UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 27. mars 2015

Tid for eksamen: 15.00-17.00

Oppgavesettet er på 7 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Løsningsforslag

Oppgave 1. (3 poeng) En parametrisert kurve er gitt ved $\mathbf{r}(t) = \cos t \, \mathbf{i} + t^4 \, \mathbf{j}$. Akselerasjonen $\mathbf{a}(t)$ er lik:

$$A) - \sin t \, \mathbf{i} + 4t^3 \, \mathbf{j}$$

B)
$$-t^4 \mathbf{i} + \cos t \mathbf{j}$$

C)
$$\sqrt{\cos^2 t + 144t^4}$$

$$D) - \cos t \, \mathbf{i} + 12t^2 \, \mathbf{j}$$

$$E) - \cos t \, \mathbf{i} + \tfrac{t^6}{30} \, \mathbf{j}$$

Riktig svar: D) $-\cos t \mathbf{i} + 12t^2 \mathbf{j}$

Begrunnelse: $\mathbf{a}(t) = \mathbf{r}''(t) = (-\sin t \,\mathbf{i} + 4t^3 \,\mathbf{j})' = -\cos t \,\mathbf{i} + 12t^2 \,\mathbf{j}$

Oppgave 2. (3 poeng) En parametrisert kurve C er gitt ved $\mathbf{r}(t) = \sin t \, \mathbf{i} + t^2 \, \mathbf{j}$, der $t \in [0, 2\pi]$. Hvis $f(x, y) = x^2 y$, så er linjeintegralet $\int_C f \, ds$ lik:

A)
$$\int_0^{2\pi} t^2 \sin^2 t \sqrt{\cos^2 t + 4t^2} dt$$

B)
$$x^2 y \int_0^{2\pi} (\cos t \, \mathbf{i} + 2t \, \mathbf{j}) \, dt$$

C)
$$\int_0^{2\pi} t^2 \sin^2 t \sqrt{\sin^2 t + t^4} dt$$

D)
$$\int_0^{2\pi} t^2 \sin^2 t (\cos t \, \mathbf{i} + 2t \, \mathbf{j}) \, dt$$

E)
$$x^2 y \int_0^{2\pi} \sqrt{\sin^2 t + t^4} dt$$

Riktig svar: A) $\int_0^{2\pi} t^2 \sin^2 t \sqrt{\cos^2 t + 4t^2} dt$

Begrunnelse: Vi regner først ut $\mathbf{v}(t) = \cos t \, \mathbf{i} + 2t \, \mathbf{j} \, \operatorname{og} v(t) = \sqrt{\cos^2 t + 4t^2}$. Dermed er

$$\int_{\mathcal{C}} x^2 y \, ds = \int_{0}^{2\pi} (\sin t)^2 t^2 \, v(t) \, dt = \int_{0}^{2\pi} t^2 \sin^2 t \, \sqrt{\cos^2 t + 4t^2} \, dt$$

(Fortsettes på side 2.)

Oppgave 3. (3 poeng) \mathcal{C} er sirkelen parametrisert ved $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j}$, der $t \in [0, 2\pi]$. Hva er $\int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{r}$ når $\phi(x, y) = e^{\sin xy}$?

- A) π
- B) 0
- C) $\frac{1}{2}$
- D) 2π
- $\stackrel{\cdot}{E}) \frac{\pi}{2}$

Riktig svar: B) 0

Begrunnelse: Integralet av en gradient rundt en lukket kurve er alltid null (fordi $\int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{r} = \phi(\mathbf{b}) - \phi(\mathbf{a})$ det \mathbf{a} er startpunktet, \mathbf{b} er sluttpunktet, og de to er like siden kurven er lukket).

Oppgave 4. (3 poeng) Hvilket kjeglesnitt fremstiller ligningen $-4x^2 + y^2 + 16x + 2y = 19$?

- A) Ellipsen med sentrum i (1, -2) og halvakser a = 2, b = 3.
- B) Hyperbelen med sentrum i (2,1) og asymptoter $y-1=\pm 4(x-2)$.
- C) Hyperbelen med sentrum i (1, -2) og asymptoter $y + 2 = \pm \frac{3}{2}(x 1)$.
- D) Hyperbelen med sentrum i (2,-1) og asymptoter $y+1=\pm 2(x-2)$.
- E) Ellipsen med sentrum i (2,2) og halvakser $a=1,\,b=2$

Riktig svar: D) Hyperbelen med sentrum i (2, -1) og asymptoter $y + 1 = \pm 2(x - 2)$.

Begrunnelse: Vi må fullføre kvadratene:

$$-4x^{2} + y^{2} + 16x + 2y = 19 \iff -4(x^{2} - 4x) + y^{2} + 2y = 19$$
$$\iff -4(x^{2} - 4x + 4) + (y^{2} + 2y + 1) = 19 - 16 + 1 \iff -4(x - 2)^{2} + (y + 1)^{2} = 4$$
$$\iff \frac{(y + 1)^{2}}{4} - (x - 2)^{2} = 1$$

som er formelen for en hyperbel med sentrum i (2,-1) og asymptoter $y+1=\pm 2(x-2)$.

Oppgave 5. (3 poeng) Hvilken av matrisene er ikke på redusert trappeform:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$D = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad E = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- A) A
- B) *B*
- C) C
- D) D
- E) E

Riktig svar: C) C

Begrunnelse: Andre søyle er en pivotsøyle, men har flere enn ett ikke-null element.

Oppgave 6. (3 poeng) Hvis $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ er lineæravbildningen slik at $\mathbf{T}(\begin{pmatrix} 2 \\ 0 \end{pmatrix}) = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \text{ og } \mathbf{T}(\begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \text{ så er matrisen til } \mathbf{T} \text{ lik:}$

A)
$$\begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix}$$
B) $\begin{pmatrix} 4 & -\frac{1}{2} \\ 8 & 1 \end{pmatrix}$
C) $\begin{pmatrix} 1 & -2 \\ 2 & 4 \end{pmatrix}$
D) $\begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}$

$$B) \begin{pmatrix} 4 & -\frac{1}{2} \\ 8 & 1 \end{pmatrix}$$

C)
$$\begin{pmatrix} 1 & -2 \\ 2 & 4 \end{pmatrix}$$

$$D) \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}$$

$$E) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Riktig svar: C) $\begin{pmatrix} 1 & -2 \\ 2 & 4 \end{pmatrix}$

Begrunnelse: Vi har

$$\mathbf{T}(\mathbf{e}_1) = \frac{1}{2}\mathbf{T}(\begin{pmatrix} 2\\0 \end{pmatrix}) = \frac{1}{2}\begin{pmatrix} 2\\4 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

som blir den første søylen i matrisen og

$$\mathbf{T}(\mathbf{e}_2) = 2\mathbf{T}(\begin{pmatrix} 0\\ \frac{1}{2} \end{pmatrix}) = 2\begin{pmatrix} -1\\ 2 \end{pmatrix} = \begin{pmatrix} -2\\ 4 \end{pmatrix}$$

som blir den andre søylen i matrisen.

Oppgave 7. (3 poeng) $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^3$ og $\mathbf{G}: \mathbb{R}^3 \to \mathbb{R}^2$ er deriverbare funksjoner slik at $\mathbf{G}(\mathbf{a}) = \mathbf{b}$,

$$\mathbf{F}'(\mathbf{b}) = \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ -1 & 1 \end{pmatrix} \qquad \text{og} \qquad \mathbf{G}'(\mathbf{a}) = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & -2 \end{pmatrix}$$

Hvis $\mathbf{H}(\mathbf{x}) = \mathbf{F}(\mathbf{G}(\mathbf{x}))$, så er $\mathbf{H}'(\mathbf{a})$ lik:

A)
$$\begin{pmatrix} 9 & 3 & -2 \\ -3 & 0 & -7 \\ -3 & -4 & -3 \end{pmatrix}$$

$$B) \left(\begin{array}{cc} 2 & 6 \\ 19 & 5 \end{array} \right)$$

C)
$$\begin{pmatrix} 0 & -4 & 7 \\ 7 & -5 & 7 \\ -1 & 3 & -5 \end{pmatrix}$$
D) $\begin{pmatrix} -7 & -1 \\ 6 & -3 \end{pmatrix}$

D)
$$\begin{pmatrix} -7 & -1 \\ 6 & -3 \end{pmatrix}$$

$$E) \left(\begin{array}{cc} 2 & -9 \\ 9 & -5 \end{array} \right)$$

(Fortsettes på side 4.)

Riktig svar: C) $\begin{pmatrix} 0 & -4 & 7 \\ 7 & -5 & 7 \\ -1 & 3 & -5 \end{pmatrix}$

Begrunnelse: Ifølge kjerneregele

$$\mathbf{H}'(\mathbf{a}) = \mathbf{F}'(\mathbf{b})\mathbf{G}'(\mathbf{a}) = \begin{pmatrix} 0 & -4 & 7 \\ 7 & -5 & 7 \\ -1 & 3 & -5 \end{pmatrix}$$

Oppgave 8. (3 poeng) Den reduserte trappeformen til matrisen

$$\begin{pmatrix}
2 & -1 & 3 & 2 \\
4 & 1 & 3 & 2 \\
1 & -2 & 3 & 1
\end{pmatrix}
er
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Hva er den generelle løsningen til ligningssystemet

$$2x - y + 3z = 2$$
$$4x + y + 3z = 2$$
$$x - 2y + 3z = 1$$

- A) z kan velges fritt, men da er y = z og x = -z
- B) x = -1, y = 1, z = 1
- C) $y \text{ og } z \text{ kan velges fritt, } x = 1 + \frac{1}{2}y \frac{3}{2}z$
- D) x = 2, y = -1, z = -1
- E) Systemet har ingen løsning.

Riktig svar: E) Systemet har ingen løsning. Begrunnelse: Siste søyle er en pivotsøyle.

Oppgave 9. (3 poeng) A er området i første kvadrant avgrenset av sirklene $x^2 + y^2 = 1$ og $x^2 + y^2 = 4$. Da er $\iint_A (x + y^2) dxdy$ lik:

A)
$$\int_1^4 \left[\int_0^{\frac{\pi}{2}} \left(r \cos \theta + r^2 \sin^2 \theta \right) d\theta \right] dr$$

B)
$$\int_{1}^{2} \left[\int_{0}^{2\pi} \left(r^{2} \cos \theta + r^{3} \sin^{2} \theta \right) d\theta \right] dr$$

C)
$$\int_0^2 \left[\int_0^{\pi} \left(r \cos \theta + r^2 \sin^2 \theta \right) d\theta \right] dr$$

C)
$$\int_0^2 \left[\int_0^{\pi} \left(r \cos \theta + r^2 \sin^2 \theta \right) d\theta \right] dr$$

D)
$$\int_1^2 \left[\int_0^{\frac{\pi}{2}} \left(r^2 \cos \theta + r^3 \sin^2 \theta \right) d\theta \right] dr$$

E)
$$\int_{1}^{2} \left[\int_{0}^{\frac{\pi}{2}} \left(r \cos \theta + r^{2} \sin^{2} \theta \right) d\theta \right] dr$$

Riktig svar: D) $\int_{1}^{2} \left[\int_{0}^{\frac{\pi}{2}} \left(r^2 \cos \theta + r^3 \sin^2 \theta \right) \, d\theta \right] \, dr$

Begrunnelse: Vi har $x = r \cos \theta, y = r \sin \theta$ der r løper fra 1 til 2 og θ fra 0 til $\frac{\pi}{2}$. Jacobideterminanten er r, så

$$I = \int_{1}^{2} \left[\int_{0}^{\frac{\pi}{2}} \left(r \cos \theta + r 2 \sin^{2} \theta \right) r d\theta \right] dr = \int_{1}^{2} \left[\int_{0}^{\frac{\pi}{2}} \left(r^{2} \cos \theta + r^{3} \sin^{2} \theta \right) d\theta \right] dr$$

Oppgave 10. (3 poeng) Når vi skifter integrasjonsrekkefølge i integralet

$$\int_0^1 \left[\int_{2x}^{2\sqrt{x}} f(x,y) \, dy \right] dx \,,$$

(Fortsettes på side 5.)

får vi:

A)
$$\int_0^2 \left[\int_{\frac{y^2}{2}}^{\frac{y}{2}} f(x, y) \, dx \right] dy$$

B)
$$\int_0^1 \left[\int_{2y}^{2\sqrt{y}} f(x, y) \, dx \right] dy$$

C)
$$\int_0^1 \left[\int_{\frac{y}{2}}^{\frac{y^2}{4}} f(x, y) \, dx \right] dy$$

D)
$$\int_0^2 \left[\int_{2y}^{2\sqrt{y}} f(x,y) \, dx \right] dy$$

E)
$$\int_0^1 \left[\int_0^2 f(x,y) \, dx \right] dy$$

Riktig svar: A) $\int_0^2 \left[\int_{\frac{y^2}{4}}^{\frac{y}{2}} f(x,y) \, dx \right] dy$

Begrunnelse: Løser vi ligningene y = 2x og $y = 2\sqrt{x}$ for x, får vi $x = \frac{y}{2}$ og $x = \frac{y^2}{4}$. Når x = 1, er y = 2, og siden linjen $x = \frac{y}{2}$ ligger til venstre for parabelen $x = \frac{y^2}{4}$, får vi $\int_0^2 \left[\int_{\frac{y^2}{4}}^{\frac{y}{2}} f(x,y) \, dx \right] dy$.

Oppgave 11. (4 poeng) Hvis $R = [0,1] \times [0,2]$, så er $\iint_R x^2 y \, dx dy$ lik:

- A) $\frac{3}{4}$
- B) 1
- C) $\frac{1}{2}$
- D) $\frac{2}{3}$
- E) $\frac{\sqrt{3}}{3}$

Riktig svar: D) $\frac{2}{3}$

Begrunnelse: Dette er en rett frem integrasjon:

$$\iint_{R} x^{2}y \, dx dy = \int_{0}^{1} \left[\int_{0}^{2} x^{2}y \, dy \right] = \int_{0}^{1} \left[x^{2} \frac{y^{2}}{2} \right]_{y=0}^{y=2} dx$$
$$= 2 \int_{0}^{1} x^{2} \, dx = 2 \left[\frac{x^{3}}{3} \right]_{0}^{1} = \frac{2}{3}$$

Oppgave 12. (4 poeng) Hvis \mathcal{C} er den parametriserte kurven $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j}$, $t \in [0,1]$, og $\mathbf{F}(x,y) = x^2 y \mathbf{i} + (x^3 + y^2) \mathbf{j}$, så er linjeintegralet $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ lik:

- A) $\frac{8}{9}$
- B) 1
- C) $\frac{11}{9}$
- D) $\frac{7}{8}$

E) $\frac{5}{6}$

Riktig svar: A) $\frac{8}{9}$ Begrunnelse: Siden $\mathbf{r}'(t) = 2t \mathbf{i} + 3t^2 \mathbf{j}$, får vi

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} ((t^{2})^{2} t^{3} \mathbf{i} + ((t^{2})^{3} + (t^{3})^{2}) \mathbf{j}) \cdot (2t \mathbf{i} + 3t^{2} \mathbf{j}) dt = \int_{0}^{1} 8t^{8} dt = \frac{8}{9}$$

Oppgave 13. (4 poeng): C er den parametriserte kurven $\mathbf{r}(t) = 3\cos t\,\mathbf{i} +$ $3\sin t \mathbf{j}$, der $t \in [0, 2\pi]$. Hva er

$$\int_{\mathcal{C}} (-y + e^{\sin^2 x}) \, dx + (x + \sin(e^{y^2})) \, dy ?$$

- A) $1 + \sin(e^{4\pi^2})$ B) $e^{4\pi^2}$
- C) 0
- D) 2π
- E) 18π

Riktig svar: E) 18π

Begrunnelse: Vi bruker Greens teorem. Siden

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(x + \sin(e^{y^2})) = 1$$
 og $\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(-y + e^{\sin^2 x}) = -1$,

har vi

$$\int_{\mathcal{C}} (-y + e^{\sin^2 x}) \ dx + (x + \sin(e^{y^2})) \ dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dx dy = \iint_{S} 2 \ dx dy$$

der S er sirkelskiven om origo med radius 3. Siden denne har areal 9π , får vi

$$\int_{\mathcal{C}} (-y + e^{\sin^2 x}) \, dx + (x + \sin(e^{y^2})) \, dy = 2 \cdot 9\pi = 18\pi$$

Oppgave 14. (4 poeng): Volumet til området avgrenset av paraboloiden $z = x^2 + y^2 + x - 2y$ og planet z = x - 2y + 4 er:

- A) 4
- B) π^2
- C) 8π
- D) 6π
- E) $\frac{25}{3}\pi$

Riktig svar: C) 8π

Begrunnelse: Skjæringskurven er gitt ved

$$x^{2} + y^{2} + x - 2y = x - 2y + 4 \iff x^{2} + y^{2} = 4$$

som er en sirkel om origo med radius 2. Siden planet ligger over paraboloiden i området vi er interessert i, får vi

$$V = \iiint_{R} 1 \, dx dy dz = \iint_{S} \left[\int_{[x^{2} + y^{2} + x - 2y}^{x - 2y + 4} 1 \, dz \right] dx dy = 0$$

(Fortsettes på side 7.)

$$= \iint_{S} ((x-2y+4) - (x^2+y^2+x-2y)) dxdy = \iint_{S} (4-x^2-y^2) dxdy$$

der S er sirkelskiven om origo med radius 2. Bytter vi til polarkoordinater (husk Jacobi-determinanten r), får vi

$$V = \int_0^2 \left[\int_0^{2\pi} (4 - r^2) r \, d\theta \right] dr = \int_0^2 \left[\int_0^{2\pi} (4r - r^3) \, d\theta \right] dr$$
$$= 2\pi \int_0^2 (4r - r^3) dr = 2\pi \left[r^2 - \frac{r^4}{4} \right]_0^2 = 2\pi (8 - 4) = 8\pi$$

Oppgave 15. (4 poeng) Arealet til området i første kvadrant avgrenset av kurvene $y=x,\,y=3x,\,y=\frac{1}{x}$ og $y=\frac{2}{x}$ er: A) $\frac{1}{2}$

- B) $\frac{1}{2} \ln 3$
- C) $\frac{2}{3}$
- D) e^{-1}
- E) $\frac{\sqrt{2}}{2}$

Riktig svar: B) $\frac{1}{2} \ln 3$

Begrunnelse: Siden området kan beskrives ved $1 \le \frac{y}{x} \le 3$ og $1 \le xy \le 2$, er det fristende å innføre nye variable $u = \frac{y}{x}$ og v = xy. Vi ser at $\frac{v}{u} = \frac{xy}{\frac{y}{x}} = x^2$, som gir $x = u^{-\frac{1}{2}}v^{\frac{1}{2}}$. Siden y = xu, gir dette $y = u^{\frac{1}{2}}v^{\frac{1}{2}}$. Jacobi-determinanten er

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} -\frac{1}{2}u^{-\frac{3}{2}}v^{\frac{1}{2}} & \frac{1}{2}u^{-\frac{1}{2}}v^{-\frac{1}{2}} \\ \frac{1}{2}u^{-\frac{1}{2}}v^{\frac{1}{2}} & \frac{1}{2}u^{\frac{1}{2}}v^{-\frac{1}{2}} \end{vmatrix} = -\frac{1}{2u},$$

og dermed får vi (når S er området beskrevet i de nye koordinatene)

$$A = \iint_{R} 1 \, dx \, dy = \iint_{S} 1 \cdot \left| \frac{\partial(u, v)}{\partial(x, y)} \right| \, du \, dv = \int_{1}^{3} \left[\int_{1}^{2} \frac{1}{2u} \, dv \right] \, du$$
$$\frac{1}{2} \int_{1}^{3} \frac{1}{u} \, du = \frac{1}{2} (\ln 3 - \ln 1) = \frac{1}{2} \ln 3$$