Math 212 Problem Set 3

Lev Kruglyak

Due: February 26, 2025

Collaborators: AJ LaMotta

Problem 1. In the previous problem set, you were asked (in part) to show that if g is any $L^2(\mathbb{R}^n)$ function, then there exists a unique solution f in L^2 to the equation

$$(1 - \Delta)f = g. \tag{1}$$

(a). Prove that the Fourier transform maps $L_2^2(\mathbb{R}^n)$ isometrically to the completion X of the space $C_c^{\infty}(\mathbb{R}^n)$ using the norm

$$||u||_X^2 = \int_{\mathbb{R}^n} (|k|^2 + 1)^2 |\widehat{u}(k)|^2 dk_1 \cdots dk_n$$

Let's first identify X as a subspace of $L^2(\mathbb{R}^n)$, namely as the set of functions with $||u||_X < \infty$. By the work on the previous problem set, it follows that X is complete and $C_c^{\infty}(\mathbb{R}^n)$ is dense in X. Note that we can rewrite the norm as

$$||u||_X^2 = \int_{\mathbb{R}^n} |\mathcal{F}(Lu)|^2 dk = ||\mathcal{F}(Lu)||_{L^2}^2 = ||Lu||_{L^2}^2.$$

where $L = (1 - \Delta)$, and the last equality follows because the Fourier transform is an L^2 isometry. However, we have

$$\begin{aligned} \|u\|_{2,2}^2 &= \|\nabla^2 u\|_2^2 + 2\|\nabla u\|_2^2 + \|u\|_2^2 = \|\widehat{\nabla^2 u}\|_2^2 + 2\|\widehat{\nabla^2 u}\|_2^2 + 2\|\widehat{\nabla u}\|_2^2 + \|\widehat{u}\|_2^2 \\ &= \int_{\mathbb{D}^n} (|k|^2 + (k_i)^2 (k^j)^2) + 1)|\widehat{u}(k)|^2 dk = \|u\|_X^2. \end{aligned}$$

If follows that the Fourier transform $C_c^{\infty}(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is an isometric linear bounded map with respect to the L_2^2 norm on C_c^{∞} and norm on X. By the density of $C_c^{\infty}(\mathbb{R}^n)$ in $L_2^2(\mathbb{R}^n)$ and completeness of X, the Fourier transform extends to a linear isometry $L_2^2 \to X$.

(b). Prove that the assignment of $g \in L^2(\mathbb{R}^n)$ to the solution f of (1) defines an isometry from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$.

This is the inverse map L^{-1} given by $\mathcal{F}^{-1} \circ M \circ \mathcal{F}$ where M is the multiplication by $1/|k|^2 + 1$ map. The Fourier transform maps $L^2(\mathbb{R}^n)$ isometrically onto $L^2(\mathbb{R}^n)$, the operator M maps $L^2(\mathbb{R}^n)$ isometrically onto X by the previous part, and the inverse Fourier transform maps X isometrically onto $L^2(\mathbb{R}^n)$. Thus, it follows that L^{-1} is an isometric isomorphism of $L^2(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$.

(c). Let q(x) be at least a quadratic polynomial function, let $h_{\alpha\beta}$ be a 2×2 matrix of at least linear polynomial functions, and let k be a at least a quadratic polynomial function in 2 variables. Consider the equation

$$(1 - \Delta)f + h_{\alpha\beta}(f)\partial^{\alpha}\partial^{\beta}f + k(\partial^{1}f, \partial^{2}f) + q(f) = g.$$

Given the polynomial function q, $h_{\alpha\beta}$ and k, there exists an $\varepsilon > 0$ and C > 0 such that the preceding equation has a unique solution in the L_2^2 Banach space with L_2^2 norm at most $C\varepsilon$ if the L^2 norm of g is less than ε .

By the previous parts, the inverse operator L^{-1} is an isometric isomorphic from $L^2(\mathbb{R}^2)$ onto $L^2(\mathbb{R}^2)$. Now define the nonlinear operator

$$\mathcal{N}(f) = h_{\mu\nu}(f)\partial^{\mu}\partial^{\nu}f + k(\partial_1 f, \partial_2 f) + q(f)$$

so that the differential equation can be written $L(f) + \mathcal{N}(f) = g$. Next, consider the linear operator $\mathcal{T}: L_2^2(\mathbb{R}^2) \to L_2^2(\mathbb{R}^2)$ given by

$$\mathcal{T}(f) = L^{-1}(g - \mathcal{N}(f)).$$

To solve the differential equation, we need a fixed point of \mathcal{T} . Since $f \in L^2_2(\mathbb{R}^2)$, its second derivatives are in $L^2(\mathbb{R}^2)$ and its first derivatives belong to $W^{1,2}(\mathbb{R}^2)$. In two dimensions, the Sobolev embedding implies that these first derivatives lie in some $L^p(\mathbb{R}^2)$ spaces for some p > 2. Consequently, products of the derivatives can be estimated in $L^2(\mathbb{R}^2)$. Thus, there exists a constant $C_1 > 0$ such that for sufficiently small f,

$$\|\mathcal{N}(f)\|_{L^2} \le C_1 \|f\|_{L^2_2}^2.$$

Moreover, a similar argument shows that \mathcal{N} is locally Lipschitz. For each $f, h \in L_2^2(\mathbb{R}^2)$ with sufficiently small norms, there exists a constant $C_2 > 0$ such that

$$||N(f) - N(h)||_{L^2} \le C_2 \Big(||f||_{L^2_2} + ||h||_{L^2_2} \Big) ||f - h||_{L^2_2}.$$

Now, let's choose a radius R > 0 and consider the closed ball $B_R = \{ f \in L_2^2(\mathbb{R}^2) : ||f||_{L_2^2} \le R \}$. We now choose R small enough so that for all $f, h \in B_R$ we have

$$C_2(\|f\|_{L_2^2} + \|h\|_{L_2^2}) \le 2C_2R < 1.$$

Also, choose some $\varepsilon > 0$ so that if $||g||_{L^2} < \varepsilon$, then $||L^{-1}(g)||_{L^2_2} = ||g||_{L^2} < R$. For any $f \in B_R$, we have

$$\|\mathcal{T}(f)\|_{L_2^2} = \|L^{-1}(g - \mathcal{N}(f))\|_{L_2^2} = \|g - \mathcal{N}(f)\|_{L^2}.$$

Since $\|\mathcal{N}(f)\|_{L^2} \leq C_1 \|f\|_{L^2_2}^2 \leq C_1 R^2$, we obtain $\|\mathcal{T}(f)\|_{L^2_2} \leq \|g\|_{L^2} + C_1 R^2 < R$ provided the norm $\|g\|_{L^2}$ is sufficiently small. Then, for any $f, h \in B_R$, we have

$$\|\mathcal{T}(f) - \mathcal{T}(h)\|_{L^2_{\alpha}} = \|L^{-1}(\mathcal{N}(h) - \mathcal{N}(f))\|_{L^2_{\alpha}} = \|\mathcal{N}(f) - \mathcal{N}(h)\|_{L^2}.$$

Using the local Lipschitz property of \mathcal{N} , we get

$$\|\mathcal{T}(f) - \mathcal{T}(h)\|_{L_2^2} \le C_2 \Big(\|f\|_{L_2^2} + \|h\|_{L_2^2} \Big) \|f - h\|_{L_2^2} \le 2C_2 R \|f - h\|_{L_2^2}.$$

Since $2C_2R < 1$, the mapping \mathcal{T} is a contraction on B_R . This completes the proof.