

ANTICIPEZ LES BESOINS EN CONSOMMATION DE BÂTIMENTS

Sommaire

Rappel de la problématique

Présentation du jeu de données

Nettoyage et analyse exploratoire

Modélisation

Conclusion

Problématique

L'équipe s'intéresse à la consommation et aux émissions des bâtiments non destinés à l'habitation.

L'équipe va tenter de prédire les émissions de CO2 et la consommation totale d'énergie des bâtiments non destinés à l'habitation

On veut évaluer l'intérêt de l'<u>ENERGY STAR Score</u> pour la prédiction d'émissions

Les données

'2016_Building_Energy_B enchmarking.csv'

Présentation du dataset

- Dimensions (3376 lignes, 46 colonnes)
- Valeurs manquantes: 19952 au total

NÉTTOYAGE DES DONNÉES

• Sélection variables pertinentes pour répondre à notre objectif features ingeneering • Création des features : 'Building Age', "Surface" et 'energytype_count' • Suppression des valeurs negatives, et des batiments ayant la valeur 0, • Methode k-Nearest Neighbors pour les traitements des outliers les outliers • Regroupement des catégories d'usage des bâtiments • Imputation des Nan par la médiane du type de bâtiment Les valeurs • Imputation des Nan des variables catégorielles par 'Unknow' manquantes

• 'TotalGHGEmissions': les émissions de CO2

Targets

• SiteEnergyUseWN(kBtu): consommation normalisée « Weather Normalized »

Analyse univariée

Distribution des variables targets

Analyse univariée

Boxplot des variables continues

Analyse univariée

Distribution de variables catégorielles

Analyse Bivariée

La matrice de correlation

Modélisation

SÉPARATION DU JEU DE DONNÉES

Model selection: KFold, Train, Test

PREPROCESSING

StandardScaler, OneHotEncoder, Normalisation

BASELINE

Entrainement de différents modèles

HYPERPARAMETRES TUNING

GridSearchCV

COMPARAISON

- Erreur quadratique moyenne : RMSE
- Le coefficient de determination : *R2*

Preprocessing

- StandardScaler
- OneHotEncoder

Modèles linéaires

	model	Score_RMSE	r2_score
0	lasso	0.698524	0.488958
1	Ridge	0.692582	0.497616
2	Elasticnet	0.692895	0.497162

Amélioration du feature engineering:

- Choix de nouvelles variables
- Transformation en log
- OneHotEncoder

	model	Score_RMSE	r2_score
0	lasso	0.595613	0.628446
1	Ridge	0.593442	0.631149
2	Elasticnet	0.594851	0.629395
3	Random Forest Regressor	0.650602	0.556673
4	Support Vector Regressor	0.567731	0.662418
5	Decision Tree Regressor	0.739274	0.427593
6	Gradient Boosting	0.774070	0.372441

Feature importance SVR

L'influence de l'EnergyStarScore

```
#Modélisation
model_svr_en = SVR(C=10, epsilon=0.1, gamma=0.01)
model_svr_en.fit(X_train_en, y_train_en)
print(model_svr_en.score(X_test_en, y_test_en))
```

0.7826089809626751

```
#Modélisation sans 'ENERGYSTARScore'
model_svr_en = SVR(C=10, epsilon=0.1, gamma=0.01)
model_svr_en.fit(X_train_en, y_train_en)
print(model_svr_en.score(X_test_en, y_test_en))
```

0.6992541688535057

Modélisation target 'TotalGHGEmissions'

Preprocessing

- Transformation en log
- OneHotEncoder

	model	Score_RMSE	r2_score
0	lasso	0.672705	0.701439
1	Ridge	0.680004	0.694925
2	Elasticnet	0.669923	0.703903
3	XGBRegressor	0.725891	0.652362
4	Random Forest Regressor	0.656081	0.716013

Modélisation target 'TotalGHGEmissions'

Feature importance RFR

Modélisation target 'TotalGHGEmissions'

L'influence de l'EnergyStarScore

```
model_rdr = RandomForestRegressor(max_features='sqrt',min_samples_leaf=
model_rdr.fit(X_train_en, y_train_en)
print("Le score de prédiction avec 'ENERGYSTARScore' est de " ,model_ro
```

Le score de prédiction avec 'ENERGYSTARScore' est de 0.6695335567157 392

```
model_rdr = RandomForestRegressor(max_features='sqrt',min_samples_leaf=
model_rdr.fit(X_train_en, y_train_en)
print("Le score de prédiction sans 'ENERGYSTARScore' est de ", model_rdr
```

Le score de prédiction sans 'ENERGYSTARScore' est de 0.5615848168874 576

CONCLUSION

Sur les prédictions de la consommation d'énergie, les résultats sont décevants. Ce qui est dû aux données.

ENERGY STAR Score:

- Les prédictions sont meilleures avec la variable,
- la variable comporte plusieurs données manquantes, ce qui limite son utilisation

MERC

