AUTHOR Anushree Chaudhary

LOW-LIGHT IMAGE ENHANCEMENT WITH WAVELET-BASED DIFFUSION MODELS

AFFILIATIONS

Indian Institute of Technology Kanpur

INTRODUCTION

Diffusion models have achieved promising results in image restoration tasks, yet suffer from time and excessive computational resource consumption.

This work proposes a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL incorporating the strength of wavelets.

METHODOLOGY

Wavelet-Based Conditional Diffusion Model (WCDM)

• Leverages the generative ability of diffusion models and the strengths of wavelet transformation.

Forward Diffusion and Denoising

 Both forward diffusion and denoising are performed in the training phase of WCDM to achieve stable denoising and reduce randomness during inference.

High-Frequency Restoration Module (HFRM)

• Utilizes both vertical and horizontal information to complement the diagonal details for local details reconstruction.

ANALYSIS

Metric	Initial Model	LPIPS $\lambda_{lpips} = 0.3$	LPIPS $\lambda_{lpips} = 0.5$	Wavelet Loss	Cross Attention (No Blur)	Cross Attention (With Blur)
PSNR (dB)	25.45	25.59	25.63	24.93	23.32	20.40
SSIM	0.87	0.87	0.87	0.87	0.59	0.32

Multiple ideas were implemented over the initial model to better implementation such as addition of loss components (LPIPS-based and wavelet regularization loss) and cross attention layers.

RESULTS

The LPIPS-based perceptual loss displays the best results among the different implementations.

CONCLUSION

Experimental results show that this method achieves state-of-the art performance on both distortion metrics and perceptual quality while offering noticeable speed up as compared to previously used methods for this task.