

6438169421 Pattaradanai Lakkananithiphan

I: Loading & Overview

II: Preprocessing

III: Model Evaluation

IV: Intrepretation

CONTENT

I: LOADING

5043 Rows

Loaded from the CSV file

27 Columns

16 numerical + 11 categorical

>884 rows have missing values

50 rows have missing label

Numerical Label

The label is a numerical value of type float

THE NUMERICAL DATA DISTRIBUTIONS

THE DISTRIBUTION OF THE LABEL

The data is right-skewed

CATEGORY COUNTS

CATEGORICAL COLUMN NAMES	NUMBER OF CATEGORIES
director_name	2398
actor_2_name	3032
genres	914
actor_1_name	2097
movie_title	4917
actor_3_name	3521
plot_keywords	4760
movie_imdb_link	4919
language	47
country	65
content_rating	18

Dropping columns

Dropping/Filling rows

Scaling

II: PREPROCESS

Splitting

DROPPING COLUMNS: CATEGORICAL

- Most if not all categorical columns have a lot more categories than appropriate
- Many are highly unrelated to the label we want to predict
- Some are very biased toward certain categories
- Many have a lot of NaN rows
- As guided by the solution slide
- CONCLUSION: DROP THE CATEGORICAL COLUMNS

Correlation matrix 0.26 -0.034 0.61 0.17 0.12 0.088 0.25 0.31 0.12 0.013 0.33 0.074 -0.14 0.13 0.26 -0.09 0.2 0.12 0.091 0.14 0.3 0.12 -0.041 0.22 0.021 -0.064 0.12 0.17 0.0016 0.16 director facebook likes 0.19 0.088 0.091 0.25 0.15 0.19 0.95 0.072 0.15 0.023 0.087 0.39 0.076 -0.02 0.14 actor_1_facebook_likes 0.25 0.14 0.31 0.15 0.25 -0.028 0.1 0.031 0.26 0.08 0.0074 0.27 0.41 -0.015 0.54 0.27 -0.027 0.037 0.11 -0.069 -0.02 0.062 0.071 -0.063 0.014 0.0089 -0.034 0.013 -0.041 0.099 0.072 -0.028 -0.027 0.091 0.12 0.074 0.021 0.047 0.023 0.1 0.08 0.037 -0.02 0.084 0.046 0.044 0.031 0.0066 0.062 -0.14 -0.064 0.096 0.087 0.031 0.0074 0.11 0.062 -0.0031 0.046 0.1 -0.21 0.16 0.22 0.071 0.22 0.044 0.1 actor_2_facebook_likes 0.053 0.076 0.2 0.41 0.086 -0.063 0.29 0.031 -0.21 0.084 -0.05 -0.09 0.0016 -0.0034 -0.02 0.069 -0.015 -0.018 0.014 -0.025 0.0066 0.16 -0.0078 0.059 movie facebook likes 0.21 0.0089

DROPPING COLUMNS: NUMERICAL

<- CORRELATION MATRIX

DROP ALL COLUMNS OF ABSOLUTE CORRELATION LESS THAN **0.5** AS GUIDED BY THE SLIDE

0.0

Correlation matrix

DROPPING COLUMNS: NUMERICAL

<- CORRELATION MATRIX

THE RESULT

NOTE**: THE NUM_USER_FOR_REVIEWS AND NUM_VOTED_USERS COLUMNS ARE HIGHLY CORRELATED AND WE COULD DROP THE LOWER CORRELATED COLUMN IE NUM_USER_FOR_REVIEWS

DROP/FILL THE EMPTY ROWS

COLUMN NAME	NUMBER OF EMPTY CELLS
num_critic_for_reviews	50
num_voted_users	0
num_user_for_reviews	21
movie_facebook_likes	0

SINCE THERE ARE ONLY A FEW ROWS WITH PROBLEMS I CHOSE TO DROP THEM

#ROWS: 5042 -> 4993 (0.97% LOST)

SCALE THE FEATURES: MINMAX SCALER (0~1)

SPLIT THE DATA INTO TRAINING AN D TESTING SET

70% TRAINING

30% TESTING

SHUFFLE & RANDOMIZED

SGDR model

Linear regression model

SGDR model**

**only two feature columns

III: MODELS

SGDREGRESSOR MODEL

• MAE: 21.66

• MSE: 1842.16

• RMSE: 42.92

• MAPE: 0.2946

• R2: 0.9883

• Adjusted R2: 0.9882

features	coefficents
num_voted_users	781
num_user_for_reviews	4183
movie_facebook_likes	-122
INTERCEPT	12

LINEAR REGRESSION MODEL

• MAE: 0

• MSE: 0

• RMSE: 0

• MAPE: 0

• R2:1

• Adjusted R2:1

Overfitting!

features	coefficents
num_voted_users	C
num_user_for_reviews	5059
movie_facebook_likes	C
INTERCEPT	1

SGDREGRESSOR MODEL (ONLY 2 COLUMNS**)

• MAE: 8.926

• MSE: 265.33

• RMSE: 16.29

• MAPE: 0.1633

• R2: 0.9983

• Adjusted R2: 0.9983

Better results

But

Possible Overfitting

17

INTERPRETATION

- The 1st and 3rd models are candidates for practical application
 - The 1st model is less overfitted
 - The 3rd model performs better
- For every model, the features' importance is ranked:
 - 1. Number of users for reviews
 - 2. Movie Facebook likes
 - 3. Number of voted users