NÁSKOK DÍKY ZNALOSTEM

PROFINIT

Big Data Science

Petr Paščenko 18. 12. 2018

Osnova

- 1. Co je Data Science
- 2. Statistika
- 3. Strojové učení
- 4. Vizualizace dat
- 5. Data Science úlohy
- 6. Metodika Data Science Projektu
- 7. Role Big Dat v Data Science
- 8. Podobnosti a vztahy
- 9. Detekce podvodů v Internetovém bankovnictví

Co je Data Science?

- Data Science je spojení 4 disciplín
 - Statistika
 - Informatika
 - Strojové učení
 - Vizualizace

Statistika

- Základní otázka:
 - Je za tím něco víc, nebo je to jen náhoda?

- klasifikace, kvantifikace, simulace, predikce
- Jiný pohled: entropie
 - Kolik informace je v datech? Jaký je podíl signálu a šumu?

Number of eggs laid

- Příklady statistických úloh
 - Kolik osob můžu pustit do loďky / výtahu / letadla?
 - Jsou muži chytřejší než ženy?
 - Kdo by vyhrál volby, kdyby se konaly dnes?
 - Má rodinné zázemí vliv na schopnost klienta splatit půjčku?
 - Měl bych skočit z mostu po pozitivním HIV testu?
- Klasická (frekventistická) statistika potřebuje velké soubory dat
- Bayesianisté jsou s více daty přesnější

Power Law Distribution

Number of links (k)

large number of link

Bell Curve

Number of links (k)

Most nodes have

No highly

Strojové učení

- Základní cíl:
 - Napodobit lidský mozek v rutinních činnostech
- Práce s nestrukturovanou informací
 - Obrázky, zvuky, videa, volné texty, sítě…
- Co je pozitivní?
 - Víme, že to jde. Hledáme pouze cestu.
- Příklady ML úloh
 - Strojový překlad mezi jazyky
 - Rozpoznávání obrázků (MNIST)
 - Porozumění mluvenému slovu
 - Autonomní robotika (auta, drony)
 - Analýza sociálních sítí
- Nutnou podmínkou pro strojové učení jsou obrovské datové sady
- Modely jsou v porovnání se statistikou podstatně komplexnější

Vizualizace

Zprostředkovat komplexní multi-dimenzionální informaci člověku

Typologie DS úloh

Klasifikace

- Zařazení objektu do specifické diskrétní třídy
- Je na obrázku pes či kočka? Udělit nebo zamítnout hypotéku? Mám HIV?

> Regrese

- Odhad konkrétní hodnoty (nebo intervalu) cílové proměnné
- Váha na základě výšky. Kolik km ještě ujedu? Jak daleko je objekt?

> Klastrování / Segmentace

- Shlukování objektů a hledání typických zástupců jednotlivých skupin
- Zákaznické segmentace, sociální skupiny, funkční skupiny slov, atd.

Detekce odlehlých pozorování

- Rozpoznání netypických objektů a kvantifikace jejich odlehlosti
- Diagnostika výrobků, bezpečnost a detekce fraudu

OUTLIERS ANALYSIS

Metodika pro Data Science CRISP-DM

Cross Industry Standard Process for Data Mining

Metodika pro Data Science CRISP-DM

Cross Industry Standard Process for Data Mining

1. Business Understanding

Co zákazník potřebuje? Jaká k tomu má data? Jak se pozná úspěch?

Data Understanding

Posbírání dat, exploratorní analýza, kvalita dat, první testy hypotéz.

3. Data Preparation

 Konstrukce datové sady pro modelování. Sestavení, transformace a výběr příznaků, redukce dimenzionality, atd.

4. Modeling

 Aplikace modelovacích technik, výběr modelu, kalibrace parametrů, testování výkonnosti modelu.

5. Evaluation

Vyhodnocení úspěšnosti modelu vzhledem k věcným kritériím.

6. Deployment

 Produkční nasazení modelu v datovém workflow zákzaníka. Vyřešení administrace, údržby, zaškolení, rekalibrace...

Role Big Data technologií v Data Science

- Více dat
 - Větší modelovací sada
 - více objektů, od výběru k celé populaci
 - Širší modelovací sadu
 - více příznaků, podrobnější příznaky (vteřinová měření atd.)
 - Delší historii
 - data za více předchozích let v plné granularitě
- Větší výpočetní výkon
 - Pokročilé modely
 - možnost učit komplikované nelineární modely (konvoluční neuronové sítě)
 - Komplexnější příznaky
 - multimédia, sekvence, texty, atd.
- Od příznaků k podobnostem
 - Dáme mu úvěr, protože: a) hodně vydělává, b) podobní lidé úvěry platí
- Od podobností ke vztahům
 - A se zná s B, protože spolu chodí na oběd

Podobnosti a vztahy

Analýza Finančních Transakcí pomocí BD

- > Vytváříme vyladěné modely pro retailové banky
- Vstup finanční transakce
- > Výstup využitelné informace o klientovi, příznaky, události,
- > Cílem je obohatit stávající obchodní proces o novou znalost

Platby za služby

Salary detector

- > Vstup
 - Finanční transakce typu firma klient
- > Výstup: Identifikované vztahy zaměstnavatel zaměstnanec
- Obchodní využití
 - Rizikové skóre, detekce událostí, podobnosti (c2c/b2b),...
- > Principy
 - Detekce transakčních vzorců, text mining, pokročilá statistika
- Vysoká přesnost i pro
 - Krátké úvazky délka nepřesahující 3 měsíce
 - Nestandardní úvazky (částečné úvazky, práce na živnost, atd.)
 - Firmy s malým počtem zaměstnanců

Detekce domácnosti – Banka/Telco

> Vstup

- Klientské transakce banka (c2c, karetní operace,...)
- Informace ze sítě telco (cdr, lokace, billing)
- Základní demografie (věk, pohlaví, adresa, příjmení,...)
- > Výstup
 - Identifikace členů domácnosti a rodinných vztahů
- Obchodní využití
 - Rodinný marketing, robustní rizikové skóre,...
- > Principy
 - Detekce transakčních vzorců, analýza interakcí, text mining

Detekce Fraudu v Intenetovém bankovnictví

Shrnutí úlohy

- > Detekce přístupu pod falešnou identitou s cílem vykrást účet
- Scenář: podvodník překonal 2FA
- > Vstup
 - Běhová data z online bankovnictví (sekvence akcí v klientském sezení).
- > Výstup
 - Identifikovaná fraudulentní sezení
- > Principy
 - Velmi složitý problém, podíl fraudů cca 1:120 000
 - Vyžaduje vícero zřetězených sít
 - Pokročilé statistické modely (detekce lokálních odlehlostí)
- Nastavitelná přesnost (TP/FP), např.: TP: 50% for FP: 0.3%

Klasifikační úloha

- Vstupní data
 - Akce klientů

ID	SESSION ID	DATETIME	ACTION	AMOUNT	RESULT
1234567890	vs3T dGpf	2015-04-03 13:03:58	112		0
1234567890	vs3T dGpf	2015-04-03 13:03:58	130		0
1234567890	vs3T dGpf	2015-04-03 13:04:14	1248		0
1234567890	vs3T dGpf	2015-04-03 13:04:14	120	12400	530
1234567890	vs3T dGpf	2015-04-03 13:07:21	530		0
1234567890	vs3T dGpf	2015-04-03 13:07:38	120	12400	0
1234567890	vs3T dGpf	2015-04-03 13:09:03	68		0

- > Příznakový vektor
 - Statistiky session
 - Délka, čas na akci, …
- Model
 - Klasifikátor

- > Výsledek
 - Ano / Ne

Intenetové bankovnictví

-) Uvažujme banku s milionovou klientskou bází
- Každý klient provede denně v průměru jednu návštěvu v IB
- Denně průměrně 1 000 000 session
- > Z toho zhruba 12% session s platbou
- > 120 000 session s platbou
- > Denně v průměru 1 fraud
- To není moc ;-)

1:120 000

Co nefunguje

- › Klasifikátory učené z dat › ›
 - Nevyvážené třídy
 - NE s úspěšností 99,999%

- Popíšeme typický útok
 - Neexistuje typický útok
 - Příprava na minulou válku

Detekce anomalit

- Podvodník se chová jinak než klient
- Nevíme jak, ale jinak
- Jak poznáte, že někdo nebo něco je divný?
- Lidé nejsou šroubky

Detekce lokálních anomalit

Jak si subjekt stojí vůči svému okolí

Shrnutí postupu

- > Pro každou session spočteme příznakový vektor
 - Příznaky identifikovány na základě datové analýzy
- Porovnání session s ostatními session daného klienta
- > Identifikace podezřelých session k prověření
- Jak hodnotíme výsledek
 - True positive kolik najdeme fraudů
 - False positive kolik musíme prověřit session
- > Podstatnější je false positive
 - Limitovaná lidská kapacita
- Zřetězení více sít
 - Jednoduché heuristiky
 - IP adresy, protiúčty
 - Detekce lokálních odlehlostí
- Paralelizace

Implementační realita

- Pro každou session spočteme příznakový vektor >
 - 100 session za sekundu
- Porovnání session s ostatními session daného klienta
 - až 1000 předchozích session
 - to znamená načíst z databáze 100k řádků za sekundu
 - to znamená přenést po síti cca 20 MB za sekundu
 - to znamená spočítat 100M porovnání za sekundu
- Překračuje kapacity konvenčního řešení
- Úloha je naštěstí snadno paralelizovatelná
 - potřebujeme jen předchozí session daného klienta
 - distribuce záznamů podle klientského čísla
 - distribuované vyhodnocení vrací se jen výsledek

HADOOP + SPARK

Výsledky

Podíl zachycených session podle LOP

- > Pro nalezení 50% podvodů je třeba prošetřit cca 300 transakcí denně
 - Při 120 000 session s platbou denně

Dotazy