- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material. (12 Hours)

UNIT IV: Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modelling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water. (**15 Hours**)

UNIT V: Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED, GRIHA & IGBC Certification for buildings. Ecohomes, Sustainable architecture and urban design – principles of environmental architecture, Benefits of green buildings – Energy Conservation Building code - NBC -Case Studies – Green Buildings in Auroville and Dakshina Chitra, Tamil Nadu, India (**13 Hours**)

TEXT BOOKS:

1. William T. Meyer., Energy Economics and Building Design., New York: McGraw- Hill, Inc Indian Green Building Council

REFERENCE BOOKS:

- 1. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc., Washington, DC.
- 2. Sim Van Der Ryn, Stuart Cowan, "Ecological Design", Island Press (1996).

- 3. Dianna Lopez Barnett, William D. Browning,"A Primer on Sustainable Building", Rocky Mountain Green Development Services.
- 4. The HOK Guidebook to Sustainable Design, Sara Mendler and William Odell, John Wiley.
- 5. David A. Gottfried, Sustainable Building Technical Manual., Public Technology Inc
- 6. Richard D. Rush, . Building System Integration Handbook., New York: John Wiley & Sons
- 7. Ben Farmer & Hentie Louw., Companion to Contemporary Architectural Thought, London & New
- 8. Peter Noever (ed)., Architecture in Transition: Between Deconstruction and New Modernism., Munich: Prestel.

Online references:

- Sustainable Materials and Green Buildings: https://archive.nptel.ac.in/courses/105/102/105102195/
- Renewable Energy and Green Building Entrepreneurship: https://www.coursera.org/learn/renewable-energy-entrepreneurship
- ➤ Indian Green Building Council (Certification course): https://igbc.in/igbc/redirectHtml.htm?redVal=showGreenEducationRatingsystemNosignin

Course Outcomes:

The students will be able to

- CO1: Understand why buildings should be made energy efficient.
- CO2: Have a fuller grasp on Renewable Energy mechanisms such as Passive Solar heating and collection, Photovoltaics, and Ground source heat pumps, and their adaption to green building concepts.
- CO3: Understand the concepts of Site and Climate, Building Form, Building Fabric
- CO4: Understand the concepts of Infiltration and ventilation, Lighting, Heating, Cooling, Energy Management and water conservation.
- CO5: Have the necessary skills to undertake an Environmental Impact Assessment study for Energy Efficient Buildings. They shall be equipped with the associated cutting-edge management strategies too.

BL – Bloom's Taxonomy Levels

1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 - Creating

Micro-Syllabus of Strength of Materials-I

Unit-I: Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Pollution, Better Buildings, Reducing energy consumption, Low energy design. (10 Hours)

Unit	Module	Micro content				
I		Green Buildings within the Indian Context				
		Green building and its relevance				
		Green Building Rating Systems in India				
	Introduction to green	Types of Energy				
	buildings	Energy Efficiency and Pollution				
		Better Buildings				
		Reducing energy consumption				
		Low energy design				

Unit-II:

Renewable Energy sources that can be used in Green Buildings – Conventional and Non Conventional Energy, Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photovoltaics, Rainwater Harvesting, Climate and Energy, Macro and Microclimate. Indian Examples. (14 Hours)

Unit	Module	Micro content				
	Renewable Energy	Conventional Energy				
	sources that can be used in Green Buildings	Non Conventional Energy				
		Passive Solar Heating				
	Solar Energy	Passive Solar collection				
		A passive solar energy strategy				
	Wind and other	Photovoltaics				
	renewable	Solar Photovoltaic Systems				
	Telle wable	Types of Solar PV Generating System				
		Artificial ground water recharge				
	Rainwater Harvesting	Roof top rainwater harvesting				
II		Harvesting in limited rainfall areas				
		Rainwater harvesting for plotted/group housing developments				
	Climate and Energy	Climate and Energy				
		Site and Micro Climate				
		MACRO CLIMATE				
	Macro and Micro Climate	MICRO CLIMATE				
		Micro Climate – Effect of local terrain and Buildings				
		IMPROVING MICRO CLIMATE THROUGH DESIGN				
		Factor affecting micro climate				

Unit-III:

Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, grouping of buildings. Building Fabrics- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material. (12 Hours)

Unit	Module	Micro content				
ш		Building Form Development Plan				
	Building Forms	Building Form, Orientation and Shading				
		Envelope Optimization				
	The annual Denfermance	Enhancement of thermal performance of walls				
	Thermal Performance	Types of thermal insulation materials				

Unit-IV:

Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modelling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

(15 Hours)

Unit	Module	Micro content				
	Infiltration and ventilation	Infiltration				
	inimitation and ventuation	Passive Cooling Techniques				
		Lighting				
IV		Day lighting				
	Lighting	Day lighting and Controls				
		Rainwater Harvesting				
		Window design for natural ventilation				
		SKYLIGHT				

Unit-V: Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED, GRIHA & IGBC Certification for buildings. Ecohomes, Sustainable architecture and urban design – principles of environmental architecture, Benefits of green buildings – Energy Conservation Building code - NBC -Case Studies – Green Buildings in Auroville and Dakshina Chitra, Tamil Nadu, India (**13 Hours**)

Unit	Module	Micro content				
V	Environmental assessment methods for	LEED (Leadership in Energy and Environmental Design				
	buildings (LEED, BREEAM, HQE)	BREEAM (Building Research Establishment Environmental Assessment)				
	Three primary rating systems for Green buildings in India	Green Rating for Integrated Habitat Assessment (GRIHA)				
		Indian Green Building Council (IGBC)				
		Bureau of Energy Efficiency (BEE)				
	Energy efficiency of a building	Energy efficiency of a building				
		Energy efficiency in buildings importance				
		Determining a building's energy performance Energy use indicators				
		Five Principles of an environmental architecture				
		The Energy Conservation Building Code				

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2					1	3		2	1		
CO2	2					1	3		2	1		1
CO3	2		3				3		2	1		2
CO4	2		3			2	3		2	1		2
CO5	2					1	3		2	1		1
