CSE 1729:Principles of Programming

Lecture 5: Recursion Part 2

Kaleel Mahmood

Department of Computer Science and Engineering
University of Connecticut

Last time on CSE 1729...

$$n! = n * (n - 1) * (n - 2) * \cdots * 1$$

 Traced through the recursion using pictures...

ANOTHER EXAMPLE: THE FIBONACCI NUMBERS

• The Fibonacci numbers are defined by the rule:

$$F_n = egin{cases} 0 & ext{if } n = 0, \ 1 & ext{if } n = 1, \ F_{n-1} + F_{n-2} & ext{if } n > 1. \end{cases}$$

Note, then, that the sequence F₀, F₁, F₂, ... is

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

each is the sum of the previous two.

THE FIBONACCI NUMBERS IN SCHEME

As with the factorial function, we can naturally capture this definition in Scheme.

```
(define (fib n)
        (cond ((= n 0) 0)
              ((= n 1) 1)
              ((> n 1) (+ (fib (- n 1))
                          (fib (-n 2)))
```

 Notice, as with factorial, how closely the Scheme definition can mirror the mathematical definition.

THE FIBONACCI EVALUATION TREE

- The Fibonacci function gives rise to an "evaluation tree" as shown. Here each node returns the sum of the value of its children.
- Note that some "sub"-problems are evaluated many times.
- Question: How many times is (f 1) evaluated, in total?

Be careful with recursion!


```
1 > (define (recurse x) (recurse x))
2 > (recurse 1)
```

 Recursion is a lot like nuclear energy. It is powerful but can lead to serious problems if not handled correctly.

"ITERATIVE" CONSTRUCTS IN SCHEME

- Consider computing the sum of the first n+1 natural numbers in Scheme.
- Note that

$$\underbrace{(0+1+\cdots+n)}_{\sum\limits_{i=0}^{n}i}=n+\underbrace{(0+1+\cdots+(n-1))}_{\sum\limits_{i=0}^{n-1}i}$$

THE EVALUATION TREE FOR number-sum

How to write and debug recursion quickly?

The story of the space pen...

- This story has since been shown to be a myth but it illustrates an important point.
- In the 1950s the Americans and Soviet were locked in a space race.
- Normal pens need gravity to operate.
 So <u>no</u> normal pens in space.
- What to do?
- 1. Spend millions developing a space pen (American solution)

2. OR...use a pencil (Soviet Solution)

EXAMPLE: MULTIPLICATION IN TERMS OF ADDITION

Consider the definition of multiplication as repeated addition:

$$a \times b = \underbrace{b + b + \dots + b}_{a \text{ times}}$$

• We can express this in Scheme:

EFFICIENCY CONSIDERATIONS

How many recursive calls are generated by

How about

We could write a more efficient program by "recursing on the smaller of a and b."
 Thus

A MORE EFFICIENT MULTIPLY...

• We could write a new program to exploit this...

Now it will only recurse min(a,b) times. Alternatively,

```
(define (fmult a b)
  (if (> a b) (mult b a) (mult a b)))
```

TO BE REALLY FANCY, WE COULD REDUCE BOTH A AND B AT THE SAME TIME...

• Remember that ab = (a-1)(b-1) + a + b - 1. Thus we could also express multiply as...

```
(define (fmult a b)
    (cond ((= a 0) 0)
          ((= b 0) 0)
          (else (+-1)
                    а
                    b
                    (fmult (- a 1) (- b 1)))))
```

This will also recurse min(a,b) times.

ACTUALLY, ALL THREE OF THESE ALGORITHMS ARE TERRIBLE...WHY?

 With paper and pencil, how long would it take you to multiply two 16 digit numbers? Perhaps a few hours?
 With the program above, the computation

```
(fmult 10000000000000 10000000000000)
```

- Well, 100000000000000 will generate a call to

 - 99999999999998, and hence to
 - 99999999999999999999, and hence

WE CAN FIX THIS BY USING MORE INFORMATION ABOUT MULTIPLICATION...

- On a computer dividing by 2 and multiplying by 2 can be done very quickly--we can improve our program:
- Observation: Suppose we wish to multiply x and y.
 - If we're lucky, x is even, and we have

FAST MULTIPLICATION WITH DIVISION & MULTIPLICATION BY 2

- On a computer dividing by 2 and multiplying by 2 can be done very quickly--we can improve our program:
- Idea: To multiply x and y (positive whole numbers):
 - If x is odd, fix it! The answer is: y + (x-1) * y
 - Now, x-1 is even in the recursive call [...]
- If x is even: the answer is: $2*[\frac{x}{2}*y]$ Recursive calls

Now, one of the numbers in the recursive call [...] has been significantly reduced--it's only half the previous size!

CAPTURING THIS IDEA IN A SCHEME PROGRAM

 On a computer dividing by 2 and multiplying by 2 can be done very quickly--we can improve our program:

```
(define (even x) (= (modulo x 2) 0))
(define (twice x) (* x 2))
(define (half x) (/ x 2))
(define (rfmult a b)
    (cond ((= 0 a) 0)
          ((= 0 b) 0)
          ((even a) (twice (rfmult (half a) b)))
          (else (+ b (twice (rfmult (half (- a 1))
                                        b)))
```

HOW HAS THE EVALUATION TREE CHANGED?

```
    Well, (rfmult 2<sup>k</sup> x) will generate a call to
    ■ (rfmult 2<sup>k-1</sup> x), and hence to
    ■ (rfmult 2<sup>k-2</sup> x), and hence to
    ■ (rfmult 2<sup>k-3</sup> x),...
```


How does this relate to Scheme?

"The space pen"

"The pencil"

```
(define (even x) (= (modulo x 2) 0))
(define (twice x) (* x 2))
(define (half x) (/ x 2))

(define (half x) (/ x 2))

(define (conclusion: A lot of these examples are exercises in DESIGN. They

are created to make you think about programming in constrained

or resource limited manners.
```

However- The tips of pencils can break off, which is hazard to personal and equipment in space. Pencils are flammable, something NASA wanted to avoid after a fire on the Apollo 1. Looks like "just" using a pencil wasn't actually viable.

Source: https://www.scientificamerican.com/article/fact-or-fiction-nasa-spen/

Let's play a simple game...

- I am thinking of an integer number x between range a and b.
- Every time you guess a number y
 I will tell you two things:
 - 1. If y == x (you win)
 - 2. If y = ! x | will tell you either: y is bigger than my number or y is smaller than my number.

Every time you guess wrong I will charge you \$1. Fun game...for me!

How to play this game effectively?

1st way to play (the stupid way)

- Let's say my number is between 1 and 10. (a = 1, b = 10)
- The stupid way: Start at 1 and go up. If my number is 10 you will have lost \$9 playing my game.

- Let's say my number is between 1 and 10. (a = 1, b = 10)
- Use binary search.

First turn: Guess y = (a + b)/2I tell you it is not 5 AND my number is bigger. What info have we gained?

First turn: Guess y = (a + b)/2I tell you it is not 5 AND my number is bigger. What info have we gained?

Second turn: We have a new range, we know the number is between $6 \ and \ 10$. Now let $a=6 \ and \ b=10$

Second turn: We have a new range, we know the number is between 6 and 10. Now let a=6 and b=10 Guess y=(a+b)/2

Second turn: We have a new range, we know the number is between $6 \ and \ 10$. Now let $a=6 \ and \ b=10$

Guess
$$y = (a + b)/2$$

I tell you my number is smaller than y

Now it doesn't matter. We can guess 6 or 7. Let's say we guess 6 and it is wrong. Then we'll guess 7 and we have the answer. Worst case this means it took 4 guess.

Binary Search: Keep guessing the midpoint (and reducing the search space by half until) you reach a solution.

Comparison of strategies

- Stupid Strategy: Start at 1 and guess up. Worst Case: you lose \$9 guessing.
- Binary search strategy: Start at midpoint and iteratively reduce. Worst Case: you lose \$4.

Can you program binary search in Scheme?

Hint: First think about what the base case is.

When do we know that we guessed the right number? Well the midpoint is NOT less than x also the midpoint is NOT greater than x.

COMPUTING SQUARE ROOTS BY AVERAGING

- One simple way to compute an approximation to the square root of a number x is to
 - Start with two guesses, a and b, with the property that

$$a < \sqrt{x} < b$$

- (For example, if x > 1, we could start with a = 1, b = x.) Thus we know that the actual square root is between a and b.
- If $\frac{(a+b)}{2}$ is larger than the square root (which we can check by comparing $\left[\frac{(a+b)}{2}\right]^2$ with x) we know the real square root lies between a and $\frac{(a+b)}{2}$.
- Otherwise, the real square root lies between $\frac{(a+b)}{2}$ and b.

FOR EXAMPLE...

- To compute the square root of 10:
 - start with the window: [1, 10] (we know the square root lies in this range).
 - lacksquare Consider $\frac{(1+10)}{2}=5.5$. Since $5.5^2>10$, this is larger than sqrt(10).
 - Now we know the square root lies in [1, 5.5].
- Repeating this process, we find that it lies in [1, 3.25].
- Repeating again, we find that it lies in [2.125, 3.25].

• ...

IN SCHEME

```
(define (average a b) (/ (+ a b) 2))
(define (square a) (* a a))
(define (sqrt-converge x a b)
  (if (< (abs (-ab)) .000001)
     a
      (if (> (square (average a b)) x)
          (sqrt-converge x a (average a b))
          (sqrt-converge x (average a b) b))))
```

Now, we might like to define a more attractive square root function that does not require choosing a and b:

```
(define (new-sqrt x) (sqrt-converge x 1 x))
```

Some other general strategies for dealing with recursion (beside running away)...

• Not all recursive problems decompose the same, there can be major computational differences.

 As a general rule of thumb, if possible try and think about what the <u>base case</u> would be first.

• If you are super-duper-duper stuck and have absolutely no clue...try to write it with a "for" loop. Then try and think about the recursive way to do it.

Figure Sources

- https://upload.wikimedia.org/wikipedia/commons/7/79/Operation Upshot-Knothole -Badger 001.jpg
- https://www.memesmonkey.com/images/memesmonkey/b2/b2dd360b14b4f7d7680d90b3cd93 76ba.jpeg
- https://en.meming.world/images/en/0/07/Drakeposting.jpg
- http://web.cs.ucla.edu/~klinger/dorene/Gif/escher-hands.gif
- https://ichef.bbci.co.uk/news/976/cpsprodpb/168A6/production/ 101862329 a7a28e9d-b11b-46a7-aa57-b0b6dc8b5f19.jpg
- https://upload.wikimedia.org/wikipedia/commons/2/27/AG-7 Space Pen.JPG
- https://static01.nyt.com/images/2020/03/24/arts/gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-stadia-super-gaming-newbies-super-gaming-newbies-super-gaming-newbies-super-gaming-newbies-gaming-newbies-super-gaming-newbies-gami
- https://www.themarysue.com/wp-content/uploads/2019/09/Ned-Was-Originally-in-the-Mid-Credit-Scenes-for-Far-from-Home-1200x675.jpg
- Greg Johnson's Lecture Slides.