Tarea 5 de Mecánica Clásica

Profesora: Dra.Nana Cabo Bizet, Maestría en Física, 1er semestre DCI, Universidad de Guanajuato

26 de noviembre de 2024

Entrega: 2 de diciembre de 2024, de forma virtual. La calificación se calculará sobre 10 puntos. Total de puntos: 14.

- 1. Transformación de Legendre: Considere una función de dos variables f(x, y) tal que df = udx + vdy. Demuestre que la función g = f ux, posee el diferencial dg = vdy xdu. (1 punto)
- 2. Sea el funcional de la entalpía dX = TdS + VdP, demuestre que la energía libre de Gibbs G = X TS posee como variables independientes a T y a P. (1 punto)
- 3. Obtenga la función de Routh para el caso donde ser realiza una transformación de Lengendre del Lagrangiano para m coordenadas de un total de n coordenadas generalizadas. (1 punto)
- 4. Determine los siguientes corchetes de Poisson:
 - (a) Corchete de dos componentes del momento angular $[L_i, L_j] = -\epsilon_{ijk}L_k$. (0.5 puntos)
 - (b) Corchete de dos componentes del momento linear $[P_i, P_j] = 0$. (0.5 puntos)
 - (c) Corchete de una componente del momento linear con una componente momento angular $[L_i, P_i] = -\epsilon_{ijk}P_k$. (0.5 puntos)
 - (d) Demuestre la identidad de Jacobi para los corchetes de Poisson. (0.5 puntos)
- 5. Considere el movimiento de una partícula 3D masiva con Lagrangiano dado por

$$L = m\mathbf{v}^2/2 + \sum_n a_n \mathbf{v}^{2n} - U(\mathbf{r}). \tag{1}$$

- Determine las dimensiones de las constantes a_n en términos de M, L y T. Determine el momento canónico p_i , y obtenga el Hamiltoniano. Calcule el corchete Poisson de p_i y mv_i con x_j . (1 punto)
- 6. Demuestre que para una trayectoria con extremos de coordenadas y tiempos variables (iniciales y finales) el diferencial de la acción está dado por: $dS = p_2^a dq_2^a H_2 dt_2 (p_1^a dq_1^a H_1 dt_1)$, donde a es el índice que describe a la coordenada generalizada dada. (1 punto)
- 7. Considere una partícula sometida a un potencial y aplíquele el principio de Maupertius para encontrar la expresión de $\frac{d^2\mathbf{r}}{dl^2}$; $\frac{d\mathbf{r}}{dl}$ es el vector unitario tangente a la trayectoria. (1 punto)
- 8. Transformaciones canónicas:
 - (a) Obtenga las funciones generatrices $F_1(q,Q), F_2(q,P), F_3(p,Q), F_4(p,P)$ para la transformación identidad. (1 punto)
 - (b) Obtenga las coordenadas Q_i vs. q_i para la función generatriz $F_2(q, P) = f_i(q_1, ..., q_n, t)P_i$. (1 punto)
 - (c) Obtenga la función generatriz F_2 para las transformaciones ortogonales $Q_i = a_{ik}q_k$ (rotaciones y reflexiones). Obtenga los momentos P_i vs. p_k . (1 punto)
 - (d) Empleando la función generatriz $F_1 = \frac{m}{2}\omega q^2 \cot Q$ obtenga q vs. Q y p vs. P. Exprese el Hamiltoniano del oscilador armónico $H = m \cdot q^2/2 + kq^2/2$ en términos de (Q, p). Encuentre Q(t) y P(t). (1 punto)
- 9. Demuestre que ante una transformación canónica $[f, g]_{p,q} = [f, g]_{P,Q}$. (1 punto)
- 10. Demuestre que la siguiente medida en el espacio de fase es invariante ante transformaciones canónicas $\int_{\Sigma} \sum_{i\neq j} dq_i dp_i dq_j dp_j$. Σ es una superficie 4 dimensional del espacio de fase. (1 punto)