IN THE CLAIMS:

Please amend claim 1 with the clean version provided immediately below to read as follows:

1. (Amended) A compound of the formula:

wherein X is selected from the group consisting of: O, N-OR^a, N-NR^aR^b and C₁-6 alkylidene, wherein said alkylidene group is unsubstituted or substituted with a group selected from hydroxy, amino, O(C₁-4alkyl), NH(C₁-4alkyl), or N(C₁-4alkyl)₂;

R¹ is selected from the group consisting of hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, and C₂₋₆alkynyl, wherein said alkyl, alkenyl and alkynyl groups are either unsubstituted or substituted with a group selected from OR^c, SR^c, NR^bR^c, C(=O)R^c, C(=O)CH₂OH, or phenyl, wherein said phenyl group can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄alkyl, OH, O(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl), NH(C₁₋₄alkyl)₂, halo, CN, NO₂, CO₂H, CO₂(C₁₋₄alkyl), C(O)H, and C(O)(C₁₋₄alkyl);

R² is selected from the group consisting of hydrogen, hydroxy, iodo, O(C=O)R^c, C(=O)R^c, CO₂R^c, C₁₋₆alkyl, C₂₋₆alkenyl, and C₂₋₆alkynyl, wherein said alkyl, alkenyl and alkynyl groups are either unsubstituted or substituted with a group selected from OR^c, SR^c, NR^bR^c, C(=O)R^c, C(=O)CH₂OH, or phenyl, wherein said phenyl group can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄alkyl, OH, O(C₁₋₄alkyl), NH₂, NH₂, NH₂, NH₃, NH₄, NH

or R¹ and R², when taken together with the carbon atom to which they are attached, form a carbonyl group;

or R¹ and R², when taken together, form a C₁₋₆ alkylidene group, wherein said alkylidene group is either unsubstituted or substituted with a group selected from the group consisting of hydroxy, O(C₁₋₄ 4 alkyl), N(C₁₋₄ 4 alkyl)₂, and phenyl, wherein said phenyl group can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄ alkyl, OH, O(C₁₋₄ alkyl), NH₂, NH(C₁₋₄ alkyl), NH(C₁₋₄ alkyl)₂, halo, CN, NO₂, CO₂H, CO₂(C₁₋₄ alkyl), C(O)H, and C(O)(C₁₋₄ alkyl);

R³ is selected from the group consisting of fluoro, chloro, bromo, iodo, cyano, NRaRc, ORa, C(=O)Ra, CO₂Rc, CONRaRc, SRa, S(=O)Ra, SO₂Ra, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₇cycloalkyl, 4-7 membered heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, aryl and heteroaryl groups are either unsubstituted or independently substituted with 1, 2 or 3 groups selected from fluoro, chloro, bromo, iodo, cyano, ORa, NRaRc, O(C=O)Ra, O(C=O)NRaRc, NRa(C=O)Rc, NRa(C=O)ORc, C(=O)Ra, CO₂Ra, CONRaRc, CSNRaRc, SRa, S(O)Ra, SO₂Ra, SO₂NRaRc, YRd, and ZYRd;

R⁴ is selected from the group consisting of hydrogen and fluoro;

R⁵ is selected from the group consisting of hydrogen, fluoro, chloro, bromo, methyl, amino, OR^b, OR^a, O(C=O)R^c, O(C=O)OR^c, and NH(C=O)R^c,

R⁶ is selected from the group consisting of hydrogen, fluoro, chloro, bromo, methyl, OR^b, OR^a, O(C=O)R^c, and O(C=O)OR^c;

R⁷ is selected from the group consisting of hydrogen, OR^b, NR^bR^c, fluoro, chloro, bromo, iodo, cyano, nitro, C₁₋₆alkyl, C₂₋₆alkenyl, CF₃, and CHF₂;

R⁸ and R⁹ are each independently selected from the group consisting of hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, and C₂₋₆alkynyl, or R⁸ and R⁹, when taken together with the carbon atom to which they are attached, form a 3-5 membered cycloalkyl ring,

A

or R⁸ and R⁹, when taken together with the carbon atom to which they are attached, form a carbonyl group;

is selected from the group consisting of hydrogen, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₆cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl and heteroarylalkyl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl and heteroarylalkyl groups can be optionally substituted with a group selected from chloro, bromo, iodo, OR^b, SR^b, C(=O)R^b, or 1-5 fluoro.

or R¹⁰ and R¹, when taken together with the three intervening carbon atoms to which they are attached, form a 5-6 membered cycloalkyl or cycloalkenyl ring which can be optionally substituted with 1 or 2 groups selected from oxo, hydroxy, or C₁₋₆alkyl;

R¹¹ is selected from the group consisting of hydrogen and C₁₋₄alkyl;

Ra is selected from the group consisting of hydrogen, C₁₋₁₀alkyl, and phenyl, wherein said alkyl group can be optionally substituted with a group selected from hydroxy, amino, O(C₁₋₄alkyl), NH(C₁₋₄alkyl), N(C₁₋₄alkyl)₂, phenyl, or 1-5 fluoro, and wherein said phenyl groups can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄alkyl, OH, O(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl), C(O)H,

and $C(O)(C_1/4alkyl)$;

Rb is selected from the group consisting of hydrogen, C₁₋₁₀alkyl, benzyl and phenyl, wherein said phenyl group can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄alkyl, OH, O(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl), NH(C₁₋₄alkyl), halo, CN, NO₂, CO₂H, CO₂(C₁₋₄alkyl), C(O)H, and C(O)(C₁₋₄alkyl);

R^c is selected from the group consisting of hydrogen, C₁₋₁₀alkyl and phenyl, wherein said phenyl group can either be unsubstituted or substituted with 1-3 substituents independently selected from the group consisting of C₁₋₄alkyl, OH, O(C₁₋₄alkyl), NH₂, NH(C₁₋₄alkyl),

Al

Rd is se

 $NH(C_{1-4}alkyl)_2$, halo, CN, NO₂, CO₂H, CO₂(C₁₋₄alkyl), C(O)H, and C(O)(C₁₋₄alkyl),

or R^a and R^c, whether or not on the same atom, can be taken together with any attached and intervening atoms to form a 4-7 membered ring;

Rd is selected from the group consisting of NRbRc, ORa, CO2Ra, O(C=O)Ra, CN, NRc(C=O)Rb, CONRaRc, SO2NRaRc, and a 4-7 membered N-heterocycloalkyl ring that can be optionally interrupted by O, S, NRc, or C=O;

Y is selected from the group consisting of CR^bR^c, C₂₋₆ alkylene and C₂₋₆ alkenylene, wherein said alkylene and alkenylene linkers can be optionally interrupted by O, S, or NR^c;

Z is selected from the group consisting of O, S, NR^c, C=O, O(C=O), (C=O)O, NR^c(C=O) or (C=O)NR^c;

and the pharmaceutically acceptable salts thereof.

Al

Please amend claim 2 with the clean version provided immediately below to read as follows:

2. (Amended) A compound of the formula:

wherein X is selected from the group consisting of O and N-ORa;

 R^1 is selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl, wherein said alkyl group is either unsubstituted or substituted with a group selected from OR^c or $C(=O)R^c$;

R² is selected from the group consisting of hydrogen, hydroxy, iodo, and C₁6alkyl, wherein said alkyl group is either unsubstituted or substituted with a group selected from OR^c or C(=O)R^c;

R³ is selected from the group consisting of chloro, bromo, iodo, cyano, C₁.

10alkyl, C₂₋₁₀alkenyl, aryl and heteroaryl, wherein said alkyl, alkenyl, aryl and heteroaryl groups are either unsubstituted or independently substituted with 1, 2 or 3 groups selected from fluoro, chloro, bromo, iodo, cyano, ORa, NRaRc, C(=O)Ra, CO₂Rc, NRaC(=O)Rc, CONRaRc, CSNRaRc, SRa, YRd, and ZYRd;

R⁴ is selected from the group consisting of hydrogen and fluoro;

R⁵ and R⁶ are each independently selected from the group consisting of hydrogen, fluoro, O(C=O)R^c and OR^a;

R⁷ is selected from the group consisting of hydrogen, NR^bR^c, chloro, bromo, nitro and C₁₋₆alkyl;

 R^8 and R^9 are each independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl; or R^8 and R^9 , when taken together with the carbon atom to which they are attached, form a carbonyl group;

 R^{10} is selected from the group consisting of hydrogen, $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, $C_{3\text{-}6}$ cycloalkyl and cycloalkylalkyl, wherein said alkyl, alkenyl, cycloalkyl and cycloalkylalkyl groups can be optionally substituted with a group selected from OR^b , SR^b , $C(=O)R^b$, or 1-5 fluoro; or R^{10} and R^1 , when taken together with the three intervening carbon atoms to which they are attached, form a 5-6 membered cycloalkyl ring which can be optionally substituted with $C_{1\text{-}6}$ alkyl;

R¹¹ is selected from the group consisting of hydrogen and C₁₋₄alkyl;

Ra is selected from the group consisting of hydrogen, C₁₋₁₀alkyl, and phenyl, wherein said alkyl group can be optionally substituted with a group selected from hydroxy, amino, O(C₁₋₄alkyl), NH(C₁₋₄alkyl), N(C₁₋₄alkyl)₂ phenyl, or 1-5 fluoro;

Rb is selected from the group consisting of hydrogen, C₁₋₁₀alkyl, benzyl and phenyl;

R^c is selected from the group consisting of hydrogen and C₁₋₁₀alkyl and phenyl; or R^a and R^c, whether or not on the same atom, can be taken together with any attached and intervening atoms to form a 4-7 membered ring;

Al