DAA Assignment IV

- 1. Trace the list with values 10, 20, 10, 20, 10, 5 using following algorithms:
 - A. Sort by comparison counting and discuss Stable property of the algorithm. Also Workout worst case and best case analysis.

10	20	10	20	10	5
0	0	0	0	0	0
3	1	0	1	0	0
	1 + 4	0	1	0	0
		2	1 + 1	0	0
			2 + 2	0	0
				1	0
3	5	2	4	1	0

5	10	10	10	20	20
0	1	2	3	4	5

B. Sort by Distribution counting and discuss the stable property of the algorithm. Also Workout worst case and best case analysis.

Values	5	10	20
Frequency	1	3	2
Distribution	1	4	6

5	10	20
1	4	6
0	4	6
0	3	6
0	3	5
0	2	5
0	2	4
0	1	4

5					
			10		
					20
		10			
				20	
	10				

Show the trace in the form of a table showing the intermediate values at each iteration till you get the final sorted array.

2. A. Compute C(6, 3) by applying the dynamic programming algorithm.

$$C(n, k) = C(n - 1, k) + C(n - 1, k - 1)$$

$$C(n, n) = C(n, 0) = 1$$

n/k	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10
6	1	6	15	20

B. Find the transitive closure of the following digraph using Warshall's algorithm.

A ₀	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	0	1	0	0
4	1	0	1	0

A ₁	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	0	1	0	0
4	1	0	1	0

A ₂	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	0	1	1	1
4	1	0	1	0

A ₃	1	2	3	4
1	0	0	0	0
2	0	1	1	1
3	0	1	1	1
4	1	1	1	1

A ₄	1	2	3	4
1	0	0	0	0
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1

3. Apply Boyer-Moore pattern search algorithm to search a pattern MAHARAJ in the text RAJA-KI-RAJA-MAAHARAJA. Also find number of character comparisons.

			BAD	SYMBOL	TABLE		
_	А	Н	I	J	K	M	R
7	1	4	7	7	7	6	2

Index:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Text:	R	Α	J	Α		K	1		R	Α	J	Α		М	Α	Α	Н	Α	R	Α	J	Α
Pattern:	М	Α	Н	Α	R	Α	J															

No match at 0, 1 comparisons so far, using bad character rule to advance by 7.

Index:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Text:	R	Α	J	Α		K	1		R	Α	J	Α		М	Α	Α	Н	Α	R	Α	J	Α
Pattern:	М	Α	Н	Α	R	Α	J															

No match at 7, 2 comparisons so far, using bad character rule to advance by 6.

Index:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Text:	R	Α	J	Α		K	Τ	-	R	Α	J	Α	-	M	Α	Α	Н	Α	R	Α	J	Α
Pattern:								M	Α	Н	Α	R	Α	J								

No match at 13, 3 comparisons so far.

Index:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Text:	R	Α	J	Α		K	1		R	Α	J	Α		М	Α	Α	Н	Α	R	А	J	Α
Pattern:														М	Α	Н	Α	R	Α	J		

No match at 14, 10 comparisons so far.

No match at 15, 11 comparisons so far.

Index:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Text:	R	Α	J	Α	-	K	1	-	R	Α	J	Α	-	М	Α	Α	Н	Α	R	Α	J	A
Pattern:																М	Α	Н	Α	R	Α	J

Character comparisons = 11 Match(es) = 0 (Word), 6 (Character)

- 4. For the input 12, 8, 30, 20, 56, 75, 31, 19, 90, 33, 80 and hash function $h(K) = K \mod 9$
 - A. Construct the open hash table.

0 →	90
1 →	19
2 →	20 → 56
3 →	12 → 27 → 75
4 →	31
5 →	
6 →	33
7 →	
8 →	8 → 80

B. Find the largest number of key comparisons in a successful search in this table.

3, for key =
$$75$$
.

C. Find the average number of key comparisons in a successful search in this table.

$$a = n/m = 11/9$$

$$= 1 + a/2$$

$$= 1 + (11/9*2)$$

A. Write an algorithm for Heapsort.

HEAPSORT(A)

- 1 BUILD-MAX-HEAP(A)
- 2 for i = A. length downto 2
- 3 exchange A[1] with A[i]
- $4 \quad A.heap\text{-size} = A.heap\text{-size} 1$
- 5 MAX-HEAPIFY(A, 1)

BUILD-MAX-HEAP(A)

- 1 A.heap-size = A.length
- 2 for i = |A.length/2| downto 1
- 3 MAX-HEAPIFY(A,i)

Max-Heapify(A, i)

- $1 \quad l = \text{LEFT}(i)$
- 2 r = RIGHT(i)
- 3 if $l \le A$. heap-size and A[l] > A[i]
- 4 largest = l
- 5 else largest = i
- 6 **if** $r \le A$. heap-size and A[r] > A[largest]
- 7 largest = r
- 8 **if** largest $\neq i$
- 9 exchange A[i] with A[largest]
- 10 MAX-HEAPIFY (A, largest)

B. The assignment problem can be stated as follows: There are n people who need to be assigned to execute n jobs, one person per job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one person.) The cost that would accrue if the i-th person is assigned to the j-th job is a known quantity C[i, j] for each pair i, j =1,...,n. The problem is to assign the people to the jobs to minimize the total cost of the assignment. Express the assignment problem as a linear programming problem.

Let x_{ij} be a 0-1 variable indicating an assignment of the ith person to the jth job (or, in terms of the cost matrix C, a selection of the matrix element from the ith row and the jth column). The assignment problem can then be posed as the following linear programming problem:

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 (the total assignment cost) subject to
$$\sum_{j=1}^{n} x_{ij} = 1 \text{ for } i = 1, ...n \text{ (person } i \text{ is assigned to one job)}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \text{ for } j = 1, ...n \text{ (job } j \text{ is assigned to one person)}$$

$$x_{ij} \in \{0,1\} \text{ for } i = 1, ..., n \text{ and } j = 1, ..., n$$