```
ANSWER 1 OF 1 CA COPYRIGHT 2003 ACS
L2
    119:205193 CA
AN
     Vinyl chloride polymer compositions for sheets
TI
     Ishii, Mikito; Ito, Shoji
IN
     Mitsubishi Plastics Ind, Japan
PA
     Jpn. Kokai Tokkyo Koho, 4 pp.
SO
     CODEN: JKXXAF
DT
     Patent
     Japanese
LΑ
     ICM C08L027-06
ICI C08L027-06, C08L033-12
     38-3 (Plastics Fabrication and Uses)
FAN.CNT 1
                                            APPLICATION NO. DATE
                     KIND DATE
     PATENT NO.
                                            _____
                      ----
     _____
                     A2 19930608
     JP 05140395
                                             JP 1991-305941 19911121 <--
PI
                      19911121
PRAI JP 1991-305941
     The title compns. with improved calender-sheeting velocity and retention
     of balanced properties of flow mark, uniform thickness, transparency,
     etc., contain 100 parts vinyl chloride polymers, 0.5-1.5 parts copolymers
     of 82-90% Me methacrylate (I) and 10-18% Bu acrylate (II) with mol. wt.
     1,600,000-2,000,000, 0.5-1.5 parts copolymers of 55-61% I and 39-45\% Bu
     methacrylate (III) with mol. wt. 100,000-500,000, and 0.1-0.7 part copolymers of I 54-60, II 16-20, and III 20-30\% with mol. wt.
     250,000-650,000. A compn. contg. PVC (d.p. 700) 100, 87:13 I-II
copolymer
     0.4, 58:42 I-III copolymer 1.0, and 57:18:25 I-II-III copolymer 0.4 part
     was roll pressed at 190.degree. and 60 m/min to give a sheet showing no
     flow marks, good transparency, and uniform thickness.
     PVC acrylate copolymer blend calendering; calendering PVC acrylate
ST
     copolymer sheet; transparency PVC acrylate copolymer calendering
     Calendering
TT
         (PVC-acrylate copolymer blends for, as sheets)
     Plastics, molded
TΨ
     RL: USES (Uses)
         (PVC-acrylate copolymer blends, calendered)
     Transparent materials
ΙT
         (PVC-acrylate copolymer blends, sheets, calendered)
     25322-99-0, Butyl acrylate-butyl methacrylate-methyl methacrylate
     copolymer 25608-33-7, Butyl methacrylate-methyl methacrylate copolymer 25852-37-3, Butyl acrylate-methyl methacrylate copolymer
     RL: USES (Uses)
         (blends with PVC, sheets, calendered, transparent)
IT
     9002-86-2, PVC
     RL: USES (Uses)
         (blends with acrylate copolymers, sheets, calendered, transparent)
```

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-140395

(43)公開日 平成5年(1993)6月8日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

C08L 27/06

LEV

9166-4 J

// (C08L 27/06

33:12)

7921-4 J

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平3-305941

(22)出願日

平成3年(1991)11月21日

(71)出願人 000006172

三菱樹脂株式会社

東京都千代田区丸の内2丁目5番2号

(72)発明者 石井 幹人

滋賀県長浜市三ツ矢町 5番 8号 三菱樹脂

株式会社長浜工場内

(72)発明者 伊藤 昌次

滋賀県長浜市三ツ矢町5番8号 三菱樹脂

株式会社長浜工場内

(74)代理人 弁理士 近藤 久美

(54)【発明の名称】 塩化ビニル系樹脂組成物

(57)【要約】

【目的】 カレンダーシートの生産速度の向上にかかわ らず、エア入り、フローマーク、透明性、厚み振れ等の バランスを崩すことのない塩化ビニル樹脂組成物を提供 する。

【構成】 塩化ビニル系樹脂100重量部に対し、メチ ルメタアクリレート82~80%とブチルアクリレート 18~10%からなり分子量160~200万の共重合 体0.5~1.5重量部と、メチルメタアクリレート5 5~61%とブチルメタアクリレート45~39%から なり分子量10~50万の共重合体0.5~1.5重量 部と、メチルメタアクリレート54~60%とブチルア クリレート16~20%及びブチルメタアクリレート3 0~20%からなり分子量25~65万の共重合体0. $1 \sim 0$. 7重量部を含有させたもの。

【特許請求の範囲】

【請求項1】 塩化ビニル系樹脂100重量部に対し、 メチルメタアクリレート82~90%とブチルアクリレ ート18~10%からなり、分子量160万から200 万の共重合体を0.5~1.5重量部と、メチルメタア クリレート55~61%とブチルメタアクリレート45 ~39%からなり分子量が10万から50万の共重合体 を0.5~1.5重量部と、メチルメタアクリレート5 4~60%とブチルアクリレート16~20%およびブ チルメタアクリレート30~20%からなり分子量25 万から65万の共重合体を0.1~0.7重量部添加し てなる塩化ビニル系樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は塩化ビニル系樹脂組成物 に関し、特にカレンダーシートの生産速度を上昇させて もシート内部に空気がまきこまれたり(エア入り)、フ ローマーク、厚み振れ、透明性等のバランスを崩すこと のない塩化ビニル系樹脂組成物に関する。

[0002]

【従来の技術】従来、生産速度を向上させ、エア入り等 の品質不良を防止するためエチレン-酢酸ビニル系の樹 脂(以下EVA系と略称)を加工助剤として添加するこ とが行われている。

[0003]

【発明が解決しようとする課題】然るにEVA系樹脂の 添加は或る程度効果は認められるものの更に品質特性を 向上するためにEVA系樹脂の添加量を増加させると品 質のバランスが崩れてしまうという問題があった。

[0004]

【課題を解決するための手段】本発明はかかる問題点を 解決せんとするもので、その要旨とするところは、塩化 ビニル系樹脂100重量部に対し、メチルメタアクリレ ート82~92%とブチルアクリレート18~10%か らなり、分子量160万から200万の共重合体を0. 5~1. 5重量部とメチルメタアクリレート55~61 %とブチルメタアクリレート45~35%からなり分子 量が10万から50万の共重合体を0.5~1.5重量 部と、メチルメタアクリレート54~60%とブチルア クリレート16~20%およびブチルメタアクリレート 30~20%からなり分子量25万から65万の共重合 体を0.1~0.7重量部添加してなる塩化ビニル系樹 脂組成物にある。

【0005】以下、本発明を更に詳細に説明する。本発 明における主要成分である塩化ビニル系樹脂は通常の塩 化ビニル樹脂又は一部酢酸ビニル等の側鎖を有する共重 合体であっても有効に使用できる。

【0006】このような塩化ビニル系樹脂に添加される 安定剤としては公知の有機錫マレート系、含硫黄有機錫 マレート系等の錫系安定剤が好適に用いられ、添加部数 50

は塩化ビニル系樹脂100重量部に対し、1~6重量部 の範囲で用いられる。他の添加剤としては可塑剤、MB S系衝撃改良剤、滑剤等が適宜部数添加される。

【0007】本発明においては、塩化ビニル系樹脂に対 し、メチルメタアクリレート82~90%とブチルアク リレート18~60%からなり分子量が160万から2 ○ ○ の共重合体と、メチルメタアクリレート 5 5 ~ 6 1 %とブチルメタアクリレート45~39%からなり分子 量が10万から50万の共重合体と、メチルメタアクリ レート54~60%とブチルアクリレート16~20% 及びブチルメタアクリレート30~20%からなり分子 量が25万から65万の共重合体とを併用することが特 に肝要である。

【0008】メチルメタアクリレート82~90%とブ チルアクリレート18~10%からなり分子量が160 万から200万の共重合体は主としてエア入りやフロー マークの防止に効果があり、添加部数は0.5~1.5 重量部の範囲で用いることが肝要である。添加部数が 0.5重量部未満で、分子量が160万未満であるとエ 20 ア入りが生じ好ましくなく、また添加量が1.5重量部 を越え、分子量が200万を越えるとフローマークが生 じてくるので好ましくない。

【0009】メチルメタアクリレート55~61%とブ チルメタアクリレート45~39%からなり分子量が1 0万から50万の共重合体は主としてエア入りやフロー マークの防止及び透明性の向上に効果があり、添加部数 は0.5~1.5重量部の範囲で用いることが肝要であ る。添加量が1. 5重量部を越えるとエア入りが発生 し、分子量が10万未満と小さい場合は透明性が悪くな る。また、添加量が0.5部未満と少く、分子量が50 万を越えて大きくなるとフローマークが発生し好ましく

【0010】メチルメタアクリレート54~60%とブ チルアクリレート16~20%及びブチルメタアクリレ ート30~20%からなり分子量が25万から60万の 共重合体は主として厚み振れや透明性向上に効果があ り、添加部数は0.1~0.7重量部の範囲で用いられ る。添加部数が0.1重量部未満で分子量が25万未満 と小さい場合は厚み振れが悪くなり、添加量が0.7重 量部を越え、分子量が60万を越え大きくなると透明性 が悪くなり好ましくない。

【0011】 [実験例] 以下、本発明を実験例に基づ き、更に詳細に説明する。重合度700の塩化ビニル樹 脂100重量部に対し、MBS系衝撃改良剤11重量 部、ジオクチル錫マレートポリマー0. 7重量部、ジオ クチル錫メルカプト1.3重量部、ジイソノニルアジペ ート2.5重量部添加し、メチルメタアクリレート87 %とブチルアクリレート13%からは共重合体(以下A と略称)及びメチルメタアクリレート58%とブチルメ タアクリレート42%からなる共重合体(以下Bと略

称)及びメチルメタアクリレート57%とブチルアクリ レート18%及びブチルメタアクリレート25%からな る(以下Cと略称)の添加量を表1に示すように変化さ せて圧延温度190℃、圧延速度60m/minで0. 5 mm厚に圧延し、エア入り、フローマーク、透明性、厚* * み振れを評価した。

【0012】その結果を表1に示す。

[0013]

【表1】

表 1

				В		C		評 価				
No	添加量	A 1 5)子量	添加量	分子量	添加量	分子量	エア人り	フローマーク	透明性	厚 み 振 和	
_		_	100 %	1.OPHR	30万	0.4PHR	45万	×	0	0	0	
l,	0.4PH	R	180万		//	"	"	0	×	0	0	
2	1.6			"		"	"	0	×	0	0	
3	1.0		"	0.4			<i>"</i>	×	0	0	0	
4	"		"	1.6	"			 	0	0	×	
5	"		"	1.0	"	0.05		0		×	10	_
6	"	1	"	"	"	0.8	"	0	0		10	_
7	"	-	85	"	"	0.4	"	×	0	0		
<u> </u>	"	十	280	"	"	"	"	0	×		0	_
8	┼		180	"	5	"	"	0	0	×	0	_
9	+		100		60	"	"	0	×	0	0)
10	"				30		15	0	0	0	×	:
11					30		35	0	0	×	0)
12	2 "		"				45	10	0	0	C)
13	0.5		"	0.5		0.1	40	0	0	0	C	<u> </u>
14	1 1.5		"	1.5	//	0.8	-		10	0		_ 5
13	5 0.5	PHR	180万	1.5PH	R 307	5 0.1PH			0	10	1	
1	3 "		"	"	"	0.7		0		+ + + + + + + + + + + + + + + + + + + +	_	
1		7 1.5		0.5	"	0.1	"	_ 0	- 0			<u>_</u>
				1.5	"	"	"			$\frac{1}{2}$		_
-	9 H	1	EVA 3			PHR		0	×	0		$\frac{1}{2}$
-	Н.,	-		,	5			0	0	0		0
-	20 較 21 例			<i>,</i> ,	7			×	0			0

(注) A:メチルメタアクリレート87%、ブチルアクリレート13%の共重合体

B:メチルメタアクリレート58%, ブチルメタアクリレート42%の共重合体

C:メタルメタアクリレート57%。プチルアクリレート18%及びプチルメタア

クリレート25%の共重合体を使用した。

【0014】評価方法

(1) エア入り、フローマークは圧延シートを次のよう に目視評価した。

×…多い 〇…少ない

(2) 透明性は圧延シートを次のように目視評価した。

×…多い ○…少ない

(3) 厚み振れは圧延シートの厚みを測定して次のよう 50 様に評価した。

に評価した。

×…大(製品規格外) ○…小(製品規格内)

[比較例] 実験例と同様の塩化ビニル樹脂組成物のA, B, Cの共重合体の代りにエチレン-酢酸ビニル共重合 体 (以下EVAと略称) を塩化ビニル樹脂100重量部 に対し、3~7重量部添加したものについて実験例と同 5

【0015】本発明品に相当する実験例No13~No18はいずれもエア入り、フローマーク、透明性、厚み振れの点において良好な結果を示した。A,B,Cの共重合体の分子量及び添加量が本発明の範囲外のもの及びEVAを添加したものはエア入り、フローマーク、透明性、厚み振れのうちいずれか一つは不満足な結果を示した。*

* [0016]

【発明の効果】本発明は以上述べたように3種の特定の 共重合体を塩化ビニル系樹脂に特定量組合せ添加するこ とによりカレンダーシートの生産速度の上昇にかかわら ず、エア入り、フローマーク、透明性、厚み振れの点に おいて極めて良好な製品を得ることができる。