第3节 求带参函数的单调区间、极值、最值(★★★)

内容提要

当函数解析式中有参数时,求函数的单调区间往往需要讨论,这类题函数可能千变万化,但本质上讨论的流程可归纳为如下的流程图:

$$f'(x) \rightarrow \begin{cases} \mathbb{Z} & \mathbb{Z} \\ f'(x) \rightarrow \begin{cases} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{cases} \end{cases}$$
 「只有一个零点
有零点 $\begin{cases} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{cases}$ 可论零点的大小

典型例题

类型 I: f'(x) 最多一个零点

【例 1】设 $f(x) = \ln x - ax(a \in \mathbb{R})$, 讨论 f(x) 的单调性.

解: 由题意,
$$f'(x) = \frac{1}{x} - a = \frac{1 - ax}{x}(x > 0)$$
,

 $(f'(x)=0\Rightarrow x=\frac{1}{a}(a\neq 0), \frac{1}{a}$ 是否在 $(0,+\infty)$ 上决定 f'(x)在定义域上是否有零点,故讨论 a 的正负)

①当 $a \le 0$ 时,1-ax > 0,所以f'(x) > 0,故f(x)在 $(0,+\infty)$ 上单调递增;

②当
$$a>0$$
时,如图,结合图象知 $f'(x)>0\Leftrightarrow 1-ax>0\Leftrightarrow 0< x< \frac{1}{a}$, $f'(x)<0\Leftrightarrow x> \frac{1}{a}$,

所以 f(x) 在 $(0,\frac{1}{a})$ 上单调递增,在 $(\frac{1}{a},+\infty)$ 上单调递减.

【变式 1】设 $f(x) = e^{2x} - (a-2)e^x - ax + 1(a \in \mathbb{R})$,讨论 f(x) 的单调性.

解: 由题意, $f'(x) = 2e^{2x} - (a-2)e^x - a = (2e^x - a)(e^x + 1)$,(此处 f'(x) 虽比例 1 复杂,但其符号与 $2e^x - a$ 这 部分的符号相同, $2e^x - a = 0 \Leftrightarrow 2e^x = a$,如图,该因式是否有零点由 a 的正负决定,故据此讨论)

①当 $a \le 0$ 时, $2e^x - a > 0$, $e^x + 1 > 0$,所以f'(x) > 0,故f(x)在**R**上单调递增;

②
$$\exists a > 0 \text{ bt}, \quad e^x + 1 > 0, \quad \text{fill } f'(x) > 0 \Leftrightarrow 2e^x - a > 0 \Leftrightarrow x > \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < \ln \frac{a}{2}, \quad f'(x) < 0 \Leftrightarrow 2e^x - a < 0 \Leftrightarrow x < 0 \Leftrightarrow x$$

故 f(x) 在 $(-\infty, \ln \frac{a}{2})$ 上单调递减,在 $(\ln \frac{a}{2}, +\infty)$ 上单调递增.

【变式 2】已知函数 $f(x) = ax - (a-1)\ln x + 1(a \in \mathbb{R})$, 讨论 f(x) 的单调性.

解: 由题意, $f'(x) = a - \frac{a-1}{x} = \frac{ax-a+1}{x}$, x > 0, $(f'(x) = 0 \Rightarrow x = \frac{a-1}{a}(a \neq 0)$, 若导函数在定义域内有

零点,则 $\frac{a-1}{a}$ >0,故a<0或a>1,余下即为f'(x)在定义域内没有零点的情形,讨论的标准就有了)

①当a < 0时,直线y = ax - a + 1如图 1,由图可知 $f'(x) > 0 \Leftrightarrow 0 < x < \frac{a - 1}{a}$, $f'(x) < 0 \Leftrightarrow x > \frac{a - 1}{a}$,

所以 f(x) 在 $(0, \frac{a-1}{a})$ 上单调递增,在 $(\frac{a-1}{a}, +\infty)$ 上单调递减;

②当a>1时,直线y=ax-a+1如图 2,由图可知 $f'(x)<0\Leftrightarrow 0< x< \frac{a-1}{a}$, $f'(x)>0\Leftrightarrow x> \frac{a-1}{a}$,

所以 f(x) 在 $(0, \frac{a-1}{a})$ 上单调递减,在 $(\frac{a-1}{a}, +\infty)$ 上单调递增;

(余下的部分就是f'(x)在定义域上无零点的情形,此时f'(x)必定不变号)

③当 $0 \le a \le 1$ 时, $ax \ge 0$, $-a + 1 \ge 0$,所以 $ax - a + 1 \ge 0$,从而 $f'(x) \ge 0$,故f(x)在 $(0, +\infty)$ 上单调递增.

【总结】从例 1 和上面的几个变式可以看出,当 f'(x) 最多 1 个零点时,寻找讨论依据的方法是先令 f'(x) = 0,求出 x, 再看它在或不在定义域内.

类型 II: f'(x) 多个零点的讨论

【例 2】已知函数 $f(x) = \frac{1}{3}x^3 + \frac{2a-1}{2}x^2 - 2ax + 1(a \in \mathbf{R})$,讨论 f(x) 的单调性.

解: 由题意, $f'(x) = x^2 + (2a-1)x - 2a = (x+2a)(x-1)$,(f'(x)有 -2a 和 1 这两个零点,但这两个零点的大小不定,所以讨论的依据是零点的大小)

①当 $a < -\frac{1}{2}$ 时,-2a > 1,f'(x)的草图如图 1, $f'(x) > 0 \Leftrightarrow x < 1$ 或x > -2a, $f'(x) < 0 \Leftrightarrow 1 < x < -2a$,所以 f(x)在 $(-\infty,1)$ 上单调递增,在 (1,-2a)上单调递减,在 $(-2a,+\infty)$ 上单调递增;

②当 $a = -\frac{1}{2}$ 时, $f'(x) = (x-1)^2 \ge 0$,所以f(x)在**R**上单调递增;

③当 $a > -\frac{1}{2}$ 时,-2a < 1, f'(x)的草图如图 2, $f'(x) > 0 \Leftrightarrow x < -2a$ 或x > 1, $f'(x) < 0 \Leftrightarrow -2a < x < 1$,

所以 f(x) 在 $(-\infty, -2a)$ 上单调递增,在 (-2a, 1) 上单调递减,在 $(1, +\infty)$ 上单调递增.

【变式 1】(2021•全国乙卷节选) 已知函数 $f(x) = x^3 - x^2 + ax + 1$, 讨论 f(x) 的单调性.

解: 由题意, $f'(x) = 3x^2 - 2x + a$, (本题 f'(x) 不易分解因式, f'(x) 的零点个数由判别式 $\Delta = 4 - 12a$ 的正 负决定, 故据此讨论, 结合求根公式给出单调性)

① 当 $a \ge \frac{1}{3}$ 时, $f'(x) \ge 3x^2 - 2x + \frac{1}{3} = 3(x - \frac{1}{3})^2 \ge 0$, 所以 f(x) 在 **R** 上单调递增;

②当
$$a < \frac{1}{3}$$
时, \diamondsuit $f'(x) = 0$ 可得 $x = \frac{1 \pm \sqrt{1 - 3a}}{3}$,且 $f'(x) > 0 \Leftrightarrow x < \frac{1 - \sqrt{1 - 3a}}{3}$ 或 $x > \frac{1 + \sqrt{1 - 3a}}{3}$,

$$f'(x) < 0 \Leftrightarrow \frac{1 - \sqrt{1 - 3a}}{3} < x < \frac{1 + \sqrt{1 - 3a}}{3}$$
,所以 $f(x)$ 在 $(-\infty, \frac{1 - \sqrt{1 - 3a}}{3})$ 上单调递增,

在
$$(\frac{1-\sqrt{1-3a}}{3}, \frac{1+\sqrt{1-3a}}{3})$$
上单调递减,在 $(\frac{1+\sqrt{1-3a}}{3}, +\infty)$ 上单调递增.

【变式 2】(2021•全国乙卷)设 $a \neq 0$,若x = a为函数 $f(x) = a(x - a)^2(x - b)$ 的极大值点,则()

(B)
$$a > b$$

(C)
$$ab < a^2$$

(A)
$$a < b$$
 (B) $a > b$ (C) $ab < a^2$ (D) $ab > a^2$

解法 1: 题干涉及极值点,可从 f'(x) 的角度出发分析极值的情况,下面先求导,

曲题意,
$$f'(x) = a[2(x-a)(x-b) + (x-a)^2] = a(x-a)(3x-a-2b)$$
, $f'(x) = 0 \Rightarrow x = a$ 或 $\frac{a+2b}{3}$,

因为 f(x) 有极值,所以必有 $a \neq \frac{a+2b}{2}$, a 的正负影响二次函数开口,故要判断导函数的正负,得先讨论 a 的正负,再由x=a是极大值点来判断a和 $\frac{a+2b}{3}$ 的大小,

当a>0时,因为x=a是 f(x)的极大值点,所以 f'(x)在 x=a 附近应为左正右负,故 f'(x)的图象如图 1, 由图可知 $a < \frac{a+2b}{3}$,故a < b,两端同乘以a可得 $a^2 < ab$;

当a<0时,因为x=a是 f(x)的极大值点,所以 f'(x)在 x=a 附近应为左正右负,故 f'(x)的图象如图 2, 由图可知 $a > \frac{a+2b}{3}$,故a > b,两端同乘以a可得 $a^2 < ab$;故选 D.

解法 2: 注意到 f(x) 有 a 和 b 两个零点, 而 x = a 也是 f(x) 的极大值点, 这些都是 f(x) 图象上的关键特征,

据此已经能把 f(x) 的大致图象画出来了,所以本题也可直接从 f(x) 的图象出发考虑,a 的正负不同会导致图象的整体趋势不同,故讨论 a 的正负,

当a>0时, $f(x)=0 \Rightarrow x=a$ 或b,要使x=a是f(x)的极大值点,则f(x)的大致图象如图 3,

由图可知a < b, 两端同乘以a可得 $a^2 < ab$;

当a<0时, $f(x)=0 \Rightarrow x=a$ 或 b,要使 x=a是 f(x)的极大值点,则 f(x)的大致图象如图 4,

由图可知a > b, 两端同乘以a可得 $a^2 < ab$; 故选 D.

答案: D

【**反思**】数形结合是一种重要的思想方法,零点和极值点是三次函数图象上的关键信息,若能从题干分析出这些信息,往往可以结合图象来简化计算过程.

【例 3】(2021•新高考 II 卷节选) 已知函数 $f(x)=(x-1)e^x-ax^2+b$, 讨论 f(x) 的单调性.

解: 由题意, $f'(x) = xe^x - 2ax = x(e^x - 2a)$,(当 $a \le 0$ 时,因式 $e^x - 2a$ 无零点;当a > 0 时,该因式有零点,所以按a 的正负讨论)

①当 $a \le 0$ 时, $e^x - 2a > 0$,所以 $f'(x) > 0 \Leftrightarrow x > 0$, $f'(x) < 0 \Leftrightarrow x < 0$,

故 f(x) 在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增;

(当a>0时,f'(x)有零点0和 $\ln(2a)$,故讨论的逻辑是比较它们的大小,也即比较 $a=\frac{1}{2}$ 的大小)

②当 $0 < a < \frac{1}{2}$ 时, $\ln(2a) < 0$,(0 和 $\ln(2a)$ 又把实数集划分成三段,故分三段分别判断 f'(x)的正负)

若 $x < \ln(2a)$,则x < 0, $e^x - 2a < e^{\ln(2a)} - 2a = 0$,所以f'(x) > 0,

若 $\ln(2a) < x < 0$,则 $e^x - 2a > e^{\ln(2a)} - 2a = 0$,所以 f'(x) < 0,

若x>0,则 $e^x-2a>1-2a>0$,所以f'(x)>0,

故 f(x) 在 $(-\infty, \ln(2a))$ 上单调递增,在 $(\ln(2a), 0)$ 上单调递减,在 $(0, +\infty)$ 上单调递增;

③当
$$a = \frac{1}{2}$$
时, $f'(x) = x(e^x - 1)$,若 $x < 0$,则 $e^x - 1 < 0$,所以 $f'(x) > 0$,

若x>0,则 $e^x-1>0$,所以f'(x)>0,又f'(0)=0,所以f'(x)≥0在**R**上恒成立,

故 f(x) 在 R 上单调递增;

④当
$$a > \frac{1}{2}$$
时, $\ln(2a) > 0$, 若 $x < 0$, 则 $e^x - 2a < 1 - 2a < 0$, 所以 $f'(x) > 0$,

若 $0 < x < \ln(2a)$,则 $e^x - 2a < e^{\ln(2a)} - 2a = 0$,所以f'(x) < 0,

若 $x > \ln(2a)$,则x > 0, $e^x - 2a > e^{\ln(2a)} - 2a = 0$,所以f'(x) > 0,

故 f(x) 在 $(-\infty,0)$ 上单调递增,在 $(0,\ln(2a))$ 上单调递减,在 $(\ln(2a),+\infty)$ 上单调递增.

【**反思**】当 f'(x)有多个因式时,可先看含参的因式在定义域上是否有零点,作为讨论的依据之一;有零点时,又要和其它因式的零点比较大小,细化讨论.

强化训练

1. (2022 • 四川模拟 • ★★) 设 $f(x) = a \ln x - x + 1 (a \in \mathbb{R})$, 讨论 f(x) 的单调性.

2. (★★) 设 $f(x) = \frac{1}{2}e^{2x} + (2-a)e^{x} - 2ax - 1(a \in \mathbf{R})$, 讨论 f(x) 的单调性.

《一数•高考数学核心方法》

3. $(2021 \cdot 浙江卷节选 \cdot ★★★)设 a, b 为实数,且 <math>a > 1$,函数 $f(x) = a^x - bx + e^2(x \in \mathbb{R})$,求 f(x)的单调

4. (★★★) 已知函数 $f(x) = \frac{2}{3}x^3 + \frac{a-2}{2}x^2 - ax + 1(a \in \mathbb{R})$, 讨论 f(x) 的单调性.

5. (2022 • 郑州期末 • ★★★)已知函数 $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - ax + a\ln x + 1(a \in \mathbf{R})$,讨论 f(x)的单调性.

6. (★★★) 已知函数 $f(x) = (x-3)e^x - ax^2 + 4ax + 1(a ∈ \mathbf{R})$, 讨论 f(x) 的单调性.

《一数•高考数学核心方法》