Linear. Test 2, Review.

Also study the quizzes, and homework problems!

Consider the following subsets of \mathbb{R}^3

$$S = \left\{ \left[\begin{array}{c} 0 \\ x - y \\ 3y \end{array} \right] \middle| x, y \in \mathbb{R} \right\}, \ T = \left\{ \left[\begin{array}{c} x \\ 7y \\ y + 3 \end{array} \right] \middle| x, y \in \mathbb{R} \right\}, \ U = \left\{ \left[\begin{array}{c} x \\ y \\ x^2 + y^2 \end{array} \right] \middle| x, y \in \mathbb{R} \right\}$$

Which is a subspace? Recall: subspaces are subsets that can be written as spans, and subspaces are planes or lines containing the origin **0** (or just the origin, or the whole space.)

Consider the following functions from $\mathbb{R}^2 \to \mathbb{R}^3$:

$$S\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} 0 \\ x - y \\ 3y \end{array}\right], \ T\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} x \\ 7y \\ y + 3 \end{array}\right], \ U\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} x \\ y \\ x^2 + y^2 \end{array}\right]$$

Which is a linear transformation? Recall: lin. transformations can always be described by matrix multiplication, which uses the input vector to make a linear combination of the columns. They take $\mathbf{0}$ to $\mathbf{0}$ and obey $T(\mathbf{u} + 2\mathbf{v}) = T(\mathbf{u}) + 2T(\mathbf{v})$. They take a space to a subspace called the range, the span of the column vectors. Find a matrix representation of S using the standard bases, and find N(S) and R(S), as spans of bases. Bonus: Describe a function from $\mathbb{R}^1 \to \mathbb{R}^2$ whose range is a subspace, but which is not linear.

Consider the following sets of polynomials in \mathcal{P}_3 .

$$\mathcal{A} = \{x - 1, x, x^2 + 1\}, \ \mathcal{B} = \{5x^2, x, x^3 + 2, 3\}, \ \mathcal{C} = \{3x^2, x^2 - 1, x + 2, 3\},$$

Which one is a basis for \mathcal{P}_3 ? Which one is lin. dep.? Recall the 2 out of 3 theorem: any two implies the third (and thus a basis for V,) out of {lin. indep., spans V, has the same number of items as dim(V).} Note also, these questions are equivalent to the same questions about their coordinate vectors in \mathbb{R}^4 with respect to the standard basis.

² Consider the following matrices:

Find the rank, nullity, null space, and range for each, as spans of bases. Which of them are 1-1? Which are onto? Which two of them cannot represent the derivative from \mathcal{P}_3 to \mathcal{P}_4 ? Which two of them cannot represent the derivative from \mathcal{P}_4 to \mathcal{P}_3 ? Recall that rank + nullity = dim(domain) = number of columns. Recall that if a matrix represents a transformation then it will have the right number of rows and columns, and that it will have the same rank and nullity as that transformation.

Consider the three bases for \mathcal{P}_3 :

$$\mathcal{E} = \{1, x, x^2, x^3\}, \ \mathcal{B} = \{5x^2, x, x^3, 3\}, \ \mathcal{C} = \{x^3 + 3x^2 + 1, x^2 - 2, x - 7, 2\}$$

Find the representatives of the derivative: $T : \mathcal{P}_3 \to \mathcal{P}_3$, where $T(f) = f'$.

 $[T]^{\mathcal{E}}_{\mathcal{B}}$

 $[T]_{\mathcal{C}}^{\mathcal{B}}$

Find the representative of the lin. trans.: $T: \mathcal{P}_3 \to \mathcal{P}_3$, where T(f) = f'' + xf''. Also find the null space N(T) and the range R(T) as spans of bases of polynomials. Is T onto? 1-1? Recall the 2 out of 3 theorem for matrices: any two implies the third out of $\{1\text{-}1,\text{onto,square}\}$.

 $[T]_{\mathcal{C}}^{\mathcal{E}}$