1.18 Theorem. Let $a, b, k, n \in \mathbb{Z}$ with k, n > 0. If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.

Proof. Let $a, b, k, n \in \mathbb{Z}$ with k, n > 0 be given such that $a \equiv b \pmod{n}$. Consider the base case where k = 1. By definition, a - b = nx for some $x \in \mathbb{Z}$, which proves the base case.

By induction, we want to show $a^{t+1} \equiv b^{t+1} \pmod{n}$, provided $a^t \equiv b^t \pmod{n}$ for some $t \in \mathbb{Z}$. By definition, a-b=nx (remembering a=nx+b) and $a^t-b^t=ny$ for some $x,y\in\mathbb{Z}$.

$$a^{t+1} - b^{t+1} = aa^t - bb^t$$

$$= (nx + b)a^t - bb^t$$

$$= nxa^t + ba^t - bb^t$$

$$= nxa^t + b(a^t - b^t)$$

$$= nxa^t + b(ny)$$

$$= n(xa^t + by).$$

By CPI, $xa^t + by = z$ for some $z \in \mathbb{Z}$. Thus, $a^{t+1} \equiv b^{t+1} \pmod{n}$, and $a^k \equiv b^k \pmod{n}$.