C11 - 3.1 - Quadratics Graphing x^2 TOV Notes

Graphing:
$$y = x^2$$

Table of Values

Х	у		Pt.
-2	4	~	(-2,4)
-1	1	< \	(-1,1)
0	0		(0,0)
1	1		(1,1)
2	4	←	(2,4)

$$y = x^{2}$$
 $y = x^{2}$ $y = (-2)^{2}$ $y = (-1)^{2}$ $y = (0)^{2}$ $y = 4$ $y = 1$ $y = 0$

Vertex:

$$y = x^2$$
$$y = (-1)^2$$

$$y = x^2$$
$$y = (0)^2$$

$$y = x^2$$

$$y = (1)^2$$

$$y = 1$$

$$y = x^2$$

$$y = (2)^2$$

$$y = 4$$

Notice: the pattern from the vertex (0,0) is **symmetrical** on both sides.

Over 1, 1 squared = 1, up 1. Back to the vertex. Over 2, 2 squared = 4, up 4.

C11 - 3.1 - Quadratic Vertical Translation Notes $y = x^2 + q$

Graphing:
$$y = x^2 + c$$

$$y = x^2 + 1$$

Table of Values

Х	у
-2	5
-1	2
0	1
1	2
2	5

$$y = x^{2} + 1$$
 $y = x^{2} + 1$ $y = x^{2} + 1$ $y = (-2)^{2} + 1$ $y = (-1)^{2} + 1$ $y = 0 + 1$ $y = 1 + 1$ $y = 5$ $y = x^{2} + 1$ $y = x^{2} + 1$ $y = x^{2} + 1$ $y = (0)^{2} + 1$ $y = (1)^{2} + 1$ $y = 1 + 1$ $y = 1$

$$y = (-2)^2 + y = 4 + 1$$

$$y = 5$$

$$y = x^2 + 1$$

 $y = (-1)^2 + 1$

$$y = 1 + 1$$

$$y = 2$$

$$y = x^2 + 1$$

$$y = (0)^{-1}$$

 $y = 0 + 1$

$$y = 5$$

$$y=x^2+1$$

$$y = (1)^2 + 1$$

$$y = 1 +$$

$$y = 2$$

$$y=x^2+1$$

$$y = (2)^2 + 1$$

$$y = 4 + 1$$

$$y = 5$$

Notice: the graph of $y = x^2 + 1$ is the graph $y = x^2$ shifted up 1. "c" is the y intercept. "c" is only the vertex if there is no "b".

C11 - 3.1 - Quadratics Horizontal Translation Notes $(x - p)^2$

1) Graphing:
$$y = (x - p)^2$$

 $y = (x - 2)^2$

Table of Values

Х	у
0	4
1	1
2	0
3	1
4	4

$$y = (x - 2)^{2}$$
 $y = (x - 2)^{2}$
 $y = ((0) - 2)^{2}$ $y = ((1) - 2)^{2}$
 $y = (0 - 2)^{2}$ $y = (1 - 2)^{2}$
 $y = (-2)^{2}$ $y = (-1)^{2}$
 $y = 4$ $y = 1$

$$y = (x-2)^{2}$$

$$y = ((1) - 2)^{2}$$

$$y = (1 - 2)^{2}$$

$$y = (x-2)^2$$

 $y = ((2) - 2)^2$
 $y = (2-2)^2$

$$y = (x-2)^{2}$$

$$y = ((3) - 2)^{2}$$

$$y = (3-2)^{2}$$

$$y = (x-2)^{2} y = (x-2)^{2} y = (x-2)^{2} y = (x-2)^{2}$$

$$y = ((2)-2)^{2} y = ((3)-2)^{2} y = ((4)-2)^{2}$$

$$y = (0)^{2} y = (-1)^{2} y = (2)^{2}$$

$$y = (0)^{2} y = (1)^{2} y = (2)^{2}$$

$$y = (1)^{2} y = (2)^{2}$$

$$y = (2)^{2} y = (2)^{2}$$

$$y = (-y = 1)$$

$$y = (0)^2$$
$$y = 0$$

$$y = (-1)^2$$

$$y = 1$$

$$y = (2)^2$$
$$y = 4$$

Notice: the graph of $y = (x - p)^2$ is the graph $y = x^2$ shifted right 2. Notice we shift the opposite of "p".

C11 - 3.1 - Quadratics Horizontal/Vertical Summary

 $y=(x-2)^2-3$

Graph moves down q

C11 - 3.1 - Quadratics Reflection Notes $-x^2$

1) Graphing:
$$y = -x^2$$

 $y = -x^2$

$$y = -x^2$$

Table of Values

Х	у
-2	-4
-1	-1
0	0
1	-1
2	-4

$$y = -x^{2}$$
 $y = -x^{2}$ $y = -x^{2}$ $y = -x^{2}$ $y = -x^{2}$ $y = -(-2)^{2}$ $y = -(-1)^{2}$ $y = -(0)^{2}$ $y = -(1)^{2}$ $y = -(2)^{2}$ $y = -4$

$$y = -x^2$$
$$y = -(-1)^2$$

$$y = -x^2$$
$$y = -(0)^2$$

$$y = -x^2$$
$$y = -(1)$$

$$y = -x^2$$
$$y = -(2)^2$$

$$y = -4$$

$$y = -1$$

$$y = -4$$

$$y = -1$$

$$y = -(2)^2$$
$$y = -4$$

Notice: The graph of $y = -x^2$ is the graph of $y = x^2$ opening downwards. Over 1, 1 squared = 1, down 1. Back to the vertex. Over 2, 2 squared = 4, down 4.

C11 - 3.2 - Quadratics Vertical Exp Notes $(2x^2, \frac{1}{2}x^2)$

1) Graphing:
$$y = ax^2$$

$$y=2x^2$$

$$y = 2x^2$$

Table of Values

Х	у		Pt.
-2	8	~	(-2,8)
-1	2	<	(-1,2)
0	0		(0,0)
1	2		(1,2)
2	8		(2,8)

$$y = 2x^{2}$$
 $y = 2x^{2}$ $y = 2(-2)^{2}$ $y = 2(-1)^{2}$ $y = 2(0)^{2}$ $y = 2(4)$ $y = 2(1)$ $y = 2(0)$ $y = 2(0)$ $y = 2(0)$ $y = 2(0)$ $y = 0$

$$y=2x^2$$

$$y=2x^2$$

$$y = 2x^2$$

$$y = 2x^2$$

$$y = 2(-2)$$

$$y = 2(-1)^4$$

$$y=2(0)^2$$

$$y=2(1)^2$$

$$y = 2(2)^2$$

$$y = 2(4)$$

$$y - 20$$

$$y = 2(0)$$

$$y = 2(1)$$

$$y=2(4)$$

$$y = 8$$

$$v=2$$

$$v = 0$$

$$y - 2(1)$$

 $y = 2$

$$y = 8$$

Notice: the pattern from the vertex (0,0) is symmetrical on both sides.

Over 1, 1 squared = 1, 1 times 2 = 2, up 2. Back to the vertex. Over 2, 2 squared = 4, 4 times 2 = 8, up 8. In the last two steps, we are multiplying by 2 because a = 2.

$$y=\frac{1}{2}x^2$$

Table of Values

Х	у		Pt.
-2	2	~	(-2,2)
-1	$\frac{1}{2}$	\leftarrow	$(-1,\frac{1}{2})$
0	0))	(0,0)
1	$\frac{1}{2}$		$(1,\frac{1}{2})$
2	2	←	(2,2)

$$y = \frac{1}{2}x^2$$

$$y = \frac{1}{2}(-2)^2$$

$$y = \frac{1}{2}(4)$$

$$y = 2$$

$$y = \frac{1}{2}x^{2}$$

$$y = \frac{1}{2}(-1)^{2}$$

$$y = \frac{1}{2}(-1)^{2}$$

$$y = \frac{1}{2}x^{2}$$
$$y = \frac{1}{2}(0)^{2}$$

$$y = \frac{1}{2}x^{2} \qquad y = \frac{1}{2}x^{2} \qquad y = \frac{1}{2}x^{2} \qquad y = \frac{1}{2}x^{2} \qquad y = \frac{1}{2}x^{2}$$

$$y = \frac{1}{2}(-2)^{2} \qquad y = \frac{1}{2}(-1)^{2} \qquad y = \frac{1}{2}(0)^{2} \qquad y = \frac{1}{2}(1)^{2} \qquad y = \frac{1}{2}(2)^{2}$$

$$y = \frac{1}{2}(4) \qquad y = \frac{1}{2}(1) \qquad y = \frac{1}{2}(0) \qquad y = \frac{1}{2}(1) \qquad y = \frac{1}{2}(4)$$

$$y = 2 \qquad y = 0 \qquad y = \frac{1}{2}$$

C11 - 3.2 - Quadratics Compression/Expansion Summary

Expand

Compress

C11 - 3.2 - Quadratics Vertical/Horizontal Combo Notes

C11 - 3.3 - Completing the Square Notes

Standard form \longrightarrow

Vertex form

 $y = ax^2 + bx + c$ \longrightarrow $y = a(x-p)^2 + q$ Vertex = (p,q)

$$y = a(x-p)^2 + q$$

 $y = x^2 + 6x + c$

$$y = x^2 + 6x + 9$$

$$y = (x + 3)(x + 3)$$

 $y = (x + 3)^2$

$$\left(\frac{b}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = (3)^2 = 9$$

 $\left(\frac{b}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = (3)^2 = 9$ | "b" divided by 2 all squared: $\left(\frac{b}{2}\right)^2$

Factor

Vertex form: Vertex = (-3.0)

a = 1

$$y = x^2 - 4x + 3$$
$$y = (x^2 - 4x) + 3$$

Group x terms

$$y = (x^2 - 4x + 4 - 4) + 3$$

$$y = (x^2 - 4x + 4) - 4 + 3$$

$$y = (x-2)(x-2) - 1$$

Add and subtract inside brackets

Remove number not contributing to perfect square (the negative)

$$y = (x-2)(x-2)-1$$

Factor brackets, simplify outside

$$y = (x-2)^2 - 1$$

Vertex form: Vertex = (2, -1)

$a \neq 1$

$$y = 2x^2 - 8x + 3$$
$$y = (2x^2 - 8x) + 3$$

Group x terms

$$y = 2(x^2 - 4x) + 3$$

Factor out coefficient of x^2

$$\left(\frac{b}{2}\right)^2 = \left(\frac{-4}{2}\right)^2 = (-2)^2 = 4$$

 $\left(\frac{b}{2}\right)^2 = \left(\frac{-4}{2}\right)^2 = (-2)^2 = 4$ New "x" coefficient divided by 2 all squared: $\left(\frac{b}{2}\right)^2$

$$y = 2(x^2 - 4x + 4 - 4) + 3$$

Add and subtract inside brackets

$$y = 2(x^2 - 4x + 4) - 8 + 3$$

Remove number not contributing to perfect square (the negative) Don't forget to multiply by "a"

$$y = 2(x-2)(x-2) - 5$$

Factor brackets, simplify outside

$$y = 2(x-2)^2 - 5$$

Vertex form: Vertex = (2, -5)

Remember: $\frac{b}{2a}$ or $\frac{"new b"}{2}$ is the number that goes inside the brackets with x

C11 - 3.3 - Find Vertex Form Vertex Point Notes

Using the vertex and a point on the parabola, find the equation in Vertex Form.

Vertex: (5,4) and Point: (7,8)

$$y = a(x-p)^2 + q$$

$$y = a(x - p)^2 + q$$

 $y = a(x - (5))^2 + q$

Write the general equation.

 $y = a(x - (5))^2 + 4$ $y = a(x-5)^2 + 4$

Put in the values of the Vertex for (p, q)Write in Vertex form. a still unknown.

$$8 = a(7-5)^2 + 4$$

Put in the values of the point for (x, y)

$$8 = a(2)^2 + 4$$

$$8 = 4a + 4$$

$$\frac{4}{4} = \frac{4a}{4}$$

Solve for a.

$$1 = a$$

Put in the value for "a" to find the equation.

$$a = 1$$

 $y = 1(x - 5)^2 + 4$

Vertex: (3, -2) and x - intercept = 4

$$y = a(x-p)^2 + q$$

$$y = a(x - (3))^{2} - 2$$

 $y = a(x - 3)^{2} - 2$

$$y = a(x-3)^2 - 2$$

$$0 = a(4-3)^2 - 2$$

$$0 = a(1)^2 - 2$$

$$0=1a-2$$

$$2 = a$$

$$a = 2$$

 $y = 2(x - 3)^2 - 2$

Vertex: $\left(-\frac{1}{2}, 1\right)$ and Point: $\left(\frac{1}{2}, 2\right)$

$$y = a(x-p)^2 + q$$

$$y = a\left(x - \left(-\frac{1}{2}\right)\right)^2 + 1$$

$$y = a\left(x + \frac{1}{2}\right)^2 + 1$$

$$2 = a\left(\frac{1}{2} + \frac{1}{2}\right)^2 + 1$$
$$2 = a(1)^2 + 1$$

$$2 = a(1) + 1$$

 $2 = a(1) + 1$

$$2 = u(1) + 1$$

-1 -1

$$1 = a$$

$$y = \left(x + \frac{1}{2}\right)^2 + 1$$

C11 - 3.3 - Vertex: $\left(-\frac{b}{2a}, y\right)$ Quadratics in Standard Form Notes

1)
$$y = x^2 - 6x + 5$$

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$Vertex = \left(\frac{-(-6)}{2(1)}, y\right)$$

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$Vertex = \left(\frac{6}{2}, y\right)$$

$$Vertex = (3, y)$$

$$y = x^{2} - 6x + 5$$

$$y = (3)^{2} - 6(3) + 5$$

$$y = 9 - 18 + 5$$

$$y = -4$$

Substitute 3 in for x and solve for y

$$Vertex = (3, -4)$$

$$y = x^2 - 6x + 5$$

$$Vertex = (3, -4)$$

Vertex:

	'	O
	2	-3
:	3	-4
	4	-3
	5	0

$$y = x^{2} - 6x + 5$$

$$y = (1)^{2} - 6(1) + 5$$

$$y = 1 - 6 + 5$$

$$y = 0$$

$$y = x^{2} - 6x + 5$$

$$y = (2)^{2} - 6(2) + 5$$

$$y = 4 - 12 + 5$$

$$y = -3$$

$$y = x^{2} - 6x + 5$$

$$y = (4)^{2} - 6(4) + 5$$

$$y = 16 - 24 + 5$$

$$y = -3$$

$$y = x^{2} - 6x + 5$$
 $y = (4)^{2} - 6(4) + 5$ $y = (5)^{2} - 6(5) + 5$
 $y = 16 - 24 + 5$ $y = 25 - 30 + 5$
 $y = 0$

C11 - 3/4 - Key Points of Quadratic Functions Notes a=1

Important Parts of a Quadratic Function:

- Vertex
- x-intercepts
- Shape
- y-intercept

	Х	у
	-2	5
	-1	0
Vertex:	0	-3
	1	-4
	2	-3
	3	0

5

4

	Vertex Form	Standard Form	Factored Form
Equation	$y=(x-1)^2-4$	$y = x^2 - 2x - 3$	y=(x+1)(x-3)
Info	Vertex: (1, −4)	y-intercept: $(0, -3)$	x-intercepts: (-1,0), (3,0)

Standard to Vertex

Standard Form:

$$y = x^2 - 2x - 3$$

√square.

Complete the
$$y = (x^2 - 2x) - 3$$

square. $y = (x^2 - 2x + 1 - 1) - 3$

Vertex Form:

$$y = (x-1)^2 - 4$$

Vertex to Standard

$$y = (x-1)^2 - 4$$

 $y = (x^2 - 2x + 1) - 4$

Standard Form:

$$y = x^{2} - 2x + 1 - 4$$

$$y = x^{2} - 2x - 3$$

Standard to Factored

Standard Form:

y = (x+1)(x-3)

Factor. Factored Form:

Factored to Standard

y = (x+1)(x-3) $y = (x^2 - 3x + x - 3)$ $y = x^2 - 2x - 3$

Factored Form: Standard Form:

C11 - 3/4 - Key Points of Quadratic Functions Notes $a \neq 1$

Important Parts of a Quadratic Function:

- Vertex
- x-intercepts
- Shape
- y-intercept

х	у
-2	10
-1	0
0	-6
1	-8
2	-6
3	0
4	10

	Vertex Form	Standard Form	Factored Form
Equation	$y = 2(x-1)^2 - 8$	$y = 2x^2 - 4x - 6$	y=2(x+1)(x-3)
Info	Vertex: (1, -8)	y-intercept: $(0, -6)$	x-intercepts: (0,-1), (0,3)

Standard to Vertex

 $y = 2x^2 - 4x - 6$ Standard Form:

Complete the $y = 2(x^2 - 2x) - 6$

 $y = 2(x^2 - 2x + 1 - 1) - 6$ √square.

 $y = 2(x-1)^2 - 6$ Vertex Form:

Standard to Factored

 $y = 2x^2 - 4x - 6$ Standard Form: $y = 2(x^2 - 2x - 3)$ Factor.

y = 2(x-3)(x+1)Factored Form:

Vertex to Standard

Vertex Form: $y = 2(x-1)^2 - 8$

 $y = 2(x^2 - 2x + 1) - 8$ **FOIL** $y = 2x^2 - 4x + 2 - 8$

 $y = 2x^2 - 4x - 6$ Standard Form:

Factored to Standard

y = 2(x + 1)(x - 3)

 $y = 2(x^2 - 4x - 3)$

 $y = 2(x^{2} - 2x - 3)$ $y = 2x^{2} - 4x - 6$

FOIL Standard Form:

Factored Form: