MIDDLE EAST TECHNICAL UNIVERSITY Department of Electrical and Electronics Engineering

EE301 SIGNALS and SYSTEMS 1

HOMEWORK 3

Due: 18/11/2018, 23:55

Q1) One period of rectangular pulse train x(t) with period 4 is $g(t) = \begin{cases} 1, & -1 \le t < 1 \\ 0, & 1 \le t < 3 \end{cases}$, where the pulse train is expressed as $x(t) = \sum_{m=-\infty}^{\infty} g(t+4m)$. A practical parameter called the "duty ratio" of the pulse train is defined as $d = \frac{Duration\ of\ the\ Nonzero\ Values\ of\ the\ Rectangular\ Pulse\ Train\ in\ a\ Period\ of\ the\ Rectangular\ Pulse\ Train}{Period\ of\ the\ Rectangular\ Pulse\ Train}$.

(Notice that d = 1/2 for the given x(t); and g(t) could be expressed as $g(t) = rect(t/2) = \begin{cases} 1, & |t| \le 1 \\ 0, & else \end{cases}$.)

- a) Calling the FS coefficients of x(t), X_k , state X_k 's in terms of the duty ratio d (& then substitute d).
- **b)** Another periodic signal is defined as $z(t) = \int_0^4 x(\tau)x(t-\tau)d\tau$. Sketch z(t). Calling its FS coefficients Z_k , use the "convolution in time" property of the CTFS representation to express Z_k in terms of X_k .
- c) Define $y(t) = \frac{d}{dt}z(t)$ and express it in terms of x(t).
- **d)** Find the FS coefficients Y_k of y(t) using your answer to part (c).
- e) Compute Z_k from Y_k using the differentiation (or integration) property.
- **f**) Compare Z_k 's found in part (b) with Z_k 's of part (e). Are they equal? If so, show it.
- **Q2**) a) Compute $f[k] = \sum_{n=0}^{N-1} e^{j(2\pi/N)kn}$ for all integer values of k.
 - **b)** Repeat part (a) if $f[k] = \sum_{n=M}^{M+N-1} e^{j(2\pi/N)kn}$, where M is an integer.
- Q3) a) An LTI system has the impulse response $h(t) = e^{-t}u[t]$. Is this system causal? Is it stable? Find its output y(t) corresponding to the input $x(t) = (j)^t$ by using the concept of eigenfunctions.
- **b)** An LTI system has the impulse response $h[n] = 2^{-n}u[n+1]$. Is this system causal? Is it stable? Find its output y[n] corresponding to the input $x[n] = (j)^n$ by using the concept of eigenfunctions.
- **Q4**) Determine whether the following CT signals in part (a) and DT signals in part (b) are periodic. If they are, find their fundamental period and compute the corresponding FS coefficients.
 - a) i. $\sin(2t) + \cos(3t)$, ii. $\sin\left(\frac{\pi}{2}t\right) + \cos\left(\frac{\pi}{3}t\right)$, iii. $\sin(2t) + \cos\left(\frac{\pi}{3}t\right)$.
 - **b**) $i. \sin(2n) + \cos(3n)$, $ii. \sin(\frac{\pi}{2}n) + \cos(\frac{\pi}{3}n)$, $iii. \sin(2n) + \cos(\frac{\pi}{3}n)$.

MIDDLE EAST TECHNICAL UNIVERSITY Department of Electrical and Electronics Engineering

Q5) A rectangular pulse train can be expressed as $x[n] = \sum_{m=-\infty}^{\infty} A \, rect[(n+mN)/(2N_1+1)]$, where the pulse duration is less than the period; i.e., $2N_1+1 < N$ and $rect[n/(2N_1+1)] = \begin{cases} 1, & |n| \le N_1 \\ 0, & else \end{cases}$.

Notice that the "duty ratio" of the pulse train is $d = (2N_1 + 1)/N$.

- a) Compute the Fourier Series (FS) coefficients a_k of x[n] in terms of A, N and d.
- **b)** Notice that x[n] is a real-valued and even sequence. Derive the condition that these two (i.e.; being real-valued and even) imposes on the DTFS coefficients a_k .
- c) Letting the duty ratio d = 1/2, find c and n_0 such that the shifted signal, $y[n] = x[n n_0] + c$, has purely imaginary FS coefficients b_k . Also determine b_k 's from a_k 's by making use of the DTFS properties.

Q6) A periodic sequence x[n] is defined as $x[n] = \sum_{m=-\infty}^{\infty} g[n+Nm]$, where $g[n] = \begin{cases} 1, & |n| \leq 2 \\ 0, & else \end{cases}$, and N > 5. Write a MATLAB code that computes the DTFS coefficients a_k of x[n],

i. directly from the DTFS analysis equation; ii. using the result found in part (a) of Q5.

- a) Display your MATLAB codes together with the plots of
 - i. x[n] for N = 10 and N = 20 (versus n for $n \in [-20, 20]$).
 - ii. DTFS coefficients a_k of x[n] (versus $k \in [-20, 20]$) for N = 10 and N = 20.
- b) Use the FFT (Fast Fourier Transform) command of MATLAB to find the <u>FFT of the single period</u> of x[n], where $n \in [0, N-1]$, for N=10 and N=20. Then compare these FFT's with a_k 's where $k \in [0, N-1]$; for N=10 and N=20.