SPRINT 2

Date	November 10, 2022
Team ID	PNT2022TMID25961
Project Name	Real-Time River Water Quality
	Monitoring and Control System
Maximum Mark	

The following steps are involved:

STEP 1: Download and Install node.js.

STEP 2: Setup node.js and configure command prompt for error check. Open node-red from the generated link.

STEP 3: Generating API key and Authentication token.

STEP 4: Edit Ibmiot in node.

STEP 5: Connect Ibmiot in and debug 1 and deploy.

STEP 6: Edit gauge node (here the gauge nodes are named as Temperature, pH and Turbidity).

Fig 1

Fig 2

Fig 3

STEP 7: Simulated program to get the random values.

STEP 8: Generate debug message from IBM Watson IoT Platform and connect the nodes.

STEP 9: Edit button mode [light ON and light OFF].

STEP 10: Entire flow diagram in Node-RED.

STEP 11: Generate the output from recent events.

STEP 12: Implementing url in the function node to generate output.

Step 13: MIT app inverter to design the app.

Fig 1

Fig 2

Fig 3