Math 231 A. Fall 2015. Worksheet 4. 9/3/15

1. Fill in the table.

Expression	Substitution	dx	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$dx = a\cos\theta d\theta$	$a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = atun \theta$	dx=asec20d0	a2+ a2tan20 = a3ec20
$\sqrt{x^2-a^2}$	x = 0 sec 0	d x = asecotanodo	a2sec20 - a2 = a2tan20

2. Evaluate the integrals using trigonometric substitution. State the necessary restriction

(a)
$$\int \frac{x^2}{\sqrt{9-x^2}} dx \qquad \left[\begin{array}{c} x = 3\sin\theta \\ dx = 3\cos\theta d\theta \end{array} \right] \qquad = \int \frac{9\sin^2\theta}{\sqrt{9-9\sin^2\theta}} \cdot 3\cos\theta d\theta$$

$$= \int \frac{9 \sin^2 \theta \cdot 3 \cos \theta}{\sqrt{9 \cos^2 \theta}} d\theta = \int \frac{27 \sin^2 \theta \cos \theta}{3 \cos \theta} d\theta = \int \frac{9}{3 \sin^2 \theta} d\theta$$

$$= \frac{9}{3 \cos^2 \theta} \int \frac{1}{2} (1 - \cos(2\theta)) d\theta = \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$= \frac{9}{2} \left(\int d\theta - \int \cos(2\theta) d\theta \right)$$

$$=\frac{90}{2}-\frac{9}{4}\sin(20)+c=\frac{90}{2}-\frac{9}{2}\sin\theta\cos\theta+c$$

$$= \left[\frac{5 \sec^2 \theta}{5 \sec \theta} \right] = \left[\frac{5 \sec^2 \theta}{5 \sec \theta} \right] = \left[\frac{5 \sec^2 \theta}{5 \sec \theta} \right] + \left[\frac{5 \sec^2 \theta}{85 + 3}\right] = \left[\frac{1}{10}\right] = \left[\frac{\sqrt{25 + \chi^2}}{5} + \frac{\chi}{5}\right] + C$$

$$= \left[\frac{1}{10}\right] = \left[\frac{\sqrt{25 + \chi^2}}{5} + \frac{\chi}{5}\right] + C$$

$$= \left[\frac{1}{10}\right] = \left[\frac{\sqrt{25 + \chi^2}}{5} + \frac{\chi}{5}\right] + C$$

$$= \left[\frac{1}{10}\right] = \left[\frac{\sqrt{25 + \chi^2}}{5} + \frac{\chi}{5}\right] + C$$

$$\frac{\sqrt{25+x^2}}{4}$$

$$\tan \theta = \frac{x}{5}$$

$$\sec \theta = \sqrt{25+x^2}$$

$$\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$u = \sqrt{\chi^2 - 9}$$
, $du = \sqrt{\chi^2 - 9} dx$, $\chi^2 = u^2 + 9$

3. Evaluate $\int \frac{x^3}{\sqrt{x^2 - 9}} dx.$

Hint: Instead of trigonometric substitution, try substituting $u = \sqrt{x^2 - 9}$. This trick would also work on $\int \frac{x}{\sqrt{x^2 - 9}} dx$, but would not work on $\int \frac{x^2}{\sqrt{x^2 - 9}} dx$ or $\int \frac{x^4}{\sqrt{x^2 - 9}} dx$

$$= \int \frac{x^2 \cdot x}{\sqrt{x^2 - q}} dx = \int u^2 + q du = \frac{1}{3}u^3 + qu + C$$

$$= \frac{1}{3}(\sqrt{x^2 - q})^3 + q\sqrt{x^2 - q} + C$$

4. Evaluate
$$\int \frac{1}{\sqrt{x^2 + 2x}} dx$$
. (Hint: Complete the square.)

$$= \int \frac{1}{\sqrt{x^2 + 2x + 1 - 1}} dx = \int \frac{1}{\sqrt{(x+1)^2 - 1}} dx = \int \frac{1}{dx} = \sec \theta$$

$$= \int \frac{1}{\sqrt{x^2 + 2x + 1 - 1}} dx = \int \frac{1}{\sqrt{(x+1)^2 - 1}} dx = \int \frac{1}{dx} = \sec \theta + \tan \theta d\theta$$

$$= \int \frac{1}{\sqrt{x^2 + 2x + 1 - 1}} dx = \int \frac{1}{\sqrt{(x+1)^2 - 1}} dx = \int \frac{1}{\sqrt{x^2 + 2x + 1 -$$

 $= -3^{5} \left(\frac{1}{3} \left(\frac{\sqrt{9-(x-z)^{2}}}{3} \right)^{3} - \frac{1}{5} \left(\frac{\sqrt{9-(x-z)^{2}}}{3} \right)^{3} \right) + C$