PROBLEMS FOR CHAPTER 6

1. Tabulate values of $y = e^x$ for $0 \le x \le 2$ at intervals of h = 0.1 and obtain.

(i)
$$y' \text{ and } y'' \text{ at } x = 0.0$$

(ii)
$$y' \text{ and } y'' \text{ at } x = 0.1$$

(iii)
$$y'$$
 and y'' at $x = 0.9$

(iv)
$$y' \text{ and } y'' \text{ at } x = 2.0$$

using appropriate formulas.

Solution: The Tabulated values of $y = e^x$.

Х	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
У	1.000	1.105	1.221	1.350	1.492	1.649	1.822	2.014	2.226	2.460	2.718
х	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	
У	3.004	3.320	3.669	4.055	4.482	4.953	5.474	6.050	6.686	7.389	

The interval size is h=0.1 and the numerical difference equations are used to get the approximations for the derivatives.

(i)
$$y'$$
 at $x_i = 0.0$

Using the forward difference equation for $f'(x_i)$;

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{h}$$

where;

$$x_{i+1} = 0.1; f(x_{i+1}) = 1.105$$

$$x_i = 0$$
; $f(x_i) = 1.0$

$$y'$$
 ≈ 1.0517

Using the forward difference equation for y"

$$f''(x_i) \approx \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$$

where for
$$\begin{aligned} x_i &= 0.0; & f(x_i) &= 1.0 \\ x_{i+1} &= 0.1; & f(x_{i+1}) &= 1.105 \\ x_{i+2} &= 0.2; & f(x_{i+2}) &= 1.221 \\ f''(0) &\approx \frac{1.221 - 2(1.105) + 1}{0.01} &= 1.106 \end{aligned}$$

(ii)
$$y'$$
 at $x_i = 0.1$

Using the central difference equation for $f'(x_i)$;

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

where;

$$\begin{aligned} x_{i+1} &= 0.2; \ f(x_{i+1}) = 1.221 \\ x_{i-1} &= 0.0 \ ; \ f(x_{i+1}) = 1.0 \\ y' &\approx 1.107 \end{aligned}$$

Using the central difference equation for y"

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

where for
$$x_i=0.1; \qquad f(x_i)=1.105$$

$$x_{i\text{-}1}=0.0; \qquad f(x_{i+1})=1.0$$

$$x_{i+1}=0.2; \qquad f(x_{i+2})=1.221$$

$$f''(0.1)\approx \frac{1.221-2(1.105)+1}{0.01}=1.106$$

(iii)
$$y'$$
 at $x_i = 0.9$

Using the central difference equation for $f'(x_i)$;

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

where;

$$x_{i+1} = 1.0$$
; $f(x_{i+1}) = 2.718$

$$x_{i-1} = 0.8$$
; $f(x_{i+1}) = 2.226$

Using the central difference equation for y"

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

where for
$$x_i = 0.9$$
; $f(x_i) = 2.46$

$$x_{i-1}=0.8;$$
 $f(x_{i+1})=2.226$

$$x_{i+1}=1.0;$$
 $f(x_{i+2})=2.718$

$$f''(0.1) \approx \frac{2.718 - 2(2.46) + 2.226}{0.01} = 2.4616$$

(iv)
$$y'$$
 at $x_i = 2.0$

Using the backward difference equation for $f'(x_i)$;

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{h}$$

where;

$$x_i = 2.0$$
; $f(x_i) = 7.389$

$$x_{i-1} = 1.9$$
; $f(x_{i-1}) = 6.686$

$$y' \approx 7.031617$$

Using the forward difference equation for y"

$$f''(x_i) \approx \frac{f(x_{i-2}) - 2f(x_{i-1}) + f(x_i)}{h^2}$$

where for

$$x_i = 2.0;$$
 $f(x_i) = 7.389$

$$x_{i-1}=1.9;$$
 $f(x_{i+1})=6.686$

$$x_{i-2}=1.8;$$
 $f(x_{i+2})=6.050$

$$f''(0) \approx \frac{6.050 - 2(6.686) + 7.389}{0.01} = 6.6915$$

2. In a circuit with impressed voltage E(t) and inductance L, Kirchoff's first law gives the relationship.

$$E(t) = L \frac{di}{dt} + Ri$$

Where R is the resistance in the circuit and i is the current. Suppose we measure the current for several values of t and obtain:

t	1.00	1.01	1.02	1.03	1.04
i	3.10	3.12	3.14	3.18	3.24

where t is measured in seconds, i in amperes, the inductance L is a constant 0.98 henries, and the resistance R is 0.142 ohms. Approximate the voltage E at the values t = 1, 1.01, 1.02, 1.03, and 1.04, using the appropriate three – point formulas.

Solution: The interval size is h=0.01 and the numerical difference equations are used to get the approximations for the derivatives

1.
$$E_{(t)} = L \frac{di}{dt} + Ri$$

To find $(\frac{di}{dt})$ approximations for the above data set using the numerical difference three point formulae;

$$h = 0.01$$

for
$$t = 1$$
 and $i = 3.10$

using the three point forward difference formula

$$f'(x_i) = \frac{-f(Xi+2)+4f(Xi+1)-3f(Xi)}{2h}$$

Therefore,

$$\frac{di}{dt} = \frac{-3.14 + 4(3.12) - 3(3.10)}{2*0.01}$$
$$= 2$$

Therefore,

$$E(1) = 0.98 (2) + 0.142 (3.12)$$
$$= 2.4002$$

For t = 1.01 and i = 3.12

Using the above three point forward difference formula

Using the three points after t = 1.01 from the data set

$$\begin{array}{ll} x_i = 1.01 & f(x_i) = 3.12 \\ x_{i+1} = 1.02 & f(x_{i+1}) = 3.14 \\ x_{i+2} = 1.03 & f(x_{i+2}) = 3.18 \end{array}$$

$$\frac{di}{dt} = \frac{-3.18 + 4(3.14) - 3(3.12)}{2*0.01} = 1$$

Therefore,

$$E (1.01) = 0.98 (1) + 0.142 (3.12)$$
$$= 1.42304$$

For
$$t = 1.02$$
 and $i = 3.14$

Since there are no three points on either side of the data point we use four point central difference equation

$$f'(x_i) = \frac{-f(Xi+2) + 8f(Xi+1) - 8f(Xi-1) + f(Xi-2)}{12h}$$

$$\begin{array}{lll} \text{where} & x_{i-2}=1 & f(x_{i-2})=3.10 \\ & x_{i-1}=1.01 & f(x_{i-1})=3.12 \\ & x_{i+1}=1.03 & f(x_{i+1})=3.18 \\ & x_{i+2}=1.04 & f(x_{i+2})=3.24 \end{array}$$

Therefore,

$$\frac{di}{dt} = \frac{-3.24 + 8(3.18) - 8(3.12) + 3.10}{12(0.01)}$$
$$-2.833$$

$$E (1.02) = 0.98 (2.833) + 0.142 (3.14)$$
$$= 3.2225$$

For t = 1.03 and i = 3.18

We use the three point backward difference formula

$$f'(x_i) = \frac{3f(Xi) - 4f(Xi - 1) + 3f(Xi - 2)}{2h}$$

$$\begin{array}{lll} \text{where} & x_{i-2} = 1.01 & & f(x_{i-2}) = 3.12 \\ & x_{i-1} = 1.02 & & f(x_{i-1}) = 3.14 \\ & x_i = 1.03 & & f(x_i) = 3.18 \\ \end{array}$$

Therefore,

$$\frac{di}{dt} = \frac{3(3.18) - 4(3.14) + 3.12}{2*0.01} = 5$$

$$E (1.03) = 0.98 (5) + 0.142 (3.18)$$
$$= 5.35156$$

For t = 1.04 and i = 3.24

We use the three point backward difference equation

where $x_{i-2} = 1.02$ $f(x_{i-2}) = 3.14$ $x_{i-1} = 1.03$ $f(x_{i-1}) = 3.18$ $x_i = 1.04$ $f(x_i) = 3.24$

Therefore,

$$\frac{di}{dt} = \frac{3(3.24) - 4(3.18) + 3.14}{2*0.01} = 7$$

$$E(1.04) = 0.98(7) + 0.142(3.24)$$
$$= 7.32$$

3. The following data have been experimentally obtained.

X	1.00	1.01	1.02	1.03	1.04	1.05
f(x)	1.27	1.32	1.38	1.41	1.47	1.52

- (i) Approximate f'(1), f''(1), f'''(1)
- (ii) Obtain a Taylor series expansion for the function using the above values, at x = 1.

Solution: (i) To obtain f'(1) we use forward difference equation

$$f'(x_i) = \frac{-f(Xi+2) + 4f(Xi+1) - 3f(Xi)}{2h}$$

 $\begin{array}{lll} \text{where} & x_i = 1 & f(x_i) = 1.27 \\ & x_{i+1} = 1.01 & f(x_{i+1}) = 1.32 \\ & x_{i+2} = 1.02 & f(x_{i+2}) = 1.38 \\ \end{array}$

$$f'(1) = \frac{-1.38 + 4(1.32) - 3(1.27)}{2*0.01} = 4.5$$

To obtain f''(1) we use second derivative forward difference equation

$$f''(x_i) = \frac{-f(Xi+3)+4f(Xi+2)-5f(Xi+1)+2f(Xi)}{h^2}$$

$$\begin{array}{lll} \text{where} \ \ x_i = 1 & f(x_i) = 1.27 \\ x_{i+1} = 1.01 & f(x_{i+1}) = 1.32 \\ x_{i+2} = 1.02 & f(x_{i+2}) = 1.38 \\ x_{i+3} = 1.03 & f(x_{i+3}) = 1.41 \end{array}$$

$$f"(x_i) = \frac{-1.41 + 4(1.38) - 5(1.32) + 2(1.27)}{(0.01)^2} = 500$$

To obtain f'''(1) we use third derivative forward difference equation

$$f'''(x_i) = \frac{-3f(Xi+4) + 14f(Xi+3) - 24f(Xi+2) + 18f(Xi+1) - 5f(Xi)}{2h^3}$$

$$f'''(x_i) = \frac{-3(1.47) + 14(1.41) - 24(1.38) + 18(1.32) - 5(1.27)}{2h^3} = -190,000$$

(ii) Taylor series expansion about 1

$$f(x) = f(a) + \frac{(x-a)f'(a)}{1!} + \frac{(x-a)^2f''(a)}{2!} + \frac{(x-a)^3f'''(a)}{3!}$$

$$f(x) = 1.27 + \frac{(x-1)4.5}{1} + \frac{(x-1)^2(500)}{2!} + \frac{(x-1)^3(-190,000)}{3!}$$

4. Given the set of data

Ī	X	1	1.3	1.6	1.9	2.2
Ī	y	0.765	0.6201	0.4554	0.2818	0.1104

Obtain a Taylor's series expansion of the function about x = 1. Obtain the necessary derivatives at 1, up to $f^{(4)}$ through numerical differentiation with error of order h.

Solution: Using the above data set where h = 0.3 to obtain f'(1), f''(1), f'''(1), $f^{IV}(1)$ where the equations are

$$f'(x_i) = \frac{f(Xi+1) - f(Xi)}{h}$$

$$f''(x_i) = \frac{f(Xi+2) - 2f(Xi+1) + f(Xi)}{h^2}$$

$$f'''(x_i) = \frac{f(Xi+3) - 3f(Xi+2) + 3f(Xi+1) - f(Xi)}{h^3}$$

$$f^{IV}(x_i) = \frac{f(Xi+4) - 4f(Xi+3) + 6f(Xi+2) - 4f(Xi+1) + f(Xi)}{h^4}$$
 where $x_i = 1$
$$f(x_i) = 0.765$$

$$x_{i+1} = 1.3$$

$$f(x_{i+1}) = 0.6201$$

$$x_{i+2} = 1.6$$

$$f(x_{i+2}) = 0.4554$$

$$x_{i+3} = 1.9$$

$$f(x_{i+3}) = 0.2818$$

$$f(x_{i+4}) = 0.1104$$

Therefore,

$$f'(1) = \frac{0.6201 - 0.765}{0.3} = -0.483$$

$$f''(1) = \frac{0.4554 - 2(0.6201) + 0.765}{0.3^2} = -0.22$$

$$f'''(1) = \frac{0.2818 - 3(0.4554) + 3(0.6201) - 0.765}{0.3^3} = 0.4037$$

$$f^{IV}(1) = \frac{0.1104 - 4(0.2818) + 6(0.4554) - 4(0.6201) + 0.765}{0.3^4} = 0.024691$$

Therefore Taylor series about x = 1 is

$$f(x) = 0.765 + \frac{(x-1)(-0.483)}{1!} + \frac{(x-1)^2(-0.22)}{2!} + \frac{(x-1)^3(0.4037)}{3!} + \frac{(x-1)^4(0.0246)}{4!}$$

$$f(x) = 0.765 - 0.483 (x - 1) - 0.11 (x - 1)^2 + 0.0673 (x - 1)^3 + 0.0010288 (x - 1)^4$$

5. Given the data below obtain f'(1.30), f''(1.30) and f'''(1.30) and obtain a Taylor series expansion about x = 1.30. Approximate f(1.357) using the expansion.

x	1.2	1.3	1.4	1.5	1.6
f(x)	11.5901	13.7818	14.0428	14.3074	16.8619

Solution: To obtain f'(1.3), f''(1.3) and f'''(1.3) we will again use forward difference because there aren't enough point on the other sider to use central or backward difference equations

$$f'(x_i) = \frac{f(Xi+1) - f(Xi)}{h}$$

$$f''(x_i) = \frac{f(Xi+2) - 2f(Xi+1) + f(Xi)}{h^2}$$

$$f'''(x_i) = \frac{f(Xi+3) - 3f(Xi+2) + 3f(Xi+1) - f(Xi)}{h^3}$$

$$\begin{array}{lll} \text{where} & x_i=1 \ .3 & f(x_i)=13.7818 \\ & x_{i+1}=1.4 & f(x_{i+1})=14.0428 \\ & x_{i+2}=1.5 & f(x_{i+2})=14.3074 \\ & x_{i+3}=1.6 & f(x_{i+3})=16.8619 \end{array}$$

Therefore,

$$f'(1.3) = \frac{14.0428 - 13.7818}{0.1} = 2.61$$

$$f''(1.3) = \frac{14.3074 - 2(14.0428) + 13.7818}{0.1^2} = 0.36$$

$$f'''(1.3) = \frac{16.8619 - 3(14.3074) + 3(14.0428) - 13.7818}{0.1^3} = 2286.3$$

Therefore Taylor series about x = 1 is

$$f(x) = 13.7818 + \frac{(x-1.3)(2.61)}{1!} + \frac{(x-1.3)^2(0.36)}{2!} + \frac{(x-1.3)^3(2286.3)}{3!}$$

$$f(1.357) = 13.7818 + \frac{(1.357-1.3)(2.61)}{1!} + \frac{(1.357-1.3)^2(0.36)}{2!} + \frac{(1.357-1.3)^3(2286.3)}{3!}$$

$$= 14.0017$$