PSG の基準となるはクロック 1.7897725MHz である。 これを 16分周したタイミングで、音程を決めるカウンタを駆動している。 カウンタが 1 進むためにかかる時間 C_t は下記のように求められる。

C_t = 1[sec] / 1.7897725[MHz] * 16[分周] = 16 / 1789772.5[sec]

※この除算の結果の桁数は長くなるので、除算を行わず式のまま考えることにする。

実際に発生したい音が、例えば 440[Hz] だとすれば、1周期分の長さは、 1/440[sec] であり、下記のような波形を期待することになる。

音程を指定するレジスタ設定値は、この 1周期分を「C,が何回分か」という値で指定する ため、下記のように求めることとなる。

- 設定値 = (1/440) / C_t = (1/440) / (16/1789772.5) = 1789772.5/(16*440)

 - = 254.2290482954545454545454545454545

レジスタ設定には、整数しか設定できないため 254 を設定することになる。 0.22904829545... の誤差の分だけ、期待の音程から音が外れることになる。

通常のドレミファソラシドを再現したい場合、事前に下記の演算を行っておき、それをテーブルとして保持しておいて、必要な音階の設定値をテーブルから引っ張ってきてレジスタ設定する方法が一般的である(と思う)。

ド・ド#・レ・レ#・ミ・ファ・ファ#・ソ・ソ#・ラ・ラ#・シ は、周波数でみた場合に等比数列に なっている。

1オクターブあがるとちょうど2倍になる等比数列である。

従って、半音上がるための周波数の倍率は 21/12 倍となる。

また、標準的な音程のラの音は、整数の 440Hz となっているため、ここから必要な 音程のカウント値をすべて求めることができる。

周波数テーブル												
	С	C#	D	D#	E	F	F#	G	G#	Α	A#	В
01	32.7032	34.64783	36.7081	38.89087	41.20344	43.65353	46.2493	48.99943	51.91309	55	58.27047	61.73541
O2	65.40639	69.29566	73.41619	77.78175	82.40689	87.30706	92.49861	97.99886	103.8262	110	116.5409	123.4708
O3	130.8128	138.5913	146.8324	155.5635	164.8138	174.6141	184.9972	195.9977	207.6523	220	233.0819	246.9417
04	261.6256	277.1826	293.6648	311.127	329.6276	349.2282	369.9944	391.9954	415.3047	440	466.1638	493.8833
O5	523.2511	554.3653	587.3295	622.254	659.2551	698.4565	739.9888	783.9909	830.6094	880	932.3275	987.7666
O6	1046.502	1108.731	1174.659	1244.508	1318.51	1396.913	1479.978	1567.982	1661.219	1760	1864.655	1975.533
07	2093.005	2217.461	2349.318	2489.016	2637.02	2793.826	2959.955	3135.963	3322.438	3520	3729.31	3951.066
08	4186.009	4434.922	4698.636	4978.032	5274.041	5587.652	5919.911	6271.927	6644.875	7040	7458.62	7902.133

設定値テーブル												
	С	C#	D	D#	E	F	F#	G	G#	Α	A#	В
01	0xD5C	0xC9D	0xBE7	0xB3C	0xA9B	0xA02	0x973	0x8EB	0x86B	0x7F2	0x780	0x714
02	0x6AE	0x64E	0x5F4	0x59E	0x54D	0x501	0x4B9	0x475	0x435	0x3F9	0x3C0	0x38A
O3	0x357	0x327	0x2FA	0x2CF	0x2A7	0x281	0x25D	0x23B	0x21B	0x1FC	0x1E0	0x1C5
04	0x1AC	0x194	0x17D	0x168	0x153	0×140	0x12E	0x11D	0x10D	0xFE	0xF0	0xE2
O5	0xD6	0xCA	0xBE	0xB4	0xAA	0xA0	0x97	0x8F	0x87	0x7F	0x78	0x71
O6	0x6B	0x65	0x5F	0x5A	0x55	0x50	0x4C	0x47	0x43	0×40	0x3C	0x39
07	0x35	0x32	0x30	0x2D	0x2A	0×28	0×26	0×24	0x22	0×20	0x1E	0x1C
08	0x1B	0x19	0x18	0x16	0x15	0×14	0x13	0x12	0x11	0x10	0xF	0xE

ごらんのように、オクターブ8 にもなると、設定値が小さくなりすぎており、表現したい周波 数に対する誤差が大きくなるため、「音痴になる」現象が生じることを念頭に置いて使わ なければならない。