Divide and Conquer

This technique divides a given problem into smaller instances of the same problem. Solves the smaller problems and combine solutions ito solves the given problem.

for a given large data set.

- * DIVIDE: Partition the data set into smaller sets
- * Solve the problems for the smaller sets
- · CONQUER: Combine the results of the smaller sets.

Pracestone Algorithm & Divide_and_Conquer (x).

of x is small

return solve (N)

else

for eito to min step of 1.

Ji = Divide_and Conquer (xe)

return y.

Three conditions that make D&C worthwhile's

- 1. It must be possible to decompose an instance into sub-instances.
- 2. It must be efficient to recombine the results.
- 3. Sub instances should be about the same size.

Some examples of Divide and conquer:-

```
J. Thement to be se gi
(1) Binary searth:
             Algorithm BinSearch (a, n, x)
      Il Array is in nondecreasing order.
         Low ←1; high ←n;
         while (low & high) do.
            mid ~ [(low + high) [12];
             if (x < a [mid])
                then high \mid-1.;
             else if cx>a[mid] to
                then low + mid +1;
                               ( successful search successful)
                return mid;
           return 0; (Unsuccessful search).
     Complexity:- Ton = T (1/2) +1
              for successful search -
                 Best case : (1)
                Average case: 8 (log2h).
                 worst case ( log2h)
             for unbuccessful search.
                         O (login)
Theorem: If n is in the range [2kd, 2k) then binary
        searth makes atmost k comparisons for a successful
        search and either k+1 cr k comparisons for an
         unsuccessful search.) [ie. for a successful search be offing.
       and for consuccessful search is Oklogen in
```

If $2^{k+1} \le n < 2^k$, then all circular nodes are at level 1, 2, --- k.

while all equares are nodes are at levels & and k+1.

So for the successful search k companisons required and for unsuccessful search k or k+1 companisons are required.

3 Merge scott

the merge sort

- The procedure merge sort sorts the elements in the sub array A [low, high]
- * 94 low > high the sub array has at most one element and is therefore already sorted.
- * Otherwise we divide it into A[100, mid] and A[mid+1, hye]

the state of the same of the s

Algorithm Merge Sort (Now, high) be selled. 14 (low & high) then I Divide it into subproblems mid + [(low + high)/2]; projections in subproblems MergeSort (A, 10w, mid); Merge Sort (A, mid +1, high); 11 Combine the solutions. Merge (low, mid, high). fend if. Hend algorithm Algorithm Merge (low, mid, high) Page 147 (HS) It a [low, high] is a global array containing two sorted subsets Il in a [low, mid] and in a [mid+1, high]. The good is to Il merge these two sets into a single set reviding in I a [low, high. b[] is an auxiliary global array. h < 1000; 1 × 1000; d ← mid+1; while ((h < mid) and (j < high)) do kit: Free of call of mapare if (a[n] < a[i]) then b[i] + a[h]; h < h + 1; elce

Theo of eath of manpe I (h> mid) then [44,5] there is any. blile alk]; (+1+1; else for k + h to mid do bli] ~ a[k]; 1 × 1°+1; for k + low to high do a try a[k] + b[k]; Example .. (85 45 96 50) 24 63 17 45) (25 24 63 (81 24) 63 (85) [24] (85

If the since for the mergings

The computing time for merge sort is: a described by the recurrence relation.

$$T(n) = \begin{cases} a & n=1. \\ a & is a constant \end{cases}$$

 $a = 1 + cn , n > 1 , c = a constant$

where n is a power of 2, n=2

$$\frac{Solution:}{T(n)} = 2T(n/2) + cn$$

$$= 2(2T(n/4) + cn/2) + cn$$

$$= 2(2T(n/4) + cn/2) + 3.cn.$$

$$= 2^{2}T(n/2^{2}) + 3.cn.$$

$$= 2^{3}T(n/2^{3}) + 3.cn.$$

Therefore complexity T(n) = O(nlog_2n)

3 Quick sort

Similar to Merge Sort but by choosing a pivot point, with tesser numbers on left and greater on right. partitions the array of numbers to be corted, but does not need to beek a temporary array. It is faster than Merge sort because it does not go through the merge phases.

Partition, ky Partition 2

Algorithm DuickSort (Dags (a, p, r) In book Algorithm DuickSort (p, q) if p(r then // More than one element. 9 5 Partition (a, p.r)) Duick Sort (a, p, qi).; 11 heavarging tes dement of an Away is refleced to Duicksort (a, 9+1, 7); as parthoner. end if. Algoritim gueleraf (a, m, P) end algorithm. 1 if (m/p). (a, m,p) 1' 9 = peublasta, m, Page 156 (H.S.) The yearsh of the seconds Algorithm Partition (airpin) 2 + A[P] 1° - p-1. Authtion (a, my P) Algoniam 1 - r+1. 9 0=a[m]: 1=m; J=P; while TRUE repeat j+j-1. grepeat until A[i] < x. 1=2+1 with (alt] 2 is repeat i+ i+1. grepeat j=j-1until A[i] > x - until (091:52) if i'<j if(zej) then entuchanger then exchange A[i] +> A[j] Juntil (277) else return i. a[m] = a[]: Algorithm Interchauge (a,i,j) app = v; retion j 11 Exchange a[i] with a [i] P + a[i]; Algorithm Interchange (a, i, j) a[i] + a [i]; 1 p = arij a[1] ~ P; aru= ari] end algorithm. 911 = P; Partition les Array.

Analysis of Quick sort :-

· Worst case: If unbalanced partitioning.

One region with one element and the other with n-1. elements. If this happen in every step i.e. when array is already sorted.

then complexity = 0 (n2)

· Best case: if balanced partitioning:

Two regions, each with 1/2 elements.

then computing time for quick sort is: -

$$T(n) = \begin{cases} a & n=1. \\ aT(n/2) + cn & n>1. \end{cases}$$

Complexity T(n) = O(nlog_n)

· Averag case closer to the best case than the worst case.

Example.

value < 45				value > 45					
14	26	39	45	68	61	97	77	99	90
45)	96	39	high.	(68)	61	97	77	99	96
45	2€	39	19	68	61	g 7	77	99	90
(43)	26	10W	14	68	61	97	29)	99	90
Ky A3	26	77	14	68	61	97	39	99	hig (30

Now apply quick sort procedure on each of those subarrays.

Strassen's matrix multiplication.

let A and B be two non matrices. The product - AB is also mxn and can be obtained as foll=0: vens (+1) & Q=0:72n:340 O(i) = S A (i, k) B (k,j) (0=[t][i]) > for(koo; Kru; Kee) for all i and i between I and in Till - CUIII+ ASCE To compute c(i,i) we need in multiplications ? has mente we can say matrix multiplicate, algorithm is O(n3). square of 2 and square matrix. The divide and conquer strategy suggests another way to compute the product of two nxn matrices of 2. magin that work A and B are a countries way to into four square submatrices, each submatrix having m/2 * n/2. Then product is:- A_{12} A_{22} B_{21} B_{22} B_{22} C_{21} C_{21} C_{22} In cauninata AII fucuot 2, Ken enough novor pedumo A21 64 Zerry are asked Algo MM A,B, M) to both A and B so C11 = A11 B11 + A12 B21 1 if (1152) gest grently dimension are of pender of 2 C12 = \$11 B12 + A13 B22 C = Applying Kg C21 = A21 B11 + A22 B21 else mid: N/2 C22 = A21 B12 + A21 B22 MM(A11, B11, X)+144(412) , MM(A11, B12, 7%) THM(AU, A)

8 multiplications + 4 addition of n/2 x n/2 matrixes. since two 1/2 x 1/2 matrices can be added in time ent for some constant c. Hence overall compunity time Tens of the resulting divide & conquer agasium is given by the recurrence.

 $T(n) = \begin{cases} 5 & 0.052 \\ 8T(1/2) + 0.02 & 0.02. \end{cases}$ where band a are constant Although complexity is same but number of Computations is reduced, but no impreventment our conventional method Volker Strassen's method: Since matrix multiplications [o (13)] are more expensive than matrix additions [och2]]. In this method there are 7 multiplications and 18 ciditionsor subtractions. first compute seven n/2 * h/2 matrices P, Q, R, S, T, U. V and then Cij by these matrices: P = (A11+ A22). (B11 + B22) Q = (A21 + A22) B11 R= A11 (B12 - B22) S = A22 (B21 - B1) T = (A11+ A12) B22. U = (A21 - A11) (B11+B12) V = (A12 - A12) (B21 + B22) CH = P+S-T +V C12 = R+T C21 = Q+S CZZ = P+R -Q+U the resulting recurrence relation for Tun is

where a and b are constants.

boothing with the transite

working. with this formula, we get $T(n) = an^{2} \left(1 + 7/4 + (7/4)^{2} + \cdots + (7/4)^{k-1} \right) + 7^{k} T(1) = 4 + 7^{k} T(1)$

 $\leq cn^2 n \log^{2} 4$) $+ 4 \log^{2} 4$ $\leq cn^2 n \log^{2} 4 + \log^{2} 4 + 4 \log^{2} 4$ $\leq cn^{\log_{2} 4} + 2 \log^{2} 4$ $\approx o(n \log_{2} 4)$ $\approx o(n \log_{2} 4)$

 $T(n) = T(\frac{n}{2}) + ant$ $= 7(T(\frac{n}{4}) + a(\frac{n}{2})^{2}) + ant$ $= 7^{2} \cdot T(\frac{n}{4}) + \frac{7}{4} ant + ant$ $= 7^{3} \cdot T(\frac{n}{8}) + 7a(\frac{n}{2})^{2} + 2an^{2} \cdot ant$ $= 7^{3} \cdot T(\frac{n}{8}) + 7a(\frac{n}{2})^{2} + 2an^{2} \cdot ant$ $= 7^{3} \cdot T(\frac{n}{8}) + (\frac{7}{4})^{2} an^{2} \cdot ant$ $= 7^{3} \cdot T(\frac{n}{8}) + (\frac{7}{4})^{2} an^{2} \cdot ant$

 $= \pm^{|\alpha|} + |\alpha| + |\alpha|^{2} + |\alpha|^{2$

< cn2/1/2 1 7 7 19/2h

our oron metaca for solvey a Brioklein

greedy Approch Solvery

Ly Problem which orquires eiten monineur Justit co Maxemen grefult.

12 hr & confraint

-> Salafying given contraint

Asdubran cehech is fearble and given runnimum cast (but Reput) then finis solutions is known as optimal solutions

L) flore 4 only one Mentment oftenal solution nect more plan

Erach & Band method L) Greedy

x 2 delect(G);

if fearble(1) fluen

Solution: Solution +x;