Dispense sull'analisi delle componenti principali Principal Component Analysis, PCA

Giorgio Marrubini e Camillo Melzi

Indice

			5			
1	Dati multidimensionali					
	1.1	Rappresentazione matriciale e geometrica	7			
	1.2	Trasformazione delle variabili: centratura e standardizzazione	8			
	1.3	Matrice di covarianza e correlazione	9			
	1.4	Variabili latenti o componenti e proiezioni	10			
2	Ana	alisi delle componenti principali	15			
\mathbf{B}^{i}	Bibliografia					

4 INDICE

6 INDICE

Capitolo 1

Dati multidimensionali

1.1 Rappresentazione matriciale e geometrica

Tabella 1.1: Rappresentazione matriciale

Indiv	X_1	X_2	•••	X_p
1	x_{11}	x_{12}		x_{m1}
2	x_{21}	x_{22}	• • •	x_{2p}
•				
m	x_{1m}	x_{m2}	• • •	x_{mp}

1.2 Trasformazione delle variabili: centratura e standardizzazione

Indichiamo con $\bar{x_1}, \ldots, \bar{x_p}$ le medie delle variabili X_1, \ldots, X_p , cioè le p medie delle p colonne della Tabella 1.1, e con $\sigma_1^2, \ldots, \sigma_p^2$ le rispettive varianze. Il vettore $\bar{x} = (\bar{x_1}, \ldots, \bar{x_p})$ viene chiamato **baricentro**.

Centratura: semplice traslazione del baricentro nell'origine

$$x'_{ij} = x_{ij} - \bar{x_j} \tag{1.1}$$

- non perdo informazione sulla distanza tra i punti (la geometria della nuvola di punti rimane invariata)
- perdo solo informazione sul baricentro
- semplifica formule e conti (da ora in poi useremo sempre dati centrati)

Standardizzazione: questa trasformazione porta ogni variabile ad avere varianza 1 (in generale questa trasformazione viene fatta insieme alla centratura)

$$x'_{ij} = \frac{x_{ij} - \bar{x_j}}{\sigma_j} \tag{1.2}$$

- questa trasformazione rende le variabili degli scalari (numeri puri)
- questa trasformazione è necessaria quando si vogliono confrontare variabili con differenti unità di misura (le variabili devono essere omogenee per essere confrontabili)
- tutte le variabili hanno lo stesso "peso"
- cambia la distanza (la geometria) tra i punti. E' una dilatazione o contrazione.

Si veda la seguente figura per una rappresentazione grafica di dati centarti e scalati per una matrice di dati di 2 variabili

1.3 Matrice di covarianza e correlazione

$$Cov(X) = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1p} \\ \vdots & & \vdots \\ \sigma_{m1} & \dots & \sigma_{pp} \end{pmatrix}, \tag{1.3}$$

dove $\sigma_{ij} = \frac{1}{m-1} \sum_{k=1}^{m} (x_{ki} - \bar{x_i})(x_{kj} - \bar{x_j})$ è la covarianza tra le variabili X_i e X_j , e in particolare $\sigma_{ii} = \sigma_i^2 = \frac{1}{m-1} \sum_{k=1}^{m} (x_{ki} - \bar{x_i})^2$ è la varianza della variabile X_i . Nel caso in cui i dati siano centrati $Cov(X) = \frac{1}{m-1} X^t X$

$$Cor(X) = \begin{pmatrix} 1 & \dots & r_{1p} \\ \vdots & & \vdots \\ r_{m1} & \dots & 1 \end{pmatrix}, \tag{1.4}$$

dove $r_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$ è la correlazione tra le variabili X_i e $X_j.$

1.4 Variabili latenti o componenti e proiezioni

Sia T la combinazione lineare delle variabili $X_1,\dots,X_p,$ ossia il vettore (si veda Figura 1.1)

$$T = b_1 X_1 + \dots + b_p X_p, \tag{1.5}$$

dove $b_1^2 + \cdots + b_p^2 = 1$. Il vettore $\mathbf{b} = (b_1, \dots, b_p)$ è chiamato versore e indica la direzione della variabile latente T (si veda Figura 1.1).

Figura 1.1: Variabile latente T

Sia $\mathbf{x} = (x_1, \dots, x_p)$ un generico punto (vettore) di $\mathbf{R}^{\mathbf{p}}$. Chiamiamo proiezione di \mathbf{x} su T il punto \mathbf{x}' di T la cui distanza da \mathbf{x} è minima (si veda Figura 1.2)

Definiamo componente di \mathbf{x} su T la lunghezza del vettore $\|\mathbf{x}^*\|$ data da

$$\|\mathbf{x}'\| = b_1 x_1 + \dots + b_p x_p. \tag{1.6}$$

I valori b_1, \ldots, b_p sono chiamati loading e la quantità $b_1x_1 + \cdots + b_px_p$ score.

Si osservi che

$$\|\mathbf{x}'\| = \|\mathbf{x}\| \cos \theta \tag{1.7}$$

ossia al prodotto interno (scalare) tra i vettori \mathbf{x} e \mathbf{b} ($\|\mathbf{b}\| = 1$). Si veda la Figura 1.3.

Proiezione degli m individui della matrice \mathbf{X} sulla variabile latente \mathbf{T}

$$\begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{m1} & \dots & x_{mp} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} b_1 x_{11} + \dots + b_p x_{1p} \\ \vdots \\ b_1 x_{m1} + \dots + b_p x_{mp} \end{pmatrix}. \tag{1.8}$$

Supponiamo di prendere una seconda variabile latente

$$T' = b_1' X_1 + \dots + b_p' X_p, \qquad (b_1')^2 + \dots + (b_p')^2 = 1$$
 (1.9)

e supponiamo che sia ortogonale a T (i.e b e b' ortogonali)

$$b_1b_1' + \dots + b_pb_p' = 0. (1.10)$$

Figura 1.2: Proiezione su ${\cal T}$

Figura 1.3: Prodotto interno tra ${\bf x}$ e ${\bf b}$

Figura 1.4: Proiezione sul piano TT'

Si veda la Figura 1.4.

Proiezione degli m individui della matrice \mathbf{X} sul piano TT

$$\begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{m1} & \dots & x_{mp} \end{pmatrix} \begin{pmatrix} b_1 & b_1' \\ \vdots & \vdots \\ b_m & b_p' \end{pmatrix} = \begin{pmatrix} b_1 x_{11} + \dots + b_p x_{1p} & b_1' x_{11} + \dots + b_p' x_{1p} \\ \vdots & & \vdots \\ b_1 x_{m1} + \dots + b_p x_{mp} & b_1' x_{m1} + \dots + b_p' x_{mp} \end{pmatrix}.$$
(1.11)

E' possibile iterare questo procedimento fino a p
 variabili latenti, in questo caso otteniamo un cambio di basi (nuove coordinate). Abbiamo semplicemente "cambiato prospettiva" ruo
tando il sistema di coordinate. Si veda la Figura 1.5.

E' possibile fermarsi prima e proiettare su un iperpiano,

Questo procedimento viene in generale eseguito perchè le variabili latenti hanno certe proprietà desiderate.

Indicando con

$$P = \begin{pmatrix} b_1^1 & b_1^2 & \dots & b_1^p \\ \vdots & \vdots & & \vdots \\ b_m^2 & b_m^2 & \dots & b_m^p \end{pmatrix}$$
 (1.12)

la matrice dei loading, si ha

$$T = XP \tag{1.13}$$

e ricordando l'ortonormalità dei vettori $\mathbf{b}_1,\dots,\mathbf{b}_p\ (P^tP=I)$

$$X = TP^t (1.14)$$

Figura 1.5: Cambio base da X_1X_2 a T_1T_2

```
P=matrix(c(1/sqrt(2),1/sqrt(2),-1/sqrt(2),1/sqrt(2)),ncol=2)
T=X%*%P
head(T)

## [,1] [,2]
## [1,] -0.8819306  0.469438535
## [2,] -1.1965330 -1.084705155
## [3,]  0.8871902  0.024327783
## [4,] -1.0638267  0.008888563
## [5,] -1.3798502 -0.102959280
## [6,] -1.3998573 -0.164815934
```

Capitolo 2

Analisi delle componenti principali

Vogliamo costruire le variabili latenti T_1, \ldots, T_p in modo da massimalizzare la distanza tra gli m oggetti in \mathbb{R}^p , le cui coordinate sono date dalla matrice X (cf.), nel senso che punti lontani in \mathbb{R}^p siano il più lontano possibile nelle proiezioni su T_1 , poi T_2, \ldots . La distanza tra i punti può essere misurata usando il teorema di Pitagora, distanza euclidea, e questa è la formula della varianza delle variabili X_1, \ldots, X_p .

Vogliamo massimalizzare la varianza, perchè ad essa è associata l'informazione contenuta nei dati in esame. In definitiva vogliamo massimalizzare l'informazione ricavabile dagli oggetti in esama (varianza).

E' posssibile determinare una variabile latente T_1 , che chiameremo $Prima\ Componente\ Principale$, in modo tale che

$$Var(T_1) = \operatorname{Max}_T Var(T) \tag{2.1}$$

al variare di tutte le direzioni possibili T in \mathbb{R}^p .

Tra tutte le variabili latenti perpendicolari alla T_1 è possibile determinare una seconda variabile latente T_2 , che chiameremo Seconda Componente Principale in modo tale che

$$Var(T_2) = \operatorname{Max}_{T \perp T_1} Var(T) \tag{2.2}$$

Questo procedimento può essere iterato fino alla costruzione di p componenti principali T_1, T_2, \ldots, T_p . Per quanto visto nel Paragrafo 1.4 abbiamo determinato la matrice P dei loading. La matrice degli score si ottiene

$$T = XP \tag{2.3}$$

La procedura per determinare P passa attraverso il calcolo degli autovalori $\lambda_1, \ldots, \lambda_p$ della matrice di covarianza (di correlazione nel caso in cui i dati fossero stati standardizzati)

$$Cov(X) = X^t X (2.4)$$

e dei relativi autovettori (le p componenti principali).

Uno dei risultati principali di questa costruzione è che nel sistema di coordinate delle componenti principali

$$Cov(T) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & \lambda_m \end{pmatrix}, \quad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_m$$
 (2.5)

Conseguenze

- $Var(T_i) = \lambda_i$
- varianza totale: $\lambda_1 + \cdots + \lambda_p$
- le componenti T_1, T_2, \dots, T_p sono a indipendenti