$$4A\frac{dA}{dt} = x(y^2 + z^2)\frac{dx}{dt} + y(z^2 + x^2)\frac{dy}{dt} + z(x^2 + y^2)\frac{dz}{dt}$$

When P is at $P_O(6, 0, 0)$, then Q is at $Q_O(0, 9, 0)$ and R is at $R_O(0, 0, 12)$ with $|P_O|Q_O|R_O|_2 = 9\sqrt{61}$. Then

$$4.9\sqrt{61} \frac{dA}{dt} = 6(225)2 + 9(680)3 + 12(117)4$$
$$9\sqrt{61} \frac{dA}{dt} = 675 + 27.45 + 12.117$$
$$\sqrt{61} \frac{dA}{dt} = 75 + 135 + 156 = 366$$
$$\frac{dA}{dt} = \frac{766}{\sqrt{61}} = 6\sqrt{61}unit^2/sec$$

0.1. TAYLOR'S FORMULA AND SERIES.

Theorem 0.1. If f(x, y) has continuous partial derivatives up to order n+1 in a neighborhood of $(a, b)\epsilon v_f$, then

$$f(x,y) = f(a,b) + \sum_{k=1}^{n} \frac{1}{k!} ((x-a)\frac{a}{ax} + (y-b)\frac{a}{ay})^{k} f(x,y)|_{(a,b)} + R_{n+1}$$

where the remainder is given by

$$R_{n+1} = \frac{1}{(n+1)!}((x-a)\frac{a}{ax} + (y-b)\frac{a}{ax})^{n+1}f(x,y)_{(x*,y*)}$$

with (x^*, y^*) a point on the open segment $(P_O P)$ joining $P_O(a, b)$ to P(x, y)

PROOF. Since every point of the line segment $[P_OP]$ can be represented parametrically as

$$x = a + ht$$
, $y = b + kt$ $0 \le t \le 1$,

The end points of the segment correspond to t=0 and t=1 (observe that h, k are direction numbers of the line segment) Substituting (2) in f(x, y) gives the function