Lösungsvorschlag Ü01 A+N Maximilian Maag

Aufgabe A

- 1. Falsch
- 2. Richtig
- 3. Richtig
- 4. Richtig
- 5. Falsch
- 6. Richtig

Aufgabe B

- a) $a_n = 2n 1$
- $a_1 = 2 * 1 1 = 1$
- $a_2 = 2 * 2 = 3$
- $a_3 = 2 * 3 1 = 5$
- $a_4 = 2 * 4 1 = 7$
- $a_5 = 2 * 5 1 = 9$
- **b)** $a_n = 1 + \frac{1}{n}$ $a_1 = 1 + \frac{1}{1} = 2$ $a_2 = 1 + \frac{1}{2} = \frac{3}{2}$ $a_3 = 1 + \frac{1}{3} = \frac{4}{3}$ $a_4 = 1 + \frac{1}{4} = \frac{5}{4}$ $a_5 = 1 + \frac{1}{5} = \frac{6}{5}$

- - **c)** $a_n = (-1)^n * 2n$
- $a_0 = 0$
- $a_1 = (-1)^1 * 2 = -2$
- $a_2 = (-1)^2 * 2 * 2$
- =1*4=4
- $a_3 = (-1)^3 * 2 * 3$
- = -1 * 6 = -6
- $a_4 = (-1)^4 * 2 * 4 = 8$ $a_5 = (-1)^5 * 2 * 5 = -10$

Aufgabe C

a) d = 4 $a_n = 3 + 4n$

b)
$$q = \frac{1}{4}$$

 $a_n = 4 * (\frac{1}{4})^n$

c)
$$a_n = a_0 * q^n$$

 $q = \frac{-8}{2} = -4$
 $a_0 = \frac{1}{8}$
 $a_n = \frac{1}{8} * (-4)^n$

Aufgabe D Es wird Näherungsweise eine Entfernung von 384.400 km angenommen. Eine Zeitung misst aufgeschlagen eine Dicke von grob geschätzten 0.1 mm.

$$A = 0.1$$
, 0.2 , 0.4 , 0.8 , 1.6

Diese geometrische Reihe beschreibt die Dicke der angenäherten Zeitung.

$$a_n = a_0 * q^n$$

 $q = \frac{1.6}{0.8} = 2$
 $a_n = 0, 1 * 2^n$

Um zum Mond zu gelangen muss die Dicke der Zeitung der Entfernung Erde -Mond entsprechen. Daraus ergibt sich folgende Exponentialgleichung

```
\begin{array}{l} 384400km = 384400000000mm = 3,844*10^{12}\ 0,1*2^x = 3,844*10^{12}\\ 2^x = 3,844*10^{13}|log()\\ log(2^x) = log(3,844*10^{13})\\ x*log(2) = log(3,844*10^{13})\\ x = \frac{log(3,844*10^{13})}{log(2)}\\ x = 45,1277 \approx 46 \ \mathrm{da} \ \mathrm{die} \ 45,12\text{-te} \ \mathrm{Faltung} \ \mathrm{\ddot{u}berschritten} \ \mathrm{werden} \ \mathrm{muss}. \end{array}
```

Der Praxistest ist mangels einer Zeitung entfallen. Die Rechnung kann als Reihe dargestellt werden und zeigt ein hohes Wachstum für ein geringes n.

Aufgabe 1

a) Zinsen pro Jahr:
$$500 * \frac{3}{100} = 15$$

 $a_n = 500 + 15n$
 $2000 = 500 + 15n$ $1500 = 15n$ $n = 100$ Jahre

b)
$$a_n = 500 * 1,03^n$$

 $2000 = 500 * 1,03^n$
 $500 * 1,03^n = 2000$
 $1,03^n = 4$
 $\log(1,03^n) = \log(4)$
 $n * \log(1,03) = \log(4)$
 $n = \frac{\log(4)}{\log(1,03)}$
 $n = 46,8995 \approx 47$ Jahre

Aufgabe 2

a)
$$a_3 = 25a_6 = 46$$

 $3d = 46 - 25$
 $d = 7$
 $a_n = a_0 + n * d$
 $a_0 = 25 - 3 * 7$
 $a_0 = 4$
 $a_n = 4 + 7n$

b)
$$a_n = 16 * 2, 5^n$$

c)
$$a_2 = 2000 \ a_4 = 1280$$
 $q^2 = \frac{1280}{2000}$
 $q = \sqrt{\frac{1280}{2000}}$
 $q = 0.8$
 $a_2 * (\frac{8}{10})^2 = a_4$
 $a_4 * (\frac{10}{8})^2 = a_2$
 $a_2 * (\frac{10}{8})^2 = a_0$
 $2000 * (\frac{10}{8})^2 = 3125$

$$a_n = 3125 * (8/10)^n$$

d)
$$a_0 = 3$$

 $a_{n+1} = 2a_n + 1$
 $a_1 = 2 * 3 + 1$
 $a_1 = 7$
 $a_0 * q = a_1$
 $3 * q = 7$
 $q = \frac{7}{3}$
 $a_n = a_0 * q^n$
 $a_n = 3 * (\frac{7}{3})^n$

Aufgabe 3 - Zufallszahlen $x_n = (ax_{n-1} + c) \mod m$

$$a = 7; c = 4; m = 9$$

$$x_n = (7 * x_{n-1} + 4) \mod 9$$

$$x_0 = 3 x_1 = (7 * 3 + 4) \mod 9 = 7$$

$$x_1 = (7 * 7 + 4) \mod 9 = 8$$

$$x_2 = 6$$

$$x_3 = 1$$

$$x_4 = 2$$

 $x_5 = 0$ $x_6 = 4$ $x_7 = 5$ $x_8 = 3$