

UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA – DMA

DISCIPLINA: Fundamentos Elementares de Matemática

TURMAS: 01 e 02 PERÍODO: 2022-1

PROFESSOR: J. Anderson Valença Cardoso DATA: 09/08/2021

Lista de Exercícios 2

- 1. Suponha que José gosta de feijão, não gosta de arroz, não gosta de macarrão e adora farinha. Determine e justique quais das seguintes setenças são verdadeiras e quais são falsas:
 - (a) Se José gosta de feijão, então gosta de macarrão;
 - (b) José gosta de macarrão se, e somente se, ele gosta de arroz;
 - (c) José gosta de arroz e farinha se ele gosta de feijão;
 - (d) Se José gosta de macarrão então ele gosta de farinha, ou José gosta de macarrão se, e somente se, ele gosta de arroz;
 - (e) Para José gostar de feijão e macarrão é necessário e suciente que ele goste de arroz ou farinha.
- 2. Maria sempre come pelo menos um dos seguintes alimentos em seu café da manhã: cereal, pão ou iogurte. Na segunda-feira ela é especialmente seletiva. Se ela come cereal e pão, ela também come iogurte. Se ela come pão ou iogurte, então come cereal. Ela nunca come ambos cereal e iogurte. Ela sempre come pão ou cereal. Determine e justique o que Maria come na segunda-feira.
- 3. Brincando, quatro rapazes esconderam a bolsa do amigo Jugurta. Ao entrar na sala de aula, irritado, Jugurta os pergunta: "Qual dos espertinhos escondeu minha bolsa?" "Eu não fui!", respondeu Tomás. "Foi o Tchê!", garantiu Marcelo. "Foi o Lord!", disse o Tchê. "O Marcelo está mentindo!", retrucou o Lord. Apenas um dos amigos mentiu e somente um deles escondeu a bolsa. Determine e justique quem escondeu a bolsa do Jugurta.
- 4. Três professores, Antônio, Júlio e Marco, ensinam apenas uma disciplina dentre as de Lógica, Cálculo e Análise. Certa ocasião, foram abordados por uma aluna caloura querendo saber qual deles era seu professor de Lógica. Para a aluna já começar treinando o raciocínio lógico, combinaram que cada um diria uma frase, mas apenas uma das frases era verdadeira. Com isso a aluna deveria deduzir quem era o professor que procurava. Júlio disse "Marco é o professor de Cálculo"; Antônio respondeu "Júlio não é o professor de Cálculo"; e Marco disse "Antônio não é o professor de Análise". Determine e justique quem é o professor de lógica.
- 5. (AFTN 1996 ESAF) José quer ir ao cinema assistir ao filme "Fogo contra fogo", mas não tem certeza se o mesmo está sendo exibido. Seus amigos, Maria, Luís e Júlio têm opiniões discordantes sobre se o filme está ou não em cartaz. Se Maria estiver certa, então Júlio está enganado. Se Júlio estiver enganado, então Luís está enganado. Se Luís estiver enganado, então o filme não esta sendo exibido. Ora, ou o filme está sendo exibido ou José não irá ao cinema. Entretanto, sabe-se que Maria está certa. Logo:
 - (a) o filme está sendo exibido;
 - (b) Luís e Júlio não estão enganados;

- (c) Júlio está enganado, mas Luís não;
- (d) José Não irá ao cinema.

Justique sua resposta!

- 6. (Assistente de Chancelaria MRE 2004 ESAF) No final de semana, Chiquita não foi ao parque. Ora, sabe-se que sempre que Didi estuda, Didi é aprovado. Sabe-se também que nos nais de semana, ou Dadá vai à missa ou vai visitar tia Célia. Sempre que Dadá vai visitar tia Célia, Chiquita vai ao parque, e sempre que Dadá vai à missa, Didi estuda. Então, no nal de semana,
 - (a) Dadá foi à missa e Didi foi aprovado;
 - (b) Didi não foi aprovado e Dadá não foi visitar tia Célia;
 - (c) Didi não estudou e Didi foi aprovado;
 - (d) Didi estudou e Chiquita foi ao parque;
 - (e) Dadá não foi à missa e Didi não foi aprovado.

Justique sua resposta!

- 7. Considere as armações " $P:\sqrt{2}$ é racional" e " $Q:\frac{1}{3}$ é racional". Escreva cada afirmação a seguir em palavras e determine os valores lógicos.
 - (a) $P \Rightarrow Q$:
 - (b) $Q \Rightarrow P$ (Recíproca da primeira);
 - (c) $(\sim P) \Rightarrow (\sim Q)$ (Inversa da primeira);
 - (d) $(\sim Q) \Rightarrow (\sim P)$ (Contrapositiva da primeira).
- 8. Considere P, Q, R e S Proposições. Verifique as seguintes equivalências lógicas:
 - (a) Idempotência: $(P \wedge P) \equiv P$ e $(P \vee P) \equiv P$;
 - (b) Associatividade:

i.
$$[(P \land Q) \land R] \equiv [P \land (Q \land R)];$$
 iii. $[(P \Leftrightarrow Q) \Leftrightarrow R] \equiv [P \Leftrightarrow (Q \Leftrightarrow R)].$ iii. $[(P \lor Q) \lor R] \equiv [P \lor (Q \lor R)];$

(c) Comutatividade:

i.
$$(P \wedge Q) \equiv (Q \wedge P);$$
 ii. $(P \vee Q) \equiv (Q \vee P);$ iii. $(P \Leftrightarrow Q) \equiv (Q \Leftrightarrow P).$

(d) Distributividade:

i.
$$[P \land (Q \lor R)] \equiv [(P \land Q) \lor (P \land R)];$$

ii. $[P \lor (Q \land R)] \equiv [(P \lor Q) \land (P \lor R)].$

(e) Leis de De Morgan:

i.
$$[\sim (P \land Q)] \equiv [(\sim P) \lor (\sim Q)];$$
 ii. $[\sim (P \lor Q)] \equiv [(\sim P) \land (\sim Q)].$

(f) Leis da Implicação:

i.
$$(P\Rightarrow Q)\equiv [(\sim P)\vee Q];$$
 ii. $[\sim (P\Rightarrow Q)]\equiv [P\wedge (\sim Q)].$

(g) Lei da Contradição ou Redução ao Absurdo:

i.
$$(P \Rightarrow Q) \equiv [(P \land (\sim Q)) \Rightarrow F]$$
, onde F representa proposição falsa qualquer.

9. Dadas proposições P, Q e R, determine e justique quais as proposições a seguir são Tautologias e quais são Contradições:

2

(a)
$$[(\sim P) \land Q] \land [P \lor (\sim Q)];$$

(b)
$$[P \land (P \Rightarrow Q)] \Rightarrow Q$$
.

- 10. Escreva uma prova para cada uma das afirmações a seguir. Faça o rascunho, reescreva as afirmações quando necessário, e o passo a passo da prova no rascunho como feito em aula.
 - (a) Sejam $x, y \in \mathbb{R}$. Então $(x+y)^2 (x-y)^2 = 4xy$.
 - (b) Sejam $m, n \in \mathbb{N}$. Se m é par e n é impar, então m + n é impar.
 - (c) Se x e y são racionais, então x + y é racional.
 - (d) Se x e y são racionais, então xy é racional.
 - (e) Sejam $a, b \in \mathbb{Z}$, com $a \neq 0$ e $b \neq 0$. Se a divide b e b divide a, então a = b ou a = -b.
 - (f) Sejam $a, b, c \in \mathbb{Z}$. Se a divide b e a divide c, então a divide b + c.
 - (g) Seja $n \in \mathbb{N}$. Se 7n + 4 é par, então n é par.
 - (h) Seja $n \in \mathbb{N}$. Se 5n+6 é impar, então n é impar.
 - (i) Seja $n \in \mathbb{Z}$. Se 3n + 2 é impar, então n é impar.
 - (j) Seja $n \in \mathbb{Z}$. Se n^3 é par, então n é par.
 - (k) Seja $n \in \mathbb{Z}$. Se n^2 é impar, então n é impar.
- 11. Escreva uma prova para cada uma das afirmações a seguir (reescreva as afirmações, quando necessário, para facilitar o entendimento):
 - (a) Sejam $x, y, z \in \mathbb{R}$. Se x < y e z < 0, então xz > yz.
 - (b) Sejam $x, y \in \mathbb{R}$. Se $x^4 + y^6 = 0$, então x = 0 e y = 0.
 - (c) Seja $n \in \mathbb{Z}$. Se $(n+1)^2 1$ é par, então n é par.
 - (d) $\sqrt[3]{2}$ é irracional.
 - (e) Se $n \in \mathbb{N}, n \neq 0$, então $\frac{n}{n+1} > \frac{n}{n+2}$.
 - (f) Se x é irracional, então $\frac{1}{x}$ é irracional.
 - (g) Sejam $x, y \in \mathbb{R}$. Se x é racional e y é irracional, então xy é irracional.
 - (h) Sejam $a, b, c \in \mathbb{Z}$. Se a não divide bc, então a não divide b.
 - (i) Sejam $a, b \in \mathbb{R}$. Então $ab \leq \frac{a^2 + b^2}{2}$.
 - (j) Sejam $a, b \in \mathbb{R}$. Se $a \neq 0$ e $b \neq 0$, então $\frac{a}{b} + \frac{b}{a} \geq 2$.
 - (k) Sejam $a, b \in \mathbb{R}$. Se $a \ge 0$ e $b \ge 0$, então $\sqrt{ab} \le \frac{a+b}{2}$.
 - (l) Prove que $x^2 + \frac{1}{x^2} \ge 2$, para todo $x \in \mathbb{R}$ e $x \ne 0$.
 - (m) Prove que para todo $n \in \mathbb{Z}$ temos $n^2 \ge n$.
 - (n) Prove que para todos $x, y \in \mathbb{R}$ temos |xy| = |x||y|.
 - (o) Dados $x, y \in \mathbb{R}$, definimos

$$\min\{x,y\} = \left\{ \begin{array}{l} x, \text{ se } x \leq y \\ y, \text{ se } y \leq x \end{array} \right. \quad \text{e} \quad \max\{x,y\} = \left\{ \begin{array}{l} x, \text{ se } x \geq y \\ y, \text{ se } y \geq x \end{array} \right..$$

i. Prove que

$$\min\{x,y\} = \frac{x+y-|x-y|}{2} \qquad \text{e} \qquad \max\{x,y\} = \frac{x+y+|x-y|}{2};$$

- ii. Prove que $\max\{x, y\} + \min\{x, y\} = x + y$.
- (p) Prove que m e n são números inteiros ímpares (ambos) se, e somente se, mn é ímpar.

3

- (q) Para todo $n \in \mathbb{Z}$, as seguintes afirmações são equivalentes:
 - i. n é um número par;
 - ii. n-1 é um número ímpar;
 - iii. n^2 é um número par.
- (r) Seja $n \in \mathbb{N}$. n é par se, e somente se, 7n+4 é par.
- (s) Sejam $a,b,c\in\mathbb{R}$. Prove que se $a\neq 0$ então existe uma única solução para a equação na variável $x\colon ax+b=c$.
- (t) Sejam $a,b\in\mathbb{Z}$. Prove que se a e b são ímpares, então existe um único inteiro c tal que |a-c|=|b-c|.

Bons Estudos!