Discreta II

Clase Practica

Maquinas de Turing

1 - Dada la siguiente maquina de turing, donde v pertenece al alfabeto de entrada:

- a) Ejecutela sobre la secuencia 'abba'
- b) Determine que lenguaje reconoce dicha maquina
- 2 Dada las siguientes maquinas de turing determine que lenguaje reconocen
- a)

**b)

- 3 Para cada uno de estos lenguajes construya una maquina de turing que los reconozca
- a) $0^n 1^n$
- *b) ww^R
- c) Cualquier Lenguaje Regular
- *d) Lenguaje de las cadenas Palindromas
- *f) $\mathbf{1}^n \operatorname{con} n \operatorname{primo}$
- 4 Construya una maquina de turing cuya funcion sea:

- a) Dado el Lenguaje L sobre las cadenas del alfabeto {a, b, c}, rote todos los caracteres a la derecha. Es decir todo los caracteres se mueven una posicion a la derecha excepto el ultimo que caeria en la primera posicion.
- *b) Dado el Lenguaje L sobre las cadenas del alfabeto {a, b, c, d}, con forma xd^n , rote x una cantidad n de veces a la derecha, y que la salida solo contenga el resultado rotado, $x = \{a,b,c\}^*$.
- *c) Computar $\left\lfloor \frac{a}{b} \right\rfloor$ en unario
- 5 Construya una maquina de turing para computar $g(x_1,x_2,...,x_n)=min(x_1,x_2,...,x_n)$. La entrada se codifica como $f(x_1,x_2,...,x_n)$, ver CP 2.
- 6 Demuestre que las siguientes maquinas son equivalentes a una maquina de turing:
- a) Maquina de Turing Multipista
- b) Maquina de Turing Multicinta
- c) Maquina de Turing Bidimensional