Fil Rouge Project

JPX Tokyo Stock Exchange Prediction

Explore the Tokyo market with your data science skills

Weizhe XIE, Tom OLEJNICZAK, Dian CHEN, Andres POSADA SANCHEZ COBIZA

- Introduction: Importing and exploring the data
- Step 1: Data cleaning and manipulation
- Step 2: Building our Machine Learning Models
- Conclusions of our analysis

Importing and exploring the data

- Importing relevant libraries
- Importing CSV file, including the training data stock prices files
- Exploring the Data


```
### importing relevant libraries ###
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing all relevant libraries, Including important ones for financial forecasting

Importing our train file & our supplementary file, which will be used in our financial forecasting model

```
#### Importing the stock_list file (train+supplemental)####
df=pd.read_csv("/Users/theresa/Desktop/课件/Fil_Rouge/train_files/train_stock_prices.csv")
supplemental=pd.read_csv('/Users/theresa/Desktop/课件/Fil_Rouge/train_files/supplemental_stock_prices.csv')
df=df.append(supplemental)
df.head()
```


	Rowld	Date	SecuritiesCode	Open	High	Low	Close	Volume	AdjustmentFactor	ExpectedDividend	SupervisionFlag	Target
0	20170104_1301	2017-01-04	1301	2734.0	2755.0	2730.0	2742.0	31400	1.0	NaN	False	0.000730
1	20170104_1332	2017-01-04	1332	568.0	576.0	563.0	571.0	2798500	1.0	NaN	False	0.012324
2	20170104_1333	2017-01-04	1333	3150.0	3210.0	3140.0	3210.0	270800	1.0	NaN	False	0.006154
3	20170104_1376	2017-01-04	1376	1510.0	1550.0	1510.0	1550.0	11300	1.0	NaN	False	0.011053
4	20170104_1377	2017-01-04	1377	3270.0	3350.0	3270.0	3330.0	150800	1.0	NaN	False	0.003026

Content from our table:

1.Exploring the data

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2602412 entries, 0 to 269880
Data columns (total 12 columns):
    Column
                      Dtype
    RowId
                      object
                      datetime64[ns]
    Date
    SecuritiesCode
                      int64
    Open
                      float64
    High
                      float64
    Low
                      float64
    Close
                      float64
    Volume
                      int64
    AdjustmentFactor float64
    ExpectedDividend float64
    SupervisionFlag bool
11 Target
                      float64
dtypes: bool(1), datetime64[ns](1), float64(7), int64(2), object(1)
memory usage: 240.7+ MB
```

SecuritiesCode: Local securities code of the stock

Close: last traded price on a day

Volume: number of traded stocks on a day

Target: Change ratio of adjusted closing price between t+2 and t+1 where t+0 is TradeDate

Information about our columns content:

df.shape		
(2602412, 12)		
df.isnull().sum()		
RowId	0	
Date	0	
SecuritiesCode	0	
Open	8426	
High	8426	
Low	8426	
Close	8426	
Volume	0	
AdjustmentFactor	0	
ExpectedDividend	2581536	
SupervisionFlag	0	
Target	246	
dtype: int64		

The table has **2.602.412 rows**, & **12 columns**.

Columns subject to cleaning:

- Open
- High
- Low
- <u>Close</u>
- Target

Columns subject to cleaning

0	<pre>df.isnull().sum()</pre>	
(2)	RowId	0
	Date	0
	SecuritiesCode	0
	Open	8426
	High	8426
	Low	8426
	Close	8426
	Volume	0
	AdjustmentFactor	0
	ExpectedDividend	2581536
	SupervisionFlag	0
	Target	246
	dtyne: int64	

Columns subject to cleaning:

- Open
- High
- Low
- Close
- Target

2017-11-06 2017-11-02

2021-02-09 2021-05-10 1

Length: 1310, dtype: int64

Cleaning our Data Set

Note: Many null values are linked to a **system error**, on the **2020-10-01**.

```
df = pd.DataFrame(df)
df['Date'] = pd.to datetime(df['Date'])
df[df['Close'].isnull()].groupby('Date').size().sort values(ascending=False)
Date
2020-10-01
              1988
2022-04-15
                16
2017-03-16
                15
2019-04-04
                14
2019-10-09
                14
2018-12-27
```

1988 rows x 12 columns

df[(df["Date"] == "2020-10-01") & df.isnull().any(axis=1)]

	Rowld	Date	SecuritiesCode	Open	High	Low	Close	Volume	AdjustmentFactor	ExpectedDividend	SupervisionFlag	Target
1755040	20201001_1301	2020-10-01	1301	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.029208
1755041	20201001_1332	2020-10-01	1332	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.027211
1755042	20201001_1333	2020-10-01	1333	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.027695
1755043	20201001_1375	2020-10-01	1375	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.023833
1755044	20201001_1376	2020-10-01	1376	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.022152
9	***	225	5.7		1225			7	0.22	227	122	920
1757023	20201001_9990	2020-10-01	9990	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.023297
1757024	20201001_9991	2020-10-01	9991	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.041621
1757025	20201001_9993	2020-10-01	9993	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.034006
1757026	20201001_9994	2020-10-01	9994	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.025047
1757027	20201001_9997	2020-10-01	9997	NaN	NaN	NaN	NaN	0	1.0	NaN	False	0.004301

the japan times

Tokyo trading halted due to hardware failure

BY OSAMU TSUKIMOR

The Tokyo Stock Exchange halted trading in all listed stocks for a full day Thursday due to the biggest technical glitch it has experienced since it introduced a computer system in 1999.

• • • • •

There are 1337 different dates per stock, with the number of total different values variating between stocks.

```
df["Date"].nunique()
1337
df.groupby('SecuritiesCode').size().sort values(ascending=True).head(140)
SecuritiesCode
4169
         367
7342
         368
4168
         368
7358
         369
4167
         370
        . . .
9519
        1302
4699
        1316
2729
        1320
6470
        1337
6471
        1337
Length: 140, dtype: int64
```

There are around 140 stocks doesn't have full 1337 days data.

	Rowld	Date	SecuritiesCode	Open	High	Low	Close	Volume	AdjustmentFactor	ExpectedDividend	SupervisionFlag	Target
0	20170104_1301	2017-01-04	1301	2734.0	2755.0	2730.0	2742.0	31400	1.0	NaN	False	0.000730
1	20170104_1332	2017-01-04	1332	568.0	576.0	563.0	571.0	2798500	1.0	NaN	False	0.012324
2	20170104_1333	2017-01-04	1333	3150.0	3210.0	3140.0	3210.0	270800	1.0	NaN	False	0.006154
3	20170104_1376	2017-01-04	1376	1510.0	1550.0	1510.0	1550.0	11300	1.0	NaN	False	0.011053
4	20170104_1377	2017-01-04	1377	3270.0	3350.0	3270.0	3330.0	150800	1.0	NaN	False	0.003026

Step 1: Data cleaning and manipulation

- Data Cleaning
- Choosing one random stock
- Data visualisation, using that stock

Prepare our Data Set

For Close: Using the "Adjustment Factor", to adjust the "Close" column

Why?

Modify the historical stock prices for events such as **stock splits**, **dividends**, **and rights offerings**.

These events can significantly alter a stock's price, making historical comparisons misleading

```
## use the "AdjustmentFactor" to adjust the "Close"
df["Close"]=df["Close"]*df["AdjustmentFactor"]
df=df.drop(columns=['RowId', 'ExpectedDividend', 'SupervisionFlag', "AdjustmentFactor"],axis=1).reset_index(drop=True)

## Sorting our data set by Security code, then by date
df.sort_values(by=['SecuritiesCode', 'Date'], inplace=True)
df.reset_index(drop=True, inplace=True)
df
```

Prepare our Data Set

	Date	SecuritiesCode	Open	High	Low	Close	Volume	Target
0	2017-01-04	1301	2734.0	2755.0	2730.0	2742.0	31400	0.000730
1	2017-01-05	1301	2743.0	2747.0	2735.0	2738.0	17900	0.002920
2	2017-01-06	1301	2734.0	2744.0	2720.0	2740.0	19900	-0.001092
3	2017-01-10	1301	2745.0	2754.0	2735.0	2748.0	24200	-0.005100
4	2017-01-11	1301	2748.0	2752.0	2737.0	2745.0	9300	-0.003295
	***	-	***	300	***		***	***
2602407	2022-06-20	9997	693.0	697.0	683.0	687.0	122600	0.001416
2602408	2022-06-21	9997	692.0	709.0	692.0	706.0	204800	0.000000
2602409	2022-06-22	9997	706.0	716.0	703.0	707.0	150200	0.016973
2602410	2022-06-23	9997	704.0	713.0	704.0	707.0	114700	0.013908
2602411	2022-06-24	9997	710.0	725.0	710.0	719.0	139600	0.015089

Sorting our data set by **Security** code, then by **Date**.

df.sort_values(by=['SecuritiesCode',
'Date'], inplace=True)

df.reset_index(drop=True,
inplace=True)

Much more structure!!!

Cleaning our Data Set

For Open, High, Low, closed:

Replace NaN values with the average of the previous day and next day non-NaN values

-> Using then mean of ffill()+bfill() method.

To make sure we cleaning by each stock, {For loop}

```
## fill the null value of each 'SecuritiesCode'
securaty_code=df["SecuritiesCode"].unique().tolist()
processed dfs = []
for s in securaty code:
  sdf=df[df['SecuritiesCode']==s]
  sdf['Open'].fillna((sdf['Open'].ffill() + sdf['Open'].bfill()) / 2, inplace=True)
  sdf['High'].fillna((sdf['High'].ffill() + sdf['High'].bfill()) / 2, inplace=True)
  sdf['Low'].fillna((sdf['Low'].ffill() + sdf['Low'].bfill()) / 2, inplace=True)
  sdf['Close'].fillna((sdf['Close'].ffill() + sdf['Close'].bfill()) / 2, inplace=True)
  sdf["future2"]=sdf["Close"], shift(-2)
  sdf["future1"]=sdf["Close"]. shift(-1)
  sdf["Target"].fillna((sdf["future2"]-sdf["future1"])/sdf["future1"], inplace=True)
  sdf. fillna(0, inplace=True)
  processed_dfs. append (sdf)
df = pd. concat(processed_dfs, ignore_index=True)
```


Generating a random stock for our analysis

In [22]:

drop the column of "SecuritiesCode"
df_rd=df_rd. drop(["SecuritiesCode"], axis=1)
df_rd

Out[22]:

### generate random stock for the analysis	
random. seed (69)	
<pre>random_security_code = random.sample(securaty_code, 1) random_security_code</pre>	

Target future2 future1 High Close Volume Date Open **1809894** 2017-01-04 1943.0 1946.0 1932.0 1938.0 383000 0.005685 1946.0 1935.0 **1809895** 2017-01-05 1935.0 1949.0 1924.0 1935.0 378300 -0.007194 1932.0 1946.0 **1809896** 2017-01-06 1930.0 1948.0 1928.0 1946.0 363500 0.016046 1963.0 1932.0 427700 -0.012226 **1809897** 2017-01-10 1932.0 1944.0 1924.0 1932.0 1939.0 1963.0 1809898 2017-01-11 1942.0 1971.0 1940.0 1963.0 473400 -0.002579 1934.0 1939.0

[7550]

0.012500 **1811226** 2022-06-20 3175.0 3175.0 3120.0 3140.0 212400 3240.0 3200.0 2022-06-21 3150.0 3215.0 3150.0 3200.0 303300 -0.001543 3235.0 3240.0 **1811228** 2022-06-22 3235.0 3290.0 3225.0 3240.0 440100 0.004637 3250.0 3235.0 **1811229** 2022-06-23 3225.0 3270.0 3210.0 3235.0 282100 -0.001538 3250.0 **1811230** 2022-06-24 3250.0 3270.0 3235.0 3250.0 250500 0.004622 0.0

1337 rows × 9 columns

Analysing the trend of our random stock

Displaying the "Close" value of the random stock over time

Overall Trend:

General upward trend

Suggests a positive performance over time

Using Box Plot for "closed"

```
Q1 = df_rd['Close'].quantile(0.25)
median = df_rd['Close'].quantile(0.5)
Q3 = df_rd['Close'].quantile(0.75)

plt. figure(figsize=(10, 6))
plt. boxplot(df_rd['Close'], vert=False)

plt. scatter (Q1, 1,color='red',label=' First Quartile (Q1)')
plt. scatter (median, 1,color='green', label='Median')
plt.scatter(Q3,1, color='blue', label='Last Quartile (Q3)')

plt.title('Box Plot of choosing stock')
plt. xlabel ('Closed Price')
plt. legend()
plt. show()
```

Output:

Analysing the trend of our random stock

Analysing the volume over time

[] ## Displaying the Volume of the random_security_code stock over time df_rd["Volume"].plot.hist(bins=50)

<Axes: ylabel='Frequency'>

right-skewed distribution:

low trading volumes are more common than high trading volumes.

Outliers or Extreme Values:

The long tail to the right suggests that while most of the trading volumes are relatively low, there are a <u>few days with exceptionally high trading</u> volumes.

Analysing the trend of our random stock

Analysing the target over time

- Short-term volatility
- daily market performance

does not show a long-term trend but rather **fluctuates around the zero line**

No persistent upwards or downward trend

Step 2: Building our Machine Learning Model

- 1. Simple Exponential Smoothing
- 2. ARIMA
- 3. Random Forest Regressor
- 4. LGBMRegressor

• • • • •

Step 2.1: Simple Exponential Smoothing

```
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
```

```
SES = df_rd["Target"]
model = SimpleExpSmoothing(SES)
fit_model = model.fit()
pred_SES = fit_model.fittedvalues
```

```
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(SES.index, SES, label='Original Data')
ax.plot(pred_SES.index, pred_SES, label='Smoothed Data', linestyle='solid')
ax.set_title(f'Simple Exponential Smoothing: Predicted vs Real Test Data')
ax.legend()
plt.show()
```


Step 2.1: Simple Exponential Smoothing

Output:

Step 2.1: Simple Exponential Smoothing

```
print("r2_score:",r2_score(SES, pred_SES))
print("Root Mean Squared Error (MSE): ",np.sqrt(mean_squared_error(SES, pred_SES)))
print("Mean Absolute Error (MAE):",np.mean(np.abs(SES - pred_SES)))
```

r2_score: -0.011424188849479933 Root Mean Squared Error (MSE): 0.015935269620631663 Mean Absolute Error (MAE): 0.011143197744633486

Step 2.1: Simple Exponential Smoothing

Conclusion

- Model not accurate enough
- Model has not enough information regarding other parameters that might influence the prediction
- A further model is needed to make predictions


```
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import acf, pacf
time series=df rd["Target"]
# Determine the split point
split ratio = 0.8 # 80-20 split
split index = int(len(time series) * split ratio)
# Split the data into training and testing sets
train_data = time_series[:split_index]
test data = time series[split index:]
lags = 20
acf_values = acf(train_data, nlags=lags)
pacf values = pacf(train data, nlags=lags)
# plot ACF and PACF
plt.figure(figsize=(12, 6))
plt.subplot(121)
plot_acf(train_data, lags=lags, ax=plt.gca())
plt.title('Autocorrelation Function (ACF)')
plt.subplot(122)
plot pacf(train data, lags=lags, ax=plt.gca())
plt.title('Partial Autocorrelation Function (PACF)')
plt.tight layout()
plt.show()
```


Output:

Output:

Best model: ARIMA(1,0,0)(0,0,0)[0] Total fit time: 0.186 seconds

Output:

```
model = ARIMA(train_data, order=(1, 0, 0))
result = model.fit()
print(result.summary())
steps = len(test_data)
forecast = result.predict(start=len(train_data), end=len(train_data) + steps - 1, typ='levels')
```

SARIMAX Results

Dep. Variab Model: Date: Time: Sample:		Targ ARIMA(1, 0, on, 04 Dec 20 22:18:	0) Log 23 AIC			1069 2869.751 -5733.503 -5718.579 -5727.849
Covariance 1	Туре:	- 10 c	169 Pg			
			Z	P> z	[0.025	0.975]
const				0.426	-0.001	0.002
ar.L1	0.1364	0.022	6.249	0.000	0.094	0.179
sigma2	0.0003	7.74e-06	35.216	0.000	0.000	0.000
Ljung-Box (I	L1) (Q):		0.00	Jarque-Bera	(JB):	499.27
Prob(Q):	est steets		0.96	Prob(JB):	30 (600)	0.00
Heteroskedas	sticity (H):		2.54	Skew:		0.11
Prob(H) (two	o-sided):		0.00	Kurtosis:		6.34


```
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.plot(df_rd['Target'].values, label='True Values')
plt.plot(forecast, label='Predictions')
plt.xlabel('Sample')
plt.ylabel('Value')
plt.legend()
plt.title('True Values vs. Predictions')
plt.show()
```

Output:

Conclusions:

- Even when using different values for p, d, and q, the model still lacks accuracy to be useful
- ARIMA with manual values and AUTOARIMA have no significant difference
- A further method for predicting the stock price is needed

- Machine Learning algorithm that combines the output of several decision trees to produce a single result.
- An <u>ensemble method</u>: it **combines multiple results** to get a final one.
- Popular for its:
 - Precision
 - Simplicity
 - Flexibility

Features engineering

Create important features

```
df_rd["Signal"] = np.where(df_rd["MA20"] > df_rd["MA50"],1,0)
df_rd["Position"] = df_rd["Signal"].diff()
df_rd['Upper_BB'] = df_rd['MA50'] + (df_rd['Close'].rolling(window=50).std() * 2)
df_rd['Lower_BB'] = df_rd['MA50'] - (df_rd['Close'].rolling(window=50).std() * 2)

feature_names=feature_names+["Signal"]+["Position"]+['Upper_BB']+['Lower_BB']
print(feature_names)
```

['Open', 'High', 'Low', 'Close', 'Volume', 'MA20', 'pct_change20', 'volatility20', 'EMA20', 'RSI20', 'MA50', 'pct_change50', 'volatility50', 'EMA50', 'RSI50', 'MA100', 'pct_change100', 'volatility100', 'EMA100', 'RSI100', 'Signa l', 'Position', 'Upper_BB', 'Lower_BB']

import library

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error
import numpy as np
```

Create X, Y and split the data

```
X = df_rd[feature_names]
y = df_rd["Target"]
X.fillna(0,inplace=True)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```


Use Grid Search to find the best hyperparameters for our model:

```
## use grid search to find our the best hyperparameters
random grid = { bootstrap': [True, False],
'max depth': [10, 20, 30, None],
 'max features': ['auto', 'sqrt'],
 'min samples leaf': [1, 2, 4],
 'min samples split': [2, 5, 10],
 'n estimators': [100, 200, 400, 600, 800, 1000]}
# Initialize the Random Forest Regressor
rf = RandomForestRegressor(random state=42)
# Create GridSearchCV
grid search = GridSearchCV(estimator=rf, param grid=random grid, cv=3, scoring='neg mean squared error', verbose=2, n jobs=-1)
# Perform Grid Search to find the best hyperparameters
grid search.fit(X train, y train)
# Get the best parameters and best estimator
best params = grid search.best params
best estimator = grid search.best estimator
```

Output (sample):

RandomForestRegressor

pred_rf = best_estimator.predict(X_test)

Evaluate the model

```
# Evaluate the model on the test set
 print("r2 score:",r2 score(y test, pred rf))
print("Root Mean Squared Error (RMSE): ",np.sqrt(mean_squared_error(y_test, pred_rf)))
 print("Mean Absolute Error (MAE):",np.mean(np.abs(y test - pred rf)))
r2 score: 0.09770102894576749
```

Root Mean Squared Error (RMSE): 0.014910576328452609 Mean Absolute Error (MAE): 0.010549270204817005

Another Perspective to Evaluate Prediction:

- Predicting the direction of stock movements rather than precise values
- Investor Decision-making

Model Evaluation Focus: accuracy in predicting positive or

negative target value

Transformation: Both the "Target" column and model predictions were transformed into binary format.

- 1: Denotes positive targets, indicating an increase in stock value.
- 0: Represents negative targets, signifying either no gain or a decrease in stock value.

Transform into binary values

```
def to_binary(x):
    return np.where(x >= 0, 1, 0)

y_test_binary = to_binary(y_test)
y_pred_binary = to_binary(y_pred)
```

Accuracy:

```
from sklearn import metrics
print("Accuracy=",metrics.accuracy_score(y_test_binary,y_pred_binary))
```

Accuracy= 0.5335820895522388


```
import seaborn as sn
confusion_matrix=pd.crosstab(y_test_binary,y_pred_binary,rownames=['Actual'],colnames=['Predicted'])
sn.heatmap(confusion_matrix,annot=True)
```

<Axes: xlabel='Predicted', ylabel='Actual'>

Confusion Matrix

- Light Gradient Boosted Machine
- A stochastic gradient boosting ensemble algorithm

```
from scipy.stats import pearsonr

def feval_pearsonr(preds, train_data):
    labels = train_data.get_label()
    return 'pearsonr', pearsonr(labels, preds)[0], True
```

```
import lightgbm as lgb
import pandas as pd
from sklearn.model_selection import train_test_split
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
params_lgb = {
    'learning rate': 0.005.
    'metric': 'None',
    'objective': 'regression',
    'boosting': 'gbdt',
    'verbosity': 0,
    'n_jobs': -1,
    'force col wise': True
model = lqb.train(
    params=params lqb,
    train set=train data,
    valid_sets=[train_data, test_data],
    num boost round=3000,
    feval=feval_pearsonr,
    callbacks=[
        lgb.early_stopping(stopping_rounds=300, verbose=True),
        lgb.log_evaluation(period=100)
```

Using Pearson
correlation coefficient
between predictions and
actual value to train a
LightGBM model

```
import lightgbm as lgb
import pandas as pd
from sklearn.model selection import train test split
train data = lgb.Dataset(X train, label=y train)
test data = lgb.Dataset(X test, label=y test, reference=train data)
params lgb = {
    'learning rate': 0.005,
   'metric': 'None'.
   'objective': 'regression'.
   'boosting': 'gbdt',
   'verbosity': 0,
   'n jobs': -1,
    'force col wise': True
model = lgb.train(
   params=params lgb,
   train set=train data,
   valid sets=[train data, test data],
   num boost round=3000,
   feval=feval pearsonr,
   callbacks=[
       lgb.early stopping(stopping rounds=300, verbose=True),
       lgb.log_evaluation(period=100)
```

Output:

```
Training until validation scores don't improve for 300 rounds
[100]
       training's pearsonr: 0.605395
                                        valid 1's pearsonr: 0.184312
[200]
       training's pearsonr: 0.686504
                                        valid 1's pearsonr: 0.216185
[300]
       training's pearsonr: 0.732395
                                        valid 1's pearsonr: 0.229372
       training's pearsonr: 0.772121
                                        valid 1's pearsonr: 0.246295
[400]
       training's pearsonr: 0.802949
                                        valid 1's pearsonr: 0.251504
[500]
[600]
       training's pearsonr: 0.82679
                                        valid 1's pearsonr: 0.260276
        training's pearsonr: 0.844032
                                        valid 1's pearsonr: 0.26799
[700]
                                        valid 1's pearsonr: 0.272212
[800]
        training's pearsonr: 0.859387
9001
        training's pearsonr: 0.872519
                                        valid 1's pearsonr: 0.275818
        training's pearsonr: 0.883563
                                        valid 1's pearsonr: 0.274286
[1000]
[1100]
        training's pearsonr: 0.893035
                                        valid 1's pearsonr: 0.27346
        training's pearsonr: 0.901796
                                        valid 1's pearsonr: 0.274575
Early stopping, best iteration is:
[924]
        training's pearsonr: 0.875492
                                        valid 1's pearsonr: 0.2764
```

pred_lgb=model.predict(X_test)

Evaluate the model

```
# Evaluate the model on the test set
print("r2_score:",r2_score(y_test, pred_lgb))
print("Root Mean Squared Error (RMSE): ",np.sqrt(mean_squared_error(y_test, pred_lgb)))
print("Mean Absolute Error (MAE):",np.mean(np.abs(y_test - pred_lgb)))
r2_score: 0.04550210023491208
Root Mean Squared Error (RMSE): 0.015335808886900032
Mean Absolute Error (MAE): 0.010968749687230744
```


• • • • •

Step 2.4: LGBMRegressor

Transform into binary format & Accuracy

```
def to_binary(x):
    return np.where(x >= 0, 1, 0)

y_test_binary = to_binary(y_test)
pred_lgb_binary = to_binary(pred_lgb)

from sklearn import metrics
print("Accuracy=",metrics.accuracy_score(y_test_binary,pred_lgb_binary))
```

Accuracy= 0.5559701492537313

Predicted

- Explore and clean the data
- 4 Machine Learning models: Simple Exponential Smoothing,
 ARIMA, Random Forest Regressor, and LGBM Regressor;
- Our goal: predict the "Target" column
 - Random Forest Regressor yielded the <u>most promising</u> results;
- Accuracy rate of predicting stock movement over 50%.

Thank you!

Weizhe XIE, Tom OLEJNICZAK, Dian CHEN, Andres POSADA SANCHEZ
COBIZA