BACALAUREAT 2007 SESIUNEA IULIE

M1-1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

- a) Să se calculeze modulul vectorului $\vec{v} = 3\vec{i} 4\vec{j}$.
- b) Să se calculeze distanța de la punctul E(-1;1) la dreapta x-y+1=0.
- Să se scrie ecuația cercului cu centrul în E(-1;1) care este tangent la dreapta x-y+1=0.
- Să se calculeze aria triunghiului cu vârfurile în punctele L(1,2), M(2,4) și N(3,8).
- Să se calculeze lungimea laturii BC a triunghiului ABC cu AB = 2, AC = 3 și $m(\triangleleft BAC) = 60^{\circ}$.
- Să se determine $a, b, c \in \mathbb{R}$, astfel încât punctele A(1,2,3), B(3,1,2) și C(2,3,1) să aparțină planului x + ay + bbz + c = 0.

SUBIECTUL II

- a) Să se calculeze a_7 , dacă $\frac{1}{7} = 0, a_1 a_2 \dots a_n \dots$
 - b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_3$ să verifice relația $\hat{x}^{2007} = \hat{1}$.
 - c) Să se calculeze suma $C_5^0 + C_5^1 + \cdots + C_5^5$.
 - d) Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = 12$.
 - e) Să se calculeze suma termenilor raționali ai dezvoltării binomului $(2+\sqrt{3})^3$.
- Se consideră funcția $f:(0,\infty)\to(0,\infty), f(x)=\ln(x+1)\ln x.$
 - a) Să se calculeze $f'(x), x \in (0, \infty)$.
 - b) Să se calculeze $\lim_{n\to\infty} (f(1) + f(2) + \ldots + f(n)).$
 - c) Să se arate că funcția f este convexă pe intervalul $(0, \infty)$.
 - d) Să se arate că funcția f este bijectivă.
 - e) Să se calculeze $\int_0^1 \ln(x+1) \ dx$.

SUBIECTUL III

Se consideră polinomul $f = X^3 + aX + b$, unde $a, b \in \mathbb{R}$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$. Notăm $S_k = x_1^k + x_2^k + x_3^k$, $(\forall) \ k \in \mathbb{N}^*, \ S_0 = 3, \ A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{pmatrix}$ și $\Delta = \det(A \cdot A^T)$, unde prin A^T am notat transpusa matricei A. Se știe că $\det(X \cdot Y) = \det X \cdot \det Y, \ (\forall) \ X, \ Y \in \mathcal{M}_3(\mathbb{C})$

1

- a) Să se verifice că $S_1 = 0$ și $S_2 = -2a$.
- **b)** Să se arate că $S_{n+3} + aS_{n+1} + bS_n = 0$, (\forall) $n \in \mathbb{N}$.
- c) Să se calculeze S_3 și S_4 numai în funcție de a și b.
- **d)** Să se verifice că $A \cdot A^T = \begin{pmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{pmatrix}$.
- e) Să se calculeze Δ în funcție de a și b.

- f) Să se arate că dacă $x_1, x_2, x_3 \in \mathbb{R}$, atunci $\Delta \geq 0$.
- g) Să se arate că dacă $\Delta \geq 0$, atunci $x_1, x_2, x_3 \in \mathbb{R}$.

Se consideră integralele $I_n = \int_0^{2\pi} \cos x \cos 2x \dots \cos nx \ dx$, $(\forall) \ n \in \mathbb{N}^*$. Se admite cunoscută formula $2\cos a \cos b = \cos(a+b) + \cos(a-b)$, $(\forall) \ a, \ b \in \mathbb{R}$.

- a) Să se calculeze $\int_0^{2\pi} \cos kx \ dx, \ (\forall) \ k \in \mathbb{N}^*.$
- b) Să se calculeze integrala I_2 .
- c) Să se arate că dacă $n \in \{5,6\}$, atunci $\pm 1 \pm 2 \pm \ldots \pm n \neq 0$, pentru orice alegere a semnelor.
- Să se arate că există o alegere a semnelor astfel încât $\pm 1 \pm 2 \pm \ldots \pm n = 0$, dacă și numai dacă $n \in \mathbb{N}^*$ este un număr de forma 4k sau 4k + 3.
- e) Să se arate că $I_n \neq 0$ dacă și numai dacă n este un număr de forma 4k sau 4k + 3.
- Să se calculeze $\lim_{n\to\infty}\frac{I_n}{n}$.
- g) Pentru $n \in \mathbb{N}^*$ notăm cu $A_n = \{k \in \{1, 2, \dots, n\} | I_k \neq 0\}$ și cu a_n numărul de elemente ale lui A_n . Să se calculeze $\lim_{n\to\infty} \frac{a_n}{n}$.

M1-2

Filiera teoretică, specializarea Științe ale naturii; Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

În sistemul cartezian de coordonate xOy se consideră punctele A(2,1), B(6,4) și C(5,-3).

- a) Să se calculeze lungimile segmentelor [AB] şi [AC].
- **b)** Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- c) Să se calculeze $m(\triangleleft A)$.
- d) Să se determine coordonatele simetricului punctului C față de punctul B.
- e) Folosind eventual egalitatea $\sin(\alpha \beta) = \sin \alpha \cdot \cos \beta \sin \beta \cdot \cos \alpha$, să se calculeze $\sin 15^{\circ}$.
- f) Să se calculeze modulul numărului complex $z = \frac{3-4i}{-4+3i}$

SUBIECTUL II

- 1. a) Să se arate că numărul lg 1000 este natural.
 - b) Şirul a_1 , a_2 , 12, 17, a_5 , a_6 , ... este o progresie aritmetică. Să se determine termenul a_1 .
 - c) Să se demonstreze că $x^4 + x^2 + 1 = (x^2 x + 1)(x^2 + x + 1)$, pentru orice $x \in \mathbb{R}$.
 - d) Să se determine coeficientul lui x^3 din dezvoltarea $(2+x)^4$.
 - e) Să se determine restul împărțirii polinomului $f = X^4 + X^2 + 1$ la polinomul $g = X^2 X + 1$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=x+\frac{1}{x}$
 - a) Să se calculeze $f'(x) + \frac{1}{x^2}$, pentru x > 0.
 - **b)** Să se calculeze $\lim_{x\to 1} \frac{f(x) f(1)}{x-1}$.
 - c) Să se calculeze $\int_{1}^{2} f''(x) dx$.
 - d) Să se determine $\alpha \in \mathbb{R}$ astfel încât punctul $A(2,\alpha)$ să aparțină graficului funcției f.
 - e) Să se arate că $f(x) = f\left(\frac{1}{x}\right)$, $(\forall) \ x > 0$.

SUBJECTUL III

În mulţimea $\mathcal{M}_2(\mathbb{Z}_3)$ se consideră matricele $A = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{2} \end{pmatrix}$, $B = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{2} \end{pmatrix}$, $I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$ şi mulţimea $G = \{X \in \mathcal{M}_2(\mathbb{Z}_3) \mid X^2 = I_2\}$.

3

- a) Să se verifice că $I_2 \in G$.
- **b)** Să se arate că $A \in G$ şi $B \in G$.
- c) Să se arate că $AB \neq BA$.
- d) Să se găsească o matrice $X \in \mathcal{M}_2(\mathbb{Z}_3)$ astfel încât $A \cdot X = I_2$.
- e) Să se arate că $AB \notin G$.
- f) Să se determine cel mai mic număr natural nenul n, cu proprietatea că $(AB)^n = I_2$.
- g) Să se arate că multimea G are cel puțin 6 elemente.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, f(x) = \frac{1}{1+x}$

- a) Să se determine asimptota verticală la graficul funcției f.
- b) Să se determine asimptota spre $+\infty$ la graficul funcției f.
- c) Să se arate că $f(x) 1 + x x^2 \le 0$, (\forall) $x \ge 0$.
- **d)** Să se arate că $f(x) 1 + x x^2 + x^3 \ge 0$, $(\forall) \ x \ge 0$.
- e) Să se deducă inegalitățile $1-x+x^2-x^3 \leq \frac{1}{1+x} \leq 1-x+x^2, \ (\forall) \ x \geq 0.$
- **f)** Să se arate că $1 x^9 + x^{18} x^{27} \le \frac{1}{1 + x^9} \le 1 x^9 + x^{18}, \ (\forall) \ x \ge 0.$
- g) Să se arate că aria suprafeței plane cuprinse între graficul funcției $g:[0,\infty)\to\mathbb{R},\ g(x)=\frac{1}{1+x^9}$, axa Ox și dreptele x=0 și x=1, este un număr real cuprins în intervalul (0,91;0,96).

Filiera tehnologică: profil: Servicii, toate specializările, profil Resurse naturale și protecția mediului, toate specializările

Filiera teoretică: profil Uman, specializarea științe sociale; Filiera vocațională: profil Militar, specializarea științe sociale

SUBIECTUL I

- a) Să se calculeze distanța de la punctul A(3,4) la punctul B(5,6).
- **b)** Să se calculeze $\cos^2 a + \sin^2 a$, $a \in \mathbb{R}$.
- c) Să se calculeze aria unui triunghi echilateral cu latura de lungime $\sqrt{3}$.
- d) Să se calculeze conjugatul numărului complex 2-5i.
- e) Să se determine $a, b \in \mathbb{R}$ astfel încât punctele A(3,4) și B(5,6) să fie pe dreapta de ecuație x + ay + b = 0.
- f) Dacă în triunghiul ABC, AB = 1, AC = 2 și $m(\triangleleft BAC) = 90^{\circ}$, să se calculeze lungimea laturii BC.

SUBIECTUL II

- 1. a) Să se calculeze câte funcții $f: \{a, b\} \to \{1, 2, 3\}$ au proprietatea $f(a) \neq f(b)$.
 - b) Să se calculeze probabilitatea ca un element n din mulțimea $\{1, 2, 3, 4, 5\}$ să verifice relația $n^2 \ge n!$.
 - c) Să se rezolve, în multimea numerelor reale, ecuația $4^x 32 = 0$.
 - **d)** Să se calculeze $5 + 15 + 25 + 35 + \ldots + 95$.
 - e) Dacă funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ sunt $f(x) = x^{10} 1$ și $g(x) = x^{15} + 1$, să se calculeze $(g \circ f)(0)$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\ln(x+x^2)$.
 - a) Să se calculeze $f'(x), x \in (0, \infty)$.
 - **b)** Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
 - c) Să se arate că funcția f este crescătoare pe $(0, \infty)$.
 - **d)** Să se calculeze $\int_{1}^{2} f'(x) dx$.
 - e) Să se calculeze $\lim_{x\to\infty} 4xf'(x)$.

SUBIECTUL III

Pentru matricea $M \in \mathcal{M}_2(\mathbb{R}), M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, notăm $\operatorname{tr}(M) = a + d$.

- a) Să se calculeze $\operatorname{tr}(A)$, unde $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- **b)** Să se arate că, dacă $B = C \in \mathcal{M}_2(\mathbb{R})$, atunci $\operatorname{tr}(B) = \operatorname{tr}(C)$.
- c) Să se găsească două matrice $P, Q \in \mathcal{M}_2(\mathbb{R})$, diferite, pentru care $\operatorname{tr}(P) = \operatorname{tr}(Q)$.
- **d)** Să se arate că, dacă $U, V \in \mathcal{M}_2(\mathbb{R})$ şi $\operatorname{tr}(U) = \operatorname{tr}(V)$ şi $\operatorname{tr}(U^2) = \operatorname{tr}(V^2)$, atunci $\det(U) = \det(V)$.
- e) Să se arate că $\operatorname{tr}(aD + bE) = a \cdot \operatorname{tr}(D) + b \cdot \operatorname{tr}(E), (\forall) \ a, b \in \mathbb{R}, (\forall) \ D, E \in \mathcal{M}_2(\mathbb{R}).$
- f) Să se arate că $\operatorname{tr}(F \cdot G) = \operatorname{tr}(G \cdot F), \ (\forall) \ F, \ G \in \mathscr{M}_2(\mathbb{R}).$
- g) Să se arate că, dacă $L, N \in \mathcal{M}_2(\mathbb{R})$ și $\operatorname{tr}(L \cdot X) = \operatorname{tr}(N \cdot X), (\forall) X \in \mathcal{M}_2(\mathbb{R}),$ atunci L = N.

5

SUBIECTUL IV

Se consideră funcția $f:[0,\infty)\to\mathbb{R}, \ f(x)=\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+4}{x+5}$

- a) Să se calculeze $f'(x), x \ge 0$.
- b) Să se arate că funcția f este strict crescătoare pe intervalul $[0,\infty)$.
- c) Să se arate că $\frac{13}{10} \le f(x) < 3$, (\forall) $x \in [0, \infty)$.
- **d)** Să se calculeze $\int_0^1 f(x) \ dx$.
- e) Să se determine ecuația asimptotei către $+\infty$, la graficul funcției f.
- **f)** Să se calculeze $\lim_{x \to \infty} \int_0^x f(t) dt$.
- g) Să se rezolve, în intervalul $[0,\infty)$, ecuația f(x)=2.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- a) Să se calculeze $\log_2 30 \log_2 15$.
- b) Să se determine soluția reală a ecuației $4^{x+1} = 8$.
- c) Să se calculeze $C_3^0 + C_3^1 + C_3^2 + C_3^3$.
- d) Să se determine pătratele perfecte din multimea $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- e) Să se calculeze media aritmetică a numerelor 3, 7, 11.
- f) Să se determine restul împărțirii numărului 37 la 7.

SUBIECTUL II

- 1. Se consideră ecuația $x^2 5x + 6 = 0$.
 - a) Să se calculeze discriminantul ecuației.
 - b) Să se rezolve ecuația.
 - c) Să se calculeze suma soluțiilor ecuației.
 - d) Să se calculeze produsul soluțiilor ecuației.
 - e) Să se rezolve inecuația $x^2 5x + 6 \le 0$.
- 2. Se consideră triunghiul ABC cu lungimile laturilor AB = 15, BC = 17 iar AC = 8.
 - a) Să se arate că $AB^2 + AC^2 BC^2 = 0$.
 - **b)** Să se determine măsura unghiului $\triangleleft BAC$.
 - c) Să se determine aria triunghiului ABC.
 - d) Să se determine lungimea segmentului MN, unde M este mijlocul segmentului AB, iar N este mijlocul segmentului BC.
 - e) Să se determine perimetrul triunghiului cu vârfurile în mijloacele laturilor triunghiului ABC.

SUBIECTUL III

Se consideră o dreaptă d și două puncte A și B situate de aceeași parte a dreptei d. Notăm cu C simetricul punctului A față de dreapta d și cu D intersecția dintre segmentul (BC) și dreapta d.

- a) Să se arate că AD = CD.
- **b)** Să se verifice că AD + DB = BC.
- c) Să se arate că AB < BC.
- d) Să se arate că perpendiculara în D pe dreapta d este bisectoarea unghiului $\triangleleft ADB$.
- e) Să se arate că, dacă punctul E aparține dreptei d, atunci AE = EC.
- f) Să se arate că $AM + MB \ge AD + DB$, pentru orice punct M de pe dreapta d.
- g) Să se arate că, dacă $N \in d$ și AN + NB = AD + DB, atunci N = D.

SUBIECTUL IV

Se consideră multimea $A = \{x^2 + y^2 \mid x, y \in \mathbb{Z}\}.$

- a) Să se verifice că $\{0,1,2,4\} \subset A$.
- b) Să se verifice identitatea $(x^2 + y^2)(a^2 + b^2) = (xa yb)^2 + (ay + bx)^2$, (\forall) $a, b, x, y \in \mathbb{R}$.

- c) Să se arate că, dacă $z, w \in A$, atunci $z \cdot w \in A$.
- **d)** Să se arate că $3 \notin A$.
- e) Utilizând metoda inducției matematice, să se arate că $13^n \in A$, (\forall) $n \in \mathbb{N}^*$.
- f) Să se demonstreze că mulțimea $A \setminus \{13^n \mid n \in \mathbb{N}^*\} \neq \emptyset$.
- g) Să se calculeze suma elementelor din mulțimea $A\cap\{1,2,\dots,10\}.$

SESIUNEA AUGUST

M1-1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

- a) Să se calculeze modulul numărului complex $\cos 2 + i \sin 2$.
- b) Să se calculeze distanța de la punctul D(1,2) la punctul C(0,1).
- c) Să se calculeze coordonatele punctului de intersecție dintre cercul $x^2 + y^2 = 25$ și dreapta 3x + 4y 25 = 0.
- **d)** Să se arate că punctele L(4,1), M(6,3) și N(7,4) sunt coliniare.
- e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(0,0,2), B(0,2,4), C(2,4,0) și D(1,2,3).
- f) Să se determine $a, b \in \mathbb{R}$ astfel încât să avem egalitatea de numere complexe $(-1 + i\sqrt{3})^4 = a + bi$.

SUBIECTUL II

- 1. a) Să se verifice identitatea $(x-y)^2 + (y-z)^2 + (z-x)^2 = 2(x^2+y^2+z^2-xy-yz-zx), (\forall) \ x, \ y, \ z \in \mathbb{R}.$
 - **b)** Să se arate că, dacă $x^2+y^2+z^2=xy+yz+zx$, unde $x,\,y,\,z\in\mathbb{R}$, atunci x=y=z.
 - c) Să se rezolve în mulțimea numerelor reale ecuația $4^x + 9^x + 49^x = 6^x + 14^x + 21^x$.
 - d) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_6$ să verifice relația $\hat{x}^3 = \hat{x}$.
 - e) Să se calculeze suma rădăcinilor polinomului $f = X^4 X^3 X^2 + 1$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \cdot \sin x$.
 - a) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se arate că funcția f este monoton crescătoare pe intervalul $\left[0, \frac{\pi}{2}\right]$.
 - **d)** Să se calculeze $\lim_{x\to 0} \frac{f(x) f(0)}{x}$.
 - e) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x^2}$.

SUBIECTUL III

Pentru fiecare matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ notăm cu S(A) suma elementelor sale, cu $A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ transpusa ei și cu det A determinantul matricei A. Să se arate că:

- a) $S(A^T) = S(A) = a + b + c + d$.
- b) $S(x \cdot P + y \cdot Q) = x \cdot S(P) + y \cdot S(Q)$, $(\forall) P, Q \in \mathcal{M}_2(\mathbb{R})$, $(\forall) x, y \in \mathbb{R}$.
- c) $S(A \cdot A^T) = (a+c)^2 + (b+d)^2$.
- **d**) dacă $S(A \cdot A^T) = 0$, atunci det A = 0.
- e) $(\forall) \ x \in \mathbb{R}, \ (\forall) \ P, \ Q \in \mathscr{M}_2(\mathbb{R}),$ $S((P+x\cdot Q)\cdot (P^T+x\cdot Q^T)) = S(P\cdot P^T) + x(S(P\cdot Q^T) + S(Q\cdot P^T)) + x^2\cdot S(Q\cdot Q^T).$
- f) dacă $P, Q \in \mathcal{M}_2(\mathbb{R})$ și det $Q \neq 0$, atunci funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = S\left((P + x \cdot Q)(P^T + x \cdot Q^T)\right)$ are gradul egal cu 2.
- $\mathbf{g)} \quad S(P \cdot P^T) \cdot S(Q \cdot Q^T) \geq S(P \cdot Q^T) \cdot S(Q \cdot P^T), \ (\forall) \ P, \ Q \in \mathscr{M}_2(\mathbb{R}).$

SUBIECTUL IV

Pentru $n \in \mathbb{N}$ se consideră funcțiile $f_n : (0, \infty) \to \mathbb{R}$ definite prin $f_n(x) = x^n + \ln x$.

- a) Să se calculeze $f'_n(x)$, x > 0.
- b) Să se arate că funcția f_n este monoton crescătoare, (\forall) $n \in \mathbb{N}$.
- c) Să se calculeze $\lim_{x\to 0} f_n(x)$ și $\lim_{x\to \infty} f_n(x)$.
- **d)** Să se arate că funcția f_n este bijectivă, (\forall) $n \in \mathbb{N}$.
- e) Să se arate că (\forall) $n \in \mathbb{N}$, ecuația $f_n(x) = 0$ are o unică soluție $x_n \in (0,1)$.
- **f)** Să se arate că șirul $(x_n)_{n\geq 0}$ este crescător.
- g) Să se arate că $\lim_{n\to\infty} x_n = 1$.

M1-2

Filiera teoretică, specializarea Științe ale naturii; Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

- a) Să se determine $a \in \mathbb{R}$ dacă punctul A(1,-2) aparține cercului de ecuație $x^2+y^2-a=0$.
- b) Să se scrie ecuația unei drepte perpendiculare pe dreapta de ecuație x = 4.
- c) Să se calculeze $\cos \frac{\pi}{4} + \cos \frac{3\pi}{4}$.
- d) Să se calculeze modulul numărului complex $z = \sqrt{2} i\sqrt{2}$.
- e) Să se calculeze lungimea laturii [AC] a triunghiului ABC în care BC = 2, AB = 4 și $m(\triangleleft B) = 30^{\circ}$.
- f) Să se calculeze aria triunghiului ABC în care BC = 2, AB = 4 și $m(\triangleleft B) = 30^{\circ}$.

SUBIECTUL II

- 1. a) Să se determine simetricul elementului $\hat{3}$ în grupul $(\mathbb{Z}_8, +)$.
 - **b)** Să se determine $x \in (0, \infty)$ pentru care $\log_3 2 + \log_3 x = 1$.
 - c) Să se determine $x \in \mathbb{R}$ pentru care $9^x = 27$.
 - d) Să se calculeze câte numere de 4 cifre încep și se termină cu o cifră număr par.
 - e) Să se calculeze în câte moduri se pot alege două persoane dintr-un grup format din 6 persoane.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\ln x.$
 - a) Să se calculeze f'(1).
 - b) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$.
 - c) Să se calculeze $\lim_{n\to\infty} [f(n+1) f(n)].$
 - **d)** Să se calculeze $\lim_{x \to \infty} \frac{f(x)}{x}$.
 - e) Să se calculeze $\int_{1}^{e} \frac{f(x)}{x} dx$.

SUBIECTUL III

Se consideră mulțimea T a matricelor cu 3 linii și 3 coloane și care au toate elementele în mulțimea $U = \{0, 1, 2\}$, precum și mulțimea $V = \left\{ A(x) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & x & 1 \\ 0 & 0 & x \end{pmatrix} \middle| x \in U \right\} \subset T$.

11

- a) Să se calculeze determinantul matricei $A(1) \in V$ și să se determine rangul acesteia.
- b) Să se studieze dacă există $x, y \in U$ pentru care $A(x) \cdot A(y) \in V$.
- c) Dacă $B = A(1) \in V$, să se calculeze B^2 și B^3 .
- **d)** Să se arate că pentru $B = A(1) \in V$ avem $B^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}, \ (\forall) \ n \in \mathbb{N}^*.$
- e) Să se arate că există $A, B \in V$ astfel încât $\det(A \cdot B) = \det(B \cdot A) \in U$.
- f) Să se arate că dacă $C \in T$ şi C are 8 elemente egale, atunci det C = 0.
- g) Să se arate că există $M \in T$ cu det $M \neq 0$ și pentru care M are 7 elemente egale.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, \ f(x) = \frac{x^3 - 3x^2 + 4}{x^2}.$

- a) Să se calculeze $f'(x), x \in (-\infty, 0) \cup (0, \infty)$.
- b) Să se determine punctul de extrem local al funcției f.
- c) Să se determine ecuația asimptotei verticale la graficul funcției f.
- d) Să se arate că funcția f este convexă pe fiecare dintre intervalele $(-\infty,0)$ și $(0,\infty)$.
- e) Să se determine numărul soluțiilor reale ale ecuației f(x) = 3.
- f) Să se calculeze $\lim_{x \to \infty} (f(x) x)$.
- g) Să se arate că $\int_1^2 f(x) \ dx > 0$.

Filiera tehnologică: profil: Servicii, toate specializările, profil Resurse naturale și protecția mediului, toate specializările

Filiera teoretică: profil Uman, specializarea științe sociale; Filiera vocațională: profil Militar, specializarea științe sociale

SUBIECTUL I

- Să se determine aria unui pătrat cu perimetrul egal cu 8.
- Să se determine lungimea înălțimii unui triunghi echilateral având latura de lungime 4.
- Se consideră triunghiul ABC cu $m(\triangleleft A) = 90^{\circ}$, AB = 6 și AC = 10. Să se calculeze tg B.
- Să se determine numărul real a, astfel încât punctul A(2,a) să aparțină dreptei de ecuație x+y+1=0. \mathbf{d}
- Să se scrie coordonatele mijlocului segmentului determinat de punctele A(1,2) și B(3.4). **e**)
- Dacă $\sin x = \frac{3}{4}, x \in \left(0, \frac{\pi}{2}\right)$, să se calculeze $\cos x$.

SUBIECTUL II

- a) Să se determine $x, y \in \mathbb{R}$, astfel încât $\begin{cases} x+y=3\\ 2x-3y=-4 \end{cases}.$
 - b) Să se determine cel mai mare element al mulțimii $A = \{10\sqrt{3}, \sqrt{299}, 12\sqrt{2}\}.$
 - Să se calculeze $S = \log_2 8 + \log_2 2^{-1}$.
 - Să se determine $x \in \mathbb{R}$, astfel încât $2^X + 2^{x+1} = 3$.
 - Să se calculeze numărul complex $\frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \frac{1}{i^4}$.
- Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{1}{r^2 + 1}$
 - a) Să se calculeze f(0).
 - b) Să se arate că dreapta de ecuație y=0 este asimptotă orizontală către $-\infty$ la graficul funcției f.
 - c) Să se calculeze $f'(x), x \in \mathbb{R}$.
 - **d)** Să se calculeze $\int_0^1 f(x) dx$.
 - e) Să se calculeze $\lim_{x\to\infty} x^2 f(x)$.

SUBIECTUL III

SUBIECTUL III Pentru $n \in \mathbb{N}^*$, se consideră funcțiile $f : \mathbb{R} \to \mathbb{R}$ și $f_n : \mathbb{R} \to \mathbb{R}$, f(x) = x - 2007, $f_n(x) = \underbrace{(f \circ f \circ \ldots \circ f)}_{\text{de } n \text{ ori } f}(x)$.

- a) Să se calculeze f(2006).
- Să se rezolve ecuația $f(x+1) f((x+1)^2) = -2, x \in \mathbb{R}$.
- Să se calculeze $f(1) \cdot f(2) \cdot \ldots \cdot f(3000)$.
- Să se calculeze $f_2(x), x \in \mathbb{R}$.
- Să se arate că $f_n(x) = x n \cdot 2007$, pentru $n \in \mathbb{N}^*$ și $x \in \mathbb{R}$.
- Să se determine funcția $g: \mathbb{R} \to \mathbb{R}$, astfel încât $f(g(x)) = f_3(x)$, $(\forall) \ x \in \mathbb{R}$.
- Să se demonstreze că $f(1^3) + f(2^3) + \ldots + f(n^3) = \frac{n^2(n+1)^2}{4} 2007n, (\forall) \ n \in \mathbb{N}^*.$

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{3}{(x^2+4)(x^2+1)}$

- a) Să se demonstreze că $f(x) = \frac{1}{x^2 + 1} \frac{1}{x^2 + 4}$, $(\forall) \ x \in \mathbb{R}$.
- **b)** Să se calculeze f'(x), pentru $x \in \mathbb{R}$.
- c) Să se arate că funcția f este descrescătoare pe $[0, \infty)$.
- d) Să se determine ecuația asimptotei orizontale la graficul funcției f către $+\infty$.
- e) Să se arate că $f(x) \leq \frac{3}{4}$, (\forall) $x \in \mathbb{R}$.
- f) Să se calculeze $\int_3^4 f'(x) \ dx$.
- g) Să se calculeze $\lim_{n\to\infty} \Big(f(\sqrt{5}) + f(\sqrt{8}) + f(\sqrt{11}) + \ldots + f(\sqrt{3n+2}) \Big).$

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- a) Să se determine numărul rădăcinilor reale ale ecuației $3x^2 12x + 9 = 0$.
- b) Să se determine mulțimea valorilor lui x care verifică $x^2 + 5x 6 \le 0$.
- c) Să se rezolve ecuația $9^x 4 \cdot 3^x + 3 = 0$.
- d) Să se determine valoarea lui x pentru care funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 4x + 9$ ia valoarea minimă.
- e) Să se arate că $x^2 + 4x + 5 \ge 0$, (\forall) $x \in \mathbb{R}$.
- f) Să se calculeze $\log_{\frac{1}{3}} 2 \log_{\frac{1}{3}} 18 + \log_{\frac{1}{3}} 3$.

SUBIECTUL II

- 1. a) Să se determine numărul submulțimilor de trei elemente impare ale mulțimii $A = \{0, 1, 2, 3, 4, 5\}$.
 - b) Să se calculeze câte numere de șase cifre distincte se pot forma cu elementele mulțimii A.
 - c) Să se calculeze $C_6^0 + C_6^1 + ... + C_6^6$.
 - d) Să se calculeze câte numere de trei cifre distincte scrise cu elemente din A sunt divizibile cu 5.
 - e) Să se calculeze A_6^3 .
- 2. a) Să se calculeze perimetrul pătratului de arie 25.
 - b) Să se calculeze aria unui romb cu diagonalele de 3 și respectiv de $3\sqrt{3}$.
 - c) Să se calculeze aria unui triunghi echilateral cu înălțimea $6\sqrt{3}$.
 - d) Să se calculeze lungimea diagonalei unui cub cu volumul de 27.
 - e) Să se calculeze aria unui triunghi dreptunghic isoscel cu ipotenuza de $\sqrt{2}$.

SUBIECTUL III

Fie dreptele paralele d_1 şi d_2 . Alte două drepte paralele d_3 şi d_4 , care formează cu d_1 unghiuri de 30°, intersectează dreptele d_1 în A şi B,iar d_2 în C şi D astfel încât punctele B şi D să fie în semiplane diferite determinate de dreapta AC.

- a) Să se arate că ABCD este paralelogram.
- b) Dacă notăm cu O intersecția diagonalelor paralelogramului ABCD, să se arate că triunghiurile AOB și COD sunt congruente.
- c) Să se arate că triunghiurile AOB și AOD au aceeași arie.
- d) Să se calculeze cât la sută din aria paralelogramului ABCD reprezintă aria triunghiului DOC.
- e) Să se calculeze măsurile unghiurilor paralelogramului ABCD.
- f) Dacă distanța dintre dreptele d_1 și d_2 este 4, să se calculeze lungimea lui AD
- g) Dacă DC = 8, să se calculeze aria lui ABCD.

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 2$.

- a) Să se determine coordonatele punctelor de intersecție a graficului funcției cu axele de coordonate.
- b) Să se calculeze aria triunghiului format de graficul funcției cu axele de coordonate.
- c) Să se calculeze $\frac{f(3) f(2)}{3 2}$.
- d) Să se calculeze f(0) f(1) + f(2).
- e) Să se rezolve ecuația |f(x)| = 3.
- f) Să se determine valorile lui x pentru care $f(x) \ge 0$.
- g) Să se determine pentru ce valori ale lui m funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = f(x) mx$ este crescătoare.