Decentralized Systems

Security in an untrusted environment

Michael L Perry qedcode.com @michaellperry

PGP (Pretty Good Privacy)

Phil Zimmerman

1991 Secure email exchange

Email

PGP

Communicate through email with confidentiality and authenticity

Need to Know Public Key

Direct

- USB thumb drive
- Not always possible

Indirect

- Electronic means
- Is it really their public key?

Ask Them Questions

- Only they would know the answer
 - You need to know the answer, too! (Shared secret)
- Man in the middle attack
 - Email is intercepted
 - Attacker sends their own public key
 - Shuttle questions and answers

Web of Trust

Comparison with TLS

PGP

TLS

Public Keys

Signed by Individuals

Asymmetric Cryptography

Web of Trust

X.509 Certificates

Signed by a CA

Asymmetric Cryptography

Chain of Trust

Hashcash

Adam Back

Prevent Spam

Spam

- Cheap to send email
- Need to send a lot
- Apply a cost, and it no longer works
- Cost multiplies for unsolicited email
 - Cost in CPU cycles

michael@qedcode.com 20140419 10746251943

4751566e9379079fbc99b21ccfef5570b8e00902

Proof of Work

michael@qedcode.com 20140419 19646101417

00000f7ae7cb7e787acb429bd844895e044f5657

Amount of Work

$$2^{20} = 1,048,576$$

times the number of recipients

Proof of Work

- Not widely used for spam prevention
- Central to cryptocurrencies, like

Bitcoin

Bitcoin

Satoshi Nakamoto

2009

Distributed Secure Money Exchange

Double-Spending Problem

- Spend your money and keep it too
- Central Authority
 - □ Bank
- Bitcoin is Decentralized

Time

Time

Convergence

- Impose a cost
 - □ Proof of work

000000000ed38a36779bd1ce5450f57df0e48c4

Adjusting the Proof of Work

2900413da0ed38a36779bd1ce5450f57df0e48c4

Validate a Block

- The hash begins with enough leading zeroes
- Compare the hash of the previous block
- Look for double spending
 - Set of transactions not signed over
 - If present, the entire block is invalid

Process

Receive new transactions

- Forward to neighbors
- Add to candidate block

Receive new blocks

- Validate
- Forward to neighbors
- Use as the basis for the next block

Conflict Resolution

Conflict Resolution

Conflict Resolution

Race

- A block on the other chain is found
- Proof of work ensures
 - Collisions are rare
 - Forks diverge

Incentives

5b

- First transaction creates a new bit coin
 - Bit coin awarded to the node
 - Earn bitcoin
- Transaction fees
 - Fees awarded to the node
 - Encourages nodes to include transaction
- Mining

Distributed Data Storage

Advantages

- Scalability
- Redundancy

Cost

Control

Freenet

Fight censorship

Provide plausible deniability

Peer-to-peer

Identify a File

- By hash
 - □ SHA-256
- Advantages
 - Recipient can validate that it hasn't been altered
 - Multiple versions have different identities
 - Cannot modify a file

Content Hash Key

CHK@ SVbD9...X5Brs, bA7qL...6bbNQ, AAEA--8 file hash symmetric key algorithms

Nodes Cannot Compute Hash

Segment of file

- File is encrypted
- Given hash and segment

Possible to forge on write

Validity checked on read

Documents are immutable

- Publish hash and symmetric key
- After published, cannot be updated

Have to Share Symmetric Keys

- Cannot ensure confidentiality
- Can ensure authenticity
 - Signature appended to document

Signed Subspace Key

SSK@ GB3wu...HK35w, c63Ez07...duXDs, ABAQAAEA /site-1 public key hash symmetric key algorithms

Cloud Storage

- Export laws
- Cloud servers are untrusted
- Ensure that data is secure
- Enterprise security using cryptography alone

Open source Distributed Mobile back end as a service

CORRESPONDENCE

Access to Resources

- Read-only
- Read-write
- Asymmetric cryptography for identity
- Symmetric cryptography for confidentiality
- How to protect writes?
 - Authentication provider
 - Trust relationship

Untrusted Network

- Clients ensure authorization
 - Not a function of the server
- Encrypt data at rest
 - Protected against unauthorized access
- Can outsource to cloud
 - Even without trust

Assurances in Decentralized Systems

PGP

- Web of trust
- Public key cryptography
- Exchange symmetric keys

Hashcash

□ Proof of work

Bitcoin

- Compete to create blocks
- Public history of all transactions
- Sign transactions to spend money

Freenet

- Identify documents via hash
- Symmetric cryptography for plausible deniability

Correspondence

- Read and read write access
- No central authorization

Cryptography

Mathematicians

RSA

AES

SHA

Algorithms

Tools