Bike Share Demand Forecast

November 20, 2019

```
[]: # ----- Step 1a: Define and categorize the problem statement
   # The problem statement is to "Predict the daily bike rental count based on the
    →environmental and seasonal settings"
    # This is clearly a 'Supervised machine learning regression problem' to predict \Box
    \rightarrowa number based on the input features.
    # ----- Step 1a ends here -----
[1]: # -----Step 1b: Import all the required libraries -----
    #---- for data transformations----
       #install.packages("lubridate")
       library(lubridate)
    #--- for EDA Visualizations -----
       #install.packages("corrplot")
       library(corrplot)
       #install.packages("ggplot2")
       library(ggplot2)
       #install.packages("GGally")
       library("GGally")
       #install.packages("qqExtra")
       library(ggExtra)
    #---- for model building----
       library(caret)
       #install.packages("Metrics")
       library(Metrics)
       #install.packages("randomForest")
       library(randomForest)
       #install.packages(gbm)
       library (gbm)
    # ----- Step 1b ends here -----
```

```
The following object is masked from package:base:
      date
   corrplot 0.84 loaded
   Registered S3 method overwritten by 'GGally':
    method from
           ggplot2
     +.gg
   Loading required package: lattice
   Attaching package: Metrics
   The following objects are masked from package:caret:
      precision, recall
   randomForest 4.6-14
   Type rfNews() to see new features/changes/bug fixes.
   Attaching package: randomForest
   The following object is masked from package:ggplot2:
      margin
[2]: # ----- Step 2: Gather the data -----
     # Data is provided as .csv file and already split into Test and Train.
     # The training set is comprised of the first 19 days of each month, while the
    \rightarrowtest set is the 20th to the end of the month.
     # Let's import the data
       bike= read.csv("/Users/snehashrungarpawar/Documents/Master in Data Science/
    →DPA/Project/Data/train.csv", header=TRUE)
       bike_test = read.csv("/Users/snehashrungarpawar/Documents/Master in Data_
    →Science/DPA/Project/Data/test.csv", header=TRUE)
   # ------ Step 2 ends here -----
[]: # ------ Step 3: Data Preparation -----
     # 3a. Analyze Attributes: Check properties of data
     # 3b. Complete Data Perform missing value analysis and Impute if needed
     # 3c. Correct Data: Check for any invalid data points
     # 3d. Create Derived Attributes - Feature Extraction
     # 3e. Convert - Converting data to proper formats
```

Attaching package: lubridate

```
[3]: # 3a. Analyze Attributes: Check properties of data
dim(bike)
str(bike)
head(bike, 10)
# 3a → Inference:
#i. The dataset has 10,886 observations (n=10886) and 12 columns of
type int, num and factor.
#ii. Season, Holiday, Working day and weather are categorical variables.
#ii. temp, atemp, humidity, windspeed, casual, registered and count are
continuous numerical variables.
```

1, 10886 2, 12

```
'data.frame': 10886 obs. of 12 variables:
$ datetime : Factor w/ 10886 levels "2011-01-01 00:00:00",..: 1 2 3 4 5 6 7 8
9 10 ...
$ season
           : int 1 1 1 1 1 1 1 1 1 1 ...
$ holiday : int 0000000000...
$ workingday: int  0 0 0 0 0 0 0 0 0 ...
$ weather : int 1 1 1 1 1 2 1 1 1 1 ...
$ temp
            : num 9.84 9.02 9.02 9.84 9.84 ...
$ atemp
            : num 14.4 13.6 13.6 14.4 14.4 ...
$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...
$ windspeed : num  0  0  0  0  0  ...
$ casual
           : int 3853002118...
$ registered: int 13 32 27 10 1 1 0 2 7 6 ...
          : int 16 40 32 13 1 1 2 3 8 14 ...
$ count
```

datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed
2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000
2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000
2011-01-01 04:00:00	1	0	0	1	9.84	14.395	<i>7</i> 5	0.0000
2011-01-01 05:00:00	1	0	0	2	9.84	12.880	<i>7</i> 5	6.0032
2011-01-01 06:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 07:00:00	1	0	0	1	8.20	12.880	86	0.0000
2011-01-01 08:00:00	1	0	0	1	9.84	14.395	<i>7</i> 5	0.0000
2011-01-01 09:00:00	1	0	0	1	13.12	17.425	76	0.0000

```
[4]: # 3b. Complete Data Perform missing value analysis and Impute if needed
table(is.na(bike))

# 3b → Inference: There are no null values in the dataset. If it had, then
either the rows/columns had to be
# dropped or the null values be imputed based on the % of null values
```

FALSE 130632

```
[]: # 3c. Correct Data: Check for any invalid data points
        # From above observations data doesnot seem to have any invalid datatypes u
     \rightarrow to be handled.
        # Let's check for the outliers in EDA step
[5]: # 3d. Create Derived Attributes - Feature Extraction
          # Lets extract 'date', 'month', 'weekday' and 'year' from 'datetime' columnu
     →as we will be needing it for analysis
          bike$date=as.factor(day(bike$datetime))
          bike$year = as.factor(year(bike$datetime))
          bike$month = as.factor(month(bike$datetime))
          bike$hour = as.factor(hour(bike$datetime))
          bike$wkday = as.factor(wday(bike$datetime))
          bike test$date=as.factor(day(bike test$datetime))
          bike_test$year = as.factor(year(bike_test$datetime))
          bike test$month = as.factor(month(bike test$datetime))
          bike_test$hour = as.factor(hour(bike_test$datetime))
          bike_test$wkday = as.factor(wday(bike_test$datetime))
          # Drop datetime as we have extracted all the above needed information \Box
     \rightarrow from it
          bike = bike[-c(1)]
          bike_test = bike_test[-c(1)]
          head(bike, 5)
          head(bike_test, 5)
      # 3d -> Inference: There are no null values in the dataset. If it had, then
     →either the rows/columns had to be
                         #dropped or the null values be imputed based on the % of
     \rightarrownull values.
```

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casua	l regi	stered
	1	0	0	1	9.84	14.395	81	0	3	13	
	1	0	0	1	9.02	13.635	80	0	8	32	
	1	0	0	1	9.02	13.635	80	0	5	27	
	1	0	0	1	9.84	14.395	75	0	3	10	
	1	0	0	1	9.84	14.395	75	0	0	1	
	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	date	year	month
-	season 1	holiday 0	workingday 1	weather 1	temp 10.66	atemp 11.365	humidity 56	windspeed 26.0027	date 20	year 2011	month 1
-	season 1 1		workingday 1 1	weather 1 1						<u> </u>	month 1 1
-	season 1 1 1 1	0	workingday 1 1 1	weather 1 1 1	10.66	11.365	56	26.0027	20	2011	month 1 1 1
-	season 1 1 1 1	0 0	workingday 1 1 1 1	weather 1 1 1 1 1	10.66 10.66	11.365 13.635	56 56	26.0027 0.0000	20 20	2011 2011	month 1 1 1 1
-	season	0 0 0	workingday 1 1 1 1 1 1	weather 1 1 1 1 1 1 1	10.66 10.66 10.66	11.365 13.635 13.635	56 56 56	26.0027 0.0000 0.0000	20 20 20	2011 2011 2011	month 1 1 1 1 1 1

[6]: # 3e. Convert - Converting data to proper formats

```
# We can clearly see that "season", "holiday", "workingday" and "weather"
 →are categories rather than continous variable.
    # Let's convert them to categories
      names = c("season", "holiday", "workingday", "weather")
      bike[,names] = lapply(bike[,names], factor)
      bike test[,names] = lapply(bike test[,names], factor)
      str(bike)
      str(bike_test)
              ----- Step 3: Data Preparation ends here
'data.frame': 10886 obs. of 16 variables:
           : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 1 1 1 1 1 ...
$ season
$ holiday : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 1 ...
$ workingday: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ weather : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 1 1 1 1 ...
            : num 9.84 9.02 9.02 9.84 9.84 ...
$ temp
            : num 14.4 13.6 13.6 14.4 14.4 ...
$ atemp
$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...
$ windspeed : num  0  0  0  0  0  ...
$ casual
           : int 3853002118...
$ registered: int 13 32 27 10 1 1 0 2 7 6 ...
           : int 16 40 32 13 1 1 2 3 8 14 ...
$ count
$ date
            : Factor w/ 19 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ year
            : Factor w/ 2 levels "2011", "2012": 1 1 1 1 1 1 1 1 1 1 ...
            : Factor w/ 12 levels "1","2","3","4",...: 1 1 1 1 1 1 1 1 1 1 ...
$ month
            : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
$ hour
            : Factor w/ 7 levels "1", "2", "3", "4", ...: 7 7 7 7 7 7 7 7 7 7 ...
$ wkday
'data.frame': 6493 obs. of 13 variables:
           : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 1 1 1 1 1 ...
$ season
$ holiday
            : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ workingday: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 ...
           : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 2 ...
$ weather
$ temp
            : num 10.7 10.7 10.7 10.7 10.7 ...
$ atemp
            : num 11.4 13.6 13.6 12.9 12.9 ...
$ humidity : int 56 56 56 56 56 60 60 55 55 52 ...
$ windspeed : num 26 0 0 11 11 ...
            : Factor w/ 12 levels "20", "21", "22", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
$ date
            : Factor w/ 2 levels "2011", "2012": 1 1 1 1 1 1 1 1 1 1 ...
$ year
            : Factor w/ 12 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ month
            : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
$ hour
            : Factor w/ 7 levels "1", "2", "3", "4", ...: 5 5 5 5 5 5 5 5 5 5 5 ...
$ wkday
```

[]:


```
[60]: # 4a(2). Visualize categorical variables wrt target variable
         par(mfrow=c(3,4))
         ggplot(data = bike, aes(x=season, y=count, fill=as.factor(season))) + | |
      →geom_boxplot() + labs(title="Season vs Count") + theme(legend.title =
      →element blank())
         ggplot(data = bike, aes(x=weather, y=count, fill=as.factor(weather))) +__
      →geom_boxplot() + labs(title="weather vs Count") + theme(legend.title = ___
      →element_blank())
         ggplot(data = bike, aes(x=holiday, y=count, fill=as.factor(holiday))) +
      →geom boxplot() + labs(title="holiday vs Count") + theme(legend.title = | |
      →element blank())
         ggplot(data = bike, aes(x=workingday, y=count, fill=as.factor(workingday)))_u
      →+ geom_boxplot() + labs(title="workingday vs Count") + theme(legend.title = U
      →element_blank())
         ggplot(data = bike, aes(x=year, y=count, fill=as.factor(year))) + u
      →geom boxplot() + labs(title="year vs Count") + theme(legend.title = | |
      →element blank())
         ggplot(data = bike, aes(x=month, y=count, fill=as.factor(month))) + 
      →geom_boxplot() + labs(title="month vs Count") + theme(legend.title = ___
      →element_blank())
         ggplot(data = bike, aes(x=wkday, y=count, fill=as.factor(wkday))) +
      →geom_boxplot() + labs(title="weekday vs Count") + theme(legend.title = u
      →element_blank())
         ggplot(data = bike, aes(x=hour, y=count, fill=as.factor(hour))) + u
      →geom_boxplot() + labs(title="hour vs Count") + theme(legend.title = L
      →element_blank())
         ggplot(data = bike, aes(x=date, y=count, fill=as.factor(day(date)))) + 
      →geom_boxplot() + labs(title="date vs Count") + theme(legend.title = u
      →element blank())
```


Histogram of bike\$count


```
[62]: # 4b(1) ii. Explore correlation between independent continuous variables with

→target variable

plot(bike$temp,bike$count)

plot(bike$atemp,bike$count)

plot(bike$windspeed,bike$count)

plot(bike$humidity,bike$count)
```



```
[66]: # 4b(1) iii. Plot heatmap for correlation matrix (to check for⊔
→multicolinearity)

corr <- as.data.frame(lapply(bike[c(5:8, 11)], as.numeric))

corrplot(cor(corr), method = "color", type='lower')

# Inference:

# i. temp and atemp are highly correlated, we would need to drop one of⊔
→them to remove multicolinearity.

# ii. We can also drop Registered and Casual from our analysis as⊔
→Counts are categorized as Registered and Casual
# and we will be predicting "Count" variable only.
```



```
[67]: # 4b(1) iv. Visualize the relationship among all continuous variables using 

→pairplots

ggpairs(bike[c(5:8)], lower=list(continuous=wrap("smooth", 
→colour="orange")) )
```



```
[69]: # 4b(1).v.2. atemp vs Count

plot_center = ggplot(bike, aes(x=atemp,y=count)) +

geom_point(colour="red") + geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="red")

# Inference: atemp has good correlation with count.
```



```
[70]: # 4b(1).v.3. humidity vs Count

plot_center = ggplot(bike, aes(x=humidity,y=count)) +

geom_point(colour="green") + geom_smooth(method="lm") +

geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="green")

# Inference: Humidity has low correlation with count.
```



```
[71]: # 4b(1).v.4. windspeed vs Count

plot_center = ggplot(bike, aes(x=windspeed,y=count)) +

→geom_point(colour="orange") + geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="orange")
```


[]: # 4b(1) Inferences Summary - Analysis of continous variables

1. Target variable 'count' is almost normally distributed.

2. From correlation with dependent variable "count", we can see that

→ 'casual', 'registered' are very

highly correlated to cnt. Needs to be dropped from the dataset.

3. 'humidity' has low correlation with 'count'. For now, lets keep it.

4. atemp and temp has good correlation with 'count'

5. From heatmap, we can see that atemp and temp are highly correlated.

→ So we need to drop 1 to remove multicollinearity.

6. Since, as seen from jointplot, p(atemp) < p(temp), we can drop

→ 'temp' and retain 'atemp' in the dataset.

```
[72]: # ----- Explore Catogorical Variables-----
         # 4b(2) Explore categorical features
               # i. Check distribution of categorical variables
                ggplot(bike, aes(x=" ",fill=year))+ geom_bar(width = 1)+__
      →coord_polar("y")+labs(title = "year")+theme_void()
                 ggplot(bike, aes(x=" ",fill=month))+ geom_bar(width = 1)+__
      →coord_polar("y")+labs(title = "month")+theme_void()
                bike$season = factor(bike$season)
                ggplot(bike, aes(x=" ",fill=season))+ geom_bar(width = 1)+__

→coord_polar("y")+labs(title = "Season")+theme_void()
                bike$holiday = factor(bike$holiday)
                ggplot(bike, aes(x=" ",fill=holiday))+ geom_bar(width = 1)+__

→coord_polar("y")+labs(title = "holiday")+theme_void()

                ggplot(bike, aes(x=" ",fill=wkday))+ geom_bar(width = 1)+__
      →coord_polar("y")+labs(title = "weekday")+theme_void()
                bike$workingday = factor(bike$workingday)
                ggplot(bike, aes(x=" ",fill=workingday))+ geom_bar(width = 1)+__
      →coord_polar("y")+labs(title = "workingday")+theme_void()
                bike$weather = factor(bike$weather)
                ggplot(bike, aes(x=" ",fill=weather))+ geom_bar(width = 1)+__
      →coord_polar("y")+labs(title = "weather")+theme_void()
```


month

Season

holiday

weekday

workingday

weather


```
position=position_dodge(),
        ) +
        labs(title="Histogram for year") + labs(x="year", y="Count")
      ggplot(bike, aes(x=month, y=count, fill=month)) +
        stat_summary(
          fun.y=median,
          geom='bar',
          position=position_dodge(),
        ) +
        labs(title="Histogram for month") + labs(x="month", y="Count")
      ggplot(bike, aes(x=holiday, y=count, fill=holiday)) +
        stat_summary(
          fun.y=median,
          geom='bar',
          position=position_dodge(),
              labs(title="Histogram for holiday") +labs(x="holiday", __
ggplot(bike, aes(x=wkday, y=count, fill=wkday)) +
        stat summary(
          fun.y=median,
          geom='bar',
          position=position_dodge(),
        ) +
              ggplot(bike, aes(x=workingday, y=count, fill=workingday)) +
        stat_summary(
          fun.y=median,
          geom='bar',
          position=position_dodge(),
        ) +
              labs(title="Histogram for working day") +labs(x="working day", ...

y="Count")
      ggplot(bike, aes(x=weather, y=count, fill=weather)) +
        stat summary(
          fun.y=median,
          geom='bar',
          position=position_dodge(),
        ) + labs(title="Histogram for weather") +labs(x="weather", y="Count")
```



```
[52]: # iii. Explore trends over time ---- exploring some more pairplots

ggplot(bike, aes(x=season, y=count, group=year, color=year)) +
    stat_summary(
    fun.y=mean,
        geom='line'
    ) +
    stat_summary(
    fun.y=mean,
        geom='point'
    ) +
    labs(title="Average Count by Month Across Season") +
    labs(x="Season", y="Count")
```

```
ggplot(bike, aes(x=bike$hour, y=count, group=season, color=season))
      stat_summary(
        fun.y=mean,
        geom='line'
      ) +
      stat_summary(
        fun.y=mean,
        geom='point'
      )+
      labs(title="Average Count By Hour Of The Day Across Season") +
      labs(x="Hour of the Day", y="Count")
    ggplot(bike, aes(x=bike$hour, y=count, group=wkday, color=wkday)) +
      stat_summary(
        fun.y=mean,
        geom='line'
      ) +
      stat summary(
        fun.y=mean,
        geom='point'
      labs(title="Average Count By Hour Of The Day Across Weekdays") +
      labs(x="Hour of the Day", y="Count")
ggplot(bike, aes(x=bike$day, y=count, group=day, color=day)) +
      stat_summary(
        fun.y=mean,
        geom='line'
      ) +
      stat_summary(
        fun.y=mean,
        geom='point'
      )+
      labs(title="Average Count By Day") +
      labs(x="HDay", y="Count")
```


[74]: # 4c. Drop some variables from the dataset based on the analysis so far
drop temp, casual, registered and date
bike_subset = bike[-c(5,9:10, 12)]
head(bike_subset,5)

season	holiday	workingday	weather	atemp	humidity	windspeed	count	year	month	hou
1	0	0	1	14.395	81	0	16	2011	1	0
1	0	0	1	13.635	80	0	40	2011	1	1
1	0	0	1	13.635	80	0	32	2011	1	2
1	0	0	1	14.395	75	0	13	2011	1	3
1	0	0	1	14.395	<i>7</i> 5	0	1	2011	1	4

```
#1.) 'atemp' and 'temp' are very strongly correlated . Drop 'atemp' from the
     →dataset (since it has higher p-value
            #than 'temp')
    #2.) 'date' does not seem to have any affect on count of bikes, it can be
     \rightarrow dropped from the dataset
[]: #-----Part 5 : Model Builing starts here -----
        # 5a. Split data into test and train set
       # 5b. Linear Regression
        # 5c. Random Forest
        # 5d. Gradient Boosting
[7]: # 5a. Split data into test and train set
            sample_size = floor(0.8 * nrow(bike))
            set.seed(1)
            train_index = sample(nrow(bike), size = sample_size)
            train <- bike[train_index, ]</pre>
            test <- bike[-train_index, ]</pre>
[8]: # 5b. Linear Regression
            # Fit Linear Model
            # drop atemp, registered, casual and date
            train_subset = train[-c(6,9:10, 12)]
            test\_subset = test[-c(6,9:10, 12)]
            lm_fit = lm(count ~ ., data = train_subset)
            summary(lm fit)
            # Choosing the best model by AIC in a Stepwise Algorithm
            # The step() function iteratively removes insignificant features from
     \rightarrow the model.
            step(lm_fit)
            summary(lm_fit)
            # Calculate Train RMSLE
            y_act_train <- abs(train_subset$count)</pre>
            y_pred_train <- abs(predict(lm_fit, train_subset))</pre>
            lm_train_RMSLE = rmsle(y_act_train, y_pred_train)
            # Calculate Test RMSLE
            y_act_test <- abs(test_subset$count)</pre>
            y_pred_test <- abs(predict(lm_fit, test_subset))</pre>
            lm_test_RMSLE = rmsle(y_act_test, y_pred_test)
            # Save the results
            lm_results = predict(lm_fit, bike_test)
            hist(lm_results)
```

Call:

lm(formula = count ~ ., data = train_subset)

Residuals:

Min 1Q Median 3Q Max -351.68 -61.47 -7.12 50.93 438.13

Coefficients: (4 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) -84.59331 9.33850 -9.059 < 2e-16 *** < 2e-16 *** 67.39603 7.87769 8.555 season2 < 2e-16 *** season3 76.82918 7.64092 10.055 < 2e-16 *** season4 75.49214 5.62907 13.411 holiday1 11.78025 7.81568 1.507 0.131781 workingday1 14.71109 4.06430 3.620 0.000297 *** -4.705 2.58e-06 *** weather2 -12.587472.67528 weather3 -71.11945 4.47545 -15.891 < 2e-16 *** weather4 -174.84435 100.78681 -1.735 0.082813 . 15.082 < 2e-16 *** temp 5.03023 0.33352 humidity 0.07849 -9.724 < 2e-16 *** -0.76332-3.764 0.000168 *** windspeed -0.54238 0.14408 year2012 86.95570 2.19273 39.656 < 2e-16 *** month2 11.13212 5.39034 2.065 0.038934 * 5.097 3.53e-07 *** month3 29.41766 5.77185 month4 -16.764225.99977 -2.794 0.005215 ** 2.319 0.020431 * 12.64662 5.45402 month5 month6 NΑ NANA NAmonth7 -36.80569 5.57965 -6.596 4.46e-11 *** -5.007 5.64e-07 *** month8 -27.305855.45357 month9 NANANANA21,16010 5.77289 3.665 0.000248 *** month10 month11 1.14471 5.35424 0.214 0.830712 month12 NANANANA hour1 -11.39400 -1.522 0.128115 7.48756 hour2 -24.02145 7.45155 -3.224 0.001270 ** -4.956 7.32e-07 *** hour3 -37.447707.55542 hour4 -38.01239 7.44329 -5.107 3.34e-07 *** hour5 -23.470577.47555 -3.140 0.001697 ** 4.935 8.15e-07 *** hour6 36.59158 7.41431 hour7 170.52864 7.39633 23.056 < 2e-16 *** 311.38508 41.844 < 2e-16 *** hour8 7.44159 < 2e-16 *** hour9 164.73930 7.38202 22.316 15.206 < 2e-16 *** hour10 113.53297 7.46630 hour11 140.80547 7.50670 18.757 < 2e-16 *** hour12 177.90103 7.56740 23.509 < 2e-16 *** hour13 177.19756 7.66452 23.119 < 2e-16 *** hour14 162.02489 7.65093 21.177 < 2e-16 *** hour15 168.32943 7.59391 22.166 < 2e-16 ***

```
hour16
            231.47403
                         7.62564 30.355 < 2e-16 ***
hour17
                        7.66555 50.528 < 2e-16 ***
            387.32373
hour18
            360.43568
                        7.58264 47.534 < 2e-16 ***
hour19
            245.60360
                        7.43058 33.053 < 2e-16 ***
hour20
            164.11798
                         7.51229 21.847 < 2e-16 ***
hour21
                         7.44391 15.315 < 2e-16 ***
            114.00143
hour22
             75.29220
                        7.45039 10.106 < 2e-16 ***
hour23
             37.22724
                         7.37198 5.050 4.51e-07 ***
wkday2
                        4.16184 -2.646 0.008168 **
            -11.01087
wkday3
             -7.87850
                        4.10615 -1.919 0.055054 .
                       4.10701 -1.052 0.292868
wkday4
             -4.32022
             -2.93373
                         4.07082 -0.721 0.471130
wkday5
wkday6
                   NA
                              NA
                                     NA
                                              NA
                                  4.100 4.17e-05 ***
wkday7
             16.38078
                         3.99532
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 100.5 on 8659 degrees of freedom
Multiple R-squared: 0.6936, Adjusted R-squared: 0.6919
F-statistic: 408.3 on 48 and 8659 DF, p-value: < 2.2e-16
Start: AIC=80333.49
count ~ season + holiday + workingday + weather + temp + humidity +
   windspeed + year + month + hour + wkday
Step: AIC=80333.49
count ~ season + holiday + weather + temp + humidity + windspeed +
   year + month + hour + wkday
Step: AIC=80333.49
count ~ holiday + weather + temp + humidity + windspeed + year +
   month + hour + wkday
           Df Sum of Sq
                             RSS
                                   AIC
- holiday
            1
                   1816 87400849 80332
<none>
                         87399033 80333
- windspeed 1
                143031 87542064 80346
- wkday
                 258475 87657508 80347
- humidity
            1
                954493 88353526 80426
            1
                2295989 89695022 80557
- temp
weather
           3 2571101 89970134 80580
- month
           11
                5734773 93133806 80865
           1 15873198 103272230 81785
- year
- hour
           23 100736154 188135187 86964
```

Step: AIC=80331.67

count ~ weather + temp + humidity + windspeed + year + month +

hour + wkday

	Df	Sum of Sq	RSS	AIC
<none></none>			87400849	80332
- windspeed	1	142973	87543822	80344
- wkday	6	265216	87666065	80346
- humidity	1	955401	88356250	80424
- temp	1	2294225	89695074	80555
- weather	3	2569967	89970816	80578
- month	11	5741240	93142089	80864
- year	1	15873066	103273914	81783
- hour	23	100753472	188154320	86963

Call:

lm(formula = count ~ weather + temp + humidity + windspeed +
 year + month + hour + wkday, data = train_subset)

Coefficients:

(Intercept)	weather2	weather3	weather4	temp	humidity
-84.6740	-12.5972	-71.1021	-174.2638	5.0256	-0.7636
windspeed	year2012	month2	month3	month4	month5
-0.5423	86.9553	11.3517	29.6681	50.7423	80.3289
month6	month7	month8	month9	month10	month11
67.7000	40.1953	49.8426	76.9729	96.7900	76.7454
month12	hour1	hour2	hour3	hour4	hour5
75.7494	-11.4051	-24.0201	-37.4611	-38.0175	-23.4766
hour6	hour7	hour8	hour9	hour10	hour11
36.5740	170.5120	311.3926	164.7376	113.5519	140.8194
hour12	hour13	hour14	hour15	hour16	hour17
177.9067	177.2196	162.0334	168.3269	231.4745	387.3397
hour18	hour19	hour20	hour21	hour22	hour23
360.4454	245.6220	164.0973	114.0212	75.2779	37.2276
wkday2	wkday3	wkday4	wkday5	wkday6	wkday7
3.2566	6.8380	10.3442	11.7749	14.6134	16.3761

Call:

lm(formula = count ~ ., data = train_subset)

Residuals:

Min 1Q Median 3Q Max -351.68 -61.47 -7.12 50.93 438.13

Coefficients: (4 not defined because of singularities)

```
Estimate Std. Error t value Pr(>|t|)
                                     -9.059
(Intercept)
              -84.59331
                           9.33850
                                             < 2e-16 ***
               67.39603
                           7.87769
                                      8.555
                                             < 2e-16 ***
season2
                                     10.055
                                             < 2e-16 ***
season3
               76.82918
                           7.64092
season4
               75.49214
                           5.62907
                                     13.411
                                              < 2e-16 ***
                                      1.507 0.131781
holiday1
               11.78025
                           7.81568
workingday1
               14.71109
                           4.06430
                                      3.620 0.000297 ***
weather2
              -12.58747
                           2.67528
                                     -4.705 2.58e-06 ***
weather3
              -71.11945
                           4.47545 -15.891
                                            < 2e-16 ***
weather4
             -174.84435
                         100.78681
                                     -1.735 0.082813 .
                                             < 2e-16 ***
                5.03023
                                     15.082
temp
                           0.33352
                                     -9.724
                                             < 2e-16 ***
humidity
               -0.76332
                           0.07849
                                     -3.764 0.000168 ***
windspeed
               -0.54238
                           0.14408
year2012
               86.95570
                           2.19273
                                     39.656
                                            < 2e-16 ***
month2
               11.13212
                           5.39034
                                      2.065 0.038934 *
month3
                                      5.097 3.53e-07 ***
               29.41766
                           5.77185
month4
              -16.76422
                           5.99977
                                     -2.794 0.005215 **
month5
               12.64662
                           5.45402
                                      2.319 0.020431 *
                                         NA
                                                   NA
month6
                     NA
                                 NA
month7
              -36.80569
                           5.57965
                                     -6.596 4.46e-11 ***
                                     -5.007 5.64e-07 ***
month8
              -27.30585
                           5.45357
month9
                     NA
                                 NA
                                         NA
                                                   NA
month10
               21.16010
                           5.77289
                                      3.665 0.000248 ***
                1.14471
                           5.35424
                                      0.214 0.830712
month11
month12
                     NΑ
                                         NΑ
                                                   NΑ
                                 NA
                                     -1.522 0.128115
hour1
              -11.39400
                           7.48756
                                     -3.224 0.001270 **
hour2
              -24.02145
                           7.45155
hour3
              -37.44770
                           7.55542
                                     -4.956 7.32e-07 ***
hour4
              -38.01239
                           7.44329
                                     -5.107 3.34e-07 ***
hour5
              -23.47057
                           7.47555
                                     -3.140 0.001697 **
hour6
                                      4.935 8.15e-07 ***
               36.59158
                           7.41431
hour7
              170.52864
                           7.39633
                                     23.056
                                              < 2e-16 ***
hour8
              311.38508
                           7.44159
                                     41.844
                                              < 2e-16 ***
                                     22.316
                                             < 2e-16 ***
hour9
              164.73930
                           7.38202
                                              < 2e-16 ***
hour10
              113.53297
                           7.46630
                                     15.206
hour11
              140.80547
                           7.50670
                                     18.757
                                              < 2e-16 ***
hour12
              177.90103
                           7.56740
                                     23.509
                                              < 2e-16 ***
hour13
              177.19756
                           7.66452
                                     23.119
                                              < 2e-16 ***
                                              < 2e-16 ***
hour14
              162.02489
                           7.65093
                                     21.177
hour15
              168.32943
                           7.59391
                                     22.166
                                              < 2e-16 ***
                           7.62564
                                     30.355
                                              < 2e-16 ***
hour16
              231.47403
                                              < 2e-16 ***
hour17
              387.32373
                           7.66555
                                     50.528
                           7.58264
                                     47.534
                                              < 2e-16 ***
hour18
              360.43568
                                              < 2e-16 ***
hour19
              245.60360
                           7.43058
                                     33.053
hour20
              164.11798
                           7.51229
                                     21.847
                                              < 2e-16 ***
hour21
              114.00143
                           7.44391
                                     15.315
                                              < 2e-16 ***
hour22
               75.29220
                           7.45039
                                     10.106
                                             < 2e-16 ***
hour23
               37.22724
                           7.37198
                                      5.050 4.51e-07 ***
```

```
wkday2
           -11.01087
                       4.16184 -2.646 0.008168 **
wkday3
            -7.87850 4.10615 -1.919 0.055054 .
wkday4
            -4.32022
                        4.10701 -1.052 0.292868
wkday5
            -2.93373
                        4.07082 -0.721 0.471130
wkday6
                                    NA
                  NA
                            NA
                                            NA
wkday7
            16.38078
                        3.99532 4.100 4.17e-05 ***
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 100.5 on 8659 degrees of freedom Multiple R-squared: 0.6936, Adjusted R-squared: 0.6919 F-statistic: 408.3 on 48 and 8659 DF, p-value: < 2.2e-16

Warning message in predict.lm(lm_fit, train_subset):
prediction from a rank-deficient fit may be misleadingWarning message in
predict.lm(lm_fit, test_subset):
prediction from a rank-deficient fit may be misleadingWarning message in
predict.lm(lm_fit, bike_test):

[24]: plot(lm_fit)

Warning message:

not plotting observations with leverage one:

Warning message: not plotting observations with leverage one:


```
[12]: mse(y_act_train,y_pred_train)
    rmse(y_act_train,y_pred_train)
    rmsle(y_act_train,y_pred_train)

    mse(y_act_test,y_pred_test)
    rmse(y_act_test,y_pred_test)
    rmsle(y_act_test,y_pred_test)

    9818.80878274557
    99.0899025266731
    1.02779704287991
```

9763.82893890566 98.8120890321911 1.00488949037201

```
[13]: # 5b. Random Forest
             Ntree=500
             Mtry = 5
             myImportance = TRUE
              # Predict Casual Counts
             set.seed(1)
             CasualData <- subset(train, select = -c(count, registered, date, atemp))</pre>
             CasualFit <- randomForest(casual ~ ., data=CasualData, ntree=Ntree, __
      →mtry=Mtry,
                                       importance=myImportance)
              # Predict Registered Counts
             RegisteredData <- subset(train, select = -c(count, casual, date, atemp))</pre>
             RegisteredFit <- randomForest(registered ~ ., data=RegisteredData,__</pre>
      →ntree=Ntree, mtry=Mtry,
                                       importance=myImportance)
[21]: varImpPlot(CasualFit)
             varImp(CasualFit)
             varImpPlot(RegisteredFit)
             varImp(RegisteredFit)
         \#Inference - Casual Fit: season, holiday, windspeed and weather are not \sqcup
      \rightarrow much significant here.
         \#Inference - Registered Fit: season, holiday, windspeed and weekday are not \sqcup
      →much significant here.
```

	Overall
season	17.24307
holiday	20.74985
workingday	37.09054
weather	26.53064
temp	67.45059
humidity	63.02898
windspeed	25.46503
year	101.47007
month	39.38764
hour	192.87762
wkday	28.16724

CasualFit

	Overall
season	31.02606
holiday	17.26589
workingday	58.48382
weather	52.71161
temp	45.31425
humidity	47.63264
windspeed	19.45475
year	253.04092
month	60.28591
hour	323.42262
wkday	39.65462

RegisteredFit


```
# Prediction on train data - Registered users
                 PredTrainRegistered = round(predict(RegisteredFit, train),0)
                 PredTrainRegisteredFinal = round(predict(RegisteredFitFinal, ____
      →train),0)
                 # Sum up Casual and Registered to get Total Count
                 PredTrainCount = PredTrainCasual+PredTrainRegistered
                 PredTrainCountFinal = PredTrainCasualFinal+PredTrainRegisteredFinal
                 # Calculate Train RMSLE
                 rf_train_rmsle_full = rmsle(train$count, PredTrainCount)
                 rf_train_rmsle2_reduced = rmsle(train$count, PredTrainCountFinal)
             # Prediction on test data
                 # Prediction on test data - casual users
                 PredTestCasual = round(predict(CasualFit, test),0)
                 PredTestCasualFinal = round(predict(casualFitFinal, test),0)
                 # Prediction on test data - registered users
                 PredTestRegistered = round(predict(RegisteredFit, test),0)
                 PredTestRegisteredFinal = round(predict(RegisteredFitFinal, test),0)
                 # Sum up Casual and Registered to get Total Count
                 PredTestCount = PredTestCasual+PredTestRegistered
                 PredTestCountFinal = PredTestCasualFinal+PredTestRegisteredFinal
                 # Calculate Train RMSLE
                 rf_test_rmsle_full = rmsle(test$count, PredTestCount)
                 rf_test_rmsle2_reduced = rmsle(test$count, PredTestCountFinal)
[26]: cat("Training RMSLE - Linear Regression: ", lm_train_RMSLE)
     cat("\nTraining RMSLE - Random Forest (Full Model): ", rf_train_rmsle_full)
     cat("\nTraining RMSLE - Random Forest (Reduced Model): : ", 
     →rf_train_rmsle2_reduced)
     cat("\n\nTest RMSLE - Linear Regression: ", lm_test_RMSLE)
     cat("\nTest RMSLE - Random Forest (Full Model): ", rf_test_rmsle_full)
     cat("\nTest RMSLE - Random Forest (Reduced Model): ", rf_test_rmsle2_reduced)
    Training RMSLE - Linear Regression: 1.027797
    Training RMSLE - Random Forest (Full Model): 0.2561525
    Training RMSLE - Random Forest (Reduced Model): : 0.2147757
    Test RMSLE - Linear Regression: 1.004889
    Test RMSLE - Random Forest (Full Model): 0.4212346
```

Training Data

Error in hist(rf_results, main = "Random Forest Fit"): object

→'rf_results' not found

Traceback:

1. hist(rf_results, main = "Random Forest Fit")


```
[37]: summary(gbm.Casual)
summary(gbm.Registered)

##Inference - gbm Casual: season, holiday, year, windspeed are not muchu
significant here.

##Inference - gbm Registered: holiday, windspeed, season, weather are not muchu
significant here.
```

	var	rel.inf
hour	hour	57.85237775
temp	temp	16.11053055
month	month	10.05511534
humidity	humidity	4.15202731
wkday	wkday	4.05126767
workingday	workingday	3.52722769
weather	weather	1.90563745
windspeed	windspeed	1.10793870
year	year	1.02249663
holiday	holiday	0.19081563
season	season	0.02456529

	var	rel.inf
hour	hour	73.9936471
month	month	5.7223401
workingday	workingday	5.0367884
year	year	3.4921877
wkday	wkday	3.4287371
temp	temp	2.7665790
humidity	humidity	2.5423855
weather	weather	1.4728776
season	season	0.8166783
windspeed	windspeed	0.5150276
holiday	holiday	0.2127515


```
[38]: gbm.CasualFinal <- gbm(log1p(casual) ~ hour + workingday + temp + month + □

→wkday + humidity + weather,

data=CasualData, distribution= "gaussian",n.

→trees=gbmtree,interaction.depth=iDepth)

gbm.RegisteredFinal <- gbm(log1p(registered) ~ hour + year + workingday + month□

→+ wkday + humidity + temp,

data=RegisteredData, distribution= "gaussian",n.

→trees=gbmtree,interaction.depth=iDepth)

[39]: # Prediction on train data

# Prediction on train data - casual users

gbm.PredTrainCasual <- predict(gbm.Casual, train, n.trees=gbmtree)

gbm.PredTrainCasualFinal <- predict(gbm.CasualFinal, train, n.trees=gbmtree)
```

```
# Prediction on train data - Registered users
     gbm.PredTrainRegistered <- predict(gbm.Registered, train, n.trees=gbmtree)</pre>
     gbm.PredTrainRegisteredFinal <- predict(gbm.RegisteredFinal, train, n.</pre>
      →trees=gbmtree)
     # Sum up Casual and Registered to get Total Count
     gbm.PredTrainCount <- round(exp(gbm.PredTrainCasual) - 1, 0) + round(exp(gbm.</pre>
      →PredTrainRegistered) - 1, 0)
     gbm.PredTrainCountFinal <- round(exp(gbm.PredTrainCasualFinal) - 1, 0) +
      →round(exp(gbm.PredTrainRegisteredFinal) - 1, 0)
     # Calculate Train RMSLE
     gbm.rf_train rmsle_full <- rmsle(train$count, gbm.PredTrainCount)</pre>
     gbm.rf_train_rmsle2_reduced <- rmsle(train$count, gbm.PredTrainCountFinal)</pre>
     # Prediction on test data
     # Prediction on test data - casual users
     gbm.PredTestCasual = predict(gbm.Casual, test, n.trees=gbmtree)
     gbm.PredTestCasualFinal = predict(gbm.CasualFinal, test, n.trees=gbmtree)
     # Prediction on test data - registered users
     gbm.PredTestRegistered = predict(gbm.Registered, test, n.trees=gbmtree)
     gbm.PredTestRegisteredFinal = predict(gbm.RegisteredFinal, test, n.
      →trees=gbmtree)
     # Sum up Casual and Registered to get Total Count
     gbm.PredTestCount = round(exp(gbm.PredTestCasual) - 1, 0) + round(exp(gbm.
      →PredTestRegistered) - 1, 0)
     gbm.PredTestCountFinal = round(exp(gbm.PredTestCasualFinal) - 1, 0) +
      →round(exp(gbm.PredTestRegisteredFinal) - 1, 0)
     # Calculate Test RMSLE
     gbm.rf_test_rmsle_full = rmsle(test$count, gbm.PredTestCount)
     gbm.rf_test_rmsle2_reduced = rmsle(test$count, gbm.PredTestCountFinal)
[75]: gbm.rf_train_rmsle_full
     gbm.rf_train_rmsle2_reduced
     gbm.rf_test_rmsle_full
     gbm.rf_test_rmsle2_reduced
       0.215991634854015
       0.241986515661299
       0.277804015565458
       0.298095056429441
```

Linear Regression

Random Forest

Gradient Boosting


```
[78]: cor(y_act_test, y_pred_test)
cor(test$count, PredTestCountFinal)
cor(test$count, gbm.PredTestCountFinal)
```

0.846726206103257 0.975317861770545

0.970021541913715

Warning message in predict.lm(lm_fit, newdata = test):

2000

Gradient Boosting

Random Forest Fit

Gradient Boosting Fit

[]:[