Cálculo Numérico (521230)

Evaluación de Recuperación – Tema 1

Fecha: 02 – Julio – 2008; 15:10 horas.

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta	A	lterna	ativas	
1	a	Ф	c	d
2	a	b	©	d
3	a	(b)	c	d
4	a	b	c	d
5	a	b	\odot	d
6	a	(b)	c	d
7	a	(b)	c	d
8	a	b	\odot	d
9	a	(b)	c	d
10	a	(\mathbf{c}	d
11	a	b	\mathbf{c}	d
12	a	b	c	d
13	a	(b)	c	d
14	a	b	c	d
15	a	Ф	c	d

Reservado para la corrección No rellenar		
В	_	
M		
NR		
Cal.		

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 1 2

- 1. Sea I la matriz identidad $n \times n$. Indique cuál de las siguientes afirmaciones es cierta:
 - (a) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 0$;
 - (b) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 1;$
 - (c) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = n;$
 - (d) ninguna de las opciones anteriores.
- 2. Indique cuál de los siguentes métodos es el más adecuado para resolver un sistema lineal con matriz tridiagonal no simétrica de diagonal dominante:
 - (a) el método del gradiente conjugado;
 - (b) el método de Cholesky;
 - (c) el algoritmo de *Thomas*;
 - (d) ninguno de los anteriores.
- 3. Se quiere determinar los coeficientes a, b y c de la función $y = a + be^x + ce^{-x}$ de manera que su gráfica ajuste en el sentido de mínimos cuadrados los puntos $(x_i, y_i), i = 0, \dots, m$.

Indique cuáles son la matriz y el vector del sistema rectangular resultante:

(a)
$$\begin{pmatrix} 1 & x_0 & y_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & y_m \end{pmatrix}, \qquad \begin{pmatrix} e^{x_0} \\ \vdots \\ e^{x_m} \end{pmatrix};$$

(b)
$$\begin{pmatrix} 1 & e^{x_0} & e^{-x_0} \\ \vdots & \vdots & \vdots \\ 1 & e^{x_m} & e^{-x_m} \end{pmatrix}, \qquad \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & x_0 & -x_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & -x_m \end{pmatrix}, \qquad \begin{pmatrix} \ln(y_0) \\ \vdots \\ \ln(y_m) \end{pmatrix};$$

- (d) ninguna de las combinaciones anteriores.
- 4. Sea \boldsymbol{A} una matriz simétrica y definida positiva. El comando MATLAB

entrega una matriz triangular superior \boldsymbol{R} que satisface:

- (a) **R** t **R**=**A**;
- (b) $R = AR^{t}$;
- (c) $\mathbf{R}^t \mathbf{A} = \mathbf{R}$;
- (d) ninguna de las opciones anteriores.

Tema 1 3

- 5. Considere las siguientes afirmaciones respecto al método del gradiente conjugado (GC) aplicado a un sistema Ax = b, con A una matriz $n \times n$:
 - (i) si A es simétrica y definida positiva, entonces GC converge a la solución del sistema Ax = b;
 - (ii) en general, en una iteración de GC, la operación más costosa (en número de flop) corresponde a la evaluación de producto matriz-vector.

Entonces:

- (a) (i) es verdadera y (ii) es falsa;
- (b) (i) es falsa y (ii) es verdadera;
- (c) (i) es verdadera y (ii) es verdadera;
- (d) ninguna de las anteriores.
- 6. Indique cuántos polinomios de grado 4 interpolan la siguiente tabla:

- (a) ninguno;
- (b) uno y sólo uno;
- (c) infinitos;
- (d) ninguna de las respuestas anteriores.
- 7. Se quiere graficar una función f de la que se conocen sus valores y = f(x) para x = 0, 1, 2, ..., 10. Para ello se almacenan las abscisas en un vector (fila) x=0:10 y los valores correspondientes de la función en otro vector (fila) y.

Indique cuál de los siguientes programas MATLAB permite graficar un *spline* cúbico que interpola la función en esos puntos:

```
(a) t=0:.01:10;
plot(t,spline(x,y));
```

- 8. El método de Simpson (elemental), para calcular un valor aproximado de $\int_a^b f(x) dx$, se obtiene interpolando la función f en:
 - (a) un punto en [a, b];
 - (b) dos puntos en [a, b];
 - (c) tres puntos en [a, b];
 - (d) ninguna de las anteriores.

Tema 1 4

9. Se dispone de una función MATLAB trap tal que el comando

calcula $\int_a^b f(x) dx$ por la regla de los trapecios (compuesta) con N subintervalos.

Indique cuál de los siguientes procedimientos devuelve en Int el valor calculado con N=10 y en Err_Est la estimación del error de Int que se obtiene mediante un paso del método de Romberg:

- Int_Aux=trap(f,a,b,5);
 Int=trap(f,a,b,10);
 Err_Est=Int-Int_Aux;
- (b) Int_Aux=trap(f,a,b,5); Int=trap(f,a,b,10); Err_Est=(Int-Int_Aux)/3;
- (c) Int_Aux=trap(f,a,b,5);
 Int=trap(f,a,b,10);
 Err_Est=(Int-Int_Aux)/15;
- Int_Aux=trap(f,a,b,5);
 Int=trap(f,a,b,10);
 Err_Est=(4*Int-Int_Aux)/3;
- 10. Si se calcula $\int_0^{\pi} \sin(x) dx$ usando la regla de los trapecios (compuesta) con 11 puntos (es decir, 10 subintervalos), entonces el error cometido, en módulo, es igual a:
 - (a) $\pi^4 \operatorname{sen} \theta / 12000$, para algún $\theta \in (0, \pi)$;
 - (b) $\pi^3 \operatorname{sen} \theta / 1200$, para algún $\theta \in (0, \pi)$;
 - (c) $\pi^2 \cos \theta / 120$, para algún $\theta \in (0, \pi)$;
 - (d) ninguna de las anteriores.

Sugerencia: recuerde que el error de la regla de los trapecios (compuesta) satisface:

$$R = -\frac{b-a}{12}h^2f''(\xi), \qquad \xi \in (a,b).$$

11. El siguiente P.V.I.:

$$\begin{cases} y' = y + \cos(2\pi x), \\ y(0) = 0, \end{cases}$$

se resuelve por el método de ${\it Euler~explícito}$ con un paso h=0.5.

Indique cuál es el valor $y_1 \approx y(x_1)$ que entrega el método:

- (a) $y_1 = 0.5$;
- (b) $y_1 = 0.25$;
- (c) $y_1 = 0$;
- (d) ninguno de los anteriores.

12. Como muestra la siguiente gráfica, la función

$$f(x) = \sin x - \ln x$$

tiene una raíz cerca del punto x = 2.5.

Indique cuál de los siguientes algoritmos permite determinar esa raíz mediante el método de Newton-Raphson, partiendo de $x_0 = 2.5$:

(b)
$$x_{n+1} = x_n - \frac{\cos x_n - (1/x_n)}{(1/x_n^2) - \sin x_n}, \quad n = 0, 1, 2, \dots;$$

- (c) $x_{n+1} = \sin x_n \ln x_n$, n = 0, 1, 2, ...;
- (d) ninguno de los anteriores.

13. Considere el siguiente P.V.I.:

$$\begin{cases} y' = f(x, y), \\ y(0) = \alpha, \end{cases}$$

y el siguiente método numérico para aproximarlo:

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 16f_{i-2} - 9f_{i-3}),$$

donde $f_k = f(x_k, y_k)$. Para implementar este método se debe:

- (a) calcular directamente y_1 suponiendo $y_{-3} = y_{-2} = y_{-1} = 0$;
- (b) calcular primero $y_1,\ y_2$ e y_3 por un método de Runge-Kutta y después aplicar el método propuesto;
- (c) implementar el método en su forma propuesta, pero sólo se obtendrán valores para $y_4,\ y_8,\ y_{12},\ldots;$
- (d) ninguna de las opciones anteriores.
- 14. El iterado y_{i+1} obtenido por el método (explícito) de Adams-Bashforth de segundo orden está dado por:

(a)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x - x_i)}{(x_{i-1} - x_i)} f_{i-1} + \frac{(x - x_{i-1})}{(x_i - x_{i-1})} f_i \right] dx;$$

(b)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i+1} - x_i)} f_i + \frac{(x - x_i)}{(x_{i+1} - x_i)} f_{i+1} \right] dx;$$

(c)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})}{(x_{i+1} - x_{i-1})} f_{i+1} \right] dx;$$

Tema 1

6

15. Considere el siguiente P.V.C.:

$$\left\{ \begin{array}{ll} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y(1) = 1. \end{array} \right.$$

El método de shooting aplicado a este P.V.C. consiste en resolver la ecuación $y_z(1) = 1$, donde y_z es la solución del P.V.I.:

(a)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(1) = z; \end{cases}$$

(b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(c)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = z, & y'(0) = 1; \end{cases}$$

Cálculo Numérico (521230)

Evaluación de Recuperación – Tema 2

Fecha: 02 – Julio – 2008; 15:10 horas.

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	Ф	c	d
2	a	b	c	d
3	a	b	©	d
4	a	b	\mathbf{c}	d
5	a	b	c	d
6	a	b	c	d
7	a	\odot	c	d
8	a	(b)	c	d
9	a	b	c	d
10	a	b	\odot	d
11	a	b	\odot	d
12	a	(b)	c	d
13	a	b	c	d
14	a	Ð	\mathbf{c}	d
15	a	b	c	d

Reservad corrección	o para la n
No relle	nar
	 [
B	
M	
NR	
Cal.	
	<u> </u>

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 2 8

- 1. Indique cuál de los siguentes métodos es el más adecuado para resolver un sistema lineal con matriz tridiagonal no simétrica de diagonal dominante:
 - (a) el método de Cholesky;
 - (b) el algoritmo de *Thomas*;
 - (c) el método del gradiente conjugado;
 - (d) ninguno de los anteriores.
- 2. Se quiere determinar los coeficientes a, b y c de la función $y = a + be^x + ce^{-x}$ de manera que su gráfica ajuste en el sentido de mínimos cuadrados los puntos $(x_i, y_i), i = 0, \dots, m$.

Indique cuáles son la matriz y el vector del sistema rectangular resultante:

(a)
$$\begin{pmatrix} 1 & e^{x_0} & e^{-x_0} \\ \vdots & \vdots & \vdots \\ 1 & e^{x_m} & e^{-x_m} \end{pmatrix}, \qquad \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix};$$

(b)
$$\begin{pmatrix} 1 & x_0 & -x_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & -x_m \end{pmatrix}, \qquad \begin{pmatrix} \ln(y_0) \\ \vdots \\ \ln(y_m) \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & x_0 & y_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & y_m \end{pmatrix}$$
, $\begin{pmatrix} e^{x_0} \\ \vdots \\ e^{x_m} \end{pmatrix}$;

- (d) ninguna de las combinaciones anteriores.
- 3. Sea \boldsymbol{A} una matriz simétrica y definida positiva. El comando MATLAB

entrega una matriz triangular superior \boldsymbol{R} que satisface:

- (a) **R**=**AR**^t;
- (b) $\mathbf{R}^t \mathbf{A} = \mathbf{R}$;
- (c) $R^t R = A$;
- (d) ninguna de las opciones anteriores.
- 4. Sea I la matriz identidad $n \times n$. Indique cuál de las siguientes afirmaciones es cierta:
 - (a) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 1$;
 - (b) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = n;$
 - (c) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 0;$
 - (d) ninguna de las opciones anteriores.

Tema 2 9

5. Indique cuántos polinomios de grado 4 interpolan la siguiente tabla:

- (a) uno y sólo uno;
- (b) infinitos;
- (c) ninguno;
- (d) ninguna de las respuestas anteriores.
- 6. Se quiere graficar una función f de la que se conocen sus valores y = f(x) para x = 0, 1, 2, ..., 10. Para ello se almacenan las abscisas en un vector (fila) x=0:10 y los valores correspondientes de la función en otro vector (fila) y.

Indique cuál de los siguientes programas MATLAB permite graficar un *spline* cúbico que interpola la función en esos puntos:

- 7. El método de Simpson (elemental), para calcular un valor aproximado de $\int_a^b f(x) dx$, se obtiene interpolando la función f en:
 - (a) dos puntos en [a, b];
 - (b) tres puntos en [a, b];
 - (c) un punto en [a, b];
 - (d) ninguna de las anteriores.
- 8. Considere las siguientes afirmaciones respecto al método del gradiente conjugado (GC) aplicado a un sistema Ax = b, con A una matriz $n \times n$:
 - (i) si A es simétrica y definida positiva, entonces GC converge a la solución del sistema Ax = b;
 - (ii) en general, en una iteración de GC, la operación más costosa (en número de flop) corresponde a la evaluación de producto matriz-vector.

Entonces:

- (a) (i) es falsa y (ii) es verdadera;
- (b) (i) es verdadera y (ii) es verdadera;
- (c) (i) es verdadera y (ii) es falsa;
- (d) ninguna de las anteriores.

- 9. Si se calcula $\int_0^{\pi} \sin(x) dx$ usando la regla de los trapecios (compuesta) con 11 puntos (es decir, 10 subintervalos), entonces el error cometido, en módulo, es igual a:
 - (a) $\pi^3 \operatorname{sen} \theta / 1200$, para algún $\theta \in (0, \pi)$;
 - (b) $\pi^2 \cos \theta / 120$, para algún $\theta \in (0, \pi)$;
 - (c) $\pi^4 \operatorname{sen} \theta / 12000$, para algún $\theta \in (0, \pi)$;
 - (d) ninguna de las anteriores.

Sugerencia: recuerde que el error de la regla de los trapecios (compuesta) satisface:

$$R = -\frac{b-a}{12}h^2f''(\xi), \qquad \xi \in (a,b).$$

10. Como muestra la siguiente gráfica, la función

$$f(x) = \sin x - \ln x$$

tiene una raíz cerca del punto x = 2.5.

Indique cuál de los siguientes algoritmos permite determinar esa raíz mediante el método de Newton-Raphson, partiendo de $x_0 = 2.5$:

(b)
$$x_{n+1} = \operatorname{sen} x_n - \ln x_n$$
, $n = 0, 1, 2, \dots$;

(c)
$$x_{n+1} = x_n - \frac{\sin x_n - \ln x_n}{\cos x_n - (1/x_n)}, \quad n = 0, 1, 2, \dots;$$

(d) ninguno de los anteriores.

11. El siguiente P.V.I.:

$$\begin{cases} y' = y + \cos(2\pi x), \\ y(0) = 0, \end{cases}$$

se resuelve por el método de Euler explícito con un paso h=0.5.

Indique cuál es el valor $y_1 \approx y(x_1)$ que entrega el método:

- (a) $y_1 = 0.25$;
- (b) $y_1 = 0$;
- (c) $y_1 = 0.5$;
- (d) ninguno de los anteriores.

11 Tema 2

12. Se dispone de una función MATLAB trap tal que el comando

calcula $\int_{0}^{b} f(x) dx$ por la regla de los trapecios (compuesta) con N subintervalos.

Indique cuál de los siguientes procedimientos devuelve en Int el valor calculado con N=10 y en Err_Est la estimación del error de Int que se obtiene mediante un paso del método de Romberg:

- Int_Aux=trap(f,a,b,5); (a) Int=trap(f,a,b,10); Err_Est=Int-Int_Aux;
- (b) Int_Aux=trap(f,a,b,5); Int=trap(f,a,b,10); Err_Est=(Int-Int_Aux)/
- Int_Aux=trap(f,a,b,5); Int=trap(f,a,b,10); Err_Est=(Int-Int_Aux)/15;
- Int_Aux=trap(f,a,b,5); (d) Int=trap(f,a,b,10); Err_Est=(4*Int-Int_Aux)/3;

13. El iterado y_{i+1} obtenido por el método (explícito) de Adams-Bashforth de segundo orden está dado

(a)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x - x_i)}{(x_{i-1} - x_i)} f_{i-1} + \frac{(x - x_{i-1})}{(x_i - x_{i-1})} f_i \right] dx;$$

(b)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i+1} - x_i)} f_i + \frac{(x - x_i)}{(x_{i+1} - x_i)} f_{i+1} \right] dx;$$

(c)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})}{(x_{i+1} - x_{i-1})} f_{i+1} \right] dx;$$

- (d) ninguna alternativa anterior.
- 14. Considere el siguiente P.V.C.:

$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y(1) = 1. \end{cases}$$

El método de shooting aplicado a este P.V.C. consiste en resolver la ecuación $y_z(1) = 1$, donde y_z

(a)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(1) = z; \end{cases}$$
 (b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(c)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = z, & y'(0) = 1; \end{cases}$$

Tema 2 12

15. Considere el siguiente P.V.I.:

$$\begin{cases} y' = f(x, y), \\ y(0) = \alpha, \end{cases}$$

y el siguiente método numérico para aproximarlo:

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 16f_{i-2} - 9f_{i-3}),$$

donde $f_k = f(x_k, y_k)$. Para implementar este método se debe:

- (a) calcular primero $y_1,\ y_2$ e y_3 por un método de Runge-Kutta y después aplicar el método propuesto;
- (b) implementar el método en su forma propuesta, pero sólo se obtendrán valores para $y_4,\ y_8,\ y_{12},\ldots;$
- (c) calcular directamente y_1 suponiendo $y_{-3} = y_{-2} = y_{-1} = 0$;
- (d) ninguna de las opciones anteriores.

Cálculo Numérico (521230)

Evaluación de Recuperación – Tema 3

Fecha: 02 - Julio - 2008; 15:10 horas.

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta	Alternativas			
Treguma	711001114017465			
1	a	b	$^{\circ}$	d
2	a	(D)	\mathbf{c}	d
3	a	b	©	d
4	a	b	\mathbf{c}	d
5	a	b	\mathbf{c}	@
6	a	b	c	d
7	a	b	\odot	d
8	a	b	\odot	d
9	a	Ф	$^{\mathrm{c}}$	d
10	a	(D)	$^{\mathrm{c}}$	d
11	a	(D)	$^{\mathrm{c}}$	d
12	a	b	©	d
13	a	(D)	\mathbf{c}	d
14	a	b	©	d
15	a	b	$^{\mathrm{c}}$	d

Reservad corrección	o para la n
No relle	nar
	•
В	
M	
NR	
Cal.	

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

Tema 3 14

1. Se quiere determinar los coeficientes a, b y c de la función $y = a + be^x + ce^{-x}$ de manera que su gráfica ajuste en el sentido de mínimos cuadrados los puntos $(x_i, y_i), i = 0, \dots, m$.

Indique cuáles son la matriz y el vector del sistema rectangular resultante:

(a)
$$\begin{pmatrix} 1 & x_0 & -x_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & -x_m \end{pmatrix}, \qquad \begin{pmatrix} \ln(y_0) \\ \vdots \\ \ln(y_m) \end{pmatrix};$$

(b)
$$\begin{pmatrix} 1 & x_0 & y_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & y_m \end{pmatrix}, \qquad \begin{pmatrix} e^{x_0} \\ \vdots \\ e^{x_m} \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & e^{x_0} & e^{-x_0} \\ \vdots & \vdots & \vdots \\ 1 & e^{x_m} & e^{-x_m} \end{pmatrix}, \qquad \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix};$$

- (d) ninguna de las combinaciones anteriores.
- 2. Sea \boldsymbol{A} una matriz simétrica y definida positiva. El comando MATLAB

entrega una matriz triangular superior \boldsymbol{R} que satisface:

- (a) **R** t **A**=**R**;
- (b) $\mathbf{R}^t \mathbf{R} = \mathbf{A}$;
- (c) $R = AR^{t}$:
- (d) ninguna de las opciones anteriores.
- 3. Sea I la matriz identidad $n \times n$. Indique cuál de las siguientes afirmaciones es cierta:
 - (a) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = n;$
 - (b) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 0;$
 - (c) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 1;$
 - (d) ninguna de las opciones anteriores.
- 4. Indique cuál de los siguentes métodos es el más adecuado para resolver un sistema lineal con matriz tridiagonal no simétrica de diagonal dominante:
 - (a) el algoritmo de *Thomas*;
 - (b) el método del gradiente conjugado;
 - (c) el método de *Cholesky*;
 - (d) ninguno de los anteriores.

Tema 3 15

5. Se quiere graficar una función f de la que se conocen sus valores y = f(x) para x = 0, 1, 2, ..., 10. Para ello se almacenan las abscisas en un vector (fila) x=0:10 y los valores correspondientes de la función en otro vector (fila) y.

Indique cuál de los siguientes programas MATLAB permite graficar un *spline* cúbico que interpola la función en esos puntos:

```
(a) t=0:.01:10;
plot(t,spline(t,y));
```

- 6. El método de Simpson (elemental), para calcular un valor aproximado de $\int_a^b f(x) dx$, se obtiene interpolando la función f en:
 - (a) tres puntos en [a, b];
 - (b) un punto en [a, b];
 - (c) dos puntos en [a, b];
 - (d) ninguna de las anteriores.
- 7. Considere las siguientes afirmaciones respecto al método del gradiente conjugado (GC) aplicado a un sistema Ax = b, con A una matriz $n \times n$:
 - (i) si A es simétrica y definida positiva, entonces GC converge a la solución del sistema Ax = b;
 - (ii) en general, en una iteración de GC, la operación más costosa (en número de flop) corresponde a la evaluación de producto matriz-vector.

Entonces:

- (a) (i) es verdadera y (ii) es falsa;
- (b) (i) es falsa y (ii) es verdadera;
- (c) (i) es verdadera y (ii) es verdadera;
- (d) ninguna de las anteriores.
- 8. Indique cuántos polinomios de grado 4 interpolan la siguiente tabla:

- (a) infinitos;
- (b) ninguno;
- (c) uno y sólo uno;
- (d) ninguna de las respuestas anteriores.

Tema 3 16

9. Como muestra la siguiente gráfica, la función

$$f(x) = \sin x - \ln x$$

tiene una raíz cerca del punto x = 2.5.

Indique cuál de los siguientes algoritmos permite determinar esa raíz mediante el método de Newton-Raphson, partiendo de $x_0 = 2.5$:

(a)
$$x_{n+1} = \operatorname{sen} x_n - \ln x_n$$
, $n = 0, 1, 2, \dots$;

(b)
$$x_{n+1} = x_n - \frac{\sin x_n - \ln x_n}{\cos x_n - (1/x_n)}, \quad n = 0, 1, 2, \dots;$$

(b)
$$x_{n+1} = x_n - \frac{\sin x_n - \ln x_n}{\cos x_n - (1/x_n)}, \quad n = 0, 1, 2, \dots;$$

(c) $x_{n+1} = x_n - \frac{\cos x_n - (1/x_n)}{(1/x_n^2) - \sin x_n}, \quad n = 0, 1, 2, \dots;$

(d) ninguno de los anteriores.

10. El siguiente P.V.I.:

$$\begin{cases} y' = y + \cos(2\pi x), \\ y(0) = 0, \end{cases}$$

se resuelve por el método de Euler explícito con un paso h = 0.5.

Indique cuál es el valor $y_1 \approx y(x_1)$ que entrega el método:

- (a) $y_1 = 0$;
- (b) $y_1 = 0.5$;
- (c) $y_1 = 0.25$;
- (d) ninguno de los anteriores.

11. Se dispone de una función MATLAB trap tal que el comando

calcula $\int_{-\infty}^{b} f(x) dx$ por la regla de los trapecios (compuesta) con N subintervalos.

Indique cuál de los siguientes procedimientos devuelve en Int el valor calculado con N=10 y en Err_Est la estimación del error de Int que se obtiene mediante un paso del método de Romberg:

Tema 3 17

- 12. Si se calcula $\int_0^{\pi} \sin(x) dx$ usando la regla de los trapecios (compuesta) con 11 puntos (es decir, 10 subintervalos), entonces el error cometido, en módulo, es igual a:
 - (a) $\pi^2 \cos \theta / 120$, para algún $\theta \in (0, \pi)$;
 - (b) $\pi^4 \operatorname{sen} \theta / 12000$, para algún $\theta \in (0, \pi)$;
 - (c) $\pi^3 \operatorname{sen} \theta / 1200$, para algún $\theta \in (0, \pi)$;
 - (d) ninguna de las anteriores.

Sugerencia: recuerde que el error de la regla de los trapecios (compuesta) satisface:

$$R = -\frac{b-a}{12}h^2f''(\xi), \qquad \xi \in (a,b).$$

13. Considere el siguiente P.V.C.:

$$\left\{ \begin{array}{ll} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y(1) = 1. \end{array} \right.$$

El método de shooting aplicado a este P.V.C. consiste en resolver la ecuación $y_z(1) = 1$, donde y_z es la solución del P.V.I.:

(a)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(1) = z; \end{cases}$$
 (b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(c)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = z, & y'(0) = 1; \end{cases}$$

(d) ninguna alternativa anterior.

14. Considere el siguiente P.V.I.:

$$\begin{cases} y' = f(x, y), \\ y(0) = \alpha, \end{cases}$$

y el siguiente método numérico para aproximarlo:

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 16f_{i-2} - 9f_{i-3}),$$

donde $f_k = f(x_k, y_k)$. Para implementar este método se debe:

- (a) implementar el método en su forma propuesta, pero sólo se obtendrán valores para y_4, y_8, y_{12}, \ldots ;
- (b) calcular directamente y_1 suponiendo $y_{-3} = y_{-2} = y_{-1} = 0$;
- (c) calcular primero y_1 , y_2 e y_3 por un método de Runge-Kutta y después aplicar el método propuesto;
- (d) ninguna de las opciones anteriores.

Tema 3 18

15. El iterado y_{i+1} obtenido por el método (explícito) de Adams-Bashforth de segundo orden está dado por:

(a)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x - x_i)}{(x_{i-1} - x_i)} f_{i-1} + \frac{(x - x_{i-1})}{(x_i - x_{i-1})} f_i \right] dx;$$

(b)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i+1} - x_i)} f_i + \frac{(x - x_i)}{(x_{i+1} - x_i)} f_{i+1} \right] dx;$$

(c)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})}{(x_{i+1} - x_{i-1})} f_{i+1} \right] dx;$$

Cálculo Numérico (521230)

Evaluación de Recuperación – Tema 4

Fecha: 02 - Julio - 2008; 15:10 horas.

Nombre y apellidos	
Matrícula	
Profesor	

Pregunta	Alternativas			
1	a	Ф	c	d
2	a	b	©	d
3	a	b	c	d
4	a	b	\odot	d
5	a	(b)	c	d
6	a	b	c	d
7	a	b	c	d
8	a	b	\odot	d
9	a	(b)	c	d
10	a	(\mathbf{c}	d
11	a	b	\mathbf{c}	d
12	a	b	©	d
13	a	(b)	c	d
14	a	b	c	d
15	a	b	©	d

Reservad corrección	o para la n
No relle	nar
В	
M	
NR	
Cal.	

- Marque sólo una alternativa, en caso contrario la pregunta no será evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontará un tercio del valor de una respuesta correcta; es decir:

Calificación =
$$1 + \max \left\{ 0, \frac{6}{15} \left(\text{Buenas} - \frac{\text{Malas}}{3} \right) \right\}.$$

- Cualquier intento de copia será castigado.
- Duración de la prueba: 100 minutos.

1. Sea \boldsymbol{A} una matriz simétrica y definida positiva. El comando MATLAB

entrega una matriz triangular superior R que satisface:

- (a) **R**=**AR**^t;
- (b) $\mathbf{R}^t \mathbf{R} = \mathbf{A}$;
- (c) $\mathbf{R}^t \mathbf{A} = \mathbf{R}$;
- (d) ninguna de las opciones anteriores.

2. Sea I la matriz identidad $n \times n$. Indique cuál de las siguientes afirmaciones es cierta:

- (a) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 0;$
- (b) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = n;$
- (c) $\operatorname{cond}_{\infty}(\boldsymbol{I}) = 1;$
- (d) ninguna de las opciones anteriores.

3. Indique cuál de los siguentes métodos es el más adecuado para resolver un sistema lineal con matriz tridiagonal no simétrica de diagonal dominante:

- (a) el algoritmo de *Thomas*;
- (b) el método de *Cholesky*;
- (c) el método del gradiente conjugado;
- (d) ninguno de los anteriores.

4. Se quiere determinar los coeficientes a, b y c de la función $y = a + be^x + ce^{-x}$ de manera que su gráfica ajuste en el sentido de mínimos cuadrados los puntos (x_i, y_i) , $i = 0, \ldots, m$.

Indique cuáles son la matriz y el vector del sistema rectangular resultante:

(a)
$$\begin{pmatrix} 1 & x_0 & y_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & y_m \end{pmatrix}, \qquad \begin{pmatrix} e^{x_0} \\ \vdots \\ e^{x_m} \end{pmatrix};$$

(b)
$$\begin{pmatrix} 1 & x_0 & -x_0 \\ \vdots & \vdots & \vdots \\ 1 & x_m & -x_m \end{pmatrix}, \qquad \begin{pmatrix} \ln(y_0) \\ \vdots \\ \ln(y_m) \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & e^{x_0} & e^{-x_0} \\ \vdots & \vdots & \vdots \\ 1 & e^{x_m} & e^{-x_m} \end{pmatrix}, \qquad \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix}$$

(d) ninguna de las combinaciones anteriores.

- 5. El método de Simpson (elemental), para calcular un valor aproximado de $\int_a^b f(x) dx$, se obtiene interpolando la función f en:
 - (a) un punto en [a, b];
 - (b) tres puntos en [a, b];
 - (c) dos puntos en [a, b];
 - (d) ninguna de las anteriores.
- 6. Considere las siguientes afirmaciones respecto al método del gradiente conjugado (GC) aplicado a un sistema Ax = b, con A una matriz $n \times n$:
 - (i) si A es simétrica y definida positiva, entonces GC converge a la solución del sistema Ax = b;
 - (ii) en general, en una iteración de GC, la operación más costosa (en número de *flop*) corresponde a la evaluación de producto matriz-vector.

Entonces:

- (a) (i) es verdadera y (ii) es verdadera;
- (b) (i) es falsa y (ii) es verdadera;
- (c) (i) es verdadera y (ii) es falsa;
- (d) ninguna de las anteriores.
- 7. Indique cuántos polinomios de grado 4 interpolan la siguiente tabla:

- (a) uno y sólo uno;
- (b) ninguno;
- (c) infinitos;
- (d) ninguna de las respuestas anteriores.
- 8. Se quiere graficar una función f de la que se conocen sus valores y = f(x) para x = 0, 1, 2, ..., 10. Para ello se almacenan las abscisas en un vector (fila) x=0:10 y los valores correspondientes de la función en otro vector (fila) y.

Indique cuál de los siguientes programas MATLAB permite graficar un *spline* cúbico que interpola la función en esos puntos:

```
(a) t=0:.01:10;
plot(x,spline(x,y,t));
```

9. El siguiente P.V.I.:

$$\begin{cases} y' = y + \cos(2\pi x), \\ y(0) = 0, \end{cases}$$

se resuelve por el método de *Euler explícito* con un paso h = 0.5. Indique cuál es el valor $y_1 \approx y(x_1)$ que entrega el método:

- (a) $y_1 = 0.25$;
- (b) $y_1 = 0.5$;
- (c) $y_1 = 0$;
- (d) ninguno de los anteriores.
- 10. Se dispone de una función MATLAB trap tal que el comando

calcula $\int_a^b f(x) dx$ por la regla de los trapecios (compuesta) con N subintervalos.

Indique cuál de los siguientes procedimientos devuelve en Int el valor calculado con N=10 y en Err_Est la estimación del error de Int que se obtiene mediante un paso del método de Romberg:

```
Int_Aux=trap(f,a,b,5);
Int=trap(f,a,b,10);
Err_Est=Int-Int_Aux;
```

- 11. Si se calcula $\int_0^{\pi} \sin(x) dx$ usando la regla de los trapecios (compuesta) con 11 puntos (es decir, 10 subintervalos), entonces el error cometido, en módulo, es igual a:
 - (a) $\pi^3 \operatorname{sen} \theta / 1200$, para algún $\theta \in (0, \pi)$;
 - (b) $\pi^4 \operatorname{sen} \theta / 12000$, para algún $\theta \in (0, \pi)$;
 - (c) $\pi^2 \cos \theta / 120$, para algún $\theta \in (0, \pi)$;
 - (d) ninguna de las anteriores.

Sugerencia: recuerde que el error de la regla de los trapecios (compuesta) satisface:

$$R = -\frac{b-a}{12}h^2f''(\xi), \qquad \xi \in (a,b).$$

12. Como muestra la siguiente gráfica, la función

$$f(x) = \sin x - \ln x$$

tiene una raíz cerca del punto x = 2.5.

Indique cuál de los siguientes algoritmos permite determinar esa raíz mediante el método de Newton-Raphson, partiendo de $x_0 = 2.5$:

(b)
$$x_{n+1} = x_n - \frac{\cos x_n - (1/x_n)}{(1/x_n^2) - \sin x_n}, \quad n = 0, 1, 2, \dots;$$

(c)
$$x_{n+1} = x_n - \frac{\sin x_n - \ln x_n}{\cos x_n - (1/x_n)}, \quad n = 0, 1, 2, \dots;$$

(d) ninguno de los anteriores.

13. Considere el siguiente P.V.C.:

$$\left\{ \begin{array}{ll} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y(1) = 1. \end{array} \right.$$

El método de *shooting* aplicado a este P.V.C. consiste en resolver la ecuación $y_z(1) = 1$, donde y_z es la solución del P.V.I.:

(a)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(1) = z; \end{cases}$$

(b)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = 0, & y'(0) = z; \end{cases}$$

(c)
$$\begin{cases} -y'' + y' + y = 0, & 0 < x < 1, \\ y(0) = z, & y'(0) = 1; \end{cases}$$

(d) ninguna alternativa anterior.

14. El iterado y_{i+1} obtenido por el método (explícito) de Adams-Bashforth de segundo orden está dado por:

(a)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x - x_i)}{(x_{i-1} - x_i)} f_{i-1} + \frac{(x - x_{i-1})}{(x_i - x_{i-1})} f_i \right] dx;$$

(b)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i+1} - x_i)} f_i + \frac{(x - x_i)}{(x_{i+1} - x_i)} f_{i+1} \right] dx;$$

(c)
$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} \left[\frac{(x_{i+1} - x)}{(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})}{(x_{i+1} - x_{i-1})} f_{i+1} \right] dx;$$

15. Considere el siguiente P.V.I.:

$$\begin{cases} y' = f(x, y), \\ y(0) = \alpha, \end{cases}$$

y el siguiente método numérico para aproximarlo:

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 16f_{i-2} - 9f_{i-3}),$$

donde $f_k = f(x_k, y_k)$. Para implementar este método se debe:

- (a) calcular directamente y_1 suponiendo $y_{-3} = y_{-2} = y_{-1} = 0$;
- (b) implementar el método en su forma propuesta, pero sólo se obtendrán valores para y_4, y_8, y_{12}, \ldots ;
- (c) calcular primero $y_1,\ y_2$ e y_3 por un método de Runge-Kutta y después aplicar el método propuesto;
- (d) ninguna de las opciones anteriores.