# HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.





# WEB MINING

**LECTURE 03: DATA VISUALIZATION** 

ONE LOVE. ONE FUTURE.

#### Content

- 1. Static chart
- 2. Pixel-based visualization
- 3. Visualization in vector space
- 4. Super sphere tree
- 5. SOM



#### 1. Static chart/ 1.1 Attributes

- Data objects represent entities in the data (e.g. customers, products, transactions)
- Data objects are also known as samples, examples, or data points
- An attribute is a data field that represents a property or features of the data
- Attributes are also known as dimensions, features, or variables



- The values of a given attribute are called observations
- The set of attributes that describe a given object is called an attribute vector (or feature vector).
- The attribute type is determined by the set of attribute values



#### Nominal attribute

- Valuable as symbols or names
- eg: 'hair color' includes 'blue', 'red', 'black', 'white', 'platinum'
- Description of categories, codes, states
- Common value based on mode function



# **Binary attribute**

- The category attribute has only two categories or two states
  - 0 ~ absent, 1 ~ exists
  - or 0 ~ false, 1 ~ true
- Symmetrical attributes (e.g. 'gender' includes 'male' and 'female')
- Asymmetric attributes (e.g. 'result' includes 'positive' and 'negative'



#### **Ordinal attribute**

- The values follow a certain order
- Example: 'size' includes 'small', 'normal', 'large' and 'oversized'
- Typical value based on mode and median function



#### Interval attribute

- Use to define values measured along a scale, with each point placed at an equal distance from one another.
- Can compare, calculate the distance between values
- For example: Temperature according to the Celsius scale.



## Ratio atribute

- Numerical attribute with value 0
- Could multiply values
- E.g: Counts and measures:
  - Quantity
  - Weight
  - Height
  - Money
  - **...**



## Discrete and Continuous Attributes

- Has only a finite or countably infinite set of values.
- Example:
  - Finite: color, age
  - Countable infinite: Customer ID
- Attribute is continuous if not discrete



## 1.2 Basic data statistics

- Data Description:
  - Central value
  - Distribution range
  - Visualization based on charts
- Identify outliers



#### mean

Values have the same role

$$X = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Values with different weights

$$X = \frac{W_1 X_1 + W_2 X_2 + \dots + W_n X_n}{n}$$

■ The most common measurement, however sensitive to outliers

#### median

- The median divides the data into larger and smaller parts; These two parts have the same number of elements
- Calculate the median approximation
  - Group data into ranges of values
  - Calculate the frequency of values in each interval
  - Find the interval containing the median frequency



#### median

Approximate median by formula:

$$median = L_1 + \left[ \frac{N/2 - (\Sigma freq)_1}{freq_{median}} \right] width$$

#### Where:

- *L*<sub>1</sub>: lower boundary of median
- N: number of value
- $(\Sigma freq)_l$  sum of the frequencies of intervals less than median
- freq<sub>median</sub>: frequency of median range
- width: width of the median range



#### mode

- The most frequency value in the dataset
- Multimodal: more than one mode
- Set containing only unique values without mode
- Với tập unimodal (one mode)

mean - mode ≈ 3 x (mean - median)



# midrange

Average of the maximum and minimum values

$$midrange = \frac{max + min}{2}$$





#### range

distance between the largest and the smallest value in the set



# quantile

- Quantiles are points that divide data into (nearly) equal parts (with equal number of elements).
  - 2-quantile: a point that divides data into two equal parts ~ median
  - 4-quantile (quartile)
  - 100-quantile (percentile)
  - Interquartile range IQR = Q3 Q1
- Interquartile range  $IQR = Q_3 Q_1$





# boxplot

- The box chart includes:
  - $\blacksquare$  Q<sub>1</sub>, Q<sub>3</sub>: the beginning and the end of the box
  - IQR: length of the box
  - Median
  - Min and max values





# variance, standard deviation

Variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} = \left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}\right) - \bar{x}^{2},$$

• σ: standard deviation represents the dispersion of the data relative to mean



# **Quantile chart**

- Sort the values in ascending order  $x_1 < x_2 < ... x_n$
- Frequency  $f_i$  corresponding to  $x_i$  là is the percentage of data with values below  $x_i$



$$f_i = \frac{i - 0.5}{N}$$



# **Quantile - quantile chart**

■ Show the relationship between quantile values of two univariate distributions





# Histogram

Values are grouped into equal intervals called buckets.





## **Scatter chart**

Determine the reciprocity between two numeric attributes





# Scatter chart (cont.)





#### 2. Pixel based visualization

- The value of a data dimension represented by a pixel with the color corresponding to the value
- Example: Small value corresponds to light color, large value corresponds to dark color
- m dimension corresponds to m window. A data point with m dimensions is represented by m pixels at corresponding positions in each window



- Records are usually sorted in a dimension of interest
- Correlation, if any, between the data dimensions is expressed through the color distribution (data values) over the windows







# 3. Visualization in vector space

- Pixel-based visualization does not represent the density of data points
- Visualization on vector space based on projection technique to represent multidimensional data in 2D space



#### **Scatter Charts**

- How to represent:
  - Two axes X and Y used to represent two-dimensional numbers in Cartesian coordinates
  - The third dimension is represented by different shapes
  - The fourth dimension can be represented by color



# **Scatter Chart (cont)**





#### **Scatter chart matrix**

- Scatter charts can only represent up to 4 dimensions
- For data with more than 4 dimensions, use the scatter plot method
  - Data has m dimensions
  - Use a 2D scatter plot m x m matrix to represent each data dimension with the remaining data dimensions
  - Example: The Iris dataset has 5 dimensions visualized by a 4 x 4 matrix consisting of 24 3D scatter plots



# **Example:** *Iris* Dataset





## 4. Super sphere tree

- Visualize large amounts of data
- Data has a tree structure
- focus on a part of the data, on the other hand still represent the general context of the data
- Fish eye properties:
  - The size of unfocused buttons rapidly decreases when
  - The size of the buttons are focused is rapidly increasing



# **Example**





# 5. SOM (Self Organizing Map)

- SOM learns 2D representation of multidimensional data
- SOM is a feed-forward neural network (2 layers)
  - Input layer receives a signal from the input data, whose dimension is equal to the dimension of the data
  - Competition layer is organized in a certain shape (rectangle, hexagon, etc.) showing the spatial relationship between neurons.
  - Each neuron in competition layer has association weights from the input layer called a reference vector



# **SOM** architecture





# **Competitive learning**

- For each input  $x_i$ , select neuron  $m_k$  whose distance to  $x_i$  is the smallest
- Distance between  $x_i$  and  $m_k$ : euclide distance between  $x_i$  and reference vector of  $m_k$
- Objective function: Minimize total distance between input and corresponding nearest neuron
- Weight Update: Only update weights of  $m_k$  and neighboring neurons



# **Example: neighboring neurons**

#### **Competition layer**





#### **WEBSOM**

- Representation of a set of documents on a 2D map
- Texts are represented as bags of words
- After learning, each text group can be represented by specific keywords
- Areas with high density are places where a lot of text is concentrated



#### **WEBSOM**





# HUST hust.edu.vn f fb.com/dhbkhn

# THANK YOU!