Calcolatori Elettronici

Parte II: Sistemi di Numerazione Binaria

> Prof. Riccardo Torlone Università di Roma Tre

Unità di misura

Exp.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.00000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.00000000000000001	atto	10 ¹⁸	1,000,000,000,000,000,000	Exa
10 ⁻²¹	0.000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10-24	0.00000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

Attenzione però, se stiamo parlando di memoria:

```
■ 1Byte = 8 bit
```

■ 1K (KiB: KibiByte) =
$$2^{10}$$
 = 1.024 $\sim 10^3$

■ 1M (MeB: MebiByte) =
$$2^{20}$$
 = 2^{10} 2^{10} = 1.048.576 $\sim 10^6$

■ 1G (GiB: GibiByte) =
$$2^{30}$$
 = 2^{10} 2^{10} 2^{10} = 1.073.741.824 $\sim 10^9$

■ 1T (TiB: TebiByte) =
$$2^{40}$$
 = ... = 1.099.511.627.770 ~ 10^{12}

 $1 \text{ Mb} = 1 \text{ Mega bit} = 10^6 \text{ bit (misura di velocità)}$

 $4 \text{ GB} = 4 \text{ Giga bytes} = 2^{32} \text{ bytes (misura di memoria)}$

Ordini di grandezza

Le potenze di 2:

```
• 2^{0} ... 2^{9} = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

• 2^{10} = 1.024 \sim 10^{3} 1K

• 2^{20} = 2^{10} 2^{10} = 1.048.576 \sim 10^{6} 1M

• 2^{30} = 2^{10} 2^{10} 2^{10} = 1.073.741.824 \sim 10^{9} 1G

• 2^{40} = ... = 1.099.511.627.770 \sim 10^{12} 1T

• 2^{50} = ... = 1.125.899.906.842.624 \sim 10^{15} 1P
```

ES
$$2^{26} = 2^6 \cdot 2^{20} = 64 \text{ M}$$

Il numero n di bit di un indirizzo binario determina le dimensioni della memoria (disposizioni con ripetizione di 0/1 su n posizioni):

<u>CPU</u>	<u>bit indirizzo</u>	<u>Memoria</u>
8080	16 bit	64 K
8086	20 bit	1 Mega
80286	24 bit	16 Mega
80486	32 bit	4 Giga
Pentium	32 bit	4 Giga

Un sistema di riferimento impreciso..

Numeri e numerali

- Numero: entità astratta
- **Numerale**: stringa di caratteri che rappresenta un numero in un dato sistema di numerazione
- Lo stesso numero è rappresentato da numerali diversi in sistemi di numerazione diversi
 - 156 nel sistema decimale CLVI in numeri romani
- Lo stesso numerale rappresenta numeri diversi in sistemi di numerazione diversi
 - 11 vale undici nel sistema decimale tre nel sistema binario
- Il numero di caratteri del numerale determina l'intervallo di numeri rappresentabili
 - interi a 3 cifre con segno nel sistema decimale: [-999,+999]

Numeri a precisione finita

- Numero finito di cifre
- Si perdono alcune proprietà:
 - chiusura operatori (+ , −, ×)
 - proprietà associativa, distributiva,...
 - Esempio:
 - 2 cifre decimali e segno [-99,+99]
 - 78+36=114 (chiusura)
 - 60+(50-40) ≠ (60+50)-40 (associatività)
- Errori di arrotondamento
- "Buchi" nella rappresentazione dei reali
 - Esempio:
 - numerali decimali con due sole cifre frazionarie

Meccanismo di base: sistema posizionale

Ciascuna cifra rappresenta il coefficiente di una potenza della base L'esponente è dato dalla posizione della cifra

Se la base è b occorrono b simboli:

- $b = 10 \{0,1,...,9\}$
- $b = 2 \{0,1\}$
- $b = 8 \{0,1,...,7\}$
- $b = 16 \{0,1,...,9,A,B,C,D,E,F\}$

Esempio in base binaria (virgola fissa)

Numero rappresentato in formato decimale:

$$1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 10.25$$

Esempio in base ottale (virgola fissa)

Numero rappresentato in formato decimale:

$$2.8^{3} + 1.8^{2} + 0.8^{1} + 7.8^{0} + 4.8^{-1} + 5.8^{-2} = 1095.578125$$

Numeri naturali

- Rappresentando gli interi positivi in notazione binaria con n bit si copre l'intervallo [0 , 2ⁿ⁻¹]
- Si sfruttano tutte le 2ⁿ disposizioni

ES	n=3	[0,7]
	0	000
	1	001
	2	010
	2 3	011
	4	100
	5	101
	6	110
	7	111

N.B. Anche gli 0 non significativi devono essere rappresentati

Addizioni tra numeri naturali

 Le addizioni fra numerali si effettuano cifra a cifra (come in decimale) portando il riporto alla cifra successiva

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ con il riporto di 1

$$3 + 2 = 5$$

$$0011 + 0010 = 0101$$

Se il numero di cifre non permette di rappresentare il risultato si ha un trabocco nella propagazione del riporto

Moltiplicazioni fra numeri naturali

■ La tabellina delle moltiplicazioni è molto semplice:

	0	1
0	0	0
1	0	1

■ L'operazione fra numerali si effettua come in decimale: si incolonnano e si sommano i prodotti parziali scalandoli opportunamente:

■ Notare che ciascun prodotto parziale è pari a zero o al moltiplicando

Numeri in virgola fissa senza segno

- Naturale estensione della rappresentazione dei numeri naturali
 - Si stabilisce il numero di bit
 - Viene fissata la posizione della virgola
 - Si interpreta con il meccanismo posizionale di base
- Esempio:
 - 6 cifre di cui due decimali
 - Numerale: 1010.01
 - Interpretazione: $1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 10.25$

Addizioni tra numeri positivi in virgola fissa

Si opera come in decimale

$$3,5 + 2,75 = 6,25$$
 $0011.10 + 0010.11 = 0110.01$

Moltiplicazioni tra numeri positivi in virgola fissa

Si opera come in decimale, tenendo conto del numero di cifre frazionarie e riposizionando il punto:

$$(2.75)_{10} 10.11 x$$

$$(1.25)_{10} 01.01 =$$

$$10.11 x$$

$$10.11 x$$

$$0.00 0$$

$$10.11 1$$

$$(3.4375)_{10} 11.01 11$$

$(2.75)_{10}$	010.11 x
$(2)_{10}$	10 =
	00 00
	1 01 1
$(5.5)_{10}$	1 01.10

- Notare che:
 - moltiplicare per 2ⁿ equivale a spostare il punto di n posti a destra
 - moltiplicare per 2⁻ⁿ equivale a spostare il punto di n posti a sinistra

Moltiplicazione per potenze di due

■ Moltiplicare per 2ⁿ equivale a spostare il punto di n posti a destra

$$(3.75)_{10} \qquad 0011.11 \times 2^{2} = (4)_{10} \qquad 0100.00 = 00000 \times 10^{2} \times 10^$$

Moltiplicazione per potenze di due

■ Moltiplicare per 2⁻ⁿ equivale a spostare il punto di n posti a sinistra

$$(3.75)_{10} \qquad 11.11 \times 2^{-2} = (0.25)_{10} \qquad 00.01 = 1111 \times 0000 \times 00000 \times 00000 \times 0000 \times 0$$

Interi con segno

- Per rappresentare gli interi relativi, a parità di cifre si dimezza l'intervallo dei valori assoluti
- Si utilizzano varie rappresentazioni

Modulo e segno

- un bit per il segno 0:+ 1:-
- n-1 bit per il modulo
- intervallo $[-2^{n-1}+1, +2^{n-1}-1]$

ES

```
n = 4 \text{ bit} intervallo [-7,+7]

5 = 0101 -5 = 1101
```

NB

- intervallo simmetrico
- doppia rappresentazione dello zero

Complemento a 1

- Si aggiunge uno 0 a sinistra
- I numeri positivi si rappresentano con il sistema posizionale
- Per cambiare di segno si complementa il numerale bit a bit
- I numerali positivi iniziano per 0, i negativi per 1
- Con n bit: $[-2^{n-1}+1, +2^{n-1}-1]$

ES

```
n = 4 \text{ bit} intervallo [-7, +7]

5 = 0101

-5 = 1010
```

- Complementare = cambiare segno
- Doppia rappresentazione dello 0

Complemento a 2

- I positivi hanno la stessa rappresentazione che in complemento a 1
- I negativi si ottengono sommando 1 alla loro rappresentazione in complemento a 1
- Intervallo con n bit: $[-2^{n-1}, +2^{n-1}-1]$
- Regola pratica per complementare (cambiare segno al numerale):
 - Partendo da destra si lasciano invariati tutti i bit fino al primo uno compreso, e poi si complementa bit a bit

ES

```
n = 4 bit intervallo [-8, +7]

5 = 0101

-5 = 1011
```

- Intervallo più esteso
- Una sola rappresentazione dello 0
- Complementare (a 2) = cambiare segno

Rappresentazioni in CP1 e CP2

- Se il numero è *positivo*:
 - a) determinare il numero di bit n
 - b)rappresentare il numero con il sistema posizionale su n bit
- Se il numero è *negativo*:
 - a) determinare il numero di bit n
 - b)rappresentare il numero positivo con il sistema posizionale su n bit
 - c) complementare (a 1 o a 2) il numerale così ottenuto
- **ES** rappresentare $(-347)_{10}$ in CP2
 - $-2^8 = 256 < 347 < 512 = 2^9$
 - intervallo con n bit: [-2ⁿ⁻¹,+2ⁿ⁻¹-1]
 - pertanto $n_{min}=10$
 - +347 in notazione a 10 bit:

512	256	128	64	32	16	8	4	2	1
0	1	0	1	0	1	1	0	1	1

complementando a 2:

-512	256	128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	1	0	1

Interpretazione in CP1 e in CP2

- Dato un numerale:
 - **Es.** 00110 oppure 10101
- Si determina il segno
- Se è positivo si interpreta con il sistema posizionale
 - $00110 \rightarrow 2^2 + 2^1 = 6$
- Se è negativo si complementa (a 1 o a 2) e poi si interpreta con il sistema posizionale (aggiungendo il -)
 - 10101 (CP2) \rightarrow -(01011) \rightarrow -(2³+2¹+2⁰) = -11

Addizioni in complemento a due

■ In CP2 somme e sottrazioni tra numerali sono gestite nello stesso modo, ma si deve ignorare il trabocco:

$$4 + 0100 + 2 = 0010 = 6$$

Se i due operandi hanno segno diverso il risultato è sempre corretto:

$$4 + 0100 + 1111 = 3$$
 $3 * 0011$

■ Se i due operandi hanno lo stesso segno e il risultato segno diverso c'è errore

$$\begin{array}{c}
6 + \\
3 = \\
\hline
9 \\
\end{array}$$

$$\begin{array}{c}
0011 = \\
1001 \\
\end{array}$$
(9 non è compreso nell'intervallo)

Altre operazioni su numeri con segno

■ Per fare la differenza si complementa il sottraendo e si somma:

Le moltiplicazioni si fanno tra i valori assoluti e alla fine, se necessario, si complementa:

$$(11)_{10} \times (-5)_{10} \qquad 01011 \times 00101 = 01011 \times 00000 \times 01011 \times 00000 \times 00000 \times 00000 \times 00000 \times 000110111 \times (-55)_{10} \qquad 111001001$$

Eccesso 2ⁿ⁻¹

- I numeri vengono rappresentati come somma fra il numero dato e una potenza di 2, detta eccesso
- Con n bit l'eccesso è tipicamente 2ⁿ⁻¹
- Intervallo come CP2: $[-2^{n-1}, +2^{n-1}-1]$
- I numerali positivi iniziano per 1, i negativi per 0
- Regola pratica:
 - I numerali si ottengono da quelli in CP2 complementando il bit più significativo

ES

```
n=4 bit: eccesso 8, intervallo [-8,+7]

-3 -3+8=5 : 0101

+4 +4+8=12 : 1100
```

- Intervallo asimmetrico
- Rappresentazione unica dello 0

Rappresentazioni in eccesso 2ⁿ⁻¹

- Dato un numero m (positivo o negativo) determinare il numero minimo di cifre n_{min} necessarie
- Determinare l'eccesso corrispondente
- Sommare m all'eccesso e rappresentare il numero ottenuto
- **ES** rappresentare $(-347)_{10}$ in eccesso 2^{n-1}
 - $2^8 = 256 < 347 < 512 = 2^9$
 - intervallo con n bit: $[-2^{n-1}, +2^{n-1}-1]$
 - pertanto n_{min} = 10, eccesso $2^9 = 512$
 - -347 + 512 = 165
 - -165 = 128 + 32 + 4 + 1
 - $(-347)_{10}$ in eccesso 2^9 è:

512	256	128	64	32	16	8	4	2	1
0	0	1	0	1	0	0	1	0	1

Interpretazione in eccesso

- Dato un numerale:
 - Es. 00110 oppure 10101 in ecc. a 16
- Indipendentemente dal segno si interpreta con il sistema posizionale e poi si toglie l'eccesso
 - $00110 \rightarrow 2^2 + 2^1 16 = -10$
 - \bullet 10101 → 2⁴+2²+2⁰-16 = 5
- Oppure:
- Se è positivo si interpreta con il sistema posizionale ignorando il primo bit
 - $-10101 \rightarrow 2^2 + 2^0 = 5$
- Se è negativo si inverte il primo bit, si complementa a 2 e poi si interpreta con il sistema posizionale (aggiungendo il -)
 - ullet 00110 \to 10110 \to 01010 = -11

Rappresentazioni a confronto

Decimale	M&S	CP1	CP2	Ecc 8
+ 7	0111	0111	0111	1111
+ 6	0110	0110	0110	1110
+ 5	0101	0101	0101	1101
+ 4	0100	0100	0100	1100
+ 3	0011	0011	0011	1011
+ 2	0010	0010	0010	1010
+ 1	0001	0001	0001	1001
+ 0	0000	0000	0000	1000
– 0	1000	1111		
- 1	1001	1110	1111	0111
- 2	1010	1101	1110	0110
- 3	1011	1100	1101	0101
- 4	1100	1011	1100	0100
- 5	1101	1010	1011	0011
- 6	1110	1001	1010	0010
- 7	1111	1000	1001	0001
- 8			1000	0000

Notazione in base 16

- Per i numerali esadecimali occorrono 16 cifre {0,1,...,9,A,B,C,D,E,F}
- Conversione esadecimale-binario:
 - Si fa corrispondere a ciascuna cifra esadecimale il gruppo di 4 bit che ne rappresenta il valore
- Conversione binario-esadecimale:
 - Partendo da destra si fa corrispondere a ciascun gruppo di 4 o meno cifre binarie la cifra esadecimale che ne rappresenta il valore

 Si usano spesso stringhe esadecimali per rappresentare stringhe binarie in forma compatta

Numerali e numeri

- Un numerale è solo una stringa di cifre
- Un numerale rappresenta un numero solo se si specifica un sistema di numerazione
- Lo stesso numerale rappresenta diversi numeri in diverse notazioni
- **ES** la stringa 110100 rappresenta:
 - Centodiecimilacento in base 10
 - $(+52)_{10}$ in binario naturale
 - $(-11)_{10}$ in complemento a 1
 - $(-12)_{10}$ in complemento a 2
 - $(+20)_{10}$ in eccesso 32
 - In esadecimale un numero grandissimo

Notazione in virgola mobile

- Estende l'intervallo di numeri rappresentati a parità di cifre, rispetto alla notazione in virgola fissa
- Numeri reali rappresentati tramite una coppia di numeri <m,e>

$$n = m \cdot b^e$$

m: mantissa (normalizzata tra due potenze successive della base)

$$b^{i-1} \le |m| < b^i$$

- e : *esponente* intero con segno
- Sia m che e hanno un numero finito di cifre:
 - Intervalli limitati
 - Errori di arrotondamento

Esempio in base 10

- Numerali a 5 cifre + .XXX + EE
- Mantissa: 3 cifre con segno

 $0.1 \le |m| < 1$

Esponente: 2 cifre con segno

 $-99 \le e \le +99$

- Notare che con lo stesso numero di cifre in notazione a virgola fissa +XXX.YY
 - L'intervallo scende [-999.99,+999.99]
 - Ma si hanno 5 cifre significative invece di 3

Standard IEEE 754 (1985)

- Formato non proprietario cioè non dipendente dall'architettura
- Semplice precisione a 32 bit:

Doppia precisione a 64 bit

- Notazioni con mantissa normalizzata e no
- Alcune configurazioni dell'esponente sono riservate

Standard IEEE 754 a 32 bit: numeri normalizzati

1	8	23
+/-	esp	mantissa

- Esponente: eccesso 127 [-127, +128] non si usano gli estremi, quindi: $-126 \le e \le 127$
- Mantissa: rappresentata solo la parte decimale **con la notazione posizionale**: $1 \le m < 2$
- Intervallo numeri normalizzati [2⁻¹²⁶, ~2¹²⁸]
- Uso delle configurazioni riservate:
 - m ed e tutti 0: rappresenta lo 0
 - *m* tutti 0 ed *e* tutti 1: *overflow*
 - *m* ≠ 0 ed *e* tutti 1: *Not A Number*
 - $m \neq 0$ ed e tutti 0: numero denormalizzato

Standard IEEE normalizzati: estremi intervallo

■ <u>Più grande normalizzato</u> ~2¹²⁸:

■ Più piccolo normalizzato 2-126:

Standard IEEE 754 a 32 bit: numeri denormalizzati

- Esponente
 - Uguale a 00000000
 - e vale convenzionalmente 2⁻¹²⁶
- Mantissa:
 - diversa da 0
 - -0 < m < 1
- Intervallo di rappresentazione
 - $[2^{-126} \ 2^{-23} = 2^{-149}, \sim 2^{-126}]$

Standard IEEE denormalizzati: estremi intervallo

■ <u>Più grande denormalizzato</u> ~2⁻¹²⁶:

■ Più piccolo denormalizzato 2-149:

Addizioni in virgola mobile

 Per addizione e sottrazione occorre scalare le mantisse per eguagliare gli esponenti

ES

Notare che l'addendo più piccolo perde cifre significative

Moltiplicazioni in virgola mobile

- Si moltiplicano le mantisse e si sommano algebricamente gli esponenti
- Se necessario si scala la mantissa per normalizzarla e si riaggiusta l'esponente

```
ES n_3 = n_1 \times n_2
    n_1: 0 10011001 10010111011100101100111
    \bullet e_1 = (26)_{10}, e_2 = (43)_{10}
  \bullet e_1 + e_2 = (69)_{10} = 11000100
  \mathbf{m}_1 \times \mathbf{m}_2 = 10.01100011001011110110101
  si scala la mantissa di un posto
  si aumenta di 1 l'esponente
        1 11000101 00110001100101011101101
```

Errore assoluto e relativo

- Rappresentando un numero reale n in una notazione floating-point si commette un errore di approssimazione
- In realtà viene rappresentato un numero razionale n' con un numero limitato di cifre significative
 - Errore assoluto: e_A= n n′
 - **Errore relativo**: $e_R = e_A / n = (n n') / n$
- Se la mantissa è normalizzata l'errore relativo massimo è costante su tutto l'intervallo rappresentato ed è pari ad un'unità sull'ultima cifra rappresenta
- **ES** 10 cifre frazionarie $e_R = 2^{-10}$
- Nelle notazioni non normalizzate l'errore relativo massimo non è costante

Codifica di caratteri: codice ASCII (Hex 0-1F)

Hex	Name	Meaning	Hex	Name	Meaning
0	NUL	Null	10	DLE	Data Link Escape
1	SOH	Start Of Heading	11	DC1	Device Control 1
2	STX	Start Of Text	12	DC2	Device Control 2
3	ETX	End Of Text	13	DC3	Device Control 3
4	EOT	End Of Transmission	14	DC4	Device Control 4
5	ENQ	Enquiry	15	NAK	Negative AcKnowledgement
6	ACK	ACKnowledgement	16	SYN	SYNchronous idle
7	BEL	BELI	17	ETB	End of Transmission Block
8	BS	BackSpace	18	CAN	CANcel
9	HT	Horizontal Tab	19	EM	End of Medium
Α	LF	Line Feed	1A	SUB	SUBstitute
В	VT	Vertical Tab	1B	ESC	ESCape
С	FF	Form Feed	1C	FS	File Separator
D	CR	Carriage Return	1D	GS	Group Separator
E	SO	Shift Out	1E	RS	Record Separator
F	SI	Shift In	1F	US	Unit Separator

Codice ASCII (Hex 20-7F)

Hex	Char	Hex	Char	Hex	Char	Hex	Char	Hex	Char	Hex	Char
20	(Space)	30	0	40	@	50	Р	60	•	70	р
21	!	31	1	41	Α	51	Q	61	а	71	q
22	"	32	2	42	В	52	R	62	b	72	r
23	#	33	3	43	С	53	S	63	С	73	s
24	\$	34	4	44	D	54	Т	64	d	74	t
25	%	35	5	45	Е	55	U	65	е	75	u
26	&	36	6	46	F	56	V	66	f	76	V
27	,	37	7	47	G	57	W	67	g	77	w
28	(38	8	48	Н	58	X	68	h	78	x
29)	39	9	49	1	59	Υ	69	i	79	У
2A	*	3A	:	4A	J	5A	Z	6A	j	7A	z
2B	+	3B	;	4B	K	5B]	6B	k	7B	{
2C	,	3C	<	4C	L	5C	\	6C	1	7C	
2D	-	3D	=	4D	M	5D]	6D	m	7D	}
2E		3E	>	4E	Ν	5E	^	6E	n	7E	~
2F	1	3F	?	4F	0	5F		6F	0	7F	DEL

Codifica di caratteri: Codice UNICODE

- Codice UNICODE a 16 bit, nuova proposta di standard:
 - 65.536 code points
 - Semplifica la scrittura del software
 - 336 code points: alfabeti latini
 - 112 accenti e simboli diacritici
 - Greco, cirillico, ebraico, ecc.
 - 21.000 ideogrammi cinesi......
 - Un consorzio assegna quello che resta
- UTF-8: codice a lunghezza variabile basato su Unicode
 - Oddddddd: ASCII
 - Altri prefissi che iniziano per 1: codifiche più lunghe

Esempio 1: virgola mobile

- Rappresentazione binaria in virgola mobile a 16 bit:
 - 1 bit per il segno (0=positivo)
 - 8 bit per l'esponente, in eccesso 128
 - 7 bit per la parte frazionaria della mantissa normalizzata tra 1 e 2
- Calcolare gli estremi degli intervalli rappresentati, i numerali corrispondenti, e l'ordine di grandezza decimale assumendo che le configurazioni con tutti 0 e con tutti 1 siano riservate.
- Rappresentare in tale notazione:
 - il numero m rappresentato in compl. a 2 dai tre byte FF5AB9
 - il numero n rappresentato in compl. a 1 dai tre byte 13B472
- Calcolare l'errore relativo ed assoluto che si commette rappresentando i numero m ed n nella notazione data

Esempio 2: virgola mobile

- Rappresentazione binaria in virgola mobile a 16 bit:
 - 1 bit per il segno (0=positivo)
 - 8 bit per l'esponente, in eccesso 128 (configurazioni con tutti 0 e con tutti 1 riservate)
 - 7 bit per la parte frazionaria della mantissa normalizzata tra 1 e 2
- Dato il numero m rappresentato in tale notazione dai due byte C3A5, calcolare l'intero n che approssima m per difetto, e rappresentarlo in complemento a 2 con 16 bit.

Esempio 3: virgola mobile

- Rappresentazione binaria in virgola mobile a 16 bit:
 - 1 bit per il segno (0=positivo)
 - e bit per l'esponente, in eccesso 2^{e-1}
 - 15-e bit per la parte decimale della mantissa normalizzata tra 1 e 2
 - configurazioni dell'esponente con tutti 0 e con tutti 1 riservate
- Calcolare il valore minimo e_{min} di bit per l'esponente che consenta di rappresentare il numero n rappresentato in complemento a 2 dai tre byte FF5AB9
- Rappresentare n nel sistema trovato

Esempio 4: virgola mobile

- Rappresentazione binaria in virgola mobile a 16 bit:
 - 1 bit per il segno (0=positivo)
 - 7 bit per l'esponente, in eccesso 64
 - 8 bit per la parte decimale della mantissa normalizzata tra 1 e 2
 - configurazioni dell'esponente con tutti 0 e con tutti 1 riservate
- Dati m e n rappresentati in tale notazione dalle stringhe esadecimali FC53 e F8F2
- Calcolare la somma di m e n e fornire la stringa esadecimale che la rappresenta nella notazione suddetta
- Indicare l'eventuale errore assoluto che si commette
- Provare anche con FC53 e 78F2
- Provare anche con 7C53 e F8F2

Esercizio 5: virgola mobile

Si considerino i numeri m ed n che, nel sistema di rappresentazione in eccesso a 2⁷, sono rappresentati rispettivamente dalle le stringhe esadecimali 63 e 93.

- A. Calcolare il valore di s = m + n e rappresentare s nel sistema di rappresentazione in complemento a due su 12 bit.
- B. Individuare una rappresentazione in virgola mobile che consenta di rappresentare il suddetto numero s con il numero minimo possibile di bit ed indicare l'intervallo di rappresentazione della rappresentazione individuata tenendo conto del fatto che le configurazioni dell'esponente composte da tutti 0 e da tutti 1 sono riservate;
- C. Rappresentare, nella notazione in virgola mobile definita al punto B, i numeri decimali 0, -2 e 1,25 indicando gli eventuali errori di rappresentazione commessi;
- D. Individuare il numero e di bit dell'esponente e il numero m di bit della mantissa di una notazione in virgola mobile a 16 bit che sia in grado di rappresentare tutti i numeri rappresentabili nella definita al punto A e che abbia l'intervallo di rappresentazione più grande possibile.

Esercizio 6: virgola mobile

Si consideri una rappresentazione binaria in virgola mobile a 12 bit, di cui (nell'ordine da sinistra a destra) 1 bit per il segno (0=positivo), e per l'esponente, che è rappresentato in eccesso a 2^{e-1} , e i rimanenti bit per la parte frazionaria della mantissa m che è normalizzata tra 1 e 2.

- A. Calcolare il valore di e che consente di rappresentare, con la massima precisione possibile, numeri compresi in valore assoluto tra 1000 e 0,001;
- B. tenendo conto del fatto che le configurazioni dell'esponente composte da tutti 0 e da tutti 1 sono riservate, indicare il più piccolo e il più grande numero che è possibile rappresentare nella notazione in virgola mobile definita al punto A specificando i numerali corrispondenti;
- C. rappresentare nella notazione individuata al punto A il numero 512 e il numero -1, indicando gli eventuali errori assoluti che si commettono;
- D. dato il numero n rappresentato nella notazione definita al punto A dalla stringa esadecimale D85, rappresentarlo: (a) in complemento a 2 su 8 bit e (b) in eccesso 29 su 10 bit.

Esercizio 7: virgola mobile

Si consideri una rappresentazione binaria in virgola mobile a 20 bit, di cui si usa: 1 per il segno (0=positivo), 7 per l'esponente, che è rappresentato in eccesso a 64, e 12 per la parte decimale della mantissa. Con valori dell'esponente diversi da 0000000 la mantissa è normalizzata tra 1 e 2 ($1 \le man < 2$). Con esponente pari a 0000000 si rappresentano invece numeri denormalizzati, con esponente uguale a -63 e mantissa compresa tra 0 e 1 (0 < man < 1).

- A. Calcolare l'ordine di grandezza decimale del più piccolo numero positivo normalizzato e del più grande numero positivo denormalizzato, rappresentabili nella notazione suddetta.
- B. Dato il numero n rappresentato in complemento a 2 dai tre byte FF323B, ricavare il numerale che approssima meglio nella notazione suddetta il numero $m = n \times 2^{-85}$, esprimendolo come stringa esadecimale.
- C. Calcolare gli ordini di grandezza sia binari che decimali dell'errore assoluto che si commette rappresentando m nella notazione suddetta.