Distribution Fitting for the Lazy Scientist

or, All you wanted to know about maximum likelihood estimation but were too afraid to ask.

Christopher Quarles
SFI Complex Systems Summer School 2019

Outline

1. Distribution Fitting: What, Why, and When?

2. Fitting the distribution with MLE

3. Goodness of fit

Regression Example:

Is income in a school district related to students' test scores in that district?

Variables: average test score, median income (1000's)

Is median income:

Normal?

Additive

Log-Normal? Multiplicative

- 1. What are the parameters of each distribution?
- 2. Which distribution is better?

These represent different processes!

Fit the distribution

"I have a good model for how my data was generated, and want to know the parameters."

- Poisson process
- Power law: Find α in $x^{-\alpha}$.
- Network community detection: SBM

Check whether it fits well enough

"I want to see which distribution fits better"

OR

"I want to test whether my model fits the data."

It usually doesn't!

How to do MLE:

1. Choose a model

2. Find the log-likelihood function

- 3. Find the parameters that maximize the log-likelihood
 - Calculate estimators by hand (or look them up)
 - Computationally

Fitting the Distribution

model with parameters independent data points

$$\vec{\theta}$$

$$\vec{x} = \{x_1, x_2, x_3, \dots, x_n\}$$

Likelihood of a given model

$$\mathcal{L}(\vec{\theta} \mid \vec{x}) = P(\vec{x} \mid \vec{\theta})$$
 very small
$$= \prod_{i} P(x_{i} \mid \vec{\theta})$$

Log-likelihood

$$\log \mathcal{L} = \sum_{i} \log P(x_i | \vec{\theta})$$
 maximize this

Example of MLE

model: normal
$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}dx$$

parameters: μ , σ

$$\mathcal{L} = \prod_{i} P(x_i | \mu, \sigma) = \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$\log \mathcal{L} = \sum_{i} -\log(\sigma) - \log(\sqrt{2\pi}) + \frac{-(x_i - \mu)^2}{2\sigma^2}$$

$$= -n\log(\sigma) - n\log(\sqrt{2\pi}) - \sum_{i} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Example of MLE

Goal: Find μ , σ that maximize

$$\log \mathcal{L}(\mu, \sigma) = -n \log(\sigma) - n \log(\sqrt{2\pi}) - \sum_{i} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Analytically

$$\frac{d}{du}\log\mathcal{L} = 0$$

$$\frac{d}{d\mu}\log\mathcal{L} = 0$$
$$\frac{d}{d\sigma}\log\mathcal{L} = 0$$

let's do this!

Computationally

Example of MLE

Analytically

model: normal
$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}dx$$

parameters: μ , σ

$$\hat{\mu} = \frac{1}{n} \sum_{i} x_{i} = \bar{x}$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i} [x_{i} - \hat{\mu}]^{2} = \overline{(x^{2})} - \bar{x}^{2}$$

maximize likelihood estimators for the normal distribution

For our data:
$$\bar{x} = 62.34$$
, $\overline{(x^2)} = 4600$

$$\hat{\mu} = 62.34$$

$$\hat{\sigma} = 26.71$$

$$\log \mathcal{L}\left(\hat{\mu}, \hat{\sigma}\right) = -51999$$

Measuring Goodness of Fit

Some Goodness of Fit Statistics

Kolmogorov-Smirnov (KS) Distance – Maximum distance between CDFs of data and best-fit distribution Akaike Information Criterion (AIC) = $2(\# of parameters) - 2(\log-likelihood)$

Bayesian Information Criterion (BIC) = ln(n)(# of parameters) – 2(log-likelihood)

YOU CAN NOT COMPARE LOG-LIKELIHOODS OF NON-NESTED MODELS. Use AIC instead

better fit = SMALLER statistics!

Measuring Goodness of Fit

"I want to see which distribution fits better"

- 1. Fit multiple distributions
- 2. Compare statistics and look at graphs
- 3. Choose the best distribution (or none)

"I want to test whether my model fits the data."

"I want to test whether my model fits the data."

 H_0 : Your data is a set of random draws from this probability distribution

 H_A : Your data is *not* drawn from this distribution

Strategy:

- 1. Fit the distribution
- 2. Generate synthetic distributions of the same size as your data using the probability distribution. Store their KS distance
- 3. Create a sampling distribution of KS
- 4. Calculate a p-value

$\mathcal{N}(62.34, 26.71)$

{:}

 a_2

{:}

{:}

 a_k

{:}

 a_1

simulated samples n=11054

KS distances

sampling distribution

the distribution that we already fit to the data

Compare our test statistic (KS = 0.1205) to the sampling distribution

p-value = 1

Reject H_0

Our data was not drawn from a normal distribution

estimated sampling distribution ASSUMING H_0

Your Turn

- Download the data
- Use MLE to fit the following distributions to the data:

log-normal

$$P(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} e^{\frac{-(\log(x)-\mu)^2}{2\sigma^2}} dx \qquad P(x|\alpha) = \frac{\alpha-1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i} \log(x_i)$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i} (\log(x_i) - \hat{\mu})^2$$

$$\hat{\alpha} = ???$$

power law with $x_{min} = 1$

$$P(x|\alpha) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$$

$$\hat{\alpha} = ???$$

3. Compare the fits of the three distributions (normal, log-normal, power law), and decide which fits the best