Concepts Clés en Intelligence Artificielle

1. Types de Modèles en IA

■ 1. Modèles d'apprentissage supervisé

- Régression linéaire / logistique
- Arbres de décision / Forêts aléatoires
- SVM (Support Vector Machines)
- K plus proches voisins (K-NN)
- Réseaux de neurones artificiels (ANN)

■ 2. Modèles d'apprentissage non supervisé

- K-means (clustering)
- Algorithmes de regroupement hiérarchique
- ACP (Analyse en Composantes Principales)
- Autoencodeurs

■ 3. Modèles d'apprentissage par renforcement

- Q-learning
- Deep Q-Networks (DQN)
- Proximal Policy Optimization (PPO)
- Actor-Critic

■ 4. Modèles de deep learning (apprentissage profond)

- CNN (Convolutional Neural Networks): vision par ordinateur
- RNN (Recurrent Neural Networks) : séries temporelles, texte
- LSTM / GRU : variantes de RNN pour mieux gérer la mémoire
- Transformers: traitement du langage naturel (ex.: BERT, GPT, T5)

■ 5. Modèles génératifs

- GAN (Generative Adversarial Networks) : génération d'images réalistes
- VAE (Variational Autoencoders)
- Transformers génératifs : GPT, LLaMA, Claude, etc.

■ 6. Modèles hybrides ou spécialisés

- Modèles multimodaux : combinent texte, image, audio (ex. : GPT-4, Gemini)
- Modèles de recommandation : filtrage collaboratif, matrices de facteurs
- Modèles symboliques + neuronaux : neuro-symbolic Al

2. Qu'est-ce qu'un modèle en IA?

Un modèle en IA est une représentation mathématique ou informatique qui apprend à effectuer une tâche spécifique à partir de données.

■ Définition simple

Un modèle en IA, c'est comme un cerveau artificiel qui apprend à faire quelque chose en observant des exemples.

■■ Comment ça fonctionne?

- 1. Tu donnes des données (exemples) au modèle.
- 2. Il apprend des motifs ou des relations dans ces données.
- 3. Ensuite, il peut faire des prédictions ou prendre des décisions sur de nouvelles données.

■ Un modèle contient :

- Des paramètres (chiffres qu'il ajuste pendant l'apprentissage)
- Une structure (comme un réseau de neurones, un arbre de décision, etc.)
- Une fonction d'apprentissage (pour s'améliorer avec le temps)

■ Exemples concrets :

Tâche	Type de modèle	Ce qu'il apprend
Traduire un texte	Transformer (ex. GPT, BERT)	Le sens des mots et phrases
Reconnaître un visage	CNN	Les formes et traits du visage
Prédire la météo	Régression / RNN	Les tendances dans les données météo
Recommander une vidéo	Modèle de recommandation	Tes préférences passées

3. Le Fine-Tuning en IA

Le fine-tuning (ou ajustement fin) en IA consiste à prendre un modèle pré-entraîné et à le réentraîner légèrement sur un jeu de données spécifique pour qu'il s'adapte à une tâche particulière.

■ Pourquoi faire du fine-tuning?

Plutôt que de tout réentraîner depuis zéro, on fait juste un petit entraînement supplémentaire avec des données spécialisées.

■■ Comment ça fonctionne?

- 1. On prend un modèle pré-entraîné (ex. : GPT, BERT, ResNet...).
- 2. On lui donne un petit jeu de données spécifiques (ex. : textes médicaux, emails d'entreprise, etc.).
- 3. On ajuste ses paramètres pour qu'il s'adapte à ce nouveau contexte.

■ Exemples de fine-tuning

Modèle de base	Données de fine-tuning	Résultat
GPT-3	Textes juridiques	Assistant juridique
BERT	Tweets en argot ivoirien	Modèle de compréhension locale
ResNet (vision)	Photos de pièces mécaniques	Détecteur de défauts industriels

■ Avantages

- Moins coûteux que l'entraînement complet
- Plus rapide
- Permet de personnaliser un modèle pour un domaine précis

4. Techniques de Prompt Engineering

Le prompt engineering est l'art de concevoir et formuler des instructions (prompts) de manière stratégique pour obtenir les meilleures réponses possibles d'un modèle d'IA.

■ C'est quoi un "prompt"?

Un prompt, c'est simplement ce que tu écris ou demandes à l'IA.

■■ Le prompt engineering, c'est donc :

- Savoir poser les bonnes questions
- Structurer les prompts pour guider l'IA
- Ajouter des contexte, exemples ou contraintes
- Tester et affiner les prompts pour améliorer les résultats

■ Exemples de prompt engineering

Mauvais prompt	Bon prompt
"Explique l'IA"	"Explique l'intelligence artificielle à un élève de 12 ans avec des exemples concrets."
"Fais un résumé"	"Fais un résumé de ce texte en 5 points clés, en langage simple."
"Code un site web"	"Crée un site web HTML simple avec un formulaire de contact et un design responsive."

■ Pourquoi c'est important ?

- Pour gagner du temps
- Pour obtenir des réponses plus précises
- Pour personnaliser l'IA à ton besoin (éducation, entreprise, création...)

■ Exemple combiné :

"Tu es un expert en IA. Explique-moi ce qu'est le fine-tuning, étape par étape, comme si j'étais un étudiant débutant. Utilise des exemples concrets et un langage simple."