Monday, April 2, 2018 14:20

As define
$$\chi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 by $\chi(u', u^2) = (u', u^2, u'u^2)$.

$$x is c^{\infty}$$
. $x_1 = (1,0, u^2), x_2 = (0,1, u^2).$

$$\chi_{,\times} \chi_{z} = (-u^{2}, -u', 1) \neq 0$$
 so χ is an immersion.

$$(g_{ij}) = (x_i | x_j >) = \begin{pmatrix} 1 + (u^2)^2 & u^2 u^2 \\ u^2 u^2 & 1 + (u^2)^2 \end{pmatrix}.$$

$$g = det(g_{ij}) = (u^{i})^{2} + (u^{2})^{2} + 1 = |\chi_{i} \times \chi_{2}|^{2}$$

$$N = \frac{\chi_1 \times \chi_2}{\sqrt{g}} = \frac{(-u', -u^2, 1)}{\sqrt{(u^2)^2 + (u')^2 + 1}}$$

$$\chi_{11} = \chi_{22} = (0,0,0), \qquad \chi_{12} = \chi_{21} = (0,0,1).$$

$$(L_{ij}) = (\langle x_{ij} | n \rangle) = (0) / \sqrt{(u^2)^2 + (u^2)^2 + (u^2)^2}$$

Let $M = \{ x (u'_1 u^2) : (u', u^2) \in \mathbb{R}^2 \}$ M is a C^{∞} surface in \mathbb{R}^3 are Kisa co coord. patch on M.

Consider a unit-speed curve on M:

$$S \longmapsto \gamma(s) = \chi(\gamma^{1}(s), \gamma^{2}(s))$$

with
$$\gamma(0) = (0,0,0)$$
. Let $(\alpha',\alpha') = \left(\frac{d\gamma'}{ds}, \frac{d\gamma'}{ds}\right)\Big|_{s=0}$

$$\frac{dx}{dx}\Big|_{A=0} = (a', a^2, o) = T(o) \text{ hence } (a')^2 + (a^2)^2 = 1.$$

$$K_{n}(0) = 2\alpha'\alpha^{2}$$
. $K_{1}(0,0) = 1$, $K_{2}(0,0) = -1$, so

grossian curvature, product of principal curvatures.

$$H(0,0) = \frac{1}{2}(1+(-1)) = 0$$

sum of principal curvatures.

Now let's fine
$$\Gamma_{ij}^{k}$$
. Reminder $\Gamma_{ij}^{k} = \sum_{\ell} (\chi_{ij} | \chi_{\ell}) g^{\ell k}$ violation of χ_{ℓ}^{k} . Reminder $\Gamma_{ij}^{k} = \sum_{\ell} (\chi_{ij} | \chi_{\ell}) g^{\ell k}$ violation χ_{ℓ}^{k} . Now $(g^{\ell k}) = (g_{ij})^{-1} = \frac{1}{g} \left(\frac{g_{12} - g_{12}}{-g_{2i}} \right) = \frac{1}{\sqrt{\gamma_{i}^{2} + u^{2} + 1}} \left(\frac{1 + u^{2} - uv}{-uv} \right) \left(\frac{u = u'}{v = u^{2}} \right)$

Thus
$$T_{ij}^{k} = \langle x_{ij} | x_i \rangle g^{ik} + \langle x_{ij} | x_2 \rangle g^{2k}$$

Now
$$\int_{11}^{k} = \int_{21}^{k} = 0$$
 since $\chi_{11} = \chi_{12} = (0,0,0)$.

it remains to find Tiz as Tiz.

$$\prod_{12}^{1} = \langle x_{12} | x_{1} \rangle g^{11} + \langle x_{12} | x_{2} \rangle g^{21}
= \langle (0,0,1), (1,0,1) \rangle g^{11} + \langle (0,0,1), (0,1,1) \rangle g^{21}
= V g^{11} + U g^{21}
= \frac{V + V u^{2}}{\sqrt{V^{2} + u^{2} + 1}} - \frac{U^{2}V}{\sqrt{V^{2} + u^{2} + 1}} = \frac{V}{\sqrt{V^{2} + u^{2} + 1}}$$

$$T_{12}^{12} = V g^{12} + U g^{22} = \frac{U}{\sqrt{V^2 + U^2 + 1}}$$

Propris
$$T_{ij}^{k} = \sum_{\ell} g^{k\ell} \left[i i, \ell \right]$$
where $\left[i j, \ell \right] = \frac{1}{2} \left(\frac{2}{3u_i} g_{i\ell} + \frac{2}{3u_i} g_{\ell i} - \frac{2}{3u_\ell} g_{\ell i} \right)$

Christoffel symbol of the first kind. Also denoted Is:
hence I; are intrinsic.

Proof (Gauss)

$$2 \left[\left(i \right), L \right] = \frac{\partial}{\partial u^{i}} \left\langle x_{j} \right| x_{k} \right\rangle + \frac{\partial}{\partial u^{j}} \left\langle x_{k} \right| x_{i} \right\rangle - \frac{\partial}{\partial u^{j}} \left\langle x_{i} \right| x_{i} \right\rangle$$

$$= \left(\left\langle x_{j} \right| \left| x_{k} \right\rangle + \left\langle x_{j} \right| \left| x_{k} \right\rangle + \left\langle x_{k} \right| \left| x_{i} \right\rangle + \left\langle x_{k} \right| x_{i} \right\rangle$$

$$- \left\langle x_{i} \right| \left| x_{j} \right\rangle - \left\langle x_{i} \right| \left| x_{j} \right\rangle \right)$$

$$= \left\langle x_{i} \right| \left| x_{k} \right\rangle + \left\langle x_{k} \right| \left| x_{i} \right\rangle + \left\langle x_{i} \right| \left| x_{k} \right\rangle$$

$$- \left\langle x_{k} \right| \left| x_{j} \right\rangle - \left\langle x_{j} \right| \left| x_{i} \right\rangle + \left\langle x_{i} \right| \left| x_{k} \right\rangle$$

$$- \left\langle x_{k} \right| \left| x_{j} \right\rangle - \left\langle x_{j} \right| \left| x_{i} \right\rangle + \left\langle x_{i} \right| \left| x_{k} \right\rangle$$

= $2\langle x_{ij} | x_{i} \rangle$

Thus
$$T_{ij}^{k} = \sum_{l} \langle x_{ij} | x_{l} \rangle g^{l} = \sum_{l} g^{kl} [ij | l]$$

Note for calculation, it's easier to use extrahois defin.

Propri 4.4 The gradesic curvature of a surface curve i's intrinsic.

If let
$$\mathcal{E}_{ij} = \langle \chi_i \times \chi_j \mid \Lambda \rangle$$
. Then $\mathcal{E}_{II} = 0 = \mathcal{E}_{2i}$, and $\mathcal{E}_{12} = \sqrt{g} = -\mathcal{E}_{2i}$.

the Eight is intrinsic.

Now
$$K_g = \langle S \mid K_g S \rangle = \langle n \times T \mid K_g S \rangle = \langle T \times K_g S \mid n \rangle$$

$$= \langle \left(\sum_{k} \chi_k \frac{dY^k}{ds^k} \right) \times \left[\sum_{k} \left(\frac{d^2 Y^k}{ds^k} + \sum_{i,j} T_{i,j}^{k} \frac{dY^i}{ds^k} \frac{dY^i}{ds^k} \right) \chi_k \right] \mid n \rangle$$

П

Page 3

$$= \sum_{\ell,k} \left[\frac{dy^{\ell}}{ds} \left(\frac{d^{2}y^{k}}{ds^{2}} + \sum_{l,i} \sum_{i,j} \frac{dy^{i}}{ds} \frac{dy^{j}}{ds} \right) \right] \mathcal{E}_{\ell k} ,$$

which is intrinsic.

A convenient extrinsic formula for K_g unitroned for K_g $K_g = K \cos \alpha$ where α is the angle between N nnw BIf $K_g = \langle S \mid KN \rangle = \langle S \mid T' \rangle = \langle N \mid T \mid T' \rangle$ $= K \langle N \mid T \times N \rangle = K \langle N \mid B \rangle = K \cos \alpha$.

4-5 Geodesics, 4-6 Parallelian

Propos Let V be a C2 unit speed curve on M. ThunTFAE:

- (a) Y is a geodesic
- (b) Kg = 0
- (c) K = |Kn|
- (d) T' is perpendicular to M
- (e) The tangential component of T' is O
- $(f) \langle n | T \times T' \rangle = 0$ (venewer $n \times T = S$)
- (g) $\frac{d^2y^{\frac{1}{4}}}{dx^2} + \sum_{i,j} \prod_{i,j}^{k} \frac{dy^{i}}{dx} \frac{dy^{i}}{dx} = 0 \quad \text{for even } k.$

of gradesics on a spure are exactly the great circles.