

로그함수

01	로그함수의 뜻과 그래프	149
	예제	
기본	! 다지기	186
신근	「FX77	100

로그함수의 그래프의 평행이동과 대칭이동

예제 • • 1

다음 로그함수의 그래프를 그려라.

$$(1) y = \log_2(x+2) + 1$$

$$(2)y = \log_{\frac{1}{2}}(x-1) - 3$$

접근 방법

함수 $y = \log_a x (a > 0, a \neq 1)$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 그 래프의 식은 $y = \log_a (x - m) + n$ 입니다.

Bible
$$y = \log_a x \xrightarrow{x^{\frac{1}{5}}, y^{\frac{1}{5}}} y^{\frac{1}{5}} = \log_a (x - m) + n$$

상세 풀이

- (1) 함수 $y = \log_2(x+2) + 1$ 의 그래프는 함수 $y = \log_2 x$ 의 그래프를 x축 의 방향으로 -2만큼, y축의 방향으로 1만큼 평행이동한 것이므로 오른쪽 그림과 같습니다.
- $\begin{array}{c|c}
 y \\
 2 \\
 y = \log_2(x+2) + 1 \\
 \hline
 -2 \\
 -\frac{3}{2} \\
 0 \\
 y = \log_2 x
 \end{array}$
- (2) 함수 $y = \log_{\frac{1}{3}}(x-1) 3$ 의 그래프는 함수 $y = \log_{\frac{1}{3}}x$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -3만큼 평행이동한 것이므로 오른쪽 그림과 같습니다.

정답 ⇒ 풀이 참조

보충 설명

로그함수의 그래프를 그릴 때 점근선을 먼저 그리는 것이 좀 더 편리합니다. 즉, 함수 $y=\log_a x$ 의 그래프의 점 근선은 직선 x=0 (y축)이고, 이 그래프를 x축의 방향으로 평행이동하면 점근선도 평행이동하므로 함수 $y=\log_a(x-m)+n$ 의 그래프의 점근선은 직선 x=m이 됩니다.

01-1 다음 로그함수의 그래프를 그려라.

- $(1) y = \log_{\frac{1}{2}}(x+2) 1$
- $(2) y = \log_2(4x 8)$
- (3) $y = \log_3(1-x) 2$

 $(4) y = \log_{\frac{1}{2}} (-9x + 18) + 1$

표형 바꾸기

01-2 함수 $y=-\log_2(3-x)+4$ 에 대한 다음 설명 중 옳지 않은 것은?

- ① 정의역은 $\{x | x < 3\}$ 이다.
- ② 그래프의 점근선의 방정식은 x=3이다.
- ③ 그래프는 점 (2, 4)를 지난다.
- ④ *x*의 값이 증가할 때 *y*의 값은 감소한다.
- ⑤ 그래프는 함수 $y = -\log_2(-x)$ 의 그래프를 평행이동하면 겹쳐진다.

개념 넓히기 ★☆☆

♦ 보충 설명

01-3 오른쪽 그림과 같이 함수 $y = k \log_{\frac{1}{2}}(a - x) + b$ 의 그래 프의 점근선이 직선 x=4이고, 그래프가 x축과 만나는 점의 x좌표가 2, y축과 만나는 점의 y좌표가 -2일 때, a+b+k의 값을 구하여라. (단, a, b, k는 상수이다.)

절댓값 기호를 포함한 로그함수의 그래프

예제 . 02

함수 $y = \log_2 x$ 의 그래프를 이용하여 다음 함수의 그래프를 그려라.

(a) 11

 $(1) y = \log_2 |x|$

 $(2) y = |\log_2 x|$

접근 방법

절댓값 기호 안의 식의 값이 0보다 크거나 같은 경우와 0보다 작은 경우로 나누어, 각 범위별로 그래프를 그려줍니다.

또는 두 함수 y=f(x), y=f(-x)의 그래프는 y축에 대하여 대칭이고, 두 함수 y=f(x), y=-f(x)의 그래프는 x축에 대하여 대칭임을 이용하여 그래프를 그릴 수도 있습니다.

Bible

절댓값 기호를 포함한 함수의 그래프는 절댓값 기호 안의 식의 값이 0이 되는 x의 값을 경계로 범위를 나누어 그래프를 그린다.

상세 풀이

$$(1)y = \log_2 |x| = \begin{cases} \log_2 x & (x>0) \\ \log_2 (-x) & (x<0) \end{cases}$$
 따라서 함수 $y = \log_2 |x|$ 의 그래프는 오른쪽 그림과 같습니다.

 $y = \log_2|x|$ -1 or 1

$$(2)y=|\log_2 x|=$$

$$\begin{cases} \log_2 x & (x\geq 1)\\ -\log_2 x & (0< x< 1) \end{cases}$$
 따라서 함수 $y=|\log_2 x|$ 의 그래프는 오른쪽 그림과 같습니다.

정답 ⇒ 풀이 참조

보충 설명

 $y=\log_2 x^2=2\log_2 |x|$ 이므로 두 함수 $y=\log_2 x^2$, $y=2\log_2 x$ 의 그래프는 서로 다르다는 것에 주의합니다. $y=|\log_{\frac{1}{2}}x|=|-\log_2 x|=|\log_2 x|$ 이므로 함수 $y=|\log_{\frac{1}{2}}x|$ 의 그래프는 (2)와 같습니다.

02-1 함수 $y = \log_3 x$ 의 그래프를 이용하여 다음 함수의 그래프를 그려라.

 $(1) y = |\log_3 x|$

(2) $y = |\log_{\frac{1}{2}}(-x)|$

 $(3) y = \log_3 |x|$

(4) $y = \log_{\frac{1}{3}} |x - 1|$

표현 바꾸기

02-2 다음 식의 그래프를 그려라.

 $(1) |y| = \log_2 x$

(2) $|y| = \log_{\frac{1}{2}} x$

 $(3) |y| = \log_2|x|$

 $(4) |y| = |\log_2 x|$

개념 넓히기 ★★★

02-3 함수 $y=|\log_2 x^2|$ 에 대하여 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?

 \neg . 그래프는 x축에 대하여 대칭이다.

 \bot . y=0인 x의 값은 2개이다.

ㄷ. 양수 k에 대하여 $k=|\log_2 x^2|$ 을 만족시키는 모든 x의 값의 합은 0이다.

 \bigcirc

② ¬, ∟

③ 7, 5

4 L, E

(5) 7, L, E

정답 **02-1** p.538 참조

02-2 p.538 참조

02-3 ④

지수함수와 로그함수의 역함수(1)

예세 03

다음 함수의 역함수를 구하여라.

(1) $y = 2 \times 3^{x-2}$

 $(2) y = \log_3(x+1) + 2$

접근 방법

일대일대응인 함수 y=f(x)의 역함수는 다음과 같은 순서로 구합니다.

- $\mathbf{0}$ y=f(x)를 x에 대하여 정리하여 $x=f^{-1}(y)$ 꼴로 변형합니다.
- ② $x=f^{-1}(y)$ 에서 x와 y를 서로 바꾸어 $y=f^{-1}(x)$ 로 나타냅니다.

이때, f의 정의역은 f^{-1} 의 치역이 되고, f의 치역은 f^{-1} 의 정의역이 됩니다.

Bible 로그함수 $y = \log_a x$ 는 지수함수 $y = a^x$ 의 역함수이다.

상세 풀이

 $(1)y=2 imes 3^{x-2}$ 에서 $rac{y}{2}=3^{x-2}$ 이므로 로그의 정의에 의하여

$$x-2=\log_3\frac{y}{2}$$
 $\therefore x=\log_3\frac{y}{2}+2$

x와 y를 서로 바꾸면 구하는 역함수는

$$y = \log_3 \frac{x}{2} + 2$$

 $(2)y = \log_3(x+1) + 2$ 에서 $y-2 = \log_3(x+1)$ 이므로 로그의 정의에 의하여

$$x+1=3^{y-2}$$
 : $x=3^{y-2}-1$

x와 y를 서로 바꾸면 구하는 역함수는

$$y=3^{x-2}-1$$

정답 \Rightarrow (1) $y = \log_3 \frac{x}{2} + 2$ (2) $y = 3^{x-2} - 1$

보충 설명

지수함수와 로그함수는 서로 역함수 관계이므로 지수함수 $y=a^x$ 의 치역과 로그함수 $y=\log_a x$ 의 정의역은 서로 같습니다. 마찬가지 원리로 지수함수 $y=a^{x-p}+q$ 의 치역과 로그함수 $y=\log_a (x-q)+p$ 의 정의역은 서로 같습니다

♦ 보충 설명

03-1 다음 함수의 역함수를 구하여라.

(1) $y = 10^{x-1} + 2$

(2) $y = 2^{-x+3} - 1$

(3) $y = \log_4(x+1) - 3$

 $(4) y = \log_2 \frac{1}{x+1}$

표현 바꾸기

◆ 다른 풀이

03-2 다음 물음에 답하여라.

- (1) 함수 $y=10^{ax}$ 의 역함수가 $y=\frac{a}{100}\log x$ 일 때, 양수 a의 값을 구하여라.
- (2) 함수 $y=\left(\frac{1}{2}\right)^{2x-1}$ 의 역함수가 $y=a\log_2 x+b$ 일 때, 상수 a,b에 대하여 a+b의 값을 구하여라.

개념 넓히기 ★★☆

♦ 다른 풀이

03-3 함수 $f(x) = \log_2 x - 3$ 의 역함수를 g(x)라고 할 때, 다음 중 함수 f(x-1)의 역함수 는?

- ① g(x) 1
- ② g(x) + 1

- $\bigoplus g(x+1)$
- (5) g(x-1)-1

03-1 (1) $y = \log(x-2) + 1$ (2) $y = \log_{\frac{1}{2}}(x+1) + 3$ (3) $y = 4^{x+3} - 1$ (4) $y = 2^{-x} - 1$

03-2 (1) 10 (2) 0

03-3 ②

지수함수와 로그함수의 역함수(2)

^{예세} **^**4

함수
$$f(x) = \begin{cases} 19 - \frac{5}{3}x & (x < 12) \\ 1 - \log_2(x - 8) & (x \ge 12) \end{cases}$$
의 역함수를 $g(x)$ 라고 할 때,

 $(g \circ g \circ g)(x) = -3$ 을 만족시키는 x의 값을 구하여라.

접근 방법

주어진 함수 f(x)가 복잡하기 때문에 역함수 g(x)를 직접 구하는 것은 쉽지 않습니다. 따라서 수학 $\langle \text{하} \rangle$ 에서 배운 역함수의 성질

$$f(a) = b \iff a = f^{-1}(b)$$

를 이용하는 것이 편리합니다.

Bible 역함수에 관한 문제는 역함수의 성질을 이용한다.

상세 풀이

$$\begin{split} (g \circ g \circ g)(x) &= -3 \text{에서} \\ (g^{-1} \circ g^{-1} \circ g^{-1} \circ g \circ g \circ g)(x) &= (g^{-1} \circ g^{-1} \circ g^{-1})(-3) \\ & \therefore x = (g^{-1} \circ g^{-1} \circ g^{-1})(-3) = (f \circ f \circ f)(-3) = f(f(f(-3))) \\ \text{이때,} \ f(-3) &= 19 - \frac{5}{3} \times (-3) = 24, f(24) = 1 - \log_2(24 - 8) = 1 - 4 = -3 \text{이므로} \\ x &= f(f(f(-3))) = f(f(24)) = f(-3) = 24 \end{split}$$

정답 ⇒ 24

보충 설명

다음은 수학 (하)에서 배운 역함수에 대한 중요한 성질이므로 꼭 기억해 둡시다.

- (1) 함수 $f: X \longrightarrow Y$ 가 일대일대응이고 그 역함수가 f^{-1} 일 때
 - (1) $(f^{-1})^{-1}=f$

②
$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x \ (x \in X)$$

 $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y \ (y \in Y)$

(2) 두 함수 $f: X \longrightarrow Y$, $g: Y \longrightarrow X$ 에 대하여 $(f \circ g)(y) = y \text{이면 } g = f^{-1} \text{ (또는 } f = g^{-1})$ $(g \circ f)(x) = x \text{이면 } g = f^{-1} \text{ (또는 } f = g^{-1})$

(3) 두 함수 $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ 가 일대일대응이고, 그 역함수가 각각 f^{-1} , g^{-1} 일 때 $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$

04-1

함수
$$f(x) = \begin{cases} \frac{71}{5} - \frac{19}{15}x & (x < 12) \\ 1 - 2\log_3(x - 9) & (x \ge 12) \end{cases}$$
의 역함수를 $g(x)$ 라고 할 때,

 $(g \circ g \circ g \circ g \circ g)(x) = -3$ 을 만족시키는 x의 값을 구하여라.

표현 바꾸기

◆ 다른 풀이

- 04-2 다음 물음에 답하여라.
 - (1) 함수 $f(x)=1+3\log_2 x$ 에 대하여 함수 g(x)가 $(g \circ f)(x)=x$ 를 만족시킬 때, g(13)의 값을 구하여라.
 - (2) 함수 $f(x) = 5 \times 2^x$ 의 역함수를 g(x)라고 할 때, $2^{g(3)+g(\frac{1}{3})}$ 의 값을 구하여라.

개념 넓히기 ★★☆

04-3 실수 전체의 집합에서 정의된 함수 f(x)가

$$f(x) = \begin{cases} -x+1 & (x<1) \\ -2^{x+1}+4 & (x \ge 1) \end{cases}$$

이고, 함수 g(x)가 $(g \circ f)(x) = x$ 를 만족시킨다. g(k) + g(-12) = 1을 만족시키는 상 수 k의 값을 구하여라.

정답 04-1 18

04-2 (1) 16 (2) $\frac{1}{25}$ **04-3** 3

지수함수와 로그함수의 그래프

^{예제}. 05

함수 $y = \log_a x$ 의 그래프가 오른쪽 그림과 같을 때, 함수 $y = a^{-x} - 1$ 의 그래프의 개형을 그려라.

접근 방법

함수 $y=a^{-x}-1$ 의 그래프는 함수 $y=a^x$ 의 그래프를 y축에 대하여 대칭이동한 후, y축의 방향으로 -1 만큼 평행이동하여 얻은 것입니다. 따라서 먼저 함수 $y=\log_a x$ 의 그래프를 직선 y=x에 대하여 대칭이 동하여 함수 $y=a^x$ 의 그래프를 그리면 됩니다.

Bible 두 함수 $y = \log_a x$, $y = a^x$ 의 그래프는 직선 y = x에 대하여 대칭이다.

상세 풀이

- (i) 함수 $y=\log_a x$ 의 그래프를 직선 y=x에 대하여 대칭이동하면 함수 $y=a^x$ 의 그래프를 얻을 수 있습니다.
- (ii) 함수 $y=a^x$ 의 그래프를 y축에 대하여 대칭이동하면 함수 $y=a^{-x}$ 의 그래프를 얻을 수 있습니다.
- (iii) 함수 $y = a^{-x}$ 의 그래프를 y축의 방향으로 -1만큼 평행이동하면 함수 $y = a^{-x} 1$ 의 그래프를 얻을 수 있습니다.

정답 ⇒ 풀이 참조

보충 설명

지수함수 $y=a^x$ 과 로그함수 $y=\log_a x$ 는 서로 역함수 관계이므로 두 함수 사이의 관계를 역함수의 성질과 관련 지어 이해하고 있어야 합니다.

$y=a^x$	$y = \log_a x$
그래프는 점 (0, 1)을 지난다.	그래프는 점 (1, 0)을 지난다.
치역 : {y y>0}	정의역 : {x x>0}
정의역 : { <i>x</i> <i>x</i> 는 모든 실수}	치역 : { <i>y</i> <i>y</i> 는 모든 실수}

05-1 함수 $y = \log_a(x+b)$ 의 그래프가 오른쪽 그림과 같을 때, 다음 중 함수 $y = \left(\frac{1}{a}\right)^x + b$ 의 그래프의 개형은?

표현 바꾸기

05-2 오른쪽 그림은 1이 아닌 세 양수 a, b, c에 대하여 세 함수 $y = \log_a x$, $y = \log_b x$, $y = c^x$ 의 그래프를 나타낸 것이다. 세 양수 a, b, c의 대소를 비교하여라.

개념 넓히기 ★★★

◆보충 설명

05-3 \langle 보기 \rangle 의 함수의 그래프 중 평행이동 또는 대칭이동에 의하여 함수 $y=3^x$ 의 그래프와 일 치할 수 있는 것만을 있는 대로 고른 것은?

> --- 보기 --- $\neg y = \frac{3^x}{2}$

 $\bot_{.} y = 9^{x} + 1$ $= y = \log_9 x^2$

 $\sqsubseteq y = \log_3 x - 1$

- ① 7, ∟
- ② 7, 5
- ③ ⊏, ⊒

- ④ 7. ∟. ⊏
- ⑤ 7. ㄷ. ㄹ

전달 05-1 ①

05-2 a > b > c

05-3 ②

예제

06

로그함수의 그래프와 도형

오른쪽 그림과 같이 좌표평면에서 곡선 $y=\log_a x$ 위의점 $A(2, \log_a 2)$ 를 지나고 x축에 평행한 직선이 곡선 $y=\log_b x$ 와 만나는 점을 B, 점 B를 지나고 y축에 평행한 직선이 곡선 $y=\log_a x$ 와 만나는 점을 C라고 하자. $\overline{AB}=\overline{BC}=2$ 일 때, a^2+b^2 의 값을 구하여라.

(단, 1 < a < b)

접근 방법

그래프와 관련된 문제를 풀 때에는 함수의 그래프가 지나는 점의 좌표를 대입하거나 x축에 평행한 선분의 길이는 x좌표의 차이고 y축에 평행한 선분의 길이는 y좌표의 차임을 이용합니다. 즉, 이 문제에서 점 A의 x좌표가 2이고 x축에 평행한 선분 AB의 길이가 2이므로 점 B의 x좌표는 4입니다.

Bible x축에 평행한 직선 위의 점들의 y좌표는 모두 같다.

상세 풀이

 \overline{AB} =2에서 점 B의 x좌표는 4이므로

 $\overline{BC} = \log_a 4 - \log_b 4 = 2$

두 점 A. B의 y좌표가 같으므로

 $\log_a 2 = \log_b 4$

.... (L)

L)을 ①에 대입하면

 $\log_a 4 - \log_a 2 = \log_a 2 = 2$: $a^2 = 2$

다에서 $\log_a 2 = \log_b 4 = 2$ $\therefore b^2 = 4$

 $a^2+b^2=2+4=6$

정답 ⇒ 6

보충 설명

다음 그림과 같이 두 함수 y=f(x), y=f(x-m)의 그래프에 x축에 평행한 직선을 그으면 두 교점 A, B 사이의 거리는 m입니다. 또한 두 함수 y=f(x), y=f(x)+n의 그래프에 y축에 평행한 직선을 그으면 두 교점 C, D 사이의 거리는 n입니다.

06-1 오른쪽 그림과 같이 좌표평면에서 곡선 $y=\log_a x$ 위의 점 $A(3, \log_a 3)$ 을 지나고 x축에 평행한 직선이 곡선 $y = \log_b x$ 와 만나는 점을 B, 점 B를 지나고 y축에 평행한 직선이 곡선 $y = \log_a x$ 와 만나는 점을 C라고 하자.

 $\overline{AB} = \overline{BC} = 6$ 일 때, $a^6 + b^6$ 의 값을 구하여라.

(단. 1<a<b)

표형 바꾸기

06-2 오른쪽 그림과 같이 함수 $y = \log_a x$ 의 그래프 위의 두 점 A. C를 이은 선분이 한 변의 길이가 2인 정사각형 ABCD의 대 각선이다. 선분 AB는 x축에 평행하고, 함수 $y = \log_b x$ 의 그 래프가 점 B를 지날 때, 상수 b의 값은?

(단, 1 < a < b이고 점 A의 y좌표는 2이다.)

- ① $\sqrt[4]{2}$
- $\bigcirc \sqrt{2}$
- ③2

- $\bigcirc 4) 2\sqrt{2}$
- (5) 4

개념 넓히기 ★★☆

06-3 오른쪽 그림과 같이 좌표평면에서 두 곡선 $y = \log_6(x+1)$,

 $y = \log_6(x-1) - 4$

와 두 직선 y=-2x, y=-2x+8로 둘 러싸인 도형의 넓이를 구하여라.

정답 **06-1** 12

06-2 ③

06-3 16

역함수 관계에 있는 로그함수와 지수함수의 그래프

^{예제} 07

오른쪽 그림과 같이 곡선 $y=2^x-1$ 위의 점 A(2, 3)을 지나고 기울기가 -1인 직선이 곡선 $y=\log_2(x+1)$ 과 만나는 점을 B라고 하자. 두점 A, B에서 x축에 내린 수선의 발을 각각 C, D라고 할 때. 사각형 ACDB의 넓이를 구하여라.

접근 방법

함수 $y=a^{x-m}+n$ 의 역함수가 $y=\log_a(x-n)+m$ 이므로 두 함수 $y=a^{x-m}+n, \ y=\log_a(x-n)+m$

의 그래프는 직선y=x에 대하여 대칭입니다.

Bible 두 함수 $y=a^{x-m}+n$, $y=\log_a(x-n)+m$ 은 서로 역함수 관계이다.

상세 풀이

두 함수 $y=2^x-1$ 과 $y=\log_2(x+1)$ 은 서로 역함수 관계이므로 두 함수의 그래프는 직선 y=x에 대하여 대칭입니다.

점 A(2,3)을 지나고 기울기가 -1인 직선이 곡선 $y=\log_2(x+1)$ 과 만나는 점 B는 점 A(2,3)을 직선 y=x에 대하여 대칭이동한 점이 됩니다.

따라서 B(3, 2)이므로 사각형 ACDB의 넓이는

$$\frac{1}{2} \times (3+2) \times 1 = \frac{5}{2}$$

정답 $\Rightarrow \frac{5}{2}$

보충 설명

직선 y=x에 대하여 대칭인 두 함수 $y=a^x$, $y=\log_a x$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 두 함수

$$y = a^{x-m} + n, y = \log_a(x-m) + n$$

의 그래프는 직선

$$y-n=x-m$$
, $\Rightarrow y=x-m+n$

에 대하여 대칭입니다.

예를 들어, 두 함수 $y=2^x-1$, $y=\log_2 x-1$ 의 그래프는 직선 y=x-1에 대하여 대칭입니다.

수자 바꾸기

07-1 오른쪽 그림과 같이 곡선 $y = \log_3(x+3)$ 위의 점

A(6, 2)를 지나고 기울기가 -1인 직선이 곡선 $y=3^x-3$ 과 만나는 점을 B라고 하자, 두 점 A, B 에서 x축에 내린 수선의 발을 각각 C, D라고 할 때, 사각형 ABDC의 넓이를 구하여라.

표현 바꾸기

07-2 오른쪽 그림과 같이 곡선 $y=2^x$ 이 y축과 만나는 점을 A, 곡선 $y = \log_2 x$ 가 x축과 만나는 점을 B라고 하자. 또한 직선 y=-x+k가 두 곡선 $y=2^x$, $y=\log_2 x$ 와 만나는 점을 각각 C, D라고 하자, 사각형 ABDC가 정사각형일 때, 상수 k의 값 을 구하여라.

개념 넓히기 ★★☆

07-3 오른쪽 그림과 같이 함수 $y = \log_2 x$ 의 그래프와 직선 y=mx의 두 교점을 A, B라 하고, 함수 $y=2^x$ 의 그래 프와 직선 y=nx의 두 교점을 C, D라고 하자. 사각형 ABDC는 등변사다리꼴이고 삼각형 OBD의 넓이는 삼 각형 OAC의 넓이의 4배일 때, m+n의 값을 구하여라. (단, m, n은 상수이고, 0는 원점이다.)

정답 **07-1** 16

07-2 3

07-3 $\frac{5}{2}$

로그함수의 그래프를 이용한 대소 관계

^{Պ세} **೧**8

다음 물음에 답하여라.

- (1) 세 수 $3\log_3 2$, 2, $\frac{1}{2}\log_3 70$ 의 대소를 비교하여라.
- (2) 0 < a < b < 1일 때, $\log_a b$, $\log_b a$, $\log_a \frac{b}{a}$ 의 대소를 비교하여라.

접근 방법

로그함수 $y = \log_a x \ (a > 0, \, a \neq 1)$ 는 a > 1일 때 x의 값이 증가하면 y의 값도 증가하고, 0 < a < 1일 때 x의 값이 증가하면 y의 값은 감소합니다. 따라서 밑을 통일한 후 로그함수의 성질을 이용하여 대소를 비교합니다.

Bible
$$a>1$$
일 때, $0< x_1< x_2 \iff \log_a x_1 < \log_a x_2$ $0< a< 1$ 일 때, $0< x_1< x_2 \iff \log_a x_1 > \log_a x_2$

상세 풀이

(1) 주어진 세 수를 믿이 3인 로그로 나타내면

 $3\log_3 2 = \log_3 2^3 = \log_3 8$, $2 = 2\log_3 3 = \log_3 3^2 = \log_3 9$, $\frac{1}{2}\log_3 70 = \log_3 70^{\frac{1}{2}} = \log_3 \sqrt{70}$ 이때, 함수 $y = \log_3 x$ 는 x의 값이 증가하면 y의 값도 증가하고, $8 < \sqrt{70} < 9$ 이므로

$$\log_3 8 < \log_3 \sqrt{70} < \log_3 9$$
 $\therefore 3 \log_3 2 < \frac{1}{2} \log_3 70 < 2$

(2) 0 < a < 1이므로 함수 $y = \log_a x$ 는 x의 값이 증가하면 y의 값은 감소합니다.

이때,
$$0 < a < b < 1$$
이므로 $\log_a a > \log_a b > \log_a 1$ $\therefore 0 < \log_a b < 1$ \cdots \bigcirc

또한
$$\log_a b - \log_a a < 0$$
이므로 $\log_a \frac{b}{a} < 0$ \square

0 < b < 1이므로 함수 $y = \log_b x$ 는 x의 값이 증가하면 y의 값은 감소합니다.

이때,
$$0 < a < b <$$
 1이므로 $\log_b a > \log_b b > \log_b 1$ \therefore $1 < \log_b a$ \cdots \bigcirc

정답
$$\Rightarrow$$
 (1) $3\log_3 2 < \frac{1}{2}\log_3 70 < 2$ (2) $\log_a \frac{b}{a} < \log_a b < \log_b a$

보충 설명

로그는 지수와 달리 똑같이 거듭제곱하거나 진수를 통일하는 방법을 사용할 수가 없습니다. 그래서 밑을 통일하기가 곤란한 경우에는 대소 비교의 가장 기본적인 방법, 즉 두 수의 치를 조사하는 방법을 사용합니다. 지수의 대소 비교와 마찬가지로 어떤 방법을 써야 하는지는 주어진 수의 형태에 따라 다양하게 접근해 봅니다

08-1 다음 물음에 답하여라.

- (1) 세 수 -2, $\log_{\frac{1}{2}} 3$, $\log_{\frac{1}{2}} \sqrt{10}$ 의 대소를 비교하여라.
- $(2) 0 < a^2 < b < a < 1$ 일 때, $\frac{1}{2}$, $\log_a b$, $\log_b a$, $\log_a \frac{a}{b}$, $\log_b \frac{b}{a}$ 의 대소를 비교하여라.

표현 바꾸기

08-2 0 < a < 1 < b이고 ab < 1인 두 실수 a, b에 대하여

 $A = \log_a \sqrt{b}$, $B = \log_{\sqrt{b}} a$

일 때, 〈보기〉에서 옳은 것만을 있는 대로 고른 것은?

── 보기 ├──		
$\neg A < 0$	∟. <i>AB</i> =1	$\sqsubseteq A>B$

(1) ¬

(2) L

③ 7, ∟

- ④ ¬, ⊏
- 57, 4, 5

개념 넓히기 ★★★

08-3 n이 자연수일 때, \langle 보기 \rangle 의 부등식 중 항상 성립하는 것만을 있는 대로 고른 것은?

 $\neg \log_2(n+3) > \log_2(n+2)$ $-\log_2(n+2) > \log_3(n+2)$

 $= \log_2(n+2) > \log_3(n+3)$

① ¬

- ② ¬. ∟
- ③ 7. □

- ④ ∟, ⊏
- (5) 7, L, E

88-1 (1)
$$-2 < \log_{\frac{1}{2}} \sqrt{10} < \log_{\frac{1}{2}} 3$$
 (2) $\log_a \frac{a}{b} < \log_b \frac{b}{a} < \frac{1}{2} < \log_b a < \log_a b$

08-2 (5)

08-3 (5)

로그함수의 최대, 최소

MM 09

다음 물음에 답하여라.

- (1) 함수 $y = \log_2(3x 2)$ 의 최댓값과 최솟값을 각각 구하여라. (단, $2 \le x \le 6$)
- (2) 함수 $y = \log_{\frac{1}{2}}(x^2 + 4x + 13)$ 의 최댓값을 구하여라.

접근 방법

로그함수 $y = \log_a f(x)$ 는 그래프를 그려 보지 않고도 최댓값과 최솟값을 구할 수 있습니다. 이런 꼴의 함수는 증가하는 함수 또는 감소하는 함수이기 때문에 진수의 최댓값 또는 최솟값을 조사하면 함수의 최댓값 또는 최솟값을 알 수 있습니다.

Bible

로그함수 $y = \log_a x \vdash a > 1$ 일 때 x의 값이 증가하면 y의 값도 증가하고, 0 < a < 1일 때 x의 값이 증가하면 y의 값은 감소한다.

상세 풀이

(1) 함수 $y = \log_2(3x - 2)$ 의 밑은 2이고, 2 > 1이므로 3x - 2가 최대일 때 y가 최대이고, 3x - 2가 최소일 때 y가 최소입니다.

따라서 $2 \le x \le 6$ 에서 함수 $y = \log_2(3x - 2)$ 는 x = 6일 때 최대이고, 최댓값은 $\log_2(3 \times 6 - 2) = \log_2 16 = 4\log_2 2 = 4$ x = 2일 때 최소이고, 최숫값은 $\log_2(3 \times 2 - 2) = \log_2 4 = 2\log_2 2 = 2$

(2) 함수 $y = \log_{\frac{1}{3}}(x^2 + 4x + 13)$ 의 밑은 $\frac{1}{3}$ 이고, $0 < \frac{1}{3} < 1$ 이므로 $x^2 + 4x + 13$ 이 최소일 때 y가 최대입니다

 $x^2+4x+13=(x+2)^2+9$ 이므로 x=-2일 때 $x^2+4x+13$ 의 최솟값은 9입니다. 따라서 함수 $y=\log_{\frac{1}{3}}(x^2+4x+13)$ 의 최댓값은

$$\log_{\frac{1}{2}}9 = 2\log_{\frac{1}{2}}3 = -2$$

정답 ⇒ (1) 최댓값: 4 최솟값: 2 (2) -2

보충 설명

 $\log_a x$ 와 $\log_x a$ 가 서로 역수임을 이용하여 최댓값과 최솟값을 구할 때 산술평균과 기하평균의 관계도 지주 쓰이는 편입니다. 즉, a>1이고 x>1(0<a<1이고 0<x<1)일 때, $\log_a x>0$, $\log_x a>0$ 이므로 산술평균과 기하평균의 관계를 이용하면

$$\log_{\boldsymbol{a}} x + \log_{\boldsymbol{a}} a = \log_{\boldsymbol{a}} x + \frac{1}{\log_{\boldsymbol{a}} x} \ge 2\sqrt{\log_{\boldsymbol{a}} x \times \frac{1}{\log_{\boldsymbol{a}} x}} = 2$$

수자 바꾸기

◆ 보충 설명

09-1 다음 함수의 최댓값과 최솟값을 각각 구하여라.

- $(1) y = \log_{\frac{1}{2}}(-2x+5)$ (단, $-2 \le x \le 2$)
- $(2) y = \log_5(x^2 6x + 34)$
- $(3) y = \log_2(x^2 2x + 3)$ (단, $0 \le x \le 3$)
- $(4) y = \log_3(-x^2 4x + 23)$ (단, $-3 \le x \le 3$)

표현 바꾸기

◆ 보충 설명

09-2 다음 물음에 답하여라.

- (1) x > 0, y > 0이고 x + y = 32일 때, $\log_4 2x + \log_4 2y$ 의 최댓값을 구하여라.
- $(2) \log_3 x + \log_3 y = 5$ 일 때, 3x + y의 최솟값을 구하여라.

개념 넓히기 ★★☆

09-3 다음 물음에 답하여라.

- (1) $5 \le x \le 8$ 에서 함수 $y = \log_{\frac{1}{2}}(x-a)$ 의 최솟값이 -2일 때, 상수 a의 값을 구하여라.
- (2) 함수 $y = \log_a(x^2 2x + 5)$ 의 최댓값이 -2일 때, 상수 a의 값을 구하여라.

- 정답 **09-1** (1) 최댓값: 0, 최솟값: -2 (2) 최댓값: 없다, 최솟값: 2
 - (3) 최댓값: log₂6, 최솟값: 1 (4) 최댓값: 3, 최솟값: log₃2
 - **09-2** (1) 5 (2) 54

09-3 (1) 4 (2) $\frac{1}{2}$

치환을 이용한 로그함수의 최대, 최소

^{পাসা} 10

 $1 \le x \le 8$ 일 때, 함수 $y = (\log_2 4x)^2 - 3\log_2(8x)^2 + 20$ 의 최댓값과 최솟값을 각각 구하여라.

접근 방법

함수 $y=(\log_a x)^2+p\log_a x+q$ 의 최대, 최소는 $\log_a x$ 를 t로 치환하여 t에 대한 이차함수의 최댓값과 최솟값을 구합니다.

Bible $\log_a x$ 꼴이 반복되는 함수의 최대, 최소 $\Rightarrow \log_a x$ 를 t로 치환한다.

상세 풀이

로그의 성질을 이용하여 주어진 식을 변형하면

$$y = (\log_2 4x)^2 - 3\log_2 (8x)^2 + 20$$

$$=(\log_2 4x)^2 - 6\log_2 8x + 20$$

$$= (\log_2 4 + \log_2 x)^2 - 6(\log_2 8 + \log_2 x) + 20$$

$$= (2 + \log_2 x)^2 - 6(3 + \log_2 x) + 20$$

 $\log_2 x = t$ 로 놓으면 $1 \le x \le 8$ 에서

$$\log_2 1 \leq \log_2 x \leq \log_2 8$$
 $\therefore 0 \leq t \leq 3$

이때. 주어진 함수는

$$y = (2+t)^2 - 6(3+t) + 20$$

$$=t^2+4t+4-18-6t+20$$

$$=t^2-2t+6$$

$$=(t-1)^2+5$$

따라서 $0 \le t \le 3$ 에서 함수 $y = (t-1)^2 + 5$ 는

t=3일 때 최대이고, 최댓값은 $(3-1)^2+5=9$

t=1일 때 최소이고. 최솟값은 $(1-1)^2+5=5$

정답 ⇒ 최댓값:9. 최솟값:5

보충 설명

치환을 하고 나서는 치환한 값의 범위를 정하는 과정이 중요합니다. 문제에서 주어진 범위는 x에 대한 것이므로 t에 대한 범위로 바꾼 후, 그 구간 안에서 최댓값과 최솟값을 구합니다.

10-1 다음 함수의 최댓값과 최솟값을 각각 구하여라.

$$(1) y = (\log_2 2x)^2 - \log_2 x^2$$

$$(2) y = \log_3 x^4 - (\log_3 x)^2 + 1$$

(3)
$$y = (\log_3 x)^2 + \log_3 \frac{27}{x^2}$$
 (단, 1 $\leq x \leq 81$)

(4)
$$y = (\log_2 2x) \left(\log_2 \frac{8}{x}\right)$$
 (단, $1 \le x \le 16$)

표현 바꾸기

10-2 함수 $f(x) = -(\log_3 x)^2 - a \log_3 \frac{1}{x^2} + b$ 가 x = 9에서 최댓값 6을 가질 때, f(3)의 값은? (단, a, b는 상수이다.)

① -3

③1

4) 3

(5) 5

개념 넓히기 ★★★

10-3 다음 함수의 최댓값과 최솟값을 각각 구하여라.

$$(1) f(x) = 1000 x^4 \div x^{\log x}$$

$$(2)g(x) = (8x)^{5-\log_2 x}$$
 (단, $\frac{1}{2} \le x \le 4$)

정답 10-1 (1) 최댓값: 없다, 최솟값: 1 (2) 최댓값: 5, 최솟값: 없다 (3) 최댓값: 11, 최솟값: 2 (4) 최댓값: 4, 최솟값: -5

10-2 ⑤

10-3 (1) 최댓값 : 10^7 , 최솟값 : 없다 (2) 최댓값 : 2^{16} , 최솟값 : 2^{12}

예제 . 1 로그함수의 그래프와 격자점의 개수

오른쪽 그림은 곡선 $y = \log_3 x$ 와 직선 x = 50 및 x축으로 둘러싸인 도형을 직선 x = 27로 나는 것이다. 경계선을 제외한 두 부분 A, B에 속해 있는 점 중에서 x좌표, y좌표가 모두 정수인점의 개수를 각각 a, b라고 할 때, a + b의 값을 구하여라.

접근 방법

곡선 $y=\log_3 x$ 와 두 직선x=27, x=50이 만나는 점의 좌표는 각각 (27,3), $(50,\log_3 50)$ 이고 $3=\log_3 27 < \log_3 50 < \log_3 81 = 4$ 이므로 두 부분 A, B에서 x좌표, y좌표가 모두 정수인 점을 찾기 위하 여y=1,2,3의 세 가지 경우로 나누어 정수가 되는 x좌표를 구합니다.

Bible 로그함수의 그래프에서 격자점의 개수는 y좌표를 기준으로 생각하자!

상세 풀이

 $\log_3 3 = 1$, $\log_3 9 = 2$, $\log_3 27 = 3$, $\log_3 81 = 4$ 이므로 오른쪽 그림과 같이 y = 1, y = 2, y = 3의 경우로 나누어 두 부분 A, B에서 x좌표, y좌표가 모두 정수인 점의 개수를 구하면 다음과 같습니다.

$$A: (4,1), (5,1), \cdots, (26,1) \Rightarrow 26-4+1=23(7)$$

$$B: (28,1), (29,1), \cdots, (49,1) \Rightarrow 49-28+1=22(71)$$

 $(ii) y = 2 일 때, \log_3 9 = 2 이므로$

$$A: (10,2), (11,2), \cdots, (26,2) \Rightarrow 26-10+1=17(7)$$

$$B: (28,2), (29,2), \cdots, (49,2) \Rightarrow 49-28+1=22(7)$$

(iii) y=3일 때, log₃27=3이므로

$$B: (28,3), (29,3), \cdots, (49,3) \Rightarrow 49-28+1=22(71)$$

(i)
$$\sim$$
(iii) \cap | A | $a=23+17=40$, $b=22+22+22=66$

$$\therefore a+b=40+66=106$$

정답 ⇒ 106

보충 설명

곡선 $y = \log_3 x$ 와 두 직선 x = 27, x = 50 및 x + 50 및 x + 50 으로 둘러싸인 도형에서 x 자표, y 자표 모두 정수가 되는 점을 찾기 위해서 경우를 나누는데, x가 정수일 때 y가 정수가 되는 점을 찾는 방법과 y가 정수일 때 x가 정수의 다가 되는 점을 찾는 방법을 생각해 볼 수 있습니다. 그런데 위의 문제에서 x가 정수인 경우를 먼저 생각해 보면 1 < x < 50으로 총 48 개의 경우를 생각해야 합니다. 반면, y가 정수인 경우는 $0 < y < \log_3 50 < 4$ 로 y = 1, 2, 3의 세 가지 경우만 생각하면 되므로 위의 풀이에서와 같이 y가 정수인 경우를 먼저 생각하여 계산합니다.

11-1 오른쪽 그림과 같이 곡선 $y=\log_2 x$ 와 직선 x=30 및 x축 으로 둘러싸인 도형에 한 변의 길이가 1인 정사각형을 서로 겹치지 않게 그리려고 한다. 그릴 수 있는 한 변의 길이가 1인 정사각형의 최대 개수를 구하여라.

(단, 정사각형의 각 변은 x축, y축에 평행하다.)

표현 바꾸기

11-2 오른쪽 그림과 같이 두 곡선 $y = \log_2 x$, $y = \log_4 x$ 와 직선 x=n이 만나는 점을 각각 A, B라고 하자. 선분 AB 위에 x좌표, y좌표가 모두 자연수인 점의 개수가 30 되도록 하는 자연수 n의 최댓값과 최솟값의 합을 구하여라.

정답 11-1 90

11-2 143