

Predicting Ratings and Analyzing Root Causes for Customer Sentiments Regarding Google Play Store Apps

Priscilla Lee, Sonali Mahendran, Rachel Protacio

Princeton University, Department of Computer Science, Princeton, NJ

Abstract

- Understanding customer feedback and being able to predict and adapt to market trends are essential to successful app development.
- In this work, we implement supervised and unsupervised techniques to explore Google Play Store App data:
 - (1) Supervised: Predicting ratings based on market data and review sentiments
 - (2) Unsupervised: Determining the root causes for users' positive and negative critiques of an app
- Analysis of app ratings reveals that an app receives high ratings if it is free, uses moderate memory, is well maintained, and boasts a large number of user reviews.
- Analysis of customer reviews reveals that users appreciate apps that are easy to use and install, pose helpful or captivating content, are inexpensive, and display ads minimally.

Linear Regression for Predicting App Ratings Weights Assigned to Features L₁ Penalized LASSO L₂ Penalized Ridge Regression Regression Last Updated: April 2012 Last Updated: April 2012 **Mean Squared Error** Regression -2.5744 -0.2963 Ordinary Least Squares 0.255319 Price Genres: Educational -0.3168 -0.2193 L₂ Penalized Ridge 0.252109 Genres: Educational Price L₁ Penalized LASSO 0.252118 -0.3051 -0.1954 **Number of Reviews** Last Updated: August 2018 +0.2115 +0.2689 Number of Reviews Last Updated: August 2018 +0.4352 +0.2697

Background and Approach

Kaggle Google Play Store Apps Dataset

We performed our analysis on a web-scraped dataset for 10K Google Play Store apps [1], which includes features such as rating, category, number of reviews, number of installs, size, price, and date of last update.

Regression Methods for Predicting Ratings

App ratings are continuous, and we assume that they have a linear relationship with the features.

- Ordinary Least Squares Linear Regression
- L₂ Penalized Ridge Regression
- L₁ Penalized LASSO Regression

LDA Methods for Root Cause Analysis of User Reviews

In order to obtain topics from the free-response user reviews, LDA requires a bag of words representation of the text. We achieved this using the following approaches.

- Count Vectorizer
- Term Frequency Inverse Document Frequency (TF-IDF)

Latent Dirichlet Allocation (LDA) for Review Analysis

Reference

[1] Lavanya Gupta. Kaggle Google Playstore Apps Dataset.https://www.kaggle.com/lava18/google-play-store-apps. Accessed: 2019-04-17.