P3 Tree Reg Matriculas

April 27, 2022

```
[1]: import tabula
    import pandas as pd
    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    import matplotlib.colors as mcolors
    from matplotlib.colors import ListedColormap
    import sklearn.tree
    import sklearn.metrics as metrics
    from sklearn.model_selection import TimeSeriesSplit
    from sklearn.linear_model import LinearRegression
    from sklearn.neural network import MLPRegressor
    from sklearn.datasets import make_regression
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.svm import SVR
    from sklearn.model_selection import cross_val_score
    from sklearn.model selection import GridSearchCV
    from sklearn.metrics import make_scorer
    from sklearn import datasets, ensemble
    from sklearn.inspection import permutation_importance
    from sklearn.metrics import mean_squared_error
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import mean_absolute_error
[2]: def Matriculas(Dat, year):
        Aux = Dat.loc[Dat.index==year] # Selects only data for given
        Matricula = Aux.loc[Aux['Programa']!='Total'].fillna(0).reset_index()
        return Matricula
```

```
#+++++++++++++++++
                                 matriculados por programa de pregrado
      # Take index col=2 since col 2 has the sample periods and thus is more easy.
      \hookrightarrow data filtering.
     Data = pd.read_csv('T15 Sup_Est_2021-I.csv', index_col=2, encoding='latin-1') #_J
     \hookrightarrow Table 15 is in pages 32 - 36.
     Matricula 2017 1 = Matriculas(Data, '2017-1')
     Matricula_2017_2 = Matriculas(Data, '2017-2')
     Matricula_2018_1 = Matriculas(Data, '2018-1')
     Matricula_2018_2 = Matriculas(Data, '2018-2')
     Matricula_2019_1 = Matriculas(Data, '2019-1')
     Matricula_2019_2 = Matriculas(Data, '2019-2')
     Matricula_2020_1 = Matriculas(Data, '2020-1')
     Matricula 2020 2 = Matriculas(Data, '2020-2')
     Matricula_2021_1 = Matriculas(Data, '2021-1')
[4]: data = Matricula_2017_2
     year = '2017-2'
     depmax = 3
     reg_type = 'absolute_error'
     cv_splits = 10 # Must be less than sample number
     test = Matricula_2021_1
[5]: plt.rcParams["figure.figsize"] = [12, 8]
     # setup the normalization and the colormap
     deps = np.arange(0, len(data['Programa']))
     normalize = mcolors.Normalize(vmin = deps.min(), vmax = deps.max())
     colormap = cm.get_cmap('turbo', deps.max()+1)
     # setup the colorbar
     scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=colormap)
     scalarmappaple.set_array(deps)
     fig = plt.figure()
     fig.suptitle('Número de Estudiantes Matriculados por Programa '+str(year),
      ⇒size=22)
     plt.xlabel('No. Estudiantes Inscritos/Adimitidos', fontsize=16)
     plt.ylabel('No. Estudiantes Matriculados', fontsize=16)
     plt.scatter(data['Inscritos (1ra Opción)'], data['Matriculados'], u
      ⇔label='Inscritos',
                 alpha=0.75, s=100, c=range(0, len(data)), cmap='turbo')
```

Número de Estudiantes Matriculados por Programa 2017-2


```
11.45 6.160915110598425
6.975 5.958659664723267
8.1375 5.975326873904055
8.8875 6.4847055638633275
8.4625 8.372583606629439
8.05 6.6208005558240455
8.975 8.419805520319336
9.65 8.429264499349868
10.475 8.24655230990503
10.375 8.673414840764853
9.025 8.852577308332304
9.6 8.40699113833243
8.925 8.92331916945707
```



```
[7]: regressor = DecisionTreeRegressor(max_depth=depmax, criterion=reg_type)
     regressor.fit(data[['Inscritos (1ra Opción)', 'Admitidos (1ra y 2da Opción)']],
                   data['Matriculados'])
     #DecisionTreeRegressor(criterion='mse',
                            max_depth=2,
     #
                            max_features=None,
     #
                             max_leaf_nodes=None,
     #
                            min_samples_leaf=1,
     #
                            min_samples_split=2,
     #
                             min_weight_fraction_leaf=0.0,
     #
                            presort=False,
     #
                             random_state=None,
     #
                             splitter='best')
     scores = -cross_val_score(regressor,
                                data[['Inscritos (1ra Opción)', 'Admitidos (1ra y 2dau

→Opción)']],
                                data['Matriculados'],
                                scoring='neg_mean_absolute_error', cv=cv_splits)
```

Árbol de Decisión 2017-2 (Deep Tree: 3)


```
[9]: Ins_max = max(data['Inscritos (1ra Opción)'])
   Adm_max = max(data['Admitidos (1ra y 2da Opción)'])
   Ins_min = min(data['Inscritos (1ra Opción)'])
   Adm_min = min(data['Admitidos (1ra y 2da Opción)'])

N = len(data)

Ins_Test = np.linspace(Ins_min, Ins_max, N)
   Adm_Test = np.linspace(Adm_min, Adm_max, N)
```

```
xx, yy = np.meshgrid(Ins_Test, Adm_Test)
Mat_Predtc = regressor.predict(np.array([xx.flatten(), yy.flatten()]).T)
zz = np.reshape(Mat_Predtc, (N, N))
```

/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names

warnings.warn(

```
[10]: plt.rcParams["figure.figsize"] = [15, 8]
      cmap = plt.cm.ocean#Reds#RdBu
      my cmap = cmap(np.arange(cmap.N))
      my_cmap[:,-1] = np.linspace(0, 1, cmap.N)
      my_cmap = ListedColormap(my_cmap)
      fig = plt.figure()
      fig.suptitle('Número de Estudiantes Matriculados por Programa '+str(year)+'

→ (Deep Tree: '+str(depmax)+')',
                   size=22)
      plt.xlabel('Inscritos', fontsize=16)
      plt.ylabel('Admitidos', fontsize=16)
      # setting the limit for each axis
      plt.xlim(Ins_min, Ins_max)
      plt.ylim(Adm_min, Adm_max)
      # plotting the predictions
      plt.pcolormesh(Ins_Test, Adm_Test, zz, cmap=my_cmap)
      cb = plt.colorbar(label='Predicción Matriculas') # add a colorbar on the right
      cb.set_label('Predicción Matriculas', size=16,)
      # plotting also the observations
      plt.scatter(data['Inscritos (1ra Opción)'], data['Admitidos (1ra y 2da, 
       ⇔Opción)'],
                  alpha=0.8, s=5*data['Matriculados'],
                  c=range(0, len(data)), cmap='turbo')
      cbar = plt.colorbar(scalarmappaple, orientation='vertical', pad=0.02,
                         ticks=range(0, deps.max()+1, 1), shrink=0.75)
      cbar.ax.set_yticklabels(data['Programa'])
      plt.subplots_adjust(left=0.075, bottom=0.075, right=1.05, top=0.925)
      plt.show()
```

```
fig.savefig('Predicciones_'+str(year)+'.pdf', dpi=500)
plt.close(fig)
```



```
[12]: X1_Test = np.array(test['Inscritos (1ra Opción)'])
X2_Test = np.array(test['Admitidos (1ra y 2da Opción)'])

Y_real = np.array(test['Matriculados'])
Y_Pred = []

for i in range(len(test)):
    y0 = regressor.predict(np.array([[X1_Test[i], X2_Test[i]]]))
    Y_Pred.append(y0[0])

Y_diff = np.abs(Y_real - Y_Pred)#/np.array(Y_real)
```

/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names

```
warnings.warn(
```

/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names

warnings.warn(

/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names

warnings.warn(

/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeRegressor was fitted with feature names

warnings.warn(

```
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
 warnings.warn(
```

```
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
 warnings.warn(
```

```
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
  warnings.warn(
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
X does not have valid feature names, but DecisionTreeRegressor was fitted with
feature names
 warnings.warn(
```

```
/home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
     X does not have valid feature names, but DecisionTreeRegressor was fitted with
     feature names
       warnings.warn(
     /home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
     X does not have valid feature names, but DecisionTreeRegressor was fitted with
     feature names
       warnings.warn(
     /home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
     X does not have valid feature names, but DecisionTreeRegressor was fitted with
     feature names
       warnings.warn(
     /home/john/.local/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:
     X does not have valid feature names, but DecisionTreeRegressor was fitted with
     feature names
       warnings.warn(
[13]: plt.rcParams["figure.figsize"] = [12, 8]
      # setup the normalization and the colormap
      deps = np.arange(0, len(test['Programa']))
      normalize = mcolors.Normalize(vmin = deps.min(), vmax = deps.max())
      colormap = cm.get_cmap('turbo', deps.max()+1)
      # setup the colorbar
      scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=colormap)
      scalarmappaple.set_array(deps)
      fig = plt.figure()
      fig.suptitle('Número de Estudiantes Matriculados por Programa', size=22)
      plt.xlabel('No. Estudiantes Inscritos 2021-1', fontsize=16)
      plt.ylabel('No. Estudiantes Matriculados 2021-1', fontsize=16)
      plt.scatter(X1_Test, Y_real, label='Mat. Reales',
                  alpha=0.75, s=100, c=range(0, len(test)), cmap='turbo')
      plt.scatter(X1_Test, Y_Pred, label='Mat. Predichos',
                  alpha=0.75, marker='*', s=170, c=range(0, len(test)), cmap='turbo')
      plt.legend()
      cbar = plt.colorbar(scalarmappaple, orientation='vertical', pad=0.02,
                         ticks=range(0, deps.max()+1, 1), shrink=0.75)
      cbar.ax.set_yticklabels(test['Programa'])
      plt.subplots_adjust(left=0.075, bottom=0.075, right=0.92, top=0.925)
      plt.show()
      fig.savefig('2021-1 Matriculados por Ins '+str(year)+'.pdf', dpi=500)
      plt.close(fig)
```

Número de Estudiantes Matriculados por Programa


```
[14]: plt.rcParams["figure.figsize"] = [12, 8]
      # setup the normalization and the colormap
      deps = np.arange(0, len(test['Programa']))
      normalize = mcolors.Normalize(vmin = deps.min(), vmax = deps.max())
      colormap = cm.get_cmap('turbo', deps.max()+1)
      # setup the colorbar
      scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=colormap)
      scalarmappaple.set_array(deps)
      fig = plt.figure()
      fig.suptitle('Número de Estudiantes Matriculados por Programa', size=22)
      plt.xlabel('No. Estudiantes Inscritos 2021-1', fontsize=16)
      plt.ylabel('No. Estudiantes Matriculados 2021-1', fontsize=16)
      plt.scatter(X2_Test, Y_real, label='Mat. Reales',
                  alpha=0.75, s=100, c=range(0, len(test)), cmap='turbo')
      plt.scatter(X2_Test, Y_Pred, label='Mat. Predichos',
                  alpha=0.75, marker='*', s=170, c=range(0, len(test)), cmap='turbo')
      plt.legend()
      cbar = plt.colorbar(scalarmappaple, orientation='vertical', pad=0.02,
```

```
ticks=range(0, deps.max()+1, 1), shrink=0.75)
cbar.ax.set_yticklabels(test['Programa'])

plt.subplots_adjust(left=0.075, bottom=0.075, right=0.92, top=0.925)
plt.show()
fig.savefig('2021-1_Matriculados_por_Adm_'+str(year)+'.pdf', dpi=500)
plt.close(fig)
```

Número de Estudiantes Matriculados por Programa

[15]:	Programa	Inscritos (1ra Opción)
0	Administración	485.0
1	Arquitectura	341.0
2	Diseño	235.0
3	Arte	73.0
4	Historia del Arte	8.0
5	Literatura	58.0
6	Música	104.0
7	Narrativas digitales	73.0
8	Biología	99.0
9	Física	187.0
10	Geociencias	76.0
11	Matemáticas	45.0
12	Microbiología	75.0
13	Química	60.0
14	Antropología	53.0
15	Ciencia Política	137.0
16	Filosofía	22.0
17	Historia	15.0
18	Lenguas y Cultura	147.0
19	Psicología	197.0
20	Derecho	584.0
21	Economía	343.0
22	Lic. en Arte	6.0
23	Lic. en Biología	2.0
24	Lic. en Educación Infantil	17.0
25	Lic. en Español y Filología	10.0
26	Lic. en Física	2.0
27	Lic. en Filosofía	1.0
28	Lic. en Historia	3.0
29	Lic. en Matemáticas	5.0
30	Lic. en Química	5.0
31	EstudiosDirigidos	55.0
32	Gobierno y AP	76.0
33	Ingeniería de Alimentos	46.0
34	Ingeniería Ambiental	93.0
35	Ingeniería Biomédica	229.0
36	Ingeniería Civil	262.0
37	Ingeniería Eléctrica	24.0
38	Ingeniería Electrónica	134.0
39	Ingeniería Industrial	310.0
40	Ingeniería Mecánica	206.0
41	Ingeniería Química	0.0
42	Ingeniería de Sistemas	381.0
43	Medicina	1170.0

Admitidos (1ra y 2da Opción) Matriculados Mat. Predichos Diferencia

\

0	349.0	131.0	135.0	4.0
1	245.0	77.0	135.0	58.0
2	182.0	71.0	73.0	2.0
3	62.0	15.0	27.5	12.5
4	4.0	1.0	0.0	1.0
5	48.0	12.0	27.5	15.5
6	46.0	16.0	27.5	11.5
7	60.0	20.0	27.5	7.5
8	93.0	32.0	43.0	11.0
9	175.0	64.0	73.0	9.0
10	61.0	19.0	27.5	8.5
11	39.0	11.0	12.0	1.0
12	79.0	22.0	43.0	21.0
13	43.0	10.0	12.0	2.0
14	39.0	12.0	12.0	0.0
15	96.0	31.0	73.0	42.0
16	18.0	9.0	12.0	3.0
17	10.0	7.0	6.0	1.0
18	111.0	39.0	73.0	34.0
19	93.0	25.0	73.0	48.0
20	413.0	134.0	135.0	1.0
21	287.0	119.0	135.0	16.0
22	3.0	1.0	0.0	1.0
23	1.0	0.0	0.0	0.0
24	4.0	1.0	12.0	11.0
25	7.0	2.0	0.0	2.0
26	2.0	0.0	0.0	0.0
27	1.0	0.0	0.0	0.0
28	2.0	0.0	0.0	0.0
29	2.0	1.0	0.0	1.0
30	4.0	1.0	0.0	1.0
31	49.0	26.0	27.5	1.5
32	50.0	16.0	27.5	11.5
33	37.0	25.0	12.0	13.0
34	66.0	21.0	27.5	6.5
35	224.0	65.0	135.0	70.0
36	185.0	67.0	73.0	6.0
37	21.0	7.0	12.0	5.0
38	107.0	35.0	73.0	38.0
39	239.0	109.0	135.0	26.0
40	162.0	62.0	73.0	11.0
41	0.0	3.0	0.0	3.0
42	285.0	98.0	135.0	37.0
43	306.0	93.0	135.0	42.0

[16]: Comparacion.sort_values(by=['Diferencia'])

[16]:	Programa	Inscritos (1ra Opción)
26	Lic. en Física	2.0
14	Antropología	53.0
23	Lic. en Biología	2.0
28	Lic. en Historia	3.0
27	Lic. en Filosofía	1.0
20	Derecho	584.0
22	Lic. en Arte	6.0
11	Matemáticas	45.0
17	Historia	15.0
29	Lic. en Matemáticas	5.0
4	Historia del Arte	8.0
30	Lic. en Química	5.0
31	EstudiosDirigidos	55.0
25	Lic. en Español y Filología	10.0
13	Química	60.0
2	Diseño	235.0
41	Ingeniería Química	0.0
16	Filosofía	22.0
0	Administración	485.0
37	Ingeniería Eléctrica	24.0
36	Ingeniería Civil	262.0
34	Ingeniería Ambiental	93.0
7	Narrativas digitales	73.0
10	Geociencias	76.0
9	Física	187.0
40	Ingeniería Mecánica	206.0
24	Lic. en Educación Infantil	17.0
8	Biología	99.0
6	Música	104.0
32	Gobierno y AP	76.0
3	Arte	73.0
33	Ingeniería de Alimentos	46.0
5	Literatura	58.0
21	Economía	343.0
12	Microbiología	75.0
39	Ingeniería Industrial	310.0
18	Lenguas y Cultura	147.0
42	Ingeniería de Sistemas	381.0
38	Ingeniería Electrónica	134.0
15	Ciencia Política	137.0
43	Medicina	1170.0
19	Psicología	197.0
1	Arquitectura	341.0
35	Ingeniería Biomédica	229.0

Admitidos (1ra y 2da Opción) Matriculados Mat. Predichos Diferencia

\

26 2.0 0.0 0.0 14 39.0 12.0 12.0 23 1.0 0.0 0.0 28 2.0 0.0 0.0	0.0 0.0 0.0 0.0
	0.0
28 2.0 0.0 0.0	
2.0 0.0 0.0	0.0
1.0 0.0 0.0	
20 413.0 134.0 135.0	1.0
22 3.0 1.0 0.0	1.0
11 39.0 11.0 12.0	1.0
17 10.0 7.0 6.0	1.0
29 2.0 1.0 0.0	1.0
4.0 1.0 0.0	1.0
30 4.0 1.0 0.0	1.0
31 49.0 26.0 27.5	1.5
25 7.0 2.0 0.0	2.0
13 43.0 10.0 12.0	2.0
2 182.0 71.0 73.0	2.0
0.0 3.0 0.0	3.0
16 18.0 9.0 12.0	3.0
0 349.0 131.0 135.0	4.0
37 21.0 7.0 12.0	5.0
36 185.0 67.0 73.0	6.0
34 66.0 21.0 27.5	6.5
7 60.0 20.0 27.5	7.5
10 61.0 19.0 27.5	8.5
9 175.0 64.0 73.0	9.0
40 162.0 62.0 73.0	11.0
24 4.0 1.0 12.0	11.0
8 93.0 32.0 43.0	11.0
6 46.0 16.0 27.5	11.5
32 50.0 16.0 27.5	11.5
3 62.0 15.0 27.5	12.5
33 37.0 25.0 12.0	13.0
5 48.0 12.0 27.5	15.5
21 287.0 119.0 135.0	16.0
12 79.0 22.0 43.0	21.0
39 239.0 109.0 135.0	26.0
18 111.0 39.0 73.0	34.0
42 285.0 98.0 135.0	37.0
38 107.0 35.0 73.0	38.0
15 96.0 31.0 73.0	42.0
43 306.0 93.0 135.0	42.0
19 93.0 25.0 73.0	48.0
1 245.0 77.0 135.0	58.0
35 224.0 65.0 135.0	70.0

^{[17]:} x = Comparacion.index
y = Comparacion['Mat. Predichos']

```
dy = Comparacion['Diferencia']
plt.rcParams["figure.figsize"] = [12, 8]
# setup the normalization and the colormap
deps = np.arange(0, len(test['Programa']))
normalize = mcolors.Normalize(vmin = deps.min(), vmax = deps.max())
colormap = cm.get_cmap('turbo', deps.max()+1)
# setup the colorbar
scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=colormap)
scalarmappaple.set_array(deps)
fig = plt.figure()
plt.xticks([])
fig.suptitle('Número de Estudiantes Matriculados por Programa', size=22)
plt.xlabel('Programa Ofertado', fontsize=16)
plt.ylabel('No. Estudiantes Matriculados 2021-1', fontsize=16)
plt.errorbar(x, y, yerr=dy, fmt='.k')
plt.scatter(x, y, label='Mat. Predichos',
            alpha=0.75, s=100, c=range(0, len(test)), cmap='turbo')
plt.legend()
cbar = plt.colorbar(scalarmappaple, orientation='vertical', pad=0.02,
                   ticks=range(0, deps.max()+1, 1), shrink=0.75)
cbar.ax.set_yticklabels(test['Programa'])
plt.subplots_adjust(left=0.075, bottom=0.075, right=0.92, top=0.925)
plt.show()
fig.savefig('2021-1 Matriculados_Diff_'+str(year)+'.pdf', dpi=500)
plt.close(fig)
```

Número de Estudiantes Matriculados por Programa

[]:	
[]:	