CCT

정하연

2024 Winter Break

목차

A Table of Contents

- 1. Convolutional Tokenization
- 2. Transformer Encoder
- 3. Sequence Pooling
- 4. Linear Layer
- 5. CCT
- 6. Train & Test

논문 정리

- **▶** Escaping the Big Data Paradigm with Compact Transformers
 - arXiv, 2021
 - Transformer 등장 이후 모델의 크기, 데이터 크기가 계속 커지는 경향이 있었음
 - Encoder, Decoder를 계속 쌓을 수록 좋은 성능을 보였기 때문
 - 예를 들어, GPT-1에서 GPT-4로 갈 수록 Encoder를 더 많이 쌓음.
 - 본 논문에서는 작은 크기의 학습이 가능한 Compact Transformer를 소개함

논문 정리

> Main Contributions

- Extending transformer-based research to small data regimes, by introducing <u>ViT-Lite</u>, which can be trained from scratch and achieve high accuracy on datasets such as CIFAR-10.
- Introducing <u>Compact Vision Transformer (CVT)</u> with a new sequence pooling strategy, which pools over out- put tokens and improves performance.
- Introducing <u>Compact Convolutional Transformer (CCT)</u> to increase performance and provide flexibility for input image sizes while also demonstrating that these variants do not depend as much on Positional Embedding compared to the rest.

Figure 2: Comparing ViT (top) to CVT (middle) and CCT (bottom). CVT can be thought of as an ablated version of CCT, only utilizing sequence pooling and not a convolutional tokenizer. CVT may be preferable with more limited compute, as the patch-based tokenization is faster.

논문 정리

- > Why "Convolutional" Tokenization?
 - "Transformers lack some of the inductive biases inherent to CNNs, such as <u>translation equivariance</u> and <u>locality</u>, and therefore do not generalize well when trained on insufficient amounts of data."
 - " 트랜스포머 모델이 컨볼루션 신경망(CNNs)에 내재된 일부 귀납적 편향(translation equivariance 및 locality와 같은)을 가지고 있지 않기 때문에, 충분하지 않은 양의 데이터로 훈련되었을 때 일반화가 잘 되지 않는다."
 - Translation equivariance : 이미지 패턴이 어디에 위치해 있는지
 - Locality: 이미지 내 특정 패턴과 근처 픽셀 간의 관계
 - 트랜스포머는 위와 같은 inductive biases을 가지고 있지 않은 대신, self-attention mechanism을 사용하여 입력 시퀀스의 (모든 위치 간의) 관계를 고려함.

- 1. ConvLayer가 여러 개면, input-output 맞추기 위해
- 2. Padding=2로 해야 사이즈가 줄지 않음

Compact Convolutional Transformer (CCT)

In order to introduce an inductive bias into the model, we replace patch and embedding in ViT-Lite and CVT, with a simple convolutional block. This block follows conventional design, which consists of a single convolution, ReLU activation, and a max pool. Given an image or feature map $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$:

$$\mathbf{x}_0 = \text{MaxPool}(\text{ReLU}(\text{Conv2d}(\mathbf{x})))$$
 (2)

Table 6: Tokenizers in each variant.

Model	# Layers	# Convs	Kernel	Stride
ViT-Lite-7/8	7	1	8×8	8×8
ViT-Lite-7/4	7	1	4×4	4×4
CVT-7/8	7	1	8×8	8×8
CVT-7/4	7	1	4×4	4×4
CCT-2/3x2	2	2	3×3	1×1
CCT-7/3x1	7	1	3×3	1×1
CCT-7/7x2	7	2	7×7	2×2

```
lass ConvolutionalTokenizer(nn.Module):
  def __init__(self, cfg):
      super().__init__()
      self.num conv layers = cfg.conv token.num conv layers
      self.kernel_size = cfg.conv_token.kernel_size
      self.conv layers = nn.ModuleList()
      conv layer = nn.Conv2d(cfg.conv token.input channels,
                                 cfg.conv_token.output_channels,
                                 cfg.conv token.kernel size,
                                 cfg.conv token.stride,
                                 cfg.conv token.padding)
      relu = nn.ReLU()
      maxpool = nn.MaxPool2d(kernel size=self.kernel size, stride=cfg.conv token.stride)
      layer = nn.Sequential(conv layer, relu, maxpool)
      self.conv_layers.append(layer)
      for in range(self.num conv layers - 1):
          conv layer = nn.Conv2d(cfg.conv token.output channels, # not input channels
                                 cfg.conv token.output channels,
                                 cfg.conv token.kernel size,
                                 cfg.conv token.stride,
                                 cfg.conv_token.padding)
          layer = nn.Sequential(conv layer, relu, maxpool)
          self.conv layers.append(layer)
```

Compact Convolutional Transformer (CCT)

In order to introduce an inductive bias into the model, we replace patch and embedding in ViT-Lite and CVT, with a simple convolutional block. This block follows conventional design, which consists of a single convolution, ReLU activation, and a max pool. Given an image or feature map $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$:

$$\mathbf{x}_0 = \text{MaxPool}(\text{ReLU}(\text{Conv2d}(\mathbf{x})))$$
 (2)

Table 6: Tokenizers in each variant.

Model	# Layers	# Convs	Kernel	Stride
ViT-Lite-7/8	7	1	8×8	8×8
ViT-Lite-7/4	7	1	4×4	4×4
CVT-7/8	7	1	8×8	8×8
CVT-7/4	7	1	4×4	4×4
CCT-2/3x2	2	2	3×3	1×1
CCT-7/3x1	7	1	3×3	1×1
CCT-7/7x2	7	2	7×7	2×2

```
def forward(self, x):
    # Input tensor shape: [batch_size, input_channels, height, width] = [1, 3, 32, 32]

# print(x.shape) # torch.Size([1, 3, 32, 32]), if CCT-2-3x2

for conv_layer in self.conv_layers:
    x = conv_layer(x)
    # print(x.shape) # torch.Size([1, 128, 32, 32]), if CCT-2-3x2

# 차원 변경 (Transpose) - (1, 128, 32, 32) -> (1, 32, 32, 128)
    x_transposed = torch.transpose(x, 1, 2)
    x_transposed = torch.transpose(x, 2, -1)

# Reshape - (1, 32, 32, 128) -> (1, 32 * 32, 128) // x_reshaped = x_transposed.reshape(x.size(0), -1, x.size(1))
    # print(x_reshaped.shape) # (1, 1024, 128)

# Output tensor shape: [batch_size, flattend, output_channel = d_model = embed_dim]

return x_reshaped
```


(batch_size, input_channels, img_width, img_height)

Compact Convolutional Transformer (CCT)

>예시: CCT-2/3x2

```
CCT(
  (Convolutional_Tokenization): ConvolutionalTokenizer(
        (conv_layers): ModuleList(
        (0): Sequential(
            (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
            (1): ReLU()
            (2): MaxPool2d(kernel_size=3, stride=1, padding=0, dilation=1, ceil_mode=False)
        )
        (1): Sequential(
            (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
            (1): ReLU()
            (2): MaxPool2d(kernel_size=3, stride=1, padding=0, dilation=1, ceil_mode=False)
        )
    )
    )
    (Transformer_With_SeqPool): TransformerWithSeqPool(
            (encoder): Encoder(
```

Compact Convolutional Transformer (CCT)

➤ (Scaled) Self dot-product attention

* Why Masked Attention?

: time step 마다 지난 출력과 예측한 현재 토큰만 사용하여 토큰을 생성하기 위해.

다음에 나오는 정보를 참고하지 못하도록 하기 위해. (학습 과정에서 뒤 정답을 알게 됨)

새로운 데이터가 들어왔을 때 직접 생성 못하고, 기존에 알고 있던 결과를 내는 것을 방지하기 위해.

* Q*K^T: 어텐션 스코어 행렬

* Softmax : 어텐션 분포 구하기

➤ (Scaled) Self dot-product attention

Scaled Dot-Product Attention


```
def scaled_dot_product_attention(query, key, value, mask=None):
# query, key, value: (n_batch, seq_len, d_k)
# mask: (n_batch, seq_len, seq_len)

d_k = query.size(-1) # d_k = d_model / num_heads
attention_score = torch.matmul(query, key.transpose(-2, -1)) # Q x K^T, (n_batch, seq_len, seq_len)
attention_score = attention_score / math.sqrt(d_k)

# Masking (optional)
if mask is not None:
    attention_score = attention_score.masked_fill(mask==0, float('-inf'))
    # mask tensor는 0 or 1로 이루어져 있으며, 0인 위치는 어텐션 스코어에 음의 무한대 값을 채워주어 해당 위치의 가중치를 0으로 만들
# softmax 함수 적용 시 exp^(-inf) = 0, 따라서 attention weights가 모두 0이 됨
    # 이렇게 함으로써 마스크가 적용된 위치의 정보를 attention weights에 반영하지 않도록 할 수 있음

weights = F.softmax(attention_score, dim=-1) # (n_batch, seq_len, seq_len)

# bmm : 배치 차원을 고려한 행렬-행렬 곱셈
# Q. matmul vs. mm vs. bmm (https://velog.io/@regista/torch.dot-torch.matmul-torch.mm-torch.bmm)
result = torch.bmm(weights, value) # (n_batch, seq_len, d_k)

return result
```

>(Scaled) Self dot-product attention

▼ Why **Scaled** Self Dot-Product Attention?

Softmax 함수

- Gradient Scaling 문제 해결: 만약 d_k가 큰 경우, QK^T의 값은 더 큰 수가 되어 Softmax 함수를 거치면 매우 작은 기울기를 얻게 됩니다. 이는 모델 학습 시에 Gradient Vanishing(기울기소멸) 문제와 관련이 있습니다. 따라서 sqrt(d_k)로 나누는 것은 dot-product의 결과를 작은 값으로 스케일링하여 기울기의 크기를 조절해주는 역할을 합니다.
 - o Gradient Scaling: explosion or vanishing
- 안정성과 효율성 강화: Softmax 함수는 지수 함수를 사용하기 때문에 큰 수가 입력으로 들어 가면 수치적으로 불안정해질 수 있습니다. 하지만 sqrt(d_k)로 나누면서 값이 조절되어 수치적 안정성이 향상됩니다.

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$

≻(Masked) Multi-Head Attention


```
\begin{aligned} \text{MultiHead}(Q, K, V) &= \frac{\text{Concat}}{\text{(head}_1, ..., \text{head}_h)} W^O \\ \text{where } &\text{head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}
```

- * 여러 개의 서브 공간(subspace)로 나누어 처리하는 방법
- * 각 subspace가 head라고 불림

```
class AttentionHead(nn.Module):
    def __init__(self, embed_dim, head_dim):
        ...
        nn.Linear(input_feature_dimension, output_feature_dimension)
        # Linear Transformation (선형 변환: 차원 변환)
        ...
        super(AttentionHead, self).__init__()
        self.Q = nn.Linear(embed_dim, head_dim)
        self.K = nn.Linear(embed_dim, head_dim)
        self.V = nn.Linear(embed_dim, head_dim)

# Mask

def forward(self, query, key, value, mask=None):
    # query = torch.transpose(query, 0, 1)
    # value = torch.transpose(query, 0, 1)
    # key = torch.transpose(key, 0, 1)

# print("query size : ", query.size())

attention_output = scaled_dot_product_attention(self.Q(query), self.K(key), self.V(value), mask=mask)
    return attention_output
```

≻(Masked) Multi-Head Attention


```
\begin{aligned} \text{MultiHead}(Q, K, V) &= \frac{\text{Concat}}{\text{(head}_1, ..., \text{head}_h)} W^O \\ \text{where } &\text{head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}
```

- * 여러 개의 서브 공간(subspace)로 나누어 처리하는 방법
- * 각 subspace가 head라고 불림

>Add & Norm

* Add (Residual Connection)

- 입력값과 출력값을 연결.
- 일부 layer를 건너뛰어 데이터가 신경망 구조의 후반부에 도달하는 또 다른 경로를 제공함으로써 Gradient 소실 or 폭주 문제를 완화함.
 - Output = Input + Sublayer(Input) *Sublayer = Multi-Head Attention

* Norm (Layer Normalization)

- Residual Connection 결과에 대한 정규화 진행
- layer 간의 안정성 향상, 학습 가속화 (기울기 소실 or 폭주 완화)
- x: 입력, μ: 평균, σ: 표준편차

$$ext{LayerNorm}(x) = \gamma \left(rac{x-\mu}{\sqrt{\sigma^2 + \epsilon}}
ight) + eta$$

```
class LayerNorm(nn.Module):
    def __init__(self, cfg, eps=1e-12):
        super(LayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(cfg.encoder.d_model))
        self.beta = nn.Parameter(torch.zeros(cfg.encoder.d_model))
        self.eps = eps

def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        var = x.var(-1, unbiased=False, keepdim=True)
        # '-1' means last dimension.

out = (x - mean) / torch.sqrt(var + self.eps)
        out = self.gamma * out + self.beta
        return out
```

> Feed Forward


```
FFN(x) = \max(0, xW_1 + b_1) W_2 + b_2
ReLU linear transformation
```

- Multi Head Attention을 수행하여 얻은 각 Head는 관점에 따라 정보가 치우쳐져 있음.
- Position-wise FFN은 각 Head가 만들어낸 Attention을 치우치지 않게 균등하게 섞는 역할을 한다.

≻Encoder Layers

```
class Encoder(nn.Module):
v class EncoderLayer(nn.Module):
                                                                                                                                                                                         Output
                                                                                 def init (self, cfg):
                                                                                                                                                                                       Probabilities
                                                                                    super().__init__()
      def __init__(self, cfg):
                                                                                                                                                                                        Softmax
           super(). init ()
                                                                                    self.layers = nn.ModuleList([EncoderLayer(cfg)
           self.attention = MultiHeadAttention(cfg)
                                                                                                                for in range(cfg.encoder.n layers)])
                                                                                                                                                                                         Linear
           self.norm1 = LayerNorm(cfg)
           self.dropout1 = nn.Dropout(p=cfg.encoder.drop prob)
                                                                                 def forward(self, x, src mask):
                                                                                                                                                                                       Add & Norm
                                                                                    for layer in self.layers:
                                                                                                                                                                                          Feed
                                                                                        x = layer(x, src_mask)
           self.ffn = PositionWiseFeedForward(cfg)
                                                                                                                                                                                         Forward
           self.norm2 = LayerNorm(cfg)
                                                                                    return x
           self.dropout2 = nn.Dropout(p=cfg.encoder.drop prob)
                                                                                                                                                                                       Add & Norm
                                                                                                                                                                     Add & Norm
                                                                                                                                                                                        Multi-Head
                                                                                                                         I am a student
                                                                                                                                                                                         Attention
      def forward(self, x, src_mask):
                                                                                                                                                                      Forward
                                                                                                                                                                                       Add & Norm
                                                                                         ENCODER
                                                                                                                            DECODER
           x copy = x
                                                                                                                                                          N×
                                                                                                                                                                    Add & Norm
           x = self.attention(x, mask=src mask)
                                                                                                                                                                     Multi-Head
                                                                                                                                                                                        Multi-Head
                                                                                         ENCODER
                                                                                                                            DECODER
                                                                                                                                                                      Attention
                                                                                                                                                                                         Attention
           # 2. add and norm
           x = self.dropout1(x)
                                                                                         ENCODER
                                                                                                                            DECODER
           x = self.norm1(x + x copy)
                                                                                                                                                         Positional 6
                                                                                                                                                         Encoding
                                                                                         ENCODER
                                                                                                                            DECODER
           # 3. PositionWiseFeedForward
                                                                                                                                                                                         Output
                                                                                                                                                                       Input
           x_{copy} = x
                                                                                                                                                                                        Embedding
                                                                                                                                                                     Embedding
                                                                                         ENCODER
                                                                                                                            DECODER
           x = self.ffn(x)
           # 4. add and norm
                                                                                                                                                                       Inputs
                                                                                                                                                                                        Outputs
                                                                                         ENCODER
                                                                                                                            DECODER
                                                                                                                                                                                      (shifted right)
           x = self.dropout2(x)
           x = self.norm2(x + x copy)
           return x
                                                                                     Je suis étudiant
```

https://www.linkedin.com/pulse/transformer-model-neural-network-which-uses-attention-tejas-bankar/

N×

Positional

Encoding

➤예시: CCT-2/3x2

Table 5: Transformer backbones in each variant.

Model	# Layers	# Heads	Ratio	Dim
ViT-Lite-6	6	4	2	256
ViT-Lite-7	7	4	2	256
CVT-6	6	4	2	256
CVT-7	7	4	2	256
CCT-2	2	2	1	128
CCT-4	4	2	1	128
CCT-6	6	4	2	256
CCT-7	7	4	2	256
CCT-14	14	6	3	384

```
(Transformer With SeqPool): TransformerWithSeqPool(
 (encoder): Encoder(
   (layers): ModuleList(
     (0): EncoderLayer(
        (attention): MultiHeadAttention(
          (heads): ModuleList(
           (0): AttentionHead(
             (0): Linear(in features=128, out features=64, bias=True)
             (K): Linear(in features=128, out features=64, bias=True)
             (V): Linear(in features=128, out features=64, bias=True)
           (1): AttentionHead(
             (Q): Linear(in features=128, out features=64, bias=True)
             (K): Linear(in features=128, out features=64, bias=True)
             (V): Linear(in features=128, out features=64, bias=True)
          (fc layer): Linear(in features=128, out features=128, bias=True)
        (norm1): LayerNorm()
        (dropout1): Dropout(p=0.1, inplace=False)
        (ffn): PositionWiseFeedForward(
          (fc layer1): Linear(in features=128, out features=1024, bias=True)
          (fc layer2): Linear(in features=1024, out features=128, bias=True)
          (gelu): GELU(approximate='none')
          (dropout): Dropout(p=0.1, inplace=False)
        (norm2): LayerNorm()
        (dropout2): Dropout(p=0.1, inplace=False)
```

```
(1): EncoderLayer(
 (attention): MultiHeadAttention(
   (heads): ModuleList(
     (0): AttentionHead(
       (Q): Linear(in features=128, out features=64, bias=True)
       (K): Linear(in features=128, out features=64, bias=True)
       (V): Linear(in features=128, out features=64, bias=True)
     (1): AttentionHead(
       (Q): Linear(in features=128, out features=64, bias=True)
       (K): Linear(in features=128, out features=64, bias=True)
       (V): Linear(in features=128, out features=64, bias=True)
    (fc layer): Linear(in features=128, out features=128, bias=True)
 (norm1): LayerNorm()
 (dropout1): Dropout(p=0.1, inplace=False)
 (ffn): PositionWiseFeedForward(
   (fc layer1): Linear(in features=128, out features=1024, bias=True)
   (fc_layer2): Linear(in features=1024, out features=128, bias=True)
   (gelu): GELU(approximate='none')
   (dropout): Dropout(p=0.1, inplace=False)
 (norm2): LayerNorm()
 (dropout2): Dropout(p=0.1, inplace=False)
```

3. SeqPool

Sequence Pooling

Compact Convolutional Transformer (CCT)

forwarded. This operation consists of mapping the output sequence using the transformation $T: \mathbb{R}^{b \times n \times d} \mapsto \mathbb{R}^{b \times d}$. Given:

$$\mathbf{x}_L = \mathbf{f}(\mathbf{x}_0) \in \mathbb{R}^{b \times n \times d}$$

where \mathbf{x}_L is the output of an L layer transformer encoder f, b is batch size, n is sequence length, and d is the total embedding dimension. \mathbf{x}_L is fed to a linear layer $\mathbf{g}(\mathbf{x}_L) \in \mathbb{R}^{d \times 1}$, and softmax activation is applied to the output:

$$\mathbf{x}_L' = \operatorname{softmax}\left(\mathbf{g}(\mathbf{x}_L)^T\right) \in \mathbb{R}^{b \times 1 \times n}$$

This generates an importance weighting for each input token, which is applied as follows:

$$\mathbf{z} = \mathbf{x}_L' \mathbf{x}_L = \operatorname{softmax} \left(\mathbf{g}(\mathbf{x}_L)^T \right) \times \mathbf{x}_L \in \mathbb{R}^{b \times 1 \times d}$$
 (1)

By flattening, the output $z \in \mathbb{R}^{b \times d}$ is produced. This output can then be sent through a classifier.

SeqPool allows our network to weigh the sequential embeddings of the latent space produced by the transformer encoder and correlate data across the input data. This can

3. SeqPool

Sequence Pooling

forwarded. This operation consists of mapping the output sequence using the transformation $T: \mathbb{R}^{b \times n \times d} \mapsto \mathbb{R}^{b \times d}$. Given:

$$\mathbf{x}_L = \mathbf{f}(\mathbf{x}_0) \in \mathbb{R}^{b \times n \times d}$$

where \mathbf{x}_L is the output of an L layer transformer encoder f, b is batch size, n is sequence length, and d is the total embedding dimension. \mathbf{x}_L is fed to a linear layer $\mathbf{g}(\mathbf{x}_L) \in \mathbb{R}^{d \times 1}$, and softmax activation is applied to the output:

$$\mathbf{x}_L' = \operatorname{softmax}\left(\mathbf{g}(\mathbf{x}_L)^T\right) \in \mathbb{R}^{b \times 1 \times n}$$

This generates an importance weighting for each input token, which is applied as follows:

$$\mathbf{z} = \mathbf{x}_L' \mathbf{x}_L = \operatorname{softmax} \left(\mathbf{g}(\mathbf{x}_L)^T \right) \times \mathbf{x}_L \in \mathbb{R}^{b \times 1 \times d}$$
 (1)

By flattening, the output $z \in \mathbb{R}^{b \times d}$ is produced. This output can then be sent through a classifier.

SeqPool allows our network to weigh the sequential embeddings of the latent space produced by the transformer encoder and correlate data across the input data. This can

```
(seq pool): SeqPool(
 (transformer encoder): Encoder(
   (layers): ModuleList(
     (0): EncoderLayer(
       (attention): MultiHeadAttention(
         (heads): ModuleList(
           (0): AttentionHead(
             (Q): Linear(in features=128, out features=64, bias=True)
             (K): Linear(in features=128, out features=64, bias=True)
             (V): Linear(in_features=128, out_features=64, bias=True)
           (1): AttentionHead(
             (0): Linear(in features=128, out features=64, bias=True)
             (K): Linear(in features=128, out features=64, bias=True)
             (V): Linear(in features=128, out features=64, bias=True)
          (fc_layer): Linear(in_features=128, out_features=128, bias=True)
        (norm1): LayerNorm()
        (dropout1): Dropout(p=0.1, inplace=False)
       (ffn): PositionWiseFeedForward(
         (fc layer1): Linear(in features=128, out features=1024, bias=True)
         (fc layer2): Linear(in features=1024, out features=128, bias=True)
         (gelu): GELU(approximate='none')
          (dropout): Dropout(p=0.1, inplace=False)
       (norm2): LayerNorm()
       (dropout2): Dropout(p=0.1, inplace=False)
```

```
(1): EncoderLayer(
     (attention): MultiHeadAttention(
       (heads): ModuleList(
         (0): AttentionHead(
           (0): Linear(in features=128, out features=64, bias=True)
           (K): Linear(in features=128, out features=64, bias=True)
           (V): Linear(in features=128, out features=64, bias=True)
         (1): AttentionHead(
           (Q): Linear(in features=128, out features=64, bias=True)
           (K): Linear(in features=128, out features=64, bias=True)
           (V): Linear(in features=128, out features=64, bias=True)
       (fc layer): Linear(in features=128, out features=128, bias=True)
     (norm1): LayerNorm()
      (dropout1): Dropout(p=0.1, inplace=False)
      (ffn): PositionWiseFeedForward(
       (fc layer1): Linear(in features=128, out features=1024, bias=True)
       (fc layer2): Linear(in features=1024, out features=128, bias=True)
       (gelu): GELU(approximate='none')
       (dropout): Dropout(p=0.1, inplace=False)
     (norm2): LayerNorm()
     (dropout2): Dropout(p=0.1, inplace=False)
(linear): Linear(in features=64, out features=1, bias=True)
```

4. Linear Layer

Sequence Poolina

4. CCT

CCT = Convolutional_Tokenization + Transformer_with_SeqPool

Compact Convolutional Transformer (CCT)


```
class CCT(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.Convolutional Tokenization = ConvolutionalTokenizer(cfg)
        self.Transformer_With_SeqPool = TransformerWithSeqPool(cfg)
    def forward(self, x, src mask):
        conv tokenizer output = self.Convolutional Tokenization(x)
        cct_ouput = self.Transformer_With_SeqPool(conv_tokenizer_output, src_mask)
        return cct ouput
config path = '/home/hayeon/CCT/configs/CCT-2-3x2.json'
with open(config path, 'r') as f:
    cfg_dict = json.load(f)
cfg = edict(cfg dict)
model = CCT(cfg)
model = model.cuda()
print(model)
```

* File Structure

- ▶ 왼 : Class 별로 자잘하게 구분함
- ▶오 : Config 파일 구조
 - ffn_hidden : d_model의 4~8배?

```
✓ CCT [SSH: 10.21.3.214:89]
 pycache

✓ configs

 {} CCT-7-3x2.json
 {} config.json

✓ img

 CCT_architecture.png
 how_to_use_easydict.png
 transformer architecture.png
 ViT_architecture.png

✓ structure

    convolutional tokenization

  > __pycache__
  ConvolutionalTokenizer.py

    tranformer with sequence pooling

  > pycache
  transformer_encoder
   > _pycache_
    > embedding
    layers
     > __pycache__
     layer_norm.py
    multi_head_attention.py
    position_wise_feed_forward.py
    encoder layer.py
   transformer.py
  encoder.py
  sequence pooling.py
  transformer_with_sequence_pooling.py
 optional_positional_embedding.py
CCT.py
(i) README.md
```

```
configs > {} CCT-7-3x2.json > ...
  1 \vee \{
           "conv token": {
               "num conv layers": 2,
               "kernel size": 3,
               "input channels": 3,
               "output channels": 64,
               "stride": 1,
               "num classes": 10
           "encoder": {
               "d model": 128,
               "ffn hidden": 1024,
               "num heads": 2,
               "drop prob": 0.1,
               "n layers": 2
```

Train

```
def train one epoch(epoch, model, trainloader, criterion, optimizer, device, print interval=10):
   model.train()
   running loss = 0.0
   correct = 0
   total = 0
   for i, data in enumerate(tqdm(trainloader, desc=f"Epoch {epoch+1}", unit="batch")):
       inputs, labels = data[0].to(device), data[1].to(device)
       optimizer.zero_grad()
       outputs = model(inputs)
       loss = criterion(outputs, labels)
       loss.backward()
       optimizer.step()
       running loss += loss.item()
       _, predicted = outputs.max(1)
       total += labels.size(0)
       correct += predicted.eq(labels).sum().item()
   epoch_loss = running_loss / len(trainloader)
   epoch_acc = 100. * correct / total
   print(f"Epoch {epoch+1} - Loss: {epoch loss:.3f}, Accuracy: {epoch acc:.2f}%")
   print("======"")
```

```
ef main():
  device = torch.device("cuda:0" if torch.cuda.is available() else "cpu")
  args = parse_arguments()
  config = load config(args.cfg)
  model = CCT(config)
  if torch.cuda.device_count() > 1:
     print("GPU numbers : ", torch.cuda.device_count())
      model = nn.DataParallel(model)
  model.to(device)
  criterion = nn.CrossEntropyLoss()
  optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
  trainloader, testloader = get data loaders(batch size=args.batch size)
  for epoch in range(args.epochs):
      train_one_epoch(epoch, model, trainloader, criterion, optimizer, device)
      if (epoch+1) % 5 == 0:
          model_name = f"{args.cfg.split('.')[0].split('/')[-1]} {args.batch_size} {epoch}.pth"
          print(model_name)
          model dir = "models/CCT-7-7x1 128 ver.2"
          os.makedirs(model dir, exist ok=True)
          torch.save(model.state_dict(), os.path.join(model_dir, model_name))
      if (epoch+1) % 5 == 0:
          validate(model, testloader, device)
```

Table 5: Transformer backbones in each variant.

Model	# Layers	# Heads	Ratio	Dim
ViT-Lite-6	6	4	2	256
ViT-Lite-7	7	4	2	256
CVT-6	6	4	2	256
CVT-7	7	4	2	256
CCT-2	2	2	1	128
CCT-4	4	2	1	128
CCT-6	6	4	2	256
CCT-7	7	4	2	256
CCT-14	14	6	3	384

Table 6: Tokenizers in each variant.

Model	# Layers	# Convs	Kernel	Stride
ViT-Lite-7/8	7 7	1	8×8	8×8
ViT-Lite-7/4		1	4×4	4×4
CVT-7/8 CVT-7/4	7 7	1 1	8×8 4×4	8×8 4×4
CCT-2/3x2	2	2	3×3	1×1
CCT-7/3x1	7	1	3×3	1×1
CCT-7/7x2	7	2	7×7	2×2

```
{
    "conv_token": {
        "num_conv_layers": 1,
        "kernel_size": 7,
        "input_channels": 3,
        "output_channels": 128,
        "stride": 1,
        "num_classes": 10,
        "padding": 2
    },
    "encoder": {
        "d_model": 128,
        "ffn_hidden": 1024,
        "num_heads": 4,
        "drop_prob": 0.1,
        "n_layers": 7
    }
}
```

```
Total params: 2,325,771
Trainable params: 2,325,771
Non-trainable params: 0
Input size (MB): 0.01
Forward/backward pass size (MB): 149.14
Params size (MB): 8.87
Estimated Total Size (MB): 158.02
```


>CCT-2-3x2

끄읏

- ▶모델 구현 및 학습 과정 전반을 경험
- ▶모델 구조에 대한 정확한 이해가 있으면 다른 모델들도 짜볼 수 있을 듯
- ▶조금 더 정돈된 코드
- ▶어떻게 하면 성능을 높일 수 있는가

```
Blame 39 lines (39 loc) · 567 Bytes
     - 0.2435
     - 0.2616
 crop_pct: 1.0
 scale:
    - 0.8
 interpolation: bicubic
 train interpolation: random
 aa: rand-m9-mstd0.5-inc1
 mixup_off_epoch: 175
 mixup_prob: 1.0
 mixup_mode: batch
 mixup_switch_prob: 0.5
 reprob: 0.25
 remode: pixel
 amp: True
 batch_size: 128
 lr: 55e-5
 min lr: 1e-5
 sched: cosine
 weight_decay: 6e-2
 epochs: 300
 cooldown_epochs: 10
 warmup_epochs: 10
 warmup_lr: 0.00001
 opt: adamw
 smoothing: 0.1
 workers: 8
```

감사합니다