1 הרצאה

אלגוריתמים לחיפוש בגרפים

דוגמה:

:המטרה

למצוא את המסלול הקצר ביותר מ-S ל-T.

חיפוש בגרף:

. $s \in V$ וצומת מקור G = (V, E) נתון גרף

- .sיש ברי-הגעה מ-G. את כל הצמתים בל ברי-הגעה מ-1
- s-שתות בקשתות המרחק את מ-sיש מ-הגעה בר-הגעה שהוא עבור מיש vשהוא בר-הגעה מ-sיש ל-געה מ-sיש שהוא בר-הגעה מ-s

(Breath First Search) BFS האלגוריתם

 $R\subseteq V$,s-ט שניתנים שניתנים ו"מגלה" את קבוצת את ה"מ ו"מגלה" ו"מגלה של עובר על כל הקשתות של

פלט האלגוריתם:

- Rעץ ששורשו א המכיל המכיל הצמתים ב- \star
- Rבומת ב-לכל מ-א המרחק, ההיינו מספר הקשתות המינימלי ה-s
- . ניתן להפעיל את BFS גם על גרפים מכוונים א ניתן להפעיל את \star

:BFS-פסאודו קוד ל

Input: A graph G = (V, E), $s \in V$

Output: For any $v \in V$, d(v) is the distance from s to v.

For any $v \in V$, do:

$$d(v) \leftarrow \infty$$

$$d(s) \leftarrow 0$$

$$i \leftarrow 0$$

While there is neighbor v of u with d(v)= ∞ do:

$$\mathbf{d(v)} \!\!\leftarrow i+1$$

$$i \leftarrow i + 1$$

מימוש BFS באמצעות תור:

. בתחילה התור Q ריק

Q-ט נכנס ל-q ש"התגלה" נכנס ל

עניו. איוצא מראש התור לקראת איוצא w יוצא צומת שכניו.

. האב על בעץ החיפוש הוא הצומת בעץ v להתגלות האב של האב האב על החיפוש היפוש היפוש בעץ החיפוש

. האלגוריתם רץ כל עוד Q לא ריק

סימונים:

- s- מ-s- מרחק של מ- d(v)
- . האב של v בעץ החיפוש $\pi(v)$
- .G- קבוצת השכנים של Adj(v)

```
For any u \in V \setminus \{s\} do: \{d(u) \leftarrow \infty, \pi(u) \leftarrow NULL\} d(s) \leftarrow 0 Q \leftarrow \emptyset Enqueue(Q, s) While Q \neq \emptyset do: u \leftarrow \text{dequeue}(Q) Foreach v \in Adj(u) do: if d(v) = \infty then: d(v) \leftarrow d(u) + 1 \pi(v) \leftarrow u Enqueue(Q, v)
```

ומן הריצה של BFS:

O(|V|) אתחול:

:while-לולאת

O(|Adj(v)|) עבור כל צומת v שיוצא מהתור עוברים על כל השכנים, דהיינו לכל שיוצא מהתור עוברים איותר פעמיים לכן זמן הריצה הוא חוא O(|E|)

:BFS הוכחת נכונות

- .sה מוצא את אשר אשר לכל sהקצר הקצר המסלול מוצא את מוצא א נראה לי \star
- sאט מסלול מ-sל-ט. מ-א (בקשתות המרחק הקצר המרחק את $\delta(s,v)$ ל-ט. \star ל-ט. $\delta(s,v)=\infty$ אזי

למה 1:

$$\delta(s,v) \leq \delta(s,u) + 1$$
 מתקיים $(u,v) \in E$ לכל קשת

הוכחת למה 1:

- 1. אם v-ל היותר מ-s- מאזי המסלול היותר מ-s- הוא לכל היותר מ-u בר הגעה בר המסלול הקצר מ-u- ל- u- המסלול הקצר מ-u- ל- u- המסלול הקצר היותר המסלול הקצר מ-
 - .2 אחרת $\delta(s,u)=\infty$ ולכן אי-השוויון מתקיים.

:2 למה

 $d(v) \geq \delta(s,v)$ מקיים BFS לכל מחושב ע"י מחושב האלגוריתם הערך

הוכחה:

נוכיח אחרי צעד כזה על מספר בעד ה-Enqueue, על מספר נוכיח באינדוקציה על מספר געד היינדוקציה על כל $d(v) \geq \delta(s,v)$

 $d(s)=0=\delta(s,s)$ הטענה מתקיימת ב
n Enqueue(Q,s) אחרי פעולת בסיס: אחרי פעולת הטענה מתקיים
 $d(v)=\infty$ מתקיים $v\in V\backslash\{s\}$ ולכל

u צעד האינדוקציה: נניח שצומת v "התגלה" תכאשר סרקנו את את מניח צעד האינדוקציה: נכיח שצומת $d(u) \geq \delta(s,u)$. מכאן, v נכנס לתור. מהנחת האינדוקציה,

$$d(v) = \underset{\text{Algorithm'}}{=} d(u) + 1 \underbrace{\geq}_{\text{Induction}} \delta(s, u) + 1 \underbrace{\geq}_{\text{Lema 1}} \delta(s, v)$$

היות שכצאנו לעיל מתקיים בסוף האלגוריתם, אי-השוויון המצאנו לעיל מתקיים המהלך האלגוריתם. האלגוריתם.

למה 3:

 $\{v_1,v_2,\ldots,v_r\}$ מכיל את BFS נניח שבמהלך הביצוע של אזי:

$$d(v_r) \le d(v_1) + 1$$

$$\forall 1 \le i \le r, d(v_i) \le d(v_{i+1})$$

מסקנה 4:

 $d(v_i) \leq d(v_j)$, נכנס ל-Q לפני ש- v_j נכנס לתור. אזי, v_i

:הוכחה:

 $\{v_i,v_{i+1},v_{i+2},v_j\}$:Q- נתבונן ביניהם אחדת הצמתים שהוכנסו ביניהם ע v_j - וסדרת הצמתים עוקבים בסדרה v_k,v_{k+1} מקיימים את אחד מהתנאים הבאים:

- $d(v_k) \le d(v_{k+1})$ 3 יחד בתור ולכן לפי מה v_k, v_{k+1} .1

 \Leftarrow

$$d(v_i) \le d(v_2) \le \dots \le d(v_l) \le d(v_i)$$

.

משפט:

נניח שמריצים את BFS על G (מכוון/לא מכוון) עם צומת מקור s, נניח שמריצים את BFS אזי $d(v)=\delta(s,v)$ מגלה כל צומת v שהוא בר-השגה מ-s אחד המסלולים הקצרים ל-v הוא מסלול קצר בנוסף, לכל צומת v בר-השגה מ-s אחד המסלולים הקצרים ל-v הוא מסלול קצר ביותר מ-v ל-v, שאליו נוספת הקשת v.

הוכחה:

נניח בשלילה שקיים צומת v עבורו $d(v) \neq \delta(s,v)$ מלמה 2, מפני שלילה שקיים צומת עבורו עבורו $d(v) \neq \delta(s,v)$ מינימלי שעבורו מתקיים אי-השוויון נקבל $\delta(s,v)$ נקח את הצומת v עם $\delta(s,v)$ מינימלי שעבורו מתקיים אי-השוויון החזק.

v נסתכל על המסלול הקצר ביותר מ-s ל-v ביותר הקצר המסלול אזי, האזי, $\delta(s,v)=\delta(s,u)+1$ אזי, אזי, במסלול זה.

מאופן החזיקה אל פגומת אי-השוויון החזק, $\delta(s,v)$ בעל על אי-השוויון החזק, נקבל כי $d(v) = \delta(s,u) \ \text{acal}$ מכאן:

$$d(v) > \delta(s, v) = \delta(s, u) + 1 = d(u) + 1$$
 (**)

:מקרים מהתור נבחין ב 3 מקרים אי-השוויון (**) אי יתכן. נסתכל על מאי-השוויון (**) אי-השוויון (**) אייהט

- .(**). סתירה ל-(d(v) = d(u) + 1 סתירה לכן מהאלגוריתם לכן מהאלגוריתם לכן v .1
 - (FIFO שכן שכן לפני לתור לפני v נכנס לתור לפני ע כבר לא היה בתור. לכן, v נכנס לתור לפני v כבר לא היה בתור. לכן, $d(u) \leq d(u)$ (**).

 $d(v)=\delta(s,v)$ מכאן נקבל כי לכל צומת v שהוא בר הגעה מs- מתקיים מתקיים $d(v)=d(u)+1\Leftrightarrow \delta(s,v)=\delta(s,u)+1$ אזי $\pi(v)=u$ אזי לסיום, נזכיר כי אם ביותר מs- ביותר מs- לכן, ניתן לקבל מסלול קצר ביותר מs- ל-v- ע"י הוספת $(\pi(v),v)$ למסלול הקצר ביותר מ-s- ל-v- ל-v-