Examen d'Algèbre linéaire

19 Novembre 2009

Durée 2h

Documents et calculatrices <u>non autorisés</u>.

Tout résultat non justifié ne sera pas pris en compte.

Le barème est donné à titre indicatif.

Exercice 1 (7 points)

Soient a et b des nombres réels fixés. On note :

$$A = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right) \text{ et } P = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

On rappelle que pour toute matrice carrée A on a : $A^n = \underbrace{A \cdot \dots \cdot A}_{n \text{ fois}}$

- 1. Calculer P^2 . En déduire que P est inversible et calculer P^{-1} .
- 2. Pour la suite de l'exercice on pose $B = P^{-1}AP$. Calculer la matrice B.
- 3. Calculer la matrice B^2 , puis B^3 . En déduire B^n pour tout $n \in \mathbb{N}$.
- 4. Montrer que $A=PBP^{-1}$ et $A^2=PB^2P^{-1}$, puis : $\forall n\in\mathbb{N},\,A^n=PB^nP^{-1}.$
- 5. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 2 (4 points)

1. Déterminer le rang de

$$A = \left(\begin{array}{ccccc} 2 & 3 & 1 & 1 & 0 \\ 0 & 2 & 1 & 2 & -1 \\ 4 & 0 & 1 & -1 & -2 \end{array}\right).$$

2. En utilisant la méthode de Gauss, donner l'inverse de la matrice

$$B = \left(\begin{array}{rrrr} 1 & 0 & 1 & 3 \\ -1 & 2 & 2 & -4 \\ 1 & 2 & 1 & 2 \\ 1 & -2 & -1 & 5 \end{array}\right).$$

 $\mathsf{T.S.V.P.} \rightarrow$

Exercice 3 (4 points)

En utilisant la méthode de Gauss, résoudre le système linéaire suivant :

$$\begin{cases} x +2y +z = 1 \\ 2x +3y -z = -3 \\ -x +4y +4z = 3 \end{cases}$$

Exercice 4 (5 points)

- 1. Montrer que les vecteurs $u_1=(1,1,0),\ u_2=(1,0,1)$ et $u_3=(3,2,-5)$ sont linéairement indépendants.
- 2. Soient les vecteurs $v_1 = (1 + \theta, 1, 1, 1), v_2 = (1, 1 + \theta, 1, 1), v_3 = (1, 1, 1 + \theta, 1)$ et $v_4 = (1, 1, 1, 1 + \theta)$ où θ est un réel donné.
 - (a) Calculer le déterminant $det(v_1, v_2, v_3, v_4)$.
 - (b) En déduire les valeurs de θ pour lesquelles les vecteurs v_1, v_2, v_3 et v_4 sont liés.
- 3. Montrer que $E_1 = \{(x, y) \in \mathbf{E}/x + 2y = 0\}$ est un sous-espace vectoriel de l'espace vectoriel $\mathbf{E} = \mathbb{R}^2$.