Exam 2

Toan-ky-thuat

(1) Phân tích SVD của ma trận $A, U\Sigma V^T$, trong đó $A=\begin{bmatrix}3&2&2\\2&3&-2\end{bmatrix}$. (2) Chéo hóa trực giao ma trận $A=\begin{bmatrix}1&0&-1\\0&1&2\\-1&2&5\end{bmatrix}$.

(2) Chéo hóa trực giao ma trận
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

(3) Xét hàm lỗi (loss function) của mô hình hồi quy logistic $f: \mathbb{R}^n \to \mathbb{R}$ xác định bởi

$$f(w) = \sum_{i=1}^{n} \ln \left[1 + e^{-y_i(w^T x_i)} \right],$$

trong đó $y_i = 1$ hoặc $y_i = -1$, $x_i \in \mathbb{R}^n$. Chúng minh rằng

(a) f là hàm lồi khả vi;

(b) Nêu phương pháp lặp gradient đối với hàm lỗi này.

(4) Với dữ liệu nhận được cho (x_1, x_2, y) ,

x_1	x_2	y
2.04	3.55	3.11
2.04	6.07	3.26
3.06	3.55	3.89
3.06	6.97	10.25
4.08	3.55	3.11
4.08	6.16	13.48
2.06	3.62	3.94
2.06	6.16	3.53

dùng phương pháp bình phương nhỏ nhất ước lượng các tham số β_k trong mô hình: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2.$

(5) Gọi X là tỷ lệ thời gian một sinh viên được chọn ngẫu nhiên phân bổ để làm bài kiếm tra năng khiếu nhất định. Giả sử X có hàm mật độ xác suất như sau

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta}, & x \in [0,1], \\ 0, & x \notin [0,1], \end{cases}$$

với $\theta > -1$. Một mẫu 10 sinh viên được khảo sát với thời gian như sau: $x_1 = 0.92; x_2 =$ $0.79; x_3 = 0.90; x_4 = 0.65; \ x_5 = 0.86; x_6 = 0.47; x_7 = 0.73; x_8 = 0.97; x_9 = 0.94; \ \text{và} \ x_{10} = 0.77.$ Sử dụng dữ liệu trên ước lượng tham số θ bằng phương pháp MLE.

1