- PARALELOGRAMO.
- TEOREMAS GENERALES.
- CLASIFICACIÓN DEL PARALELOGRAMO Y SUS DIVERSOS TEOREMAS.

DISEÑO DE INTERIORES

LAS PASTAS DE NUESTROS LIBROS DE GEOMETRÍA

CURSO DE GEOMETRÍA

PARALELOGRAMO:

Es aquel cuadrilátero de lados opuestos paralelos.

TEOREMAS:

CUADRILÁTEROS II

- Trazamos \overline{BD} diagonal Como los lados opuestos son paralelos:
- EI $\triangle ABC \cong \triangle CDB$ (ALA):
 - ∴AB=CD=a
 - ∴BC=AD=b
- Además:

 $\therefore m \triangleleft BAD = m \triangleleft BCD = \theta$

Del grafico, ABCD es un paralelogramo. Si AB=12 y BC=4. calcule BP.

RESOLUCIÓN:

Dato:

Nos piden BP=X

AB=12

BC=4

Como ABCD es paralelogramo:

 En el ΔCPD rectángulos por mediana relativa a la hipotenusa:

• El ΔDMP es isósceles:

$$m$$
∢ MPD =θ

• Entonces:

$$\overline{MP} \parallel \overline{AD}$$

• Prolongamos \overline{PM} tal que se determinan paralelogramos parciales:

En el ΔQBP por teorema de Pitágoras:

$$X^2 + 6^2 = 10^2$$

CURSO DE GEOMETRÍA

CLASIFICACIÓN DEL PARALELOGRAMO

Romboide:

Si AB=BC y

Si a \neq b y $\theta \neq 90^{\circ}$

ABCD: romboide

 \overline{AC} y \overline{BD} : bisectrices

ABCD: rombo $\overline{AC} \perp \overline{BD}$

 $\theta \neq 90^{\circ}$

CUADRILÁTEROS II

Como PBQR es un rombo:

El ΔRQB es isósceles:

$$m \triangleleft BRQ = m \triangleleft RBQ = \theta$$

El ΔARB es isósceles:

El ΔRBC es isósceles:

Entonces suma de medidas interiores:

$$2\theta + \theta + 2\theta = 180^{\circ}$$

CURSO DE GEOMETRÍA

CUADRILÁTEROS II

Rectángulo:

Los Δs determinados por las diagonales son isósceles

Cuadrado:

Del grafico, ABCD es un cuadrado. Si AC=CP, calcule θ .

TEOREMAS ADICIONALES

 Si M, N, L y P son puntos medios.

MNLP: PARALELOGRAMO

Si ABCD es paralelogramo

$$X = \frac{a+b+c+d}{4}$$

Del grafico, ABCD es un cuadrado. Si AQ=QP. Calcule θ .

RESOLUCIÓN:

Nos piden θ

Dato:

Como \overline{BD} es diagonal o eje de simetría del cuadrado ABCD. Trazamos \overline{AP} tal que por la simetría:

AP=PC=b

$$m$$
∢ PAQ = θ

El ΔAQP es isósceles:

m∢*APQ*=θ

(por ángulo externo)

En el ΔQDC :

 $2\theta + \theta = 90^{\circ}$

∴θ=30°