Automate finite nedeterministe (continuare)

3. Echivalența dintre gramaticile regulate și automatele finite nedeterministe

Există o legătură între automatele finite și gramatici? Un răspuns la această întrebare formează conținutul următoarei teoreme.

Teorema 3.1. Pentru orice gramatică regulată G se poate construi un automat finit nedeterminist A_N , care să accepte limbajul generat de gramatica G, adică $L(G) = T(A_N)$. În acest caz, se spune că gramatica regulată G este echivalentă cu automatul finit nedeterminist A_N .

Demonstrație. Fie G=(N,T,S,P) o gramatică regulată și X un simbol nou, adică $X \notin N \cup T$. Se construiește automatul finit nedeterminist $A_N=\left(\Sigma_N,Q_N,\delta_N,\left\{q_0^N\right\},F_N\right)$, echivalent cu G, unde:

- $\Sigma_N = T$;
- $Q_N = N \cup \{X\};$
- $\bullet \quad q_0^N = S;$
- $F_N = \{X\}$
- funcția de tranziție δ_N se definește pentru orice $B \in N$ și orice $a \in \Sigma_N$ astfel:
 - $\delta_N(\{B\}, a) = \{C \in N \mid B \to aC \in P\} \cup \{X \mid B \to a \in P\};$
 - $\delta_N(\{X\}, a) = \emptyset, \forall a \in \Sigma_N.$

Se poate demonstra că $\mathcal{L}(G)=T(A_N)$, adică gramatica G este echivalentă cu automatul A_N .

Consecința 3.1. Pentru orice gramatică regulată G se poate construi un automat finit determinist A_D echivalent cu gramatica regulată G, adică $L(G) = \mathcal{T}(A_D)$.

Demonstrația rezultă în baza teoremei 3.1. și a teoremei 2.1. Astfel, în baza teoremei 3.1 există un automat finit nedeterminist A_N echivalent cu gramatica regulată G, iar în baza teoremei 2.1 există un automat finit determinist A_D echivalent cu automatul finit nedeterminist A_N , astfel încât:

$$L(G) = \mathcal{T}(A_N) = \mathcal{T}(A_D).$$

Exemplul 3.1. Se consideră gramatica regulată G = (N, T, S, P), unde:

• $N = \{S, A, B\}.$

- $T = \{a, b, c\},\$
- mulțimea producțiilor **P** conține următoarele producții/reguli:

$$S \rightarrow aA \mid bB \mid b$$
 (1)

$$A \rightarrow aA \mid bB \mid b$$
 (2)

$$B \rightarrow cB \mid c$$
 (3)

Conform demonstrației teoremei, automatul finit nedeterminist

 $A_N = (\Sigma_N, Q_N, \delta_N, \{q_0^N\}, F_N)$, echivalent cu G, este definit astfel:

- $\Sigma_N = \{a, b, c\} = T$;
- $Q_N = \{S, A, B, X\}$, unde $X \notin N \cup T$;
- $q_0^N = S$;
- $F_N = \{X\};$
- funcția de tranziție δ_N se definește în următorul tabel:

	δ_N	а	b	С
\rightarrow	{ S }	{A}	$\{B,X\}$	Ø
	{A }	{ <i>A</i> }	$\{B,X\}$	Ø
	{ B }	Ø	Ø	$\{B,X\}$
*	{ X }	Ø	Ø	Ø

În baza celor de mai sus, reprezentarea grafică a automatului finit nedeterminist $\boldsymbol{A_N}$ este:

Din reprezentarea grafică rezultă că limbajul acceptat de automatul finit nedeterminist A_N este $\mathcal{T}(A_N) = \{a^mbc^n|m,n \geq 0\}$.

Folosind consecința 3.1. se poate construi automatul finit determinist $A_{\it D}$ echivalent cu gramatica regulată $\it G$.

Astfel, plecând de la automatul finit nedeterminist A_N se construiește

$$A_D = \left(\Sigma_D, Q_D, \delta_D, q_0^D, F_N\right)$$
, astfel:

•
$$\Sigma_D = \Sigma_N = \{a, b, c\};$$

•
$$Q_D = \mathcal{P}(Q_N)$$

•
$$q_0^D = \{q_0^N\};$$

•
$$F_D = \{q \in Q_D | q \cap F_N \neq \emptyset\} =$$

= $\{\{X\}, \{X, S\}, \{X, A\}, \{X, B\}, \{X, A, B\}, \{X, A, S\}, \{X, B, S\}, \{X, A, B, S\}\};$

• $\delta_D: Q_D imes \Sigma_D o Q_D$, unde pentru $\alpha \in Q_D$ și $a \in \Sigma_D$ are loc:

$$\boldsymbol{\delta}_{\boldsymbol{D}}(\alpha,a) = \bigcup_{q \in \alpha} \boldsymbol{\delta}_{\boldsymbol{N}}(q,a)$$

obținându-se următorul tabel:

					Etichetele
	$\delta_{\it D}$	а	b	с	noilor stări
					accesibile
	Ø	Ø	Ø	Ø	
\rightarrow	{ S }	{ <i>A</i> }	$\{B,X\}$	Ø	q_0
	<i>{</i> A <i>}</i>	{ <i>A</i> }	$\{B,X\}$	Ø	q_1
	{ B }	Ø	Ø	$\{B,X\}$	
*	{ X }	Ø	Ø	Ø	
	$\{S,A\}$	{ <i>A</i> }	$\{B,X\}$	Ø	
	{ S , B }	<i>{A}</i>	$\{B,X\}$	$\{B,X\}$	
*	$\{S,X\}$	<i>{A}</i>	$\{B,X\}$	Ø	
	$\{\pmb{A}, \pmb{B}\}$	{ <i>A</i> }	$\{B,X\}$	$\{B,X\}$	
*	$\{A, X\}$	{ <i>A</i> }	$\{B,X\}$	Ø	
*	$\{B,X\}$	Ø	Ø	$\{B,X\}$	q_2
	$\{S, A, B\}$	{ <i>A</i> }	$\{B,X\}$	$\{B,X\}$	
*	$\{S,A,X\}$	{ <i>A</i> }	$\{B,X\}$	$\{B,X\}$	
*	$\{S,B,X\}$	Ø	Ø	$\{B,X\}$	
*	$\{A,B,X\}$	<i>{A}</i>	$\{B,X\}$	$\{B,X\}$	
*	$\{S,A,B,X\}$	<i>{A}</i>	$\{B,X\}$	$\{B,X\}$	

Etichetele q_0 , q_1 , q_2 se referă la elementele din coloana $\boldsymbol{\delta_D}$ și permit, mai întâi, redenumirea stărilor accesibile ale automatului $\boldsymbol{A_D}$ și apoi a întregului automat $\boldsymbol{A_D}$, astfel:

•
$$\Sigma_D = \{a, b, c\};$$

•
$$Q_D = \{q_0, q_1, q_2\};$$

•
$$F_D = \{q_2\};$$

• funcția de tranziție δ_D este definită în următorul tabel:

	δ_{D}	а	b	С
\rightarrow	q_0	q_1	q_2	Ø
	q_1	q_1	q_2	Ø
*	q_2	Ø	Ø	q_2

În baza celor de mai sus, reprezentarea grafică a automatului finit determinist ${\cal A}_{\cal D}$ este:

Se poate verifica că $\mathcal{T}(A_{\mathcal{D}})=\{a^mbc^n|\ m,n\geq 0\}.$ De exemplu:

Deoarece $\mathcal{F}(A_D)=L(G)$, gramatica regulată G este echivalentă cu automatul finit determinist A_D .

La întrebarea de mai sus, dacă există o legătură între automatele finite și gramatici, un alt răspuns este dat de următoarea teoremă.

Teorema 3.2. Fie $A_D=(\Sigma,Q,\delta,q_0,F)$ un automat finit determinist. Atunci există o gramatică regulată cu $L(G)=\mathcal{T}(A)$.

Demonstrație. Plecând de la automatul A_D construim gramatica regulată

G = (N, T, S, P), astfel:

- N = Q;
- $T = \Sigma$;
- $S = q_0$;
- $\mathbf{P} = \{A \to aB | \delta(A, a) = B\} \cup \{A \to a | \delta(A, a) \in \mathbf{F}\}.$

Exemplul 3.2. Fie automatul finit determinist $A_D=(\Sigma,Q,\delta,q_0,F)$, unde reprezentarea analitică a automatului **A** este:

- $\Sigma = \{0,1\};$
- $\mathbf{Q} = \{q_0, q_1, q_2\};$
- $F = \{q_2\};$
- funcția de tranziție δ este definită în următorul tabel:

	δ	0	1
\rightarrow	q_0	q_1	q_0
	q_1	q_1	q_2
*	q_2	q_2	q_2

Se construiește gramatica regulată G=(N,T,S,P) echivalentă cu automatul finit determinist A_D .

Mai întâi, plecând de la tabelul funcției de tranziție, construim în baza demonstrației teoremei 3.2., mulțimea producțiilor **P** ce va conține următoarele producții/reguli:

- deoarece $\pmb{\delta}(q_0,0)=q_1$ se obține producția $q_0\to 0q_1$, iar din $\pmb{\delta}(q_0,1)=q_0$ se obține producția $q_0\to 1q_0$;
- deoarece $\pmb{\delta}(q_1,0)=q_1$ se obține producția $q_1\to 0q_1$, din $\pmb{\delta}(q_1,1)=q_2$ se obține producția $q_1\to 1q_2$ și deoarece $\pmb{\delta}(q_1,1)=q_2\in \pmb{F}$ se obține și producția $q_1\to 1$;
- deoarece $\pmb{\delta}(q_2,0)=q_2$ se obține producția $q_2\to 0q_2$ și deoarece $\pmb{\delta}(q_2,0)=q_2\in \pmb{F}$ se obține și producția $q_2\to 0$, din $\pmb{\delta}(q_2,1)=q_2$ se obține producția $q_2\to 1q_2$ și deoarece $\pmb{\delta}(q_2,1)=q_2\in \pmb{F}$ se obține și producția $q_2\to 1$.

În concluzie, elementele gramaticii regulate *G* sunt:

- $N = \{q_0, q_1, q_2\},$
- $T = \{0,1\},$
- $S = q_0$
- mulțimea producțiilor **P** conține următoarele producții/ reguli:

$$S \rightarrow 0q_1 \mid 1S$$
 (1)

$$q_1 \to 0 q_1 |1 q_2| 1$$
 (2)

$$q_2 \rightarrow 0q_2 | 1q_2 | 0 | 1$$
 (3)