# Predicting Treasury Yields

Using linear regression and decision trees to analyze US Treasury Yields

## Background information

- US treasuries = "I owe you"
- Gov't needs funding -> auctions -> raise money
- 14 regularly issued types of treasuries:
  - Bills: 4/13/26/52 weeks
  - Nominal Coupons: 2/3/5/7/10/30 years
  - Treasury Inflation Protected Securities: 5/10/30 years
  - Floating Rate Notes: 2 year

## What is yield?

- Return on investment in US gov't debt
- Expressed as %
- Interest rate the US pays to borrow money
- Investor's outlook on the economy
- Example:
  - High yield
  - Higher borrowing cost for the gov't
  - Better return for investors
  - Better economic outlook

## Questions

- What factors do investors look at when determining yields?
- Did the debt ceiling crisis spook investors?

#### Data

- Federal Reserve, White House, and Treasury websites
  - Treasury yields (bills and nominal coupons)
  - Unemployment rate
  - CPI
  - Debt limit
  - Deficit
  - GDP
  - Amount of debt outstanding
- Spreadsheets

## Data Pre-Processing

- Convert Excel files to csv files
- Header/data fix
- Debt limit/CPI/GDP files required special fixes
- *Import* function

```
# file import function
def file_import(filename, truncateBefore = '1989-12-31'):
    output = pd.read_csv(filename, index_col = 0, parse_dates = True)
    output.columns = [filename[:-4]]
    output.index.names = ['Date']
    output.index = [date+pd.tseries.offsets.MonthBegin(n=-1) if date.day!=1 else date for date in output.index ]
    output = output.truncate(truncateBefore)
    return output
```

## Data Pre-Processing Cont.

- Form a dataframe: date index = monthly
- Missing values: backfill, pad, interpolate

```
>>> raw_data
                                                                        TotalOutstanding prox2ceiling
                       deficit
                                     rgdp
                                           unemployment
                                                           debtlimit
1990-01-01
                  NaN
                                      NaN
                                                              3122.7
                                                                                                  3122.7
                                                                 NaN
                                                                                      NaN
                                                                                                     NaN
1990-02-01
                            NaN
                                      NaN
1990-03-01
                  NaN
                           NaN
                                      NaN
                                                                 NaN
                                                                                      NaN
                                                                                                     NaN
1990-04-01
                  NaN
                           NaN
                                      NaN
                                                                 NaN
                                                                                      NaN
                                                                                                     NaN
1990-05-01
                  NaN
                           NaN
                                      NaN
                                                     5.4
                                                                 NaN
                                                                                      NaN
                                                                                                     NaN
1990-06-01
                                                     5.2
                                                                                      NaN
                                                                                                     NaN
                  NaN
                           NaN
                                                                 NaN
1990-07-01
                                                     5.5
                  NaN
                           NaN
                                                                 NaN
                                                                                      NaN
                                                                                                     NaN
```

- Calculate *prox2ceiling*
- Time frame: 1990-09-01 to 2014-09-01

## **Initial Exploration**



## Initial Exploration Cont.

Hypothesis: closer to debt ceiling = more likely US will default = higher yield





## Modeling: Linear Regression

- Continuous supervised use *statsmodels* 
  - est = smf.ols(formula='tyield ~ CPI + deficit + rgdp + unemployment + TotalOutstanding + prox2ceiling', data=full\_data).fit()

#### OLS Regression Results

| Dep. Variable:    |               | tyield   | R-squared:          |       | 0.742       |          |  |  |
|-------------------|---------------|----------|---------------------|-------|-------------|----------|--|--|
| Model:            | OLS           |          | Adj. R-squared:     |       | 0.731       |          |  |  |
| Method:           | Least Squares |          | F-statistic:        |       | 72.67       |          |  |  |
| Date:             |               |          | Prob (F-statistic): |       | 3.69e-42    |          |  |  |
| Time:             | 16:13:54      |          | Log-Likelihood:     |       | -197.42     |          |  |  |
| No. Observations: | 159           |          | AIC:                |       | 408.8       |          |  |  |
| Df Residuals:     |               | 152      |                     | BIC:  |             | 430.3    |  |  |
| Df Model:         |               | 6        |                     |       |             |          |  |  |
|                   |               |          |                     |       |             |          |  |  |
|                   | coef          | std err  | t                   | P> t  | [95.0% Con  | f. Int.] |  |  |
|                   |               |          |                     |       |             |          |  |  |
| Intercept         | 10.2957       | 0.849    |                     | 0.000 | 8.618       | 11.974   |  |  |
| CPI               | -0.0472       | 0.069    | -0.682              | 0.497 | -0.184      | 0.090    |  |  |
| deficit           | -3.62e-06     | 5.72e-07 | -6.327              | 0.000 | -4.75e-06 - |          |  |  |
| rgdp              | -0.1123       | 0.047    | -2.402              | 0.018 | -0.205      | -0.020   |  |  |
| unemployment      | -1.4631       | 0.149    | -9.796              | 0.000 | -1.758      | -1.168   |  |  |
| TotalOutstanding  | -0.0002       | 3.59e-05 | -5.842              | 0.000 | -0.000      | -0.000   |  |  |
| prox2ceiling      | 0.0327        | 0.016    | 2.032               | 0.044 | 0.001       | 0.064    |  |  |
|                   |               |          |                     |       |             |          |  |  |
| Omnibus:          |               | 3.303    |                     |       | 0.125       |          |  |  |
| Prob(Omnibus):    |               | 0.192    | Jarque-Bera (JB):   |       | 2.329       |          |  |  |
| Skew:             |               | -0.118   | Prob(JB):           |       | 0.312       |          |  |  |
| Kurtosis:         |               | 2.456    | Cond. No.           |       | 9.64e+      | 9.64e+06 |  |  |
|                   |               |          |                     |       |             | ==       |  |  |

#### Warnings

[1] The condition number is large, 9.64e+06. This might indicate that there are strong multicollinearity or other numerical problems.



#### Trial and Error

• est = smf.ols(formula='tyield ~ deficit:unemployment + deficit + rgdp + unemployment', data=full\_data).fit()



## Bad results for 10-Year Yields

• est = smf.ols(formula='tyield ~ deficit:unemployment + deficit + rgdp + unemployment', data=full\_data).fit()



## Modeling: Decision Tree

- DecisionTreeRegressor, tree, grid\_search
- $Max_depth = 2$



## Find the best max\_depth





## Important features: max\_depth = 5

| CPI      | Deficit  | Rgdp     | Unemployment | Debtlimit | Outstanding | Prox2ceiling |
|----------|----------|----------|--------------|-----------|-------------|--------------|
| 4.31e-05 | 1.19e-01 | 7.16e-03 | 8.42e-01     | 6.53e-03  | 1.93e-02    | 5.67e-03     |
| 7        | 2        | 4        | 1            | 5         | 3           | 6            |



## Repeat for 10-Year Yields

| CPI     | Deficit | Rgdp    | Unemployment | Debtlimit | Outstanding | Prox2ceiling |
|---------|---------|---------|--------------|-----------|-------------|--------------|
| 0.00201 | 0.01666 | 0.01285 | 0.01870      | 0.78724   | 0.15852     | 0.00399      |
| 7       | 4       | 5       | 3            | 1         | 2           | 6            |



#### Conclusions

- Debt ceiling threat = not too important
- Factors investors consider when looking at yields: unemployment rate and debt outstanding
  - Deficit and debt limit may be important too depending on the maturity of the security

## Possible Extensions

- Produce a dataframe with a daily time series
- Focus on 2008 and after (after the financial crash)
- Factor in other explanatory variables such as the Dow Jones Industrial Average or the federal funds rate
- Use more comprehensive linear regression models to tackle multicolinearity
- Use k-means clustering to further examine the explanatory variables
- Factor in "Time" as an explanatory variable run time series models (Moving Average?)

## Challenges and Successes

- Successes
  - Data concatenation
  - Visualization
  - Decision tree modeling
- Challenges
  - Multicolinearity problems
  - Factor in 'time' in the model
  - Explore more explanatory variables

## Key Takeaways

- Correlation does not necessarily mean causation!
- Use machine learning algorithms to tackle problems
- Cross validation
- Data cleaning requires a lot of time
- Use graphics
- Open source materials available