Propositional Logic

Gunjan.Rehani@bennett.edu.in, Madhushi.Verma@bennett.edu.in

CSE, SEAS Bennett University

March 20, 2021

ECSE209L

March 20, 2021

Overview

Tautology, Contradiction and Contingency

Logical Equivalence

Derived Implications

Well formed formula

Tautology, Contradiction and Contingency

► Tautology

A tautology is a proposition which is always true .

Classic Example: $P \lor \neg P$

► Contradiction

A contradiction is a proposition which is always false .

Classic Example: $P \land \neg P$

Contingency

A contingency is a proposition which neither a tautology nor a

contradiction.

Example: $(P \lor Q) \implies \neg R$

Tautology, Contradiction and Contingency (cont.)

Example 1:

Show that each of the following is a tautology by using truth tables:

- 1. $(p \land q) \implies p$
- $2. \ \neg p \implies (p \implies q)$
- 3. $\neg(p \implies q) \implies p$

Logical Equivalences

The compound propositions p and q are called logically equivalent if $p \iff q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Example 2:

Show that $p \implies q$ and $\neg p \lor q$ are logically equivalent.

Example 3:

Show that $\neg(\neg p)$ and p are logically equivalent. (Double Negation Law)

De Morgan's Laws

1.
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$2. \ \neg(p \lor q) \equiv \neg p \land \neg q$$

Verify using truth table.

Derived Implications

- 1. Contrapositive : $\neg q \implies \neg p$
- 2. Converse : $q \implies p$
- 3. Inverse : $\neg p \implies \neg q$

Note: Conditional and contrapositive have same truth value. Converse and Inverse have same truth value.

Example 4: Let p: Today is friday

q: We have a DMS class today

 $p \implies q$: If today is Friday, then we have a DMS class today.

Write the contrapositive, converse and inverse.

ECSE209L

well formed formula

A statement or proposition may consist of variables, paranthesis and connective symbols. A gramatically correct expression is called a well formed formula.

- 1. Every atomic statement is a well formed formula
- 2. if p is wff then $\neg p$ is also wff.
- 3. if p and q are wff, then $p \land q$, $p \lor q$ and $p \implies q$ are also wff.

Example 5:

Check whether the following are wff:

- 1. $\neg(p \land q)$
- 2. $(p \Longrightarrow (p \lor q)$
- 3. $(p \lor q) \implies (\land p)$

Contribution

- ► Augustus De Morgan
- Augusta Ada
- ► Henry Maurice Sheffer

Queries?