宁德市 2023-2024 学年度第一学期期末高一质量检测

数学试题

本试卷共 22 题. 考试时间 120 分钟, 满分 150 分.

注意事项:

1. 答题前考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真 核对答题卡上粘贴的条形码的"准考证号,姓名"与考生本人准考证号、姓名是否一致.

2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应的题目的答案标号 涂黑,如需 改动,用橡皮擦干净后,再选涂其他答案标号:填空题和解答题用 0.5 毫米黑色签字笔在答 题卡上书写作答,在试题卷上作答,答案无效.

3.考试结束,考生必须将试题卷和答题卡一并交回.

一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 有且只有一个是符合题目要求的.

1	· 020 52°	030 .	-a°	1	1
Ι.	sin 83° cos 53°	- cos x 3° sin) $$	(

- B. $\frac{\sqrt{3}}{2}$
- C. $-\frac{1}{2}$ D. $\frac{1}{2}$

2. 已知命题 $p: \forall x \in (0, +\infty), x > \sqrt{x}$, 则命题 P 的否定是 ()

- A. $\forall x \in (0,+\infty), x \leq \sqrt{x}$
- B. $\exists x \in (0,+\infty), x > \sqrt{x}$
- C. $\exists x \in (0,+\infty), x \leq \sqrt{x}$
- D. $\forall x \notin (0,+\infty), x > \sqrt{x}$
- 3. 已知扇形的面积为 $6cm^2$,圆心角为3rad,则此扇形的周长为()
 - A. 2cm
- B. 6cm
- C. 10cm
- D. 12cm

4. 设 $a=5^{0.2}$, $b=\sin 2$, $c=\log_5 0.2$, 则 a , b , c 的大小关系正确的是 ()

- A. a > b > c B. b > a > c C. b > c > a

5. 已知函数 y = f(x) 的图象是一条连续不断的曲线,且有如下对应值表:

则下列结论正确的是()

x	1	2	3	4	5	6
у	10	8	-3	2	-7	-9

- A. f(x) 在(1,6) 内恰有 3 个零点 B. f(x) 在(1,6) 内至少有 3 个零点
- C. f(x) 在(1,6) 内最多有 3 个零点
- D. f(x) 在(1,6) 内不可能有 4 个零点

6. 已知 a > 0且 $a \ne 1$,函数 $v = a^x = \log_a(-x)$ 的图象是()

高一数学试题

第 1 页

7.	$a > 1$ 是函数 $f(x) = \log_a^{(2x-x^2)}$ 在 $(0,1)$ 上单调递增	曾的 ()				
	A. 充分不必要条件	B. 必要不充分条件				
	C. 充要条件	D. 既不充分也不必要条件				
8. i	函数 $f(x)$ 和 $g(x)$ 的定义域均为 R ,且 $y = f(x)$	(4-3x) 为偶函数, $y=g(2x+4)+1$ 为奇函				
数,	$\forall x \in \mathbf{R}$, 均有 $f(x) + g(x) = x^2 + 2$, 则 $f(6)$	g(6)=()				
	A. 335 B. 345 C.	356 D. 357				
二、	多项选择题: 本大题共 4 小题, 每小题 5 分,	共 20 分. 在每小题给出的四个选项中,				
有	i多项是符合题目要求,全部选对得 5 分,部分	分选对得 2 分,有选错得 0 分。				
9.	已知 $a > b > 0$,则下列选项正确的是()					
	A. $a^3 > b^3$ B. $\frac{1}{a} > \frac{1}{b}$	C. $\lg a > \lg b$ D. $2^{-a} > 2^{-b}$				
10.	下列函数中,在(0,+∞)上有零点且单调递增	的函数有()				
	A. $y = x^2 + 2x + 1$ B. $y = \frac{x-1}{x+1}$	C. $y = \cos 2x$ D. $y = x - \frac{1}{x}$				
11.	若将函数 $f(x) = \left \tan \left(x - \frac{\pi}{6} \right) \right $ 的图象先向右平	移 $\frac{\pi}{6}$ 个单位长度,再将所得的图象上所有				
点的	点的横坐标缩短为原来的 $\frac{1}{2}$ (纵坐标不变),得到函数 $g(x)$ 的图象,则()					
	A. $g(x)$ 的最小正周期为 $\frac{\pi}{2}$					
	B. $g(x)$ 的定义域为 $\left\{x \mid x \neq \frac{k\pi}{2} + \frac{5\pi}{12}, k \in Z\right\}$					
	C. $g(x)$ 图象的一个单调区间为 $\left(-\frac{\pi}{12}, \frac{5\pi}{12}\right)$					
	D. $g(x)$ 图象的一条对称轴方程为 $x = -\frac{\pi}{12}$					
12.	已知函数 $f(x) = \begin{cases} \sin \pi x, 0 < x \le 1 \\ \log g_2(x-1) , x > 1 \end{cases}$,若存在[四个实数 x_1, x_2, x_3, x_4 ($x_1 < x_2 < x_3 < x_4$), 使得				
f(x)	$f(x_1) = f(x_2) = f(x_3) = f(x_4) = t, 0$					
	A. t的范围为(0,1)	B. x_3x_4 的取值范围为 (3,6)				
	C. $x_1 + x_2 + x_3 + x_4$ 的取值范围为 $\left(5, \frac{11}{2}\right)$	D. $x_1 f(x_4)$ 的取值范围为 $(0, \frac{1}{2})$				
三、	填空题: 本大题共 4 小题, 每小题 5 分, 共	20 分. 把答案填在答题卡的相应位置				
13.	函数 $y = a^{x-2} + 1$ $(a > 0 \perp a \neq 1)$ 的图象经过的	定点坐标为				

- 14. $\forall x \in (2,+\infty)$, $x + \frac{1}{x-2} > m^2 + 3m$ 恒成立,则实数 m 的取值范围是_____.
- 15. $\forall x_1, x_2 \in (0, +\infty)$,函数 f(x) 同时满足: ① $f(x_1 + x_2) = f(x_1) f(x_2)$,

②
$$f(\frac{x_1 + x_2}{2}) \ge \frac{f(x_1) + f(x_2)}{2}$$
 , 写出函数 $f(x)$ 的一个解析式_____.

16.关于 x 的方程 $x^2 - 2x + m^2 + 16m = m\cos(x-1) + 15$ 有且仅有 1 个实数根,则实数 m 的值为

- 四、解答题: 本大题共 6 小题, 共 70 分. 解答应写出文字说明, 证明过程或演算步骤.
- 17. (本题满分10分)

已知集合
$$A = \left\{ x \middle| -2 \le x \le \frac{1}{2} \right\}, \quad B = \left\{ x \middle| 2m \le x \le m+1 \right\}.$$

- (1)当m=0时, 求 $\delta_R(A\cap B)$;
- (2)若 $A \cup B = A$, 求实数m的取值范围.

18. (本题满分12分)

已知
$$f(x) = x^2 + (3-a)x - 3a$$
 ($a \in R$).

- (1)若 f(x) = f(2-x), 求 a 的值;
- (2)求关于x的不等式f(x) < 0的解集.

19. (本题满分 12 分)

在单位圆中,已知锐角 α 的终边与单位圆交于点 $P(\frac{1}{7},m)$,将角 α 的终边按照逆时针方向

旋转
$$\beta$$
 (0< β < $\frac{\pi}{2}$) 交单位圆于点 $Q(-\frac{11}{14},t)$.

(1)求
$$\frac{\sqrt{3}\sin(\alpha+\pi)+\cos\alpha}{2\cos\alpha-\sqrt{3}\sin\alpha}$$
 的值;

(2)求 $\cos \beta$ 的值.

20. (本题满分 12 分)

定义域为 R 的奇函数 $f(x) = \frac{x+a}{x^2+b}$ 只能同时满足下列的两个条件:

- ① f(x) 在区间[-1,1]上单调递增
- ② $f(-1) = \frac{1}{2}$ ③ $f(1) = \frac{1}{2}$
- (1)请写出这两个条件的序号,并求 f(x) 的解析式;
- (2)判断 f(x) 在区间 $(1,+\infty)$ 的单调性,并用定义证明.

21. (本题满分 12 分)

如图为某市拟建的一块运动场地的平面图,其中有一条运动赛道由三部分构成:赛道的 前一部分为曲线段 BCD, 该曲线段为函数 $y = A\cos(\omega x + \varphi)$ ($A > 0, \omega > 0, 0 < \varphi < \frac{\pi}{2}$)在 $x \in [-4,0]$ 的图象,且图象的最高点为 $C(-1,4\sqrt{3})$;赛道的中间部分为长度是 $2\sqrt{3}$ 的水平跑 道 DE ; 赛道的后一部分是以 O 为圆心的一段圆弧 \widehat{EF} .

(1)求 ω , φ 和 $\angle EOF$ 的值;

(2)若要在圆弧赛道所对应的扇形区域内建一个矩形草坪 PQMN, 如图所示. 记 $\angle POF = \theta$, 求矩形草坪 POMN 面积的最大值及此时 θ 的值.

22. (本题满分 12 分)

固定项链的两端,在重力的作用下项链所形成的曲线是悬链线. 1691 年,莱布尼茨等得出"悬链线"方程 $y=\frac{c(e^{\frac{x}{c}}-e^{\frac{x}{c}})}{2}$,其中 c 为参数. 当 c=1 时,就是双曲余弦函数

 $\cosh x = \frac{e^x + e^{-x}}{2}$,类似地我们可以定义双曲正弦函数 $\sinh x = \frac{e^x - e^{-x}}{2}$. 它们与正、余弦函数有许多类似的性质.

- (1)类比正弦函数的二倍角公式,请写出双曲正弦函数的一个正确的结论 $\sinh 2x =$ _______.(只写出即可,不要求证明);
- (2) $\forall x \in [-1,1]$, 不等式 $\cosh 2x + m \cosh x \ge 0$ 恒成立, 求实数 m 的取值范围;
- (3)若 $x \in \left[\frac{\pi}{4}, \frac{3\pi}{2}\right]$, 试比较 $\cosh(\sin x)$ 与 $\sinh(\cos x)$ 的大小关系,并证明你的结论.