

COMP30026 Models of Computation

Cezary Kaliszyk and William Umboh

Lecture 2

Propositional Logic

Last time

- Overview of the subject
- A few problems solvable with logic

Today

- Formal propositional logic
- Soon: Mechanized proof

Propositional = Boolean Logic

Until the mid-19th century, "logic" meant Aristotelian logic.

George Boole took an algebraic view of logic.

Deep connection between logic and arithmetic.

Figure: George Boole, circa 1864

Heidi, Dina and Louise are being questioned by their aunt.

Here is what they say:

Heidi: "Dina and Louise had equal share in it; if one is guilty, so is the other."

Dina: "If Heidi is guilty, then so am I." Louise: "Dina and I are not both guilty."

Their aunt, knowing that they are honest kids, realises that they cannot tell a lie.

Has she got sufficient information to decide who (if any) are guilty?

atoms

$$P$$
, Q , R , P_1 , P_2 , ...

• atoms $P, Q, R, P_1, P_2, ...$

bottom

	_	_	_	_	_	
atoms	Ρ.	Ο.	R.	P_1 .	P_2	

		_	_	_	_	
atoms	P,	Q,	Κ,	P_1	P_2 ,	

bottom

• top ☐

• negation \neg $\neg P$ "not P"


```
• atoms P, Q, R, P_1, P_2, \dots
```

bottom

top

• negation \neg $\neg P$ "not P"

• conjunction \wedge $P \wedge Q$ "P and Q"


```
atoms P, Q, R, P_1, P_2, \ldots
bottom \bot
top \top
negation \neg P "not P"
conjunction \land P \land Q "P and Q"
disjunction \lor P \lor Q "P or Q"
```


atoms	P, Q, R, I	P_1, P_2, \ldots	
bottom	\perp		
top	Τ		
negation	\neg	$\neg P$	"not <i>P</i> "
conjunction	\wedge	$P \wedge Q$	" P and Q "
disjunction	V	$P \lor Q$	" <i>P</i> or <i>Q</i> "
implication	\rightarrow	$P \rightarrow Q$	"if <i>P</i> then <i>Q</i> "


```
P, Q, R, P_1, P_2, \dots
atoms
bottom
top
negation
                                            "not P"
                               \neg P
conjunction
                               P \wedge O
                                            "P and O"

    disjunction

                                           "P or Q"
                  V
                               P \vee Q
                               P \rightarrow Q

    implication

                                            "if P then Q"
```

according to following:

$$\varphi ::= P \mid \bot \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi)$$

Some Well-Formed Formulas

P	(1)
$(P \rightarrow Q)$	(2)
$(P \vee \neg P)$	(3)
$\neg (P \land \neg P)$	(4)
$(P \rightarrow \neg P)$	(5)
$((P \rightarrow O) \rightarrow P) \rightarrow P)$	(6)

Some Well-Formed Formulas

$$P (1)$$

$$(P \to Q) \tag{2}$$

$$(P \vee \neg P) \tag{3}$$

$$\neg (P \land \neg P) \tag{4}$$

$$(P \to \neg P) \tag{5}$$

$$(((P \to Q) \to P) \to P) \tag{6}$$

Quiz

- Can we express an "if and only if" with what we have?
- $P \longleftrightarrow O$

Omit outer parentheses

- Omit outer parentheses
- Negation binds stronger than ∧, ∨

- Omit outer parentheses
- Negation binds stronger than ∧, ∨
- ∧, ∨ bind stronger than implication

- Omit outer parentheses
- Negation binds stronger than ∧, ∨
- ∧, ∨ bind stronger than implication
- → is right-associative: $P \to Q \to R$ denotes $P \to (Q \to R)$

- Omit outer parentheses
- Negation binds stronger than ∧, ∨
- ∧, ∨ bind stronger than implication
- → is right-associative: $P \to Q \to R$ denotes $P \to (Q \to R)$
- Warning: $P \land Q \lor R$ is AMBIGUOUS

formula
$$\neg(\neg(P \lor (Q \land \neg P)) \to R)$$
 parse tree

parse tree

formula $\neg(\neg(P \lor (Q \land \neg P)) \rightarrow R)$

formula $\neg(\neg(P \lor (Q \land \neg P)) \to R) \neg \neg(P \lor Q) \land (\neg P \to R)$ parse tree

parse tree

formula
$$\neg(\neg(P \lor (Q \land \neg P)) \to R) \neg \neg(P \lor Q) \land (\neg P \to R)$$

$$\neg\neg(P\vee Q)\wedge(\neg P\to R)$$

parse tree

formula $\neg(\neg(P \lor (Q \land \neg P)) \to R) \neg \neg(P \lor Q) \land (\neg P \to R)$

parse tree

formula $\neg(\neg(P \lor (Q \land \neg P)) \to R) \neg \neg(P \lor Q) \land (\neg P \to R)$

parse tree

formula $\neg(\neg(P \lor (Q \land \neg P)) \to R) \neg \neg(P \lor Q) \land (\neg P \to R)$

$$\neg \neg P \lor Q \land \neg P \to R$$
 $\neg \neg (P \lor Q) \land \neg P \to R$

Boolean Semantics: Connectives

Definition (Truth function)

A function from truth values to truth values.

Boolean Semantics: Connectives

Definition (Truth function)

A function from truth values to truth values.

Boolean truth values: \mathbf{t} and \mathbf{f} (also written 1 and 0, \top and \bot).

Boolean Semantics: Connectives

Definition (Truth function)

A function from truth values to truth values.

Boolean truth values: \mathbf{t} and \mathbf{f} (also written 1 and 0, \top and \bot).

Usually presented as a truth table:

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \longleftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Propositional letters are Boolean variables.

Propositional letters are Boolean variables.

Definition (Truth assignment)

A function from propositional letters to truth values.

Propositional letters are Boolean variables.

Definition (Truth assignment)

A function from propositional letters to truth values.

Usual notation:

$$v = \{P \mapsto \mathbf{1}, Q \mapsto \mathbf{0}\}.$$

Propositional letters are Boolean variables.

Definition (Truth assignment)

A function from propositional letters to truth values.

Usual notation:

$$v = \{P \mapsto \mathbf{1}, Q \mapsto \mathbf{0}\}.$$

We then have:

$$v(P) = 1$$

 $v(Q) = v(R) = \cdots = v(Z) = 0.$

Truth of a Formula

Let
$$v = \{P \mapsto \mathbf{1}, Q \mapsto \mathbf{0}\}.$$

Poll: Which of these formulas are true under v?

- 1. $P \wedge Q$
- 2. $(P \lor Q) \land (P \lor R)$
- 3. $P \rightarrow Q$
- 4. $\neg P \rightarrow \neg Q$

Truth of a Formula

Let
$$v = \{P \mapsto 1, Q \mapsto 0\}$$
.

Poll: Which of these formulas are true under v?

- 1. $P \wedge Q$
- 2. $(P \lor Q) \land (P \lor R)$
- 3. $P \rightarrow Q$
- 4. $\neg P \rightarrow \neg O$

Shorthand: " $v \models \phi$ " means " ϕ is true under v".

Truth Tables for Formulas

P	Q	R	((P	\wedge	Q)	\vee	R)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	1	1	1	0
1	1	1	1	1	1	1	1

Which of these have the same truth tables?

- 1. $P \rightarrow Q$ and $\neg Q \rightarrow \neg P$
- 2. $(P \rightarrow Q) \land (P \rightarrow R)$ and $P \rightarrow (Q \land R)$
- 3. $(P \rightarrow R) \land (Q \rightarrow R)$ and $(P \land Q) \rightarrow R$

Hint: $P \rightarrow Q$ has the same truth table as $\neg P \lor Q$.

Logical Equivalence

Definition

Formulas are *logically equivalent* iff they have equal truth values under **every** truth assignment.

Shorthand: " $F \equiv G$ " means "F is logically equivalent to G".

Warning: "→" is weird!

Often read as "implies", but causality is not required!

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

1. If there are no bugs, then the program runs correctly.

Warning: "→" is weird!

Often read as "implies", but causality is not required!

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

- 1. If there are no bugs, then the program runs correctly.
- 2. If Melbourne is in Queensland, then Brisbane is in Victoria.

$$\frac{P \to Q}{P}$$

A rule is sound if every model of the premises is a model of the conclusion.

Challenge: prove that modus ponens is sound.