

GGplot2

By Olga Ivanova, & Sarah Stolle, Janine Khuc

- 1) Intro and Theory to visualisations
- 2) Introduction to ggplot
- 3) Playtime I
- 4) More advanced ggplot
- 5) Playtime II

1) Intro and Theory to visualisations

- 2) Introduction to ggplot
- 3) Playtime I
- 4) More advanced ggplot
- 5) Playtime II

Data Exploration

- Find outliers
- See patterns

Visual communication

- Convey a message (graph could be clearer than text)
- Summarize data trends

Anscombe's quartet (1973)

A little history of data visualization

Milestones: Time course of developments

Planetary movements (10th century)

William Playfair

- Line graphs
- Bar graphs
- Pie charts
- Circles

William Playfair 1821: Time series of prices and wages over 250 years

Fig. 3. One of Playfair's drama graphics designed to show the unfair prices of a quarter of wheat compared with the humble wages of a "good mechanic." In the original, the curve for the wages of the "good mechanic" appears red and the area underneath is stained blue. This chart appears in all three editions of Agricultural Distresses [Playfair (1821, 1822)].

A little history of data visualization

Edward Tufte

Perception of patterns - Gestalt principles

Good figure

Closure

Similarity

Symmetry

Hierarchy of discernibility:

- Colors
- Size
- Alignment
- Character

- What is your message?
- Who is your audience? (yourself, academic, general public,...)
- Where will it be shown? (article, news, conference, online, paper, ...)

- 1) Intro and Theory to visualisations
- 2) Introduction to ggplot
- 3) Playtime I
- 4) More advanced ggplot
- 5) Playtime II

GGplot in tidyverse

Program

GGplot2

- **GGplot2** (Wickham, 2009) is based on the grammar of graphics (Wilkinson et al., 2006)
 - o gg in ggplot means Grammar of Graphics
- Way of thinking about how to create graphs

GGplot2

 dataset, a coordinate system and geoms, mapping visual properties to geom (aesthetics) - e.g. size, color

GGplot input

- Uses data frames as input
 - Long format
 Each row observation of a particular category
 - Typically use reshape2 or tidyr to get data in long format

Wide Fo	rmat	01	
	1	2	3
а	0.1	0.2	0.3
b	0.2	0.4	0.6

ong For	mat	
а	1	0.1
b	1	0.2
а	2	0.2
b	2	0.4
а	3	0.3
b	4	0.6

Layers

```
library(ggplot2)
... # load some data
ggplot(fastfood_calories) + ...
```


shutterstock.com • 1104518450

aes (aesthetics)

Aesthetics

- Horizontal
- Vertical
- Color
- Different lines

- Line type
- Size
- Shape
-
- In ggplot2 we first set aesthetic mapping of our data using aes() inside ggplot()

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories,
y=total_fat))
```


Data introduction

Original data come from fastfoodnutrition.org, dataset with nutritional information about entrees (main courses) from the specified fast food franchises

	restaura	item	calories	cal_fat	total_fa	sat_fat	trans_	fa choleste	sodium	total_ca	fiber	sugar	protein	vit_a	vit_c	calcium	salad
1	Mcdona	Artisan (380	60	7	2		0 95	1110	44	3	11	37	4	20	20	Othe
2	Mcdona	Single B	840	410	45	17	1.5	130	1580	62	2	18	46	6	20	20	Othe
3	Mcdona	Double E	1130	600	67	27		3 220	1920	63	3	18	70	10	20	50	Othe
4	Mcdona	Grilled E	750	280	31	10	0.5	155	1940	62	2	18	55	6	25	20	Othe
5	Mcdona	Crispy B	920	410	45	12	0.5	120	1980	81	4	18	46	6	20	20	Othe
6	Mcdona	Big Mac	540	250	28	10		1 80	950	46	3	9	25	10	2	15	Othe
7	Mcdona	Cheeseb	300	100	12	5	0.5	40	680	33	2	7	15	10	2	10	Othe
8	Mcdona	Classic (510	210	24	4		0 65	1040	49	3	6	25	0	4	2	Othe
9	Mcdona	Double (430	190	21	11		1 85	1040	35	2	7	25	20	4	15	Othe
10	Mcdona	Double (770	400	45	21	2.5	175	1290	42	3	10	51	20	6	20	Othe
11	Mcdona	Filet-O-I	380	170	18	4		0 40	640	38	2	5	15	2	0	15	Othe
12	Mcdona	Garlic W	620	300	34	13	1.5	95	790	48	3	11	32	10	10	35	Othe
13	Mcdona	Grilled (530	180	20	7		0 125	1150	48	3	11	42	10	20	35	Othe

```
fastfood_calories = read.csv(paste0(folder_path,
"fastfood_calories.csv"), stringsAsFactors = F)
```


aes

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories,
y=total_fat))
```


geom (geometics)

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories, y=total_fat)) +
geom_point()
```


geom

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories, y=total_fat,
color=restaurant)) +
geom_point()
```


geom

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=restaurant y=total_fat,
color=calories)) +
geom_point()
```


geom: boxplot

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=restaurant y=total_fat)) +
geom_boxplot()
```


geom: boxplot

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=restaurant y=total_fat,
fill=restaurant)) +
geom_boxplot()
```


Adding labels

Adding themes

Several geoms

```
ggplot(fastfood_calories, aes(x=calories,
y=total_fat)) +
geom_point()+
geom_smooth(se=FALSE)+
theme_classic()
```


geom and aes: color

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories, y=total_fat,
color="blue")) +
geom_point()
```


geom and aes: color

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories, y=total_fat)) +
geom_point(color="blue")
```


Order is important

```
library(ggplot2)
ggplot(fastfood_calories, aes(x=calories,
y=total_fat, color=restaurant)) +
geom_point(color="blue")
```


geom forms

```
geom_histogram()
geom_point()
geom_smooth()
geom_bar()
```

```
geom_boxplot()
geom_area()
geom_line()
```

Ggplot cheat sheet:

https://www.rstudio.com/wp-content/uploads/2015/0 3/gqplot2-cheatsheet.pdf

GGplot reference:

https://ggplot2.tidyverse.org/reference/

Summary

MVP - minimum viable plot with

- data
- geom
- aes

- 1) Intro and Theory to visualisations
- 2) Introduction to ggplot
- 3) Playtime I (15 mins)
- 4) More advanced ggplot
- 5) Playtime II

- 1) Intro and Theory to visualisations
- 2) Introduction to ggplot
- 3) Playtime I
- 4) More advanced ggplot
- 5) Playtime II

Adjusting axis limits

```
ggplot(fastfood_calories, aes(x=restaurant y=total_fat)) +
geom_point() +
xlim(0, 2000) +
ylim(0, 100)
```


Adjusting axis limits

• xlim, ylim

BUT

coord_cartesian (xlim, ylim)

```
2: Removed 3 rows containing missing values (geom_point).3: Removed 3 rows containing missing values (geom_smooth).
```


Changing points

```
burger_king_rest =
fastfood_calories[fastfood_calories$restaurant=="Burger
King", ]

ggplot(burger_king_rest, aes(x=log(sat_fat), y=total_fat,
size=sodium)) +
geom_point(alpha=0.5, color="#CC6600")
```


Facets

```
ggplot(fastfood_calories, aes(x=log(sat_fat), y=total_fat,
size=sodium)) +
geom_point(alpha=0.5, color="#CC6600") +
facet_wrap(~restaurant)
```

facet_wrap or facet_grid

Facets

Adjusting positions

Minor tweaks to the position of elements, primarily apply to **bars**

- position_dodge()
- position_stack()
- position fill()

Adjustments for **points**

- position_judge()
- position_jitter()
- position_jitterdodge()

Adjusting positions: jitter

```
ggplot(restr_food_nutrition, aes(x=restaurant, y=total_fat,
color=calories)) +
geom_point() +
geom_jitter(width = 0.2)
```


- 1) Intro and Theory to visualisations
- 2) Introduction to ggplot
- 3) Playtime I
- 4) More advanced ggplot
- 5) Playtime II

Tidytuesday

- Social data project
- Data released every Monday on https://github.com/rfordatascience/tidytuesday
- Around tidying and visualising the data
- work published on Twitter under #TidyTuesday

R

Reproduce this plot (exercise 8)

Read further & Inspiration

- Ggplot2 manual
- <u>Data visualization- A practical introduction by Kieran Healy</u>
- <u>TidyTuesday</u>
- Reddit Data is beautiful
- List with resources about design and code by Lena Groeger
- Data to Vis
- R- graphics
- Fundamentals of data Visualisations

Extra: coordinate systems and saving

- coord_polar (to plot Piecharts)
- coord map (to overlay data on geo map)
- ggsave (to save your plots)
- Write your own functions like geom or layer!

