AMENDMENT TO THE CLAIMS:

The following claim set replaces all prior versions, and listings, of claims in the application:

- (currently amended) Process for making high-performance polyethylene multifilament yarn comprising the steps of
 - a) making a solution of ultra-high molar mass polyethylene in a solvent;
 - b) spinning of the solution through a spinplate containing a plurality of spinholes into an air-gap to form fluid filaments, while applying a draw ratio DR_{fluid} of at least 50, wherein $DR_{fluid} = DR_{sp} \times DR_{ag}$, where DR_{sp} is the draw ratio in the spinholes and DR_{ag} is the draw ratio in the air-gap, with DR_{sp} being greater than 1 and DR_{ag} being at least 1;
 - c) cooling the fluid filaments to form solvent-containing gel filaments;
 - d) removing at least partly the solvent from the filaments; and
 - e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DR_{solid}, wherein
 - each of the spinholes has a geometry comprising a contraction zone having a gradual decrease in diameter from a diameter D_0 to a diameter D_n and a cone angle in the range $\frac{8-17^{\circ}}{2}$, and wherein
 - each of the spinholes further comprises an inflow zone of constant diameter of at least D_0 and a length L_0 , with a length/diameter ratio L_0/D_0 of at least 5.
- 2. (original) Process according to claim 1, wherein the spinplate contains at least 100 spinholes.
- 3. (currently amended) Process according to claim 1, wherein wherein each of the spinholes comprises a zone downstream of the contraction zone having a constant diameter corresponding to diameter D_n and a length L_n with a length/diameter ratio L_n/D_n of from 0 to at most 25.

SIMMELINK et al Serial No. 10/584,235 December 31, 2009

- 4. (previously presented) Process according to claim 1, wherein the cone angle is from 10 to 60°.
- 5. (previously presented) Process according to claim 1, wherein the draw ratio in the spinholes is at least 5.
- 6. (original) Process according to claim 5, wherein the draw ratio in the spinholes is at least 10.
- 7. (previously presented) Process according to claim 3, wherein the length/diameter ratio L_n/D_n is at most 20.
- 8. (previously presented) Process according to claim 7, wherein the length/diameter ratio L_n/D_n is at most 15.
- 9. (canceled)
- 10. (currently amended) Process according to claim [[9]] $\underline{1}$, wherein the length/diameter ratio L_0/D_0 is at least 10.
- 11. (previously presented) Process according to claim 1, wherein the spinplate comprises at least 10 cylindrical spinholes, and wherein each cylindrical spinhole includes an inflow zone of constant diameter D₀ and a length L₀ with a length/diameter ratio L₀/D₀ of at least 10, a downstream zone of constant diameter D_n and a length L_n with a length/diameter ratio L_n/D_n of at most 15, and a contraction zone between the inflow and downstream zones having a gradual decrease in diameter from the diameter D₀ to the diameter D_n with a cone angle in the range of 10-60°.
- 12. (previously presented) Process according to claim 1, wherein the fluid draw ratio DR_{fluid} applied to fluid filaments is at least 100.

SIMMELINK et al Serial No. 10/584,235 December 31, 2009

- 13. (previously presented) Process according to claim 1, wherein step b) comprises spinning a 3-15 mass% solution of linear UHPE of IV 15-25 dl/g through a spinplate containing at least 10 spinholes into an air-gap, the spinholes comprising a contraction zone with a cone angle in the range 10-60° and comprising a zone downstream of the contract zone having a constant diameter D_n and a length L_n with a length/diameter ratio L_n/D_n smaller than 10, while applying a fluid draw ratio DR_{solid} of between 10 and 30.
- 14. (previously presented) Spinplate comprising at least 10 spinholes, wherein each spinhole has a geometry comprising an inflow zone of constant diameter of at least D₀ and a length of L₀ and a length/diameter ratio L₀/D₀ of at least 5, a downstream zone of constant diameter of at least D_n and a length L_n and a length/diameter ratio L_n/D_n of from 0 to 25, and a contraction zone between the inflow and downstream zones having a gradual decrease in diameter from the diameter D₀ of the inflow zone to the diameter D_n of the downstream zone and a cone angle in the range 8-75°.
- 15. (previously presented) Spinplate according to claim 14, comprising at least 100 spinholes.