Wholesale Customer Segmentation

Andrew J. Otis

Task to Accomplish

To identify and describe potential customer segments hidden within the data...

The Data

Encoded 'Region' Column

1 = Lisbon

2 = Oporto

3 = Other Region

Encoded 'Channel' Column
1 = HORECA

2 = Other Region

... based on annual spending on diverse product categories (e.g. Grocery, Frozen, etc.) of various business types (i.e. Hotel, Restaurant, and Café grouped as 'HORECA' and 'Other') located in various regions.

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
0	2	3	12669	9656	7561	214	2674	1338
1	2	3	7057	9810	9568	1762	3293	1776
2	2	3	6353	8808	7684	2405	3516	7844
3	1	3	13265	1196	4221	6404	507	1788
4	2	3	22615	5410	7198	3915	1777	5185

Table 1: Data frame of the dataset scraped from the UCI Machine Learning Repository

Summary Stats (boxplot)

Figure 1: The plot visualizes the summary statistics of the data (e.g. range, variance, etc.)

Feature Distributions

Principal Component Analysis

The purpose is to reduce dimensions of the data to the most important features (*i.e.* principal components) to be inputs for our clustering models.

For models that require specifying clusters manually(e.g. K-means)

 A model with 1 categorical & 2 numeric features :

The candidate features for clustering are the product categories 'Grocery' and 'Frozen'

 A model with 1 categorical & 3 numeric features:

The candidate features for clustering are the product categories 'Grocery', 'Frozen', and 'Fresh'

1. K-Means Clustering

2. Hierarchal Clustering (agglomerative)

Unlike supervised ML models, clustering only attempts to identify patterns in data, and thus has no "target" variable.

Clustering Algorithms and Strategy

Elbow Plot

Elbow Plot for K-Means

Figure 3: Remember, k-means requires one to explicitly specify the desired number of clusters. In this case, 4 clusters appears to be the optimal number of clusters.

Visualize the K-means Clusters in 2D

Notice, analyzing the graphs in tandem allows us to compare regions and channels simultaneously

Figure 4: Clusters visualized by Channel and Region, for 2D scatterplot representation, respectively.

Visualize the K-means Clusters in 3D

Figure 5: Clusters visualized by Channel and Region, for 3D scatterplot representation, respectively.

Customer Segmentation from K-Means Clustering

Segment 1

A HORECA customer in region "Oporto", from cluster 1 that has most of the annual spending in the 'Frozen' category

Segment 2

A HORECA customer in region "Other", from cluster 1 that has most of the annual spending in the 'Fresh' category

Segment 3

A non-HORECA customer in region "Other", from cluster 3 that has most of the annual spending in the 'Grocery' category

Dendrogram from Agglomerative Clustering

Dendogram from Agglomerative Clustering

Figure 6: Algorithm automatically clusters the data, no need to explicitly specify the desired number of clusters. In this case, the algorithm determined 2 clusters to be the ideal number. This is supported by the only cluster labels resulting being "0" & "1"

Customer Segmentation from Hierarchal Clustering

Segment 1

A HORECA customer in region "Other", from cluster 0 that has most of the annual spending in the 'Fresh' category

Segment 2

A HORECA customer in region "Oporto", from cluster 0 that has most of the annual spending in the 'Frozen' category

Segment 3

A non-HORECA customer in region "Other", from cluster 1 that has most of the annual spending in the 'Grocery' category

Model Comparisons

Based on the task at hand, I believe the K-means clustering addresses those needs best.

The issue with only having 2 clusters (i.e. Hierarchal Clustering results) is there's too much overlapping between the 2 clusters identified.

Additionally, there are data points so different from one another that intuitively one would assume they'd be in different clusters.

References

Cardoso, M. (2014). Wholesale customers Data Set.
 Retrieved from UCI Machine Learning Repository.

Dalton, D. (2023). Data Science Captsone [COMP 4449].
 University of Denver.