Тема № 2 «ОСНОВЫ ФИЗИОЛОГИИ ПИЩЕВАРЕНИЯ»

Цель: Сформировать представление о физиологии пищеварения, роли нормальной микрофлоры кишечника в функционировании организма. **Контрольные вопросы:**

- 1. Что изучает наука трофология?
- 2. Какие важнейшие компоненты пищи, необходимые для поддержания нормального обмена веществ, функционирования органов и тканей, гармоничного роста и развития, Вам известны?
- 3. Какие отделы пищеварительного тракта Вы знаете, их роль в пищеварении?
- 4. Чем обуславливается дефицитность продукции фермента лактазы?
- 5. Какая роль печени в процессе пищеварения?
- 6. Назовите известные Вам типы пищеварения.
- 7. Какие функции выполняет пищеварительный тракт?
- 8. Перечислите функции, выполняемые нормальной микрофлорой кишечника?
- 9. Какие Вам известны симптомы, характерные для нарушений состава нормальной микрофлоры кишечника? Перечислите меры профилактики данных нарушений.

Справочные материалы по теме:

Большая роль в изучении механизмов пищеварения и установлении общих закономерностей усвоения пищи принадлежит академику А.М. Уголеву, создавшему в 1980 году новую междисциплинарную науку трофологию.

Трофология - это «наука о пище, питании, пищевых связях и всей процессах усвоения пищи на всех уровнях организации живых систем (от клеточного до биосферного)». А.М. Уголевым была предложена теория основными постулатами которого «адекватного питания», признание, что все компоненты пищи (нутриенты и балластные вещества²) молекулярного состава необходимы ДЛЯ поддержания организма возмещения его пластических и энергетических затрат; включают в себя потоки питательных и регуляторных субстанций; баланс пищевых веществ в организме поддерживается за счет высвобождения отдельных нутриентов из сложных по составу пищевых продуктов за счет полостного, мембранного, внутриклеточного пищеварения, а также микробного синтеза бактериями пищеварительного тракта.

Исходя из теории адекватного питания (А.М. Уголева), для нормальной жизнедеятельности организму необходим пластический и энергетический материал, а также разнообразные регуляторные субстанции, которые поступают в организм с пищевыми продуктами.

² Балластные вещества – биологически незначимые компоненты.

¹ Нутриенты – биологически значимые компоненты;

Различают шесть важнейших компонентов пищи, которые необходимы организму для поддержания обмена веществ, функционирования органов и тканей, для роста и обновления клеток организма - это вода, белки, жиры, углеводы, минеральные вещества и витамины. Прежде чем организм усвоит их, они подвергаются расщеплению на более простые элементы. Это происходит благодаря процессам пищеварения.

Пищеварение совокупность физических, ЭТО физиологических процессов, в результате которых под воздействием питательные вещества расщепляются на более химические соединения, способные всасываться через стенку желудочнокишечного тракта, поступать в кровоток и усваиваться клетками организма. При этом в процессе пищеварения питательные вещества, постепенно продвигаясь через пищеварительный тракт, проходят суммарное расстояние Эти процессы протекают метров. в определенной десяти последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишках с участием печени и желчного пузыря, поджелудочной железы). Только минеральные соли, вода и витамины, усваиваются человеком в том виде, в котором они находятся в пище. Белки, жиры и углеводы попадают в организм в виде сложных комплексов. Чтобы они усвоились, требуется сложная физическая и химическая переработка. Кроме τογο, компоненты пищи предварительно утратить свою видовую специфичность, иначе они будут приниматься системой иммунитета как чужеродные вещества.

Пищеварение начинается с измельчения пищи в ротовой полости, увлажнения ее слюной, первичного метаболизма и трансформации под воздействием ферментов слюны (амилазы, протеиназы, липазы, фосфатазы, РНК-азы). Средняя продолжительность пребывания пищи в полости рта должна составлять порядка 15-20 сек. В случае сокращения времени нахождения пищи в полости рта, нарушаются процессы пищеварения, соответствующие данному участку пищеварительного тракта (измельчение, распад крахмал на простые сахара).

Далее следует передвижение этап пищевого комка 3a счет перистальтических движений мышц глотки и пищевода в желудок. Акт глотания включает в себя фазу ротовую (произвольную), глоточную (быструю непроизвольную), пищеводную (медленную непроизвольную). Средняя продолжительность времени прохождения пищевого комка через пищевод составляет 2-9 сек, и зависит от плотности пищи. Для предотвращения обратного тока пищи, а также разграничения воздействия на нее пищеварительных ферментов, пищеварительный обеспечен тракт специальными клапанами.

Пищевой комок, попав в желудок, в течение трех-пяти часов подвергается механической и химической обработке (под воздействием желудочного сока и присутствующих в нем соляной кислоты, которая обеспечивает кислую среду в желудке, вызывает денатурацию и набухание белков, активирует пепсиногены, оказывает бактерицидный эффект; пепсин - переваривает

белоксодержащие пищевые продукты). Липолитическая активность желудочного сока способствует расщеплению эмульгированных жиров молока. Образующаяся в желудке в значительных количествах слизь, с одной стороны, выполняет защитную функцию защищая слизистую желудка от действия соляной кислоты, а также служит источником эндогенных белков для их последующей утилизации микроорганизмами толстой кишки. В желудке присутствует также специальный фактор, обеспечивающий в дальнейшем усвоение витамина B_{12} .

После желудка пищевой комок попадает в тонкий кишечник, длина которого достигает 6,5 метров. Кишечный сок ЭТОМ пищеварительного тракта имеет щелочную среду за счет поступления в тонкий кишечник желчи, сока поджелудочной железы и выделений стенок кишечника. Сок поджелудочной железы содержит такие ферменты, как альфа-РНК-ДНК-нуклеазы (расщепляет углеводы), (расщепляют амилаза нуклеиновые кислоты), липазы (расщепляют жиры), протеазы (расщепляют белки) в виде проэнзимов. Всего в кишечном соке обнаруживается более 20 ферментов (энтерокиназы, пептидазы, фосфатазы, нуклеазы, липаза, амилаза, лактаза, сахараза и др.). У людей, проживающих в разных регионах, встречаются индивидуумы, у которых отмечается недостаточность продукции фермента лактазы, участвующей в утилизации лактозы. Особенно часто этот врожденный дефект обнаруживается у жителей (40-100% популяции) Азии и Африки. Среди лиц славянского происхождения (русские, белорусы, украинцы) дефицитность лактазы обнаруживается у 10-15% представителей популяции.

В тонком кишечнике происходит и всасывание основной массы образовавшихся простых химических фрагментов пищи. Не переваренные остатки пищи далее поступают в толстый кишечник, в котором они могут находиться от 10 до 15 часов. В этом отделе пищеварительного тракта осуществляются процессы всасывания воды (до 10 л в сутки), минеральных солей, протекают основные процессы микробной метаболизации остатков питательных веществ, поступивших извне или образовавшихся в пищеварительном тракте. Продолжительность процесса пищеварения у здорового человека составляет в зависимости от структуры питания составляет от 12 до 36 час.

Всасывание осуществляется на всем протяжении пищеварительного тракта, поверхность которого покрыта ворсинками, различающимися по структуре и функции в зависимости от своей локализации. На 1 мм слизистой приходится 30-40 ворсинок. Всасывание осуществляется за счет реализации нескольких механизмов (пассивный транспорт, облегченная диффузия, активный транспорт). При этом, 50-60% продуктов метаболизма белков всасывается в двенадцатиперстной кишке, 30% - в тонкой и 10% - в толстом отделе кишечника. Углеводы всасываются только в виде моносахаров, при этом присутствие в кишечном соке солей натрия существенно повышает скорость их всасывания. Продукты метаболизма жиров так же, как и

большинство поступающих с пищей водо- и жирорастворимых витаминов, всасываются в тонком отделе кишечника.

Важную роль в процессе пищеварения играет печень, в которой происходит образование желчи. Желчь способствует эмульгации жиров, всасыванию триглицеридов, активирует липазу, стимулирует перистальтику, инактивирует пепсин в двенадцатиперстной кишке, оказывает бактерицидный и бактериостатический эффект, усиливает гидролиз и всасывание белков и углеводов, стимулирует пролиферацию энтероцитов, процессы образования и выделения желчи.

Большинство гастроинтестинальных гормонов в химическом отношении представляют собой пептиды и оказывают множество разнообразных эффектов на функции пищеварительного тракта и обмена веществ. Они влияют на секрецию воды, электролитов и ферментов, моторную активность желудочно-кишечного тракта, всасывание воды, электролитов и питательных веществ, деятельность сердечно-сосудистой системы, функциональную активность эндокринных клеток пищеварительного тракта и других эндокринных желез.

В зависимости от происхождения ферментов различают три типа пищеварения: 1) за счет ферментов, синтезируемых железами человека; 2) за счет ферментов, синтезированных микроорганизмами; 3) осуществляемое ферментами, содержащимися в составе принимаемой пищи.

В зависимости от локализации пищеварение подразделяют на внутриклеточное, когда процессы гидролиза питательных веществ происходят внутри клеток (за счет лизосомальных ферментов), и внеклеточное (полостное и пристеночное).

Таким образом, пищеварительный тракт в организме человека выполняет несколько функций:

- 1) секреторная функция характеризуется образованием пищеварительных соков (слюны, желудочного, поджелудочного, кишечного соков и желчи);
- 2) моторная функция заключается в жевании, глотании, перемешивании, передвижении пищи по пищеварительному тракту и удалению из организма не перевариваемых остатков, в движении ворсинок и микроворсинок; осуществляется мускулатурой пищеварительного аппарата на всех этапах конвейера;
- 3) всасывательная функция заключается в поступлении из полости желудочно-кишечного тракта в кровоток продуктов расщепления белков, жиров и углеводов (аминокислоты, глицерин, жирные кислоты, моносахариды), воды, солей, лекарств и других соединений;
- 4) внутрисекреторная функция заключающаяся в выработке гормонов, оказывающих регулирующее действие на моторную, секреторную и всасывательную функции пищеварительного тракта (гастрин, секретин и другие гормоны);
- 5) экскреторная функция обеспечивает выделение пищеварительными железами в полость желудочно-кишечного тракта продуктов обмена

(мочевина, аммиак, желчные пигменты), воды, солей тяжелых металлов, лекарственных препаратов, которые затем удаляются из организма;

6) является местом обитания симбиотических ассоциаций микроорганизмов.

Нормальную микрофлору пищеварительного тракта с современных следует рассматривать как множество микробиоценозов, характеризующихся определенным составом и занимающих тот или иной биотоп в организме человека. Эта микрофлора включает десятки и сотни разнообразных видов микроорганизмов. Недостаток или избыток того или иного субстрата или метаболита служит сигналом для усиления роста или гибели соответствующего звена экологической системы. В процессе эволюции постоянные представители нормальной микрофлоры превращались во все более взаимосвязанное целое. Одновременно для достижения большей эффективности происходила и специализация их функций. Подобная интеграция и специализация функций позволяет нормальной микрофлоре здорового человека выступать как единое целое, согласованно работающее в интересах всей системы организма, в котором она локализована.

С момента рождения ребенка, его кожа и слизистые обсеменяются микроорганизмами, их число и разнообразие определяется составом микрофлоры матери, механизмами родов, санитарным состоянием среды, в которой они проходили, типом вскармливания. К настоящему времени выявлены некоторые общие закономерности заселения желудочно-кишечного тракта человека микроорганизмами. Так, установлено, что в первые часы и дни в кишечнике новорожденных встречаются преимущественно микрококки, стафилококки, энтерококки и клостридии. Затем появляются энтеробактерии (кишечные палочки), лактобациллы и бифидобактерии. Со временем в кишечнике появляются, а затем начинают преобладать неспороносные облигатно-анаэробные бактерии (бифидобактерии, эубактерии, бактероиды, стрептококки, спириллы). чтобы микробная Для ТОГО пищеварительного тракта новорожденных по своему составу приблизилась к таковой у взрослых, требуется несколько лет. Особенно обильна микрофлора нижних отделов пищеварительного тракта. Здесь обнаружены представители более 500 видов бактерий. Число анаэробных микроорганизмов в этой области здорового взрослого человека более чем в 100 раз превышает таковое по содержанию аэробных бактерий. Энтеробактерии, включая палочки, стафилококки, грибы и другие аэробы, составляют немногим более 1-4% и рассматриваются как добавочная или случайная микрофлора. На жизнеобеспечение микрофлоры кишечника человека в среднем расходуется до 10% поступившей с пищей энергии.

Представители нормальной микрофлоры присутствуют в организме человека в виде фиксированных к определенным рецепторам микроколоний, заключенных в биопленку. Биопленка, как перчатка, покрывает кожу и слизистые открытых окружающей среде полостей здорового человека и состоит из экзополисахаридов различного состава микробного происхождения, а также муцина, продуцируемого бокаловидными клетками

слизистых. С функциональной точки зрения биопленка регулирует взаимоотношения между макроорганизмом и окружающей средой. Попадающий в организм исходный пищевой субстрат в результате микробной трансформации превращается в промежуточный либо конечный продукт с той или иной биологической активностью.

Нормальная микрофлора и продукты ее метаболизма:

- 1) участвуют в:
- 1.1. регуляции газового состава кишечника и других полостей организма;
- 1.2. метаболизме белков, углеводов, липидов и нуклеиновых кислот;
- 1.3. водно-солевом обмене (Na, K, Ca, Mg, Zn, Fe, Cu, Mn, P, CI и др.);
- 1.4. обеспечении колонизационной резистентности, предотвращая приживление и размножение в кишечнике чужеродных организмов или заселение тех или иных областей пищеварительного тракта несвойственными для них видами микроорганизмов);
- 1.5. рециркуляции стероидных соединений и других макромолекул (включая лекарственные препараты);
 - 1.6. детоксикации экзогенных и эндогенных субстратов;
- 2) обладают морфокинетическим действием (стимулируют рост эпителиальных клеток, скорость их обновления на слизистых, перистальтику, влияют на количество потребляемой пищи и т.д.);
- 3) выполняют иммуногенную (усиливают гуморальный и тканевой иммунитет, стимулируют фагоцитоз, продукцию иммуноглобулинов, интерлейкинов, цитокинов);
 - 4) служат источником энергии (образование жирных кислот);
- 5) продуцируют разнообразные биологически активные соединения (витамины, липополисахариды, пептидогликаны, амины, антибиотики и другие соединения с антимикробной активностью, нейропептиды, NO, индолы).

Нормальная микрофлора - индикатор физиологического состояния макроорганизма.

Состав микрофлоры в биопленке может изменяться под влиянием, как различных стрессовых агентов, физиологического состояния человека. Медицинские и медикаментозные вмешательства, включая инструментальное, хирургическое или лекарственное воздействие, могут изменить целостность имеющейся биопленки, что ведет к утрате ее отдельных функций.

фармакологических препаратов наиболее Среди выраженный повреждающий эффект на нормальную микрофлору оказывают антибиотики. Многие иммунодепрессанты в концентрациях близких к клиническим, также ингибируют рост бифидобактерий, лактобацилл, энтерококков и кишечных палочек. Химиопрепараты, как правило, также вызывают дисбиотические изменения. Дисбиотические проявления выражаются в изменении абсолютной численности анаэробных и других прокариотических клеток, их видового и образуемых штаммового состава, спектра И количества микробных метаболитов. Разработано большое количество тестов, позволяющих

объективно судить о состоянии нормальной микрофлоры и ее функциональной активности, степени повреждения.

Нормальная микрофлора кишечника имеет большое значение в усвоении биологически активных веществ и их выработке.

В результате нарушения нормобиоценоза возникает состояние, наиболее популярным названием, которого является дисбактериоз. Дисбактериоз кишечника является одним из факторов, способствующих затяжному, рецидивирующему течению целого ряда заболеваний (диспепсия, аллергии, частые простудные заболевания, гиповитаминоз В).

Установлено четыре формы проявления дисбактериоза, выражающиеся:

- 1) нарушением иммунного статуса;
- 2) нарушением пищеварения и усвояемости пищи, отсутствием аппетита и снижением синтеза витаминов группы В;
- 3) снижением толерантности слизистой кишечника к действию патогенной микрофлоры;
 - 4) снижением детоксикационной способности микрофлоры.

На практике все эти формы, как правило, встречаются вместе, что является результатом позднего обращения за медицинской помощью.

достигнутые в области микробиологического микрофлоры кишечника человека, послужили предпосылкой к разработке и использованию в качестве лекарственных препаратов, биологически активных пищевых добавок, диетических и лечебно-профилактических кисломолочных продуктов на основе Lactobacillus, Bifidobacterium и Streptococcus животного и человеческого происхождения. Главным назначением массового употребления кисломолочных продуктов являлось подавление кишечных гнилостных бактерий, ликвидация дисбиотических нарушений пищеварительном тракте за счет введения в организм человека больших количеств живых антагонистических молочнокислых бактерий.

Дисбактериоз, в зависимости от характера изменения состава микрофлоры толстого кишечника, подразделяется на 3 степени.

Дисбактериоз, как правило, сочетается с другими патологическими синдромами, поэтому мероприятия по коррекции нарушенного микробиоценоза осуществляются одновременно с лечением основного заболевания. Положительные эффекты при дисбактериозе достигаются использованием пробиотических препаратов или продуктов, обладающих пробиотическими свойствами.

По своему действию пробиотические препараты, применяемые при дисбактериозе, разделяются на классы:

- 1. Классические пробиотики (из облигатной флоры человеческого организма: коли-, бифидум-, лактобактерин.).
- 2. Самоэлиминирующиеся антагонисты (из штаммов, не характерных для организма: бактисубтил, биоспорин, споробакт).
- 3. Комбинированные пробиотики (бифилонг, бификол, аципол, линекс, биобактон, кипацид).

- 4. Иммобилизированные на сорбенте живые бактерии (бифидумбактеринфорте).
 - 5. Комбинированные с лизоцимом (бифилиз).
- 6. Препараты продукты метаболизма нормальной микрофлоры (хилакфорте).
- 7. Рекомбинантные субалин (бактерии Subtilis, контролирующие синтез α2-интерферона).

Наиболее эффективным средством профилактики и лечения дисбактериоза являются препараты бифидумбактерина.

Хороший эффект первичной и вторичной профилактики дисбактериоза достигается использованием отечественных кисломолочных продуктов, биомороженного. Два стакана кефира в день или одна порция биомороженного обеспечивают организм полезной микрофлорой, суточной потребностью кальция, витаминов и аминокислот, необходимых для предупреждения остеопороза.

Эффективность использования биомороженого в профилактике дисбактериоза у детей была исследована на базе бюджетных дошкольных учреждений г. Омска. Исследование проводилось в три этапа: первый этап - оценка здоровья детей перед проведением эксперимента; второй этап — экспериментальный, включал выдачу биомороженного (6 недель) с последующим наблюдением за состоянием здоровья детей и настроения — 3 месяца; третий этап — экспериментальный, включал повторную выдачу биомороженного (6 недель) с последующим наблюдением за состоянием здоровья детей и настроения — 3 месяца.

В исследование было включено 179 детей, посещавших дошкольные организации, из них 92 ребенка составили «основную» группу (дети получавшие с рационом питания биомороженное), 87—«контрольную» группу (дети которые питались по обычному меню). Для обеспечения достоверности исследования минимальная численность детей должна была составлять не менее 37 чел. Группы не различались по возрасту (р>0,05).

Для динамического наблюдения за состоянием здоровья детей на период эксперимента были введены: «карты медицинского наблюдения», состоявшие из паспортной и специальной частей. В специальную часть включалась информация по клиническим проявлениям заболеваний и наличию жалоб на здоровье (кожные покровы, характер стула и его кратность, другие жалобы); «родительские информационные карты», включающая информацию от родителей о фактах получения ребенком специализированной медицинской помощи и антибиотикотерапии, а также о наличии у детей жалоб на состояние здоровья - жалобы со стороны желудочно – кишечного тракта, аллергические кожные проявления, жалобы со стороны органов дыхания, прочие; «опросник наследственных включавший вопросы родителей», 0 психическом физическом развитии ребенка с момента рождения, эмоциональном состоянии.

В ходе исследования у детей троекратно отбирался на бактериологическое исследование кал (до первого курса приема, после него и

после второго курса приема), определялись лактобактерии; бифидобактерии; энтерококки; клостридии; Е. coli типичные, Е. coli лактозонегативные, Е. coli гемолитические; др. условнопатогенные энтеробактерии; стафилококк золотистый; стафилококк сапрофитный, эпидермальный; дрожжеподобные грибы рода Candida; неферментирующие бактерии; патогенные бактерии. Исследования выполнялись в Аккредитованном испытательном лабораторном центре (аттестат аккредитации №РОСС RU 0001.510193).

По данным лабораторного контроля в начале эксперимента все дети (внутри основной и контрольной групп) были разбиты на две группы – дети со здоровой микрофлорой и дети с проявлениями дисбактериоза, при этом вторая группа подразделялась на три подгруппы (в соответствии с классификацией дисбактериоза по И.Б. Куваевой и К.С.Ладодо, 1991 год) – дисбактериоз первой степени (данная группа характеризовалась снижением на 1 – 2 порядка количества бифидо- и лактобактерий, кишечной палочки); дисбактериоз второй степени (на фоне снижения содержания бифидо- и лактобактерий на 1 – 2 порядка и более, выявлялось увеличение количества условно-патогенных стафилококков, условно-патогенная флора имела гемолитические свойства); дисбактериоз третьей степени (характеризуется значительным уменьшением количества анаэробов (бифидо- и лактобактерий) и увеличением аэробов (106-7 КОЕ/мл и выше.), наличие грибов рода Candida, стафилококков.

Результаты исследования - перед проведением эксперимента (первый этап исследования) статистических различий в частоте и степени проявления дисбактериоза в основной и контрольной группах не было (p=0,375). Явления дисбактериоза разной степени выраженности отмечались у 77,2-80,9% обследованных детей. Третья степень дисбактериоза отмечалась в 2,1% осмотренных, вторая степень — у 35,2% детей, первая — у 30,1%.

На втором этапе научно-практической (исследовательской) работы (эксперементальном) - у детей основной группы частота отклонений от нормальных значений бифидобактерий, типичной кишечной палочки, кишечной палочки с гемолитичнескими свойствами, золотистого стафилококка, грибов Candida и неферментирующих бактерий существенно снизилась; показатели имели статистически значимые различия по сравнению с контрольной группой (p=0,000...). Удельный вес детей с проявлениями дисбактериоза значимо не изменился, но при этом существенно сократилось количество детей со второй степенью дисбактериоза и соответственно увеличилось количество детей с первой степенью.

После проведения третьего этапа исследования удельный вес детей с проявлениями дисбактериоза в основной группе составлял 36,3%, при этом проявлений третьей степени среди детей «основной» группы не наблюдалось, распространенность второй степени сократилась до 9,1% (рис.1). Результаты по контрольной группе статистически значимых различий с первым этапом исследований не выявили.

Анализ динамики посещаемости дошкольной организации после реализации второго и третьего этапа исследования свидетельствовал о

статистически значимом меньшем количестве пропусков среди детей основной группы, составившем -2.3 дня в месяц, по контрольной группе -4.8.

К числу положительных результатов эксперимента следует отнести существенное сокращение жалоб на аллергические реакции, дерматиты, нарушения деятельности желудочно-кишечного тракта у детей. Также все без исключения родители отметили улучшение психо-эмоционального состояния детей в дни, когда детям выдавалось мороженное.

По результатам выполненной работы было сделано заключение об эффективности включения в основной рацион питания ребенка продуктов пробиотического действия в форме курсового назначения в качестве второго По итогам полдника. первого (продолжительность каждого цикла 6 недель) приема биомороженного у детей отмечалось снижение выраженности дисбактериоза, сокращение количества детей с дисбактериозом, сокращение жалоб на дисфункции кишечника, аллергические реакции и дерматиты, также отмечалось улучшение психоэмоционального состояния детей, повышалась посещаемость дошкольной организации. Употребление биомороженного не привело к росту обращаемости детей за медицинской помощью с симптоматикой заболеваний верхних дыхательных путей в период повышенной заболеваемости гриппом и острыми респираторными инфекциями. Данных, свидетельствующих об ухудшении здоровья респондентов, не выявлено.

Таким образом, полученные выводы, позволяют рекомендовать с целью профилактики дисбактериоза и его проявлений у детей, включение биомороженого в основной рацион питания детей.

Список дополнительной литературы по теме:

- 1. Амирова К.М., Родин И. А., Скляров С. П., Симонов А. Н. Полезная микрофлора кишечника и её коррекция пробиотиками // Приоритетные и инновационные технологии в животноводстве основа модернизации агропромышленного комплекса России: Сборник научных статей по материалам международной научно-практической конференции научных сотрудников и преподавателей (г. Ставрополь, 16 декабря 2016 г.). Ставрополь. 2016. С. 17-25.
- 2. Бельмер С.В., Гасилина Т.В. Рациональное питание и состав кишечной микрофлоры // Вопросы детской диетологии. 2003. Т. 1. № 5. С. 17–20.
- 3. Бельмер С.В., Малкоч А.В. Кишечная микрофлора и значение пребиотиков для ее функционирования // Лечащий врач. 2006. № 4. С.60-65.
- 4. Гурина О.П., Блинов А.Е., Варламова О.Н. и др. Часто болеющие дети: иммунодиагностика и реабилитация // Педиатр. 2011. Т.II. №2. С.45-52.
- 5. Коротько Γ . Ф. Физиология системы пищеварения: Монография. Краснодар, 2009.-608 с.
- 6. Уголев А. М. и др. Теория адекватного питания и трофология. М. 1991. 247 с.

- 7. Хавкин А.И., Блат С.Ф. Микробиоценоз кишечника и иммунитет // Рос. вестник перинатол. и педиат. 2011. №1. С. 66-72.
- 8. Штенская О. А., Артюхова С. И. Роль БАДов в восстановлении микрофлоры ЖКТ при антибиотикотерапии // ОмГТУ. 2012. №5. 4 с.