Project

April 25, 2025

0.1 Marriage Trends in India

0.2 Import Python Libraries and Data

```
[1]: import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     import seaborn as sns
     from sklearn.preprocessing import LabelEncoder
     from imblearn.over_sampling import SMOTE
     import statsmodels.api as sm
     from sklearn.model selection import train test split
     from sklearn.preprocessing import StandardScaler
     from sklearn.linear_model import LogisticRegression
     from sklearn.decomposition import PCA
     from sklearn.metrics import classification_report, accuracy_score, f1_score
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.naive_bayes import GaussianNB
     from sklearn.ensemble import AdaBoostClassifier
     from sklearn.ensemble import GradientBoostingClassifier
     from xgboost import XGBClassifier
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.ensemble import VotingClassifier
     from sklearn.model_selection import cross_val_score
     from sklearn.model selection import GridSearchCV
     data = pd.read_csv('marriage_data_india.csv')
     display(data.head())
```

```
ID Marriage_Type Age_at_Marriage Gender Education_Level Caste_Match \
0
   1
               Love
                                   23
                                         Male
                                                     Graduate
                                                                Different
   2
                                   28 Female
1
               Love
                                                       School
                                                                      Same
2
   3
           Arranged
                                   39
                                         Male
                                                 Postgraduate
                                                                      Same
3
   4
           Arranged
                                   26 Female
                                                       School
                                                                Different
                                                     Graduate
               Love
                                   32 Female
                                                                      Same
```

Religion Parental_Approval Urban_Rural Dowry_Exchanged Marital_Satisfaction \

0	Hindu	No	Urban	No	Medium
1	Hindu	Yes	Rural	Yes	Low
2	Muslim	Yes	Rural	No	Medium
3	Hindu	Yes	Urban	Yes	Low
4	Hindu	Partial	Rural	Yes	Medium
]	Divorce_Status	Children_Count	Income_Level	Years_Since_Marriage	\
0	Yes	5		34	
1	No	3	Middle	42	
2	No	0	High	25	
3	No	0	High	12	
4	No	1	Middle	41	
;	Spouse Working	Inter-Caste Int	er-Religion		
0	No No	No	No		
1	No	No	Yes		
2	No	No	No		
3	No	Yes	No		
4	No	No	Yes		

0.3 Check for Null Values Within the Entire Dataset

[2]: display(data.isna().sum())

ID 0 0 Marriage_Type Age_at_Marriage 0 Gender 0 Education_Level 0 Caste_Match 0 Religion 0 Parental_Approval 0 Urban_Rural 0 Dowry_Exchanged 0 Marital_Satisfaction 0 Divorce_Status 0 Children_Count 0 Income_Level 0 Years_Since_Marriage 0 Spouse_Working 0 Inter-Caste 0 Inter-Religion 0 dtype: int64

0.4 Do Some Initial Data Cleaning

```
[3]: data.rename(columns={'Inter-Caste':'Inter_Caste', 'Inter-Religion':

→'Inter_Religion'}, inplace=True)

data.drop(columns=['ID'], inplace=True)
```

0.5 Separate the Column Labels by Numeric and Categorical Data

```
[4]: cols_categorical = data.select_dtypes(include=['object']).columns.tolist()
    print(f"Categorical Columns:\n{cols_categorical}")

    cols_numeric = data.select_dtypes(include=[np.number]).columns.tolist()
    print(f"Numeric Columns:\n{cols_numeric}")

Categorical Columns:
    ['Marriage_Type', 'Gender', 'Education_Level', 'Caste_Match', 'Religion',
    'Parental_Approval', 'Urban_Rural', 'Dowry_Exchanged', 'Marital_Satisfaction',
    'Divorce_Status', 'Income_Level', 'Spouse_Working', 'Inter_Caste',
    'Inter_Religion']
    Numeric Columns:
    ['Age_at_Marriage', 'Children_Count', 'Years_Since_Marriage']
```

0.6 Graph the Basic Counts of the Data

```
[5]: fig, axes = plt.subplots(nrows=(len(data.columns) + 1) // 2, ncols=2,__
      \rightarrowfigsize=(12, 5 * ((len(data.columns) + 1) // 2)))
     axes = axes.flatten()
     for i, col in enumerate(data.columns):
         ax = axes[i]
         x_cats = data[col].unique()
         if col in cols_numeric:
             x_cats = np.sort(x_cats)
             y_counts = data[col].value_counts().sort_index()
             colors = plt.cm.viridis(np.linspace(0, 1, len(y_counts)))
         else:
             y_counts = data[col].value_counts()
             colors = sns.color_palette('magma', len(y_counts))
         ax.bar(x_cats, y_counts, color=colors, label=x_cats)
         ax.set_ylabel('Frequency')
         ax.set_title(f'Distribution of {col}')
         if not col in cols numeric:
             ax.legend(x_cats, title='Categories')
         extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()).
      \rightarrowexpanded(1.3, 1.25)
         fig.savefig(f'{col}_Distribution.png', bbox_inches=extent)
     plt.tight_layout()
     plt.savefig('All_Distributions.png')
     plt.show()
```


0.7 Separate the Data Out to X and y Variables

```
[6]: X = data.drop(columns=['Divorce_Status'])
y = data['Divorce_Status']
```

0.8 One Hot Encode the Categorical Columns

True

True

False

False

1

2

3

4

```
[7]: cols_categorical.remove('Divorce_Status')
     X = pd.get_dummies(X, columns=cols_categorical, drop_first=True)
     display(X.head())
        Age_at_Marriage
                          Children_Count
                                           Years_Since_Marriage
                                                                  Marriage_Type_Love
    0
                     23
                                                              34
                                                                                  True
                     28
                                        3
                                                              42
                                                                                  True
    1
    2
                     39
                                        0
                                                              25
                                                                                 False
    3
                     26
                                        0
                                                              12
                                                                                 False
    4
                     32
                                        1
                                                              41
                                                                                  True
       Gender_Male
                     Education_Level_PhD
                                            Education_Level_Postgraduate
    0
               True
                                    False
                                                                     False
              False
                                    False
                                                                     False
    1
    2
               True
                                    False
                                                                      True
    3
              False
                                    False
                                                                     False
    4
                                    False
              False
                                                                     False
                                                    Religion_Hindu
       Education_Level_School
                                 Caste_Match_Same
    0
                          False
                                             False
                                                               True
    1
                           True
                                              True
                                                               True
    2
                          False
                                              True
                                                              False ...
    3
                           True
                                             False
                                                               True ...
    4
                          False
                                              True
                                                               True
                           Dowry_Exchanged_Not Disclosed
                                                             Dowry_Exchanged_Yes
       Urban_Rural_Urban
    0
                     True
                                                      False
                                                                            False
    1
                    False
                                                      False
                                                                             True
    2
                    False
                                                      False
                                                                            False
    3
                     True
                                                      False
                                                                             True
    4
                    False
                                                      False
                                                                             True
       Marital_Satisfaction_Low
                                   Marital_Satisfaction_Medium
                                                                  Income_Level_Low
    0
                            False
                                                            True
                                                                              False
```

False

True

False

True

False

False

False

False

```
Income_Level_Middle Spouse_Working_Yes Inter_Caste_Yes \
0
                  True
                                      False
                                                        False
                  True
                                      False
                                                        False
1
2
                                      False
                                                        False
                 False
3
                 False
                                      False
                                                         True
4
                  True
                                      False
                                                        False
   Inter_Religion_Yes
0
                False
                 True
1
2
                False
3
                False
4
                 True
[5 rows x 25 columns]
```

0.9 Label Encode the y Vector

```
[8]: le = LabelEncoder()
y = le.fit_transform(y)
```

0.10 Use SMOTE to Balance the Data

```
Number of '0' class instances in y: 8999
Number of '1' class instances in y: 1001
Number of '0' class instances in y after resample: 8999
Number of '1' class instances in y after resample: 8999
```

0.11 Perform Basic Logistic Regression Before Backwards Elimination

Classification Report for Logistic Regression for Testing Set:

```
precision
                           recall f1-score
                                               support
           0
                   0.84
                             0.85
                                        0.84
                                                   1800
                   0.84
                              0.83
                                        0.84
                                                   1800
                                        0.84
                                                  3600
    accuracy
                   0.84
                                        0.84
                                                   3600
  macro avg
                             0.84
weighted avg
                   0.84
                             0.84
                                        0.84
                                                   3600
```

```
ModelName Classifier Score Cross Validation Mean \
0 Pre-PCA Logistic Regression 0.840556 0.842686

Cross Validation Standard Deviation F1-Score
0 0.010196 0.839665
```

0.12 Perform Backwards Elimination to Find the Most Important Variables in the Dataset

```
break
display(obj_OLS.summary())
x = x[:, 1:]
indices.pop(0)
indices = [i - 1 for i in indices]
return x, indices

SL = 0.05
X_backe = np.append(arr=np.ones((len(X_resampled),1)), values=X_resampled,_u=axis=1)
X_backe = X_backe.astype('float64')
X_sig = X_backe
X_Modeled, indices = backwardElimination(X_sig, y_resampled, SL)
print(f'Selected Features Indices: {indices}')
```

Dep. Variable:	у	R-squared:	0.478
Model:	OLS	Adj. R-squared:	0.477
Method:	Least Squares	F-statistic:	686.1
Date:	Fri, 25 Apr 2025	Prob (F-statistic):	0.00
Time:	16:18:50	Log-Likelihood:	-7210.3
No. Observations:	17998	AIC:	1.447e + 04
Df Residuals:	17973	BIC:	1.467e + 04
Df Model:	24		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
\mathbf{const}	1.3211	0.015	85.457	0.000	1.291	1.351
x1	0.0011	0.000	2.605	0.009	0.000	0.002
x2	-0.0140	0.002	-8.622	0.000	-0.017	-0.011
x3	-0.0913	0.006	-15.385	0.000	-0.103	-0.080
x4	-0.1074	0.006	-19.173	0.000	-0.118	-0.096
x5	-0.2422	0.012	-20.371	0.000	-0.265	-0.219
x6	-0.2255	0.008	-26.614	0.000	-0.242	-0.209
x7	-0.1842	0.007	-26.631	0.000	-0.198	-0.171
x8	-0.0623	0.006	-10.997	0.000	-0.073	-0.051
x9	-0.2002	0.007	-30.285	0.000	-0.213	-0.187
x10	-0.2801	0.009	-29.722	0.000	-0.299	-0.262
x11	-0.3473	0.017	-20.978	0.000	-0.380	-0.315
x12	-0.3624	0.017	-21.642	0.000	-0.395	-0.330
x13	-0.2765	0.010	-28.645	0.000	-0.295	-0.258
x14	-0.1602	0.007	-23.794	0.000	-0.173	-0.147
x15	-0.0616	0.005	-11.290	0.000	-0.072	-0.051
x16	-0.1826	0.012	-15.851	0.000	-0.205	-0.160
x17	-0.1187	0.007	-17.803	0.000	-0.132	-0.106
x18	-0.2076	0.009	-23.911	0.000	-0.225	-0.191
x19	-0.1369	0.006	-23.063	0.000	-0.149	-0.125
x20	-0.1666	0.007	-22.230	0.000	-0.181	-0.152
x21	-0.1191	0.006	-18.822	0.000	-0.132	-0.107
x22	-0.0899	0.006	-16.026	0.000	-0.101	-0.079
x23	-0.1308	0.007	-19.226	0.000	-0.144	-0.118
x24	-0.1241	0.008	-15.492	0.000	-0.140	-0.108
Omnib	us:	270.51	4 Durb	oin-Wats	son:	1.494
Prob(C	Prob(Omnibus):		_	ue-Bera	(JB):	282.542
Skew:		0.306		(JB):		4.43e-62
Kurtos	is:	3.041	Cond	l. No.		201.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Selected Features Indices: [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

0.13 Display the head of the X variable with only the 'important' indices selected

[12]:	Age_at_Marriage	Children_Count	Marriage_Type_Love	<pre>Gender_Male</pre>	\
0	23	5	True	True	
1	28	3	True	False	
2	39	0	False	True	
3	26	0	False	False	

```
4
                 32
                                   1
                                                     True
                                                                  False
   Education_Level_PhD
                         Education_Level_Postgraduate
                                                         Education_Level_School \
0
                                                  False
                  False
                                                                            False
1
                  False
                                                  False
                                                                             True
2
                  False
                                                   True
                                                                            False
3
                  False
                                                  False
                                                                             True
4
                  False
                                                  False
                                                                            False
   Caste_Match_Same
                      Religion_Hindu Religion_Muslim
                                                            Urban_Rural_Urban
0
               False
                                 True
                                                  False
                                                                           True
1
                True
                                 True
                                                  False ...
                                                                          False
                                False
2
                True
                                                   True ...
                                                                         False
3
               False
                                 True
                                                  False
                                                                           True
4
                True
                                 True
                                                  False ...
                                                                         False
                                   Dowry_Exchanged_Yes \
   Dowry_Exchanged_Not Disclosed
0
                             False
                                                   False
1
                            False
                                                    True
2
                            False
                                                   False
3
                            False
                                                    True
4
                            False
                                                    True
                                                             Income_Level_Low \
   Marital_Satisfaction_Low Marital_Satisfaction_Medium
0
                       False
                                                       True
                                                                          False
1
                        True
                                                      False
                                                                         False
2
                       False
                                                                         False
                                                       True
3
                        True
                                                      False
                                                                         False
4
                       False
                                                       True
                                                                         False
   Income_Level_Middle
                         Spouse_Working_Yes
                                               Inter_Caste_Yes
0
                                       False
                   True
                                                         False
1
                   True
                                       False
                                                         False
2
                                       False
                                                         False
                  False
3
                  False
                                       False
                                                           True
4
                   True
                                       False
                                                         False
   Inter_Religion_Yes
0
                 False
1
                  True
2
                 False
3
                 False
                  True
```

[5 rows x 24 columns]

0.14 Get the numeric columns in the adjusted dataset

```
[13]: cols_numeric = X_resampled.select_dtypes(include=[np.number]).columns.tolist()
    print(f"Numeric Columns:\n{cols_numeric}")
Numeric Columns:
```

0.15 Perform a Test/Train Split Along the Data

['Age_at_Marriage', 'Children_Count']

```
[14]: testScores = []
      trainScores = []
      testSampleSizes = np.arange(0.1, 1.0, 0.05)
      tableVals = []
      for i in testSampleSizes:
          X_train, X_test, y_train, y_test = train_test_split(X_resampled,__
       y_resampled, test_size=i, random_state=42, stratify=y_resampled)
          tableVals.append([f'{1-i:.2f}, {i:.2f}', len(X_train), len(X_test),__
       →len(y_train), len(y_test)])
          scaler = StandardScaler()
          X train[cols numeric] = scaler.fit_transform(X_train[cols_numeric])
          X_test[cols_numeric] = scaler.transform(X_test[cols_numeric])
          lr = LogisticRegression(random_state=42)
          lr.fit(X_train, y_train)
          trainScores.append(lr.score(X_train, y_train))
          testScores.append(lr.score(X_test, y_test))
      tableCols = ['Train, Test', 'X Train', 'X Test', 'y Train', 'y Test']
      fig, ax = plt.subplots(figsize=(14,7))
      ax.set_axis_off()
      table = ax.table(cellText=tableVals, colLabels=tableCols, loc='center')
      table.auto_set_font_size(False)
      table.set_fontsize(10)
      table.scale(1, 1.5)
      ax.title.set_text("Sample Size Distributions")
      plt.savefig('Sample_Size_Distributions.png')
      plt.show()
      plt.figure(figsize=(10, 6))
      plt.plot(testSampleSizes, trainScores, marker='o', color='blue', linestyle='-', u
       ⇔label='Training Set')
      plt.plot(testSampleSizes, testScores, marker='o', color='red', linestyle='-',u
       ⇔label='Test Set')
```

Sample Size Distributions

Train, Test	X Train	X Test	y Train	y Test
0.90, 0.10	16198	1800	16198	1800
0.85, 0.15	15298	2700	15298	2700
0.80, 0.20	14398	3600	14398	3600
0.75, 0.25	13498	4500	13498	4500
0.70, 0.30	12598	5400	12598	5400
0.65, 0.35	11698	6300	11698	6300
0.60, 0.40	10798	7200	10798	7200
0.55, 0.45	9898	8100	9898	8100
0.50, 0.50	8998	9000	8998	9000
0.45, 0.55	8099	9899	8099	9899
0.40, 0.60	7199	10799	7199	10799
0.35, 0.65	6299	11699	6299	11699
0.30, 0.70	5399	12599	5399	12599
0.25, 0.75	4499	13499	4499	13499
0.20, 0.80	3599	14399	3599	14399
0.15, 0.85	2699	15299	2699	15299
0.10, 0.90	1799	16199	1799	16199
0.05, 0.95	899	17099	899	17099

0.16 0.15 Seems to be the Best

```
[15]: #Train/validation
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, u_stest_size=0.15, random_state=42, stratify=y_resampled)
```

0.17 Use a Standard Scaler to Scale the Numeric Data

```
[16]: scaler = StandardScaler()
X_train[cols_numeric] = scaler.fit_transform(X_train[cols_numeric])
X_test[cols_numeric] = scaler.transform(X_test[cols_numeric])

print("X Training Set Head:")
display(X_train.head())

print("X Testing Set Head:")
display(X_test.head())
```

X Training Set Head:

	Age_at_Marriage	Children_Count	Marriage_Type_Love	<pre>Gender_Male</pre>	\
11999	1.358809	-1.399603	False	True	
10624	0.874834	-1.399603	True	False	
759	-1.706368	1.591446	False	False	
15295	0.068208	-0.203183	False	True	

```
427
              0.713509
                              -0.203183
                                                       False
                                                                      True
       Education_Level_PhD Education_Level_Postgraduate \
11999
                      False
                                                     False
10624
                      False
                                                     False
759
                      False
                                                     False
15295
                      False
                                                      True
                      False
427
                                                     False
       Education_Level_School Caste_Match_Same Religion_Hindu \
11999
                                             True
                         False
                                                             False
10624
                         False
                                            False
                                                              True
759
                                             True
                                                              True
                          True
15295
                         False
                                             True
                                                              True
                                             True
427
                         False
                                                             False
       Religion_Muslim ... Urban_Rural_Urban Dowry_Exchanged_Not Disclosed \
11999
                 False
                                          True
                                                                         False
10624
                 False ...
                                          True
                                                                         False
759
                 False ...
                                          True
                                                                         False
                                        False
15295
                 False ...
                                                                         False
427
                 False ...
                                        False
                                                                         False
       Dowry_Exchanged_Yes Marital_Satisfaction_Low \
11999
                      False
                                                 False
10624
                                                 False
                      False
759
                      False
                                                 False
15295
                      False
                                                 False
427
                      False
                                                 False
       Marital_Satisfaction_Medium
                                     Income_Level_Low
                                                       Income_Level_Middle
11999
                               True
                                                 False
                                                                       False
10624
                                                                       False
                               True
                                                 False
759
                               True
                                                 False
                                                                        True
15295
                              False
                                                                        True
                                                 False
427
                               True
                                                 False
                                                                        True
       Spouse_Working_Yes Inter_Caste_Yes Inter_Religion_Yes
11999
                    False
                                      False
                                                           False
                                      False
                                                           False
10624
                      True
                                      False
759
                      True
                                                           False
15295
                    False
                                      False
                                                           False
427
                    False
                                      False
                                                           False
[5 rows x 24 columns]
```

15

Age at Marriage Children Count Marriage Type Love Gender Male \

X Testing Set Head:

```
7222
             -1.222393
                              -0.801393
                                                         True
                                                                       True
11027
              0.874834
                               0.395026
                                                        False
                                                                      False
              0.552184
                                                        False
                                                                       True
78
                               1.591446
17457
             -1.222393
                              -1.399603
                                                        False
                                                                      False
15819
             -0.577092
                              -0.203183
                                                        False
                                                                      False
                             Education Level Postgraduate \
       Education Level PhD
                      False
                                                      False
7222
11027
                      False
                                                      False
78
                      False
                                                      False
17457
                      False
                                                      False
15819
                      False
                                                       True
       Education_Level_School
                                Caste_Match_Same
                                                   Religion_Hindu \
7222
                         False
                                             True
                                                              True
11027
                                             True
                          True
                                                             False
78
                         False
                                             True
                                                              True
17457
                         False
                                             True
                                                             False
15819
                         False
                                            False
                                                              True
                            Urban_Rural_Urban Dowry_Exchanged_Not Disclosed \
       Religion_Muslim ...
7222
                 False
                                          True
                                                                          False
                 False ...
                                         False
                                                                          False
11027
                 False ...
                                          True
78
                                                                          False
17457
                 False ...
                                         False
                                                                          False
15819
                 False ...
                                         False
                                                                          False
       Dowry_Exchanged_Yes
                            Marital_Satisfaction_Low \
                      False
7222
                                                  False
11027
                      False
                                                 False
78
                      False
                                                  False
                      False
                                                  False
17457
15819
                      False
                                                  False
       Marital Satisfaction Medium Income Level Low
                                                         Income Level Middle \
                                                                        False
7222
                                                   True
                               True
                               True
                                                 False
                                                                         True
11027
78
                              False
                                                 False
                                                                         True
                              False
                                                                         True
17457
                                                 False
15819
                              False
                                                 False
                                                                         True
                           Inter_Caste_Yes Inter_Religion_Yes
       Spouse_Working_Yes
7222
                     False
                                       False
                                                             True
                     False
                                       False
                                                            False
11027
78
                     False
                                       False
                                                            False
                     False
                                       False
                                                            False
17457
15819
                      True
                                        True
                                                            False
```

0.18 Perform PCA on the Prepped Data

```
[17]: train_scores = []
     test scores = []
     upperLimit = len(X_train.columns) + 1
     for i in range(1, upperLimit):
         pca = PCA(n_components=i)
         X_train_pca = pca.fit_transform(X_train)
         X_test_pca = pca.transform(X_test)
         lr = LogisticRegression()
         lr.fit(X_train_pca, y_train)
         train_scores.append(lr.score(X_train_pca, y_train))
         test_scores.append(lr.score(X_test_pca, y_test))
     plt.figure(figsize=(10, 6))
     plt.plot(range(1, upperLimit), train_scores, marker='o', color='blue',
       plt.plot(range(1, upperLimit), test_scores, marker='o', color='red',
      ⇔linestyle='-', label='Testing Set')
     plt.title('Performance of PCA on Logistic Regression with N Components')
     plt.xlabel('Number of Components')
     plt.ylabel('Logistic Regression Model Score')
     plt.xticks(range(1, upperLimit))
     plt.grid()
     plt.savefig('PCA_Performance_By_N_Components.png')
     plt.legend()
     plt.show()
```


0.19 Use 15 as the Number of Principal Components

```
[18]: pca = PCA(n_components=15)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
```

0.20 Build a Reusable Method for Training and Testing Models

```
class_scores = basic_lr_scores.copy()
def ModelTrainFitAndReport(classifier, classifierName, scoresDataFrame):
    classifier.fit(X_train_pca, y_train)
    y_pred = classifier.predict(X_test_pca)
    print(f"Classification Report for {classifierName} for Testing Set:\n")
    print(classification_report(y_test, y_pred))
    crossVal = cross_val_score(estimator=classifier, X=X_train_pca, y=y_train,u=cv=10)
    f1 = f1_score(y_test, y_pred)
    scoresDataFrame.loc[-1] = [classifierName, classifier.score(X_test_pca,u=y_test), crossVal.mean(), crossVal.std(), f1]
    scoresDataFrame.index = scoresDataFrame.index + 1
    scoresDataFrame = scoresDataFrame.sort_index()
    display(scoresDataFrame)
```

```
return (classifierName, classifier)
```

0.21 Model Selection

0.21.1 Logistic Regression

[20]: logistic_regression = ModelTrainFitAndReport(LogisticRegression(), "Logistic

→Regression", class_scores)

Classification Report for Logistic Regression for Testing Set:

	precision	recall	f1-score	support
0	0.81	0.82	0.82	1350
1	0.82	0.81	0.81	1350
accuracy			0.81	2700
macro avg	0.81	0.81	0.81	2700
weighted avg	0.81	0.81	0.81	2700

		ModelName	Classif	ier Score	Cross Validation Mean	\
0	Logistic	Regression		0.814074	0.810173	
1	Pre-PCA Logistic	Regression		0.840556	0.842686	
	Cross Validation	Standard Dev	viation	F1-Score		
0		0	.013402	0.812687		
1		0	.010196	0.839665		

0.21.2 Random Forest

[21]: random_forest = ModelTrainFitAndReport(RandomForestClassifier(), "Random

→Forest", class_scores)

Classification Report for Random Forest for Testing Set:

	precision	recall	f1-score	support
0	0.89	0.92	0.90	1350
1	0.92	0.89	0.90	1350
accuracy			0.90	2700
macro avg	0.90	0.90	0.90	2700
weighted avg	0.90	0.90	0.90	2700

	ModelName	Classifier Score	Cross Validation Mean	\
0	Random Forest	0.902222	0.893125	
1	Logistic Regression	0.814074	0.810173	
2	Pre-PCA Logistic Regression	0.840556	0.842686	

```
Cross Validation Standard Deviation F1-Score
0 0.010368 0.900528
1 0.013402 0.812687
2 0.010196 0.839665
```

0.21.3 Support Vector Classifier

RBF Kernel

[22]: rbf_svm = ModelTrainFitAndReport(SVC(kernel='rbf'), "RBF SVM", class_scores)

Classification Report for RBF SVM for Testing Set:

	precision	recall	f1-score	support
0	0.83	0.89	0.86	1350
1	0.88	0.82	0.85	1350
accuracy			0.86	2700
macro avg	0.86	0.86	0.86	2700
weighted avg	0.86	0.86	0.86	2700

	ModelName	Classifier Score	Cross Validation Mean	\
0	RBF SVM	0.856296	0.848740	
1	Random Forest	0.902222	0.893125	
2	Logistic Regression	0.814074	0.810173	
3	Pre-PCA Logistic Regression	0.840556	0.842686	
	Cross Validation Standard Dev	viation F1-Score		
\wedge	^	010630 0 0E1113		

 0
 0.010638
 0.851113

 1
 0.010368
 0.900528

 2
 0.013402
 0.812687

 3
 0.010196
 0.839665

Poly Kernel

[23]: poly_svm = ModelTrainFitAndReport(SVC(kernel='poly'), "Polynomial SVM", □ ⇔class_scores)

Classification Report for Polynomial SVM for Testing Set:

support	f1-score	recall	precision	
1350	0.82	0.82	0.83	0
1350	0.83	0.83	0.82	1
2700	0.82			accuracy
2700	0.82	0.82	0.82	macro avg
2700	0.82	0.82	0.82	weighted avg

```
ModelName Classifier Score Cross Validation Mean \
               Polynomial SVM
                                       0.824444
                                                              0.821546
0
                      RBF SVM
                                       0.856296
                                                              0.848740
1
2
                Random Forest
                                       0.902222
                                                              0.893125
3
           Logistic Regression
                                       0.814074
                                                              0.810173
4 Pre-PCA Logistic Regression
                                       0.840556
                                                              0.842686
   Cross Validation Standard Deviation F1-Score
0
                              0.010018 0.825863
                              0.010638 0.851113
1
2
                              0.010368 0.900528
3
                              0.013402 0.812687
4
                              0.010196 0.839665
```

0.21.4 Decision Tree Classifier

```
[24]: decision_tree = decisio
```

Classification Report for Decision Tree for Testing Set:

support	f1-score	recall	precision	
1350 1350	0.83 0.85	0.80	0.87 0.81	0
1000	0.00	0.00	0.01	1
2700	0.84			accuracy
2700	0.84	0.84	0.84	macro avg
2700	0.84	0.84	0.84	weighted avg

	ModelName	Classifier Score	Cross Validation Mean	\
0	Decision Tree	0.838889	0.836581	
1	Polynomial SVM	0.824444	0.821546	
2	RBF SVM	0.856296	0.848740	
3	Random Forest	0.902222	0.893125	
4	Logistic Regression	0.814074	0.810173	
5	Pre-PCA Logistic Regression	0.840556	0.842686	
	Cross Validation Standard Dev	iation F1-Score		

	Cross	varidation	Standard	Deviation	L1-20016
0				0.012701	0.845030
1				0.010018	0.825863
2				0.010638	0.851113
3				0.010368	0.900528
4				0.013402	0.812687
5				0.010196	0.839665

0.21.5 Naive Bayes Classifier

```
[25]: naive_bayes = ModelTrainFitAndReport(GaussianNB(), "Gaussian Naive Bayes", u class_scores)
```

Classification Report for Gaussian Naive Bayes for Testing Set:

	precision	recall	f1-score	support
0	0.78	0.81	0.80	1350
1	0.80	0.77	0.79	1350
accuracy			0.79	2700
macro avg	0.79	0.79	0.79	2700
weighted avg	0.79	0.79	0.79	2700

	ModelName	Classifier Score	Cross Validation Mean
0	Gaussian Naive Bayes	0.791111	0.787294
1	Decision Tree	0.838889	0.836581
2	Polynomial SVM	0.824444	0.821546
3	RBF SVM	0.856296	0.848740
4	Random Forest	0.902222	0.893125
5	Logistic Regression	0.814074	0.810173
6	Pre-PCA Logistic Regression	0.840556	0.842686

	Cross	Validation	Standard	Deviation	F1-Score
0				0.012071	0.786687
1				0.012701	0.845030
2				0.010018	0.825863
3				0.010638	0.851113
4				0.010368	0.900528
5				0.013402	0.812687
6				0.010196	0.839665

0.21.6 Adaptive Boost Classifier

```
[26]: ada_boost = ModelTrainFitAndReport(AdaBoostClassifier(), "AdaBoost", □ ⇔class_scores)
```

Classification Report for AdaBoost for Testing Set:

	precision	recall	f1-score	support
0	0.80	0.81	0.81	1350
1	0.81	0.79	0.80	1350
accuracy			0.80	2700
macro avg	0.80	0.80	0.80	2700

weighted avg	0.80	0.80	0.80	2700

	ModelName	Classif	ier Score	Cross Validation Mean	\
0	AdaBoost		0.803333	0.801022	
1	Gaussian Naive Bayes		0.791111	0.787294	
2	Decision Tree		0.838889	0.836581	
3	Polynomial SVM		0.824444	0.821546	
4	RBF SVM		0.856296	0.848740	
5	Random Forest		0.902222	0.893125	
6	Logistic Regression		0.814074	0.810173	
7	Pre-PCA Logistic Regression		0.840556	0.842686	
	Cross Validation Standard Dev	iation	F1-Score		
0	0.	.014308	0.801198		
1	0.	.012071	0.786687		
2	0.	.012701	0.845030		
3	0.	.010018	0.825863		
4	0.	.010638	0.851113		
5	0.	.010368	0.900528		
6	0.	013402	0.812687		
7	0.	.010196	0.839665		

0.21.7 Gradient Boost Classifier

[27]: gradient_boost = ModelTrainFitAndReport(GradientBoostingClassifier(), "Gradient

→Boost", class_scores)

Classification Report for Gradient Boost for Testing Set:

	precision	recall	f1-score	support
0	0.82	0.87	0.85	1350
1	0.86	0.81	0.84	1350
accuracy			0.84	2700
macro avg	0.84	0.84	0.84	2700
weighted avg	0.84	0.84	0.84	2700

	ModelName	Classifier Score	Cross Validation Mean	\
0	Gradient Boost	0.840741	0.832530	
1	AdaBoost	0.803333	0.801022	
2	Gaussian Naive Bayes	0.791111	0.787294	
3	Decision Tree	0.838889	0.836581	
4	Polynomial SVM	0.824444	0.821546	
5	RBF SVM	0.856296	0.848740	
6	Random Forest	0.902222	0.893125	
7	Logistic Regression	0.814074	0.810173	

```
8 Pre-PCA Logistic Regression
                                 0.840556
                                                            0.842686
  Cross Validation Standard Deviation F1-Score
0
                             0.012898 0.836128
1
                             0.014308 0.801198
2
                             0.012071 0.786687
3
                             0.012701 0.845030
                             0.010018 0.825863
4
5
                             0.010638 0.851113
6
                             0.010368 0.900528
7
                             0.013402 0.812687
8
                             0.010196 0.839665
```

0.21.8 XGBoost Classifier

[28]: xgboost = ModelTrainFitAndReport(XGBClassifier(), "XGBoost", class_scores)

Classification Report for XGBoost for Testing Set:

	precision	recall	f1-score	support
0	0.88	0.89	0.88	1350
1	0.89	0.88	0.88	1350
accuracy			0.88	2700
macro avg	0.88	0.88	0.88	2700
weighted avg	0.88	0.88	0.88	2700

	ModelName	Classifier Score	Cross Validation Mean	\
0	XGBoost	0.884444	0.879855	
1	Gradient Boost	0.840741	0.832530	
2	AdaBoost	0.803333	0.801022	
3	Gaussian Naive Bayes	0.791111	0.787294	
4	Decision Tree	0.838889	0.836581	
5	Polynomial SVM	0.824444	0.821546	
6	RBF SVM	0.856296	0.848740	
7	Random Forest	0.902222	0.893125	
8	Logistic Regression	0.814074	0.810173	
9	Pre-PCA Logistic Regression	0.840556	0.842686	
	a			
_	Cross Validation Standard Dev			
0	0.	010313 0.883929		
1	0.	012898 0.836128		
2	0.	014308 0.801198		
3	0.	012071 0.786687		
4	0.	012701 0.845030		
5	0.	010018 0.825863		
6	0.	010638 0.851113		

```
7 0.010368 0.900528
8 0.013402 0.812687
9 0.010196 0.839665
```

0.21.9 k-Nearest Neighbors Classifier

```
[29]: train_scores = []
      test_scores = []
      ks = np.arange(1, 100, 5)
      for k in ks:
          knn = KNeighborsClassifier(n_neighbors=k)
          knn.fit(X_train_pca, y_train)
          train_scores.append(knn.score(X_train_pca, y_train))
          test_scores.append(knn.score(X_test_pca, y_test))
      plt.plot(ks, train_scores, color='blue', label='Training Set')
      plt.plot(ks, test_scores, color='red', label='Testing Set')
      plt.xlabel('k')
      plt.ylabel('Model Score')
      plt.title('Classification Score for each k in K-NN Classifier')
      plt.grid(True)
      plt.legend()
      plt.savefig('KNN_Scores.png')
      plt.show()
```


Use best k value for k-NN [30]: knn = ModelTrainFitAndReport(KNeighborsClassifier(n_neighbors=1), "k-NN", \Box \Box \Box class_scores)

Classification Report for k-NN for Testing Set:

	precision	recall	f1-score	support
0 1	0.91 0.80	0.77 0.93	0.83 0.86	1350 1350
accuracy macro avg weighted avg	0.85 0.85	0.85 0.85	0.85 0.84 0.84	2700 2700 2700
				a a

	ModelName	Classifier Score	Cross Validation Mean	\
0	k-NN	0.845185	0.838803	
1	XGBoost	0.884444	0.879855	
2	Gradient Boost	0.840741	0.832530	
3	AdaBoost	0.803333	0.801022	

4	Gaussian Naive Bayes	0.791111	0.787294
5	Decision Tree	0.838889	0.836581
6	Polynomial SVM	0.824444	0.821546
7	RBF SVM	0.856296	0.848740
8	Random Forest	0.902222	0.893125
9	Logistic Regression	0.814074	0.810173
10	Pre-PCA Logistic Regression	0.840556	0.842686
	Cross Validation Standard Deviation	F1-Score	
0	0.010944	0.856653	
1	0.010313	0.883929	
2	0.012898	0.836128	
3	0.014308	0.801198	
4	0.012071	0.786687	
5	0.012701	0.845030	
6	0.010018	0.825863	
7	0.010638	0.851113	
8	0.010368	0.900528	
9	0.013402	0.812687	
10	0.010196	0.839665	

0.21.10 Voting Classifier

```
[31]: classifiers = [basic_lr, logistic_regression, random_forest, rbf_svm, poly_svm,_u decision_tree, naive_bayes, ada_boost, gradient_boost, xgboost, knn] voting_classifier =_u decision_tree = decision_tree, naive_bayes, ada_boost, gradient_boost, xgboost, knn] voting_classifier =_u decision_tree, naive_bayes, ada_boost, gradient_boost, xgboost, knn] decision_tree, naive_bayes, ada_boost, gradient_boost, xgboost, xgboost
```

Classification Report for Voting (Hard) for Testing Set:

	precision	recall	f1-score	support
0 1	0.85 0.87	0.88 0.85	0.86 0.86	1350 1350
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	2700 2700 2700

	${ t ModelName}$	Classifier Score	Cross Validation Mean	\
0	Voting (Hard)	0.861481	0.851878	
1	k-NN	0.845185	0.838803	
2	XGBoost	0.884444	0.879855	
3	Gradient Boost	0.840741	0.832530	
4	AdaBoost	0.803333	0.801022	
5	Gaussian Naive Bayes	0.791111	0.787294	

```
6
                  Decision Tree
                                         0.838889
                                                                 0.836581
7
                 Polynomial SVM
                                         0.824444
                                                                 0.821546
                        RBF SVM
8
                                         0.856296
                                                                 0.848740
9
                  Random Forest
                                         0.902222
                                                                0.893125
           Logistic Regression
10
                                         0.814074
                                                                0.810173
11 Pre-PCA Logistic Regression
                                         0.840556
                                                                 0.842686
   Cross Validation Standard Deviation F1-Score
0
                               0.012249 0.859293
                               0.010944 0.856653
1
2
                               0.010313 0.883929
3
                               0.012898 0.836128
4
                               0.014308 0.801198
5
                               0.012071 0.786687
6
                               0.012701 0.845030
7
                               0.010018 0.825863
8
                               0.010638 0.851113
9
                               0.010368 0.900528
10
                               0.013402 0.812687
11
                               0.010196 0.839665
```

0.22 Display Model Performance Metrics of Each Model

```
[35]: fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))
      fig.suptitle('Performance Metrics by Model')
      axes = axes.flatten()
      for i in range(1, 5):
          ax = axes[i - 1]
          colors = sns.color_palette('magma', len(class_scores['ModelName']))
          ax.bar(class_scores['ModelName'], class_scores.iloc[:, i], color=colors)
          ax.set_ylabel(class_scores.columns[i])
          ax.set xlabel('Model')
          ax.set_title(f'{class_scores.columns[i]} by Model')
          ax.set xticks(np.arange(len(class scores['ModelName'])))
          ax.set_xticklabels(class_scores['ModelName'], rotation=45, ha='right',__
       ⇔rotation mode='anchor')
          \#ax.tick\_params(axis='x', labelrotation=45)
          for p in ax.patches:
            ax.annotate(f'{p.get_height():.3f}', (p.get_x() * 1.005, p.get_height() *
       →1.005))
          extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()).
       \rightarrowexpanded(1.25, 1.25)
          fig.savefig(f'{col.replace(" ", "_")}_by_Model.png', bbox_inches=extent)
      plt.tight_layout()
      plt.savefig('All_Model_Metrics.png')
      plt.show()
```


0.23 Test With New Data

Divorce Status Prediction: Will Not Divorce