

MIME - Multipurpose Internet Mail Extensions

Angelo Di Iorio Università di Bologna

- SMTP è un protocollo text-based, per lo scambio di messaggi di posta elettronica e la verifica dei destinatari dei messaggi
- Ha alcuni limiti fondamentali che impediscono la trasmissione di file binari:
 - La lunghezza massima del messaggio è di 1 Mb
 - I caratteri accettati sono solo ASCII a 7 bit
 - Ogni messaggio deve contenere una sequenza CRLF ogni 1000 caratteri o meno
- MIME (Multipurpose Internet Mail Extensions) è stato definito per bypassare questi limiti e qui è rilevante perché permette di indicare codifica e i tipi delle risorse scambiate via HTTP

Esempio

From: Giuseppe Verdi <g.verdi@CS.UniBO.IT>

Date: Mer gen 15, 2023 17:25:47 Europe/Rome

To: Paolo Rossi <p.rossi@CS.UniBO.IT>

Subject: Prova

Received: by le (mbox p.rossi) (with Cubic Circle's cucipop (v1.31 1998/05/13) Wed Jan 15 17:25:55 2023)

Received: from [130.136.2.220] (genesis.cs.unibo.it [130.136.2.220]) by CS.UniBO.IT (8.9.3/8.9.3/Debian 8.9.3-6) with ESMTP id RAA29182 for <p.rossi@cs.unibo.it>; Wed, 15 Jan 2023 17:25:45 +0100

User-Agent: Microsoft-Entourage/10.0.0.1309

Message-Id: <BA4B4A1B.D4BE%g.verdi@cs.unibo.it>

Mime-Version: 1.0

Content-Type: text/plain; charset="US-ASCII"

Content-Transfer-Encoding: 7bit

Questo e' il contenuto o corpo del messaggio di posta elettronica.

I servizi MIME

Dichiarazione di tipo

- Tutti i messaggi MIME vengono identificati da un Content Type, che definisce il tipo di dati del messaggio e aiuta l'applicazione ricevente a gestire il messaggio e a invocare l'applicazione più adatta.
- N.B.: l'attribuzione dell'applicazione non viene fatta sulla base dell'estensione del nome del file.

Messaggi multi-tipo

 Un messaggio MIME può contenere parti di tipo diverso (es. un messaggio di tipo testo e un attachment binario). In questo caso si creano dei sottomessaggi MIME per ciascuna parte (con il suo bravo content-type) e il messaggio MIME complessivo diventa "multi-parte", qualificando e codificando in maniera diversa ciascuna sottoparte.

Header specifici MIME

- MIME introduce alcuni nuovi header:
 - Content-Type: il tipo MIME del contenuto. Serve per permettere al ricevente di scegliere il meccanismo più adatto per presentare i dati. Specifica la natura del dato tramite la specificazione di tipo, sottotipo e ulteriori parametri utili.
 - Content-Type: text/plain; charset=ISO-8859-1
 - Content-Transfer-Encoding: il tipo di codifica utilizzata per trasmettere i dati. Serve per la trasmissione su canale SMTP di dati che non sono naturalmente corretti secondo le regole di SMTP: 7bit, sequenze CRLF ogni 1000 caratteri o meno. Sono valori accettabili "7bit" (default), "8bit", "binary", "quotedprintable", "base64" o altre stringhe definite nel registro IANA
 - Content-Transfer-Encoding: base64

MIME - Base 64 (1)

- Base 64 è un tipo di transfer encoding MIME suggerito per dati binari o multi-byte.
- Viene identificato un sottoinsieme di 64 caratteri di US-ASCII sicuri, che hanno la stessa codifica in tutte le versioni di ISO 646. Questi sono:
 - le lettere maiuscole (26, 'A' => 0),
 - Le lettere minuscole (26, 'a' => 26),
 - I numeri (10, '0' => 52)
 - I caratteri '+' e '/' (=> 62 e 63 rispettivamente).
- Ogni flusso di dati viene suddiviso in blocchi di 24 bit (3 byte).
 A loro volta questi 24 bit sono suddivisi in 4 blocchi di 6 bit ciascuno e codificati secondo una tabella prefissata in uno dei 64 caratteri già descritti.

Tabelle ASCII e Base 64

@	64	P	80		96	p	112
A	65	Q	81	a	97	q	113
В	66	R	82	b	98	r	114
C	67	S	83	c	99	S	115
D	68	T	84	d	100	t	116
E	69	U	85	e	101	u	117
F	70	V	86	f	102	v	118
G	71	W	87	g	103	w	119
H	72	X	88	h	104	X	120
I	73	Y	89	i	105	У	121
J	74	Z	90	j	106	Z	122
K	75	1	91	k	107	1	123
L	76	١	92	1	108	Ĺ	124
M	77	1	93	m	109	}	125
N	78	٨	94	n	110	~	126
O	79	_	95	o	111	del	127

Index	Binary	Char	Index	Binary	Char	Index	Binary	Char
0	000000	Α	16	010000	Q	32	100000	g
1	000001	В	17	010001	R	33	100001	h
2	000010	С	18	010010	5	34	100010	i
3	000011	D	19	010011	T	35	100011	j
4	000100	Е	20	010100	U	36	100100	k
5	000101	F	21	010101	V	37	100101	1
6	000110	G	22	010110	W	38	100110	m
7	000111	Н	23	010111	X	39	100111	n
8	001000	I	24	011000	Υ	40	101000	0
9	001001	J	25	011001	Z	41	101001	р
10	001010	K	26	011010	а	42	101010	q
11	001011	L	27	011011	b	43	101011	r
12	001100	М	28	011100	С	44	101100	S
13	001101	N	29	011101	d	45	101101	t
14	001110	0	30	011110	е	46	101110	u
15	001111	Р	31	011111	f	47	101111	v

^{*} Tabelle incomplete, qui a supporto dell'esempio nella prossima slide. Maggiori dettagli nella lezione su codifica caratteri

MIME – Base 64

Input	М								а								n							
Codice ASCII		77						97							110									
mappa bit		1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
Indice 6-bit		19						22					5							46				
Output Base64		Т						W					F						u					
Codice ASCII		84						87					70						117					

- La stringa risultante viene divisa in righe di 76 caratteri (tranne l'ultima, che è lunga quanto deve essere) con l'aggiunta di CR-LF.
- Nella decodifica i codici CR e LF sono da ignorare.
- La decodifica di Base64 è algoritmica, banale, non usa chiavi né calcoli di particolari complessità.
- Base64 NON È una tecnica crittografica!!!