Kemaswill

机器学习 数据挖掘 推荐系统

Python matplotlib简介 Pyplot教程

本文主要翻译自matplotlib官网

matplotlib.pyplot是一些命令行风格函数的集合,使matplotlib以类似于MATLAB的方式工作。每个pyplot函数对一幅图片(figure)做一些 改动:比如创建新图片,在图片创建一个新的作图区域(plotting area),在一个作图区域内画直线,给图添加标签(label)等。 matplotlib.pyplot是有状态的,亦即它会保存当前图片和作图区域的状态,新的作图函数会作用在当前图片的状态基础之上。

```
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()
```


上图的X坐标是1-3,纵坐标是1-4,这是因为如果你只提供给plot()函数一个列表或数组,matplotlib会认为这是一串Y值(Y向量),并且自 动生成X值(X向量)。而Python一般是从0开始计数的,所以X向量有和Y向量一样的长度(此处是4),但是是从0开始,所以X轴的值为 [0,1,2,3]。

如果要显示的制定X轴的坐标,可以像如下一样:

```
plt.plot([1,2,3,4],[1,4,9,16])
```


也可以给plt.plot()函数传递多个序列(元组或列表),每两个序列是一个X,Y向量对,在图中构成一条曲线,这样就会在同一个图里存在多条 曲线。

为了区分同一个图里的多条曲线,可以为每个X,Y向量对指定一个参数来标明该曲线的表现形式,默认的参数是'b-',亦即蓝色的直线,如果 想用红色的圆点来表示这条曲线,可以:

```
{\tt import\ matplotlib.pyplot\ as\ plt}
plt.plot([1,2,3,4],[1,4,9,16],'ro')
plt.axis([0,6,0,20])
```

<		2012年12		
日	_	=	Ξ	
25	26	27	28	
2	3	4	5	
9	10	11	12	
16	17	18	19	
23	24	25	26	
30	31	1	2	

导航

博客园 首页

新随笔

联系

订阅 XML 管理

统计

文章 - 0

评论 - 51

引用 - 0

公告

昵称:潘的博客 园龄:5年 粉丝:180 关注:9

+加关注 搜索

找 谷

常用链接

我的随笔 我的评论

我的参与

最新评论 我的标签

我的标签

机器学习(11) Deep Learning(5)

Machine Learning(5) 深度学习(3)

信息检索(2)

learning to rank(2) RBM(2)

Restricted Boltzmann M

Shell(1)

Sparse AutoEncoder(1) 更多

随笔分类(83) Deep Learning(6)

Python(1)

工具(11)

机器学习(37)

基本算法(8)

计算广告(2) 数据挖掘(10)

推荐系统(2)

信息检索(4)

优化(2)

自然语言处理

随笔档案(69)

2015年4月 (2)

2015年2月 (1)

2015年1月 (1) 2014年8月 (1)

2014年6月 (2)

2014年1月 (2)

2013年11月 (6) 2013年10月 (2)

2013年9月 (1)

2013年8月 (6)

axis()函数接受形如[xmin,xmax,ymin,ymax]的参数,指定了X,Y轴坐标的范围。

matplotlib不仅仅可以使用序列(列表和元组)作为参数,还可以使用numpy数组。实际上,所有的序列都被内在的转化为numpy数组。

```
import numpy as np
import matplotlib.pyplot as plt
t=np,arange(0.,5.,0.2)
plt.plot(t,t,'r--',t,t**2,'bs',t,t**3,'g^')
```


控制曲线的属性

曲线有许多我们可以设置的性质:曲线的宽度,虚线的风格,抗锯齿等等。有多种设置曲线属性的方法:

1.使用关键词参数:

```
plt.plot(x,y,linewidth=2.0)
```

2.使用Line2D实例的设置(Setter)方法。plot()返回的是曲线的列表,比如line1,line2=plot(x1,y1,x2,y2).我们取得plot()函数返回的曲线之后用Setter方法来设置曲线的属性。

```
line,=plt.plot(x,y,'-')
line.set)antialliased(False) #关闭抗锯齿
```

3.使用setp()命令:

```
lines=plt.plot(x1,y1,x2,y2)
plt.setp(lines,color='r',linewidth=2.0)
plt.setp(lines,'color','r','linewidth','2.0')
```

处理多个图和Axe

MATLAB和pyplot都有当前图和当前axe的概念。所有的作图命令都作用在当前axe。

函数gca()返回当前axe, gcf()返回当前图。

```
import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)
```

- 2013年7月 (1) 2013年6月 (2) 2013年4月 (5) 2013年1月 (6) 2012年12月 (3) 2012年11月 (8) 2012年10月 (8) 2012年9月 (4) 2012年5月 (2) 2012年4月 (1)
 - 积分与排名

积分 - 87973

2012年2月 (2) 2012年1月 (3)

排名 - 2505

最新评论

1. Re:偏置-方差分解(Bias Decomposition) 困惑我好久的问题终于在这感谢。。。我就一直奇怪,对,也就只能训练出一个模则武数据×,也就只能预测比就能求其均值来计算什么bi

2. Re:受限玻尔兹曼机(Re: Boltzmann Machine, RB 写得非常好,谢谢

3. Re:机器学习-KMeans 簇中心点的选取 好文好文呀!!!

4. Re:Learning to Rank; 简介 貌似这是pairwise吧

5. Re:时间序列挖掘-动态印现(Dynamic Time Warpil 感谢!

阅读排行榜

- 1. 受限玻尔兹曼机(Restric Machine, RBM) 简介(148 2. 机器学习-Random For (11803)
- 3. Learning to Rank之Ra (10829)
- 4. Learning to Rank 简介
- 5. 优化算法-BFGS(8581)
- 6. Python matplotlib简介 (7131)
- 7. 时间序列挖掘-预测算法· (Holt-Winters)(5681)
- 8. 相关性分析 -pearson s 相关系数(4531)
- 9. 机器学习-KMeans聚类 中心点的选取(4474)
- 10. Science上发表的超赞

评论排行榜

- 1. Science上发表的超赞聚
- 2. 机器学习-KMeans聚类中心点的选取(7)
- 3. 判别式模型 vs. 生成式植
- 4. Mahout学习笔记-分类 Forest(4)
- 5. 机器学习-Random For

推荐排行榜

- 1. Science上发表的超赞聚
- 2. 优化算法-BFGS(3)
- 3. 机器学习-Random For 4. 偏置-方差分解(Bias-Va
- Decomposition)(3)
- 5. Learning to Rank 简介6. 机器学习-特征选择(降维
- (LDA)(3) 7. 机器学习-KMeans聚类
- 7. 机器学习-KMeans聚类 中心点的选取(2)

8. ListNet 算法简介(2) 9. Shell之数学计算(2) 10. 计算广告学-多点归因相 Attribution Model)(1)

```
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
```


figure()命令是可选的,因为figure(1)会被默认创建,subplot(111)也会被默认创建。subplot()命令会指定numrows,numcols,fignum,其中fignum的取值范围为从1到numrows*numcols。如果numrows*numcols小于10则subplot()命令中的逗号是可选的。所以subplot(2,1,1)与subplot(211)是完全一样的。

如果你想手动放置axe,而不是放置在矩形方格内,则可以使用axes()命令,其中的参数为axes([left,bottom,width,height]),每个参数的取值范围为(0,1)。

你可以使用多个figure()来创建多个图,每个图都可以有多个axe和subplot:

```
import matplotlib.pyplot as plt
plt.figure(1)
                          # the first figure
plt.subplot(211)
                           # the first subplot in the first figure
plt.plot([1,2,3])
plt.subplot(212)
                           # the second subplot in the first figure
plt.plot([4,5,6])
                           # a second figure
plt.figure(2)
plt.plot([4,5,6])
                           # creates a subplot(111) by default
plt.figure(1)
                           # figure 1 current; subplot(212) still current
plt.subplot(211)
                           # make subplot(211) in figure1 current
plt.title('Easy as 1,2,3')  # subplot 211 title
```

你可以使用clf()和cla()命令来清空当前figure和当前axe。

如果你创建了许多图,你需要显示的使用close()命令来释放该图所占用的内存,仅仅关闭显示在屏幕上的图是不会释放内存空间的。

处理文本

text()命令可以用来在任意位置上添加文本,xlabel(),ylabel(),title()可以用来在X轴,Y轴,标题处添加文本。

```
import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
```

```
plt.text(60, .025, r'\mbox{mu=100,}\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
```


每个text()命令都会返回一个matplotlib.text.Text实例,就像之前处理曲线一样,你可以通过使用setp()函数来传递关键词参数来定制文 本的属性。

```
t=plt.xlabel('my data',fontsize=14,color='red')
```

在文本中使用数学表达式

matplotlib在任何文本中都接受Text表达式。

Tex表达式是有两个dollar符号环绕起来的,比如 $\sigma_i=15$ 的Tex表达式如下

```
plt.title(r'$\sigma_i=15$')
```

参考文献:

[1] Pyplot Tutorial

分类: 工具

标签: Python matplotlib pyplot

+加关注

« 上一篇:在Python中使用Weka » 下一篇: Python optparser模块简介

posted on 2012-12-07 22:09 潘的博客 阅读(7131) 评论(0) 编辑 收藏

注册用户登录后才能发表评论,请登录或注册,访问网站首页。

最新IT新闻:

- · 传易到拟融资40亿明年挂牌新三板 官方不予回应
- · TV技术的下一件大事是HDR而非4K 它将改变你看电视的方式
- ·暴风上半年净利1886万元 同比增181.57%
- · 签完周杰伦又找来昆凌做代言, 唯品会到底是尝到了什么甜头?
- ·美大学设计20万内核计算机 每芯片有25个内核
- » 更多新闻...

最新知识库文章:

- ·程序猿媳妇儿注意事项
- · 可是姑娘, 你为什么要编程呢?
- · 知其所以然 (以算法学习为例)
- ·如何给变量取个简短且无歧义的名字
- ·编程的智慧
- » 更多知识库文章...

1

0

刷新评论 刷新页面 返回顶部

Powered by: 博客园 Copyright © 潘的博客