CS3390: Foundations of Machine Learning

2023

Lecture 6: 8 September 2023

Instructor: P. K. Srijith Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Linear Discriminant Analysis

In the following, r_t is an indicator variable to select elements belonging to a certain class.

1. Between class scatter is given by

$$(m_1 - m_2)^2 = (\mathbf{w}^\top \mathbf{m_1} - \mathbf{w}^\top \mathbf{m_2})^2$$
(6.1)

$$= \mathbf{w}^{\top} (\mathbf{m_1} - \mathbf{m_2}) (\mathbf{m_1} - \mathbf{m_2})^{\top} \mathbf{w}$$
 (6.2)

$$= \mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathbf{B}} \mathbf{w} \tag{6.3}$$

where we define

$$\mathbf{S_B} \triangleq (\mathbf{m_1} - \mathbf{m_2}) (\mathbf{m_1} - \mathbf{m_2})^{\top}. \tag{6.4}$$

2. For any class, within class scatter is given by

$$s_i^2 = \sum_t \left(\mathbf{w}^\top \mathbf{x_t} - m_1 \right)^2 r_t \tag{6.5}$$

$$= \sum_{t} \mathbf{w}^{\top} (\mathbf{x_t} - \mathbf{m_1}) (\mathbf{x_t} - \mathbf{m_1})^{\top} \mathbf{w} r_t$$
 (6.6)

$$= \mathbf{w}^{\top} \mathbf{S}_{\mathbf{i}} \mathbf{w} \tag{6.7}$$

where we define

$$S_i \triangleq \sum_{t} (\mathbf{x_t} - \mathbf{m_1}) (\mathbf{x_t} - \mathbf{m_1})^{\top} r_t.$$
 (6.8)

3. For multiple classes, we define

$$\mathbf{S_w} \triangleq \sum_{i} \mathbf{S_i}.\tag{6.9}$$