Procedimiento para calcular valores característicos y vectores característicos

- i) Se encuentra $p(\lambda) = \det (A \lambda I)$.
- ii) Se encuentran las raíces $\lambda_1, \lambda_2, \dots, \lambda_m$ de $p(\lambda) = 0$.
- iii) Se resuelve el sistema homogéneo $(A \lambda_i I)\mathbf{v} = \mathbf{0}$, correspondiente a cada valor característico λ_i .

Observación 1. Por lo general el paso ii) es el más difícil.

Observación 2. En los problemas 41 y 42 se sugiere una manera relativamente sencilla de encontrar los valores y vectores característicos de matrices de 2×2 .

EJEMPLO 8.1.3 Cálculo de valores y vectores característicos

Sea $A = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$. Entonces det $(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 \\ 3 & 3 - \lambda \end{vmatrix} = (4 - \lambda) (3 - \lambda) - 6 = \lambda^2 - 7\lambda + 6 = (\lambda - 1) (\lambda - 6)$. Entonces los valores característicos de A son $\lambda_1 = 1$ y $\lambda_2 = 6$. Para $\lambda_1 = 1$ se resuelve $(A - I)\mathbf{v} = \mathbf{0}$ o $\begin{pmatrix} 3 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Es claro que cualquier vector característico correspondiente a $\lambda_1 = 1$ satisface $3x_1 + 2x_2 = 0$. Un vector característico de este tipo es $\mathbf{v}_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$. Así, $E_1 = \text{gen}\left\{\begin{pmatrix} 2 \\ -3 \end{pmatrix}\right\}$. De modo similar, la ecuación $(A - 6I)\mathbf{v} = \mathbf{0}$ significa que $\begin{pmatrix} -2 & 2 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ o $x_1 = x_2$. Entonces $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ es un vector característico correspondiente a $\lambda_2 = 6$ y $E_6 = \text{gen}$ $\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$. Observe que \mathbf{v}_1 y \mathbf{v}_2 son linealmente independientes ya que uno no es múltiplo del otro.

Nota. No es importante si se establece $\lambda_1 = 1$ y $\lambda_2 = 6$ o $\lambda_1 = 6$ y $\lambda_2 = 1$. Los resultados no cambian, en el sentido de que para un valor característico dado corresponde un vector característico en particular.

EJEMPLO 8.1.4 Una matriz de 3×3 con valores característicos distintos

Sea
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$
. Entonces

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -1 & 4 \\ 3 & 2 - \lambda & -1 \\ 2 & 1 & -1 - \lambda \end{vmatrix} = -(\lambda^3 - 2\lambda^2 - 5\lambda + 6) = -(\lambda - 1)(\lambda - 2)(\lambda - 3)$$

Por lo tanto, los valores característicos de A son $\lambda_1 = 1$, $\lambda_2 = -2$ y $\lambda_3 = 3$. Para $\lambda_1 = 1$ se tiene

$$(A - I)\mathbf{v} = \begin{pmatrix} 0 & -1 & 4 \\ 3 & 1 & -1 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$