Lecture 8 Independent Events

BIO210 Biostatistics

Xi Chen

Fall, 2023

School of Life Sciences
Southern University of Science and Technology

Coin Flip Example

Experiment: flipping a fair coin three times.

```
\mathbb{P}\left(\left\{HTT\right\}\right) = ?
```

 $\mathbb{P}\left(\{\mathsf{two}\;\mathsf{heads}\}\right) = ?$

Independence of Two Events

Definition 1

Events A and B are independent if $\mathbb{P}\left(B|A\right)=\mathbb{P}\left(B\right), \mathbb{P}\left(A\right)\neq 0$

Meaning of Definition 1: the occurrence of A provides no information about the occurrence of B.

Independence of Two Events

Definition 2

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

Advantages of Definition 2:

- Symmetric with respect to A and B.
- $\mathbb{P}(A)$ or $\mathbb{P}(B)$ can be 0

Independence

Experiment (Lecture 4): keep flipping a coin until we obtain a head for the first time and stop. Let n be the number of flips.

Sample space: $\Omega = \{ H, TH, TTH, TTTH, ... \}$

$$\mathbb{P}(n) = \frac{1}{2^n}, n = 1, 2, 3, 4, \cdots$$

Probabilistic model:

odel:
$$\mathbb{P}\left(TH\right) = (1-p)p$$

$$\mathbb{P}\left(H\right) = p$$

$$\mathbb{P}(T) = 1 - p$$

$$\mathbb{P}(TTH) = (1-p)(1-p)p$$

:

$$\mathbb{P}\left(\underbrace{TTT...TTT}_{n-1 \text{ tails}}H\right) = (1-p)^{n-1}p$$

Intuitive definition

Information on some of the events does not provide any information about probabilities of the remaining events:

$$\mathbb{P}[(A \cap B \cap C \cap D) | (E \cap F)] = \mathbb{P}(A \cap B \cap C \cap D)$$

Mathematics definition

Events $A_1, A_2, A_3, ..., A_n$ are called independent if and only if:

$$\mathbb{P}\left(A_{i}\cap A_{j}\cap\ldots\cap A_{q}\right)=\mathbb{P}\left(A_{i}\right)\cdot\mathbb{P}\left(A_{j}\right)\cdot\cdot\cdot\mathbb{P}\left(A_{q}\right)$$
 for any distinct indices i,j,\ldots,q chosen from $\{1,2,\ldots,n\}$

According to the definition, for a collection of events $\{A_1,A_2,A_3\}$ to be independent, they need to satisfy all the following conditions:

- $\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)$
- Pairwise independence:
 - $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$
 - $\mathbb{P}(A_1 \cap A_3) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_3)$
 - $\mathbb{P}(A_2 \cap A_3) = \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)$

Example 1: two independent coin (fair) flips.

Pairwise independence does not imply independence.

Example 2: flipping a fair coin 4 times

Sample Space
$$\Omega = \{ \text{HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, THHT, THTH, TTHH, TTHH, TTHT, TTTT} \}$$

$$\mathbf{A} = \{ \text{ HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, THHT } \}$$

$$\mathbf{B} = \{ \text{ THHT, THTH, TTHH, HTTH, TTTH, THTT, HTTT } \}$$

$$C=\{ THHT, THTH, TTHH, HTTH \}$$

$$\mathbb{P}\left(A\cap B\cap C\right)=?$$

$$\mathbb{P}\left(B\cap C\right)=?$$

Simple multiplication does not imply independence.

Independent Events

- Venn diagram is not sufficient to display independent events.
- Do not confuse independent events with disjoint events.

Conditional Independence

Definition

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \cdot \mathbb{P}(B|C)$$

Events A and B are independent in the following Venn diagram:

Having independence in the original model does not imply independence in the conditional model.

Conditional independence

Example of conditional independence - a virus detection kit:

- If a person carries the virus, the kit has 90% of the chance of showing a positive result.
- If a person does not carry the virus, the kit has 90% of the chance of showing a negative result.
- The virus is common and non-harmful. In general, 50% of the whole population carry the virus without any symptoms or illness.
- We have a random person called Li Lei. He gets tested by the kit repeatedly. Let event A = { the 4th test is positive } and event B = { the first 3 tests are all positive }

Questions: are events A and B independent? Does the answer depend on if we know Li Lei carries the virus or not?

Conditional independence

- A = { the 4th test is positive }
- B = { the first 3 tests are all positive }
- We know Li Lei carries the virus.
 - $\mathbb{P}(A) = ?$
 - $\mathbb{P}(A|B) = ?$
- We know Li Lei does NOT carry the virus.
 - $\mathbb{P}(A) = ?$
 - $\mathbb{P}(A|B) = ?$
- We don't know if Li Lei carries the virus or not.
 - $\mathbb{P}(A) = ?$
 - $\mathbb{P}(A|B) = ?$

Having independence in the conditional model does not imply independence in the original model.

Independent Events

The Gambler's Fallacy

The Gambler's Fallacy in RPG Games

The Sally Clark Case

- Sudden infant death syndrome (SIDS) is the sudden unexplained death of a child of less than one year of age.
- Clark's first son died in December 1996 within a few weeks of his birth.
- Her second son died in similar circumstances in January 1998.
- She was convicted in November 1999. The convictions were overturned in January 2003.
- As a result of her case, the Attorney-General ordered a review of hundreds of other cases, and two other women had their convictions overturned.

The Sally Clark Case

The CESDI Report

Groups	SIDS incidence in this group
Overall population	363 in 472,823
Anybody smokes in the household Nobody smokes in the household	1 in 737 1 in 5041
No waged income in the household At least one waged income in the household	1 in 486 1 in 2,088
Mother < 27 years and parity Mother > 26 years and parity	1 in 567 1 in 1882
None of these factors One of these factors Two of these factors All three of these factors	1 in 8,543 1 in 1,616 1 in 596 1 in 214

The Sally Clark Case

Professor Sir Roy Meadow, a highly respected expert in field of child abuse at the time of the trial:

"you have to multiply 1 in 8,543 times 1 in 8,543 and I think it gives that in the penultimate paragraph. It points out that it's approximately a chance of 1 in 73 million "

The Sally Clark Case: one of the great miscarriages of justice in modern British legal history