Lad $f(x) = \frac{1}{x} - \frac{\cos x}{\sin x}$ for alle $x \in \mathbb{R}$ med $x \neq n\pi, n \in \mathbb{Z}$. 3.1

Til følgende opgaver defineres følgende erklæres følgende udsagn i Maple.

$$f := x -> (1/x) - \cos(x)/\sin(x)$$

Find grænseværdierne $\lim_{x\to 0+} f(x)$, $\lim_{x\to \pi^-} f(x)$ først med og dernæst uden a) Maple.

I Maple skriver vi følgende

$$\begin{array}{ll} \operatorname{limit}(f(x), & x=0, & \operatorname{right}); \\ \operatorname{limit}(f(x), & x=\operatorname{pi}, & \operatorname{left}); \end{array}$$

og får resultaterne 0 hhv. $\frac{1}{\pi} - \frac{\cos \pi}{\sin \pi}$. Ved håndregning benytter vi reglen $\lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$, og ser at førsteledet $\lim_{x \to 0+} \frac{1}{x} = \infty$ og $\lim_{x \to 0+} \frac{\cos x}{\sin x} = -\infty$ [TODO: UDDYB]. Vi har derfor, at $\lim_{x\to 0+} f(x) = \infty - \infty = 0$.

Vis, at f er strengt voksende i hvert interval $(n\pi, (n+1)\pi)$. Uligheden $|\sin x| < |x|$ b) for $x \neq 0$ kan benyttes uden bevis (den er vist i TLO side 240).

Bevis, at ligningen f(x) = 0 ikke har nogen løsninger i $(0, \pi)$, og at den har præcis $\mathbf{c})$ én løsning i $(\pi, 2\pi)$. Benyt Maple til at finde en approksimering til denne løsning.

...

En funktion $f: \mathbb{R} \to \mathbb{R}$ defineres ved (1) 3.2

$$f(x) = \begin{cases} \frac{1-x^2}{(x-1)(x-3)} & x \in (-\infty; 1) \cup (3; \infty) \\ x & x \in [1; 3] \end{cases}$$
 (1)

I Maple har jeg erklæret funktionen, som følger

$$c1 := x -> x < 1 \text{ or } x > 3$$

$$c2 := x \rightarrow 1 <= x <= 3$$

$$f1 := x \rightarrow (1 - x^2) / ((x - 1)(x - 3))$$

 $f2 := x \rightarrow x$

$$t2 := x \rightarrow x$$

$$f := x \rightarrow piecewise(c1(x), f1(x), c2(x), f2(x))$$

Lav i Maple et plot af et udsnit af grafen for f, der giver et retvisende og oplysende a) billede af funktionens overordnede opførsel.