Specific word onset prediction

Mohammad Reza Rezaei

April 1st 2022

The behavioral model

Acoustic feature extraction

Decoding the behavior from acoustic features

Predict a specific phoneme/word onset z_t^k

I am a second year PhD student and I am really enjoying it

Goal

$$P(z_t^k | X_{1:t}, \boldsymbol{l}_{1:k}, \boldsymbol{d}_{1:k}, \boldsymbol{w}_{1:k}) = P(z_t^k | X_{1:t}, \boldsymbol{l}_{1:k}, \boldsymbol{d}_{1:k})$$

$$P(z_t^k | X_{1:t}, \boldsymbol{l}_{1:k}, \boldsymbol{d}_{1:k}) \propto P(\boldsymbol{x}_t | X_{1:t-1}, z_t^k, \boldsymbol{l}_{1:k}, \boldsymbol{d}_{1:k})$$

Predict a specific phoneme/word onset z_t^k

I am a second year PhD student

- $z_t^k \in R^1$ defined as observation of k^{th} phoneme of the sequence $W_{1:K}$ at time t, k = 1, ..., K, t = 1, ..., T
- $x_t \in \mathbb{R}^{39}$ is the acoustic features at time t
- $w_{1:K}$ word/phoneme sequence (deterministic)
- l_k defines as duration of k^{th} phoneme (can be learned by a statistical model)
- $d_k \mid d_{k-1}$, 1st order autoregressive model, defines as the time delay between observing k^{th} phoneme given previous one (can be learned by a statistical model)

Synthetic data

D4 supervised learning for synthetic data

D4 unsupervised-learning for synthetic data

D4 supervised learning Unit 50 Unit 50

Automatic speech recognition with D4

Traditional generative model

$$P(w_k | X_k) \propto P(w_k | x_k) \sum_{w_{k-1}} P(w_k | w_{k-1}) P(w_{k-1} | X_{k-1})$$

By using the Deep Discriminative direct decoders (4D) theory we can represent the ASR as

$$P(w_k|X_k) \propto \frac{P(w_k|x_k, h_k)}{\sum_{w_{k-1}} P(w_k|w_{k-1}) P(w_{k-1}|x_{k-1}, h_{k-1})} \sum_{w_{k-1}} P(w_k|w_{k-1}) P(w_{k-1}|X_{k-1})$$

Here we assumed a bigram as the language model.

Need for a sophisticated prior model (language model)

Solution:

- Marked-point process language model?
 - See phones as the marks
 - Structures in word sequence can reduce complexity of marks model
 - Dirichlet process for marks
 - Language model embedded in mark process (ordinal marks?)
- Latent Dirichlet Language models?
 - Finite Mixture Models

Need for a sophisticated prior model (language model)

Solution:

- Marked-point process language model?
 - See phones as the marks
 - Structures in word sequence can reduce complexity of marks model
 - Language model embedded in mark process (ordinal marks?)

- Finite Gaussian Mixture Models
- Latent Dirichlet allocation LDA

- 1. Choose $N \sim \text{Poisson}(\xi)$.
- 2. Choose $\theta \sim \text{Dir}(\alpha)$.
- 3. For each of the N words w_n :
 - (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$.
 - (b) Choose a word w_n from $p(w_n | z_n, \beta)$, z_n .

Need for a sophisticated prior model (language model)

Solution:

Dirichlet Mixtures of Bayesian Linear Gaussian State-Space

Figure 5: Graphical representation of the Dirichlet Mixture of Bayesian LGSSMs for performing clustering based on simultaneous similarity.

Figure 3: Graphical representation of the Dirichlet Mixture of Bayesian LGSSMs for performing clustering based on global similarity.

Simultaneous Similarity Our simultaneous similarity clustering approach assigns two time-series to the same cluster if they are derived from the *same realization* of a dynamical process.

Global Similarity The global similarity method will assign two time-series to the same cluster if they are generated by *different realizations* of the same dynamical process.

Speech recognition

Predict a sequence of words (or phoneme sequence) $w_{1:k}^* \equiv W_k^*$ by observing a sequence of acoustics features $x_{1:k} \equiv X_k$.

$$W_k^* = argmax_{W_k} P(W_k \mid X_k)$$
 Discriminative Models

By using Bayes rule we can rewrite it as

$$W_k^* = argmax_{W_k} \frac{P(X_k|W_k)P(W_k)}{P(X_k)} = argmax_{W_k} P(X_k|W_k)P(W_k) \text{ Generative Models}$$

- $P(X_k | W_k)$ is the acoustic model: represents how the speech may sound given a sequence of words.
- Arr $P(W_k)$ is the language model: describes the likelihood of the word sequence
- The generative models were more convenient to build in speech recognition before the deep neural networks (DNNs) entrance to this field

Speech recognition

Speech feature extraction with Mel-frequency cepstral coefficients (MFCC)

Acoustic model

pronunciation table to produce the phones for the text sequence Y(Deterministic)

Language Model (N-gram)

Models probabilities of sequences of words

Estimating the probability of a word w given a history of words, or the probability of an entire word sequence W (documents).

N-gram: instead of computing the probability of a word given its entire history, we can approximate the history by just the last N words.

$$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-N+1:n-1})$$

Bi-gram

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Automatic Speech recognition (ASR) summary

— if music be the food of love... text sequence W—