

Orbital Mechanics

ASSIGNMENT PRESENTATION

Professor: Camilla Colombo

Juan Luis Gonzalo Gomez

Group 5:
Lyle Campbell
Giulio Pacifici
Luca Rizzieri
Davide Sisana

INTERPLANETARY EXPLORER MISSION

Solar System Explorers Image from ESA

MISSION:

- Departure from Neptune
- Flyby at <u>Mars</u>
- Arrive at <u>Earth</u>

FIGURE OF MERIT:

• Δv_{tot}

DESIGN PROCESS

CONSTRAINTS:

- Earliest Departure
 1st Jan 2020
- Latest Arrival
 1st Jan 2060
- Flyby Minimum Altitude $h_{min} = 250 \ km$

Rosetta's flyby at Mars Image from ESA

DESIGN PROCESS

ASSUMPTIONS:

- Patched Conics Method
- Other planets ignored
- SRP neglected
- Neptune departure and Earth arrival neglected

PRELIMINARY ESTIMATIONS

Planet	Orbital period in Earth years	Planets	Synodic Period in Earth years
Neptune	164,8	Neptune & Mars	1,90
Mars	1,88	Mars & Earth	2,13
Earth	1	Neptune & Earth	1,01

#	Neptune - Mars	Mars - Earth
Parabolic Transfer Time	13.36 <i>years</i>	24.14 days
Hohmann Transfer Time	31.47 <i>years</i>	258.87 days

Neptune-Earth Hohmann Transfer

$$\Delta v = 15.71 \frac{km}{s}$$

FIRST STRATEGY

GRID SEARCH

3 degrees of freedom:

- Departure time NDD
- First time of flight TOF₁
- Second time of flight TOF₂

3 nested loop cycles evaluate the Δv_{tot}

Array Boundaries

dof	Lower Boundary	Upper Boundary	Time Step [days]
NDD	Earliest Dep.	$ED + T_{synME}$	165
TOF_1	$TOF_{par}^{N o M}$	$120\%~TOF_H^{N o M}$	1
TOF_2	$TOF_{par}^{M o E}$	$120\%~TOF_H^{M o E}$	1

Cube grid Image from Lab Notes Orbital Mechanics

SECOND STRATEGY

Genetic Algorithm scheme Image from educba.com

GENETIC ALGORITHM

Heuristic approach applied to a wider domain:

- Number of runs $N_{runs} = 5$
- Populations $N_{pop} = 2000$
- Generations $N_{gen} = 300$
- Fitness function

SECOND STRATEGY

Boundaries

dof	Lower Boundary	Upper Boundary
NDD	ED	$ED + T_{synME}$
TOF_1	TOF_{par}^{NM}	$120\%~TOF_H^{NM}$
TOF_2	TOF_{par}^{ME}	12 years

Constraints:

- $NDD + TOF_1 + TOF_2 < LA$;
- $r_p(NDD, TOF_1, TOF_2) > R_{Mars} + h_{min}$

RESULTS

#	NDD[MJD]	$TOF_1[days]$	$TOF_2[days]$	Normalised comp. time
Grid Search	7304,50	12777	85,1	0,66
G.A.	7401,07	10257	3952	1,00

#	$\Delta v_1 [km/s]$	$\Delta v_2 [km/s]$	$\Delta v_3 [km/s]$	$\Delta v_{tot} \left[km/s \right]$
Grid Search	4,199	0,071	12,569	16,840
G.A.	4,098	1,705	10,092	15,895

PORKCHOP PLOTS

FINAL TRAJECTORY CHARACTERIZATION

Departure	Flyby	Arrival
2020 April 06 at 13: 40: 10,30	2048 May 07 at 13: 14: 25,53	2059 March 03 at 18: 37: 05,26

Transfer Arcs

#	a [km]	e [-]	i [deg]	$\Omega \left[deg ight]$	ω [deg]	$\theta_i [deg]$	$\theta_f [deg]$
Neptune - Mars	$2,33*10^9$	0,935	1,236	45,18	121,23	181,58	72,93
Mars - Earth	$7,42 * 10^8$	0,800	0,311	343,19	178,16	77,99	1,84

Flyby Hyperbolas

#	$h_p[km]$	$v_p [km/s]$	$v_{\infty} [km/_{S}]$	e [-]	$TOF_f[h]$
Incoming	250,006	22,109	21,571	40,545	7,455
Outgoing	250,006	20,404	19,819	34,384	8,113

$$V^- = [13,6593 - 30,2687 - 0,6695]'$$
 $V^+ = [13,4802 - 28,2751 - 0,1260]'$

FINAL TRAJECTORY

DISCUSSION

- Mars not ideal for gravity assist
- Mission time/cost trade-off
- Improvement Possibilities
 - Alternate flybys
 - o Earth aero-capture

Spacecraft	Flyby Planet	Planet Earth Masses	Flyby Altitude $[km]$	$\Delta v_f \left[km/s \right]$
Voyager	Jupiter	318	570000	16
Cassini Huygens	Venus	0,82	250	7
PoliMi	Mars	0,11	250	2*

PLANETARY EXPLORER MISSION

Initial Keplerian Elements:

a [km]	e [-]	i [deg]	$\Omega \left[deg ight]$	ω [deg]	θ [deg]
18302	0,6158	71,5679	20	70	0

Orbital Period: 6.8447 hours

Spacecraft Data:

•
$$C_d = 2.2$$

•
$$\frac{A}{m} = 0.06$$

Groundtrack repetition:

•
$$m = 2$$

•
$$k = 7$$

Perturbations:

DRAG

Atmospheric Density

Wertz exponential model:

$$\rho(h,t) = \rho_0 \exp\left[-\frac{h - h_0}{H}\right]$$

Maximum altitude considered: 1700 km

Machine epsilon cutoff

Upper atmosphere Image from NASA

INTEGRATION METHODS

Integration in Cartesian Coordinates

$$\frac{d}{dt} \left\{ \vec{r} \atop \vec{v} \right\} = \left\{ -\frac{\mu}{r^3} \vec{r} + \vec{a}_{pert} \right\}$$

Integration of Gauss Planetary Equations

$$\frac{d}{dt}\vec{K} = f\left(\vec{K}, \vec{a}_{pert}^{(tnh)}\right)$$

GROUND TRACK

After 10 Days

REPEATING GROUND TRACK

#	Original Orbit	Unperturbed orbit	J_2 perturbed orbit
a[km]	18302	18284	18290

METHOD COMPARISON

After 100 orbit, 500 sec. time steps

a [km]	e [-]	i [deg]	$\Omega\left[deg ight]$	ω [deg]	heta [deg]
$2,0019 \cdot 10^{-4}$	$4,2074 \cdot 10^{-9}$	$2,2819 \cdot 10^{-8}$	$4,7728 \cdot 10^{-8}$	$3,0187 \cdot 10^{-7}$	$9,4882 \cdot 10^{-5}$

Absolute error between Cartesian and GPE integrations

TIME EVOLUTION

10 year propogation, 500 sec. time steps

TIME EVOLUTION

1 year propogation, plotted weekly

FREQUENCY ANALYSIS

FILTERING METHODS

- Time domain filter
 - Centred moving mean

- Frequency domain filter
 - Rectangular low-pass filter

FILTERING RESULTS

FILTERING RESULTS

REAL SATELLITE COMPARISON

Satellite KIKU-3(ETS-IV)

h_p	h_a	i	D	Mass	A/m	c_d
$225 \ km$	36000 km	28,5°	2,1 m	638 <i>kg</i>	$0.0054 m^2/kg$	2,2

QUESTIONS

QUESTIONS

