First Meeting Presentation Project A2

Giulia Mezzadri Ettore Modina Oswaldo Jesus Morales Lopez Federico Angelo Mor Abylaikhan Orynbassar Federica Rena

> Politecnico of Milano Bayesian Statistics course

Project revision of November 23, 2023

A2 project 1 / 35

Presentation Flow

- Project Overview
 Goal and Definition
 Data Exploration
- 2 Models General model construction Models from literature
- 3 Expected workflow
- 4 References
- 5 Text Examples
- 6 Table and Figure Examples
- Mathematics
- 8 Referencing

A2 project 2 / 35

The goal of the project

Goal: Clustering weekly data of one year of PM10 (plus covariates)

Dataset: AGRIMONIA project, at

https://zenodo.org/records/7563265

Spatial Exploration

We have 141 stations, which recorded data for 6 years (from 01/01/2016 to 31/12/2021).

Temporal Exploration

We have 141 stations, which recorded data for 6 years (from 01/01/2016 to 31/12/2021).

Correlation: pm10 and others

We compute the spearman's correlation index between the pm10 and the other covariates, which in the functional framework quantifies with a value in [-1,1] the tendency of 2 r.v. X_t and Y_t to be perfect monotone functions one of each other

Missing value exploration

Plots to identify a general pattern on missing values

Combinations of variables with the most missing values

Missing value exploration

Plot of missing data divided by station to see particular patterns to help select variables
Possible to remove some stations that are not measuring PM10 values

Some columns present missing values in most columns, so we can remove corresponding covariates

Some missing observations concentrated in specific periods such as during last years

Missing value exploration

First selection to remove non informative stations, then count of missing values for column, removing those above a chosen threshold

Latitude	IDStations
0	0
Time	Longitude
0	
AQ_pml0	Altitude
12719	
AQ_co	AQ_pm25
136568 AO nox	136792 AO nh3
AQ_60X 72988	AQ_M15 217548
7,2980 AO 502	21/540 A0 no2
156205	HQ_102 21266
WE wind speed 10m mean	Wt_temp_2m
8	
WE mode wind direction 10m	WE wind speed 10m max
	0
WE_precipitation_t	WE_tot_precipitation
0	0
NE_solar_radiation	WE_surface_pressure
0	0
Wt_rh_mean	Wt_rh_min
	0
WE_wind_speed_100m_mean	NE_rh_max
0 UE mode wind direction 100m	
NE_MODE_HIND_SIPECTION_100H	MI_HINO_Speed_IMMN_Max
WE bih layer min	WE bih layer max
ME_DIN_TAYAL_MIN	wc_ozn_zayer_max
EM_nh3_agr_soils	EM nh3 livestock mm
18325	18325
Et nh3 sum	BM mh3 agr waste burn
38325	38325
DI_nox_sum	EM_mox_traffic
38325	38325
LT_pigs	EM_so2_sum
6576	38325
LT_pigs_v2	LI_bovine
0	6576
LA_Hvi	LI_bovine_v2
LA_land_use	LA_lvi
	LA_soil_use
	LA_1011_U10 136656

Models: a complex task

Considering the nature of the data, our models should account for different levels of information:

- spatial context
- temporal context
- covariates

which is a not-so-trivial task.

Now we see the general incremental idea to build such models.

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat, long)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., ...The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{
ho}(ilde{
ho}) \propto \prod_{h=1}^{k_n} C(ilde{S}_h, oldsymbol{s}_h^\star)$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

A2 project 11 / 35

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat, long)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{
ho}(ilde{
ho}) \propto \prod_{h=1}^{k_n} C(ilde{S}_h, oldsymbol{s}_h^\star)$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat, long)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{\rho}(\tilde{\rho}) \propto \prod_{h=1}^{k_n} C(\tilde{S}_h, \boldsymbol{s}_h^{\star})$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat, long)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{\rho}(\tilde{
ho}) \propto \prod_{h=1}^{k_n} C(\tilde{S}_h, s_h^{\star})$$

where $\tilde{\rho} = {\tilde{S}_1, \dots, \tilde{S}_k}$, $\mathbf{s}_h^{\star} = {\mathbf{s}_i : i \in \tilde{S}_h}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function.

4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ 90

Spatial and temporal model

We have n distinct locations s_1, \ldots, s_n , where $s_i = (\text{lat, long})$. There we record data y_i and (possibly) covariates x_i , for $i = 1, \ldots, n$. The goal is to define a model for partitioning them into k_t groups, with t spanning over $1, \ldots, T$. So we define $\rho_t = \{S_{1,t}, \ldots, S_{k_t,t}\}$ the cluster set variable (with $S_{h,t} \subseteq \{1,\ldots,n\}$ for $h = 1,\ldots,k_t$). In general, the law for ρ_t follows a spatial Product Partition Model

- (sPPM) updated to account for the time relation (stPPM); meaning that we need a formulation of a joint probability model for ρ_1, \ldots, ρ_T . This update can be explicited for example by
 - supposing a Markov Chain structure, letting ρ_t depend just on ρ_{t-1} ;
 - introducing some cluster reallocation variable $\gamma_{i,t} \in \{0,1\}$.

Garritt L. Page, Fernando A. Quintana, David B. Dahl (2022)
Dependent Modeling of Temporal Sequences of Random Partitions. Journal of

Computational and Graphical Statistics, 31:2, 614-627.

 $egin{aligned} Y_{it} | oldsymbol{\mu}_t^{\star}, oldsymbol{\sigma}_t^{2\star}, oldsymbol{c}_t \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(\mu_{c_{it}t}^{\star}, \sigma_{c_{it}t}^{2\star}) & i = 1, \ldots, n \quad \mathsf{and} \quad t = 1, \ldots, T \\ (\mu_{jt}, \sigma_{jt}) | oldsymbol{\theta}_t, au_t^2 \stackrel{\mathsf{ind}}{\sim} \mathcal{N}(oldsymbol{\theta}_t, au_t^2) imes \mathcal{U}(0, A_{\sigma}) & j = 1, \ldots, k_t \\ (oldsymbol{\theta}_t, au_t) \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(\phi_0, \lambda^2) imes \mathcal{U}(0, A_{\sigma}) & t = 1, \ldots, T \\ (\phi_0, \lambda) \sim \mathcal{N}(m_0, s_0^2) imes \mathcal{U}(0, A_{\lambda}) & \\ \{oldsymbol{c}_t, \ldots, oldsymbol{c}_T\} \sim \mathsf{tRPM}(oldsymbol{\alpha}, M) & \mathsf{with} \ lpha_t \stackrel{\mathsf{iid}}{\sim} \mathsf{Beta}(oldsymbol{a}_{\alpha}, b_{\alpha}) & \end{aligned}$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

13 / 35

Adding covariates

Given a partition, now we can easily design models which also account for covariates. For example we can update the previous model into

$$Y_{it}|\boldsymbol{\beta_t^{\star}}, \boldsymbol{\sigma}_t^{2\star}, \boldsymbol{c}_t \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{x}_{it}^{\mathsf{T}} \boldsymbol{\beta}_{c_{it}}^{\star}, \boldsymbol{\sigma}_{c_{it}}^{2\star})$$
$$(\boldsymbol{\beta_{jt}}, \sigma_{jt}) | \theta_t, \tau_t^2 \stackrel{\text{ind}}{\sim} \mathcal{N}(\theta_t, \tau_t^2) \times \mathcal{U}(0, A_{\sigma})$$
$$\vdots$$

or we can further characterize the time dependance with some $\mathsf{AR}(\cdot)$ model

$$Y_{it}|Y_{it-1}, \beta_t^{\star}, \sigma_t^{2\star}, c_t \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_{it}^{\mathsf{T}} \boldsymbol{\beta}_{c_{it}t}^{\star} + Y_{it-1}\eta_i, \sigma_{c_{it}t}^{2\star} (1 - \eta_i)^2)$$

$$Y_{i1}|\beta_1^{\star}, \sigma_1^{2\star}, c_1 \sim \mathcal{N}(\mathbf{x}_{i1}^{\mathsf{T}} \boldsymbol{\beta}_{c_{i1}1}^{2\star}, \sigma_{c_{i1}1}^{2\star})$$

$$\vdots$$

4□ > 4□ > 4□ > 4□ > 4□ > □
9

Mozdzen A., Cremaschi A., Cadonna A., Guglielmi A., Kastner G. (2022)

Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment. Spatial Statistics 52, 100715.

$$\begin{aligned} Y_{it}|\mathbf{x}_{it}, \beta_{s_i}^{\star}, w_{it}, \sigma^2, s_i &\overset{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_{it}^T \beta_{s_i}^{\star} + w_{it}, \sigma^2) \\ \mathbf{w}_t|\mathbf{w}_{t-1}, \boldsymbol{\xi}_{s}^{\star}, \mathbf{s}, \tau^2, \rho, W &\sim \mathcal{N}_I(\operatorname{diag}(\boldsymbol{\xi}_{s}^{\star})\mathbf{w}_{t-1}, \tau^2 Q(\rho, W)^{-1}) \\ \mathbf{w}_1|\tau^2, \rho, W &\sim \mathcal{N}_I(\mathbf{0}, \tau^2 Q(\rho, W)^{-1}) \\ \sigma^2 &\sim \operatorname{Inv-Gamma}(a_{\sigma^2}, b_{\sigma^2}) \\ \tau^2 &\sim \operatorname{Inv-Gamma}(a_{\tau^2}, b_{\tau^2}) \\ \rho &\sim \operatorname{Beta}(\alpha_{\rho}, \beta_{\rho}) \\ \mathbf{s}|\alpha &\sim \operatorname{P\'olyaUrn}(\mathbf{s}|\alpha) \\ \alpha &\sim \operatorname{Gamma}(a_{\alpha}, b_{\alpha}) \\ \phi_1^{\star}, \dots, \phi_{K_I}^{\star}|\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}, \alpha_{\boldsymbol{\xi}}, \beta_{\boldsymbol{\xi}} &\overset{\text{iid}}{\sim} \operatorname{P}_0, \quad \phi_j^{\star} = (\beta_j^{\star}, \boldsymbol{\xi}_j^{\star}) \quad \text{j} = 1, \dots, \mathsf{K}_I \\ \operatorname{P}_0(d\phi^{\star}) &= \mathcal{N}_{\rho+1}(d\beta^{\star}|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \operatorname{Beta}_{(-1,1)}(d\boldsymbol{\xi}^{\star}|\alpha_{\boldsymbol{\xi}}, \beta_{\boldsymbol{\xi}}) \end{aligned}$$

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 夏 ● 夕 ○ ○ ○

A2 project 15 / 35

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

This model works on a graph structure, which incorporates together space and time. That is, from data Y_{jt} for $j=1,\ldots,n$ and $t=1,\ldots,T$, we now move to Y_i for $i\in I=\{1,\ldots,nT\}$ by stacking T times the spatial map. So we have a graph $\mathcal{G}=(V,E)$ of nT nodes and edges built according to time and space connections.

The idea is to search a partition $\pi = \{\mathcal{G}_1, \dots, \mathcal{G}_c\}$ of I (with \mathcal{G}_k subgraphs for \mathcal{G}), on randomly selected spanning trees \mathcal{T} of \mathcal{G} , on which we set cluster-specific parameters $\beta_{\mathcal{G}_1}, \dots, \beta_{\mathcal{G}_c}$.

4 D > 4 D > 4 E > 4 E > E 990

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

$$egin{aligned} Y_i | \mathcal{T}, oldsymbol{\pi}, oldsymbol{eta}_{\mathcal{G}_k} & ec{\sim} f(Y_i | eta_{\mathcal{G}_k}; oldsymbol{x}_i) & i \in \mathcal{G}_k \ eta_{\mathcal{G}_1}, \dots, eta_{\mathcal{G}_c} | \mathcal{T}, oldsymbol{\pi} & \sim \prod_{k=1}^c f(eta_{\mathcal{G}_k}) \ egin{aligned} p(oldsymbol{\pi} = \{ ilde{\mathcal{G}}_1, \dots, ilde{\mathcal{G}}_c\} | \mathcal{T}) & \sim \prod_{k=1}^c \kappa(ilde{\mathcal{G}}_k) \ \mathcal{T} & \sim \mathcal{U}(\mathsf{St}(\mathcal{G})) \end{aligned}$$

18 / 35

Expected workflow

- PM10 covariates analysis (physical/chemical relation)
- First models implementation and comparison
- Implementation of variations of those simple models, or more complex models from literature
- Gif/Video interactive plots for displaying results

References

Garritt L. Page, Fernando A. Quintana, David B. Dahl (2022) Dependent Modeling of Temporal Sequences of Random Partitions. Journal of Computational and Graphical Statistics, 31:2, 614-627.

Mozdzen A., Cremaschi A., Cadonna A., Guglielmi A., Kastner G. (2022) Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment. Spatial Statistics 52, 100715.

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

Paragraphs of Text

Sed iaculis dapibus gravida. Morbi sed tortor erat, nec interdum arcu. Sed id lorem lectus. Quisque viverra augue id sem ornare non aliquam nibh tristique. Aenean in ligula nisl. Nulla sed tellus ipsum. Donec vestibulum ligula non lorem vulputate fermentum accumsan neque mollis.

Sed diam enim, sagittis nec condimentum sit amet, ullamcorper sit amet libero. Aliquam vel dui orci, a porta odio.

— Someone, somewhere. . .

Nullam id suscipit ipsum. Aenean lobortis commodo sem, ut commodo leo gravida vitae. Pellentesque vehicula ante iaculis arcu pretium rutrum eget sit amet purus. Integer ornare nulla quis neque ultrices lobortis.

A2 project 21 / 35

Lists

Bullet Points and Numbered Lists

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus
 - Lorem ipsum dolor sit amet, consectetur adipiscing elit
 - Nam cursus est eget velit posuere pellentesque
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- 1 Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

A2 project 22 / 35

Blocks of Highlighted Text

Block Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue.

Example Block Title

Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan.

Alert Block Title

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci.

A2 project 23 / 35

Multiple Columns

Subtitle

Heading

- Statement
- 2 Explanation
- 3 Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Table Subtitle

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Figure

Figure: Space for a possible image.

Definitions & Examples

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

You can also use the theorem, lemma, proof and corollary environments.

A2 project 27 / 35

Theorem, Corollary & Proof

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Corollary

$$x + y = y + x$$

Proof.

$$\omega + \phi = \epsilon$$

Equation

$$\cos^3 \theta = \frac{1}{4} \cos \theta + \frac{3}{4} \cos 3\theta \tag{1}$$

Verbatim

```
Example (Theorem Slide Code)
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```


Slide without title.

Citing References

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2022, Kennedy, 2023].

32 / 35

References

John Smith (2022)

Publication title

Journal Name 12(3), 45 - 678.

Annabelle Kennedy (2023)

Publication title

Journal Name 12(3), 45 - 678.

Acknowledgements

Smith Lab

- Alice Smith
- Devon Brown

Cook Lab

- Margaret
- Jennifer
- Yuan

Funding

- British Royal Navy
- Norwegian Government

The End

Questions? Comments?