SEQUENCE LISTING

<110> Evans, Krista											
<120> Mutants of Green Fluorescent Protein											
> 0942.4020003											
(To be assigned) (Herewith)											
US 09/472,065 1999-12-23											
<150> US 08/970,762 <151> 1997-11-14											
<150> US 60/030,935 <151> 1996-11-15											
<160> 17											
<170> PatentIn Ver. 2.0											
<210> 1											
<211> 717											
<212> DNA											
<213> Aequorea victoria, gfp(h) S65T mutant cDNA clone											
<400> 1											
ATG AGC AAG GGC GAA CTG TTC ACT GGC GTG GTC CCA ATT CTC GTG Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15											
GAA CTG GAT GGC GAT GTG AAT GGG CAC AAA TTT TCT GTC AGC GGA GAG Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30											
GGT GAA GGT GAT GCC ACA TAC GGA AAG CTC ACC CTG AAA TTC ATC TGC Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45											

												GTC Val				192
												CAT His				240
												GTG Val				288
												CGC Arg				336
												TTG Leu 125				384
												CTG Leu				432
												CAA Gln				480
												GAT Asp				528
CAG Gln	CTG Leu	GCC Ala	GAC Asp 180	CAT His	TAT Tyr	CAA Gln	CAG Gln	AAC Asn 185	ACT Thr	CCA Pro	ATC Ile	GGC Gly	GAC Asp 190	GGC Gly	CCT Pro	576
												TCT Ser 205	_		TCT Ser	624
												CTG Leu			GTG Val	672
												TAC Tyr				714
TGA																717

<210> 2

<211> 238

<212> PRT

<213> Aequorea victoria, gfp(h) S65T mutant cDNA clone

<400> 2

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val

1 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60

Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235

<210> 3

<211> 717

<212> DNA

<213> Aequorea victoria, gfp10 cDNA clone

<400> 3

·

ATG Met 1	 		-												48	
GAA Glu													GGA Gly		96	
													ATT Ile		144	
													ACT Thr		192	
													AAA Lys		240	
													GAA Glu 95		288	
								Tyr					GAA Glu 0		336	
													GGT Gly		384	
													TAC Tyr		432	
													AAT Asn		480	
	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	AGC Ser 175	Val	528	
			His										GGC Gly		576	
		Pro											CTT Leu		624	
													TTT Phe		672	
											TAC Tyr				714	

TAA 717

<210> 4

<211> 238

<212> PRT

<213> Aequorea victoria, gfp10 cDNA clone

<400> 4

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 60

Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys

225 230 235

<210> 5

<211> 238

<212> PRT

<213> Aequorea victoria, Al mutant

<400> 5

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Cys 50 55 60

Ala Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val $100 \\ 105 \\ 110$

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235

<210> 6

<211> 238

<212> PRT

<213> Aequorea victoria, A4 mutant

<400> 6

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Met 50 55 60

Ala Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
100 105 110

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235

<210> 7	
<211> 33	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	
<400> 7	
CAACACUGGU CACUACCTGC GCCTATGGCG TGC	33
<210> 8	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	
<400> 8	
CCAACACUGG UCACUACCTG CACCTATGG	29
<210> 9	
<211> 36	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	

<400> 9

36

CAACACUGGU CACUACCCTC ACCTATGGCG TGCAGT

<210> 10	
<211> 39	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	
<400> 10	
CAACACUGGU CACUACAATG GCCTATGGCG TGCAGTGCT	39
<210> 11	
<211> 39	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	
<400> 11	
CAACACUGGU CACUACCATG ACCTATGGCG TGCAGTGCT	39
<210> 12	
<211> 39	
<212> DNA	
<213> Artificial sequence	
<223> Synthetic oligonucleotide	
<400> 12	

39

CAACACUGGU CACUACCATG TTCTTCGGCG TGCAGTGCT

<210> 16

<211> 33

<212> DNA

<213> Artificial sequence

<223> Synthetic oligonucleotide

<400> 16

AGUGACCAGU GUUGGCCAAG GCACAGGGAG CTT

33

<210> 17

<211> 5

<212> PRT

<213> Aequorea victoria

<400> 17

Pro Val Pro Trp Pro