Tarea Cálculo 3

Equipo 19

August 2020

Problema 1

Calcula la ecuación vectorial, las ecuaciones paramétricas y la forma cartesiana del plano π que pasa por los puntos $P(2,-1,4),\ Q(1,2,3)$ y R(-2,0,5).

$$\overline{QP} = P(2, -1, 4) - Q(1, 2, 3) = (1, -3, 1)$$

 $\overline{QR} = R(-2, 0, 5) - P(1, 2, 3) = (-3, -2, 2)$

■ Ecuación Vectorial.

Donde
$$\bar{u} = (1, -3, 1), \bar{v} = (-3, -2, 2) \text{ y } x_0, y_0, z_0 = (1, 2, 3)$$

$$\therefore (x, y, z) = (1, 2, 3) + \lambda(1, -3, 1) + \mu(-3, -2, 2)$$

■ Ecuaciones Parametricas.

Tenemos que
$$(x, y, z) = (x_0 + u_1\lambda + v_1\mu, y_0 + u_2\lambda + v_2\mu, z_0 + u_3\lambda + v_3\mu)$$

Donde $\bar{u} = (1, -3, 1), \bar{v} = (-3, -2, 2)$ y $x_0, y_0, z_0 = (1, 2, 3)$

$$\left\{ \begin{array}{l} x = x_0 + u_1 \lambda + v_1 \mu \\ y = y_0 + u_2 \lambda + v_2 \mu \\ z = z_0 + u_3 \lambda + v_3 \mu \end{array} \right.$$

$$\Rightarrow (x, y, z) = (1 + 1\lambda) + (-3)\mu, (2 - 3\lambda + (-2)\mu), (3 + 1\lambda + 2\mu) = (1 + \lambda - 3\mu), (2 - 3\lambda - 2\mu), (3 + \lambda + 2\mu)$$

$$\therefore \begin{cases} x = 1 + \lambda - 3\mu \\ y = 2 - 3\lambda - 2\mu \\ z = 3 + \lambda + 2\mu \end{cases}$$

■ Ecuación Cartesiana.

$$\overline{QP} = P(2, -1, 4) - Q(1, 2, 3) = (1, -3, 1)$$

 $\overline{QR} = R(-2, 0, 5) - P(1, 2, 3) = (-3, -2, 2)$

Hacemos el producto punto entre los vectores $\overline{QP} \times \overline{QR}$

$$\begin{array}{c|c} \overline{QP} \times \overline{QR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ -3 & -2 & 2 \end{vmatrix} = [-3(2) - (-2)(1)]\hat{i} - [1(2) - (-3)(1)]\hat{j} + [1(-2) - (-3)(-3)]\hat{k} = (-6+2)\hat{i} - (2+3)\hat{j} + (-2-9)\hat{k} = -4\hat{i} - 5\hat{j} - 11\hat{k} = \hat{n} \\ T(x,y,z) \Rightarrow \overline{QT} = T(x,y,z) - P(1,2,3) = x - 1, y - 2, z - 3 \\ \overline{QT} \cdot \overline{n} = 0 \\ \Rightarrow (x - 1, y - 2, z - 3) \cdot (-4, -5, -11) = 0 \\ \Rightarrow (x - 1) - 4 + (y - 2) - 5 + (z - 3) - 11 = 0 \Rightarrow -4x + 4 - 5y + 10 - 11z + 33 = 0 \\ \Rightarrow -4x - 5y - 11z + 47 = 0 \\ \Rightarrow -4x - 5y - 11z = -47 \\ \therefore 4x + 5y + 11z = 47 \end{array}$$

Figura 1: Grafica del plano que pasa por los tres puntos P,Q y R.

Calcular la ecuación paramétrica de la recta que pasa por P(0,0,0) y es ortogonal a las rectas L_1 y L_2 cuyas ecuaciones paramétricas están dadas por:

$$\left\{ \begin{array}{l} x=1+\lambda \\ y=-2+4\lambda \\ z=1+7\lambda \end{array} \right. \left. \left\{ \begin{array}{l} x=4+\mu \\ y=1+2\mu \\ z=-1+5\mu \end{array} \right. \right.$$

Obtenemos a partir de las ecuaciones paramétricas dos vectores de dirección $\overline{b_1}$ y $\overline{b_2}$.

 $\overline{b_1}=(1,4,7)$ y $\overline{b_2}=(1,2,5)$, siendo $P_0=(0,0,0)$. Utilizando la propiedad, en donde si $a\perp b \Leftrightarrow \overline{a}\cdot \overline{b}=0$. Sea $\overline{n}=(a,b,c)$ el vector dirección de la recta que deseamos descubrir.

Realizamos el producto punto entre $\overline{n}\cdot \overline{b_1}=0 \Rightarrow (a,b,c)\cdot (1,4,7)=0 \Rightarrow a+4b+7c=0$

Ahora realizamos el producto punto entre $\overline{n}\cdot\overline{b_2}=0 \Rightarrow (a,b,c)\cdot(1,2,5)=0 \Rightarrow a+2b+5c=0$

Restamos ambos resultados obtenidos al realizar el producto punto, para de esta forma eliminar $a.\Rightarrow 2b+2c=0 \Rightarrow 2b=-2c \Rightarrow b=-c$

Ahora sustituimos $b=-c\Rightarrow a+(-4c)+7c=0\Rightarrow a+3c=0\Rightarrow a=-3c\Rightarrow \overline{n}=(-3c,-c,c)=c(-3,-1,1)$

$$\Rightarrow L = \{(0,0,0) + \lambda(-3,-1,1)\}$$

Por lo que la ecuación parametrica de la recta esta dada por: $(x,y,z)=(0,0,0)+(-3\lambda,-\lambda,\lambda)$

$$\therefore \begin{cases} x = -3\lambda \\ y = -\lambda \\ z = \lambda \end{cases}$$

Figura 2: Gráfica de la recta que pasa por el punto P(0,0,0) y además es ortogonal a las rectas L_1 y L_2 .

Problema 3

Calcular la ecuación cartesiana del plano que pasa por P(1,-1,4) y es paralelo a las rectas L_1 y L_2 cuyas ecuaciones están dadas por

$$\begin{cases} x = 2 + 3\lambda \\ y = -1 + \lambda \\ z = 7 + 4\lambda \end{cases}$$

$$\frac{x-6}{5} = \frac{y-4}{2} = \frac{z-7}{6}$$

De las ecuaciones paramétrica y obtenemos dos vectores. $\overline{u}=(3,1,4)$ y $\overline{v}=(5,2,6)$

Como el vector de interés es paralelo a las rectas L_1 y L_2 , su vector normal \overline{n} es perpendicular al vector director \overline{v} de la recta, esto se muestra en la figura 3.

Entonces aplicamos el producto escalar $\overline{n} \cdot \overline{v} = (a, b, c) \cdot (5, 2, 6) = 5a + 2b + 6c = 0$ y continuamos con el producto escalar

$$\overline{n} \cdot \overline{u} = (a, b, c) \cdot (3, 1, 4) = 3a + b + 4c = 0.$$

Restamos ambas ecuaciones obtenidas de modo que obtenemos:

 $2a+b+2c=0 \Rightarrow b=-2c-2a$. Ahora sustituimos b en 5a+2(-2c-2a)+6c=0 a lo que obtenemos $a+2c=0 \Rightarrow a=-2c$

Dado que b=-2c-2a. y a=-2c, entonces sustituimos $b=-2c-2(-2c) \Rightarrow b=2c$

$$\Rightarrow \overline{n} = (-2c, 2c, c) = c(-2, 2, 1)$$

Ahora calculamos la ecuación cartesiana del plano que viene dada por: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \text{ Sustituimos los valores utilizando el punto } P(1,-1,4)\Rightarrow -2(x-1)+2(y-(-1)+1(z-4)=0\Rightarrow -2x+2+2y+2+z-4=0\\ \Rightarrow -2x+2y+z=-2-2+4\\ \Rightarrow -2x+2y+z=0\\ \therefore -2x+2y+z=0$

Figura 3: Gráfica del plano que pasa por el puntos P(1,-1,4) y además es paralelo a las rectas L_1 y L_2 .

Figura 4: Gráfica del plano que pasa por el puntos P(1,-1,4) y además es paralelo a las rectas L_1 y L_2 .

Encontrar la ecuación del plano que pasa por el punto P(2,6,-1) y es ortogonal a la recta de intersección de los planos.

$$\begin{cases} x = -1 + 2\lambda + 3\mu \\ y = 4\lambda - \mu \\ z = 2 - 3\lambda + 2\mu \end{cases} \quad y \quad 2x - 5y + z = 0$$

Considerando la primera ecuación, podemos saber que los puntos que estén contenidos en el plano que describe van a ser de la forma $(x, y, z) = (-1, 0, 2) + \lambda(2, 4, -3) + \mu(3, -1, 2)$. Esta sería la ecuación vectorial del plano.

Ahora, de esa ecuación tenemos que $(x+1,y,z-2) = \lambda(2,4,-3) + \mu(3,-1,2)$. Y como estamos en \mathbb{R}^3 , se tiene que para tres vectores, uno combinación lineal de los otros dos, el determinante de los tres debe se cero. Así $\begin{vmatrix} x+1 & y & z-2 \\ 2 & 4 & -3 \\ 3 & -1 & 2 \end{vmatrix} = 0$.

$$\therefore (x+1)(8-3) - y(4+9) + (z-2)(-2-12) = 0 \Rightarrow (x+1)(5) - y(13) + (z-2)(-14) = 0 \Rightarrow 5x + 5 - 13y - 14z + 28 = 0$$

 $\Rightarrow 5x-13y-14z=-33.$ Entonces ahora tenemos dos planos con su ecuación en formal general (cartesiana)

Figura 5: 2x - 5y + z = 0

Figura 6: 5x - 13y - 14z = -33

Si esos planos se intersectan deben generar una recta

Poniendo ambos en un sistema de ecuaciones obtenemos

$$\begin{cases} 2x - 5y + z = 0 \\ 5x - 13y - 14z = -33 \end{cases}$$

y aplicando el método de Gauss-Jordan tenemos que

$$\begin{pmatrix} 2 & -5 & 1 & | & 0 \\ 5 & -13 & -14 & | & -33 \end{pmatrix} \sim \begin{pmatrix} 2 & -5 & 1 & | & 0 \\ 0 & -1 & -33 & | & -66 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 166 & | & 330 \\ 0 & -1 & -33 & | & -66 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 83 & | & 165 \\ 0 & -1 & -33 & | & -66 \end{pmatrix}$$

$$\therefore \begin{cases} x + 83z = 165 \\ -y - 33z = -66 \end{cases}$$
 Entonces hay infinited soluciones para el sistema, así

$$\begin{cases} x = 165 - 83t \\ y = -33t + 66 \\ z = t \end{cases}, t \in \mathbb{R}$$

que es la ecuación paramétrica de una recta en \mathbb{R}^3 y vista en forma de ecuación vectorial es (x,y,z)=(165,66,0)+t(-83,-33,1)

Figura 7: (x, y, z) = (165, 66, 0) + t(-83, -33, 1)

Por lo tanto el vector director de la recta generada por la intersección de los planos es $\vec{v} = (-83, -33, 1)$.

Ahora ya tenemos un punto que está en el plano que buscamos (P(2, -6, 1)) y un vector que es ortogonal $(\vec{v} = (-83, -33, 1))$, solo resta encontrar dicho plano, llamémoslo π .

Con la información del vector normal sabemos que el plano va a ser de la forma

$$\pi: -83x - 33y + z + D = 0.$$

Sabemos también que el plano pasa por el punto P entonces sustituyéndolo en la ecuación anterior, se debe mantener la igualdad y así encontraremos el valor D.

$$-83(2) - 33(6) - 1 + D = 0 \Rightarrow -365 = -D \Rightarrow D = 365$$

 \therefore -83x - 33y + z + 365 = 0 es la ecuación del plano que pasa por el punto P(2,6,-1) y es ortogonal a la recta de intersección de los planos iniciales.

Figura 8: -83x - 33y + z + 365 = 0

Problema 5

Demuestra que $\bigcap_{k=1}^{\infty} B_{1/k}(0) = \{0\}$.

Para demostrar acerca de una intersección infinita, calculamos el límite de la intersección finita al infinito.

$$\bigcap_{k=1}^{\infty} B_{1/k}(0) = \lim_{n \to \infty} \bigcap_{k=1}^{n} B_{1/k}(0) = \lim_{n \to \infty} B_{1/n}(0) = B_0(0) = \{0\}$$

pues
$$B_1(0) \supset B_{1/k}(0) \supset B_{1/(k+1)}(0) \supset B_{1/n}(0) \supset B_0(0) = \{0\}$$

Problema 6

Demuestra que:

a) La frontera de toda bola abierta es la esfera con el mismo radio y centro.

Dem. La bola abierta de de centro x y radio r es el conjunto

$$B(x, r) = \{ y \in X : d(x, y) < r \}.$$

La frontera es el conjunto $Fr(B(x, r)) = \{z \in X : z \in \overline{B} - B^{\circ}\} =$

$$\{z \in X : z \in \overline{B} \& z \notin B^{\circ}\} = \{z \in X : d(x, z) \le r\} \cap \{z \in X : d(x, z) \ge r\} = \{z \in X : d(x, z) = r\}.$$

Y sabemos que la definición de esfera con centro en x y radio r es el conjunto $S(x, r)=\{a \in X : d(a,y) = r\}$, que es exactamente lo que obtuvimos de la Fr(B(x, r)).

b)La frontera de una esfera es ella misma.

<u>Dem</u>: La esfera por definición es $S(x, r) = \{y \in X : d(x, y) = r\}$. Dado que la $Fr(S) = \{y \in X : y \in \overline{S} - S^{\circ}\} = \{y \in X : y \in \overline{S} \& y \notin S^{\circ}\}$ y por la definición de esfera $(S(x,r))^{\circ} = \emptyset$. Por lo tanto, $Fr(S(x,r)) = \{y \in X : y \in \overline{S}\} = \{y \in X : d(x,y) = r\}$

c)Demuestra que un punto es cerrado en \mathbb{R}^n .

<u>Dem</u>: Sea p un punto $p \in R^n$ queremos comprobar que $R^n \setminus p$ es abierto. Un conjunto es abierto si dado $x \in R^n \setminus p \exists$ una bola abierta $B(x,r) \subset \mathbb{R}^n \setminus p$, y es claro que existe esta bola que cabe en todo $\mathbb{R}^n \setminus p$, y no es necesario centrar la bola en p, y toda bola no centrada en p está en el conjunto.

d) El conjunto $[1, \infty)$ es un subconjunto cerrado en R.

Para demostrarlo vemos que su complemento es abierto $A=(-\infty, 1)$.

Como todo intervalo abierto es un abierto, ya terminamos.

e) El conjunto dado por $A=(0,\infty)\times(0,\infty)$ es un conjunto abierto en \mathbb{R}^n . Dibújalo.

El producto cartesiano de abiertos es un abierto, por lo que A es un abierto.

a) ¿Cuál es la frontera del conjunto $\mathbb{Q} \times \mathbb{Q}$ en \mathbb{R}^2 P.d. $Fr(\mathbb{Q} \times \mathbb{Q}) = \mathbb{R}^2$ Dem: $Fr(\mathbb{Q} \times \mathbb{Q}) \subseteq \mathbb{R}^2$ pues es subconjunto P.d. $Fr(\mathbb{Q} \times \mathbb{Q}) \supseteq \mathbb{R}^2$ <u>Dem</u>: Sean r>0 y $(x_0,y_0)\in\mathbb{R}^2$, nos situamos en $B_r(x_0,y_0)$. Si sobre el eje xnos desplazamos a la derecha una cantidad r/2, entonces existe $\bar{p} \in \mathbb{Q}$ tal que $\overline{p} \in (x_0, x_0 + r/2)$. De forma similar si nos desplazamos en y entonces existe $\overline{q} \in \mathbb{Q}$ tal que $\overline{q} \in (y_0, y_0 + r/2)$. Entonces como $x_0 < \overline{p} < x_0 + r/2 \implies |\overline{p} - x_0| < |x_0 + r/2 - x_0| = r/2$, y de forma similar $y_0 < \overline{q} < y_0 + r/2 \implies |\overline{q} - y_0| < |y_0 + r/2 - y_0| = r/2$, se cumple que $||(\bar{p},\bar{q}) - (x_0,y_0)|| \le |\bar{p} - x_0| + |\bar{q} - x_0| < r \implies (\bar{p},\bar{q}) \in B_r(x_0,y_0), \text{ y como}$ $(\bar{p}, \bar{q}) \in \mathbb{Q} \times \mathbb{Q} \implies B_r(x_0, y_0) \cap (\mathbb{Q} \times \mathbb{Q}) \neq \emptyset.$ También $\exists \overline{p}' \in \mathbb{Q}^c$, tal que $\overline{p}' \in (x_0, x_0 + r/2)$, y $\exists \overline{q}' \in \mathbb{Q}^c$, tal que $\overline{q}' \in (y_0, y_0 + r/2)$, lo cual implica que $||(\overline{p}', \overline{q}') - (x_0, y_0)|| \le |\overline{p}' - x_0| + |\overline{q}' - x_0| < r$ $\implies (\overline{p}', \overline{q}') \in B_r(x_0, y_0) \text{ y como } (\overline{p}', \overline{q}') \in \mathbb{Q}^c \times \mathbb{Q}^c$ $\implies B_r(x_0,y_0) \cap (\mathbb{Q}^c \times \mathbb{Q}^c) \neq \emptyset$. En consecuencia $(x_0, y_0) \in Fr(\mathbb{Q} \times \mathbb{Q}) \implies \mathbb{R}^2 \subseteq Fr(\mathbb{Q} \times \mathbb{Q})$

b) ¿Quien es el complemento de $\mathbb{Q} \times \mathbb{Q}$ en \mathbb{R}^2 . Y ¿quien es $Fr(\mathbb{R}^2 \backslash \mathbb{Q} \times \mathbb{Q})$?

Por definición del complemento de un producto cartesiano, sea $\mathbb{Q} \subset \mathbb{R}$ $(\mathbb{Q} \times \mathbb{Q})^c = (\mathbb{Q} \times \mathbb{R}) \bigcup (\mathbb{R} \times \mathbb{Q})$ Como $Fr(A) = Fr(A^c)$, $Fr((\mathbb{Q} \times \mathbb{Q})^c) = Fr(\mathbb{Q} \times \mathbb{Q}) = \mathbb{R}^2$

Problema 8

 $\therefore Fr(\mathbb{Q}\times\mathbb{Q})=\mathbb{R}^2.$

Demuestra que $\overline{A} = A^{\circ} \cup Fr(A)$

Debemos probar la doble contención. Queremos demostrar que si $x \in \overline{A} \to x \in A^{\circ} \cup Fr(A) \to x \in A^{\circ}$ ó $x \in Fr(A)$.

Tenemos dos casos, que $x \in A^{\circ} \subset \overline{A} \to x \in A^{\circ} \cup Fr(A)$. Y en el caso 2 $x \notin A^{\circ} \subset \overline{A} \to x \in \overline{A}$ y $x \notin A^{\circ} \to x \in \overline{A} - A^{\circ} = Fr(A) \to x \in Fr(A) \cup A^{\circ}$. $\therefore \overline{A} \subseteq A^{\circ} \cup Fr(A)$

Ahora el regreso si $x \in A^{\circ} \cup Fr(A)$, podemos elegir indistintamente A° o Fr(A), por conveniencia tomamos A° por sus propiedades $x \in A^{\circ} \subset A \subset \overline{A}$ y se demuestra. Ahora si tomamos un punto en la frontera que por definición es $Fr(A) = \{y \in X : y \in A \cap (A^{\circ})^C\}$ y entonces $x \in A \subset \overline{A}$ y se cumple lo que deseamos. $\therefore \overline{A} \supseteq A^{\circ} \cup Fr(A)$ $\therefore \overline{A} = A^{\circ} \cup Fr(A)$

Problema 9

Sea $A = \{\frac{n}{n+1} : n \in \mathbb{N}\}$. Demuestra que A sólo tiene un punto de acumulación. ¿Quién es la adherencia de A? Y ¿Fr(A) y A°?

Para cada n el entorno de $\frac{n}{n+1}$ de radio r contiene elementos que no son en A, pues para algún $r_k \in \mathbb{R} \leq r, \frac{n}{n+1} + r_k \neq \frac{m}{m+1}, m \in \mathbb{N}$, ya que, por ejemplo, la suma de un irracional más un racional da un irracional. Y para $n \to \infty$, todo entorno de radio ϵ contiene al menos un elemento de A, pues como el $\lim_{n\to\infty} \frac{n}{n+1} = 1$, esto es para todo $\epsilon > 0$ existe una c tal que $\left|\frac{n}{n+1} - 1\right| < \epsilon$, siempre que n > c, entonces $\frac{n}{n+1}$ está en la bola de radio ϵ y con centro en 1. En consecuencia $A^d = \{x \in \mathbb{R} : \forall r(B_r(x) - \{x\}) \cap A \neq \emptyset\} = \{1\}$

Vemos que todo elemento de A admite toda bola de radio r con centro en $x=\frac{n}{n+1}\in A$, entonces el centro pertenece a A y toda bola de radio r, por lo que $A\cap B_r(x)\neq\emptyset$. Por otra parte como $\lim_{n\to\infty}\frac{n}{n+1}=1$, entonces para toda ϵ existe una c tal que $\left|\frac{n}{n+1}-1\right|<\epsilon$, siempre que n>c, es decir, $B_\epsilon(1)\supset\{\frac{n}{n+1}:n>c\}$, por lo que $B_\epsilon(1)\cap A\neq\emptyset$, entonces $\bar{A}=A\cup\{1\}$.

Como $Fr(A) = \overline{A} \cap \overline{A^c}$, calculamos entonces $\overline{A^c}$. Como $\overline{A^c} = \{x \in \mathbb{R} : \forall r B_r(x) \cap A^c \neq \emptyset\}$, entonces, observamos que todos los puntos que no pertenecen a A, es decir, A^c , pertenecen a la cerradura $\overline{A^c}$, pues cada bola abierta $B_r(y)$ alrededor de cada uno de estos puntos $y \in A^c$ está contenida en A^c , por lo que $B_r(y) \cap A^c \neq \emptyset$, por otra parte, los puntos que pertenecen a A pertenecen a la cerradura $\overline{A^c}$, pues para todos los puntos en A, con $a \in A$, $B_r(a) \cap A^c \neq \emptyset$, ya que las bolas centradas en estos puntos contienen puntos de A^c , entonces $\overline{A^c} = A \cup A^c = \mathbb{R}$. En consecuencia $Fr(A) = \overline{A} \cap \overline{A^c} = \overline{A} \cap \mathbb{R} = \overline{A}$. Como $Fr(A) = \overline{A} - A^\circ$ y $Fr(A) = \overline{A}$, entonces $\overline{A} = \overline{A} - A^\circ$, y entonces $A^\circ = \emptyset$

```
Demuestra que \overline{A} = A \cup A^a

\overline{Dem}:

P.d. \overline{A} \subseteq A \cup A^a.

Sea x \in \overline{A}, esto implica dos casos:

1) si x \in A^a \implies x \in A \cup A^a.

2) si x \notin A^a \implies x \notin A^a & x \in \overline{A}

\implies (\forall r : B_r^\circ(x) \cap A = \emptyset) & (\forall r : B_r(x) \cap A \neq \emptyset)

\implies \{x\} \cap A \neq \emptyset \implies x \in A \implies x \in A \cup A^a

\therefore \overline{A} \subseteq A \cup A^a

P.d. A \cup A^a \subseteq \overline{A}.

Sea x \in A \cup A^a \implies x \in \overline{A}, pues A \subset \overline{A}

Si x \in A \implies x \in \overline{A}, pues A \subset \overline{A}

Finalmente, entonces, \overline{A} = A \cup A^a
```

Problema 11

Demuestre que si $f:R^n\to R^m$ es una función continua, entonces la imagen inversa de abiertos en R^m es abierta en R^n . Lo mismo con cerrados.

```
Dem: Sea V \subset \mathbb{R}^m un conjunto abierto y x \in f^{-1}(V)
ent. f(x) \in V y como V es abierto existe \epsilon_x > 0 tal que B_{\epsilon_x}(f(x)) \subset V.
f es continua en x (pues lo es en \mathbb{R}^n)
así existe \delta_x > 0 tal que B_{\delta_x}(x) \cap R^n \subset f^{-1}(B_{\epsilon_x}(f(x)))
haciendo esto para cada x \in f^{-1}(V)
tenemos que (\bigcup_{x \in f^{-1}(V)} B_{\delta_x}(x)) \cap R^n = \bigcup_{x \in f^{-1}(V)} (B_{\delta_x}(x) \cap R^n) \subset \bigcup_{x \in f^{-1}(V)} f^{-1}(B_{\epsilon_x}(f(x)))
\subset f^{-1}(V) \subset (\bigcup_{x \in f^{-1}(V)} B_{\delta_x}(x)) \cap R^n i.e. f^{-1}(V) = (\bigcup_{x \in f^{-1}(V)} B_{\delta_x}(x)) \cap R^n
sea U = \bigcup_{x \in f^{-1}(V)} B_{\delta_x}(x), observemos que U es un conjunto abierto ya que es
el resultado de la unión de abiertos
ent. f^{-1}(V) es la intersección de \mathbb{R}^n y un abierto
por lo tanto f^{-1}(V) es un conjunto abierto.
Supongamos que V \subset \mathbb{R}^m es un conjunto cerrado
se tiene que V^c es un conjunto abierto, por lo tanto
f^{-1}(V^c) = f^{-1}(R^m - V) = R^n \cap (R^n - f^{-1}(V)) = R^n - f^{-1}(V)
así si x \in \mathbb{R}^n entonces x \in f^{-1}(V^c) \Rightarrow x \in f^{-1}(\mathbb{R}^m - V) \Rightarrow f(x) \in \mathbb{R}^m - V
\Rightarrow f(x) \notin V \Rightarrow x \notin f^{-1}(V) \Rightarrow x \in \mathbb{R}^n - f^{-1}(V)
como f^{-1}(V^c) es un abierto en A, f^{-1}(V^c) = F \cap R^n para algún abierto F \subset R^n
f^{-1}(V) = R^n - (R^n - f^{-1}(V)) = R^n - f^{-1}(V^c) = R^n - (R^n \cap F) = R^n \cap (R^n - F)
como F es abierto F^c es cerrado y entonces f^{-1}(V) = R^n \cap F^c es un cerrado.
```

Problema 12

Si $f: \mathbb{R}^n \to \mathbb{R}^m$ es una función continua, demuestra que para toda $y \in \mathbb{R}^m$, $\{x \in \mathbb{R}^m : f(x) = y\}$ es cerrado.

 $\{x \in \mathbb{R}^m : f(x) = y\} = f^{-1}(\mathbb{R}^m)$, como la pre-imagen de un cerrado es cerrado, y como el conjunto \mathbb{R}^m es cerrado, entonces $\{x \in \mathbb{R}^m : f(x) = y\}$ es cerrado

Problema 13

Sean $f: \mathbb{R}^n \to \mathbb{R}^m$ y $g: \mathbb{R}^n \to \mathbb{R}^m$, dos funciones continuas. Demuestre que el conjunto $\{x \in \mathbb{R}^n: f(x) = g(x)\}$ es cerrado.

$$\{x \in \mathbb{R}^n : f(x) = g(x)\} = \{x \in \mathbb{R}^n : f(x) = y, \& g(x) = y\}, \text{ para } y \in \mathbb{R}^m = \{x \in \mathbb{R}^n : f(x) = y\} \cap \{x \in \mathbb{R}^n : g(x) = y\}$$

Como la intersección de cerrados es conjunto cerrado, y como se demostró en el ejercicio 12 que ambos conjuntos de la intersección mostrada son cerrados, entonces el conjunto $\{x \in \mathbb{R}^n : f(x) = g(x)\}$ es cerrado.

Problema 14

Sea $f: \mathbb{R}^3 \to \mathbb{R}$ la función $f(x,y,z) = z^2 + (\sqrt{x^2 + y^2} - 2)^2 - 1$. Dibuja las superficies de nivel -1, 0 y 1. Incluye las trazas de dichas superficies obtenidas con los planos paralelos a XY, XZ, YZ.

La superficie de nivel c es la superficie $z^2 + (\sqrt{x^2 + y^2} - 2)^2 - 1 = c$ entonces si queremos graficar la superficie de nivel -1, lo que debemos graficar es $z^2 + (\sqrt{x^2 + y^2} - 2)^2 - 1 = -1$ que es equivalente a $z^2 + (2 - \sqrt{x^2 + y^2})^2 = 0$. La superficie resultante es un toroide con distancia del centro del circulo al eje y de 2 y radio del círculo de 0 por lo cual no la podemos graficar.

La de nivel 0 sería $z^2+(\sqrt{x^2+y^2}-2)^2-1=0$ que es equivalente a $z^2+(2-\sqrt{x^2+y^2})^2=1$. La superficie resultante es un toroide con distancia del centro del circulo al eje y de 2 y radio del círculo de 1

Figura 9: $z^2 + (2 - \sqrt{x^2 + y^2})^2 = 1$

Y por último la de nivel 1 sería $z^2+(\sqrt{x^2+y^2}-2)^2-1=1$ que es equivalente a $z^2+(2-\sqrt{x^2+y^2})^2=2$. La superficie resultante es un toroide con distancia del centro del circulo al eje y de 2 y radio del círculo de $\sqrt{2}$

Para las trazas de las superficies con planos paralelos a los coordenados debemos considerar las siguientes ecuaciones:

Figura 10: $z^2 + (2 - \sqrt{x^2 + y^2})^2 = 2$

Para planos paralelos al XY las trazas generadas por la curva de nivel serán curvas de la forma $r^2+(2-\sqrt{x^2+y^2})^2=c+1$

Que como podemos ver son dos círculos concéntricos, en los cuales varían los radios según la r que escojamos.

Para planos paralelos al XZ las trazas generadas por la curva de nivel serán curvas de la forma $z^2+(2-\sqrt{x^2+r^2})^2=c+1$

Figura 11: r=2

Por último para los planos paralelos al YZ las trazas son de la forma $z^2+(2-\sqrt{r^2+y^2})^2=c+1$

Figura 12: r = 1

Figura 13: r = 0

Figura 14: r = 0.5

Dibuja la curva determinada por la parametrización $\alpha(t)=(\cos\ t, \sin\ t, 1-\sin\ t)$. Determina la ecuación vectorial, las ecuaciones paramétricas y la forma cartesiana del plano en el que se encuentra dicha curva.

De la ecuación ya parametrizada $\alpha(t)=(\cos\ t, \sin\ t, 1-\sin\ t)$ sabemos que $x=\cos\ t,\ y=\sin\ t\ y\ z=1-\sin\ t$ y también sabemos que $\sin^2\ t+\cos^2\ t=1$ por lo tanto $x^2+y^2=0$.

Figura 15: r = 1,5

Figura 16: r=3

Otra ecuación que nos da la parametrización es z=1-y ya que $z=1-{\rm sen}\ t$ y $y={\rm sen}\ t$

Figura 17: $x^2 + y^2 = 0$

Figura 18: z = 1 - y

Al intersectar ambas figuras, obtendremos la curva parametrizada por $\alpha(t)$

Figura 19: $x^2 + y^2 = 0$ y z = 1 - y

Figura 20: $\alpha(t) = (\cos t, \sin t, 1 - \sin t)$

Ahora hay que encontrar el plano en el que se encuentra la curva. Como la curva es generada por la intersección de un cilindro y un plano $(\pi := z = 1 - y)$ entonces $\forall \vec{x} \in \alpha(t)$ se tiene que $\vec{x} \in \pi$.

Por lo tanto la ecuación cartesiana del plano que contiene a $\alpha(t)$ es

$$y + z - 1 = 0$$

Si ponemos a x y a z como parámetros obtenemos otra ecuación. Si $x=\lambda$ y

 $z = \mu$ entonces $y = 1 - \mu$. Así la ecuación paramétrica del plano es

$$\begin{cases} x = \lambda \\ y = 1 - \mu & \lambda, \mu \in \mathbb{R} \\ z = \mu \end{cases}$$

De aquí podemos sacar rápidamente la ecuación vectorial, ya que tenemos información del punto y de los vectores directores en la ecuación anterior. El punto que está en el plano es P = (0,1,0) y los vectores directores $\vec{v} = (1,0,0)$ y $\vec{u} = (0, -1, 1)$ entonces la ecuación vectorial del plano es

$$(x, y, z) = (0, 1, 0) + \lambda(1, 0, 0) + \mu(0, -1, 1)$$

Problema 16

Determina el dominio y dibuje la gráfica de la función dada por:

$$f(x,y) = c\sqrt{1 - \frac{x^2}{a^2} + \frac{y^2}{b^2}} \tag{1}$$

El valor dentro de la raíz debe ser mayor o igual a cero.

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} \leq 1$ recordemos que esta es la ecuación de la hipérbola en el plano R^2 que se ve de la siguiente forma

El dominio de la función es el conjunto $\{(x,y)\in R^2\colon \frac{x^2}{a^2}-\frac{y^2}{b^2}\leq 1\}$. Podemos hacer f(x,y)=z para despejar la ecuación y sea más fácil visualizar

el resultado. Resulta: $\frac{z^2}{c^2}+\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text{ Hacemos las trazas } xy \text{ y } yz. \text{ Si } z=0 \text{ obtenemos la misma}$

hipérbola en xy. Si x=0 queda la hipérbola en yz; y en y=0 queda una elipse en el plano xz. Podemos tomar diferentes valores para a,b y c.

La gráfica final aparece de esta manera para a = b = c = 1:

Problema 17

Demuestre si existe o no el límite en el punto indicado.

$$\begin{array}{l} \text{1. } \lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} \\ \underline{\text{Dem}} \colon \text{p.d. } \forall \epsilon > 0 \; \exists \delta > 0 \; \text{tal que si } 0 < \sqrt{x^2+y^2} < \delta \; \text{entonces} \\ |\frac{x^2}{\sqrt{x^2+y^2}} - 0| < \epsilon. \\ \text{claramente } 0 < x^2 \le x^2 + y^2 \\ \text{ent. } x^2 \le x^2 + y^2 \Leftrightarrow \frac{1}{x^2+y^2} \le \frac{1}{x^2} \Leftrightarrow \frac{1}{\sqrt{x^2+y^2}} \le \frac{1}{\sqrt{x^2}} \Leftrightarrow \frac{x^2}{\sqrt{x^2+y^2}} \le \frac{x^2}{\sqrt{x^2}} \\ = \frac{|x^2|}{|x|} = \frac{|x|^2}{|x|} = |x| \\ \text{Como } |x| < \sqrt{x^2+y^2} < \delta, \; \text{hacemos } \delta = \epsilon, \; \text{entonces } |x| < \epsilon \\ |\frac{x^2}{\sqrt{x^2+y^2}} - 0| = |\frac{x^2}{\sqrt{x^2+y^2}}| = \frac{x^2}{\sqrt{x^2+y^2}} \le \frac{x^2}{\sqrt{x^2}} = |x| < \epsilon \end{array}$$

Problema 18

Demuestra mediante la definición $(\epsilon-\delta)$ que las siguientes son funciones continuas en (0,0)

a)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

b) $f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$

a) p.d. Dado $\epsilon>0,$ existe $\delta>0,$ tal que $||(x,y)-0||<\delta \implies ||f(x,y)-f(0,0)||<\epsilon,$

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Dem: Notemos que

$$\left| \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} - 0 \right| = \left| \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} \right| = \frac{\left| x^2 - y^2 \right|}{\sqrt{x^2 + y^2}} = \frac{\left| x^2 + (-y^2) \right|}{\sqrt{x^2 + y^2}} \le \frac{\left| x^2 \right| + \left| (-y^2) \right|}{\sqrt{x^2 + y^2}} = \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$

Haciendo $\delta = \epsilon$,

$$||(x,y) - 0|| = \sqrt{x^2 + y^2} < \delta \implies ||f(x,y) - f(0,0)|| = \left| \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} - 0 \right| < \epsilon$$

b) p.d. Dado $\epsilon > 0$, existe $\delta > 0$, tal que $||(x,y) - 0|| < \delta \implies ||f(x,y) - f(0,0)|| < \epsilon$,

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Dem: Notemos que

$$\left| \frac{x^4 - y^4}{x^2 + y^2} - 0 \right| = \left| \frac{x^4 - y^4 + 2x^2y^2}{x^2 + y^2} \right| = \left| \frac{x^4 + (-y^4) + 2x^2y^2}{x^2 + y^2} \right| \le \frac{|x^4 + 2x^2y^2| + |-y^4|}{x^2 + y^2}$$

$$= \frac{|x^4 + 2x^2y^2| + y^4}{x^2 + y^2} \le \frac{|x^4| + |2x^2y^2| + y^4}{x^2 + y^2} = \frac{x^4 + 2x^2y^2 + y^4}{x^2 + y^2} = \frac{(x^2 + y^2)^2}{x^2 + y^2} = x^2 + y^2$$
$$= \sqrt{x^2 + y^2} \sqrt{x^2 + y^2}$$

Como $\sqrt{x^2+y^2}<\delta$, entonces $\sqrt{x^2+y^2}\sqrt{x^2+y^2}<\delta\sqrt{x^2+y^2}<\delta^2$, y así $x^2+y^2<\delta^2$. Si hacemos $\delta=\sqrt{\epsilon}$, entonces

$$||f(x,y) - f(0,0)|| = \left| \frac{x^4 - y^4}{x^2 + y^2} - 0 \right| < x^2 + y^2 < \delta^2 = \epsilon$$