Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 10

Esercizi svolti

Es. 1. Si risponda poi, motivando esaurientemente ogni risposta, alle seguenti domande:

- 1. È vero che ogni espressione booleana è o una FCC o una FCD?
- 2. È vero che esistono espressioni booleane che sono contemporaneamente FCC e FCD?
- 3. è vero che, presa una qualunque espressione booleana, esiste ed è unica la FCD?

SOLUZIONE:

- 1. No. Infatti l'espressione booleana (x + 1)y + z non è né una FCC né una FCD.
- 2. Si. Ad esempio le espressioni booleane 0, 1, x, ... sono tutte sia FCC che FCD.
- 3. L'unicità della FCD si ha a meno dell'ordine della somma tra i mintermini e dei prodotti nei mintermini. Infatti

$$-xy + xy + xy$$
 e $-yx + xy + xy$

sono entrambe FCD per l'OR logico delle variabili *x* e *y*. Si possono introdurre degli ordinamenti in modo che la FCD sia unica in assoluto.

Es. 2. Derivare la FCD e FCC della funzione che dà 1 *sse* riceve un numero pari di 1 in input (si consideri una funzione booleana triargomentale)

SOLUZIONE:

La forma tabellare di f è :

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

da cui
$$FCD(f) = x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

 $FCC(f) = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3)$

Esercizi da svolgere

- **Es. 1.** Si porti l'espressione $x + \underline{x} \underline{y} z$ in forma canonica congiuntiva e in forma canonica disgiuntiva, specificando gli assiomi dell'algebra di Boole usati. Da una di queste a scelta, si ricavi poi la funzione booleana associata all'espressione data.
- **Es. 2.** Si calcolino la FCD e FCC della funzione booleana che restituisce 1 solo quando 3 dei suoi 4 input vale 0. Se ne calcolino poi almeno una forma normale SOP e una POS.