1.6.9 Solution:

Claim: If prime number $p \mid a_1 a_2 \cdots a_r$, then p divides one of the factors.

Proof: Since $p \mid a_1 a_2 \cdots a_r$, we know that $a_1 a_2 \cdots a_r = q_0 p$, $q \in \mathbb{Z}$. And without losing generality we can denote the factor as a_i , thus $a_i = qp$.

For base case, if $p \mid a_1, p \mid a_1$ is obviously true.

Suppose when r = k, namely, $p \mid a_1 a_2 \cdots a_k$, p divides one of the factors is true, then when r = k + 1, if $p \mid a_1 a_2 \cdots a_{k+1}$, so $a_1 a_2 \cdots a_{k+1} = q_1 p$. Then there're 2 cases.

If $p \mid a_{k+1}$, the statement is proved.

If $p \mid a_1 a_2 \cdots a_k$, the hypothesis gives that $p \mid a_i$.

So when r = k + 1, namely, $p \mid a_1 a_2 \cdots a_{k+1}$, p divides one of the factors is true.

Thus, we can conclude that if prime number $p \mid a_1 a_2 \cdots a_r$, then p divides one of the factors.

1.7.4 Solution:

Claim: $[4^{237}] = [4].$

Proof: In \mathbb{Z}_5 , $[4^2] = [1]$. Thus $[4^{2n}] = [1]$, so $[4^{236}] = [1]$. And since [4] = [-1], $[4^{237}] = [4^{236}][4] = [1][-1] = [-1] = [4]$.

1.7.11 Solution:

Claim: If a is relatively prime to n and there are integers s and t so that as + nt = 1. The inverse of [a] is [s].

Proof: Since a is relatively prime to n and as+nt=1, we have as-1=nt. So $n \mid (as-1)$ and as a result $as \equiv 1 \mod n$. Which means that [as] = [1], so [a][s] = [1].

Thus, [s] is the inverse of [a] in $\mathbb{Z}_n \blacksquare$.

1.7.14 Solution:

(a) Claim: $\forall b \in \mathbb{Z}, ax \equiv b \mod n \text{ has a solution.}$

Proof: For all integer a, b, if we want to make $ax \equiv b \mod n$ holds, $ax - b = qn, q \in \mathbb{Z} \Rightarrow ax - qn = b$ must hold. Therefore, $g.c.d(a, n) \mid b$ must be true. Since a and n are relatively prime, g.c.d(a, n) = 1, the statement above must be true.

So we can conclude that $\forall b \in \mathbb{Z}, ax \equiv b \mod n$ has a solution.

- (b) Base on the logical deduction above, we need to find a pair of integer (s,r) with the inverse of Euclidean Algorithm so that sa+rn=1, so (bs)a+(br)n=b, and one $x_0=bs$. And all the solutions become a set $\{x|x=kn+x_0,k\in\mathbb{Z}\}$.
 - (c) Claim: For $8x \equiv 12 \mod 125$, x = 64.

Proof: Since $8x \equiv 12 \mod 125$, 8x - 12 = 125q, $q \in \mathbb{Z} \Rightarrow 8x - 125q = 12$ So apply Euclidean Algorithm to 8 and 125 first:

$$125 = 8 \times 15 + 5$$

$$8 = 5 \times 1 + 3$$

$$5 = 3 \times 1 + 2$$

$$3 = 2 \times 1 + 1$$

$$2 = 1 \times 2$$

Thus,

$$125 - 8 \times 15 = 8 - 3$$

$$\Rightarrow 125 - 8 \times 16 = -3$$

$$\Rightarrow 8 \times 16 - 125 = 3$$

$$\Rightarrow 8 \times 16 - 125 = 5 - 2$$

$$\Rightarrow 8 \times 16 - 125 = (125 - 8 \times 15) - 2$$

$$\Rightarrow 8 \times 31 - 125 \times 2 = -2$$

$$\Rightarrow 125 \times 2 - 8 \times 31 = 3 - 1 = (8 - 5) - 1$$

$$\Rightarrow 125 \times 2 - 8 \times 32 = -5 - 1 = -6$$

$$\Rightarrow 125 \times 4 - 8 \times 64 = -12$$

$$\Rightarrow 8 \times 64 - 125 \times 4 = 12$$

As a result, $x_0 = 64$. And all solutions consist a set $\{x | x = 64 + 125k, k \in \mathbb{Z}\} \blacksquare$.