```
In [1]:
```

import pandas as pd

In [2]:

import numpy as np

In [3]:

import matplotlib.pyplot as plt

In [4]:

import seaborn as sns

In [5]:

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Online%20Purchase.csv

In [6]:

df.head()

Out[6]:

	Customer_ID	Gender	Age	Salary	Purchased
0	1	Male	35	500	0
1	2	Female	25	300000	1
2	3	Female	100	200000	0
3	15566689	Female	35	57000	0
4	15569641	Female	58	95000	1

In [7]:

df.shape

Out[7]:

(403, 5)

In [8]:

df.columns

Out[8]:

Index(['Customer_ID', 'Gender', 'Age', 'Salary', 'Purchased'], dtype='objec
t')

```
In [9]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 403 entries, 0 to 402
Data columns (total 5 columns):
                   Non-Null Count Dtype
     Column
 #
                   -----
_ _ _
     _____
                                    ----
     Customer_ID 403 non-null
0
                                     int64
 1
     Gender
                   403 non-null
                                    object
 2
                   403 non-null
                                     int64
     Age
 3
                   403 non-null
                                     int64
     Salary
 4
     Purchased
                   403 non-null
                                     int64
dtypes: int64(4), object(1)
memory usage: 15.9+ KB
In [10]:
df.describe()
Out[10]:
       Customer_ID
                         Age
                                     Salary
                                            Purchased
count 4.030000e+02 403.000000
                                 403.000000
                                            403.000000
 mean 1.557473e+07
                     37.771712
                               70465.260546
                                              0.357320
   std 1.352373e+06
                     10.915209
                               36598.127268
                                              0.479806
  min 1.000000e+00
                     18.000000
                                 500.000000
                                              0.000000
  25% 1.562463e+07
                     29.500000
                               43000.000000
                                              0.000000
  50% 1.569326e+07
                     37.000000
                                              0.000000
                               70000.000000
 75% 1.575020e+07
                     46.000000
                               88000.000000
                                              1.000000
```

In [11]:

```
y = df['Purchased']
```

1.000000

In [12]:

```
y.shape
```

Out[12]:

(403,)

In [13]:

```
x = df[['Age', 'Salary']]
```

max 1.581524e+07 100.000000 300000.000000

In [14]:

x.shape

Out[14]:

(403, 2)

In [15]:

In [16]:

df[['Age']].boxplot()

Out[16]:

<AxesSubplot:>

In [17]:

In [18]:

df[['Salary']].boxplot()

Out[18]:

<AxesSubplot:>


```
In [19]:
```

```
plt.scatter(df['Age'], df['Salary']);
```


In [20]:

from sklearn.model_selection import train_test_split

In [21]:

x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.3, stratify=y, rando

In [22]:

x_train.shape, x_test.shape, y_train.shape,y_test.shape

Out[22]:

((282, 2), (121, 2), (282,), (121,))

In [23]:

from sklearn.preprocessing import StandardScaler

In [24]:

ss = StandardScaler()

In [25]:

x_train_ss = ss.fit_transform(x_train)

In [26]:

x_test_ss = ss.fit_transform(x_test)

In [27]:

x_train_ss=pd.DataFrame(x_train_ss, columns=x_train.columns)
x_test_ss=pd.DataFrame(x_test_ss, columns=x_test.columns)

In [28]:

```
fig, (ax1, ax2)= plt.subplots(ncols=2, figsize=(12, 5))
ax1.scatter(x_train['Age'], x_train['Salary'])
ax1.set_title("Before Scaling")
ax2.scatter(x_train_ss['Age'], x_train_ss['Salary'],color='red')
ax2.set_title("After Scaling")
plt.show()
```


In [29]:

```
fig, (ax1, ax2)= plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title("Before Scaling")
sns.kdeplot(x_train['Age'], ax=ax1)
sns.kdeplot(x_train['Salary'], ax=ax1)

ax2.set_title("After Standard Scaling")
sns.kdeplot(x_train_ss['Age'], ax=ax2)
sns.kdeplot(x_train_ss['Salary'], ax=ax2)
plt.show()
```


In [30]:

```
fig, (ax1, ax2)= plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title("Age Distribution Before Scaling")
sns.kdeplot(x_train['Age'], ax=ax1)

ax2.set_title("Age Distribution Standard Scaling")
sns.kdeplot(x_train_ss['Age'], ax=ax2)
plt.show()
```


In [32]:

```
fig, (ax1, ax2)= plt.subplots(ncols=2, figsize=(12, 5))
ax1.set_title("Salary Distribution Before Scaling")
sns.kdeplot(x_train['Salary'], ax=ax1)

ax2.set_title("Salary Distribution Standard Scaling")
sns.kdeplot(x_train_ss['Salary'], ax=ax2)
plt.show()
```



```
In [33]:
from sklearn.linear_model import LogisticRegression
In [34]:
lr = LogisticRegression()
In [35]:
lr.fit(x_train, y_train)
Out[35]:
LogisticRegression()
In [36]:
y_pred = lr.predict(x_test)
In [37]:
from sklearn.metrics import accuracy_score
In [38]:
accuracy_score(y_test, y_pred)
Out[38]:
0.6446280991735537
In [39]:
lr.fit(x_train_ss, y_train)
Out[39]:
LogisticRegression()
In [40]:
y_pred = lr.predict(x_test_ss)
In [41]:
accuracy_score(y_test, y_pred)
Out[41]:
0.8099173553719008
In [ ]:
```