Hinweise:

- Abgabeschluss für dieses Blatt ist **Mittwoch**, **02.02.2022**, **23:59:59 CET**. Nur Abgaben, die rechtzeitig über die Moodle-Seite zur Veranstaltung erfolgen, werden akzeptiert und bewertet.
- Gruppenabgaben mit maximal 4 Personen pro Gruppe sind erlaubt. Alle Beteiligten erhalten identische Bewertungen. Notieren Sie deutlich lesbar die vollständigen Namen und Matrikelnummern aller Beteiligten auf der ersten Seite Ihrer abgegebenen Lösung.
- Nur nachvollziehbare Lösungen können gewertet werden. Geben Sie für alle Berechnungen auch einen formalen Ansatz an um die volle Punktzahl zu erreichen.
- Runden Sie Ihre Ergebnisse auf 2 Nachkommastellen und kürzen Sie Brüche vollständig.
- Fassen Sie sich bei Textantworten kurz und formulieren Sie präzise mit korrekter Verwendung der in der Vorlesung eingeführten Fachbegriffe.
- Grafiken und Berechnungen können Sie gegebenenfalls auch mit R erzeugen bzw. durchführen. Übertragen Sie in diesem Fall den vollständigen, lauffähigen (!) und kommentierten Code für ihre Lösung sowie den relevanten R-Output in Ihre abgegebene Lösung.
- In der Angabe bezeichnet $\log(x) = \log_e(x)$ immer den natürlichen Logarithmus zur Basis e.

Aufgabe 1 24 Punkte

Zwei stetige Zufallsvariablen X und Y haben die gemeinsame Dichte

$$f_{X,Y}(x,y) = c \exp(-2(x+y))I(x \ge 0)I(y \ge 0).$$

- (a) Bestimmen Sie den numerischen Wert der Konstante c.
- (b) Bestimmen Sie die Randdichte von X.
- (c) Bestimmen Sie die bedingte Dichte von Y|X.
- (d) Bestimmen Sie $\rho(X, Y)$.
- (e) Berechnen Sie P(X < 0.5Y).

Aufgabe 2 16 Punkte

Seien X und Y Zufallsvariablen mit E(X) = E(Y) = 0 und Var(X) = Var(Y) = 25. Sei W = X + Y und T = X - Y.

- (a) Bestimmen Sie Var(W), Var(T), Cov(W,T) und $\rho(W,T)$ jeweils für den Fall, dass X und Y unabhängig sind.
- (b) Bestimmen Sie Var(W), Var(T), Cov(W,T) und $\rho(W,T)$ jeweils für den Fall, dass $\rho(X,Y) = -1/4$ gilt.
- (c) Warum gilt in Szenario b) Var(W) < Var(T)? Geben Sie eine kurze inhaltliche Begründung, nicht nur eine rein formal-mathematische.

Aufgabe 3 29 Punkte

Wir schreiben das Jahr 2167. Wie alle rechtschaffenen Marskolonist:innen legt Hodlor Hodlorsdottir ihre kompletten Ersparnisse – kümmerliche 200 Muskcoins – in Kryptowährungen und NFTs an.

150 ihrer Muskcoins investiert sie in sogenanntes "Dogethereum". Dieses sichere Investment garantiert eine zufällige Jahresrendite R_1 , die gleichverteilt zwischen 6% und 8% ist.

Die verbleibenden 50 Muskcoins werden etwas spekulativer in einen NFT-ETF namens "Enefftetteff" investiert, hier kann Hodlor von einer prozentualen Jahresrendite R_2 ausgehen, die $\mathcal{N}(\mu=8,\sigma^2=4)$ -verteilt ist.

Als verantwortungsvoll diversifizierende Anlegerin hat Hodlor diese Investments ausgewählt, weil ihre Renditen stochastisch unabhängig sind.

- (a) Stellen Sie den Wert V, den Hodlors Portfolio ein Jahr nach ihrer anfänglichen Investition hat, als Funktion der Renditen R_1 und R_2 dar. Was ist der Erwartungswert und die Varianz von V?
- (b) Wie können Sie die Wahrscheinlichkeit, dass Hodlor insgesamt eine prozentuale Jahresrendite R zwischen mindestens l% und höchstens h% erzielt, berechnen? Hinweis: Gefragt ist hier ein möglichst weit entwickelter und vereinfachter Ausdruck für diese Wahrscheinlichkeit. Für ein funktionierendes R-Skript, mit dem Sie diese Wahrscheinlichkeit aussimulieren oder numerisch berechnen können, gibt es bis zu 3 Bonuspunkte.

Oh nee – Marskommandantin Elon Grimes III hat mal wieder Schwachsinn über Dogethereum getwittert und die Märkte spielen verrückt. Die Korrelation zwischen R_1 und R_2 ist nun $\rho = -0.5$.

- (c) Zeigen Sie, dass die Kovarianz zwischen R_1 und R_2 in diesem Szenario ca. -0.577 beträgt.
- (d) Helfen Sie Hodlor, ihr Investmentkapital von 200 Muskcoins so zwischen Dogethereum und Enefftetteff aufzuteilen, dass die Varianz des Gesamtvermögens nach dem ersten Jahr (V) in diesem Szenario möglichst klein wird.
 - Für welche Aufteilung zwischen Dogethereum und Enefftetteff ist die Varianz von V minimal? Wie groß ist das zu erwartende Gesamtvermögen nach einem Jahr für diese Aufteilung?

Aufgabe 4 16 Punkte

Betrachten Sie im Folgenden die unten dargestellten Datensätze.

- (a) Ist der Korrelationskoeffizient nach Bravais-Pearson für die dargestellten Variablen aus den Datensätzen A und B jeweils größer, kleiner oder etwa gleich groß wie der Korrelationskoeffizient nach Spearman? Wie hoch ist der Korrelationskoeffizient nach Spearman in Datensatz B? Begründen Sie Ihre Antworten.
- (b) Datensätze C und D zeigen auf der x-Achse jeweils einen diagnostischen Score und auf der y-Achse den beobachteten tatsächlichen Gesundheitszustand von 10 Personen ($y = 0 \Leftrightarrow$ "gesund"; $y = 1 \Leftrightarrow$ "krank"). Ist x_3 oder x_4 besser geeignet um den Gesundheitszustand der Personen vorherzusagen? Begründen Sie Ihre Antwort.
- (c) Berechnen Sie Sensitivitäten und Spezifitäten eines diagnostischen Tests auf der Basis von x_3 für Schwellenwerte $c \in \{80, 70, 60\}$ und zeichnen Sie die sich daraus ergebende ROC-Kurve.
- (d) Zeichen Sie die ROC-Kurve eines diagnostischen Tests basierend auf $\tilde{x}_4 = (x_4)^2$ (keine Rechnung gefragt, nur Zeichnung). Geben Sie einen Schwellenwert c für \tilde{x}_4 an der eine möglichst genaue Diagnose ergibt. Welche Sensitivität und Spezifizität erreicht der diagnostische Test für diesen Schwellenwert?

Aufgabe 5 29 Punkte

Für vier Datensätze mit jeweils zwei bzw. drei Merkmalen liegen die folgenden Streudiagramme vor:

- a) Geben Sie bezüglich der Datensätze A, B und C jeweils Auskunft über den Korrelationskoeffizienten nach Bravais-Pearson, den Rang-Korrelationskoeffizienten nach Spearman sowie über Kendall's τ . Vervollständigen Sie dazu folgenden Tabelle indem Sie für jedes Zusammenhangsmass $r \in \{r_{XY}, r_{XY}^{SP}, \tau_{XY}\}$ für jeden der Datensätze A, B und C eine der folgenden Aussagen treffen:
 - r ist exakt 0: schreiben Sie "= 0"
 - r ist exakt 1: " = 1"
 - r ist exakt -1: " = -1"
 - r ist nahe 0: " ≈ 0 "
 - r ist nahe 1: " ≈ 1 "
 - r ist nahe -1: " ≈ -1 "
 - r ist positiv: "> 0"
 - r ist negativ: "< 0"

Falls mehrere Aussagen zutreffen geben Sie jeweils die präziseste der zutreffenden Aussagen an.

	r_{XY}	r_{XY}^{SP}	$ au_{XY}$
A			
В			
$\overline{\mathbf{C}}$			

b) Betrachten Sie in Datensatz A statt dem Merkmal Y_1 das Merkmal $Y_1'=2\cdot Y_1$ bzw. das Merkmal $Y_1''=-Y_1$. (Wie) ändern sich die Zusammenhangsmasse zwischen Y_1' und X_1 bzw. Y_1'' und X_1

jeweils gegenüber den Zusammenhangsmassen zwischen Y_1 und X_1 ? Begründen Sie Ihre Antworten kurz.

c) Zwei Merkmale U und V weisen einen Zusammenhang der Form $V=\frac{1}{U}$ auf. Nennen Sie eine Transformation f von U mit $\tilde{U}=f(U)$ die bewirkt dass der Korrelationskoeffizienten nach Bravais–Pearson zwischen V und \tilde{U} den Wert 1 annimmt.

In Datensatz D sind insgesamt 3 Merkmale von n=10 Probanden abgetragen. Z1 und Z2 sind dabei zwei klinische Messwerte die in der Summe Z1+Z2 als zusammengefasster Score S betrachtet werden sollen. Die Grenzen für die Schwellenwerte $c \in \{0.7, 0.8, 0.9\}$ bezogen auf den Score S sind in dem Streudiagramm ebenfalls abgetragen.

- d) Berechnen Sie jeweils Sensitivität und Spezifität in Bezug auf den Gesundheitszustand für diese Schwellenwerte von S und zeichnen Sie die ROC–Kurve.
- e) Wie hoch ist hierbei der AUC-Wert?
- f) Warum ist es hier nicht zielführend, Z1 und Z2 zu S=Z1+Z2 zusammenzufassen um einen möglichst zuverlässigen diagnostischen Test zu entwickeln? Was für ein Vorgehen schlagen Sie stattdessen vor?