



#### **Chapter 3**

Numerical Descriptive Measures



#### After completing this chapter, you should be able to:

- Compute and interpret the mean, median, mode, geometric mean, and quartiles for a set of data
- Find the range, variance, standard deviation, and coefficient of variation and know what these values mean
- Construct and interpret a box and whiskers plot
- Compute and explain the correlation coefficient
- Use numerical measures along with graphs, charts, and tables to describe data

# **Chapter Topics**

- Measures of central tendency, variation, and shape
  - Mean, median, mode, geometric mean
  - Quartiles
  - Range, interquartile range, variance and standard deviation, coefficient of variation
  - Symmetric and skewed distributions
- Population summary measures
  - Mean, variance, and standard deviation
  - The empirical rule
- Five number summary and box-and-whisker plots
- Coefficient of correlation
- Ethical considerations in numerical descriptive measures



### **Summary Measures**





#### Measures of Central Tendency



n Midpoint of ranked values

Most frequently observed value



#### **Arithmetic Mean**

- The arithmetic mean (mean) is the most common measure of central tendency
  - For a sample of size n:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
Sample size

Observed values



#### **Arithmetic Mean**

(continued)

- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)





#### Median

Not affected by extreme values





 In an ordered array, the median is the "middle" number (50% above, 50% below)



# Finding the Median

The location of the median:

$$Median \ position = \frac{n+1}{2} \ position \ in \ the \ ordered \ array$$

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that  $\frac{n+1}{2}$  is not the *value* of the median, only the *position* of the median in the ranked data

#### Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Mainly used for grouped numerical data or categorical data
- There may may be no mode
- There may be several modes







#### Review Example

Five houses on a hill by the beach

**House Prices:** 

\$2,000,000 500,000 300,000 100,000 100,000



\$100 K



# Review Example: Summary Statistics

#### **House Prices:**

Sum **3,000,000** 

Mean: (\$3,000,000/5)

= \$600,000

Median: middle value of ranked data

= \$300,000

Mode: most frequent value

= \$100,000



# Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
  - Example: Median home prices may be reported for a region – less sensitive to outliers



#### Geometric Mean

- Geometric mean
  - Used to measure the rate of change of a variable over time

$$\overline{X}_{G} = (X_1 \times X_2 \times \cdots \times X_n)^{1/n}$$

- Geometric mean rate of return
  - Measures the status of an investment over time

$$\overline{R}_{G} = [(1+R_{1})\times(1+R_{2})\times\cdots\times(1+R_{n})]^{1/n}-1$$

Where R<sub>i</sub> is the rate of return in time period i



#### Geometric Mean Example

An investment of \$100,000 declined to \$50,000 at the end of year one and rebounded to \$100,000 at end of year two:

$$X_1 = \$100,000 \quad X_2 = \$50,000 \quad X_3 = \$100,000$$

50% decrease

100% increase

The overall two-year return is zero, since it started and ended at the same level.



#### Geometric Mean Example

(continued)

Use the 1-year returns to compute the arithmetic mean and the geometric mean:

Arithmetic mean rate of return:

$$\overline{X} = \frac{(-50\%) + (100\%)}{2} = 25\%$$

Misleading result

Geometric mean rate of return:

$$\overline{R}_{G} = [(1+R_{1})\times(1+R_{2})\times\cdots\times(1+R_{n})]^{1/n} - 1$$

$$= [(1+(-50\%))\times(1+(100\%))]^{1/2} - 1$$

$$= [(.50)\times(2)]^{1/2} - 1 = 1^{1/2} - 1 = 0\%$$

More accurate result



### Geometric Mean Example

An investment of \$100,000 declined to \$50,000 at the end of year one and rebounded to \$100,000 at end of year two:

- 1. Returns as percents: -50% and 100% are converted to decimals -.5 and 1.00
- 2. Add 1 to each decimal yields .5 and 2
- 3. Find the geometric mean using the geomean function
- 4. Subtract 1 from the answer to get a rate of return of 0

#### Quartiles

 Quartiles split the ranked data into 4 segments with an equal number of values per segment



- The first quartile, Q<sub>1</sub>, is the value for which 25% of the observations are smaller and 75% are larger
- Q<sub>2</sub> is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile



#### Quartile Formulas

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position:  $Q_1 = (n+1)/4$ 

Second quartile position:  $Q_2 = (n+1)/2$  (the median position)

Third quartile position:  $Q_3 = 3(n+1)/4$ 

where n is the number of observed values

#### Quartiles

Example: Find the first quartile

Sample Data in Ordered Array: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

so use the value half way between the 2<sup>nd</sup> and 3<sup>rd</sup> values,

$$Q_1 = 12.5$$

Q<sub>1</sub> and Q<sub>3</sub> are measures of noncentral location

 $Q_2$  = median, a measure of central tendency



different variation



# Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range = 
$$X_{largest} - X_{smallest}$$

**Example:** 



Range = 
$$14 - 1 = 13$$

# Disadvantages of the Range

Ignores the way in which data are distributed



Sensitive to outliers



# Interquartile Range

- You can eliminate some outlier problems by using the interquartile range
- Difference between the first and third quartiles

Interquartile range = 3<sup>rd</sup> quartile − 1<sup>st</sup> quartile
 = Q<sub>3</sub> − Q<sub>1</sub>



#### Interquartile Range

#### Example:





#### Variance

 Average of squared deviations of each value from the mean

Sample variance:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Where X =arithmetic mean

n = sample size

 $X_i = i^{th}$  value of the variable X



#### **Standard Deviation**

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data

Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$



#### Calculation Example: Sample Standard Deviation

#### Sample

$$n = 8$$
 Mean  $= \overline{X} = 16$ 

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \dots + (24 - \overline{X})^2}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{126}{7}} = 4.2426$$



#### Measuring variation





#### **Comparing Standard Deviations**



Mean = 15.5S = 3.338



Mean = 15.5S = .9258



Mean = 15.5S = 4.57



#### Coefficient of Variation

- Measures relative variation
- Always a percentage (%)
- Shows variation relative to mean
- Is used to compare two or more sets of data measured in different units

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

# Comparing Coefficients of Variation

#### Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_A = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% \neq \frac{10\%}{\$50}$$

#### Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{\$}$$

Both stocks
have the same
standard
deviation, but
stock B is less
variable relative
to its price



#### Shape of a Distribution

- Describes how data is distributed
- Shape Symmetric or skewed









#### Microsoft Excel

- Descriptive Statistics can be obtained from Microsoft® Excel
  - Use menu choice:
    - tools / data analysis / descriptive statistics
  - Enter details in dialog box



# **Using Excel**





# **Using Excel**

(continued)

Н

G

Е



Click OK

# **Excel output**

Microsoft Excel descriptive statistics output, using the house price data:

#### **House Prices:**

\$2,000,000 500,000 300,000 100,000

|    | А               |           | В           |             |  |
|----|-----------------|-----------|-------------|-------------|--|
| 1  |                 | House .   | Pη          | ces         |  |
| 2  |                 |           |             |             |  |
| 3  | Mean            |           |             | 600000      |  |
| 4  | Standard Error  |           | 357770.8764 |             |  |
| 5  | Median          |           | 300000      |             |  |
| 6  | Mode            |           |             | 100000      |  |
| 7  | Standard        | Deviation |             | 800000      |  |
| 8  | Sample Variance |           | 6.4E+11     |             |  |
| 9  | Kurtosis        |           |             | 4.130126953 |  |
| 10 | Skewnes:        | S         |             | 2.006835938 |  |
| 11 | Range           |           |             | 1900000     |  |
| 12 | Minimum         |           |             | 100000      |  |
| 13 | Maximum         | ì         |             | 2000000     |  |
| 14 | Sum             |           | 3000000     |             |  |
| 15 | Count           |           |             | 5           |  |
| 16 |                 |           |             |             |  |
| 17 |                 |           |             |             |  |



# Population Summary Measures

 The population mean is the sum of the values in the population divided by the population size, N

$$\mu = \frac{\sum_{i=1}^{N} X_{i}}{N} = \frac{X_{1} + X_{2} + \dots + X_{N}}{N}$$

Where

 $\mu$  = population mean

N = population size

 $X_i = i^{th}$  value of the variable X



## Population Variance

 Average of squared deviations of values from the mean

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Where  $\mu$  = population mean

N = population size

 $X_i = i^{th}$  value of the variable X



# Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
  - Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$



# The Empirical Rule

• If the data distribution is bell-shaped, then the interval:  $\mu \pm 1\sigma$ 

contains about 68% of the values in the population or the sample



# The Empirical Rule

- $\mu \pm 2\sigma$  contains about 95% of the values in the population or the sample
- $\mu \pm 3\sigma$  contains about 99.7% of the values in the population or the sample







# **Exploratory Data Analysis**

Box-and-Whisker Plot: A Graphical display of data using 5-number summary:

#### Example:





### Shape of Box and Whisker Plots

 The Box and central line are centered between the endpoints if data is symmetric around the median



 A Box and Whisker plot can be shown in either vertical or horizontal format



# Distribution Shape and Box and Whisker Plot

#### Left-Skewed





### Symmetric





#### Right-Skewed







## Box-and-Whisker Plot Example

Below is a Box-and-Whisker plot for the following data:



This data is right skewed, as the plot depicts



### Coefficient of Correlation

- Measures the relative strength of the linear relationship between two variables
- Sample coefficient of correlation:

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$



# Features of Correlation Coefficient, r

- Unit free
- Ranges between –1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any linear relationship

### Scatter Plots of Data with Various **Correlation Coefficients**



# Using Excel to Find the Correlation Coefficient



- Select
  - Tools/Data Analysis
  - Choose Correlation from the selection/menu
- Click OK.



# Using Excel to Find the Correlation Coefficient

(continued)



 Input data range and select appropriate options

Click OK to get output

|   | Α             | В             | С             |  |
|---|---------------|---------------|---------------|--|
| 1 |               | Test #1 Score | Test #2 Score |  |
| 2 | Test #1 Score | :1            |               |  |
| 3 | Test #2 Score | 0.733243705   | . 1           |  |
| 4 |               |               |               |  |
| F | 3             |               |               |  |



# Interpreting the Result

$$r = .733$$

There is a relatively strong positive linear relationship between test score #1 and test score #2





### **Ethical Considerations**

#### Numerical descriptive measures:

- Should document both good and bad results
- Should be presented in a fair, objective and neutral manner
- Should not use inappropriate summary measures to distort facts



- Described measures of central tendency
  - Mean, median, mode, geometric mean
- Discussed quartiles
- Described measures of variation
  - Range, interquartile range, variance and standard deviation, coefficient of variation
- Illustrated shape of distribution
  - Symmetric, skewed, box-and-whisker plots
- Discussed correlation coefficient
- Addressed pitfalls in numerical descriptive measures and ethical considerations