Canonical Automata via Distributive Law Homomorphisms

Stefan Zetzsche ¹ Gerco van Heerdt ¹ Alexandra Silva ^{1,3} Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

³Cornell University

December 13, 2021

⁰Accepted at MFPS 2021

¹Paper available at https://arxiv.org/abs/2104.13421

²Slides available at https://fgh.xyz

Introduction

Minimal DFA

Up to isomorphism, the unique size-minimal DFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

3

Minimal NFA

Two non-isomorphic³ size-minimal NFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

Is there a canonical NFA for \mathcal{L} ?

4

³Arnold, Dicky, and Nivat 1992.

Minimal NFA

Is there a subclass $C \subseteq NFA$, such that any regular language \mathcal{L} admits a canonical acceptor $c(\mathcal{L}) \in C$ size-minimal in C?

Ę

Example: The canonical RFSA

A NFA accepting $\mathcal{L} \subseteq A^*$ is RFSA, if every state accepts a residual $u^{-1}\mathcal{L} = \{v \in A^* \mid uv \in \mathcal{L}\}$ for some $u \in A^*$.

The canonical RFSA for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ prime residual of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

Theorem (4)

The canonical RFSA for \mathcal{L} is size-minimal among RFSA for \mathcal{L} .

⁴Denis, Lemay, and Terlutte 2002.

Example: The canonical RFSA

How does one come up with this definition? Why does it work?

$NFA \rightarrow DFA$

The classical powerset construction converts a NFA into an equivalent DFA.

$$\begin{split} \langle \varepsilon, \delta \rangle : Y &\to 2 \times \mathcal{P}(Y)^A \\ & \downarrow \\ \langle \varepsilon^\sharp, \delta^\sharp \rangle : \mathcal{P}(Y) &\to 2 \times \mathcal{P}(Y)^A \end{split}$$

8

 $^{^{5}}arepsilon^{\sharp}(U)=\bigvee_{u\in U}arepsilon(u),\quad \delta_{a}^{\sharp}(U)=\bigcup_{u\in U}\delta_{a}(u)$

$NFA \rightarrow DFA$ (in CSL)

$$\varepsilon^{\sharp}(U_1 \cup U_2) = \varepsilon^{\sharp}(U_1) \vee \varepsilon^{\sharp}(U_2)$$
$$\delta^{\sharp}_{a}(U_1 \cup U_2) = \delta^{\sharp}_{a}(U_1) \cup \delta^{\sharp}_{a}(U_2)$$

 $\langle \varepsilon^{\sharp}, \delta^{\sharp} \rangle$ is a DFA in the category of complete semilattices (CSL).

9

DFA (in CSL) \rightarrow NFA

Consider the reverse to the powerset construction.

$$\langle E, D \rangle : X \to 2 \times X^{A}$$

$$\downarrow \qquad \qquad 2, X \in \mathsf{CSL}$$

$$\langle \varepsilon, \delta \rangle : Y \to 2 \times \mathcal{P}(Y)^{A}$$

Possible? Maybe, choose Y as a generator for X? Can we find a size-minimal generator Y?

⁶Constraint: $\langle E, D \rangle \sim \langle \varepsilon^{\sharp}, \delta^{\sharp} \rangle$

S-DFA $\rightarrow T$ -NFA

Generalises to other algebraic theories S, T:

$$X o B imes X^A \ \downarrow \ B, X \in \mathsf{Alg}(S)$$
 $Y o B imes T(Y)^A$

Related to the construction of canonical (minimal) automata:

name	S	T	В
canonical RFSA ⁷	CSL	CSL	2
canonical nominal RFSA ⁸	Nom-CSL	Nom-CSL	2
minimal xor automaton ⁹	\mathbb{Z}_2 -VSP	\mathbb{Z}_2 -VSP	2
átomaton ¹⁰	CABA	CSL	2
distromaton ¹¹	CDL	CSL	2

⁷Denis, Lemay, and Terlutte 2002.

⁸Moerman and Sammartino 2020.

⁹Vuillemin and Gama 2010.

¹⁰Brzozowski and Tamm 2014.

¹¹Myers et al. 2015.

Plan

Preliminaries

• Distributive laws, bialgebras

Diagonal cases (S = T)

- Generators for (bi)algebras
- Example: The canonical RFSA

Extension to non-diagonal cases $(S \neq T)$

- (Deriving) distributive law homomorphisms
- Example: The átomaton
- The minimal xor-CABA automaton
- Minimality results

Preliminaries

Overview

We make the following generalisations:

CSL	$TX o X \in Alg(T)$
DFA	$X o FX \in Coalg(F)$
S-DFA	$SX o X o FX \in Bialg(\lambda^{\mathcal{S}})$
T-NFA	$T^2Y o TY o FTY \in Bialg(\lambda^T)$

Distributive laws

A distributive law between a monad $\langle T, \eta, \mu \rangle$ on C and an endofunctor $F: C \to C$ is a natural transformation

$$\lambda: TF \Rightarrow FT$$

satisfying the laws:

$$(\lambda^h)_X: TFX = T(B \times X^A) \stackrel{\langle T\pi_1, T\pi_2 \rangle}{\to} TB \times T(X^A) \stackrel{h \times st}{\to} B \times (TX)^A = FTX$$

induces a distributive law between T and F.

¹²For example, if F satisfies $FX = B \times X^A$ and $\langle B, h \rangle$ is a T-algebra, the family

Bialgebras

A λ -bialgebra is a tuple $\langle X, h, k \rangle$ consisting of an object X and morphisms

$$TX \stackrel{h}{\rightarrow} X \in Alg(T), \qquad X \stackrel{k}{\rightarrow} FX \in Coalg(F)$$

satisfying:

$$TX \xrightarrow{h} X$$

$$Tk \downarrow \qquad \qquad \downarrow k$$

$$TFX \xrightarrow{\lambda_X} FTX \xrightarrow{Fh} FX$$

16

Diagonal cases

Generators

A generator for a T-algebra $\langle X, h \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y and a pair of morphisms

where $i^{\sharp} := h \circ Ti : TY \to X$ is the unique extension of $i : Y \to X$ to a T-algebra homomorphism.

If in addition $d \circ i^{\sharp} = id_{TY}$, we speak of a basis.

Generators

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the powerset monad iff for all $x \in X$:

$$x = \bigvee_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the free \mathbb{Z}_2 -vector-space monad iff for all $x \in X$:

$$x = \bigoplus_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

Generators

Let $\langle X,h,k\rangle$ be a λ -bialgebra and $\langle Y,i,d\rangle$ a generator for the T-algebra $\langle X,h\rangle$.

Lemma

The morphism $i^{\sharp} = h \circ Ti : TY \to X$ is a λ -bialgebra homomorphism

$$i^{\sharp}: \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \rightarrow \langle X, h, k \rangle.$$

Example: The canonical RFSA

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CSL-structured DFA (X, h, k) for \mathcal{L} ;
- (c) The canonical RFSA $\langle J(\langle X, h \rangle), Fd \circ k \circ i \rangle$ for \mathcal{L} .

Extension to non-diagonal cases

Distributive law homomorphisms

A distributive law homomorphism¹³ $\alpha: \lambda^S \to \lambda^T$ between $\lambda^S: SF \Rightarrow FS$ and $\lambda^T: TF \Rightarrow FT$ consists of a natural transformation $\alpha: T \Rightarrow S$ satisfying:

Lemma (14)

Defining $\alpha(X, h, k) := \langle X, h \circ \alpha_X, k \rangle$ and $\alpha(f) := f$ yields a functor $\alpha : \mathsf{Bialg}(\lambda^S) \to \mathsf{Bialg}(\lambda^T)$.

¹³Watanabe 2002: Power and Watanabe 2002.

¹⁴Klin and Nachyla 2015; Bonsangue et al. 2013.

Distributive law homomorphisms

The following can be seen as roadmap or soundness argument to our approach.

Corollary

Let $\alpha: \lambda^S \to \lambda^T$ be a homomorphism between distributive laws and $\langle X, h, k \rangle$ a λ^S -bialgebra. If $\langle Y, i, d \rangle$ is a generator for the T-algebra $\langle X, h \circ \alpha_X \rangle$, then:

$$(h \circ \alpha_X) \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \rightarrow \langle X, h \circ \alpha_X, k \rangle$$

is a λ^T -bialgebra homomorphism.

¹⁵In consequence, $Fd \circ k \circ i : Y \to FTY$ is semantically equivalent to $k : X \to FX$.

Deriving distributive law homomorphisms

If the distributive laws are induced by algebras $h^S:SB\to B$ and $h^T:TB\to B$, respectively, then deriving a homomorphism simplifies.

Lemma

Let $\alpha: T \to S$ be a natural transformation satisfying $h^S \circ \alpha_B = h^T$, then:

$$TF \xrightarrow{\alpha F} SF$$

$$\downarrow^{\lambda^{h^T}} \qquad \qquad \downarrow^{\lambda^{h^S}}.$$

$$FT \xrightarrow{F\alpha} FS$$

 $[\]overset{16}{(\lambda^h)_X}: \mathit{TFX} = \mathit{T}(\mathit{B} \times \mathit{X}^\mathit{A}) \overset{\langle \mathit{T}\pi_1, \mathit{T}\pi_2 \rangle}{\to} \mathit{TB} \times \mathit{T}(\mathit{X}^\mathit{A}) \overset{h \times \mathsf{st}}{\to} \mathit{B} \times (\mathit{TX})^\mathit{A} = \mathit{FTX}$

Deriving distributive law homomorphisms

For the neighbourhood monad \mathcal{H} , there exists a parametrised family of canonical homomorphisms:

Corollary

Any algebra $h: T2 \to 2$ over a set monad T induces a homomorphism $\alpha^h: \lambda^{\mathcal{H}} \to \lambda^h$ between distributive laws by $\alpha^h_X := h^{2^X} \circ \operatorname{st} \circ T(\eta^{\mathcal{H}}_X): TX \to \mathcal{H}X.$

Can be lifted to strong monads and arbitrary output objects on general categories.

 $^{^{17}\}mathcal{H}X = 2^{2^{X}}, \ \mathcal{H}f(\Phi)(\varphi) = \Phi(\varphi \circ f), \ \eta_{X}^{\mathcal{H}}(x)(\varphi) = \varphi(x), \ \mu_{X}^{\mathcal{H}}(\Psi)(\varphi) = \Psi(\eta_{2X}^{\mathcal{H}}(\varphi)), \ \mathsf{Alg}(\mathcal{H}) = \mathsf{CABA}.$ $^{18}h^{\mathcal{H}} : \mathcal{H}2 \to 2, \Phi \mapsto \Phi(\mathsf{id}_{2}), \ \lambda^{\mathcal{H}} := \lambda^{h^{\mathcal{H}}}$

Example: The átomaton

The átomaton can be recovered by relating \mathcal{H} (CABA) and \mathcal{P} (CSL).

Corollary

Let $\alpha_X : \mathcal{P}X \to \mathcal{H}X$ satisfy $\alpha_X(\varphi)(\psi) = \bigvee_{x \in X} \varphi(x) \wedge \psi(x)$, then α constitutes a distributive law homomorphism $\alpha : \lambda^{\mathcal{H}} \to \lambda^{\mathcal{P}}$.

Lemma

If $B = \langle X, h \rangle$ is a \mathcal{H} -algebra, then $\langle \mathsf{At}(B), i, d \rangle$ with i(a) = a and $d(x) = \{a \in \mathsf{At}(B) \mid a \leq x\}$ is a basis for the \mathcal{P} -algebra $\langle X, h \circ \alpha_X \rangle$.

Example: The átomaton

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CABA-structured DFA $\langle X, h, k \rangle$ for \mathcal{L} ;
- (c) The átomaton $\langle \operatorname{At}(\langle X,h\rangle), Fd\circ k\circ i\rangle$ for $\mathcal{L}.$

The minimal xor-CABA automaton

"The minimal xor-CABA automaton is to the minimal xor automaton what the átomaton is to the canonical RFSA":

$$\begin{array}{c} \text{CDL} & \xrightarrow{\text{distromaton}} & \text{CSL} & \xleftarrow{\text{atomaton}} & \text{CABA} - \xrightarrow{\text{minimal xor-CABA}} & \mathbb{Z}_2\text{-VSP} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Minimality

Definition

Let $\alpha: \lambda^S \to \lambda^T$ be a distributive law homomorphism. We say $\mathcal{X} \in \mathsf{Coalg}(FT)$ is $\alpha\text{-closed}$ if the unique diagonal below is an isomorphism:

30

 $^{^{19}\}mathrm{ext}: \mathrm{Coalg}(\mathit{FT}) \to \mathrm{Coalg}(\mathit{FS})$

 $^{^{20} \}mathsf{exp}_U : \mathsf{Coalg}(\mathit{FU}) \to \mathsf{Bialg}(\lambda^U) \text{ for } U \in \{\mathit{S},\mathit{T}\}$

 $^{^{21}\}alpha: \mathsf{Bialg}(\lambda^{\mathsf{S}}) \to \mathsf{Bialg}(\lambda^{\mathsf{T}})$

Minimality

Theorem

Given a minimal λ^S -bialgebra $\mathbb M$ accepting $\mathcal L$ such that $\alpha(\mathbb M)$ admits a size-minimal generator, there exists $\mathcal X \in \mathsf{Coalg}(FT)$ accepting $\mathcal L$ such that:

- for any α -closed $\mathcal{Y} \in \mathsf{Coalg}(\mathsf{FT})$ accepting \mathcal{L} we have that $\mathsf{im}(\mathsf{obs}_{\mathsf{exp}_{\mathcal{T}}(\mathcal{X})}) \subseteq \mathsf{im}(\mathsf{obs}_{\mathsf{exp}_{\mathcal{T}}(\mathcal{Y})});$
- $if im(obs_{exp_T(\mathcal{X})}) = im(obs_{exp_T(\mathcal{Y})})$, then $|\mathcal{X}| \leq |\mathcal{Y}|$.

Minimality

Lemma

 ${\mathcal X}$ is minimal among ${\mathcal Y}$ that accept ${\mathcal L}$ and satisfy:

\mathcal{X}	\mathcal{Y}
canonical RFSA	$CSL[\mathcal{Y}] = CSL[Der(\mathcal{L})]$
minimal xor automaton	all
átomaton	$CSL[\mathcal{Y}] = CABA[\mathcal{Y}]$
distromaton	$CSL[\mathcal{Y}] = CDL[\mathcal{Y}]$
minimal xor-CABA automaton	$\mathbb{Z}_2\text{-Vect}[\mathcal{Y}] = CABA[\mathcal{Y}]$

 $^{^{22}\,}T[\mathcal{Y}]$ denotes the T-closure of $\mathrm{im}(\mathrm{obs}_{\mathrm{exp}_T(\mathcal{Y})}).$

Future work

Ideas

- \bullet Cover the canonical probabilistic RFSA 23 and canonical alternating RFSA $^{24};$
- Utilise distributive laws between two different categories;
- Generalise Brzozowski²⁵ inspired double reversal characterisations;
- Further explore the notions of generators and bases.

²³Esposito et al. 2002.

²⁴Berndt et al. 2017.

²⁵Brzozowski 1962.

The end

Thanks for listening!

²⁵Accepted at MFPS 2021

²⁶Paper available at https://arxiv.org/abs/2104.13421

²⁷Slides available at https://fgh.xyz