

1. Ako je $f(-x) = f(x)$ za svaki x , tj. f parna funkcija, tada je $b_n = 0$ za svaki n , jer je odgovarajuća podintegralna funkcija u formuli (12) neparna. Njezin Fourierov red glasi $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}. \tag{15}$ Koeficijenti uz kosinus funkcije računaju se formulama $a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} \mathrm{d}x, n \geqslant 0. \tag{16}$
$a_n = \frac{1}{L} \int_0^\infty f(x) \cos \frac{1}{L} dx, n \geqslant 0.$ (16) 2. Ako je $f(-x) = -f(x)$ za svaki x , tj. ako je f neparna funkcija, tada zbog istih razloga vrijedi $a_n = 0$ za svaki n . Fourierov red glasi $f(x) = \sum_{n=1}^\infty b_n \sin \frac{n\pi x}{L}.$ (17) a koeficijenti se računaju formulama $b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx, n \geqslant 1.$ (18) Kažemo da smo funkciju f razvili u Fourierov red po kosinus, odnosno sinus funkcijama.
Razvij u Fourierov red funkciju definiranu na intervalu $[-1, 1]$ formulom $f(x) = x^2$ (slika 2.13). Sl. 2.13. Fourierov red parne funkcije sadržavat će samo kosinus članove.
Funkcija f je parna. Vrijedi $L=1$. Po formuli (16) dobivamo koeficiente $a_0 = \frac{2}{L} \int_0^L f(x) \mathrm{d}x = 2 \int_0^1 x^2 \mathrm{d}x = \frac{2}{3} ,$ $a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} \mathrm{d}x = 2 \int_0^1 x^2 \cos(n\pi x) \mathrm{d}x .$ Nakon uzastopne parcijalne integracije dobivamo $a_n = \frac{4}{\pi^2 n^2} (-1)^n .$ Prema tome, Fourierov red funkcije f glasi
$f(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n\pi x$ $= \frac{1}{3} - \frac{4}{\pi^2} \left(\cos \pi x - \frac{\cos 2\pi x}{2^2} + \frac{\cos 3\pi x}{3^2} - \dots\right)$ $\star \star \star$ Ako je funkcija f u početku definirana na intervalu $[0, L]$, možemo je razviti red samo po kosinus, odnosno samo po sinus funkcijama tako da je nadopunimo na intervalu $[-L, 0]$ do parne, odnosno neparne funkcije. Pritom će njezin period iznositi $T = 2L$, i takva dva proširenja će se, jasno, razlikovati na intervalu $[-L, 0]$. Ilustrirajmo to u sljedeća dva primjera.
Funkciju $f(x) = \frac{\pi}{4}$ razvij u Fourierov red na intervalu $\langle 0, \pi \rangle$ po sinus funkcijama. Pomoću dobivenog razvoja sumiraj redove A. $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$; B. $1 - \frac{1}{5} + \frac{1}{7} - \frac{1}{11} + \frac{1}{13} - \dots$
Sl. 2.14. Fourierov red neparne funkcije sadržavat će samo neparne članove. Načunamo po formuli (18): $b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx = \frac{2}{\pi} \int_0^{\pi} \frac{\pi}{4} \sin nx dx = \frac{1}{2n} \left[1 - (-1)^n \right].$ Dakle, $b_{2n} = 0$, $b_{2n+1} = \frac{1}{2n+1}$. Zato $\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{\sin(2n+1)x}{2n+1} = \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \frac{\sin 7x}{7} + \dots, 0 < x < \pi.$
$4 \sum_{n=0}^{\infty} 2n + 1 $ 3 5 7 7 7 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9
Funkciju $f(x) = x$ razvij u intervalu $[0, \pi]$ A. po kosinus funkcijama; B. po sinus funkcijama. Koristeći razvoj u A. izračunaj sumu reda $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ A. Funkcija se može proširiti na simetričan interval $[-\pi, \pi]$ tako da bude bilo parna, bilo neparna. Proširimo je do parne funkcije. Tada je poluperiod
$a_{0} = \frac{2}{L} \int_{0}^{L} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi,$ $a_{n} = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$ $= \frac{2}{\pi} \left(x \frac{\sin nx}{n} \Big _{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin nx dx \right)$ $= \frac{2}{n^{2}\pi} \cos nx \Big _{0}^{\pi} = \frac{2}{n^{2}\pi} [\cos n\pi - 1].$ Dakle, $a_{2n} = 0, \qquad a_{2n+1} = -\frac{4}{(2n+1)^{2}\pi}.$
Tako smo dobili: $x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos(2n+1)x , \qquad 0 \leqslant x < \pi. \tag{19}$ Na intervalu $[-\pi,0]$ ovaj red predstavlja funkciju $-x$. Na slici 2.15 (lijevo), nacrtan je graf dobivenog Fourierovog reda. Stavljajući u (19) $x = 0$, dobivamo $1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8} .$
SI. 2.15. Parno periodično proširenje funkcije $f(x) = x$ (lijevo) i njezino neparno proširenje (desno). 3. Po formuli (18), $b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx = \frac{2}{\pi} \int_0^{\pi} x \sin nx dx$
$= \frac{2}{\pi} \left(-x \frac{\cos nx}{n} \Big _{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx dx \right)$ $= -\frac{2}{n} \cos n\pi = \frac{2}{\pi} (-1)^{n+1}.$ e je $x = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx, \qquad 0 < x < \pi.$ Ovaj trigonometrijski red predstavlja funkciju nacrtanu na slici 2.15 (desno).
Svojstva Fourierovog reda 2.3.1. Spektar periodične funkcije Fourierov red periodične funkcije sastavljen je od niza harmonika čije su rekvencije cjelobrojni višekratnici osnovne frekvencije $\omega_0 = \frac{2\pi}{T}$. Diskretni spektar periodične funkcije Trigonometrijski Fourierov red može se napisati u obliku
$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 x + b_n \sin n\omega_0 x) = \pm \frac{1}{2} c_0 + \sum_{n=1}^{\infty} c_n \sin(n\omega_0 x + \varphi_n)$ gdje je, po formulama (3) $c_0 = a_0 ,$ $c_n = \sqrt{a_n^2 + b_n^2},$ $\operatorname{tg} \varphi_n = \frac{a_n}{b_n}.$ $c_n \text{ je amplituda } n\text{-tog harmonika, a } \varphi_n \text{ fazni pomak } n\text{-tog harmonika.}$ $\operatorname{Niz} (c_n) \text{ naziva se (diskretni) amplitudni spektar a } (\varphi_n) \text{ fazni spektar funkcije } f \text{ . Nizove } \{a_n\} \text{ i } \{b_n\} \text{ zovemo (diskretni) sinusni,}$
odnosno kosinusni spektar funkcije f . Broj c_n naznačava s kojim intezitetom n —ti harmonik ulazi u rastav funkcije Parna funkcija će imati samo kosinusni, a neparna samo sinusni dio spektra. 2.3.2. Jednoznačnost spektralnog prikaza Ako je poznat spektar funkcije, je li onda funkcija f jednoznačno određena? Orugim riječima, mogu li dvije različite funkcije f i g imati isti spektar? Na ovo pitanje nije sasvim jednostavno odgovoriti. Za naše svrhe dovoljno se biti da promatramo funkcije koje zadovoljavaju Dirichletove uvjete. U dokaz djedećeg teorema nećemo se ovdje upuštati:
Ako periodičke funkcije <i>f</i> i <i>g</i> zadovoljavaju Dirichletove uvjete i imaju isti diskretni spektar, onda se one podudaraju u svim točkama osim možda u točkama prekida. U smislu ovog teorema govorit ćemo da je funkcija jednoznačno određena vojim amplitudnim i faznim spektrom. Isto vrijedi za sinusni i kosinusni spektar.
Odredimo spektar frekvencija ispravljene kosinusoide prema slici 2.16. Sl. 2.16. Graf ispravljene kosinusoide. Funkcija je periodična s periodom $T=4p$. Njezina jednadžba na intervalu $[-2p,2p]$ glasi $f(x) = \begin{cases} A\cos\frac{\pi x}{2p}, & x \leq p, \\ 0, & p \leq x \leq 2p. \end{cases}$ Zbog parnosti, svi su koeficijenti b_n jednaki nuli. $a_0 = \frac{2}{L} \int_0^L f(x) dx = \frac{1}{p} \int_0^p A\cos\frac{\pi x}{2p} dx = \frac{2A}{\pi},$
$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{A}{p} \int_0^p \cos \frac{\pi x}{2p} \cos \frac{n\pi x}{2p} dx$ $= \frac{A}{p} \int_0^p \frac{1}{2} \left(\cos \frac{\pi x + n\pi x}{2p} + \cos \frac{n\pi x - \pi x}{2p} \right) dx$ $= \frac{A}{2p} \cdot \frac{2p}{\pi} \left(\frac{\sin(n+1)\frac{\pi x}{2p}}{n+1} + \frac{\sin(n-1)\frac{\pi x}{2p}}{n-1} \right) \Big _0^p$ $= \frac{A}{\pi} \left(\frac{\sin(n+1)\frac{\pi}{2}}{n+1} + \frac{\sin(n-1)\frac{\pi}{2}}{n-1} \right) = -\frac{2A}{\pi} \frac{\cos \frac{n\pi}{2}}{n^2 - 1}.$ Ikoliko je $n > 1$. Za $n = 1$ trebamo uvrstiti tu vrijednost prije integriranja la bismo izračunali koeficijent a_1 . Možemo međutim shvatiti n u gornjem integralu kao parametar i pustiti ga da teži k 1:
$a_1 = \lim_{n \to 1} a_n = \lim_{n \to 1} -\frac{2A}{\pi} \frac{\cos \frac{n\pi}{2}}{n^2 - 1}$ $= -\frac{2A}{\pi} \lim_{n \to 1} \frac{-\frac{\pi}{2} \sin \frac{n\pi}{2}}{2n} = \frac{A}{2}.$ Za spektar funkcije f vrijedi $c_n = a_n $, jer su koeficijeni b_n jednaki nuli. Dakle, $c_0 = \frac{2A}{\pi}, \qquad c_1 = \frac{A}{2},$ $c_{2n} = \frac{2A}{\pi(4n^2 - 1)}, \qquad c_{2n+1} = 0, n \geqslant 1.$
Faj je spektar prikazan na slici 2.17. \triangleleft $ \frac{2A}{\pi} $ $ \frac{4}{2} $ $ \frac{c_2}{c_4} $ $ \frac{c_4}{c_0} $ $\frac{c_4}{c_0} $ $\frac{c_4}{$
Razvijemo li funkcije $f(x) = x^2$ i $g(x) = x$ u Fourierov red na intervalu $-\pi, \pi\rangle$, dobit ćemo sljedeće prikaze: $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx, \qquad -\pi < x < \pi, \tag{20}$ $x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx, \qquad -\pi < x < \pi. \tag{21}$ Deriviranjem <i>član po član</i> reda (20), dobit ćemo $2x = 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} (-n \sin nx)$
odavde se dobiva rastav (21). Dakle, deriviranjem članova Fourierovog reda, dobili smo ispravnu formulu. Hoće li to uvijek biti slučaj? Primijenimo li istu ehniku na red (21), dobit ćemo $1 = 2\sum_{n=1}^{\infty} (-1)^{n+1} \cos nx,$ no ova je jednakost besmislena! Uvjeri se da red zdesna nije konvergentan. Što se događa pri deriviranju članova Fourierovog reda? Promotrimo općenitu formulu, za Fourierov red funkcije na intervalu $\langle -\pi, \pi \rangle$. (Isti zaključak će vrijediti i za bilo koji drugi interval.) Ako je $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$
onda formalnim deriviranjem, član po član, dobivamo $f'(x) = \sum_{n=1}^{\infty} (-n \cdot a_n \sin nx + n \cdot b_n \cos nx)$ ito je po svom obliku opet Fourierov red. Međutim, njegovi su koeficijenti, u odnosu na koeficijente početnog reda množeni s faktorom n . Radi toga, novodoviveni red ne mora konvergirati, a u slučaju da konvergira, konvergencija će biti porija. Dovoljan uvjet da bismo smjeli Fourierov red derivirati član po član jest da on konvergira uniformno prema funkciji f . To će biti slučaj kad god je funkcija f neprekinuta, a njezina derivacija f' zadovoljava Dirichletove uvjete (pa se može astaviti u Fourierov red). Ako je f zadana samo na konačnom intervalu i na njemu je neprekinuta, to posebno znači da se njezine vrijednosti na krajevima intervala moraju podudarati.
Pretpostavimo da je periodična funkcija f perioda 2π neprekinuta na \mathbf{R} i ima sljedeći Fourierov prikaz $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$ Ako f' zadovoljava Dirichletove uvjete, onda se ona može prikazati u obliku $f'(x) = \sum_{n=1}^{\infty} b_n \cdot n \cdot \cos nx + \sum_{n=1}^{\infty} (-a_n) \cdot n \cdot \sin nx.$
Uvjeti teorema ne mogu se oslabiti. Uvjeri se u to rješavajući zadatke 15.–17. $\star\star\star$ Pri integriranju članova Fourierovog reda nećemo imati problem s konvergencijom, dobiveni red će uvijek konvergirati. Ilustrirajmo to s prije navedenim primjerom. Krenimo od formule $x=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin nx\;,\qquad -\pi< x<\pi.$ Integrirajući ovaj red član po član, dobivamo
$\int x dx = 2 \int \left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx \right) dx$ $= 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \int \sin nx dx.$ j. $x^2 = 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cdot \frac{\cos nx}{n} + C.$ Konstanta integracije C je upravo član $\frac{a_0}{2}$ u razvoju funkcije x^2 u Fourierov ed:
Vidimo da će opći koeficijenti integriranog reda biti dijeljeni s faktorom n , kato je njegova konvergencija neupitna. Primijetimo samo da se pri integriranju Fourierovog reda može u općem sluđaju dobiti red koji neće biti Fourierov. Naime, ako je u početnom redu koeficijent a_0 različit od nule, pri integriranju ćemo dobiti član a_0x koji ne pripada članovima Fourierovog reda. Dakako, taj se član također može rastaviti po sinus i cosinus funkcijama. 2.3.4. Parsevalova jednakost Funkcije $\{\frac{1}{2}, \sin(n\omega_0 x + \varphi_n), n \in \mathbf{N}\}$ su također ortogonalne na intervalu
a, b] duljine T . Lako se provjerava $\int_a^b \sin^2(n\omega_0 x + \varphi_n) \mathrm{d} x = \frac{T}{2},$ $\int_a^b \sin(n\omega_0 x + \varphi_n) \sin(m\omega_0 x + \varphi_m) \mathrm{d} x = 0, \qquad \text{za } n \neq m,$ $\int_a^b \frac{1}{2} \cdot \sin(n\omega_0 x + \varphi_n) \mathrm{d} x = 0.$ Sada imamo $\int_a^b f(x) ^2 \mathrm{d} x = \int_a^b \left(\frac{1}{2}c_0 + \sum_{n=1}^\infty c_n \sin(n\omega_0 x + \varphi_n)\right)^2 \mathrm{d} x$ $\int_a^b f(x) ^2 \mathrm{d} x = \int_a^b \left(\frac{1}{2}c_0 + \sum_{n=1}^\infty c_n \sin(n\omega_0 x + \varphi_n)\right)^2 \mathrm{d} x$
$= \int_{a}^{b} \left[\frac{1}{4} c_{0}^{2} + 2c_{0} \sum_{n=1}^{\infty} c_{n} \frac{1}{2} \cdot \sin(n\omega_{0}x + \varphi_{n}) + \right.$ $\left. + \left(\sum_{n=1}^{\infty} c_{n} \sin(n\omega_{0}x + \varphi_{n}) \right)^{2} \right] dx$ $= \frac{1}{4} c_{0}^{2} \int_{a}^{b} dx + 2 \sum_{n=1}^{\infty} c_{0} c_{n} \int_{a}^{b} \frac{1}{2} \cdot \sin(n\omega_{0}x + \varphi_{n}) dx$ $+ \sum_{n,m=1}^{\infty} c_{n} c_{m} \int_{a}^{b} \sin(n\omega_{0}x + \varphi_{n}) \sin(m\omega_{0}x + \varphi_{m}) dx$ $= \frac{T}{4} c_{0}^{2} + \sum_{n=1}^{\infty} c_{n}^{2} \int_{a}^{b} \sin^{2}(n\omega_{0}x + \varphi_{n}) dx.$
$= \frac{T}{4}c_0^2 + \frac{T}{2}\sum_{n=1}^{\infty}c_n^2$ $= \frac{T}{4}a_0^2 + \frac{T}{2}\sum_{n=1}^{\infty}(a_n^2 + b_n^2).$ em 6. Parsevalova jednakost Za Fourierove koeficijente $a_0, a_1, a_2 \dots$ i b_1, b_2, \dots vrijedi Parsevalova jednakost
$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + \sum_{n=1}^{\infty} b_n^2 = \frac{2}{T} \int_a^b f(x) ^2 dx. $ (22) er 12. Koristeći razvoj funkcije $f(x) = x^2$, $-\pi < x < \pi$ u Fourierov red i Parsevalovu jednakost, izračunaj sumu reda $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx, \qquad -\pi < x < \pi$ Primijenimo na ovaj razvoj Parsevalovu jednakost. Najprije, $\frac{2}{T} \int_{a}^{b} f(x) ^{2} dx = \frac{2}{2\pi} \int_{-\pi}^{\pi} x^{4} dx = \frac{2\pi^{4}}{5}.$ Zato je, prema (22), $\frac{1}{2} c_{0}^{2} + \sum_{n=1}^{\infty} c_{n}^{2} = \frac{1}{2} \frac{4\pi^{4}}{9} + \sum_{n=1}^{\infty} \frac{16}{n^{4}} = \frac{2\pi^{4}}{5},$ odavde
$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$ 2.3.5. Jednolika konvergencija Fourierovog reda Pokažimo sada pod kojim će uvjetima Fourierov red konvergirati jednolico (uniformno) k funkciji f na svakom zatvorenom intervalu na kojem je f neprekinuta. U tom će se slučaju Fourierov red moći derivirati član po član. Poka je f neprekinuta funkcija za koju f' zadovoljava Dirichletove uvjete na intervalu $[-\pi, \pi]$ i neka je $f(-\pi) = f(\pi)$. Trigonometrijski Fourierov red
$S(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$ konvergira jednoliko i vrijedi $S(x) = f(x)$, $\forall x \in [-\pi, \pi]$. DOKAZ. Dovoljno je pokazati da vrijedi $\frac{ a_0 }{2} + \sum_{k=1}^{\infty} (a_k + b_k) < \infty.$ Fada, za svaki $\varepsilon > 0$ postoji $n_0 \in \mathbb{N}$ takav da za $n \geqslant n_0$ vrijedi $ S(x) - S_n(x) = \sum_{k=n+1}^{\infty} a_k \cos kx + b_k \sin kx $ $\leqslant \sum_{k=n+1}^{\infty} (a_k \cos kx + b_k \sin kx)$ $\leqslant \sum_{k=n+1}^{\infty} (a_k + b_k) < \varepsilon, \qquad \forall x \in [a,b].$
Prema Weierstrassovom kriteriju, odavde zaključujemo da S_n konvergira jedroliko prema funkciji S . Ta se funkcija podudara s f zbog neprekinutosti od Vrijedi $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \mathrm{d}x$ $= \frac{1}{k\pi} f(x) \sin kx \Big _{-\pi}^{\pi} - \frac{1}{k\pi} \int_{-\pi}^{\pi} f'(x) \sin kx \mathrm{d}x = -\frac{b_k'}{k} ,$ gdje je b_k' koeficijent u razvoju funkcije f' u Fourierov red. Analogno dobivamo $b_k = a_k'/k$. Funkcija f' može se rastaviti u Fourierov red, te za njezine koeficijente vrijedi Parsevalova jednakost
$\frac{a_0'^2}{2} + \sum_{n=1}^{\infty} (a_n'^2 + b_n'^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x)^2 \mathrm{d} x < \infty .$ Nadalje, iz nejednakosti $\alpha \beta \leqslant \frac{1}{2} (\alpha^2 + \beta^2)$ dobivamo $\frac{ a_k' }{k} \leqslant \frac{1}{2} (a_k'^2 + \frac{1}{k^2}) ; \qquad \frac{ b_k' }{k} \leqslant \frac{1}{2} (b_k'^2 + \frac{1}{k^2}) .$ Zato je $\sum_{k=1}^{\infty} \left(\frac{ a_k' }{k} + \frac{ b_k' }{k} \right) \leqslant \frac{1}{2} \sum_{k=1}^{\infty} (a_k'^2 + b_k'^2) + \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty .$ Dobili smo
$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} \left(\frac{ b_k' }{k} + \frac{ a_k' }{k}\right) < \infty$ time je teorem dokazan. 2.3.6. Najbolja aproksimacija U primjenama funkciju f nužno aproksimiramo konačnim Fourierovim redom $f(x) \approx S_N(x) := \frac{a_0}{2} + \sum_{k=1}^{N} \left(a_k \cos \frac{k\pi x}{L} + b_k \sin \frac{k\pi x}{L}\right).$ S tim u vezi može se postaviti pitanje: je li ova aproksimacija najbolja moguća? li, preciznije, na koji način treba izabrati koeficijente A_n , B_n u prikazu
$R_N(x) := \frac{A_0}{2} + \sum_{k=1}^N \left(A_k \cos \frac{k\pi x}{L} + B_k \sin \frac{k\pi x}{L} \right).$ Ida aproksimacija bude najbolja moguća? Da bismo uopće mogli odgovoriti na ovo pitanje, moramo utvrditi što ćeno uzeti kao mjeru za odstupanje funkcije f od predložene aproksimacije R_N . Prikladno je uzeti tzv. udaljenost najmanjih kvadrata $E := \int_{-L}^L \left f(x) - R_N(x) \right ^2 \mathrm{d}x$ $= \int_{-L}^L \left f(x) - \frac{A_0}{2} - \sum_{k=1}^N \left(A_k \cos \frac{k\pi x}{L} + B_k \sin \frac{k\pi x}{L} \right) \right ^2 \mathrm{d}x.$ Ovaj je izraz funkcija po nepoznanicama A_n , B_n , minimum koje tražimo. Vidimo da je to kvadratna funkcija po tim nepoznanicama. Minimum ćemo naći uzimajući $\frac{\partial E}{\partial A_n} = 0$, $\frac{\partial E}{\partial B_n} = 0$. Dobivamo
$\frac{\partial E}{\partial A_n} = 2 \int_{-L}^{L} \left[f\left(x\right) - \frac{A_0}{2} - \sum_{k=1}^{N} \left(A_k \cos \frac{k\pi x}{L} + B_k \sin \frac{k\pi x}{L} \right) \right] \cos \frac{n\pi x}{L} dx.$ Zbog ortogonalnosti trigonometrijskih funkcija, pod integralom preostaju samo dva člana: $\int_{-L}^{L} f\left(x\right) \cos \frac{n\pi x}{L} dx - A_n \int_{-L}^{L} \cos^2 \frac{n\pi x}{L} dx = 0$ odavde $A_n = \frac{1}{L} \int_{-L}^{L} f\left(x\right) \cos \frac{n\pi x}{L} dx = a_n.$ Slično vrijedi $B_n = b_n$. Time smo pokazali da Fourierov polinom daje najboju aproksimaciju za funkciju f među svim trigonometrijskim polinomima reda V.
Neka je f periodička funkcija s temeljnim periodom $T=b-a$. Za teorijska azmatranja praktičnije je Fourierov red pisati u kompleksnom obliku. Iz De Moivreove formule $e^{i\alpha}=\cos\alpha+i\sin\alpha,\\ e^{-i\alpha}=\cos\alpha-i\sin\alpha,$ ebrajanjem i oduzimanjem dobivamo: $\cos\alpha=\frac{e^{i\alpha}+e^{-i\alpha}}{2},\qquad \sin\alpha=\frac{e^{i\alpha}-e^{-i\alpha}}{2i}.$ Zato možemo pisati:
$a_n \cos n\alpha + b_n \sin n\alpha = a_n \frac{e^{in\alpha} + e^{-in\alpha}}{2} + b_n \frac{e^{in\alpha} - e^{-in\alpha}}{2i}$ $= \frac{a_n - ib_n}{2} e^{in\alpha} + \frac{a_n + ib_n}{2} e^{-in\alpha}$ $=: c_n e^{in\alpha} + c_{-n} e^{-in\alpha}.$ Stavimo još $c_0 = \frac{a_0}{2}$. Sad za $\alpha = \frac{2\pi x}{T}$ dobivamo $\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{T} + b_n \sin \frac{2\pi nx}{T} \right) = c_0 + \sum_{n=1}^{\infty} \left(c_n e^{(2\pi inx)/T} + c_{-n} e^{-(2\pi inx)/T} \right)$ $= \sum_{n=1}^{\infty} c_n e^{(2\pi inx)/T}.$
Koeficijente c_n za $n > 0$ računamo po formuli $c_n = \frac{a_n - ib_n}{2} = \frac{1}{2} \left(\frac{2}{T} \int_a^b f(\xi) \cos \frac{2\pi n \xi}{T} d\xi - i \frac{2}{T} \int_a^b f(\xi) \sin 2\pi n \xi T d\xi \right)$ $= \frac{1}{T} \int_a^b f(\xi) \left[\cos \frac{2\pi n \xi}{T} - i \sin \frac{2\pi n \xi}{T} \right] d\xi$ $= \frac{1}{T} \int_a^b e^{-(2\pi i n \xi)/T} f(\xi) d\xi.$ Slično ovome, koeficijente c_{-n} (gdje je opet $n > 0$) računamo kao $c_{-n} = \frac{a_n + ib_n}{2} = \frac{1}{2} \left(\frac{2}{T} \int_a^b f(\xi) \cos \frac{2\pi n \xi}{T} d\xi + i \frac{2}{T} \int_a^b f(\xi) \sin \frac{2\pi n \xi}{T} d\xi \right)$
$= \frac{1}{T} \int_{a}^{b} f(\xi) \left[\cos \frac{2\pi n \xi}{T} + i \sin \frac{2\pi n \xi}{T} \right] d\xi$ $= \frac{1}{T} \int_{a}^{b} e^{(2\pi i n \xi)/T} f(\xi) d\xi.$ Sad vidimo da za $n < 0$ vrijedi identična formula: $c_{n} = \frac{1}{T} \int_{a}^{b} e^{-(2\pi i n \xi)/T} f(\xi) d\xi.$ Sem 8. Kompleksni oblik Fourierovog reda
Periodička funkcija f s periodom koja zadovoljava Dirichletove uvjete, ima sljedeći prikaz: $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{(2\pi i n x)/T}. \tag{23}$ Koeficijenti se računaju formulama $c_n = \frac{1}{T} \int_a^b e^{-(2\pi i n \xi)/T} f(\xi) \mathrm{d} \xi. \tag{24}$ Parsevalova jednakost $\frac{1}{2} \left(\sum_{n=-\infty}^{\infty} 2 + \sum_{n=-\infty}^{\infty} 2 +$
$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + \sum_{n=1}^{\infty} b_n^2 = \frac{2}{T} \int_a^b f(x) ^2 dx.$ ma jednostaviji oblik ako je Fourierov red prikazan u kompleksnom obliku: em 9. Parsevalova jednakost za kompleksni oblik Fourierovog reda Za periodičku funkciju f prikazanu u obliku (24) vrijedi $\frac{1}{T} \int_a^b f(x) ^2 dx = \sum_{n=-\infty}^{\infty} c_n ^2. \tag{25}$
Dokaz. Prema Parsevalovoj jednakosti za realni oblik Fourierovog reda, lijeva trana jednakosti je jednaka: $\frac{1}{T} \int_{-T/2}^{T/2} f(x) ^2 \mathrm{d}x = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n ^2 + b_n ^2).$ Vrijedi prema definiciji $\frac{a_0^2}{4} = c_0^2$. Dalje imamo za svaki $n > 0$ $ c_n ^2 + c_{-n} ^2 = \left \frac{a_n - ib_n}{2}\right ^2 + \left \frac{a_n + ib_n}{2}\right ^2 = \frac{1}{4} \left[(a_n^2 + b_n^2) + (a_n^2 + b_n^2)\right] = \frac{1}{2} (a_n^2 + b_n^2).$