Scratch paper

Anonymous Università di Torino May 2020

Abstract Poche idee, ben confuse.

branch: Szemeredi

1 Abstract samples

Let M be a structure. The finite (fractional) sample expansion of M is a 3-sorted expansion $\bar{M} = \langle M, \mathbb{R}, M^{\mathsf{s}} \rangle$ where

- 1. *M* is called the home-sort;
- 2. \mathbb{R} is the set of real numbers in the signature of ordered field;
- 3. M^s is an vector lattice space (a Riesz space) containing all functions $s: M \to \mathbb{R}$ with finite support (i.e. almost always zero); this we call the sample-sort.

The elements M^s maybe thought as (signed) discrete measures concentrated on the support.

Variables of sample-sort (or tuple thereof) are denoted with symbols x^s, y^s, \ldots , and variations. Elements of sample-sort are denoted with the symbols s, r, t, and variations. The variable x is reserved for (tuples of) variables of the home-sort. The context will clarify the sort the other variables.

The language of \bar{M} is denoted by L. It expands the language of the three sorts above with a function symbol for each formula $\varphi(x;y) \in L$, where y is a tuple a mixed sort. This is interpreted with function $f_{\varphi(x;y)}: (M^s)^{|x|} \times M^y \to \mathbb{R}$ as explained below.

For legibility, substitute parameters for y. So, for $\varphi(x) \in L(\overline{M})$ we define

$$f_{\varphi(x)}(s) = \sum_{a \models \varphi(x)} s(a)$$

(or, for short) $= \sum_{\varphi(x)} s$

As usual with vector lattices, we write $s^+ = s \vee 0$ for the nonnegative part of s and $s^- = s \wedge 0$ for the nonpositive part of s. Finally we define $|s| = s^+ + s^-$. The norm of s is

$$||s|| = \sum_{r=r} |s|.$$

$$= \sum_{a \in \mathcal{U}^{|x|}} |s(a)|.$$

Finally we write

$$\operatorname{Fr}_{s} \varphi(x) = \frac{1}{\|s\|} \sum_{\varphi(x)} |s|.$$

When ambiguity is of concern we write $\underset{x \in S}{\text{Fr}} \varphi(x)$.

1.1 Definition Let U be a monster model of cardinality $\kappa > |L|$. Let $\bar{U} = \langle U, \mathbb{R}, U^s \rangle$ be as above and let \bar{U}^* be a saturated elementary extension of \bar{U} of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that U is the domain of the home-sort of \bar{U}^* , hence we write $\bar{U}^* = \langle U, \mathbb{R}^*, U^{s*} \rangle$. Elements of U^s are called finite samples, elements of U^s are called hyperfinite samples.

1.2 Remark (pseudofinite structures) Let $\{M_i: i<\omega\}$ be a set of structures and define

$$M = \bigcup_{i < \omega} \{i\} \times M_i$$

We stipulate that $M \vDash r(a)$ if $a = \langle i, a_1 \rangle, \ldots, \langle i, a_n \rangle$ for some i and $M_i \vDash r(a_1, \ldots, a_n)$. Functions symbols are interpreted in a similar way (on mixed tuples function take some fixed but arbitrary value, say the first component of the tuple). In the signature of M we include also a symbol for an equivalence relation that has $\{i\} \times M_i$ as equivalence classes. In \mathcal{U} , every equivalence class is a saturated elementary extension of some ultraproducts of $\{M_i : i < \omega\}$. When the M_i have finite unbounded cardinality we call each equivalence class in \mathcal{U} a pseudofinite structure. In this case each class is the support of some 0-1 valued internal sample $s \in \mathcal{U}^{s*}$. In particular, every class not in M has (properly) hyperfinite cardinality.

Hyperfinite samples that are 0-1 valued are called hyperfinite sets. We write $a \in s$ for s(a) = 1, when s is an hyperfinite set.

Let $s \in \mathcal{U}^{(<\omega)*}$ be a hyperfinite set and fix some formula $\varphi(x;y) \in L(\bar{\mathcal{U}}^*)$ where x,y are variables of the home-sort. Define

$$a \sim_s a' = \forall y \in s [\varphi(a, y) \leftrightarrow \varphi(a', y)]$$

1.3 Notation Let y and z be tuples of mixed sort. For any type p(y) and formula $\varphi(y,z)\in L(\bar{\mathbb{U}}^*)$ we write

$$\varphi(p; \bar{\mathcal{U}}^*) = \left\{ a \in (\bar{\mathcal{U}}^*)^z : p(y) \vdash \varphi(y; a) \right\}$$

This notation intentionally confuses p(y) with any of its realizations in some elementary extension of $\bar{\mathbb{U}}$.

- **1.4 Definition** Let M be given. Let y be a tuple of the home-sort. A external sample $p(x^s)$ is
 - 1. invariant if $\varphi(p; \mathcal{U}, \mathcal{U}^{s*})$ is invariant over \bar{M} , for every $\varphi(x; y, z^s) \in L$.

- 2. finitely satisfiable if every formula in $p(x^s)$ is satisfied by some element of M^s .
- 3. definable if $\varphi(p; \mathcal{U}, \mathcal{U}^{s*})$ is definable over \bar{M} , for every $\varphi(x; y, z^{s}) \in L$.

An external type is generically stable if it is definable and finitely satisfiable in some \bar{M} . \Box

Clearly every finitely satisfiable external sample is invariant.

We will use the symbol $\bigcup_{\bar{M}}$ with the usual meaning.

2 Type-definable functions

Let \mathcal{U} be a monster model. Let X be a Hausdorff space. We say that the partial map $f:\mathcal{U}^{|x|}\to X$ is bounded if $\mathrm{img}\,f\subseteq C$ for some compact $C\subseteq X$. We say that f is type-definable if it is bounded and $f^{-1}[C]$ is type-definable for every compact $C\subseteq X$. If $f^{-1}[C]$ is definable for every compact $C\subseteq X$, then we say that f is definable.

We always assume \mathcal{U} has a larger cardinality than the topology of X and that a type-definable function is always type-definable over some small set of parameters, i.e. all the types defining $f^{-1}[C]$ are over the same small set parameters $A \subseteq \mathcal{U}$.

- **2.1 Fact** Let $f: \mathcal{U}^{|x|} \to X$ be type-definable. Then the following are equivalent
 - 1. f is definable;
 - 2. img f is finite.

Proof By compactness.

2.2 Fact Let $p_i(x) \subseteq L(A)$, for i = 1, ..., n, be a cover of a type-definable set $\mathcal{D} \subseteq \mathcal{U}^{|x|}$. Then there is a cover of \mathcal{D} by some formulas $p_i(x) \vdash \varphi_i(x)$.

Proof By compactness.

2.3 Fact Let $f: \mathcal{U}^{|x|} \to [0,1]$ be type-definable. Then for every $\varepsilon > 0$ there is a definable function $g: \mathcal{U}^{|x|} \to [0,1]$ such that

$$|fa - ga| \le \varepsilon$$
 for every $a \in \text{dom } f$

Proof Pick $r_1, \ldots, r_n \in [0,1]$ be such that the intervals $[r_i - \varepsilon, r_i + \varepsilon]$ cover img f. Hence, the types defining $f^{-1}[r_i - \varepsilon, r_i + \varepsilon]$ cover dom f. Therefore, by the fact above, there is a definable partition of dom f that refines $f^{-1}[r_i - \varepsilon, r_i + \varepsilon]$. Define g to be such that $\{g^{-1}[r_i] : i \in [n]\}$ is the partition above. Then g is as required.

2.4 Fact Let $f: \mathcal{U}^{|x|} \to [0,1]$ be type-definable. Then for every $\varepsilon > 0$ there are finitely many $a_1, \ldots, a_n \in \text{dom } f \text{ such that }$

$$\bigvee_{i=1}^{n} |fa - fa_i| \le \varepsilon \qquad \qquad \textit{for every } a \in \mathrm{dom}\, f.$$

Moreover, there are some formulas $\psi_i(x) \in L(\mathcal{U})$ *that cover* dom f *and*

$$\psi_i(x) \rightarrow |fx - fa_i| \le \varepsilon$$
 for every $i \in [n]$.

Proof By Fact 2.3 there is a definable function g such that $|fa - ga| \le \varepsilon/2$ for every $a \in \text{dom } f$. Pick some $a_1, \ldots, a_n \in \mathcal{U}^{|x|}$ such that $\{ga_1, \ldots, ga_n\} = \text{img } g$. Then

$$\begin{aligned} \min_{i \in [n]} \left| fa - fa_i \right| &= \min_{i \in [n]} \left| fa - ga + ga - fa_i \right| \\ &\leq \left| fa - ga \right| + \min_{i \in [n]} \left| fa_i - ga \right| \\ &\leq \left| fa - ga \right| + \left| fa_i - ga_i \right| \quad \text{where } i \text{ is such that } ga_i = ga \\ &\leq \varepsilon \end{aligned}$$

The second claim follows from Fact 2.2 because $|fx - fa_i| \le \varepsilon$ is equivalent to a type.

3 Externally definable sets (notation)

4 Szemerédi's regularity lemma

An internal nonnegative sample $s \in \mathcal{U}^{s*}$ is pseudorandom over M if for every $0 \le s' \le s$ such that $||s'|| \approx ||s||$ and for every $\varphi(x) \in L(\bar{M})$

$$\operatorname{Fr}_{s'} \varphi(x) \approx \operatorname{Fr}_{s} \varphi(x)$$

For every $\varepsilon > 0$ there is an $n = n(\varepsilon)$ such that for every formula $\varphi(x, z)$ and every finite nonnegative sample $a, b \in M^s$ there are $0 \le s_i \le a$ and $0 \le t_i \le b$, for $i \in [n]$ and a set $\Sigma \subseteq [n]^2$ such that

and for every

$$\begin{aligned} \left| \varphi(A,B) - \Pr_{s_i,t_j} \varphi(x,y) \right| \\ \left| \varphi(a^s;b^s) \right| \rangle &= \sum_{\varphi(x;y)} a^s(x) \cdot b^s(y) \\ d_{\varphi}(r;s) &= \frac{\left| \varphi(r;s) \right|}{\left| r \times s \right|} \end{aligned}$$

We say that the pair of samples r, s is ε -regular if for every $r' \subseteq r$ and $s' \subseteq s$ such that $|r'| > \varepsilon |r|$ and $|s'| > \varepsilon |s|$

$$|d_{\varphi}(r;s) - d_{\varphi}(r';s')| < \varepsilon$$

- **4.1 Szemerédi's Regularity Lemma** For every $\varepsilon > 0$ and for every pair of samples $u, v \in \overline{\mathbb{U}}^*$ of hyperfinite cardinality there are some finite partitions of u and v, say r_1, \ldots, r_n and s_1, \ldots, s_m , such that
 - 1. r_i, s_j is ε -regular for every $i, j \in [n] \times [m] \setminus X$,

where $X \subseteq [n] \times [m]$, called the exceptional set, is such that

2.
$$\sum_{\langle i,j\rangle\in X}|r_i|\cdot|s_j| < \varepsilon\cdot|u|\cdot|v|$$
 Proof Let $\operatorname{st}((d(u\,;v)))$

5 Szemerédi's regularity lemma 2