Neural Language Models

Knowledge and Language Engineering Lab

목차

■ 신경망 언어 모델 소개

LSTMs 기반 언어 모델 실습

신경망 언어모델 소개

- 어떤 문장이 더 자연스러운가요?
 - Is the table on cup the.
 The cup is on the table.
 - <u>소녀는 꽃을 보았다</u>. 소녀를 꽃이 보았다.
- Language Model:
 - 컴퓨터를 통해 **문장의 정확도/유창성**을 판단하는 기술

• 언어 모델이란,

- 문장 또는 단어열에 대한 확률 분포
- m개의 단어열이 주어졌을 때 m개의 단어열이 나타날 확률을 계산
- P(I am a boy) = 0.7
- P(I a am boy) = 0.02

적용예

- 품사 태깅
 - P(I_{noun} am_{verb} a_{article} boy_{noun})=?
- 기계 번역
 - P(high winds tonight) > P(large winds tonight)
- 철자 교정
 - P(about fifteen <u>minutes</u> from) > P(about fifteen <u>minuets</u> from)
- 기타 등등…

- Applications
 - 기계번역: Machine translation

음성인식: Speech recognition

- 접근 방법
 - P(Today is Wednesday)
 - = P(Today)P(is|Today)P(Wednesday|is, Today)

(a.k.a Auto-regressive)

$$P(W) = P(w_1, w_2, w_3, ..., w_n)$$

$$= P(w_1)P(w_2|w_1)P(w_3|w_2, w_1) ... P(w_n|w_{n-1}, w_{n-2}, ..., w_1)$$

$$= \prod_{i=1}^{n} P(w_i|w_1^{i-1})$$

- 통계기반 언어 모델
 - N-gram 언어 모델
- 신경망 기반 언어 모델 Vector space model
 - Recurrent neural network 기반 언어 모델

순환신경망 (Recurrent Neural Networks; RNNs)

순환신경망 (Recurrent Neural Networks; RNNs)

- 순환신경망 (Recurrent Neural Networks; RNNs)
 - 무작위 길이의 열 → 고정된 길이의 벡터 표현
 - I am a boy
 - Sometimes to understand a word's…
 - At your dictionary we try to gib…

RNN의 입력

RNN의 입력: Embedding Layer (Word to Vector)

RNN 출력

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

■ Timestep마다 다른 Weight? Or weight sharing?

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

- Timestep마다 동일한 weight 공유
 - 학습 파라미터의 수 감소
 - 네트워크가 학습하지 못한 입력열에 대한 일반화 용이 (Overfitting 감소)
 - 가변길이 입력열에 대한 모델링 가능
 - on monday it was snowing ≈ it was snowing on Monday

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

- 불행하게도, **길이가 긴 열 학습** 어려움
 - Vanishing gradient problem
 - 장기 의존성 학습 어려움 (long-term dependency)

- Long Short-Term Memory networks (LSTMs)
 - Vanishing gradient problem 완화
 - 장기 의존성 학습문제 보완

- LSTMs 핵심 아이디어
 - 셀 스테이트 (cell state) 정보 전달 목적
 - 불필요한 정보 제거
 - 유용한 정보 추가

- LSTMs Step1
 - Forget gate layer
 - 어떤 정보를 셀 스테이트에서 <mark>제거</mark>할 것인지 결정

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- LSTMs Step2
 - Input gate layer
 - 어떤 정보를 셀 스테이트에 더해 줄 것인지 결정

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- LSTMs Step3
 - Update the cell state
 - 과거의 C_{t-1} 을 새로운 C_t 로 업데이트

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- LSTMs Step4
 - Output gate layer
 - 셀 스테이트로부터 어떤 정보를 읽을 것인지 결정

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- LSTMs의 다양한 변형
 - Peep hole
 - Forget + Input gate
 - Gated Recurrent Unit (GRU)

RNN 기반의 언어모델

RNN 기반의 언어모델

LSTM 기반 언어모델 실습

- Training 과정
 - 학습데이터 (수만 문장 이상)
 - i am a boy .
 - sometimes to understand a word's…
 - at your dictionary we try to gib…
 - • •
 - 단어 사전 구축
 - {i=1, am=2, a=3, boy=4, .=5, sometimes=6, ···}
 - 문장 속 단어들 → 숫자들로 변환
 - **1** 2 3 4 5
 - 6 7 8 9 3 10 ···
 - **...**

Batching

input

<s></s>	I	am	а	boy		<pad></pad>	<pad></pad>
<s></s>	sometimes	to	understand	а	word		<pad></pad>
<s></s>	we	try	to	build	а	dictionary	

Output (Target)

I	am	а	boy	•	⟨E⟩	<pad></pad>	<pad></pad>
sometimes	to	understand	а	word	•	⟨E⟩	<pad></pad>
we	try	to	build	а	dictionary		<e></e>

- Batching
- input

7	1	2	3	4	5	0	0
7	6	to	7	а	8	5	0
7	9	10	11	12	3	13	5

T{⟨pad⟩=0, i=1, am=2, a=3, boy=4, .=5, sometimes=6, ⟨S⟩=7, ⟨E⟩=8, ···}

Output (Target)

1	2	3	4	5	8	0	0
6	to	7	а	8	5	8	0
9	10	11	12	3	13	5	8

- Training 과정
 - One-hot representation 변환
 - word idx: 1 2 3 4 5 6

One-hot vector representation

	< S>	1	0	0	0	0	0	0	•••	0
Ce	i	0	1	0	0	0	0	0	•••	0
	am	0	0	1	0	0	0	0		0
sentence	a	0	0	0	1	0	0	0		0
Training ser	boy	0	0	0	0	1	0	0		0
	•	0	0	0	0	0	1	0		0
	<pad></pad>	0	0	0	0	0	0	1		0
	<pad></pad>	0	0	0	0	0	0	1		0
	:					:				
	<pad></pad>	0	0	0	0	0	0	1	•••	0

- Training 과정
 - Word-embedding 변환
 - word idx: 1 2 3 4 5 6

Word-embedding

	< S>
	i
<u> </u>	am
ıter	a
Ser	boy
ing	•
ain	<pad></pad>
	<pad></pad>
	:

<pad>

0.24 0.15 0.58 0.94 0.14 0.25 0.33 0.85 0.11 0.78 0.91 0.17 0.64 0.75 0.64 0.87 0.78 0.01 0.33 0.87 0.36 0.87 0.36 0.35	0.15								
	0.36								
0.70 0.01 0.22 0.07 0.26 0.07 0.26 0.25									
0.78 0.91 0.33 0.87 0.36 0.87 0.36 0.25	0.33								
0.85 0.15 0.36 0.64 0.78 0.64 0.75 0.87	0.36								
0.25	0.75								
0.91 0.33 0.64 0.58 0.94 0.25 0.33 0.15	0.58								
0 0 0 0 0 0 0	0								
0 0 0 0 0 0 0	0								
:									
0 0 0 0 0 0 0	0								

Training 과정

Training

Training objective

$$(y_0, y_1), (y_1, y_2), \dots, (y_{n-1}, y_n) \sim P(y_n | y_{0:n-1})$$

$$\mathcal{B} = \{(y_{i-1}, y_i)\}_{i=1}^n$$

$$\mathcal{L}(\theta) \cong -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(\hat{y}_i = y_i | y_{0:i-1})$$

Update

$$\hat{\theta} = \theta - \lambda \nabla_{\theta} \mathcal{L}(\theta)$$

Testing 과정

 $P(i, am, a, boy) = P(i|\langle S \rangle) * P(am|I,\langle S \rangle) * P(a|i,am,\langle S \rangle)$

* $P(boy|i,am,a,\langle S \rangle)$ * $P(\langle E \rangle|i,am,a,boy,\langle S \rangle)$ 36

CODE REVIEW

언어모델 실습

- NLTK 설치
 - pip install nltk

언어모델 실습 (1)

- 1. 주어진 문장 Log 확률 분포 계산
 - log(P(i, am, a, boy))

```
= \log(p(i| < S >)) + \log(p(am|i, < S >) + \log(p(a|i, am, < S >)) + \log(p(boy|i, am, a, < S >)) + \log(p(< E > |i, am, a, boy, < S >))
```

- **결과 출력** (아래 두 문장의 확률 비교)
 - pred_sent_prob([['i', 'am', 'a', 'boy']])
 - pred_sent_prob([['i', 'boy', 'am', 'a']])

```
In [23]: # load saved mode!
with open('./model.pt', 'rb') as f:
    print('load model from: ./model.pt')
    model = torch.load(f).to(device)

print('log prob of [the dog bark .]: {:3.3f}'.format(pred_sent_prob([['the', 'dog', 'bark', '.']])))
    print('log prob of [the cat bark .]: {:3.3f}'.format(pred_sent_prob([['the', 'cat', 'bark', '.']])))

print('log prob of [boy am a i .]: {:3.3f}'.format(pred_sent_prob([['boy', 'am', 'a', 'i', '.']])))

print('log prob of [i am a boy .]: {:3.3f}'.format(pred_sent_prob([['i', 'am', 'a', 'boy', '.']])))
```

```
load model from: ./model.pt
log prob of [the dog bark .]: -38.792
log prob of [the cat bark .]: -42.303
log prob of [boy am a i .]: -45.705
log prob of [i am a boy .]: -19.975
```

언어모델 실습 (2)

2. 다음에 등장할 단어 예측

- \rightarrow argmax (log(P(y'|the, next, word)))
- 결과 출력
 - pred_next_word([['the', 'next', 'word']], topN=3)

```
In [25]: partial_sent = [['the', 'next', 'word']]
    N=3
    candidates = pred_next_word(partial_sent, topN=N)

# print
    partial_sent = ' '.join(partial_sent[0])
    print('Top {0} next words for a partial sentence [{1}] is: '.format(N, partial_sent))
    print('===>', candidates)
Top 3 next words for a partial sentence [the next word] is:
===> ['.'. 'of', 'was']
```

Q & A