Groupe IPESUP Année 2022-2023

TD 21 : Séries numériques

Connaître son cours:

Soit $(u_n)_n \in \mathbb{C}^{\mathbb{N}}$, montrer les propriétés suivantes :

- La suite $(u_n)_n$ et la série de terme général $(u_n u_{n-1})_n$ sont de même nature.
- Si la série de terme général u_n converge, alors la suite $(u_n)_n$ tend vers 0. La réciproque est-elle vraie? Donner un exemple d'une série qui diverge grossièrement.
- Si la série de terme général u_n converge absolument, alors elle converge.
- Énoncer le critère de comparaison série-intégrale et donner la preuve de celui-ci.
- Rappeler le critère des séries de Riemann et donner la preuve de celui-ci.
- Soit $(v_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{R}^+ telle que $u_n = o(v_n)$. Si la série de terme général $(v_n)_{n\in\mathbb{N}}$ est convergente, montrer que $(u_n)_{n\in\mathbb{N}}$ est absolument convergente donc convergente. La réciproque est-elle vraie?
- Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments de \mathbb{R}^+ telles que $u_n \sim v_n$. Montrer que la série de terme général $(u_n)_{n\in\mathbb{N}}$ converge si, et seulement si, la série de terme général $(v_n)_{n\in\mathbb{N}}$ converge.

Séries à termes positifs :

Relations de comparaison

Exercice 1. (*)

Donner la nature de la série de terme général

1)
$$\ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$$
 2) $\frac{1}{n+(-1)^n\sqrt{n}}$

2)
$$\frac{1}{n + (-1)^n \sqrt{n}}$$

$$3) \left(\frac{n+3}{2n+1}\right)^{\ln r}$$

3)
$$\left(\frac{n+3}{2n+1}\right)^{\ln n}$$
 4) $\left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}$

$$5) \quad \ln\left(\frac{2}{\pi}\arctan\left(\frac{n^2+1}{n}\right)\right)$$

Exercice 2. (*)

On considère la suite $(u_n)_n$ où $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n}e^{-u_{n-1}}$ avec $u_0 \in \mathbb{R}$. Donner la nature de la série de terme général $(u_n)_n$.

Exercice 3. (**)

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

1)
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$
 2) $\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$

Exercice 4. (*)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que la série de terme général u_n converge. Étudier la nature de la série de terme général $\frac{\sqrt{u_n}}{n}$.

Exercice 5. (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels strictement positifs telle que la série de terme général u_n converge. Montrer que $u_n = o\left(\frac{1}{n}\right)$. Trouver un exemple de suite $(u_n)_{n\in\mathbb{N}}$ de réels strictement positifs telle que la série de terme général u_n converge mais telle que la suite de terme général nu_n ne tende pas vers 0.

Exercice 6. (*)

Étudier la convergence des séries $\sum u_n$ suivantes :

1)
$$u_n = \left(\frac{1}{2}\right)^{\sqrt{n}}$$
 2) $u_n = ne^{-\sqrt{n}}$ 3) $u_n = \frac{(n!)^3}{(3n)!}$

Comparaison série-intégrale

Exercice 7. (**)

- 1. Donner un développement limité à l'ordre 2 de la suite $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ quand n tend vers l'infini.
- 2. Déterminer la nature de la série de terme général $(R_n)_n$.

Exercice 8. (**) (Séries de Bertrand)

On souhaite étudier, suivant la valeur de $\alpha, \beta \in \mathbb{R}$, la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}.$$

- 1. Démontrer que la série converge si $\alpha > 1$.
- 2. Traiter le cas $\alpha < 1$.
- 3. On suppose que $\alpha = 1$. On pose

$$T_n = \int_2^n \frac{dx}{x(\ln x)^\beta}$$

- (a) Montrer si $\beta \leq 0$, alors la série de terme général u_n est divergente.
- (b) Montrer que si $\beta > 1$, alors la suite (T_n) est bornée, alors que si $\beta \le 1$, la suite (T_n) tend vers $+\infty$.
- (c) Conclure pour la série de terme général u_n , lorsque $\alpha = 1$.

Quelques classiques

Exercice 9. (***) (La série harmonique)

On pose
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
.

- 1. Prouver que $H_n \sim_{+\infty} \ln n$.
- 2. On pose $u_n = H_n \ln n$, et $v_n = u_{n+1} u_n$. Étudier la nature de la série $\sum_n v_n$. En déduire que la suite (u_n) est convergente. On notera γ sa limite.
- 3. Soit $R_n = \sum_{k=n}^{+\infty} \frac{1}{k^2}$. Donner un équivalent de R_n .
- 4. Soit w_n tel que $H_n = \ln n + \gamma + w_n$, et soit $t_n = w_{n+1} w_n$. Donner un équivalent du reste $\sum_{k>n} t_k$. En déduire que

$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Exercice 10. (**) (Formule de Stirling)

1. On pose (u_n) la suite définie par

$$u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$$

Donner la nature de la série de terme général

$$v_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$$

2. En déduire l'existence d'une constante C > 0 telle que :

$$n! \sim_{+\infty} C \sqrt{n} n^n e^{-n}$$
.

Séries générales :

Exercice 11. (*)

On donne $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$ Calculer

$$\sum_{k=1}^{+\infty} \frac{1}{k^2(k+1)^2}$$

après en avoir justifié l'existence.

Exercice 12. (**)

Étudier la limite $+\infty$ de $\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n$.

Exercice 13. (***)

Soit $a \in \mathbb{N} \setminus \{0\}$. Déterminer la somme de la série de terme général $\frac{n-a\left\lfloor \frac{n}{a} \right\rfloor}{n(n+1)}$.

Séries alternées

Exercice 14. (**)

Soit (a_n) une suite de réels positifs, décroissante, et tendant vers 0.

- 1. Montrer que la série $\sum (-1)^n a_n$ converge.
- 2. Exprimer la suite des restes $(R_n)_n$ en valeur absolue et trouver une majoration de celle-ci.

Exercice 15. (**)

Soit $\alpha \in \mathbb{R}$. Discuter de la nature de la série de terme général $u_n = \frac{1 + (-1)^n n^{\alpha}}{n^{2\alpha}}, n \ge 1$ selon la valeur de α .

Exercice 16. (*)

- 1. Justifier que la série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge.
- 2. Démontrer que

$$u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

3. Étudier la convergence de la série

$$\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$

4. Donner un équivalent de la suite (u_n) en $+\infty$, que remarquez-vous?

Exercice 17. (**)

Donner la nature de la série de terme général

1)
$$\ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$
 2) $\sin\left(\frac{\pi n^2}{n+1}\right)$ 3) $\frac{(-1)^n}{n+(-1)^{n-1}}$

Propriétés complémentaires

Exercice 18. (**)

Soit (u_n) la suite définie par $u_0 \in [0; \pi]$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = 1 - \cos(u_n)$$

Donner la limite de la suite (u_n) et déterminer la nature de la série de terme général u_n .

Exercice 19. (**) (Règle de Raabe-Duhamel)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs.

1. On suppose qu'à partir d'un certain rang

$$\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}.$$

Montrer que $u_n = O(v_n)$.

2. On suppose que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha > 1.$$

Montrer, à l'aide d'une comparaison avec une série de Riemann, que la série $\sum u_n$ converge.

3. On suppose cette fois-ci que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha < 1.$$

Montrer que la série $\sum u_n$ diverge

Exercice 20. (**) (Sommation des équivalents)

Soit $(u_n)_n$ et $(v_n)_n$ deux suites positives équivalentes. Montrer que

- Si les séries de termes généraux u_n et v_n divergent, alors $\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k$;
- Si les séries de termes généraux u_n et v_n convergent, alors $\sum_{k=n}^{\infty} u_k \sim \sum_{k=n}^{\infty} v_k$.