Plot below shows comparison between the models where blue=logit, red=probit, green=cloglog. We can see that complementary log-log link (green curve) is the best.

The lethal dose can be calculated by Logit: LD-p = (log(p/(1-p))-constant)/coef and Probit: LD-p = (invnormal(p)-constant)/coef. We use the function dose.p in R to get the estimates for LD50 and LD5 (logCS2mgl-1)):

logit 🔼	Dose <u></u>	SE 💌	probit	▼ Dose ▼	SE 💌	cloglog	🗾 Dose 🔼 S	E 💌
p = 0.50	1. 7717	0. 0039	p = 0.5	0 1.7709	0.0038	p = 0.50	1.7788	0.0040
p = 0.05	1. 6858	0. 0087	p = 0.0	5 1.6875	0.0079	p = 0.05	1.6606	0.0120

We want to get confidence intervals in mgl^{-1} units. To obtain the standard errors from transformed data when y=ln(x) we need to calculate E(X)=exp(Y) and SE(X)=exp(Y) SE(Y). So 95% can be calculated from CI=E(X)+/-(1.96*SE(X))

logit			probit		cloglog	
p = 0.50	(58.74,	59.49)	(58.63,	59.37)	(59.69,	60.48)
p = 0.05	(47.81,	49.20)	(48.06	49.32)	(44.88,	46.67)

For complementary log-log function, the model is similar to the logistic and probit models for probability values near 0.5 but differs for probability near 0.05.

Appendix (R Code)

```
require(dobson)
require(ggplot2)
library(MASS)
beetle <- dobson::beetle
head(beetle)
#data preparation
beetle$n_y=beetle$n-beetle$y
beetle$mat=cbind(beetle$y,beetle$n_y)
beetle$p = beetle$y / beetle$n
# logistic regression
res_logit=glm(beetle$mat~beetle$x, family=binomial(link="logit"))
# fitted.values
fit_p_logit = c(fitted.values(res_logit))
fit_y_logit = beetle$n*fit_p_logit
# probit model
res_probit=glm(beetle$mat ~ beetle$x, family=binomial(link="probit"))
# fitted.values
fit_p_probit = c(fitted.values(res_probit))
fit_y_probit = beetle$n*fit_p_probit
```

```
# extreme value model
res_cloglog=glm(beetle$mat ~ beetle$x, family=binomial(link="cloglog"))
# fitted.values
fit_p_cloglog = c(fitted.values(res_cloglog))
fit_y_cloglog = beetle$n*fit_p_cloglog
#plots
plot(beetle$x, beetle$p, pch=19,col="black",
  main ="Dose response models", xlab ="dose", ylab = "fitted probability")
lines(beetle$x, fit_p_logit, col="blue", lwd=3)
lines(beetle$x, fit_p_probit, col="red", lwd=3)
lines(beetle$x, fit_p_cloglog, col="green2", lwd=3)
#lethal dose (LD-50, LD-5)
# complementary log-log function. The model is similar to the logistic and
# probit models for probability values near 0.5 but differs for probability near 0 or 1.
exp(dose.p(res_logit,p=c(0.5, 0.05)))
exp(dose.p(res\_probit,p=c(0.5, 0.05)))
exp(dose.p(res_cloglog,p=c(0.5, 0.05)))
```