Лабораторная работа №1

Воронцова С.Ю.

Задание 1

Найти альфа-эквивалентное выражение, обосновать.

- λху.хz ⇔ λmn.mz : с помощью λ-эквивалентности заменяем связные переменные x = m ⇔ m = x, y = n ⇔ n = y, получаем два λ-эквивалентных выражения.
 (λ-терм из ф-ций двух аргументов, в теле которого только первый аргумент, второй аргумент свободная переменная z).
 ответ: b.
- 2. $\lambda xy.xxy$ или $\lambda x(\lambda y).xxy \Leftrightarrow \lambda a(\lambda b).aab$: с помощью λ -эквивалентности заменяем связные переменные $x = a \Leftrightarrow a = x, y = b \Leftrightarrow b = y,$ получаем два λ -эквивалентных выражения. (λ -терм из ϕ -ций двух аргументов, в теле которого две связных переменных первой ϕ -ции и аргумент второй ϕ -ции). ответ: с.
- 3. $\lambda xyz.zx \Leftrightarrow \lambda tos.st$: с помощью λ -эквивалентности заменяем связные переменные $x = t \Leftrightarrow t = x, y = o \Leftrightarrow o = y, z = s \Leftrightarrow s = z$, получаем два λ -эквивалентных выражения. (λ -терм из ф-ций трёх аргументов, в теле которого первый аргумент и третий, которые являются связными). ответ: b.

Залание 2

Найти комбинаторы, обосновать.

1. $\lambda x.xxx$ — комбинатор, все переменные связные, применяет x к самому себе. Из существования комбинатора $\omega = \lambda x.xx$ можно сделать вывод, что $\lambda x.xxx$ — тоже комбинатор.

- 2. $\lambda xy.zx$ не комбинатор, есть свободная переменная z.
- 3. $\lambda xyz.xy(zx)$ комбинатор, нет свободных переменных.
- 4. λхуz.ху(zxy) комбинатор, нет свободных переменных.
- 5. $\lambda xy.xy(zxy) = (x:=zxy) = \lambda y.zxyy$ не комбинатор, z -свободная переменная.

Задание 3

- 1. $\lambda x.xxx$ комбинатор, не может быть редуцирован. проверка на сходимость: $(\lambda x.xxx)a = aaa$ бета-нормальная форма, сходится.
- 2. $(\lambda z.zz)(\lambda y.yy)$ расходится. Доказательство: $z:=\lambda y.yy, =>(\lambda y.yy)(\lambda y.yy)=\dots$
- 3. $(\lambda x.xxx)z = zzz$ бета-нормальная форма, сходится.

Задание 4

Привести к бета-нормальной форме.

- (λabc.cba)zz(λwv.w), a:=z =>
 (λbc.cbz)z(λwv.w), b:=z =>
 (λc.czz)(λwv.w), c:=(λwv.w) =>
 (λwv.w)zz, w:=z =>
 (λv.z)z, v:=z =>
 z ответ.
- 2. $(\lambda_{\mathbf{x}}.\lambda_{\mathbf{y}}.\mathbf{x}_{\mathbf{y}})(\lambda_{\mathbf{a}}.\mathbf{a})b$, $\mathbf{x}:=(\lambda_{\mathbf{a}}.\mathbf{a})=>$ $(\lambda_{\mathbf{y}}.(\lambda_{\mathbf{a}}.\mathbf{a})\mathbf{b}b$, $\mathbf{y}:=b=>$ $(\lambda_{\mathbf{a}}.\mathbf{a})\mathbf{b}b$, $\mathbf{a}:=b=>$ $\mathbf{b}b-\mathbf{o}$
- 3. $(\lambda y.y)(\lambda x.xx)(\lambda z.zq)$, $y:=(\lambda x.xx) =>$ $(\lambda x.xx)(\lambda z.zq)$, $x:=(\lambda z.zq) =>$ $(\lambda z.zq)(\lambda z.zq)$, $z:=(\lambda z.zq) =>$

$$(\lambda z.zq)q$$
, $z:=q=>$ $qq-$ ответ.

4. $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$, λ -эквивалентно:

$$(\lambda \mathbf{m}.\mathbf{m})(\lambda \mathbf{x}.\mathbf{x}\mathbf{x})(\lambda \mathbf{z}.\mathbf{z}\mathbf{y}), \mathbf{m} := (\lambda \mathbf{x}.\mathbf{x}\mathbf{x}) =>$$

$$(\lambda x.xx)(\lambda z.zy), x:=(\lambda z.zy) =>$$

$$(\lambda z.zy)(\lambda z.zy), z:=(\lambda z.zy)=>$$

$$(\lambda z.zy)y$$
, z:=y =>

уу – ответ.

5. $(\lambda x. \lambda y. xyy)(\lambda y. y)y$, λ -эквивалентно:

$$(\lambda x.\lambda y.xyy)(\lambda a.a)b, x:=(\lambda a.a) =>$$

$$(\lambda y.(\lambda a.a)yy)b, y:=b=>$$

$$(\lambda a.a)bb$$
, a:=b =>

bb – ответ. Или без замены: уу

6. $(\lambda a.aa)(\lambda b.ba)c$, $a:=(\lambda b.ba) =>$

$$(\lambda b.ba)(\lambda b.ba)c, b:=(\lambda b.ba) =>$$

$$(\lambda b.ba)ac$$
, b:=a =>

аас – ответ.

7. $(\lambda xyz.xz(yz))(\lambda x.z)(\lambda x.a), x := (\lambda x.z) =>$

$$(\lambda yz.(\lambda x.z)z(yz))(\lambda x.a), y:=(\lambda x.a) =>$$

$$\lambda z.(\lambda x.z)z((\lambda x.a)z), x:=z=>\#(\lambda x.a)z=a\#=>$$

$$\lambda z.(\lambda x.z)za, x:=z=>\#(\lambda x.z)z=z\#=>$$

 $\lambda z.za - otbet.$

с использование λ -эквивалентной замены:

$$(\lambda xyz.xz(yz))(\lambda b.t)(\lambda m.a), x:=(\lambda b.t) =>$$

$$(\lambda yz.(\lambda b.t)z(yz))(\lambda m.a), y:=(\lambda m.a) =>$$

$$\lambda z.(\lambda b.t)z((\lambda m.a)z), m:=z=>\#(\lambda m.a)z=a\#=>$$

$$\lambda z.(\lambda b.t)za, b:=z=>\#(\lambda b.t)z=t\#=>$$

 $\lambda z.ta - otbet$.

Ответы

Задание 1	1)b, 2)c, 3)b.
Задание 2	1,3,4 – комбинаторы, 2,5 – не комбинаторы.
Задание 3	1 – сходится, при воздействии параметром а получаем:
	aaa.
	2 – расходится.
	3)zzz – бета-нормальная форма, сходится.
Задание 4	1)z, 2)bb, 3)qq, 4)yy, 5)yy, 6)aac, 7)λz.za.