Проверка гипотезы о равенстве дисперсий (критерий Фишера и критерий Ансари-Брэдли)

- Пусть выборка $X_1, ..., X_n$ порождена СВ X с непрерывным распределением $F(t-\mu)$, а выборка $Y_1, ..., Y_n$ СВ Y с распределением $F(\frac{t-\mu}{\Delta})$, $\Delta > 0$. Предполагается, что DX $< \infty$, и выполняется условие $\int_{-\infty}^{\infty} tf(t)dt = 0$. Покажите, что из справедливости гипотезы H_1 : $\Delta < 1$ следует, что DX>DY.
- 2. Согласно опросам 29 семей, проводившимся в 1968 году в юго-западном регионе Англии, выборочное среднее арендной платы за меблированную квартиру составило 2,5£, а выборочная дисперсия 0,67 £². В Уэльсе выборочное среднее арендной платы 16 семей составило 2,06£, а выборочная дисперсия 0,42 £². Проверьте гипотезу о равенстве дисперсий арендной платы в двух регионах Великобритании. Уровень значимости считать равным 0.05. Предполагается, что все наблюдения имеют гауссовское распределение
- 3 Станок штампует детали, размер которых соответствует заданному нормативу, т.е. вероятность превышения и занижения нормативного размера одинакова. Технологи провели наладку станка для того, чтобы уменьшить отклонения размеров изготовленных деталей от размера, требуемого стандартом. До и после наладки случайным образом было выбрано по 11 деталей. Оказалось, что размер деталей, выбранных для наладки, составил (в мм): 52,4; 56,1; 48,6; 46,5; 46,0; 42,2; 48,8; 56,6; 59,8; 49,7; 51,6. Размер деталей, изготовленных после наладки станка (в мм): 49,3; 47,7; 52,9; 48,3; 49,1; 46,4; 47,0; 52,0; 51,5; 51,2; 49,8. Можно ли считать, опираясь на эти данные, что точность изготовления деталей увеличилась после наладки? Уровень значимости считать равным 0,05.

Домашнее задание

1. В метеорологии принято характеризовать температуру месяца ее средним значением (среднее значение температуры месяца равно сумме температур всех дней данного месяца, деленной на число дней в этом месяце). В таблице ниже приведены значения средней температуры января в г. Саратове и г. Алатыре. Проверьте равенство дисперсий среднеянварских температур в городах Саратове и Алатыре.

Год	1891	1892	1893	1894	1895	1896	1897
Саратов Алатырь	$-19,2 \\ -21,8$	-14,8 $-15,4$	-19,6 $-20,8$	$-11,1 \\ -11,3$	-9,4 $-11,6$	$-16,9 \\ -19,2$	$ \begin{array}{c c} -13,7 \\ -13,0 \end{array} $
Год	1899	1911	1912	1913	1914	1915	
Саратов Алатырь	$-4,9 \\ -7,4$	-13,9 $-15,1$	$-9,4 \\ -14,4$	-8,3 $-11,1$	$-7,9 \\ -10,5$	-5,3 $-7,2$	

2. Решите предыдущую задачу, применяя критерий Ансари-Брэдли. Предварительно центрируйте данные выборочными медианами.

3. За последние 5 лет выборочная дисперсия доходности актива А составила 0.04, а выборочная дисперсия доходности актива Б составила 0.05. Есть ли основание утверждать (на уровне значимости 0.05), что вложения в актив А менее рискованны, чем вложения в актив Б? Предполагается, что доходности активов являются гауссовскими CB.

$$k_0: \Delta = \frac{\sigma_4}{\sigma_X}$$

$$k_a: \Delta > 1$$

$$\Delta \neq 0$$

$$T(x,y) = F_{n,m} = \frac{\frac{1}{n-1} \leq (y_i - \overline{y})^2}{\frac{1}{m-1} \leq (x_i - \overline{x})^2} = \frac{Sy^2}{Sx^2} \sim F(n-1, m-1)$$

$$k_1, k_2$$

$$t \sim F(N,m) \Rightarrow \frac{1}{T} \sim F(m,n)$$

Ecny Ma: $\frac{Gy}{Gx} = \Delta < 1$
 $y = \frac{1}{F_{N,m}} = \frac{Sx^2}{Sy^2}$, we depend $F_{m,n} = \frac{1}{F_{N,m}} = \frac{Sx^2}{Sy^2} \sim \frac{1}{Sy^2}$

Ecny Ma: D> (u Sy => Sx => Sepien Fn, m = Sy2 ~ F(n-1, m-1)

Ecry Ha: D+1 $4 \text{ Sy}^2 > 8x^2 > 7 = F_{n_1m} = \frac{8x^2}{8x^2} \sim F(n_{-1}, m_{-1})$ $8y^{2} < 8x^{2} > T = F_{n,m} = \frac{8x^{2}}{8y^{2}} \sim F(m-1, n-1)$

