Exercícios Recomendados 3 -- Termodinâmica

 1°) Um inventor afirmou ter construído uma máquina térmica cujo desempenho atinge 90% daquele de uma máquina de Carnot. Sua máquina, que trabalha entre as temperaturas de 27° C e 327° C, recebe, durante certo período, 5.0×10^{4} J e fornece, simultaneamente, um trabalho útil de 1.0×10^{4} J. A afirmação do inventor é verdadeira? Justifique.

Resposta: Falsa. A máquina tem um rendimento de 40% daquele esperado para uma máquina de Carnot.

 $2^{\underline{0}}$) Um gás ideal monoatômico realiza o ciclo reversível ABCA representado no diagrama PxV. O processo B \to C é isotérmico de temperatura T.

Determine, para o gás, a variação de entropia em cada um dos processos e para o ciclo.

Resposta:
$$\Delta S_{AB} = \frac{9P_0V_0}{2T}\ln(3)$$
, $\Delta S_{BC} = \frac{3P_0V_0}{T}\ln(3)$, $\Delta S_{CA} = -\frac{15P_0V_0}{2T}\ln(3)$, $\Delta S_{ciclo} = 0$.

 $3^{\underline{0}}$) n moles de um gás ideal monoatômico sofrem o processo termodinâmico AB indicado no gráfico. Determine a variação de entropia no processo.

Resposta: $\Delta S_{AB} = \frac{1}{2} nR \ln(3^2 5^3)$.

 $4^{\underline{0}}$) No curso de compressão de um motor Diesel, comprime-se o ar da pressão atmosférica e temperatura ambiente para cerca de 1/15 do seu volume inicial. Calcule a temperatura final, supondo uma compressão adiabática reversível.

Resposta:
$$T_F = 15^{\gamma - 1} T_0$$
.

- 5ª) As duas extremidades de uma barra de latão estão em contato com reservatórios de calor a 127ºC e 27ºC, respectivamente.
- a) Calcule a variação total de entropia que resulta da condução de 1.200J de calor através da barra.
- b) A entropia da barra varia no processo? Justifique.

Resposta: a) 1 J/K. b) $\Delta S_{barra} = 0$, pois o estado da barra não varia (fluxo estacionário).

- $6^{\underline{a}}$) Numa máquina térmica a vapor, a caldeira está a 227^{0} C. Determine o rendimento máximo que essa máquina pode ter quando:
 - a) o vapor escapa diretamente na atmosfera a pressão normal, como nas antigas locomotivas a vapor.
 (Dica: Como o vapor escapa diretamente para a atmosfera, ele não condensa, portanto, ele escapa a 100°C, nestas condições de pressão normal.)
 - b) há um condensador para resfriar o vapor na saída (fonte fria) a temperatura ambiente de 27°C.

Resposta: a) 25%; b) 40%.

 7^{a}) Um cubo de gelo de 100 g a 0°C é colocado numa banheira com água a 37°C a pressão atmosférica normal. Admitindo que o gelo absorva calor exclusivamente da água e derrete completamente sem alterar a temperatura da água da banheira, determine a variação total de entropia no processo de derretimento do gelo. (Dados: calor latente de fusão do gelo: 3.33×10^{5} J/kg; temperatura de fusão do gelo: 2.73 K.)

Resposta: 15 J/K.

- 8^a) Calcule a variação de entropia de um sistema durante os seguintes processos:
 - a) 1,00 kg de gelo a 0°C e 1,00 atm funde à mesma temperatura e pressão. O Calor latente de fusão é 3,34x10⁵ J/Kg;
 - b) 1,00 kg de vapor a 100°C e 1,00 atm condensa-se em água à mesma temperatura e pressão. O Calor latente de vaporização é 2,26x10⁶ J/Kg.

Resposta: a) $1,22 \times 10^3$ J/K; b) $6,06 \times 10^3$ J/K.

- 9^a) Um resistor de 50 ohms, que conduz uma corrente de 1,0 A, é mantido à temperatura constante de 27°C, por uma corrente de água de refrigeração. Em um intervalo de tempo de 1,0 s. Calcule a variação de entropia do:
 - a) resistor;
 - b) do universo.

Resposta: a) 0; b) $0.17 \text{ JK}^{-1}/\text{s}$.

- 10^a) Um quilograma de água a 0°C é posto em contato com um grande reservatório de calor a 100°C. Quando a água atingir 100°C, qual será a variação de entropia:
 - a) da água;
 - b) do reservatório de calor;
 - c) do universo.

Resposta: a)
$$\Delta S_{\acute{a}qua} = 1.300 \text{ JK}^{-1}$$
; b) $\Delta S_{res} = -1.120 \text{ JK}^{-1}$; c) $\Delta S_{univ} = 180 \text{ JK}^{-1}$.

- 11ª) Água líquida com massa de 10,00 kg e uma temperatura de 20,00°C é misturada com 2,00 kg de gelo a uma temperatura de -5,00°C e a 1,00 atm de pressão até que o equilíbrio seja alcançado. Calcule a variação de entropia:
 - a) do gelo ao variar sua temperatura de -5,00°C a 0°C;
 - b) da transformação de gelo a 0°C para água a 0°C;
 - c) da água de 0°C à temperatura de equilíbrio;
 - d) da água de 20°C à temperatura de equilíbrio;
 - e) do sistema.

(água: $c_P = 4,18 \times 10^3 \text{ Jkg}^{-1} \text{K}^{-1}$; gelo: $c_P = 2,09 \times 10^3 \text{ Jkg}^{-1} \text{K}^{-1}$ e calor latente de fusão do gelo é $3,34 \times 10^5 \text{ J/Kg}$)

Resposta: a)
$$\Delta S_{g-g} = 77.2 \text{ JK}^{-1}$$
; b) $\Delta S_{g-a} = 2.445 \text{ JK}^{-1}$; c) $\Delta S_{a0-a} = 88.9 \text{ JK}^{-1}$; d) $\Delta S_{a20-a} = -2.510 \text{ JK}^{-1}$; e) $\Delta S_{sistema} = 102.4 \text{ JK}^{-1}$.