

Competências Transferíveis

Módulo Economia

2021/2022 - 1° Semestre

Docentes: Margarita Robaina (<u>mrobaina@ua.pt</u>)
e Rita Bastião (<u>rita.bastiao@ua.pt</u>)

Aula 8

Economia e Ambiente

8. ECONOMIA E AMBIENTE

- Economia da Poluição. Internalização de externalidades. Divergência entre custos privados e sociais. Custos de redução da poluição. Nível eficiente de poluição.
- Políticas de Controlo de Poluição.
- Metodologias de valorização ambiental. Serviços dos ecossistemas e recursos "fora do mercado".

O sistema económico e o ambiente

Custos de Tratamento

Custos de reduzir a quantidade de resíduos/poluição emitida para o ambiente, ou a redução de concentrações ambientais.

Custos de Degradação Ambiental

Por degradação ambiental entendam-se todos os impactos negativos causados no ambiente. Ex. poluição dos rios, do ar, etc. originando cancro dos pulmões, asma, etc.

A relação entre poluição e dano ou degradação ambiental pode ser descrita através de uma função, sendo o nosso foco a função de degradação marginal que mostra as alterações resultantes de uma variação unitária de emissões ou concentração ambiental.

Modelo básico de qualidade ambiental e controlo de poluição

Conceitos Fundamentais do Modelo de Qualidade Ambiental

- Degradação ou Impacto(Ambiental) Marginal
- Movimentos da Curva de Degradação Ambiental
 - ... ex1: aumento de população (ex: época balnear)
 - ... ex2: momentos diferentes com impactos diferentes (ex: alterações climatéricas e efeitos nocivos da poluição)
- Custos Marginais de Tratamento (Abatimento)
 - ... custos mínimos (assumindo que a melhor solução técnica disponível é utilizada)
 - ...Movimentos da Curva de Custos Marginais de Tratamento
 - ... ex1: descoberta de novas soluções tecnológicas
 - ... ex2: diferentes processos de produção

Quando nem todos os custos inerentes à produção são imputados ao proprietário existe uma diferença entre Cmg social (que se repercute em todos nós) e Cmg privado.

Externalidade: se CMgs > CMp há uma externalidade negativa.

P.ex produção de papel: num caso extremo os custos marginais da poluição podem ser todos sociais e nada privado

- O nível de ótimo de poluição (e de externalidades negativas)
 não é necessariamente zero e a poluição tem um preço!
- No campo ambiental e na ausência de intervenção do estado, o mercado tem tendência para produzir demasiadas externalidades negativas!
- A regulação pode passar por criar a estrutura de incentivos adequada para que os poluidores "internalizem" os custos sociais associados à poluição (ex: taxa ambiental)
- De qualquer forma, nenhuma solução serve todos os casos e a escolha do instrumento a ser utilizado depende do tipo de problema ambiental

Seleção de Instrumentos de Gestão Ambiental

- Teoricamente é fácil identificar o ponto ótimo de poluição ...
 - ... e definir um limite legal às emissões até ao ponto ótimo (Q*)
 - ... ou uma taxa (por un/poluição), um preço, equivalente ao preço ótimo ou crescente conforme o custo marginal de degradação ambiental!
- Mas na prática o acesso a informação por parte dos reguladores é limitado e interessa definir estratégias de intervenção eficientes em termos de custos
 - ... comando e controlo (regulação direta)? Ex: standards/limites de poluição
 - ... instrumentos económicos e fiscais geradores de incentivos? *Ex:* taxas
 - ... será possível combinar as vantagens de limites absolutos e a flexibilidade dos mercados? Ex: direitos transacionáveis de emissão

Critérios de Avaliação de Instrumentos

- EFICÁCIA AMBIENTAL
- EFICIÊNCIA (estática e dinâmica)
- IMPLEMENTABILIDADE
- EQUIDADE, JUSTIÇA, ACEITAÇÃO PÚBLICA
- INTEGRAÇÃO COM OUTRAS POLÍTICAS
- GESTÃO DE RECEITAS

Instrumentos de Gestão Ambiental:

Classificação

- Instrumentos de Controlo e Comando: Normas
- Instrumentos de Incentivo: Taxas e Subsídios
- Instrumentos de Mercado: Comércio de Direitos Transacionáveis de Emissão
- Instrumentos de Informação:
 - Rótulo ecológico
 - ISO 14000
 - Análise de ciclo de vida
 - ...

Instrumentos de Gestão Ambiental: quanto à forma de atuação

- 1ª geração: instrumentos de comando e controlo (ou regulação direta)
- 2ª geração: instrumentos económicos e fiscais (de mercado)
- 3ª geração: informação

Instrumentos de 1ª geração

- Os mais utilizados
- O regulador estabelece objetivos + tecnologias
- Controlo pela quantidade
- Carácter de obrigatoriedade
- Não há sinais de preço
- Exige regimes de contra-ordenação
- Não há liberdade do agente
- Preferido pelos industriais (não pagamento de taxas)
- Não promovem a inovação
- Normas > Eficácia Ambiental

Instrumentos de 2ª geração

Controlo pelo preço/ mercado

- Incentivo à melhoria
 - Pau: taxa!
 - Cenoura: subsídio!

Instrumentos de 3ª geração

- Década de 90
- Participação dos agentes: o princípio é o voluntariado
- Rótulo Ecológico
- Certificação
 - Madeira de florestas sustentáveis
 - Pesca sustentável (ex. bacalhau no mar da Irlanda)
 - Agricultura biológica
- Sistemas de Gestão Ambiental, Auditorias... (ex. ISO14000)

Mercado de Direitos Transacionáveis de Emissão

Combinação de instrumentos de 1ª e 2ª geração. Impõe-se um teto na emissão de CO₂ por ano. E depois vendem-se estes direitos ou colocam-se no mercado (divididos), fazendo-se uma atribuição nacional. Caso ultrapassem os limites a que têm direito, têm de pagar multa pelo que têm incentivo a diminuir.

Caso seja fácil despoluir ⇒ venda de direitos ⇒ aumenta a oferta ⇒ diminuição o preço Forma-se um sistema de mercados de direitos (pertencente à família de taxas)

Mercado de Direitos Transacionáveis de Emissão (cont)

Representação gráfica do mercado dos direitos transacionáveis de emissão:

A procura por licenças resulta das funções de custo de tratamento agregadas das empresas participantes do mercado. A oferta de licenças é a quantidade limite inicialmente estabelecida pelo poder público, sendo uma curva vertical nessa quantidade teto. Como em qualquer mercado competitivo, o preço dos títulos é determinado pela interação da oferta e da procura.

Direitos Transacionáveis de Emissão

1ª fase: Definir emissões objetivo

- A entidade reguladora emite direitos
 - Ex 2000 ton/ ano → 2000 direitos de 1 ton/ ano
- Distribuir pelos agentes
 - Dar
 - Vender
 - Leiloar

Direitos Transacionáveis de Emissão

- 2ª fase: Transações
 - Cria-se um novo mercado
 - O preço estabelece-se independentemente
 - Não é preciso (ao regulador) conhecer os custos

- Vantagens:
 - Não há poluição sem título
 - Estado, ONGs podem comprar direitos (a definir)
 - A quantidade de poluição está estabelecida à partida

Competências Transferíveis - Economia

2021/2022

Há vigilância entre os concorrentes sobre o cumprimento

Taxas Ambientais, Normas e DTEs: Incentivos à Inovação!

É fundamental que as políticas ambientais incentivem as mudanças tecnológicas no controlo da poluição. Uma das principais vantagens das taxas de emissão é que elas fornecem fortes incentivos para isso.

Direitos Transacionáveis de Emissão

Comércio Europeu de Licenças de Emissão

- Diretiva 2003/87/CE: criação de um Regime de Comércio de Licenças de Emissão de gases com efeito estufa
- Objetivo: atingir as reduções de emissões de uma forma economicamente eficiente
- cada Estado Membro elaborou um Plano Nacional de Atribuição de Licenças de Emissão, estabelecendo a quantidade total de licenças de emissão
- Plano Nacional de Atribuição de Licenças de Emissão PNALE (2008-2012)
 - https://www.youtube.com/watch?v=yfNgsKrPKsg&t=111s

Direitos Transacionáveis de Emissão

- Sistema Europeu de Comércio de Emissões
 - engloba <u>mais de 12 mil instalações</u> europeias do sector da energia (combustão, refinarias, fornos de coque) e da indústria (siderurgia, cimento, cerâmica, vidro, papel e celuloses)
 - mais de 46 por cento de todas as emissões europeias de dióxido de carbono

Instrumentos vs. Competitividade

- i. Aumento dos custos de produção
- ii. Deslocação da indústria poluente para países com menos restrições (*Carbon leakage*)
- iii. Estratégias ambientais das empresas
 - Não cumprimento
 - Cumprimento
 - Além-cumprimento
 - Excelência Ambiental

Coimas, indemnizações
Investimento em tecnologias
ambientais de fim-de-linha

iv. Porter e Van Linden (1995):

"Uma política de ambiente mais restritiva, se bem desenhada, pode trazer vantagens competitivas"... no longo prazo → incentivo à inovação!

Avaliação de Recursos Ambientais

- Na presença de um mercado de concorrência perfeita (ou quase perfeita)...
- O mercado é o melhor instrumento de avaliação dos recursos

MAS: os recursos ambientais são em muitos casos incompatíveis com o mercado

- Dificuldade de Atribuir Direitos de Propriedade (Bens Públicos)
- Externalidades Negativas (ex: efeitos da urbanização) ou Positivas (Bens de Mérito)

Nestes casos:

Os danos ambientais podem / devem (?) ser avaliados numa

perspetiva de CUSTOS-BENEFÍCIOS

O <u>valor</u> dos bens <u>não</u> nos <u>é dado</u> pelo seu <u>preço !</u>

O valor dos bens (ambientais) tem de ser calculado!

Metodologias de Avaliação Económica dos Recursos Ambientais

Métodos	Comportamento Observado	Comportamento Hipotético
Diretos	 Análises de Mercado impacto na produtividade custo de doença capital humano 	Avaliação Contigente
	Análise de Custos Reposição Relocalização	(Mercados Hipotéticos)
Indiretos	Métodos / Preços Hedónicos	
	Despesas Preventivas	

Análise de Mercado

Alterações na produtividade

- Alterações na qualidade do ambiente podem alterar os custos e receitas do setor produtivo assim como o bem estar dos consumidores.
- Para bens e serviços transacionados no mercado real, o impacto ambiental pode ser traduzido pelo valor económico da alteração provocada na sua produção ou consumo.

Domínio de aplicação:

- Avaliar efeitos de erosão do solo e desflorestação;
- Avaliar efeitos da poluição do ar e da água sobre a agricultura, florestas e pescas.

Análise de Mercado

Custos da doença

- Alterações na qualidade do ambiente podem afetar a saúde humana, reduzindo o potencial produtivo dos indivíduos afetados, e consequentemente, da comunidade.
- Baseia-se na perda de rendimento resultante da redução do período de trabalho, bem como os custos de tratamento médico-hospitalar.

Este método apenas pode ser aplicado quando:

- É possível estabelecer uma relação direta causa-efeito entre a ação agressora e a patologia do potencial população de risco
- A doença não põe em causa a vida humana, nem tem efeitos crónicos
- o É possível calcular o valor económico da perda de produtividade

Análise de Mercado

Custo do capital humano

- À semelhança do custo da doença, os indivíduos são apenas considerados como unidades de capital produtivo.
- Centra-se na avaliação do impacto ambiental sobre a perda de vidas humanas, com a consequente perda efetiva de capital produtivo.
- O valor aproximado das vidas humanas é calculado através do valor atual do rendimento, para o horizonte de vida, avaliado a preços de mercado.

Aplicação controversa uma vez que se estima o valor da vida humana com base, exclusivamente, na perda de potencial produtivo (ricos vs pobres? Desempregados? Jovens? Idosos?)

Análise de custos

Custos de reposição/relocalização

- O valor que a comunidade atribui à qualidade ambiental, pode ser inferido através da despesa que está disposta a efetuar para repor o estado original do recurso, após ter ocorrido o impacto ambiental.
- Os custos de relocalização constituem uma variante dos de reposição: reconstitui-se o ambiente afetado pelo impacto ambiental num outro local onde o impacto não se faz sentir.

Assume-se:

- A magnitude do impacto ambiental é mensurável.
- Os custos de reposição são calculáveis, não sendo superiores ao valor dos recursos destruídos.
- Não existem benefícios secundários associados.

Exemplo

Um projeto de desenvolvimento florestal nas Filipinas envolveu a replantação de 10.700ha de árvores.

O único benefício quantificado foi a produção de madeira. Se tivesse sido usado a metodologia de custos de reposição, poder-se-ia estimar o valor económico dos benefícios resultantes da diminuição da erosão do solo (Dixon et al.,1994) e, por exemplo, os benefícios para o ciclo da água e os ecossistemas.

Análise de custos

Custos de reposição/relocalização

Podemos pensar nas despesas preventivas como as que, individualmente, os cidadãos efectuam para evitar prejuízos causados pela poluição.

Exemplo: Qual seria o custo de relocalização de um habitat destruído pela construção de uma marina?

→ O custo da marina tem de incluir estas despesas!

Métodos Hedónicos

 Não existindo um mercado direto para a qualidade ambiental, assume-se que o seu valor pode ser determinado a partir da análise dos mercados de bens relacionados.

 Estes métodos (valor da propriedade e diferencial de salários) apenas podem incidir na avaliação de serviços ou funções ambientais que afetam diretamente os preços de mercado e bens relacionados.

Métodos Hedónicos

Valor de propriedade

Avaliação do incremento no valor de uma propriedade em resultado da existência de um ativo ambiental – ou da desvalorização em caso de perda desse ativo.

O preço de um bem complexo (P) com muitos atributos é dado por:

$$P=P_0+P_1X_1+P_2X_2+...+P_iX_i$$

P₀ – componente do preço independente dos atributos (constante)

X_i – quantidade do atributo i

P_i – preço hedónico do atributo i

Exemplo

{P_i} preços de habitações

[X_{ij}] valor dos atributos

Área da habitação

Centralidade

Qualidade da habitação

Atributos cujos preços hedónicos se querem conhecer

$$\begin{cases}
\{P_{i1}\} \\
\{P_{in}\}
\end{cases} = \{P_i\}$$

Nível de ruído Qualidade do ar Valor paisagístico

{P_{i1}} são elementos de controle usados para evitar o enviesamento da amostra

Métodos Hedónicos

Diferencial de salários

Incide sobre o mercado do trabalho em vez do mercado imobiliário, mas é muito semelhante no seu princípio. Os salários refletem um conjunto de características dos empregos, das quais faz parte a exposição aos riscos ambientais - pode-se esperar que seja pago um salário mais elevado aos empregos mais expostos (e vice-versa).

Domínio de aplicação:

Estimar o valor implícito que os trabalhadores atribuem ao ambiente de trabalho, incluindo o risco de doença e perda de vida em resultado de condições ambientais associados à profissão.

Método dos Custos de Viagem

■ A ideia de base consiste em calcular o valor atribuído pelas pessoas a um recurso natural a partir da sua disponibilidade para pagar os custos de deslocação e estadia a esse local.

Por exemplo:

os custos de viagem influenciam a decisão de visitar uma área natural de recreio e assim, variações nos custos permitem estimar a procura.

$$V=f(C,X)$$
 $V=$ número de visitas ao local; $C=$ custos da visita; $X=$ outras variáveis significativas que explicam V

A partir da função geradora de visitas, pode determinar-se a procura fazendo variar os custos de viagem (mantendo as restantes variáveis independentes constantes) e observando como é que a procura se comporta.

Método dos Custos de Viagem

Usado para avaliar o valor ambiental de uma área a visitar (parque natural, etc.). Ex:

$$V=f(C,X)$$

X – valor ambiental da área a visitar

 V – número de visitas que um indivíduo efetua anualmente

C - custo da visita

Bilhete – (VALOR FIXO) C_F

Custo de transporte

Custo de oportunidade do tempo gasto

Variáveis de custo (C) V*x
Vx

Havendo indivíduos com diferentes valores de C e diferentes frequências de visita, é possível, fixando X, calcular a curva da procura ↓ f (C) que nos dá a valorização de X para diferentes indivíduos.

Se houver um incremento de X (melhoria da qualidade ambiental da área) há uma subida da curva da procura de V_X para V_X^*

Despesas preventivas

- □ O valor mínimo que os indivíduos atribuem à qualidade ambiental pode ser inferido a partir da despesa que estão dispostos a pagar para preservar um determinado nível de qualidade ambiental, evitando ou mitigando a ocorrência de impactos que afetem o seu nível de bem-estar.
- Assume-se que os indivíduos se comportam racionalmente: estão dispostos a pagar um montante menor ou igual aos custos resultantes do impacto.

Exemplo

- Avaliação das despesas efetuadas pelos habitantes de Jakarta para obterem água de outras formas para além do abastecimento público, de modo a evitar a exposição a substâncias patogénicas.
- Fontes alternativas: Venda porta-a-porta, furos privados, sistemas de filtração, água engarrafada...
- A escolha da fonte alternativa depende do rendimento individual e da disponibilidade para pagar por água potável.

Avaliação contingente

- O princípio fundamental, desta análise é que as preferências dos indivíduos sirvam de base à avaliação dos benefícios. Permite avaliar componentes de valor de não-uso de um recurso ambiental.
- Baseia-se no conceito de curva de procura e no estudo da relação entre a preferência por um recurso e a "disponibilidade para pagar" de modo a mantê-lo (DPP) ou a "disponibilidade para aceitar" a sua perda (DPA).
 - ☑ Única abordagem que permite aproximar da estimativa do valor económico total de um recurso ambiental
 - ☑ Permite obter estimativas mesmo quando nenhum dos restantes métodos é executável.
 - ➤ Carácter hipotético do método, frequentemente avançado pelos seus detratores: aquilo que se mede não é a disponibilidade efetiva para pagar mas apenas uma intenção de pagar.

Na prática usa-se geralmente o método do inquérito.

Valor económico total (VET)

- Valor de uso (VU)
 - Valor de uso direto
 - Valor de uso indireto: conserv. solo, polinização
- Valor de não uso (VNU)
 - Valor de opção
 - Valor potencial futuro: biodiversidade
 - Legado ('bequest value'): VU e VNU para gerações futuras
 - Valor de existência (para além da definição antropocêntrica de 'valor'): espécies em extinção

Valor de Uso - Direto

Benefício diretamente obtido com a exploração do recurso:

- madeira e lenha retiradas de uma floresta
- a água obtida a partir de uma nascente
- receitas turísticas obtidas a partir de uma paisagem.

O valor de uso é facilmente afetado pela poluição e pela degradação da paisagem.

A poluição causada pelos derrames petrolíferos provoca uma quebra nas pescas e no turismo, reduzindo diretamente o rendimento de muitas famílias.

A construção de uma auto-estrada ao longo de uma bela paisagem afastará os visitantes que antes a procuravam.

Competências Transferíveis - Economia 2021/2022

Valor de Uso - Indireto

Abrange de forma ampla, as funções ecológicas da natureza:

proteção de bacias hidrográficas, polinização, regeneração de solos, preservação de habitat para espécies migratórias, estabilização climática, captura de carbono, ...

VNU: Valor de opção

O que é que perdemos (ou deixamos de poder fazer) por tomar uma determinada opção?

As barragens, por exemplo, inibem o uso dos vales para a agricultora, habitação ou lazer, impedem a circulação da fauna e de sedimentos, etc.

VNU: Valor potencial futuro

Também em termos de ambiente e recursos naturais, preservar hoje para **usufruir mais tarde** pode ser a opção mais racional.

[porque não se extraem todos os recursos minerais do subsolo tão depressa quanto possível?]

VNU: Valor legado

Os valores ambientais que formos capazes de passar às **gerações futuras** devem ser contabilizados.

A floresta explorada sustentavelmente tem de ter mais valor que a que foi transformada num deserto.

Competências Transferíveis - Economia 2021/2022

VNU: Valor de existência

Terá a humanidade o direito de conduzir espécies e ecossistemas à extinção?

[independentemente do valor económico das espécies ou do risco de se comprometerem as gerações futuras]

Bibliografia

- Environmental and Natural Resource
 Economics, Tom Tietenberg, (8th Edition),
 Longman (2008), cap. 4 e 14
- Environmental Economics: an Introduction,
 Field, B. and Martha Field, (6th Edition),
 McGrawHill (2012)