

CS 412 Intro. to Data Mining

Chapter 7: Advanced Frequent Pattern Mining

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2106

Chapter 7: Advanced Frequent Pattern Mining

Pattern Mining: A Road Map

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- ☐ Graph Pattern Mining
- Summary

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns

- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining
- Summary

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk;Wonder wheat bread
- How to set min-support thresholds?

- **Uniform support Reduced support** Milk Level 1 Level 1 [support = 10%] $min_sup = 5\%$ min sup = 5%2% Milk Skim Milk Level 2 Level 2 [support = 6%] [support = 2%] min sup = 1%min sup = 5%
- Uniform min-support across multiple levels (reasonable?)
- Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: Shared multi-level mining
 - Use the lowest min-support to pass down the set of candidates

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items

(Suppose the 2% milk sold is about ¼ of milk sold in gallons)

- \square milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
- \square 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
- A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent
- It is necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
 - How to mine such rules efficiently?
 - Existing scalable mining algorithms can be easily extended to cover such cases

Mining Multi-Dimensional Associations

- □ Single-dimensional rules (e.g., items are all in "product" dimension)
 - \square buys(X, "milk") \Rightarrow buys(X, "bread")
- \square Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - Inter-dimension association rules (no repeated predicates)
 - \square age(X, "18-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - \square age(X, "18-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values discretization, clustering, and gradient approaches

Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary
- Methods
 - Static discretization based on predefined concept hierarchies
 - Data cube-based aggregation
 - Dynamic discretization based on data distribution
 - Clustering: Distance-based association
 - ☐ First one-dimensional clustering, then association
 - Deviation analysis:
 - □ Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)

Mining Extraordinary Phenomena in Quantitative Association Mining

- ☐ Mining extraordinary (i.e., interesting) phenomena
 - \Box Ex.: Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - \blacksquare Ex.: (Gender = female) ^ (South = yes) \Rightarrow mean wage = \$6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
 - \blacksquare Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)

Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?

Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)</p>
 - ☐ Then A and B are negatively correlated

Does this remind you the definition of lift?

- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - \Box s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)
 - But when there are 10⁵ transactions, we have
 - \Box s(A U B) = 1/10⁵, s(A) × s(B) = 1/10³ × 1/10³, s(A U B) > s(A) × s(B)
 - What is the problem?—Null transactions: The support-based definition is not null-invariant!

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the nullinvariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but $(P(A|B) + P(B|A))/2 < \epsilon$, where ϵ is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or 10⁵ transactions
 - □ If $\epsilon = 0.01$, we have $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed patterns
 - □ P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - P3: information loss
- Desired output (a good balance):
 - □ P2, P3, P4

- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- ightharpoonup δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ -cover)
- □ All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy

(a) a set of patterns

(b) redundancy-aware top-k

(c) traditional top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining

- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- ☐ Graph Pattern Mining
- Summary

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously? unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining
 - Constraint-based mining: Constraint-pushing, similar to push selection first in DB query processing

Constraints in General Data Mining

A data mining query can be in the form of a meta-rule or with the following language primitives

- Knowledge type constraint:
 - Ex.: classification, association, clustering, outlier finding,
- Data constraint using SQL-like queries
 - Ex.: find products sold together in NY stores this year
- Dimension/level constraint
 - Ex.: in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - Ex.: small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - Ex.: strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7

Meta-Rule Guided Mining

- A meta-rule can contain partially instantiated predicates & constants
- The resulting mined rule can be
 - \square age(X, "15-25") ^ profession(X, "student") \Rightarrow buys(X, "iPad")
- In general, (meta) rules can be in the form of
- Method to find meta-rules
 - Find frequent (I + r) predicates (based on min-support)
 - Push constants deeply when possible into the mining process
 - Using constraint-push techniques introduced in this lecture
 - Also, push min_conf, min_correlation, and other measures as early as possible (measures acting as constraints)

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: if the constraint c can be enforced by directly manipulating the data
 - Convertible: c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing
- Data space pruning constraints
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort

Pattern Space Pruning with Pattern Anti-Monotonicity

- Constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : $sum(S.price) \le v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
 - Itemset *ab* violates c_2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c_3 : $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. Is c_{Δ} : support(S) $\geq \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

TID Transaction				
10	a, b, c, d, f, h			
20	b, c, d, f, g, h			
30	b, c, d, f, g			
40 a, c, e, f, g				
min_sup = 2				
price(item)>0				

Item	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Pattern Monotonicity and Its Roles

- A constraint c is monotone: if an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : $sum(S.Price) \ge v$ is monotone
- Ex. 2: c_2 : $min(S.Price) \le v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset ab satisfies c₃
 - So does every superset of ab

TID	Transaction	Item	Profit
10 a, b, c, d, f, h		а	40
20	b, c, d, f, g, h	b	0
30	b, c, d, f, g	С	-20
40 a, c, e, f, g		d	-15
min sup = 2		е	-30
price(item)>0		f	-10
		g	20
		h	5

Data Space Pruning with Data Anti-Monotonicity

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
- Data space pruning: Data entry t can be pruned
- \square Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data anti-monotone
 - Let constraint c_1 be: sum{S.Profit} ≥ 25
 - □ T_{30} : {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25

\square Ex. 2: c_2 : $min(S.Price) \le v$ is data anti-monoton		Ex. 2: c ₂ : min	$(S.Price) \leq$	v is dat	a anti-monoton
--	--	-----------------------------	------------------	----------	----------------

- Consider v = 5 but every item in transaction T_{50} has a price higher than 10
- \square Ex. 3: c_3 : range(S.Profit) ≥ 25 is data anti-monotone

TID	Transaction	Item	Profit
10 a, b, c, d, f, h		a	40
20 b, c, d, f, g, h		b	0
30 b, c, d, f, g		С	-20
40 a, c, e, f, g		d	-15
min sup = 2		е	-30
price(item)>0		f	-10
p (g	20
		h	5

Data Space Pruning Should Be Explored Recursively

Example. c_3 : range(S.Profit) > 25

- We check b's projected database
 - But item "a" is infrequent (sup = 1)
- After removing "a (40)" from T₁₀
 - \Box T_{10} cannot satisfy c_3 any more
 - since "b (0)" and "c (-20), d (-15), f (-10), h (5)"
 - \square By removing T_{10} , we can also prune "h" in T_{20}

b's-proj. DB	TID	Transaction	Recursive			
	10	a, c, d, f, h	Data		b's FP-tree	
	20	c, d, f, g,	Pruning	single	e branch: cdf	g: 2
	30	c, d, f, g				

TID	Transaction
10	(a, c, d, f, h
20	c, d, f, g, h
30	c, d, f, g

b's-proj. DB

-	ΓID	Transaction	Item	Profit
1	10 a, b, c, d, f, h		а	40
20 b, c, d, f, g, h		b	0	
30 b, c, d, f, g		С	-20	
40 a, c, e, f, g		d	-15	
	mir	sup = 2	е	-30
	price(item)>0		f	-10
	,		g	20
	Constraint:		h	5
	range{S.profit} ≥ 25			

Only a single branch "cdfg: 2" to be mined in b's projected DB

 \square Note: c_3 prunes T_{10} effectively only after "a" is pruned (by min-sup) in b's projected DB

Succinctness: Pruning Both Data and Pattern Spaces

- \blacksquare Succinctness: if the constraint c can be enforced by directly manipulating the data
- Ex. 1: To find those patterns without item i
 - Remove i from DB and then mine (pattern space pruning)
- Ex. 2: To find those patterns containing item i
 - Mine only i-projected DB (data space pruning)
- Ex. 3: c_3 : $min(S.Price) \le v$ is succinct
 - Start with only items whose price $\leq v$ (pattern space pruning) and remove transactions with high-price items only (data space pruning)
- Ex. 4: c_4 : $sum(S.Price) \ge v$ is not succinct
 - It cannot be determined beforehand since sum of the price of itemset S keeps increasing

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into (anti-)monotone by proper ordering of items in transactions
- Examine c_1 : avg(S.profit) > 20
 - Order items in value-descending order
 - <a, g, f, h, b, d, c, e>
 - An itemset ab violates c_1 (avg(ab) = 20)
 - So does ab* (i.e., ab-projected DB)
 - C₁: anti-monotone if patterns grow in the right order!
- Can item-reordering work for Apriori?
 - Does not work for level-wise candidate generation!
 - avg(agf) = 23.3 > 20, but avg(gf) = 15 < 20

oper		Item	Profit
•	min_sup = 2	а	40
		b	0
	price(item)>0	С	-20
TID	Transaction	d	-15
10	a, b, c, d, f, h	е	-30
20	b, c, d, f, g, h	f	10
30	b, c, d, f, g	g	20
40 a, c, e, f, g		h	5
		11	3

How to Handle Multiple Constraints?

- It is beneficial to use multiple constraints in pattern mining
- But different constraints may require potentially conflicting item-ordering
 - If there exists an order R making both c_1 and c_2 convertible, try to sort items in the order that benefits pruning most
 - If there exists conflict ordering between c_1 and c_2
 - Try to sort data and enforce one constraint first (which one?)
 - Then enforce the other when mining the projected databases
- Ex. c_1 : avg(S.profit) > 20, and c_2 : avg(S.price) < 50
 - Sorted in profit descending order and use c_1 first (assuming c_1 has more pruning power)
 - For each project DB, sort trans. in price ascending order and use c_2 at mining

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns

- Sequential Pattern Mining
- ☐ Graph Pattern Mining
- Summary

Mining Long Patterns: Challenges

- Mining long patterns is needed in bioinformatics, social network analysis, software engineering, ...
 - But the methods introduced so far mine only short patterns (e.g., length < 10)
- Challenges of mining long patterns
 - The curse of "downward closure" property of frequent patterns
 - ☐ Any sub-pattern of a frequent pattern is frequent
 - □ If $\{a_1, a_2, ..., a_{100}\}$ is frequent, then $\{a_1\}$, $\{a_2\}$, ..., $\{a_{100}\}$, $\{a_1, a_2\}$, $\{a_1, a_3\}$, ..., $\{a_1, a_{100}\}$, $\{a_1, a_2, a_3\}$, ... are all frequent! There are about 2^{100} such frequent itemsets!
 - No matter searching in breadth-first (e.g., Apriori) or depth-first (e.g., FPgrowth), if we still adopt the "small to large" step-by-step growing paradigm, we have to examine so many patterns, which leads to combinatorial explosion!

Colossal Patterns: A Motivating Example

```
T_1 = 2 3 4 \dots 39 40
T_2 = 134.....3940
T_{40}=1234.....39
T<sub>41</sub>= 41 42 43 ..... 79
T<sub>42</sub>= 41 42 43 ..... 79
T_{60} = 41 \ 42 \ 43 \ \dots \ 79
```

- □ Let min-support σ = 20
- \square # of closed/maximal patterns of size 20: about $\begin{pmatrix} \mathbf{40} \\ \mathbf{20} \end{pmatrix}$
- But there is only one pattern with size close to 40 (*i.e.*, long or colossal)
 - \square α = {41,42,...,79} of size 39
- Q: How to find it without generating an exponential number of size-20 patterns?

The existing fastest mining algorithms (e.g., FPClose, LCM) fail to complete running

A new algorithm, *Pattern-Fusion*, outputs this colossal pattern in seconds

What Is Pattern-Fusion?

- Not strive for completeness (why?)
- Jump out of the swamp of the mid-sized intermediate "results"
- Strive for mining almost complete and representative colossal patterns: identify "short-cuts" and take "leaps"
- Key observation
 - The larger the pattern or the more distinct the pattern, the greater chance it will be generated from small ones
- Philosophy: Collection of small patterns hints at the larger patterns
- Pattern fusion strategy ("not crawl but jump"): Fuse small patterns together in one step to generate new pattern candidates of significant sizes

Observation: Colossal Patterns and Core Patterns

- Suppose dataset D contains 4 colossal patterns (below) plus many small patterns
 - \Box {a₁, a₂, ..., a₅₀}: 40, {a₃, a₆, ..., a₉₉}: 60, {a₅, a₁₀, ..., a₉₅}: 80, {a₁₀, a₂₀, ..., a₁₀₀}: 100
- ☐ If you check the pattern pool of size-3, you may likely find
 - \Box {a₂, a₄, a₄₅}: ~40; {a₃, a₃₄, a₃₉}: ~40; ..., {a₅, a₁₅, a₈₅}: ~80, ..., {a₂₀, a₄₀, a₈₅}: ~80, ...
- If you merge the patterns with similar support, you may obtain candidates of much bigger size and easily validate whether they are true patterns
- \Box Core patterns of a colossal pattern α: A set of subpatterns of α that cluster around α by sharing a similar support
- A colossal pattern has far more core patterns than a small-sized pattern
- ☐ A random draw from a complete set of pattern of size c would be more likely to pick a core pattern (or its descendant) of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

Robustness of Colossal Patterns

- \square Core Patterns: For a frequent pattern α, a subpattern β is a τ-core pattern of α if β shares a similar support set with α, i.e.,
 - $\frac{\mid \boldsymbol{D}_{\alpha}\mid}{\mid \boldsymbol{D}_{\beta}\mid} \geq \tau$ $0 < \tau \leq 1$ where τ is called the core ratio
- \Box (d, τ)-robustness: A pattern α is (d, τ)-robust if d is the maximum number of items that can be removed from α for the resulting pattern to remain a τ-core pattern of α
- \Box For a (d, τ)-robust pattern α , it has $\Omega(2^d)$ core patterns
- Robustness of Colossal Patterns: A colossal pattern tends to have much more core patterns than small patterns
- Such core patterns can be clustered together to form "dense balls" based on pattern distance defined by $Dist(\alpha,\beta) = 1 \frac{\left|D_{\alpha} \cap D_{\beta}\right|}{\left|D_{\alpha} \cup D_{\beta}\right|}$

A random draw in the pattern space will hit somewhere in the ball with high probability

The Pattern-Fusion Algorithm

- □ Initialization (Creating initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
 - At each iteration, K seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns
 - All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

Experimental Results on Data Set: ALL

- □ ALL: A popular gene expression clinical data set on ALL-AML leukemia, with 38 transactions, each with 866 columns. There are 1736 items in total.
 - When minimum support is high (e.g., 30), Pattern-Fusion gets all the largest colossal patterns with size greater than 85

Pattern Size	110	107	102	91	86	84	83
The complete set	1	1	1	1	1	2	6
Pattern-Fusion	1	1	1	1	1	1	4
Pattern Size	82	77	76	75	74	73	71
The complete set	1	2	1	1	1	2	1
Pattern-Fusion	0	2	0	1	1	1	1

Mining colossal patterns on a Leukemia dataset

Algorithm runtime comparison on another dataset

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining

- Graph Pattern Mining
- Summary

Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone,
 within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- ☐ Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- ☐ Items within an element are unordered and we list them alphabetically

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

Sequential Pattern Mining Algorithms

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints
- The Apriori property still holds: If a subsequence s_1 is infrequent, none of s_1 's super-sequences can be frequent
- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)
 - Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
 - □ Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE'04)
- Mining closed sequential patterns: CloSpan (Yan, et al. @SDM'03)
- Constraint-based sequential pattern mining

GSP: Apriori-Based Sequential Pattern Mining

- Initial candidates: All singleton sequences
- <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

$$min_sup = 2$$

Cand.	sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
285	

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

■ Length-2 candidates:

$$36 + 15 = 51$$

■ Without Apriori pruning: 8*8+8*7/2=92 candidates

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

GSP Mining and Pruning

Candidates cannot pass min_sup 5th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand, not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> ... <ff> <(ab)> ... <(ef)> 10 cand, not in DB at all <a> <c> <d> <e> <f> <g> <h> 1st scan: 8 cand. 6 length-1 seq. pat. min sup = 2

- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - □ Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
 - \Box set k = k+1
- Until no frequent sequence or no candidate can be found

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- ☐ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>
	min_sup = 2

Ref: SPADE (<u>S</u>equential <u>PA</u>ttern <u>D</u>iscovery using <u>E</u>quivalent Class) [M. Zaki 2001]

SID	EID	Items
1	1	\mathbf{a}
1 1 1 2 2 2	2	abc
1	3	ac
1	4	d
1	5 1 2 3	cf
2	1	ad
2	2	\mathbf{c}
2	3	$_{\mathrm{bc}}$
2	4	ae
3	1	ef
3	2	ab
3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{d}\mathrm{f}$
3	4	\mathbf{c}
3	5	b
4	1	\mathbf{e}
4	2	g
4	3	af
4	4	\mathbf{c}
4	5	b
4	6	\mathbf{c}

	a	1	0	
SID	EID	SID	EID	
1	1	1	2	_
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

	$^{\mathrm{ab}}$			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

aba				
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

PrefixSpan: A Pattern-Growth Approach

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Prefix	Suffix (Projection)	
<a>	<(abc)(ac)d(cf)>	
<aa></aa>	<(_bc)(ac)d(cf)>	
<ab></ab>	<(_c)(ac)d(cf)>	
7		

- Prefix and suffix
- Given <a(abc)(ac)d(cf)>
- Prefixes: <a>, <aa>,
 <a(ab)>, <a(abc)>, ...
 - Suffix: Prefixes-based projection

- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,

 - <f>-projected DB, ...

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

PrefixSpan: Mining Prefix-Projected DBs

Implementation Consideration: Pseudo-Projection vs. Physical Projection

- Major cost of PrefixSpan: Constructing projected DBs
 - Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
- But if it does not fit in memory
 - Physical projection
- Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory

CloSpan: Mining Closed Sequential Patterns

- \square A closed sequential pattern s: There exists no superpattern s' such that $s' \supset s$, and s' and s have the same support
- □ Which ones are closed? <abc>: 20, <abcd>:20, <abcd>: 15
- Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power
- □ Property P_1 : If $s \supset s_1$, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- ☐ Greatly enhances efficiency (Yan, et al., SDM'03)

Constraint-Based Sequential-Pattern Mining

- Share many similarities with constraint-based itemset mining
- ☐ Anti-monotonic: If S violates *c*, the super-sequences of S also violate *c*
 - □ sum(S.price) < 150; min(S.value) > 10
- Monotonic: If S satisfies c, the super-sequences of S also do so
 - \square element_count (S) > 5; S \supseteq {PC, digital_camera}
- Data anti-monotonic: If a sequence s_1 with respect to S violates c_3 , s_1 can be removed
 - c_3 : sum(S.price) $\geq v$
- □ Succinct: Enforce constraint c by explicitly manipulating data
 - \square S \supseteq {i-phone, MacAir}
- Convertible: Projection based on the sorted value not sequence order
 - \square value_avg(S) < 25; profit_sum (S) > 160
 - \square max(S)/avg(S) < 2; median(S) min(S) > 5

Timing-Based Constraints in Seq.-Pattern Mining

- Order constraint: Some items must happen before the other
 - \square {algebra, geometry} \rightarrow {calculus} (where " \rightarrow " indicates ordering)
 - Anti-monotonic: Constraint-violating sub-patterns pruned
- ☐ Min-gap/max-gap constraint: Confines two elements in a pattern
 - \Box E.g., mingap = 1, maxgap = 4
 - Succinct: Enforced directly during pattern growth
- Max-span constraint: Maximum allowed time difference between the 1st and the last elements in the pattern
 - \Box E.g., maxspan (S) = 60 (days)
 - Succinct: Enforced directly when the 1st element is determined
- Window size constraint: Events in an element do not have to occur at the same time: Enforce max allowed time difference
 - E.g., window-size = 2: Various ways to merge events into elements

Episodes and Episode Pattern Mining

- Episodes and regular expressions: Alternative to seq. patterns
 - \square Serial episodes: A \rightarrow B
 - Parallel episodes: A | B
 Indicating partial order relationships
 - \square Regular expressions: (A|B)C*(D \rightarrow E)
- Methods for episode pattern mining
 - Variations of Apriori/GSP-like algorithms
 - Projection-based pattern growth
 - \square Q₁: Can you work out the details?
 - Q₂: What are the differences between mining episodes and constraint-based pattern mining?

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Frequent (Sub)Graph Patterns

- Given a labeled graph dataset $D = \{G_1, G_2, ..., G_n\}$, the supporting graph set of a subgraph g is $D_g = \{G_i \mid g \subseteq G_i, G_i \in D\}$.
 - \square support(g) = $|D_g|/|D|$
- □ A (sub)graph g is **frequent** if support(g) \geq min_sup
- Ex.: Chemical structures
- Alternative:
 - Mining frequent subgraph patterns from a single large graph or network

 $min_sup = 2$

Frequent Graph Patterns

Applications of Graph Pattern Mining

- Bioinformatics
 - Gene networks, protein interactions, metabolic pathways
- Chem-informatics: Mining chemical compound structures
- Social networks, web communities, tweets, ...
- Cell phone networks, computer networks, ...
- Web graphs, XML structures, semantic Web, information networks
- Software engineering: program execution flow analysis
- Building blocks for graph classification, clustering, compression, comparison, and correlation analysis
- Graph indexing and graph similarity search

Graph Pattern Mining Algorithms: Different Methodologies

- Generation of candidate subgraphs
 - Apriori vs. pattern growth (e.g., FSG vs. gSpan)
- Search order
 - Breadth vs. depth
- Elimination of duplicate subgraphs
 - Passive vs. active (e.g., gSpan (Yan&Han'02))
- Support calculation
 - Store embeddings (e.g., GASTON (Nijssen&Kok'04, FFSM (Huan, et al.'03), MoFa (Borgelt and Berthold ICDM'02))
- Order of pattern discovery
 - □ Path → tree → graph (e.g., GASTON (Nijssen&Kok'04)

Apriori-Based Approach

- ☐ The Apriori property (anti-monotonicity): A size-k subgraph is frequent if and only if all of its subgraphs are frequent
- □ A candidate size-(k+1) edge/vertex subgraph is generated if its corresponding two k-edge/vertex subgraphs are frequent
- Iterative mining process:
 - □ Candidate-generation → candidate pruning → support counting → candidate elimination

Candidate Generation: Vertex Growing vs. Edge Growing

- ☐ Methodology: breadth-search, Apriori joining two size-k graphs
 - Many possibilities at generating size-(k+1) candidate graphs

- Generating new graphs with one more vertex
 - AGM (Inokuchi, et al., PKDD'00)
- Generating new graphs with one more edge
 - FSG (Kuramochi and Karypis, ICDM'01)
- ☐ Performance shows *via edge growing* is more efficient

Pattern-Growth Approach

Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge subgraphs

- Major challenge
 - Generating many duplicate subgraphs
- Major idea to solve the problem
 - Define an order to generate subgraphs
 - DFS spanning tree: Flatten a graph into a sequence using depth-first search
 - gSpan (Yan & Han: ICDM'02)

gSPAN: Graph Pattern Growth in Order

- Right-most path extension in subgraph pattern growth
 - Right-most path: The path from root to the right-most leaf (choose the vertex w. the smallest index at each step)
 - Reduce generation of duplicate subgraphs
- Completeness: The Enumeration of graphs using right-most path extension is <u>complete</u>
- □ DFS Code: Flatten a graph into a sequence using depth-first search

Why Mining Closed Graph Patterns?

- Challenge: An n-edge frequent graph may have 2ⁿ subgraphs
- Motivation: Explore closed frequent subgraphs to handle graph pattern explosion problem
- A frequent graph G is closed if there exists no supergraph of G that carries the same support as G

If this subgraph is *closed* in the graph dataset, it implies that none of its frequent super-graphs carries the same support

- Lossless compression: Does not contain non-closed graphs, but still ensures that the mining result is complete
- Algorithm CloseGraph: Mines closed graph patterns directly

CLOSEGRAPH: Directly Mining Closed Graph Patterns

CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD'03)

At what condition can we stop searching their children, i.e., early termination?

- Suppose G and G_1 are frequent, and G is a subgraph of G_1
 - If in any part of the graph in the dataset where G occurs, G_1 also occurs, then we need not grow G (except some special, subtle cases), since none of G's children will be closed except those of G_1

Experiment and Performance Comparison

- ☐ The AIDS antiviral screen compound dataset from NCI/NIH
- ☐ The dataset contains 43,905 chemical compounds
- Discovered Patterns: The smaller minimum support, the bigger and more interesting subgraph patterns discovered

of Patterns: Frequent vs. Closed

Runtime: Frequent vs. Closed

Chapter 7: Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining
- Summary

References (I) Mining Diverse Patterns

- R. Srikant and R. Agrawal, "Mining generalized association rules", VLDB'95
- Y. Aumann and Y. Lindell, "A Statistical Theory for Quantitative Association Rules", KDD'99
- K. Wang, Y. He, J. Han, "Pushing Support Constraints Into Association Rules Mining", IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'06
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07

References (II) Constraint-Based Frequent Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal, "Mining association rules with item constraints", KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, "Exploratory mining and pruning optimizations of constrained association rules", SIGMOD'98
- □ G. Grahne, L. Lakshmanan, and X. Wang, "Efficient mining of constrained correlated sets", ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan, "Mining Frequent Itemsets with Convertible Constraints", ICDE'01
- J. Pei, J. Han, and W. Wang, "Mining Sequential Patterns with Constraints in Large Databases", CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, "ExAnte: Anticipated Data Reduction in Constrained Pattern Mining", PKDD'03
- □ F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

References (III) Sequential Pattern Mining

- R. Srikant and R. Agrawal, "Mining sequential patterns: Generalizations and performance improvements", EDBT'96
- M. Zaki, "SPADE: An Efficient Algorithm for Mining Frequent Sequences", Machine Learning, 2001
- J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, "Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE, 16(10), 2004
- X. Yan, J. Han, and R. Afshar, "CloSpan: Mining Closed Sequential Patterns in Large Datasets", SDM'03
- J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the pattern-growth methods", J. Int. Inf. Sys., 28(2), 2007
- M. N. Garofalakis, R. Rastogi, K. Shim: Mining Sequential Patterns with Regular Expression Constraints. IEEE Trans. Knowl. Data Eng. 14(3), 2002
- H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovery of frequent episodes in event sequences", Data Mining and Knowledge Discovery, 1997

References (III) Graph Pattern Mining

- C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of molecules, ICDM'02
- ☐ J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism, ICDM'03
- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data, PKDD'00
- M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01
- S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference.
 KDD'04
- N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data, ICDM'02
- X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02
- X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03
- X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04
- □ X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05

Note: Correction in the Original Textbook

- **Example 7.11 Core patterns.** Line 4 should be
 - □ Therefore, $|D_{\alpha 1}|/|D_{(ab)}| = 200/200 \ge τ$
- ☐ Figure 7.9. A transaction database, which contains duplicates, and core patterns for each distinct transactions (The corrected table contents should be as follows)

Transaction (# of transactions)	Core Patterns (τ = 0.5)
(abe) (100)	(abe), (ab), (be), (ae), (a), (b), (e)
(bcf) (100)	(bcf), (bc), (bf), (cf), (b), (c), (f)
(acf) (100)	(acf), (ac), (af), (a), (c), (f)
(abcef) (100)	(ab), (ac), (ae), (af), (bc), (be), (bf), (ce), (ef), (e), (abc), (abf), (abe) (ace), (acf), (aef), (bcf), (bce), (bef) (cef), (abcf), (abce), (abef), (acef), (bcef), (abcef)

Colossal Patterns Correspond to Dense Balls

Pattern distance: For patterns α and β, the pattern distance of α and β is defined to be:

$$Dist(\alpha, \beta) = 1 - \frac{\left| D_{\alpha} \cap D_{\beta} \right|}{\left| D_{\alpha} \cup D_{\beta} \right|}$$

□ If two patterns α and β are both core patterns of the same pattern, they would be bounded by a "ball" of a radius specified by their core ratio τ

$$Dist(\alpha, \beta) \le 1 - \frac{1}{2/\tau - 1} = r(\tau)$$

- Due to their robustness, colossal patterns correspond to dense balls
 - \square $\Omega(2^d)$ in population

A random draw in the pattern space will hit somewhere in the ball with high probability

Observation: Colossal Patterns and Core Patterns

Subpatterns α_1 to α_k cluster tightly around the colossal pattern α by sharing a similar support. Such subpatterns are *core patterns* of α

- A colossal pattern has far more core patterns than a small-sized pattern
- A colossal pattern has far more core descendants of a smaller size c
- □ A random draw from a complete set of pattern of size c would be more likely to pick a core descendant of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

SpiderMine: Mining Top-K Large Structural Patterns in a Massive Network

- □ Large patterns are informative to characterize a large network (e.g., social network, web, or bio-network)
- □ Similar to pattern fusion, mining large pattern should not aim for completeness but for representativeness of the target results
- Spider-Mine (F. Zhu, et al., VLDB'11): Mine top-K largest frequent substructure patterns whose diameter is bounded by D_{max} with a probability at least $1-\epsilon$
- General idea: Large patterns are composed of a number of small components ("spiders") which will eventually connect together after some rounds of pattern growth
- **r-Spider:** An r-spider is a frequent graph pattern P such that there exists a vertex u of P, and all other vertices of P are within distance r from u

Why Is SpiderMine Good for Mining Large Patterns

- The SpiderMine Algorithm
 - Mine the set S of all the r-spiders
 - Randomly draw M r-spiders
 - Grow these M r-spiders for $t = D_{max}/2$ iterations, and merge two patterns whenever possible
 - Discard unmerged patterns
 - Continue to grow the remaining ones to maximum size
 - Return the top-K largest ones in the result
- Why is SpiderMine likely to retain large patterns and prune small ones?
 - Small patterns are much less likely to be hit in the random draw
 - Even if a small pattern is hit, it is even less likely to be hit multiple times
 - The larger the pattern, the greater the chance it is hit and saved

Mining Collaboration Patterns in DBLP Networks

- Data description: 600 top confs, 9 major CS areas, 15071 authors in DB/DM
- Author labeled by # of papers published in DB/DM
 - Prolific (P): >=50, Senior (S): 20~49, Junior (J): 10~19, Beginner(B): 5~9

Application of Pattern Mining I: Graph Indexing

- Graph query: Find all the graphs in a graph DB containing a given query graph
- Index should be a powerful tool
- Path-index may not work well
- Solution: Index directly on substructures (i.e., graphs)

(c)

Only graph (c) contains Q

Path-indices: C, C-C, C-C-C, C-C-C cannot prune (a) & (b)

glndex: Indexing Frequent and Discriminative Substructures

- Why index frequent substructures?
 - Too many substructures to index
 - Size-increasing support threshold
 - Large structures will likely be indexed well by their substructures

- Reduce the index size by an order of magnitude
- Selection: Given a set of selected structures f_1 , f_2 , ... f_n , and a new structure x, the extra indexing power is measured by

$$\Pr(x|f_1, f_2, \dots f_n), f_i \subset x$$

when $Pr(x|f_1, f_2, ..., f_n)$ is small enough, x is a discriminative structure and should be included in the index

Experiments show glndex is small, effective and stable

Application II: Support Substructure Similarity Search

- Find graphs in a graph DB containing substructures similar to a given query graph
- Ex. Data: A chemical compound DB
 - A query graph:

(c)

- How to do similarity search efficiently?
 - No indexing?—Sequential scan + computing subgraph similarity—too costly!
 - Build graph indices to support approximate search?
 - Need an explosive number of subgraphs to cover all the *similar* subgraphs!
- An elegant solution (Yan et al., SIGMOD'05):
 - Keep the graph index structure, but select features in the query space

Feature-Based Similarity Search

- Decompose a query graph into a set of features
- Feature-based similarity measure
 - Each graph is represented as a feature vector $X = \{x_1, x_2, ..., x_n\}$
 - Similarity is defined by the distance of their corresponding vectors
- If graph G contains the major part of a query graph Q, G should share a number of common features with Q
 - Given a relaxation ratio, one can calculate the maximal number of features that can be missed!

Assume: Query graph has 5 features

Relaxation threshold: can miss at most 2 features

Then: G₁, G₂, G₃ are pruned

Graphs in database

 $\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline & G_1 & G_2 & G_3 & G_4 & G_5 \\ \hline f_1 & 0 & 1 & 0 & 1 & 1 \\ \hline f_2 & 0 & 1 & 0 & 0 & 1 \\ \hline f_3 & 1 & 0 & 1 & 1 & 1 \\ \hline f_4 & 1 & 0 & 0 & 0 & 1 \\ \hline f_5 & 0 & 0 & 1 & 1 & 0 \\ \hline \end{array}$

features

A feature-graph matrix