PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 39/245, C07K 7/06, 14/05

(11) International Publication Number:

WO 95/24925

| A

(43) International Publication Date: 21 September 1995 (21.09.95)

(21) International Application Number:

PCT/AU95/00140

(22) International Filing Date:

16 March 1995 (16.03.95)

(30) Priority Data:

PM 4465

16 March 1994 (16.03.94)

\U |

(71) Applicants (for all designated States except US): THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH [AU/AU]; 300 Herston Road, Herston, QLD 4029 (AU). COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU). THE UNIVERSITY OF MELBOURNE [AU/AU]; Royal Parade, Parkville, VIC 3052 (AU). THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH [AU/AU]; Royal Melbourne Hospital, Royal Parade, Parkville, VIC 3052 (AU). BIOTECH AUSTRALIA PTY. LIMITED [AU/AU]; 28 Barcoo Street, Roseville, NSW 2069 (AU). CSL LIMITED [AU/AU]; 45 Poplar Road, Parkville, VIC 3052 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOSS, Denis, James [AU/AU]; 29 Mitchell Street, Arana Hills, QLD 4054 (AU). BURROWS, Scott, Renton [AU/AU]; 4 Thumon Court, Bald Hills, QLD 4036 (AU). KHANNA, Rajiv [IN/AU]; 59 Aberleigh Road, Herston, QLD 4006 (AU). KERR, Beverley, Mavis [AU/AU]; 5 Walmer Court, Carindale, QLD 4152 (AU). BURROWS, Jacqueline, Margaret [AU/AU]; 4 Thumon Court, Bald Hills, QLD 4036 (AU). SUHRBIER, Andreas [DE/AU]; 9 Mark Street, Newmarket, QLD 4051 (AU).

(74) Agent: F.B. RICE & CO.; 28A Montague Street, Balmain, NSW 2041 (AU).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: CYTOTÖXIC T-CELL EPITOPES

(57) Abstract

The present invention provides cytotoxic Epstein-Barr virus T-cell epitopes. The epitopes are selected from the group consisting of QAKWRLQTL, RYSIFFDY, HLAAQGMAY, YPLHEQHGM, SVRDRLARL, AVLLHEESM, VSFIEFVGW, FRKAQIQGL, PYLFWLAAI, TVFYNIPPMPL, PGDQLPGFSDGRACPV, VEITPYKPTW, and variants thereof. In addition, the present invention provides compositions including these epitopes for use in inducing CTL's in a subject.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	.GE	Georgia	MW	Malawi
BB	Barbados	1 GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL.	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE .	Ireland	NZ	New Zealand
BJ	Benin	· IT	Italy	, PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	· KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN ·	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	. Tajikistan
DE	Germany	MC	Monaco	· TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		• •		

15

20

25

30

1

CYTOTOXIC T-CELL EPITOPES

Field of the Invention

The present invention relates to cytotoxic T-cell (CTL) epitopes within Epstein-Barr virus. The present invention also relates to the use of the epitopes in subunit vaccines.

Background of the Invention

Epstein-Barr virus (EBV) is a herpes virus that infects approximately 80% of individuals in Western societies. Following primary infection, a life long latent EBV infection of B cells is established. When primary infection is delayed until adolescence, which occurs in 10-20% of individuals in Western societies, there is an approximately 50% chance of developing infectious mononucleosis.

"immortalise" or transform human B cells. These transformed B cells (referred to as LCLs) have the potential for essentially unlimited growth in the laboratory. There are two methods by which these LCLs can be established. Firstly, they may be established by the use of a common strain of EBV, referred to as B95.8. The LCL that is established is infected with this strain of virus. Secondly, LCLs may be generated using the latently infected B cells, present in all EBV immune individuals as a source of transforming virus. In this case, the LCL that emerges is transformed with the strain of EBV naturally present in any given EBV immune individual (referred to as spontaneous LCL).

There are two EBV types, A and B. The A type appears to predominate in the majority of lymphoid infections of healthy seropositive individuals. In such individuals, latently infected B cells appear to be controlled by CD8+ cytotoxic T cells (CTL) specific for the latent antigens, which include the EBV nuclear antigens (EBNAs) 2-6 and the latent membrane antigens

WO 95/24925 PCT/AU95/00140

5

10

15

20

25

30

35

. 2

(LMP) 1-3 (Moss, D.J. et al. 1992). Recent developments suggests that CD4+ CTL may also play a part in controlling this infection. These CTL are known to recognise short peptide epitopes derived from antigenic determinants in association with MHC class I molecules on the surface of an appropriate antigen presenting cell. LCLs displaying HLA class I and II alleles and presenting epitopes within EBV latent antigens are frequently used as a target cell for defining the specificity of CTL clones.

As whole virus or recombinant vaccines based on full length latent proteins are considered potentially oncogenic, an EBV vaccine based on CTL epitopes derived from the latent antigens is currently being developed (Moss, D.J. et al 1993). Khanna et al, (1992) have previously described several CTL epitopes.

Summary of the Invention

In a first aspect the present invention consists in cytotoxic T-cell epitopes from Epstein-Barr virus.

More specifically, there is provided twelve cytotoxic T-cell epitopes from the Epstein-Barr virus latent antigens having the amino acid sequences QAKWRLQTL, RYSIFFDY, HLAAQGMAY, YPLHEQHGM (YPLHKOHGM, YRLHEOHGM, YPLHEORGM, SVRDRLARL, AVLLHEESM (TVLLHEESM and TALLHEESM), VSFIEFVGW, FRKAQIQGL, PYLFWLAAI, TVFYNIPPMPL, PGDQLPGFSDGRACPV and VEITPYKPTW. In addition, the underlined amino acid sequences in brackets are variants of the aforementioned sequence and have been sequenced from geographically different isolates of Epstein-Barr virus. It has not as yet been established whether these variants are CTL epitopes.

In a second aspect the present invention consists in a composition for use in inducing CTL's in a subject, the composition comprising at least one cytotoxic Epstein-Barr virus T-cell epitope according to the first aspect of the present invention in admixture with at least one

15

20

pharmaceutical acceptable adjuvant, carrier, diluent or excipient.

In a third aspect the present invention consists in a method of preparing a composition for use in inducing CTL's in a subject, the method comprising admixing at least one cytotoxic Epstein-Barr virus T-cell according to the first aspect of the present invention with at least one pharmaceutical acceptable adjuvant, carrier, diluent or excipient.

As used herein the term "subject" is intended to cover human and non-human animals.

Brief Description of the Drawings

- Figure 1. Screening overlapping peptides of EBNA4 on PHA blast cells for reactivity
 - Figure 2. Reactivity of clone CS30 against a panel of anti- μ B cell blasts infected with recombinant vaccinia virus encoding the EBV latent antigens.
- Figure 3. Minimalisation experiment to define the active epitope sequence within VTAVLLHEESMQGVQVHGSM. This has enabled the definition of the minimal epitope as AVLLHEESM.

Best Method of Carrying out the Invention

The following examples illustrate the localisation
of twelve new CTL epitopes within the EBV latent antigens
using an overlapping peptide net spanning the relevant EBV
antigen. The peptides were synthesised using the sequence
of the B95.8 strain of EBV (Baer et al 1990). In
addition, field isolates from different geographic
locations were sequenced at the site of CTL epitopes
YLPHEQHGM and AVLLHEESM and variants of these epitopes
defined.

Abbreviations

CTL cytotoxic T-cell lymphocyte

35 E effector

EBV Epstein-Barr virus

20

25

35

Δ

HLA human leucocyte antigen

IL-2 Interleukin-2

LCL lymphoblastoid cell line

PBMC peripheral blood mononuclear cells

5 PHA phytohaemagglutinin

rIL-2 recombinant Interleukin-2

T target

TCM T cell medium

U/ml units per millilitre

10 Example 1: Basic Culture Media for the Growth of Cells

The medium was RMPI 1640 (Commonwealth Serum Laboratories, Victoria) supplemented with 10% heatinactivated foetal calf serum, penicillin (100IU/ml) and streptomycin (100mg/ml). Where indicated, this medium was supplemented with purified recombinant interleukin-2 (rIL-2) (50U/ml; Hoffman La-Roche) and 30% (v/v) heatinactivated (56°C, 30 minutes) supernatant from the MLA 144 T-cell line. This supplemented medium was called T-cell medium (TCM) and was used in the culture of phytohaemagglutinin blast cells (PHA blasts) and for the isolation and growth of cytotoxic T-cells (CTL).

Example 2: Preparation of Mononuclear Leucocytes and

Peripheral blood monunuclear cells (PBMC) were separated (400g or 1500rpm, 20 minutes) from heparinized (10U/ml) blood on Ficoll-Paque (Pharmacia, Uppsala, Sweden). The separated PBMCs were washed once in basic media and subsequently used either to stimulate CTL, PHA blasts or to establish EBV transformed cell lines.

30 Example 3: HLA Typing

Generation of CTL

HLA typing of donors was performed by serology. Example 4: Establishment of Cell Lines

4.1 Establishment of EBV Transformed LCLs by addition of exogenous virus: EBV transformed LCLs were established from PBMCs as follows. The EBV virus stock (Table 1: specific Type and isolate), stored in liquid

10

15

20

25 .

30

35

nitrogen is selected and rapidly thawed at 37°C . Half a millilitre of virus stock (10^{5} transformation units) is added directly into the PBMC cell pellet ($1-4 \times 10^{6}$ cells) and incubated for one hour at 37°C . The cells are then washed twice with media at 1000rpm for five minutes. The cells were then made up in media with PHA (Sigma PHA-P) at $2\mu\text{g/ml}$ and dispensed into a 24 well plate at 2×10^{6} cells/well. Clumps of cells, representing proliferating LCLs, occur within 1-3 weeks after which the cells were transferred into flasks.

- 4.2 Establishment of spontaneous LCLs by addition as a means of sampling field isolates of the virus: PBMCs from healthy EBV immune individuals from Australia (Brisbane), from Papua New Guinea (Goroka and Madang) or from Kenya were seeded by doubling dilution from 2 x 10⁶ to 1.25 x 10⁵ cells per 0.2ml microtitre plate well in culture medium containing 0.1 mg/ml cyclosporin A (Sandoz Ltd., Basle, Switzerland). The cyclosporin A was maintained in the culture medium in regular refeedings for up to 8 weeks. Wells in which proliferation became apparent were subcultured and expanded at 37°C. This method was used to generate field isolates of the virus.
- 4.3 Establishment of PHA Blast Cell Lines: PBMC $(2 \times 10^6 \text{ cells/24 well})$ were stimulated with PHA-P $(2\mu\text{g/ml}, \text{ final concentration})$ (Sigma) and after three days, TCM was added. Cultures were expanded into flasks and maintained for up to six weeks with bi-weekly replacement of TCM (without further addition of PHA).
- 4.4 Generation of anti-μ B cell blasts: PBMCs were separated on Ficoll-Paque (Pharmacia, Uppsala, Sweden) and depleted of T cells using E-rosetting. The enriched B lymphocytes were cultured in growth medium containing anti-IgM (μ-chain specific) coupled to acrylamide beads (Bio-Rad, California, USA), recombinant human interleukin-4 (rIL-4; 50U/ml; Genzyme, USA) and highly

10

15

20

25

30

purified recombinant human IL-2 from E.coli (rIL-2; 20-40U/ml) (17,18). After 48-72 hr, B cell blasts were suspended in growth medium supplemented with rIL-2 (20-40U/ml) (14). The B cells continue to divide 2-3 times/week for 3 weeks in the presence of rIL-2. These cells are referred to as anti- μ B cell blasts.

Example 5: Synthesis of Peptides

- 5.1 Production: Peptides (purchased from Chiron Mimetopes, Melbourne) were synthesised using the pin technology in duplicate on polyethylene pins and cleaved from the pins. A C-terminal glycine ester link was used in the preparation of peptides with acid C-termini (Valerio, R.M. et al 1991).
- 5.2 Toxicity and Solubilization: Freeze dried peptides were dissolved first in $20\mu l$ DMSO and then 0.6ml distilled water to give a concentration of 2mM. They were stored at 20° C prior to use. Peptides were diluted in RPMI 1640 for use. Toxicity testing of all the peptides was performed prior to screening by adding peptide at a final concentration of $100\mu M$ to 10^4 51 Cr labelled PHA blasts in $200\mu l$, in the absence of any effectors.

Example 6: Generation of CTLs:

- 6.1 Generation of polyclonal CTLs Polyclonal CTL effectors were generated by stimulating PBMCs from healthy seropositive donors with autologous A-type EBV transformed lymphoblastoid cell lines (LCLs) on days 0 and 7. No IL-2 was added to these cultures, as its presence favoured the expansion of non-specific T-cells (data not shown).
- 6.2 Agar Cloning of T-Cells T-cell clones from individual donors were generated as follows. PBMC's were isolated and suspended in medium at a concentration of 2 x 10⁶ cells in 24 well plates (Costar, Cambridge, Mass). LCL's from the same donor were irradiated at 8,000 rad and added to each of these wells at either 10⁵ or 10⁴ cells/well. After three days, cells were dispersed and

10

15

20

30

35

seeded in 3.5cm diameter culture dishes in 0.35 agarose (Seaplaque, FMC Corp., Rockland, ME) containing RPMI 1640, 20% 2 x RPMI 1640, 20% FCS, 16% MLA supernatant and 50U/ml rIL-2. Colonies appear within the agar after five days. These are identified under the inverted microscope (x25 magnification) as clusters or chains or discrete cells. These colonies are harvested under the microscope in a laminar flow cabinet by suction into a Gilson pipette. harvested colonies are dispersed into T-cell growth medium (RPMI 1640, 20% FCS, 30% MLA supernatant and 20U/ml rIL-2) and transferred to a 96 well microtitre tray containing irradiated LCL's from the same donor (10 cells/well). These colonies continue to be expanded and are stored in liquid nitrogen (approximately 5 x 10 cells/ampoule).

Example 7: Vaccinia virus recombinants:

Recombinant vaccinia constructs for different EBV latent antigens have been previously described (Khanna et al 1992). All EBV sequences were derived from the B95.8 strain of virus. All constructs had the potential to encode the relevant full length EBV protein.

Example 8: Chromium Release Assay:

8.1 Screening CTL clones for reactivity against recombinant vaccinia encoding EBV latent antigens:

Anti-µ B cell blasts were infected with recombinant vaccinia viruses at a multiplicity of infection of 10:1 for 1 hour at 37°C. After 14-16 hours, cells were washed with basic culture medium and incubated with ⁵¹Cr for 90 minutes, washed three times and used as targets in a standard 5 hour ⁵¹Cr release assay as described below.

8.2 Peptide Screen: A standard five to six hour chromium release assay was performed on either polyclonal T-cell effectors or T-cell clones, to assess specificity for the peptide epitope. Briefly, washed ^{51}Cr (Amersham International, England) labelled (60 minutes, 37°C) target cells (autologous PHA blasts) were added (10 4 cells/well in 40µl) to 10µl of peptide (final concentration 100µM)in

10

15

30

wells.

a U-well 96 well plate (Nunc, Denmark). After a 30 minute incubation at 37° C, between 10^4 and 50×10^4 effector T-cells (cloned or bulk CTLs), in triplicate, were then added per well in 150μ l, to obtain a final effector to target ratio [E:T] of 50-1:

1. Two controls were added; (i) media and target (background release) and (ii) targets (total release) for addition of 100µl 0.5SDS after the five hour incubation. The plate was then centrifuged at 500 rpm for five minutes and incubated at 37°C for five hours. Following centrifugation at 1000 rpm for five minutes, 100µl supernatants were removed for gamma counting. Results are expressed as % chromium release calculated as mean counts of experimental wells - mean counts of control (background) wells/by total available counts determined by SDS solubilisation - mean counts of control (background)

Example 9: PCR sequencing of EBC isolated from Australia, Papua New Guinea and Kenya

The polymerase chain reaction (PCR) was used to amplify specific EBV DNA sequences in the CTL epitope regions YPLHEQHGM and AVLLHEESM. The purified DNA used in the PCR was from spontaneous LCLs from health individuals from Australia, Papua New Guinea and Kenya. Each DNA sample was subjected to two different PCR reactions. One using primers flanking the known YPLHEQHGM region;

E3YPL5 (GAC GAG ACA GCT ACC AG)

E3YPL3 (GAG ATA CAG GGG GCA AG)

and one using primers flanking the known AVLLHEESM epitope region;

E41VT5 (TTG TTG AGG ATG ACG ACG)

E41VT3 (CAG TAG GGT TGC CAT AAC)

Each PCR reaction consisted of 1 x PCR buffer (Boehringer), 0.2mM dNTPs, the purified DNA, the

35 respective primers and 1.5U of Taq polymerase and then

15

20

25

30

35

subjected to denaturation at 95°C for 5 minutes followed by 94°C for 15 seconds, 55°C for 30 seconds, 72°C for 15 seconds (35 cycles) using a Perkin Elmer 9600 PCR machine. The PCR products were then purified for sequencing using QIAquick spin columns from Qiagen and sequenced in both directions using the respective primers from the PCR reactions. A PRISMTM Ready Reaction DyeDeoxyTM Terminator Cycle sequencing kit was used to set up the sequencing reaction. Reaction samples were then run on an ABI Cycle Sequencer.

Example 10: Identification of CTL Epitopes Within EBV Latent antigens

By way of example of the epitopes described in Table I, the following methodologies were used in the definition of the CTL epitope AVLLHEESM. The methods used to identify other epitopes were identical. On day 10-11, polyclonal CTLs were used to screen for reactivity against overlapping peptides from EBNA2, EBNA3, EBNA4 and LMP2A on autologous PHA blasts. As seen in Figure 1, after screening all of the peptides from EBNA4 with polyclonal CTLs from donor CS, a single peptide, referred to as peptide 52 (VTAVLLHEESMQVQVHGSM) showed strong reactivity in a ⁵¹Cr-release assay.

To confirm that this sequence was an active CTL epitope, CTL clones from donor CS were established and screened for reactivity against recombinant vaccinia-infected targets (Figure 2). As seen in this Figure, clone CS30 recognised B cell blasts infected with recombinant vaccinia encoding EBNA4.

To minimalise the epitope within this 20 mer sequence, overlapping 9 mer peptides were synthesized, and as can be seen AVLLHEESM is the confirmed minimal epitope within the 20 mer peptide. The overlapping peptides from EBNA4 used to demonstrate this minimal overlapping sequence are listed on Figure 3. A/B EBV type specificity and HLA restriction was determined using standard

protocols and demonstrated that the epitope was restricted through HLA B35 and was type A specific (Khanna et al, 1992).

As already mentioned the overlapping peptides were based on the EBV sequence of the B95.8 virus. It was important to determine if field isolates of the virus from different geographical locations also included this sequence. Using PCR sequencing of the EBV sequence present in spontaneous cell lines derived from healthy individuals from Australia (Brisbane), from Papua New Guinea (Goroka and Madang) and from Kenya identified two variants. Two variants of the B95.8 sequence were defined, TVLLHEESM and TALLHEESM (Table 2).

Example 11: Subunit Vaccines

11.1 Vaccine Formulation: Development of new vaccines 15 against a variety of diseases, particularly viral infections, where CD8+ cytotoxic T-cells (CTL) play an important protective role has been hampered by the inability of conventional vaccine formulations to induce protective CTL. Although CTL are readily induced when 20 attenuated viruses are used, in many cases attenuation is difficult, inappropriate and/or unreliable. Conventional killed virus or recombinant protein formulations do not normally gain access to the cytoplasm of antigen presenting cells (APC) and are thus not appropriately 25 processed and presented on class I MHC. A variety of vaccination strategies have been developed to deliver antigen to the cytoplasm of APCs (ie. immunostimulatory complexes [ISCOMs], DNA, fusiogenic proteolysosomes and virus like particles). Such approaches often involve 30 complex formulations which can be difficult to standardise, can result in unstable products and/or may only work for antigens with specific characteristics. An alternative strategy has been to use synthetic peptide CD8+ CTL epitopes as immunogens. This approach has 35

several general advantages; peptides are stable, well

WO 95/24925 PCT/AU95/00140

defined, easy to manufacture, no infectious material is required for manufacture and the use of potentially pathogenic recombinant proteins can be avoided.

CTL epitopes formulated with Incomplete Freunds adjuvant (IFA) usually in the presence of a CD4+ helper epitope, have been used to induce CTL in a number of animal systems. Unfortunately, IFA is extremely unlikely, due to its toxicity, to ever be licensed for use in humans. Scalzo, T. et. al. (in preparation) have examined several adjuvants currently approved, or close to approval, for use in humans to ascertain which would be able to induce protective CTL with a synthetic peptide immunogen. Protection was assessed using the Balb/c murine cytomegalovirus (MCMV) model, in which the predominant protective response has been shown to be due to CD8+ CTL directed against the epitope YPHFMPTNL, derived from the immediate early antigen 1 (IE-1). The presence of active CTL was confirmed using in vitro CTL assays. Scalzo, T. et. al. found that only one formulation, Montanide ISA 720/ tetanus toxoid/ peptide efficiently induced protective CTL.

10 -

15

20

25

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Table 1

CTL peptide epitopes of Epstein-Barr virus within the latent antigens of the virus

CTL EPITOPE	EPITOPE	HLA	A/B
SEQUENCE	INCLUDED IN:	RESTRICTION	SPECIFICITY
QAKWRLQTL	EBNA3	B8	A
RYSIFFDY	EBNA3	A24	A
HLAAQGMAY	EBNA3	UNDEFINED	A.
YPLHEQHGM	EBNA3	B35.(3)	A
*YPLHKQHGM			
*YRLHEQHGM			,
*YPLHEQRGM			·
SVRDRLARL	EBNAS	A2	A/B
AVLLHEESM	EBNA4	B35	A
#TVLLHEESM			
#TALLHEESM			
VSFIEFVGW	EBNA4	B57	A/B
FRKAQIQGL	EBNA6	B57	A
PYLFWLAAI	LMP2A	A23	A/B
TVFYNIPPMPL	EBNA2	HLA DR/DQ	A
VEITPYKPTW	EBNA4	B44	A
PGDQLPGFSDGRACPV	EBNA3	A29	A

- * sequence variants of YPLHEQHGM
- # sequence variants of AVLLHEESM

Existence and Use of Variant Sequences: The epitopes presented in table 1 are based on B95.8 sequence of

Epstein-Barr virus. We have examined field isolates of the virus from Papua New Guinea, Australia and Kenya and sequenced these at the sites of two CTL epitopes. These epitopes are AVLLHEESM and YPLHEQHGM. The results presented in Tables 1 and 2 and demonstrate that there is variation at the site of these epitopes in field isolates. At this stage, it is not known whether these variant sequences are CTL epitopes. If subsequent tests demonstrate that these represent active epitopes, then each could be included in a peptide-based vaccine.

Table 2: Variation in the HLA B35-restricted EBNA4
Epitope AVLLHEESM in Different Ethnic Groups

Virus	Origin			Ep	itop	e Se	quen	ce		
Isolate				. •	•		•		,	
B95.8	Caucasian									
JB	Caucasian							÷		
LC	Caucasian									
DD	Caucasian		1-				•			
MB	Caucasian									
GK	Caucasian									
AF6	Kenyan	GCA	GTT	CTA	CTT	CAC	GAA	GAA	TCC	ATG
AF7	Kenyan	A	Ÿ	L	L	H	E	E	S	M
AF19	Kenyan							•		
RM	Caucasian									
AF1	Kenyan									
LP	Caucasian									
AF3	Kenyan		•							
AF5	Kenyan									
AF13	Kenyan	· ·								
JD	Caucasian				•	-	- '			· ·
RE	Caucasian	·	•				-			
PM	Caucasian							•		•
H25	PNG* High	l				,			:	•
H19	PNG High	<u>A</u> CA	GTT	CTA						
н33	PNG High	T	V	L	L	ŀΗ	E	E	S	M
L5	PNG Low									
L23	PNG Low					-				
н36	PNG High									
H21	PNG High									
AF16	Kenyan	l								
H7	PNG High									
	·				•					
L42	PNG Low									
H23	PNG High									
L43	PNG Low		G <u>C</u> T							
L8	PNG Low	T	<u>A</u> .	L	· L	H	E	E	S	M
H26	PNG High		•							
H35	PNG High									

^{*} Papua New Guinea

15

REFERENCES

Khanna, R., Burrows, S., Kurilla, M., Jacob, C.A., Misko, I., Sculley, T.B., Kieff, E., and Moss, D.J. (1992).

Localisation of Epstein-Barr virus CTL epitopes in healthy immune donors using recombinant vaccinia: implications for vaccine development. J. Exp. Med., 176, 169-176.

Moss, D.J. and Suhrbier; A. Epstein-Barr virus vaccines: Prospects and limitations, 1993, *Todays Life Sciences* 5, 30-34.

Baer, R., A. T. Bankier, M.D. Biggin, P.L. Desinger, P.J. Farrell, T.J. Gibson, G. Halfull, G. Hudson, C. Satchwell, C. Sequin, P. Fuffnell, and B. Barrell. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome, Nature 310, 207-211.

20

35

CLAIMS: -

- 1. A cytotoxic Epstein-Barr virus T-cell epitope, the epitope being selected from the group consisting of QAKWRLQTL, RYSIFFDY, HLAAQGMAY, YPLHEQHGM, SVRDRLARL, AVLLHEESM, VSFIEFVGW, FRKAQIQGL, PYLFWLAAI, TVFYNIPPMPL, PGDQLPGFSDGRACPV, VEITPYKPTW, and variants thereof.
- 2. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is QAKWRLQTL.
- 3. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is RYSIFFDY.
 - 4. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is HLAAQGMAY.
 - 5. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is YPLHEQHGM.
- 6. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is SVRDRLARL.
 - 7. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is AVLLHEESM.
 - 8. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is VSFIEFVGW.
 - 9. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is FRKAQIQGL.
 - 10. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is PYLFWLAAI.
- 25 11. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is TVFYNIPPMPL.
 - 12. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is PGDQLPGFSDGRACPV.
- 30 13. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is VEITPYKPTW.
 - 14. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is a variant of YPLHEQHGM, the variant being selected from the group consisting of YPLHKOHGM, YRLHEQHGM and YPLHEQRGM.

WO 95/24925 PCT/AU95/00140

16

- 15. A cytotoxic Epstein-Barr virus T-cell epitope as claimed in claim 1 in which the epitope is a variant of AVLLHEESM, the variant being selected from the group consisting of TVLLHEESM and TALLHEESM.
- 5 16. A composition for use in inducing CTL's in a subject, the composition comprising at least one cytotoxic Epstein-Barr virus T-cell epitope as claimed in any one of claims 1 to 15 in admixture with at least one pharmaceutical acceptable adjuvant, carrier, diluent or excipient.
 - 17. A method of preparing a composition for use in inducing CTL's in a subject, the method comprising admixing at least one cytotoxic Epstein-Barr virus T-cell epitope as claimed in any one of claims 1 to 15 with at least one pharmaceutical acceptable adjuvant, carrier, diluent or excipient.

15

SUBSTITUTE SHEET (RULE 26)

CZ B CEITZ + AVCC'

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

A. CLASSIFICATION OF SUBJECT MATTER Int. Cl. 6 A61K 39/245, C07K 7/06, C07K 14/05		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC ⁶ A61K 39/245, C07K 14/05; CHEMICAL ABSTRACTS		
Documentation searched other than minimum documentation to the extent that such documents are included in	the fields searched	
Electronic data base consulted during the international search (name of data base, and where practicable, search DERWENT WPAT; Chemical Abstracts CASM; STN sequence search Keyword: Epstein () Barr	ch terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.	
P,X Burrows, S.R. et al. (1994) Five new cytotoxic T cell epitopes identified with Epstein-Barr virus nuclear antigen 3, volume 75, pages 2489-2493. See entire document.	1-17	
Y Burrows, S.R. et al. (1992) Rapid visual assay of cytotoxic T-cell specificity utilizing synthetic peptide induced T-cell-T-cell killing, Immunology, volume 76, pages 174-175. See the third paragraph in particular.	1-17	
X Further documents are listed in the continuation of Box C.		
"L" document which may throw doubts on priority claim(s) considered to involve an document is taken alone another citation or other special reason (as specified) "Y" document of particular referring to an oral disclosure, use invention cannot be considered."	elevance; the claimed sidered to inventive step when the sidered to involve an document is combined such documents, such ous to a person skilled in	
Date of the actual completion of the international search Dote of mailing of the international search	report	
9 June 1995 19 JUNE 1995 (19.06	. 9s)	
Name and mailing address of the ISA/AU Authorized officer AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION		

PCT/AU 95/00140

		PCT/AU 95/00140 Relevant to Claim No.		
Category*	Citation of document, with indication, where appropriate of the relevant passages			
Y	Khanna, R. et al. (1992) Localization of Epstein-Barr virus cytotoxic T-cell epitopes using recombinant vaccinia: Implications for vaccine development, J. Exp. Med., volume 176, pages 169-176, July 1992. See whole document.	1-17		
Y	Burrows, S.R. et al. (1992) The specificity of recognition of a cytotoxic T lymphocyte epitope, Eur. J. Immunol., volume 22, pages 191-195. See whole document.	1-17		
X,P	Lee, S.P. et al. (1995) Epstein-Barr virus isolates with the major HLA B35.01 restricted cytotoxic T lymphocyte epitope are prevalent in a highly B35.01-positive African population, Eur. J. Immunol., volume 25, pages 102-110. See the tables and figures in particular.	14-17		
X Y	Khanna, R. et al. (1993) EBV peptite epitope sensitization restores human cytotoxic T cell recognition of Burkitt's lymphoma cells, The Journal of Immunology, volume 150, no. 11 pages 5154-5162, 1 June 1993.	1, 11 2-10, 12-17		
	AU,A, 16480/92 (C.N.R.S. et al) published 30 September 1993.			
A	112, 13 100, 72 (GILLIAN I III) PROMINEN DE REPRESENTANT APPEN			
• •				
		·		
		,		
•		:		
•				
-				
		Ì		
•				
		·		
•				
.•		1		

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

AU,A, 16480/92 WO 93 19092	Patent Document Cited in Search Report		Patent Family M	ember
AU,A, 16480/92 WO 93 19092				
	AU,A, 16480/92	WO 93 19092		
			; ;	
			· . ·	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	KS	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LŦ	Lithuania	SK -	Slovakia
. AT .	Austria	FR	France	LU	Luxembourg	SN	Senegal
, AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
· AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	, TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	. TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML.	Mali	TT	Trinidad and Tobago
BJ	Benin	(E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	(L	Israel ·	MR	Mauritania .	UG	Uganda
BY	Belarus	18	Iceland	MW	Malewi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG ·	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RÓ	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•
DE	Germany	u	Liechtenstein	SD	Sudan	•	
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		