Logika és számításelmélet

Második zárthelyi dolgozat

1. feladat. [5 pont]

Tekintsük az alábbi f(n) és a g(n) függvényeket. Az $f(n) = \mathcal{O}(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$ állítások közül melyik igaz? A választ indokold is!

- 1. $f(n) = n^n$ és a $g(n) = 2^{\frac{n}{2}}$,
- 2. $f(n) = n^n \text{ és a } g(n) = n^{\log_2 n}$.
- **2. feladat.** [5 pont] Mutasd meg az alábbi Turing-gép működését az 0110 és az 110 szavakon! (Írd le a gép konfigurációátmeneteit ezeken a szavakon! Tegyük fel, hogy a be nem rajzolt átmenetek a q_n állapotba vezetnek!)

Általánosan, mikor áll meg q_i -ben az alábbi Turing gép (ha a gépet egy $u \in \{0,1\}^*$ szóval a bemenetén indítjuk el) és mi lesz akkor a gép szalagján? A választ indokold is!

3. feladat. [5 pont] Adj meg egy olyan egyszalagos determinisztikus Turing-gépet, ami pontosan azokat a $\{a,b\}$ -feletti szavakat ismeri fel, melyek legalább 4 hosszúak és az első két betűjük megegyezik az utolsó kettővel.

Mekkora lesz a megadott gép időigénye?

- **4. feladat.** [5 pont] Vázlatosan ismertesd azt az (esetleg többszalagos) Turing-gépet, ami n db 0-val $(n \ge 1)$ az első szalagján indítva eljut a q_i állapotba úgy, hogy ekkor az utolsó szalagján n^2 db 0 lesz (a leírásból derüljön ki, hogy hány szalagos a gép és mely állapotaiban mit csinál).
- **5. feladat.** [5 pont] Legyen M az a Turing gép, melynek szalagszimbólumai rendre a, b, \sqcup , állapotai pedig q_0, q_1, q_i és q_n . A gép átmeneti függvényét pedig az alábbi bitsorozat kódolja (a kódolás a fenti felsorolásoknak megfelelően történt és feltesszük, hogy a fej irányai az L, R, S sorrendben vannak kódolva):

00100101010101101000100001000100011001000100010001000

Mit csinál M, ha a szalagján az abba szóval indítjuk? Mit csinál M egy tetszőleges bemenetre?

6. feladat. [5 pont] Adj meg két olyan dominókészletet, melyek két-két dominóból állnak és nincs a Post Megfelelkezési Probléma szerint megoldásuk. Viszont ha a négy dominót egy készletnek vesszük, akkor ennek a készletnek már lesz megoldása. A megoldást igazold is!