Informes de CIREL

Rafael Sánchez - Alejandro Santorum Varela Universidad Autónoma de Madrid Preinforme de la sesión 7

1 Simulación y cálculos teóricos.

1.1 Amplificador no inversor.

Tras simular el circuito con una amplitud de 1V obtenemos la siguiente gráfica de simulación:

De donde deducimos que $A_v \simeq 6,02~dB$ y la diferencia de fase $\simeq 0^{\circ}$. Se observa que para frecuencias mayores a 100kHz la ganancia empieza a decaer, por lo que nuestro circuito funcionará bien para frecuencias menores a esta, sin embargo cabe destacar que la fase empieza a decaer a frecuencias mayores de 10kHz.

Se muestra a continuación el cálculo teórico:

Suponiendo I la intensidad que circula por la rama superior, podemos afirmar que la intensidad que atraviesa la primera resistencia es igual a la segunda por el funcionamiento ideal del amplificador. Por tanto:

$$\begin{cases} I = \frac{0 - V_i}{R_1} \\ I = \frac{V_i - V_o}{R_2} \end{cases} \Rightarrow \frac{-V_i}{R_1} = \frac{V_i - V_o}{R_2} \Rightarrow \frac{V_i}{V_o} = \frac{R_1 + R_2}{R_1} \Rightarrow |A_v| = \frac{R_1 + R_2}{R_1}$$

$$|A_v|_{dB} = 20log_{10}(2) \simeq 6,021dB; \quad \phi = 0^{\circ}$$

Podemos comprobar nuestra hipótesis de que para frecuencias menores el circuito funciona de forma esperada al coincidir el resultado teórico con el calculado.

1.2 Filtros RC.

1.2.1 Circuito 1.

Gráfica de simulación:

Donde podemos observar que es un filtro paso bajo y la frecuencia de corte $f_0 \simeq 300 Hz$. Procedemos al cálculo teórico: Suponiendo I_2 la corriente que atraviesa a las resistencias R_1 y R_2 e I_1 la corriente que atraviesa a la resistencia R_L , y $V_i = V_3$ obtenemos los siguientes sistemas:

$$\begin{cases}
I_1 = \frac{V_3 - V_+}{R_L} \\
I_1 = \frac{V_+ - 0}{Z_{C_L}}
\end{cases} (1) \qquad
\begin{cases}
I_2 = \frac{-V_+}{R_1} \\
I_2 = \frac{V_+ - V_0}{R_2}
\end{cases} (2)$$

De donde deducimos:

(1)
$$V_{+} = \frac{Z_{C_{L}}V_{3}}{R_{L} + Z_{C_{L}}};$$
 (2) $V_{+} = \frac{R_{1}V_{o}}{R_{1} + R_{2}}$

Igualando las expresiones anteriores y sustituyendo Z_{C_L} por $\frac{1}{\omega C_j}$, obtenemos la expresión de la ganancia:

$$A_v = \frac{V_o}{V_i} = \frac{R_1 + R_2}{R_1} \cdot \frac{1}{1 + j\omega CR_L}$$

$$|A_v| = \frac{R_1 + R_2}{R_1} \cdot \frac{1}{\sqrt{1 + (j\omega C R_L)^2}} \Rightarrow |A_v|_{dB} = 20 log_{10} \left(\frac{R_1 + R_2}{R_1}\right) - 20 log_{10} \left(\sqrt{1 + (j\omega C R_L)^2}\right)$$

Cuando $\omega \to 0$, $|A_v|_{dB} \to 6{,}021~dB~y~\omega \to \infty$, $|A_v|_{dB} \to -\infty~dB$ con lo que determinamos que es un filtro paso bajo.

Sabiendo que la fase $\phi = -\arctan(\omega CR_L)$, comprobamos que: $\omega \to 0$, $\phi \to 0$ rad y que $\omega \to \infty$, $\phi \to \frac{\pi}{2}$ rad.

Finalmente, el cálculo de la frecuencia de corte $\omega_0 = (CR_L)^{-1} \Rightarrow f_0 = (2\pi CR_L)^{-1} = 338,63 \ Hz.$

1.2.2 Circuito 2.

Gráfica de simulación:

Donde podemos observar que es un filtro paso alto y la frecuencia de corte $f_0 \simeq 3000 Hz$. Procedemos al cálculo teórico: Suponiendo I_2 la corriente que atraviesa a las resistencias R_3 y R_4 e I_1 la corriente que atraviesa al condensador C_H , y $V_i = V_3$ obtenemos los siguientes sistemas:

$$\begin{cases}
I_1 = \frac{V_3 - V_+}{Z_{C_H}} \\
I_1 = \frac{V_+ - 0}{R_H}
\end{cases} (1) \qquad
\begin{cases}
I_2 = \frac{-V_+}{R_3} \\
I_2 = \frac{V_+ - V_0}{R_4}
\end{cases} (2)$$

De donde deducimos:

(1)
$$V_{+} = \frac{R_{H}V_{3}}{R_{H} + Z_{C_{H}}};$$
 (2) $V_{+} = \frac{R_{3}V_{o}}{R_{3} + R_{4}}$

Igualando las expresiones anteriores y sustituyendo Z_{C_H} por $\frac{1}{\omega C_j}$, obtenemos la expresión de la ganancia:

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{3}R_{H} + R_{4}R_{H}}{R_{3}} \cdot \frac{j\omega C}{1 + j\omega CR_{H}}$$

$$|A_{v}| = \frac{R_{3}R_{H} + R_{4}R_{H}}{R_{3}} \cdot \frac{\omega C}{\sqrt{1 + (j\omega CR_{H})^{2}}} \Rightarrow$$

$$\Rightarrow |A_{v}|_{dB} = 20log_{10} \left(\frac{R_{3}R_{H} + R_{4}R_{H}}{R_{3}}\right) + 20log(\omega C) - 20log_{10} \left(\sqrt{1 + (j\omega CR_{H})^{2}}\right)$$

Cuando $\omega \to 0$, $|A_v|_{dB} \to -\infty dB$ y $\omega \to \infty$, $|A_v|_{dB} \to 6,021 dB$ con lo que determinamos que es un filtro paso alto.

Sabiendo que la fase $\phi = -\arctan(\omega CR_H)$, comprobamos que: $\omega \to 0$, $\phi \to \frac{\pi}{2}$ rad y que $\omega \to \infty$, $\phi \to 0$ rad.

Finalmente, el cálculo de la frecuencia de corte $\omega_0=(CR_H)^{-1}\Rightarrow f_0=(2\pi CR_H)^{-1}=3386,28~Hz.$