部分関数を全域関数で 覆うことに関する Engelking-Karłowicz の定理の一般化

後藤 達哉

神戸大学システム情報学研究科 博士後期課程2年

2023年12月8日

目次

1 集合論および基数算術の基礎

② Engelking-Karłowicz の定理とその一般化

3 証明

目次

● 集合論および基数算術の基礎

② Engelking-Karłowicz の定理とその一般化

3 証明

集合の濃度

集合論は無限集合について様々な研究する分野で ある.

特に無限集合の「要素の個数」に興味がある.

- 集合 X, Y について $|X| \leq |Y| \iff X$ から Y への単射がある.
- 集合 X, Y について $|X| = |Y| \iff X$ から Y への全単射がある.

集合 X に対して本当に |X| という「モノ」(集合) を定めることができて,その意味での上の同値も成り立つ.

|X| のことを X の<mark>濃度</mark>という.集合の濃度として表されるモノを<mark>基数</mark>という.

アレフ系列

- 基数たちは整列されている:基数のなす,空 でない任意の集合 X についてその最小元 min X が存在する.
- Cantor の定理:任意の集合 X について
 |X| < |P(X)|.

そこで「番号」 α について α 番目 の無限基数 \aleph_{α} が定められる:

- $\aleph_0 = |\mathbb{N}|$.
- $\aleph_{\alpha+1}=(\aleph_{\alpha})^+$ (つまり \aleph_{α} の一個次の基数).
- $\aleph_{\gamma} = \sup_{\alpha < \gamma} \aleph_{\alpha} \ (\gamma \$ は極限の「番号」).

一般連続体仮説

すべての無限集合 X について次が成り立つという仮説を「一般連続体仮説」という: $|X|^+ = |\mathcal{P}(X)|$. 一般連続体仮説は通常の集合論の公理系 ZFC から証明も反証もできない.

基数の足し算・掛け算

基数の足し算・掛け算は次のように定義される:

- 互いに素な二つの集合 X, Y について
 |X| + |Y| := |X ∪ Y|.
- 二つの集合 X, Y について|X| · |Y| := |X × Y|.

実は次が成り立つ:無限集合X,Yについて

$$|X| + |Y| = |X| \cdot |Y| = \max\{|X|, |Y|\}.$$

→ 無限基数の足し算・掛け算はあまり興味深くは ない.

基数の指数関数

他方で,基数の指数関数は興味深い。 集合 X, Y について

 $|Y|^{|X|} := |\{f : f \ \mathsf{tt} \ X \ \mathsf{n} \ \mathsf{o} \ Y \ \mathsf{n} \ \mathsf{o} \ \mathsf{g} \ \mathsf{d} \ \mathsf{d} \}|.$

[余談] なぜ興味深いか?強制法の観点から,基数の指数関数にはほぼ証明できる性質がなさそうに見えるが,Silverの定理や PCF 理論などの証明できる非自明な性質もあるから.

正則基数

集合 X について,ある集合 I と X の部分集合列 $\langle X_i : i \in I \rangle$ が存在して,|I| < |X| かつ $|X_i| < |X|$ がすべての $i \in I$ で成り立ち,かつ $\bigcup_{i \in I} X_i = X$ を満たすとき,|X| は特異基数であるという.特異基数でない基数を正則基数という.

AEW CONEW CEWIEW CO.).

- ℵ₀は正則基数 (有限集合の有限和は有限だから!)
- ℵ₁は正則基数(可算集合の可算和は可算だから!)
- \bullet 任意の基数 κ に対して κ^+ は正則基数
- №。は特異基数

共終数

集合 X について,次の条件を満たす集合 I の濃度の最小を |X| の共終数といい,cf(|X|) と書く:X の部分集合列 $\langle X_i: i \in I \rangle$ が存在して, $|X_i| < |X|$ がすべての $i \in I$ で成り立ち,かつ $\bigcup_{i \in I} X_i = X$ を満たす.

常に $cf(|X|) \leq |X|$ であること,そして,cf(|X|) = |X| は |X| が正則基数なことと同値であることに注意.

基数の < κ 乗

基数 λ, κ に対して,

$$\lambda^{<\kappa} = \sup_{\mu < \kappa} \lambda^\mu$$

と定める.

基数の対数関数

あまり一般的ではない概念だが,基数の対数関数 を次で定める.

$$\log \kappa = \min \{ \lambda \, \, \mathbf{基数} : 2^{\lambda} \geqslant \kappa \}.$$

(実数の通常の対数関数と違って,一般には $2^{\log \kappa} = \kappa$ も $\log(2^{\kappa}) = \kappa$ も成立しないことに注意).

目次

● 集合論および基数算術の基礎

② Engelking-Karłowicz の定理とその一般化

3 証明

Engelking-Karłowicz数の定義

 μ, κ を $\kappa \leqslant \mu$ なる無限基数, λ を 2 以上の基数とする.

 $\mathbf{ek}(\mu,\lambda,\kappa)=\min\{|F|:F$ は μ から λ への (全域) 関数の集合で次の条件を満たす:任意の μ から λ への部分関数gで定義域の濃度が κ 未満のものに対して,ある $f\in F$ があって,f はg の延長である $\}$

明らかな下界

常に $\lambda \leq ek(\mu, \lambda, \kappa)$ である.

 \because ek (μ, λ, κ) の条件を満たす関数の集合 F を取る.このとき各 $\alpha < \lambda$ に対して $g_{\alpha} \colon \{0\} \to \lambda; g(0) = \alpha$ という関数を考える.F の取り方から g_{α} を延長する $f_{\alpha} \in F$ が取れる.各 f_{α} は異なっていなければならない!よって $\lambda \leqslant |F|$.

Engelking-Karłowicz の定理

Engelking-Karłowicz の定理

 μ, κ を $\kappa \leqslant \mu$ なる無限基数, λ を 2 以上の基数とする.加えて, $\lambda^{<\kappa} = \lambda$ かつ $\mu \leqslant 2^{\lambda}$ を仮定する.このとき $\mathbf{ek}(\mu, \lambda, \kappa) = \lambda$ である.

我々は,仮定「 $\lambda^{<\kappa}=\lambda$ かつ $\mu\leqslant 2^\lambda$ 」を外したときに ek がどう振る舞うかを見たい!

[余談] この定理は組合せ論的な有用な補題として最近の論文 "Cichoń's maximum"でも使われている.

Engelking-Karłowicz数に関して発表者が示した こと

定理 (G.)

- 常に $\lambda^{<\kappa} \cdot \log \mu \leq \mathbf{ek}(\mu, \lambda, \kappa) \leq (\lambda \cdot \log \mu)^{<\kappa}$.
- ある μ, λ, κ について $\lambda^{<\kappa} \cdot \log \mu \neq \mathbf{ek}(\mu, \lambda, \kappa)$ となることが無矛盾・
- 特異基数仮説を仮定すると,常に $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$.

疑問

特異基数仮説を仮定しなくても,常に $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$ か?

余談:ek((2^{ℵ₀})⁺,2,ℵ₀)

[余談] Engelking-Karłowicz の定理の仮定が成り立っていない例として, $\mathbf{ek}((2^{\aleph_0})^+, 2, \aleph_0)$ が考えられる.これは上記定理 (G.) の第一項目から $\log((2^{\aleph_0})^+)$ だと分かる. 研究の当初, $\aleph_1 \leq \mathbf{ek}((2^{\aleph_0})^+, 2, \aleph_0) \leq 2^{\aleph_0}$ が分かっていて, $\log((2^{\aleph_0})^+)$ と等しいことは分かっていなかった.だから発表者は当初「基数不変量チャンスなのでは?」と思っていた.

目次

● 集合論および基数算術の基礎

- ② Engelking-Karłowicz の定理とその一般化
- **3** 証明

命題 A (1/2)

命題 A $\log \mu \leq \mathbf{ek}(\mu, \lambda, \kappa)$.

- $\nu < \log \mu$ となる基数 ν を任意にとる.
- このとき $\nu < ek(\mu, \lambda, \kappa)$ を示せば良い.
- $\log \mu \leqslant \lambda$ なら証明は終わるので, $\lambda < \log \mu$ を仮定してよい.
- μ から λ への関数の集合 F で濃度 ν のものを任意にとる. F の元で覆えない部分関数を作ればよい.
- $F = \{f_{\alpha} : \alpha < \nu\}$ と並べる.ここに $f_{\alpha} : \mu \rightarrow \lambda$.
- 各 $\beta < \mu$ について h_{β} : $\nu \rightarrow \lambda$ を $h_{\beta}(\alpha) = f_{\alpha}(\beta)$ と定める.

命題 A (2/2)

命題 A $\log \mu \leq \mathbf{ek}(\mu, \lambda, \kappa)$.

- $\lambda, \nu < \log \mu$ なので, \log の定義より $2^{\lambda}, 2^{\nu} < \mu$ に注意.
- \mathbf{L} \mathbf{L}
- したがって鳩の巣原理により,互いに異なる $\beta,\beta'<\mu$ があって, $h_{\beta}=h_{\beta'}$ である.
- ullet $g:\{eta,eta'\} o\lambda$ をg(eta)=0,g(eta')=1と定める.
- g はどの $f \in F$ によっても延長されない.

命題 B (1/2)

命題 B $\lambda^{<\kappa} \leq \mathbf{ek}(\mu, \lambda, \kappa)$.

- $\kappa = \aleph_0$ で λ が無限のとき, $\lambda^{<\aleph_0} = \lambda$ なので命題は明らか.
- $\kappa = \aleph_0$ で λ が有限のとき, $\lambda^{<\aleph_0} = \aleph_0$ であり,右辺 $ek(\mu, \lambda, \kappa)$ は明らかに無限なので良い.
- 次に κ が後続基数の場合を示す. $\kappa = \theta^+$ とする. $F \subseteq {}^{\mu}\lambda$ が濃度 $\lambda^{<\kappa}$ 未満であるとする. すると

$$|\{f \mid \theta : f \in F\}| \leq |F| < \lambda^{<\kappa} = \lambda^{\theta}.$$

したがって、 $g: \theta \to \lambda$ が存在して、g はどの $f \upharpoonright \theta$ ($f \in F$) とも異なる.よって、F は $\mathbf{ek}(\mu, \lambda, \kappa)$ の witness ではない.

命題B(2/2)

命題B $\lambda^{<\kappa} \leq \mathbf{ek}(\mu, \lambda, \kappa)$.

最後に κ が極限基数の場合を示す。この場合は

$$\lambda^{<\kappa} = \sup\{\lambda^{\theta} : \theta < \kappa\}$$

$$\leqslant \sup\{\mathbf{ek}(\mu, \lambda, \theta^{+}) : \theta < \kappa\}$$

$$\leqslant \mathbf{ek}(\mu, \lambda, \kappa)$$

となるので,成り立つ.

以上より,定理の下界を示せた.

命題 C (1/3)

命題 \mathbf{c} **ek** $(\mu, \lambda, \kappa) \leqslant (\lambda \cdot \log \mu)^{<\kappa}$.

この証明は Engelking-Karłowicz の定理の証明の一般化であり、その定理の Shelah と Rinot による改良をもとにしている.

- $\theta = \log \mu \, \mathsf{CSC}$.
- 集合 W を次で定義:

$$W = \{(a, A, h) : a \subseteq \theta, |a| < \kappa, \\ A \subseteq \mathcal{P}(a), |A| < \kappa, h : A \to \lambda\}$$

- $|W| = (\lambda \cdot \log \mu)^{<\kappa}$ である.
- $\mu \leq 2^{\theta}$ より列 $\langle B_{\alpha} : \alpha < \mu \rangle$ で θ の互いに異なる部分集合からなるものがとれる.

命題 C (2/3)

命題 \mathbf{c} $\mathbf{ek}(\mu, \lambda, \kappa) \leqslant (\lambda \cdot \log \mu)^{<\kappa}$.

- W の元を $\langle (a_i, A_i, h_i) : i < |W| \rangle$ と並べる.
- i < |W| について $f_i : \mu \rightarrow \lambda$ を

$$f_i(\alpha) = \begin{cases} h_i(a_i \cap B_{\alpha}) & \text{(if } a_i \cap B_{\alpha} \in \mathcal{A}_i) \\ 0 & \text{(otherwise)} \end{cases}$$

と定める.

• $F = \{f_i : i < |W|\}$ が $\mathbf{ek}(\mu, \lambda, \kappa)$ の witness と なることを示そう.

命題 C (3/3)

命題 \mathbf{c} **ek** $(\mu, \lambda, \kappa) \leqslant (\lambda \cdot \log \mu)^{<\kappa}$.

- $g: \mu \rightarrow \lambda$ を定義域の濃度が κ 未満の部分関数としてX をその定義域とする.
- 各 $\alpha \neq \beta$ in X について $x(\alpha, \beta) \in B_{\alpha} \triangle B_{\beta}$ をとる.
- $a := \{x(\alpha, \beta) : \alpha, \beta \in X, \alpha \neq \beta\}$ とおく.
- $A := \{a \cap B_\alpha : \alpha \in X\}$ とおく.
- $h: A \to \lambda$ を $h(a \cap B_{\alpha}) = g(\alpha)$ で定義 $(\alpha \neq \beta)$ ならば $a \cap B_{\alpha} \neq a \cap B_{\alpha}$ に注意!).
- $(a, \mathcal{A}, h) \in W$ なので、i < |W| があり、 $(a, \mathcal{A}, h) = (a_i, \mathcal{A}_i, h_i)$ となる.
- このとき f; は g の延長.

命題D

命題 D cf(ek(μ, λ, θ^+)) > θ .

証明は省略!

命題E

<mark>命題E</mark> ある μ, λ, κ について $\lambda^{<\kappa} \cdot \log \mu eq \mathbf{ek}(\mu, \lambda, \kappa)$ となることが無矛盾 $oldsymbol{.}$

- 一般連続体仮説のもとで $\mu=\aleph_{\omega}, \lambda=2, \kappa=\aleph_1$ を考える・
- $\operatorname{conv} \lambda^{<\kappa} \cdot \log \mu \operatorname{dk}_{\omega} \operatorname{cos}$.
- \aleph_{ω} の共終数は ω だが,他方で,命題 D より, $\mathbf{ek}(\mu, \lambda, \kappa)$ の共終数は ω より真に大きい.
- よって $\lambda^{<\kappa} \cdot \log \mu \neq \mathbf{ek}(\mu, \lambda, \kappa)$.

命題 F (1/2)

<mark>命題 F</mark> 特異基数仮説を仮定すると,常に $\mathbf{ek}(\mu,\lambda,\theta^+)=(\lambda\cdot\log\mu)^{\theta}$.

• 特異基数仮説の仮定のもとで,次の基数冪の 公式が成立することを思い出す:無限基数 α, β に対して,

$$lpha^{eta} = egin{cases} lpha & ext{ (if } 2^{eta} < lpha ext{ and } eta < ext{cf}(lpha)) \ lpha^+ & ext{ (if } 2^{eta} < lpha ext{ and } eta \geqslant ext{cf}(lpha)) \ 2^{eta} & ext{ (if } 2^{eta} \geqslant lpha) \end{cases}$$

• $\alpha = \mathbf{ek}(\mu, \lambda, \theta^+), \beta = \theta$ で公式を適用してみる.

命題 F (2/2)

命題 F 特異基数仮説を仮定すると,常に $\mathbf{ek}(\mu, \lambda, \theta^+) = (\lambda \cdot \log \mu)^{\theta}$.

- すでに示したことより $2^{\beta} \leqslant \alpha$ かつ $\beta < cf(\alpha)$ である.よって公式の1つ目のケースか3つ 目のケースが当てはまるが,どちらにせよ, $\alpha^{\beta} = \alpha$.
- よって,ek $(\mu,\lambda, heta^+)^ heta=$ ek $(\mu,\lambda, heta^+)$.
- ところで,すでに示した ek の下界 $\lambda^{ heta} \cdot \log \mu \leqslant \mathbf{ek}(\mu, \lambda, heta^+)$ がある.
- この両辺を θ 乗すると, $(\lambda \cdot \log \mu)^{\theta} \leqslant \mathbf{ek}(\mu, \lambda, \theta^{+})^{\theta} = \mathbf{ek}(\mu, \lambda, \theta^{+})$ となる.

命題G

命題 G すべての後続基数 κ で $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$ が成り立っていれば,すべての無限基数 κ でも同じ等式が成り立つ.

κを極限基数とする.このとき

$$egin{aligned} (\lambda \cdot \log \mu)^{<\kappa} &= \sup_{ heta < \kappa} (\lambda \cdot \log \mu)^{ heta} \ &= \sup_{ heta < \kappa} \mathbf{ek}(\mu, \lambda, heta^+) \ &\leqslant \mathbf{ek}(\mu, \lambda, \kappa) \end{aligned}$$

となるのでよい.最後は ek の単調性を使っ た.

定理の証明

定理 特異基数仮説を仮定すると,常に $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$.

命題 F, Gより従う.

まとめ

定理 (G.) (再掲)

- 常に $\lambda^{<\kappa} \cdot \log \mu \leq \mathbf{ek}(\mu, \lambda, \kappa) \leq (\lambda \cdot \log \mu)^{<\kappa}$.
- ある μ, λ, κ について $\lambda^{<\kappa} \cdot \log \mu \neq \mathbf{ek}(\mu, \lambda, \kappa)$ となることが無矛盾・
- 特異基数仮説を仮定すると,常に $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$.

疑問 (再掲)

特異基数仮説を仮定しなくても,常に $\mathbf{ek}(\mu, \lambda, \kappa) = (\lambda \cdot \log \mu)^{<\kappa}$ か?

今後の展望

特異基数仮説が破れているモデルの代表例である,Prikry モデルで上記等式がどうなっているか? もし破れていれば面白いなあと思っている.

参考文献

[EK65] Ryszard Engelking and Monika Karłowicz. "Some theorems of set theory and their topological consequences". In: Fundamenta Mathematicae 57.3 (1965), pp. 275–285.

[Rin12] Assaf Rinot. The Engelking-Karlowicz theorem, and a useful corollary. https://blog.assafrinot.com/?p=2054.

Accessed: Oct. 26th. 2023. 2012.