Assignment Date	12 November 2022
Student Name	ARUNA.A
Student Register Number	620619106005
Maximum Marks	2

1. importing Required package

import pandas as pd import seaborn as snsimport numpy as np from matplotlib import pyplot as plt %matplotlib inline

2. Loading the Data

df = pd.read_csv("/content/Churn_Modelling.csv")df

	RowNumbe r	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42	2
1	2	15647311	Hill	608	Spain	Female	41	1
2	3	15619304	Onio	502	France	Female	42	8
3	4	15701354	Boni	699	France	Female	39	1
4	5	15737888	Mitchell	850	Spain	Female	43	2
•••								
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4

 $10000 \text{ rows} \times 14 \text{ columns}$

→

3. isualizations

3.1 Univariate Analysis

sns.displot(df.Tenure)

<seaborn.axisgrid.FacetGrid at 0x7f37c0bdabd0>

3.2 Bi-variate

df.plot.line()

<matplotlib.axes._subplots.AxesSubplot at 0x7f37bc8bcd10>

3.3Multi-variate Analysis

4. Perform descriptive statistics on the dataset

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090

4

5. Handle the Missing values

data = pd.read_csv("/content/Churn_Modelling.csv")pd.isnull
(data["Gender"])

0	False
1	False
2	False
3	False
4	False
9995	False
9996	False
9997	False
9998	False

9999 False

Name: Gender, Length: 10000, dtype: bool

6. Find the outliers and replace the outliers

df["Tenure"] = np.where (df["Tenure"] > 10, np.median, df["Tenure"]) df["Tenure"] > 10, np.median, df["Tenure"] > 10, np.median, df["Tenure"]) df["Tenure"] + 10, np.median, df["Tenure"]) + 10, np.median, df["Tenure"]) df["Tenure"] + 10, np.

0	2
1	1
2	8
3	1
4	2
9995	5
9996	10
9997	7
9998	3
9999	4

Name: Tenure, Length: 10000, dtype: object

7. check For Categorical columns and perform encoding

pd.get dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]).head()

Rov	vNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOf P
0	1	15634602	Hargrave	619	France	2	0.00	
1	2	15647311	Hill	608	Spain	1	83807.86	
2	3	15619304	Onio	502	France	8	159660.80	
3	4	15701354	Boni	699	France	1	0.00	
4	5	15737888	Mitchell	850	Spain	2	125510.82	

5 rows × 84 columns

- 8. Split the data into dependent and independent variables
- 8.1 split the data into independent variables

```
X = df.iloc[:, :-2].valuesprint(X)
```

```
[[1 15634602 'Hargrave' ... 1 1 1]

[2 15647311 'Hill' ... 1 0 1]

[3 15619304 'Onio' ... 3 1 0]

...

[9998 15584532 'Liu' ... 1 0 1]
```

[9999 15682355 'Sabbatini' ... 2 1 0] [10000 15628319 'Walker' ... 1 1 0]]

8. Split the data into Dependent variables

Y = df.iloc[:, -1].valuesprint(Y)

[1 0 1 ... 1 1 0]

9. Scale the independent variables

import pandas as pd
from sklearn.preprocessing import MinMaxScalerScaler =
MinMaxScaler()
df[["RowNumber"]] = Scaler.fit_transform(df[["RowNumber"]])print(df)

	RowNumbe	er Custome	rId Surname	CreditScore	Geography	Gender	Age	\
0	0.000	0 156346	Hargrave	619	France	Female	42	
1	0.000	1 156473	11 Hill	608	Spain	Female	41	
2	0.000	2 156193	04 Onio	502	France	Female	42	
3	0.000	3 157013	54 Boni	699	France	Female	39	
4	0.000	4 157378	Mitchell	850	Spain	Female 43		
9995	0.999	6 156062	29 Obijiaku	771	France	Male	39	
9996	0.999	7 155698	•		France	Male	35	
9997	0.999	8 155845	Liu	709	France	Female	36	
9998	0.999	9 156823	55 Sabbatini	772	Germany	Male	42	
9999	1.000	0 156283	Walker	792	France	Female	28	
	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem	nber \		
0	2	0.00	1	1		1		
1	1	83807.86	1	0		1		
2	8	159660.80	3	1		0		
3	1	0.00	2	0		0		
4	2	125510.82	1	1		1		

2	8	159660.80	3	1	0
3	1	0.00	2	0	0
4	2	125510.82	1	1	1
9995	5	0.00	2	1	0
9996	10	57369.61	1	1	1
9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
9995	96270.64	0
9996	101699.77	0

9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_splittrain_size=0.8

X = df.drop(columns = ['Tenure']).copy()y =

df['Tenure']

X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)test_size = 0.5

X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)print(X_train.shape),print(y_train.shape)

print(X_valid.shape), print(y_valid.shape)

print(X_test.shape), print(y_test.shape)

(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
```

_

(None, None)

Colab paid products - Cancel contracts here

✓ 0s completed at 1:42 PM

