#### PDAs Accept Context-Free Languages

#### Theorem:

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

#### Proof - Step 1:

Convert any context-free grammar G to a PDA M with: L(G) = L(M)

#### Proof - Step 2:

Context-Free
Languages
(Grammars)

Languages
Accepted by
PDAs

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1

Convert

Context-Free Grammars
to
PDAs

#### Take an arbitrary context-free grammar G

We will convert G to a PDA M such that:

$$L(G) = L(M)$$

#### Conversion Procedure:

For each For each production in G terminal in G $A \rightarrow w$ Add transitions  $\varepsilon, A \rightarrow w$  $a, a \rightarrow \varepsilon$  $\varepsilon, \varepsilon \to S$ 

Costas Busch - LSU

7

#### Grammar

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \to \varepsilon$$

#### Example

#### PDA

$$\varepsilon, S \rightarrow aSTb$$

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$

$$a, a \rightarrow \varepsilon$$

$$\varepsilon, T \to \varepsilon$$

$$b, b \rightarrow \varepsilon$$



$$\varepsilon, \$ \rightarrow \$$$

#### PDA simulates leftmost derivations

## Grammar Leftmost Derivation

$$\rightarrow \dots$$

$$\Rightarrow \sigma_1 \cdots \sigma_k X_1 \cdots X_m$$

$$\Rightarrow \cdots$$

$$\Rightarrow \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n$$

Scanned symbols

#### PDA Computation

$$(q_0, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, \$)$$

$$\succ (q_1, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, S\$)$$

$$\succ \cdots$$

$$\succ (q_1, \sigma_{k+1} \cdots \sigma_n, X_1 \cdots X_m \$)$$

$$\succ (q_2, \varepsilon, \$)$$

Stack
contents
Costas Busch - LSU

#### Grammar Leftmost Derivation



#### Production applied



#### Grammar Leftmost Derivation

#### PDA Computation

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow x\sigma_i \cdots \sigma_j Bzy$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

#### Production applied

$$A \rightarrow \sigma_i \cdots \sigma_j Bz$$

#### Transition applied



#### Grammar Leftmost Derivation

#### PDA Computation

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow$$
  $x\sigma_i \cdots \sigma_j Bzy$ 

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

Read  $\sigma_i$  from input and remove it from stack

Transition applied



#### Grammar

#### Leftmost Derivation

 $\Rightarrow \cdots$ 

 $\Rightarrow xAy$ 

 $\Rightarrow x\sigma_i \cdots \sigma_j Bzy$ 

All symbols  $\sigma_i \cdots \sigma_j$  have been removed from top of stack

#### PDA Computation

 $\succ \cdots$ 

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

**>** · · ·

$$\succ (q_1, \sigma_{j+1} \cdots \sigma_n, Bzy\$)$$

#### Last Transition applied



## The process repeats with the next leftmost variable

$$\Rightarrow \cdots$$

$$\Rightarrow xAy \qquad \qquad \succ \cdots$$

$$\Rightarrow x\sigma_{i} \cdots \sigma_{j}Bzy \qquad \qquad \succ (q_{1},\sigma_{j+1} \cdots \sigma_{n},Bzy\$)$$

$$\Rightarrow x\sigma_{i} \cdots \sigma_{j}\sigma_{j+1} \cdots \sigma_{k}Cpzy \qquad \qquad \succ (q_{1},\sigma_{j+1} \cdots \sigma_{n},\sigma_{j+1} \cdots \sigma_{k}Cpzy\$)$$

$$\qquad \qquad \succ \cdots$$

$$\qquad \qquad \succ \cdots$$

$$\qquad \qquad \succ (q_{1},\sigma_{k+1} \cdots \sigma_{n},Cpzy\$)$$

#### Production applied

$$B \to \sigma_{j+1} \cdots \sigma_k Cp$$

And so on....

#### Example:



#### Time 0

$$\varepsilon$$
,  $S \rightarrow aSTb$ 

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

#### Stack

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$



 $\varepsilon, \varepsilon \to S$   $q_1$ 

 $\varepsilon, \$ \rightarrow \$$ 

#### Derivation: S



 $\varepsilon, \varepsilon \to S$ 



$$\varepsilon, T \to \varepsilon$$
  $b, b \to \varepsilon$ 

 $\varepsilon, \$ \rightarrow \$$ 

Costas Busch - LSU

#### Derivation: $S \Rightarrow aSTb$ Input 9695 $\varepsilon, S \to aSTb$ Time 2 $\varepsilon, S \to b$ Stack $\varepsilon, T \to Ta$ $a, a \rightarrow \varepsilon$ $\varepsilon, T \to \varepsilon$ $b, b \rightarrow \varepsilon$ $\varepsilon$ , $\$ \rightarrow \$$ $\varepsilon, \varepsilon \to S$ Costas Busch - LSU

### Derivation: $S \Rightarrow aSTb$ Input $\boldsymbol{a}$

#### Time 3

$$\varepsilon$$
,  $S \to aSTb$ 

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

$$\varepsilon \qquad h \stackrel{}{h} \rightarrow \varepsilon$$





$$b, b \rightarrow \varepsilon$$

 $(a, a \rightarrow \varepsilon)$ 



#### Derivation: $S \Rightarrow aSTb \Rightarrow abTb$



# *b T b b s*

#### Time 4

$$\varepsilon, S \to aSTb$$

$$(\varepsilon, S \to b)$$

$$\varepsilon, T \to Ta$$

$$a, a \rightarrow \varepsilon$$

$$\varepsilon, T \to \varepsilon$$

Costas Busch - LSU

$$b, b \rightarrow \varepsilon$$



$$\varepsilon, \varepsilon \to S$$

$$\varepsilon, \$ \rightarrow \$$$

#### Derivation: $S \Rightarrow aSTb \Rightarrow abTb$



Stack

#### Time 5

$$\varepsilon, S \to aSTb$$

 $\varepsilon, T \to Ta$ 

$$\varepsilon, S \to b$$

$$a, a \rightarrow \varepsilon$$

$$\varepsilon, T \to \varepsilon$$

$$(b,b \rightarrow \varepsilon)$$



$$\varepsilon, \$ \rightarrow \$$$

#### Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$



$$\varepsilon, S \rightarrow aSTb$$

$$\varepsilon, S \to b$$

$$[\varepsilon, T \to Ta]$$

$$\varepsilon, T \to \varepsilon$$

 $\varepsilon, \varepsilon \to S$ 

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$





#### Stack





$$\varepsilon, S \rightarrow aSTb$$

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$\rightarrow Ta$$

$$\varepsilon, T \to \varepsilon$$

 $\varepsilon, \varepsilon \to S$ 

$$\rightarrow \varepsilon$$
  $b, b \rightarrow$ 



Stack

$$b, b \rightarrow \varepsilon$$

 $a, a \rightarrow \varepsilon$ 

$$\varepsilon, \$ \rightarrow \$$$
  $q_2$ 

Costas Busch - LSU





Time 9

$$\varepsilon$$
,  $S \rightarrow aSTb$ 

$$\varepsilon, S \rightarrow b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

 $\underline{\varepsilon}, \varepsilon \to S$ 



Stack

$$b, b \rightarrow \varepsilon$$

 $a, a \rightarrow \varepsilon$ 

 $-\varepsilon, \$ \to \$$ 



Time 10

$$\varepsilon$$
,  $S \rightarrow aSTb$ 

$$\varepsilon, S \to b$$

$$\varepsilon, T \to Ta$$

$$\varepsilon, T \to \varepsilon$$

$$c, b \rightarrow abib$$

$$\rightarrow b$$

$$a, a \rightarrow \varepsilon$$

$$b, b \rightarrow \varepsilon$$



 $\varepsilon, \varepsilon \to S$ 

Costas Busch - LSU

 $\varepsilon, \$ \rightarrow \$$ 

Stack

#### Grammar

#### PDA Computation

#### Leftmost Derivation

$$S = \begin{cases} (q_0, abab, \$) \\ \succ (q_1, abab, S\$) \\ \Rightarrow aSTb = \begin{cases} (q_0, abab, \$) \\ \succ (q_1, bab, STb\$) \\ \Rightarrow (q_1, bab, bTb\$) \\ \succ (q_1, ab, Tb\$) \\ \Rightarrow (q_1, ab, Tab\$) \\ \Rightarrow abab = \begin{cases} (q_0, abab, \$) \\ \succ (q_1, bab, STb\$) \\ \succ (q_1, ab, Tab\$) \\ \succ (q_1, ab, ab\$) \\ \succ (q_1, \epsilon, \$) \\ \succ (q_2, \epsilon, \$) \end{cases}$$

#### In general, it can be shown that:

Grammar Ggenerates
string W

$$S \stackrel{*}{\Longrightarrow} w$$



PDA M
accepts w

$$(q_0, w,\$) \succ (q_2, \varepsilon,\$)$$

Therefore 
$$L(G) = L(M)$$

Proof - step 2

Convert

PDAs
to
Context-Free Grammars

#### Take an arbitrary PDA M

We will convert M to a context-free grammar G such that:

$$L(M) = L(G)$$

# First modify PDA M so that:



- 1. The PDA has a single accept state
- 2. Use new initial stack symbol #
- 3. On acceptance the stack contains only Stack symbol # (this symbol is not used in any transition)
- 4. Each transition either pushes a symbol or pops a symbol but not both together

#### 1. The PDA has a single accept state



2. Use new initial stack symbol # Top of stack

initial stack symbol of M
auxiliary stack symbol
new initial stack symbol



M still thinks that Z is the initial stack

3. On acceptance the stack contains only stack symbol # (this symbol is not used in any transition)



## 4. Each transition either pushes a symbol or pops a symbol but not both together

PDA Ma PDA Ma

PDA 
$$M_3$$
  $q_i$   $\sigma, \varepsilon \to \varepsilon$   $q_j$ 

PDA 
$$M_4$$
  $q_i$   $\sigma, \varepsilon \to \delta$   $\varepsilon, \delta \to \varepsilon$   $q_j$ 

Where  $\delta$  is a symbol of the stack alphabet

#### PDA $M_4$ is the final modified PDA

Note that the new initial stack symbol # is never used in any transition

# Example:





## Grammar Construction



## Kind 1: for each state



## Grammar

$$A_{qq} \to \varepsilon$$

# Kind 2: for every three states







## Grammar

$$A_{pq} \rightarrow A_{pr} A_{rq}$$

# Kind 3: for every pair of such transitions

$$\begin{array}{c|c}
\hline
p & a, \varepsilon \to t \\
\hline
\end{array}$$

## Grammar

$$A_{pq} \rightarrow aA_{rs}b$$

## Initial state



## Accept state



## Grammar

Start variable

$$A_{q_0q_f}$$

# Example:

## PDA



## Grammar

# Kind 1: from single states

$$egin{aligned} A_{q_0q_0} & 
ightarrow arepsilon \ A_{q_1q_1} & 
ightarrow arepsilon \ A_{q_2q_2} & 
ightarrow arepsilon \ A_{q_3q_3} & 
ightarrow arepsilon \ A_{q_4q_4} & 
ightarrow arepsilon \ A_{q_5q_5} & 
ightarrow arepsilon \end{aligned}$$

# Kind 2: from triplets of states

$$\begin{array}{l} A_{q_{0}q_{0}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{0}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{0}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{0}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{0}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{0}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{0}} \\ A_{q_{0}q_{1}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{1}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{1}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{1}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{1}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{1}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{1}} \\ \vdots \\ A_{q_{0}q_{5}} \rightarrow A_{q_{0}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{0}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{0}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{0}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{0}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{0}q_{5}} A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}} A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}} A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}} A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}} A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}} A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}} A_{q_{5}q_{5}} \end{array}$$

Start variable  $A_{q_0q_5}$ 

# Kind 3: from pairs of transitions



$$A_{q_0q_5} o A_{q_1q_4} ext{ } A_{q_2q_4} o aA_{q_2q_4} ext{ } A_{q_2q_2} o A_{q_2q_2} ext{ } b$$
 $A_{q_1q_4} o A_{q_2q_4} o A_{q_2q_2} o aA_{q_2q_2} ext{ } A_{q_2q_4} o A_{q_3q_3} ext{ } A_{q_2q_4} o A_{q_3q_4} o A_{q_3q_4}$ 

Suppose that a PDA M is converted to a context-free grammar GWe need to prove that L(G) = L(M)

or equivalently

$$L(G) \subseteq L(M)$$
  $L(G) \supseteq L(M)$ 

$$L(G) \subseteq L(M)$$

We need to show that if G has derivation:

$$A_{q_0q_f} \Rightarrow W$$

 $A_{q_0q_f} \Longrightarrow W$  (string of terminals)

Then there is an accepting computation in M:

$$(q_0, w, \#) \stackrel{\hat{}}{\succ} (q_f, \varepsilon, \#)$$

with input string W

# We will actually show that if G has derivation:

$$A_{pq} \stackrel{*}{\Rightarrow} W$$

# Then there is a computation in M

$$(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$

## Therefore:



Since there is no transition with the # symbol



## Lemma:

If 
$$A_{pq} \stackrel{*}{\Rightarrow} W$$
 (string of terminals)

then there is a computation from state p to state q on string W which leaves the stack empty:

$$(p, w, \varepsilon)^* + (q, \varepsilon, \varepsilon)$$

# Proof Intuition:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$

Type 2

Case 1: 
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Type 3

Case 2:  $A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$ 

# Type 2

Case 1:  $A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$ 



# Type 3

Case 2: 
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$



# Formal Proof:

We formally prove this claim by induction on the number of steps in derivation:

$$A_{pq} \Longrightarrow \cdots \Longrightarrow W$$

number of steps

Induction Basis: 
$$A_{pq} \Longrightarrow W$$
 (one derivation step)

A Kind 1 production must have been used:

$$A_{pp} \to \varepsilon$$

Therefore, p = q and  $w = \varepsilon$ 

This computation of PDA trivially exists:

$$(p,\varepsilon,\varepsilon)\succ(p,\varepsilon,\varepsilon)$$

Costas Busch - LSU

# Induction Hypothesis:

$$A_{pq} \Longrightarrow \cdots \Longrightarrow W$$
 $k$  derivation steps

## suppose it holds:

$$(p, w, \varepsilon)^* + (q, \varepsilon, \varepsilon)$$

# Induction Step:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$  derivation steps

## We have to show:

$$(p, w, \varepsilon)^* + (q, \varepsilon, \varepsilon)$$

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$  derivation steps

Type 2

Case 1: 
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Type 3

Case 2: 
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow w$$

Case 1: 
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$
 $k+1$  steps

We can write 
$$W = yz$$

$$A_{pr} \Rightarrow \cdots \Rightarrow y$$

$$A_{rq} \Rightarrow \cdots \Rightarrow z$$
At most  $k$  steps
$$A_{rq} \Rightarrow \cdots \Rightarrow z$$





From induction hypothesis, in PDA:

$$(p, y, \varepsilon) \succ (r, \varepsilon, \varepsilon)$$





From induction hypothesis, in PDA:

$$(r,z,\varepsilon)^* + (q,\varepsilon,\varepsilon)$$

$$(p, y, \varepsilon) \stackrel{*}{\succ} (r, \varepsilon, \varepsilon) \qquad (r, z, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$



$$(p, yz, \varepsilon)^* (r, z, \varepsilon)^* (q, \varepsilon, \varepsilon)$$

since 
$$W = yz$$

$$(p, w, \varepsilon) \succ (q, \varepsilon, \varepsilon)$$

Case 2: 
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$$

$$k+1 \text{ steps}$$

We can write 
$$w = ayb$$

$$A_{rs} \implies \cdots \implies y$$
At most  $k$  steps

Costas Busch - LSU





# From induction hypothesis, the PDA has computation:

$$(r, y, \varepsilon)^* (s, \varepsilon, \varepsilon)$$



Grammar contains production

$$A_{pq} \rightarrow aA_{rs}b$$

And PDA Contains transitions

$$\begin{array}{c}
\hline
p & a, \varepsilon \to t \\
\hline
\end{array}$$

$$(s) \xrightarrow{b,t \to \varepsilon} q$$

$$\begin{array}{c} p & a, \varepsilon \to t \\ \hline \end{array}$$

 $(p, ayb, \varepsilon) \succ (r, yb, t)$ 



### We know

$$(r, y, \varepsilon)^* (s, \varepsilon, \varepsilon) \qquad \qquad \stackrel{*}{ } (r, yb, t)^* (s, b, t)$$

$$(p, ayb, \varepsilon) \succ (r, yb, t)$$

#### We also know

$$(s,b,t) \succ (q,\varepsilon,\varepsilon)$$

## Therefore:

$$(p,ayb,\varepsilon) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\varepsilon,\varepsilon)$$

$$(p,ayb,\varepsilon) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\varepsilon,\varepsilon)$$

since 
$$w = ayb$$

$$(p, w, \varepsilon) + (q, \varepsilon, \varepsilon)$$

### END OF PROOF

## So far we have shown:

$$L(G) \subseteq L(M)$$

With a similar proof we can show

$$L(G) \supseteq L(M)$$

Therefore: 
$$L(G) = L(M)$$