

Identifying the key drivers of electricity price spikes in the Australian National Electricity Market

A Machine Learning Approach

Thi Hau Nguyen

Table of contents

O1 Introduction O4 Methodology

O2 Objective O5 Interpretation and Findings

Data Overview and Processing O6 Conclusion

Link on GitHub: <u>https://github.com/HauNguyen8689/Introduction-to-Machine-Learning-Supervised-Learning</u>

Introduction

Electricity price spikes?

Context:

With the next federal election set for May 3, 2025, electricity prices are a major issue.

- Coalition blames renewables under Labor's Capacity Investment Scheme (CIS)
- Labor blames fossil gas generation in the National Electricity Market (NEM)

Industry Insight:

Natural gas is commonly seen as the "peaker" — the fuel that sets prices during demand spikes.

Objective:

Use machine learning to unbiasedly investigate drivers of high wholesale prices (above 95th percentile) across NEM regions.

Method:

- Models: Random Forest & XGBoost
- Features: Fuel types, dispatch shares, and time-based patterns
- Outcome: Identify which factors most influence price spikes, regionally and temporally

Objective

NEM Overview:

- Australia's NEM spans 5 regions (NSW/ACT, QLD, VIC, SA, TAS), operating a real-time wholesale market managed by AEMO.
- Dispatch & Settlement: Every 5
 minutes, matching supply and
 demand to ensure grid stability
 and efficiency.

Challenge:

The complexity of the NEM makes it difficult to pinpoint what drives price spikes.

Study Aim:

Classify high-price events (above 95th percentile) and identify conditions linked to these spikes.

Classification Goal:

Determine which factors act as:

- "Peakers" linked to price spikes
- "Non-Peakers" linked to normal pricing

Data Overview and Processing

Source: Historical electricity data from AEMO (April 1, 2024 – March 31, 2025)

Contents:

- Regional demand and price
- Generator dispatch & capacity (by DUID)
- Generator metadata (fuel type, region)

Resolution: Originally at 5-minute intervals, aggregated to hourly — sufficient for capturing price spikes

Format: Stored in CSV, uploaded to Kaggle for easy access (https://www.kaggle.com/datasets/baohoangnguye n/nem-hourly-dispatch)

Data Processing

The original dataset contained approximately 3.5 million observations. It was then cleaned and aggregated by fuel type. The final dataset used for modeling consists of 276,201 observations

Dependent Variable (Target)

- Peaker = 1 for prices ≥ 95th percentile
- Non_Peaker = 0 for prices < 95th percentile

Independent Variables (Features)

- **Hour**: Hour of day (0–23)
- DayofWeek: Day of the week
- Month: Month of the year
- Prop: Proportion of total dispatch by each fuel type
- FuelType: Fuel type
- Region: One of the 5 NEM regions.

Data Visualisation

Data Visualisation (cont.)

Methodology

Data Splitting

- Training dataset: 80% of the dataset used to fit the models and perform hyperparameter tuning.
- Testing dataset: 20% of the dataset held out for evaluating the model's generalization ability on unseen data.

Model Selection

Random Forest:

Ensemble method that builds multiple decision trees and outputs the majority vote.

- ✓ Reduces variance
- Less prone to overfitting than a single tree

XGBoost:

Gradient boosting model that builds trees sequentially, each correcting the previous.

- ✓ High accuracy
- ✓ Fast and scalable

Hyperparameter Tuning

- Tuning the max_depth parameter for both Random Forest and XGBoost
- Test a range of depth values to select optimal depth based on performance on the test set

Model Evaluation

Primary Metric: Accuracy Chosen for its clarity in classifying high-price events correctly

Model Selection:

- Compare performance across different max_depth values
- Best model has the highest test set accuracy

Interpretability:

Analyze feature importance to identify key drivers of price spikes

Interpretation and Findings

Results

--- OLD1 ---

10

```
--- NSW1 ---
Price Threshold: 261.80498208333296
Chosen Model: XGBoost
Best Params: {'max depth': 4}
Train Accuracy: 0.9367
Test Accuracy: 0.9337
                  Feature
                            Importance
                              0.218478
                     Hour
                    Month
                             0.167240
     FuelType Natural gas
                              0.113929
           FuelType Hydro
                              0.108677
           FuelType Other
                              0.102210
            FuelType Wind
10
                              0.077299
                DayofWeek
                              0.077114
                              0.073869
                     Prop
           FuelType Solar
                             0.035374
    FuelType_Pumped Hydro
                              0.025808
```

```
Price Threshold: 250.4841925
Chosen Model: XGBoost
Best Params: {'max depth': 4}
Train Accuracy: 0.9344
Test Accuracy: 0.9305
                  Feature
                            Importance
                     Hour
                              0.321931
                    Month
                              0.195015
     FuelType Natural gas
                              0.104947
                DayofWeek
                              0.071646
0
                     Prop
                              0.065895
6
     FuelType Liquid Fuel
                              0.065540
11
            FuelType Wind
                              0.050052
9
    FuelType Pumped Hydro
                              0.049126
           FuelType Hydro
                              0.027044
```

FuelType Solar

0.027032

Results (cont.)

```
--- SA1 ---
```

Price Threshold: 251.025565

Chosen Model: XGBoost

Best Params: {'max_depth': 4}

Train Accuracy: 0.9482 Test Accuracy: 0.9421

Importance Feature FuelType Natural gas 0.279663 FuelType Liquid Fuel 0.200231 FuelType Wind 0.164102 Month 0.129158 0.073031 Prop Hour 0.069116 DayofWeek 0.047790 FuelType Solar 0.027273 FuelType Other 0.009636

--- TAS1 ---

Price Threshold: 254.68937916666667

Chosen Model: XGBoost

Best Params: {'max_depth': 4}

Train Accuracy: 0.9605 Test Accuracy: 0.9504

	Feature	Importance
2	Month	0.483058
5	FuelType_Wind	0.174952
1	Hour	0.105621
0	Prop	0.105447
3	DayofWeek	0.080423
4	FuelType_Natural gas	0.050499

--- VIC1 ---

Price Threshold: 245.02795

Chosen Model: XGBoost
Best Params: {'max depth': 4}

Train Accuracy: 0.9453
Test Accuracy: 0.9396

Feature Importance FuelType Other 0.283288 FuelType Wind 0.188445 Month 0.135840 FuelType Solar 0.092249 0.074687 FuelType Natural gas 0.061218 FuelType Hydro 0.050852 DayofWeek 0.045357 FuelType Brown coal 0.039332 0.028731 Prop

Feature Importance

Conclusion

Approach:

Applied supervised machine learning (Random Forest & XGBoost) to one year of hourly NEM data. XGBoost selected for highest accuracy across regions

Findings:

- Fossil fuel generators, especially natural gas, are the main drivers of high-price events
- Renewables are not the primary cause of price spikes, contrary to some public claims

Implications:

- Supports a data-driven view of electricity market behavior
- Emphasizes the need for peak demand management, grid flexibility, and better integration of dispatchable resources in Australia's energy transition

Thanks!

Thi Hau Nguyen