Tarea 3

Antonio Emiko Ochoa Adame

29 de enero de 2019

- 1. Dado el lenguaje $L = \{\text{sa, ro}\}$, obtenga L^3 . Respuesta: $L^3 = \{\text{sa, ro, sasa, saro, rosa, roro, sasasa, sasaro, sarosa, saroro, rosasa, rosaro, rorosa, rororo<math>\}$.
- 2. Dado el lenguaje $L = \{\varepsilon, \text{ ab}\}$, obtenga L^0, L^1, L^2, L^3, L^4 . Respuesta: $L^0 = \{\varepsilon\}, L^1 = \{\varepsilon, \text{ ab}\}, L^2 = \{\varepsilon, \text{ ab, abab}\}, L^3 = \{\varepsilon, \text{ ab, abab, ababab}\}, L^4 = \{\varepsilon, \text{ ab, abab, ababab, abababab}\}.$
- 3. Sean A = {a} y B = {b}, indique cuáles son las cadenas que forman los siguentes lenguajes: A*B, AB* y (AB)*.
 - Respuesta: A*B= {b, ab, aab, aaab, ...}, AB* = {a, ab, abb, abbb, ...}. (AB)* = $\{\varepsilon$, ab, abab, ababab, ...}.
- 4. Dado los lenguajes: $A = \{011,001,11\}$ y $B = \{11,110\}$ sobre el alfabeto $\Sigma = \{0,1\}$, obtenga los lenguajes que resultan de las operaciones siguientes: $(A \cap B)^*$, $(A \oplus B)^R$, $(B-A)^+$, BA.
 - Respuesta: $(A \cap B)^* = \{\varepsilon, 11, 1111, 11111111, ...\}, (A \oplus B)^R = \{110, 100, 001\}, (A B)^+ = \{110, 110110, 110110110...\}. AB = \{11011, 11001, 1111, 110011, 110001\}.$
- 5. Dado los lenguajes: $A = \{101, 01, 010\}$ y $B = \{10, 010\}$ sobre el alfabeto $\Sigma = \{0, 1\}$, obtenga los lenguajes que resultan de las operaciones siguientes: $(A \cap B)^3$, $(A^R \oplus B^R)$, $(B A)^*$, BA.
 - Respuesta: $(A \cap B)^3 = \{010010010\}, (A^R \oplus B^R) = \{01,10,010\}, (B-A)^* = \{10,1010,101010...\}, BA)^* = \{10101,1001,10010,010101,01001,010010\}.$
- 6. Dado los lenguajes: $A = \{\varepsilon, 0, 10, 11\}$ y $B = \{\varepsilon, 1, 01, 11\}$ sobre el alfabeto $\Sigma = \{0, 1\}$, obtenga los lenguajes : AB, BA, A \cup B, A \cap B, A-B, B-A, A*, B² y A \oplus B.
 - Respuesta: AB = $\{\varepsilon, 1, 01, 11, 0, 001, 011, 10, 101, 1001, 1011, 111, 1101, 1111, \}$, BA = $\{\varepsilon, 0, 10, 11, 1, 110, 111, 01, 010, 0110, 0111, 1110, 1111, A \cup B = <math>\{\varepsilon, 0, 10, 11, 1, 01\}$, A\cap B = $\{\varepsilon, 11\}$, A\cup B = $\{0, 10\}$, B\cup A = $\{1, 01\}$, A* = $\{\varepsilon, 0, 10, 11, 00, 010, 011, 100, 1010, 1011, 110, 1110, 1111, ...\}$, B² = $\{\varepsilon, 1, 01, 11, 011, 0101, 0111, 1101, 1111\}$, A\cup B = $\{0, 10, 1, 01\}$.

- 7. Dado los lenguajes: $A = \{\varepsilon\}$, $B = \{aa, ab, bb\}$, $C = \{\varepsilon, aa, ab\}$ y $D = \emptyset$ obtener los lenguajes: $A \cup B$, $A \cup C$, $A \cup D$, $A \cap B$, $A \cap D$, $B \cap C$, $B \cup D$ y $C \cap A$. Respuesta: $A \cup B = \{\varepsilon, aa, ab, bb\}$, $A \cup C = \{\varepsilon, aa, ab\}$, $A \cup D = \{\varepsilon\}$, $A \cap B = \emptyset$, $A \cap D = \emptyset$, $B \cap C = \{aa, ab\}$, $B \cup D = \emptyset$, $C \cap A = \varepsilon$.
- 8. Dado los lenguajes: $A = \{ab, b, cb\}$ y $B = \{a, ba\}$ obtener los lenguajes que resultan de las operaciones de lenguajes: $(A \cup B^2)$, $(B \cup A)^R$, (AB), $(A^2 \cap BA)$, $(A \oplus B^R)$ y $(A^R B)^2$.

Respuesta: $(A \cup B^2) = \{ab, b, cb, aa, aba, baa, baba\}, (B \cup A)^R = \{ba, b, bc, a, ab\}, (B \cup A)^R = \{ba, b, bc, a, ab\}, (BA) = \{aba, abba, ba, bba, cba, cba\}, (A^2 \cap BA) = \{bb, bab, bcb\}, (A \oplus B^R) = \{b, cb, a\}, (A^R - B)^2 = \{bb, bbc, bcb, bcbc\}.$

9. Dado los lenguajes A = {01, 11} y B = {011, 101, 11} obtener los lenguajes que resultan de las operaciones: $(A \cup B)^R$, $(B-A)^2$, $(A-B)^+$, $(A \cap B)^*$, A^RB

Respuesta: $(A \cup B)^R = \{10, 11, 110, 101\}, (B-A)^2 = \{011011, 011101, 101011, 101101\}, (A-B)^+ = \{01, 0101, 010101, ...\}, (A \cap B)^* = \{01, 0101, 010101, ...\}, (A^RB) = \{10011, 10101, 1011, 11011, 11111\}.$

- 10. Responda Verdadero o Falso según corresponda:
 - a) Para todo lenguaje L se cumple que: $\varnothing \cdot L = L$. Respuesta: **Falso**
 - b) Para todo lenguaje L infinito, se cumple que L^c es finito. Respuesta: Falso
 - c) Para todo lenguaje L regular, entonces $\varepsilon \notin L^+$. Respuesta: **Verdadero**
 - d) La cerradura de Kleene del lenguaje vacío \varnothing es igual a $\varepsilon.$ Respuesta: **Verdadero**
 - e) La cerradura de Kleene cualquier lenguaje L es infinita. Respuesta: **Verdadero**
 - f) El lenguaje universal de cualquier alfabeto Σ siempre es infinito. Respuesta: **Verdadero**