بسم الله الرحمن الرحيم

استفاده از یادگیری عمیق در تشخیص تکنیکهای متقاعدسازی به کاررفته در میمها

دانشجو: مهدیه نادری استاد راهنما: دکتر سید صالح اعتمادی دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت مهر ۲۶۰۳

فهرست مطالب

- مقدمه
- کارهای پیشین و مرتبط
 - روشهای پیشنهادی
 - نتایج و تفسیر آنها
- نتیجه گیری و کارهای آینده

اهميت موضوع

- نیاز به تحلیل تکنیکهای متقاعدسازی و پروپاگاندا در میمها
 - ۰ گسترش شبکههای اجتماعی چند رسانهای
 - افزایش تولید محتوای کاربرمحور
- تاثیر گذاری روشهای متقاعد سازی بر افکار عمومی
 - انتشار اطلاعات نادرست
 - دستکاری اجتماعی
 - ضرورت توسعهی روشهای خودکار
 - ۰ دستیابی راحت تر به حجم بالای اطلاعات
 - ۰ جلوگیری از خطای انسانی، عدم دقت و ناپایداری
 - مقیاس پذیر برای حجم بزرگ دیتا
 - ۰ شناسایی سریعتر تغییرات در شبکههای اجتماعی

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنها**د**ی

نتایج و تفسیر آنها

تعريف مسئله

• تسک چهارم مسابقه Semeaval 2024 •

- نشخیص چندزبانه تکنیکهای متقاعدسازی در میمها
- ۰ مجموعه دادهی آموزشی به زبان انگلیسی، مجموعه دادهی تست به زبان انگلیسی،مقدونی شمالی و بلغاری

:Subtask1 •

- ۰ دادهی متنی میمها
- 🔾 تسک طبقهبندی چندلییبلی در حوزهی پردازش زبان طبیعی
 - ۰ ۲۰ لیبل دارای رابطه ی سلسله مراتبی
 - معیار ارزیابی hierarchical-F1
 - Subtask 2a: مورد پژوهش قرار نگرفتهاست.

:Subtask 2b •

- دادهی چند رسانهای میمها (متن و تصویر)
- نسک طبقهبندی باینری چندرسانهای (میم دارای تکنیک متقاعدسازی هست یا خیر؟)
 - معیار ارزیابی F1-macro

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنها**د**ی

نتایج و تفسیر آنها

نتیجه گیری و کارهای آینده

استفاده از یادگیری عمیق در تشخیص تکنیکهای متقاعدسازی به کاررفته در میمها | مهدیه نادری

مثال: فرض میکنیم لیبل درست برای ورودی داده شده Name Calling باشد.

سيستم A ليبل Smears و سيستم B ليبل Oversimplification را پيشبيني مي كنند.

با اینکه هر دو پیشبینی اشتباه است سیستم A پاداش جزئی بیشتری دریافت می کند زیرا لیبلی که پیشبینی کرده

تعداد گره والد و یا جد مشترک بیشتری با لیبل صحیح دارد.

مقدمه

كارهاي پیشین و مرتبط

ر و ش های پیشنهادی

نتيجه گيري و کارهای اينده

راهبردهای مدرن در پردازش چندوجهی

۱. مدلهای ترکیبی متن و تصویر:

ویژگیهای تصویری و متنی را بهطور همزمان ترکیب میکنند. مانند VisualBERT و LXMERT

۲. مدلهای چندوجهی:

از تعاملات پیچیده بین دادههای متنی و تصویری برای یادگیری استفاده می کنند. مانند CLIP و ViLT

۳. مدلهای تفکیکی متن و تصویر:

ابتدا ویژگیهای متنی و تصویری را بهطور جداگانه استخراج کرده و سپس آنها را ترکیب میکنند.

BERT + CNN: استفاده از BERT برای پردازش متن و یک شبکه عصبی کانولوشن برای استخراج ویژگیهای تصویری.

٤. مدلهای یادگیری عمیق مبتنی بر توجه:

استفاده از مکانیسم توجه برای تمرکز بر ویژگیهای مهم متن و تصویر

Multimodal Transformer: مدل مبتنی بر توجه که ویژگیهای متنی و تصویری را با یکدیگر ترکیب می کند.

(Unified Vision-Language Pre-training (UVLP): از مکانیسم توجه برای یادگیری مشترک متن و تصویر

استفاده می کند و توانایی در ک عمیقتری از ارتباطات بین داده ها دارد.

کارهای پیشین و مرتبط

روشهاي پیشنهادی

نتایج و تفسیر آنها

کارهای پیشین

• تسک سوم Semeval 2023 :

- شناسایی ژانر، چارچوببندی و تکنیکهای متقاعدسازی در اخبار آنلاین در یک محیط چندزبانه (NLP)
 - دادهها و زبانها: مقالات خبري به زبانهاي انگليسي، فرانسوي، آلماني، ايتاليايي، لهستاني و روسي
 - Subtask 1: طبقهبندی برای شناسایی نوع مقاله (نظر، گزارش، یا طنز)
 - ليبلها: سه نوع ژانر "گزارش"، "نظر"، "طنز"
 - o F1-macro مدل برتر: XLM-RoBERTa
 - Subtask 2: شناسایی چارچوبها به صورت چند کلاسه
 - ليبلها: ١٤ چارچوب مانند "اقتصادى"، "اخلاقى"، و "سياسى"
 - o معيار ارزيابي: ALBERT و ALBERT معيار ارزيابي: ALBERT و mBERT
 - Subtask 3: شناسایی تکنیکهای متقاعدسازی هر پاراگراف به صورت چندلیبلی
 - لیبلها: ۲۳ تکنیک متقاعدسازی مختلف
 مدل برتر ۲۳ تکنیک متقاعدسازی مختلف
- استراتژیها: بررسی پیشپردازش و تنظیم آستانه اطمینان
 معیار ارزیابی: F1-micro

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

مدلهای زبانی

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

نتیجه گیری و کارهای آینده

٨

مدل GPT-2

- معماری ترنسفورمر و مدل زبان خودنظارتی
- 🔾 چندزبانه بودن:اگرچه عمدتاً برای زبان انگلیسی طراحی شده است، اما قابلیت تولید متن در زبانهای دیگر را نیز داراست.
 - مقیاسپذیری:با افزایش ابعاد مدل و دادههای آموزشی، کیفیت تولید متن به طرز قابل توجهی افزایش مییابد.
 - پیشرفته بودن: بهبود با استفاده از تکنیکهای پیشرفتهای مانند fine tune و یادگیری انتقالی

مدل XLM-Roberta:

- معماری ترنسفورمر
- 🔾 پشتیبانی از چند زبان: به طور همزمان از بیش از ۱۰۰ زبان مختلف پشتیبانی می کند
 - 🔾 آموزش بر روی دادههای متنوع: آموزش دیده روی متون چند زبانه
- یادگیری بین زبانی: این مدل به طور خاص برای تسهیل یادگیری بین زبانی طراحی شده است و از دانش یک زبان برای
 بهبود عملکرد در زبانهای دیگر استفاده می کند.

مدلهای بینایی کامپیوتر عمیق

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

نتیجه گیری و کارهای آینده

مدل VGG-16:

- عمق شبکه: یادگیری ویژگیهای پیچیده تر با ۱٦ لایهی قابل آموزش (لایههای کانولوشن و Fully Connected)
 - o مورد استفاده در در تسکهای انتقال یادگیری و Fine-tuning
 - عملکرد بالا در شناسایی اشیاء: عملکرد بسیار خوب در مسابقات معتبر شناسایی اشیاء مانند

مدل (ViT) Vision Transformer):

- معماری مبتنی بر ترنسفورمر و عدم نیاز به CNN
- تجزیه تصویر به تکهها: تصاویر به تکههای کوچک (پچها) تقسیم میشوند و هر تکه به عنوان یک ورودی به مدل داده
 میشود. این روش به مدل کمک می کند تا ویژگیهای محلی و کلی را همزمان یاد بگیرد.
 - نیازمند دادههای آموزشی بسیار زیاد برای بهترین عملکرد و نداشتن عملکرد بهینه در دادههای محدود
 - کاهش پارامترها و پیچیدگی
 - توسعه پذیری: قابلیت ترکیب با سایر معماریها

مجموعه دادهها Subtask1

از اجتماع مجموعهدادههای آموزشی، اعتبارسنجی و توسعه برای آموزش مدلهای پیشنهادی استفاده شد.

Train set	7000	
Validation set	500	
Dev set	1500	
English test set	1500	
Bulgarian test set	436	
North Macedonian test set	259	

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

عدم توازن دادهها در Subtask1

train data set

- ■Black-and-white Fallacy/Dictatorship
- ■Loaded Language
- ■Glittering generalities (Virtue)
- ■Thought-terminating cliché
- **■**Slogans
- ■Causal Oversimplification
- **■Smears**
- ■Name calling/Labeling
- ■Appeal to authority
- ■Exaggeration/Minimisation
- Repetition
- ■Flag-waving
- Appeal to fear/prejudice
- ■Reductio ad hitlerum
- Doubt
- Misrepresentation of Someone's Position (Straw Man)
- Obfuscation, Intentional vagueness, Confusion
- Bandwagon
- Presenting Irrelevant Data (Red Herring)
- Whataboutism

مقدمه

مر تبط

و کارهای أبنده

عدم توازن دادهها در Subtask1

- ■Black-and-white Fallacy/Dictatorship
- ■Loaded Language
- ■Glittering generalities (Virtue)
- ■Thought-terminating cliché
- ■Slogans
- ■Causal Oversimplification
- ■Smears
- ■Name calling/Labeling
- ■Appeal to authority
- ■Exaggeration/Minimisation
- ■Repetition
- ■Flag-waving
- ■Appeal to fear/prejudice
- ■Reductio ad hitlerum
- Doubt
- ■Misrepresentation of Someone's Position (Straw Man)
- Obfuscation, Intentional vagueness, Confusion
- Bandwagon
- Presenting Irrelevant Data (Red Herring)
- Whataboutism

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

عدم توازن دادهها در Subtask1

■Black-and-white Fallacy/Dictatorship

■Loaded Language

■Glittering generalities (Virtue)

■Thought-terminating cliché

■Slogans

■Causal Oversimplification

■Smears

■Name calling/Labeling

■Appeal to authority

■Exaggeration/Minimisation

■ Repetition

■Flag-waving

■Appeal to fear/prejudice

■Reductio ad hitlerum

■Doubt

Misrepresentation of Someone's Position (Straw Man)

Obfuscation, Intentional vagueness, Confusion

Bandwagon

Presenting Irrelevant Data (Red Herring)

■Whataboutism

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

مجموعه دادهها Subtask 2b

- ID: شناسه منحصر به فرد هر میم
- متن: محتوای متنی موجود در میم
- تصویر: نام فایل تصویر مربوط به میم
- برچسب: Non-Propagandistic ، Propagandistic

Data Set/Label	Propagandistic	Non-Propagandistic
Train	۸٠٠	۴.,
Validation	١	۵۰
Development	۲.,	١

مجموعه داده تست زبان انگلیسی : ۶۰۰ داده مجموعه داده تست زبان بلغاری: ۱۰۰ داده مجموعه داده تست زبان مقدونیه شمالی: ۱۰۰داده مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

پیش پردازش دادهها

- پردازش تصاویر: تغییر اندازه به ۲۲٤X۲۲۶ در حالت RGBو نرمالسازی.
- تجزیه و تحلیل زبانی: استفاده از ابزار NLTK برای تو کنسازی، حذف کلمات توقف و ریشهیابی.
 - پاکسازی متن: حذف نویزها با استفاده از API OpenAI
 - اصلاح دستی دادهها: مداخله انسانی در موارد خطای استخراج متن.
 - نمونه:

{ "id": "25064", "text": "@:\\nDer",

"image": "prop_meme_4499.png",

"label": "propagandistic" }

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

API OpenAl در Subtask 2b

از API سرویس OpenAI برای پیش پردازش متون میمها استفاده شده است. ابتدا دستورالعمل خاصی برای استخراج متن اصلی و حذف اطلاعات اضافی مانند نام کاربری و کاراکترهای اضافی تعریف میشود. سپس از طریق یک درخواست HTTP به API OpenAI، درخواست ارسال شده و متن پیش پردازش شده از پاسخ دریافت می گردد. این متن پردازش شده سپس در یک فایل ذخیره می شود تا به عنوان داده تمیزشده برای مراحل بعدی مدل سازی و تحلیل استفاده شود.

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

روش استفاده شده در Subtask1

و GPT-2 و XLM-Roberta و تنظیم دقیق در مدلهای XLM-Roberta و GPT-2

- ۰ استفاده از دادههای ترکیبی آموزش و اعتبارسنجی و توسعه دهنده
- و سورت کردن داده ها بر اساس طول متن: داده ها با طول مشابه در یک بچ و تسریع فرایند آموزش
 - o مقابله با عدم توازن کلاسها با Class-weight و مقابله با
 - م بهینهسازی نزول گرادیان با AdamW
 - تنظیم ابرپارامترها با جستجوی شبکهای و اعتبارسنجی متقابل

مقدار	پارامتر
٥	تعداد دوره آموزشي
١٦	اندازه دسته آموزشي
١٦	اندازه دسته اعتبارسنجي
٠,٠٠١	نرخ یادگیری

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

روشهای استفاده شده در Subtask 2b ﷺ

- استخراج ویژگیهای متنی با XLM-RoBERTaو GPT-2
 - استخراج ویژگیهای تصویری با VGG و ViT
 - ایجاد نمایه چندوجهی از ترکیب ویژگیهای متنی و تصویری
 - لایه فیوژن چندوجهی برای ادغام ویژگیها
- لایه طبقهبندی دودویی برای پیشبینی وجود تکنیکهای متقاعدسازی

مقدار	پارامتر
١.	تعداد دوره آموزشي
٣٢	اندازه دسته آموزشي
٣٢	اندازه دسته اعتبارسنجي
٠,٠٠١	وزن كاهشى
٠,٠٠١	نرخ یادگیری
٠,٣٩	بهترین آستانه

مقدمه

كارهاي پیشین و مر تبط

روشهاي پیشنهادی

نتايج و تفسير آنها

نتیجه گیری و کارهای

نتایج Subtask1

نتایج آزمایش مدلها روی مجموعه تست به زبان انگلیسی

Model	Hierarchical	Hierarchical	Hierarchical
Model	F1	Precision	Recall
XLM-RoBERTa	0/42667	0/29247	0/77798
XLM-RoBERTa with best treshold	0/50573	0/47555	0/54001
GPT-2	0/40266	0/26986	0/79281
GPT-2 with best threshold	0/59727	0/52563	0/69152
Baseline	0/36865	0/47711	0.30036

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

نتایج Subtask1

نتایج بهترین مدل XLM-RoBERTa و GPT-2 بر اساس Hierarchical F1 در مجموعه تست زبانهای بلغاری و مقدونیه شمالی

Language	Model	Hierarchical F1	Hierarchical Precision	Hierarchical Recall
Bulgarian	XLM- RoBERTa	0/38433	0/38672	0/38197
	GPT-2	0/33070	0/20953	0/78418
	Baseline	0/28377	0/31881	0/25567
North	XLM- RoBERTa	0/30863	0/18891	0/84256
Macedoni an	GPT-2	0/31222	0/28901	0/33948
	Baseline	0/30692	0/31403	0/30012

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

Subtask 2b نتایج

نتايج آزمايش مدلها روى مجموعه اعتبارسنجي

Model	F1-macro	F1-macro Best Treshold
VGG+XLM- RoBERTa	0/58	0/63
VGG+GPT-2	0/71	0/76
ViT + XLM- RoBERTa	0/40	0/53
ViT + GPT-2	0/35	0/51

مقدمه

كارهاي پیشین و مر تبط

روشهاي ييشنهادي

نتايج و تفسير آنها

Subtask 2b نتايج

نتایج مدل VGG+GPT-2 (بهترین مدل) روی مجموعه تست زبانهای انگلیسی، بلغاری و مقدونیه شمالی

Language	F1-macro	Baseline F1- macro	F1-micro	Baseline F1-micro
English	0/67398	0/25000	0/74000	0/33333
Bulgarian	0/51637	0/16667	0/74000	0/20000
North Macedonian	0/57653	0/09091	0/79000	0/10000

مقدمه

كارهاي پیشین و مر تبط

روشهاي ييشنهادي

نتايج و تفسير آنها

جمع بندي

:Subtask1 o

- استفاده از تکنیک انتخاب بهترین آستانه برای بهبود عملکرد مدل GPT-2در زبان انگلیسی
 - عملكرد بهتر مدل GPT-2 بر اساس معيار Hierarchical F-1 (مقدار ٠٠٣١٢٢٢)
 - عدم کسب نتایج مطلوب برای هر دو مدل در زبان مقدونیهای
 - عملکرد برتر مدل XLM-ROBERTaدر زبان بلغاری با دقت ۰.۳۸٤۳۳

:Subtask2b o

- مدلVGG + GPT-2، بهترین عملکرد در دادههای انگلیسی
- در مدلهای ViT + XLM-RoBERTa و F1-macro ،ViT + GPT-2به ترتیب ۳۰.۰ و ۰.۰۱
 - عملکرد پایینتر در زبانهای بلغاری و مقدونیهای
 - مدل GPT-2، بهبود عملکرد در چندین زبان
 - چالشهای دادههای چندزبانه

مقدمه

کارهای پیشین و مرتبط

روشهای پیشنهادی

نتایج و تفسیر آنها

کارهای آینده

كارهاي پیشین و مرتبط

روشهاي پیشنهادی

نتایج و تفسیر آنها

و کارهای

نتیجه گیری

- استفاده از دادههای آموزشی بزرگتر و متنوعتر: افزودن مجموعههای داده جدید برای بهبود یادگیری الگوها
 - تنظیم دقیق تری از هایپرپارامترها: جستجوی پیشرفته برای بهینه سازی نرخ یادگیری و دیگر هایپرپارامترها
 - روشهای یادگیری نیمهنظارتشده: بهره گیری از دادههای بدون برچسب برای افزایش دقت مدل
 - تجزیه و تحلیل عمیق تر نتایج: استفاده از متریکهای متنوع برای بررسی عملکرد و شناسایی نقاط ضعف
 - پیشپردازش دادهها: مراحل پیچیدهتری برای پاکسازی و نرمالسازی دادهها
 - تركيب مدلهاي مختلف: استفاده از چندين مدل از جمله ترنسفورمر و CNNبراي افزايش دقت پيشبيني
 - استفاده از تکنیکهای نوآورانه: مانند یادگیری تقویتی یا یادگیری فعال برای بهبود عملکرد
 - تحلیل خطاها: شناسایی و بررسی نمونههای نادرست پیشبینی شده برای بهبود مدل

با سپاس از توجه شما

M_naderi98@comp.iust.ir

- Bakhshande, Fatemezahra, and Naderi, Mahdieh. "CVcoders on SemEval-2024 Task 4." In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), June 2024, Mexico. Association for Computational Linguistics, 1912–1918.
- Brown, Tom B., et al. "Language Models Are Few-Shot Learners (GPT-3)." ArXiv, 2020.
- Carion, N., et al. "End-to-End Object Detection with Transformers." *European Conference on Computer Vision (ECCV)*, 2020.
- Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,
 Zettlemoyer, L., & Stoyanov, V. (2019). "Unsupervised Cross-lingual Representation Learning at Scale."
- Conneau, A., et al. "Unsupervised Cross-lingual Representation Learning at Scale (XLM-R)."
 ArXivDeng, J., et al. (2009). "ImageNet: A large-scale hierarchical image database." *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 248–255.
- Dimitrov, Dimitar, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio Silvestri, Hamed Firooz, Preslav Nakov, and Giovanni Da San Martino. "SemEval-2021 Task 6: Detection of Persuasion Techniques in Texts and Images." *Proceedings of the 16th International Workshop on* Semantic Evaluation (SemEval-2021), 2021, pp. 70–98.
- Dosovitskiy, A., et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." arXiv preprint arXiv:2010.11929.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press. [Chapter 9: Convolutional Networks].
- Hsinhung, W. (n.d.). GPT-2 detailed model architecture. Medium.

- Jowett, Garth S., and Victoria O'Donnell. Propaganda & Persuasion. 6th ed., SAGE Publications, 2019.
- Karpathy, Andrej. "Let's Reproduce GPT-2 (124M)." YouTube.
- Karpathy, Andrej. "nanoGPT" repo.
- Lample, G., & Conneau, A. (2019). "Cross-lingual Language Model Pretraining." ArXiv.
- M. Bach, T. Minervini, S. Pradhan, and E. Hovy, "Evolving Multimodal Models: Detection of Persuasion Techniques with Limited Labeled Data," ArXiv, 2023.
- OpenAI. (2023). *GPT-2*. GitHub. Archived from the original on March 11, 2023. Retrieved March 13, 2023, Propaganda, "SemEval 2023 Task 3: Persuasion Techniques in Texts and Images," 2023.
- Propaganda, "SemEval 2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes,"
 2024.
- Simonyan, K., & Zisserman, A. (2014). "Very Deep Convolutional Networks for Large-Scale Image Recognition." arXiv preprint arXiv:1409.1556.
- Touvron, H., et al. "Training data-efficient image transformers & distillation through attention." arXiv preprint arXiv:2012.12877.
- Vaswani, Ashish, et al. "Attention Is All You Need." ArXiv, 2017.
- Better Language Models and Their Implications, OpenAl Blog, 2019.
- S. Kiritchenko, S. Matwin, R. Nock, and A. F. Famili, "Learning and Evaluation in the Presence of Class Hierarchies: Application to Text Categorization," in *Proceedings of the National Research Council Canada*, University of Ottawa, Canada, 2004.
- A. Kr. Ojha, S. Matwin, R. Waseem, and G. D. S. Martino, "SemEval-2023 Task 3: Detecting Persuasion Techniques in Texts and Images," *Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)*, Association for Computational Linguistics, June 2023, pp. 591–605.