# Separately Excited and Shunt Excited DC Generator

Instructor

Prof. B. G. Fernandes

9/2/2021, Tuesday



#### Stator:

Field coil is mounted on the projected part & connected to dc

- ⇒ Coil is stationary and 'I' is dc (can be replaced by PM)
- ⇒ Time invariant field
- $\therefore$  Speed of  $F_s = 0$
- ⇒ Either the conductor is rotated or external 'I' should be supplied.
- $\Rightarrow$  Rotor sees non-uniform air-gap. There is saliency!!

#### Rotor:

- ⇒ Laminations having slots at the outer periphery are stacked together
- $\Rightarrow$  In addition, there is a commutator  $\rightarrow$  has large number of cu. segments & these segments are insulated by mica
- $\Rightarrow$  coils having desired number of turns are placed in these slots and two ends of the coil are connected to the cu. strips
- $\Rightarrow$  two(?) carbon brushes are placed at 90°(electrical) to the field axis on the Cu commutator.  $\rightarrow$  carbon brushes are mounted on the commutator

but fixed to the stator







- ⇒ carbon brushes are stationary
- $\Rightarrow$  direction of 'l' reverses when the coil crosses the brush
- ⇒ conductors under one pole carry 'I' in one direction
- $\Rightarrow$  armature mmf axis is fixed and it is along brush (q) axis



- $\Rightarrow$ If F<sub>s</sub> is held constant, F<sub>r</sub> will change with load.
- ⇒ 'I' flowing into/out of the carbon brush is dc
- ⇒ mmf w.r.t. carbon brush is stationary **Commutation:**
- ⇒ coil a-b placed in diametrically opposite slots on the rotor
- $\Rightarrow$  two ends are connected to two slip rings (rotating)
- ⇒ two brushes are pressing against the slip rings
- $\Rightarrow$  air gap flux density









- ⇒replace slip rings by commutator segment
- $\Rightarrow$  b<sub>1</sub> is +ve (: under north pole)
- ⇒ 'V' induced in the conductor is ac
- $\Rightarrow$  'V' across the brush is dc  $\rightarrow$  has a ripple







- $\Rightarrow$  (commutator + brush arrangement) converts ac to dc  $\Rightarrow$ mechanical commutator
- ⇒ for constant dc, have large number of slots and place the conductor

EE240: Power Engineering LAB



## Magnetization characteristics:

- $\Rightarrow$  variation of  $\phi$  with I<sub>F</sub>
- ⇒ dc machine has two distinct circuits
- → field ckt & armature ckt
- $\Rightarrow$  two mmf sources can be controlled

independently

$$\angle_{F_c}^{F_r} = 90^{\circ}$$

 $\angle_{F_c}^{F_r} = 90^0$  (not possible in IM, : there is no access to rotor terminals)

Assume armature terminals are open,

Assuming  $\mu_r$  of iron is very high, all ATs are used to

EE240: Power Engineering LAB

establish ' $\phi$ ' in air gap

$$\therefore \varphi = \frac{NI}{\Re} \rightarrow \text{per pole}$$

### OCC(open circuit characteristics):

 $\rightarrow$  variation of  $E_0$  with  $I_F$  at constant  $\omega'$ 











#### **Armature reaction**:

- $\Rightarrow$  If  $i_a = 0$ , air gap flux = flux due to field current alone
- $\Rightarrow$ when i<sub>a</sub> is flowing in the armature it produces its own flux
- $\Rightarrow$  ' $\phi$ ' produced by current in armature coil opposes ' $\phi$ ' under one
- half of the pole & it aids under the other half
- $\Rightarrow$  region where ' $\phi$ ' due to i<sub>a</sub> aids field flux
- $\rightarrow$  net mmf =  $N_F I_F + \Delta F_a$
- $\rightarrow \uparrow$  in ' $\phi$ ' is  $\Delta \phi_1$
- $\Rightarrow$  region where ' $\phi$ ' due i<sub>a</sub> opposes
- $\rightarrow$ net mmf =  $N_F I_F \Delta F_a$
- $\rightarrow \downarrow$  in ' $\phi$ ' is  $\Delta \phi_2$
- ∵ magnetic circuit is operated at 'C'
- $\uparrow$  in ' $\phi$ ' due to  $\Delta F_a < \downarrow$  in ' $\phi$ ' due to  $\Delta F_a$
- $\Rightarrow$  net result  $\rightarrow$  air gap flux  $\downarrow$
- $\Rightarrow$  it can be compensated





## **Eq.ckt of dc machine**:

## stator eq. ckt:

⇒ dc current (I<sub>f</sub>) is flowing in the field coil  $V_F = R_F i_F + L \frac{di_F}{dt} V_F$   $(R_F \rightarrow \text{resistance \& } L_F \rightarrow \text{inductance})$ 



#### rotor eq. ckt:

- $\Rightarrow$  at steady state  $V_F = R_F I_F$
- ⇒ armature is rotating in the magnetic field
- $\Rightarrow$  'V' induced,  $E \alpha \phi \omega$
- ⇒can be represented by

## Ε=Κφω

## Classification of dc machines:

## Separately excited dc generator(S.E):

- ⇒ field is connected to a separate dc source
- $\Rightarrow$  for given  $V_F$ ,  $P_F \downarrow$  as  $R_F \uparrow$
- → use thin conductor & there would be large no. of turns

EE240: Power Engineering LAB





## external characteristics:

 $\rightarrow$  variation of  $V_t$  with  $I_L$  at constant  $\omega$ 

$$V_t = E_0 - I_a R_a$$
  $I_a = I_L$ 

$$E_0 = K \phi \omega$$

As  $I_a \uparrow$ , ' $\phi$ ' due to  $I_a$  also  $\uparrow$  & due to armature reaction, air gap flux  $\downarrow$ 

- $\rightarrow$  E  $\alpha$  (air gap flux)  $\omega$
- $\Rightarrow$  power is developed in the armature, R<sub>a</sub> comes in the main path of power flow, so it should be small.
- ⇒ needs a separate dc source
- $\therefore$  If  $I_F$  is held constant,  $\Rightarrow \phi_F$  will remain constant
- $\therefore$  E<sub>0</sub> will remain constant , if  $\omega$  is held constant (E<sub>0</sub> = K $\phi_F\omega$ )
- $\therefore V_t \downarrow \text{ as } I_a (= I_L) \uparrow \text{ due to}$
- 1.  $\downarrow$  in air gap flux (arm. reaction) &  $\therefore$  'V' induced in the armature

EE240: Power Engineering LAB

ii. I<sub>a</sub>R<sub>a</sub> drop





## Self excited dc generator:

- field is connected across the arm. terminals
- also known as shunt generator
- $\rightarrow$  If there is residual flux & field flux aids the residual flux, m/c builds up as  $\omega$   $\uparrow$
- ∵ magnetic ckt saturates, V<sub>t</sub> will attain a steady value
- $\rightarrow$  if it fails to develop, it could be due to
- i) field 'φ' opposes the residual 'φ'
- ii) total resistance is very high

#### **External characteristics:**

$$I_a {=} \ I_L {+} I_F \qquad \quad I_{} {=} \frac{V_t}{R_F} \qquad \quad E_{} {=} K \varphi \omega \label{eq:la}$$

- $\rightarrow$  power loss in the field =  $\frac{V_t^2}{R_F}$  or  $I_F^2 R_F$ ,
- →connect the field across the arm. terminals
- →as the rotor starts rotating
- → small 'V' is induced in the armature







→ this 'V' drive a small 'l' in the field

$$\Delta i_{F} \cong \frac{v_{r}}{R_{a} + R_{F}}$$

- $\rightarrow$  this  $\Delta i_F$  flows in  $N_F$  (field winding)
- → generates its own flux
- $\rightarrow$  this  $\phi$  can either aid or oppose the residual flux
- $\rightarrow$  if it aids, then there is  $\uparrow$  in air gap flux
- $\rightarrow$  this  $\uparrow$  the 'V' induced in the armature &  $\therefore \Delta i_F$
- → 'V' builds up & attain a steady value
- → m/c develops 'V' at its own & it is due to residual magnetism

EE240: Power Engineering LAB

- → hence the name self excited dc generator
- $\Rightarrow$  drop in terminal Voltage due to :
- I<sub>a</sub>R<sub>a</sub> drop ii) arm. reaction iii) reduction in field flux.
- In S.E dc machine,  $I_F = (V_F/R_F)$  remains constant
- ∵ V<sub>F</sub> is held constant

while in this case  $I_F = V_t/R_F$  where  $V_t$  decreases with load







# **Efficiency:**

Output Power =  $V_tI_L$ 

Input = 
$$V_tI_L$$
+ Arm. Cu. Loss + Field Cu. Loss + Friction Loss  $I_a^2R_a$   $I_F^2R_F$ 

EE240: Power Engineering LAB

 $\Rightarrow$  power developed =  $EI_a$  $= (V_t + I_a R_a) I_a$ 



