Workshop 1 - Data analysis with Pandas

Student Number: 2302546

```
In [1]:
          #importing necessary libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          # Loading dataset to a dataframe.
In [2]:
          data = pd.read_csv('adult.data.csv')
          data.head()
In [3]:
Out[3]:
                                                 education-
                                                             marital-
             age workclass
                             fnlwgt education
                                                                       occupation relationship
                                                       num
                                                               status
                                                               Never-
                                                                            Adm-
                                                                                        Not-in-
          0
              39
                   State-gov
                              77516
                                       Bachelors
                                                         13
                                                                                                White
                                                                                                          M
                                                              married
                                                                           clerical
                                                                                         family
                                                             Married-
                   Self-emp-
                                                                             Exec-
              50
                              83311
                                       Bachelors
                                                         13
                                                                  civ-
                                                                                       Husband White
                                                                                                          M
                     not-inc
                                                                        managerial
                                                               spouse
                                                                         Handlers-
                                                                                        Not-in-
          2
              38
                     Private 215646
                                        HS-grad
                                                             Divorced
                                                                                                White
                                                                                                          M
                                                                          cleaners
                                                                                         family
                                                             Married-
                                                                         Handlers-
          3
              53
                     Private 234721
                                           11th
                                                          7
                                                                                      Husband
                                                                                                 Black
                                                                  civ-
                                                                                                          M
                                                                          cleaners
                                                               spouse
                                                             Married-
                                                                             Prof-
              28
                     Private 338409
                                       Bachelors
                                                         13
                                                                                          Wife
                                                                                                 Black Femi
                                                                  civ-
                                                                          specialty
                                                               spouse
```

Q1. Use head(2), head(10), tail(2). Explain your observations, in no more than 2 to 3 ĺines.

Solution:

```
In [4]:
        data.head(2)
```

Out[4]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male
										•

In [5]:

data.head(10)

Out[5]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	s
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Mi
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	M
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Mi
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fem
5	37	Private	284582	Masters	14	Married- civ- spouse	Exec- managerial	Wife	White	Fem
6	49	Private	160187	9th	5	Married- spouse- absent	Other- service	Not-in- family	Black	Fem
7	52	Self-emp- not-inc	209642	HS-grad	9	Married- civ- spouse	Exec- managerial	Husband	White	Mi
8	31	Private	45781	Masters	14	Never- married	Prof- specialty	Not-in- family	White	Fem
9	42	Private	159449	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Ma
										•

In [6]: data.tail(2)

Out[6]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
32559	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-child	White
32560	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	White

Using data.head(2) streamlines the displayed data to only the first two data on the dataset, a similar reaction happens with data.head(10) which indicates that the number in the parenthesis specifies the number of lines it needs to display. While the command next to 'data.' specifies whether the displayed data needs to start from. While the function .tail(2) displays the lasttwo rows of the dataset, these command however affects only the rows while showing all the columns.

```
data.shape
In [7]:
         (32561, 15)
Out[7]:
```

Generating your unique dataset for this task

```
data = data.sample(n=30000, random state = 46)
 In [8]:
 In [9]:
           data.shape
           (30000, 15)
 Out[9]:
In [10]:
           data.describe()
Out[10]:
                                                   education-
                                                                                               hours-per-
                           age
                                       fnlwgt
                                                                capital-gain
                                                                               capital-loss
                                                        num
                                                                                                    week
           count 30000.000000
                                 3.000000e+04
                                                 30000.000000
                                                               30000.000000
                                                                             30000.000000
                                                                                             30000.000000
                                 1.895246e+05
                                                    10.071033
                                                                1063.000233
                                                                                                40.457667
           mean
                      38.580167
                                                                                87.530100
              std
                      13.650360
                                 1.048394e+05
                                                     2.573482
                                                                7286.103159
                                                                                403.745767
                                                                                                12.381434
             min
                      17.000000
                                 1.228500e+04
                                                     1.000000
                                                                   0.000000
                                                                                  0.000000
                                                                                                 1.000000
            25%
                      28.000000
                                 1.180010e+05
                                                     9.000000
                                                                   0.000000
                                                                                  0.000000
                                                                                                40.000000
            50%
                      37.000000
                                 1.783155e+05
                                                    10.000000
                                                                   0.000000
                                                                                  0.000000
                                                                                                40.000000
            75%
                      48.000000
                                 2.367048e+05
                                                    12.000000
                                                                   0.000000
                                                                                  0.000000
                                                                                                45.000000
            max
                      90.000000
                                1.484705e+06
                                                    16.000000
                                                               99999.000000
                                                                              4356.000000
                                                                                                99.000000
```

```
data['education-num'].value_counts()
In [11]:
```

```
9712
Out[11]:
         10
               6711
         13
               4912
         14
               1576
         11
               1264
         7
               1073
                999
         12
         6
                864
         4
                607
         15
                521
         5
                477
         8
                 397
         16
                 377
         3
                 300
         2
                160
         1
                 50
         Name: education-num, dtype: int64
         data['education'].value_counts()
In [12]:
          HS-grad
                           9712
Out[12]:
          Some-college
                           6711
          Bachelors
                           4912
          Masters
                          1576
          Assoc-voc
                          1264
          11th
                          1073
          Assoc-acdm
                            999
          10th
                            864
          7th-8th
                            607
          Prof-school
                            521
          9th
                            477
          12th
                            397
          Doctorate
                            377
          5th-6th
                            300
          1st-4th
                            160
          Preschool
                             50
         Name: education, dtype: int64
         data = data.drop(['fnlwgt'], axis=1)
In [13]:
In [14]:
         data.shape
         (30000, 14)
Out[14]:
         data.describe(include='all')
In [15]:
```

, 2.37 FIVI				Workshop	i - Dala allalysis i	with anduo			
Out[15]:		age	workclass	education	education- num	marital- status	occupation	relationship	ra
	count	30000.000000	30000	30000	30000.000000	30000	30000	30000	300
	unique	NaN	9	16	NaN	7	15	6	
	top	NaN	Private	HS-grad	NaN	Married- civ- spouse	Prof- specialty	Husband	Wh
	freq	NaN	20917	9712	NaN	13817	3803	12181	256
	mean	38.580167	NaN	NaN	10.071033	NaN	NaN	NaN	Ná
	std	13.650360	NaN	NaN	2.573482	NaN	NaN	NaN	Ná
	min	17.000000	NaN	NaN	1.000000	NaN	NaN	NaN	Ná
	25%	28.000000	NaN	NaN	9.000000	NaN	NaN	NaN	Ná
	50%	37.000000	NaN	NaN	10.000000	NaN	NaN	NaN	Ná
	75%	48.000000	NaN	NaN	12.000000	NaN	NaN	NaN	Ná
	max	90.000000	NaN	NaN	16.000000	NaN	NaN	NaN	Nã
4									•
In [16]:	data['	education'].	value_cou	nts()					
Out[16]:	HS-grad Some-college Bachelors Masters Assoc-voc 11th Assoc-acdm 10th 7th-8th Prof-school 9th 12th Doctorate		712 711 912 576 264 973 999 864 607 521 477 397						

```
data['education'].nunique()
In [17]:
```

5th-6th 1st-4th

Preschool

300

160

Name: education, dtype: int64

50

Out[17]:

data['age'].value_counts()

```
830
          36
Out[18]:
          34
                825
          31
                818
          33
                813
          35
                810
          83
                   5
          85
                   3
          88
                   3
          86
                   1
          Name: age, Length: 73, dtype: int64
```

data.boxplot(column='age') In [19]:

<AxesSubplot:> Out[19]:


```
data['age'].hist(bins=100)
In [20]:
          <AxesSubplot:>
Out[20]:
```


data.age.hist(bins=50) In [21]:

<AxesSubplot:> Out[21]:

In [22]: data['sex'].value_counts()

Male 20091 Out[22]: 9909 Female

Name: sex, dtype: int64

In [23]: data.columns

```
Index(['age', 'workclass', 'education', 'education-num', 'marital-status',
Out[23]:
                'occupation', 'relationship', 'race', 'sex', 'capital-gain',
                'capital-loss', 'hours-per-week', 'native-country', 'class-label'],
               dtype='object')
         data['workclass'].value_counts()
In [24]:
                             20917
          Private
Out[24]:
                             2341
          Self-emp-not-inc
          Local-gov
                              1924
                             1693
          State-gov
                             1184
          Self-emp-inc
                             1036
          Federal-gov
                               885
          Without-pay
                                13
          Never-worked
         Name: workclass, dtype: int64
```

Q2. How many males and females exist in the dataset? In a new cell, use a correct command to answer the question and write your answer.

Solution:

```
In [25]: data['sex'].value_counts()
          Male
                     20091
Out[25]:
          Female
                     9909
         Name: sex, dtype: int64
         data['sex'].value_counts()
```

We have 20,091 Males and 9,909 females in the dataset according to Out[25]

Applying groupby functions in order to summarise the data.

```
In [26]: data['age'].groupby([data['sex']]).mean()
         sex
Out[26]:
          Female
                    36.827531
                    39.444577
          Male
         Name: age, dtype: float64
         data['age'].groupby([data['sex'],data['education']]).mean()
In [27]:
```

0+[27].	sex	education	
Out[27]:	Female	10th	35.109091
		11th	30.311224
		12th	30.257576
		1st-4th	48.577778
		5th-6th	43.972603
		7th-8th	49.925676
		9th	42.132353
		Assoc-acdm	36.275689
		Assoc-voc	37.594421
		Bachelors	35.649038
		Doctorate	45.038961
		HS-grad	38.597771
		Masters	43.103659
		Preschool	41.750000
		Prof-school	40.244186
		Some-college	33.765140
	Male	10th	38.371817
		11th	33.493392
		12th	32.845283
		1st-4th	45.495652
		5th-6th	42.352423
		7th-8th	48.045752
		9th	40.519062
		Assoc-acdm	38.048333
		Assoc-voc	38.691729
		Bachelors	40.307870
		Doctorate	48.550000
		HS-grad	39.170268
		Masters	44.459410
		Preschool	43.323529
		Prof-school	45.487356
		Some-college	37.048609
	Name: ag	e, dtype: float64	

Name: age, dtype: float64

Q3. What is the average contribution to capital-gain of each sex and occupation category?

```
In [28]: data['capital-gain'].groupby([data['sex'],data['occupation']]).mean()
```

			•
Out[28]:	sex	occupation	
ouc[20].	Female	?	326.553966
		Adm-clerical	474.735745
		Craft-repair	796.308057
		Exec-managerial	1058.988837
		Farming-fishing	691.385965
		Handlers-cleaners	105.798701
		Machine-op-inspct	177.585170
		Other-service	154.563603
		Priv-house-serv	300.323077
		Prof-specialty	1295.553791
		Protective-serv	1734.301370
		Sales	288.785775
		Tech-support	702.964968
		Transport-moving	438.146341
	Male	}	855.050483
		Adm-clerical	494.631255
		Armed-Forces	0.000000
		Craft-repair	591.091339
		Exec-managerial	2761.695231
		Farming-fishing	569.687427
		Handlers-cleaners	285.102210
		Machine-op-inspct	405.017319
		Other-service	247.460260
		Priv-house-serv	74.250000
		Prof-specialty	3442.656741
		Protective-serv	549.540698
		Sales	1872.088116
		Tech-support	697.527002
		Transport-moving	408.084527
	Name: c	apital-gain, dtype: fl	oat64

Utilizing the "groupby" function, I grouped the sex and occupation by the capital gain data with the mean in consideration.

```
data['occupation'].groupby([data['sex']]).value_counts()
```

```
occupation
         sex
Out[29]:
                   Adm-clerical
                                       2350
                   Other-service
                                       1643
                   Prof-specialty
                                       1385
                   Sales
                                       1167
                   Exec-managerial
                                       1075
                                        769
                   Machine-op-inspct
                                        499
                   Tech-support
                                        314
                                        211
                   Craft-repair
                   Handlers-cleaners
                                        154
                   Priv-house-serv
                                       130
                                        82
                   Transport-moving
                   Protective-serv
                                        73
                   Farming-fishing
                                        57
                                       3591
          Male
                   Craft-repair
                   Exec-managerial
                                       2684
                   Prof-specialty
                                       2418
                   Sales
                                       2213
                   Transport-moving
                                       1396
                   Other-service
                                       1384
                   Machine-op-inspct
                                       1328
                   Adm-clerical
                                       1139
                   Handlers-cleaners
                                       1086
                                        931
                   Farming-fishing
                                        851
                                        537
                   Tech-support
                   Protective-serv
                                        516
                   Armed-Forces
                                          8
                   Priv-house-serv
```

Name: occupation, dtype: int64

Q4. Identify the average capital-gain by males and females accross different marital-status.

```
data['capital-gain'].groupby([data['sex'],data['marital-status']]).mean()
In [30]:
                 marital-status
         sex
Out[30]:
          Female
                                           416.625254
                  Divorced
                  Married-AF-spouse
                                             0.000000
                  Married-civ-spouse
                                          1618.297760
                  Married-spouse-absent 245.388298
                  Never-married
                                           345.180100
                  Separated
                                          357.830743
                  Widowed
                                          492.782034
         Male
                  Divorced
                                         1140.543385
                  Married-AF-spouse
                                          912.250000
                  Married-civ-spouse
                                          1746.369542
                  Married-spouse-absent
                                           987.148515
                  Never-married
                                           420.263332
                  Separated
                                           870.424658
                                           799.467532
                  Widowed
         Name: capital-gain, dtype: float64
```

Capital gain data grouped by the sex and marital status with mean in consideration shown in my input above to give the classification as requested by the question.

```
In [31]:
          data['race'].value counts()
```

```
White
                                 25624
Out[31]:
          Black
                                   2901
          Asian-Pac-Islander
                                   945
          Amer-Indian-Eskimo
                                    285
          0ther
                                    245
          Name: race, dtype: int64
```

Question. What is the maximum age accross differnt races?

```
In [32]: data['age'].groupby([data['race']]).max()
Out[32]:
          Amer-Indian-Eskimo
          Asian-Pac-Islander
                                 90
          Other
                                 77
          White
                                 90
         Name: age, dtype: int64
```

Q5. Are minimum and maximum age by sex same?

```
In [33]: #Minimum age by sex:
         data['age'].groupby([data['sex']]).min()
         sex
Out[33]:
          Female
                    17
          Male
                    17
         Name: age, dtype: int64
In [34]:
         #Maximum age by sex
         data['age'].groupby([data['sex']]).max()
         sex
Out[34]:
          Female
                    90
          Male
                    90
         Name: age, dtype: int64
```

- Maximum age for male and female is the same (90)
- Minimum age for male and female is also the same (17)
- However, there is a difference between the maximum and the minimum age of the sexes.

Data Visualisation

```
import matplotlib.pyplot as plt
In [35]:
         %matplotlib inline
         data.describe()
In [36]:
```

4356.000000

99.000000

Out[36]:

		age	education-num	capital-gain	capital-loss	hours-per-week
C	count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
	mean	38.580167	10.071033	1063.000233	87.530100	40.457667
	std	13.650360	2.573482	7286.103159	403.745767	12.381434
	min	17.000000	1.000000	0.000000	0.000000	1.000000
	25%	28.000000	9.000000	0.000000	0.000000	40.000000
	50%	37.000000	10.000000	0.000000	0.000000	40.000000
	75%	48.000000	12.000000	0.000000	0.000000	45.000000

16.000000 99999.000000

In [37]: data['age'].hist(bins=50)

90.000000

<AxesSubplot:> Out[37]:

max

Try-it-yourself

data['age'].hist(bins=100) In [38]:

<AxesSubplot:> Out[38]:

There are differences between the two graphs. The width of the bars differs as well the bar's fusion.

```
data.boxplot(column='age')
In [39]:
          <AxesSubplot:>
Out[39]:
```



```
data['capital-gain'].hist(bins=100)
In [40]:
         <AxesSubplot:>
Out[40]:
```



```
In [41]:
         data.boxplot(column='capital-gain')
```

<AxesSubplot:> Out[41]:


```
data.boxplot(column='age',by = 'education', grid=False, rot = 45, fontsize = 10)
In [42]:
         <AxesSubplot:title={'center':'age'}, xlabel='education'>
Out[42]:
```



```
data['education'].value_counts()
In [43]:
          HS-grad
                           9712
Out[43]:
                           6711
          Some-college
          Bachelors
                           4912
          Masters
                           1576
          Assoc-voc
                           1264
           11th
                           1073
                            999
          Assoc-acdm
           10th
                            864
           7th-8th
                            607
          Prof-school
                            521
          9th
                            477
                            397
           12th
                            377
          Doctorate
           5th-6th
                            300
                            160
           1st-4th
                             50
          Preschool
          Name: education, dtype: int64
          data.boxplot(column='capital-gain', by = 'education', grid=False, rot = 45, fontsis
In [44]:
          <AxesSubplot:title={'center':'capital-gain'}, xlabel='education'>
Out[44]:
```


[45]:	data['marital-status'].	value_counts
out[45]:	Married-civ-spouse	13817
Juc[+J].	Never-married	9830
	Divorced	4088
	Separated	944
	Widowed	911
	Married-spouse-absent	390
	Married-AF-spouse	20
	Name: marital-status, d	type: int64

Checking NULL values in the dataset

```
data.apply(lambda x: sum(x.isnull()), axis = 0)
In [46]:
          age
Out[46]:
         workclass
                            0
          education
                            0
          education-num
                            0
          marital-status
                            0
          occupation
          relationship
          race
          sex
          capital-gain
          capital-loss
                            0
                            0
         hours-per-week
          native-country
                            0
          class-label
                            0
          dtype: int64
```

```
In [47]:
          data['native-country'].value_counts()
           United-States
                                           26898
Out[47]:
           Mexico
                                             594
                                             536
           Philippines
                                             176
           Germany
                                             126
           Canada
                                             111
           Puerto-Rico
                                             106
           El-Salvador
                                             100
           India
                                              91
                                              89
           Cuba
           England
                                              86
           South
                                              77
           Jamaica
                                              72
                                              70
           China
                                              65
           Italy
           Dominican-Republic
                                              64
           Vietnam
                                              62
                                              59
           Guatemala
           Japan
                                              53
           Poland
                                              52
           Columbia
                                              50
           Taiwan
                                              44
           Haiti
                                              41
           Iran
                                              37
           Portugal
                                              33
                                              30
           Nicaragua
                                              29
           Peru
           France
                                              28
                                              27
           Ecuador
                                              27
           Greece
           Ireland
                                              23
           Trinadad&Tobago
                                              18
           Laos
                                              17
           Hong
                                              17
           Cambodia
                                              16
           Thailand
                                              15
           Yugoslavia
                                              14
           Honduras
                                              13
           Outlying-US(Guam-USVI-etc)
                                              13
           Hungary
                                              12
           Scotland
                                               9
          Name: native-country, dtype: int64
          data['occupation'].groupby([data['sex']]).value_counts()
```

Out[48]:	sex	occupation	
Ouc[48].	Female	Adm-clerical	2350
		Other-service	1643
		Prof-specialty	1385
		Sales	1167
		Exec-managerial	1075
		?	769
		Machine-op-inspct	499
		Tech-support	314
		Craft-repair	211
		Handlers-cleaners	154
		Priv-house-serv	130
		Transport-moving	82
		Protective-serv	73
		Farming-fishing	57
	Male	Craft-repair	3591
		Exec-managerial	2684
		Prof-specialty	2418
		Sales	2213
		Transport-moving	1396
		Other-service	1384
		Machine-op-inspct	1328
		Adm-clerical	1139
		Handlers-cleaners	1086
		?	931
		Farming-fishing	851
		Tech-support	537
		Protective-serv	516
		Armed-Forces	9
		Priv-house-serv	8
	Namo: or	cupation dtype: int64	

Name: occupation, dtype: int64

Data transformation

Label Encoding

```
In [49]:
         from sklearn.preprocessing import LabelEncoder
         data.head()
In [50]:
```

Out[50]:

```
marital-
                                             education-
                  age workclass education
                                                                  occupation relationship
                                                                                            race
                                                                                                     sex
                                                  num
                                                           status
                                                         Married-
                                                                       Adm-
           11568
                   32
                          Private
                                    HS-grad
                                                      9
                                                                                 Husband
                                                                                          White
                                                                                                    Male
                                                             civ-
                                                                      clerical
                                                          spouse
                         Federal-
                                                          Never-
                                                                        Prof-
                                                                                  Not-in-
           28705
                   59
                                    Masters
                                                     14
                                                                                           White
                                                                                                 Female
                                                                                   family
                                                         married
                                                                     specialty
                             gov
                                                          Never-
                                                                                  Not-in-
                                                      9
            4451
                   19
                          Private
                                    HS-grad
                                                                  Craft-repair
                                                                                           White
                                                                                                 Female
                                                         married
                                                                                    family
                                                          Never-
                                                                       Adm-
                                                                                  Not-in-
           26294
                                                     9
                                                                                           White
                   27
                          Private
                                    HS-grad
                                                                                                   Male
                                                         married
                                                                      clerical
                                                                                   family
                                                         Married-
                                     Some-
           10658
                   57
                          Private
                                                     10
                                                                        Sales
                                                                                 Husband
                                                                                          White
                                                                                                   Male
                                                             civ-
                                     college
                                                          spouse
           data.dtypes
In [51]:
                                int64
Out[51]:
          workclass
                               object
                               object
          education
                                int64
          education-num
          marital-status
                               object
          occupation
                               object
           relationship
                               object
          race
                               object
          sex
                               object
          capital-gain
                                int64
          capital-loss
                                int64
          hours-per-week
                                int64
          native-country
                               object
           class-label
                               object
          dtype: object
           columns = list(data.select_dtypes(exclude=['int64']))
In [52]:
           columns
In [53]:
           ['workclass',
Out[53]:
            'education',
            'marital-status',
            'occupation',
            'relationship',
            'race',
            'sex',
            'native-country',
            'class-label']
           data['class-label'].value_counts()
In [54]:
            <=50K
                      22799
Out[54]:
            >50K
                       7201
           Name: class-label, dtype: int64
          le = LabelEncoder()
In [55]:
           for i in columns:
               #print(i)
               data[i] = le.fit_transform(data[i])
```

```
data.dtypes
          age
                              int64
Out[55]:
          workclass
                              int32
                              int32
          education
          education-num
                              int64
          marital-status
                              int32
          occupation
                              int32
          relationship
                              int32
                              int32
          race
          sex
                              int32
          capital-gain
                              int64
          capital-loss
                              int64
          hours-per-week
                              int64
          native-country
                              int32
          class-label
                              int32
          dtype: object
In [56]:
          data.head()
Out[56]:
                                            education-
                                                       marital-
                                                                                                  capit
                      workclass education
                                                                occupation relationship race sex
                  age
                                                 num
                                                         status
                                                                                                     g
          11568
                   32
                              4
                                        11
                                                    9
                                                             2
                                                                        1
                                                                                     0
                                                                                          4
                                                                                               1
          28705
                                                                        10
                   59
                              1
                                        12
                                                   14
                                                             4
                                                                                     1
                                                                                          4
                                                                                               0
           4451
                   19
                              4
                                        11
                                                    9
                                                             4
                                                                        3
                                                                                     1
                                                                                          4
                                                                                               0
          26294
                   27
                                        11
                                                    9
                                                             4
                                                                        1
                              4
                                                                                     1
                                                                                          4
          10658
                              4
                                        15
                                                   10
                                                             2
                                                                        12
                                                                                     0
                                                                                          4
                   57
                                                                                               1
In [57]:
          data['workclass'].value_counts()
                20917
          4
Out[57]:
                 2341
          2
                 1924
          0
                 1693
          7
                 1184
          5
                 1036
          1
                  885
          8
                   13
          3
                    7
          Name: workclass, dtype: int64
          data['education'].hist(bins=100)
In [58]:
          <AxesSubplot:>
Out[58]:
```


					lude='all')	describe(inc	data.	[59]:
relati	occupation	marital- status	education- num	education	age workclass		0	ıt[59]:
30000.0	30000.000000	30000.000000	30000.000000	30000.000000	30000.00000	30000.000000	count	
1.4	6.566667	2.611000	10.071033	10.296000	3.86800	38.580167	mean	
1.0	4.234133	1.505065	2.573482	3.869067	1.45487	13.650360	std	
0.0	0.000000	0.000000	1.000000	0.000000	0.00000	17.000000	min	
0.0	3.000000	2.000000	9.000000	9.000000	4.00000	28.000000	25%	
1.0	7.000000	2.000000	10.000000	11.000000	4.00000	37.000000	50%	
3.0	10.000000	4.000000	12.000000	12.000000	4.00000	48.000000	75%	
5.0	14.000000	6.000000	16.000000	15.000000	8.00000	90.000000	max	
>								

Report:

Q6. What is the summary of the data.describe()?

Data.describe() outputs statistical summary of the dataset, which include count, mean value, the standard deviation, minimum, 1st quartile, the median, the third quartile and the maximum value. The count indicates the total number of values in each column which in this case is 30,000

- For age:
 - The average value of the age attribute is 38
 - The age ranges from 90 to 17
 - 25% of the age data lies below age 28. However, the third quartile (75%) lies below
 - The data is more dispersed after the third quartile as the difference between the age value between the first 25% and the minimum age value is much lesser than the difference between the last 25% of the age value and maximum age value.
- For capital-gain:
 - The average value returns 1063.00 while median is zero indicating that it is highly right skewed
 - The values of capital-gain are higly concentrated on one partiular value which happens to be after the 3rd quartile as values from min till third quartile is zero and max get its own value and resulted in the large standard deviation
- The average number of hours worked per week is 40.46 hours with a standard deviation of 12.38 hours. The minimum number of hours worked is 1 hour and the maximum number of hours worked is 99 hours.
- The majority of the individuals are from the United States (native country 38) and the class label indicates whether their income is above or below 50,000 dollars per year. The class label is a binary variable with 0 representing income below 50,000 dollars and 1 representing income above 50,000 dollars.

Q7. What are the different data types (or attribut types) in data mining? Explain with the help of the examples from Adult dataset. HINT: Don't get confused with data types in Python or Pandas.

In data mining, there are typically two main data types or attribute types: nominal and numeric.

Nominal attributes are categorical and don't have an order or meaningful magnitude, e.g. gender, occupation, race, etc. In the Adult dataset, the "workclass", "education", "maritalstatus", "occupation", "relationship", "race", "sex", and "native-country" attributes are nominal.

Numeric attributes are numerical and have magnitude, e.g. age, capital-gain, capital-loss, etc. In the Adult dataset, the "age", "fnlwgt", "educational-num", "capital-gain", "capitalloss", and "hours-per-week" attributes are numeric.

Ordinal Attributes is used to represent data that has a natural ordering or sequence. e.g. Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, HS-grad, Some-college, Assocvoc, Assoc-acdm, Bachelors, Masters, and Prof-school. These values have a natural ordering, with higher values indicating higher levels of education.

Ratio: Ratio data is used to represent data where the ratio between any two values is meaningful. Examples of ratio data in the Adult dataset include the age attribute, capitalgain, capital-loss, and hours-per-week. These attributes have values that have a meaningful ratio, for example, an individual who is 40 years old is twice as old as an individual who is 20 years old. Similarly, an individual who works 40 hours per week is twice as much as an individual who works 20 hours per week.

Q8. Highest migrants belongs to which country?

In [60]:	data	['native-	country'].val	ue_counts())		
Out[60]:	38 25	26898 594					
	0	536					
	29	176					
	11	126					
	2	111					
	32	106					
	8	100					
	18	91					
	5	89					
	9	86					
	34	77					
	22	72					
	3	70					
	21	65					
	6	64					
	39 13	62 59					
	23	53					
	30	52					
	4	50					
	35	44					
	14	41					
	19	37					
	31	33					
	26	30					
	28	29					
	10	28					
	7	27					
	12	27					
	20	23					
	37	18					
	24	17					
	16	17					
	1	16					
	36 40	15 14					
	46 15	13					
	27	13					
	17	12					
	33	9					

The country with the highest migrants is Mexico which corresponds to the code '25' with a count of 594. United States has an higher counts but is not the answer as the dataset is from

the United States.

Name: native-country, dtype: int64

Q9. Which occupation represents more males than females?

In [61]:	data	['occupation'].group	by([data['sex']]).value_counts()					
Out[61]:	sex	occupation							
00.0[0=].	0	1	2350						
		8	1643						
		10	1385						
		12	1167						
		4	1075						
		0	769						
		7	499						
		13	314						
		3	211						
		6	154						
		9	130						
		14	82						
		11	73						
		5	57						
	1	3	3591						
		4	2684						
		10	2418						
		12	2213						
		14	1396						
		8	1384						
		7	1328						
		1	1139						
		6	1086						
		0	931						
		5	851						
		13	537						
		11	516						
		2	9						
		9	8						
	Mama	· occupation	d+,,,,,,,,,	in+C4					

Name: occupation, dtype: int64

There are multiple occupations with more male than females, the output[61] shows this with an encoded list. However, I ran the code before encoding in input[48], the occupations with more males than females includes Craft-repair, Handlers-cleaners, Prof-specialty among others.

Q10. What is the difference between data.head() and data.tail()?

data.head() displays the first n rows of a dataset whereas data.tail() displays the last n rows of the dataset. Where the default value of n is 5 if unspecified.

References

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. University of California, Irvine, School of Information. http://archive.ics.uci.edu/ml