Семинар 5

Задание 1. Рассматривается случайная величина — количество звонков, поступающих в диспетчерскую такси. Известно, что данная случайная величина имеет распределение Пуассона. Далее представлены значения, зафиксированные за 5 промежутков, каждый из которых составляет 30 минут: 6; 7; 8; 6; 8. Выведите оценку среднего количества звонков, поступающих в диспетчерскую такси за 30 минут, методом максимального правдоподобия. Запишите промежуточные шаги решения.

Задание 2. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности: $f(x) = p(1-p)^{k-1}$ при 0 . Найдите оценку параметра <math>p методом максимального правдоподобия (\hat{p}^{MLE}) .

Задание 3. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности:

$$f(x) = \frac{1}{\theta} x^{(1-\theta)/\theta}$$

при $0 < x < 1; \theta > 0$. Найдите оценку параметра θ методом максимального правдоподобия $(\hat{\theta}^{MLE})$.

Задание 4. Время ожидания клиента банка в очереди представляет сл.в., имеющую экспоненциальное распределение. Ниже в таблице приведены значения длительности ожидания клиентов (в минутах), собранные за день. Найдите оценку математического ожидания методом максимального правдоподобия.

Время ожидания	Количество клиентов
[0; 5)	10
[5; 10)	2
[10; 15)	6
[15; 20)	1
$[20; \infty)$	1