

Microcontroladores e Interação Com Sensores e Atuadores

Sensor de humidade e temperatura

Autores

Ricardo Ferreira, 103425
Marco Almeida, 103440
Rui Soares, 102656
Joana Duarte, 102608
Tiago Gonçalves, 102589

Desenvolvimento do projeto

O nosso projeto baseia-se num sensor para medição da temperatura e humidade, ou seja, a quantidade de vapor de água existente no ar e a respetiva indicação dos valores no atuador display LCD 16*2.

Estes tipos de sensores são usados diariamente em diversas atividades como indústrias, agricultura, estações metrológicas, etc. O sensor mede a temperatura com um intervalo de medida de 0°C a 50°C com uma margem de erro de 1°C, e a humidade entre os 20% e os 90% com uma margem de erro de 1%.

Para o nosso projeto usamos os seguintes materiais:

- Um Arduino Nano 3.0;
- Um sensor de humidade e temperatura DHT11;
- Um display LCD de 16*2;
- Uma placa branca;
- Cabos de ligação;

DHT11 Sensor de humidade e temperatura

O DHT11 foi ligado ao nosso circuito com apenas um cabo DATA a ligar ao microcontrolador. E para o alimentar usou-se uma entrada VCC e outra GND.

Figura 1. DTH11 Sensor de Humanidade

Para medir a temperatura este tem incluído um termístor NTC, ou seja, com o aumento da temperatura a resistência diminui.

Este sensor é calibrado de fábrica pelo que não foi necessária a sua calibração.

Especificações do DHT11

- Funciona entre 3.5V a 5.5V
- Corrente a medir 0.3mA e parado usa 60uA
- Temperatura mínima é de 0 °C e máxima é de 50 °C
- Humidade mínima é de 20% e máxima é de 90%
- Percentagem de erro é de ±1°C e ±1% para as respetivas medidas

Figura 1 - Diagrama de ligação do sensor

Como se pode ver pela figura 2 na porta de entrada e saída tem uma resistência de 5K Ω . Para os valores de output da temperatura e da humidade são ambos os dois 2 8 bits. Para os dados serem transmitidos o porto de entrada e

saída tem de ser ativado e desativado momentaneamente como no diagrama abaixo apresentado:

Diferença entre sensores e atuadores

Sensores e atuadores são elementos críticos em sistemas embutidos. São utilizados numa variedade de aplicações em vida real, tal como o sistema de controlo de voo num avião, sistema de controlo e manutenção num reator nuclear e centrais elétricas que necessitam de manutenção constante.

Sensores diferem dos atuadores principalmente pelo propósito que fornecem. Um sensor é utilizado para monitorizar mudanças no ambiente utilizando aparelhos de medição, enquanto que um atuador pode interferir no ambiente de modo a regular mudanças físicas.

	Sensores	Atuadores
Utilização	Medir variáveis do processo	Interferir com variáveis do processo
Colocado em	Porta de entrada	Porta de saída
Resultado	Sinal elétrico	Calor ou movimento e.g.
Exemplo	Termístor, acelerómetro, sensor de luz, sensor de proximidade, giroscópio	Relais, servomotor, ventoinha, buzzer, display

Em conclusão, os sensores fornecem ao computador informações sobre o estado do sistema. Por outro lado, os atuadores aceitam comandos para executar uma função.

Código

```
#include <Wire.h>
                           //Biblioteca para usar I2C
#include <LiquidCrystal_I2C.h> //Biblioteca para usar display LCD do tipo I2C
#include <DHT.h>
                           //Biblioteca para usar o sensor DHT11
#define DHTPIN A1
#define DHTTYPE DHT11
LiquidCrystal_I2C lcd(0x27, 16, 2); //inicializa objeto lcd para classe LiquidCrystal_I2C
                                //com endereço I2C de 0x27 e display LCD tipo 16x2
DHT dht(DHTPIN, DHTTYPE);
                               //inicializa objeto dht para classe
                                //DHT com pino DHT com STM32 e do tipo DHT como DHT11
void setup()
{
// inicializa o LCD
 lcd.init();
  lcd.backlight(); // Acende a luz negra e imprime uma mensagem de boas-vindas.
 delay(1000);
 dht.begin(); //Começa a receber os valores de temperatura e umidade.
 lcd.setCursor(0,0);
 lcd.print("GRUPO 7 MISA");
 lcd.setCursor(0,1);
 lcd.print("DHT11 com STM32");
 delay(6000);
 lcd.clear();
}
void loop()
  float h = dht.readHumidity(); // Obtém o valor de Humidade
  float t = dht.readTemperature(); // Obtém o valor da temperatura
  lcd.setCursor(0,0);
  lcd.print("Temp: ");
  lcd.print(t); // Imprime o valor da temperatura em °C
  lcd.print(" C");
  lcd.setCursor(0,1);
  lcd.print("Humid: ");
  lcd.print(h); // Imprime o valor da Humidade em %
  lcd.print(" %");
}
```