Odvodi Naloge

Peter Andolšek Januar 2025

1. Definicija odvoda

Naloga 1.1 Z uporabo definicije izpelji odvode sledečih funkcij:

- (a) f(x) = k
- (b) f(x) = x
- (c) $f(y) = y^2$
- (d) $f(x) = x^3$

- (e) $f(x) = x^n$; $n \in \mathbb{N}$
- (f) $f(t) = 5t^2 t + 2$
- (g) $f(\theta) = \sin \theta$

2. Računanje odvodov

Naloga 2.1 Izračunaj prve odvode sledečih funkcij:

- (a) $f(x) = 3x^4 7x^3 + bx + 1$
- (b) $f(x) = 3\sqrt{x} + \frac{1}{\sqrt{x^3}}$
- (c) $f(x) = x \sin x$
- (d) f(x) = |x|
- (e) $f(x) = \frac{x}{\sin x}$
- $(f) f(x) = \sin(x^2)$
- (g) $v(x) = ke^{3x}$

- (h) $f(x) = \frac{x^2 + 1}{\sqrt{x^2 1}}$
- (i) $x(t) = \sqrt{at^2 3}$
- (j) $I(\phi) = \arctan(3\phi 1)$
- (k) $\theta(z) = \log(5z^2 z)$
- (1) $x(t) = t^2 \ln(t^5)$
- (m) $f(x) = \cos(x^2 e^x)$
- (n) $c(\gamma) = \sqrt{a^2 + b^2 2ab\cos\gamma}$

Naloga 2.2 Poračunaj odvode sledečih funkcij:

(a)

$$f(x) = 5x^{100} - 2x + 7x^{-1};$$
 $f'(x) = ?;$ $f^{(100)}(x) = ?$

(b)

$$f(x) = 5x^{3/2} + \sqrt{\pi x^e} - \frac{1}{x^{-2}}; \quad f'(x) = ?$$

(c)

$$y(x) = \frac{x^2 + x - 30}{x - 5}; \quad \frac{dy}{dx} = ?; \quad \frac{d^3y}{dx^3} = ?$$

(d)

$$p(x) = e^{-x^2}; \quad p'(x) = ?; \quad p''(x) = ?$$

(e)

$$I(t) = \ln \left(\sqrt{t^2 - 1} \right); \quad \dot{I}(t) = ?; \quad \ddot{I}(t) = ?$$

(f)

$$c(x) = \frac{e^x + e^{-x}}{2};$$
 $c'(x) = ?;$ $c''(x) = ?$

(g)

$$\alpha(\gamma) = \arcsin\left(\frac{a}{c}\sin\gamma\right); \quad \frac{\mathrm{d}\alpha}{\mathrm{d}\gamma} = ?$$

3. Uporaba odvoda v matematiki

Naloga 3.1 Najdi enačbo tangente na graf $f(x) = x^2 - 2x$ v točki x = -1.

Naloga 3.2 Poišči koordinate ekstremov na grafu $x^3 + \frac{x^2}{2} - 4x + 3$. Za posamezen ekstrem določi, ali je minimum ali maksimum. So ekstremi lokalni ali globalni?

Naloga 3.3 Kje ima prevoje funkcija $f(x) = \exp(-x^2/2\sigma^2)$?

Naloga 3.4 Poračunaj sledeče limite z l'Hôpitalovim pravilom:

(a)
$$\lim_{x \to \infty} \left[\frac{e^x}{x^2} \right]$$

(d)
$$\lim_{t \to \infty} \left[t \ln \left(1 + \frac{3}{t} \right) \right]$$

(b)
$$\lim_{w \to -4} \frac{\sin(\pi w)}{w^2 - 16}$$

(e)
$$\lim_{x \to 1} \left[(x - 1) \tan \left(\frac{\pi}{2} x \right) \right]$$
(f)
$$\lim_{x \to \infty} \left[e^x + x \right]^{1/x}$$

(c)
$$\lim_{z \to 0} \frac{\sin(2z) + 7z^2 - 2z}{z^2(z+1)^2}$$

(f)
$$\lim_{x \to \infty} [e^x + x]^{1/x}$$

Naloga 3.5 Skiciraj funkcijo

$$f(x) = x \left(\ln x\right)^2.$$

Pri tem izračunaj sledeče količine:

- (a) definicijsko območje, limite na robovih definicijskega območja, ničle,
- (b) odvod ter intervale naraščanja in padanja, stacionarne točke, limite odvoda na robovih definicijskega območja,
- (c) drugi odvod ter intervale konveksnosti in konkavnosti, prevoje.

Naloga 3.6 Implicitno odvajaj po x kartezično enačbo elipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

in določi naklon normale na tangento elipse v točki (x, y).

Uporaba odvoda v fiziki 4.

Naloga 4.1 Relativistična gama

V Einsteinovi posebni teoriji relativnosti kaže ura, ki se premika s hitrostjo $v = \beta c$, drugačen čas kot ura, ki glede na nas miruje. Razmerje časov se imenuje relativistična (Lorentzeva) gama:

$$\gamma(\beta) = \frac{1}{\sqrt{1 - \beta^2}}.$$

Izračunaj $\frac{d\gamma}{d\beta}$ in funkcijo $\gamma(\beta)$ tudi skiciraj.

Naloga 4.2 Ah, kemiki ...

Med kemiki krožijo govorice, da se pri kemijski reakciji množinska koncentracija reaktanta spreminja eksponentno:

$$c(t) = c_0 e^{-kt},$$

kjer je k neka konstanta, ki opiše, kako hitro reakcija poteka. Izračunaj hitrost kemijske reakcije v(t).

Naloga 4.3 * Wienov zakon

Planckov zakon opisuje porazdelitev radiance po različnih valovnih dolžinah:

$$B_{\lambda}(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/(\lambda kT)} - 1}$$
.

Določi, pri kateri valovni dolžini λ_{max} je B_{λ} maksimalen. Uporabi točne vrednosti konstant: $h = 6,626\,070\,15\cdot10^{-34}\,\text{J}\,\text{s}, c = 2,997\,924\,58\cdot10^8\,\text{m/s}$ in $k = 1,380\,649\cdot10^{-23}\,\text{J/K}$.

Naloga 4.4 Frekvenca valovanja z valovno dolžino λ je $\nu = c/\lambda$. S pomočjo Planckovega zakona iz prejšnje naloge določi porazdelitev radiance I po frekvenci ν , torej $B_{\nu}(\nu, T)$.

Naloga 4.5 (*Mat. v fiz. in tehn.*). Nad sredino ceste s širino a visi svetilka, ki seva v vse smeri enak svetlobni tok. Na kateri višini h mora biti obešena, da je rob ceste najbolj osvetljen?

Naloga 4.6 (*Mat. v fiz. in tehn.*). Fermatovo načelo geometrijske optike določa, da je resnična pot svetlobnega žarka med dvema danima točkama tista, po kateri je čas preleta svetlobe a_1 najmanjši. a_1

- (a) Naj žarek začne v točki A in pride v točko B. Brez izgube splošnosti izberimo tak koordinatni sistem, da zrcalo leži v ravnini xy in ima točka A koordinate $(0, a_1)$, točka B pa (b, a_2) . Uporabi Fermatovo načelo in pokaži veljavnost odbojnega zakona.
- (b) Sedaj naj se točka A nahaja na $(0, -a_1, 0)$, točka B pa na $(b, a_2, 0)$. Prostor z y < 0 je napolnjen z medijem z lomnim količnikom n_1 , prostor z y > 0 pa ima lomni količnik n_2 . S Fermatovim načelom pokaži veljavnost lomnega zakona:

$$n_1\sin\theta_1=n_2\sin\theta_2\,,$$

kjer je θ_1 vpadni kót v prvem mediju in θ_2 lomni kót v drugem mediju.

Naloga 4.7 * Posoda je kocka brez zgornje ploskve. Vsaka izmed 5 ploskev te posode ima maso m in stranico a. Debelina ploskev je zanemarljiva. V posodo nalivamo vodo z gostoto ρ . Do katere višine x moramo naliti vodo, da bo težišče karseda nizko?

Naloga 4.8 (*Mat. v fiz. in tehn.*). ** Z višine h nad vodoravno ravnino mečemo pod različnimi koti α kamne z enako začetno hitrostjo v_0 . Pri katerem kotu α_0 odleti kamen najdlje?

Naloga 4.9 * Precesija

Ekvatorialna nebesna sfera je na ekliptiko nagnjena za ε , poleg tega pa se okoli ekliptičnega pola enakomerno vrti, zaradi česar se ekliptična dolžina λ vseh zvezd spreminja, širina β pa ostane konstantna.

¹Strogo gledano: po kateri je čas preleta svetlobe *stacionaren*, kar pomeni, da se pri majhni variaciji poti čas spremeni največ v drugem redu.

Uporabi zveze med ekvatorialnimi in ekliptičnimi koordinatami:

$$\sin \delta = \cos \varepsilon \sin \beta + \sin \varepsilon \cos \beta \sin \lambda$$

$$\cos \alpha \cos \delta = \cos \beta \cos \lambda$$

$$\sin \lambda \cos \beta = \sin \delta \sin \varepsilon + \cos \delta \cos \varepsilon \sin \alpha$$

Z pomočjo zgornjih relacij izračunaj, kako hitro se spreminjata deklinacija $\frac{d\delta}{d\lambda}$ in rektascenzija $\frac{d\alpha}{d\lambda}$ zvezde zaradi precesije.

Naloga 4.10 (Fundamental Astronomy). ** Izračunaj, v kateri elongaciji ε je Venera najsvetlejša. Pri tem predpostavi, da Venera seva po Lambertovem zakonu, torej je njena površinska svetlost na njenem osvetljenem delu iz vseh smeri enaka.

5. Diferenciali

Naloga 5.1 Poišči diferenciale sledečih funkcij

- (a) $f(x) = x^2 \sec x$
- (b) $w(x) = e^{x^4 x^2 + 4x}$
- (c) $h(z) = \ln(2z) \sin(2z)$

Naloga 5.2 Z diferenciali zapiši sorazmernosti, s katerimi so definirane naslednje snovne lastnosti: koeficient linearnega raztezka, koeficient prostorninskega raztezka, stisljivost, prožnostni modul, specifična toplota pri stalni prostornini. Pomagaj si z literaturo.

Naloga 5.3 Iz enačbe za adiabatno spremembo plina, $pV^{\gamma}=$ konst., pri čemer je $\gamma=c_p/c_V$, izpelji izraz za adiabatno stisljivost. V čem se razlikuje od izotermne stisljivosti? Stisljivost χ je definirana z

$$\frac{\mathrm{d}V}{V} = -\chi \,\mathrm{d}p$$

Naloga 5.4 Z diferenciali izračunaj, za koliko se spremeni težni pospešek, če se vzdignemo za 100 m nad zemeljsko površje. Radij Zemlje je 6400 km.

Naloga 5.5 (*Mat. v fiz. in tehn.*). Vesoljska ladja obkroži Zemljo (radij = 6400 km) v 100 minutah. Zaradi zaustavljanja v redkem ozračju se po določenem času obhodni čas zmanjša za 1 minuto. Za koliko se je pri tem zmanjšal radij tira?

Naloga 5.6 Analiza napak

Izmerili smo neko količino a z napako Δa , sedaj pa želimo določiti še napako količine b=b(a), ki jo označimo z Δb . Izrazi napako funkcije z napako argumenta v tangentnem približku:

(a)
$$y(x) = x^2$$

(d)
$$v(h) = \sqrt{2qh}$$

(b)
$$h(t) = vt$$

(e)
$$s(t) = a\cos(\omega t + \delta)$$

(c)
$$D(\alpha) = \frac{v^2 \sin(2\alpha)}{q}$$

(f)
$$r(x) = Ae^x$$

6. Odvajanje vektorjev

Naloga 6.1 V nebesni mehaniki se izreke najelegantneje izpelje z uporabo vektorjev. Odvajaj sledeči količini po času:

- (a) $\frac{1}{2}\mathbf{\dot{r}}\cdot\mathbf{\dot{r}}$
- (b) $\mathbf{k} = \mathbf{r} \times \dot{\mathbf{r}}$

Sedaj uporabi še dejstvo, da $\ddot{\mathbf{r}} = -\mu \frac{\mathbf{r}}{r^3}$. Koliko je torej $\dot{\mathbf{k}}$?

Naloga 6.2 Sila na nabit delec se s časom t spreminja takole (pri tem so A, ω, B in C znani parametri):

$$\mathbf{F} = (A\sin\omega t, Bt^2, Ct)$$
.

Koliko se spremeni sila med časom t in t + dt?

7. Taylorjev razvoj

Naloga 7.1 Izračunaj Maclaurinovo vrsto za $\sin x$, $\cos x$ in e^x .

Naloga 7.2 Taylorjevo razvij sledeče funkcije:

- (a) $\frac{1}{1-x}$ okrog a=0
- (b) 1 x okrog a = 0
- (c) $\frac{1}{x}$ okrog a = 1
- (d) $\ln x$ okrog a = 1

Naloga 7.3 Podano imamo funkcijo $f(x) = (1+x)^n$. Zapiši približek za f(x) za majhne $x \ll 1$.

Naloga 7.4 Plimske sile

Opazujemo objekt z maso m in radijem r, ki se nahaja na oddaljenosti R od telesa z maso M. Označimo bližnji del telesa m s točko A in središče tega telesa s točko C. Razliko med gravitacijskim pospeškom telesa M na A in C imenujemo plimski pospešek točke <math>A. Izpelji izraz za plimski pospešek točke A in pokaži, da ga lahko zapišemo s sledečim izrazom, ko $r \ll R$:

$$a_{\rm p} = \frac{2GM}{R^3}r$$

Ali ima na Zemljo večji plimski vpliv Luna ali Sonce?

8. Parcialni odvodi

Naloga 8.1 Naj bo neka količina podana z

$$T(a,b,c) = a^{\alpha}b^{\beta}c^{\gamma}$$

Pri tem so a, b in c neodvisne meritve, ki so obremenjene z napakami Δa , Δb in Δc . Pokaži, da je napaka izpeljane količine T podana z

$$\frac{\Delta T}{T} = \sqrt{\left(\alpha \frac{\Delta a}{a}\right)^2 + \left(\beta \frac{\Delta b}{b}\right)^2 + \left(\gamma \frac{\Delta c}{c}\right)^2}$$

Uporabi to relacijo, da izraziš napako količine $\omega = \sqrt{k/m}$, kjer sta k in m neodvisni meritvi, obremenjeni z napakama Δk in Δm .

Naloga 8.2 Izračunaj vse parcialne odvode prvega reda za sledeče funkcije:

- (a) $f(x,y,z) = 4x^3y^2 e^zy^4 + \frac{z^3}{x^2} + 4y x^{16}$ (b) $f(u,v,p,t) = 8u^2t^3p \sqrt{v}p^2t^{-5} + 2u^2t + 3p^4 v$
- (c) $R(x,y) = \frac{x^2}{y^2+1} \frac{y^2}{x^2+y}$

Naloga 8.3 Poišči $\frac{\partial z}{\partial x}$ in $\frac{\partial z}{\partial y}$ za sledečo funkcijo:

$$x^{2}\sin(y^{3}) + xe^{3z} - \cos(z^{2}) = 3y - 6z + 8$$

Naloga 8.4 Potrdi Schwarzev izrek za spodnji funkciji:

- (a) $f(x,y) = x^3y^2 \frac{4y^6}{x^3}$
- (b) $A(x,y) = \cos\left(\frac{x}{y}\right) x^7y^4 + y^{10}$

Naloga 8.5 Izračunaj $G_{yyyxxxy}$ za funkcijo

$$G(x,y) = y^4 \sin(2x) + x^2 (y^{10} - \cos(y^2))^7.$$

Pri tem naj $f_{xy}=(f_x)_y$ označuje parcialni odvod funkcije f po x in nato po $y, f_{xy}:=$ $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$.

Naloga 8.6 Izračunaj totalni diferencial sledečih funkcij:

- (a) $z = x^2 \sin(6y)$
- (b) $f(x, y, z) = \ln\left(\frac{xy^2}{z^3}\right)$

Naloga 8.7 Naj bo z funkcija:

$$z = x^2 y^4 - 2y.$$

Pri tem je tudi y funkcija od x: $y = \sin(x^2)$. Izračunaj totalni odvod $\frac{dz}{dx}$ na dva načina: s tem, da vse y nadomestiš z ustreznim izrazom, oziroma s tem, da uporabiš verižno pravilo za funkcije več spremenljivk.

Naloga 8.8 * Valovna funkcija nekega delca ima obliko (kjer $n \in \mathbb{N}$):

$$\Psi(x,t) = \begin{cases} \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) e^{-iE_n t/\hbar}; & x \in (0,a) \\ 0; & \text{sicer} \end{cases}$$

Nahaja se v potencialu oblike:

$$V(x) = \begin{cases} 0; & x \in (0, a) \\ \infty; & \text{sicer} \end{cases}$$

Uporabi Schrödingerjevo enačbo

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x) \Psi$$

in z njo določi energije E_n .