Probabilistic programming II Inference with Pyro

Thomas Hamelryck January 2023

Overview

- Pyro
 - Deep probabilistic programming
- Stochastic Variational inference (SVI)
- Hamiltonian Monte Carlo / NUTS
- [Stein variational inference]
- Example
 - Coin flip model
 - o p(heads)
- Exercise: Bayesian neural network
 - Fisher's iris data set
 - Classification problem

Pyro PPL

Why Pyro?

- pyro.ai
- Universal probabilistic programming language (PPL)
 - Built upon PyTorch
 - Python based
 - Adds Bayesian inference to deep learning
 - Uber labs/Broad institute (MIT, Harvard)
- Freely available, easy installation
 - pip install pyro-pp
 - o Google colab, Anaconda

Pyro: Universal deep PPL

Universal

Can represent any computable probability distribution.

Scalable

Scales to large data sets with little overhead.

Minimal

Implemented with a small core of powerful, composable abstractions.

Flexible

Aims for automation when you want it, control when you need it.

Specifying a probabilistic model in Pyro

Iris data set

• **Fisher's Iris data set** is a multivariate data set introduced by the British statistician Ronald Fisher in 1936 (linear discriminant analysis, LDA).

Iris Versicolor

Iris Setosa

Iris Virginica

Iris data set

Based on (150) measurements of petal and sepal width and length (4-vector),
 classify the flower as Versicolor, Setosa or Virginica (3 classes)

Iris Versicolor

Iris Setosa

Iris Virginica

Iris classification problem

• X

- Independent variable / input
- 4 measurements of width and length of petals and sepals
- Vector of 4 floats

y

- Dependent variable / output
- What we want to predict
- 3 iris classes: Versicolor, Setosa or Virginica
- Categories: 0, 1, 2

Bayesian neural network for Iris

• 2 hidden layers, 5 neurons, parameters θ

Petals & sepals

Probabilities of 3 iris classes

+

Uncertainty over all parameters

The humble digital neuron...

- Calculates the weighted sum of the inputs
- Applies a nonlinear function to the sum

Bayesian inference

- We use a NN for classification in the Iris exercise
- Ideally, we want to be Bayesian about its parameters
 - We want a posterior distribution over the network's parameters

$$p(\boldsymbol{\theta} \mid \boldsymbol{x}, \boldsymbol{y}) \propto p(\boldsymbol{y} \mid \boldsymbol{\theta}, \boldsymbol{x}) \pi(\boldsymbol{\theta})$$

MAP, variational Bayes, Bayes

- A NN maps x to y
 - Shaded=observed
- θ =parameters of the NN
- ML or MAP estimate
 - Maximum a posteriori
 - Single, most likely value
- Variational Bayes estimate
 - Diagonal Gaussian, custom guide
- Full Bayesian estimate
 - Samples from the posterior

NN model in Pyro

```
def model(x, y=None):
      # Priors (layer 1)
       w1=pyro.sample("w1", pdist.Normal(0, 1).expand([x dim, h dim]).to event(2))
      b1=pyro.sample("b1", pdist.Normal(0, 1).expand([h dim]).to event(1))
       . . .
       # NN
      h1=torch.tanh((x @ w1) + b1)
      h2=torch.tanh((h1@w2)+b2)
       logits = (h2 @ w3 + b3)
       # Categorical likelihood
       with pyro.plate("labels", n):
           obs=pyro.sample("obs", pdist.Categorical(logits=logits), obs=y)
```

Prediction

Posterior predictive distribution: predict y' from a new input x'

$$p(\boldsymbol{y}' \mid \boldsymbol{x}', \boldsymbol{x}, \boldsymbol{y}) \propto \int p(\boldsymbol{y}' \mid \boldsymbol{\theta}, \boldsymbol{x}') p(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{x}) d\theta$$

- MAP: single value $\boldsymbol{\theta}_{\text{MAP}}$
- Variational Bayes: \(\textit{\theta} \) is Gaussian distributed (or custom guide)
- \circ Full Bayes: set of samples for $oldsymbol{ heta}$
 - Integral becomes a sum over samples
- Pyro provides a single interface for all cases
 - o pyro.infer.Predictive

NN model in Pyro

```
def model (x, y=None):
      # Layer 1
       w1=pyro.sample("w1", pdist.Normal(0, 1).expand([x dim, h dim]).to event(2))
       b1=pyro.sample("b1", pdist.Normal(0, 1).expand([h dim]).to event(1))
       . . .
       # NN
       h1=torch.tanh((x @ w1) + b1)
       h2=torch.tanh((h1 @ w2) + b2)
       logits = (h2 @ w3 + b3)
       # Categorical likelihood
       with pyro.plate("labels", n):
           obs=pyro.sample("obs", pdist.Categorical(logits=logits), obs=y)
```

The pyro.sample primitive

- Primitive stochastic function
 - Random variable
- Returns a sample from the specified distribution
 - This is a named sample
- The behavior of this stochastic function can be changed at runtime depending on how it is being used

```
w=pyro.sample("w", pyro.distributions.Normal(0, 1))
```

expand

- Suppose you want to sample a tensor with shape (3,4) with elements sampled from the same normal distribution.
 - This can be done using expand
 - All the random variables will be conditionally independent
 - o batch_shape==(3,4), event_shape==()

```
d=Normal(0,1).expand((3,4))
x=d.sample()
assert x.shape==(3,4)
assert d.log prob(x).shape==(3,4)
```

to_event

- to event allows creating dependent random variables
 - The log prob method will only produce a single number for each event
 - Works on the left-most dimension.
 - o batch_shape==(3), event_shape==(4)

```
d=Normal(0,1).expand((3,4)).to_event(1)
x=d.sample()
assert x.shape==(3,4)
assert d.log prob(x).shape==(3,)
```

pyro.plate

- pyro.plate declares conditional independence
 - This is important to make automated inference efficient
- In our case, all observations y_i are IID given x_i and θ
 - IID=independent and identically distributed

$$p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i \mid \boldsymbol{x}_i, \boldsymbol{\theta})$$

pyro.plate

• pyro.plate declares conditional independence

$$p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i \mid \boldsymbol{x}_i, \boldsymbol{\theta})$$

• Likelihood for IID data uses pyro.plate:

With pyro.plate("labels", n):

obs=pyro.sample("obs",
 pdist.Categorical(logits=theta), obs=y)

Variational Inference

Automatic inference

$$\frac{\partial \theta}{\partial t} = \frac{\partial E_{kin}}{\partial p} = \frac{p}{m}$$

$$\frac{\partial p}{\partial t} = -\frac{\partial E_{pot}}{\partial \theta}$$

Sampling

Hamiltonian Monte Carlo / NUTS (2011)

OptimisationStochastic Variational Inference (SVI)

Coin flip problem

- Data: N coin flips, count vector c
 - 0=Heads (total count H), 1=Tails (T)
- What is the probability h of throwing heads?
 - We want a Bayesian estimate
 - Posterior distribution over h

$$p(h \mid \mathbf{c}) \propto p(\mathbf{c} \mid h)\pi(h)$$

$$= \prod_{i=1}^{n} \text{Ber}(c_i \mid h)\pi(h)$$

$$= h^{H}(1 - h)^{T} \text{Beta}(h)$$

Evidence lower bound (ELBO)

- Maximizing ELBO=maximizing marginal likelihood p(x)
- **x**=data, **z**=latent variable, ϕ =guide parameters, θ =model parameters

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x})\right]$$

$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{z})}{p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}\right]\right]$$

$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{z})}{p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}\right]\right]$$

$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{z})}{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})}\right]\right]$$

$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{z})}{p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}\right]\right] + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log \left[\frac{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})}{p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})}\right]\right]$$

$$= \mathcal{L}_{\theta,\boldsymbol{\phi}}(\mathbf{x})$$
Furre: Kingma & Welling, 2019

Picture: Kingma & Welling, 2019

Model / guide

- The model p(y,z) is our probabilistic model
 - y=data, z=latent variable
- The guide q(z) is a simplified model that approximates the posterior
- One can use predefined AutoGuides
 - AutoDelta
 - AutoDiagonalNormal
 - AutoGuideList
- ...or your own guide
 - o pyro.param

```
def model():
    pyro.sample("z", ...)
def guide():
    q=pyro.param("q", ...)
pyro.sample("z", ...)
```

AutoDelta

- AutoDelta provides a point estimate
 - MAP estimate
 - The guide is a delta function
- Depending on the shape of the posterior:
 - A good approximation
 - A disastrous simplification


```
# MAP estimate of model parameter guide=pyro.infer.autoguide.AutoDelta(model)
```

AutoDiagonalNormal

- The posterior is approximated by independent Gaussian distributions
 - One for each parameter

Variational estimate using diagonal normal
guide=pyro.infer.autoguide.AutoDiagonalNormal(model)

Inference

- The parameters of the guide (pyro.param) are iteratively optimized using stochastic variational inference (SVI)
 - ELBO: evidence lower bound
 - Lower bound to marginalized likelihood p(x)

```
adam=pyro.optim.Adam({"lr": 0.01})
svi=pyro.infer.SVI(model, guide, adam, loss=pyro.infer.Trace_ELBO())
...
for j in range(0, MAXIT):
    loss=svi.step(x, y)
```

pyro.infer.Predictive

- Once the guide's parameters (pyro.param) are optimized, we can use the guide for prediction.
 - Uses the approximate posterior predictive distribution

Coin flip SVI example

Colab coin flip SVI code

Full Bayesian inference with NUTS

Automatic inference

$$\frac{\partial \theta}{\partial t} = \frac{\partial E_{kin}}{\partial p} = \frac{p}{m}$$

$$\frac{\partial p}{\partial t} = -\frac{\partial E_{pot}}{\partial \theta}$$

Sampling

Hamiltonian Monte Carlo / NUTS (2011)

OptimisationStochastic Variational Inference (SVI)

Coin flip problem

- Data: N coin flips, count vector c
 - 0=Heads (total count H), 1=Tails (T)
- What is the probability h of throwing heads?
 - We want a Bayesian estimate
 - Posterior distribution over h

$$p(h \mid \mathbf{c}) \propto p(\mathbf{c} \mid h)\pi(h)$$

$$= \prod_{i=1}^{n} \text{Ber}(c_i \mid h)\pi(h)$$

$$= h^{H}(1 - h)^{T} \text{Beta}(h)$$

Monte Carlo & Bayes

- The Bayesian posterior is often unavailable as a closed-form expression.
- Monte Carlo methods approximate the posterior using samples.
 - Fast computers made this approach mainstream.
- The core idea is simple: approximate an expectation using **samples**.

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x_s)$$

Hamiltonian Monte Carlo

• The parameters of the model are interpreted as the **position of a particle** in a force field with added **momentum** and simulated using Hamilton's equations.

$$\frac{\mathrm{d}q}{\mathrm{d}t} = +\frac{\partial H}{\partial p} = \frac{\partial K}{\partial p}$$

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial q} = -\frac{\partial K}{\partial q} - \frac{\partial V}{\partial q}$$

Sir William Rowan Hamilton (1805 - 1865)

Pictures: M. Betancourt & Wikipedia

Markov chain Monte Carlo

- Samples approximate the posterior
 - Typical set

Picture: M. Betancourt

Pyro: MCMC with NUTS

- NUTS: No U-turn sampling
 - An automated version of Hamiltonian Monte Carlo

Convergence diagnostics

- MCMC is guaranteed to converge to the posterior for infinite samples.
 - But there are rarely any strong guarantees for finite samples.
- Diagnostics are needed, for example from running multiple chains.
 - Trace plots

Picture: Vehtari et al., 2019

Trace plots

- Left: trace plots look stable, but did not converge to the same distribution.
- Right: trace plots are not stationary, though they seem to cover similar distributions.

Picture: Vehtari et al., 2019

Trace plots

- We need both between-sequence and within-sequence diagnostics.
- We can't visually inspects trace plots of 1000s of variables.
 - We need numerical summaries.
 - Most common: R-hat (≅1), Effective sample size (ESS-bulk>400)

Picture: Vehtari et al., 2019

Diagnostics with Arviz

- https://arviz-devs.github.io/arviz/
- ArviZ is a Python package for exploratory analysis of Bayesian models.
- Includes functions for posterior analysis, data storage, sample diagnostics, model checking, and comparison.
- The goal is to provide backend-agnostic tools for diagnostics and visualizations of Bayesian inference in Python, by first converting inference data into xarray objects.

pyro.infer.Predictive

- We make predictions from the posterior samples
 - Again, using pyro.infer.Predictive like for SVI

```
posterior_samples=mcmc.get_samples()

posterior_predictive=pyro.infer.Predictive(
    model, posterior_samples)(
    x_test, None)
```

y pred=posterior predictive['obs']

Coin flip NUTS example

Colab coin flip NUTS code

Iris NN exercise

Iris data set

• **Fisher's Iris data set** is a multivariate data set introduced by the British statistician Ronald Fisher in 1936.

Iris Versicolor

Iris Setosa

Iris Virginica

Iris data set

Based on (150) measurements of petal and sepal width and length (4-vector),
 classify the flower as Versicolor, Setosa or Virginica (3 classes)

Iris Versicolor

Iris Setosa

Iris Virginica

Iris classification problem

• X

- Independent variable / input
- 4 measurements of width and length of petals and sepals
- Vector of 4 floats

y

- Dependent variable / output
- What we want to predict
- 3 iris classes: Versicolor, Setosa or Virginica
- Categories: 0, 1, 2

Bayesian neural network for Iris

• 2 hidden layers, 5 neurons

Petals & sepals

Probabilities of 3 iris classes

+

Uncertainty over all parameters

The humble digital neuron...

- Calculates the weighted sum of the inputs
- Applies a nonlinear function to the sum

Data handling

- We get the data from sklearn
- Map data to torch.tensor

```
iris=sklearn.datasets.load_iris()
x_all=torch.tensor(iris.data, dtype=torch.float)
y all=torch.tensor(iris.target, dtype=torch.int)
```

Test set & training set

- We need to test our model on data not used in inference
 - Overfitting

```
# Make training and test set
x, x_test, y, y_test =
    sklearn.model_selection.train_test_split(
    x_all, y_all, test_size=0.33, random state=42)
```

Evaluation

- For each input x_{TEST} in the test set, we sample a set of predictions y_{PRED}
- We use the logits for prediction
 - We need to register the deterministic variable

```
# NN
h1=torch.tanh((x @ w1) + b1)
h2=torch.tanh((h1 @ w2) + b2)
logits=(h2 @ w3 + b3)
# Save deterministic variable (logits) in trace
pyro.deterministic("logits", logits)
# Categorical likelihood
with pyro.plate("labels", n):
    obs=pyro.sample("obs", pdist.Categorical(logits=logits), obs=y)
```

Iris SVI exercise

Colab iris SVI code

Iris SVI exercise I

- Identify the likelihood and the priors in the model.
- What is characteristic for the likelihood in the model code?
- Are the distributions of priors and likelihoods appropriate?
 - Note: consider the type of the distributions, not their parameters
- What does pyro.plate accomplish?
- Do we get a point estimate or a Bayesian posterior?
- Explain the shape of the posterior predictive tensor.
 - See output at the end.

Iris SVI exercise I: solution

- Identify the likelihood and the priors in the model.
 - Categorical, Normal
- What is characteristic for the likelihood in the model code?
 - o obs=y
- Are the distributions of priors and likelihoods appropriate?
 - Note: consider the type of the distributions, not their parameters
 - o yes
- What does pyro.plate accomplish?
 - It specifies conditional independence

Iris SVI exercise I: solution

- Do we get a point estimate or a Bayesian posterior?
 - A point estimate (AutoDelta)
- Explain the shape of the posterior predictive tensor.
 - See output at the end.
 - torch.Size([500, 1, 50, 3])
 - 500 = number of samples
 - 1 = number of chains
 - 50 = test set size
 - 3 = logits

Iris SVI exercise II

- Let's try to improve the results.
 - The network has only two layers. Add a middle layer (layer 2).
- Are the parameters of the prior distributions appropriate?
- Evaluate the final prediction results.

Iris SVI exercise II: solution

- Let's try to improve the results.
 - The network has only two layers. Add a middle layer (layer 2).
 - Solution code
- Are the parameters of the prior distributions appropriate?
 - No, the standard deviation for the Normal priors on the weights was too high (100). Change it to 1.
- Evaluate the final prediction results.
 - From 0.7 to 0.9 accuracy

Iris NUTS exercise (afternoon)

- Take the <u>Iris-SVI model</u>, make a copy, and modify it so we use NUTS instead of SVI for inference.
 - Use the coin flip NUTS implementation as an example to guide you.
 - Check the quality of the sampling with arviz.
- How is the posterior represented in SVI and NUTS?
- What are the advantages and disadvantages of SVI and NUTS?
- For the Iris problem, which method makes most sense and why?
 - Compare with the coin flip problem.

Conclusions

Pyro & probabilistic programming

- Formulate model
 - o pyro.sample, pyro.plate,....
- Automatic inference
 - Stochastic variational inference (SVI)
 - Hamiltonian Monte Carlo (NUTS)
- From classic Bayesian to deep generative models
 - Variational autoencoders
 - Deep Gaussian processes
 - Deep Markov models
 - O ...
- https://pyro.ai/examples/

