ANN with TensorFlow: Theory and Practice

Junghwan Lee, Ph.D. (jhrrlee@gmail.com)

2nd lecture

- Structure of Neural Networks and Neurons
- Gradient descent
- Code: Custom_model

We will make a neural network has two inputs, one output, and One hidden layer

We do not use an activation function in this example.

input_layer = keras.Input(shape=(2,))
hidden_layer = keras.layers.Dense(2)(input_layer)
output_layer = keras.layers.Dense(1)(hidden_layer)

Update weights

- Training is the updating of weights.
- To update weights, Gradient descent is used.
- Gradient descent is the same way to solve a regression problem in the last lecture.
- I will explain gradient descent with an example and code.
- Learning methods
 - Hebbian Learning (Hebbian Rule)
 - Perceptron Rule
 - Gradient Descent (Delta Rule, Least Mean Square)
 - Back propagation

data

х	у	/	Z
	1	1	7
	2	2	12
	2 2 3	2 2 3 4	12
	3	3	17
	4	4	22
	4 5 6 7	5 21 1	27
	6	21	77
	7	1	19
	1	2	10
	1	3	13
	2	4	18
	3	5	23
	4	6	28
	5	7	33
	6	2	20
	1 2 3 4 5 6 7	2 3 4 5 6 7 2 1 2	12 12 17 22 27 77 19 10 13 18 23 28 33 20 19 10
	1	2	10
	2	3	15
	3	4	20

We will make a neural network that will find the z value with the given x, y.

This is an example.

The equation ("z=x*2+y*3+2") makes the data.

We can easily verify if our neural network is learning well.

Although this is a simple example, we can easily extend it to solve many regression problems with various inputs.

I did not use scaling of the data set for beginner's understanding. However, in practice, we need to use scaling of the data set.

Code (https://github.com/jhrrlee/mlcode.git) for the custom model is written for low-level handling of losses tracked by the model from a reference to the TensorFlow doc (https://www.tensorflow.org/guide/keras/writing a training loo p from scratch).

Handling low-level is better for studying and seeing operations during learning.

We consider gradient descent with Least Mean Squre using Mean Squre Error

$$E(\hat{Y}_i - Y_i)^2 = \frac{1}{n} \sum (\hat{Y}_i - Y_i)^2$$

We learned this in the last lecture.

Learning sequence:

1. Get loss value

- We can use any loss function other than MSE; it is just for convenience to use mathematical theory. However, mathematically, it is impossible to calculate the minimum error since the result is experimental result (\hat{y}_i) .
- This is an important point that we may find some better ways in experiments. We can try
- 2. Partial derivative to update weights (weights between the input layer and hidden layer can be calculated by chain rule

 $w_{2,1} = w_{2,1} + learning_rate * \frac{\partial f}{\partial w_{2,1}}$

Reference:

Logistic regression (https://en.wikipedia.org/wiki/Logistic_regression)
Least mean square (https://en.wikipedia.org/wiki/Least_mean_squares_filter)

 $\frac{1}{2}$ in $\frac{1}{2m}$ is because of convenience of calculation of derivative?

BTW, it will not be important because it depends on learninrate again in learning_rate * $\frac{\partial f(x_1, x_2)}{\partial x_1}$

Summary

- $E(\hat{Y}_i Y_i)^2 = \frac{1}{n} \sum (\hat{Y}_i Y_i)^2$
- Chain rule: $\frac{\partial y}{\partial z} = \frac{\partial y}{\partial x} \frac{\partial X}{\partial z}$, $y = x^2$, $x = z^2$
- $\hat{y}_i = w_{1,1} * x_1 + w_{2,1} * x_2 + \text{bias}$
- $\frac{\partial \text{Loss_function}}{\partial w_{1,1}} = \frac{\partial}{\partial w_{1,1}} \left(\frac{1}{2m} \sum (\hat{y}_i z_i)^2 \right)$
- $\frac{\partial \text{Loss_function}}{\partial w_i} = \frac{\partial}{\partial w_{1,1}} \left(\frac{1}{2m} \sum ((w_i * x_{1,i} + w_i * x_{2,i} + \text{bias}) z_i)^2), z_i, x_{1,i}$, and $x_{2,i}$ are just constant from the given data. w_i is each weight in iterations. $w_{1,1,i}$ will be more exact expression for $w_{1,1}$. Also, layer index is required for weights strictly.
- $w_{1,1}=w_{1,1}+learning_rate*\frac{\partial f}{\partial w_{1,1}}$, this is just for a weight. all weights are update like this

• Next, we will learn from code (https://github.com/jhrrlee/mlcode.git)