

Capítulo 8:

Divisão de Redes IP em Sub Redes

Introdução a Redes v5.1 Prof. Kleber Rezende 18/10/2017

Tópicos do Capítulo

- 8.0 Introdução
- 8.1 Divisão de uma Rede IPv4 em Sub-Redes
- 8.2 Esquemas de Endereçamento
- 8.3 Considerações de Projeto para IPv6
- 8.4 Resumo

Seção 8.1: Divisão de uma Rede IPv4 em Sub-Redes

Ao concluir esta seção, você será capaz de:

- Explicar como a divisão em sub-redes segmenta uma rede para facilitar a comunicação.
- Explicar como calcular sub-redes IPv4 para um prefixo /24.
- Explicar como calcular sub-redes IPv4 para um prefixo /16 e um /8.
- Dado um conjunto de requisitos para divisão de sub-redes, implementar um esquema de endereçamento IPv4.
- Explicar como criar um esquema de endereçamento flexível usando VLSM (máscaras de sub-rede com tamanho variável).

Tópico 8.1.1: Segmentação de Rede

Domínios de Broadcast

A interface de cada roteador conecta um *domínio de broadcast* e os broadcasts só são propagados no domínio de broadcast específico.

Problemas com Domínios de Broadcast Grandes

- Lentidão nas operações de rede devido ao volume considerável de tráfego de broadcast.
- Lentidão nas operações do dispositivo porque o dispositivo precisa aceitar e processar cada pacote de broadcast.

Problemas com Domínios de Broadcast Grandes (cont.)

- Solução: reduzir o tamanho da rede para criar domínios de broadcast menores em um processo chamado divisão em subredes.
- Esses espaços de rede menores chamam-se sub-redes.

Motivos para a Divisão em Sub-Redes

Os administradores de redes podem agrupar os dispositivos e os serviços em sub-redes que são determinadas por: local.

Motivos para a Divisão em Sub-Redes (cont.)

Os administradores de redes podem agrupar os dispositivos e os serviços em sub-redes que são determinadas por: unidade organizacional.

Motivos para a Divisão em Sub-Redes (cont.)

Os administradores de redes podem agrupar os dispositivos e os serviços em sub-redes que são determinadas por: tipo de dispositivo.

Tópico 8.1.2: Divisão de uma Rede IPv4 em Sub-Redes

Limites dos Octetos

Divisão de Redes em Sub-Redes no Limite do Octeto

Comprimento do prefixo	Máscara de Sub- Rede	Máscara de Sub-Rede em Binário (n = rede, h = host)	Nº de hosts
/8	255.0.0.0	nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhh 1111111.00000000.00000000.00000000	16.777.214
/16	255.255.0.0	nnnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhh 11111111.11111111.00000000.00000000	65.534
/24	255.255.255.0	nnnnnnn . nnnnnnnn . nnnnnnnn . hhhhhhh 11111111 . 11111111 . 11111111 . 00000000	254

Dividindo em Sub-Redes nos Limites dos octetos

Divisão em sub-redes de 10.x.0.0/16

Endereço da Sub-Rede (256 Sub-Redes Possíveis)	Intervalo de Hosts (65.534 hosts possíveis por sub-rede)	Broadcast
<u>10.0</u> .0.0/16	<u>10.0</u> .0.1 - <u>10.0</u> .255.254	<u>10.0</u> .255.255
<u>10.1</u> .0.0/16	<u>10.1</u> .0.1 - <u>10.1</u> .255.254	<u>10.1</u> .255.255
<u>10.2</u> .0.0/16	<u>10.2</u> .0.1 - <u>10.2</u> .255.254	<u>10.2</u> .255.255
<u>10.3</u> .0.0/16	<u>10.3</u> .0.1 - <u>10.3</u> .255.254	<u>10.3</u> .255.255
<u>10.4</u> .0.0/16	<u>10.4</u> .0.1 - <u>10.4</u> .255.254	<u>10.4</u> .255.255
<u>10.5</u> .0.0/16	<u>10.5</u> .0.1 - <u>10.5</u> .255.254	<u>10.5</u> .255.255
<u>10.6</u> .0.0/16	<u>10.6</u> .0.1 - <u>10.6</u> .255.254	<u>10.6</u> .255.255
<u>10.7</u> .0.0/16	<u>10.7</u> .0.1 - <u>10.7</u> .255.254	<u>10.7</u> .255.255
<u>10.255</u> .0.0/16	<u>10.255</u> .0.1 - <u>10.255</u> .255.254	<u>10.255</u> .255.255

Divisão em sub-redes de 10.x.x.0/24

Endereço de Sub-Rede (65.536 Sub-Redes possíveis)	Intervalo de Hosts (254 hosts possíveis por sub-rede)	Broadcast
<u>10.0.0</u> .0/24	<u>10.0.0</u> .1 - <u>10.0.0</u> .254	<u>10.0.0</u> .255
<u>10.0.1</u> .0/24	<u>10.0.1</u> .1 - <u>10.0.1</u> .254	<u>10.0.1</u> .255
<u>10.0.2</u> .0/24	<u>10.0.2</u> .1 - <u>10.0.2</u> .254	<u>10.0.1</u> .255
<u>10.0.255</u> .0/24	<u>10.0.255</u> .1 - <u>10.0.255</u> .254	<u>10.0.255</u> .255
<u>10.1.0</u> .0/24	<u>10.1.0</u> .1 - <u>10.1.0</u> .254	<u>10.1.0</u> .255
<u>10.1.1</u> .0/24	<u>10.1.1</u> .1 - <u>10.1.1</u> .254	<u>1.1.1.0</u> .255
<u>10.1.2</u> .0/24	<u>10.1.2</u> .1 - <u>10.1.2</u> .254	<u>10.1.2.0</u> .255
<u>10.100.0</u> .0/24	<u>10.100.0</u> .1 - <u>10.100.0</u> .254	<u>10.100.0</u> .255
<u>10.255.255</u> .0/24	<u>10.255.255</u> .1 - <u>10.255.255</u> .254	<u>10.255.255</u> .255

Divisão em Sub-Redes Classless

- /25 Utilizar 1 bit do quarto octeto cria 2 sub-redes que suportam, cada uma, 126 hosts.
- /26 Utilizar 2 bits cria 4 sub-redes que suportam, cada uma, 62 hosts.
- /27 Utilizar 3 bits cria 8 sub-redes que suportam, cada uma, 30 hosts.
- /28 Utilizar 4 bits cria 16 sub-redes que suportam, cada uma, 14 hosts.
- /29 Utilizar 5 bits cria 32 sub-redes que suportam, cada uma, 6 hosts.
- /30 Utilizar 6 bits cria 64 sub-redes que suportam, cada uma, 2 hosts.

Comprimento do Prefixo	Máscara de Sub- Rede	Máscara de Sub-Rede em Binário (n = rede, h = host)	Nº de sub- redes	Nº de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.11111111.10000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnn.nnnnnnnn.nnhhhhhh 11111111.111111111.11111111.11000000	4	62
/27	255.255.255.224	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnhhhhh 11111111 . 11111111 . 11111111 . 11100000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn.nnnhhhh 11111111.11111111.11111111.11110000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn.nnnnhhh 11111111.11111111.11111111.11111000	32	6
/30	255.255.255.252	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnnnnhh 11111111 . 11111111 . 11111111 . 11111100	64	2

Exemplo de Divisão em Sub-Redes Classless

Rede 192.168.1.0/25

1 bit emprestado da parte de host do endereço.

O valor do bit emprestado é 0 para o endereço da Rede 0.

As novas sub-redes têm a MESMA máscara de sub-rede.

Máscara 255. 255. 255. 1 000 0000

Exemplo de Divisão em Sub-Redes Classless (cont.)

Endereços Decimais com Pontos

1 bit emprestado da parte de host do endereço.

Criar 2 Sub-Redes

Topologia da Divisão em Sub-Redes /25

Intervalo de Endereços da Sub-Rede 192.168.1.0/25

Intervalo de Endereços da Sub-Rede 192.168.1.128/25

Endereço de Rede

192, 168, 1. 0 000 0000 = 1	192.168.1.0
-----------------------------	-------------

Primeiro Endereço de Host Válido

192.	168.	1.	0	000 0001	= 192.168.1.1

Último Endereço de Host Válido

Endereço de Broadcast

192. 16	8. 1	. 0	111	1111	=	192.1	68.1.	127
---------	------	-----	-----	------	---	-------	-------	-----

Endereço de Rede

192.	168.	1.	1	000 0000	= 192.168.1.128
------	------	----	---	----------	-----------------

Primeiro Endereço de Host Válido

Último Endereço de Host Válido

Endereço de Broadcast

Configure as Interfaces Gigabit de R1


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ip address 192.168.1.1 255.255.255.128
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ip address 192.168.1.129 255.255.255.128
```


Atribua um Endereço IP de Host Válido

Fórmulas para Divisão em Sub-Redes

Para calcular o número de sub-redes.

n= bits emprestados

nnnnnnn.nnnnnn.nnnnnn.hhhhhhh

Com 1 bit emprestados: 2^1 = 2 Com 2 bits emprestados: 2^2 = 4 Com 3 bits emprestados: 2^3 = 8 Com 4 bits emprestados: 2^4 = 16 Com 5 bits emprestados: 2^5 = 32 Com 6 bits emprestados: 2^6 = 64

Fórmulas para Divisão em sub-Redes (cont.)

Para calcular o número de hosts.

n= o número de bits que restam no campo de host

Criar 4 Sub-Redes

Topologia da Divisão de uma Rede /26 em Sub-Redes

Pegando 2 Bits Emprestados

Cálculo do Número de Hosts

Intervalo de Endereços para a Sub-Rede 192.168.1.0/26

Intervalo de Endereços para as Redes 0 - 2

					11111	NAM.	TI SAME	
	Rede	192.	168.	1.	00	00	0000	192.168.1.0
Rede 0	Primeiro	192.	168.	1.	00	00	0001	192.168.1.1
Nede 0	Último	192.	168.	1.	00	11	1110	192.168.1.62
	Broadcast	192.	168.	1.	00	11	1111	192.168.1.63
Rede 1	Rede	192.	168.	1.	01	00	0000	192.168.1.64
	Primeiro	192.	168.	1.	01	.0.0	0001	192.168.1.65
Rede 1	Último	192.	168.	1.	01	11	1110	192.168.1.126
	Broadcast	192.	168.	1.	01	11	1111	192.168.1.127
	Rede	192.	168.	1.	10	òò	0000	192.168.1.128
Rede 2	Primeiro	192.	168.	1.	10	00	0001	192.168.1.129
	Último	192.	168.	1.	10	ii	1110	192.168.1.190
	Broadcast	192.	168.	1.	10	ii	1111	192.168.1.191

Configuração das Interfaces com Endereços /26


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.1.1 255.255.255.192
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ip address 192.168.1.65 255.255.255.192
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ip address 192.168.1.129 255.255.255.192
```


Tópico 8.1.3:

Dividir em Sub-Redes de Prefixos /16 e /8

Criar Sub-Redes com um Prefixo /16

Comprimento do prefixo	Máscara de sub- rede	Endereço de rede (n = rede, h = host)	Nº de sub- redes	Nº de hosts
/17	255.255.128.0	nnnnnnn.nnnnnnnnn.nhhhhhhh.hhhhhhh 11111111.111111111.10000000.00000000	2	32564
/18	255.255.192.0	nnnnnnn.nnnnnnnn.nnhhhhhh.hhhhhhh 11111111.111111111.11000000.00000000	4	16282
/19	255.255.224.0	nnnnnnn.nnnnnnnn.nnnhhhhh.hhhhhhh 11111111.111111111.11100000.00000000	8	8190
/20	255.255.240.0	nnnnnnn.nnnnnnnn.nnnhhhh.hhhhhhh 11111111.111111111.11110000.000000000	16	4094
/21	255.255.248.0	nnnnnnn.nnnnnnnn.nnnnhhh.hhhhhhh 11111111.111111111.11111000.00000000	32	2046
/22	255.255.252.0	nnnnnnn.nnnnnnnnnnnnhh.hhhhhhh 11111111.1111111111	64	1022
/23	255.255.254.0	nnnnnnn.nnnnnnnn.nnnnnnh.hhhhhhh 11111111.1111111111	128	510
/24	255.255.255.0	nnnnnnn.nnnnnnnnnnnnnn.hhhhhhh 11111111.1111111111	256	254
/25	255.255.255.128	nnnnnnn.nnnnnnnnnnnnnnnnnnnhhhhhh 11111111.1111111111	512	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn.nnhhhhh 11111111.1111111111	1024	62

Criar 100 Sub-Redes com uma Rede /16

172 . 16 . 0 . 0

nnnnnnn.nnnnnnn.hhhhhhhh.hhhhhhh

Criar 100 Sub-Redes com uma Rede /16 (cont.)

Sub-Redes /23 resultantes

Calcular os Hosts

Hosts = 2ⁿ (em que n = bits de host restantes)

2⁹ = 512 hosts por sub-rede 2⁹ - 2 = 510 hosts válidos por sub-rede

Intervalo de Endereços para a Sub-Rede 172.16.0.0/23

Endereço de Rede

172. 16. 00 00 00 00. 0000 0000 = 172.16.0.0/23

Primeiro Endereço de Host Válido

172. 16. 00 00 00 00. 0000 0001 = 172.16.0.1/23

Último Endereço de Host Válido

172. 16. 00 00 00 01. 1111 1110 = 172.16.1.254/23

Endereço de Broadcast

172. 16. 00 00 00 01. 1111 1111 = 172.16.1.255/23

Criar 1.000 Sub-Redes com uma Rede /8

O empréstimo de 10 bits cria 1.024 sub-redes

10.	0000	0000.	00 00	0000.	0000 0000	10.0.0.0/18
10.	0000	0000.	01 00	0000.	0000 0000	10.0.64.0/18
10.	0000	0000.	10 00	0000.	0000 0000	10.0.128.0/18
10.	0000	0000.	11 00	0000.	0000 0000	10.0.192.0/18
10.	0000	0001.	00 00	0000.	0000 0000	10.1.0.0/18
			a			
10.	1111	1111.	10 00	0000.	0000 0000	10.255.128.0/18

Criar 1.000 Sub-Redes com uma Rede /8 (cont.)

Calculando os hosts

Intervalo de Endereços para a Sub-Rede 10.0.0.0/18

Tópico 8.1.4: Divisão em Sub-Redes para Atender a Requisitos

Divisão em Sub-Redes com Base em Requisitos de Host

O planejamento de sub-redes requer duas considerações:

- O número de endereços de host necessários para cada rede.
- O número de sub-redes individuais necessário.

Comprimento do Prefixo	Máscara de Sub- Rede	Máscara de Sub-Rede em Binário (n = rede, h = host)	Nº de sub- redes	Nº de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.11111111.10000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnn.nnnnnnn.nnhhhhh 11111111.11111111.11111111.11000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnn.nnnnnnn.nnhhhhh 11111111.11111111.11111111.11100000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnn.nnnnnnn.nnnhhhh 11111111.11111111.11111111.11110000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnn.nnnnnnn.nnnnhhh 11111111.111111111.11111111.11111000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnn.nnnnnnn.nnnnnhh 11111111.111111111.11111111.11111100	64	2

Quanto mais bits forem emprestados para criar sub-redes, menos bits de host estarão disponíveis.

Divisão em Sub-Redes com Base em Requisitos de Rede

Sub-Redes com Base na Estrutura Organizacional

Rede Corporativa

Exemplo de Requisitos de Rede

Rede Corporativa

Exemplo de Requisitos de Rede (cont.)

	Parte de Rede	Parte	de Host	Decimal com Pontos
	10101100.00010000.000000	00.00	000000	172.16.0.0/22
0	10101100.00010000.000000	00.00	000000	172.16.0.0/26
1	10101100.00010000.000000	00.01	000000	172.16.0.64/26
2	10101100.00010000.000000	00.10	000000	172.16.0.128/26
3	10101100.00010000.000000	00.11	000000	172.16.0.192/26
4	10101100.00010000.000000	01.00	000000	172.16.1.0/26
5	10101100.00010000.000000	01.01	000000	172.16.1.64/26
6	10101100.00010000.000000	01.10	000000	172.16.1.128/26

Redes 7 a 13 não exibidas

```
14 10101100.00010000.000000 11.10 000000 172.16.3.128/26
15 10101100.00010000.000000 11.11 000000 172.16.3.192/26
```

4 bits emprestados da parte de host para criar sub-redes

Exemplo de Requisitos de Rede (cont.)

172.16.0.0/22

Tópico 8.1.5: Benefícios da Máscara de Sub-Rede de Tamanho Variável

A Divisão em Sub-Redes Tradicional Desperdiça Endereços

A Divisão em Sub-Redes Tradicional Desperdiça Endereços (cont.)

Endereços Não Usados nas Sub-Redes WAN

Máscaras de Sub-Rede de Tamanho Variável

Endereços Não Usados nas Sub-Redes WAN

VLSM Básica

Esquema de Divisão em Sub-Redes da VLSM

Subdivisão de uma sub-rede

VLSM na Prática

VLSM na Prática (cont.)


```
R2(config)# interface gigabitethernet 0/0
R2(config-if)# ip address 192.168.20.33 255.255.255.224
R2(config-if)# exit
R2(config)# interface serial 0/0/0
R2(config-if)# ip address 192.168.20.226 255.255.252
R2(config-if)# exit
R2(config)# interface serial 0/0/1
R2(config)# interface serial 0/0/1
R2(config)# ip address 192.168.20.229 255.255.252
R2(config-if)# end
R2#
```


VLSM na Prática (cont.)


```
R3(config) # interface gigabitethernet 0/0
R3(config-if) # ip address 192.168.20.65 255.255.255.224
R3(config-if) # exit
R3(config) # interface serial 0/0/0
R3(config-if) # ip address 192.168.20.230 255.255.252
R3(config-if) # exit
R3(config) # interface serial 0/0/1
R3(config) # interface serial 0/0/1
R3(config) # ip address 192.168.20.233 255.255.252
R3(config-if) # end
R3#
```


VLSM na Prática (cont.)


```
R4(config) # interface gigabitethernet 0/0
R4(config-if) # ip address 192.168.20.97 255.255.255.224
R4(config-if) # exit
R4(config) # interface serial 0/0/0
R4(config-if) # ip address 192.168.20.234 255.255.252
R4(config-if) # end
R4#
```


Gráfico de VLSM

Divisão de 192.168.20.0/24 em Sub-Redes com VLSM

	Rede /27	Hosts
Prédio A	.0	.130
Prédio B	.32	.3362
Prédio C	.64	.6594
Prédio D	.96	.97126
Não utilizado	.128	.129158
Não utilizado	.160	.161190
Não utilizado	.192	.193222
	.224	.225254

	Rede /30	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Não utilizado	.236	.237238
Não utilizado	.240	.241242
Não utilizado	.244	.245246
Não utilizado	.248	.249250
Não utilizado	.252	.253254

Seção 8.2: Esquemas de Endereçamento

Ao concluir esta seção, você será capaz de:

Implementar um esquema de endereçamento VLSM

Tópico 8.2.1: Projeto Estruturado

Planejamento de Endereços de Rede

Planejamento da Atribuição de Endereços IP

O planejamento requer resoluções sobre cada sub-rede em termos de tamanho, número de hosts por sub-rede e como os endereços de host serão atribuídos.

Planejamento do Endereçamento da Rede

Considerações Importantes para o Planejamento de Alocações de Endereços

Atribuição de Endereços a Dispositivos

Intervalos de Endereços IP

Rede: 192.168.1.0/24					
Uso	Primeiro	Último			
Hosts	.1	.229			
Servidores	.230	.239			
Impressoras	.240	.249			
Dispositivos Intermediários	.250	.253			
Gateway (interface LAN do roteador)	.254				

Seção 8.3: Considerações de Projeto para IPv6

Ao concluir esta seção, você será capaz de:

 Explicar como implementar as atribuições de endereço IPv6 em uma rede corporativa.

Tópico 8.3.1: Divisão de uma Rede IPv6 em Sub-Redes

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA ETECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes

O Endereço IPv6 Unicast Global

Normalmente, o endereço IPv6 unicast global consiste em um prefixo de roteamento global /48, a ID de sub-rede de 16 bits e uma ID de interface de 64 bits.

Estrutura de um Endereço IPv6 Unicast Global

Divisão em Sub-Redes Usando a ID da Sub-Rede

Bloco de endereços: 2001:0DB8:ACAD::/48

Incrementar a ID da sub-rede para criar 65.536 subredes 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0006::/64

2001:0DB8:ACAD:FFFF::/64

Alocação de Sub-Redes IPv6

Exemplo de Topologia

Alocação de Sub-Redes IPv6 (cont.)

Bloco de Endereços: 2001:0DB8:ACAD::/48

2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 5 sub-redes 2001:0DB8:ACAD:0002::/64 alocadas de 65.536 2001:0DB8:ACAD:0003::/64 sub-redes 2001:0DB8:ACAD:0004::/64 disponíveis 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:FFFF::/64

Alocação de Sub-Redes IPv6 (cont.)

Alocação de Sub-Redes IPv6

Alocação de Sub-Redes IPv6 (cont.)

Configuração de Endereço IPv6


```
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ipv6 address 2001:db8:acad:1::1/64
R1(config-if) # exit
R1(config) # interface gigabitethernet 0/1
R1(config-if) # ipv6 address 2001:db8:acad:2::1/64
R1(config-if) # exit
R1(config) # interface serial 0/0/0
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # end
R1#
```


Seção 8.4: Resumo

Objetivos do Capítulo:

- Implementar um esquema de endereçamento IPv4 para possibilitar a conectividade de ponta a ponta na rede de empresas de pequeno e médio porte.
- Com base nos requisitos, implementar um esquema de endereçamento VLSM para oferecer conectividade aos usuários finais na rede de empresas de pequeno e médio porte.
- Explicar as considerações de projeto para implementar o IPv6 em uma rede corporativa.

Obrigado.

CISCO Cisco Networking Academy
Mind Wide Open