Updates on CLOC and SILC

Tetsu Iwata*, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi

DIAC 2015 September 28, 2015, Singapore

^{*} Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045

CLOC and SILC

CLOC

- Compact Low-Overhead CFB, FSE 2014
- Improves CCM, EAX, and EAX-prime in terms of
 - implementation overhead beyond the blockcipher
 - precomputation complexity
 - memory requirement
- Suitable for handling short input data on small microprocessors

• SILC

- SImple Lightweight CFB, DIAC 2014
- Hardware oriented version of CLOC

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

Overview of CLOC and SILC

- HASH and PRF: variants of CBC-MAC
- ENC: variant of CFB encryption mode

Parameters of CLOC and SILC

• *E*: blockcipher

• l_N : nonce length

• τ : tag length

CLOC

SILC

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

Comment at CFRG

- [Cfrg] Attacker changing tag length in OCB
 - Comment for http://tools.ietf.org/html/draft-irtf-cfrg-ocb-02 by James Manger on May 29, 2013
 - "OCB with tag lengths of 64, 96, and 128 bits are defined. 64-bit and 96-bit tags are simply truncated 128-bit tags. The tag length is not mixed into the ciphertext. It never affects any input to an AES operation. Consequently, given a valid output from the AEAD_AES_128_OCB_TAGLEN128 algorithm it is trivial to produce a valid output from the AEAD_AES_128_OCB_TAGLEN64 algorithm -- just drop the last 8 bytes. Is this ok?"
- Similar issues pointed out for CCM [1] and OMD [2]
 - [1] Rogaway, Wagner: A Critique of CCM. Cryptology ePrint Archive, Report 2003/070 (2003) $_{
 m 10}$

Parameter Change in OCB

• (N, A, M, C, T) for AEAD_AES_128_OCB_TAGLEN128

• (N, A, C, T') is valid for AEAD_AES_128_OCB_TAGLEN64

Parameter Change in OCB

- This does not contradict the provable security result
 - assumes that parameters are fixed
- Designers usually expect that keys are independent if parameters are changed
 - Not an attack, but a kind of "parameter misuse," related to the robustness
 - CAESAR: Competition for Authenticated Encryption:
 Security, Applicability, and Robustness
- Easy to address
 - Nonce = "0...01 | N" -> Nonce = "TAGLEN | 0...01 | N"
 - Provable security result is maintained

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

CLOC and SILC

- (N, A, M, C, T) for SILC with $l_N=96$ and $\tau=128$
 - assume that $msb_{32}(N)=0...0$

- (N', A, C, T') is valid for the parameters $l_N=64$ and $\tau=64$ with N' = $lsb_{64}(N)$ and T' = $msb_{64}(T)$
- A similar observation of changing the tag length holds for CLOC

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

Introduce param

- param: an 8-bit constant that depends on the parameters
- param is hardcoded into encryption and decryption algorithms
- use "param | | N" instead of N

Definition of param for CLOC

	E	ℓ_N	au	param
*	AES-128	12	8	0xc0
	AES-128	12	12	0xc1
	AES-128	12	16	0xc2
	AES-128	12	4	0xc3
*	AES-128	8	8	0xd0
	AES-128	8	12	0xd1
	AES-128	8	16	0xd2
	AES-128	8	4	0xd3
	AES-128	14	8	0xe0
	AES-128	14	12	0xe1
	AES-128	14	16	0xe2
	AES-128	14	4	0xe3

E	ℓ_N	au	param
* TWINE-80	6	4	0xcc
TWINE-80	6	6	0xcd
TWINE-80	6	8	0xce
TWINE-80	4	4	0xdc
TWINE-80	4	6	0xdd
TWINE-80	4	8	0xde

• lengths are in byes, param is in hex, * denotes the recommended parameter

Definition of param for SILC

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\overline{}$	$\overline{\ell_N}$	au	param
* AES-128 12 8 0xc0	* PRESENT-80	6	4	0xc4
AES-128 12 12 0xc1	PRESENT-80	6	6	0xc5
AES-128 12 16 0xc2	PRESENT-80	6	8	0xc6
AES-128 12 4 0xc3	PRESENT-80	4	4	0xd4
* AES-128 8 8 0xd0	PRESENT-80	4	6	0xd5
AES-128 8 12 0xd1	PRESENT-80	4	8	0xd6
AES-128 8 16 0xd2	* LED-80	6	4	0xc8
AES-128 8 4 $0xd3$	LED-80	6	6	0xc9
AES-128 14 8 $0xe0$	LED-80	6	8	0xca
AES-128 14 12 0xe1	LED-80	4	4	0xd8
AES-128 14 16 0xe2	LED-80	4	6	0xd9
AES-128 14 4 0xe3	LED-80	4	8	0xda

 lengths are in byes, param is in hex, * denotes the recommended parameter

CLOC v2

SILC v2

Notes

- param does not mean that CLOC and SILC handle variable length nonces nor variable length tags
 - The parameters have to be fixed during the lifetime of the secret key
- param does not affect the provable security results
 - "param | N" can be considered as the nonce
- param does not remove the dependency to other blockcipher modes of operation
 - the concurrent use (with the same secret key) of CLOC and ECB mode is insecure
 - Similarly, CLOC and SILC cannot be used concurrently

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and S¹/₂
- Updates on implementation results

Updates on Software Implementation

- CLOC at FSE 2014
 - Intel (R) Core (TM) i5-3427U 1.80GHz (Ivy Bridge family),
 AES-128, AES-NI, about 4.9 cpb
 - for a long plaintext (more than 2²⁰ blocks) and empty associated data
- SILC at DIAC 2014
 - about the same speed with the same processor and the same input

Updates on Software Implementation

- Updates
 - Intel (R) Core (TM) i5-4570 3.20GHz (Haswell family),
 AES-128, AES-NI
 - Seral AES runs at 4.44 cpb
 - CLOC v2 and SILC v2 run at 4.56 cpb
 - very close to the speed of seral AES

Updates on Hardware Implementation

ASIC implementation

- reference implementation (non-optimized, encryptionand-decryption implemented)
- Environment: 90nm standard cell library with logic synthesis done by Synopsys DC Version D-2010.03-SP1-1

CLOC

AES		TWINE			
AES128_CLOC	18991.5	TWINE80_CLOC	5917.8		
AES Core	10207.8	TWINE Core	1459.5		
ratio	1.9	ratio	4.1		

in GE (Gate Equivalent)

Updates on Hardware Implementation

ASIC implementation

- reference implementation (non-optimized, encryptionand-decryption implemented)
- Environment: 90nm standard cell library with logic synthesis done by Synopsys DC Version D-2010.03-SP1-1

• SILC

AES		TWINE		PRESENT		
AES128_SILC	17466.0	TWINE80_SILC	5178.0	PRESENT80_CLOC	5532.3	
AES Core	10207.8	TWINE Core	1459.5	PRESENT Core	1817.3	
ratio	1.7	ratio	3.5	ratio	3.0	

in GE (Gate Equivalent)

Other Updates and Future Plan

- Parameter space has been adjusted to handle param
- Intellectual Property statement of CLOC has been updated
- Full security proof of SILC
- Web site:
 - http://www.nuee.nagoya-u.ac.jp/labs/tiwata/AE/
 - documents, slides, test vectors
- Future plan:
 - Analysis of CLOC and SILC in terms of INT-RUP security
 - Unify the documents of CLOC and SILC into one document
 - Designing a variant of SILC for empty associated data

- Brief review of CLOC and SILC
- An issue discussed at CFRG related to OCB
- How the issue affects CLOC v1 and SILC v1
- How this is addressed in CLOC v2 and SILC v2
- Updates on implementation results

Thank you

Details of param for CLOC

- n=128, param = (p1, p2,..., p8) - (p1, p2) = (1, 1) - (p3, p4) = (0, 0) if $l_N = 12$, (0, 1) if $l_N = 8$, (1, 0) if $l_N = 14$ - (p5, p6) = (0, 0) (reserved for AES)
 - (p7, p8) = (0, 0) if $\tau = 8$, (0, 1) if $\tau = 12$, (1, 0) if $\tau = 16$, (1, 1) if $\tau = 4$
- n=64, param = (p1, p2,..., p8)
 - -(p1, p2) = (1, 1)
 - (p3, p4) = (0, 0) if $l_N = 6$, (0, 1) if $l_N = 4$
 - (p5, p6) = (1, 1) (reserved for Twine)
 - (p7, p8) = (0, 0) if $\tau = 4$, (0, 1) if $\tau = 6$, (1, 0) if $\tau = 8$

Details of param for SILC

- n=128, param = (p1, p2,..., p8)
 - same as CLOC

- n=64, param = (p1, p2,..., p8)
 - (p1, p2) = (1, 1)
 - (p3, p4) = (0, 0) if $l_N = 6$, (0, 1) if $l_N = 4$
 - (p5, p6) = (0, 1) if Present, (1, 0) if LED
 - (p7, p8) = (0, 0) if $\tau = 4$, (0, 1) if $\tau = 6$, (1, 0) if $\tau = 8$