

Arbitragem Utilizando Análise Fundamentalista e Retrações de Fibonacci com Inteligência Artificial

Augusto Castello Branco Bastos Fevereiro 2022

- 1. INTRODUÇÃO
- 2. QUESTÃO DE PESQUISA
- 3. OBJETIVOS
- 4. REFERENCIAL TEÓRICO
- 5. METODOLOGIA
- 6. RESULTADOS
- 7. CONSIDERAÇÕES FINAIS
- 8. REFERÊNCIAS BIBLIOGRÁFICAS

1. INTRODUÇÃO

O mercado possui duas escolas para precificação de ativos, com a evolução tecnológica passa a ser possível novas metodologias de aplicação destas escolas

Análise Fundamentalista

Precificação de ativos da companhia a partir de informações financeiras e de mercado

Modelagem Financeira para Construção do Preço Alvo

Análise Técnica

Busca padrões de comportamento nas variações dos preços das ações

Identificação de padrões no movimento das ações

Novas Ferramentas para cálculo

Modelagem Estatística

Big Data

Inteligência Artificial

2. QUESTÃO DE PESQUISA

Retornos anormais podem ser obtidos ao unirmos a Análise Técnica e a Análise Fundamentalista através de um modelo computacional treinado por Inteligência Artificial

3.1 Objetivo Geral

Comparar o desempenho de uma estratégia construída a partir de modelo computacional treinado em uma base de classificações de Fibonacci de preços alvo pela metodologia de múltiplos de mercado e preço corrente, indicando posições de compra e venda e analisar as posições construídas contra o retorno performado

3.2 Objetivos Específicos

- Testar a assertividade das árvores e dos nós encontrados;
- Testar a normalidade da distribuição acumulada dos retornos de cada nó;
- Comparar a distribuição acumulada dos retornos das posições assumidas por cada nó com a distribuição acumulada dos retornos performados pelas ações para o período de teste.

4.1 REFERENCIAL TEÓRICO | Análise Fundamentalista

O mercado possui duas escolas para precificação de ativos, com a evolução tecnológica passa a ser possível novas metodologias de aplicação destas escolas

Benjamin Graham (1934)

Retornos duradouros são obtidos através da escolha de empresas a partir da avaliação de suas informações financeiras

Fama (1970)

Precificação de ativos a partir do modelo CAPM para desconto dos fluxos de caixa projetados

Damodaran (1995)

É possível avaliar empresas a partir do valuation relativo: utilizando múltiplos de mercado multiplicados pelos indicadores das companhias

EBITDA

Segundo Damodaran (1995), o EBITDA é uma proxy para a capacidade de geração de caixa de uma companhia.

Preço Lucro

Segundo Damodaran (1995), o preço lucro é um indicador que representa o valor que o mercado atribui a lucratividade de uma companhia

4.2 REFERENCIAL TEÓRICO | Análise Técnica

Segundo Fama (1995), análise técnica é a busca por padrões matemáticos a partir das oscilações nas cotações de ativos negociados no mercado

Leonardo Pisano, matemático italiano, descobriu a razão do número áureo. Essa razão é criada pela sequência de somas de números consecutivos dentro de um vetor retroalimentado infinito e possui uma razão constante.

Ralph Nelson Elliott, contador americano, publicou o princípio das Ondas de Eliott onde o mercado tende a se comportar a partir de padrões comportamentais construídos a partir das retrações de Fibonacci

Fisher (1993)

É possível traçar pontos de resistência a partir das retrações e expansões de Fibonacci para determinar níveis de oscilação de preços

Boroden (2008)

Ilustração da aplicação de retrações de Fibonacci para cálculo dos pontos de resistência

4.3 REFERENCIAL TEÓRICO | Inteligência Artificial e Big Data

Damodaran (2021) definiu como Big Data Value Investing, a forma de investimento em valor onde grandes volumes de dados são processados em busca da obtenção de métricas na precificação de ativos

Chan (2013)

Big Data refere-se aos grandes e complexos conjuntos de dados com que as tradicionais ferramentas de processamento de dados não conseguem lidar

Hull (2021)

Ilustra a aplicação de árvores de decisão para precificação de opções

Nishu (2020)

Obteve 70% de assertividade na utilização dessa técnica para cálculo do índice de força relativa de reversão de tendência para as ações da Amazon (AMZN) e Duke Energy (DUK)

Cao (2021)

Utiliza a aprendizagem por reforço para valoração de opções de hedge com indicadores de preço lucro e fluxo de caixa descontado. Os resultados encontrados indicaram um retorno superior para o indicador preço lucro em relação aos fluxo de caixa descontado

Estrutura de uma árvore de decisão

Uma árvore de decisão é um grafo conexo, ou seja, pontos interligados e acíclico, sem recursão em sua execução.

Ilustração Árvore de Decisão

Estrutura de uma árvore de decisão utilizando as definições de Berger (2018) (Elaboração pelo Autor)

A metodologia do artigo compreendeu 5 etapas que podem ser observadas na implementação computacional do modelo em linguagem de programação R e uso de bancos de dados relacionais através da ferramenta MySQL

Passo 1: Obtenção dos dados

Cotações diárias das ações

Biblioteca R: BatchGetSymbols

Critério: Companhias com mais de 75% das cotações no período

Informação Obtida: 969.318 cotações diárias de 330 tickers

Demonstrações Financeiras Padronizadas disponibilizadas pela B3

Biblioteca R: GetDFPData2

Critério: Companhias contidas na lista de cotações e disponíveis na API

Informação Obtida: 855.218 linhas de 247 companhias

Classificação setorial das companhias listadas disponibilizadas pela CVM

Obtido no site da CVM (04/12/2021)

Informação Obtida: 2.515 linhas de 2.515 companhias

Base histórica do múltiplo EBITDA por setor para países emergentes

Calculados por Damodaran

Obtido no site da CVM (04/12/2021)

Informação Obtida: 963 linhas de 125 Setores

Passo 2: Construção do Preço Alvo

- Cálculo do EBITDA
- Cálculo do Múltiplo EBITDA e Preço Lucro por companhia
- 3. Cálculo dos Múltiplos de Mercado
- 4. Aplicação do múltiplo de mercado sobre os indicadores das companhias
- 5. Cálculo do preço alvo das companhias

A partir do preço alvo e das cotações diárias foi possível constituir a base de aprendizado do modelo e a base teste

Passo 3: Classificação para Fibonacci

Foram determinados os níveis para cada dia para cada ticker segundo a equação

```
Nível = Preço Máximo + (Preço Máximo_{Preíodo} - Preço Mínimo_{Preíodo}) * (Retração Fibonacci -1)
```

O preço corrente e o preço alvo foram classificados conforme a figura:

Passo 4: Construção das Árvores de Decisão

- 1. Foi utilizada a função rpart da biblioteca rpart para construção das árvores para períodos quinzenais
- 2. Afim de controlar o overfitting da amostra foi definida a variável controle:
- Minbucket (Tamanho mínimo dos nós)= 1% da base de treino

Passo 5: Testes Estatísticos

Foram realizados testes estatísticos afim de avaliar os objetivos específicos

- 1. Assertividade da direção dos nós (modelo Binomial)
- 2. Análise dos retornos de cada posição segundo a equação:

Retorno do Nó = |Retorno Diário| * Acerto - |Retorno Diário| * Erro

3. A distribuição acumulada dos retornos foram comparadas utilizando o teste de Kolmogorov-Smirnov conforme Marsaglia (2003)

6.1 Resultados | Base de dados obtida

A base de aprendizado foi construída e o resultado dos indicadores segue os seguintes gráficos

A normalidade da distribuição dos retornos performados pode ser observada no gráfico acima

O retorno alvo a partir do valuation relativo pelo múltiplo EBITDA calculado segue o gráfico acima e possui média semelhante a observada para os demais itens

A distribuição da classificação de Fibonacci para o preço alvo possui concentração nos níveis 0, 1 e 12

6.2 Resultados | Interpretação da Árvore Obtida

A partir do preço alvo e das cotações diárias foi possível constituir a base de aprendizado do modelo e a base teste

Árvore para 90 Períodos

Descrição dos subnós

Divisão das árvores com preço alvo Inferior a 0,014 do preço corrente

Divisão do subnó para árvores com a classificação de Fibonacci dos últimos 90 dias para o preço corrente inferior a 1

Divisão Empresas por setor*. As empresas dos setores descritos vão para o nó a esquerda

Divisão de empresas com preço alvo pelo múltiplo EBITDA calculado de até 1,2x o preço corrente

^{*}Agricultura (Açúcar, Álcool e Cana), Bancos, Comunicação e Informática, Const. Civil, Mat. Const. e Decoração, Construção Civil, Mat. Constr. e Decoração, Energia Elétrica, Extração Mineral, Gráficas e Editoras, Hospedagem e Turismo, Intermediação Financeira, Máquinas, Equipamentos, Veículos e Peças, Metalurgia e Siderurgia, Papel e Celulose, Petróleo e Gás, Seguradoras e Corretoras, Sem Setor Principal, Telecomunicações, Têxtil e Vestuário

6.3 Resultados | Análise Árvores de Decisão

O modelo conseguiu obter árvores de decisão apenas para os períodos de 30, 45, 60 e 90 cotações. Esse resultado indica que os fatores utilizados possuem relevância para previsões de longo prazo

Retornos Performados

Periodo (Dias)	Base de Tre	ino	Base de Te	Base de Teste		
	Retorno	Desvio	Retorno	Desvio		
	Diário	Padrão	Diário	Padrão		
10	(0,0059%)	1,8619%	0,1165%	1,9776%		
15	(0,0107%)	1,3432%	0,1133%	1,9776%		
30	(0,0137%)	0,8545%	0,1064%	1,5106%		
45	(0,0145%)	0,6749%	0,0988%	0,9941%		
60	(0,0150%)	0,5726%	0,0794%	0,7855%		
90	(0,0155%)	0,4551%	0,0588%	0,6726%		

É possível observar que o retorno médio no período de treinamento, entre os anos de 2010 e 2018 (exclusive) apresentou um retorno diário negativo. Já o período teste, de 2018 (inclusive) a 2020 (exclusive) apresentou um retorno diário positivo

Assertividade Árvores de Decisão

Árvore	Assertividade Treino	Assertividade Teste
Retorno 30	60,3%	46,8%
Retorno 45	61,7%	46,7%
Retorno 60	61,1%	46,9%
Retorno 90	61,1%	55,1%
Média	61,0%	50,1%

Apenas a árvore de decisão para 90 dias obteve uma taxa de assertividade superior a 50%.

Retorno Árvores de Decisão

Árvore	Retorno Treino	Retorno Teste
Retorno 30	0,0204%	(0,0074%)
Retorno 45	0,0303%	(0,0009%)
Retorno 60	0,0303%	0,0001%
Retorno 90	0,0439%	0,0263%
Média	0,0312%	0,0045%

Apenas a árvore de decisão para 90 dias obteve um retorno global significativo para o período de teste. Ainda assim, esse retorno foi inferior ao performado pelo mercado

6.4 Resultados | Análise Nós

Retorno

Médio

Posição Teste

(0,0801%) 0,0482% 0,0377% 0,0423%

(0,0351%)

0,0567% 0,0604%

0,0154%

(0,0311%)

0,0722% -0,0375% --

-0,0107%

0,0386% (0,0046%)

0,0436%

0,0246%

Todos as distribuições de retornos obtidas são normais a um nível de significância de 5%

Assertividade Nós

Retorno N	ÓS
------------------	----

		Número de Amostras	Assertivida	Número de	Assertivida				Retorno Médio	Retorno Médio	Retorno Médio
Árvore	Nó	Treino	de Treino	Amostras	de Teste				Amostras	Posição	Amostras
Retorno 30	(6,4079%)	359.132	53,6%	122.242	42,8%		Árvore	Nó	Treino	Treino	Teste
Retorno 30	(51_1306%)	174_798	_75.4%	21.947	45,4%		Retorno 30	(6,41%)	0,0007%	(0,0014%)	0,2501%
Retorno 30 -	7,0405% —	_ 83.300	-5 3,6%	<u> 26.332</u>	-60,3%		Retorno 30	(51,13%)	(0,0145%)	0,0145%	0,1876%
Retorno 30	(26,4086%)	119.218	62,8%	32.026	52,2%	i	Retorno 30	7,04%	0,0397%	0,0397%	0,1105%
Retorno 45	(5,7920%)	227.495	53,3%	74.451	41,8%	•	Retorno 30	(26,41%)	- (0 ,0 7 9 0%)-	0 ,0 7 9 0% –	-0,0904%-
Retorno 45	(54,8812%)	121.945	77,5%	12.382	41,2%		Retorno 45	(5,79%)	0,0014%	(0,0014%)	0,1165%
Retorno 45	11,6704%	66.909	55,8%	19.763	61,1%		Retorno 45	(54,88%)	(0,0162%)	0,0162%	0,2483%
Retorno 45	(28,7937%)	150.287	64,0%	37.913	50,8%	١.	Retorno 45	11,67%	0,0556%	0,0556%	0,0980%
Retorno 60	<u>(4,58</u> 47% <u>)</u>	228.991	52,7%	74.971	41,6%		Retorno 45	(28,79%)	(0,0785%)	0,0785%	0,0682%
Retorno 60	(51,4268%)	123.285	75_8%	_13_359	_4 <u>3</u> ,1 <u>%</u>		Retorno 60	(4,58%)	0,0024%	(0,0024%)	0,0935%
-Retor n o 60	43, 9258 %—	- 6 7. 4 09 	-56,8%	- 19 . 774	- 6 1 ,4%		Retorno 60	(51,43%)	(0,0157%)	0,0157%	0,1983%
Retorno 60	(2 8, 5 876%)	- 1 52 . 29 8 -	-63,9 %	-38 .350	-5 1 ,1 %		Reterne-60-	4 3, 0 3% -	- 0, 0 54 7 %-	-0 ,0 547% -	- 0, 0845% -
Retorno 90	3,4340% -	159.315 —	51,3%	48.881	61,0%	•	Retorno 60	(28,59%)	- (0 ,0 8 05%)-	0 ,0 8 05% —	-0,0464%-
Retorno 90	(32,5780%)	55.885	66,6%	8.292	35,8%		Retorno 90	3,43%	- 0, 0257 %	0,0257%	0,1104%
Retorno 90	17,1006%	69.357	58,2%	20.369	61,4%	•	Retorno 90	(32,58%)	0,0418%	(0,0418%)	0,1656%
Retorno 90	(15,5707%)	75.786	57,8%	27.553	49,9%		Retorno 90	17,10%	0,0505%	0,0505%	0,0701%
Retorno 90 Nos com pi	(38.7725%) (evisão de r	etornos posi	tivos obtiver	am maior ass	sertividade		Retorno 90 Nenhum o Retorno 90	(15,57%) dos nos o (38,77%)	0.0447%) bteve perfori (0,0772%)	0,0447% mance sup 0,0772%	enor a do 0,0394%

As distribuições encontradas foram testadas pelo teste Kolmogorov–Smirnov para análise das distribuições

Teste Kolmogorov–Smirnov para a Distribuição dos Retornos dos Nós

Arvore	Nó	Teste de Normalidade	dos Retornos	Comparação Retornos Projetados e Retornos Performados		
		Estatística KS	Estatítica p	Estatística KS	Estatítica p	
Retorno 30	-6,41%	18,78%	0,00%	10,97%	0,00%	
Retorno 30	-51,13%	25,02%	0,00%	30,09%	0,00%	
Retorno 30	7,04%	4,77%	0,00%	9,35%	0,00%	
Retorno 30	-26,41%	19,48%	0,00%	10,64%	0,00%	
Retorno 45	-5,79%	17,04%	0,00%	12,15%	0,00%	
Retorno 45	-54,88%	27,10%	0,00%	36,56%	0,00%	
Retorno 45	11,67%	3,89%	0,00%	7,20%	0,00%	
Retorno 45	-28,79%	18,06%	0,00%	13,24%	0,00%	
Retorno 60	-4,58%	15,94%	0,00%	11,72%	0,00%	
Retorno 60	-51,43%	24,76%	0,00%	33,06%	0,00%	
Retorno 60	13,93%	4,49%	0,00%	7,00%	0,00%	
Retorno 60	-28,59%	17,17%	0,00%	12,88%	0,00%	
Retorno 90	3,43%	16,06%	0,00%	11,07%	0,00%	
Retorno 90	-32,58%	15,90%	0,00%	31,38%	0,00%	
Retorno 90	17,10%	5,32%	0,00%	7,69%	0,00%	
Retorno 90	-15,57%	9,71%	0,00%	11,47%	0,00%	
Retorno 90	-38,77%	17,65%	0,00%	16,93%	0,00%	

A tabela indica, além da normalidade, a diferença máxima entre as distribuições acumuladas observadas pelo teste KS. É possível observar que os nós negativos obtiveram diferença amostral maior que os nós com posição positiva.

Não foi possível obter retornos anormais a partir de um modelo que combine análise fundamentalista, análise técnica e inteligência artificial a partir da metodologia utilizada, entretanto é possível obter um aumento significativo na assertividade da direção das cotações conforme obtido para a árvore de 90 dias

Conclusões

- As variáveis demonstraram maior assertividade para longos períodos
- A distribuição dos retornos obtidos a partir do modelo tem a distribuição normal
- A distribuição dos retornos obtidos foi inferior à performance do mercado

Pontos para discussão

- Os resultados seria diferentes com a flexibilização do período de encerramento da posição?
- A mudança da tendência macroeconômica prejudicou os resultados do modelo? Haveria um incremento com a inserção de variáveis macroeconômicas?
- Retornos anormais poderiam ser obtidos com a utilização do risco da posição?

6.6 Referências Bibliográficas

Boroden, Carolyn; Fibonacci Trading: How to Master the Time and price Advantage. McGraw-Hill, 2008

igorous

Burger, Scott V. Introduction to Machine Learning with R: Rigorous Mathematical Analysis. O'Reilly Media, 2018

Comissão de Valores Mobiliários, Instrução nº 457/10 e 485/10, 2010

Damodaran, A. Investment Valuation: Tools and Techniques for Determining the Value of Any Asset, New York University, 1995

Damodaran, A.; BradFord, C.; Value Investing: Requiem, Rebirth or Reincarnation?. New York University, 2021.

FAMA, E. 1970, Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance 25, p. 383-417, 1970.

Fisher, R, 1993. Fibonacci applications and strategies for traders (S.I): John Wiley and Sons, inc, 1993.

Graham, B.; Dodd, D.; Security Analysis. McGraw-Hill, Nova York, 1934

http://pages.stern.nyu.edu/~adamodar/ acesso em 26/12/2021-20:25

Pearson, 2021

Hull, John. OPTIONS, Futures, And Other Derivatives:

Jay Cao, Jacky Chen, John Hull, Zissis Poulos* Joseph L. Rotman School of Management, Deep Hedging of Derivatives Using Reinforcement Learning, University of Toronto, 2021

Markowitz, H., The Utility of Wealth; Journal of political Economy, 1952.

Marsaglia, George; Tsang; Wai Wan; Wang, Jingbo. Evaluating Kolmogorov's distribution. Journal of Statistical Software, 2003

Nishu, Sethi; Neha, Bhateja; Fibonacci Retracement In Stock Market, University Gurgaon, 2020.

Sharpe, WF; Capital asset prices: A theory of market equilibrium under conditions of risk; The journal of finance, 1964.

Tobin, J.; Asset holdings and spending decisions; Econometrica: Journal of the Econometric Society, 1952.

Williams, J.B., The Theory of Investment Value, Fraser Publishing, Nova York, 1938