Práctica 8: Integración

Integración en una variable (repaso)

1. Calcular:

(a)
$$\int x \sin x \, dx$$
.
 (b) $\int \sin^2 x \cos x \, dx$.
 (c) $\int x e^{x^2} \, dx$.
 (d) $\int e^x \sin x \, dx$.
 (e) $\int \frac{3x - 2}{x^2 + x - 2} \, dx$.
 (f) $\int \ln x \, dx$.

2. Hallar el área encerrada por las curvas:

(c)
$$y = 2x^3 - 9x^2 + 12x + 1$$
 y la recta $y = 12$ entre $x = 0$ y $x = 3$.

(d)
$$y = \sin x$$
, $y = 0$, $x = 0$, $x = 2\pi$.

3. (a) Calcular
$$\int_{-2}^{0} e^x dx.$$

(b) Hallar el área encerrada por las curvas: y = 0, y = -2, $y = \log x$ y x = 0. Sugerencia: Dibujar la región y usar a).

4. Calcular:

(a)
$$\int_{-2}^{3} x^2 - 1 \, dx$$
.
(b) $\int_{-2}^{3} |x^2 - 1| \, dx$.
(c) $\int_{-2}^{3} |x^2 + 1| \, dx$.
(d) $\int_{-2}^{4} \sqrt{|x - 3|} \, dx$.

Integrales impropias

5. (a) Para todos los valores reales de p>0, estudiar la convergencia o divergencia de las integrales:

1

i.
$$\int_1^{+\infty} \frac{1}{x^p} dx$$
 ii.
$$\int_0^1 \frac{1}{x^p} dx$$
 iii.
$$\int_0^{+\infty} \frac{1}{x^p} dx$$

Observación: Dividir los valores de p de la siguiente manera: 0 y <math>p > 1.

- (b) Relacionar los resultados obtenidos con el hecho de que para x > 0, x^{-p} y $x^{-\frac{1}{p}}$ son funciones inversas y, por lo tanto, el gráfico de una es el de la otra reflejado respecto de la recta y = x.
- (c) ¿Para qué valores de p>0 la serie $\sum_{n=1}^{\infty}\frac{1}{n^p}$ converge? En otras palabras, ¿para qué valores de p>0 el límite $\lim_{k\to\infty}\sum_{n=1}^{k}\frac{1}{n^p}$ es finito?
- 6. Analizar la convergencia de las siguientes integrales impropias:

(a)
$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2} x}$$
. (e) $\int_{-\infty}^{+\infty} \frac{dx}{1 + x^{2}}$. (i) $\int_{-1}^{3} \frac{dx}{(1 - x)^{3}}$. (b) $\int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}}$. (f) $\int_{-\infty}^{+\infty} \frac{dx}{x^{2} + 4x + 9}$. (j) $\int_{0}^{+\infty} \frac{\sin x}{x^{2} + \cos x} dx$. (c) $\int_{0}^{+\infty} e^{-kx} dx$. (g) $\int_{0}^{+\infty} \frac{dx}{1 + x^{3}}$. (k) $\int_{-\infty}^{+\infty} \sin(2x) dx$. (l) $\int_{0}^{4} \frac{x}{x^{2} - 4} dx$. (d) $\int_{0}^{+\infty} \frac{\arctan x}{1 + x^{2}} dx$. (h) $\int_{0}^{+\infty} \frac{x}{\sqrt{1 + x^{5}}} dx$. (m) $\int_{1}^{2} \frac{e^{x}}{\sqrt{-x^{3} + 3x^{2} - 2x}} dx$.

En los ítems i), k) y l) estudiar, además, el valor principal.

- 7. Sea $f:\mathbb{R}\to\mathbb{R}$ una función. Decidir si son verdaderas o falsas las siguientes afirmaciones:
 - (a) Si f es continua y positiva tal que $\lim_{x\to+\infty} f(x) = a > 0$, entonces $\int_0^{+\infty} f(x) dx = +\infty$
 - (b) Si f es continua y positiva tal que $\lim_{x\to-\infty} f(x) = a > 0$, entonces $\int_0^{-\infty} f(x) dx = -\infty$
 - (c) Si f es continua y decreciente con $\int_4^{+\infty} f(x) dx = 3$, entonces el $\lim_{x \to +\infty} f(x) = 0$.
 - (d) Si f es una continua y positiva con $\int_4^{+\infty} f(x) dx = 8$, entonces el $\lim_{x \to +\infty} f(x) = 0$.
 - (e) Si f es continua y positiva con $\lim_{x\to+\infty} f(x) = 0$, entonces $\int_0^{+\infty} f(x) dx < +\infty$.
- 8. Para los distintos valores de $p \in \mathbb{R}$ analizar la convergencia de

$$\int_0^{+\infty} \frac{dx}{x^p(1+x^2)}.$$

Integrales dobles

9. Evaluar cada una de las integrales siguientes si $R = [0, 1] \times [0, 1]$:

(a)
$$\iint_R (x^3 + y^2) \, dx dy.$$

(e)
$$\iint_R (x^m y^n) dx dy$$
, donde $m, n > 0$.

(b)
$$\iint_{\mathcal{B}} y e^{xy} dx dy$$
.

(f)
$$\iint_{B} (ax + by + c) dxdy.$$

(c)
$$\iint_{R} (xy)^2 \cos x^3 \, dx \, dy.$$

(g)
$$\iint_R \operatorname{sen}(x+y) \, dx dy$$
.

(d)
$$\iint_{\mathcal{B}} \ln[(x+1)(y+1)] dxdy$$
.

(h)
$$\iint_{\mathcal{D}} (x^2 + 2xy + yx^{1/2}) dxdy$$
.

- 10. Calcular el volumen del sólido acotado por el plano xz, el plano yz, el plano xy, los planos x = 1 y y = 1, y la superficie $z = x^2 + y^4$.
- 11. Sean f y g dos funciones continuas en [a,b] y [c,d], respectivamente. Mostrar que si consideramos el rectángulo $R = [a, b] \times [c, d]$ entonces

$$\iint_{R} [f(x)g(y)] dxdy = \Big(\int_{a}^{b} f(x) dx \Big) \Big(\int_{c}^{d} g(y) dy \Big).$$

- 12. Calcular el volumen del sólido acotado por la superficie $z = \sin y$, los planos x =1, x = 0, y = 0, $y = \pi/2$ y el plano xy.
- 13. Sean $F \in \mathcal{C}^2$ y $f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$. Calcular $\int_a^b \int_a^d f(x,y) \, dx \, dy$ en términos de
- 14. Graficar las regiones determinadas por los límites de integración de las siguientes integrales y calcular las integrales iteradas.

(a)
$$\int_0^1 \int_0^{x^2} dy dx$$
.

(g)
$$\int_0^1 \int_0^{(1-x^2)^{1/2}} dy dx$$
.

(b)
$$\int_{1}^{2} \int_{2x}^{3x+1} dy dx$$
.

(h)
$$\int_0^{\pi/2} \int_0^{\cos x} y \operatorname{sen} x \, dy dx.$$

(c)
$$\int_0^1 \int_1^{e^x} (x+y) \, dy dx$$
.

(i)
$$\int_0^1 \int_{y^2}^y (x^n + y^m) dx dy \ (m, n > 0).$$

(d)
$$\int_{0}^{1} \int_{x^{3}}^{x^{2}} y \, dy dx$$
.

(j)
$$\int_{-1}^{0} \int_{0}^{2(1-x^2)^{1/2}} x \, dy dx$$
.

(e)
$$\int_{-3}^{2} \int_{0}^{y^{2}} (x^{2} + y) dxdy$$

(k)
$$\int_0^\pi \int_0^{\sin y} y \, dx dy.$$

(f)
$$\int_{-1}^{1} \int_{-2|x|}^{|x|} e^{x+y} dy dx$$
.

(l)
$$\int_{-2}^{0} \int_{x^3}^{x+1} (y^2 + 1) \, dy dx$$
.

15. Sea $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} 1, \\ 2y, \end{cases}$$

 $f(x,y) = \begin{cases} 1, & \text{si } x \text{ es racional} \\ 2y, & \text{si } x \text{ no es racional} \end{cases}$

Mostrar que la integral iterada $\int_0^1 \left[\int_0^1 f(x,y) \, dy \right] dx$ existe pero f no es integrable. ¿Existe la otra integral iterada?

- 16. Calcular el área de:
 - (a) la región limitada por la recta y = x y por la curva $y = x^2$.
 - (b) la región formada por todos los puntos (x, y) tales que $|x| + |y| \le a, \ a \ge 0$.
- 17. Calcular

$$\iint_{T} (x \operatorname{sen} x + y \operatorname{sen} (x + y)) \, dx dy$$

siendo T el triángulo de vértices (1,0), (0,1) y (3,3).

18. Sea D la región acotada por los semiejes positivos de x e y y la recta 3x + 4y = 10. Calcular

$$\iint_D (x^2 + y^2) \, dx dy.$$

19. Se
a ${\cal D}$ la región acotada por el ejeyy la parábola
 $x=-4y^2+3.$ Calcular

$$\iint_D x^3 y \, dx dy.$$

- 20. Calcular el volumen de un cono de base de radio r y altura h.
- 21. Calcular el volumen de las siguientes regiones:
 - (a) R: encerrada por la superficie $z = x^2 + y^2$ y el plano z = 10.
 - (b) R: encerrada por el cono de altura 4 dado por $z^2 = x^2 + y^2$.
 - (c) R: encerrada por las superficies $x^2 + y^2 = z$ y $x^2 + y^2 + z^2 = 2$.
 - (d) R: determinada por $x^2 + y^2 + z^2 \le 10$ y $z \ge 2$.
- 22. En las integrales siguientes, cambiar el orden de integración, graficar las regiones correspondientes y evaluar la integral por los dos caminos.

(a)
$$\int_0^1 \int_x^1 xy \, dy dx$$
.
(b) $\int_0^1 \int_x^{2-y} (x+y)^2 \, dx dy$

(d)
$$\int_{-1}^{1} \int_{|y|}^{1} (x+y)^2 dxdy$$
.

(b)
$$\int_0^1 \int_1^{2-y} (x+y)^2 dx dy$$
.

(e)
$$\int_{-3}^{3} \int_{-(9-y^2)^{1/2}}^{(9-y^2)^{1/2}} x^2 dx dy$$
.

(c)
$$\int_0^1 \int_{2x}^{3x} x^2 y \, dy dx$$
.

23. Calcular $\int_D y^2 x^{1/2} dx dy$ donde

$$D = \{(x, y) \in \mathbb{R}^2 : x > 0, y > x^2, y < 10 - x^2\}$$

24. Sea D la región limitada por las rectas $y=2,\ y=\frac{x}{2},\ y=2x$ e y=1. Calcular la siguiente integral

$$\iint_D x^2 y \ dA$$

25. Sea $D=\{(x,y)\in\mathbb{R}^2:0\leq x\leq 1; \sqrt{x}\leq y\leq 1\}$ Calcular la siguiente integral

$$\iint_D \cos\left(\frac{x}{y}\right) dA$$

- 26. Calcular $\int_T e^{x-y} dxdy$ donde T es el triángulo con vértices (0,0), (1,3), y (2,2).
- 27. Sea T la región "triangular" limitada por las rectas $y=x,\ y=\sqrt{2}$ y la curva $y=\sqrt{x}$. Calcular

$$\iint_{R} e^{\frac{x}{y}} dA.$$

Integrales triples

28. Calcular:

(a)
$$\iiint_C (xyz + x^2y^2z^2) dV$$
, donde $C = [0, 1] \times [-3, 2] \times [-1, 1]$.

(b)
$$\iiint_C (x\cos z + y\cos x + z\cos y) dV, \text{ donde } C = [0, \pi] \times [0, \pi] \times [0, \pi].$$

- 29. Calcular:
 - (a) $\iiint_W x \, dV$, donde W es la región limitada por, $x = 0, y = 0, z = 2, z = x^2 + y^2$.
 - (b) $\iiint_W x^2 \cos z \, dV$, donde W es la región limitada por, z = 0, $z = \pi$, y = 0, x = 0, x + y = 1.
 - (c) $\iiint_W dV$, donde W es la región limitada por, $z = x^2 + 3y^2$ y $z = 9 x^2$.

(d)
$$\iiint_W (x+y+z) dV$$
, donde $W = \{(x,y,z) \in \mathbb{R}^3 : ||(x,y,z)|| \le 1\}$.

(e)
$$\iiint_W (x^3 + y + z) dV$$
, donde $W = \{(x, y, z) \in \mathbb{R}^3 : z \in [0, 1], x^2 + y^2 \le 1\}$.

30. Calcular $\int_0^1 \int_0^{2x} \int_{x+y}^{x^2+y^2} dz dy dx$ y graficar la región de integración.

31. Cambiar el orden de integración en

$$\int_0^1 \int_0^x \int_0^y f(x, y, z) \, dz dy dx$$

para obtener otras cinco formas de realizar la misma integración. Graficar la región de integración.

- 32. Sea $B=\{(x,y,z)\in\mathbb{R}^3:\|(x,y,z)\|\leq 1\}$. Demostrar que si f es una función continua en B, impar respecto de z (es decir f(x,y,z)=-f(x,y,-z)), entonces $\iiint_B f(x,y,z)\,dV=0$. ¿Para que otras regiones vale este resultado? (dar ejemplos).
- 33. Sea W la región determinada por las condiciones $0 \le x \le 1$, $0 \le y \le 1$ y $0 \le z \le xy$.
 - (a) Hallar el volumen de W.
- (d) Calcular $\int_W z \, dx dy dz$.
- (b) Calcular $\int_W x \, dx dy dz$.
- (e) Calcular $\int_W xy \, dx dy dz$.
- (c) Calcular $\int_W y \, dx dy dz$.