矩阵分解, 分类相关

(2024-2025-1)-MATH1405H-02

Friday 20^{th} December, 2024

1 线性空间, 秩, 相抵 1

1 线性空间, 秩, 相抵

1.1 线性空间的一般理论,以及常见误区

基础定义. 线性空间的基础知识如下.

- 1. (要件) 基域 \mathbb{F} , 加法交换群 V, 以及相容的运算.
- 2. (检验线性空间) 必须检验"八条公理", 缺一不可.
- 3. (**常见问题**: 证明线性空间 V 的子集 S 是子空间) 此处等价于检验 $S = \mathrm{span}(S)$. 将"线性组合式"归纳作如下三类:
 - (a) (非空) 说明 S 非空集;
 - (b) (加法封闭) 任取 $u, v \in S$, 总有 $u + v \in S$;
 - (c) (数乘封闭) 任取 $u \in S$ 与 $\lambda \in \mathbb{F}$, 总有 $\lambda u \in S$...

常见误区. 检验 $M_n(\mathbb{R})$ 的 \mathbb{R} -线性结构时, 禁止检验 $M_n(\mathbb{R})$ 对矩阵乘法封闭. 类似的错误:

- 检验 $\mathbb{Q}[\sqrt{3}]$ 的 \mathbb{Q} -线性结构时, 出现了 $(a+b\sqrt{3})\cdot(c+d\sqrt{3})$;
- 检验 $\mathbb{F}[x]$ 的 \mathbb{F} -线性结构时, 出现了 $f(x) \cdot g(x)$.

如果你不知道以上错在何处, 请尽快补救.

基础定义. 本学期谈论的子空间必是子集, 因此

- (不规范表述) \mathbb{F}^n 是 \mathbb{F}^{n+1} 的线性子空间;
- (规范表述) $\{x \in \mathbb{F}^{n+1} \mid x_{n+1} = 0\}$ 是 \mathbb{F}^{n+1} 的线性子空间.

运算 {∩,+,⊕} 也是对子空间而言的.

常见误区. 以下是补空间的常见误区.

1. 对子空间 $U \subset V$, 认为存在唯一的 $W \subset V$ 使得 $U \oplus W = V$.

1 线性空间, 秩, 相抵 2

2. 误认为 $N(A) \perp R(A)$ 是正交补空间. 此处的记号与内积, 正交性等毫无联系, 仅仅是在说明"行向量乘以列向量得 0".

解题技巧,可借助以下作业题复习.

- 1. 群, 域, 以及线性空间的基本定义见第二次作业"自学任务";
- 2. 线性空间的定义和基本运算见第二次作业"认识线性子空间", 以及第五次作业"线性空间";
- 3. 左乘与右乘矩阵后, 四大基本空间的变化.
- 1.2 数域上的线性空间

基础定义. 请留意标题: 本节暂时

常见误区. 不等式, "除以 2", 微扰法等, 在非数域中未必奏效.

• 有限域可以帮助检查是否伪证命题. 例如, 张三在不使用数域条件的情况下证明了 $N(A) = N(A^T A)$, 那他必然是伪证了.

解题技巧. 使用 Vandermonde 矩阵, 可以

- 1. 构造 \mathbb{F}^n 的无穷子集 S, 使 S 中任意 n 个向量是线性无关;
 - 可以证明有限个真子空间的并不是全空间.
- 2. (搭配求导运算)证明的特殊函数构成线性无关组;
 - 例如, 证明 $\{e^{kx}\}_{k>1}$ 在 $C^0(\mathbb{R})$ 中线性无关.
- 3. 构造一个矩阵, 其所有子式都是满秩的.