Temperature coefficient of resistivity

 α_R

10⁻³ 1 ° C

4,0

1,8

3,9

2,0

4,0

4,2

178

177

							75)				
		-									
	Molar mass	Density at +20 °C	Volumic expansion coefficient	Specific heat capacity 0 100 °C	Melting point	Latent heat of fusion	Normal boiling point	Latent heat of vapourization	Viscosity at +20 °C	Surface tension at +20 °C	Modulus of compressiom
Liquid	$\frac{M}{10^{-3} \frac{\text{kg}}{\text{mol}}}$	$\frac{\frac{\rho}{\text{kg}}}{\text{m}^3}$	$\frac{\gamma}{10^{-3}\frac{1}{^{\circ}C}}$	$\frac{c_p}{ ext{kJ}}$	<u>t_s</u> °C	kJ kg	<u>t</u> r °℃	r kJ kg	$\frac{\eta}{10^{-3} \frac{\text{kg}}{\text{m} \cdot \text{s}}}$	$\frac{\sigma}{10^{-3}\frac{N}{m}}$	K 10 ⁹ Pa
Benzene Carbon lisulphide	78 76	871 1260	1,2· 1,14	1,76 1,00	+5,5 -112	127 74,1	80,1 46,3	396 356	0,65 0,37	28,9 32,3	1,05
Ethanol , Glycerol	46 92	790 1260	1,1 0,49	2,47 2,43	-115 +18,0	105 199	78,3 290	854	1,20 1400	22,3 64	1,1
Mercury Water	201 18	13550 998	0,182	0,140 4,19	-38,9 0,0	11,7	357 100,0	293 2260	1,15 1,00	480	27 2,1

Modulus of elasticity,
Young's modulus

E

.10⁹ Pa

70

90

120

145

80

210

43

60

Shear modulus, modulus of rigidity

G

10⁹ Pa

25

35

46

29

85

16

Specific heat capacity

 c_p

kg° €

909

394

389

502

230

473

385

833

2090

Thermal conductivity

2

W

m° C

217

116

393

. 16,2

400

58

113

2,2

Melting point

 $\frac{t_{\mathtt{S}}}{^{\mathtt{o}}\,\mathbb{C}}$

660

1083

1450

960

419

0

•

Latent heat of fusion

kJ

kg

687

209

1.12

333)

Bulk modulus, modulus of compression

K

10⁹ Pa

70

59

120

160

Resistivity, at +20 °C

 ρ_R

 $10^{-9} \Omega m$

27,2

50

17,2

15,8

59,5

100

Density

 $\frac{\rho}{\frac{\text{kg}}{\text{m}^3}}$

2700

8400

8930

8100

10500

7830

7130

920

Substance

Aluminium

Brass

Copper

Invar

Silver

Steel

Glass

Ice (0 °C)

(Iron) Zinc Linear expansion coefficient

 $10^{-6} \frac{1}{^{\circ} \text{C}}$

23

20

17

19

12

26

3,2

0,9

0,8

		Molar mass	Density . at NTP	Boiling point (normal)	Latent heat of vapourization (normal)	Critical temperature	Critical pressure	Specific heat capacity at 0 °C	Ratio of the specific heat capacities
Gas		$\frac{M}{10^{-3} \frac{\text{kg}}{\text{mol}}}$	$\frac{\rho_{\rm o}}{\frac{\rm kg}{\rm m}^3}$	$\frac{t_{\rm r}}{^{\circ}{ m C}}$	$\frac{r}{\mathrm{kJ}}$	<u>t_{kr}</u> °C	<u>P_{kr}</u> bar	$rac{c_p}{ ext{kJ}}$ kg°C	γ
Air	(mixture)	29	1,293	-194	197	-141	37,7	1,001	1,40
Acetylene	$\mathbb{C}_2\mathbb{H}_2$	26	1,171	-84 ¹⁾	829 1)	+35,7	62,4	1,64	1,23
Ammonia	NH_3	-17	0,771	-33,4	1369	+132	113	2,06	1,32
Carbon dioxide CO2		44	1,977	-74 ¹⁾	574 ¹⁾	+31	74,0	0,825	1,31
Helium	He	4	0,178	-269	20,9	-268	2,29	5,23	1,66
Hydrogen	H_2	2	0,090	-253	461	-240	13,0	14,24	1,41
Methane	CH ₄	16	0,717	-162	548	82,5	46,3	2,18	1,30
Nitrogen	N_2	28	1,251	-196	155	-147	33,9	1,043	1,40
Oxygen	02	32	1,29	-183	218	-119	50,4	0,913	1,40
			,	1) Sublimati	on point and				