GSERM 2024Regression for Publishing

June 20, 2024

Participants' Choice: Rankings

Participants' Choice: Standard Deviations

Catching Up...

Digression II: The Random Utility Model

$$Y \in \{SQ, A\}$$

$$Y_i = A$$
 if $E[U_i(A)] \ge E[U_i(SQ)]$
= SQ if $E[U_i(A)] < E[U_i(SQ)]$

$$\mathsf{E}[\mathsf{U}_i(A)] = \mathbf{X}_{iA}\boldsymbol{\beta} + u_{iA}$$

So:

$$Pr(Y = A) = Pr\{E[U_i(A)] \ge E[U_i(SQ)]\}$$
$$= Pr\{(\mathbf{X}_{iA}\beta + u_{iA}) \ge E[U_i(SQ)]\}$$

Digression II: The Random Utility Model

Normalize:

$$\mathsf{E}[\mathsf{U}_i(SQ)]=0$$

Then:

$$Pr(Y = A) = Pr\{(\mathbf{X}_{iA}\beta + u_{iA}) \ge 0\}$$
$$= Pr\{u_{iA} \ge -\mathbf{X}_{iA}\beta\}$$
$$= F(\mathbf{X}_{iA}\beta)$$

Another Model: Complementary Log-Log

Uses:

$$\Pr(Y_i = 1) = 1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]$$

or

$$\ln\{-\ln[1-\Pr(Y_i=1)]\} = \mathbf{X}_i\boldsymbol{\beta}$$

Likelihood is:

$$\ln L = \sum_{i=1}^{N} Y_i \ln\{1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]\} + \\
(1 - Y_i) \ln\{1 - \{1 - \exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})]\}\}$$

Logit and C-log-log CDFs

Binary Response Models: Identification

All require that:

- "Threshold" = $Y^* > 0$
- $E(u_i|\mathbf{X},\boldsymbol{\beta})=0$
- $Var(u_i) = \frac{\pi^2}{3}$ or 1.0.

Logit vs. Probit

In general:

- The Universe: Logit > Probit
- The (Social Science) Universe: Meh...
- $\hat{oldsymbol{eta}}_{\mathsf{Logit}} pprox 1.8 imes \hat{oldsymbol{eta}}_{\mathsf{Probit}}$
- Four reasons to prefer / use logit

A Toy Example

```
> set.seed(7222009)
> ystar<-rnorm(100,0.5,0.5)
> y<-ifelse(ystar>0.5,1,0)
> x<-ystar+(0.5*rnorm(100))
> data<-data.frame(ystar,y,x)</pre>
> head(data)
    ystar y
  0.17977 0 0.2677
2 0.79428 1 1.5079
3 0.82408 1 0.8842
  0.24658 0 0.8172
  0.50966 1 1.1255
6 -0.07852 0 -0.6506
```

A Toy Example

Model Comparisons

Logit, Probit, and C-Log-Log Models (Simulated Data)

	Logit	Probit	C-Log-Log
X	2.428***	1.458***	1.613***
	(0.500)	(0.272)	(0.309)
Constant	-0.861***	-0.519***	-1.048***
	(0.318)	(0.183)	(0.250)
Observations	100	100	100
Log Likelihood	-49.690	-49.490	-49.522
Akaike Inf. Crit.	103.380	102.979	103.044
N - +	*	<0.1. ** <0.0	F. *** <0.01

Note:

> mylogit<-glm(y~x,family=binomial(link="logit"), data=data)

> myprobit<-glm(y~x,family=binomial(link="probit"), data=data)

> mycloglog<-glm(y~x,family=binomial(link="cloglog"), data=data)

Comparing Models (continued)

Note:

- zs, Ps, In Ls, AICs nearly identical
- Residuals, too
- ullet $\hat{eta}_{\mathsf{Logit}}$ is $rac{2.428}{1.458} = 1.54 imes \hat{eta}_{\mathsf{Probit}}$

Toy Example: Predicted Probabilities

Note: C-Log-Log Isn't "Reversible"

Suppose we generate a new dependent variable:

$$Y_{iNew} = 1 - Y_i$$

What happens to our estimates?

	$\hat{eta}_{f 0}$			\hat{eta}_1		
	Y		Y_{New}	Y		Y_{New}
Probit	-0.52	\leftrightarrow	0.52	1.46	\leftrightarrow	-1.46
Logit	-0.86	\leftrightarrow	0.86	2.43	\leftrightarrow	-2.43
C-Log-Log	-1.05	\leftrightarrow	0.11	1.61	\leftrightarrow	-1.66

Practical Binary Response Models

Running Example: House Vote on NAFTA (1993)

Response / Outcome

• vote – Whether (=1) or not (=0) the U.S. House member in question voted in favor of NAFTA.

Predictors

- PropHisp The proportion of the House member's district who are of Latino/hispanic origin.
- Democrat Whether the House member in question is a Democrat (=1) or a Republican (=0).
- COPE The 1993 AFL-CIO (COPE) voting score of the member in question; the original variable ranges from 0 to 100, with higher scores indicating more pro-labor positions. Rescaled to range from 0 to 1.
- DemXCOPE The multiplicative interaction of Democrat and COPE.

The model:

$$\begin{split} \Pr(\texttt{vote}_i = 1) &= f[\beta_0 + \beta_1(\texttt{PropHisp}_i) + \beta_2(\texttt{Democrat}_i) + \\ &+ \beta_3(\texttt{COPE}_i) + \beta_4(\texttt{Democrat}_i \times \texttt{COPE}_i) + u_i] \end{split}$$

The data:

> describe(NAFTA,fast=TRUE,skew=TRUE)

	vars	n	mean	sd	median	\min	max	range	skew	kurtosis	se
Vote	1	434	0.54	0.50	1.00	0	1.00	1.00	-0.16	-1.98	0.02
PropHisp	2	434	0.09	0.14	0.03	0	0.83	0.83	2.76	7.74	0.01
Democrat	3	434	0.59	0.49	1.00	0	1.00	1.00	-0.34	-1.89	0.02
COPE	4	434	0.60	0.39	0.81	0	1.00	1.00	-0.42	-1.52	0.02
DemXCOPE	5	434	0.52	0.46	0.75	0	1.00	1.00	-0.17	-1.87	0.02

Probit Estimates

```
> NAFTA.probit<-glm(Vote~PropHisp+Democrat+COPE+DemXCOPE,
                   NAFTA.familv=binomial(link="probit"))
> summary(NAFTA.probit)
Call:
glm(formula = Vote ~ PropHisp + Democrat + COPE + DemXCOPE,
   family = binomial(link = "probit"). data = NAFTA)
Deviance Residuals:
  Min
           10 Median
                          30
                                Max
-3.173 -0.677 0.362 0.764 1.817
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept)
             1.078
                        0.153 7.03 2.1e-12 ***
PropHisp
            1.279 0.467 2.74 0.0062 **
            3.034 0.739 4.11 4.0e-05 ***
Democrat
COPE
           -2.201 0.440 -5.00 5.8e-07 ***
DemXCOPE -2.888 0.903 -3.20 0.0014 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 598.99 on 433 degrees of freedom
Residual deviance: 441.06 on 429 degrees of freedom
ATC: 451.1
Number of Fisher Scoring iterations: 8
```

Logit Estimates

```
> NAFTA.fit<-glm(Vote~PropHisp+Democrat+COPE+DemXCOPE,
                      NAFTA.familv=binomial)
> summary(NAFTA.fit)
Deviance Residuals:
  Min
           10 Median
                         3Q
                                Max
-3.264 -0.650 0.310 0.728 1.818
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept)
            1.792
                       0.275 6.50 7.8e-11 ***
           2.091 0.794 2.63 0.00846 **
PropHisp
Democrat
           6.866 1.547 4.44 9.1e-06 ***
COPE
           -3.650 0.760 -4.80 1.6e-06 ***
DemXCOPE
            -6.705 1.820 -3.68 0.00023 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 598.99 on 433 degrees of freedom
Residual deviance: 436.83 on 429 degrees of freedom
AIC: 446.8
Number of Fisher Scoring iterations: 5
> # Equivalent to:
> fit<-glm(Vote~PropHisp+Democrat*COPE,NAFTA,family=binomial)
```

Models (table via modelsummary)

Table 1: Logits and Probits

	Logit	Probit
(Intercept)	1.792	1.078
	(0.275)	(0.153)
Proportion Hispanic	2.091	1.279
	(0.794)	(0.467)
Democrat	6.866	3.034
	(1.547)	(0.739)
COPE Score	-3.650	-2.201
	(0.760)	(0.440)
Democrat x COPE Score	-6.705	-2.888
	(1.820)	(0.903)
Num.Obs.	434	434
AIC	446.8	451.1
BIC	467.2	471.4
Log.Lik.	-218.414	-220.532
F	26.622	30.723
RMSE	0.40	0.41

Coefficient Plots (via modelplot)

Faceted Plot (also via modelplot)

$\hat{\beta}_{\mathrm{probit}}$ vs. $\hat{\beta}_{\mathrm{logit}}$

All The Models, Compared

Table 2: All The Models

	Logit	Probit	C-Log-Log	LPM
(Intercept)	1.792	1.078	0.701	0.861
	(0.275)	(0.153)	(0.133)	(0.042)
Proportion Hispanic	2.091	1.279	1.383	0.379
	(0.794)	(0.467)	(0.498)	(0.141)
Democrat	6.866	3.034	2.030	0.739
	(1.547)	(0.739)	(0.570)	(0.140)
COPE Score	-3.650	-2.201	-2.338	-0.721
	(0.760)	(0.440)	(0.487)	(0.129)
Democrat x COPE Score	-6.705	-2.888	-1.749	-0.685
	(1.820)	(0.903)	(0.804)	(0.197)
Num.Obs.	434	434	434	434
R2				0.314
R2 Adj.				0.308
AIC	446.8	451.1	465.5	475.5
BIC	467.2	471.4	485.9	500.0
Log.Lik.	-218.414	-220.532	-227.763	-231.770
F	26.622	30.723	27.889	49.167
RMSE	0.40	0.41	0.42	0.41

Let's Compare Predictions, Too

Log-Likelihoods, "Deviance," etc.

- R / glm reports "deviances":
 - · "Residual" deviance = $2(\ln L_S \ln L_M)$
 - · "Null" deviance = $2(\ln L_S \ln L_N)$
 - · stored in object\$deviance and object\$null.deviance
- So:

$$LR_{\beta=0} = 2(\ln L_M - \ln L_N)$$

= "Null" deviance – "Residual" deviance

Example:

```
> LLR<-NAFTA.fit$null.deviance - NAFTA.fit$deviance
> LLR
[1] 162
> pchisq(LLR,4,lower.tail=FALSE)
[1] 5.04e-34
```

Interpretation: "Signs-n-Significance"

For both logit and probit:

•
$$\hat{\beta}_k > 0 \leftrightarrow \frac{\partial \Pr(Y=1)}{\partial X_k} > 0$$

•
$$\hat{\beta}_k < 0 \leftrightarrow \frac{\partial \Pr(Y=1)}{\partial X_k} < 0$$

•
$$\frac{\hat{eta}_k}{\hat{\sigma}_k} \sim N(0,1)$$

Interactions:

$$\hat{\beta}_{\text{COPE}|\text{Democrat}=1} \equiv \hat{\phi}_{\text{COPE}} = \hat{\beta}_3 + \hat{\beta}_4$$

$$\mathsf{s.e.}(\hat{\beta}_{\texttt{COPE}|\texttt{Democrat}=1}) = \sqrt{\mathsf{Var}(\hat{\beta}_3) + (\texttt{Democrat})^2 \mathsf{Var}(\hat{\beta}_4) + 2 \, (\texttt{Democrat}) \, \mathsf{Cov}(\hat{\beta}_3, \hat{\beta}_4)}$$

Interactions ("by hand")

```
> NAFTA.fit$coeff[4]+NAFTA.fit$coeff[5]
 COPE
-10.4
> # z-statistic:
>
> (NAFTA.fit$coeff[4]+NAFTA.fit$coeff[5]) /
  (sqrt(vcov(NAFTA.fit)[4,4] +
+ (1)^2*vcov(NAFTA.fit)[5,5] +
   2*1*vcov(NAFTA.fit)[4.5]))
 COPE
-6.25
> # Square that, and it's a chi-square statistic:
>
 ((NAFTA.fit$coeff[4]+NAFTA.fit$coeff[5]) /
    (sqrt(vcov(NAFTA.fit)[4,4] +
            (1)^2*vcov(NAFTA.fit)[5,5] +
            2*1*vcov(NAFTA.fit)[4,5])))^2
COPE
  39
```

(Or use car...)

```
> library(car)
> linearHypothesis(NAFTA.fit,"COPE+DemXCOPE=0")
Linear hypothesis test
Hypothesis:
COPE + DemXCOPE = 0
Model 1: restricted model
Model 2: Vote ~ Democrat + PropHisp + COPE + DemXCOPE
 Res.Df Df Chisq Pr(>Chisq)
    430
    429 1 39 0.0000000042 ***
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Marginal Effects

The marginal effect is:

$$\begin{array}{lcl} \frac{\partial \Pr(\hat{Y}_i = 1)}{\partial X_k} & = & \frac{\partial F(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{\partial X_k} \\ & = & f(\mathbf{X}_i \hat{\boldsymbol{\beta}}) \hat{\boldsymbol{\beta}}_k \\ \\ & = & \Lambda(\mathbf{X}_i \hat{\boldsymbol{\beta}}) [1 - \Lambda(\mathbf{X}_i \hat{\boldsymbol{\beta}})] \hat{\boldsymbol{\beta}}_k \quad \text{(for logit) or} \\ \\ & = & \phi(\mathbf{X}_i \hat{\boldsymbol{\beta}}) \hat{\boldsymbol{\beta}}_k \quad \text{(for probit)} \end{array}$$

Note that these depend on $\mathbf{X}\hat{\boldsymbol{\beta}}$, which means we either have to:

- 1. ...hold $\mathbf{X}\hat{\boldsymbol{\beta}}$ constant at some value(s), or
- 2. ...average over the actual values of $\mathbf{X}_i\hat{\boldsymbol{\beta}}$ observed in the data.

Marginal Effects Illustrated

Marginal Effects In Action

Plotted:

Odds Ratios

Log-Odds of Y = 1 are linear in X:

$$\ln \Omega(\mathbf{X}) = \ln \left[rac{ \exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} }{1-rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})}}
ight] = \mathbf{X}oldsymbol{eta}$$

That implies that:

$$\frac{\partial \ln \Omega}{\partial \boldsymbol{X}} = \boldsymbol{\beta}$$

Odds Ratios

OR for a one-unit change in X_k :

$$\frac{\Omega(X_k = \ell + 1)}{\Omega(X_k = \ell)} = \exp(\hat{\beta}_k)$$

OR for a δ -unit change in X_k :

$$\frac{\Omega(X_k = \ell + \delta)}{\Omega(X_k = \ell)} = \exp(\hat{\beta}_k \delta)$$

Also:

Percentage Change in the Odds $= 100[\exp(\hat{\beta}_k \delta) - 1]$

Odds Ratios Implemented

```
> P<-anorm(0.975)
> lreg.or <- function(model)
+ {
   coeffs <- coef(summary(model))</pre>
    lowerCI <- exp(coeffs[ ,1] - P * coeffs[ ,2])
   OR <- exp(coeffs[ ,1])
   upperCI <- exp(coeffs[ ,1] + P * coeffs[ ,2])
   lreg.or <- cbind(OR,lowerCI,upperCI)</pre>
   lreg.or
+ }
> lreg.or(NAFTA.fit)
                         lowerCI
                                    upperCI
(Intercept)
              5.99928 3.4965990
                                    10.2933
PropHisp
              8.09352 1.7068838
                                    38.3770
Democrat
            958.67832 46.1969511 19894.4757
COPE
              0.02599 0.0058625
                                     0.1152
DemXCOPE
             0.00122 0.0000345
                                     0.0434
> Or via -confint-...
> exp(cbind(OR=coef(NAFTA.fit),confint.default(NAFTA.fit)))
                   OR
                           2.5 %
                                     97.5 %
(Intercept) 5.99928 3.4965990
                                    10.2933
PropHisp
              8.09352 1.7068838
                                    38.3770
Democrat
            958.67832 46.1969511 19894.4757
COPE
              0.02599 0.0058625
                                     0.1152
DemXCOPE
            0.00122 0.0000345
                                     0.0434
```

Odds Ratios via modelsummary / modelplot

Table 3: Odds Ratios

	(1)
(Intercept)	5.999
	(1.652)
PropHisp	8.094
	(6.427)
Democrat	958.678
	(1483.358)
COPE	0.026
	(0.020)
$Democrat \times COPE$	0.001
	(0.002)
Num.Obs.	434
AIC	446.8
BIC	467.2
Log.Lik.	-218.414
F	26.622
RMSE	0.40

What Does This *Mean*?

> NAFTA.fit

Coefficients:

(Intercept) PropHisp Democrat COPE DemXCOPE 1.79 2.09 6.87 -3.65 -6.71

> exp(cbind(OR=coef(NAFTA.fit),confint.default(NAFTA.fit)))

	OR	2.5 %	97.5 %
(Intercept)	5.99928	3.4965990	10.2933
PropHisp	8.09352	1.7068838	38.3770
Democrat	958.67832	46.1969511	19894.4757
COPE	0.02599	0.0058625	0.1152
DemXCOPE	0.00122	0.0000345	0.0434

Consider PropHispc:

- A one-unit change (from 0 percent to 100 percent) in PropHisp corresponds to a [(8.094 1) × 100] = 709 percent expected increase in the odds of a member of Congress voting in favor of NAFTA.
- A change of 0.10 (that is, a ten percentage-point increase) in the proportion of a member's district who is Hispanic corresponds to an odds ratio of:

$$\exp(2.09 \times 0.10) = \exp(0.209)$$

= 1.232

- This means that an increase of 0.10 in PropHisp corresponds to a [(1.232 1) × 100] = 23.2 percent expected increase in the odds that a member of Congress would have voted in favor of NAFTA.
- For an increase of 0.20 (that is, 20 percentage points), the corresponding odds ratio and percent increase are 1.519 and 51.9
 percent, respectively.

Percentage Change in Odds, by Δ PropHisp

Predicted Probabilities

Predicted probabilities:

$$\Pr(\widehat{Y_i} = 1) = F(\mathbf{X}_i \hat{\boldsymbol{\beta}})$$

$$= \frac{\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})} \text{ for logit, or}$$

$$= \Phi(\mathbf{X}_i \hat{\boldsymbol{\beta}}) \text{ for probit.}$$

Predicted Probabilities Illustrated

Predicted Probabilities: Standard Errors

The variability of a predicted probability is:

$$Var[Pr(\widehat{Y_i} = 1))] = \left[\frac{\partial F(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}}\right]' \hat{\mathbf{V}} \left[\frac{\partial F(\mathbf{X}_i \hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}}\right]$$
$$= [f(\mathbf{X}_i \hat{\boldsymbol{\beta}})]^2 \mathbf{X}_i' \hat{\mathbf{V}} \mathbf{X}_i$$

where $f(\cdot)$ refers to the standard logistic (for logit) or standard normal (for probit) density, and $F(\cdot)$ is the corredponding cumulative distribution function (CDF).

So,

s.e.
$$[Pr(\widehat{Y_i} = 1))] = \sqrt{[f(\mathbf{X}_i \hat{\beta})]^2 \mathbf{X}_i' \hat{\mathbf{V}} \mathbf{X}_i}$$

Probability Changes

Changes in $Pr(\widehat{Y} = 1)$:

$$\Delta \text{Pr}(\widehat{Y=1})_{\mathbf{X}_A \to \mathbf{X}_B} = \frac{\exp(\mathbf{X}_B \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_B \hat{\boldsymbol{\beta}})} - \frac{\exp(\mathbf{X}_A \hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_A \hat{\boldsymbol{\beta}})}$$
or
$$= \Phi(\mathbf{X}_B \hat{\boldsymbol{\beta}}) - \Phi(\mathbf{X}_A \hat{\boldsymbol{\beta}})$$

Standard errors for these changes are obtainable via delta method, bootstrap, etc...

In-Sample Predictions

```
> preds<-NAFTA.fit$fitted.values
> hats<-predict(NAFTA.fit,se.fit=TRUE)
> hats
$fit
 9.01267619 7.25223902 6.11013844 5.57444635 ...
 $se.fit.
1.5331506 1.2531475 1.1106989 0.9894208 ....
> XBUB<-hats$fit + (1.96*hats$se.fit)
> XBLB<-hats$fit - (1.96*hats$se.fit)
> plotdata<-cbind(as.data.frame(hats),XBUB,XBLB)
> plotdata<-data.frame(lapply(plotdata,binomial(link="logit")$linkinv))</pre>
```

Plotting

```
> par(mfrow=c(1,2))
> library(plotrix)
> with(NAFTA,
+ plotCI(COPE[Democrat==1],plotdata$fit[Democrat==1],ui=plotdata$XBUB[Democrat==1],
+ li=plotdata$XBLB[Democrat==1],pch=20,xlab="COPE Score",ylab="Predicted
+ Pr(Pro-NAFTA Vote)"))
> with(NAFTA,
+ plotCI(COPE[Democrat==0],plotdata$fit[Democrat==0],ui=plotdata$XBUB[Democrat==0],
+ li=plotdata$XBLB[Democrat==0],pch=20,xlab="COPE Score",ylab="Predicted
+ Pr(Pro-NAFTA Vote)"))
```

In-Sample Predictions

Out-of-Sample Predictions

"Fake" data:

- > sim.data<-data.frame(PropHisp=mean(NAFTA\$PropHisp),Democrat=rep(0:1,101), COPE=seq(from=0,to=1,length.out=101))
- > sim.data\$DemXCOPE<-sim.data\$Democrat*sim.data\$COPE

Generate predictions:

- > OutHats<-predict(NAFTA.fit,se.fit=TRUE,newdata=sim.data)
- > OutHatsUB<-OutHats\$fit+(1.96*OutHats\$se.fit)
- > OutHatsLB<-OutHats\$fit-(1.96*OutHats\$se.fit)
- > OutHats<-cbind(as.data.frame(OutHats).OutHatsUB.OutHatsLB)
- > OutHats<-data.frame(lapply(OutHats,binomial(link="logit")\$linkinv))

Plotting...

Plot:

```
> both<-cbind(sim.data.OutHats)
> both<-both[order(both$COPE,both$Democrat),]
> bothD<-both[both$Democrat==1,]
> bothR<-both[both$Democrat==0.]
> par(mfrow=c(1,2))
> plot(bothD$COPE,bothD$fit,t="1",lwd=2,ylim=c(0,1),
       xlab="COPE Score".vlab="Predicted Pr(Pro-NAFTA Vote)")
> lines(bothD$COPE,bothD$OutHatsUB,lty=2)
> lines(bothD$COPE,bothD$OutHatsLB,lty=2)
> text(0.3.0.2.label="Democrats")
> plot(bothR$COPE, bothR$fit, t="1", lwd=2, ylim=c(0,1),
       xlab="COPE Score".vlab="Predicted Pr(Pro-NAFTA Vote)")
> lines(bothR$COPE,bothR$OutHatsUB,lty=2)
> lines(bothR$COPE.bothR$OutHatsLB.ltv=2)
> text(0.7.0.9.label="Republicans")
```

Out-of-Sample Predictions

Single-Variable Example (using cplot)

> cplot(NAFTA.fit, "PropHisp", xlab="Proportion Hispanic")

Similar, using marginal effects::plot_prediction

> plot_predictions(NAFTA.fit,condition="PropHisp") + theme_classic()

Interactive part, using plot_prediction

> plot_predictions(fit,condition=c("COPE","Democrat")) + theme_classic()

Goodness of Fit

Goodness-of-Fit

Some alternatives....

- Pseudo-R² (no!)
- Proportional reduction in error (PRE) a/k/a "accuracy"
- ROC curves.

Model Fit: Predictions

Suppose we assign:

$$\hat{Y}_i = 0$$
 if $\Pr(\widehat{Y_i = 1}) \le \tau$
 $\hat{Y}_i = 1$ if $\Pr(\widehat{Y_i = 1}) > \tau$

This would then give us a "confusion matrix":

	Predicted \hat{Y}_i		
Actual Y_i	$\hat{Y}_i = 0$	$\hat{Y}_i = 1$	
$Y_i = 0$	True Negative ("TN")	False Positive ("FP")	
$Y_i = 1$	False Negative ("FN")	True Positive ("TP")	

This means we have:

- Total actual negatives = TN + FP
- Total actual positives = TP + FN
- Number correctly predicted = TP + TN

Model Fit: PRE

Proportional Reduction in Error (PRE):

$$PRE = \frac{N_{MC} - N_{NC}}{N - N_{NC}}$$

- N_{NC} = number correctly predicted under the "null model,"
- N_{MC} = number correctly predicted under the estimated model,
- *N* = total number of observations.

PRE tells us how much (proportionally) better our model does at predicting Y in-sample than would a model that only contained an intercept.

PRE: Example

```
> Assume tau = 0.5...
> table(NAFTA.fit$fitted.values>0.5,nafta$vote==1)

FALSE TRUE
FALSE 148 49
TRUE 52 185
```

PRE =
$$\frac{N_{MC} - N_{NC}}{N - N_{NC}}$$

= $\frac{(148 + 185) - 234}{434 - 234}$
= $\frac{99}{200}$
= 0.495

Chi-Square test:

> chisq.test(NAFTA.fit\$fitted.values>0.5,NAFTA\$Vote==1)

Pearson's Chi-squared test with Yates' continuity correction

data: NAFTA.fit\$fitted.values > 0.5 and NAFTA\$Vote == 1
X-squared = 120, df = 1, p-value <2e-16</pre>

Related Ideas

Concepts:

- Sensitivity (or "true positive rate")
 - · The proportion of all actual positives that were predicted correctly
 - · Sensitivity = $\frac{TP}{TP + FN}$
- Specificity (or "true negative rate")
 - · The proportion of all actual negatives that were predicted correctly
 - · Specificity = $\frac{TN}{TN + FP}$
- False positive rate = 1-Specificity
- False negative rate = 1-Sensitivity

Suppose we set $\tau = 0.00001$. Then:

- · We would essentially always predict $\hat{Y}_i = 1$, which means
- ...we would always correctly predict all the actual positives (maximize TPs), but
- · ...we'd also always get every actual negative wrong (maximize FPs).

Similarly, if we set $\tau = 0.99999$. Then:

- · We would essentially always predict $\hat{Y}_i = 0$, which means
- ...we would always correctly predict all the actual negatives (maximize TNs), but
- · ...also always get every actual positive wrong (maximize FNs).

Values of τ between the extremes trade off true positives for false positives; as τ increases, we have fewer of the former and more of the latter.

NAFTA Examples

> # Tau = 0.2:

- > Hats02<-ifelse(NAFTA.fit\$fitted.values>0.2.1.0)
- > CrossTable(NAFTA\$Vote,Hats02,prop.r=FALSE,prop.c=FALSE,
 prop.t=FALSE,prop.chisq=FALSE)

	Hats02		
NAFTA\$Vote	0	1	Row Total
0	96	104	200
1	1	233	234
Column Total	97	337	434

TPR = 233/234 = 0.996FPR = 104/200 = 0.520

> # Tau = 0.8:

- > Hats08<-ifelse(NAFTA.fit\$fitted.values>0.8,1,0)
- > CrossTable(NAFTA\$Vote,Hats08,prop.r=FALSE,prop.c=FALSE,
 prop.t=FALSE,prop.chisq=FALSE)

	Hats08		
NAFTA\$Vote	0	1	Row Total
0	178	22	200
1	123	111	234
Column Total	301	133	434

TPR = 111/234 = 0.474 FPR = 178/200 = 0.890

"Receiver Operating Characteristic" (ROC) Curves

Now, imagine:

- 1. Fit a model
- 2. Choose a value of τ very near 0
- 3. Generate \hat{Y}_i s
- 4. Calculate and save the TPR and FPR for that value of τ
- 5. Increase τ by a very small amount
- 6. Go to (3), and repeat until τ is very close to 1.0

We could then plot the true positive rate vs. false positive rate (i.e., Specificity vs. 1 - Sensitivity)

ROC Curves (continued)

So:

- If the model fits perfectly, it will have a 1.0 true positive rate, and a 0.0 false negative rate
- If the model fits no better than random chance, the curve defined by those points will be a diagonal line
- (Intuition: If each prediction is no better than a (weighted) coin flip, the rate of true positives and false positives will increase together.)
- In between these extremes, better-fitting models will have curves that are closer to the upper-left corner

"AUROC" (or "AUC"): Area under the ROC curve \rightarrow assessment of model fit

ROC Curves Implemented

Code:

ROC Curve: Example

Interpreting AUROC Curves

- Area under ROC = $0.90\text{-}1.00 \rightarrow \text{Excellent}$ (A)
- Area under ROC = 0.80- $0.90 \rightarrow Good$ (B)
- Area under ROC = $0.70\text{-}0.80 \rightarrow \text{Fair}$ (C)
- Area under ROC = 0.60- $0.70 \rightarrow Poor (D)$
- Area under ROC = $0.50\text{-}0.60 \rightarrow \text{Total Failure}$ (F)

ROC Curve: A Poorly-Fitting Model

Model is:

Bad ROC!

Comparing ROCs

```
> install.packages("pROC")
> library(pROC)
> GoodROC<-roc(NAFTA$Vote,NAFTA.hats,ci=TRUE)
> GoodAUC<-auc(GoodROC)</pre>
> BadROC<-roc(NAFTA$Vote,NAFTA.bad.hats,ci=TRUE)
> BadAUC<-auc(BadROC)
> GoodAUC
Area under the curve: 0.85
> BadAUC
Area under the curve: 0.556
```

Combined Plot

Useful Things

Model Fitting, etc.:

- glm (in base stats)
 - Binary responses = family(binomial)
 - · Links: logit, probit, cloglog, log, cauchit (Cauchy)
- Some easystats packages:
 - · datawizard (standardizing variables, etc.)
 - · correlation (what the name says...)

Model Interpretation + Visualization:

- modelsummary (tables and plots of estimates, ORs, etc.)
- marginaleffects (generate and plot of predictions, etc.)
- margins (marginal effects)
- ROCR, pROC (generate / plot ROC curves, calculate AUROC)
- easystats packages:
 - · report + parameters (tables, output, etc.)
 - modelbased + effectsize (substantive interpretation of models)
 - · performance (model fit: R2, AUROC, etc.)

Models for Event Counts

Event Counts

Things that are not counts:

- Ordinal scales/variables
- Grouped Binary Data
 - N of "successes"
 N of "trials"
 - Binomial data
 - = counts only if Pr("success") is small

Count properties:

- Discrete / integer-valued
- Non-negative
- "Cumulative"

Count Data: Motivation

Events:

Arrival Rate =
$$\lambda$$

$$Pr(Event)_{t,t+h} = \lambda h$$

$$Pr(No\ Event)_{t,t+h} = 1 - \lambda h$$

Count of events:

$$Pr(Y_t = y) = \frac{\exp(-\lambda h)\lambda h^y}{y!}$$
$$= \frac{\exp(-\lambda)\lambda^y}{y!}$$

Poisson Assumptions

Three assumptions:

- No Simultaneous Events
- Constant Arrival Rate
- Independent Event Arrivals

Poisson: Other Motivations

For M independent Bernoulli trials with (sufficiently small) probability of success π and where $M\pi \equiv \lambda > 0$,

$$\Pr(Y_i = y) = \lim_{M \to \infty} \left[\binom{M}{y} \left(\frac{\lambda}{M} \right)^y \left(1 - \frac{\lambda}{M} \right)^{M-y} \right]$$
$$= \frac{\lambda^y \exp(-\lambda)}{y!}$$

Poisson: Characteristics

A Poisson variate:

- Discrete
- $E(Y) = Var(Y) = \lambda$
- Is not preserved under affine transformations...
- For $X \sim \text{Poisson}(\lambda_X)$ and $Y \sim \text{Poisson}(\lambda_Y)$, $Z = X + Y \sim \text{Poisson}(\lambda_{X+Y})$ iff X and Y are independent but
- ...same is not true for differences.
- $\lambda \to \infty \iff Y \sim N$

Poissons: Examples

Poisson Regression

Suppose

$$\mathsf{E}(Y_i) \equiv \lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$$

then

$$\Pr(Y_i = y | \mathbf{X}_i, \boldsymbol{\beta}) = \frac{\exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})][\exp(\mathbf{X}_i \boldsymbol{\beta})]^y}{y!}$$

Poisson Likelihood

Likelihood:

$$L = \prod_{i=1}^{N} \frac{\exp[-\exp(\mathbf{X}_{i}\boldsymbol{\beta})][\exp(\mathbf{X}_{i}\boldsymbol{\beta})]^{Y_{i}}}{Y_{i}!}$$

 \rightarrow Log-likelihood:

$$\ln L = \sum_{i=1}^{N} \left[-\exp(\mathbf{X}_{i}\boldsymbol{\beta}) + Y_{i}\mathbf{X}_{i}\boldsymbol{\beta} - \ln(Y_{i}!) \right]$$

Example: Federal Judicial Review, 1789-2021

Data:

- Y_i = number of Acts of Congress overturned by the Supreme Court in each year (NNulls)
- Predictors:
 - · The mean age (Age) of the Supreme Court's justices ($\bar{X}=62.6, \sigma=5, \mathsf{E}(\hat{\beta})>0$)
 - · The mean tenure (Tenure) of the Supreme Court's justices $(\bar{X}=12.0,\sigma=3.5,\mathsf{E}(\hat{\beta})>0)$
 - · Whether (1) or not (0) there was unified government (Unified) $(\bar{X}=0.78,\mathsf{E}(\hat{\beta})<0)$

> psych::describe(NewDahl,fast=TRUE,skew=TRUE)

	vars	n	mean	sd	median	min	max	range	skew	kurtosis	se	
Year	1	233	1905.00	67.41	1905.0	1789.0	2021.0	232.0	0.00	-1.22	4.42	
${\tt NConstDecisions}$	2	233	17.96	19.11	12.0	0.0	85.0	85.0	1.38	1.48	1.25	
NNulls	3	233	0.70	1.06	0.0	0.0	7.0	7.0	1.96	5.39	0.07	
Age	4	233	62.65	4.96	63.6	45.5	71.1	25.6	-0.84	0.29	0.32	
Tenure	5	233	12.00	3.54	11.9	1.0	21.8	20.8	-0.19	0.25	0.23	
Unified	6	233	0.78	0.42	1.0	0.0	1.0	1.0	-1.32	-0.26	0.03	

Federal Judicial Review, 1789-2021

Estimation

```
> nulls.poisson<-glm(NNulls~Age+Tenure+Unified,family="poisson",
                 data=NewDahl)
> summarv(nulls.poisson)
Call:
glm(formula = NNulls ~ Age + Tenure + Unified, family = "poisson",
   data = NewDahl)
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
Age
Tenure -0.0354 0.0343 -1.03 0.30
Unified -0.0839 0.1743 -0.48 0.63
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 339.50 on 232 degrees of freedom
Residual deviance: 266.69 on 229 degrees of freedom
ATC: 497.7
Number of Fisher Scoring iterations: 5
```

Coefficient Plot (using modelplot)

"Exposure" and "Offsets"

If we relax the assumption of equal "exposure," we get:

$$\mathsf{E}(Y_i|\mathbf{X}_i,M_i)=\lambda_iM_i$$

i.e., the expected number of events is proportional to exposure M_i .

Note that now, instead of:

$$ln[E(Y_i)] = \mathbf{X}_i \boldsymbol{\beta}$$

we have:

$$\ln\left[E\left(\frac{Y_i}{M_i}\right)\right] = \mathbf{X}_i\boldsymbol{\beta}$$

which is a rate, and the same as:

$$ln[E(Y_i)] = ln(M_i) + \mathbf{X}_i \boldsymbol{\beta}$$

that is, including $ln(M_i)$ in **X** with $\beta_{ln(M)} = 1$.

Exposure Example

For the judicial review (1789-2021) data:

- SCOTUS (typically) reviews many constitutional cases per year
- The number of such cases is the *possible* number of nullifications

Correcting for Exposure

Adding an "offset":

```
> nulls.poisson2<-glm(NNulls~Age+Tenure+Unified,family="poisson",
                   offset=log(NConstDecisions+1).data=NewDahl)
> summary(nulls.poisson2)
Call:
glm(formula = NNulls ~ Age + Tenure + Unified, family = "poisson",
   data = NewDahl, offset = log(NConstDecisions + 1))
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.6120 2.4552 -4.32 0.000015 ***
           0.1199 0.0440 2.72 0.0065 **
Age
Tenure -0.0371 0.0483 -0.77 0.4420
Unified -0.0259 0.1808 -0.14 0.8859
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 257.47 on 232 degrees of freedom
Residual deviance: 242.37 on 229 degrees of freedom
ATC: 473.3
Number of Fisher Scoring iterations: 6
```

Correcting for Exposure (continued)

Including the "offset" as a control:

```
> nulls.poisson3<-glm(NNulls~Age+Tenure+Unified+log(NConstDecisions+1).
                    family="poisson".data=NewDahl)
> summary(nulls.poisson3)
Coefficients:
                       Estimate Std. Error z value
                                                  Pr(>|z|)
(Intercept)
                                   2.0821 -5.08 0.00000037124 ***
                       -10 5838
                        0.1408 0.0371 3.79
Age
                                                       0 00015 ***
                       -0.0354 0.0415 -0.85 0.39295
Tenure
                        -0.0296 0.1774 -0.17
Unified
                                                       0.86739
log(NConstDecisions + 1) 0.5744 0.0924 6.22 0.00000000051 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 339.50 on 232 degrees of freedom
Residual deviance: 223.14 on 228 degrees of freedom
ATC: 456.1
Number of Fisher Scoring iterations: 5
> # Wald test for b = 1.0:
> wald.test(b=coef(nulls.poisson3),Sigma=vcov(nulls.poisson3),Terms=4,H0=1)
Wald test:
Chi-squared test:
X2 = 33.7, df = 1, P(> X2) = 0.0000000064
```

Model Comparisons

Interpretation: Incidence Rate Ratios

IRRs:

$$\begin{split} \hat{\lambda}|X_D &= 1\\ \hat{\lambda}|X_D &= 0 \end{split} &= \begin{split} \frac{\exp(\hat{\beta}_0 + \bar{\mathbf{X}}\hat{\beta} + (X_D = 1)\hat{\beta}_{X_D})}{\exp(\hat{\beta}_0 + \bar{\mathbf{X}}\hat{\beta} + (X_D = 0)\hat{\beta}_{X_D})} \\ &= \exp(\hat{\beta}_{X_D}) \end{split}$$

- Like ORs
- Age: IRR = exp(0.19) = 1.21

Incidence Rate Ratios, continued

For a δ -unit change in X_k :

$$\mathsf{IRR}_{X_k,X_k+\delta} = \mathsf{exp}(\delta\hat{\beta}_k)$$

So, a for ten-year difference in Age:

IRR =
$$\exp(10 \times 0.190)$$

= $\exp(1.90)$
= 6.69

Incidence Rate Ratios

Via mfx:

Predicted Values (\hat{Y} s)

Mean predicted Y:

$$\mathsf{E}(Y|ar{\mathbf{X}}_i) = \mathsf{exp}[ar{\mathbf{X}}_i\hat{oldsymbol{eta}}]$$

In-Sample:

• R: in \$fitted.values (or use predict)

• Stata: use predict

Out-of-Sample: use predict

Example: Out-Of-Sample Predicted Values

"By-hand" example:

Plotting Out-Of-Sample Predicted Values

Same, Using $plot_predictions$

Predicted Probabilities

The predicted probability that $Y_i = y$ is:

$$\Pr(\widehat{Y_i = y | \mathbf{X}_i, \hat{\boldsymbol{\beta}}}) = \frac{\exp[-\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})][\exp(\mathbf{X}_i \hat{\boldsymbol{\beta}})]^y}{y!}$$

Changes in Predicted Probabilities

Changes: Mean Age = 57 to Mean Age = 67

More Count Model Things

Variations include:

- Models for Overdispersed and Underdispersed Counts
- Models where Over- / Underdispersion = $f(\mathbf{Z}_i \gamma)$
- Models for Censored / Truncated Counts
- "Zero-Inflated" and "Hurdle" Count Models
- Time Series of Counts
- Panel Data Models for Event Counts
- Spatial Count Models
- etc...