Instituto Tecnológico de Buenos Aires

22.05 Análisis de Señales y Sistemas Digitales

Guía de ejercicios $N^{\circ}2$

Grupo 3

Mechoulam, Alan	58438
Lambertucci, Guido Enrique	58009
RODRIGUEZ TURCO, Martín Sebastian	56629
LONDERO BONAPARTE, Tomás Guillermo	58150

Profesores
Jacoby, Daniel Andres
Belaustegui Goitia, Carlos F.
Iribarren, Rodrigo Iñaki

Presentado: ??/??/20

Ejercicio 1

2b) Se habia llegado al resultado:

$$\begin{cases} x(nT) = e(nT) - e(nT - T) + 0.5e(nT - 2T) \\ y(nT) = e(nT) + e(nT - T) \end{cases} \xrightarrow{\mathcal{Z}} \begin{cases} X(z) = E(z) \cdot (1 - z^{-1} + 0.5 \cdot z^{-2}) \\ Y(z) = E(z) \cdot (1 + z^{-1}) \end{cases}$$
(1)

Igualando las expresiones:

$$Y(z) \cdot (1 - z^{-1} + 0.5 \cdot z^{-2}) = X(z) \cdot (1 + z^{-1}) \xrightarrow{\mathcal{Z}^{-1}} y(n) = x(n) + x(n-1) + y(n-1) - 0.5 \cdot y(n-2)$$
 (2)

9) Se habia llegado al resultado:

$$y(n) = 0.5 \cdot x(n-2) + \alpha \cdot y(n-1) + \beta \cdot y(n-2) \xrightarrow{\mathcal{Z}} Y(z) = 0.5 \cdot z^{-2} \cdot X(z) + \alpha \cdot z^{-1} \cdot Y(z) + \beta z^{-2} \cdot Y(z)$$
 (3)

Despejando la transferencia dado que esta es la transformada de la respuesta al impulso.

$$H(z) = \frac{1}{2} \cdot \frac{1}{z^2 - \alpha z - \beta} = \frac{1}{2} \cdot \left(\frac{\frac{1}{z_1 - z_2}}{z - z_1} + \frac{\frac{1}{z_2 - z_1}}{z - z_2} \right) \qquad z_{1,2} = \frac{\alpha \pm \sqrt{\alpha^2 + 4\beta}}{2}$$
(4)

$$h(n) = \frac{1}{2} \cdot \frac{1}{z_1 - z_2} \cdot (z_1^{n-1} - z_2^{n-1}) \cdot u(n-1)$$
(5)

Ejercicio 3

a) Para analizar la estabilidad de (6) se utilizaron 2 métodos, el primero es verificar que el modulo de las raices del denominador sean menor a 1, y el otro es el metodo de Jury-Marden Stability Criterion

$$H(z) = \frac{z^6}{6z^6 + 5z^5 + 4z^4 + 3z^3 + 2z^2 + z + 1}$$
(6)

Las raices del denominador serán:

$$z_{1,2} = -0.703387 \pm j \cdot 0.365055 \qquad z_{3,4} = -0.116036 \pm j \cdot 0.731154 \qquad z_{5,6} = 0.402756 \pm j \cdot 0.567471 \qquad (7)$$

los cuales todos cuentan con módulo menor a 1, lo cual indica que el sistema es estable. Para el segundo análisis de estabilidad primero se comprobaron las hipótesis de Jury, las cuales son: Sea un sistema descrito como $H(z) = \frac{N(z)}{D(z)}$

- $D(1) > 0 \to D(1) = \frac{1}{21}$
- $(-1)^N \cdot D(-1) > 0 \rightarrow (-1)^6 \cdot D(-1) = \frac{1}{4}$
- $a_0 < a_n \to 1 < 6$

Dado que cumple con todas las hipótesis se procedió a generar la matriz de Jury:

Rows	z^0	z^1	z^2	z^3	z^4	z^5	z^6
1	1	1	2	3	4	5	6
2	6	5	4	3	2	1	1
3	-35	-29	-22	-15	-8	-1	0
4	0	-1	-8	-15	-22	-29	-35
5	1224	1007	755	503	251	0	0
6	0	0	251	503	755	1007	1224
7	1435175	1106315	734615	362915	0	0	0
8	0	0	0	362915	734615	1106315	1435175
9	1928019983400	1321152827400	652802774400	0	0	0	0

De aquí para asegurar la estabilidad basta con verificar que los $|b_0| > |b_5| ||c_0|| > |c_4| ||d_0|| > |d_3| ||e_0|| > |e_2|$ Los cuales verifican, por lo cual se define que el sistema es estable.