Drug Binding and Unbinding

Drugs work when they are bound to the target!

Reversible inhibitors: equilibrium constant

$$K_d = \frac{k_{\text{off}}}{k_{\text{on}}}$$

k_{off} determines K_{d}

Figure 2 | **Drug affinity (target potency) is often driven by drug-target residence time.** Correlation between the dissociation rate constant $(k_{\text{off}}; \text{ orange circles})$ or association rate constant $(k_{\text{on}}; \text{ green circles})$ with the equilibrium dissociation constant (K_{d}) for biotin binding to wild-type

and mutant forms of streptavidin¹⁶ (part **a**), saquinavir binding to wildtype and resistant mutants of HIV protease¹⁷ (part **b**), and a series of aminonucleoside inhibitors binding to the protein methyltransferase DOT1L¹⁸ (part **c**).

Strong correlation with k_{off} , no correlation with k_{on}

Unbinding rates have timescales of 1/minute or longer!