

GRP-2.0 CLASS TEST # 06

TIME:30 Min

INORGANIC CHEMISTRY

FULL SYLLABUS

SECTION-I: (i) Only One option correct Type

This section contains 05 multiple choice questions. Each question has four choices (A), (B), (C) and

(D) out of which **ONLY ONE** is correct.

3(-1)

1. $CrCl_3$ solution + Na_2S solution $\longrightarrow ppt(A)$

The correct formula and colour of A are

(A) Cr₂S₃, Black

(B) Cr(OH)₃, Green

(C) Na[Cr(OH)₄], Green

(D) None of these

2.
$$Cr_2O_7^{2-} + 4H_2O_2 + 2H^+ \xrightarrow{Organic} {O} O + 5H_2O$$

In above reaction amyl alcohol is recommended.

Dimethyl ether is not recommended for general use owing to its -

- (A) Highly non-flammable character
- (B) Highly inflammable character
- (C) Highly poisonious character
- (D) None of these
- 3. Solutions of sodium azide(NaN₃) and iodine (as KI₃) do not react but on addition of a trace of X ion, which acts as a catalyst there is an immediate vigorous evolution of nitrogen. Then X may be:
 - (A) $S_2O_3^{2-}$
- (B) S^{2-}
- (C) SCN
- (D) All are correct.
- **4.** Which of the following can not be removed in the form of slag during the metallurgy of pure metal from haematite
 - (A) FeSiO₃
- (B) CaSiO₃
- (C) MnSiO₃
- (D) $Ca_3(PO_4)_2$
- 5. Find the **incorrect** statement regarding complex compound -
 - (A) They retain their identity in aq. solution
 - (B) These compounds are addition compounds.
 - (C) Generally these compounds show conductivity due to the presence of free central metal ion.
 - (D) switzers salt is a complex compound

(ii) One or more options correct Type

This section contains **05 multiple choice questions**. Each question has four choices (A), (B), (C) and

(D) out of which **ONE or MORE** are correct.

4(-1)

- **6.** Which of the following statement is/are correct -
 - (A) By zone refining process ultra pure Si is obtained
 - (B) Argentiferous rock is consisting of Ag and FeS,
 - (C) Liquation can be applied for Cu, Sn Pb
 - (D) Scum can be formed in poling method in Cu metallurgy
- 7. Select complex (s) in which all geometrical isomer of complex are optically active
 - $(A) [Co(gly)_3]^o$

(B) $[Co(en)(NH_3)(p_v)(Br)(Cl)]^+$

(C) $[Pt(NH_3)(p_v)(Br)(I)]^\circ$

- (D) $[Pt(C_2O_4)_2(NO_2)_2]^{2-}$
- **8.** Which of the following compound central atom has sp^3d^2 hybridised:

GRP-2.0 CLASS TEST # 06

- (A) XeOF₅
- (B) XeF₃
- (C) PCl₄⁺
- (D) ICl₄

- **9.** Which of the following statements are correct?
 - (A) PCl₃F₂ & 2 butyne both are example of non-planar & non-polar compounds
 - (B) In 2D-silicate number of oxygens shared in each tetrahedra unit is 3.
 - (C) Drago rule is applicable for PH₂ & PCl₂ both
 - (D) The direction of electron (lone pair) movement in \overline{CCI}_3 & CCl, is opposite
- **10.** Select the **INCORRECT** order(s):-
 - (A) $Na_2O > MgO > Al_2O_3 > SiO_2$ (Acidic nature)
 - (B) B < Al < Ga < In < Tl (Atomic radius)
 - (C) F > Cl > Br > I (Electron affinity)
 - (D) $Fe^{2+} > Fe^{3+}$ (Magnetic moment)

(iii) Paragraph Type

This section contains **02 paragraphs** each describing theory, experiment, data etc. **Four questions** relate to two paragraphs with two questions on each paragraph. Each question of a paragraph has **only one correct answer** among the four choices (A), (B), (C) and (D).

Paragraph for Q. No. 11 to 12

Consider two potassium salt (S₁) and (S₂) which gives following observation

$$\begin{array}{c}
NH_2 \\
\hline
S_1 + \text{ dil. HCl} \\
\text{ice cold}
\end{array}$$
(Product $-P_1$) $\xrightarrow{\text{mild acidic solution}}$ Azo dye

CuSO_{4(aq)} Salt - S₂ (Product - P₂)
$$\downarrow$$
 + K₂SO₄ + poisonous gas (G)

 $(Product - P_1) + (Product - P_2) \longrightarrow Show Sandmeyer's reaction$

- **11.** Salt–S, is
 - (A) KCN

(B) KBr

(C) KNO₂

- (D) NaCN
- 12. Select CORRECT for anion in salt S_1
 - (A) can react with KMnO₄/H⁺

(B) react with KI/H⁺

(C) gives NH₃ with KOH + Al

(D) All are correct

Paragraph for Q. No. 13 to 14

The first simple theory that was put forward to predict the geometry or shape of a covalent molecule is known as VSEPR theory. The theory is primarily based on the fact that in a polyatomic molecule the direction of bond around the central atom depends upon the total number of electron pairs (Bonding as well as non-bonding) in its valence shell.

- 13. Which of the following statement is **CORRECT** for SO_3 :
 - (A) SO_3 has only $d_{\pi}-p_{\pi}$ bond
- (B) Only p_{π} – p_{π} bonding is present
- (C) Sulphur has +6 oxidation state
- (D) It is planar and polar
- **14.** Which of the following order of bond angle is **CORRECT**:-

GRP-2.0 CLASS TEST # 06

(A) $H_{2}S < H_{2}Te$

(B) $H_2O < OCl_2$

(C) $ClO_3^- < BrO_3^-$ (D) $SiF_4 > SiCl_4$

SECTION-II: Matrix-Match Type

This Section contains **02 question**. Question has **four statements** (A, B, C and D) given in **Column** I and four or five statements (P, Q, R, S and T) in Column II. Any given statement in Column I can have correct matching with **ONE** or **MORE** statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in Q and R, then for the particular question, against statement B, darken the bubbles corresponding to Q and R in the ORS.

1.	Column-(I)	Column-(II)
	(A) Cl ⁻ salt solution	(P) CHCl ₃ - layer test (with chlorine water)
	(B) Br ⁻ salt solution	(Q) Yellow solution with excess of chlorine water in layer
		test
	(C) I ⁻ salt solution	(R) Brown fumes obtained with conc. H ₂ SO ₄
	(D) NO ₂ - salt solution	(S) ppt. is formed with conc. AgNO ₃
2.	Match the column	
	Column-I (Compound)	Column-II (Characteristics)
	(A) NaH (<i>l</i>)	(P) Covalent hydride
	(B) TiH ₁₇₃	(Q) Ionic hydride
	(C) $CaH_2(s)$	(R) Metallic hydride
	(D) $H_2S(g)$	(S) Non-conductor of electricity
	-	(T) Conduct electricity
SECTION-IV : Numerical Answer		

- 1. Among the following, find the number of ores in which iron is present in +2 oxidation state in it's molecular formula?
 - Siderite, Calamine, Galena, Chalcopyrite, Chromite, Limonite, Rutile, Haematite, Magnetite
- Total number of hydrogen bond(s) associated with per molecule of H₃BO₃ in layer like structure of 2. $H_3BO_3(s)$.
- **3.** Find the number of saline (ionic) hydrides given below.
 - LiH, TiH_{1.8}, RbH, BeH₂, CsH, CH₄, NH₃
- 4. Total number of electrons present in spherical shape orbitals in Cu (Z = 29)