Introduction to Mechatronic

Mini segway

Design and Simulation

Self balancing robot

Real world examples

Similar Projects

Solidworks

Components

Tools	Price	Weight
Motor DC	750,000IRR	150g
Drivers	750,000IRR	70g
Arduino uno	305,000IRR	90g
Wheel	200,000IRR	175g
plate	800,000IRR	400g
rod	200,000IRR	50g
MPU6050	700,000IRR	39
Battery 9v	1,000,000IRR	50 g
Remote Control	500,000IRR	-
Total	10,000,000IRR	2100g

Modules & sensors Libraries in Arduino

Driver L298N: <LMotorController.h>

MPU6050:

"MPU6050_6Axis_MotionApps20.h", "I2Cdev.h" or "wire.h"

PID Controller: <PID_v1.h>

Dynamic Equations

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} &= Q_j \qquad T = \frac{1}{2} \dot{x}^2 \left[M + m + \frac{I_w}{R^2} \right] + \frac{1}{2} \dot{\theta}^2 [I_r + m l^2] \\ Q_1 &= T \ \& \ Q_2 = \mathrm{mlgsin}\theta - T \\ \left\{ (k_1) \ \ddot{x} + (k_2 \ \cos\theta) \ddot{\theta} &= T + (k_6 \sin\theta) \dot{\theta}^2 \\ (k_3 \cos\theta) \ \ddot{x} + (k_4) \ddot{\theta} &= (k_5 \sin\theta) - KT \end{split} \right.$$

Which:

$$egin{cases} k_1=(M+m)R+rac{l_W}{R}\ k_2=mlR\ k_3=ml\ k_4=l_r+ml^2\ k_5=mlg\ k_6=MlR\ K=40\ \textit{Gear ratio} \end{cases}$$

$$\begin{cases} M = 0.48 \ Kg \\ m = 1.05 \ Kg \\ R = 0.03 \ m \\ g = 9.81 \\ l = 0.15 \ m \\ I_W = 0.0043 \ Kg. \ m^2 \\ I_r = 0.027 \ Kg. \ m^2 \end{cases}$$

Linearization and State-Space

Assume: $\theta = 0 \rightarrow \sin\theta = 0 \& \cos\theta = 1$

$$\begin{cases} (k_1) \ddot{x} + (k_2) \ddot{\theta} = T \\ (k_3) \ddot{x} + (k_4) \ddot{\theta} = (k_5 \theta) - KT \end{cases}$$

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} T$$

$$C$$

Control

- Assuming Linear metho, we can .Control the system 1
 Input & 1-Output
- II. We can control Theta using MPU6050:

$$G(s) = \frac{\theta(s)}{T(s)} = \frac{-s^2(k_3 + K.K_1)}{s^4(k_1k_4 - k_2.k_3) - s^2.k_1k_5}$$

PID

روش های مختلفی برای بدست آوردن ضرایب کنترل PID وجود دارد:

- ✓ Trial & error
- ✓ Zigler-Nicohles
- ✓ PSO-Based PID controller
- ✓ Tune(MATLAB)
- Pole placement

Another methods:

- LQR
- RL
- astorm-hugglund

PID in Simulink (MATLAB)

Simscape

Simulation in Simscape

Suggestions & Feature Plans

- 1-First(or second order, Kalman) Filter for the IMU data.
- 2-Rotational command.
- 3-Design controller for overload endurance.
- 4-...

References

- 1. https://github.com/br3ttb/Arduino-PID-Library/blob/master/PID_v1.h
- 2. https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
- 3. https://grabcad.com/
- 4. https://www.arduino.cc/
- 5. https://thecaferobot.com/store/
- 6. https://doi.org/10.1016/j.ifacol.2018.06.091
- 7. https://www.researchgate.net/publication/354860030_Kinematic_Control_of_2-wheeled_Segway
- 8. DOI: 10.12928/TELKOMNIKA.v18i5.14717
- 9. https://www.youtube.com/watch?v=lrbtAVTKnJo
- 10. https://www.youtube.com/watch?v=9W5S5nqRegU