Exercises: 1 below and Judson: 6.5bd, 6.11ade, 6.16, 6.18

Due date: Friday, 10/24

1. Prove or disprove the following:

- (a) There exists a group G of order |G| = 8 with an element $g \in G$ of order |g| = 3.
- (b) If H and K are subgroups of a group G with |H| = 2 and |K| = 3, then $|G| \ge 6$.
- (c) Every subgroup of the integers has finite index.
- (d) Every subgroup of the integers has finite order.

Solution:

- (a) False. Note that $|g| = |\langle g \rangle|$, and by Lagrange's Theorem $|\langle g \rangle|$ divides |G|. So the order of every element of a group must divide the order of the group. Since $3 \nmid 8$, there is no element of order 3 in a group of order 8.
- (b) True. If $H, K \leq G$ then $|H| \mid |G|$ and $|K| \mid |G|$, by Lagrange's Theorem. In case |H| = 2 and |K| = 3, we have $2 \mid |G|$ and $3 \mid |G|$, so $|G| \geq \text{lcm}(2,3) = 6$.
- (c) False. The subgroup $\{0\} \leq \mathbb{Z}$ has infinite index, $[\mathbb{Z} : \{0\}] = \infty$. The cosets of $\{0\}$ in \mathbb{Z} have the form $k + \{0\} = \{k\}$, where $k \in \mathbb{Z}$. That is, for each $k \in \mathbb{Z}$, the set $\{k\}$ is the coset of $\{0\}$ containing k.
- (d) False. The subgroup $H = 2\mathbb{Z} \leq \mathbb{Z}$ has infinite order.
- **6.5.** In each case below, list the left cosets of H in G.
 - **b.** $G = U(8), H = \langle 3 \rangle.$
 - **c.** $G = S_4, H = A_4.$

Solution:

b. If $G = U(8) = \{1, 3, 5, 7\}$ and $H = \langle 3 \rangle = \{1, 3\}$, then there are [G : H] = |G|/|H| = 4/2 = 2 cosets, namely, $H = \{1, 3\}$ and $5H = \{5, 7\}$. That is,

$$G/H = \{gH: g \in G\} = \{H, 5H\} = \{\{1, 3\}, \{5, 7\}\}.$$

c. If $G = S_4$ and $H = A_4$, then there are [G : H] = |G|/|H| = 4!/(4!/2) = 2 cosets, namely, A_4 and gA_4 , where g is any element of S_4 that does not belong to A_4 . (For example, let g = (12), which is odd.) That is, $G/H = \{gH : g \in G\} = \{A_4, (12)A_4\}$.

- **6.11.** Let H be a subgroup of a group G and suppose that $g_1, g_2 \in G$. Prove that the following conditions are equivalent:
 - (a) $g_1 H = g_2 H$
 - (d) $g_2 \in g_1 H$
 - (e) $g_1^{-1}g_2 \in H$

Solution: This was proved in class. Please come to office hours if you don't understand it.

6.16. If |G| = 2n, prove that the number of elements of order 2 is odd. Use this result to show that G must contain a subgroup of order 2.

Solution: Suppose |G| = 2n. Let

$$X = \{x \in G | x^2 = e\} = \{x \in G | x = x^{-1}\},$$

$$X^c = \{x \in G | x^2 \neq e\} = \{x \in G | x \neq x^{-1}\}.$$

Then G is the disjoint union $G = X \coprod X^c$, so

$$|G| = |X| + |X^c|. \tag{1}$$

Note that X includes the identity element, which has order 1, so $X \setminus \{e\}$ is the set of all elements of G of order 2. There are |X| - 1 such elements, so the goal is to show that |X| - 1 is odd, or, equivalently, that |X| is even. Now, $|X^c|$ is clearly even since, for each $x \in X^c$, there is a corresponding element x^{-1} (distinct from x) that also belongs to X^c . That is, elements of X^c come in pairs. Therefore, $|X^c| = 2k$ for some k, so by (1),

$$|X| = |G| - |X^c| = 2n - 2k = 2(n - k),$$

which is an even number.

6.18. If [G:H] = 2, prove that gH = Hg.

Solution: If $g \in H$, then gH = H = Hg and we are done. So assume $g \notin H$. Then $H \neq gH$. Since [G:H]=2, there are exactly two left cosets of H in G, namely H and gH. Similarly, there are two right cosets of H in G, namely H and Hg. Since G is the disjoint union of H and Hg, and also the disjoint union of H and gH, we have gH = Hg.