Laborator 5

Funcția de repartiție și cuantilele empirice

Obiectivul acestui laborator este de a ilustra noțiunea de funcție de repartiție empirică și de cuantile empirice și de a verifica câteva proprietăți asimptotice ale acestora.

1 Funcția de repartiție empirică

Fie X_1, X_2, \ldots, X_n un eșantion de talie n dintr-o populație a cărei funcție de repartiție este F. Funcția de repartiție empirică este definită, pentru toate valorile $x \in \mathbb{R}$, prin

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(X_i) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(X_{(i)})$$

unde $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ reprezintă statisticile de ordine. Observăm că, notând $X_{(n+1)} = +\infty$, avem

$$\hat{F}_n(x) = \sum_{i=1}^n \frac{i}{n} \mathbf{1}_{[X_{(i)}, X_{(i+1)}]}(x).$$

Dacă $\hat{F}_n(x)$ este funcția de repartiție empirică asociată unui eșantion de talie n, dintr-o populație a cărei funcție de repartiție este F, atunci, pentru $x \in \mathbb{R}$:

- variabila aleatoare $n\hat{F}_n(x)$ este repartizată binomial $\mathcal{B}(n,F(x))$
- are loc convergenta (LNM): $\hat{F}_n(x) \stackrel{a.s.}{\to} F(x)$
- are loc proprietatea de normalitate asimptotică (TLC): $\sqrt{n}(\hat{F}_n(x) F(x)) \stackrel{d}{\to} \mathcal{N}(0, F(x)(1 F(x)))$.

Ilustrați grafic rezultatele de mai sus pentru o populație repartizată $\mathcal{N}(0,1)$ și respectiv $\mathcal{E}(3)$. Pentru proprietatea de normalitate considerați $x_0 = 2$ și respectiv $x_0 = 1.5$.

Fie $x \in \mathbb{R}$ fixat și definim variabilele aleatoare $Y_i = \mathbf{1}_{(-\infty,x]}(X_i), \ 1 \le i \le n$. Cum X_1, X_2, \dots, X_n sunt i.i.d. deducem că Y_1, Y_2, \dots, Y_n sunt i.i.d. și în plus $Y_i \sim \mathcal{B}(p)$ cu $p = \mathbb{P}(Y_1 = 1) = F(x)$.

Din definiția funcției de repartiție empirică avem

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,x]}(X_i) = \frac{1}{n} \sum_{i=1}^n Y_i$$

și aplicând Legea Tare a Numerelor Mari obținem

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow[n \to \infty]{a.s.} \mathbb{E}[Y_1] = F(x).$$

În mod similar aplicând Teorema Limită Centrală deducem

$$\sqrt{n}(\hat{F}_n(x) - F(x)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, Var(Y_1)) = \mathcal{N}(0, F(x)(1 - F(x))).$$

Pentru ilustrare, în cazul $\mathcal{N}(0,1)$ avem convergența

și proprietatea de normalitate (TLC)

TLC pentru functia de repartitie empirica - N(0,1)

Pentru repartiția $\mathcal{E}(3)$ avem

și rezultatul de normalitate asimptotică

TLC pentru functia de repartitie empirica – E(3)

Conform rezultatului anterior putem spune că $\hat{F}_n(x)$ este un estimator rezonabil pentru funcția de repartiție F(x) dat fiind o valoare $x \in \mathbb{R}$ fixată. Întrebarea care se pune este dacă $\hat{F}_n(x)$ este un estimator rezonabil pentru întreaga funcție de repartiție F(x)? Răspunsul la această întrebare este dat de Teorema Glivenko-Cantelli¹ de mai jos:

Teorema Glivenko-Cantelli. Fie $(X_n)_n$ un șir de variabile aleatoare independent și identic repartizate, cu funcția de repartiție comună F. Atunci are loc

$$\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| \xrightarrow[n \to \infty]{a.s.} 0.$$

 $^{^{1}}$ Pentru o demonstrație a acestei teoreme se poate consulta, spre exemplu, cartea lui Sidney Resnick A probability path, Springer, 1998 (pag 224)

2 Cuantile empirice

Reamintim că dată fiind o funcție de repartiție F, funcția cuantilă (inversa generalizată) asociată lui F, $F^{-1}:(0,1)\to\mathbb{R}$ este definită prin

$$F^{-1}(u) = \inf\{x \in \mathbb{R} \mid F(x) \ge u\}, \quad \forall u \in (0,1)$$

unde folosim conventiile inf $\mathbb{R} = -\infty$ si inf $\emptyset = +\infty$.

Funcția cuantilă F^{-1} verifică următoarele proprietăți:

- 1) Valoarea în 0: $F^{-1}(0) = -\infty$
- 2) Monotonie: F^{-1} este crescătoare
- 3) Continuitate: F^{-1} este continuă la stânga
- 4) Echivalență: pentru $\forall u \in [0,1]$ avem $F(x) \geq u \iff x \geq F^{-1}(u)$
- 5) Inversabilitate: $\forall u \in [0,1]$ avem $(F \circ F^{-1})(u) \geq u$. În plus
 - a) dacă F este continuă atunci $F \circ F^{-1} = Id$ dar dacă nu este injectivă atunci există x_0 așa încât $(F^{-1} \circ F)(x_0) < x_0$
 - b) dacă F este injectivă atunci $F^{-1} \circ F = Id$ dar dacă nu este continuă atunci există u_0 astfel că $(F \circ F^{-1})(u_0) > u_0$

Pentru a exemplifica punctul 5a, putem considera variabila aleatoare $X \sim \mathcal{U}[0,1]$ a cărei funcție de repartiție F este continuă dar nu injectivă și în plus $(F^{-1} \circ F)(2) = F^{-1}(1) = 1 < 2$. Pentru punctul 5b să considerăm variabilele aleatoare $Y \sim \mathcal{N}(0,1)$ și $B \sim \mathcal{B}(0.5)$ independente și să definim X = BY. Atunci funcția de repartiție a lui X verifică $F(0-) = \frac{1}{4}$ și $F(0) = \frac{3}{4}$, este injectivă dar nu și continuă în 0 și în plus avem $(F \circ F^{-1})(1/2) = F(0) = \frac{3}{4} > \frac{1}{2}$.

Se numește cuantilă de ordin $p \in (0,1)$ (sau p-cuantilă) asociată lui F valoarea

$$x_p = F^{-1}(p) = \inf\{x \in \mathbb{R} \mid F(x) \ge p\}.$$

Cuantila de ordin 0.5, $x_{\frac{1}{2}}$ se numește mediana lui F și se notează cu M sau Q_2 , iar cuantilele de ordin $\frac{1}{4}$ și respectiv $\frac{3}{4}$ se numesc prima și respectiv a treia cuartilă și se notează cu Q_1 și respectiv Q_3 .

Fie acum X_1, X_2, \dots, X_n un eșantion de talie n dintr-o populație a cărei funcție de repartiție este F și fie \hat{F}_n funcția de repartiție empirică asociată. Pentru $p \in (0,1)$ definim cuantila empirică de ordin p și o notăm $\hat{x}_p = \hat{x}_p(n)$ valoarea

$$\hat{x}_p = \hat{F}_n^{-1}(p) = \inf\{x \in \mathbb{R} \mid \hat{F}_n(x) \ge p\}.$$

Folosind convenția $X_{(0)} = -\infty$, cunatila empirică de ordin p coincide cu una dintre statisticile de ordine:

$$\hat{x}_p = X_{(i)} \iff np \le i < np + 1 \iff \hat{x}_p = X_{(\lceil np \rceil)},$$

unde [x] reprezintă cea mai mică valoare întreagă mai mare sau egală cu x.

Are loc următorul rezultat²:

²O demonstrație a acestui rezultat care nu necesită funcții caracteristice se regăsește în articolul lui Jan Wretman A Simple Derivation of the Asymptotic Distribution of a Sample Quantile, Scand. J. Statist., 5(2): 123-124, 1978.

Fie X_1, X_2, \ldots, X_n un eșantion de talie n dintr-o populație cu funcția de repartiție $F, p \in (0, 1)$ fixat, x_p cuantila de ordin p asociată lui F și $\hat{x}_p(n)$ cuantila empirică de ordin p. Atunci

1) Convergența: dacă F este strict crescătoare în x_p are loc

$$\hat{x}_p(n) \xrightarrow[n \to \infty]{a.s.} x_p$$

2) Normalitatea asiptotică: dacă F este derivabilă în x_p cu derivata $f(x_p) > 0$, atunci

$$\sqrt{n}(\hat{x}_p(n) - x_p) \xrightarrow[n \to \infty]{d} \mathcal{N}\left(0, \frac{p(1-p)}{f(x_p)^2}\right).$$

Pentru a ilustra importanța condiției de la primul punct (F este strict crescătoare în x_p) să considerăm $X \sim \mathcal{B}(\frac{1}{2})$. Atunci mediana sa este $x_{\frac{1}{2}} = 0$ pe când mediana empirică $\hat{x}_{\frac{1}{2}}(n)$ va oscila mereu (dar neregulat) între valorile 0 și 1.

Ilustrați grafic în R proprietatea de convergență și de normalitate asiptotică (din rezultatul precedent) pentru o populație repartizată $\mathcal{N}(0,1)$ și respectiv $\mathcal{E}(3)$ și pentru $p \in \left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$.

În cazul $\mathcal{N}(0,1)$ avem proprietatea de convergență a cuantilelor

și proprietatea de normalitate asimptotică

În cazul $\mathcal{E}(3)$ avem proprietatea de convergență a cuantilelor

și proprietatea de normalitate asimptotică

