A Book of Abstract Algebra (2nd Edition)

	3	1	•	
	Chapter 33, Problem 3EC	Bookmark	Show all steps: ON	
	Pro	oblem		
	Let p be a prime number, and ω a primitive p th root of unity in the field F . If deg $p(x) = m$, explain why the constant term of $p(x)$ (let us call it b) is equal to the product of m			
	pth roots of a. Conclude that $b = \omega^k d^m$ for some k.			
Step-by-step solution				
	Here, objective is to explain why the constant term of $p(x)$ is equal to product of $m p^{th}$ roots of			
	а.			
	The polynomial $x^p - a \in F(x)$ Where, P is a prime and $x^p - a$ is reducible in $F(x)$			
	Consider degree $p(x) = m$			
	Comment			
	Step 2 of 5			

Consider the polynomial $x^p - a$.

The root of above polynomial is a primitive p^{th} root of unity

$$x^p - a = 0$$

$$x^p = a$$

$$x = \sqrt[p]{a} \omega$$

Consider d is a root of $x^p - a \in F(x)$.

Then, $d = \sqrt[p]{a}$, ω is the p^{th} root of unity

Comment

Step 3 of 5

Let us assume d_1, d_2, \dots, d_p are the roots of $x^p - a$

F has an extension K contains all the roots

$$d_1, d_2, \dots, d_p$$
 of $\chi^p - a$

Comment

Step 4 of 5

Consider

$$x^p - a = p(x)f(x)$$

Then, write into linear factors

$$x^{p} - a = (x - d_{1})(x - d_{2}).....(x - d_{p})$$

p(x) is equal to the product of m number of these factors.

$$p(x) = (x - d_1)(x - d_2)....(x - d_m)$$

Since, degree p(x) = m

f(x) is equal to the product of remaining these factors

Comment

Step 5 of 5

Let the Constant term of p(x) is b, which is the product of d_1, d_2, \dots, d_m

$$b = (d_1 d_2 d_m)$$

$$b = \sqrt[p]{a} \dots \sqrt[p]{a}$$

$$b = \omega^k (\sqrt[p]{a})^m$$
$$b = \omega^k d^m$$

Hence, the constant term of p(x) is equal to product of m p^{th} roots of a and $b=\omega^k d^m$.

Comment