Calculemus (Vol. 2: Demostraciones con Lean4)

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 10 de julio de 2023 (versión del 27 de agosto de 2023)

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

1.	Intr	oducción	5
2.	Den	nostraciones de una propiedad de los números enteros	7
	2.1.	\forall m n \in N, Even n \rightarrow Even (m * n)	7
3.	Prop	piedades elementales de los números reales	11
	3.1.	En \mathbb{R} , (ab)c = b(ac)	11
	3.2.	En \mathbb{R} , (cb)a = b(ac)	12
	3.3.	En \mathbb{R} , a(bc) = b(ac)	13
	3.4.	En \mathbb{R} , si ab = cd y e = f, entonces a(be) = c(df)	15
	3.5.	En \mathbb{R} , si bc = ef, entonces ((ab)c)d = ((ae)f)d	16
	3.6.	En \mathbb{R} , si c = ba-d y d = ab, entonces c = 0	18
	3.7.	En \mathbb{R} , $(a+b)(a+b) = aa+2ab+bb$	19
	3.8.	En \mathbb{R} , $(a+b)(c+d) = ac+ad+bc+bd \dots \dots \dots \dots$	21
	3.9.	En \mathbb{R} , $(a+b)(a-b) = a^2-b^2$	23
	3.10.	En \mathbb{R} , si c = da+b y b = ad, entonces c = 2ad	26
	3.11.	En \mathbb{R} , si a+b = c, entonces (a+b)(a+b) = ac+bc	28
4.	Prop	piedades elementales de los anillos	31
	4.1.	Si R es un anillo y a \in R, entonces a + 0 = a	31
	4.2.	Si R es un anillo y a \in R, entonces a + -a = 0	32
	4.3.	Si R es un anillo y a, b \in R, entonces -a + (a + b) = b	34
	4.4.	Si R es un anillo y a, b \in R, entonces (a + b) + -b = a	36
	4.5.	Si R es un anillo y a, b, $c \in R$ tales que $a+b=a+c$, entonces $b=c$	37
	4.6.	Si R es un anillo y a, b, $c \in R$ tales que $a+b=c+b$, entonces $a=c$	40
	4.7.	Si R es un anillo y a \in R, entonces a.0 = 0	42
	4.8.	Si R es un anillo y a \in R, entonces $0.a = 0 \ldots \ldots \ldots$	44
	4.9.	Si R es un anillo y a, $b \in R$ tales que $a+b=0$, entonces $-a=b$	46
	4 10	Si R es un anillo y a $b \in R$ tales que $a+b=0$ entonces $a=-b$	48

4 Índice general

4	4.11.	Si R es un anillo, entonces $-0 = 0 \dots \dots \dots$	50		
4	4.12.	Si R es un anillo y a \in R, entonces -(-a) = a	52		
4	4.13.	Si R es un anillo y a, b \in R, entonces a - b = a + -b	53		
4	4.14.	Si R es un anillo y a \in R, entonces a - a = 0	54		
4	4.15.	En los anillos, $1 + 1 = 2$	55		
4	4.16.	Si R es un anillo y a \in R, entonces 2a = a+a	55		
5.	Prop	piedades elementales de los grupos	57		
5	5.1.	Si G es un grupo y a \in G, entonces $aa^{-1}=1$	57		
5	5.2.	Si G es un grupo y a \in G, entonces a·1 = a	59		
5	5.3.	Si G es un grupo y a, b \in G tales que ab = 1 entonces $a^{-1} = b$.	60		
5	5.4.	Si G es un grupo y a, $b \in G$, entonces $(ab)^{-1} = b^{-1}a^{-1}$	62		
6.	Prop	piedades de orden en los números reales	65		
6	5.1.	En \mathbb{R} , si a \leq b, b $<$ c, c \leq d y d $<$ e, entonces a $<$ e	65		
6	5.2.	En \mathbb{R} , si 2a \leq 3b, 1 \leq a y d = 2, entonces d + a \leq 5b	68		
6	5.3.	En \mathbb{R} , si $1 \le a$ y b $\le d$, entonces $2 + a + e^b \le 3a + e^d$	69		
Bib	Bibliografía				
Len	Lemas usados				

Capítulo 1

Introducción

Este libro es una recopilación de los ejercicios de demostración con Lean4 que se han ido publicando, desde el 10 de julio de 20023, en el blog Calculemus.

La ordenación de los ejercicios es simplemente temporal según su fecha de publicación en Calculemus y el orden de los ejercicios en Calculemus responde a los que me voy encontrando en mis lecturas.

En cada ejercicio, se comienza proponiendo soluciones en lenguaje natural y, a continuación, se exponen distintas demostraciones con Lean4 ordenadas desde las más detalladas a las más automáticas. Al final de cada ejercicio hay un enlace para interactuar con sus soluciones en Lean4 Web.

Las soluciones del libro están en este repositorio de GitHub.

El libro se irá actualizando periódicamente con los nuevos ejercicios que se proponen diariamente en Calculemus.

Este libro es una continuación de

- DAO (Demostración Asistida por Ordenador) con Lean que es una introducción a la demostración con Lean3 y
- Calculemus (Vol. 1: Demostraciones con Isabelle/HOL y Lean3) que es la recopilación de la primera parte de los ejercicios del blog con demostraciones en Isabelle/HOL y Lean3.

Capítulo 2

Demostraciones de una propiedad de los números enteros

2.1. \forall m n \in \mathbb{N} , Even n \rightarrow Even (m * n)

```
-- Demostrar que los productos de los números naturales por números
-- pares son pares.
-- Demostración en lenguaje natural
-- Si n es par, entonces (por la definición de 'Even') existe un k tal que
-- \qquad n = k + k \tag{1}
-- Por tanto,
-- mn = m(k + k) (por (1))
    = mk + mk (por la propiedad distributiva)
-- Por consiguiente, mn es par.
-- Demostraciones en Lean4
-- ===============
import Mathlib.Data.Nat.Basic
import Mathlib.Data.Nat.Parity
import Mathlib.Tactic
open Nat
```

```
-- 1ª demostración
-- ==========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  rintro m n \langle k, hk \rangle
  use m * k
  rw [hk]
  ring
-- 2ª demostración
-- ===========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  rintro m n (k, hk)
  use m * k
  rw [hk]
  rw [mul_add]
-- 3ª demostración
-- ===========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  rintro m n (k, hk)
  use m * k
  rw [hk, mul_add]
-- 4ª demostración
-- ===========
example : \forall m n : Nat, Even n \rightarrow Even (m * n) := by
  rintro m n (k, hk); use m * k; rw [hk, mul add]
-- 5ª demostración
-- ==========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  rintro m n (k, hk)
  exact (m * k, by rw [hk, mul_add])
-- 6ª demostración
-- ===========
example : ∀ m n : Nat, Even n → Even (m * n) :=
fun m n \langle k, hk \rangle \mapsto \langle m * k, by rw [hk, mul add] \rangle
```

```
-- 7º demostración
-- ==========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  rintro m n (k, hk)
  use m * k
  rw [hk]
  exact mul add m k k
-- 8ª demostración
-- ===========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  intros m n hn
  unfold Even at *
  cases hn with
  | intro k hk =>
   use m * k
    rw [hk, mul add]
-- 9ª demostración
-- ==========
example : \forall m n : \mathbb{N}, Even n \rightarrow Even (m * n) := by
  intros m n hn
  unfold Even at *
  cases hn with
  | intro k hk =>
    use m * k
    calc m * n
       = m * (k + k) := by exact congrArg (HMul.hMul m) hk
      = m * k + m * k := by exact mul add m k k
-- 10ª demostración
-- ============
example : \forall m n : Nat, Even n \rightarrow Even (m * n) := by
  intros; simp [*, parity_simps]
-- Lemas usados
-- =========
-- #check (mul_add : \forall \ a \ b \ c : \mathbb{N}, a * (b + c) = a * b + a * c)
```

10 Capítulo 2. Demostraciones de una propiedad de los números enteros

Capítulo 3

Propiedades elementales de los números reales

3.1. En \mathbb{R} , (ab)c = b(ac)

```
-- Demostrar que los números reales tienen la siguiente propiedad
-- (a * b) * c = b * (a * c)
-- Demostración en lenguaje natural
- - ------
-- Por la siguiente cadena de igualdades
-- (ab)c = (ba)c [por la conmutativa]
     = b(ac) [por la asociativa]
-- Demostraciones con Lean4
import Mathlib.Tactic
import Mathlib.Data.Real.Basic
-- 1ª demostración
example
 (abc:\mathbb{R})
 : (a * b) * c = b * (a * c) :=
 (a * b) * c = (b * a) * c := by rw [mul\_comm a b]
          \_ = b * (a * c) := by rw [mul_assoc b a c]
```

3.2. En \mathbb{R} , (cb)a = b(ac)

```
: (c * b) * a = b * (a * c) :=
calc
 (c * b) * a
  = (b * c) * a := by rw [mul comm c b]
  _{-} = b * (c * a) := by rw [mul_assoc]
  \underline{\hspace{0.5cm}} = b * (a * c) := by rw [mul_comm c a]
-- 2ª demostración
example
  (abc:\mathbb{R})
  : (c * b) * a = b * (a * c) :=
  rw [mul_comm c b]
  rw [mul_assoc]
  rw [mul_comm c a]
-- 3ª demostración
example
  (abc:\mathbb{R})
 : (c * b) * a = b * (a * c) :=
by ring
-- Lemas usados
-- =========
-- #check (mul_comm : \forall (a b : \mathbb{R}), a * b = b * a)
-- #check (mul_assoc : \forall (a b c : \mathbb{R}), (a * b) * c = a * (b * c))
```

3.3. En \mathbb{R} , a(bc) = b(ac)

```
= (ba)c [por la conmutativa]
-- = b(ac) [por la asociativa]
-- Demostraciones en Lean4
import Mathlib.Tactic
import Mathlib.Data.Real.Basic
-- 1ª demostración
example
 (a b c : \mathbb{R}) : a * (b * c) = b * (a * c) :=
calc
  a * (b * c)
   = (a * b) * c := by rw [←mul_assoc]
  \underline{\phantom{a}} = (b * a) * c := by rw [mul\_comm a b]
  \_ = b * (a * c) := by rw [mul_assoc]
-- 2ª demostración
example
  (a b c : \mathbb{R}) : a * (b * c) = b * (a * c) :=
  rw [←mul_assoc]
  rw [mul_comm a b]
  rw [mul assoc]
-- 3ª demostración
example
  (a b c : \mathbb{R}) : a * (b * c) = b * (a * c) :=
by ring
-- Lemas usados
-- =========
-- #check (mul comm : \forall (a b : \mathbb{R}), a * b = b * a)
-- #check (mul_assoc : \forall (a b c : \mathbb{R}), (a * b) * c = a * (b * c))
```

3.4. En \mathbb{R} , si ab = cd y e = f, entonces a(be) = c(df)

```
-- Demostrar que si a, b, c, d, e y f son números reales tales que
-- a * b = c * d y
-- e = f,
-- entonces
-- a * (b * e) = c * (d * f)
-- Demostración en leguaje natural
-- Por la siguiente cadena de igualdades
-- a(be)
     = a(bf) [por la segunda hipótesis]
= (ab)f [por la asociativa]
   = (cd)f [por la primera hipótesis]
= c(df) [por la asociativa]
-- Demostraciones en Lean4
-- ===============
import Mathlib.Tactic
import Mathlib.Data.Real.Basic
-- 1ª demostración
example
 (abcdef: \mathbb{R})
  (h1 : a * b = c * d)
  (h2 : e = f)
  : a * (b * e) = c * (d * f) :=
calc
 a * (b * e)
  = a * (b * f) := by rw [h2]
  \underline{\phantom{a}} = (a * b) * f := by rw [\leftarrow mul_assoc]
  _{-} = (c * d) * f := by rw [h1]
  _{-} = c * (d * f) := by rw [mul_assoc]
-- 2ª demostración
example
 (abcdef: \mathbb{R})
 (h1 : a * b = c * d)
```

```
(h2 : e = f)
  : a * (b * e) = c * (d * f) :=
  rw [h2]
  rw [←mul_assoc]
  rw [h1]
  rw [mul assoc]
-- 3ª demostración
example
  (abcdef: \mathbb{R})
  (h1 : a * b = c * d)
  (h2 : e = f)
  : a * (b * e) = c * (d * f) :=
  simp [*, ←mul_assoc]
-- Lemas usados
-- =========
-- #check (mul assoc : \forall (a b c : \mathbb{R}), (a * b) * c = a * (b * c))
```

3.5. En \mathbb{R} , si bc = ef, entonces ((ab)c)d = ((ae)f)d

```
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
-- 1ª demostración
example
 (abcdef:\mathbb{R})
  (h : b * c = e * f)
  : ((a * b) * c) * d = ((a * e) * f) * d :=
calc
 ((a * b) * c) * d
   = (a * (b * c)) * d := by rw [mul_assoc a]
  _{-} = (a * (e * f)) * d := by rw [h]
  \underline{\phantom{a}} = ((a * e) * f) * d := by rw [\leftarrow mul_assoc a]
-- 2ª demostración
example
  (abcdef: \mathbb{R})
  (h : b * c = e * f)
  : ((a * b) * c) * d = ((a * e) * f) * d :=
by
  rw [mul assoc a]
  rw [h]
  rw [←mul_assoc a]
-- 3ª demostración
example
  (abcdef: \mathbb{R})
  (h : b * c = e * f)
  : ((a * b) * c) * d = ((a * e) * f) * d :=
by
  rw [mul_assoc a, h, ←mul_assoc a]
-- Lemas usados
-- =========
-- #check (mul_assoc : \forall (a b c : \mathbb{R}), (a * b) * c = a * (b * c))
```

3.6. En \mathbb{R} , si c = ba-d y d = ab, entonces c = 0

```
-- Demostrar que si a, b, c y d son números reales tales que
-- \qquad c = b * a - d
      d = a * b
-- entonces
-- c = 0
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
-- c = ba - d [por la primera hipótesis]

-- = ab - d [por la conmutativa]

-- = ab - ab [por la segunda hipótesis]
       = 0
-- Demostraciones en Lean4
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
-- 1ª demostración
example
 (a b c d : \mathbb{R})
  (h1 : c = b * a - d)
  (h2 : d = a * b)
 : c = 0 :=
calc
 c = b * a - d := by rw [h1]
_ = a * b - d := by rw [mul_comm]
  _{-} = a * b - a * b := by rw [h2]
                   := by rw [sub self]
-- 2ª demostración
example
 (abcd:\mathbb{R})
  (h1 : c = b * a - d)
 (h2 : d = a * b)
 : c = 0 :=
by
```

```
rw [h1]
  rw [mul_comm]
  rw [h2]
  rw [sub self]
-- 3ª demostración
example
  (abcd:\mathbb{R})
  (h1 : c = b * a - d)
  (h2 : d = a * b)
  : c = 0 :=
by
  rw [h1, mul comm, h2, sub self]
-- Lemas usados
-- ========
-- #check (mul comm : \forall (a b : \mathbb{R}), a * b = b * a)
-- #check (sub_self : \forall (a : \mathbb{R}), a - a = 0)
```

3.7. En \mathbb{R} , (a+b)(a+b) = aa+2ab+bb

```
-- -----
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b c : R)
-- 1ª demostración
example:
 (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
 (a + b) * (a + b)
  = (a + b) * a + (a + b) * b := by rw [mul_add]

= a * a + b * a + (a + b) * b := by rw [add_mul]
  = a * a + b * a + (a * b + b * b) := by rw [add_mul]
  \_ = a * a + b * a + a * b + b * b := by rw [\leftarrowadd_assoc]
  = a * a + (b * a + a * b) + b * b := by rw [add assoc (a * a)]
  \_ = a * a + (a * b + a * b) + b * b := by rw [mul comm b a]
  _{-} = a * a + 2 * (a * b) + b * b := by rw [\leftarrowtwo_mul]
-- 2ª demostración
example:
 (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
 (a + b) * (a + b)
  = a * a + b * a + (a * b + b * b) := by rw [mul add, add mul, add mul]
  \_ = a * a + (b * a + a * b) + b * b := by rw [\leftarrowadd_assoc, add_assoc (a * a)]
  \_ = a * a + 2 * (a * b) + b * b := by rw [mul_comm b a, \leftarrowtwo_mul]
-- 3ª demostración
example:
 (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
calc
 (a + b) * (a + b)
  = a * a + b * a + (a * b + b * b) := by ring
  = a * a + (b * a + a * b) + b * b := by ring
  _{-} = a * a + 2 * (a * b) + b * b := by ring
-- 4ª demostración
example:
 (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
by ring
-- 5ª demostración
example:
```

```
(a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
by
  rw [mul_add]
  rw [add mul]
  rw [add mul]
  rw [←add assoc]
  rw [add_assoc (a * a)]
  rw [mul comm b a]
  rw [←two mul]
-- 6ª demostración
example:
  (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
  rw [mul_add, add_mul, add_mul]
  rw [←add assoc, add assoc (a * a)]
  rw [mul comm b a, ←two mul]
-- 7ª demostración
example :
  (a + b) * (a + b) = a * a + 2 * (a * b) + b * b :=
by linarith
-- Lemas usados
-- =========
-- \#check (add_assoc : \forall a b c : \mathbb{R}, (a + b) + c = a + (b + c))
-- \#check\ (add\_mul : \forall \ a \ b \ c : \mathbb{R},\ (a + b) * c = a * c + b * c)
-- #check (mul_add : \forall \ a \ b \ c : \mathbb{R}, a * (b + c) = a * b + a * c)
-- #check (mul comm : \forall (a b : \mathbb{R}), a * b = b * a)
-- #check (two_mul : \forall (a : \mathbb{R}), 2 * a = a + a)
```

3.8. En \mathbb{R} , (a+b)(c+d) = ac+ad+bc+bd

```
-- Por la siguiente cadena de igualdades
-- (a + b)(c + d)
      = a(c + d) + b(c + d) [por la distributiva]
\begin{array}{lll} -- & = ac + ad + b(c + d) & [por \ la \ distributiva] \\ -- & = ac + ad + (bc + bd) & [por \ la \ distributiva] \\ -- & = ac + ad + bc + bd & [por \ la \ asociativa] \end{array}
-- Demostraciones con Lean4
-- ================
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b c d : \mathbb{R})
-- 1ª demostración
example
 : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
calc
  (a + b) * (c + d)
   = a * (c + d) + b * (c + d) := by rw [add_mul]

= a * c + a * d + b * (c + d) := by rw [mul_add]
  \_ = a * c + a * d + (b * c + b * d) := by rw [mul_add]
  \_ = a * c + a * d + b * c + b * d := by rw [\leftarrowadd_assoc]
-- 2ª demostración
example
  : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
calc
 (a + b) * (c + d)
   = a * (c + d) + b * (c + d) := by ring

= a * c + a * d + b * (c + d) := by ring
  _{-} = a * c + a * d + (b * c + b * d) := by ring
  \_ = a * c + a * d + b * c + b * d := by ring
-- 3ª demostración
example: (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
by ring
-- 4º demostración
example
 : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
   rw [add mul]
```

```
rw [mul_add]
rw [mul_add]
rw [← add_assoc]

-- 5² demostración
example : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
by rw [add_mul, mul_add, mul_add, ←add_assoc]

-- Lemas usados
-- ==========

-- #check (add_mul : ∀ (a b c : ℝ), (a + b) * c = a * c + b * c)
-- #check (mul_add : ∀ (a b c : ℝ), a * (b + c) = a * b + a * c)
-- #check (add_assoc : ∀ (a b c : ℝ), (a + b) + c = a + (b + c))
```

3.9. En \mathbb{R} , (a+b)(a-b) = a^2-b^2

```
-- Demostrar que si a y b son números reales, entonces
-- (a + b) * (a - b) = a^2 - b^2
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades:
   (a + b)(a - b)
     = a(a - b) + b(a - b)
                                    [por la distributiva]
    = (aa - ab) + b(a - b)
                                    [por la distributiva]
                                    [por def. de cuadrado]
    = (a^2 - ab) + b(a - b)
    = (a^2 - ab) + (ba - bb)
                                    [por la distributiva]
    = (a^2 - ab) + (ba - b^2)
                                    [por def. de cuadrado]
    = (a^2 + -(ab)) + (ba - b^2)
                                    [por def. de resta]
    = a^2 + (-(ab) + (ba - b^2))
                                    [por la asociativa]
    = a^2 + (-(ab) + (ba + -b^2))
                                    [por def. de resta]
   = a^2 + ((-(ab) + ba) + -b^2)
                                    [por la asociativa]
    = a^2 + ((-(ab) + ab) + -b^2)
                                    [por la conmutativa]
    = a^2 + (0 + -b^2)
                                    [por def. de opuesto]
    = (a^2 + 0) + -b^2
                                     [por asociativa]
   = a^2 + -b^2
                                     [por def. de cero]
-- = a^2 - b^2
                                     [por def. de resta]
```

```
-- Demostraciones con Lean4
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b : R)
-- 1ª demostración
-- ==========
example : (a + b) * (a - b) = a^2 - b^2 :=
calc
 (a + b) * (a - b)
 (a^2 - a * b) + (b * a - b * b) := by rw [mul_sub]
 \_ = (a^2 - a * b) + (b * a - b^2) := by rw [\leftarrow pow_two]
  = (a^2 + -(a * b)) + (b * a - b^2) := by ring 
   = a^2 + (-(a * b) + (b * a - b^2)) := by rw [add assoc]
   = a^2 + (-(a * b) + (b * a + -b^2)) := by ring
 = a^2 + ((-(a * b) + b * a) + -b^2) := by rw [\leftarrow add assoc]
                                         (-(a * b)) (b * a) (-b^2)
  = a^2 + ((-(a * b) + a * b) + -b^2) := by rw [mul comm]
 _{-} = a^2 + (0 + -b^2)
                                   := by rw [neg add self (a * b)]
  = (a^2 + 0) + -b^2
                                   := by rw [← add assoc]
 = a^2 + -b^2
                                   := by rw [add_zero]
 _{-} = a^2 - b^2
                                   := by linarith
-- 2ª demostración
-- =========
example : (a + b) * (a - b) = a^2 - b^2 :=
calc
 (a + b) * (a - b)
 _{-} = (a^2 - a * b) + (b * a - b * b) := by ring
 _{-} = (a^2 - a * b) + (b * a - b^2) := by ring
  _{-} = (a^2 + -(a * b)) + (b * a - b^2) := by ring
 = a^2 + (-(a * b) + (b * a - b^2)) := by ring
 = a^2 + (-(a * b) + (b * a + -b^2)) := by ring
```

```
= a^2 + ((-(a * b) + b * a) + -b^2) := by ring
  _{-} = a^2 + ((-(a * b) + a * b) + -b^2) := by ring
  = a^2 + (0 + -b^2)
                                           := by ring
   = (a^2 + 0) + -b^2 
                                           := by ring
  = a^2 + -b^2
                                           := by ring
  _{-} = a^2 - b^2
                                           := by ring
-- 3ª demostración
-- ==========
example: (a + b) * (a - b) = a^2 - b^2 :=
by ring
-- 4ª demostración
-- ===========
-- El lema anterior es
lemma aux : (a + b) * (c + d) = a * c + a * d + b * c + b * d :=
by ring
-- La demostración es
example : (a + b) * (a - b) = a^2 - b^2 :=
by
  rw [sub_eq_add_neg]
  rw [aux]
  rw [mul neg]
  rw [add_assoc (a * a)]
  rw [mul_comm b a]
  rw [neg_add_self]
  rw [add zero]
  rw [← pow two]
  rw [mul neg]
  rw [← pow two]
  rw [~ sub_eq_add_neg]
-- Lemas usados
-- =========
-- \#check (add_assoc : \forall (a b c : \mathbb{R}), (a + b) + c = a + (b + c))
-- #check (add_zero : \forall (a : \mathbb{R}), a + 0 = a)
-- #check (add mul : \forall (a b c : \mathbb{R}), (a + b) * c = a * c + b * c)
-- #check (mul comm : \forall (a b : \mathbb{R}), a * b = b * a)
-- #check (mul_neg : \forall (a b : \mathbb{R}), a * -b = -(a * b))
-- #check (mul_sub : ∀ (a b c : ℝ), a * (b - c) = a * b - a * c)
-- #check (neg add self : \forall (a : \mathbb{R}), -a + a = 0)
```

```
-- #check (pow_two : \forall (a : \mathbb{R}), a ^ 2 = a * a)
-- #check (sub_eq_add_neg : \forall (a b : \mathbb{R}), a - b = a + -b)
```

3.10. En \mathbb{R} , si c = da+b y b = ad, entonces c = 2ad

```
-- Demostrar que si a, b, c y d son números reales tales que
   c = d * a + b
     b = a * d
-- entonces
-- c = 2 * a * d
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
c = da + b [por la primera hipótesis] da + da [por la segunda hipótesis]
      = ad + ad [por la conmutativa]
      = 2(ad)
                 [por la def. de doble]
      = 2ad
                   [por la asociativa]
-- Demostraciones con Lean4
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b c d : \mathbb{R})
-- 1ª demostración
example
 (h1 : c = d * a + b)
 (h2 : b = a * d)
 : c = 2 * a * d :=
calc
 c = d * a + b := by rw [h1]
 \underline{\ } = d * a + a * d := by rw [h2]
```

```
\underline{\phantom{a}} = a * d + a * d := by rw [mul\_comm d a]
 -- 2ª demostración
example
 (h1 : c = d * a + b)
 (h2 : b = a * d)
  : c = 2 * a * d :=
by
  rw [h2] at h1
  clear h2
  rw [mul comm d a] at h1
  rw [- two_mul (a*d)] at h1
  rw [← mul_assoc 2 a d] at h1
  exact h1
-- 3ª demostración
example
 (h1 : c = d * a + b)
 (h2 : b = a * d)
  : c = 2 * a * d :=
by rw [h1, h2, mul_comm d a, ← two_mul (a * d), mul_assoc]
-- 4ª demostración
example
 (h1 : c = d * a + b)
  (h2 : b = a * d)
  : c = 2 * a * d :=
by
  rw [h1]
  rw [h2]
  ring
-- 5ª demostración
example
 (h1 : c = d * a + b)
  (h2 : b = a * d)
  : c = 2 * a * d :=
by
  rw [h1, h2]
  ring
-- 6ª demostración
example
```

3.11. En \mathbb{R} , si a+b = c, entonces (a+b)(a+b) = ac+bc

```
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable (a b c : \mathbb{R})
-- 1ª demostración
example
  (h : a + b = c)
  : (a + b) * (a + b) = a * c + b * c :=
calc
  (a + b) * (a + b)
   = (a + b) * c := by exact congrArg (HMul.hMul <math>(a + b)) h
  _{-} = a * c + b * c := by rw [add_mul]
-- 2ª demostración
example
  (h : a + b = c)
  : (a + b) * (a + b) = a * c + b * c :=
  nth rewrite 2 [h]
  rw [add_mul]
-- Lemas usados
-- =========
-- #check (add_mul : \forall (a b c : \mathbb{R}), (a + b) * c = a * c + b * c)
```

Capítulo 4

Propiedades elementales de los anillos

4.1. Si R es un anillo y a ∈ R, entonces a + 0 = a

```
_ = a := by rw [zero_add]
-- 2ª demostración
example : a + 0 = a :=
by
  rw [add comm]
  rw [zero add]
-- 3ª demostración
example : a + 0 = a :=
by rw [add_comm, zero_add]
-- 4ª demostración
example : a + 0 = a :=
by exact add_zero a
-- 5ª demostración
example : a + 0 = a :=
 add zero a
-- 5ª demostración
example : a + 0 = a :=
by simp
-- Lemas usados
-- =========
variable (a b : R)
-- #check (add comm a b : a + b = b + a)
-- \#check\ (zero\_add\ a\ :\ 0\ +\ a\ =\ a)
```

4.2. Si R es un anillo y a ∈ R, entonces a + -a = 0

```
-- Demostrar en Lean4 que si R es un anillo, entonces
-- ∀ a : R, a + -a = 0
```

```
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
-- a + -a = -a + a [por la conmutativa de la suma]
                     [por el axioma de inverso por la izquierda]
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a : R)
-- 1ª demostración
-- ==========
example : a + -a = 0 :=
calc a + -a = -a + a := by rw [add_comm]
         _ = 0 := by rw [add_left_neg]
-- 2ª demostración
-- ===========
example : a + -a = 0 :=
  rw [add comm]
  rw [add_left_neg]
-- 3ª demostración
-- ==========
example : a + -a = 0 :=
by rw [add_comm, add_left_neg]
-- 4ª demostración
-- ==========
example : a + -a = 0 :=
by exact add neg self a
-- 5ª demostración
-- ===========
example : a + -a = 0 :=
 add_neg_self a
```

4.3. Si R es un anillo y a, $b \in R$, entonces -a + (a + b) = b

```
-- Demostrar en Lean4 que si R es un anillo, entonces
-- \forall a, b : R, -a + (a + b) = b
-- Demostración en lenguaje natural
-- -----
-- Por la siguiente cadena de igualdades
-a + (a + b) = (-a + a) + b [por la asociativa]
               = 0 + b [por inverso por la izquierda]
                          [por cero por la izquierda]
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a b : R)
-- Demostraciones con Lean4
- - -----
-- 1º demostración
example : -a + (a + b) = b :=
```

```
calc -a + (a + b) = (-a + a) + b := by rw [\leftarrow add_assoc]
               -- 2ª demostración
example : -a + (a + b) = b :=
by
  rw [←add assoc]
  rw [add left neg]
  rw [zero add]
-- 3ª demostración
example : -a + (a + b) = b :=
by rw [←add_assoc, add_left_neg, zero_add]
-- 4ª demostración
example : -a + (a + b) = b :=
by exact neg add cancel left a b
-- 5ª demostración
example : -a + (a + b) = b :=
 neg add cancel left a b
-- 6ª demostración
example : -a + (a + b) = b :=
by simp
-- Lemas usados
-- =========
-- variable (c : R)
-- \#check\ (add\_assoc\ a\ b\ c\ :\ (a+b)+c=a+(b+c))
-- #check (add left neg a : -a + a = 0)
-- #check (neg_add_cancel_left a b : -a + (a + b) = b)
-- \#check (zero add a : 0 + a = a)
```

4.4. Si R es un anillo y a, b ∈ R, entonces (a + b) + -b = a

```
__________
-- Demostrar en Lean4 que si R es un anillo, entonces
-- \forall a, b : R, (a + b) + -b = a
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
-- (a + b) + -b = a + (b + -b) [por la asociativa]
            -- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a b : R)
-- 1ª demostración
example : (a + b) + -b = a :=
calc
 (a + b) + -b = a + (b + -b) := by rw [add assoc]
         -- 2ª demostración
example : (a + b) + -b = a :=
 rw [add_assoc]
 rw [add right neg]
 rw [add zero]
-- 3ª demostración
example : (a + b) + -b = a :=
by rw [add assoc, add right neg, add zero]
-- 4ª demostración
example : (a + b) + -b = a :=
```

4.5. Si R es un anillo y a, b, c ∈ R tales que a+b=a+c, entonces b=c

```
-- = (-a + a) + c [por asociativa]
      = 0 + c [por suma con opuesto]
       = c
                        [por suma con cero]
-- 2º demostración en LN
-- =============
-- Por la siguiente cadena de implicaciones
-- a + b = a + c
     => -a + (a + b) = -a + (a + c) [sumando -a]
   ==> (-a+a)+b=(-a+a)+c [por la asociativa]
    ==> 0 + b = 0 + b
                                       [suma con opuesto]
   ==> b = c
                                       [suma con cero]
-- 3ª demostración en LN
-- ==============
-- Por la siguiente cadena de igualdades
-- b = -a + (a + b)
     = -a + (a + c) [por la hipótesis]
      = c
-- Demostraciones con Lean4
-- ==============
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable {a b c : R}
-- 1ª demostración
example
 (h : a + b = a + c)
 : b = c :=
calc
 b = 0 + b := by rw [zero add]
 _ = (-a + a) + b := by rw [add_left_neg]
 \underline{\phantom{a}} = -a + (a + b) := by rw [add_assoc]
 _{-} = -a + (a + c) := by rw [h]
 \underline{\phantom{a}} = (-a + a) + c := by rw [\leftarrow add_assoc]
 -- 2ª demostración
```

```
example
  (h : a + b = a + c)
  : b = c :=
by
  have h1 : -a + (a + b) = -a + (a + c) :=
   congrArg (HAdd.hAdd (-a)) h
  clear h
  rw [← add assoc] at h1
  rw [add left neg] at h1
  rw [zero_add] at h1
  rw [- add_assoc] at h1
  rw [add_left_neg] at h1
  rw [zero_add] at h1
  exact h1
-- 3ª demostración
example
  (h : a + b = a + c)
  : b = c :=
calc
 b = -a + (a + b) := by rw [neg add cancel left a b]
  \underline{\ } = -a + (a + c) := by rw [h]
 _ = c
                  := by rw [neg_add_cancel_left]
-- 4ª demostración
example
 (h : a + b = a + c)
  : b = c :=
  rw [← neg_add_cancel_left a b]
  rw [h]
  rw [neg_add_cancel_left]
-- 5ª demostración
example
  (h : a + b = a + c)
  : b = c :=
by
  rw [ - neg_add_cancel_left a b, h, neg_add_cancel_left]
-- 6ª demostración
example
  (h : a + b = a + c)
 : b = c :=
add left cancel h
```

4.6. Si R es un anillo y a, b, c ∈ R tales que a+b=c+b, entonces a=c

```
-- Demostrar que si R es un anillo y a, b, c ∈ R tales que
-- a + b = c + b
-- entonces
  a = c
-- Demostraciones en lenguaje natural (LN)
-- -----
-- 1ª demostración en LN
-- ============
-- Por la siguiente cadena de igualdades
     a = a + 0 [por suma con cero]
= a + (b + -b) [por suma con opuesto]
= (a + b) + -b [por asociativa]
-- a = a + 0
    = c
                     [por suma con cero]
-- 2ª demostración en LN
-- Por la siguiente cadena de igualdades
-- a = (a + b) + -b
-- = (c + b) + -b [por hipótesis]
```

```
-- = c
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type } [Ring R]
variable {a b c : R}
-- 1ª demostración con Lean4
example
 (h : a + b = c + b)
  : a = c :=
calc
 a = a + 0 := by rw [add_zero]
  _{-} = a + (b + -b) := by rw [add_right_neg]
  \underline{\phantom{a}} = (a + b) + -b := by rw [add_assoc]
  _{-} = (c + b) + -b := by rw [h]
  \_ = c + (b + -b) := by rw [\leftarrow add_assoc]
 \_ = c + 0 := by rw [\leftarrow add_right_neg]
                 := by rw [add zero]
-- 2ª demostración con Lean4
- - -----
example
 (h : a + b = c + b)
  : a = c :=
calc
 a = (a + b) + -b := (add_neg_cancel_right a b).symm
  _{-} = (c + b) + -b := by rw [h]
 _ = c
                 := add_neg_cancel_right c b
-- 3ª demostración con Lean4
- - -----
example
 (h : a + b = c + b)
 : a = c :=
  rw [~ add_neg_cancel_right a b]
```

```
rw [h]
  rw [add_neg_cancel_right]
-- 4ª demostración con Lean4
example
 (h : a + b = c + b)
  : a = c :=
  rw [~ add_neg_cancel_right a b, h, add_neg_cancel_right]
-- 5ª demostración con Lean4
- - -----
example
 (h : a + b = c + b)
 : a = c :=
add right cancel h
-- Lemas usados
-- #check (add assoc a b c : (a + b) + c = a + (b + c))
-- #check (add neg cancel right a b : (a + b) + -b = a)
-- #check (add_right_cancel : a + b = c + b \rightarrow a = c)
-- #check (add_right_neg a : a + -a = 0)
-- \#check (add_zero a : a + 0 = a)
```

4.7. Si R es un anillo y a \in R, entonces a.0 = 0

```
-- que se demuestra mediante la siguiente cadena de igualdades
-- a.0 + a.0 = a.(0 + 0) [por la distributiva]
              = a.0
                            [por suma con cero]
              = a.0 + 0 [por suma con cero]
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable (a : R)
-- 1ª demostración
-- ========
example : a * 0 = 0 :=
 have h : a * 0 + a * 0 = a * 0 + 0 :=
   calc a * 0 + a * 0 = a * (0 + 0) := by rw [mul add a 0 0]
                    _ = a * 0 := by rw [add_zero 0]
                    = a * 0 + 0 := by rw [add_zero (a * 0)]
  rw [add left cancel h]
-- 2ª demostración
-- ===========
example : a * 0 = 0 :=
by
 have h : a * 0 + a * 0 = a * 0 + 0 :=
   calc a * 0 + a * 0 = a * (0 + 0) := by rw [\leftarrow mul_add]
                   _ = a * 0 := by rw [add_zero]
                     = a * 0 + 0 := by rw [add_zero]
  rw [add left cancel h]
-- 3ª demostración
-- ==========
example : a * 0 = 0 :=
by
 have h : a * 0 + a * 0 = a * 0 + 0 :=
   by rw [← mul_add, add_zero, add_zero]
  rw [add_left_cancel h]
```

```
-- 4ª demostración
-- ==========
example : a * 0 = 0 :=
by
 have : a * 0 + a * 0 = a * 0 + 0 :=
    calc a * 0 + a * 0 = a * (0 + 0) := by simp
                     = a * 0 := by simp
                    _{-} = a * 0 + 0 := by simp
 simp
-- 5ª demostración
-- ==========
example : a * 0 = 0 :=
 mul zero a
-- 6ª demostración
-- ==========
example : a * 0 = 0 :=
by simp
-- Lemas usados
-- =========
-- variable (b c : R)
-- #check (add left cancel : a + b = a + c \rightarrow b = c)
-- \#check\ (add\_zero\ a:\ a+0=a)
-- #check (mul add a b c : a * (b + c) = a * b + a * c)
-- #check (mul_zero a : a * 0 = 0)
```

4.8. Si R es un anillo y a \in R, entonces 0.a = 0

```
-- Basta aplicar la propiedad cancelativa a
-- 0.a + 0.a = 0.a + 0
-- que se demuestra mediante la siguiente cadena de igualdades
-- 0.a + 0.a = (0 + 0).a [por la distributiva]
               = 0.a
                            [por suma con cero]
               = 0.a + 0 [por suma con cero]
-- Demostraciones con Lean4
- - -----
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable (a : R)
-- 1ª demostración
example : 0 * a = 0 :=
by
 have h : 0 * a + 0 * a = 0 * a + 0 :=
   calc 0 * a + 0 * a = (0 + 0) * a := by rw [add_mul]
                    _ = 0 * a := by rw [add_zero]
                     = 0 * a + 0 := by rw [add zero]
  rw [add_left_cancel h]
-- 2ª demostración
example : 0 * a = 0 :=
by
 have h : 0 * a + 0 * a = 0 * a + 0 :=
   by rw [←add mul, add zero, add zero]
  rw [add left cancel h]
-- 3ª demostración
example : 0 * a = 0 :=
 have : 0 * a + 0 * a = 0 * a + 0 :=
   calc 0 * a + 0 * a = (0 + 0) * a := by simp
                    \underline{\phantom{a}} = 0 * a := by simp
                    _{-} = 0 * a + 0 := by simp
 simp
-- 4ª demostración
example : 0 * a = 0 :=
by
```

4.9. Si R es un anillo y a, b ∈ R tales que a+b=0, entonces -a=b

```
-- 2ª demostración en LN
__ ______
-- Sumando -a a ambos lados de la hipótesis, se tiene
     -a + (a + b) = -a + 0
-- El término de la izquierda se reduce a b (por la cancelativa) y el de
-- la derecha a -a (por la suma con cero). Por tanto, se tiene
     b = -a
-- Por la simetría de la igualdad, se tiene
-a = b
-- Demostraciones con Lean 4
- - -----
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable {a b : R}
-- 1ª demostración (basada en la 1º en LN)
example
 (h : a + b = 0)
  : -a = b :=
calc
  -a = -a + 0 := by rw [add zero]
   \underline{\ } = -a + (a + b) := by rw [h]
  _{-} = b
                  := by rw [neg add cancel left]
-- 2º demostración (basada en la 1º en LN)
example
 (h : a + b = 0)
  : -a = b :=
calc
 -a = -a + 0 := by simp
   \underline{\ } = -a + (a + b) := by rw [h]
                   := by simp
-- 3ª demostración (basada en la 2º en LN)
example
  (h : a + b = 0)
  : -a = b :=
 have h1 : -a + (a + b) = -a + 0 := congrArg (HAdd.hAdd (-a)) h
 have h2 : -a + (a + b) = b := neg_add_cancel_left a b
```

4.10. Si R es un anillo y a, b ∈ R tales que a+b=0, entonces a=-b

```
-- Sumando -a a ambos lados de la hipótesis, se tiene
-- (a + b) + -b = 0 + -b
-- El término de la izquierda se reduce a a (por la cancelativa) y el de
-- la derecha a -b (por la suma con cero). Por tanto, se tiene
      a = -b
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable {a b : R}
-- 1ª demostración (basada en la 1ª en LN)
example
 (h : a + b = 0)
 : a = -b :=
calc
 a = (a + b) + -b := by rw [add_neg_cancel_right]
 _{-} = 0 + -b := by rw [h]
 _{-} = -b
                 := by rw [zero_add]
-- 2ª demostración (basada en la 1ª en LN)
example
 (h : a + b = 0)
 : a = -b :=
calc
 a = (a + b) + -b := by simp
 _{-} = 0 + -b := by rw [h]
  _ = -b
                 := by simp
-- 3ª demostración (basada en la 1ª en LN)
example
  (h : a + b = 0)
 : a = -b :=
by
 have h1 : (a + b) + -b = 0 + -b := by rw [h]
 have h2 : (a + b) + -b = a := add_neg_cancel_right a b
 have h3 : 0 + -b = -b := zero\_add (-b)
 rwa [h2, h3] at h1
-- 4º demostración
```

```
example
  (h : a + b = 0)
  : a = -b :=
add_eq_zero_iff_eq_neg.mp h

-- Lemas usados
-- ============

-- #check (add_eq_zero_iff_eq_neg : a + b = 0 \to a = -b)
-- #check (add_neg_cancel_right a b : (a + b) + -b = a)
-- #check (zero_add a : 0 + a = a)
```

4.11. Si R es un anillo, entonces -0 = 0

```
-- Demostrar que si R es un anillo, entonces
-- -0 = 0
-- Demostraciones en lenguaje natural (LN)
-- ------
-- 1ª demostración en LN
-- Por la suma con cero se tiene
-- \theta + \theta = \theta
-- Aplicándole la propiedad
\neg \forall a b \in R, a + b = 0 \rightarrow \neg a = b
-- se obtiene
-- -\Theta = \Theta
-- 2ª demostración en LN
- - -----
-- Puesto que
\neg \forall a b \in R, a + b = 0 \rightarrow \neg a = b
-- basta demostrar que
-- \qquad 0 + 0 = 0
-- que es cierta por la suma con cero.
```

```
-- Demostraciones con Lean4
- - -----
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
-- 1ª demostración (basada en la 1ª en LN)
example : (-0 : R) = 0 :=
 have h1 : (0 : R) + 0 = 0 := add zero 0
 show (-0 : R) = 0
 exact neg_eq_of_add_eq_zero_left h1
-- 2ª demostración (basada en la 2ª en LN)
example : (-0 : R) = 0 :=
by
 apply neg_eq_of_add_eq_zero_left
  rw [add zero]
-- 3ª demostración
example : (-0 : R) = 0 :=
 neg_zero
-- 4ª demostración
example : (-0 : R) = 0 :=
by simp
-- Lemas usados
-- =========
-- variable (a b : R)
-- \#check (add zero a:a+0=a)
-- #check (neg_eq_of_add_eq_zero_left : a + b = 0 \rightarrow -b = a)
-- \#check\ (neg\_zero: -0=0)
```

4.12. Si R es un anillo y a ∈ R, entonces -(-a) = a

```
-- Demostrar que si R es un anillo y a ∈ R, entonces
-- -(-a) = a
-- Demostración en lenguaje natural
-- Es consecuencia de las siguiente propiedades demostradas en
-- ejercicios anteriores:
\neg \forall a b \in R, a + b = 0 \rightarrow \neg a = b
-- \forall a \in R, -a + a = 0
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type _} [Ring R]
variable {a : R}
-- 1ª demostración
example : -(-a) = a :=
 have h1 : -a + a = 0 := add left neg a
 show - (-a) = a
 exact neg_eq_of_add_eq_zero_right h1
-- 2ª demostración
example : -(-a) = a :=
by
 apply neg_eq_of_add_eq_zero_right
  rw [add left neg]
-- 3ª demostración
example : -(-a) = a :=
neg_neg a
-- 4ª demostración
example : -(-a) = a :=
```

4.13. Si R es un anillo y a, $b \in R$, entonces a - b = a + -b

```
-- Demostrar que si R es un anillo y a, b ∈ R, entonces
-- a - b = a + -b
-- Demostración en lenguaje natural
- - -----
-- Por la definición de la resta.
-- Demostración en Lean4
-- ==============
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a b : R)
example : a - b = a + -b :=
-- by exact?
sub_eq_add_neg a b
-- Lemas usados
-- ==========
-- #check (sub_eq_add_neg a b : a - b = a + -b)
```

4.14. Si R es un anillo y a ∈ R, entonces a - a =0

```
_____
-- Demostrar que si R es un anillo y a ∈ R, entonces
-- a - a = 0
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades:
-- a - a = a + -a [por definición de resta]
       = 0
                   [por suma con opuesto]
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a : R)
-- 1ª demostración
example : a - a = 0 :=
calc
 a - a = a + -a := by rw [sub_eq_add_neg a a]
    _ = 0 := by rw [add_right_neg]
-- 2ª demostración
example : a - a = 0 :=
sub self a
-- 3ª demostración
example : a - a = 0 :=
by simp
-- Lemas usados
-- =========
-- #check (add right neg a : a + -a = 0)
-- #check (sub eq add neg a b : a - b = a + -b)
-- #check (sub_self a : a - a = 0)
```

4.15. En los anillos, 1 + 1 = 2

```
-- Demostrar que en los anillos,
-- 1 + 1 = 2
-- Demostración en lenguaje natural
-- Por cálculo.
-- Demostración con Lean4
import Mathlib.Algebra.Ring.Defs
import Mathlib.Tactic
variable {R : Type } [Ring R]
-- Demostraciones con Lean4
-- 1ª demostración
example : 1 + 1 = (2 : R) :=
by norm num
-- 2ª demostración
example : 1 + 1 = (2 : R) :=
one_add_one_eq_two
-- Lemas usados
-- =========
-- #check (one_add_one_eq_two : 1 + 1 = 2)
```

Se puede interactuar con las pruebas anteriores en Lean 4 Web.

4.16. Si R es un anillo y a ∈ R, entonces 2a = a+a

```
-- Demostrar que si R es un anillo y a ∈ R, entonces
-- 2 * a = a + a
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
-- 2 \cdot a = (1 + 1) \cdot a [por la definición de 2]

-- = 1 \cdot a + 1 \cdot a [por la distributiva]

-- = a + a [por producto con uno]
-- Demostraciones con Lean4
import Mathlib.Algebra.Ring.Defs
variable {R : Type _} [Ring R]
variable (a : R)
-- 1ª demostración
example : 2 * a = a + a :=
calc
 2 * a = (1 + 1) * a := by rw [one_add_one_eq_two]
      _ = 1 * a + 1 * a := by rw [add_mul]
      -- 2ª demostración
example : 2 * a = a + a :=
by exact two mul a
-- Lemas usados
-- =========
-- variable (b c : R)
-- \#check\ (add\_mul\ a\ b\ c\ :\ (a\ +\ b)\ *\ c\ =\ a\ *\ c\ +\ b\ *\ c)
-- \# check (one_add_one_eq_two : (1 : R) + 1 = 2)
-- #check (one mul a : 1 * a = a)
-- #check (two_mul a : 2 * a = a + a)
```

Capítulo 5

Propiedades elementales de los grupos

5.1. Si G es un grupo y a ∈ G, entonces aa⁻¹ =1

```
-- En Lean4, se declara que G es un grupo mediante la expresión
-- variable {G : Type } [Group G]
-- Como consecuencia, se tiene los siguientes axiomas
-- mul_assoc: \forall \ a \ b \ c: G, \ a*b*c=a*(b*c) -- one_mul: \forall \ a: G, \ 1*a=a
-- mul_left_inv : \forall a : G, a^{-1} * a = 1
-- Demostrar que si G es un grupo y a ∈ G, entonces
-- a * a^{-1} = 1
-- Demostración en lenguaje natural
-- Por la siguiente cadena de igualdades
-- a \cdot a^{-1} = 1 \cdot (a \cdot a^{-1})
                                                  [por producto con uno]
              = (1 \cdot a) \cdot a^{-1}
                                                 [por asociativa]
             = (((a^{-1})^{-1} \cdot a^{-1}) \cdot a) \cdot a^{-1} [por producto con inverso]
             = ((a^{-1})^{-1} \cdot (a^{-1} \cdot a)) \cdot a^{-1}  [por asociativa]
= ((a^{-1})^{-1} \cdot 1) \cdot a^{-1} [por producto co
              = ((a^{-1})^{-1} \cdot 1) \cdot a^{-1}
                                                 [por producto con inverso]
              = (a^{-1})^{-1} \cdot (1 \cdot a^{-1})
                                                [por asociativa]
              = (a^{-1})^{-1} \cdot a^{-1}
                                                [por producto con uno]
```

```
= 1
                                           [por producto con inverso]
-- Demostraciones con Lean4
import Mathlib.Algebra.Group.Defs
variable {G : Type } [Group G]
variable (a b : G)
-- 1ª demostración
example : a * a^{-1} = 1 :=
calc
        a^{-1} = 1 * (a * a^{-1}) := by rw [one_mul]

a^{-1} = (1 * a) * a^{-1} := by rw [mul_assoc]
 a * a^{-1} = 1 * (a * a^{-1})
        _{-} = (((a^{-1})^{-1} * a^{-1}) * a) * a^{-1} := by rw [mul_left_inv]
        _{-} = ((a^{-1})^{-1} * (a^{-1} * a)) * a^{-1} := by rw [ \leftarrow mul_assoc]
        \underline{\phantom{a}} = (a^{-1})^{-1} * a^{-1}
                                          := by rw [one mul]
        _ = 1
                                           := by rw [mul left inv]
-- 2ª demostración
example : a * a^{-1} = 1 :=
calc
                            := by simp
:= bv simp
 a * a^{-1} = 1 * (a * a^{-1})
        _{-} = (1 * a) * a^{-1}
        \underline{\hspace{0.2cm}} = (((a^{-1})^{-1} * a^{-1}) * a) * a^{-1} := by simp
        \underline{\ } = ((a^{-1})^{-1} * (a^{-1} * a)) * a^{-1} := by simp
        _{-} = (a^{-1})^{-1} * a^{-1}
                                          := by simp
        _ = 1
                                           := by simp
-- 3ª demostración
example : a * a^{-1} = 1 :=
by simp
-- 4ª demostración
example : a * a^{-1} = 1 :=
by exact mul inv self a
-- Lemas usados
-- =========
```

```
-- variable (c : G)
-- #check (mul_assoc a b c : (a * b) * c = a * (b * c))
-- #check (mul_inv_self a : a * a<sup>-1</sup> = 1)
-- #check (mul_left_inv a : a<sup>-1</sup> * a = 1)
-- #check (one_mul a : 1 * a = a)
```

5.2. Si G es un grupo y a \in G, entonces a·1 = a

```
-- Demostrar que si G es un grupo y a ∈ G, entonces
-- a * 1 = a
-- Demostración en lenguaje natural
-- Se tiene por la siguiente cadena de igualdades
\begin{array}{lll} -\cdot & a \cdot 1 = a \cdot (a^{-1} \cdot a) & [por \ producto \ con \ inverso] \\ -\cdot & = (a \cdot a^{-1}) \cdot a & [por \ asociativa] \\ -\cdot & = 1 \cdot a & [por \ producto \ con \ inverso] \\ -\cdot & = a & [por \ producto \ con \ uno] \end{array}
-- Demostraciones con Lean4
import Mathlib.Algebra.Group.Defs
variable {G : Type _} [Group G]
variable (a b : G)
-- 1ª demostración
example : a * 1 = a :=
calc
  a * 1 = a * (a^{-1} * a) := by rw [mul_left_inv]
        _{-} = (a * a<sup>-1</sup>) * a := by rw [mul_assoc]
       -- 2ª demostración
example : a * 1 = a :=
calc
```

```
a * 1 = a * (a^{-1} * a) := by simp
      _{-} = (a * a<sup>-1</sup>) * a := by simp
      \underline{\phantom{a}} = 1 * a := by simp
      _ = a
                        := by simp
-- 3ª demostración
example : a * 1 = a :=
by simp
-- 4ª demostración
example : a * 1 = a :=
by exact mul one a
-- Lemas usados
-- =========
-- variable (c : G)
-- #check (mul left inv a : a^{-1} * a = 1)
-- #check (mul assoc a b c : (a * b) * c = a * (b * c))
-- #check (mul right inv a : a * a^{-1} = 1)
-- #check (one_mul a : 1 * a = a)
-- #check (mul_one a : a * 1 = a)
```

5.3. Si G es un grupo y a, b ∈ G tales que ab =1 entonces a⁻¹ = b

```
-- = 1 * b
                               [por producto con inverso]
         = b
                               [por producto por uno]
-- Demostraciones con Lean4
import Mathlib.Algebra.Group.Defs
variable {G : Type _} [Group G]
variable (a b : G)
-- 1º demostración
example
 (h : a * b = 1)
 : a^{-1} = b :=
calc
 a^{-1} = a^{-1} * 1 := by rw [mul\_one]
   \underline{\ } = a^{-1} * (a * b) := by rw [h]
    _{-} = (a^{-1} * a) * b := by rw [mul assoc]
    \_ = 1 * b := by rw [mul_left_inv]
                     := by rw [one mul]
-- 2º demostración
example
 (h : a * b = 1)
 : a<sup>-1</sup> = b :=
calc
 a^{-1} = a^{-1} * 1 := by simp
   _{-} = a^{-1} * (a * b) := by simp [h]
   _{-} = (a^{-1} * a) * b := by simp
    _ = 1 * b := by simp
    _ = b
                     := by simp
-- 3º demostración
example
 (h : a * b = 1)
 : a^{-1} = b :=
calc
 a^{-1} = a^{-1} * (a * b) := by simp [h]
   _{-} = b := by simp
-- 4º demostración
example
(h : a * b = 1)
: a^{-1} = b :=
```

5.4. Si G es un grupo y a, b \in G, entonces (ab)⁻¹ = b⁻¹a⁻¹

```
-- Demostrar que si G es un grupo y a, b ∈ G, entonces
-- (a * b)^{-1} = b^{-1} * a^{-1}
-- Demostración en lenguaje natural
-- -----
-- Teniendo en cuenta la propiedad
-- \forall a b \in R, ab = 1 \rightarrow a^{-1} = b,
-- basta demostrar que
-- (a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = 1.
-- La identidad anterior se demuestra mediante la siguiente cadena de
-- iqualdades
    (a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot (b^{-1} \cdot a^{-1})) [por la asociativa]
                          = a \cdot ((b \cdot b^{-1}) \cdot a^{-1}) [por la asociativa]
                          = a \cdot (1 \cdot a^{-1}) \qquad [por producto con inverso]
= a \cdot a^{-1} \qquad [por producto con unol]
                          = a \cdot a^{-1}
                                                   [por producto con uno]
                                                   [por producto con inverso]
-- Demostraciones con Lean4
- - =============
import Mathlib.Algebra.Group.Defs
```

```
variable {G : Type _} [Group G]
variable (a b : G)
lemma aux : (a * b) * (b^{-1} * a^{-1}) = 1 :=
calc
 (a * b) * (b^{-1} * a^{-1})
   = a * (b * (b^{-1} * a^{-1})) := by rw [mul_assoc]
  _{-} = a * ((b * b<sup>-1</sup>) * a<sup>-1</sup>) := by rw [mul assoc]
  _{-} = a * (1 * a<sup>-1</sup>)
                             := by rw [mul right inv]
  _{-} = a * a<sup>-1</sup>
                                := by rw [one mul]
  _ = 1
                                := by rw [mul_right_inv]
-- 1ª demostración
example : (a * b)^{-1} = b^{-1} * a^{-1} :=
by
 have h1 : (a * b) * (b^{-1} * a^{-1}) = 1 :=
    aux a b
  show (a * b)^{-1} = b^{-1} * a^{-1}
 exact inv_eq_of_mul_eq_one_right h1
-- 3ª demostración
example : (a * b)^{-1} = b^{-1} * a^{-1} :=
by
 have h1 : (a * b) * (b^{-1} * a^{-1}) = 1 :=
    aux a b
 show (a * b)^{-1} = b^{-1} * a^{-1}
 simp [h1]
-- 4ª demostración
example : (a * b)^{-1} = b^{-1} * a^{-1} :=
 have h1 : (a * b) * (b^{-1} * a^{-1}) = 1 :=
    aux a b
  simp [h1]
-- 5ª demostración
example : (a * b)^{-1} = b^{-1} * a^{-1} :=
 apply inv_eq_of_mul_eq_one_right
 rw [aux]
-- 6ª demostración
example : (a * b)^{-1} = b^{-1} * a^{-1} :=
by exact mul_inv_rev a b
```

Capítulo 6

Propiedades de orden en los números reales

6.1. En ℝ, si a ≤ b, b < c, c ≤ d y d < e, entonces a < e</p>

```
-- A partir de las hipótesis 1 (a ≤ b) y 2 (b < c) se tiene
-- a < c
-- que, junto la hipótesis 3 (c ≤ d) da
-- a < d
-- que, junto la hipótesis 4 (d < e) da
-- a < e.
-- 3ª demostración en LN
-- ==============
-- Para demostrar a < e, por la hipótesis 1 (a ≤ b) se reduce a probar
-- que, por la hipótesis 2 (b < c), se reduce a
-- c < e
-- que, por la hipótesis 3 (c ≤ d), se reduce a
-- d < e
-- que es cierto, por la hipótesis 4.
-- Demostraciones con Lean4
import Mathlib.Data.Real.Basic
variable (a b c d e : \mathbb{R})
-- 1ª demostración
-- ===========
example
 (h1: a \le b)
 (h2 : b < c)
 (h3 : c \leq d)
 (h4 : d < e) :
 a < e :=
calc
 a \le b := h1
 _{-} < c := h2
 _ ≤ d := h3
 _{-} < e := h4
-- 2ª demostración
-- ==========
example
```

```
(h1 : a \leq b)
  (h2 : b < c)
  (h3 : c \leq d)
  (h4 : d < e) :
  a < e :=
  have h5 : a < c := lt_of_le_of_lt h1 h2</pre>
  have h6 : a < d := lt of lt of le h5 h3
 show a < e</pre>
 exact lt_trans h6 h4
-- 3ª demostración
-- ===========
example
 (h1 : a \leq b)
  (h2 : b < c)
  (h3 : c \le d)
 (h4 : d < e) :
 a < e :=
by
 apply lt_of_le_of_lt h1
  apply lt_trans h2
  apply lt_of_le_of_lt h3
 exact h4
-- El desarrollo de la prueba es
      abcde: \mathbb{R},
    h1:a\leq b,
   h2 : b < c,
   h3:c\leq d,
     h4:d<e
     ⊢ a < e
-- apply lt_of_le_of_lt h1,
-- ⊢ b < e
-- apply lt trans h2,
   ⊢ c < e
-- apply lt_of_le_of_lt h3,
    ⊢ d < e
-- exact h4,
-- no goals
-- 4º demostración
-- ===========
```

6.2. En \mathbb{R} , si 2a \leq 3b, 1 \leq a y d = 2, entonces d + a \leq 5b

```
-- Demostrar que si a, b y c son números reales tales que
-- 2 * a ≤ 3 * b
    1 ≤ a
-- c = 2
-- entonces
-- c + a \le 5 * b
-- Demostración en lenguaje natural
-- Por la siguiente cadena de desigualdades
-- c + a = 2 + a [por la hipótesis 3 (c = 2)]

-- \leq 2 \cdot a + a [por la hipótesis 2 (1 \leq a)]
           = 3·a
           ≤ 9/2·b
                       [por la hipótesis 1 (2 \cdot a \leq 3 \cdot b)]
           ≤ 5·b
-- Demostraciones con Lean4
-- ============
```

```
import Mathlib.Data.Real.Basic
variable (a b c : \mathbb{R})
-- 1ª demostración
example
  (h1 : 2 * a \le 3 * b)
  (h2 : 1 \le a)
  (h3 : c = 2)
  : c + a \le 5 * b :=
calc
  c + a = 2 + a := by rw [h3]
      _{\underline{}} \le 2 * a + a := by linarith only [h2]
      _{-} = 3 * a := by linarith only []
       _{-} \le 9/2 * b := by linarith only [h1]
      _{\underline{}} \leq 5 * b := by linarith
-- 2ª demostración
example
  (h1 : 2 * a \le 3 * b)
  (h2 : 1 \le a)
  (h3 : c = 2)
  : c + a \le 5 * b :=
by linarith
```

6.3. En ℝ, si 1 ≤ a y b ≤ d, entonces 2 + a + e^b ≤ 3a + e^d

```
-- 2 ≤ 2a
-- y, sumando a ambos lados, se tiene
-- 2 + a ≤ 3a
                             (1)
-- De la hipótesis 2 (b ≤ d) y de la monotonía de la función exponencial
-- se tiene
     e^b \le e^d
                             (2)
-- Finalmente, de (1) y (2) se tiene
     2 + a + e^b \le 3a + e^d
-- Demostraciones con Lean4
import Mathlib.Analysis.SpecialFunctions.Log.Basic
open Real
variable (a b d : R)
-- 1ª demostración
example
 (h1 : 1 \le a)
  (h2 : b \le d)
 : 2 + a + \exp b \le 3 * a + \exp d :=
 have h3 : 2 + a \le 3 * a := calc
   2 + a = 2 * 1 + a := by linarith only []
        _{-} \le 2 * a + a := by linarith only [h1]
        _{-} \le 3 * a := by linarith only []
  have h4 : exp b \le exp d := by
    linarith only [exp le exp.mpr h2]
  show 2 + a + exp b \le 3 * a + exp d
  exact add_le_add h3 h4
-- 2ª demostración
example
  (h1 : 1 \le a)
  (h2 : b \le d)
 : 2 + a + \exp b \le 3 * a + \exp d :=
calc
 2 + a + exp b
   ≤ 3 * a + exp b := by linarith only [h1]
  _ ≤ 3 * a + exp d := by linarith only [exp_le_exp.mpr h2]
-- 3ª demostración
example
```

```
(h1 : 1 ≤ a)
  (h2 : b ≤ d)
  : 2 + a + exp b ≤ 3 * a + exp d :=
by linarith [exp_le_exp.mpr h2]
```

- [1] J. A. Alonso. Lean para matemáticos ¹, 2021.
- [2] J. A. Alonso. Matemáticas en Lean ², 2021.
- [3] J. A. Alonso. DAO (Demostración Asistida por Ordenador) con Lean ³, 2021.
- [4] J. A. Alonso. Calculemus (Vol. 1: Demostraciones con Isabelle/HOL y Lean3) ⁴ , 2021.
- [5] J. Avigad, L. de Moura, and S. Kong. Theorem Proving in Lean4⁵, 2021.
- [6] J. Avigad, G. Ebner, and S. Ullrich. The Lean4 Manual ⁶, 2021.
- [7] J. Avigad, M. J. H. Heule, and W. Nawrocki. Logic and mechanized reasoning ⁷, 2023.
- [8] J. Avigad, R. Y. Lewis, and F. van Doorn. Logic and proof 8, 2021.
- [9] J. Avigad and P. Massot. Mathematics in Lean ⁹, 2023.
- [10] A. Baanen, A. Bentkamp, J. Blanchette, J. Hölzl, and J. Limperg. The Hitchhiker's Guide to Logical Verification ¹⁰, 2020.

https://github.com/jaalonso/Lean_para_matematicos

²https://github.com/jaalonso/Matematicas en Lean

³https://raw.githubusercontent.com/jaalonso/DAO con Lean/master/DAO con Lean.pdf

⁴https://raw.githubusercontent.com/jaalonso/Calculemus/master/Calculemus.pdf

⁵https://leanprover.github.io/theorem proving in lean4/

⁶https://leanprover.github.io/lean4/doc/

⁷https://avigad.github.io/lamr/logic_and_mechanized_reasoning.pdf

⁸https://leanprover.github.io/logic_and_proof/logic_and_proof.pdf

⁹https://leanprover-community.github.io/mathematics_in_lean/

¹⁰https://raw.githubusercontent.com/blanchette/logical_verification_2020/master/ hitchhikers guide.pdf

[11] M. Ballard. Transition to advanced mathematics (Thinking and communicating like a mathematician) ¹¹.

- [12] K. Buzzard. Sets and logic (in Lean) 12.
- [13] K. Buzzard. Functions and relations (in Lean) 13.
- [14] K. Buzzard. Course on formalising mathematics ¹⁴, 2021.
- [15] K. Buzzard. Course on formalising mathematics ¹⁵, 2023.
- [16] K. Buzzard and M. Pedramfar. The Natural Number Game, version 1.3.3
- [17] D. T. Christiansen. Functional programming in Lean ¹⁷, 2023.
- [18] M. Dvořák. Lean 4 Cheatsheet 18.
- [19] S. Hazratpour. Introduction to proofs ¹⁹, 2022.
- [20] S. Hazratpour. Introduction to proofs with Lean proof assistant ²⁰, 2022.
- [21] R. Lewis. Formal proof and verification, 2022 21, 2022.
- [22] R. Lewis. Discrete structures and probability ²², 2023.
- [23] C. Löh. Exploring formalisation (A primer in human-readable mathematics in Lean 3 with examples from simplicial topology) ²³, 2022.
- [24] H. Macbeth. The mechanics of proof ²⁴, 2023.
- [25] P. Massot. Introduction aux mathématiques formalisées ²⁵.

```
11https://300.f22.matthewrobertballard.com/
12https://www.ma.imperial.ac.uk/~buzzard/M4000x_html/M40001/M40001_C1.html
13https://www.ma.imperial.ac.uk/~buzzard/M4000x_html/M40001/M40001_C2.html
14https://github.com/ImperialCollegeLondon/formalising-mathematics
15https://github.com/ImperialCollegeLondon/formalising-mathematics-2023
16https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
17https://leanprover.github.io/functional_programming_in_lean/
18https://raw.githubusercontent.com/madvorak/lean4-cheatsheet/main/lean-tactics.pdf
19https://introproofs.github.io/s22/
20https://sinhp.github.io/teaching/2022-introduction-to-proofs-with-Lean
21https://github.com/BrownCS1951x/fpv2022
22https://github.com/brown-cs22/CS22-Lean-2023
23https://loeh.app.uni-regensburg.de/mapa/main.pdf
24https://hrmacbeth.github.io/math2001/index.html
25https://www.imo.universite-paris-saclay.fr/~pmassot/enseignement/math114/
```

[26] F. L. Roux. Code Lean contenant les preuves d'un cours standard sur les espaces métriques ²⁶, 2020.

- [27] W. Schulze. Learning LeanProver ²⁷.
- [28] Varios. LFTCM 2020: Lean for the Curious Mathematician 2020 28.
- [29] D. J. Velleman. How to prove it with Lean ²⁹.

²⁶https://github.com/FredericLeRoux/LEAN ESPACES METRIQUES

²⁷https://youtube.com/playlist?list=PLYwF9EIrl42RFQgbmcR_LSCWRIx2WKbXs

²⁸https://leanprover-community.github.io/lftcm2020/schedule.html

²⁹https://djvelleman.github.io/HTPIwL/

Lemas usados

```
import Mathlib.Algebra.Ring.Defs
import Mathlib.Algebra.Group.Defs
import Mathlib.Data.Real.Basic
-- Números reales
-- ==========
section reales
variable (a b c : R)
#check (lt of lt of le : a < b \rightarrow b \le c \rightarrow a < c)
#check (lt_of_le_of_lt : a \le b \rightarrow b < c \rightarrow a < c)
#check (lt trans : a < b \rightarrow b < c \rightarrow a < c)
#check (mul comm a b : a * b = b * a)
#check (mul_neg a b : a * -b = -(a * b))
#check (mul_sub a b c : a * (b - c) = a * b - a * c)
#check (neg add self a : -a + a = 0)
#check (pow two a : a ^2 = a ^* a)
#check (two mul a : 2 * a = a + a)
end reales
-- Anillos
-- ======
section anillos
variable {R : Type _} [Ring R]
variable (a b c : R)
#check (add_assoc a b c : (a + b) + c = a + (b + c))
#check (add comm a b : a + b = b + a)
#check (add eq zero iff eq neg : a + b = 0 \leftrightarrow a = -b)
#check (add left cancel : a + b = a + c \rightarrow b = c)
#check (add_left_neg a : -a + a = 0)
#check (add_mul a b c : (a + b) * c = a * c + b * c)
#check (add_neg_cancel_right a b : (a + b) + -b = a)
#check (add neg self a : a + -a = 0)
```

```
#check (add right cancel : a + b = c + b \rightarrow a = c)
#check (add_right_neg a : a + -a = 0)
#check (add zero a : a + \theta = a)
#check (mul add a b c : a * (b + c) = a * b + a * c)
#check (mul zero a : a * 0 = 0)
#check (neg add cancel left a b : -a + (a + b) = b)
#check (neg eq iff add eq zero : -a = b \leftrightarrow a + b = 0)
#check (neg eq of add eq zero left : a + b = 0 \rightarrow -b = a)
#check (neg eq of add eq zero right : a + b = 0 \rightarrow -a = b)
#check (neg_neg a : -(-a) = a)
#check (neg zero : -0 = 0)
#check (one add one eq two : (1 : R) + 1 = 2)
#check (sub eq add neg a b : a - b = a + -b)
#check (sub_self a : a - a = 0)
#check (two_mul a : 2 * a = a + a)
#check (zero_add a : 0 + a = a)
#check (zero mul a : 0 * a = 0)
end anillos
-- Grupos
-- =====
section grupos
variable {G : Type _} [Group G]
variable (a b c : G)
#check (inv_eq_of_mul_eq_one_right : a * b = 1 \rightarrow a^{-1} = b)
#check (mul_assoc a b c : (a * b) * c = a * (b * c))
#check (mul_inv_self a : a * a^{-1} = 1)
#check (mul inv rev a b : (a * b)^{-1} = b^{-1} * a^{-1})
#check (mul left inv a : a^{-1} * a = 1)
#check (mul one a : a * 1 = a)
#check (mul right inv a : a * a^{-1} = 1)
#check (one mul a : 1 * a = a)
end grupos
```