Week 5 - Technical Assignment Fine tuning using LoRA and PEFT

Objective

This assignment provides **practical experience in running, debugging, fine-tuning, and testing an LLM** inside a Jupyter Notebook. The key tasks include:

- Running a fine-tuning notebook for an instruction-following LLM.
- Fixing potential errors that may occur during execution.
- Training and evaluating the model within the notebook.
- Saving and uploading the model to Hugging Face.
- Testing inside the notebook
- Documenting findings & submitting results via notebook.

Instructions

Copy-Paste Assignment - Read Carefully

- This is a Copy-Paste Assignment, meaning you will clone and run the provided notebook with small modifications.
- You may face errors when running the notebook.
- Your task is to fix these errors, document the fixes, and explain the process.
- You may run the notebook in Google Colab, Jupyter, or Kaggle.
- Kaggle is good.

How to Complete the Assignment

- 1. Clone the Jupyter Notebook from the following link:
 - Kaggle Notebook
- 2. Run each step, and fix errors, if you face them.
- 3. Clone hugging face small language models, like LLaMA 1.1B (Tiny Model), or any small model for training. If you do not get a success you can use the same model and need to explain the reason.
- 4. You can optimized parameters to get better results.
- 5. **Train the fine-tuned model** with the following configuration
 - $a. max_steps = 500$
 - b. logging_steps = 50
 - c. $eval_steps = 50$

- 6. Save and **upload the trained model to Hugging Face**. Share a screenshot of the hugging face model
- 7. **Test** all label cases.
- 8. Capture test results and add them to your Jupyter Notebook report.
- 9. Submit your work (Notebook + Code).

Submission Guidelines

- Code Submission: Push your final notebook to GitHub.
- Notebook Submission: Include error fixes, test results, and model evaluation.

15-Point Exercise Steps

1. Install Required Libraries

o Install transformers, datasets, peft, bitsandbytes, etc.

2. Load the Dataset from hugging face()

Import and inspect the provided dataset for fine-tuning.

3. Create Bitsandbytes Configuration

• Set up quantization with bitsandbytes for efficient training.

4. Load the Pre-Trained Model

Load LLaMA 1.1B or another small language model.

5. Tokenization

Apply appropriate tokenization for the dataset.

6. Test the Model with Zero-Shot Inference

Run a few samples to see the base model's performance before fine-tuning.

7. Pre-process the Dataset

Clean, format, and prepare the dataset for training.

8. Prepare the Model for QLoRA

Enable gradient checkpointing and quantization preparation.

9. Set Up PEFT for Fine-Tuning

Configure LoRA parameters and apply to the model.

10. Train PEFT Adapter

• Fine-tune the model using the PEFT configuration.

11. Evaluate the Model Qualitatively

Perform manual evaluation to assess output quality.

12. Evaluate the Model Quantitatively (ROUGE Metric)

• Use ROUGE or other metrics for automated performance evaluation.

13. Save and Upload the Model to Hugging Face

Push the trained model to your Hugging Face account.

14. Capture and Document Results

o Include screenshots of the uploaded model, sample outputs, and analysis.

15. Submit the Assignment

 Upload the notebook to GitHub with a README, including error fixes, evaluation, and model details.

Expected Deliverables

GitHub Repository with:

- Code (Notebook)
- Errors encountered & fixes if applied
- Snapshots of hugging face model and link to publicly available.