Finite automata 2

Content

- Ngôn ngữ chính quy
- Nondeterministic Finite Automata
- Mô phỏng hoạt động của NFA
- Tóm tắt

Ngôn ngữ chính quy

- Ngôn ngữ chính quy (regular language) L: tồn tại 1 DFA D sao cho ℒ(D) = L
- Nếu L là một ngôn ngữ và ℒ (D) = L → D nhận biết ngôn ngữ L

Phần bù của một ngôn ngữ

- Cho ngôn ngữ L $\subseteq \Sigma^*$, phần bù của L, ký hiệu \overline{L} , là ngôn ngữ gồm các chuỗi trong Σ^* nhưng không thuộc L.
- $\overline{L} = \sum^* L$

Phần bù của một ngôn ngữ

- Cho ngôn ngữ L $\subseteq \Sigma^*$, phần bù của L, ký hiệu \overline{L} , là ngôn ngữ gồm các chuỗi trong Σ^* nhưng không thuộc L.
- $\overline{L} = \sum^* L$

Phần bù của ngôn ngữ chính quy

L = {w ∈ {a, b}* | w chứa aa là chuỗi con}

Phần bù của ngôn ngữ chính quy

■ $L = \{w \in \{t, h, e, n\}^* \mid w = then\}$

 $\overline{L} = \{ w \in \{t, h, e, n\}^* \mid w \neq then \}$

Content

- Ngôn ngữ chính quy
- Nondeterministic Finite Automata
- Mô phỏng hoạt động của NFA
- Tóm tắt

Nondeterminism

- Một mô hình tính toán là đơn định (tất định deterministic) nếu tại mỗi điểm tính toán, có duy nhất một lựa chọn.
 - Thiết bị chấp nhận nếu dãy các lựa chọn dẫn tới trạng thái kết thúc
- Một mô hình tính toán là không đơn định (nondeterministic) nếu tại mỗi điểm tính toán, thiết bị không có hoặc có nhiều lựa chọn.
 - Thiết bị chấp nhận nếu có một dãy các lựa chọn dẫn tới trạng thái kết thúc.

Examples

Định nghĩa NFA

- NFA (Q, \sum , q₀, δ , F)
 - Q: tập hợp các trạng thái
 - ∑: bảng chữ cái
 - q₀: trạng thái bắt đầu
 - δ : bảng các phép chuyển
 - F: tập hợp trạng thái kết thúc (F⊆Q)

Q =
$$\{q_0, q_1, q_2\}$$

$$\sum = \{a, b\}$$

$$q_0 = q_0$$

•
$$F = \{q_2\}$$

δ	a	b
q_0	$\{q_0, q_1\}$	$\{q_0\}$
q_1	{q ₂ }	{}
q_2	{}	{}

a,b		
	a • q ₁	a • (q ₂)

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

	C	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

Chấp nhận

	С	d
->1	{2, 4}	{5}
2	{1, 3, 5}	{4, 6}
3	{2, 6}	{5}
4	{1, 5, 7}	{2, 8}
5	{2, 4, 6, 8}	{1, 3, 7, 9}
6	{3, 5, 9}	{2, 8}
7	{4, 8}	{5}
8	{5, 7, 9}	{4, 6}
*9	{6, 8}	{5}

Content

- Ngôn ngữ chính quy
- Nondeterministic Finite Automata
- Mô phỏng hoạt động của NFA
 - Tree
 - Massive parallelism
- Tóm tắt

Tree computation

w = abaaa

Tree computation

- Tại mỗi điểm quyết định, automaton tự sao chép (clone) ứng với mỗi phép chuyển trạng thái có thể.
- Dãy các lựa chọn tạo thành một cây, gốc là trạng thái bắt đầu
- Đến cuối chuỗi, nếu xuất hiện trạng thái kết thúc ->
 Chấp nhận

Content

- Ngôn ngữ chính quy
- Nondeterministic Finite Automata
- Mô phỏng hoạt động của NFA
 - Tree
 - Massive parallelism
- Tóm tắt

Massive parallelism

w = abaaa

$$\begin{aligned} \{q_0\} &--a--> \{q_0,\, q_1\} &--b--> \{q_0\} &--a--> \{q_0,\, q_1\} \\ &--a--> \{q_0,\, q_1,\, q_2\} &--a--> \{q_0,\, q_1,\, q_2\} \end{aligned} \quad q_2 \in \ F : \ YES$$

Massive parallelism

- Một NFA ~ DFA gồm nhiều trạng thái ở một thời điểm
- Việc đọc 1 ký hiệu input kích hoạt phép chuyển trên mỗi trạng thái ở thời điểm đó, chuyển đến trạng thái mới.
- Thiết bị nondeterministic ~ thiết bị có thể thử tất cả các khả năng song song.

Content

- Ngôn ngữ chính quy
- Nondeterministic Finite Automata
- Mô phỏng hoạt động của NFA
- Tóm tắt

Tóm tắt

- Phần bù của ngôn ngữ chính quy là ngôn ngữ chính quy
- NFA ~ mỗi trạng thái, ứng với mỗi ký hiệu vào, không hoặc có nhiều phép chuyển
- Mô phỏng NFA
 - Cây
 - Massive parallelism