Multivariable Calculus and Linear Algebra

Sarang Mohaniraj

Contents

Ι	Mult	tivariable Calculus	1
11	Paran	netric Equations and Polar Coordinates	2
	11.1	Curves Defined by Parametric Equations	2
	11.2	Calculus with Parametric Curves	3
	11.3	Polar Coordinates	3
	11.4	Areas and Lengths in Polar Coordinates	3
	11.5	Conic Sections	3
	11.6	Conic Sections in Polar Coordinates	3
12	Infinit	se Sequences and Series	4
	12.1	Sequences	5
	12.2	Series	5
	12.3	The Integral Test and Estimates of Sums	5
	12.4	The Comparison Tests	5
	12.5	Alternating Series	5
	12.6	Absolute Convergence and the Ratio and Root Tests	5
	12.7	Strategy for Testing Series	5
	12.8	Power Series	5
	12.9	Representation of Functions as Power Series	5
	12.10	Taylor and Maclaurin Series	5
	12.11	The Binomial Series	5
	12.12	Applications of Taylor Polynomials	5
13	Vector	rs and the Geometry of Space	6
	13.1	Three-Dimensional Coordinate Systems	6
	13.2	Vectors	6
	13.3	The Dot Product	6
	13.4	The Cross Product	6
	13.5	Equations of Lines and Planes	6
	13.6	Cylinders and Quadric Surfaces	6
	13.7	Cylindrical and Spherical Coordinates	6
14	Vector	r Functions	7
	14.1	Vector Functions and Space Curves	7
	14.2	Derivatives and Integrals of Vector Functions	7

CONTENTS	ii	

1	Vector	rs	13
II	$\operatorname{Lin}_{ullet}$	ear Algebra	12
	10.4	peries politions	11
	18.3 18.4	Applications of Second-Order Differential Equations Series Solutions	11 11
	18.2	Nonhomogenous Linear Equations	11
	18.1	Second-Order Linear Equations	11
18		d-Order Differential Equations	11
. ~	C		
	17.10	Summary	10
	17.9	The Divergence Theorem	10
	17.8	Stokes' Theorem	10
	17.7	Surface Integrals	10
	17.6	Parametric Surfaces and Their Areas	10
	17.5	Curl and Divergence	10
	17.4	Green's Theorem	10
	17.3	THe Fundamental Theorem for Line Integrals	10
	17.2	Line Integrals	10
	17.1	Vector Fields	10
17	Vector	Calculus	10
	10.9	Change of variables in Muniple Integrals	9
	16.9	Change of Variables in Multiple Integrals	9
	16.8	Triple Integrals	9
	16.6 16.7	Surface Area	9
	16.5	Applications of Double Integrals	9
	16.4	Double Integrals in Polar Coordinates	9
	16.3	Double Integrals over General Regions	9
	16.2	Iterated Integrals	9
	16.1	Double Integrals over Rectangles	9
16	_	ble Integrals	9
			_
	15.8	Lagrange Multipliers	8
	15.7	Maximum and Minimum Values	8
	15.6	Directional Derivatives and the Gradient Vector	8
	15.5	The Chain Rule	8
	15.4	Tangent Planes and Linear Approximations	8
	15.3	Partial Derivatives	8
	15.2	Limits and Continuity	8
	15.1	Functions of Several Variables	8
15	Partia	l Derivatives	8
	14.4	Motion in Space: Velocity and Acceleration	7
	14.3	Arc Length and Curvature	7
	149	A T (1 1 C)	-

CONTENTS	iii
----------	-----

	1.1 1.2 1.3 1.4	The Geometry and Algebra of Vectors	13 13 13 13
2	System 2.1 2.2 2.3 2.4 2.5	ns of Linear Equations Introduction to Systems of Linear Equations Direct Methods for Solving Linear Systems Spanning Sets and Linear Independence Applications	14 14 14 14 14 14
3	Matric 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Matrix Operations	15 15 15 15 15 15 15 15
4	4.1 4.2 4.3 4.4 4.5 4.6	ralues and Eigenvectors Introduction to Eigenvalues and Eigenvectors	16 16 16 16 16 16
5	Orthog 5.1 5.2 5.3 5.4 5.5	Gonality Orthogonality in \mathbb{R}^n Orthogonal Complements and Orthogonal Projections The Gram-Schmidt Process and the QR Factorization Orthogonal Diagonalization of Symmetric Matrices Applications	17 17 17 17 17
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Vector Spaces and Subspaces	18 18 18 18 18 18 18
7	Distan	ce and Approximation	19

CONTEN	TS	iv
7.1	Inner Product Spaces	19
7.2	Norms and Distance Function	19
7.3	Least Squares Approximation	19
7.4	The Singular Value Decomposition	19
7.5	Applications	19

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a **parameter** by the equations)

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x,y). As t changes, (x,y) = (f(t),g(t)) changes and traces out a curve C, which is called a **parametric curve**. The direction of the arrows on curve C show the change in the position of the equation as t increases.

We can also restrict t to a finite interval. In general, the curve with parametric equations

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

The Cycloid

Example 11.1.1. A circle with radius r rolls along the x-axis. The curve traced out by a point P on the circumference of the circle is called a **cycloid**. Find parametric equations for the cycloid.

Solution. We will use the angle of rotation θ as the parameter ($\theta = 0$ when P is at the origin).

Suppose the circle has rotated θ radians. Using the figure, the distance it has rolled from the origin is

$$|OT| = arc \ PT = r\theta$$

because P starts at the origin. Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the figure,

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$
$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Definition 11.1.1. Paremetric equations of the cycloid are

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

- 11.2 Calculus with Parametric Curves
- 11.3 Polar Coordinates
- 11.4 Areas and Lengths in Polar Coordinates
- 11.5 Conic Sections
- 11.6 Conic Sections in Polar Coordinates

Infinite Sequences and Series

- 12.1 Sequences
- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

- 15.1 Functions of Several Variables
- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- 17.10 Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions

Part II Linear Algebra

Vectors

- 1.1 The Geometry and Algebra of Vectors
- 1.2 Length and Angle: The Dot Product
- 1.3 Lines and Planes
- 1.4 Code Vectors and Modular Systems

Systems of Linear Equations

- 2.1 Introduction to Systems of Linear Equations
- 2.2 Direct Methods for Solving Linear Systems
- 2.3 Spanning Sets and Linear Independence
- 2.4 Applications
- 2.5 Iterative Method for Solving Linear Systems

Matrices

- 3.1 Matrix Operations
- 3.2 Matrix Algebra
- 3.3 The Inverse of a Matrix
- 3.4 The LU Factorization
- 3.5 Subspaces, Basis, Dimension, and Rank
- 3.6 Introduction to Linear Transformations
- 3.7 Applications

Eigenvalues and Eigenvectors

- 4.1 Introduction to Eigenvalues and Eigenvectors
- 4.2 Determinants
- 4.3 Eigenvalues and Eigenvectors of $n \times n$ Matrices
- 4.4 Similarity and Diagonalization
- 4.5 Iterative Methods for Computing Eigenvalues
- 4.6 Applications and the Perron-Frobenius Theorem

Orthogonality

- 5.1 Orthogonality in \mathbb{R}^n
- 5.2 Orthogonal Complements and Orthogonal Projections
- 5.3 The Gram-Schmidt Process and the QR Factorization
- 5.4 Orthogonal Diagonalization of Symmetric Matrices
- 5.5 Applications

Vector Spaces

- 6.1 Vector Spaces and Subspaces
- 6.2 Linear Independence, Basis, and Dimension
- 6.3 Change of Basis
- 6.4 Linear Transformation
- 6.5 The Kernel and Range of a Linear Transformation
- 6.6 The Matrix of a Linear Transformation
- 6.7 Applications

Distance and Approximation

- 7.1 Inner Product Spaces
- 7.2 Norms and Distance Function
- 7.3 Least Squares Approximation
- 7.4 The Singular Value Decomposition
- 7.5 Applications