Лабораторна робота 1

ОРГАНІЗАЦІЯ ПЕРЕВІРОК В МОДУЛЬНИХ ТЕСТАХ

Mema:

- засвоїти методи побудови ізольованих модульних тестів і методи організації перевірок;
- навчитися застосовувати каркас JUnit для модульного тестування ПЗ у складі середовища розробки та із засобом зборки Maven.

Інструментальні засоби і бібліотеки, необхідні для виконання роботи:

- Java JDK 8
- середовище розробки Eclipse
- засіб модульного тестування JUnit5
- засіб зборки проектів Maven

Завдання

- 1) виконати завдання з матричних обчислень на мові програмування Java. Згідно з індивідуальним варіантом (таблиця 1).
 - створити клас для роботи з матрицями/векторами, який є обгорткою двовимірного/одновимірного масиву дійсних чисел. Описати в класі методи, необхідні для ініціалізації даних, виведення даних, методів **Equals**, toString та методів для виконання операцій згідно з індивідуальним варіантом (табл. 1);
 - с методах організувати перевірки коректності вхідних даних з точки зору коректності виконання операцій над матрицями/векторами. У разі порушення коректності даних генерувати виняткову ситуацію з відповідним повідомленням
- 2) написати модульні тести для перевірки операцій конструкторів, методів з матричних обчислень та методів Equals, toString
 - створити тестовий клас і методи з анотацією @Test, які перевіряють викликають і перевіряють методи класу для з матрицями/векторами.
 - у тестовому класі створити додати тести для перевірки того, чи генеруються виняткові ситуації у разі некоректних вхідних даних.
- 3) додати в проект бібліотеку JUnit 5 (BuildPath -> Add Libraries -> JUnit) і виконати тести
- 4) виконати тести через засіб зборки проектів Maven. Для цього у файл в рот.xml треба додати залежності:

Індівідуальні завдання

Таблиця 1

Варіант	Вираз	Варіант	Вираз
1	2	3	4
1	$A^T * B + C * k$	12	$\left(B^T + C^{-1}\right) * k$
2	$rank(A^{-1} + C * B)$	13	$(V1\times V2)*B^T$
3	$k * A + B * C^{-1}$	14	rank(V *B)
4	$\det(A/k-C)$	15	$A*B-C^{-1}$
5	$(V1 \bullet V2) * A^{-1}$	16	$V1 \bullet V2 + \det(A+B)$
6	$C^T / rank(A)$	17	$A/k * rank(B^T)$
7	$C^{-1} - k * B^T$	18	$\left(k * A^{-1} + C\right) / k$
8	$\det(A+k*B)$	19	(V1 + rank(A)) * B
9	$(V1 \bullet V2) * V3 $	20	$(B^{-1}-C)*k$
10	$(A-B^T)^* rank(C)$	21	$(A+B)^T*k$
11	$\det(A) * B - C^{-1}$	22	$det (A + B^{-1})$

* Примітка до позначень, застосованих у виразі:

A, B, C матриці V1, V2, V3 вектори k скалярне значення A + Bсума матриць det(A)детермінант матриці ділення матриці на скалярне значення A/k A^{-1} обернення матриці (А^1) A*Bдобуток матриць A*kдобуток матриці і скалярного значення rank(A)ранг матриці віднімання матриць A - Bтранспозиція матриці (А^Т) A^{T} скалярний добуток двух векторів (V1*V2) $V1 \bullet V2$ модуль вектора |V|векторний добуток двох векторів (V1xV2) $V1 \times V2$