5. előadás

VALÓS SOROZATOK 4.

Nevezetes sorozatok 2.

5. Sorozatok nagyságrendje.

1. Tétel.

1. Ha $k \in \mathbb{N}$ és a > 1 valós szám, akkor

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0.$$

2. Minden $a \in \mathbb{R}$ esetén

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0.$$

3.

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0.$$

Bizonyítás.

1. Adott $k \in \mathbb{N}$ és a > 1 valós számra értelmezzük az

$$a_n := \frac{n^k}{a^n} \qquad (n \in \mathbb{N}^+)$$

sorozatot! A sorozat alulról korlátos, mert $a_n>0$ minden $n\in\mathbb{N}^+$ esetén. Másrészt

$$(*) a_{n+1} = \frac{(n+1)^k}{a^{n+1}} = \frac{1}{a} \cdot \frac{(n+1)^k}{n^k} \cdot \frac{n^k}{a^n} = \frac{1}{a} \cdot \left(1 + \frac{1}{n}\right)^k \cdot a_n (n \in \mathbb{N}^+).$$

Mivel

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^k = 1 \quad \text{és} \quad a > 1 \qquad \Longrightarrow \qquad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \left(1 + \frac{1}{n} \right)^k < a,$$

így (*) miatt $\forall n > n_0$: $a_{n+1} < a_n$. Ez azt jelenti, hogy (a_n) egy index után monoton csökkenő. Ha figyelembe vesszük azt is, hogy (a_n) alulról korlátos, akkor azt kapjuk, hogy (a_n) konvergens. Jelölje $A := \lim(a_n)$.

 (a_{n+1}) részsorozata az (a_n) sorozatnak, és ezért $\lim(a_{n+1})=A$. Ekkor (*) miatt

$$A \leftarrow a_{n+1} = \frac{1}{a} \cdot \underbrace{\left(1 + \frac{1}{n}\right)^k}_{A} \cdot \underbrace{a_n}_{A} \to \frac{A}{a}, \quad \text{ha} \quad n \to +\infty.$$

A határérték egyértelműsége miatt A=A/a, ami csak akkor lehetséges, ha A=0, hiszen $a\neq 1.$

2. Adott $a \in \mathbb{R}$ valós számra értelmezzük az

$$a_n := \frac{a^n}{n!} \quad (n \in \mathbb{N}^+) \qquad \text{és} \qquad b_n := \frac{|a|^n}{n!} \quad (n \in \mathbb{N}^+)$$

sorozatokat! A (b_n) sorozat alulról korlátos, mert $b_n \geq 0$ minden $n \in \mathbb{N}^+$ esetén. Másrészt

$$(**) b_{n+1} = \frac{|a|^{n+1}}{(n+1)!} = \frac{|a|}{n+1} \cdot \frac{|a|^n}{n!} = \frac{|a|}{n+1} \cdot b_n (n \in \mathbb{N}^+).$$

Mivel

$$\lim_{n \to +\infty} \frac{|a|}{n+1} = 0 \qquad \Longrightarrow \qquad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{|a|}{n+1} < 1,$$

így (**) miatt $\forall n > n_0$: $b_{n+1} < b_n$. Ez azt jelenti, hogy (b_n) egy index után monoton csökkenő. Ha figyelembe vesszük azt is, hogy (b_n) alulról korlátos, akkor azt kapjuk, hogy (b_n) konvergens. Jelölje $B := \lim(b_n)$.

 (b_{n+1}) részsorozata az (b_n) sorozatnak, és ezért $\lim(b_{n+1})=B$. Ekkor (**) miatt

$$B \leftarrow b_{n+1} = \underbrace{\frac{|a|}{n+1}}_{\to 0} \cdot \underbrace{b_n}_{\to B} \to 0 \cdot B = 0$$
, ha $n \to +\infty$.

A határérték egyértelműsége miatt B = 0, tehát (b_n) nullsorozat. Mivel

$$b_n := |a_n| \qquad (n \in \mathbb{N}^+),$$

ezért (a_n) is nullsorozat.

3. Ha $2 \le n \in \mathbb{N}$, akkor

$$0 < \frac{n!}{n^n} = \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n}{n} \cdot \frac{1}{n} \le \frac{1}{n}.$$

Mivel $\lim_{n\to+\infty}\frac{1}{n}=0$, ezért a közrefogási szerint $\lim_{n\to+\infty}\frac{n!}{n^n}=0$.

A tételben olyan hányados-sorozatokat látunk, amelyek nullához tartanak, és tagjainak számlálója és nevezője pozitívak (a 2. sorozatnál csak a>0 esetén). Ezért a számlalóban lévő sorozat értéke kisebb, mint a nevezőben lévő sorozat értéke "elég nagy" indexekre. Az első sorozatnál például

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0 \qquad \Longrightarrow \qquad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{n^k}{a^n} < 1, \quad \text{azaz} \quad n^k < a^n$$

rögzített $k \in \mathbb{N}$ és a > 1 értékek esetén. Legyen pl. k := 1000 és a := 1,0001. Ekkor a fentiek szerint van olyan n_0 index, hogy ha $n > n_0$, akkor

$$n^{1000} < 1,0001^n$$

teljesül. A már bevezetett szóhasználattal azt mondhatjuk, hogy a fenti egyenlőtlenség majdnem minden n indexre, vagy elég nagy n indexekre teljesül. De a határérték értelmezése szerint ennél erősebb állítás igaz:

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0 \qquad \Longrightarrow \qquad \forall c > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{n^k}{a^n} < \frac{1}{c}, \quad \text{azaz} \quad c \, n^k < a^n,$$

tehát (a^n) úgy tart $+\infty$ -hez, hogy elég nagy n indexekre a sorozat tagjai nagyobbak, mint az (n^k) tagjainak akárhányszorosára, bár (n^k) is tart $+\infty$ -hez.

Általában: ha az (a_n) és a (b_n) sorozatnak is $+\infty$ a határértéke, akkor azt mondjuk, hogy (b_n) erősebben (vagy sokkal gyorsabban) tart $+\infty$ -hez, mint (a_n) , ha

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 0.$$

Ebben az esetben azt is mondjuk, hogy " b_n sokkal nagyobb, mint a_n , ha n elég nagy" (másként fogalmazva: " a_n sokkal kisebb, mint b_n , ha n elég nagy"), és ezt így jelöljük:

$$a_n \ll b_n$$
, ha *n* elég nagy.

A most bevezetett jelöléssel a tétel állításait így fejezhetjük ki: ha a>1 rögzített valós szám és k rögzített pozitív természetes szám, akkor

$$n^k \ll a^n \ll n! \ll n^n$$
, ha n elég nagy.

- **6.** Az e szám bevezetése.
 - 2. Tétel (Az e szám értelmezése). Az

$$a_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekvő és felülről korlátos, tehát konvergens. Legyen

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

Bizonyítás. Az állítást a számtani és a mértani közép közötti egyenlőtlenség "ötletes" felhasználásaival bizonyítjuk.

- \boldsymbol{A} monotonitás igazolásához az egyenlőtlenséget az (n+1) darab

1,
$$1 + \frac{1}{n}$$
, $1 + \frac{1}{n}$, ..., $1 + \frac{1}{n}$

számra alkalmazzuk. Mivel ezek nem mind egyenlők, ezért

$$\sqrt[n+1]{1 \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{1 + n \cdot \left(1 + \frac{1}{n}\right)}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}.$$

Mindkét oldalt (n + 1)-edik hatványra emelve azt kapjuk, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} = a_{n+1} \qquad (n \in \mathbb{N}^+),$$

amivel beláttuk, hogy a sorozat szigorúan monoton növekvő.

• A korlátosság bizonyításához most az (n+2) darab

$$\frac{1}{2}$$
, $\frac{1}{2}$, $1 + \frac{1}{n}$, $1 + \frac{1}{n}$, ..., $1 + \frac{1}{n}$

számra alkalmazzuk ismét a számtani és a mértani közép közötti egyenlőtlenséget:

$$\sqrt[n+2]{\frac{1}{2} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{2 \cdot \frac{1}{2} + n \cdot \left(1 + \frac{1}{n}\right)}{n+2} = \frac{n+2}{n+2} = 1.$$

Ebből következik, hogy

$$a_n = \left(1 + \frac{1}{n}\right)^n < 4 \qquad (n \in \mathbb{N}^+),$$

ezért a sorozat felülről korlátos.

A monoton sorozatok határértékére vonatkozó tételből következik, hogy a sorozat konvergens.

Megjegyzések.

1. A tétel állítását a sorozat néhány tagja kiszámításával illusztráljuk:

n	1	2	3	4	5	8	100	1 000	10 000
$\left(1+\frac{1}{n}\right)^n$	2	2,25	2,37	2,44	2,49	2,57	2,7048	2,71692	2,71815

2. Hiba lenne arra gondolni, hogy mivel $1 + \frac{1}{n} \to 1$, ezért $\left(1 + \frac{1}{n}\right)^n \to 1^n = 1$, hiszen a kifejezésnek csak az egyik részének vettük a határértékét. Másrészt a szorzás művelet és a határérték kapcsolatára vonatkozó tétel nem használható, hiszen az

$$\left(1 + \frac{1}{n}\right)^n = \underbrace{\left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{1}{n}\right) \cdots \left(1 + \frac{1}{n}\right)}_{n \text{ ever}}$$

felírásban a tényezők száma nem állandó, függ az n-től.

3. Általában: az 1-hez közeli a_n számok nagy kitevőjű b_n hatványaira az a_n és b_n megválasztásától függően minden eset előfordulhat. Ezt illusztrálják az alábbi példák:

$$a_n := \sqrt[n]{c} \to 1 \quad (c > 0), \qquad b_n := n \to +\infty, \qquad \Longrightarrow \qquad a_n^{b_n} = c,$$

$$a_n := \sqrt[n]{n} \to 1, \qquad b_n := n \to +\infty \qquad \Longrightarrow \qquad a_n^{b_n} = n \to +\infty,$$

$$a_n := \begin{cases} 1, & \text{ha } n = 1, 3, 5, \dots \\ \sqrt[n]{2}, & \text{ha } n = 2, 4, 6, \dots \end{cases} \to 1, \quad b_n := n \to +\infty, \qquad \Longrightarrow \qquad \nexists \lim \left(a_n^{b_n}\right).$$

Ilven esetekben " $1^{+\infty}$ " típusú kritikus határértékről beszélünk.

- 4. Az e szám a matematika egyik legfontosabb állandója, amit $Leonhard\ Euler\ (1707–1783)$ svájci matematikus vezetett be 1748-ban.
- 5. Az $\left(\left(1+\frac{1}{n}\right)^n\right)$ sorozat határértékére külön szimbólum bevezetésének indoka a következő: később meg fogjuk mutatni, hogy e irracionális szám, közelítő értéke $e\approx 2,718$.

Az is igaz, hogy e ún. transzcendens szám. Ez azt jelenti, hogy nincs olyan egész együtthatós polinom, aminek ez a szám gyöke lenne. ($\sqrt{2}$ például irracionális, de nem transzcendens szám, mert $\sqrt{2}$ gyöke az $x^2-2=0$ egyenletnek.) Azokat a valós számokat, amelyek valamely egész együtthatós polinomnak a gyökei algebrai számnak nevezzük. ($\sqrt{2}$ tehát algebrai szám.)

- 7. Az $\left(\left(1+\frac{x}{n}\right)^n\right)$ sorozat határértéke.
 - 3. Tétel. Ha x tetszőleges racionális szám, akkor

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x.$$

Bizonyítás. " $1^{+\infty}$ " típusú kritikus határértékről van szó. Az állítást különböző esetekre fogjuk bontani:

• $x = p \in \mathbb{N}$: teljes indukcióval igazoljuk, hogy minden $p \in \mathbb{N}$ esetén

$$\lim_{n \to +\infty} \left(1 + \frac{p}{n} \right)^n = e^p.$$

- Az állítás igaz p=0-ra, hiszen $\left(1+\frac{0}{n}\right)^n=1=e^0$ minden $n\in\mathbb{N}^+$ esetén. \checkmark
- Ha van olyan $p \in \mathbb{N}$, amire (*) teljesül (indukciós feltétel), akkor

$$\left(1 + \frac{p+1}{n}\right)^n = \left(\frac{n+p+1}{n}\right)^n = \left(\frac{n+1+p}{n+1}\right)^n \cdot \left(\frac{n+1}{n}\right)^n = \\
= \left(\frac{n+1+p}{n+1}\right)^{n+1} \cdot \left(\frac{n+1+p}{n+1}\right)^{-1} \cdot \left(\frac{n+1}{n}\right)^n = \\
= \underbrace{\left(1 + \frac{p}{n+1}\right)^{n+1}}_{\rightarrow e^p} \cdot \underbrace{\left(1 + \frac{p}{n+1}\right)^{-1}}_{\rightarrow 1^{-1}=1} \cdot \underbrace{\left(1 + \frac{1}{n}\right)^n}_{\rightarrow e} \xrightarrow[n \to +\infty]{} e^{p+1},$$

hiszen $\left(\left(1+\frac{p}{n+1}\right)^{n+1}\right)$ részsorozata az $\left(\left(1+\frac{p}{n}\right)^{n}\right)$ sorozatnak, ami az indukciós feltétel miatt tart e^{p} -hez, és így minden részsorozata is e^{p} -hez tart.

Ez azt jelenti, hogy az állítás, ha p-re igaz, akkor (p+1)-re is igaz. \checkmark

A teljes indukcióra vonatkozó tétel feltételei tehát teljesülnek, ezért a tétel állítása valóban fennáll minden x=p természetes számra.

• $x = p/q \in \mathbb{Q}^+$: ebben az esetben feltételezhető, hogy $p, q \in \mathbb{N}^+$. Ha q = 1, akkor a már igazolt, előző esetet kapjuk. Tegyük fel tehát, hogy $q \ge 2$. Ekkor

$$\left(1 + \frac{p/q}{n}\right)^n = \left(1 + \frac{p}{qn}\right)^n = \sqrt[q]{\left(1 + \frac{p}{qn}\right)^{qn}} \xrightarrow[n \to +\infty]{} \sqrt[q]{e^p} = e^{p/q},$$

hiszen $\left(\left(1+\frac{p}{qn}\right)^{qn}\right)$ részsorozata az $\left(\left(1+\frac{p}{n}\right)^n\right)$ sorozatnak $(\nu_n=qn\in\mathbb{N}^+)$ indexsorozattal), amiről az előző esetből tudjuk, hogy tart e^p -hez, és így minden részsorozata is e^p -hez tart. Az állítás tehát fennáll minden x pozitív racionális számra.

• x = -r ahol $r \in \mathbb{Q}^+$: minden $\mathbb{N} \ni n \neq r$ esetén

$$\left(\#\right) \qquad \left(1+\frac{-r}{n}\right)^n = \left(1-\frac{r}{n}\right)^n = \left(\frac{n-r}{n}\right)^n = \left(\frac{n}{n-r}\right)^{-n} = \left[\left(1+\frac{r}{n-r}\right)^n\right]^{-1}.$$

Legyen p > r egy rögzített pozitív egész szám. Ekkor $\forall n > p$ esetén

$$\underbrace{\left(1+\frac{r}{n}\right)^n}_{\to e^r} < \left(1+\frac{r}{n-r}\right)^n < \left(1+\frac{r}{n-p}\right)^n = \underbrace{\left(1+\frac{r}{n-p}\right)^{n-p}}_{\to e^r} \cdot \underbrace{\left(1+\frac{r}{n-p}\right)^p}_{\to 1^p=1},$$

hiszen $\left(\left(1+\frac{r}{n-p}\right)^{n-p}\right)$ ($\mathbb{N}^+\ni n>p$) részsorozata az $\left(\left(1+\frac{r}{n}\right)^n\right)$ sorozatnak (a $\nu_n=n-p\in\mathbb{N}^+$ indexsorozatal), amiről az előző esetből tudjuk, hogy tart e^r -hez, és így minden részsorozata is e^r -hez tart. Így a közrefogási elvből következik, hogy

$$\lim_{n \to +\infty} \left(1 + \frac{r}{n-r} \right)^n = e^r,$$

tehát (#) miatt

$$\lim_{n \to +\infty} \left(1 + \frac{-r}{n} \right)^n = \lim_{n \to +\infty} \left[\left(1 + \frac{r}{n-r} \right)^n \right]^{-1} = (e^r)^{-1} = e^{-r}.$$

Az állítás tehát fennáll minden x negatív racionális számra.

Azt igazoltuk, hogy a tétel állítása igaz x=0-ra és minden x pozitív és negatív racionális számra. Tehát az állítás minden $x \in \mathbb{Q}$ esetén teljesül.

Megjegyzések.

- 1. Később általánosítani fogjuk a hatványozást valós kitevőkre is. Igazolható, hogy a tétel állítása minden x valós számra is igaz.
- 2. Megmutatjuk az

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$$

határértéknek egy pénzügyi alkalmazását. Ha x_0 forintot évi p%-os kamatra helyezzük a bankba, akkor egy év után

$$x_0 (1 + p/100)$$

forintot kapunk vissza. Ha havi kamattal számítjuk az évi p%-os kamatot, akkor a visszakapott összeg

$$x_0 \left(1 + \frac{p/100}{12}\right)^{12}$$

forint lesz egy év után. Megpróbálhatunk napi kamattal számolni, vagy akár még jobban növelni a kamatfizetési gyakoriságot. Ha a betett összegünk egy évben egyenletesen n-szer kamatozik p%-os évi kamattal, akkor az év végén

$$x_0 \left(1 + \frac{p/100}{n}\right)^n$$

forintot kapunk vissza. Elég nagy n esetén az előbbi képlet helyet használhatjuk az

$$x_0 \cdot e^{p/100}$$

képletet, ami a sorozat határértéke. Ez olyan, mint ha a kamatfizetés technikailag minden időpillanatban történne. Ezért ezt *folytonos kamatozásnak* nevezik.

Rekurzív sorozatok határértéke

A monoton sorozatok konvergenciájára vonatkozó tételt egyszerű feltételei miatt már több esetben is alkalmaztuk. A tételt számos, rekurzióval megadott sorozatok konvergencia-vizsgálatánál is jól használhatjuk. A módszer alkalmazása során bebizonyítjuk, hogy a sorozat konvergens; a határértékét pedig a rekurzív képletből nyerhető egyenlet gyökeiből választjuk ki. A módszer hatékonyságát mutatja, hogy a sorozatok nagyságrendjéről szóló részben a határértékek kiszámításához két esetben is felírtuk a sorozatot rekurzív alakban.

Most ennek a módszernek a felhasználásával igazoljuk pozitív valós számok m-edik gyökének a létezését, és egy egyszerű konstruktív eljárást adunk ezek közelítő kiszámítására.

Emlékeztetünk arra, hogy ha A>0 tetszőleges valós szám és $m\geq 2$ természetes szám, akkor az $\sqrt[m]{A}$ szimbólummal jelöljük (és az A szám m-edik gyökének nevezzük) azt a pozitív valós számot, amelynek az m-edik hatványa A, azaz $\alpha^m=A$. A következő tételből következik, hogy ilyen α szám mindig létezik.

4. Tétel (Newton-féle iterációs eljárás m-edik gyökök keresésére). Legyen A>0 valós szám és $m\geq 2$ természetes szám. Ekkor az

$$\begin{cases} a_0 > 0 \text{ } tetsz\"{o}leges \text{ } val\'{o}s \text{ } sz\'{a}m, \\ a_{n+1} := \frac{1}{m} \left(\frac{A}{a_n^{m-1}} + (m-1)a_n \right) \quad (n \in \mathbb{N}) \end{cases}$$

rekurzióval értelmezett (a_n) sorozat konvergens, és az $\alpha := \lim(a_n)$ határértékére igaz, hogy $\alpha > 0$ és

$$\alpha^m = A$$
.

Bizonyítás. Az állítást több lépésben igazoljuk.

- **1. lépés.** Teljes indukcióval könnyen igazolható, hogy az (a_n) sorozat "jól definiált" és $a_n > 0 \ (n \in \mathbb{N})$.
- **2. lépés.** Igazoljuk, hogy az (a_n) sorozat konvergens. A monoton sorozatok konvergenciájára vonatkozó tételt fogjuk alkalmazni.

A sorozat alulról korlátos és 0 egy triviális alsó korlát (az 1. lépés alapján).

Most megmutatjuk azt, hogy az (a_n) sorozat a második tagtól kezdve monoton csökkenő, azaz

$$a_{n+1} \le a_n \quad \Longleftrightarrow \quad \frac{a_{n+1}}{a_n} \le 1, \quad \text{ha } n = 1, 2, \dots$$

A rekurzív képlet szerint minden $n \in \mathbb{N}^+$ esetén

$$\frac{a_{n+1}}{a_n} = \frac{1}{m} \left(\frac{A}{a_n^m} + m - 1 \right) \le 1 \qquad \iff \qquad a_n^m \ge A.$$

A jobb oldali egyenlőtlenség igazolására a számtani és a mértani közép közötti egyenlőtlenség következő alakját fogjuk alkalmazni: ha x_1, x_2, \ldots, x_m tetszés szerinti nemnegatív valós számok, akkor

$$(\triangle) x_1 \cdot x_2 \cdot \ldots \cdot x_m \le \left(\frac{x_1 + x_2 + \cdots + x_m}{m}\right)^m,$$

és az egyenlőség akkor és csak akkor áll fenn, ha $x_1 = x_2 = \cdots = x_m$. Fontos hangsúlyozni, hogy lényegében ezt az alakot igazoltuk gyakorlaton, és csak az m-edik gyök egyértelmű létezése után írhatjuk fel az egyenlőtlenséget a megszokott alakban.

Vegyük észre, hogy a rekurzív képlet jobb oldalán álló összeg az m darab

$$x_1 := \frac{A}{a_n^{m-1}}, \quad x_2 := a_n, \quad x_3 := a_n, \quad \dots , \quad x_m := a_n \quad (n \in \mathbb{N})$$

pozitív szám számtani közepe. Ezért (\triangle) miatt

$$a_{n+1}^m = \left(\frac{1}{m} \left(\frac{A}{a_n^{m-1}} + \underbrace{a_n + \dots + a_n}_{m-1 \text{ darab}}\right)\right)^m = \left(\frac{x_1 + x_2 + \dots + x_m}{m}\right)^m \ge$$

$$\ge x_1 \cdot x_2 \cdot \dots \cdot x_m = \frac{A}{a_n^{m-1}} \cdot \underbrace{a_n \cdot a_n \cdot \dots \cdot a_n}_{m-1 \text{ darab}} = A \qquad (n \in \mathbb{N}).$$

Sikerült igazolnunk tehát, hogy $a_n^m \ge A$ $(n \in \mathbb{N}^+)$, ezzel azt, hogy az (a_n) sorozat a második tagtól kezdve monoton csökkenő.

Az (a_n) sorozat tehát monoton csökkenő a második tagtól kezdve és alulról korlátos, ezért a monoton sorozatok határértékére vonatkozó tétel alapján (a_n) konvergens.

3. lépés. Kiszámítjuk a sorozat határértékét. Legyen

$$\alpha := \lim(a_n).$$

Az eddigiekből az következik, hogy $\alpha \geq 0$. Fontos észrevétel azonban az, hogy az $\alpha > 0$ egyenlőtlenség is igaz. Ez az állítás a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételből, valamint a határérték és a rendezés kapcsolatára vonatkozó tételből következik, hiszen

$$a_n^m \ge A, \quad a_n \to \alpha \qquad \Longrightarrow \qquad a_n^m \to \alpha^m \ge A > 0 \qquad \Longrightarrow \qquad \alpha > 0.$$

Az (a_n) sorozatot megadó rekurzív összefüggésben az $n \to \infty$ határátmenetet véve az α határértékre egy egyenletet kapunk. Valóban, ha alkalmazzuk a konvergens sorozatok és a műveletek kapcsolatára vonatkozó tételeket (itt használjuk az $\alpha > 0$ egyenlőtlenséget), akkor az adódik, hogy

$$\alpha \leftarrow a_{n+1} = \frac{1}{m} \left(\underbrace{\frac{A}{a_n^{m-1}}}_{\xrightarrow{A \atop \alpha^{m-1}}} + (m-1) \cdot \underbrace{a_n}_{\xrightarrow{A} \alpha} \right) \rightarrow \frac{1}{m} \left(\frac{A}{\alpha^{m-1}} + (m-1)\alpha \right).$$

A határérték egyértelműsége miatt

$$\alpha = \frac{1}{m} \left(\frac{A}{\alpha^{m-1}} + (m-1)\alpha \right).$$

Innen már egyszerű átrendezéssel azt kapjuk, hogy

$$m \alpha^m = A + (m-1)\alpha^m \implies \alpha^m = A.$$

Megjegyzések.

- 1. Az előző tételből következik a pozitív számok m-edik gyökének létezését. Az egyértelmű-ségről már korábban szó eset. Ez nem volt nehéz igazolni, hiszen $0 < \alpha_1 < \alpha_2 \implies \alpha_1^m < \alpha_2^m$, ezért legfeljebb egy olyan pozitív α szám létezik, amelyre $\alpha^m = A$. Így már teljes joggal alkalmazhatjuk az $\sqrt[m]{A}$ jelölést.
- 2. A tétel bizonyítását azzal kezdtük, hogy a sorozat "jól-definiáltságát" vizsgáltuk. Nem minden rekurzió generál egy egyértelmű sorozatot. Előfordulhat pl., hogy az egyik lépésben nem tudjuk a kapott értéket behelyettesíteni a rekurziós képletben, és így a rekurzió megszakad. Ezért ezzel a problémával foglalkoznunk kell.

Legyen $D \subset \mathbb{R}$, $a \in D$, $f: D \to D$, és tekintsük az

$$a_0 := a,$$
 $a_{n+1} := f(a_n) \quad (n \in \mathbb{N})$

egylépéses rekurziót. Egy ilyen rekurzió mindig "jól definiált", hiszen egyértelműen olyan (a_n) sorozatot generál, amelynek értékkészlete része a D halmaznak. Ez a **rekurzív definíció tételének** legegyszerűbb változata, ami teljes indukcióval könnyen igazolható. A Newton-féle iteráció "jól-definiált", hiszen ekkor $D = \mathbb{R}^+$ és

$$f: \mathbb{R}^+ \to \mathbb{R}^+, \qquad f(x) := \frac{1}{m} \left(\frac{A}{x^{m-1}} + (m-1)x \right)$$

3. A tételből egy igen egyszerű konstruktív eljárást kapunk irracionális számok racionális számokkal való megközelítésére, ha a keresett $\sqrt[m]{A}$ irracionális gyökben szereplő A szám racionális. Alkalmazzuk például az iterációt a $\sqrt{2}$ irracionális szám racionális számokkal való megközelítésére. Induljuk ki az $a_0 := 2$ értéktől. Mivel A = 2 és m = 2, akkor a következő rekurzív formulát kapjuk:

$$a_0 := 2$$
 és $a_{n+1} := \frac{1}{a_n} + \frac{a_n}{2}$ $(n \in \mathbb{N}).$

Világos, hogy $a_n \in \mathbb{Q}$ minden n-re. A tételből következik, hogy (a_n) konvergens és $\sqrt{2}$ a határértéke. Ez azt jelenti, hogy nagy n indexekre a_n közel van $\sqrt{2}$ -höz:

$$a_n \approx \sqrt{2}$$
 $(n \in \mathbb{N}).$

Az iterációs sorozat első 7 tagja:

$$a_0 = 2;$$

 $a_1 = 1, 5;$
 $a_2 = 1, 416\,666\dots;$
 $a_3 = 1, 414\,215\dots;$
 $a_4 = 1, 414\,213\,562\,374\,689\dots;$
 $a_5 = 1, 414\,213\,562\,373\,095\,048\,801\,689\,623\dots;$
 $a_6 = 1, 414\,213\,562\,373\,095\,048\,801\,688\,724\dots;$

Az eredményekből úgy tűnik, hogy a szóban forgó konvergencia elég gyors. Az $a_n \approx \sqrt{2}$ közelítésre az

$$\left| a_n - \sqrt{2} \right| \le \frac{3}{2^{2^n}} \qquad (n \in \mathbb{N})$$

egyenlőtlenség (az ún. **hibabecslés**) igazolható, és ez bizonyítja is a számítógépes kísérletekből sejthető gyors konvergenciát.

Figyeljük meg, hogy (*) felhasználásával meg tudnánk határozni olyan $N \in \mathbb{N}$ indexet, amelyre a_N és $\sqrt{2}$ (például) első 37 tizedesjegye megegyezik.

4. Rekurzív módon megadott (a_n) sorozatok konvergenciájának a vizsgálatánál sokszor (de nem mindig!) használható az előző tétel bizonyításában követett módszer.

Először megmutatjuk azt, hogy (a_n) konvergens. "Szerencsés esetekben" a sorozat monoton és korlátos (ezeket a tulajdonságokat meg lehet sejteni, majd a sejtéseket például teljes indukcióval be lehet bizonyítani), következésképpen (a_n) konvergens.

Ezután a rekurzív képletben vesszük az $n \to +\infty$ határátmenetet. Ekkor a határérték egyértelműsége alapján a sorozat határértékére egy egyenletet kapunk, aminek több megoldása lehet. Ezekből egyedi megfontolások alapján (pl. egy pozitív tagú sorozat határértéke nem lehet negatív) választjuk ki az (a_n) sorozat (egyértelműen meghatározott) határértékét.

A Bolzano-Weierstrass-féle kiválasztási tétel és a Cauchy-kritérium

Most két, elsősorban elméleti szempontból alapvető fontosságú eredményt ismertetünk.

A Bolzano-Weierstrass-féle kiválasztási tétel

5. Tétel (A Bolzano–Weierstrass-féle kiválasztási tétel). Minden korlátos valós sorozatnak van konvergens részsorozata.

Bizonyítás. A tétel az alábbi, már igazolt állítások azonnali következménye:

- minden sorozatnak van monoton részsorozata,
- minden monoton és korlátos sorozat konvergens.

Ha ui. a sorozat korlátos, akkor minden részsorozata is korlátos, így lesz monoton és korlátos részsorozata, következésképpen ez a részsorozat konvergens.

Megjegyzések.

1. A későbbiekben többször alkalmazzuk azt az állítást:

Ha [a,b] egy véges zárt intervallum, és $(x_n): \mathbb{N} \to [a,b]$ egy intervallumbeli sorozat, akkor (x_n) -nek van olyan konvergens részsorozata, amelynek határértéke eleme az [a,b] intervallumnak.

Ez azért igaz, mert a Bolzano-Weierstrass-féle kiválasztási tétel garantál egy konvergens (x_{ν_n}) részsorozat létezését. Ha $\alpha := \lim(x_{\nu_n})$, akkor a határérték és a rendezés kapcsolatára vonatkozó tételből következik, hogy $a \le \alpha \le b$, hiszen $a \le x_{\nu_n} \le b$ minden $n \in \mathbb{N}$ esetén.

- 2. Nem korlátos sorozatok esetén igazolhatók az alábbi állítások:
 - Ha egy sorozat felülről nem korlátos, akkor van $+\infty$ -hez tartó monoton növekvő részsorozata.
 - Ha egy sorozat alulról nem korlátos, akkor van $-\infty$ -hez tartó monoton csökkenő részsorozata.

Cauchy-sorozatok és a Cauchy-féle konvergenciakritérium

A számsorozatokkal kapcsolatos vizsgálatok egyik központi kérdése annak eldöntése, hogy a szóban forgó sorozat konvergens-e. A konvergencia definíciójában azonban szerepel egy, a sorozat tagjain "kívüli" dolog is, nevezetesen: a sorozat határértéke. Ezért a definíció alkalmazásához a határértéket "meg kell sejteni", de ez igen sok esetben nem egyszerű feladat.

Néhány, már megismert eredmény azonban egyszerűsíti a helyzetet. Például, ha egy sorozat nem korlátos, akkor nem konvergens. Ennél lényegesebb a monoton és korlátos sorozatokra vonatkozó tétel. Ebben az esetben tehát akkor is eldönthető egy sorozat konvergenciája, ha nem ismerjük a határértékét. A szóban forgó tétel azonban nem egyenértékű a konvergenciával, annak "csak" egy elégséges feltétele. Ezért alapvető jelentőségű az a tény, hogy a konvergenciára megadható egy olyan szükséges és elégséges feltétel is, amely kizárólag a sorozat tagjainak a segítségével dönt a sorozat konvergens vagy divergens voltáról.

Nem nehéz szemléletesen meggondolni, hogy ha egy sorozat konvergens, és így minden tagja egy pont körül sűrűsödik, akkor a sorozat elég nagy indexű tagjai tetszőlegesen közel kerülnek egymáshoz. Ez utóbbi tulajdonságot a következő definíció precízen írja le.

1. Definíció. $Az(a_n)$ valós sorozatot Cauchy-sorozatnak nevezzük, ha

$$\forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall m, n > n_0 \colon |a_n - a_m| < \varepsilon.$$

Megjegyzés. Pongyolán, de szemléletesen fogalmazva: "egy sorozat akkor Cauchy-sorozat, ha az elég nagy indexű tagjainak távolsága kisebb, mint bármely előre meghatározott kicsi szám". Látható tehát, hogy az ún. **Cauchy-tulajdonságban** kizárólag a sorozat tagjai játszanak szerepet. ■

A következő tétel azt állítja, hogy a Cauchy-tulajdonság szükséges és elégséges feltétele a sorozat konvergenciájának.

6. Tétel (A Cauchy-féle konvergenciakritérium). Legyen (a_n) egy valós sorozat. Ekkor

$$(a_n)$$
 konvergens \iff (a_n) Cauchy-sorozat.

Bizonyítás.

 \implies Tegyük fel, hogy (a_n) konvergens, és $A:=\lim(a_n)$ a határértéke. Legyen $\varepsilon>0$ tetszőleges valós szám. A konvergencia definíciója szerint

$$\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon |a_n - A| < \frac{\varepsilon}{2}.$$

Így $\forall m, n > n_0$ index esetén

$$|a_n - a_m| = \left| (a_n - A) + (A - a_m) \right| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy (a_n) Cauchy-sorozat.

 \sqsubseteq Tegyük fel, hogy (a_n) Cauchy-sorozat. Több lépésen keresztül látjuk be, hogy (a_n) konvergens.

1. lépés. Igazoljuk, hogy (a_n) korlátos sorozat.

A Cauchy-sorozat definíciójában $\varepsilon = 1$ -hez van olyan $n_1 \in \mathbb{N}$ index, hogy

$$\forall m, n > n_1 : |a_n - a_m| < 1.$$

Legyen $m = n_1 + 1$. Ekkor minden $n > n_1$ esetén

$$|a_n| = |(a_n - a_{n_1+1}) + a_{n_1+1}| \le |a_n - a_{n_1+1}| + |a_{n_1+1}| < 1 + |a_{n_1+1}|.$$

Következésképpen az

$$|a_n| \le \max\{|a_0|, |a_1|, \dots, |a_{n_1}|, 1 + |a_{n_1+1}|\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ számra igaz, azaz a sorozat valóban korlátos.

2. lépés. A Bolzano–Weierstrass-féle kiválasztási tételből következik, hogy (a_n) -nek létezik egy (a_{ν_n}) konvergens részsorozata. Jelölje

$$A := \lim(a_{\nu_n}) \in \mathbb{R}.$$

3. lépés. Belátjuk, hogy $\lim(a_n) = A$ is igaz.

Legyen $\varepsilon > 0$ tetszőleges. Ekkor A definíciójából következik, hogy

$$\exists n_2 \in \mathbb{N}, \ \forall n > n_2 \colon \left| a_{\nu_n} - A \right| < \frac{\varepsilon}{2}.$$

Az (a_n) Cauchy-sorozat, ezért $\varepsilon/2$ -höz

$$\exists n_3 \in \mathbb{N}, \ \forall n, m > n_3 \colon |a_n - a_m| < \frac{\varepsilon}{2}.$$

Mivel $(\nu_n): \mathbb{N} \to \mathbb{N}$ indexsorozat (vagyis (ν_n) szigorúan monoton növekvő), ezért $\nu_n \geq n \ (n \in \mathbb{N})$, amit teljes indukcióval lehet igazolni.

Ha $n > n_0 := \max\{n_2, n_3\}$, akkor $\nu_n > n_0$, ezért n és $m := \nu_n$ is nagyobb, mint n_2 és n_3 , tehát alkalmazhatók a fenti egyenlőtlenségek. Ekkor

$$|a_n - A| = \left| (a_n - a_{\nu_n}) + (a_{\nu_n} - A) \right| \le |a_n - a_m| + |a_{\nu_n} - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy az (a_n) sorozat valóban konvergens, és $\lim(a_n) = A$.

Megjegyzés. Fontos megjegyezni, hogy az iménti tétel konvergens (tehát véges határértékű) sorozatokról szól. Végtelen határértékekre az analóg állítás nem igaz: például az (n) sorozatnak a határértéke $+\infty$, de ez nem Cauchy-sorozat. A sok hasonlóság mellett ez az egyik leglényegesebb különbség a konvergens, ill. a $\pm\infty$ -hez tartó sorozatok között.