1.
$$f(x)$$
 $\mathbf{R} f(x-1)$ $f(x+1)$ $x \in [1,3]$ $f(x) = kx + m$ $f(0) - f(3) = -2$ $f(2022)$

- 2. f(x) **R** $x \quad f(x+2) = f(-x) \ f(x) = -f(4-x) \quad x \in [0,2] \quad f(x) = 2x x^2.$
 - $1. \quad x \in [2,4] \quad f(x) \quad ;$
 - 2. $f(0) + f(1) + f(2) + f(3) + f(4) + \dots + f(2022)$;

3.
$$f(x)$$
 $g(x)$ \mathbf{R} $f(x) + g(x) = a^x + \ln(\sqrt{x^2 + 1} + x) - \sin x (a > 0 \ a \neq 1)$. $\forall t \in \mathbf{R}$ $F(x) = e^{|x - 3t - 2022|} - \mu f(x - 3t - 2022) - 2\mu^2$ μ .

4.
$$f(x) = \log_a(3-x) \ g(x) = \log_a(3+x) (a > 0, a \neq 1)$$
 $F(x) = f(x) - g(x)$. $a F(x) = [a, b]$ $[1 - \log_a n, 1 - \log_a m]$.

5.
$$f(x) = \begin{cases} 3^x, & 0 \le x \le 1, \\ 3 + \log_{\frac{1}{2}} x, & 1 < x \le 32 \end{cases} g(x) = 2x^2 - x \quad y = g(f(x)) - t \qquad t \qquad .$$

- 1. $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$;
- 2. $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$;
- 3. $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$;
- 4. $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$;
- 5. $\sin(2\alpha) = 2\sin\alpha\cos\alpha$;
- 6. $\cos(2\alpha) = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$;
- 7. $\sin(\frac{\alpha}{2}) = \sqrt{\frac{1 \cos \alpha}{2}};$
- 8. $\cos(\frac{\alpha}{2}) = \sqrt{\frac{1 + \cos \alpha}{2}};$
- 9. $\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right);$
- 10. $\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right);$
- 11. $\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta));$
- 12. $\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta)).$
- 1. $\alpha \in (0, \pi)$ $\frac{(1 + \sin \alpha + \cos \alpha) \cdot (\cos \frac{\alpha}{2} \sin \frac{\alpha}{2})}{\sqrt{2 + 2\cos \alpha}}.$

2.
$$\frac{\cos 2\alpha}{\sqrt{2}\sin \alpha + \frac{\pi}{4}} = \frac{\sqrt{5}}{2} \tan \alpha + \frac{1}{\tan \alpha} .$$

3.
$$\tan \alpha = \frac{1}{3} \frac{\cos 2\alpha}{(\sin \alpha - \cos \alpha)^2}$$
.

4. ABC
$$\sin A = -\sqrt{2}\cos B\cos C \quad \tan B \cdot \tan C = 1 - \sqrt{2}$$
 A.

5. OPQ 1 $\frac{\pi}{3}$ A PQ P Q A AB \perp OP OP B A AC \perp OQ OQ C \angle AOP = θ ACOB l θ l

