\Box Short Revision Notes \Box

Sourabh Aggarwal (sourabh23)

Compiled on December 15, 2018

\mathbf{C}	Contents					
1	Mat	hs 1				
	1.1	Game Theory				
		1.1.1 What is a Combinatorial Game?				
	1.2	Mobius				
	1.3 1.4	Bell, Burnside, etc 1 Modulo 1				
	$1.4 \\ 1.5$	Prob and Comb				
	1.6	Euler's Totient Function				
	1.7	Catalan				
	1.8	Floyd Cycle Finding				
	1.9	Base Conversion $\dots \dots \dots$				
		Extended Euclid				
		Sieve				
		Frac lib and Eqn solving 2 GCD, LCM 3				
		GCD, LCM				
		Important Problems				
	1.10	Timpercunc Treatment Treat				
2	Gra					
	2.1	Basic				
	2.2	Articulation Points and Bridges (undirected graph) 4				
	2.3	Tree				
		2.3.1 LCA 6 2.3.2 Important Problems 6				
		2.3.3 MVC on Tree				
		2.3.4 MWIS on Tree				
	2.4	Terminology				
	2.5	Konigs Theorem 6				
	2.6	Bipartite Matching				
		2.6.1 Hopcroft Karp				
		2.6.2 Using max flow algo				
	2.7	Paths				
	2.8	SCC				
		2.8.2 Kosaraju				
	2.9	SAT 9				
		2.9.1 1 SAT				
		2.9.2 2 SAT				
	2.10	DAG				
		2.10.1 SSSP				
		2.10.2 SSLP				
		2.10.3 Counting Paths in DAG				
	0 11	2.10.4 Min Path cover on DAG 9 APSP Floyd Warshalls 9				
		MST (Kruskal)				
		SSSP				
		2.13.1 Dijkstra				
		2.13.2 Bellman ford				
	2.14	$\mbox{Max Flow} \ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
		2.14.1 Edmond karps				
		Minimum Cost Flow				
	2.16	More Problems				
3	Som	ne Basic 11				
_	3.1	LIS				
4		a Structures 16				
	4.1	Segment Tree				
5	DP	16				
J	5.1	Coin Change				
	5.2	0/1 Knapsack				
	5.3	Balanced Bracket Sequence				
		5.3.1 One type of bracket				
		5.3.2 MultiType				
		5.3.3 No. of balanced Sequences				
		5.3.4 Lexicographically next balanced sequence . . . 17				
		5.3.5 Sequence Index				
	- 1	5.3.6 Finding the kth sequence				
	5.4	$Important\ Problems\ \dots$				

6	Strings		
	6.1	Minimum Edit Distance	18
	6.2	Length of longest Palindrome possible by removing 0 or more characters	18
	6.3	Longest Common Subsequence	18
	6.4	Prefix Function and KMP	19
		6.4.1 Prefix Function	19
		6.4.2 KMP	19
		6.4.3 Counting number of occurrences of each prefix	19
	6.5	Notes	19
	6.6	SAM	20
	6.7	Important Problems	22
7	Geometry		
	7.1	Klee's Algo	23
	7.2	Closest Pair Problem	24

Think twice code once!

1 Maths

1.1 Game Theory

Games like chess or checkers are partizan type.

1.1.1 What is a Combinatorial Game?

- 1. There are 2 players.
- 2. There is a set of possible positions of Game
- 3. If both players have same options of moving from each position, the game is called impartial; otherwise partizan
- 4. The players move alternating.
- 5. The game ends when a postion is reached from which no moves are possible for the player whose turn it is to move. Under **normal play rule**, the last player to move wins. Under **misere play rule** the last player to move loses.
- 6. The game ends in a finite number of moves no matter how it is played.
- ${\bf P}$ Previous Player, ${\bf N}$ Next Player
 - 1. Label every terminal position as ${\bf P}$ postion
- 2. Position which can move to a P position is N position
- 3. Position whose all moves are to N position is P position.

Note: Every Position is either a P or N. For games using misere play all is same except that step 1 is replaced by the condition that all terminal positions are N postions.

Directed graph G = (X, F), where X is positions (vertices) and F is a function that gives for each $x \in X$ a subset of X, i.e. followers of x. If F(x) is empty, x is called a terminal position.

 $g(x) = \min\{n \ge 0 : n \ne g(y) \text{ for } y \in F(x)\}\$

Positions x for which g(x) is 0 are P positions and all others are N positions. **Note:** g(x) is 0 if x is a terminal position

4.1 The Sum of n **Graph Games.** Suppose we are given n progressively bounded graphs, $G_1=(X_1,F_1),G_2=(X_2,F_2),\ldots,G_n=(X_n,F_n)$. One can combine them into a new graph, G=(X,F), called the **sum** of G_1,G_2,\ldots,G_n and denoted by $G=G_1+\cdots+G_n$ as follows. The set X of vertices is the Cartesian product, $X=X_1\times\cdots\times X_n$. This is the set of all n-tuples (x_1,\ldots,x_n) such that $x_i\in X_i$ for all i. For a vertex $x=(x_1,\ldots,x_n)\in X$, the set of followers of x is defined as

$$\begin{split} F(x) = F(x_1, \dots, x_n) &= F_1(x_1) \times \{x_2\} \times \dots \times \{x_n\} \\ & \cup \{x_1\} \times F_2(x_2) \times \dots \times \{x_n\} \\ & \cup \dots \\ & \cup \{x_1\} \times \{x_2\} \times \dots \times F_n(x_n). \end{split}$$

Theorem 2. If g_i is the Sprague-Grundy function of G_i , i = 1, ..., n, then $G = G_1 + \cdots + G_n$ has Sprague-Grundy function $g(x_1, ..., x_n) = g_1(x_1) \oplus \cdots \oplus g_n(x_n)$.

Thus, if a position is a N position, we can cleverly see which position should we go to (what move of a component game to take) such that we reach P position.

1.2 Mobius

Just read this and this.

Prob, Sol: $\sum_{g=1}^{i} h(g) * cnt[g]$ where cnt[g] = no. of arrays with $gcd(a_1, a_2, a_3, \ldots, a_n) = g$ and where each $a_k \leq i$. Now h(g) = Dirichlet identity function. Thus it is summation of mobius function. Ans thus we get $\sum_{d=1}^{i} \mu(d) * f(d)$ where f(d) is the number of arrays with elements in range [1, i] such that $gcd(a_1, \ldots, a_n)$ is divisible by j. Obviously $f(j) = (\lfloor i/j \rfloor)^n$.

1.3 Bell, Burnside, etc

Just read this

1.4 Modulo

(a+b)modm = (amodm + bmodm)modm..... –

```
.....* ......
const int m1 = (int) 1e9 + 7;
template <typename T>
inline T add(T a, T b) {
    a += b;
    if (a >= m1) a -= m1;
    return a;
template <typename T>
inline T sub(T a, T b) {
   a -= b;
    if (a < 0) a += m1;
    return a;
template <typename T>
inline T mul(T a, T b) {
    return (T) (((long long) a * b) % m1);
template <typename T>
inline T power(T a, T b) {
```

```
int res = 1;
while (b > 0) {
    if (b & 1) {
        res = mul<T>(res, a);
    }
    a = mul<T>(a, a);
    b >>= 1;
    }
    return res;
}

template <typename T>
inline T inv(T a) {
    return power<T>(a, m1 - 2);
}
```

1.5 Prob and Comb

- $E[X] = \sum E(X|A_i)P(A_i)$
- k, p_a , p_b prob, Sol, if $n + m \ge k \to p_b(i+j) + p_a * p_b * (i+j+1) + p_a^2 * p_b * (i+j+2) \dots = (i+j) + \frac{p_a}{p_b}$ Also

$$dp[0][0] = p_a * dp[1][0] + p_b * dp[0][0]$$
 (1)

$$= p_a * dp[1][0]/(1-p_b) \tag{2}$$

$$= dp[1][0] \tag{3}$$

• Dearrangement of n objects

 $n! * \sum_{k=0}^{n} (-1)^k / k! = !n$ $!n = (n-1) * [!(n-1)+!(n-2)] \text{ for } n \ge 2$

• Gambler ruin's problem: Probability that first player (p for each step) wins. $(1 - (q/p)^{n_1})/(1 - (q/p)^{n_1+n_2})$. $n_1 = \lceil ev_1/d \rceil$, $n_2 = \lceil ev_2/d \rceil$. In case p = q = 1/2, formula is $n_1/(n_1 + n_2)$.

1.6 Euler's Totient Function

Also known as phi-function $\phi(n)$, counts the number of integers between 1 and n inclusive, which are coprime to n.

If p is prime $\phi(p) = p - 1$.

If p is a prime number and $k \ge 1$, then there are exactly p^k/p numbers between 1 and p^k that are divisible by p. Which gives $\text{us:}\phi(p^k) = p^k - p^{k-1}$.

If a and b are relatively prime, then: $\phi(ab) = \phi(a) \cdot \phi(b)$. This relation is not trivial to see. It follows from the Chinese remainder theorem.

In general, for not coprime a and b, the equation

$$\phi(ab) = \phi(a) \cdot \phi(b) \cdot \frac{d}{\phi(d)}$$

with $d = \gcd(a, b)$ holds. $\phi(n) = \phi(p_1^{a_1}) \cdot \phi(p_2^{a_2}) \cdots \phi(p_k^{a_k})$ $= (p_1^{a_1} - p_1^{a_1-1}) \cdot (p_2^{a_2} - p_2^{a_2-1}) \cdots (p_k^{a_k} - p_k^{a_k-1})$ $= p_1^{a_1} \cdot \left(1 - \frac{1}{p_1}\right) \cdot p_2^{a_2} \cdot \left(1 - \frac{1}{p_2}\right) \cdots p_k^{a_k} \cdot \left(1 - \frac{1}{p_k}\right)$ $= n \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right)$

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

if a and m are relatively prime.

In the particular case when m is prime, Euler's theorem turns into Fermat's little theorem:

$$a^{m-1} \equiv 1 \pmod{m}$$

1.7 Catalan

$$\begin{array}{l} Cat(n) = {2n \choose n}/(n+1) \\ Cat(m) = (2m*(2m-1)/(m*(m+1)))*Cat(m-1) \\ Cat(n) = \end{array}$$

- 1. the number of ways a convex polygon with n+2 sides can be cut into
- 2. the number of ways to use n rectangles to tile a stairstep shape (1, 2, ..., n1, n).
- 3. No. of expressions containing n pairs of parentheses which are correctly matched.
- 4. the number of planar binary trees with n+1 leaves
- 5. No. of distinct binary trees with n vertices
- No. of different ways in which n + 1 factors can be completely parenthesized. Like for {a, b, c, d}, one parenthing will be ((ab)c)d.
- 7. the number of monotonic paths of length 2n through an n-by-n grid that do not rise above the main diagonal
- 8. n pair of people on circle can do non cross hand shakes.

Note: Its better to use bigint for catalan computations. Also no. of binary trees with n labelled nodes = cat[n] * fact[n]

```
1.8 Floyd Cycle Finding
// mu = start of the cycle
// lam = its length
// O (mu + lam) time complexity
// O (1) space complexity
ii floydCycleFinding(int x0) {
    // 1st part: finding k * lam
    int tortoise = f(x0), hare = f(f(x0));
    // hare moves at twice speed
    while (tortoise != hare) {
        tortoise = f (tortoise); hare = f(f(hare));
    // thus tor = x_i; hare = x_2i
    // i.e. x_2i = x_{i + k * lam}
    // i.e. k * lam = i.
    // Now if hare is set to beginning
    // i.e. hare = x_0, tor = x_i
    // thus if both now move same no. of steps and in between
    they become equal, i.e.
    // x_1 = x_{i + 1}
    // i.e. x_1 = x_{1 + k * lam}
    // Thus 1 must be the minimum index and therefore 1 = mu
    int mu = 0;
    hare = x0:
    while (tortoise != hare) {
        tortoise = f (tortoise); hare = f(hare); mu++
    // finding lam
    int lam = 1; hare = f (tortoise);
    while (tortoise != hare) {
        hare = f (hare); lambda++;
    return ii (mu, lambda);
1.9 Base Conversion
// decimal no. to some base
stack<int> S;
while (q) {
    s.push (q % b);
    q /= b;
while (!s.empty ()) {
    cout << process (s.top ()) << " ";</pre>
    s.pop ();
// base to decimal no.
11 baseToDec () {
    11 \text{ ret = 0};
    for (auto &c : num) {
        ret = (ret * base + (c - 48)); // can take mod if final
        answer is required in mod
    }
    return ret;
}
1.10 Extended Euclid
ax + by = c this is called diophantine eqn and is solvable only when
d = gcd(a, b) divides c. so first solve ax + by = d then multiply x, y
with c/d. Also once we have found a particular soln to this eqn then their
exist infinite solns of the form (x0 + (b/d) * n, y0 - (a/d) * n) where n
is any integer. Assume we bound the coefs (x1, y1) for (b, a mod b) \rightarrow
b * x1 + (a \bmod b)y1 = g
\to b*x1 + (a - \lfloor (a/b) \rfloor *b) *y1 = g
\rightarrow a * y1 + b * (x1 - \lfloor (a/b) \rfloor * y1) = g
\rightarrow x = y1 \& y = x1 - |(a/b)| * y1
void extendedEuclid(int a, int b) {
   if (b == 0) { x = 1; y = 0; d = a; return; } // base case
   <code>extendedEuclid(b, a % b);</code> // similar as the original gcd
   int x1 = y;
   int y1 = x - (a / b) * y;
   x = x1:
   y = y1;
1.11 Sieve
    ll _sieve_size; // ll is defined as: typedef long long ll;
bitset<10000010> bs; // 10^7 should be enough for most cases
```

vi primes; // compact list of primes in form of vector<int>

void sieve(ll upperbound) { // create list of primes in

[0..upperbound]

```
_sieve_size = upperbound + 1; // add 1 to include upperbound
   bs.set(); // set all bits to 1
   bs[0] = bs[1] = 0; // except index 0 and 1
   for (ll i = 2; i <= _sieve_size; i++) if (bs[i]) {
// cross out multiples of i starting from i * i!
           for (ll j = i * i; j <= _sieve\_size; j += i) bs[j] =
           primes.push\_back((int)i); // add this prime to the
           list of primes
       } } // call this method in main method
bool isPrime(ll N) { // a good enough deterministic prime
    // O(#primes < sqrt(N))</pre>
    // O(sqrt(N)/ln(sqrt(N)))
   if (N <= _sieve_size) return bs[N]; // O(1) for small primes
   for (int i = 0; i < (int)primes.size(); i++)</pre>
       if (N % primes[i] == 0) return false;
   return true; // it takes longer time if N is a large prime!
} // note: only work for N <= (last prime in vi "primes")^2  
vi primeFactors(ll N) { // remember: vi is vector<int>, ll is
long long
   vi factors;
   ll PF_idx = 0, PF = primes[PF_idx]; // primes has been
   populated by sieve
   while (PF * PF <= N) { // stop at sqrt(N); N can get smaller
       while (N % PF == 0) { N /= PF; factors.push_back(PF); }
       // remove PF
       PF = primes[++PF_idx]; // only consider primes!
   if (N != 1) factors.push_back(N); // special case if N is a
   prime
   return factors; // if N does not fit in 32-bit integer and
   is a prime
} // then 'factors' will have to be changed to vector<ll>
memset(numDiffPF, 0, sizeof numDiffPF);
//Modified Sieve.
void pre() {
   for (int i = 2; i < MAX_N; i++)
       if (numDiffPF[i] == 0) // i is a prime number
           for (int j = i; j < MAX_N; j += i)
               numDiffPF[j]++; // increase the values of
               multiples of i
// Bottom up euler totient function
for (int i = 0; i <= limit; i++) eu[i] = i;
for (int i = 2; i <= limit; i++) {
    if (eu[i] == i) {
        for (int j = i; j <= limit; j += i) {
            eu[j] -= eu[j] / i;
    }
}
1.12 Frac lib and Eqn solving
To be revised.
class Frac {
public:
   long long a, b;
   Frac() {
       a = 0, b = 1;
   Frac(int x, int y) {
       a = x, b = y;
       reduce(); ///So we are always reducing out fractions...
   Frac operator+(const Frac &y) {
       long long ta, tb:
       tb = this - b/gcd(this - b, y.b) * y.b;
       ta = this \rightarrow a*(tb/this \rightarrow b) + y.a*(tb/y.b);
       Frac z(ta, tb);
       return z;
   Frac operator-(const Frac &y) {
       long long ta, tb;
       tb = this->b/gcd(this->b, y.b)*y.b;
       ta = this -> a*(tb/this -> b) - y.a*(tb/y.b);
       Frac z(ta, tb);
       return z:
```

```
Frac operator*(const Frac &y) {
       long long tx, ty, tz, tw, g;
       tx = this -> a, ty = y.b;
       g = gcd(tx, ty), tx /= g, ty /= g;
       tz = this->b, tw = y.a;
       g = gcd(tz, tw), tz /= g, tw /= g;
       Frac z(tx*tw, ty*tz);
       return z;
  Frac operator/(const Frac &y) {
       long long tx, ty, tz, tw, g;
       tx = this -> a, ty = y.a;
       g = gcd(tx, ty), tx /= g, ty /= g;
       tz = this->b, tw = y.b;
       g = gcd(tz, tw), tz /= g, tw /= g;
       Frac z(tx*tw, ty*tz);
       return z;
   }
  bool operator == (const frac &other) const {
        return a == other.a and b == other.b;
    }
    bool operator < (const frac &other) const {</pre>
        if (a != other.a) return a < other.a:
        else return b > other.b:
    }
private:
   static long long gcd(long long x, long long y) {
       return b == 0 ? a : gcd (b, a % b);
   void reduce() {
       if (a == 0) \{ // \text{ to handle case when } b == 0 \text{ (not }
       required in this problem) a = inf (so as to have same
       ground)
           b = 1:
           return;
       } else {
            long long g = gcd(abs(a), abs(b));
            a /= g, b /= g;
            if (b < 0) a *= -1, b *= -1;
       }
  }
ostream& operator<<(ostream& out, const Frac&x) {
   out << x.a;
   if(x.b != 1)
       out << '/' << x.b;
   return out;
}
int main() {//UVA 10109
   int n, m, i, j, k, N;
   char NUM[100], first = 0;
   long long X, Y;
   Frac matrix[100][100];
   while(scanf("%d", &N) == 1 && N) {
       scanf("%d %d", &n, &m);
       for(i = 0; i < m; i++) {
           for(j = 0; j \le n; j++) {
               scanf("%s", NUM);
               if(sscanf(NUM, "\frac{11d}{11d}", &X, &Y) == 2) {
                   matrix[i][j].a = X;
                   matrix[i][j].b = Y;
               } else
                    sscanf(NUM, "%lld", &matrix[i][j].a),
                   matrix[i][j].b = 1;
           }
       }
       Frac tmp, one(1,1);
       int idx = 0, rank = 0;
       for(i = 0; i < m; i++) {
           while(idx < n) {</pre>
               int ch = -1;
               for(j = i; j < m; j++)
                   if(matrix[j][idx].a) {///This means that idx
                    must be incremented to check
                        ///the pivot at correct row...
                       ch = j;
                        break;
                    }
               if(ch == -1) {
                    idx++;
```

```
continue:
               }///this if condition executes if all the
               elements in desired column
               ///and below the i-1 th row are zero so we need
               to go to the next column...
               if(i != ch)///So if the desired pivot element is
               zero we swap that row with
                   ///{\rm the} closest row that has non zero
                   pivot...
                   for(j = idx; j \le n; j++)
                        swap(matrix[ch][j], matrix[i][j]);
               break;
           if(idx >= n) break;
           tmp = one/matrix[i][idx];
           rank++;
           for(j = idx; j <= n; j++)
               matrix[i][j] = matrix[i][j]*tmp;///So here we
               are making pivot element 1.
           for(j = 0; j < m; j++) {
               if(i == j) continue;///This condition executes
               means that we are ignoring the
               ///pivot row.
               tmp = matrix[j][i]/matrix[i][idx];
               for(k = idx; k <= n; k++) {</pre>
                   matrix[j][k] = matrix[j][k] -
                    tmp*matrix[i][k];///Thus now we are making
                    ///all the elements below pivot as zero..
           }
           idx++;
       if(first)
                   puts("");
       first = 1;
       printf("Solution for Matrix System # %d\n", N);
       int sol = 0;
       for(i = 0; i < m; i++) {
           for(j = 0; j < n; j++) {
               if(matrix[i][j].a)
                   break:
           if(j == n) {
               if(matrix[i][n].a == 0 && sol != 1)
                   sol = 0; // INFINITELY
                    sol = 1; // No Solution.
           }
       if(rank == n && sol == 0) {
           for(i = 0; i < n; i++) {
               printf("x[%d] = ", i+1);
               cout << matrix[i][n] << endl;</pre>
           continue:
       }
       if(sol == 1)
           puts("No Solution.");
           printf("Infinitely many solutions containing %d
           arbitrary constants.\n", n-rank);
   return 0;
1.13 GCD, LCM
    // time complexity O(log(min(a, b) / gcd(a, b)))
    int gcd (int a, int b) { return b == 0 ? a : gcd (b, a %
    b); }
    int lcm (int a, int b) { return a * (b / gcd (a, b)); }
For a series of numbers if you want next no. to have gcd 1 with all previous
no. then GCD(a_j, LCM(a_1, a_2, ..., a_{j-1})) = 1.
1.14 Side Notes
 1. 2 nos a, b are said to be congruent modulo n, if there difference is an
    integer multiple of n, i.e. they give same remainder . We denote this
```

}

as $a \equiv b \pmod{n}$

(b) (a + 1, b + 1)

2. For (a, b) three operations exist:

(a) If a, b are even then (a/2, b/2).

(c) If (a, b) exist and (b, c) exist then (a, c) exist.

Every (x, y) pair s.t. x < y can be transformed to (1, 1 + k x d)

where k is any positive integer and d is maximal odd divisor of y - x.

We want to generate $(1,a_1),(1,a_2),\ldots,(1,a_n)$. So $d|gcd(a_1-1,a_2-1,\ldots,a_n-1)$. No. of pairs (\mathbf{x},\mathbf{y}) which have d as their maximal odd divisors: these are cards with $\mathbf{y}-\mathbf{x}=\mathbf{d},2\mathbf{d},4\mathbf{d},8\mathbf{d},$ etc. as odd into odd is odd thus we can't multiply with any odd number as it will give bigger odd divisor. Don't forget that numbers \mathbf{x},\mathbf{y} must no exceed m. Total no. of cards with some fixed difference $\mathbf{t}=\mathbf{y}-\mathbf{x}$ is exactly $\mathbf{m}-\mathbf{t}.$ $1\leq x< y\leq m$

```
1 - x \le 0 < t \le m - x
1 \le x \le m - t
m - t \ge 1
t \le m - 1
2^{l} * d \le m - 1
```

So sum up $m-2^l*d$ where d is any odd divisor of $\gcd(a_1-1,\ldots)$ and l is such that $2^l*d\leq m-1$.

- 3. People in cycle will commit suicide.
- 4. Every positive integer can be expressed uniquely as a sum of fibonacci numbers such that no two numbers are equal or consecutive fibonacci numbers.
- 5. Every even no. greater than or equal to 4 can be expressed as a sum of 2 prime nos.
- 6. No. of digits in a no. $n = \lfloor (\log_{10} n) \rfloor + 1$
- 7. No. of digits in $\binom{n}{k} = \lfloor (\sum_{i=n-k+1}^{n} \log_{10} i \sum_{i=1}^{k} \log_{10} i)) \rfloor + 1$
- 8. No. of digits of a no. in some base b= $floor(1 + \log_b no. + eps)$. Also make sure that input no. is not 0.
- 9. for $\binom{n}{r}$ always do r = min(r, n r). Also to compute it either we can use dp or for a specific pair, if it is guarenteed that the final solution lies within data types limit then we can compute it as.

```
ll ncr(ll n, ll r) {
    r = min (r, n - r);
    ll res = 1;
    for (int k = 1; k <= r; k++, n--) {
        res *= n;
        res /= k;
    }
}</pre>
```

10. $(t^a-1)/(t^b-1)$ is not an integer with less than 100 digits if t = 1 or a < b or $a \bmod b \neq 0$ or $(a-b)*\log_{10}t>99.0$

```
11. for (int j = 0; j < bigint_var.a.size (); j++) {
    int temp = bigint_var.a[j];
    while (temp > 9) {
        sum += temp % 10;
        temp /= 10;
    }
    sum += temp;
}
```

 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^p = \begin{bmatrix} fib(p+1) & fib(p) \\ fib(p) & fib(p-1) \end{bmatrix}$

Thus higher fibs can be computed in $O(\log p)$

13. To get all divisors of a number n.

12.

16.

```
for (int i = 1; i * i <= n; i++) {
   if (n % i == 0) {
      d.push_back(i);
      if (i != n / i) d.push_back (n / i);
   }
}</pre>
```

- 14. We can find the nth root using pow func.
- 15. Some times we can generate first few terms and then look up at oeis.org

1.15 Important Problems

- UVA 11310 Prob
: dp[n] = dp[n-1] + 4 * dp[n-2] + 2 * dp[n-3]
- UVA 11204 Prob: Tricky problem, it just asks How many possible arrangements maximizing the assignment of the first priority. Thus only first priority instrument matters, so if 2 want A, 4 want B, 3 want C, then ans is 2*4*3.
- UVA 10790 Prob: If there is an intersection that means we have a quadrilateral, hence answer is the number of quadrilaterals = $\binom{a}{2} * \binom{b}{2}$.
- last non zero digit of fact(n), Sol. If you know multiplication limit, take mod with $(10^{\text{no. of digits}})$
- France 98, Sol.
- How many zeros and how many digits? Sol: then iterate through factors of base and get their powers in n!, take min. of all such powers divided by power of prime factor in that base. And for how many digits part, use that log formula.
- Is n! divisible by m? Sol: Use prime factors
- Given n, maximize (find x) n-p*x where $p*x \le n < (p+1)*x$ which somehow happens with p=1

• Prob: Lenghts from 1 to n, max. no. of triangles?

```
void precal () {
   F[3] = P[3] = 0;
   11 var = 0;
   for (int i = 4; i <= 1000000; i++) {
        if (i % 2 == 0) {
            var++;
        }
        P[i] = P[i - 1] + var;
        F[i] = F[i - 1] + P[i];
   }
   // F[n] has ans
}</pre>
```

• Bottom right corner of a chess board must be white. If c == 0/1 bottom right corner of painting is black/white.

```
if (c == 0) ans = (n - 7) * (m - 7) / 2
else ans = ((n - 7) * (m - 7) + 1) / 2
```

• for 2 nos (a, b) output 2 nos (c, d) such that $a = \gcd(c, d)$ & b = lcm(c, d) and c is minimum. Sol: basically soln exist if $b \mod a = 0$ and soln is c = a, d = b.

2 Graphs

2.1 Basic

- The shortest path b/w vertices i and j after edge (u, v) is added is equal to $min(d_{i,j}, d_{i,u} + w_{u,v} + d_{v,j}, d_{i,v} + w_{v,u} + d_{u,j})$
- In BFS, in case of multiple sources, enqueue them all in queue and set dist[v] = 0. Some trick works in case of dijkstra.
- Also in case we are given both source and destination then we can
 terminate our while loop by checking whether the element we pop
 from queue is the destination or not. Same trick would work with
 weighted graph provided we have no -ve edges (dijkstra)
- Adjacency matrix equal to its transpose that implies undirected graph.
- To check whether the graph is bipartite, we can do bfs and color vertices 0/1.
- Graph Check

```
void graphcheck (int u) {
    dfs_num[u] = explored;
    for (auto &v : adjlist[u]) {
        if (dfs_num[v] == unvisited) { // tree edge
            dfs_parent[v] = u;
            graphcheck (v);
        } else if (dfs_num[v] == explored) { // back edge
        hence not DAG.
            if (v == dfs_parent[u]) cout << "two ways\n"</pre>
            else cout << "back edge\n'
        } else { // dfs_num[v] == visited
            // forward/cross edge
            // [u [v v] u] this is tree/forward
            // [v [u u] v] back
            // [v v] [u u] cross
    }
}
```

• Floodfill

```
int R, C;
string grid[100];
int dr[] = {1, 1, 0, -1, -1, -1, 0, 1};
int dc[] = {0, 1, 1, 1, 0, -1, -1, -1};
int floodfill (int r, int c, char c1, char c2) {
    if (r < 0 || r >= R || c < 0 || c >= C) return 0;
    if (grid[r][c] != c1) return 0;
    int ans = 0;
    grid[r][c] = c2;
    for (int d = 0; d < 8; d++) {
        ans += floodfill (r + dr[d], c + dc[d], c1, c2);
    }
    return ans;
}</pre>
```

- We can find the number of connected components by simply doing dfs (offline), and online using UFDS.
- Highest average is possible only by taking large

2.2 Articulation Points and Bridges (undirected graph)

An articulation point is defined as a vertex in a graph G whose removal (all edges incident to this vertex are also removed) disconnects G. A graph without any articulation point is called "Biconnected"

Similarly, a "Bridge" is defined as an edge in a graph G whose removal disconnects G.

```
// dfs_low[u] will store the lowest iteration count
        vertex u can reach from u's current DFS Tree (i.e u
        can only reach vertices of lower iteration count
        only if a back-edge exists in one of its children)
vector<int> dfs_num;
vector<int> dfs_low;
vector<int> dfs_parent;
vector<bool> articulation_vertex;
int dfs_root, root_children;
void ArticulationPoint(int u)
    // Initially, dfs_num = dfs_low
    dfs_num[u] = dfs_low[u] = dfs_num_counter++;
    for(int i = 0; i < adj_list[u].size(); i++)</pre>
        int v = adj_list[u][i];
        // v was not previously visited, i.e a normal tree
        edge
        if(dfs_num[v] == -1)
        {
            dfs_parent[v] = u;
            // special case if u is root
            if(u == dfs_root) root_children++;
            ArticulationPoint(v);
            // To detect articulation points
            if(dfs_low[v] >= dfs_num[u])
                articulation_vertex[u] = true;
            // To detect bridges
            if (dfs_low[v.first] > dfs_num[u])
                printf(" Edge (%d, %d) is a bridge\n", u,
                v.first);
            // update dfs_low[u] if dfs_low[v] is lower
            // i.e a back-edge exists in one of u's
            children
            dfs_low[u] = min(dfs_low[u], dfs_low[v]);
        // if v was previously visited, and v is not the
        parent of u
        // then a back-edge certainly exists, not a direct
        // update dfs_low[u] to store dfs_num of ancestor
        is lower than
        // current dfs_low
        else if(v != dfs_parent[u])
            dfs_low[u] = min(dfs_low[u], dfs_num[v]);
    }
}
// Example main usage
int main()
    dfs_num_counter = 0;
    dfs_num.clear(); dfs_num.resize(N, -1);
    dfs_low.clear(); dfs_low.resize(N, 0);
    {\tt dfs\_parent.clear(); \ dfs\_parent.resize(N, \ 0);}
    articulation_vertex.clear();
    articulation_vertex.resize(N, false);
    for(int i = 0; i < N; i++)</pre>
        if (dfs_num[i] == -1)
        {
            dfs_root = i; root_children = 0;
            ArticulationPoint(i);
            // special case for root
            articulation_vertex[dfs_root] = (root_children
            > 1);
        }
}
/* Variation
```

A slight variation to this problem is how many disconnected components would result as a direct consequence of removing a vertex \mathbf{u}

Another variation is to find the articulation vertex whose removal would cause a greater amount of components to be disconnected.

General Idea of Variation

Instead of keeping track of whether or not a node is an articulation point using vector

we'll use a vector<int> articulation_vertex to keep track of how many components will be connected after the removal of vertex u.

To achieve this, we'll first assume that each node in our graph G is not an articulation vertex. In other words, the removal of any node u in G will result in there being only one connected component (G will remain one entity and not be disconnected).

We'll then use the same algorithm we've used before, however, this around around, whenever we find that u is an articulation vertex relative to one of its children, we'll increment articulation_vertex[u].

So, if we have a vertex u with say, 3 child components with no back-edges, the removal of u will result in G being cut into four connected components.

```
*/
vector<int> dfs_num;
vector<int> dfs low:
vector<int> dfs_parent;
int dfs_root, root_children;
// vector<int> instead of vector<bool>
vector<int> articulation_vertex;
void ArticulationPoint(int u)
    dfs_num[u] = dfs_low[u] = dfs_num_counter++;
    for(int i = 0; i < adj_list[u].size(); i++)</pre>
    {
        int v = adj_list[u][i];
        if(dfs_num[v] == -1)
        {
            dfs_parent[v] = u;
            if(u == dfs_root) root_children++;
            ArticulationPoint(v);
            // we increment articulation_vertex here
            if(dfs_low[v] >= dfs_num[u])
                articulation_vertex[u]++;
            if (dfs_low[v.first] > dfs_num[u])
                printf(" Edge (%d, %d) is a bridge\n", u,
                v.first):
            dfs_low[u] = min(dfs_low[u], dfs_low[v]);
        else if(v != dfs_parent[u])
            dfs_low[u] = min(dfs_low[u], dfs_num[v]);
    }
}
int main()
    dfs num counter = 0:
    dfs_num.clear(); dfs_num.resize(N, -1);
    dfs_low.clear(); dfs_low.resize(N, 0);
    dfs_parent.clear(); dfs_parent.resize(N, 0);
    // articulation_vertex initialized to 1 here
    articulation_vertex.clear();
    articulation_vertex.resize(N, 1);
```

for(int i = 0; i < N; i++)
 if (dfs_num[i] == -1)</pre>

dfs_root = i; root_children = 0;

```
ArticulationPoint(i);
            // special case for root
            // number of connected components after the
            removal of root
            // is equal to how many children root has
            articulation_vertex[dfs_root] = root_children;
}
```

• Two way to one way UVA 610

2.3 Tree

Undirected, acyclic, connected, |V| - 1 edges.

All edges are bridges, and internal vertices (degree > 1) are articulation

It is as well a bipartite graph.

SSSP: Simply take the sum of edge weights of that unique path. O(|V|)**APSP**: Simply do SSSP from all vertices. $O(|V^2|)$

```
void preorder (v) {
  visit (v);
  preorder (left (v));
 preorder (right (v));
void inorder (v) {
  inorder (left (v));
  visit (v):
  inorder (right (v));
void postorder (v) {
  postorder (left (v));
  postorder (right (v));
  visit (v);
```

It is **impossible** to construct binary tree with just Preorder traversal. It is **impossible** to construct binary tree with just Inorder traversal. It is **impossible** to construct binary tree with just Postorder traversal. 2.3.1 LCA

• Jammie and Tree, Sol: One stop soln to understand LCA. How to find the LCA of u and v using the precomputed LCA table that assumes the root vertex 1? Let's separate the situation into several cases. If both u and v are in the subtree of \bullet An **independent set** is a subset of vertices S, such that no two r, then query the LCA directly is fine. If exactly one of u and v is in the subtree of r, the LCA must be r. If none of u and v is in the subtree of r, we can first find the lowest nodes p and $q \bullet A$ subset of vertices is a vertex cover iff the complement of the set is such that p is an ancestor of both u and r, and q is an ancestor of both v and r. If p and q are different, we choose the deeper one. If they are the same, then we query the LCA directly. Combining the above cases, one may find the LCA is the lowest vertex among lca(u, v), lca(u, r), lca(v, r).

After we have found the origin w of update (for query, it is given), how to identify the **subtree** of a vertex and carry out updates/queries on it? Again, separate the situation into several cases. If w = r, update/query the whole tree. If w is in the subtree of r, or w isn't an ancestor \bullet of r, update/query the subtree of w. Otherwise, update/query the whole tree, then undo update/exclude the results of the subtree of w', such that w' is a child of w and the subtree of w' contains r.

Important Problems

- UVA 11695 Sol: Problem Desc: Find which edge to remove and add so as to minimise the number of hops to travel between flights. Problem Sol: Just link the center of diameters. Brute force which edge
- UVA 112 Sol, UVA 112 Prob: Just see how I processed the input.
- UVA 10029 Sol, UVA 10029 Prob: Edit steps, (lexicographic sequence
- UVA 536 Sol, UVA 536 Prob: Construct binary tree with preorder and inorder
- UVA 10459 Sol, UVA 10459 Prob: Centers of diameters are best where as corners are worst.
- Tree Destruction, Sol:

2.3.3 MVC on Tree

```
int mvc(int at, int flag, int parent) { //You can start this
from any node, i.e. in main: int ans = min(mvc(0, 0, -1),
mvc(0, 1, -1); and handle the case n == 1 separately
   if(memo[at][flag] != -1) {
       return memo[at][flag];
   }
   if(glist[at].size() == 1 and parent != -1) { //leaf node
       return memo[at][flag] = flag;
  }
   int ans = flag;
   if(flag) // to take this
   {
       for(auto to : glist[at]) {
           if(to != parent)
```

```
ans += min(mvc(to, 0, at), mvc(to, 1, at));
    }
} else { //we must take its neighbours
    for(auto to : glist[at]) {
        if(to != parent)
            ans += mvc(to, 1, at);
return memo[at][flag] = ans;
// Similar code can be written to find MWIS.
```

2.3.4 MWIS on Tree

```
int mwis(int at, int flag, int parent) { //You can start this
from any node, i.e. in main: int ans = max(mwis(0, 0, -1),
mwis(0, 1, -1)); and handle the case n == 1 seperately
   if(memo[at][flag] != -1) {
       return memo[at][flag];
  if(glist[at].size() == 1 and parent != -1) { //leaf node
       flag ? ans = weight[at] : 0;
        return ans;
   if (flag) {
       ans = weight[v];
       for (auto to : glist[at]) {
          if (to != parent)
            ans += mwis (to, 0, at);
       }
  } else {
       ans = 0;
       for (auto &to : glist[at]) {
            ans += max (mwic(to, 1, at), mwic(to, 0, at));
   return memo[at][flag] = ans;
  // Similar code can be written to find MWIS.
```

2.4Terminology

- A vertex cover is a subset of vertices S, such that for each edge (u, v) in graph, either u or v (or both) are in S.
- vertices u, v in S are adjacent in graph.
 - an independent set. I.e. MinVC + MaxIS = V.
- It is easy to see why it is the case, firstly for vertices in the complement of MinVC, they can't have any edge between them as then our MinVC isnt VC. Also if we add to this IS any more vertex then it wont be an IS. Suppost it is not the maximum then there occurs an MIS with size more than this, clearly its complement is VC which would have size smaller than our MinVC which leads to contradiction.
- Complement of VC is an IS and vice versa (easy to see)
- Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set $S \subseteq V$ whose total weight is minimum subject to every edge of G has at least one end point in S.
- In the maximum-weight independent set problem, the input is an undirected graph with weights on its vertices and the output is an independent set with maximum total weight.
- Again it happens to be the case that size of MWVC + MWIS = Totalweight = V.
- A matching is a subset of edges such that each vertex is adjacent to at most one edge in the subset. Clearly Matching edges can be atmost |V|/2 as each edge joins two vertices and now no other matched edge can touch them.
- Note: This MVC, MIS, MM, is defined for undirected, unweighted graph.
- Once we have maximum matching. Clearly since these matching edges are as well edges of the graph and minimum vertex cover should have vertices that are adjacent to these edges. But since matching edges have no vertex in common, size of minimum vertex cover is atleast the size of maximum matching.
- Maximum matchings can be found in polynomial time for any graph, while minimum vertex cover is NP complete. Thus, finding maximum independent sets is another NP-complete problem.
- The equivalence between matching and covering articulated in Kőnig's theorem allows minimum vertex covers and maximum independent sets to be computed in polynomial time for bipartite graphs, despite the NP-completeness of these problems for more general graph families.

2.5 Konigs Theorem

Size of Min VC in a bipartite graph is equal to the size of Max Matching in that graph.

Kőnig's theorem can be proven in a way that provides additional useful information beyond just its truth: the proof provides a way of constructing a minimum vertex cover from a maximum matching.

Proof: Let G=(V,E) be a bipartite graph, and let the vertex set V V be partitioned into left set L and right set R. Suppose that M is a maximum matching for G.

let U be the set of unmatched vertices in L (possibly empty), and let Z be the set of vertices that are either in U or are connected to U by alternating paths. Let $K = (L \setminus Z) \cup (R \cap Z)$.

Every edge e in E either belongs to an alternating path (and has a right endpoint in K, or it has a left endpoint in K. For, if e is matched but not in an alternating path, then its left endpoint cannot be in an alternating path (for such a path would have had to have included e) and thus belongs to $L \setminus Z$. Alternatively, if e is unmatched but not in an alternating path, then its left endpoint cannot be in an alternating path, for such a path could be extended by adding e to it. Thus, K forms a vertex cover.

Additionally, every vertex in K is an endpoint of a matched edge. For, every vertex in $L \setminus Z$ is matched because Z is a superset of U. And every vertex in $R \cap Z$ must also be matched, for if there existed an alternating path to an unmatched vertex then changing the matching by removing the matched edges from this path and adding the unmatched edges in their place would increase the size of the matching. However, no matched edge can have both of its endpoints in K. Thus, K is a vertex cover of cardinality equal to M, and must be a minimum vertex cover. Small diagram to understand proof well.

Matched edges are (2, 4) and (3, 5). $U = \{1\}, Z = \{1, 5, 3\}, L = \{1, 2, 3\}, K = \{2, 5\}$

2.6 Bipartite Matching

2.6.1 Hopcroft Karp

- 1. Free node or vertex: Given a matching M, a node that is not a part of mathing is called a free node. Initially all vertices are free.
- 2. Matching and not matching edges: Given a matching M, edges that are part of matching are called matching edges and edges that are not part of M (or connect free nodes) are called non matching edges.
- Alternating Paths: Given a matching M, an alternating path is a path in which edges belong alternatively to the matching and not matching.
- 4. **Augmenting path:** Given a matching M, an augmenting path is an alternating path that starts from and ends on free vertices.
- 5. The Hopcroft karp algorithm is based on below concept:
- A matching M is not maximum if there exist an augmenting path. It is also true other way, i.e., a matching is maximum if no augmenting path exists.
- 7. Hopcroft Karp Algo $O(\sqrt{V} * E)$:
 - (a) Initialize maximal matching M as empty.
 - (b) While there exists an augmenting path P, remove matching edges of P from M and add not matching edges of P to M. (This increases size of M by 1 as P starts and ends with a free vertex).
 - (c) Return M.

The following is the sol to problem UVA 11419 where we were just required to find minimum vertex cover.

```
#include <bits/stdc++.h>
#define FOR(i, a, b) for (int i = a; i <= b; i++)
#define REP(i, n) for (int i = 0; i < n; i++)
#define pb push_back
#define INF 500000000
#define maxN 1010
using namespace std;
int n, m, matchX[maxN], matchY[maxN];
int dist[maxN];
vector<int> adj[maxN];
bool Free[maxN];
bool bfs() {
    queue<int> Q;
    FOR (i, 1, n)
```

```
if (!matchX[i]) { // only free vertices are pushed
        in queue and have their distance set to 0. Thus
        already matched vertices in X will have their
        distance set to INF.
            dist[i] = 0;
            Q.push(i);
        }
        else dist[i] = INF;
    dist[0] = INF; // 0 is nil
    // Thus we would always start from free vertices
    traverse then alternating path and if in end from \boldsymbol{Y}
    there is no match i.e. its a free vertice, we found an
    augmenting path.
    // Side Notes: If we popped an already matched vertex
    from queue then it wont go to its matching edges
    neighbor as its matchY is popped vertex itself and
    hence it wont have distance set to INF.
    while (!Q.empty()) {
        int i = Q.front(); Q.pop();
        REP(k, adj[i].size()) {
            int j = adj[i][k];
            if (dist[matchY[j]] == INF) {
                dist[matchY[j]] = dist[i] + 1;
                Q.push(matchY[j]);
            }
        }
    }
    return dist[0] != INF;
bool dfs(int i) {
    if (!i) return true; // to handle nil.
    REP(k, adj[i].size()) {
        int j = adj[i][k];
        if (dist[matchY[j]] == dist[i] + 1 &&
        dfs(matchY[j])) {
            matchX[i] = j;
            matchY[j] = i;
            return true;
        }
    }
    dist[i] = INF;
    return false;
}
int hopcroft_karp() {
    int matching = 0;
    while (bfs())
        FOR (i, 1, n)
            if (!matchX[i] && dfs(i))
                matching++;
    return matching;
void dfs_konig(int i) {
    Free[i] = false;
    REP(k, adj[i].size()) {
        int j = adj[i][k];
        if (matchY[j] && matchY[j] != INF) {
            int x = matchY[j];
            matchY[j] = INF; // as we have undirected
            edge, we dont want to traverse that same edge
            again, so its just a way of noting that.
            if (Free[x]) dfs_konig(x);
        }
    }
}
void solve() {
    printf("%d", hopcroft_karp());
    FOR (i, 1, n)
        if (!matchX[i])
            dfs_konig(i); // finding Z.
    FOR (i, 1, n)
        if (matchX[i] && Free[i]) // i.e. in L but not in
        z.
            printf(" r%d", i);
    FOR (j, 1, m)
        if (matchY[j] == INF) // i.e. we traversed this
        edge i.e. its in R intersection Z.
            printf(" c%d", j);
    putchar('\n');
```

```
}
void initialize() {
    FOR (i, 1, n) {
        adj[i].clear();
        matchX[i] = 0;
        Free[i] = true;
    7
    memset(matchY, 0, (m + 1) * sizeof(int));
int ar[5];
char buff[20];
void read_line() {
    gets(buff);
    int len = strlen(buff), i = 0, m = 0;
    while (i < len)
        if (buff[i] != ' ') {
            ar[m] = 0;
            while (i < len && buff[i] != ' ')
                ar[m] = ar[m] * 10 + buff[i++] - 48;
        }
        else i++;
}
main() {
    int k, u, v;
    while (scanf(" %d %d %d ", &n, &m, &k) != EOF) {
        if (!n && !m && !k) break;
        initialize();
        while (k--) {
            read_line();
            adj[ar[0]].pb(ar[1]);
        }
        solve();
    }
}
```

2.6.2 Using max flow algo

Our MM problem can be reduced to max flow problem by assigning a dummy source vertex s connected to all vertices in set 1 and all vertices in set 2 are connected to dummy sink vertex t. The edges are directed (s to u, u to v, v to t) where u belongs to set 1 and v belongs to set 2). By setting capacities of all edges in this flow graph to 1, we satisfy the criteria of matching. Thus, this max flow will be equal to the max. no. of matchings on the original graph.

2.7Paths

- \bullet An \mathbf{euler} \mathbf{path} is defined as a path in a graph which visits each edge of the graph exactly once. Similarly and euler tour/cycle is an euler path which starts & ends on the same vertex. A graph which has either an euler path or an euler tour is called eulerian.
- ullet For undirected graph euler tour exist iff all vertices have even deg.
- \bullet For undirected graph euler path exists iff all except 2 vertices have even deg. This euler path will start from one of thee odd deg vertices and end in the other.
- ullet For directed graph, euler tour exists iff every verte has equal indeg
- ullet For directed graph, euler path exists iff at most one vertex has (outdeg) - (indeg) = 1, at most one vertex has (indeg) - (outdeg) = 1, every other vertex has indeg = outdeg.

```
// Code to find euler tour (will be able to euler path provided
we start with correct vertex) for an undirected graph.
list<int> cyc; // we need list for fast insertion in the middle
void EulerTour(list<int>::iterator i, int u) {
    for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
        ii v = AdjList[u][j];
        if (v.second) { // if this edge can still be used/not
        removed
            v.second = 0; // make the weight of this edge to be
            0 ('removed')
            for (int k = 0; k < (int)AdjList[v.first].size();</pre>
            k++) {
                ii uu = AdjList[v.first][k]; // remove
                bi-directional edge
                if (uu.first == u && uu.second) {
                    uu.second = 0:
            }
            EulerTour(cyc.insert(i, u), v.first);
```

```
}
// inside int main()
EulerTour(cyc.begin(), A); // cyc contains an Euler tour
starting at {\tt A}
for (list<int>::iterator it = cyc.begin(); it != cyc.end();
it++)
    printf("%d\n", *it); // the Euler tour
2.8 SCC
Strongly Connected Components. A directed graph is strongly connected
if there is a path between all pairs of vertices. A strongly connected compo-
nent (SCC) of a directed graph is a maximal strongly connected subgraph
```

```
2.8.1 Tarjan
vi dfs_num, dfs_low, S, visited; // global variables
void tarjanSCC(int u) {
   dfs_low[u] = dfs_num[u] = dfsNumberCounter++; // dfs_low[u]
    <= dfs num[u]
   S.push_back(u); // stores u in a vector based on order of
    visitation
   visited[u] = 1:
    for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
        ii v = AdjList[u][j];
       if (dfs_num[v.first] == UNVISITED)
            tarjanSCC(v.first);
        if (visited[v.first]) // condition for update
            dfs_low[u] = min(dfs_low[u], dfs_low[v.first]);
    if (dfs_low[u] == dfs_num[u]) { // if this is a root
    (start) of an SCC
       printf("SCC %d:", ++numSCC); // this part is done after
        recursion
        while (1) {
           int v = S.back(); S.pop_back(); visited[v] = 0;
            printf(" %d", v);
            if (u == v) break;
       printf("\n");
// inside int main()
dfs_num.assign(V, UNVISITED); dfs_low.assign(V, 0);
visited.assign(V, 0);
dfsNumberCounter = numSCC = 0;
for (int i = 0; i < V; i++)
    if (dfs_num[i] == UNVISITED)
       tarjanSCC(i);
```

2.8.2 Kosaraju

- 1. It is obvious that strongly connected components do not intersect each other, i.e. this is a partition of all graph vertices. Thus we can give a definition of condensation graph G^{SCC} as a graph containing every strongly connected component as one vertex. Each vertex of the condensation graph corresponds to the strongly connected component of the graph G. There is a directed edge b/w two vertice C_i and C_j of the condensation graph iff there are 2 vertices $u \in C_i$ and $v \in C_i$ such that there is an edge in initial graph, i.e. $(u, v) \in E$. The most important property of the condensation grph is that it is acyclic.
- 2. Let C&C' be 2 diff SCC & there is an edge (C,C') in a condensation graph then tout[C] > tout[C'], note: $tout[C] = max_{v_i \in C}(tout[v_i])$.

```
vector < vector<int> > g, gr;
vector<bool> used;
vector<int> order, component;
void dfs1 (int v) {
    used[v] = true;
    for (size_t i=0; i<g[v].size(); ++i)</pre>
        if (!used[ g[v][i] ])
            dfs1 (g[v][i]);
    order.push_back (v);
}
void dfs2 (int v) {
    used[v] = true;
    component.push_back (v);
    for (size_t i=0; i<gr[v].size(); ++i)</pre>
        if (!used[ gr[v][i] ])
            dfs2 (gr[v][i]);
}
```

```
int main() {
   int n;
    ... reading n ...
    for (;;) {
        int a, b;
        ... reading next edge (a,b) ...
        g[a].push_back (b);
        gr[b].push_back (a);
    used.assign (n, false);
    for (int i=0; i<n; ++i)</pre>
        if (!used[i])
            dfs1 (i):
    used.assign (n, false);
    for (int i=0; i<n; ++i) {
        int v = order[n-1-i];
        if (!used[v]) {
            dfs2 (v):
            ... printing next component ...
            component.clear();
        }
    }
}
```

2.9 SAT

2.9.1 1 SAT

 $f = x_1 \wedge x_2 \wedge \cdots \wedge x_n$ is satisfiable iff there isnt both $x_i \& \bar{x_i}$ in f.

2.9.2 2 SAT

 $f = (x_1 \vee y_1) \wedge \cdots \wedge (x_n \vee y_n)$ is satisfiable iff both $x_i \& \bar{x_i}$ are not in same SCC as one them has to be true and in SCC one value is true all others must be true. For each $(x_i \vee y_i)$ add 2 edges $\bar{x_i} \to y_i$ and $\bar{y_i} \to x_i$.

After seeing whether the soln exists or not, soln can be constructed with the help of Kosaraju's algo, let comp[v] denote the index of strongly connected component to which the vertex v belongs. Then, if $comp[x] < comp[\bar{x}]$ we assign x with false and true otherwise.

2.10 DAG

topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering.

A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering.

```
void dfs (int from) {
    visited[from] = true;
    for (int i = 0; i < adjlist[from].size (); i++) {
        if (!visited[adjlist[from][i]]) dfs (adjlist[from][i]);
    }
    ts.pb (from);
}
// in main
for (int i = 0; i < V; i++) {
    if (!visited[i]) {
        dfs(i);
    }
}
reverse (ts.begin (), ts.end ());</pre>
2.10.1 SSSP
```

Do topological sort then relax edges according to this order.

2.10.2 SSLP

Simply negate all the edge weights and run SSSP as above.

Pay attention on the word "we are not allowed to go back" so dont use normal SSSP algo but relax edges according to the required order.

2.10.3 Counting Paths in DAG

find toposort. Set numPaths[firstElement] = 1. Then we process the remaining vertices one by one acc. to toposort. When processing a vertex u, we update each neighbour v of u by setting numPaths[v] += numPaths[u].

2.10.4 Min Path cover on DAG

This is described as a problem of finding the min. no. of paths to cover each vertex on DAG. The start of each path can be arbitrary, we are just interested in min. no. of paths.

Construct a bipartite graph $G' = (V_out \cup V_in, E')$ from G where $V_{out/in} = \{v \in V : vhaspoitiveout/indegree\}$

```
E' = \{ (u, v) \in (V_out, V_in) : (u, v) \in E \}
```

G' is a bipartite graph, do max. matching on it. Say answer obtained is m that means ans is |V|-m as initially —V— vertices can be convered with —V— paths of length of length 0 (the vertices themselves). One matching b/w vertex a and b using edge (a, b) says that we can use one less path as edge (a, b) in E' can cover path $a \in V_out\&b \in V_in$

2.11 APSP Floyd Warshalls

```
for (int k = 0; k < V; k++) {
    for (int i = 0; i < V; i++) {</pre>
        for (int j = 0; j < V; j++) {
             if (adjmat[i][j] > adjmat[i][k] + adjmat[k][j]) {
                adjmat[i][j] = adjmat[i][k] + adjmat[k][j];
                path[i][j] = path[k][j];
        }
    }
void printPath (int u) {
    if (u == i) cout << i << " ";</pre>
    else {
        printPath (path[i][u]);
        cout << u << " ";
7
// in main printPath(j).
// Initially path[i][j] = i for edge (i, j);
\ensuremath{//} in APSP problems, always do
cin >> u >> v >> wt;
adjmat[u][v] = min (graph[u][v], wt);
// very initially
if (i != j) adjmat[i][j] = inf;
else adjmat[i][j] = 0;
```

- If diagonal (initially 0) becomes negative = negative cycle
- If diagonal (initially inf) becomes finite = cycle
- The smallest non negative adjmat[i][i] for all i is the cheapest cycle
- Transitive closure to determine if i is connected to j or not.

```
adjmat[i][j] |= (adjmat[i][k] & adjmat[k][j])
```

- Diameter of a graph is maximum shortest path distance between any pair of vertices of that graph. So do simply max (adjmat[i][j] for all i, j) after doing APSP.
- SCC of a directed graph (aliter): first do transitive closure then to find all members of an SCC that contains vertex i, check all vertices j, if (adjmat[i][j] && adjmat[j][i]) is true then vertex i and j belong to same SCC.
- Minimax: Minimax path problem of finding the minimum of maximum edge weight among all posssible paths between two vertices i to j. The reverse problem maximin is defined similarly.

```
adjmat[i][j] = min (adjmat[i][j], max (adjmat[i][k],
adjmat[k][j]));
```

2.12 MST (Kruskal)

```
// O (ElogV)
// Connected, undirected weighted graph
vector<pair<int, ii> > edgelist;
for (int i = 0; i < E; i++) {
    cin >> u >> v >> w;
    edgelist.pb (make_pair(w, ii (u, v)));
}
sort(edgelist.begin (), edgelist.end ());
int mstCost = 0;
UFDS uf (V);
for (int i = 0; i < E and uf.numSets > 1; i++) {
    auto front = edgelist[i];
    if (!uf.isSameSet (front.second.first,
    front.second.second)) {
        mstCost += front.first:
        uf.unionSet (front.second.first, front.second.second);
}
cout << mstCost;</pre>
```

- $\bullet\,$ If maximum instead of minimum, simply sort by dec. edge weights
- Minimum spanning subgraph: first union all these fixed edges, then run MST as normal
- Minimum spanning forest (we want to form a forest of k connected components (k subtrees)) in the least cost way; soln: run kruskal until no. of connected components (numsets) equals k.
- Second best ST O(VE). While doing this also check that in resultant ST, numdisjointset == 1 or not.

2.13 SSSP

2.13.1 Dijkstra

```
// Subpaths of shortest paths from u to v are shortest paths // This implementation would work even if the graph has negative edge provided there is no negative cycle // O(ElogV) struct node {
```

```
vertex = n; cost = c;
    bool operator < (const node &node) const {</pre>
        return cost > node.cost; // as priority queue is max
    }
int dijkstra (int s, int e) {
    memset (dist, inf, sizeof (dist));
    dist[s] = 0;
    priority_queue<node> pq;
    pq.push (node (s, 0));
    int from, to, wt, cost;
    while (!pq.empty ()) {
        from = pq.top ().vertex;
        cost = pq.top ().cost;
        pq.pop ();
        if (from == e) return dist[e];
        if (cost == dist[from]) { // lazily deleting
             for (int i = 0; i < adjlist[from].size (); i++) {</pre>
                 to = adjlist[form][i].first;
                 wt = adjlist[from][i].second;
                 if (dist[to] > dist[from] + wt) {
                     dist[to] = dist[from] + wt;
                     p[to] = from;
                     pq.push (node (to, dist[to]));
                 }
            }
        }
    }
  • Hotel Booking Problem, sol
  • Fuel Tank problem, sol
  • Logical Expression, Sol: pr denotes from what grammer it is derived.
    Also number of functions on n variables = 2^{2^{i}}
2.13.2 Bellman ford
// For negative edge weights provided we have no negative
cvcles.
// Idea: Shortest path must have atmost |V| - 1 edges.
// Thus if we relax each each edge |V| - 1 times then we would
have got the answer as in first relaxation edge(start,
neighbour) will be correct and so on...
vi dist (V, inf);
dist[s] = 0:
bool modified = true;
for (int i = 0; i < V - 1 and modified; i++) {
    modified = false;
    for (int u = 0; u < V; u++) {
    for (int j = 0; j < adjlist[u].size (); <math>j++) {
             ii v = adjlist[u][j];
             if (dist[v.first] > dist[u] + v.second) {
                 dist[v.first] = dist[u] + v.second;
                 p[v.first] = u;
                 modified = true;
            }
        }
   }
// to check for negative cycle
void solve()
{
    vector<int> d(n):
    vector<int> p(n, -1);
    int x;
    for (int i = 0; i < n; ++i) {
        x = -1;
        for (Edge e : edges) {
            if (d[e.a] + e.cost < d[e.b]) {</pre>
                 d[e.b] = d[e.a] + e.cost;
                 p[e.b] = e.a;
                 x = e.b;
            }
        }
    }
    if (x == -1) {
        cout << "No negative cycle found.";</pre>
    } else {
```

int cost, vertex;

node (int n, int c) $\{$

node () {}

```
vector<int> cycle;
        for (int v = x;; v = p[v]) {
            cycle.push_back(v);
            if (v == x && cycle.size() > 1)
                break:
        }
        reverse(cycle.begin(), cycle.end());
        cout << "Negative cycle: ";</pre>
        for (int v : cycle)
           cout << v << ' ';
        cout << endl;</pre>
   }
}
// To check for negative cycle, run this one more time
int x = -1;
for (int u = 0; u < V; u++) {
    for(int j = 0; j < adjlist[u].size (); j++) {</pre>
        ii v = adjlist[u][j];
        if (dist[v.first] > dist[u] + v.second) {
            dist[v.first] = dist[u] + v.second;
            p[v.first] = u;
            x = v.first;
        }
    }
if (x != -1) \{ // \text{ negative cycle} \}
    int y = x;
    for (int i=0; i<n; ++i)
        y = p[y];
    vector<int> path;
    for (int cur=y; ; cur=p[cur])
        path.push_back (cur);
        if (cur == y && path.size() > 1)
            break;
    }
    reverse (path.begin(), path.end());
    cout << "Negative cycle: ";</pre>
    for (size_t i=0; i<path.size(); ++i)</pre>
        cout << path[i] << ' ';
  • Hopeless/winnable UVA 10557: Basically check for positive cycle and
    see if it is connected from that.

    Stop problem UVA 11280.

2.14 Max Flow
2.14.1 Edmond karps
// 0 (V * E^2)
void augment(int v, int minEdge) { // traverse BFS spanning
tree from s->t
    if (v == s) { f = minEdge; return; } // record minEdge in a
    global var f
    else if (p[v] != -1) { augment(p[v], min(minEdge,
    res[p[v]][v]));
    res[p[v]][v] -= f; res[v][p[v]] += f; }
    // in main
    mf = 0; // mf stands for max_flow
    while (1) { // O(VE^2) (actually O(V^3 E) Edmonds Karp's
    algorithm
       f = 0;
        // run BFS
        vi dist(MAX_V, INF); dist[s] = 0; queue<int> q;
        p.assign(MAX_V, -1); // record the BFS spanning tree,
        from s to t!
        while (!q.empty()) {
            int u = q.front(); q.pop();
            if (u == t) break; // immediately stop BFS if we
            already reach sink t
            for (int v = 0; v < MAX_V; v++) // note: this part
                if (res[u][v] > 0 && dist[v] == INF)
                     dist[v] = dist[u] + 1, q.push(v), p[v] = u;
                     // 3 lines in 1!
        }
        augment(t, \ INF); \ // \ find the min edge weight 'f' in
        this path, if any
```

for (int i = 0; i < n; ++i)

x = p[x];

```
if (f == 0) break; // we cannot send any more flow ('f'
= 0), terminate
  mf += f; // we can still send a flow, increase the max
  flow!
}
```

• Reason need why we to consider back flow: SO if reach that by back flow we destination then could have done straight means we in

- VIMP Note: if you are traversing through all 'v' like in the code above then its fine but otherwise if you do glist[u].pb(v) you **must** also do glist[v].pb (u) but only set res[u][v].
- Lets define an s-t cut C = (s-component, t-component) as a partition of V s.t. source s belongs to s-component and sink t belongs to t-component. Lets also define a cut-set to be set {(u, v) ∈ E|u ∈ s − comp, v ∈ t − comp} such that if all edges in cut-set of C are removed, max flow from s to t is 0. (i.e. s and t are disconnected). The cost of an s-t cut C is defined by the sum of capacities of edges in cut-set of C. The min cut problem (min cut) is to minimize the amount of capacity of an s-t cut. Sol: After running max flow algo, do bfs/dfs from s, all vertices reachable from s using positive weighted edges in the residual graph belong to s-comp. and remaining belong to t-comp. and mf = min cut value. This is max-flow min-cut theorem.
- Multisource/multisink: Create a supersource ss and super sing st.
 Connect ss with all s with infinite capacity and also connect all t with st with infinite capacity, then run edmonds karps as per normal.
- Vertex capacities: Network flow variant where capacities are not just defined along the edges but also on the vertices. Split each v to vin and vout, reassigning its incomint/outgoing edges to vin/vout resp. and finally putting the original vertex v's weight as the weight of edge vin -> vout. Note that this will double the number of vertices
- Max Independent paths: two paths are said to be independent if they do not share any vertex apart from s and t. Soln: construct a flow network N = (V, E) from G with vertex capacitites, where N is the carbon copy of G except that the capacity of each v in V is 1 (i.e. each vertex can only be used once) and the capacity of each edge e in V is also 1. Then run edmonds karps algo as per normal.
- Max edge disjoint paths: finding the maximum number of edge disjoint paths rom s to t is simlar to finding max independent paths. The only difference is that this time we do not have any vertex capacity (i.e. 2 edge disjoint paths can still share the same vertex)
- Crimewave, sol

• MWIS on a bipartite graph

Problem is equivalent to finding the minimum weight vertex cover in the graph. The latter can be solved using maximum flow techniques: Introduce a super-source S and a super-sink T. connect the nodes on the left side of the bipartite graph to S, via edges that have their weight as capacity. Do the same thing for the right side and sink T. Assign infinite capacity to the edges of the original graph.

Now find the minimum S-T cut in the constructed network. The value of the cut is the weight of the minimum vertex cover. To see why this is true, think about the cut edges: They can't be the original

edges, because those have infinite capacity. If a left-side edge is cut, this corresponds to taking the corresponding left-side node into the vertex cover. If we do not cut a left-side edge, we need to cut all the right-side edges from adjacent vertices on the right side.

Thus, to actually reconstruct the vertex cover, just collect all the vertices that are adjacent to cut edges, or alternatively, the left-side nodes not reachable from S and the right-side nodes reachable from S

2.15 Minimum Cost Flow

Given a network G consisting of n vertices and m edges. For each edge (generally speaking, oriented edges, but see below), the capacity (a nonnegative integer) and the cost per unit of flow along this edge (some integer) are given. Also the source s and the sink t are marked.

For a given value K, we have to find a flow of this quantity, and among all flows of this quantity we have to choose the flow with the lowest cost. This task is called minimum-cost flow problem.

Sometimes the task is given a little differently: you want to find the maximum flow, and among all maximal flows we want to find the one with the least cost. This is called the minimum-cost maximum-flow problem.

Both these problems can be solved effectively with the algorithm of sucessive shortest paths.

First we only consider the simplest case, where the graph is oriented, and there is at most one edge between any pair of vertices (e.g. if (i,j) is an edge in the graph, then (j,i) cannot be part in it as well).

Let U_{ij} be the capacity of an edge (i, j) if this edge exists. And let C_{ij} be the cost per unit of flow along this edge (i, j). And finally let $F_{i,j}$ be the flow along the edge (i, j). Initially all flow values are zero.

We modify the network as follows: for each edge (i,j) we add the reverse edge (j,i) to the network with the capacity $U_{ji}=0$ and the cost $C_{ji}=-C_{ij}$. Since, according to our restrictions, the edge (j,i) was not in the network before, we still have a network that is not a multigraph (graph with multiple edges). In addition we will always keep the condition $F_{ji}=-F_{ij}$ true during the steps of the algorithm.

We define the residual network for some fixed flow F as follow (just like in the Ford-Fulkerson algorithm): the residual network contains only unsaturated edges (i.e. edges in which $F_{ij} < U_{ij}$), and the residual capacity of each such edge is $R_{ij} = U_{ij} - F_{ij}$.

Now we can talk about the algorithms to compute the minimum-cost flow. At each iteration of the algorithm we find the shortest path in the residual graph from s to t. In contrary to Edmonds-Karp we look for the shortest path in terms of the cost of the path, instead of the number of edges. If there doesn't exists a path anymore, then the algorithm terminates, and the stream F is the desired one. If a path was found, we increase the flow along it as much as possible (i.e. we find the minimal residual capacity R of the path, and increase the flow by it, and reduce the back edges by the same amount). If at some point the flow reaches the value K, then we stop the algorithm (note that in the last iteration of the algorithm it is necessary to increase the flow by only such an amount so that the final flow value doesn't surpass K).

It is not difficult to see, that if we set K to infinity, then the algorithm will find the minimum-cost maximum-flow. So both variations of the problem can be solved by the same algorithm.

The case of an undirected graph or a multigraph doesn't differ conceptually from the algorithm above. The algorithm will also work on these graphs. However it becomes a little more difficult to implement it.

An undirected edge (i,j) is actually the same as two oriented edges (i,j) and (j,i) with the same capacity and values. Since the above-described minimum-cost flow algorithm generates a back edge for each directed edge, so it splits the undirected edge into 4 directed edges, and we actually get a multigraph.

How do we deal with multiple edges? First the flow for each of the multiple edges must be kept separately. Secondly, when searching for the shortest path, it is necessary to take into account that it is important which of the multiple edges is used in the path. Thus instead of the usual ancestor array we additionally must store the edge number from which we came from along with the ancestor. Thirdly, as the flow increases along a certain edge, it is necessary to reduce the flow along the back edge. Since we have multiple edges, we have to store the edge number for the reversed edge for each edge.

There are no other obstructions with undirected graphs or multigraphs. Sample Prob: UVA 10594

2.16 More Problems

- UVA 928: just bfs with dp
- $\bullet\,$ That worst feast problem UVA 10246, sol
- Atcoder
- df

3 Some Basic

 #pragma GCC optimize("Ofast") // tells the compiler to optimize the code for speed to make it as fast as possible (and not look for space)

```
#pragma GCC optimize ("unroll-loops") // normally if we
have a loop there is a "++i" instruction somewhere. We
normally dont care because code inside the loop requires
much more time but in this case there is only one
instruction inside the loop so we want the compiler to
optimize this.
#pragma GCC
target("sse,sse2,sse3,sse3,sse4,popcnt,abm,mmx,avx,tune=native")
// tell the compiler that our cpu has simd instructions and
allow him to vectorize our code
// Backtracking
void bktk () {
    if (state == complete ) {
        // process it
    } else {
        for each possible next move P {
            apply move P;
            bktk ();
            undo move P;
        }
    }
}
// ex1: generating permutations O(n! * n)
// better use next_permutation.
// think of doing such things for n <= 11. 11! ~ 4 * 10^7 \,
void bktk () {
    if (perm.size () == n) \{
        // process permutation
    } else {
        for (int i = 0; i < n; i++) {
            if (!chosen[i]) {
                chosen[i] = true:
                perm.push_back (i);
                bktk ();
                perm.pop_back ();
                chosen[i] = false;
        }
    }
// ex2: generating subsets
void bktk (int k) {
    if (k == n) {
        // process subset
    } else {
        // Move one is to not push it and move 2 is to
        consider it.
        bktk (k + 1):
        subset.push_back(k);
        bktk (k + 1);
        subset.pop_back;
// better way to generate subsets O(2^n) so valid for n <=
25. So whenever you see this, think of iterating through
subsets
// 1 << 0 = 1.
for (int i = 0; i < (1 << n); i++) {
    for (int b = 0; b < n; b++) {
        if (i & (1 << b)) {
            subset.pb (b);
        // process subset
    }
}
```

- Remember that just like we could have solved this using binary search, we can actually solve many problems which ask to find optimal value using binary search.
- Outputing a double or even int my have an exponential form so it is better to do ;; fixed ;; s...(0).
- Range of double is 10^{15}
- Inbuilt swap can be used to basically swap anything.
- ceil(m/a) = (m+a-1)/m
- Consider m*n surface, you have a sq. of size a*a. Min. no. of squares to cover completely the surface? Ans: ceil(m/a) * ceil(n/a)
- Not necessary to cover the border cells? Ans: m/a * n/a
- Note: Sides of the square must be parallel to grid.
- lower_bound Returns an iterator pointing to the first element in the range [first,last) which does not compare less than val. Unlike upper_bound, the value pointed by the iterator returned by this function may also be equivalent to val, and not only greater. If all the

element in the range compare less than val, the function returns last.

- upper_bound Returns an iterator pointing to the first element in the range [first,last) which compares greater than val. If no element in the range compares greater than val, the function returns last.
- /* we need to do binary search for range [st + 1, en -1], i.e. [st + 1, en). */ if (binary_search (arr.begin() + st + 1, arr.begin() + en, leftover_))
- If you want to iterate through subsets of fixed size k, you may want to use k for loops.
- One can write i = (m % n == 0 ? n 1 : m % n 1) as i = (m + n - 1) % n.

We can use cin.peek () to see the next available character

- 10111010100000000 >>= 8 => num is 10111010 similarly num <<= 8 implies num is 10000000
- tictactoe game starts by placing 'X' so if in between $O_cnt = X_cnt$ and X has win that means invalid game. And if $O_c nt + 1 = X_c nt$ and O has win that means not a valid game.

```
24_{hours} = 10_{decimalHours}
                                         (4)
```

$$24 * 60 * 60 * 100_{normalCC} = 10 * (100^{3})_{decimalCC}$$
 (5)

$$1_{decimalCC} = 0.864_{normalCC} \tag{6}$$

that means $1_{nCC} * (1_{dCC}/0.864_{nCC})$ Would give us dCC

- XOR is associative and commutative
- $x^x = 0, x^0 = x$.
- $x^{(string of 1's, i.e. (~0))} = x$
- $x^y = x^z$ implies y = z. (how? just take xor with x on both sides)
- Swapping 2 nos with XOR

```
x = A, y = B;
x = x ^ y;
y = x ^ y; // i.e. (A ^ B) ^ B = A
x = x ^ y; // i.e. (A ^ B) ^ A = B
```

 $\bullet~$ UVA 10309 Lights off:

}

This problem is solved using complete search technique. Notice that each bulb can be toggled by 3 switches on the same row and 1 switch on the upper row and another one on the lower row, keep this in mind as we will use it later. Our solution has three steps: 1. For the first row try all 2~10 possible combinations of switches. We expect to have some switches turned on after this step. 2. For the rest of the rows, toggle switch (i, j) if (i-1, j) is switched on, this means toggle any switch if the bulb above it (in the previous row is turned on). This step insures that all bulbs will be turned off using the switch in the next row, except the last row, as there is no next row. 3. Check the bulbs in the last row, if all bulbs are turned off, then the current solution if valid, if any of the bulbs is on, this solution is not valid. Keep track of the $\ensuremath{\operatorname{number}}$ of switches toggled in each solution, and the final result is their minimum value.

- while (first || cin >> temp) { // something }
- Interval Covering: Tell the minimum no. of intervals to cover the entire big interval.

```
void solve() {
    // Greedy Algorithm
    sort (data.begin (), data.end ());
    for (; i < data.size(); i = j) {</pre>
       if (data[i].first > rightmost) break;
       for (j = i + 1; j < data.size() and data[j].first <=</pre>
       rightmost; j++) {
           if (data[j].second > data[i].second) {
               i = j;
           }
       }
       ans.push_back(data[i]);
       rightmost = data[i].second;
       if (rightmost >= m) break;
   }
    if (rightmost < m) {</pre>
       cout << 0\n;
   }
```

• **Prob:** We have a stack of turtles and we have some final permutation of them, each turtule can crawl out of its position and move to top. Determine a minimal sequence of operations to obtain the final permutation.

```
Sol:
  int mvc(int at, int flag, int parent) { //You can start
  this from any node, i.e. in main: int ans = min(mvc(0, 0, 0))
  -1), mvc(0, 1, -1); and handle the case n == 1 seperately
    if (memo[at][flag] != -1) {
        return memo[at][flag];
    7
    if(glist[at].size() == 1 and parent != -1) { //leaf node
        return memo[at][flag] = flag;
    }
    int ans = flag;
    if(flag) // to take this
    {
         for(auto to : glist[at]) {
             if(to != parent)
                 ans += \min(mvc(to, 0, at), mvc(to, 1, at));
    } else { //we must take its neighbours
        for(auto to : glist[at]) {
             if(to != parent)
                 ans += mvc(to, 1, at);
        }
    }
    return memo[at][flag] = ans;
    // Similar code can be written to find MWIS.
          #define MAX_N 2 // Fibonacci matrix,
         increase/decrease this value as needed
  struct Matrix { int mat[MAX_N][MAX_N]; }; // we will return
 a 2D array
 Matrix matMul(Matrix a, Matrix b) { // O(n^3)
    Matrix ans; int i, j, k;
    for (i = 0; i < MAX_N; i++)</pre>
        for (j = 0; j < MAX_N; j++)
             for (ans.mat[i][j] = k = 0; k < MAX_N; k++) //</pre>
             if necessary, use
                 ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
                 // modulo arithmetic
    return ans:
 Matrix matPow(Matrix base, int p) { // O(n^3 log p)
    Matrix ans; int i, j;
    for (i = 0; i < MAX_N; i++) for (j = 0; j < MAX_N; j++)
             {\tt ans.mat[i][j] = (i == j); // prepare identity}
             matrix
    while (p) { // iterative version of Divide & Conquer
    exponentiation
         if (p & 1) ans = matMul(ans, base); // if p is odd
         (last bit is on)
        base = matMul(base, base); // square the base
        p \gg 1; // divide p by 2
    }
    return ans;
• // Months are 0 indexed
 //The following Code solves problems: UVA 893
  int numberDaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31,
 30, 31, 30, 31};
  int numberDaysInMonthLeap[] = {31, 29, 31, 30, 31, 30, 31,
 31, 30, 31, 30, 31};
 bool IsLeapYear(int year)
 {
    return year % 4 == 0 && (year % 100 != 0 || year % 400
  int MonthToDay(int month, int year)
 {
    int daysBefore = 0;
    for (int i = 0; i < month; ++i)</pre>
        davsBefore += numberDavsInMonth[i]:
    if (month > 1 && IsLeapYear(year))
        ++daysBefore;
    return daysBefore;
 }
```

```
int YearToDay(int year)
     int base = vear * 365:
     int numLeapYears = year / 4 - year / 100 + year / 400;
     return base + numLeapYears;
  }
  int GetYearFromNumDays(int& numDays)
     int year = 1;
     int sizeOfYear = 365;
     while (numDays > sizeOfYear)
         numDays -= sizeOfYear;
         ++vear:
         sizeOfYear = (IsLeapYear(year)) ? 366 : 365;
     return year;
  }
  int GetMonthFromNumDays(int& numDays, int year)
     int month = 0;
     int * numDayUsed = (IsLeapYear(year)) ?
     {\tt numberDaysInMonthLeap} \ : \ {\tt numberDaysInMonth};
     for (;numDays > numDayUsed[month]; ++month)
         numDays -= numDayUsed[month];
     return month + 1;
  }
  int main()
     int dayForward, day, month, year;
     while (cin >> dayForward >> day >> month >> year, year)
     {
          --month:
         day += MonthToDay(month, year);
          --vear;
         day += YearToDay(year);
         day += dayForward;
         year = GetYearFromNumDays(day);
         month = GetMonthFromNumDays(day, year);
cout << day << ' ' << month << ' ' << y</pre>
                                            ' << year << '\n';
     }
  }
  //--
  string int2roman(int n) {
     string roman:
     string ones[] = {"", "I", "II", "III", "IV", "V", "VI",
     "VII", "VIII", "IX"};
     string tens[] = {"", "X", "XX", "XXX", "XL", "L", "LX",
     "LXX", "LXXX", "XC"};
     string hundreds[] = {"", "C", "CC", "CCC", "CD", "D",
     "DC", "DCC", "DCCC", "CM"};
     string thousands[] = {"", "M", "MM", "MMM"};
     int o = n \% 10;
     n /= 10;
     int t = n \% 10:
     n /= 10;
     int h = n \% 10;
     n /= 10;
     int th = n % 10;
     roman += thousands[th] + hundreds[h] + tens[t] +
     ones[o];//Or
     //roman=thousands[th] + hundreds[h] + tens[t] + ones[o]
     but the written one is
     //faster.
     return roman;
• Algorithm to convert from infix to postifx:
```

- 1. Scan the infix expression from left to right.
- 2. If the scanned character is an operand, output it.
- 3. Else,
 - (a) If the precedence of the scanned operator is greater than the precedence of the operator in the stack (or the stack is

- empty or the stack contains a '('), push it.
- (b) Else, Pop all the operators from the stack which are greater than or equal to in precedence than that of the scanned operator. After doing that Push the scanned operator to the stack. (If you encounter parenthesis while popping then stop there and push the scanned operator in the stack.)
- 4. If the scanned character is an '(', push it to the stack.5. If the scanned character is an ')', pop the stack and and output it until a '(' is encountered, and discard both the parenthesis.
- 6. Repeat steps 2-6 until infix expression is scanned.
- 7. Print the output
- 8. Pop and output from the stack until it is not empty.

• Algorithm to convert from infix to prefix:

- 1. Properly reverse the infix exp.
- 2. Gets its postfix as above
- Reverse postfix and output it.

• Algorithm to convert from postfix to infix:

- 1. If the symbol is an operand, push it onto stack
- 2. Else, if there are fewer than two values in stack, show error. Else, pop top 2 expressions from stack (say e1, e2), put the operator (op) between them and push to stack ((e1 op e2))
- 3. After reading postfix expression, Stack should have only one item which is our answer

• Merge Sort

```
// IMP NOTE: In both bubble sort and merge sort we are
    getting minimum no. of swaps to sort an array (i.e. by
    swapping adjacent elements)
void merge(int arr[], int 1, int m, int r)
{
   int i, j, k;
   int n1 = m - 1 + 1;
   int n2 = r - m;
   /* create temp arrays */
   int L[n1], R[n2];
   /* Copy data to temp arrays L[] and R[] */
   for (i = 0; i < n1; i++)
      L[i] = arr[l + i];
   for (j = 0; j < n2; j++)
      R[j] = arr[m + 1 + j];
   /* Merge the temp arrays back into arr[1..r]*/
   i = 0; // Initial index of first subarray
   j = 0; // Initial index of second subarray
   k = 1; // Initial index of merged subarray
   while (i < n1 \&\& j < n2)
      if (L[i] <= R[j])</pre>
       {
           arr[k] = L[i];
           i++;
       }
       else///i.e we need to swap
           arr[k] = R[j];
           swaps+=n1-i;//Most important line. basically
           once we are doing arr[k]=R[j] that means we are
           ///putting R[j] before each of n1-i elements
           thus there are that many swaps.
           j++;
      }
      k++;
   }
   /* Copy the remaining elements of L[], if there
      are any */
   while (i < n1)
   {
       arr[k] = L[i];
       i++;
       k++;
   /* Copy the remaining elements of R[], if there
      are anv */
   while (j < n2)
       arr[k] = R[j];
       j++;
       k++:
```

```
}
}
/* 1 is for left index and r is right index of the
  sub-array of arr to be sorted */
void mergeSort(int arr[], int 1, int r)
   if (1 < r)
   {
       // Same as (l+r)/2, but avoids overflow for
       // large 1 and h
       int m = 1+(r-1)/2;
       // Sort first and second halves
       mergeSort(arr, 1, m);
       mergeSort(arr, m+1, r);
       merge(arr, 1, m, r);
  }
}
```

- set is like min heap. Only unique elements are present.
- On a line you are given the x coordinates of various houses, tell the house of vito (h) such that $\sum |h_i h|$ is minimised. **Obs1:** h could be any of h_i so $O(n^2)$ algo. will work. **Obs2:** Taking derivative we get i-j=0 i.e. i=j=n/2, that means simply sort and output the middlemost house.

Note: Some times the math become cumbersome, in such cases, use ternary search

• Prob: n people have to cross the bridge, one torch, atmost 2 can travel

Sol: if $n = 3 \Rightarrow \text{time} = x + y + z$, if $n \ge 4$ let A, B, a, b be the fastest, second fastest, slowest, second slowest resp. Goal: Get the slowest members to the other side. So choose the best among the two options.

option 1: Fastest member does back and forth.

option 2: The two fastest members go, allowing the two slowest two to go together.

• Inversions: From a permutation, parity of number of swaps needed to get to the identical permutation is same as parity of inversion count of this permutation.

Parity of inversions can be calculated in O(n) by finding the number of cycles.

Exact value of number of inverions can be calculated in (nlog(n)) by using segment trees.

• Prob: You are given two positive integer numbers a and b. Permute (change order) of the digits of a to construct maximal number not exceeding b.

Sol: Take the number as string, sort string a, then for each $i \in [1, n]$ swap it with j trying from ntoi+1 such that it is $\leq b$ (normal string comparison can be used).

Prob: From a digraph, remove atmost one edge so that it becomes

Sol: Get any one cycle the iteratively try to remove each edge and see if it makes it DAG or not.

• UFDS

```
struct UFDS {
   vector<int> p, rank, setSizes;
   int numSets;
   UFDS(int N) {
       numSets = N;
       rank.assign(N, 0);
       p.assign(N, 0);
        for (int i = 0; i < N; i++)
           p[i] = i;
        setSizes.assign(N, 1);
   }
   int findSet(int i) {
        return (p[i] == i) ? i : p[i] = findSet(p[i]);
   bool isSameSet(int i, int j) {
       return findSet(i) == findSet(j);
   }
   void unionSet(int i, int j) {
        if (!isSameSet(i, j)) {
            int x = findSet(i), y = findSet(j);
            if (rank[x] > rank[y]) {
                setSizes[findSet(x)] +=
                setSizes[findSet(y)];
                p[y] = x;
           } else {
```

```
setSizes[findSet(y)] +=
                  setSizes[findSet(x)];
                  p[x] = y;
                  if (rank[x] == rank[y])
                      rank[y]++;
              }
              numSets--;
          }
      }
      int setSize(int i) {
          return setSizes[findSet(i)];
      }
      int numDisjointSets() {
          return numSets;
 };
• UVA 10158 Prob, UVA 10158 Sol
• Imbalance of a tree, Sol, summation(max - min) is same as summa-
  tion(max) - summation(min).

    Party Lemonade, Sol

 Jamie and binary sequence, Sol.
• Prime gift, Sol. awesome 2 pointers problem.

    Fishes, Sol.

• Max 1D Range Sum (kadane)
  vi dfs_num, dfs_low, S, visited; // global variables
  void tarjanSCC(int u) {
      dfs_low[u] = dfs_num[u] = dfsNumberCounter++; //
      dfs_low[u] <= dfs_num[u]</pre>
      S.push_back(u); // stores u in a vector based on order
      of visitation
      visited[u] = 1;
      for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
          ii v = AdjList[u][j];
          if (dfs_num[v.first] == UNVISITED)
              tarjanSCC(v.first);
          if (visited[v.first]) // condition for update
              dfs_low[u] = min(dfs_low[u], dfs_low[v.first]);
      if (dfs_low[u] == dfs_num[u]) { // if this is a root
      (start) of an SCC
          printf("SCC %d:", ++numSCC); // this part is done
          after recursion
          while (1) {
              int v = S.back(); S.pop_back(); visited[v] = 0;
              printf(" %d", v);
              if (u == v) break;
          }
          printf("\n");
 }
  // inside int main()
  dfs_num.assign(V, UNVISITED); dfs_low.assign(V, 0);
  visited.assign(V, 0);
  dfsNumberCounter = numSCC = 0;
  for (int i = 0; i < V; i++)
      if (dfs_num[i] == UNVISITED)
          tarjanSCC(i);
• Max 2D range sum, algo1
  // grid need not be square
  // O(n^4)
 // Commented part shows for torus
  cin >> n;
  for (int i = 0; i < n; i++) \{ // < 2n \}
      for (int j = 0; j < n; j++) { // <2n
          cin >> A[i][j];
          if (i < n and j < n) \{
              cin >> A[i][j];
              A[i + n][j] = A[i][j + n] = A[i + n][j + n] =
  A[i][j];
          */
          if (i) A[i][j] += A[i - 1][j];
          if (j) A[i][j] += A[i][j - 1];
          if (i and j) A[i][j] = A[i - 1][j - 1];
      }
      int maxSubRect = -127 * 100 * 100;
      for (int i = 0; i < n; i++) {
```

for (int j = 0; j < n; j++) {

for (int k = i; k < n; k++) { // < i + n

```
for (int l = j; l < n; l++) { // < j + n
                        subRect = A[k][1];
                        if (i) subRect -= A[i - 1][1];
                        if (j) subRect -= A[k][j - 1];
                        if (i and j) subRect += A[i - 1][j -
                        11:
                        maxSubRect = max (maxSubRect, subRect);
                   }
              }
          }
      }
  // "No tree" => make tree (1) = -inf
  // no tree (0) = 1.
• Max 2D range sum, algo1
  // O(n<sup>3</sup>)
  int maxSum2D () {
      int maxsum = INT_MIN, finalleft, finalright, finaltop,
      finalbottom:
      for (int leftc = 0; leftc < COL; leftc++) {</pre>
          vector<int> temp (ROW, 0);
for (int rightc = leftc; rightc < COL; rightc++) {</pre>
               for (int i = 0; i < ROW; i++) {
                   temp[i] += M[i][rightc]
               int rstart, rend;
               sum = kadane (temp, rstart, rend);
               // kadane will give us rstart and rend
               if (sum > maxsum) {
                   maxsum = sum:
                   finalleft = left;
                   finalright = right;
                   finaltop = rstart;
                   finalbottom = rend;
              }
          }
      }
  }
```

- Given an n*m graph with each cell containing either 0 or 1, count how many rectangles can be formed by using the 1s (UVA 10502), Precalculate array sum[i][j],the numbers of 1 from graph[1][1] to graph[i][j] (index starting from 1 would be easier to deal with around edges) using sum[i][j] = sum[i-1][j] + sum[i][j-1] sum[i-1][j-1] + graph[i][j] -'0'. Thus use algo1 of max 2d range. Then we could iterate through all possible rectangle in the given size in $O(n^4)$
- A problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its subproblems.
- A problem must exhibit these two properties in order for a greedy algorithm to work.
 - It has optimal substructures
 - It has the greedy property (if we make a choice that seems like the best at the moment and proceed to solve the remaining subproblem, we reach the optimal soln. We will never have to reconsider our previous choices)
- Stack Sorting: If there exist a way to perform the operations such that array b is sorted in non descending order in the end then array a is called stack sortable. Operations availabe:
 - 1. Take the first element of a, push it into S and remove it from a.
 - Take the top element from S, append it to the end of array b and remove it from S.

If you think about it you can see that problem occurs if we have sequence $(x,\,y,\,z)$ where z; x; y. So after an element we want either all elements which are smaller than it to come first than elements which are bigger than it or all elements bigger than it. So say if we are given prefix of some permutation as $[6,\,3,\,1]$ and asked to find lexicographic sequence to append such that it is stack sortable then we can read prefix number one by one and do

```
6 + A(1,5) + A(7,7)

6 + 3 + A(1,2) + A(4,5) + A(7,7)

6 + 3 + 1 + 2 + 5 + 4 i.e. reverse each A(l, r) + 7

And if at any time we couldn't proceed as desired that
```

And if at any time we couldn't proceed as desired that means soln does not exist.

- stoi, stol, stoll, stod
- to_string

```
int __builtin_clz(int x);// number of leading zero
int __builtin_ctz(int x);// number of trailing zero
int __builtin_clzll(long long x);// number of leading zero
int __builtin_ctzll(long long x);// number of trailing zero
int __builtin_popcount(int x);// number of 1-bits in x
int __builtin_popcountll(long long x);// number of 1-bits
in x
```

```
floor(log2(n)): 31 - __builtin_clz(n | 1);
floor(log2(n)): 63 - __builtin_clzll(n | 1);
    // Suppose we have a pattern of N bits set to 1 in an
    integer and we want the next permutation of \ensuremath{\mathbb{N}} 1 bits in a
    lexicographical sense. For example, if N is 3 and the bit
    pattern is 00010011, the next patterns would be 00010101,
    00010110, 00011001, 00011010, 00011100, 00100011, and so
    forth. The following is a fast way to compute the next
    permutation.
    unsigned int v; // current permutation of bits
    unsigned int w; // next permutation of bits
    unsigned int t = v | (v - 1); // t gets v's least
    significant 0 bits set to 1
    // Next set to 1 the most significant bit to change,
    // set to 0 the least significant ones, and add the
    necessary 1 bits.
    w = (t + 1) \mid (((^t & ^-t) - 1) >> (_builtin_ctz(v) + 1));
3.1
     LIS
// O(n^2)
int LIS () {
    vi L (n, 1);
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            if (sequence[j] > sequence[i]) {
                 L[j] = max (L[j], L[i] + 1);
        }
    }
    return *max_element(L.begin (), L.end ());
vi LIS (int ans) {
    vi lis;
    for (int i = n - 1; i \ge 0; i--) {
        if (L[i] == ans) {
            lis.pb (sequence[i]);
            ans--:
        }
    }
    reverse (lis.begin (), lis.end ());
    return lis;
//-
// O(nlogk)
int LIS (vi &seq) {
    vi L(n, 1);
    vi I;
    for (int i = 0; i < seq.size (); i++) {</pre>
        int pos = lower_bound (I.begin (), I.end (), seq[i]) -
        I.begin ();
        if (pos == I.size ()) {
            I.pb (seq[i]);
        } else {
            I[pos] = num;
        L[i] = pos + 1;
        ans = max (ans, L[i]);
    return ans;
}
LIS of reverse sequence LDS starting from pos after reversing L.
```

lsb(n): (n & -n); // last bit (smallest)

LIS of reverse sequence LDS starting from pos after reversing L. LIS of reverse negative sequence gives LIS stating from pos after reversing L.

4 Data Structures

4.1 Segment Tree

- Construction of segment tree is O(n) (by masters theorem) and height of segment tree is O(logn). Also time complexity of each query is O(logn).
- freq, sol
- simple update, sol
- lazy range update, sol
- In similar way segment tree can be used to answer queries regarding gcd/lcm.
- Sereja and brackets, sol
- Addition on Segments, sol

• Jamie and to do list, Sol: Just basic application of Persistent segment tree. When updating some element, at most O(logn) nodes in the segment tree get changed: the nodes along the path from root to the updated leaf. For each timepoint, instead of creating a copy of the entire segment tree, copy only nodes on the path to be updated and update them. Therefore total storage is O(n + tlogn).

5 DP

Following are the two main properties of a problem that suggests that the given problem can be solved using Dynamic programming.

- Overlapping Subproblems: Like Divide and Conquer, Dynamic Programming combines solutions to sub-problems. Dynamic Programming is mainly used when solutions of same subproblems are needed again and again.
- 2. Optimal Substructure

5.1 Coin Change

```
int mvc(int at, int flag, int parent) { //You can start this
from any node, i.e. in main: int ans = min(mvc(0, 0, -1),
mvc(0, 1, -1); and handle the case n == 1 seperately
  if(memo[at][flag] != -1) {
      return memo[at][flag];
  if(glist[at].size() == 1 and parent != -1) { //leaf node
      return memo[at][flag] = flag;
  int ans = flag;
  if(flag) // to take this
      for(auto to : glist[at]) {
          if(to != parent)
              ans += min(mvc(to, 0, at), mvc(to, 1, at));
      }
  } else { //we must take its neighbours
      for(auto to : glist[at]) {
          if(to != parent)
              ans += mvc(to, 1, at);
      }
  return memo[at][flag] = ans;
```

$5.2 \quad 0/1 \text{ Knapsack}$

Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. You cannot break an item, either pick the complete item, or don't pick it (thus we cannot use greedy algorithm)

```
int value (int id, int w) {
    if (id == N || w == 0) return 0;
    if (memo[id][w] != -1) return memo[id][w];
    int a = (w[id] > w) ? 0 : v[id] + value (id + 1, w -
    w[id]):
    int b = value(id + 1, w);
    taken[id][w] = a > b;
    return memo[id][w] = max(a, b);
}
void printSol () {
   i = 0;
    j = MW;
    while (i < N) {
        if (take[i][j]) {
            track.pb (i);
            cnt++;
            j = j - w[i];
        }
        i++;
    }
    // something
}
```

5.3 Balanced Bracket Sequence

A Balanced bracket sequence is a string consisting of only brackets, such that this sequence, when certain numbers and + is inserted gives a valid mathematical expression.

5.3.1 One type of bracket

Let depth be the current no. of open brackets, initially depth = 0. We iterate over all character of the string; if the current bracket character is an opening bracket then we increment depth, o/w we decrement it. I f at any time the variable depth gets negative, or at the end it is different from 0, then the string is not a balanced sequence otherwise it is.

5.3.2 MultiType

Maintain a stack, in chich we will store all opening brackets that we meet. If the current bracket character is an opening one, we put it onto the stack. If it is a closing one, then we check if the stack is non empty, and if the top element is of the same type as the current closing bracket, if both conditions are fulfilled, then we remove the opening bracker from the stack. If at any time one of the ocnditions is not fulfilled or at the end the stack is non empty, then the string is not balanced otherwise it is.

5.3.3 No. of balanced Sequences

The number of balanced bracket sequences with only one bracket type can be calculated using the Catalan numbers. The number of balanced bracket sequences of length 2n (n pairs of brackets) is:

$$\frac{1}{n+1} \binom{2n}{n}$$

If we allow k types of brackets, then each pair be of any of the k types (independently of the others), thus the number of balanced bracket sequences is:

$$\frac{1}{n+1} \binom{2n}{n} k^n$$

On the other hand these numbers can be computed using dynamic programming. Let d[n] be the number of regular bracket sequences with n pairs of bracket. Note that in the first position there is always an opening bracket. And somewhere later is the corresponding closing bracket of the pair. It is clear that inside this pair there is a balanced bracket sequence, and similarly after this pair there is a balanced bracket sequence. So to compute d[n], we will look at how many balanced sequences of i pairs of brackets are inside this first bracket pair, and how many balanced sequences with n-1-i pairs are after this pair. Consequently the formula has the form:

$$d[n] = \sum_{i=0}^{n-1} d[i] \cdot d[n-1-i]$$

The initial value for this recurrence is d[0] = 1.

5.3.4 Lexicographically next balanced sequence

```
// Idea: "dep" indicates the imbalance in the string s[0...i
- 1]. Now after replacing s[i] with ')', dep dec. and we want
to add the lexicographically least string having 'dep - 1'
closing brackets reserved.
bool next_balanced_sequence(string & s) {
  int n = s.size();
  int depth = 0;
  for (int i = n - 1; i >= 0; i--) {
      if (s[i] == '(')
          depth--;
      else
          depth++;
      if (s[i] == '(' && depth > 0) {
          depth--;
          int open = (n - i - 1 - depth) / 2;
          int close = n - i - 1 - open;
          string next = s.substr(0, i) + ')' + string(open,
          '(') + string(close, ')');
          s.swap(next);
          return true;
 }
  return false;
```

If it is required to find and output all balanced bracket sequences of a specific length n.

To generate them, we can start with the lexicographically smallest sequence $((\ldots(())\ldots))$, and then continue to find the next lexicographically sequences with the algorithm described above.

5.3.5 Sequence Index

Given a balanced bracket sequence with n pairs of brackets. We have to find its index in the lexicographically ordered list of all balanced sequences with n bracket pairs.

Let's define an auxiliary array d[i][j], where i is the length of the bracket sequence (semi-balanced, each closing bracket has a corresponding opening bracket, but not every opening bracket has necessarily a corresponding closing one), and j is the current balance (difference between opening and closing brackets). d[i][j] is the number of such sequences that fit the parameters. We will calculate these numbers with only one bracket type.

For the start value i=0 the answer is obvious: d[0][0]=1, and d[0][j]=0 for j>0. Now let i>0, and we look at the last character in the sequence. If the last character was an opening bracket (, then the state before was

(i-1,j-1), if it was a closing bracket), then the previous state was (i-1,j+1). Thus we obtain the recursion formula:

$$d[i][j] = d[i-1][j-1] + d[i-1][j+1]$$

d[i][j]=0 holds obviously for negative j. Thus we can compute this array in ${\cal O}(n^2).$

Now let us generate the index for a given sequence.

First let there be only one type of brackets. We will us the counter depth which tells us how nested we currently are, and iterate over the characters of the sequence. If the current character s[i] is equal to (, then we increment depth. If the current character s[i] is equal to), then we must add $d[2n-i-1][\operatorname{depth}+1]$ to the answer, taking all possible endings starting with a (into account (which are lexicographically smaller sequences), and then decrement depth.

New let there be k different bracket types.

Thus, when we look at the current character s[i] before recomputing depth, we have to go through all bracket types that are smaller than the current character, and try to put this bracket into the current position (obtaining a new balance ndepth = depth \pm 1), and add the number of ways to finish the sequence (length 2n-i-1, balance ndepth) to the answer:

$$d[2n-i-1][\text{ndepth}] \cdot k^{\frac{2n-i-1-ndepth}{2}}$$

This formula can be derived as follows: First we "forget" that there are multiple bracket types, and just take the answer d[2n-i-1][ndepth]. Now we consider how the answer will change is we have k types of brackets. We have 2n-i-1 undefined positions, of which ndepth are already predetermined because of the opening brackets. But all the other brackets $((2n-i-i-n{\rm depth})/2{\rm pairs})$ can be of any type, therefore we multiply the number by such a power of k.

5.3.6 Finding the kth sequence

Let n be the number of bracket pairs in the sequence. We have to find the k-th balanced sequence in lexicographically sorted list of all balanced sequences for a given k.

As in the previous section we compute the auxiliary array d[i][j], the number of semi-balanced bracket sequences of length i with balance j.

First, we start with only one bracket type.

We will iterate over the characters in the string we want to generate. As in the previous problem we store a counter depth, the current nesting depth. In each position we have to decide if we use an opening of a closing bracket. To put an opening bracket character, it $d[2n-i-1][\operatorname{depth}+1] \geq k$. We increment the counter depth, and move on to the next character. Otherwise we decrement k by $d[2n-i-1][\operatorname{depth}+1]$, put a closing bracket and move on.

```
string kth_balanced(int n, int k) {
 vector<vector<int>> d(2*n+1, vector<int>(n+1, 0));
 d[0][0] = 1;
 for (int i = 1; i <= 2*n; i++) {
      d[i][0] = d[i-1][1];
      for (int j = 1; j < n; j++)
   d[i][j] = d[i-1][j-1] + d[i-1][j+1];</pre>
      d[i][n] = d[i-1][n-1];
 }
  string ans;
  int depth = 0;
  for (int i = 0; i < 2*n; i++) {
      if (depth + 1 \le n \&\& d[2*n-i-1][depth+1] >= k) {
          ans += '(';
          depth++;
      } else {
           ans += ')';
           if (depth + 1 <= n)</pre>
              k = d[2*n-i-1][depth+1];
           depth--;
      }
 return ans;
```

Now let there be k types of brackets. The solution will only differ slightly in that we have to multiply the value d[2n-i-1] [ndepth] by $k^{(2n-i-1-\mathrm{ndepth})/2}$ and take into account that there can be different bracket types for the next character.

Here is an implementation using two types of brackets: round and square:

```
string kth_balanced2(int n, int k) {
  vector<vector<int>> d(2*n+1, vector<int>(n+1, 0));
  d[0][0] = 1;
  for (int i = 1; i <= 2*n; i++) {
    d[i][0] = d[i-1][1];
}</pre>
```

```
for (int j = 1; j < n; j++)
            d[i][j] = d[i-1][j-1] + d[i-1][j+1];
        d[i][n] = d[i-1][n-1];
    string ans;
    int depth = 0;
    stack<char> st;
    for (int i = 0; i < 2*n; i++) {
        if (depth + 1 \le n) {
            int cnt = d[2*n-i-1][depth+1] << ((2*n-i-1-depth-1)
            / 2);
            if (cnt >= k) {
                ans += '(';
                st.push('(');
                depth++;
                 continue;
            }
            k -= cnt;
        }
        // ')'
        if (depth && st.top() == '(') {
            int cnt = d[2*n-i-1][depth-1] << ((2*n-i-1-depth+1)
            / 2);
            if (cnt \geq= k) {
                ans += ')';
                st.pop();
                depth--;
                 continue;
            k -= cnt:
        }
        // '['
        if (depth + 1 <= n) {</pre>
            int cnt = d[2*n-i-1][depth+1] << ((2*n-i-1-depth-1)
            / 2);
            if (cnt \ge k) {
                ans += '[';
                 st.push('[');
                depth++;
                 continue;
            k -= cnt:
        }
        // ']'
        ans += ']';
        st.pop();
        depth--;
    return ans;
  4 Important Problems
• dividing coins sol
  • TSP, Sol
  • Square, Sol
  • Pebble Solitare, sol
  • Forming Quiz Teams, sol
  • Simple tree coloring, sol
    Strings
To map keyboard etc, it is better to create 2 strings then loop through
and map.
To transform complete string to lowercase:
transform (word.begin (), word.end (), word.begin (),
::tolower);
To concatenate two vectors:
vector1.insert (vector1.end (), vector2.begin (), vector2.end
string.substr (startposn, length); // Where startposn is 0
indexed.
str.erase (posn); // erase single character
str.erase (posn, length);
str.insert (pos, anotherString_orCharacter);
int pos1 = line.find ("U=");
if (pos1 != -1) { // process }
line.replace (pos, len, newString); // pos = line.find (f), len
= f.size ()
```

}

```
We can iterate through all substrings of string O(n^2) and see which
all of them are palindromes in O(n^3) or in O(n^2) by using dp
(dp[startpos][endpos] \ = \ (s[startpos] \ == \ s[endpos]\&\&dp[startpos \ +
1][endpos - 1]) or hash.
```

```
6.1 Minimum Edit Distance
```

```
void fillmem() {
   for (int j = 0; j <= a.size(); j++) mem[0][j] = j;
   for (int i = 0; i <= b.size(); i++) mem[i][0] = i;
   for (int i = 1; i <= b.size(); i++) {</pre>
       for (int j = 1; j \le a.size(); j++) {
           if (a[j-1] == b[i-1]) mem[i][j] = mem[i-1][j-1]
           1];
            else mem[i][j] = min(mem[i - 1][j - 1], min(mem[i -
            1][j], mem[i][j - 1])) + 1;
   }
    // mem[b.size ()][a.size ()] contains the answer
void print() {
   int i = b.size(), j = a.size();
   while (i || j) {
       if (i and j and a[j - 1] == b[i - 1]) { i--; j--;
       continue; }
       if (i and j and mem[i][j] == mem[i - 1][j - 1] + 1) {
           cout << "C" << b[i - 1]; if (j <= 9) cout << "0";</pre>
           cout << j;</pre>
           i--; j--;
           continue;
       }
       if (i and mem[i][j] == mem[i - 1][j] + 1) {
           cout << "I" << b[i - 1];
           if (j <= 9) cout << "0";</pre>
           cout << j + 1;
           i--:
           continue;
       }
       else if (j) {
           cout << "D" << a[j - 1];
           if (j <= 9) cout << "0";
           cout << j;</pre>
           j--;
       }
   cout << "E\n";</pre>
}
```

6.2 Length of longest Palindrome possible by removing 0 or more characters

dp[startpos][endpos] = s[startpos] == s[endpos] ? 2 + dp[startpos + 1][endpos - 1] : max (dp[startpos + 1][endpos], dp[startpos][endpos - 1])

6.3 Longest Common Subsequence

cout << ans << " \n ";

```
memset (mem, 0, sizeof (mem));
for (int i = 1; i <= b.size (); i++) {
 for (int j = 1; j \le a.size (); j++) {
    if (b[i-1] == a[j-1]) mem[i][j] = mem[i-1][j-1] +
    else mem[i][j] = max (mem[i - 1][j], mem[i][j - 1])
}
void printsol (int ui, int li) {
 ui--; li--;
  vector<string> ans;
  while (ui || li) {
    if (a[ui] == b[li]) {
      ans.push_back (a[ui]);
      ui--; li--;
      continue:
    }
    if (ui and mem[ui][li] == mem[ui - 1][li]) {
      ui--;
      continue;
    if (li and mem[ui][li] == mem[ui][li - 1]) {
      continue:
 reverse (ans.begin (), ans.end ());
```

6.4 Prefix Function and KMP

6.4.1 Prefix Function

The prefix function for this string is defined as an array π of length n, where $\pi[i]$ is the length of the longest proper prefix of the substring s[0...i]which is also a suffix of this substring. A proper prefix of a string is a prefix that is not equal to the string itself. By definition, $\pi[0] = 0$. Example: abcabchejfabcabca

00012300001234564

Note: $\pi[i+1] \leq \pi[i] + 1$ as if $\pi[i+1] > \pi[i] + 1$ then consider this suffix ending at position i + 1 & having length $\pi[i+1]$ - removing the last character we get a suffix ending in position i & having length $\pi[i+1]-1$ that is better than $\pi[i]$. Should be able to reason the following code.

```
vector<int> prefix_function(string &s) { // O(n)
    int n = (int)s.length();
    vector<int> pi(n, 0);
    for (int i = 1; i < n; i++) {
        int j = pi[i-1];
        while (j > 0 \&\& s[i] != s[j])
           j = pi[j-1];
        if (s[i] == s[j])
            j++;
        pi[i] = j;
    }
    return pi;
}
```

6.4.2 KMP

Given a text t and a string s, we want to find and display the positions of all occurrences of the string s in the text t.

For convenience we denote with n the length of the string s and with m the length of the text t.

We generate the string s+#+t, where # is a separator that doesn't appear in s and t. Let us calculate the prefix function for this string. Now think about the meaning of the values of the prefix function, except for the first n+1 entries (which belong to the string s and the separator). By definition the value $\pi[i]$ shows the longest length of a substring ending in position i that coincides with the prefix. But in our case this is nothing more than the largest block that coincides with s and ends at position i. This length cannot be bigger than n due to the separator. But if equality $\pi[i]$ =n is achieved, then it means that the string s appears completely in at this position, i.e. it ends at position i. Just do not forget that the positions are indexed in the string s+#+t.

Thus if at some position i we have $\pi[i]=n$, then at the position i'(n+1)1) n+1=i 2n in the string t the string s appears.

As already mentioned in the description of the prefix function computation, if we know that the prefix values never exceed a certain value, then we do not need to store the entire string and the entire function, but only its beginning. In our case this means that we only need to store the string s+# and the values of the prefix function for it. We can read one character at a time of the string t and calculate the current value of the prefix function.

```
// IMP NOTE: In both bubble sort and merge sort we are
    getting minimum no. of swaps to sort an array (i.e. by
    swapping adjacent elements)
void merge(int arr[], int 1, int m, int r)
   int i, j, k;
   int n1 = m - 1 + 1;
   int n2 = r - m;
   /* create temp arrays */
   int L[n1], R[n2];
   /* Copy data to temp arrays L[] and R[] */
  for (i = 0; i < n1; i++)
       L[i] = arr[l + i];
   for (j = 0; j < n2; j++)
       R[j] = arr[m + 1 + j];
   /* Merge the temp arrays back into arr[l..r]*/
   i = 0; // Initial index of first subarray
  j = 0; // Initial index of second subarray
   k = 1; // Initial index of merged subarray
  while (i < n1 \&\& j < n2)
       if (L[i] <= R[j])</pre>
           arr[k] = L[i];
       else///i.e we need to swap
```

```
{
           arr[k] = R[j];
           swaps+=n1-i;//Most important line. basically once we
           are doing arr[k]=R[j] that means we are
           ///putting R[j] before each of n1-i elements thus
           there are that many swaps.
       }
       k++:
   /* Copy the remaining elements of L[], if there
      are any */
   while (i < n1)
       arr[k] = L[i];
       i++;
       k++;
   }
   /* Copy the remaining elements of R[], if there
      are any */
   while (j < n2)
       arr[k] = R[j];
       j++;
       k++;
/* 1 is for left index and r is right index of the
  sub-array of arr to be sorted */
void mergeSort(int arr[], int 1, int r)
   if (1 < r)
       // Same as (1+r)/2, but avoids overflow for
       // large 1 and h
       int m = 1+(r-1)/2;
       // Sort first and second halves
       mergeSort(arr, 1, m);
       mergeSort(arr, m+1, r);
       merge(arr, 1, m, r);
   }
}
```

6.4.3 Counting number of occurrences of each prefix

```
// Idea: "dep" indicates the imbalance in the string s[0...i
- 1]. Now after replacing s[i] with ')', dep dec. and we want
to add the lexicographically least string having 'dep - 1'
closing brackets reserved.
bool next_balanced_sequence(string & s) {
  int n = s.size();
  int depth = 0;
  for (int i = n - 1; i \ge 0; i--) {
      if (s[i] == '(')
          depth--;
          depth++:
      if (s[i] == '(' && depth > 0) {
          depth--;
          int open = (n - i - 1 - depth) / 2;
          int close = n - i - 1 - open;
          string next = s.substr(0, i) + ')' + string(open,
          '(') + string(close, ')');
          s.swap(next);
          return true;
      }
  return false;
```

6.5 Notes

- In case of hashing a string, we follow polynomial rolling hash function, with p as a prime number roughly equal to the size of character domain and m as a huge prime number.
- If s is palindrome and if s[0...n-2] is palindrome, that means all characters are same thus if all characters are not same then the longest non palindromic substring is s[0...n-2] or s[1...n-1]

6.6 SAM

A suffix automaton for a given string s is a minimal DFA that accepts all the suffixes of the string s.

- A suffix automaton is an oriented acyclic graph.
- One of the states t_0 is the initial state
- All transitions originating from a state must have different labels
- One or multiple states are marked as terminal states. If we start from the initial state t_0 and move along transitions to a terminal state, then the labels of the passed transitions must spell one of the suffixes of the string s. Each of the suffixes of s must be spellable using a path from t_0 to a terminal state.

Consider any non-empty substring t of the string s. We will denote with $\operatorname{endpos}(t)$ the set of all positions in the string s, in which the occurrences of t end. For instance, we have $\operatorname{endpos}("bc") = \{2,4\}$ for the string "abcbc". We will call two substrings t1 and t2 $\operatorname{endpos-equivalent}$, if their ending sets coincide i.e. $\operatorname{endpos}(t1) = \operatorname{endpos}(t2)$. Thus all non-empty substrings of the string s can be decomposed into several equivalence classes according to their sets endpos.

It turns out, that in a suffix machine endpos-equivalent substrings correspond to the same state. In other words the number of states in a suffix automaton is equal to the number of equivalence classes among all substrings, plus the initial state.

Lemma 1: Two non-empty substrings u and w (with length(u) \leq length(w)) are endpos-equivalent, if and only if the string u occurs in s only in the form of a suffix of w. (Proof is obvious)

Lemma 2: Consider two non-empty substrings u and w (with length(u) \leq length(w)). Then their sets endpos either don't intersect at all, or endpos(w) is a subset of endpos(u). And it depends on if u is a suffix of w or not. (Proof is obvious)

Lemma 3: Consider an endpos-equivalence class. Sort all the substrings in this class by non-increasing length. Then in the resulting sequence each substring will be one shorter than the previous one, and at the same time will be a suffix of the previous one. In other words the substrings in the same equivalence class are actually each others suffixes, and take all possible lengths in a certain interval [x;y].

Consider some state $\mathbf{v} \neq t_0$ in the automaton. As we know, the state \mathbf{v} corresponds to the class of strings with the same endpos values. And if we denote by \mathbf{w} the longest of these strings, then all the other strings are suffixes of \mathbf{w} . suffix link link(v) leads to the state that corresponds to the longest suffix of \mathbf{w} that is another endpos-equivalent class.

Lemma 4: Suffix links form a tree with the root t_0 .

Lemma 5: If we build a endpos tree from all the existing sets (according to the principle "the set-parent contains as subsets of all its children"), then it will coincide in structure with the tree of suffix references. Note: $endpos(t_0) = \{-1, 0, \dots, length(s) - 1\}$

Note: For each state v one or multiple substrings match. We denote by longest(v) the longest such string, and through len(v) its length. We denote by shortest(v) the shortest such substring, and its length with minlen(v). Then all the strings corresponding to this state are different suffixes of the string longest(v) and have all possible lengths in the interval [minlength(v);len(v)]. For each state $v \neq t_0$ a suffix link is defined as a link, that leads to a state that corresponds to the suffix of the string longest(v) of length minlen(v)`1. minlen(v) = len(link(v))+1

Number of states in suffix automaton of the string s of length n doesn't exceed 2n-1 (for $n \ge 2$)

}

Number of transitions $\leq 3n - 4$.

#include<bits/stdc++.h>

```
using namespace std;
typedef pair<int, int> ii;
typedef long long int int;
//Learning in depth about suffix automaton.
struct state {
    int len, link;
    map<char,int> next;
    int cnt;
    int firstpos;
    bool is_clon;
    vector<int> inv_link;
};
const int MAXLEN = 250005;
vector<state> st:
int sz, last;
vector<vector<int> > tcntdata;
vector<int> nsubs, d, lw;
vector<bool> isterminal;
void sa_init(unsigned int size) {
    nsubs.assign(2 * size, 0);
    isterminal.assign(2 * size, false);
    tcntdata.clear();
```

```
tcntdata.resize(2 * size);
   lw.assign(2 * size, 0);
   d.assign(2 * size, 0);
    st.clear();
    st.resize(2 * size);
    sz = last = 0;
    st[0].len = 0;
   st[0].cnt = 0;
    st[0].link = -1;
    st[0].firstpos = -1;
    st[0].is_clon = false;
   tcntdata[0].push_back(0);
void sa_extend (char c) {
   int cur = sz++;
    st[cur].cnt = 1;
    st[cur].len = st[last].len + 1;
    st[cur].firstpos = st[cur].len - 1;
    st[cur].is_clon = false;
   tcntdata[st[cur].len].push_back(cur);
    int p;
    for (p=last; p!=-1 && !st[p].next.count(c); p=st[p].link)
       st[p].next[c] = cur;
    if (p == -1) // In case we came to the root, every
    non-empty suffix of string sc is accepted by state cur
   hence we can make link(cur) = t0 and finish our work on
    this step.
       st[cur].link = 0;
    has transition by character c. It means that all suffixes
    of length \leq len(q`) + 1 are already accepted by some state
    in automaton hence we don't need to add transitions to
    state new anymore. But we also have to calculate suffix
    link for state new.
       int q = st[p].next[c];
       if (st[p].len + 1 == st[q].len) // The largest string
       accepted by this state will be suffix of sc of length
       len(q) + 1. It is accepted by state t at the moment,
       in which there is transition by character c from state
       q`. But state t can also accept strings of bigger
       length. So, if len(t) = len(q^*) + 1, then t is the
       suffix link we are looking for. We make link(cur) = t
       and finish algorithm.
           st[cur].link = q;
       else {
           int clone = sz++;
           st[clone].len = st[p].len + 1;
           st[clone].next = st[q].next;
           st[clone].link = st[q].link;
           st[clone].cnt = 0;
           st[clone].firstpos = st[q].firstpos;
           st[clone].is_clon = true;
           tcntdata[st[clone].len].push_back(clone);
           for (; p!=-1 && st[p].next[c]==q; p=st[p].link)
               st[p].next[c] = clone;
           st[q].link = st[cur].link = clone;
       }
   }
   last = cur;
// A state v will correspond to set of endpos equivalent
strings, cnt[v] will give the number of occurences of such
strings
void processcnt() {
    int maxlen = st[last].len;
   for(int i = maxlen; i >= 0; i--) {
       for(auto v : tcntdata[i]) {
           st[st[v].link].cnt += st[v].cnt;
       }
   }
// Clearly suffixes should be marked as terminal
void processterminal() {
   isterminal[last] = true;
    int p = st[last].link;
    while(p != -1) {
       isterminal[p] = true;
       p = st[p].link;
   }
```

```
// Gives the number of substrings (not necessarily distinct).
Clearly it should return n.(n+1)/2
int processnumsubs(int at) {
    if(nsubs[at] != 0) return nsubs[at];
    nsubs[at] = st[at].cnt;
    for(auto to : st[at].next) {
       nsubs[at] += processnumsubs(to.second);
    7
    return nsubs[at];
void constructSA(string ss) {
    sa_init(ss.size());
    for(int i = 0; i < ss.size(); i++) {</pre>
        sa_extend(ss[i]);
   processterminal();
    processcnt();
    for (int v = 1; v < sz; ++v)
       st[st[v].link].inv_link.push_back(v);
    processnumsubs(0);
//
                         -----After SA Construction
int getcorrstate(string &tosearch) {
    int at = 0;
    for (int i = 0; i < tosearch.size(); i++) {</pre>
        if (!st[at].count (tosearch[i])) return -1;
        at = st[at].next[tosearch[i]];
    return at:
}
bool exist(string &tosearch) {
    int at = getcorrstate (tosearch);
    return at == -1 ? false : true;
// Returns number of different substrings = number of paths in
DAG. And number of paths is clearly not a function of number of
states in DAG.
// d[v] = 1 + summation (d[w])
int numdiffsub(int at) {
    if(d[at] != 0) return d[at];
    d[at] = 1:
    for(auto to : st[at].next) {
        d[at] += numdiffsub(to.second);
   }
    return d[at];
}
// Returns total length of all distinct substrings =
summation_path (number of edges constituting that path) in DAG.
// ans[v] = summation (d[w] + ans[w]) basically, once we know
ans[w], we know that we have number of paths starting from that
node + ans[w] // as we know that in each of the contributing
strings we should add 1 for this character transition as this
character occurs in path for reaching this state. Plus 1 as to
consider this character on its own.
int totlength(int at) {
    if(lw[at] != 0) return lw[at];
    for(auto to : st[at].next) {
       lw[at] += d[to.second] + totlength(to.second);
    7
    return lw[at];
// Find Lexicographically K-th Substring (here repeated
substring is allowed):
void kthlexo(int at, int k, string &as) {
    if(k <= 0) return;</pre>
    for(auto to : st[at].next) {
        if(nsubs[to.second] >= k) {
            as.push_back(to.first);
            kthlexo(to.second, k - st[to.second].cnt, as);
            break;
        } else {
            k -= nsubs[to.second];
   }
}
```

```
// Repeated substring not allowed
void kthlexo2(int at, int k, string &as) {
    if(k <= 0) return;</pre>
    for(auto to : st[at].next) {
        if(d[to.second] >= k) {
            as.push_back(to.first);
            kthlexo2(to.second, k - 1, as);
            break;
        } else {
            k -= d[to.second];
        }
    }
}
// Returns true is the given string is the suffix of {\tt T}
bool issuffix(string &tosearch) {
    int at = getcorrstate (tosearch);
    return isterminal[at];
}
// Returns how many times P enters in T (occurences can
overlap)
/* for each state v of the machine calculate a number 'cnt[v]'
which is equal to the
* size of the set endpos(v). In fact, all the strings
corresponding to the same state
 * enter the T same number of times which is equal to the
number of positions in the set
* endpos. */
int numoccur(string &tosearch) {
    int at = getcorrstate (tosearch);
    return at == -1 ? 0 : st[at].cnt;
}
// Return position of the first occurrence of substring in T
int firstpos(string &tosearch) {
    int at = getcorrstate (tosearch);
    return st[at].firstpos - tosearch.size() + 1;
}
// Returns Positions of all occurrences of substring in T
void output_all_occurences (int v, int P_length) {
    if (!st[v].is_clon)
        cout << st[v].firstpos - P_length + 1 << "\n";</pre>
    for (size_t i=0; i<st[v].inv_link.size(); ++i)</pre>
        output_all_occurences(st[v].inv_link[i], P_length);
}
void smallestcyclicshift(int n) {
    int at = 0;
    string anss;
    int length = 0;
    while(length != n) {
        for (auto it : st[at].next) {
            anss.push_back(it.first);
            at = it.second;
            length++;
            break;
        }
    }
    cout << anss << "\n";</pre>
    // cout << st[at].firstpos - n + 1 << "\n"; may give the
    index for that shift.
}
int main() {
    string s;
    cin >> s;
    constructSA(s);
    int choice:
    cout << "Choose your option:\n1: Substring exist in T or</pre>
    not\n2: Number of different substring of T\n";
    cout << "3: To find total length of distinct substrings\n";</pre>
    cout << "4: To check whether the given string is suffix or</pre>
    not\n":
    cout << "5(5.1): To print the K-th lexicographic substring</pre>
    (Repeated substrings allowed) \n";
    cout << "6: To see how many times, given string occurs in</pre>
    cout << "7: To find the position of the first occurrence of</pre>
    substring in T\n";
```

```
cout << "8: To find position of all the occurences of
substring in T\n";
cout << "9(5.2): To print the K-th lexicographic substring</pre>
(Repeated substrings not allowed)\n";
cout << "10: To find the smallest cyclic shift\n";</pre>
cout << "15: to exit\n";</pre>
cin >> choice;
if(choice == 15) break;
string ss, ns;
int k. v:
switch(choice) {
    case 1:
        cout << "Enter your string\n";</pre>
         cin >> ss;
         if (exist(ss)) {
             cout << "yes it exist\n";</pre>
         } else {
             cout << "no it does not exist\n";</pre>
         //cout << "Enter new to string to search for\n";</pre>
         break;
         cout << numdiffsub(0) - 1 << "\n";</pre>
        break:
    case 3:
        numdiffsub(0):
         cout << totlength(0) << "\n";
        break;
    case 4:
         cout << "Enter the string\n";</pre>
         cin >> ss:
         if(issuffix(ss)) cout << "yes\n";</pre>
         else cout << "no\n";</pre>
         break:
    case 5:
        cin >> k;
         ss.clear();
         kthlexo(0, k, ss);
         if(ss.empty()) {
             ss = "No such line.";
         cout << ss << "\n";
        break;
    case 6:
         cout << "Enter string\n";</pre>
         cin >> ss;
         cout << numoccur(ss) << "\n";</pre>
        break;
    case 7:
        cout << "Enter string\n";</pre>
         cin >> ss;
         cout << firstpos(ss) << "\n";</pre>
        break:
    case 8:
        cout << "Enter string\n";</pre>
         cin >> ss;
         /*for(v = 0; v < s.size(); v++) {
             cout << setw(2) << v:
         }
         cout << "\n";
         for(v = 0; v < s.size(); v++) {</pre>
             cout << setw(2) << s[v];</pre>
         cout << "\n";*/
         v = getcorrstate(ss);
         if(v != -1) {
             output_all_occurences(v, ss.size());
         break:
    case 9:
        cin >> k;
         numdiffsub(0);
         kthlexo2(0, k, ss);
         if(ss.empty()) {
             ss = "No such line.";
         cout << ss << "\n";
         break;
    case 10:
         cout << "Enter S\n";</pre>
         cin >> ss;
```

```
s = ss + ss;
    constructSA(s);
    smallestcyclicshift(ss.size ());
    break;
}
return 0;
}
```

6.7 Important Problems

Review: cf 631D

- UVA 10739 Sol, UVA 10739 Prob: String to palindrome, just see the minimum edit distance between this string and its reverse but need to divide by 2 later as both strings are it itself.
- Queries for the number of palindromic substrings within given range, See this soln to see power of hashing.:
 Note: Strings and arrays are considered 0-based in the following solution.

Let isPal[i][j] be 1 if s[i...j] is palindrome, otherwise, set it 0. Let's define dp[i][j] to be number of palindrome substrings of s[i...j]. Let's calculate isPal[i][j] and dp[i][j] in $O(|S|^2)$. First, initialize isPal[i][i] = 1 and dp[i][i] = 1. After that, loop over len which states length of substring and for each specific len, loop over start which states starting position of substring. isPal[start][start + len - 1] can be easily calculated by the following formula:

```
isPal[start][start+len-1] = isPal[start+1][start+len-2] & (s[start] == s[start+len-1])
```

After that, dp[start][start + len - 1] can be calculated by the following formula which is derived from Inc-Exc Principle.

 $\label{eq:dp[start][start+len-1] = dp[start][start+len-2] + dp[start+1][start+len-1] - dp[start+1][start+len-2] + isPal[start][start+len-1]$

After preprocessing, we get queries l_i and r_i and output $dp[l_i-1][r_i-1]$. Overall complexity is $O(|S|^2)$.

- UVA 11107 Sol simple, UVA 11107 Sol complicated but more powerful: Problem is to find the longest substring shared by more than half of given strings.
- UVA 10459 Sol, UVA 10029 Prob: Edit steps, (lexicographic sequence of words)

7 Geometry

- \bullet for given 3 points of a valid parallelogram, there are 3 possible locations for the 4th point.
- we have a hexagon with integral sides and all interior angles equal to 120 deg. we draw lines parallel to the side of the hexagon, such that we get equilateral triangles of side 1 unit, how many equilateral triangles did we got? Sol: Let's consider regular triangle with sides of k Let's split it to regular triangles with sides of 1 by lines parallel to the sides. Big triange area k² times larger then small triangles area and therefore big triangle have splitted by k² small triangles.

If we join regular triangles to sides a_1 , a_3 and a_5 of hexagon we get a triangle sides of $a_1+a_2+a_3$. Then thexagon area is equals to $(a_1+a_2+a_3)^2-a_1^2-a_3^2-a_5^2$.

- An inscribed angle is an angle formed by 2 chords in a circle which have a common endpoint. This common endpoint form the vertex o the inscribed angle. The other 2 endpoints define what we call an intercepted arc.
- Measure of intercepted arc of a unit circle is $2/\pi$ that of inscribed angle.

- Circles will certainly not touch or intersect iff the dist. between their center is greater than the sum of their radii.
- A circle 'a' contains a circle 'b' iff the distance between their centers is less than the absolute value of their radii difference.
- let the bottom left/top right corner point be denoted as a/c resp. Then rectangles intersect iff max(a1.x, a2.x) < min(c1.x, c2.x) and max(a1.y, a2.y) < min(c1.y, c2.y).
- Similarly in case of 3d, vol of intersection of all cuboids is given by (ux - lx)(uy - ly)(uz - lz) where lx = max(x1, x2, ..., xn) and ux = $\min(\ldots)$.
- To get unique points

```
sort(cops.begin(), cops.end());
cops.resize (distance(cops.begin (), unique
(cops.begin(), cops.end())))
```

- Remember that we can apply bisection method (while(abs(hi-lo) <eps) and ternary search in geometry.
- for a quadrilateral drawn inside circle sum of opposite angles is 180
- Sum of all angles of a quadrilateral is always 360 deg.
- Center of mass of pts = $\sum m_i \vec{r_i} / \sum m_i$. This is same as centre of mass of union of mutually exclusive objects where each $\vec{r_i}$ is that objects COM and m_i is that objects mass.
- COM of a line is its midpoint
- COM of $\triangle = (\vec{r_1} + \vec{r_2} + \vec{r_3})/3$ but this is not the case for general polygon.
- For a general convex polygon, we may triangulate it, find that triangles area and COM and the combine to get COM of original figure.
- Similarly in case of 3D, COM of tetrahadron = $\sum_{i=1}^{4} r_i/4$ and a general 3d object can be again divided into tetrahedrons.
- For general polygon we can do $\vec{r_c} = (\sum_i r_{z,p_i,p_{i+1}} * S_{z,p_i,p_{i+1}})/\sum_i S_{z,p_i,p_{i+1}}$ where S term denotes triangles area with sign.
- Some properties of triangles
 - s = p/2
 - $A = \sqrt{s * (s a) * (s b) * (s c)}$
 - $-a/\sin A = b/\sin B = c/\sin C = 2 * R$

 - -R = abc/(4*A) $-c^{2} = a^{2} + b^{2} 2*a*b*\cos(C)$
 - Inscribed circle (incircle), r = A/s
 - Center of incircle is the meeting point of angle bisectors.
 - Medians divide a triangle into 6 triangles of equal area and area of original triangle is = $4/3*\sqrt{s*(s-a)*(s-b)}*(s-c)$, here a, b, c is the length of medians.
 - For valid \triangle sum of any 2 sides should be greater than third. If the three lengths are sorted, we can simply check whether a+b>c. For quadrangle sum of any 3 sides should be greater than 4th.
 - The center of circumcircle is the meeting point of]triangle's perpendicular bisector.
 - Triangle angle bisector property: |AB|/|AC| = |BD|/|DC|

- where AD is the angle bisector of angle BAC.
- Given sides of triangle, sort them, then see 3 consecutive sides, if the area is positive (using herons formula), they form a valid triangle, mx = max (mx, area).
- Kite is a quadrilateral which has two pair of sides of same length which are adjacent to each other. The area of kits is $diagonal_1 *$ $diagonal_2/2$. Diagonals of kite are perpendicular.
- Rhombus is a special parallelogram where every side has equal length. It is also a special case of kits where every side has equal length.
- Convex Polygon: All interior angles should be less than 180 deg. Polygon which is not Convex is Concave
- Concave polygon has critical point (point from which entire polygon is not visible).
- **Pick's Theorem**. $A = i + \frac{b}{2} 1$, where: P is a simple polygon whose vertices are grid points, A \bar{i} s area of P, i is # of grid points in the interior of P, and b is # of grid points on the boundary of P.

If h is # of holes of P(h+1) simple closed curves in total), A= $i + \frac{b}{2} + h - 1$.

```
// way to get boundary points
```

```
11 getb (vector<point> &poly) {
   11 b = 0:
    int n = P.size() - 1;
    for (int i = 0; i < n ;i++) {
        int j = i + 1;
        ll ret = gcd (abs(poly[i].x - poly[j].x), abs
        (poly[i].y - poly[j].y));
        // for point to be on lattice its x and y
        coordinate has to be a multiple of gcd.
        b += ret;
   }
    return b;
}
```

- To check whether a point is on or inside a polygon that area method
- Centroid of a polygon, $C_x = 1/(6*A)*\sum_{i=0}^{n-1} (x_i + x_{i+1})*(x_i * y_{i+1} y_{i+1})$ $x_{i+1} * y_i$ $C_y = 1/(6*A)*\sum_{i=0}^{n-1} (y_i + y_{i+1})*(x_i * y_{i+1} - x_{i+1} * y_i)$ Here: $(x_n, y_n) = (x_0, y_0)$. And dont given absolute value to A.

$$A = 1/2 \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} = 1/2*((x_0*y_1 + x_1*y_2 + \dots + x_{n-2}*y_{n-1}) - (x_1*y_0 \dots)$$

```
A(x_1, y_1)
```

If point P(x,y) lies on line segment \overline{AB} (between points A and B) and satisfies AP:PB=m:n, then we say that P divides \overline{AB} internally in the ratio m:n. The point of division has the coordinates

$$P = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right).$$

$$A(x_1, y_1) \qquad B(x_2, y_2) \qquad P(x, y)$$

If P=(x,y) lies on the extention of line segment \overline{AB} (not lying between points A and B) and satisfies AP:PB=m:n, then we say that P divides \overline{AB} externally in the ratio m:n. The point of division is

$$P = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right).$$

- Area of union of triangles
- Finding common tangents to two circles
- Minimum Bounding Rectangle, Sol: basically use atan2 and rotate wrt that point.
- Given a set of points, to determine whether a point lies inside a triangle formed by any 3 points, it is enough to check whether the given point lies inside the convex hull of given data points.

Klee's Algo 7.1

Given n segments on a line, each described by a pair of coordinates (a_{i1}, a_{i2}) . We have to find the length of their union.

It works in $O(n \log n)$ and has been proven to be the asymptotically op-

```
// Returns sum of lengths covered by union of given
// segments
int segmentUnionLength(const vector <pair <int,int> > &seg) {
   int n = seg.size();
    // Create a vector to store starting and ending
    vector <pair <int, bool> > points(n * 2);
```

```
for (int i = 0; i < n; i++)
        points[i*2]
                        = make_pair(seg[i].first, false);
        points[i*2 + 1] = make_pair(seg[i].second, true);
    // Sorting all points by point value
    sort(points.begin(), points.end());
    int result = 0; // Initialize result
    // To keep track of counts of current open segments
    // (Starting point is processed, but ending point
    // is not)
    int Counter = 0;
    // Trvaerse through all points
    for (int i=0; i<n*2; i++)
        // If there are open points, then we add the
        \ensuremath{//} difference between previous and current point.
        // This is interesting as we don't check whether
        // current point is opening or closing,
        if (Counter)
            result += (points[i].first - points[i-1].first);
        // If this is an ending point, reduce, count of
        // open points.
        (points[i].second)? Counter-- : Counter++;
    }
    return result;
7.2 Closest Pair Problem
To be revised.
// First sort the points by their x coordinates. Do whatever if
there is tie.
// I have to write the correct implementation following the
idea mentioned in cormen and use it to solve codejams prob.
// Commented section shows how to solve the problem:
// Find out the maximum size such that if you draw such size
quared around each point (that point will be at the center of
the square) and no two squared will intersct each other (cna
touch but not intersect). To make the problem simple the sides
of the square will be parallel to \ensuremath{\mathtt{X}} and \ensuremath{\mathtt{Y}} axis.
double dvac(int low, int high) {
   if(low < high) {
       if(low == high - 1) {
           return dist(data[low], data[high]); // return max
           (data[high].x - data[low].x, abs (data[high].y -
           data[low].y));
       int mid = (low + high) / 2;
       double d1 = dvac(low, mid);
       double d2 = dvac(mid + 1, high);
       double dp = min(d1, d2);
       double d3 = 10000;
       // It is guarenteed that there can be atmost 6 points
       for(int i = mid; i >= low; i--) {
           double temp = dist(point(data[i].x, 0),
           point(data[mid].x, 0));
           if(temp > dp - EPS) break;
           for(int j = mid + 1; j <= high; j++) {</pre>
               double temp2 = dist(point(data[i].x, 0),
               point(data[j].x, 0));
               if(temp2 > dp - EPS) break;
               d3 = min(d3, dist(data[i], data[j]));
               // d3 = min (d3, max (data[j].x - data[i].x,
               abs(...));)
       return min(dp, d3);
   }
  return 10000:
```