Домашнее задание

Шевцов А-13а-19

Задание 1

1.
$$L = \{w \in \{a,b,c\}^* : |w|_c = 1\}$$

Решение:

2.
$$L = \{w \in \{a,b\}^* : |w|_a \leq 2, |w|_b \geq 2\}$$

Решение:

3.
$$L = \{w \in \{a,b\}^* : |w|_a
eq |w|_b\}$$

Решение:

$$\overline{L}=\{w\in\{a,b\}^*:|w|_a=|w|_b\}$$

Фиксируем $orall n\in\mathbb{N},w=a^nb^n$ $x=a^i$ $y=a^j$ $z=a^{n-i-j}b^n$

$$egin{aligned} i \geq 0, j > 0, i + j \leq n \ orall n \in \mathbb{N} \ \exists w \in \overline{L} : |w| \geq n, orall xyz : x, y, z \in \Sigma^*, w = xyz, y
eq \lambda, |xy| \leq n \ \exists k = 2 : xy^kz
eq \overline{L} \end{aligned}$$

Таким образом, по лемме о разрастании \overline{L} не является регулярным (а следовательно и L), а это значит и ДКА не может быть построен.

4.
$$L = \{w \in \{a, b\}^* : ww = www\}$$

Решение:

Задание 2

1.
$$L_1 = \{w \in \{a,b\}^* : |w|_a \geq 2 \wedge |w|_b \geq 2\}$$

Решение:

Первый Автомат

$$egin{aligned} L_q &= \{w \in \{a,b\}^*: |w|_a \geq 2\} \ Q_q &= \{q_1,q_2,q_3\} \ T_q &= \{q_3\} \end{aligned}$$

$$\delta_q$$
:

	а	b
q_1	q_2	q_1
q_2	q_3	q_2
q_3	q_3	q_3

Второй Автомат

$$egin{aligned} L_s &= \{w \in \{a,b\}^*: |w|_b \geq 2\} \ S_s &= \{s_1,s_2,s_3\} \ T_s &= \{s_3\} \end{aligned}$$

$$\delta_s$$
:

Прямое произведение

$$L = \{w \in \{a,b\}^*: |w|_a \geq 2 \wedge |w|_b \geq 2\}$$
 Пусть $f_{i|j} = \{q_i,s_j\}$

$$Q = \{f_{1|1}, f_{1|2}, f_{1|3}, f_{2|1}, f_{2|2}, f_{2|3}, f_{3|1}, f_{3|2}, f_{3|3}\} \ T = \{f_{3|3}\}$$

 δ :

	а	b
$f_{1\parallel 1}$	$f_{2\parallel 1}$	$f_{1\parallel 2}$
$f_{1\parallel 2}$	$f_{2\parallel 2}$	$f_{1\parallel 3}$
$f_{1\parallel 3}$	$f_{2\parallel 3}$	$f_{1\parallel 3}$
$f_{2\parallel 1}$	$f_{3\parallel 1}$	$f_{2\parallel 2}$
$f_{2\parallel 2}$	$f_{3\parallel 2}$	$f_{2\parallel 3}$
$f_{2\parallel 3}$	$f_{3\parallel 3}$	$f_{2\parallel 3}$
$f_{3\parallel 1}$	$f_{3\parallel 1}$	$f_{3\parallel 2}$
$f_{3\parallel 2}$	$f_{3\parallel 2}$	$f_{3\parallel 3}$
$f_{3\parallel 3}$	$f_{3\parallel 3}$	$f_{3\parallel 3}$

2.1

2.
$$L_2 = \{w \in \{a,b,c\}^* : |w| \geq 3 \land |w|$$
 нечётное $\}$

Решение:

Первый Автомат

$$egin{aligned} L_q &= \{w \in \{a,b\}^*: |w| \geq 3\} \ Q_q &= \{q_1,q_2,q_3,q_4\} \ T_q &= \{q_4\} \end{aligned}$$

$$\delta_q$$
:

	a	b
q_1	q_2	q_2
q_2	q_3	q_3
q_3	q_4	q_4
q_4	q_4	q_4

Второй Автомат

$$L_s=\{w\in\{a,b\}^*:|w|$$
 нечётное $\}$ $S_s=\{s_1,s_2\}$ $T_s=\{s_2\}$

$$\delta_s$$
:

Прямое произведение

$$L=\{w\in\{a,b,c\}^*:|w|\geq 3 \wedge |w|$$
 нечётное $\}$ Пусть $f_{i|j}=\{q_i,s_j\}$ $Q=\{f_{1|1},f_{1|2},f_{2|1},f_{2|2},f_{3|1},f_{3|2},f_{4|1},f_{4|2}\}$ $T=\{f_{4|2}\}$

 δ :

	a	b
$f_{1\parallel 1}$	$f_{2\parallel 2}$	$f_{2\parallel 2}$
$f_{1\parallel 2}$	$f_{2\parallel 1}$	$f_{2\parallel 1}$
$f_{2\parallel 1}$	$f_{3\parallel 2}$	$f_{3\parallel 2}$
$f_{2\parallel 2}$	$f_{3\parallel 1}$	$f_{3\parallel 1}$
$f_{3\parallel 1}$	$f_{4\parallel 2}$	$f_{4\parallel 2}$
$f_{3\parallel 2}$	$f_{4\parallel 1}$	$f_{4\parallel 1}$
$f_{4\parallel 1}$	$f_{4\parallel 2}$	$f_{4\parallel 2}$
$f_{4\parallel 2}$	$f_{4\parallel 1}$	$f_{4\parallel 1}$

2.2

3.
$$L_3 = \{w \in \{a,b\}^* : |w|_a$$
 чётно $\wedge |w|_b$ кратно трём $\}$

Решение:

Первый Автомат

$$L_q = \{w \in \{a,b\}^* : |w|_a$$
 чётно $\}$ $Q_q = \{q_1,q_2\}$ $T_q = \{q_1\}$

 δ_q :

	a	b
q_1	$oldsymbol{q}_2$	q_1
q_2	q_1	q_2

Второй Автомат

$$L_s = \{w \in \{a,b\}^* : |w|_b$$
 кратно трём $\}$ $S_s = \{s_1,s_2,s_3\}$ $T_s = \{s_1\}$

 δ_s :

	а	b
s_1	s_1	s_2
s_2	s_2	s_3
s_3	s_3	s_1

Прямое произведение

$$L=\{w\in\{a,b\}^*:|w|_a$$
 чётно $\wedge |w|_b$ кратно трём $\}$ Пусть $f_{i|j}=\{q_i,s_j\}$ $Q=\{f_{1|1},f_{1|2},f_{1|3},f_{2|1},f_{2|2},f_{2|3}\}$ $T=\{f_{1|1}\}$

 δ :

	а	b
$f_{1\parallel 1}$	$f_{2\parallel 1}$	$f_{1\parallel 2}$
$f_{1\parallel 2}$	$f_{2\parallel 2}$	$f_{1\parallel 3}$
$f_{1\parallel 3}$	$f_{2\parallel 3}$	$f_{1\parallel 1}$
$f_{2\parallel 1}$	$f_{1\parallel 1}$	$f_{2\parallel 2}$
$f_{2\parallel 2}$	$f_{1\parallel 2}$	$f_{2\parallel 3}$
$f_{2\parallel 3}$	$f_{1\parallel 3}$	$f_{2\parallel 1}$

2.3

4.
$$L_4=\overline{L_3}$$

Решение:

Возьмём автомат L_3 , построенный по произведению и по определению дополнения перестроим его: $L_3=\{\Sigma,Q,S,T,\delta\}$, а $\overline{L_3}=\{\Sigma,Q,S,T_1=Q\backslash T,\delta\}$

 $egin{aligned} Q &= \{f_{1|1}, f_{1|2}, f_{1|3}, f_{2|1}, f_{2|2}, f_{2|3}\} \ T &= \{f_{1|1}\} \ T_1 &= \{f_{1|2}, f_{1|3}, f_{2|1}, f_{2|2}, f_{2|3}\} \end{aligned}$

5.
$$L_4=L_2ackslash L_3$$

Решение:

По определению разности: $L_4=L_2\cap\overline{L_3}$

Первый Автомат

$$L_q=\{w\in\{a,b,c\}^*:|w|\geq 3 \wedge |w|$$
 нечётное $\}$ $Q_q=\{q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_8\}$ $T_q=\{q_8\}$

 δ_q :

	а	b
q_1	q_4	q_4
q_2	q_3	q_3
q_3	q_6	q_6
q_4	q_5	q_5
q_5	q_8	q_8
q_6	q_7	q_7
q_7	$oldsymbol{q}_8$	q_8
q_8	q_7	q_7

Второй Автомат

$$L_s=\overline{L}_3$$
 $L_3=\{w\in\{a,b\}^*:|w|_a$ чётно $\wedge |w|_b$ кратно трём $\}$ $Q_s=\{s_1,s_2,s_3,s_4,s_5,s_6\}$ $T_s=\{s_2,s_3,s_4,s_5,s_6\}$

 δ_s :

	а	b
s_1	s_4	s_2
s_2	s_5	s_3
s_3	s_6	s_1
s_4	s_1	s_5
s_5	s_2	s_6
s_6	s_3	s_4

Прямое произведение

$$L=L_2\cap \overline{L_3}$$

Пусть
$$f_{i|j} = \{q_i, s_j\}$$

 $Q = \{ f_{1|1}, f_{1|2}, f_{1|3}, f_{1|4}, f_{1|5}, f_{1|6}, f_{2|1}, f_{2|2}, f_{2|3}, f_{2|4}, f_{2|5}, f_{2|6}, f_{3|1}, f_{3|2}, f_{3|3}, f_{3|4}, f_{3|5}, f_{3|6}, f_{4|1}, f_{4|2}, f_{4|3}, f_{4|4}, f_{4|5}, f_{4|6}, f_{5|1}, f_{5|2}, f_{5|3}, f_{5|4}, f_{5|5}, f_{5|6}, f_{6|1}, f_{6|2}, f_{6|3}, f_{6|4}, f_{6|5}, f_{6|6}, f_{7|1}, f_{7|2}, f_{7|3}, f_{7|4}, f_{7|5}, f_{7|6}, f_{8|1}, f_{8|2}, f_{8|3}, f_{8|4}, f_{8|5}, f_{8|6} \}$

	a	b
$\overline{ f_1 _1}$	$f_{4\parallel 4}$	$f_{4\parallel 2}$
$f_{1\parallel 2}$	$f_{4\parallel 5}$	$f_{4\parallel 3}$
$f_{1\parallel 3}$	$f_{4\parallel 6}$	$f_{4\parallel 1}$
$f_{1\parallel 4}$	$f_{4\parallel 1}$	$f_{4\parallel 5}$
$f_{1\parallel 5}$	$f_{4\parallel 2}$	$f_{4\parallel 6}$
$f_{1\parallel 6}$	$f_{4\parallel 3}$	$f_{4\parallel 4}$
$f_{2\parallel 1}$	$f_{3\parallel 4}$	$f_{3\parallel 2}$
$f_{2\parallel 2}$	$f_{3\parallel 5}$	$f_{3\parallel 3}$
$f_{2\parallel 3}$	$f_{3\parallel 6}$	$f_{3\parallel 1}$
$f_{2\parallel 4}$	$f_{3\parallel 1}$	$f_{3\parallel 5}$
$f_{2\parallel 5}$	$f_{3\parallel 2}$	$f_{3\parallel 6}$
$f_{2\parallel 6}$	$f_{3\parallel 3}$	$f_{3\parallel 4}$
$f_{3\parallel 1}$	$f_{6\parallel 4}$	$f_{6\parallel 2}$
$f_{3\parallel 2}$	$f_{6\parallel 5}$	$f_{6\parallel 3}$
$f_{3\parallel 3}$	$f_{6\parallel 6}$	$f_{6\parallel 1}$
$f_{3\parallel 4}$	$f_{6\parallel 1}$	$f_{6\parallel 5}$
$f_{3\parallel 5}$	$f_{6\parallel 2}$	$f_{6\parallel 6}$
$f_{3\parallel 6}$	$f_{6\parallel 3}$	$f_{6\parallel 4}$
$f_{4\parallel 1}$	$f_{5\parallel 4}$	$f_{5\parallel 2}$
$f_{4\parallel 2}$	$f_{5\parallel 5}$	$f_{5\parallel 3}$
$f_{4\parallel 3}$	$f_{5\parallel 6}$	$f_{5\parallel 1}$
$f_{4\parallel 4}$	$f_{5\parallel 1}$	$f_{5\parallel5}$
$f_{4\parallel 5}$	$f_{5\parallel 2}$	$f_{5\parallel 6}$
$f_{4\parallel 6}$	$f_{5\parallel 3}$	$f_{5\parallel 4}$
$f_{5\parallel 1}$	$f_{8\parallel 4}$	$f_{8\parallel 2}$
$f_{5\parallel 2}$	$f_{8\parallel 5}$	$f_{8\parallel 3}$
$f_{5\parallel 3}$	$f_{8\parallel 6}$	$f_{8\parallel 1}$
$f_{5\parallel 4}$	$f_{8\parallel 1}$	$f_{8\parallel 5}$

	a	b
$f_{5\parallel 5}$	$f_{8\parallel 2}$	$f_{8\parallel 6}$
$f_{5\parallel 6}$	$f_{8\parallel 3}$	$f_{8\parallel 4}$
$f_{6\parallel1}$	$f_{7\parallel 4}$	$f_{7\parallel 2}$
$f_{6\parallel 2}$	$f_{7\parallel 5}$	$f_{7\parallel 3}$
$f_{6\parallel 3}$	$f_{7\parallel 6}$	$f_{7\parallel 1}$
$f_{6\parallel 4}$	$f_{7\parallel 1}$	$f_{7\parallel5}$
$f_{6\parallel 5}$	$f_{7\parallel 2}$	$f_{7\parallel 6}$
$f_{6\parallel 6}$	$f_{7\parallel 3}$	$f_{7\parallel 4}$
$f_{7\parallel 1}$	$f_{8\parallel 4}$	$f_{8\parallel 2}$
$f_{7\parallel 2}$	$f_{8\parallel 5}$	$f_{8\parallel 3}$
$f_{7\parallel 3}$	$f_{8\parallel 6}$	$f_{8\parallel 1}$
$f_{7\parallel 4}$	$f_{8\parallel1}$	$f_{8\parallel5}$
$f_{7\parallel5}$	$f_{8\parallel 2}$	$f_{8\parallel 6}$
$f_{7\parallel 6}$	$f_{8\parallel 3}$	$f_{8\parallel 4}$
$f_{8\parallel 1}$	$f_{7\parallel 4}$	$f_{7\parallel 2}$
$f_{8\parallel 2}$	$f_{7\parallel5}$	$f_{7\parallel 3}$
$f_{8\parallel 3}$	$f_{7\parallel 6}$	$f_{7\parallel 1}$
$f_{8\parallel 4}$	$f_{7\parallel1}$	$f_{7\parallel5}$
$f_{8\parallel 5}$	$f_{7\parallel 2}$	$f_{7\parallel 6}$
$f_{8\parallel 6}$	$f_{7\parallel 3}$	$f_{7\parallel 4}$

Задание 3

1. $(ab+aba)^*a$

Решение:

Построим НКА с λ по регулярному выражению, удалим λ , получив НКА, детерминируем его. Получили ДКА, уже является минимальным.

2. $a(a(ab)^*b)^*(ab)^*$

Решение:

Построим НКА с λ по регулярному выражению, удалим λ , получив НКА, детерминируем его. Получили ДКА, уже является минимальным.

Задание 4

1.
$$L=\{(aab)^nb(aba)^m:n\geq 0, m\geq 0\}$$

Регулярный. Автомат:

4.1

2.
$$L = \{uaav : u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \geq |v|_a\}$$

Решение:

$$\overline{L}=\{uaav:u\in\{a,b\}^*,v\in\{a,b\}^*,|u|_b<|v|_a\}$$
 Фиксируем $orall n\in\mathbb{N},w=b^naaa^{n+1}$ $x=b^i$ $y=b^j$ $z=b^{n-i-j}aab^{n+1}$ $i\geq 0,j>0,i+j\leq n$ $orall n\in\mathbb{N}$ $\exists w\in\overline{L}:|w|\geq n, \forall xyz:x,y,z\in\Sigma^*,w=xyz,y\neq\lambda,|xy|\leq n$ $\exists k=2:xy^kz
otin \overline{L}$

Таким образом, по лемме о разрастании \overline{L} не является регулярным (а следовательно и L).

3.
$$L = \{a^m w : w \in \{a,b\}^*, 1 \leq |w|_b \leq m\}$$

Решение:

Фиксируем $orall n \in \mathbb{N}, w = a^n b^n$

$$x = a^i$$

$$y = a^j$$

$$z = a^{n-i-j}b^n$$

$$i \geq 0, j > 0, i+j \leq n$$

 $orall n\in\mathbb{N}\ \exists w\in L: |w|\geq n, orall xyz: x,y,z\in\Sigma^*, w=xyz,y
eq\lambda, |xy|\leq n\ \exists k=0: xy^kz
otin L$

Таким образом, по лемме о разрастании L не является регулярным.

4.
$$L = \{a^k b^m a^n : k = n \lor m > 0\}$$

Решение:

Фиксируем $orall n \in \mathbb{N}, w = a^n b a^n$

$$x = a^i$$

$$y = a^j$$

$$z = a^{n-i-j}ba^n$$

$$i \geq 0, j > 0, i + j \leq n$$

$$orall n\in\mathbb{N}\ \exists w\in L: |w|\geq n, orall xyz: x,y,z\in\Sigma^*, w=xyz,y
eq\lambda, |xy|\leq n\ \exists k=2: xy^kz
otin L$$

Таким образом, по лемме о разрастании L не является регулярным.

5.
$$L = \{ucv : u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$$

Решение:

$$\overline{L}=\{ucv:u\in\{a,b\}^*,v\in\{a,b\}^*,u=v^R\}$$
 Фиксируем $orall n\in\mathbb{N},w=a^nca^n$ $x=a^i$ $y=a^j$ $z=a^{n-i-j}ca^n$ $i\geq 0,j>0,i+j\leq n$ $orall n\in\mathbb{N}$ $\exists w\in\overline{L}:|w|\geq n, \forall xyz:x,y,z\in\Sigma^*,w=xyz,y\neq\lambda,|xy|\leq n$ $\exists k=2:xy^kz
otin \overline{L}$

Таким образом, по лемме о разрастании \overline{L} не является регулярным (а следовательно и L).

Задание 5

2. Прямое произведение языков, с возможностью построить пересечение, объединение и разность

Решение:

Программа на **C++** с использованием **Graphviz**, лежит в ./5/regular_langs/ (проект для **Visual Studio**)

Скомпилированная программа лежит в папке ./5/regular_langs/copiled_program/.

program.exe - консольное приложение, при запуске 1,2 аргументы - пути к файлам с входными языками в виде дка, 3 - имя выходного файла (markdown), 4,5 - необязательные, задают разность (-d) и объединение (-i)

Результат работы программы - файл с изображениями автоматов на markdown, сами изображения - в папке output_data.

start.bat - пакетный файл, запускающий программу с аргументами 1.txt 2.txt out.md - d -i (для примера работы программы)

Формат входных файлов

На 1 строке - символы алфавита

Далее, до пустой строки - имя вершины, по которой идёт переход по іму символу алфавита или пусто, если нет перехода). Обозначим через $\delta(q_i,\Sigma_i)$

$$q_0 \mid \delta(q_0, \Sigma_1) \mid \delta(q_0, \Sigma_2) ...$$

 $q_n \mid \delta(q_n, \Sigma_1) \mid \delta(q_n, \Sigma_2) ...$

Далее - терминальные вершины, по 1 в строке, до пустой строки

 q_{t_1}

.. a.

 q_{t_k}

Последняя строка - начальная вершина

 q_s