

Julio César Álvarez Iglesias

Development of a digital microscopy system for automatic classification of hematite types in iron ore

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos.

Advisor : Prof. Sidnei Paciornik Co-advisor: Dr. Otávio da Fonseca Martins Gomes

Julio César Álvarez Iglesias

Development of a digital microscopy system for automatic classification of hematite types in iron ore

Thesis presented to the Programa de Pós—graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos. Approved by the undersigned Examination Committee.

Prof. Sidnei Paciornik

Advisor

Departamento de Engenharia Química e de Materiais – PUC-Rio

Dr. Otávio da Fonseca Martins Gomes

Co-advisor

Centro de Tecnologia Mineral – CETEM/MCTI

Prof. Paulo Roberto Gomes Brandão

Universidade Federal de Minas Gerais - UFMG

Prof. Leonardo Evangelista Lagoeiro

Universidade Federal de Ouro Preto - UFOP

Dr. Reiner Neumann

Centro de Tecnologia Mineral – CETEM/MCTI

Dr. Marcos Henrique de Pinho Maurício

Departamento de Engenharia de Materiais - PUC-Rio

Prof. José Eugenio Leal

Vice Dean of Graduate Studies - PUC-Rio

Rio de Janeiro, August the 9th, 2012

Julio César Álvarez Iglesias

Majored in physics by the University of Havana (Havana, Cuba)...

Bibliographic data

Álvarez Iglesias, Julio César

Development of a digital microscopy system for automatic classification of hematite types in iron ore / Julio César Álvarez Iglesias; advisor: Sidnei Paciornik; co-advisor: Otávio da Fonseca Martins Gomes. – 2012.

v., 18 f: il. color.; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Química e de Materiais.

Inclui bibliografia

Engenharia Química – Teses. 2. Engenharia de Materiais – Teses. 3. Minério de Ferro;. 4. Cristais de Hematita;.
 Microscopia Digital;. 6. Análise de Imagens;. 7. Classificação;. 8. Microscopia de Luz Polarizada.. I. Paciornik, Sidnei. II. da Fonseca Martins Gomes, Otávio. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Química e de Materiais. IV. Título.

CDD: 620.11

I would like to first thank my advisor \dots

Then I wish to thank \dots

Abstract

Álvarez Iglesias, Julio César; Paciornik, Sidnei (Advisor); da Fonseca Martins Gomes, Otávio (Co-Advisor). **Development of a digital microscopy system for automatic classification of hematite types in iron ore**. Rio de Janeiro, 2012. 18p. Tese de doutorado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Iron ore is a polycrystalline material created by complex natural processes during geological periods, which give rise to ...

Keywords

Iron Ore; Hematite Crystals; Digital Microscopy; Image Analysis; Classification; Polarized Light Microscopy.

Resumo

Álvarez Iglesias, Julio César; Paciornik, Sidnei; da Fonseca Martins Gomes, Otávio. Desenvolvimento de um sistema de microscopia digital para classificação automática de tipos de hematita em minério de ferro. Rio de Janeiro, 2012. 18p. Tese de Doutorado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

O minério de ferro é um material policristalino oriundo de processos naturais complexos durante tempos geológicos, que dão origem ...

Palavras-chave

Minério de Ferro; Cristais de Hematita; Microscopia Digital; Análise de Imagens; Classificação; Microscopia de Luz Polarizada.

Table of contents

1	Introduction	13
2	Review	14
2.1	Hematite	14
2.1.	.1 Martite	14
2.1.	.1.1 Globular	14
3	Conclusions	16
Bib	oliography	17
Α	Published paper	18

List of figures

1.1 Example of thresholding: (a) original image; (b) processed image.(74) 13

List of tables

2.1 Main morphologies of hematite.(14)

15

 $My\ beautifull\ epigraph$

 ${\bf Wassily\ Kandinsky},\ Regards\ sur\ le\ pass\'e.$

List of Abreviations

ADI – Análise Digital de Imagens

BIF – Banded Iron Formation

... – ...

1 Introduction

This is the first chapter...

In this chapter, let's have a nice image:

Figure 1.1: Example of thresholding: (a) original image; (b) processed image.(74)

2

Review

This is the second chapter...
In this chapter, let's have a nice table:

2.1

Hematite

A hematita é o mineral de ferro mais importante devido a sua alta ocorrência em vários tipos de rochas e suas origens diversas.(30) A composição química deste mineral é Fe_2O_3 , com uma fração mássica em ferro de 69,9% e uma fração mássica em oxigênio de 30,1%.(31)

...

2.1.1

Martite

A hematita é o mineral de ferro mais importante devido a sua alta ocorrência em vários tipos de rochas e suas origens diversas.(30) A composição química deste mineral é Fe_2O_3 , com uma fração mássica em ferro de 69,9% e uma fração mássica em oxigênio de 30,1%.(31)

...

2.1.1.1

Globular

A hematita é o mineral de ferro mais importante devido a sua alta ocorrência em vários tipos de rochas e suas origens diversas. (30) A composição química deste mineral é Fe_2O_3 , com uma fração mássica em ferro de 69,9% e uma fração mássica em oxigênio de 30,1%.(31)

• • •

Table 2.1: Main morphologies of hematite. (14) $\,$

Tipo	Características	Forma Textura	Ilustração Esquemática
Hematita Microcristalina	 Cristais muito pequenos, 0.01 mm. Textura porosa. Contatos pouco desenvolvidos. 		
Magnetita	 Cristais euédricos isolados ou em agregados. Cristais compac- tos. 		
Martita	 Hematita com hábito de magne- tita. Oxidação segundo os planos crista- lográficos da mag- netita. Geralmente po- rosa. 		
Hematita Lobular	 Formatos irregulares inequidimensionais. Contatos irregulares, geralmente imbricados. 		(F))
Hematita Granular	 Formatos regulares equidimensionais. Contatos retilíneos e junções tríplices. Cristais compactos. 		
Hematita Lamelar	 Cristais inequidimensionais, hábito tabular. Contato retilíneo. Cristais compactos. 		
Hidróxidos de Fe (Goethita- Limonita)	 Material cripto- cristalino. Estrutura colofor- me, hábito botri- oidal. Textura porosa. 		

3

Conclusions

Um sistema de microscopia digital com reconhecimento e classificação automática dos cristais de hematita em minérios de ferro foi desenvolvido.

O método utiliza operações tradicionais de processamento digital de imagens e propõe uma segmentação automática de cristais baseada no cálculo da distância espectral, a fim de controlar ...

É fundamental também comentar que ...

Assim, como uma proposta para trabalho futuro, pode-se buscar combinar os dois enfoques...

Bibliography

- [14] VALE. Características estruturais dos finos Seca, SECE, e ALE-GRIA que compuseram pilhas de desempenho ruim e excelente na Usiminas. Relatório Interno 1, 22p., Vale, 1998.
- [30] ROSA, M. Segmentação de grãos de hematita em amostras de minério de ferro por análise de imagens de luz polarizada avaliação da qualidade intrínseca de minérios de ferro para uso em altos-fornos. Dissertação mestrado em engenharia de produção, Universidade Federal de Santa Maria, Rio Grande do Sul, 2008.
- [31] BARTHELMY, D. Mineralogy database. Webmineral, 2010. Acesso em: Abril de 2012.
- [74] ALVAREZ, J. C. Uma metodologia para caracterização de sínter de minério de ferro; microscopia digital e análise de imagens. Dissertação de mestrado, Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

A Published paper

The following paper was published \dots