Lecture 26

Behind us

Taylor series

Final on 3/16 in KNE 130 1:30 PM to 4:20 PM (no exceptions or rescheduling)

Ahead

Today: making new Taylor series from old

Next: We have reached the end!

Read the Taylor notes sections 1, 2, 3, 4 and 5. Instant infinite series, just add water.

Questions!

Warm up brain

Here's a problem to try, to get your brain in the slippery place that lets us manipulate these series: find the Taylor expansion of $\frac{1}{2-x}$ on the interval [0,2].

Hint: let $y=\frac{1}{2}$ x, so that the function becomes $\frac{1}{2-2y}=\frac{1}{2}$ $\frac{1}{1-y}$. Yadda yadda yadda?

We can do all sorts of operations with Taylor series:

```
If f(x)=\sum a_nx^n and g(x)=\sum b_nx^n are the Taylor series expansion, and these expansions both converge on a given interval [0,c], then the Taylor series for f(x)+g(x) on the inverval [0,c] is \sum (a_n+b_n)x^n.
```

If $f(x)=\sum a_nx^n$ is the Taylor series, convergent on [0,c], then the derivative of f(x) on the open interval (0,c) is given by $f'(x)=\sum_{n=1}^\infty na_nx^{n-1}$.

If $f(x)=\sum_{n=0}^\infty a_n x^n$ is the Taylor series convergent on [0,c], then an antiderivative is given by $\sum_{n=0}^\infty \frac{a_n}{n+1} \, x^{n+1}$.

If $f(x)=\sum a_nx^n$ and $g(x)=\sum b_mx^m$ are both convergent Taylor series on [0,c], then the Taylor series of f(x)g(x) on that interval is given by $\sum_{n=0}^{\infty}(\sum_{p+q=n}a_pb_q)x^n$ (multiply like polynomials!).

Let's take a couple of these babies out for a spin.

Addition

Find the Taylor series for the function

$$f(x)=rac{1}{x^2-3x+2}$$

on the interval [0,1].

Thoughts?

Partial fractions:

$$rac{1}{x^2-3x+1}=rac{1}{(2-x)(1-x)}=rac{1}{2-x}-rac{1}{1-x}\,.$$

Independent Taylor expansions: $rac{1}{2-x}=\sumrac{1}{2^{n+1}}\,x^n$; $rac{1}{1-x}=\sum x^n$.

Assemble:
$$f(x) = \sum rac{1}{2^{n+1}} \, x^n - \sum x^n = \sum (rac{1}{2^{n+1}} - 1) x^n = \sum rac{1 - 2^{n+1}}{2^{n+1}} \, x^n$$
 .

Do one!

Compute the Taylor series of $\sin(x) + \cos(x)$ near x = 0.

Integration

Remember how integration is hard? If we have Taylor series at our disposal, we can often give some sort of expression for the integral of a function.

Example: calculate $\int_0^t \sin(x^2) dx$.

Well,
$$\sin(y)=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\,y^{2n+1}$$
, so $\sin(x^2)=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\,x^{4n+2}$ (substitute x^2 for y).

This converges everywhere.

Integration

Thus,

$$egin{align} \int_0^t \sin(x^2) dx &= \int_0^t \sum_{n=0}^\infty rac{(-1)^n}{(2n+1)!} \, x^{4n+2} dx \ &= \sum_{n=0}^\infty rac{(-1)^n}{(4n+3)(2n+1)!} \, x^{4n+3} \Big|_0^t \ &= \sum_{n=0}^\infty rac{(-1)^n}{(4n+3)(2n+1)!} \, t^{4n+3}. \end{align}$$

This may (does!) look inscrutable, but the point is that it is a formula that we could use to compute that integral if we had to.

Try one!

Find an infinite series expansion for the integral $\int_1^t e^{1/t} dt$. For which t does it converge?

Tomorrow: exam!

