MOOC Econometrics

Lecture 2.3 on Multiple Regression: Estimation

Christiaan Heij

Erasmus University Rotterdam

OLS criterion

• We assume that $(n \times k)$ matrix X has rank(X) = k.

Test

Prove that $\#(parameters) = k \le n = \#(observations)$.

- Answer: X is $(n \times k)$ matrix, hence $k = \text{rank}(X) \le n$.
- Wish: small vector of residuals $y-Xb=e=\left(egin{array}{c} e_1\\ e_2\\ \vdots\\ e_n \end{array}\right).$
- Least squares criterion ('ordinary least squares', OLS):

$$\rightarrow$$
 minimize $S(b) = e'e = \sum_{i=1}^{n} e_i^2$.

Ezafus,

OLS criterion

- Model: $y = X\beta + \varepsilon$
- Dimensions: y ($n \times 1$), X ($n \times k$): observed data β ($k \times 1$), ε ($n \times 1$): unobserved
- Objective:
 - \rightarrow Estimate β by $(k \times 1)$ vector b so that Xb is 'close' to y.

Ezafus,

Lecture 2.3, Slide 2 of 10, Erasmus School of Economics

OLS estimation

•
$$S(b) = e'e = (y - Xb)'(y - Xb)$$

= $y'y - y'Xb - b'X'y + b'X'Xb$
= $y'y - 2b'X'y + b'X'Xb$

Test

We used y'Xb = b'X'y. Prove this result.

- Answer: y'Xb is (1×1) , so y'Xb = (y'Xb)' = b'X'y.
- Facts of matrix derivatives (see Building Blocks):

$$\frac{\partial b'a}{\partial b}=a$$

$$\frac{\partial b'Ab}{\partial b} = (A + A')b$$

Crapus

OLS estimation

• First order conditions for S(b) = y'y - 2b'X'y + b'X'Xb:

$$\frac{\partial S}{\partial b} = -2X'y + (X'X + X'X)b = -2X'y + 2X'Xb = 0.$$

• So: X'Xb = X'y.

Test

Prove that rank(X) = k implies that X'X is invertible.

- Answer: X'X is $(k \times k)$ matrix, and $X'Xa = 0 \Rightarrow a'X'Xa = (Xa)'Xa = 0 \Rightarrow Xa = 0 \Rightarrow a = 0$. Last step follows from rank(X) = k.
- So: $b = (X'X)^{-1}X'y$

Ezafus,

Lecture 2.3, Slide 5 of 10, Erasmus School of Economics

Relation between y, X, b, and e

The 'X-plane' is k-dimensional subspace spanned by columns of X, that is, set of vectors Xa with a arbitrary $(k \times 1)$ vector.

Lecture 2.3, Slide 7 of 10, Erasmus School of Economics

Geometric aspects

- y is $(n \times 1)$, X is $(n \times k)$
- Define $H = X(X'X)^{-1}X'$ $M = I - H = I - X(X'X)^{-1}X'$

Test

Show that M' = M, $M^2 = M$, MX = 0, MH = 0.

- Answer: Direct calculations. Use $(X'X)^{-1}$ symmetric and $(X'X)^{-1}X'X = I$.
- Fitted values: $\hat{y} = Xb = X(X'X)^{-1}X'y = Hy$. Residuals: e = v - Xb = v - Hv = Mv.
- e and \hat{y} orthogonal: $e'\hat{y} = (My)'Hy = y'M'Hy = 0$.

 Lecture 2.3, Slide 6 of 10, Erasmus School of Economics

Estimation of error variance σ^2

• $\sigma^2 = E(\varepsilon_i^2)$

Estimate unknown $\varepsilon = y - X\beta$ by residuals e = y - Xb.

• Sample variance of residuals: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (e_i - \overline{e})^2$.

Test

Check that the $(n \times 1)$ vector of residuals e satisfies k linear restrictions, so that e has (n - k) 'degrees of freedom'.

- Answer: rank(X) = k, and X'e = X'(y Xb) = X'y X'Xb = 0.
- OLS estimator: $s^2 = \frac{1}{n-k} e' e = \frac{1}{n-k} \sum_{i=1}^{n} e_i^2$
- Unbiased under standard assumptions (see next lecture).

R-squared (R^2)

- Definition: $R^2 = \left(\operatorname{cor}(y,\hat{y})\right)^2 = \frac{\left(\sum (y_i \overline{y})(\hat{y}_i \overline{\hat{y}})\right)^2}{\sum (y_i \overline{y})^2 \sum (\hat{y}_i \overline{\hat{y}})^2}$, where 'cor' is correlation coefficient and $\hat{y} = Xb$.
- Higher R^2 means better fit of Xb to observed y.
- If model contains constant term $(x_{1i} = 1 \text{ for all } i = 1, \dots n)$:

$$R^2 = 1 - \frac{e'e}{\sum_{i=1}^{n} (y_i - \overline{y})^2}.$$

(zafus

Lecture 2.3, Slide 9 of 10, Erasmus School of Economics

TRAINING EXERCISE 2.3

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus

Lecture 2.3, Slide 10 of 10, Erasmus School of Economics