RÉSUMÉ DE COURS : Espaces Vectoriels.

Maths-PCSI

source disponible sur:

Mr Mamouni : myismail@altern.org

Table des matières

@http://www.chez.com/myismail

Lundi 27 Mars 2006.

1	Voc	cabulaire :	2
	1.1	Loi de composition interne :	2
	1.2	Structure d'espace vectoriel :	2
	1.3	Régles de calcul :	2
	1.4	Structure de sous-espace vectoriel :	2
	1.5	Structure d'algèbre :	2
	1.6	Applications linéaires	2
2	\mathbf{Pro}	jecteurs:	3
	2.1	Somme de deux sous-espace vectoriel d'un espace vectoriel :	3
	2.2	Projection sur sous-espace vectoriel par rapport à un autre :	3
	2.3	Projecteur:	3
	2.4	Symétries	4
3	Fan	nilles génératrices, libres, liées et bases	4
	3.1	Combinaison linéaire d'une famille de vecteurs	4
	3.2	Familles géneratrices	4
	3.3	Familles liée	4
	3.4	Familles libre	5
	3.5	Bases	5

4	Espaces vectoriels de dimension finie		
	4.1	Notions préliminaires	
		Dimensions de quelques espace vectoriel	
5	5.1 5.2	Résultats généraux	

Dans tout le chapitre \mathbb{K} désigne un sous corps de \mathbb{C} , et en général sauf mention du contraire, \mathbb{Q} ou \mathbb{R} ou bien \mathbb{C} et E un ensemble non vide.

1 Vocabulaire :

1.1 Loi de composition interne :

Une LCE sur E à base dans $\mathbb K$ est la donnée d'une application : $\varphi: \mathbb K \times E \longrightarrow E$. $(\lambda,x) \longmapsto \lambda.x$

1.2 Structure d'espace vectoriel :

E sera dit un \mathbb{K} -espace vectoriel s'il est muni d'une LCI + et d'une LCE . à base dans \mathbb{K} et qui vérifient les axiomes suivants :

- 1) (E, +) est un groupe abélien, dont l'élément neutre sera noté dorénavant par 0_E .
- 2) $\forall (x,y) \in E^2$, $\forall (\alpha,\beta) \in \mathbb{K}^2$ on a les propriétés suivantes :
 - a) $(\alpha + \beta).x = \alpha.x + \beta.x$.
 - b) $\alpha.(x+y) = \alpha.x + \alpha.y.$
 - c) $\alpha(\beta.x) = (\alpha\beta).x$.
 - d) 1.x = x.

Dans toute la suite du chapitre E est muni d'une structure d'un \mathbb{K} -espace vectoriel ,

1.3 Régles de calcul :

 $\forall x \in E, \forall \alpha \in \mathbb{K}$ on a les régles de calculs suivants :

- 1) $0.x = 0_E$.
- **2)** $\alpha . 0_E = 0_E$.
- 3) $(-\alpha).x = \alpha.(-x) = -(\alpha.x).$

1.4 Structure de sous-espace vectoriel :

Définition.

Une partie F de E est dite sous-espace vectoriel de E si et seulement si elle vérifie les deux propriétés suivantes :

- 1) $0_E \in F$.
- 2) $\forall (x,y) \in E^2, \forall \lambda \in \mathbb{K}$ on a : $x + \lambda y \in F$, autrement dit F est stable pour les deux lois, interne et externe.

Remarque:

Tout sous-espace vectoriel de E est lui même un espace vectoriel , et tout espace vectoriel inclu dans E est un sous-espace vectoriel de E, ainsi pour mon montrer qu'un ensemble est un espace vectoriel , il est judicieux de montrer que c'est un sous-espace vectoriel d'un espace vectoriel connu.

1.5 Structure d'algèbre :

Algèbre.

On dira que E est une algébre sur \mathbb{K} , si de plus il est muni d'une 2ème LCI \times telle que $(E, +, \times)$ soit un anneau.

Sous-algèbre.

Une partie F sera dite sous-algébre de E si elle vérifie les propriétés suivantes :

- 1) $0_E \in F$.
- 2) $\forall (x,y) \in E^2, \forall \lambda \in \mathbb{K} \text{ on a} : x + \lambda y \in F \text{ et } x \times y \in F, \text{ autrement dit } F \text{ est stable pour les deux lois internes et celle externe.}$

1.6 Applications linéaires

Définition.

Soit F un autre \mathbb{K} -espace vectoriel et $u:E\to F$, on dira que u est linéaire si elle vérifie la propriété suivante :

$$\forall (x,y) \in E^2, \quad \forall \lambda \in \mathbb{K} \text{ on a} : u(x+\lambda y) = u(x) + \lambda u(y)$$

Vocabulaire et notations :

- L'ensemble des applications linéaires de E vers F se note $\mathcal{L}_{\mathbb{K}}(E,F)$.

- Une application linéaire est dite endomorphisme lorsque l'ensemble d'arrivée est inclu dans celui de départ. L'ensemble des endomorphismes de E se note $\mathcal{L}_{\mathbb{K}}(E)$.
- Elle sera dite isomorphisme lorsqu'elle est bijective. L'ensemble des isomorphismes de E vers F se note $\mathcal{I}som_{\mathbb{K}}(E)$.
- Elle sera dite automorphisme lorsqu'elle est bijective et lorsque l'ensemble d'arrivée est inclu dans celui de départ. L'ensemble des automorphismes de E se note $\mathcal{G}l_{\mathbb{K}}(E)$.

Propriétés.

Soit $u \in \mathcal{L}_{\mathbb{K}}(E, F)$, On a les propriétés suivantes :

- 1) $u(0_E) = 0_F$.
- 2) L'image directe et celle réciproque d'un sous-espace vectoriel est aussi un sous-espace vectoriel .
- 3) Ker $u = \{x \in E \text{ tel que } u(x) = 0_F\}$ est un sous-espace vectoriel de E, on l'appelle noyau de u.
- 4) u est injective si et seulement si Ker $u = \{0_E\}$.
- 5) Im u=u(E) est un sous-espace vectoriel de F, on l'appelle image de u.
- 6) u est surjective si et seulement si Im u=F.
- 7) $(\mathcal{L}_{\mathbb{K}}(E,F),+,.)$ est un \mathbb{K} -espace vectoriel ,en particulier la somme de deux applications linéaires est aussi linéaire.
- 8) La composée de deux applications linéaires est aussi linéaire, en particulier $(\mathcal{L}_{\mathbb{K}}(E), +, ., \circ)$ est une algèbre sur \mathbb{K} .
- 9) La réciproque d'un isomorphisme est aussi un isomorphisme, en particulier $(\mathcal{G}l_{\mathbb{K}}(E), \circ)$ est un groupe, on l'appelle le groupe linéaire de E.

2 Projecteurs:

2.1 Somme de deux sous-espace vectoriel d'un espace vectoriel :

Soit E un espace vectoriel , F et G deux sous-espace vectoriel de E, la somme de F et G est le sous-espace vectoriel de E noté F+G défini par

 $F + G = \{x = x_1 + x_2 \text{ tel que } x_1 \in F, x_2 \in G\}.$

Si de plus $F \cap G = \{0_E\}$, on dit que la somme est directe et on la note plutôt par $F \oplus G$.

Si de plus $E = F \oplus G$, on dit que les sous-espace vectoriel F et G sont supplémentaires dans E, et dans ce cas $\forall x \in E, \exists ! x_1 \in F$ et $\exists ! x_2 \in G$ tel que $x = x_1 + x_2$.

2.2 Projection sur sous-espace vectoriel par rapport à un autre :

Définition:

Si $E = F \oplus G$, soit $x \in E, x_1 \in F$ et $x_2 \in G$ tel que $x = x_1 + x_2$. x_1 s'appelle la projection de x sur F parallélement à G et se note $p_{F//G}(x)$ et x_2 s'appelle la projection de x sur G parallélement à F et se note $p_{G//F}(x)$.

Propriété:

Avec les notations précédentes l'application : $p_{F//G}$: $E \longrightarrow F$ $x \longmapsto x_1 = p_{F//G}(x)$

est linéaire vérifiant les propriétés suivantes :

- 1) $p_{F//G}^2 = p_{F//G}$.
- 2) $\operatorname{Im} p_{F//G} = F$, $\operatorname{Ker} p_{F//G} = G$ en particulier $\operatorname{Im} p_{F//G}$ et $\operatorname{Ker} p_{F//G}$ sont supplémentaires dans E.

2.3 Projecteur:

Définition :

On appelle projecteur sur E, tout endomorphisme, p de E tel que $: p^2 = p$. **Propriétés**:

Soit p un projecteur de E, on a les propriétés suivantes :

- 1) Im p et Ker p sont supplémentaires dans E.
- $2) \quad x \in \operatorname{Im} p \Longleftrightarrow p(x) = x.$
- 3) p est la projection sur son image paraléllement à son noyau.

Conclusion:

Toute projection est un projecteur, et tout projecteur est une projection sur son image paraléllement à son noyau.

2.4 Symétries.

Définition:

On appelle symétrie sur E, tout endomorphisme, s de E tel que $: p^2 = id_E$.

Propriétés :

Soit s une symétrie de E, on a les propriétés suivantes :

- 1) $p = \frac{1}{2}(s + id_E)$ est un projecteur.
- 2) En posant $F=\operatorname{Im} p$ et $G=\operatorname{Ker} p$, on a $E=F\oplus G$ avec $s(x)=x \ \forall x\in F$, on dit alors que s est la symétrie par rapport $-x \ \forall x\in G$ à F parallélement à G.
- 3) Inversement tout projecteur p permet de définir la symétrie $s = 2p id_E$ sur Im p parallélement à Ker p.

3 Familles génératrices, libres, liées et bases

3.1 Combinaison linéaire d'une famille de vecteurs

Vocabulaire.

Soit E un \mathbb{K} -espace vectoriel , les éléments de E s'appellent des vecteurs et ceux de \mathbb{K} des scalaires.

Définition.

Soit E un \mathbb{K} -espace vectoriel, $x \in E, n \in \mathbb{N}^*$ et $(x_k)_{1 \le k \le n} \in E^n$ une famille de vecteurs de E. On dira que x est une combiniason linéaires de x_k si et seulement si

$$\exists (\lambda_k)_{1 \leq k \leq n}) \in \mathbb{K}^n \text{ tel que } x = \sum_{k=1}^n \lambda_k x_k.$$

Propriétés.

1) L'ensemble des combinaisons linéaires d'une famille $(x_k)_{1 \le k \le n}$ est un sous-espace vectoriel de E, qu'on appelle usuellement sous-espace vectoriel engendré par les $(x_k)_{1 \le k \le n}$ et qu'on note $\operatorname{Vect}((x_k)_{1 \le k \le n})$. On démontre que c'est le plus petit sous-espace vectoriel de E contenant la famille $(x_k)_{1 \le k \le n}$.

Par convention on écrit : $Vect(\emptyset) = \{0_E\}.$

- 2) Si on pose : $\mathcal{B}_1 = (x_k)_{1 \leq k \leq n}, \mathcal{B}_2 = (y_k)_{1 \leq k \leq m},$ alor $\operatorname{Vect}(\mathcal{B}_1 \cup \mathcal{B}_2) = \operatorname{Vect}(\mathcal{B}_1) + \operatorname{Vect}(\mathcal{B}_2).$
- 3) Si $u: E \to F$ est linéaire, et $\mathcal{B} = ((x_k)_{1 \le k \le n})$ famille de vecteurs de E, et $(\lambda_k)_{1 \le k \le n} \in \mathbb{K}^n$ alors : $u\left(\sum_{k=1}^n \lambda_k x_k\right) = \sum_{k=1}^n \lambda_k u(x_k)$, en particulier $u\left(\operatorname{Vect}(\mathcal{B})\right) = \operatorname{Vect}\left(u(\mathcal{B})\right)$.

3.2 Familles géneratrices

Une famille \mathcal{B} est dite génératrice de E si et seulement si tout élément de E s'écrit combinaison linéaire d'éléments de \mathcal{B} , Autrement dit $\mathrm{Vect}(\mathcal{B}) = E$. Ainsi pour montrer que $(x_k)_{1 \leq k \leq n}$ est une famille génératrice de E, il suffit de montrer que $\forall x \in E, \exists (\lambda_k)_{1 \leq k \leq n} \in \mathbb{K}^n$ tel que $x = \sum_{k=1}^n \lambda_k x_k$.

Propriétés.

Soit $u: E \to F$ linéaire.

- 1) $u\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k u(x_k)$, en particulier deux applications linéaires égales sur une famille génératrice sont égales sur l'espace vectoriel tout entier.
- 2) Si \mathcal{B} famille génératrice de E, alors $u(\mathcal{B})$ est une famille génératrice de $\operatorname{Im} u$, en particulier si u est surjective alors $u(\mathcal{B})$ est une famille génératrice de F.
- 3) Si F et G sont deux sous-espace vectoriel de E, \mathcal{B}_1 et \mathcal{B}_2 deux familles génératrices de F et G respectivement, alors $\mathcal{B}_1 \cup \mathcal{B}_2$ est une famille génératrice de F + G.

3.3 Familles liée

Une famille est dite liée lorsque l'un de ses éléments est combinaison linéaire des autres.

Propriétés.

- 1) Toute famille contenant un élément nul est liée.
- 2) Tout famille où un élément se répète au moins deux fois est liée.

- 3) Tout famille contenant une famille liée est aussi liée.
- 4) L'image par une application linéaire d'une famille liée est aussi liée.

3.4 Familles libre

Une famille sera dite libre lorsqu'elle n'est pas liée, autrement dit aucun de ses éléments n'est combinaison linéaire des autres. En particulier $\mathcal{B}=(x_k)_{1\leq k\leq n}$ est libre si et seulement si $\sum\limits_{k=1}^n\lambda_kx_k=0_E\Rightarrow\lambda_k=0\quad\forall (\lambda_k)_{1\leq k\leq n}\in\mathbb{K}^n$. Et on peut surtout en conclure que si deux combinisons linéaires d'une famille libre sont égales alors leurs coefficients sont égaux.

Propriétés.

- 1) Une famille formée par un seul élément est libre si et seulement si cet élément n'est pas nul.
- 2) Une famille formée par deux élémentx est libre si et seulement si ces deux éléments ne sont pas proportionnels.
- 3) Tout famille contenue dans une famille libre est aussi libre.
- 4) L'image par une application linéaire <u>injective</u> d'une famille libre est aussi libre.
- 5) Si F et G sont deux sous-espace vectoriel de E tel que $F \cap G = \{0_E\}$, \mathcal{B}_1 et \mathcal{B}_2 deux familles libres dans F et G respectivement, alors $\mathcal{B}_1 \cup \mathcal{B}_2$ est libre dans $F \oplus G$.

3.5 Bases

On appelle base toute famille à la fois libre et génératrice.

Propriétés:

- 1) Si $\mathcal{B} = (x_k)_{1 \leq k \leq n}$ est une base de E, alors $\forall x \in E \quad \exists ! (\lambda_k)_{1 \leq k \leq n} \in \mathbb{K}^n$ tel que $x = \sum_{k=1}^n \lambda_k x_k$, les coefficients $(\lambda_k)_{1 \leq k \leq n}$ s'appellent coordonnées de x dans la base $\mathcal{B} = (x_k)_{1 \leq k \leq n}$.
- 2) L'image par un <u>isomorphisme</u> d'une base de l'espace de départ est une base de l'espace <u>d'arrivée</u>.

- 3) Deux applications linéaires égales sur une base sont égales sur l'espace vectoriel tout entier.
- 4) Si F et G sont deux sous-espace vectoriel de E tel que $F \cap G = \{0_E\}$, \mathcal{B}_1 et \mathcal{B}_2 deux bases de F et G respectivement, alors $\mathcal{B}_1 \cup \mathcal{B}_2$ est une base de $F \oplus G$.

4 Espaces vectoriels de dimension finie

4.1 Notions préliminaires

Définition.

Un espace vectoriel est dit de dimension finie s'il admet au moins une famille génératrice finie.

Théorème 1. (Théorème de la base incompléte)

Toute famille libre d'un espace vectoriel de dimension finie peut être complétée par des éléments de n'importe quelle famille génératrice finie pour avoir une base.

Corollaire.

Tout espace vectoriel de dimension finie admet au moins une base finie.

Théorème 2.

Dans un \mathbb{K} -espace vectoriel , E, de dimension finie toutes les bases sont finie et ont même cardinal, leur cardinal commun s'appelle base de E et se note $\dim_{\mathbb{K}}(E)$.

Théorème 3.

Soit E un \mathbb{K} -espace vectoriel de dimension n, alors toutes les familles libres sont de cardinal inférieur à n et toutes les familles génératrices sont de cardinal supérieur à n. En particulier, si \mathcal{B} est une famille d'éléments de E on a le résultat suivant :

 \mathcal{B} est une base de $E \iff \mathcal{B}$ est libre de cardinal $n \iff \mathcal{B}$ est génératrice de cardinal n

4.2 Dimensions de quelques espace vectoriel

Théorème 1.

Si E est un \mathbb{K} -espace vectoriel de dimension finie, alors tout sous-espace vectoriel, F de E est de dimension finie inférieur à celle de E, avec égalité si et seulement si E = F. Avec la convenion que $\{0_E\}$ est le seul sous-espace vectoriel de dimension nulle.

Théorème 2.

Si E et F sont deux \mathbb{K} -espace vectoriel de dimension finie, alors $E \times F$ sont aussi de dimension finie avec l'égalité :

$$\dim_{\mathbb{K}}(E \times F) = \dim_{\mathbb{K}}(E) + \dim_{\mathbb{K}}(F)$$

Corollaire.

 $\dim_{\mathbb{K}}(\mathbb{K}^n) = n.$

Théorème 3.

Soit F et G deux sous-espace vectoriel d'un \mathbb{K} -espace vectoriel , E, de dimension finie tels que $F \cap G = \{0_E\}$, alors :

$$\dim_{\mathbb{K}}(F \oplus G) = \dim_{\mathbb{K}}(F) + \dim_{\mathbb{K}}(G)$$

Corollaire.

Si F et G sont deux sous-espace vectoriel supplémenataires d'un \mathbb{K} -espace vectoriel, E, de dimension finie alors : $\dim_{\mathbb{K}}(G) = \dim_{\mathbb{K}}(E) - \dim_{\mathbb{K}}(F)$.

Corollaire. Soit F et G deux sous-espace vectoriel d'un \mathbb{K} -espace vectoriel , E, de dimension finie alors :

$$\dim_{\mathbb{K}}(F+G) = \dim_{\mathbb{K}}(F) + \dim_{\mathbb{K}}(G) - \dim_{\mathbb{K}}(F \cap G)$$

5 Applications linéaires en dimension finie.

5.1 Résultats généraux

Théorème 1.

Tout \mathbb{K} -espace vectoriel de dimension n est isomorphe à \mathbb{K}^n .

Théorème 2.

Deux \mathbb{K} -espace vectoriel de dimension finie sont isomorphe si et seulement si ils sont de même dimension.

Théorème 3.

Soit $u:E\to F$ linéaire, avec E de dimension finie. Alors :

u est un isomorphisme $\iff u$ transforme toute base de E en une base de F $\iff u$ transforme au moins une base de E en une base

Théorème 4.

Soient E et F deux \mathbb{K} -espace vectoriel de dimensions finies, alors $\mathcal{L}_{\mathbb{K}}(E, F)$ est de dimension finie avec l'égalité : $\dim_{\mathbb{K}}(\mathcal{L}_{\mathbb{K}}(E, F)) = \dim_{\mathbb{K}}(E)$. $\dim_{\mathbb{K}}(F)$.

Corollaire.

Si E est une \mathbb{K} -espace vectoriel de dimension finie, alors son espace dual, E^* est aussi de dimension finie avec : $\dim_{\mathbb{K}}(E^*) = \dim_{\mathbb{K}}(E)$.

Corollaire.

Si E est une \mathbb{K} -espace vectoriel de dimension finie égale à n et $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ une base de E, alors il existe une unique base de E^* , notée $\mathcal{B}^* = (e_i^*)_{1 \leq i \leq n}$ et appelée base duale de \mathcal{B} vérifiant la propriétés suivante : $e^*(e_j) = 1$ si i = j = 0 sinon

Théorème 5.

Une application linéaire est entiérement déterminée par ses valeurs sur une base de l'ensemble de départ.

5.2 Rang d'une application linéaire

Définition.

Le rang d'une application linéaire, u est par définition la dimension de son image, on le note rg(u), autrement dit :

$$rg(u) = \dim_{\mathbb{K}} \operatorname{Im} u$$

Théorème. Formule du rang

Soit $u:E\to F$ linéaire avec E \mathbb{K} -espace vectoriel de dimension finie, on a le résultat suivant :

$$\dim_{\mathbb{K}} E = \dim_{\mathbb{K}} \operatorname{Ker} u + \dim_{\mathbb{K}} \operatorname{Im} u$$

Corollaire 1.

Le rang est invariant par composition à gauche ou a droite par un isomorphisme. Autrement dit si u est linéaire et v isomorphisme alors : $\operatorname{rg}(v \circ u) = \operatorname{rg}(u)$ et $\operatorname{rg}(u \circ v) = \operatorname{rg}(u)$.

Corollaire 2.

Soient E et F deux \mathbb{K} -espace vectoriel de dimensions finies et égales, on a les équivalences suivantes :

u isomorphisme $\iff u$ injective $\iff u$ injective

5.3 Formes linéaires et hyperplans

Définition.

Soit E un \mathbb{K} -espace vectoriel de dimension finie égale à n, on appelle hyperplan de E tout sous-espace vectoriel de E de dimension n-1.

Propriétés.

- 1) Soit E K-espace vectoriel de dimension finie et φ une forme linéaire sur E non nulle, alors $\operatorname{Ker} \varphi$ est un hyperplan de E, en particulier φ est surjective.
- 2) Soit E K-espace vectoriel de dimension finie et H un hyperplan de E, alors il existe une forme linéaire φ telle que $H = \operatorname{Ker} \varphi$.
- 3) Soit E \mathbb{K} -espace vectoriel de dimension finie, deux formes linéaires sur E de même noyau sont proportionnelles.
- 4) Tout hyperplan H d'un \mathbb{K} -espace vectoriel de dimension finie E égale à n admet une équation de la forme $H: a_1x_1 + \ldots a_nx_n = 0$ unique à une constante multiplicative prés.

Fin.