Laboratorinis darbas Nr 2

Biologinis neuronas

Bendrieji nurodymai

Laboratorinio darbo ataskaita pateikite raštu.

1. Tikslai

- 1. Ištirti neurono teigiamų įėjimų (žadinančių AMPA sinapsių) ir neigiamų įėjimų (slopinančių GABAA ir GABAB sinapsių) bei jų sąveikos įtaką neurono membranos potencialui ir veikimo potencialų dažniui.
- 2. Ištirti neurono teigiamų įėjimų (žadinančių AMPA sinapsių) ir neigiamų įėjimų (slopinančių GABAA ir GABAB sinapsių) svorių įtaką neurono membranos potencialui ir veikimo potencialų dažniui.

2. Biologinis neuronas. Sinapsių įtaka. Veikimo potencialo generavimas.

2.1. Membranos potencialo lygtis, kai neuroną veikia sinapsės

Kai neuroną veikia n aktyvių sinapsių, membranos potencialas aprašomas diferencialine lygtimi:

$$C\frac{dV_{m}(t)}{dt} = -\frac{V_{m} - V_{ram}}{R} - \sum_{i=1}^{n} g_{\sin,i}(t)(V_{m} - E_{\sin,i}),$$

čia $E_{\sin,i} - i$ -tosios sinapsės reversinis potencialas, $g_{\sin,i} - i$ -tosios sinapsės laidumo funkcija. Narys $\sum_{i=1}^{n} g_{\sin,i}(t)(V_m - E_{\sin,i})$ aprašo sinapsių srovių sumą.

Modeliuosime neurona, kuris turi AMPA, GABAA ir GABAB sinapses.

AMPA sinapsės laidumo funkcija aprašoma:

$$g_{AMPA} = \hat{g}_{AMPA} e^{-t/\tau AMPA} ,$$

Čia g_{AMPA} – maksimalus laidumas, g_{AMPA} =1e-09S, τ_{AMPA} - laiko konstanta, τ_{AMPA} =5ms.

AMPA sinapsės reversinis potencialas E_{AMPA} =0V.

GABA A sinapsės laidumo funkcija aprašoma:

$$g_{GABAA} = \hat{g}_{GABAA} e^{-t/\tau GABAA},$$

Čia g_{GABAA} – maksimalus laidumas, g_{GABAA} =100e-9S, τ_{GABAA} - laiko konstanta, τ_{GABAA} =5ms.

GABAA sinapsės reversinis potencialas lygus neurono ramybės potencialui $E_{GABAA}=V_{ram}$.

GABA B sinapsės laidumo funkcija aprašoma:

```
g_{GABAB} = \hat{g}_{GABAB} e^{-t/\tau GABAB},
```

Čia g_{GABAB} – maksimalus laidumas, g_{GABAB} =1e-09S, τ_{GABAB} - laiko konstanta, τ_{GABAB} =50ms. GABAB sinapsės reversinis potencialas E_{GABAA} =-90mV.

2.2. Programa neuron_bio.m

Programa aprašo biologinį neuroną su 3 sinapsėmis: AMPA, GABAA, GABAB. Neuronas generuoja veikimo potencialus, kai membranos potencialas viršija slenkstinę įtampą.

Parametrai, kurios reikia nurodyti:

```
%Eksperimento parametrai
T=100e-3; %eksperimento trukme sek
%Sinapsiu aktyvumas
synapses=[1 0 0]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

Sinapsių aktyvumo vektorius nurodo, ar AMPA, GABAA, GABAB sinapsės bus aktyvios. Aktyvi sinapsė žymima 1.

```
%Sinapsiu aktyvumo laikai
time_eventsAMPA=10e-3; %AMPA sinapses aktyvavimo laikas sec
%time_eventsAMPA=[10e-3 12e-3 14e-3 16e-3 18e-3]; %AMPA sinapses
aktyvavimo laikas sek
time_eventsGABAA=10e-3; %GABAA sinapses aktyvavimo laikas sek
time_eventsGABAB=10e-3; %GABAB sinapses aktyvavimo laikas sek
```

time_events* vektoriai nurodo laiko momentus, kuriais duotoji sinapsė bus aktyvuojama.

```
%Sinapsiu svoriai
w_AMPA=1;
w_GABAA=1;
w_GABAB=1;
```

Sinapsių svoriai rodo santykinę maksimalaus sinapsių laidumo vertę, yra teigiami.

Programinis biologinio neurono igyvendinimas:

Panagrinėkite AMPA sinapsės įtakos modeliavimą (GABAA, GABAB sinapsių modeliavimas analogiškas).

Sinapsės laidumui skaičiuoti naudojame vektoriaus spikeAMPA reikšmę kiekvienu laiko momentu, t.y. kiekviename žingsnyje i:

```
for i=2:Nsteps

t(i)=(i-1)*dt; % laiko reikšmė

if (spikeAMPA(i)==1) % jei sinapsė aktyvi
    delta_gAMPA=gconstAMPA; % tuomet laidumo pokytis
    teigiamas maksimalus
```

Turėdami sinapsės laidumą, galite rasti AMPA sinapsės srovę bet kuriuo laiko momentu t:

```
I_{AMPA}(t) = g_{AMPA}(t)(V_m - E_{AMPA}).
```

Programinis užrašymas:

```
I_AMPA(i) = gAMPA(i) * (Vm(i-1)-E_AMPA);
```

Šią srovę ir naudojame membranos potencialui rasti.

```
%Membranos potencialo pokytis
deltaVmem(i)=((Vrest-Vmem(i-1))/R-synInputs)*dt/C;
%Membranos potencialas
   Vmem(i)=Vmem(i-1)+deltaVmem(i);
Jei membranos potencialas viršija slenkstinę įtampą, neuronas generuoja veikimo potencialą:
```

```
if Vmem(i)>threshold
    Vmem(i-1)=Vspike; % generuojamas veikimo potencialas
end
```

2.3. AMPA sinapsės įtakos modeliavimas.

Užduotis Nr. 1. Ištirkite, kaip neurono membranos potencialą ir veikimo potencialų generavimo dažnį veikia AMPA sinapsė, aktyvuota:

- a) 1 karta, tarkime, laiko momentu t=10ms;
- b) 5 kartus, tarkime, laiko momentais t=10ms, 12ms, 14ms, 16ms, 18ms; laiko momentus pasirinkite patys.

Nurodykite:

```
%Sinapsiu aktyvumas
synapses=[1 0 0]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

Nurodoma, kad AMPA sinapsė bus aktyvi, GABAA, GABAB – neaktyvios.

```
%Sinapsiu aktyvumo laikai
a) time_eventsAMPA=10e-3; %AMPA sinapses aktyvavimo laikas sec
b) time_eventsAMPA=[10e-3 12e-3 14e-3 16e-3 18e-3]; %AMPA sinapses
aktyvavimo laikas sec
```

2.4. GABAB sinapsės įtakos modeliavimas.

Užduotis Nr. 2. Ištirkite, kaip neurono membranos potencialą ir veikimo potencialų generavimo dažnį veikia GABAB sinapsė, aktyvuota:

- a) 1 kartą, tarkime, laiko momentu t=10ms;
- b) 5 kartus, tarkime, laiko momentais t=10ms, 20ms, 30ms, 40ms, 50ms; laiko momentus pasirinkite patys.

Nurodykite:

```
%Sinapsiu aktyvumas
synapses=[0 0 1]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

Nurodoma, kad GABAB sinapsė bus aktyvi, AMPA, GABAA – neaktyvios.

AMPA sinapsės aktyvavimo laiko momentai:

```
a) time_eventsGABAB=10e-3; %GABAB sinapses aktyvavimo laikas sec
b) time_eventsGABAB=[10e-3 20e-3 30e-3 40e-3 50e-3]; %GABAB
sinapses aktyvavimo laikas sec
```

2.5. GABAA sinapsės įtakos modeliavimas.

Užduotis Nr. 3. Ištirkite, kaip neurono membranos potencialą veikia slopinančioji tylioji GABAA sinapsė:

a) Aktyvuokite sinapsę vieną kartą, kai visos kitos sinapsės yra neaktyvios. Kokį stebite membranos potencialą ir veikimo potencialų dažnį?

Nurodykite:

```
%Sinapsiu aktyvumas
synapses=[0 1 0]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

Nurodoma, kad GABAA sinapsė bus aktyvi, AMPA, GABAB – neaktyvios.

```
time_eventsGABAA=[10e-3];
```

GABAA sinapsė bus aktyvuojama laiko momentu t=10ms.

b) Aktyvuokite AMPA sinapsę 5 kartus; išsaugokite eksperimento membranos potencialo grafiką; aktyvuokite AMPA sinapsę drauge su GABAA sinapse. Kaip pakito membranos potencialas ir veikimo potencialų generavimo dažnis?

Nurodykite, kad AMPA sinapsė bus aktyvi, GABAA, GABAB – neaktyvios.

```
sinapsiu aktyvumas synapses=[1\ 0\ 0]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

AMPA sinapsės aktyvavimo momentai:

```
time_eventsAMPA=[10e-3 12e-3 14e-3 16e-3 18e-3];
```

Vykdykite programą, įvertinkite rezultatus ir nustatykite:

```
AMPA ir GABAA sinapsės aktyvavimas:
```

```
synapses=[1 1 0]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

AMPA ir GABAA sinapsių aktyvavimo laiko momentai:

```
time_eventsAMPA=[10e-3 12e-3 14e-3 16e-3 18e-3]; %AMPA sinapses aktyvavimo laikas sec time_eventsGABAA=[12e-3 22e-3 32e-3 42e-3 52e-3]; %GABAA sinapses aktyvavimo laikas sec
```

Vykdykite programą, įvertinkite rezultatus, palyginkite.

c) Aktyvuokite GABAB sinapsę 5 kartus; išsaugokite eksperimento membranos potencialo grafiką; aktyvuokite GABAB sinapsę drauge su GABAA sinapse. Kaip pakito membranos potencialas ir veikimo potencialų generavimo dažnis?

Nurodykite, kad GABAB sinapsė bus aktyvi, AMPA, GABAA – neaktyvios.

```
%Sinapsiu aktyvumas
synapses=[0 0 1]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

GABAB sinapsės aktyvavimo laiko momentai:

```
time_eventsGABAB=[10e-3 20e-3 30e-3 40e-3 50e-3]; %GABAB sinapses aktyvavimo laikas sec
```

Vykdykite programą, įvertinkite rezultatus ir nustatykite:

GABAA ir GABAB sinapsių aktyvavimas:

```
synapses=[0 1 1]; %AMPA GABAA GABAB; 1 - aktyvi, 0 neaktyvi
```

GABAA ir GABAB sinapsių aktyvavimo laiko momentai:

```
time_eventsGABAA=[12e-3 22e-3 32e-3 42e-3 52e-3]; %GABAA sinapses aktyvavimo laikas sec time_eventsGABAB=[10e-3 20e-3 30e-3 40e-3 50e-3]; %GABAB sinapses aktyvavimo laikas sec
```

Vykdykite programą, įvertinkite rezultatus, palyginkite.

2.6. Svoriu itaka

Užduotis Nr. 4. Ištirkite, kaip neurono membranos potencialą ir veikimo potencialų dažnį veikia sinapsių svoriai:

```
%Sinapsiu svoriai
w_AMPA=1;
w_GABAA=1;
w_GABAB=1;
```

Jei svoris mažesnis už 1, sinapsės laidumas sumažėja, jei didesnis už 1 – padidėja.

Sumažinkite ir padidinkite sinapsių svorius ir nustatykite, kokią įtaką tai turi neurono veikimo potencialo generavimo dažniui.

Užduotis Nr. 5. Nubraižykite sinapsių sroves (naujame paveiksle).

Ataskaitoje pateikite trumpą darbo rezultatų aprašymą ir programos kodą, kurį būtina suprasti.