CSE250: Circuits and Electronics Spring 2023 Practice Problems Set 2

- 1. For the network shown below, determine,
 - **a.** V_a, V_b, V_c, V_d
 - **b.** V_{ab} , V_{cb} , V_{cd}
 - c. V_{ad} , V_{ca}

Answer:

- **a.** 6 V, 14 V, 4 V, 0 V
- **b.** -8 V, -10 V, 4 V
- *c*. 6 V, -2 V

- **2.** For the network shown below,
 - a. Count the number of nodes.
 - **b.** Determine the node voltages.
 - **c.** Determine the power supplied by the current source.

Answer:

- a. Try yourself.
- b. -2.56 V, 4.03 V, 0 V

Use nodal analysis and determine the power of the 12 V Answer: -29.14 W **3.** battery.

Use the node-voltage method to find the power associated 4. with each source in the circuit shown.

Answer:

- $p_{50v} =$ $-150 W, p_{3i_1} =$ -144 W, $p_{5A} =$
- -80W;

Use nodal analysis and find the current through the dependent Answer: $\pm 2 A$ **5.** voltage source.

Use the node-voltage method to find the branch currents Answer: 2 mA, $40 \, mA, -70 \, mA$ i_1 , i_2 , and i_3 . $1 k\Omega$ 10 mA $5 k\Omega$ $\lessapprox 4 k\Omega i_3 \downarrow (+)$ $i_2 \downarrow \lessapprox 500 \Omega$ 30 V Using nodal analysis, determine V_o in the circuit below. Answer: 60 V **7.** 20Ω 10Ω 10 Ω **** 40 V Using nodal analysis, determine v_o in the circuit below. Answer: -50 V**8.** 10Ω 3 A 10Ω 10 Ω 20Ω

Using mesh analysis, find v_o .

10. Use mesh analysis and determine V_{ab} .

11. Use mesh analysis to determine the current supplied by Answer: 15 A the 75 V source.

12. Use mesh analysis and determine v_0 . Find the power Answer: 15 V delivered by the dependent source.

13. Use the mesh-current method to find the power dissipated in the 1 resistor in the circuit shown. **Answer:** 36 W.

14. Use mesh analysis and determine the power of the 3 *A* **Answer:** 12.74 *V* source.

15. Use mesh analysis and determine the power of the Answer: $-0.75 \, kW$

 10Ω

16. Use mesh analysis method and determine voltage across Answer: $\mp 12 V$ the 3 A current source.

17. Use superposition to solve for v_0 in the following circuit. Answer:

 $v_0 = -10 V$

18. For the circuit shown below, use superposition to find i. Calculate the power delivered to the 3- Ω resistor.

Answer: 1.875 *A*, 10.55 *W*

19. Use the superposition principle to find i_0 in the following circuit.

Answer:

$$i_0 = 4.8 + 1.6 - 2.4$$

= 4 A

20. Determine v_0 using superposition principle.

$$v_0 = 30 + 20$$
$$= 50 V$$

21. Obtain v_o in the following circuit using source **Answer:** -6.6 Vtransformation. 2 A 9Ω 3 A 5Ω 6 A 2Ω 30 V **22.** Use a series of source transformations to find i_o . **Answer:** −0.85 *A* 6Ω 5Ω ≸17Ω \$6Ω ≨1.5Ω 34 V **Answer:** 3 *V* **23.** Use source transformation to find v_o . $4 k\Omega$ $3v_o$ $2 k\Omega$ 3 mA (1kΩ ≥

