

Линейные системы

В задаче наименьших квадратов (aka линейной регрессии) мы имеем измерения $X \in \mathbb{R}^{m \times n}$ и $y \in \mathbb{R}^m$ и ищем вектор $\theta \in \mathbb{R}^n$ такой, что $X\theta$ близок к y. Близость определяется как сумма квадратов разностей:

$$\sum_{i=1}^m (x_i^\top \theta - y_i)^2 \qquad \|X\theta - y\|_2^2 \to \min_{\theta \in \mathbb{R}^n} \qquad X\theta^* = y$$

Рис. 1: Illustration of linear system aka least squares

Moore--Penrose inverse

Если матрица X относительно мала, мы можем записать и вычислить точное решение:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

Moore--Penrose inverse

Если матрица X относительно мала, мы можем записать и вычислить точное решение:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

где X^\dagger называется псевдо-обратной матрицей. Однако, этот подход возводит в квадрат число обусловленности задачи, что может быть проблемой для больших и плохо обусловленных задач.

Moore--Penrose inverse

Если матрица X относительно мала, мы можем записать и вычислить точное решение:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

где X^\dagger называется псевдо-обратной матрицей. Однако, этот подход возводит в квадрат число обусловленности задачи, что может быть проблемой для больших и плохо обусловленных задач.

QR разложение

Для любой матрицы $X \in \mathbb{R}^{m \times n}$ существует QR разложение:

$$X = Q \cdot R$$
,

♥ O 0 4

Moore--Penrose inverse

Если матрица X относительно мала, мы можем записать и вычислить точное решение:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

где X^\dagger называется псевдо-обратной матрицей. Однако, этот подход возводит в квадрат число обусловленности задачи, что может быть проблемой для больших и плохо обусловленных задач.

QR разложение

Для любой матрицы $X \in \mathbb{R}^{m \times n}$ существует QR разложение:

$$X = Q \cdot R$$

где Q - ортогональная матрица (ее столбцы ортогональные единичные векторы) и R - верхняя треугольная матрица. Важно отметить, что поскольку $Q^{-1} = Q^{\top}$, мы имеем:

$$QR\theta = y \longrightarrow R\theta = Q^{\top}y$$

Теперь процесс нахождения θ состоит из двух шагов:

1. Найдите QR разложение X.

₩ ೧ €

Moore--Penrose inverse

Если матрица X относительно мала, мы можем записать и вычислить точное решение:

$$\theta^* = (X^\top X)^{-1} X^\top y = X^\dagger y,$$

где X^\dagger называется псевдо-обратной матрицей. Однако, этот подход возводит в квадрат число обусловленности задачи, что может быть проблемой для больших и плохо обусловленных задач.

QR разложение

Для любой матрицы $X \in \mathbb{R}^{m \times n}$ существует QR разложение:

$$X = Q \cdot R$$

где Q - ортогональная матрица (ее столбцы ортогональные единичные векторы) и R - верхняя треугольная матрица. Важно отметить, что поскольку $Q^{-1}=Q^{\top}$, мы имеем:

$$QR\theta = y \longrightarrow R\theta = Q^{\top}y$$

Теперь процесс нахождения θ состоит из двух шагов:

- 1. Найдите QR разложение X.
- 2. Решите треугольную систему $R\theta = Q^{\top}y$, которая треугольная и, следовательно, легко решаемая.

Разложение Холецкого

Для любой положительно определенной матрицы $A \in \mathbb{R}^{n \times n}$ существует разложение Холецкого:

$$X^{\top}X = A = L^{\top} \cdot L,$$

где L - нижняя треугольная матрица. Мы имеем:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Теперь процесс нахождения θ состоит из двух шагов:

- 1. Найдите разложение Холецкого $X^{\top}X$.
- Обратите внимание, что в этом случае ошибка пропорциональна квадрату числа обусловленности.

♥ ೧ 0

Разложение Холецкого

Для любой положительно определенной матрицы $A \in \mathbb{R}^{n \times n}$ существует разложение Холецкого:

$$X^{\top}X = A = L^{\top} \cdot L,$$

где L - нижняя треугольная матрица. Мы имеем:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Теперь процесс нахождения θ состоит из двух шагов:

- 1. Найдите разложение Холецкого $X^{\top}X$.
- 2. Найдите $z_{\theta} = L \theta$ путем решения треугольной системы $L^{\top} z_{\theta} = y$

Обратите внимание, что в этом случае ошибка пропорциональна квадрату числа обусловленности.

♥ ೧ 0

Разложение Холецкого

Для любой положительно определенной матрицы $A \in \mathbb{R}^{n \times n}$ существует разложение Холецкого:

$$X^{\top}X = A = L^{\top} \cdot L,$$

где L - нижняя треугольная матрица. Мы имеем:

$$L^{\top}L\theta = y \longrightarrow L^{\top}z_{\theta} = y$$

Теперь процесс нахождения θ состоит из двух шагов:

- 1. Найдите разложение Холецкого $X^{\top}X$.
- 2. Найдите $z_{\theta} = L \theta$ путем решения треугольной системы $L^{\top} z_{\theta} = y$
- 3. Найдите θ путем решения треугольной системы $L\theta=z_{\theta}$

Обратите внимание, что в этом случае ошибка пропорциональна квадрату числа обусловленности.

⊕ 0 @

Число обусловленности и

