Комплексный анализ, ФН-12, ИУ-9, 4-й семестр. Ответы на вопросы к экзамену

Весна 2024

Содержание

1	Непрерывность и дифференцируемость функций коплексного переменного, их связь. Теорема Коши-Римана. Голоморфные функции.	4
2	Геометрический смысл комплексной производной. Конформные отображения, связь конформности и дифференцируемости, примеры.	7
3	Определить дробно-линейное отображение (ДЛО). Сформулировать и доказать конформность и групповое свойство ДЛО.	g
4	Дробно-линейные функции, их геометрическая интерпретация и свойство трёх точек.	12
5	Дробно-линейные функции, их геометрические свойства: круговое свойство и сохранение симметричности.	14
6	Стереографическая проекция. Расширенная комплексная плоскость и ее топология. Бесконечно удаленная точка, ее окрестности. Угол между кривыми в бесконечности. Дифференцируемость и конформность в бесконечности. Дробнолинейные функции как отображения расширенной комплексной плоскости.	
7	Интеграл от функции комплексного переменного вдоль пути в $\mathbb C.$ Его свойства.	20
8	Теорема Коши для односвязных и многосвязных областей	23
9	Интегральная формула Коши для функции и ее производных.	25
10	Степенные ряды в $\mathbb{C},$ их свойства. Голоморфность суммы степенного ряда.	28
11	Логарифмический вычет, его вычисление. Приращение (полярного) аргумента вдоль пути. Принцип аргумента. Теорема Руше и ее применение.	30
12	Теорема о среднем и принцип максимума модуля. Принцип сохранения области.	3 4
13	Основные теоремы и приложения теории конформных отображений. Теорема Римана, принцип симметрии Римана-Шварца, принцип соответствия границ с обратный принцип соответствия границ.	37
14	Вычисление несобственных интегралов с использование вычетов. Лемма Жордана и теорема о вычислении несобственного интеграла от рациональной функции с помощью вычетов.	38
15	Определение преобразования Лапласа. Теорема о существовании изображения. Поведение изображения в бесконечно удаленной точке. Изображение элементарных функций (единичная функция Хевисайда, показательная и степенная функции). Теорема обрашения.	39

40

41

- 16 Основные свойства преобразования Лапласа. Теоремы линейности, подобия, затухания, запаздывания, опережения, дифференцирования и интегрирования оригинала, дифференцирования и интегрирования изображения. Свертка двух функций. Теорема умножения изображений. Доказать теоремы затухания и дифференцирования оригинала, сформулировать остальные теоремы.
- 17 Три теоремы разложения. Доказать теоремы подобия и запаздывания.

1 Непрерывность и дифференцируемость функций коплексного переменного, их связь. Теорема Коши-Римана. Голоморфные функции.

ФКП $f:G\subset\overline{\mathbb{C}}\to\overline{\mathbb{C}}$ непрерывна в точке z_0 , если:

$$\lim_{z \to z_0} f(z) = f(z_0)$$

 Φ КП f(z) \mathbb{C} -дифференцируема в точке $z_0 \Leftrightarrow$

1. f определена в окрестности точки z_0 ;

2.
$$f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(\Delta z)\Delta z$$
,

где
$$A \in \mathbb{C}, \, \alpha(\Delta z) \to 0$$
 при $\Delta z \to 0$

Предел $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ называют **производной ФКП** f(z) **в точке** z_0 и обозначают $f'(z_0)$.

Теорема (1-ый критерий \mathbb{C} —дифференцируемости):

ФКП
$$f(z)$$
 дифференцируема в точке z_0

 \exists производная $f'(z_0)$ функции f в точке z_0 , при этом $f'(z_0) = A$.

Доказательство.

"⇒"
$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{A\Delta z + \alpha(\Delta z)\Delta z}{\Delta z} =$$

$$= \lim_{\Delta z \to 0} (A + \alpha(\Delta z)) = A (\alpha(\Delta z) \to 0 \text{ при } \Delta z \to 0) \Rightarrow$$

$$\Rightarrow \exists f'(z_0) = A.$$
"\(\Lefta\)"
$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},$$

$$\alpha(\Delta z) = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} - f'(z_0) \to 0 \text{ при } \Delta z \to 0 \Rightarrow$$

$$\Rightarrow f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(\Delta z)\Delta z.$$

Функция w = f(z) называется **голоморфной (аналитиче-ской)** в точке $z_0 \in \mathbb{C} \Leftrightarrow f - \mathbb{C}$ – дифференцируема в окрестности точки z_0 .

Теорема (об условиях Коши-Римана):

Функция f(z) = u(x,y) + iv(x,y), где z = x + iy, \mathbb{C} – дифференцируема в точке $z_0 = x_0 + iy_0$ тогда и только тогда, когда:

- 1. Функции u(x,y) и v(x,y) \mathbb{R}^2 дифференцируемы в точке $M_0(x_0,y_0)$;
- 2. Выполняются условия (уравнения) Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x}(M_0) = \frac{\partial v}{\partial y}(M_0) \\ \frac{\partial u}{\partial y}(M_0) = -\frac{\partial v}{\partial x}(M_0) \end{cases}$$

При этом
$$f'(z_0) = \frac{\partial u}{\partial x}(M_0) + i \frac{\partial v}{\partial x}(M_0) = \frac{\partial v}{\partial y}(M_0) - i \frac{\partial u}{\partial y}(M_0).$$

Доказательство.

$$"\Rightarrow"$$

$$\Delta f(z_0, \Delta z) = A\Delta z + \gamma(\Delta z)\Delta z, \text{ но при этом:}$$

$$\Delta f(z_0, \Delta z) = \Delta u(x_0, y_0, \Delta x, \Delta y) + i\Delta v(x_0, y_0, \Delta x, \Delta y) =$$

$$= \alpha \Delta x - \beta \Delta y + i(\alpha \Delta y + \beta \Delta x) + \gamma(\Delta z)\Delta z \Rightarrow$$

$$\Rightarrow \begin{cases} \Delta u = \alpha \Delta x - \beta \Delta y + Re(\gamma(\Delta z)\Delta z) \\ \Delta v = \alpha \Delta y + \beta \Delta x + Im(\gamma(\Delta z)\Delta z), \end{cases}$$
где
$$\frac{\gamma(\Delta z)\Delta z}{|\Delta z|} \to 0 \text{ при } \Delta z \to 0 \ ((\Delta x, \Delta y) \to 0), \text{ так как}$$

$$\gamma(\Delta z) \to 0, \text{ а } \frac{\Delta z}{|\Delta z|} - \text{ограничена при } \Delta z \to 0 \Rightarrow$$

$$\begin{cases} Re(\gamma(\Delta z)\Delta z) = o(|\Delta z|) \\ Im(\gamma(\Delta z)\Delta z) = o(|\Delta z|) \end{cases} \Rightarrow 1);$$

$$\begin{cases} \Delta u = u'_x \Delta x + u'_y \Delta y + o(|\Delta z|) \\ \Delta v = v'_x \Delta x + v'_y \Delta y + o(|\Delta z|) \end{cases} \Rightarrow \\ \begin{cases} u'_x = \alpha = v'_y \\ u'_y = -\beta = -v'_x \end{cases} \Rightarrow 2) \\ \text{Тогда } f'_z = \alpha + i\beta \Rightarrow \Rightarrow f'(z_0) = \frac{\partial u}{\partial x}(M_0) + i\frac{\partial v}{\partial x}(M_0) = \\ \frac{\partial v}{\partial y}(M_0) - i\frac{\partial u}{\partial y}(M_0) \\ \text{"$\Leftarrow:$"} Аналогично} \qquad \square$$

2 Геометрический смысл комплексной производной. Конформные отображения, связь конформности и дифференцируемости, примеры.

Пусть задана кривая z=z(t)=x(t)+iy(t), имеющая касательную в точке t_0 с направляющим вектором $\xi=x'(t_0)+iy'(t_0)$. Назовем ξ касательным вектором в точке t_0 к кривой z.

Теорема (геометрический смысл комплексной про-изводной):

- 1. Любая голоморфная в т. $z_0 = z(t_0)$ функция f определяет линейное отображение касательных касательных векторов $\eta = f'(z_0)\xi$, где η образ касательного вектора ξ , являющийся касательным вектором к кривой f(z) в точке $f(z_0)$.
- 2. Это отображение касательных векторов состоит в растяжении с коэффициентом $|f'(z_0)|$ и повороте на угол $argf'(z_0)$.
- \square а) По правилу дифференцирования сложной функции (в смысле \mathbb{R}^2)

$$\eta = \frac{df(z(t))}{dt}(t_0) = f'(z(t_0))z'(t_0) = f'(z_0)\xi$$

б) $|\eta| = |f'(z_0)| \cdot |\eta|$ – растяжение с коэффициентом $|f'(z_0)|$; $arg\eta = argf'(z_0) + arg\xi \pm 2\pi$ – поворот на угол $argf'(z_0)$.

Отображение F называется **конформным** в точке $M_0(x_0, y_0)$ тогда и только тогда, когда касательное отображение в точке M_0 сохраняет углы.

Отображение F называется **конформным** в области $U \subset \mathbb{R}^2$ тогда и только тогда, когда оно конформно в любой из точек U.

 $U \subset \mathbb{C}, H(U)$ – множество голоморфных в U функций.

Теорема (о связи конформности и диффиренцируемости):

U – область в \mathbb{C} . Если $f \in H(U)$ и $\forall z \in U$ $f'(z) \neq 0$, тогда f – конформное в U отображение.

□ Доказательство следует из предыдущей теоремы:

В каждой точке $z_0 \in U$ лин.отображение $f'(z_0)$ растигивает в $|f'(z_0)| \neq 0$ и поворачивает на угол $arg\ f'(z_0) \Rightarrow$ лин.отображение в z_0 сохраняет углы.

Определение: Угол между кривыми γ_1 и γ_2 в точке ∞ равнен углу между касательными к $\hat{\gamma}_1$ и $\hat{\gamma}_2$ в точке 0, где $\hat{\gamma}_1 = \frac{1}{\gamma_1}$ и $\hat{\gamma}_2 = \frac{1}{\gamma_2}$.

Отображение F называется **конформным** в точке ∞ тогда и только тогда, угол между кривыми γ_1 и γ_2 в точке ∞ равен углу между кривыми $f(\gamma_1)$ и $f(\gamma_2)$ в точке ∞ .

3 Определить дробно-линейное отображение (ДЛО). Сформулировать и доказать конформность и групповое свойство ДЛО.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Конформность:

Любое ДЛО — конформное отображение $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Доказательство.

1) Рассмотрим точки $z_0 \neq -\frac{d}{c}$, ∞ :

Тогда
$$w' = \frac{a(cz+d) - (az+b)c}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0$$

Значит функция \hat{w} голоморфна в точках \hat{z}_0 и по теореме о конформности голоморфных отображений, она конформна в этих точках z_0 .

2) Рассмотрим точку $z_0 = -\frac{d}{c}$: $z \xrightarrow{L} w = \frac{az+b}{cz+d} \xrightarrow{L_0} \xi = \frac{1}{w}$

$$-rac{\mathbf{d}}{\mathbf{c}} \stackrel{L}{\longrightarrow} \infty \stackrel{L_0}{\longrightarrow} \mathbf{0}$$

Отображение $\xi = \frac{1}{w}$ сохраняет углы, то есть L_0 конформно.

Рассмотрим $L_0 \circ L$ в точке $z_0 = -\frac{d}{c}$:

$$(L_0 \circ L)'_{|z=-\frac{c}{d}} = \frac{cb - ad}{(az+b)^2}_{|z=-\frac{c}{d}} \neq 0$$

Значит отображение $L_0 \circ L$ конформно в точке $z_0 = -\frac{c}{d}$ $L = L_0^{-1} \circ (L_0 \circ L)$ конформно, так как композиция конформных и обратное к конформному отображению конформны.

3) Рассмотрим точку $z_0 = \infty$:

$$\xi = \frac{1}{z} \stackrel{L_0}{\longleftarrow} z \stackrel{L}{\longrightarrow} w = \frac{az+b}{cz+d}$$

$$\mathbf{0} \stackrel{L_0}{\longleftarrow} \infty \stackrel{L}{\longrightarrow} \frac{\mathbf{a}}{\mathbf{c}}$$

Рассмотрим отображение $L \circ L_0^{-1}$:

$$w = \frac{a \cdot \frac{1}{\xi} + b}{c \cdot \frac{1}{\xi} + d} = \frac{b \cdot \xi + a}{d \cdot \xi + c}$$
$$w'_{|0} = \frac{dc - da}{(d \cdot \xi + c)^2} \neq 0$$

Значит отображение $L \circ L_0^{-1}$ конформно в точке $\xi_0 = 0$. Тогда отображение $L = (L \circ L_0^{-1}) \circ L_0$ конформно в точке $z_0 = \infty$, так как композиция конформных и обратное к конформному отображению конформны.

Групповое свойство ДЛО:

Совокупность всех ДЛО Λ образует некоммутативную группу $(\Lambda; \circ)$ относительно операции композиции.

Доказательство.

0) Замкнутость:

$$w = \frac{az+b}{cz+d}; \ \xi = \frac{a_1w+b_1}{c_1w+d_1}$$

$$\xi = \frac{a_1 \cdot \frac{az+b}{cz+b} + b_1}{c_1 \cdot \frac{az+b}{cz+b} + d_1} = \frac{a_1(az+b) + b_1(cz+d)}{c_1(az+b) + d_1(cz+d)} = \frac{(a_a+b_1c)z + a_1b + b_1d}{(c_1a+d_1c)z + c_1b + d_1d}$$

Определитель $\begin{vmatrix} a_1a + b_1c & a_1b + b_1d \\ c_1a + d_1c & c_1b + d_1d \end{vmatrix}$ не равен 0, так как иначе композиция ДЛО была бы отображением в одну точку, но композиция биекций есть биекция.

- 1) Ассоциативность выполняется, так как композиция отображений ассоциативна
- 2) Существование единицы:

E:
$$w = z$$
, $\begin{pmatrix} a = 1 & b = 0 \\ c = 0 & d = 1 \end{pmatrix}$, $det = 1 \neq 0$

3) Существование обратного:

Пусть
$$L: w = \frac{az+b}{cz+d} - ДЛО.$$
 Построим обратное:

$$w(cz+d)=az+b$$

$$z(wc-a)=b-dw$$

$$L^{-1}:\ z=\frac{b-dw}{wc-a}-\text{ДЛО, так как}\ \begin{vmatrix} -d&b\\c&-a\end{vmatrix}=ad-bc\neq 0$$

4) Некоммутативность:

Приведем контрпример

$$L_1: w = z + a, L_2: w = \frac{1}{z}$$

$$L_1 \circ L_2: z \xrightarrow{L_2} w = \frac{1}{z} \xrightarrow{L_1} w = \frac{1}{z} + a$$

$$L_2 \circ L_1: z \xrightarrow{L_1} w = z + a \xrightarrow{L_2} w = \frac{1}{z + a}$$

Получили, что $L_1 \circ L_2 \neq L_2 \circ L_1$

4 Дробно-линейные функции, их геометрическая интерпретация и свойство трёх точек.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Геометрическая интерпретация: ДЛО — взаимно-однозначное непрерывное отображение $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Теорема о трех точках

Для любых трех различных точек z_1, z_2, z_3 и других трех различных точек w_1, w_2, w_3 существует единственное ДЛО $L(z): L(z_i) = w_i$

Доказательство

1) Существование

Для любых 3-х точек z_1, z_2, z_3 существует ДЛО, отображающее их в $0, \infty, 1$ соответственно:

$$w = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1}$$

Тогда рассмотрим отображения $L_1: \xi = \frac{z-z_1}{z-z_2} \cdot \frac{z_3-z_2}{z_3-z_1}$ и $L_2: \xi = \frac{w-w_1}{w-w_2} \cdot \frac{w_3-w_2}{w_3-w_1}$. Из группового свойства ДЛО следует, что L_2^{-1} – тоже ДЛО, и композиция ДЛО – тоже ДЛО. Тогда

получаем, что отображение $L = L_2^{-1} \circ L_1$ есть ДЛО, причем

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \stackrel{L_1}{\to} \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \stackrel{L_2^{-1}}{\to} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}, \tag{1}$$

то есть L есть искомое ДЛО.

2) Единственность Пусть λ – ДЛО, отличное от L, построенного в пункте 1, удовлетворяющее условиям теоремы. Рассмотрим отображение $\mu = L_2 \circ \lambda \circ L_1^{-1}$. Из группового свойства ДЛО полученное отображание – ДЛО, причем

$$\mu: \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ \infty \\ 1 \end{pmatrix} \tag{2}$$

Теперь покажем, что $\mu = id$:

$$\mu = \frac{az + b}{cz + d}$$

a)
$$\mu(\infty) = \frac{a}{c} = \infty \Rightarrow c = 0$$

b)
$$\mu(0) = \frac{b}{d} = 0 \Rightarrow b = 0$$

c)
$$\mu(1) = \frac{a}{d} = 1 \Rightarrow a = d$$

В итоге получаем, что $\mu(z) = z \Rightarrow \mu = id$, то есть $L_2 \circ \lambda \circ L_1^{-1} = id \Rightarrow \lambda = L_2^{-1} \circ L_1 = L$, что и требовалось доказать.

5 Дробно-линейные функции, их геометрические свойства: круговое свойство и сохранение симметричности.

Дробно-линейные отображения — это функции вида:

$$w = \frac{az+b}{cz+d}$$
, где $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0, \ a,b,c,d \in \mathbb{C}$

Доопределим функцию выше следующим образом:

$$z = -\frac{d}{c}: \ w(-\frac{d}{c}) = \infty$$
$$z = \infty: \ w(\infty) = \begin{bmatrix} \frac{a}{c}, \ c \neq 0 \\ \infty, \ c = 0 \end{bmatrix}$$

Тогда ДЛО: $w: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$

Круговое свойство ДЛО

Любое ДЛО преобразует обобщенную окружность (окружность и ли прямая в $\overline{\mathbb{C}}$) в обобщенную окружность.

Доказательство.

1) случай, когда c = 0:

$$L: w = az + b$$

$$z \xrightarrow{L_1} z_1 = az \xrightarrow{L_2} z_2 = z_1 + b$$

 L_1 — растяжение с поворотом: окружность перейдет в окружность, а прямая в прямую

 L_2 — сдвиг: окружность перейдет в окружность, а прямая в прямую

2) случай, когда $c \neq 0$:

$$L: w = \frac{az+b}{cz+d} = \frac{a}{c} + \left(\frac{az+b}{cz+d} - \frac{a}{c}\right) = \frac{a}{c} + \frac{caz+bz - acz - ad}{c(cz+d)} = \frac{a}{c} + \frac{bc - ad}{c(cz+d)} = \frac{a}{c} + \frac{\frac{bc-ad}{c}}{z+\frac{d}{c}}$$

Обозначим
$$A = \frac{a}{c}, \ B = \frac{bc - ad}{c}, \ C = \frac{d}{c}$$
:

$$\begin{split} L: & w = A + \frac{B}{z+C} \\ z & \xrightarrow{L_1} z_1 = z + C \xrightarrow{L_2} z_2 = \frac{1}{z_1} \xrightarrow{L_3} z_3 = B \cdot z_2 \xrightarrow{L_4} w = A + z_3 \end{split}$$

Отображения L_1 и L_4 — сдвиги, L_3 — растяжение с поворотом. Они переводят окружности в окружности, а прямые в прямые.

Рассмотрим отображение L_2 : $w = \frac{1}{z}$

Общее уравнение обобщённой окружности на плоскости xOy:

$$E(x^{2} + y^{2}) + F_{1}x + F_{2}y + G = 0$$

$$E, F_{1}, F_{2}, G \in \mathbb{R}, (E, F_{1}, F_{2}, G) \neq (0, 0, 0, 0)$$

Запишем это уравнение через переменную z = x + iy:

$$x=rac{z+\overline{z}}{2},\;y=rac{z-\overline{z}}{2i}=irac{\overline{z}-z}{2}$$
 $Ez\overline{z}+F_1rac{z+\overline{z}}{2}+F_2irac{\overline{z}-z}{2}+G=0$ $Ez\overline{z}+Fz+\overline{F}\overline{z}+G=0,$ где $F=rac{1}{2}F_1-rac{1}{2}iF_2\in\mathbb{C},\;\overline{F}=rac{1}{2}F+rac{1}{2}iF_2$

Тогда кривая, полученная в результате преобразования L_2 задается уравнением:

$$E\frac{1}{z}\overline{\left(\frac{1}{z}\right)} + F\frac{1}{z} + \overline{F}\overline{\left(\frac{1}{z}\right)} + G = 0|\cdot z\overline{z}$$

$$E + F\overline{z} + \overline{F}z + Gz\overline{z} = 0,$$

что является уравнением обобщенной окружности. Значит отображение L_2 переводит обобщенную окружность в обобщенную окружность.

Свойство ДЛО сохранения симметричности

Произвольное ДЛО L преобразует любые точки z и z^* , симметричные относительно обобщенной окружности Γ , в точки

L(z) и $L(z^*)$, симметричные относительно обобщенной окружности $L(\Gamma)$.

Доказательство.

Пусть γ — произвольная обобщенная окружность, проходящая через точки L(z) и $L(z^*)$. Тогда $L^{-1}(\gamma)$ — обобщенная окружность по круговому свойству ДЛО.

Так как
$$L(z), L(z^*) \in \gamma$$
, то:
$$L^{-1}(L(z)) = z \in L^{-1}(\gamma) \text{ и } L^{-1}(L(z^*)) = z^* \in L^{-1}(\gamma).$$

По определению симметричных точек окружности Γ и $L^{-1}(\gamma)$ ортогональны. ДЛО L сохраняет углы, а значит $L(\Gamma)$ ортогональна $L(\gamma)$.

6 Стереографическая проекция. Расширенная комплексная плоскость и ее топология. Бесконечно удаленная точка, ее окрестности. Угол между кривыми в бесконечности. Дифференцируемость и конформность в бесконечности. Дробно-линейные функции как отображения расширенной комплексной плоскости.

Выберем ДСК с осями ξ, η, ζ , причем оси ξ, η совпадают с осями x,y. Рассмотрим сферу радиуса $\frac{1}{2}$ в этой системе коор-

динат, которая описывается уравнением

$$S^2: \xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2$$

а также луч, исходящий из точки N(0,0,1), и пересекающий плоскость 0xy в точке (x,y), заданный параметрически:

$$\begin{cases} \xi = 0 + tx \\ \eta = 0 + ty \\ \zeta = 1 + t \cdot (-1) \end{cases}$$

Точка пересечения луча со сферой (ξ, η, ζ) (подставляем в уравнение сферы уравнения луча):

$$t^{2}x^{2} + t^{2}y^{2} + \left(\frac{1}{2} - t\right)^{2} = \left(\frac{1}{2}\right)^{2}$$

$$t^{2}(x^{2} + y^{2} + 1) - t = 0 \quad | : t \neq 0$$

$$t = \frac{1}{1 + x^{2} + y^{2}} = \frac{1}{1 + |z|^{2}}$$

$$\begin{cases} \xi = \frac{x}{1 + x^{2} + y^{2}} = \frac{x}{1 + |z|^{2}} \\ \eta = \frac{y}{1 + x^{2} + y^{2}} = \frac{y}{1 + |z|^{2}} \\ \zeta = \frac{x^{2} + y^{2}}{1 + x^{2} + y^{2}} = \frac{|z|^{2}}{1 + |z|^{2}} \end{cases}$$
(3)

Обратное отображение:

$$\zeta = \frac{|z|^2 + 1 - 1}{1 + |z|^2} \Rightarrow \frac{1}{1 + |z|^2} = 1 - \zeta$$

$$\Rightarrow \xi = x(1 - \zeta), \eta = y(1 - \zeta) \Rightarrow$$

$$\begin{cases}
x = \frac{\xi}{1 - \zeta} \\
y = \frac{\eta}{1 - \zeta}
\end{cases}$$
(4)

Отображения (3) и (4) являются однозначными отображениями между \mathbb{C} и $S^2 \setminus N$, так как в преобразованиях не возникали неоднозначности.

 $\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$. $\overline{\mathbb{C}}$ называется расширенной комплексной плоскостью.

Топология $\overline{\mathbb{C}}$:

Открытое множество на $S^2-U\cap S^2,$ где U — открытое в $\mathbb{R}^3.$

Условимся, что точке N(0,0,1) соответствует точка ∞ поля $\overline{\mathbb{C}}$, тем самым определяется биекция между S^2 и $\overline{\mathbb{C}}$, точка ∞ называется **бесконечно удаленной точкой**.

Окрестностью U бесконечно удаленной точки называется множество точек z, удовлетворяющих неравенству

$$|z - z_0| > R, R \in \mathbb{R}$$

Функция $f:U\to\overline{\mathbb{C}},\infty\in U,$ дифференцируема в точке $\infty,$ если функция $\varphi(z)=f\left(\frac{1}{z}\right)$ дифференцируема в нуле.

Функция $f:U\to\overline{\mathbb{C}},\,\infty\in U,$ конформна в точке $\infty,$ если функция $\varphi(z)=f\left(\frac{1}{z}\right)$ конформна в нуле.

7 Интеграл от функции комплексного переменного вдоль пути в \mathbb{C} . Его свойства.

Путь – параметризованная кривая, возможно с самопересечением (непрерывное отображение $\gamma:[a,b]\subset\mathbb{R}\to\mathbb{C}$).

Пусть γ – гладкий путь, то есть $\gamma:z=z(t),\,t\in J=[\alpha,\beta]\subset \mathbb{R},\,z(t)\in \mathbb{C},\,z(J)\subset \mathbb{C},$ функция f(z) определена на z(J) и функция

 $f(z(t)): J \to \mathbb{C}$ непрерывна (говорят, что f непрерывна на γ).

Число $\int_{\alpha}^{\beta} f(z(t))z'(t)\,dt$ называют **интегралом от функ-**

ции f **вдоль пути** γ и обозначают $\int_{\gamma} f(z) \, dz$, где $z(t) = x(t) + iy(t), \, z'(t) = x'(t) + iy'(t).$

Свойства интеграла:

1. Линейность:
$$\int_{\gamma} [af(z) + bf(z)] \, dz = a \int_{\gamma} f(z) \, dz + b \int_{\gamma} f(z) \, dz;$$

2. Ориентированность:

$$\gamma : \frac{1}{t-d} = \frac{1}{t} - \gamma : \frac{1}{2} = \frac{1}{2} (\alpha + \beta - t)$$

$$\gamma : \frac{1}{2} = \frac{1}{2} (t)$$

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz;$$

3. Аддитивность:

$$\gamma_1 \cup \gamma_2 : z = \begin{cases} z_1(t), t \in [\alpha, \beta_1]; \\ z_2(t), t \in [\alpha_2, \beta]. \end{cases}$$
$$\int_{\gamma_1 \cup \gamma_2} f \, dz = \int_{\gamma_1} f \, dz + \int_{\gamma_2} f \, dz;$$

4. Независимость интеграла от выбора параметризации кривой:

Пусть $\gamma: z = z(t), t \in [\alpha, \beta], \gamma_1: z = z_1(\tau), \tau \in [\alpha_1, \beta_1]$ – два непрерывно дифференцируемых пути, $z_1(\tau) = z(t(\tau))$ $\forall \tau \in [\alpha_1, \beta_1],$ где $t = t(\tau): [\alpha_1, \beta_1] \to [\alpha, \beta]$ – непрерывно дифференцируемая возрастающая функция, f непрерывна на γ .

Тогда
$$\int_{\gamma} f \, dz = \int_{\gamma_1} f \, dz;$$

5. Оценка интеграла:

Если f – непрерывная функция на кусочно-гладком пути $\gamma:z=z(t),\,t\in[\alpha,\beta],\,$ то $|\int_{\gamma}f\,dz|\leq\int_{\gamma}|f(z)||z'(t)|\,dt$ (|z'(t)|dt=|dz| – дифференциал длины дуги).

Доказательство.

4. Независимость интеграла:

$$\int\limits_{\gamma} f dz = \int\limits_{\alpha}^{\beta} f(z(t))z'(t)dt =$$

$$\left|t = t(\tau), \ dt = t'(\tau)d\tau, \ \frac{dz(t(\tau))}{d\tau} = \frac{dt}{d\tau}\frac{dz(t(\tau))}{dt}\right|$$

$$= \int\limits_{\alpha_1}^{\beta_1} f(z(t(z))) \cdot z'(t(\tau))t'(\tau)d\tau = \int\limits_{\alpha_1}^{\beta_1} f(z_1(\tau))z'(\tau)d\tau = \int\limits_{\gamma_1} dz$$
 5. Оценка интеграла: Пусть $I = \int f dz \in \mathbb{C} = |I| \cdot \exp^{i\theta}$

$$|I| = \exp^{-i\theta} \cdot I = \int \exp^{-i\theta} f[z(t)]z'(t)dt$$
 Обозначим $g(t) = \exp^{-i\theta} f[z(t)]z'(t)$.
 Тогда $|I| = \int_{\alpha}^{\beta} Re \, g(t)dt + i \int_{\alpha}^{\beta} Im \, g(t)dt \leq \int_{\alpha}^{\beta} |g(t)|dt = \int_{\alpha}^{\beta} |\exp^{-i\theta}| \cdot |f(z(t))| \cdot |z'(t)|dt$

8 Теорема Коши для односвязных и многосвязных областей

Теорема 1 (Коши для односвязной области)

Если $D\subset\mathbb{C}$ — односвязная область, $f\in H(D)$ (f голоморфна), $\gamma\subset D$ — замкнутая кривая, то $\int_{\gamma}f\,dz=0$.

Доказательство.

Для случая, когда f'(z) непрерывная в D:

$$z = x + iy; f(z) = u(x, y) + iv(x, y)$$

$$I = \int\limits_{\gamma} f dz = \int\limits_{\alpha}^{\beta} f(z(t))z'(t)dt = \int [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\gamma} f(z(t))z'(t)dt = \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\gamma} f(z(t))z'(t)dt = \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1}{2} \int\limits_{\alpha} [u(zx(t),y(t)) + iv(x(t),y(t))] \cdot \frac{1$$

$$[x'(t) + it'(t)]dt = \int_{\alpha}^{\beta} [u \cdot x' - v \cdot y') + i(uy' + vx')]dt = \int_{\alpha}^{\beta} (ux' - v \cdot y') + i(uy' + vx')dt = \int_{\alpha}^{\beta} [u \cdot x' - v \cdot y'] dt = \int_{\alpha}^{\beta} [u \cdot x'$$

$$(vy')dt + i\int_{\alpha}^{\beta} (uy' + vx')dt = \int_{\gamma} udx - vdy + i\int_{\gamma} udy + vdx = \int_{\gamma} udx - vdy + i\int_{\gamma} udx - vdx + i\int_{\gamma} udx + vdx + i\int_{\gamma} udx + vdx + i\int$$

Разрежем γ на простые контуры γ_i :

$$\gamma = \bigcup_{j=1}^{\kappa} \gamma_j, \ G_j$$
 — область внутри γ_j

$$I = \sum_{j=1}^{k} \left[\oint_{\gamma_j} u \, dx - v \, dy + i \oint_{\gamma_j} v \, dx + u \, dy \right] =$$

$$= \sum_{j=1}^{k} \left[\iint_{G_j} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy + i \iint_{G_j} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy \right] = 0$$

Теорема 2 (Коши для многосвязной области)

Пусть многосвязная область D ограничена внешним конту-

ром L_0 и внутренними контурами $L_1, ..., L_n$, контуры $L_1, ..., L_n$ – кусочно-гладкие, $f \in H(D \cup L_0 \cup L_1 \cup ... \cup L_n)$.

Тогда $\int_L f \, dz = 0$, где $L = L_0 \cup L_1 \cup ... \cup L_n$, обход L_0 – против часовой стрелки, $L_1, ..., L_n$ – по часовой стрелке.

Замечание. $\oint_{L_0} f \, dz = \sum_{i=1}^n \oint_{L_i} f \, dz$, где обход $L_0, L_1, ..., L_n$ против часовой стрелки.

Доказательство.

С помощью разрезов $\gamma_1,...,\gamma_n$ получим односвязную область D^* . Тогда $D=D^*\cup\gamma_1\cup...\cup\gamma_n$.

Так как D^* -односвязная, то $0 = \int_{D^*} f dz =$

Граница $D^* = L_0 \cup \gamma_1 \cup -\gamma_1 \cup L_1 \cup ... \cup \gamma_n \cup -\gamma_n \cup L_n$.

Тогда из аддитивности и ориентированности:

$$= \int\limits_{L_0} f dz + \sum_{i=1}^n \left[\int\limits_{\gamma_i} f dz + \int\limits_{-\gamma_i} f dz + \int\limits_{L_i} f dz \right] = \int\limits_{L} f dz = 0 \quad \Box$$

9 Интегральная формула Коши для функции и ее производных.

Интегральная формула Коши для голоморфных функций:

Пусть D — односвязная область в \mathbb{C} , ∂D — граница D, $f \in H(D \cup \partial D)$.

Тогда для $z_0 \in D$:

$$f(z_0) = \frac{1}{2\pi i} \cdot \oint_{\partial D} \frac{f(z)}{z - z_0} dz$$

Доказательство.

1) Пусть L_1 – простой контур, $L_1 \subset D$ Пусть D_1 – область внутри L_1 , $G = D \backslash D_1 \backslash L_1$ – многосвязная область

По т. Коши для многосвязной области:

$$\int_{\partial G} \frac{f(z)}{z - z_0} dz = 0,$$

т.к.
$$\frac{f(z)}{z-z_0}\in H(G)$$

Имеем $\partial G=\partial D\cup (-L_1)$:

$$\oint \partial D \frac{f(z)}{z - z_0} dz - \oint \frac{f(z)}{z - z_0} dz = 0$$

2) Пусть
$$\gamma: z=z+r\cdot e^{it},\ t\in [0,2\pi],\ r>0$$
 $f(z)=(z-a)^n;\ n\in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \int_{0}^{2\pi} (a+r\cdot e^{it}-a)^n \cdot r \cdot ie^{it} dt = r^{n+1} \cdot i \cdot \int_{0}^{2\pi} e^{it(n+1)} dt \Rightarrow$$

$$\Rightarrow \oint_{L_1} \frac{dz}{z-z_0} = 2\pi i$$
, где L_1 – окр-ть с центром в точке z_0

3) Пусть
$$\sigma_1$$
 – радиус L_1 и $L_1 \subset D$

$$I = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z)}{z - z_0} dz - f(z_0) \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0} dz \right| = \left| \frac{1}{2\pi i} \int_{L_1} \frac{dz}{z - z_0}$$

$$= \left| \frac{1}{2\pi i} \oint_{L_1} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \frac{1}{2\pi |i|} \oint_{L_1} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| z'(t) dt$$

4) Так как $f\in H(D)$, то $\forall \varepsilon>0\,\exists \delta(\varepsilon)>0:\,|z-z_0|<\delta\to|f(z)-f(z_0)|<\varepsilon$

Имеем $z \in L_1: |z - z_0| = \sigma_1$:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| < \frac{\varepsilon}{\sigma_1}$$
: $\oint_{L_1} |z'(t)| dt$ – длина L_1 , то есть $2\pi\sigma_1$

Тогда $I \leq \frac{1}{2\pi} \cdot \frac{\varepsilon}{\gamma_1} \cdot 2\pi\sigma_1 = \varepsilon \Rightarrow$ не зависит от ε

Интегральная формула Коши для производных:

Пусть $f \in H(D)$: $G \cup \partial G \subset D$; D — область, ограниченная конечным числом замкнутых кривых, $z_0 \in G$

Тогда:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\partial G} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

Доказательство.

По теоремам о разложении голоморфной функции в степенной ряд и теореме о единственности разложения в степенной ряд:

$$c_n = \frac{1}{2\pi} \oint_{\gamma r} \frac{f(\xi)d\xi}{(\xi - z_0)^{n+1}}; \oint_{\gamma r} \dots = \oint_{\gamma G} \square$$

10 Степенные ряды в \mathbb{C} , их свойства. Голоморфность суммы степенного ряда.

Ряд
$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 — **степенной** ряд, $c_n \in \mathbb{C}$.

Свойства:

1. Теорема Абеля:

Если степенной ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится в точке z_1 , то этот ряд сходится в круге $U=\{z\in\mathbb{C}:\,|z-z_0|<|z_1-z_0|\}$ и на любм компакте $K\subset U$ он сходится равномерно.

2. Теорема Коши-Адамара:

Пусть для ряда
$$A: \sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 имеем $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n|} = \frac{1}{R}$, где $1 \le \infty$.

Тогда в любой точке $z: |z-z_0| < R$ ряд сходится и в любой точке $z: |z-z_0| > R$ ряд расходится.

Голоморфность суммы степенного ряда:

Пусть в круге
$$U = \{z \in \mathbb{C} : |z - z_0| < R\}$$
 $S(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$.

Тогда
$$S \in H(U_R(z_0))$$
 и $S'(z) = \sum_{n=1}^{\infty} n \cdot c_n (z-z_0)^{n-1}$ (*)

Доказательство.

 $r: \ 0 < r < R$ — произвольные.

Пусть
$$z_1 \in U_R(z_0)$$
: $|z - z_0| > r$
 $\forall z \in U_r(z_0) = \{z : |z - z_0| < r\} :$
 $|n \cdot C_n(z - z_0)^{n-1}| = n \left| C_n \frac{(z - z_0)^{n-1}}{(z_1 - z_0)^n} \right| \cdot |(z_1 - z_0)^n| = n \frac{1}{|z_1 - z_0|} \cdot$

$$|C_n(z_1-z_0)^n|\cdot \left|\frac{z-z_0}{z_1-z_0}\right|^{n-1} \le n\frac{M}{|z_1-z_0|}\rho^{n-1},$$
 где $M>|C_n(z_1-z_0)^n|,\; \rho=\left|\frac{z-z_0}{z_1-z_0}\right|$ То есть ряд $\sum_{n=1}^\infty n\frac{M}{|z_1-z_0|}\rho^{n-1}=\frac{M}{|z_1-z_0|}\sum_{n=1}^\infty n\rho^{n-1}$ — мажорирующий для ряда $(*).$

Ряд $\sum_{n=1}^{\infty} n \rho^{n-1}$ сходится при $\rho \in (0;1)$ как ряд из производных

ряда $\sum_{n=1}^{\infty} \rho^n$. Тогда по признаку Вейерштрасса ряд (*) сходится равномерно и абсолютно в $U_r(z_0)$.

Для любой замкнутой кривой $\gamma \subset U_r(z_0)$ по теореме Коши:

$$\oint_{\gamma} \left(\sum_{n=1}^{\infty} nC_n (z - z_0)^{n-1} \right) dz = \sum_{n=1}^{\infty} C_n \oint_{\gamma} (z - z_0)^{n-1} dz = 0$$

Значит функция $g(z) = \sum_{n=1}^{\infty} n \cdot C_n (z-z_0)^{n-1}$ имеет первооб-

разную в $U_r(z_0)$, которая равна:

$$\int_{z_0}^{z} g(\xi)d\xi = \int_{z_0}^{z} \sum_{n=1}^{\infty} n \cdot C_n(\xi - z_0)^{n-1}d\xi = \sum_{n=1}^{\infty} nC_n \frac{(z - z_0)^n}{n} = S(z) - S(z_0) = S(z) - C_0.$$

Следовательно $S \in H(U_r(z_0)) \forall r \in (0; R).$

Поэтому
$$S \in H(U_R(z_0))$$
 и $S' = g$.

Следствия из этой теоремы:

1. Производная функции $f \in H(d)$ голоморфна в D 2.

11 Логарифмический вычет, его вычисление. Приращение (полярного) аргумента вдоль пути. Принцип аргумента. Теорема Руше и ее применение.

Пусть $f \in H(\mathring{U}_r(a)), a \in \mathbb{C}, r > 0$. Тогда вычет функции $\frac{f'(z)}{f(z)} = \frac{d}{dt} Lnf(z)$ в точке a называют **логарифмическим** вычетом функции f в точке a.

Лемма о логарифмическом вычете в нуле и в полюсе:

Логарифмический вычет ф. f(z) в точке a равен:

- 1. порядку нуля a, если a нуль
- 2. пордяку полюса a, если a полюс

Доказательство.

1) Пусть a — нуль порядка n ф-ии f(z), тогда:

$$f(z) = a_n(z-z)^n + a_{n+1}(z-a)^{n+1} + \dots = (z-a)^n \cdot \varphi(z)$$
, где

 $\varphi(z)$ — сумма степенного ряда, откуда следует, что $\varphi \in H$

$$\varphi(z) = c_n \neq 0 \Rightarrow \frac{f'(z)}{f(z)} = \frac{n(z-a)^{n-1} \cdot \varphi(z) + (z-a)^n \varphi'(z)}{(z-a)^n \varphi(z)} =$$

$$\frac{1}{z-a}(n+(z-a)\cdot\frac{\varphi'(z)}{\varphi(z)})\Rightarrow a$$
 — полюс 1-ого порядка функции

$$\frac{f'}{f} \Rightarrow C_{-1} = n$$
, т.к. $\frac{n}{z-a}$ — главная часть.

2) Пусть a — полюс порядка p, тогда по теорему о полюсе a — нуль порядка p функции $\frac{1}{f(z)} = g(z)$.

$$\frac{f'(z)}{f(z)} = -\frac{d}{dz} Ln \frac{1}{f(z)}$$

Тогда логарифмический вычет функции g в точке a равен p, а функции f в точке a равен -p.

Теорема о логарифмическом вычете:

Пусть f мероморфна в области $D \subset \mathbb{C}, G \cup \partial G \subset D, \partial G$ не содержит ни нулей, ни полюсов функции f, N и P – количество нулей и полюсов с учетом их порядков функции f в G.

Тогда
$$\frac{1}{2\pi i}\int\limits_{\partial G} \frac{f'(z)}{f(z)}\,dz = N-P$$
 (обход ∂G против часовой

стрелки),

где $\int\limits_{\partial G} \frac{f'(z)}{f(z)}\,dz$ — логарифмический вычет функции f вдоль кривой $\partial G.$

Доказательство.

Особые точки $\frac{f'(z)}{f(z)}$ в области G:

- 1. полюса $a_1,..,a_l$ с порядками $p_1,...,p_l$
- 2. нули $b_1,..,b_m$ с порядками $n_1,...,n_m$

Тогда по лемме о логарифмическом вычете $\frac{f'}{f}(a_j) = -p_j,$ $res \frac{f'}{f}(b_s) = n_s$

По теореме Коши:

$$\frac{1}{2\pi i} \int_{\partial G} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \cdot 2\pi i \left(\sum_{j=1}^{l} res \frac{f'}{f}(a_j) + \sum_{s=1}^{m} res \frac{f'}{f}(b_s) \right) =$$

$$= -\sum_{j=1}^{l} p_j + \sum_{s=1}^{m} n_s = N - P$$

 $\Delta_{\gamma} arg f = 2\pi k, \ k$ – количество обходов точки О f(z), $z \in \gamma$, с учетом приращения.

Принцип аргумента. Пусть f мераморфна в $D \subset \mathbb{C}$, $G \cup \partial G \subset D$, ∂G не содержит ни нулей, ни полюсов f. Тогда $N-P=\frac{1}{2\pi}\Delta_{\partial G}argf$.

Доказательство.

Пусть ∂G : $z=z(t),\ t\in [\alpha,\beta],\ \Phi(t)=\ln f(z(t)),$ где $\ln f$ непрерывно меняется при росте t от α до β . Тогда $\Phi'(t)=\frac{f'(z(t))}{f(z(t))}\cdot z'(t)$ и поэтому

$$\begin{split} \int\limits_{\partial G} \frac{f'}{f} dz &= \int\limits_{\alpha}^{beta} \frac{f'(z(t))}{f(z(t))} z'(t) dt = \Phi(\beta) - \Phi(\alpha) = \\ &= \ln f(z(\beta)) - \ln f(z(\alpha)) = \ln |f(z(\beta))| + i \arg f(z(\beta)) - \ln |f(z(\alpha))| - \\ &= -i \cdot \arg f(z(\alpha)) = i \Delta_{\partial G} \arg f = \text{ (по т. 0 логар.выч.) } N - P = \\ &= \frac{1}{2\pi i} \int \partial G \frac{f'(z)}{f(z)} dt = \frac{i \Delta_{\partial G} \arg f}{2\pi i} \end{split}$$

Теорема Руше:

Пусть $f,g \in H(G \cup \partial G)$ и $\forall z \in \partial G |f(z)| > |g(z)|$.

Тогда функции f и f+g имеют одинаковое количество нулей в G.

Доказательство.

$$\forall z \in \gamma G |f(z)| > |g(z)| \ge 0$$

$$|(f+g)(z)| \ge |f(z)| - |g(z)| > 0$$

Отсюда следует, что функция f и f+g не имеют нулей на

 ∂G .

По принципу аргумента $\Delta_{\partial G} arg(f+g) = N_{f+g}$ (количество нулей функции f+g в G).

С другой стороны:

$$\Delta \gamma Garg f(1 + \frac{g}{f}) = \Delta_{\gamma G} arg f + \Delta_{\gamma G} (1 + \frac{g}{f}) = N_f$$

Применение:

Найти число корней уравнения $z^8 - 4z^5 + z^2 - 1 = 0$ в области |z| < 1.

На границе области |z|=1, тогда т.к. $|z^8+z^2-1|\leq |z|^8+|z|^2+|-1|=3<|-4z^5|=4$ и уравнение $-4z^5=0$ имеет 5 корней в этой области, то исходное уравнение также иммеет 5 корней в этой области.

12 Теорема о среднем и принцип максимума модуля. Принцип сохранения области.

Теорема о среднем: Пусть $f \in H(D), z_0 \in D, \partial U_\rho(z_0) \subset D$

Тогда
$$f(z_0) \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \rho e^{it}) dt$$

Доказательство.

По интегральной формуле Коши:

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial U_{\rho}(z_0)} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + \rho e^{it})}{\rho e^{it}} i\rho e^{it} dt =$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \rho e^{it}) dt$$

Параметр $\partial U_{\rho}(z_0): z = z_0 + \rho e^{it}: t \in [0; 2\pi], z' = i\rho e^{it}$

Принцип сохранения области:

Функция f голоморфна в области D и $f \neq const$

Образ f(D) есть область

Доказательство.

Нужно показать, что множество D^* связно и открыто.

1) Пусть w_1, w_2 — две произвольные точки D^* , а z_1, z_2 — их прообразы.

Так как множество D линейно связно, то существует путь $\gamma: [\alpha; \beta] \to D$, связывающий точки z_1, z_2 . В силу непрерывности функции f образ $\gamma^* = f \circ \gamma$ будет путем, связывающим точки w_1, w_2 . Таким образом D^* — линейно связно.

2) Пусть w_0 произвольная точка D^* и z_0 — один из ее прообразов в D. Так как D открыто, то сущестует круг $\{|z-z_0| \le s\}$

$$r$$
 $\subset D$.

Будем уменьшать r пока круг не перестанет содержать других точек, в которых функция f равна w_0 (это возможно, т.к. она не постоянная).

Обозначим $\gamma = \{|z - z_0| = r\}$ границу этого круга и

$$\mu = \min_{x \in \gamma} |f(x) - w_0|, \ \mu > 0$$

Если бы $\mu=0$, то на γ существовала бы точка, в которой функция f равна w_0 .

Теперь докажем, что $\{|w - w_0| < \mu\} \subset D^*$.

Пусть w_1 — произвольная точка этого круга, то есть $|w_1 - w_0| < \mu$. Тогда:

$$f(z) - w_1 = f(z) - w_0 + (w_0 - w_1).$$

Так как на γ в силу выбора μ имеем $|f(z) - w_0| \ge \mu$, то по теорему Руше функция $f(z) - w_1$ имеет внутри γ столько же нулей, сколько и $d(z) - w_0$, то есть по крайней мере один нуль z_0 , а значит функция f внутри γ принимает значение w_1 , то есть $w_1 \in D^*$. В силу произвольности выбора w_1 весь круг лежит в D^* , а значит оно является открытым множеством.

Принцип максимума модуля:

Модуль голоморфной функции не может достигать строгого локального максимума внутри области.

Доказательство.

Пусть функция достигает максимума в некоторой точке z_0 . Воспользуемся принципом сохранения области. Если $f \neq const$, то она преобразует z_0 в точку w_0 области D^* .

Существует круг $\{|w-w_0| < \mu\} \subset D^*$, а в нем найдется точка w_1 такакя, что $|w_1| > |w_0|$. Значение w_1 принимается функ-

цией f в некоторой окрестности точки z_0 , а это противоречит тому, что |f| достигает максимума в этой точке. \square

13 Основные теоремы и приложения теории конформных отображений. Теорема Римана, принцип симметрии Римана-Шварца, принцип соответствия границ с обратный принцип соответствия границ. 14 Вычисление несобственных интегралов с использование вычетов. Лемма Жордана и теорема о вычислении несобственного интеграла от рациональной функции с помощью вычетов.

Вычисление несобственного интеграла от тригонометрических функций.

15 Определение преобразования Лапласа. Теорема о существовании изображения. Поведение изображения в бесконечно удаленной точке. Изображение элементарных функций (единичная функция Хевисайда, показательная и степенная функции). Теорема обращения.

16 Основные свойства преобразования Лапласа. Теоремы линейности, подобия, затухания, запаздывания, опережения, дифференцирования и интегрирования оригинала, дифференцирования и интегрирования изображения. Свертка двух функций. Теорема умножения изображений. Доказать теоремы затухания и дифференцирования оригинала, сформулировать остальные теоремы.

17 Три теоремы разложения. Доказать теоремы подобия и запаздывания.