1 SPAŢII VECTORIALE

Fie V o mulțime nevidă și K un corp comutativ (câmp). O structură de *spațiu vectorial* pe mulțimea V, peste corpul comutativ K, (un

K-spaţiu vectorial) este definită de un triplet $(V, +, \cdot_{sc})$, unde (V, +) este un grup, iar $\cdot_{sc} : K \times V \to V$ este o lege de compoziție externă, astfel că au loc proprietățile:

(V1)
$$\alpha \cdot (\bar{x} + \bar{y}) = \alpha \cdot \bar{x} + \alpha \cdot \bar{y}, \ (\forall) \alpha \in K, \ \bar{x}, \ \bar{y} \in V;$$

(V2)
$$(\alpha + \beta) \cdot \bar{x} = \alpha \cdot \bar{x} + \beta \cdot \bar{x}, (\forall) \alpha, \beta \in K, \bar{x} \in V;$$

(V3)
$$(\alpha \cdot \beta) \cdot \bar{x} = \alpha \cdot (\beta \cdot \bar{x}), (\forall) \alpha, \beta \in K, \bar{x} \in V;$$

(V4)
$$1 \cdot \bar{x} = \bar{x}, (\forall) \bar{x} \in V.$$

Elementele mulțimii V se numesc vectori, legea de compoziție internă ,,+" pe V se numește $adunarea\ vectorilor$, iar legea de compoziție externă ,,-" pe V este numită $produs\ cu\ scalari$.

Un spațiu vectorial peste corpul numerelor reale $(K = \mathbb{R})$ se numește spațiu vectorial real, iar un spațiu vectorial peste corpul numerelor complexe $(K = \mathbb{C})$ se numește spațiu vectorial complex. Orice spațiu vectorial considerat în continuare va fi real sau complex, dacă nu va fi făcută altă specificație.

Doi vectori \bar{x} şi \bar{y} pentru care există un scalar $\alpha \in K$ astfel încât $\bar{x} = \alpha \bar{y}$ sau $\bar{y} = \alpha \bar{x}$ se numesc vectori coliniari.

Dacă $\bar{x}_1, \ldots, \bar{x}_n \in V$ sunt vectori şi $\alpha_1, \ldots, \alpha_n \in K$ sunt scalari, atunci se spune că vectorul $\bar{x} = \sum_{i=1}^n \alpha_i \bar{x}_i$ este o combinație liniară a vectorilor $\bar{x}_1, \ldots, \bar{x}_n$. Astfel, de exemplu, dacă $\bar{x}, \bar{y} \in V$ şi $\alpha, \beta \in K$, atunci vectorul $\bar{z} = \alpha \bar{x} + \beta \bar{y}$ este o combinație liniară a vectorilor \bar{x} și \bar{y} .

Exemple

1. Fie $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ și legile de compoziție:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2, (x,y) + (a,b) \stackrel{def.}{=} (x+a,y+b), (\forall)(x,y), (a,b) \in \mathbb{R}^2,$$

$$\cdot : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \alpha \cdot (x,y) \stackrel{def.}{=} (\alpha x, \alpha y), (\forall) \alpha \in \mathbb{R}, (x,y) \in \mathbb{R}^2.$$

Tripletul $(\mathbb{R}^2, +, \cdot)$ este un spațiu vectorial, numit spațiul vectorial aritmetic \mathbb{R}^2 .

2. Pentru $n \in \mathbb{N}^*$, pe $\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{\text{n ori}}$ se definesc legile de compoziție:

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

$$(x^1, x^2, \dots, x^n) + (y^1, y^2, \dots, y^n) \stackrel{\text{def.}}{=} (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n),$$

$$(\forall)(x^1, x^2, \dots, x^n), (y^1, y^2, \dots, y^n) \in I\!\!R^n,$$

$$: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \alpha \cdot (x^1, x^2, \dots, x^n) \stackrel{\text{def.}}{=} (\alpha x^1, \alpha x^2, \dots, \alpha x^n),$$

$$(\forall)\alpha \in \mathbb{R}, (x^1, x^2, \dots, x^n) \in \mathbb{R}^n.$$

Tripletul $(\mathbb{R}^n, +, \cdot)$ este un spațiu vectorial real, numit spațiul vectorial aritmetic \mathbb{R}^n .

- 3. Un caz particular important al exemplului de mai sus este
- n=1. Astfel, corpul real $(\mathbb{R},+\cdot)$ este un spațiu vectorial real, numit spațiul vectorial aritmetic \mathbb{R} .
 - 4. In general, dacă $(K, +, \cdot)$ este un corp comutativ, atunci $(K, +, \cdot)$ este un K-spațiu vectorial.
 - 5. Fie $(K, +, \cdot)$ un corp comutativ și $n \in \mathbb{N}^*$. Pe $K^n = \underbrace{K \times \cdots \times K}_{\text{n ori}}$ se definesc legile de compoziție:

$$+: K^n \times K^n \to K^n$$
.

$$(x^1, x^2, \dots, x^n) + (y^1, y^2, \dots, y^n) \stackrel{\text{def.}}{=} (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n),$$

$$(\forall)(x^1, x^2, \dots, x^n), (y^1, y^2, \dots, y^n) \in K^n,$$

$$: K \times K^n \to \mathbb{R}^n, \alpha \cdot (x^1, x^2, \dots, x^n) \stackrel{def.}{=} (\alpha x^1, \alpha x^2, \dots, \alpha x^n),$$

$$(\forall)\alpha \in K, (x^1, x^2, \dots, x^n) \in K^n.$$

Tripletul $(K^n, +, \cdot)$ este un spațiu vectorial peste corpul K.

- 6. Corpul complex $(\mathcal{C}, +\cdot)$ este un spațiu vectorial complex, conform exemplului 4. de mai sus.
- 7. Se poate defini un spațiu vectorial real $(\mathbb{C}, +\cdot_{\mathbb{R}})$, cu legile de compoziție $+: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, de adunare a numerelor complexe, și $\cdot_{\mathbb{R}}: \mathbb{R} \times \mathbb{C} \to \mathbb{C}$, de înmulțire a numerelor reale cu numerele complexe: $\alpha \cdot (a+ib) = \alpha a + i\alpha b$. Să remarcăm că este important să fie specificat corpul peste care este definit un spațiu vectorial.
 - 8. Ca un caz particular al exemplului 5. este spațiul vectorial complex $(\mathbb{C}^n, +, \cdot)$.

9. Fie $p,q\in I\!\!N^*$ și $\mathcal{M}_{p,q}(K)=\{(a_{ij})_{\substack{i=\overline{1,p}\\\overline{i}}}|a_{ij}\in K, (\forall)i=\overline{1,p},\ j=\overline{1,q}\}$, mulțimea matricilor cu p linii și q coloane, cu

elemente din corpul comutativ K. Se consideră legile de compoziție

$$+: \mathcal{M}_{p,q}(K) \times \mathcal{M}_{p,q}(K) \to \mathcal{M}_{p,q}(K),$$

 $(a_{ij})_{i=\overline{1,p},} + (b_{ij})_{i=\overline{1,p},} = (a_{ij} + b_{ij})_{i=\overline{1,p},}, \text{ de adunare a matricilor, } \Si$ $j=\overline{1,q} \qquad j=\overline{1,q} \qquad j=\overline{1,q}$ $\cdot_{sc} : K \times \mathcal{M}_{p,q}(K) \to \mathcal{M}_{p,q}(K), \alpha \cdot (a_{ij})_{i=\overline{1,p},} = (\alpha a_{ij})_{i=\overline{1,p},}, \text{ de înmulțire a matricilor cu scalari din } K. \text{ Tripletul } (\mathcal{M}_{p,q}(K), +, \cdot_{sc})$ este un spațiu vectorial peste corpul K.

10. Fie K un corp comutativ și

$$K[X] = \{ \sum_{n=0}^{\infty} a_n X^n = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + \dots | a_n \in K, \ (\forall) n \in \mathbb{N} \ \text{si} \ (\exists) n' \in \mathbb{N} \ \text{a.i.} \ a_n = 0, \ (\forall) n > n' \},$$
mulțimea polinoamelor în nedeterminata X , cu coeficienții din K . Se consideră legile de compoziție

$$+:K[X]\times K[X]\to K[X], \sum_{n=0}^{\infty}a_nX^n+\sum_{n=0}^{\infty}b_nX^n=\sum_{n=0}^{\infty}(a_n+b_n)X^n,$$
 de adunare a polinoamelor şi $\cdot_{sc}:K\times K[X]\to K[X],$

$$\alpha \cdot \sum_{n=0}^{\infty} a_n X^n =$$

$$=\sum_{n=0}^{\infty} (\alpha a_n) X^n$$
, de înmulțire a polinoamelor cu scalari din K .

Tripletul $(K[X], +, \cdot_{sc})$ este un spațiu vectorial peste corpul K.

11. Fie M o mulțime și V un K-spațiu vectorial. Atunci mulțimea $F(M,V) = \{f: M \to V\}$, a funcțiilor cu domeniul M și codomeniul V, cu legile de compoziție $+: F(M,V) \times F(M,V) \to F(M,V)$ și

 $\cdot: K \times F(M,V) \to F(M,V), \text{ definite prin } (f+g)(x) = f(x) + g(x) \text{ si } (\alpha \cdot f)(x) = \alpha \cdot f(x), \ (\forall) f, g \in F(M,V), \ \alpha \in K, \ x \in M, \ x \in M,$ este un K-spațiu vectorial.

Fie un K-spațiu vectorial $(V, +, \cdot)$. Sunt adevărate următoarele proprietăți:

- 1. $0 \cdot \bar{x} = \bar{0}$, $(\forall)\bar{x} \in V$.
- 2. $\alpha \cdot \bar{0} = \bar{0}, (\forall) \alpha \in K$.
- 3. Dacă $\alpha \in K$ și $\bar{x} \in V$ sunt astfel încât $\alpha \cdot \bar{x} = \bar{0}$, atunci $\alpha = 0$ sau $\bar{x} = \bar{0}$.
- 4. Dacă $\alpha, \beta \in K$ și $\bar{x}, \bar{y} \in V$:
- 5. Dacă $\alpha \cdot \bar{x} = \beta \cdot \bar{x}$ și $\bar{x} \neq \bar{0}$, atunci $\alpha = \beta$;
- 6. Dacă $\alpha \cdot \bar{x} = \alpha \cdot \bar{y}$ și $\alpha \neq 0$, atunci $\bar{x} = \bar{y}$.
- 7. $(-1) \cdot \bar{x} = -\bar{x}, (\forall) \bar{x} \in V.$
- 8. $\bar{x} + \bar{y} = \bar{y} + \bar{x}$, $(\forall)\bar{x}, \bar{y} \in V$, adică grupul (V, +) este un grup comutativ.

Subspații vectoriale 2

Fie V un K-spațiu vectorial. Un subspațiu vectorial al lui V este o submulțime nevidă $W \subset V$ care are proprietatea că pentru orice $\bar{x}, \bar{y} \in W$ și $\alpha \in K$ rezultă $\bar{x} + \bar{y}, \alpha \cdot \bar{x} \in W$.

Orice K-spațiu vectorial V conține ca subspații vectoriale pe el însuși $(V \subset V)$ și subspațiul nul $\{\bar{0}\} \subset V$, care conține numai vectorul nul. Acestea se numesc subspații vectoriale improprii. Celelalte subspații vectoriale se numec proprii. Așadar, un subspațiu vectorial W este propriu dacă conține un vector nenul $((\exists)\bar{x} \in W \setminus \{\bar{0}\})$ și există un vector V neconținut în subspațiul W $((\exists)\bar{y} \in V \backslash W)$.

Se observă că din condiția că submulțimea $W \subset V$ este un subspațiu vectorial, rezultă că $W + W \subset W$ și $K \cdot W \subset W$, unde am notat

 $W+W=\{\bar{w}_1+\bar{w}_2|\bar{w}_1,\bar{w}_2\in W\}$ și $K\cdot W=\{\alpha\cdot\bar{w}|\alpha\in K,\bar{w}\in W\}$. Rezultă că restricțiile celor două operații la W definesc aplicațiile induse $+: W \times W \to W$ și $\cdot: K \times W \to W$.

Propoziția 1 Fie V un K-spațiu vectorial. Atunci $W \subset V$ este un subspațiu vectorial dacă și numai dacă orice combinație liniară de două elemente ale lui W este în W, mai precis, dacă $\bar{w}_1, \ \bar{w}_2 \in W \ \text{si } \alpha_1, \ \alpha_2 \in K, \ atunci \ \alpha_1 \bar{w}_1 + \alpha_2 \bar{w}_2 \in W.$

Un subspațiu vectorial este la rândul său ub spațiu vectorial.

Propoziția 2 Dacă V este un K-spațiu vectorial, atunci orice subspațiu vectorial $W \subset V$ este la rândul său un K-spațiu vectorial cu operațiile induse de pe V.

Exemple.

- 1. Fie V un K-spaţiu vectorial şi $\bar{x} \in V$. Atunci submulţimea $\mathcal{V}_{\bar{x}} = \{\alpha \cdot \bar{x} | \alpha \in K\} \subset V$ este un subspaţiu vectorial. Dacă $\bar{x} \neq \bar{0}$, atunci $\mathcal{V}_{\bar{x}}$ nu este spaţiu vectorial nul (pentru că îl conţine pe \bar{x}). Nu putem afirma însă, în general, că $\mathcal{V}_{\bar{x}} \subset V$ este un subspaţiu propriu, deoarece este posibil ca $\mathcal{V}_{\bar{x}} = V$.
- 2. Fie $n \in \mathbb{N}$ și $K_n[X] \subset K[X]$ submulțimea polinoamelor cu elemente din K, care au gradul cel mult n (reaminitim că gradul unui polinom nenul $f = \sum_{k=0}^{\infty} a_k X^k$ este cel mai mic număr $n' \in \mathbb{N}$ astfel încât $a_n = 0$, $(\forall) n > n'$, iar gradul polinomului nul este $-\infty$).

Subspațiul vectorial $K_n[X] \subset K[X]$ este propriu, deoarece conține polinoamele constante nenule, care au gradul 0 (de exemplu, $f = 1 \in K_n[X]$), deci $K_n[X] \neq \{\bar{0}\}$, și există polinomul $X^{n+1} \in K[X] \setminus K_n[X]$, deoarece are gradul n + 1).

Propoziția 3 Intersecția a două sau mai multe subspații vectoriale ale unui K-spațiu vectorial V este un subspațiu vectorial al lui V.

Fie $M \subset V$ o submulțime a unui spațiu vectorial. Fie $\mathcal{L}(M)$ intersecția toturor subspațiilor vectoriale care conțin pe M, adică

$$\mathcal{L}(M) = \bigcap_{\substack{M \subset W \subset V \\ W \text{ subspatiu}}} W.$$

Din propoziția 3 rezultă că $\mathcal{L}(M) \subset V$ este un subspațiu vectorial, care se numește subspațiul vectorial generat de mulțimea M. Să remarcăm faptul că $M \subset \mathcal{L}(M)$, deoarece M este inclus în toate subspațiile vectoriale care se intersectează pentru a se obține $\mathcal{L}(M)$.

Definiția subspațiului vectorial generat de o mulțime este dificil de folosit în aplicații. De aceea, este util următorul rezultat, care exprimă concret forma elementelor lui $\mathcal{L}(M)$.

Propoziția 4 Fie V un spațiu vectorial și $M \subset V$ o submulțime a sa. Atunci $\mathcal{L}(M) = \{\alpha_1 \bar{v}_1 + \alpha_2 \bar{v}_2 + \cdots + \alpha_n \bar{v}_n | \bar{v}_1, \bar{v}_2, \dots, \bar{v}_n \in M.$

 $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ (adică subspațiul vectorial generat de mulțimea M este format din mulțimea tuturor combinațiilor liniare cu elemente din M și scalari din K, numită acoperirea liniară a lui M).

Aceasta arată că subspațiul liniar generat de o submulțime a unui spațiu vectorial coincide cu acoperirea liniară a submulțimii. Se consideră spațiul vectorial canonic $(\mathbb{R}^2, +, \cdot)$ și subspațiile

 $V_1 = \mathbb{R} \times \{0\}, V_2 = \{0\} \times \mathbb{R} \subset \mathbb{R}^2$. Se observă că $V_1 \cup V_2 \subset \mathbb{R}^2$ nu este un subspațiu vectorial, pentru că suma $(1,0) + (0,1) = (1,1) \notin V_1 \cup V_2$. Prin urmare reuniunea a două subspații vectoriale nu este, în general, un subspațiu vectorial. În schimb, se poate demonstra rezultatul următor.

Propoziția 5 Fie V un K-spațiu vectorial și V_1 , $V_2 \subset V$ sunt două subspații vectoriale. Atunci $V_1 + V_2 = \{\bar{x} + \bar{y} \mid \bar{x} \in V_1, \bar{y} \in V_2\}$ este un subspațiu vectorial al lui V și are loc egalitatea $V_1 + V_2 = \mathcal{L}(V_1 \cup V_2)$.

Avem, în general, următorul rezultat.

Propoziția 6 Dacă M_1 , $M_2 \subset V$ sunt două submulțimi ale spațiului vectorial V, atunci $\mathcal{L}(M_1) + \mathcal{L}(M_2) = \mathcal{L}(M_1 \cup M_2)$.

Două subspații vectoriale $V_1, V_2 \subset V$ spunem că sunt transverse dacă $V_1 \cap V_2 = \{\bar{0}\}$, adică dacă intersecția lor este subspațiul vectorial nul.

Dacă două subspații vectoriale $V_1, V_2 \subset V$ sunt transverse, atunci suma lor, $V_1 + V_2$, se notează $V_1 \oplus V_2$ și se numește sumă directă a celor două subspații.

Propoziția 7 Fie două subspații vectoriale V_1 , $V_2 \subset V$. Atunci sunt echivalente afirmațiile:

- 1. V_1 şi V_2 sunt transverse;
- 2. $(\forall)\bar{v} \in V_1 + V_2$ se scrie în mod unic sub forma $\bar{v} = \bar{v}_1 + \bar{v}_2$, cu $\bar{v}_1 \in V_1$ și $\bar{v}_2 \in V_2$.

Spunem că spațiul vectorial V este suma directă a două subspații vectoriale V_1 , $V_2 \subset V$, dacă $V = V_1 \oplus V_2$. În acest caz subspațiile V_1 și V_2 se spune că sunt subspații suplimentare.

Vom arăta în continuare că mulțimea soluțiilor unui sistem liniar și omogen poate fi privită ca un subspațiu vectorial al unui spațiu vectorial de matrici coloană.

Un sistem liniar și omogen, cu m ecuații și n necunoscute, cu coeficienții din corpul K, este un sistem de forma:

$$\begin{cases} a_{11}x^{1} + \dots + a_{1n}x^{n} = 0, \\ \vdots \\ a_{m1}x^{1} + \dots + a_{mn}x^{n} = 0,. \end{cases}$$
 (1)

unde $n, m \in \mathbb{N}^*$ și $a_{ij} \in K$, $(\forall)i = \overline{1, m}$, $j = \overline{1, n}$. Sistemul de mai sus se poate scrie matricial:

$$A \cdot X = 0_m, \tag{2}$$

 $X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \in \mathcal{M}_{n,1}(K) \text{ si } 0_m = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{M}_{m,1}(K).$

O matrice $X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \in \mathcal{M}_{n,1}(K)$ care verifică egalitatea (2) se numește soluție a sistemului liniar și omogen dat;

notăm cu $\mathcal{S} \subset \mathcal{M}_{n,1}(K)$ mulțimea soluțiilor. După cum se știe, mulțimea de matrici $\mathcal{M}_{n,1}(K)$ este un K-spațiu vectorial.

Propoziția 8 Submulțimea $S \subset \mathcal{M}_{n,1}(K)$ a soluțiilor unui sistem liniar și omogen de forma (2) este un subspațiu vectorial al mulțimii matricilor coloană, $\mathcal{M}_{n,1}(K)$.

soluțiile sunt de forma

 $x=-rac{5}{3}lpha,\;y=rac{1}{3}lpha,\;z=lpha,\;lpha\in{I\!\!R},\;{
m sau}\;X=\left(egin{array}{c} -rac{5}{3}lpha \ rac{1}{3}lpha \end{array}
ight)$ în notație matricială. Rezultă că

$$S = \left\{ X = \begin{pmatrix} -\frac{5}{3}\alpha \\ \frac{1}{3}\alpha \\ \alpha \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}) | \alpha \in \mathbb{R} \right\} \subset \mathcal{M}_{3,1}(\mathbb{R})$$

este $\mathcal{L}(\{X_0\})$, subspațiul generat de X_0 , unde $X_0 = \begin{pmatrix} -\frac{3}{3} \\ \frac{1}{3} \end{pmatrix}$.

Fie două sisteme de ecuații liniare omogene cu același număr de necunoscute, scrise sub formă matricială: $A \cdot X = 0_m$ și $A' \cdot Y = 0_{m'}$, unde $A \in \mathcal{M}_{m,n}(K)$, $A' \in \mathcal{M}_{m',n}(K)$, $X, Y \in \mathcal{M}_{n,1}(K)$. Să notăm cu $\mathcal{S}, \mathcal{S}' \subset \mathcal{M}_{n,1}(K)$ mulţimea soluţiilor celor două sisteme de ecuații și să considerăm mulțimea soluțiilor $\mathcal{S}'' \subset \mathcal{M}_{n,1}(K)$ a sistemului liniar omogen $\begin{pmatrix} A \\ B \end{pmatrix} \cdot Z = 0_{m+m'}$, obținut prin reunirea ecuațiilor celor două sisteme. Atunci $S'' = S \cap S'$.

O submulțime $L \subset V$ a unui spațiu vectorial V este o subvarietate liniară dacă există un subspațiu vectorial $V' \subset V$, numit subspațiu vectorial director al lui L și un vector $\bar{x}_0 \in V$ astfel încât $L = \{\bar{x}_0\} + V \ (= \{\bar{x}_0 + \bar{x} | \bar{x} \in V'\}).$

Exemplu. Fie multimea soluțiilor sistemului liniar și neomogen cu m ecuații și n necunoscute, cu coeficienții K:

$$\begin{cases}
 a_{11}x^{1} + \cdots + a_{n1}x^{n} = b_{1} \\
 \vdots \\
 a_{1m}x^{1} + \cdots + a_{nm}x^{n} = b_{m}
\end{cases}$$
(3)

care se poate scrie matricial sub forma:

$$A \cdot X = b, \tag{4}$$

unde:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1m} & \cdots & a_{nm} \end{pmatrix} \in \mathcal{M}_{m,n}(K), \ X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \in \mathcal{M}_{n,1}(K),$$
$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathcal{M}_{m,1}(K).$$

Prin scrierea matricială, mulțimea soluțiilor unui sistem de ecuații liniare de m ecuații şi n necunoscute poate fi considerată ca o submulțime a mulțimii de matrici $\mathcal{M}_{n,1}(K)$, (mulțimea matricilor cu n linii, unde n este numărul de necunoscute, și o coloană, cu elemente din K).

Propoziția 9 Fie $A \cdot X = b$ un sistem compatibil de ecuații liniare, unde $A \in \mathcal{M}_{m,n}(K)$, $X \in \mathcal{M}_{n,1}(K)$ şi $b \in \mathcal{M}_{m,1}(K)$. Atunci mulțimea soluțiilor sistemului dat este o subvarietate liniară a spațiului vectorial $\mathcal{M}_{n,1}(K)$, care are ca subspațiu vectorial director subspațiul vectorial al soluțiilor sistemului omogen asociat $A \cdot Z = 0_m$.

3 Sisteme de vectori

3.1 Dependență și independență liniară

Fie V un K-spațiu vectorial. O mulțime $S \subset V$ se numește $sistem\ de\ vectori$. Spunem că un sistem de vectori $S \subset V$ este $liniar\ independent\ dacă\ din\ orice\ combinație\ liniară\ nulă\ cu\ elemente\ din\ <math>S$

 $(\alpha_1\bar{v}_1+\cdots+\alpha_n\bar{v}_n=\bar{0} \text{ cu } \alpha_1,\ldots,\,\alpha_n\in K \text{ şi } \bar{v}_1,\ldots,\,\bar{v}_n\in S)$ rezultă că toți coeficienții sunt nuli $(\alpha_1=\cdots=\alpha_n=0)$.

Exemplu. Dacă $\bar{v} \in V \setminus \{\bar{0}\}$ este un vector nenul, atunci mulțimea $S = \{\bar{v}\}$ este liniar independentă, deoarece $\alpha \cdot \bar{v} = \bar{0}$, $\alpha \in K$ și $\bar{v} \neq 0 \Rightarrow \alpha = 0$.

O mulţime $S \subset V$ se spune că este *liniar dependentă* dacă nu este liniar independentă. Aceasta revine la condiţia că există o combinație liniară nulă cu elemente din S, ai cărei coeficienți nu sunt toți nuli, adică există $\alpha_1 \bar{v}_1 + \cdots + \alpha_n \bar{v}_n = \bar{0}$ cu $\alpha_1, \ldots, \alpha_n \in K$, nu toți nuli, şi $\bar{v}_1, \ldots, \bar{v}_n \in S$.

Exemple.

- 1. O mulțime $S \subset V$ care conține vectorul nul $(\bar{0} \in S)$, este mulțime liniar dependentă, deoarece dacă $\bar{v} \in S$, atunci $0 \cdot \bar{v} + 1 \cdot \bar{0} = \bar{0}$, coeficienții nefiind toți nuli.
- 2. Dacă $\bar{v} \in V$ este un vector și $\alpha \in K$ este un scalar, atunci mulțimea $S = \{\bar{v}, \alpha \cdot \bar{v}\}$ este liniar dependentă, deoarece $\alpha \cdot \bar{v} + (-1) \cdot (\alpha \cdot \bar{v}) = \bar{0}$, coeficienții nefiind toți nuli. Rezultă așadar că doi vectori coliniari formează o mulțime liniar dependentă.

Propoziția 10 O mulțime de vectori $S \subset V$ este liniar dependentă dacă și numai dacă unul dintre vectori este o combinație liniară a unui număr finit de vectori din S.

Propoziția 11 Fie $S \subset V$ un sistem liniar independent. Atunci:

- 1. Dacă $S' \subset S$, atunci şi S' este liniar independent (adică orice subsistem al unui sistem liniar independent este tot liniar independent).
- Dacă v̄₁, ..., v̄_n ∈ S sunt diferiți doi câte doi, α₁, ..., α_n ∈ K şi
 v̄ = α₁v̄₁ + ··· + α_nv̄_n, atunci α₁, ..., α_n sunt unic determinați (adică coeficienții prin care un vector este o combinație liniară a unor vectori liniar independenți dați, sunt determinați în mod unic).

Un sistem de vectori $S \subset V$ se spune că este sistem de generatori pentru V dacă acoperirea sa liniară coincide cu întreg spațiul vectorial V, adică $\mathcal{L}(S) = V$.

Un sistem de vectori $\mathcal{B} \subset V$ se spune că este $baz\check{a}$ a spațiului vectorial V dacă este liniar independent și sistem de generatori pentru V.

Fie $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_n\}$ o bază a lui V. Dacă $\bar{x} = \alpha^1 \bar{v}_1 + \dots + \alpha^n \bar{v}_n$, atunci, cu propoziția 11, coeficienții $\alpha^1, \dots, \alpha^n$ sunt unic determinați. Coeficienții $\alpha^1, \dots, \alpha^n$ se numesc coordonatele vectorului \bar{x} în baza \mathcal{B} .

Exemple.

1. Fie $K^n = \underbrace{K \times \cdots \times K}_{n \text{ ori}}$ şi K-spaţiul vectorial $(K^n, +, \cdot_{sc})$. Atunci $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset K^n$, unde

$$\bar{e}_1 = (1, 0, \dots, 0), \dots, \bar{e}_n = (0, \dots, 0, 1),$$

este o bază, numită baza canonică a spațiului vectorial $(K^n, +, \cdot)$. Coordonatele unui vector $\bar{x} = (x^1, \dots, x^n) = x^1 \bar{e}_1 + \dots + x^n \bar{e}_n$, în baza canonică, sunt x^1, \dots, x^n .

2. Dacă corpul K are cel puţin n+1 elemente (de exemplu, K poate fi o mulţime infinită, cum este \mathbb{R} sau \mathbb{C}) şi $(K_n[X], +, \cdot_{sc})$ este K-spaţiul vectorial al polinoamelor de grad cel mult n, atunci mulţimea de polinoame $\{1, X, X^2, \ldots, X^n\} \subset K_n[X]$ formează o bază, numită baza canonică. Dacă $f = a_0 + a_1X + \cdots + a_nX^n \in K_n$, atunci coordonatele lui f în baza canonică sunt a_0, \ldots, a_n .

Propoziția 12 Dacă $S = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ este un sistem de vectori liniar independent, atunci $S \subset \mathcal{L}(S)$ este o bază a lui $\mathcal{L}(S)$.

Propoziția 13 Fie $S = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ un sistem de vectori liniar independent, $\bar{x} = \alpha^1 \bar{v}_1 + \alpha^2 \bar{v}_2 + \dots + \alpha^n \bar{v}_n \in \mathcal{L}(S)$ şi $1 \leq k \leq n$. Fie sistemul de vectori $S' = \{\bar{v}_1, \dots, \bar{v}_{k-1}, \bar{x}, \bar{v}_{k+1}, \dots, \bar{v}_n\} \subset \mathcal{L}(S)$. Atunci sunt echivalente afirmațiile:

- 1. S' este un sistem de vectori liniar independent.
- 2. $\alpha^k \neq 0$.
- 3. $\mathcal{L}(S) = \mathcal{L}(S')$.

Propoziția 14 Dacă $S = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ este un sistem de vectori liniar independent și $S' = \{\bar{w}_1, \dots, \bar{w}_k\} \subset \mathcal{L}(S)$ este de asemenea un sistem de vectori liniar independent, atunci $k \leq n$.

Propoziția 15 Fie $S = \{\bar{w}_1, \dots, \bar{w}_p\} \subset V$ un sistem de generatori pentru V. Atunci există o bază $\mathcal{B} \subset V$ astfel că $\mathcal{B} \subset S$ (adică din orice sistem de generatori pentru V se poate extrage o bază a lui V).

Propoziția 16 Orice spațiu vectorial care admite un sistem finit de generatori admite o bază formată dintr-un număr finit de vectori.

În general, se poate arăta că orice spațiu vectorial admite o bază. Demonstrația acestui fapt folosește cunoștințe de matematică superioară (lema lui Zorn, echivalentă cu axioma alegerii).

Teorema 1 (Teorema dimensiunii) Dacă $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ este o bază a lui V, atunci orice altă bază a lui V are același număr n de vectori.

Numărul vectorilor dintr-o bază a lui V se numește dimensiunea lui V și se notează cu $\dim_K V$, sau $\dim V$. Dacă $V = \{\bar{0}\}$, atunci se definește $\dim V = 0$. Un spațiu vectorial care admite o bază finită se spune că este finit dimensional. Spațiile vectoriale considerate în continuare sunt presupuse finit dimensionale.

Spațiile vectoriale $(K^n, +, \cdot_{sc})$ și $(K_n[X], +, \cdot_{sc})$ peste K au baze cu n, respectiv n+1 vectori, deci au dimensiunile dim $K^n = n$ și dim $K_n[X] = n+1$.

Propoziția 17 Fie $W \subset V$ un subspațiu vectorial al unui spațiu vectorial (finit dimensional) V. Atunci:

- 1. Orice bază a lui W se poate completa la o bază a lui V.
- 2. Există un subspațiu vectorial $W' \subset V$ astfel încât $V = W \oplus W'$ (adică V este sumă directă a subspațiilor vectoriale suplimentare W și W').

Propoziția 18 $Dacă \dim V = n$, atunci

- 1. orice sistem care conține n vectori liniar independenți formează o bază în V;
- 2. orice sistem de generatori care conține n vectori formează o bază în V;
- 3. $dacă W \subset V$ este un subspațiu vectorial, atunci W = V dacă și numai dacă $\dim W = n$.

Propoziția 19 Fie $V_1, V_2 \subset V$ două subspații vectoriale (finit dimensionale) ale unui spațiu vectorial V. Atunci:

$$\dim(V_1) + \dim(V_2) = \dim(V_1 \cap V_2) + \dim(V_1 + V_2),$$

formulă cunoscută sub numele de formula dimensiunii sau formula lui Grassmann.

3.2 Rangul unui sistem de vectori

Dacă $M \subset V$ este un sistem de vectori din V, atunci rangul lui M este dimensiunea subspațiului vectorial generat de M (rang $M = \dim \mathcal{L}(M)$).

Propoziția 20 Fie matricea $A \in \mathcal{M}_{m,n}(K)$ şi fie sistemele de vectori: $C \subset \mathcal{M}_{m,1}(K)$, format din coloanele matricii A şi $L \subset \mathcal{M}_{1,n}(K)$, format din liniile matricii A. Au loc următoarele egalități între rangurile sistemelor de vectori C, L şi rangul matricii A:

$$\operatorname{rang} C = \operatorname{rang} L = \operatorname{rang} A,$$

rezultat cunoscut sub numele de formula rangului.

Propoziția 21 Fie $\mathcal{F} = \{\bar{v}_1, \dots, \bar{v}_k\} \subset V$ un sistem finit de vectori din V și $[\mathcal{F}]_{\mathcal{B}}$ matricea coordonatelor vectorilor din \mathcal{F} într-o bază oarecare $\mathcal{B} \subset V$, cu cordonatele scrise pe coloană. Atunci:

- 1. Rangul lui \mathcal{F} este egal cu rangul matricii $[\mathcal{F}]_{\mathcal{B}}$ (adică rang $\mathcal{F} = \operatorname{rang} [\mathcal{F}]_{\mathcal{B}}$).
- 2. Rangul matricii $[\mathcal{F}]_{\mathcal{B}}$ este k (rang $[\mathcal{F}]_{\mathcal{B}} = k$) dacă și numai dacă vectorii din \mathcal{F} sunt liniar independenți.

- 3. Rangul matricii [F]_B este strict mai mic decât k dacă și numai dacă vectorii din F sunt liniar dependenți.
- 4. Rangul matricii $[\mathcal{F}]_{\mathcal{B}}$ este egal cu dimensiunea lui V (rang $[\mathcal{F}]_{\mathcal{B}} = \dim V$) dacă și numai dacă vectorii din \mathcal{F} formează o bază (adică $\mathcal{F} \subset V$ este o bază) a lui V.

Exemplu.

Fie $\bar{v}_1 = (1, -1, 2)$, $\bar{v}_1 = (-1, 1, 1)$ şi $\bar{v}_3 = (1, 1, -1) \in \mathbb{R}^3$. Matricea coordonatelor vectorilor este $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix}$, iar det A = -6, prin urmare rang A = 3, deci $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\} \subset \mathbb{R}^3$ formează o bază.

Dată o bază $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$, fiecărui vector $\bar{x} \in V$ i se asociază o matrice coloană formată din cordonatele vectorului \bar{x} în această bază:

$$V \ni \bar{x} \to [\bar{x}]_{\mathcal{B}} = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \in \mathcal{M}_{n,1}(K), \text{ unde } \bar{x} = x^1 \bar{v}_1 + \dots + x^n \bar{v}_n.$$

Vom numi matricea $[\bar{x}]_{\mathcal{B}}$ reprezentarea matricială a vectorului \bar{x} în baza \mathcal{B} .

Exemplu.

Fie baza $\mathcal{B}' = \{\bar{v}_1 = (1, -1, 2), \bar{v}_1 = (-1, 1, 1), \bar{v}_3 = (1, 1, -1)\} \subset \mathbb{R}^3$. Vectorul $\bar{x} = (2, 4, 1) \in \mathbb{R}^3$ se scrie sub forma $\bar{x} = 1 \cdot \bar{v}_1 + 2 \cdot \bar{v}_2 + 3 \cdot \bar{v}_3$. Reprezentarea matricială a lui \bar{x} este $[\bar{x}]_{\mathcal{B}'} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.

Dacă $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ şi $\mathcal{B}' = \{\bar{f}_1, \dots, \bar{f}_n\} \subset V$ sunt două baze ale lui V, atunci matricea de trecere de la baza \mathcal{B} la baza \mathcal{B}' este, prin definiție, matricea $A = (a^i_j)_{i,j=\overline{1,n}}$, unde $\bar{f}_j = \sum_{i=1}^n a^i_j \bar{e}_i$, $n = \dim V$. Explicit, cordonatele vectorilor din baza \mathcal{B}' formează coloanele matricii A. Notăm $A = [\mathcal{B}, \mathcal{B}']$.

Exemplu.

Fie baza canonică

 $\mathcal{B} = \{\bar{e}_1 = (1,0,0), \bar{e}_2 = (0,1,0)\}, \bar{e}_3 = (0,0,1)\} \subset \mathbb{R}^3$ și $\mathcal{B}' = \{\bar{v}_1 = (1,-1,2), \bar{v}_2 = (-1,1,1), \bar{v}_3 = (1,1,-1)\} \subset \mathbb{R}^3$ baza considerată în exemplele de mai sus. Matricea de trecere de la baza \mathcal{B} la baza \mathcal{B}' este matricea

$$[\mathcal{B},\mathcal{B}'] = \left(egin{array}{ccc} 1 & -1 & 1 \ -1 & 1 & 1 \ 2 & 1 & -1 \ \end{array}
ight).$$

Propoziția 22 Fie $\mathcal{B}, \mathcal{B}' \subset V$ două baze. Pentru un vector $\bar{x} \in V$, între reprezentările sale matriciale în cele două baze şi matricea de trecere există relația:

$$[\bar{x}]_{\mathcal{B}} = [\mathcal{B}, \mathcal{B}'] \cdot [\bar{x}]_{\mathcal{B}'}.$$
 (5)

 $Dac\check{a} \ n = \dim V, \ \mathcal{B} = \{\bar{e}_i\}_{i=\overline{1,n}}, \ \mathcal{B}' = \{\bar{f}_j\}_{j=\overline{1,n}}, \ \bar{x} = x^1\bar{e}_1 + \dots + x^n\bar{e}_n = y^1\bar{f}_1 + \dots + y^n\bar{f}_n \ \text{si } \bar{e}_i = \sum_{i=1}^n a_i^j\bar{f}_j, \ (\forall)i = \overline{1,n}, \ atunci:$

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = \begin{pmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & & \vdots \\ a_1^n & \cdots & a_n^n \end{pmatrix} \cdot \begin{pmatrix} y^1 \\ \vdots \\ y^n \end{pmatrix}. \tag{6}$$

Exemplu. Vectorul $\bar{x}=(2,4,1)\in I\!\!R^3$, are reprezentările matriciale $[\bar{x}]_{\mathcal{B}}=\begin{pmatrix}2\\4\\1\end{pmatrix}$ în baza canonică

$$\mathcal{B} = \{\bar{e}_1 = (1,0,0), \ \bar{e}_2 = (0,1,0), \ \bar{e}_3 = (0,0,1)\} \subset \mathbb{R}^3 \text{ si } [\bar{x}]_{\mathcal{B}'} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ în baza } \mathcal{B}' = \{\bar{v}_1 = (1,-1,2), \ \bar{v}_2 = (-1,1,1), \bar{v}_3 = (-1,1,2), \ \bar{v}_3 = (-1,1,2), \ \bar{v}_4 = (-1,1,2), \ \bar{v}_5 = (-1,1,2), \ \bar{v}_7 = (-1,1,2), \ \bar{v}_8 = (-1,1,2), \$$

$$(1,1,-1)\}\subset \mathbb{R}^3$$
. Matricea de trecere de la baza \mathcal{B} la baza \mathcal{B}' este $[\mathcal{B},\mathcal{B}']=\begin{pmatrix} 1 & -1 & 1 \ -1 & 1 & 1 \ 2 & 1 & -1 \end{pmatrix}$. Într-adevăr, $[x]_{\mathcal{B}}=\begin{pmatrix} 1 & 1 & 1 \ 2 & 1 & -1 \end{pmatrix}$.

$$[\mathcal{B}, \mathcal{B}'][x]_{\mathcal{B}'}$$
, pentru că $\begin{pmatrix} 2\\4\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1\\-1 & 1 & 1\\2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\2\\3 \end{pmatrix}$.

Propoziția 23 Fie V un K-spațiu vectorial de dimensiune n. Dacă \mathcal{B} , \mathcal{B}' sunt două baze ale sale, matricea de trecere $[\mathcal{B}, \mathcal{B}']$, de la baza \mathcal{B} la baza \mathcal{B}' , este o matrice inversabilă, inversa sa fiind $[\mathcal{B}', \mathcal{B}]$. Reciproc, dacă \mathcal{B} este o bază a lui V şi $A \in \mathcal{M}_n(K)$ este o matrice inversabilă, atunci există o bază \mathcal{B}' astfel încât $[\mathcal{B}, \mathcal{B}'] = A$.

Fiind dată o bază \mathcal{B} , să observăm că matricea unitate I_n poate fi considerată drept $I_n = [\mathcal{B}, \mathcal{B}]$ (adică matricea de trecere care lasă baza neschimbată).

Propoziția 24 Fie \mathcal{B} , \mathcal{B}' și \mathcal{B}'' trei baze ale unui spație vectorial V. Atunci are loc egalitatea matricială:

$$[\mathcal{B}, \mathcal{B}'] \cdot [\mathcal{B}', \mathcal{B}''] = [\mathcal{B}, \mathcal{B}''].$$

Dacă $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ și $\mathcal{B}' = \{\bar{f}_1, \dots, \bar{f}_n\} \subset V$ sunt două baze ale unui spațiu vectorial real V, atunci:

- 1. Dacă $det[\mathcal{B}, \mathcal{B}'] > 0$, atunci se spune că bazele \mathcal{B} și \mathcal{B}' sunt la fel orientate;
- 2. Dacă $det[\mathcal{B}, \mathcal{B}'] < 0$, atunci se spune că bazele \mathcal{B} și \mathcal{B}' sunt invers orientate.

Propoziția 25 Pe mulțimea tuturor bazelor unui spațiu vectorial real V, relația $,\mathcal{B} \sim \mathcal{B}'$ dacă \mathcal{B} și \mathcal{B}' sunt la fel orientate (adică $\det[\mathcal{B},\mathcal{B}'] > 0$)" este o relație de echivalență.

Mulțimea tuturor bazelor se scrie ca reuniunea a două clase de echivalență; două baze din aceeași clasă sunt la fel orientate, iar două baze din clase diferite sunt invers orientate.

De exemplu, în \mathbb{R}^2 , dacă se iau bazele $\mathcal{B}_0 = \{\bar{e}_1 = (1,0), \bar{e}_2 = (0,1)\}$ şi $\mathcal{B}_1 = \{\bar{f}_1 = (1,0), \bar{f}_2 = (0,-1)\}$, atunci cele două baze nu sunt echivalente, pentru că $[\mathcal{B}_0, \mathcal{B}_1] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\det[\mathcal{B}_0, \mathcal{B}_1] = -1$, deci \mathcal{B}_0 şi \mathcal{B}_1 determină două clase diferite.

3.3 Lema substituţiei

Propoziția 26 (Lema substituției) Fie $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ o bază a unui K-spațiu vectorial V, doi vectori $\bar{x}_0 = x_0^1 \bar{e}_1 + \dots + x_0^n \bar{e}_n \in V$ și $\bar{x} = x^1 \bar{e}_1 + \dots + x^n \bar{e}_n \in V$ și un indice $i_0 \in \{1, \dots, n\}$. Atunci

- 1. Mulţimea $\mathcal{B}' = \{\bar{e}_1, \dots \bar{e}_{i_0-1}, \bar{x}_0, \bar{e}_{i_0+1}, \bar{e}_n\}$ este o bază a lui V dacă şi numai dacă $x_0^{i_0} \neq 0$.
- 2. $Dac\check{a} \ x_0^{i_0} \neq 0 \ \check{s}i$ $\bar{x} = y^1 \bar{e}_1 + \dots + y^{i_0 - 1} \bar{e}_{i_0 - 1} + y^{i_0} \bar{x}_0 + y^{i_0 + 1} \bar{e}_{i_0 + 1} + \dots + y^n \bar{e}_n \ este \ scrierea \ vectorului \ \bar{x} \ \hat{i}n \ baza \ \mathcal{B}', \ atunci:$

$$y^{i_0} = \frac{x^{i_0}}{x_0^{i_0}}, \ y^i = \frac{x^i x_0^{i_0} - x_0^i x^{i_0}}{x_0^{i_0}} = \frac{\begin{vmatrix} x_0^{i_0} & x^{i_0} \\ x_0^i & x^i \end{vmatrix}}{x_0^{i_0}}, \ (\forall) i \neq i_0.$$

Numărul $x_0^{i_0}$ se numește *pivot*, iar regula de calcul a cordonatelor y^i , $i \neq i_0$, se numește *regula dreptunghiului*, deoarece din tabelul cordonatelor vectorilor:

	\bar{x}_0	\bar{x}			
\bar{e}_1	x_0^1	x^1	_		
÷	:	:			
\bar{e}_{i_0-1}	$\bar{x}_0^{i_0-1}$	\bar{x}^{i_0-1}			
iese din bază \bar{e}_{i_0}	$x_0^{i_0}$	x^{i_0}	$x_0^{i_0}$		x^{i_0}
\bar{e}_{i_0+1}	$\ \bar{x}_0^{i_0+1} \ $	\bar{x}^{i_0+1}	· :	/\	i
÷	:	:	x_0^i		x^{i}
\bar{e}_i	x_0^i	x^{i}	-		
:	:	:	_		
\bar{e}_n	x_0^n	x^n	-		

se observă că y^i , care va lua locul lui x^i , se obține ca rezultat al scăderii produselor $x^i x_0^{i_0} - x_0^i x^{i_0}$ (al elementelor aflate în colțurile dreptunghiului din dreapta), împărțit la pivolul $x_0^{i_0}$.

Se obţine:

	\bar{x}_0	\bar{x}
\bar{e}_1	0	$y^1 = \frac{x^1 x_0^{i_0} - x_0^1 x^{i_0}}{x_0^{i_0}}$
:	:	:
\bar{e}_{i_0-1}	0	$y^{i_0-1} = \frac{x^{i_0-1}x_0^{i_0} - x_0^{i_0-1}x^{i_0}}{x_0^{i_0}}$
\bar{x}_0	1	$y^{i_0-1} = \frac{x^{i_0-x_0-x_0}}{x_0^{i_0}}$ $y^{i_0} = \frac{x^{i_0}}{x_0^{i_0}}$ $y^{i_0+1} = \frac{x^{i_0+1}x_0^{i_0-x_0^{i_0+1}}x^{i_0}}{x_0^{i_0}}$
\bar{e}_{i_0-1}	0	$y^{i_0+1} = \frac{x^{i_0+1}x_0^{i_0} - x_0^{i_0+1}x^{i_0}}{x_0^{i_0}}$
:	:	:
\bar{e}_i	0	$y^i = \frac{x^i x_0^{i_0} - x_0^i x^{i_0}}{x_0^{i_0}}$
:	:	i:
\bar{e}_n	0	$y^n = \frac{x^n x_0^{i_0} - x_0^n x^{i_0}}{x_0^{i_0}}$

Vom prezenta în continuare câteva aplicații ale lemei substituției.

3.3.1 Determinarea rangului unui sistem de vectori

Exemplu. Fie vectorii $\bar{v}_1 = (1, 2, -1), \ \bar{v}_2 = (1, -1, 1), \ \bar{v}_3 = (2, 1, 0), \ \bar{v}_4 = (0, 3, -2) \in \mathbb{R}^3.$

	\bar{v}_1	\bar{v}_2	\bar{v}_3	\bar{v}_4
\bar{e}_1	1	1	2	0
\bar{e}_2	2	-1	1	3
\bar{e}_3	-1	1	0	-2
\bar{v}_1	1	1	2	0
\bar{e}_2	0	-3	-3	3
\bar{e}_3	0	2	2	-2
\bar{v}_1	1	0	1	1
\bar{v}_2	0	1	1	-1
\bar{e}_3	0	0	0	0

S-au făcut două înlocuiri, deci rangul sistemului $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4\} \subset \mathbb{R}^4$ este 2 şi $\mathcal{L}(\{\bar{v}_1, \bar{v}_2\}) = \mathcal{L}(\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4\})$.

3.3.2 Rezolvarea unui sistem de ecuații liniare

Exemple.

1. Sistemul următor este incompatibil: $\begin{cases} x^1 & -x^2 & +x^3 & = 0 \\ x^1 & +x^2 & +x^3 & = 6 \\ 3x^1 & +x^2 & +3x^3 & = 1 \end{cases} .$

\bar{c}_1	\bar{c}_2	\bar{c}_3	\bar{b}					
1	-1	1	0					
1	1	1	6					
3	1	3	1					
1	-1	1	0					
0	2	0	6					
0	4	0	1					
1	0	1	3		x^1		$+x^3$	=3
0	1	0	3	$\Leftrightarrow \langle$		x^2		=3
0	0	0	-11	l			0	= 1
	1 3	$ \begin{array}{cccc} $	$\begin{array}{c ccccc} \square & -1 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \\ \hline 1 & -1 & 1 \\ 0 & \square & 0 \\ 0 & 4 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Sistemul este incompatibil, pentru că $-11 \neq 0$. Justificarea este următoarea: $\bar{b} = 3\bar{c}_1 + 3\bar{c}_2 - 11\bar{e}_2$, iar $\{\bar{c}_1, \bar{c}_2\} \subset \mathcal{L}(\{\bar{c}_1, \bar{c}_2, \bar{c}_3\})$ este bază, deci $\bar{b} \notin \mathcal{L}(\{\bar{c}_1, \bar{c}_2, \bar{c}_3\})$.

2. Sistemul următor este compatibil:

$$\left\{ \begin{array}{lll} 2x^1 & -x^2 & +x^3 & = 3 \\ x^1 & +2x^2 & +x^3 & = 6 \\ 3x^1 & +x^2 & +2x^3 & = 9 \end{array} \right. .$$

Sistemul este compatibil, pentru că $\bar{b} \in \mathcal{L}(\{\bar{c}_1, \bar{c}_2\})$. Sistemul, în forma simplificată, din care putem scrie soluțiile, se scrie:

$$\begin{cases} x^1 & +\frac{3}{5}x^3 & =\frac{12}{5} \\ +x^2 & +\frac{1}{5}x^3 & =\frac{9}{5} \end{cases},$$

deci mulțimea soluțiilor este $\{(-\frac{3}{5}\alpha+\frac{12}{5},-\frac{1}{5}\alpha+\frac{9}{5},\alpha)|\ \alpha\in I\!\!R\}$. Necunoscuta x^3 este necunoscută secundară și necunoscutele x^1 și x^2 sunt necunoscute principale. Urmează tabelul:

	\bar{c}_1	\bar{c}_2	\bar{c}_3	$ar{b}$
\bar{e}_1	1 3	-1 2		3
\bar{e}_2	1	2	$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$	3 6 9
\bar{e}_3	3	1	2	9
$ \begin{array}{c} \bar{e}_1 \\ \bar{e}_2 \\ \bar{e}_3 \\ \hline \bar{c}_1 \end{array} $	1	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$
\bar{e}_2	0	$ \begin{array}{c} -\frac{7}{2} \\ \frac{5}{2} \end{array} $ $ \frac{5}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{5}$	$ \begin{array}{c} \frac{3}{2} \\ 9 \\ -\frac{9}{2} \\ -\frac{12}{5} \\ 0 \end{array} $
$ar{e}_2$ $ar{e}_3$	0	$\frac{5}{2}$	$\frac{1}{2}$	$\frac{9}{2}$
\bar{c}_1	1	0	$\frac{3}{5}$	$\frac{12}{5}$
$ar{c}_1$ $ar{c}_2$ $ar{e}_3$	0	1	$\frac{1}{5}$	$\frac{9}{5}$
\bar{e}_3	0	0	Ŏ	Ŏ

3.3.3 Calcularea inversei unei matrici

Exemplu. Să se determine inversa matricii $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$.

	\bar{c}_1	\bar{c}_2	\bar{c}_3	\bar{e}_1	\bar{e}_2	\bar{e}_3	
\bar{e}_1	1	-1	1	1	0	0	
\bar{e}_2	-1	1	0	0	1	0	
\bar{e}_3	1	0	-1	0	0	1	
\bar{c}_1	1	-1	1	1	0	0	
\bar{e}_2	0	0	1	1	1	0	
\bar{e}_3	0	1	-2	-1	0	1	
\bar{c}_1	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{1}{2}$	
$ar{e}_2$	0	$\left \frac{1}{2}\right $	0	$rac{1}{2}$	1	$\frac{1}{2}$	
\bar{c}_3	0	$-\frac{1}{2}$	1	$\frac{1}{2}$	0	$-\frac{1}{2}$. /1 1 1 \
\bar{c}_1 \bar{c}_2	1	0	0	1	1	1	$\Rightarrow A^{-1} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right)$
\bar{c}_2	0	1	0	1	2	1	
\bar{c}_3	0	0	1	1	1	0	(1 1 0)

Intr-adevăr,

$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

4 Aplicații liniare între două spații vectoriale

Fie V şi W două spații vectoriale peste același corp K.

O aplicație $f: V \to W$ se numește aplicație liniară dacă are proprietatea că $f(\alpha \bar{x} + \beta \bar{y}) = \alpha f(\bar{x}) + \beta f(\bar{y}), \ (\forall) \bar{x}, \bar{y} \in V$ și $(\forall)\alpha,\beta \in K$. Notăm cu $L(V,W) = \{f: V \to W | f \text{ aplicație liniară} \}.$

De exemplu, dacă $V = \mathcal{M}_{n,1}(K)$, $W = \mathcal{M}_{m,1}(K)$ şi $A \in \mathcal{M}_{m,n}(K)$, atunci aplicația $f : \mathcal{M}_{n,1}(K) \to \mathcal{M}_{m,1}(K)$ definită prin $f(X) = A \cdot X$, este o aplicație liniară. Într-adevăr, ținând seama de proprietățile operațiilor cu matrici, avem $f(\alpha X + \beta Y) = \alpha f(X) + \beta f(Y) \Leftrightarrow$

 $A \cdot (\alpha X + \beta Y) = \alpha (A \cdot X) + \beta (A \cdot Y), \ (\forall) X, Y \in \mathcal{M}_{n,1}(K)$ şi $\alpha, \beta \in K$, ceea ce este, evident, adevărat.

Propoziția 27 O aplicație $f: V \to W$ este liniară dacă și numai dacă sunt satisfăcute simultan condițiile:

$$f(\bar{x} + \bar{y}) = f(\bar{x}) + f(\bar{y}),\tag{7}$$

$$f(\alpha \bar{x}) = \alpha f(\bar{x}),\tag{8}$$

 $(\forall)\bar{x},\bar{y}\in V$ şi $(\forall)\alpha\in K$. Proprietatea (7) se numește proprietatea de aditivitate, iar proprietatea (8) se numește proprietatea de omogenitate.

Propoziția 28 Fie o aplicație liniară $f: V \to W$, iar $V' \subset V$ și

 $W' \subset W$ două subspații vectoriale. Atunci $f(V') = \{f(\bar{x}') | \bar{x}' \in V'\} \subset W$ și $f^{-1}(W') = \{\bar{x} \in V | f(\bar{x}) \in W'\} \subset V$ sunt subspații vectoriale.

Dacă se consideră, în particular, $V' = \{\bar{0}_V\}$, atunci $f(V') = \{\bar{0}_W\}$, deoarece $f(\bar{0}_V) = f(0 \cdot \bar{0}_V) = 0 \cdot f(\bar{0}_V) = \bar{0}_W$. Dacă se consideră, în particular, V' = V și $W' = \{\bar{0}_W\}$, în propoziția 28, rezultă că $f(V) \subset W$ și $f^{-1}(\{\bar{0}_W\}) \subset V$ sunt subspații vectoriale.

Nucleul aplicației f este $\ker f = f^{-1}(\{\bar{0}_W\}) = \{\bar{x} \in V \mid f(\bar{x}) = \bar{0}_W\} \subset$

 $\subset V$. Dimensiunea dim ker f (dacă este finită) se notează def f și se numește defectul aplicației f.

Imaginea aplicației f este Im $f = f(V) = \{f(\bar{x}) \mid \bar{x} \in V\} \subset W$. Dimensiunea dim Im f (dacă este finită) se notează $rang\ f$ și se numește rangul aplicației f.

Propoziția 29 O aplicație liniară $f: V \to W$, între două spații vectoriale peste același corp K, este injectivă dacă și numai dacă ker $f = \{\bar{0}_V\}$.

Propoziția 30 Fie $f: V \to W$ o aplicație liniară între două K-spații vectoriale.

- 1. $Dacă \{\bar{y}_1, \ldots, \bar{y}_k\} \subset W$ este un sistem liniar independent astfel $c\check{a}\ \bar{y}_1 = f(\bar{x}_1), \ldots, \bar{y}_k = f(\bar{x}_k)$ (adică $\{\bar{y}_1, \ldots, \bar{y}_k\} \subset Im\ f$), atunci şi sistemul $\{\bar{x}_1, \ldots, \bar{x}_k\} \subset V$ este un sistem liniar independent.
- 2. $Dac\ \bar{a}\ \{\bar{x}_1,\ldots,\bar{x}_n\}\subset V$ este un sistem de generatori pentru V, atunci şi $\{f(\bar{x}_1),\ldots,f(\bar{x}_n)\}$ este un sistem de generatori pentru f(V).

Teorema 2 (Teorema rangului) Dacă $f: V \to W$ este o aplicație liniară între K-spații vectoriale finit dimensionale, atunci $\dim V = \det f + \operatorname{rang} f$.

Propoziția 31 Fie $f: V \to W$ o aplicație liniară între două spații vectoriale peste același corp K. Fie $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_p, \bar{v}_{p+1}, \dots, \bar{v}_n\}$ V o bază care extinde o bază $\{\bar{v}_1, \dots, \bar{v}_p\} \subset \ker f$. Atunci sistemul de vectori $\{f(\bar{v}_{p+1}), \dots, f(\bar{v}_n)\}$ formează o bază pentru $\operatorname{Im} f$.

Să remarcăm că demonstrația propoziției 31 dă și o modalitate concretă de a construi o bază în $\operatorname{Im} f$: se ia o bază în $\operatorname{ker} f$, care se extinde la o bază a lui V; imaginile prin f ale vectorilor care extind baza din nucleu formează o bază în $\operatorname{Im} f$.

Propoziția 32 Fie $f: V \to W$ o aplicație liniară între două K-spații vectoriale (finit dimensionale).

- 1. Aplicația f este injectivă dacă și numai dacă rang $f = \dim V$.
- 2. Aplicația f este surjectivă dacă și numai dacă rang $f = \dim W$.
- 3. Aplicația f este bijectivă dacă și numai dacă rang $f = \dim V = \dim W$.

Fie $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ şi $\mathcal{B}_1 = \{\bar{e}'_1, \dots, \bar{e}'_m\} \subset W$ două baze ale lui V, respectiv W. Matricea $[f]_{\mathcal{B}_1, \mathcal{B}} = (f_i^{\alpha})_{i=\overline{1,n}, \alpha=\overline{1,m}} \in \mathcal{M}_{m,n}(K)$, definită de egalitatea $f(\bar{e}_i) = \sum_{\alpha=1}^m f_i^{\alpha} \bar{e}'_{\alpha}$, se numește matricea aplicației f corespunzătoare bazelor \mathcal{B} și \mathcal{B}_1 .

Propoziția 33 Dacă $\bar{x} \in V$, iar $[\bar{x}]_{\mathcal{B}} \in \mathcal{M}_{n,1}$ și $[f(\bar{x})]_{\mathcal{B}_1} \in \mathcal{M}_{m,1}$ sunt matricile coloană formate din cordonatele vectorilor \bar{x} și $f(\bar{x})$ în bazele corespunzătoare (reprezentările matriciale ale celor doi vectori), atunci are loc formula:

$$[f(\bar{x})]_{\mathcal{B}_1} = [f]_{\mathcal{B}_1,\mathcal{B}} \cdot [\bar{x}]_{\mathcal{B}},$$

sau:

$$\begin{pmatrix} y^1 \\ \vdots \\ y^m \end{pmatrix} = \begin{pmatrix} f_1^1 & \cdots & f_n^1 \\ \vdots & & \vdots \\ f_1^m & \cdots & f_n^m \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix},$$

unde $\bar{x} = x^1 \bar{e}_1 + \dots + x^n \bar{e}_n$ şi $f(\bar{x}) = y^1 \bar{e}'_1 + \dots + y^m \bar{e}'_m$ (reprezentarea matricială a aplicației liniare f în perechea de baze $(\mathcal{B}, \mathcal{B}_1)$).

Propoziția 34 Are loc formula

$$\operatorname{rang} f = \operatorname{rang} [f]_{\mathcal{B}_1, \mathcal{B}}, \tag{9}$$

adică rangul aplicației liniare f este egal cu rangul matricii sale în orice pereche de baze $(\mathcal{B}, \mathcal{B}_1)$.

În particular, rangul matricii unei aplicației liniare f nu depinde de perechea de baze în care este considerat.

Propoziția 35 Fie $\mathcal{B} = \{\bar{u}_1, \ldots, \bar{u}_n\}$ şi $\mathcal{B}' = \{\bar{u}'_1, \ldots, \bar{u}'_n\} \subset V$ două baze ale lui V şi $\mathcal{B}_1 = \{\bar{v}_1, \ldots, \bar{v}_m\}$ şi $\mathcal{B}'_1 = \{\bar{v}'_1, \ldots, \bar{v}'_m\} \subset W$ două baze ale lui W. Fie $[\mathcal{B}, \mathcal{B}']$ matricea de trecere de la \mathcal{B} la \mathcal{B}' şi $[\mathcal{B}_1, \mathcal{B}'_1]$ matricea de trecere de la \mathcal{B}_1 la \mathcal{B}'_1 . Atunci:

$$[f]_{\mathcal{B}'_{1},\mathcal{B}'} = [\mathcal{B}_{1},\mathcal{B}'_{1}]^{-1} \cdot [f]_{\mathcal{B}_{1},\mathcal{B}} \cdot [\mathcal{B},\mathcal{B}'] \text{ sau}$$

$$[f]_{\mathcal{B}'_{1},\mathcal{B}'} = [\mathcal{B}'_{1},\mathcal{B}_{1}] \cdot [f]_{\mathcal{B}_{1},\mathcal{B}} \cdot [\mathcal{B},\mathcal{B}'].$$
(10)

Propoziția 36 Fie $f: U \to V$ și $g: V \to W$ două aplicații liniare între spații vectoriale peste același corp K și fie $\mathcal{B}_1 = \{\bar{u}_1, \dots, \bar{u}_m\} \subset U$, $\mathcal{B}_2 = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ și $\mathcal{B}_3 = \{\bar{w}_1, \dots, \bar{w}_p\} \subset W$ baze ale celor trei spații vectoriale. Atunci este adevărată egalitatea matricială:

$$[g \circ f]_{\mathcal{B}_3,\mathcal{B}_1} = [g]_{\mathcal{B}_3,\mathcal{B}_2} \cdot [f]_{\mathcal{B}_2,\mathcal{B}_1},$$

adică matricea compunerii a două aplicații liniare este produsul matricilor celor două aplicații, în bazele corespunzătoare.

5 Izomorfisme de spații vectoriale

O aplicație liniară $f:V\to W$ între două spații vectoriale peste același corp K, se spune că este un *izomorfism* de spații vectoriale, dacă f este o bijecție. Două spații vectoriale între care există un izomorfism se spune că sunt *izomorfe*.

Propoziția 37 Dacă $f: V \to W$ este un izomorfism de spații vectoriale, atunci și $f^{-1}: W \to V$ este un izomorfism.

Propoziția 38 Fie $f: V \to W$ un izomorfism de spații vectoriale, $S = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ un sistem de vectori și $f(S) = \{f(\bar{v}_1), \dots, f(\bar{v}_n)\} \subset W$. Atunci:

- 1. $S \subset V$ este liniar independent dacă şi numai dacă $f(S) \subset W$ este liniar independent.
- 2. $S \subset V$ este sistem de generatori dacă şi numai dacă $f(S) \subset W$ este sistem de generatori.
- 3. $S \subset V$ este bază dacă și numai dacă $f(S) \subset W$ este bază.

Teorema 3 Două spații vectoriale (finit dimensionale) sunt izomorfe dacă și numai dacă au aceeași dimensiune. În particular, toate spațiile vectoriale care au dimensiunea $n \in \mathbb{N}^*$ sunt izomorfe cu K-spațiul vectorial canonic definit pe K^n .

Propoziția 39 Fie $f: V \to W$ un izomorfism de spații vectoriale peste același corp K și fie $\mathcal{B}_1 = \{\bar{a}_1, \dots, \bar{a}_n\} \subset V$, $\mathcal{B}_2 = \{\bar{b}_1, \dots, \bar{b}_n\} \subset W$ baze ale celor două spații vectoriale. Atunci este adevărată egalitatea matricială:

$$[f^{-1}]_{\mathcal{B}_1,\mathcal{B}_2} = [f]_{\mathcal{B}_2,\mathcal{B}_1}^{-1},$$

adică matricea izomorfismului invers unui izomorfism de K-spații vectoriale este inversa matricii izomorfismului în bazele corespunzătoare.

Propoziția 40 Fie $\mathcal{B} = \{\bar{a}_1, \dots, \bar{a}_n\} \subset V$ și $\mathcal{B}_1 = \{\bar{b}_1, \dots, \bar{b}_m\} \subset V$ două baze ale K-spațiilor vectoriale V, respectiv W. Să considerăm aplicația $F: L(V,W) \to \mathcal{M}_{m,n}(K)$, care asociază unei aplicații liniare $f \in L(V,W)$ matricea $[f]_{\mathcal{B}_1,\mathcal{B}} = (f_i^{\alpha})_{i=\overline{1,n},\alpha=\overline{1,m}} \in \mathcal{M}_{m,n}(K)$, adică matricea aplicației f corespunzătoare bazelor \mathcal{B} și \mathcal{B}_1 .

Atunci F este un izomorfism de spații vectoriale.

O consecință importantă a propoziției de mai sus este următorul rezultat.

Propoziția 41 Dacă V și W sunt spații vectoriale finit dimensionale peste corpul K, atunci $\dim L(V,W) = \dim V \cdot \dim W$.

Ca un caz particular, se poate deduce că dim $V^* = \dim L(V, K) =$ = dim $V \cdot \dim K = \dim V \cdot 1 = \dim V$, rezultat obținut în propoziția ??, unde se construiește efectiv o bază $\mathcal{B}^* \subset V^*$, duala unei baze $\mathcal{B} \subset V$. De remarcat că deși spațiile vectoriale V și V^* sunt izomorfe, având aceeași dimensiune, nu există nici un izomorfism canonic între aceste spații vectoriale.

6 Endomorfisme liniare

6.1 Generalități privind endomorfismele liniare

Fie V un spatiu vectorial peste un corp K.

O aplicație K-liniară $f:V\to V$ se numește endomorfism liniar. Se notează cu End(V) mulțimea endomorfismelor liniare ale spațiului vectorial V. Deoarece End(V) = L(V, V), din propoziția ?? rezultă că End(V) este un K-spațiu vectorial.

Un endomorfism liniar bijectiv se numeste automorfism liniar. Un automorfism liniar este deci un endomorfism care este în acelaşi timp un izomorfism.

Pentru endomorfisme și automorfisme se pot folosi rezultatele și construcțiile din cazul aplicațiilor liniare, ținând seama că domeniul si codomeniul este acelasi. Această particularitate impune însă unele elemente specifice. Unul dintre aceste elemnte specifice este matricea unui endomorfism într-o bază a spatiului vectorial, când atât pentru domeniul de definitie, cât si pe codomeniu, se consideră aceeasi bază.

Fie $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ o bază. Matricea endomorfismului corespunzătoare bazei \mathcal{B} este

$$[f]_{\mathcal{B}} = [f]_{\mathcal{B},\mathcal{B}} = (f_i^j)_{i,j=\overline{1,n}} \in \mathcal{M}_n(K),$$

unde elementele matricii sunt definite de relația $f(\bar{a}_i) = \sum_{j=1}^n f_i^j \bar{a}_j$. Dacă $\bar{x} \in V$ este un vector și $[\bar{x}]_{\mathcal{B}}$, $[f(\bar{x})]_{\mathcal{B}}$ sunt matricile coloană formate din cordonatele vectorilor \bar{x} și $f(\bar{x})$ în baza \mathcal{B} (sau reprezentările matriciale ale celor doi vectori), atunci:

$$[f(\bar{x})]_{\mathcal{B}} = [f]_{\mathcal{B}} \cdot [\bar{x}]_{\mathcal{B}} ,$$

adică:

$$\begin{pmatrix} y^1 \\ \vdots \\ y^n \end{pmatrix} = \begin{pmatrix} f_1^1 & \cdots & f_1^n \\ \vdots & & \vdots \\ f_1^n & \cdots & f_n^n \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix},$$

unde $\bar{x} = x^1 \bar{a}_1 + \dots + x^n \bar{a}_n$ și $\bar{y} = y^1 \bar{a}_1 + \dots + y_n$ (propoziția 33)

Aplicând propozițiile 34 și 35 se obțin rezultatele următoare.

Propoziția 42 $Dacă f \in End(V)$ si \mathcal{B} este o bază a spațiului vectorial V, atunci

$$rang f = rang [f]_{\mathcal{B}}, \tag{11}$$

adică rangul endomorfismului f este egal cu rangul matricii sale în orice bază $\mathcal B$ a lui V.

Propoziția 43 Fie $\mathcal{B} = \{\bar{a}_1, \dots, \bar{a}_n\} \subset V$ şi $\mathcal{B}' = \{\bar{a}'_1, \dots, \bar{a}'_n\} \subset V$ două baze ale lui V şi fie $[\mathcal{B}, \mathcal{B}']$ matricea de trecere de la \mathcal{B} la \mathcal{B}' . Atunci:

$$[f]_{\mathcal{B}'} = [\mathcal{B}, \mathcal{B}']^{-1} \cdot [f]_{\mathcal{B}} \cdot [\mathcal{B}, \mathcal{B}'] \text{ sau}$$

$$[f]_{\mathcal{B}'} = [\mathcal{B}', \mathcal{B}] \cdot [f]_{\mathcal{B}} \cdot [\mathcal{B}, \mathcal{B}'].$$
(12)

6.2 Vectori şi valori proprii

Un vector propriu al endomorfismului liniar $f \in End(V)$ este un vector $\bar{v} \in V \setminus \{\bar{0}\}$ care are proprietatea că există $\lambda \in K$ pentru care $f(\bar{v}) = \lambda \bar{v}$. Scalarul $\lambda \in K$ care corespunde unui vector propriu \bar{v} se numește valoare proprie. Mulțimea valorilor proprii ale endomorfismului f se numește spectrul lui f și se notează cu $\sigma(f)$. Să remarcăm că un vector propriu este nenul, pe când o valoare proprie poate fi nulă.

Calculul valorilor şi vectorilor proprii pentru 6.3dimensiunile 2 și 3

Vom explicita în continuare calculul valorilor și vectorilor proprii în cazurile n=2 și n=3.

În cazul
$$n = 2$$
, se consideră baza $\mathcal{B} = \{\bar{e}_1, \bar{e}_2\} \subset V$. Atunci $F = \begin{pmatrix} f_1^1 & f_2^1 \\ f_2^2 & f_2^2 \end{pmatrix}$, iar polinomul caracteristic se scrie

 $F = \begin{pmatrix} f_1^1 & f_2^1 \\ f_1^2 & f_2^2 \end{pmatrix}, \text{ iar polinomul caracteristic se scrie}$ $P_f(\lambda) = \begin{vmatrix} f_1^1 - \lambda & f_2^1 \\ f_1^2 & f_2^2 - \lambda \end{vmatrix} = \lambda^2 - (f_1^1 + f_2^2)\lambda + (f_1^1 \cdot f_2^2 - f_2^1 \cdot f_1^2). \text{ Ecuația ale cărei soluții sunt valorile proprii (ecuația soluții sunt valorile proprii (ecuația soluții sunt valorile proprii sunt v$

$$\lambda^2 - (f_1^1 + f_2^2)\lambda + (f_1^1 \cdot f_2^2 - f_2^1 \cdot f_1^2) = 0, \tag{13}$$

sau:

$$\lambda^2 - (trace\ F) \cdot \lambda + \det F = 0.$$

Dacă ecuația (13) are rădăcini în K, atunci sistemul care dă coordonatele vectorilor proprii se reduce la una din ecuațiile sistemului omogen:

 $\left\{ \begin{array}{ccc} \left(f_1^1 - \lambda \right) v^1 & + f_2^1 v^2 & = 0 \\ f_1^2 v^1 & + \left(f_2^2 - \lambda \right) v^2 & = 0 \end{array} \right. .$

Exemple.

1. Fie endomorfismul liniar $f: \mathbb{R}^2 \to \mathbb{R}^2$,

f(x,y) = (3x + y, x + 3y). În baza canonică $\mathcal{B} = \{\bar{e}_1, \bar{e}_2\} \subset \mathbb{R}^2, \bar{e}_1 = (1,0), \bar{e}_2 = (0,1), \text{ matricea lui } f \text{ este } [f]_{\mathcal{B}} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix},$ deoarece $f(\bar{e}_1) = (3,1)$ şi $f(\bar{e}_2) = (1,3)$, $[f(\bar{e}_1)]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ şi $[f(\bar{e}_2)]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ alcătuiesc coloanele matricii $[f]_{\mathcal{B}}$. Polinomul caracteristic este $P_f(\lambda) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} =$ $=\lambda^2-6\lambda+8$, care are rădăcinile $\lambda_1=2$ și $\lambda_2=4$.

-Pentru $\lambda_1 = 2$, sistemul a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este $\begin{pmatrix} 3-2 & 1 \\ 1 & 3-2 \end{pmatrix}$ $\left(\begin{array}{c} 0 \\ 0 \end{array} \right) \Leftrightarrow \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} v^1 \\ v^2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \Leftrightarrow \left\{ \begin{array}{c} v^1 + v^2 & = 0 \\ v^1 + v^2 & = 0 \end{array} \right. \\ \Leftrightarrow v^1 + v^2 = 0 \Leftrightarrow v^2 = -v^1. \text{ Dacă notăm } v^1 = \alpha \in I\!\!R^*, \text{ atunci notăm } v^2 = 0 \end{cases}$

-Pentru $\lambda_1 = 4$, sistemul a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este $\begin{pmatrix} 3-4 & 1 \\ 1 & 3-4 \end{pmatrix}$ $\left(\begin{array}{c} 0 \\ 0 \end{array}\right) \Leftrightarrow \left(\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} v^1 \\ v^2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \Leftrightarrow \left\{\begin{array}{cc} -v^1 + v^2 & = 0 \\ v^1 - v^2 & = 0 \end{array}\right. \\ \Leftrightarrow v^1 - v^2 = 0 \Leftrightarrow v^2 = v^1. \ \ \mathrm{Dac\Bar{a}\ not\Bar{a}\ not\Bar{a}\$

Dacă se consideră baza $\mathcal{B}' = \{(1, -1), (1, 1)\} \subset \mathbb{R}^2$, rezultă matricea $[f]_{\mathcal{B}'} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$, care este o matrice diagonală.

2. Fie endomorfismul liniar $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,x+y). În baza canonică $\mathcal{B} = \{\bar{e}_1,\bar{e}_2\} \subset \mathbb{R}^2$, matricea lui f este $[f]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Polinomul caracteristic este $\begin{vmatrix} 1-\lambda & 0 \\ 1 & 1-\lambda \end{vmatrix} = (1-\lambda)^2$, cu rădăcina dublă $\lambda_1 = \lambda_2 = 1$. Sistemul a cărui

soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este $\begin{pmatrix} 1-1 & 0 \\ 1 & 1-1 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow v^1 = 0.$ Rezultă că mulțimea vectorilor proprii este de forma

 $\{(0,v^2)|v^2\in\mathbb{R}^*\}=\{\alpha(0,1)|\alpha\in\mathbb{R}^*\}$. În cazul acestui endomorfism nu există o bază a lui \mathbb{R}^2 , formată din vectori proprii. 3. Fie endomorfismul liniar $f:\mathbb{R}^2\to\mathbb{R}^2$, f(x,y)=(x-y,x+y). În baza canonică $\mathcal{B}=\{\bar{e}_1,\bar{e}_2\}\subset\mathbb{R}^2$, matricea lui f este $[f]_{\mathcal{B}}=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$. Polinomul caracteristic este $\begin{vmatrix}1-\lambda&-1\\1&1-\lambda\end{vmatrix}=(1-\lambda)^2+1$, care nu are rădăcini reale. Rezultă că endomorfismul f nu are vectori și valori proprii.

4. Fie endomorfismul liniar $g: \mathbb{C}^2 \to \mathbb{C}^2$ al spațiului vectorial complex \mathbb{C}^2 , f(x,y) = (x-y,x+y). În baza canonică $\mathcal{B} = \{\bar{e}_1,\bar{e}_2\} \subset \mathbb{C}^2$, matricea lui g este $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Polinomul caracteristic este $\begin{vmatrix} 1-\lambda & -1 \\ 1 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 + 1$, care are ca rădăcini $\lambda_{1,2} = 1 \pm i$, unde $i \in \mathbb{C}$ este unitatea imaginară $(i^2 = -1)$.

Pentru $\lambda_1 = 1 + i$, sistemul a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este:

$$\begin{pmatrix} 1 - (1+i) & -1 \\ 1 & 1 - (1+i) \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow$$

$$\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -iv^1 - v^2 &= 0 \\ v^1 - iv^2 &= 0 \end{cases} \Leftrightarrow$$

 $-iv^2=0$. Dacă notăm $v^2=\alpha\in \mathcal{C}^*$, atunci $\bar{v}_1=(i\alpha,\alpha)=\alpha(i,1)$.

Pentru $\lambda_1 = 1 - i$, sistemul a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este:

Pentru
$$\lambda_1 = 1 - i$$
, sistemul a carul soluție nenula reprezinta coordona
$$\begin{pmatrix} 1 - (1 - i) & -1 \\ 1 & 1 - (1 - i) \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} iv^1 - v^2 &= 0 \\ v^1 + iv^2 &= 0 \end{cases} \Leftrightarrow v^1 + iv^2 = 0$$
. Dacă notăm $v^2 = \alpha \in \mathbb{C}^*$, atunci $\bar{v}_1 = (-i\alpha, \alpha) = \alpha(-i, 1)$.

Dacă se consideră baza $\mathcal{B}' = \{(i,1),(-i,1)\} \subset \mathbb{C}^2$, rezultă matricea diagonală $[g]_{\mathcal{B}'} = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}$.

Să remarcăm că endomorfismul $f \in End(\mathbb{R}^2)$ de la exemplul anterior, are aceeași matrice în baza canonică a lui \mathbb{R}^2 ca g, dar nu are nici o valoare proprie $(\sigma(f) = \emptyset)$, pe când $\sigma(g) = \{1 \pm i\}$. Deși cele două endomorfisme au același polinom caracteristic $P_f(\lambda) = P_q(\lambda) = \lambda^2 - 2\lambda + 2$, ecuația $P_f(\lambda) = 0$ nu are rădăcini în \mathbb{R} , pe când ecuația $P_q(\lambda) = 0$ are două rădăcini în C. Diferența provine din faptul că IR nu este un corp algebric închis, adică nu toate polinoamele cu coeficienți reali au rădăcinile în \mathbb{R} , pe când \mathbb{C} este un corp algebric închis.

Să studiem acum cazul n=3. Se consideră baza $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}\subset V$. Atunci matricea endomorfismului $f\in End(f)$ are

forma

$$F = \begin{pmatrix} f_1^1 & f_2^1 & f_3^1 \\ f_1^2 & f_2^2 & f_3^2 \\ f_1^3 & f_2^3 & f_3^3 \end{pmatrix},$$

iar ecuația caracteristică se scrie

$$-\lambda^3 + (trace \ F) \cdot \lambda^2 - \Delta_2 \cdot \lambda + \det F = 0, \tag{14}$$

unde:

trace
$$F = f_1^1 + f_2^2 + f_3^3$$
 si $\Delta_2 = \begin{vmatrix} f_2^2 & f_3^2 \\ f_2^3 & f_3^3 \end{vmatrix} + \begin{vmatrix} f_1^1 & f_3^1 \\ f_1^3 & f_3^3 \end{vmatrix} + \begin{vmatrix} f_1^1 & f_2^1 \\ f_1^1 & f_2^2 \end{vmatrix}$,

(adică trace F este suma elementelor matricii F de pe diagonala principală, iar Δ_2 este suma complemenților algebrici ai elementelor de pe diagonala principală). Sistemul a cărui solutie nenulă reprezintă coordonatele vectorilor proprii corespunzători valorii proprii λ , este:

$$\left\{ \begin{array}{lll} \left(f_1^1 - \lambda \right) v^1 & + f_2^1 v^2 & + f_3^1 v^3 & = 0 \\ f_1^2 v^1 & + \left(f_2^2 - \lambda \right) v^2 & + f_3^2 v^3 & = 0 \\ f_1^3 v^1 & + f_2^3 v^2 & \left(f_3^3 - \lambda \right) v^3 & = 0 \end{array} \right. .$$

Exemple.

1. Fie endomorfismul liniar $f: \mathbb{R}^3 \to \mathbb{R}^3$,

f. Fie endomornismu ilmar
$$f: \mathbb{R}^{\gamma} \to \mathbb{R}^{\gamma}$$
, $f(x,y,z) = (4x + 2y - 2z, x + 3y + z, -x - y + 5z)$. Considerând baza canonică $\mathcal{B} = \{\bar{e}_1 = (1,0,0), \bar{e}_2 = (0,1,0), \bar{e}_3 = (0,0,1)\} \subset \mathbb{R}^3$, matricea endomorfismului f este $F = [f]_{\mathcal{B}} = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 3 & 1 \\ -1 & -1 & 5 \end{pmatrix}$. Polinomul caracteristic este $P_f(\lambda) = (0,0,0)$

$$\begin{vmatrix} 4-\lambda & 2 & -2 \\ 1 & 3-\lambda & 1 \\ -1 & -1 & 5-\lambda \end{vmatrix} = 48 - 44\lambda + 12\lambda^2 - \lambda^3. \text{ Pentru a folosi formula (14), se calculează trace } f = 4+3+5=12,$$

$$\Delta_2 = \begin{vmatrix} 3 & 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 4 & -2 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = 44 \text{ şi}$$

$$\det F = \begin{vmatrix} 4 & 2 & -2 \\ 1 & 3 & 1 \\ -1 & -1 & 5 \end{vmatrix} = 48. \text{ Rădăcinile } P_f(\lambda) = 0 \text{ sunt } \lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 6, \text{ deci } \sigma(f) = \{2, 4, 6\}.$$

$$\text{Pentru } \lambda_1 = 2, \text{ sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este}$$

$$\Delta_2 = \begin{vmatrix} 3 & 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 4 & -2 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = 44$$
ş

$$\det F = \begin{vmatrix} 4 & 2 & -2 \\ 1 & 3 & 1 \\ -1 & -1 & 5 \end{vmatrix} = 48. \text{ Rădăcinile } P_f(\lambda) = 0 \text{ sunt } \lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 6, \text{ deci } \sigma(f) = \{2, 4, 6\}.$$

Tentru
$$\lambda_1 = 2$$
, sistemul omogen a carui soluție nenula reprezinta coordonatele vectorilor proprii corespunzatori este $\begin{pmatrix} 2 & 2 & -2 \\ 1 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, de unde $v^1 = -\alpha$, $v^2 = \alpha$, $v^3 = 0$, deci $\bar{v}_1 = \alpha(-1, 1, 0)$, $\alpha \in \mathbb{R}^*$.

Pentru $\lambda_2 = 4$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este $\begin{pmatrix} 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Pentru
$$\lambda_2 = 4$$
, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii co $\begin{pmatrix} 0 & 2 & -2 \\ 1 & -1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, de unde $v^1 = 0$, $v^2 = \beta$, $v^3 = \beta$, deci $\bar{v}_2 = \beta(0, 1, 1)$, $\beta \in \mathbb{R}^*$.

Pentru $\lambda_3 = 6$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este

$$\begin{pmatrix} -2 & 2 & -2 \\ 1 & -3 & 1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde } v^1 = -\gamma, v^2 = 0, v^3 = \gamma, \text{ deci } \bar{v}_3 = \gamma(-1, 0, 1), \gamma \in I\!\!R^*.$$

În baza
$$\mathcal{B}' = \{(-1,1,0), (0,1,1), (-1,0,1)\} \subset \mathbb{R}^3$$
, rezultă matricea diagonală $[f]_{\mathcal{B}'} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$.

2. Fie endomorfismul liniar

matricea endomorfismului
$$f$$
 este $F = [f]_{\mathcal{B}} = \begin{pmatrix} 9 & 3 & -3 \\ 2 & 8 & -2 \\ -1 & -1 & 7 \end{pmatrix}$. Avem trace $f = 9 + 8 + 7 = 24$

2. File endomornismul limiar
$$f: \mathbb{R}^3 \to \mathbb{R}^3, \ f(x,y,z) = (9x+3y-3z, \ 2x+8y-2z, \ -x-y+7z)$$
. Considerând baza canonică $\mathcal{B} = \{\bar{e}_1, \ \bar{e}_2, \ \bar{e}_3\} \subset \mathbb{R}^3,$ matricea endomorfismului f este $F = [f]_{\mathcal{B}} = \begin{pmatrix} 9 & 3 & -3 \\ 2 & 8 & -2 \\ -1 & -1 & 7 \end{pmatrix}$. Avem trace $f = 9+8+7=24,$ $\Delta_2 = \begin{vmatrix} 8 & -2 \\ -1 & 7 \end{vmatrix} + \begin{vmatrix} 9 & -3 \\ -1 & 7 \end{vmatrix} + \begin{vmatrix} 9 & 3 \\ 2 & 8 \end{vmatrix} = 180, \det F = \begin{vmatrix} 9 & 3 & -3 \\ 2 & 8 & -2 \\ -1 & -1 & 7 \end{vmatrix} = 432, \text{ prim urmare polinomul caracteristic este}$ $P_f(\lambda) = -\lambda^3 + 24\lambda^2 - 180\lambda + 432 = -(\lambda - 6)^2(\lambda - 12), \ \sigma(f) = \{6, 12\}.$

Pentru $\lambda_1 = 6$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este

$$\begin{pmatrix} 3 & 3 & -3 \\ 2 & 2 & -2 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, de unde $v^1 = -\alpha + \beta$, $v^2 = \alpha$, $v^3 = \beta$. Rezultă că un vector propriu asociat valorii proprii $\lambda_1 = 6$ are forma $\bar{v} = (-\alpha + \beta, \alpha, \beta) = \alpha(-1, 1, 0) + \beta(1, 0, 1)$, $\alpha, \beta \in \mathbb{R}$. Rezultă că $\{\bar{v}_1 = (-1, 1, 0), \bar{v}_2 = (1, 0, 1)\}$

proprii $\lambda_1 = 6$ are forma $v = (-\alpha + \beta, \alpha, \beta) = \alpha(-1, 1, 0) + \beta(1, 0, 1), \alpha, \beta \in \mathbb{R}$. Rezultă că $\{\bar{v}_1 = (-1, 1, 0), \bar{v}_2 = (1, 0, 1)\}$ generează un subspațiu vectorial de dimensiune 2, ai cărui vectori nenuli sunt vectorii proprii asociați valorii proprii $\lambda_1 = 6$.

Pentru $\lambda_1 = 12$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este

$$\begin{pmatrix} -3 & 3 & -3 \\ 2 & -4 & -2 \\ -1 & -1 & -5 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde}$$

$$v^1 = -3\gamma, \ v^2 = -2\gamma, \ v^3 = \gamma \ , \text{ deci } \bar{v}_3 = \gamma(-3, -2, 1), \ \gamma \in I\!\!R^*.$$

În baza $\mathcal{B}' = \{(-1,1,0), (1,0,1), (-3,-2,1)\} \subset \mathbb{R}^3$, rezultă matricea diagonală $[f]_{\mathcal{B}'} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 12 \end{pmatrix}$.

3. Fie endomorfismul liniar $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (6x+9y, 2x+8y-2z, -4x+5y+10z). Considerând baza canonică

3. Fie endomorfismul liniar
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x, y, z) = (6x + 9y, 2x + 8y - 2z, -4x + 5y + 10z)$. Considerând baza canonică $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \subset \mathbb{R}^3$, matricea endomorfismului f este $F = [f]_{\mathcal{B}} = \begin{pmatrix} 6 & 9 & 0 \\ 2 & 8 & -2 \\ -4 & 5 & 10 \end{pmatrix}$. Avem trace $f = 6 + 8 + 10 = 24$,

$$\Delta_2 = \begin{vmatrix} 8 & -2 \\ 5 & 10 \end{vmatrix} + \begin{vmatrix} 6 & 0 \\ -4 & 10 \end{vmatrix} + \begin{vmatrix} 6 & 9 \\ 2 & 8 \end{vmatrix} = 180, \det F = \begin{vmatrix} 6 & 9 & 0 \\ 2 & 8 & -2 \\ -4 & 5 & 10 \end{vmatrix} = 432, \text{ prim urmare polinomul caracteristic este}$$

 $P_f(\lambda) = -\lambda^3 + 24\lambda^2 - 180\lambda + 432 = -(\lambda - 6)^2(\lambda - 12) \Rightarrow \sigma(f) = \{6, 12\}.$

Pentru $\lambda_1 = 6$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este $\begin{pmatrix} 0 & 9 & 0 \\ 2 & 2 & -2 \\ -4 & 5 & 4 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde } v^1 = \alpha, \ v^2 = 0, \ v^3 = \alpha. \text{ Rezultă că un vector propriu asociat valorii proprii } \lambda_1 = 6 \text{ are forma } \bar{v}_1 = \alpha(1,0,1), \ \alpha \in I\!\!R^*.$

Pentru $\lambda_1 = 12$, sistemul omogen a cărui soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este

$$\begin{pmatrix} -6 & 9 & 0 \\ 2 & -4 & -2 \\ -4 & 5 & -2 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde } v^1 = -3\beta, \ v^2 = -2\beta, \ v^3 = \beta. \text{ Rezultă că un vector propriu asociat valorii proprii } \lambda_1 = 6 \text{ are forma } \bar{v}_1 = \beta(-3, -2, 1), \ \beta \in \mathbb{R}^*.$$

Să observăm că, spre deosebire de exemplul anterior, spațiul vectorial generat de vectorii proprii are dimensiunea 2, fiind generat de vectorii $\{(1,0,1),(-3,-2,1)\}$ şi nu mai este întreg spațiul \mathbb{R}^3 . Cu toate acestea, polinoamele caracteristice asociate celor două endomorfisme, coincid. Există așadar endomorfisme care au același polinom caracetristic, dar subspațiile generate de vectorii proprii au dimensiuni diferite.

4. Fie endomorfismul liniar $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (6x + 9y, 10y - 4z, -6x + 7y + 8z). Considerând baza canonică $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \subset \mathbb{R}^3$, matricea endomorfismului f este

$$F = [f]_{\mathcal{B}} = \begin{pmatrix} 6 & 9 & 0 \\ 0 & 10 & -4 \\ -6 & 7 & 8 \end{pmatrix}.$$
 Polinomul caracteristic este:
$$P_f(\lambda) = -\lambda^3 + 24\lambda^2 - 216\lambda + 864 = -(\lambda - 12)\left(\lambda^2 - 12\lambda + 72\right), \text{ cu singura rădăcină reală } \lambda_1 = 12. \text{ Sistemul omogen a cărui}$$

soluție nenulă reprezintă coordonatele vectorilor proprii corespunzători este

$$\begin{pmatrix} -6 & 9 & 0 \\ 0 & -2 & -4 \\ -6 & 7 & -4 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde } \bar{v}_1 = \alpha(-3, -2, 1), \alpha \in \mathbb{R}^* .$$

5. Fie endomorfismul liniar $g: \mathbb{C}^3 \to \mathbb{C}^3$,

g(x,y,z)=(6x+9y, 10y-4z, -6x+7y+8z), care are aceeaşi matrice ca endomorfismul f din exemplul de mai sus. Polinomul caracteristic este deci acelaşi: $P_q(\lambda) = -\lambda^3 + 24\lambda^2 - 216\lambda + 864 = -(\lambda - 12)(\lambda^2 - 12\lambda + 72)$, cu rădăcinile $\lambda_1 = 12, \ \lambda_{2,3} = 6 \pm 6i.$

Pentru $\lambda_1 = 6$, se obține ca mai sus $\bar{v}_1 = \alpha(-3, -2, 1)$, $\alpha \in \mathbb{C}^*$.

Pentru $\lambda_2 = 6 - 6i$, se obține sistemul

$$\begin{pmatrix} 6i & 9 & 0 \\ 0 & 4+6i & -4 \\ -6 & 7 & 2+6i \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ de unde } \bar{v}_2 = \beta(3, -2i, 3-2i), \ \beta \in \mathcal{C}^*.$$

Pentru $\lambda_3 = 6 + 6i$, se obţine $\bar{v}_3 = \gamma(3, 2i, 3 + 2i), \gamma \in \mathbb{C}^*$.

În baza
$$\mathcal{B}' = \{(-3, -2, 1), (3, -2i, 3 - 2i), (3, 2i, 3 + 2i)\} \subset \mathbb{C}^3$$
, rezultă matricea $[f]_{\mathcal{B}'} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 - 6i & 0 \\ 0 & 0 & 6 + 6i \end{pmatrix}$.

Să remarcăm faptul că pe când un endomorfism al unui spațiu vectorial real de dimensiune pară (în particular 2) poate să aibă spectrul vid, un endomorfism al unui spațiu vectorial real de dimensiune impară (în particular 3) are întotdeauna spectrul nevid, pentru că orice polinom cu coeficienți reali, de grad impar, are cel puțin o rădăcină reală.

6.4Diagonalizarea matricilor endomorfismelor liniare

Fie V un K-spațiu vectorial finit dimensional. Fie $\lambda_0 \in K$ o valoare proprie a lui $f \in End(V)$ și fie $V_{\lambda_0} = \{\bar{v} \in V | f(\bar{v}) = \lambda_0 \bar{v}\}$, adică mulțimea vectorilor proprii, corespunzătoare valorii proprii λ_0 , la care se adaugă vectorul nul.

Propoziția 44 Submulțimea $V_{\lambda_0} \subset V$ este un subspațiu vectorial al lui V, invariat de f (adică $f(V_{\lambda_0}) \subset V_{\lambda_0}$).

Subspațiul vectorial $V_{\lambda_0} \subset V$ se numește subspațiul propriu corespunzător valorii proprii λ_0 .

Propoziția 45 Dimensiunea dim V_{λ_0} (numită multiplicitate geometrică) nu depășește multiplicitatea lui λ_0 , ca rădăcină a polinomului caracteristic $P_f(\lambda)$ (numită multiplicitate algebrică).

Propoziția 46 Fie $\bar{v}_1, \ldots, \bar{v}_k$ vectori proprii ai unui endomorfism liniar $f \in End(V)$, care corespund valorilor proprii $\lambda_1, \ldots, \lambda_k$, diferite două câte două. Atunci sistemul format din vectorii $\{\bar{v}_1, \ldots, \bar{v}_k\} \subset V$ este un sistem liniar independent.

Teorema 4 (Diagonalizarea endomorfismelor) Fie $f \in End(V)$ un endomorfism liniar al unui K-spaţiu vectorial V, dim V = n. Să presupunem că f are toate valorile proprii în K, iar, pentru fiecare valoare proprie $\lambda \in \sigma(f)$, multiplicitatea geometrică este egală cu multiplicitatea algebrică (adică dimensiunea subspaţiului propriu corespunzător valorii proprii λ , $V_{\lambda} \subset V$, este egală cu multiplicitatea lui λ ca rădăcină a polinomului caracteristic P_f). Atunci există o bază $\mathcal{B}_f \subset V$ astfel încât matricea $[f]_{\mathcal{B}_f}$, a endomorfismului f în baza \mathcal{B}_f , este diagonală, unde pe diagonală sunt valorile proprii, fiecare valoare proprie fiind luată de atâtea ori cât este multiplicitatea sa (algebrică ori geometrică).

Exemplu. Fie $f: \mathbb{R}^5 \to \mathbb{R}^5$, $f(x^1, x^2, x^3, x^4, x^5) =$ = $(12x^1 - 4x^2 + x^3 + 5x^4 + 3x, 9x^2, 3x^1 - 2x^2 + 8x^3 + x^4 + 3x^5, -3x^1 + 4x^2 - x^3 + 4x^4 - 3x^5, -6x^1 + 6x^2 - 6x^4 + 3x^5)$. În baza canonică $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_5\}$ a lui \mathbb{R}^5 , f are matricea

$$[f]_{\mathcal{B}} = \begin{pmatrix} 12 & -4 & 1 & 5 & 3\\ 0 & 9 & 0 & 0 & 0\\ 3 & -2 & 8 & 1 & 3\\ -3 & 4 & -1 & 4 & -3\\ -6 & 6 & 0 & -6 & 3 \end{pmatrix}.$$

Polinomul caracteristic este:

$$P_f(\lambda) = \begin{vmatrix} 12 - \lambda & -4 & 1 & 5 & 3\\ 0 & 9 - \lambda & 0 & 0 & 0\\ 3 & -2 & 8 - \lambda & 1 & 3\\ -3 & 4 & -1 & 4 - \lambda & -3\\ -6 & 6 & 0 & -6 & 3 - \lambda \end{vmatrix},$$

 $P_f(\lambda) = 13122 - 10935\lambda + 3402\lambda^2 - 504\lambda^3 + 36\lambda^4 - \lambda^5 = (-1)^5(\lambda - 3)(\lambda - 6)(\lambda - 9)^3$. Valorile proprii sunt $\lambda_1 = 3, \lambda_2 = 6$,

 $\lambda_3 = \lambda_4 = \lambda_5 = 9$. Multiplicitățile algebrice ale valorilor proprii $\lambda_1 = 3$ și $\lambda_2 = 6$ sunt 1, iar ale valorii proprii $\lambda_3 = 9$ este 3. $\mathcal{B}_1 = \{\bar{v}_1\} \subset V_{\lambda_1}$ este o bază, iar V_{λ_1} este spațiul vectorial al soluțiilor sistemului

$$\begin{pmatrix} 9 & -4 & 1 & 5 & 3 \\ 0 & 6 & 0 & 0 & 0 \\ 3 & -2 & 5 & 1 & 3 \\ -3 & 4 & -1 & 1 & -3 \\ -6 & 6 & 0 & -6 & 0 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \\ v^4 \\ v^5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Rezultă $v^1 = \alpha$, $v^2 = 0$, $v^3 = \alpha$, $v^4 = -2\alpha$, $v^5 = -3\alpha$, $\alpha \in \mathbb{R}$, de unde vectoriul propriu $\bar{v}_1 = (2, 0, 1, -2, -3)$. $\mathcal{B}_2 = \{\bar{v}_2\} \subset V_{\lambda_2}$ este o bază, iar V_{λ_2} este spațiul vectorial al soluțiilor sistemului

$$\begin{pmatrix} 6 & -4 & 1 & 5 & 3 \\ 0 & 3 & 0 & 0 & 0 \\ 3 & -2 & 2 & 1 & 3 \\ -3 & 4 & -1 & -2 & -3 \\ -6 & 6 & 0 & -6 & -3 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \\ v^4 \\ v^5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Rezultă asemănător vectorul propriu $\bar{v}_2 = (-1, 0, 1, 1, 0)$.

 $\mathcal{B}_3 = \{\bar{v}_3, \bar{v}_4, \bar{v}_5\} \subset V_{\lambda_5}$ este o bază, iar V_{λ_3} este spațiul vectorial al soluțiilor sistemului

$$\begin{pmatrix} 3 & -4 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 3 & -2 & -1 & 1 & 3 \\ -3 & 4 & -1 & -5 & -3 \\ -6 & 6 & 0 & -6 & -6 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \\ v^3 \\ v^4 \\ v^5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Vectorii proprii corespunzători valorii proprii $\lambda_3 = 9$ sunt $\bar{v}_3 = (1, 1, 1, 0, 0)$, $\bar{v}_4 = (1, 2, 0, 1, 0)$ și $\bar{v}_5 = (-1, 0, 0, 0, 1)$, care formează o bază în V_{λ_3} .

În baza $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 = \{\bar{v}_1, \dots, \bar{v}_5\}$, matricea endomorfismului f este

$$[f]_{\mathcal{B}} = \left(\begin{array}{ccccc} 3 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 \end{array}\right),$$

deci endomorfismul este diagonalizabil.

7 Forme biliniare

Fie V un spațiu vectorial peste corpul comutativ K.

O aplicație $\varphi: V \times V \to K$ se numește formă biliniară dacă este K-liniară în ambele argumente, adică:

- 1. $\varphi(\alpha \bar{x}_1 + \beta \bar{x}_2, \bar{y}) = \alpha \varphi(\bar{x}_1, \bar{y}) + \beta \varphi(\bar{x}_2, \bar{y}), (\forall) \bar{x}_1, \bar{x}_2, \bar{y} \in V, \alpha, \beta \in K$ şi
- 2. $\varphi(\bar{x}, \alpha \bar{y}_1 + \beta \bar{y}_2) = \alpha \varphi(\bar{x}, \bar{y}_1) + \beta \varphi(\bar{x}, \bar{y}_2), (\forall) \bar{x}, \bar{y}_1, \bar{y}_2 \in V, \alpha, \beta \in K.$

Spunem că o formă biliniară este simetrică dacă $\varphi(\bar{x}, \bar{y}) = \varphi(\bar{y}, \bar{x}), \ (\forall)\bar{x}, \bar{y} \in V$ și antisimetrică dacă $\varphi(\bar{x}, \bar{y}) = -\varphi(\bar{y}, \bar{x}), \ (\forall)\bar{x}, \bar{y} \in V$. Dacă $\varphi: V \times V \to K$ este o formă biliniară, are loc identitatea

$$\varphi(\bar{x}, \bar{y}) = \frac{1}{2} \left(\varphi(\bar{x}, \bar{y}) + \varphi(\bar{y}, \bar{x}) \right) + \frac{1}{2} \left(\varphi(\bar{x}, \bar{y}) - \varphi(\bar{y}, \bar{x}) \right)$$
$$= \varphi'(\bar{x}, \bar{y}) + \varphi''(\bar{x}, \bar{y}).$$

Atunci:

- 1. $\varphi': V \times V \to K$, $\varphi'(\bar{x}, \bar{y}) = \frac{1}{2} (\varphi(\bar{x}, \bar{y}) + \varphi(\bar{y}, \bar{x}))$ este o formă biliniară simetrică, numită forma biliniară simetrică asociată formei biliniare φ și
- 2. $\varphi'': V \times V \to K$, $\varphi'(\bar{x}, \bar{y}) = \frac{1}{2} (\varphi(\bar{x}, \bar{y}) \varphi(\bar{y}, \bar{x}))$ este o formă biliniară antisimetrică, numită forma biliniară antisimetrică asociată formei biliniare φ .

Fie $\varphi: V \times V \to K$ o formă biliniară şi $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ o bază a lui V. Vom presupune în continuare că spațiul vectorial V este finit dimensional. $Matricea\ formei\ biliniare\ corespunzătoare\ bazei <math>\mathcal{B}$ se definește prin

 $[\varphi]_{\mathcal{B}} = (\varphi_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(K)$, unde $\varphi_{ij} = \varphi(\bar{e}_i, \bar{e}_j)$. Dacă $\bar{x} = \sum_{i=1}^n x^i \bar{e}_i$, $\bar{y} = \sum_{i=1}^n y^i \bar{e}_i \in V$ şi $[\bar{x}]_{\mathcal{B}}$, $[\bar{y}]_{\mathcal{B}}$ sunt reprezentările matriciale ale vectorilor \bar{x} și \bar{y} în baza \mathcal{B} , atunci:

$$\varphi(\bar{x}, \bar{y}) = \sum_{i,j=1}^{n} x^{i} y^{j} \varphi_{ij}, \tag{15}$$

sau, cu scriere matricială:

$$\varphi(\bar{x}, \bar{y}) = \begin{pmatrix} x^1 & \cdots & x^n \end{pmatrix} \cdot \begin{pmatrix} \varphi_{11} & \cdots & \varphi_{1n} \\ \vdots & & \vdots \\ \varphi_{n1} & \cdots & \varphi_{nn} \end{pmatrix} \cdot \begin{pmatrix} y^1 \\ \vdots \\ y^n \end{pmatrix} \Leftrightarrow \\
\Leftrightarrow \varphi(\bar{x}, \bar{y}) = [\bar{x}]_{\mathcal{B}}^t \cdot [\varphi]_{\mathcal{B}} \cdot [\bar{y}]_{\mathcal{B}}, \tag{16}$$

Propoziția 47 Forma biliniară $\varphi: V \times V \to K$ este simetrică (antisimetrică) dacă și numai dacă matricea sa într-o bază oarecare a lui V este simetrică (antisimetrică).

Propoziția 48 Fie $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ și $\mathcal{B}' = \{\bar{e}'_1, \dots, \bar{e}'_n\}$ două baze ale K-spațiului vectorial V, cu matricea de trecere $[\mathcal{B}, \mathcal{B}']$. Atunci are loc formula:

$$[\varphi]_{\mathcal{B}'} = [\mathcal{B}, \mathcal{B}']^t \cdot [\varphi]_{\mathcal{B}} \cdot [\mathcal{B}, \mathcal{B}'],\tag{17}$$

unde $\varphi: V \times V \to K$ este o formă biliniară.

Propoziția 49 Rangul matricii unei forme biliniare este același, indiferent de baza în care se scrie matricea formei biliniare.

Rangul matricii unei forme biliniare $\varphi: V \times V \to K$ într-o bază oarecare, se numește rangul formei biliniare φ . O formă biliniară $\varphi: V \times V \to K$ se spune că este nedegenerată dacă din $\varphi(\bar{x}, \bar{y}) = 0$, $(\forall) \bar{y} \in V$, rezultă $\bar{x} = 0$.

Propoziția 50 Fie $\varphi: V \times V \to K$ o formă biliniară pe un spațiu vectorial finit dimensional V. Următoarele condiții sunt echivalente:

- 1. φ este nedegenerată;
- 2. matricea $[\varphi]_{\mathcal{B}}$, a formei φ într-o bază $\mathcal{B} \subset V$, este nesingulară;
- 3. $dac\breve{a} \varphi(\bar{x}, \bar{y}) = 0$, $(\forall)\bar{x} \in V$, $atunci \bar{y} = 0$.

8 Forme pătratice

O aplicație $p:V\to K$ este o formă pătratică pe K-spațiul vectorial V dacă există o formă biliniară $\varphi:V\times V\to K$, numiă formă biliniară asociată, astfel încât $p(\bar{x})=\varphi(\bar{x},\bar{x}),\ (\forall)\bar{x}\in V$.

Propoziția 51 Dacă $p:V \to K$ este o formă pătratică, atunci există o singură formă biliniară simetrică φ , asociată ei, dată de formula:

$$\varphi\left(\bar{x},\bar{y}\right) = \frac{1}{2} \left(p\left(\bar{x} + \bar{y}\right) - p(\bar{x}) - p(\bar{y}) \right).$$

Forma biliniară simetrică asociată unei forme pătratice se numește forma polară sau forma dedublată a formei pătratice. Matricea unei forme pătratice $p: V \to K$ într-o bază $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ se definește ca fiind matricea formei biliniare simetrice asociate ei (formei polare), corespunzătoare bazei \mathcal{B} . Din propoziția 47 rezultă că matricea unei forme pătratice este o matrice simetrică.

Să studiem reprezentarea pe coordonate a unei forme pătratice.

Fie $p: V \to K$ o formă pătratică și $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ o bază. Forma pătratică p are forma:

$$p(\bar{x}) = \sum_{i,j=1}^{n} b_{ij} x^{i} x^{j}, \tag{18}$$

unde $\bar{x} = x^1 \bar{e}_1 + \dots + x^n \bar{e}_n \in V$ şi matricea formei pătratice este $[p]_{\mathcal{B}} = (b_{ij})_{i,j=\overline{1,n}}, b_{ij} = b_{ji}, (\forall) i, j = \overline{1,n}$. Forma biliniară simetrică asociată formei pătratice (forma polară sau dedublată) este:

$$\varphi(\bar{x}, \bar{y}) = \sum_{i,j=1}^{n} b_{ij} x^{i} y^{j},$$

unde $\bar{x} = x^1 \bar{e}_1 + \dots + x^n \bar{e}_n, \ \bar{y} = y^1 \bar{e}_1 + \dots + y^n \bar{e}_n \in V.$

Exemplu

Fie $p: \mathbb{R}^2 \to \mathbb{R}$, $p(\bar{v}) = x^2 + 4xy - y^2$, unde $\bar{v} = (x, y)$. Forma polară sau dedublată este: $\varphi((x, y), (x', y')) = xx' + 2(xy' + yx') - yy'$.

8.1 Forme canonice pentru forme pătratice

Propoziția 52 (Gauss) Fie V un K-spațiu vectorial, dim V = n. Pentru orice formă pătratică nenulă $p: V \times V \to K$, există o bază $\mathcal{B}' = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ și scalarii nenuli $\alpha_1, \dots, \alpha_k \in K^*$, $1 \leq k \leq n$, astfel încât:

$$p(\bar{x}) = \alpha_1 \cdot (x^1)^1 + \dots + \alpha_k \cdot (x^k)^2, \tag{19}$$

unde $\bar{x} = x^1 \bar{v}_1 + \cdots + x^n \bar{v}_n \in V$.

Demonstrația propoziției 52 este constructivă, metoda descrisă în demonstrație se numește *metoda lui Gauss* de aducere la formă canonică a unei forme pătratice.

Exemple

1. Fie
$$p: \mathbb{R}^3 \to \mathbb{R}$$
, $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ baza canonică a lui \mathbb{R}^3 , $p(\bar{v}) = x^2 - 2xy + 2xz + 3y^2 - 6yz + 2z^2$, unde $\bar{v} = (x, y, z) = x\bar{e}_1 + y\bar{e}_2 + z\bar{e}_3 \in \mathbb{R}^3$. Avem $p(\bar{v}) = (x^2 - 2xy + 2xz) + 3y^2 - 6yz + 2z^2 = [(x - y + z)^2 - y^2 - z^2 + 2yz] + 3y^2 - 6yz + 2z^2 = (x - y + z)^2 - y^2 - z^2 + 2yz + 3y^2 - 6yz + 2z^2 = (x - y + z)^2 + 2y^2 + z^2 - 4yz = (x - y + z)^2 + 2(y^2 - 2yz) + z^2 = (x - y + z)^2 + 2[(y - z)^2 - z^2] + z^2 = (x - y + z)^2 + 2(y - z)^2 - z^2$. Fie $x' = x - y + z$, $y' = y - z$, $z' = z$. Matricial, avem:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

deci

$$[\mathcal{B}, \mathcal{B}']^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix},$$

prin urmare

$$[\mathcal{B},\mathcal{B}'] = \left(egin{array}{ccc} 1 & -1 & 1 \ 0 & 1 & -1 \ 0 & 0 & 1 \end{array}
ight)^{-1} = \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{array}
ight),$$

deci baza
$$\mathcal{B}' = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\} \subset I\!\!R^3$$
 în care p are forma $p(\bar{v}) = (x')^2 + 2(y')^2 - (z')^2, \ \bar{v} = x'\bar{v}_1 + y'\bar{v}_2 + z'\bar{v}_3$ este

$$\mathcal{B}' = \{ \bar{v}_1 = \bar{e}_1, \, \bar{v}_2 = \bar{e}_1 + \bar{e}_2, \, \bar{v}_3 = \bar{e}_2 + \bar{e}_3 \}.$$

 $\mathcal{B}' = \{ \bar{v}_1 = \bar{e}_1, \ \bar{v}_2 = \bar{e}_1 + \bar{e}_2, \ \bar{v}_3 = \bar{e}_2 + \bar{e}_3 \}.$ 2. Fie $p : \mathbb{R}^3 \to \mathbb{R}, \ \mathcal{B} = \{ \bar{e}_1, \bar{e}_2, \bar{e}_3 \}$ baza canonică a lui \mathbb{R}^3 , $p(\bar{v}) = x^2 - 2xy + 2xz + y^2 + 2z^2$, unde

 $\bar{v} = (x, y, z) = x\bar{e}_1 + y\bar{e}_2 + z\bar{e}_3 \in \mathbb{R}^3$

Avem $p(\bar{v}) = (x-y+z)^2 + 2yz + z^2$. Pentru a continua, se consideră coordonatele (x',y',z'), astfel încât x=x', y=y'+z', z=y'-z', deci $p(\bar{v}) = (x'-y'-z'+y'-z')^2 + 2(y'+z')(y'-z') + (y'-z')^2 = (x'-2z')^2 + 3(y')^2 - (z')^2 - 2y'z' = (x'-2z')^2 + 3(y'-1)^2 - \frac{4}{3}(z')^2$.

Fie schimbarea de coordonate x'' = x' - 2z', $y'' = y' - \frac{1}{3}z'$, z'' = z', deci $p(\bar{v}) = (x'')^2 + 3(y'')^2 - \frac{4}{3}(z'')^2$. Dar x' = x,

$$y' = \frac{1}{2}(y+z),$$

 $z' = \frac{1}{2}(y-z)$, deci x'' = x - y + z, $y'' = \frac{1}{3}y + \frac{2}{3}z$, $z'' = \frac{1}{2}(y-z)$. Matricial, avem:

$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

deci

$$[\mathcal{B},\mathcal{B}''] = \begin{pmatrix} 1 & -1 & 1 \\ 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & \frac{4}{3} \\ 0 & 1 & -\frac{2}{3} \end{pmatrix},$$

prin urmare baza \mathcal{B}'' în care $p(\bar{v}) = (x'')^2 + 3(y'')^2 - \frac{4}{3}(z'')^2$ este

$$\mathcal{B}'' = \{ \bar{v}_1 = \bar{e}_1, \ \bar{v}_2 = \bar{e}_2 + \bar{e}_3, \ \bar{v}_3 = 2\bar{e}_1 + \frac{4}{3}\bar{e}_2 - \frac{2}{3}\bar{e}_3 \}.$$

Dacă $\varphi: V \times V \to K$ este o formă biliniară simetrică, atunci o bază $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ este ortogonală în raport cu φ dacă $\varphi(\bar{v}_i, \bar{v}_i) = 0$, pentru $i \neq j$. Conform propoziției 51, între formele pătratice și formele biliniare simetrice există o determinare reciprocă. Dacă $p:V\to K$ este o formă pătratică, atunci o bază $\mathcal{B}=\{\bar{v}_1,\ldots,\bar{v}_n\}\subset V$ este ortogonală în raport cu p, dacă este ortogonală în raport cu forma biliniară simetrică asociată ei.

Într-o bază ortogonală față de o formă biliniară simetrică (formă pătratică), matricea formei biliniare simetrice (respectiv a formei pătratice) este diagonală. O astfel de bază se spune că realizează o formă canonică a formei biliniare simetrice (respectiv a formei pătratice).

Propoziția 52 afirmă faptul că pentru o formă pătratică p, există o bază $\mathcal{B} = \{\bar{v}_1, \dots, \bar{v}_n\} \subset V$ în care forma pătratică are formă canonică (19). Rezultă că forma biliniară simetrică asociată φ are forma:

$$\varphi(\bar{x}, \bar{y}) = \alpha_1 \cdot x^1 y^1 + \dots + \alpha_k x^k y^k, \tag{20}$$

unde $k \leq n$ și $\bar{x} = x^1 \bar{v}_1 + \cdots + x^n \bar{v}_n, \ \bar{y} = y^1 \bar{v}_1 + \cdots + y^n \bar{v}_n \in V.$

Numărul k din formula de mai sus nu depinde de baza \mathcal{B} , fiind egal cu rangul aplicației biliniare.

O altă metodă de aducere la formă canonică a unei forme pătratice este metoda lui Jacobi.

Propoziția 53 (Jacobi) Fie V un K-spațiu vectorial, dim V = n. Fie $p: V \to K$ o formă pătratică care are rangul q, astfel că într-o bază $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$, matricea formei pătratice este $[p]_{\mathcal{B}} = (b_{ij})_{1 \leq i,j \leq n}$. Dacă toți scalarii:

$$\Delta_0 = 1, \Delta_1 = b_{11}, \ \Delta_2 = \begin{vmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{vmatrix}, \dots, \Delta_q = \begin{vmatrix} b_{11} & \cdots & b_{1q} \\ \vdots & & \vdots \\ b_{q1} & \cdots & b_{qq} \end{vmatrix}$$

sunt nenuli, atunci există o bază $\mathcal{B}' = \{\bar{v}_1, \dots, \bar{v}_q, \bar{v}_{q+1}, \dots, \bar{v}_n\} \subset V$ astfel încât::

$$p(\bar{x}) = \frac{\Delta_0}{\Delta_1} (y^1)^1 + \frac{\Delta_1}{\Delta_2} (y^2)^2 + \dots + \frac{\Delta_{q-1}}{\Delta_q} (y^q)^2,$$
(21)

unde $\bar{x} = y^1 \bar{v}_1 + \dots + y^n \bar{v}_n \in V$.

Exemplu.

Fie spaţiul vectorial aritmetic \mathbb{R}^3 şi fie baza canonică $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$. Fie forma pătratică $p: \mathbb{R}^3 \to \mathbb{R}, p(\bar{v}) =$ $x^2-2xy-2xz+4yz+2z^2$, unde $\bar{v}=(x,y,z)\in I\!\!R^3$. Luând $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}\subset I\!\!R^3$ baza canonică, avem

$$[p]_{\mathcal{B}} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 0 & 2 \\ -1 & 2 & 2 \end{pmatrix},$$

prin urmare $\Delta_0=1,\ \Delta_1=1\neq 0,\ \Delta_2=\left|\begin{array}{cc}1&-1\\-1&0\end{array}\right|=-1\neq 0$ și

$$\Delta_3 = \begin{vmatrix} 1 & -1 & -1 \\ -1 & 0 & 2 \\ -1 & 2 & 2 \end{vmatrix} = -2 \neq 0. \text{ Atunci există o bază}$$

$$\mathcal{B}' = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\} \subset I\!\!R^3 \text{ astfel încât}$$

$$p(\bar{v}) = \frac{\Delta_0}{\Delta_1} (x')^2 + \frac{\Delta_1}{\Delta_2} (y')^2 + \frac{\Delta_2}{\Delta_3} (z')^2 =$$

$$= \frac{1}{1} (x')^2 + \frac{1}{-1} (y')^2 + \frac{-1}{-2} (z')^2 = (x')^2 - (y')^2 + \frac{1}{2} (z')^2, \text{ unde}$$

$$\bar{v} = x' \bar{v}_1 + y' \bar{v}_2 + z' \bar{v}_3.$$

Să determinăm baza în care p are forma canonică.

Se caută \bar{v}_1 de forma $\bar{v}_1 = \alpha_{11}\bar{e}_1$, unde $\alpha_{11} \cdot 1 = 1$, deci $\alpha_{11} = 1$, prin urmare $\bar{v}_1 = \bar{e}_1$.

Se caută \bar{v}_2 de forma $\bar{v}_2 = \alpha_{21}\bar{e}_1 + \alpha_{22}\bar{e}_2$, unde α_{21} și α_{22} sunt soluții ale sistemului

$$\left\{ \begin{array}{ll} \alpha_{21} - \alpha_{22} &= 0\\ -\alpha_{21} &= 1 \end{array} \right.,$$

deci $\alpha_{21} = \alpha_{22} = -1$, prin urmare $\bar{v}_2 = -\bar{e}_1 - \bar{e}_2$.

Se caută \bar{v}_3 de forma $\bar{v}_3 = \alpha_{31}\bar{e}_1 + \alpha_{32}\bar{e}_2 + \alpha_{33}\bar{e}_3$, unde α_{31} , α_{32} și α_{33} sunt soluții ale sistemului

$$\begin{cases} \alpha_{31} & -\alpha_{32} & -\alpha_{33} & = 0 \\ -\alpha_{31} & +2\alpha_{33} & = 0 \\ -\alpha_{31} & +2\alpha_{32} & +2\alpha_{33} & = 1 \end{cases},$$

deci $\alpha_{31} = 1$, $\alpha_{32} = \frac{1}{2}$ și $\alpha_{33} = \frac{1}{2}$, prin urmare $\bar{v}_2 = \bar{e}_1 + \frac{1}{2}\bar{e}_2 + \frac{1}{2}\bar{e}_3$.

Deci, forma pătratică p are, în baza $\mathcal{B}' = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$, matricea diagonală $[p]_{\mathcal{B}'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$.

Produs scalar şi spaţii vectoriale euclidiene

Fie V un spațiu vectorial finit dimensional peste corpul $K = \mathbb{R}$. O formă bilinară $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ se numește produs scalar dacă este simetrică și strict pozitiv definită. Așadar, un produs scalar $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ are proprietățile:

- 1. este *IR*-liniar în fiecare argument, adică:
 - (a) $< \alpha \bar{x}_1 + \beta \bar{x}_2, \bar{y} > = \alpha < \bar{x}_1, \bar{y} > + \beta < \bar{x}_2, \bar{y} >, (\forall) \bar{x}_1, \bar{y}_2, \bar{y} \in V, \alpha, \beta \in \mathbb{R}$ şi
 - (b) $\langle \bar{x}, \alpha \bar{y}_1 + \beta \bar{y}_2 \rangle = \alpha \langle \bar{x}, \bar{y}_1 \rangle + \beta \langle \bar{x}, \bar{y}_2 \rangle, (\forall) \bar{x}, \bar{y}_1, \bar{y}_2 \in V, \alpha, \beta \in IR;$
- 2. este simetric, adică $\langle \bar{x}, \bar{y} \rangle = \langle \bar{y}, \bar{x} \rangle$, $(\forall)\bar{x}, \bar{y} \in V$;
- 3. este strict pozitiv definit, adică $\langle \bar{x}, \bar{x} \rangle > 0$, $(\forall) \bar{x} \in V$ și $\langle \bar{x}, \bar{x} \rangle = 0 \Leftrightarrow \bar{x} = \bar{0}$.

Ultimele două condiții sunt echivalente cu faptul că matricea formei biliniare într-o bază oarecare este simetrică și are toate valorile proprii reale strict pozitive.

 $\text{Dac}\check{a} < \cdot, \cdot > \text{este un produs scalar pe } V$, spunem $\text{c}\check{a} (V, < \cdot, \cdot >)$ este un spațiu (vectorial) euclidian real.

Pe spațiul vectorial real \mathbb{R}^n se definește un produs scalar canonic, dat de $\bar{x} \cdot \bar{y} = x^1 y^1 + \cdots + x^n y^n$, $(\forall) \ \bar{x} = (x^1, \dots, x^n)$, $\bar{y} = (y^1, \dots, y^n) \in \mathbb{R}^n$. Spațiul vectorial euclidian real (\mathbb{R}^n, \cdot) se numește spațiul euclidian real n-dimensional canonic. Se notează $\mathbb{R}^n = E_3$.

Dacă $\mathcal{B} = \{\bar{x}_i\}_{i=\overline{1,n}} \subset V$ este o bază, atunci matricea $(\langle \bar{x}_i, \bar{x}_j \rangle)_{i,j=\overline{1,n}}$ se numește matricea asociată produsului scalar în baza \mathcal{B} .

Dacă $(V, \langle \cdot, \cdot \rangle)$ este un spațiu vectorial euclidian real, atunci se definește *norma* unui vector $\bar{x} \in V$ ca fiind $\|\bar{x}\| = \sqrt{\langle \bar{x}, \bar{x} \rangle}$. Norma este corect definită, deoarece produsul scalar este strict pozitiv definit, adică $\langle \bar{x}, \bar{x} \rangle \geq 0$, $(\forall)\bar{x} \in V$

Propoziția 54 (Inegalitatea Cauchy-Schwarz) Dacă $(V, <\cdot, \cdot>)$ este un spațiu vectorial euclidian real și $\bar{x}, \bar{y} \in V$, atunci

$$|\langle \bar{x}, \bar{y} \rangle| \le ||\bar{x}|| \cdot ||\bar{y}||$$
,

egalitatea având loc doar dacă vectorii \bar{x} și \bar{y} sunt coliniari.

Inegalitatea demonstrată mai sus se mai scrie $-1 \le \frac{\langle \bar{x}, \bar{y} \rangle}{\|\bar{x}\| \|\bar{y}\|} \le 1$. Se definește măsura unghiului a doi vectori $\bar{x}, \bar{y} \in V$ ca fiind $\alpha \in [0, \pi]$, astfel încât $\cos \alpha = \frac{\langle \bar{x}, \bar{y} \rangle}{\|\bar{x}\| \cdot \|\bar{y}\|}$. Se mai notează $\alpha = \widehat{(\bar{x}, \bar{y})}$.

Propoziția 55 (Inegalitatea lui Minkowski, sau inegalitatea triunghiului) Dacă $(V, <\cdot, \cdot>)$ este un spațiu vectorial euclidian real și

 $\bar{x}, \bar{y} \in V$, atunci

$$\|\bar{x} + \bar{y}\| \le \|\bar{x}\| + \|\bar{y}\|,$$

egalitatea având loc doar dacă vectorii \bar{x} și \bar{y} sunt sau unul nul sau ambii nenuli și coliniari de același sens (adică $(\exists)\alpha > 0$ astfel încât $\bar{x} = \alpha \bar{y}$).

Aşdar, norma unui spațiu euclidian real $(V,<\cdot,\cdot>)$ este o funcție $\|\cdot\|:V\to I\!\!R$, care are proprietățile:

- (N1) $\|\bar{x}\| \ge 0$, $(\forall)\bar{x} \in V$, iar $\|\bar{x}\| = 0 \Rightarrow \bar{x} = \bar{0}$ (proprietate de strict pozitivitate);
- (N2) $\|\alpha \cdot \bar{x}\| = |\alpha| \|\bar{x}\|, \ (\forall)\bar{x} \in V, \ \alpha \in \mathbb{R}$ (proprietate de omogenitate);
- (N3) $\|\bar{x} + \bar{y}\| \le \|\bar{x}\| + \|\bar{y}\|$ (inegalitatea triunghiului).

Primele două proprietăți rezultă din definiția produsului scalar, iar cea de-a treia este demonstrată în propoziția 55.

Un spațiu vectorial real pe care este definită o funcție $\|\cdot\|: V \to \mathbb{R}$, care are proprietățile (N1)-(N3), se numește spațiu vectorial real normat. Un spațiu euclidian real este deci un spațiu vectorial real normat.

Un spațiu vectorial V, pe care este definită o normă (adică o aplicație $\|\cdot\|:V\to I\!\!R$ care are proprietățile (N1)-(N3), se numește spațiu vectorial normat. Nu orice normă definește un produs scalar.

Propoziția 56 Norma asociată unui produs scalar pe un spațiu vectorial euclidian real verifică identitatea:

$$\|\bar{x} + \bar{y}\|^2 + \|\bar{x} - \bar{y}\|^2 = 2(\|\bar{x}\|^2 + \|\bar{y}\|^2),$$

numită identitatea paralelogramului.

Reciproc, se poate arăta că dacă o normă verifică identitatea paralelogramului, atunci ea este indusă de un produs scalar. Să notăm că în acest caz produsul scalar se obține prin formula

$$<\bar{x},\bar{y}> = \frac{1}{2} \left(\|\bar{x} + \bar{y}\|^2 - \|\bar{x}\|^2 - \|\bar{y}\|^2 \right).$$

În continuare $(V, <\cdot, \cdot>)$ este un spațiu vectorial euclidian real.

Doi vectori $\bar{x}, \bar{y} \in V$ se numesc vectori ortogonali dacă $\langle \bar{x}, \bar{y} \rangle = 0$ şi se scrie $\bar{x} \perp \bar{y}$. Un sistem de vectori $\mathcal{S} = \{\bar{e}_i\}_{i \in I} \subset V$ se numește sistem ortogonal de vectori dacă nu conține vectorul nul şi $\langle \bar{e}_i, \bar{e}_j \rangle = 0$, $(\forall)i \neq j$ (adică vectorii sunt nenuli şi ortogonali doi câte doi). Sistemul \mathcal{S} se numește sistem ortonormat dacă este ortogonal şi $||\bar{e}_i|| = 1$, $(\forall)i \in I$ (adică orice vector din sistem are norma 1).

Propoziția 57 Dacă un sistem de vectori $S = \{\bar{e}_i\}_{i \in I} \subset V$ este ortogonal, atunci el este liniar independent.

O bază ortogonală $\mathcal{B} \subset V$ este o bază formată dintr-un sistem ortogonal de vectori. Analog, o bază ortonormată $\mathcal{B} \subset V$ este o bază formată dintr-un sistem ortonormat de vectori.

Propoziția 58 Dacă $\mathcal{B} = \{\bar{e}_i\}_{i \in I} \subset V$ este o bază ortonormată $\bar{s}i \ \bar{x} = x^{i_1}\bar{e}_{i_1} + \cdots + x^{i_p}\bar{e}_{i_p}, \ atunci \ x^{i_1} = <\bar{x}, \bar{e}_{i_1}>, \ldots, x^{i_p} = <\bar{x}, \bar{e}_{i_p}>.$

Propoziția 59 Dacă un vector $\bar{v} \in V$ este ortogonal pe toți vectorii unui sistem de generatori $S \subset V$ (în particular S poate fi o bază), atunci este vectorul nul ($\bar{v} = \bar{0}$).

Propoziția 60 Dacă $M \subset V$ este o submulțime de vectori atunci $M^{\perp} = \{\bar{x} \in V \mid \bar{x} \perp \bar{v}, \ (\forall)\bar{v} \in M\} \subset V$ este un subspațiu vectorial (numit subspațiul vectorial ortogonal lui M, sau ortogonal lui M).

Dacă $S = \{\bar{v}_1, \dots, \bar{v}_k\} \subset V$ este un sistem de vectori într-un spațiu euclidian real, atunci determinantul Gram asociat sistemului S este

 $\Gamma(\bar{v}_1, \dots, \bar{v}_k) = \begin{vmatrix} \langle \bar{v}_1, \bar{v}_1 \rangle & \dots & \langle \bar{v}_1, \bar{v}_k \rangle \\ \vdots & \dots & \vdots \\ \langle \bar{v}_k, \bar{v}_1 \rangle & \dots & \langle \bar{v}_k, \bar{v}_k \rangle \end{vmatrix}.$

Propoziția 61 Au loc următoarele proprietăți ale determinantului Gram:

- 1. $\Gamma(\bar{v}_1,\ldots,\bar{v}_k)=0$ dacă și numai dacă sistemul S este liniar dependent.
- 2. $\Gamma(\bar{v}_1,\ldots,\bar{v}_k) > 0$ dacă și numai dacă sistemul \mathcal{S} este liniar independent.

Teorema 5 (Procedeul de ortogonalizare Gram-Schmidt) Dacă

 $S = \{\bar{v}_i\}_{i=\overline{1,n}} \subset V \text{ este un sistem de vectori liniar independenți, atunci există un sistem ortonormat de vectori <math>S_0 = \{\bar{e}_i\}_{i=\overline{1,n}} \subset V, \text{ astfel } \hat{n} \hat{c} \hat{a} \text{ t pentru orice } k = \overline{1,n} \text{ să avem } \mathcal{L}(\{\bar{e}_i\}_{i=\overline{1,k}}) = \mathcal{L}(\{\bar{v}_i\}_{i=\overline{1,k}}).$

Observație. Procedeul de ortogonalizare descris mai sus poate fi aplicat și în spațiile vectoriale euclidiene reale care nu sunt finit dimensionale, unui sistem numărabil de vectori liniar independenți.

Propoziția 62 Dacă $(V, <\cdot, \cdot>)$ este un spațiu vectorial euclidian real finit dimensional, atunci:

- 1. Există o bază ortonormată $\mathcal{B} \subset V$.
- 2. $Dacă\ W \subset V$ este un subspațiu vectorial, atunci restricția produsului scalar la W este un produs scalar pe W, iar orice bază ortonormată pe W se poate completa la o bază ortonormată pe V.

Folosind rezultatul de mai sus, putem preciza semnul unui determinant Gram.

Propoziția 63 Fie V un spațiu vectorial euclidian real, finit dimensional. Dacă $M \subset V$ este o submulțime de vectori, atunci

- 1. $M^{\perp} = \{\bar{0}\} \Leftrightarrow \mathcal{L}(M) = V$.
- 2. $V = \mathcal{L}(M) \oplus M^{\perp}$.

În particular, dacă $W \subset V$ este un subspațiu vectorial, atunci are loc descompunerea $V = W \oplus W^{\perp}$.

Teorema 6 (Riesz) Dacă $(V, <\cdot, \cdot>)$ este un spațiu vectorial euclidian real, atunci există un izomorfism canonic $\varphi: V \to V^*$.

Propoziția 64 Dacă $\mathcal{B} = \{\bar{e}_i\}_{i=\overline{1,n}} \subset V$ este o bază şi

 $\mathcal{B}^* = \{\bar{e}^i\}_{i=\overline{1,n}} \subset V^* \text{ este baza duală, iar } (g_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R}) \text{ este matricea produsului scalar } \hat{n} \text{ baza } \mathcal{B}, \text{ atunci dacă se consideră matricea } (g^{ij})_{i,j=\overline{1,n}} = (g_{ij})_{i,j=\overline{1,n}}^{-1} \in \mathcal{M}_n(\mathbb{R}), \text{ forma izomorfismului dat de teorema lui Riesz este } \varphi(v^i\bar{e}_i) = v^ig_{ij}e^j.$

9.1 Produsul vectorial şi produsul mixt în E_3

Fie doi vectori $\bar{v}_1 = (a, b, c), \bar{v}_2 = (a', b', c') \in E_3$, unde E_3 este spațiul vectorial euclidian canonic tridimensional. Vectorul

$$\bar{v} = \left(\left| \begin{array}{ccc} b & c \\ b' & c' \end{array} \right|, - \left| \begin{array}{ccc} a & c \\ a' & c' \end{array} \right|, \left| \begin{array}{ccc} a & b \\ a' & b' \end{array} \right| \right) \tag{22}$$

se numește produsul~vectorialal vectorilor \bar{v}_1 și \bar{v}_2 și se notează

 $\bar{v} \stackrel{\text{not.}}{=} \bar{v}_1 \times \bar{v}_2$. Fie $\mathcal{B} = \{\bar{e}_1 = (1,0,0), \bar{e}_2 = (0,1,0), \bar{e}_3 = (0,0,1)\} \subset E_3$ baza canonică (baza canonică fiind ortonormată față de produsul scalar canonic). Ținând cont de faptul că

$$\bar{v} = \left| \begin{array}{cc} b & c \\ b' & c' \end{array} \right| \bar{e}_1 - \left| \begin{array}{cc} a & c \\ a' & c' \end{array} \right| \bar{e}_3 + \left| \begin{array}{cc} a & b \\ a' & b' \end{array} \right| \bar{e}_3,$$

produsul vectorial $\bar{v}_1 \times \bar{v}_2$ se mai poate scrie ca un determinant formal, în care prima linie conține numai vectori ai bazei canonice, iar celelalte linii sunt formate din scalari (coordonatele celor doi vectori):

$$\bar{v}_1 \times \bar{v}_2 = \begin{vmatrix} \bar{e}_1 & \bar{e}_2 & \bar{e}_3 \\ a & b & c \\ a' & b' & c' \end{vmatrix}. \tag{23}$$

Propoziția 65 Dacă $\bar{v}_1, \bar{v}_2 \in E_3$, atunci produsul vectorial $\bar{v} = \bar{v}_1 \times \bar{v}_2$ al vectorilor \bar{v}_1 și \bar{v}_2 are următoarele proprietăți:

- 1. \bar{v} este un vector perpendicular pe vectorii \bar{v}_1 și \bar{v}_2 ;
- 2. lunqimea lui \bar{v} , notată $|\bar{v}|$, este egală cu aria paralelogramului construit pe cei doi vectori ca laturi;
- 3. \bar{v} este nul dacă și numai dacă vectorii sunt coliniari, iar dacă vectorii \bar{v}_1 și \bar{v}_2 nu sunt coliniari, sistemul $\mathcal{S} = \{\bar{v}_1, \bar{v}_2, \bar{v}\}$ formează o bază la fel orientată ca baza canonică $\mathcal{B} \subset E_3$.

Propoziția 66 Dacă la oricare doi vectori $\bar{v}_1, \bar{v}_2 \in E_3$ se asociază vectorul \bar{v} cu proprietățile 1.-3. din propoziția 65, atunci $\bar{v} = \bar{v}_1 \times \bar{v}_2$, adică \bar{v} este chiar produsul vectorial al vectorilor \bar{v}_1 și \bar{v}_2 .

Propoziția 67 Fie $\mathcal{B}' = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\} \subset E_3$ o bază ortonormată la fel orientată ca baza canonică $\mathcal{B} \subset E_3$ şi $\bar{v}_1, \bar{v}_2 \in E_3$ doi vectori care au coordonatele în baza \mathcal{B}' date de $[\bar{v}_1]_{\mathcal{B}'} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, [\bar{v}_2]_{\mathcal{B}'} = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$. Fie $\bar{v} \in E_3$ astfel încât $[\bar{v}]_{\mathcal{B}'} = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$.

$$\begin{pmatrix}
\begin{vmatrix}
b & c \\
b' & c'
\end{vmatrix} \\
-\begin{vmatrix}
a & c \\
a' & c'
\end{vmatrix} \\
\begin{vmatrix}
a & b \\
a' & b'
\end{vmatrix}
\end{pmatrix}. Atunci \bar{v} = \bar{v}_1 \times \bar{v}_2.$$

Remarcă. Dacă V este un spațiu vectorial euclidian real 3-dimensional, se poate defini produsul vectorial a doi vectori \bar{v}_1 și \bar{v}_2 folosind o bază ortonormată $\mathcal{B}' \subset V$ și formula $[\bar{v}]_{\mathcal{B}'}$ din exercițiul anterior.

Vom studia în continuare proprietățile produsului vectorial.

Propoziția 68 $Dacă \bar{v}_1, \bar{v}_2, \bar{v}_3 \in E_3 \ atunci$

- 1. $\bar{v}_1 \times \bar{v}_2 = -\bar{v}_2 \times \bar{v}_1$ (anticomutativitate);
- 2. $(\alpha \bar{v}_1 + \beta \bar{v}_2) \times \bar{v}_3 = \alpha(\bar{v}_1 \times \bar{v}_3) + \beta(\bar{v}_2 \times \bar{v}_3)$ ξi $\bar{v}_1 \times (\alpha \bar{v}_2 + \beta \bar{v}_3) = \alpha(\bar{v}_1 \times \bar{v}_2) + \beta(\bar{v}_1 \times \bar{v}_3), (\forall) \alpha, \beta \in \mathbb{R};$
- 3. $(\bar{v}_1 \times \bar{v}_2) \times \bar{v}_3 = (\bar{v}_1 \cdot \bar{v}_3)\bar{v}_2 (\bar{v}_2 \cdot \bar{v}_3)\bar{v}_1$ (formula dublului produs vectorial cu paranteza la stânga);
- 4. $\bar{v}_1 \times (\bar{v}_2 \times \bar{v}_3) = (\bar{v}_1 \cdot \bar{v}_3)\bar{v}_2 (\bar{v}_1 \cdot \bar{v}_2)\bar{v}_3$ (formula dublului produs vectorial cu paranteza la dreapta);
- 5. $(\bar{v}_1 \times \bar{v}_2) \times \bar{v}_3 + (\bar{v}_2 \times \bar{v}_3) \times \bar{v}_1 + (\bar{v}_3 \times \bar{v}_1) \times \bar{v}_2 = \bar{0}$, (identitatea lui Jacobi);
- 6. $(\bar{v}_1 \times \bar{v}_2) \cdot \bar{v}_3 = \bar{v}_1 \cdot (\bar{v}_2 \times \bar{v}_3) = \bar{v}_2 \cdot (\bar{v}_3 \times \bar{v}_1) \stackrel{\text{not.}}{=} [\bar{v}_1, \bar{v}_2, \bar{v}_3]$ (se numește produsul mixt al celor trei vectori).

Să remarcăm din cele stabilite mai sus formula pentru produsul mixt a trei vectori:

$$[\bar{v}_1, \bar{v}_2, \bar{v}_3] = \left| \begin{array}{ccc} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{array} \right|,$$

adică are ca valoare determinantul coordonatelor vectorilor în baza canonică.

Propoziția 69 Produsul mixt $[\bar{v}_1, \bar{v}_2, \bar{v}_3]$ a trei vectori din E_3 este egal cu determinantul coordonatelor vectorilor (așezate în ordinea dată, pe linii sau pe coloane) într-o bază ortonormată la fel orientată cu baza canonică.

Observație. Propoziția se poate demonstra și folosind definiția produsului mixt sub forma $[\bar{v}_1, \bar{v}_2, \bar{v}_3] = \bar{v}_1 \cdot (\bar{v}_2 \times \bar{v}_3)$. Pentru produsul vectorial $\bar{v}_2 \times \bar{v}_3$ este adevărată formula determinantului formal de tipul (23), care are pe prima linie vectorii unei bazei ortonormate. Ținând seama că baza este ortonormată, rezultă concluzia.

Propoziția 70 Modulul produsul mixt a trei vectori $\bar{v}_1, \bar{v}_2, \bar{v}_3 \in E_3$ este egal cu volumul paralelipipedului construit pe cei trei vectori.

Observație. Un alt calcul al lui h, care să conducă la soluție, se poate baza pe observația că lungimea proiecției unui vector \bar{v} pe un vector \bar{w} este egală cu modulul produsului scalar dintre \bar{v} și versorul lui \bar{w} , deci $\pm h = \bar{v}_1 \cdot \left(\frac{1}{|\bar{v}_2 \times \bar{v}_3|} (\bar{v}_2 \times \bar{v}_3)\right) = \frac{1}{|\bar{v}_1 \times \bar{v}_2 \times \bar{v}_3|} (\bar{v}_2 \times \bar{v}_3) = \frac{[\bar{v}_1, \bar{v}_2, \bar{v}_3]}{|\bar{v}_3|}$ de unde rezultatul

 $\frac{1}{|\bar{v}_2 \times \bar{v}_3|} (\bar{v}_1 \cdot (\bar{v}_2 \times \bar{v}_3)) = \frac{|\bar{v}_1, \bar{v}_2, \bar{v}_3|}{|\bar{v}_2 \times \bar{v}_3|}, \text{ de unde rezultatul.}$ Într-un spatiu vectorial euclidian tridimensional se poat

Într-un spațiu vectorial euclidian tridimensional se poate defini produsul mixt a trei vectori $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ în mod analog $(\bar{v}_1 \times \bar{v}_2) \cdot \bar{v}_3 = \bar{v}_1 \cdot (\bar{v}_2 \times \bar{v}_3) = \bar{v}_2 \cdot (\bar{v}_3 \times \bar{v}_1) \stackrel{\text{not.}}{=} [\bar{v}_1, \bar{v}_2, \bar{v}_3]$, obținându-se, ca formulă de calcul, faptul că produsul mixt este egal cu determinatul matricii coordonatelor vectorilor într-o bază ortonormată.

1 Spații punctual euclidiene reale

Un spațiu afin \mathcal{E} se numește spațiu punctual euclidian dacă pe spațiul său vectorial director V este dat un produs scalar, adică V este un spațiu vectorial euclidian cu corpul scalarilor \mathbb{R} .

În cele ce urmează:

- 1. \mathcal{E} va desemna un spațiu punctual euclidian real cu spațiul vectorial director V; produsul scalar va fi notat cu un punct
 - $<\bar{v}_1,\bar{v}_2>\stackrel{\mathrm{not.}}{=}\bar{v}_1\cdot\bar{v}_2$, iar norma vectorului $\bar{v}\in V$ va fi notată cu $|\bar{v}|=\sqrt{\bar{v}\cdot\bar{v}}$.
- 2. \mathcal{E}_n va desemna spaţiul punctual euclidian canonic pe \mathbb{R}^n , unde spaţiul afin este $\mathcal{A}_n = \mathcal{A}ff(\mathbb{R}^n)$, iar spaţiul euclidian director este E_n (adică \mathbb{R}^n pe care se consideră produsul scalar canonic).

Un reper afin (O, \mathcal{B}) în care $\mathcal{B} \subset V$ este o bază ortonormată se numește reper euclidian. Distanța dintre două puncte $A, B \in \mathcal{E}$ este, prin definiție, lungimea vectorului \overline{AB} , adică $d(A, B) = |\overline{AB}|$. Dacă (O, \mathcal{B}) este un reper euclidian $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\}$ și $A(a^1, \dots, a^n), B(b^1, \dots, b^n) \in \mathcal{E}$, atunci

$$d(A,B) = |\overline{AB}| = \sqrt{(a^1 - b^1)^2 + \dots + (a^n - b^n)^2}.$$
 (1)

Distanța dintre două mulțimi $\mathcal{M}_1, \mathcal{M}_2 \subset \mathcal{E}$ este, prin definiție

$$\inf_{P_1 \in \mathcal{M}_1} |P_1 P_2| \stackrel{\text{not.}}{=} d(\mathcal{M}_1, \mathcal{M}_2).$$

$$P_2 \in \mathcal{M}_2$$

Unghiul a două drepte $d_1, d_2 \subset \mathcal{E}$, care au ca vectori directori \bar{a}_1 , respectiv \bar{a}_2 , este unghiul celor doi vectori directori, adică

$$\cos\left(\widehat{d_1, d_2}\right) = \frac{\bar{a}_1 \cdot \bar{a}_2}{|\bar{a}_1| \cdot |\bar{a}_2|}.$$

Toate unghiurile considerate vor avea măsura în intervalul $[0,\pi)$.

Dacă $\mathcal{H} \subset \mathcal{E}$ este un hiperplan, atunci un vector nenul $\bar{v} \in V$, perpendicular pe subspaţiul vectorial director al hiperplanului se numeşte vector normal la hiperplan. Un vector normal la hiperplanul \mathcal{H} este transvers subspaţiului vectorial director al lui \mathcal{H} , deci defineşte o orientare pe \mathcal{H} . Dacă $P_0 \in \mathcal{H}$ este un punct fixat, atunci un punct $P \in \mathcal{H}$ dacă şi numai dacă $\overline{P_0P} \perp \bar{v} \Leftrightarrow \overline{P_0P} \cdot \bar{v} = 0$. Dacă $O \in \mathcal{E}$ este un punct (de obicei originea unui reper euclidian) şi notăm $\bar{r}_0 = \overline{OP_0}$, $\bar{r} = \overline{OP}$ (numiţi vectori de poziție ai punctelor P_0 , respectiv P, față de punctul O), obţinem

$$(\mathcal{H}): (\bar{r} - \bar{r}_0) \cdot \bar{v} = 0, \tag{2}$$

(numită ecuația vectorială a hiperplanului).

Unghiul a două hiperplane \mathcal{H}_1 , $\mathcal{H}_2 \subset \mathcal{E}$ orientate, de vectori normali \bar{v}_1 , respectiv \bar{v}_2 , este dat de unghiul acestor vectori:

$$\cos\left(\widehat{\mathcal{H}_1,\mathcal{H}_2}\right) = \frac{\bar{v}_1 \cdot \bar{v}_2}{|\bar{v}_1| \cdot |\bar{v}_2|}.$$

Fie V de dimensiune n şi $\mathcal{B} = \{\bar{e}_1, \dots, \bar{e}_n\} \subset V$ o bază ortonormată. Dacă $P_0(x_0^1, \dots, x_0^n) \in \mathcal{H}$ şi $\bar{v} = (v_1, \dots, v_n) \in V$ este un vector normal la hiperplan, atunci un punct $P(x^1, \dots, x^n) \in \mathcal{H} \Leftrightarrow \text{are loc } (2)$, care se mai scrie:

$$(\mathcal{H}): v_1\left(x^1 - x_0^1\right) + \dots + v_n\left(x^n - x_0^n\right) = 0, \tag{3}$$

(numită ecuația carteziană a hiperplanului).

Fie $\bar{v} = (v_1, \dots, v_n) \in V$ un vector nenul. Mulţimea punctelor $P(x^1, \dots, x^n) \in \mathcal{E}$ ale căror coordonate verifică ecuația:

$$(\mathcal{H}): v_1 x^1 + \dots + v_n x^n + \alpha = 0 \tag{4}$$

este un hiperplan care are vectorul \bar{v} ca vector normal. Ecuația (4) este numită tot ecuația carteziană generală a hiperplanului.

Fie $S = \{\bar{v}_1, \dots, \bar{v}_{n-1}\} \subset V$ un sistem de n-1 vectori liniar independenți. Atunci orice hiperplan \mathcal{H} , care are ca subspațiu director subspațiul lui V generat de S, admite ca vector normal produsul vectorial $\bar{v}_1 \times \dots \times \bar{v}_{n-1}$.

Propoziția 1 Fie \mathcal{H} un hiperplan și fie punctul $A \in \mathcal{E}$.

1. Dacă hiperplanul este dat prin ecuația vectorială (2) și vectorii de poziție în raport cu un punct O, al lui A și al unui punct $P_0 \in \mathcal{H}$, sunt $\overline{OA} = \overline{r}_A$ și $\overline{OP_0} = \overline{r}_0$, atunci

$$d(A, \mathcal{H}) = \frac{|(\bar{r}_A - \bar{r}_0) \cdot \bar{v}|}{|\bar{v}|}.$$

2. Dacă hiperplanul este dat prin ecuația carteziană (3) și $A(a^1, ..., a^n)$, atunci

$$d(A, \mathcal{H}) = \frac{|v_1(a^1 - x_0^1) + \dots + v_n(a^n - x_0^n)|}{\sqrt{(v_1)^2 + \dots + (v_n)^2}}...$$

3. Dacă hiperplanul este dat prin ecuația carteziană generală (4) și $A(a^1, \ldots, a^n)$ atunci

$$d(A, \mathcal{H}) = \frac{|v_1 a^1 + \dots + v_n a^n + \alpha|}{\sqrt{(v_1)^2 + \dots + (v_n)^2}}.$$
 (5)

Propoziția 2 Distanța dintre două hiperplane paralele \mathcal{H}_1 și \mathcal{H}_2 , date de ecuațiile:

$$(\mathcal{H}_1): v_1 x^1 + \dots + v_n x^n + \alpha = 0,$$

 $(\mathcal{H}_2): v_1 x^1 + \dots + v_n x^n + \beta = 0$

este:

$$d(\mathcal{H}_1, \mathcal{H}_2) = \frac{|\alpha - \beta|}{\sqrt{(v_1)^2 + \dots + (v_n)^2}}.$$

Propoziția 3 Distanța de la un punct A la o dreaptă d, care are vectorul director ā, este dată de formula

$$d(A,d) = \frac{|\bar{a} \times \overline{AB}|}{|\bar{a}|},\tag{6}$$

unde $B \in d$ este un punct oarecare, iar produsul vectorial se consideră într-un subspațiu vectorial euclidian arbitrar, de dimensiune $3, W \subset V$, care conține vectorii \bar{a} și \overline{AB} .

Remarcă. Se poate considera, de exemplu, O neconținut în 2-planul determinat de A și d, iar ca $W \subset V$ se consideră 3-subspațiul director al subspațiului afin al lui \mathcal{E} generat de O, A și d. Dacă dim $\mathcal{E}=3$ (adică dim V=3), atunci produsul vectorial se poate considera în \mathcal{E} .

O perpendiculară comună a două drepte d_1 și d_2 este o dreaptă care intersectează și este perpendiculară pe d_1 și d_2 .

Propoziția 4 Dacă d_1 și d_2 sunt două drepte neparalele care nu se intersectează, atunci perpendiculara comună a celor două drepte există, este unică și are următoarele ecuații în $\mathcal{E}' = \mathcal{A}ffin(d_1 \cup d_2)$:

$$\left\{ \begin{array}{l} \bar{a}_1\times(\bar{a}_1\times\bar{a}_2)\cdot(\bar{r}-\bar{r}_A)=0\\ \bar{a}_2\times(\bar{a}_1\times\bar{a}_2)\cdot(\bar{r}-\bar{r}_B)=0 \end{array} \right.,$$

unde d_1 conține punctul A și are vectorul director \bar{a}_1 , iar d_2 conține punctul B și are vectorul director \bar{a}_2 . $\hat{I}n$ \mathcal{E}_3 , dacă $d_1 \cap d_2 \neq \emptyset$ și $d_1 \neq d_2$, perpendiculara comună are aceleași ecuații.

Vectorul $\bar{a}=(\bar{a}_1\times\bar{a}_2)$ este perpendicular pe \bar{a}_1 şi pe \bar{a}_2 . Fie π_1 planul care conţine pe A şi are ca vectori directori pe \bar{a}_1 şi \bar{a} (deci vector normal $\bar{a}_1\times(\bar{a}_1\times\bar{a}_2)$), iar π_2 planul care conţine pe B şi are ca vectori directori pe \bar{a}_1 şi \bar{a} (deci vector normal $\bar{a}_2\times(\bar{a}_1\times\bar{a}_2)$). Rezultă că $d_1\subset\pi_1$ şi $d_2\subset\pi_2$, iar $\pi_1\cap\pi_2=d$ este o dreaptă care are ca vector director pe \bar{a} (vectorul director comun). Avem că $d_1\perp d$, $d_2\perp d$, d_1 , $d\subset\pi_1$, d_2 , $d\subset\pi_2$. Dreapta d este deci perpendiculară comună. Din construcţia lui $d=\pi_1\cap\pi_2$, rezultă unicitatea ei (pentru că orice dreaptă d' care ar fi perpendiculară comună ar trebui să fie inclusă în $\pi_1\cap\pi_2$). Cum $(\pi_1): \bar{a}_1\times(\bar{a}_1\times\bar{a}_2)\cdot(\bar{r}-\bar{r}_A)=0$ şi $(\pi_2): \bar{a}_2\times(\bar{a}_1\times\bar{a}_2)\cdot(\bar{r}-\bar{r}_B)=0$, rezultă că ecuaţiile lui d se obţin ca în enunţ.

În \mathcal{E}_3 , dacă $d_1 \cap d_2 \neq \emptyset$ şi $d_1 \neq d_2$, perpendiculara comună se obține ca $\pi_1 \cap \pi_2$, cu notațiile anterioare, deci are aceleași ecuații.

Să remarcăm că dacă $d_1 \parallel d_2$, $d_1 \neq d_2$, cu vectorul director \bar{a} , atunci există o infintate de perpendiculare comune. Acestea sunt incluse în planul π determinat de d_1 şi d_2 , având ca vector director un vector paralel cu π şi perpendicular pe vectorul \bar{a} .

Propoziția 5 Fie $d_1, d_2 \subset \mathcal{E}$ două drepte neparalele, care au vectorii directori \bar{a}_1 , respectiv \bar{a}_2 , iar $A \in d_1$, $B \in d_2$ şi fie $\mathcal{E}' = \mathcal{A}ffin(d_1 \cup d_2)$ (subspațiul afin generat de d_1 şi d_2). Atunci distanța dintre cele două drepte este

$$d(d_1, d_2) = \frac{\left| [\bar{a}_1, \bar{a}_2, \overline{AB}] \right|}{\left| \bar{a}_1 \times \bar{a}_2 \right|},$$

unde produsul mixt este calculat în \mathcal{E}' .

 $Dac\ \ d_1 \cap d_2 \neq \emptyset$, atunci $d(d_1, d_2)$

 $\hat{I}n \ \mathcal{E}_3, \ d_1 \cap d_2 \neq \emptyset, \ sau \ d_1 \parallel d_2, \ (adic$

Proiecția unui punct A pe un k-plan $\mathcal{E}' \subset \mathcal{E}$ este:

- punctul A, dacă $A \in \mathcal{E}'$, sau
- punctul $A' \in \mathcal{E}'$ pentru care $\overline{AA'}$ este vector normal la hiperplanul $\mathcal{E}' \subset \mathcal{A}ffin(\mathcal{E}' \cup \{A\})$.

Se notează $A' = pr_{\mathcal{E}'}A$. Proiecția unei mulțimi de puncte pe \mathcal{E}' este proiecția pe \mathcal{E}' a tuturor punctelor mulțimii.

Propoziția 6 Proiecția unui subspațiu punctual euclidian $\mathcal{E}'' \subset \mathcal{E}$ pe un alt subspațiu punctual euclidian $\mathcal{E}' \subset \mathcal{E}$ este o aplicație afină, iar aplicația liniară indusă între spațiile vectoriale directoare este un proiector ortogonal (de spații vectoriale euclidiene).

Propoziția 7 Proiecția unui subspațiu punctual euclidian $\mathcal{E}'' \subset \mathcal{E}$ pe un alt subspațiu punctual euclidian $\mathcal{E}' \subset \mathcal{E}$ este un subspațiu punctual euclidian $pr_{\mathcal{E}'}\mathcal{E}'' \subset \mathcal{E}'$.

Un alt exemplu de aplicație afină este aplicația izometrică. O aplicație izometrică este o aplicație $f: \mathcal{E} \to \mathcal{E}'$ între două spații punctual euclidiene care are proprietatea că păstrează distanța, adică $|AB|_{\mathcal{E}} = |f(A)f(B)|_{\mathcal{E}'}$, $(\forall)A,B\in\mathcal{E}$.

Propoziția 8 O aplicație izometrică, $f: \mathcal{E} \to \mathcal{E}'$, este o aplicație afină injectivă.

O *izometrie* este o aplicație surjectivă și izometrică. Folosind propoziția 8 rezultă că o izometrie este un izomorfism afin. Dacă se consideră repere ortonormate, atunci aplicația liniară indusă între spațiile vectoriale euclidiene este, de asemenea, o izometrie, prin urmare matricea acestei aplicații liniare corespunzătoare bazelor ortonormate este o matrice ortogonală.

Simetricul unui punct A față de un k-plan $\mathcal{E}' \subset \mathcal{E}$ este punctul $A'' \in \mathcal{E}$ astfel că punctul $A' = pr_{\mathcal{E}'}A$ (proiecția lui A pe \mathcal{E}') este mijlocul segmentului [AA'']. Se notează $A'' = s_{\mathcal{E}'}A$. Simetrica unei mulțimi de puncte față de \mathcal{E}' este obținută din simetricele tuturor punctelor mulțimii față de \mathcal{E}' .

Propoziția 9 Fie $d_1, d_2 \in \mathcal{E}$ două drepte concurente în O, cu vectorii directori \bar{a}_1 și respectiv \bar{a}_2 . Atunci cele două bisectoare ale dreptelor d_1 și d_2 trec prin O' și au vectorii directori $\frac{1}{|\bar{a}_1|}\bar{a}_1 \pm \frac{1}{|\bar{a}_2|}\bar{a}_2$.

Unghiul dintre o dreaptă și un hiperplan este unghiul pe care îl face dreapta cu un vector normal la hiperplan. Pentru mai multă claritate, se definește noțiunea de orientare a unui spațiu punctual euclidian (deci în particular a unui hiperplan), ca fiind o orientare a spațiului vectorial director. Deoarece o orientare a unui spațiu vectorial este dată prin fixarea orientării pozitive definite de o bază dată, rezultă că orientarea unui spațiu punctual euclidian se face prin fixarea orientării pozitive definite de un reper cartezian dat. În cazul unui hiperplan \mathcal{H} , fixarea unui vector normal \bar{n} la hiperplan și a unei orientări a spațiului euclidian \mathcal{E} induce o orientare a hiperplanului \mathcal{H} .

Propoziția 10 Dacă (O, \mathcal{B}) este un reper euclidian care definește o orientare pozitivă a spațiului punctual euclidian \mathcal{E} și \bar{n} este un vector unitar, normal la un hiperplan $\mathcal{H} \subset \mathcal{E}$, atunci există o singură orientare a hiperplanului \mathcal{H} astfel încât pentru orice reper euclidian (O_1, \mathcal{B}_1) al lui \mathcal{H} , reperul euclidian $(O_1, \mathcal{B}') = \{\bar{n}\} \cup \mathcal{B}_1\}$ al lui \mathcal{E} este pozitiv orientat.

2 Spaţiul euclidian tridimensional canonic

Vom defini în continuare spațiul vectorial al vectorilor legați cu originea O fixată și spațiul vectorial al vectorilor liberi din spațiul (euclidian) S, studiat în liceu.

Spaţiul S este format din puncte, iar o mulţime de puncte formează o figură geometrică. Figuri geometrice în spaţiu sunt: dreptele, planele, semidreptele, semiplanele, segmentele de dreaptă, triunghiurile, poligoanele, poliedrele, interioarele de poligoane şi de poliedre convexe etc. Planele, dreptele şi punctele sunt noţiuni primare. Un sistem de axiome (care poate fi sistemul axiomatic al lui Hilbert, ori al lui Birkhoff, ori alt sistem echivalent), enunţă un set de proprietăţi primare (numite axiome) pe care le au noţiunile primare. În continuare vom presupune cunoscute definiţiile şi proprietăţile legate de geometria euclidiană a spaţiului S.

Un segment orientat (sau vector legat) se definește ca fiind un dublet de puncte (P,Q), notat \overrightarrow{PQ} , unde punctul P se numește origine, iar punctul Q se numește extremitate. Dacă $P \neq Q$, dreapta PQ se numește dreapta suport a lui \overrightarrow{PQ} . Dacă P = Q, atunci \overrightarrow{PP} se numește vectorul nul și orice dreaptă care trece prin P este dreaptă suport pentru aceste.

Dacă se fixează un punct $O \in \mathcal{P}$, atunci se poate considera mulțimea $\mathcal{V}_O = \{\overrightarrow{OA}|A \in \mathcal{P}\}$, a segmentelor orientate cu originea în punctul O (sau a vectorilor legați în O). Pe mulțimea \mathcal{V}_O se definesc două legi de compoziție:

- o lege de compoziție internă $+: \mathcal{V}_O \times \mathcal{V}_O \to \mathcal{V}_O$, numită adunarea vectorilor din \mathcal{V}_O , care asociază vectorilor \overrightarrow{OA} și $\overrightarrow{OB} \in \mathcal{V}_O$ vectorul \overrightarrow{OC} , notat $\overrightarrow{OA} + \overrightarrow{OB}$, unde C este al patrulea vârf al paralelogramului [OACB] (posibil degenerat, dacă O, A și B sunt coliniare) construit pe cei doi vectori, ca laturi;

- o lege de compoziție externă $\cdot: \mathbb{R} \times \mathcal{V}_O \to \mathcal{V}_O$, numită înmulțirea cu scalari a vectorilor din \mathcal{V}_O , care asociază unui număr $\alpha \in \mathbb{R}$ și unui vector $\overrightarrow{OA} \in \mathcal{V}_O$ vectorul \overrightarrow{OC} , notat $\alpha \cdot \overrightarrow{OA}$, unde C este un punct coliniar cu O și A, definit astfel: dacă $\alpha > 0$, atunci segmentul [OC] are lungimea α înmulțită cu lungimea segmentului [OA] și $O \notin [AC]$, dacă $\alpha = 0$, atunci C = O, iar dacă $\alpha < 0$, atunci segmentul [OC] are lungimea $-\alpha$ înmulțită cu lungimea segmentului [OA] şi $O \in [AC]$.

Lema următoare este o consecință imediată a definiției înmulțirii cu scalari.

Lema 1 Fie O, A, $B \in \underline{\mathcal{S}}$ coliniare Liar $M \in AB$ ste un punct ast \overline{et} incât segment \overline{ut} $\overline{$

1. $\alpha = |OA| > 0$, $dac\breve{a} O \notin [AM]$

2.
$$\alpha = -|OA| \le 0$$
, $dac\check{a}O \in [AM]$.

Trei vectori \overrightarrow{OA} , \overrightarrow{OB} și \overrightarrow{OC} se spune că sunt coplanari dacă punctele O, A, B și C se găsesc în același plan și necoplanari în caz contrar.

Propoziția 11 Tripletul $(\mathcal{V}_O, +, \cdot)$ este un spațiu vectorial real, numit spațiul vectorial al vectorilor legați în O, în care orice trei vectori necoplanari formează o bază.

Să considerăm în continuare vectori legați care nu au neapărat aceeași origine.

Doi vectori legați \overrightarrow{PQ} și $\overrightarrow{P'Q'}$ se numesc

- echipolenți și se scrie $\overrightarrow{PQ} \equiv \overrightarrow{P'Q'}$, dacă ambii vectori legați sunt nuli, ori, în caz contrar, poligonul PQQ'P'este un paralelogram, eventual degenerat (\Leftrightarrow segmentele [PQ'] și [P'Q] au același mijloc);
 - paraleli și se scrie $\overrightarrow{PQ} \parallel \overrightarrow{P'Q'}$, dacă dreptele lor suport sunt paralele.

Propoziția 12 Relațiile de echipolență și de paralelism ale vectorilor legați din spațiu sunt relații de echivalență.

Evident că doi vectori echipolenți sunt paraleli, proprietatea recprocă nefiind adevărată (contraexemplu: doi vectori paraleli care nu au aceeași lungime).

Relația de echipolență fiind o relație de echivalență pe mulțimea tuturor vectorilor legați \mathcal{V}_{leq} , se poate considera mulțimea claselor de echivalență, care este mulțimea \mathcal{V}_{lib} , a vectorilor liberi. Astfel, dacă $\overrightarrow{AB} \in \mathcal{V}_{leg}$ este un vector legat, atunci clasa sa de echivalență, care se notează cu \overline{AB} , este formată din mulțimea tuturor vectorilor $\overline{A'B'} \in \mathcal{V}_{leg}$ care au proprietatea că $\overrightarrow{AB} \equiv \overrightarrow{A'B'}$. Se observă că, dacă se fixează un punct $O \in \mathcal{S}$, există o aplicație bijectivă $F_O: \mathcal{V}_O \to \mathcal{V}_{lib}$, care asociază unui vector legat $\overrightarrow{OA} \in \mathcal{V}_O$ clasa sa de echivalență $\overline{AB} \in \mathcal{V}_{lib}$. Prin inversa acestei bijecții, fiecărui vector liber $\bar{a} \in \mathcal{V}_{lib}$ i se poate asocia în mod unic un vector $\overrightarrow{OA} \in \mathcal{V}_{leg}$ astfel încât $\bar{a} = \overline{OA}$.

Se poate constata că dacă se consideră două puncte $O, O' \in \mathcal{P}$, atunci aplicația $\varphi = F_{O'}^{-1} \circ F_O : \mathcal{V}_O \to \mathcal{V}_{O'}$ este o bijecție și are proprietățile $\varphi(\overrightarrow{OA} + \overrightarrow{OB}) = \varphi(\overrightarrow{OA}) + \varphi(\overrightarrow{OB})$ și $\varphi(\alpha \cdot \overrightarrow{OA}) = \alpha \cdot \varphi(\overrightarrow{OA})$, $(\forall) \overrightarrow{OA}, \overrightarrow{OB} \in \mathcal{V}_O$ și $\alpha \in \mathbb{R}$, deci φ este un izomorfism de spații vectoriale reale.

Rezultă astfel că:

- dacă $\overrightarrow{OA} \equiv \overrightarrow{O'A'}$ și $\overrightarrow{OB} \equiv \overrightarrow{O'B'} \Rightarrow \overrightarrow{OA} + \overrightarrow{OB} \equiv \overrightarrow{O'A'} + \overrightarrow{O'B'}$, $(\forall)O,O' \in \mathcal{S}$ (prin adunarea a doi vectori legați într-un punct O se obține un vector echipolent cu vectorul ce rezultă prin adunarea vectorilor echipolenți legați într-un oricare alt punct O');
- dacă $\alpha \in \mathbb{R}$ și $\overrightarrow{OA} \equiv \overrightarrow{O'A'} \Rightarrow \alpha \cdot \overrightarrow{OA} \equiv \alpha \cdot \overrightarrow{O'A'}$, $(\forall)O,O' \in \mathcal{S}$ (prin înmulțirea unui vector legat într-un punct O cu un număr real α , se obține un vector echipolent cu vectorul ce rezultă prin înmulțirea vectorului echipolent legat în O' cu α).

Pe mulțimea \mathcal{V}_{lib} se definesc două legi de compoziție:

- o lege de compoziție internă $+: \mathcal{V}_{lib} \times \mathcal{V}_{lib} \to \mathcal{V}_{lib}$, numită adunarea vectorilor liberi, care asociază la doi vectori $\bar{a} = \overline{OA}, \ \bar{b} = \overline{OB} \in \mathcal{V}_{lib}$ vectorul liber \overline{OC} , unde $\overline{OC} = \overline{OA} + \overline{OB}$, notat $\bar{a} + \bar{b}$ (după cum am văzut, definiția nu depinde de punctul O) și
- o lege de compoziție externă $\cdot : \mathbb{R} \times \mathcal{V}_{lib} \to \mathcal{V}_{lib}$, numită $\hat{i}nmulțirea~cu~scalari~a~vectorilor din <math>\mathcal{V}_{lib}$, care asociază unui număr $\alpha \in \mathbb{R}$ și unui vector $\bar{a} = \overline{OA} \in \mathcal{V}_{lib}$, vectorul corespunzător clasei $\alpha \cdot \overrightarrow{OA}$, notat $\alpha \cdot \bar{a}$ (după cum am văzut deja, definiția nu depinde de punctul O).

Următorul rezultat se poate demonstra prin verificarea axiomelor specifice unui spațiu vectorial.

Lema 2 Fie $(V, +, \cdot)$ un K-spațiu vectorial, M este o mulțime și $\varphi : V \to M$ o bijecție. Se consideră:

legea de compoziție internă $\boxplus: M \times M \to M, x \boxplus y = \varphi(\varphi^{-1}(x) + \varphi^{-1}(y))$ și

legea de compoziție externă $\Box: K \times M \to M, \ \alpha \boxdot x = \varphi(\alpha \cdot \varphi^{-1}(x)).$

Atunci (M, \boxplus, \boxdot) este un K-spațiu vectorial, iar φ este un izomorfism de spații vectoriale.

Trei vectori liberi \bar{a} , \bar{b} şi \bar{c} se spune că sunt coplanari dacă pentru trei reprezentanți \overrightarrow{OA} , \overrightarrow{OB} şi \overrightarrow{OC} , punctele O, A, B şi C se găsesc în același plan și necoplanari în caz contrar. Evident, definiția nu depinde de punctul O.

Propoziția 13 $(\mathcal{V}_{lib}, +, \cdot)$ este un spațiu vectorial real în care orice trei vectori necoplanari formează o bază.

Propoziția 14 Mulțimea S, a punctelor spațiului, formează un spațiu punctual euclidian.

Următorul rezultat este o consecință imediată a celor demonstrate anterior. Reamintim că \mathcal{E}_3 este spațiul punctual euclidian canonic.

Teorema 1 Fie patru puncte O, E_1 , E_2 , $E_3 \in \mathcal{S}$, astfel încât dreptele OE_1 , OE_2 , OE_3 sunt perpendiculare două câte două, segmentele $[OE_1]$, $[OE_2]$ și $[OE_3]$ au lungimea 1. Să considerăm aplicația $\Phi : \mathcal{S} \to \mathcal{E}_3$, care asociază lui $A \in \mathcal{S}$, punctul $\Phi(A) = (a,b,c) \in \mathcal{E}_3$, unde $\overline{OA} = a\overline{OE_1} + b\overline{OE_2} + c\overline{OE_3}$.

Atunci Φ este un izomorfism de spații punctual euclidiene.

În spațiul euclidian canonic \mathcal{E}_3 se poate considera reperul canonic (O, \mathcal{B}_{can}) , unde O(0,0,0) este originea, iar $\mathcal{B}_{can} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$, $\bar{e}_1 = (1,0,0)$, $\bar{e}_2 = (0,1,0)$ și $\bar{e}_3 = (0,0,1)$. Reperul canonic definește orientarea directă a planului euclidian \mathcal{E}_3 . Un reper euclidian în \mathcal{E}_3 este un dublet (O', \mathcal{B}) , unde $\mathcal{B} \subset E_3$ este o bază ortonormată și $O' \in \mathcal{E}_3$. Dacă

 $\mathcal{B} = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ este o bază pozitiv orientată, atunci matricea de trecere de la \mathcal{B}_{can} la \mathcal{B} se poate exprima cu ajutorul unghiurilor lui Euler. În continuare vom scrie explicit această matrice. Să presupunem că $\{\bar{e}_1, \bar{e}_3, \bar{e}_3\} \neq \{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$. Fie:

 \bar{f}_1 vectorul unitar care este vector director al subspaţiului $\mathcal{L}(\{\bar{e}_1, \bar{e}_2\}) \cap \mathcal{L}(\{\bar{v}_1, \bar{v}_2\})$;

 \bar{f}_2 vectorul unitar astfel încât baza $\mathcal{B}_1 = \{\bar{f}_1, \bar{f}_2, \bar{e}_3\}$ este ortonormată și direct orientată;

 \bar{f}_1' vectorul unitar astfel încât baza $\mathcal{B}_2 = \{\bar{f}_1, \bar{f}_1', \bar{v}_3\}$ este ortonormată și direct orientată.

Matricile de trecere succesive sunt de forma:

$$[\mathcal{B}_{can}, \mathcal{B}_1] = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}, [\mathcal{B}_1, \mathcal{B}_2] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$
$$[\mathcal{B}_2, \mathcal{B}] = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

prin urmare
$$[\mathcal{B}_{can}, \mathcal{B}] =$$

$$= \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} \cos \psi \cos \varphi - & -\cos \psi \sin \varphi - \\ -\sin \psi \cos \theta \sin \varphi & -\sin \psi \cos \theta \cos \varphi & \sin \psi \sin \theta \end{pmatrix}$$

$$= \sin \psi \cos \varphi + & -\sin \psi \sin \varphi + \\ +\cos \psi \cos \theta \sin \varphi & +\cos \psi \cos \theta \cos \varphi & -\cos \psi \sin \theta \end{pmatrix}. \tag{7}$$

Cei trei parametri $\psi, \theta, \varphi \in [0, 2\pi)$ nu sunt unic determinați. Pentru a obține o reprezentare biunivocă cu schimbările de bază directe, se iau punctele corespunzătoare

 $(\cos\varphi\cos\psi\cos\theta,\sin\varphi\cos\psi\cos\theta,\sin\psi\cos\theta,\sin\theta)\in S^3$ (unde S^3 este sfera centrată în origine, de rază 1, din E_4).

Rezultă că o schimbare de reper ortogonal în \mathcal{E}_3 este determinată de şase parametri (trei provin de la schimbarea originii şi trei de la schimbarea bazei).

Ne vom ocupa în continuare de subspațiile spațiului euclidian canonic \mathcal{E}_3 .

Ecuațiile canonice ale unei drepte determinate de un punct A(a,b,c) și vectorul director $\bar{v}=(p,q,r)$ se scriu:

$$(d): \frac{x-a}{p} = \frac{y-b}{q}. = \frac{z-c}{r}.$$

Ecuațiile parametrice ale aceleiași drepte sunt:

$$(d): \left\{ \begin{array}{lll} x=&a+&pt\\ y=&b+&qt\\ z=&c+&rt \end{array} \right.,\quad t\in I\!\!R.$$

Ecuațiile canonice ale unei drepte determinate de punctele A(a,b,c) și B(d,e,f) sunt:

$$(d): \frac{x-a}{d-a} = \frac{y-b}{e-b}. = \frac{z-c}{f-c}.$$

Distanța de la un punct A la \bar{a} dreaptă d care conțane punctul B și are vectorul director \bar{a} , se calculează cu formula (6):

$$d(A,d) = \frac{|\bar{a} \times \overline{AB}|}{|\bar{a}|}.$$

Distanța dintre dreptele neparalele d_1 (care conține punctul A și are ca vector director vectorul \bar{a}_1) și d_2 (care conține punctul B și are ca vector director vectorul \bar{a}_2) este dată de formula:

$$d(d_1, d_2) = \frac{\left| [\bar{a}_1, \bar{a}_2, \overline{AB}] \right|}{|\bar{a}_1 \times \bar{a}_2|};$$

dacă $d_1 \cap d_2 \neq \emptyset$, atunci $d(d_1, d_2) = 0$; dacă $d_1 \parallel d_2$ atunci:

$$d(d_1, d_2) = \frac{\left| \bar{a}_1 \times \overline{AB} \right|}{\left| \bar{a}_1 \right|}$$

(propoziția 5).

Din propoziția 4 rezultă ecuația perpendicularei comune a două drepte:

$$\begin{cases} \bar{a}_1 \times (\bar{a}_1 \times \bar{a}_2) \cdot (\bar{r} - \bar{r}_A) = 0 \\ \bar{a}_2 \times (\bar{a}_1 \times \bar{a}_2) \cdot (\bar{r} - \bar{r}_A) = 0 \end{cases}.$$

Un plan π care conține un punct A(a,b,c) și are ca vector normal $\bar{n}=(l,m,n)\neq (0,0,0)$, are ecuația carteziană:

$$(\pi): l(x-a) + m(y-b) + n(z-c) = 0.$$

Un plan π care conține un punct A(a,b,c) și are ca vectori directori vectorii necoliniari $\bar{v}_1 = (l,m,n)$ și $\bar{v}_2 = (l',m',n')$ are ecuațiile parametrice:

$$\begin{cases} x = a + ls + l't \\ y = b + ms + m't, s, t \in \mathbb{R}. \\ z = c + ns + n't \end{cases}$$

Prin eliminarea parametrilor $s,t \in \mathbb{R}$, se regăsește ecuația carteziană a planului π sub forma:

$$(\pi): n_1(x-a) + n_2(y-b) + n_3(z-a) = 0,$$

unde:

$$(n_1, n_2, n_3) = \bar{v}_1 \times \bar{v}_2 = \begin{vmatrix} \bar{e}_1 & \bar{e}_2 & \bar{e}_3 \\ l & m & n \\ l' & m' & n' \end{vmatrix} =$$

$$= (mn' - nm', nl' - ln', lm' - ml').$$

Ecuația anterioară se poate scrie sub forma:

$$(\pi): \left| \begin{array}{ccc} x-a & y-b & z-c \\ l & m & n \\ l' & m' & n' \end{array} \right| = 0,$$

sau

$$(\pi): \left| \begin{array}{cccc} x & y & z & 1 \\ a & b & c & 1 \\ l & m & n & 0 \\ l' & m' & n' & 0 \end{array} \right| = 0.$$

Dacă planul π conține punctele A(a,b,c), B(a',b',c') și vectorul $\bar{v}=(l,m,n)$ (necoliniar cu vectorul \overline{AB}) este conținut în subspațiul director, atunci are ecuația

$$(\pi): \left| \begin{array}{ccc} x - a & y - b & z - c \\ a' - a & b' - b & c' - c \\ l & m & n \end{array} \right| = 0,$$

sau

$$(\pi): \left| \begin{array}{cccc} x & y & z & 1 \\ a & b & c & 1 \\ a' & b' & c' & 1 \\ l & m & n & 0 \end{array} \right| = 0.$$

Dacă planul π conține punctele A(a,b,c), B(a',b',c') și C(a'',b'',c''), astfel că vectorii \overline{AB} și \overline{AC} sunt necoliniari, atunci ecuația planului este:

$$(\pi): \left| \begin{array}{cccc} x-a & y-b & z-c \\ a'-a & b'-b & c'-c \\ a''-a & b''-b & c''-c \end{array} \right| = 0,$$

sau

$$(\pi): \left| \begin{array}{cccc} x & y & z & 1 \\ a & b & c & 1 \\ a' & b' & c' & 1 \\ a'' & b'' & c'' & 1 \end{array} \right| = 0.$$

Două plane (neparalele) π şi π' se intersectează după o dreaptă d. Fie $(\pi): lx + my + nz + p = 0$ şi $(\pi'): l'x + m'y + n'z + p' = 0$ ecuațiile celor două plane, cu vectorii normali $\bar{n} = (l, m, n)$ şi $\bar{n}' = (l', m', n')$. Presupunerea că planele π și π' nu sunt paralele este echivalentă cu oricare din condițiile:

- vectorii \bar{n} și \bar{n}' nu sunt coliniari;
- $rang \begin{pmatrix} l & m & n \\ l' & m' & n' \end{pmatrix} = 2;$
- $\bar{n} \times \bar{n}' \neq \bar{0}$.

În condițiile considerate, se obțin ecuațiile dreptei de intersecție:

(d):
$$\begin{cases} lx + my + nz + p = 0 \\ l'x + m'y + n'z + p' = 0 \end{cases}$$
.

Să remarcăm că un vector director al dreptei d este vectorul $\bar{a} = \bar{n} \times \bar{n}'$. Ecuația unui plan π'' care conține dreapta d este:

$$(\pi''): \alpha(lx + my + nz + p) + \beta(l'x + m'y + n'z + p') = 0, \tag{8}$$

numită ecuația fasciculului de plane care conține dreapta d. Într-adevăr, dacă π'' este un plan care conține dreapta d, cu vectorul director $\bar{a} = \bar{n} \times \bar{n}'$, vectorul său normal $\bar{n}'' = (l'', m'', n'')$ este perpendicular pe vectorul \bar{a} , la fel ca vectorii $\bar{n} = (l, m, n)$ și $\bar{n}' = (l', m', n')$. Rezultă că \bar{n} , \bar{n}' și $\bar{n}'' \in (\mathcal{L}(\{\bar{a}\}))^{\perp}$ $((\mathcal{L}(\{\bar{a}\}))^{\perp}$ are dimensiunea 2); deoarece vectorii \bar{n} și \bar{n}' sunt necoliniari, ei formează o bază în acest subspațiu, deci $(\exists)\alpha, \beta \in I\!\!R$ astfel încât $\bar{n}'' = \alpha \bar{n} + \beta \bar{n}'$. Rezultă că $l'' = \alpha l + \beta l'$, $m'' = \alpha m + \beta m'$ și $n'' = \alpha n + \beta n'$. Fie $A(a,b,c) \in d$. Au loc relațiile l(x-a) + m(y-b) + m(z-c) = 0, de unde p = -la - mb - nc; analog p' = -l'a - m'b - n'c și p'' = -l''a - m''b - n''c. Deci are loc și $p'' = \alpha p + \beta p'$, de unde rezultă ecuația (8).

Distanța de la un punct A(a,b,c) la un plan de ecuație $(\pi): lx + my + nz + p = 0$ este dată de

$$d(A,\pi) = \frac{|la + mb + nc + p|}{\sqrt{l^2 + m^2 + n^2}}$$

(formula (5)). Un alt mod de a deduce această formulă este acela de a determina mai întâi proiecția punctului A pe planul π , punctul $A' = pr_{\pi}A$. Ecuațiile parametrice ale dreptei d' care conține pe A și are ca vector director vectorul $n = l\bar{e}_1 + m\bar{e}_2 + n\bar{e}_3 = (l, m, n)$ sunt:

$$\begin{cases} x = lt + a \\ y = mt + b \\ z = nt + c \end{cases}.$$

Punctul A'(a',b',c') se găsește la intersecția dreptei d' și a planului π , deci $a' = lt_0 + a$, $b' = mt_0 + b$, $c' = nt_0 + c$, unde $l(lt_0 + a) + m(mt_0 + b) + n(nt_0 + +c) + p = 0$, de unde $t_0 = \frac{-la - mb - nc - p}{l^2 + m^2 + n^2}$. Rezultă $d(A,\pi) = |AA'| = \sqrt{(a-a')^2 + (b-b')^2 + (c-c')^2} = |t_0| \sqrt{l^2 + m^2 + n^2} = \frac{|la + mb + nc + p|}{\sqrt{l^2 + m^2 + n^2}}$.

Perpendiculara comună d' a două drepte date se obține ca dreaptă de intersecție a două plane (propoziția 4):

$$(d'): \left\{ \begin{array}{l} \bar{a}_1 \times (\bar{a}_1 \times \bar{a}_2) \cdot (\bar{r} - \bar{r}_A) = 0 \\ \bar{a}_2 \times (\bar{a}_1 \times \bar{a}_2) \cdot (\bar{r} - \bar{r}_B) = 0 \end{array} \right..$$

Astfel, dacă d_1 conține punctul A(a,b,c) și are vectorul director \bar{a}_1 , iar d_2 conține punctul B(a',b',c') și are vectorul director \bar{a}_2 , atunci $\bar{n}_1 = \bar{a}_1 \times (\bar{a}_1 \times \bar{a}_2) = (\bar{a}_1 \cdot \bar{a}_2)\bar{a}_1 - (\bar{a}_1^2)\bar{a}_2 = (n_1^1, n_1^2, n_1^3), \ \bar{n}_2 = \bar{a}_2 \times (\bar{a}_1 \times \bar{a}_2) = (\bar{a}_2^2)\bar{a}_1 - (\bar{a}_1 \cdot \bar{a}_2)\bar{a}_2 = (n_1^2, n_2^2, n_2^3)$ și ecuațiile anterioare se scriu:

$$(d'): \begin{cases} n_1^1(x-a) + n_1^2(y-b) + n_1^3(z-c) = 0 \\ n_2^1(x-a') + n_2^2(y-b') + n_2^3(z-c') = 0 \end{cases}.$$

Vom studia în continuare izometriile spațiului euclidian \mathcal{E}_3 . Fie (O, \mathcal{B}) un reper al spațiului euclidian \mathcal{E}_3 .

Orice izometrie a lui \mathcal{E}_3 care păstrează orientarea se poate descompune sub forma (7), folosind unghiurile lui Euler. Aceasta arată că izometriile lui \mathcal{E}_3 care păstrează orientarea se pot descrie de cei trei parametri, ceea ce realizează o bijecție între izometriile lui \mathcal{E}_3 care păstrează orientarea și punctele sferei $S^3 \subset E_4$, centrată în origine și de rază 1. În continuare vom studia forma canonică a unei izometrii, adică vom găsi un reper în care izometria să aibă o formă cât mai simplă.

Fie $\bar{v} \in E_3$ un vector, iar $[\bar{v}]_{\mathcal{B}} = \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix}$. Translaţia de vector \bar{v} a spaţiului euclidian \mathcal{E}_3 este transformarea

 $t_{\bar{v}}:\mathcal{E}_3 \to \mathcal{E}_3$ de forma $t_{\bar{v}}(A)=A',$ unde $\overline{AA'}=\bar{v}.$ Ecuațiile translației $t_{\bar{v}}$ sunt:

$$\begin{cases} x' = x + v^1 \\ y' = y + v^2 \\ z' = z + v^3 \end{cases}$$
 (I)

Să remarcăm că aplicația liniară indusă pe E_3 este 1_{E_3} , adică identitatea lui E_3 .

Fie $O'(a,b,c) \in \mathcal{E}_3$ un punct. Simetria centrală (cu centrul în O') este transformarea $t_{\bar{v}}: \mathcal{E}_3 \to \mathcal{E}_3$, unde $s_O(A) = A'$ fiind unicul punct pentru care O este mijlocul segmentului [AA'], adică A' = 2O' - A. Folosind coordonate, ecuațiile simetriei $s_{O'}$ sunt:

$$\begin{cases} x' = -x + 2a \\ y' = -y + 2b \\ z' = -z + 2c \end{cases}$$
 (II)

Să remarcăm că aplicația liniară indusă pe E_3 este -1_{E_3} .

Propoziția 15 Fie $f: \mathcal{E}_3 \to \mathcal{E}_3$ o izometrie. Dacă f nu este translație $(\bar{f} \neq 1_{E_3})$ sau simetrie centrală $(\bar{f} \neq -1_{E_3})$, atunci există un reper ortonormat (O', \mathcal{B}') în care f este dată prin:

$$\begin{cases} x' = -x \\ y' = y + b \\ z' = z + c \end{cases}$$
 (III)

(translatie paralelă cu planul yOz compusă cu o simetrie față de același plan);

$$\begin{cases} x' = x + a \\ y' = -y \\ z' = -z \end{cases}$$
 (IV)

(translație în lungul axei x'x compusă cu o simetrie față de aceași axă);

$$\begin{cases} x' = -x \\ y' = y \cos \alpha - z \sin \alpha , \alpha \in (0, 2\pi) \\ z' = y \sin \alpha + z \cos \alpha \end{cases}$$
 (V)

(simetrie față de planul yOz compusă cu o cu o rotație în jurul axei x'x);

$$\begin{cases} x' = x + a \\ y' = y \cos \alpha - z \sin \alpha \\ z' = y \sin \alpha + z \cos \alpha \end{cases}, \alpha \in (0, 2\pi)$$
 (VI)

(translatie în lungul axei x'x compusă cu o rotație în jurul aceleiași axe).

3 Planul euclidian bidimensional canonic

Din considerente analoge, planul euclidian \mathcal{P} este un spațiu punctual euclidian izomorf cu spațiul punctual euclidian canonic pe \mathcal{E}_2 . Dacă se consideră $O, E_1, E_2 \in \mathcal{P}$ astfel încât $OE_1 \perp OE_2$ și lungimea segmentelor $[OE_1]$ și $[OE_2]$ este 1, atunci $(\forall)A \in \mathcal{P}$, avem $\overline{OA} = a \cdot \overline{OE_1} + b \cdot \overline{OE_2}$, iar izomorfismul $\Phi : \mathcal{P} \to \mathcal{E}_2$ se definește prin $\Phi(\overline{OA}) = (a,b)$.

În planul punctual euclidian \mathcal{E}_2 se poate considera reperul canonic (O, \mathcal{B}_{can}) , unde O este originea (0,0), iar $\mathcal{B}_{can} = \{\bar{e}_1, \bar{e}_2\}$, $\bar{e}_1 = (1,0)$, $\bar{e}_2 = (0,1)$. Reperul canonic definește orientarea directă a planului punctual euclidian \mathcal{E}_2 . Un reper euclidian în \mathcal{E}_2 este un dublet (O', \mathcal{B}) , unde $\mathcal{B} = \{\bar{v}_1, \bar{v}_2\} \subset E_2$ este o bază ortonormată și $O' \in \mathcal{E}_2$. Deoarece un vector unitar $\bar{n} \in E_2$ are forma $\bar{n} = (\cos \varphi, \sin \varphi)$, iar un vector $\bar{n}' \perp \bar{n}$ are forma $\pm (-\sin \varphi, \cos \varphi)$, rezultă că vectorii \bar{v}_1 și \bar{v}_2 pot fi:

$$\bar{v}_1 = (\cos \varphi, \sin \varphi), \ \bar{v}_2 = (-\sin \varphi, \cos \varphi), \ \operatorname{daca}(O', \mathcal{B}') \text{ este pozitiv orientată, pentru că} \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = 1;$$
 $\bar{v}_1 = (\cos \varphi, \sin \varphi), \ \bar{v}_2 = (\sin \varphi, -\cos \varphi), \ \operatorname{daca}(O', \mathcal{B}') \text{ este negativ orientată, pentru că} \begin{vmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{vmatrix} = -1.$

Rezultă că o schimbare de reper ortonormat în \mathcal{E}_2 este determinată de trei parametri (doi de la schimbarea originii şi unul de la schimbarea bazei).

Ecuația dreptei determinate de un punct A(a,b) și vectorul director $\bar{v}=(p,q)$ este:

$$(d): \frac{x-a}{p} = \frac{y-b}{q},$$

sau

$$\left|\begin{array}{ccc} x & y & 1 \\ a & b & 1 \\ p & q & 0 \end{array}\right| = 0.$$

Ecuația dreptei determinate de punctele A(a,b) și B(c,d) este:

$$(d): \frac{x-a}{c-a} = \frac{y-b}{d-b},$$

sau

$$\left| \begin{array}{ccc} x & y & 1 \\ a & b & 1 \\ c & d & 1 \end{array} \right| = 0.$$

Ecuația dreptei determinate de un punct A(a,b) și vectorul normal $\bar{n}=(l,m)$ este:

$$(d): l(x-a) + m(y-b) = 0.$$

Orientarea unei drepte este dată fie prin fixarea unui vector director \bar{v} al dreptei, fie prin fixarea unui vector normal \bar{n} al dreptei. Dacă vectorul normal \bar{n} este dat, există un singur vector director unitar \bar{v} astfel încât reperul $\{\bar{v},\bar{n}\}$ este direct orientat. Măsura unghiului a două drepte d_1 și d_2 orientate de vectorii directori (nenuli) \bar{a}_1 și \bar{a}_2 este măsura unghiului vectorilor \bar{a}_1 și \bar{a}_2 , adică este $\alpha \in [0,\pi]$ dat de $\cos \alpha = \frac{\langle \bar{a}_1,\bar{a}_2 \rangle}{|\bar{a}_1||\bar{a}_2|} \in [-1,1]$.

În cele ce urmează vom studia izometriile spațiului euclidian \mathcal{E}_2 . Am văzut (propoziția 8) că o izometrie $f: \mathcal{E}_2 \to \mathcal{E}_2$ este o aplicație afină. Mai mult, este un izomorfism afin. Dacă (O, \mathcal{B}) este un reper ortonormat, atunci aplicația liniară $\bar{f}: E_2 \to E_2$ indusă între spațiile vectoriale euclidiene directoare este o izometrie, prin urmare matricea $[\bar{f}]_{\mathcal{B}}$ este o ortogonală, având una din formele:

- 1. $[\bar{f}]_{\mathcal{B}} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, când det $\bar{f} = 1$, caz în care izometria f se numeşte de speţa $\hat{i}nt\hat{a}i$ (sau deplasare) sau
- 2. $[\bar{f}]_{\mathcal{B}} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$, când det $\bar{f} = -1$, caz în care izometria f se numește de speța a doua (sau antideplasare).

Propoziția 16 Fie o izometrie $f: \mathcal{E}_2 \to \mathcal{E}_2$.

- 1. Dacă f este o izometrie de speța întâi, atunci:
 - (a) dacă f nu are puncte fixe, atunci f este o translație: $\bar{f} = 1_{E_2}$ și în orice reper ortonormat $(O', \mathcal{B}' = \{\bar{e}'_1, \bar{e}'_2\})$, f este dată prin

$$\begin{cases} x' = x + a \\ y' = y + b \end{cases}, \tag{9}$$

unde $\bar{v} = a\bar{e}'_1 + b\bar{e}'_2$ este vectorul translației;

(b) dacă f are puncte fixe, atunci are un singur punct fix O', fiind o rotație cu centrul în O' și în orice reper ortonormat (O', \mathcal{B}') , cu centrul în O', f este dată prin

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha \\ y' = x \sin \alpha + y \cos \alpha \end{cases}, \tag{10}$$

unde $\alpha \in [0, 2\pi)$ este unghiul de rotație.

2. Dacă f este o izometrie de speța a doua, atunci există un reper ortonormat $(O', \mathcal{B}' = \{\bar{e}'_1, \bar{e}'_2\})$, în care f este dată prin

$$\begin{cases} x' = -x \\ y' = y + b \end{cases}, \tag{11}$$

adică f este o simetrie (față de dreapta care trece prin O' și are \bar{v}'_2 ca vector director), compusă cu o translație (de vector $b\bar{v}'_2$).

Să remarcăm că o izometrie de speța a doua dată prin (11) are puncte fixe dacă și numai dacă b = 0, caz în care orice punct al axei de simetrie este punct fix (deci există o infinitate de puncte fixe).

4 Hipersuprafețe de ordinul al doilea în spații euclidiene reale

4.1 Hipercuadrice

Fie \mathcal{E} un spațiu vectorial euclidian real de dimensiune n, cu spațiul vectorial director V și $(O; \mathcal{B})$ un reper euclidian.

Mulţimea \mathcal{H} a punctelor $M(x^1,\ldots,x^n)$ ale căror coordonate verifică o ecuație de tipul

$$(\mathcal{H}): \sum_{i,j=1}^{n} a_{ij} x^{i} x^{j} + 2 \sum_{i=1}^{n} b_{i} x^{i} + c = 0,$$

$$(12)$$

unde $a_{ij} = a_{ji}$, b_i , $c \in \mathbb{R}$, $(\forall)i, j = \overline{1, n}$, se numește hiprcuadrică în \mathcal{E} . În cele ce urmează vom considera doar cazul $\mathcal{H} \neq \bigcirc$ (cu excepția situației când vom face clasificarea hipercuadricelor). Notăm membrul stâng al ecuației (12) $\sum_{i,j=1}^{n} a_{ij}x^ix^j + 2\sum_{i=1}^{n} b_ix^i + c \equiv F(x^1, \dots, x^n)$. Ceficienții polinomiali ai lui F se numesc coeficienții hipercuadricei.

În cazul n = 2, hipercuadricele sunt curbe şi se numesc conice, iar în cazul n = 3 hipercuadricele sunt suprafețe şi se numesc cuadrice.

Ecuația (12) se poate scrie matricial în două moduri. Dacă se notează $A = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R}), b = \begin{pmatrix} b^1 \\ \vdots \\ b^n \end{pmatrix} \in$

 $\mathcal{M}_{n,1}(\mathbb{R}), X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}), \text{ atunci ecuația (12) devine:}$

$$(\mathcal{H}): X^t \cdot A \cdot X + 2X^t \cdot b + c = 0, \tag{13}$$

sau

$$(\mathcal{H}): \begin{pmatrix} X \\ 1 \end{pmatrix}^t \cdot \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} \cdot \begin{pmatrix} X \\ 1 \end{pmatrix} = 0.$$
 (14)

Fie $(O; \mathcal{B})$ și $(O'; \mathcal{B}')$ două repere euclidiene și fie $\begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}$ matricea schimbării de coordonate. Avem:

$$\begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X' \\ 1 \end{pmatrix}. \tag{15}$$

Ecuația (14) devine $\begin{pmatrix} X' \\ 1 \end{pmatrix}^t \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}^t \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X' \\ 1 \end{pmatrix} = 0$, de unde rezultă că

$$\begin{pmatrix} A' & b' \\ (b')^t & c' \end{pmatrix} = \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}^t \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}, \tag{16}$$

adică $\begin{pmatrix} A' & b' \\ (b')^t & c' \end{pmatrix} = \begin{pmatrix} P^tAP & P^tAp + P^tb \\ p^tAP + b^tP & p^tAp + 2p^tb + c \end{pmatrix}$. De aici rezultă următoarele reguli de schimbare a coeficientilor hipercuadricei:

$$A' = P^{t}AP,$$

$$b' = P^{t}Ap + P^{t}b,$$

$$c' = p^{t}Ap + 2p^{t}b + c.$$
(17)

Se notează $\delta = \det A$ și $\Delta = \det \begin{pmatrix} A & b \\ b^t & c \end{pmatrix}$. Avem $A' = P^t A P$, deci $\delta' = \det A' = \det (P^t A P) = (\det P^t)(\det A)(\det P) = (\det A)(\det P)^2 = \delta(\det P)^2$, deci

$$\delta' = \delta(\det P)^2.$$

Analog, avem
$$\Delta' = \det \begin{pmatrix} A' & b' \\ (b')^t & c' \end{pmatrix} =$$

$$= \det \begin{pmatrix} \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}^t \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix} \end{pmatrix} =$$

$$= \det \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix}^t \det \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} \det \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix} =$$

$$= \left(\det \begin{pmatrix} P & p \\ 0 & 1 \end{pmatrix} \right)^2 \det \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} = (\det P)^2 \det \begin{pmatrix} A & b \\ b^t & c \end{pmatrix} = (\det P)^2 \Delta, \det \Delta' = \Delta (\det P)^2.$$

Dar dacă schimbările de reper sunt ortogonale, avem $(\det P)^2 = 1$, deoarece $P^t P = I_n$. Rezultă că

$$\delta' = \delta \operatorname{si} \Delta' = \Delta$$
,

deci numerele δ și Δ nu depind de reperul ortonormat ales. Dacă ecuația hipercuadricei se scrie $-F(x^1,\ldots,x^n)=0$, atunci $\delta' = (-1)^n \delta$ şi $\Delta' = (-1)^{n+1} \Delta$, deci semnul lui δ sau Δ se poate schimba, dar faptul că δ sau Δ sunt sau nu sunt nule, nu depinde de ecuația considerată sau de reperul ortonormat ales. Anularea lui δ sau Δ este importantă pentru că oferă informații privitoare la hipercuadrică. Astfel, dacă $\delta \neq 0$, hipercuadrica are centru unic, iar dacă $\delta = 0$, hipercuadrica nu are centru unic; dacă $\Delta \neq 0$, hipercuadrica este nedegenerată, iar dacă $\delta = 0$, hipercuadrica este degenerată.

Dacă $A \in \mathcal{M}_n(\mathbb{R})$ atunci:

- valorile proprii $\lambda_1, \ldots, \lambda_n$ ale matricii A sunt rădăcinile ecuației $\det(A \lambda I_n) = 0$;
- un vector propriu al matricii A este o matrice $X \in \mathcal{M}_{n,1}(\mathbb{R})$ pentru care există o valoare (proprie) $\lambda \in \mathbb{R}$ astfel încât $AX = \lambda X$.

Dacă V este spațiu vectorial euclidian, $\mathcal{B} \subset V$ este o bază ortonormată și $A \in \mathcal{M}_n(\mathbb{R})$ este o matrice simetrică asociată unei forme biliniare pe V, atunci se pot considera

- un endomorfism simetric $f: V \to V$, care în baza \mathcal{B} are matricea $[f]_{\mathcal{B}} = A$ şi
- o formă biliniară simetrică $b: V \times V \to \mathbb{R}$, care în baza \mathcal{B} are matricea $[b]_{\mathcal{B}} = A$.

Dacă \mathcal{B}' este o altă bază ortonormată, atunci matricea de trecere $P = [\mathcal{B}, \mathcal{B}']$ este o matrice ortogonală (adică $P^{-1} = P^t$). Rezultă că $[f]_{\mathcal{B}'} = P^{-1}AP = P^tAP = [b]_{\mathcal{B}'}$, deci endomorfismul simetric f și forma biliniară simetrică b au aceeași matrice în orice bază ortonormată. Deoarece toate valorile proprii ale endomorfismului f sunt reale și vectorii proprii corespunzători pot forma o bază a lui \mathcal{B} în care matricea endomorfismului f este diagonală, rezultă că aceleași proprietăți le are și forma biliniară simetrică asociată. Rezultă că pentru o formă biliniară simetrică:

- valorile proprii ale matricii simetrice asociate sunt toate reale și
- \bullet există o bază ortogonală a spațiului euclidian V în care matricea asociată este diagonală.

Vectorii proprii ai matricii A sunt numiți direcții principale ale hipercuadricei \mathcal{H} .

Vom studia în continuare intersecția unei hipercuadrice cu o dreaptă.

Fie $P_0(x_0^1,\ldots,x_0^n)\in\mathcal{E}$ și vectorul \bar{v}_0 astfel că $[\bar{v}_0]_{\mathcal{B}}=V_0$. Fie $X=X_0+tV_0$ ecuația parametrică a dreptei d

care confine punctul
$$P_0$$
 si are ca vector director vectorul $\bar{v}_0 \neq \bar{0}$; $X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$, $X_0 = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$, $V_0 = \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix}$.

Intersecţia dreptei
$$d$$
 cu hipercuadrica, ţinând seama de ecuaţia (14), conduce la
$$\begin{pmatrix}
X_0 + tV_0 \\
1
\end{pmatrix}^t \cdot \begin{pmatrix}
A & b \\
b^t & c
\end{pmatrix} \cdot \begin{pmatrix}
X_0 + tV_0 \\
1
\end{pmatrix} = 0, \text{ sau:}$$

$$\begin{pmatrix}
X_0 \\
1
\end{pmatrix}^t \cdot \begin{pmatrix}
A & b \\
b^t & c
\end{pmatrix} \cdot \begin{pmatrix}
X_0 \\
1
\end{pmatrix} + t \begin{pmatrix}
X_0 \\
1
\end{pmatrix}^t \cdot \begin{pmatrix}
A & b \\
b^t & c
\end{pmatrix} \cdot \begin{pmatrix}
V_0 \\
0
\end{pmatrix} +$$

$$+ t \begin{pmatrix}
V_0 \\
0
\end{pmatrix}^t \cdot \begin{pmatrix}
A & b \\
b^t & c
\end{pmatrix} \cdot \begin{pmatrix}
X_0 \\
1
\end{pmatrix} + t^2 \begin{pmatrix}
V_0 \\
1
\end{pmatrix}^t \cdot \begin{pmatrix}
A & b \\
b^t & c
\end{pmatrix} \cdot \begin{pmatrix}
V_0 \\
0
\end{pmatrix} = 0, \text{ sau}$$

$$X_0^t A X_0 + 2b^t X_0 + c + 2t(X_0^t A V_0 + b^t V_0) + t^2 V_0^t A V_0 = 0. \tag{18}$$

Vectorii \bar{v}_0 , cu $[\bar{v}_0]_{\mathcal{B}} = V_0$, pentru care $V_0^t A V_0 = 0$ definesc direcțiile asimptotice ale hipercuadricei. Dacă $\bar{v} = (v^1, \dots, v^n) \in V$ definește o direcție asimptotică, atunci spunem că hiperplanul dat prin

$$v^1 \frac{\partial F}{\partial x^1} + \dots + v^n \frac{\partial F}{\partial x^n} = 0$$

este conjugat cu direcția asimptotică \bar{v} .

Dacă punctul P_0 aparține hipercuadricei $(X_0^t A X_0 + 2b^t X_0 + c = 0)$, atunci dreapta d este $tangent \check{a}$ hipercuadricei dacă ecuația de gradul doi în t (18) are rădăcinile $t_1 = t_2 = 0$, adică $X_0^t A V_0 + b^t V_0 = 0$. Fie $P(x^1, \ldots, x^n)$

un punct oarecare al unei drepte tangente, corespunzător lui $X=\begin{pmatrix}x^1\\\vdots\\x^n\end{pmatrix}=X_0+tV_0$. Atunci din relația

 $X_0^t A X_0 + 2b^t X_0 + c = 0$ adunată cu relația $X_0^t A V_0 + b^t V_0 = 0$ înmulțită cu t, rezultă $X_0^t A (X_0 + tV_0) + b^t (2X_0 + tV_0) + c = 0$, sau

$$X_0^t A X + b^t (X_0 + X) + c = 0,$$

sau:

$$(\mathcal{H}_0): \sum_{i=1}^n a_{ii} x^i x_0^i + \sum_{1 \le i < j \le n} a_{ij} (x^i x_0^j + x^j x_0^i) + \sum_{i=1}^n b_i (x^i + x_0^i) + c = 0.$$

Punctul $P_0 \in \mathcal{H}$ fiind dat, ecuația de mai sus reprezintă ecuația unui hiperplan care conține pe P_0 , numit hiperplan tangent la hipercuadrică în P_0 . Ecuația sa se obține prin dedublarea ecuației hipercuadricei. Hiperplanul tangent într-un punct la o hipercuadrică este format așadar din reunirea tuturor dreptelor tangente la hipercuadrică, care trec prin acel punct.

Un punct P_0 se spune că este *centru de simetrie* al hipercuadricei dacă există două puncte $A_1, A_2 \in \mathcal{H}$ astfel încât P_0 este mijlocul segmentului $[A_1A_2]$.

Propoziția 17 Fie \mathcal{H} o hipercuadrică a cărei ecuație este (13).

 $Un\ punct\ P_0\ este\ centru\ al\ hipercuadricei\ dacă\ și\ numai\ dacă\ coordonatele\ sale\ verifică\ sistemul\ de\ ecuații\ liniare$

$$AX_0 + b = 0_n. (19)$$

Coordonatele centrului de simetrie se obțin așadar din sistemul:

$$\sum_{j=1}^{n} a_{ij} x^{j} + b_{i} = 0, i = \overline{1, n} \Leftrightarrow \tag{20}$$

$$\frac{1}{2}\frac{\partial F}{\partial x^i}(x^1,\dots,x^n) = 0, i = \overline{1,n} \Leftrightarrow$$
(21)

$$AX + b = 0_n. (22)$$

Hipercuadricele pentru care $\delta = \det A \neq 0$ au așadar un centru unic, existența centrului nedepinzând de sistemul de coordonate ales.

Hipercuadricele pentru care $\delta = \det A = 0$ nu au centru unic; pot exista o infinitate de centre (dacă sistemul de ecuații (19) este compatibil) sau nu există nici un centru (dacă sistemul de ecuații (19) este incompatibil).

Propoziția 18 Există un reper ortonormat $(O'; \mathcal{B}')$, unde baza $\mathcal{B}' \subset V$ este formată din vectori care dau direcții principale, corespunzătoare valorilor proprii $\lambda_1, \ldots, \lambda_n$ ale matricii A, astfel că ecuația hipercuadricei \mathcal{H} are una din formele:

1.
$$\lambda_1 (y^1)^2 + \dots + \lambda_r (y^r)^2 + c' = 0;$$

2.
$$\lambda_1 (y^1)^2 + \dots + \lambda_r (y^r)^2 + 2b'y^{r+1} = 0$$
, unde $\lambda_1 \dots \lambda_r \neq 0$ și $b' \neq 0$.

Observații.

- 1. In cazul când hipercuadrica are un centru, se poate lua O' acel centru şi termenii de gradul întâi nu mai apar în forma canonică. Dacă cel puţin o valoare proprie $\lambda_{i_0} = 0$ şi $b'_{i_0} \neq 0$, atunci hipercuadrica nu are nici un centru şi termenul liber nu apare în forma canonică.
- 2. Am văzut (propoziția 20) că rangurile $r = rang \ A$ și $r' = rang \ \begin{pmatrix} A & b \\ b^t & c \end{pmatrix}$ sunt invarianți izometrici, adică sunt aceeași în orice reper ortonormat. Din formele canonice de mai sus, rezultă că între r și r' pot exista numai următoarele relații: r = r', r' = r + 1 sau r' = r + 2.
- 3. Să considerăm subspațiul afin al lui \mathcal{E} care trece prin O' și are ca subspațiul director subspațiul vectorial al lui V generat de vectorii:

 $\{\bar{v}_1',\ldots,\bar{v}_r'\}$, dacă ecuația hipercuadricii poate avea forma 1. din propoziția 18 (avem $c'=0 \Leftrightarrow r'=r$ și $c'\neq 0 \Leftrightarrow r'=r+1$);

 $\{\bar{v}'_1,\ldots,\bar{v}'_{r+1}\}$, dacă ecuația hipercuadricii poate avea forma 2. din propoziția $18 \Leftrightarrow r' = r+2$.

Prin restricție la acest subspațiu afin, hipercuadrica definește o nouă hipercuadrică. Dimensiunea p a acestui subspațiu (p = n - r, dacă are loc forma 1., sau p = n - r - 1, dacă are loc forma 2. pentru ecuația hipercuadricii), se mai numește *indicele cilindric* al hipercuadricei \mathcal{H} . Prin urmare are loc următorul rezultat.

Propoziția 19 Dacă p este indicele cilindric al unei hipercuadrice \mathcal{H} , atunci există două subspații afine $\mathcal{E}_0, \mathcal{E}_0^{\perp} \subset \mathcal{E}$, cu subspațiile directoare ortogonale și complementare de dimensiuni p și respectiv n-p, astfel că restricția lui \mathcal{H} la \mathcal{E}_0 este o hipercuadrică \mathcal{H}_0 , iar restricția lui \mathcal{H} la \mathcal{E}_0^{\perp} este sau mulțimea vidă (dacă $\mathcal{H}_0 = \emptyset$) sau întreg \mathcal{E}_0^{\perp} (dacă $\mathcal{H}_0 \neq \emptyset$).

De exemplu, în \mathcal{E}^3 , pentru hipercuadricele $(\mathcal{H}_1): (x^1)^2 + (x^2)^2 + 1 = 0$ şi $(\mathcal{H}_2): (x^1)^2 + (x^2)^2 - 1 = 0$ se poate lua $(\mathcal{E}_0): x^3 = 0$ şi $(\mathcal{E}_0^{\perp}): x^1 = x^2 = \frac{\sqrt{2}}{2}$. Restricțiile lui \mathcal{H}_1 la \mathcal{E}_0 şi \mathcal{E}_0^{\perp} sunt mulțimea vidă; restricția lui \mathcal{H}_2 la \mathcal{E}_0 este un cerc, iar restricția la \mathcal{E}_0^{\perp} este \mathcal{E}_0^{\perp} .

Să notăm că pentru o hipercuadrică nevidă nedegenerată ($\Delta \neq 0$), sau degenerată și cu centru unic ($\Delta = 0$, $\delta \neq 0$), \mathcal{E}_0 este un punct.

O mărime sau o proprietate se numește invariant euclidian al hipercuadricei date \mathcal{H} dacă mărimea sau proprietatea nu depinde de reperul considerat. De exemplu, mărimile δ și Δ sunt invarianți euclidieni.

Anumite mărimi sau proprietăți ale hipercuadricei sunt invariate numai de anumite schimbări de repere euclidiene; acestea se numesc seminvarianți euclidieni. De exemplu, la o schimbare de reper $(O; \mathcal{B}) \to (O; \mathcal{B}')$ (numită schimbare de reper centroafină, sau central afină), termenul liber din ecuația hipercuadricei nu se schimbă, prin urmare termenul liber este un semiinvariant euclidian (la schimbările de reper centroafine). La fel, $\sum_{i,j=1}^{n} a_{ij}x^{i}x^{j}$ din ecuația hipercuadricei rămâne neschimbată la o schimbare de reper de forma $(O; \mathcal{B}) \to (O'; \mathcal{B})$, numită translație de reper. Cum orice reper afin (euclidian) se poate obține printr-o schimbare centroafină de reper, urmată de o translație de reper, rezultă că semiinvarianții euclidieni comuni acestor două tipuri de schimbări de reper sunt invarianții euclidieni.

Observație. Suma $\sum_{i,j=1}^{n} a_{ij}x^{i}x^{j}$ din ecuația hipercuadricei (12) definește o formă biliniară pe spațiul vectorial director, pe care o notăm $b_{\mathcal{H}}$ (vezi (17)). Dacă ecuația $F(x^{1},\ldots,x^{n})=0$ se înlocuiește cu ecuația $-F(x^{1},\ldots,x^{n})=0$, atunci forma biliniară $b_{\mathcal{H}}$ se înlocuiește cu forma biliniară $-b_{\mathcal{H}}$. Deducem astfel că forma biliniară $b_{\mathcal{H}}$ este determinată de hipercuadrică, abstracție făcând de semn.

Propoziția 20 Există următorii invarianți euclidieni pentru o hipercuadrică dată H de ecuație (12):

- $r = rang \ A \ si \ r' = rang \begin{pmatrix} A & b \\ b^t & c \end{pmatrix};$
- indexul negativ şi indexul pozitiv al formei biliniare simetrice $b_{\mathcal{H}}$, asociate cuadricei \mathcal{H} ;
- δ şi Δ;
- valorile proprii $\lambda_1, \ldots, \lambda_n$ ale matricii A, adică rădăcinile ecuației caracteristice $\det(A \lambda I_n) = 0$ (şi, implicit, coeficienții polinomului caracteristic $\det(A \lambda I_n) = \delta \delta_1 \lambda + \delta_2 \lambda^2 \cdots + (-1)^{n-1} \delta_{n-1} \lambda^{n-1} + + (-1)^n \lambda^n$);
- subspațiile proprii V_{λ_i} , $i = \overline{1,n}$, corespunzătoare valorilor proprii ale matricii A.

Observație. Nu toți invarianții din enunțul propoziției (20) sunt independenți unul de celălalt. De exemplu, numărul valorilor proprii pozitive (negative, nenule) ale matricii A este egal cu indexul pozitiv (indexul negativ, respectiv rangul) formei biliniare.

Propoziția 21 Pentru o hipercuadrică \mathcal{H} , de ecuație (14), într-un reper ortonormat $(O; \mathcal{B})$:

- coeficienții polinomului $Q(\lambda) = \det \begin{pmatrix} A \lambda I_n & b \\ b^t & c \end{pmatrix}$ sunt semiinvarianți euclidieni relativ la schimbările centroafine de reper;
- coeficienții formei pătratice $b_{\mathcal{H}}$ ($[b]_{\mathcal{H}} = A$) sunt semiinvarianți euclidieni relativ la translațiile de reper;
- termenul liber al polinomului $Q(\lambda) = \Delta_0 \Delta_1 \lambda + \Delta_2 \lambda^2 \dots + (-1)^n \lambda^n$ este $\Delta_0 = \Delta$ şi este un invariant euclidian;

Se pot determina formele canonice ale ecuației unei hipercuadrice, folosind invarianții euclidieni.

Propoziția 22 Pentru o hipercuadrică \mathcal{H} dată prin (14), există un reper $(O'; \mathcal{B}')$ în care ecuația hipercuadricei are una din formele:

1.
$$\lambda_1(y^1)^2 + \dots + \lambda_r(y^r)^2 + \frac{\Delta_{n-r}}{\delta_{n-r}} = 0$$
, dacă indicele cilindric este $n-r$ ($\Delta_0 = \Delta_1 = \dots = \Delta_{n-r-1} = 0$ şi $\delta_0 = \delta_1 = \dots = \delta_{n-r-1} = 0$, $\delta_{n-r} \neq 0$);

2.
$$\lambda_1(y^1)^2 + \dots + \lambda_r(y^r)^2 + 2\sqrt{\frac{\Delta_{n-r-1}}{-\delta_{n-r}}}y^{r+1} = 0$$
, dacă indicele cilindric este $n-r-1$ ($\Delta_0 = \Delta_1 = \dots = \Delta_{n-r-2} = 0$, $\Delta_{n-r-1} \neq 0$ și $\delta_0 = \delta_1 = \dots = \delta_{n-r-1} = 0$, $\delta_{n-r} \neq 0$).

4.2 Conice

Fie \mathcal{E} un spaţiu punctual euclidian (real) de dimensiune doi. Hipercuadricele spaţiului \mathcal{E} se numesc conice. Fie $(O; \mathcal{B} = \{\bar{e}_1, \bar{e}_2\})$ un reper euclidian în \mathcal{E} .

O conică Γ este, așadar, mulțimea punctelor $M(x,y) \in \mathcal{E}$, ale căror coordonate verifică ecuația:

$$(\Gamma): F(x,y) \equiv a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_1x + b_2y + c = 0, \tag{23}$$

unde a_{11} , a_{12} , a_{22} , b_1 , b_2 , $c \in \mathbb{R}$.

Ecuația (23) se scrie matricial sub una din formele:

$$\left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + 2 \left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right) + c = 0,$$

sau

$$\begin{pmatrix} x & y & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{12} & a_{22} & b_2 \\ b_1 & b_2 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0.$$

Propoziția 23 Pentru conica Γ definită de ecuația (23), există următorii invarianți euclidieni:

•
$$r = rang\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
 $si\ r' = rang\begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ b_1 & b_2 & c \end{pmatrix}$;

• indexul negativ şi indexul pozitiv al formei biliniare simetrice b_{Γ} asociate;

$$\bullet \ \delta = \left| \begin{array}{ccc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array} \right| \S i \ \Delta = \left| \begin{array}{cccc} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ b_1 & b_2 & c \end{array} \right|;$$

- λ_1 , λ_2 (valorile proprii ale matricii $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$);
- direcțiile definite de vectorii proprii ai matricii A, dacă $\lambda_1 \neq \lambda_2$.

Propoziția 24 O conică Γ dată de ecuația (23) are următorii semiinvarianți euclidieni:

- coeficienții polinomului $Q(\lambda) = \begin{pmatrix} a_{11} \lambda & a_{12} & b_1 \\ a_{21} & a_{22} \lambda & b_2 \\ b_1 & b_2 & c \end{pmatrix} = c\lambda^2 K\lambda + \Delta \text{ sunt invariați de schimbările centoafine de reper;}$
- matricea A este invariată de translațiile de reper;

Pentru conicele degenerate ($\Delta = 0$), K este un invariant euclidian.

Vom prezenta în continuare aducerea la formă canonică a ecuatiei unei conice.

Fie conica $(\Gamma): F(x,y) \equiv a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_1x + 2b_2y + c = 0$. Forma pătratică asociată conicei este

$$p(\bar{v}) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

unde $\bar{v}=x\bar{e}_1+y\bar{e}_2$, iar $\mathcal{B}=\{\bar{e}_1,\bar{e}_2\}\subset V$ este o bază ortonormată. Avem $[p]_{\mathcal{B}}=\left(\begin{array}{cc}a_{11}&a_{12}\\a_{12}&a_{22}\end{array}\right)=A.$

Conica este de tip eliptic, parabolic ori hiperbolic, după cum $\delta > 0$, $\delta = 0$, ori $\delta < 0$, unde $\delta = \det A$.

Ecuația caracteristică este $\det(A - \lambda I_2) = \lambda^2 - (a_{11} + a_{22})\lambda + \delta = 0$, care are rădăcinile λ_1 și λ_2 (valorile proprii), întotdeauna reale. Avem $\delta = \lambda_1 \lambda_2$.

Fie \bar{v}_1 şi \bar{v}_2 versorii proprii corespunzători valorilor proprii λ_1 , respectiv λ_2 . Dacă $\lambda_1 \neq \lambda_2$, atunci $\bar{v}_1 \perp \bar{v}_2$; dacă $\lambda_1 = \lambda_2$, atunci \bar{v}_1 şi \bar{v}_2 se pot alege perpendiculari în subspațiul propriu corespunzător. Sistemele din care rezultă coordonatele vectorilor proprii \bar{v}_1 şi \bar{v}_2 sunt de forma:

$$\begin{cases} (a_{11} - \lambda_j)\alpha + a_{12}\beta &= 0\\ a_{12}\alpha + (a_{22} - \lambda_j)\beta &= 0\\ \alpha^2 + \beta^2 &= 1 \end{cases},$$

 $j = \overline{1,2}$. Dacă (α_1, β_1) și (α_2, β_2) sunt soluțiile celor două sisteme, vectorii proprii sunt $\overline{v}_j = \alpha_j \overline{e}_1 + \beta_j \overline{e}_2$, $j = \overline{1,2}$. Fie schimbarea de reper

$$(O; \mathcal{B} = \{\bar{e}_1, \bar{e}_2\}) \rightarrow (O; \mathcal{B}' = \{\bar{v}_1, \bar{v}_2\})$$
. Avem $[\mathcal{B}, \mathcal{B}'] = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix} = P$, care este matrice ortogonală. Din relația $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$, deducem că $x = \alpha_1 x' + \alpha_2 y'$ și $y = \beta_1 x' + \beta_2 y'$. Prin înlocuirea în expresia formei pătratice p , se obține $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = \lambda_1(x')^2 + \lambda_2(y')^2$, deci:

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_1x + 2b_2y + c =$$

$$= \lambda_1(x')^2 + \lambda_2(y')^2 + 2b_1'x' + 2b_2'y' + c = F_1(x',y').$$

-Dacă $\lambda_1 \lambda_2 \neq 0$, atunci:

$$F_1(x', y') = \lambda_1 (x' + a')^2 + \lambda_2 (y' + b')^2 + c'.$$

Fie schimbarea de coordonate dată prin x'' = x' + a', y'' = y' + b', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a', -b') (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația conicei este:

$$F_2(x'', y'') \equiv \lambda_1(x'')^2 + \lambda_2(y'')^2 + c' = 0.$$

-Dacă $\lambda_1 \neq 0$, $\lambda_2 = 0$ și $b_2' \neq 0$, avem

$$F_1(x',y') = \lambda_1 (x' + a'')^2 + 2b'_2 (y' + b'').$$

Fie schimbarea de coordonate dată prin x'' = x' + a'', y'' = y' + b'', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a'', -b'') (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația conicei este:

$$F_2(x'', y'') \equiv \lambda_1(x'')^2 + 2b_2'y'' = 0.$$

-Dacă $\lambda_1 \neq 0$, $\lambda_2 = 0$ și $b_2' = 0$, avem

$$F_1(x', y') = \lambda_1 (x' + a''')^2 + c''.$$

Fie schimbarea de coordonate dată prin x'' = x' + a''', y'' = y', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a''',0) (considerat în reperul $(O;\mathcal{B}')$). Rezultă că în reperul $(O';\mathcal{B}')$ ecuația conicei este:

 $F_2(x'', y'') \equiv \lambda_1(x'')^2 + c'' = 0.$

Următorul tabel sistematizează formele canonice ale conicelor.

	Ecuație (Γ) :	Denumire	Centru Degen	Semiin- varianţi	Figura
1	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$	Elipsă reală	Da Nu	$\begin{array}{c c} \Delta \lambda_i < 0 \\ i = \overline{1, 2} \end{array}$	$\stackrel{\textstyle \longleftarrow}{\longrightarrow}$
2	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$	Elipsă imaginară	- Nu	$ \begin{array}{c} \Delta \lambda_i > 0 \\ i = \overline{1, 2} \end{array} $	Ø
3	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$	Hiperbolă	Da Nu	$\delta < 0$ $\Delta \neq 0$	*
4	$\frac{x^2}{a^2} - 2y = 0$	Parabolă	Da Nu	$\delta = 0$ $\Delta \neq 0$	→
5	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Punct dublu	Nu Nu	$\delta > 0,$ $\Delta = 0$	→
6	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	Drepte concurente	Nu Nu	$\delta < 0,$ $\Delta = 0$	→
7	$\frac{x^2}{a^2} + 1 = 0$	Drepte imaginare	- Da	$ \Delta = 0 \delta = 0 K > 0 $	\bigcirc
8	$\frac{x^2}{a^2} - 1 = 0$	Drepte paralele	Da Da	$\Delta = 0$ $\delta = 0$ $K < 0$	
9	$\frac{x^2}{a^2} = 0$	Drepte confundate	Da Da	$\Delta = 0$ $\delta = 0$ $K = 0$	$\stackrel{\textstyle \longrightarrow}{\longrightarrow}$

4.3 Cuadrice

Fie \mathcal{E} un spaţiu punctual euclidian (real) de dimensiune trei. Hipercuadricele spaţiului \mathcal{E} se numesc *cuadrice*. Fie $(O; \mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\})$ un reper euclidian în \mathcal{E} .

O cuadrică Γ este, așadar, multimea punctelor $M(x,y,z) \in \mathcal{E}$, ale căror coordonate verifică ecuația:

$$(\Gamma): F(x,y,z) \equiv a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{13}xz + 2b_{1}x + 2b_{2}y + 2b_{3}z + c = 0,$$

$$(24)$$

unde a_{11} , a_{22} , a_{33} , a_{12} , a_{23} , a_{13} , b_1 , b_2 , b_3 , $c \in \mathbb{R}$.

Ecuația (24) se scrie matricial sub una din formele:

$$\left(\begin{array}{cccc} x & y & z \end{array} \right) \left(\begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array} \right) \left(\begin{array}{c} x \\ y \\ z \end{array} \right) + 2 \left(\begin{array}{cccc} x & y & z \end{array} \right) \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) + c = 0,$$

sau

$$\left(\begin{array}{ccccc} x & y & 1 \end{array}\right) \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & b_1 \\ a_{12} & a_{22} & a_{23} & b_2 \\ a_{13} & a_{23} & a_{33} & b_3 \\ b_1 & b_2 & b_3 & c \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right) = 0.$$

Demonstratiile următoarelor două propozitii sunt analoage cu cele din cazul conicelor.

Propoziția 25 Pentru cuadrica Γ definită de ecuația (24), există următorii invarianți euclidieni:

$$\bullet \ r = rang \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array} \right) \ si \ r' = rang \left(\begin{array}{cccc} a_{11} & a_{12} & a_{13} & b_1 \\ a_{12} & a_{22} & a_{23} & b_2 \\ a_{13} & a_{23} & a_{33} & b_3 \\ b_1 & b_2 & b_3 & c \end{array} \right);$$

• indexul negativ și indexul pozitiv al formei biliniare simetrice b_{Γ} asociate;

$$\bullet \ \delta = \left| \begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array} \right| \ si \ \Delta = \left| \begin{array}{ccccccc} a_{11} & a_{12} & a_{13} & b_{1} \\ a_{12} & a_{22} & a_{23} & b_{2} \\ a_{13} & a_{23} & a_{33} & b_{3} \\ b_{1} & b_{2} & b_{3} & c \end{array} \right|;$$

•
$$\lambda_1$$
, λ_2 , λ_3 (valorile proprii ale matricii $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$);

• subspatiile proprii corespunzătoare valorilor proprii ale matricii A, care sunt perpendiculare două câte două.

Propoziția 26 Pentru cuadrica Γ definită de ecuația (24), există următorii semiinvarianți euclidieni:

• coeficienții polinomului
$$Q(\lambda) = \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} & b_1 \\ a_{12} & a_{22} - \lambda & a_{23} & b_2 \\ a_{13} & a_{23} & a_{33} - \lambda & b_3 \\ b_1 & b_2 & b_3 & c \end{pmatrix} =$$

$$= c\lambda^3 - L\lambda^2 + K\lambda - \Delta \text{ sunt invariati de schimbările centroafine de ren}$$

• matricea A este invariată de translațiile de reper.

Pentru cuadricele degenerate ($\Delta = 0$), K este un invariant euclidian. $Dac\check{a} \Delta = K = 0$, atunci L este, de asemenea, un invariant euclidian.

Vom prezenta în continuare aducerea la formă canonică a ecuației unei cuadrice.

Fie cuadrica $(\Gamma): F(x, y, z) \equiv a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{13}xz + 2b_{1}x + 2b_{2}y + 2b_{3}z + c = 0.$ Forma pătratică asociată cuadricei este

$$p(\bar{v}) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{13}xz =$$

$$= \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

unde
$$\bar{v} = x\bar{e}_1 + y\bar{e}_2 + z\bar{e}_3$$
, iar $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \subset V$ este o bază ortonormată. Avem $[p]_{\mathcal{B}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} = A$

unde $\bar{v} = x\bar{e}_1 + y\bar{e}_2 + z\bar{e}_3$, iar $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\} \subset V$ este o bază ortonormată. Avem $[p]_{\mathcal{B}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} = A$. Ecuația caracteristică este $\det(A - \lambda I_3) = -\lambda^3 + \delta_2 \lambda^2 - \delta_1 \lambda + \delta = 0$, care are rădăcinile λ_1, λ_2 și λ_3 (valorile proprii), întotdeauna reale. Avem $\delta_2 = a_{11} + a_{22} + a_{33}$, $\delta_1 = \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + + \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}$ și $\delta = \det A$, unde $\delta = \lambda_1 \lambda_2 \lambda_2 + \lambda_3 \lambda_3 + \lambda_4 \lambda_3 \lambda_4 + \lambda_5 \lambda_5 + \lambda_$ unde $\delta = \lambda_1 \lambda_2 \lambda_3$, $\delta_1 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3$ şi $\delta_2 = \lambda_1 + \lambda_2 + \lambda_3$.

Fie \bar{v}_1 , \bar{v}_2 şi \bar{v}_3 versorii proprii corespunzători valorilor proprii λ_1 , λ_2 , respectiv λ_3 . Dacă λ_1 , λ_2 şi λ_3 sunt diferiți doi câte doi, atunci versorii sunt perpendiculari doi câte doi; dacă valorile proprii nu sunt diferite, atunci versorii corespunzători aceleeași valori proprii se pot alege perpendiculari în subspațiul propriu corespunzător. Sistemele din care rezultă coordonatele vectorilor proprii \bar{v}_1 , \bar{v}_2 și \bar{v}_3 sunt de forma:

$$\begin{cases}
(a_{11} - \lambda_j)\alpha + a_{12}\beta + a_{13}\gamma &= 0 \\
a_{12}\alpha + (a_{22} - \lambda_j)\beta + a_{23}\gamma &= 0 \\
a_{13}\alpha + a_{23}\beta + (a_{33} - \lambda_j)\gamma &= 0 \\
\alpha^2 + \beta^2 + \gamma^2 &= 1
\end{cases}$$

 $j = \overline{1,3}$. Dacă $(\alpha_j, \beta_j, \gamma_j)$, $j = \overline{1,3}$, sunt soluțiile celor trei sisteme, vectorii proprii sunt $\bar{v}_j = \alpha_j \bar{e}_1 + \beta_j \bar{e}_2 + \gamma_j \bar{e}_3$, $j = \overline{1,3}$. Fie schimbarea de reper $(O; \mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}) \rightarrow (O; \mathcal{B}' = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$. Avem $[\mathcal{B}, \mathcal{B}'] = P$

$$= \left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{array}\right), \text{ care este matrice ortogonală. Din relația}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}, \text{ deducem că } x = \alpha_1 x' + \alpha_2 y' + \alpha_3 \gamma', \ y = \beta_1 x' + \beta_2 y' + \beta_3 z' \text{ si } z = \gamma_1 x' + \beta_2 y' + \beta_2 z' \text{ si } z = \gamma_1 x' + \beta_2 y' + \beta_2 z' \text{ si } z = \gamma_1 x' + \beta_2 y' + \beta_2 z' \text{ si } z = \gamma_1 x' + \beta_2 y' + \beta_2 z' + \beta_$$

 $\gamma_2 y' + \gamma_3 z'$. Prin înlocuirea în expresia formei pătratice p, se obține $a_{11} x^2 + a_{22} y^2 + a_{33} z^2 + 2a_{12} xy + 2a_{23} yz + 2a_{13} xz = \lambda_1 (x')^2 + \lambda_2 (y')^2 + \lambda_3 (z')^2$, deci:

$$F_1(x', y', z') \equiv \lambda_1(x')^2 + \lambda_2(y')^2 + \lambda_3(z')^2 + 2b_1'x' + 2b_2'y' + 2b_3'z' + c = 0.$$

-Dacă $\lambda_1\lambda_2\lambda_3\neq 0$, atunci:

$$F_1(x', y', z') = \lambda_1 (x' + a')^2 + \lambda_2 (y' + b')^2 + \lambda_2 (z' + c')^2 + d'.$$

Fie schimbarea de coordonate dată prin x'' = x' + a', y'' = y' + b', z'' = z' + c', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a', -b', -c') (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația cuadricei este:

$$F_2(x'', y'', z'') \equiv \lambda_1(x'')^2 + \lambda_2(y'')^2 + \lambda_3(z'')^2 + d' = 0.$$

-Dacă $\lambda_1 \neq 0,\, \lambda_2 \neq 0,\, \lambda_3 = 0$ și $b_3' \neq 0,$ atunci:

$$F_1(x', y', z') = \lambda_1 (x' + a'')^2 + \lambda_2 (y' + b'')^2 + 2b_3' (z' + c'').$$

Fie schimbarea de coordonate dată prin x'' = x' + a'', y'' = y' + b'', z'' = z' + c'', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a'', -b'', -c'') (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația cuadricei este:

$$F_2(x'', y'', z'') \equiv \lambda_1(x'')^2 + \lambda_2(y'')^2 + 2b_3'z'' = 0.$$

-Dacă $\lambda_1 \neq 0, \, \lambda_2 \neq 0, \, \lambda_3 = 0$ și $b_3' = 0, \, \text{atunci:}$

$$F_1(x', y', z') = \lambda_1(x' + a''')^2 + \lambda_2(y' + b''')^2 + c'''$$

Fie schimbarea de coordonate dată prin x'' = x' + a''', y'' = y' + b''', z'' = z', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a''', -b''', 0) (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația cuadricei este:

$$F_2(x'', y'', z'') \equiv \lambda_1(x'')^2 + \lambda_2(y'')^2 + c'' = 0.$$

-Dacă $\lambda_1 \neq 0$, $\lambda_2 = \lambda_3 = 0$ și $(b_2')^2 + (b_3')^2 \neq 0$, atunci:

$$F_1(x', y', z') = \lambda_1 (x' + a'')^2 + 2\rho \left(\frac{b_2'}{\rho} y' + \frac{b_3'}{\rho} z' + c''\right),$$

unde $\rho = \sqrt{(b_2')^2 + (b_3')^2}$. Fie schimbarea de coordonate dată prin x'' = x' + a'', $y'' = \frac{b_2'}{\rho}y' + \frac{b_3'}{\rho}z' + c''$, $z'' = \frac{-b_3'}{\rho}y' + \frac{b_2'}{\rho}z'$; se obține un reper $(O'; \mathcal{B}')$, în care ecuația cuadricei este:

$$F_2(x'', y'', z'') \equiv \lambda_1(x'')^2 + 2\rho y'' = 0.$$

-Dacă $\lambda_1 \neq 0, \, \lambda_2 = \lambda_3 = 0$ și $b_2' = b_3' = 0,$ atunci:

$$F_1(x', y', z') = \lambda_1 (x' + a'')^2 + c''.$$

Fie schimbarea de coordonate dată prin x'' = x' + a'', y'' = y', z'' = z', care provine dintr-o translație de reper. Noul reper are originea în punctul O'(-a'', 0, 0) (considerat în reperul $(O; \mathcal{B}')$). Rezultă că în reperul $(O'; \mathcal{B}')$ ecuația cuadricei este:

$$F_2(x'', y'', z'') \equiv \lambda_1(x'')^2 + c'' = 0.$$

Următorul tabel sistematizează formele canonice ale cuadricelor.

	Cen. Semi-				
	Ecuație (Γ) :	Denumire	Deg.	invarianți	
	x^2 y^2 z^2		Da Deg.	$\Delta \cdot \lambda_i < 0$	
1	$\frac{a}{a^2} + \frac{b}{b^2} + \frac{a}{c^2} - 1 = 0$	Elipsoid real	Nu	$i = \frac{\lambda_i}{1,3}$	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} + 1 = 0$	Elipsoid	-	$\Delta \cdot \lambda_i > 0$	
2	$\frac{a}{a^2} + \frac{b}{b^2} + \frac{c}{c^2} + 1 = 0$	imaginar	Nu	$i = \overline{1,3}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hiprboloid cu	Da	$\Delta \cdot \lambda_i$:	
3	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$	o pânză	Nu	· ·	
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$	Hiprboloid cu	Da	$+,-,-$ $\Delta \cdot \lambda_i:$	
4	$\frac{1}{a^2} - \frac{b}{b^2} - \frac{c}{c^2} - 1 = 0$	două pânze	Nu		
	$x^2 + y^2$	Paraboloid	Nu	$\begin{array}{c c} +,+,-\\ \delta=0,\Delta\neq0 \end{array}$	
5	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 2z = 0$	eliptic	Nu	$\lambda_1\lambda_2 > 0$	
0	x^2 y^2	Paraboloid	Nu	$\delta = 0,$	
6	$\frac{a^2}{a^2} - \frac{b^2}{b^2} - 2z = 0$	hiperbolic	Nu	$\lambda_1 \lambda_2 < 0$	
7	x^2 y^2 z^2	Punct dublu	Da	$\Delta = 0,$	
7	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 2z = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$		Da	$\lambda_i > 0$	
8	x^{2} y^{2} z^{2} _ 0	Con	Da	$\Delta = 0,$	
	$\frac{a^2}{a^2} + \frac{b^2}{b^2} - \frac{c^2}{c^2} = 0$	pătratic	Da	$\delta \neq 0$	
9		Cilindru	- Da	$\Delta = \delta = 0,$	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$	imaginar		$K\lambda_1,$	
	<i>u</i> - <i>o</i> -			$K\lambda_2 > 0$	
10	x^2 y^2	Cilindru eliptic	Da Da	$\Delta = \delta = 0,$	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$			$K\lambda_1$,	
	a o			$K\lambda_2 < 0$	
	x^2 y^2	Cilindru	Da	$\Delta = \delta = 0,$	
11	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$	hiperbolic	Da	$\lambda_1 \lambda_2 < 0,$	
	a v			$K \neq 0$	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Dreaptă dublă	Da Da	$\Delta = \delta = 0,$	
12	$\frac{a^2}{a^2} + \frac{b}{b^2} = 0$			$\lambda_1 \lambda_2 > 0$	
				K=0	
	x^2 y^2	Plane	Da	$\Delta = \delta = 0,$	
13	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	secante	Da	$ \lambda_1 \lambda_2 < 0 \\ K = 0 $	
				$K = 0$ $\Delta = \delta = 0,$	
1.4	$x^2 - 2py = 0$	Cilindru parabolic	Nu Da	· /	
14	$x^{-} - 2py = 0$			$\lambda_2, \lambda_3 = 0$ $K \neq 0$	
				$K \neq 0$ $\Delta = \delta = 0,$	
15	$\frac{x^2}{a^2} + 1 = 0$	Plane i maginare	- Da	$\lambda = 0 = 0,$ $\lambda_2 = \lambda_3 = 0$	
19	$a^2 + 1 = 0$			K = 0, L > 0	
16	9	Plane paralele	Da Da	$\Delta = \delta = 0,$	
	$\frac{x^2}{a^2} - 1 = 0$			$\lambda_2 = \lambda_3 = 0$	
	a^2			K = 0, L < 0	
				$\Delta = \delta = 0,$	
17	$x^2 = 0$	Plan	Da	$\lambda_2 = \lambda_3 = 0$	
- '		dublu	Da	K = L = 0	
			1		

Elipsoidul real are ecuația $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0.$

Numerele pozitive a, b, c se numesc semiaxele elipsoidului; dacă a = b = c, E definește o sferă cu centrul în originea reperului, de rază a.

Punctele A(a, 0, 0), A'(-a, 0, 0), B(0, b, 0), B'(0, -b, 0), C(0, 0, c) și C'(0, 0, -c) se numesc vârfurile elipsoidului. Planele de coordonate sunt plane de simetrie, axele de coordonate sunt axe de simetrie, iar originea reperului este centru de simetrie pentru elipsoid.

Intersecția unui plan de coordonate cu elipsoidul este o elipsă; intersecția unui plan, paralel cu un plan de coordonate, cu elipsoidul este o elipsă reală, un punct sau mulțimea vidă.

Hiperboloidul cu o pânză are ecuația (H_1) : $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0$. Punctele A(a,0,0), A'(-a,0,0), B(0,b,0) și B'(0,-b,0) se numesc vârfurile hiperboloidului cu o pânză.

Planele de coordonate sunt plane de simetrie, axele de coordonate sunt axe de simetrie, iar originea reperului este centru de simetrie pentru hiperboloidul cu o pânză.

Intersecția unui plan de coordonate cu hiperboloidul cu o pânză este o elipsă (xOy) sau hiperbolă (xOz) sau yOz); intersecția unui plan π , paralel cu un plan de coordonate, cu hiperboloidul cu o pânză este: o elipsă reală $(\pi \parallel xOy)$ sau o hiperbolă $(\pi \parallel xOz \text{ sau } \pi \parallel yOz)$.

Familiile de drepte $\frac{x}{a} - \frac{z}{c} = \lambda \left(1 - \frac{y}{b}\right), \frac{x}{a} + \frac{z}{c} = \lambda \left(1 + \frac{y}{b}\right), \lambda \in \mathbb{R}^*$, sunt incluse în hiperboloidul cu o pânză, fiind generatoare rectilinii (prin fiecare punct trece câte o dreaptă a fiecărei familii).

Hiperboloidul cu două pânze are ecuația (H_2) : $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0$.

Planele de coordonate sunt plane de simetrie, axele de coordonate sunt axe de simetrie, iar originea reperului este centru de simetrie pentru hiperboloidul cu două pânze.

Intersecția unui plan de coordonate cu hiperboloidul cu două pânze poate fi: mulțimea vidă (xOy) sau hiperbolă (xOz sau yOz); intersecția unui plan π , paralel cu un plan de coordonate, cu hiperboloidul cu două pânze poate fi: o elipsă reală, un punct sau mulțimea vidă $(\pi \parallel xOy)$ sau o hiperbolă $(\pi \parallel xOz)$ sau $\pi \parallel yOz)$.

Paraboloid eliptic are ecuația $(PE): \frac{x^2}{a^2} + \frac{y^2}{b^2} - 2z = 0.$

Planele de coordonate xOz şi yOz sunt plane de simetrie, planul xOy este tangent în origine (în vârf) la paraboloidul eliptic, axa Oz este axă de simetrie.

Intersecția unui plan de coordonate cu paraboloidul eliptic poate fi: un punct (xOy) sau o parabolă (xOz) sau yOz); intersecția unui plan π , paralel cu un plan de coordonate, cu paraboloidul eliptic poate fi: o elipsă reală, un punct sau mulţimea vidă $(\pi \parallel xOy)$ sau o parabolă $(\pi \parallel xOz \text{ sau } \pi \parallel yOz)$.

Paraboloidul hiperbolic are ecuația (PH): $\frac{x^2}{a^2} - \frac{y^2}{b^2} - 2z = 0$.

Planele de coordonate xOz şi yOz sunt plane de simetrie, planul xOy este tangent în origine (în vârf) la paraboloidul hiperbolic, axa Oz este axă de simetrie.

Intersecția unui plan de coordonate cu paraboloidul hiperbolic poate fi: două drepte concurente (xOy) sau o parabolă (xOz sau yOz); intersecția unui plan π , paralel cu un plan de coordonate, cu paraboloidul hiperbolic poate fi: o hiperbolă $(\pi \parallel xOy)$ sau o parabolă $(\pi \parallel xOz \text{ sau } \pi \parallel yOz)$.

Familiile de drepte $\frac{x}{a} - \frac{y}{b} = \lambda$, $\frac{x}{a} + \frac{y}{b} = \frac{1}{\lambda}z$, $\lambda \in \mathbb{R}^*$, sunt incluse în paraboloidul hiperbolic, fiind generatoare rectilinii (prin fiecare punct trece câte o dreaptă a fiecărei familii). $Conul\ pătratic\ are\ ecuația\ (CP): \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$

Planele de coordonate sunt plane de simetrie, axele de coordonate sunt axe de simetrie, iar originea reperului este centru de simetrie pentru conul pătratic (vârful conului).

Intersecția unui plan de coordonate cu conul pătratic poate fi: un punct (xOy) sau două drepte concurente (xOz sau yOz); intersecția unui plan π , paralel cu un plan de coordonate, cu conul pătratic poate fi: o elipsă

 $(\pi \parallel xOy)$ sau o hiperbolă $(\pi \parallel xOz)$ sau $\pi \parallel yOz)$.

Familiile de drepte care trec prin vârf $\frac{x}{a} - \frac{z}{c} = -\frac{y}{b}\lambda$, $\frac{x}{a} + \frac{z}{c} = \frac{y}{\lambda b}$, $\lambda \in \mathbb{R}^*$, sunt incluse în conul pătratic, fiind generatoare rectilinii.

$$\begin{aligned} &Cilindrul\ eliptic,\ cilindrul\ parabolic\ \Si\ cilindrul\ hiperbolic\ \text{au ecuațiile:}}\\ &(CE): \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0, \quad (CP): y^2 - 2px = 0, \quad (CH): \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0. \end{aligned}$$

