Evaluation Individuelle TP 2018-2019: Solution Sujet 6

NOM: GPE:

Les données utilisées dans le sujet sont dans le fichier mtcars et les notations décrites dans AideExam.pdf sont à utiliser impérativement ainsi que les notations suivantes :

Notations:

- On notera Y la variable ayant donné l'échantillon disp de moyenne μ_Y et variance σ_Y^2 inconnues et X la variable poids du véhicule (ech. wt) de moyenne et variance notées μ_X et σ_X^2 .
- On pose $X_1 = 100(X-1)$ et $X_2 = 100X$ d'espérances notées resp. $\mu_1, \, \mu_2.$

Questions:

- L'échantillon de Y est disponible dans disp. Construire l'échantillon de X₂ et l'affecter à x2. Indiquer la commande R exécutée pour créer x2: x2<-100*wt
- 2. (3pts) Remplir le tableau suivant donnant les estimations sans biais de μ_Y et μ_2 ainsi que les intervalles de confiance de niveau 90% (X_2 et Y seront supposées normales):

Paramètre	taille éch.	e.s.b.	Borne Inf IC à 90%	Borne Sup IC à 90%
μ_Y	32	230,7	193,6	267,9
μ_2	32	321,7	292,4	351,1

- 3. (7pts) On veut savoir si la moyenne de Y est semblable ou pas à celle de X_2 .
 - (a) Proposer un graphique permettant de visualiser grossièrement les répartitions de Y et X_2 dans une même fenêtre. Indiquer la commande R:

boxplot(disp,x2)

Interpréter ce graphique : centrages et dispersions différentes donc vérifier l'égalité ou non des moyennes par un test

(b) Représenter la répartition de la variable $D=Y-X_2$ et y ajouter la courbe de la densité d'une loi normale dont on choisira les paramètres en fonction de l'échantillon observé :

Commande R pour la répartition (sans détails) :

hist(disp-x2,prob=T)

Commande R pour l'ajout de la densité normale :

curve(dnorm(x,mean(disp-x2),sd(disp-x2)),col=2,add=T)

Interpréter:

- (c) Quel test faites vous pour répondre au problème posé ? test no : 4 : comparaison de moyennes avec 2 echs appariés
- (d) Poser les hypothèses du test :

$$\mathcal{H}_0: \qquad \qquad \mu_Y = \mu_2 \qquad \qquad \mathcal{H}_1: \qquad \qquad \mu_Y \neq \mu_2$$

- (e) Sous quelle hypothèse de modélisation peut-on faire ce test ? : La loi de $Y-X_2$ est normale
- (f) Donner la ligne de commande R permettant de réaliser le test : t.test(disp,x2,paired=T)
- (g) Que vaut la p-valeur du test et que décide-t-on pour $\alpha = 5\%$?

$$p - val = 5 \cdot 10^{-10}$$
 on décide $\mathcal{H}_1: \mu_Y \neq \mu_2$ car $5\% > pval$

- 4. (6pts) On souhaite à présent savoir si il y a un lien entre nombre de cylindres et nombre de vitesses dans les moteurs de 1973. On notera X la variable aléatoire : nombre de cylindres et Y nombre de vitesses
 - (a) Calculer les effectifs observés pour tous les couples de modalités et compléter le tableau suivant. Indiquer la commande R utilisée pour produire la table de contingence :

table(cyl,gear)

	Y	3	4	5	total
X					
4		1	8	2	11
6		2	4	1	7
8		12	0	2	14
total		15	12	5	32

- (b) Quel test faites-vous pour répondre au problème posé ? Test no : **8 : test d'indépendance** du chi-deux
- (c) Compléter

$$\mathcal{H}_0: X \ et \ Y \ \text{indépendantes} \qquad \mathcal{H}_1: X \ et \ Y \ \text{liées}$$

(d) Compléter le tableau des effectifs **attendus** si \mathcal{H}_0 vraie et indiquer la commande R permettant de les obtenir :

chisq.test(table(cyl,gear))\$expected

	Y	3	4	5	total
X					
4		5,156	4,125	1,719	11
6		3,281	2,625	1,094	7
8		6,562	5,250	2,188	14
total		15	12	5	32

(e) Donner la p-valeur : pval = 0, 12% et la conclusion littérale de ce test :

On peut conclurede façon statistiquement significative (avec un faible risque de se tromper car >0,12%) que nombre de carburateurs et nombres de vitesses sont liés.