Tutorial 12

SC-220 Groups and Linear algebra Autumn 2019 (Operators on Inner Products spaces)

- (1) Let $A: V \to W$ be a linear transformation. Show that a. $(A^{\dagger})^{\dagger} = A$ b. $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$ c. $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$
- (2) Let $u = \begin{pmatrix} -2\\1\\3\\-1 \end{pmatrix}$ and $v = \begin{pmatrix} 1\\4\\0\\-1 \end{pmatrix}$. Find
 - a. Orthogonal Projection of u onto span $\{v\}$
 - b.Orthogonal Projection of v onto span $\{u\}$
 - c.Orthogonal Projection of u onto v^{\perp}
 - d. Orthogonal Projection of v onto u^{\perp}
- (3) Determine the orthogonal projection of the vector $b = \begin{pmatrix} 5 \\ 2 \\ 5 \\ 3 \end{pmatrix}$ on to the Subspace \mathcal{M}

where
$$M = \operatorname{span} \left\{ \begin{pmatrix} -3/5 \\ 0 \\ 4/5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 4/5 \\ 0 \\ 3/5 \\ 0 \end{pmatrix} \right\}$$
. What matrix representation of the

- operator $P_{\mathcal{M}}$ that projects onto the \mathcal{M} in the standard basis. Find a basis and representation of $P_{\mathcal{M}}$ in this basis which is very convenient.
- (4) Let a solid unit cube cube be placed such that one on of the vertex is at the origin and the diagonally opposite vertex v is at the point (1,1,1,). The cube is rotated first 90^o anticlockwise around the x-axis, followed by 45^o anticlockwise around the y-axis followed by 60^o anticlockwise around the z-axis. Find the location of the vertex v at the end of the three rotations
- (5) Let R be the reflection about the vector $u = \frac{1}{\sqrt{3}}(1,1,1)$ in \mathbb{R}^3 . Find action of the reflection about u on the vector v = (1,0,0)
- (6) The Discrete Fourier transform is a linear transformation $F_n: \mathbb{C}^n \to \mathbb{C}^n$, $F_n =$

1

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \zeta & \zeta^2 & \cdots & \zeta^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \zeta^{n-1} & \zeta^{n-2} & \cdots & \zeta \end{pmatrix} \text{ Here } \zeta = e^{-2\pi i/n}$$

- i) Show that the columns of F_n are orthogonal
- $ii)F_n^{-1} = \frac{1}{n}\bar{F}_n$