Metody numeryczne Wykład 2 Układy równań liniowych

Wojciech Kordecki, Karol Selwat

Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych i Ekonomicznych

Semestr letni 2019/20

Przypomnienie wiadomości

- Pojęcie macierzy
- Działania na macierzach
- Wyznacznik

Niech A będzie macierzą kwadratową o wymiarach $n \times n$, a A_{ij} niech będzie podmacierzą powstałą z A przez skreślenie i-tego wiersza i j-tej kolumny.

Niech A będzie macierzą kwadratową o wymiarach $n \times n$, a A_{ij} niech będzie podmacierzą powstałą z A przez skreślenie i-tego wiersza i j-tej kolumny.

Wyznacznik macierzy A oznaczamy przez $\det A$ i określamy rekurencyjnie:

Niech A będzie macierzą kwadratową o wymiarach $n \times n$, a A_{ij} niech będzie podmacierzą powstałą z A przez skreślenie i-tego wiersza i j-tej kolumny.

Wyznacznik macierzy A oznaczamy przez $\det A$ i określamy rekurencyjnie:

$$1^o \det[a_{11}] = a_{11} \operatorname{dla} n = 1,$$

Niech A będzie macierzą kwadratową o wymiarach $n \times n$, a A_{ij} niech będzie podmacierzą powstałą z A przez skreślenie i-tego wiersza i j-tej kolumny.

Wyznacznik macierzy A oznaczamy przez $\det A$ i określamy rekurencyjnie:

$$1^{\circ} \det[a_{11}] = a_{11} \operatorname{dla} n = 1,$$

 2°

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik} = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj}$$

dla n > 1.

Niech A będzie macierzą kwadratową o wymiarach $n \times n$, a A_{ij} niech będzie podmacierzą powstałą z A przez skreślenie i-tego wiersza i j-tej kolumny.

Wyznacznik macierzy A oznaczamy przez det A i określamy rekurencyjnie:

$$1^{\circ} \det[a_{11}] = a_{11} \operatorname{dla} n = 1,$$

 2°

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A_{ik} = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj}$$

dla n > 1.

Powyższa definicja, jedna z wielu równoważnych, nazywa się definicją Laplace'a. Polega ona na rozwijaniu wyznacznika wedłu *i*-tego wiersza (pierwsza suma) lub *j*-tej kolumny (druga suma). Jest więc też metodą obliczania wyznacznika.

Oznaczenia

Jeśli

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix},$$

to wyznacznik oznaczamy również jako

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Mnożenie wiersza lub kolumny przez stałą

Obliczanie wyznaczników ułatwiają następujące własności.

$$\det A = \det A^T, \tag{1}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & ka_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & ka_{2j} & \dots & a_{2n} \\ & & & & & & \\ a_{n1} & a_{n2} & \dots & ka_{nj} & \dots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

Własność ta jest prawdziwa również wtedy, gdy przez stałą k mnożymy wiersze macierzy.

Wiersz zerowy, kolumna zerowa

Twierdzenie. Jeżeli w macierzy A istnieje wiersz lub kolumna składająca się z samych zer, to det A=0.

Wiersz zerowy, kolumna zerowa

Twierdzenie. Jeżeli w macierzy A istnieje wiersz lub kolumna składająca się z samych zer, to det A=0. **Przykład.**

$$\begin{vmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 0 \end{vmatrix} = 0. \quad \begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 9 \\ 0 & 0 & 0 & 0 \\ 4 & 1 & 2 & 0 \end{vmatrix} = 0.$$

Twierdzenie. Jeżeli macierz A' została otrzymana z macierzy A przez dodanie do pewnego wiersza innego wiersza pomnożonego przez niezerową liczbę, to det $A' = \det A$.

Twierdzenie. Jeżeli macierz A' została otrzymana z macierzy A przez dodanie do pewnego wiersza innego wiersza pomnożonego przez niezerową liczbę, to det $A' = \det A$. Twierdzenie jest prawdziwe także dla kolumn.

Twierdzenie. Jeżeli macierz A' została otrzymana z macierzy A przez dodanie do pewnego wiersza innego wiersza pomnożonego przez niezerową liczbę, to det $A' = \det A$.

Twierdzenie jest prawdziwe także dla kolumn.

$$\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 9 \\ 1 & 0 & 2 & 0 \\ 4 & 1 & 8 & 0 \end{vmatrix} =$$

Twierdzenie. Jeżeli macierz A' została otrzymana z macierzy A przez dodanie do pewnego wiersza innego wiersza pomnożonego przez niezerową liczbę, to det $A' = \det A$.

Twierdzenie jest prawdziwe także dla kolumn.

$$\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 9 \\ 1 & 0 & 2 & 0 \\ 4 & 1 & 8 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 + (-2) \cdot 1 & 3 \\ 2 & 1 & 4 + (-2) \cdot 2 & 9 \\ 1 & 0 & 2 + (-2) \cdot 1 & 0 \\ 4 & 1 & 8 + (-2) \cdot 4 & 0 \end{vmatrix} =$$

Twierdzenie. Jeżeli macierz A' została otrzymana z macierzy A przez dodanie do pewnego wiersza innego wiersza pomnożonego przez niezerową liczbę, to det $A' = \det A$.

Twierdzenie jest prawdziwe także dla kolumn.

$$\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 9 \\ 1 & 0 & 2 & 0 \\ 4 & 1 & 8 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 + (-2) \cdot 1 & 3 \\ 2 & 1 & 4 + (-2) \cdot 2 & 9 \\ 1 & 0 & 2 + (-2) \cdot 1 & 0 \\ 4 & 1 & 8 + (-2) \cdot 4 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 3 \\ 2 & 1 & 0 & 9 \\ 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \end{vmatrix} = 0.$$

Dalsze własności wyznacznika

Wniosek. Jeżeli pewien wiersz w macierzy A jest sumą innych wierszy pomnożonych przez liczby, to $\det A = 0$.

Dalsze własności wyznacznika

Wniosek. Jeżeli pewien wiersz w macierzy A jest sumą innych wierszy pomnożonych przez liczby, to $\det A = 0$. Twierdzenie jest prawdziwe także dla kolumn.

Dalsze własności wyznacznika

Wniosek. Jeżeli pewien wiersz w macierzy A jest sumą innych wierszy pomnożonych przez liczby, to $\det A = 0$.

Twierdzenie jest prawdziwe także dla kolumn.

Przykład.

$$\left|\begin{array}{ccc|c} 4 & 2 & 0 \\ 0 & 1 & 2 \\ 4 & 4 & 4 \end{array}\right| = 0 \; ,$$

bo wiersz trzeci powstał z dodania do wiersza pierwszego, wiersza drugiego pomnożonego przez 2.

Zamiana wierszy lub kolumn

Twierdzenie. Przy zamianie dwóch wierszy lub kolumn, zmienia się znak wyznacznika.

Zamiana wierszy lub kolumn

Twierdzenie. Przy zamianie dwóch wierszy lub kolumn, zmienia się znak wyznacznika.

$$\left|\begin{array}{ccc|c} 4 & 3 & 0 \\ 5 & 1 & 3 \\ 4 & 4 & 4 \end{array}\right| = - \left|\begin{array}{ccc|c} 3 & 4 & 0 \\ 1 & 5 & 3 \\ 4 & 4 & 4 \end{array}\right|$$

Ostrzeżenie

Wyznacznik sumy dwóch macierzy **nie jest** sumą ich wyznaczników.

Ostrzeżenie

Wyznacznik sumy dwóch macierzy **nie jest** sumą ich wyznaczników.

Przykład.

$$\left|\begin{array}{cc} 1 & 0 \\ 2 & 0 \end{array}\right| = 0,$$

bo druga kolumna jest zerowa,

Ostrzeżenie

Wyznacznik sumy dwóch macierzy **nie jest** sumą ich wyznaczników.

Przykład.

$$\left|\begin{array}{cc} 1 & 0 \\ 2 & 0 \end{array}\right| = 0,$$

bo druga kolumna jest zerowa,

$$\left|\begin{array}{cc}0&2\\0&1\end{array}\right|=0,$$

bo pierwsza kolumna jest zerowa.

Ostrzeżenie

Wyznacznik sumy dwóch macierzy **nie jest** sumą ich wyznaczników.

Przykład.

$$\left|\begin{array}{cc} 1 & 0 \\ 2 & 0 \end{array}\right| = 0,$$

bo druga kolumna jest zerowa,

$$\left|\begin{array}{cc} 0 & 2 \\ 0 & 1 \end{array}\right| = 0,$$

bo pierwsza kolumna jest zerowa.

Natomiast dla sumy macierzy

$$\left|\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right| = -3.$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B).$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B).$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B).$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$\det A = -1, \quad \det B = 2.$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B).$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$\det A = -1, \quad \det B = 2.$$

$$\det AB = \det BA = -2.$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B)$$
.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$\det A = -1, \quad \det B = 2.$$

$$\det AB = \det BA = -2.$$

$$AB = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix},$$

Twierdzenie. Jeśli macierze kwadratowe A i B są tego samego wymiaru, to

$$\det(AB) = (\det A)(\det B).$$

Przykład.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$\det A = -1, \quad \det B = 2.$$

$$\det AB = \det BA = -2.$$

$$AB = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}, \qquad BA = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}.$$

11/35

Macierz trójkątna

Macierz trójkątna to macierz kwadratowa, w której nad lub pod główną przekątną występują same zera.

- Jeśli zera są nad główna przekątną, to macierz trójkątna dolna:
 L.
- Jeśli zera są pod główna przekątną, to macierz trójkątna górna: U.

Macierz trójkątna

Macierz trójkątna to macierz kwadratowa, w której nad lub pod główną przekątną występują same zera.

- Jeśli zera są nad główna przekątną, to macierz trójkątna dolna:
 L.
- Jeśli zera są pod główna przekątną, to macierz trójkątna górna: U.

Twierdzenie. Jeżeli A jest macierzą trójkątną, to

$$\det A = a_{11}a_{22}\cdots a_{nn}\,,$$

czyli wyznacznik macierzy trójkątnej jest iloczynem elementów z głównej przekątnej.

Macierz przekątniowa

Macierz przekątniowa to macierz kwadratowa, w której zarówno nad, jak i pod główną przekątną występują same zera.

Macierz przekątniowa

Macierz przekątniowa to macierz kwadratowa, w której zarówno nad, jak i pod główną przekątną występują same zera.

Twierdzenie. Jeżeli A jest macierzą przekątniową, to

$$\det A = a_{11}a_{22}\cdots a_{nn},$$

czyli wyznacznik macierzy przekątniowej jest iloczynem elementów z głównej przekątnej.

Rozkład LU

Niech L będzie macierzą trójkątną dolną, a U – macierzą trójkątną górną.

Rozkład *LU*

Niech L będzie macierzą trójkątną dolną, a U – macierzą trójkątną górną.

Jeśli

$$A = LU$$
,

to A ma rozkład LU.

Rozkład *LU*

Niech L będzie macierzą trójkątną dolną, a U – macierzą trójkątną górną.

Jeśli

$$A = LU$$
,

to A ma rozkład LU.

Problem. Kiedy dla danej macierzy A istnieje rozkład LU?

Rozkład *LU* c.d

Oznaczenia:

- ② A_k podmacierz macierzy A utworzona z k pierwszych wierszy i k pierwszych kolumn macierzy A, $k=1,2,\ldots,n-1$,

Rozkład *LU* c.d

Oznaczenia:

- 2 A_k podmacierz macierzy A utworzona z k pierwszych wierszy i k pierwszych kolumn macierzy A, $k=1,2,\ldots,n-1$,

Twierdzenie. Jeśli det $A_k \neq 0$ dla $k=1,2,\ldots,n-1$, to istnieje jedyny rozkład A=LU taki, że $L=[I_{ij}]$ jest macierzą trójkątna dolną taką, że $I_{ii}=1$ dla $i=1,2,\ldots,n$ oraz $U=[u_{ij}]$ jest macierzą trójkątna górną.

Algorytm Doolittle'a

$$u_{ij} = \begin{cases} a_{ij} - \sum_{k=1}^{i-1} I_{ik} u_{kj} & \text{dla } i \leqslant j. \\ 0 & \text{dla } i > j, \end{cases}$$

$$I_{ji} = \begin{cases} \frac{\left(a_{ji} - \sum_{k=1}^{i-1} I_{jk} u_{ki}\right)}{u_{ii}} & \text{dla } i < j, \\ 1 & \text{dla } i = j, \\ 0 & \text{dla } i > j \end{cases}$$

Algorytm Doolittle'a

$$u_{ij} = \begin{cases} a_{ij} - \sum_{k=1}^{i-1} I_{ik} u_{kj} & \text{dla } i \leqslant j. \\ 0 & \text{dla } i > j, \end{cases}$$

$$I_{ji} = \begin{cases} \frac{\left(a_{ji} - \sum_{k=1}^{i-1} I_{jk} u_{ki}\right)}{u_{ii}} & \text{dla } i < j, \\ 1 & \text{dla } i = j, \\ 0 & \text{dla } i > j \end{cases}$$

Można równocześnie obliczać k-ty wiersz U i k-tą kolumnę L.

$$A = \begin{bmatrix} 20 & 10 & 10 \\ 10 & 10 & 9 \\ 0 & 10 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 20 & 10 & 10 \\ 10 & 10 & 9 \\ 0 & 10 & 9 \end{bmatrix}$$

Łatwo sprawdzić, że spełnione są założenia powyższego twierdzenia, w szczególności det $A=100\,$.

$$A = \begin{bmatrix} 20 & 10 & 10 \\ 10 & 10 & 9 \\ 0 & 10 & 9 \end{bmatrix}$$

Łatwo sprawdzić, że spełnione są założenia powyższego twierdzenia, w szczególności det A=100.

Oznaczmy

$$L = \begin{bmatrix} 1 & 0 & 0 \\ I_{21} & 1 & 0 \\ I_{31} & I_{32} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

Otrzymujemy kolejno:

$$u_{11} = 20, \ u_{12} = 10, \ u_{13} = 10,$$

$$l_{21}u_{11} = 10 \rightarrow l_{21} = \frac{1}{2},$$

$$l_{31}u_{11} = 0 \rightarrow l_{31} = 0,$$

$$l_{21}u_{12} + u_{22} = 10 \rightarrow u_{22} = 5,$$

$$l_{21}u_{13} + u_{23} = 9 \rightarrow u_{23} = 4,$$

$$l_{31}u_{12} + l_{32}u_{22} = 10 \rightarrow l_{32} = 2,$$

$$l_{31}u_{13} + l_{32}u_{23} + u_{33} = 9 \rightarrow u_{33} = 1.$$

Otrzymujemy kolejno:

$$u_{11} = 20, \ u_{12} = 10, \ u_{13} = 10,$$

$$l_{21}u_{11} = 10 \rightarrow l_{21} = \frac{1}{2},$$

$$l_{31}u_{11} = 0 \rightarrow l_{31} = 0,$$

$$l_{21}u_{12} + u_{22} = 10 \rightarrow u_{22} = 5,$$

$$l_{21}u_{13} + u_{23} = 9 \rightarrow u_{23} = 4,$$

$$l_{31}u_{12} + l_{32}u_{22} = 10 \rightarrow l_{32} = 2,$$

$$l_{31}u_{13} + l_{32}u_{23} + u_{33} = 9 \rightarrow u_{33} = 1.$$

Ostatecznie mamy

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 20 & 10 & 10 \\ 0 & 5 & 4 \\ 0 & 0 & 1 \end{bmatrix}.$$

Metoda Gaussa

Rozkład LU macierzy A możemy również otrzymać metodą Gaussa.

Metoda Gaussa

Rozkład LU macierzy A możemy również otrzymać metodą Gaussa. Oznaczamy $A=A^{(1)}$ i następnie konstruujemy ciąg macierzy $A^{(k+1)}$ dla $k=1,2,\ldots,n-1$ według następującej procedury:

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)} & \text{dla } i \leqslant k, \\ a_{ij}^{(k)} - \left(a_{ik}^{(k)}/a_{kk}^{(k)}\right) a_{kj}^{(k)} & \text{dla } i \geqslant k+1, j \geqslant k+1, \\ 0 & \text{dla } i \geqslant k+1, j \leqslant k. \end{cases}$$

Wyrażenia $\left(a_{ik}^{(k)}/a_{kk}^{(k)}\right)$ nazywamy mnożnikami, zaś $a_{kk}^{(k)}$ – elementem głównym dla danego kroku metody Gaussa.

Metoda Gaussa

Rozkład LU macierzy A możemy również otrzymać metodą Gaussa. Oznaczamy $A=A^{(1)}$ i następnie konstruujemy ciąg macierzy $A^{(k+1)}$ dla $k=1,2,\ldots,n-1$ według następującej procedury:

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)} & \text{dla } i \leqslant k, \\ a_{ij}^{(k)} - \left(a_{ik}^{(k)}/a_{kk}^{(k)}\right) a_{kj}^{(k)} & \text{dla } i \geqslant k+1, j \geqslant k+1, \\ 0 & \text{dla } i \geqslant k+1, j \leqslant k. \end{cases}$$

Wyrażenia $\left(a_{ik}^{(k)}/a_{kk}^{(k)}\right)$ nazywamy mnożnikami, zaś $a_{kk}^{(k)}$ – elementem głównym dla danego kroku metody Gaussa. Realizacja powyższej procedury polega na wykonaniu operacji elementarnych na wierszach macierzy $A^{(k)}$ tak, aby pod elementem głównym otrzymać wyrazy zerowe. Na k-tym kroku od wierszy o numerach $i \geqslant k+1$ odejmujemy k-ty wiersz pomnożony przez odpowiednie mnożniki.

4 D > 4 B > 4 B > 4 B >

Metoda Gaussa - c.d.

Macierz $A^{(k+1)}$ będzie postaci

$$A^{(k+1)} = \begin{bmatrix} a_{11}^{(k+1)} & \dots & a_{1k}^{(k+1)} & a_{1,k+1}^{(k+1)} & \dots & a_{1j}^{(k+1)} & \dots & a_{1n}^{(k+1)} \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \dots & a_{kk}^{(k+1)} & a_{k,k+1}^{(k+1)} & \dots & a_{kj}^{(k+1)} & \dots & a_{kn}^{(k+1)} \\ \hline 0 & \dots & 0 & a_{k+1,k+1}^{(k+1)} & \dots & a_{k+1,j}^{(k+1)} & \dots & a_{k+1,n}^{(k+1)} \\ \hline 0 & \dots & 0 & a_{k+2,k+1}^{(k+1)} & \dots & a_{k+2,j}^{(k+1)} & \dots & a_{k+2,n}^{(k+1)} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_{n,k+1}^{(k+1)} & \dots & a_{nj}^{(k+1)} & \dots & a_{nn}^{(k+1)} \end{bmatrix}$$

Metoda Gaussa - c.d.

Szukane macierze L i U otrzymujemy jako: $U = A^{(n)}$, $L = [I_{ik}]$, gdzie

$$I_{ik} = egin{cases} a_{ik}^{(k)}/a_{kk}^{(k)} & ext{dla } i \geqslant k+1, \ 1 & ext{dla } i = k, \ 0 & ext{dla } i \leqslant k-1. \end{cases}$$

Metoda Gaussa - c.d.

Szukane macierze L i U otrzymujemy jako: $U = A^{(n)}$, $L = [I_{ik}]$, gdzie

$$I_{ik} = egin{cases} a_{ik}^{(k)}/a_{kk}^{(k)} & ext{dla } i \geqslant k+1, \ 1 & ext{dla } i = k, \ 0 & ext{dla } i \leqslant k-1. \end{cases}$$

O istnieniu rozkładu LU dla metody Gaussa mówi następujące twierdzenie.

Twierdzenie. Jeżeli wszystkie elementy główne $a_{kk}^{(k)} \neq 0$, to A = LU.

$$A = \left[\begin{array}{rrr} 1 & 10 & 10 \\ 2 & 22 & 20 \\ 5 & 54 & 53 \end{array} \right].$$

$$A = \left[\begin{array}{rrr} 1 & 10 & 10 \\ 2 & 22 & 20 \\ 5 & 54 & 53 \end{array} \right].$$

Mamy

$$A^{(1)}=A.$$

$$A = \left[\begin{array}{ccc} 1 & 10 & 10 \\ 2 & 22 & 20 \\ 5 & 54 & 53 \end{array} \right].$$

Mamy

$$A^{(1)}=A.$$

Aby otrzymać $A^{(2)}$ wykonujemy operacje na wierszach

$$w_2 - 2w_1 \rightarrow w_2, \quad w_3 - 5w_1 \rightarrow w_3.$$

Mnożniki to 2 i 5, element główny to 1.

$$A = \left[\begin{array}{ccc} 1 & 10 & 10 \\ 2 & 22 & 20 \\ 5 & 54 & 53 \end{array} \right].$$

Mamy

$$A^{(1)} = A$$
.

Aby otrzymać $A^{(2)}$ wykonujemy operacje na wierszach

$$w_2 - 2w_1 \rightarrow w_2, \quad w_3 - 5w_1 \rightarrow w_3.$$

Mnożniki to 2 i 5, element główny to 1. Otrzymujemy

$$A^{(2)} = \left[\begin{array}{ccc} 1 & 10 & 10 \\ 0 & 2 & 0 \\ 0 & 4 & 3 \end{array} \right].$$

Aby otrzymać $A^{(3)}$ wykonujemy operację na wierszu trzecim

$$w_3-2w_2\to w_3$$
.

Mnożnik to 2, element główny to 2.

Aby otrzymać $A^{(3)}$ wykonujemy operację na wierszu trzecim

$$w_3-2w_2\to w_3$$
.

Mnożnik to 2, element główny to 2. Dostajemy

$$A^{(3)} = \left[\begin{array}{ccc} 1 & 10 & 10 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$

Aby otrzymać $A^{(3)}$ wykonujemy operację na wierszu trzecim

$$w_3 - 2w_2 \rightarrow w_3$$
.

Mnożnik to 2, element główny to 2. Dostajemy

$$A^{(3)} = \left[\begin{array}{ccc} 1 & 10 & 10 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$

Ostatecznie

$$U = A^{(3)} = \begin{bmatrix} 1 & 10 & 10 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 1 \end{bmatrix}.$$

Rozkład Cholesky'ego

Macierz kwadratowa A jest dodatnio określona, jeśli det $A_k > 0$ dla każdego k.

Rozkład Cholesky'ego

Macierz kwadratowa A jest dodatnio określona, jeśli det $A_k > 0$ dla każdego k.

Twierdzenie. Jeśli macierz A jest rzeczywista, symetryczna i dodatnio określona, to ma jedyny rozkład postaci $A = LL^T$, gdzie L jest macierzą trójkątna dolną o elementach dodatnich na głównej przekątnej.

Rozkład $A = LL^T$ nazywa się rozkładem Cholesky'ego (Banachiewicza).

Rozkład Cholesky'ego - c.d.

Macierz L, o której mowa w tezie twierdzenia, jest postaci

$$L = \begin{bmatrix} I_{11} & 0 & \dots & 0 \\ I_{21} & I_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ I_{n1} & I_{n2} & \dots & I_{nn} \end{bmatrix},$$

gdzie

$$I_{ss} = \sqrt{a_{ss} - \sum_{k=1}^{s-1} I_{sk}^2} \, \, \mathsf{dla} \, \, s = 1, 2, \dots, n,$$
 $I_{is} = rac{a_{is} - \sum_{k=1}^{s-1} I_{ik} I_{sk}}{I_{ss}} \, \, \, \mathsf{dla} \, \, i = s+1, \dots, n.$

$$I_{is} = \frac{\sum_{k=1}^{n_k \cdot s_k} dla \ i = s+1, \dots, r}{I_{is}}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 3 \\ 1 & 3 & 11 \end{bmatrix}.$$

Zauważamy, że spełnione są założenia twierdzenia, w szczególności $\det A = 36$.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 3 \\ 1 & 3 & 11 \end{bmatrix}.$$

Zauważamy, że spełnione są założenia twierdzenia, w szczególności $\det A = 36$.

Oznaczmy

$$L = \begin{bmatrix} I_{11} & 0 & 0 \\ I_{21} & I_{22} & 0 \\ I_{31} & I_{32} & I_{33} \end{bmatrix}.$$

Wtedy

$$L^T = \begin{bmatrix} I_{11} & I_{21} & I_{31} \\ 0 & I_{22} & I_{32} \\ 0 & 0 & I_{33} \end{bmatrix}.$$

Otrzymujemy kolejno:

$$\begin{split} I_{11}^2 &= 1 \to I_{11} = 1, \\ I_{11}I_{21} &= 1 \to I_{21} = 1, \\ I_{11}I_{31} &= 1 \to I_{31} = 1, \\ I_{21}^2 &+ I_{22}^2 &= 5 \to I_{22} = 2, \\ I_{21}I_{31} &+ I_{22}I_{32} = 3 \to I_{32} = 1, \\ I_{31}^2 &+ I_{32}^2 &+ I_{33}^2 = 11 \to I_{33} = 3. \end{split}$$

Otrzymujemy kolejno:

$$\begin{aligned} I_{11}^2 &= 1 \to I_{11} = 1, \\ I_{11}I_{21} &= 1 \to I_{21} = 1, \\ I_{11}I_{31} &= 1 \to I_{31} = 1, \\ I_{21}^2 + I_{22}^2 &= 5 \to I_{22} = 2, \\ I_{21}I_{31} + I_{22}I_{32} &= 3 \to I_{32} = 1, \\ I_{31}^2 + I_{32}^2 + I_{33}^2 &= 11 \to I_{33} = 3. \end{aligned}$$

Ostatecznie

$$A = LL^T = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

Przypomnienie wiadomości

- Zapis macierzowy układu równań
- Rozwiązywanie układu Cramera:
 - metoda wzoru Cramera
 - metoda macierzy odwrotnej

Macierz rozszerzona układu

Dla układu AX = B, gdzie

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & \\ a_{n1} & a_{m2} & \dots & a_{nn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

Macierz rozszerzona układu

Dla układu AX = B, gdzie

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & \\ a_{n1} & a_{m2} & \dots & a_{nn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

macierz rozszerzona [A|B] to

$$[A|B] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ & \dots & & & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}.$$

Macierz rozszerzona układu

Dla układu AX = B, gdzie

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & \\ a_{n1} & a_{m2} & \dots & a_{nn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

macierz rozszerzona [A|B] to

$$[A|B] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ & \dots & & & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}.$$

W dalszym ciągu zakładamy, że det $A \neq 0$.

Metoda eliminacji Gaussa

Wykorzystujemy metodę Gaussa przekształcenia macierzy A do macierzy górnej trójkątnej.

Metoda eliminacji Gaussa

Wykorzystujemy metodę Gaussa przekształcenia macierzy A do macierzy górnej trójkątnej.

Oznaczamy $[A|B]^{(1)}=[A|B]$. Konstruujemy ciąg macierzy $[A|B]^{(k+1)}$ dla $k=1,2,\ldots,n-1$.

Metoda eliminacji Gaussa

Wykorzystujemy metodę Gaussa przekształcenia macierzy A do macierzy górnej trójkątnej.

Oznaczamy $[A|B]^{(1)} = [A|B]$. Konstruujemy ciąg macierzy $[A|B]^{(k+1)}$ dla k = 1, 2, ..., n-1.

Na k-tym kroku operacje elementarne wykonujemy na wierszach macierzy $[A|B]^{(k)}$. W tym kroku z macierzy $[A|B]^{(k)}$ otrzymujemy macierz $[A|B]^{(k+1)}$, a więc zarówno $A^{(k+1)}$, jak i $B^{(k+1)}$. Na końcu otrzymujemy macierz $[A|B]^{(n)}$, która odpowiada układowi $A^{(n)}X = B^{(n)}$ z macierzą górną trójkątną $A^{(n)}$.

Metoda eliminacji Gaussa

Wykorzystujemy metodę Gaussa przekształcenia macierzy A do macierzy górnej trójkątnej.

Oznaczamy $[A|B]^{(1)}=[A|B]$. Konstruujemy ciąg macierzy $[A|B]^{(k+1)}$ dla $k=1,2,\ldots,n-1$.

Na k-tym kroku operacje elementarne wykonujemy na wierszach macierzy $[A|B]^{(k)}$. W tym kroku z macierzy $[A|B]^{(k)}$ otrzymujemy macierz $[A|B]^{(k+1)}$, a więc zarówno $A^{(k+1)}$, jak i $B^{(k+1)}$. Na końcu otrzymujemy macierz $[A|B]^{(n)}$, która odpowiada układowi $A^{(n)}X = B^{(n)}$ z macierzą górną trójkątną $A^{(n)}$.

Rozwiązania x_i obliczamy kolejno dla $i=n,n-1,\ldots,1$.

Przykład

Rozwiążemy układ równań AX = B, gdzie

$$\begin{bmatrix} 6 & -2 & 2 & -4 \\ 12 & -2 & 3 & 10 \\ 3 & 2 & 8 & -6 \\ -6 & 4 & 6 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 22 \\ 19 \\ 0 \end{bmatrix}.$$

Przykład

Rozwiążemy układ równań AX = B, gdzie

$$\begin{bmatrix} 6 & -2 & 2 & -4 \\ 12 & -2 & 3 & 10 \\ 3 & 2 & 8 & -6 \\ -6 & 4 & 6 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 22 \\ 19 \\ 0 \end{bmatrix}.$$

Macierzą rozszerzoną tego układu jest macierz

$$[A|B] = \begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 12 & -2 & 3 & 10 & 22 \\ 3 & 2 & 8 & -6 & 19 \\ -6 & 4 & 6 & -18 & 0 \end{bmatrix}.$$

$$w_2-2w_1\rightarrow w_2,$$

$$w_2 - 2w_1 \rightarrow w_2, \ w_3 - \frac{1}{2}w_1 \rightarrow w_3,$$

$$w_2 - 2w_1 \rightarrow w_2, \ w_3 - \frac{1}{2}w_1 \rightarrow w_3, \ w_4 - (-1)w_1 \rightarrow w_4$$

W pierwszym kroku eliminacji wykonujemy następujące operacje elementarne:

 $w_2-2w_1\rightarrow w_2,\ w_3-\frac{1}{2}w_1\rightarrow w_3,\ w_4-(-1)\,w_1\rightarrow w_4$ i otrzymujemy macierz:

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 3 & 7 & -4 & 19 \\ 0 & 2 & 8 & -22 & 0 \end{bmatrix}.$$

W pierwszym kroku eliminacji wykonujemy następujące operacje elementarne:

 $w_2-2w_1\to w_2,\ w_3-\frac{1}{2}w_1\to w_3,\ w_4-\left(-1\right)w_1\to w_4$ i otrzymujemy macierz:

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 3 & 7 & -4 & 19 \\ 0 & 2 & 8 & -22 & 0 \end{bmatrix}.$$

Mnożniki dla pierwszego kroku eliminacji to: $2, \frac{1}{2}, -1$, zaś element główny to 6.

W drugim kroku eliminacji wykonujemy operacje elementarne:

W drugim kroku eliminacji wykonujemy operacje elementarne: $w_3 - \frac{3}{2}w_2 \rightarrow w_3$,

W drugim kroku eliminacji wykonujemy operacje elementarne:

$$w_3 - \frac{3}{2}w_2 \rightarrow w_3, \ w_4 - w_2 \rightarrow w_4.$$

W drugim kroku eliminacji wykonujemy operacje elementarne:

$$w_3 - \frac{3}{2}w_2 \rightarrow w_3, \ w_4 - w_2 \rightarrow w_4.$$

Otrzymujemy macierz

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 0 & \frac{17}{2} & -31 & -14 \\ 0 & 0 & 9 & -40 & -22 \end{bmatrix}.$$

W drugim kroku eliminacji wykonujemy operacje elementarne:

$$w_3 - \frac{3}{2}w_2 \rightarrow w_3, \ w_4 - w_2 \rightarrow w_4.$$

Otrzymujemy macierz

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 0 & \frac{17}{2} & -31 & -14 \\ 0 & 0 & 9 & -40 & -22 \end{bmatrix}.$$

W drugim kroku mnożniki to: $\frac{3}{2}$ i 1, natomiast element główny to 2.

W ostatnim, trzecim kroku eliminacji wykonujemy jedną operację elementarną:

W ostatnim, trzecim kroku eliminacji wykonujemy jedną operację elementarną:

$$w_4 - \frac{18}{17}w_3 \to w_4$$

W ostatnim, trzecim kroku eliminacji wykonujemy jedną operację elementarną:

$$w_4-\tfrac{18}{17}w_3\to w_4,$$

co w rezultacie daje macierz

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 0 & \frac{17}{2} & -31 & -14 \\ 0 & 0 & 0 & -\frac{122}{17} & -\frac{122}{17} \end{bmatrix}.$$

W ostatnim, trzecim kroku eliminacji wykonujemy jedną operację elementarną:

$$w_4 - \frac{18}{17}w_3 \to w_4,$$

co w rezultacie daje macierz

$$\begin{bmatrix} 6 & -2 & 2 & -4 & 0 \\ 0 & 2 & -1 & 18 & 22 \\ 0 & 0 & \frac{17}{2} & -31 & -14 \\ 0 & 0 & 0 & -\frac{122}{17} & -\frac{122}{17} \end{bmatrix}.$$

Mnożnik w tym kroku to $\frac{18}{17}$, zaś element główny to $\frac{17}{2}$.

Rozwiązanie

Ostatnia macierz odpowiada układowi

$$\begin{bmatrix} 6 & -2 & 2 & -4 \\ 0 & 2 & -1 & 18 \\ 0 & 0 & \frac{17}{2} & -31 \\ 0 & 0 & 0 & -\frac{122}{17} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 22 \\ -14 \\ -\frac{122}{17} \end{bmatrix}.$$

Rozwiązanie

Ostatnia macierz odpowiada układowi

$$\begin{bmatrix} 6 & -2 & 2 & -4 \\ 0 & 2 & -1 & 18 \\ 0 & 0 & \frac{17}{2} & -31 \\ 0 & 0 & 0 & -\frac{122}{17} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 22 \\ -14 \\ -\frac{122}{17} \end{bmatrix}.$$

Z tego układu, który ma macierz górną trójkątną, odczytujemy jego rozwiązanie.

Rozwiązanie

Ostatnia macierz odpowiada układowi

$$\begin{bmatrix} 6 & -2 & 2 & -4 \\ 0 & 2 & -1 & 18 \\ 0 & 0 & \frac{17}{2} & -31 \\ 0 & 0 & 0 & -\frac{122}{17} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 22 \\ -14 \\ -\frac{122}{17} \end{bmatrix}.$$

Z tego układu, który ma macierz górną trójkątną, odczytujemy jego rozwiązanie.

Obliczając od x_4 do x_1 otrzymujemy

$$X = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}.$$

