NASA Reference Publication 1074

Preliminary Vibration, Acoustic, and Shock Design and Test Criteria for Components on the Lightweight External Tank (LWT)

Staff of Systems Dynamics Laboratory Marshall Space Flight Center

FEBRUARY 1981

NASA Reference Publication 1074

Preliminary Vibration, Acoustic, and Shock Design and Test Criteria for Components on the Lightweight External Tank (LWT)

Staff of Systems Dynamics Laboratory George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

Scientific and Technical Information Branch

PREFACE

The vibration, acoustic, and shock design and test criteria presented in this document are based on the latest LWT structural configuration and will be updated as further design information and vibroacoustic data become available.

TABLE OF CONTENTS

			Page
SECTION	I.	INTRODUCTION	1
SECTION	II.	VIBRATION AND SHOCK QUALIFICATION TEST REQUIREMENTS AND PROCEDURES	2
		A. Specimen B. Fixture. C. Test Specimen and Fixture Resonance Survey. D. Test Amplitude E. Test Sequence. F. Functional Performance. G. Random Vibration Tests. H. Vehicle Dynamics Test J. Shock Test K. Combined Environments L. Test Tolerances. M. Failure Determination N. Deviations From Specifications. O. Test Reports	2 2 2 3 3 3 4 4 4 5 5 5
SECTION	III.	SELECTION OF APPLICABLE VIBRATION AND SHOCK SPECIFICATIONS FOR STRUCTURALLY MOUNTED COMPONENTS	6
SECTION	IV.	ACOUSTIC TEST REQUIREMENTS AND PROCEDURES	8
		A. General Requirements B. Specification Selection C. Reverberation Chamber Facilities D. Progressive Wave Facilities E. Tolerances	8 8 8 9
SECTION	V.	TRANSPORTATION AND HANDLING TEST REQUIREMENTS AND PROCEDURES	10
		A. Transportation B. Handling	10 10
SECTION	VI.	ACCEPTANCE TEST REQUIREMENTS AND PROCEDURES	11
SECTION	VII.	VIBRATION AND SHOCK SPECIFICATIONS	12

TABLE OF CONTENTS (Continued)

			Page
SECTION	VIII.	ACOUSTIC TEST SPECIFICATIONS	261
SECTION	IX.	TRANSPORTATION SPECIFICATIONS	279
SECTION	и X.	HANDLING SPECIFICATIONS	282
		A. Transit Drop Test B. Test Conditions C. Performance of Test	282 282 282
SECTION	XI.	INDEX OF SPECIFICATIONS	288
		A. Vibration Specifications B. Acoustic Specifications C. Transportation Specifications D. Handling Specifications E. Component Specifications	288 311 312 312 312
		LIST OF ILLUSTRATIONS	
Figure		Title	Page
1	Space Shuttle General Configuration		
2	External Tank Zone		
વ	ET 7one 3 Section		

ABBREVIATIONS

D. A. Disp. Double Amplitude Displacement

dB decibel

dB/oct decibels per octave

ET External Tank

G unit of acceleration (32.2 feet per sec²)

g²/Hz acceleration spectral density

g_{rms} root mean square acceleration

G's peak peak acceleration

Hz Hertz (cycles/sec)

in. inch

lb pound

MSFC Marshall Space Flight Center

sec second

SPL Sound Pressure Level

SRB Solid Rocket Booster

SSME Space Shuttle Main Engine

X_t X-Axis of ET

Y-Axis of ET

Z-Axis of ET

SECTION I. INTRODUCTION

This document presents the vibration, acoustic, and shock design and test criteria for components and subassemblies on the Lightweight External Tank (LWT). Also presented are specifications for transportation, handling, and acceptance testing. Subzones (General Specifications) are presented for all locations. Specifications are also presented for some specific components and subassemblies.

The specifications cannot provide all the information necessary for qualification testing of each individual component and subassembly. Consequently, this document must be used under the cognizance of qualified dynamics and test engineers. The originating agency, ED23, will assist in the proper use of these specifications.

SECTION II. VIBRATION AND SHOCK QUALIFICATION TEST REQUIREMENTS AND PROCEDURES

The following requirements and procedures apply only to qualification testing:

A. Specimen

The specimens will be production components in accordance with current manufacturing drawings. Supporting brackets and component attachment hardware (lines, valves, etc.) will be included in all tests to achieve dynamic similarity to actual installation. Hardware so included in the test setup is considered part of the test specimen.

B. Fixture

The fixture will support the specimen in the manner simulating actual installation. The fixture will be designed to minimize fixture response at resonances within the test frequency range.

The fixture design and specimen installation should be approved by responsible dynamics and test engineers prior to testing.

C. Test Specimen and Fixture Resonance Survey

A sinusoidal resonance survey test is recommended in the fixture and instrumentation diagnostics process and in developmental testing. The recommended sweep rate is 1 oct/min from 5 to 2000 to 5 Hz at the following amplitudes:

- 5 62 Hz @ 0.0050 in. D. A. Disp.
- 62 2000 Hz @ 1.0 G's peak

D. Test Amplitude

All component test amplitudes will be applied as inputs to the component bracketry at the interface of the bracketry and the test fixture. The inputs will be applied along each of three mutually perpendicular axes as referenced to the interface of the component and the vehicle primary structure. The control accelerometer will be mounted on the test fixture at the point where the test specimen or specimen supporting bracketry attaches to the test fixture.

E. Test Sequence

The qualification testing order for the components on the ET will be:

- o Acceptance Vibration Test (when required) (Section VI)
- o Flight Random Vibration Test (when specified)
- o Lift-off Random Vibration Test
- o Boost Random Vibration Test
- o Vehicle Dynamics Test
- o Shock Test
- o Acoustic Test (when specified)
- o Transportation and Handling Tests (when specified)

Acceptance testing, when required, should be completed in all three axes prior to any other qualification testing. All random vibration, vehicle dynamics, and shock testing should be completed in one axis before proceeding to the next. When shock testing is performed on separate test equipment, all vibration testing will be completed prior to shock testing.

F. Functional Performance

Specimens that function in the dynamic environment will perform to their functional specifications prior to, during, and after each qualification test.

G. Random Vibration Tests

Test equipment equalization will be accomplished by either of the following methods:

- o Obtaining initial equalization by using actual test specimens and reduced vibration inputs. Final equalization will then be obtained by applying short duration excitation to the specimen at the specified test amplitudes.
- o Subjecting a mass simulated dummy component to the specified test inputs as in the above method. After equalization, the dummy component will be replaced by the actual component, and equalization verified by applying short duration excitation at the specified test amplitudes.

Test amplitudes and durations are provided in the applicable specifications. Test setup and equalization times should be minimized. Neither of these time durations will be considered part of the specified test duration.

H. Vehicle Dynamics Test

Test amplitudes are provided in the applicable specifications. The specified frequency spectrum will be swept logarithmically at the rate of 3 oct/min as described below:

o Sweep from the low frequency to the high frequency one time in each of the vehicle axes.

J. Shock Test

Shock pulses or spectra are stated for each specification. When two shock criteria are specified for a component, only the maximum shock spectrum should be used. Any pulse that results in a spectrum within the test tolerances at every frequency of the specified shock spectrum is acceptable. Either mechanical or ordnance shock testing is acceptable. During mechanical shock testing, the test specimen will be subjected to two shocks per mission in each axis (equivalent to one in each direction) for a total of six shocks per mission. During ordnance shock testing, the specimen will be subjected to one shock per mission, which must satisfy the applicable specifications in at least one axis.

K. Combined Environments

Vibration, shock, and acoustic testing under various combined environments will be specified, when required, by the responsible Marshall Space Flight Center (MSFC) organization.

L. Test Tolerances

The test spectra shall be verified by narrow band spectral analysis using an analysis system that is independent from the analyzer/equalizer used to control the test. Tolerances considered acceptable are as follows:

o	Vibration	±10%
	Composite Root Mean Square Acceleration	
	Acceleration Spectral Density (Tolerances pertain to bandwidths of 25 Hz or less)	+100% -30%
	Sinusoidal Peak Acceleration	+20% -10%
	Sinusoidal Control Signal Maximum Harmonic Distortion	±10%
	Frequency	<u>+</u> 5%
	Test Duration	+10% — 0%
o	Shock Spectrum	
	Spectrum Peak Acceleration (When analyzed with a 1/3 octave shock spectrum analyzer and 5 percent damping.)	+40% -20%
О	Shock Pulse	
	Amplitude	+40% -20%
	Duration	±10%

M. Failure Determination

A specimen will be considered to have failed a particular test if the specimen malfunctions during or after the test, or if post-test prescribed inspection reveals structural damage. All test failures will be reported immediately to the originating agency (ED23).

N. Deviations From Specifications

Deviations from these specifications may be obtained only from the originating agency (ED23). All deviations will be stated in the test report.

O. Test Reports

A report will be submitted to the originating agency by the testing agency describing in detail the tests performed and the results of the tests. The report will include drawings, sketches, and photographs, showing in detail all measurement locations. The report will include all calibration and measured test levels and any other information pertinent to the acquisition, reduction, analysis, and interpretation of the test data. Equalization levels and durations will be included.

Progress reports will be provided to the originating agency as requested.

SECTION III. SELECTION OF APPLICABLE VIBRATION AND SHOCK SPECIFICATIONS FOR STRUCTURALLY MOUNTED COMPONENTS

The selection of the correct qualification specification is essential in developing confidence and reliability in the component. The following general discussion should be considered before making such a selection.

A zonal technique has been used in generating and presenting the qualification specifications. Using this technique, the Space Shuttle LWT has been divided into zones and subzones (Figures 1 through 5) as determined by the responsible MSFC organization. Where applicable, each subzone was further divided into subzone weight ranges or major components.

Three distinct types of component and subassembly qualification specifications are presented:

- o Subzones (General Specifications)
- o Subzone Weight Ranges
- o Specific Component Specifications

A Subzone (General Specifications) pertains to all components and sub-assemblies mounted on a particular type of structure. These specifications are labeled "General" because they are applicable to all components and subassemblies in that subzone. General Specifications are based on the vibration environment for all structures within the subzones. Consequently, General Specifications usually result in more severe qualification specifications than weighted specifications. General specifications should be used only when Subzone Weight Ranges and Specific Component Specifications cannot be used.

Specifications for subzone weight ranges and major components have been determined wherever practical. These specifications pertain to certain items (components, subassemblies, panels, etc.) located within a specific subzone, and may be distinguished by the absence of the notation "General Specifications" and the inclusion of a letter suffix (-A, -B, etc.) in the specification number. These specifications are based on vibration environments for various types of local structures (skin, stringer, ringframe, panels, etc.).

In general, specifications for individual components are based on the component's weight, location, and mounting configuration and can be found in the appropriate subzone. Specifications for selected LWT components are included in Appendix A. The appropriate qualification specification may be determined for a particular component or subassembly by the following procedure:

- o Determine if a specific component specification exists; if not:
- o Identify the zone in which the component or subassembly is located;
- o Within this zone determine the subzone in which the particular component or subassembly is located;
- o Identify the subzone specification corresponding to the weight of the component.

SECTION IV. ACOUSTIC TEST REQUIREMENTS AND PROCEDURES

A. General Requirements

All structures and components requiring acoustic testing will be subjected to either broadband reverberant field or progressive wave testing. The acoustical random noise source for either type test will have an approximate normal amplitude distribution. Reverberant field testing is preferred for both structures and components. However, structural panels as well as components may be tested using progressive wave facilities where this type of test is justified.

B. Specification Selection

A zonal technique has been used in generating and presenting the qualification specifications. Using this technique, the LWT has been divided into zones and subzones as shown in Figures 1 through 3. Acoustic test specifications for each of these general zones are provided in Section VIII.

The appropriate qualification specification can be determined by identifying the zone or subzone in which the component is located.

C. Reverberation Chamber Facilities

The test chamber will be of sufficient volume and dimensions to ensure that the insertion of the test specimen will not affect the generation and maintenance of a broadband diffuse sound field above 50 Hz. Normally, the test specimen will be suspended in the center of the test chamber with soft suspension cords. The suspension system will have a fundamental frequency of less than 25 Hz.

The sound field in the proximity of each major surface of any test specimen that will be subjected to external acoustic environments will be determined by either flush mounted microphones or microphones mounted approximately 0.25 in. from the specimen surface. These microphones may serve as the control measurements. When the placement of these microphones is not feasible or will compromise the test results, at least three microphones located in the field will serve as control measurements. These microphones will not be located in close proximity to any surface within the test chamber. The control measurements, whether flush mounted or field located, will be averaged to determine the sound field.

With the specimen in the test chamber, the sound pressure level spectrum will be shaped at a level approximately 6 dB less than the specification. The time required to shape the spectrum will be minimized to avoid possible overstressing of the test specimen. After completion of the spectrum shaping, the sound pressure level will be increased to the

specified value, and the test will commence. As an alternative to reducing the sound pressure level while shaping the spectrum, a dummy specimen may be positioned in the test chamber, and the spectrum shaped at the test level. When the spectrum shaping has been completed, the dummy specimen will be replaced by the test specimen, and the test will commence.

D. Progressive Wave Facilities

The structural panel specimens may be tested in progressive wave facilities. The test specimen will be centrally mounted in the wall of the progressive wave duct. The width of the wave duct will be of sufficient distance to ensure minimum effects on the panel response characteristics.

Components may be tested in progressive wave facilities. The specimen will be centrally located in the progressive wave duct and suspended by a system having a fundamental frequency of less than 25 Hz. The cross section of the progressive wave duct will be of sufficient area, relative to the frontal area of the test specimen, to ensure that the insertion of the test specimen will not affect the generation and maintenance of the progressive wave. The test specimen will have each major surface exposed to the sound field by orienting each major surface parallel to the progressive wave front. Each major surface will be exposed to the sound field for the full test duration.

For both types of progressive wave testing, the sound pressure level spectrum will be shaped without the test specimen in place. The uniformity of the sound field will be determined by locating at least three microphones in the proximity of the duct cross sectional plane where the test specimen will be mounted. After mounting the test specimen, the sound pressure level will be reestablished, and the test will commence. Alternatively, for structural panel specimens, the sound pressure level may be shaped at a level 6 dB less that the specification. The time required to shape the spectrum will be minimized to avoid inadvertent overstressing.

E. Tolerances

The test time will be within plus 10 to minus 0 percent of the time stated in the specification. The overall sound pressure level and the individual 1/3 octave band sound pressure levels will be within plus 2 to minus 2 dB of the specification. The sound pressure level tolerance applies to the frequency range of 50 through 10,000 Hz. Below this frequency range, the capability of the testing facility will be the governing factor.

The test spectra shall be verified by narrowband spectral analysis using an analysis system that is independent from the analyzer/equalizer used to control the test.

SECTION V. TRANSPORTATION AND HANDLING TEST REQUIREMENTS AND PROCEDURES

Transportation and handling specifications should be used for designing and testing component shipping containers. These specifications should not influence component design, but should provide information for shipping container design to ensure that the vibration amplitudes transmitted to the component do not exceed the design amplitudes.

A. Transportation

Transportation specifications are generally presented as amplitudes in G's peak for sinusoidal sweep tests. Components should be monitored for resonsance; dwell tests of 15 min each are required at each major resonance as noted during the sweep. If a component is shipped by rail, a shock test will be required to represent the train humping conditions. Any shock pulse may be used that results in a spectrum at least as severe as that specified.

Transportation tests may be eliminated if proof of adequate component protection can be provided.

B. Handling

Handling specifications are required to account for typical conditions that occur during loading or unloading operations. Tests for these conditions consist of numerous container drops from various orientations of the container.

Handling tests may be eliminated if proof of adequate component protection can be provided.

SECTION VI. ACCEPTANCE TEST REQUIREMENTS AND PROCEDURES

The requirement to do acceptance testing will be established for each program by the project manager. This document does not establish the requirement to do acceptance testing; however, it does give the acceptance test levels to be used if acceptance testing is required. If acceptance testing is required on the flight hardware, it will also be required on the qualification hardware. Acceptance test levels will be 6 dB below the qualification composite level.

Test procedures and tolerances will be the same as specified in the appropriate sections of this document.

SECTION VII. VIBRATION AND SHOCK SPECIFICATIONS

Zone 1 $$ Et LH_2 Aft Bulkhead

Subzone 1-1 ET LH₂ Aft Bulkhead Gores (General Specifications)

Same as Subzone 1-1-A below.

Subzone 1-1-A Input to Components Mounted on the ET $_{2}$ Aft Bulkhead Gores. Weight of Component < 8 lbs.

1. Acceptance Test Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.019 g ² /Hz 20 - 110 Hz @ +9 dB/oct 110 - 300 Hz @ 3.12 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.47 g ² /Hz	20 Hz @ 0.018 g ² /Hz 20 - 130 Hz @ +6 dB/oct 130 - 340 Hz @ 0.72 g ² /Hz 340 - 430 Hz @ +6 dB/oct 430 - 3000 Hz @ 1.15 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.58
Composite = 49.6 g_{rms}	Composite = 41.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.076 g ² /Hz 20 - 110 Hz @ +9 dB/oct 110 - 300 Hz @ 12.50 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 1.89 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.070 \text{ g}^2/\text{Hz}$ $20 - 130 \text{ Hz} \stackrel{?}{=} +6.\text{dB/oct}$ $130 - 340 \text{ Hz} \stackrel{?}{=} 2.90 \text{ g}^2/\text{Hz}$ $340 - 430 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $430 - 1000 \text{ Hz} \stackrel{?}{=} 4.60 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 2.30 \text{ g}^2/\text{Hz}$
Composite = 99.3 g	Composite = 83.0 g

1-1-A (Cont.)

Boost Random Vibration Criteria (2 min/axis)

Direction A

$$20 \text{ Hz} @ 0.37 \text{ g}^2/\text{Hz}$$

 $20 - 100 \text{ Hz} @ +6 \text{ dB/oct}$

 $100 - 300 \text{ Hz} @ 9.0 \text{ g}^2/\text{Hz}$ 300 - 2000 Hz @ -3 dB/oct

2000 Hz @ 1.4 g^2/Hz

Composite = $85.0 g_{rms}$

Directions B and C

 $20 \text{ Hz} @ 0.088 \text{ g}^2/\text{Hz}$ 20 - 120 Hz @ +6 dB/oct

120 - 1000 Hz @ 2.9 g²/Hz 1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ 1.5 g^2/Hz

Composite = 68.4 g_{rms}

Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

Shock Test Criteria (2 shocks/axis)

See Table I

Direction A — Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

- Subzone 1-1-B <u>Input to Components Mounted on the ET LH</u> Aft
 Bulkhead Gores. Weight of Components > 8 but < 25 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C		
20 Hz @ 0.076 g ² /Hz 20 - 88 Hz @ +9 dB/oct 88 - 300 Hz @ 6.25 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.94 g ² /Hz	20 Hz @ 0.070 g ² /Hz 20 - 92 Hz @ +6 dB/oct 92 - 340 Hz @ 1.45 g ² /Hz 340 - 430 Hz @ +6 dB/oct 430 - 1000 Hz @ 2.30 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 1.15 g ² /Hz		
Composite = 70.9 g_{rms}	2000 Hz @ 1.15 g /Hz Composite = 59.0 g rms		

3. Boost Random Vibration Criteria (2 min/axis)

Direction A	Directions B and C
20 Hz @ 0.37 g ² /Hz 20 - 72 Hz @ +6 dB/oct 72 - 300 Hz @ 4.5 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.7 g ² /Hz	20 Hz @ 0.088 g ² /Hz 20 - 88 Hz @ +6 dB/oct 88 - 1000 Hz @ 1.5 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.75 g ² /Hz
Composite = 60.8 g_{rms}	Composite = 49.5 g _{rms}

1-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*
5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

 $\begin{array}{lll} \text{Direction A} & - & \text{Perpendicular to Bulkhead} \\ \text{Direction B} & - & \text{Tangential to Bulkhead} \\ \text{Direction C} & - & \text{Tangential to Bulkhead, Perpendicular to Direction B} \end{array}$

* Design Criteria Only

Subzone 1-1-C Input to Components Mounted on the ET LH_2 Aft Bulkhead Gores. Weight of Component > 25 but < 75 lb.

1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.076 g ² /Hz 20 - 70 Hz @ +9 dB/oct 70 - 300 Hz @ 3.10 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.47 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 50.4 g_{rms}	Composite = 41.9 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A	Directions B and C
$20 \text{ Hz} @ 0.37 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \ \text{@} \ 0.088 \text{ g}^2/\text{Hz}$
20 - 49 Hz @ +6 dB/oct	20 - 60 Hz @ +6 dB/oct
$49 - 300 \text{ Hz} = 2.2 \text{ g}^2/\text{Hz}$ 300 - 2000 Hz = -3 dB/oct $2000 \text{ Hz} = 0.35 \text{ g}^2/\text{Hz}$	$60 - 1000 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.38 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.33 g /Hz	2000 H2 @ 0.38 g /H2
Composite = 42.9 g_{rms}	Composite = 35.2 g_{rms}

1-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A — Perpendicular to Bulkhead Direction B — Tangential to Bulkhead Direction C — Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

Subzone 1-1-D $\underline{\text{Input to}}$ $\underline{\text{LH}}_2$ External Feedline, $\underline{\text{LH}}_2$ Recirculation Line and $\underline{\text{LH}}_2$ Internal Bellows at the Aft $\underline{\text{LH}}_2$ Dome Gore.

1. Acceptance Tst Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C
$20 \text{ Hz} @ 0.076 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +9 dB/oct	$20 \text{ Hz} @ 0.07 \text{ g}^2/\text{Hz}$ 20 - 29 Hz @ +6 dB/oct
50 - 300 Hz @ 0.63 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.095 g ² /Hz	$29 - 340 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 340 - 430 Hz @ +6 dB/oct $430 - 1000 \text{ Hz} @ 0.23 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$
Composite + 22.9 g_{rms}	Composite = 19.0 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A	Directions B and C
$20 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct $40 - 300 \text{ Hz} @ 0.4 \text{ g}^2/\text{Hz}$ 300 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.062 \text{ g}^2/\text{Hz}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 18.4 g_{rms}	Composite = 15.8 g_{rms}

1-1-D (Cont.)

4. Vehicle Dynamics Criteria

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*
5 - 40 Hz @ 0.6 G's peak

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*
5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A — Perpendicular to Bulkhead Direction B — Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

* Design Criteria Only

Subzone 1-2 ET LH₂ Aft Bulkhead Cap and Covers (General Specifications)

Same as Subzone 1-2-A below.

- Subzone 1-2-A Input to Components Mounted on the ET LH₂ Aft
 Bulkhead Cap and Manhole Cover Plates. Weight of
 Component < 50 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

	20 Hz	$0.0080 \text{ g}^2/\text{Hz}$		20 Hz	$0.0072 \text{ g}^2/\text{Hz}$
20 -	110 Hz	@ +9 dB/oct	20 -	130 Hz	@ +6 dB/oct
110 -	300 Hz	$@1.30 \text{ g}^2/\text{Hz}$	130 -	340 Hz	$0.30 \text{ g}^2/\text{Hz}$
300 -	$2000~\mathrm{Hz}$	@ -3 dB/oct	340 -	$430~\mathrm{Hz}$	@ +6 dB/oct
	2000 Hz	$0.20 \text{ g}^2/\text{Hz}$			$0.48 \text{ g}^2/\text{Hz}$ 0-3 dB/oct
				2000 Hz	$0.24 \text{ g}^2/\text{Hz}$
	Composi	ite = 32.0 g _{rms}		Composi	te = 26.6 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Composite = 64.0 g_{rms}

Directions B and C

Composite = $53.3 g_{rms}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Composite = 28.6 g_{rms}

Directions B and C

Composite = $16.5 g_{rms}$

1-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead
Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

- Subzone 1-2-B <u>Input to Components Mounted on the ET LH</u> Aft Bulk-head Cap and Manhole Cover Plates. Weight of Components > 50 but < 150 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.032 g ² /Hz 20 - 88 Hz @ +9 dB/oct	20 Hz @ 0.029 g ² /Hz 20 - 92 Hz @ +6 dB/oct
$88 - 300 \text{ Hz} = 2.60 \text{ g}^2/\text{Hz}$	92 - 340 Hz @ 0.60 g^2/Hz
300 - 2000 Hz @ -3 dB/oct	340 - 430 Hz @ +6 dB/oct
2000 Hz @ 0.39 g ² /Hz	$430 - 1000 \text{ Hz} @ 0.95 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.48 \text{ g}^2/\text{Hz}$
Composite = 45.2 g_{rms}	Composite = 37.7 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A	Directions B and C
$20 \text{ Hz} \stackrel{?}{=} 0.11 \text{ g}^2/\text{Hz}$ $20 - 70 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $70 - 200 \text{ Hz} \stackrel{?}{=} 1.30 \text{ g}^2/\text{Hz}$ $200 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.013 \text{ g}^2/\text{Hz}$	20 Hz @ 0.035 g ² /Hz 20 - 64 Hz @ +6 dB/oct 64 - 150 Hz @ 0.36 g ² /Hz 150 - 260 Hz @ -9 dB/oct 260 - 1000 Hz @ 0.070 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.018 g ² /Hz
Composite = 20.8 g_{rms}	Composite = 12.0 g_{rms}

1-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

- Input to Components Mounted on the ET LH₂ Aft Bulkhead Cap 1-2-C and Manhole Cover Plates. Weight of Component > 150 but < 300 lb.
- 1. Acceptance Test Criteria (1 min/axis)

$20 \text{ Hz} @ 0.0080 \text{ g}^2/\text{Hz}$ 20 - 70 Hz @ +9 dB/oct

 $70 - 300 \text{ Hz} @ 0.32 \text{ g}^2/\text{Hz}$ 300 - 2000 Hz @ -3 dB/oct

2000 Hz @ 0.050 g^2/Hz

Composite = 16.3 g_{rms}

Directions B and C

20 Hz @ 0.0072 g²/Hz 65 Hz @ +6 dB/oct

 $65 - 340 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$ 340 - 430 Hz @ +6 dB/oct

 $430 - 1000 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ 0.060 g^2/Hz

Composite = $13.5 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Direction A

20 Hz @ 0.032 g²/Hz 20 - 70 Hz @ +9 dB/oct

 $70 - 300 \text{ Hz} @ 1.30 \text{ g}^2/\text{Hz}$ 300 - 2000 Hz @ -3 dB/oct

 $2000 \text{ Hz} @ 0.20 \text{ g}^2/\text{Hz}$

Composite = 32.6 g_{rms}

Directions B and C

20 Hz @ 0.029 g²/Hz 20 - 65 Hz @ +6 dB/oct

65 - 340 Hz @ 0.30 g²/Hz 340 - 430 Hz @ +6 dB/oct

 $430 - 1000 \text{ Hz} @ 0.48 \text{ g}^2/\text{Hz}$

1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ 0.24 g^2/Hz

Composite 27.0 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

 $50 - 200 \text{ Hz} @ 0.65 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} @ 0.0066 \text{ g}^2/\text{Hz}$

Composite = 15.0 g_{rms}

Directions B and C

20 Hz @ 0.035 g²/Hz 45 Hz @ +6 dB/oct

 $45 - 150 \text{ Hz} @ 0.18 \text{ g}^2/\text{Hz}$ 150 - 260 Hz @ -9 dB/oet

 $260 - 1000 \text{ Hz} @ 0.035 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} @ 0.0088 \text{ g}^2/\text{Hz}$

Composite = 8.6 g_{rms}

1-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead Direction B - Tangential to Bulkhead Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

Subzone 1-2-D Input to the LH $_2$ Siphon on the ET LH $_2$ Aft Bulkhead Cap. Component $\omega\,t$ = 320#.

1. Acceptance Test Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz 0.0080 g ² /Hz 20 - 56 Hz @ +9 dB/oct 56 - 300 Hz @ 0.18 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.027 g ² /Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 12.0 g_{rms}	Composite = 10.0 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.032 g ² /Hz 20 - 56 Hz @ +9 dB/oct 56 - 300 Hz @ 0.70 g ² /Hz 300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.11 g ² /Hz	20 Hz @ 0.029 g ² /Hz 20 - 48 Hz @ +6 dB/oct 48 - 340 Hz @ 0.16 g ² /Hz 340 - 430 Hz @ +6 dB/oct 430 - 1000 Hz @ 0.26 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.13 g ² /Hz
Composite = 24.1 g_{rms}	Composite 20.0 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A	Direction	ns B and C
20 Hz @ 0.11 g 20 - 36 Hz @ +6 dB 36 - 200 Hz @ 0.35 g 200 - 2000 Hz @ -6 dB 2000 Hz @ 0.0036	/oct $20 - \frac{1}{2}$ /oct $33 - \frac{1}{2}$ /oct $150 - \frac{1}{2}$ g^2/Hz $260 - \frac{1}{2}$ $1000 - \frac{1}{2}$	20 Hz @ 0.035 g ² /Hz 33 Hz @ +6 dB/oet 150 Hz @ 0.096 g ² /Hz 260 Hz @ -9 dB/oet 1000 Hz @ 0.019 g ² /Hz 2000 Hz @ -6 dB/oet 2000 Hz @ 0.0048 g ² /Hz
Composite = 11.1	g _{rms} (Composite = 6.4 g _{rms}

1-2-D (Cont.)

4. Vehicle Dynamics Criteria

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*
5 - 40 Hz @ 0.6 G's peak

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*
5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

 $\begin{array}{lll} \mbox{Direction A} & - \mbox{ Perpendicular to Bulkhead} \\ \mbox{Direction B} & - \mbox{ Tangential to Bulkhead}, \mbox{ Perpendicular to Direction B} \\ \end{array}$

* Design Criteria Only

Zone 2

ET LH₂ Cylinder

Subzone 2-1

ET LH_2 Cylinder, Aft Section (Stations $X_{\rm t}$ 2058 to $\rm X_{t}$ 1624), Inboard Half (+Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-1-1-A below.

Subzone 2-1-1 Baffles and Stiffened Skin on the ET LH₂ Cylinder, Aft Section (Stations \mathbf{X}_{t} 2058 to \mathbf{X}_{t} 1624), Inboard Half (+Z Axis ±90°). (General Specifications).

Same as Subzone 2-1-1-A below.

Subzone 2-1-1-A Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_{\mathbf{T}}$ 2058 to X $_{\mathbf{t}}$ 1624), Inboard Half (+Z $\pm 90^{\circ}$), and not within $\pm 10^{\circ}$ of the GO₂ Press. Line/Cable Tray installation. Weight of component < 15 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$400 - 2000 \text{ Hz } @ -4 \text{ dB/oct}$ $2000 \text{ Hz } @ 0.12 \text{ g}^2/\text{Hz}$ $\text{Composite} = 28.7 \text{ g}_{\text{rms}}$	Composite = $13.1 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Composite = 28.7 g_{rms}

Radial Axis

Long. and Tang. Axes

			_	$0.067 \text{ g}^2/\text{Hz}$			9.0	TT	a	$0.00084 \text{ g}^2/\text{Hz}$
	20	Hz	a	0.067 g /Hz						
20 -	30	Ηz	@	+6 dB/oct	20	-	100	Ηz	@	+9 dB/oct
30 -	47	Ηz	@	$0.15 \text{ g}^2/\text{Hz}$						$0.10 \text{ g}^2/\text{Hz}$
47 -	90	Ηz	@	+12 dB/oct	400	_	700	Hz	@	+6 dB/oct
90 -	400	Ηz	@	$2.0 \text{ g}^2/\text{Hz}$	700	_	1000	Hz	@	$0.30 \text{ g}^2/\text{Hz}$
400 -	2000	Ηz	@	-4 dB/oct	1000	-	2000	Hz	@	-3 dB/oct
				$0.23 \text{ g}^2/\text{Hz}$			2000	Ηz	@	$0.15 \text{ g}^2/\text{Hz}$
	Comp	osi	te	= 41.1 g			Comp	oosi	te	= 19.7 g

2-1-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 57.3 g_{rms}

Composite = $26.1 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

See Table I

* Design Criteria Only

- Subzone 2-1-1-B $\frac{\text{Input to }}{\text{skin on the LH}_2}$ Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z ±90°), and $\frac{\text{not within }}{\text{of the GO}_2}$ Press. Line/Cable Tray installation. Weight of Component > 15 but < 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	l Axis	Long. and Tang. Axes
20 -	$20 \text{ Hz} @ 0.067 \text{ g}^2/\text{Hz} \\ 30 \text{ Hz} @ +6 \text{ dB/oct}$	20 Hz @ 0.00084 g ² /Hz 20 - 78 Hz @ +9 dB/oct
30 -	47 Hz @ 0.15 g ² /Hz 76 Hz @ +12 dB/oct	$78 - 400 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$ 400 - 700 Hz @ +6 dB/oct
76 -	$400 \text{ Hz} @ 1.0 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
	2000 Hz @ -4 dB/oct 2000 Hz @ 0.12 g ² /Hz	1000 - 2000 Hz @ -3 dB/oct · 2000 Hz @ 0.075 g ² /Hz
	Composite = 28.7 g_{rms}	Composite = 14.0 g _{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial	Axis	Long. and Tang. Axes
30 - 56 - 84 - 400 -	20 Hz @ 0.18 g ² /Hz 30 Hz @ +6 dB/oct 56 Hz @ 0.4 g ² /Hz 84 Hz @ +12 dB/oct 400 Hz @ 2.0 g ² /Hz 2000 Hz @ -4 dB/oct 2000 Hz @ 0.23 g ² /Hz	$20 \text{ Hz} @ 0.042 \text{ g}^2/\text{Hz}$ 20 - 78 Hz @ +4 dB/oct $78 - 700 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$ 700 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.086 \text{ g}^2/\text{Hz}$
•	Composite = 41.3 g _{rms}	Composite = 18.6 g_{rms}

2-1-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-1-C Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z $\pm 90^\circ$), and not within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray installation. Weight of Component \geq 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.067 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00084 \text{ g}^2/\text{Hz}$ 20 - 62 Hz @ +9 dB/oct
20 - 30 Hz @ +6 dB/oct	_
$30 - 47 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$	$62 - 400 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$
47 - 64 Hz @ +12 dB/oct	400 - 700 Hz @ +6 dB/oct
$64 - 400 \text{ Hz} = 0.5 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz} \\ 1000 - 2000 \text{ Hz} @ -3 \text{ dB/oct}$
400 - 2000 Hz @ -4 dB/oct	
$2000~\mathrm{Hz}$ @ $0.06~\mathrm{g}^2/\mathrm{Hz}$	$2000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$
Composite = 20.5 g_{rms}	Composite = 9.9 g_{rms}

Radial	Axis	Long. and Tang. Axes
30 - 56 - 71 - 400 -	20 Hz @ 0.18 g ² /Hz 30 Hz @ +6 dB/oct 56 Hz @ 0.4 g ² /Hz 71 Hz @ +12 dB/oct 400 Hz @ 1.0 g ² /Hz 2000 Hz @ -4 dB/oct 2000 Hz @ 0.12 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.042 \text{ g}^2/\text{Hz}$ $20 - 44 \text{ Hz} \stackrel{?}{=} +4 \text{ dB/oct}$ $44 - 700 \text{ Hz} \stackrel{?}{=} 0.12 \text{ g}^2/\text{Hz}$ $700 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.041 \text{ g}^2/\text{Hz}$
	Composite = 28.9 g_{rms}	Composite = 13.0 g_{rms}

2-1-1-C (Cont'd)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-1-AP Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 X $_T$ 1624), Inboard Half (+Z = and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 15 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

				nong. and rang. Axes
		30 Hz	@ 0.067 g ² /Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00084 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct
30	-	47 Hz	$0.15 \text{ g}^2/\text{Hz}$ 0+12 dB/oct	$100 - 400 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$
				400 - 700 Hz @ +6 dB/oct
90	-	400 Hz	$0.0 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.30 \text{ g}^2/\text{Hz}$
400			@ -4 dB/oct	1000 - 2000 Hz @ -3 dB/oct
			$0.23 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.15 g^2/Hz
		Composit	te = 41.1 g _{rms}	Composite = 19.7 g_{rms}

Long, and Tang, Ayes

Radial Axis	Long, and Tang, Axes
20 Hz @ 0.18 g ² /Hz 20 - 30 Hz @ -6 dB/oct 30 - 56 Hz @ 0.4 g ² /Hz 56 - 100 Hz @ +12 dB/oct 100 - 400 Hz @ 4.0 g ² /Hz 400 - 2000 Hz @ -4 dB/oct 2000 Hz @ 0.47 g ² /Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 57.3 g_{rms}	Composite = 27.7 g_{rms}

2-1-1-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-1-BP Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z $\pm 90^\circ$) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray installation. Weight of Component \geq 15 but < 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis			Long.	and '	Tang	. Axes
0.0	20 H	z @	$0.045 \text{ g}^2/\text{Hz}$		20	Hz ($0.0093 \text{ g}^2/\text{Hz}$
			+6 dB/oct	20 -	84	Hz (+4 dB/oct
30 -	56 H	z @	$0.10 \text{ g}^2/\text{Hz}$	84 -	140	Hz ($0.063 \text{ g}^2/\text{Hz}$
56 -	84 H	z (d	+12 dB/oct	140 -	200	Hz (+4 dB/oct
84 - 400 -	400 H: 2000 H:	z @ z @	$0.50 \text{ g}^2/\text{Hz}$ -4 dB/oct	200 - 250 -	$\begin{array}{c} 250 \\ 400 \end{array}$	Hz (0.1 g ² /Hz 2-3 dB/oct
	2000 H:	z @	$0.058 \text{ g}^2/\text{Hz}$				$0.063 \text{ g}^2/\text{Hz}$ 0.3 dB/oct
					2000	Hz ($0.025 \text{ g}^2/\text{Hz}$
(Compos	site	= $20.7 \text{ g}_{\text{rms}}$		Comp	osite	e = 9.9 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	l Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.067 g ² /Hz 30 Hz @ +6 dB/oct	20 Hz @ 0.00084 g ² /Hz 20 - 78 Hz @ +9 dB/oct
30 -	47 Hz @ 0.15 g^2/Hz 76 Hz @ +12 dB/oct	$78 - 400 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$ 400 - 700 Hz @ +6 dB/oct
76 -	400 Hz @ 1.0 g^2/Hz	$700 - 1000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
	2000 Hz @ -4 dB/oct 2000 Hz @ 0.12 g ² /Hz	1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.075 g ² /Hz
	Composite = 28.7 g_{rms}	Composite = 14.0 g _{rms}

2-1-1-BP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = $41.3 g_{rms}$

Long. and Tang. Axes

Composite = 19.8 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-1-CP Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to to X $_T$ 1624), Inboard Half (+Z $\pm 90^\circ$), and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 45 lb. but < 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.045 \text{ g}^2/\text{Hz}$ 20 - 30 Hz @ +6 dB/oct $30 - 56 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$ 56 - 71 Hz @ +12 dB/oct	20 Hz @ 0.0093 g ² /Hz 20 - 48 Hz @ +4 dB/oct 48 - 140 Hz @ 0.03 g ² /Hz 140 - 200 Hz @ +4 dB/oct
$71 - 400 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	$200 - 250 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$
400 - 2000 Hz @ -4 dB/oct	250 - 400 Hz @ -3 dB/oct
$2000~\mathrm{Hz}$ @ $0.03~\mathrm{g}^2/\mathrm{Hz}$	$400 - 800 \text{ Hz} @ 0.03 \text{ g}^2/\text{Hz}$
	800 - 2000 Hz @ -3 dB/oct
	2000 Hz @ 0.011 g^2/Hz
Composite = 14.5 g_{rms}	Composite = 7.0 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
	20 Hz @ 0.067 g^2/Hz 30 Hz @ +6 dB/oct	20 Hz @ 0.00084 g ² /Hz 20 - 62 Hz @ +9 dB/oct
30 -	47 Hz @ 0.15 g^2/Hz	$62 - 400 \text{ Hz} = 0.025 \text{ g}^2/\text{Hz}$
47 -	64 Hz @ +12 dB/oct	400 - 700 Hz @ +6 dB/oct
400 -	$400 \text{ Hz} @ 0.5 \text{ g}^2/\text{Hz}$ 2000 Hz @ -4 dB/oct $2000 \text{ Hz} @ 0.06 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$
(Composite = 20.5 g_{rms}	Composite = 9.9 g_{rms}

2-1-1-CP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

$$71 - 400 \text{ Hz} @ 1.0 \text{ g}^2/\text{Hz}$$

 $400 - 2000 \text{ Hz} @ -4 \text{ dB/oct}$

2000 Hz @
$$0.12 \text{ g}^2/\text{Hz}$$

Composite =
$$28.9 g_{rms}$$

Long. and Tang. Axes

$$400 - 800 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz} \\ 800 - 2000 \text{ Hz} @ -3 \text{ dB/oet}$$

$$2000 \text{ Hz} @ 0.044 \text{ g}^2/\text{Hz}$$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

^{*} Design Criteria Only

- Subzone 2-1-1-DP Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z $\pm 90^\circ$) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation Weight of Component \geq 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang.	Axes
	20 Hz @ $0.045 \text{ g}^2/\text{Hz}$ 30 Hz @ +6 dB/oct 56 Hz @ $0.10 \text{ g}^2/\text{Hz}$ 59 Hz @ +12 dB/oct	20 - 29 Hz @ 29 - 140 Hz @	$0.015 \text{ g}^2/\text{Hz}$
56 -	59 Hz @ +12 dB/oct	140 - 200 Hz @	+ 4 dB/oct
59 - 400 - 3	400 Hz @ 0.13 g ² /Hz 2000 Hz @ -4 dB/oct 2000 Hz @ 0.015 g ² /Hz	200 - 250 Hz @ 250 - 400 Hz @ 400 - 800 Hz @ 800 - 2000 Hz @ 2000 Hz @	-3 dB/oct 0.015 g ² /Hz
(Composite = 10.5 g_{rms}	Composite	= $4.9 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.067 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00084 \text{ g}^2/\text{Hz}$
20 - 30 Hz @ +6 dB/oct	20 - 50 Hz @ +9 dB/oct
$30 - 47 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$	50 - 400 Hz @ 0.013 g ² /Hz
47 - 54 Hz @ +12 dB/oct	400 - 700 Hz @ +6 dB/oct
$54 - 400 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$
400 - 2000 Hz @ -4 dB/oct	1000 - 2000 Hz @ -3 dB/oct
$2000 \text{ Hz} @ 0.03 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$
Composite = 14.6 g_{rms}	Composite = 7.0 g_{rms}

2-1-1-DP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

Composite = 21.0 g_{rms}

Composite = 9.8 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-1-2 Structural Ring at Station X_T 1871 in the ET LH $_2$ Cylinder, Inboard Half (+Z Axis $\pm 90^{\circ}$). (General Specifications).

Same as Subzone 2-1-2-A below.

- Subzone 2-1-2-A Input to Components mounted on the Structural Ring $\overline{X_T}$ 1871, Inboard side (+Z ±90°), and not within ±10° of the GO₂ Press. Line/Cable Tray Installation. Weight of Component < 75 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
90 - 800 - 3	20 Hz @ $0.014 \text{ g}^2/\text{Hz}$ 90 Hz @ $+4 \text{ dB/oct}$ 800 Hz @ $0.1 \text{ g}^2/\text{Hz}$ 2000 Hz @ -6 dB/oct	$20 \text{ Hz} \stackrel{?}{=} 0.025 \text{ g}^2/\text{Hz}$ $20 - 200 \text{ Hz} \stackrel{?}{=} +2 \text{ dB/oct}$ $200 - 1700 \text{ Hz} \stackrel{?}{=} 0.11 \text{ g}^2/\text{Hz}$ $1700 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.08 \text{ g}^2/\text{Hz}$
	Composite = 11 g_{rms}	Composite = 14.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.023 g ² /Hz 20 - 120 Hz @ +4 dB/oet 120 - 1100 Hz @ 0.25 g ² /Hz 1100 - 2000 Hz @ -6 dB/oet 2000 Hz @ 0.076 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 19.5 g_{rms}	Composite = 27.6 g_{rms}

Radial	Axis	Long. and Tang. Axes
20 -	$20 \text{ Hz} @ 0.056 \text{ g}^2/\text{Hz} \\ 90 \text{ Hz} @ +4 \text{ dB/oct}$	$20 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$ 20 - 200 Hz @ +2 dB/oct
800 -	800 Hz @ 0.4 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.07 g ² /Hz	$200 - 1700 \text{ Hz} @ 0.45 \text{ g}^2/\text{Hz}$ 1700 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.32 \text{ g}^2/\text{Hz}$
	Composite = 21.9 g _{rms}	Composite = 29.2 g _{rms}

2-1-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-2-B Input to Components mounted on the Structural Ring \overline{X}_T 1871, Inboard side (+Z $\pm 90^\circ$), and not within $\pm 10^\circ$ of the GO Press. Line/Cable Tray Installation. Weight of Component > 75 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
	20 Hz @ $0.014 \text{ g}^2/\text{Hz}$ 54 Hz @ +4 dB/oct	$20 \text{ Hz } @ 0.016 \text{ g}^2/\text{Hz}$ 20 - 140 Hz @ +2 dB/oct
54 - 800 -	800 Hz @ 0.05 g^2/Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0088 g^2/Hz	$140 - 1700 \text{ Hz} @ 0.055 \text{ g}^2/\text{Hz}$ 1700 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.04 \text{ g}^2/\text{Hz}$
	Composite = 7.8 g _{rms}	Composite = 10.2 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.015 g ² /Hz 20 - 100 Hz @ +4 dB/oct 100 - 1100 Hz @ 0.13 g ² /Hz 1100 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.039 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.020 \text{ g}^2/\text{Hz}$ $20 - 1100 \text{ Hz} \stackrel{?}{=} +2 \text{ dB/oct}$ $1100 - 1500 \text{ Hz} \stackrel{?}{=} 0.28 \text{ g}^2/\text{Hz}$ $1500 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.12 \text{ g}^2/\text{Hz}$
Composite = 14.1 g_{rms}	Composite = $19.7 g_{rms}$

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.056 \text{ g}^2/\text{Hz}$ 20 - 54 Hz @ +4 dB/oct	$20 \text{ Hz} @ 0.064 \text{ g}^2/\text{Hz}$ 20 - 140 Hz @ +2 dB/oct
54 - 800 Hz @ 0.2 g ² /Hz 800 - 2000 Hz @ -6 dB/oct	140 - 1700 Hz @ 0.22 g ² /Hz 1700 - 2000 Hz @ -6 dB/oct
2000 Hz @ $0.035 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.16 g ² /Hz
Composite = 15.6 g_{rms}	Composite = $20.4 \text{ g}_{\text{rms}}$

2-1-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-2-AP Input to components mounted on the structural ring $(X_T 1871)$, Inboard side (+Z $\pm 90^\circ$) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 75 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.023 g ² /Hz 20 - 120 Hz @ +4 dB/oct 120 - 1100 Hz @ 0.25 g ² /Hz 1100 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.076 g ² /Hz	$\begin{array}{c} 20~\mathrm{Hz} @ 0.038~\mathrm{g}^2/\mathrm{Hz} \\ 20~\mathrm{-}~1100~\mathrm{Hz} @ +2~\mathrm{dB/oct} \\ 1100~\mathrm{-}~1500~\mathrm{Hz} @ 0.55~\mathrm{g}^2/\mathrm{Hz} \\ 1500~\mathrm{-}~2000~\mathrm{Hz} @ -9~\mathrm{dB/oct} \\ 2000~\mathrm{Hz} @ 0.23~\mathrm{g}^2/\mathrm{Hz} \end{array}$
Composite = 19.5 g_{rms}	Composite = 27.6 g_{rms}

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.054 g ² /Hz 20 - 180 Hz @ +4 dB/oct 180 - 300 Hz @ 0.9 g ² /Hz 300 - 350 Hz @ -12 dB/oct 350 - 1000 Hz @ 0.5 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.13 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 27.8 g _{rms}	Composite = 36.1 g_{rms}

2-1-2-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axis

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-2 BP Input to components mounted on the structural ring $(X_T = 1871)$, Inboard side (+Z $\pm 90^\circ$) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 75 lb. but < 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

Composite = 10.2 g_{rms}

Composite = $12.9 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

9	ŋ
$20 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$
$20 \text{ Hz} \ @ \ 0.015 \text{ g}^2/\text{Hz}$ $20 - 100 \text{ Hz} \ @ +4 \text{ dB/oct}$	20 - 1100 Hz @ +2 dB/oct
$100 - 1100 \text{ Hz} @ 0.13 \text{ g}^2/\text{Hz}$	$1100 - 1500 \text{ Hz} = 0.28 \text{ g}^2/\text{Hz}$
1100 - 2000 Hz @ -6 dB/oct	1500 - 2000 Hz @ -9 dB/oct
2000 Hz @ 0.039 g^2/Hz	2000 Hz @ 0.12 g^2/Hz
Composite = 14.1 g _{rms}	Composite = 19.7 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

	20	Нz	@ 0.041	$1 g^2/Hz$			20	Ηz	@	$0.088 \text{ g}^2/\text{Hz}$
20 -	130	Ηz	@ +4 dI	B/oct		-				+2 dB/oct
130 -	300	Hz	@ 0.45	g^2/Hz	210	_	1000	Ηz	@	$0.4 \text{ g}^2/\text{Hz}$
300 -	350	Ηz	@ -12 d	dB/oct						-2 dB/oct
			@ 0.25				2000	Ηz	@	$0.13 \text{ g}^2/\text{Hz}$
1000 -	2000	Hz	@ -6 dI	B /oct						
	2000	Ηz	@ 0.063	g^2/Hz						

Composite = 20.4 g_{rms}

Composite = 25.8 g_{rms}

2-1-2-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-2-CP Input to components mounted on the structural Ring $\overline{(X_T\ 1871)}$, Inboard side (+Z $\pm 90^\circ$) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.031 \text{ g}^2/\text{Hz}$ 20 - 90 Hz @ +4 dB/oct $90 - 300 \text{ Hz} @ 0.22 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.054 \text{ g}^2/\text{Hz}$ 20 - 150 Hz @ +2 dB/oct $150 - 1000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$
300 - 350 Hz @ -12 dB/oct	1000 - 2000 Hz @ -2 dB/oct
$350 - 1000 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.13 g^2/Hz
Composite = 14.2 grms	Composite = 19.2 g _{rms}

2-1-2-CP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-1-3 Structural Ring at Station $\rm X^{}_{T}$ 2058 in the ET $\rm LH^{}_{2}$ Cylinder, Inboard Half (+Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-1-3-A below.

- Subzone 2-1-3-A Input to components mounted on the structural Ring at \overline{X}_T 2058, Inboard side (+Z ±90°) and not within ±10° of \overline{GO}_2 Press. Line/Cable Tray Installation. Weight of Component < 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.011 \text{ g}^2/\text{Hz}$ $20 - 90 \text{ Hz} \stackrel{?}{=} +4 \text{ dB/oct}$ $90 - 170 \text{ Hz} \stackrel{?}{=} 0.075 \text{ g}^2/\text{Hz}$ $170 - 340 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $340 - 1000 \text{ Hz} \stackrel{?}{=} 0.038 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -4 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.015 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{?}{=} 0.014 \text{ g}^2/\text{Hz}$ $20 - 200 \text{ Hz} \stackrel{?}{=} +2 \text{ dB/oct}$ $200 - 1300 \text{ Hz} \stackrel{?}{=} 0.055 \text{ g}^2/\text{Hz}$ $1300 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.035 \text{ g}^2/\text{Hz}$
Composite = 8.1 g_{rms}	Composite = 9.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
120 - 1100 -	20 Hz @ 0.012 g ² /Hz 120 Hz @ +4 dB/oct 1100 Hz @ 0.13 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.039 g ² /Hz	$20 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 20 - 1100 Hz @ +2 dB/oct $1100 - 1500 \text{ Hz} @ 0.27 \text{ g}^2/\text{Hz}$ 1500 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$
	Composite = 14.1 g _{rms}	Composite = 19.4 g _{rms}

2-1-3-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak 5 - 40 Hz @ 0.8 G's peak

Composite = 19.8 g_{rms}

Long. and Tang. Axes

5. Shock Test Criteria (2 shocks/axis)

Composite = 16.1 g_{rms}

See Table I

- Subzone 2-1-3-B Input to components mounted on the structural Ring at X_T 2058, Inboard side (+Z ±90°) and not within ±10° of GO_2 Press. Line/Cable Tray Installation. Weight of Component > 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0077 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +4 dB/oct $100 - 1100 \text{ Hz} @ 0.065 \text{ g}^2/\text{Hz}$ 1100 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$	20 Hz @ 0.0098 g ² /Hz 20 - 1100 Hz @ +2 dB/oct 1100 - 1500 Hz @ 0.14 g ² /Hz 1500 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.059 g ² /Hz
Composite = 10.0 g_{rms}	Composite = 13.9 g_{rms}

Radial	Axis	Long. and Tang. Axes
65 - 170 - 340 -	20 Hz @ 0.033 g ² /Hz 65 Hz @ +4 dB/oct 170 Hz @ 0.15 g ² /Hz 340 Hz @ -3 dB/oct 1000 Hz @ 0.075 g ² /Hz 2000 Hz @ -4 dB/oct 2000 Hz @ 0.03 g ² /Hz	20 Hz @ 0.034 g ² /Hz 20 - 140 Hz @ +2 dB/oct 140 - 1300 Hz @ 0.11 g ² /Hz 1300 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.072 g ² /Hz
	Composite = 11.5 g _{rms}	Composite = $14.1 g_{rms}$

2-1-3-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-3-AP Input to Components mounted on the Structural Ring at X_T 2058, Inboard side (+Z $\pm 90^\circ$), and within $\pm 10^\circ$ of the GO₂ Press. Line/Cable Tray Installation. Weight of Component < 100 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
120 -	20 Hz @ 0.012 g ² /Hz 120 Hz @ +4 dB/oct 1100 Hz @ 0.13 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.039 g ² /Hz	$20 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 20 - 1100 Hz @ +2 dB/oct $1100 - 1500 \text{ Hz} @ 0.27 \text{ g}^2/\text{Hz}$ 1500 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$
	Composite = 14.1 g_{rms}	Composite = 19.4 g_{rms}

Radial Axis		Long. and Tang. Axes
20 - 150 150 - 200 200 - 500 500 - 1000 1000 - 2000	Hz @ 0.035 g ² /Hz Hz @ +4 dB/oct Hz @ 0.5 g ² /Hz Hz @ -3 dB/oct Hz @ 0.2 g ² /Hz Hz @ -3 dB/oct Hz @ 0.1 g ² /Hz	20 Hz @ 0.064 g ² /Hz 20 - 300 Hz @ +2 dB/oct 300 - 1000 Hz @ 0.4 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.2 g ² /Hz
Comp	posite = 17.8 g _{rms}	Composite = 25.1 g_{rms}

2-1-3-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-1-3-BP Input to Components mounted on the structural Ring at X_T 2058, Inboard side (+Z ±90°), and within ±10° of the GO_2 Press. Line/Cable Tray Installation. Weight of Component \geq 100 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axi	s	Long. and Tang. Axes
$ \begin{array}{rrrr} 20 & - & 11 \\ 110 & - & 20 \\ 200 & - & 50 \\ 500 & - & 100 \\ 1000 & - & 200 \end{array} $	0 Hz @ 0.0068 g ² /Hz 0 Hz @ +4 dB/oct 0 Hz @ 0.063 g ² /Hz 0 Hz @ -3 dB/oct 0 Hz @ 0.024 g ² /Hz 0 Hz @ -3 dB/oct 0 Hz @ 0.012 g ² /Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	mposite = $6.4 \mathrm{g}_{\mathrm{rms}}$	Composite = 9.0 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis		Long. and Tang	g. Axes
20 - 100 Hz @ 100 - 1100 Hz @ 1100 - 2000 Hz @	$0.065 \text{ g}^2/\text{Hz}$	20 - 1100 Hz 1100 - 1500 Hz 1500 - 2000 Hz	$0.14 \text{ g}^2/\text{Hz}$
Composite	$e = 10.0 g_{rms}$	Composit	e = 13.9 g _{rms}

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.027 g ² /Hz 20 - 110 Hz @ +4 dB/oct 110 - 200 Hz @ 0.25 g ² /Hz 200 - 500 Hz @ -3 dB/oct 500 - 1000 Hz @ 0.096 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.048 g ² /Hz	$20 \text{ Hz} @ 0.041 \text{ g}^2/\text{Hz}$ 20 - 210 Hz @ +2 dB/oct $210 - 1000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$
Composite = 12.7 g_{rms}	Composite = 17.9 g_{rms}

2-1-3-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-2 ET LH $_2$ Cylinder, Aft Section (Stations X $_T$ 2058 to X $_T$ 1624), Outboard Half (-Z Axis $\pm 90^\circ$). (General Specifications).

Same as Subzone 2-2-1-A below.

Subzone 2-2-1 Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X_T 2058 to X_T 1624), Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-2-1-A below.

- Subzone 2-2-1-A Input to Components Mounted on Baffles and Stiffened Skin on the ET LH₂ Cylinder, Aft Section (Stations X_T 2058 to X_T 1624), Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < 15 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \ @ \ 0.067 \ \text{g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00084 \text{ g}^2/\text{Hz}$
20 - 30 Hz @ +6 dB/oct	20 - 100 Hz @ +9 dB/oct
$30 - 47 \text{ Hz } @ 0.15 \text{ g}^2/\text{Hz}$	$100 - 400 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$
47 - 90 Hz @ +12 dB/oct	400 - 700 Hz @ +6 dB/oct
$90 - 400 \text{ Hz} @ 2.0 \text{ g}^2/\text{Hz}$ 400 - 2000 Hz @ -4 dB/oct	$700 - 1000 \text{ Hz} @ 0.30 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
$2000 \text{ Hz} @ 0.23 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
Composite = 41.1 g _{rms}	Composite = 19.7 g_{rms}

2-2-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

$$20 \text{ Hz} \stackrel{?}{=} 0.050 \text{ g}^2/\text{Hz}$$

 $20 - 70 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$
 $70 - 1000 \text{ Hz} \stackrel{?}{=} 0.60 \text{ g}^2/\text{Hz}$
 $1000 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$
 $2000 \text{ Hz} \stackrel{?}{=} 0.075 \text{ g}^2/\text{Hz}$

Composite = 28.3 g_{rms}

Long. and Tang. Axes

 $\begin{array}{c} 20~{\rm Hz}~@~0.0014~{\rm g}^2/{\rm Hz}\\ 20~-~100~{\rm Hz}~@~+6~{\rm dB/oct}\\ 100~-~1000~{\rm Hz}~@~0.035~{\rm g}^2/{\rm Hz}\\ 1000~-~2000~{\rm Hz}~@~-3~{\rm dB/oct}\\ 2000~{\rm Hz}~@~0.018~{\rm g}^2/{\rm Hz} \end{array}$

Composite = 7.5 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-2-1-B Input to Components Mounted on Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X_T 2058 to X_T 1624), Outboard Half (-Z Axis $\pm 90^\circ$). Weight of Component > 15 but < 45 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis			Long.	. ε	and Tang. Axes	
20 -	20 30	Hz @	0.067 g ² /Hz +6 dB/oct	20	_	20 Hz @ 0.00084 g ² /Hz 78 Hz @ +9 dB/oct	
30 -	47	Hz @	0.15 g ² /Hz +12 dB/oct	78	_	400 Hz @ 0.050 g ² /Hz 700 Hz +6 dB/oct	
76 -	400	Hz @	1.0 g ² /Hz -4 dB/oct	700	_	1000 Hz @ $0.15 \text{ g}^2/\text{Hz}$ 2000 Hz @ -3 dB/oct	
			$0.12 \text{ g}^2/\text{Hz}$	1000		2000 Hz @ 0.075 g ² /Hz	
	Comp	osite	= 28.7 g _{rms}			Composite = 14.0 g _{rms}	

Radial	Axis	Long. and Tang. Axes
50 -	20 Hz @ 0.050 g ² /Hz 50 Hz @ +6 dB/oct 1000 Hz @ 0.30 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.038 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Composite = 20.1 g _{rms}	Composite = $5.4 \mathrm{g}_{\mathrm{rms}}$

2-2-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-2-1-C Input to Components Mounted on Baffles and Stiffened $\overline{\rm Skin}$ on the ET LH $_2$ Cylinder, Aft Section (Stations $\rm X_T$ 2058 to $\rm X_T$ 1624), Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component \geq 45 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.017 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00021 \text{ g}^2/\text{Hz}$
20 - 30 Hz @ +6 dB/oct	20 - 62 Hz @ +9 dB/oct
30 - 47 Hz @ 0.038 g ² /Hz	$62 - 400 \text{ Hz} @ 0.0062 \text{ g}^2/\text{Hz}$
47 - 64 Hz @ +12 dB/oct	400 - 700 Hz @ +6 dB/oct
64 - 400 Hz @ 0.13 g ² /Hz	$700 - 1000 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$
400 - 2000 Hz @ -4 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.015 g ² /Hz	2000 Hz @ 0.0095 g ² /Hz
Composite = 5.1 g_{rms}	Composite = 4.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.067 g ² /Hz 20 - 30 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00084 \text{ g}^2/\text{Hz}$ 20 - 62 Hz @ +9 dB/oct
30 - 47 Hz @ 0.15 g ² /Hz 47 - 64 Hz @ +12 dB/oct	62 - 400 Hz @ 0.025 g ² /Hz 400 - 700 Hz @ +6 dB/oct
$64 - 400 \text{ Hz } @ 0.5 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$
400 - 2000 Hz @ -4 dB/oct $2000 \text{ Hz} @ 0.06 \text{ g}^2/\text{Hz}$	$1000 - 2000 \text{ Hz} @ -3 \text{ dB/oct}$ $2000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$
Composite = 20.5 g_{rms}	Composite = 9.9 g _{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.024 \text{ g}^2/\text{Hz}$ $20 - 50 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $50 - 1000 \text{ Hz} \stackrel{?}{=} 0.15 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.019 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{@}{=} 0.0014 \text{ g}^2/\text{Hz}$ $20 - 72 \text{ Hz} \stackrel{@}{=} +6 \text{ dB/oct}$ $72 - 1000 \text{ Hz} \stackrel{@}{=} 0.015 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{@}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{@}{=} 0.0076 \text{ g}^2/\text{Hz}$
Composite = 14.2 g _{rms}	Composite = 5.0 g_{rms}

2-2-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-2-2 Structural Ring at Station X_T 1871 in the ET LH $_2$ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-2-2-A below.

Subzone 2-2-2-A Input to Components Mounted on the Structural Ring at Station X_T 1871 in the ET LH $_2$ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < 60 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0075 \text{ g}^2/\text{Hz}$ 20 - 120 Hz @ +4 dB/oct $120 - 1100 \text{ Hz} @ 0.080 \text{ g}^2/\text{Hz}$ 1100 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	20 Hz @ 0.012 g ² /Hz 20 - 1100 Hz @ +2 dB/oct 1100 - 1500 Hz @ 0.17 g ² /Hz 1500 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.075 g ² /Hz
Composite = 11.0 g_{rms}	Composite = 15.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ 20 - 120 Hz @ +4 dB/oct $120 - 1100 \text{ Hz} @ 0.32 \text{ g}^2/\text{Hz}$ 1100 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.097 \text{ g}^2/\text{Hz}$	$\begin{array}{c} 20~\text{Hz} @ 0.049~\text{g}^2/\text{Hz} \\ 20~-~1100~\text{Hz} @ +2~\text{dB/oct} \\ 1100~-~1500~\text{Hz} @ 0.70~\text{g}^2/\text{Hz} \\ 1500~-~2000~\text{Hz} @ -9~\text{dB/oct} \\ 2000~\text{Hz} @ 0.30~\text{g}^2/\text{Hz} \end{array}$
Composite = 22.1 g_{rms}	Composite = 31.2 g_{rms}

Radial Axis	Long. and Tang. Axes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 8.4 g_{rms}	Composite = 10.7 g_{rms}

2-2-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Input to Components Mounted on the Structural Ring Subzone 2-2-2-B at Station X_T 1871 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 60 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.0047 \text{ g}^2/\text{Hz}$ $20 - 100 \text{ Hz} \stackrel{?}{=} +4 \text{ dB/oct}$ $100 - 1100 \text{ Hz} \stackrel{?}{=} 0.040 \text{ g}^2/\text{Hz}$ $1100 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.012 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{?}{=} 0.0060 \text{ g}^2/\text{Hz}$ $20 - 1100 \text{ Hz} \stackrel{?}{=} +2 \text{ dB/oct}$ $1100 - 1500 \text{ Hz} \stackrel{?}{=} 0.087 \text{ g}^2/\text{Hz}$ $1500 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.037 \text{ g}^2/\text{Hz}$
Composite = 7.8 g_{rms}	Composite = 11.0 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
100 - 1100 -	20 Hz @ 0.019 g ² /Hz 100 Hz @ +4 dB/oct 1100 Hz @ 0.16 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.049 g ² /Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Composite = 15.7 g _{rms}	Composite = 22.0 g_{rms}

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0087 g ² /Hz 20 - 80 Hz @ +4 dB/oct 80 - 200 Hz @ 0.055 g ² /Hz 200 - 300 Hz @ -10 dB/oct 300 - 1500 Hz @ 0.015 g ² /Hz 1500 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0085 g ² /Hz	20 Hz @ 0.011 g ² /Hz 20 - 40 Hz @ +3 dB/oct 40 - 600 Hz @ 0.022 g ² /Hz 600 - 1000 Hz @ +3 dB/oct 1000 - 1500 Hz @ 0.037 g ² /Hz 1500 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.021 g ² /Hz
Composite = 5.9 g_{rms}	Composite = 7.5 g_{rms}

2-2-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.6 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-2-3 Structural Ring at Station $\rm X_{T}$ 2058 in the ET LH $_{2}$ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-2-3-A below.

Subzone 2-2-3-A Input to Components Mounted on the Structural Ring at Station X_T 2058 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < 100 lb.

1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.012 $g^2/$ 20 - 120 Hz @ +4 dB/oct 120 - 1100 Hz @ 0.13 $g^2/$ H 1100 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.039 $g^2/$ Composite = 14.1 g_r	$20 - 1100 \text{ Hz} @ +2 \text{ dB/oct}$ $12 1100 - 1500 \text{ Hz} @ 0.27 \text{ g}^2/\text{Hz}$ $1500 - 2000 \text{ Hz} @ -9 \text{ dB/oct}$ Hz $2000 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$
	ms rms

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0073 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0093 \text{ g}^2/\text{Hz}$
20 - 80 Hz @ +4 dB/oct	20 - 40 Hz @ +3 dB/oct
$80 - 200 \text{ Hz} @ 0.046 \text{ g}^2/\text{Hz}$	40 - 600 Hz @ 0.018 g ² /Hz
200 - 300 Hz @ -10 dB/oct	600 - 1000 Hz @ +3 dB/oct
$300 - 1500 \text{ Hz} @ 0.012 \text{ g}^2/\text{Hz}$	1000 - 1500 Hz @ 0.030 g ² /Hz
1500 - 2000 Hz @ -6 dB/oct	1500 - 2000 Hz @ -6 dB/oct
2000 Hz @ 0.0068 g^2/Hz	2000 Hz @ $0.017 \text{ g}^2/\text{Hz}$
Composite = 5.3 g_{rms}	Composite = 6.8 g_{rms}

2-2-3-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak
5 - 40 Hz @ 0.6 G's peak
5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A — Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead
Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 2-2-3-B Input to Components Mounted on the Structural Ring at Station X_T 2058 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 60 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
100 -		$20 \text{ Hz} \stackrel{?}{=} 0.0025 \text{ g}^2/\text{Hz}$ $20 - 1100 \text{ Hz} \stackrel{?}{=} +2 \text{ dB/oct}$ $1100 - 1500 \text{ Hz} \stackrel{?}{=} 0.035 \text{ g}^2/\text{Hz}$ $1500 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.015 \text{ g}^2/\text{Hz}$
	Composite = 5.0 g _{rms}	Composite = 6.9 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0077 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +4 dB/oct $100 - 1100 \text{ Hz} @ 0.065 \text{ g}^2/\text{Hz}$ 1100 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0098 \text{ g}^2/\text{Hz}$ 20 - 1100 Hz @ +2 dB/oct $1100 - 1500 \text{ Hz} @ 0.14 \text{ g}^2/\text{Hz}$ 1500 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.059 \text{ g}^2/\text{Hz}$
Composite = 10.0 g_{rms}	Composite = 13.9 g _{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0066 \text{ g}^2/\text{Hz}$ 20 - 80 Hz @ +4 dB/oct	$20 \text{ Hz} @ 0.0049 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct
$80 - 200 \text{ Hz} = 0.041 \text{ g}^2/\text{Hz}$	$40 - 600 \text{ Hz} @ 0.0098 \text{ g}^2/\text{Hz}$
200 - 300 Hz @ -10 dB/oct	600 - 1000 Hz @ +3 dB/oct
$300 - 1500 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$	$1000 - 1500 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$
1500 - 2000 Hz @ -6 dB/oct	1500 - 2000 Hz @ -6 dB/oct
2000 Hz @ $0.0061 \text{ g}^2/\text{Hz}$	2000 Hz @ $0.0092 \text{ g}^2/\text{Hz}$
Composite = 5.0 g_{rms}	Composite = 5.0 g_{rms}

2-2-3-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

Subzone 2-3 ET LH $_2$ Cylinder, Forward Section (Stations X $_T$ 1624 to X $_T$ 1123), Inboard Half (+Z Axis $\pm 90^\circ$). (General Specifications)

Same as Subzone 2-3-1-A below.

Subzone 2-3-1-A $\frac{\text{Input to }}{\text{Skin on the LH}_2}$ components mounted on Baffles and Stiffened $\frac{\text{Skin on the LH}_2}{\text{Skin on the LH}_2}$ Tank, Forward Section (X_T 1624 to X_T 1123), Inboard Half (+Z ±90°) and not within ±10° of the GO₂ Press. Line/Cable Tray Installation. Weight of Component < 15 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial	Axis				Long	•	and ?	rang	g.	Axes
20 -	20 120	Hz Hz	@ @	$0.0063 \text{ g}^2/\text{Hz}$ +9 dB/oct	20	_	20 90	Hz Hz	@ @	$0.00033 \text{ g}^2/\text{Hz}$ +9 dB/oct
120 -	160	Hz	@	1.3 g ² /Hz -6 dB/oct	90	_	220	Ηz	@	$0.025 \text{ g}^2/\text{Hz}$ +9 dB/oct
280 -	900	Hz	@	0.43 g ² /Hz -6 dB/oct	270	_	1000	Ηz	@	$0.045 \text{ g}^2/\text{Hz}$ -3 dB/oct
900 -				$0.09 \text{ g}^2/\text{Hz}$	1000					$0.023 \text{ g}^2/\text{Hz}$
	Comp	osi	te	= 25.2 g _{rms}			Comp	osi	te	= 8.4 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.042 g^2/Hz 75 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00039 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct
75 - 170 -	$170 \text{ Hz } @ 0.56 \text{ g}^2/\text{Hz} \\ 240 \text{ Hz } @ +6 \text{ dB/oct}$	$100 - 440 \text{ Hz} @ 0.048 \text{ g}^2/\text{Hz}$ 440 - 700 Hz @ +6 dB/oct
240 -	900 Hz @ 1.13 g ² /Hz 2000 Hz @ -3 dB/oct	$700 - 1000 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
900 -	2000 Hz @ -5 dB/oct 2000 Hz @ 0.51 g ² /Hz	2000 Hz @ 0.061 g ² /Hz
	Composite = 41.0 g _{rms}	Composite = 12.6 g_{rms}

2-3-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 50.4 g_{rms}

Long. and Tang. Axes

Composite = 16.7 g_{rms}

Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-B Input to Components mounted on Baffles and Stiffened Skin on the LH $_2$ Tank, Forward Section (X $_T$ 1624 to X $_T$ 1123), Inboard Half (+Z $\pm 90^\circ$) and NOT within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 15 but < 45 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0063 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00033 \text{ g}^2/\text{Hz}$
20 - 96 Hz @ +9 dB/oct	20 - 72 Hz @ +9 dB/oct
$96 - 160 \text{ Hz} @ 0.63 \text{ g}^2/\text{Hz}$	72 - 220 Hz @ 0.013 g ² /Hz
160 - 280 Hz @ -6 dB/oct	220 - 270 Hz @ +9 dB/oct
$280 - 900 \text{ Hz} @ 0.22 \text{ g}^2/\text{Hz}$	$270 - 1000 \text{ Hz} @ 0.023 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
900 - 2000 Hz @ -6 dB/oct	2000 Hz @ -3 dB/Oct
2000 Hz @ 0.045 g^2/Hz	$2000 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$
Composite = 18.2 g_{rms}	Composite = 5.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.042 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00039 \text{ g}^2/\text{Hz}$
20 - 52 Hz @ +6 dB/oct	20 - 80 Hz @ +9 dB/oct
52 - 120 Hz @ 0.28 g ² /Hz	80 - 440 Hz @ 0.024 g ² /Hz
120 - 170 Hz @ +6 dB/oct	440 - 700 Hz @ +6 dB/oct
$170 - 900 \text{ Hz } @ 0.56 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.060 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -3 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.26 g^2/Hz	2000 Hz @ $0.030 \text{ g}^2/\text{Hz}$
Composite = 29.4 g_{rms}	Composite = 8.9 g _{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$ 20 - 96 Hz @ +9 dB/oct	$20 \text{ Hz} @ 0.0013 \text{ g}^2/\text{Hz}$ 20 - 72 Hz @ +9 dB/oct
96 - 160 Hz @ 2.5 g ² /Hz 160 - 280 Hz @ -6 dB/oct	72 - 220 Hz @ 0.05 g ² /Hz 220 - 270 Hz @ +9 dB/oct
$280 - 900 \text{ Hz} @ 0.86 \text{ g}^2/\text{Hz}$	$270 - 1000 \; \mathrm{Hz} \; @ \; 0.09 \; \mathrm{g}^2 / \mathrm{Hz}$
900 - 2000 Hz @ -6 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.18 g^2/Hz	2000 Hz @ 0.045 g^2/Hz
Composite = 36.4 g _{rms}	Composite = $11.8 g_{rms}$

2-3-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-C Input to Components mounted on Baffles and Stiffened Skin on the LH $_2$ Tank, Forward Section (X $_T$ 1624 to X $_T$ 1123), Inboard Half (+Z ±90°) and not within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz } @ 0.042 \text{ g}^2/\text{Hz}$ 20 - 37 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00039 \text{ g}^2/\text{Hz}$ 20 - 63 Hz @ +9 dB/oct
$37 - 85 \text{ Hz} @ 0.14 \text{ g}^2/\text{Hz}$ 85 - 120 Hz @ +6 dB/oct	$63 - 440 \text{ Hz} @ 0.012 \text{ g}^2/\text{Hz} \\ 440 - 700 \text{ Hz} @ +6 \text{ dB/oct}$
120 - 900 Hz @ 0.28 g ² /Hz 900 - 2000 Hz @ -3 dB/oct	700 - 1000 Hz @ 0.030 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct
$2000 \text{ Hz} \text{ @ } 0.13 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.015 g^2/Hz
Composite = 20.9 g_{rms}	Composite = 6.4 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz} \\ 20 - 75 \text{ Hz} @ +9 \text{ dB/oct}$	$20 \text{ Hz} @ 0.0013 \text{ g}^2/\text{Hz}$ 20 - 56 Hz @ +9 dB/oct
75 - 160 Hz @ 1.2 g ² /Hz 160 - 280 Hz @ -6 dB/oct	56 - 220 Hz @ 0.025 g ² /Hz 220 - 270 Hz @ +9 dB/oct
$280 - 900 \text{ Hz} @ 0.4 \text{ g}^2/\text{Hz}$ 900 - 2000 Hz @ -6 dB/oct	$270 - 1000 \text{ Hz} @ 0.045 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
$2000 \text{ Hz} @ 0.082 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.023 \text{ g}^2/\text{Hz}$
Composite = 25.5 g_{rms}	Composite = 8.4 g_{rms}

2-3-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-AP Input to Components mounted on Baffles and Stiffened $\overline{\text{Skin}}$ on the LH $_2$ Tank, Forward Section (X $_{\overline{\text{T}}}$ 1624 to X $_{\overline{\text{T}}}$ 1123), Inboard Half (+Z ±90°) and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 15 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20~{ m Hz}~@~0.025~{ m g}^2/{ m Hz}$ $20~-~150~{ m Hz}~@~+9~{ m dB/oct}$	$20 \text{ Hz} @ 0.0013 \text{ g}^2/\text{Hz}$ 20 - 90 Hz @ +9 dB/oct
$150 - 250 \; \mathrm{Hz} \; @ \; 10.0 \; \mathrm{g}^2/\mathrm{Hz}$ $250 - 360 \; \mathrm{Hz} \; @ \; -10 \; \mathrm{dB/oct}$	$90 - 140 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$ 140 - 210 Hz @ +9 dB/oct
$360 - 900 \text{ Hz} = 3.0 \text{ g}^2/\text{Hz}$ 900 - 2000 Hz = -6 dB/oct $2000 \text{ Hz} = 0.62 \text{ g}^2/\text{Hz}$	$210 - 1000 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
Composite = 71.2 g _{rms}	Composite = 21.6 g_{rms}

2-3-1-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-BP $\frac{\text{Input to}}{\text{Skin on the LH}_2}$ Components mounted on Baffles and Stiffened $\frac{\text{Skin on the LH}_2}{\text{Skin on the LH}_2}$ Tank, Forward Section (X_T 1624 to X_T 1123), Inboard Half (+Z ±90°) and within ± 10° of the GO₂ Press. Line/Cable Tray Installation. Weight of Component \geq 15 lb. but < 45 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.042 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00039 \text{ g}^2/\text{Hz}$
20 - 52 Hz @ +6 dB/oct	20 - 80 Hz @ +9 dB/oct
$52 - 120 \text{ Hz} @ 0.28 \text{ g}^2/\text{Hz}$	$80 - 440 \text{ Hz} \oplus 0.024 \text{ g}^2/\text{Hz}$
120 - 170 Hz @ +6 dB/oct	$440 - 700 \text{ Hz} \oplus +6 \text{ dB/oct}$
170 - 900 Hz @ 0.56 g ² /Hz	$700 - 1000 \text{ Hz} @ 0.060 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -3 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.26 g ² /Hz	2000 Hz @ 0.030 g ² /Hz
Composite = 29.4 g_{rms}	Composite = 8.9 g_{rms}

Radial	Axis		Long. and	Tang.	Axes
	120 Hz @	9 0.025 g ² /Hz 9 +9 dB/oct	20 - 7	0 Hz @ 2 Hz @	$0.0013 \text{ g}^2/\text{Hz}$ +9 dB/oct
250 -	360 Hz @	$9.5.0 \text{ g}^2/\text{Hz}$ 910 dB/oct			$0.05 \text{ g}^2/\text{Hz}$ +9 dB/oct
900 -	2000 Hz @	9 1.5 g ² /Hz 9 -6 dB/oct			$0.15 \text{ g}^2/\text{Hz}$ -3 dB/oct
	2000 Hz @	$9.30 \text{ g}^2/\text{Hz}$	200	0 Hz @	$0.075 \text{ g}^2/\text{Hz}$
	Composite	= 51.6 g_{rms}	Con	nposite	= 15.3 g_{rms}

2-3-1-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-CP Input to Components mounted on Baffles and Stiffened Skin on the LH $_2$ Tank, Forward Section (X $_T$ 1624 to X $_T$ 1123), Inboard Half (+Z ±90°) and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 45 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.042 g ² /Hz 20 - 37 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00039 \text{ g}^2/\text{Hz}$ 20 - 63 Hz @ +9 dB/oct
$37 - 85 \text{ Hz} @ 0.14 \text{ g}^2/\text{Hz}$	$63 - 440 \text{ Hz} @ 0.012 \text{ g}^2/\text{Hz}$
85 - 120 Hz @ +6 dB/oct	440 - 700 Hz @ +6 dB/oct
120 - 900 Hz @ 0.28 g ² /Hz 900 - 2000 Hz @ -3 dB/oct	$700 - 1000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ $0.13 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.015 g^2/Hz
Composite = 20.9 g_{rms}	Composite = 6.4 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0013 \text{ g}^2/\text{Hz}$
20 - 96 Hz @ +9 dB/oct	20 - 56 Hz @ +9 dB/oct
96 - 250 Hz @ 2.5 g ² /Hz	56 - 140 Hz @ 0.025 g ² /Hz
250 - 360 Hz @ -10 dB/oct	140 - 210 Hz @ +9 dB/oct
$360 - 900 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$	$210 - 1000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -6 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.15 g^2/Hz	2000 Hz @ $0.038 \text{ g}^2/\text{Hz}$
Composite = 37.1 g _{rms}	Composite = 10.8 g_{rms}

2-3-1-CP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-1-DP Input to Components Mounted on Baffles and Stiffened Skin on the LH₂ Tank Forward Section (X_T 1624 to $\rm X_T$ 1123), Inboard Half (+Z $\pm 90^{\circ}$) and within $\pm 10^{\circ}$ of the GO₂ Press. Line/Cable Tray Installation. Weight of Component > 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

$$360 - 900 \text{ Hz} @ 0.095 \text{ g}^2/\text{Hz}$$

 $900 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$

Composite = 13.4 g_{rms}

Long. and Tang. Axes

Composite = $3.8 g_{rms}$

Lift-off Test Criteria (1 min/axis)

Radial Axis

Composite = 14.8 g_{rms}

Long. and Tang. Axes

Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 26.7 g_{rms}

Long. and Tang. Axes

Composite = $7.6 g_{rms}$

2-3-1-DP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-3-2 Structural Rings at Stations X_T 1624 and X_T 1377 in the ET LH $_2$ Cylinder, Inboard Half (+Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-3-2-A below.

- Subzone 2-3-2-A Input to Components mounted on Structural Ring at \overline{X}_T 1624 and \overline{X}_T 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and not within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 30 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.02 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +6 dB/oct $60 - 350 \text{ Hz} @ 0.18 \text{ g}^2/\text{Hz}$ 350 - 500 Hz @ +10 dB/oct $500 - 1000 \text{ Hz} @ 0.63 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.063 \text{ g}^2/\text{Hz}$	20 Hz @ 0.013 g ² /Hz 20 - 50 Hz @ +3 dB/oct 50 - 190 Hz @ 0.033 g ² /Hz 190 - 400 Hz @ +10 dB/oct 400 - 900 Hz @ 0.38 g ² /Hz 900 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.028 g ² /Hz
Composite = 25.3 g_{rms}	Composite = 18.7 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0061 g ² /H 20 - 100 Hz @ +6 dB/oct 100 - 290 Hz @ 0.15 g ² /Hz 290 - 500 Hz @ +9 dB/oct 500 - 850 Hz @ 0.80 g ² /Hz 850 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.15 g ² /Hz	20 Hz @ 0.0065 g ² /Hz 20 - 60 Hz @ +6 dB/oct 60 - 190 Hz @ 0.060 g ² /Hz 190 - 340 Hz @ +9 dB/oct 340 - 2000 Hz @ 0.34 g ² /Hz
Composite = 28.1 g_{rms}	Composite = 24.2 g _{rms}

2-3-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 50.6 g_{rms}

Long. and Tang. Axes

Composite = 37.3 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-2-B Input to Components mounted on Structural Ring at $\overline{X_T}$ 1624 and $\overline{X_T}$ 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and not within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 30 but < 90 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz } @ 0.02 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0093 \text{ g}^2/\text{Hz}$
20 - 43 Hz @ +6 dB/oct	20 - 35 Hz @ +3 dB/oct
$43 - 340 \text{ Hz} @ 0.09 \text{ g}^2/\text{Hz}$	$35 - 190 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$
340 - 500 Hz @ +10 dB/oct	190 - 400 Hz @ +10 dB/oct
$500 - 1000 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$	$400 - 900 \text{ Hz} @ 0.19 \text{ g}^2/\text{Hz}$
1000 - 2000 Hz @ -10 dB/oct	900 - 2000 Hz @ -10 dB/oct
2000 Hz @ 0.03 g^2/Hz	$2000 \text{ Hz} @ 0.014 \text{ g}^2/\text{Hz}$
Composite = 17.6 g_{rms}	Composite = 13.2 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis				Long.	and	1	Can	g.	Axes
				$0.0061 \text{ g}^2/\text{Hz}$		2	0	Ηz	@	$0.0065 \text{ g}^2/\text{Hz}$
20 -	72	Hz	@	+6 dB/oct	20 -	4:	2	Ηz	@	+6 dB/oct
				$0.075 \text{ g}^2/\text{Hz}$						$0.030 \text{ g}^2/\text{Hz}$
290 -	500	Hz	@	+9 dB/oct	190 -	34	0	Hz	@	+9 dB/oct
500 -	850	Hz	@	$0.40 \text{ g}^2/\text{Hz}$	340 -	200	0	Ηz	@	$0.17 \text{ g}^2/\text{Hz}$
				-6 dB/oct						
	2000	Hz	@	$0.072 \text{ g}^2/\text{Hz}$						
	Comp	osi	te	= 19.9 g _{rms}		Con	np	osi	te	= 17.4 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz } @ 0.078 \text{ g}^2/\text{Hz}$ 20 - 43 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.037 \text{ g}^2/\text{Hz}$ 20 - 35 Hz @ +3 dB/oct
43 - 340 Hz @ 0.35 g^2/Hz	$35 - 190 \text{ Hz} @ 0.065 \text{ g}^2/\text{Hz}$
340 - 500 Hz @ +10 dB/oct $500 - 1000 \text{ Hz} @ 1.2 \text{ g}^2/\text{Hz}$	190 - 400 Hz @ +10 dB/oct 400 - 900 Hz @ $0.75 \text{ g}^2/\text{Hz}$
1000 - 2000 Hz @ -10 dB/oct	900 - 2000 Hz @ -10 dB/oct
2000 Hz @ $0.12 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.054 \text{ g}^2/\text{Hz}$
Composite = 35.1 g_{rms}	Composite = 26.4 g_{rms}

2-3-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-2-C Input to Components mounted on Structural Ring at \overline{X}_T 1624 and \overline{X}_T 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and not within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
20 -	$20 \text{ Hz} @ 0.02 \text{ g}^2/\text{Hz} \\ 30 \text{ Hz} @ +6 \text{ dB/oct}$	$20 \text{ Hz} @ 0.0065 \text{ g}^2/\text{Hz}$ 20 - 25 Hz @ +3 dB/oct
30 -	340 Hz @ 0.043 g ² /Hz 500 Hz @ +10 dB/oct	25 - 190 Hz @ 0.008 g ² /Hz 190 - 400 Hz @ +10 dB/oct
500 -	1000 Hz @ $0.15 \text{ g}^2/\text{Hz}$	$400 - 900 \text{ Hz} @ 0.093 \text{ g}^2/\text{Hz}$
	2000 Hz @ -10 dB/oct 2000 Hz @ 0.015 g ² /Hz	900 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.0068 g^2/Hz
	Composite = 12.4 g _{rms}	Composite = 9.3 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0061 g ² /Hz 20 - 50 Hz @ +6 dB/oct 50 - 290 Hz @ 0.038 g ² /Hz 290 - 500 Hz @ +9 dB/oct 500 - 850 Hz @ 0.20 g ² /Hz 850 - 2000 Hz @ -6 dB/oct	$20 \text{ Hz} \stackrel{?}{=} 0.0065 \text{ g}^2/\text{Hz}$ $20 - 30 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $30 - 190 \text{ Hz} \stackrel{?}{=} 0.015 \text{ g}^2/\text{Hz}$ $190 - 340 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $340 - 2000 \text{ Hz} \stackrel{?}{=} 0.085 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.036 g^2/Hz Composite = 14.1 g_{rms}	Composite = 12.1 g _{rms}

Radial	Axis	Long. and Tang. Axes
	20 Hz @ $0.078 \text{ g}^2/\text{Hz}$ 30 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.026 \text{ g}^2/\text{Hz}$ 20 - 25 Hz @ +3 dB/oct
30 -	$340 \text{ Hz} @ 0.17 \text{ g}^2/\text{Hz}$	$25 - 190 \text{ Hz} @ 0.032 \text{ g}^2/\text{Hz}$
340 -	500 Hz @ +10 dB/oct	190 - 400 Hz @ +10 dB/oct
1000 -	1000 Hz @ 0.6 g ² /Hz 2000 Hz @ -10 dB/oct	400 - 900 Hz @ 0.37 g ² /Hz 900 - 2000 Hz @ -10 dB/oct
	2000 Hz @ $0.06 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.027 \text{ g}^2/\text{Hz}$
	Composite = 24.8 g _{rms}	Composite = 18.5 g_{rms}

2-3-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-3-2-AP Input to Components mounted on Structural Ring at \overline{X}_T 1624 and \overline{X}_T 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°) and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 30 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.02 \text{ g}^2/\text{Hz}$ 20 - 64 Hz @ +6 dB/oct	$20 \text{ Hz } @ 0.013 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +3 dB/oct
64 - 120 Hz @ 0.2 g ² /Hz 120 - 200 Hz @ +6 dB/oct	50 - 130 Hz @ 0.033 g ² /Hz 130 - 400 Hz +9 dB/oct
$200 - 340 \text{ Hz} @ 0.5 \text{ g}^2/\text{Hz}$	$400 - 800 \text{ Hz} @ 0.95 \text{ g}^2/\text{Hz}$
340 - 500 Hz @ +10 dB/oct $500 - 800 \text{ Hz} @ 1.8 \text{ g}^2/\text{Hz}$	800 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz } @ 0.045 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.088 \text{ g}^2/\text{Hz}$	
Composite = 36.4 g_{rms}	Composite = 27.7 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0061 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.0065 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +6 dB/oct
$100 - 290 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 290 - 500 Hz @ +9 dB/oct	60 - 190 Hz @ 0.060 g ² /Hz 190 - 340 Hz @ +9 dB/oct
$500 - 850 \text{ Hz} @ 0.80 \text{ g}^2/\text{Hz}$ 850 - 2000 Hz @ -6 dB/oct	$340 - 2000 \text{ Hz} @ 0.34 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.15 g ² /Hz	
Composite = 28.1 g_{rms}	Composite = 24.2 g _{rms}

2-3-2-AP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

20 Hz @ 0.078 g²/Hz 20 - 64 Hz @ +6 dB/oct 64 - 120 Hz @ 0.8 g²/Hz 120 - 200 Hz @ +6 dB/oct 200 - 340 Hz @ 2.0 g²/Hz 340 - 500 Hz @ +10 dB/oct 500 - 800 Hz @ 7.0 g²/Hz 800 - 2000 Hz @ -10 dB/oct

Composite = $72.8 g_{rms}$

2000 Hz @ $0.35 \text{ g}^2/\text{Hz}$

Long. and Tang. Axes

Composite = 55.3 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-2-BP Input to Components mounted on Structural Ring at \overline{X}_T 1624 and \overline{X}_T 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°) and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 30 but < 90 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long.	and Tang. Axes
20 Hz @ 0.0 20 - 72 Hz @ +6 72 - 290 Hz @ 0.0 290 - 500 Hz @ +9 500 - 850 Hz @ 0.4 850 - 2000 Hz @ -6 2000 Hz @ 0.0	dB/oct 20 - $75 g^2/Hz$ 42 - dB/oct 190 - $80 g^2/Hz$ 340 - $80 g^2/Hz$ 340 -	20 Hz @ 0.0065 g ² /Hz 42 Hz @ +6 dB/oct 190 Hz @ 0.030 g ² /Hz 340 Hz @ +9 dB/oct 2000 Hz @ 0.17 g ² /Hz
2000 Hz @ 0.0 Composite = 1		Composite = 17.4 g _{rms}

2-3-2-BP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = $51.5 g_{rms}$

Long. and Tang. Axes

Composite = 39.1 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-3-2-CP Input to Components mounted on Structural Ring At \overline{X}_T 1624 and \overline{X}_T 1377 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 90 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20~{ m Hz}~@~0.02~{ m g}^2/{ m Hz}$	20 Hz @ 0.0065 g^2/Hz
20 - 32 Hz @ +6 dB/oct	20 - 25 Hz @ +3 dB/oct
$32 - 120 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$ 120 - 200 Hz @ +6 dB/oct	$25 - 130 \text{ Hz} @ 0.008 \text{ g}^2/\text{Hz}$ 130 - 400 Hz @ +9 dB/oct
$200 - 340 \text{ Hz} @ 0.13 \text{ g}^2/\text{Hz}$	$400 - 800 \text{ Hz} @ 0.21 \text{ g}^2/\text{Hz}$
340 - 500 Hz @ +10 dB/oct	800 - 2000 Hz @ -10 dB/oct
$500 - 800 \; \mathrm{Hz} \; @ \; 0.43 \; \mathrm{g}^2/\mathrm{Hz} \ 800 - 2000 \; \mathrm{Hz} \; @ -10 \; \mathrm{dB/oct}$	2000 Hz @ $0.01 \text{ g}^2/\text{Hz}$
$2000 \; \mathrm{Hz} \; @ \; 0.021 \; \mathrm{g}^2/\mathrm{Hz}$	
Composite = 18.0 g_{rms}	Composite = 13.1 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis		Long. and Tang. Axes
20 I 20 - 50 I	Hz @ 0.0061 g ² /Hz Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.0065 \text{ g}^2/\text{Hz}$ 20 - 30 Hz @ +6 dB/oct
50 - 290 I 290 - 500 I	Hz @ $0.038 \text{ g}^2/\text{Hz}$ Hz @ +9 dB/oct	$30 - 190 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$ 190 - 340 Hz @ +9 dB/oct
	Hz @ 0.20 g ² /Hz Hz @ -6 dB/oct	$340 - 2000 \text{ Hz} @ 0.085 \text{ g}^2/\text{Hz}$
	$Hz @ 0.036 g^2/Hz$	
Compo	osite = 14.1 g _{rms}	Composite = 12.1 g _{rms}

2-3-2-CP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 36.0 g_{rms}

Long. and Tang. Axes

Composite = $26.2 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-3-3 Structural Ring at Station X_T 1130 in the ET LH_2 Cylinder, Inboard Half (+Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-3-3-A below.

Subzone 2-3-3-A Input to Components mounted on the Structural Ring \overline{X}_T 1130 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and not within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 100 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
	$20 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$
20 -	80 Hz @ +3 dB/oct	20 - 50 Hz @ +3 dB/oct
80 -	130 Hz @ 0.075 g^2/Hz	$50 - 300 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$
130 -	260 Hz @ -3 dB/oct	300 - 700 Hz @ +3 dB/oct
	1500 Hz @ 0.04 g^2/Hz 2000 Hz @ -6 dB/oct	$700 - 1500 \text{ Hz} @ 0.088 \text{ g}^2/\text{Hz}$ 1500 - 2000 Hz @ -6 dB/oct
	_	
	2000 Hz @ $0.023 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.05 g^2/Hz
	Composite = $8.9 g_{rms}$	Composite = 11.7 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.016 \text{ g}^2/\text{Hz}$ $20 - 120 \text{ Hz} \stackrel{?}{=} +4 \text{ dB/oct}$ $120 - 200 \text{ Hz} \stackrel{?}{=} 0.18 \text{ g}^2/\text{Hz}$ $200 - 250 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $250 - 1400 \text{ Hz} \stackrel{?}{=} 0.090 \text{ g}^2/\text{Hz}$ $1400 - 2000 \text{ Hz} \stackrel{?}{=} -9 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.031 \text{ g}^2/\text{Hz}$	$20 - 50 \text{ Hz} @ 0.032 \text{ g}^2/\text{Hz}$ 50 - 1000 Hz @ +2 dB/oct $1000 - 1400 \text{ Hz} @ 0.26 \text{ g}^2/\text{Hz}$ 1400 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.13 \text{ g}^2/\text{Hz}$
Composite = 12.8 g_{rms}	Composite = 19.1 g _{rms}

2-3-3-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

$$20 \text{ Hz} @ 0.076 \text{ g}^2/\text{Hz}$$

 $20 - 80 \text{ Hz} @ +3 \text{ dB/oct}$
 $80 - 130 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$
 $130 - 260 \text{ Hz} @ -3 \text{ dB/oct}$
 $260 - 1500 \text{ Hz} @ 0.16 \text{ g}^2/\text{Hz}$
 $1500 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.09 \text{ g}^2/\text{Hz}$

Composite = 17.7 g_{rms}

Long. and Tang. Axes

Composite = 23.4 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-3-3-B Input to Components mounted on the Structural Ring at X_T 1130 in the LH₂ Tank, Inboard Half (+Z ±90°), and not within ±10° of the GO_2 Press. Line/Cable Tray Installation. Weight of Component \geq 100 lbs.

1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
	20 Hz @ 0.11 g^2/Hz 100 Hz @ +4 dB/oct	$20 - 50 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$ 50 - 1000 Hz @ +2 dB/oct
100 -	$200~{ m Hz}~{ m @}~0.090~{ m g}^2/{ m Hz}$	$1000 - 1400 \text{ Hz} @ 0.13 \text{ g}^2/\text{Hz}$
	250 Hz @ -9 dB/oct	1400 - 2000 Hz @ -6 dB/oct
250 - 1400 -	1400 Hz @ 0.045 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.015 g ² /Hz	2000 Hz @ 0.065 g ² /Hz
	Composite = 9.1 g_{rms}	Composite = 13.5 g_{rms}

Radial	Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.051 g^2/Hz 58 Hz @ +3 dB/oct	$20 \text{ Hz} @ 0.042 \text{ g}^2/\text{Hz}$ 20 - 35 Hz @ +3 dB/oct
130 - 260 -	130 Hz @ 0.15 g ² /Hz 260 Hz @ -3 dB/oct 1500 Hz @ 0.08 g ² /Hz 2000 Hz @ -6 dB/oct	35 - 300 Hz @ 0.074 g ² /Hz 300 - 700 Hz @ +3 dB/oct 700 - 1500 Hz @ 0.17 g ² /Hz 1500 - 2000 Hz @ -6 dB/oct
	$2000 \text{ Hz} @ 0.045 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.098 \text{ g}^2/\text{Hz}$
	Composite = 12.5 g_{rms}	Composite = $16.2 g_{rms}$

2-3-3-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-3-AP Input to Components mounted on the Structural Ring at X_T 1130 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 100 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis		Long.	and '	Гang	. Axes
150 - 250 - 290 -	150 Hz @ 250 Hz @ 290 Hz @ 1000 Hz @ 2000 Hz @	0.019 g ² /Hz 1+3 dB/oct 0.14 g ² /Hz 1-10 dB/oct 0.088 g ² /Hz 1-3 dB/oct 0.045 g ² /Hz	20 - 50 - 115 - 200 - 400 -	20 50 115 200 400 600 1500 2000	Hz Hz Hz Hz Hz Hz	@ 0.015 g ² /Hz @ +3 dB/oct @ 0.038 g ² /Hz @ +6 dB/oct @ 0.11 g ² /Hz @ +3 dB/oct @ 0.17 g ² /Hz @ -6 dB/oct
	Composite	= 12.3 g_{rms}		Comp	osit	e = 16.5 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
120 - 200 - 250 -	20 Hz @ 0.016 g ² /Hz 120 Hz @ +4 dB/oct 200 Hz @ 0.18 g ² /Hz 250 Hz @ -9 dB/oct 1400 Hz @ 0.090 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.031 g ² /Hz	20 - 50 Hz @ 0.032 g ² /Hz 50 - 1000 Hz @ +2 dB/oct 1000 - 1400 Hz @ 0.26 g ² /Hz 1400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.13 g ² /Hz
	Composite = 12.8 g _{rms}	Composite = 19.1 g _{rms}

2-3-3-AP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 24.6 g_{rms}

Long. and Tang. Axes

Composite = 32.9 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-3-3-BP Input to Components mounted on the Structural Ring at X_T 1130 in the LH $_2$ Tank, Inboard Half (+Z ±90°), and within ±10° of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 100 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ $0.013 \text{ g}^2/\text{Hz}$	20 Hz @ 0.01 g ² /Hz
20 - 110 Hz @ +3 dB/oct	20 - 36 Hz @ +3 dB/oct
$110 - 250 \text{ Hz} @ 0.07 \text{ g}^2/\text{Hz}$	36 - 115 Hz @ 0.019 g ² /Hz
250 - 290 Hz @ -10 dB/oct	115 - 200 Hz @ +6 dB/oct
290 - 1000 Hz @ 0.043 g^2/Hz	$200 - 400 \text{ Hz} @ 0.055 \text{ g}^2/\text{Hz}$
1000 - 2000 Hz @ -3 dB/oct	400 - 600 Hz @ +3 dB/oct
$2000 \; \mathrm{Hz} \; @ \; 0.023 \; \mathrm{g}^2/\mathrm{Hz}$	$600 - 1500 \text{ Hz} = 0.083 \text{ g}^2/\text{Hz}$
	1500 - 2000 Hz @ -6 dB/oct
	$2000 \text{ Hz} = 0.048 \text{ g}^2/\text{Hz}$
Composite = 8.7 g_{rms}	Composite = 11.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
100 - 200 - 250 - 1400 -	20 Hz @ 0.11 g ² /Hz 100 Hz @ +4 dB/oct 200 Hz @ 0.090 g ² /Hz 250 Hz @ -9 dB/oct 1400 Hz @ 0.045 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.015 g ² /Hz	20 - 50 Hz @ 0.016 g ² /Hz 50 - 1000 Hz @ +2 dB/oct 1000 - 1400 Hz @ 0.13 g ² /Hz 1400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.065 g ² /Hz
	2000 Hz @ 0.015 g ² /Hz	
	Composite = 9.1 g _{rms}	Composite = 13.5 g_{rms}

2-3-3-BP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

Composite = $23.0 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak 2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-4 ET LH $_2$ Cylinder, Forward Section (Stations X $_T$ 1624 to X $_T$ 1130), Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-4-1-A below.

Subzone 2-4-1 Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X $_T$ 1624 to X $_T$ 1130), Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-4-1-A below.

Subzone 2-4-1-A Input to Components Mounted on Baffles and Stiffened \overline{Skin} on the ET LH $_2$ Cylinder, Aft Sections (Stations X_T 1624 to X_T 1130), Outboard Half (-Z Axis $\pm 90^\circ$). Weight of Component < 15 lb.

1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.052 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00048 \text{ g}^2/\text{Hz}$
20 - 75 Hz @ +6 dB/oct	20 - 100 Hz @ +9 dB/oct
$75 - 170 \text{ Hz} @ 0.70 \text{ g}^2/\text{Hz}$	100 - 440 Hz @ 0.060 g ² /Hz
170 - 240 Hz @ +6 dB/oct	440 - 700 Hz @ +6 dB/oct
240 - 900 Hz @ 1.40 g ² /Hz	$700 - 1000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -3 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ $0.63 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.075 g ² /Hz
Composite = 45.6 g_{rms}	Composite = 14.0 g_{rms}

2-4-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 28.8 g_{rms}

Long. and Tang. Axes

20 Hz @ 0.0014 g²/Hz 20 - 100 Hz @ +6 dB/oct 100 - 1000 Hz @ 0.035 g²/Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.018 g²/Hz

Composite = 7.5 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-1-B Input to Components Mounted on Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X_T 1624 to X_T 1130), Outboard Half (-Z Axis $\pm 90^\circ$). Weight of Component \geq 15 but < 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Lon	and .	Tan	g.	Axes	
	20 Hz @ 0.0	$052 \text{ g}^2/\text{Hz}$	20	Hz	@	0.0004	$8 \text{ g}^2/\text{Hz}$
20	52 Hz @ +6	dB/oct 20	- 80	Hz	@	+9 dB	oct/
52 -	120 Hz @ 0.3		- 440	Hz	@	0.030	g^2/Hz
120 -	170 Hz @ +6	dB/oct 440	- 700	Hz	@	+6 dB	/oct
170 -	900 Hz @ 0.7 2000 Hz @ -3		- 1000 - 2000	Hz Hz	@ @	0.075 -3 dB	g ² /Hz /oct
500	2000 Hz @ 0.3	· _				0.038	_
	Composite = 3	32.7 g _{rms}	Com	posi	te	= 9.9	$g_{ m rms}$

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.052 g ² /Hz 20 - 87 Hz @ +6 dB/oct 87 - 200 Hz @ 1.00 g ² /Hz 200 - 340 Hz @ -9 dB/oct 340 - 1000 Hz @ 0.20 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$2000~{ m Hz}$ @ 0.050 ${ m g}^2/{ m Hz}$	
Composite = 20.9 g_{rms}	Composite = 5.4 g_{rms}

2-4-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-1-C Input to Components Mounted on Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X_T 1624 to X_T 1130), Outboard Half (-Z Axis $\pm 90^\circ$). Weight of Component > 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.052 \text{ g}^2/\text{Hz}$ 20 - 37 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00048 \text{ g}^2/\text{Hz}$ 20 - 63 Hz @ +9 dB/oct
$37 - 85 \text{ Hz} @ 0.18 \text{ g}^2/\text{Hz}$ 85 - 120 Hz @ +6 dB/oct	$63 - 440 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz} \ 440 - 700 \text{ Hz} @ +6 \text{ dB/oct}$
120 - 900 Hz @ 0.35 g ² /Hz 900 - 2000 Hz @ -3 dB/oct	$700 - 1000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.16 g^2/Hz	2000 Hz @ 0.019 g ² /Hz
Composite = 23.3 g_{rms}	Composite = 7.1 g_{rms}

Radial	Axis	Long. and Tang. Axes
62 - 200 - 340 -	20 Hz @ 0.052 g ² /Hz 62 Hz @ +6 dB/oct 200 Hz @ 0.50 g ² /Hz 340 Hz @ -9 dB/oct 1000 Hz @ 0.10 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.025 g ² /Hz	20 Hz @ 0.0014 g ² /Hz 20 - 67 Hz @ +6 dB/oct 67 - 1000 Hz @ 0.015 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.0076 g ² /Hz
	Composite = 15.1 g _{rms}	Composite = 5.4 g_{rms}

2-4-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-4-2 Structural Rings at Stations X_T 1624 and X_T 1377 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-4-2-A below.

- Subzone 2-4-2-A Input to Components Mounted on the Structural Rings at Stations X_T 1624 and X_T 1377 in the ET LH Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0021 g ² /Hz 20 - 100 Hz @ +6 dB/oct 100 - 280 Hz @ 0.052 g ² /Hz 280 - 490 Hz @ +9 dB/oct 490 - 800 Hz @ 0.28 g ² /Hz 800 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.045 g ² /Hz	20 Hz @ 0.0024 g ² /Hz 20 - 60 Hz @ +6 dB/oct 60 - 190 Hz @ 0.022 g ² /Hz 190 - 340 Hz @ +9 dB/oct 340 - 2000 Hz @ 0.12 g ² /Hz
Composite = 16.1 g_{rms}	Composite = 14.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0085 g ² /Hz 20 - 100 Hz @ +6 dB/oct 100 - 280 Hz @ 0.21 g ² /Hz 280 - 490 Hz @ +9 dB/oct 490 - 800 Hz @ 1.10 g ² /Hz 800 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.18 g ² /Hz	$20 \text{ Hz} @ 0.0096 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +6 dB/oct $60 - 190 \text{ Hz} @ 0.088 \text{ g}^2/\text{Hz}$ 190 - 340 Hz @ +9 dB/oct $340 - 2000 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$
Composite = 32.2 g_{rms}	Composite = 29.3 g_{rms}

2-4-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 26.1 g_{rms}

Long. and Tang. Axes

Composite = 16.7 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-2-B Input to Components Mounted on the Structural Rings at Stations X_T 1624 and X_T 1377 in the ET LH Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component > 30 but < 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0085 g ² /Hz 20 - 71 Hz @ +6 dB/oct 71 - 280 Hz @ 0.11 g ² /Hz	$20 \text{ Hz} @ 0.0096 \text{ g}^2/\text{Hz}$ 20 - 42 Hz @ +6 dB/oct $42 - 190 \text{ Hz} @ 0.044 \text{ g}^2/\text{Hz}$
280 - 490 Hz @ +9 dB/oct $490 - 800 \text{ Hz} @ 0.55 \text{ g}^2/\text{Hz}$	190 - 340 Hz @ +9 dB/oct
800 - 2000 Hz @ -6 dB/oct	$340 - 2000 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.089 g^2/Hz	
Composite = 22.9 g_{rms}	Composite = 21.2 g_{rms}

Radial	Axis	ong. and Tang. Axes
	$20 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0048 \text{ g}^2/\text{Hz}$
20 -	50 Hz @ +6 dB/oct	20 - 50 Hz @ +6 dB/oct
50 -	280 Hz @ 0.15 g^2/Hz	$50 - 270 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$
280 -	500 Hz @ +6 dB/oct	270 - 460 Hz @ +10 dB/oct
500 -		$460 - 800 \text{ Hz} = 0.18 \text{ g}^2/\text{Hz}$
700 -	· · · · · · · · · · · · · · · · · · ·	800 - 2000 Hz @ -10 dB/oct
	2000 Hz @ 0.015 g^2/Hz	2000 Hz @ 0.0086 g^2/Hz
	Composite = 18.5 g_{rms}	Composite = 11.8 g_{rms}

2-4-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

2 - 5 Hz w 0.0 G 2 F 2 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-2-C Input to Components Mounted on the Structural Rings at Stations X_T 1624 and X_T 1377 in the ET LH Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Composite = 16.3 g_{rms} Composite = 14.7 g_{rms}

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.015 g ² /Hz 20 - 45 Hz @ +6 dB/oct 45 - 280 Hz @ 0.075 g ² /Hz 280 - 500 Hz @ +6 dB/oct 500 - 700 Hz @ 0.25 g ² /Hz 700 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.0076 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.0030 \text{ g}^2/\text{Hz}$ $20 - 45 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $45 - 270 \text{ Hz} \stackrel{?}{=} 0.015 \text{ g}^2/\text{Hz}$ $270 - 460 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $460 - 800 \text{ Hz} \stackrel{?}{=} 0.090 \text{ g}^2/\text{Hz}$ $800 - 2000 \text{ Hz} \stackrel{?}{=} -10 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.0043 \text{ g}^2/\text{Hz}$
Composite = 13.1 g_{rms}	Composite = 8.4 g_{rms}

2-4-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 2-4-3 Structural Ring at Station X_T 1130 in the ET LH 2 Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). (General Specifications)

Same as Subzone 2-4-3-A below.

Subzone 2-4-3-A Input to Components Mounted on the Structural Ring at Station X_T 1130 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < 45 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
120 - 200 - 250 - 1400 -	20 Hz @ 0.0070 g ² /Hz 120 Hz @ +4 dB/oct 200 Hz @ 0.075 g ² /Hz 250 Hz @ -9 dB/oct 1400 Hz @ 0.038 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.013 g ² /Hz	20 - 50 Hz @ 0.014 g ² /Hz 50 - 1000 Hz @ +2 dB/oct 1000 - 1400 Hz @ 0.11 g ² /Hz 1400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.055 g ² /Hz
	Composite = 8.3 g _{rms}	Composite = 12.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
120 - 200 - 250 - 1400 -	20 Hz @ 0.028 g ² /Hz 120 Hz @ +4 dB/oct 200 Hz @ 0.30 g ² /Hz 250 Hz @ -9 dB/oct 1400 Hz @ 0.15 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.052 g ² /Hz	20 - 50 Hz @ 0.056 g ² /Hz 50 - 1000 Hz @ +2 dB/oct 1000 - 1400 Hz @ 0.45 g ² /Hz 1400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.22 g ² /Hz
	Composite = 16.6 g _{rms}	Composite = 25.2 g _{rms}

2-4-3-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

$$20 \text{ Hz } @ 0.030 \text{ g}^2/\text{Hz}$$

$$20 - 40 \text{ Hz } @ +3 \text{ dB/oct}$$

$$40 - 600 \text{ Hz } @ 0.060 \text{ g}^2/\text{Hz}$$

$$600 - 1000 \text{ Hz } @ +3 \text{ dB/oct}$$

$$1000 - 1500 \text{ Hz } @ 0.10 \text{ g}^2/\text{Hz}$$

$$1500 - 2000 \text{ Hz } @ -6 \text{ dB/oct}$$

$$2000 \text{ Hz } @ 0.056 \text{ g}^2/\text{Hz}$$

$$Composite = 12.4 \text{ g}_{rms}$$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-3-B Input to Components Mounted on the Structural Ring at Station X_T 1130 in the ET LH₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 45 but < 135 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.014 g^2/Hz 80 Hz @ +4 dB/oct	$20 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct
	190 Hz @ $0.090 \text{ g}^2/\text{Hz}$ 300 Hz @ -10 dB/oct	$40 - 600 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ 600 - 1000 Hz @ +3 dB/oct
1500 -	1500 Hz @ 0.020 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.011 g ² /Hz	$1000 - 1500 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$ 1500 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.028 \text{ g}^2/\text{Hz}$
	Composite = 7.0 g_{rms}	Composite = 8.8 g _{rms}

2-4-3-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 2-4-3-C Input to Components Mounted on the Structural Ring at Station X_T 1130 in the ET LH_2 Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component > 135 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	•	Long. and Tang. Axes
20 -	20 Hz 70 Hz	@ 0.011 g ² /Hz @ +4 dB/oct	$20 \text{ Hz} @ 0.0075 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct
		@ 0.060 g ² /Hz @ -10 dB/oct	$40 - 600 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$ 600 - 1000 Hz @ +3 dB/oct
300 -	1500 Hz	@ 0.010 g ² /Hz @ -6 dB/oct	1000 - 1500 Hz @ 0.025 g ² /Hz 1500 - 2000 Hz @ -6 dB/oct
1900 -		$0.0056 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.014 g ² /Hz
	Composit	$e = 5.1 g_{rms}$	Composite = 6.2 g_{rms}

2-4-3-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Zone 3

ET Intertank

Subzone 3-1

ET Intertank (Stations X_T 1130 to X_T 852), Panels 1, 2, and 3 (General Specifications).

Same as Subzone 3-1-1 below.

Subzone 3-1-1

Structural Rings at Stations X_T 1082, X_T 1034, X_T 941, and X_T 897 in Panels 1, 2, and 3 of the ET Intertank (General Specifications).

Same as Subzone 3-1-1-1A below.

Subzone 3-1-1-1-A Input to Components mounted on Structural Rings at

 $\overline{X_T}$ 941 and $\overline{X_T}$ 897 in Panels 1, 2, and 3 of the Intertank, and not within $\pm 10^\circ$ of the $\overline{GO_2}$ Press. Line/Cable Tray Installation. Weight of Component < 25 lbs.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

	20 Hz	$z = 0.028 g^2/Hz$		20 Hz @	$0.0058 \text{ g}^2/\text{Hz}$
20 -	60 Hz	z @ +6 dB/oct	20 -	60 Hz @	+6 dB/oct
60 -	310 Hz	$z = 0.23 \text{ g}^2/\text{Hz}$	60 - 2	270 Hz @	$0.05 \text{ g}^2/\text{Hz}$
310 -	400 Hz	z @ +9 dB/oct	270 - 4	450 Hz @	+12 dB/oct
400 -	800 Hz	$z = 0.5 g^2/Hz$	450 - 7	700 Hz @	$0.38 \text{ g}^2/\text{Hz}$
800 -	2000 Hz	z @ -12 dB/oct	700 - 20	$000~\mathrm{Hz}$ @	-12 dB/oct
	2000 Hz	$z = 0.015 \text{ g}^2/\text{Hz}$	20	000 Hz @	$0.0065 \text{ g}^2/\text{Hz}$
	C	: 00 F	0		14.0

Composite = 20.5 g_{rms}

Composite = 14.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

	20	Hz	0.011 g^2	P/Hz		20	Ηz	a	$0.0026 \text{ g}^2/\text{Hz}$
20 -			@ +9 dB/od		_				+10 dB/oct
60 -	350	Ηz	$0.3 \text{ g}^2/\text{H}$	Hz 60	_	200	Ηz	a	$0.10 \text{ g}^2/\text{Hz}$
350 -	500	Hz	@ +10 dB/d		-	350	Hz	@	+9 dB/oct
500 -	800	Ηz	$0.1.0 \text{ g}^2/\text{H}$	Hz 350	_	800	Hz	@	$0.50 \text{ g}^2/\text{Hz}$
800 -	2000	Hz	@ -6 dB/od		_	2000	Hz	@	-6 dB/oct
	2000	Ηz	0.16 g^2	/Hz		2000	Hz	@	$0.080 \text{ g}^2/\text{Hz}$

Composite = 31.0 g_{rms}

Composite = 22.9 g_{rms}

3-1-1-1A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

2000 Hz @ 0.058 g²/Hz

Composite =
$$40.9 \text{ g}_{rms}$$

Long. and Tang. Axes

700 - 2000 Hz = -12 dB/oct $2000 \text{ Hz} = 0.026 \text{ g}^2/\text{Hz}$

Composite = 29.7 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-1-B Input to Components mounted on Structural Rings at $\overline{X_T}$ 941 and $\overline{X_T}$ 897 in Panels 1, 2, and 3 of the Intertank, and not within $\pm 10^\circ$ of the $\overline{GO_2}$ Press. Line/Cable Tray Installation. Weight of Component ≥ 25 but < 75 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.028 \text{ g}^2/\text{Hz}$ 20 - 42 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.0058 \text{ g}^2/\text{Hz}$ 20 - 42 Hz @ +6 dB/oct
	•
$42 - 310 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$	$42 - 270 \text{ Hz} = 0.025 \text{ g}^2/\text{Hz}$
310 - 400 Hz @ +9 dB/oct	270 - 450 Hz @ +12 dB/oct
400 - 800 Hz @ 0.25 g^2/Hz	$450 - 700 \text{ Hz} @ 0.19 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -12 dB/oet	700 - 2000 Hz @ -12 dB/oct
2000 Hz @ 0.0073 g^2/Hz	$2000 \text{ Hz} @ 0.0033 \text{ g}^2/\text{Hz}$
Composite = 14.5 g_{rms}	Composite = 10.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \ @ \ 0.011 \ \text{g}^2/\text{Hz}$ $20 - 48 \text{ Hz} \ @ \ +9 \ \text{dB/oct}$	20 Hz @ 0.0026 g ² /Hz 20 - 48 Hz @ +10 dB/oct
$48 - 350 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 350 - 500 Hz @ +10 dB/oct	$48 - 200 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$ 200 - 350 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.5 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct	$350 - 800 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz} \\ 800 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$
2000 Hz @ 0.08 g^2/Hz	2000 Hz @ 0.040 g^2/Hz
Composite = 22 g_{rms}	Composite = 16.2 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$	$20 \text{ Hz } @ 0.023 \text{ g}^2/\text{Hz}$
20 - 42 Hz @ +6 dB/oct	20 - 42 Hz @ +6 dB/oct
$42 - 310 \text{ Hz } @ 0.45 \text{ g}^2/\text{Hz}$	$42 - 270 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$
310 - 400 Hz @ +9 dB/oct	270 - 450 Hz @ +12 dB/oct
400 - 800 Hz @ 1.0 g ² /Hz	$450 - 700 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -12 dB/oct	700 - 2000 Hz @ -12 dB/oct
2000 Hz @ 0.029 g ² /Hz	2000 Hz @ 0.013 g ² /Hz
Composite = 29.0 g_{rms}	Composite = 21.0 g_{rms}

3-1-1-1B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-C Input to Components mounted on Structural Rings at $\overline{X_T}$ 941 and $\overline{X_T}$ 897 in Panels 1, 2, and 3 of the Intertank, and not within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 75 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

						0				5 .	
		20	Нz	@	$0.028 \text{ g}^2/\text{Hz}$			20	Ηz	@	$0.0058 \text{ g}^2/\text{Hz}$
20	-	30	Ηz	@	+6 dB/oct	20	-	30	Hz	@	+6 dB/oct
30	-	310	Ηz	@	$0.055 \text{ g}^2/\text{Hz}$	30	-	270	Ηz	@	$0.013 \text{ g}^2/\text{Hz}$
310	-	400	Hz	@	+9 dB/oct	270	-	450	Hz	@	+12 dB/oct
400	-	800	Нz	@	$0.13 \text{ g}^2/\text{Hz}$	450	_	700	Ηz	@	$0.093 \text{ g}^2/\text{Hz}$
800	-	2000	Hz	@	-12 dB/oct	700	-	2000	Hz	@	-12 dB/oct
		2000	Ηz	@	$0.0035 \text{ g}^2/\text{Hz}$			2000	Hz	@	$0.0015 \text{ g}^2/\text{Hz}$
		Comp	osi	te	= 10.3 g _{rms}			Comp	osi	te	= $7.4 \text{ g}_{\text{rms}}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

	20	Ηz	@	$0.011 \text{ g}^2/\text{Hz}$			20	Hz	@	$0.0026 \text{ g}^2/\text{Hz}$
20 -	- 38	Hz	@	+9 dB/oct	20 -	-	40	Hz	@	+10 dB/oct
38 -	350	Ηz	@	$0.075 \text{ g}^2/\text{Hz}$	40 -	-	200	Ηz	@	$0.025 \text{ g}^2/\text{Hz}$
350 -	500	Ηz	@	+10 dB/oct	200 -	-	350	Hz	@	+9 dB/oct
				$0.25 \text{ g}^2/\text{Hz}$ -6 dB/oct	350 - 800 -	_	800 2000	Hz Hz	@ @	$0.12 \text{ g}^2/\text{Hz}$ -6 dB/oct
	2000	Ηz	@	$0.04 \text{ g}^2/\text{Hz}$			2000	Hz	@	$0.020 \text{ g}^2/\text{Hz}$
	Comp	posi	te	= 15.6 g_{rms}			Comp	osi	te	= 11.5 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

					nong.	arra .	_ arr	ь.	TIMOS
2.0	20	Ηz	@	$0.11 \text{ g}^2/\text{Hz}$		20	Hz	@	$0.023 \text{ g}^2/\text{Hz}$
20 -	30	ΗZ	Q	+6 dB/oct	20 -	30	Hz	(d	+6 dB/oct
30 - 310 -	310 400	Hz Hz	@ @	$0.22 \text{ g}^2/\text{Hz}$ +9 dB/oct	30 -	270	Ηz	@	$0.05 \text{ g}^2/\text{Hz}$ +12 dB/oct
400 - 800 -	2000	Ηz	0	$0.5 \text{ g}^2/\text{Hz}$ -12 dB/oct	450 - 700 -	$700 \\ 2000$	Hz Hz	@ @	$0.37 \text{ g}^2/\text{Hz}$ -12 dB/oct
	2000	Ηz	@	$0.014 \text{ g}^2/\text{Hz}$		2000	Ηz	@	$0.006 \text{ g}^2/\text{Hz}$
	Comp	osi	te	= 20.5 g _{rms}		Comp	osi	te	= 14.8 g _{rms}

3-1-1-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-1-AP Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 25 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +9 dB/oct	20 Hz @ 0.0026 g ² /Hz
	20 - 60 Hz @ +10 dB/oct
60 - 350 Hz @ 0.3 g^2/Hz	60 - 200 Hz @ $0.10~\mathrm{g}^2$ /Hz
350 - 500 Hz @ +10 dB/oct	200 - 350 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 1.0 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct	$350 - 800 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct
2000 Hz @ 0.16 g^2/Hz	2000 Hz @ 0.080 g^2/Hz
Composite = 31.0 g _{rms}	Composite = 22.9 g _{rms}

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.25 g^2/Hz 20 - 150 Hz @ +4 dB/oct 150 - 540 Hz @ 3.5 g^2/Hz 540 - 700 Hz @ +6 dB/oct 700 - 1000 Hz @ 6.0 g^2/Hz 1000 - 2000 Hz @ -12 dB/oct 2000 Hz @ 0.39 g^2/Hz	20 Hz @ 0.015 g^2/Hz 20 - 150 Hz @ +6 dB/oct 150 - 360 Hz @ 0.8 g^2/Hz 360 - 500 Hz @ +12 dB/oct 500 - 1000 Hz @ 3.0 g^2/Hz 1000 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.39 g^2/Hz
Composite = 76.9 g _{rms}	Composite = 55.4 g _{rms}

3-1-1-1-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-1-BP Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 25 but < 75 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.048 \text{ g}^2/\text{Hz}$ 20 - 105 Hz @ +4 dB/oct $105 - 540 \text{ Hz} @ 0.43 \text{ g}^2/\text{Hz}$ 540 - 700 Hz @ +6 dB/oct	$20 \text{ Hz } @ 0.048 \text{ g}^2/\text{Hz}$ $20 - 105 \text{ Hz } @ +6 \text{ dB/oct}$ $105 - 360 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$ $360 - 500 \text{ Hz } @ +12 \text{ dB/oct}$
700 - 1000 Hz @ 0.75 g ² /Hz 1000 - 2000 Hz @ -12 dB/oct 2000 Hz @ 0.05 g ² /Hz	500 - 1000 Hz @ 0.38 g ² /Hz 1000 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.05 g ² /Hz
Composite = 27.3 g_{rms}	Composite = 19.6 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

					nong.	and .	Lan	В.	Azes
20 -	20 48	Hz Hz	@ @	0.011 g ² /Hz +9 dB/oct	20 -	20 48	Hz Hz	@	0.0026 g ² /Hz +10 dB/oct
48 - 350 -	350 500	Hz Hz	@ @	0.15 g ² /Hz +10 dB/oct	48 - 200 -	200 350	Hz Hz	@ @	$0.050 \text{ g}^2/\text{Hz}$ +9 dB/oct
500 -	800	Ηz	@	0.5 g ² /Hz -6 dB/oct	350 -	800	Hz	@	0.25 g ² /Hz -6 dB/oct
				$0.08 \text{ g}^2/\text{Hz}$					$0.040 \text{ g}^2/\text{Hz}$
	Comp	osit	te	= 22 g _{rms}		Comp	osi	te	= 16.2 g _{rms}

Long, and Tang, Axes

Radial	Axis	Long. and Tang. Axes
105 - 540 - 700 -	20 Hz @ $0.19 \text{ g}^2/\text{Hz}$ 105 Hz @ +4 dB/oct 540 Hz @ $1.7 \text{ g}^2/\text{Hz}$ 700 Hz @ +6 dB/oct 1000 Hz @ $3.0 \text{ g}^2/\text{Hz}$	20 Hz @ 0.015 g^2/Hz 20 - 105 Hz @ +6 dB/oct 105 - 360 Hz @ 0.4 g^2/Hz 360 - 500 Hz @ +12 dB/oct 500 - 1000 Hz @ 1.5 g^2/Hz
	2000 Hz @ -12 dB/oct	1000 - 2000 Hz @ -9 dB/oct
	2000 Hz @ 0.2 g^2/Hz	2000 Hz $ ext{@ 0.2 g}^2$ /Hz
	Composite = 54.6 g _{rms}	Composite = 39.2 g_{rms}

3-1-1-1-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-CP Input to Components mounted on Structural Rings at X_T 961 and X_T 897 in Panel 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 75 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axıs				Long	ζ.	and '	ran	g.	Axes
	20	Ηz	@ 0.01	$11 \text{ g}^2/\text{Hz}$			20	Ηz	@	$0.0026 \text{ g}^2/\text{Hz}$
20 -	38	Hz	0 + 9 0	dB/oct	20	-	40	Hz	@	+10 dB/oct
38 -	350	Ηz	@ 0.0	$75 \text{ g}^2/\text{Hz}$						$0.025 \text{ g}^2/\text{Hz}$
350 -	500	Ηz	@ +10	dB/oct	200	-	350	Hz	@	+9 dB/oct
				$5 \text{ g}^2/\text{Hz}$						$0.12 \text{ g}^2/\text{Hz}$
800 -	2000	Hz	0-6	dB/oct	800	-	2000	Hz	@	-6 dB/oct
	2000	Ηz	@ 0.04	$4 g^2/Hz$			2000	Ηz	@	$0.020 \text{ g}^2/\text{Hz}$
	Comp	osit	te = 15	5.6 g _{rms}			Comp	osi	te	= 11.5 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.14 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$
20 - 76 Hz @ +4 dB/oct	20 - 76 Hz @ +6 dB/oct
76 - 540 Hz @ 0.85 g ² /Hz	$76 - 360 \text{ Hz } @ 0.2 \text{ g}^2/\text{Hz}$
540 - 700 Hz @ +6 dB/oct	360 - 500 Hz @ +12 dB/oct
$700 - 1000 \text{ Hz} @ 1.5 \text{ g}^2/\text{Hz}$	$500 - 1000 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$
1000 - 2000 Hz @ -12 dB/oct	1000 - 2000 Hz @ -9 dB/oct
2000 Hz $\stackrel{ ext{@}}{ ext{@}}$ 0.1 g^2 /Hz	$2000 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$
Composite = 38.8 g_{rms}	Composite = 27.8 g _{rms}

3-1-1-1-CP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 IIz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-2-A Input to Components mounted on Structural Rings at $\overline{X_T}$ 1082 and $\overline{X_T}$ 1034 in Panels 1, 2 and 3 of the Intertank, and not within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 25 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis				Long.	•	and I	Γan	g.	Axe	:S		
	20	Ηz	@	$0.038 \text{ g}^2/\text{Hz}$			20	Ηz	@	0.00	83	$g^2/1$	Ηz
20 -	60	Hz	@	+6 dB/oct	20	-	60	Ηz	@	+6 c	lB/	oct	
60 -	350	Ηz	@	$0.33 \text{ g}^2/\text{Hz}$	60	_	300	Hz	@	0.07	′5 _€	g^2/H	Z
350 -	430	Ηz	@	+9 dB/oct	300	-	480	Hz	@	+12	dB	/oct	
				$0.63 \text{ g}^2/\text{Hz}$			800						
900 -	2000	Ηz	Œ	-12 dB/oct	800	-	2000	Hz	(d	-12	dB	/oct	
	2000	Ηz	@	$0.028 \text{ g}^2/\text{Hz}$			2000	Hz	@	0.01	l5 ε	з ² /Н	\mathbf{z}
	Comp	osit	e.	= 24.7 g _{rms}			Comp	osi	te	= 18	3.3	$\mathbf{g}_{\mathbf{r}\mathbf{m}}$	ıs

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long.	and '	lang.	Axes
20	20 Hz @ 0.011 g ² 60 Hz @ +9 dB/o	² /Hz	20	Hz @	$0.0026 \text{ g}^2/\text{Hz} + 10 \text{ dB/oct}$
	_				2
60 -	$350 \text{ Hz} @ 0.3 \text{ g}^2/\text{H}$	Hz 60 -			$0.10 \text{ g}^2/\text{Hz}$
350 -	500 Hz @ +10 dB/	oct 200 -	350	Hz @	+9 dB/oct
500 - 800 -	800 Hz @ 1.0 g ² /I 2000 Hz @ -6 dB/o	Hz 350 - et 800 -			$0.50 \text{ g}^2/\text{Hz}$ -6 dB/oct
	2000 Hz @ 0.16 g ²	/Hz	2000	Hz @	$0.080 \text{ g}^2/\text{Hz}$
	Composite = 31.0 g	rms	Comp	osite	= 22.9 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.033 \text{ g}^2/\text{Hz}$
20 - 60 Hz @ +6 dB/oct	20 - 60 Hz @ +6 dB/oct
$60 - 350 \text{ Hz} @ 1.3 \text{ g}^2/\text{Hz}$	$60 - 300 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$
350 - 430 Hz @ +9 dB/oct	300 - 480 Hz @ +12 dB/oct
$430 - 900 \text{ Hz} @ 2.5 \text{ g}^2/\text{Hz}$	$480 - 800 \text{ Hz} @ 2.0 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -12 dB/oct	800 - 2000 Hz @ -12 dB/oct
2000 Hz @ 0.11 g^2/Hz	2000 Hz @ $0.06 \text{ g}^2/\text{Hz}$
Composite = 49.4 g_{rms}	Composite = 36.5 g_{rms}

3-1-1-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-1-1-2-B Input to Components Mounted on Structural Rings at $\overline{X_T}$ 1082 + $\overline{X_T}$ 1034 in Panels 1, 2 and 3 of the Intertank, and not within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 25 but < 75 lb.

Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axis
$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$ 20 - 48 Hz @ +9 dB/oct	20 Hz @ 0.0026 g ² /Hz 20 - 48 Hz @ +10 dB/oct
_	_
$48 - 350 \text{ Hz} = 0.15 \text{ g}^2/\text{Hz}$	$48 - 200 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$
350 - 500 Hz @ +10 dB/oct	200 - 350 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.5 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct	$350 - 800 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct
2000 Hz @ $0.08 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.040 \text{ g}^2/\text{Hz}$
Composite = $22 g_{rms}$	Composite = 16.2 g_{rms}

Radial	Axis	Long. and Tang. Axes
20 -	$20 \text{ Hz } @ 0.15 \text{ g}^2/\text{Hz} \\ 42 \text{ Hz } @ +6 \text{ dB/oct}$	20 Hz @ 0.033 g ² /Hz 20 - 42 Hz @ +6 dB/oct
42 -	$350 \text{ Hz} @ 0.64 \text{ g}^2/\text{Hz} \\ 430 \text{ Hz} @ +9 \text{ dB/oct}$	$42 - 300 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 300 - 480 Hz @ +12 dB/oct
430 -	900 Hz @ 1.2 g ² /Hz 2000 Hz @ -12 dB/oct	480 - 800 Hz @ 1.0 g ² /Hz 800 - 2000 Hz @ -12 dB/oct
	2000 Hz @ -12 dB/oct 2000 Hz @ 0.05 g ² /Hz	$2000 \text{ Hz} \text{ @ } 0.03 \text{ g}^2/\text{Hz}$
	Composite = 34.2 g _{rms}	Composite = 26.4 g _{rms}

3-1-1-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-1-2-C Input to Components Mounted on Structural Rings at $\overline{X_T}$ 1082 and $\overline{X_T}$ 1034 in Panels 1, 2 and 3 of the Intertank, and not within $\pm 10^\circ$ of the $\overline{GO_2}$ Press. Line/Cable Tray Installation. Weight of Component > 75 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis Long. and Tang. Axes 20 Hz @ 0.038 g²/Hz 30 Hz @ +6 dB/oct 20 Hz @ 0.0083 g²/Hz 30 Hz @ +6 dB/oct 20 -20 - $30 - 350 \text{ Hz} @ 0.08 \text{ g}^2/\text{Hz}$ 350 - 430 Hz @ +9 dB/oct $300 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 30 -300 - 480 Hz @ +12 dB/oct 430 - 900 Hz @ 0.15 g²/Hz 900 - 2000 Hz @ -12 dB/oct $480 - 800 \text{ Hz} @ 0.13 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -12 dB/oct2000 Hz $@.0065 \text{ g}^2/\text{Hz}$ $2000 \text{ Hz} @ 0.0038 \text{ g}^2/\text{Hz}$ Composite = 12.1 g_{rms} Composite = 9.4 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$ 20 - 38 Hz @ +9 dB/oct	20 Hz @ 0.0026 g ² /Hz 20 - 40 Hz @ +10 dB/oct
	_
$38 - 350 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$	$40 - 200 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$
350 - 500 Hz @ +10 dB/oct	200 - 350 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	$350 - 800 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -6 dB/oct	800 - 2000 Hz @ -6 dB/oct
2000 Hz @ $0.04 \text{ g}^2/\text{Hz}$	2000 Hz @ $0.020 \text{ g}^2/\text{Hz}$
Composite = 15.6 g_{rms}	Composite = 11.5 g_{rms}

Radial	Axis			Long.	and	Tan	g.	Axes
30 - 350 - 430 -	30 H 350 H 430 H 900 H 2000 H	Iz @ Iz @ Iz @ Iz @ Iz @	0.15 g ² /Hz +6 dB/oct 0.32 g ² /Hz +9 dB/oct 0.6 g ² /Hz -12 dB/oct	30 - 300 - 480 -	30 300 480 800 2000	Hz Hz Hz Hz	0 0 0	0.033 g ² /Hz +6 dB/oct 0.075 g ² /Hz +12 dB/oct 0.5 g ² /Hz -12 dB/oct
	2000 H	Iz @	$0.026 \text{ g}^2/\text{Hz}$		2000	Ηz	@	$0.015 \text{ g}^2/\text{Hz}$
	Compo	site	= 24.2 g _{rms}		Com	posi	te	= 18.7 g _{rms}

3-1-1-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-1-1-2-AP Input to Components Mounted on Structural Rings at X_T 1082 and X_T 1034 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 25 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +6 dB/oct	$20~{ m Hz}~@~0.023~{ m g}^2/{ m Hz}$ $20~-~200~{ m Hz}~@~+3~{ m dB/oct}$
$60 - 120 \text{ Hz} @ 0.33 \text{ g}^2/\text{Hz}$ 120 - 210 Hz @ +6 dB/oct	200 - 300 Hz @ 0.23 g ² /Hz 300 - 500 Hz @ +12 dB/oct
$210 - 400 \text{ Hz} = 1.0 \text{ g}^2/\text{Hz}$ 400 - 480 Hz = +9 dB/oct	500 - 700 Hz @ 1.5 g ² /Hz 700 - 2000 Hz @ -9 dB/oct
$480 - 900 \text{ Hz} @ 1.75 \text{ g}^2/\text{Hz} \\ 900 - 2000 \text{ Hz} @ -12 \text{ dB/oct}$	2000 Hz @ $0.068 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.078 g^2/Hz	
Composite = 39.5 g_{rms}	Composite = 31.6 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis		Long. and Tang. Axes
20	$Hz @ 0.011 g^2/Hz$	$20 \text{ Hz} @ 0.0026 \text{ g}^2/\text{Hz}$
20 - 60	Hz @ +9 dB/oct	20 - 60 Hz @ +10 dB/oct
	$Hz @ 0.3 g^2/Hz$	$60 - 200 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$
350 - 500	$Hz @ +10 \overline{dB/oct}$	200 - 350 Hz @ +9 dB/oct
500 - 800	$Hz @ 1.0 g^2/Hz$	$350 - 800 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$
800 - 2000	Hz @ -6 dB/oct	800 - 2000 Hz @ -6 dB/oct
2000	$Hz @ 0.16 g^2/Hz$	2000 Hz @ $0.080 \text{ g}^2/\text{Hz}$
Compe	osite = 31.0 g _{rms}	Composite = 22.9 g _{rms}

3-1-1-2-AP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 79.0 g_{rms}

Long. and Tang. Axes

Composite = 63.2 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-1-1-2-BP Input to Components Mounted on Structural Rings at X_T 1082 and X_T 1034 in Panels 1, 2, and 3 of the Intertank, and within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component ≥ 25 but < 75 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial	Axis		Long. and Tang. Axes
20 -	20 42	Hz $@ 0.038 \text{ g}^2/\text{Hz}$ Hz $@ +6 \text{ dB/oct}$	$20 \text{ Hz } @ 0.016 \text{ g}^2/\text{Hz}$ 20 - 140 Hz @ +3 dB/oct
42 - 120 -	120 210	Hz $@0.16 \text{ g}^2/\text{Hz}$ Hz $@+6 \text{ dB/oct}$	$140 - 300 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$ 300 - 500 Hz @ +12 dB/oct
400 -	480	Hz @ $0.5 \text{ g}^2/\text{Hz}$ Hz @ +9 dB/oct Hz @ $0.88 \text{ g}^2/\text{Hz}$	$500 - 700 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$ 700 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.035 \text{ g}^2/\text{Hz}$
	2000	Hz @ 0.08 g /Hz Hz @ -12 dB/oct Hz @ 0.038 g ² /Hz	2000 HZ @ 0.033 g /HZ
	Comp	osite = 28.3 g _{rms}	Composite = 22.5 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis

Radial Axis		Long. an	nd Tang.	Axes
20 Hz 20 - 48 Hz	0.011 g ² /Hz	20 -	20 Hz @	0.0026 g ² /Hz +10 dB/oct
48 - 350 Hz	$0.15 \text{ g}^2/\text{Hz}$	48 - 3	200 Hz @	$0.050 \text{ g}^2/\text{Hz}$
350 - 500 Hz	_ '			+9 dB/oct
500 - 800 Hz 800 - 2000 Hz		350 - 3 800 - 20	800 Hz @ 000 Hz @	0.25 g ² /Hz 1-6 dB/oct
2000 Hz	$@ 0.08 \text{ g}^2/\text{Hz}$			$0.040 \text{ g}^2/\text{Hz}$
Composit	$e = 22 g_{rms}$	C	omposite	$= 16.2 \text{ g}_{\text{rms}}$

3-1-1-2-BP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

Composite = 44.9 g_{rms}

Composite = 56.5 g_{rms}

Longitudinal Axis

4. Vehicle Dynamics Criteria

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-1-1-2-CP Input to Components Mounted on Structural Rings at X_T 1082 and X_T 1034 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 75 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$ 20 - 30 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +3 dB/oct
30 - 120 Hz @ 0.08 g ² /Hz 120 - 210 Hz @ +6 dB/oet	100 - 300 Hz @ 0.055 g ² /Hz 300 - 500 Hz @ +12 dB/oct
210 - 400 Hz @ 0.25 g ² /Hz 400 - 480 Hz @ +9 dB/oct	500 - 700 Hz @ 0.38 g ² /Hz 700 - 2000 Hz @ -9 dB/oct
$480 - 900 \text{ Hz} @ 0.43 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.018 \text{ g}^2/\text{Hz}$
900 - 2000 Hz @ -12 dB/oct 2000 Hz @ $0.019 \text{ g}^2/\text{Hz}$	
Composite = 19.8 g _{rms}	Composite = 15.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

	$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0026 \text{ g}^2/\text{Hz}$
20 -	38 Hz @ +9 dB/oct	20 - 40 Hz @ +10 dB/oct
38 -	350 Hz @ $0.075 \text{ g}^2/\text{Hz}$	$40 - 200 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$
350 -	500 Hz @ +10 dB/oct	200 - 350 Hz @ +9 dB/oct
500 - 800 -	800 Hz @ $0.25 \text{ g}^2/\text{Hz}$ 2000 Hz @ -6 dB/oct	$350 - 800 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz} \\ 800 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$
	$2000 \text{ Hz} @ 0.04 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$
	Composite = 15.6 g_{rms}	Composite = 11.5 g_{rms}

3-1-1-2-CP (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Long. and Tang. Axes

Composite = $39.5 g_{rms}$

Composite = 31.1 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-1-2 Structural Ring at Station X_T 985 in Panels 1, 2, and 3 of the ET Intertank (General Specifications)

Same as Subzone 3-1-2-A below.

Subzone 3-1-2-A Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 and 3 of the Intertank, and not within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component < 30 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.013 \text{ g}^2/\text{Hz} \\ 20 - 60 \text{ Hz} @ +6 \text{ dB/oct}$	$20 \text{ Hz} @ 0.0028 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +6 dB/oct
$60 - 340 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$ 340 - 500 Hz @ +6 dB/oct	60 - 250 Hz @ 0.025 g ² /Hz 250 - 450 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz} \\ 800 - 2000 \text{ Hz} @ -9 \text{ dB/oet}$	$450 - 700 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 700 - 2000 Hz @ -9 dB/oct
$2000 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.0068 g^2/Hz
Composite = 14.7 g_{rms}	Composite = 10.4 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +9 dB/oct $50 - 200 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 200 - 240 Hz @ -12 dB/oct $240 - 800 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{?}{=} 0.0013 \text{ g}^2/\text{Hz}$ $20 - 60 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $60 - 200 \text{ Hz} \stackrel{?}{=} 0.050 \text{ g}^2/\text{Hz}$ $200 - 350 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $350 - 800 \text{ Hz} \stackrel{?}{=} 0.25 \text{ g}^2/\text{Hz}$ $800 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.040 \text{ g}^2/\text{Hz}$
Composite = 14.1 g _{rms}	Composite = 16.2 g _{rms}

3-1-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 29.3 g_{rms}

Long. and Tang. Axes

Composite = 20.8 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

^{*} Design Criteria Only

- Subzone 3-1-2-B Input to Components Mounted on Structural Ring at \overline{X}_T 985 in Panels 1, 2 and 3 of the Intertank, and not within +10° of the GO_2 Press. Line/Cable Tray Installation. Weight of Component > 30 but < 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +9 dB/oct	20 Hz @ 0.0013 g ² /Hz 20 - 42 Hz @ +10 dB/oct
$40 - 200 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$	$42 - 200 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$
200 - 240 Hz @ -12 dB/oct 240 - 800 Hz @ 0.075 g^2/Hz	200 - 350 Hz @ +9 dB/oct $350 - 800 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.012 g $^2/$ Hz	800 - 2000 Hz = 6 dB/oct $2000 \text{ Hz} = 0.020 \text{ g}^2/\text{Hz}$
S	C
Composite = 10.4 g_{rms}	Composite = 11.4 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.051 \text{ g}^2/\text{Hz}$ 20 - 43 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$ 20 - 43 Hz @ +6 dB/oct
$43 - 340 \text{ Hz} @ 0.23 \text{ g}^2/\text{Hz}$ 340 - 500 Hz @ +6 dB/oct	43 - 250 Hz @ 0.05 g ² /Hz 250 - 450 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.5 \text{ g}^2/\text{Hz}$	$450 - 700 \text{ Hz } @ 0.3 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -9 dB/oct	700 - 2000 Hz @ -9 dB/oct
$2000 \text{ Hz} @ 0.048 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.014 \text{ g}^2/\text{Hz}$
Composite = 22.5 g_{rms}	Composite = 14.4 g_{rms}

3-1-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-2-C Input to Components Mounted on Structural Ring at \overline{X}_T 985 In Panels 1, 2 and 3 of the Intertank, and not within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component > 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis				Long.	i	and I	Can	g.	Axes		
	20	Ηz	@	$0.019 \text{ g}^2/\text{Hz}$			20	Ηz	@	0.0013	g^2/Hz	′
20 -	32	Hz	@	+9 dB/oct	20 -	-	30	Hz	@	+10 dI	3 /oct	
				$0.075 \text{ g}^2/\text{Hz}$							g^2/Hz	
200 -	240	Hz	@	-12 dB/oct	200 -	-	350	Ηz	@	+9 dB	/oct	
				$0.038 \text{ g}^2/\text{Hz}$							g^2/Hz	
800 -				-6 dB/oct	800 -					-6 dB	_	
	2000	Hz	@	$0.006 \text{ g}^2/\text{Hz}$			2000	Ηz	@	0.010	g^2/Hz	
	Comp	oosi	te	= 7.4 g_{rms}			Comp	osi	te	= 8.1	$g_{ m rms}$	

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.051 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$
20 - 30 Hz @ +6 dB/oct	20 - 30 Hz @ +6 dB/oct
30 - 340 Hz @ 0.11 g ² /Hz	$30 - 250 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$
340 - 500 Hz @ +6 dB/oct	250 - 450 Hz @ +9 dB/oct
$500 - 800 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	$450 - 700 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$
800 - 2000 Hz @ -9 dB/oct	700 - 2000 Hz @ -9 dB/oct
$2000 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.007 \text{ g}^2/\text{Hz}$
Composite = 14.7 g_{rms}	$2000 \text{ Hz} @ 0.007 \text{ g}^{2}/\text{Hz}$ $Composite = 10.2 \text{ g}_{rms}$

3-1-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-2-AP Input to Components Mounted on Structural Ring at \overline{X}_T 985 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis			Long.	and '	Γang	. A	xes	
20 -	20 H 50 H	Hz @ 0.019 Hz @ +9 dB	g ² /Hz /oct	20	20 - 60	Hz Hz	@ 0. @ +1	0013 g	g ² /Hz oct
50 - 200 -	200 I 240 I	Hz @ 0.3 g	² /Hz B/oct					050 g ² dB/o	
		Hz @ 0.15 q						25 g ² / 6 dB/o	
	2000 H	Iz @ 0.024	g^2/Hz		2000	Нz	@ 0.	040 g ²	² /Hz
	Compo	site = 14.0	6 g _{rms}		Comp	posit	e =	16.2 g	rns

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.044 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$
20 - 120 Hz @ +6 dB/oct	20 - 130 Hz @ +6 dB/oct
120 - 500 Hz @ 1.6 g ² /Hz	$130 - 320 \text{ Hz} @ 0.45 \text{ g}^2/\text{Hz}$
500 - 600 Hz @ +10 dB/oct	320 - 500 Hz @ +9 dB/oct
600 - 1000 Hz @ 3.0 g ² /Hz	500 - 900 Hz @ 1.7 g ² /Hz
1000 - 2000 Hz @ -12 dB/oct	900 - 2000 Hz @ -12 dB/oct
2000 Hz @ $0.19 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.07 \text{ g}^2/\text{Hz}$
Composite = $54.5 g_{rms}$	Composite = 37.7 g_{rms}

3-1-2-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 IIz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-2-BP Input to Components Mounted on Structural Ring at \overline{X}_T 985 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component > 30 but < 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz } @ 0.011 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0028 \text{ g}^2/\text{Hz}$
20 - 86 Hz @ +6 dB/oct	20 - 94 Hz @ +6 dB/oct
$86 - 500 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$	$94 - 320 \text{ Hz } @ 0.058 \text{ g}^2/\text{Hz}$
500 - 600 Hz @ +10 dB/oct	320 - 500 Hz @ +9 dB/oct
$600 - 1000 \text{ Hz} @ 0.38 \text{ g}^2/\text{Hz}$	$500 - 900 \text{ Hz} @ 0.21 \text{ g}^2/\text{Hz}$
1000 - 2000 Hz @ -12 dB/oct	900 - 2000 Hz @ -12 dB/oct
2000 Hz @ 0.024 g^2/Hz	2000 Hz @ 0.0088 g^2/Hz
Composite = 19.4 g_{rms}	Composite = 13.2 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Axis				Long	•	and 7	Γan	g.	Axes
20	Ηz	@	$0.019 \text{ g}^2/\text{Hz}$			20	Hz	@	$0.0013 \text{ g}^2/\text{Hz}$
40	Hz	@	+9 dB/oct	20	_	42	Hz	@	+10 dB/oct
200	Ηz	@	$0.15 \text{ g}^2/\text{Hz}$	42	_	200	Ηz	@	$0.025 \text{ g}^2/\text{Hz}$
240	Ηz	@	-12 dB/oct	200	-	350	Ηz	@	+9 dB/oct
800	Ηz	@	$0.075 \text{ g}^2/\text{Hz}$						
2000	Hz	@	-6 dB/oct	800	_	2000	Hz	@	-6 dB/oct
2000	Hz	@	$0.012 \text{ g}^2/\text{Hz}$			2000	Ηz	@	$0.020 \text{ g}^2/\text{Hz}$
Comp	osit	e	= 10.4 g _{rms}			Comp	osi	te	= 11.4 g _{rms}
	20 40 200 240 800 2000 2000	20 Hz 40 Hz 200 Hz 240 Hz 800 Hz 2000 Hz	20 Hz @ 40 Hz @ 200 Hz @ 800 Hz @ 2000 Hz @ 2000 Hz @	Axis 20 Hz @ 0.019 g ² /Hz 40 Hz @ +9 dB/oct 200 Hz @ 0.15 g ² /Hz 240 Hz @ -12 dB/oct 800 Hz @ 0.075 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.012 g ² /Hz Composite = 10.4 g _{rms}	20 Hz @ 0.019 g ² /Hz 40 Hz @ +9 dB/oct 20 200 Hz @ 0.15 g ² /Hz 42 240 Hz @ -12 dB/oct 200 800 Hz @ 0.075 g ² /Hz 350 2000 Hz @ -6 dB/oct 800 2000 Hz @ 0.012 g ² /Hz	20 Hz @ 0.019 g ² /Hz 40 Hz @ +9 dB/oct 20 - 200 Hz @ 0.15 g ² /Hz 42 - 240 Hz @ -12 dB/oct 200 - 800 Hz @ 0.075 g ² /Hz 350 - 2000 Hz @ -6 dB/oct 800 - 2000 Hz @ 0.012 g ² /Hz	20 Hz @ 0.019 g^2/Hz 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Radial	Axis		Long.	and 7	rang	g.	Axes
86 - 500 - 600 -	86 Hz 500 Hz 600 Hz	z @ 0.044 g ² /Hz z @ +6 dB/oct z @ 0.8 g ² /Hz z @ +10 dB/oct z @ 1.5 g ² /Hz	94 - 320 - 500 -	94 320 500 900	Hz Hz Hz Hz	@ · @ · @ ·	0.011 g ² /Hz +6 dB/oct 0.23 g ² /Hz +9 dB/oct 0.85 g ² /Hz
		$z = 0.095 \text{ g}^2/\text{Hz}$					-12 dB/oct $0.035 \text{ g}^2/\text{Hz}$
	Compos	site = 38.8 g_{rms}		Comp	osit	e	= 26.4 g _{rms}

3-1-2-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.6 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-1-2-CP Input to Components Mounted on Structural Ring at \overline{X}_T 985 in Panels 1, 2 and 3 of the Intertank, and within $\pm 10^\circ$ of the GO Press. Line/Cable Tray Installation. Weight of Component > 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.011 g^2/Hz 62 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.0028 \text{ g}^2/\text{Hz}$ 20 - 64 Hz @ +6 dB/oct
62 - 500 -	$500 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$ 600 Hz @ +10 dB/oct	$64 - 320 \text{ Hz} @ 0.028 \text{ g}^2/\text{Hz}$ 320 - 500 Hz @ +9 dB/oct
600 - 1000 -	1000 Hz @ 0.19 g ² /Hz 2000 Hz @ -12 dB/oct	500 - 900 Hz 0.11 g ² /Hz 900 - 2000 Hz @ -12 dB/oct
2001	2000 Hz @ 0.012 g ² /Hz	2000 Hz @ $0.0045 \text{ g}^2/\text{oct}$
	Composite = 13.8 g_{rms}	Composite = 9.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis		Long.	and I	Cang	. Axes
20 -	20 Hz @ 0.0 62 Hz @ +6	$044 \text{ g}^2/\text{Hz}$	20 -	20 64	Ηz	@ 0.011 g ² /Hz @ +6 dB/oct
62 -	500 Hz @ 0.	$4 g^2/Hz$	64 -	320	Hz	$0.11 \text{ g}^2/\text{Hz}$
600 -	600 Hz @ +101000 Hz @ 0.101000 Hz	$75 \text{ g}^2/\text{Hz}$				@ +9 dB/oct @ 0.43 g ² /Hz
1000 -	2000 Hz @ -1	2 dB/oct	900 -	2000	Ηz	@ -12 dB/oct
	2000 Hz @ 0.	J				$0.018 \text{ g}^2/\text{Hz}$
	Composite = 2	$^{27.5}~\mathrm{g}_{\mathrm{rms}}$		Comp	osit	$e = 19.0 g_{rms}$

3-1-2-CP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-2 ET Intertank (Stations X_T 1130 to X_T 852) Panels 4 and 5. (General Specifications)

Same as Subzone 3-2-1-A below.

Subzone 3-2-1 Structural Rings at Stations X_T 1082, X_T 1034, X_T 941, and X_T 897 in Panels 4 and 5 of the ET Intertank. (General Specifications)

Same as Subzone 3-2-1-A below.

Subzone 3-2-1-A Input to Components Mounted on Structural Rings at Stations X_T 1082, X_T 1034, X_T 941 and X_T 897, in Panels 4 and 5 of the ET Intertank. Weight of Components < 50 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
50 -	20 Hz @ 0.048 g ² /Hz 50 Hz @ +9 dB/oct 200 Hz @ 0.75 g ² /Hz 2000 Hz @ -3 dB/oct 2000 Hz @ 0.075 g ² /Hz	20 Hz @ 0.075 g ² /Hz 20 - 30 Hz @ +6 dB/oct 30 - 200 Hz @ 0.17 g ² /Hz 200 - 400 Hz @ +10 dB/oct 400 - 800 Hz @ 1.75 g ² /Hz 800 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.082 g ² /Hz
	Composite = 21.6 g_{rms}	Composite = 37.6 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
	20 Hz @ 0.009 g ² /Hz 50 Hz @ +9 dB/oct	$20 \text{ Hz} @ 0.0011 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +9 dB/oct
50 -	200 Hz @ $0.15 \text{ g}^2/\text{Hz}$	$60 - 230 \; \mathrm{Hz} \; @ \; 0.029 \; \mathrm{g}^2 / \mathrm{Hz}$
	2000 Hz @ -3 dB/oct	230 - 360 Hz @ +10 dB/oct
	2000 Hz @ $0.015 \text{ g}^2/\text{Hz}$	$360 - 2000 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$
	Composite = 9.7 g_{rms}	Composite = 14.8 g_{rms}

3-2-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

$$20 \text{ Hz} \stackrel{?}{=} 0.19 \text{ g}^2/\text{Hz}$$

 $20 - 50 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$
 $50 - 200 \text{ Hz} \stackrel{?}{=} 3.0 \text{ g}^2/\text{Hz}$
 $200 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$
 $2000 \text{ Hz} \stackrel{?}{=} 0.3 \text{ g}^2/\text{Hz}$

Long. and Tang. Axes

Composite = 43.2 g_{rms}

Composite = 75.3 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-2-1-B Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034, X_t 941 and X_t 897, in Panels 4 and 5 of the ET Intertank. Weight of Component > 50 but < 150 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

$$20 \text{ Hz} @ 0.048 \text{ g}^2/\text{Hz}$$

 $20 - 40 \text{ Hz} @ +9 \text{ dB/oct}$
 $40 - 200 \text{ Hz} @ 0.38 \text{ g}^2/\text{Hz}$
 $200 - 2000 \text{ Hz} @ -3 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$

Composite = 15.4 g_{rms}

Long. and Tang. Axes

Composite = $26.6 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

Composite = $6.9 g_{rms}$

Long. and Tang. Axes

$$20 \text{ Hz} @ 0.0010 \text{ g}^2/\text{Hz}$$

 $20 - 48 \text{ Hz} @ +9 \text{ dB/oct}$
 $48 - 230 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$
 $230 - 360 \text{ Hz} @ +10 \text{ dB/oct}$
 $360 - 2000 \text{ Hz} @ 0.062 \text{ g}^2/\text{Hz}$
 $Composite = 10.5 \text{ g}_{rms}$

Boost Random Vibration Criteria (2 min/axis) 3.

Radial Axis

Composite = 30.7 g_{rms}

Long. and Tang. Axes

Composite = $53.2 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5 - 40 Hz @ 0.6 G's peak 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak

3-2-1-B (Cont.)

Shock Test Criteria (2 shocks/axis)
 See Table I

- Subzone 3-2-1-C Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034, X_t 941 and X_t 897, in Panels 4 and 5 of the ET Intertank. Weight of Components > 150 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0096 \text{ g}^2/\text{Hz}$ 20 - 32 Hz @ +9 dB/oct $32 - 200 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.0038 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{?}{=} 0.0010 \text{ g}^2/\text{Hz}$ $20 - 38 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $38 - 230 \text{ Hz} \stackrel{?}{=} 0.0075 \text{ g}^2/\text{Hz}$ $230 - 360 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $360 - 2000 \text{ Hz} \stackrel{?}{=} 0.031 \text{ g}^2/\text{Hz}$
Composite = 4.9 g_{rms}	Composite = 7.4 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.19 \text{ g}^2/\text{Hz}$ 20 - 32 Hz @ +9 dB/oct $32 - 200 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$	$20 - 200 \text{ Hz} @ 0.18 \text{ g}^2/\text{Hz}$ 200 - 400 Hz @ +10 dB/oct $400 - 800 \text{ Hz} @ 1.75 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.083 \text{ g}^2/\text{Hz}$
Composite = 21.8 g_{rms}	Composite = 37.7 g _{rms}

3-2-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-2-2 Structural Ring at Station X_t 985 in Panels 4 and 5 of the ET Intertank. (General Specifications)

Same as Subzone 3-2-2-A below.

Subzone 3-2-2-A Input to Components Mounted on Structural Ring at Station \mathbf{X}_{t} 985 in Panels 4 and 5 of the ET Intertank. Weight of Components < 75 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.013 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +9 dB/oct	$20 - 200 \text{ Hz} = 0.045 \text{ g}^2/\text{Hz}$ 200 - 400 Hz = 0.10 dB/oct
$50 - 200 \text{ Hz} @ 0.20 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -3 dB/oct	400 - 800 Hz @ 0.45 g ² /Hz 800 - 2000 Hz @ -10 dB/oct
2000 Hz @ 0.020 g ² /Hz	2000 Hz @ 0.023 g ² /Hz
Composite = 11.2 g_{rms}	Composite = 19.0 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0026 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +9 dB/oct	20 Hz @ 0.00030 g ² /Hz 20 - 60 Hz @ +9 dB/oct
$50 - 200 \text{ Hz} @ 0.04 \text{ g}^2/\text{Hz}$	$60 - 230 \text{ Hz} @ 0.0080 \text{ g}^2/\text{Hz}$
200 - 2000 Hz @ -3 dB/oct	230 - 360 Hz @ +10 dB/oct
2000 Hz @ 0.004 g^2/Hz	$360 - 2000 \text{ Hz} @ 0.035 \text{ g}^2/\text{Hz}$
Composite = 5.0 g_{rms}	Composite = 7.9 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +9 dB/oct $50 - 200 \text{ Hz} @ 0.8 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.08 \text{ g}^2/\text{Hz}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 22.3 g_{rms}	Composite = 38.1 g _{rms}

3-2-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-2-2-B Input to Components Mounted on Structural Ring at Station X_t 985 in panels 4 and 5 of the ET Intertank. Weight of Components > 75 but < 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.013 \text{ g}^2/\text{Hz}$	$20 - 200 \text{ Hz} = 0.022 \text{ g}^2/\text{Hz}$
20 - 40 Hz @ +9 dB/oct	200 - 400 Hz = +10 dB/oct
$40 - 200 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$	$400 - 800 \text{ Hz} = 0.22 \text{ g}^2/\text{Hz}$
200 - 2000 Hz @ 0.1 g / Hz	800 - 2000 Hz @ 0.22 g /Hz
200 - 2000 Hz @ -3 dB/oct	800 - 2000 Hz @ -10 dB/oct
$2000 \text{ Hz} @ 0.01 \text{ g}^2 / \text{Hz}$	2000 Hz @ 0.011 g ² /Hz
Composite = 8.0 g_{rms}	Composite = 13.4 g _{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.0026 \text{ g}^2/\text{Hz}$ $20 - 40 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $40 - 200 \text{ Hz} \stackrel{?}{=} 0.02 \text{ g}^2/\text{Hz}$ $200 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$	$20 \text{ Hz} \stackrel{?}{=} 0.00030 \text{ g}^2/\text{Hz}$ $20 - 48 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $48 - 230 \text{ Hz} \stackrel{?}{=} 0.0038 \text{ g}^2/\text{Hz}$ $230 - 360 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$
2000 Hz @ 0.002 g^2/Hz	$360 - 2000 \text{ Hz} @ 0.018 \text{ g}^2/\text{Hz}$
Composite = 3.5 g_{rms}	Composite = $5.5. g_{rms}$

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.05 \text{ g}^2/\text{Hz}$ $20 - 40 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $40 - 200 \text{ Hz} \stackrel{?}{=} 0.4 \text{ g}^2/\text{Hz}$ $200 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.04 \text{ g}^2/\text{Hz}$	$20 - 200 \text{ Hz} @ 0.090 \text{ g}^2/\text{Hz}$ 200 - 400 Hz @ +10 dB/oct $400 - 800 \text{ Hz} @ 0.90 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.046 \text{ g}^2/\text{Hz}$
Composite = 16.0 g _{rms}	Composite = 26.8 g_{rms}

3-2-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axis

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-2-2-C Input to Components Mounted on Struttural Ring at Station X_t 985 in Panels 4 and 5 of the ET Intertank Weight of Components \geq 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz } @ 0.013 \text{ g}^2/\text{Hz}$ 20 - 32 Hz @ +9 dB/oct	$20 - 200 \text{ Hz} @ 0.011 \text{ g}^2/\text{Hz}$
	200 - 400 Hz @ +10 dB/oct
$32 - 200 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$	$400 - 800 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$
200 - 2000 Hz @ -3 dB/oct	800 - 2000 Hz @ -10 dB/oct
2000 Hz @ 0.005 g^2 /Hz	$2000 \text{ Hz} @ 0.0057 \text{ g}^2/\text{Hz}$
Composite = 5.7 g_{rms}	Composite = 9.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0026 \text{ g}^2/\text{Hz}$ 20 - 32 Hz @ +9 dB/oct	$20 \text{ Hz} @ 0.00030 \text{ g}^2/\text{Hz}$ 20 - 38 Hz @ +9 dB/oct
$32 - 200 \text{ Hz} @ 0.01 \text{ g}^2/\text{Hz}$ 200 - 2000 Hz @ -3 dB/oct	$38 - 230 \text{ Hz} @ 0.0032 \text{ g}^2/\text{Hz}$ 230 - 360 Hz @ +10 dB/oct
2000 Hz @ 0.001 g^2/Hz	$360 - 2000 \text{ Hz} @ 0.014 \text{ g}^2/\text{Hz}$
Composite = 2.5 g_{rms}	Composite = 5.0 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} \stackrel{?}{=} 0.05 \text{ g}^2/\text{Hz}$ $20 - 32 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $32 - 200 \text{ Hz} \stackrel{?}{=} 0.2 \text{ g}^2/\text{Hz}$ $200 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.02 \text{ g}^2/\text{Hz}$	$20 - 200 \text{ Hz} @ 0.045 \text{ g}^2/\text{Hz}$ 200 - 400 Hz @ +10 dB/oct $400 - 800 \text{ Hz} @ 0.45 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.023 \text{ g}^2/\text{Hz}$
Composite = 11.3 g _{rms}	Composite = 19.0 g_{rms}

3-2-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-2-3 SRB Beam at Station X_T 985 of the ET Intertank. (General Specifications)

Same as Subzone 3-2-3-A below.

Subzone 3-2-3-A Input to Components Mounted on the SRB Beam at $\overline{\text{Station X}_{T}}$ 985 of the ET Intertank.

1. Acceptance Test Criteria (1 min/axis)

Xt and Zt Axes	Y _t Axis
$20 \text{ Hz} \stackrel{?}{=} 0.0089 \text{ g}^2/\text{Hz}$ $20 - 40 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $40 - 800 \text{ Hz} \stackrel{?}{=} 0.089 \text{ g}^2/\text{Hz}$ $800 - 2000 \text{ Hz} \stackrel{?}{=} -10 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.0040 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.0035 \text{ g}^2/\text{Hz}$ 20 - 65 Hz @ +6 dB/oct $65 - 330 \text{ Hz} @ 0.035 \text{ g}^2/\text{Hz}$ 330 - 500 Hz @ +9 dB/oct $500 - 800 \text{ Hz} @ 0.12 \text{ g}^2/\text{Hz}$
Composite = 9.7 g_{rms}	800 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.0060 g^2/Hz Composite = 9.8 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

\mathbf{X}_{t} and \mathbf{Z}_{t} Axes	Y _t Axis
20 Hz @ 0.00077 g ² /Hz 20 - 65 Hz @ +9 dB/oct 65 - 160 Hz @ 0.026 g ² /Hz 160 - 360 Hz @ -3 dB/oct 360 - 2000 Hz @ 0.012 g ² /Hz	20 Hz @ 0.00064 g ² /Hz 20 - 120 Hz @ +4 dB/oct 120 - 330 Hz @ 0.0066 g ² /Hz 330 - 500 Hz @ +10 dB/oct 500 - 800 Hz @ 0.027 g ² /Hz 800 - 2000 Hz @ -6 dB/oct
Composite = 5.0 g_{rms}	$2000 \text{ Hz} = -6 \text{ dB/oct}$ $2000 \text{ Hz} = 0.0043 \text{ g}^2/\text{Hz}$ $\text{Composite} = 5.0 \text{ g}_{\text{rms}}$

3-2-3-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Xt and Zt Axes

$$Y_t$$
 Axis

$$20 \text{ Hz} @ 0.035 \text{ g}^2/\text{Hz}$$

 $20 - 40 \text{ Hz} @ +10 \text{ dB/oct}$
 $40 - 800 \text{ Hz} @ 0.35 \text{ g}^2/\text{Hz}$
 $800 - 2000 \text{ Hz} @ -10 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$

20 Hz @ 0.014 g²/Hz 20 - 65 Hz @ +6 dB/oct 65 - 330 Hz @ 0.14 g²/Hz 330 - 500 Hz @ +9 dB/oct 500 - 800 Hz @ 0.50 g²/Hz

800 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.024 g²/Hz

Composite = 19.4 g_{rms}

Composite = 19.7 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-3 ET Intertank (Stations X_t 1130 to X_t 852), Panels 6, 7, and 8 (General Specifications)

Same as Subzone 3-3-1-A below.

Subzone 3-3-1 Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941, and X_t 897 in Panels 6, 7, and 8 of the ET Intertank (General Specifications)

Same as Subzone 3-3-1-A below.

- Subzone 3-3-1-A Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941 and X_t 897 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component < 25 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
40 - 100 - 125 -	20 Hz @ $0.024 \text{ g}^2/\text{Hz}$ 40 Hz @ +12 dB/oct 100 Hz @ $0.38 \text{ g}^2/\text{Hz}$ 125 Hz @ -12 dB/oct 1000 Hz @ $0.15 \text{ g}^2/\text{Hz}$ 2000 Hz @ -9 dB/oct	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1000	2000 Hz @ 0.019 g^2/Hz Composite = 14.8 g_{rms}	Composite = 10.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.095 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +12 dB/oct	$20 \text{ Hz } @ 0.15 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct
40 - 100 Hz @ 1.5 g ² /Hz 100 - 125 Hz @ -12 dB/oct 125 - 1000 Hz @ 0.6 g ² /Hz 1000 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.075 g ² /Hz	$40 - 1000 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$
Composite = 29.6 g_{rms}	Composite = 21.0 g_{rms}

3-3-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = $26.7 \text{ g}_{\text{rms}}$

Long. and Tang. Axes

$$20 \text{ Hz} \stackrel{?}{=} 0.08 \text{ g}^2/\text{Hz}$$

 $20 - 60 \text{ Hz} \stackrel{?}{=} +3 \text{ dB/oet}$
 $60 - 1000 \text{ Hz} \stackrel{?}{=} 0.24 \text{ g}^2/\text{Hz}$
 $1000 - 2000 \text{ Hz} \stackrel{?}{=} -10 \text{ dB/oet}$
 $2000 \text{ Hz} \stackrel{?}{=} 0.024 \text{ g}^2/\text{Hz}$

Composite = $17.7 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

5. Shock Test Criteria

See Table I

* Design Criteria Only

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

- Subzone 3-3-1-B Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941 and X_t 897 on Panels 6, 7, and 8 of the ET Intertank. Weight of Component \geq 25 but < 75 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.20 g^2/Hz 20 - 28 Hz @ +12 dB/oct 28 - 100 Hz @ 0.75 g^2/Hz 100 - 125 Hz @ -12 dB/oct 125 - 1000 Hz @ 0.3 g^2/Hz 1000 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.038 g^2/Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 21.1 g _{rms}	Composite = 22.7 g _{rms}
rins	rms

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.16 \text{ g}^2/\text{Hz}$ 20 - 28 Hz @ +12 dB/oct $28 - 100 \text{ Hz} @ 0.6 \text{ g}^2/\text{Hz}$ 100 - 130 Hz @ -12 dB/oct $130 - 1000 \text{ Hz} @ 0.21 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -4 dB/oct $2000 \text{ Hz} @ 0.085 \text{ g}^2/\text{Hz}$	20 Hz @ 0.058 g ² /Hz 20 - 42 Hz @ +3 dB/oct 42 - 1000 Hz @ 0.12 g ² /Hz 1000 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.012 g ² /Hz
Composite = 19.0 g_{rms}	Composite = 12.6 g _{rms}

3-3-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.6 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-3-1-C Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941, and X_t 897 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component > 75 lb. but < 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 - 100 \text{ Hz} @ 0.38 \text{ g}^2/\text{Hz}$ 100 - 125 Hz @ -12 dB/oct $125 - 1000 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$	$20 - 1000 \text{ Hz} @ 0.075 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$
Composite = 15.0 g_{rms}	Composite = 10.5 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis	Long. and Tang. Axes
$20 - 100 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 100 - 130 Hz @ -12 dB/oct $130 - 1000 \text{ Hz} @ 0.115 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -4 dB/oct $2000 \text{ Hz} @ 0.043 \text{ g}^2/\text{Hz}$	$20 - 1000 \text{ Hz} @ 0.06 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -10 dB/oct $2000 \text{ Hz} @ 0.006 \text{ g}^2/\text{Hz}$
Composite = 14.7 g _{rms}	Composite = 8.9 g_{rms}

3-3-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 3-3-1-D Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941, and X_t 897 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component > 225 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

 $20 - 100 \text{ Hz} = 0.048 \text{ g}^2/\text{Hz}$ 100 - 125 Hz @ -12 dB/oct

 $125 - 1000 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -9 dB/oct

2000 Hz @ $0.0024 \text{ g}^2/\text{Hz}$

Composite = 5.3 g_{rms}

Long. and Tang. Axes

20 - 1000 Hz @ 0.0095 g²/Hz 1000 - 2000 Hz @ -6 dB/oct

2000 Hz @ $0.0024 \text{ g}^2/\text{Hz}$

Composite = $3.8 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis

 $20 - 100 \text{ Hz} @ 0.19 \text{ g}^2/\text{Hz}$ 100 - 125 Hz @ -12 dB/oct

125 - 1000 Hz @ 0.075 g²/Hz 1000 - 2000 Hz @ -9 dB/oct

2000 Hz @ 0.0095 g^2/Hz

Composite = $10.6 g_{rms}$

Long. and Tang. Axes

 $20 - 1000 \text{ Hz} @ 0.038 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.0095 g^2/Hz

Composite = 7.5 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

20 - 100 Hz @ 0.15 g²/Hz 100 - 130 Hz @ -12 dB/oct

130 - 1000 Hz @ 0.058 g²/Hz 1000 - 2000 Hz @ -4 dB/oct

2000 Hz @ 0.022 g²/Hz

Composite = 10.4 g_{rms}

Long. and Tang. Axes

 $20 - 1000 \text{ Hz} @ 0.03 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -10 dB/oct

2000 Hz @ 0.0003 g^2/Hz

Composite = $6.5 g_{rms}$

3-3-1-D (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's Peak* 2 - 5 Hz @ 0.8 G's Peak* 5 - 40 Hz @ 0.6 G's Peak 5 - 40 Hz @ 0.8 G's Peak

Lateral Axes

5. Shock Test Criteria

See Table I

Subzone 3-3-2 Structural Ring at Station X_t 985 in Panels 6, 7, and 8 of the ET Intertank. (General Specifications)

Same as Subzone 3-3-2-A below.

Subzone 3-3-2-A Input to Components Mounted on the Structural Ring at Station X_t 985 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component < 35 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 8.6 g_{rms}	Composite = 6.1 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 17.1 g_{rms}	Composite = 12.1 g_{rms}

3-3-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 16.0 g_{rms}

Long. and Tang. Axes

20 Hz @ 0.027 g²/Hz 20 - 60 Hz @ +3 dB/oet 60 - 1100 Hz @ 0.08 g²/Hz 1100 - 2000 Hz @ -10 dB/oet 2000 Hz @ 0.012 g²/Hz

Composite = 10.6 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

5. Shock Test Criteria

See Table I

* Design Criteria Only.

Lateral Axes

2 - 5 Hz @ 0.8 G's Peak* 5 - 40 Hz @ 0.8 G's Peak Subzone 3-3-2-B Input to Components Mounted on the Structural Ring at Station X_t 985 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component > 35 but < 100 lb.

1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

3. Boost Random Vibration Criteria (2 min/axis)

Radial	Axis	Long. and Tang. Axes
34 - 100 - 130 - 1000 -	20 Hz @ 0.025 g ² /Hz 34 Hz @ +12 dB/oct 100 Hz @ 0.2 g ² /Hz 130 Hz @ -12 dB/oct 1000 Hz @ 0.075 g ² /Hz 2000 Hz @ -4 dB/oct 2000 Hz @ 0.03 g ² /Hz	20 Hz @ 0.027 g ² /Hz 20 - 30 Hz @ +3 dB/oct 30 - 1100 Hz @ 0.04 g ² /Hz 1100 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.006 g ² /Hz
	Composite = 11.3 g _{rms}	Composite = 7.5 g _{rms}

3-3-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's Peak*

5 - 40 Hz @ 0.6 G's Peak

5. Shock Test Criteria

See Table I

* Design Criteria Only

Lateral Axes

2 - 5 Hz @ 0.8 G's Peak*

5 - 40 Hz @ 0.8 G's Peak

- Subzone 3-3-2-C Input to Components Mounted on the Structural Ring at Station X_t 985 in Panels 6, 7, and 8 of the ET Intertank. Weight of Component > 100 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

3. Boost Random Vibration Criteria (2 min/axis)

Radial	Axis		Long. and Tang. Axes
28 - 100 - 130 -	28 Hz 100 Hz 130 Hz 1000 Hz 2000 Hz	@ 0.025 g ² /Hz @ +12 dB/oct @ 0.1 g ² /Hz @ -12 dB/oct @ 0.038 g ² /Hz @ -4 dB/oct @ 0.015 g ² /Hz	20 - 1100 Hz @ 0.02 g ² /Hz 1100 - 2000 Hz @ -10 dB/oct 2000 Hz @ 0.003 g ² /Hz
	Composit	te = 8.2 g _{rms}	Composite = 5.3 g _{rms}

3-3-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak* 2 - 5 Hz @ 0.0 G 5 Feak 5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.6 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 3-3-3 Structural Ring at Station X_t 1034 Between the -Z
Axis and the Access Door of the ET Intertank.
(General Specifications)

Same as Subzone 3-3-3-A below.

- Subzone 3-3-3-A Input to Components Mounted on the Structural Ring at Station X_t 1034 between the -Z Axis and the Access Door of the ET Intertank. Weight of Component < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.0625 g ² /Hz 20 - 65 Hz @ +9 dB/oct 65 - 90 Hz @ 2.0 g ² /Hz 90 - 123 Hz @ -9 dB/oct 123 - 400 Hz @ 0.7 g ² /Hz 400 - 2000 Hz @ -6 dB/oct	20 Hz @ 0.00065 g ² /Hz 20 - 95 Hz @ +9 dB/oct 95 - 1300 Hz @ 0.07 g ² /Hz 1300 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.019 g ² /Hz
$2000~\mathrm{Hz}$ @ $0.0275~\mathrm{g}^2/\mathrm{Hz}$	
Composite = 23.4 g _{rms}	Composite = 10.6 g _{rms}

2 & 3. Flight Random Vibration Criteria (Lift-off and Boost) (3 min/axis)

4. Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's peak*
5 - 40 Hz @ 0.6 G's peak

5. Shock Test Criteria

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*
5 - 40 Hz @ 0.8 G's peak

5 - 40 Hz @ 0.8 G's peak

* Design Criteria Only.

See Table I

190

- Subzone 3-3-3-B Input to Components Mounted on the Structural Ring at Station X, 1034 Between the -Z Axis and the Access Door of the ET Intertank. Weight of Component > 30 but < 90 lb.
- Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

Flight Random Vibration Criteria (Lift-off and Boost (3 min/axis)

Radial Axis

Long. and Tang. Axes

	$20 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	20 Hz @ 0.0026 g^2/Hz
20 -	52 Hz @ +9 dB/oct	20 - 75 Hz @ +9 dB/oct
52 -	90 Hz @ $4.0 \text{ g}^2/\text{Hz}$	$75 - 1300 \text{ Hz} @ 0.14 \text{ g}^2/\text{Hz}$
90 -	123 Hz @ -9 dB/oct	1300 - 2000 Hz @ -9 dB/oct
400 -	400 Hz @ 1.4 g^2/Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.056 g^2/Hz	2000 Hz @ 0.038 g ² /Hz

Composite = 33.7 g_{rms}

Composite = $15.1 g_{rms}$

Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2	_	5	Hz	@	0.6	G's	peak*
5		40	Hz	@	0.6	G's	peak

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

Shock Test Criteria

See Table I

- Subzone 3-3-3-C Input to Components Mounted on the Structural Ring at Station X_t 1034 Between the -Z Axis and the Access Door of the ET Intertank. Weight of Component > 90 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

Long. and Tang. Axes

40 - 90 - 123 -	20 Hz @ 0.065 g ² /Hz 40 Hz @ +9 dB/oct 90 Hz @ 0.5 g ² /Hz 123 Hz @ -9 dB/oct 400 Hz @ 0.175 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.007 g ² /Hz	20 Hz @ 0.00065 g ² /Hz 20 - 60 Hz @ +9 dB/oct 60 - 1300 Hz @ 0.018 g ² /Hz 1300 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.0048 g ² /Hz
	Composite = 12.1 g _{rms}	Composite = 5.3 g_{rms}

2 & 3. Flight Random Vibration Criteria (Lift-off and Boost) (3 min/axis)

Radial Axis

Long. and Tang. Axes

20 -	20 Hz @ $0.25 \text{ g}^2/\text{Hz}$ 40 Hz @ +9 dB/oct	$20 \text{ Hz} @ 0.0026 \text{ g}^2/\text{Hz}$ 20 - 60 Hz @ +9 dB/oct
40 -	90 Hz @ 2.0 g^2/Hz 123 Hz @ -9 dB/oct	$60 - 1300 \text{ Hz} @ 0.07 \text{ g}^2/\text{Hz}$ 1300 - 2000 Hz @ -9 dB/oct
123 -	400 Hz @ $0.7 \text{ g}^2/\text{Hz}$	2000 + 2000 + 2 = -9 + 6 = -
400 -	2000 Hz @ -6 dB/oct 2000 Hz @ 0.028 g ² /Hz	
	Composite = 24.2 g_{rms}	Composite = 10.7 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria

See Table I

Subzone 3-4 ET LH₂ Forward Bulkhead (General Specifications)

Same as Subzone 3-4-1-A below.

Subzone 3-4-1 ET LH $_2$ Forward Bulkhead Gores (Stations X_t 1130 to X_t 1108). (General Specifications)

Same as Subzone 3-4-1-A below.

- Subzone 3-4-1-A Input to Components Mounted on the ET LH_2 Forward Bulkhead Gores (Stations X_t 1130 to X_t 1008). Weight of Component < 10 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

20 Hz @ 0.0022 g²/Hz 20 - 140 Hz @ +9 dB/oct 140 - 500 Hz @ 0.75 g²/Hz 500 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.047 g²/Hz

Composite = 24.0 g_{rms}

Directions B and C

					0
					$0.0050 \text{ g}^2/\text{Hz}$
20	-	60	Hz	@	+3 dB/oct
0.0		000	T T _	Ω	0.015 -2/17
bU	_	220	HZ	Q	0.015 g /Hz
220	_	400	Ηz	@	$0.015 \text{ g}^2/\text{Hz}$ +6 dB/oct
400	-	900	Hz	@	$0.050 \text{ g}^2/\text{Hz}$
900	-	2000	Ηz	@	$0.050 \text{ g}^2/\text{Hz}$ -9 dB/oct
					$0.0045 \text{ g}^2/\text{Hz}$

Composite = $7.1 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

$$20 - 180 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$$

 $180 - 400 \text{ Hz} @ +6 \text{ dB/oct}$
 $400 - 900 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$
 $900 - 2000 \text{ Hz} @ -9 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.021 \text{ g}^2/\text{Hz}$
 $Composite = 16.0 \text{ g}_{rms}$

193

3-4-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Composite = 48.1 g_{rms}

Directions B and C

Composite = 14.2 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

- Subzone 3-4-1-B Input to Components Mounted on the ET LH $_2$ Forward Bulkhead Gores (Stations X_t 1130 to X_t 1008). Weight of Component > 10 but < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

20 Hz @ $0.0022 \text{ g}^2/\text{Hz}$ 20 - 112 Hz @ +9 dB/oct 112 - 500 Hz @ $0.37 \text{ g}^2/\text{Hz}$ 500 - 2000 Hz @ -6 dB/oct 2000 Hz @ $0.024 \text{ g}^2/\text{Hz}$

Composite = 17.6 g_{rms}

Directions B and C

20 Hz @ 0.0032 g²/Hz 20 - 48 Hz @ +3 dB/oct 48 - 220 Hz @ 0.0075 g²/Hz 220 - 400 Hz @ +6 dB/oct 400 - 900 Hz @ 0.025 g²/Hz 900 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.0023 g²/Hz

Composite = $5.0 \text{ g}_{\text{rms}}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Composite = 29.9 g_{rms}

Directions B and C

Composite = 11.3 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

$$20 \text{ Hz} \stackrel{?}{=} 0.0090 \text{ g}^2/\text{Hz}$$

 $20 - 112 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$
 $112 - 500 \text{ Hz} \stackrel{?}{=} 1.50 \text{ g}^2/\text{Hz}$
 $500 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$
 $2000 \text{ Hz} \stackrel{?}{=} 0.095 \text{ g}^2/\text{Hz}$

Composite = 35.2 g_{rms}

Directions B and C

Composite = $10.1 g_{rms}$

3-4-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G!s peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead
Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Input to Components Mounted on the ET LH₂ Forward Subzone 3-4-1-C Bulkhead Gores (Stations X_t 1130 to X_t 1008). Weight of Components > 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A 20 Hz @ 0.0022 g²/Hz 88 Hz @ +9 dB/oct

 $88 - 500 \text{ Hz} @ 0.19 \text{ g}^2/\text{Hz}$ 500 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.012 g^2/Hz

Directions B and C

20 Hz @ 0.0019 g²/Hz 38 Hz @ +3 dB/oct

20 -

38 - 220 Hz @ 0.0037 g²/Hz 220 - 400 Hz @ +6 dB/oct

400 - 900 Hz @ 0.012 g²/Hz 900 - 2000 Hz @ -9 dB/oct

 $2000 \text{ Hz} @ 0.0011 \text{ g}^2/\text{Hz}$

Composite = $12.3 g_{rms}$

Composite = $3.6 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

20 Hz @ 0.0090 g²/Hz 87 Hz @ +9 dB/oct

 $87 - 400 \text{ Hz} @ 0.70 \text{ g}^2/\text{Hz}$ 400 - 2000 Hz @ -6 dB/oct2000 Hz @ $0.0027 \text{ g}^2/\text{Hz}$

Composite = $21.1 g_{rms}$

Directions B and C

20 - 180 Hz @ 0.012 g²/Hz 180 - 400 Hz @ +6 dB/oct

400 - 900 Hz @ 0.060 g²/Hz 900 - 2000 Hz @ -9 dB/oct

2000 Hz @ 0.011 g^2/Hz

Composite = $8.0 g_{rms}$

Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.0090 g²/Hz 88 Hz @ +9 dB/oet 20 - $88 - 500 \text{ Hz} @ 0.75 \text{ g}^2/\text{Hz}$

500 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.047 g^2/Hz

Composite = 24.7 g_{rms}

Directions B and C

20 Hz @ 0.0079 g²/Hz 38 Hz @ +3 dB/oet

20 -

38 - 220 Hz @ 0.015 g²/Hz 220 - 400 Hz @ +6 dB/oct

400 - 900 Hz @ 0.050 g²/Hz 900 - 2000 Hz @ -9 dB/oct

 $2000 \text{ Hz} @ 0.0046 \text{ g}^2/\text{Hz}$

Composite = $7.2 g_{rms}$

3-4-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

 $\begin{array}{ll} \mbox{Direction A} - \mbox{Perpendicular to Bulkhead} \\ \mbox{Direction B} - \mbox{Tangential to Bulkhead} \end{array}$

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

Subzone 3-4-2 ET LH $_2$ Forward Bulkhead Cap (Station X_t 1008). (General Specifications)

Same as Subzone 3-4-2-A below.

- Subzone 3-4-2-A Input to Components Mounted on the ET LH $_2$ Forward Bulkhead Cap (Station X_t 1008). Weight of Component < 20 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B and C				
20 Hz @ 0.0050 g ² /Hz 20 - 140 Hz @ +9 dB/oct 140 - 400 Hz @ 1.20 g ² /Hz 400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.045 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Composite = 27.3 g_{rms}	Composite = 7.6 g _{rms}				

3.4-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.0031 g²/Hz 20 - 120 Hz @ +10 dB/oct 120 - 400 Hz @ 1.20 g²/Hz 400 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.049 g²/Hz

Composite = 27.5 g_{rms}

Directions B and C

Composite = 7.6 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 3-4-2-B Input to Components Mounted on the ET LH_2 Forward Bulkhead Cap (Station X_t 1008). Weight of Component \geq 20 but < 60 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

3. Boost Random Vibration Criteria (2 min/axis)

	•				
Direction A	Directions B and C				
$20 \text{ Hz} \stackrel{?}{=} 0.0031 \text{ g}^2/\text{Hz}$ $20 - 98 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $98 - 400 \text{ Hz} \stackrel{?}{=} 0.60 \text{ g}^2/\text{Hz}$ $400 - 2000 \text{ Hz} \stackrel{?}{=} -6 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.024 \text{ g}^2/\text{Hz}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Composite = 19.7 g _{rms}	Composite = 5.4 g_{rms}				

3-4-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead
Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 3-4-2-C Input to Components Mounted on the ET LH $_2$ Forward Bulkhead Cap (Station X $_t$ 1008). Weight of Component > 60 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Composite = 7.2 g_{rms}

Composite = $1.9 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Composite = 14.0 g_{rms}

Directions B and C

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Composite = 14.4 g_{rms}

Directions B and C

Composite = 3.8 g_{rms}

Subzone 3-4-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Bulkhead Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

Subzone 3-5 ET LO, Aft Bulkhead. (General Specifications)

Same as Subzone 3-5-1-A below.

ET LO $_2$ Aft Bulkhead Gores. (Stations X_t 963 to X_t Subzone 3-5-1 854). (General Specifications)

Same as Subzone 3-5-1-A below.

- Input to Components Mounted on the ET LO₂ Aft Subzone 3-5-1-A Bulkhead Gores (Stations X, 963 to X, 854). Weight of Components < 12 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

20 Hz @ 0.0050 g²/Hz 20 - 100 Hz @ +6 dB/oct

100 - 180 Hz @ 0.12 g²/Hz 180 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} @ 0.0010 \text{ g}^2/\text{Hz}$

Composite = $5.9 g_{rms}$

Directions B and C

20 Hz @ 0.00080 g²/Hz 20 - 100 Hz @ +6 dB/oct

100 - 410 Hz @ 0.020 g²/Hz 410 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} = 0.00085 \text{ g}^2/\text{Hz}$

Composite = $3.6 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

 $100 - 240 \text{ Hz} @ 0.40 \text{ g}^2/\text{Hz}$ 240 - 2000 Hz @ -7 dB/oct

 $2000 \text{ Hz} @ 0.0029 \text{ g}^2/\text{Hz}$

Composite = 11.7 g_{rms}

Directions B and C

 $20 \text{ Hz} @ 0.0032 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +6 dB/oct

 $100 - 410 \text{ Hz} @ 0.080 \text{ g}^2/\text{Hz}$ 410 - 2000 Hz @ -6 dB/oet

2000 Hz @ $0.0034 \text{ g}^2/\text{Hz}$

Composite = 7.3 g_{rms}

3-5-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.020 g²/Hz 100 Hz @ +6 dB/oct $100 - 180 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$ 180 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} @ 0.0041 \text{ g}^2/\text{Hz}$

Composite = $11.8 g_{rms}$

Directions B and C

20 Hz @ 0.00040 g²/Hz 100 Hz @ +10 dB/oct 20 -

 $100 - 160 \text{ Hz} @ 0.080 \text{ g}^2/\text{Hz}$ 160 -195 Hz @ -10 dB/oct

 $195 - 600 \text{ Hz} @ 0.040 \text{ g}^2/\text{Hz}$ 600 - 2000 Hz @ -6 dB/oct

2000 Hz @ $0.0036 \text{ g}^2/\text{Hz}$

Composite = $6.5 g_{rms}$

4. Vehicle Dynamics Criteria

Longitudinal Axis

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

Lateral Axes

2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A — Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

^{*} Design Criteria Only

- Subzone 3-5-1-B Input to Components Mounted on the ET LO $_2$ Aft Bulkhead Gores (Stations X_t 963 to X_t 854). Weight of Components > 12 but < 36 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

Directions B and C

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

		20	Hz	@	0.016 g ² /Hz +6 dB/oct			20	Hz	@	0.0032 g ² /Hz +6 dB/oct
20	-	72	Hz	@	+6 dB/oct	20	-	72	Hz	@	+6 dB/oct
72	-	240	Hz	@	$0.20 \text{ g}^2/\text{Hz}$	72	_	410	Ηz	@	$0.040 \text{ g}^2/\text{Hz}$
240	-	2000	Hz	@	-7 dB/oct	410	-	2000	Hz	@	-6 dB/oct
		2000	Ηz	@	$0.0014 \text{ g}^2/\text{Hz}$			2000	Ηz	@	$0.0017 \text{ g}^2/\text{Hz}$
		Comp	osi	te	= $8.5 g_{rms}$			Comp	osi	te	= $5.2 \text{ g}_{\text{rms}}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Directions B and C

$ \begin{array}{rrr} 20 & - & 71 \\ 71 & - & 180 \\ 180 & - & 2000 \end{array} $	Hz @ 0.020 g ² /Hz Hz @ +6 dB/oct Hz @ 0.25 g ² /Hz Hz @ -6 dB/oct Hz @ 0.0021 g ² /Hz	20 Hz @ 0.00024 g ² /Hz 20 - 100 Hz @ +10 dB/oct 100 - 160 Hz @ 0.048 g ² /Hz 160 - 195 Hz @ -10 dB/oct 195 - 600 Hz @ 0.024 g ² /Hz 600 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0022 g ² /Hz
Com	posite = $8.6 \mathrm{g}_{\mathrm{rms}}$	Composite = 5.0 g_{rms}

3-5-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak 5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead Direction B - Tangential to Bulkhead Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 3-5-1-C Input to Components Mounted on the ET LO₂ Aft Bulkhead Gores (Stations X_{t} 963 to X_{t} 854). Weight of Component > 36 lb.
- Acceptance Test Criteria (1 min/axis) 1.

Direction A

$$20 \text{ Hz} @ 0.0050 \text{ g}^2/\text{Hz}$$

 $20 - 50 \text{ Hz} @ +6 \text{ dB/oct}$
 $50 - 180 \text{ Hz} @ 0.032 \text{ g}^2/\text{Hz}$
 $180 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.00027 \text{ g}^2/\text{Hz}$

Composite = $3.2 g_{rms}$

Directions B and C

Composite = $2.5 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

$$20 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$$

 $20 - 50 \text{ Hz} @ +6 \text{ dB/oct}$
 $50 - 240 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$
 $240 - 2000 \text{ Hz} @ -7 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.00072 \text{ g}^2/\text{Hz}$

Composite = $6.1 g_{rms}$

Directions B and C

20 Hz @
$$0.0032 \text{ g}^2/\text{Hz}$$

20 - 70 Hz @ +6 dB/oct
70 - 410 Hz @ $0.039 \text{ g}^2/\text{Hz}$
410 - 2000 Hz @ -6 dB/oct
2000 Hz @ $0.0015 \text{ g}^2/\text{Hz}$
Composite = $5.0 \text{ g}_{\text{rms}}$

Boost Random Vibration Criteria (2 min/axis) 3.

Direction A

Composite = $6.4 \, \mathrm{g}_{\mathrm{rms}}$

Directions B and C

Composite = $5.0 g_{rms}$

3-5-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

 $\begin{array}{lll} \text{Direction A} & - & \text{Perpendicular to Bulkhead} \\ \text{Direction B} & - & \text{Tangential to Bulkhead} \\ \text{Direction C} & - & \text{Tangential to Bulkhead, Perpendicular to Direction B} \end{array}$

Subzone 3-5-2 ET LO₂ Aft Bulkhead Cap at Statio X_t 854. (General Specifications)

Same as Subzone 3-5-2-A below.

- Input to Components Mounted on the ET LO₂ Aft Subzone 3-5-2-A Bulkhead Cap at Station X_t 854. Weight of Components < 50 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

2000 Hz @ 0.0016 g^2/Hz

Composite = 6.3 g_{rms}

Directions B and C

2000 Hz @ 0.00060 g^2/Hz

Composite = $3.0 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

 $20 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +6 dB/oct

20 - 100 Hz @ +6 dB/oct 20 - 100 Hz @ +6 dB/oct 100 - 250 Hz @ 0.4 g²/Hz 100 - 410 Hz @ 0.056 g²/Hz 250 - 2000 Hz @ -6 dB/oct 410 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0063 g²/Hz

Composite = $12.7 g_{rms}$

Directions B and C

20 Hz @ 0.0022 g²/Hz 20 - 100 Hz @ +6 dB/oct

2000 Hz @ $0.0024 \text{ g}^2/\text{Hz}$

Composite = $6.1 g_{rms}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.016 g²/Hz 20 - 100 Hz @ +6 dB/oct

 $100 - 250 \text{ Hz} @ 0.4 \text{ g}^2/\text{Hz}$ 250 - 2000 Hz @ -6 dB/oct

 $2000 \text{ Hz} @ 0.0063 \text{ g}^2/\text{Hz}$

Composite = 12.7 g_{rms}

Directions B and C

 $20 \text{ Hz} @ 0.00048 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct

100 - 160 Hz @ 0.060 g²/Hz 160 - 200 Hz @ -9 dB/oet

 $200 - 500 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ 500 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.0019 g^2/Hz

Composite = $5.2 g_{rms}$

3-5-2-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 3-5-2-B Input to Components Mounted on the ET LO $_2$ Aft

 Bulkhead Cap at Station X_t 854. Weight of Components

 > 50 but < 150 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

A Directions B and C

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

20	_	20 71	Hz Hz	@	0.016 g ² /Hz +6 dB/oct	2	0 -		20 84	Hz Hz	@ @	0.0022 g ² /Hz +6 dB/oct
71	_	250	Ηz	a	$0.2 \text{ g}^2/\text{Hz}$ -6 dB/oct	8 41	4 – 0 –	. 2	2000	Hz	@	$0.038 \text{ g}^2/\text{Hz}$ -6 dB/oct
		2000	Hz	@	$0.0031 \text{ g}^2/\text{Hz}$			2	2000	Hz	@	$0.0019 \text{ g}^2/\text{Hz}$
		Comp	posi	te	= 9.0 g _{rms}			(Comp	osi	te	= 5.0 g _{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.016 g²/Hz 20 - 71 Hz @ +6 dB/oct 71 - 250 Hz @ 0.2 g²/Hz 250 - 2000 Hz @ -6 dB/oct

2000 Hz @ $0.0031 \text{ g}^2/\text{Hz}$

Composite = 9.0 g_{rms}

Directions B and C

20 Hz @ 0.00044 g²/Hz 20 - 100 Hz @ +9 dB/oct 100 - 160 Hz @ 0.055 g²/Hz 160 - 200 Hz @ -9 dB/oct 200 - 500 Hz @ 0.028 g²/Hz 500 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0018 g²/Hz

Composite = 5.0 g_{rms}

3-5-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead

Direction C - Tangential to Bulkhead, Perpendicular to Direction B

- Subzone 3-5-2-C Input to Components Mounted on the ET LO₂ Aft Bulkhead Cap (Station X_t 854). Weight of Component
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

250 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.0004 \text{ g}^2/\text{Hz}$

Composite = $3.2 g_{rms}$

Directions B and C

20 Hz @ 0.00055 g²/Hz 20 - 84 Hz @ +6 dB/oct

 $50 - 250 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$ $84 - 410 \text{ Hz} @ 0.0095 \text{ g}^2/\text{Hz}$ 250 - 2000 Hz @ -6 dB/oct 410 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.00047 g^2/Hz

Composite = $2.5 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

20 Hz @ 0.016 g^2/Hz 20 - 50 Hz @ +6 dB/oct 50 - 250 Hz @ 0.1 g²/Hz 250 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.0016 \text{ g}^2/\text{Hz}$

Composite = 6.3 g_{rms}

Directions B and C

20 Hz @ $0.0022 \text{ g}^2/\text{Hz}$ 20 - 84 Hz @ +6 dB/oct

84 - 410 Hz @ 0.038 g²/Hz 410 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0019 g^2/Hz

Composite = $5.0 g_{rms}$

Boost Random Vibration Criteria (2 min/axis)

Direction A

 $20 \text{ Hz} @ 0.016 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +6 dB/oct $50 - 250 \text{ Hz } @ 0.1 \text{ g}^2/\text{Hz}$ 250 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.001 \text{ g}^2/\text{Hz}$

Composite = $6.3 g_{rms}$

Directions B and C

 $20 \text{ Hz} @ 0.00044 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct

100 - 160 Hz @ 0.055 g²/Hz 160 - 200 Hz @ -9 dB/oct

 $200 - 500 \text{ Hz} @ 0.028 \text{ g}^2/\text{Hz}$ 500 - 2000 Hz @ -6 dB/oct

2000 Hz @ 0.0018 g^2/Hz

Composite = $5.0 g_{rms}$

3-5-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Direction A - Perpendicular to Bulkhead

Direction B - Tangential to Bulkhead
Direction C - Tangential to Bulkhead, Perpendicular to Direction B

Subzone 4-1 ET LO $_2$ Cylinder (Stations X_T 852 to X_T 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. (General Specifications)

Same as Subzone 4-1-A below

- Subzone 4-1-A Input to Components Mounted on the ET LO Cylinder (Stations X_T 852 to X_T 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Components < 15 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.062 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct	$20 \text{ Hz} @ 0.00030 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct
$40 - 400 \text{ Hz } @ 0.012 \text{ g}^2/\text{Hz}$	100 - 260 Hz @ 0.37 g ² /Hz
400 - 700 Hz @ +3 dB/oct 700 - 1000 Hz @ 0.22 g ² /Hz	260 - 700 Hz @ +3 dB/oct 700 - 1000 Hz @ 0.10 g ² /Hz
1000 - 2000 Hz @ -6 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.056 g^2/Hz	$2000 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$
Composite = 16.7 g_{rms}	Composite = 11.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.12 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.030 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.0016 \text{ g}^2/\text{Hz}$ $20 - 100 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $100 - 550 \text{ Hz} \stackrel{?}{=} 0.040 \text{ g}^2/\text{Hz}$ $550 - 700 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $700 - 1000 \text{ Hz} \stackrel{?}{=} 0.080 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.040 \text{ g}^2/\text{Hz}$
Composite = 13.3 g _{rms}	Composite = 10.4 g _{rms}

4-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

$$20 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$$
 $20 - 40 \text{ Hz} @ +3 \text{ dB/oct}$
 $40 - 400 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$
 $400 - 700 \text{ Hz} @ +3 \text{ dB/oct}$
 $700 - 1000 \text{ Hz} @ 0.90 \text{ g}^2/\text{Hz}$
 $1000 - 2000 \text{ Hz} @ -6 \text{ dB/oct}$
 $2000 \text{ Hz} @ 0.23 \text{ g}^2/\text{Hz}$
 $Composite = 33.4 \text{ g}_{rms}$

Long. and Tang. Axes

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 4-1-B Input to Components Mounted on the ET LO $_2$ Cylinder (Stations X_T 852 to X_T 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Components \geq 15 but < 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 Hz @ 0.032 g ² /Hz	$20 \text{ Hz} @ 0.00030 \text{ g}^2/\text{Hz}$
20 - 40 Hz @ +3 dB/oct	20 - 80 Hz @ +9 dB/oct
$40 - 400 \text{ Hz} @ 0.062 \text{ g}^2/\text{Hz}$	$80 - 260 \text{ Hz} @ 0.019 \text{ g}^2/\text{Hz}$
400 - 700 Hz @ +3 dB/oct	260 - 700 Hz @ +3 dB/oct
$700 - 1000 \text{ Hz} @ 0.11 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oet $2000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.050 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.037 \text{ g}^2/\text{Hz}$
Composite = 11.8 g _{rms}	Composite = 8.4 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.060 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.015 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 9.4 g _{rms}	Composite = 7.4 g_{rms}

Radial	Axis	Long. and Tang. Axes
40 - 400 700 -	20 Hz @ 0.13 g ² /Hz 40 Hz @ +3 dB/oct 400 Hz @ 0.25 g ² /Hz 700 Hz @ +3 dB/oct 1000 Hz @ 0.45 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.12 g ² /Hz	20 Hz @ 0.0012 g ² /Hz 20 - 80 Hz @ +9 dB/oct 80 - 260 Hz @ 0.075 g ² /Hz 260 - 700 Hz @ +3 dB/oct 700 - 1000 Hz @ 0.21 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.11 g ² /Hz
	2000 Hz @ 0.12 g ⁻ /Hz	2000 Hz @ 0.11 g ² /Hz
	Composite = 23.6 g_{rms}	Composite = $16.9 g_{rms}$

4-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 4-1-C Input to Components Mounted on the ET LO $_2$ Cylinder (Stations X_T 852 and X_T 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Components \geq 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
20 -	20 Hz @ 0.015 g^2/Hz 40 Hz @ +3 dB/oct	$20 \text{ Hz} @ 0.00030 \text{ g}^2/\text{Hz}$ 20 - 62 Hz @ +9 dB/oct
40 -	$400 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz} \\ 700 \text{ Hz} @ +3 \text{ dB/oct}$	62 - 260 Hz @ 0.0095 g ² /Hz 260 - 700 Hz @ +3 dB/oct
700 - 1000 -	1000 Hz @ 0.055 g ² /Hz 2000 Hz @ -6 dB/oct	700 - 1000 Hz @ 0.025 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct
	2000 Hz @ 0.014 g ² /Hz	2000 Hz @ $0.012 \text{ g}^2/\text{Hz}$
	Composite = 8.2 g_{rms}	Composite = 5.9 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.030 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0075 g ² /Hz	$20 \text{ Hz} @ 0.0016 \text{ g}^2/\text{Hz}$ 20 - 50 Hz @ +6 dB/oct $50 - 550 \text{ Hz} @ 0.010 \text{ g}^2/\text{Hz}$
2000 HZ @ 0.0073 g /HZ	550 - 700 Hz @ +9 dB/oct
	$700 - 1000 \text{ Hz } @ 0.020 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
	2000 Hz @ 0.010 g^2/Hz
Composite = $6.7 \text{ g}_{\text{rms}}$	Composite = 5.2 g_{rms}

Radial	Axis	Long. and Tang. Axes
40 -	20 Hz @ $0.060 \text{ g}^2/\text{Hz}$ 40 Hz @ +3 dB/oct 400 Hz @ $0.12 \text{ g}^2/\text{Hz}$ 700 Hz @ +3 dB/oct	20 Hz @ 0.0012 g ² /Hz 20 - 62 Hz @ +9 dB/oct 62 - 260 Hz @ 0.038 g ² /Hz 260 - 700 Hz @ +3 dB/oct
700 -	1000 Hz @ +3 dB/oct 1000 Hz @ 0.22 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.055 g ² /Hz	700 - 1000 Hz @ 0.10 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.050 g ² /Hz
	2000 Hz @ 0.055 g /Hz Composite = 16.4 g_{rms}	Composite = 11.8 g_{rms}

4-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.6 G's peak

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 4-1-AP Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Components < 15 lb.

1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct	$20 \text{ Hz} \ @ \ 0.00010 \ \text{g}^2/\text{Hz}$ $20 - 150 \text{ Hz} \ @ +10 \ \text{dB/oct}$
$40 - 76 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$ $76 - 150 \text{ Hz} @ +6 \text{ dB/oct}$	$150 - 1000 \; \mathrm{Hz} \; @ \; 0.08 \; \mathrm{g}^2 / \mathrm{Hz}$ $1000 - 2000 \; \mathrm{Hz} \; @ -6 \; \mathrm{dB/oct}$
150 - 1000 Hz @ 0.2 g ² /Hz 1000 - 2000 Hz @ -9 dB/oct	2000 Hz @ $0.02 \text{ g}^2/\text{Hz}$
2000 Hz @ 0.025 g ² /Hz	
Composite = 16.0 g_{rms}	Composite = 10.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$ 20 - 40 Hz @ +3 dB/oct $40 - 76 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$ 76 - 150 Hz @ +6 dB/oct	$20 \text{ Hz} @ 0.00041 \text{ g}^2/\text{Hz}$ 20 - 150 Hz @ +10 dB/oet $150 - 1000 \text{ Hz} @ 0.32 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oet
$150 - 1000 \text{ Hz} @ 0.8 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.08 g ² /Hz
Composite = 32.0 g_{rms}	Composite = 21.0 g_{rms}

4-1-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 4-1-BP Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 15 but < 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long, and Tang, Axes
20 Hz @ 0.018 20 - 29 Hz @ +3 dE 29 - 76 Hz @ 0.025 76 - 150 Hz @ +6 dE 150 - 1000 Hz @ 0.1 g 1000 - 2000 Hz @ -9 dE 2000 Hz @ 0.013	$3/\text{oct}$ $20 - 120 \text{ Hz } @ +10 \text{ dB/oct}$ g^2/Hz $120 - 1000 \text{ Hz } @ 0.04 \text{ g}^2/\text{Hz}$ $3/\text{oct}$ $1000 - 2000 \text{ Hz } @ -6 \text{ dB/oct}$ $2/\text{Hz}$ $2000 \text{ Hz } @ 0.01 \text{ g}^2/\text{Hz}$ $3/\text{oct}$
Composite = 11.	

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
29 - 76 - 150 -	20 Hz @ 0.07 g ² /Hz 29 Hz @ +3 dB/oct 76 Hz @ 0.1 g ² /Hz 150 Hz @ +6 dB/oct 1000 Hz @ 0.4 g ² /Hz 2000 Hz @ -9 dB/oct 2000 Hz @ 0.05 g ² /Hz	20 Hz @ 0.00041 g ² /Hz 20 - 120 Hz @ +10 dB/oct 120 - 1000 Hz @ 0.16 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.04 g ² /Hz
	Composite = 22.4 g_{rms}	Composite = 15.0 g_{rms}

4-1-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak 2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 4-1-CP Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 45 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Composite = 8.0 g_{rms}

Composite = 5.4 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
	$20 \text{ Hz} @ 0.00041 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +10 dB/oct
$20 - 76 \text{ Hz} = 0.05 \text{ g}^2/\text{Hz}$	$100 - 1000 \text{ Hz} @ 0.08 \text{ g}^2/\text{Hz}$
76 - 150 Hz @ +6 dB/oct	1000 - 2000 Hz @ -6 dB/oct
$150 - 1000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -9 dB/oct $2000 \text{ Hz} @ 0.025 \text{ g}^2/\text{Hz}$	2000 Hz @ $0.02 \text{ g}^2/\text{Hz}$
Composite = 16.0 g_{rms}	Composite = 10.7 g_{rms}

4-1-CA (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 5-1 ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation (General Specifications)

Same as 5-1-A below

- Subzone 5-1-A Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation. Weight of Component < 10 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.030 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0075 g ² /Hz	20 Hz @ 0.00045 g ² /Hz 20 - 100 Hz @ +6 dB/oct 100 - 550 Hz @ 0.011 g ² /Hz 550 - 700 Hz @ +9 dB/oct 700 - 1000 Hz @ 0.023 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.011 g ² /Hz
Composite = 6.7 g_{rms}	Composite = 5.5 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.12 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.030 g ² /Hz	20 Hz @ 0.0018 g ² /Hz 20 - 100 Hz @ +6 dB/oct 100 - 550 Hz @ 0.046 g ² /Hz 550 - 700 Hz @ +9 dB/oct 700 - 1000 Hz @ 0.092 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.046 g ² /Hz
Composite = 13.3 g_{rms}	Composite = 11.1 g _{rms}

5-1-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis

Composite = 12.1 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

5. Shock Test Criteria (2 shocks/axis

See Table I

* Design Criteria Only

Long. and Tang. Axes

Lateral Axes

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

- Subzone 5-1-B Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Component ≥ 10 but < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.060 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.015 g ² /Hz	20 Hz @ 0.0018 g ² /Hz 20 - 70 Hz @ +6 dB/oct 70 - 550 Hz @ 0.023 g ² /Hz 550 - 700 Hz @ +9 dB/oct 700 - 1000 Hz @ 0.046 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.023 g ² /Hz
Composite = 9.4 g_{rms}	Composite = $7.9 \mathrm{g}_{\mathrm{rms}}$

Radial Axis	Long. and Tang. Axes
20 - 150 Hz @ 0.015 g ² /Hz 150 - 600 Hz @ +3 dB/oct 600 - 1000 Hz @ 0.060 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.015 g ² /Hz	$20 \text{ Hz} @ 0.000040 \text{ g}^2/\text{Hz}$ $20 - 82 \text{ Hz} @ +10 \text{ dB/oct}$ $82 - 160 \text{ Hz} @ 0.0050 \text{ g}^2/\text{Hz}$ $160 - 630 \text{ Hz} @ +4 \text{ dB/oct}$ $630 - 1000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} @ -3 \text{ dB/oct}$ $2000 \text{ Hz} @ 0.015 \text{ g}^2/\text{Hz}$
Composite = 8.5 g_{rms}	Composite = $6.4 \mathrm{g}_{\mathrm{rms}}$

5-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 5-1-C Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^{\circ}$ of the GO, Pressure Line/Cable Tray Installation. Weight of Component \geq 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.0075 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0018 g ² /Hz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 3.3 g_{rms}	Composite = 2.7 g_{rms}

Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.030 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0075 g ² /Hz	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Composite = 6.7 g_{rms}	Composite = 5.5 g_{rms}

Radial	Axis	Long. and Tang. Axes
150 - 600 -	150 Hz @ 0.0075 g ² /Hz 600 Hz @ +3 dB/oct 1000 Hz @ 0.030 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.0075 g ² /Hz	20 Hz @ 0.000040 g ² /Hz 20 - 68 Hz @ +10 dB/oct 68 - 160 Hz @ 0.0031 g ² /Hz 160 - 630 Hz @ +4 dB/oct 630 - 1000 Hz @ 0.019 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.0085 g ² /Hz
	Composite = 6.0 g _{rms}	Composite = 5.0 g_{rms}

5-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.6 G's peak 5 - 40 Hz @ 0.8 G's peak 2 - 5 Hz @ 0.8 G's peak*

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 5-1-AP Input to Components Mounted on the Ogive Aft Section $(X_T 747 \text{ to } X_T 537)$ and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 10 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
20 - 1000 Hz @ 0.12 g ² /Hz 1000 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.030 g ² /Hz	$20 \text{ Hz} \stackrel{?}{=} 0.0018 \text{ g}^2/\text{Hz}$ $20 - 100 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $100 - 550 \text{ Hz} \stackrel{?}{=} 0.046 \text{ g}^2/\text{Hz}$ $550 - 700 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $700 - 1000 \text{ Hz} \stackrel{?}{=} 0.092 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.046 \text{ g}^2/\text{Hz}$
Composite = 13.3 g_{rms}	Composite = 11.1 g _{rms}

Radial	Axis	Long. and Tang. Axes
	20 Hz @ $0.1 \text{ g}^2/\text{Hz}$ 40 Hz @ +3 dB/oct	20 Hz @ 0.00042 g ² /Hz 20 - 160 Hz @ +10 dB/oct
40 - 100 -	100 Hz @ 0.2 g ² /Hz 200 Hz @ +6 dB/oct	$160 - 1000 \text{ Hz} @ 0.4 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
	1000 Hz @ 0.8 g ² /Hz 2000 Hz @ -6 dB/oct	$2000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$
	$2000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$	
	Composite = 33.3 g_{rms}	Composite = 25.0 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 5-1-BP Input to Components Mounted on the Ogive Aft Section $\overline{(X_T \ 747}$ to $\overline{X_T} \ 537)$ and within $\pm 10^\circ$ of the \overline{GO}_2 Press. Line/Cable Tray Installation. Weight of Component ≥ 10 but < 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial	Axis	Long. and Tang. Axes
29 - 100 - 200 -	20 Hz @ 0.07 g ² /Hz 29 Hz @ +3 dB/oct 100 Hz @ 0.1 g ² /Hz 200 Hz @ +6 dB/oct 1000 Hz @ 0.4 g ² /Hz 2000 Hz @ -6 dB/oct 2000 Hz @ 0.1 g ² /Hz	20 Hz @ 0.00042 g ² /Hz 20 - 130 Hz @ +10 dB/oct 130 - 1000 Hz @ 0.2 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.1 g ² /Hz
	Composite = 24.9 g _{rms}	Composite = 17.8 g _{rms}

5-1-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak*

5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

- Subzone 5-1-CP Input to Components Mounted on the Ogive Aft Section $(X_T \ 747 \ \text{to} \ X_T \ 537)$ and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component > 30 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 - 100 \text{ Hz} @ 0.013 \text{ g}^2/\text{Hz}$ 100 - 200 Hz @ +6 dB/oct $200 - 1000 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.013 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} \stackrel{?}{=} 0.00010 \text{ g}^2/\text{Hz}$ $20 - 105 \text{ Hz} \stackrel{?}{=} +10 \text{ dB/oct}$ $105 - 1000 \text{ Hz} \stackrel{?}{=} 0.025 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.013 \text{ g}^2/\text{Hz}$
Composite = 8.6 g_{rms}	Composite = 6.4 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Radial Axis	Long. and Tang. Axes
$20 - 1000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.0075 \text{ g}^2/\text{Hz}$	20 Hz @ 0.0018 g ² /Hz 20 - 50 Hz @ +6 dB/oct 50 - 550 Hz @ 0.011 g ² /Hz 550 - 700 Hz @ +9 dB/oct 700 - 1000 Hz @ 0.023 g ² /Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.011 g ² /Hz
Composite = 6.7 g_{rms}	Composite = 5.5 g_{rms}

Radial Axis	Long. and Tang. Axes
$20 - 100 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$ 100 - 200 Hz @ +6 dB/oct $200 - 1000 \text{ Hz} @ 0.2 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00042 \text{ g}^2/\text{Hz}$ 20 - 105 Hz @ +10 dB/oct $105 - 1000 \text{ Hz} @ 0.1 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct $2000 \text{ Hz} @ 0.05 \text{ g}^2/\text{Hz}$
Composite = 17.2 g _{rms}	Composite = 12.7 g _{rms}

5-1-CP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak

5. Shock Test Criteria (2 shocks/axis)

See Table I

Subzone 5-2 ET Ogive, Forward Section (Stations X_t 537 to X_t 371). (General Specifications)

Same as Subzone 5-2-A below.

- Subzone 5-2-A Input to Components Mounted on the ET Ogive, Forward Section (Stations X_t 537 to X_t 371) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Component ≤ 7 lbs.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A	Directions B and C
20 Hz @ 0.0065 g ² /Hz	$20 \text{ Hz} @ 0.000075 \text{ g}^2/\text{Hz}$
20 - 80 Hz @ +6 dB/oct	20 - 100 Hz @ +9 dB/oct
$80 - 150 \text{ Hz} @ 0.10 \text{ g}^2/\text{Hz}$	$100 - 500 \text{ Hz} @ 0.010 \text{ g}^2/\text{Hz}$
150 - 300 Hz @ +6 dB/oct	500 - 700 Hz @ +6 dB/oct
$300 - 500 \text{ Hz } @ 0.40 \text{ g}^2/\text{Hz}$	$700 - 1000 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$
500 - 2000 Hz @ -3 dB/oct	1000 - 2000 Hz @ -3 dB/oct
2000 Hz @ 0.10 g ² /Hz	$2000 \text{ Hz} @ 0.010 \text{ g}^2/\text{Hz}$
Composite = 20.0 g_{rms}	Composite = 5.2 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

5-2-A (Cont.)

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Directions B and C

$$20 \text{ Hz} @ 0.00032 \text{ g}^2/\text{Hz}$$

 $20 - 600 \text{ Hz} @ +4 \text{ dB/oet}$
 $600 - 2000 \text{ Hz} @ 0.030 \text{ g}^2/\text{Hz}$

Composite = 24.7 g_{rms}

Composite = 7.1 g_{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

5. Shock Test Criteria (2 shocks/axis)

Not Applicable.

Direction A - Perpendicular to Ogive Direction B - Tangential to Ogive

Direction C - Tangential to Ogive, Perpendicular to Direction B

^{*} Design Criteria Only

- Subzone 5-2-B Input to Components Mounted on the ET Ogive, Forward Section (Stations X_t 537 to X_t 371) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Component > 7 but < 21 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

20 Hz @ 0.0065 g²/Hz 20 - 56 Hz @ +6 dB/oct 56 - 150 Hz @ 0.050 g²/Hz 150 - 300 Hz @ +6 dB/oct 300 - 500 Hz @ 0.20 g²/Hz 500 - 2000 Hz @ -3 dB/oct

Composite = 14.2 g_{rms}

2000 Hz @ $0.050 \text{ g}^2/\text{Hz}$

Directions B and C

20 Hz @ 0.000075 g²/Hz 20 - 80 Hz @ +9 dB/oct 80 - 500 Hz @ 0.0050 g²/Hz 500 - 700 Hz @ +6 dB/oct 700 - 1000 Hz @ 0.010 g²/Hz 1000 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.0050 g²/Hz

Composite = $3.7 g_{rms}$

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

20 Hz @ 0.026 g²/Hz 20 - 56 Hz @ +6 dB/oct 56 - 150 Hz @ 0.20 g²/Hz 150 - 300 Hz @ +6 dB/oct 300 - 500 Hz @ 0.80 g²/Hz 500 - 2000 Hz @ -3 dB/oct 2000 Hz @ 0.20 g²/Hz

Composite = 28.4 g_{rms}

Directions B and C

 $20 \text{ Hz} \stackrel{?}{=} 0.00030 \text{ g}^2/\text{Hz}$ $20 - 80 \text{ Hz} \stackrel{?}{=} +9 \text{ dB/oct}$ $80 - 500 \text{ Hz} \stackrel{?}{=} 0.020 \text{ g}^2/\text{Hz}$ $500 - 700 \text{ Hz} \stackrel{?}{=} +6 \text{ dB/oct}$ $700 - 1000 \text{ Hz} \stackrel{?}{=} 0.040 \text{ g}^2/\text{Hz}$ $1000 - 2000 \text{ Hz} \stackrel{?}{=} -3 \text{ dB/oct}$ $2000 \text{ Hz} \stackrel{?}{=} 0.020 \text{ g}^2/\text{Hz}$ $Composite = 7.4 \text{ g}_{rms}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Composite = 18.1 g_{rms}

Directions B and C

 $20 \text{ Hz} @ 0.00016 \text{ g}^2/\text{Hz}$ 20 - 600 Hz @ +4 dB/oet $600 - 2000 \text{ Hz} @ 0.014 \text{ g}^2/\text{Hz}$

Composite = $5.0 g_{rms}$

5-2-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 6 Hz @ 1.4 G's peak*

6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

 $\begin{array}{ll} \mbox{Direction A} & - \mbox{ Perpendicular to Ogive} \\ \mbox{Direction B} & - \mbox{ Tangential to Ogive} \end{array}$

Direction C - Tangential to Ogive, Perpendicular to Direction B

- Subzone 5-2-C Input to Components Mounted on the ET Ogive, Forward Section (Stations X_t 537 to X_t 371) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation. Weight of Component ≥ 21 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

Directions B and C

	20 Hz	$0.0065 \text{ g}^2/\text{Hz}$	20 Hz @ 0.000075 g^2/Hz
20 -	$40~\mathrm{Hz}$	@ +6 dB/oct	20 - 64 Hz @ +9 dB/oct
40 -	150 Hz	$0.025 \text{ g}^2/\text{Hz}$	$64 - 500 \; \mathrm{Hz} \; @ \; 0.0025 \; \mathrm{g}^2/\mathrm{Hz}$
150 -	300 Hz	@ +6 dB/oct	500 - 700 Hz @ +6 dB/oct
300 -	500 Hz	$0.10 \text{ g}^2/\text{Hz}$ 0.3 dB/oct	$700 - 1000 \text{ Hz} @ 0.0050 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct
		$0.025 \text{ g}^2/\text{Hz}$	$2000 \text{ Hz} @ 0.0025 \text{ g}^2/\text{Hz}$
	Composi	te = 10.0 g_{rms}	Composite = 2.6 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

	20	Hz	@	$0.026 \text{ g}^2/\text{Hz}$	20 Hz @ 0.0003	$30 \text{ g}^2/\text{Hz}$
20 -	40	Hz	@	+6 dB/oct	20 - 64 Hz @ +9 dB	/oct
40 -	150	Ηz	@	$0.10 \text{ g}^2/\text{Hz}$	64 - 500 Hz @ 0.010	g^2/Hz
150 -	300	Hz	@	+6 dB/oct	500 - 700 Hz @ +6 dB	_
300 -	500	Ηz	@	$0.40 \text{ g}^2/\text{Hz}$	700 - 1000 Hz @ 0.020	
500 -	2000	Ηz	Ø	-3 dB/oct	1000 - 2000 Hz @ -3 dB	_
	2000	Hz	@	$0.10 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.010	g^2/Hz
	Comp	osi	te	= 20.1 g _{rms}	Composite = 5.2	$g_{ m rms}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Directions B and C

$20 \text{ Hz} @ 0.0015 \text{ g}^2/\text{Hz}$ 20 - 200 Hz @ +6 dB/oct	20 Hz @ 0.00016 g ² /Hz 20 - 600 Hz @ +4 dB/oct
$200 - 800 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 800 - 2000 Hz @ -6 dB/oct $2000 \text{ Hz} @ 0.024 \text{ g}^2/\text{Hz}$	$600 - 2000 \text{ Hz} @ 0.014 \text{ g}^2/\text{Hz}$
Composite = 13.1 g_{rms}	Composite = 5.0 g_{rms}

5-2-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 6 Hz @ 1.4 G's peak* 6 - 40 Hz @ 1.4 G's peak

Shock Test Criteria (2 shocks/axis) 5.

Not Applicable

Direction A - Perpendicular to Ogive
Direction B - Tangential to Ogive
Direction C - Tangential to Ogive, Perpendicular to Direction B

- Subzone 5-2-AP Input to Components Mounted on the Ogive Forward Section (X_T 537 to X_T 371) and within ±10° of the GO, Press. Line/Cable Tray Installation. Weight of Component
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

Directions B & C

20 Hz @ 0.000088 g²/Hz 20 - 190 Hz @ +10 dB/oct 2000 Hz @ 0.075 g^2/Hz

Composite = $15.2 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

					2.12.000				_
	20	Hz	@	$0.026 \text{ g}^2/\text{Hz}$		20	Ηz	@	$0.00030 \text{ g}^2/\text{Hz}$
				+6 dB/oct					+9 dB/oct
80 -	150	Hz	@	$0.40 \text{ g}^2/\text{Hz}$	100 -	500	Ηz	@	$0.040 \text{ g}^2/\text{Hz}$
150 -	300	Hz	@	+6 dB/oct	500 -	700	Hz	@	+6 dB/oct
300 -	500	Ηz	@	$1.60 \text{ g}^2/\text{Hz}$	700 -	1000	Ηz	@	$0.080 \text{ g}^2/\text{Hz}$
500 -	2000	Hz	@	-3 dB/oct	1000 -	2000	Hz	@	-3 dB/oct
	2000	Hz	@	$0.41 \text{ g}^2/\text{Hz}$		2000	Ηz	@	$0.040 \text{ g}^2/\text{Hz}$
	Comp	posi	te	= 40.1 g _{rms}		Comp	posi	te	= 10.4 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Directions B & C

	$20 \text{ Hz} @ 0.0005 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00035 \text{ g}^2/\text{Hz}$
20 -	270 Hz @ +12 dB/oct	20 - 190 Hz @ +10 dB/oct
270 -	900 Hz @ 14.0 g^2/Hz	190 - 1000 Hz @ $0.6 \text{ g}^2/\text{Hz}$
900 -	2000 Hz @ -6 dB/oct	1000 - 2000 Hz @ -3 dB/oct
	$2000 \text{ Hz} @ 2.9 \text{ g}^2/\text{Hz}$	2000 Hz $@$ 0.3 g^2/Hz
	Composite = 128.0 g_{rms}	Composite = 30.4 g_{rms}

5-2-AP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 2 - 6 Hz @ 1.4 G's peak* 5 - 40 Hz @ 0.6 G's peak 6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable.

Direction A - Perpendicular to Ogive Direction B - Tangential to Ogive Direction C - Tangential to Ogive, Perpendicular to Direction B

* Design Criteria Only

- Subzone 5-2-BP Input to Components Mounted on the Ogive Forward Section (X_T 537 to X_T 371) and within ±10° of the GO₂ Press. Line/Cable Tray Installation. Weight of Component > 7 but < 21 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

20 Hz @ 0.00013 g^2/Hz 20 - 230 Hz @ +12 dB/oct

230 - 900 Hz @ 1.75 g²/Hz 900 - 2000 Hz @ -6 dB/oct 2000 Hz @ 0.38 g^2/Hz

Composite = $45.7 g_{rms}$

Directions B & C

 $20 \text{ Hz} @ 0.000088 \text{ g}^2/\text{Hz}$ 20 - 155 Hz @ +10 dB/oct

155 - 1000 Hz @ 0.075 g²/Hz 1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ 0.038 g^2/Hz

Composite = $10.9 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

 $20 \text{ Hz} @ 0.026 \text{ g}^2/\text{Hz}$ 20 - 56 Hz @ +6 dB/oct56 - 150 Hz @ 0.20 g²/Hz 150 - 300 Hz @ +6 dB/oct $300 - 500 \text{ Hz} @ 0.80 \text{ g}^2/\text{Hz}$ 500 - 2000 Hz @ -3 dB/oct

Composite = 28.4 g_{rms}

 $2000 \text{ Hz} @ 0.20 \text{ g}^2/\text{Hz}$

Directions B and C

20 Hz @ 0.00030 g²/Hz 20 - 80 Hz @ +9 dB/oct

 $80 - 500 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$ 500 - 700 Hz @ +6 dB/oct $700 - 1000 \text{ Hz} @ 0.040 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ $0.020 \text{ g}^2/\text{Hz}$

Composite = $7.4 g_{rms}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

20 Hz @ 0.0005 g²/Hz 230 Hz @ +12 dB/oct

230 - 900 Hz @ 7.0 g²/Hz 900 - 2000 Hz @ -6 dB/oct

2000 Hz @ $1.5 \text{ g}^2/\text{Hz}$

Composite = 91.3 g_{rms}

Directions B & C

20 Hz @ 0.00035 g²/Hz 20 - 155 Hz @ +10 dB/oct

 $155 - 1000 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 1000 - 2000 Hz @ -3 dB/oct

2000 Hz @ 0.15 g^2/Hz

Composite = 21.7 g_{rms}

5-2-BP (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 6 Hz @ 1.4 G's peak*

5 - 40 Hz @ 0.6 G's peak

6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Ogive

Direction B - Tangential to Ogive

Direction C - Tangential to Ogive, Perpendicular to Direction B

* Design Criteria Only

- Subzone 5-2-CP Input to Components Mounted on the Ogive Forward Section (X_T 537 to X_T 371) and within $\pm 10^\circ$ of the GO 2 Press. Line/Cable Tray Installation. Weight of Component > 21 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Direction A

Directions B & C

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

Directions B and C

		20	Hz	@	$0.026 \text{ g}^2/\text{Hz}$			20	Ηz	@	$0.00030 \text{ g}^2/\text{Hz}$
20	-	40	$H\mathbf{z}$	@	+6 dB/oct	20	-	64	Hz	@	+9 dB/oct
					$0.10 \text{ g}^2/\text{Hz}$	64	_	500	Ηz	@	$0.010 \text{ g}^2/\text{Hz}$
150	-	300	Hz	@	+6 dB/oct	500		700	Hz	@	+6 dB/oct
					$0.40 \text{ g}^2/\text{Hz}$	700	_	1000	Hz	@	$0.020 \text{ g}^2/\text{Hz}$
500	-	2000	Hz	@	-3 dB/oct	1000	-	2000	Hz	@	-3 dB/oct
		2000	Ηz	@	$0.10 \text{ g}^2/\text{Hz}$			2000	Ηz	@	$0.010 \text{ g}^2/\text{Hz}$
		Comp	osi	te	= 20.1 g _{rms}			Comp	osit	te	= $5.2 \text{ g}_{\text{rms}}$

3. Boost Random Vibration Criteria (2 min/axis)

Direction A

Directions B & C

	20 U.	$0.0005 \text{ g}^2/\text{Hz}$	20 Hz @ 0.00035 g^2/Hz
	20 112	e o.ooo g /nz	20 HZ @ 0.00033 g /HZ
20 -	190 Hz	@ +12 dB/oct	20 - 125 Hz @ +10 dB/oct
190 -	900 Hz	$0.5 \text{ g}^2/\text{Hz}$	125 - 1000 Hz @ 0.15 g^2/Hz
900 -	2000 Hz	@ -6 dB/oct	1000 - 2000 Hz @ -3 dB/oct
		$0.75 \text{ g}^2/\text{Hz}$	2000 Hz @ 0.075 g ² /Hz
	Composi	te = 69.0 g_{rms}	Composite = 15.5 g_{rms}

5-2-CP(Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 6 Hz @ 1.4 G's peak*

6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

 $\begin{array}{lll} \text{Direction A} & - \text{ Perpendicular to Ogive} \\ \text{Direction B} & - \text{ Tangential to Ogive} \\ \text{Direction C} & - \text{ Tangential to Ogive, Perpendicular to Direction B} \end{array}$

* Design Criteria Only

ET Nose Cap and Cover Plate (Stations X_{t} 371 to X_{t} 322). Subzone 5-3 (General Specifications)

Same as Subzone 5-3-1-A below.

Subzone 5-3-1 ET Nose Cap (Stations X_{+} 371 to X_{+} 322). (General Specifications)

Same as Subzone 5-3-1-A below.

Subzone 5-3-1-A Input to Components Mounted on the ET Nose Cap (Stations X_{+} 371 to X_{+} 322). Weight of Component < 7 lb.

Acceptance Test Criteria (1 min/axis)

Radial Axis

20 Hz @ 0.0024 g²/Hz 20 - 900 Hz @ +6 dB/oct

 $900 - 2000 \text{ Hz} @ 5.0 \text{ g}^2/\text{Hz}$

Long. and Tang. Axes

 $20 \text{ Hz} @ 0.00024 \text{ g}^2/\text{Hz}$ 20 - 140 Hz @ +10 dB/oct

 $140 - 240 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 240 - 900 Hz @ +3 dB/oct

 $900 - 2000 \text{ Hz} @ 0.45 \text{ g}^2/\text{Hz}$

Composite = $83.7 g_{rms}$

Composite = $26.5 g_{rms}$

Lift-off Random Vibration Criteria (1 min/axis)

Direction A

20 Hz @ 0.0075 g²/Hz 140 Hz @ +6 dB/oct

 $140 - 520 \text{ Hz} @ 0.35 \text{ g}^2/\text{Hz}$ $100 - 500 \text{ Hz} @ 0.040 \text{ g}^2/\text{Hz}$ 520 - 900 Hz @ +6 dB/oct 500 - 800 Hz @ +6 dB/oct

 $900 - 2000 \text{ Hz} = 1.00 \text{ g}^2/\text{Hz}$

Composite = $38.6 g_{rms}$

Directions B & C

 $20 \text{ Hz} @ 0.00033 \text{ g}^2/\text{Hz}$ 20 - 100 Hz @ +9 dB/oct

 $800 - 2000 \text{ Hz} @ 0.080 \text{ g}^2/\text{Hz}$

Composite = 11.5 g_{rms}

Boost Random Vibration Criteria (2 min/axis)

Radial Axis

 $20 \text{ Hz} @ 0.0094 \text{ g}^2/\text{Hz}$ 20 - 900 Hz @ +6 dB/oct

900 - 2000 Hz @ 20.0 g^2/Hz

Long. and Tang. Axes

 $20 \text{ Hz} @ 0.00094 \text{ g}^2/\text{Hz}$ 20 - 140 Hz @ +10 dB/oct

 $140 - 240 \text{ Hz } @ 0.6 \text{ g}^2/\text{Hz}$ 240 - 900 Hz @ +3 dB/oet

 $900 - 2000 \text{ Hz} @ 1.8 \text{ g}^2/\text{Hz}$

Composite = 167.3 g_{rms}

Composite = 52.9 g_{rms}

5-3-1-A (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 6 Hz @ 1.4 G's peak*

5 - 40 Hz @ 0.6 G's peak

6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Nose Cap

Direction B - Tangential to Nose Cap

Direction C - Tangential to Nose Cap, Perpendicular to Direction B

* Design Criteria Only

- Subzone 5-3-1-B Input to Components Mounted on the ET Nose Cap (Stations X_{+} 371 to X_{+} 322). Weight of Component > 7 but < 20 lb.
- 1. Acceptance Test Criteria (1 min/axis)

Radial Axis

 $20 \text{ Hz} @ 0.0024 \text{ g}^2/\text{Hz}$ 20 - 640 Hz @ +6 dB/oet

 $640 - 2000 \text{ Hz} = 2.5 \text{ g}^2/\text{Hz}$

Composite = $62.7 g_{rms}$

Long. and Tang. Axes

 $20 \text{ Hz} @ 0.00024 \text{ g}^2/\text{Hz}$

125 Hz @ +10 dB/oct

125 - 240 Hz @ 0.075 g²/Hz 240 - 900 Hz @ +3 dB/oct

 $900 - 2000 \text{ Hz} @ 0.23 \text{ g}^2/\text{Hz}$

Composite = 18.7 g_{rms}

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A

20 Hz @ 0.0075 g²/Hz 20 - 100 Hz @ +6 dB/oct 100 - 520 Hz @ 0.18 g²/Hz 520 - 900 Hz @ +6 dB/oet $900 - 2000 \text{ Hz} @ 0.50 \text{ g}^2/\text{Hz}$ Composite = 27.4 g_{rms}

Directions B and C

20 Hz @ 0.00033 g²/Hz 20 - 80 Hz @ +9 dB/oct $80 - 500 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$ 500 - 800 Hz @ +6 dB/oct

 $800 - 2000 \text{ Hz} @ 0.040 \text{ g}^2/\text{Hz}$

Composite = 8.0 g_{rms}

Boost Random Vibration Criteria (2 min/axis)

Radial Axis

 $20 \text{ Hz} @ 0.0094 \text{ g}^2/\text{Hz}$ 20 - 640 Hz @ +6 dB/oct $640 - 2000 \text{ Hz} = 10.0 \text{ g}^2/\text{Hz}$

Composite = 125.4 g_{rms}

Long. and Tang. Axes

 $20 \text{ Hz} @ 0.00094 \text{ g}^2/\text{Hz}$ 20 - 125 Hz @ +10 dB/oct $125 - 240 \text{ Hz} @ 0.3 \text{ g}^2/\text{Hz}$ 240 - 900 Hz @ +3 dB/oct

 $900 - 2000 \text{ Hz} @ 0.9 \text{ g}^2/\text{Hz}$

Composite = 37.4 g_{rms}

5-3-1-B (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak

2 - 6 Hz @ 1.4 G's peak* 6 - 40 Hz @ 1.4 G's peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

 $\begin{array}{lll} \mbox{Direction A} & - \mbox{ Perpendicular to Nose Cap} \\ \mbox{Direction B} & - \mbox{ Tangential to Nose Cap} \end{array}$

Direction C - Tangential to Nose Cap, Perpendicular to Direction B

* Design Criteria Only

- Subzone 5-3-1-C Input to Components Mounted on the ET Nose Cap (Stations X_t 371 to X_t 322). Weight of Component > 20 lb.
- 1. Acceptance Test Criteria (1 min/axis)

2. Lift-off Random Vibration Criteria (1 min/axis)

Direction A	Directions B & C
20 Hz @ 0.0075 g ² /Hz	20 Hz @ 0.00033 g ² /Hz 20 - 63 Hz @ +9 dB/oct
20 - 70 Hz @ +6 dB/oct	_
$70 - 520 \; \mathrm{Hz} \; @ \; 0.090 \; \mathrm{g}^2 / \mathrm{Hz}$	$63 - 500 \text{ Hz} @ 0.010 \text{ g}^2/\text{Hz}$
520 - 900 Hz @ +6 dB/oct	500 - 800 Hz @ +6 dB/oct
$900 - 2000 \text{ Hz} @ 0.25 \text{ g}^2/\text{Hz}$	$800 - 2000 \text{ Hz} @ 0.020 \text{ g}^2/\text{Hz}$
Composite = 19.4 g_{rms}	Composite = 5.7 g_{rms}

3. Boost Random Vibration Criteria (2 min/axis)

Radial Axis	Long. and Tang. Axes
$20 \text{ Hz} @ 0.0094 \text{ g}^2/\text{Hz}$ 20 - 450 Hz @ +6 dB/oct $450 - 2000 \text{ Hz} @ 5.0 \text{ g}^2/\text{Hz}$	$20 \text{ Hz} @ 0.00094 \text{ g}^2/\text{Hz}$ 20 - 94 Hz @ +10 dB/oct $94 - 240 \text{ Hz} @ 0.15 \text{ g}^2/\text{Hz}$ 240 - 900 Hz @ +3 dB/oct $900 - 2000 \text{ Hz} @ 0.45 \text{ g}^2/\text{Hz}$
Composite = 92.2 g _{rms}	Composite = 26.5 g_{rms}

5-3-1-C (Cont.)

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2 - 5 Hz @ 0.6 G's peak*

2 - 6 Hz @ 1.4 G's peak*

5 - 40 Hz @ 0.6 G's peak

6 - 40 Hz @ 1.4 G's peak

Shock Test Criteria (2 shocks/axis)

Not Applicable

Direction A - Perpendicular to Nose Cap

Direction B - Tangential to Nose Cap

Direction C - Tangential to Nose Cap, Perpendicular to Direction B

* Design Criteria Only

- Subzone 5-3-2 Input to Components Mounted on the ET LO $_2$ Ogive Coverplate or Coverplate Support Ring. (Station X_{t} 371)
- 1. Acceptance Test Criteria (1 min/axis)

Longitudinal Axis

Lateral Axes

20 Hz @ 0.0035 g^2/Hz	20 Hz @ $0.00050 \text{ g}^2/\text{Hz}$
20 HZ @ 0.0033 g /HZ	20 HZ @ 0.00030 g /HZ
20 - 42 Hz @ +6 dB/oct	20 - 49 Hz @ +9 dB/oct
$42 - 370 \text{ Hz } @ 0.015 \text{ g}^2/\text{Hz}$	49 - 2000 Hz @ 0.0075 g^2/Hz
370 - 900 Hz @ +6 dB/oct	
900 - 2000 Hz @ 0.088 g^2/Hz	
Composite = 11.2 g_{rms}	Composite = 3.8 g_{rms}

2 and 3. Flight Random Vibration Criteria, Lift-off and Boost (3 minutes/axis)

Longitudinal Axis

Radial & Tangential Axes

20	20 H	Hz @ 0.00	067 g ² /Hz dB/oct	20	_	20	Hz	@ @	$0.0024 \text{ g}^2/\text{Hz} + 12 \text{ dB/oct}$
		Hz @ 1.0		60	_	200	Hz	@	$0.2 \text{ g}^2/\text{Hz}$
100	- 320 I	Hz @ -6 d	lB/oct	200	-	430	Hz	@	-12 dB/oct
500 1000	- 1000 I - 1400 I - 2000 I	Hz @ 0.1 Hz @ +6 c Hz @ 0.4 Hz @ -12	lB/oct g ² /Hz dB/oct		-	2000	Ηz	@	0.01 g^2/Hz -12 dB/oct 0.0018 g^2/Hz
	2000 I	Hz @ 0.09	96 g /Hz						
	Compo	osite 23.0	g _{rms}			Comp	osit	te	= 7.4 g _{rms}

4. Vehicle Dynamics Criteria

Longitudinal Axis

Lateral Axes

2	-	5	Hz	@	0.6	$G^{\dagger}s$	peak*	2	-	6	Hz	@	1.4	G's	peak*
5	-	40	Hz	(d	0.6	$G^{\dagger}s$	peak	6	-	40	ΙΙz	@	1.4	G's	peak

5. Shock Test Criteria (2 shocks/axis)

Not Applicable

* Design Criteria Only

PYROTECHNIC SHOCK SPECTRUM CRITERIA FOR COMPONENTS MOUNTED TO SPACE SHUTTLE STRUCTURE

SHOCK SPECTRUM

50 Hz @ A G's peak 50 - 100 Hz @ +12 dB/oct 100 Hz @ B G's peak 100 - 4000 Hz @ +6 dB/oct 4000 - 10000 Hz @ C G's peak

Note: For proper spectrum, use most severe of applicable levels from tables below.

TABLE I. LIGHTWEIGHT TANK

Shock	D = Distance from component to	Spect	Spectrum Amplitudes					
Source	ET/SRB Fwd Attach Point (in.)	A	В	С				
Fwd Attach Bolts	$egin{array}{llll} 0 & < & D & \leq & 12 \\ 12 & < & D & \leq & 24 \\ 24 & < & D & \leq & 48 \\ 48 & < & D & \geq & 96 \\ 96 & < & D & \end{array}$	94 47 24 12 N/A	375 188 94 47 N/A	15,000 7,500 3,750 1,875 N/A				
	d = Distance from component to ET/SRB Aft Attach Point (in.)							
Aft Attach Bolts	$egin{array}{cccccccccccccccccccccccccccccccccccc$	24 12 N/A	94 47 N/A	3,750 1,875 N/A				

SECTION VIII. ACOUSTIC TEST SPECIFICATIONS

Zone 1-1. ET Aft LH₂ Bulkhead Gores (General Specifications)

EXTERNAL

(One-third Octave Band Acoustic Specification in dB re 20 $\mu\text{N/m}^2\text{)}$

Geometric Mean	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
Frequency (Hz)	LIII-OII	rressure	BIIOCK
5.0	127.0	143.5	159.0
6.3	129.5	144.5	158.0
8.0	131.5	145.5	157.0
10.0	134.0	146.5	156.0
12.5	136.0	147.5	155.0
16.0	138.0	148.5	154.0
20.0	140.0	149.5	153.0
25.0	142.0	150.5	152.0
31.5	144.0	151.0	151.0
40.0	145.5	152.0	150.0
50.0	147.5	152.5	148.0
63.0	149.0	153.0	146.0
80.0	150.0	153.0	144.0
100.0	151.0	153.0	142.0
125.0	152.0	153.0	140.0
160.0	153.0	153.0	138.0
200.0	153.5	153.0	136.0
250.0	154.0	153.0	134.0
315.0	154.5	152.5	132.0
400.0	154.5	152.0	130.0
500.0	154.0	151.5	128.0
630.0	153.5	151.0	126.0
800.0	153.5	150.0	124.0
1000.0	153.0	149.5	122.0
1250.0	152.5	148.5	120.0
1600.0	151.5	148.0	118.0
2000.0	151.0	147.0	116.0
2500.0	150.0	146.0	114.0
3150.0	149.0	145.0	112.0
4000.0	147.5	144.0	110.0
5000.0	146.5	143.0	108.0
6300.0	145.0	142.0	106.0
8000.0	144.0	141.0	104.0
10000.0	143.0	140.0	102.0
Overall SPL	165.5	165.5	165.5
Duration	1 min	2 min	N/A

SECTION VIII. ACOUSTIC TEST SPECIFICATIONS

Zone 1-2-ET Aft LH_2 Bulkhead (General Specifications)

EXTERNAL

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
5.0	127.0	138.0	159.0
6.3	129.5	139.0	158.0
8.0	131.5	140.0	157.0
10.0	134.0	141.0	156.0
12.5	136.0	142.0	155.0
16.0	138.0	142.5	154.0
20.0	140.0	143.0	153.0
25.0	142.0	144.0	152.0
31.5	144.0	144.5	151.0
40.0	145.5	145.0	150.0
50.0	147.5	145.5	148.0
63.0	149.0	146.0	146.0
80.0	150.0	146.5	144.0
100.0	151.0	147.0	142.0
125.0	152.0	147.0	140.0
160.0	153.0	147.0	138.0
200.0	153.5	147.0	136.0
250.0	154.0	147.0	134.0
315.0	154.5	146.5	132.0
400.0	154.5	146.0	130.0
500.0	154.0	146.0	128.0
630.0	153.5	145.5	126.0
800.0	153.5	145.0	124.0
1000.0	153.0	144.0	122.0
1250.0	152.5	143.0	120.0
1600.0	151.5	142.5	118.0
2000.0	151.0	142.0	116.0
2500.0	150.0	141.5	114.0
3150.0	149.0	140.5	112.0
4000.0	147.5	139.5	110.0
5000.0	146.5	138.5	108.0
6300.0	145.0	137.5	106.0
8000.0	144.0	137.0	104.0
10000.0	143.0	136.0	102.0
Overall SPL	165.5	159.5	165.5
Duration.	1 min	2 min	N/A

Subzone 2-1 - ET LH₂ Tank Cylinder, Inboard (Orbiter) Side, Aft Section (General Specifications)

(One-third Octave Band Acoustic Specification in dB re 20 $\mu\text{N/m}^2\text{)}$

EXTERNAL

Geometric Mean		In-flight Fluctuating	Oscillating
Frequency (Hz)	<u>Lift-off</u>	Pressure	Shock
5 0	101 0	120.0	159.0
5.0	131.0	139.0	158.0
6.3	132.5	140.0	
8.0	134.0	141.0	157.0
10.0	135.5	141.5	156.0
12.5	136.5	142.0	155.0
16.0	138.0	142.5	154.0
20.0	139.0	142.5	153.0
25.0	140.0	143.0	152.0
31.5	141.5	144.0	151.0
40.0	142.0	145.0	150.0
50.0	143.0	146.0	148.0
63.0	144.0	146.5	146.0
80.0	144.5	147.0	144.0
100.0	145.0	147.5	142.0
125.0	145.5	148.0	140.0
160.0	145.5	148.5	138.0
200.0	146.Õ	148.5	136.0
250.0	146.0	148.0	134.0
315.0	146.0	148.0	132.0
400.0	145.5	147.5	130.0
500.0	145.5	146.5	128.0
630.0	145.0	146.0	126.0
800.0	144.5	145.5	124.0
1000.0	143.5	144.5	122.0
1250.0	143.0	144.0	120.0
1600.0	142.0	143.5	118.0
2000.0	141.0	143.0	116.0
2500.0	140.0	142.5	114.0
3150.0	139.5	141.5	112.0
4000.0	138.5	141.0	110.0
5000.0	137.5	140.0	108.0
6300.0	137.0	139.0	106.0
8000.0	136.0	138.5	104.0
10000.0	135.0	138.0	102.0
Overall SPL	158.0	160.0	165.5
Overall Sru			
Duration	1 min	2 min	N/A

Subzone 2-2 - ET LH₂ Tank Cylinder, Outboard Side, Aft Section (General Specifications)

EXTERNAL

Geometric Mean	T * C4 _ C C	In-flight Fluctuating	Oscillating
Frequency (Hz)	<u>Lift-off</u>	Pressure	Shock
5.0	131.0	114.5	159.0
6.3	131.0 132.5	116.0	158.0
8.0	134.0	118.0	157.0
10.0	135.5	120.0	156.0
12.5	136.5	121.5	
16.0	138.0	$121.3 \\ 123.0$	155.0
20.0	139.0		154.0
25.0 25.0	140.0	124.5	153.0
25.0 31.5		126.0	152.0
	141.5	127.5	151.0
40.0	142.0	129.0	150.0
50.0	143.0	130.5	148.0
63.0	144.0	131.0	146.0
80.0	144.5	132.0	144.0
100.0	145.0	133.0	142.0
125.0	145.5	134.0	140.0
160.0	145.5	134.0	138.0
200.0	146.0	134.5	136.0
250.0	146.0	134.5	134.0
315.0	146.0	134.5	132.0
400.0	145.5	134.5	130.0
500.0	145.5	134.5	128.0
630.0	145.0	134.0	126.0
800.0	144.5	134.0	124.0
1000.0	143.5	133.5	122.0
1250.0	143.0	133.5	120.0
1600.0	142.0	133.0	118.0
2000.0	141.0	132.5	116.0
2500.0	140.0	132.0	114.0
3150.0	139.5	131.5	112.0
4000.0	138.5	130.5	110.0
5000.0	137.5	130.0	108.0
6300.0	137.0	129.0	106.0
8000.0	136.0	128.5	104.0
10000.0	135.0	128.0	102.0
Overall SPL	158.0	147.0	165.5
Duration	1 min	2 min	N/A

Subzone 2-3 - ET LH_2 Tank Cylinder, Inboard (Orbiter) Side, Forward Section (General Specifications)

(One-third Octave Band Acoustic Specification in dB re 20 $\mu N/m^2$)

EXTERNAL

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
			<u> </u>
5.0	130.0	139.0	159.0
6.3	131.5	140.0	158.0
8.0	133.0	141.0	157.0
10.0	134.5	142.5	156.0
12.5	135.5	143.5	155.0
16.0	137.0	144.5	154.0
20.0	138.0	145.0	153.0
25.0	139.0	146.0	152.0
31.5	140.0	146.0	151.0
40.0	141.0	146.0	150.0
50.0	142.0	147.0	148.0
63.0	142.5	147.0	146.0
80.0	142.5	147.0	144.0
100.0	143.0	147.0	142.0
125.0	143.5	147.0	140.0
160.0	143.5	147.0	138.0
200.0	143.5	147.0	136.0
250.0	143.5	147.0	134.0
315.0	143.0	146.0	132.0
400.0	143.0	145.0	130.0
500.0	142.5	144.0	128.0
630.0	142.0	144.0	126.0
800.0	141.5	144.0	124.0
1000.0	141.0	144.0	122.0
1250.0	140.0	144.0	120.0
1600.0	139.5	143.0	118.0
2000.0	138.5	142.0	116.0
2500.0	137.5	141.0	114.0
3150.0	137.0	140.0	112.0
4000.0	136.0	139.5	110.0
5000.0	135.0	138.5	108.0
6300.0	134.0	137.5	106.0
8000.0	133.0	136.5	104.0
10000.0	132.0	135.5	102.0
Overall SPL	155.5	159.5	165.5
Duration	1 min	2 min	N/A

Subzone 2-4 - ET LH₂ Tank Cylinder, Outboard Side, Forward Section (General Specifications)

(One-third Octave Band Acoustic Specification in dB re 20 $\mu N / m^2)$

EXTERNAL

Geometric Mean Frequency (Hz)	<u>Lift-off</u>	In-flight Fluctuating Pressure	Oscillating Shock
5.0	130.0	114.5	159.0
6.3	131.5	116.0	158.0
8.0	133.0	118.0	157.0
10.0	134.5	120.0	156.0
12.5	135.5	121.5	155.0
16.0	137.0	123.0	154.0
20.0	138.0	124.5	153.0
25.0	139.0	126.0	152.0
31.5	140.0	127.5	151.0
40.0	141.0	129.0	150.0
50.0	142.0	130.5	148.0
63.0	142.5	131.0	146.0
80.0	142.5	132.0	144.0
100.0	143.0	133.0	142.0
125.0	143.5	134.0	140.0
160.0	143.5	134.0	138.0
200.0	143.5	134.5	136.0
250.0	143.5	134.5	134.0
315.0	143.0	134.5	132.0
400.0	143.0	134.5	130.0
500.0	142.5	134.5	128.0
630.0	142.0	134.0	126.0
800.0	141.5	134.0	124.0
1000.0	141.0	133.5	122.0
1250.0	140.0	133.5	120.0
1600.0	139.5	133.0	118.0
2000.0	138.5	132.5	116.0
2500.0	137.5	132.0	114.0
3150.0	137.0	131.5	112.0
4000.0	136.0	130.5	110.0
5000.0	135.0	130.0	108.0
6300.0	134.0	129.0	106.0
8000.0	133.0	128.5	104.0
10000.0	132.0	128.0	102.0
Overall SPL	155.5	147.0	165.5
Duration	1 min	2 min	N/A

Zone 3 - ET Intertank Section (General Specifications)

INTERNAL

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
			Briock
5.0	115.0	118.0	
6.3	116.5	119.0	
8.0	117.5	119.5	
10.0	119.0	120.5	N
12.5	120.0	121.0	
16.0	121.0	122.0	О
20.0	122.5	123.0	_
25.0	123.5	123.5	${f T}$
31.5	129.0	129.0	~
40.0	134.0	133.5	
50.0	134.5	134.0	
63.0	135.0	134.5	
80.0	135.5	134.5	Α
100.0	135.5	135.0	
125.0	136.0	135.0	P
160.0	135.5	135.0	-
200.0	135.5	134.5	P
250.0	135.5	134.5	_
315.0	135.0	134.0	${f L}$
400.0	134.5	133.5	_
500.0	132.5	131.5	I
630.0	130.5	129.5	-
800.0	128.5	127.5	C
1000.0	127.0	125.0	-
1250.0	124.0	122.5	Α
1600.0	121.5	122.5	
2000.0	118.5	118.0	В
2500.0	115.5	115.0	~
3150.0	112.5	112.0	L
4000.0	109.5	109.5	2
5000.0	107.0	107.0	E
6300.0	104.0	104.5	
8000.0	101.0	101.5	
10000.0	98.0	98.5	
Overall SPL	146.5	145.5	
Duration	1 min	2 min	

Subzone 3-1 - ET Intertank Section, Panels 1, 2, and 3, Fwd of X_t = 985, (General Specifications)

EXTERNAL

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
5 O	120 0	122 0	150 0
5.0	130.0	133.0	159.0
6.3	131.5	134.5	158.0
8.0	132.5	136.0	157.0
10.0	134.0	137.5	156.0
12.5	135.0	139.0	155.0
16.0	136.0	140.0	154.0
20.0	137.5	141.0	153.0
25.0	138.5	142.0	152.0
31.5	139.0	143.0	151.0
40.0	140.0	144.0	150.0
50.0	140.5	145.0	148.0
63.0	141.0	145.5	146.0
80.0	141.5	145.5	144.0
100.0	141.5	146.0	142.0
125.0	142.0	146.0	140.0
160.0	141.5	145.5	138.0
200.0	141.5	145.0	136.0
250.0	141.5	144.5	134.0
315.0	141.0	144.0	132.0
400.0	140.5	143.0	130.0
500.0	140.0	142.5	128.0
630.0	139.5	141.5	126.0
800.0	139.0	140.5	124.0
1000.0	138.0	139.5	122.0
1250.0	137.5	138.0	120.0
1600.0	136.5	137.0	118.0
2000.0	135.5	136.0	116.0
2500.0	134.5	135.0	114.0
3150.0	133.5	133.5	112.0
4000.0	132.5	132.0	110.0
5000.0	132.0	130.5	108.0
6300.0	131.0	129.0	106.0
8000.0	130.0	128.0	104.0
10000.0	129.0	126.5	102.0
Overall SPL	153.5	157.0	165.5
Duration	1 min	2 min	N/A

Subzone 3-1 - ET Intertank Section, Panels 1, 2, and 3, Aft of \mathbf{X}_{T} = 985 (General Specifications)

EXTERNAL

Geometric Mean		In-flight Fluctuating	Oscillating
Frequency (Hz)	Lift-off	Pressure	Shock
5.0	130.0	139.0	159.0
6.3	131.5	139.5	158.0
8.0	132.5	140.5	157.0
10.0	134.0	141.5	156.0
12.5	135.0	142.0	155.0
16.0	136.0	142.5	154.0
20.0	137.5	143.0	153.0
25.0	138.5	144.0	152.0
31.5	139.0	145.0	151.0
40.0	140.0	145.5	150.0
50.0	140.5	146.0	148.0
63.0	141.0	147.0	146.0
80.0	141.5	148.0	144.0
100.0	141.5	149.0	142.0
125.0	142.0	147.0	140.0
160.0	141.5	147.0	138.0
200.0	141√ 5	146.0	136.0
250.0	141.5	146.0	134.0
315.0	141.0	145.0	132.0
400.0	140.5	144.0	130.0
500.0	140.0	143.0	128.0
630.0	139.5	143.0	126.0
800.0	139.0	142.0	124.0
1000.0	138.0	141.0	122.0
1250.0	137.5	141.0	120.0
1600.0	136.5	140.0	118.0
2000.0	135.5	139.0	116.0
2500.0	134.5	138.0	114.0
3150.0	133.5	137.0	112.0
4000.0	132.5	136.0	110.0
5000.0	132.0	135.0	108.0
6300.0	131.0	134.0	106.0
8000.0	130.0	133.0	104.0
10000.0	129.0	132.0	102.0
Overall SPL	153.5	159.0	165.5
Duration	1 min	2 min	N/A

Subzone 3-2 - ET Intertank Section, Panels 4 and 5 (General Specifications)

EXTERNAL

Geometric Mean Frequency (Hz)	<u>Lift-off</u>	In-flight Fluctuating Pressure	Oscillating Shock
5.0	130.0	144.0	159.0
6.3	131.5	145.0	158.0
8.0	132.5	147.0	157.0
10.0	134.0	148.5	156.0
12.5	135.0	149.0	155.0
16.0	136.0	150.5	154.0
20.0	137.5	150.0	153.0
25.0	138.5	153.0	152.0
31.5	139.0	154.0	151.0
40.0	140.0	154.5	150.0
50.0	140.5	155.0	148.0
63.0	141.0	155.5	146.0
80.0	141.5	156.0	144.0
100.0	141.5	156.5	142.0
125.0	142.0	156.5	140.0
160.0	141.5	156.0	138.0
200.0	141.5	156.0	136.0
250.0	141.5	156.0	134.0
315.0	141.0	155.5	132.0
400.0	140.5	155.0	130.0
500.0	140.0	154.5	128.0
630.0	139.5	154.0	126.0
800.0	139.0	153.0	124.0
1000.0	138.0	152.0	122.0
1250.0	137.5	151.5	120.0
1600.0	136.5	150.5	118.0
2000.0	135.5	149.5	116.0
2500.0	134.5	148.5	114.0
3150.0	133.5	147.0	112.0
4000.0	132.5	146.5	110.0
5000.0	132.0	145.0	108.0
6300.0	131.0	144.0	106.0
8000.0	130.0	143.0	104.0
10000.0	129.0	141.5	102.0
Overall SPL	153.5	168.5	165.5
Duration	1 min	2 min	N/A

Subzone 3-3 - ET Intertank Section, Panels 6, 7, and 8 (General Specifications)

EXTERNAL

(One-third Octave Band Acoustic Specification in dB re 20 $\mu N \, / m^2)$

Geometric Mean		In-flight Fluctuating	Oscillating
Frequency (Hz)	Lift-off	Pressure	Shock
			
5.0	130.0	130.5	159.0
6.3	131.5	132.0	158.0
8.0	132.5	133.0	157.0
10.0	134.0	134.0	156.0
12.5	135.0	135.0	155.0
16.0	136.0	136.5	154.0
20.0	137.5	137.0	153.0
25.0	138.5	138.5	152.0
31.5	139.0	138.5	151.0
40.0	140.0	139.0	150.0
50.0	140.5	139.5	148.0
63.0	141.0	140.0	146.0
80.0	141.5	140.5	144.0
100.0	141.5	141.0	142.0
125.0	142.0	141.0	140.0
160.0	141.5	141.0	138.0
200.0	141.5	140.5	136.0
250.0	141.5	140.5	134.0
315.0	141.0	139.5	132.0
400.0	140.5	139.0	130.0
500.0	140.0	139.0	128.0
630.0	139.5	138.5	126.0
800.0	139.0	138.0	124.0
1000.0	138.0	137.5	122.0
1250.0	137.5	137.0	120.0
1600.0	136.5	136.0	118.0
2000.0	135.5	135.5	116.0
2500.0	134.5	135.0	114.0
3150.0	133.5	134.0	112.0
4000.0	132.5	133.0	110.0
5000.0	132.0	132.5	108.0
6300.0	131.0	131.5	106.0
8000.0	130.0	131.0	104.0
10000.0	129.0	130.0	102.0
Overall SPL	153.5	153.0	165.5
Duration	1 min	2 min	N/A

Zone 4 - ET LOX Tank Cylindrical Section (General Specifications)

 ${\tt EXTERNAL}$

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
110400000			
5.0	130.0	138.0	159.0
6.3	131.5	139.0	158.0
8.0	132.5	139.5	157.0
10.0	134.0	140.5	156.0
12.5	135.0	141.0	155.0
16.0	136.0	142.0	154.0
20.0	137.5	143.0	153.0
25.0	138.5	144.0	152.0
31.5	139.0	144.5	151.0
40.0	140.0	145.0	150.0
50.0	140.5	145.5	148.0
63.0	141.0	146.0	146.0
80.0	141.5	146.5	144.0
100.0	141.5	147.0	142.0
125.0	142.0	147.0	140.0
160.0	141.5	147.5	138.0
200.0	141.5	147.5	136.0
250.0	141.5	147.5	134.0
315.0	141.0	147.5	132.0
400.0	140.5	147.5	130.0
500.0	140.0	147.5	128.0
630.0	139.5	147.5	126.0
800.0	139.0	147.0	124.0
1000.0	138.0	147.0	122.0
1250.0	137.5	146.0	120.0
1600.0	136.5	145.5	118.0
2000.0	135.5	145.0	116.0
2500.0	134.5	144.0	114.0
3150.0	133.5	143.0	112.0
4000.0	132.5	141.5	110.0
5000.0	132.0	140.5	108.0
6300.0	131.0	139.0	106.0
8000.0	130.0	138.0	104.0
10000.0	129.0	137.0	102.0
Overall SPL	153.5	160.5	165.5
Duration	1 min	2 min	N/A

Zone 5-1 - ET Ogive and Nose Cap (General Specifications)

EXTERNAL

Geometric Mean	Lift-off	In-flight Fluctuating	Oscillating
Frequency (Hz)	F111-011	Pressure	Shock
5.0	130.0	120.0	159.0
6.3	131.5	121.0	158.0
8.0	132.5	122.0	157.0
10.0	134.0	123.5	156.0
12.5	135.0	125.0	155.0
16.0	136.0	126.0	154.0
20.0	137.5	127.0	153.0
25.0	138.5	128.0	152.0
31.5	139.0	129.0	151.0
40.0	140.0	130.0	150.0
50.0	140.5	131.0	148.0
63.0	141.0	132.0	146.0
80.0	141.5	133.0	144.0
100.0	141.5	134.0	142.0
125.0	142.0	135.0	140.0
160.0	141.5	136.0	138.0
200.0	141.5	136.5	136.0
250.0	141.5	137.0	134.0
315.0	141.0	137.5	132.0
400.0	140.5	138.0	130.0
500.0	140.0	138.0	128.0
630.0	139.5	138.0	126.0
800.0	139.0	138.0	124.0
1000.0	138.0	137.5	122.0
1250.0	137.5	137.0	120.0
1600.0	136.5	136.5	118.0
2000.0	135.5	136.0	116.0
2500.0	134.5	135.5	114.0
3150.0	133.5	135.0	112.0
4000.0	132.5	134.0	110.0
5000.0	132.0	133.0	108.0
6300.0	131.0	132.0	106.0
8000.0	130.0	131.0	104.0
10000.0	129.0	130.0	102.0
Overall SPL	153.5	149.5	165.5
Duration	1 min	2 min	N/A

Zone 5-2 - ET Ogive and Nose Cap (General Specifications)

EXTERNAL

Geometric Mean		In-flight Fluctuating	Oscillating
Frequency (Hz)	<u>Lift-off</u>	Pressure	Shock
5.0	120 0	115 0	150.0
5.0	130.0	115.0	159.0
6.3	131.5	117.0	158.0
8.0	132.5	118.0	157.0
10.0	134.0	119.5	156.0
12.5	135.0	121.0	155.0
16.0	136.0	122.0	154.0
20.0	137.5	123.5	153.0
25.0	138.5	124.5	152.0
31.5	139.0	125.5	151.0
40.0	140.0	126.5	150.0
50.0	140.5	127.5	148.0
63.0	141.0	128.5	146.0
80.0	141.5	129.5	144.0
100.0	141.5	130.0	142.0
125.0	142.0	130.5	140.0
160.0	141.5	131.0	138.0
200.0	141.5	131.5	136.0
250.0	141.5	132.0	134.0
315.0	141.0	132.0	132.0
400.0	140.5	132.5	130.0
500.0	140.0	132.5	128.0
630.0	139.5	132.5	126.0
800.0	139.0	132.0	124.0
1000.0	138.0	132.0	122.0
1250.0	137.5	132.0	120.0
1600.0	136.5	131.5	118.0
2000.0	135.5	131.5	116.0
2500.0	134.5	131.5	114.0
3150.0	133.5	131.0	112.0
4000.0	132.5	131.0	110.0
5000.0	132.0	131.0	108.0
6300.0	131.0	130.5	106.0
8000.0	130.0	130.0	104.0
10000.0	129.0	130.0	102.0
Overall SPL	153.5	145.0	165.5
Duration	1 min	2 min	N/A

Zone 5-3-1 ET Ogive and Nose Cap (General Specifications)

EXTERNAL

Geometric Mean	Tift off	In-flight Fluctuating	Oscillating
Frequency (Hz)	<u>Lift-off</u>	Pressure	Shock
5.0	130.0	127.0	159.0
6.3	131.5	129.0	158.0
8.0	132.5	131.0	157.0
10.0	134.0	133.0	156.0
12.5	135.0	135.0	155.0
16.0	136.0	137.0	154.0
20.0	137.5	139.0	153.0
25.0	138.5	141.0	152.0
31.5	139.0	142.5	151.0
40.0	140.0	144.0	150.0
50.0	140.5	145.5	148.0
63.0	141.0	147.0	146.0
80.0	141.5	148.0	144.0
100.0	141.5	149.0	142.0
125.0	142.0	150.0	140.0
160.0	141.5	150.5	138.0
200.0	141.5	151.0	136.0
250.0	141.5	151.5	134.0
315.0	141.0	152.0	132.0
400.0	140.5	152.0	130.0
500.0	140.0	151.5	128.0
630.0	139.5	151.0	126.0
800.0	139.0	150.5	124.0
1000.0	138.0	150.0	122.0
1250.0	137.5	149.5	120.0
1600.0	136.5	149.0	118.0
2000.0	135.5	148.5	116.0
2500.0	134.5	147.5	114.0
3150.0	133.5	146.5	112.0
4000.0	132.5	145.5	110.0
5000.0	132.0	144.5	108.0
6300.0	131.0	143.5	106.0
8000.0	130.0	142.5	104.0
10000.0	129.0	141.5	102.0
Overall SPL	153.5	163.0	165.5
Duration	1 min	2 min	N/A

Zone 5-3-2 ET Ogive and Nose Cap (General Specifications)

EXTERNAL

Geometric Mean Frequency (Hz)	Lift-off	In-flight Fluctuating Pressure	Oscillating Shock
5.0	130.0	127.5	159.0
6.3	131.5	129.0	158.0
8.0	131.5 132.5	131.0	157.0
10.0	134.0	132.5	156.0
12.5	135.0	132.3	155.0
16.0	136.0	135.0	154.0
20.0	137.5	137.0	153.0
25.0	138.5	138.0	152.0
31.5	139.0	139.5	151.0
40.0	140.0	140.5	150.0
50.0	140.5		148.0
63.0	140.5	$142.0 \\ 143.0$	146.0
80.0	141.5	144.0	144.0
100.0	141.5	145.0	142.0
125.0	142.0	146.0	140.0
160.0	141.5	146.5	138.0
200.0	141.5	147.0	136.0
250.0	141.5	147.0	134.0
315.0	141.0	148.0	132.0
400.0	140.5	148.0	130.0
500.0	140.0	148.0	128.0
630.0	139.5	148.0	126.0
800.0	139.0	147.5	124.0
1000.0	138.0	147.0	122.0
1250.0	137.5	146.5	120.0
1600.0	136.5	146.0	118.0
2000.0	135.5	145.5	116.0
2500.0	134.5	145.0	114.0
3150.0	133.5	144.0	112.0
4000.0	132.5	143.0	110.0
5000.0	132.0	142.5	108.0
6300.0	131.0	141.0	106.0
8000.0	130.0	140.0	104.0
10000.0	129.0	139.0	102.0
Overall SPL	153.5	159.5	165.5
Duration	1 min	2 min	N/A

PROTUBERANCE

IN-FLIGHT FLUCTUATING PRESSURE

(One-third Octave Band Acoustic Specification in dB re $20~\mu\text{N/m}^2$)

Geometric Mean Frequency (Hz)	Protuberance ZONE A	Protuberance ZONE B	Protuberance ZONE C	Protuberance ZONE D
5.0	139.0	139.0	133.0	139.0
6.3	140.0	140.0	134.5	139.5
8.0	140.5	141.0	136.0	140.5
10.0	141.5	142.5	137.5	141.5
12.5	142.0	143.5	139.0	142.0
16.0	142.5	144.5	140.5	142.5
20.0	142.5	145.0	141.0	143.0
25.0	143.0	146.0	142.0	144.0
31.5	144.0	146.0	143.0	145.0
40.0	145.0	146.0	144.0	145.5
50.0	146.0	147.0	145.0	146.0
63.0	146.5	147.0	145.5	147.0
80.0	147.0	147.0	145.5	148.0
100.0	147.5	147.0	146.0	148.0
125.0	148.5	148.5	147.0	149.0
160.0	151.0	151.0	152.0	151.0
200.0	152.0	152.0	151.0	152.0
250.0	152.0	152.0	150.0	152.0
315.0	150.0	150.0	146.0	150.0
400.0	148.0	149.0	146.0	149.0
500.0	148.0	148.0	145.0	148.0
630.0	148.0	148.0	145.0	148.0
800.0	147.5	147.5	146.0	147.0
1000.0	146.5	146.5	146.0	146.0
1250.0	145.5	145.5	144.0	145.0
1600.0	145.0	145.0	143.0	145.0
2000.0	144.5	144.5	142.0	144.0
2500.0	143.5	143.5	140.5	143.0
3150.0	142.5	142.5	139.0	142.0
4000.0	142.0	141.5	137.0	140.5
5000.0	141.0	140.5	135.0	139.5
6300. 0	140.0	139.5	133.0	138.5
8000.0	139.0	138.5	131.0	137.5
10000.0	138.5	137.5	129.0	136.0
Overall SPL	161.5	162.0	160.0	161.5

Protuberance Zone A: Criteria are applicable to GO $_2$ pressure line/cable tray installation $\pm 10^\circ$ in zone 2-1. Protuberance Zone B: Criteria are applicable to GO $_2$ pressure line/cable tray installation $\pm 10^\circ$ in zone 2-3. Protuberance Zone C: Criteria are applicable to GO $_2$ pressure line/cable tray installation $\pm 10^\circ$ in zone 3-1, Fwd of X $_T$ = 985. Protuberance Zone D: Criteria are applicable to GO $_2$ pressure line/cable tray installation $\pm 10^\circ$ in zone 3-1, Aft of X $_T$ = 985.

PROTUBERANCE

IN-FLIGHT FLUCTUATING PRESSURE

(One-third Octave Band Acoustic Specification in dB re 20 µN/m²)

		•	= = 0 Do pizi / /	
Geometric Mean Frequency (Hz)	Protuberánce ZONE E	Protuberance ZONE F	Protuberance ZONE G	Protuberance ZONE H
5.0	132.5	140.0	142.5	137.0
6.3	133.0	143.0	144.0	139.0
8.0	133.5	146.0	146.5	141.0
10.0	134.0	149.0	148.0	143.5
12.5	134.5	151.5	149.0	145.0
16.0	135.5	153.5	150.0	147.5
20.0	136.0	167.0	151.5	149.0
25.0	137.0	168.0	153.0	150.0
31.0	137.0	168.0	154.0	151.0
40.0	138.0	170.0	155.0	152.0
50.0	138.0	160.0	156.0	153.0
63.0	140.0	154.0	156.5	153.5
80.0	141.5	154.0	157.0	154.0
100.0	144.0	153.5	157.5	154.0
125.0	147.0	153.0	158.0	154.0
160.0	152.0	152.5	158.5	154.0
200.0	151.0	152.0	159.0	153.5
250.0	150.0	151.5	159.0	153.0
315.0	146.0	151.0	159.0	152.5
400.0	146.0	150.0	158.5	152.0
500.0	145.0	149.0	158.0	151.5
630.0	145.0	148.0	157.5	151.0
800.0	146.0	147.0	157.0	150.0
1000.0	146.0	146.0	156.5	149.0
1250.0	144.0	145.0	156.0	148.0
1600.0	143.0	144.0	155.0	147.0
2000.0	142.0	143.0	154.0	146.0
2500.0	141.0	142.0	153.0	145.0
3150.0	140.0	141.0	152.0	144.0
4000.0	138.5	140.0	151.0	143.0
5000.0	137.0	139.0	150.0	142.0
6300.0	136.0	138.0	149.0	141.0
8000.0	134.5	137.0	148.0	140.0
10000.0	133.0	136.0	147.0	139.0
Overall SPL	159.5	175.0	170.5	165.5

Protuberance Criteria are applicable to GO_2 pressure line/cable tray 2one E: $\pm 10^\circ$ in zones 4, 5-1, and 5-2.

Protuberance Criteria are applicable to forward SRB attach $\pm 10^{\circ}$ between Zone F: X_T = 985 and X_T = 1300.

Protuberance Criteria are applicable to forward orbiter attach $\pm 5^{\circ}$ between Zone G: $X_T = 1100$ and $X_T = 1200$.

Protuberance Criteria are applicable to aft attach cross beam. Zone H:

SECTION IX. TRANSPORTATION SPECIFICATIONS

A. Vibration

Vibration test frequencies should be swept logarithmically from 5 Hz to the maximum frequency and back to 5 Hz at 1 oct/min in each of three mutually perpendicular axes. Criteria below 5 Hz are for design consideration only, and no test is required. A 15 minute dwell is required at each major component resonance at the amplitude specified for the sweep test.

1. Aircraft

- o Jet (5-200-5 Hz @ 1 oct/min)
 - 5 10 Hz @ 0.022 in. D. A. Disp.
 - 10 35 Hz @ 0.11 G's peak
 - 35 200 Hz @ 0.0017 in. D. A. Disp.
 - 200 2000 Hz @ 3.5 G's peak
- o Propeller (5-700-5 Hz @ 1 oct/min)
 - 2 4 Hz @ 0.42 in. D. A. Disp.*
 - 4 5 Hz @ 0.35 G's peak*
 - 5 12 Hz @ 0.35 G's peak
 - 12 55 Hz @ 0.046 in. D. A. Disp.
 - 55 300 Hz @ 7.0 G's peak
 - 300 700 Hz @ 3.5 G's peak
- o Helicopter (5-600-5 Hz @ 1 oct/min)
 - 5 12 Hz @ 0.22 in. D. A. Disp.
 - 12 40 Hz @ 1.6 G's peak
 - 40 55 Hz @ 0.019 in. D. A. Disp.
 - 55 120 Hz @ 3.0 G's peak
 - 120 170 Hz @ 0.0040 in. D. A. Disp.
 - 170 220 Hz @ 6.0 G's peak
 - 220 260 Hz @ 0.0024 in. D. A. Disp.
 - 260 600 Hz @ 8.0 G's peak

^{*} Design Criteria Only - no test required.

2. Trucks

o Smooth Paved Roads (5-300-5 Hz @ 1 oct/min)

```
1 - 4 Hz @ 0.43 in. D. A. Disp.*
```

4 - 5 Hz @ 0.35 G's peak*

5 - 150 Hz @ 0.35 G's peak

150 - 300 Hz @ 0.06 G's peak

o All Road Conditions (5-1000-5 Hz @ 1 oct/min)

```
1 - 7 Hz @ 1.7 G's peak*
```

7 - 15 Hz @ 1.7 G's peak

15 - 1000 Hz @ 0.7 G's peak

3. Trains

o Normal Railroad Operations (5-2000-5 Hz @ 1 oct/min)

```
2 - 3 Hz @ 2.6 in. D. A. Disp.*
```

3 - 6 Hz @ 1.2 G's peak*

6 - 130 Hz @ 1.2 G's peak

130 - 185 Hz @ 0.0014 in. D. A. Disp.

185 - 2000 Hz @ 2.5 G's peak

4. Ships

o Normal Maneuvers (5-300-5 Hz @ 1 oct/min)

```
0.1 - 0.3 Hz @ 0.35 G's peak*
```

0.3 - 1.5 Hz @ 0.35 G's peak*

1.5 - 4 Hz @ 0.10 G's peak*

4 - 5 Hz @ 0.12 in. D. A. Disp.*

5 - 11 Hz @ 0.12 in. D. A. Disp.

11 - 300 Hz @ 0.75 G's peak

B. Shock

Shock tests should be conducted by applying five shocks in each of three mutually perpendicular axes (15 shocks total). Any shock pulse that results in a spectrum as severe as that presented below will be acceptable. The spectrum is based on the response of an undamped series of single-degree-of-freedom spring-mass systems.

^{*} Design Criteria Only - no test required.

1. Railroad

o Car Humping Conditions (5 shocks per axis)

20 - 160 Hz @ +6 dB/oct 160 - 340 Hz @ 500 G's peak 340 - 400 Hz @ -6 dB/oct

SECTION X. HANDLING SPECIFICATIONS

Where equipment design allows, equipment shall be tested to handling specifications as described below. If normal equipment design does not allow this type testing, the procedures and required protection in handling are to be submitted to MSFC, ED23, for approval.

A. Transit Drop Test

This procedure shall be used for equipment, in its transit or combination case as prepared for field use, to determine if the equipment is capable of withstanding the shocks normally induced by loading and unloading of equipment.

B. Test Conditions

The test item shall be in its transit or combination case. For equipment 1,000 lb or less, the floor or barrier receiving the impact shall be of solid, 2-in. thick plywood, backed by either concrete or a rigid steel frame. For equipment over 1,000 lb. the floor or barrier shall be concrete or its equivalent.

C. Performance of Test

Subject the test item to the number and heights of drop as required in Table XI. Upon completion of the test, the test item shall be operated and the results compared with the data obtained in accordance with the following:

Prior to proceeding with any of the test methods, the test item shall be operated under standard ambient conditions and a record made of all data necessary to determine compliance with required performance. These data shall provide the criteria for checking satisfactory performance of the test item either during, or at the conclusion of the test, or both as required. Certification by signature and date block is required.

The test item shall then be visually inspected and a record made of any damage/deterioration resulting from the test. If a test chamber is used for the test, perform a visual inspection of the test item within the chamber at test conditions, when possible. Upon completion of the test, visually inspect the test item again after the test item has been returned to standard ambient conditions. Deterioration, corrosion, or change in tolerance limits or any internal or external parts which could in any manner prevent the test item from meeting operational service or maintenance requirements shall provide reason to consider the test item as having failed to withstand the conditions of the test.

TABLE XI. TRANSIT DROP TEST

Weight of Test Item and Case (lb)	Largest Dimensions (in.)	Notes	Height of Drop (in.)	No. of Drops
Under 100 lb Man-packed and Man-portable	Under 36	A A	48 30	Drop on each face, edge, and corner. Total of 26 drops
100 to 200 lb Inclusive	Under 36 36 and over	A A	30 24	Drop on each corner
Over 200 to 1,000 lb Inclusive	Under 36 36 to 60 Over 60	A B B	24 36 24	Total of 8 drops
Over 1,000	No limit	С	18	4 edgewise drops 2 cornerwise drops

- Note A. Drops shall be made from a quick-release hook; or drop tester as made by the L.A.B. Corporation, Skaneateles, New York, or equal. The test item shall be oriented so that upon impact a line from the struck corner or edge to the center of gravity of the case and contents is perpendicular to the impact surface.
- Note B. With the longest dimensions parallel to the floor, the transit or combination case, with the test item within, shall be supported at the corner of one end by a block 5 in. in height, and at the other corner or edge of the same end by a block 12 in. in height. The opposite end of the case shall then be raised to the specified height at the lowest unsupported corner and allowed to fall freely.
- Note C. While in the normal transit position, the case and contents shall be subjected to the edgewise and cornerwise drop test as follows (if normal transit position is unknown, the case shall be oriented such that the two longest dimensions are parallel to the "floor").
 - 1. Edgewise Drop Test. One edge of the base of the case shall be supported on a sill 5 to 6 in. in height. The opposite edge shall be raised to the specified height and allowed to fall freely. The test shall be applied once to each edge of the base of the case (total of four drops).

2. Cornerwise Drop Test. One corner of the base of the case shall be supported on a block approximately 5 in. in height. A block normally 12 in. in height shall be placed under the other corner of the same end. The opposite end of the case shall be raised to the specified height at the lowest unsupported corner and allowed to fall freely. This test shall be applied once to each of two diagonally opposite corners of the base (total of two cornerwise drops). When the proportions of width and height of the case are such as to cause instability in the cornerwise drop test, edgewise drops shall be substituted. In such instances two more edgewise drops on each end shall be performed (four additional edgewise drops for a total of eight edgewise drops).

Figure 1. Space Shuttle General Configuration.

Figure 2. External tank zones.

Figure 3. ET zone 3 section.

SECTION XI. INDEX OF SPECIFICATIONS

Vibration Specification	ons	Page
Zone 1	ET LH ₂ Aft Bulkhead	12
Subzone 1-1	ET LH ₂ Aft Bulkhead Gores (General Specifications)	12
Subzone 1-1-A	Input to Components Mounted on the ET LH ₂ Aft Bulkhead Gores. Weight of Component < 6 lb	12
Subzone 1-1-B	Input to Components Mounted on the LH ₂ Aft Bulkhead Gores. Weight of Component > 6 but < 18 lb	14
Subzone 1-1-C	Input to Components Mounted on the ET \overline{LH}_2 Aft Bulkhead Gores. Weight of Component \geq 18 but < 40 lb	16
Subzone 1-1-D	Input to Components Mounted on the ET LH ₂ Aft Bulkhead Gores. Weight of Components > 40 lbs	18
Subzone 1-2	ET LH ₂ Aft Bulkhead Cap and Covers (General Specifications)	20
Subzone 1-2-A	Input to Components Mounted on the ET LH ₂ Aft Bulkhead Cap and Manhole Cover Plates. Weight of Component < 50 lb	20
Subzone 1-2-B	$\begin{array}{c} \underline{\text{Input to}} \ \ \text{Components Mounted on the ET} \\ \underline{\text{LH}}_2 \ \ \text{Aft Bulkhead Cap and Manhole Cover} \\ \text{Plates.} \ \ \text{Weight of Components} \ \geq 150 \ \text{but} \\ < \ 150 \ \text{lb} \dots \dots$	22
Subzone 1-2-C	$\begin{array}{c} \underline{\text{Input to}} \ \ \text{Components Mounted on the ET} \\ \overline{\text{LH}}_2 \ \ \overline{\text{Aft}} \ \ \text{Bulkhead Cap and Manhole Cover} \\ \text{Plates.} \ \ \text{Weight of Component} \ \geq \ 150 \ \text{but} \\ < \ 300 \ \ \text{lb} \dots \dots$	24
Subzone 1-2-D	Input to the LH ₂ Siphon on the ET LH ₂ Aft Bulkhead Cap	26

		Page
Zone 2	ET LH ₂ Cylinder	28
Subzone 2–1	ET LH ₂ Cylinder, Aft Section (Stations X _t 2058 to X _t 1624), Inboard Half (+Z Axis ±90°) (General Specifications)	28
Subzone 2-1-1	Baffles and Stiffened Skin on the ET LH_2 Cylinder, Aft Section (Stations X_t 2058 to X_t 1624), Inboard Half (+Z Axis \pm 90°) (General Specifications)	28
Subzone 2-1-1-A	Input to Components mounted on baffles and stiffened skin on the LH ₂ Cylinder, Aft Sec-	
	tion (X_T 2058 to X_T 1624), Inboard Half (+Z ±90°), and not within ±10° of the GO ₂ Press. Line/Cable Tray Installation. Weight of component < 15 lb	28
Subzone 2-1-1-B	Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z $\pm 90^{\circ}$), and not within $\pm 10^{\circ}$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component ≥ 15 but < 45 lb	
Subzone 2-1-1-C	Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 to X $_T$ 1624), Inboard Half (+Z $\pm 90^{\circ}$), and not within $\pm 10^{\circ}$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component ≥ 45 lb	
Subzone 2-1-1-AP	Input to Components mounted on baffles and stiffened skin on the LH $_2$ Cylinder, Aft Section (X $_T$ 2058 - X $_T$ 1624), Inboard Half (+Z $\pm 90^{\circ}$) and within $\pm 10^{\circ}$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component < 15 lb	34

			Page
Subzone 2-1	_	nput to Components mounted on baffles and stiffened skin on the LH ₂ Cylinder,	
		Aft Section (X_T 2058 to X_T 1624),	
	I	nboard Half (+Z ±90°) and within ±10° of the GO ₂ Press. Line/Cable Tray	
	I	nstallation. Weight of Component > 15 out < 45 lb	36
Subzone 2-1		nput to Components mounted on baffles and stiffened skin on the LH, Cylinder, Aft	
		Section (X $_{ m T}$ 2058 to X $_{ m T}$ 1624), Inboard Half	
		+Z $\pm 90^{\circ}$), and within $\pm 10^{\circ}$ of the GO ₂ Press.	
	I	Line/Cable Tray Installation. Weight of Com-	38
Subzone 2-1		nput to Components Mounted on Baffles & Stiffened Skin on the LH ₂ Cylinder, Aft Sec-	
	t	ion (${ m X}_{ m T}$ 2058 to ${ m X}_{ m T}$ 1624), Inboard Half (+Z	
		190°) and within $\pm 10^\circ$ of the GO 2 Press. Line	e/
	C	Cable Tray Installation Weight of Component	40
Subzone 2-1	2 S	Structural Ring at Station X, 1871 in the ET	
		LH ₂ Cylinder, Inboard Half (+Z Axis ±90°)	
		General Specifications)	42
Subzone 2-1	_	nput to Components mounted on the Strucural Ring X _T 1871, Inboard side (+Z ±90°),	
	a	and not within ±10° of the GO ₂ Press. Line/	
		Cable Tray Installation. Weight of Component	
Subzone 2-1	_	$\frac{\text{nput to}}{\text{Ring X}_{ ext{T}}}$ Components mounted on the Structur	al
		not within $\pm 10^{\circ}$ of the GO $_2$ Press. Line/Cable	е
	_	Tray Installation. Weight of Component	
	<u>></u>	75 lb	44

			Page
Subzone	2-1-2-AP	Input to components mounted on the structural ring (X _T 1871), Inboard side	
		(+Z $\pm 90^{\circ}$) and within $\pm 10^{\circ}$ of the GO ₂	
		Press. Line/Cable Tray Installation. Weight of Component < 75 lb	46
Subzone	2-1-2-BP	Input to components mounted on the structural ring (X_T 1871), Inboard side (+Z ±90°)	
		and within ±10° of the GO ₂ Press. Line/	
		Cable Tray Installation. Weight of Component > 75 lb. but < 225 lb	48
Subzone	2-1-2-CP	Input to components mounted on the structure Ring (X_T 1871), Inboard side (+Z $\pm 90^{\circ}$) and	ıl
		within ±10° of the GO ₂ Press. Line/Cable Tr	ay
		Installation. Weight of Component > 225 lb	50
Subzone	2-1-3	Structural Ring at Station X_{t} 2058 in the ET	
		LH ₂ Cylinder, Inboard Half (+Z Axis ±90°)	
		(General Specifications)	52
Subzone	2-1-3-A	Input to components mounted on the structural Ring at X_T 2058, Inboard side (+Z	
		±90°) and not within ±10° of GO ₂ Press.	
		Line/Cable Tray Installation. Weight of Component < 100 lb	52
Subzone	2-1-3-B	Input to components mounted on the structural Ring at X_T 2058, Inboard side (+Z	
		±90°) and not within ±10° of GO ₂ Press.	
		Line/Cable Tray Installation. Weight of Component > 100 lb	54
Subzone	2-1-3-AP	Input to components mounted on the Structural Ring at X_T 2058, Inboard side (+Z	
		±90°), and within ±10° of the GO2 Press.	
		Line/Cable Tray Installation. Weight of Component < 100 lbs	56

			Page
Subzone 2	-1-3-BP	Input to components mounted on the structural Ring at X_T 2058, Inboard side (+Z $\pm 90^{\circ}$), and within $\pm 10^{\circ}$ of the GO ₂ Press. Line/Cable Tray Installation. Weight of Component ≥ 100 lbs	58
Subzone 2	-2	ET LH ₂ Cylinder, Aft Section (Stations X _t 2058 to X _t 1624), Outboard Half (-Z Axis ±90°), (General Specifications)	co
Subzone 2		Baffles and Stiffened Skin on the ET LH_2 Cylinder, Aft Section (Stations X_t 2058 to X_t 1624) Outboard Half (-Z Axis $\pm 90^\circ$).	60
Subzone 2	-2-1-A	(General Specifications)	60
Subzone 2	-2-1-B	board Half (-Z Axis ±90°). Weight of Component < 15 lb	60
		stiffened skin on the ET LH $_2$ Cylinder, Aft Section (Stations X $_t$ 2058 to X $_t$ 1624), Outboard Half (-Z Axis $\pm 90^\circ$). Weight of Component \geq 15 but < 45 lb	62
Subzone 2		Input to components mounted on baffles and stiffened skin on the ET LH_2 Cylinder, Aft Section (Stations X_t 2058 to X_t 1624), Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 45 lb	64
Subzone 2		Structural Ring at Station X _t 1871 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis ±90°) (General Specifications)	66
Subzone 2		Input to components mounted on the structural ring at station X _t 1871 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component < 60 lb	66

Subzone 2-2-2-B	Input to components mounted on the structural ring at station X_t 1871 in the ET LH ₂	Page
	Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component > 60 lb	68
Subzone 2-2-3	Structural Ring at Station X _t 2058 in the	
	ET LH ₂ Cylinder, Outboard Half (-Z Axis	
	±90°) (General Specifications)	70
Subzone 2-2-3-A	Input to Components Mounted on the Structural Ring at Station X_{t} 2058 in the ET LH_{2}	
	Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component < 100 lb	70
Subzone 2-2-3-B	Input to Components Mounted on the Structural Ring at Station X _t 2058 in the ET LH ₂	
	Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component > 100 lb	72
Subzone 2-3	ET LH ₂ Cylinder, Forward Section (Stations	
	X_{t}^{-1624} to X_{t}^{-1130}), Inboard Half (+Z Axis	
	±90°) (General Specifications)	74
Subzone 2-3-1	Baffles and Stiffened Skin on the ET LH ₂	
	Cylinder, Forward Section (Stations X,	
	1624 to X _t 1130), Inboard Half (+Z Axis	
	±90°) (General Specifications)	74
Subzone 2-3-1-A	Input to components mounted on baffles and stiffened skin on the LH ₂ Tank, Forward	
	Section (X_T 1624 to X_T 1123), Inboard Half	
	(+Z $\pm 90^{\circ}$) and not within $\pm 10^{\circ}$ of the GO ₂	
	Press. Line/Cable Tray Installation. Weight of Component < 15 lb	74
Subzone 2-3-1-B	Input to Components mounted on Baffles and stiffened skin on the LH ₂ Tank, Forward Sec-	-
	tion (X_T 1624 to X_T 1123), Inboard Half	
	(+Z $\pm 90^{\circ}$) and NOT within $\pm 10^{\circ}$ of the GO ₂	
	Press. Line/Cable Tray Installation. Weight of Component > 15 but < 45 lbs	76

			Page
Subzone 2-3-1-C	2-3-1-C	Input to Components mounted on Baffles and stiffened skin on the LH ₂ Tank,	
		Forward Section (X_T 1624 to X_T 1123),	
		Inboard Half (+Z ±90°) and NOT within	
		±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component > 45 lb	78
Subzone	2-3-1-AP	Input to Components mounted on Baffles and stiffened skin on the LH ₂ Tank, For-	
		ward Section (X_T 1624 to X_T 1123),	
		Inboard Half (+Z ±90°) and within ±10° of the GO ₂ Press. Line/Cable Tray Instal-	
		lation. Weight of Component < 15 lb	80
Subzone	2-3-1-BP	Input to Components mounted on Baffles and stiffened skin on the LH ₂ Tank, Forward	
		Section (X_T 1624 to X_T 1123), Inboard Half	
		(+Z $\pm 90^{\circ}$) and within $\pm 10^{\circ}$ of the GO ₂ Press.	
		Line/Cable Tray Installation. Weight of Component > 15 lb. but < 45 lbs	82
Subzone	2-3-1-CP	Input to Components mounted on Baffles and stiffened skin on the LH ₂ Tank, Forward Sec-	
		tion (X_T 1624 to X_T 1123), Inboard Half (+Z	
		±90°) and within ±10° of the GO ₂ Press.	
		Line/Cable Tray Installation. Weight of Component > 45 lbs	84
Subzone	2-3-1-DP	Input to Components Mounted on Baffles and Stiffened Skin on the LH ₂ Tank Forward Sec-	
		tion (X_T 1624 to X_T 1123), Inboard Half	
		$(+Z \pm 90^{\circ})$ and within $\pm 10^{\circ}$ of the GO_2 Press.	
		Line/Cable Tray Installation. Weight of Component > 100 lb	86

			Page
Subzone	2-3-2	Structural Rings at Stations X_t 1624 and X_t 1377 in the ET LH_2 Cylinder,	
		Inboard Half (+Z Axis ±90°) (General Specifications)	88
Subzone	2-3-2-A	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the	
		LH_2 Tank, Inboard Half (+Z $\pm 90^{\circ}$), and	
		NOT within ±10° of the GO ₂ Press. Line/	
		Cable Tray Installation. Weight of Component < 30 lbs	88
Subzone	2-3-2-B	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the	
		LH ₂ Tank, Inboard Half (+Z ±90°), and	
		NOT within ±10° of the GO ₂ Press. Line/	
		Cable Tray Installation. Weight of Component > 30 but < 90 lbs	90
Subzone	2-3-2-C	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the LH_2	
		Tank, Inboard Half (+Z ±90°), and Not	
		within ±10° of the Go ₂ Press. Line/Cable	
		Tray Installation. Weight of Component > 90 lb	92
Subzone	2-3-2-AP	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the LH $_2$	
		Tank, Inboard Half (+Z ±90°) and within ±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component < 30 lbs	94
Subzone	2-3-2-BP	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the LH_2	
		Tank, Inboard Half (+Z ±90°) and within ±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component ≥ 30 but < 90 lbs	96

			Page
Subzone	2-3-2-CP	Input to Components mounted on Structural Ring at X_T 1624 and X_T 1377 in the	
		LH ₂ Tank, Inboard Half (+Z ±90°), and	
		within ±10° of the GO ₂ Press. Line/Cable	
		Tray Installation. Weight of Component > 90 lbs	99
Subzone	2-3-3	Structural Ring at Station X _t 1130 in the	
		ET LH ₂ Cylinder, Inboard Half (+Z Axis	
		±90°) (General Specifications)	100
Subzone	2-3-3-A	Input to Components mounted on the Structural Ring at X_T 1130 in the LH_2 Tank,	
		Inboard Half (+Z ±90°), and NOT within	
		±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component < 100 lbs	100
Subzone	2-3-3-B	Input to Components mounted on the Structural Ring at X_T 1130 in the LH_2 Tank,	
		Inboard Half (+Z ±90°), and NOT within	
		±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component > 100 lbs	102
Subzone	2-3-3-AP	Input to Components mounted on the Structural Ring at X_T 1130 in the LH_2 Tank,	
		Inboard Half (+Z ±90°), and within ±10° of the GO ₂ Press. Line/Cable Tray Instal-	
		lation. Weight of Component < 100 lbs	104
Subzone	2-3-3-BP	Input to Components mounted on the Structural Ring at X _T 1130 in the LH ₂ Tank,	
		Inboard Half (+Z ±90°), and within ±10° of the GO ₂ Press. Line/Cable Tray Instal-	
		lation. Weight of Component \geq 100 lbs	106

			Page
Subzone	2-4	ET LH ₂ Cylinder, Forward Section (Stations X _t 1624 to X _t 1130), Outboard Half (-Z Axis ±90°) (General Specifications)	∍108
Subzone	2-4-1	Baffles and Stiffened Skin on the ET LH_2 Cylinder, Aft Section (Stations X_t 1624 to X_t 1130), Outboard Half (-Z Axis $\pm 90^\circ$) (General Specifications)	108
Subzone	2-4-1-A	Input to Components Mounted on Baffles and Stiffened Skin on the ET LH ₂ Cylinder, Aft Section (Stations X _t 1624 to X _t 1130), Outboard Half (-Z Axis ±90°). Weight of Component < 15 lb	108
Subzone	2-4-1-B	Input to Components Mounted on Baffles and Stiffened Skin on the ET LH_2 Cylinder, Aft Section (Stations X_t 1624 to X_t 1130), Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component \geq 15 but $<$ 45 lb	110
Subzone	2-4-1-C	Input to Components Mounted on Baffles and Stiffened Skin on the ET LH $_2$ Cylinder, Aft Section (Stations X_t 1624 to X_t 1130), Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component \geq 45 lb	112
Subzone	2-4-2	Structural Rings at Stations X_t 1624 and X_t 1377 in the ET LH $_2$ Cylinder, Outboard Half (-Z Axis $\pm 90^\circ$) (General Specifications)	114
Subzone	2-4-2-A	Input to Components Mounted on the Structural Rings at Stations X_t 1624 and X_t 1377 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component < < 30 lb	114

		Page
Subzone 2-4-2-B	Input to Components Mounted on the Structural Rings at Stations X_t 1624 and X_t 1377 in the ET LH $_2$ Cylinder, Outboard Half (-Z Axis $\pm 90^\circ$) Weight of Component ≥ 30 but < 90 lb	116
Subzone 2-4-2-C	Input to Components Mounted on the Structural Rings at Stations X_t 1624 and X_t 1377 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 90 lb	118
Subzone 2-4-3	Structural Ring at Station X _t 1130 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis ±90°) (General Specifications)	120
Subzone 2-4-3-A	Input to Components Mounted on the Structural Ring at Station X _t 1130 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component < 45 lb	120
Subzone 2-4-3-B	Input to Components Mounted on the Structural Ring at Station X_t 1130 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis $\pm 90^{\circ}$). Weight of Component ≥ 45 but < 135 lb	122
Subzone 2-4-3-C	Input to Components Mounted on the Structural Ring at Station X _t 1130 in the ET LH ₂ Cylinder, Outboard Half (-Z Axis ±90°). Weight of Component < 135 lb	124
Zone 3	ET Intertank	126
Subzone 3-1	ET Intertank (Stations X _t 1130 to X _t 852), Panels 1, 2, and 3 (General Specifications)	126
Subzone 3-1-1	Structural Rings at Stations X_t 1082, X_t 1034 X_t 941, and X_t 897 in Panels 1, 2, and 3 of the ET Intertank (General Specifications)	100
	cations)	126

			Page
Subzone	3-1-1-1-A	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2,	
		and 3 of the Intertank, and NOT within ±10°	
		of the GO ₂ Press. Line/Cable Tray Installa-	
		tion. Weight of Component < 25 lbs	126
Subzone	3-1-1-1-B	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2	
		and 3 of the Intertank, and NOT within	
		±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component ≥ 25 but < 75 lbs	128
Subzone	3-1-1-C	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2	
		and 3 of the Intertank, and NOT within	
		±10° of the GO ₂ Press. Line/Cable Tray	
		Installation. Weight of Component > 75 lbs	130
Subzone	3-1-1-1-AP	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2	
		and 3 of the Intertank, and within ±10° of the GO ₂ Press. Line/Cable Tray Installation.	
		Weight of Component < 25 lbs	132
Subzone	3-1-1-1-BP	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panels 1, 2	
		and 3 of the Intertank, and within ±10° of the GO ₂ Press. Line/Cable Tray Installa-	
		tion. Weight of Component > 25 but < 75 lbs	134
Subzone	3-1-1-CP	Input to Components mounted on Structural Rings at X_T 941 and X_T 897 in Panel 1, 2	
		and 3 of the Intertank, and within ±10° of the GO ₂ Press. Line/Cable Tray Installa-	
		tion. Weight of Component \geq 75 lbs	136

			Page
Subzone	3-1-1-2-A	Input to Components mounted on Structural Rings at X _T 1082 and X _T 1034 in Panels 1, 2 and 3 of the Intertank, and NOT within ±10° of the GO ₂ Press. Line/Cable Tray Installation. Weight of Component < 25 lbs	138
Subzone	3-1-1-2-В	Input to Components Mounted on Structural Rings at X_T 1082 + X_T 1034 in Panels 1, 2 & 3 of the Intertank, and NOT within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component ≥ 25 but < 75 lb	140
Subzone	3-1-1-2-C	Input to Components Mounted on Structural Rings at X_T 1082 & X_T 1034 in Panels 1, 2 and 3 of the Intertank, and NOT within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component ≥ 75 lb	142
Subzone	3-1-1-2-AP	Input to Components Mounted on Structural Rings at X _T 1082 and X _T 1034 in Panels 1, 2 & 3 of the Intertank, and within ±10° of the GO ₂ Press. Line/Cable Tray Installation. Weight of Component < 25 lb	144
Subzone	3-1-1-2-BP	Input to Components Mounted on Structural Rings at X_T 1082 and X_T 1034 in Panels 1, 2 & 3 of the Intertank, and within +10° of the GO_2 Press. Line/Cable Tray Installation. Weight of Component \geq 25 but < 75 lb	146
Subzone	3-1-1-2-CP	Input to Components Mounted on Structural Rings at X_T 1082 and X_T 1034 in Panels 1, 2 & 3 of the Intertank, and within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component ≥ 75 lb	148

		Page
Subzone 3-1-2	Structural Ring at Station X _t 985 in Panels 1, 2, and 3 of the ET Intertank (General Specifications)	150
Subzone 3-1-2-A	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 and 3 of the Intertank, and Not within $\pm 10^\circ$ of the GO_2	
	Press. Line/Cable Tray installation. Weight of Component < 30 lb	150
Subzone 3-1-2-B	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 and 3 of the	
	Intertank, and NOT within $\pm 10^{\circ}$ of the GO $_2$	
	Press. Line/Cable Tray Installation. Weight of Component > 30 but < 90 lb	152
Subzone 3-1-2-C	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 & 3 of the	
	Intertank, and NOT within $\pm 10^{\circ}$ of the GO $_2$	
	Press. Line/Cable Tray Installation. Weight of Component > 90 lb	154
Subzone 3-1-2-AP	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 & 3 of the	
	Intertank, and within ±10° of the GO2 Press.	
	Line/Cable Tray Installation. Weight of Component < 30 lb	156
Subzone 3-1-2-BP	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 & 3 of the	
	Intertank, and within ±10° of the GO2 Press.	
	Line/Cable Tray Installation. Weight of Component > 30 but < 90	158
Subzone 3-1-2-CP	Input to Components Mounted on Structural Ring at X_T 985 in Panels 1, 2 & 3 of the	
	Intertank, and within ±10° of the GO2 Press.	
	Line/Cable Tray Installation. Weight of Component > 90 lb	160

			Page
Subzone	3-2	ET Intertank (Stations X_t 1130 to X_t 852) Panels 4 and 5 (General Specifications)	162
Subzone	3-2-1	Structural Rings at Stations X _t 1082, X _t 1034, X _t 941, and X _t 897 in Panels 4 and 5 of the ET Intertank (General Specifications)	162
Subzone	3-2-1-A	Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034, X_t 941, and X_t 897 in Panels 4 and 5 of the ET	
		Intertank. Weight of Components < 50 lb	162
Subzone	3-2-1-B	Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034, X_t 941, and X_t 897 in Panels 4 and 5 of the ET Intertank. Weight of Component \geq 50 but $<$ 150 lb	164
Subzone	3-2-1-C	Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 941, and X_t 897 in Panels 4 and 5 of the ET Intertank. Weight of Components \geq 150 lb	166
Subzone	3-2-2	Structural Ring at Station X _t 985 in Panels 4 and 5 of the ET Intertank (General Specifications)	168
Subzone	3-2-2-A	Input to Components Mounted on Structural Ring at Station X _t 985 in Panels 4 and 5 of the ET Intertank. Weight of Component < 75 lb	168
Subzone	3-2-2-B	Input to Components Mounted on Structural Ring at Station X_t 985 in Panels 4 and 5 of the ET Intertank. Weight of Components \geq 75 but $<$ 225 lb	170

			Page
Subzone	3-2-2-C	Input to Components Mounted on Structural Ring at Station X _t 985 in Panels 4 and 5 of the ET Intertank. Weight of Components > 225 lb	172
Subzone	3-2-3	SRB Beam at Station X _t 985 of the ET Intertank (General Specifications)	174
Subzone	3-2-3-A	Input to Components Mounted on the SRB Beam at Station X _t 985 of the ET	
		Intertank	174
Subzone	3-3	ET Intertank (Stations X_t 1130 to X_t 852), Panels 6, 7, and 8 (General Specifica-	
		tions)	176
Subzone	3-3-1	Structural Rings at Stations X_t 1082, X_t 1034 (Partial), X_t 941, and X_t 879 in Panels	
		6, 7, and 8 of the ET Intertank (General Specifications)	176
Subzone	3-3-1-A	Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial),	
		X_{t} 941, and X_{t} 897 on Panels 6, 7, and 8 of	
		the ET Intertank. Weight of Component < 25 lb	176
Subzone	3-3-1-B	Input to Components Mounted on Structural Rings at Stations X, 1082, X, 1034 (Partial),	
		X_{t} 941 and X_{t} 897 on Panels 6, 7, and 8 of	
		the ET Intertank. Weight of Component > 25 but < 75 lb	178
Subzone	3-3-1-C	$\frac{\text{Input to }}{\text{Rings at Stations X}_t} \; \text{Mounted on Structural } \\ X_t \; 1082, \; X_t \; 1034 \; \text{(Partial)},$	
		X_{t} 941 and X_{t} 897 on Panels 6, 7, and 8 of	
		the ET Intertank. Weight of Component > 75 but < 225 lbs	180

			Page
Subzone	3-3-1-D	Input to Components Mounted on Structural Rings at Stations X_t 1082, X_t 1034 (Partial),	
		$\mathbf{X}_{\mathbf{t}}$ 941, and $\mathbf{X}_{\mathbf{t}}$ 897 in Panels 6, 7, and 8 of	
		the ET Intertank. Weight of Component > 225 lb	182
Subzone	3-3-2	Structural Ring at Station X _t 985 in Panels	
		6, 7, and 8 of the ET Intertank (General Specifications)	184
Subzone	3-3-2-A	Input to Components Mounted on the Structural Ring at Station X, 985 in Panels 6, 7,	
		and 8 of the ET Intertank. Weight of Component < 35 lb	184
Subzone	3-3-2-B	Input to Components Mounted on the Structural Ring at Station X _t 985 in Panels 6, 7,	
		and 8 of the ET Intertank. Weight of Component > 35 but < 100 lb	186
Subzone	3-3-2-C	Input to Components Mounted on the Structural Ring at Station X, 985 in Panels 6, 7,	
		and 8 of the ET Intertank. Weight of Component ≥ 100 lb	188
Subzone	3-3-3	Structural Ring at Station X _t 1034 Between	
		the -Z Axis and the Access Door of the ET Intertank (General Specifications)	. 190
Subzone	3-3-3-A	Input to Components Mounted on the Structural Ring at Station X, 1034 Between the	
		-Z Axis and the Access Door of the ET Intertank Weight of Component < 30 lb	190
Subzone	3-3-3-B	Input to Components Mounted on the Structural Ring at Station X, 1034 Between the	
		-Z Axis and the Access Door of the ET Intertank. Weight of Component > 30 but < 90 lb	191

			Page
Subzone	3-3-3-C	Input to Components Mounted on the Structural Ring at Station X_t 1034 Between the	
		-Z Axis and the Access Door of the ET Intertank. Weight of Component > 90 lb	192
Subzone	3-4	ET LH ₂ Forward Bulkhead (General	102
		Specifications)	193
Subzone	3-4-1	ET LH ₂ Forward Bulkhead Gores (Stations	
		X _t 1130 to X _t 1008) (General Specifica-	
		tions)	193
Subzone	3-4-1-A	Input to Components Mounted on the ET LH ₂ Forward Bulkhead Gores (Stations X _t	
		1130 to X _t 1008). Weight of Component	
		< 10 lb	193
Subzone	3-4-1-B	$\begin{array}{c} \underline{\text{Input to }} \; \text{Components Mounted on the ET} \\ \underline{\text{LH}}_2 \; \overline{\text{Forward Bulkhead Gores (Stations X}_t \end{array}$	
		1130 to X _t 1008). Weight of Component	
		> 10 but < 30 lb	195
Subzone	3-4-1-C	Input to Components Mounted on the ET $\overline{\text{LH}_2}$ Forward Bulkhead Gores (Stations X_t	
		1130 to X _t 1008). Weight of Component	
		≥ 30 lb	197
Subzone	3-4-2	ET LH ₂ Forward Bulkhead Cap (Station X _t	
		1008) (General Specifications)	199
Subzone	3-4-2-A	Input to Components Mounted on the ET LH ₂ Forward Bulkhead Cap (Station X _t	
		1008). Weight of Component < 20 lb	199
Subzone	3-4-2-B	Input to Components Mounted on the ET LH ₂ Forward Bulkhead Cap (Station X ₄	
		1008). Weight of Component > 20 but < 60 lb	201

		Page
Subzone 3-4-2-C	Input to Components Mounted on the ET LH_2 Forward Bulkhead Cap (Station X_t 1008). Weight of Component \geq 60 lb	203
Subzone 3-5	ET LO ₂ Aft Bulkhead (General Specifications)	205
Subzone 3-5-1	ET LO $_2$ Aft Bulkhead Gores (Stations X $_t$ 963 to X $_t$ 854) (General Specifications)	205
Subzone 3-5-1-A	Input to Components Mounted on the ET LO ₂ Aft Bulkhead Gores (Stations X _t 963 to X _t 854). Weight of Components < 12 lb	205
Subzone 3-5-1-B	Input to Components Mounted on the ET $\overline{\text{LO}_2}$ Aft Bulkhead Gores (Stations X_t 963 to X_t 854). Weight of Components \geq 12 but $<$ 36 lb.	207
Subzone 3-5-1-C	Input to Components Mounted on the ET $\overline{\text{LO}_2}$ Aft Bulkhead Gores (Stations X_t 963 to X_t 854). Weight of Component \geq 36 lb	209
Subzone 3-5-2	ET LO ₂ Aft Bulkhead Cap (Station X _t 854) (General Specifications)	211
Subzone 3-5-2-A	Input to Components Mounted on the ET LO $_2$ Aft Bulkhead Cap (Station $X_{\mbox{\scriptsize t}}$ 854). Weight of Components < 50 lb	211
Subzone 3-5-2-B	Input to Components Mounted on the ET LO ₂ Aft Bulkhead Cap (Station X_t 854). Weight of Components \geq 50 but $<$ 150 lb	213

			Page
Subzone	3-5-2-C	Input to Components Mounted on the ET LO_2 Aft Bulkhead Cap (Station X_t 854).	
		Weight of Component \geq 150 lb	215
Zone 4		ET LO ₂ Cylinder	217
Subzone	4-1	ET LO ₂ Cylinder (Stations X _t 852 to X _t 747) (General Specifications)	217
Subzone	4-1-A	$\begin{array}{c} \underline{\text{Input to}} \ \ \underline{\text{Components Mounted on the ET LO}} \\ \underline{\text{Cylinder (Stations X}_{T} \ 852 \ \text{to X}_{T} \ 747)} \ \ \text{and not} \\ \underline{\text{within $\pm 10^{\circ}$ of the GO}_{2} \ \text{Pressure Line/Cable}} \\ \underline{\text{Tray Installation. Weight of Components}} \\ < 15 \ \ \text{lb.} \\ \end{array}$	217
Subzone	4-1-B	Input to Components Mounted on the ET LO $_2$ Cylinder (Stations $\rm X^{}_T$ 852 to $\rm X^{}_T$ 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Components \geq 15 but < 45 lb	219
Subzone	4-1-C	Input to Components Mounted on the ET LO $_2$ Cylinder (Stations $\mathbf{X_T}$ 852 and $\mathbf{X_T}$ 747) and not within $\pm 10^\circ$ of the GO $_2$ Pressure Line/Cable Tray Installation. Weight of Component \geq 45 lb	s 221
Subzone	4-1-AP	Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Components < 15 lb	223
Subzone	4-1-BP	Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component ≥ 15 but < 45 lb	225

		Page
Subzone 4-1-CP	Input to Components Mounted on the LO $_2$ Cylinder (X $_T$ 852 to X $_T$ 747) and within $\pm 10^\circ$ of the GO $_2$ Press. Line/Cable Tray Installation. Weight of Component \geq 45 lb	227
Zone 5	ET Ogive and Nose Cap	229
Subzone 5-1	ET Ogive, Aft Section (Stations X _t 747 to X _t 537) (General Specifications)	229
Subzone 5-1-A	Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation. Weight of Component < 10 lb	229
Subzone 5-1-B	Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation. Weight of Component ≥ 10 but < 30 lb	231
Subzone 5-1-C	Input to Components Mounted on the ET Ogive, Aft Section (Stations X_T 747 to X_T 537) and not within $\pm 10^\circ$ of the GO_2 Pressure Line/Cable Tray Installation. Weight of Component \geq 30 lb	233
Subzone 5-1-AP	Input to Components Mounted on the Ogive Aft Section (X_T 747 to X_T 537) and within $\pm 10^\circ$ of the GO_2 Press. Line/Cable Tray Installation. Weight of Component < 10 lb	235
Subzone 5-1-BP	Input to Components Mounted on the Ogive Aft Section (X_T 747 to X_T 537) and within $\pm 10^{\circ}$ of the GO ₂ Press. Line/Cable Tray Installation. Weight of Component ≥ 10 but < 30 lb.	237

		I	Page
Subzone	5-1-CP	Input to Components Mounted on the Ogive Aft Section (X _T 747 to X _T 537)	
		and within ±10° of the GO ₂ Press. Line/	
		Cable Tray Installation. Weight of Component > 30 lb	239
Subzone	5-2	ET Ogive, Forward Section (Stations X 537	
		to X _t 371) (General Specifications)	241
Subzone	5-2-A	Input to Components Mounted on the ET Ogive, Forward Section (Stations X _t 537 to	
		X_{t} 371) and not within $\pm 10^{\circ}$ of the GO_{2}	
		Pressure Line/Cable Tray Installation. Weight of Component > 7 lb	241
Subzone	5-2-B	Input to Components Mounted on the ET Ogive, Forward Section (Stations X _t 537 to	
		X_{t} 371) and not within ±10° of the GO_{2}	
		Pressure Line/Cable Tray Installation. Weight of Component > 7 but < 21 lb	243
Subzone	5-2-C	Input to Components Mounted on the ET Ogive, Forward Section (Stations X _t 537 to	
		X_{t} 371) and not within $\pm 10^{\circ}$ of the GO_{2}	
		Pressure Line/Cable Tray Installation. Weight of Component > 21 lb	245
Subzone	5-2-AP	Input to Components Mounted on the Ogive Forward Section (X_T 537 to X_T 371) and	
		within ±10° of the GO ₂ Press. Line/Cable	
		Tray Installation. Weight of Component < 7 lb	247
Subzone	5-2-BP	Input to Components Mounted on the Ogive Forward Section (X _T 537 to X _T 371) and	
		within ±10° of the GO ₂ Press. Line/Cable	
		Tray Installation. Weight of Component > 7 but < 21 lb	249

		Page
Subzone 5-2-CP	Input to Components Mounted on the Ogive Forward Section (X_T 537 to X_T 371) and	
	within ±10° of the GO ₂ Press. Line/Cable	
	Tray Installation. Weight of Component > 21 lb	251
Subzone 5-3	ET Nose Cap and Cover Plate (Stations X_{t}	
	371 to X _t 322) (General Specifications)	253
Subzone 5-3-1	ET Nose Cap (Stations X_{t} 371 to X_{t} 322)	
	(General Specifications)	253
Subzone 5-3-1-A	Input to Components Mounted on the ET Nose Cap (Stations X_t 371 to X_t 322).	
	Weight of Component < 7 lb	253
Subzone 5-3-1-B	Input to Components Mounted on the ET Nose Cap (Stations X_{t} 371 to X_{t} 322).	
	Weight of Component ≥ 7 but < 20 lb	255
Subzone 5-3-1-C	Input to Components Mounted on the ET Nose Cap (Stations X_{t} 371 to X_{t} 322).	
	Weight of Component ≥ 20 lb	257
Subzone 5-3-2	Input to Components Mounted on the ET LO ₂ Ogive Cover Plate or Cover Plate Sup-	
	port Ring. (Station X _t 371)	259

Acoustic Specification	ns	Page
Zone 1-1	ET AFT LH ₂ Bulkhead Gores (General Specifications) Externals	261
Zone 1-2	ET Aft LH ₂ Bulkhead Cap (General Specifications) External	262
Subzone 2–1	ET LH ₂ Tank Cylinder, Inboard (Orbiter) Side, Aft Section (General Specifications) External	263
Subzone 2-2	ET LH ₂ Tank Cylinder, Outboard Side, Aft Section (General Specifications) External	264
Subzone 2-3	ET LH ₂ Tank Cylinder, Inboard (Orbiter) Side, Forward Section (General Specifications) External	265
Subzone 2–4	ET LH ₂ Tank Cylinder, Outboard Side, Forward Section (General Specifications) External	266
Zone 3	ET Intertank Section (General Specifications) Internal	267
Subzone 3-1	ET Intertank Section, Panels 1, 2, and 3 (General Specifications) External	268
Subzone 3-2	ET Intertank Section, Panels 4 and 5 (General Specifications) External	. 270
Subzone 3–3	ET Intertank Section, Panels 6, 7, and 8 (General Specifications) External	271
Zone 4	ET LOX Tank Cylindrical Section (General Specifications) External	272
Zone 5	ET Ogive and Nose Cap (General Specifications) External	273

General Specifications		
All Zones	Transportation Specifications	279
All Zones	Handling Specifications	282
Component Specifica	ations	314

APPENDIX A

VIBRATION AND SHOCK CRITERIA

FOR

SPECIFIC COMPONENTS

OF THE

SPACE SHUTTLE EXTERNAL TANK

<u>Input to Components Mounted on the Mated Ground Umbilical Carrier Plate in the Intertank (Pre-Separation)</u>

1. Acceptance Test Criteria (1 minute/axis)

2. Pre-Liftoff Random Vibration Criteria (1 minute/axis)

Radial Axis Long. and Tang. Axes

Composite = 6.9 g_{rms} Composite = 6.6 g_{rms}

3. Boost Random Vibration Criteria

N/A

4. Vehicle Dynamics Criteria

N/A

5. Shock Test Criteria

See Table I

Input to Range Safety Panel

1. Acceptance Test Criteria (1 min/axis)

2 and 3. Flight Random Vibration Criteria (3 min/axis)

Radial	Axis		Long. and Tang. Axes
43 - 100 - 123 -	43 Hz 100 Hz 123 Hz 400 Hz 2000 Hz	z @ 0.13 g ² /Hz z @ +9 dB/oct z @ 1.3 g ² /Hz z @ -9 dB/oct z @ 0.7 g ² /Hz z @ -6 dB/oct	20 Hz @ 0.0026 g ² /Hz 20 - 60 Hz @ +9 dB/oct 60 - 1300 Hz @ 0.07 g ² /Hz 1300 - 2000 Hz @ -9 dB/oct 2000 Hz @ 0.09 g ² /Hz
	Composi	ite = 23.0 g	Composite = 10.7σ

4. Vehicle Dynamics Criteria

Longitudinal Axis	Lateral Axes
2 - 5 Hz @ 0.6 G's peak* 5 - 40 Hz @ 0.6 G's peak	2 - 5 Hz @ 0.8 G's peak* 5 - 40 Hz @ 0.8 G's peak
Shock Test Criteria	

5. Shock Test Criteria

See Table I

^{*} Design Criteria Only

<u> </u>	REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.	
'	NASA RP-1074	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT S GATTLES III	
<u> </u>		<u>L</u>		
4	TITLE AND SUBTITLE	5. REPORT DATE		
į	Preliminary Vibration, Acoustic, and Shock Design and Test Criteria for Components on the Lightweight External		February 1981	
ĺ			6. PERFORMING ORGANIZATION CODE	
	Tank (LWT)			
7.	AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #	
ĺ	Staff of Systems Dynamics La	[
	Marshall Space Flight Center			
9.	PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT NO.	
	George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812		M-343	
			11. CONTRACT OR GRANT NO.	
			13. TYPE OF REPORT & PERIOD COVERED	
12	SPONSORING AGENCY NAME AND ADDRESS		1	
l	National Aeronautics and Sp	ace Administration	Reference Publication	
ĺ	Washington, D. C. 20546		Reference 1 addication	
ĺ	,, and an		14. SPONSORING AGENCY CODE	
			14. SPONSONING AGENCY COLE	
15.	SUPPLEMENTARY NOTES			
			·	

16. ABSTRACT

This reports presents the vibration, acoustic and shock design and test criteria for components and subassemblies on the External Tank (ET). Also presented are specifications for transportation, handling, and acceptance testing.

The Space Shuttle LWT has been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available.

Included with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is also included.

17.	Vibration and shock qualification test requirements Acoustic test requirements Vibration and shock specification		18. DISTRIBUTION STATEMENT Unclassified—Unlimited		
				Subject Ca	ategory 18
19.	SECURITY CLASSIF. (of this report) Unclassified	20. SECURITY CLAS Unclassifi	SIF, (of this page) ed	21. NO OF PAGES 322	22. PRICE A14