Motion Planning Constraints

Course 4, Module 1, Lesson 2

Learning Objectives

- Understand how the vehicle's kinematics and dynamics constrain the motion planning problem
- Understand how static and dynamic obstacles affect motion planning
- Understand the impact of regulatory elements on motion planning

Bicycle Model

• Kinematics simplified to bicycle model (as discussed in Course 1)

Bicycle Model

- Kinematics simplified to bicycle model (as discussed in Course 1)
- Bicycle model imposes curvature constraint on our path planning process

$$\dot{ heta} = rac{V \tan(\delta)}{L} \ |\kappa| \le \kappa_{max}$$

Bicycle Model

- Kinematics simplified to bicycle model (as discussed in Course 1)
- Bicycle model imposes curvature constraint on our path planning process
- Curvature constraint is non-holonomic
 - Non-holonomic constraints reduce the directions a mobile robot can travel at any point
 - Makes motion planning challenging

$$\dot{\theta} = rac{V \tan(\delta)}{L}$$
 $|\kappa| \le \kappa_{max}$

$$\kappa = \frac{1}{\gamma}$$

$$\kappa = \frac{1}{\gamma}$$

$$r_2 < r_1 \\ \kappa_2 > \kappa_1$$

$$\kappa = \frac{1}{\gamma}$$

$$\kappa = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{3/2}}$$

$$r_2 < r_1$$

$$\kappa_2 > \kappa_1$$

Vehicle Dynamics

• Recall: friction ellipse denotes maximum magnitude of tire forces before stability loss

Vehicle Dynamics

- Recall: friction ellipse denotes maximum magnitude of tire forces before stability loss
- Friction forces are extreme limit; more useful constraint is accelerations tolerable by passengers
 - Given by "comfort rectangle" range of lateral and longitudinal accelerations

Dynamics and Curvature

- Friction limits and comfort restrict lateral acceleration
 - Lateral acceleration is a function of instantaneous turning radius of path and velocity

$$a_{lat} = \frac{v^2}{r}, \qquad a_{lat} \le a_{lat_{max}}$$

Dynamics and Curvature

- Friction limits and comfort restrict lateral acceleration
 - Lateral acceleration is a function of instantaneous turning radius of path and velocity
- Recall: instantaneous curvature is inverse of instantaneous turning radius

$$a_{lat} = \frac{v^2}{r}, \qquad a_{lat} \le a_{lat_{max}}$$

$$\kappa = \frac{1}{r}$$

Dynamics and Curvature

- Friction limits and comfort restrict lateral acceleration
 - Lateral acceleration is a function of instantaneous turning radius of path and velocity
- Recall: instantaneous curvature is inverse of instantaneous turning radius
- Substituting, velocity is constrained by path curvature and lateral acceleration

$$a_{lat} = \frac{v^2}{r}, \qquad a_{lat} \le a_{lat_{max}}$$

$$\kappa = \frac{1}{r}$$

$$v^2 \le \frac{a_{lat_{max}}}{\kappa}$$

Static Obstacles

- Static obstacles block portions of workspace
 - Occupancy grid encoding stores obstacle locations
- Static obstacle constraints satisfied by performing collision checking
 - Can check for collisions using the swath of the vehicle's path
 - Can also check for closest obstacle along ego vehicle's path

Rules of the Road and Regulatory Elements

- Lane constraints restrict path locations
- Signs, traffic lights influence vehicle behaviour

Summary

- Explained the kinematic and dynamic constraints present in the motion planning problem, and how path curvature affects them
- Discussed how static and dynamic obstacles impact our planning process
- Discussed how regulatory elements impact our driving behaviour

