What is claimed is:

1. A compound of formula I:

$$\mathbb{R}^{1} \mathbb{R}^{5} \mathbb{R}^{6} \mathbb{R}^{7}$$

$$\mathbb{R}^{2} \mathbb{R}^{3} \mathbb{R}^{8} \mathbb{R}^{8} \mathbb{R}^{1} \mathbb{R}^{1}$$

or a pharmaceutically acceptable derivative thereof, wherein:

5 Y is N or $C(R^4)$;

 R^1 is H, alkyl, $-N(R)_2$, $-(CH_2)_{1-6}N(R^\circ)_2$, $-(CH_2)_{1-6}OR^\circ$, -NRC(O)R, $-C(O)N(R)_2$, -CN, $-NRSO_2R$, -COOR, -OR, -SR, -C(O)R, halo, -OC(O)R, -NRC(O)OR, $-OC(O)N(R)_2$, -NRC(O)NR, -NRC(S)NR, $-NRSO_2NR$, $-C(O)NRN(R)_2$, heteroaryl, or heterocyclyl;

each R^2 , R^3 and R^4 is independently H, alkyl, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;

each R⁵ and R⁶ is independently H, alkyl, or fluoroalkyl;

 R^7 is H, alkyl, fluoroalkyl, aralkyl, carbocyclylalkyl, heterocyclyl, carbocyclyl, heterocyclylalkyl, aryl, heteroaryl, heteroaralkyl, -C(O)R, -(CH₂)₁₋₆OR, -(CH₂)₁₋₆N(R)₂, -C(O)CH₂C(O)R, -NRC(O)R, -N(R)₂, -C(O)N(R)₂, or -C(H)(OR)R;

 R^8 is H, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, heteroaryl, heterocyclyl, -CO₂R, or -CON(R)₂;

 R^9 is $-OR^{10}$ or $-NR^{11}R^{12}$;

20 R^{10} is R° , -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-(CH_2)_{1-6}$ --C(O)R, $-PO_3M_x$, -P(O)(alkyl)OM', $-(PO_3)_2M_y$, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl, or a tumor-targeting moiety;

x is 1 or 2;

25 y is 1, 2 or 3;

15

each M is independently H, Li, Na, K, Mg, Ca, Mn, Co, Ni, Zn, or alkyl; M' is H, Li, Na, K, or alkyl;

R¹¹ is H or alkyl;

10

15

20

R¹² is H, alkyl, -C(O)R, -C(O)N(R)₂, -C(O)OR, -SO₂R, -SO₂N(R)₂, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl or a tumor targeting moiety;

each R^a and R^b is independently H, OR^o, alkyl, or fluoroalkyl; each R^c and R^d is independently H, alkyl, or fluoroalkyl; n is 0-4;

X is a monovalent or divalent anion, or a counterion to the thiazolium nitrogen located anywhere in the molecule;

R° is H or alkyl; and

R is R°, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, or heteroaralkyl;

provided that the following compounds are excluded:

Y is $C(R^4)$;

R⁵, R⁶, R^a, R^b, R^c and R^d are H;

R⁸ is methyl;

 R^9 is -OR 10 , and R^{10} is H, -PO $_3M_x,$ -(PO $_3)_2M_y$ or -P(O)(alkyl)OM';

X is Cl or Br;

i) R^1 is H, R^2 is methyl, R^3 is -OH, R^4 is methyl, -CH2OH or -CH2NH2, and R^7 is H;

ii) R^1 is -NH₂, -NHMe or -N(Me)₂, R^2 is methyl, R^3 is H, R^4 is H or -CH₃, and R^7 is H;

- iii) R¹ is -NH₂ or OH, R² is methyl, R³ is H, R⁴ is H, and R⁷ is H;
- iv) R1 and R3 are H, R2 is methyl, R4 is -NH2, and R7 is H;
- v) R¹ is -NH₂, R² is methyl, R³ and R⁴ are H, and R⁷ is H,
- 25 -CH(OH)CO₂H or -C(OH)(Me)CO₂H;
 - vi) R¹, R³, R⁴ and R⁷ are H and R² is methyl; and
 - vii) R¹ is H, R² is -NH₂, R³ is -OH, R₄ is -CH₂CH₂NH₂, and R⁷ is H.
- 2. The compound of 1, wherein R¹⁰ is -C(O)R, -C(O)N(R)₂,
 -C(O)OR, -(CH₂)₁₋₆-C(O)R, alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl,

 carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl, or a tumor-targeting
 moiety; and R¹² is -C(O)R, -C(O)N(R)₂, -C(O)OR, -SO₂R, -SO₂N(R)₂, carbocyclyl,
 aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl,
 heteroaralkyl or a tumor-targeting moiety.

3. The compound of 1, wherein R^{10} or R^{12} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

, wherein R¹³ is H, alkyl, or aryl.

- 4. The compound of 1, wherein said compound has one or more features selected from the group consisting of:
 - i) R^1 is $-(CH_2)_{1-6}N(R^\circ)_2$, $-(CH_2)_{1-6}OR^\circ$, -NRC(O)R, $-C(O)N(R)_2$, -CN, $-N(R)SO_2R$, -COOR, -SR, -C(O)R, halo, -OC(O)R, -NRC(O)OR, $-OC(O)N(R)_2$, -N(R)C(O)N(R), -NRC(S)NR, $-NRSO_2NR$, $-C(O)NRN(R)_2$, heteroaryl, or heterocyclyl;
- 10 ii) R² is H, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
 - iii) R^3 is alkyl, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
- iv) R⁴ is fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -(CH₂)₁₋₆N(R°)₂, or halo;
 - v) R^{10} is H, -PO₃M_x, -(PO₃)₂M_y or -P(O)(alkyl)OM'; or R^{12} is H or C₁₋₆ alkyl; and
 - vi) n is 1.
 - 5. The compound of 4, wherein:
- i) R¹ is -(CH₂)₁₋₆N(R°)₂, -(CH₂)₁₋₆OR°, -NRC(O)R, -C(O)N(R)₂, -CN, -N(R)SO₂R, -COOR, -SR, -C(O)R, halo, -OC(O)R, -NRC(O)OR, -OC(O)N(R)₂, -N(R)C(O)N(R), -NRC(S)NR, -NRSO₂NR, -C(O)NRN(R)₂, heteroaryl, or heterocyclyl;
- ii) R² is H, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -25 OR, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
 - iii) R^3 is alkyl, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
 - iv) R^4 is fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -(CH₂)₁₋₆N(R°)₂, or halo;

- v) $R^{10} \ is \ H, \ -PO_3M_x, \ -(PO_3)_2M_y \ or \ -P(O)(alkyl)OM'; \ or \ R^{12} \ is \ H \ or \ C_{1\text{-}6}$ alkyl; and
 - vi) $n ext{ is } 1.$

WO 2005/095391

10

- 6. The compound of 1, wherein said compound has one or more features selected from the group consisting of:
 - $i) \qquad R^1 \ is \ H, \ -N(R)_2, \ alkyl, \ -NR^\circ C(O)NR, \ -NR^\circ C(O)OR, \ -C(O)N(R)_2, \\ -(CH_2)_{1-6}N(R^\circ)_2, \ -NR^\circ C(O)R, \ -CN, \ -COOR, \ -OR, \ -SR, \ or \ halo;$
 - ii) R² is H, alkyl, fluoroalkyl, -OR°, -N(R°)₂, or halo;
 - iii) R^3 and R^4 are independently H, alkyl, -OR, -N(R)₂, -(CH₂)₁₋₆OR°, or (CH₂)₁₋₆N(R°)₂;
 - iv) R^7 is H, alkyl, fluoroalkyl, $-(CH_2)_{1-6}OR$, $-(CH_2)_{1-6}N(R)_2$, $-NR^{\circ}C(O)R$, -C(O)R, -C(H)(OR)R, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl;
 - v) R^{10} is H, alkyl, -C(O)R, $-PO_3M_x$, -P(O)(alkyl)OM', $-(PO_3)_2M_y$,
- -C(O)N(R)₂, -C(O)OR, or a tumor-targeting moiety; or R¹² is H, alkyl, -C(O)R,
 -C(O)N(R)₂, -C(O)OR, -SO₂R, 5-membered heterocyclyl, 5-membered heteroaralkyl,
 or a tumor-targeting moiety; and
 - vi) n is 1.
 - 7. The compound of 6, wherein:
- 20 i) R^1 is H, -N(R)₂, alkyl, -NR°C(O)NR, -NR°C(O)OR, -C(O)N(R)₂, -(CH₂)₁₋₆N(R°)₂, -NR°C(O)R, -CN, -COOR, -QR, -SR, or halo;
 - ii) R² is H, alkyl, fluoroalkyl, -OR°, -N(R°)₂, or halo;
 - iii) R^3 and R^4 are independently H, alkyl, -OR, -N(R)₂, -(CH₂)₁₋₆OR°, or -(CH₂)₁₋₆N(R°)₂;
- iv) R⁷ is H, alkyl, fluoroalkyl, -(CH₂)₁₋₆OR, -(CH₂)₁₋₆N(R)₂, -NR°C(O)R, -C(O)R, -C(H)(OR)R, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl;
 - v) R^{10} is H, alkyl, -C(O)R, -PO₃M_x, -P(O)(alkyl)OM', -(PO₃)₂M_y, -C(O)N(R)₂, -C(O)OR, or a tumor-targeting moiety; or R^{12} is H, alkyl, -C(O)R,
- 30 -C(O)N(R)₂, -C(O)OR, -SO₂R, 5-membered heterocyclyl, 5-membered heteroaralkyl, or a tumor-targeting moiety; and
 - vi) $n ext{ is } 1.$

- 8. The compound of 6 or 7, wherein R is R°, carbocyclyl, aryl, heteroaryl, heterocyclyl, aralkyl, keterocyclylalkyl or heteroaralkyl.
- 9. The compound of 8, wherein R° is H or C_{1-6} alkyl optionally substituted with halo, hydroxy or amino.
- 5 10. The compound of 6 or 7, wherein R^{10} or R^{12} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}$ -R, an antibody, or

, wherein R^{13} is H, alkyl, or aryl.

- 11. The compound of 6 or 7, wherein said compound has one or more of the features selected from the group consisting of:
- i) R¹ is H, amino, -CH₂NH₂, -NHC(O)NHEt, -NHC(O)OEt, -NHCH₂OH, -NHCH₂CH₂OH, -NH-CH₂CH₂Cl, -N(CH₂OH)₂, Cl, Br, -SCH₃, CN, -C(O)NH₂, -C(O)OH, methyl, or ethyl;
 - ii) R² is H, methyl, ethyl, amino, CF₃, Cl, or Br;
 - iii) R³ is H, methyl, ethyl, amino, or hydroxy;
 - iv) R⁴ is H, methyl, ethyl, -CH₂OH, or -CH₂NH₂;
 - v) each R^5 , R^6 and R^8 is independently H, methyl, ethyl, -CH₂F, -CHF₂, or -CF₃;
 - vi) R^7 is H, methyl, ethyl, CF_3 , $-CH(OH)CH_3$, $-CH_2OH$, or $-CH_2CH_2OH$; and
- vii) R¹⁰ is H, methyl, ethyl, -C(O)Me, -C(O)Et, -C(O)NMe₂, -C(O)-p-OMe-phenyl, -C(O)O-phenyl, -PO₃H₂, -P(O)(OMe)₂, -P(O)(OMe)OH, -P(O)(Me)OH, -P(O)(OH)OP(O)(OH)(OH), or R¹⁴; and R¹⁴ is selected from the group consisting of:

antibody; or R^{12} is H, methyl, ethyl, R^{14} ,

15

12. The compound of 6 or 7, wherein said compound has one or more of the features selected from the group consisting of:

- i) R^1 is H, $-N(R^{\circ})_2$, $-SR^{\circ}$, or halo;
- ii) R² is H, alkyl, fluoroalkyl, -N(R°)₂, or halo;
- iii) R³ and R⁴ are independently H or alkyl;
- iv) R^7 is H or alkyl;
- v) R^8 is H or C_{1-6} unsubstituted alkyl; and
- $\label{eq:constraint} vi) \qquad R^9 \mbox{ is -OR}^{10} \mbox{ and } R^{10} \mbox{ is H, C}_{1\text{-}6} \mbox{ unsubstituted alkyl, -C(O)R, -PO}_3M_x, -PO_3M_x, -PO_3M_y, -C(O)OR, \mbox{ or a tumor-targeting moiety.}$
- 10 13. The compound of 12, wherein R^{10} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

, wherein R¹³ is H, alkyl, or aryl.

- 14. The compound of 12, wherein said compound has one or more of the features selected from the group consisting of:
 - i) R^1 is H, -NH₂, -SCH₃, or Cl;
 - ii) R² is H, methyl, -CF₃, -NH₂, or Cl;
 - iii) R^3 , R^4 , R^7 and R^8 are independently H or methyl; and
- iv) R^9 is $-OR^{10}$ and R^{10} is H, H, $-PO_3H_2$, $-P(O)(OMe)_2$, -P(O)(OMe)OH, -P(O)(Me)OH, -P(O)(OH)OP(O)(OH)(OH), or R^{14} ; and R^{14} is as defined in 11.
- 20 15. The compound of 1, wherein said compound is **Ha-1**, **Ha-2**, **Ha-3**, **Ha-4**, **Ha-5**, **Ha-6**, **Ha-7**, **Ha-8**, **Ha-9**, **Ha-10**, **Ha-11**, or **Hc-1**.
 - 16. A pharmaceutical composition comprising a compound of 1-15 and a pharmaceutically acceptable carrier.
- 17. The composition of 16, further comprising at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.

WO 2005/095391

15

20

- 18. A method for inhibiting transketolase activity in a biological sample or a patient in need thereof comprising contacting said biological sample with or administering to said patient an effective amount of a compound of 1-15.
- 19. A method for reducing levels of ribulose/ribose-5-phosphate in a cell comprising administering to the cell an effective amount of a compound of 1-15.
 - 20. A method for inhibiting nucleic acid synthesis in a cell comprising administering to the cell an effective amount of a compound of 1-15.
 - 21. A method for inhibiting cell proliferation comprising administering to the cell an effective amount of a compound of 1-15.
- 10 22. A method for increasing apoptosis in a tumor cell comprising administering to the cell an effective amount of a compound of 1-15.
 - 23. A method for reducing tumor growth in a patient comprising administering an effective amount of a compound of 1-15 or a composition of 16 to the patient in need thereof.
 - 24. The method of 23, further comprising administering at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.
 - 25. The method of 23 or 24, further comprising limiting thiamine concentrations in the patient during the administration step.
 - 26. The method of 25, wherein the patient is on a reduced thiamine diet during the administration step.
 - 27. The method of 26, wherein cellular thiamine concentrations are maintained at a level sufficient to avoid toxicity associated with thiamine deficiency.