Logic and Computation – CS 2800 Fall 2023

Propositional logic continued

Stavros Tripakis

Northeastern University Khoury College of Computer Sciences

Outline

- Truth tables
- Satisfiability and validity
- Stronger, weaker, and equivalent formulas

Homework: build the truth table of this Boolean expression 2000 = 2000 = 2000

$$\neg p \lor q \equiv p \Rightarrow q$$

Truth tables of Boolean formulas

- For every Boolean formula (= Boolean expression)
 we can construct its truth table
 - E.g., for the formula $\neg p \lor q \equiv p \Rightarrow q$ we get the truth table:

р	q	¬p	¬p ∨ q		$\neg p \lor q \equiv p \Rightarrow q$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	T	T	T

Assignment: assigns truth values to the propositional variables of the formula

Subformula: a subexpression (subtree)

Size of truth tables

- How many rows does a truth table have?
 - Answer: 2^n , where n is the number of inputs, i.e., the number of variables
- How many columns does a truth table have?
 - Answer: one column for every subformula
- If n is the number of inputs, how many different last columns can I have? (i.e., how many different n-ary Boolean functions can I have?)
 - Answer: 2^{2ⁿ} (make sure you understand why!)

Syntax vs semantics

- Infinitely many Boolean expressions!
- Finitely many Boolean functions!
- Finitely many truth tables!

- Many Boolean expressions are equivalent: they represent the same Boolean function, i.e., they have the same last column in their truth table.
 - E.g., p is equivalent to $p \lor p$, and also to $p \land p$, and also to $p \lor p \lor p$, etc.

Satisfiability and validity

Satisfiability and validity

- A Boolean formula (=Boolean expression) is called:
 - Satisfiable: when it is sometimes true
 - Unsatisfiable: when it is never true
 - Valid or a tautology: when it is always true
 - Falsifiable: when it is sometimes false
- "Sometimes", "always", "never" refer to the truth table of the formula:
 - Sometimes: exists assignment to make the formula true
 - Never: no assignment makes the formula true
 - Always: all assignments make the formula true

Satisfiability and validity

- Every Boolean formula satisfies exactly two of the previous characterizations
- In particular, a Boolean formula is exactly one of the following:
 - Satisfiable and valid: always true
 - Satisfiable but not valid = satisfiable and falsifiable: sometimes true and sometimes false
 - Unsatisfiable and falsifiable: always false
- Think of it as a *lattice*:

Examples – homework

Think of examples of the three categories

• Valid:

Satisfiable and falsifiable:

• Unsatisfiable:

Stronger, weaker, and equivalent formulas

- We say that formula P is **stronger** than formula Q if the formula $P \to Q$ is valid (i.e., a tautology). This is the same as saying that whenever P is true, Q is also true.
- We say that formula P is **weaker** than formula Q if the formula $Q \to P$ is valid (i.e., a tautology). This is the same as saying that whenever Q is true, P is also true. This is also the same as saying that Q is stronger than P.
- We say that formula P is **equivalent** to formula Q if both formulas $P \to Q$ and $Q \to P$ are valid. This is the same as saying that P is both stronger and weaker than Q.
- The same terminology applies to non-Boolean formulas, e.g., we can say that x > 5 is stronger than x > 0.
- Mini (ungraded) quizzes:
 - What is the strongest possible formula?
 - What is the weakest possible formula?

Necessary and sufficient conditions

 In other settings you will hear the terms necessary and sufficient, usually followed by conditions

- P is a necessary condition for Q if Q is stronger than P
- P is a sufficient condition for Q if P is stronger than Q

• If *P* is both necessary and sufficient for *Q*, then the two are equivalent

• E.g., x > 0 is necessary for x > 1, and sufficient for $x \ge 0$