Software Quality Engineering

Lecture 12: Inspection

Lecture Overview

- Basic Concept and Generic Process
- Fagan Inspection
- Other Inspection and Related Activities
- Other Issues

QA Alternatives

- Defect and QA:
 - Defect: error/fault/failure.
 - Defect prevention/removal/containment.
 - Map to major QA activities
- Defect prevention:

Error blocking and error source removal.

- Defect removal:
 - Inspection: this chapter.
 - Testing, etc.
- Defect containment: Fault tolerance and failure containment (safety assurance).

Inspection as Part of QA

- Throughout the software process
 - Coding phase: code inspection
 - Design phase: design inspection
 - Inspection in other phases and at transitions from one phase to another
- Many different software artifacts:
 - program code, typically
 - requirement/design/other documents
 - charts/models/diagrams/tables/etc.
- Other characteristics:
 - People focus.
 - Not waiting for implemented system.
 - · Complementary to other QA activities.

CFG Example

- Generic process/steps: Fig 14.1 (p.238)
 - 1. Planning and preparation (individual)
 - 2. Collection (group/meeting)
 - 3. Repair (followup)

Inspection Process Variations

- Overall planning:
 - who? team organization/size/roles/etc.
 - what? inspection objects
 - objectives?
 - number/coordination of multiple sessions?
- Technique
 - for preparation (individual inspection)
 - for collection
- What to do with defects?
 - always: detect and confirm defects
 - classify/analyze defects for feedback?
 - Use of post-collection feedback?

Fagan Inspection

- General description
 - Earliest, Fagan at IBM
 - Led to other variations
 - Generic process and steps
- Six steps of Fagan inspection:
 - 1. Planning
 - 2. Overview (1 author-to-n inspectorsmeeting)
 - 3. Preparation (individual inspection)
 - 4. Inspection (n-to-n meeting)
 - 5. Rework (by author)
 - 6. Follow-up

Fagan Inspection

- 1. Planning
 - what to inspect
 - Team size: about 4 persons
 - Developers/testers from similar projects

2. Overview

- Author-inspectors meeting
- General background information
 - functional/structural/info., intentions
- Assign individual tasks:
 - coverage of important areas
 - moderate overlap

Fagan Inspection

- 3. Preparation or individual inspection
 - Independent analysis/examination
 - · Code as well as other document
 - Individual results:
 - questions/guesses
 - potential defects
- 4. Inspection (generic: collection)
 - Meeting to collect/consolidate individual inspection results
 - Team leader/meeting moderator (1)
 - Reader/presenter: summarize/paraphrase for individual pieces (assignment)
 - Defect identification, but not solutions, to ensure inspection effectiveness
 - No more than 2 hours
 - Inspection report

Fagan Inspection

5. Rework

- Author's response
- Defect fixing (solutions)

6. Follow-up

- Closing the inspection process by final validation
- Fagan inspection in practice
 - Widely used in industry
 - Evaluation studies
 - Variations and other inspections

Fagan Inspection: Findings

- Importance of preparation:
 - Most defect detected
 - Meetings to consolidate defects
 - alternatives focusing on preparation.
- Other important findings:
 - Team size and #sessions tailored to env.
 - Prefer systematic detection techniques to ad-hoc ones
 - More use of inspection feedback/analysis

Other Inspection Methods

- Variations to Fagan inspection: size/scope and formality variations.
- Alternative inspection techniques/processes:
 - Two-person inspection
 - Meetingless inspections
 - Gilb inspection
 - Phased inspections
 - Informal check/review/walkthrough
 - Code reading
 - Code reading with stepwise abstraction
 - Active design reviews
 - Inspection for program correctness

Reduced Size/Scope Inspection

- Two-person inspection
 - Fagan inspection simplified
 - Author-inspector pair
 - reciprocal: mutually beneficial
 - Smaller scale program
- Meetingless inspections
 - Importance of preparation (indiv. insp.) (most defects found during preparation)
 - Empirical evidence
 - 1-on-1 instead of team meetings (or other feedback mechanisms)

Gilb Inspection (Expanded Fagan)

- Key: A "process brainstorming" meeting right after the inspection meeting
 - root cause analysis
 - parallel to edit (rework)
 - aim at preventive actions/improvement

Gilb Inspection (Expanded Fagan)

- Other characteristics
 - Clearly identified input, checklists/rules extensively used
 - Output include change request and suggested process improvement, in addition to inspected documents.
 - Team size: 4-6 people.
 - More emphasis on feedback loop:
 more closely resemble our SQE process (Fig 5.1, p.54)

Other Expanded Fagan Inspections

- Phased inspections
- Overall inspection is divided into multiple phases with each focusing on a specific area
 - Expand Fagan inspection
 - Multiple phases/meetings
 - Each on a specific area/problem-type
 - Dynamic team make-up

Informal Inspection

- Desk check (self conducted):
 - Should focus on conceptual problems
 - Use tools for problems with syntax/spelling/format/etc.
- Informal review (by others):
 - Similar to desk check, but by others
 - Benefit from independent views
 - Group reviews for phase transitions
- Walkthroughs:
 - More organized, but still informal
 - Leading role of author/moderator
 - Less preparation by other participants than in inspection

Formal Inspection: Code Reading

- Code reading
 - focus on code
 - optional meetings
- Code reading by stepwise abstraction
 - basis: program comprehension studies
 - variation to code reading
 - formalized code reading technique
 - top-down decomposition and bottom-up abstraction
 - recent evidence of effectiveness

Formal Inspection: ADR & Correctness

- Active design reviews (ADR)
 - · Another formal inspection, for designs
 - Inspector active vs. passive
 - Author prepares questionnaires
 - More than one meeting
 - Scenario based (questionnaires)
 - Overall ADR divided into small ones
 - 2-4 persons (for each smaller ADR)
- Inspection for program correctness
 - Correctness (vs. questionnaire) of:
 - topology (decomposition, hierarchy)
 - invariance (variable relations)
 - robustness (error handling)
 - Close to formal verification

Systematic Inspection Techniques

- Ad-hoc vs. systematic ones below: checklist-/scenario-/abstraction-based.
- Checklist-based inspection:
 - Similar to testing checklists
 - Basic types: artifact-/property-based.
- Scenario-based inspection:
 - Similar to usage-based testing.
 - Scenarios ties multiple components.
 - More a usage/external view.
 - Suitable for OOS.
- Abstraction-based inspection:
 - Similar to code reading with stepwise abstraction.

Implementation and Effectiveness

- Implementation support:
 - Process and communication support
 - Repository management tools
 - Defect tracking and analysis as followup
 - Still human intensive
- Effectiveness studies
 - Defect detection technique important
 - Inspector skills/expertise also important
 - Other factors, less than unanimous
 - Many individual variations

Summary

- Key advantages:
 - Wide applicability and early availability
 - Complementary to testing/other QA
 - Many techniques/process to follow/adapt
 - Effective under many circumstances
- Key limitations:
 - Human intensive
 - Dynamic/complex problems and interactions: Hard to track/analyze.
 - Hard to automate.