CCN

Infrastructure less Networks: Network Layer Routing
Protocols

Credits and Acknowledgement

 Many of the slides for this lecture series are copied directly from Prof. CUI Yong's and Dr. Ali Khayam's lecture slides.

Outline

- Introduction
- MANET Routing Overview and Background
- MANET Routing Protocol Design
 - Reactive protocols
 - Proactive protocols
 - Hybrid protocols
- Conclusion

Network Layer in Infrastructure Wireless LANs

 In an infrastructure wireless LAN, all packets are routed through the access point

 Consequently, routing is trivial and the Internet Protocol (IP) is generally used by infrastructure clients

Network Layer in Infrastructure Wireless LANs

Traverse multiple links to reach a destination

Mobility causes route changes

Host mobility

 link failure/repair due to mobility may have different characteristics than those due to other causes

Instability

Rate of link failure/repair may be high when nodes move fast

New performance criteria needed

- route stability despite mobility (Routes have to be discovered without any centralized control)
- energy consumption (energy limitations)

Proposed protocols

- Some have been invented specifically for MANET
- Others are adapted from older protocols for wired networks

No single protocol works well

some attempts made to develop adaptive protocols

Bandwidth Limitations:

-- Wireless bandwidth is scarce

Shared Medium:

-- Channel contention and collisions can introduce significant delays

- A fundamental assumption in all infrastructure less network routing protocols is that all nodes are cooperative.
- These cooperative nodes route packets for each other.
- Thus each MANET node acts as a router.

Classification of Routing protocols

- Can be classified into several types based on different criteria
- The classification is not mutually exclusive and some protocols fall in more than one class.

Types of MANET

In MANET, routing algorithms can be classified into three broad categories:

Reactive Algorithms

Proactive Algorithms

Hybrid Algorithms

On-demand/reactive

- the routes are determined when they are required by the source using a route discovery process;
- In Reactive Protocols, a route is established only when it is needed
- That is, a route between two nodes is established in reaction to one of the node's desire to communicate with the other node
- Also referred to as on-demand routing protocols

 The main advantage of reactive routing protocols is the relatively low overhead messaging for route establishment

 The main disadvantage is the route establishment latency when a node needs to communicate with another node

- Reactive/ On demand routing is appropriate for networks with:
 - Scalable size

High mobility

Relatively low communication rates

Global/proactive

- determine routes to all the destinations at the start up
- maintain by using periodic route update process;
- In Proactive Algorithms, routes are maintained even when there is no communication between two nodes
- So a route is always available when two nodes need to communicate
- Distance Vector and Link State Routing Algorithms are proactive

- The main advantage of Proactive routing is no route setup latency
- The main disadvantage is the high maintenance overhead when many of the routes are never used

Proactive routing is appropriate for networks with:

Small size

Low mobility

High communication rates

Hybrid

- combine the basic properties of the first two classes of protocols into one.
- Different deployment configurations are possible:
 - The network switches between the two (reactive and proactive) routing techniques.
 - Parts of the network employ reactive routing, while other parts use proactive routing
- Hybrid protocols should dynamically expand/contract the scope of reactive and proactive algorithms based on network and traffic characteristics

- The main advantage of hybrid protocols is the combination of reactive and proactive algorithms
- The disadvantages or challenges include:
 - Continuous and real-time measurement of network and traffic characteristics

 Network reconfiguration in response to changing network and traffic characteristics

Routing Choice

- The choice of a routing algorithm should be based on:
 - Number and types of nodes in the network

Network Topology

Mobility Speeds and Patterns

Application-specific requirements: QoS, bandwidth, reliability, etc.

MANET Routing

 A large number of routing algorithms have been proposed in the last twenty years

 In this part, we will discuss some examples of these algorithms

How to send msg to destination

- Routing
 - Reactive
 - Proactive
- No routing in advance?
 - Any simple solutions?

- Sender S broadcasts data packet P to all its neighbors
- Each node receiving P forwards P to its neighbors
- Sequence numbers used to avoid the possibility of forwarding the same packet more than once
- Packet P reaches destination D provided that D is reachable from sender S
- Node D does not forward the packet

Represents a node that has received packet P

Represents that connected nodes are within each other's transmission range

Represents a node that receives packet P for the first time

Re

Represents transmission of packet P

• Node H receives packet P from two neighbors: potential for collision

• Node C receives packet P from G and H, but does not forward it again, because node C has already forwarded packet P once

- Nodes J and K both broadcast packet P to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

=> Packet P may not be delivered to node D at all, despite the use of flooding

Route Reply in DSR

How to do on unidirectional (asymmetric) links? Try to find in group of two. Z RREP [S,E,F,J,D] E B M G A H

K

Represents RREP control message

Dynamic Source Routing (DSR) [Johnson]@Mobile Computing

- Three steps in DSR
 - Route Discovery
 - Data Delivery
 - Route maintenance
- Route Discovery
 - When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
 - Source node S floods Route Request (RREQ)
 - Each node appends own identifier when forwarding RREQ

Represents a node that has received RREQ for D from S

Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

• Node H receives packet RREQ from two neighbors: potential for collision

• Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

• Node D does not forward RREQ, because node D is the intended target of the route discovery

- Route Reply
 - Destination D on receiving the first RREQ, sends a Route Reply (RREP)

 RREP is sent on a route obtained by reversing the route appended to received RREQ

RREP includes the route from S to D on which RREQ was received by node D

Route Reply in DSR

- Route Reply can be sent by reversing the route in Route Request (RREQ) only if links are guaranteed to be bi-directional
 - To ensure this, RREQ should be forwarded only if it received on a link that is known to be bi-directional [If this is reliable?? If the path maintained is node/edge disjoint??? How can we make it reliable?? Does the reliability have any impact on overhead?? What happens to reliability if we, instead of node-disjoint, we discover partially-disjoint paths?
- If unidirectional (asymmetric) links are allowed, then RREP may need a route discovery for S from node D
 - Unless node D already knows a route to node S
 - If a route discovery is initiated by D for a route to S, then the Route Reply is piggybacked on the Route Request from D.
- If IEEE 802.11 MAC is used to send data, then links have to be bidirectional (since ACK is used)

Dynamic Source Routing (DSR)

- Three steps in DSR
 - Route Discovery
 - Data Delivery
 - Route maintenance
- Data delivery
 - Node S on receiving RREP, caches the route included in the RREP
 - When node S sends a data packet to D, the entire route is included in the packet header
 - hence the name Source routing
 - Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded

Data Delivery in DSR

- Any problem?
 - Packet header size grows with route length
 - Route failure may occur
 - Who should recover the failure?

Data Delivery in DSR

J sends a route error to S along route J-F-E-S when its attempt to forward the data packet S (with route SEFJD) on J-D fails

