Chemistry 114

- 1. Which is the correct order of the first ionization energies of the elements Li → Ne?
 - A) $Li < Be < B < C < N < O < F < Ne_{>}$
 - B) Ne < F < O < N < C < B < Be < Li
 - C) Li < B < Be < C < O < N < F < Ne \times
 - D) Li < Be < B < C < O < N < F < Ne ×
 - E) Ne < F < N < O < C < Be < B < Li \times
- 2. What volume of O₂ is required for the complete combustion of 15.0 L of ethane, C₂H₆ (g), if all gases are measured at the same T and P?

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

- A) 52.5 L
- B) 30.5 L
- C) 15.0 L
- D) 14.0 L
- E) 7.00 L
- 3. A gas sample is composed of 2.0 moles of O₂, 1.5 moles of Ar and 4.0 moles of N₂ and is contained in a volume of 837 L at 298 K. What is the mole fraction of Ar in the sample?
 - A) 0.10
- B) 0.15
- C) 0.20
- D) 0.27
- E) 0.53
- 4. An atom of the element bromine, which has the isotopic symbol ⁸¹₃₅Br , contains how many protons, neutrons, and electrons?
 - A) 81 p, 35 n, 81 e
 - B) 35 p, 46 n, 35 e
 - C) 46 p, 81 n, 81 e
 - D) 35 p, 46 n, 81 e
 - E) 35 p, 81 n, 35 e
- 5. Neutral atoms with the ground state outer electron configuration ns²np¹ belong to the group with elements
 - A) Sc, Y, La
 - B) Cu, Ag, Au
 - C) B, Al, Ga, In, Tl
 - D) Li, Na, K, Rb, Cs
 - E) None of the above

6.	In the van der Waals equation of state for imperfect gases,	
	[P + (n2a/V2)][V-nb] = nRT	
	the symbol b can be approximately equated with	
	 A) the dipole moment of the gas molecule B) the intrinsic volume of one mole of molecules of the gas C) that portion of the total volume which is not occupied by the gas molecules D) the attractive forces between the gas molecules E) none of the above 	
7.	On the basis of electronegativity, the atoms of which pair of elements would for polar chemical bond?	n the MOST
	A) C, F B) C, C C) O, F D) B, F E) N, F	
8.	Which of the following numbers has three significant digits?	
	A) 600.03	
	B) 0.66	
	C) 0.066 D) 0.0666	
	E) 6.060×10^{-3}	
9.	Arrange the following isoelectronic ions in the order of decreasing (largest \rightarrow ionic radius: Na ⁺ , Al ³⁺ , O ²⁻ .	smallest)
	A) Na ⁺ , Al ³⁺ , O ²⁻ B) Na ⁺ , O ²⁻ , Al ³⁺	
	B) Na ⁺ , O ²⁻ , Al ³⁺ C) Al ³⁺ , Na ⁺ , O ²⁻	
	D) O ²⁻ , Al ³⁺ , Na ⁺ E) O ²⁻ , Na ⁺ , Al ³⁺	
10	How many different values of the angular momentum quantum annual and a second	-3-11
I U	How many different values of the angular momentum quantum number l are positive principal quantum number $n = 4$?	sidle when

C) three

D) two

E) one

A) five

B) four

11	. Atom A has :	3 electrons in its	valance shell	and atom	B has 7	electrons in	its valence	shell.
	The formula	expected for an	ionic compou	nd of A an	d B is:			

A) A_7B_3

B) A₂B

 $C) A_3B$

D) A_2B_3

E) AB₃

12. Which of the following sets of quantum numbers are impossible for an electron in an atom?

	n	1	\mathbf{m}_l	m_s
I	4	2	0	+1/2
II	3	3	-3	-1/2
III	2	0	1	+1/2
IV	4	3	0	+1/2
V	3	2	-2	-1

- A) V is impossible, all the rest are allowed
- B) IV is impossible, all the rest are allowed
- C) II, III, and V are impossible, all the rest are allowed
- D) I, II, III are impossible, all the rest are allowed
- E) II and V are impossible, all the rest are allowed

13. The heat energy required to raise the temperature of one gram of a substance one kelvin at constant pressure is the

- A) specific heat
- B) molar heat capacity
- C) heat capacity
- D) enthalpy
- E) none of the above

14. How many hydrogen atoms are present in 3.41 g of NH₃?

- A) 4.83×10^{23}
- B) 3.62×10^{23}
- C) 2.89×10^{23}
- D) 2.41×10^{23}
- E) 1.21×10^{23}

15. Which of the following atoms or ions is paramagnetic in its ground state?						
	A) Na ⁺	B) Kr	C) Be	D) Br	E) C	
16.	The gas law repre	esented by V =	(a constant)x T	at constant P is:		
	A) Avogadro's laB) Dalton's lawC) Charles' lawD) Boyle's lawE) de Broglie's la					
17. A sample of an oxide of vanadium weighing 2.909 g was heated with H ₂ (g) us 1.979 g of vanadium (at. number = 23) metal remained. What is the empirical soxide?						
	 A) V₂O₃ B) VO₃ C) VO₂ D) VO 					
	E) not enough in	formation is g	iven to solve the	problem.		()
18	. What is the partial 25.0 °C in a contra				and 2.0 g of H ₂	are mixed at
	A) 66.7	B) 100	C) 200	D) 300	(E) 400	
19	A) C ₂ H ₆ , 1.90 g (B) C ₂ H ₆ , 8.12 g (C) Br ₂ , 1.90 g	used, which re		ess, and how mu	ch of it remains	
	D) Br ₂ , 8.12 g E) Neither react	ant is in exces	s.		*.	

20. The wavelength 4.4 x 10 ¹⁴ s ⁻¹ , ar	(λ) and energy e:	(E) of a photon of			
(A) $\lambda = 6.8 \times 10^{\circ}$ B) $\lambda = 6.8 \times 10^{\circ}$ C) $\lambda = 6.1 \times 10^{\circ}$ D) $\lambda = 1.5 \times 10^{\circ}$ E) $\lambda = 6.8 \times 10^{\circ}$	5 m and $E =$ 7 m and $E =$ 6 m and $E =$	2.0 x 10 ⁻²⁵ J 3.3 x 10 ⁻¹⁹ J 1.3 x 10 ⁻¹⁹ J	(1 = 2 t		
			,		
21. A 3.05 g sample (HNO ₃) to form percentage, by n	4.00 g of coppe	er (II) nitrate (Cu	oper (Cu) is reacted $(NO_3)_2$). The gold	ed with excess ni does not react.	tric acid Γhe
A) 11.9%	B) 33.6%	(C)44.4%	D) 55.6%	E) none of the	ese
		•	V		
22. You are provide 0.100 M solution water are you to	n of NaCl. Assu	iming that the liq	ution of NaCl. You	ou are asked to mandditive, how man	ake a ny mL of
A) 936 mL	(B) 536 mL	C) 436 mL	D) 334 mL	E) 234 mL	
	- 922		1.		
23. How many gram	s of KIO ₃ are r	needed to prepare	500.0 mL of a 0.	0100 M solution	of KIO ₃ ?
A) 10.7 g B) 4.28 g C) 2.14 g D) 1.07 g E) 2.34 x 10 ⁻³ g		127.5			
		-			
24. The element gall atomic masses: occurring mixture	Ga = 68.9257	aturally occurring and ⁷¹ Ga = 70.93 at 15 to 1	249. If the averag	e mass of the nat	elative urally

A) 0.704 (B) 0.601 (C) 0.499 (D) 0.399 (E) none of these

25. Calculate the value of ΔH° for the reaction

$$CuCl_2(s) + Cu(s) \rightarrow 2CuCl(s)$$

Given the information

Cu (s) + Cl₂ (g)
$$\rightarrow$$
 CuCl₂ (s) Δ H° = -206 kJ mol⁻¹
2Cu (s) + Cl₂ (g) \rightarrow 2CuCl (s) Δ H° = -36 kJ mol⁻¹

- A) +134 kJ mol⁻¹
- B) +242 kJ mol⁻¹
- C) -242 kJ mol⁻¹
- D) -170 kJ mol⁻¹
- (E) +170 kJ mol⁻¹