Classe : T^{le}EA Durée : 4 Heures

TERMINALE E-A

 ${\bf \acute{E}preuve}: {\it Math\acute{e}matiques}$

Problème 1

Dans le plan (\mathcal{P}) muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$,on considère les affixes a, b et c respectives des points A,B et C sont les racines du polynôme complexe $P(z) = z^3 - 2z^2 - (4+4i)z - 16 + 16i$ ou z désigne une variable complexe.

- 1.a. Résous dans \mathbb{C} l'équation P(z) = 0, sachant que le points A appartient à la droite de repère $(0; \overrightarrow{u})$ et le point B appartient à la droite de repère $(0, \overrightarrow{v})$.
 - b. Sachant que les points A et B sont symétriques par rapport au point E détermine les coordonnées des points A, B, C et E.
 - c. Calcule $\frac{c-b}{a-b}$ et déduis-en la nature du triangle ABC.
 - 2. En réalité les points A, B, C et E ont pour affixes respectives -1-i; -3+i; 2+i et i . Les points H et K désignent les barycentres respectifs des systèmes $\{(A,3),(B,1)\}$ et $\{(A,3),(B,-1)\}$. A tout point M du plan, distinct de A d'affixe z, on associe le point M' d'affixe z' tel que $z' = \frac{iz+3i+1}{z+1+i}$.
 - a. Détermine les coordonnées des points H et K.
 - b. Détermine géométriquement l'ensemble (Δ) des points M de ${\mathscr P}$ tels que |z'|=1.
- 3.a. Ecris le nombre complexe $u=2-2e^{i\frac{\pi}{4}}$ sous forme algébrique puis sous forme trigonométrique .

Problème 2

On considère le cube ABCDEFGH. On donne AD=8cm. Soient D', B', et E' respectivement les points des segments [AD], [AB], [AE] tel que AD'=AB'=AE'=2cm.

On admettra que l'espace affine est orienté et que $\mathscr{R}=(A;\overrightarrow{AD'},\overrightarrow{AB'},\overrightarrow{AE'})$ est un repère orthonormé direct .

- 1. Calcule dans le repère \mathscr{R} les coordonnées des sommets de ce cube . Soient I le milieu du segment [HE] et J celui [CG].
- 2. Calcule en cm^2 l'aire du triangle FIJ

3.
$$\overrightarrow{u} = \frac{1}{\sqrt{2}}(-\overrightarrow{AD'} + \overrightarrow{AB'}).$$

- a. Démontre que \overrightarrow{u} est unitaire .
- b. Détermine les coordonnées du vecteur \overrightarrow{v} tel que $\mathscr{R}_1 = (A; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AE'})$ soit un repère orthonormé direct de l'espace.

Problème 3

L'espace est décoré par des cordes de portions des courbes des fonctions suivantes :

$$f(x) = \frac{x^3 - 3x - 1}{x - 1}; h(x) = \frac{x - 1}{\sqrt{x - 1}} + x; g(x) = \frac{\sqrt{2}}{2}x - \cos(x) \text{ et } v(x) = 2x^3 - 3x^2 + 4.$$

Partie A

- 1. Etudie les variations de g sur $[0; \pi]$.
- 2.a. Démontre que l'équation g(x)=0 admet une solution et une seule x_0 dans $[0;\pi]$.
 - 3. Démontre que x_0 appartient à [0,8;0,9]. Déduis-en une valeur approchée de x_0 à 10^{-2} près .

Partie B

- 4.a. Détermine le domaine de définition D_h de h.
 - b. Justifie que h est prolongeable par continuité en 1 , puis définis ce prolongement .
- 5.a. Etudie les variations de la fonction v définie sur \mathbb{R} par $v(x) = 2x^3 3x^2 + 4$.
 - b. Démontre que l'équation v(x)=0 admet une solution unique α telle que $-0,92<\alpha<-0.91.$
 - c. Déduis –
en le signe de v(x) suivant les valeurs de ${\bf x}$.
 - 6. Soit g l'application définie de $]-\infty;0]$ dans $]-\infty;4]$ par g(x)=v(x).
 - a. Justifie que g admet une bijection réciproque g^{-1} .
 - b. Calcule $g^{-1}(0)$ et $g^{-1}(4)$.
 - c. Dresse le tableau de variation de f
- 7.a. Justifie que l'ensemble de définition D de f est $D = \mathbb{R} \{1\}$.
 - b. Calcule les limites de f aux bornes de D .
- 8.a. Détermine la fonction dérivée f' de f puis vérifie que , pour tout $x \in D$ $f'(x) = \frac{v(x)}{(x-1)^2}.$
 - b. Déduis en le signe de f'(x), puis donne le sens de variation de f .
 - c. Dresse le tableau de variation de f.

9.a. Démontre que $f(\alpha) = \frac{3}{2}(\alpha - 1 - \frac{3}{\alpha - 1})$.

b. Donne un encadrement de $f(\alpha)$

c. Construis la courbe (\mathscr{C}) de f .