MIEBIOM / MIEF — Processamento de Sinal

Primeiro Teste

16 de Novembro – 2016/2017

Observações:

- 1. Na sua folha de exame deve preencher o cabeçalho completamente com nome, número mecanográfico, curso e versão do teste. Os testes que não estejam completamente identificados não serão corrigidos.
- 2. Todas as respostas devem ser convenientemente justificadas.
- 1. Sabendo que $x_2(t)$ está representado na figura 1.
 - (a) Determine $y(t) = x_2(2 0.2t)$.
 - (b) Calcule a parte ímpar de y(t).
- 2. Considere os sinais $x_1(t)$ e $x_2(t)$ representados na figura 1).
 - (a) Calcule x(t) dado pela convolução de $x_1(t)$ com $x_2(t)$.
 - (b) Determine a resposta de um sistema ao sinal x(t), sabendo que a sua resposta impulsional é dada por $h(t) = \delta(t) \delta(t-5)$.
- 3. Considere o sinal v(t) representado na figura 2).
 - (a) Determine a sua CTFT, $V(j\omega)$.
 - (b) Determine a CTFT do sinal f(t) dado pela seguinte equação: $f(t)=\sum_{k=-\infty}^{+\infty}v(t-6k).$

Nota: Na resolução da alínea b) NÃO DEVE recorrer à definição da série de Fourier.

4. Um sistema discreto é caracterizado pela seguinte equação às diferenças:

$$y[n] = \frac{1}{3}x[n-1] - \frac{2}{9}x[n] + \frac{1}{9}y[n-2].$$

- (a) Determine a resposta em frequência do sistema, $H(\Omega)$.
- (b) Determine a resposta impulsional do sistema.
- (c) Determine a resposta do sistema quando temos à entrada o sinal $x[n] = \left(\frac{1}{3}\right)^n u[n]$.
- 5. Considere o sistema discreto descrito pela seguinte resposta impulsional:

$$h[n] = (n-2) \left(\frac{1}{2}\right)^{n-1} u[-n+1].$$

(a) Determine a resposta em frequência do sistema, $H(\Omega)$.

