Micaela Floridia - Vanessa Galeano - Leandro Villanueva

CLASIFICACIÓN DE GLIOMAS CON TÉCNICAS DE APRENDIZAJE AUTOMÁTICO

INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO — UNSAM 15-11-2024

INTRODUCCIÓN

D2

PRESENTACIÓN DEL DATASET Y EDA

03 **ENTRENAMIENTO Y EVALUACIÓN DE MODELOS**

LAS CÉLULAS GLIALES

SON CÉLULAS PERTENECIENTES AL SISTEMA NERVIOSO, FUNDAMENTALES PARA EL FUNCIONAMIENTO DEL CEREBRO

SUMINISTRAN NUTRIENTES A LAS NEURONAS

CONTROLAN EL FLUJO SANGUÍNEO EN EL CEREBRO

PRODUCEN MIELINA PARA AISLAR Y PROTEGER LOS AXONES

ELIMINAN DESHECHOS

COMBATEN INFECCIONES

REPARAN Y REGENERAN EL TEJIDO NERVIOSO

IMAGEN: ALGUNAS CÉLULAS GLIALES EN LAS TERMINALES DE 2 NEURONAS

LOS GLIOMAS

SON TUMORES ORIGINADOS EN LAS CÉLUAS GLIALES

EN PARTICULAR NOS CENTRAREMOS EN 2 TIPOS SEGÚN SU GRADO DE MALIGNIDAD

GLIOMAS DE BAJO GRADO (LGG)

MENOS AGRESIVO CRECIMIENTO LENTO MEJOR PRONÓSTICO

GLIOBLASTOMA MULTIFORME (GBM)

MÁS AGRESIVO CRECIMIENTO RÁPIDO E INVASIVO PEOR PRONÓSTICO

LOS GENES

SON UNIDADES DE INFORMACIÓN GENÉTICA. SECCIONES EN EL ADN CON **INSTRUCCIONES PARA DIVERSAS FUNCIONES**

LAS MUTACIONES SON CAMBIOS EN LOS GENES QUE PUEDEN ALTERAR LA FUNCION NORMAL DE UNA CÉLULA E INCIDIR EN EL CANCER

OBTENCION DE ENERGÍA [IDH1]

FRENO AL CRECIMIENTO Y PROLIFERACIÓN CELULAR [PTEN]

ACTIVACIÓN DELCRECIMIENTO Y PROLIFERACIÓN CELULAR [EGFR]

CONTROL DE LA PRODUCCIÓN CELULAR [CIC]

MANTENIMIENTO / REPARACIÓN DEL ADN [ATRX]

AFECCIÓN DE LA APOPTOSIS [TP53]

IMAGEN: CROMOSOMAS [contienen los genes]

OBJETIVOS

- OPTIMIZAR LA IDENTIFICACIÓN DEL TIPO DE GLIOMA UTILIZANDO TÉCNICAS DE APRENDIZAJE AUTOMÁTICO
- ANALIZAR LAS MUTACIONES GENÉTICAS ASOCIADAS PARA MEJORAR EL DIAGNÓSTICO
- FACILITAR UN TRATAMIENTO MÁS PRECISO Y EFECTIVO PARA CADA PACIENTE

PRESENTACIÓN DEL DATASET Y EDA

ORIGEN DEL DATASET

SECUENCIACIÓN — INSTITUCIONES DE INVESTIGACIÓN — DISPONIBILIZACIÓN DE LOS DATOS

CENTROS MÉDICOS EEUU

BIOPSIAS Y DATOS CLÍNICOS DE PACIENTES

CENTROS MÉDICOS CHINA

BIOPSIAS Y DATOS CLÍNICOS DE PACIENTES

ESTE DATASET CONTIENE INFORMACIÓN GENÉTICA Y CLÍNICA DE PACIENTES CON GLIOMAS

COLUMNAS PRINCIPALES

GRADE	INT	[0] GLIOMA DE BAJO GRADO [1] GLIOBLASTOMA MULTIFORME
GENDER	INT	[0] FEMENINO – [1] MASCULINO
AGE_AT_DIAGNOSIS	FLOAT	14~89
RACE	INT	[0] BLANCO – [1] ASIATICO [2] AFROAMERICANO [3] NO REPORTADO
MUTACIONES GENÉTICAS IDH1-TP53-ATRX-PTEN-EGFR-CIC-MUC16-PIK3CA-NF1-PIK3R1-FUBP1-RB1-NOTCH1-BCOR-CSMD3-SMARCA4-GRIN2A-IDH2-FAT4-PDGFRA	INT	[0] NO MUTADO - [1] MUTADO

COMPOSICIÓN DEL DATASET

SIN NA's

DESCRIPCIÓN DEL PROBLEMA

LGG:
GLIOMA DE BAJO GRADO
CLASE 0:
NEGATIVA

GBM:
GLIOBLASTOMA MULTIFORME
CLASE 1:

POSITIVA

MÉTRICAS EXACTITUD

PRECISIÓN

EXHAUSTIVIDAD (RECALL)

IDENTIFICACIÓN CORRECTA DE LOS GBM

MINIMIZACIÓN DE FALSOS NEGATIVOS

MATRIZ DE CORRELACIÓN

	Grade	Age	IDH1	PTEN	ATRX	CIC	EGFR
Grade	1	0.53	-0.71	0.37	-0.31	-0.30	0.24
Age	0.53	1	-0.57	0.26	-0.42	-0.12	0.23
IDH1	-0.71	-0.57	1	-0.39	0.45	0.32	-0.36
PTEN	0.37	0.26	-0.39	1	-0.19	-0.14	0.18
ATRX	-0.31	-0.42	0.45	-0.19	1	-0.17	-0.16
CIC	-0.30	-0.12	0.32	-0.14	-0.17	1	-0.12
EGFR	0.24	0.23	-0.36	0.18	-0.16	-0.12	1

SCATTERPLOT IDH1 y PTEN

MODELOS UTILIZADOS

- ARBOL DE DECISIÓN CON UN ÚNICO ATRIBUTO: IDH1
- ARBOLES DE DECISIÓN CON 2 ATRIBUTOS

ATRIBUTO 1	ATRIBUTO 2		
IDH1	PTEN		
	ATRX		
	EGFR		
	CIC		

TRAIN TEST

- → ÁRBOL DE DECISIÓN CON CINCO ATRIBUTOS: IDH1, PTEN, ATRX, EGFR, CIC.
- → RANDOM FOREST CON TODOS LOS GENES COMO ATRIBUTOS → VALIDACIÓN CRUZADA

BENCHMARK

DUMMY CLASSIFIER (STRATEGY = 'STRATIFIED')

GENERA PREDICCIONES MANTENIENDO LA DISTRIBUCIÓN DE CLASES DEL CONJUNTO DE ENTRENAMIENTO

EXACTITUD [ACCURACY] : 0.52

EXHAUSTIVIDAD [RECALL] : 0.43

PRECISION: 0.41

ARBOL DE DECISIÓN CON 1 ATRIBUTO: IDH1

EXACTITUD [ACCURACY]: 0.85

EXHAUSTIVIDAD [RECALL] : 0.95

PRECISION: 0.74

ARBOL DE DECISIÓN CON 5 ATRIBUTOS: IDH1/PTEN/ATRX/EGFR/CIC

ARBOL DE DECISIÓN CON 5 ATRIBUTOS: IDH1/PTEN/ATRX/EGFR/CIC

RANDOM FOREST CON TODOS LOS ATRIBUTOS [20]

ACCURACY	RECALL	PRECISION
0.86	0.92	0.79
0.86	0.94	0.78
0.85	0.90	0.78
0.88	0.90	0.83
0.85	0.92	0.77
0.86 ± 0.01	0.92 ± 0.01	0.79 ± 0.02

RANDOM FOREST CON TODOS LOS ATRIBUTOS [20]

ATRIBUTO	IMPORTANCIA [%]
IDH1	46.75
PTEN	9.24
ATRX	8.11
CIC	6.59
IDH2	4.70
EGFR	3.45

COMPARATIVA DE MODELOS – AUC ROC

COMPARATIVA DE MÉTRICAS

	ACCURACY	RECALL	PRECISION
ARBOL DE DECISIÓN CON 1 ATRIBUTO: IDH1	0.85	0.95	0.74
ÁRBOL DE DECISIÓN CON 5 ATRIBUTOS: IDH1/PTEN/ATRX/EGFR/CIC	0.87	0.90	0.79
RANDOM FOREST CON TODOS LOS GENES COMO ATRIBUTOS [20]	0.86 ± 0.01	0.92 ± 0.01	0.79 ± 0.02

- → IDH1 MUTADO: LGG
- → IDH1 NO MUTADO: GBM

IDH1 BUEN PREDICTOR

→ OTROS GENES: CONTRIBUCIÓN BAJA COMPARADA CON IDH1.

MODELO ELEGIDO: ÁRBOL DE DECISIÓN CON LA MUTACIÓN DE IDH1 COMO ÚNICO ATRIBUTO (PRIORIZANDO RECALL).

TRABAJO A FUTURO: REPETIR EL ANÁLISIS EXCLUYENDO IDH1, PARA EVALUAR SI OTROS GENES PREDICEN EL GRADO DEL GLIOMA.

MUCHAS GRACIAS!

ESPACIO DE PREGUNTAS

LA CIENCIA NO ES UN LUJO,
ES UNA NECESIDAD PARA EL
PROGRESO DE LA HUMANIDAD

LUIS FEDERICO LELOIR

MODELO CON REGRESIÓN LOGISTICA

Atributo predictor: "Age_at_diagnosis"

Target: "Grade"

Usamos la edad de los pacientes para generar el modelo

ACCURACY	RECALL	PRECISIÓN
0.73	0.64	0.67

Las métricas no son tan buenas como en los otros modelos.

