Notes made while reading Kalicharan's Advanced C

Table of Contents

Stacks and Queues	. 1
5.1 Abstract Data Types.	. 1
5.2 Stacks	. 1
5.6 Queues	. 2
1 Hashing	. 2
11.1 Hashing Fundamentals	. 2
11.2 Solving the Search and Insert Problem by Hashing	. 3
11.3 Resolving Collisions	. 4

Source can be found at https://github.com/mtn/kalicharan-adv-c-notes

Generated using Asciidoctor.

5 Stacks and Queues

5.1 Abstract Data Types

We refer to implementations of data types whose operations can be performed by users without knowledge of the underlying implementation.

5.2 Stacks

A **stack** is a linear list where items are added and deleted from the same end. This means that stacks exhibit a "last in, first out" property. As an example, consider the following set of numbers:

```
36 15 52 23
```

If we want to print the following:

```
23 52 15 36
```

We would need to construct the following stack:

```
(top) 23 52 15 36 (bottom)
```

And we would remove numbers one at a time, printing them as we remove them. In psuedocode:

```
initialize empty stack S
read(num)
while a next number, num was read:
    push num onto S
    read(num)
while S is not empty:
    num = pop S
    print num
```

5.2.1 Implementing a Stack Using an Array

Stacks can be implemented with a struct containing an array and an int index of the top of the stack:

```
typedef struct {
  int top;
  int ST[MaxStack];
} StackType, *Stack;
```

Note that having StackType is useful for allocating a stack (general useful practice). When initialized, we'll set top to -1. Considering a stack variable, Stack S, we have access to top and the stack array, as we should based on our above definition of ADTs. Declaring a stack variable is therefore pretty simple:

```
Stack initStack(){
    Stack sp = malloc(sizeof(StackType));
    sp->top = -1;
    return sp;
}
```

And a user would simply initialize a new stack with Stack S = initStack().

TODO Finish stack section

5.6 Queues

11 Hashing

11.1 Hashing Fundamentals

Hashing is a fast method for searching for an item in a table where each item's key determines its placement. Keys are converted to numbers (if non-numeric) and then **hashed** (mapped) to a table location. If multiple keys hash to the same location, we have a **collision**, which we must resolve.

11.1.1 The Search and Insert Problem

Problem statement: Given a (possibly empty) list of items, search for a given item. If not found, insert it.

There are many ways we can implement the list:

- 1. As an array, where integers are placed in the next available position and searching is sequential. Fast insertion by slow searching.
- 2. As an array, where each item is inserted such that the array remains sorted. Searching is faster than (1), but insertion is slower.
- 3. As an unsorted linked-list, which must be searched sequentially.
- 4. As a sorted linked list

Alternatively, we can use **hashing**, which allows for fast search *and* easy insertion.

11.2 Solving the Search and Insert Problem by Hashing

Suppose we have 12 spots (indexed 1-12) to place numbers and we want to insert 52. A simple hash function might be x % 12 + 1, where 52 would be placed in slot 5. If we try to add 16 next, however, we have a collision. One option (*linear probing*) is to just place it (16) in the next open spot. Our searching is thus slightly more complicated:

- Apply our hash function and check the slot
- If the slot is occupied by a different number, try the next location. Keep going until it's found or an empty slot is found.

Roughly as code:

```
loc = hash(key)
while(num[loc] && num[loc] != key)
    loc = loc % n + 1 //n == number of slots
if(!num[loc]){
    num[loc] = key;
}
```

Note that the above while loop never terminates if that table is full (which we never allow happen in practice). Also, rather than !num[loc], we'll assign a default 'empty' value (ex. -1 or 0).

11.2.1 The Hash Function

Looking beyond the previous example, sometimes we encounter keys that are non-numeric. When handling these, we first need to convert them to some numeric value. Considering strings, we can add up numeric char values:

```
int h = 0, wordNum = 0;
while(word[h] != '\0') wordNum += word[h++];
loc = wordNum % n + 1; //loc between 1 and n
```

The problem here is that words with the same letters hash to the same location. To counter this, we can apply a weight to each letter based on position in the word.

```
int h = 0, wordNum = 0;
while(word[h] != '\0'){
    wordNum += w * word[h++];
    w = w + 2;
}
loc = wordNum % n + 1;
```

Generally, we want to spread our data out in the table but avoid having a costly function.

Deleting an Item from a Hash Table

We can't simply delete values, or our resolved collisions might erroneously not be found. Instead, we can *mark* values as deleted (ex. -1).

11.3 Resolving Collisions

The above collision-resolution process is an example of **linear probing**. Other options include **quadratic probing**, **chaining**, and **double hashing**.

11.3.1 Linear Probing

Essence: loc += 1. Downsides: Clustering (long chains tend to get longer, and connect to other chains). *Primary clustering* is when keys hash to different locations but trace the same path looking for an empty location (ex. keys that hashes to 5 and 6). *Secondary clustering* is when keys that hash to the same location trace the same path.

Trying to solve this problem by substituting k for 1 can be *worse* if not all locations end up being checked. However, s o long as table size m and k are coprime, we know all locations will be generated. Note: not that important in practice since we don't want full tables anyways.

When evaluating the speed that results from collision-resolution methods, we consider **search length**, which is a function of **load factor** *f* where:

Using this *f*, we have:

as the average number of steps for successful searches and:

as the average number for unsuccessful searches. Trying some figures, we can easily see that filling the table above 75% capacity is not optimal (0.75: 8.5/unsuccessful vs. 0.90: 50.5/unsuccessful).

11.3.2 Quadratic Probing

Essence: loc += ai + bi^2

Rough implementation:

```
loc = hash(key);
int i = 0;
while(num[loc] && num[loc] != key){
    ++i;
    loc = loc + a*i + b*i*i;
    while(loc > n) loc = loc - n; // n is table length
}
if(!num[loc]) num[loc] = key;
```

Note that powers of 2 for n are quite bad, only a small fraction will be tried. For prime n, half can be reached (usually sufficient).

11.3.3 Chaining

Items that hash to the same index are held within a linked list. Thinking about implementation, we

start with a basic linked list implementation:

```
typedef struct node{
   int num;
   struct node *next;
} Node, *NodePtr
```

and a function to create new nodes:

```
Node newNode(int n){
   Node temp;
   temp.num = n;
   temp.next = NULL;
   return temp;
}
```

and hash would be an array of these nodes as follows:

```
NodePtr hash[MaxItems]; // 0-index
```

which we initialize with NULLs:

```
for(int i = 0; i < MaxItems; ++h) hash[h] = NULL;</pre>
```

Putting this together, we might have an implementation that like this:

TODO: Add a full implementation with creation, searching, and search + insert.