Linear Algebra I: Practice Midterm Solution

October 10, 2025

Problem 1. Suppose W is a subspace of V and $v_1 + W, \ldots, v_m + W$ is a basis of V/W. Let w_1, \ldots, w_n be a basis of W. Show that $v_1, \ldots, v_m, w_1, \ldots, w_n$ is a basis of V.

Proof. We show that $v_1, \ldots, v_m, w_1, \ldots, w_n$ is a basis of V.

Spanning: Let $v \in V$. Since $v_1 + W, \dots, v_m + W$ is a basis of V/W,

$$v + W = a_1(v_1 + W) + \dots + a_m(v_m + W)$$

for some $a_1, \ldots, a_m \in F$. Then

$$v - (a_1v_1 + \dots + a_mv_m) \in W.$$

Let $u = v - (a_1v_1 + \cdots + a_mv_m) \in W$. Since w_1, \dots, w_n is a basis of W,

$$u = b_1 w_1 + \dots + b_n w_n$$

for some $b_j \in F$. Thus

$$v = a_1v_1 + \dots + a_mv_m + b_1w_1 + \dots + b_nw_n.$$

So the set spans V.

Linear independence: Suppose

$$a_1v_1 + \cdots + a_mv_m + b_1w_1 + \cdots + b_nw_n = 0.$$

Rewriting:

$$a_1v_1 + \dots + a_mv_m = -(b_1w_1 + \dots + b_nw_n) \in W.$$

Then in V/W,

$$a_1(v_1 + W) + \dots + a_m(v_m + W) = 0 + W.$$

Since $v_1 + W, \ldots, v_m + W$ are linearly independent in V/W, $a_1 = \cdots = a_m = 0$. Then

$$b_1w_1 + \dots + b_nw_n = 0,$$

and since w_1, \ldots, w_n is a basis of $W, b_1 = \cdots = b_n = 0$. So the set is linearly independent. Hence $v_1, \ldots, v_m, w_1, \ldots, w_n$ is a basis of V.

Problem 2. Let V be a finite dimensional vector space. Let $\varphi \in V^*$ be nonzero. Show that there exists $v \in V$ with $\varphi(v) = 1$ and $V = \operatorname{span}\{v\} \oplus \ker \varphi$.

Proof. Since $\varphi \neq 0$, pick $u \in V$ with $\varphi(u) \neq 0$. Define

$$v = \frac{u}{\varphi(u)}.$$

Then $\varphi(v) = 1$.

Now, for any $x \in V$, write

$$x = \varphi(x)v + (x - \varphi(x)v).$$

We have $\varphi(x)v \in \operatorname{span}\{v\}$, and

$$\varphi(x - \varphi(x)v) = \varphi(x) - \varphi(x) \cdot 1 = 0,$$

so $x - \varphi(x)v \in \ker \varphi$. Hence $V = \operatorname{span}\{v\} + \ker \varphi$.

To show the sum is direct: suppose $av \in \text{span}\{v\} \cap \ker \varphi$. Then $\varphi(av) = a = 0$, so a = 0. Thus the intersection is trivial.

Therefore $V = \operatorname{span}\{v\} \oplus \ker \varphi$.

Problem 3. Let V be a two-dimensional vector space over \mathbb{R} and $T:V\to V$ a linear transformation. Suppose that $\beta = (v_1, v_2)$ and $\gamma = (w_1, w_2)$ are two bases in V such that

$$w_1 = v_1 + v_2, \quad w_2 = v_1 + 2v_2.$$

Find $[T]^{\beta}_{\beta}$ if

$$[T]_{\gamma}^{\gamma} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}.$$

Proof. By the assumption, we have $[w_1]_{\beta} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $[w_2]_{\beta} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Then $P = [\mathrm{id}]_{\gamma}^{\beta} = (\mathrm{id})_{\gamma}^{\beta}$

 $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. On the other hand, we observe that $v_2 = w_2 - w_1$, and $v_1 = w_1 - v_2 = 2w_1 - w_2$. On the other hand, we observe that $v_2 = w_2 - w_1$, and $v_1 = w_1 - v_2 = 2w_1 - w_2$. We have Then $[v_1]_{\gamma} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ and $[v_2]_{\gamma} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Then $P^{-1} = [\mathrm{id}]_{\beta}^{\gamma} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$. We have

$$\begin{split} [T]^{\beta}_{\beta} = & [\mathrm{id}]^{\beta}_{\gamma} [T]^{\gamma}_{\gamma} [\mathrm{id}]^{\gamma}_{\beta} = P[T]^{\gamma}_{\gamma} P^{-1} \\ = & \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \\ = & \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & -3 \\ 5 & -2 \end{pmatrix} \\ = & \begin{pmatrix} 10 & -5 \\ 15 & -7 \end{pmatrix} \end{split}$$

Problem 4. Let V be the subspace of $C(\mathbb{R})$ given by $\operatorname{span}(e^{3x}\cos x, e^{3x}\sin x)$. Consider the linear map $L:V\to C(\mathbb{R})$ defined by L(f)=f'-f, where the prime denotes differentiation with respect to x.

- (i) Show that $e^{3x}\cos x$, $e^{3x}\sin x$ are linearly independent.
- (ii) Show that the image of L is in V, that is im $L \subset V$.
- (iii) Let $\beta = (e^{3x} \cos x, e^{3x} \sin x)$, find $[L]_{\beta}^{\beta}$.
- (iv) Find $\ker L$ and $\operatorname{im} L$.
- (v) Find a solution to the differential equation $f' f = 2e^{3x} \cos x$.

Proof. (i) Suppose $ae^{3x}\cos x + be^{3x}\sin x = 0$ for all x. Dividing by e^{3x} , we get $a\cos x + b\sin x = 0$. Let x = 0 we have a = 0. Let $x = \pi/2$ we have b = 0. So they are linearly independent.

(ii) Let $f = Ae^{3x}\cos x + Be^{3x}\sin x$. Then

$$f' = e^{3x}[(3A + B)\cos x + (-A + 3B)\sin x].$$

So

$$L(f) = f' - f = e^{3x}[(2A + B)\cos x + (-A + 2B)\sin x] \in V.$$

(iii) Let $u_1 = e^{3x} \cos x$, $u_2 = e^{3x} \sin x$. By the formula in (ii) we have

$$L(u_1) = 2u_1 - u_2, \quad L(u_2) = u_1 + 2u_2.$$

So

$$[L]^{\beta}_{\beta} = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}.$$

(iv) Let $f = Ae^{3x}\cos x + Be^{3x}\sin x \in V$. And suppose

$$L(f) = e^{3x} [(2A + B)\cos x + (-A + 2B)\sin x = 0].$$

Hence by linear independence

$$2A + B = 0$$
, $-A + 2B = 0$.

From the first, B = -2A. Sub into second: $-A - 4A = -5A = 0 \Rightarrow A = 0 \Rightarrow B = 0$. So ker $L = \{0\}$.

Since $L:V\to V$ is linear and injective, we know from class it is surjective and we have im L=V.

(v) Solve $L(f) = 2e^{3x} \cos x$. Let $[f]_{\beta} = {a \choose b}$. Then

$$\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

Solving: $a = \frac{4}{5}, b = \frac{2}{5}$. So

$$f(x) = \frac{4}{5}e^{3x}\cos x + \frac{2}{5}e^{3x}\sin x.$$

Problem 5. Consider the matrix

$$A = \begin{pmatrix} 2 & 4 & 1 \\ -3 & -6 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

- (i) Find all $x \in \mathbb{R}^3$ such that $Ax = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$.
- (ii) Let $V \subset \mathbb{R}^3$ be the set of vectors $b \in \mathbb{R}^3$ such that the system Ax = b is solvable. Find a basis for V.

Proof. (i) Solve
$$Ax = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$
.

Augmented matrix:

$$\left(\begin{array}{ccc|c}
2 & 4 & 1 & 3 \\
-3 & -6 & 2 & -1 \\
1 & 2 & 1 & 2
\end{array}\right)$$

Step 1: Swap $R1 \leftrightarrow R3$:

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
-3 & -6 & 2 & -1 \\
2 & 4 & 1 & 3
\end{array}\right)$$

Step 2: $R2 \leftarrow R2 + 3R1$:

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & 0 & 5 & 5 \\
2 & 4 & 1 & 3
\end{array}\right)$$

Step 3: $R3 \leftarrow R3 - 2R1$:

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 2 \\
0 & 0 & 5 & 5 \\
0 & 0 & -1 & -1
\end{array}\right)$$

Step 4: $R2 \leftarrow \frac{1}{5}R2$:

$$\left(\begin{array}{ccc|ccc} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{array}\right)$$

Step 5: $R3 \leftarrow R3 + R2$:

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Step 6: $R1 \leftarrow R1 - R2$:

$$\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

From RREF: $x_1 + 2x_2 = 1$, $x_3 = 1$, x_2 free. Let $x_2 = t$, then $x_1 = 1 - 2t$, $x_3 = 1$.

$$x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}.$$

(ii) V = im(A). RREF of A:

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Pivot columns 1 and 3 of A form a basis:

$$\left\{ \begin{pmatrix} 2\\-3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}.$$