Problem 1

We know that if f is measurable, then for every $a \in \mathbb{R}^1$, the set $f^{-1}(\{a\})$ is measurable. Use the following function f to show that the converse of this result is not true, where $f : \mathbb{R}^1 \to \mathbb{R}^1$ is defined by

$$f = \begin{cases} e^x & x \in E \\ -e^x & x \in E^c \end{cases}$$

where $E \in \mathbb{R}^1$ is a nonmeasurable set.

Solution

Proof. We have that e^x is a positive function. Thus, $-e^x$ is a negative function. Thus, it follows that

$$\{f > 0\} = E.$$

Since E is nonmeasurable, this tells us that $\{f > 0\}$ is nonmeasurable. With this, we have shown that f is not measurable.

Problem 2

Theorem 1. Let $E \in \mathbb{R}^1$ be measurable. Show that if $f : E \to [-\infty, \infty]$ is increasing, then f is measurable. Proof. Let $a \in \mathbb{R}$. We have

$${f > a} = {x : E|f(x) > a}.$$

Now, suppose there is no lower bound to $\{f > a\}$. Then,

$$(\forall x \in E)(\exists x_a \in \{f > a\})(x_a < x) \implies (\forall x \in E)(\exists x_a \in \{f > a\})(f(x_a) \le f(x)) \qquad \text{Since f is increasing}$$

$$\implies (\forall x \in E)(f(x) > a)$$

$$\implies \{f > a\} = E$$

$$\implies \{f > a\} \text{ is measurable.}$$

Suppose then, that $\{f > a\}$ has a lower bound. Then, by a fundamental property of the real numbers, $\{f > a\}$ has a greatest lower bound $l \in \mathbb{R}$. Suppose first that $l \in \{f > a\}$. Then, since f is increasing, we have

$$(\forall x \ge l)(f(x) > a) \implies [l, \infty) \cap E = \{f > a\}$$

$$\implies \{f > a\} \text{ Is measurable}$$

Intersection of two measurable sets.

Similarly, if $l \notin \{f > a\}$, then

$$\begin{split} (\forall x>l)(f(x)>a) &\implies (l,\infty)\cap E=\{f>a\}\\ &\implies \{f>a\} \text{ Is measurable} \end{split}$$

Intersection of two measurable sets.

Therefore, we have shown that f is measurable.

Problem 3

Theorem 2. If f is differentiable on [a,b], the f' is measurable.

September 30, 2022