On Vat Threshold(s)

Duccio Gamannossi degl'Innocenti (TARC)
Christos Kotsogiannis (TARC)
Konstantinos Serfes (Drexel)

Modelling Tax Policy and Compliance Workshop Exeter, March, 2019

Road map

- Overview
- Research questions
- Brief (very) description of economy
- Results
- Concluding remarks

Overview

- Most countries use value-added tax (VAT) as the primary indirect tax
- A popular element of VAT systems is 'thresholds' under which registration is voluntary
- VAT threshold idea arises because most revenues come from high-turnover firms
- Optimal VAT thresholds depends on a trade-off:

VAT – Some numbers

Nation	Revenues share	Rate	Threshold
AUS	13%	10%	70000 AUD
NZ	30%	15%	60000 NZD
OECD	20%	19%	
UK	21%	20%	85000 £

- The usual **VAT** rates are quite high
- Large and salient tax notch for businesses around the threshold

VAT – Bunching in UK

*Liu and Lockwood (2016)

VAT – Counterfactual distribution

*Liu et Al. (2018)

Overview

- Literature has discussed **optimal threshold**
 - Keen and Mintz (2004)
- Studies estimated the **extent of 'bunching'** at threshold and **voluntary registration** under threshold
 - Liu and Lockwood (2016)
 - Liu et Al. (2018)
- The optimal threshold rule identified in Keen and Mintz (2004) has been applied widely (FAD) but ...

Overview

- A limitation of Keen and Mintz (2004) is the existence of **one** threshold (B2C)
- Restrictive assumptions on B2B transactions do not allow to model threshold across the production chain
- The implication is that threshold, and bunching, might be **over/under estimated**
- Significant welfare/revenue consequences

Research questions

- What is the optimal thresholds for B2B and B2C?
 - Considering the real-world case of **uniform threshold** and the best-case scenario of **distinct** threshold
- How does this optimal threshold compare to the one followed in practice? (Keen and Mintz, 2004)

- Since threshold defines VAT-registered and non VAT-registered
 - Is there sorting in transactions based on registration?

Description of economy

- Monopolistic competition framework
- Competitive Sector (B2B) Providing capital and labour to ...
- Upstream (B2B) A continuum of firms with productivity α_i selling to ...
- **Downstream** (B2C) A continuum of firms with productivity $\mathbf{b_i}$ selling to ...
- Consumer with preferences for variety (Dixit-Stiglitz preferences)
- No evasion allowed (but can be added)

Schematically

Production Chain

Competitive sector provides capital and labour

 $\begin{array}{c} \textbf{Upstream} \text{ firms} \\ \text{with productivity } \textbf{α_i} \\ \text{produce intermediate} \\ \text{good sold to} \\ \text{downstream} \end{array}$

 $\begin{array}{c} \textbf{Downstream} \ \, \text{firms} \\ \text{with productivity} \ \, \textbf{b}_j \\ \text{produce output sold} \\ \text{to consumer} \end{array}$

Each α_i can be VAT registered/non-registered

Each \mathbf{b}_{j} can be VAT registered/non-registered

Main variables of the model (Prices, Output Profits, etc) are determined by:

- Productivity of seller/buyer
- VAT registration status of seller/buyer
- Aggregate registration status in the two sectors

States of the world

• Prices depend on 4 states of the world (excluding bunching)

Downstream

Registered Non-registered

Registered

Upstream

Non-registered

Proposition: Prices in Downstream

Proposition:

When a downstream firm is VAT-non-registered its producer price is higher relative to non-registration but consumer price is lower because VAT is not levied (irrespective of how many upstream firms VAT-register)

- For **VAT** non-registered firm,
 - Cost effect: Input cost is higher cannot credit VAT
 - **Demand effect**: Consumer prices is lower no VAT levied on price of the final good
 - Demand effect offsets the cost effect
- Thus. . .

Proposition: Downstream

Proposition:

All downstream firms prefer to remain unregistered irrespective of how many upstream firms register

Though the cost of inputs is higher under no VAT-registration, consumer prices will be lower (as no VAT is levied on final goods), and demand will be higher (demand effect offsets the cost effect)

Proposition: Upstream

Proposition:

If registration is voluntary **upstream firms registration decision** is positively affected by the fraction of **downstream registered firms**

- An upstream firms switching to registration when downstream is totally registered
 - Increases demand and reduces costs same direction
- If registration in downstream rises the marginal unregistered firms will register

Proposition: Sorting

Proposition:

Non-registered firms sales ratio **non-registered/registered** is higher than for a registered firm (and vice-versa)

- No perfect sorting possible given the preference for input variety of downstream firms
- Model exhibits **imperfect sorting**: relatively "more trade" is taking place between firms with same registration status

Optimal threshold

Proposition:

The optimal thresholds are characterised by the balance of trade offs involving, **Tax Base**, **Compliance costs** and firms' **bunching reaction across the production chain**

An increase of one of the threshold leads to

- Increase of the mass of firms who register
 - Increased tax base and increased Compliance Costs
- Change in bunching behaviour on both sectors (Interdependence across the chain)

Bunching across the chain

b+∆b

productivity

thresholds jointly determined

downstream sector

Numerical illustration

Assume truncated Pareto distribution with density

$$f(x) = \frac{cL^{c}x^{-(c+1)}}{1 - \left(\frac{L}{H}\right)^{c}}$$

- c is the shape parameter
- L is the lower bound (normalized to 1) and H is the upper bound of the support
- Not calibrated yet—working on this

_	Keen and Mintz $s_x = s_y$ $s_x \neq s_y$			
Revenue	α	1.00	3.30	5.30
Maximization	Δ_lpha	0.00	1.77	2.62
	β	1.56	1.42	1.26
$egin{array}{c} { m Truncated~Pareto} \\ { m Shape} = {f 2} \end{array}$	Δ_{eta}	0.88	1.32	1.22
	w	0.93	0.61	0.81
	Upstream – Threshold turnover	1.85	5.88	9.15
Min = 1	Downstream – Threshold turnover	6.17	5.88	5.30
Max = 10	Upstream – % Unreg.	0.00	91.75	97.42
t = 0.15	Upstream – $\%$ Bunch.	0.00	5.34	1.98
	Upstream-%~Reg	100.00	2.91	0.60
	$Downstream-\%\ Unreg.$	59.51	51.16	37.77
	Downstream-%~Bunch	24.57	36.46	46.83
	$Downstream-\% \ Reg.$	15.93	12.37	15.40
	VA Tot.	139.66	135.54	134.93
	Gross Revenues Tot	13.99	6.61	6.88
	Compliance Costs Tot.	15.07	1.99	2.08
	Net Revenues Tot	-1.09	4.62	4.80

TT7 10	Keen and Mintz $s_x = s_y$ $s_x \neq s_y$			
Welfare	α	1.00	5.86	5.63
Maximization	Δ_{lpha}	0.00	4.14	4.37
	β	6.39	2.77	5.06
Truncated Pareto	$\Delta_{oldsymbol{eta}}$	3.61	2.70	4.94
	w	0.96	0.95	0.97
Shape = 2	Upstream – Threshold turnover	2.100	11.557	11.64
Min = 1	Downstream – Threshold turnover	25.25	11.557	21.10
Max = 10	$\overline{\text{Upstream} - \% \text{ Unreg.}}$	0.000	98.07	97.82
t = 0.15	$Upstream-\%\ Bunch.$	0.000	1.93	2.18
	Upstream-%~Reg	100.00	0.00	0.00
	$Downstream-\%\ Unreg.$	98.54	87.80	97.07
	$Downstream - \% \ Bunch$	1.47	9.83	2.93
	Downstream $-\%$ Reg.	0.00	2.38	0.00
	Profits Tot.	102.56	108.76	112.15
	Utility Final Goods Tot.	200.95	201.83	208.65
	Soc. Val. Revenues Tot.	-2.34	4.23	3.69
	Welfare	391.52	409.28	422.31

Concluding remarks

- Trade is more intense among firms with same registration status
- **Downstream** firms would never register voluntarily **Upstream** firms may want to register voluntarily if enough downstream firms register
- Bunching decision is interdependent across the chain
- Literature has ignored this interdependence, so the recommended thresholds are very likely to be biased with significant welfare/revenue implications
- Policy prescription: Take production chain into account in determining optimal threshold

Further Research

Solve the model under calibrated parameters

Provide a thorough sensitivity analysis for the results

 Extend the model to account for non-compliance behavioural response

Thank you!!!

Questions?

For more information, please contact me at:

D.Gamannossis@exeter.ac.uk

