Math 415 - Lecture 32

Complex numbers and eigenvectors

Wednesday November 11th 2015

Textbook reading: first part of Chapter 5.5

Suggested practice exercises: 5.5 1, 2, 3,

Khan Academy video: Complex Numbers (part 1)

Strang lecture: Lecture 21: Eigenvalues and eigenvectors

1 Review

- If $A\mathbf{x} = \lambda \mathbf{x}$ then \mathbf{x} is an **eigenvector** of A with **eigenvalue** λ . All eigenvectors (plus $\mathbf{0}$) with eigenvalue λ form **eigenspace** of λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$. Why? Because $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$. By the way: this means that the eigenspace of λ is just $\operatorname{Nul}(A \lambda I)$.
- E.g. if $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$ then $\det(A \lambda I) = (3 \lambda)(6 \lambda)(2 \lambda)$.
- Eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ of A corresponding to different eigenvalues are independent.
- By the way:
 - product of eigenvalues = determinant
 - sum of eigenvalues = "trace" (sum of diagonal entries)

2 Eigenbasis?

An $n \times n$ matrix A has up to n different eigenvalues. Namely, the roots of degree n characteristic polynomial $\det(A - \lambda I)$.

- For each eigenvalue λ , A has at least one eigenvector. That is because $Nul(A \lambda I)$ has dimension at least one.
- If λ has multiplicity m, then A has up to m (independent) eigenvectors for λ .

Ideally, we would like to find a total of n (independent) eigenvectors for A. This would give an **EIGENBASIS**. Why can there be no more than n independent eigenvectors?!

Two sources of trouble: eigenvalues can be

- complex numbers (that is, not enough real roots), or
- repeated roots of the characteristic polynomial.

Example 1. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Geometrically, what is the trouble?

Solution.			

3 Complex numbers review

Definition. $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\}$

- $i = \sqrt{-1}$, or $i^2 = -1$.
- Any point in \mathbb{R}^2 can be viewed as a complex number:

$$\binom{x}{y} \leftrightarrow x + iy$$

Let z = x + iy be a complex number

Real part The real part of z, denoted $\Re(z)$ is defined by $\Re(z) = x$.

Imaginary part The imaginary part of z, denoted Im(z) is defined by Im(z) = y.

Complex conjugate The complex conjugate of z, denoted \overline{z} , is defined by $\overline{z} = x - iy$.

Absolute value The absolute value, or magnitude of z, denoted |z| or ||z||, is given by $|z| = \sqrt{x^2 + y^2}$.

Adding complex numbers

Definition. Given z = x + iy, w = u + iv, we define

Remark. This corresponds exactly to addition of vectors in \mathbb{R}^2 . Multiplying complex numbers **Definition.** Given z = x + iy, w = u + iv, we define Absolute value and complex conjugate $\bullet \ \overline{\overline{z}} = z$ Remark. $\bullet |z|^2 = z\overline{z}$ • $|z| = |\overline{z}|$ Proof.

3.1 Complex Linear Algebra

Until now we took as our scalars the real numbers. In particular we used the vector space \mathbb{R}^n of column vectors

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

If c is a real number (a scalar) we defined

$$c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}.$$

Now we want to use **COMPLEX** scalars. We need a new context to make sense of this.

Definition. \mathbb{C}^n is the (complex) vector space of *complex* column vectors $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$,

where $z_1, z_2, \ldots z_n$ are complex numbers.

- Now multiplication by a complex scalar makes sense.
- We can define subspaces, Span, independence, basis, dimension for \mathbb{C}^n in the usual way.
- We can multiply complex vectors by complex matrices. Column space and Null space still make sense.
- The only difference is the dot product, you need to use the complex conjugate to get a good notion of length. (Later more.)

4 Back to eigenvectors

Example 2. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Solution (continued).

Theorem 1. If A is a matrix with real entries and λ is a complex eigenvalue , the $\bar{\lambda}$ is also a complex eigenvalue. Furthermore, if \mathbf{x} is an eigenvector with eigenvalue then $\bar{\mathbf{x}}$ is an eigenvector with eigenvalue $\bar{\lambda}$.
Proof.
Remark. Note that we are using vectors in \mathbb{C}^2 , instead of vectors in \mathbb{R}^2 . Works pret much the same!
F_{normal} 2. Find the simulation and simulation of $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$
Example 3. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
Solution.

• Trouble: We can not find an Eigenbasis for this matrix. This kind of problem cannot really be fixed. We have to lower our expectations and look for generalized eigenvectors. These are solutions to $(A - \lambda I)^2 \mathbf{x} = 0, (A - \lambda I)^3 \mathbf{x} = 0, \dots$						
5 Practice problems						
Example 4. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -5 & 0 \\ 1 & 8 & 1 \end{bmatrix}$.						
Solution.						