Provide justification or explanation for all of your assertions.

- 1. Suppose that $A = [\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4]$ is a 3×4 matrix whose column vectors are four <u>nonzero</u> vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3$, and \vec{a}_4 in \mathbb{R}^3 . Describe, with as much specificity as possible, A_{rref} , the row-reduced echelon form of A if the vectors
 - a. $\vec{a}_1, \vec{a}_2, \vec{a}_3$, and \vec{a}_4 are coplanar and \vec{a}_1 and \vec{a}_2 are not collinear.
 - b. \vec{a}_1, \vec{a}_2 and \vec{a}_3 are not coplanar.
 - c. \vec{a}_1, \vec{a}_2 and \vec{a}_3 are not coplanar and $4\vec{a}_1 3\vec{a}_2 + 2\vec{a}_3 \vec{a}_4 = \vec{0}$.
- 2. Suppose that $A = [\vec{a}_1 | \vec{a}_2 | \vec{a}_3 | \vec{a}_4]$ is a 4×4 matrix whose column vectors are four <u>nonzero</u> vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3$, and \vec{a}_4 in \mathbb{R}^4 . Describe, with as much specificity as possible, A_{rref} , the row-reduced echelon form of A if
 - a. $(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4)$ is linearly independent.
 - b. $(\vec{a}_1, \vec{a}_2, \vec{a}_3)$ is linearly independent and $(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4)$ is linearly dependent.
- c. $(\vec{a}_1,\vec{a}_2,\vec{a}_3)$ and $(\vec{a}_1,\vec{a}_2,\vec{a}_4)$ are linearly independent and $(\vec{a}_1,\vec{a}_2,\vec{a}_3,\vec{a}_4)$ is linearly dependent.
- 3. Consider a linear system of equations summarized by the matrix equation $A \vec{x} = \vec{b}$ where A is an $m \times n$ matrix and $b \in \mathbf{R}^m$. Suppose that A has p pivots.
 - a. If p = m, what can be said about the number of solutions of $A\vec{x} = \vec{b}$?
 - b. If p = n, what can be said about the number of solutions of $A\vec{x} = \vec{b}$?
 - c. If p = m = n, what can be said about the number of solutions of $A \vec{x} = \vec{b}$?