❷❸公告 平成 4年(1992) 1月22日

⑫特 $\Psi 4 - 3244$ 許 公 報(B2)

Mnt. Cl. 5 識別記号 庁内整理番号 B 01 D 46/00 302 7059-4D 7059-4D 39/20 35/04 B 01 J 301 E 2104-4G 7148-4F B 32 B 18/00

発明の数 1 (全6頁)

60発明の名称 セラミツクハニカム構造体の開口端面封止体の製造方法

> @特 20 昭60-284359

閉 昭62-144726 69公

220出 顧 昭60(1985)12月19日 @昭62(1987) 6 月*2*7日

司 @発 明 大 尶 昌 者

三重県三重郡朝日町大字小向778番地の2 愛知県名古屋市南区岩戸町4丁目59番地の1

@発 者 . 浅 井 鐘 冶 明

②出 人 日本碍子株式会社 願

愛知県名古屋市瑞穂区須田町2番56号

伊代 理 人 弁理士 杉村 暁秀 外1名

1

杳 官 本 審 松 悟

釣特許請求の範囲

1 セラミックハニカム構造体の閉口端面にフィ .ルムもしくはマスクを設けて該フイルムもしくは マスクの所定開口部から、セラミック封じ材をセ ラミツクハニカム構造体の貫通孔へ導入するセラ ミックハニカム構造体の開口端面封止体の製造方 法において、粘度が50~1500ポイズのセラミツク 封じ材を該貫通孔へ導入後2分以内に、100~300 ℃の温度で乾燥開始し、固化乾燥した後焼結する ことを特徴とするセラミツクハニカム構造体の開 10 口端面封止体の製造方法。

発明の詳細な説明

(技術分野)

本発明は、デーゼルエンジンの排出ガス中の微 ミツクハニカムフイルタ、あるいは熱交換用のセ ラミックハニカム構造体の製造法に関するもので あり、より詳細には、セラミツクハニカム構造体 の開口端面の封止方法に関する。

(従来技術)

セラミツクハニカム構造体の開口端面の封止方 法に関して、セラミツクハニカム構造体の閉口端 面にフイルムもしくはマスクを設けて該フイルム もしくはマスクの所定開口部から、セラミック材 料をセラミツクハニカム構造体の貫通孔へ導入し 25 て、セラミツクハニカム構造体の開口端面を封止

する方法が知られている。(特開昭57-7215号公 報および特開昭59-54683号公報)

2

特開昭57-7215号においては、セラミツク材料 としてダイラタンシーを有するものが用いられ、 特開昭59-54683号においては、封じ材を含むス ラリーにデッピングした後坏土状の封じ材を圧入 することが開示されている。

(問題点)

ところが、封じ材としてダイラタンシーを有す るものを使用した場合には、フイルムに穿孔され た孔径がセラミツクハニカム構造体の貫通孔の大 きさに較べて小さいため貫通孔を構成する隔壁と 封じ材とを緊密に封止することができなかつた り、また封じ材のダイラタンシー特性によりフィ 粒子の除去あるいは化学工業用に用いられるセラ 15 ルムの穿孔部で封じ材がブリツジされ、貫通孔に、 うまく導入されない欠点があつた。

> また、封じ材を含むスラリーを単にデッピング する方法では、封止部の中央が充分に封止できな い欠点を有しており、封じ材として2種類の封じ 20 材を用いることは工程が二工程となり量産に不適 であつた。

(解決手段)

本発明は、このような問題点を解消するために なされたもので、その目的とするところは、セラ ミツクハニカム構造体の貫通孔の端部を信頼性高。 く封止する方法を提供するもので、セラミックハ

ニカム構造体の開口端面にフイルムもしくはマス クを設けて該フイルムもしくはマスクの所定閉口 部から、セラミツク封じ材をセラミツクハニカム 横浩体の貫通孔へ導入するセラミツクハニカム構 造体の開口端面封止体の製造方法において、粘度 が50~1500ポイズのセラミツク封じ材を該貫通孔 へ導入後2分以内に、100~300℃の温度で乾燥開 始し、固化乾燥した後焼結することを特徴とする セラミツクハニカム構造体の開口端面封止体の製 造方法である。

(実施例)

以下、本発明の詳細を第1図の工程図によつて 具体的に説明する。

まず、第1の工程はセラミツクハニカム構造体 体の材質としては、コージエライト、アルミナ、 ムライト等の耐熱性、耐熱衝撃性等の性質を有す るものが用途により選ばれる。また、貫通孔の形 状および全体の寸法形状もまた用途により定めら ニカム構造体は、主としてセラミツクフイルター 等であるので、フイルターの特性である濾過面積 および圧力損失から貫通孔の密度は2~100個/ dのものに好適である。

れ、焼成品あるいは成形品が準備される。

つぎの工程は、セラミツクハニカム構造体の開 口端面にフイルムを貼る工程である。

フイルムとしては、セラミツクハニカム構造体 の開口端面の封じ材が導入される所定の貫通孔に 30 整されたものが好ましい。 対応する箇所が予め穿孔されたフイルムが使用さ れても、フイルムを貼つた後で所定箇所を穿孔し てもよい。また、この工程はフイルムに限られる ものではなく、ゴム製の予め穿孔されたマスクを 使用してもよい。

つぎの工程は本発明の実施に際して、最も重要 な工程で、穿孔部よりセラミック封じ材を所定の 貫通孔内に導入する工程である。

封じ材の主成分としては、セラミツクハニカム 構造体の材質と同じものが好ましく、一例を挙げ 40 なされる。 るとコージエライト質、アルミナ質、ムライト質 などである。これらの主成分以外に、バインダー および水等の可塑剤が含有される。バインダーと しては、後記するように、封じ材を速やかに乾燥

するために、メチルセルロース、ポリビニールア ルコール、カルボキシメチルセルロース、澱粉 糊、ポリエチレンオキサイド等の加熱により迅速 に固化するものが好ましい。

封じ材の一例としてコージエライト質の場合、 コージエライト粉末あるいは焼成後コージエライ ト質となる所定の原料配合された素地100重量部 に対して、メチルセルロース0.2~5.0重量部、グ リセリン5~15重量部、ポリエチレンオキサイド 10 0.1~2重量部のバインダーを添加し、可塑剤と して水25~40重量部加えて混練し、所定の粘度の 調節されたものが用いられる。

封じ材の粘度は、封じられるセラミツクハニカ ム構造体の貫通孔の大きさによつて選択される。 を準備することである。セラミツクハニカム構造 15 例えば、貫通孔の密度が 2個/cmの場合は、その 質通孔の大きさは一辺の長さが約7㎜の多角形あ るいは約7㎜径の円形の比較的大きい場合である が、この場合、粘度が比較的大きいものまで選択 できる。但し、粘度が極端に小さい場合には、1 れるが、本発明の方法が適用されるセラミツクハ 20 回の工程で封止ができない場合があるので、この 場合には、封じ材の導入および後の乾燥固化工程 を繰返すことにより構成される。

反対に、貫通孔の密度が200個/㎡の場合には、 貫通孔は約1㎜の多角形あるいは約1㎜径の円形。 製造法としては、押出成形が一般的に採用さ 25 である小さい場合であるが、この場合には粘度は 比較的小さいものが選択される。

> 本発明では、対象とするセラミツクハニカム構 造体の質通孔の大きさからみて、封じ材の粘度は 50~1500ポイズ、好ましくは100~800ポイズに調

粘度範囲を限定する理由は、50ポイズ未満で は、封じ材とセラミツクハニカム構造体の隔壁と 緊密性は良好であるが、開口端面の中央部の封じ 部分に小孔が発生し易いためであり、1500ポイズ 35 を越えると封じ材と隔壁の緊密性が悪く、特に質 通孔の形状が正方形の場合、その隅部が緊密に封 止できなくなるからである。

粘度の調整は、主成分の粒度および量、バイン ダーの種類および量、および水等の溶剤によつて

セラミツク封じ材の貫通孔中への導入方法とし ては、圧入、デッピング等が採用され、セラミツ クハニカム構造体の開口端面の片側ずつあるいは 両側を同時に導入してもよい。

つぎの工程は、貫通孔へ導入された封じ材を乾 燥する工程である。

封じ材の乾燥は、貫通孔へ導入された直後に実 施される。乾燥開始時間は、封じ材が導入されて から2分以内に行うことが必要である。

この理由は、特に粘度が小さい場合には、封じ 材が貫通孔を形成する隔壁の開口部に浸透して、 隔壁との封じ性が良好になる一方、中央部に封じ 部が形成されないためである。さらには、封止部 例を挙げると、粘度が100~300ポイズの場合、圧 入から乾燥までの時間は1分以内、好ましくは30 秒以内である。封じ部の乾燥方法は、封止材の性 状にあわせて適切な方法が選択され、熱風、ガス バーナによる加熱、ニクロムヒータ、赤外線ヒー 15 実施例 タなど電気的な加熱の手段がとられる。乾燥温度 としては、100~300℃が好ましい。この理由は、 100℃未満の場合には、乾燥不十分で次の工程で の取扱で封じ材が剝離脱落する恐れがあり、仮に 剝離脱落しなくても乾燥時間が長くなる欠点があ 20 るからである。また、300℃を越えると、封じ材 に含有するバインダー等が消失し、封じ材の貫通 孔への密着強度が劣化する傾向にある。さらに、 セラミツクハニカム構造体として、未焼成品であ

る成形体を対象とする場合には、ハニカム構造体 中に含有するバインダー等が消失して、ハニカム 構造体の強度劣化を引き起こし、クラツクや欠け を生じ易くなる。

乾燥時間は、封じ部が固化するに充分な時間を 以て行われ、製品の形状、乾燥温度、封じ材の粘 性等により設定されるが、概ね0.5~3分である。

最後の工程は、封じ材を焼結する工程である。

セラミツクハニカム構造体の焼成品の場合に の中央部に小孔が発生し易くなるためである。一 10 は、焼結条件は封じ材の主成分により定められ る。例えば、コージエライト質の場合には、1400 ℃、 4時間である。一方、セラミツクハニカム構 造体が未焼成品の場合には、セラミツクハニカム 構造体の材質、寸法形状も考慮して定められる。

セラミツクハニカム構造体として、第1表に示 す3種類を準備した。ついで第2表に示す封じ材 を用いて、第3表に示すような条件でセラミツク ハニカム構造体の開口端面の質通孔を封じた。

このようにして得られたセラミツクハニカム構 造体の開口端面封止体の封じ部を光投影機で肉眼 評価した。その結果を第4表に示す。この結果か ら明らかなように、本発明の方法による封止体は 優れたものである。

第 1 表

No.	材質	40日の45	セラミツクハニカムの形状						
INO.	170 貝	製品の状態 態	直径(加)	高さ (mm)	壁厚 (加)	セル数 (個/cni)	セル形状		
A	コージエ ライト	焼成品	144	150	0.4	15.5	正方形		
В	ムライト	焼成品	120	150	0.3	31.0	正方形		
С	コージエ ライト	未焼成品	120	150	0.4	15.5	正方形		

7

(単位:重量%)

8

No.	主成分	メチル セルロ ース	ポリエチ レンオキ サイド	ポリビニ ールアル コール	カルポキシ メチルセル ロース	グリセリン	減水剤	水
а	コージェ ライト	0.5	0.2	_	-	10	0.3	18~32
Ь	ムライト	1.0	_	5, 0	_	_	_	40
С	コージェ ライト	0.5			3.0		_	40

第

第

. 3

表

			•		. 3		衣			
No.	セラミックハ	封	じ材	++10++++	封じ材の圧		乾燥条件		焼成	条件
NO.	ニカム構造体	組成	粘度 (P)	封じ方法	入から乾燥 開始迄の時 間(秒)	時間 (秒)	方法	温度(℃)	温度(℃)	時間(時間)
1	В	Ь	50	フイルム	15	60	電気加熱	250	1420	6
2	С	. c	50	マスク	30	60	熱風	300	1410	2
3	A	С	50	マスク	120	60	熱風	400	1410	2
4	В	а	100	フイルム	120	60	電気加熱	250	1420	6
5	A	а	250	マスク	30	180	熱風	80	1400	4
6	A	а	250	マスク	120	180	熱風	80	1400	4
7	A	a Ţ	250	マスク	90	120	熱風	100	1400	4
8	С	a .	250	マスク	60 .	90	熱風	200	1400	4
9	В	С	250	マスク	30	60	熱風	300	1410	2
10	В	Ь	300	フイルム	15	60	電気加熱	250	1420	6
11	В	Ь	300	フイルム	30	60	電気加熱	250	1420	6
12	В	Ь	300	フイルム	60	60	電気加熱	250	1420	6
13	В	Ь	300	フイルム	120	60	電気加熱	250	1420	6
14	В	Ь	600	フイルム	30	60	電気加熱	250	1420	6
15	A	а	1500	マスク	90	120	熱風	100	1400	4
16	С	С	1500	マスク	30	60	熱風	300	1410	2
17	В	Ь	300	フイルム	240	60	電気加熱	250	1420	6
18	В	Ь	1500	フイルム	240	60	電気加熱	250	1420	6
19	A	а	30	マスク	30	120	熱風	80	1400	4
20	В	ь	30	フイルム	60	60	電気加熱	250	1420	6
21	С	С	30	マスク	30	60	熱風	300	1410	2

No.	セラミックハ	封じ	対対対に方法		封じ材の圧 入から乾燥	乾燥条件			焼成条件	
NO.	ニカム構造体	組成	粘度 (P)	封し万伝	人から乾燥 開始迄の時 間(秒)	時間 (秒)	方法	温度(℃)	温度 (°C)	時間(時間)
22	С	С	30	マスク	15	60	熱風	400	1410	2
23	A	a	2200	マスク	120	120	熱風	80	1410	2
24	С	С	2200	マスク	120	60	熱風	400	1410	2

注 1) №17~24は参考例

- 2) 熱風:ニクロムヒータにより空気を加熱し、熱風を封じ面に通風した。
- 3) 電気加熱:ニクロムヒータの赤熱面より封じ面を置き、封じ面とニクロムヒータの温度を所定の温度になるように設定した。

15

20

第 4 表

		· · · · · · · · · · · · · · · · · · ·
No.	封じ部の状況	評価結果
1	封じ部に欠陥が見られず	0
2	封じ部に欠陥が見られず	0
3	封じ部に欠陥が見られず	0
4	封じ部に欠陥が見られず	0
5	封じ部に欠陥が見られず	0
6	封じ部に欠陥が見られず	0
7	封じ部に欠陥が見られず	0
8	封じ部に欠陥が見られず	0
9	封じ部に欠陥が見られず	0
10	封じ部に欠陥が見られず	0
11	封じ部に欠陥が見られず	. @
12	封じ部に欠陥が見られず	0
13	封じ部に欠陥が見られず	©
14	封じ部に欠陥が見られず	©
15	封じ部に欠陥が見られず	0
16	封じ部に欠陥が見られず	0
17	封じ部全体に小孔発生	×
18	封じ部全体に小孔発生	×
19	封じ部全体に小孔発生	×
20	封じ部全体に小孔発生	×
21	封じ部全体に小孔発生	×

		
No.	封じ部の状況	評価結果
22	封じ部中央に小孔あり、 セラミツクハニカム構造 体にクラツクが発生	×
23	封じ部隅部に空隙あり	×
24	封じ部隅部に空隙ありせ ラミツクハニカム構造体 にクラツクが発生	. ×

注 1) №17~24は参考例

2) 評価: ◎; 最良、O; 良、×; 悪

25 (発明の効果)

図面の簡単な説明

以上の説明から明らかなように、本発明の方法 は、封じ材を質通孔に導入後乾燥開始が即座に行 われるので、簡単な操作によつて信頼性のあるセ ラミックフイルタを得ることができる効果を有す

30 る。

第1図は本発明の方法を説明するための工程図である。

35

40

第1図

セラミックハニカム 構造体の準備工程

U

フイルムを貼る工程

ß

セラミック封じ材の 導λ工程

Û

封l'材o乾燥工程

8

対で材の焼結工程