Lecture 15 – Convolutional neural networks and intro to sequence models

Prof. Maggie Makar

Announcements

- Project 2 has been released
- HW2 solutions and grades have been released
- "Quiz" (midterm reflections) is released
- Midterm grades will be released today

Percentile	Grade
90	70.7
80	66
70	62.5
60	58.8
50	55
40	52
30	47.5
20	43.1
10	36.4
5	27.2

Midterm announcements

- If you've scored 27 or less, please sign up for a slot in my office hours on Monday from 10:35-11:45 or 2:30-3:30 using this link: https://bit.ly/profm-mt-oh
- If you scored higher than that but would like to chat about the MT, show up to my office hours 3:30-4:30 on Monday
- All OH are in my office BBB 3769

Zustify

- Moving forward: notes about the final
 - Check the released solutions not your own answers

Class outline

- A note on Backprop
- CNNs:
 - Recap: Motivating CNNs
 - Convolution and padding
 - Max Pooling
 - Final layer
 - Some "famous" CNNs
- RNNs:
 - Motivating RNNs

Why is the forward pass important?

- During the k + 1 iteration:
 - Sample some \bar{x} , y from the data
 - Make a prediction $\hat{y} = h(\bar{x}; \bar{\theta}^{(k)}) \leftarrow \text{Forward} \text{ Pass}$
 - Measure the loss of the prediction \hat{y} with respect to the true label y Call that Loss $(y, h(\bar{x}; \bar{\theta}^{(k)}))$
 - Go through each node in reverse order to figure out the contribution of each node to the loss
 - To get $\bar{\theta}^{(k+1)}$, change the values of the parameters to reduce error (SGD step)

Why is the forward pass important? (x_1)

$$\frac{\partial \text{Loss}(y, z^{(3)})}{\partial w_{53}^{(1)}} = \frac{\partial \text{Loss}(y, z^{(3)})}{\partial z^{(3)}} \cdot \frac{\partial z^{(3)}}{\partial h_5^{(2)}} \cdot \frac{\partial h_5^{(2)}}{\partial z_5^{(2)}} \cdot \frac{\partial z_5^{(2)}}{\partial w_{53}^{(1)}}$$

$$= -y [1 - yz^{(3)} > 0] \cdot w_{15}^{(2)} \cdot 1 [z_5^{(2)} > 0] \cdot x_3$$

Images as inputs

1	0	1	0	0
1	0	1	0	1
1	1	1	0	0
1	0	1	0	1
1	0	1	0	1

- Start with greyscale images
- Each pixel take a value between 0 and 1
- 0: black, 1: white

Images as inputs

x_1	x_2	x_3	X_4	x_5
χ_6	x_7	<i>x</i> ₈	<i>x</i> ₉	x_{10}
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	x_{20}
<i>x</i> ₂₁	x_{22}	<i>x</i> ₂₃	x_{24}	<i>x</i> ₂₅

- Start with greyscale images
- Each pixel take a value between 0 and 1
- 0: black, 1: white

$$\overline{X} = \begin{bmatrix} X_1, \dots X_d \end{bmatrix}^T$$

$$\overline{X} = \begin{bmatrix} X_1, \dots X_5, X_6 \dots X_{(6)}, \dots X_{25} \end{bmatrix}^T$$

Can we use our fully connected NN here? Yes, but...

- There is exploitable structure in an image
 - Spatial locality

Can we use our fully connected NN here? Yes, but...

- There is exploitable structure in an image
 - Spatial locality
 - Translation invariance

- Convolutional neural networks (CNNs)
 - Different type of layers
 - Convolutional layers
 - ReLU
 - Max Pooling

2D image:

1	0	1	0	0
1	0	1	0	1
1	1	1	0	0
1	0	1	0	1
1	0	1	0	1

Convolve the filter with the image: "slide" the filter over the image spatially. Compute dot products as you slide.

2D image:

2D	1	0	1	0	0	Filter	-1	-1	-1
image:	1	0	1	0	1		-1	1	-1
	1	1	1	0	0		-1	-1	-1
	1	0	1	0	1				
	1	0	1	0	1				
-1 + 0)								

2D	1	0	1	0	0	Filter	-1	-1	-1
image:	1	0	1	0	1		-1	1	-1
	1	1	1	0	0		-1	-1	-1
	1	0	1	0	1				
	1	0	1	0	1			7	
-1 + 0) —	1							

2D	1	0	1	0	0		Filter	-1	-1	-1
image:	1	0	1	0	1			-1	1	-1
	1	1	1	0	0			-1	-1	-1
'	1	0	1	0	1					
	1	0	1	0	1				1	
-1 + 0) —	1								
-1				Aft	er					
						ution				

2D	1	0	1	0	0	Filter	-1	-1	-1
image:	1	0	1	0	1		-1	1	-1
	1	1	1	0	0		-1	-1	-1
	1	0	1	0	1				
	1	0	1	0	1				
-1 + 0 $-1 + 0$) —	1							
-1 + 0)			Aft	er				

Convolution

2D	1	0	1	0	0	
image:	1	0	1	0	1	
	1	1	1	0	0	
'	1	0	1	0	1	
	1	0	1	0	1	

Filter	-1	-1	-1
	-1	1	-1
	-1	-1	-1

$$-1 + 0 - 1$$

 $-1 + 0 - 1$

2D	1	0	1	0	0	
image:	1	0	1	0	1	
	1	1	1	0	0	
'	1	0	1	0	1	
	1	0	1	0	1	

Filter	-1	-1	-1
	-1	1	-1
	-1	-1	-1

$$-1 + 0 - 1$$

 $-1 + 0 - 1$

						1				
2D	1	0	1	0	0		Filter	-1	-1	-1
image:	1	0	1	0	1			-1	1	-1
	1	1	1	0	0			-1	-1	-1
'	1	0	1	0	1					
	1	0	1	0	1					
-1 + 0 - 1										
-1 + 0				Aft	O.W.					
1				A10	GI.					

Convolution

2D	1	0	1	0	0		Filter	-1	-1	-1
image:	1	0	1	0	1			-1	1	-1
	1	1	1	0	0			-1	-1	-1
'	1	0	1	0	1					
	1	0	1	0	1				7	
						-				
-1 + 0) —	1							_	
-1 + 0) —	1								
		_		Aft	er					
-1 -	1			Cor	nvol	ution				
-1 + 0 $-1 + 0$ $-1 - 0$) —) —	1	_	Aft		ution				

21)	
in	a_{a}	ge:

Filter	-1	-1	-1
	-1	1	-1
	-1	-1	-1

$$-1 + 0 - 1$$

 $-1 + 0 - 1$

$$-1 - 1 - 1$$

2D	1	0	1	0	8	F	liter	-1	-1	-1
image:	1	0	1	0	1			-1	1	-1
	1	1	1	0	0			-1	-1	-1
	1	0	1	0	1					
	1	0	1	0	1					
	Stı	ride	leng	;th =	= 1			-7	-2	

2D image:

Stride length = 1

Filter 2D image: 1 0

2D image:

-7 -2 -4 -5 -2 -5 -7

2D image:

-7	-2	- 4
-5	-2	-5
-7	-2	

2D image:

-7	-2	-4
-5	-2	-5
7	-2	-5

2D example: Convolutional layer with stride length 2

2D image:

1	0	1	0	0
1	0	1	0	1
1	1	1	0	0
1	0	1	0	1
1	0	1	0	1

-7 -4 -7 -5

2D example: Convolutional layer with stride length 1

S	hrinker	leads	to:		
_	Depte	Const	runt		
	J NIN		_	After	
_	Underro	prere	ich ?	Conv	olution
7	info fr	on to	رف	3 3 - 2 ·	
	edges'				

-7	-2	-4
-5	-2	-5
-7	-2	-5

-7	-2	-4
-5	-2	-5
-7	-2	-5

2D

0	-4	0	-3	-1
-2	-7	-2	-4	1
-2	-5	-2	-5	-2
-2	-7	-2	- 5	0
0	-4	0	-4	0

-3 With -2 -2 -4 bias 3 =-2 -5 -2 -5 -2 -2 -5 -4 0-4

-1

1

+3

-2

0

0

Filter

-11 3 3 With -4 4 bias 3 =-2 -2 -4 -2 3 3 -1 3 3

Filter

2D

image:

After Convolution

$$= w_1 + w_3 + w_4 + w_6 + w_7 + w_8 + w_9 + b$$

2D

After Convolution

0	-4	0	-3	-1
-2	-7	-2	-4	1
-2	-5	-2	- 5	-2
-2	-7	-2	- 5	0
0	-4	0	-4	0

2D example: Applying the activation function

()

TL;DPA:

- 1. Convolutions allow us to learn "local" information in the image
- 2. Core idea: we apply a filter to the image, which means taking the dot product between the filter & each "window" in the image
- 3. Stride length determines the size of the resulting convolved features
- 4. Padding ensures that we don't miss important information in the edges of the image and prevents the convolved features from "shrinking" too much

3D examples: colored images

- Tensor - generalization of a motivix

- DXWXH

Image from https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

3D convolutional layer

Figure from: Fundamentals of Deep Learning by Nikhil Buduma, Nicholas Locascio

Filters in a convolutional layer

- Each filter produces a new feature map.
 - Low level features in initial layers, and high level features in later layers
 - e.g., on first layer edge detection and higher layers wheel-like patterns

Filters in a convolutional layer

- Hyperparameters:
 - number of filters
 - stride length
 - filter size
 - zero-padding
- Efficiency concerns
 - parameter sharing (same weights across all depths)

Filters in a convolutional layer

- The size of the resulting convolved features depends on the size of the filter and the stride length
- We can specify different stride lengths in different directions
- Calculating the size of the convolved features (2D example):
 - Input (after padding if applicable): $I_w \times I_h$
 - Filter: $F \times F$
 - Stride: *S*
 - Output: $O_w \times O_h$ where:

$$O_w = \frac{I_w - F}{S} + 1, \qquad O_h = \frac{I_h - F}{S} + 1$$

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

- Goal: Have I learned any meaningful structure in this local "window" of my image?
- Has the effect of consolidating the information from each window
- Helps give us the desired invariance

Output from convolutional layer

&	ReLU	
∞	ReLU	

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3 × 3
 E.g stride 3

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	Û	9
0	0	0	0	0	0

 $\max(0,0,0,0,0,0,0,0,0)$

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3 × 3
- E.g stride 3

After max pooling:

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3 × 3
- E.g stride 3

After max pooling:

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	U	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	U	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

Output from convolutional layer & ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3 × 3
- E.g stride 3

After max pooling:

0 | 1

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3 × 3
- E.g stride 3

After max pooling:

Output from convolutional layer

& ReLU:

(C	0	0	0	0	0
()	0	0	0	1	0
(C	0	0	0	0	0
(C	1	0	0	0	0
)	0	0	0	0	0
(C	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

0 | 1

Output from convolutional layer

& ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	9	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

Output from convolutional layer & ReLU:

0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	0
0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Max pooling: returns max of its arguments

- E.g size 3×3
- E.g stride 3

After max pooling:

0	1		
1	0		

No learnable weights in this layer

Depth remains the same, but size shrinks