MIT OpenCourseWare http://ocw.mit.edu

18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem set 8, Solution keys

- 1. (a) Let $Au = \lambda u$. Then $u^*Au = u^*\lambda u = \lambda uu^*$. On the other hand, $u^*A = u^*A^* = (Au)^* = \bar{\lambda}u^*$. So, $u^*Au = \bar{\lambda}u^*u$. $\Rightarrow \lambda$ is real.
 - (b) Let $Au = \lambda u$, $Av = \mu v$, $u \neq 0, v \neq 0, \lambda \neq \mu$ Using the argument above, $v^*Au = \lambda v^*u$, $u^*Av = \mu u^*v$. And $v^*Au = \bar{\mu}v^*u$. So $v^*v = 0$
- 2. $e^{At} = I + tA + \frac{t^2A^2}{2} + t^3R_1(t),$ $e^{Bt} = I + tB + \frac{t^2B^2}{2} + t^3R_2(t)$ So, $e^{At}e^{Bt} = I + t(A+B) + t^2(\frac{A^2+B^2}{2} + AB) + t^3R_3(t),$ $e^{Bt}e^{At} = I + t(A+B) + t^2(\frac{A^2+B^2}{2} + BA) + t^3R_4(t),$

Here $R_1(t), \dots, R_4(t)$ are continuous matrix-valued functions.

Therfore,
$$\lim_{t\to\infty}\frac{e^{At}e^{Bt}-e^{Bt}e^{At}}{t^2}=AB-BA\quad (=[A,B])$$

- 3. (a) $p(\lambda) = (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$ By Cayley-Hamilton, $(A - \lambda_1 I)(A - \lambda_2 I)(A - \lambda_3 I) = 0$
 - (b) By Cayley-Hamilton, $A(A^2 I) = 0$ So, $A^{2k+1} = A$ and $A^{2k} = A^2$.

$$e^{At} = I + tA + \frac{t^2 A^2}{2!} + \frac{t^3 A^3}{3!} + \cdots$$

$$= I + A(t + \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots) + A^2(\frac{t^2}{2!} + \frac{t^4}{4!} + \cdots)$$

$$= I + A^2 + \frac{1}{2}A(e^t - e^{-t}) + \frac{1}{2}A^2(e^t + e^{-t}).$$

- 4. (a) $P(\lambda) = \lambda^2 9\lambda 14$... unstable node.
 - (b) $m = \frac{4+3m}{6+m}$, $m^2 + 3m 4 = 0$ So, m = 1 or m = -4.

- 5. (a) Saddle.
 - (b) $m = \frac{1}{2}$ or 3.

6. Birkhoff-Rota pp.50-51.