

NCERT solutions for class 9 Maths Lines and Angles Ex 6.3

Q1. In the given figure, sides QP and RQ of Δ PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.

Ans. We are given that $\angle SPR = 135^{\circ}$ and $\angle PQT = 110^{\circ}$

We need to find the value of $\angle PRQ$ in the figure given below.

From the figure, we can conclude that $\angle SPR$ and $\angle RPQ$, and $\angle SPR$ and $\angle RPQ$ form a linear pair.

We know that the sum of angles of a linear pair is 180°.

$$\angle SPR + \angle RPQ = 180^{\circ}$$
, and $\angle PQT + \angle PQR = 180^{\circ}$.

$$135^{\circ} + \angle RPQ = 180^{\circ}$$
, and $110^{\circ} + \angle PQR = 180^{\circ}$,

Or,
$$\angle RPQ = 45^{\circ}$$
, and $\angle PQR = 70^{\circ}$.

From the figure, we can conclude that

$$\angle PQR + \angle RPQ + \angle PRQ = 180^{\circ}$$
. (Angle sum property)

$$\Rightarrow$$
 70° + 45° + $\angle PRQ = 180° \Rightarrow 115° + $\angle PRQ = 180°$$

$$\Rightarrow \angle PRQ = 65^{\circ}$$
.

Therefore, we can conclude that $\angle PRQ = 65^{\circ}$.

Q2. In the given figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

Ans. We are given that $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$ and *YO* and *ZO* are bisectors of $\angle XYZ$ and $\angle XZY$, respectively.

We need to find $\angle OZY$ and $\angle YOZ$ in the figure.

From the figure, we can conclude that in $^{\Delta}$ XYZ

$$\angle X + \angle XYZ + \angle XZY = 180^{\circ}$$
. (Angle sum property)

$$\Rightarrow$$
 62° + 54° + $\angle XZY = 180° \Rightarrow 116° + $\angle XZY = 180°$$

$$\Rightarrow \angle XZY = 64^{\circ}$$
.

We are given that OY and OZ are the bisectors of $\angle XYZ$ and $\angle XZY$, respectively.

$$\angle OYZ = \angle XYO = \frac{54^{\circ}}{2} = 27^{\circ}$$
, and

$$\angle OZY = \angle XZO = \frac{64^{\circ}}{2} = 32^{\circ}.$$

From the figure, we can conclude that in $^{\Delta OYZ}$

$$\angle OYZ + \angle OZY + \angle YOZ = 180^{\circ}$$
 (Angle sum property)

$$27^{\circ} + 32^{\circ} + \angle YOZ = 180^{\circ} \Rightarrow 59^{\circ} + \angle YOZ = 180^{\circ}$$

$$\Rightarrow \angle YOZ = 121^{\circ}$$
.

Therefore, we can conclude that $\angle YOZ = 121^{\circ}$ and $\angle OZY = 32^{\circ}$

Q3. In the given figure, if AB || DE, \angle BAC = 35° and \angle CDE = 53° , find \angle DCE.

Ans. We are given that $AB \parallel DE$,

$$\angle BAC = 35^{\circ}$$
 and $\angle CDE = 53^{\circ}$.

We need to find the value of $\angle DCE$ in the figure given below.

From the figure, we can conclude that

$$\angle BAC = \angle CED = 35^{\circ}$$
 (Alternate interior)

From the figure, we can conclude that in $^{\Delta DCE}$

$$\angle DCE + \angle CED + \angle CDE = 180^{\circ}$$
 (Angle sum property)

$$\angle DCE + 35^{\circ} + 53^{\circ} = 180 \Rightarrow \angle DCE + 88^{\circ} = 180^{\circ}$$

********* FND *******