Fraud Analytics Assignment

Title: Example-dependent cost-sensitive regression

Group members:

Name: Dindorkar Mayuresh Rajesh

Roll No: CS23MTECH14007

Name: Sanyam Kaul

Roll No: CS23MTECH14011

Name: Shrenik Ganguli
Roll No: CS23MTECH14014

Name: Morey Piyush Prabhakar

Roll No: AI23MTECH14003

In [1]: # Library used for genetic algorithm !pip install pygad

Requirement already satisfied: pygad in c:\users\sanya\anaconda3\lib\site-packages

Requirement already satisfied: cloudpickle in c:\users\sanya\anaconda3\lib\site-pa ckages (from pygad) (2.2.1)

Requirement already satisfied: matplotlib in c:\users\sanya\anaconda3\lib\site-pac kages (from pygad) (3.7.2)

Requirement already satisfied: numpy in c:\users\sanya\anaconda3\lib\site-packages (from pygad) (1.24.3)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\sanya\anaconda3\lib\si te-packages (from matplotlib->pygad) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\users\sanya\anaconda3\lib\site-p ackages (from matplotlib->pygad) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\sanya\anaconda3\lib\s ite-packages (from matplotlib->pygad) (4.25.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\sanya\anaconda3\lib\s ite-packages (from matplotlib->pygad) (1.4.4)

Requirement already satisfied: packaging>=20.0 in c:\users\sanya\anaconda3\lib\sit e-packages (from matplotlib->pygad) (23.1)

Requirement already satisfied: pillow>=6.2.0 in c:\users\sanya\anaconda3\lib\site-packages (from matplotlib->pygad) (9.4.0)

Requirement already satisfied: pyparsing<3.1,>=2.3.1 in c:\users\sanya\anaconda3\l ib\site-packages (from matplotlib->pygad) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\sanya\anaconda3\lib\site-packages (from matplotlib->pygad) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\users\sanya\anaconda3\lib\site-packa ges (from python-dateutil>=2.7->matplotlib->pygad) (1.16.0)

Importing libraries:

```
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
import warnings
```

```
from sklearn.linear_model import LogisticRegression
import seaborn as sns
warnings.filterwarnings("ignore")
import pygad
from scipy.optimize import minimize
```

Utility Functions:

```
def count_labels(data, column_name):
In [3]:
             return data[column_name].value_counts()
In [4]: def plot_bar_chart(label_counts):
            labels = label counts.index.tolist()
            counts = label_counts.values
            plt.bar(np.arange(len(labels)), counts, color=['blue', 'orange'])
            plt.ylabel('Count')
            plt.xlabel('Status')
            plt.title(f'Count of labels in the Status column')
            plt.xticks(np.arange(len(labels)), labels)
            plt.show()
In [5]:
        def perform_scaling(X_train, X_test):
            std_scaler = StandardScaler()
            X_train = std_scaler.fit_transform(X_train)
            X_test = std_scaler.transform(X_test)
            return std_scaler, X_train, X_test
In [6]: # Returns FP, TP, TN, FNC
        def get_cost_matrix_values(Y_train):
            num_of_samples = X_train.shape[0]
            return np.full(num_of_samples, 6), np.full(num_of_samples, 6), np.zeros(num_of_
In [7]:
        def compute_sigmoid(a):
             return 1 / (1 + np.exp(-a))
        def calculate_saving(simple_lr_cost, cost_of_cslr):
In [8]:
             return (simple_lr_cost - cost_of_cslr) / simple_lr_cost
```

Reading the dataset:

```
In [9]: df = pd.read_csv('costsensitiveregression.csv')
    df.head()
```

Out[9]:		NotCount	YesCount	ATPM	PFD	PFG	SFD	SFG	WP	WS	АН	AN	Status	FNC
	0	2	21	0.0	0.000	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0	0.0
	1	23	0	0.0	0.044	0.0	0.0	0.0	0.306179	0.0	0.0	0.0	1	0.0
	2	1	22	0.0	0.000	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0	0.0
	3	5	18	0.0	0.000	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	1	0.0
	4	1	22	0.0	0.000	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0	0.0

```
In [10]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 147636 entries, 0 to 147635
Data columns (total 13 columns):
    Column
            Non-Null Count
                              Dtype
---
0
    NotCount 147636 non-null int64
    YesCount 147636 non-null int64
1
2
    ATPM 147636 non-null float64
3
    PFD
             147636 non-null float64
4
    PFG
             147636 non-null float64
              147636 non-null float64
5
    SFD
              147636 non-null float64
6
    SFG
              147636 non-null float64
7
    WP
8
    WS
              147636 non-null float64
9
    AΗ
              147636 non-null float64
10 AN
              147636 non-null float64
11 Status
              147636 non-null int64
              147636 non-null float64
12
    FNC
```

dtypes: float64(10), int64(3)

memory usage: 14.6 MB

Checking null values in the dataset:

```
In [11]:
          df.isnull().sum()
          NotCount
Out[11]:
          YesCount
                       0
          ATPM
                       0
          PFD
          PFG
                       0
          SFD
                       0
          SFG
                       0
          WP
                       0
          WS
                       0
          AΗ
                       0
                       0
          AN
                       0
          Status
          FNC
                       0
          dtype: int64
```

Count plot for feature 'Status':

```
In [12]: label_counts = count_labels(df, 'Status')
    plot_bar_chart(label_counts)
```

Count of labels in the Status column

Data Pre-processing:

Segregating the dataset into dependant and Independant features:

Segregating dataset into train and test sets:

Scaling the data

Bahnsen's Approach:

Creating cost matrix:

Cost Sensitive Logistic regression Implementation:

$$\begin{split} J^c(\theta) &= \frac{1}{N} \sum_{i=1}^N \bigg(y_i (h_\theta(\textbf{x}_i) C_{TP_i} + (1-h_\theta(\textbf{x}_i)) C_{FN_i}) \\ &+ (1-y_i) (h_\theta(\textbf{x}_i) C_{FP_i} + (1-h_\theta(\textbf{x}_i)) C_{TN_i}) \bigg). \end{split}$$

```
In [17]: TO_AVOID_DIVIDE_BY_ZERO_ERROR = 1e-08
         def cost sensitive logistic regression cost function(Y, Y hat, TP, TN, FP, FN):
                 cost = (1 - Y) * (Y_hat * FP + (1 - Y_hat) * TN)
                 return np.mean(cost + (Y * (Y_hat * TP + (1 - Y_hat) * FN)))
         def calculate_fitness(generation_instance, weights, weight_index):
                 Y_hat = compute_sigmoid(X_train @ weights)
                 return np.reciprocal(cost_sensitive_logistic_regression_cost_function(Y = Y
         class ExampleDependantCostSensitiveRegression():
             def __init__(self, generation_iterations = 20, count_parents_mating = 6, traini
                         type_of_parent_selection = 'sss', per_pop_solutions = 35, number_of
                          per_gene_mutation_percent = 10, type_of_mutation = 'random',
                          printing_function = lambda ga_instance: print('Generation: {} have
                 super(ExampleDependantCostSensitiveRegression, self).__init__()
                 self.type_of_crossover = type_of_crossover
                 self.count_parents_mating = count_parents_mating
                 self.printing_function = printing_function
                 self.training_function = training_function
                 self.per pop solutions = per pop solutions
                 self.number_of_genes = number_of_genes
                 self.generation_iterations = generation_iterations
                 self.type_of_parent_selection = type_of_parent_selection
                 self.per_gene_mutation_percent = per_gene_mutation_percent
                 self.keep_parents = keep_parents
                 self.type_of_mutation = type_of_mutation
             def get genetic instance(self):
                 return pygad.GA(fitness_func = self.training_function, mutation_type = self
                                 parent selection type = self.type of parent selection, sol
                                 on_generation = self.printing_function, num_genes = self.nu
                                 mutation_percent_genes = self.per_gene_mutation_percent)
             def train(self, genetic_instance):
                 genetic_instance.run()
             def get_trained_weights(self, genetic_instance):
                 return genetic instance.best solution()
             def predict(self, X_test, weights):
                 print(X_test.shape)
                 return compute_sigmoid(X_test @ weights)
```

Runnung the genetic algorithm to obtain best weights of cost sensitive logistic regression:

```
In [18]: obj = ExampleDependantCostSensitiveRegression()
    genetic_instance = obj.get_genetic_instance()
    obj.train(genetic_instance)
```

```
Generation: 1 have Fitness value: 0.1785177923840861
         Generation: 2 have Fitness value: 0.23552389919258399
         Generation: 3 have Fitness value: 0.23797253904953258
         Generation: 4 have Fitness value: 0.24101333065378686
         Generation: 5 have Fitness value: 0.24367988868208634
         Generation: 6 have Fitness value: 0.24725999218699146
         Generation: 7 have Fitness value: 0.247991582409019
         Generation: 8 have Fitness value: 0.25082783431455935
         Generation: 9 have Fitness value: 0.2521244468433215
         Generation: 10 have Fitness value: 0.2527666828003852
         Generation: 11 have Fitness value: 0.25375708711372835
         Generation: 12 have Fitness value: 0.2545431708755377
         Generation: 13 have Fitness value: 0.2564385236785665
         Generation: 14 have Fitness value: 0.25750940827977065
         Generation: 15 have Fitness value: 0.2577795767401475
         Generation: 16 have Fitness value: 0.25864999669636574
         Generation: 17 have Fitness value: 0.2591323707833581
         Generation: 18 have Fitness value: 0.260169090703135
         Generation: 19 have Fitness value: 0.26024322265451755
         Generation: 20 have Fitness value: 0.2605248751790192
        trained_weights, _, _ = obj.get_trained_weights(genetic_instance)
In [19]:
         print('Trained weights:', trained_weights)
         predictions = obj.predict(X test, trained weights)
         predictions = np.array([1 if x >= 0.5 else 0 for x in predictions])
         cost_of_cslr = cost_sensitive_logistic_regression_cost_function(Y = Y_test.iloc[:,@
         print("Cost for Cost Sensitive Logistic Regression:", cost_of_cslr)
         Trained weights: [ 5.79669059 -7.0959525
                                                    5.99533002 3.19614711 -0.97488652 2.3
         7395127
           0.29067918 3.14980413 2.49213836 0.32127434 0.0661056 ]
         (29528, 11)
         Cost for Cost Sensitive Logistic Regression: 3.8526688022216202
```

Comparing the results with inbuilt Logistic Regressor of ScikitLearn:

```
In [20]: simple_lr = LogisticRegression()
    simple_lr.fit(X_train, Y_train.iloc[:,0])
    simple_lr_pred = simple_lr.predict(X_test)

simple_lr_pred = np.array([1 if x >= 0.5 else 0 for x in simple_lr_pred])
    simple_lr_cost = cost_sensitive_logistic_regression_cost_function(Y = Y_test.iloc[: print("Cost for Simple (Sklearn's) Logistic Regression:", simple_lr_cost)

Cost for Simple (Sklearn's) Logistic Regression: 27.71167158971146
```

Calculating the cost saving score:

Guhnmann's Approach (Variant A):

```
\int_0^1 a_i \cdot (y_i \cdot (-\log f(g(x_i, \beta)))) df \stackrel{!}{=} c_i
```

```
In [22]: def weighted_logistic_loss(weights, X, y, cost_matrix):
             # Extract model parameters
             w = weights[:-1]
             b = weights[-1]
             # Compute predicted probabilities
             z = np.dot(X, w) + b
             probs = 1 / (1 + np.exp(-z))
             # Compute logistic loss with misclassification costs
             loss = -np.mean(cost_matrix[:, 0] * y[:,0] * np.log(probs + 1e-15) +
                              cost_matrix[:, 1] * y[:,0] * np.log(1 - probs + 1e-15 ) +
                              cost_matrix[:, 2] * (1 - y[:,0]) * np.log(probs + 1e-15 ) +
                             cost_matrix[:, 3] * (1 - y[:,0]) * np.log(1 - probs + 1e-15))
             return loss
In [23]: def cost_sensitive_logistic_regression(X_train, y_train, X_test, y_test, cost_matri
             # Initialize weights (including bias term)
             num_features = X_train.shape[1]
             initial_weights = np.zeros(num_features + 1)
             # Define callback function to print iteration information
             def callback(weights):
                 print(f"Loss: {weighted_logistic_loss(weights, X_train, y_train, cost_matri
             # Minimize the weighted Logistic loss with iteration callback
             res = minimize(weighted_logistic_loss, initial_weights, args=(X_train, y_train,
             weights = res.x
             # Extract optimal weights and bias
             w = weights[:-1]
             b = weights[-1]
             # Predict on test data
             z = np.dot(X test, w) + b
             y pred = np.round(1 / (1 + np.exp(-z)))
             print('Finished')
             return weights
In [24]: # Split features and target variable
```

```
In [24]: # Split features and target variable
X = df.iloc[:, :-2].values # Features (columns 0 to 10)
y = df.iloc[:, -2:].values # Target variable (column 11)

# Standardize features
scaler = StandardScaler()
X = scaler.fit_transform(X)

# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state)

# Define the cost matrix based on your problem
False_positive = np.full(len(y_train), 4)
True_positive = np.full(len(y_train), 4)
True_negative = np.zeros(len(y_train))
cost_matrix = np.column_stack((False_positive, y_train[:,1], True_positive, True_ne
```

```
# Train cost-sensitive logistic regression model
         weights = cost_sensitive_logistic_regression(X_train, y_train, X_test, y_test, cost
         Loss: 18.285193352358363
         Loss: 12.109292869353467
         Loss: 11.605889248016902
         Loss: 10.854695121334833
         Loss: 10.005322628099108
         Loss: 9.938750775096162
         Loss: 9.82102061061701
         Loss: 9.654153797429135
         Loss: 9.413174322729056
         Loss: 9.159201120332899
         Loss: 8.853975828469498
         Loss: 8.630809870690786
         Loss: 8.535067006824622
         Loss: 8.494091806095675
         Loss: 8.477056068355825
         Loss: 8.469877809773024
         Loss: 8.466031656435044
         Loss: 8.462488766571093
         Loss: 8.459722469851604
         Loss: 8.457842755576396
         Finished
        cost_of_cslr = weighted_logistic_loss(weights,X_train, y_train, cost_matrix)
In [25]:
         print("Cost for Cost Sensitive Logistic Regression (Guhnmann's approach):", cost_of
```

```
In [26]:
         Cost for Cost Sensitive Logistic Regression (Guhnmann's approach): 8.4578427555763
         96
```

print("Simple LR score Vs Cost sensitive LR saving (Guhnmann's approach) score:", or In [27]:

> Simple LR score Vs Cost sensitive LR saving (Guhnmann's approach) score: 0.6947913 182286504

Results:

• Ran all the logistic regreession algorithms for 20 epochs

Approach	Average Cost	Savings Score wtr Simple Logistic Regression
Simple Logistic Regression	27.71	NA
Cost Sensitive Logistic Regression (Bahnsen's Approach)	3.93	0.85
Cost Sensitive Logistic Regression (Guhnman's Approach)	8.45	0.69