Gaussian Distribution

1-d Gaussian

Bean machine: drop ball with pins

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2-d Gaussian

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = rac{\exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)}{\sqrt{(2\pi)^k|oldsymbol{\Sigma}|}}$$

From wikipedia and http://home.dei.polimi.it

Gaussian Mixture Model

- Assumptions
 - Each data point comes from one of K classes.
 - \square The cluster prior distribution w_i is unknown.
 - \square Each class c_i follows a Gaussian

distribution:
$$P(x|c_j, \theta_j) = \frac{1}{\sqrt{2\pi\sigma_j^2}}e^{-\frac{(x-\mu_j)^2}{2\sigma_j^2}}$$

The parameters for each class μ_i , σ_i are

- ullet The parameters for each class μ_j , σ_j are *unknown* (need to be learned).
- The probability of x_i is the sum over all classes, $P(x_i|\theta) = \sum_{j=1}^K P(x_i|c_j,\theta_j)P(c_j)$

Soft Clustering with Gaussian Mixture Model

- Every object i is assigned to one cluster j with a probability
 - $P(z_i = j) \in [0,1] \text{ and } \Sigma_j P(z_i = j) = 1$
 - ullet Where z_i is a hidden variable of which cluster x_i belongs to.

Assume the parameters of the GMM have been learned

- The probability of x_i belonging to cluster c_i :
 - $P(z_i = c_j | x_i) \propto P(x_i, z_i = c_j)$ $= w_j P(x_i | z_i = c_j)$

Cluster prior probabilities

Probability density function of each cluster

The E-M(Expectation Maximization) Algorithm

- □ A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models.
- Expectation Step:
 - Assigns objects to clusters according to the current soft clustering or parameters of probabilistic clusters

Joint probability of x_i and its cluster c_i

- Maximization Step:
 - finds the new parameters of each cluster that maximize the expected likelihood

Example: Applying E-M algorithm to 1-D GMM

- Iteratively do the following two steps
 - ullet E-Step: Evaluate the soft clustering probability according to μ_j^t , σ_j^t , w_j^t

 \square M-Step: Find the new parameters μ_j^t , σ_j^t that maximize log likelihood. In Gaussian distribution, this is equivalent to do parameter estimation when each data point has a weight.

$$\square \mu_j^{t+1} = \frac{\Sigma_i w_{ij}^{t+1} x_i}{\Sigma_i w_{ij}^{t+1}}, \left(\sigma_j^2\right)^{t+1} = \frac{\Sigma_i w_{ij}^{t+1} (x_i - \mu_j^{t+1})^2}{\Sigma_i w_{ij}^{t+1}}$$

Weighted average means and variance

Gaussian Mixture Model

Example of applying Gaussian Mixture Model

The data points belong to three classes. Each class follows a Gaussian distribution.

We can use E-M algorithm to learn the parameters.

Example: Applying E-M algorithm to GMM

