

Métodos matemáticos para el análisis de datos

- MÉTODO GRÁFICO
- ECUACIÓN DIFERENCIAL HOMOGÉNEA
- MODELO INSUMO PRODUCTO DE LEONTIEF

Presentan:

Alonso Soria Mónica

Lomelí Avila Afra Julieta

Martínez Ayala Pedro

Diciembre 2020

MÉTODO GRÁFICO

El método gráfico o método geométrico permite la resolución de problemas sencillos de programación lineal de manera intuitiva y visual.

Limitaciones

- Número limitado de variables.
- 2. Errores de escala.

Ventajas

- 3. Permite el estudio de todos los puntos de interés de las funciones.
- 4. Permite observar el comportamiento de las expresiones
- 5. Podemos observar crecimiento y decrecimiento de la misma.
- 6. Podemos obtener los valores con solo observar de forma directa.

SOLUCIÓN EN PYTHON (SIMPLEX)

Bibliotecas: ScyPy, Pulp & Matplotlib

1. Elaborar tabla de datos

	Piedras rojas	Piedras negras	Piedras amarillas	Tiempo en minutos	Costo otros materiales	Precio de venta
Pulseras (x)	6	12	4	20	\$10	\$85
Collares (y)	12	30	12	30	\$15	\$185
Disponibilidad	396	816	312	1200		
Costo	3	1	2			

- 2. Definir la función objetivo, restricciones y no negatividad
- 3. Redefinir el sistema para trabajarlo con Lingpro

$$Utilidad = Precioventa - Costo(piedras + otrosmateriales)$$

$$Utilidad pulsera = \$85 - \$48 = \$37$$

$$Utilidad collar = \$185 - \$105 = \$80$$

$$Z = Max(37x + 80y)$$

$$6x + 12y \le 396$$

$$12x + 30y \le 816$$

$$4x + 12y \le 312$$

$$20x + 30y \le 1200$$

$$x, y > = 0$$

$$Z = Min(-37x - 80y)$$

$$6x + 12y \le 396$$

$$12x + 30y \le 816$$

$$4x + 12y \le 312$$

$$20x + 30y \le 1200$$

$$x, y > = 0$$

SOLUCIÓN EN PYTHON (SIMPLEX)

4. Definir los coeficientes

```
obj = [-37, -80]

lhs_ineq = [[ 6, 12], [12, 30], [ 4, 12], [ 20, 30]]

rhs_ineq = [396, 816, 312, 1200]

#Añadimos no negatividad (de cero a infinito)
bnd = [(0, float("inf")),(0, float("inf"))]
```

5. Ingresar los argumentos para optimización

```
opt = linprog(c=obj, A_ub=lhs_ineq, b_ub=rhs_ineq, bounds=bnd, method="revised simplex")
```

6. Obtener el punto que maximiza la utilidad

Z = Min(-37x - 80y)

 $6x + 12y \le 396$

 $12x + 30y \le 816$

 $4x + 12y \le 312$

 $20x + 30y \le 1200$

x, y > = 0

SOLUCIÓN EN PYTHON (GRÁFICO)

1. Construir vector X

```
# x > 0
# vector (inicio, salto, fin)
x = np.linspace(0, 100, 2000)
```

3. Construcción de la gráfica

```
# Graficar
plt.plot(x, y1, label=r'$y\geq(396 -6*x)/12$')
plt.plot(x, y2, label=r'$2y\leq(816 -12*x)/30$')
plt.plot(x, y3, label=r'$4y\geq (312-4*x)/12$')
plt.plot(x, y4, label=r'$y\leq (1200-20*x)/30$')
plt.xlim((0, 90)) #límite eje x
plt.ylim((0, 40)) #límite eje y
plt.xlabel(r'$x$')
plt.ylabel(r'$y$')
```

2. Definición de las rectas

```
#6x+12y <= 396 , y <= (396 -6*x)/12

y1= (396 -6*x)/12

#12x + 30y <=816 , y<= (816 -12*x)/30

y2= (816 -12*x)/30

#4x + 12y <= 312, y<= (312-4*x)/12

y3= (312-4*x)/12

#20x + 30y <= 1200, y <= (1200-20*x)/30

y4= (1200-20*x)/30
```

SOLUCIÓN EN PYTHON (GRÁFICO)

4. Colorear la región factible (cuando aplica al problema)

```
# Región Factible, en este caso es un punto el que maximiza la utilidad (48,8)
# por lo que la solución no es una región, sino el punto en sí mismo.
y5 = np.minimum(y2, y4)
y6 = np.maximum(y1, y3)
plt.fill_between(x, y5, y6, where=y5>y6, color='grey', alpha=0.5)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
```

<matplotlib.legend.Legend at 0x7f82ec17cd30>

(48, 08)

Definimos la ecuación homogénea de primer orden que queremos resolver:

$$\frac{dy}{dx} = -ky$$

Con condición inicial de:

$$y(x=0)=5$$

Después despejamos para verificar si se adapta a la fórmula:

$$dy + dx(ky) = 0$$

M(x, y)dx + N(x, y)dy = 0

Comprobamos que sí cumple con la forma de la ecuación diferencial homogénea de primer orden

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# Función regresa dy/dx
def model(y,x):
    k = 0.3
    dydx = -k * y
    return dydx
```

```
# Condición inicial
y0 = 5
# Puntos de x
x = np.linspace(0,20)
# Resolver la ODE
y = odeint(model, y0, x)
# Plot resultados
plt.plot(x,y)
plt.xlabel('x')
plt.ylabel('y(x)')
plt.show()
```


The Review of Economic Statistics

VOLUME XVIII AUGUST, 1936 NUMBER 3

QUANTITATIVE INPUT AND OUTPUT RELATIONS IN THE ECONOMIC SYSTEM OF THE UNITED STATES

INTRODUCTION

The statistical study presented in the following pages may be best defined as an attempt to construct, on the basis of available statistical materials, a *Tableau Economique* of the United States for the year 1919.¹

One hundred and fifty years ago, when Quesnay first published his famous schema, his contemporaries and disciples acclaimed it as the greatest "invention" since Newton's laws. The idea of general interdependence existing among the various parts of the economic system has become by now the very foundation of economic analysis. And yet, when it comes to the practical application of this theoretical tool, modern economists must rely exactly as Quesnay did upon fictitious numerical examples. What would be the present state of the theory and policy of international trade if, instead of actual balances of foreign trade, the economist had to base his analysis upon assumed numerical setups, supplemented by scattered items of actual statistical information? This is the situation in which the student of economics finds himself at present when he faces a problem of national production, consumption, and distribution. Despite the remarkable increase in the volume of primary statistical data, the proverbial boxes of theoretical assumptions are in this respect as empty as ever. Considerable progress has been achieved in the field of national income statistics. The economic balance of some of the most important branches of the national economy, particularly that of agriculture, has been studied with much success. Thus the ground has been prepared, at least in part, for a more complete analysis of the interrelations of the whole economic system. Navorthalass the difficulty of the took still

The publication of this preliminary survey is prompted by the conviction that the inevitable path of any empirical research is that of trial and error.

Governmental publications constitute the main source of primary statistical information used in this study. Additional data were gathered from trade publications, and in some instances the results of special investigations have been utilized. In many cases, use was made of the work of the National Bureau of Economic Research on national income.

At the time that this study was initiated (1932), the publication of the detailed results of the 1929 Census was still far from complete. As a result, the Census of 1919 had to be used. It is because of this fact that the entire investigation is based on 1919 data.

CHART 1.—SERIES INDICATIVE OF BUSINESS CONDITIONS

The general business conditions prevailing during that year are described in W. L. Thorp's Business Annals in the following terms:

Revival; prosperity.

Uncertainty gives way to extraordinary activity, late spring; building revival; enormous output of new securities; speculation; steel, coal, and railroad shopmen's strikes, autumn; commodity prices rise; active foreign

Objetivo

Determinar producción bruta por sector para satisfacer la demanda de un país entero (o región)

Supuestos

- •Identidad de la industria y el producto
- •Homogeneidad de los productos
- •Supuesto de coeficientes fijos

Datos de entrada

Matriz simétrica de insumo producto. Producto por producto / Economía total / Origen doméstico e importado / Sector CIAN

Unidades

Millones de pesos a precios básicos

Fuente, Año de publicación
Instituto Nacional de Estadística y
Geografía, 2013

Lenguaje de programación

Python (bibliotecas: Pandas & Numpy)

Restricciones

- *Sujeto a revisión por un experto en la materia
- * Versión del modelo abierto

VARIABLES

Tabla de transacciones intersectoriales

INSUMOS DEMANDA INTERMEDIA							DEMANDA	PRODUCCIÓN	
	S1	S2	S3	S4	S5	S6	FINAL	FINAL	
S1	q11	q12	q13	q14	q15	q16	d1	x1	
S2	q21	q22	q23	q24	q25	q26	d2	x2	
S3	q31	q32	q33	q34	q35	q36	d3	x3	
S4	q41	q42	q43	q44	q45	q46	d4	x4	
S5	q51	q52	q53	q54	q55	q56	d5	x5	
S6	q61	q62	q63	q64	q65	q66	d6	x6	
VALOR	3.4								
AGREGADO	v1	v2	v3	v4	v5	v6			
INSUMO									
TOTAL	q1	q2	q3	q4	q5	q6			

- \$1, \$2, \$3,..., \$n son las industrias o sectores
- q_{ii} es número de unidades producidas por la industria S_i para la industria S_i
- d es la demanda final o demanda externa de productos (lo que consume el sector no productivo)
- X1,X2,X3,...Xn es la producción total de cada industria S1, S2, S3,..., Sn

FÓRMULAS

En lugar de q_{ij} el modelo necesita a_{ij}, el número de unidades producidas por la industria S_j necesarias para producir una unidad en la industria S_j. Construimos entonces la matriz de consumo total.

$$A = \left(egin{array}{ccc} a_{11} & \cdots & a_{1n} \ dots & & dots \ a_{n1} & \cdots & a_{nn} \end{array}
ight)$$

• Para estimar el modelo abierto de Leontief se requiere que A y d (vector de demanda externa) sean diferentes de cero

$$A \quad y \quad d \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 Leontief plantea entonces, un sistema de ecuaciones lineales equivalentes a la ecuación matricial:

$$X = AX + d$$

• Se puede transformar esta ecuación de la siguiente manera:

$$I_nX - AX = d$$

 $(I_nX - A)X = d$
 $X = (I_nX - A)^{-1}d$

• Si la inversa de la matriz InX - A existe entonces, es llamada la inversa de Leontief

PROCESO GENERAL*

1. Calcular matriz de coeficientes (A), es en sí, la matriz de consumo de una economía.

A.

```
matriz_coeficientes = data.loc[:,'nombre_primera
columna ':].div(data.iloc[-1]['nombre primera
columna':])
A = np.matrix(matriz_coeficientes)
```


2. Crear matriz de identidad

$$I_nX$$

INSUMOS		DEMANDA INTERMEDIA							
1143014103	S1	S2	S3	S4	S5	S6			
S1	1	0	0	0	0	0			
S2	0	1	0	0	0	0			
S3	0	0	1	0	0	0			
S4	0	0	0	1	0	0			
S5	0	0	0	0	1	0			
S6	0	0	0	0	0	1			

(*) El código completo incluye importación de bibliotecas, transformación de variables y otras líneas de código para manipulación de las matrices.

PROCESO GENERAL

3. Construir matriz de la diferencia

$$(I_nX-A)$$

INSUMOS	DEMANDA INTERMEDIA								
INSUMOS	S1	S2	S3	S4	S5	S6			
S1	1	0	0	0	0	0			
S2	0	1	0	0	0	0			
S3	0	0	1	0	0	0			
S4	0	0	0	1	0	0			
S5	0	0	0	0	1	0			
S6	0	0	0	0	0	1			

INSUMOS	DEMANDA INTERMEDIA								
INSUIVIOS	S1	S2	S3	S4	S5	S6			
S1	a11	a12	a13	a14	a15	a16			
S2	a21	a22	a23	a24	a25	a26			
S3	a31	a32	a33	a34	a35	a36			
S4	a41	a42	a43	a44	a45	a46			
S5	a51	a52	a53	a54	a55	a56			
S6	a61	a62	a63	a64	a65	a66			

4. Calcular la inversa de la matriz de diferencia

$$(I_n X - A)^{-1}$$

INSUMOS	DEMANDA INTERMEDIA							
IIVSUIVIUS	S1	S2	S3	S4	S5	S6		
S1	i11	i12	i13	i14	i15	i16		
S2	i21	i22	i23	i24	i25	i26		
S3	i31	i32	i33	i34	i35	i36		
S4	i41	i42	i43	i44	i45	i46		
S5	i51	i52	i53	i54	i55	i56		
S6	i61	i62	i63	i64	i65	i66		

PROCESO GENERAL

5. Multiplicar la demanda final por la matriz inversa

$$X = (I_n X - A)^{-1} d$$

INSUMOS	DEMANDA INTERMEDIA							
IIV20IVIO2	S1	S2	S3	S4	S5	S6		
S1	i11	i12	i13	i14	i15	i16		
S2	i21	i22	i23	i24	i25	i26		
S3	i31	i32	i33	i34	i35	i36		
S4	i41	i42	i43	i44	i45	i46		
S 5	i51	i52	i53	i54	i55	i56		
S6	i61	i62	i63	i64	i65	i66		

6. Presentar resultados

```
resultados = pd.DataFrame(matriz_leontief) # Convertir en un dataframe
resultados.columns = matriz_coeficientes.columns # Nombrar las industrias
resultados = resultados.T # Transponer dataframe para que se vea el nombre completo de la industria
resultados.columns = ['Producción por industria (Millones de pesos a precios básicos)'] #Título columna
pd.options.display.float_format = '{:,.0f}'.format # Cambiar el formato de las cifras
```

	Producción por industria (Millones de pesos a precios básicos)
11 - Agricultura, cría y explotación de animales, aprovechamiento forestal, pesca y caza	1,861,994
21 - Minería	1,665,415
22 - Generación, transmisión y distribución de energía eléctrica, suministro de agua y de gas por ductos al consumidor final	2,572,397
23 - Construcción	6,950,302
31-33 - Industrias manufactureras	6,825,893
43 - Comercio al por mayor	1,207,061
46 - Comercio al por menor	2,140,928
48-49 - Transportes, correos y almacenamiento	3,317,071
51 - Información en medios masivos	1,671,050
52 - Servicios financieros y de seguros	1,079,836
53 - Servicios inmobiliarios y de alquiler de bienes muebles e intangibles	1,924,804
54 - Servicios profesionales, científicos y técnicos	763,492
55 - Corporativos	1,146,463
56 - Servicios de apoyo a los negocios y manejo de residuos y desechos, y servicios de remediación	536,125
61 - Servicios educativos	1,088,149
62 - Servicios de salud y de asistencia social	2,011,940
71 - Servicios de esparcimiento culturales y deportivos, y otros servicios recreativos	1,058,817
72 - Servicios de alojamiento temporal y de preparación de alimentos y bebidas	1,838,633
81 - Otros servicios excepto actividades gubernamentales	1,571,288
93 - Actividades legislativas, gubernamentales, de impartición de justicia y de organismos internacionales y extraterritoriales	1,694,046

FUENTES CONSULTADAS

- [1] Haeussler, F.E, & S.Paul, R.(2003). Matemáticas para la administración y economía .México. Pearson Educación.
- [2] INEGI (2013) Matriz Insumo- Producto . Tomado de: https://www.inegi.org.mx/contenidos/programas/mip/2013/doc/met_mip.pdf
- [3] Jagdish, C & Robin, L. (1992). Matemáticas aplicadas. 3a Ed. Pearson Educación.
- [4] Lay, D.C.(2012) Álgebra lineal y sus aplicaciones. México: Pearson Educación
- [5] Leontief,W. (1936) Quantitative Input and Output Relations in the Economic Systems of the United States, Rev. Econ. Stat. 18, 105.
- [6] Mitchel, S. (2009). An Introduction to Pulp for Python Programmers . Tomado de:https://projects.coin-or.org/PuLP/export/355/trunk/doc/KPyCon2009/PulpFor PythonProgrammers.pdf
- [7] Stack Overflow. (SF). How to solve homogeneous linear equations with NumPy. Tomado de:

https://stackoverflow.com/questions/1835246/how-to-solve-homogeneous-linear -equations-with-numpy

CÓDIGO EN GITHUB

