Lecture 8: significance tests for means and proportions (Agresti chapter 6)

Administrative issues

Midterm

- Take home mid-term
- (Most likely) distributed 10/31, due 11/7
- 10/31 class will be devoted to midterm review

What we will do today

- Significance tests by hand
 - Significance tests for means (quantitative variables)
 - Significance tests for proportions (0/1 categorical variables)
 - Equivalence between significance tests and confidence intervals
- Significance tests in Stata
 - Significance tests for means
 - Significance tests for proportions

Significance tests for means (quantitative variables)

Significance tests

- Significance tests:
 - a significance test uses data to summarize the evidence about a hypothesis.
 - It does this by comparing point estimates (e.g., sample mean) to the parameter values (e.g., population mean) predicted by the hypothesis.
- There are 5 parts to a significance test
 - (1) assumptions
 - (2) hypotheses
 - (3) test statistic
 - (4) p-value (means probability value)
 - (5) conclusion

Strategy for Significance Testing

- Imagine that we are making a hypothesis test about the value of a population mean, μ
 - For example, mean SAT score
- Assuming that the null hypothesis, H_0 , is true (i.e., $\mu = \mu_0$), how unlikely would it be to observe the sample mean, \bar{y} , that we observed?
- Question:
 - what would the sampling distribution look like if the null hypothesis is true?

Strategy for Significance Testing

- Draw a sampling distribution, assuming that H_0 is true (i.e., $\mu=\mu_0$)
 - We don't know if this is the right sampling distribution; this is the sampling distribution that would be true IF the null hypothesis is true
- Label the sample mean
 - If the sample mean, \bar{y} , we got in our actual data is very unlikely to occur with under sampling distribution associated with the null hypothesis, then the null hypothesis is probably wrong
- Essentially, we are going to calculate how many standard deviations our sample mean, \bar{y} , is from the population mean associated with the null hypothesis, μ_0 .
 - If our sample mean, \bar{y} , is many standard deviations away from the population mean associated with null hypothesis, μ_0 , then null hypothesis is probably wrong.

Example 1

- Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - (Test a two sided alternative hypothesis)
- summarize hrs1
 - Sample size=n=2,820
 - Sample mean=40.483
 - Sample std deviation=14.850

(1) Assumptions

- Assumptions
 - The variable is a "quantitative" variable
 - Our data is a random sample from the population
 - The population distribution of this variable has a normal distribution
 - Note: This assumption is robust to violations if sample size is sufficiently large (say n>=30)
 - Do you think the variable "number of hours worked" fulfills these criteria?

(2) Hypotheses

- Generate hypotheses from research question:
 - Research question: Is the population mean number of hours worked (for those who work) equal to 40?
- Null hypothesis (H_o)
 - $-H_0$: $\mu = \mu_0 = 40$
- Two sided alternative hypothesis (H_a)
 - Two-sided: H_a : $\mu \neq 40$
 - This means that μ could be greater than 40 (μ >40) or μ could be less than 40 (μ <40)
 - So the two-sided hypothesis encompasses both one-sided hypotheses

(3) Test Statistic

- We conduct a test to see whether we should reject the null hypothesis
- What is the sampling distribution under the assumption that H_0 is true?
- Draw picture
- Test-statistic:
 - If null hypothesis is true, how unlikely would it be to randomly draw a sample mean equal to the observed sample mean

(3) Test Statistic

- Test statistic is based on measuring the distance between μ_0 (associated with the null hypothesis) and \bar{y} (the sample mean we actually observed)
- Test statistic: t-score
 - We conduct a test to see whether we should reject the null hypothesis

$$-t=rac{ar{y}-u_0}{se}$$
, where $se=sample\ std\ err=rac{sample\ std\ dev}{\sqrt{n}}$

- Hours worked example
 - n=2,820; \bar{y} =40.483; $\mu_0=40$; s=sample std. dev=14.850

$$-se = \frac{sample \, std \, dev}{\sqrt{n}} = \frac{14.850}{\sqrt{2820}} = .2796$$

- $t = \frac{\bar{y} u_0}{se} = \frac{40.483 40}{.2796} = \frac{.483}{.2796} = 1.73$
 - Question: how many standard dev away from μ_0 is our sample?

(4) P-value

- P-value (probability value)
 - Under the presumption that H_0 is true, the p-value is the probability the test statistic equals the observed value or a value even more extreme in the direction predicted by H_a
 - Small p-value means that it would be unusual to find the observed data if H_0 were true.
- Two-sided hypothesis $(H_a: \mu \neq 40)$
 - In two-sided hypothesis "direction predicted by H_a " is both directions; this means that μ could be greater than 40 (μ >40) or μ could be less than 40 (μ <40)
- P-value for two sided hypothesis
 - Pr(obs>t) + pr(obs<-t) = Pr(obs>1.73) + pr(obs<-1.73)
- Draw picture; use z-score table to find probabilities

(4) P-value

- P-value=.0418+.0418=.0813
- Interpretation of p-value
 - Under the assumption that H_0 is true, the probability of observing a test statistic even more extreme than 1.73 (i.e., greater than 1.73 or less than -1.73) is equal to .0813

(4) Rejection Region

- Rejection region
 - $-\alpha \ level$ (alpha level) is a number such that we reject H_0 if the observed p-value is less than or equal to the alpha level.
 - We should choose the alpha level prior to conducting analyses
 - We reject the null hypothesis if the observed p-value is less than or equal to the rejection region
 - In practice, most common alpha levels are .05 or .01
 - So if we choose α level of .05 and find a p-value of .02, we reject H_0

(4) P-value: rejection region

- Hours worked example
- Assume we choose a rejection region of .05
- We find a p-value of .0836
- Should we reject the null hypothesis?

(5) Conclusion

- H_0 : $\mu = \mu_0 = 40$
- H_a : $\mu \neq \mu_0$
- Alpha level= rejection region=.05
- P-value=.0836
- Conclusion:
 - do not reject H_0 .
 - We do not have sufficient evidence to reject the null hypothesis that population mean hours worked is equal to 40 hours per week.

Conclusion (continued)

 How to write your conclusion in terms of null and alternative hypotheses

	Conclusion	
P-value	H_0	H_a
P<=.05	Reject H_0	Accept H_a
P>.05	Do not reject H_0	Do not accept H_a

- Note that we never say "Accept H_0 " or "Reject H_a "
 - Why? Even if we do not have enough evidence to reject H_0 , we might have been able to reject H_0 if we had a bigger sample size

Example 2

- Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - This time test the one-sided alternative hypothesis that mean hours worked is greater than 40
 - Choose α level (i.e., rejection region) of .05
 - So reject if observed p-value <=.05
- summarize hrs1
 - Sample size=n=2,820
 - Sample mean=40.483
 - Sample std deviation=14.850

(1) Assumptions

- Assumptions
 - The variable is a "quantitative" variable
 - Our data is a random sample from the population
 - The population distribution of this variable has a normal distribution
 - Note: This assumption is robust to violations if sample size is sufficiently large (say n>=30)
 - Do you think the variable "number of hours worked" fulfills these criteria?

(2) Hypotheses

- Generate hypotheses from research question:
 - Research question: Is the population mean number of hours worked (for those who work) equal to 40?
- Null hypothesis (H_o) [same as before]
 - $-H_0$: $\mu = \mu_0 = 40$
- Two sided alternative hypothesis (H_a) [different]
 - Two-sided: H_a : $\mu > 40$

(3) Test Statistic

Test statistic: t-score

$$-t=rac{ar{y}-u_0}{se}$$
, where $se=sample\ std\ err=rac{sample\ std\ dev}{\sqrt{n}}$

- Question: Does calculation of test statistic change now that we are testing a one sided alternative hypothesis?
- Answer: No!
- Hours worked example

$$-$$
 n=2,820; \bar{y} =40.483; $\mu_0=40$; s=sample std. dev=14.850

$$-se = \frac{sample \, std \, dev}{\sqrt{n}} = \frac{14.850}{\sqrt{2820}} = .2796$$

•
$$t = \frac{\bar{y} - u_0}{se} = \frac{40.483 - 40}{.2796} = \frac{.483}{.2796} = 1.73$$

(4) P-value (probability value)

- P-value
 - Small p-value means that it would be unusual to find the observed data if H_0 were true.
- Question: Does calculation of P-value change in a one-sided vs. a two-sided test?
- Answer: Yes!
- Draw picture

(4) two-sided vs. one-sided p-value

- P-value
 - Small p-value means that it would be unusual to find the observed data if H_0 were true.
- Two-sided. H_a : $\mu \neq \mu_0$ [Example 1]
 - Under the assumption that H_0 is true, the p-value is the probability of finding sample mean at least as far away from μ_0 as \overline{y} (in either direction).
 - P-value=pr(t>1.73)+pr(t<-1.73)
- One sided. H_a : $\mu > \mu_0$ [Example 2]
 - Under the assumption that H_0 is true, the p-value is the probability of finding sample mean at least large \bar{y}
 - P-value=pr(t>1.73)

(5) Conclusion

- H_0 : $\mu = \mu_0 = 40$
- H_a : $\mu > \mu_0$
- Alpha level= rejection region=.05
- P-value=.0418
- Conclusion: reject H_0 ; accept H_a
 - We reject the null hypothesis that population mean hours worked is 40
 - We accept the alternative hypothesis that population mean hours worked is greater than 40

One-sided or two-sided hypotheses?

- The data in example 1 and example 2 were exactly the same
 - Example 1 was a two-sided hypothesis
 - We did not reject *H*₀
 - Example 2 was a one-sided hypothesis
 - We rejected H_0
- You need stronger evidence (i.e., larger t-score) to reject H_0 in a two-sided hypothesis
- Generally, researchers prefer two-sided hypotheses because this is seen as a more conservative approach to hypothesis testing (i.e., only reject H_0 when you have strong evidence)

one-sided vs. two-sided rejection region

- Rejection region
 - $-\alpha\ level$ (alpha level) is a number such that we reject if the observed p-value is less than or equal to the alpha level. This is something we decide before we calculate test statistic
 - Show picture of two-sided .05 alpha level
 - Show picture of one-sided .05 alpha level
- Two-sided hypotheses require a more extreme t-score (larger absolute value) in order to reject H_0 than one sided hypotheses. E.g., α level = .05:
 - One sided hypothesis: reject H_0 if t>1.645
 - Two sided hypothesis: reject H_0 if t>1.96 or if t<-1.96

In class exercise (answer on next page)

- A random sample of 400 students take the SAT; sample mean is 1030; sample std dev is 300
- Research question: is the population mean SAT score equal to 1,000
- (1) test the research question using a two sided alternative hypothesis
 - Use alpha level=.05; Show all five parts of the significance test; draw & label sampling distribution under assumption H_0 is true
- (2) test the research question using the one-sided alternative hypothesis that the population mean SAT score is greater than 1,000
 - Use alpha level=.05; Show all five parts of the significance test; draw & label sampling distribution under assumption H_0 is true

In class exercise (answers): Question 1

- (1) Assumptions
 - (a) quantitative variable; (b) random sampling (c) normal population distribution (robust to this assumption because large sample size)
- (2) hypothesis
 - H_0 : $\mu = \mu_0 = 1,000$; H_a : $\mu \neq 1,000$
- (3) test statistic

$$- se = \frac{sample std dev}{\sqrt{n}} = \frac{300}{\sqrt{400}} = \frac{300}{20} = 15$$

$$\bar{v} = v_0 = 1030 - 1000 = 30$$

$$- t = \frac{\bar{y} - u_0}{se} = \frac{1030 - 1000}{15} = \frac{30}{15} = 2$$

- (4) p-value
 - Two-sided p-value is Pr(t>2)+Pr(t<-2)</p>
 - On z-score table, probability of finding z-score>2 is .0228
 - P-value for two-sided hypothesis = Pr(z>2)*2=.0228*2=.0456
- (5) conclusion
 - P-value of .0456 is less than alpha level of .05
 - Reject H_0 ; Accept H_a ; we accept the alternative hypothesis that the population mean SAT score is not equal to 1,000

In class exercise (answers): Question 2

- (1) Assumptions
 - (a) quantitative variable; (b) random sampling (c) normal population distribution (robust to this assumption because large sample size)
- (2) hypothesis
 - H_0 : $\mu = \mu_0 = 1,000$; H_a : $\mu > 1,000$
- (3) test statistic

$$- se = \frac{sample std dev}{\sqrt{n}} = \frac{300}{\sqrt{400}} = \frac{300}{20} = 15$$

$$\bar{v} - u_0 = 1030 - 1000 = 30$$

$$- t = \frac{\bar{y} - u_0}{se} = \frac{1030 - 1000}{15} = \frac{30}{15} = 2$$

- (4) p-value
 - One-sided p-value is Pr(t>2)
 - On z-score table, probability of finding z-score>2 is .0228
 - P-value=.0228
- (5) conclusion
 - P-value of .0228 is less than alpha level of .05
 - Reject H_0 ; Accept H_a ; We accept the alternative hypothesis that the population mean SAT score is greater than 1,000

Significance Tests for a Proportion

Significance Tests for a Proportion

- Same five parts as before:
 - -(1) assumptions
 - (2) hypotheses
 - Note: decide on alpha level (i.e., rejection level) here
 - (3) test statistic
 - (4) p-value
 - (5) conclusion

Example 1

- Does the population proportion of people who believe that same sex couples should be allowed to marry equal .5?
 - Test using a two-sided alternative hypothesis
 - Use α level (i.e., rejection region) of .05
- Created a 0/1 variable called "msamesex" out of the ordinal variable "marhomo"
 - Show in Stata

Significance Tests for a Proportion

- Does the π of people who believe same sex couples should be allowed to marry equal .5?
 - Test with two-sided hypothesis
- (1) assumptions
 - Variable is a 0/1 variable (i.e., has two categories)
 - Random sampling
 - Sufficient sample size (at least 15 in each category)
- (2) hypotheses
 - $-H_0$: $\pi = \pi_0 = .5$
 - $-H_a$: $\pi \neq .5$

(3) Test statistic

- Does the π of people who believe same sex couples should be allowed to marry equal .5?
- (3) Test statistic
 - If H_0 is true (i.e., $\pi=.5$), how unlikely would it be to observe the sample proportion we observed, $\hat{\pi}=.4368$?

$$-z=\frac{\widehat{\pi}-\pi_0}{se_0};$$

- $\hat{\pi}=sample\ proportion;\ \pi_0=$ proportion associated with null hypothesis; $se_0=$ standard error associated with null hypothesis
- ullet Draw sampling distribution associated with H_0

(3) Test statistic

•
$$z = \frac{\widehat{\pi} - \pi_0}{se_0}$$

- -n = sample size
- $-\hat{\pi} = sample \ proportion = \frac{\text{# that say "yes"}}{sample \ size}$
- $-\pi_0$ = proportion associated with null hypothesis;
- $-se_0$ = standard error associated with null hypothesis

•
$$se_0 = \sqrt{\pi_0(1 - \pi_0)/n}$$

- Recommended steps
 - (1) calculate $\hat{\pi}$
 - (2) calculate se_0
 - (3) calculate z

(3) Test statistic

- Why do we use se_0 instead of se in z-test?
 - "null" standard error: $se_0 = \sqrt{\pi_0(1-\pi_0)/n}$
 - estimated standard error: $se = \sqrt{\hat{\pi}(1-\hat{\pi})/n}$
- We test H_0 under presumption that H_0 is true
 - therefore, use standard error under assumption that population proportion equals π_0
- Confidence intervals
 - Confidence intervals do not have a hypothesized value. Therefore, for CI use estimated se, not se_0

(3) Test statistic

- calculations
 - n=3,182
 - $\pi_0 = .5$
 - $\hat{\pi} = \frac{\text{# that say "yes"}}{\text{sample size}} = \frac{1,390}{3,182} = .4368$

$$-se_0 = \sqrt{\frac{\pi_0(1-\pi_0)}{n}} = \sqrt{\frac{.5(1-.5)}{3182}} = \sqrt{\frac{.25}{3182}} = .0088638$$

• (3) Test statistic

$$-z = \frac{\hat{\pi} - \pi_0}{se_0} = \frac{.4368 - .5}{.0088638} = \frac{-.0632}{.0088638} = -7.13$$

(4) P-value

- (4) find p-value
 - Remember that for two tailed hypothesis we use "two sided" p-value
 - Pr(obs>z) + pr(obs<-z) = Pr(obs>z=7.13) + pr(obs<-z=-7.13)
 - P-value ≈.0000+.0000=.0000
 - Show picture
- (5) Conclusion (associated with two-sided H_a)
 - alpha level=.05
 - P-value=.0000
 - We reject the null hypothesis that the population proportion of people who agree with same sex marriage is equal to .5; we accept the alternative hypothesis that the population proportion of people who agree with same sex marriage is not equal to .5

Example 2

- Does the population proportion of people who believe that same sex couples should be allowed to marry equal .5?
 - Test using a one-sided alternative hypothesis that population proportion is less than .5
 - Use α level (i.e., rejection region) of .05
- Created a 0/1 variable called "msamesex" out of the ordinal variable "marhomo"
 - Show in Stata

Significance Tests for a Proportion

- Does the π of people who believe same sex couples should be allowed to marry equal .5?
 - One sided hypothesis
- (1) assumptions
 - Variable is a 0/1 variable (i.e., has two categories)
 - Random sampling
 - Sufficient sample size (at least 15 in each category)
- (2) hypotheses
 - $-H_0$: $\pi = \pi_0 = .5$
 - $-H_{a}$: π < .5

(3) Test statistic

Test statistic (same calculations as before)

$$-z = \frac{\widehat{\pi} - \pi_0}{se_0}$$

- calculations
 - n=3,182; $\pi_0 = .5$

•
$$\hat{\pi} = \frac{\text{# that say "yes"}}{\text{sample size}} = \frac{1,390}{3,182} = .4368$$

$$-se_0 = \sqrt{\frac{\pi_0(1-\pi_0)}{n}} = \sqrt{\frac{.5(1-.5)}{3182}} = \sqrt{\frac{.25}{3182}} = .0088638$$

• (3) Test statistic

$$-z = \frac{\widehat{\pi} - \pi_0}{se_0} = \frac{.4368 - .5}{.0088638} = \frac{-.0632}{.0088638} = -7.13$$

(4) P-value

- (4) find p-value (different from before)
 - One-sided alternative hypothesis, H_a : $\pi < .5$
 - P-value=pr(obs<-z=-7.32)
 - − P-value \approx . 0000
 - Show picture
- (5) Conclusion (associated with two-sided H_a)
 - alpha level=.05
 - P-value=.0000
 - We reject the null hypothesis that the population proportion of people who agree with same sex marriage is equal to .5; we accept the alternative hypothesis that the population proportion of people who agree with same sex marriage is less than .5

In-class exercise (answer on next pg)

- Question: Nationally, 45% of community college students transfer to a 4-year institution within five years (I made this up). Researchers collected data on a random sample of 1,000 first-year Arizona community college student. Five years later, 485 had transferred to a 4-year institution. Does the population proportion of Arizona community college students who transfer equal the national population proportion of students who transfer?
 - Test using the one-sided hypothesis that the population proportion of Arizona is greater than .45
 - Use alpha level of .05; show all five steps (but can skip the "assumptions" step; draw and label sampling distribution associated with H_0

In-class exercises (answer)

- (2) Hypotheses
 - H_0 : $\pi = \pi_0 = .45$; H_a : $\pi > .45$
- (3) Test-statistic

$$-\hat{\pi} = \frac{485}{1000} = .485; se_0 = \sqrt{\frac{.45*(1-.45)}{1000}} = \sqrt{\frac{.2475}{1000}} = .01573$$
$$-z = \frac{\hat{\pi} - \pi_0}{se_0} = \frac{.485 - .45}{.01573} = \approx 2.23$$

- See sampling distribution on next page
- (4) P-value (use z-score table)
 - One sided hypothesis; p=pr(z>2.23)=.0129
- (5) Conclusion
 - P-value (=.0129) is less than alpha level (=.05)
 - Reject H_0 ; Accept H_a : $\pi > .45$

In-class exercises (answer)

• Sampling distribution (assuming H_0 is true)

Significance test for proportions

Question:

- Would we have rejected if we used a two-sided hypothesis and alpha-level=.05?
 - Yes! P-value=pr(z>2.23) + pr(z<-2.23)=.0129+.0129=.0258, which is less than .05
- Would we have rejected if we used a one-sided hypothesis and an alpha-level of .01
 - No! P-value=.0129 is greater than alpha level of .01

Equivalence between confidence interval and two-sided significance test

Using Stata to conduct Significance tests

You conduct tests in Stata as I do

Using Stata to conduct tests

- Download Stata dataset
 - https://www.dropbox.com/s/whpdrryj707w1hw/gss-2010-big-sig-test.dta
- Open Stata dataset called 2010-big-sig-test.dta
- Copy this code into "command line"
 - describe hrs1 msamesex
 - sum hrs1
 - tab msamesex

Using Stata to conduct tests

- Test significance of a mean
 - ttest command:
- Test significance of proportions
 - prtest command
- One or two-tailed test
 - Stata reports both one- and two-tailed significance tests
 - In practice, researchers usually use two-tailed tests; we will focus on interpreting the two-tailed test
 - Converting a two-tailed test to a one-tailed test
 - Cut the two-tailed probability in half
 - If something has a .1 probability using a two-tailed test, its probability would be .05 using a one tailed test

Significance test for mean

- command (for one-sample test of mean)
 - ttest varname== μ_0
- Test null hypothesis that mean number of hours worked is equal to 40
 - $-H_0$: $\mu = \mu_0 = 40$
 - Type this in Stata
 - ttest satp50==40
 - Why use two equal signs "=="?
 - In Stata, use two equal signs whenever we are *comparing*
 whether one value equals another value
- Copy test output into OneNote and discuss results
 - Stata results are very close to results calculated by hand

Significance test for proportion

- command (for one-sample test of proportion)
 - prtest varname== π_0
- Test null hypothesis that population proportion of people who agree w/ same sex marriage equals .5
 - $-H_0$: $\pi = \pi_0 = .5$
 - Type this in Stata
 - prtest msamesex==.5
 - Why use two equal signs "=="?
 - In Stata, use two equal signs whenever we are *comparing*
 whether one value equals another value
- Copy test output into OneNote and discuss results
 - Stata results are very close to results calculated by hand

Significance of proportion

- command (for one-sample test of proportion)
 - prtest varname== π_0
 - Example:
 - prtest public==.4
 - H_0 : proportion of public institutions is equal to .4
- help prtest
 - "prtest performs tests on the equality of proportions using large-sample statistics"
 - Note that prtest is calculated based on z-scores
- Stata examples
 - proportion of: (1) public institutions; (2) MA granting

Comments on testing with Software

- Note that Stata does not tell you whether to reject H_0 or not.
 - Stata merely gives you the p-values associated with different alternative hypotheses.
 - You decide whether to reject H_0 depending on what alpha levels (rejection regions) you decided on before hand.
- For testing proportions (prtest command), the variable must be coded 0/1; coding 1=no and 2=yes will not work

In class exercises (answers on next pg)

- For both questions:
 - Write all significance testing steps, except for assumptions; test a two-sided hypothesis; use alpha level of .05
- Significance test for mean (ttest command)
 - Test whether population mean number of children=2
 - (variable is called "childs")
- Significance test for proportion (prtest command)
 - Test whether population proportion of people who think marijuana should be legal=.45
 - (variable is called "legalize")

In class exercise answers (#1)

- Test whether population mean number of children=2
- Hypotheses
 - $-H_0$: $\mu = \mu_0 = 2$; H_a : $\mu \neq 2$
- Calculate test statistic
 - Stata command:
 - ttest childs==2
 - $-t \approx 2.64$
- P-value (for two-sided test) ≈.0083
- Conclusion
 - P-value of .0083 is less than alpha level of .05; reject null hypothesis

In class exercise answers (#2)

- Test whether population proportion of people who think marijuana should be legal=.45
- Hypotheses
 - $-H_0$: $\pi = \pi_0 = .45$; H_a : $\pi \neq .45$
- Calculate test statistic
 - Stata command:
 - prtest legalize==.45
 - -z ≈ 1.134
- P-value (for two-sided test) ≈.2554
- Conclusion
 - P-value of .2554 is not less than alpha level of .05; do not reject null hypothesis

Equivalence between confidence interval and two-sided significance test

- 95% confidence interval tells us much of the same information as a two-sided significance test with a .05 alpha level
- 99% confidence interval tells us much of the same information as a two-sided significance test with a .01 alpha level
- Etc.

Relationship between confidence interval and two-sided significance test

- Show picture
- If p-value<=.05 (i.e., reject H_0)
 - If p-value<=.05 in a two-sided test, a 95% CI for μ does not contain μ_0
 - Equivalently, if 95% CI for μ does not contains μ_0 then we reject H_0
- If p-value>.05 (i.e., do not reject H_0)
 - When p-value>.05 in a two-sided test, the 95% CI for μ contains μ_0 (associated with null hypothesis, H_0)
 - Equivalently, if 95% CI for μ contains μ_0 then we do not reject H_0

CI and significance test

- Application of equivalence between confidence interval and significance testing
- Credit score example
 - Imagine that 95% CI for population mean credit score is 600 to 700
 - Imagine a two-sided hypothesis, alpha level =.05:
 - Would we reject H_0 : $\mu = \mu_0 = 610$?
 - Would we reject H_0 : $\mu = \mu_0 = 720$?

Cls vs. significance tests

- Confidence intervals better than significance tests
 - "Most statisticians believe [significance tests] have been overemphasized in social science research....A test merely indicates whether the particular value in H_0 is plausible. It does not tell us which other potential values are plausible. The confidence interval, by contrast, displays all plausible potential values. It shows the extent to which H_0 may be false by showing whether the values in the interval are far from the H_0 value." (Agresti, p. 164)

Decisions and Decision Errors

Decisions and Errors

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
 - Example:
 - Null hypothesis: Amanda Knox is innocent
 - Truth: Amanda Knox is innocent
 - Type 1 error: jury finds Amanda Knox guilty, when in fact she is innocent
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false
 - Example
 - Null hypothesis: Amanda Knox is innocent
 - Truth: Amanda Knox is guilty
 - Type 1 error: jury finds Amanda Knox innocent, when in fact she is guilty

Decisions and Errors

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false

Truth (usually unknown)	Decision	
	Reject H ₀	Do not reject H_0
H_0 is true	Type I error	Correct decision
H_0 is false	Correct Decision	Type II error

Type 1 error (optional slide)

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false
- Prior to conducting test, decide your tolerance for Type 1 error
 - probability of Type 1 error is alpha-level (i.e., rejection region) for test
 - Example: H_0 : proportion of public institutions=.4
 - Alpha=.05, willing to accept 5% chance that we reject H_0 when H_0 is true.

Statistical vs. Practical Significance

t-test

$$-t = \frac{\bar{y} - \mu_0}{se}; se = \frac{sample \ std.dav}{\sqrt{n}}$$
$$-\uparrow n \rightarrow \downarrow se \rightarrow \uparrow t$$

- Example in Stata
 - $-H_0$:Proportion public=.29; (a) population (b) sample
- When you have a big enough sample, every relationship is significant
 - Example of research on English FE Colleges
- Funny business:
 - When sample sizes big, look for "strong" relationships

Statistical vs. Practical Significance

- The too small sample size problem
 - Cannot detect significant relationships even if those relationships are extremely strong in the population
- The too big sample size problem
 - Even the most trivial relationship is significant
 - Growing problem with more "administrative" data
- This is another reason to prefer confidence intervals over significance tests
 - For sample size too small: CI shows population relationship could be quite large
 - For sample size too big: CI shows that population relationship is very small.