Studiul dependenței de temperatură a rezistivității electrice

Scopul lucrării:

- Studiul dependenței de temperatură a rezistivității electrice a unui metal
- Studiul dependenței de temperatură a rezistivității electrice a unui semiconductor
- Evidențierea deosebirilor de comportare în funcție de temperatură a celor două tipuri de materiale
- Determinarea valorii si semnului coeficientului termic al rezistivității metalelor și semiconductorilor

Teoria:

Metalele și semiconductorii prezintă comportamente diferite față de temperatură:

- **Metale:** Rezistivitatea crește odată cu temperatura din cauza interacțiunii crescute a electronilor liberi cu rețeaua cristalină.
- **Semiconductori:** Rezistivitatea scade puternic cu creșterea temperaturii datorită numărului de purtători de sarcină prin excitatie termică.

Tehnica experimentală:

a) **Dependența de temperatură a rezistenței metalului:** Un fir metalic înfășurat pe un tub de porțelan înauntrul căruia s-a introdus un termometru de sticlă, gradat în grade Celsius, cu domeniu de măsurare între 0 si 150 de grade Celsius.

b) **Dependența de temperatură a rezistenței semiconductorului:** Un termistor din germaniu, sub forma de disc, este înfășurat într-o bandă metalică de cupru împreună cu rezervorul de mercur al unui termometru de sticlă cu domeniul de măsurare între 0 si 150 grade Celsius.

Rezultatele experimentale si analiza datelor:

Metale:

t(°C)	39	42	45	50	59	63	66	70	74	77	81	85	90	94
$R_{S}(\Omega)$	2.9	3.1	3.1	3.2	3.3	3.4	3.5	3.6	3.6	3.7	3.8	3.8	3.9	4.0

Semiconductor:

Temperatura	Rezistența	Temperatura	1/T (1/K)	In(R)	10^3 / T
(°C)	(Ω)	(K)			(1/K)
15	775	288,15	0,00347	6,652863	3,470415
19	655	292,15	0,003423	6,484635	3,422899
23	560	296,15	0,003377	6,327937	3,376667
26	500	299,15	0,003343	6,214608	3,342805
30	420	303,15	0,003299	6,040255	3,298697
34	360	307,15	0,003256	5,886104	3,255738
38	310	311,15	0,003214	5,736572	3,213884
42	264	315,15	0,003173	5,575949	3,173092
46	238	319,15	0,003133	5,472271	3,133323
50	207	323,15	0,003095	5,332719	3,094538
54	181	327,15	0,003057	5,198497	3,056702
58	156	331,15	0,00302	5,049856	3,01978
62	138	335,15	0,002984	4,927254	2,983739
66	121	339,15	0,002949	4,795791	2,948548
70	107	343,15	0,002914	4,672829	2,914177
74	95	347,15	0,002881	4,553877	2,880599
78	84	351,15	0,002848	4,430817	2,847786

82	75	355,15	0,002816	4,317488	2,815712
86	66	359.15	0.002784	4.189655	2.784352

Ne-am folosit de python pentru a prelua și a prelucra datele ambelor experimente pe un grafic și am observat următoarele lucruri:

-Rezistența electrică a metalului crește liniar cu temperatura conform relației:

$$R(T) = R0[1+\alpha(T-T0)]$$

unde α este coeficientul termic al rezistivității. Din grafic, observăm o crestere constantă, în concordanță cu teoria dată.

De asemenea folosindu-ne de relația dată putem calcula tipul de metal folosit în experiement:

$$\alpha = \frac{R2 - R1}{R1(T2 - T1)}$$

Folosind primul si ultimul punct din tabel ne reiese coeficientul termic pentru Nichel (aprox 0.0069 C^-1)

- Rezistența electrică a semiconductorului scade exponențial cu temperatura, descrisă de relatia:

$$R(T) = R_0 e^{-B/T}$$

unde B este constanta legată de energia benzii interzise.

Concluzii:

- 1. Metalul are un coeficient termic pozitiv, confirmând creșterea rezistenței cu temperatura.
- **2. Semiconductorul** are un coeficient termic negativ, evidențiind scăderea rezistenței la temperaturi ridicate.
- **3.** Experimentul demonstreaza distinct caracteristicile fizice ale metalelor si semiconductorilor.