Velocity control DC motor

Report

by

YA-CHE SHIH

Model	3
Toy car model:	3
DC motor:	3
Linearization	4
Transfer function by linearization	4
System Identification	4
Transfer function by MATLAB	4
PID	6
P controller	6
Transfer function	7
PI controller	7
Assign a positive zero	7
Adjust K _P	8
Adjust a	9
Transfer function	9
Assign a negative zero	10
Adjust K _p	10
Adjust a	11
Transfer function	11
PID controller	12
Positive zeros	12
Negative zeros	14
Transfer function	15
Apply PID controller into non-linear system	16
System performance	16
State error between nonlinear and linear	16
Voltage performance	17
Voltage error between nonlinear and linear	17
Input θ	18
Uphill	18
Voltage	18
Velocity	18
Downhill	19
Voltage	19
Velocity	19

Model

Toy car model:

DC motor:

Thus, we have equations:

 $m(dV/dt) = F_p - F_d$

 $F_d = 0.5{\cdot}C_d{\cdot}\rho{\cdot}A{\cdot}V^2$

 $V_s = I \cdot R + L(dL/dt) + V_{EMF}$

 $V_{EMF} = K_e \cdot \omega$

 $\tau_{DC} = K_t \cdot I$

 $F_p \times r = \tau_p$

 $V = \omega r / G_r$

 $\tau_p = \tau_{DC}{\cdot}G_r$

m - toy car mass

V - car velocity

Cd - Drag Coefficient

 ρ - air density

A - Front area of car

Vs, I, R, L - Armature Voltage, current, resistance and inductance of DC motor

 $V_{EMF} = Back EMF of DC motor$

 K_e , K_t = motor coefficients

 τ_{DC} , τ_p = torque provided by DC motor, torque provided by wheels

r = radius of car wheels

 $G_r = Gear ratio$

By combining all equations above, we have $d\tau_{DC}/dt = \left(Kt/L\right)\cdot\left(V_s - R\tau_{DC}/K_t - K_e\omega\right)$

$$d\omega/dt = (G_r/mr) \cdot (\tau_{DC}G_r/r - C_d\rho A\omega^2 r^2/2G_r)$$

Linearization

Linearize above system at $\omega = \omega_0$, and output Velocity, we'll have

$$\dot{\mathbf{x}} = \begin{bmatrix} -\frac{R}{L} & -\frac{K_e K_t}{L} \\ \frac{G_r^2}{mr^2} & -\frac{C_d \rho A r \omega_0}{G_r m} \end{bmatrix} \cdot \mathbf{x} + \begin{bmatrix} \frac{K_t}{L} \\ 0 \end{bmatrix} \cdot \mathbf{V}_s$$

$$\mathbf{y} = \begin{bmatrix} 0 & \frac{r}{G_r} \end{bmatrix} \cdot \mathbf{X} + 0 \cdot \mathbf{V}_{s}$$

Notice that A_{44} is really small no matter what value of ω_0 is. Thus, we can write our linearized system in state space:

$$A = \begin{bmatrix} -2 & 0 \\ 4069 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0.046 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0.0128 \end{bmatrix} \qquad D = 0$$

Then compute system transfer function from Voltage to Velocity by linearized system above:

$$\frac{\text{Transfer function by linearization}}{s^2 + 2.004s + 4.314}$$

System Identification

By applying step input to our non-linear system, and then use System Identification in MATLAB app, we get a transfer function that is computed by MATLAB.

$$\frac{\text{Transfer function by MATLAB}}{s^2 + 2s + 4.305}$$

Now we have three system, tf_MATLAB, tf_linearization and non-linear system. Notice transfer function by MATLAB and linearization looks alike. To check transfer function behaves like non-linear system

It's hard to tell there are more than one lines in the plots since they behave almost the same, which is a great news.

In the following, I'll use tf_sys representing system transfer function = $\frac{2.396}{s^2 + 2s + 4.305}$

PID

P controller

First, we can plot root locus to see how gain affects system's poles and zeros

From the plot above, notice that we can arbitrarily assign gain K_p since all poles will still remain in LHP.

Therefore, we let $K_p = 1$, and see how the system behaves after applying P controller.

After input a step input, notice output velocity doesn't go to 1, this is because our system with P controller has a final value according to K_p . We can find the property by looking at transfer function.

Transfer function

$$tf_p = \frac{K_p * 2.396}{K_p * 2.396 + s^2 + 2 * s + 4.305}$$

$$\lim_{s \to 0} tf_p = \frac{K_p * 2.396}{K_p * 2.396 + s^2 + 2 * s + 4.305} = \frac{K_p * 2.396}{K_p * 2.396 + 4.305}$$

Notice that no matter what K_p we choose, steady state value can never go to 1. Following the value we choose above, $K_p = 1$, we have steady state value = 0.3576. Therefore, even out system is stable, its output doesn't match our requirements. To solve the problem, let's attempt PI controller.

PI controller

For PI controller, we can write its transfer function $K_p + \frac{K_i}{s}$. The transfer function can

also be written by
$$\frac{K_p(s+a)}{s}$$
, where a is Ki/Kp.

Assign a positive zero

First, I simply assigned $K_p = 1$, a = 1 to see the performance of the system.

Notice that there is a zero on the right-hand side of pole at zero, which means no matter what value the K_p is, the system can never be stable. Therefore, I let K_p be negative.

Now, the transfer function of PI controller is $\frac{K_p(s+a)}{s}$, with KP < 0. I plot several graphs to see the effects of K_p and a.

Adjust K_P

Notice as K_p goes from -0.1 to -0.5, the shorter the response time, but the larger the over shoot. Besides, there is a lag in the beginning of step response.

Adjust a

Notice the smaller the a is, the more obvious the negative response at the beginning. Besides, although larger a makes system response quicker, overshoot percentage is also larger. By all those plots, I choose a = 4, since it has the shortest settling time and the least overshoot.

Transfer function

$$-0.25(s-4)$$

S

Assign a negative zero

Adjust Kp

Adjust a

By assigning negative zero, there is no more lag in the beginning of step response, and settling time is a little bit shorter than positive zero. Therefore, I choose my PI controller to be this one.

Transfer function

$$\frac{0.4(s+4)}{s}$$

PID controller

Transfer function of PID controller is $K_P + \frac{K_i}{s} + K_{DS}$, it can also be represented in

$$\frac{K_D(s^2+as+b)}{s}$$
, where $a = KP/KD$, and $b = K_i/K_D$.

Positive zeros

-0.2

No matter there is a positive zero or two positive zeros, lag in the beginning of step response is inevitable.

$$zero = 1, 2$$

Time (seconds)

To prevent from starting lag, I assign two zeros to be negative.

Negative zeros

Since we get to choose K_p, a and b, I tried a lot of values. The following plot is the values that close to our desired behavior.

I chose the values that have the shortest settling time before, but I noticed although (-4, -2) has the shortest settling time, its overshoot is much higher than (-3, -2). Besides, (-3, -2) settling is little bit longer than (-2, -4). Therefore, I chose (-3, -2) to be the zeros of PID controller.

Now we get to choose K_p , it's the value that relate to how much voltage will input to our DC motor. Let's assume we want our toy car at least has acceleration 5 m/s² within the limitation of battery. The battery's maximum output voltage is 12V.

Since $K_p = 2.2$ is the maximum gain that can meet our request, our PID controller is **Transfer function**

$$\frac{2.2(s+2)(s+3)}{s} = 11 + 13.2/s + 2.2s$$

Apply PID controller into non-linear system

To make sure the PID controller we designed by linearized system can work as well in non-linear system, I plot the following figures.

System performance

State error between nonlinear and linear

Voltage performance

Voltage error between nonlinear and linear

Input θ

After having our PID controller, I'd like to see if it can adjust DC motor when going to an uphill or a downhill. Besides, I'd like to see how much angle can our PID controller controls.

Uphill

Assume the car is in steady state (Velocity = 1m/s), and at t=5s, it meets an uphill, let's see how angle affects car's velocity and voltage input.

Voltage

Velocity

Downhill

Voltage

Velocity

