An Overview

 ${\bf Matthieu\ Nicolas\ (\tt matthieu.nicolas@inria.fr)}$

02/05/2024

MUTE

- Peer-to-Peer (P2P) application
- Allow to edit collaboratively text documents
- Ensure ownership and privacy of data
- Part of the Local-First Software [Kle+19] trend

• Nodes may be disconnected

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)
- Must ensure Eventual Consistency [Ter+95]...
- ... Despite different integration orders of updates

- Nodes may be disconnected
- Have to be able to work without prior synchronous coordination (i.e. consensus)
- Must ensure Eventual Consistency [Ter+95]...
- ... Despite different integration orders of updates

Require conflict resolution mechanisms

are a family of conflict resolution mechanisms

- New specifications of existing Data Types, e.g. Set or Sequence
- Embed natively conflict resolution mechanisms

- New specifications of existing Data Types, e.g. Set or Sequence
- Embed natively conflict resolution mechanisms

Properties of CRDTs

- Enable modifications without coordination
- Ensure Strong Eventual Consistency

- New specifications of existing Data Types, e.g. Set or Sequence
- Embed natively conflict resolution mechanisms

Properties of CRDTs

- Enable modifications without coordination
- Ensure Strong Eventual Consistency

Strong Eventual Consistency

Nodes that integrate the same set of updates reach equivalent states, without additional actions or messages

- New specifications of existing Data Types, e.g. Set or Sequence
- Embed natively conflict resolution mechanisms

Properties of CRDTs

- Enable modifications without coordination
- Ensure Strong Eventual Consistency

Strong Eventual Consistency

Nodes that integrate the same set of updates reach equivalent states, without additional actions or messages

- Rely on the lattice theory . . .
- ... More specifically, CRDTs are join-semilattice

Design of CRDTs

- Several CRDTs may be designed for a given data type . . .
- ... Each offering different trade-offs

What impact the design of a given CRDT are its

- Conflict Resolution Semantics
- Synchronisation Model
- Impact their overhead in terms of computation, memory and bandwidth

Conflict Resolution Semantics

• Distributed setting allows new scenarios

- Results of these executions are undefined
- Designing a CRDT consists in defining its behaviour in such cases

Conflict Resolution Semantics - Case study of the Set

Several semantics were proposed:

- Add-Wins: add(a) has priority over concurrent $rmv(b) \Longrightarrow \{a\}$
- Remove-Wins: rmv(a) has priority over concurrent $add(b) \Longrightarrow \{\}$
- Causal-Length [YR20]: The last action of the longuest chain of sequential updates determines the presence (or not) of the element
 ==> {a}

Bibliographie i

- [Kle+19] Martin Kleppmann et al. "Local-First Software: You Own Your Data, in Spite of the Cloud". In: Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software.

 Onward! 2019. Athens, Greece: Association for Computing Machinery, 2019, pp. 154–178. ISBN: 9781450369954. DOI: 10.1145/3359591.3359737. URL: https://doi.org/10.1145/3359591.3359737.
- [Ter+95] Douglas B Terry et al. "Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System". In: SIGOPS Oper. Syst. Rev. 29.5 (Dec. 1995), pp. 172–182. ISSN: 0163-5980. DOI: 10.1145/224057.224070. URL: https://doi.org/10.1145/224057.224070.
- [Sha+11] Marc Shapiro et al. "Conflict-Free Replicated Data Types". In: Proceedings of the 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems. SSS 2011. 2011, pp. 386–400. DOI: 10.1007/978-3-642-24550-3_29.

Bibliographie ii

[YR20]

Weihai Yu et al. "A Low-Cost Set CRDT Based on Causal Lengths". In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data. New York, NY, USA: Association for Computing Machinery, 2020. ISBN: 9781450375245, URL:

https://doi.org/10.1145/3380787.3393678.

Back-up slides

MUTE System Architecture

MUTE Software Architecture

