3. A SEMIGROUP APPROACH TO RETARDED EQUATIONS

by

Annette Grabosch and Ulrich Moustakas

As indicated by the above title of this section there is a close relationship to B-IV, Section 3. First, the considered Cauchy problems are "similar" to (RCP). Second, there again is a correspondence to a class of semigroups generated by the first derivative.

Instead of the differential equation in (RCP) we will study equations of the form

$$u(t) = \Phi(u_t) , t \ge 0 ,$$

$$u_0 = g .$$

We use the following setting: Let F be a Banach space, consider E:= $L^1([-1,0],F)$ and take $\Phi \in L(E,F)$. For $u \in L^1_{loc}([-1,\infty),F)$ we denote by $u_t \in E$ the function given by $u_t(s) := u(t+s)$, $t \ge 0$, $s \in [-1,0]$.

By a <u>solution</u> of (RE) with initial function $g \in E$ we understand a function $u \in L^1_{loc}([-1,\infty),F)$ which satisfies equation (RE).

(RE) is called $\underline{\text{well-posed}}$ if for each g (E there exists exactly one solution.

Remarks. 1. The equation

$$u(t) = Bu(t) + \Phi(u_t), t \ge 0,$$

 $u_0 = g,$

(where B is the generator of a bounded semigroup on F) is in better analogy to the retarded Cauchy problem of B-IV,Sec.3 and seems to be more general than the one introduced above, but can be reduced to an equation of the type (RE). In fact, since $1 \in \rho(B)$ we have

$$u(t) = R(1,B) \Phi(u_{t})$$
.

Clearly, this equation is of the previous type (with a different "delay functional").

2. The choice of " L^1 -functions" instead of "C-functions" (as in the case of (RCP)) enforces the solutions of (RE) to yield a strongly continuous semigroup of operators (on the space E of initial functions) as in B-IV, Section 3.