Некоторые задачи СТО и ОТО II

Декабрь 2020

Алгебра Клиффорда $\mathrm{CL}(n,\mathbb{C})$ определяется как ассоциативная алгебра с единицей e и с антикоммутатором

$$\{b_i, b_j\} := b_i b_j + b_j b_i = 2g_{ij}e,$$
 (1)

где g_{ij} - симметричная биленейная форму (в интересующем нас случае - метрика), а $b_i, i=1,\ldots,n$ - генераторы.

1. Найдите базис алгебры $\mathrm{CL}(n,\mathbb{C})$, то есть такие линейно независимые элементы, через которые выражается любой элемент алгебры единственным образом. Найдите размерность $\mathrm{CL}(n,\mathbb{C})$.

В квантовой теории поля нас интересуют Лоренц-инвариантные уравнения, например уравнение Дирака

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0. (2)$$

Здесь $\psi(x)$ - четырехкомпонентный спинор, а γ^{μ} , $\mu=0,\ldots,3$ - матрицы Дирака. Матрицы Дирака образуют непреводимое представление алгебры $\mathrm{CL}(4,\mathbb{C})$ с соотношением

$$\{\gamma_{\mu}, \gamma_{\nu}\} = 2\eta_{\mu\nu} E_{4\times 4},\tag{3}$$

где $E_{4\times 4}$ - единичная матрица 4 на 4. На матрицах Дирака действует группа Лоренца: $\gamma_\mu \to \Lambda^\nu_\mu \gamma_\nu$

2. Найдите элемент $S(\Lambda)$ алгебры Клиффорда $\mathrm{CL}(4,\mathbb{C}),$ который соответсвует преобразованию

$$\Lambda^{\mu}_{\nu}\gamma_{\nu} = S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda). \tag{4}$$

То есть реализуйте внешнее действие группы Лоренца как внутренний автоморфизм алгебры Клиффорда. Для этого предлагается рассмотреть преобразование Лоренца близкое к единице:

$$\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu},\tag{5}$$

где $\omega^\mu_
u$ антисимметрична и $|\omega^\mu_
u|\ll 1$. Тогда $S(\Lambda)$ ищем в виде

$$S(\Lambda) = E_{4\times 4} + \omega_{\mu\nu} \Gamma^{\mu\nu}. \tag{6}$$

Выразите $\Gamma^{\mu\nu}$ через гамма матрицы γ^{μ} . Подсказка: из за антисимметричности можно искать $\Gamma^{\mu\nu}$ пропорциональной коммутатору гамма матриц.