Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 30.04.2010

Name:

Vorname(n):

Matrikelnummer:								Note:
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	10.5	8.5	12	9	40		
	erreichte Punkte							
Bitte								
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	f dem I	Deckbla	tt ein,	
rechnen Si	ie die Aufgaben auf se	paratei	n Blätte	ern, nic	cht auf	dem A	ngabeblatt,	
beginnen S	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,		
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,	
begründen	a Sie Ihre Antworten a	usführ	lich und	d				
	ie hier an, an welchen ntreten können:	n der fo	olgende	n Tern	nine Sie	e nicht	zur mündlich	nen
□ Fr.,	07.05.10 □ Mo., 10	0.05.10						

1. Gegeben ist der in Abbildung 1a dargestellte Schaltkreis bestehend aus einer Spannungsquelle mit der Spannung u_e , der Induktivität L, der Kapazität C, dem Widerstand R und einer Tunneldiode mit der nichtlinearen Stromcharakteristik $i_D = h(u_D)$ in Abhängigkeit der anliegenden Spannung u_D . Der Verlauf der Stromcharakteristik $i_D = h(u_D)$ ist in Abbildung 1b dargestellt.

Abbildung 1: a) Schaltkreis mit Tunneldiode und b) zugehörige nichtlineare Stromcharakteristik $i_D = h(u_D)$.

a) Stellen Sie die Modellgleichungen in der Form

3 P.|

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$

auf. Wählen Sie dazu $x_1 = u_C$ and $x_2 = i_L$ als Zustandsgrößen und $u = u_e$ als Stellgröße.

b) Stellen Sie die impliziten Bestimmungsgleichungen für die Ruhelagen $\mathbf{x}_R=2.5\,\mathrm{P.}$ $[x_{R,1},x_{R,2}]^T$ des Systems mit $u_e\equiv u_R$ in Abhängigkeit der nichtlinearen Kennlinie $h(x_{1,R})$ auf.

Anhand von Abbildung 1b kann $x_{R,1}$ grafisch bestimmt werden. Was folgt daraus für die maximale Anzahl an möglichen Ruhelagen in Abhängigkeit von R und u_R ? Tragen Sie für das explizite Beispiel

$$u_R = 1.0 \text{ V}, \quad R = 1.0 \text{ k}\Omega$$

mögliche stationäre Werte von $x_{R,1}$ in Abbildung 1b ein.

Hinweis: Interpretieren Sie die nichtlineare Bestimmungsgleichung für $x_{R,1}$ als Schnittpunktbedingung für die Kennlinie in Abbildung 1b.

c) Linearisieren Sie das Modell um die durch u_R bestimmte Ruhelage \mathbf{x}_R in Ab- 2 P.| hängigkeit von $h(x_{R,1})$. Geben Sie das linearisierte Modell in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$

an.

d) Berechnen Sie das charakteristische Polynom der Matrix **A**. Welche Bedingungen müssen für die Ableitung $h'(x_{R,1}) = \left(\frac{d}{dx_1}h\right)(x_{R,1})$ gelten, damit das charakteristische Polynom ein Hurwitzpolynom ist? Was folgt daraus für die Stabilität der in Teilaufgabe b ermittelten Ruhelagen?

2. Gegeben sei zunächst die Übertragungsfunktion

$$G_0(s) = \frac{1-s}{(1+s)^2}$$

- a) Ist das System phasenminimal und wenn ja, warum? 0.5 P.|
- b) Skizzieren Sie die Sprungantwort für die Übertragungsfunktion $G_0(s)$. 3 P.| Hinweis: Verwenden Sie den Anfangs- und Endwertsatz der Laplace-Transformation sowie die Beziehung $\lim_{t\to+0} \dot{h}(t) = \lim_{s\to\infty} s^2 \hat{h}(s)$.
- c) Die Übertragungsfunktion sei nun durch ein Totzeitglied erweitert: 2.5 P.|

$$G(s) = G_0(s) e^{-Ts} = \frac{1-s}{(1+s)^2} e^{-Ts}$$
 mit $T > 0$.

Skizzieren Sie die Sprungantwort von G(s). Berechnen Sie den Amplitudengang $|G(I\omega)|$ und den Phasengang $\arg(G(I\omega))$.

d) Auf der nächsten Seite ist das Bodediagramm der Totzeit-Übertragungsfunktion 2.5 P.| $G_t(s) = e^{-Ts}$ für T = 0.1 s dargestellt. Skizzieren Sie zusätzlich die einzelnen Übertragungsfunktionen $G_1(s) = (1-s)$ und $G_2(s) = \frac{1}{(1+s)^2}$ sowie die Gesamt-übertragungsfunktion G(s).

- 3. Bearbeiten Sie die folgenden Teilaufgaben:
 - a) Gegeben ist das System der Form

$$\dot{\mathbf{x}} = \begin{bmatrix} \alpha + \beta & 0 & 1 \\ 0 & -2 & \beta \\ 0 & \alpha & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u,$$

$$y = [1 \ 0 \ 0] \ \mathbf{x}.$$

- i. Für welchen Wertebereich der Parameter α und β erhält man durch den 3 P.| Einsatz eines trivialen Beobachters ein asymptotisch stabiles Fehlersystem? Skizzieren Sie die Bereiche in der (α, β) -Ebene.
- ii. Für welchen Wertebereich der Parameter α und β ist das System vollstän- 1 P.| dig erreichbar?
- iii. Für welchen Wertebereich der Parameter α und β ist das System vollstän- 1 P.| dig beobachtbar?
- iv. Geben Sie an, welche der folgenden Aussagen richtig bzw. falsch sind, wenn 2 P.| G(s) die s-Übertragungsfunktion für das oben angegebene System ist. Begründen Sie Ihre Antworten!
 - A. Das System ist nicht vollständig erreichbar, wenn G(s) die Ordnung 2 hat.
 - B. Das System ist vollständig erreichbar, wenn G(s) die Ordnung 3 hat.
- v. Nehmen Sie an, die Parameter α und β werden so gewählt, dass das gegebene System vollständig erreichbar und vollständig beobachtbar ist. Kann diese Eigenschaft durch Abtastung verloren gehen? Wenn ja, wie muss für das gegebene System die Abtastzeit T_a gewählt werden, damit das abgetastete System die Eigenschaft der vollständigen Erreichbarkeit und vollständigen Beobachtbarkeit nicht verliert?
- b) Gegeben ist folgende Übertragungsfunktion

$$G^{\#}(q) = \frac{y}{u} = \frac{q^2 - 2}{q^2 - 8q + 12}.$$

- i. Bestimmen Sie die Werte der Abtastzeit T_a für welche $G^{\#}(q)$ nicht realisierbar und jene Werte für welche $G^{\#}(q)$ nicht sprungfähig ist.
- ii. Bestimmen Sie für das Eingangssignal $u(t) = \sigma(t) + \sin(\frac{2\pi}{\sqrt{3}}t)$ den Ausgang 2 P.| y(t) im eingeschwungenen Zustand unter der Annahme $T_a = 1/\sqrt{3}$.

- 4. Bearbeiten Sie die folgenden Teilaufgaben:
 - a) Die Sprungantwort eines linearen zeitinvarianten Abtastsystems lautet $(h_k) = 2 P$. $(0, \frac{1}{2}, -\frac{1}{2}, 1, 1, ...)$. Berechnen Sie die Impulsantwort des Systems. Wie groß ist der maximale Wert der Ausgangsgröße des Systems y_{max} , wenn die Eingangsgröße der Beschränkung $|u_j| \leq 1$, j = 0, 1, 2, ... unterliegt? Wie lautet eine entsprechende Eingangsfolge (u_k) , die zu diesem Maximalwert führt?
 - b) Abbildung 2 zeigt die Eigenwerte von vier freien Abtastsystemen erster Ordnung. Skizzieren Sie den jeweiligen Verlauf von (x_k) für mindestens 5 Abtastschritte, wenn $x_0 = 1$ gilt.

Abbildung 2: Eigenwerte eines Abtastsystems

c) Abbildung 3 zeigt das Bodediagramm der Übertragungsfunktion des geschlossenen Kreises $T_{y/r}(s)$ eines Standardregelkreises. Weiters weiß man, dass die

Abbildung 3: Bodediagramm des geschlossenen Kreises und Struktur des Standardregelkreises

Sprungantwort des geschlossenen Kreises im eingeschwungenem Zustand einen Wert von $y(t \to \infty) = 0.99$ liefert.

- i. Bestimmen Sie die s-Übertragungsfunktion $T_{y/r}(s)$. Verwenden Sie dafür 2 P.| die Näherung $10^{\frac{-14}{20}}\approx 0.2$.
- ii. Die Strecke in diesem Regelkreis besitzt die Übertragungsfunktion G(s) = 2 P. $\frac{1}{s+1}$. Bestimmen Sie die entsprechende Übertragungsfunktion des Reglers R(s).
- iii. Wie können Anstiegszeit und Überschwingen der Sprungantwort des geschlossenen Kreises näherungsweise berechnet werden? Begründen Sie Ihre Antwort!