

بخش تئوري

سوال 1:

مجموعه داده ای را با 2 نقطه در نظر بگیرید.

$$(x_1 = 0, y_1 = -1)$$

$$(x_2 = \sqrt{2}, y_2 = 1)$$

با استفاده از بردار ویژگی، هر نقطه را به صورت سه بعدی در نظر بگیرید. (این معادل استفاده از یک کرنل چند جمله ای مرتبه دوم است)

$$\phi(X) = [1, 2X, X^2]^T$$

با در نظر گرفتن max margin classifier به سوالات زیر پاسخ دهید

$$\min ||\mathbf{w}||^2 \quad \text{s.t.}$$

$$y_1(\mathbf{w}^T \phi(\mathbf{x}_1) + w_0) \ge 1$$

$$y_2(\mathbf{w}^T \phi(\mathbf{x}_2) + w_0) \ge 1$$

الف _ برداری را بنویسید که موازی با بردار بهینه W باشد.

ب _ مقدار حاشیه ای که با این w بدست می آید چقدر است؟

ج _ w را با استفاده از مقدار w و معادلات max margin classifier بدست آورید. نکته: نقاط در مرز تصمیم قرار می گیرند، بنابراین نابرابری ها tight خواهند بود.

سوال 2: مجموعه داده ی زیر را در نظر بگیرید کلاس ها و ضرایب لاگرانژی مشخص شده اند.

i	x_{i1}	x_{i2}	y_i	α_i
\mathbf{x}_1^T	4	2.9	1	0.414
\mathbf{x}_2^T	4	4	1	0
\mathbf{x}_3^T	1	2.5	-1	0
\mathbf{x}_4^T	2.5	1	-1	0.018
\mathbf{x}_{5}^{T}	4.9	4.5	1	0
\mathbf{x}_{6}^{T}	1.9	1.9	-1	0
\mathbf{x}_{7}^{T}	3.5	4	1	0.018
\mathbf{x}_8^T	0.5	1.5	-1	0
\mathbf{x}_{2}^{T} \mathbf{x}_{3}^{T} \mathbf{x}_{4}^{T} \mathbf{x}_{5}^{T} \mathbf{x}_{6}^{T} \mathbf{x}_{7}^{T} \mathbf{x}_{8}^{T} \mathbf{x}_{9}^{T}	2	2.1	-1	0.414
\mathbf{x}_{10}^T	4.5	2.5	1	0

⁽h(x)). معادله ی ابر صفحه ی SVM را بدست آورید.

^{2.} فاصله ی نقطه ی x_6 را از ابرصفحه بدست آورید. آیا این نقطه درون حاشیه (margin) است؟

را توسط h(x) طبقه بندی کنید. $z = (3,3)^T$ طبقه بندی کنید.

.3 سوال

شبکه عصبی زیر را در نظر بگیرید. همانطور که دیده می شود مقدار پیش قدر (bias) ثابت و صفر می باشد. مقدار ماتریس های وزنی نیز در زیر آورده شده است.

$$W = (w_1, w_2, w_3) = (1, 1, -1)$$
 $W' = (w_1', w_2', w_3')$

فرض كنيد تابع فعالساز لايه پنهان Relu و لايه خروجي sigmoid و خطا SSE باشد. اگر x=4 و y=0 باشد به سوالات زير پاسخ دهيد.

الف) با انتشار پیشرو خروجی را تخمین بزنید.

ب) مقدار خطا را محاسبه کنید.

$$\delta_j = rac{\partial L}{\partial z_j}$$
بردار گرادیان شبکه در لایه خروجی و لایه پنهان را بدست اَورید. $($

$$\frac{\partial L}{\partial w^l_{ij}}$$
 ج) ماتریس گرادیان وزنی بین لایه ورودی و پنهان و نیز بین لایه پنهان و خروجی را محاسبه کنید.

بخش پیاده سازی

قصد داریم عمل طبقهبندی (Classification) چند کلاسه را توسط یک شبکه عصبی با یک لایه ورودی، یک لایه پنهان و یک لایه خروجی انجام دهیم. در ابتدا مجموعه داده mnist که شامل 60000 داده آموزشی و 10000 داده تست میباشد را توسط یکی از کتابخانهها مانند sklearn دریافت کنید. تابع فعالساز در لایه پنهان را لجستیک (sigmoid) در نظر بگیرید و در لایهی خروجی از تابع cross_entropy برای محاسبه خطا استفاده کنید.

تعداد نورونهای ورودی 784 (سایز هرعکس در قالب آرایه)، تعداد نورونهای لایه پنهان 100 و تعداد نورونهای لایه خروجی 10 است. که این نشان می دهد 10 کلاس داریم.

الف) بخش feed_forward را بدون استفاده از کتابخانه پیادهسازی کنید.

ب) بخش back_propagation را با محاسبه مشتقات جزئی تابع خطا نسبت به وزنها و بایاسها ییاده سازی کنید.

ج) با استفاده از tensorflow همین شبکه را پیادهسازی کنید و نتایج را مقایسه کنید.

نكات

- تمرینها را در سامانه ایلرن بارگزاری کنید.
- تمام تمرینهای تئوری، باید بصورت دستنویس و خوانا باشند.
- لطفا گزارش را به زبان فارسی بنویسید و تمامی نکات، فرضها و فرمولها در آن ذکر شود. گزارش در روند تصحیح تمارین، از اهمیت ویژهای برخوردار است.
 - کپی کردن کدهای آماده موجود در اینترنت و یا استفاده از تکالیف همکلاسیها تقلب محسوب می شود.
 - درصورت مشاهده تقلب، نمرات تمامی افراد شرکت کننده در آن، صفر لحاظ می شود.
 - بجز مواردی که ذکر شده از کتابخانه sklearn استفاده شود، در دیگر موارد فقط از توابع پایتون و کتابخانه numpy استفاده شود.