ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия» (ВШЭ ФКН ПИ)

УДК 004.852

УТВЕРЖДАЮ
Академический руководитель
образовательной программы
«Программная инженерия»
профессор департамента программной
инженерии, канд. техн. наук
В.В. Шилов
√ » 20 г

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ОБУЧЕНИЕ С ПОДКРЕПЛЕНИЕМ ДЛЯ ЗАДАЧ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ В ОБЛАКЕ (заключительный)

Руководитель НИР:	Выполнил:
Приглашенный лектор,	Студент группы БПИ204
главный инженер Huawei	образовательной программы
	«Программная инженерия»
Андрей Александрович Тихонов	Пеганов Никита Сергеевич
А. А. Тихонов	Н. С. Пеганов
«»20г.	«»20г.

1 Реферат

Перечень ключевых слов: обучение с подкреплением, reinforcement learning, RL, распределение ресурсов в облаке, облачные технологии, облачные ресурсы, Tetris, OpenAI Gym, TensorFlow, KerasRL.

Краткое описание объекта исследования: особенности выделения ресурсов при работе с облачными сервисами.

Краткое описание предмета исследования: применимость обучения с подкреплением для задачи распределения ресурсов в облаке.

Цель проекта: исследование применимости обучения с подкреплением в задачах распределения облачных ресурсов. Сравнение данного подхода с другими методами решения задачи.

Метод или методология проведения работы: метод эксперимента.

Результаты проекта:

Апробация результатов:

2 Содержание

Содержание

1	Реферат	2
2	Содержание	3
3	Основные термины, определения и сокращения	4
4	Введение	5
5	Основная часть отчёта о НИР	6
6	Заключение	7
7	Приложения	9

3 Основные термины, определения и сокращения

IT (произносится ай-ти, сокращение от англ. Information Technology) — информационные технологии. RL (англ. reinforcement learning) — обучение с подкреплением.

CPU (англ. central processing unit) — электронное устройство, исполняющее машинный код программ, главная часть аппаратного обеспечения компьютера. Иногда также называется микропроцессором или процессором. RAM (англ. Random Access Memory) — запоминающее устройство с произвольным доступом, один из видов памяти компьютера, позволяющий единовременно получить доступ к любой ячейке по её адресу на чтение или запись.

4 Введение

В первой части работы описано применение обучения с подкреплением для обучения агента самостоятельному прохождению в компьютерноц игры "Тетрис"[?]. Эта игра представляет собой клетчатое поле шириной 10 клеток и высотой 20 клеток. В верхней части поля друг за другом появляются клетчатые фигурки, состоящие из 4 клеток (тетрамино). Фигурки имеют форму, напоминающую форму букв "I "Z "L "Т а также квадрат из четырех клеток. Пользователь имеет возможность поворачивать фигурку на 90°, а также двигать ее по горизонтали во время падения. В случае заполнения одной из строк частями фигурок строка "исчезает": все фигурки выше нее опускаются на одну строку вниз. Каждая "исчезнувшая"строка приносит игроку 1 очко. Во второй части работы обучение с подкреплением применено для решения задач распределения облачных ресурсов.

Актуальность

Облачные технологии позволяют обеспечить круглосуточную и бесперебойную работу интернет-сервисов, что делает их востребованными во всех сферах ІТ-индустрии. Облачными вычислениями занимаются Amazon, Google, Huawei и другие крупнейшие информационные компании[?][?]. В 2020 году мировой рынок облачных вычислений оценивается в 289.25 миллиардов долларов[?]. Распределение облачных ресурсов — одна из важнейших задач облачных вычислений.

Предмет исследования

Возможность использования обучения с подкреплением для решения задачи распределения ресурсов облака.

Методы исследования

Экспериментальное сравнение показателей RL в ходе решения задачи распределения облачных ресурсов с иными используемыми на практике способами. Для наглядности в работе также решена близкая задача: автоматическая игра в "Тетрис"с помощью обучения с подкреплением. Данная компьютерная игра выбрана неслучайно: она имеет концепции, сходные с основной задачей. Во-первых, ее основная цель — упаковка фигур. В решаемой задаче так же требуется распределять задачи пользователей между имеющимися ресурсами серверов. Во-вторых, игра имеет два параметра — координаты X и Y. Основная задача так же имеет два параметра, которые требуется распределять: СРU и RAM. Также решение задачи автоматической игры в "Тетрис"позволила научиться применять использованные библиотеки и фреймворки на практике.

Цели и задачи работы

Определение эффективность обучения с подкреплением в задаче распределения ресурсов в облаке.

Новизна и достоверность полученных результатов

Теоретическая значимость

Практическая ценность

В случае превосходства RL над другими методами в рамках решения задачи распределения облачных ресурсов применение данного способа машинного обучения способно сократить нагрузку на сервера, предоставляющие доступ к облачным сервисам. Это позволит уменьшить расходы компаний на поддержку их работоспособности, а также расходы на производство при сокращении количества серверов. Проект имеет практическую ценность для экологии: уменьшение расходов электроэнергии приведет к уменьшению углеродного следа компаниий.

5 Основная часть отчёта о НИР

6 Заключение

Список использованных источников

- [1] Erik D. Demaine, Susan Hohenberger, David Liben-Nowell (2002) Tetris is Hard, Even to Approximate // Сайт Arxiv.org. 21 октября (https://arxiv.org/abs/cs/0210020) Просмотрено: 11.12.2021
- Parag[2] Harvinder Singh, AnshuBhasin, RavikantKaveri(2021)QRAS: efficient resource inscheduling cloud computing Сайт allocation task Researchgate.net. Апрель (https://www.researchgate.net/publication/350192028 QRAS efficient resource allocation for task scheduling in cloud computing) Просмотрено: 11.12.2021
- [3] Renan SamueldaSilva, RafaelStubsParpinelli (2017)Playing the Original Game Algorithm // Coded Genetic Сайт Researchgate.net. Tetris Using a Real Октрябрь (https://www.researchgate.net/publication/322321608 Playing the Original Game Boy Tetris Using a Real Coded Genetic Algorithm) Просмотрено: 11.12.2021
- [4] X. Chen, H. Wang, W. Wang, Y. Shi, and Y. Gao (2009) Apply ant colony optimization to tetris // Сайт Dl.acm.org. 8 июля (https://dl.acm.org/doi/10.1145/1569901.1570136) Просмотрено: 11.12.2021
- [5] L. Langenhoven, W. S. van Heerden, and A. P. Engelbrecht (2010) Swarm tetris: Applying particle swarm optimization to tetris // Сайт Ieeexplore.ieee.org. 18-23 июля (https://ieeexplore.ieee.org/document/5586033) Просмотрено: 11.12.2021
- [6] nuno-faria, nlinker (Nick Linker) (2019) A bot that plays tetris using deep reinforcement learning. // Сайт Github.com. 7 сентября (https://github.com/nuno-faria/tetris-ai) Просмотрено: 11.12.2021
- [7] Baekalfen (Mads Ynddal) (2021) Game Boy emulator written in Python. // Сайт Github.com. 22 октября (https://github.com/Baekalfen/PyBoy) Просмотрено: 01.02.2022
- [8] Christian Kauten (2019) An OpenAI Gym environment for Tetris on The Nintendo Entertainment System (NES) based on the nes-py emulator. // Сайт Рурі.org. 3 июня (https://github.com/Baekalfen/PyBoy) Просмотрено: 01.02.2022
- [9] OpenAI (2021) A toolkit for developing and comparing reinforcement learning algorithms. // Сайт Github.com. 2 октября (https://github.com/openai/gym) Просмотрено: 01.02.2022
- [10] accel-brain, chimera0 (2020) Reinforcement Learning Library: pyqlearning. // Сайт Рурі.org. 13 июля (https://pypi.org/project/pyqlearning/) Просмотрено: 01.02.2022
- [11] Tensorforce (2021) Tensorforce: a TensorFlow library for applied reinforcement learning. // Сайт Github.com. 30 августа (https://github.com/tensorforce/tensorforce) Просмотрено: 01.02.2022
- [12] Keras-RL (2018) Deep Reinforcement Learning for Keras. // Сайт Github.com. 1 мая (https://github.com/keras-rl/keras-rl) Просмотрено: 01.02.2022
- [13] tensorflow (2021) An Open Source Machine Learning Framework for Everyone. // Сайт Github.com. 4 ноября (https://github.com/tensorflow/tensorflow) Просмотрено: 01.02.2022
- [14] Cade Metz (2015) TensorFlow, Google's Open Source AI, Signals Big Changes in Hardware Too. // Сайт Wired.com. 10 ноября (https://www.wired.com/2015/11/googles-open-source-ai-tensorflow-signals-fast-changing-hardware-world/) Просмотрено: 02.02.2022
- [15] Vihar Kurama, Samhita Alla (2018) Обучение с подкреплением на языке Python. // Сайт Habr.com. 28 декабря (https://habr.com/ru/company/piter/blog/434738/) Просмотрено: 02.02.2022

7 Приложения

Приложение 1

Ссылка на репозиторий проекта с исходным кодом и всеми использованными материалами. https://github.com/NikPeg/Reinforcement-learning-for-resource-allocation-tasks-in-the-cloud