

(5)

@ I

As we can see, the problem is that Pe is "vering" 2 instances of a when it can use a maximum of 1. In order to quarantee a request, the first thing that Bowher's Algorithm does is to check if regic (C-A)i and this is the same as checking regitais Ci Imagine that Ps is allocating a instance of C and then it requests (0,0,1,0) for example. That request is going to be

added to AP2 and then the question is: Is this addition less or equal them CP1? Obviously not, because in this addition we have 2 instances of C while the maximum to be used as only b. We can't continue because this coudition is not true and this "process of request" is stopped.

A Q V Process 4031 0021 0102 8120 0102 0231 3311 2310 0411 04 03 2103 a)) There are no process with no recurser allocated.

2) Q4 5 V

Process

P1L	for, 0,24 3,120 = 13,2,3/	199	
Po	13,2,2,29+ 11,0,3,16 44,2,5,5	19,84	
P5	14,2,5,39+10,40,39=14,6,5,69	16.a.Rf	
₽2	14,6,5,69+ 30,23,49= 14,8,8,26	1P. 6 6, 9,4	_
P3	{4,84,7{+}2,3,4,08={6,46,9,7{	16, 4, 6, 6 Po 9	L
P4	{6,10,9,7 f+ } 2,0,1,1 f= \8, 11,10,8 f	18, 6, 6, 6, 6, 4, 5	

b) sale sequence: Pr, Po, Ps. P2, P3, P44

7 5 processes that use 6 resources (A, B, C, D, E, C)

	A					Q - 17							
	A	В	ر	0	F	F	A	B	c	٥	€	Ħ	
Po	1	1	0	1	1	1	0	1	2	2	0	1	✓
Ρ,	1	0	٥	2	1	2	0	0	3	0	0	1	v
P2	٥	2	0	1	1	0	1	3	2	3	2	5	
P3	٥	0	5	0	0	٥	1	0	0	Ø	2	1	[_~
P4	O	2	2	6	0	4	1	3	4	n	3	3	1

a) In order to know of there is a deadlock we use Bounker's algorithm.

b) Qi < V

Chosen	V	Fineshed		
	- {1,1,0,02,1}	16	so there as a	DEADLOCK
P ₃	11,1,0,02,19+ 10,0,5,0,0,0 = 11,1,5,0,2,1	1034	No sofe seguence	com be foun
Pa Pa	\$1,1,5,0,2,1\$ + \$200,2,62\$ = \$2,1,5,2,3,3}	18,84		
Po	12,1,5,2,3,3++ 2,40,4,6, + = 18,2,5,3,4,49	je,a, a j		
		'		

C) There is a deadlock produced by P2 and Py because Q2 > V and Q4 > V.

ABCDE

c p

d) In order to avoid the deadlern we add one to resources B and F so we have (3.3,5,3,4.5) so now 02 5 V, and when we perform V+ A2 = (3,5,5,4,5,5) and by as the process that completes the says sequences $Q_{q \leq V}$ and $V+\Delta_{q}=(3,7,7,4,8,9)$ which as the some as the total value of recovers + 1 in 8 and F