Classics

Classes	Solutions
Projection and Mechanics	
$\min_{\alpha \in \mathbb{R}} \ x - \alpha u\ _2^2$	$\alpha = \frac{x^T u}{\ u\ _2^2} = \frac{u^T x}{\ u\ _2^2}$ $x = \frac{1}{n} \sum_{i=1}^n v_i = \text{average}$
$\min_{x \in \mathbb{R}} \ v - x\mathbb{1}\ _2^2$	$x = \frac{1}{n} \sum_{i=1}^{n} v_i = \text{average}$
$\min_{x \in \mathbb{R}^m} \ X - x \mathbb{1}^T\ _F$	$x = -x \mathbb{I} = \text{column average}$
$\min_{x \in \mathbb{R}} \ v - x\mathbb{1}\ _1$	x = median
$\min_{w \in \mathbb{R}^m} L(A^T w) + \lambda w _2^2, A \in \mathbb{R}^{m \times n}, \lambda \ge 0$	$\min_{v \in \mathbb{R}^n} L(A^T A v) + \lambda Av _2^2$
Least Squares and Variants	
Ordinary Least Squares $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, y \in$	
$\min_{x} Ax - y _2$	$x_{opt} = A^{pi}y + N(A)$ $x^* = A^{pi}y \in R(A^T) = N(A)^{\perp}$ (least norm) If A full column rank, solution is unique: $x^* = (A^TA)^{-1}A^Ty$, $Rx^* = Q^Ty$
$\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \beta x_i)^2$	$x^* = (A^T A)^{-1} A^T y, Rx^* = Q^T y$ $\left(\sum_{i=1}^n x_i^2\right) \beta^* = \sum_{i=1}^n x_i y_i$
Linearly Constrained Least Squares / Perturbations to Feasibility $C \in \mathbb{R}^{p \times n}$, $d \in \mathbb{R}^p$	
$\min_{x} Ax - y _2^2 \text{s.t. } Cx = d$	$x = C^{pi}d + Nz$ where columns of N form a basis for $N(C)$
$\underset{x}{\arg\min} \ x\ _2^2 \text{s.t. } Ax = y$	$x = A^{pi}y$ provided $y \in R(A)$, else no solution exists
$\min_{\delta y} \ \delta y\ _2^2 \text{s.t. } y + \delta y \in R(A)$	$\delta y = y - AA^{pi}y = (\mathbb{I} - AA^{pi})y$
Weighted Least Square	
$\min_{x} \sum_{i=1}^{m} w_i^2 a_i^T x - y ^2$ $\min_{x} Ax - y _2^2 + x^T W x, W > 0$	$\min_{x} \ W(Ax - y)\ _{2}^{2}$ where $W = \operatorname{diag}(w_{1},, w_{m})$
$\min_{x} Ax - y _{2}^{2} + x^{T}Wx, W > 0$	$\min_{x} \left\ \begin{bmatrix} A_{\frac{1}{2}} \\ W^{\frac{1}{2}} \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\ _{2}^{2}$ $x^* = (A^T A + W)^{-1} A^T y$
Regularized Least Squares / Ridge Regression	
$\min_{x} Ax - y _{2}^{2} + \lambda^{2} x - c _{2}^{2}, \qquad \lambda > 0$	$\min_{x} \left\ \begin{bmatrix} A \\ \lambda \mathbf{I} \end{bmatrix} x - \begin{bmatrix} y \\ \lambda c \end{bmatrix} \right\ _{2}^{2}$
	always full column rank due to $\lambda \mathbb{I}$ $x^* = (A^T A + \lambda^2 \mathbb{I})^{-1} (A^T y + \lambda^2 c)$
$\underset{x}{\operatorname{arg min}} \ Ax - b\ _{2}^{2} + \ \Gamma x\ _{2}^{2}$	$\underset{x}{\operatorname{arg min}} \left\ \begin{bmatrix} A \\ \Gamma \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\ _{2}^{2}$
	Assuming Γ full rank: $x^* = (A^T A + \Gamma^T \Gamma)^{-1} A^T b$
Kernel Least Squares / Kernel Trick	
$\min_{w} A^{T}w - y _{2}^{2} + \lambda w _{2}^{2}$	$\min_{v} \ A^{T}Av - y\ _{2}^{2} + \lambda \ Av\ _{2}^{2}$
	i.e. optimal w lies in $R(A)$
	If $n \gg m$, dramatic reduction in problem size
	$\min_{v} \left\ \begin{bmatrix} A^T A \\ \sqrt{\lambda} A \end{bmatrix} v - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\ _{2}^{2}$
	$v = (K^2 + \lambda K)^{-1} K y, K = A^T A, w = Av$

EECS 127 Mildte	rm Sneet wang Jianz
Variational Characterization of Eigenvalues / R	ayleigh Quotient / Maximum Gain
$\ Ax\ _2$	$\sqrt{\lambda_{ ext{max}}(A^TA)}$
$\max_{x:\ x\ _{2} \le 1} \ Ax\ _{2} = \max_{x:\ x\ _{2} = 1} \frac{\ Ax\ _{2}}{\ x\ _{2}}$	y max v
Maximum / Minimum Variance Direction $A = A^{T}$	$f \in \mathbb{S}^n$
$x^T A x$	$\lambda_1(A)$
$\max_{x \neq 0} \frac{x^{TA}}{x^{T}x} = \max_{\ x\ _2 \le 1} x^{T} A x$	
$arg max x^T Ax$	u_1
$\frac{\ \bar{x}\ _2 \le 1}{x^T A x}$	1 (4)
$\min_{x \neq 0} \frac{x^T A x}{x^T x} = \min_{\ x\ _2 \le 1} x^T A x$	$\lambda_n(A)$
	11
$\underset{\ x\ _{2} \le 1}{\operatorname{arg min}} x^{T} A x$	u_n
$x^T A x$	$\lambda_k(A)$
$\max_{v:\dim v=k} \min_{x\in v} \frac{1}{x^T x}$	K ()
$x^T A x$	
$\min_{\substack{\mathcal{V}: \dim \mathcal{V} = k \ x \in \mathcal{V}}} {x^T x}$	$\lambda_{n-k+1}(A)$
$\min_{X': \operatorname{rank}(X') \le 1} X - X' _F = \min_{u,v} X - uv^T _F$	Assuming <i>X</i> is centered.
X' :rank $(X') \le 1$ u,v n	$\alpha_i = x_i^T u$
$\min \sum_{i} \min x_i - \alpha_i y _2^2$	$\alpha_i = x_i^T u X' = u[\alpha_1 \cdots \alpha_n]$
$\min_{u \in \mathbb{R}^{m}: \ u\ _2 = 1} \sum_{i=1}^{n} \min_{\alpha_i \in \mathbb{R}} \ x_i - \alpha_i u\ _2^2$	$\lambda_{\max}(C)$
$\frac{1}{T}$	
$\max_{u \in \mathbb{R}^m: u^T u = 1} u^T C u, C = -XX^T$	
$tr(UAU^T)$	$\lambda_{min}\left(B^{-\frac{1}{2}}AB^{-\frac{1}{2}}\right)$
$\max_{u \in \mathbb{R}^m: u^T u = 1} u^T C u, C = \frac{1}{n} X X^T$ $\min_{U \in \mathbb{R}^{n \times n}, U \neq 0} \frac{tr(UAU^T)}{\lambda_{\max}(UBU^T)}, A, B > 0$	$\lambda_{min} \left(B^{-2}AB^{-2} \right)$
$\min_{\lambda:\lambda\mathbb{I}-C\geqslant 0}\lambda\mathbb{I}-C$	$\lambda = \lambda_{\max}(C)$
$\min_{\substack{x,y:\ x\ _2,\ y\ _2\leq 1}} x^T A y$	$-\sigma_{\max}(A)$
$\max_{\substack{x,y: x _{2}, y _{2}\leq 1\\ \max_{x,y: x _{2}, y _{2}\leq 1}}} x^{T}Ay$	$\sigma_{\max}(A)$
$x,y: x _2, y _2 \le 1$	mur v /
Singular Value Decomposition $A \in \mathbb{R}^{m \times n}$	11
$\underset{v: v _{2}\leq 1}{\operatorname{argmax}} Av _{2}$	v_1
2	$u_1 = \frac{nv_1}{\sigma}$
$ A _2 = \max Av _2$	$u_1 = \frac{Av_1}{\sigma_1}$ $\sigma_1(A) = Av_1 _2$
$ A _2 = \max_{v: v _2 \le 1} Av _2$	
$\sum_{m=1}^{m} \ \mathbf{r} - \mathbf{r} \ _{2}$	$V = \operatorname{Span}\{v_1, \dots, v_k\}$
$\min_{\substack{V \subset \mathbb{R}^n \\ \dim V = k}} \sum_{i=1}^{n} \ a_i - \Pi_V(a_i)\ _2^2$	$\sigma_{k+1}^2 + \dots + \sigma_r^2$
$ \frac{\dim V = k \ i = 1}{\min_{\substack{x \ y}} A - xy^T _F} $	<u> </u>
x,y	$\sqrt{\sigma_2^2 + \cdots + \sigma_r^2}$
Rank k Approximation / Distance to Rank Defic	· · · · · · · · · · · · · · · · · · ·
$\mathop{\arg\min}_{A_k \in \mathbb{R}^{m \times n}} \ A - A_k\ _F$	k
	$A_k = \sum \sigma_i u_i v_i^T$
$rank(A_k)=k$ $min A-A $	i=1
$\min_{A_k \in \mathbb{R}^{m \times n}} \ A - A_k\ _F$	$\sigma^2 + \dots + \sigma^2$
$\operatorname{rank}(A_k) = k$	$A_k = \sum_{i=1}^{n} \sigma_i u_i v_i^T$ $\sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$ $\sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$
$\min_{V_k \subset \mathbb{R}^m, \dim V_k = k} \sum a_i - \Pi_k(a_i) _2^2$	$\sigma^2 + \dots + \sigma^2$
$V_k \subset \mathbb{R}^m, \dim V_k = k $	$\sqrt{a_{k+1} + \cdots + a_r}$
$a_i: \text{ ith row of } A$ $\min_{i} X^c - LR^T _F, L \in \mathbb{R}^{m \times k}, R \in \mathbb{R}^{k \times n}$	Deposite of the ten L wight air substitute of
L.R	R consists of the top k right singular vectors of
$\min_{L,R} \ X^c - LR^T\ _F, L \in \mathbb{R}^{m \times k}, R \in \mathbb{R}^{k \times n}, R^T \mathbb{1} = 0$	the SVD of X^c . $\mathbb{1} \in N(X^c) \subset N(R^T)$
Linear Programming (LP)	

ECS 127 Midterm Sheet Wang Jia		
Unconstrained LP $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$		
$\min_{x} c^{T} x \text{s.t. } Ax \leq b$	$p^* = \begin{cases} 0, & c = 0 \\ -\infty, & c \neq 0 \end{cases}$	
$\min c^T x + \lambda x _1 \text{s.t. } Ax \le b, \lambda > 0$	κ	
x -	$\min_{x,u} c^T x + \lambda \sum_{i=1}^{\infty} u_i \text{s.t. } Ax \le b, u_i \ge x_i $	
l_{∞} Regression / Minimum Robust System $A \in \mathbb{R}$	$\mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$	
$\min_{x} Ax - b _{\infty}$	$\min_{x,t} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix}$	
$\min_{x} \max_{1 \le i \le m} a_i^T x - b_i $	x,t $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	
$\min_{x \in T} t \text{ s.t. } \left a_i^T x - b_i \right < t \forall i$	subject to $\begin{bmatrix} A & -1 \\ -A & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}$	
l_1 Regression $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$		
m	$\min \left[0 \mathbb{1}^T \right]^{\left[X \right]}$	
$\min_{x} Ax - b _{1} = \min_{x} \sum_{i=1}^{n} a_{i}^{T}x - b_{i} $	$\min_{x,u} \begin{bmatrix} 0 & 1^T \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}$	
$\iota=1$	subject to $\begin{bmatrix} A & -\mathbb{I} \\ -A & -\mathbb{I} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}$	
$\min_{u} \mathbb{1}^{T} u \text{s.t.} \left a_{i}^{T} x - b_{i} \right < u_{i} \forall i$		
Assignment Problem (M_{ij} = time for worker j to	complete task i)	
$\min_{X \in \{0,1\}^{m \times n}} tr(X^T M) = \min_{X \in \{0,1\}^{m \times n}} \sum_{i,j}^{m,n} X_{ij} M_{ij}$	$\min_{0 \le X_{ij} \le 1} tr(X^T M) = \min_{0 \le X_{ij} \le 1} \sum_{i,j}^{m,n} X_{ij} M_{ij}$	
$X \in \{0,1\}^{m \times n}$ $X \in \{0,1\}^{m \times n} \angle i,j$		
subject to $x1 = 1$, $x^T1 \le 1$	subject to $x1 = 1$, $x^T1 \le 1$	
Max Flow Problem	Concernation of flows (As) = 0	
$\max_{f,x} f$	• Conservation of flow: $(Ax)_j = 0$	
subject to $Ax = [-f 0 \cdots 0 f]^T$	 x_i: flow along link i (Ax)_i: net flow out of vertex j 	
Boolean Linear Program (Relaxation)	(Ax) j. Het now out of vertex j	
$\min c^T x$	$\min c^T x$	
subject $Ax \leq b$, $x_i \in \{0,1\}$	subject $Ax \leq b$, $x_i \in [0,1]$	
Cardinality Minimization Trick (Relaxation)	$Subject Ax \leq b, x_i \in [0,1]$	
$\min \operatorname{card}(x)$	• Replace $card(x)$ with $ x _1$	
x	• Replace $ x _2$ with $\frac{ x _1}{\sqrt{\operatorname{card}(x)}}$	
	• $ x _1 \le x _2 \sqrt{\text{card}(x)}$	
Constraint Manipulation		
$u_i \ge x_i $ $\max_{i=1,\dots,m} a_i^T x - b_i \le t$	$u_i \ge -x_i, \qquad u_i \ge x_i$ $a_i^T x - b_i \le t, \qquad -a_i^T x + b_i \le t$	
$\max_{i=1,,m} a_i^* x - b_i \le t$	$a_i x - b_i \le t, \qquad -a_i x + b_i \le t$	
Quadratic Programming (QP)		
Unconstrained QP		
$\min_{x} \frac{1}{2} x^T H x + c^T x \text{s.t. } Ax \le b, Cx = d$	• $H \not \geq 0$ i.e. H has negative eigenvalues $p^* = -\infty$	
$x \in \mathbb{R}^n, H \in \mathbb{S}$	$p = -\omega$ • $H \ge 0$ invertible	
	$p^* = -\frac{1}{2}c^T H^{-1}c, x^* = -H^{-1}c$	
	• $H \ge 0$ not invertible, $c \in R(H)$	
	$p^* = -\frac{1}{2}c^T H^{pi}C, \qquad x^* = -H^{pi}c + N(H)$	
	• $H \ge 0$ not invertible, $c \notin R(H)$	
	$p^* = -\infty$	
Least Squares		
$\min Ax - y _2^2$	1 .T(2 4T 4) 2. T 4	
x " " " " " " " " " " " " " " " " " " "	$\min_{x} \frac{1}{2} x^T (2A^T A) x - 2y^T A x$	

EECS 127 Midte	rm Sheet Wang Jianz
	$H = 2A^T A, c = -2A^T y$
QP with Equality Constraints	
$\min \frac{1}{2}x^T H x + c^T x \text{ s.t. } Ax = b$	$H' = N^T H N$
х Z	$c' = N^T c + N^T H^T x_0$
LASSO / l ₁ Regularized Least Squares	n
$\min_{x} Ax - y _2^2 + \lambda x _1$	$\min_{x,t} Ax - y _{2}^{2} + \lambda \sum_{i=1}^{n} t_{i} \text{s.t.} t \ge x, t \ge -x$ $x^{*} = \begin{cases} 0, & a^{T}y \le \lambda \\ \frac{a^{T}y}{ a _{2}^{2}} - \frac{\lambda}{ a _{2}^{2}} \operatorname{sign}(a^{T}y), & a^{T}y > \lambda \end{cases}$
$\min_{x \in \mathbb{R}} \frac{1}{2} ax - y _2^2 + \lambda x $	$\left(0, a^T y \le \lambda \right)$
$x \in \mathbb{R}$ 2 " $x \in $	$x^* = \begin{cases} \frac{a^T y}{\ a\ _2^2} - \frac{\lambda}{\ a\ _2^2} \operatorname{sign}(a^T y), & a^T y > \lambda \end{cases}$
Cardinality Minimization Constraints (Relaxed)	
$\min_{x} Ax - y _2^2 \text{s.t. } \operatorname{card}(x) \le k$	$\min_{x} Ax - y _2^2 \text{s.t.} x _1 \le k x _{\infty}$
X	$\min \ Ax - y\ _2^2 + \lambda \ x\ _1$
Piecewise Constant Function Fitting	X
$D = \begin{bmatrix} -1 & 1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 \\ 0 & 0 & -1 & 1 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix}$ $\min \ x - y\ _2^2 \text{s.t. } \operatorname{card}(Dx) \le k$	$\min_{x} \ x - y\ _2^2 + \lambda \ Dx\ _1$
Second-order Cone Programming (SOCP)	
	$A_i \in \mathbb{R}^{m_i \times n}, b_i \in \mathbb{R}^m, d_i \in \mathbb{R}, c \in \mathbb{R}^n, i = 1,, m$
Reduction of QP	
	$\min_{x,y} y + c^T x$
$\min_{x} \frac{1}{2} x^T H x + c^T x \text{s.t. } Ax \le b$	subject to $\frac{1}{2}x^T H x \le y$, $Ax \le b$
Quadratically Constrained QP (QCQP)	
1	min <i>u</i>
$\min_{x} \frac{1}{2} x^T H x + c^T x \text{s.t. } x^T Q_i x + a_i^T x \le b_i$	x,u
$Q_i \in \mathbb{S}, Q_i \geqslant 0 \text{ for } i = 1, \dots, m$	subject to $x^TQ_ix + a_i^Tx \le b_i, \frac{1}{2}x^THx + c^Tx \le u$
Reciprocals	21
$\min_{x} \sum_{i=1}^{n} h_i x_i + \frac{c_i}{x_i}$	$\min_{x>0} \sum_{i=1}^{n} h_i x_i + c_i y_i$
subject to $0 \le x$	subject to $0 \le x, \frac{1}{x_i} \le y_i \Rightarrow 1 \le x_i y_i$
Rational Powers	~[
$\min_{w} X^{T}w - y _{2} + \lambda \sum_{i=1}^{n} w_{i} ^{\frac{3}{2}}$	$\min_{w,u,v,t} X^T w - y _2 + \lambda \sum_{i=1}^n t_i$
Facility Lagations	subject to $t \ge 0$, $u_i \ge w_i $, $v_i t_i \ge u_i^2$, $u_i \ge v_i^2$
Facility Locations	n
$\min_{x} \sum_{i=1} A_{i}x - y_{i} _{2}$	$\min_{x,t} \sum_{i=1}^{\infty} t_i$
	subject to $ A_i x - y_i _2 \le t_i$ for $i = 1,, m$ $\min t$
$\min_{x} \max_{i} x - y_{i} _{2}$	x,t
	subject to $ A_ix - y_i _2 \le t_i$ for $i = 1,, m$

EECS 127 Midte	rm Sheet Wang Jianz
$\min_{x} \sum_{i=1}^{m} A_{i}x - b_{i} _{2} + \lambda x _{1} + \mu x _{\infty}$	$\min_{x,y,u,t} \sum_{i=1}^{m} y_i + \lambda \sum_{i=1}^{n} u_i + \mu t$
<i>l</i> =1	subject to $ A_i x - b_i _2 \le y_i, x_i \le u_i, x_i \le t$
Constraint Manipulation	
$Cx \le r$ $x^T Qx + c^T x \le t$	$A_i = 0, b_i = 0, c_i = -(i \text{th row of } C), d_i = r_i$
$x^T Q x + c^T x \le t$ $Q \ge 0$	$\left\ \begin{bmatrix} \sqrt{2}Q^{\frac{1}{2}} \\ -c^T \end{bmatrix} x + \begin{bmatrix} 0 \\ t - \frac{1}{2} \end{bmatrix} \right\ _2 \le t - c^T x + \frac{1}{2}$
$ Rx _2^2 \le r^T x$	$\left\ \begin{bmatrix} \sqrt{2}R \\ r^T \end{bmatrix} x - \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} \right\ _2 \le r^T x + \frac{1}{2}$
$ x _2^2 \le 2yz$	$\left\ \left[\frac{1}{\sqrt{2}} (y - z) \right] \right\ _{2}^{2} \le \frac{1}{\sqrt{2}} (y + z)$ $\left\ \left[\frac{2}{y_{i} - x_{i}} \right] \right\ _{2}^{2} \le x_{i} + y_{i}$
$1 \le x_i y_i$	$\left\ \begin{bmatrix} 2 \\ y_i - x_i \end{bmatrix} \right\ _2^2 \le x_i + y_i$
$u^{\frac{3}{2}} \le t$	$vt \ge u^2, u \ge v^2$
$\begin{aligned} x - x_0 _2 &\le \alpha \\ x - y _2 &\le \alpha \end{aligned}$	$\ [\mathbb{I}][x] - x_0\ _2 \le \alpha$
$ x - y _2 \le \alpha$	$\ [\mathbb{I}][x] - x_0\ _2 \le \alpha$ $\ [\mathbb{I} - \mathbb{I}]\begin{bmatrix} x \\ y \end{bmatrix}\ _2 \le \alpha$
Robust Linear Programming (LP)	
$\min_{x} c^{T} x$	subject to $\forall a_i \in \mathcal{U}, a_i^T x \leq b_i \text{ for } i = 1,, m$
Scenario Uncertainty Model (U finite set)	
$\mathcal{U}_i = \left\{ a_i^{(1)}, \dots, a_i^{(K)} \right\}$	$\min_{x} c^{T} x$
$\forall a_i \in \mathcal{U}_i, a_i^T x \leq b_i$	subject to $\left(a_i^{(j)}\right)^T x \leq b_i$ for $i = 1,, m$
Box Uncertainty Model (LP)	
$u = \bigcup_{i=1}^{m} u_i$	$\max_{a \in \mathcal{U}} a^T x \le b$
$U_i = \{a : \ a - \hat{a}_i\ _{\infty} \le \rho\}$	$\max_{a \in \mathcal{U}} a^{T} x = \hat{a}^{T} x + \max_{\ y\ _{\infty} \le \rho} y^{T} x = \hat{a}^{T} x + \rho \ x\ _{1}$
	$\hat{a}^T x + \rho \ x\ _1 \le b$ (LP constraint)
$\min_{x} c^T x$	$\min_{x} c^{T} x$
subject to $\forall a_i \in \mathcal{U}_i, a_i^T x \leq b_i, i = 1,, m$	subject to $\hat{a}_i^T x + \rho \ x\ _1 \le b_i$, $i = 1,, m$
Ellipse Uncertainty Model (SOCP)	T
$\mathcal{U} = \{a : (a - a_0)^T P^{-1} (a - a_0) \le 1\}, P > 0$	$\max_{a \in \mathcal{U}} a^T x \le b$
$\mathcal{U} = \{a = \hat{a} + Ru : u _2 \le 1\}$ where $P = RR^T$, $u = R^{-1}(a - a_0)$	$\max_{a \in \mathcal{U}} a^T x = \hat{a}^T x + \max_{u : \ u\ _2 \le 1} u^T R^T x$
where $I = KK$, $u = K$ ($u = u_0$)	$\leq \hat{a}^T x + \ R^T x\ _2$ $\min c^T x$
$\min_{x} c^T x$	$\min_{x} c^T x$
subject to $\forall a_i \in \mathcal{U}_i, a_i^T x \leq b_i, i = 1,, m$	subject to $\hat{a}_i^T x + \left\ R_i^T x \right\ _2 \le b_i, i = 1,, m$
Robust Optimization	1
$\min_{x} f_0(x)$	$\min_{x} \max_{u} F_0(x, u)$
subject to $f_i(x) \leq 0$ for $i = 1,, m$	subject to $F_i(x, u) \leq 0 \ \forall u \in \mathcal{U}$ for $i = 1,, m$
Robust Least Squares (SOCP)	
$\min_{x} \max_{\ \Delta\ _{2} \le \rho} \left\ (\hat{A} + \Delta)x - y \right\ _{2}$	$\Delta = \frac{\rho(\hat{A}x - y)x^T}{\ Ax - y\ _2 \ x\ _2} $ (rank 1 matrix)
	$\min_{x} \ \hat{A}x - y\ _{2} + \rho \ x\ _{2} \text{ (SOCP)}$

Vocabulary	
Regression	Measure of relation between one variable and another.
Regularized	Already have a target in mind; want a solution close to the target.
Sparsity	As few nonzero elements as possible; see LASSO.
Robust	A solution that accounts for the uncertainty; ambiguity or error exists in data
Weighted	Just introduce weights; usually no change in problem type
Underdetermined	$m \le n$, full row rank, AA^T invertible, $N(A^T) = \{0\}$, rows of A linearly
	independent
Overdetermined	$n \le m$, full column rank, $A^T A$ invertible, $N(A) = \{0\}$, columns of A linearly
	independent

Identification	
Least Squares	Slogan: squared l_2 norm + linear inequality constraints
LP	l_1 norm/regression, l_∞ norm/regression, box uncertainty, resource
	management, max flow
QP	Energy, variance, error (squared), index tracking), l_1 regularized least squares
	(sparsity, piecewise fitting)
SOCP	Ellipsoid uncertainty, inverses, rational power, distance (no square), route
	planning, sum of norms, general robust optimization

Theory

QR Decomposition A = QR

Standard *QR* (for full column rank *A*)

$$A = QR$$

 $A \in \mathbb{R}^{m \times n}$ full column rank

 $Q \in \mathbb{R}^{m \times n}$ columns orthogonal (i.e. $Q^T Q = \mathbb{I}_n$) and forms an orthogonal basis in R(A)

 $R \in \mathbb{R}^{n \times n}$ upper triangular, square, invertible.

A = QR	R(A) = R(Q)
$QQ^T y = \Pi_{R(A)}(y)$	$A^{pi} = R^{-1}Q^T$

Full *QR* (for full column rank *A*)

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

 $A \in \mathbb{R}^{m \times n}$ full column rank

 $0 \in \mathbb{R}^{m \times m}$ orthogonal matrix; forms orthonormal basis for R(A), forms orthonormal basis for $R(A)^{\perp} = N(A^T)$

 $R \in \mathbb{R}^{m \times n}$ with $R_1 = \mathbb{R}^{n \times n}$ upper-triangular and invertible.

In $||Ax - b||_2$, $||Q_2^T b||_2$ corresponds to distance between b and orthogonal projection to R(A).

Not full column rank A

$$AP = QR = Q[R_1 R_2]$$
$$R = [R_1 R_2]P^T$$

 $Q \in \mathbb{R}^{m \times r}$ is has orthogonal columns $(Q^T Q = \mathbb{I}_r)$ $R_1 \in \mathbb{R}^{r \times r}$ is upper-triangular, square, invertible $R_2 \in \mathbb{R}^{r \times (n-r)}$

 $P \in \mathbb{R}^{n \times n}$ permutation matrix

Full QR Decomposition

$$AP = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ \underline{0} & 0 \end{bmatrix}$$

 $Q \in \mathbb{R}^{m \times m}$ orthogonal, square $Q^T Q = QQ^T = \mathbb{I}_m$ $R_1 \in \mathbb{R}^{r \times r}$ upper triangular and invertible $P \in \mathbb{R}^{n \times n}$ permutation matrix.

Singular Value Decomposition $A \in \mathbb{R}^{m \times n}$

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = U \Sigma V^T = U_r \widetilde{\Sigma} V_r^T, \Sigma \coloneqq \begin{bmatrix} \widetilde{\Sigma} & 0 \\ 0 & 0 \end{bmatrix}$$

 $r \leq \min(n, m) \ \tilde{\Sigma} = diag(\sigma_1, ..., \sigma_r), \ \sigma_1 \geq \cdots \geq \sigma_r > 0$

- $Av_i = \sigma_i u_i$; $A^T u_i = \sigma_i v_i$; $u_i^T A = \sigma_i v_i^T$
- r is the rank of A, A^T , A^TA and AA^T
- $\sigma_1^2, \dots, \sigma_r^2$ are eigenvalues of AA^T and A^TA
- $u_1, ..., u_r$ are the eigenvectors for AA^T
- v_1, \dots, v_r are the eigenvectors for $A^T A$
- $\{u_1, \dots, u_r\}$: an orthonormal basis of R(A)

Pseudo-inverse A^{pi} and Square Roots \sqrt{A}

Moore-Penrose Pseudo-inverse $A^{pi} \in \mathbb{R}^{n \times m}$

$$AA^{pi}A = A$$

$$A^{pi}AA^{pi} = A^{pi}$$

$$(AA^{pi})^{pi} = AA^{pi}$$

$$(A^{pi}A)^{pi} = A^{pi}A$$

$$\Pi_{N(A)} = I - A^{pi}A$$

$$\Pi_{R(A)} = AA^{pi}$$

$$\Pi_{R(A)} = I - AA^{pi}$$

$$\Pi_{R(A)} = I - AA^{pi}$$

Such a matrix always exists and is unique

- A full column rank $A^{pi} = (A^T A)^{-1} A^T$
- A full row rank $A^{pi} = A^T (AA^T)^{-1}$
- A invertible $A^{pi} = A^{-1}$

A general
$$A^{pi} = V\Sigma^{pi}U^T = V_r\tilde{\Sigma}^{-1}U_r^T$$

$$\Sigma^{pi} = \begin{bmatrix} \sigma_1^{-1} & & & \\ & \ddots & & \\ & & \sigma_r^{-1} \end{bmatrix}$$

A positive definite $\Rightarrow \sqrt{A}$ also positive definite

Dual Norms and Matrix Norms

Dual norm $\|\cdot\|^*: \mathbb{R}^n \to \mathbb{R}$:

$$||y||^* \coloneqq \max_{x:||x|| \le 1} y^T x \equiv \max_{x:||x|| \le 1} |y^T x|$$

Operator norm:
$$\|f\|_{op} \coloneqq \max_{x: \|x\| \le 1} f(x), \qquad f \in \chi^*$$

Condition number $\kappa(A) = \frac{\sigma_1}{\sigma_n} = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$

If A is square, $\kappa(A) = ||A||_{LSV} ||A^{-1}||_{LSV}$ If A is unitary, $\kappa(A) = 1$

Induced *p*-norms (measure of stretch):

$$||A||_p \coloneqq \max_{x:||x||_p \le 1} ||Ax||_p = \max_{x:||x||_p \ne 0} \frac{||Ax||_p}{||x||_p}$$

- $\begin{aligned} \|A\|_1 &= \max_{1 \leq i \leq n} \|a_i\|_1 \text{ (max } l_1 \text{ norm of columns)} \\ \|A\|_2 &= \sqrt{\lambda_{\max}(A^T A)} \end{aligned}$
- $||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$ $||A||_{\infty} = \max_{1 \le i \le m} ||a_i^T||_1 \text{ (max } l_1 \text{ norm of rows)}$
- $||A||_F = \sqrt{tr(A^T A)} = \sqrt{\sum_{i=1}^n \lambda_i(A^T A)}$

Matrix norms are sub-multiplicative:

$$||AB||_p \le ||A||_p ||B||_p$$

Empirical Covariance Matrix

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T] = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x})(x_i - \hat{x})^T$$

$$\Sigma = \frac{1}{n} X^C (X^C)^T = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$$

- $\{u_{r+1}, ..., u_m\}$: an orthonormal basis of $N(A^T)$
- $\{v_1, ..., v_r\}$: an orthonormal basis of $R(A^T)$
- $\{v_{r+1}, ..., v_n\}$: an orthonormal basis of N(A)

Full column rank, r=n, so $A=U\begin{bmatrix} \Sigma \\ 0 \end{bmatrix}V^T$ Full row rank matrices, r=m, $A=U[\Sigma \quad 0]V^T$

Px = q unique solution if Σ full column rank

- Symmetric, positive semi-definite
- Total variance: $tr(\Sigma) = \frac{1}{n} ||X^C||_F^2$
- kth order explained variance = $\frac{\sigma_1^2 + \dots + \sigma_k^2}{\sigma_1^2 + \dots + \sigma_n^2}$
- $\bullet \quad \text{Mean along vector } u$

$$\hat{z} = u^T \hat{x}$$

Variance along vector u

$$\sigma^{2}(u) = \frac{1}{m} \sum_{k=1}^{m} \left(u^{T} (x_{k} - \hat{x}) \right)^{2} = u^{T} \Sigma u$$

• u_1 (the first eigenvector of $X^C(X^C)^T$) maximizes the variance.

Principle Component Analysis

Algorithm

- Center data matrix $X \to X^C$
- Project onto a well-chosen direction $u_1 \in \mathbb{R}^n$ with $||u||_2 = 1$ that minimizes the component of data not explained by u_1

$$u_1 = \underset{u_1:\|u_1\|_2 \le 1}{\arg\min} \sum_{i=1}^m \|(u_1^T \hat{x}_i) u_1 - \hat{x}_i\|_2^2$$

$$u_{1}: ||u_{1}||_{2} \le 1 \longrightarrow i=1$$

$$= \underset{u_{1}: ||u_{1}||_{2} \le 1}{\arg \max} u_{1}^{T} \left(\frac{1}{m} X^{C} (X^{C})^{T}\right) u_{1} = v_{\max}(\Sigma)$$

- Subtract the component of X^C explained by u₁ and repeat the algorithm.
- u_1 is the direction of maximum variance, also called the principle component vector

Mechanics $X \in \mathbb{R}^{m \times n}$

- Column average: $\hat{x} = \frac{1}{n}X\mathbb{1}$
- Centering matrix: $P = I \frac{1}{n} \mathbb{1} \mathbb{1}^T$ $XP = X^C = X - \hat{x} \mathbb{1}^T$
- For a centered matrix X^C : $X^C \mathbb{1} = 0$

$$\frac{1}{2} \sum_{1 \le i, j \le n} \left\| x_i - x_j \right\|_2^2 = n \operatorname{tr}(XPX^T)$$

Properties of Norms and Traces

Norms

- $|x^T y| \le ||x||_p ||y||_q, \frac{1}{p} + \frac{1}{q} = 1$
- $\frac{1}{\sqrt{n}} \|x\|_2 \le \|x\|_{\infty} \le \|x\|_2 \le \|x\|_1 \le \sqrt{n} \|x\|_2 \le n \|x\|_{\infty}$
- For $x \neq 0$, card $(x) \ge \frac{\|x\|_1^2}{\|x\|_2^2}$
- $||A||_F^2 = \operatorname{tr}(A^T A) = \sum_{i=1}^r \sigma_i^2$
- $||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2 \operatorname{tr}(A^T B)$

Traces

- $\operatorname{tr}(A)^2 \le \operatorname{rank}(A) ||A||_F^2$
- $\operatorname{tr}(AB) \leq ||A||_F ||B||_F$
- $\operatorname{tr}(u^T u) = ||u||_F^2 = ||u||_2^2$
- tr(AB) = tr(BA)
- $\operatorname{tr}(ba^T) = a^Tb$
- tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
- $||AB||_p \le ||A||_p ||B||_p$
- $||A||_p := \max_{x:||x||_p \le 1} ||Ax||_p = \max_{x:||x|| \ne 0} \frac{||Ax||_p}{||x||_p}$
- $||x||_2^2 = ||Ux||_2^2$ for U orthogonal
- $x^TQx = tr(x^TQx) = tr(xx^TQ)$

Polyhedral

Definition: A function is <u>polyhedral</u> if its epigraph is polyhedral i.e. if and only if $\exists C \in \mathbb{R}^{m \times (n+1)}$, $d \in \mathbb{R}^m$ s.t.

epi
$$f = \{(x, t) \in \mathbb{R}^{n+1} : t \ge f(x)\}$$

= $\{(x, t) \in \mathbb{R}^{n+1} : C \begin{bmatrix} x \\ t \end{bmatrix} \le d\}$

[Max affine functions] Functions expressible as the max of a finite number of affine functions is polyhedral $f(x) = \max_{1 \le i \le m} a_i^T x + b_i$

Consequence: l_{∞} norm is polyhedral.

Functions expressible as the sum of functions that are max affine functions are polyhedral. <u>Consequence</u>: l_1 norm is polyhedral. The projection of polyhedral is polyhedral.

Problem Solving Techniques

- Take derivatives!
- Fix a few variables, minimize w.r.t. the rest.
- Reduce to classic problems/formulations
- Group terms and simplify
- Geometry argument / Decomposition
- Enjoy long problems (your strength!)

Final Checks

- Sign constraints? $x \ge 0$
- Standard form
- Check symmetric property for positive semi-definite

Appendix I: Mathematical Toolbox

Linear algebra, multivariable calculus tricks and techniques

Linear Algebra

$(\operatorname{rank}(A))^{\perp} = \operatorname{null}(A^T)$	$\left(\operatorname{null}(A)\right)^{\perp} = \operatorname{rank}(A^{T})$
$\left(\operatorname{rank}(A^T)\right)^{\perp} = \operatorname{null}(A)$	$\left(\operatorname{null}(A^T)\right)^{\perp} = \operatorname{rank}(A)$
$S \subset T \Rightarrow T^{\perp} \subset S^{\perp}$	

Projection

- Let $\{u_1, ..., u_n\}$ be an orthonormal basis for V. Then $P = \sum u_i u_i^T$ is the matrix of orthogonal projection.
- If A is a matrix with its column as any basis of V, then $P = A(A^TA)^{-1}A^T$ is the matrix of orthogonal projection.

Decompositions

[Spectral] Any symmetric matrix has exactly *n* **real** (not necessarily distinct) eigenvalues; and eigenvectors can be chosen to be orthonormal.

$$A = U\Lambda U^T = \Sigma_i \lambda_i u_i u_i^T$$

- [Cholesky] If A is symmetric positive definite, then $A = LL^T$ where L is lower triangular with real and positive diagonal entries (i.e. *L* invertible)
- A symmetric positive definite \Rightarrow every eigenvalue is positive (similar for semi)
- A positive definite, then B^TAB also positive definite (similar for semi)
- A positive definite, then exists unique positive definite \sqrt{A} . (similar for semi)

$$\sqrt{A} = U\sqrt{\Lambda}U^T$$

- [Inertia Theorem] A symmetric matrix is congruent to a diagonal matrix with 0,1,-1under $A = B\Lambda B^T$.
- [Sylvester's Rule of Inertia] Negative index of inertia q = the number of sign changes of the leading minors $\Delta_0=1,\,...,\,\Delta_n=\det A$
- [Schur Complement] Let S be a symmetric matrix partitioned into blocks $S = \begin{bmatrix} A \\ B^T \end{bmatrix}$ with C positive definite. TFAE:
 - S is positive semi-definite.
 - o $A BC^{-1}B^T$ (Schur's complement of C) is positive semi-definite

Multivariable Calculus

Determinants

$$\det(\mathbb{I} + uv^{T}) = 1 + u^{T}v$$

$$\det(\mathbb{I}_{2} + A) = 1 + \det A + tr(A)$$

$$\det(I + \epsilon A) \approx 1 + \det(A) + \epsilon tr(A) + \frac{1}{2}\epsilon^{2}tr(A)^{2}$$

$$-\frac{1}{2}\epsilon tr(A^{2})$$

Approximations

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0)$$

$$f(x) \approx q(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

$$+ \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

Derivatives

$$\nabla(a^T x + b) = a \qquad \nabla(x^T x) = 2x$$

$$\nabla_X ||X - P||_F^2 = 2(X - P)$$

$$\nabla^2 \left(\frac{1}{2} x^T A x \right) = \frac{1}{2} (A + A^T)$$
$$g(x) = f(Ax + b) \Rightarrow \nabla g(x) = A^T \nabla f(Ax + b)$$

$$q(x) = \frac{1}{2} \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A & b \\ b^T & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \frac{1}{2} x^T A x + b^T x + c$$

$$\nabla q = A x + b$$

$$\nabla^2 q = A$$

$$\nabla_X \operatorname{tr}(XHX^T) = XH^T + XH$$
$$\nabla_X \operatorname{tr}(AX) = A^T$$

$$H_{q} = \begin{bmatrix} \frac{\partial^{2} q}{\partial x_{1}^{2}} & \frac{\partial^{2} q}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} q}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} q}{\partial x_{2}^{2}} \end{bmatrix}$$

Inequalities

Cauchy Schwarz / Holder's $p^{-1} + q^{-1} = 1$: $|x^T y| \le ||x||_p ||y||_q \Rightarrow \max_{y:||y||_p \le 1} y^T x = ||x||_q$

Equality when $y_i = \frac{sign(x_i)|x_i|^{p-1}}{|x_i|^{p-1}}$

Power Mean Inequality

$$p \ge q \Rightarrow n^{-\frac{1}{p}} ||x||_p \ge n^{-\frac{1}{q}} ||x||_q$$

- **Smoothing**

Sherman-Morrison-Woodbury $A \in \mathbb{R}^{n \times n}, u, v \in \mathbb{R}^n \text{ s.t. } A, A + uv^T \text{ non-singular}$ $(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$

Minkowski's Inequality $1 \le p < \infty$ $||f + g||_p \le ||f||_p + ||g||_p$

Appendix II: Diagrams

