Some Elements of Learning Theory

Nicolò Cesa-Bianchi

Università degli Studi di Milano

► A brief introduction to statistical learning

- ► A brief introduction to statistical learning
- ▶ From statistical learning to sequential decision making

- ► A brief introduction to statistical learning
- From statistical learning to sequential decision making
- ▶ Prediction with expert advice and multiarmed bandits

- ► A brief introduction to statistical learning
- From statistical learning to sequential decision making
- Prediction with expert advice and multiarmed bandits
- Online convex optimization

- ► A brief introduction to statistical learning
- From statistical learning to sequential decision making
- ▶ Prediction with expert advice and multiarmed bandits
- Online convex optimization
- Contextual bandits

- ► A brief introduction to statistical learning
- From statistical learning to sequential decision making
- ▶ Prediction with expert advice and multiarmed bandits
- Online convex optimization
- Contextual bandits
- ► We do some (short) proofs

► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)

- ► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- ▶ Pioneered by Vladimir Vapnik in the Seventies

- ► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- Pioneered by Vladimir Vapnik in the Seventies
- ► Later —and independently— Leslie Valiant introduces computational learning theory (A theory of the learnable, 1984)

- ► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- ▶ Pioneered by Vladimir Vapnik in the Seventies
- ► Later —and independently— Leslie Valiant introduces computational learning theory (A theory of the learnable, 1984)

Main contributions:

- ► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- ▶ Pioneered by Vladimir Vapnik in the Seventies
- ► Later —and independently— Leslie Valiant introduces computational learning theory (A theory of the learnable, 1984)

Main contributions:

Mathematical model of learning and conditions characterizing what can be learned

- One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- Pioneered by Vladimir Vapnik in the Seventies
- ► Later —and independently— Leslie Valiant introduces computational learning theory (A theory of the learnable, 1984)

Main contributions:

- ▶ Mathematical model of learning and conditions characterizing what can be learned
- Guidelines to practitioners (e.g., choice of learning bias, control of overfitting)

- ► One of the most important mathematical frameworks for the analysis of learning algorithms (mainly supervised learning)
- ▶ Pioneered by Vladimir Vapnik in the Seventies
- ► Later —and independently— Leslie Valiant introduces computational learning theory (A theory of the learnable, 1984)

Main contributions:

- ▶ Mathematical model of learning and conditions characterizing what can be learned
- ▶ Guidelines to practitioners (e.g., choice of learning bias, control of overfitting)
- Principled and successful algorithms (SVM, Boosting)

ightharpoonup Data space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$)

- ightharpoonup Data space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$)
- ► Label space *y*
 - \triangleright $\mathcal{Y} = \mathbb{R}$ for regression
 - $\mathcal{Y} = \{-1,1\}$ for binary classification

- ightharpoonup Data space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$)
- ► Label space *y*
 - \triangleright $\mathcal{Y} = \mathbb{R}$ for regression
 - $\mathcal{Y} = \{-1, 1\}$ for binary classification
- ▶ Loss function $\ell: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$
 - Quadratic $\ell(y, \widehat{y}) = (\widehat{y} y)^2$ for regression
 - ▶ Zero-one $\ell(y, \widehat{y}) = \mathbb{I}\{\widehat{y} \neq y\}$ for binary classification
 - ► Hinge $\ell(y, \hat{y}) = [1 y \hat{y}]_{\perp}$ convex proxy for binary classification

- ightharpoonup Data space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$)
- ► Label space *y*
 - $\triangleright y = \mathbb{R}$ for regression
 - $\mathcal{Y} = \{-1, 1\}$ for binary classification
- ▶ Loss function $\ell: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$
 - Quadratic $\ell(y, \widehat{y}) = (\widehat{y} y)^2$ for regression
 - ightharpoonup Zero-one $\ell(y, \widehat{y}) = \mathbb{I}\{\widehat{y} \neq y\}$ for binary classification
 - ▶ Hinge $\ell(y, \hat{y}) = \begin{bmatrix} 1 y \hat{y} \end{bmatrix}_{\perp}$ convex proxy for binary classification
- ▶ Predictor $f: \mathcal{X} \to \mathcal{Y}$ maps data points to labels

- ightharpoonup Data space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$)
- ► Label space *y*
 - $\triangleright y = \mathbb{R}$ for regression
 - $\mathcal{Y} = \{-1, 1\}$ for binary classification
- ▶ Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Quadratic $\ell(y, \widehat{y}) = (\widehat{y} y)^2$ for regression
 - ▶ Zero-one $\ell(y, \widehat{y}) = \mathbb{I}\{\widehat{y} \neq y\}$ for binary classification
 - ▶ Hinge $\ell(y, \hat{y}) = [1 y \hat{y}]_+$ convex proxy for binary classification
- ▶ Predictor $f: \mathcal{X} \to \mathcal{Y}$ maps data points to labels
- ightharpoonup Training set $(x_1, y_1), \ldots, (x_m, y_m)$ a (multi)set S of labeled data points

- lacktriangle Data space \mathcal{X} (often $\mathcal{X}=\mathbb{R}^d$)
- ► Label space *y*
 - \triangleright $\mathcal{Y} = \mathbb{R}$ for regression
 - $\mathcal{Y} = \{-1, 1\}$ for binary classification
- ▶ Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Quadratic $\ell(y, \widehat{y}) = (\widehat{y} y)^2$ for regression
 - ▶ Zero-one $\ell(y, \widehat{y}) = \mathbb{I}\{\widehat{y} \neq y\}$ for binary classification
 - ▶ Hinge $\ell(y, \hat{y}) = \begin{bmatrix} 1 y \hat{y} \end{bmatrix}_{\perp}$ convex proxy for binary classification
- ▶ Predictor $f: \mathcal{X} \to \mathcal{Y}$ maps data points to labels
- ightharpoonup Training set $(x_1, y_1), \ldots, (x_m, y_m)$ a (multi)set S of labeled data points
- Learning algorithm: given a loss function, maps finite training sets to predictors

ightharpoonup A learning problem is defined by an unknown distribution $\mathcal D$ on $\mathcal X imes \mathcal Y$

- lacktriangle A learning problem is defined by an unknown distribution ${\mathcal D}$ on ${\mathcal X} imes {\mathcal Y}$
- Any data point (x, y) is the realization of an indipendent random draw (X, Y) from \mathcal{D}

- lacktriangle A learning problem is defined by an unknown distribution $\mathcal D$ on $\mathcal X imes \mathcal Y$
- lacktriangle Any data point (x,y) is the realization of an indipendent random draw (X,Y) from $\mathcal D$
- ightharpoonup Therefore, the training set S is a random sample from \mathcal{D}

- ightharpoonup A learning problem is defined by an unknown distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$
- lacktriangle Any data point (x,y) is the realization of an indipendent random draw (X,Y) from $\mathcal D$
- ightharpoonup Therefore, the training set S is a random sample from \mathcal{D}
- ▶ Given a loss, the statistical risk of predictor f is $\ell_{\mathcal{D}}(f) = \mathbb{E}[\ell(Y, f(X))]$

- ightharpoonup A learning problem is defined by an unknown distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$
- lacktriangle Any data point (x,y) is the realization of an indipendent random draw (X,Y) from $\mathcal D$
- ightharpoonup Therefore, the training set S is a random sample from \mathcal{D}
- ▶ Given a loss, the statistical risk of predictor f is $\ell_{\mathcal{D}}(f) = \mathbb{E}[\ell(Y, f(X))]$

- lacktriangle A learning problem is defined by an unknown distribution ${\mathcal D}$ on ${\mathcal X} imes {\mathcal Y}$
- lacktriangle Any data point (x,y) is the realization of an indipendent random draw (X,Y) from $\mathcal D$
- ightharpoonup Therefore, the training set S is a random sample from \mathcal{D}
- ▶ Given a loss, the statistical risk of predictor f is $\ell_{\mathcal{D}}(f) = \mathbb{E}[\ell(Y, f(X))]$
- ▶ Bayes optimal predictor $f^*: \mathcal{X} \to \mathcal{Y}$ is $f^*(\boldsymbol{x}) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{Y}} \mathbb{E}[\ell(Y, \widehat{y}) \, | \, \boldsymbol{X} = \boldsymbol{x}]$
- ▶ Bayes risk $\ell_{\mathcal{D}}(f^*)$

- lacktriangle A learning problem is defined by an unknown distribution $\mathcal D$ on $\mathcal X imes \mathcal Y$
- ightharpoonup Any data point (x,y) is the realization of an indipendent random draw (X,Y) from \mathcal{D}
- lacktriangle Therefore, the training set S is a random sample from ${\cal D}$
- ▶ Given a loss, the statistical risk of predictor f is $\ell_{\mathcal{D}}(f) = \mathbb{E}[\ell(Y, f(X))]$
- ▶ Bayes optimal predictor $f^*: \mathcal{X} \to \mathcal{Y}$ is $f^*(\boldsymbol{x}) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{Y}} \mathbb{E}[\ell(Y, \widehat{y}) \, | \, \boldsymbol{X} = \boldsymbol{x}]$
- ▶ Bayes risk $\ell_{\mathcal{D}}(f^*)$
- ▶ Square loss: $f^*(x) = \mathbb{E}[Y \mid X = x]$ and $\ell_{\mathcal{D}}(f^*) = \mathbb{E}[\operatorname{Var}[Y \mid X]]$

- lacktriangle A learning problem is defined by an unknown distribution $\mathcal D$ on $\mathcal X imes \mathcal Y$
- lacktriangle Any data point (x,y) is the realization of an indipendent random draw (X,Y) from $\mathcal D$
- ightharpoonup Therefore, the training set S is a random sample from \mathcal{D}
- ▶ Given a loss, the statistical risk of predictor f is $\ell_{\mathcal{D}}(f) = \mathbb{E}[\ell(Y, f(X))]$
- ▶ Bayes optimal predictor $f^*: \mathcal{X} \to \mathcal{Y}$ is $f^*(\boldsymbol{x}) = \operatorname*{argmin}_{\widehat{y} \in \mathcal{V}} \mathbb{E}[\ell(Y, \widehat{y}) \, \big| \, \boldsymbol{X} = \boldsymbol{x}]$
- ightharpoonup Bayes risk $\ell_{\mathcal{D}}(f^*)$
- ▶ Square loss: $f^*(x) = \mathbb{E}[Y \mid X = x]$ and $\ell_{\mathcal{D}}(f^*) = \mathbb{E}[\operatorname{Var}[Y \mid X]]$

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\ell_{\mathcal{D}}(h_S) = \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h)$$
$$+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*)$$
$$+ \ell_{\mathcal{D}}(f^*)$$

Trade-offs

(estimation error \rightarrow overfitting) (approximation error \rightarrow underfitting) (Bayes risk)

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\ell_{\mathcal{D}}(h_S) = \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h)$$
$$+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*)$$
$$+ \ell_{\mathcal{D}}(f^*)$$

Trade-offs

▶ Underfitting control: Let \mathcal{H} be as large as possible

(estimation error \rightarrow overfitting) (approximation error \rightarrow underfitting) (Bayes risk)

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\ell_{\mathcal{D}}(h_S) = \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h)$$
$$+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*)$$
$$+ \ell_{\mathcal{D}}(f^*)$$

Trade-offs

- ightharpoonup Underfitting control: Let ${\cal H}$ be as large as possible
- Overfitting control:

(estimation error \rightarrow overfitting) (approximation error \rightarrow underfitting) (Bayes risk)

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\begin{split} \ell_{\mathcal{D}}(h_S) &= \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \\ &+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*) \\ &+ \ell_{\mathcal{D}}(f^*) \end{split} \qquad \text{(approximation error \rightarrow underfitting)} \\ &+ \ell_{\mathcal{D}}(f^*) \end{split}$$

Trade-offs

- ightharpoonup Underfitting control: Let \mathcal{H} be as large as possible
- Overfitting control:
 - ▶ Ensure that training error of h is close to $\ell_{\mathcal{D}}(h)$ for all $h \in \mathcal{H}$ (uniform convergence)

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\begin{split} \ell_{\mathcal{D}}(h_S) &= \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \\ &+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*) \\ &+ \ell_{\mathcal{D}}(f^*) \end{split} \qquad \text{(estimation error \rightarrow overfitting)} \\ &+ \ell_{\mathcal{D}}(f^*) \end{split}$$

Trade-offs

- ightharpoonup Underfitting control: Let \mathcal{H} be as large as possible
- Overfitting control:
 - ▶ Ensure that training error of h is close to $\ell_{\mathcal{D}}(h)$ for all $h \in \mathcal{H}$ (uniform convergence)
 - Minimize regularized training error (stability)

Suppose $h_S \in \mathcal{H}$ is the predictor output by a learning algorithm A with training set S $(h_S \in \mathcal{H} \text{ is a random variable})$

$$\begin{split} \ell_{\mathcal{D}}(h_S) &= \ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \\ &+ \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) - \ell_{\mathcal{D}}(f^*) \\ &+ \ell_{\mathcal{D}}(f^*) \end{split} \qquad \text{(approximation error \rightarrow underfitting)} \\ &+ \ell_{\mathcal{D}}(f^*) \end{split}$$

Trade-offs

- ▶ Underfitting control: Let \mathcal{H} be as large as possible
- Overfitting control:
 - ▶ Ensure that training error of h is close to $\ell_{\mathcal{D}}(h)$ for all $h \in \mathcal{H}$ (uniform convergence)
 - Minimize regularized training error (stability)
 - ▶ Show that *A* can compress the training set (compression implies learning)

Success stories: Characterization of sample complexity

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ?

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

 $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

- $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$
- Agnostic case: $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon^2}\right)$

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1-\delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

- $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$
- Agnostic case: $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon^2}\right)$
- ► Realizable case: $(f^* \in \mathcal{H} \text{ and } \ell_{\mathcal{D}}(f^*) = 0) \ m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon}\right)$

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

- $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$
- Agnostic case: $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon^2}\right)$
- ▶ Realizable case: $(f^* \in \mathcal{H} \text{ and } \ell_{\mathcal{D}}(f^*) = 0) \ m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon}\right)$
- $ightharpoonup d_{\mathcal{H}}$ can be infinite, implying \mathcal{H} is not learnable

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1-\delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

- $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$
- Agnostic case: $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon^2}\right)$
- ▶ Realizable case: $(f^* \in \mathcal{H} \text{ and } \ell_{\mathcal{D}}(f^*) = 0) \ m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon}\right)$
- $ightharpoonup d_{\mathcal{H}}$ can be infinite, implying \mathcal{H} is not learnable
- lacktriangle Minimizing training error in ${\cal H}$ achieves upper bound in the agnostic case

What is the training set size $m_{\mathcal{H}}$ necessary and sufficient to ensure

$$\ell_{\mathcal{D}}(h_S) - \inf_{h \in \mathcal{H}} \ell_{\mathcal{D}}(h) \le \varepsilon$$

with probability at least $1 - \delta$ w.r.t. the random draw of S and irrespective to \mathcal{D} ? Binary classification with zero-one loss

- $ightharpoonup m_{\mathcal{H}}$ is determined by a simple combinatorial parameter, the VC-dimension $d_{\mathcal{H}}$
- Agnostic case: $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon^2}\right)$
- ▶ Realizable case: ($f^* \in \mathcal{H}$ and $\ell_{\mathcal{D}}(f^*) = 0$) $m_{\mathcal{H}} = \Theta\left(\frac{d_{\mathcal{H}} + \ln(1/\delta)}{\varepsilon}\right)$
- $ightharpoonup d_{\mathcal{H}}$ can be infinite, implying \mathcal{H} is not learnable
- lacktriangle Minimizing training error in ${\cal H}$ achieves upper bound in the agnostic case
- Majority vote over a set of consistent predictors achieves upper bound in the realizable case

▶ Data streams are ubiquitous: sensors, markets, user interactions

- ▶ Data streams are ubiquitous: sensors, markets, user interactions
- ▶ New data is being generated all the time

- ▶ Data streams are ubiquitous: sensors, markets, user interactions
- New data is being generated all the time
- ▶ The train-test model of statistical learning is ill-suited for learning on data streams

- ▶ Data streams are ubiquitous: sensors, markets, user interactions
- New data is being generated all the time
- ▶ The train-test model of statistical learning is ill-suited for learning on data streams
- After observing a new data point, predictors should be incrementally adjusted at a constant cost

History bits

 Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)

History bits

- Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- ▶ Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)

History bits

- Online learning model formalized by Nick Littlestone and Manfred Warmuth (Mistake bounds and logarithmic linear-threshold learning algorithms, 1989)
- Volodya Vovk independently develops a related framework (Aggregating strategies, 1990)
- ▶ Similar ideas also independently emerged in game theory and information theory

The algorithm starts with a default model $h_1 \in \mathcal{H}$

The algorithm starts with a default model $h_1 \in \mathcal{H}$

For
$$t = 1, 2, ...$$

1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- \triangleright Computation of h_{t+1} relies on local information

The algorithm starts with a default model $h_1 \in \mathcal{H}$

- 1. The current model $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. $h_{t+1} \in \mathcal{H}$ is computed based on h_t and (\boldsymbol{x}_t, y_t)
- \triangleright Computation of h_{t+1} relies on local information
- No stochastic assumptions on the stream

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of A is

$$\sum_{t=1}^{T} \ell(y_t, h_t(\boldsymbol{x}_t))$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of A is

$$\sum_{t=1}^{T} \ell(y_t, h_t(\boldsymbol{x}_t))$$

Regret

$$R_T = \sum_{t=1}^{T} \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell(y_t, h(\boldsymbol{x}_t))$$

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of A is

$$\sum_{t=1}^{T} \ell(y_t, h_t(\boldsymbol{x}_t))$$

Regret

$$R_T = \sum_{t=1}^T \ell(y_t, h_t(\boldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(\boldsymbol{x}_t))$$

A sequential counterpart to the variance error in statistical learning

Sequential risk

Given a convex loss ℓ and a stream $(x_1, y_1), (x_2, y_2), \ldots$, the sequential risk of A is

$$\sum_{t=1}^{T} \ell(y_t, h_t(\boldsymbol{x}_t))$$

Regret

$$R_T = \sum_{t=1}^T \ell(y_t, h_t(oldsymbol{x}_t)) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell(y_t, h(oldsymbol{x}_t))$$

- A sequential counterpart to the variance error in statistical learning
- ▶ Can we ensure $\frac{R_T}{T} \to 0$ as $T \to \infty$ for all streams?

Learning to play a game (1956)

▶ Theory of repeated games pioneered by James Hannan and David Blackwell

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- ▶ Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- ▶ Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)
- ▶ Replace data stream with sequence of loss functions, e.g., $\ell_t(h_t) = \ell(y_t, h_t(x_t))$

11/51

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)
- ▶ Replace data stream with sequence of loss functions, e.g., $\ell_t(h_t) = \ell(y_t, h_t(x_t))$

$$\ell_t(h_t) = \ell(y_t, h_t(\boldsymbol{x}_t))$$

Online learning in the simplex

 \blacktriangleright Let \mathcal{H} be the d-dimensional simplex Δ_d

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)
- ▶ Replace data stream with sequence of loss functions, e.g., $\ell_t(h_t) = \ell(y_t, h_t(x_t))$

Online learning in the simplex

- Let \mathcal{H} be the d-dimensional simplex Δ_d
- ▶ The loss at time t of $p_t \in \Delta_d$ is $\ell_t^\top p_t = \mathbb{E}[\ell_t(I_t)]$ for $I_t \sim p_t$

Learning to play a game (1956)

- ▶ Theory of repeated games pioneered by James Hannan and David Blackwell
- Play a game repeatedly against a possibly suboptimal opponent (a.k.a. the data stream)
- ▶ Replace data stream with sequence of loss functions, e.g., $\ell_t(h_t) = \ell(y_t, h_t(x_t))$

Online learning in the simplex

- Let \mathcal{H} be the d-dimensional simplex Δ_d
- ▶ The loss at time t of $p_t \in \Delta_d$ is $\ell_t^\top p_t = \mathbb{E}[\ell_t(I_t)]$ for $I_t \sim p_t$
- ▶ This is a linear loss with bounded coefficients $\ell_t(i) \in [0,1]$

Prediction with expert advice

A sequential decision problem

- d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t

- $(?) \quad (?) \quad (?) \quad (?) \quad (?)$

Prediction with expert advice

A sequential decision problem

- d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t

- (?) (?) (?) (?)

For t = 1, 2, ...

1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Prediction with expert advice

A sequential decision problem

- d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t
 - .7
- .3
- .2
- .4
- .1
- .6
- .4
- .9
- .2

- 1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 2. Player gets feedback information: $\ell_t(1), \ldots, \ell_t(d)$

$$R_T = \sum_{t=1}^T \boldsymbol{\ell}_t^\top \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^T \boldsymbol{\ell}_t^\top \boldsymbol{p}$$

$$R_T = \sum_{t=1}^{T} \boldsymbol{\ell}_t^{\top} \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^{T} \boldsymbol{\ell}_t^{\top} \boldsymbol{p} = \mathbb{E} \left[\sum_{t=1}^{T} \ell_t(I_t) \right] - \min_{i=1,...,d} \sum_{t=1}^{T} \ell_t(i)$$

$$R_T = \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\dots,d} \sum_{t=1}^T \ell_t(i)$$

Lower bound using a statistical learning argument

Regret

$$R_T = \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,...,d} \sum_{t=1}^T \ell_t(i)$$

Lower bound using a statistical learning argument

 \blacktriangleright $\ell_t(i) \to L_t(i) \in \{0,1\}$ independent random coin flip

Regret

$$R_T = \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\dots,d} \sum_{t=1}^T \ell_t(i)$$

Lower bound using a statistical learning argument

- lacksquare $\ell_t(i)
 ightarrow L_t(i) \in \{0,1\}$ independent random coin flip
- $lackbox{
 ho}$ For any player strategy $\mathbb{E}\left|\sum_{t=1}^T L_t(I_t)\right| = rac{T}{2}$

Regret

$$R_T = \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p}_t - \min_{\boldsymbol{p} \in \Delta_d} \sum_{t=1}^T \boldsymbol{\ell}_t^{\top} \boldsymbol{p} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\dots,d} \sum_{t=1}^T \ell_t(i)$$

Lower bound using a statistical learning argument

- $lackbox{$lackbox{\blacktriangleright}$} \ell_t(i)
 ightarrow L_t(i) \in \{0,1\}$ independent random coin flip
- $lackbox{ For any player strategy } \mathbb{E}\left|\sum_{t=1}^{T}L_{t}(I_{t})\right|=rac{T}{2}$
- ► Then the expected regret is

$$\mathbb{E}\left[\max_{i=1,\dots,d} \sum_{t=1}^{T} \left(\frac{1}{2} - L_t(i)\right)\right] = (1 - o(1))\sqrt{\frac{T \ln d}{2}}$$

for $d, T \to \infty$

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

the sum at the exponent is the total loss of action i up to the previous time step

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

the sum at the exponent is the total loss of action i up to the previous time step

Regret bound

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

the sum at the exponent is the total loss of action i up to the previous time step

Regret bound

$$lacksquare$$
 If $\eta=\sqrt{rac{\ln d}{8T}}$ t

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

the sum at the exponent is the total loss of action i up to the previous time step

Regret bound

- If $\eta = \sqrt{\frac{\ln d}{8T}}$ then $R_T \le \sqrt{\frac{T \ln d}{2}}$
- This matches the asymptotic lower bound, including constants

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

the sum at the exponent is the total loss of action i up to the previous time step

Regret bound

• If $\eta = \sqrt{\frac{\ln d}{8T}}$ then $R_T \le \sqrt{\frac{T \ln d}{2}}$

$$R_T \le \sqrt{\frac{T \ln d}{2}}$$

- This matches the asymptotic lower bound, including constants
- We prove this later in a more general setting

The bandit problem: playing an unknown game

- \triangleright d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t
 - ?
- ?
- ?
- ?
- ?
- ?

-)
- ?

?

?

For t = 1, 2, ...

The bandit problem: playing an unknown game

- d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t

- $(?) \quad (?) \quad (?) \quad (?) \quad (?)$

For t = 1, 2, ...

1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

The bandit problem: playing an unknown game

- d actions
- ▶ Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(d)) \in [0, 1]^d$ for each time step t

- (?) (?) (?) (?)

For t = 1, 2, ...

- 1. Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 2. Player gets feedback information: Only $\ell_t(I_t)$ is revealed

► Ad placement

- Ad placement
- Dynamic content/layout optimization

- ► Ad placement
- Dynamic content/layout optimization
- ► Real time bidding

- ► Ad placement
- Dynamic content/layout optimization
- ► Real time bidding
- ► Recommender systems

- ► Ad placement
- Dynamic content/layout optimization
- ► Real time bidding
- Recommender systems
- Clinical trials

- ► Ad placement
- Dynamic content/layout optimization
- ► Real time bidding
- Recommender systems
- Clinical trials
- ► Network protocol optimization

An observability graph over actions

An observability graph over actions

An observability graph over actions

 $\ell_t(i)$ is observed iff $I_t \in \{i\} \cup \mathcal{N}_G(i)$

Recovering expert and bandit settings

Experts: clique

Bandits: edgeless graph

Relationships between actions

Player's strategy must use loss estimates

$$ightharpoonup p_t(i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i=1,\ldots,d$$

Player's strategy must use loss estimates

$$ightharpoonup p_t(i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i=1,\ldots,d$$

$$\blacktriangleright \ \widehat{\ell}_t(i) = \left\{ \begin{array}{ll} \frac{\ell_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed because } I_t \in \{i\} \cup \mathcal{N}_G(i) \\ 0 & \text{otherwise} \end{array} \right.$$

Player's strategy must use loss estimates

$$p_t(i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i = 1, \dots, d$$

$$\left(\frac{\ell_t(i)}{\ell_t(i)} \right) \text{ is observed because } L \in \{i\} \cup A \}$$

$$\widehat{\ell}_t(i) = \left\{ \begin{array}{ll} \frac{\ell_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed because } I_t \in \{i\} \cup \mathcal{N}_G(i) \\ 0 & \text{otherwise} \end{array} \right.$$

Importance sampling estimator

Player's strategy must use loss estimates

$$ightharpoonup p_t(i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i=1,\ldots,d$$

$$\widehat{\ell}_t(i) = \left\{ \begin{array}{l} \frac{\ell_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed because } I_t \in \{i\} \cup \mathcal{N}_G(i) \\ 0 & \text{otherwise} \end{array} \right.$$

Importance sampling estimator

$$\begin{split} \mathbb{E}_t \Big[\widehat{\ell}_t(i) \Big] &= \frac{\ell_t(i)}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)} \times \mathbb{P}_t \big(\ell_t(i) \text{ observed} \big) + 0 = \ell_t(i) \\ \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] &= \frac{\ell_t(i)^2}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)^2} \times \mathbb{P}_t \big(\ell_t(i) \text{ observed} \big) + 0 = \frac{\ell_t(i)^2}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)} \end{split}$$

Player's strategy must use loss estimates

$$ightharpoonup p_t(i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) \qquad i=1,\ldots,d$$

$$\widehat{\ell}_t(i) = \left\{ \begin{array}{l} \frac{\ell_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ observed})} & \text{if } \ell_t(i) \text{ is observed because } I_t \in \{i\} \cup \mathcal{N}_G(i) \\ 0 & \text{otherwise} \end{array} \right.$$

Importance sampling estimator

$$\mathbb{E}_t \Big[\widehat{\ell}_t(i) \Big] = \frac{\ell_t(i)}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)} \times \mathbb{P}_t \big(\ell_t(i) \text{ observed} \big) + 0 = \ell_t(i)$$

$$\mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] = \frac{\ell_t(i)^2}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)} \times \mathbb{P}_t \big(\ell_t(i) \text{ observed} \big) + 0 = \ell_t(i)$$

 $\mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] = \frac{\ell_t(i)^2}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)^2} \times \mathbb{P}_t \big(\ell_t(i) \text{ observed} \big) + 0 \leq \frac{1}{\mathbb{P}_t \big(\ell_t(i) \text{ observed} \big)}$

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \qquad p_t(i) = \frac{1}{W_t} \exp\left(-\eta \sum_{i=1}^{t-1} \widehat{\ell}_s(i)\right) = \frac{w_t(i)}{W_t} \quad \text{is a r.v.!}$$

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \qquad p_t(i) = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \hat{\ell}_s(i)\right) = \frac{w_t(i)}{W_t} \quad \text{is a r.v.!} \\ &= \sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \, \hat{\ell}_t(i)) \qquad \qquad \text{(because } w_{t+1}(i) = e^{-\eta \sum_{s=1}^{t-1} \hat{\ell}_s(i) - \eta \hat{\ell}_t(i)}\text{)} \end{split}$$

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \qquad p_t(i) = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) = \frac{w_t(i)}{W_t} \quad \text{is a r.v.!} \\ &= \sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \, \widehat{\ell}_t(i)) \qquad \qquad \text{(because } w_{t+1}(i) = e^{-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i) - \eta \widehat{\ell}_t(i)) \\ &= \sum_{i=1}^d p_t(i) \, \exp(-\eta \, \widehat{\ell}_t(i)) \end{split}$$

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \qquad p_t(i) = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) = \frac{w_t(i)}{W_t} \quad \text{is a r.v.!} \\ &= \sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \widehat{\ell}_t(i)) \qquad \qquad \text{(because } w_{t+1}(i) = e^{-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i) - \eta \widehat{\ell}_t(i)}) \\ &= \sum_{i=1}^d p_t(i) \exp(-\eta \widehat{\ell}_t(i)) \\ &\leq \sum_{s=1}^d p_t(i) \left(1 - \eta \widehat{\ell}_t(i) + \frac{\left(\eta \widehat{\ell}_t(i)\right)^2}{2}\right) \qquad \text{(using } e^{-x} \leq 1 - x + x^2/2 \text{ for all } x \geq 0) \end{split}$$

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \qquad p_t(i) = \frac{1}{W_t} \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i)\right) = \frac{w_t(i)}{W_t} \quad \text{is a r.v.!} \\ &= \sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \widehat{\ell}_t(i)) \qquad \qquad \text{(because } w_{t+1}(i) = e^{-\eta \sum_{s=1}^{t-1} \widehat{\ell}_s(i) - \eta \widehat{\ell}_t(i)}) \\ &= \sum_{i=1}^d p_t(i) \exp(-\eta \widehat{\ell}_t(i)) \\ &\leq \sum_{i=0}^d p_t(i) \left(1 - \eta \widehat{\ell}_t(i) + \frac{(\eta \widehat{\ell}_t(i))^2}{2}\right) \qquad \text{(using } e^{-x} \leq 1 - x + x^2/2 \text{ for all } x \geq 0) \\ &\leq 1 - \eta \sum_{i=1}^d p_t(i) \widehat{\ell}_t(i) + \frac{\eta^2}{2} \sum_{i=1}^d p_t(i) \widehat{\ell}_t(i)^2 \end{split}$$

Taking logs, using $\ln(1+x) \le x$, and summing over $t=1,\ldots,T$ yields

$$\ln \frac{W_{T+1}}{W_1} \le -\eta \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i) + \frac{\eta^2}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i)^2$$

Taking logs, using $\ln(1+x) \le x$, and summing over $t=1,\ldots,T$ yields

$$\ln \frac{W_{T+1}}{W_1} \le -\eta \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i) + \frac{\eta^2}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i)^2$$

Moreover, for any fixed action k, we also have

$$\ln \frac{W_{T+1}}{W_1} \ge \ln \frac{w_{T+1}(k)}{W_1} = -\eta \sum_{t=1}^{T} \widehat{\ell}_t(k) - \ln d$$

Taking logs, using $ln(1+x) \le x$, and summing over $t=1,\ldots,T$ yields

$$\ln \frac{W_{T+1}}{W_1} \le -\eta \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i) + \frac{\eta^2}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \widehat{\ell}_t(i)^2$$

Moreover, for any fixed action k, we also have

$$\ln \frac{W_{T+1}}{W_1} \ge \ln \frac{w_{T+1}(k)}{W_1} = -\eta \sum_{t=1}^{T} \widehat{\ell}_t(k) - \ln d$$

Putting together and dividing both sides by $\eta > 0$ gives

$$\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i)\widehat{\ell}_t(i) - \sum_{t=1}^{T} \widehat{\ell}_t(k) \le \frac{\ln d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i)\widehat{\ell}_t(i)^2$$

Recall where we were:

$$\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i) - \sum_{t=1}^{T} \hat{\ell}_t(k) \le \frac{\ln d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i)^2$$

Recall where we were:

$$\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i) - \sum_{t=1}^{T} \hat{\ell}_t(k) \le \frac{\ln d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i)^2$$

Take expectation w.r.t. I_1, \ldots, I_T

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)\right]-\sum_{t=1}^{T}\mathbb{E}_{t}\left[\widehat{\ell}_{t}(k)\right]\right] \leq \frac{\ln d}{\eta} + \frac{\eta}{2}\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right]$$

Recall where we were:

$$\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i) - \sum_{t=1}^{T} \hat{\ell}_t(k) \le \frac{\ln d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i)^2$$

Take expectation w.r.t. I_1, \ldots, I_T

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)\right] - \sum_{t=1}^{T}\mathbb{E}_{t}\left[\widehat{\ell}_{t}(k)\right]\right] \leq \frac{\ln d}{\eta} + \frac{\eta}{2}\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right]$$

Loss estimates are unbiased:

$$\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_{t}(i)\ell_{t}(i) - \sum_{t=1}^{T} \ell_{t}(k)\right] \leq \frac{\ln d}{\eta} + \frac{\eta}{2}\mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_{t}(i)\mathbb{E}_{t}[\widehat{\ell}_{t}(i)^{2}]\right]$$

Recall where we were:

$$\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i) - \sum_{t=1}^{T} \hat{\ell}_t(k) \le \frac{\ln d}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \hat{\ell}_t(i)^2$$

Take expectation w.r.t. I_1, \ldots, I_T

$$\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)\right]-\sum_{t=1}^{T}\mathbb{E}_{t}\left[\widehat{\ell}_{t}(k)\right]\right] \leq \frac{\ln d}{\eta} + \frac{\eta}{2}\mathbb{E}\left[\sum_{t=1}^{T}\sum_{i=1}^{d}p_{t}(i)\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right]\right]$$

This is just the regret

$$\frac{\mathbf{R_T}}{\mathbf{R_T}} = \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i)\ell_t(i) - \sum_{t=1}^{T} \ell_t(k)\right] \le \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i)\mathbb{E}_t[\hat{\ell}_t(i)^2]\right]$$

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_t(i) \mathbb{E}_t \left[\widehat{\ell}_t(i)^2 \right] \right]$$

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^T \sum_{i=1}^d p_t(i) \mathbb{E}_t \left[\widehat{\ell}_t(i)^2 \right] \right]$$
$$\le \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^T \sum_{i=1}^d \frac{p_t(i)}{\mathbb{P}_t(\ell_t(i) \text{ is observed})} \right]$$

(variance bound)

$$R_{T} \leq \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_{t}(i) \mathbb{E}_{t} \left[\widehat{\ell}_{t}(i)^{2} \right] \right]$$

$$\leq \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} \frac{p_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ is observed})} \right]$$

$$= \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} \frac{p_{t}(i)}{p_{t}(i) + \sum_{j \in \mathcal{N}_{G}(i)} p_{t}(j)} \right]$$

(variance bound)

(observability condition)

$$R_{T} \leq \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} p_{t}(i) \mathbb{E}_{t} \left[\widehat{\ell}_{t}(i)^{2} \right] \right]$$

$$\leq \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} \frac{p_{t}(i)}{\mathbb{P}_{t}(\ell_{t}(i) \text{ is observed})} \right]$$

$$= \frac{\ln d}{\eta} + \frac{\eta}{2} \mathbb{E} \left[\sum_{t=1}^{T} \sum_{i=1}^{d} \frac{p_{t}(i)}{p_{t}(i) + \sum_{j \in \mathcal{N}_{G}(i)} p_{t}(j)} \right]$$

$$\leq \frac{\ln d}{\eta} + \frac{\eta}{2} T \alpha(G)$$

 $\alpha(G)$ is the independence number of G

(variance bound)

(observability condition)

(cool graph-theoretic fact)

Independence number $\alpha(G)$

The size of the largest independent set in G

Independence number $\alpha(G)$

The size of the largest independent set in G

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} T\alpha(G)$$

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} T\alpha(G) = \sqrt{T\alpha(G) \ln d}$$

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} T\alpha(G) = \sqrt{T\alpha(G) \ln d}$$

Note: This bound is tight for all G (up to logarithmic factors)

$$R_T \le \frac{\ln d}{\eta} + \frac{\eta}{2} T\alpha(G) = \sqrt{T\alpha(G) \ln d}$$

Note: This bound is tight for all G (up to logarithmic factors)

Special cases

Experts (clique):

 $\alpha(G) = 1$ $R_T < \sqrt{T \ln d}$

Hedge algorithm

Bandits (edgeless graph): $\alpha(G) = d \quad R_T < \sqrt{T d \ln d}$

Exp3 algorithm

More general feedback models

▶ A constructive characterization of the minimax regret for any partial monitoring game

- A constructive characterization of the minimax regret for any partial monitoring game
- Only three possible rates for nontrivial games:

- A constructive characterization of the minimax regret for any partial monitoring game
- Only three possible rates for nontrivial games:
 - 1. Easy games (e.g., experts, bandits, cops & robbers): $\Theta(\sqrt{T})$

- A constructive characterization of the minimax regret for any partial monitoring game
- Only three possible rates for nontrivial games:
 - 1. Easy games (e.g., experts, bandits, cops & robbers): $\Theta(\sqrt{T})$
 - 2. Hard games (e.g., revealing action, dynamic pricing): $\Theta(T^{2/3})$

- A constructive characterization of the minimax regret for any partial monitoring game
- ▶ Only three possible rates for nontrivial games:
 - 1. Easy games (e.g., experts, bandits, cops & robbers): $\Theta(\sqrt{T})$
 - 2. Hard games (e.g., revealing action, dynamic pricing): $\Theta(T^{2/3})$
 - 3. Impossible games: $\Theta(T)$

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For
$$t = 1, 2, ...$$

- 1. The current $h_t \in \mathcal{H}$ is tested on the next data point (x_t, y_t) in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For
$$t = 1, 2, ...$$

- 1. The current $w \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged with loss $\ell(y_t, h_t(\boldsymbol{x}_t))$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For
$$t = 1, 2, ...$$

- 1. The current $w \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. h_{t+1} is computed based on h_t and (\boldsymbol{x}_t, y_t)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and $\nabla \ell_t(w_t)$ (first-order oracle)

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and $\nabla \ell_t(w_t)$ (first-order oracle)

Regret

$$R_T(oldsymbol{u}) = \sum_{t=1}^T \ell_t(oldsymbol{w}_t) - \sum_{t=1}^T \ell_t(oldsymbol{u}) \qquad oldsymbol{u} \in \mathbb{V}$$

Model space $\mathbb{V} \subseteq \mathbb{R}^d$ convex, closed, and nonempty

For t = 1, 2, ...

- 1. The current $w \in \mathbb{V}$ is tested on the next convex loss function ℓ_t in the stream
- 2. A is charged loss $\ell_t(\boldsymbol{w}_t)$
- 3. w_{t+1} is computed based on w_t and $\nabla \ell_t(w_t)$ (first-order oracle)

Regret

$$R_T = \sum_{t=1}^{T} \ell_t(\boldsymbol{w}_t) - \inf_{\boldsymbol{u} \in \mathbb{V}} \sum_{t=1}^{T} \ell_t(\boldsymbol{u})$$

Minimization of training error

$$\min_{oldsymbol{w} \in \mathbb{V}} \sum_{i=1}^m \ell(oldsymbol{w}, (oldsymbol{x}_i, y_i))$$

 $\ell(m{w},(m{x}_i,y_i))$ measures the (convex) loss of $m{w}$ on the training example $(m{x}_i,y_i)$

Minimization of training error

$$\min_{oldsymbol{w} \in \mathbb{V}} \sum_{i=1}^m \ellig(oldsymbol{w}, (oldsymbol{x}_i, y_i)ig)$$

 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$ measures the (convex) loss of \boldsymbol{w} on the training example (\boldsymbol{x}_i,y_i)

lacktriangle When m is large we cannot afford to spend more than constant time on each data point

Minimization of training error

$$\min_{\boldsymbol{w} \in \mathbb{V}} \sum_{i=1}^{m} \ell(\boldsymbol{w}, (\boldsymbol{x}_i, y_i))$$

 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$ measures the (convex) loss of \boldsymbol{w} on the training example (\boldsymbol{x}_i,y_i)

- lacktriangle When m is large we cannot afford to spend more than constant time on each data point
- ▶ Online convex optimization can be used for stochastic optimization

Minimization of training error

$$\min_{\boldsymbol{w} \in \mathbb{V}} \sum_{i=1}^{m} \ell(\boldsymbol{w}, (\boldsymbol{x}_i, y_i))$$

 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$ measures the (convex) loss of \boldsymbol{w} on the training example (\boldsymbol{x}_i,y_i)

- lacktriangle When m is large we cannot afford to spend more than constant time on each data point
- Online convex optimization can be used for stochastic optimization
- lacktriangle Draw $(X_1,Y_1),(X_2,Y_2)\dots$ uniformly i.i.d. from the training set

Minimization of training error

$$\min_{\boldsymbol{w} \in \mathbb{V}} \sum_{i=1}^{m} \ell(\boldsymbol{w}, (\boldsymbol{x}_i, y_i))$$

 $\ell(\boldsymbol{w},(\boldsymbol{x}_i,y_i))$ measures the (convex) loss of \boldsymbol{w} on the training example (\boldsymbol{x}_i,y_i)

- lacktriangle When m is large we cannot afford to spend more than constant time on each data point
- Online convex optimization can be used for stochastic optimization
- ▶ Draw $(X_1, Y_1), (X_2, Y_2)...$ uniformly i.i.d. from the training set
- lacktriangle Run online algorithm on the sequence of loss functions $\ell_t = \ell_t(\cdot, (m{X}_t, Y_t))$

 \blacktriangleright $\mathbb V$ is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L

- $lackbox{ } \mathbb{V}$ is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{Take } oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V} ext{ such that } \|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D ext{ and set } oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\|oldsymbol{v}_1-oldsymbol{v}_2\|_2$

- $ightharpoonup \mathbb{V}$ is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{Take } oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V} ext{ such that } \|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D ext{ and set } oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\left\|oldsymbol{v}_1-oldsymbol{v}_2
 ight\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L w^{\top} z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

- $lackbox{ } \mathbb{V}$ is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{Take } oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V} ext{ such that } \|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D ext{ and set } oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\left\|oldsymbol{v}_1-oldsymbol{v}_2
 ight\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L w^{\top} z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

$$\mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}R_T(\boldsymbol{u})\right]$$

- \triangleright V is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{ extbf{ iny Take}}$ Take $oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V}$ such that $\|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D$ and set $oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\|oldsymbol{v}_1-oldsymbol{v}_2\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L w^{\top} z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

$$\mathbb{E}\left[\max_{oldsymbol{u} \in \{oldsymbol{v}_1, oldsymbol{v}_2\}} R_T(oldsymbol{u})
ight] = \mathbb{E}\left[\max_{oldsymbol{u} \in \{oldsymbol{v}_1, oldsymbol{v}_2\}} \sum_{t=1}^T L_t(oldsymbol{u})
ight]$$

- \triangleright V is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{Take } oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V} ext{ such that } \|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D ext{ and set } oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\left\|oldsymbol{v}_1-oldsymbol{v}_2
 ight\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L w^\top z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

$$\mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}R_T(\boldsymbol{u})\right] = \mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}\sum_{t=1}^TL_t(\boldsymbol{u})\right] \qquad \text{(since } \mathbb{E}[L_t(\boldsymbol{w})] = 0\text{)}$$

$$= \frac{L}{2}\mathbb{E}\left[\left|\sum_{t=1}^T\varepsilon_t\boldsymbol{z}_0^\top(\boldsymbol{v}_1 - \boldsymbol{v}_2)\right|\right] \qquad \text{(using } \max\{a,b\} = \frac{1}{2}(a+b+|a-b|)\text{)}$$

Lower bounds

- \triangleright V is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{Take } oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V} ext{ such that } \|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D ext{ and set } oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\left\|oldsymbol{v}_1-oldsymbol{v}_2
 ight\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L \overline{w}^\top z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

$$\mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}R_T(\boldsymbol{u})\right] = \mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}\sum_{t=1}^TL_t(\boldsymbol{u})\right] \qquad \text{(since } \mathbb{E}[L_t(\boldsymbol{w})] = 0)$$

$$= \frac{L}{2}\mathbb{E}\left[\left|\sum_{t=1}^T\varepsilon_t\boldsymbol{z}_0^\top(\boldsymbol{v}_1 - \boldsymbol{v}_2)\right|\right] \qquad \text{(using } \max\{a,b\} = \frac{1}{2}(a+b+|a-b|))$$

$$= \frac{LD}{2}\mathbb{E}\left[\left|\sum_{t=1}^T\varepsilon_t\right|\right] \qquad \text{(because } \boldsymbol{z}_0^\top(\boldsymbol{v}_1 - \boldsymbol{v}_2) = D)$$

Lower bounds

- \triangleright V is a bounded set of diameter D and all ℓ_t are Lipschitz with constant L
- $lackbox{ extbf{T}}$ Take $oldsymbol{v}_1,oldsymbol{v}_2\in\mathbb{V}$ such that $\|oldsymbol{v}_1-oldsymbol{v}_2\|_2=D$ and set $oldsymbol{z}_0=(oldsymbol{v}_1-oldsymbol{v}_2)/\left\|oldsymbol{v}_1-oldsymbol{v}_2
 ight\|_2$
- ▶ Stochastic linear losses $L_t(w) = \varepsilon_t L w^\top z_0$ where $\varepsilon_t \in \{-1, 1\}$ are uniform

$$\mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}R_T(\boldsymbol{u})\right] = \mathbb{E}\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v}_1,\boldsymbol{v}_2\}}\sum_{t=1}^TL_t(\boldsymbol{u})\right] \qquad \text{(since } \mathbb{E}[L_t(\boldsymbol{w})] = 0)$$

$$= \frac{L}{2}\mathbb{E}\left[\left|\sum_{t=1}^T\varepsilon_t\boldsymbol{z}_0^\top(\boldsymbol{v}_1 - \boldsymbol{v}_2)\right|\right] \qquad \text{(using } \max\{a,b\} = \frac{1}{2}(a+b+|a-b|))$$

$$= \frac{LD}{2}\mathbb{E}\left[\left|\sum_{t=1}^T\varepsilon_t\right|\right] \qquad \qquad \text{(because } \boldsymbol{z}_0^\top(\boldsymbol{v}_1 - \boldsymbol{v}_2) = D)$$

$$\geq LD\sqrt{\frac{T}{8}} \qquad \qquad \text{(Khintchine inequality)}$$

▶ Let $\mathbb V$ be the unit Euclidean ball and assume ℓ_t is such that $\|\nabla \ell_t\|_{\infty} = \Omega(1)$

- ▶ Let \mathbb{V} be the unit Euclidean ball and assume ℓ_t is such that $\|\nabla \ell_t\|_{\infty} = \Omega(1)$
- ▶ The previous lower bound suggests $R_T(u) = \Omega(\sqrt{dT})$ for $||u|| \leq 1$

- ▶ Let \mathbb{V} be the unit Euclidean ball and assume ℓ_t is such that $\|\nabla \ell_t\|_{\infty} = \Omega(1)$
- ▶ The previous lower bound suggests $R_T(u) = \Omega(\sqrt{dT})$ for $||u|| \leq 1$
- ightharpoonup is the simplex Δ_d and ℓ_t is linear with coefficients $\|\boldsymbol{\ell}\|_{\infty} = \Theta(1)$

- ▶ Let \mathbb{V} be the unit Euclidean ball and assume ℓ_t is such that $\|\nabla \ell_t\|_{\infty} = \Omega(1)$
- ▶ The previous lower bound suggests $R_T(u) = \Omega(\sqrt{dT})$ for $||u|| \le 1$
- \blacktriangleright V is the simplex Δ_d and ℓ_t is linear with coefficients $\|\boldsymbol{\ell}\|_{\infty} = \Theta(1)$
- ▶ Hedge (exponential weights) achieves $R_T(\mathbf{p}) = \mathcal{O}(\sqrt{T \ln d})$ for $\mathbf{p} \in \Delta_d$

- ▶ Let \mathbb{V} be the unit Euclidean ball and assume ℓ_t is such that $\|\nabla \ell_t\|_{\infty} = \Omega(1)$
- ▶ The previous lower bound suggests $R_T(u) = \Omega(\sqrt{dT})$ for $||u|| \le 1$
- \blacktriangleright V is the simplex Δ_d and ℓ_t is linear with coefficients $\|\boldsymbol{\ell}\|_{\infty} = \Theta(1)$
- lacktriangle Hedge (exponential weights) achieves $R_T({m p}) = \mathcal{O}(\sqrt{T \ln d})$ for ${m p} \in \Delta_d$

The geometry of V matters

 $lackbox{Projected gradient descent: } m{w}_{t+1} = \Pi_{\mathbb{V}} \Big(m{w}_t - \eta_t
abla F(m{w}_t) \Big)$

- Projected gradient descent: $w_{t+1} = \Pi_{\mathbb{V}} \Big(w_t \eta_t \nabla F(w_t) \Big)$
- $\qquad \qquad \text{Projected GD, optimization form: } \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \left\| \boldsymbol{w} \boldsymbol{w}_t \right\|_2^2 + \boldsymbol{w}^\top \nabla F(\boldsymbol{w}_t)$

- Projected gradient descent: $m{w}_{t+1} = \Pi_{\mathbb{V}} \Big(m{w}_t \eta_t \nabla F(m{w}_t) \Big)$
- $\qquad \qquad \text{Projected GD, optimization form: } \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \left\| \boldsymbol{w} \boldsymbol{w}_t \right\|_2^2 + \boldsymbol{w}^\top \nabla F(\boldsymbol{w}_t)$
- ► Projecte online GD (OGD): $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \| \boldsymbol{w} \boldsymbol{w}_t \|_2^2 + \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$

- ▶ Projected gradient descent: $w_{t+1} = \Pi_{\mathbb{V}} \Big(w_t \eta_t \nabla F(w_t) \Big)$
- $\qquad \qquad \textbf{Projected GD, optimization form: } \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \left\| \boldsymbol{w} \boldsymbol{w}_t \right\|_2^2 + \boldsymbol{w}^\top \nabla F(\boldsymbol{w}_t)$
- ► Projecte online GD (OGD): $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \|\boldsymbol{w} \boldsymbol{w}_t\|_2^2 + \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$
- ► Online Mirror Descent (OMD): $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$

- ▶ Projected gradient descent: $w_{t+1} = \Pi_{\mathbb{V}} \Big(w_t \eta_t \nabla F(w_t) \Big)$
- $\qquad \qquad \textbf{Projected GD, optimization form: } \boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \left\| \boldsymbol{w} \boldsymbol{w}_t \right\|_2^2 + \boldsymbol{w}^\top \nabla F(\boldsymbol{w}_t)$
- ► Projecte online GD (OGD): $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} \| \boldsymbol{w} \boldsymbol{w}_t \|_2^2 + \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$
- ► Online Mirror Descent (OMD): $\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{V}} \frac{1}{2\eta_t} B_{\psi}(\boldsymbol{w}, \boldsymbol{w}_t) + \boldsymbol{w}^\top \nabla \ell_t(\boldsymbol{w}_t)$

The Bregman divergence B_{ψ} measures a generalized squared distance between $m{w}, m{w}_t \in \mathbb{V}$

lacktriangle Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$

- Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- ightharpoonup Error in first-order Taylor expansion of ψ around $oldsymbol{w}$

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- lacktriangle Error in first-order Taylor expansion of ψ around $oldsymbol{w}$
- ▶ If $\psi = \frac{1}{2} \|\cdot\|_2^2$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- lacktriangle Error in first-order Taylor expansion of ψ around $oldsymbol{w}$
- ► If $\psi = \frac{1}{2} \|\cdot\|_2^2$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$
- ▶ OMD becomes online gradient descent (OGD) with Euclidean projection

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- $\blacktriangleright B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- lacktriangle Error in first-order Taylor expansion of ψ around $oldsymbol{w}$
- ► If $\psi = \frac{1}{2} \|\cdot\|_2^2$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$
- OMD becomes online gradient descent (OGD) with Euclidean projection
- If $\mathbb{V}=\Delta_d$ and $\psi(\boldsymbol{w})=\sum_i w_i \ln w_i$, then $B_{\psi}(\boldsymbol{u},\boldsymbol{w})=\sum_i u_i \ln \frac{u_i}{w_i}$ (Kullback-Leibler divergence)

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- $\blacktriangleright B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \psi(\boldsymbol{u}) \psi(\boldsymbol{w}) \nabla \psi(\boldsymbol{w})^{\top} (\boldsymbol{u} \boldsymbol{w})$
- lacktriangle Error in first-order Taylor expansion of ψ around $oldsymbol{w}$
- ▶ If $\psi = \frac{1}{2} \|\cdot\|_2^2$, then $B_{\psi}(u, w) = \frac{1}{2} \|u w\|_2^2$
- ▶ OMD becomes online gradient descent (OGD) with Euclidean projection
- If $\mathbb{V} = \Delta_d$ and $\psi(\boldsymbol{w}) = \sum_i w_i \ln w_i$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \sum_i u_i \ln \frac{u_i}{w_i}$ (Kullback-Leibler divergence)
- ► OMD becomes the Exponentiated Gradient (EG) algorithm (Hedge for general convex losses)

$$w_{t+1,i} \propto \exp\left(-\eta \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s)_i\right)$$
 $i = 1, \dots, d$

- \blacktriangleright Parameterized by strictly convex and differentiable mirror map functions $\psi: \mathbb{R}^d \to \mathbb{R}$
- lacktriangle Error in first-order Taylor expansion of ψ around $oldsymbol{w}$
- ▶ If $\psi = \frac{1}{2} \|\cdot\|_2^2$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$
- ▶ OMD becomes online gradient descent (OGD) with Euclidean projection
- If $\mathbb{V} = \Delta_d$ and $\psi(\boldsymbol{w}) = \sum_i w_i \ln w_i$, then $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \sum_i u_i \ln \frac{u_i}{w_i}$ (Kullback-Leibler divergence)
- ► OMD becomes the Exponentiated Gradient (EG) algorithm (Hedge for general convex losses)

$$p_{t+1}(i) \propto \exp\left(-\eta \sum_{s=1}^{t} \ell_s(i)\right)$$
 $i = 1, \dots, d$

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(oldsymbol{u}) \geq \psi(oldsymbol{v}) +
abla \psi(oldsymbol{v})^{ op} (oldsymbol{u} - oldsymbol{v}) + rac{\mu}{2} \left\| oldsymbol{u} - oldsymbol{v}
ight\|^2 \qquad oldsymbol{u}, oldsymbol{v} \in \mathbb{V}$$

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(oldsymbol{u}) \geq \psi(oldsymbol{v}) +
abla \psi(oldsymbol{v})^{ op} (oldsymbol{u} - oldsymbol{v}) + rac{\mu}{2} \left\| oldsymbol{u} - oldsymbol{v}
ight\|^2 \qquad oldsymbol{u}, oldsymbol{v} \in \mathbb{V}$$

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(oldsymbol{u}) \geq \psi(oldsymbol{v}) +
abla \psi(oldsymbol{v})^{ op} (oldsymbol{u} - oldsymbol{v}) + rac{\mu}{2} \left\| oldsymbol{u} - oldsymbol{v}
ight\|^2 \qquad oldsymbol{u}, oldsymbol{v} \in \mathbb{V}$$

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(oldsymbol{u}) \geq \psi(oldsymbol{v}) +
abla \psi(oldsymbol{v})^{ op} (oldsymbol{u} - oldsymbol{v}) + rac{\mu}{2} \left\| oldsymbol{u} - oldsymbol{v}
ight\|^2 \qquad oldsymbol{u}, oldsymbol{v} \in \mathbb{V}$$

- ▶ OMD becomes $w_{t+1} = \nabla \psi_{\mathbb{V}}^{\star} \Big(\nabla \psi_{\mathbb{V}}(w_t) \eta_t \nabla \ell_t(w_t) \Big)$ ($\psi_{\mathbb{V}}$ is the restriction of ψ to \mathbb{V})

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(\boldsymbol{u}) \geq \psi(\boldsymbol{v}) + \nabla \psi(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2$$
 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$

- $lackbox{lackbox{lackbox{lackbox{}}}} ext{OMD becomes} extbf{egin{align*} & oldsymbol{w}_{t+1} =
 abla \psi_{\mathbb{V}}^{\star} \Big(
 abla \psi_{\mathbb{V}}(oldsymbol{w}_t) \eta_t
 abla \ell_t(oldsymbol{w}_t) \Big) ext{ } \Big(\psi_{\mathbb{V}} ext{ is the restriction of } \psi ext{ to } \mathbb{V} \Big)$
- ▶ The function $\psi_{\mathbb{V}}^{\star}: \mathbb{R}^d \to \mathbb{R}$ is the Fenchel conjugate of $\psi_{\mathbb{V}}$

$$\psi_{\mathbb{V}}^{\star}(oldsymbol{ heta}) = \max_{oldsymbol{w} \in \mathbb{R}^d} \left(oldsymbol{w}^{ op} oldsymbol{ heta} - \psi_{\mathbb{V}}(oldsymbol{w})
ight)$$

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(\boldsymbol{u}) \geq \psi(\boldsymbol{v}) + \nabla \psi(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2$$
 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$

Properties of strongly convex mirror maps (helpful picture on next slide)

- ► OMD becomes $w_{t+1} = \nabla \psi_{\mathbb{V}}^{\star} \Big(\nabla \psi_{\mathbb{V}}(w_t) \eta_t \nabla \ell_t(w_t) \Big)$ ($\psi_{\mathbb{V}}$ is the restriction of ψ to \mathbb{V})
- ▶ The function $\psi_{\mathbb{V}}^{\star}: \mathbb{R}^d \to \mathbb{R}$ is the Fenchel conjugate of $\psi_{\mathbb{V}}$

$$\psi^\star_\mathbb{V}(oldsymbol{ heta}) = \max_{oldsymbol{w} \in \mathbb{R}^d} \left(oldsymbol{w}^ op oldsymbol{ heta} - \psi_\mathbb{V}(oldsymbol{w})
ight)$$

 $ightharpoonup \psi_{\mathbb{V}}^{\star}$ is differentiable

A differentiable $\psi: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex on \mathbb{V} with respect to $\|\cdot\|$ if

$$\psi(\boldsymbol{u}) \geq \psi(\boldsymbol{v}) + \nabla \psi(\boldsymbol{v})^{\top} (\boldsymbol{u} - \boldsymbol{v}) + \frac{\mu}{2} \|\boldsymbol{u} - \boldsymbol{v}\|^2$$
 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}$

- ▶ OMD becomes $w_{t+1} = \nabla \psi_{\mathbb{V}}^{\star} \Big(\nabla \psi_{\mathbb{V}}(w_t) \eta_t \nabla \ell_t(w_t) \Big)$ $(\psi_{\mathbb{V}} \text{ is the restriction of } \psi \text{ to } \mathbb{V})$
- ▶ The function $\psi_{\mathbb{V}}^{\star}: \mathbb{R}^d \to \mathbb{R}$ is the Fenchel conjugate of $\psi_{\mathbb{V}}$

$$\psi^\star_\mathbb{V}(oldsymbol{ heta}) = \max_{oldsymbol{w} \in \mathbb{R}^d} \left(oldsymbol{w}^ op oldsymbol{ heta} - \psi_\mathbb{V}(oldsymbol{w})
ight)$$

- $\blacktriangleright \psi_{\mathbb{V}}^{\star}$ is differentiable
- $ightharpoonup
 abla \psi_{\mathbb{V}}^{\star}$ is the functional inverse of $abla \psi_{\mathbb{V}}$

The mirror step

Two basic inequalities

► Linearized regret: $\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u}) \leq \boldsymbol{g}_t^\top (\boldsymbol{w}_t - \boldsymbol{u})$

Two basic inequalities

 $\boldsymbol{g}_t = \nabla \ell_t(\boldsymbol{w}_t)$

- ► Linearized regret: $\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u}) \leq \boldsymbol{g}_t^\top(\boldsymbol{w}_t \boldsymbol{u})$
- ► Bregman's progress: $\eta \boldsymbol{g}_t^{\top}(\boldsymbol{w}_t \boldsymbol{u}) \leq B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_t) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \frac{\eta^2}{2\mu} \|\boldsymbol{g}_t\|_{\star}^2$

Two basic inequalities

$$\boldsymbol{g}_t = \nabla \ell_t(\boldsymbol{w}_t)$$

- ► Linearized regret: $\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u}) \leq \boldsymbol{g}_t^\top(\boldsymbol{w}_t \boldsymbol{u})$
- ► Bregman's progress: $\eta \boldsymbol{g}_t^{\top}(\boldsymbol{w}_t \boldsymbol{u}) \leq B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_t) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \frac{\eta^2}{2\mu} \|\boldsymbol{g}_t\|_{\star}^2$

$$R_T(\boldsymbol{u}) = \sum_{t=1}^T \left(\ell_t(\boldsymbol{w}_t) - \ell_t(\boldsymbol{u})\right)$$

Two basic inequalities

$$oldsymbol{g}_t =
abla \ell_t(oldsymbol{w}_t)$$

- ▶ Linearized regret: $\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u}) \leq \boldsymbol{g}_t^\top(\boldsymbol{w}_t \boldsymbol{u})$
- ► Bregman's progress: $\eta \boldsymbol{g}_t^{\top}(\boldsymbol{w}_t \boldsymbol{u}) \leq B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_t) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \frac{\eta^2}{2\mu} \|\boldsymbol{g}_t\|_{\star}^2$

$$egin{aligned} R_T(oldsymbol{u}) &= \sum_{t=1}^T ig(\ell_t(oldsymbol{w}_t) - \ell_t(oldsymbol{u})ig) \ &\leq \sum_{t=1}^T oldsymbol{g}_t^ op(oldsymbol{w}_t - oldsymbol{u}) \end{aligned}$$

(linearized regret)

Two basic inequalities

$$\boldsymbol{g}_t = \nabla \ell_t(\boldsymbol{w}_t)$$

- ightharpoonup Linearized regret: $\ell_t(\boldsymbol{w}_t) \ell_t(\boldsymbol{u}) \leq \boldsymbol{g}_t^\top (\boldsymbol{w}_t \boldsymbol{u})$
- ► Bregman's progress: $\eta \boldsymbol{g}_t^{\top}(\boldsymbol{w}_t \boldsymbol{u}) \leq B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_t) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \frac{\eta^2}{2\mu} \|\boldsymbol{g}_t\|_{\star}^2$

$$egin{aligned} R_T(oldsymbol{u}) &= \sum_{t=1}^T \left(\ell_t(oldsymbol{w}_t) - \ell_t(oldsymbol{u})
ight) \ &\leq \sum_{t=1}^T oldsymbol{g}_t^ op(oldsymbol{w}_t - oldsymbol{u}) \ &\leq \sum_{t=1}^T \left(rac{B_{\psi}(oldsymbol{u}, oldsymbol{w}_t)}{\eta_t} - rac{B_{\psi}(oldsymbol{u}, oldsymbol{w}_{t+1})}{\eta_t}
ight) + rac{1}{2\mu} \sum_{t=1}^T \eta_t \left\|oldsymbol{g}_t
ight\|_\star^2 \end{aligned}$$

(linearized regret)

(Bregman's progress)

Regret analysis (cont.)

$$\sum_{t=1}^{T} \left(\frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t})}{\eta_{t}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1})}{\eta_{t}} \right) + \frac{1}{2\mu} \sum_{t=1}^{T} \eta_{t} \left\| \boldsymbol{g}_{t} \right\|_{\star}^{2}$$

Regret analysis (cont.)

$$\sum_{t=1}^T \left(\frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_t)}{\eta_t} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1})}{\eta_t} \right) + \square$$

Regret analysis (cont.)

$$\begin{split} &\sum_{t=1}^{T} \left(\frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t})}{\eta_{t}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1})}{\eta_{t}} \right) + \Box \\ &= \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{1})}{\eta_{1}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{T+1})}{\eta_{T+1}} + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}} \right) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \Box \quad \text{(fix telescoping)} \end{split}$$

Regret analysis (cont.)

$$\begin{split} \sum_{t=1}^{T} \left(\frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t})}{\eta_{t}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1})}{\eta_{t}} \right) + \Box \\ &= \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{1})}{\eta_{1}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{T+1})}{\eta_{T+1}} + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}} \right) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \Box \quad \text{(fix telescoping)} \\ &\leq \frac{D^{2}}{\eta_{1}} + \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}} \right) D^{2} + \Box \quad \text{(where } D^{2} = \max_{\boldsymbol{u}, \boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{u}, \boldsymbol{w})) \end{split}$$

Regret analysis (cont.)

$$\begin{split} \sum_{t=1}^{T} \left(\frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t})}{\eta_{t}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1})}{\eta_{t}} \right) + \Box \\ &= \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{1})}{\eta_{1}} - \frac{B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{T+1})}{\eta_{T+1}} + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}} \right) B_{\psi}(\boldsymbol{u}, \boldsymbol{w}_{t+1}) + \Box \quad \text{(fix telescoping)} \\ &\leq \frac{D^{2}}{\eta_{1}} + \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}} \right) D^{2} + \Box \quad \text{(where } D^{2} = \max_{\boldsymbol{u}, \boldsymbol{w} \in \mathbb{V}} B_{\psi}(\boldsymbol{u}, \boldsymbol{w})) \\ &= \frac{D^{2}}{\eta_{1}} + \Box \end{split}$$

The final bound

► We proved
$$R_T(\boldsymbol{u}) \leq \frac{D^2}{\eta_T} + \frac{1}{2\mu} \sum_{t=1}^T \eta_t \|\boldsymbol{g}_t\|_\star^2$$

The final bound

► We proved
$$R_T(\boldsymbol{u}) \leq \frac{D^2}{\eta_T} + \frac{1}{2\mu} \sum_{t=1}^T \eta_t \|\boldsymbol{g}_t\|_{\star}^2$$

► Setting
$$\eta_t = D\sqrt{\frac{\mu}{\sum_{s=1}^t \|\boldsymbol{g}_s\|_{\star}^2}}$$

The final bound

► We proved
$$R_T(\boldsymbol{u}) \leq \frac{D^2}{\eta_T} + \frac{1}{2\mu} \sum_{t=1}^T \eta_t \|\boldsymbol{g}_t\|_{\star}^2$$

► Setting
$$\eta_t = D\sqrt{\frac{\mu}{\sum_{s=1}^t \|\boldsymbol{g}_s\|_{\star}^2}}$$

► We get
$$R_T(\boldsymbol{u}) \leq 2D\sqrt{\frac{1}{\mu}\sum_{t=1}^T \|\boldsymbol{g}_t\|_{\star}^2}$$

OGD

ightharpoonup
igh

- \triangleright V is the closed Euclidean ball of radius $\frac{D}{2}$
- $\Psi = \frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex with respect to $\|\cdot\|_2$

- \triangleright V is the closed Euclidean ball of radius $\frac{D}{2}$
- $\psi = \frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex with respect to $\|\cdot\|_2$
- ▶ Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$

- $ightharpoonup \mathbb{V}$ is the closed Euclidean ball of radius $\frac{D}{2}$
- $\psi = \frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex with respect to $\|\cdot\|_2$
- ▶ Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_2^2$
- Assume $\|g_t\|_{\star}^2 = \|g_t\|_2^2 = \mathcal{O}(d)$

- $ightharpoonup \mathbb{V}$ is the closed Euclidean ball of radius $\frac{D}{2}$
- ▶ Bregman divergence: $B_{\psi}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{u} \boldsymbol{w}\|_{2}^{2}$
- Assume $\|g_t\|_{\star}^2 = \|g_t\|_2^2 = \mathcal{O}(d)$
- $ightharpoonup R_T = \mathcal{O}(D\sqrt{dT})$

EG (with constant stepsize $\eta = \sqrt{(\ln d)/T}$)

EG (with constant stepsize $\eta = \sqrt{(\ln d)/T}$)

▶ ▼ is the probability simplex

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{f \psi}(m p) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{}\psi(oldsymbol{p}) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{p_i}$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $m{\psi}(m{p}) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{p_i}$
- ► Problem: $D^2 = \max_{\boldsymbol{p}, \boldsymbol{q} \in \Delta_d} B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \infty$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{f \psi}(m p) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(q, p) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{n_i}$
- ▶ Problem: $D^2 = \max_{\boldsymbol{p}, \boldsymbol{q} \in \Delta_d} B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \infty$
- ▶ OMD analysis for constant learning rate: $R_T(q) \le \frac{B_{\psi}(q, p_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|g_t\|_{\star}^2$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{f \psi}(m p) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(q, p) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{n_i}$
- ▶ Problem: $D^2 = \max_{\boldsymbol{p}, \boldsymbol{q} \in \Delta_d} B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \infty$
- ▶ OMD analysis for constant learning rate: $R_T(q) \leq \frac{B_{\psi}(q, p_1)}{n} + \frac{\eta}{2} \sum_{t=0}^{T} \|g_t\|_{\star}^2$
- ► Choosing $p_1 = (\frac{1}{d}, \dots, \frac{1}{d})$ we get $B_{\psi}(q, p_1) \leq \ln d$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{f \psi}(m p) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(q, p) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{n_i}$
- ▶ Problem: $D^2 = \max_{\boldsymbol{p}, \boldsymbol{q} \in \Delta_d} B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \infty$
- ▶ OMD analysis for constant learning rate: $R_T(q) \leq \frac{B_{\psi}(q, p_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|g_t\|_{\star}^2$
- ► Choosing $p_1 = (\frac{1}{d}, \dots, \frac{1}{d})$ we get $B_{\psi}(q, p_1) \leq \ln d$
- Assume $\|\boldsymbol{g}_t\|_{\star}^2 = \|\boldsymbol{g}_t\|_{\infty}^2 = \mathcal{O}(1)$

EG (with constant stepsize
$$\eta = \sqrt{(\ln d)/T}$$
)

- ▶ V is the probability simplex
- $lackbox{\psi} \psi(oldsymbol{p}) = \sum_i p_i \ln p_i$ is 1-strongly convex with respect to $\|\cdot\|_1$
- ▶ Bregman divergence: $B_{\psi}(q, p) = \sum_{i=1}^{d} q_i \ln \frac{q_i}{n_i}$
- ► Problem: $D^2 = \max_{\boldsymbol{p}, \boldsymbol{q} \in \Delta_d} B_{\psi}(\boldsymbol{q}, \boldsymbol{p}) = \infty$
- ▶ OMD analysis for constant learning rate: $R_T(q) \leq \frac{B_{\psi}(q, p_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|g_t\|_{\star}^2$
- ► Choosing $p_1 = (\frac{1}{d}, \dots, \frac{1}{d})$ we get $B_{\psi}(q, p_1) \leq \ln d$
- Assume $\|\boldsymbol{g}_t\|_{\star}^2 = \|\boldsymbol{g}_t\|_{\infty}^2 = \mathcal{O}(1)$
- $R_T = \mathcal{O}(\sqrt{T \ln d})$

Some remarks

 \triangleright We can interpolate between OGD and EG using a p-norm as a mirror map:

$$\psi(oldsymbol{w}) = rac{1}{2} \left(\sum_{i=1}^d |w_i|^p
ight)^{2/p} ext{ for } 1$$

Some remarks

 \triangleright We can interpolate between OGD and EG using a p-norm as a mirror map:

$$\psi(oldsymbol{w}) = rac{1}{2} \left(\sum_{i=1}^d |w_i|^p
ight)^{2/p}$$
 for 1

► Choosing $p = \frac{2 \ln d}{2 \ln d - 1}$ gives bound similar to EG without the tuning problem

▶ Independence w.r.t. rescaling of the coordinates

- ► Independence w.r.t. rescaling of the coordinates
- ▶ Useful in neural network training where range of gradient components varies across layers

- ► Independence w.r.t. rescaling of the coordinates
- ▶ Useful in neural network training where range of gradient components varies across layers
- $ightharpoonup \mathbb{V}$ is the hyperrectangle $[a_1,b_1] \times \cdots \times [a_d,b_d] \in \mathbb{R}^d$

- ▶ Independence w.r.t. rescaling of the coordinates
- Useful in neural network training where range of gradient components varies across layers
- $ightharpoonup \mathbb{V}$ is the hyperrectangle $[a_1,b_1] \times \cdots \times [a_d,b_d] \in \mathbb{R}^d$
- ► Run OMD with Euclidean mirror map independently on each coordinate:

$$w_{t+1,i} = \max \left\{ \min \{ w_{t,i} - \eta_{t,i} g_{t,i} \}, a_i \right\}$$
 $i = 1, \dots, d$

- ▶ Independence w.r.t. rescaling of the coordinates
- ▶ Useful in neural network training where range of gradient components varies across layers
- $ightharpoonup \mathbb{V}$ is the hyperrectangle $[a_1,b_1] \times \cdots \times [a_d,b_d] \in \mathbb{R}^d$
- ▶ Run OMD with Euclidean mirror map independently on each coordinate:

$$w_{t+1,i} = \max \{ \min\{w_{t,i} - \eta_{t,i}g_{t,i}\}, a_i \}$$
 $i = 1, \dots, d$

► With learning rate

$$\eta_{t,i} = \frac{b_i - a_i}{\sqrt{2\sum_{s=1}^t g_{s,i}^2}} \qquad i = 1, \dots, d$$

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

By applying OMD analysis on each coordinate $R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

Comparing with OGD bound

For simplicity, take $b_i - a_i = 1$ for $i = 1, \ldots, d$

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

- For simplicity, take $b_i a_i = 1$ for $i = 1, \ldots, d$
- ▶ The diameter of \mathbb{V} is then $D = \sqrt{d}$

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

- For simplicity, take $b_i a_i = 1$ for $i = 1, \ldots, d$
- ▶ The diameter of \mathbb{V} is then $D = \sqrt{d}$
- ▶ OGD update: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \mathbf{g}_t$ followed by projection onto \mathbb{V}

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

- \blacktriangleright For simplicity, take $b_i a_i = 1$ for $i = 1, \ldots, d$
- ▶ The diameter of \mathbb{V} is then $D = \sqrt{d}$
- ▶ OGD update: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \mathbf{g}_t$ followed by projection onto \mathbb{V}
- ▶ OGD learning rate: $\eta_t = \sqrt{\frac{d}{\sum_{i=1}^t \|\boldsymbol{q}_i\|^2}}$

AdaGrad analysis

By applying OMD analysis on each coordinate
$$R_T \leq \sum_{i=1}^d (b_i - a_i) \sqrt{2\sum_{t=1}^T g_{t,i}^2}$$

Comparing with OGD bound

- ightharpoonup For simplicity, take $b_i a_i = 1$ for $i = 1, \ldots, d$
- ▶ The diameter of \mathbb{V} is then $D = \sqrt{d}$
- ▶ OGD update: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \mathbf{g}_t$ followed by projection onto \mathbb{V}
- $lackbox{OGD learning rate:} \quad \eta_t = \sqrt{rac{d}{\sum_{s=1}^t \|oldsymbol{g}_s\|^2}}$

► Convex losses: OGD with $\eta_t \approx \frac{1}{\sqrt{t}}$ achieves $R_T = \mathcal{O}(\sqrt{dT})$

- ► Convex losses: OGD with $\eta_t \approx \frac{1}{\sqrt{t}}$ achieves $R_T = \mathcal{O}(\sqrt{dT})$
- Strongly convex losses: OGD with $\eta_t \approx \frac{1}{t}$ achieves $R_T = \mathcal{O}(d \ln T)$ (unconstrained!)

- ► Convex losses: OGD with $\eta_t \approx \frac{1}{\sqrt{t}}$ achieves $R_T = \mathcal{O}(\sqrt{dT})$
- ► Strongly convex losses: OGD with $\eta_t \approx \frac{1}{t}$ achieves $R_T = \mathcal{O}(d \ln T)$ (unconstrained!)

 $oldsymbol{u},oldsymbol{w}\in\mathbb{V}$

Strong convexity in the direction of the gradient

$$\ell_t(oldsymbol{u}) \geq \ell_t(oldsymbol{w}) + oldsymbol{g}^ op (oldsymbol{u} - oldsymbol{w}) + rac{\lambda}{2} \left\| oldsymbol{u} - oldsymbol{w}
ight\|_{oldsymbol{g}oldsymbol{g}^ op}^{2}$$

where $\boldsymbol{g} = \nabla \ell_t(\boldsymbol{w})$ and $\|\boldsymbol{w}\|_M^2 = \boldsymbol{w}^{\top} M \boldsymbol{w}$

- ► Convex losses: OGD with $\eta_t \approx \frac{1}{\sqrt{t}}$ achieves $R_T = \mathcal{O}(\sqrt{dT})$
- Strongly convex losses: OGD with $\eta_t \approx \frac{1}{t}$ achieves $R_T = \mathcal{O}(d \ln T)$ (unconstrained!)

Strong convexity in the direction of the gradient

$$\ell_t(oldsymbol{u}) \geq \ell_t(oldsymbol{w}) + oldsymbol{g}^ op(oldsymbol{u} - oldsymbol{w}) + rac{\lambda}{2} \left\| oldsymbol{u} - oldsymbol{w}
ight\|_{oldsymbol{g}oldsymbol{g}^ op}^2$$

 $oldsymbol{u},oldsymbol{w}\in\mathbb{V}$

where
$$oldsymbol{g} =
abla \ell_t(oldsymbol{w})$$
 and $\|oldsymbol{w}\|_M^2 = oldsymbol{w}^ op M oldsymbol{w}$

Some losses satisfying the condition

► Square loss $\ell(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{w}^{\top} \boldsymbol{x} - y)^2$ for bounded $|\boldsymbol{w}^{\top} \boldsymbol{x}|, |y|$

- lacktriangle Convex losses: OGD with $\eta_t pprox rac{1}{\sqrt{t}}$ achieves $R_T = \mathcal{O}(\sqrt{dT})$
- lacktriangle Strongly convex losses: OGD with $\eta_t pprox rac{1}{t}$ achieves $R_T = \mathcal{O}(d \ln T)$ (unconstrained!)

Strong convexity in the direction of the gradient

$$\ell_t(oldsymbol{u}) \geq \ell_t(oldsymbol{w}) + oldsymbol{g}^ op (oldsymbol{u} - oldsymbol{w}) + rac{\lambda}{2} \left\| oldsymbol{u} - oldsymbol{w}
ight\|_{oldsymbol{g}oldsymbol{g}^ op}^2$$

 $oldsymbol{u},oldsymbol{w}\in\mathbb{V}$

where $oldsymbol{g} =
abla \ell_t(oldsymbol{w})$ and $\|oldsymbol{w}\|_M^2 = oldsymbol{w}^ op M oldsymbol{w}$

Some losses satisfying the condition

- Square loss $\ell(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{w}^{\top} \boldsymbol{x} y)^2$ for bounded $|\boldsymbol{w}^{\top} \boldsymbol{x}|, |y|$
- ▶ Logistic loss $\ell_t(\boldsymbol{w}) = \ln\left(1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x}_t)\right)$ for bounded $\|\boldsymbol{w}\|$

▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- ▶ Lack of a single good minimizer in V caused by a highly nonstationary data sequence

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- ▶ Lack of a single good minimizer in V caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- lacktriangle Lack of a single good minimizer in $\Bbb V$ caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- lacktriangle Lack of a single good minimizer in $\Bbb V$ caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

 $lackbox{\sf Complexity parameter: } \Pi_T = \sum_{t=1}^{T-1} \| oldsymbol{u}_{t+1} - oldsymbol{u}_t \|$

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- lacktriangle Lack of a single good minimizer in $\Bbb V$ caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

- $lackbox{\sf Complexity parameter: } \Pi_T = \sum_{t=1}^{T-1} \|oldsymbol{u}_{t+1} oldsymbol{u}_t\|$
- ▶ Lower bound: $\Omega(L\sqrt{(D+\Pi_T)DT})$

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- lacktriangle Lack of a single good minimizer in $\Bbb V$ caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

- $lackbox{\sf Complexity parameter: } \Pi_T = \sum_{t=1}^{T-1} \| oldsymbol{u}_{t+1} oldsymbol{u}_t \|$
- ▶ Lower bound: $\Omega(L\sqrt{(D+\Pi_T)DT})$
- When $\Pi_T = 0$ this reduces to the standard lower bound $\Omega(LD\sqrt{T})$

- ▶ If the loss sequence ℓ_1, ℓ_2, \ldots is such that no $u \in \mathbb{V}$ achieves a small cumulative loss $\ell_1(u) + \ell_2(u) + \cdots$, then regret bounds are meaningless
- lacktriangle Lack of a single good minimizer in $\Bbb V$ caused by a highly nonstationary data sequence
- ▶ In this case, the regret should be replaced by more robust measures

- $lackbox{\sf Complexity parameter: } \Pi_T = \sum_{t=1}^{T-1} \|oldsymbol{u}_{t+1} oldsymbol{u}_t\|$
- Lower bound: $\Omega(L\sqrt{(D+\Pi_T)DT})$
- When $\Pi_T = 0$ this reduces to the standard lower bound $\Omega(LD\sqrt{T})$
- Matching upper bound obtained by using Hedge to aggregate $\mathcal{O}(\ln T)$ instances of OGD each tuned to a different Π_T

In practice, actions in bandit problems have features (ads, items on sale, etc.)

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$
- 3. Get reward Y_t

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$
- 3. Get reward Y_t

We assume a linear model: $Y_t = \boldsymbol{w}^{\top} \boldsymbol{x}_t + Z_t$

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$
- 3. Get reward Y_t

We assume a linear model: $Y_t = \boldsymbol{w}^{\top} \boldsymbol{x}_t + Z_t$

 $\mathbf{w} \in \mathbb{R}^d$ is fixed and unknown, but $\|\mathbf{w}\| \leq D$ with D known

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$
- 3. Get reward Y_t

We assume a linear model: $Y_t = \boldsymbol{w}^{\top} \boldsymbol{x}_t + Z_t$

- $\mathbf{w} \in \mathbb{R}^d$ is fixed and unknown, but $\|\mathbf{w}\| \leq D$ with D known
- $ightharpoonup Z_t$ are zero-mean with a known bound R on the variance

In practice, actions in bandit problems have features (ads, items on sale, etc.)

For
$$t = 1, 2, ...$$

- 1. Observe finite set $C_t \subset \mathbb{R}^d$ of contexts (feature vectors)
- 2. Choose $x_t \in C_t$
- 3. Get reward Y_t

We assume a linear model: $Y_t = \boldsymbol{w}^{\top} \boldsymbol{x}_t + Z_t$

- $\mathbf{w} \in \mathbb{R}^d$ is fixed and unknown, but $\|\mathbf{w}\| \leq D$ with D known
- $ightharpoonup Z_t$ are zero-mean with a known bound R on the variance

$$\mathsf{Regret:} \quad R_T^{\mathsf{cont}} = \sum_{t=1}^T \max_{\boldsymbol{x} \in C_t} \boldsymbol{w}^{\top} \boldsymbol{x} - \sum_{t=1}^T \boldsymbol{w}^{\top} \boldsymbol{x}_t$$

The confidence ellipsoid

Fix a sequence of contexts C_1, \ldots, C_t and choices $\boldsymbol{x}_s \in C_s$, $s = 1, \ldots, t$ RLS estimate

$$egin{aligned} \widehat{oldsymbol{w}}_t &= V_t^{-1} \sum_{s=1}^t Y_s oldsymbol{x}_s & V_t &= \lambda \, I_d + \underbrace{\left[oldsymbol{x}_1, \ldots, oldsymbol{x}_t
ight]}_{d imes t} \left[oldsymbol{x}_1, \ldots, oldsymbol{x}_t
ight]^ op \end{aligned}$$

With high probability,
$$m{w} \in \mathcal{E}_t \equiv \left\{ m{u} \in \mathbb{R}^d \,:\, \| m{u} - \widehat{m{w}} \|_{V_t} \leq \beta_t
ight\}$$

$$\beta_t$$
 of order $D + R\sqrt{1 + d\ln\left(1 + \frac{t}{d}\right)}$

Think of \mathcal{E}_t as a d-dimensional confidence interval

The LinUCB/OFUL algorithm

Optimism in the face of uncertainty

$$\boldsymbol{x}_{t+1} = \operatorname*{argmax}_{\boldsymbol{x} \in C_{t+1}} \max_{\boldsymbol{u} \in \mathcal{E}_t} \boldsymbol{u}^\top \boldsymbol{x} = \operatorname*{argmax}_{\boldsymbol{x} \in C_t} \left(\widehat{\boldsymbol{w}}_t^\top \boldsymbol{x} + \beta_t \left\| \boldsymbol{x} \right\|_{V_t^{-1}} \right)$$

$$\blacktriangleright \ R_T^{\text{cont}} = \mathcal{O}\left((d\ln T)\sqrt{T}\right)$$

- $\blacktriangleright \ R_T^{\rm cont} = \mathcal{O}\left((d\ln T)\sqrt{T}\right)$
- ▶ Update time: $\Theta(d^2)$

- $R_T^{\text{cont}} = \mathcal{O}\left((d \ln T) \sqrt{T} \right)$
- ▶ Update time: $\Theta(d^2)$
- ▶ This can be reduced to $\Theta(md)$ by sketching $[x_1, \dots, x_t]$ with a $d \times m$ matrix

- $R_T^{\text{cont}} = \mathcal{O}\left((d \ln T) \sqrt{T} \right)$
- ▶ Update time: $\Theta(d^2)$
- ▶ This can be reduced to $\Theta(md)$ by sketching $[x_1, \dots, x_t]$ with a $d \times m$ matrix
- lacktriangle The spectral error $arepsilon_m$ is bounded by the sum of the last d-m+1 eigenvalues of V_T

- $R_T^{\text{cont}} = \mathcal{O}\left((d \ln T) \sqrt{T} \right)$
- ▶ Update time: $\Theta(d^2)$
- ▶ This can be reduced to $\Theta(md)$ by sketching $[x_1, \dots, x_t]$ with a $d \times m$ matrix
- lacktriangle The spectral error $arepsilon_m$ is bounded by the sum of the last d-m+1 eigenvalues of V_T
- ▶ The regret becomes $R_T^{\mathrm{cont}} = \widetilde{\mathcal{O}}\left((1+\varepsilon_m)^{3/2}(m+d\ln(1+\varepsilon_m))\sqrt{T}\right)$

- $R_T^{\text{cont}} = \mathcal{O}\left((d \ln T) \sqrt{T} \right)$
- ▶ Update time: $\Theta(d^2)$
- ▶ This can be reduced to $\Theta(md)$ by sketching $[x_1, \dots, x_t]$ with a $d \times m$ matrix
- lacktriangle The spectral error $arepsilon_m$ is bounded by the sum of the last d-m+1 eigenvalues of V_T
- ▶ The regret becomes $R_T^{\mathrm{cont}} = \widetilde{\mathcal{O}}\left((1+\varepsilon_m)^{3/2}(m+d\ln(1+\varepsilon_m))\sqrt{T}\right)$
- ▶ If the span of x_1, \ldots, x_T has dimension m, then $\varepsilon_m = 0$

- $R_T^{\rm cont} = \mathcal{O}\left((d \ln T) \sqrt{T} \right)$
- ▶ Update time: $\Theta(d^2)$
- ▶ This can be reduced to $\Theta(md)$ by sketching $[x_1, \dots, x_t]$ with a $d \times m$ matrix
- lacktriangle The spectral error $arepsilon_m$ is bounded by the sum of the last d-m+1 eigenvalues of V_T
- ▶ The regret becomes $R_T^{\mathrm{cont}} = \widetilde{\mathcal{O}}\left((1+\varepsilon_m)^{3/2}(m+d\ln(1+\varepsilon_m))\sqrt{T}\right)$
- ▶ If the span of x_1, \ldots, x_T has dimension m, then $\varepsilon_m = 0$
- ▶ In this case, $R_T^{\text{cont}} = \mathcal{O}\left((m \ln T)\sqrt{T}\right)$ for both algorithms

Some references

- ▶ Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning From Theory to Algorithms. Cambridge University Press (2014).
- ➤ Steve Hanneke: The Optimal Sample Complexity of PAC Learning. J. Mach. Learn. Res. 17: 38:1-38:15 (2016).
- ► Tor Lattimore and Csaba Szepesvári: Bandit Algorithms. Cambridge University Press (2020).
- Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, Ohad Shamir: Nonstochastic Multi-Armed Bandits with Graph-Structured Feedback. SIAM J. Comput. 46(6): 1785-1826 (2017).
- ► Francesco Orabona: A Modern Introduction to Online Learning. CoRR abs/1912.13213 (2019).