

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Модели комбинаторной оптимизации»

на тему:

«Задание №9. Оптимальный план производства: цех (сложные технические карты)»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2022

Дано

- $H = \{1, \dots, T\}$ горизонт планирования
- S множество машин
- Р множество номенклатуры
- au_p дедлайн для производства номенклатуры $p \in P$
- $tech_p$ упрощённая техкарта нового типа для номенклатуры $p \in P$
- d_p спрос на номенклатуру $p \in P$
- $price_p$ цена за единицу продукции $p \in P$
- next(p,s) машины-потомки по техкарте $p \in P$ после машины $s \in S$ (if машина s – последняя, то \emptyset)
- prev(p,s) машины-родители по техкарте $p \in P$ до машины $s \in S$ (if машина s – nepeas, $mo \emptyset$)
- first(p) первые машины по техкарте для $p \in P$
- $M = \{m_{p,s,t}\}_{p \in P} |_{s \in S} |_{t \in H}$ производственные мощности
- BAL_p множество пар (S^-, S^+) для техкарты номенклатур $p \in P$ для сохранения объёма пула $S^-, S^+ \subset machines(tech_p)$
- $tc_{p,s}$ время обработки номенклатуры $p \in P$ на машине s $T_{p,s} = \{T_{p,s}^{LB}, \dots, T_{p,s}^{UB}\}$ множество временных отрезков
- $U_{s,t}$ множество троек (p,s,t') таких, что если начать производство pв квант времени t' на машине s, то машина s будет «занята» работой в квант t

Переменные

 $x_{p,s,t} \ge 0$ — объём производства p, если он начал обрабатываться в квант времени t на машине s

$$\forall p \in P, \quad \forall i \in M, \quad \forall t \in T$$

 $y_{p,i,t} = egin{cases} 1, & \text{if номенклатура } p \text{ начинает производиться в квант времени } t \\ & \text{на машине } i \\ 0, & \text{в противном случае} \end{cases}$

$$\forall p \in P, \quad \forall i \in M, \quad \forall t \in T$$

Целевая функция

1) Прибыль:

$$\sum_{p=1}^{n} price_{p} \sum_{i=1}^{m} \sum_{t=q_{0}}^{q_{last}} x_{p,i,t} \longrightarrow \max$$

2) Как можно раньше хотим закончить работы:

$$\sum_{p=1}^{n} \sum_{i=1}^{m} \sum_{t=q_0}^{q_{last}} ttc_{p,i} \cdot y_{p,i,t} \longrightarrow \min$$

Целевая функция

$$\sum_{p=1}^{n} price_{p} \sum_{i=1}^{m} \sum_{t=q_{0}}^{q_{last}} x_{p,i,t} - \sum_{p=1}^{n} \sum_{i=1}^{m} \sum_{t=q_{0}}^{q_{last}} ttc_{p,i} \cdot y_{p,i,t} \longrightarrow \max$$

Ограничения

1) Не должно быть незавершённого производства (вся номенклатура, которая занимает машинное время, должна быть выпущена к времени выпуска, иначе её не планировать):

$$\sum_{p=1}^{n} \sum_{i=1}^{m} \sum_{t=q_0}^{qlast} b_{p,i,t,t'} \cdot y_{p,i,t} = 1 \quad \forall t' \in T : t' \ge t$$

2) Сумма всех работ не машине, проводимых в квант времени, должна быть меньше или равна производительности машины:

$$\sum_{p=1}^{n} \sum_{i=1}^{m} \sum_{t=q_0}^{q_{last}} b_{p,i,t,t'} \cdot x_{p,i,t} \le m_{t,i} \quad \forall t \in T, \ \forall t' \in T : t' \ge t, \ \forall i \in M$$

3) Время использования машины, должно быть равно времени производства пула номенклатуры на машине:

$$\sum_{p=1}^{n} \sum_{t=q_0}^{q_{last}} \sum_{t' \in T: t' \ge t} \frac{b_{p,i,t,t'} \cdot x_{p,i,t}}{m p_{t,i}} = \sum_{p=1}^{n} \sum_{t=q_0}^{q_{last}} y_{p,i,t} \cdot tt c_{p,i} \quad \forall i \in M$$

4) Произвести номенклатуру необходимо до времени завершения производства этой номенклатуры:

$$\sum_{i=1}^{m} \sum_{t=q_0}^{q_{last}} ttc_{p,i} \cdot y_{p,i,t} \le deadline_p \quad \forall p \in P$$

5) На каждой машине, в один квант времени может производиться только одна номенклатура:

$$\sum_{p=1}^{n} \sum_{i=1}^{m} y_{p,i,t} \le 1 \quad \forall t \in T$$

6) Производство номенклатуры не превышает спрос:

$$\sum_{i=1}^{m} \sum_{t=q_0}^{q_{last}} x_{p,i,t} \le invoice_p \quad \forall p \in P$$

7) Естественные ограничения:

$$x_{p,i,t} \ge 0, \quad \forall p \in P, \quad \forall i \in M, \quad \forall t \in T$$

 $y_{p,i,t} \in \{0;1\}, \quad \forall p \in P, \quad \forall i \in M, \quad \forall t \in T$