Ambient Air Monitoring Report

Livingston Railyard

Envirocon Inc PO Box 8242 Missoula, MT 59807

STATE DOCUMENTS COLLECTION

MAY 3 0 1991

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620 Bison Engineering Inc PO Box 1703 Helena, MT 59624

Introduction

This document represents the results of ambient monitoring investigations conducted in Livingston, Montana. The report will be submitted to the Montana Department of Health and Environmental Sciences on a quarterly basis until the monitoring program has been completed. The report is being submitted in a 3-ring binder to allow for future quarterly reports. This will provide the reader with a complete document which will contain the results of all monitoring studies including quality control and quality assurance investigations.

Envirocon Inc has overall responsibility for the network. Envirocon purchased and currently operates the network on a daily basis. Bison Engineering Inc provides assistance with the network by conducting audits, coordinating a portion of the laboratory work, and finally by preparing all quarterly reports. Energy Labs, Billings, conducted all analyses for polynuclear aromatic hydrocarbons. NEA Laboratories, Beaverton, OR, conducted the elemental analysis of the PM10 filters.

The network's design and operation is being conducted in accordance with Section 14.4 of the Interim Remedial Measures Work Plan as specified by the Montana Department of Health and Environmental Sciences.

CERTIFICATION OF DATA INTEGRITY

Bison Engineering Inc. certifies that the data contained herein are, to the best of our knowledge, an accurate summary of air quality and meteorological conditions measured at the Livingston Railyard in Livingston, MT. Every effort was made to obtain accurate and representative data and to comply with procedures set forth in the Quality Assurance Handbook for Air Pollution Measurement Systems; Volume II, Ambient Air Specific Methods (EPA-600/4-77-027a) and the conditions of Section 14.4 of the Interim Remedial Measures Work Plan (work plan) as required by the Montana Department of Health and Environmental Sciences.

Project Manager: Houll W Roll

Title: Vice President

Date: February 28, 1991

1.0 NETWORK CONFIGURATION

1.1 Monitoring Locations - General

An ambient air quality network has been established near the Livingston Rail-yard to ascertain both the background air quality concentrations and the air quality values downwind of a number of clean-up activities. The requirements of the ambient network are contained in Section 14.4 of the Interim Remedial Measures Work Plan (work plan). The primary network consists of two distinct stations. Each station contains a PM10 air monitoring instrument. The second station (downwind site) also contains meteorological equipment, a total suspended particulate (TSP) instrument, and a PUF sampler which is designed to measure polynuclear aromatic hydrocarbons (PNA).

The monitoring sites and parameters to be measured were chosen with the department. The first site's primary purpose is to determine the ambient air quality upwind of all remedial activities. The downwind site was chosen as a worst-case example of downwind activity. A map is included with this report which locates the various monitoring sites. The coordinate location of these sites are shown below:

Table 1
Ambient Monitoring Locations

Site #	UTM East	UTM North	Latitude	Longitude
1	334050	5056410	45 ⁰ 38' 36"	113 ⁰ 7' 46"
2	335360	5057520	45 ⁰ 39' 13"	113 ⁰ 6' 47"

UTM Zone = 12

1.2 Monitoring Parameters

The monitoring network has been designed to collect several air pollutants. The following is a list of these parameters and the methodology used for analysis.

PM10

PM10 is a term that indicates particulate matter less than 10 microns in diameter. This parameter is commonly measured throughout the nation and represents the Montana and EPA methods for determining particulate matter in the atmosphere as it relates to ambient air quality standards. Both the upwind (site #1) and downwind (site #2) sites were designed to collect this information.

Method: 40 CFR Part 50, Appendix J

Metals

The PM10 collected material (filter) may be analyzed for concentrations of various metals. The method of analysis is X-Ray Fluorescence which provides a scan of 34 elements.

Method: X-Ray Fluorescence

Total Particulates

While PM10 provides a health basis comparison for human exposure to particulates, it does not include all particulates that may be suspended in the atmosphere. A high volume sampler (hi-vol) is used for this collection. The data may be compared to an earlier air quality standard for this pollutant. That standard was changed in 1987 to a PM10 methodology.

Method: Sections 1.11.1, 2.1.1, and 2.1.1.1, Montana Air Quality Bureau Quality Assurance Manual

Polynuclear Aromatic Hydrocarbons

Polynuclear aromatic hydrocarbons (PNAs) are a class of compounds that contain a benzene ring. This class of compounds was measured using a combination of filter collection (for PNAs which may be in a particulate form or associated with particulate) and a polyurethane foam (PUF) cartridge. The samples were collected and forwarded to Energy Laboratories Inc. for analysis.

Method: TO13 "Compendium of Methods for Determination of Toxic Organic Compounds in Ambient Air," Atmospheric and Exposure Assessment Laboratory, EPA, EPA/600/4-89/017, June, 1988.

Meteorology

A meteorological tower was set up at the downwind site in order to assess what meteorological events may lead to increasing or decreasing ambient air pollutants. The stations collected wind speed, wind direction, temperature, and wind sigma (standard deviation of the wind direction).

Method: Anemometer cup, wind vane, thermocouple, and computer data acquisition system. "Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD), Section 6, EPA, EPA-450/4-87-007.

1.3 Monitoring Frequency

The monitoring frequency for each parameter is provided below.

Table 2
Ambient Monitoring Frequency

PM10	One-day-in-six. 24-hour sample. Site #1 and Site #2.	
TSP	One-day-in-six. 24-hour sample. Site #2 only.	
Metals	6 PM10 samples from Site #1. 6 PM10 samples from Site #2. Samples periods to coincide.	
PNA	Same schedule as PM10. Cease sampling after 6 weeks. Site #2 only.	
Meteorology	Continuous sampling. Hourly data analysis. Site #2 only.	

2.0 DATA SUMMARY

2.1 PM10

A PM10 network has been established to coincide with the sites noted above. The PM10 network consists of one monitor upwind of the remedial activities (site #1) and one monitor downwind (site #2).

The data collection for the network began on November 10, 1990. Data for this reporting period (through December 31) includes 9 samples collected at each site. The mean PM10 values for site #1 was $16 \mu g/m^3$ and $14 \mu g/m^3$ for site #2. The peak reporting value for the network was 25. These values are compared against the Montana ambient air quality standards below.

Table 3
PM10 Results vs Ambient Standards

	Standard	Site #1	Site #2
Mean	50*	16	14
Peak	150**	25	18

Units: $\mu g/m^3$

Annual mean

** Not to be exceeded more than once per year.

A complete listing of the PM10 data and various summary statistics are provided in Appendix A of this report. The statistics include monthly means, yearly mean-to-date, geometric mean and standard deviation, etc. Appendix B contains the results of calibrations, audits, precision checks, etc.

2.2 Total Suspended Particulate

The total suspended particulate network included the operation of one sampler at Site #2. The frequency of operation is the same as PM10.

The data collection for the network began on November 17, 1990. Data for this reporting period (through December 31) includes 6 samples. The mean TSP value was $29 \mu g/m^3$ and the peak value was $44 \mu g/m^3$. These values are compared against the old Montana ambient air quality standards below.

Table 4
TSP Results vs Old Ambient Standards

	Standard	Site #2
Mean	75*	29
Peak	260**	44

Units: $\mu g/m^3$

* Annual mean

** Not to be exceeded more than once per year.

A complete listing of the TSP data and various summary statistics are provided in Appendix A of this report. The statistics include monthly means, yearly mean-to-date, geometric mean and standard deviation, etc. Appendix B provides the necessary quality control information including calibration and auditing results.

2.3 Polynuclear Aromatic Hydrocarbons

The PUF sampler, designed to collect PNA material, was located at site #2. The sampler began data collection on November 10, 1990 and ceased operation on

December 14, 1990. A total of 6 samples were collected in addition to a blank sample.

Unlike PM10 and TSP, there are no specific standards for comparison. The analysis consisted of determining the concentration of 13 specific compounds on both the collected filter and the polyurethane foam. A summary of the air concentration results (μ g/m³) for each run day is contained in Appendix A. A complete listing of the laboratory investigations are found in Appendix C. Quality control information for this and all other sampling results are found in Appendix B. Finally, the table below provides the mean concentration of each compound collected for the 6 run days.

Table 5 Mean PNA Concentrations

Livingston, MT

Concentration (µg/m³)

Acenaphthene	0.0039
Acenaphylene	0.0033
Anthracene	<0.0034
Benzo(a)anthracene	<0.0032
Benzo(a)pyrene	<0.0032
Benzo(b)fluoranthene	0.0037
Benzo(ghi)perylene	<0.0032
Benzo(k)fluoranthene	<0.0032
Chrysene	0.0032
Dibenzo(a,h)anthracene	<0.0032
Fluoranthene	0.0052
Fluorene	0.0076
Ideno(1,2,3-cd)pyrene	<0.0032
Napthalene	0.0052
Phenanthrene	0.0193
Pyrene	<0.0044

2.4 Metals

The PM10 filter media was analyzed for metal concentrations. A total of 6 sample days were collected. Both the upwind and downwind samples were subject to this analysis. With the exception of lead, none of these elements are associated with an ambient air quality standard for comparison. The highest single value observed for lead was $0.26 \,\mu\text{g/m}^3$. The ambient air quality standard is $1.5 \,\mu\text{g/m}^3$ averaged over 3 months. The average for all 6 samples for the downwind site was $.07 \,\mu\text{g/m}^3$ and $.005 \,\mu\text{g/m}^3$ for the upwind site.

A summary of the air concentration results for each run day $(\mu g/m^3)$ is contained in Appendix A. The tables compare the upwind and downwind concentration for each element. A complete listing of the laboratory investigations are found in Appendix C. Quality control information for this and all other sampling results are found in Appendix B. The table below provides a summary of the mean values found for each element at both the upwind and downwind sites.

Table 6
Mean Elemental Results

Livingston, MT

Element	Upwind (µg/m^3)	Downwind (µg/m^3)
Aluminum	0.0000	0.000
Phosphorus	0.0000	0.0000
Sulfur	0.1297	0.0423
Chlorine	0.0000	0.1740
Potassium	0.3892	0.4187
Calcium	1.3810	1.2225
Titanium	0.0500	0.0460
Vanadium	0.0012	0.0016
Chromium	0.0003	0.0000
Manganese	0.0066	0.0035
Iron	0.4060	0.1613
Nickel	0.0000	0.0000
Copper	0.0039	0.0041
Zinc	0.0000	0.0889
Gallium	0.0000	0.0000
Germanium	0.0007 0.0014	0.0009
Arsenic Selenium	0.0014	0.0057 0.0000
Bromine	0.0006	
Rubidium		0.0128 0.0036
Strontium	0.0032 0.0136	0.0036
Yttrium	0.0138	0.0126
Zirconium	0.0028	0.0018
Molybdenum	0.0178	0.1057
Palladium	0.1003	0.0029
Silver	0.0096	0.0023
Cadmium	0.0034	0.0236
Indium	0.0155	0.0230
Tin	0.0133	0.0120
Antimony	0.0207	0.0202
Barium	0.0096	0.0151
Lanthanum	0.1877	0.0857
Mercury	0.0000	0.0000
Lead	0.0050	0.0699

2.5 Meteorology

The network also required the establishment of a meteorological station (site #2). The meteorological equipment is manufactured by Met One and measures wind speed, wind direction, temperature, and wind sigma. Overall data recovery for the meteorological system was excellent. Only the last few days of the year are missing due to a corrupted data file. An attempt is being made to recover this data. If the attempt is successful, the data will be amended to the existing files and processed in the next quarterly report.

During this report period (November 11 through December 31) the average wind speed was 18 miles per hour, the resultant wind direction was 228 degrees, and the percentage of calm hours was 0.0%. The maximum temperature for the period was 66 °F, the minimum temperature was -24 °F, and the average temperature was 30 °F.

Appendix A contains a complete listing of the meteorological information for wind speed, direction, temperature, and sigma. In addition, wind frequency distributions are provided on a monthly and seasonal (to-date) basis. Finally, the appropriate wind roses (Figures 1 - 3) are provided below to give a graphical perspective of the results.

Wind Speed Class Boundaries (Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing. Livingston - Downwind PERIOD: Nov. 1990

Wind Speed Class Boundaries (Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing. Livingston - Downwind PERIOD: Dec. 1990

(Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing.

Livingston - Downwind 4th Quarter - 1990

3.0 DATA ANALYSIS

3.1 Introduction

The primary purpose of the ambient monitoring network is to assess any impact that the work plan may be having on ambient air quality. The first step in the assessment is to measure any appropriate parameters which could be reasonably expected to enter the ambient atmosphere as a result of the work plan. These parameters, defined by Section 14.4 of the work plan, included PM10, TSP, PNA, and metals. The second step of the assessment is to compare these results with previously established ambient air quality standards, where applicable. The final step is to compare the results with a nearby monitoring site (when available) to determine potential concentrations for activities which are not influenced by the work plan.

It is not the subject of this report to provide a complete investigation for each of these activities. It is appropriate, however, to assess some of the initial characteristics of the results to date.

3.2 PM10

Section 2 of this report provided a comparison between the collected PM10 values and the Montana and federal ambient air quality standards. The results indicate values far below these levels of concern. Data to date indicates no threat of an exceedance of these standards.

It is interesting to compare the upwind and downwind monitoring results. A comparison was made between the two data sets and the results of this investigation is provided below.

Table 7
Upwind/Downwind Comparison PM10

Livingston, MT

Sample Date	Upwind	Downwind	Difference
11/10/90	11	10	-1
11/19/90	20	13	- 7
11/25/90	18	18	0
12/ 1/90	18	12	-6
12/ 7/90	11	12	1
12/14/90	10	18	8
12/19/90	25	10	- 15
12/25/90	14	14	0
12/31/90	13	16	3

Units: Micrograms/cubic meter

Two statistical tests were applied to the data. The tests (paired and unpaired test) were designed to assess whether or not there is enough evidence to reject the null hypothesis that the two means are the same. The results of these tests are summarized below.

Summary Statistics:

Upwind: 15.6 Mean: Std Dev: 5.03 # of Samples: Downwind: Mean: 13.7 Std Dev: 3.08 # of Samples: Difference: Mean: -1.89 Std Dev: 6.64 # of Samples:

Comparison of Upwind and Downwind Means
Paired Difference t-test.

$$t = \frac{\text{Mean}}{S/(n)^{\frac{1}{2}}}$$

$$S = \text{standard deviation}$$

$$t = -0.85$$
Critical t (95%) = 2.31

Unpaired t-test.

$$t = \frac{\text{Mean1} - \text{Mean2}}{S(1/n + 1/n)^{\frac{1}{2}}}$$

$$S = \text{pooled standard deviation}$$

$$= 4.17$$

$$t = -0.97$$

$$Critical t (95%) = 2.12$$

Since the "critical" t value falls within a 95% two-tailed confidence interval, it is concluded that not enough evidence is present to reject the null hypothesis. Therefore, it appears that there is no difference in the mean and mean difference PM10 values between the two monitoring sites.

3.3 TSP

The results of TSP sampling to date indicate values well below the previously existing ambient air quality standard. This comparison was made in Section 2. Additionally, the work plan calls for a comparison of 3 TSP samples in which the wind speed (during sample collection) exceeded 15 knots. This equates to a mean wind speed of 17 miles per hour.

The data to date is sparse and consists of only 6 valid samples. Only two of the 6 sample days exhibited wind speeds exceeding 17 miles per hour. For interest, however, the results of TSP sampling is compared against the daily mean wind speed for the respective sampling days in the table below.

Table 8
TSP vs Wind Speed
TSP

Livingston, MT

Sample Date	(μg/m ³)	(mph)
11/17/90	33	12
11/25/90	44	26
12/ 1/90	20	13
12/ 7/90	34	21
12/14/90	· 33	16
12/19/90	12	13

The data above has been plotted on a graph in Figure 4 below for review. The least squares regression line is plotted in the figure for interest. The correlation coefficient is 0.74. From a statistical viewpoint this indicates that about 54% of the data fits the linear model well.

Several other relationships were tried including the log and square root of various parameters. These additional investigations did not improve the standard error or the correlation coefficient.

It is noteworthy, however, that even the highest recording reading was less than 20% of the outdated TSP ambient air quality standard.

3.4 PNAs

A total of 6 samples were collected for PNAs. The results of these samples are provided in Appendix A with the original laboratory results found in Appendix C. Although the quantity of data is lengthy, there are a few comments and observations worth noting.

The "total" concentration of each PNA is determined by adding the collected PNA on both the filter and the polyurethane foam (PUF) cartridge. In many cases, however, the reported filter and PUF values were less than detectable. For purposes of analysis, if both the filter and cartridge data were less than detectable, then the total concentration was noted as less than detectable (less than the sum of the two below-detection values). If either one of the units were considered detectable, then the total value was listed as detectable.

A few observations are noted:

1. No detectable values of any of the following compounds were found in any sample:

benzo(a)anthracene benzo(a)pyrene

benzo(ghi)perlyene benzo(k)fluoranthene dibenzo(a,h)anthracene ideno(1,2,3-cd)pyrene.

- 2. There were a total (excluding blanks) of 192 sample analyses conducted. Of these samples only 21% (41) were reported above detectable limits.
- 3. Very few filter analyses indicated values above detectable.
- 4. The most common detectable compounds were:

fluoranthene fluorene napthalene phenanthrene

3.5 Metals

A total of 34 elements were analyzed on 6 upwind and 6 downwind PM10 samples. The sample dates coincided to allow for a comparison between the two locations. A summary of the mean concentrations of these metals was provided above as Table 6.

A few comments concerning the metals follow:

1. No detectable values were noted for the following elements:

Aluminum
Phosphorous
Nickel
Gallium
Mercury.

2. The elements which accounted for the highest concentrations include:

Sulfur
Potassium
Calcium
Titanium
Iron
Molybdenum
Lanthanum

- Interestingly, almost all of the above elements are common crustal materials. Iron, calcium, titanium, and sulfur in particular are among the most common elements found.
- 3. None of these elements appear to be in any concentrations of concern. Both elements were found on the blank filter at about the same or higher concentrations than found on the exposed filters. Thus, the presence of these elements may be due more to filter background material than collected material in the air.
 - The presence of low levels of molybdenum (Mo) and Lanthanum (La) is somewhat curious. Mo is found in several ore bodies such as molybdenite (MoS₂), powellite (Ca(MoW)O₄), and wulfenite (PbMoO₄), but it is not a common earth material. Mo can be found in industrial applications such as an ingredient in high-strength steel (a few % at best) or in lubricants as a sulfide.
 - Lanthanum is considered a rare-earth element. Its industrial applications include uses as an ingredient to improve glass's resistance to alkalinity, iron casting, and studio lighting.

It is useful to make some comparisons between upwind and downwind sites. The results lend themselves to a statistical comparison between the two sites. A paired t-test was used as one unbiased method to determine if there was a difference in concentration of any element between the two locations. The table below provides a summary of the results of this analysis.

Table 9
Upwind vs Downwind Elements

Livingston, MT

Element	Mean Difference	Standard Deviation	T Statistic
Aluminum	0.0000	0.0000	
Phosphorus	0.0000	0.0000	
Sulfur	0.0000	0.0000	4.43
Chlorine	-0.1740	0.2993	-1.42
Potassium	-0.0295	0.2993	-0.41
Calcium	0.1585	0.1/42	2.77
Titanium	0.1383		l i
		0.0135	0.72
Vanadium	-0.0004	0.0024	-0.42
Chromium	0.0003	0.0005	1.19
Manganese	0.0031	0.0030	2.56
Iron	0.2447	0.1302	4.60
Nickel	0.0000	0.0000	
Copper	-0.0001	0.0050	-0.07
Zinc	-0.0889	0.1987	-1.10
Gallium	0.0000	0.0000	
Germanium	-0.0002	0.0003	-1.23
Arsenic	-0.0043	0.0068	-1.55
Selenium	0.0006	0.0006	2.34
Bromine	-0.0102	0.0172	-1.45
Rubidium	-0.0004	0.0024	-0.44
Strontium	0.0011	0.0031	0.84
Yttrium	0.0013	0.0034	0.91
Zirconium	0.0004	0.0073	0.14
Molybdenum	0.0006	0.0075	0.21
Palladium	0.0125	0.0143	2.13
Silver	0.0056	0.0106	1.28
Cadmium	-0.0152	0.0268	-1.39
Indium	0.0028	0.0234	0.29
Tin	-0.0039	0.0370	-0.26
Antimony	0.0005	0.0249	0.05
Barium	-0.0054	0.0416	-0.32
Lanthanum	0.1020	0.3012	0.83
Mercury	0.0000	0.0000	
Lead	-0.0649	0.0948	-1.68

Note:

- 1. Units are in micrograms/cubic meter.
- 2. A positive mean difference indicates that the upwind site had larger values than the downwind site.

Using a 95% two-tailed confidence interval, the "critical" t-statistic is 2.57. Any t-statistic in the above table which is either greater than 2.57 or less than -2.57 falls outside of the 95% level. Such a number indicates that there is sufficient statistical evidence to reject the null hypothesis that the mean difference between the two sites (for the element in question) is zero (i.e. the means are the same).

A review of the table indicates that there are only three cases in which the null hypothesis may be rejected: sulfur, calcium, and iron. In all cases, the values recorded at the upwind site were greater than values at the downwind site.

The practical results of this statistical inference is probably minimal at best. Both iron and sulfur are common crustal material and would have little health implications at the concentrations measured.

The above analysis has calculated a total of 34 t-statistics. If, in fact, one were to conduct 34 t-tests on two unbiased Gaussian distributions whose means were equal, the probability of obtaining at least either one, two, or three rejects is 57%. The probability of obtaining exactly 2 rejects is 27%, while finding exactly three rejects is 15%. Thus, there is a good chance of finding several rejects due to random chance even if the two sites have identical means for each element.

APPENDIX A

Data Results

ARPENDEX

than Results

PM10 Data

(Appendix A)

Date Satur

Bison Engineering Inc

Helena, MT 59601

PM10 Particulate Summary

1990

Site & Area: 1111

3

Upwind Site

Livingston, MT Envirocon

(Values are in Micrograms per Cubic Meter)

_	_			_		_		_				_
Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1 2 3	_	_	_	_	_	_	_	_	_	_	_	18
2	_	_	_	_	_	_	_	_	_	_	_	_
4	_	_	_	_	_	_	_	_	_	_	_	_
5	_	_	_	_	_	_	_	_	_	-	-	_
6	_	_	_	_	_	_	_	_	_	_	_	_
7	_	_	_	_	_	_	_	_	_	_	_	11
8	_	-	_	_	_	_	_	-	_	_	_	_
9	_	-	_	_	_	-	_	_	_	_	_	-
10	_	_	_	_	_	_	_	-	_	-	11	_
11	_	-	_	_	_	_	_	-	_	-	_	_
12	_	_	_	-	-	-	_	_	_	_	_	_
13	_	-	-	-	-	-	_	-	_	_	_	-
14	-	-	-	-	-	_	-	-	-	_	_	10
15	_	_	-	-	-	-	_	-	-	_	_	_
16	_	_	-	_	-	-	_	-	_	-	_	-
17	-	_	-	-	-	_	-	-	_	_	_	-
18	-	_	_	-	_	-	-	-	_	-	_	•
19	_	-	-	-	_	-	-	-	-	-	20	25
20	_	_	-	-	_	-	-	-	_	_	_	_
21	-	_	-	-	-	_	-	-	_	_	_	-
22	_	_	-	-	-	-	_	-	_	_	_	-
23	-	_	-	-	-	_	-	-	-	_	_	_
24	-	-	-	-	-	-	-	-	-	-	-	-
25	-	-	-	-	-	-	_	-	_	-	18	14
26	-	-	_	-	-	-	-	-	-	-	-	-
27	-	-	-	-	-	-	-	-	-	-	_	-
28	-	-	-	-	-	-	-	-	-	-	-	-
29	-	_	-	-	-	-	-	-	-	-	-	-
30	-	-	-	-	_	_	-	-	-	-	-	-
31	-	-	-	-	-		-	-	-	-	-	13
No.	0	0	0	0	0	0	0	0	0	0	3	6
Max											20	25
Avg											16	. 15

Bison Engineering Inc

Helena, MT 59601

PM10 Particulate Summary

1990

Site & Area: 1111 4

	Do	wnw	ind S	ite	Liv	ingsto	on, M	T E	inviro	con		
		(Va	lues	are i	n Mic	rogra	ms pe	r Cub	ic Me	ter)		
Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	oct	Nov	Dec
1	_	_	-	-	-	-	-	-	-	_	-	12
2 3	-	_	-	-	-	-	_	-	-	_	-	_
3	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	_	-	-	-	-
5	-	-	-	-	-		-	_	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	digs.	-	-	12
8	-	-		-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	_	-	_
10	-	-	_	-	_	-	_	-	_	-	10	-
11	_	-	-	-	-	-	_	-	_	_	-	-
12	-	-	es	-	_	-	-	-	-	-	-	-
13	-	-	-	-	-	-	_	_	_	_	-	-
14	-		-	-	-	-	-	-	-	-	-	18
15	-	-	-	-	-	-	-	-	-	-	-	-
16	_	-	-	-	_	_	-	-	-	-	-	-
17	-	-	-	-	-	_	-	_	4	-	-	-
18	-	-	-	-	-	-	-	-	_	-	-	-
19	-	-	==	-	-	-	-	_	-	-	13	10
20	-	-	_	-	-	-	-	-	-	-	-	-
21	-	-	-	-	-	-	-	-	-	-	-	-
22	-	-	-	-	-	-	-	-	-		-	-
23	-	-	-	-	-	-	-	_	-	-	-	_
24	-	-	-	-	-	-	-	-	-	_		
25	-	-	-	-	-	-	-	-	_	_	18	14
26	-	_	-	-	-	-	_	-	-	_	-	_
27	-	_	-	_	_	-	_	-	-	_	-	_
28	_	_	_	_	_	_	_	-	-	-	_	_
29	_	-	_	-	_	_	-	_		-	_	_
30	_	_	-	_	_	-	-	-	_	_	-	-
31	-	-	-	-	-	_	-	-	-	-	_	16
No.	0	0	0	0	0	0	0	0	0	0	3	6
Max											18	18
Avg											14	14

Bison Engineering Inc. Helena, MT 59601

SUMMARY STATISTICS FOR THE PM10 PARTICULATE DATA

1990

	Upw	Upwind Site	ø.		Livings	Livingston, MT	Envirocon	uo	
**	Min	Max	2nd Max	# > 150	Arith. Mean	Arith. Std Dev	Geo. Mean	Geo. Std Dev	Tota] # Obs.
	10	25	20	0	16	S	15	1.4	6
	10	18	16	0	14	m	13	1.3	6

Site

TSP Data

(Appendix A)

Bison Engineering Inc

Helena, MT 59601

Total Suspended Particulate Summary

1990

Site & Area: 1111

4

	Do	wnw	ind Si	te	Liv	ingsto	n, M	T E	nviro	con		
		(Va	lues	are i	n Mic	rogra	ms pe	r Cub	ic Me	ter)		
Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	-	_	-	-	_	_	-	_	_	-	_	20
2 3	_	-	_	_	_	_	_	_	-	_	-	-
3	-	-	-	-	-	-	_	-	_	_	-	_
4	-	_	_	-	-	-	_	_	-	-	-	-
5	_	-	-	_	-	-	-	-	_	-	429	_
4 5 6 7	_	_	_	-	_	-	-	_	_	_	_	_
	-	_	_	_	-	_	_	_	_	_	-	34
8	-	-	-	-	_	_	-	_	_	_	-	-
9	_	_	-	-	-	-	-	-	_	-	_	-
10	_	-	-	-	-	-	-	-	-	-	_	_
11	-	_	-	_	-	-	-	-	_	-	_	-
12	-	-	-	-	-	_	_	_	-	-	-	_
13	-	-	-	-	-	-	_	-	_	_	-	_
14	-	_	_	-	-	-	_	-	_	_	-	33
15	-	_	-	-	-	_	-	-	-	-	_	_
16	-	_	-	_	_	_	_	_	_	_	-	_
17	-	-	-	_	-	-	-	-	-	-	33	-
18	-	-	-	-	-	-	-	-	-	-	_	-
19	-	-	-	-	-	-	_	_	-	-	-	12
20	-	_	-	-	-	-	-	-	-	-	-	-
21	-	-	-	-	-	-	-	-	-	_	_	_
22	-	-	-	-	-	-	-	-	-	-	-	-
23	-	-	-	-	-	-	-	-	-	-	-	_
24	-	-	-	-	-	-	-	-	-	_	_	-
25	-	-	-	-	-	-	-	-	-	-	44	-
26	-	-	-	-	_	-	-	-	-	_	-	_
27	-	-	-	-	-	-	_	-	_		-	-
28	-	-	-	-	-	-	-	-	_	_	-	_
29	-	-	-	-	-	-	-	-	-	_	-	-
30	-	-	-	_	-	-	-	-	-	-	-	-
31	-	-	-	_	-	-	-	-	-	-	-	-
No.	0	0	0	0	0 .	0	0	0	0	0	2	4
Max											44	34
Avg											39	25

Bison Engineering Inc. Helena, MT 59601

SUMMARY STATISTICS FOR THE TSP PARTICULATE DATA 1990

	Total # Obs.	9
con	Geo. Std Dev	1.6
Envirocon	Geo. Mean	27
Livingston, MT	Arith. Std Dev	11
Living	Arith. Mean	29
	150	0
Site	2nd Max	34
Downwind Site	Max	44
Dow	Min	12
	Site #	4.

Meteorological Data

(Appendix A)

NOVEMBER 1990

*** WIND SPEED SUMMARY ***

AVG.				•		•			•	•	•	21.5	26.0	26.0	16.4	10.3	15.0	12.0	10.8	11.5	8.6	21.2	56.6	26.1	29.5	25.8	6.9	15.8	18.1	31.1	16.0		
	54				•	•		•	•			21.0	28.2	28.2	5.7	13.9	15.3	9.6	6.4	1.1	9.5	23.8	31.8	27.8	28.1	0.4	14.8	17.7	35.2	27.1	4.7	18.1	
	23		•			•	•	•		•	•	20.9 2	29.6	29.62	3.9	12.0 1	15.0 1	10.8	10.4	6.8 1	10.7	24.8 2	29.3 3	28.4 2	31.6 2	6.5	15.2 1	17.1	23.9 3	30.3 2	10.6	18.4 1	
	22	•			•			•		•		24.42	27.5	27.5	2.7	10.9 1	8.6 1	10.5 1	10.9 1	11.1	6.7 1	25.7 2	19.8 2	25.4 2	29.7 3	18.2	13.1 1	18.0 1	28.1 2	30.5 3	0.0	18.1	
	21				•	0		•	•	•		23.5 2	27.72	27.72	2.9	2.3 1	6.1	10.1		10.4 1	2.9	24.3 2	20.9 1	25.7 2	30.12	23.6 1	10.01	16.0 1	22.7 2	31.03	2.3 1	17.71	
	20	•			•	•	•				•	20.8 2	26.92	26.92	11.8	11.6 1	9.5	10.5 1	10.9	9.2 1	6.3	20.3 2	24.6 2	30.3 2	33.2 3	16.1 2	8.3 1	13.5 1	25.8 2	32.4 3	14.9 1	18.2 1	
	19	•	•		ı		•			•	•	24.42	28.2 2	28.2 2	7.8 1	11.5 1	15.0	10.1	10.6	8.4	2.6	18.8 2	22.7 2	28.83	30.73	14.5 1	8.5	13.9 1	23.8 2	37.13	17.0 1	18.5 1	
	18	•			•			•		•	•	17.7 2	30.9 2	30.9 2	2.0	1.1	1.8 1	2.7 1		15.1	14.7	22.7 1	16.9 2	31.9 2	34.13	13.9 1	8.9	17.3 1	19.1 2	38.2 3	18.6 1	19.0 1	
	17		•						•		•	18.9 1	32.0 3	32.03	11.5	12.9 1	13.2 1	16.0 1	11.0	18.4 1	11.2 1	20.8 2	18.0 1	25.3 3	29.63	20.2	10.1	17.8 1	20.1 1	34.8 3	5.0 1	19.4 1	
	16	•		•	•	•	•	•	•			21.9 1	34.3 3	34.3 3	18.2 1	13.9 1	11.8 1	15.6 1	11.5	19.8 1	11.8 1	22.9 2	21.5 1	22.1 2	27.8 2	27.5	11.4 1	16.3 1	20.02	33.5 3	16.4 1	20.6 1	
	15	•	•			•			•		•	•	28.9	28.9	19.1	16.9	12.6	15.8	12.6	21.7	6.8	22.8	25.2	23.6	30.1	29.5	9.6	15.4	18.3	31.4	, 0.91	20.3	
	14	•	•	•	•	•	•	•	•	•	•	•	26.2	26.2	18.1	15.5	15.5	12.1	13.3	22.5	11.0	20.7	29.5	27.4	31.3	34.4	2.0	17.8	18.2	36.3	19.5	20.9	
ζΩ	13		•				•		•	•	•	•	24.9	24.9	14.8	15.0	14.5	7.6	6.6	20.9	22.8	22.1	30.9	22.5	35.2	31.8	1.7	25.1	18.0	36.0	21.0	21.1	9.79
HOURS	12		•	•	•		•	•	•	•		•	24.1	24.1	16.4	16.5	21.7	8.8	12.8	19.1	15.7	18.3	27.2	26.5	31.1	31.7	5.0	20.3	15.5	33.0	15.8	20.0	ıı v
H	11	•	•	•	•	•	•	•	•	•	•	•	21.7	21.7	21.5	12.1	21.9	12.7	11.3	18.1	11.6	17.5	292		29.5		0.4	18.4	14.8	30.8	11.4	18.7	etenes
	10	•	•	•	•	•	•	•	•	•	•	•	25.8		22.2		19.9		14.3		8.9	17.0		21.3	30.6	27.5	5.7	15.7	15.3		17.3	18.7	Comple
	0	•	•	•	•	•	•	•	•	•	•	0	25.6	25.6	22.3	8.5	17.7	17.7	18.0	9.4	3.2	13.2	26.9	26.0	26.7	30.9	6.3	14.8	10.0	25.2	7.7	17.4	Data C
	89	•	•	•	•	•	•	•	•	•	•	0	22.7	22.7	24.8	8.3	18.2	12.3	16.9	3.2	4.6	17.0	32.6	29.1	31.7	32.5	6.4		10.1	28.1	7.7	17.9	% 0
	7	•	•	•	•	•	•	•	•	•	•	•	20.7	20.7	25.7	8.9	17.5	13.4	16.5	3.5	3.7	18.9	31.5	27.6	30.3	30.7	4.4	11.4	11.5	30.3	8.6	17.7	
	9	3	•	•	٠	•	•	•	•	ı	•	•	21.2	21.2	54.4	8.6	16.2	11.1	8.4	5.6	2.7	30.4	31.0	26.4	26.7	33.9	3.2	8.1	7.6	27.6	10.4	17.0	65
	2	•	•	•	•	٠	•	•	•	•	•	•	23.6	23.6	23.0	4.7	16.3	9.8	7.1	4.0	2.5	29.5	34.9	24.0	28.5	30.3	2.5	9.1	13.6	30.5	19.8	17.7	4
	4	•	•	•	•	•	•	•	٠	•	٠	•	22.6	22.6	20.4	4.5	16.4	11.2	7.3	5.6	3.0	21.2	33.7	23.9	22.4	35.7	4.2	16.5	11.5	30.9	28.5	18.0	ours =
	М	•	•	•	•	•	•	•	•	•	•	•	23.7	23.7	18.3	2.0	15.0	10.9	7.6	10.3	4.2	20.9	26.2	26.1	26.4	34.7	5.5	16.4	13.2	29.5	27.0	18.1	Valid Hours
	2	•	•	•	•	•	•	•	•	•	•	•	24.5	24.5	21.2	1.8	15.7	10.2	8.7	11.4	8.0	19.4	26.8	26.8	26.8	30.3	4.6	16.3	14.8	27.2	25.6	18.1	of Val
	-	•	•	•	•	•	•	٠	•	¢	•	•	22.2	22.2	25.1	2.8	14.1	13.2	8.6	8.0	11.3	15.2	24.5	27.2	25.5	32.5	3.7	14.4	20.8	27.0	27.8	18.2	#±
DAY		-	2	м	7	2	9	7	ဆ	6	10	=	12	13	14	15	16	17	18	19	50	21	22	23	5%	22	56	27	28	53	30	AVG.	

NOVEMBER 1990

* * * WIND DIRECTION SUMMARY * * *

AVG		1	•	ı	•	•	•	•	1	•	•	225.0	215.8	211.9	209.0	276.0	272.8	271.0	270.3	271.3	273.9	150.5	176.2	200.9	205.5	204.4	12.1	245.8	251.7	217.9	251.1	
	54	•	1	•	•	•	•	•		•	•	215	220	220	304	230	261	239	240	214	222	214	216	215	216	126	254	247	216	215	566	
	23			•		•			•	•		237	218	218	54	526	260	238	251	166	261	214	218	554	202	353	250	258	235	217	279	
	22			•	•				•	•	•	237	217	217	348	225	238	231	267	220	257	215	217	227	214	317	526	526	216	216	251	
	21			•	•					•	•	220	217	217	308	564	564	236	260	216	292	215	219	221	215	275	242	248	217	216	252	
	20											205	215	215	341	597	546	250	234	215	268	219	217	221	219	529	233	251	217	219	549	
	19			•								214	210	210	345	267	225	253	227	227	243	221	221	217	214	260	232	542	237	219	250	
	18											218	210	210	52	267	233	259	549	211	549	212	232	214	208	242	242	252	564	214	251	
	17																						242									
	16			•																												
	15			•																			258									
	14			•					•	•													253					_				
	13								•					-		-	-	-							-	-					263	9.4.6
HOURS	12							•	•														243									9 11
НО	=																						235									eness
	2				•	•			•														230									mplet
	٥				•		•	•	•														222									ata Completenes
	æ						•																218							506	233	% Dai
	7				•	•																	210 2								271	
	9				•																		214 2								7	465
	2	•			•	•		•															212 2								38	ıı S
	4			•	•			•																								id Hours
	m	•		,																			218 2								216	Valid
	2	•				•																										# of
	_		•		•	•																	215 2									
													2	2	2	-	2															
אגרו	140	-	2	8	7	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	58	30	

NOVEMBER 1990

*** WIND FREQUENCY SUMMARY ***

TOTAL	4.5	6.2	18.5	23.0	17.8	17.6	12.3	0.0	0.0		
3	7.0	0.2	7.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	6.2
3	0.0	7.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.9	10.2
3 S	0.0	7.0	0.2	9.0	0.0	0.0	0.0	0.0	0.0	1.3	11.6
3	0.2	1.1	6.4	4.7	1.7	0.0	0.0	0.0	0.0	12.7	13.4
3	0.0	1.1	6.9	9.0	1.7	9.0	0.2	0.0	0.0	9.6	14.1
MSM MS	0.0	7.0	4.5	0.9	6.9	10.5	4.5	0.0	0.0	32.9 1	22.0 1
MSS	0.2	0.0	0.0	5.4	7.5	6.5	7.5	0.0	0.0	54.9	25.5
S	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	7.0	5.4
SSE	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	5.3
SES	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	2.8
ESE	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.5
	0.2	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	3.6
ENE	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	5.4
A .	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	4.3
NNE	1.1	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	4.3
2	9.0	6.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.7	4.7
DIR> SPEED (MPH)							30.0 - 40.0		OVER 50.0	TOTAL	AVG. SPEED

Calm Hours = 0.0%

Total Hours With Both Speed and Direction = 465

Resultant Windspeed = 16.8 (MPH) Resultant Wind Direction = 225.4 Deg

Wind Persistance = 89.8 %

Average Wind Speed = 18.7 (MPH)

Wind Speed Class Boundaries (Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing. Livingston - Downwind PERIOD: Nov. 1990

DECEMBER 1990

*** WIND SPEED SUMMARY ***

HOURS

DAY																									AV
	-	7	2	7	2	9	7	∞	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	
-	9.6	9.0	10.1	11.5	10.9	9.9	5 4.5	5 4.2	2 3.3	3.6		15.2	17.3	18.4	16.5	18.0	20.5	20.7	20.1			15.7 1		7.3	12.
2	4.9	6.1	12.4	9.2	7.3	8.6	5 9.7	7 10.3	3 8.3	10.8	11.6	15.5	16.6	17.3	23.1	16.3	12.7	13.9	14.4	14.7 1	15.1 1	14.8 1	15.3 16	16.0	12.
M	12.3	10.9	10.4	15.8	14.9	15.2	2 16.5	5 17.4	4 17.9	_	20.9		18.9	17.8	21.0	20.9	54.6	22.5	24.6	22.9 2	24.2 2	26.6 28	9.	33.2	19.
4	32.0	30.6	33.5	30.6	30.1	28.9	7.52	7 21.1	1 22.2	26.5	27.0	27.0	31.0	36.6	40.3	35.3	36.2	31.1		27.8 3	30.7 2	25.7 2	3.4 18	18.6	29.
2	23.7	21.6	18.8	15.6	14.0	16.3	18.9	9 12.8	3 12.6	5 15.2	18.4	20.3	22.0	21.8	20.3	19.3	14.3	10.1	9	8.9	12.3 1	15.5 1	1.0 1	10.5	16.
9	12.2	11.3	11.8	13.6	14.6	13.1	14.5	5 15.2	2 16.6	3 18.6	16.2	18.1	18.0	17.7	14.9	17.2	14.9	16.3	18.0 2	21.6 2	22.1 2	24.0 2	1.8 2	22.4	16.
7	22.5	23.6	25.3	25.5	23.6	5 21.0	3 23.3	3 20.6	5 21.6	\$ 22.9	29.5	26.3	19.9	18.8	17.2	18.1	18.4	19.1	19.0	21.0 1	19.5 1	13.5 15	٤.	14.9	20.
8	21.3	19.2	20.5	21.5	21.2	20.5	2 26.1	1 25.1	1 25.7	7 25.0	1 24.9	18.7	22.1	21.2	18.6	19.3	21.5	22.9	23.2	22.8 2	28.3 2	21.7 25	7:	23.7	22.
6	24.1	22.8	22.7	22.7	22.6	5 23.2	2.23.2	2 20.9	23.2	2.22.2	22.9	20.1	19.9	20.8	16.0	18.2	21.2	24.2	24.5	22.9 2	20.4 1	19.3 24	m	22.9	21.
10	20.8	21.3	22.9	24.2	22.1	23.0	3 21.2	2 21.5	5 24.9	, 22.9	21.2		22.9	21.4	19.7	22.2	24.2	25.0	24.3	21.2	20.1 1	19.8 17	80	17.3	21.
1	20.8	19.7	11.8	18.2	22.7	24.0	20.5	2 19.3	3 19.2	11.1	6.2	3.7	2.9	3.3	3.3	8.8	0.4	8.4	12.8	8.5 1		12.2 10	.7	9.1	12.
12	9.5	11.1	9.5		6.5		7.2	2 7.4	4.1	8.7	11.3	•	10	8.2	6.5	2.9	1.0	1.8	1.2	1.0		1.0	0.		5.
13	1.5	1.7	2.1	2.8	2.4	1.1	1.2	2 1.0	0.1.0	1.1	3.6	3.6		6.5	15.5	14.2	12.7	1.8	1.0	1.0	1.5	1.1	1.2	2.8	3.
14	6.9	8.3	14.3	11.7	12.7	11.5	5 8.7	7 8.5	5 10.1	14.2	17.1		18.6	20.7	20.5	18.9	13.2	11.2	17.4	19.9 1	18.6 2	23.2 2	25.7 26		15.
15	24.5	25.6	28.3	27.8	27.0	23.3	3 24.2	2 26.0	30.0	29.4	29.3	5 26.6	7		18.6		20.3	19.2	17.3	19.4		14.6 1	14.3 16		22.
16	14.1	7	11.8	16.3	18.0	14.9	14.5	5 15.4	4 15.5	15.4	13.7		12.5	11.1	9.6	11.4	14.0	10.2	8.4	7.8	6.5 1	12.8	8.5 1	11.1	12.
17	13.2	13.2	13.8	12.3	13.3	15.4	4 13.8	8 20.7	7 18.3	16.4	16.5	18.6	7	23.9	21.6	19.4	26.0	21.4	29.9	29.2		24.4 2	26.6 23	23.5	20.
18	17.8	19.0	21.4	21.4	17.6	19.5	5 16.9	9 11.1	1 12.7	7 10.9	16.3		18.8	20.0	18.2	17.6	16.2	14.0	12.6	12.3	5.3	6.5 1	10.01	11.8	15.
19	16.8	16.0	9.9	5.6	5.0	8.8	3 7.3	3 8.3	3.6	5 14.4	13.1	10.4	14.0	16.7	15.8	15.8	16.5	17.9	16.5	17.1	.7	18.4 1	16.6 16	16.9	13.
20	16.9	16.5	15.6	15.8	15.5	13.7	7 13.5	5 15.4	13		-	17.8	18.1	19.2	19.1		17.6	18.3	17.5	17.9 1	18.1 1	14.5 1	15.8 16	16.3	16.
21	15.5	13.1	10.6	7.2	7.1	7.0	7.9 (7 5.8	4		2.8	3.0	2.4	2.8	2.4	1.7	2.3	5.9	11.9	12.3 1	13.0 1	14.6 11	6.	11.0	7.
22	13.0	12.9	11.4	12.4	12.8	14.0	13.3	3 15.2	16		17.7	19.3	19.4	19.7	17.6	15.5	15.7	15.2	17.9	17.0 1	16.7 1	16.2 17	7.	19.1	16.
23	17.8	18.5	18.5	16.5	18.0	20.9	9 19.5	5 21.0	18.8		26.0	9.92	24.3	27.5	24.1	2.92	30.7	31.3	31.7	33.9 3	30.13	31.0 2	25.7 25	25.2	24.
54	25.3	27.2	27.4	24.6	27.5	26.4	4 26.8	8 29.6	8	2 23.7	26.6	5 27.6	27.8	21.0	20.9	20.02	21.2	20.1	, 5-21	14.6 1	11.7	8.9 1	10.5	.5	21.
25	4.4	6.4	11.4	12.0	16.0	16.8	3 21.0	0 21.6	25	5 27.2	25.4	22.7	19.6	22.8	22.4	22.6	27.2	25.3	23.5	23.2 1	19.9 1	19.3 18	8.7 18	3.9	19.
56	18.5	16.9	17.5	17.8	16.7	7 16.6	5 19.3	3 19.3	3 20.4		20.3	121.2	20.6	22.2	23.7	9.42	•			•					20.
27	1	٠	•	•	•	•	•	•	•	•	•	٠	•		•	•	٠	•	•						'
28	٠	•	1	•	1	•	•	•	ı	•	•	1	•	•	•	•	•	•	•		ı				'
53	•	•	•	ı	1	•	1	•	•	1	•	•	•	1	ı	•	ı	•	•						'
30	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•		•	ı	ı		1		'
31	•	1	•	1	•	•	1	•	1	•	•	•	•	•	•	٠		ı	•	ı	ı		,		•
AVG.	16.2	16.0	16.3	16.2	16.2	16.1	1 16.	1 15.9	16.	2 17.2	17.9	17.9	17.8	18.4	18.0	17.9	17.9	17.1	17.8	17.5 1	17.1 1	16.6 1	16.4 16	2.5	
	#	of Valid Hours	Lid H		9 =	616		*	% Data	Compl	Completeness	= SSi	85.8												

DECEMBER 1990

* * * WIND DIRECTION SUMMARY * * *

	AVG.		219.4	2.02	235.1	228.5	273.4	272.8	262.2	242.8	228.7	224.5	235.8	308.7	328.1	292.6	222.4	225.6	221.7	338.9	0.0	65.7	0.79	504.9	228.0	226.7	230.5	227.7	•	1	•	•	•	
		54	549	258	220	237	592	216	251	554	213	206	546	11	238	220	232	230	216	7	65	20	242	555	243	9	219	•	1	•	•	•	•	
		23	231	232	554	216	263	215	256	223	210	211	251	21	189	218	230	234	214	350	9	\$	526	524	257	338	225	•	•	1	•	•	•	
		22	222	240	218	213	275	219	248	222	220	215	256	12	214	218	235	2 92	506	10	%	62	230	224	233	351	239	•	•	•	1	•	ı	
		21	224	242	230	202	566	221	230	220	213	216	263	15	217	231	223	241	198	21	92	9	223	230	223	504	227	•	•	•	ı	•	ı	
		20	215	237	248	202	251	525	215	233	225	215	291	21	163	241	231	240	203	348	23	95	228	214	232	200	228	•	•	•	ı	•	•	
		19	212	222	526	508	242	232	214	234	219	218	255	235	339	230	221	260	217	340	7,4	9	230	230	230	202	526	•		•	•	•	•	
		18	209	222	227	214	241	221	211	231	213	213	257	220	2	232	223	592	219	359	8	95	549	236	544	204	251	•	•	•	•	•	•	
		17	209	542	542	216	255	233	223	233	210	208	311	305	273	237	225	273	222	347	25	63	313	219	220	207	544	•	1	ı	•	•	•	
		16	212	253	230	218	279	220	227	237	204	208	259	291	292	261	221	253	208	354	26	20	321	224	235	219	233	555	•	1	•	•	•	
		15	207	592	238	216	569	223	557	5 28	210	211	16	210	5 92	5 92	554	231	206	343	22	69	61	222	222	222	242	240	•	•	•	•	1	
		14	205	259	240	218	569	215	230	231	210	217	157	200	278	256	216	218	225	340	29	78	333	217	218	226	555	238	. •	•	•		1	
ທ		13	208	258	236	218	263	214	223	234	213	222	22	202	91	248	234	219	243	334	58	92	343	216	218	218	555	217		•	1	•	•	82.8
HOURS		12	209	253	233	219	272	213	219	232	217	214	=	18	51	251	227	225	232	332	65	71	319	218	218	220	222	212	•	•	•	•	•	ii s
Ħ		11	223	253	237	217	264	223	215	233	558	216	343	214	12	544	213	227	230	345	7	71	334	242	222	222	225	226	•	•	1	•	•	tenes
		10	9	256	235	218	243	218	509	236	227	214	306	228	174	245	228	554	230	95	352	29	25	542	213	224	219	225	•	•	•	•	•	Comple
		6	2	233	216	232	544	228	224	240	229	213	253	255	27	248	231	526	238	13	319	37	26	235	554	212	222	236	•	1	•	•	•	ata C
		æ	37	240	230	226	268	232	216	247	235	217	222	544	22	240	233	224	228	0	344	36	8	239	221	230	221	243	1	•	•	•	,	×
		7	35	247	233	220	275	241	211	240	229	216	216	247	276	241	231	226	237	300	355	39	63	544	222	250	554	236	1	1	•	•	1	9
		9	265	230	222	213	257	241	509	245	212	214	218	546	318	992	228	215	232	258	9	94	58	238	216	241	227	234	•	1	•	•	•	
		2	251	217	233	218	258	236	205	248	222	216	528	248	7	292	227	215	231	236	Ξ	25	8	239	217	235	242	233	•	1	•	•	•	urs =
		7	250	257	218	212	245	230	212	240	222	215	234	254	07	259	223	211	233	254	329	29	61	239	228	234	239	558	•	1	•	•	•	id Hours
		M	250	253	233	214	248	239	206	237	220	215	253	271	15	260	229	204	216	238	332	58	95	243	234	228	235	219	1	•	•	•	•	f Val
		7	245	283	253	210	258	259	215	228	220	215	235	566	25	255	228	209	216	243	350	65	89	232	237	542	260	220	•	•	•	•	•	#£
		-	261	270	233	226	260	566	219	549	218	217	225	546	95	263	222	230	222	237	351	61	69	227	245	245	327	225	•	1	•	•	•	
	DAY		-	2	m	4	2	9	7	80	٥	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	56	27	28	59	30	31	

DECEMBER 1990

*** WIND FREQUENCY SUMMARY ***

TOTAL	7.1	5.4	11.9	34.6	28.1	7.6	3.1	0.2	0.0			
3	9.0	0.5	0.5	1.0	0.3	0.0	0.0	0.0	0.0	2.9	10.4	
3	1.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.3	3.5	
3 2 2	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	9.0	8.6	
3	0.2	0.8	1.5	2.3	1.3	0.0	0.0	0.0	0.0	6.0	13.5	
n ASA	0.2	1.3	5.5	7.3	3.9	1.8	0.5	0.0	0.0	19.8	15.6	
AS .	0.5	0.2	2.3	14.3	17.2	0.9	1.9	0.2	0.0	42.5	20.3	
ASS	0.2	0.2	0.8	2.9	4.7	1.9	1.0	0.0	0.0	11.7	20.9	
v	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.2	
SSE	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.2	
SE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ESE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ш	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	2.7	
ENE	0.5	0.8	0.2	4.2	9.0	0.0	0.0	0.0	0.0	6.3	14.6	
3	9.0	9.0	0.3	1.3	0.0	0.0	0.0	0.0	0.0	2.9	4.6	
N H	1.5	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	1.8	2.9	
2	0.8	9.0	8.0	1.0	0.0	0.0	0.0	0.0	0.0	3.2	9.1	
DIR> SPEED (MPH)	0.0 - 4.0	4.0 - 7.5	7.5 - 12.1	12.1 - 19.0	19.0 - 24.7	24.7 - 30.0	30.0 - 40.0	40.0 - 50.0	OVER 50.0	TOTAL	AVG. SPEED	

Calm Hours = 0.0%

Resultant Windspeed

Total Hours With Both Speed and Direction = 616

12.9 (MPH) Resultant Wind Direction = 229.7 Deg

Wind Persistance = 76.1%

Average Wind Speed = 16.9 (MPH)

Wind Speed Class Boundaries (Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing. Livingston - Downwind PERIOD: Dec. 1990

Envircon

Livingston, Montana

4th Q 1990

* * * WIND FREQUENCY SUMMARY * * *

SPEED (MPH)	Livia	4		u	וויים	Ü	200	u	1133	10	11011	7.4	TANE	TIN	MME	TOTAL
	N N	¥	n N	ш	n n	N N	200	n	200	200	8	3		B E	3 E E	101
4.0	1.3	0.5	7.0	0.2	0.1	0.3	0.3	0.3	0.2	0.3	0.1	0.2	0.1	9.0	9.0	0.9
7.5	7.0	0.5	9.0	0.2	0.0	0.0	0.1	0.0	0.1	0.3	1.2	6.0	0.3	0.2	7.0	5.7
12.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.1	8.0	3.2	5.9	3.0	0.2	0.2	0.5	14.7
- 19.0 0.6	0.1	7.0	5.4	0.0	0.0	0.0	0.0	0.0	2.7	10.7	8.0	3.3	7.0	0.1	9.0	29.6
24.7	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	5.9	12.8	3.0	1.5	0.0	0.0	0.2	23.7
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.9	8.0	1.3	0.0	0.0	0.0	0.0	13.1
0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	3.1	0.2	0.0	0.0	0.0	0.0	7.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
OVER 50.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL 2.6	1.8	1.9	3.8	7.0	0.1	0.3	7.0	7.0	17.4	38.4	19.7	8.9	6.0	1.1	2.1	
AVG. SPEED 7.8	3.5	8. 8.	14.1	3.4	2.5	2.8	3.7	3.3	23.8	20.9	14.9	13.5	10.4	5.7	9.5	
Calm Hours = 0.0%			Total P	lours Wi	Total Hours With Both Speed and Direction = 1081	Speed	and Di	rection	= 1081			Aver	age Win	d Speed	Average Wind Speed = 17.7 (MPH)	(MPH)
Resultant Windspeed	= 14	14.5(MPH)	Res	Resultant Wind		Direction =		227.60eg				Wind	Wind Persistance	tance =	82.2	*

Wind Speed Class Boundaries (Miles/Hour)

NOTES:

Diagram of the Frequency of Occurrence for each Wind Direction. Wind Direction is the Direction From Which the Wind is Blowing. Livingston - Downwind 4th Quarter - 1990

Envirocon *** TEMPERATURE SUMMARY (DEG F) ***

AVG.		0	0	0	0	0	0	0	0	0	0	29	58	58	24	35	75	25	45	5 5	35	33	95	67	52	20	22	57	62	39	32	0		
·	54	,			•	•						22	61	61	34	34,	48	45	41	45	52	37	45	20	25	32	23	52	32	43	21		70	
	23					•	•		•	ı		22	63	63	37	32	48	45	41	45	27	37	45	52	25	34	52	25	32	43	21		41	
	22			ı			•		•	•	ı	22	63	63	39	34	48	45	45	95	27	37	95	25	25	37	52	27	30	43	23		45	
	21			ı		•			1	•	1	25	63	63	45	36	84	45	45	95	28	37	48	20	25	45	52	27	30	43	23		43	
	20											25	63	63	95	36	48	45	95	48	28	36	48	20	25	95	23	27	32	41	52		43	
	19					•			•	•	ı	29	63	63	48	37	48	45	45	48	28	34	48	84	25	20	52	52	32	41	27		43	
	18											61	63	63	20	36	20	84	45	48	28	34	48	48	25	24	52	27	32	41	28		77	
	17	,			•	•	1			1		\$	\$	3	52	37	25	25	48	20	30	34	20	20	24	24	28	28	34	43	30		95	
	16				•	•						%	\$	\$	54	39	54	54	20	20	34	32	20	25	24	54	32	30	34	45	32		25	
	15				,								63	63	25	37	52	54	20	25	34	34	25	24	24	24	32	30	34	45	32		95	465
	14				•								63	63	61	37	48	55	48	25	36	36	52	52	25	24	36	28	32	43	34		95	DATA =
	13				1								63	63	61	37	45	55	48	25	37	37	25	24	24	24	30	22	32	41	34		95	OF DA
HOURS	12						ı						61	61	63	36	41	54	95	52	43	36	20	52	54	54	22	27	32	41	36	1	45	HOURS
HOI	11												29	29	61	36	39	20	95	84	45	34	84	20	25	25	21	23	32	39	32	4	43	
	10												55	25	61	34	37	97	45	45	45	30	95	84	20	52	12	23	28	37	30	1	75	= 45
	٥												52	25	59	34	34	45	43	32	39	30	45	95	25	52	12	19	27	37	30		39	GE T
	8	•											52	25	29	32	34	45	43	28	36	30	45	45	25	52	27	19	52	36	30	1	39 39	AVERA
	7					•																										1	39	ý
	9	•	•										25	52	29	34	34	43	43	32	37	30	43	45	25	52	28	19	23	36	32		39	9
	2	•					•						20	20	59	34	34	45	43	32	39	30	41	45	52	25	30	9	52	34	39		40	MUM 1
	7			•		•							54	54	29	34	34	45	43	39	39	30	41	45	25	25	28	21	52	34	41		40	MAXIMUM
	м												54	54	59	32	34	45	45	41	41	28	39	45	25	25	28	23	52	34	43		41	6
	2												24	54	59	32	34	95	43	43	41	27	39	45	20	25	30	21	52	34	43		41	"
	-										1	•	25	52	59	32	34	95	43	41	43	27	37	45	25	25	32	23	52	32	43		40	MUM T
		_	2	8	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	22	56	22	28	59	30	31	AVG.	MINIMUM
DAY																																	A	

AVG.

		ш	Envirocon	200.		* *		L	ivin RA	gste	on, RE'S	Mo	Livingston, Montana TEMPERA TURE SUMMARY (DEG	ia IRY	101] * <i>(y</i>	* *	DECEMBER	3ER	19	90	
 VAU											HOURS	IRS											
	4	7	M	4	2	9	7	80	٥	10	1	12	13	14	5 1					21	22	23	54
-	21	19	18	16	18	18	10	0	16	18										32	32	32	30
2	28	28	27	27	27	27	52	52	25	25	27	27	27	28 2	28 2	28 27	7 27	. 25	27	27	27	27	28
2	27	27	27	27	27	27	52	52	27	27										34	34	32	32
4	34	34	34	34	36	36	36	36	37	39										43	43	43	43
2	45	39	36	36	36	36	36	34	34	34										30	30	30	30
9	30	28	28	28	27	27	27	27	27	27				36 3	37 3					34	34	32	32
7	32	32	30	30	30	30	30	30	30	32										39	39	39	37
80	39	37	37	37	36	36	36	36	36	39										45	45	45	45
6	45	45	45	45	45	45	45	45	45	95										52	52	52	20
10	20	20	20	20	48	48	48	48	20	20										22	22	22	24
11	55	55	52	52	20	48	48	87	95	39										32	30	28	27
12		25	25	23	21	21	21	21	21	23										14	14	12	12
 13		14	14	14	14	14	14	14	16	21										27	27	27	52
14		25	25	23	23	23	23	23	52	52					27 2	27 2				23	23	23	23
15		21	23	23	23	23	23	23	23	23										30	28	27	27
16		25	52	52	52	52	52	52	52	27										28	28	27	27
17		25	25	52	23	23	52	52	27	27										30	32	36	36
18		36	36	37	34	36	28	16	12											-11	-11	-13	-15
19		-18	-18	-20	-18	-20	-20	-20	-22	-22				-17 -17		71- 7	7 -18			-18	-18	-18	-20
20		-20	-20	-22	-22	-22	-22	-22						18 -18						-20	-20	-20	-20
21		-22	-22	-22	-22	-22	-22	-24						•	5 -17					-18	-18	-18	-18
22	-18	-18	-18	-18	-18	-18	-18	-17	-	-13					- 7-				<u>-</u>	0-	0-	0-	-5
23	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	0-		2							o	6	6	10
 77	6	Φ.	10	10	6	10	10	6	6	10	10									12	10	6	7
25	7	7	6	o	10	6	6	6	6	10	12									16	16	16	16
56	14	14	14	14	14	12	12	12	12	10	14	16			23 2	- 22		•	•	•	•	•	•
27	•	•	•	•	•	•														ı	•	•	
28	•	•	•	•	•	•			ı				•							•	•	•	•
59	•	•	•	•	•	•	•	•												•	•	ı	ı
30	•	•	•	•	•	•	•	•	•	•										•	•	•	•
 31	ı	•	•	•	ı	•				ı	ı										•	•	
AVG.	20	20	19	19	19	19	18	17	18	18	20			25 2	5					22	22	12	21
Ī	MINIMUM	H	57	MAX	MAXIMUM	# -	6	AVERA	RAGE T	- 21	오	HOURS 0	OF DAT	9 = V	91								

*** WIND SIGMA SUMMARY (DEGREES) *** Envirocon

1	AVG		0	0	0	0	0	0	0	0	0	0	15	16	12	20	21	16	13	17	56	33	14	13	13	12	17	52	14	13	12	18	0	
		54	•	•	•	1	•	•	1				16	13	1	24	12	13	10	27	14	15	13	10	15	13	23	6	10	12	1	72		19
		23		•	•		•						17	16	10	65	15	50	15	17	38	12	11	11	15	11	2	1	ဆ	16	7	12		19
		22		•	•			•	•				17	12	12	35	22	21	13	12	16	13	11	11	15	12	65	12	6	17	12	13		18
		21				1			1				50	97	1	34	15	95	15	27	15	15	1	13	12	13	1	18	9	17	1	10		18
		20						1					14	41	12	13	٥	15	11	54	18	13	12	11	=======================================	12	10	20	11	16	11	6	•	15
		19	0		•			•					1	21	13	1	11	10	10	19	14	13	13	14	11	12	6	12	13	15	1	6		13
		18											=	21	1	28	80	19	12	20	12	11	11	16	12	12	21	15	22	13	11	6		15
		17											13	18	12	53	13	21	6	56	7	27	1	16	12	12	11	10	16	15	11	11		16
		9											12	13	10	0	14	22	9	17	-	9	1	12	1	13	11	6	17	12	13	10		12
		15					•							12	13	٥	ω	21	6	13	=	86	12	12	13	12	1	18	13	13	15	1		91
		14	•	•							•		•	15	12	10	8	25	12	61	=	29	. 21	Ξ	Ξ	15	2	. 25		12	12	0		18
		13	•	•		•	•				•			12	12	13	8	15	. 23	30	13	6	. 21		, 21	_	1	56	. 71	. 51		. 51		. 91
38		12 1	•	•	•		•			•		•		10	12 1	28 1	8	12 1	18	12 3	12 1	22	16	13	12 1	12 1	11	31		15	7	=		15
HOURS		-	•	•	•	•	•	•	•	•	•		•	0	W	2	18	2	75	9	<u>w</u>	2 5		16 1	2	<u>N</u>	-	9	7	5	2	0		7
144		10	•	•	•	•	•	•	'	•	•	•	•	2 1	3 1	_	-	_	7	12 1	_	31 1	23 2	18 1	14 1	12 1	12 1	12 1	18	5	13 1	10	'	15 1
		9	•	'	'	•	'	'	'	'	'	'	•	2 1	11 1	-	6 1	-	1	-	9 31							-	Ī	0	•		'	
			•		•	•	'	•	'	'	'				13 1																			
									•																									
						•	•	•	•	•	•				12 14																			
			•			•	•	•	•	•	•																							
									•																									
								•	•	•				_	1																			
						•		•	•	•		•		Ξ.	-											12				<u> </u>				•
									•	1	•																			7	÷	12	·	
			1	•	•	•	•	•	•	•	1	1		24	13	10	43	12	13	14	25	10	26	11	12	13	41	15	10	10	14	12	1	7
	DAY		-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	29	30	31	AVG.

DECEMBER 1990	***
Livingston, Montana	*** WIND SIGMA SIIMMARY (DEGREES) ***
Envirocon	

DAY

HOURS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 81 45 10 11 23 5 7 14 15 14 15 14 15 14 15 14 15 15 17 17 18 19 20 21 22 23 24 3 16 13 13 10 12 25 17 14 15 14 15 14 13 12 11 11 11 11 13 13 14 15 1					11/	5		Ţ	S		_	7	7		5								
1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1									HOU	RS													
1																							7G.
4 10 8 8 10 54 52 6 72 14 17 12 12 13 15	~				7	ဆ	٥	10					•	_	7	8	6	۰, ۵				54	
38 65 10 11 23 25 77 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 15 14 11<					23	99	20	24		71	, 21											22	22
1					17	14	15	14		. 21			_								_	2	16
1					15	18	14	17					5	9	7	7						9	16
5 11 11 12 2 13 12 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 <td></td> <td></td> <td></td> <td></td> <td>17</td> <td>19</td> <td>20</td> <td>15</td> <td></td> <td>. 21</td> <td>, 21</td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13</td> <td>14</td>					17	19	20	15		. 21	, 21				-	_						13	14
9 8 14 12 13 13 13 13 13 14 15 14 13 13 13 14 15 14 13 13 14 <td></td> <td></td> <td></td> <td></td> <td>12</td> <td>17</td> <td>12</td> <td>18</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ţ</td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>13</td>					12	17	12	18	11								Ţ					11	13
31 22 11 12 10 13 12 14 13 12 14<					13	15	17	12			13						2	` <u>*</u>			<u>S</u>	13	13
1					11	13	12	12		. 91	13									6		81	14
13 14 13 16 13 15 16 14 14 15 12 12 13 15 16 14 17 11 11 11 11 11 11 11 11 11 11 11 11					15	16	21	14								6	7			7	<u> </u>	71	17
11 1 10 10 10 13 11 11 13 12 12 13 15 17 14 17 11 11 11 11 11 11 11 11 11 11 11 11					16	14	14	16							3	_					=		14
11 1 16 22 15 13 12 12 12 15 13 35 52 73 67 14 76 13 60 69 10 16 16 14 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10					11	13	12	12										` =	11	-		12	11
10 8 9 38 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					12	15	23															<u> </u>	27
22 33 35 37 81 51 44 79 46 35 30 66 9 8 12 68 67 60 67 60 82 38 23 23 14 10 11 10 12 9 10 15 14 10 12 9 10 15 14 10 12 9 10 15 14 10 12 9 10 15 14 10 12 14 11					10	11																72	54
14 10 9 8 9 11 13 17 12 11 10 12 9 10 15 14 15 14 15 14 15 14 15 14 15 14 15 16 14 15 14 15 16 14 15 14 15 16 14 15 16					81	51																23	77
15 15 15 15 16 16 17 11 12 11 11 12 12 12 12 16 16 17 16 17 10 10 10 10 17 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10					13	17	12	11														2	13
18 13 21 11 11 12 11 11 12 11 11 12 12 12 12					17	16	13	14														9	15
12 11 11 17 13 14 15 12 15 16 19 17 17 15 16 19 17 20 14 14 14 18 17 19 19 17 20 14 14 14 18 17 19 19 17 17 18 14 19 46 17 15 16 19 58 18 16 17 14 11 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10					11	1	11	12														51	14
27 19 14 21 13 37 66 37 37 15 9 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 10 13 11 9 8 9					15	12	15	16														<u>&</u>	16
13 14 19 46 17 15 16 19 58 18 16 17 14 11 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10					37	%	37	37	15													Ö.	25
10 9 10 10 11 11 11 11 10 13 14 35 40 27 44 27 44 15 12 12 12 13 13 15 15 14 15 15 15 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18					16	19	58	18	16									0				0	16
8 10 11 12 11 12 11 9 11 23 34 35 40 27 44 27 44 15 12 12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15					11	10	13	11		∞	0											80	10
13 14 16 15 13 12 10 11 11 13 13 13 13 13 15 11 17 16 15 15 15 15 16 18 18 18 18 13 15 16 16 16 16 17 12 11 12 11 13 12 15 15 14 16 14 13 18 17 20 17 18 16 15 15 15 18 14 15 13 17 17 17 17 15 12 12 13 18 17 20 17 13 12 15 15 15 15 15 15 15 15 15					11	0	11															2	19
13 16 16 16 14 12 12 11 14 11 12 11 13 12 15 15 16 17 17 17 14 12 12 13 18 17 20 18 19 16 19 17 18 16 15 15 18 14 15 13 17 17 17 17 15 12 12 18 14 36 17 33 42 25 17 16 16 15 9 12 12 11 13 12 16 17 17 17 17 15 15 12 20 17 19 14 13 14 12 11 14 14 14 13 11 12 14 14 16 16 17 20 17 17 17 17 15 15 12 20 17 19 14 13 15 12 13 14 15 15 15 18 14 16 16 17 17 17 17 17 15 15 15 15 15 15 15 15 15 16 12 11 14 14 14 15 11 12 14 14 16 16 17 17 17 17 17 17 18 17 18 17 18 17 15 17 15 17 17 17 15 17 15 17 15 17 15 17 17 15 17 17 15 17 17 15 17 17 15 17 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17					10	7	11															82	14
18 19 16 19 17 18 16 15 15 18 14 15 13 17 17 14 12 12 12 18 14 36 17 33 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15					12	11	14	11														0	14
42 25 17 16 16 16 15 9 12 12 11 13 12 16 17 17 17 17 15 15 12 20 17 19 14 13 14 14 14 14 16 16 17 20 17 17 17 17 17 17 19 14 13 14 14 14 14 14 14 16 16 17 20 17 17 17 17 17 17 17 17 17 17 18 18 20 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 15 17 18 17 17 15 17					16	15	15	18						7								53	17
14 12 14 15 16 16 16 16 16 17 20 17 17 1 1 1 1 12 14 16 16 16 16 16 16 16 16 16 16 17 1 2					6	12	12	11	13	. 21	, 91											<u>~</u>	16
- -					11	12	14	14	16	91		20	7			•	•			•			15
1 1						•	•	•					•			•				•			0
- -												•	•	•	•	•	•			•			0
- -												•		•		•	•	•		'			0
17 16 14 16 16 17 17 19 20 20 19 18 17 17 16 16 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18								•	•					•	•	•		•		•	·		0
17 16 14 16 16 17 17 19 20 20 19 18 17 17 16 17 18 17 18					•							•				•				•	•		0
					17	19	50	20	. 61	8	. 21	17	7	1	7	80			20 1	7		2	

PNA Data

(Appendix A)

PNA Sampling Results

PUFF Sampler Downwind Site

Sample Number:
Sample Date:

Air-001

November 10, 1990 Micrograms/cubic meter

	Filter	Adsorbent	Total
Acenaphthene	<0.0017	0.0024	0.0041
Acenaphylene	<0.0017	<0.0017	<0.0034
Anthracene	<0.0017	<0.0017	<0.0034
Benzo(a)anthracene	<0.0017	<0.0017	<0.0034
Benzo(a)pyrene	<0.0017	<0.0017	<0.0034
Benzo(b)fluoranthene	<0.0017	<0.0017	<0.0034
Benzo(ghi)perylene	<0.0017	<0.0017	<0.0034
Benzo(k) fluoranthese	<0.0017	<0.0017	<0.0034
Chrysene	<0.0017	<0.0017	<0.0034
Dibenzo(a,h)anthracene	<0.0017	<0.0017	<0.0034
Fluoranthene	<0.0017	0.0017	0.0034
Fluorene	<0.0017	0.0046	0.0063
Ideno(1,2,3-cd)pyrene	<0.0017	<0.0017	<0.0034
Napthalene	<0.0017	0.0028	0.0045
Phenanthrene	<0.0017	0.0182	0.0200
Pyrene	<0.0017	<0.0017	<0.0034

Sample Number: Air-002
Sample Date: November 19, 1990
Units: Micrograms/cubic meter

	Filter	Adsorbent	Total
Acenaphthene	<0.0016	0.0029	0.0046
Acenaphylene	<0.0016	<0.0016	<0.0033
Anthracene	<0.0016	0.0020	0.0036
Benzo(a)anthracene	<0.0016	<0.0016	<0.0033
Benzo(a)pyrene	<0.0016	<0.0016	<0.0033
Benzo(b) fluoranthene	0.0036	<0.0016	0.0052
Benzo(ghi)perylene	<0.0016	<0.0016	<0.0033
Benzo(k)fluoranthese	<0.0016	<0.0016	<0.0033
Chrysene	<0.0016	<0.0016	<0.0033
Dibenzo(a,h)anthracen	<0.0016	<0.0016	<0.0033
Fluoranthene	<0.0016	0.0056	0.0072
Fluorene	<0.0016	0.0082	0.0098
Ideno(1,2,3-cd)pyrene	<0.0016	<0.0016	<0.0033
Napthalene	<0.0016	0.0026	0.0042
Phenanthrene	<0.0016	0.0271	0.0287
Pyrene	<0.0016	0.0046	0.0062

Sample Number: Sample Date: Units:

Air-003 November 25, 1990 Micrograms/cubic meter

	Filter	Adsorbent	Total
Acenaphthene	<0.0016	0.0023	<0.0039
Acenaphylene	<0.0016	<0.0016	<0.0032
Anthracene	<0.0016	<0.0016	<0.0032
Benzo(a)anthracene	<0.0016	<0.0016	<0.0032
Benzo(a)pyrene	<0.0016	<0.0016	<0.0032
Benzo(b) fluoranthene	<0.0016	<0.0016	<0.0032
Benzo(ghi)perylene	<0.0016	<0.0016	<0.0032
Benzo(k)fluoranthese	<0.0016	<0.0016	<0.0032
Chrysene	<0.0016	<0.0016	<0.0032
Dibenzo(a,h)anthracene	<0.0016	<0.0016	<0.0032
Fluoranthene	<0.0016	<0.0016	<0.0032
Fluorene	<0.0016	0.0032	0.0049
Ideno(1,2,3-cd)pyrene	<0.0016	<0.0016	<0.0032
Napthalene	<0.0016	0.0055	0.0071
Phenanthrene	<0.0016	0.0117	0.0133
Pyrene	<0.0016	<0.0016	<0.0032

Air-005

Sample Number: Sample Date: Units: December 1, 1990 Micrograms/cubic meter

	Filter	Adsorbent	Total
Acenaphthene	<0.0016	0.0019	0.0035
Acenaphylene	<0.0016	0.0019	0.0035
Anthracene	<0.0016	0.0019	0.0035
Benzo(a) anthracene	<0.0016	<0.0016	<0.0032
Benzo(a)pyrene	<0.0016	<0.0016	<0.0032
Benzo(b)fluoranthene	0.0016	<0.0016	0.0032
Benzo(ghi)perylene	<0.0016	<0.0016	<0.0032
Benzo(k)fluoranthese	<0.0016	<0.0016	<0.0032
Chrysene	<0.0016	<0.0016	<0.0032
Dibenzo(a,h)anthracene	<0.0016	<0.0016	<0.0032
Fluoranthene	<0.0016	0.0042	0.0058
Fluorene	<0.0016	0.0077	0.0093
Ideno(1,2,3-cd)pyrene	<0.0016	<0.0016	<0.0032
Napthalene	<0.0016	0.0042	0.0058
Phenanthrene	<0.0016	0.0179	0.0195
Pyrene	<0.0016	0.0029	0.0045

Sample Number: Air-006

Anthracene

Chrysene

Fluorene

Napthalene

Pyrene

Phenanthrene

Fluoranthene

Benzo(a) anthracene

Benzo(b) fluoranthene

Benzo(k) fluoranthese

Dibenzo(a,h)anthracene

Ideno(1,2,3-cd)pyrene

Benzo(ghi)perylene

Benzo(a)pyrene

Sample Date: December 7, 1990

Units: Micrograms/cubic meters

	riicei	Adsorbent	Total
Acenaphthene	<0.0016	<0.0016	<0.0032
Acenaphylene	<0.0016	<0.0016	<0.0032

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

<0.0016

0.0019

0.0047

<0.0016

0.0032

0.0104

<0.0016

<0.0032

<0.0032

<0.0032

<0.0032

<0.0032

<0.0032

<0.0032

<0.0032

0.0035

0.0063

<0.0032

0.0047

0.0120

<0.0032

Air-007

Sample Number: Sample Date: Units: December 14, 1990 Micrograms/cubic meters

	Filter	Adsorbent	Total
Acenaphthene	<0.0015	0.0024	0.0039
Acenaphylene	<0.0015	<0.0015	<0.0030
Anthracene	<0.0015	0.0018	0.0033
Benzo(a) anthracene	<0.0015	<0.0015	<0.0030
Benzo(a)pyrene	<0.0015	<0.0015	<0.0030
Benzo(b) fluoranthene	0.0024	<0.0015	0.0039
Benzo(ghi)perylene	<0.0015	<0.0015	<0.0030
Benzo(k)fluoranthese	<0.0015	<0.0015	<0.0030
Chrysene	0.0015	<0.0015	0.0030
Dibenzo(a,h)anthracene	<0.0015	<0.0015	<0.0030
Fluoranthene	0.0018	0.0060	0.0079
Fluorene	<0.0015	0.0076	<0.0091
Ideno(1,2,3-cd)pyrene	<0.0015	<0.0015	<0.0030
Napthalene	<0.0015	0.0036	0.0051
Phenanthrene	<0.0015	0.0209	0.0224
Pyrene	0.0015	0.0042	0.0057

Metals Data

(Appendix A)

November 19, 1990

Sym.	Element	Upwind	Downwind
Al	Aluminum	0:0000	0.0000
P	Phosphorus	0.0000	0.0000
S	Sulphur	0.2057	0.0539
Cl	Chlorine	0.0000	0.0000
K	Potassium	0.5032	0.4190
Ca	Calcium	1.421	1.357
Ti	Titanium	0.0576	0.0533
V	Vanadium	0.0028	0.0000
Cr	Chromium	0.0000	0.0000
Mn	Manganese	0.0112	0.0037
Fe	Iron	0.5093	0.2305
Ni	Nickel	0.0000	0.0000
Cu	Copper	0.0056	0.0072
Zn	Zinc	0.0000	0.0000
Ga	Gallium	0.0000	0.0000
Ge	Germanium	0.0007	0.0010
As	Arsenic	0.0017	0.0055
Se	Selenium	0.0000	0.0000
Br	Bromine	0.0051	0.0007
Rb	Rubidium	0.0030	0.0013
Sr	Strontium	0.0096	0.0095
Y	Yttrium	0.0043	0.0000
Zr	Zirconium	0.0240	0.0100
Mo	Molybdenum	0.1022	0.1144
Pd	Palladium	0.0000	0.0023
Ag	Silver	0.0000	0.0000
Cd	Cadmium	0.0000	0.0000
In	Indium	0.0000	0.0000
Sn	Tin	0.0246	0.0312
Sb	Antimony	0.0566	0.0526
Ba	Barium	0.0099	0.0000
La	Lanthanum	0.2403	0.0000
Hg	Mercury	0.0000	0.0000
Pb	Lead	0.0041	0.0000
	<u> </u>		

November 25, 1990

		Upwind	Downwind
Al	Aluminum	0.0000	0.0000
P	Phosphorus	0.0000	0.0000
s	Sulphur	0.0902	0.0046
Cl	Chlorine	0.0000	0.2265
K	Potassium	0.3673	0.5528
Ca	Calcium	1.415	1.389
Ti	Titanium	0.0553	0.0588
V	Vanadium	0.0000	0.0000
Cr	Chromium	0.0014	0.0000
Mn	Manganese	0.0053	0.0058
Fe	Iron	0.4747	0.3455
Ni	Nickel	0.0000	0.0000
Cu	Copper	0.0029	0.0133
Zn	Zinc	0.0000	0.0000
Ga	Gallium	0.0000	0.0000
Ge	Germanium	0.0020	0.0018
As	Arsenic	0.0000	0.0146
Se	Selenium	0.0012	0.0000
Br	Bromine	0.0035	0.0418
Rb	Rubidium	0.0077	0.0083
Sr	Strontium	0.0154	0.0186
Y	Yttrium	0.0000	0.0014
Zr	Zirconium	0.0211	0.0185
Mo	Molybdenum	0.1098	0.1077
Pd	Palladium	0.0125	0.0000
Ag	Silver	0.0068	0.0025
Cd	Cadmium	0.0000	0.0154
In	Indium	. 0.0000	0.0000
Sn	Tin	0.0000	0.0141
Sb	Antimony	0.0000	0.0302
Ba	Barium	0.0000	0.0000
La	Lanthanum	0.3178	0.0000
Hg	Mercury	0.0000	0.0000
Pb	Lead	0.0075	0.1190

December 1, 1990

P Phosphorus 0.0000 0.0000 S Sulphur 0.1428 0.016 Cl Chlorine 0.0000 0.000 K Potassium 0.3560 0.283 Ca Calcium 1.378 0.969 Ti Titanium 0.0555 0.036 V Vanadium 0.0000 0.000 Cr Chromium 0.0001 0.000 Mn Manganese 0.0061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 Arsenic 0.0028 0.001 Se Selenium 0.0032 0.000 Br Bromine 0.0014 0.003 Rb Rubidium <		Sym.	Element	Upwind	Downwind
S Sulphur 0.1428 0.0168 C1 Chlorine 0.0000 0.0000 K Potassium 0.3560 0.283 Ca Calcium 1.378 0.969 Ti Titanium 0.0555 0.036 V Vanadium 0.0000 0.000 Cr Chromium 0.0001 0.000 Mn Manganese 0.0061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 Arsenic 0.0028 0.001 Se Selenium 0.0028 0.001 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0135 0.015 Yttrium 0.0037		Al	Aluminum	0.0000	0.0000
C1 Chlorine 0.0000 0.0000 K Potassium 0.3560 0.283 Ca Calcium 1.378 0.969 Ti Titanium 0.0555 0.036 V Vanadium 0.0000 0.000 Cr Chromium 0.0001 0.000 Mn Manganese 0.0061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.003 0.001 Yttrium 0.003 0.001 Yttrium 0.003 <		P	Phosphorus	0.0000	0.0000
K Potassium 0.3560 0.283 Ca Calcium 1.378 0.969 Ti Titanium 0.0555 0.036 V Vanadium 0.0000 0.000 Cr Chromium 0.0001 0.000 Mn Manganese 0.0061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 Arsenic 0.0028 0.001 Se Selenium 0.0028 0.001 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Yttrium 0.0037 0.004 Zr Zirconium 0.015 0.005 Mo Molybdenum 0.0000 0.000 Ag Silver 0.0201 0.000 <	- 1	S	Sulphur	0.1428	0.0165
Ca Calcium 1.378 0.9692 Ti Titanium 0.0555 0.0369 V Vanadium 0.0000 0.0000 Cr Chromium 0.0001 0.0000 Mn Manganese 0.0061 0.0049 Fe Iron 0.4609 0.0950 Ni Nickel 0.0000 0.0000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.0000 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Yttrium 0.0176 0.013 Yttrium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0201 0.000 Ag Silver 0.0201 0.000 <td>ļ</td> <td>Cl</td> <td></td> <td>0.0000</td> <td>0.0000</td>	ļ	Cl		0.0000	0.0000
Ti Titanium 0.0555 0.0366 V Vanadium 0.0000 0.0006 Cr Chromium 0.0001 0.0006 Mn Manganese 0.0061 0.0045 Fe Iron 0.4609 0.0956 Ni Nickel 0.0000 0.0006 Cu Copper 0.0037 0.0016 Zn Zinc 0.0000 0.0006 Ga Gallium 0.0000 0.0006 Ge Germanium 0.0000 0.0006 As Arsenic 0.0028 0.0016 Se Selenium 0.0000 0.0006 Br Bromine 0.0014 0.0036 Rb Rubidium 0.0032 0.0006 Sr Strontium 0.0176 0.0136 Y Yttrium 0.0037 0.0046 Zr Zirconium 0.0135 0.0156 Mo Molybdenum 0.0957 0.0996 Pd Palladium 0.0000 0.0006 Ag Silver 0.0201 0.0006 Cd Cadmium 0.0375 0.0026		K	Potassium	0.3560	0.2837
V Vanadium 0.0000 0.0000 Cr Chromium 0.0001 0.0000 Mn Manganese 0.061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0135 0.013 Y Yttrium 0.037 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Ca	Calcium	1.378	0.9692
Cr Chromium 0.0001 0.0004 Mn Manganese 0.0061 0.004 Fe Iron 0.4609 0.095 Ni Nickel 0.0000 0.000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0201 0.000 Ag Silver 0.0201 0.000 Cd Cadmium		\mathtt{Ti}	Titanium	0.0555	0.0369
Mn Manganese 0.0061 0.0048 Fe Iron 0.4609 0.0956 Ni Nickel 0.0000 0.0006 Cu Copper 0.0037 0.0018 Zn Zinc 0.0000 0.0006 Ga Gallium 0.0000 0.0006 Ge Germanium 0.0028 0.0018 Se Selenium 0.0000 0.0006 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.0006 Sr Strontium 0.0176 0.013 Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.0156 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0201 0.0006 Ag Silver 0.0201 0.0006 Cd Cadmium 0.0375 0.0026		V	Vanadium		0.0000
Fe Iron 0.4609 0.0956 Ni Nickel 0.0000 0.0006 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.0006 Ga Gallium 0.0000 0.0006 Ge Germanium 0.0000 0.0006 As Arsenic 0.0028 0.0016 Se Selenium 0.0000 0.0006 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.0006 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.0156 Mo Molybdenum 0.0957 0.0996 Pd Palladium 0.0000 0.0006 Ag Silver 0.0201 0.0006 Cd Cadmium 0.0375 0.0026		Cr	Chromium	0.0001	0.0000
Ni Nickel 0.0000 0.0000 Cu Copper 0.0037 0.001 Zn Zinc 0.0000 0.000 Ga Gallium 0.0000 0.000 Ge Germanium 0.0000 0.000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Mn	Manganese	0.0061	0.0045
Cu Copper 0.0037 0.0018 Zinc 0.0000 0.0000 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 Arsenic 0.0028 0.0018 Se Selenium 0.0000 0.0000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.0000 Cd Cadmium 0.0375 0.0025		Fe	Iron		0.0950
Zn Zinc 0.0000 0.0000 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Ni	Nickel	0.0000	0.0000
Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Cu	Copper	0.0037	0.0018
Ge Germanium 0.0000 0.0000 As Arsenic 0.0028 0.001 Se Selenium 0.0000 0.000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.0002 Cd Cadmium 0.0375 0.0025	- 1	Zn		0.0000	0.0000
As Arsenic 0.0028 0.0018 Se Selenium 0.0000 0.0008 Br Bromine 0.0014 0.0038 Rubidium 0.0032 0.0008 Sr Strontium 0.0176 0.0138 Y Yttrium 0.0037 0.0048 Zr Zirconium 0.0135 0.0158 Mo Molybdenum 0.0957 0.0998 Pd Palladium 0.0000 0.0068 Ag Silver 0.0201 0.0008 Cd Cadmium 0.0375 0.0028		Ga	i	0.0000	0.0000
Se Selenium 0.0000 0.0000 Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Ge	Germanium	0.0000	0.0005
Br Bromine 0.0014 0.003 Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002	1	As	1		0.0019
Rb Rubidium 0.0032 0.000 Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Se		0.0000	0.0000
Sr Strontium 0.0176 0.013 Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002				0.0014	0.0030
Y Yttrium 0.0037 0.004 Zr Zirconium 0.0135 0.015 Mo Molybdenum 0.0957 0.099 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Rb		0.0032	0.0000
Zr Zirconium 0.0135 0.0156 Mo Molybdenum 0.0957 0.0996 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.0026		Sr		0.0176	0.0136
Mo Molybdenum 0.0957 0.0998 Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Y			0.0040
Pd Palladium 0.0000 0.006 Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002		Zr		0.0135	0.0150
Ag Silver 0.0201 0.000 Cd Cadmium 0.0375 0.002			_		0.0998
Cd Cadmium 0.0375 0.002			1		0.0067
		Ag			0.0000
Tm Tm 3 i.um		Cd	1		0.0028
		In	Indium	0.0411	0.0603
		Sn			0.0469
			_	1	0.0000
					0.0000
					0.0000
		_			0.0000
Pb Lead 0.0000 0.032		Pb	Lead	0.0000	0.0322

December 7, 1990

Sym.	Element	Upwind	Downwind
Al	Aluminum	0.0000	0.0000
P	Phosphorus	0.0000	0.0000
S	Sulphur	0.0000	0.0000
Cl	Chlorine	0.0000	0.0000
K	Potassium	0.3319	0.3044
Ca	Calcium	1.271	1.120
Ti	Titanium	0.0375	0.0388
V	Vanadium	0.0008	0.0049
Cr	Chromium	0.0000	0.0000
Mn	Manganese	0.0064	0.0025
Fe	Iron	0.3530	0.1528
Ni	Nickel	0.0000	0.0000
Cu	Copper	0.0055	0.0017
Zn	Zinc	0.0000	0.0000
Ga	Gallium	0.0000	0.0000
Ge	Germanium	0.0017	0.0015
As	Arsenic	0.0025	0.0000
Se	Selenium	0.0008	0.0000
Br	Bromine	0.0000	0.0002
Rb	Rubidium	0.0048	0.0091
Sr	Strontium	0.0132	0.0155
Y	Yttrium	0.0030	0.0000
Zr	Zirconium	0.0097	0.0095
Mo	Molybdenum	0.1064	0.0974
Pd	Palladium	0.0106	0.0000
Ag	Silver	0.0000	0.0097
Cd	Cadmium	0.0000	0.0436
In	Indium	0.0000	0.0000
Sn	Tin	0.0000	0.0000
Sb	Antimony	0.0000	0.0224
Ba	Barium	0.0000	0.0904
La	Lanthanum	0.0000	0.4776
Hg	Mercury	0.0000	0.0000
Pb	Lead	0.0000	0.0042
L	1		I

December 14, 1990

Al Aluminum 0.0000 0.0000 P Phosphorus 0.0000 0.0000 S Sulphur 0.0632 0.0000 Cl Chlorine 0.0000 0.8172 K Potassium 0.3298 0.6669 Ca Calcium 1.296 1.265 Ti Titanium 0.0029 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0000 0.0297 Y Ytrium 0.00	Sym.	Element	Upwind	Downwind
S Sulphur 0.0632 0.0000 Cl Chlorine 0.0000 0.8172 K Potassium 0.3298 0.6669 Ca Calcium 1.296 1.265 Ti Titanium 0.0329 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0000 Br Rubidium 0.0000 0.0297 Rb Rubidium 0.0002 0.016 Sr Strontium 0.0147 0.098 Y Yttrium 0.006	Al	Aluminum	0.0000	0.0000
S Sulphur 0.0632 0.0000 Cl Chlorine 0.0000 0.8172 K Potassium 0.3298 0.6669 Ca Calcium 1.296 1.265 Ti Titanium 0.0329 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0000 Br Rubidium 0.0000 0.0297 Rb Rubidium 0.0002 0.016 Sr Strontium 0.0147 0.098 Y Yttrium 0.006	P	Phosphorus	0.0000	0.0000
K Potassium 0.3298 0.6669 Ca Calcium 1.296 1.265 Ti Titanium 0.0329 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Arsenic 0.0000 0.0000 0.0000 Arsenic 0.0000 0.0022 0.0012 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0022 Mo M	S		0.0632	0.0000
Ca Calcium 1.296 1.265 Ti Titanium 0.0329 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0000 0.0297 Rb Rubidium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium <	Cl	Chlorine	0.0000	0.8172
Ti Titanium 0.0329 0.0500 V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zn Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.00232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In <t< td=""><td>K</td><td>Potassium</td><td>0.3298</td><td>0.6669</td></t<>	K	Potassium	0.3298	0.6669
V Vanadium 0.0016 0.0046 Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0068 0.0084 Ag Silver 0.0000 0.0408 In Indium	Ca	Calcium	1.296	1.265
Cr Chromium 0.0000 0.0000 Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0044 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony	Ti	Titanium	0.0329	0.0500
Mn Manganese 0.0013 0.0012 Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0044 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Bar	V	Vanadium	0.0016	0.0046
Fe Iron 0.1334 0.0742 Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0000 Se Selenium 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanth	Cr	Chromium	0.0000	0.0000
Ni Nickel 0.0000 0.0000 Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.098 Y Yttrium 0.0060 0.0098 Y Yttrium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium	Mn	Manganese	0.0013	0.0012
Cu Copper 0.0006 0.0000 Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 Ar Senic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0367 Hg Mercury	1		0.1334	0.0742
Zinc 0.0000 0.5333 Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0367 Hg Mercury 0.0000 0.0000	Ni	Nickel	0.0000	0.0000
Ga Gallium 0.0000 0.0000 Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0408 In Indium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0000 Lathanum 0.0000 0.0000	Cu		0.0006	0.0000
Ge Germanium 0.0000 0.0000 As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	Zn		0.0000	0.5333
As Arsenic 0.0000 0.0122 Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	Ga		0.0000	0.0000
Se Selenium 0.0000 0.0000 Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000				
Br Bromine 0.0000 0.0297 Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000				
Rb Rubidium 0.0002 0.0016 Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0391 Sh Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	i .			1
Sr Strontium 0.0147 0.0098 Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0367 Hg Mercury 0.0000 0.0000	1			
Y Yttrium 0.0060 0.0000 Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	1			i i
Zr Zirconium 0.0126 0.0232 Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000				
Mo Molybdenum 0.1152 0.1057 Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000		t and the second		
Pd Palladium 0.0368 0.0084 Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000		i e e e e e e e e e e e e e e e e e e e		l l
Ag Silver 0.0000 0.0000 Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000		-		1
Cd Cadmium 0.0000 0.0408 In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000			1	1
In Indium 0.0000 0.0162 Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	_			
Sn Tin 0.0000 0.0391 Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	1		<u> </u>	I
Sb Antimony 0.0000 0.0000 Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000		4		1
Ba Barium 0.0000 0.0000 La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000	1			
La Lanthanum 0.0000 0.0367 Hg Mercury 0.0000 0.0000				§
Hg Mercury 0.0000 0.0000	1		1	i i
" "			1	· · · · · · · · · · · · · · · · · · ·
Pb	_	_		1
	Pb	Lead	0.0080	0.2640

December 19, 1990

Al	Aluminum	0:0000	0.0000
P	Phosphorus	0.0000	0.0000
s	Sulphur	0.2765	0.1788
Cl	Chlorine	0.0000	0.0000
K	Potassium	0.4470	0.2853
Ca	Calcium	1.505	1.235
Ti	Titanium	0.0610	0.0384
V	Vanadium	0.0018	0.0000
Cr	Chromium	0.0000	0.0000
Mn	Manganese	0.0091	0.0031
Fe	Iron	0.5046	0.0699
Ni	Nickel	0.0000	0.0000
Cu	Copper	0.0051	0.0003
Zn	Zinc	0.0000	0.0000
Ga	Gallium	0.0000	0.0000
Ge	Germanium	0.0000	0.0005
As	Arsenic	0.0015	0.0000
Se	Selenium	0.0014	0.0000
Br	Bromine	0.0058	0.0014
Rb	Rubidium	0.0000	0.0012
Sr	Strontium	0.0113	0.0085
Y	Yttrium	0.0000	0.0039
Zr	Zirconium	0.0256	0.0278
Mo	Molybdenum	0.1087	0.1091
Pd	Palladium	0.0322	0.0000
Ag	Silver	0.0309	0.0122
Cd	Cadmium	0.0126	0.0387
In	Indium	0.0520	0.0000
Sn	Tin	0.0723	0.0000
Sb	Antimony	0.0201	0.0161
Ba	Barium	0.0000	0.0000
La	Lanthanum	0.1148	0.0000
Hg	Mercury	0.0000	0.0000
Pb	Lead	0.0104	0.0000

APPENDIX B

Quality Control &

Quality Assurance

Readens Dryddfau C

nico alempiana), velSta a c

Calibration

(Appendix B)

Calibration

(Machengaria)

BISON ENGINEERING INC

Helena, Montana

Total Suspended Particulate - Calibration Envirocon

Calibrated by Scott F & Dan M Location Livingston

Date November 8, 1990 Sampler # 3 - Downwind

.49610

Calibration Equation: Qr = .49134 (dP)

Run	Plate No.	P1 (left)	P2 (right)	dP (total)	TR	& Qr	qr
1	18	3.9	3.8	7.7	46	1.353	1.346
2	13	3.0	2.85	5.85	41	1.180	1.165
3	10	2.5	2.35	4.85	39	1.075	1.092
4	7	1.75	1.55	3.3	34	0.888	0.911
5	5	1.15	0.95	2.10	28	0.710	0.693

Qr = flow rate by Orifice equation

Qr = flow rate from transducer regression equation

Results--

Qr = a(TR) + b = .03629 (TR) + -0.3232

Helena, Montana

Puff Sampler Calibration Envirocon

Run	Gauge	P1 (left)	P2 (right)	dP (total)	TR	* Qr	Qr
1	70	2.75	3.35	6.10	70	.2740	.2770
2	60	2.40	2.90	5.30	60	.2548	.2533
3	50	2.00	2.45	4.45	50	.2328	.2296
4	40	1.55	2.00	3.55	40	.2070	.2059
5	30	1.20	1.50	2.70	30	.1794	.1822

%
Qr = flow rate by Orifice equation

Qr = flow rate from transducer regression equation

Results--

$$Qr = a(Gauge) + b = 0.00237 (TR) + 0.1111$$

PM-10 Calibration - Wedding Assoc.

Calibrated	l by <u>Bengt Nordenson</u>	Location <u>Livingston</u>
Date No	ovember 8, 1990	Sampler # 2 - Downwind
Look-up :		
Zeen up (20" U-Tube Manometer	20.4 "Water = delta
	Barometric Pressure	25.28 " Mercury = P0
	Temperature:	43 F
	P1/P0 = 0.941	{P1=P0 - delta/13.6
	Look-up = 39.166	_ = Look-ACFM
	Look-SCFM = 35.332	(std ft^3/min)
	= ACFM(P0*2	98]/29.92*Tk] Tk=temp degrees K
Orifice:		
Orlice:		
	10 " Manometer 4	.4 " (Clean Filter)
	0 - 401:	.49610
	Q = .4913	
	= 1.0	025 (m ³ /min)
	Qcfm = Q*35.314	
	= 36.186	(acfm)r
	Qscfm = Qcfm[(P0	0.5 *298)/(29.92*Tk)]
	= 34.37	
	-	
% Diffe	erence: 2.8	*
Adjustr	ment: N/A	(if necessary)

Clean Filter Transducer:

DHI DHINARRIDA WORLE

perty catteracton - weather haser.

9.68 250000	
Prince - Creary - the con-	
- v(mlos) sallar =	

PM-10 Calibration - Wedding Assoc.

Calibrated	by Bengt Nordenson	Location Livingston
Date Nov	vember 8, 1990	Sampler # 1 - Upwind
Look-up :		
	20" U-Tube Manometer:	
	Barometric Pressure:	<u>25.37</u> " Mercury = P0
	Temperature:	46 F
	P1/P0 = 0.939	{P1=P0 - delta/13.6
	Look-up = 39.446	= Look-ACFM
	Look-SCFM = 35.499	(std ft^3/min)
	= ACFM[P0*298]	/29.92*Tk] Tk=temp degrees K
Orifice:		
	10 " Manometer <u>4.35</u>	(Clean Filter)
	Q = .49134	.49610 (dP)
	= 1.019	(m ³ /min)
	Qcfm = Q*35.314	
	= 35.982	(acfm)r
	Qscfm = Qcfm[(P0*29	
	= 34.134	
% Differ	ence: 4.0	- *
Adjustme	ent: N/A	(if necessary)

Clean Filter Transducer:

Audits

Helena, Montana

PM-10 Auditing - Wedding Assoc.

Audited by Hal Robbins Location Livingston Date November 8, 1990 Sampler # 2 - Downwind Look-up: P1/P0 = 0.941 (from previous calibration) Temperature: 43 F (degrees K) Look-up = 39.166 = Look-ACFMLook-SCFM = 35.332 (std ft³/min) = ACFM[P0*298]/29.92*Tk] Tk=temp degrees K Audit Orifice 10 " Manometer 2.9 " (Clean Filter) .48645 Q = .62283 (dP)= 1.045 (m³/min) Qcfm = Q*35.314= 36.919 (acfm)r 0.5 Qscfm = Qcfm[(P0*298)/(29.92*Tk)]= 35.065 -0.5 Qacfm = Qcfm[(P0*298)/(29.92*Tk)]= 38.871Clean Filter Trans. 0.8 % (from SCFM) % Difference:

Helena, Montana

PM-10 Auditing - Wedding Assoc.

Audited by Scott Fitzpatric Location Livingston

Date November 8, 1990 Sampler # 1 - Upwind

Look-up:

P1/P0 = 0.939 (from previous calibration)

Temperature: 45 F (degrees K)

Look-up = 39.369 = Look-ACFM

Look-SCFM = 35.500 (std ft^3/min)

Audit Orifice

10 " Manometer 2.95 " (Clean Filter)

.48645

Q = .62283 (dP)

 $= 1.054 \qquad (m^3/min)$

Qcfm = Q*35.314

= 37.227 (acfm)r

0.5

Qscfm = Qcfm[(P0*298)/(29.92*Tk)]

= 35.351

-0.5
Qacfm = Qcfm[(P0*298)/(29.92*Tk)] = 39.204
Clean Filter Trans.

% Difference: 0.4 % (from SCFM)

% Difference: _-2.0 % % (from 40 ACFM)

Helena, Montana

Total Suspended Particulate - Audit

Audited by	Hal Robbins	Company	Envirocon
Date Nov. 9,	, 1990	Project	Livingston Railyard
Audit Ed	muation: $Or = .6228$.4864 3 (dp)	15

Sample #	Plate No.	P1 (left)	P2 (right)	dP (total)	TR	* Qr	+ Qr
3	18	2.45	2.20	4.65	46	1.315	1.346
	18						
	18						
	18						
	18						

Qr = flow rate by Audit Equation

Qr = flow rate from previous calibration equation

Results:

Sampler #	% Difference
3_	2.3 %
	* *

Helena, Montana

Meteorological Montitoring System Met One

Audit

Performed by \underline{H}	Robbins, J Dartm	nan Location	Livingston				
Date Novembe	er 8, 1990	Serial #:	Met One				
East/West Theodol	lite Position						
7	Vertical Alignmet	of Wind Speed	0K				
Vertical Alignmet of Wind Direction: OK							
	Cross	Arm East/West	.: <u>OK</u>				
	Indica	ated North:	1.5	degrees			
North/South Theod	dolite Position						
Vertical Alignmet of Wind Speed: OK							
Vert	ical Alignmet of	Wind Direction	oK				
Cross Arm Horizontal: OK							
Wind Vane		DAS	Strip Chart				
	0/360	1.5					
	90	90.2					
	180	180.8					
	270	270.5					
Wind Speed	0	0.0					
(Sync. Moto	or) 36.5	36.1					
(Sync. Moto	or) 9.0	9.7					

Comments:

NBS Temp = 6.8C DAS Temp = 7.0 C

Cup Torque = 0.2 g-cm Vane Torque = 1.5 g-cm

Meteorological Audit Report

Railyard Project Livingston, Montana

An audit of the meteorological system was conducted on November 8, 1990. The system was checked for proper alignment and motion responses, torques, etc.

The sensor height was measured by means of a theodolite and determined to be 10 meters (+- 1/2). The vertical alignment and horizontal crossarms were also checked using a theodolite. The alignment was acceptable.

The theodolite was sited directly south of the tower in order to determine the alignment noted above. The true south location was determined using the position of the sun relative to the latitude and longitude and time of day. A program called "ALMANAC" was used to determine the sun's angle any particular time of the day. It is estimated that this locations was determined to be within 0.5 degrees of true south.

Access to the tower instruments was gained using a man-lift. The data acquisition output (WTC ICIS-3) was checked against the four cardinal compass directions. Directions other than north and south were estimated using dead reckoning and a comparison with an observer on the ground using the theodolite. (West and East vane directions had the largest angular change when viewed through the theodolite). The results are repeated below from the audit data sheet at the end of this section.

North	1.5	degrees	(DAS)
East	90.2	degrees	(DAS)
South	180.8	degrees	(DAS)
West	270.5	degrees	(DAS).

It was the opinion of the auditor that the system could be slightly adjusted to improve data quality. This was discussed with the on-site operator. The system was adjusted after the audit was completed. The results of this audit reflect the system as it was observed at the time.

Additionally, an audit of the wind anemometer was conducted. A synchronous motor was used in order to generate a known rpm (Climatronics Model 101252-1 S/N 60). The wind cups were removed

prior to installing the motor in order to prevent any drag on the system. The motor produces 600 rpm which translates to a theoretical wind speed of 36.5 miles per hour. The actual DAS response was 36.1 miles per hour. A 4:1 gearing ratio was used to generate a second "known" wind speed of 9.1 mph. The DAS response was 9.7 The anemometer shaft was also held steady to determine the zero wind speed output. The DAS responded with a value of 0.0 mph.

The anemometer starting torque was checked with a Waters Torque Watch. The starting torque was observed to be less than .2 gram-cm. The threshold torque for 0.5 meters/sec is about .3 gram-cm. The starting torque for the wind direction was checked with an R.M. Young torque disk and the torque watch. The measured torque was 1.5 gram-cm. The starting threshold is about 3 gram-cm. Thus, the two starting torques were within proper specifications.

Finally, the met system wind temperature was checked. The temperature according to an NBS traceable thermometer (VWR Digital Thermometer: Serial # 639156). The actual temperature was 6.8 C with a DAS response of 7.0.

The theodolite used for this audit was a Leitz Model TM-6 7100 obtained from Selby's in Helena. The unit was serviced immediately prior to use.

Data Recovery

Data Mecovery

PARTICULATE DATA RECOVERY

Railyard Project - Livingston 1 9 9 0

<u>Va</u> :	<u>riable</u>	Total <u>Periods</u>	Total <u>Measurements</u>	Percentage Recovered
PM10	Particulate			
	Site # 1 - Up	owind		
	November December Quarter	3 6 9	3 6 9	100% 100% 100%
	Year-to-Date	9	9	100%
	Site # 2 - Do	ownwind		
	November	3	3	100%
	December Quarter	6 9	6 9	100% 100%
	Year-to-Date	9	9	100%
TSP	Particulate			
	Site # 2 - Do	ownwind		
	November December Quarter	2 4 6	. 3 6 9	67% 67% 67%
	Year-to-Date	6	9	67%

METEOROLOGICAL DATA RECOVERY

Railyard Project - Livingston

1 9 9 0

<u>Variable</u>	Total <u>Periods</u>	Total <u>Measurements</u>	Percentage <u>Recovered</u>
Wind Speed			
November	465	465	100%
December	744	616	83%
Quarter	1,209	1,081	89%
Period to			
Date	1,209	1,081	89%
Wind Direction			
November	465	465	100%
December	744	616	83%
Quarter	1,209	1,081	89%
Period to			
Date	1,209	1,081	89%
Tomporature			
Temperature			
November	465	465	100%
December	744	616	83%
Quarter	1,209	1,081	89%
Period to			
Date	1,209	1,081	89%

PM10 Precision

moisiopa? 013MS.

Co-located PM10 Air Sampler Precision Analysis

Rosebud Energy

Colstrip, Montana

4th QUARTER-1990

<u>Date</u>	Reporting Sampler Conc. (ug/M3)	Co-located Sampler Conc. (ug/M3)	D(%)
90 10 02	10	10	0.0
90 10 08	5	6	18.2
90 10 14	11	11	0.0
90 10 20	5	6	18.2
90 10 26	25	29	14.8
90 11 01	6	3	-66.7
90 11 07	7	8	13.3
90 11 13	9	12	28.6
90 11 19	14	14	0.0
90 11 25	14	15	6.9
90 12 07	7	7	0.0
90 12 13	9	1	-160.0
90 12 19	7	6	-15.4
90 12 25	7	7	0.0
90 12 31	7	5	-33.3

$$D% = \frac{(Yi - Xi)}{(Yi+Xi)/2} \times 100$$

No. Samples = 15.0 Average D = -11.7 Std. Dev. D = 47.3 Probability Limits: XBAR - 1.96 SD/SQRT(2) = -77.26 XBAR + 1.96 SD/SQRT(2) = 53.86

PNA - Laboratory Quality Control

PNA - Laboratory Coulity Control

(Appenax B)

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON
PO BOX 1154
LIVINGSTON MT. 59047

RECEIVED

1AM 2 1 1991

ENVIROCON. Inc.

Air Analysis PUF Adsorbent

PROJECT: Livingston / BN

LAB NO.	90-34881
SAMPLE IDENTIFICATION	140101-Air-007
SAMPLE SUBMITTED	12/26/90
DATE REPORTED	01/18/91
SAMPLE DATE	12/18/90
SAMPLE TIME	1100

PARAMETER ug/filter medium

Acenaphthene	0.8
Acenaphthylene	<0.5
Anthracene	
	0.6
Benzo(a) anthracene	<0.5
Benzo(a) pyrene	<0.5
Benzo(b) fluoranthene	<0.5
Benzo(ghi)perylene	<0.5
Benzo(k) fluoranthene	<0.5
Chrysene	<0.5
Dibenzo(a,h)anthracene	<0.5
Fluoranthene	2.0
Fluorene	2.5
Ideno(1,2,3-cd) pyrene	<0.5
Naphthalene	1.2
Phenanthrene	6.9
Pyrene	1.4

REMARKS: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:____

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

MECEIVED

IAM 2 1 1991)

ENVIROCON, Inc.

ENVIROCON
PO BOX 1154
LIVINGSTON MT 59047

SEMIVOLATILE SURROGATE RECOVERY

PROJECT: Livingston/BN

SAMPLE NO.	S1	S2	S3
	(NBZ)#	(FBP)#	(TPH)#
90-34879 Filter	84	83	80
90-34879 PUF	83	91	98
90-34880 Filter	94	90	91
90-34880 PUF	80	85	91
90-34881 Filter	87	87	89
90-34881 PUF	43	105	108
S1 (NBZ) = Nitrobenzene-d5 S2 (FBP) = 2-Fluorobiphenyl S3 (TPH) = Terphenyl-d14		QC LIM3 35-114 43-116 33-141	

[#] Column to be used to flag recovery values with an asterisk

O A	Review:		
U.A.	VEATEM.		

^{*} Values outside of contract required QC limits

DVILLE INCTARCIBAL VOREISE

The same of the sa

WW.

1966 1 15 100

MODORITMS POR NOR OF STREET

MENDORY STAPOREYS ELITAVITYES

Malagraphivil Process

Lites Industrial (MENT) S

Ashanine us mash sanita Ash mas desirate period of publich a

atimil to be alone to de Narous to oblition ability

BLAL REVIEW,

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-53227 VELS

JAN 2 1 1911 ENVIROCON, Inc.

ENVIROCON PO BOX 1154 LIVINGSTON MT 59047

PUF

EPA QUALITY CONTROL SAMPLE

Polynuclear Aromatics

PROJECT: Livingston/BN

This EPA Quality Control sample was analyzed with your Lab Nos. 90-34879 thru 90-34881 with the following results:

	True Value,	
PARAMETER	ug/filter medium	P (%)
Acenaphthylene	10	74
Acenaphthene	10	81
Anthracene	10	67
Naphthalene	10	69
Phenanthrene	10	74
Fluoranthene	1.0	106
Benzo(a)anthracene	1.0	101
Benzo(a)pyrene	1.0	87
Benzo(b) fluoranthene	1.0	95
Dibenzo(a,h,)anthracene	1.0	79
Benzo(g,h,i)perylene	1.0	74
Pyrene	1.0	88
Chrysene	1.0	82
Indeno(1,2,3-cd)pyrene	1.0	. 70
Benzo(k) fluoranthene	0.5	74

P = Percent recovery measured.

Q.A. Review:	
Q.A. Review:	

Metals - Laboratory Quality Control

(Appendix B)

Metals - Laboratory Quality Control
(American)

XRF-4 XRF QUALITY ASSURANCE AND CONTROL DATA SUMMARY

CLIENT: BISON ENGINEERING

PERIOD OF ANALYSIS: January 18 through 21, 1991

NEA QUALITY CONTROL STANDARD: QS285

QC STANDARD RESULTS

Percent Deviation

Element n mean(a) S.D. Range

Fe 17 2.0 1.1 5.6

NBS STANDARD REFERENCE MATERIALS: SRM 1832, SRM 1833

NEA % Dev. from C.V. Certified NBS % Element Value(ug/cm2) mean S.D. Range Uncertainty n 13.6 + / - .453.3 Fe 26 0.45 1.67 0.8 2.46 +/- .16 3.88 +/- .23 6.6 Cu 26 1.85 2.67 0.3 0.3 6.0 Zn 26 1.86 1.67 16.1 + / - .85Pb 26 1.0 5.3 -0.13 1.45 5.30 Mean(a) 1.01 1.87 0.59

a. Mean of absolute values

CLIENT: BISON ENGINEERING

PERIOD OF ANALYSIS: January 18 through 21, 1991

NEA QUALITY CONTROL STANDARD: QS116

QC STANDARD RESULTS

Percent Deviation

Element n mean(a) S.D. Range Si 12 1.4 1.5 6.0

NBS STANDARD REFERENCE MATERIALS: SRM 1832, SRM 1833

NEA % Dev. from C.V. Certified NBS % Element n mean S.D. Range Uncertainty Value(ug/cm2) 0.20 3.04 -1.94 2.46 6.7 Al 31 14.6 + / - 1.012.8 Si 34.8 +/- 1.1 31 31 9.4 3.2 Si 33.0 +/- 2.1 9.0 6.5 17.3 +/- 1.7 10.0 K 0.52 2.87 13.3 17 0.79 19.4 +/- 1.3 Ca 1.48 4.6 6.7 17 Ti 12.8 +/- 1.9 14.7 17 1.83 1.93 8.2 4.70 + / - .49V 17 -1.36 1.61 5.7 10.4 17 4.54 +/- .49 17 14.2 +/- .47 Mn 4.54 + / - .49-1.39 1.62 6.6 9.2 9.4 3.3 Fe 0.63 2.68 6.6 17 2.43 +/- .16 -0.70 2.70 9.1 Cu 17 4.01 +/- .24 17 16.7 +/- .89 6.0 Zn -1.29 2.83 9.2 -1.63 1.79 5.3 Pb 5.7 7.4 1.04 2.26 8.6 Mean(a)

a. Mean of absolute values

XRF-5 XRF QUALITY ASSURANCE AND CONTROL DATA SUMMARY

CLIENT: BISON ENGINEERING

PERIOD OF ANALYSIS: January 18 through 21, 1991

NEA QUALITY CONTROL STANDARD: QS288

QC STANDARD RESULTS

Percent Deviation

Element n mean(a) S.D. Range

Ti 16 1.3 7.5

NBS STANDARD REFERENCE MATERIALS: SRM 1832, SRM 1833

NEA % Dev. from C.V. Certified NBS % Element n Value(ug/cm2) mean S.D. Range Uncertainty K 16 16.4 +/- 1.6 0.69 2.81 8.3 10.0 20.2 +/- 1.4 12.1 +/- 1.8 Ca 16 0.20 2.11 6.9 6.7 0.03 2.15 Ti 7.7 14.7 16 4.76 +/-.50V 16 0.71 1.89 6.3 10.4 4.59 +/- .4216 2.86 2.43 7.7 9.2 Mn 13.6 +/- .45 -0.18 1.84 3.3 Fe 16 6.4 16.1 +/- .85 Pb 15 -0.64 1.72 6.5 5.3 0.52 2.14 7.12 8.51 Mean(a)

a. Mean of absolute values

XRF QUALITY ASSURANCE DATA XRF-4 1991 Iron condition 1

			-

REPLICATE REPORT

322/01

PROTOCOL: 4 SA

SAMPLE ID: 09572 PARTICLE SIZE: C ORIGINAL ID: Q0208 REPLICATE ID: R0208

EXPOSED AREA: 406.00 SQUARE CM

MASS OF DEPOSIT: 0.+- 0. MICROGRAMS

ELEMENT	ORIGIN UG/CN		REPLIC UG/CN		CHANGI UG/0		PERCE ERRO	
V	.0000+-	.0132	.0000+-	.0140	.0000+-	.0192		
CR	.0000+-	.0094	.0000+-	.0099	.0000+-	.0137		
MN	.0170+-	.0075	.0126+-	.0079	0044+-	.0109	-25.9+-	64.1
FE	.3611+-	.0518	.5509+-	.0605	.1898+-	.0796	52.6+-	22.1
NI	.0000+-	.0089	.0000+-	.0092	.0000+-	.0128		
ZN	.0000+-	.0892	.0000+-	.0880	.0000+-	.1253		
AS	.0071+-	.0184	.0000+-	.0192	0071+-	.0266		
CD	.0107+-	.0888	.0000+-	.0901	0107+-	.1265		
BA	.0000+-	.6023	.3051+-	.6027	.3051+-	.8521		
HG	.0000+-	.0133	.0000+-	.0138	.0000+-	.0192		
PB	.1223+-	.0315	.1047+-	.0317	0176+-	.0447	-14.4+-	36.5

REPLICATE REPORT 322/01

PROTOCOL: 4 SA

SAMPLE ID: 09564
PARTICLE SIZE: C
ORIGINAL ID: Q0233
REPLICATE ID: R0233

EXPOSED AREA: 406.00 SQUARE CM

MASS OF DEPOSIT: 0.+- 0. MICROGRAMS

ELEMENT	ORIGIN UG/CN		REPLIC UG/CM		CHANGI UG/0		PERCE ERRO	
V CR	.0000+-	.0141	.0000+- .0381+-	.0140	.0000+-			
MN	.0115+-	.0038	.0137+-	.0083	.0022+-			
FE	.2628+-	.0475	.2206+-	.0458	0422+-	.0660	-16.1+-	25.1
NI	.0000+-	.0089	.0000+-	.0087	.0000+-	.0124		
ZN	.0000+-	.0773	.0000+-	.0767	.0000+-	.1089		
AS	.0000+-	.0166	.0199+-	.0163	.0199+-	.0233		
CD	.1456+-	.0891	.0000+-	.0888	1456+-	.1258		
BA	.0000+-	.5957	.0000+-	.5918	.0000+-	.8397		
HG	.0000+-	.0131	.0000+-	.0131	.0000+-	.0185		
PB	.0000+-	.0302	.0000+-	.0296	.0000+-	.0423		

Client: Bison Project Number: 322/001
Report Date: 1/28/91 Date Received: 1/18/91

NEA ID: 91-Q235 Client ID: Blank Site: Sample Date:

Element ug/filter Al 0.0000 + -829.1P 0.0000 +- 20.18S 0.0000 + - 48.76Cl 9.013 +- 29.23 K 496.9 +- 31.83 +- 81.89 Ca 1563. Ti 144.7 +- 10.43 V 0.0000 +-5.846 Cr 16.73 +-3.735 Mn 1.015 +-2.680 Fe 201.1 +- 12.14 Ni 12.83 3.086 +-Cu 0.0000 +-2.477 Zn 775.1 +- 39.63 Ga 0.0000 + -2.761 Ge 0.0000 +-2.111 As 0.0000 +-5.359 Se 0.0000 +-2.314 Br 2.680 2.680 +-Rb 13.03 +-3.735 Sr 11.98 4.141 +-Y 10.60 +-4.344 Zr 22.33 +-9.176 Mo 175.3 +- 16.65 Pd +- 17.17 6.252 32.85 Ag +- 23.83 Cd 0.0000 + - 29.88In 0.0000 + - 38.65Sn 4.791 +- 45.39 Sb 32.60 +- 53.75 621.6 Ba +-204.9 La 338.3 +-230.7 Hq 0.0000 +-4.628

6.131

+-

9.744

Pb

Miscellaneous Calculations

(Appendix B)

Puff Sampler Run Day Analysis

Air Volume Calculations

1							
Sampled Volume (M ³)	290.5	306.3	308.8		312.8	316.5	330.9
Magnehlic	44	47	44		46	48	51
Barometric Pressure (Inches)	25.07	25.07	25.30		25.30	25.18	25.00
Temperature (F)	54	10	6		-5	3	-5
Time Tainutes)	1441.7	1414.4	1457.1		1422.2	1432.0	1436.3
Date	06/01/11	06/61/11	11/25/90	Blank	12/ 1/90	12/ 7/90	12/14/90
Sample ID #	Air-001	Air-002	Air-003	Air-004	Air-005	Air-006	Air-007

Orifice Calibration Curve:

Qr = .00237 (Magnahelic) + 0.1111 Flow adjusted to SAC.

APPENDIX C

Laboratory Analyses

AFPENDIK C

Laboratory Analysis

PNA - Laboratory Data

(Appendix C)

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON PO BOX 1154

LIVINGSTON MT 59047

RECEIVED

NAN 1 4 15 '

17

ENVIROCON, Inc. 1,

Glass Fiber Filter PUF

PROJECT: Livingston / BN

LAB NO.	90-32933	90-32934
SAMPLE IDENTIFICATION	140101-Air-001	140101-Air-002
SAMPLE SUBMITTED	11/30/90	11/30/90
DATE REPORTED	01/11/91	01/11/91
SAMPLE DATE	11/10/90	11/19/90

Parameter	ug/filter medium	ug/filter medium
-----------	------------------	------------------

Acenaphthene	<0.5	<0.5
Acenaphthylene	<0.5	<0.5
Anthracene	<0.5	<0.5
Benzo(a) anthracene	<0.5	<0.5
Benzo(a)pyrene	<0.5	<0.5
Benzo(b) fluoranthene	<0.5	1.1
Benzo(ghi)perylene	<0.5	<0.5
Benzo(k) fluoranthene	<0.5	<0.5
Chrysene	<0.5	<0.5
Dibenzo(a,h)anthracene	<0.5	<0.5
Fluoranthene	<0.5	<0.5
Fluorene	<0.5	<0.5
Ideno(1,2,3-cd)pyrene	<0.5	<0.5
Naphthalene	<0.5	<0.5
Phenanthrene	<0.5	<0.5
Pyrene	<0.5	<0.5

Remarks: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

RECEIVED

JAN 14

ENVIROCON, inc

ENVIROCON
PO BOX 1154
LIVINGSTON MT 59047

Air Analysis , PUF Adsorbent

PROJECT: Livingston / BN

LAB NO.	90-32933	90-32934
SAMPLE IDENTIFICATION	140101-Air-001	140101-Air-002
SAMPLE SUBMITTED	11/30/90	11/30/90
DATE REPORTED	01/11/91	01/11/91
SAMPLE DATE	11/10/90	11/19/90

Parameter	ug/filter medium	ug/filter m	edium

Acenaphthene	0.7	0.9
Acenaphthylene	<0.5	<0.5
Anthracene	<0.5	0.6
Benzo(a) anthracene	<0.5	<0.5
Benzo(a) pyrene	<0.5	<0.5
Benzo(b) fluoranthene	<0.5	<0.5
Benzo(ghi) perylene	<0.5	<0.5
Benzo(k) fluoranthene	<0.5	<0.5
Chrysene	<0.5	<0.5
Dibenzo(a,h)anthracene	<0.5	<0.5
Fluoranthene	0.5	1.7
Fluorene	1.3	2.5
Ideno(1,2,3-cd)pyrene	<0.5	<0.5
Naphthalene	0.8	0.8
Phenanthrene	5.3	8.3
Pyrene	<0.5	1.4

Remarks: Analysis by GC/MS procedures outlined in EPA Method T013. /

Q.A. Review:

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON PO BOX 1154

LIVINGSTON MT- 59047

Glass Fiber Filter PUF

PROJECT: Livingston / BN

RECEIVED all DU, F JIM 1 4 1991.

(a) Met State Me

LAB NO. SAMPLE IDENTIFICATION SAMPLE SUBMITTED DATE REPORTED SAMPLE DATE	90-32935 140101-Air-003 11/30/90 01/11/91 11/25/90	90-32936 140101-Air-004 11/30/90 01/11/91 11/23/90
Parameter	, .	ug/filter medium

<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	<0.5
<0.5	0.7
<0.5	<0.5
<0.5	<0.5
	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Remarks: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:_

COMPLETE ENVIRONMENTAL ANALYTICAL SERVICE

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON
PO BOX 1154
LIVINGSTON MT 59047

RECEIVED

,14 1 4 199T

ENAIROCON INC.

Air Analysis
PUF Adsorbent

PROJECT: Livingston / BN

LAB NO.	90-32935	90-32936
SAMPLE IDENTIFICATION	140101-Air-003	140101-Air-004
SAMPLE SUBMITTED	11/30/90	11/30/90
DATE REPORTED	01/11/91	01/11/91
SAMPLE DATE	11/25/90	11/28/90

Parameter ug/filter medium ug/filter medium

Acenaphthene	0.7	<0.5
Acenaphthylene	<0.5	<0.5
Anthracene	<0.5	<0.5
Benzo(a)anthracene	<0.5	<0.5
Benzo(a)pyrene	<0.5	<0.5
Benzo(b) fluoranthene	<0.5	<0.5
Benzo(ghi)perylene	<0.5	<0.5
Benzo(k) fluoranthene	<0.5	<0.5
Chrysene	<0.5	<0.5
Dibenzo(a,h)anthracene	<0.5	<0.5
Fluoranthene	<0.5	<0.5
Fluorene	1.0	<0.5
Ideno(1,2,3-cd)pyrene	<0.5	<0.5
Naphthalene	1.7	<0.5
Phenanthrene	3.6	<0.5
Pyrene	<0.5	<0.5

Remarks: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON
PO BOX 1154
LIVINGSTON MT - 59047

RECEIVED

TIAN 1 4 1991

Elkiusetou, yt.

SEMIVOLATILE SURROGATE RECOVERY

PROJECT: Livingston/BN

	S1 (NBZ)#	S2 (FBP)#	S3 (TPH)#
SAMPLE NO.	% Recovery	% Recovery	% Recovery
90-32933 Filter	97	91	111
90-32933 Puff	73	77	64
90-32934 Filter	81	87	89
90-32934 Puff	73	71	79
90-32935 Filter	80	94	90
90-32935 Puff	68	73	70
90-32936 Filter	82	82	75
90-32936 Puff	82	90	73

QC LIMITS (% Recovery) (35-114) (43-116)

S1 (NBZ) = Nitrobenzene-d5 (35-114) S2 (FBP) = 2-Fluorobiphenyl (43-116) S3 (TPH) = Terphenyl-d14 (33-141)

NOTE: 1 ml of a 50 ng/ul surrogate standard mix was added to the Soxhlet solvent.

Column to be used to flag recovery values with an asterisk

* Values outside of contract required QC limits

Q.A. Review:__

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON
PO BOX 1154
LIVINGSTON MT 59047

RECEIVED

UAN 2 1 1991

ENVIROCON. Inc.
Livingston, Mt.

Air Analysis
Glass Fiber Filter PUF

PROJECT: Livingston / BN

LAB NO.	90-34879	90-34880
SAMPLE IDENTIFICATION	140101-Air-005	140101-Air-006
SAMPLE SUBMITTED	12/26/90	12/26/90
DATE REPORTED	01/18/91	01/18/91
SAMPLE DATE	12/04/90	12/11/90
SAMPLE TIME	1715	1700

PARAMETER ug/filter medium ug/filter medium

Acenaphthene	<0.5	<0.5
Acenaphthylene	<0.5	<0.5
Anthracene	<0.5	<0.5
Benzo(a)anthracene	<0.5	<0.5
Benzo(a) pyrene	<0.5	<0.5
Benzo(b) fluoranthene	0.5	<0.5
Benzo(ghi) perylene	<0.5	<0.5
Benzo(k) fluoranthene	<0.5	<0.5
Chrysene	<0.5	<0.5
Dibenzo(a,h)anthracene	<0.5	<0.5
Fluoranthene	<0.5	<0.5
Fluorene	<0.5	<0.5
Ideno(1,2,3-cd)pyrene	<0.5	<0.5
Naphthalene	<0.5	<0.5
Phenanthrene	<0.5	<0.5
Pyrene	<0.5	<0.5

REMARKS: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

RECEIVED

ENVIROCON

JAN 2 1 1991

ENVIROCON, Inc. Livingston, ML

PO BOX 1154 LIVINGSTON MT 59047

Air Analysis PUF Adsorbent

PROJECT: Livingston / BN

LAB NO.	90-34879	90-34880
SAMPLE IDENTIFICATION	140101-Air-005	140101-Air-006
SAMPLE SUBMITTED	12/26/90	12/26/90
DATE REPORTED	01/18/91	01/18/91
SAMPLE DATE	12/04/90	12/11/90
SAMPLE TIME	1715	1700

ug/filter medium ug/filter medium PARAMETER

Acenaphthene	0.6	<0.5
Acenaphthylene	0.6	<0.5
Anthracene	0.6	<0.5
Benzo(a) anthracene	<0.5	<0.5
Benzo(a)pyrene	<0.5	<0.5
Benzo(b) fluoranthene	<0.5	<0.5
Benzo(ghi)perylene	<0.5	<0.5
Benzo(k) fluoranthene	<0.5	<0.5
Chrysene	<0.5	<0.5
Dibenzo(a,h) anthracene	<0.5	<0.5
Fluoranthene	1.3	0.6
Fluorene	2.4	1.5
Ideno(1,2,3-cd)pyrene	<0.5	<0.5
Naphthalene	1.3	1.0
Phenanthrene	5.6	3.3
Pyrene	0.9	<0.5

REMARKS: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A.	Review:	
------	---------	--

P.O. BOX 30916 • 1107 SOUTH BROADWAY • BILLINGS, MT 59107-0916 • PHONE (406) 252-6325 FAX (406) 252-6069 • 1-800-873-5227

ENVIROCON PO BOX 1154 LIVINGSTON MT. 59047 RECEIVED

IAM 2 1 1991

ENVIROCON. Inc.

Air Analysis Air Analysis
Glass Fiber Filter (PUF)

PROJECT: Livingston / BN

LAB NO.	90-34881
SAMPLE IDENTIFICATION	140101-Air-007
SAMPLE SUBMITTED	12/26/90
DATE REPORTED	01/18/91
SAMPLE DATE	12/18/90
SAMPLE TIME	1100

ug/filter medium PARAMETER

Acenaphthene	<0.5
Acenaphthylene	<0.5
Anthracene	<0.5
Benzo(a) anthracene	<0.5
Benzo(a) pyrene	<0.5
Benzo(b) fluoranthene	0.8
Benzo(ghi) perylene	<0.5
Benzo(k) fluoranthene	<0.5
Chrysene	0.5
Dibenzo(a,h)anthracene	<0.5
Fluoranthene	0.6
Fluorene	<0.5
Ideno(1,2,3-cd)pyrene	<0.5
Naphthalene	<0.5
Phenanthrene	<0.5
Pyrene	0.5

REMARKS: Analysis by GC/MS procedures outlined in EPA Method T013.

Q.A. Review:_

Metals - Laboratory Data

(Appendix C)

Metals - Laboratory Data

(Appendix C)

Client ID: 09565 NEA ID: 91-Q201 Sample Date:

Site:

Exposed Area: 406.0 cm2 Deposit Mass: 39600. +- 500. ug
Volume of Air Sampled: 1486. +- 148.6 m3
Suspended Particulates (P): 26.65 +- 2.686 ug/m3

Elemer	nt ug/filter	percen	t		ug/	m3
Al	0.0000 +1091.	0.0000 +-	2.754	0.0000	+-	0.7339
P	0.0000 + - 20.79	0.0000 + -	0.0525	0.0000	+-	0.0140
S	410.9 +- 76.21	1.038 + -	0.1929	0.2765	+-	0.0583
Cl	0.0000 + - 30.86	0.0000 + -	0.0779	0.0000	+-	0.0208
K	664.2 +- 77.67	1.677 +-	0.1973	0.4470	+-	0.0688
Ca	2237. +-251.8	5.649 + -	0.6398	1.505	+-	0.2267
Ti	90.62 +- 8.039	0.2288 +-	0.0205	0.0610	+-	0.0082
V	2.680 +- 6.009	0.0068 +-	0.0152	0.0018	+-	0.0040
Cr	0.0000 + - 4.263	0.0000 +-	0.0108	0.0000	+-	0.0029
Mn	13.56 + - 3.654	0.0342 + -	0.0092	0.0091	+-	0.0026
Fe	749.9 +- 49.94	1.894 + -	0.1284	0.5046	+-	0.0606
Ni	0.0000 + - 3.613	0.0000 +-	0.0091	0.0000	+-	0.0024
Cu	7.633 + - 2.517	0.0193 + -	0.0064	0.0051		0.0018
Zn	0.0000 + - 34.88	0.0000 +-	0.0881	0.0000	+-	0.0235
Ga	0.0000 + - 2.314	0.0000 +-	0.0058	0.0000	+-	0.0016
Ge	0.0000 +- 1.989	0.0000 +-	0.0050	0.0000		0.0013
As	2.274 +- 6.740	0.0057 + -	0.0170	0.0015		0.0045
Se	2.111 +- 2.314	0.0053 + -	0.0058	0.0014		0.0016
Br	8.607 +- 2.761	0.0217 +-	0.0070	0.0058		0.0019
Rb	0.0000 + - 3.695	0.0000 +-	0.0093	0.0000		0.0025
Sr	16.85 + - 4.222	0.0425 +-	0.0107	0.0113		0.0031
Y	0.0000 + - 4.344	0.0000 +-	0.0110	0.0000		0.0029
Zr	38.04 + - 9.500	0.0961 + -	0.0240	0.0256		0.0069
Mo	161.5 + - 16.81	0.4079 + -	0.0428	0.1087		0.0157
Pd	47.91 +- 18.39	0.1210 +-	0.0465	0.0322		0.0128
Ag	45.88 + - 23.91	0.1159 + -	0.0604	0.0309		0.0164
Cd	18.68 + - 36.58	0.0472 +-	0.0924	0.0126		0.0246
In	77.34 + - 38.85	0.1953 + -	0.0981	0.0520		0.0267
Sn	107.5 + - 46.49	0.2714 + -	0.1174	0.0723		0.0321
Sb	29.92 + - 54.61	0.0756 + -	0.1379	0.0201		0.0368
Ba	0.0000 + -243.7	0.0000 +-	0.6154	0.0000		0.1640
La	170.5 +-235.6	0.4306 + -	0.5951	0.1148		0.1590
Hg	0.0000 + - 5.237	0.0000 +-	0.0132	0.0000		0.0035
Pb	15.39 +- 12.18	0.0389 +-	0.0308	0.0104 -	+ -	0.0083

Client: Bison Project Number: 322/001
Report Date: 1/28/91 Date Received: 1/11/91

NEA ID: 91-Q202 Client ID: 09567

Site: Sample Date:

Exposed Area: 406.0 cm2 Deposit Mass: 14100. +- 500. ug

Volume of Air Sampled: 1555. +- 155.5 m3

Suspended Particulates (P): 9.068 +- 0.9621 ug/m3

Elemer	nt ug/filter	percei	nt	ug,	/m3
Al	0.0000 +1049.	0.0000 +-	7.440	0.0000 +-	0.6747
P	0.0000 + - 20.26	0.0000 +-	0.1437	0.0000 +-	0.0130
S	98.33 +- 53.92	0.6974 +-	0.3832	0.0632 +-	0.0352
Cl	0.0000 + - 28.30	0.0000 +-	0.2007	0.0000 +-	0.0182
K	512.8 +- 60.90	3.637 +-	0.4508	0.3298 +-	0.0512
Ca	2015. +-226.9	14.29 +-	1.687	1.296 +-	0.1951
Ti	51.20 + - 6.496	0.3631 +-	0.0478	0.0329 +-	0.0053
V	2.517 +- 5.643	0.0179 + -	0.0400	0.0016 +-	0.0036
Cr	0.0000 + - 4.182	0.0000 +-	0.0297	0.0000 +-	0.0027
Mn	1.989 + - 3.451	0.0141 + -	0.0245	0.0013 +-	0.0022
Fe	207.4 +- 23.79	1.471 +-	0.1766	0.1334 +-	0.02 03
Ni	0.0000 + - 3.451	0.0000 +-	0.0245	0.0000 +-	0.0022
Cu	0.8932 + - 2.233	0.0063 +-	0.0158	0.0006 +-	0.0014
Zn	0.0000 + - 31.51	0.0000 +-	0.2234	0.0000 +-	0.0203
Ga	0.0000 + - 2.111	0.0000 +-	0.0150	0.0000 +-	0.0014
Ge	0.0000 + - 1.868	0.0000 +-	0.0132	0.0000 +-	0.0012
As	0.0000 +- 6.496	0.0000 +-	0.0461	0.0000 +-	0.0042
Se	0.0000 + - 2.314	0.0000 +-	0.0164	0.0000 +-	0.0015
Br	0.0000 +- 2.639	. 0.0000 + -	0.0187	0.0000 +-	0.0017
Rb	0.3248 + - 3.613	0.0023 +-	0.0256	0.0002 +-	0.0023
Sr	22.86 +- 4.182	0.1621 + -	0.0302	0.0147 +-	0.0031
Y	9.257 + - 4.304	0.0657 +-	0.0306	0.0060 +-	0.0028
Zr	19.61 + - 9.582	0.1391 + -	0.0681	0.0126 +-	0.0063
Mo	179.2 +- 17.26	1.271 +-	0.1304	0.1152 +-	0.0160
Pd	57.25 + - 17.42	0.4060 +-	0.1244	0.0368 +-	0.0118
Ag	0.0000 + - 22.65	0.0000 +-	0.1607	0.0000 +-	0.0146
Cd	0.0000 +- 36.05	0.0000 +-	0.2557	0.0000 +-	
In	0.0000 + - 38.65	0.0000 +-	0.2741	0.0000 +-	0.0249
Sn	0.0000 +- 46.16	0.0000 +-	0.3274	0.0000 +-	0.0297
Sb	0.0000 + - 54.61	0.0000 +-	0.3873	0.0000 +-	0.0351
Ва	0.0000 + -242.1	0.0000 +-	1.717	0.0000 +-	0.1557
La	0.0000 +-235.5	0.0000 +-	1.670	0.0000 +-	0.1514
Hg	0.0000 +- 5.156	0.0000 +-	0.0366	0.0000 +-	0.0033
Pb	12.42 +- 11.86	0.0881 + -	0.0841	0.0080 +-	0.0077

Project Number: 322/001 Client: Bison Date Received: 1/11/91 Report Date: 1/28/91

Client ID: 09571 NEA ID: 91-Q203

Site: Sample Date:

Exposed Area: 406.0 cm2 Deposit Mass: 15600. +- 500. ug
Volume of Air Sampled: 1577. +- 157.7 m3
Suspended Particulates (P): 9.892 +- 1.039 ug/m3

Elemer	nt ug/filter	percer	nt	ug/	/m3
Al	0.0000 +1047.	0.0000 +-	6.715	0.0000 +-	0.6642
P	0.0000 + - 20.26	0.0000 +-	0.1299	0.0000 +-	0.0128
S	0.0000 + - 52.86	0.0000 +-	0.3389	0.0000 +-	0.0335
Cl	0.0000 + - 29.43	0.0000 +-	0.1887	0.0000 +-	0.0187
K	523.3 +- 62.20	3.355 +-	0.4130	0.3319 +-	0.0515
Ca	2004. +-225.8	12.85 + -	1.505	1.271 +-	0.1914
Ti	59.15 + - 6.658	0.3792 + -	0.0444	0.0375 +-	0.0056
V	1.340 + - 5.765	0.0086 +-	0.0370	0.0008 +-	0.0037
Cr	0.0000 + - 4.182	0.0000 +-	0.0268	0.0000 +-	0.0027
Mn	10.11 +- 3.410	0.0648 + -	0.0220	0.0064 +-	0.0023
Fe	556.6 + - 40.48	3.568 + -	0.2836	0.3530 +-	0.0436
Ni	0.0000 + - 3.532	0.0000 +-	0.0226	0.0000 +-	0.0022
Cu	8.607 + - 2.355	0.0552 + -	0.0152	0.0055 + -	0.0016
Zn	0.0000 + - 31.83	0.0000 +-	0.2040	0.0000 +-	0.0202
Ga	0.0000 + - 2.111	0.0000 +-	0.0135	0.0000 +-	0.0013
Ge	2.680 + - 1.868	0.0172 + -	0.0120	0.0017 +-	0.0012
As	3.938 + - 6.577	0.0252 +-	0.0422	0.0025 + -	0.0042
Se	1.340 + - 2.314	0.0086 + -	0.0148	0.0008 +-	0.0015
Br	0.0000 + - 2.720	0.0000 +-	0.0174	0.0000 +-	0.0017
Rb	7.511 +- 3.613	0.0481 +-	0.0232	0.0048 +-	0.0023
Sr	20.87 +- 4.182	0.1338 +-	0.0271	0.0132 +-	0.0030
Y	4.750 +- 4.344	0.0304 +-	0.0279	0.0030 +-	0.0028
Zr	15.35 +- 9.541	0.0984 +-	0.0612	0.0097 +-	0.0061
Mo	167.8 +- 16.93	1.076 +-	0.1139	0.1064 +-	0.0151
Pd	16.65 + - 17.70	0.1067 +-	0.1135	0.0106 +-	0.0113
Ag	0.0000 + - 23.79	0.0000 +-	0.1525	0.0000 +-	0.0151
Cd	0.0000 +- 36.58	0.0000 +-	0.2345	0.0000 +-	0.0232
In	0.0000 + - 37.96	0.0000 +-	0.2433	0.0000 +-	0.0241
Sn	0.0000 + - 46.16	0.0000 +-	0.2959	0.0000 +-	0.0293
Sb	0.0000 + - 54.61	0.0000 +-	0.3500	0.0000 +-	0.0346
Ba	0.0000 + -245.5	0.0000 +-	1.574	0.0000 +-	0.1557
La	0.0000 +-238.2	0.0000 +-	1.527	0.0000 +-	0.1510
Hg		0.0000 +-	0.0331	0.0000 +-	0.0033
Pb	0.0000 + - 12.02	0.0000 +-	0.0770	0.0000 +-	0.0076

Client: Bison Project Number: 322/001
Report Date: 1/28/91 Date Received: 1/11/91

NEA ID: 91-Q204 Client ID: 09574

Site: Sample Date:

Exposed Area: 406.0 cm2 Deposit Mass: 26600. +- 500. ug

Volume of Air Sampled: 1552. +- 155.2 m3

Suspended Particulates (P): 17.14 +- 1.744 ug/m3

Elemen	nt ug	g/filter	percer	nt		ug/	m3
Al	0.0000	+1073.	0.0000 +-	4.034	0.0000	+-	0.6914
P	0.0000	+- 20.42	0.0000 +-	0.0768	0.0000	+-	0.0132
S	221.6	+ - 63.66	0.8332 +-	0.2398	0.1428	+-	0.0434
Cl	0.0000	+- 30.69	0.0000 +-	0.1154	0.0000	+-	0.0198
K	552.6	+ - 65.49	2.077 +-	0.2493	0.3560	+-	0.0552
Ca	2138.	+-240.8	8.039 +-	0.9176	1.378	+-	0.2075
Ti	86.19	+ - 7.755	0.3240 + -	0.0298	0.0555	+-	0.0075
V	0.0000	+- 5.928	0.0000 +-	0.0223	0.0000	+-	0.0038
Cr	0.1218	+- 4.222	0.0005 +-	0.0159	0.0001	+-	0.0027
Mn	9.541	+- 3.613	0.0359 + -	0.0136	0.0061	+-	0.0024
Fe	715.4	+- 48.23	2.689 +-	0.1882	0.4609	+-	0.0556
Ni	0.0000	+- 3.613	0.0000 +-	0.0136	0.0000	+-	0.0023
Cu	5.765	+- 2.314	0.0217 + -	0.0087	0.0037	+-	0.0015
Zn	0.0000	+- 31.38	0.0000 +-	0.1180	0.0000	+-	0.0202
Ga	0.0000	+- 2.111	0.0000 +-	0.0079	0.0000	+-	0.0014
Ge	0.0000	+- 1.786	0.0000 +-	0.0067	0.0000	+-	0.0012
As	4.344	+ - 6.577	0.0163 +-	0.0247	0.0028	+-	0.0042
Se	0.0000	+- 2.355	0.0000 + -	0.0089	0.0000	+-	0.0015
Br	2.111	÷- 2.680	0.0079 + -	0.0101	0.0014	+-	0.0017
Rb	4.953	+- 3.613	0.0186 +-	0.0136	0.0032	+-	0.0024
Sr	27.36	+- 4.141	0.1029 +-	0.0157	0.0176	+-	0.0032
Y	5.765	+- 4.263	0.0217 + -	0.0160	0.0037	+-	0.0028
Zr	20.99	+ - 9.785	0.0789 +-	0.0368	0.0135	+-	0.0064
Mo	148.6	+- 16.32	0.5586 +-	0.0622	0.0957	+-	0.0142
Pd	0.0000	+- 17.17	0.0000 + -	0.0646	0.0000	+-	0.0111
Ag	31.14	+- 22.70	0.1171 + -	0.0853	0.0201	+-	0.0148
Cd	58.14	+- 35.93	0.2186 +-	0.1351	0.0375	+-	0.0235
In	63.74	+- 37.35	0.2396 +-	0.1405	0.0411	+-	0.0244
Sn	16.73	+- 46.16	0.0629 +-	0.1735	0.0108	+-	0.0298
Sb	73.97	+- 54.73	0.2781 +-	0.2058	0.0477	+-	0.0356
Ba	74.34	+-242.6	0.2795 +-	0.9120	0.0479	+-	0.1564
La	703.6	+-232.8	2.645 +-	0.8764	0.4533	+-	0 .1 56 7
Hg	0.0000	+- 5.034	0.0000 +-	0.0189	0.0000	+-	0.0032
Pb ·	0.0000	+- 11.94	0.0000 +-	0.0449	0.0000	+-	0.0077

Client ID: 09575 NEA ID: 91-Q205 Sample Date: Site:

Deposit Mass: 25400. +- 500. ug

Exposed Area: 406.0 cm2 Deposit Mass Volume of Air Sampled: 1584. +- 158.4 m3 Suspended Particulates (P): 16.04 +-16.04 +- 1.634 ug/m3

Elemer	nt ug	g/filter	perce	nt		ug/	m3
Al	0.0000	+1067.	0.0000 +-	4.202	0.0000	+-	0.6738
P	0.0000	+ - 20.50	0.0000 +-	0.0807	0.0000	+-	0.0129
S	142.9	+- 55.46	0.5625 + -	0.2186	0.0902	+-	0.0362
Cl	0.0000	+ - 29.56	0.0000 + -	0.1164	0.0000	+-	0.0187
K	581.8	+ - 68.57	2.291 +-	0.2737	0.3673	+-	0.0568
Ca	2241.	+-252.3	8.823 +-	1.008	1.415	+-	0.2130
Ti	87.53	+- 7.755	0.3446 +-	0.0313	0.0553	+-	0.0074
V	0.0000	+- 6.049	0.0000 +-	0.0238	0.0000	+-	0.0038
Cr	2.233	+- 4.466	0.0088 +-	0.0176	0.0014	+-	0.0028
Mn	8.445	+ - 3.695	0.0332 +-	0.0146	0.0053	+-	0.0024
Fe	751.9	+ - 50.02	2.960 +-	0.2054	0.4747	+-	0.0570
Ni	0.0000	+ - 3.532	0.0000 +-	0.0139	0.0000	+-	0.0022
Cu	4.628	+- 2.314	0.0182 +-	0.0091	0.0029	+-	0.0015
Zn	0.0000	+- 31.30	0.0000 +-	0.1232	0.0000	+-	0.0198
Ga	0.0000	+- 2.030	0.0000 + -	0.0080	0.0000	+-	0.0013
Ge	3.207	+- 1.868	0.0126 +-	0.0074	0.0020	+-	0.0012
As	0.0000	+ - 6.496	0.0000 +-	0.0256	0.0000	+-	0.0041
Se	1.827	+- 2.314	0.0072 +-	0.0091	0.0012	+-	0.0015
Br	5.522	+ - 2.680	0.0217 + -	0.0106	0.0035	+-	0.0017
Rb	12.26	+- 3.613	0.0483 +-	0.0143	0.0077	+-	0.0024
Sr	24.32	+- 4.182	0.0957 +-	0.0166	0.0154	+-	0.0031
Y	0.0000	+- 4.344	0.0000 + -	0.0171	0.0000	+-	0.0027
Zr	33.41	+ - 9.866	0.1316 +-	0.0389	0.0211	+-	0.0066
Mo	173.9	+- 17.26	0.6848 + -	0.0693	0.1098	+-	0.0155
Pd	19.77	+ - 18.23	0.0778 + -	0.0718	0.0125	+-	0.0116
Ag	10.76	+ - 23.79	0.0424 + -	0.0937	0.0068		0.0150
Cd	0.0000	+- 36.05	0.0000 +-	0.1419	0.0000	+-	0.0228
In	0.0000	+- 37.96	0.0000 .+-	0.1495	0.0000		0.0240
Sn	0.0000	+- 46.16	0.0000 +-	0.1817	0.0000		0.0291
Sb	0.0000	+- 56.35	0.0000 +-	0.2219	0.0000		0.0356
Ba	0.0000	+-243.4	0.0000 +-	0.9584	0.0000		0.1537
La	503.4	+-234.1	1.982 +-	0.9226	0.3178		0.1512
Hg	0.0000	+- 5.237	0.0000 +-	0.0206	0.0000		0.0033
Pb	11.90	+- 11.86	0.0468 + -	0.0467	0.0075	-	0.0075

NEA ID: 91-Q206 Client ID: 09568

Site:

Exposed Area: 406.0 cm2

Volume of Air Sampled: 1547.

Suspended Particulates (P):

Sample Date:

Deposit Mass: 26800. +- 500. ug

+- 154.7 m3

17.32 +- 1.762 ug/m3

Elemen	nt ug	g/filter	perce	nt		ug/	m3
Al	0.0000	+1061.	0.0000 +-	3.960	0.0000	+-	0.6860
P		+- 20.34	0.0000 +-	0.0759	0.0000	+-	0.0131
S	0.0000	+ - 64.19	0.0000 +-	0.2395	0.0000	+-	0.0415
Cl	1264.	+ - 150.0	4.717 +-	0.5665	0.8172	+-	0.1268
K	1032.	+-118.4	3.849 + -	0.4476	0.6669	+-	0.1015
Ca	1957.	+-220.6	7.302 + -	0.8343	1.265	+-	0.1906
Ti	77.34	+ - 7.105	0.2886 + -	0.0271	0.0500	+-	0.0068
V	7.186	+ - 5.765	0.0268 +-	0.0215	0.0046	+-	0.0038
Cr	0.0000	+- 4.182	0.0000 +-	0.0156	0.0000	+-	0.0027
Mn	1.868	+- 3.289	0.0070 +-	0.0123	0.0012	+-	0.0021
Fe	114.9	+- 19.61	0.4286 +-	0.0736	0.0742	+-	0.0147
Ni	0.0000	+- 3.532	0.0000 +-	0.0132	0.0000	+-	0.0023
Cu	0.0000	+- 3.004	0.0000 + -	0.0112	0.0000	+-	0.0019
Zn	825.0	+- 85.67	3.078 + -	0.3248	0.5333	+-	0.0769
Ga	0.0000	+- 3.613	0.0000 +-	0.0135	0.0000	+-	0.0023
Ge	0.0000	+ - 2.395	0.0000 +-	0.0089	0.0000	+-	0.0015
As	18.92	+- 22.65	0.0706 + -	0.0845	0.0122	+-	0.0147
Se	0.0000	+- 2.477	0.0000 +-	0.0092	0.0000	+-	0.0016
Br	45.92	+- 4.060	0.1713 +-	0.0155	0.0297	+-	0.0040
Rb	2.436	+ - 3.857	0.0091 + -	0.0144	0.0016	+-	0.0025
Sr	15.10	+- 4.101	0.0564 + -	0.0153	0.0098	+-	0.0028
Y	0.0000	+- 4.507	0.0000 +-	0.0168	0.0000	+-	0.0029
Zr	35.93	+ - 9.500	0.1341 + -	0.0355	0.0232	+-	0.0066
Mo	163.5	+- 16.48	0.6101 +-	0.0626	0.1057	+-	0.0150
Pd	13.03	+- 18.76	0.0486 +-	0.0700	0.0084	+-	0.0122
Ag	0.0000	+- 24.93	0.0000 +-	0.0930	0.0000	+-	0.0161
Cd	63.09	+ - 37.96	0.2354 +-	0.1417	0.0408	+-	0.0249
In	25.05	+- 39.42	0.0935 + -	0.1471	0.0162	+-	0.0255
Sn	60.49	+- 49.45	0.2257 + -	0.1846	0.0391	+-	0.0322
Sb	0.0000	+ - 57.25	0.0000 +-	0.2136	0.0000	+-	0.0370
Ba	0.0000	+-246.2	0.0000 +-	0.9188	0.0000	+-	0.1592
La	56.84	+-238.2	0.2121 +-	0.8888	0.0367	+-	0.1540
Hg ·	0.0000	+ - 6.252	0.0000 +-	0.0233	0.0000	+-	0.0040
Pb	408.4	+- 25.42	1.524 +-	0.0990	0.2640	+-	0.0311

Client: Bison Project Number: 322/001
Report Date: 1/28/91 Date Received: 1/11/91

NEA ID: 91-Q207 Client ID: 09570

Site: Sample Date:

Exposed Area: 406.0 cm2 Deposit Mass: 17700. +- 500. ug

Volume of Air Sampled: 1570. +- 157.0 m3

Suspended Particulates (P): 11.27 +- 1.172 ug/m3

Elemer	nt u	g/filter	pe	rcer	nt		ug/	m3
Al	0.0000	+1056.	0.0000	+-	5.964	0.0000	+-	0.6724
P	0.0000	+- 20.38	0.0000	+-	0.1151	0.0000	+-	0.0130
S	0.0000	+- 49.21	0.0000	+-	0.2780	0.0000	+-	0.0313
Cl	0.0000	+- 29.43	0.0000	+-	0.1663	0.0000	+-	0.0187
K	477.9	+- 57.04	2.700	+-	0.3312	0.3044	+-	0.0474
Ca	1759.	+-198.3	9.937	+-	1.155	1.120	+-	0.1688
Ti	60.94	+- 6.496	0.3443	+-	0.0380	0.0388	+-	0.0057
V	7.673	+- 5.643	0.0434	+-	0.0319	0.0049	+-	0.0036
Cr	0.0000	+- 4.182	0.0000	+-	0.0236	0.0000	+-	0.0027
Mn	3.898	+- 3.207	0.0220	+-	0.0181	0.0025	+-	0.0021
Fe	239.9	+- 25.33	1.355	+-	0.1482	0.1528	+-	0.0222
Ni	0.0000	+- 3.451	0.0000	+-	0.0195	0.0000	+-	0.0022
Cu	2.680	+- 2.314	0.0151	+-	0.0131	0.0017	+-	0.0015
Zn	0.0000	+- 31.55	0.0000	+-	0.1782	0.0000	+-	0.0201
Ga	0.0000	+- 2.111	0.0000	+-	0.0119	0.0000	+-	0.0013
Ge	2.314	+- 1.868	0.0131	+-	0.0106	0.0015	+-	0.0012
As	0.0000	+- 6.455	0.0000	+-	0.0365	0.0000	+-	0.0041
Se	0.0000	+- 2.355	0.0000	+-	0.0133	0.0000	+-	0.0015
Br	0.3248	+- 2.680	. 0.0018	+-	0.0151	0.0002	+-	0.0017
Rb	14.29	+- 3.654	0.0807	+-	0.0208	0.0091	+-	0.0025
Sr	24.40	+- 4.222	0.1379	+-	0.0242	0.0155	+-	0.0031
Y	0.0000	+- 4.344	0.0000	+-	0.0245	0.0000	+-	0.0028
Zr	14.94	+- 8.770	0.0844	+-	0.0496	0.0095	+-	0.0057
Mo	152.9	+- 15.71	0.8638	+-	0.0921	0.0974	+-	0.0140
Pd	0.0000	+- 18.23	0.0000	+-	0.1030	0.0000	+-	0.0116
Ag	15.31	+- 23.79	0.0865	+-	0.1344	0.0097	+-	0.0152
Cd	68.45	+- 35.73	0.3867	+-	0.2021	0.0436	+-	0.0232
In	0.0000	+- 37.23	0.0000	+-	0.2103	0.0000	+-	0.0237
Sn	0.0000	+- 46.16	0.0000	+-	0.2608	0.0000	+-	0.0294
Sb	35.24	+- 54.61	0.1991	+-	0.3086	0.0224	+-	0.0349
Ba	141.9	+-243.1	0.8017	+-	1.373	0.0904	+-	0.1551
La	749.9	+-235.8	4.237	+-	1.337	0.4776	+-	0.1576
Hg	0.0000	+- 5.237	0.0000	+-	0.0296	0.0000	+-	0.0033
Pb	6.577	+- 11.86	0.0372		0.0670	0.0042	+-	0.0076

NEA ID: 91-Q208 Client ID: 09572 Sample Date: Site:

Deposit Mass: 17500. +- 500. ug Exposed Area: 406.0 cm2

Volume of Air Sampled: 1544. +- 154.4 m3
Suspended Particulates (P): 11.33 +- 1.179 ug/m3

Elemen	t ug/f	ilter	per	ccer	nt		ug/	m3
Al	0.0000 +3	1059.	0.0000	+-	6.053	0.0000	+-	0.6860
P	0.0000 +-		0.0000	+-	0.1165	0.0000	+-	0.0132
S	25.50 +-	52.90	0.1457	+-	0.3023	0.0165	+-	0.0343
Cl		30.57	0.0000	+-	0.1747	0.0000	+-	0.0198
K	438.1 +-	52.70	2.503	+-	0.3095	0.2837	+-	0.0444
Ca	1497. +-	169.0	8.552	+-	0.9962	0.9692	+-	0.1462
Ti	56.96 + -	5.846	0.3255	+-	0.0347	0.0369	+-	0.0053
V	0.0000 +-	5.359	0.0000	+-	0.0306	0.0000	+-	0.0035
Cr	0.0000 +-	3.816	0.0000	+-	0.0218	0.0000	+-	0.0025
Mn	6.902 + -	3.045	0.0394	+-	0.0174	0.0045	+-	0.0020
Fe	146.6 +-	21.03	0.8378	+-	0.1225	0.0950	+-	0.0166
Ni	0.0000 +-	3.613	0.0000	+-	0.0206	0.0000	+-	0.0023
Cu	2.761 + -	2.477	0.0158	+-	0.0142	0.0018	+-	0.0016
Zn	0.0000 +-	36.22	0.0000	+-	0.2069	0.0000	+-	0.0235
Ga	0.0000 +-	2.436	0.0000	+-	0.0139	0.0000	+-	0.0016
Ge	0.8120 +-	1.989	0.0046	+-	0.0114	0.0005	+-	0.0013
As	2.883 + -	7.470	0.0165	+-	0.0427	0.0019	+-	0.0048
Se	0.0000 +-	2.355	0.0000	+-	0.0135	0.0000	+-	0.0015
Br	4.588 + -	2.801	0.0262	+-	0.0160	0.0030	+-	0.0018
Rb	0.0000 +-	3.695	0.0000	+-	0.0211	0.0000	+-	0.0024
Sr	20.99 +-	4.141	0.1199	+-	0.0239	0.0136	+-	0.0030
Y	6.212 + -	4.344	0.0355	+-	0.0248	0.0040	+-	0.0028
Zr	23.10 +-	8.607	0.1320	+-	0.0493	0.0150	+-	0.0058
Mo	154.1 +-	15.43	0.8804	+-	0.0917	0.0998	+-	0.0141
Pd		17.70	0.0594	+-	0.1012	0.0067	+-	0.0115
Ag	0.0000 +-	23.22	0.0000	+-	0.1327	0.0000	+-	0.0150
Cd	4.344 +-	36.05	0.0248	+-	0.2060	0.0028	+-	0.0234
In		38.25	0.5320	+-	0.2191	0.0603		0.0255
Sn	72.43 +-	46.32	0.4139	+-	0.2650	0.0469	+-	0.0304
Sb	0.0000 +-	55.46	0.0000	+-	0.3169	0.0000		0.0359
Ba	0.0000 +-	244.5	0.0000	+-	1.397	0.0000		0.1584
La	0.0000 +-		0.0000		1.346	0.0000		0.1525
Hg ·	0.0000 +-	5.400	0.0000	+-	0.0309	0.0000		0.0035
Pb	49.65 +-	12.79	0.2837 +	-	0.0735	0.0322	+-	0.0089

NEA ID: 91-Q209 Client ID: 09577 Sample Date: Site:

Exposed Area: 406.0 cm2 Deposit Mass: 24800. +Volume of Air Sampled: 1576. +- 157.6 m3
Suspended Particulates (P): 15.74 +- 1.605 ug/m3 Deposit Mass: 24800. +- 500. ug

Elemen	it uç	g/filter	perce	ent		ug/	m3
Al	0.0000	+1067.	0.0000 +-	4.301	0.0000	+-	0.6768
P	0.0000	+- 20.54	0.0000 +-	0.0828	0.0000	+-	0.0130
S	7.308	+- 56.80	0.0295 +-	0.2290	0.0046	+-	0.0360
Cl	356.9	+- 54.00	1.439 +-	0.2197	0.2265	+-	0.0411
K	871.3	+-100.6	3.513 +-	0.4116	0.5528	+-	0.0844
Ca	2188.	+-246.4	8.824 +-	1.009	1.389	+-	0.2091
Ti	92.61	+ - 7.917	0.3734 +-	0.0328	0.0588	+-	0.0077
V	0.0000	+- 5.806	0.0000 +-	0.0234	0.0000	+-	0.0037
Cr	0.0000	+- 4.222	0.0000 +-	0.0170	0.0000	+-	0.0027
Mn	9.094	+- 3.695	0.0367 +-	0.0149	0.0058	+-	0.0024
Fe	544.4	+- 39.91	2.195 +-	0.1669	0.3455	+-	0.0428
Ni	0.0000	+- 3.613	0.0000 +-	0.0146	0.0000	+-	0.0023
Cu	20.95	+- 2.923	0.0845 +-	0.0119	0.0133	+-	0.0023
Zn	0.0000	+- 38.12	0.0000 +-	0.1537	0.0000	+-	0.0242
Ga	0.0000	+- 2.558	0.0000 +-	0.0103	0.0000	+-	0.0016
Ge	2.801	+- 1.908	0.0113 +-	0.0077	0.0018	+-	0.0012
As	22.94	+- 12.34	0.0925 +-	0.0498	0.0146	+-	0.0080
Se	0.0000	+- 2.436	0.0000 +-	0.0098	0.0000	+-	0.0015
Br	65.81	+ - 4.669	0.2654 +-	0.0196	0.0418	+-	0.0051
Rb	13.07	+- 3.857	0.0527 +-	0.0156	0.0083	+-	0.0026
Sr	29.35	+- 4.344	0.1184 +-	0.0177	0.0186	+-	0.0033
Y	2.233	+- 4.425	0.0090 +-	0.0178	0.0014	+-	0.0028
Zr	29.11	+- 9.419	0.1174 +-	0.0381	0.0185	+-	0.0063
Mo	169.8	+- 16.48	0.6846 +-	0.0679	0.1077	+-	0.0150
Pd	0.0000	+- 18.23	0.0000 +-	0.0735	0.0000	+-	0.0116
Ag	3.979	+- 24.93	0.0160 +-	0.1005	0.0025	+-	0.0158
Cd	24.28	+- 37.11	0.0979 +-	0.1496	0.0154	+-	0.0236
In	0.0000	+- 39.38	0.0000 +-	0.1588	0.0000	+-	0.0250
Sn	22.29	+- 48.56	0.0899 + -	0.1958	0.0141	+-	0.0308
Sb	47.54	+ - 55.54	0.1917 +-	0.2240	0.0302	+-	0.0354
Ba	0.0000	+-245.6	0.0000 +-	0.9903	0.0000	+-	0.1558
La	0.0000	+-240.9	0.0000 +-	0.9713	0.0000		0.1528
Hg	0.0000	+- 5.400	0.0000 +-	0.0218	0.0000	+-	0.0034
Pb	187.6	+- 16.24	0.7563 + -	0.0672	0.1190 -	+-	0.0157

NEA ID: 91-Q210 Client ID: 09579

Site:

Sample Date:
Deposit Mass: 18800. +- 500. ug Exposed Area: 406.0 cm2

Exposed Area: 406.0 cm2 Deposit Mass: 18800. +Volume of Air Sampled: 1558. +- 155.8 m3
Suspended Particulates (P): 12.07 +- 1.249 ug/m3

Elemen	t uç	g/f	ilter	pe	rcen	it		ug/r	m3
Al	0.0000	+1	.047.	0.0000	+-	5.567	0.0000	+-	0.6718
P	0.0000	+-	20.14	0.0000	+-	0.1071	0.0000	+-	0.0129
S	83.96	+-	57.37	0.4466	+-	0.3054	0.0539	+-	0.0372
Cl	0.0000	+-	29.48	0.0000	+-	0.1568	0.0000	+-	0.0189
K	652.8	+-	76.33	3.473	+-	0.4164	0.4190	+-	0.0645
Ca 2	2114.	+-2	238.1	11.25	+-	1.301	1.357	+-	0.2044
Ti	83.07	+-	7.267	0.4418	+-	0.0404	0.0533	+-	0.0071
V	0.0000	+-	5.684	0.0000	+-	0.0302	0.0000	+-	0.0036
Cr	0.0000	+-	4.182	0.0000	+-	0.0222	0.0000	+-	0.0027
Mn	5.765	+-	3.410	0.0307	+-	0.0182	0.0037	+-	0.0022
Fe	359.1	+-	30.94	1.910	+-	0.1722	0.2305	+-	0.0304
Ni	0.0000	+-	3.451	0.0000	+-	0.0184	0.0000	+-	0.0022
Cu	11.16	+-	2.477	0.0594	+-	0.0133	0.0072	+-	0.0017
Zn	0.0000	+-	31.59	0.0000	+-	0.1680	0.0000	+-	0.0203
Ga	0.0000	+-	2.111	0.0000	+-	0.0112	0.0000	+-	0.0014
Ge	1.583	+-	1.786	0.0084	+-	0.0095	0.0010	+-	0.0012
As	8.567	+-	6.496	0.0456	+-	0.0346	0.0055	+-	0.0042
Se	0.0000	+-	2.233	0.0000	+-	0.0119	0.0000	+-	0.0014
Br	1.015	+-	2.680	0.0054	+-	0.0143	0.0007	+-	0.0017
Rb	1.989	+-	3.573	0.0106	+-	0.0190	0.0013	+-	0.0023
sr	14.86	+-	4.060	0.0790	+-	0.0217	0.0095	+-	0.0028
Y	0.0000	+-	4.304	0.0000	+-	0.0229	0.0000	+-	0.0028
Zr	15.55	+-	9.541	0.0827	+-	0.0508	0.0100	+-	0.0062
Mo	178.2	+-	17.05	0.9481	+-	0.0941	0.1144	+-	0.0158
Pd	3.654	+-	17.17	0.0194	+-	0.0914	0.0023	+-	0.0110
Ag	0.0000	+-	23.79	0.0000	+-	0.1266	0.0000	+-	0.0153
Cđ	0.0000	+-	36.05	0.0000	+-	0.1918	0.0000	+-	0.0231
In	0.0000	+-	37.23	0.0000	+-	0.1980	0.0000	+-	0.0239
Sn	48.56	+-	45.43	0.2583	+-	0.2418	0.0312	+-	0.0293
Sb	81.89	+-	52.98	0.4356	+-	0.2821	0.0526	+-	0.0344
Ba	0.0000	+-2	242.0	0.0000	+-	1.287	0.0000	+-	0.1553
La	0.0000	+-2	232.8	0.0000	+-	1.238	0.0000	+-	0.1494
Hg	0.0000	+-	5.156	0.0000	+-	0.0274	0.0000	+-	0.0033
Pb	0.0000	+-	11.81	0.0000	+-	0.0628	0.0000	+-	0.0076

Project Number: 322/001 Client: Bison Report Date: 1/28/91 Date Received: 1/18/91

NEA ID: 91-Q233 Client ID: 09564

Site:

Exposed Area: 406.0 cm2

Volume of Air Sampled: 1527.

Suspended Particulates ():

Sample Date:

Deposit Mass: 14900. +- 500. ug

+- 152.7 m3

9.758 +- 1.029 ug/m3

Elemen	nt u	g/filter	pei	rcer	nt		ug/	m3
Al	0.0000	+1042.	0.0000	+-	6.992	0.0000	+-	0.6822
P	0.0000	+- 20.22	0.0000	+-	0.1357	0.0000	+-	0.0132
S	273.1	+- 64.15	1.833	+-	0.4349	0.1788	+-	0.0457
Cl	0.0000	+- 28.30	0.0000	+-	0.1899	0.0000	+-	0.0185
K	435.6	+- 52.66	2.924	+-	0.3668	0.2853	+-	0.0448
Ca	1885.	+-212.5	12.65	+-	1.488	1.235	+-	0.1861
Ti	58.71	+ - 6.658	0.3940	+-	0.0466	0.0384	+-	0.0058
V	0.0000		0.0000	+-	0.0384	0.0000	+-	0.0037
Cr	0.0000	+- 3.979	0.0000	+-	0.0267	0.0000	+-	0.0026
Mn	4.669	+- 3.207	0.0313	+-	0.0216	0.0031	+-	0.0021
Fe	106.7	+- 19.28	0.7161	+-	0.1316	0.0699	+-	0.0144
Ni	0.0000	+- 3.613	0.0000	+-	0.0243	0.0000	+-	0.0024
Cu	0.5278		0.0035		0.0161	0.0003	+-	0.0016
Zn		+- 31.38	0.0000		0.2106	0.0000		0.0206
Ga	0.0000		0.0000		0.0150	0.0000		0.0015
Ge	0.7714		0.0052		0.0128	0.0005		0.0013
As	0.0000		0.0000		0.0452	0.0000		0.0044
Se	0.0000	+- 2.395	0.0000	+-	0.0161	0.0000		0.0016
Br	2.071	+- 2.761	0.0139		0.0185	0.0014		0.0018
Rb	1.827	+- 3.654	0.0123		0.0245	0.0012		0.0024
Sr	12.91	+- 4.060	0.0866		0.0274	0.0085		0.0028
Y	5.928	+- 4.304	0.0398	+-	0.0289	0.0039		0.0028
Zr	42.51	+- 9.379		+-	0.0637	0.0278		0.0067
Mo	166.7	+- 16.56	1.119	+-	0.1173	0.1091		0.0154
Pd	0.0000		0.0000		0.1153	0.0000		0.0112
Ag	18.68	+- 22.65	0.1253		0.1521	0.0122		0.0149
Cd	59.11	+- 36.17	0.3967		0.2431	0.0387		0.0240
In		+- 37.96	0.0000		0.2548	0.0000		0.0249
Sn		+- 45.39	0.0000		0.3046	0.0000		0.0297
Sb	24.64	+- 54.61	0.1654		0.3665	0.0161		0.0358
Ba		+-241.9	0.0000		1.623	0.0000		0.1584
La		+-232.8	0.0000		1.562	0.0000		0.1524
Hg		+- 5.319	0.0000		0.0357	0.0000		0.0035
Pb.	0.0000	+- 12.26	0.0000	+-	0.0823	0.0000	+-	0.0080

Project Number: 322/001 Client: Bison Report Date: 1/28/91 Date Received: 1/18/91

Client ID: 09578 NEA ID: 91-Q234 Site: Sample Date:

Deposit Mass: 29200. +- 500. ug Exposed Area: 406.0 cm2

Volume of Air Sampled: 1588. +- 158.8 m3
Suspended Particulates (): 18.39 +- 1.866 ug/m3

Eleme	nt uç	g/filter	perce	nt		ug/	m3
Al	0.0000	+1067.	0.0000 +-	3.654	0.0000	+-	0.6719
P	0.0000	+- 20.50	0.0000 + -	0.0702	0.0000	+-	0.0129
S	326.6	+- 69.14	1.119 +-	0.2376	0.2057	+-	0.0482
Cl	0.0000	+- 30.77	0.0000 +-	0.1054	0.0000	+-	0.0194
K	799.0	+- 92.77	2.736 +-	0.3211	0.5032	+-	0.0771
Ca	2257.	+-254.0	7.728 +-	0.8798	1.421	+-	0.2140
Ti	91.51	+- 8.079	0.3134 + -	0.0282	0.0576	+-	0.0077
V	4.507	+- 5.765	0.0154 + -	0.0197	0.0028	+-	0.0036
Cr	0.0000	+- 4.304	0.0000 +-	0.0147	0.0000	+-	0.0027
Mn	17.78	+- 3.857	0.0609 +-	0.0132	0.0112	+-	0.0027
Fe	808.8	+- 52.86	2.770 +-	0.1871	0.5093	+-	0.0608
Ni	0.0000	+- 3.613	0.0000 +-	0.0124	0.0000	+-	0.0023
Cu	8.851	+- 2.517	0.0303 +-	0.0086	0.0056	+-	0.0017
Zn	0.0000	+- 31.79	0.0000 +-	0.1089	0.0000	+-	0.0200
Ga	0.0000	+- 2.233	0.0000 +-	0.0076	0.0000	+-	0.0014
Ge	1.096	+ - 1.989	0.0038 +-	0.0068	0.0007	+-	0.0013
As	2.720	+- 6.699	0.0093 +-	0.0229	0.0017	+-	0.0042
Se	0.0000	+- 2.395	0.0000 +-	0.0082	. 0.0000	+-	0.0015
Br	8.039	+ - 2.801 ·	0.0275 +-	0.0096	0.0051	+-	0.0018
Rb	4.831	+- 3.695	0.0165 +-	0.0127	0.0030	+-	0.0023
Sr	15.18	+- 4.101	0.0520 +-	0.0141	0.0096	+-	0.0028
Y	6.780	+- 4.344	0.0232 +-	0.0149	0.0043	+-	0.0028
Zr	38.04	+ - 9.906	0.1303 +-	0.0340	0.0240	+-	0.0067
Mo	162.3	+- 16.65	0.5559 +-	0.0578	0.1022	+-	0.0146
Pd	0.0000	+- 17.70	0.0000 +-	0.0606	0.0000	+-	0.0111
Ag	0.0000	+- 23.79	0.0000 +-	0.0815	0.0000	+-	0.0150
Cd	0.0000	+- 36.58	0.0000 +-	0.1253	0.0000	+-	0.0230
In	0.0000	+ - 37.96	0.0000 +-	0.1300	0.0000	+-	0.0239
Sn	39.02	+- 46.20	0.1336 +-	0.1582	0.0246	+-	0.0292
Sb	89.81	+ - 55.66	0.3076 +-	0.1907	0.0566	+-	0.0355
Ba	15.79	+-244.0	0.0541 +-	0.8355	0.0099	+-	0.1536
La	381.6	+-230.9	1.307 +-	0.7909	0.2403	+-	0.1473
Hg	0.0000	+- 5.400	0.0000 +-	0.0185	0.0000	+-	0.0034
Pb	6.577	+- 12.14	0.0225 +-	0.0416	0.0041	+-	0.0077

