Kryptografia z elementami algebry

Laboratorium 1, arytmetyka w strukturach algebraicznych (Moduł 1)

1. Zaimplementuj algorytm (funkcję), która generuje losowy element zbioru \mathbb{Z}_n .

Dane: $k \in \mathbb{N}$

Wynik: k-bitowa liczba $b \in \mathbb{Z}_n$

2. Zaimplementuj algorytm (funkcję) obliczania odwrotności w grupie $\Phi(n)$. Wykorzystaj Rozszerzony Algorytm Euklidesa.

Dane: $n \in \mathbb{N}, b \in \Phi(n)$ Wynik: $b^{-1} \in \Phi(n)$

3. Zaimplementuj algorytm (funkcję) efektywnego potęgowania w zbiorze \mathbb{Z}_n^* . Wykorzystaj algorytm iterowanego podnoszenia do kwadratu.

Dane: $n, k \in \mathbb{N}, b \in \mathbb{Z}_n^*$

Wynik: $b^k \in \mathbb{Z}_n^*$

4. Niech p będzie liczbą pierwszą. Zaimplementuj test (funkcję), który sprawdza czy element zbioru \mathbb{Z}_p^* jest resztą kwadratową w \mathbb{Z}_p^* . Wykorzystaj twierdzenie Eulera.

Dane: $b \in \mathbb{Z}_n^*$

Wynik: True jeśli b jest resztą kwadratową, False w przeciwnym wypadku.

5. Zaimplementuj algorytm (funkcję), który oblicza pierwiastek kwadratowy w ciele \mathbb{F}_{p}^{*} , gdzie $p \equiv 3 \pmod{4}$ jest liczbą pierwszą. Wykorzystaj twierdzenie Eulera.

Dane: $b \in \mathbb{F}_p^*$, b jest resztą kwadratową \mathbb{F}_p^* Wynik: $a \in \mathbb{F}_p^*$ taki, że $a^2 = b$.

6. Zaimplementuj test (funkcję), który sprawdza liczba naturalna n jest liczbą pierwszą. Wykorzystaj test Fermata

Dane: $n \in \mathbb{N}$

Wynik: True jeśli n jest liczbą pierwszą, False w przeciwnym wypadku.