## Le lemme

Soit X une variable aléatoire discrète intégrable sur l'univers  $\Omega$ .

**Question 0** Montrer qu'il existe  $x \geq \mathbb{E}X$  tel que  $x \in X(\Omega)$ .

## Un peu de chauffe

Soit G = (S, A) avec n := |S|, m := |A| et  $m \ge 4n$ . On note  $\operatorname{cr}(\overline{G})$  le nombre de croisements d'une représentation planaire  $\overline{G}$  de G. Alors on définit  $\operatorname{cr}(G) := \min \operatorname{cr}(\overline{G})$ .

D'après *la formule d'Euler*, pour tout graphe H,  $cr(H) \ge m(H) - 3n(H)$ .

On note  $S^{\dagger} \subset S$  une partie aléatoire de S où chaque sommet est choisi avec une probabilité p. On note ensuite  $H \coloneqq G[S^{\dagger}]$  et  $\overline{H} \coloneqq \overline{G}[S^{\dagger}]$ .



**Question 2** Déterminer  $\mathbb{E}[m(H)]$  et  $\mathbb{E}[n(H)]$ .

 $\mathcal{H}$  Question 3 Exprimer  $\mathbb{E}\left[\operatorname{cr}\left(\overline{H}\right)\right]$  en fonction de  $\operatorname{cr}(G)$ .

**Question 4** Démontrer  $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$ .

#### Une question d'originalité

Soit  $M \in \mathcal{M}_n(\mathbb{N})$  telle que tout  $k \in [1, n]$  apparaît exactement n fois dans M.

**Question 5** Montrer qu'il existe une ligne ou une colonne contenant au moins  $\sqrt{n}$  valeurs distinctes.

### De la géométrie

Soit  ${m a} \in \mathbb{C}^{10}.$  On dira que  ${m p} \in \mathbb{C}^{10}$ 

• couvre a si

• est sans superposition si

$$\boldsymbol{a} \subset \bigcup_{x \in \boldsymbol{p}} \overline{\mathcal{B}}(x,1) \qquad \qquad \forall x,y \in \boldsymbol{p}, x \neq y \Rightarrow \overline{\mathcal{B}}(x,1) \cap \overline{\mathcal{B}}(y,1) = \emptyset$$

**Question 6** Montrer qu'il existe  $p \in \mathbb{C}^{10}$  couvrant a sans superposition.

Ind:  $\frac{\pi\sqrt{3}}{6}\approx 0.907$ 

# Du rab

Soit  $k \in \mathbb{N}$ .

La propriété à laquelle on s'intéresse ici est la propriété de distance

$$\mathcal{D}(a_1...a_k) \coloneqq \left(\forall i,j, |a_i - a_j| \leq 2\right) \vee \left(\forall i \neq j, |a_i - a_j| \geq 1\right)$$

On pose enfin  $\mathcal{P}(n) := \forall A \in \mathfrak{P}(\mathbb{C}), (|A| = n) \Longrightarrow (\exists \{a_1...a_k\} \subset A, \mathcal{D}(a_1...a_k))$ 

**Uguestion 7** Calculer  $\inf\{n \in \mathbb{N}, \mathcal{P}(n)\}.$