What can non-linear embeddings tell us about the way a mouse learns a motor skill?

Concha A^1 Mirande J^1 Molano Ramirez L^2 Hernandez D^2 Esposito MS^2

¹Instituto Balseiro, Universidad Nacional de Cuvo - CNEA

²CONICET - Departamento de Física Médica, Centro Atómico Bariloche

■ Experimental protocol, conditions and constraints

Accelerating rotarod, open field, reaching tasks, etc.

- Experimental protocol, conditions and constraints

 Accelerating rotarod, open field, reaching tasks, etc.
- Task performance and learning metrics
 - Falling times, reaction times, maximum distances, hit and miss rates etc.

- Experimental protocol, conditions and constraints

 Accelerating rotarod, open field, reaching tasks, etc.
- Task performance and learning metrics

Falling times, reaction times, maximum distances, hit and miss rates etc.

Can we go deeper?

- Experimental protocol, conditions and constraints
 Accelerating rotarod, open field, reaching tasks, etc.
- Task performance and learning metrics

 Falling times, reaction times, maximum distances, hit and miss rates etc.
- Features used to describe animal behavior in detail

 Body-part positions, velocities, angles, spectrograms, etc.

■ What is animal behavior?

Neural computation: responses to stimuli.

Control process: actions performed to affect perceptions.

Cisek P (1999) Beyond the computer metaphor: Behaviour as interaction

■ What is animal behavior?

Neural computation: responses to stimuli.

Control process: actions performed to affect perceptions.

Cisek P (1999) Beyond the computer metaphor: Behaviour as interaction

■ Why is it important to quantify behavior?

Neural manipulation and recordings: becoming more precise and involving more neurons with higher resolutions.

Berman GJ (2018) Measuring behavior across scales

■ What is animal behavior?

Neural computation: responses to stimuli.

Control process: actions performed to affect perceptions.

Cisek P (1999) Beyond the computer metaphor: Behaviour as interaction

■ Why is it important to quantify behavior?

Neural manipulation and recordings: becoming more precise and involving more neurons with higher resolutions.

Berman GJ (2018) Measuring behavior across scales

We need high throughput, rich and unbiased behavior classification!

■ How to quantify behavior?

Simple cases:

Push a button, pull a lever, cross a defined threshold, etc.

Complex cases:

Specific types of movements, locomotion styles, poses, exploring, social interactions, vocal repertoires, etc.

■ How to quantify behavior?

Simple cases:

Push a button, pull a lever, cross a defined threshold, etc.

Complex cases:

Specific types of movements, locomotion styles, poses, exploring, social interactions, vocal repertoires, etc.

Unsupervised behavior classification!

Unsupervised behavior classification: general pipeline

Unsupervised behavior classification: application examples

Worms (Eigenworms!)

Stephens GJ, W Bialek et al. (2008) Dimensionality and dynamics in the behavior of *C. elegans*

Flies

Berman GJ et al. (2014) Mapping the stereotyped behaviour of freely moving fruit flies

Social interactions in flies

Klibaite U, Shaevitz JW (2020) Paired fruit flies synchronize behavior: Uncovering social interactions in *Drosophila melanogaster*

Animal vocalizations and bird songs

Sainburg T et al. (2020) Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires

Mice

Klibaite U et al. (2021) Deep behavioral phenotyping of mouse autism models using open-field behavior

■ What information do features convey in a motor task?

■ What information do features convey in a motor task?

FeaturesBehaviorsBody-part positions and joint angles \rightarrow PosesSpectrograms \rightarrow Movements

■ What information do features convey in a motor task?

```
FeaturesBehaviorsBody-part positions and joint angles\rightarrowPosesSpectrograms\rightarrowMovements
```

■ So... What can behavior embeddings tell us about motor learning?

■ What information do features convey in a motor task?

```
FeaturesBehaviorsBody-part positions and joint angles\rightarrowPosesSpectrograms\rightarrowMovements
```

■ So... What can behavior embeddings tell us about motor learning?

It depends on the features and the experimental protocol!

Feature extraction: some of their properties

Motion tracking	Body-part positions	Joint angles	Power spectra
	Rigid translation	Rigid translation,	
Invariant to	(only \mathbf{r}_{ij})	rotation and	Phase shift
		uniform scaling	

Discussion

- To capture information about the phase differences between pairs of moving body-parts, we could use the coherence phase of their cross-wavelet spectrum.
- We would like to improve our behavior embeddings, by thinking thoroughly about the features we use.
- We want to use these methods to find correlations with simultaneous neural activity recordings, as well as to quantify behavioral changes during learning.
- Overall, this unsupervised behavior classification paradigm seems promising.

Wrapping up

Thank you for your attention!

Please, take a look at: Jorge Mirande's oral communication (OC4 \sim 10:45) and Leonardo Molano Ramirez' poster (PS5-13, yesterday's session)

Methods: Accelerating rotarod and motor impairment

Campos FL, et al. (2013)
Rodent models of Parkinson's disease: beyond the motor symptomatology