Reduktion-Turingmaschine

Betrachten Sie das folgende Entscheidungsproblem:

Eingabe: eine geeignete codierte Turingmaschine M Ausgabe: entscheiden, ob die Turingmaschine M auf jedes Eingabewort nach höchstens 42 Schritten hält. Ist dieses Problem entscheidbar? Beweisen Sie Ihre Antwort.

M sei TM. M liest in jedem Schritt höchstens ein Zeichen der Eingabe. ⇒Eingabe hat höchstens 42 Zeichen. ⇒Menge der zu entscheidenden Wörter ist endlich. ⇒Wir können alle Wörter der Sprache aufzählen und damit das Problem lösen.

Beweisen Sie mit Hilfe eines Reduktionsbeweises, dass das folgende Problem nicht entscheidbar ist:

Eingabe: zwei (geeignetes codierte) Turingmaschinen M 1 und M 2 sowie ein Ein- gabewort ω Ausgabe: entscheiden, ob M 1 auf Eingabewort ω hält und M 2 auf ω nicht hält.

Das beschriebene Problem sei H N . Die TM M N , die zu H N gehört, sei wie folgt definiert: • Wir wählen eine zu ω passende TM M 0 aus dem Halteproblem H 0 aus, so dass M = (ω) hält. • Wir definieren eine TM M \perp , die zu keiner Eingabe hält. Dann ist für M N M 0 (w)#M \perp (w) eine Möglichkeit für das Problem H N . Da aber H 0 nicht entscheidbar, so ist auch H N nicht entscheidbar.