TD 7 - La notion de dimension

1 Familles de vecteurs et dimension

Exercice 1 (Égalité de sous-espaces vectoriels par double inclusion)

Dans
$$E = \mathcal{M}_2(\mathbb{R})$$
, soient: $F = \text{Vect}(A_1, A_2)$ où $A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 $G = \text{Vect}(B_1, B_2)$ où $B_1 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $B_2 = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$

- **1. a)** Écrire B_1 et B_2 comme combinaison linéaire de A_1 et A_2 .
 - **b)** En déduire l'inclusion $G \subset F$.
- **2.** Montrer de même l'inclusion $F \subset G$.
- **3.** En déduire l'égalité F = G.

Exercice 2 (Égalité de sous-espaces vectoriels par dimension)

Dans
$$E = \mathbb{R}^3$$
, soient $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$, tels que $x + y - z = 0 \right\}$ et $G = \text{Vect} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \end{bmatrix}$

- **1. a)** Montrer que *F* est un sous-espace vectoriel de *E*.
 - **b)** Trouver une base de *F*. En déduire sa dimension dim(*F*).
- **2.** Montrer que $\vec{u}, \vec{v} \in F$. En déduire que $G \subseteq F$.
- **3.** En comparant les dimensions $\dim(F)$ et $\dim(G)$, conclure que F = G.

Exercice 3 (*Plans dans* \mathbb{R}^3)

Soit
$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tels que } x + y - 2z = 0 \right\}$$
, et $\vec{u} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Vérifier que les vecteurs \vec{u} , \vec{v} forment une base du sous-espace vectoriel F.
- **2.** Calculer l'intersection de *F* avec le plan *G* d'équation x y z = 0.
- **3.** Écrire $F \cap G = \text{Vect}(\vec{d})$ (donc $\vec{d} \in F$!). Décomposer le vecteur \vec{d} dans la base \vec{u}, \vec{v} .

Exercice 4 (Calculs de dimension)

Quelle est la dimension des sous-espaces vectoriels de \mathbb{R}^4 suivants :

$$F = \operatorname{Vect}\left[\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}\right] \qquad G = \left\{\begin{pmatrix} x\\y\\z\\t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } \left\{\begin{matrix} x\\y\\t \end{pmatrix} + z = 0\\y + t = 0 \end{matrix}\right\}$$

$$H = \operatorname{Vect}\left[\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}\right] \qquad J = \left\{\begin{pmatrix} x\\y\\z\\t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } \left\{\begin{matrix} x+y+z+t=0\\x+2y+3z+4t=0\\y+2z+3t=0 \end{matrix}\right\}$$

Exercice 5 (*Intersection dans* \mathbb{R}^4)

Dans \mathbb{R}^4 , soient $F = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } x + y + z + t = 0 \right\}$ et $G = \text{Vect}\left[\begin{pmatrix} 1 \\ 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 4 \end{pmatrix} \right].$

- **1.** Trouver une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}$ telle que F = Ker(f).
- **2.** Déterminer $\dim(F)$ et $\dim(G)$.
- **3.** On note $g: \int G \to \mathbb{R}$ la restriction de f à G. $\vec{u} \mapsto f(\vec{u})$

Montrer que g est linéaire et que l'on a : $F \cap G = \text{Ker}(g)$.

4. En déduire la dimension du sous-espace $F \cap G$. En trouver une base.

Exercice 6 (*Endomorphismes de* $\mathcal{M}_2(\mathbb{R})$)

- **1.** Rappeler la dimension des espaces vectoriels $\mathcal{M}_2(\mathbb{R})$ et $\mathcal{L}(\mathcal{M}_2(\mathbb{R}))$.
- **2.** En déduire qu'il n'existe pas d'application linéaire surjective : $\mathcal{M}_2(\mathbb{R}) \to \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$.

Pour toute matrice $A \in \mathcal{M}_2(\mathbb{R})$, on note $m_A : \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ M \mapsto A \cdot M. \end{cases}$

On considère alors l'application $m: \{ \mathcal{M}_2(\mathbb{R}) \to \mathcal{L} (\mathcal{M}_2(\mathbb{R})) \}$ $A \mapsto m_A.$

- **3.** Montrer que l'application *m* est linéaire.
- **4.** Montrer que l'application m n'est pas surjective. Trouver un exemple d'endomorphisme $u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ qui n'appartient pas à Im(m).

2 La formule du rang

Exercice 7 (Calculs de rang)

Pour chacune des matrices suivantes :

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}.$$

- 1. Calculer le rang.
- 2. Calculer l'image et le noyau le cas échéant.
- 3. Calculer l'inverse le cas échéant.

Exercice 8 (Application de la formule du rang)

Soit
$$E = \mathbb{R}_2[X]$$
, et φ l'application : φ :
$$\begin{cases} E \to \mathbb{R}^2 \\ P \mapsto \begin{bmatrix} P(0) \\ P'(0) \end{bmatrix} \end{cases}$$

- **1. a)** Donner la dimension de *E*.
 - **b)** Montrer que l'application φ est linéaire.
- **2. a)** Calculer $\varphi(1)$, et $\varphi(X)$.
 - **b)** En déduire que $\operatorname{Im}(\varphi)$ contient les vecteurs de la base canonique \vec{e}_1 et \vec{e}_2 .
 - c) En déduire $Im(\varphi)$ et donner $rg(\varphi)$.
- **3. a)** En déduire dim $[Ker(\varphi)]$.
 - **b)** Trouver une base de $Ker(\varphi)$.

Exercice 9 (Variante moins guidée)

Soit
$$E = \mathbb{R}_2[X]$$
, et ψ l'application : ψ :
$$\begin{cases} E \to \mathbb{R}^2 \\ P \mapsto \begin{bmatrix} P(0) \\ P(1) \end{bmatrix} \end{cases}$$

- 1. Montrer que ψ est linéaire.
- **2.** Trouver deux polynômes $P, Q \in E$ tels que $\psi(P) = \vec{e}_1$ et $\psi(Q) = \vec{e}_2$.
- **3.** En déduire que ψ est surjective, et la dimension du noyau $Ker(\psi)$.
- **4.** Trouver une base du noyau $Ker(\psi)$.

Exercice 10 (Interpolation trinomiale)

Soient *a,b,c* trois réels deux-à-deux distincts.

Soit l'application
$$f: \begin{cases} \mathbb{R}_2[X] \to \mathbb{R}^3 & \text{et les polynômes}: \\ P(X) \mapsto \begin{pmatrix} P(a) \\ P(b) \\ P(c) \end{pmatrix} \end{cases}$$
 et les polynômes: $A(X) = (X-b)(X-c),$ $B(X) = (X-c)(X-a),$ $C(X) = (X-a)(X-b).$

- 1. Montrer que l'application f est linéaire.
- **2.** Calculer f(A), f(B) et f(C). Vérifier que la famille (f(A), f(B), f(C)) est libre.
- **3.** En déduire que la famille (A,B,C) est libre, puis que c'est une base \mathcal{B} de $E=\mathbb{R}_2[X]$.
- **4.** Donner la matrice de l'application f dans la base \mathcal{B} . En déduire que f est un isomorphisme d'espaces vectoriels.
- 5. Soit une fonction $u : \mathbb{R} \to \mathbb{R}$. On note P_u le polynôme : $P_u(X) = \frac{u(a)}{(a-b)(a-c)} \cdot A(X) + \frac{u(b)}{(b-c)(b-a)} \cdot B(X) + \frac{u(c)}{(c-b)(c-a)} \cdot C(X)$. Montrer que P_u est le seul polynôme $P \in \mathbb{R}_2[X]$ tel que P(x) = u(x) pour $x \in \{a,b,c\}$. Si la fonction u est elle-même un trinôme du second degré, quel est le polynôme P_u ?
- **6.** Que dire de l'application définie ci-dessus : $\begin{cases} \mathcal{F}(\mathbb{R},\mathbb{R}) \to \mathbb{R}_2[X] ? \\ u \to P_u(X) \end{cases}$

3 Avec des polynômes annulateurs

Exercice 11 (Équation des projections en dimension 3)

Soit *E* un espace vectoriel et $p \in \mathcal{L}(E)$ un endomorphisme. On suppose que : $p \circ p = p$,

1. a) Montrer que si p est bijectif, alors p = Id.

On suppose maintenant que p n'est **pas bijectif.** Soit \vec{w} un vecteur non-nul de Ker(p).

- **b)** Montrer que si $\vec{y} \in \text{Im}(p)$, alors, il existe $\vec{x} \in E$ tel que : $\vec{y} = p(\vec{x})$.
- c) En déduire que si $\vec{y} \in \text{Im}(p)$, alors $p(\vec{y}) = \vec{y}$.
- **d)** Montrer que $\vec{w} \notin \text{Im}(p)$.
- **2.** On suppose maintenant que : \rightarrow dim(*E*) = 3,

•
$$rg(p) = 2$$
.

- a) Déterminer $\dim(Ker(p))$.
- **b)** Soit (\vec{u}, \vec{v}) une base de Im(p). Montrer que la famille $\mathcal{F} = (\vec{u}, \vec{v}, \vec{w})$ est libre.
- c) En déduire que \mathcal{F} est une base de E. Déterminer la matrice $\operatorname{Mat}_{\mathcal{F}}(p)$.

Exercice 12 (Endomorphisme nilpotent)

Soit *E* un espace vectoriel de dimension 3, et $f \in \mathcal{L}(E)$ tel que $f \neq 0$ et $f \circ f = 0$.

- **1.** Montrer l'inclusion $\text{Im}(f) \subset \text{Ker}(f)$.
- **2.** En déduire que $rg(f) \le 3 rg(f)$ puis déterminer rg(f).

Soit $e_1 \in E$ tel que $f(e_1) \neq 0$. On pose $e_2 = f(e_1)$.

- **3.** Montrer qu'il existe $e_3 \in \text{Ker}(f)$ non colinéaire à e_2 .
- **4.** Montrer que la famille $\mathcal{F} = (e_1, e_2, e_3)$ est une base de E. Déterminer la matrice : $\operatorname{Mat}_{\mathcal{F}}(f)$.

Exercice 13 (Un polynôme annulateur plus compliqué)

Soit *E* un espace vectoriel de dimension 3.

On considère un endomorphisme f de E tel que : $f \circ (f^2 + Id) = 0$

•
$$f \neq 0$$
 et $f^2 + \operatorname{Id} \neq 0$.

1. Montrer que : $Ker(f) \neq \{\vec{0}\}$.

L'endomorphisme f est-il bijectif?

- **2. a)** Montrer que f^2 + Id n'est pas bijectif.
 - **b)** En déduire qu'il existe $v_2 \in E$ non-nul et tel que : $f^2(v_2) = -v_2$.
- **3.** On note $v_3 = f(v_2)$. Montrer que : $f(v_3) = -v_2$.
- **4.** Montrer que la famille (v_2, v_3) est libre.

Montrer que : $\operatorname{Ker}(f^2 + \operatorname{Id}) = \operatorname{Vect}(v_2, v_3)$.

- **5. a)** Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de E.
 - **b)** Déterminer la matrice C de f dans la base \mathcal{B} .