MATH 135 Proof Techniques

Sachin Kumar* University of Waterloo

Winter 2023^{\dagger}

^{*}skmuthuk@uwaterloo.ca † Last updated: March 1, 2023

Contents

1	\mathbf{Pro}	ving Mathematical Statements
	1.1	Proving Universally Quantified Statements
	1.2	Proving Existentially Quantified Statements
	1.3	Proving Implications
	1.4	Proof by Contrapositive
	1.5	Proof by Contradiction
		1.5.1 Proving Uniqueness
	1.6	Proving If and Only if
2	Ma	thematical Induction and Sets
	2.1	Proof by Induction
	2.2	Proof by Strong Induction
	2.3	Proving subset
	2.4	Proving equality

1 Proving Mathematical Statements

1.1 Proving Universally Quantified Statements

Proof Technique 1.1.1

To prove the universally quantified statement " $\forall x \in S, P(x)$ ":

Choose a representative mathematical object $x \in S$. This cannot be a specific object. It has to be a placeholder, that is, a variable, so that our argument would work for any specific member of the domain S.

Then, show that the open sentence P must be true for our representative x, using known facts about the elements of S.

Proof Technique 1.1.2

To disprove the universally quantified statement " $\forall x \in S, P(x)$ ":

Find an element $x \in S$ for which the open sentence P(x) is false. This process is called finding a *counter-example*.

1.2 Proving Existentially Quantified Statements

Proof Technique 1.2.1

To prove the existentially quantified statement " $\exists x \in S, P(x)$ ":

Provide an explicit value of x from the domain S, and show that P(x) is true for this value of x. In other words, find an element of S that satisfies property P.

Proof Technique 1.2.2

To disprove the existentially quantified statement " $\exists x \in S, P(x)$ ":

Prove the universally quantified statement " $\forall x \in S, \neg P(x)$ ".

1.3 Proving Implications

Proof Technique 1.3.1

For proving an implication:

- 1. To prove the implication " $A \implies B$ ", **assume** that the hypothesis A is true, and use this assumption to show that the conclusion B is true. The hypothesis A is what you start with. The conclusion B is where you must end up.
- 2. To prove the universally quantified implication " $\forall x \in S, P(x) \Longrightarrow Q(x)$ ": Let x be an arbitrary element of S, assume that the hypothesis P(x) is true, and use this assumption to show that the conclusion Q(x) is true.

1.4 Proof by Contrapositive

Proof Technique 1.4.1

For proving an implication using the contrapositive:

- 1. To prove the implication " $A \implies B$ ", replace it with its contrapositive " $(\neg B) \implies (\neg A)$ ". Then prove this contrapositive, usually by a direct proof. That is, assume $\neg B$ is true and deduce that $\neg A$ must be true as well.
- 2. To prove the universally quantified implication " $\forall x \in S, P(x) \implies Q(x)$ ", replace it with its universally quantified contrapositive " $\forall x \in S, (\neg Q(x)) \implies (\neg P(x))$ ". Then prove this universally quantified contrapositive.

1.5 Proof by Contradiction

Proof Technique 1.5.1

To prove P(x) is true. Assume $\neg P(x)$ is true and come to a conclusion that $\neg P(x)$ is false, which proves that P(x) is true.

1.5.1 Proving Uniqueness

Proof Technique 1.5.2

To prove the statement "There is a unique element $x \in S$ such that P(x) is true":

- 1. ("Existence"): Prove that there is at least one element $x \in S$ such that P(x) is true (ie., prove the existentially quantified statement " $\exists x \in S, P(x)$ ").
- 2. ("Uniqueness"): Do either (a) or (b) below.
 - (a) Assume that P(x) and P(y) are true for $x, y \in S$, and prove that this assumption leads to the conclusion x = y,
 - (b) Assume that P(x) and P(y) are true for distinct $x, y \in S$ (so $x \neq y$), and prove that this assumption leads to a contradiction.

1.6 Proving If and Only if

Proof Technique 1.6.1

For proving an if and only if statement:

- 1. To prove the statement " $A \iff B$ ", it is equivalent to prove both the implication " $A \implies B$ " and its converse " $B \implies A$ ".
- 2. To prove the universally quantified statement " $\forall x \in S, P(x) \iff Q(x)$ ", it is equivalent to do either (a) or (b) below.
 - (a) Let x be an arbitrary element of S, and prove both the implication " $P(x) \implies Q(x)$ " and its converse " $Q(x) \implies P(x)$ ",
 - (b) Prove both the universally quantified implication " $\forall x \in S, P(x) \implies Q(x)$ " and its universally quantified converse " $\forall x \in S, Q(x) \implies P(x)$ ".

2 Mathematical Induction and Sets

2.1 Proof by Induction

Proof Technique 2.1.1

To prove the universally quantified statement " $\forall n \in \mathbb{N}, P(n)$ ":

- 1. Prove "P(1)".
- 2. Prove the universally quantified implication " $\forall k \in \mathbb{N}, P(k) \implies P(k+1)$ ".

where, P(1) is the base case/step, P(k) is the inductive hypothesis and P(k+1) is the inductive conclusion and together $P(k) \implies P(k+1)$ is the inductive step.

2.2 Proof by Strong Induction

Proof Technique 2.2.1

To prove the universally quantified statement " $\forall n \in \mathbb{N}, n \geq b, P(n)$ ":

- 1. Prove " $P(b) \wedge P(b+1) \wedge \cdots \wedge P(B)$ ", for some integer $B \geq b$.
- 2. Prove the universally quantified implication " $\forall k \in \mathbb{Z}, k \geq B, P(b) \land P(b+1) \land \cdots \land P(k) \implies P(k+1)$ ".

To implement the proof method of strong induction, what changes are needed in terms of the standard format?

- For the base case, prove all of P(b), P(b+1), ..., P(B). When b < B there is more than one case to prove, so we label them as Base cases, and refer to b as the smallest base case and B as the largest base case.
- For the inductive step, we assume that k is an arbitrary integer where $k \geq B$. We assume the inductive hypothesis, $P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)$. That is, we assume P(i), for all integers $i = b, b+1, \ldots, k$. We then prove P(k+1) using the assumption P(i) for all integers $i = b, b+1, \ldots, k$.

2.3 Proving subset

Proof Technique 2.3.1

To prove that $S \subseteq T$, prove the universally quantified implication:

$$\forall x \in \mathcal{U}, (x \in S) \implies (x \in T)$$

2.4 Proving equality

Proof Technique 2.4.1 To prove that S=T, prove $S\subseteq T$ and $T\subseteq S$ (ie., universally qunatified if and only if):

$$\forall x \in \mathcal{U}, (x \in S) \iff (x \in T)$$