AERO-222: Introduction to Aerospace Computation - Spring 2023 Homework #4 - Due Date: Thursday, April 13, 2023

Show all work and justify your answers!

Instructions

- This homework contains both handwritten and coding problems and shall be submitted according to the following guidelines.
- Hardcopy:
 - Due on CANVAS at 11:59 PM on the day of the deadline.
 - Shall include screenshots of any hand-written work.
 - For coding problems, the hardcopy shall include any relevant derivations and emphasize the final results (i.e. boxed, highlighted, etc.). INCLUDE ALL CODING RESULTS (including plots, final values) IN THE HARDCOPY.
 - Shall be submitted as a single file according to the provided template with the following naming scheme: "LastnameHW#.pdf"
 - If preferable, you can put all of your work into a single Jupyter notebook (.ipynb) with photos of your hand-written work as well. Markdown allows for images.
- Coding Submission:
 - Due on CANVAS at 11:59 PM on the day of the deadline.
 - Shall be submitted as a single file according to the provided template with the following naming scheme: "LastnameHW#.py" or "LastNameHW#.ipynb".
 - The script shall print out all outputs asked for in the problem.
- Late submissions will be accepted with a 10 point deduction per day late.
- 1. Numerical Differentiation (By Hand) (25 pts). Show all steps to derive the MOST accurate formula of the second derivative, f_i'' , using all of the following points

$$f_{i-1}, \qquad f_i, \qquad f_{i+1}, \qquad f_{i+2}, \qquad f_{i+3},$$

via matrix inversion.

2. Numerical Differentiation (Coding Problem) (25 pts). The derivative of the function,

$$f(x) = 3\cos(5x) - 2x^3 + x^2 - 4x + 16$$

is the function, $f'(x) = -15\sin(5x) - 6x^2 + 2x - 4$. Discretize the function f(x) using N = 100 points, $[x_k, f_k]$, that are uniformly distributed in $x \in [0, 4]$. Evaluate the first numerical derivative using the 5-point difference formula. Plot the absolute error between true and numerical derivatives. Pay attention to the two extremes: you cannot always use the 5-point **central** difference formula.

- 3. Richardson Extrapolation (By Hand) (25 pts). Using the function given in problem #2, estimate the 3-point central second derivative at x = 3, using $h_1 = 0.1$ and $h_2 = 0.01$. Use Richardson extrapolation to refine your estimate and provide your final result (Note: $h_1 \neq 2h_2$). Use Python to plot the absolute error with respect to the true solution.
- 4. An Aerospace Application (Coding Problem) (25 pts). An airfoil is placed in a wind tunnel and heated to 80°C before lowering the surface temperature to 20.7°C using convective cooling. A thermocouple is placed on the surface of the airfoil and measures the surface temperature at discrete time steps. The following temperatures are recorded,

$$\frac{t \text{ (sec)}}{T \text{ (°C)}} \begin{vmatrix} 0 & 5 & 10 & 15 & 20 & 25 \\ 80 & 44.5 & 30 & 24.1 & 21.7 & 20.7 \end{vmatrix}$$

Use numerical differentiation to compute the first derivative $T'(t_k)$ at each time step given in the table above. Specifically, apply the three-point forward, backward or central finite-difference method wherever appropriate in order to estimate the airfoil's temperature gradient, $T'(t_k)$. Provide a table of values.