שיעור 14 אינטגריה של שברים אלגבריים (פונקציות רצינליות)

הגדרה 14.1 פונקציה רציונלית

פונקציה רציונלית (שבר אלגברי) זאת פונקציה מהצורה

$$y = \frac{P(x)}{Q(x)} ,$$

.כאשר Q(x) ,P(x) פולינומים

דוגמה 14.1 פונקציה רציונלית

$$Q(x) = x - 2 \ P(x) = x^4 - 5x + 9$$
 פונקציה רציונלית:
$$f(x) = \frac{x^4 - 5x + 9}{x - 2}$$

הגדרה 14.2 פונקציה רציונלית אמיתי

שבר אלגברי

$$\frac{P(x)}{Q(x)}$$

נקרא אמיתי אם

$$\deg(P) < \deg(Q) \ .$$

אם שבר אלגברי לא אמיתי, יש לעשות חילוק פולינומים.

דוגמה 14.2 חילוק פולינומים

חשבו את האינטגרל

$$\int \frac{x^4 - 5x + 9}{x - 2} \ .$$

פתרון:

שלב ראשון בחישוב אינטגרל של שבר אלגברי לא אמיתי, להגיע לשבר אלגברי אמיתי ע"י חילוק פולינומים. ע"י חילוק ארוך:

שלב 1:

שלב 2:

$$\begin{array}{r} x^{3} \\
x - 2 \overline{\smash)x^{4} - 5x + 9} \\
\underline{x^{4} - 2x^{3}} \\
2x^{3} - 5x + 9
\end{array}$$

שלב 3:

$$\begin{array}{r} x^3 + 2x^2 \\
x - 2 \overline{\smash)x^4} - 5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 - 5x + 9
\end{array}$$

שלב 4:

$$\begin{array}{r} x^3 + 2x^2 \\
x - 2 \overline{\smash)x^4} - 5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 - 5x + 9 \\
\underline{2x^3 - 4x^2} \\
4x^2 - 5x + 9
\end{array}$$

שלב 5:

$$\begin{array}{r} x^3 + 2x^2 + 4x \\
x - 2 \overline{\smash)x^4} - 5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 - 5x + 9 \\
\underline{2x^3 - 10x^2} \\
4x^2 - 5x + 9 \\
\underline{4x^2 - 8x} \\
3x + 9
\end{array}$$

$$\begin{array}{r} x^3 + 2x^2 + 4x + 3 \\
x - 2) x^4 - 5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 - 5x + 9 \\
\underline{2x^3 - 10x^2} \\
4x^2 - 5x + 9 \\
\underline{4x^2 - 8x} \\
3x + 9 \\
\underline{3x - 6} \\
15
\end{array}$$

תשובה סופית:

$$\frac{x^4 - 5x + 9}{x - 2} = x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2}$$

לכן

$$\int \frac{x^4 - 5x + 9}{x - 2} = \int \left(x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2}\right) = \frac{x^4}{4} + \frac{2}{3}x^3 + 2x^2 + 3x + 15\ln|x - 2| + C \ .$$

ז"א שלב ראשון בחישוב אינטגרל של שבר אלגברי:

ע"י חילוק ארוך פולינומים להגיע לשבר אלגברי אמיתי. כל שבר אלגברי אמיתי ניתן להציג כסכום של שברים
■

יש 4 סוגים של שברים אלגבריים פשוטים:

שבר פשוט				שבר אלגברי
			$\frac{m}{x-a}$:1 סוג
			$\frac{m}{(x-a)^2}$:2 סוג
	$n \in \mathbb{N}$,	$n \ge 2$	$\frac{m}{(x-a)^n}$	
. כאשר ל- x^2+px+q אין שורשים			$\frac{mx+n}{x^2+px+q}$	טוג 3:
. כאשר ל- x^2+px+q אין שורשים			$\frac{mx+b}{(x^2+px+q)^2}$:4 סוג
. כאשר ל- $px+q+x+q$ אין שורשים	$n \in \mathbb{N}$,	$n \ge 2$	$\frac{mx+b}{(x^2+px+q)^n}$	

דוגמה 14.3 אינטגרל של פונקציה רציונלית

$$\int rac{2x+1}{x^2-3x+1}$$
 חשבו את

פתרון:

$$\frac{2x+1}{x^2 - 3x + 1} = \frac{2x+1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$

$$A(x-2) + B(x-1) = 2x + 1$$

$$x = 2 \implies B = 5$$

$$x = 1 \implies A = -3$$

 $\int 2x+1$, $\int \int -3$ 5 \ ,

דוגמה 14.4 אינטגרל של פונקציה רציונלית

$$\int \frac{x^2+4}{(x-2)(x-3)^2}$$
 חשבו את

פתרון:

$$\frac{x^2 + 4}{(x - 2)(x - 3)^2} = \frac{A}{x - 2} + \frac{B}{(x - 3)^2} + \frac{C}{x - 3}.$$

$$A(x - 3)^2 + B(x - 2) + C(x - 3)(x - 2) = x^2 + 4$$

$$x = 3 \Rightarrow B = 13$$

$$x = 2 \Rightarrow A = 8$$

$$x = 0 \Rightarrow 9A - 2B + 6C = 4 \Rightarrow C = -7$$

$$\int \frac{x^2+4}{(x-2)(x-3)^2} \, dx = \int \left(\frac{8}{x-2} + \frac{13}{(x-3)^2} - \frac{7}{x-3}\right) dx = 8 \ln|x-2| - \frac{13}{x-3} - 7 \ln|x-3| + C \; .$$

דוגמה 14.5 אינטגרל של פונקציה רציונלית

$$\int \frac{x^3+1}{x^2(x^2+1)}$$
 חשבו את

פתרון:

$$\frac{x^3+1}{x^2(x^2+1)} = \frac{A}{x^2} + \frac{B}{x} + \frac{Cx+D}{x^2+1}.$$

$$A(x^2+1)^2 + Bx(x^2+1) + (Cx+D)x^2 = x^3+1$$

$$x^3: B+C=1$$

$$x^2: A+D=0$$

$$x: B=0$$

$$x^0: A=1$$

לכן

$$D = -1 , \qquad C = 1 .$$

$$\int \frac{x^3+1}{x^2(x^2+1)} dx = \int \left(\frac{1}{x^2} + \frac{x-1}{x^2+1}\right) dx = \int \left(\frac{1}{x^2} + \frac{x}{x^2+1} - \frac{1}{x^2+1}\right) dx = -\frac{1}{x} + \frac{1}{2} \ln|x^2+1| - \arctan(x) + C \; .$$

דוגמה 14.6 אינטגרל של פונקציה רציונלית

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)}$$
 חשבו את

פתרון:

$$\frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 - 2x + 5}.$$

$$A(x^2 - 2x + 5) + (Bx + C)(x - 1) = 2x^2 - 3x - 3$$

$$x^2: \quad A + B = 2$$

$$x: \quad -2A + C - B = -3$$

$$x^0: \quad 5A - C = -3$$

 $I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} dx = \int \left(-\frac{1}{x - 1} + \frac{3x - 2}{x^2 - 2x + 5} \right) dx = -\ln|x - 1| + \int \left(\frac{3x - 2}{(x - 1)^2 + 4} \right) dx.$

: u = x - 1 נגדיר

$$\begin{split} I &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + 3 \int \frac{u}{u^2+4} du - \int \frac{1}{u^2+4} du \\ &= \ln|x-1| + \frac{3}{2} \ln|u^2+4| - \frac{1}{2} \arctan\left(\frac{u}{2}\right) \\ &= \ln|x-1| + \frac{3}{2} \ln|(x-1)^2+4| - \frac{1}{2} \arctan\left(\frac{x-1}{2}\right) \end{split}$$

למה 14.1 שלבים באינטגרציה של שברים אלגבריים

 $\deg(P) \geq \deg(Q)$ שלב 1. לחלק במכנה (חילוק פולינומי) שלב 1.

שלב 2. להציב שבר אלגברי אמיתי כסכום של שברים פשוטים.

שלב 3. לבצע אינטגרציה של כל שבר םשוט.

דוגמה 14.7 אינטגרל של פונקציה רציונלית

$$I = \int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} dx$$
 חשבו את

פתרון:

שלב 1:

$$x^4 + 2x^3 + 2x^2$$
 $x^5 + 2x^3 + 4x + 4$

:2 שלב

$$\begin{array}{r} x \\ x^4 + 2x^3 + 2x^2 \overline{\smash)x^5} \\ \underline{x^5 + 2x^4 + 2x^3} \\ -2x^4 \\ \underline{+4x + 4} \end{array}$$

שלב 3:

$$\begin{array}{r} x-2 \\ x^4 + 2x^3 + 2x^2 \overline{\smash)x^5} \\ +2x^3 \\ \underline{x^5 + 2x^4 + 2x^3} \\ -2x^4 \\ \underline{-2x^4 - 4x^3 - 4x^2} \\ 4x^3 + 4x^2 + 4x + 4 \end{array}$$

לכן ע"י חילוק ארוך קיבלנו

$$\frac{x^5 + 2x + 4x + 4}{x^4 + x^3 + 2x^2} = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = x - 2 + 4\left(\frac{x^3 + x^2 + x + 1}{x^4 + 2x^3 + 2x^2}\right)$$
$$\frac{x^3 + x^2 + x + 1}{x^4 + 2x^3 + 2x^2} = \frac{x^3 + x^2 + x + 1}{x^2(x^2 + 2x + 2)} = \frac{A}{x^2} + \frac{B}{x} + \frac{Cx + D}{x^2 + 2x + 2}$$
$$A(x^2 + 2x + 2) + Bx(x^2 + 2x + 2x) + (Cx + D)x^2 = x^3 + x^2 + x + 1$$

 $x^3: B+C=1$ $x^2: 2A + 2B + D = 1$ $x: \quad 2A + 2B = 1$

 $x^0: 2A = 1$

 $A = \frac{1}{2}$, B = 0, C = 1, $D = \frac{1}{2}$.

לכן

$$I = \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}\right) dx$$
$$= \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{(x+1)^2 + 1}\right) dx$$
$$= \frac{x^2}{2} - 2x - \frac{2}{x} + 4\int \frac{x + \frac{1}{2}}{(x+1)^2 + 1} dx.$$

: u = x + 1 נגדיר

$$\begin{split} I = & \frac{x^2}{2} - 2x - \frac{2}{x} + 4\int \frac{u - \frac{1}{2}}{u^2 + 1} du \\ = & \frac{x^2}{2} - 2x - \frac{2}{x} + 2\ln|u^2 + 1| - 2\arctan(u) + C \\ = & \frac{x^2}{2} - 2x - \frac{2}{x} + 2\ln|(x + 1)^2 + 1| - 2\arctan(x + 1) + C \end{split}$$