1 Modern Cryptography

(Continued from previous notes.)

1.1 Interlude: Order

Consider the following definition of order:

Definition 1.1: Order

Fix a positive integer n. If a is an integer with gcd(a, n) = 1, the order of $a \mod n$, denoted $ord_n(a)$, is the smallest positive integer k such that $a^k \equiv 1 \pmod n$.

For example, suppose n=7 and a=2. We then compute

$$2^2 = 4 \pmod{7}$$
.
 $2^3 = 8 \equiv 1 \pmod{7}$.

Here, 3 is the smallest positive exponent such that raising 2 to the power gives us something congruent 1 mod 7, which means $\operatorname{ord}_7(2) = 3$.

1.1.1 Order Lemmas

Note that $\phi(7) = 6$ and $\operatorname{ord}_7(2) = 3$ happens to be a divisor of 6. This is no coincidence.

Lemma 1.1: First Order Lemma

Fix a positive integer n and an integer a with gcd(a, n) = 1. If m is an integer with $a^m \equiv 1 \pmod{n}$, then $ord_n(a)$ divides m. In particular, $ord_n(a)$ divides $\phi(n)$.

The First Order Lemma makes it easier to compute the order of an element. Suppose, for example, we are interested in n = 7 and a = 3. The lemma guarantees that $\operatorname{ord}_7(3)$ must be a divisor of $\phi(7) = 6$, so it can only be 1, 2, 3, or 6. We check

$$3^{1} \not\equiv 1 \pmod{7}$$

 $3^{2} = 9 \equiv 2 \not\equiv 1 \pmod{7}$
 $3^{3} = 27 \equiv 6 \not\equiv 1 \pmod{7}$
 $3^{6} = 729 \equiv 1 \pmod{7}$.

So, $\operatorname{ord}_{7}(3)$ cannot be 1, 2, or 3 and thus must be 6.

(Exercise.) Calculate the following orders.

(a) $ord_5(2)$

We need to find the smallest integer k such that $2^k \equiv 1 \pmod{5}$. We find

$$2^{1} = 2 \not\equiv 1 \pmod{5}$$

 $2^{2} = 4 \not\equiv 1 \pmod{5}$
 $2^{3} = 8 \equiv 3 \not\equiv 1 \pmod{5}$

 $2^4 = 16 \equiv 1 \pmod{5},$

so $\text{ord}_5(2) = 4$.

(b) $ord_9(4)$

We need to find the smallest integer k such that $4^k \equiv 1 \pmod{9}$. We find

$$4^1 = 4 \not\equiv 1 \pmod{9}$$

$$4^2 = 16 \not\equiv 1 \pmod{9}$$

$$4^3 = 64 \equiv 1 \pmod{9}$$
,

so $ord_9(4) = 3$.

(c) $ord_{10}(3)$

We need to find the smallest integer k such that $3^k \equiv 1 \pmod{10}$. We find

$$3^1 = 3 \not\equiv 1 \pmod{10}$$

$$3^2 = 9 \not\equiv 1 \pmod{10}$$

$$3^3 = 27 \not\equiv 1 \pmod{10}$$

$$3^4 = 81 \not\equiv 1 \pmod{10},$$

so $ord_{10}(3) = 4$.

(d) $ord_{11}(7)$

We note that

$$\phi(11) = 11 \prod_{\substack{p \mid 11 \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right) = 11 \left(1 - \frac{1}{11}\right) = 11 \left(\frac{10}{11}\right) = 10.$$

By the First Order Lemma, we know that $\operatorname{ord}_{11}(7)$ divides $\phi(11)$. So, $\operatorname{ord}_{11}(7)$ can only be 1, 2, 5, or 10. Let's try the different values:

$$7^1 = 7 \not\equiv 1 \pmod{11}$$

$$7^2 = 49 \not\equiv 1 \pmod{11}$$

$$7^5 = 7^47 = (7^2)^27 = 49^27 \equiv 5^27 = 25 \cdot 7 \equiv 3 \cdot 7 = 21 \not\equiv 1 \pmod{11}$$

$$7^{10} = (7^2)^5 = 49^5 \equiv 5^5 = 5^45 = (5^2)^25 = 25^25 \equiv 3^25 = 45 \equiv 1 \pmod{11}$$

so $\operatorname{ord}_{11}(7) = 10$.

(e) $ord_{13}(1)$

As usual, we find the smallest integer k such that $1^k \equiv 1 \pmod{13}$. Conveniently, we find that k = 1 and so $\operatorname{ord}_{13}(1) = 1$.

Lemma 1.2: Second Order Lemma

Fix a positive integer n and an integer a with $\gcd(a,n)=1$ and let $k=\operatorname{ord}_n(a)$. Then, $a^i\equiv a^k\pmod n$ if and only if $i\equiv j\pmod k$. In particular, the numbers $a^0,a^1,a^2,a^3,\ldots,a^{k-1}$ are all incongruent mod n.

1.1.2 Primitive Roots and Discrete Logarithms

The First Order Lemma tells us that $\phi(n)$ is the largest possible order mod n that any integer could have, since the order must always be a divisor of $\phi(n)$. The situation when this maximum is achieved gets a special name.

Definition 1.2: Primitive Root

Fix an integer $n \ge 2$. An integer g with gcd(g, n) = 1 and $ord_n(g) = \phi(n)$ is called a primitive root mod n.

For example, we saw above that $\operatorname{ord}_7(3) = 6 = \phi(7)$, so 3 is a primitive root mod 7. The Second Order Lemma tells us that $3^0, 3^1, 3^2, 3^3, 3^4, 3^5$ are all incongruent mod 7, but there are only 6 nonzero congruence classes mod 7, so the fact that all the nonzero congruence classes mod 7 must be represented among the integers $3^0, 3^1, 3^2, 3^3, 3^4, 3^5$. Let's check this explicitly.

$$3^0 \equiv 1 \pmod{7}$$
$$3^1 \equiv 3 \pmod{7}$$

$$3^2 \equiv 2 \pmod{7}$$

$$3^3 \equiv 6 \pmod{7}$$

$$3^4 \equiv 4 \pmod{7}$$

$$3^5 \equiv 5 \pmod{7}$$

All of the nonzero remainders mod 7 appear in this list. This generalizes.

Lemma 1.3: Existence of Discrete Logarithms

Fix an integer $n \geq 2$ and suppose g is a primitive root mod n. If gcd(a, n) = 1, then there exists a unique k such that $0 \leq k \leq \phi(n)$ and $g^k \equiv a \pmod{n}$. This integer k is called the *discrete log base* g of $a \mod n$, and is denoted $\log_g(a \pmod{n})$.

So, our calculations above show that the discrete log base 3 of 6 mod 7 is 3, since $3^3 \equiv 6 \pmod{7}$.

(Exercise.) For each of the following, determine whether or not the proposed value of g is actually a primitive root mod n.

(a)
$$n = 11, g = 2$$

Recall that $\phi(11) = 10$. By the First Order Lemma, $\operatorname{ord}_{11}(2)$ must either be 1, 2, 5, or 10. So,

$$2^{1} = 2 \not\equiv 1 \pmod{11},$$

 $2^{2} = 4 \not\equiv 1 \pmod{11},$
 $2^{5} = 32 \equiv 10 \not\equiv 1 \pmod{11},$

$$2^{10} = (2^5)^2 = 32^2 \equiv 10^2 = 100 \equiv 1 \pmod{11}$$
.

So, in particular, we find that $\operatorname{ord}_{11}(2) = 10$. By the definition of the primitive root, since $\operatorname{ord}_{11}(2) = 10 = \phi(11)$, g = 2 is a primitive root.

(b)
$$n = 11, q = 3$$

Recall that $\phi(11) = 10$. By the First Order Lemma, $\operatorname{ord}_{11}(3)$ must either be 1, 2, 5, or 10. So,

$$3^1 = 3 \not\equiv 1 \pmod{11}$$
,

$$3^2 = 9 \not\equiv 1 \pmod{11}$$
,

$$3^5 = 3^3 \cdot 3^2 = 27 \cdot 3^2 \equiv 5 \cdot 9 = 45 \equiv 1 \pmod{11}.$$

So, $\operatorname{ord}_{11}(3) = 5$, but because $\operatorname{ord}_{11}(3) \neq \phi(11)$, g = 3 is not a primitive root.

(c) n = 11, g = 4

Recall that $\phi(11) = 10$. By the First Order Lemma, $\operatorname{ord}_{11}(4)$ must either be 1, 2, 5, or 10. So,

$$4^1 = 4 \not\equiv 1 \pmod{11},$$

$$4^2 = 16 \equiv 5 \not\equiv 1 \pmod{11}$$
,

$$4^5 = (4^2)^2 4 = 16^2 4 \equiv 5^2 4 = 25 \cdot 4 = 100 \equiv 1 \pmod{11}.$$

So, $\operatorname{ord}_{11}(4) = 5$, but because $\operatorname{ord}_{11}(4) \neq \phi(11)$, g = 4 is not primitive root.

(Exercise.) For each of the following values of n, find all of the primitive roots mod n.

• n = 5

We find that

$$\phi(5) = 5 \prod_{\substack{p \mid 5 \\ p \text{ prime}}} \left(1 - \frac{1}{p} \right) = 5 \left(1 - \frac{1}{5} \right) = 5 \frac{4}{5} = 4.$$

By the definition of the Primitive Root (1.2), we know that an integer g with gcd(g, 5) = 1 and $ord_5(g) = \phi(5) = 4$ is called a primitive root.

Let's consider all $1 \le g \le 4$ (since, for g > 5, we can mod g such that it's between $0 \le g \le 4$; also, for g = 0, $g^n = 0$ and $\gcd(0,5) = 5$.)

g	$g^1 \pmod{5}$	$g^2 \pmod{5}$	$g^3 \pmod{5}$	$g^4 \pmod{5}$
1	1			
2	2	4	3	1
3	3	4	2	1
4	4	1		

So, in particular, the order of

$$- g = 1 \text{ is } 1,$$

$$- g = 2 \text{ is } 4,$$

$$-g = 3 \text{ is } 4,$$

$$-g = 4 \text{ is } 1.$$

Because $\phi(5) = 4$ and $\operatorname{ord}_5(2) = \operatorname{ord}_5(3) = 4$, it follows that 2 and 3 are the primitive roots.

 \bullet n=7

We know that $\phi(7) = 6$. By the definition of the Primitive Root (1.2), we know that an integer g with gcd(g,7) = 1 and $ord_7(g) = \phi(7) = 6$ is called a primitive root.

Let's consider all $1 \le g \le 6$.

g	$g^1 \pmod{7}$	$g^2 \pmod{7}$	$g^3 \pmod{7}$	$g^4 \pmod{7}$	$g^5 \pmod{7}$	$g^6 \pmod{7}$
1	1					
2	2	4	1			
3	3	2	6	4	5	1
4	4	2	1			
5	5	4	6	2	3	1
6	6	1				

So, in particular, the order of

- -g = 1 is 1,
- g = 2 is 3,
- -g = 3 is 6,
- -g = 4 is 3,
- -g = 5 is 6,
- -g = 6 is 2.

Because $\phi(7) = 6$ and $\operatorname{ord}_7(3) = \operatorname{ord}_7(5) = 6$, it follows that 3 and 5 are the primitive roots.

• n = 11

We know that $\phi(11) = 10$. By the definition of the Primitive Root (1.2), we know that an integer g with gcd(g, 11) = 1 and $ord_{11}(g) = \phi(11) = 10$ is called a primitive root.

Let's consider all $1 \le g \le 10$ (note that the columns g^x for $x = 1, 2, \ldots$ are mod 11.)

g	g^1	g^2	g^3	g^4	g^5	g^6	g^7	g^8	g^9	g^{10}
1	1									
2	2	4	8	5	10	9	7	3	6	1
3	3	9	5	4	1					
4	4	5	9	3	1					
5	5	3	4	9	1					
6	6	3	7	9	10	5	8	4	2	1
7	7	5	2	3	10	4	6	9	8	1
8	8	9	6	4	10	3	2	5	7	1
9	9	4	3	5	1					
10	10	1								

So, in particular, because $\phi(11) = 10$ and $\operatorname{ord}_{11}(2) = \operatorname{ord}_{11}(6) = \operatorname{ord}_{11}(7) = \operatorname{ord}_{11}(8) = 10$, it follows that 2, 6, 7, 8 are the primitive roots.

(Exercise.) For each of the following, find the discrete log base g of $a \mod n$.

(a)
$$n = 7, g = 3, a = 5$$

We know that $\phi(7) = 6$, so by lemma (1.3) there exists a unique integer k such that $0 \le k \le 6$ and $3^k \equiv 5 \pmod{7}$. So,

$$3^{0} = 1 \not\equiv 5 \pmod{7},$$

$$3^{1} = 3 \not\equiv 5 \pmod{7},$$

$$3^{2} = 9 \equiv 2 \not\equiv 5 \pmod{7},$$

$$3^{3} = 27 \equiv 6 \not\equiv 5 \pmod{7},$$

$$3^{4} = 81 \equiv 4 \not\equiv 5 \pmod{7},$$

$$3^{5} = 3^{4}3 = 9^{2}3 = 81(3) \equiv 4(3) = 12 \equiv 5 \pmod{7}.$$

So, in particular, k = 5.

(b)
$$n = 5, q = 2, a = 4$$

We know that $\phi(5) = 4$, so by lemma (1.3) there exists a unique integer k such that $0 \le k \le 4$ and $2^k \equiv 4 \pmod{5}$. So,

$$2^0 = 1 \not\equiv 4 \pmod{5},$$

 $2^1 = 2 \not\equiv 4 \pmod{5},$
 $2^2 = 4 \pmod{5}.$

By said lemma, we have k=2.

(c)
$$n = 11, g = 2, a = 3$$

We know that $\phi(11)=10$, so by lemma (1.3) there exists a unique integer k such that $0 \le k \le 10$ and $2^k \equiv 3 \pmod{11}$. Additionally, by lemma (1.2) we know that $2^0, 2^1, \ldots, 2^8, 2^9$ are all incongruent mod 11, so we only care about $0 \le k \le 9$. So,

$$2^{0} = 1 \not\equiv 3 \pmod{11},$$

$$2^{1} = 2 \not\equiv 3 \pmod{11},$$

$$2^{2} = 4 \not\equiv 3 \pmod{11},$$

$$2^{3} = 8 \not\equiv 3 \pmod{11},$$

$$2^{4} = 16 \equiv 5 \not\equiv 3 \pmod{11},$$

$$2^{5} = 2^{4}2 \equiv 5 \cdot 2 = 10 \not\equiv 3 \pmod{11},$$

$$2^{6} = 2^{5}2 \equiv 10 \cdot 2 = 20 \equiv 9 \not\equiv 3 \pmod{11},$$

$$2^{7} = 2^{6}2 \equiv 9 \cdot 2 = 18 \equiv 7 \not\equiv 3 \pmod{11},$$

$$2^{8} = 2^{7}2 \equiv 7 \cdot 2 = 14 \equiv 3 \pmod{11}.$$

So, by said former lemma, k = 8.

1.1.3 Existence of Primitive Roots

We haven't yet shown that primitive roots always exist, and in fact, it is not true that primitive roots always exist. Here is the statement:

Theorem 1.1: Primitive Root Theorem

Fix an integer $n \ge 2$. Then, there exists a primitive root mod n if and only if $n = 2, 4, p^k, 2p^k$ for an odd prime p and a positive integer k. In particular, there always exists a primitive root mod p (a prime).

(Exercise.) Use the Primitive Root Theorem to find the 5 smallest integers $n \ge 2$ such that there does not exist a primitive root mod n.

Referring to theorem (1.1), we know that every prime has a primitive root. In other words, we know that

- 2, 4 are special cases.
- 3, 5, 7, 11, 13, 17, 19, etc. are all primes.
- 6, 10, 14, 22, 26, etc. all have primitive roots (these are just primes multiplied by 2, i.e., $2p^1$, but we omitted 2 since we only care about odd primes).
- 9, 25, 49, 121, etc. all have primitive roots (these are just the primes multiplied by themselves, i.e., p^2).
- 18, 50, 98, etc. all have primitive roots (these are just $2p^2$, but notice how we omitted 8 because powers only apply to odd primes).

So, in particular, 8, 12, 15, 16, 20.