

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/31, 15/11, 15/10, C07K 14/245		A2	(11) International Publication Number: WO 00/44906 (43) International Publication Date: 3 August 2000 (03.08.00)
(21) International Application Number: PCT/US00/02200			(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 27 January 2000 (27.01.00)			
(30) Priority Data: 60/117,405 27 January 1999 (27.01.99) US			
(71) Applicant: ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).			
(72) Inventors: ZYSKIND, Judith; 8514 La Jolla Scenic Drive, La Jolla, CA 92047 (US). OHLSEN, Kari, L.; 3560 Vista De La Orilla, San Diego, CA 92117 (US). TRAWICK, John; 7210 Baldrich Street, La Mesa, CA 91942 (US). FORSYTH, R., Allyn; 1135 Beryl Street, San Diego, CA 92109 (US). FROELICH, Jamie, M.; 5057 35th Street, San Diego, CA 92116 (US). CARR, Grant, J.; 2210 Sonrise Glen, Escondido, CA 92029 (US). YAMAMOTO, Robert, T.; 3725 Norte Dame Avenue, San Diego, CA 92131 (US). XU, H., Howard; 11142 Ivy Hill Drive, San Diego, CA 92131 (US).			
(74) Agent: REISMAN, Joseph, M.; Knobbe, Martens, Olson & Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).			

(54) Title: GENES IDENTIFIED AS REQUIRED FOR PROLIFERATION IN *ESCHERICHIA COLI*

(57) Abstract

The sequences of nucleic acids encoding proteins required for *E. coli* proliferation are disclosed. The nucleic acids can be used to express proteins or portions thereof, to obtain antibodies capable of specifically binding to the expressed proteins, and to use those expressed proteins as a screen to isolate candidate molecules for rational drug discovery programs. The nucleic acids can also be used to screen for homologous genes that are required for proliferation in microorganisms other than *E. coli*. The nucleic acids can also be used to design expression vectors and secretion vectors. The nucleic acids of the present invention can also be used in various assay systems to screen for proliferation required genes in other organisms as well as to screen for antimicrobial agents.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

GENES IDENTIFIED AS REQUIRED FOR PROLIFERATION IN

*ESCHERICHIA COLI*BACKGROUND OF THE INVENTION

Since the discovery of penicillin, the use of antibiotics to treat the ravages of bacterial infections has saved millions of lives. With the advent of these "miracle drugs," for a time it was popularly believed that humanity might, once and for all, be saved from the scourge of bacterial infections. In fact, during the 1980s and early 1990s, many large pharmaceutical companies cut back or eliminated antibiotics research and development. They believed that infectious disease caused by bacteria finally had been conquered and that markets for new drugs were limited. Unfortunately, this belief was overly optimistic.

The tide is beginning to turn in favor of the bacteria as reports of drug resistant bacteria become more frequent. The United States Centers for Disease Control announced that one of the most powerful known antibiotics, vancomycin, was unable to treat an infection of the common *Staphylococcus aureus* (staph). This organism is commonly found in our environment and is responsible for many nosocomial infections. The import of this announcement becomes clear when one considers that vancomycin was used for years to treat infections caused by stubborn strains of bacteria, like staph. In short, the bacteria are becoming resistant to our most powerful antibiotics. If this trend continues, it is conceivable that we will return to a time when what are presently considered minor bacterial infections are fatal diseases.

There are a number of causes for the predicament in which practitioners of medical arts find themselves. Over-prescription and improper prescription habits by some physicians have caused an indiscriminate increase in the availability of antibiotics to the public. The patient is also partly responsible, for even in instances where an antibiotic is the appropriate treatment, patients will often improperly use the drug, the result being yet another population of bacteria that is resistant, in whole or in part, to traditional antibiotics.

The bacterial scourges that have haunted humanity remain, in spite of the development of modern scientific practices to deal with the diseases that they cause. Drug resistant bacteria are now advancing on the health of humanity. A new generation of antibiotics to once again deal with the pending health threat that bacteria present is required.

Discovery of New Antibiotics

As more and more bacterial strains become resistant to the panel of available antibiotics, new compounds are required. In the past, practitioners of pharmacology would have to rely upon traditional methods of drug discovery to generate novel, safe and efficacious compounds for the treatment of disease. Traditional drug discovery methods involve blindly testing potential drug candidate-molecules, often selected at random, in the hope that one might prove to be an effective treatment for some disease. The process is painstaking and laborious, with no guarantee of success. Today, the average cost to discover and develop a new drug is nearly US \$500 million, and the average time is 15 years from laboratory to patient. Improving this process, even incrementally, would represent a huge advance in the generation of novel antimicrobial agents.

5 Newly-emerging practices in drug discovery utilize a number of biochemical techniques to provide for directed approaches to creating new drugs, rather than discovering them at random. For example, gene sequences and proteins encoded thereby that are required for the proliferation of an organism make for excellent targets since exposure of bacteria to compounds active against these targets would result in the inactivation of the organism. Once a target is identified, biochemical analysis of that target can be used to discover or to design molecules that interact with and alter the functions of the target. Using physical and computational techniques, to analyze structural and biochemical targets in order to derive compounds that interact with a target is called rational drug design and offers great future potential. Thus, emerging drug discovery practices use molecular modeling techniques, combinatorial chemistry approaches, and other means to produce and screen and/or design large numbers of candidate compounds.

10 Nevertheless, while this approach to drug discovery is clearly the way of the future, problems remain. For example, the initial step of identifying molecular targets for investigation can be an extremely time consuming task. It may also be difficult to design molecules that interact with the target by using computer modeling techniques. Furthermore, in cases where the function of the target is not known or is poorly understood, it may be difficult to design assays to detect molecules that interact with and alter the functions of the target. To improve the rate of 15 novel drug discovery and development, methods of identifying important molecular targets in pathogenic microorganisms and methods for identifying molecules that interact with and alter the functions of such molecular targets are urgently required.

20 *Escherichia coli* represents an excellent model system to understand bacterial biochemistry and physiology. The estimated 4288 genes scattered along the 4.6×10^6 base pairs of the *Escherichia coli* (*E. coli*) chromosome offer tremendous promise for the understanding of bacterial biochemical processes. In turn, this knowledge will assist in the development of new tools for the diagnosis and treatment of bacteria-caused human disease. The entire *E. coli* genome has been sequenced, and this body of information holds a tremendous potential for application to the discovery and development of new antibiotic compounds. Yet, in spite of this accomplishment, the general functions 25 or roles of many of these genes are still unknown. For example, the total number of proliferation-required genes contained within the *E. coli* genome is unknown, but has been variously estimated at around 200 to 700 (Armstrong, K.A. and Fan, D.P. Essential Genes in the *metB-malB* Region of *Escherichia coli* K12, 1975, J. Bacteriol. 126: 48-55).

30 Novel, safe and effective antimicrobial compounds are needed in view of the rapid rise of antibiotic resistant microorganisms. However, prior to this invention, the characterization of even a single bacterial gene was a painstaking process, requiring years of effort. Accordingly, there is an urgent need for more novel methods to identify and characterize bacterial genomic sequences that encode gene products required for proliferation and for methods to identify molecules that interact with and alter the functions of such genes and gene products.

SUMMARY OF THE INVENTION

35 One embodiment of the present invention is a purified or isolated nucleic acid sequence consisting essentially of one of SEQ ID NOs: 1-81, 405-485, wherein said nucleic acid inhibits microorganism proliferation. The nucleic acid sequence may be complementary to at least a portion of a coding sequence of a gene whose expression is required for

5

microorganism proliferation. The nucleic acid sequence may comprise a fragment of one of SEQ ID NOS. 1-81, 405-485, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 1-81, 405-485. The nucleic acid sequence may be complementary to a coding sequence of a gene whose expression is required for microorganism proliferation.

10

Another embodiment of the present invention is a vector comprising a promoter operably linked to a nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOS. 1-81, 405-485. The promoter may be active in an organism selected from the group consisting of *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.

15

Another embodiment of the present invention is a host cell containing the vectors described above.

Another embodiment of the present invention is a purified or isolated nucleic acid consisting essentially of the coding sequence of one of SEQ ID NOS: 82-88, 90-242. One aspect of this embodiment is a fragment of the nucleic acid comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 82-88, 90-242.

20

Another embodiment of the present invention is a vector comprising a promoter operably linked to the nucleic acids of the preceding embodiment.

25

Another aspect of the present invention is a purified or isolated nucleic acid comprising a nucleic acid sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5' noncoding region, or 3' noncoding region within an operon encoding a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOS: 243-357, 359-398.

30

Another embodiment of the present invention is a purified or isolated nucleic acid comprising a nucleic acid having at least 70% homology to a sequence selected from the group consisting of SEQ ID NOS 1-81, 405-485, 82-88, 90-242 or the sequences complementary thereto as determined using BLASTN version 2.0 with the default parameters. The nucleic acid may be from an organism selected from the group consisting of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.

Another embodiment of the present invention is a purified or isolated nucleic acid consisting essentially of a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs.: 243-357, 359-398.

5 Another embodiment of the present invention is a vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs.: 243-357, 359-398.

Another embodiment of the present invention is a host cell containing the vector of the preceding embodiment.

Another embodiment of the present invention is purified or isolated polypeptide comprising the sequence of one of SEQ ID NOs: 243-357, 359-398.

10 Another embodiment of the present invention is purified or isolated polypeptide comprising a fragment of one of the polypeptides of SEQ ID NOs. 243-357, 359-398, said fragment selected from the group consisting of fragments comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the polypeptides of SEQ ID NOs.: 243-357, 359-398.

15 Another embodiment of the present invention is an antibody capable of specifically binding the polypeptide of the preceding embodiment.

Another embodiment of the present invention is method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs. 243-357, 359-398 into a cell. The method may further comprise the step of isolating said protein.

20 Another embodiment of the present invention is a method of inhibiting proliferation comprising inhibiting the activity or reducing the amount of a polypeptide having a sequence selected from the group consisting of SEQ ID NOs. 243-357, 359-398 or inhibiting the activity or reducing the amount of a nucleic acid encoding said polypeptide.

Another embodiment of the present invention is method for identifying compounds which influence the activity of a polypeptide required for proliferation comprising:

25 contacting a polypeptide comprising a sequence selected from the group consisting of 243-357, 359-398 with a candidate compound; and

determining whether said compound influences the activity of said polypeptide.

The activity may be an enzymatic activity. The activity may be a carbon compound catabolism activity. The activity may be a biosynthetic activity. The activity may be a transporter activity. The activity may be a transcriptional activity. The activity may be a DNA replication activity. The activity may be a cell division activity.

30 Another embodiment of the present invention is a compound identified using the above method.

Another embodiment of the present invention is method for assaying compounds for the ability to reduce the activity or level of a polypeptide required for proliferation, comprising:

35 providing a target, wherein said target comprises the coding sequence of a sequence selected from the group consisting of SEQ ID NOs. 82-88, 90-242;

contacting said target with a candidate compound; and
measuring an activity of said target.

The target may be a messenger RNA molecule transcribed from a coding region of one of SEQ ID. NOS.: 82-88, 90-242 and said activity is translation of said messenger RNA. The target may be a coding region of one of SEQ ID. NOS. 82-88, 90-242 and said activity is transcription of said messenger RNA.

5 Another embodiment of the present invention is a compound identified using the method above.

Another embodiment of the present invention is a method for identifying compounds which reduce the activity or level of a gene product required for cell proliferation comprising the steps of:

10 expressing an antisense nucleic acid against a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell;

contacting said sensitized cell with a compound; and

determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.

15 The cell may be selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells. The cell may be an *E. coli* cell. The cell may be from an organism selected from the group consisting of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species. The antisense nucleic acid may be transcribed from an inducible promoter. The method may, further comprise the step of contacting said cell with a concentration of inducer which induces said antisense nucleic acid to a sublethal level. The sub-lethal concentration of said inducer may be such that growth inhibition is 8% or more. The inducer may be isopropyl-1-thio-β-D-galactoside. The growth inhibition may be measured by monitoring optical density of a culture growth solution. The gene product may be a polypeptide. The gene product may be an RNA. The gene product may comprise a polypeptide having a sequence selected from the group consisting of SEQ ID NOS.: 243-357, 359-398.

20 Another embodiment of the present invention is a compound identified using the method above.

25 Another embodiment of the present invention is a method for inhibiting cellular proliferation comprising introducing a compound with activity against a gene corresponding to one of SEQ ID NOS.: 82-88, 90-242 or with activity against the product of said gene into a population of cells expressing a gene. The compound may be an antisense oligonucleotide comprising a sequence selected from the group consisting of SEQ ID NOS.: 1-81, 405-485, or a proliferation-inhibiting portion thereof. The proliferation inhibiting portion of one of SEQ ID NOS. 1-81, 405-485

may be a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 1-81, 405-485. The compound may be a triple helix oligonucleotide.

Another embodiment of the present invention is a preparation comprising an effective concentration of an antisense oligonucleotide comprising a sequence selected from the group consisting of SEQ ID NOS.: 1-81, 405-485, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier. The proliferation-inhibiting portion of one of SEQ ID NOS. 1-81, 405-485 may comprise at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 1-81, 405-485.

Another embodiment of the present invention is a method for inhibiting the expression of a gene in an operon required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid, said cell expressing a gene corresponding to one of SEQ ID NOS.: 82-88, 90-242, wherein said antisense nucleic acid comprises at least a proliferation-inhibiting portion of said operon in an antisense orientation that is effective in inhibiting expression of said gene. The antisense nucleic acid may be complementary to a sequence of a gene comprising one or more of SEQ ID NOS.: 82-88, 90-242. The antisense nucleic acid may be a sequence of one of SEQ ID NOS.: 1-81, 405-485, or a portion thereof. The cell may be contacted with said antisense nucleic acid by introducing a plasmid which expresses said antisense nucleic acid into said cell population. The cell may be contacted with said antisense nucleic acid by introducing a phage which expresses said antisense nucleic acid into said cell population. The cell may be contacted with said antisense nucleic acid by introducing a sequence encoding said antisense nucleic acid into the chromosome of said cell into said cell population. The cell may be contacted with said antisense nucleic acid by introducing a retrorvirus which expresses said antisense nucleic acid into said cell population. The cell may be contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme is complementary to said antisense oligonucleotide. The cell may be contacted with said antisense nucleic acid by introducing a liposome comprising said antisense oligonucleotide into said cell. The cell may be contacted with said antisense nucleic acid by electroporation. The antisense nucleic acid may be a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 82-88, 90-242. The antisense nucleic acid may be an oligonucleotide.

Another embodiment of the present invention is a method for identifying bacterial strains comprising the steps of:

providing a sample containing a bacterial species; and

identifying a bacterial species using a species specific probe having a sequence selected from the group consisting of SEQ ID NOS. 1-81, 405-485, 82-88, 90-242.

Another embodiment of the present invention is a method for identifying a gene in a microorganism required for proliferation comprising:

- (a) identifying an inhibitory nucleic acid which inhibits the activity of a gene or gene product required for proliferation in a first microorganism;
- (b) contacting a second microorganism with said inhibitory nucleic acid;

- (c) determining whether said inhibitory nucleic acid from said first microorganism inhibits proliferation of said second microorganism; and
- (d) identifying the gene in said second microorganism which is inhibited by said inhibitory nucleic acid.

Another embodiment of the present invention is a method for assaying a compound for the ability to inhibit proliferation of a microorganism comprising:

- (a) identifying a gene or gene product required for proliferation in a first microorganism;
- (b) identifying a homolog of said gene or gene product in a second microorganism;
- (c) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said second microorganism;
- (d) contacting said second microorganism with a proliferation-inhibiting amount of said inhibitory nucleic acid, thus sensitizing said second microorganism;
- (e) contacting the sensitized microorganism of step (d) with a compound; and
- (f) determining whether said compound inhibits proliferation of said sensitized microorganism to a greater extent than said compound inhibits proliferation of a nonsensitized microorganism.

The step of identifying a gene involved in proliferation in a first microorganism may comprise:

introducing a nucleic acid comprising a random genomic fragment from said first microorganism operably linked to a promoter wherein said random genomic fragment is in the antisense orientation; and

comparing the proliferation of said first microorganism transcribing a first level of said random genomic fragment to the proliferation of said first microorganism transcribing a lower level of said random genomic fragment, wherein a difference in proliferation indicates that said random genomic fragment comprises a gene involved in proliferation.

The step of identifying a homolog of said gene in a second microorganism may comprise identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a database using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters. The step of identifying a homolog of said gene in a second microorganism may comprise identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide by identifying nucleic acids which hybridize to said first gene. The step of identifying a homolog of said gene in a second microorganism may comprise expressing a nucleic acid which inhibits the proliferation of said first microorganism in said second microorganism. The inhibitory nucleic acid may be an antisense nucleic acid. The inhibitory nucleic acid may comprise an antisense nucleic acid to a portion of said homolog. The inhibitory nucleic acid may comprise an antisense nucleic acid to a portion of the operon encoding said homolog. The step of contacting the second microorganism with a proliferation-inhibiting amount of said nucleic acid sequence may comprise directly contacting said second microorganism with said nucleic acid. The step of contacting the second microorganism with a proliferation-inhibiting amount of said nucleic acid sequence may comprise expressing an antisense nucleic acid to said homolog in said second microorganism.

Another embodiment of the present invention is a compound identified using the method above.

Another embodiment of the present invention is a method of assaying a compound for the ability to inhibit proliferation comprising:

- (a) identifying an inhibitory nucleic acid sequence which inhibits the activity of a gene or gene product required for proliferation in a first microorganism;
- (b) contacting a second microorganism with a proliferation-inhibiting amount of said inhibitory nucleic acid, thus sensitizing said second microorganism;
- (c) contacting the proliferation-inhibited microorganism of step (b) with a compound; and
- (d) determining whether said compound inhibits proliferation of said sensitized second microorganism to a greater extent than said compound inhibits proliferation of a nonsensitized second microorganism.

The inhibitory nucleic acid may be an antisense nucleic acid which inhibits the proliferation of said first microorganism. The inhibitory nucleic acid may comprise a portion of an antisense nucleic acid which inhibits the proliferation of said first microorganism. The inhibitory nucleic acid may comprise an antisense molecule against the entire coding region of the gene involved in proliferation of the first microorganism. The inhibitory nucleic acid may comprise an antisense nucleic acid to a portion of the operon encoding the gene involved in proliferation of the first microorganism.

Another embodiment of the present invention is a compound identified using the method above.

Another embodiment of the present invention is a method for assaying compounds for activity against a biological pathway required for proliferation comprising:

sensitizing a cell by expressing an antisense nucleic acid against a nucleic acid encoding a gene product required for proliferation in a cell to reduce the activity or amount of said gene product;

contacting the sensitized cell with a compound; and

determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of an nonsensitized cell.

The cell may be selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells. The cell may be an *E. coli* cell. The cell may be an organism selected from the group consisting of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species. The antisense nucleic acid may be transcribed from an inducible promoter. The method may further comprise contacting the cell with an agent which induces expression of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is expressed at a sublethal level. The sublethal level of said antisense nucleic acid

may inhibit proliferation by 8% or more. The agent may be isopropyl-1-thio- β -D-galactoside (IPTG). The inhibition of proliferation may be measured by monitoring the optical density of a liquid culture. The gene product may comprise a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 243-357, 359-398.

Another embodiment of the present invention is a compound identified using the method above.

5 Another embodiment of the present invention is a method for assaying a compound for the ability to inhibit cellular proliferation comprising:

contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell;

10 contacting said cell with said compound; and

determining whether said compound reduces proliferation to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.

The agent which reduces the activity or level of a gene product required for proliferation of said cell may comprise an antisense nucleic acid to a gene or operon required for proliferation. The agent which reduces the activity or level of a gene product required for proliferation of said cell may comprise an antibiotic. The cell may contain a 15 temperature sensitive mutation which reduces the activity or level of said gene product required for proliferation of said cell. The antisense nucleic acid may be directed against the same functional domain of said gene product required for proliferation of said cell to which said antisense nucleic acid is directed. The antisense nucleic acid may be directed against a different functional domain of said gene product required for proliferation of said cell than the functional domain to which said antisense nucleic acid is directed.

20 Another embodiment of the present invention is a compound identified using the method above.

Another embodiment of the present invention is a method for identifying the pathway in which a proliferation-required nucleic acid or its gene product lies comprising:

expressing a sublethal level of an antisense nucleic acid directed against said proliferation-required nucleic acid in a cell;

25 contacting said cell with an antibiotic, wherein the biological pathway on which said antibiotic acts is known; and

determining whether said cell has a substantially greater sensitivity to said antibiotic than a cell which does not express sublethal level of said antisense nucleic acid.

Another embodiment of the present invention is a method for determining the pathway on which a test 30 compound acts comprising:

(a) expressing a sublethal level of an antisense nucleic acid directed against a proliferation-required nucleic acid in a cell, wherein the biological pathway in which said proliferation-required nucleic acid lies is known,

(b) contacting said cell with said test compound; and

35 (c) determining whether said cell has a substantially greater sensitivity to said test compound than a cell which does not express sublethal level of said antisense nucleic acid.

The method may further comprise:

(d) expressing a sublethal level of a second antisense nucleic acid directed against a second proliferation-required nucleic acid in said cell, wherein said second proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and

5 (e) determining whether said cell has a substantially greater sensitivity to said test compound than a cell which does not express sublethal level of said second antisense nucleic acid.

Another embodiment of the present invention is a purified or isolated nucleic acid consisting essentially of one of SEQ ID NOS: 358, 399-402.

10 Another embodiment of the present invention is a purified or isolated nucleic acid comprising a sequence selected from the group consisting of 1-81, 405-485, 82-88, 90-242, 358, 399-402.

Another embodiment of the present invention is a compound which interacts with the gene or gene product of a nucleic acid comprising a sequence of one of SEQ ID NOS: 82-88, 90-242 to inhibit proliferation.

Another embodiment of the present invention compound which interacts with a polypeptide comprising one of SEQ ID NOS. 243-357, 359-398 to inhibit proliferation.

15 Another embodiment of the present invention is a compound which interacts with a nucleic acid comprising one of SEQ ID NOS: 358, 399-402 to inhibit proliferation.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an IPTG dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing either an antisense clone to the *E. coli* ribosomal protein rplW (AS-rplW) which is required for protein synthesis and essential cell proliferation, or an antisense clone to the elAD (AS-elAD) gene which is not known to be involved in protein synthesis and which is also essential for proliferation.

Figure 2A is a tetracycline dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing antisense to rplW(AS-rplW) in the presence of 0, 20 or 50 µM IPTG.

25 Figure 2B is a tetracycline dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing antisense to elAD (AS-elAD) in the presence of 0, 20 or 50 µM IPTG.

Figure 3 is a graph showing the fold increase in tetracycline sensitivity of *E. coli* transfected with antisense clones to essential ribosomal proteins L23 (AS-rplW) and L7/L12 and L10 (AS-rplLrpIJ). Antisense clones to genes known not to be involved in protein synthesis (atpB/E(AS-atpB/E), visC (AS-visC), elAD (AS-elAD), yohH (AS-yohH)) are much less sensitive to tetracycline.

30 Definitions

By "biological pathway" is meant any discrete cell function or process that is carried out by a gene product or a subset of gene products. Biological pathways include enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such cell walls. Biological pathways that are usually required for proliferation of microorganisms include, but are not limited to, cell division, DNA synthesis & replication,

RNA synthesis (transcription), protein synthesis (translation), protein processing, protein transport, fatty acid biosynthesis, cell wall synthesis, cell membrane synthesis & maintenance, etc.

By "inhibit activity against a gene or gene product" is meant having the ability to interfere with the function of a gene or gene product in such a way as to decrease expression of the gene or to reduce the level or activity of a product of the gene. Agents which have activity against a gene include agents that inhibit transcription of the gene and agents that inhibit translation of the mRNA transcribed from the gene. In microorganisms, agents which have activity against a gene can act to decrease expression of the operon in which the gene resides or alter the processing of operon RNA such as to reduce the level or activity of the gene product. The gene product can be a non-translated RNA such as ribosomal RNA, a translated RNA (mRNA) or the protein product resulting from translation of the gene mRNA. Of particular utility to the present invention are anti-sense RNAs that have activities against the operons or genes to which they specifically hybridize.

By "activity against the gene product" is meant having the ability to inhibit the function or to reduce the level or activity of the gene product in a cell.

By "activity against a protein" is meant having the ability to inhibit the function or to reduce the level or activity of the protein in a cell.

By "activity against nucleic acid" is meant having the ability to inhibit the function or to reduce the level or activity of the nucleic acid in a cell.

As used herein, "sublethal" means a concentration of an agent below the concentration required to inhibit all cell growth.

20

DETAILED DESCRIPTION OF THE INVENTION

The present invention describes a group of *E. coli* genes and gene families required for growth and/or proliferation. A proliferation-required gene or gene family is one where, in the absence of a gene transcript and/or gene product, growth or viability of the microorganism is reduced or eliminated. Thus, as used herein the terminology "proliferation-required" or "required for proliferation" encompasses sequences where the absence of a gene transcript and/or gene product completely eliminates cell growth as well as sequences where the absence of a gene transcript and/or gene product merely reduces cell growth. These proliferation-required genes can be used as potential targets for the generation of new antimicrobial agents. To achieve that goal, the present invention also encompasses novel assays for analyzing proliferation-required genes and for identifying compounds which interact with the gene products of the proliferation-required genes. In addition, the present invention contemplates the expression of genes and the purification of the proteins encoded by the nucleic acid sequences identified as required proliferation genes and reported herein. The purified proteins can be used to generate reagents and screen small molecule libraries or other candidate compound libraries for compounds that can be further developed to yield novel antimicrobial compounds. The present invention also describes methods for identification of homologous genes in organisms other than *E. coli*.

The present invention utilizes a novel method to identify proliferation-required *E. coli* sequences. Generally, a library of nucleic acid sequences from a given source are subcloned or otherwise inserted into an inducible expression

vector, thus forming an expression library. Although the insert nucleic acids may be derived from the chromosome of the organism into which the expression vector is to be introduced, because the insert is not in its natural chromosomal location, the insert nucleic acid is an exogenous nucleic acid for the purposes of the discussion herein. The term expression is defined as the production of an RNA molecule from a gene, gene fragment, genomic fragment, or operon. Expression can also be used to refer to the process of peptide or polypeptide synthesis. An expression vector is defined as a vehicle by which a ribonucleic acid (RNA) sequence is transcribed from a nucleic acid sequence carried within the expression vehicle. The expression vector can also contain features that permit translation of a protein product from the transcribed RNA message expressed from the exogenous nucleic acid sequence carried by the expression vector. Accordingly, an expression vector can produce an RNA molecule as its sole product or the expression vector can produce a RNA molecule that is ultimately translated into a protein product.

Once generated, the expression library containing the exogenous nucleic acid sequences is introduced into an *E. coli* population to search for genes that are required for bacterial proliferation. Because the library molecules are foreign to the population of *E. coli*, the expression vectors and the nucleic acid segments contained therein are considered exogenous nucleic acid.

Expression of the exogenous nucleic acid fragments in the test population of *E. coli* containing the expression vector library is then activated. Activation of the expression vectors consists of subjecting the cells containing the vectors to conditions that result in the expression of the exogenous nucleic acid sequences carried by the expression vector library. The test population of *E. coli* cells is then assayed to determine the effect of expressing the exogenous nucleic acid fragments on the test population of cells. Those expression vectors that, upon activation and expression, negatively impact the growth of the *E. coli* screen population were identified, isolated, and purified for further study.

A variety of assays are contemplated to identify nucleic acid sequences that negatively impact growth upon expression. In one embodiment, growth in *E. coli* cultures expressing exogenous nucleic acid sequences and growth in cultures not expressing these sequences is compared. Growth measurements are assayed by examining the extent of growth by measuring optical densities. Alternatively, enzymatic assays can be used to measure bacterial growth rates to identify exogenous nucleic acid sequences of interest. Colony size, colony morphology, and cell morphology are additional factors used to evaluate growth of the host cells. Those cultures that failed to grow or grow with reduced efficiency under expression conditions are identified as containing an expression vector encoding a nucleic acid fragment that negatively affects a proliferation-required gene.

Once exogenous nucleic acid sequences of interest are identified, they are analyzed. The first step of the analysis is to acquire the nucleic acid sequence of the nucleic acid fragment of interest. To achieve this end, the insert in those expression vectors identified as containing a sequence of interest is sequenced, using standard techniques well known in the art. The next step of the process is to determine the source of the nucleic acid sequence.

Determination of sequence source is achieved by comparing the obtained sequence data with known sequences in various genetic databases. The sequences identified are used to probe these gene databases. The result of this

procedure is a list of exogenous nucleic acid sequences corresponding to a list that includes novel bacterial genes required for proliferation as well as genes previously identified as required for proliferation.

The number of DNA and protein sequences available in database systems has been growing exponentially for years. For example, at the end of 1998, the complete sequences of *Caenorhabditis elegans*, *Saccharomyces cerevisiae* and fifteen bacterial genomes, including *E. coli* were available. This sequence information is stored in a number of databanks, such as GenBank (the National Center for Biotechnology Information (NCBI), and is publicly available for searching.

A variety of computer programs are available to assist in the analysis of the sequences stored within these databases. FastA, (W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA" Methods in Enzymology 183:63-98), Sequence Retrieval System (SRS), (Etzold & Argos, SRS an indexing and retrieval tool for flat file data libraries. Comput. Appl. Biosci. 9:49-57, 1993) are two examples of computer programs that can be used to analyze sequences of interest. In one embodiment of the present invention, the BLAST family of computer programs, which includes BLASTN version 2.0 with the default parameters, or BLASTX version 2.0 with the default parameters, is used to analyze nucleic acid sequences.

BLAST, an acronym for "Basic Local Alignment Search Tool," is a family of programs for database similarity searching. The BLAST family of programs includes: BLASTN, a nucleotide sequence database searching program, BLASTX, a protein database searching program where the input is a nucleic acid sequence; and BLASTP, a protein database searching program. BLAST programs embody a fast algorithm for sequence matching, rigorous statistical methods for judging the significance of matches, and various options for tailoring the program for special situations. Assistance in using the program can be obtained by e-mail at blast@ncbi.nlm.nih.gov.

Bacterial genes are often transcribed in polycistronic groups. These groups comprise operons, which are a collection of genes and intergenic sequences. The genes of an operon are co-transcribed and are often related functionally. Given the nature of the screening protocol, it is possible that the identified exogenous nucleic acid sequence corresponds to a gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a sequence spanning at least a portion of two or more genes, a 5' noncoding region or a 3' noncoding region located upstream or downstream from the actual sequence that is required for bacterial proliferation. Accordingly, determining which of the genes that are encoded within the operons are individually required for proliferation is often desirable.

In one embodiment of the present invention, an operon is dissected to determine which gene or genes are required for proliferation. For example, the RegulonDB DataBase described by Huerta et al. (*Nucl. Acids Res.* 26:55-59, 1998), which may also be found on the website http://www.cifn.unam.mx/Computational_Biology/regulondb/, may be used. to identify the boundaries of operons encoded within microbial genomes. A number of techniques that are well known in the art can be used to dissect the operon. In one aspect of this embodiment, gene disruption by homologous recombination is used to individually inactivate the genes of an operon that is thought to contain a gene required for proliferation.

Several gene disruption techniques have been described for the replacement of a functional gene with a mutated, non-functional (null) allele. These techniques generally involve the use of homologous recombination. The

method described by Link et al. (J. Bacteriol 1997 179:6228; incorporated herein by reference in its entirety) serves as an excellent example of these methods as applicable to disruption of genes in *E. coli*. This technique uses crossover PCR to create a null allele with an in-frame deletion of the coding region of a target gene. The null allele is constructed in such a way that sequences adjacent to the wild type gene (ca. 500 bp) are retained. These homologous sequences surrounding the deletion null allele provide targets for homologous recombination so that the wild type gene on the *E. coli* chromosome can be replaced by the constructed null allele.

5

The crossover PCR amplification product is subcloned into the vector pKO3, the features of which include a chloramphenicol resistance gene, the counter-selectable marker *sacB*, and a temperature sensitive autonomous replication function. Following transformation of an *E. coli* cell population with such a vector, selection for cells that have undergone homologous recombination of the vector into the chromosome is achieved by growth on chloramphenicol at the non-permissive temperature of 43°C. Under these conditions, autonomous replication of the plasmid cannot occur and cells are resistant to chloramphenicol only if the chloramphenicol resistance gene has been integrated into the chromosome. Usually a single crossover event is responsible for this integration event such that the *E. coli* chromosome now contains a tandem duplication of the target gene consisting of one wild type allele and one deletion null allele separated by vector sequence.

10

15

This new *E. coli* strain containing the tandem duplication can be maintained at permissive temperatures in the presence of drug selection (chloramphenicol). Subsequently, cells of this new strain are cultured at the permissive temperature 30°C without drug selection. Under these conditions, the chromosome of some of the cells within the population will have undergone an internal homologous recombination event resulting in removal of the plasmid sequences. Subsequent culturing of the strain in growth medium lacking chloramphenicol but containing sucrose is used to select for such recombinative resolutions. In the presence of the counter-selectable marker *sacB*, sucrose is rendered into a toxic metabolite. Thus, cells that survive this counter-selection have lost both the plasmid sequences from the chromosome and the autonomously replicating plasmid that results as a byproduct of recombinative resolution.

20

25

30

There are two possible outcomes of the above recombinative resolution via homologous recombination. Either the wild type copy of the targeted gene is retained on the chromosome or the mutated null allele is retained on the chromosome. In the case of an essential gene, a single copy of the null allele would be lethal and such cells should not be obtained by the above procedure when applied to essential genes. In the case of a non-essential gene, roughly equal numbers of cells containing null alleles and cells containing wild type alleles should be obtained. Thus, the method serves as a test for essentiality of the targeted gene: when applied to essential genes, only cells with a wild type allele on the chromosome will be obtained.

35

Other techniques have also been described for the creation of disruption mutations in *E. coli*. For example, Link et al. also describe inserting an in-frame sequence tag concomitantly with an in-frame deletion in order to simplify analysis of recombinants obtained. Further, Link et al. describe disruption of genes with a drug resistance marker such as a kanamycin resistance gene. Arigoni et al., (Arigoni, F. et al. A Genome-based Approach for the

Identification of Essential Bacterial Genes, *Nature Biotechnology* 16: 851-856, the disclosure of which is incorporated herein by reference in its entirety) describe the use of gene disruption combined with engineering a second copy of a test gene such that the expression of the gene is regulated by and inducible promoter such as the arabinose promoter to test the essentiality of the gene. Many of these techniques result in the insertion of large fragments of DNA into the gene of interest, such as a drug selection marker. An advantage of the technique described by Link et al. is that it does not rely on an insertion into the gene to cause a functional defect, but rather results in the precise removal of the coding region. This insures the lack of polar effects on the expression of genes downstream from the target gene.

Recombinant DNA techniques can be used to express the entire coding sequences of the gene identified as required for proliferation, or portions thereof. The over-expressed proteins can be used as reagents for further study. The identified exogenous sequences are isolated, purified, and cloned into a suitable expression vector using methods well known in the art. If desired, the nucleic acids can contain the sequences encoding a signal peptide to facilitate secretion of the expressed protein.

Expression of fragments of the bacterial genes identified as required for proliferation is also contemplated by the present invention. The fragments of the identified genes can encode a polypeptide comprising at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 75, or more than 75 consecutive amino acids of a gene complementary to one of the identified sequences of the present invention. The nucleic acids inserted into the expression vectors can also contain sequences upstream and downstream of the coding sequence.

When expressing the coding sequence of an entire gene identified as required for bacterial proliferation or a fragment thereof, the nucleic acid sequence to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector can be any of the bacterial, insect, yeast, or mammalian expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon usage and codon bias of the sequence can be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767, incorporated herein by this reference. Fusion protein expression systems are also contemplated by the present invention.

Following expression of the protein encoded by the identified exogenous nucleic acid sequence, the protein is purified. Protein purification techniques are well known in the art. Proteins encoded and expressed from identified exogenous nucleic acid sequences can be partially purified using precipitation techniques, such as precipitation with polyethylene glycol. Chromatographic methods usable with the present invention can include ion-exchange chromatography, gel filtration, use of hydroxyapatite columns, immobilized reactive dyes, chromatofocusing, and use of high-performance liquid chromatography. Electrophoretic methods such one-dimensional gel electrophoresis, high-resolution two-dimensional polyacrylamide electrophoresis, isoelectric focusing, and others are contemplated as purification methods.

Also, affinity chromatographic methods, comprising antibody columns, ligand presenting columns and other affinity chromatographic matrices are contemplated as purification methods in the present invention.

The purified proteins produced from the gene coding sequences identified as required for proliferation can be used in a variety of protocols to generate useful antimicrobial reagents. In one embodiment of the present invention, antibodies are generated against the proteins expressed from the identified exogenous nucleic acid sequences. Both monoclonal and polyclonal antibodies can be generated against the expressed proteins. Methods for generating monoclonal and polyclonal antibodies are well known in the art. Also, antibody fragment preparations prepared from the produced antibodies discussed above are contemplated.

Another application for the purified proteins of the present invention is to screen small molecule libraries for candidate compounds active against the various target proteins of the present invention. Advances in the field of combinatorial chemistry provide methods, well known in the art, to produce large numbers of candidate compounds that can have a binding, or otherwise inhibitory effect on a target protein. Accordingly, the screening of small molecule libraries for compounds with binding affinity or inhibitory activity for a target protein produced from an identified gene sequence is contemplated by the present invention.

The present invention further contemplates utility against a variety of other pathogenic organisms in addition to *E. coli*. For example, the invention has utility in identifying genes required for proliferation in prokaryotes and eukaryotes. For example, the invention has utility with protists, such as *Plasmodium* spp.; plants; animals, such as *Entamoeba* spp. and *Contracaecum* spp; and fungi including *Candida* spp., (e.g., *Candida albicans*), *Saccharomyces cerevisiae*, *Cryptococcus neoformans*, and *Aspergillus fumigatus*. In one embodiment of the present invention, monera, specifically bacteria are probed in search of novel gene sequences required for proliferation. This embodiment is particularly important given the rise of drug resistant bacteria.

The numbers of bacterial species that are becoming resistant to existing antibiotics are growing. A partial list of these organisms includes: *Staphylococcus* spp., such as *S. aureus*; *Enterococcus* spp., such as *E. faecalis*; *Pseudomonas* spp., such as *P. aeruginosa*, *Clostridium* spp., such as *C. botulinum*, *Haemophilus* spp., such as *H. influenzae*; *Enterobacter* spp., such as *E. cloacae*, *Vibrio* spp., such as *V. cholera*; *Moraxala* spp., such as *M. catarrhalis*; *Streptococcus* spp., such as *S. pneumoniae*, *Neisseria* spp., such as *N. gonorrhoeae*; *Mycoplasma* spp., such as *Mycoplasma pneumoniae*; *Salmonella typhimurium*; *Helicobacter pylori*; *Escherichia coli*; and *Mycobacterium tuberculosis*. The sequences identified as required for proliferation in the present invention can be used to probe these and other organisms to identify homologous required proliferation genes contained therein.

In one embodiment of the present invention, the nucleic acid sequences disclosed herein are used to screen genomic libraries generated from bacterial species of interest other than *E. coli*. For example, the genomic library may be from *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium*

tuberculosis, Mycobacterium leprae, Treponema pallidum, Bacillus anthracis, Yersinia pestis, Clostridium botulinum, Campylobacter jejuni, Chlamydia trachomatis, Chlamydia pneumoniae or any species falling within the genera of any of the above species. Standard molecular biology techniques are used to generate genomic libraries from various microorganisms. In one aspect, the libraries are generated and bound to nitrocellulose paper. The identified exogenous nucleic acid sequences of the present invention can then be used as probes to screen the libraries for homologous sequences. The homologous sequences identified can then be used as targets for the identification of new, antimicrobial compounds with activity against more than one organism.

For example, the preceding methods may be used to isolate nucleic acids having a sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% identity to a nucleic acid sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 1-81, 405-485, 82-88, 90-242, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases thereof, and the sequences complementary thereto. Identity may be measured using BLASTN version 2.0 with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety). For example, the homologous polynucleotides may have a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variants may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEQ ID NOs: 1-81, 405-485, 82-88, 90-242 or the sequences complementary thereto.

Additionally, the above procedures may be used to isolate nucleic acids which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, or at least 40% identity or similarity to a polypeptide having the sequence of one of SEQ ID NOs: 243-357, 359-398 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Alschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).

Alternatively, homologous nucleic acids or polypeptides may be identified by searching a database to identify sequences having a desired level of homology to a nucleic acid or polypeptide involved in proliferation or an antisense nucleic acid to a nucleic acid involved in microbial proliferation. A variety of such databases are available to those skilled in the art, including GenBank and GenSeq. In some embodiments, the databases are screened to identify nucleic acids or polypeptides having at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, or at least 50%, at least 40% identity or similarity to a nucleic acid or polypeptide involved in proliferation or an antisense nucleic acid involved in proliferation. For example, the database may be screened to identify nucleic acids homologous to one of SEQ ID Nos. 1-81, 405-485, 82-88, 90-242 or polypeptides homologous

to SEQ ID NOS. 243-357, 359-398. In some embodiments, the database may be screened to identify homologous nucleic acids or polypeptides from organisms other than *E. coli*, including organisms such as *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.

In another embodiment, gene expression arrays and microarrays can be employed. Gene expression arrays are high density arrays of DNA samples deposited at specific locations on a glass chip, nylon membrane, or the like. Such arrays can be used by researchers to quantify relative gene expression under different conditions. Gene expression arrays are used by researchers to help identify optimal drug targets, profile new compounds, and determine disease pathways. An example of this technology is found in U.S. Patent No. 5807522, which is hereby incorporated by reference.

It is possible to study the expression of all genes in the genome of a particular microbial organism using a single array. For example, the arrays from Genosys consist of 12 x 24 cm nylon filters containing PCR products corresponding to 4290 ORFs from *E. coli*. 10 ngs of each are spotted every 1.5 mm on the filter. Single stranded labeled cDNAs are prepared for hybridization to the array (no second strand synthesis or amplification step is done) and placed in contact with the filter. Thus the labeled cDNAs are of "antisense" orientation. Quantitative analysis is done by phosphorimager.

Hybridization of cDNA made from a sample of total cell mRNA to such an array followed by detection of binding by one or more of various techniques known to those in the art results in a signal at each location on the array to which cDNA hybridized. The intensity of the hybridization signal obtained at each location in the array thus reflects the amount of mRNA for that specific gene that was present in the sample. Comparing the results obtained for mRNA isolated from cells grown under different conditions thus allows for a comparison of the relative amount of expression of each individual gene during growth under the different conditions.

Gene expression arrays may be used to analyze the total mRNA expression pattern at various time points after induction of an antisense nucleic acid against a proliferation-required gene. Analysis of the expression pattern indicated by hybridization to the array provides information on whether or not the target gene of the antisense nucleic acid is being affected by antisense induction, how quickly the antisense is affecting the target gene, and for later timepoints, what other genes are affected by antisense expression. For example, if the antisense is directed against a gene for ribosomal protein L7/L12 in the 50S subunit, its targeted mRNA may disappear first and then other mRNAs may be observed to increase, decrease or stay the same. Similarly, if the antisense is directed against a different 50S subunit ribosomal protein mRNA (e.g. L25), that mRNA may disappear first followed by changes in mRNA expression that are similar to those seen with the L7/L12 antisense expression. Thus, the mRNA expression pattern observed

with an antisense nucleic acid against a proliferation required gene may identify other proliferation-required nucleic acids in the same pathway as the target of the antisense nucleic acid. In addition, the mRNA expression patterns observed with candidate drug compounds may be compared to those observed with antisense nucleic acids against a proliferation-required nucleic acid. If the mRNA expression pattern observed with the candidate drug compound is similar to that observed with the antisense nucleic acid, the drug compound may be a promising therapeutic candidate. Thus, the assay would be useful in assisting in the selection of candidate drug compounds for use in screening methods such as those described below.

5

In cases where the source of nucleic acid deposited on the array and the source of the nucleic acid being hybridized to the array are from two different organisms, gene expression arrays can identify homologous genes in the two organisms.

10

The present invention also contemplates additional methods for screening other microorganisms for proliferation-required genes. In this embodiment, the conserved portions of sequences identified as proliferation-required can be used to generate degenerate primers for use in the polymerase chain reaction (PCR). The PCR technique is well known in the art. The successful production of a PCR product using degenerate probes generated from the sequences identified herein would indicate the presence of a homologous gene sequence in the species being screened. This homologous gene is then isolated, expressed, and used as a target for candidate antibiotic compounds. In another aspect of this embodiment, the homologous gene is expressed in an autologous organism or in a heterologous organism in such a way as to alter the level or activity of a homologous gene required for proliferation in the autologous or heterologous organism. In still another aspect of this embodiment, the homologous gene or portion is expressed in an antisense orientation in such a way as to alter the level or activity of a nucleic acid required for proliferation of an autologous or heterologous organism.

15

The homologous sequences to proliferation-required genes identified using the techniques described herein may be used to identify proliferation-required genes of organisms other than *E. coli*, to inhibit the proliferation of organisms other than *E. coli* by inhibiting the activity or reducing the amount of the identified homologous nucleic acid or polypeptide in the organism other than *E. coli*, or to identify compounds which inhibit the growth of organisms other than *E. coli* as described below.

20

In another embodiment of the present invention, *E. coli* sequences identified as required for proliferation are transferred to expression vectors capable of function within non-*E. coli* species. As would be appreciated by one of ordinary skill in the art, expression vectors must contain certain elements that are species specific. These elements can include promoter sequences, operator sequences, repressor genes, origins of replication, ribosomal binding sequences, termination sequences, and others. To use the identified exogenous sequences of the present invention, one of ordinary skill in the art would know to use standard molecular biology techniques to isolate vectors containing the sequences of interest from cultured bacterial cells, isolate and purify those sequences, and subclone those sequences into an expression vector adapted for use in the species of bacteria to be screened.

25

Expression vectors for a variety of other species are known in the art. For example, Cao et al. report the expression of steroid receptor fragments in *Staphylococcus aureus*. *J. Steroid Biochem Mol Biol.* 44(1):1-11

(1993). Also, Pla et al. have reported an expression vector that is functional in a number of relevant hosts including: *Salmonella typhimurium*, *Pseudomonas putida*, and *Pseudomonas aeruginosa*. *J. Bacteriol.* 172(8):4448-55 (1990). These examples demonstrate the existence of molecular biology techniques capable of constructing expression vectors for the species of bacteria of interest to the present invention.

5 Following the subcloning of the identified nucleic acid sequences into an expression vector functional in the microorganism of interest, the identified nucleic acid sequences are conditionally transcribed to assay for bacterial growth inhibition. Those expression vectors found to contain sequences that, when transcribed, inhibit bacterial growth are compared to the known genomic sequence of the pathogenic microorganism being screened or, if the homologous sequence from the organism being screened is not known, it may be identified and isolated by
10 hybridization to the proliferation-required *E. coli* sequence of interest or by amplification using primers based on the proliferation-required *E. coli* sequence of interest as described above.

15 The antisense sequences from the second organism which are identified as described above may then be operably linked to a promoter, such as an inducible promoter, and introduced into the second organism. The techniques described herein for identifying *E. coli* genes required for proliferation may thus be employed to determine whether the identified sequences from a second organism inhibit the proliferation of the second organism.

20 Antisense nucleic acids required for the proliferation of organisms other than *E. coli* or the genes corresponding thereto, may also be hybridized to a microarray containing the *E. coli* ORFs to gauge the homology between the *E. coli* sequences and the proliferation-required nucleic acids from other organisms. For example, the proliferation-required nucleic acid may be from *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni* or *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species. The proliferation-required nucleic acids from an organism other than *E. coli* may be hybridized to the array under a variety of conditions which permit hybridization to occur when the probe has different levels of homology to the sequence on the microarray. This would provide an indication of homology across the organisms as well as clues to other possible essential genes in these organisms.
25

30 In still another embodiment, the exogenous nucleic acid sequences of the present invention that are identified as required for bacterial growth or proliferation can be used as antisense therapeutics for killing bacteria. The antisense sequences can be directed against the proliferation-required genes whose sequence corresponds to the exogenous nucleic acid probes identified here (i.e. the antisense nucleic acid may hybridize to the gene or a portion thereof). Alternatively, antisense therapeutics can be directed against operons in which proliferation-required genes reside (i.e. the antisense nucleic acid may hybridize to any gene in the operon in which the proliferation-required genes reside). Further, antisense
35

therapeutics can be directed against a proliferation-required gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a sequence spanning at least a portion of two or more genes, a 5' noncoding region or a 3' noncoding region located upstream or downstream from the actual sequence that is required for bacterial proliferation or an operon containing a proliferation-required gene.

In addition to therapeutic applications, the present invention encompasses the use of nucleic acid sequences complementary to sequences required for proliferation as diagnostic tools. For example, nucleic acid probes complementary to proliferation-required sequences that are specific for particular species of microorganisms can be used as probes to identify particular microorganism species in clinical specimens. This utility provides a rapid and dependable method by which to identify the causative agent or agents of a bacterial infection. This utility would provide clinicians the ability to prescribe species specific antimicrobial compounds to treat such infections. In an extension of this utility, antibodies generated against proteins translated from mRNA transcribed from proliferation-required sequences can also be used to screen for specific microorganisms that produce such proteins in a species-specific manner.

The following examples teach the genes of the present invention and a subset of uses for the *E. coli* genes identified as required for proliferation. These examples are illustrative only and are not intended to limit the scope of the present invention.

EXAMPLES

The following examples are directed to the identification and exploitation of *E. coli* genes required for proliferation. Methods of gene identification are discussed as well as a variety of methods to utilize the identified sequences.

Genes Identified as Required for Proliferation of *E. coli*

Exogenous nucleic acid sequences were cloned into an inducible expression vector and assayed for growth inhibition activity. Example 1 describes the examination of a library of exogenous nucleic acid sequences cloned into IPTG-inducible expression vectors. Upon activation or induction, the expression vectors produced an RNA molecule corresponding to the subcloned exogenous nucleic acid sequences. The RNA product was in an antisense orientation with respect to the *E. coli* genes from which it was originally derived. This antisense RNA then interacted with sense mRNA produced from various *E. coli* genes and interfered with or inhibited the translation of the sense messenger RNA (mRNA) thus preventing protein production from these sense mRNA molecules. In cases where the sense mRNA encoded a protein required for the proliferation, bacterial cells containing an activated expression vector failed to grow or grew at a substantially reduced rate.

EXAMPLE 1

Inhibition of Bacterial Proliferation after IPTG induction

To study the effects of transcriptional induction in liquid medium, growth curves were carried out by back diluting cultures 1:200 into fresh media with or without 1 mM IPTG and measuring the OD₄₅₀ every 30 minutes (min). To

study the effects of transcriptional induction on solid medium, 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 and 10^8 fold dilutions of overnight cultures were prepared. Aliquots of from 0.5 to 3 μ l of these dilutions were spotted on selective agar plates with or without 1 mM IPTG. After overnight incubation, the plates were compared to assess the sensitivity of the clones to IPTG.

5 Of the numerous clones tested, some clones were identified as containing sequence that inhibited *E. coli* growth after IPTG induction. Accordingly, the gene to which the inserted nucleic acid sequence corresponds, or a gene within the operon containing the inserted nucleic acid, may be required for proliferation in *E. coli*.

Characterization of Isolated Clones Negatively Affecting *E. coli* Proliferation

10 Following the identification of those expression vectors that, upon expression, negatively impacted *E. coli* growth or proliferation, the inserts or nucleic acid fragments contained in those expression vectors were isolated for subsequent characterization. Expression vectors of interest were subjected to nucleic acid sequence determination.

EXAMPLE 2

Nucleic Acid Sequence Determination of Identified Clones Expressing Nucleic Acid Fragments with Detrimental Effects of *E. coli* Proliferation

15 The nucleotide sequences for the exogenous identified sequences were determined using plasmid DNA isolated using QIAPREP (Qiagen, Valencia, CA) and methods supplied by the manufacturer. The primers used for sequencing the inserts were 5' - TGTTTATCAGACCGCTT - 3' (SEQ ID NO: 403) and 5' - ACAATTCACACAGCCTC - 3' (SEQ ID NO: 404). These sequences flank the polylinker in pLEX5BA. Sequence identification numbers (SEQ ID NOs) for the identified inserts
20 are listed in Table I and discussed below.

EXAMPLE 3

Comparison Of Isolated Sequences to Known Sequences

25 The nucleic acid sequences of the subcloned fragments obtained from the expression vectors discussed above were compared to known *E. coli* sequences in GenBank using BLAST version 1.4 or version 2.0.6 using the following default parameters: Filtering off, cost to open a gap - 5, cost to extend a gap - 2, penalty for a mismatch in the blast portion of run - 3, reward for a match in the blast portion of run - 1, expectation value (e) - 10.0, word size - 11, number of one-line descriptions - 100, number of alignments to show (B) - 100. BLAST is described in Altschul, J Mol Biol. 215:403-10 (1990), the disclosure of which is incorporated herein by reference in its entirety. Expression vectors were found to contain nucleic acid sequences in both the sense and antisense orientations. The presence of known genes, open reading frames, and ribosome binding sites was determined by comparison to public databases holding genetic information and various computer programs such as the Genetics Computer Group programs FRAMES and CODONPREFERENCE. Clones
30 were designated as "antisense" if the cloned fragment was oriented to the promoter such that the RNA transcript produced was complementary to the expressed mRNA from a chromosomal locus. Clones were designated as "sense" if they coded for an RNA fragment that was identical to a portion of a wild type mRNA from a chromosomal locus.

The sequences described in Examples 1-2 that inhibited bacterial proliferation and contained gene fragments in an antisense orientation are listed in Table I. This table lists each identified sequence by: a sequence identification number; a Molecule Number; a gene to which the identified sequence corresponds, listed according to the National Center for Biotechnology Information (NCBI), Blattner (Science 277:1453-1474(1997); also contains the *E. coli* K-12 genome sequence), or Rudd (Micro. and Mol. Rev. 62:985-1019 (1998)), (both papers are hereby incorporated by reference) nomenclatures. The CONTIG numbers for each identified sequence is shown, as well as the location of the first and last base pairs located on the *E. coli* chromosome. A Molecule Number with a *** indicates a clone corresponding to an intergenic sequence.

The sequences of the nucleic acid inserts of SEQ ID NOs: 1-81 from U.S. Provisional Patent Application No. 10 60/117,405 which inhibited proliferation were further analyzed. The reanalyzed sequences corresponding to SEQ ID NOs. 1-81 of U.S. Provisional Patent Application No. 60/117,405 have SEQ ID NOs. 405-485 in the present application.

SEQ ID NOs: 82-242 in U.S. Provisional Patent Application No. 60/117,405 are identical to SEQ ID NOs: 82-242 of the present application with the following exceptions. SEQ ID NO: 148 in the present application is the complementary strand of SEQ ID NO: 148 in U.S. Provisional Patent Application No. 60/117,405. Accordingly, the 15 protein of SEQ ID NO: 308 which is encoded by SEQ ID NO: 148 has also been revised. SEQ ID NO: 163 in the present application is the complementary strand of SEQ ID NO: 163 in U.S. Provisional Patent Application No. 60/117,405. Accordingly, the protein of SEQ ID NO: 323 which is encoded by SEQ ID NO: 163 has also been revised.

The target gene of SEQ ID NOs. 18 and 19 of U.S. Provisional Patent Application No. 60/117,405 (SEQ ID NOs. 18, 19, 422, 423 of the present application) has been revised from *dicF* to *ftsZ* to reflect the fact that these 20 SEQ ID NOs. include natural antisense molecules which inhibit *ftsZ* expression.

The gene products of the nucleic acids of SEQ ID NOs. 198 and 239-242 in U.S. Provisional Patent Application No. 60/117,405 and in the present application (SEQ ID NOs. 358 and 399-402 of the present application) have been revised to reflect the fact that these nucleic acids encode nontranslated tRNAs and rRNAs. Tables I and II have been revised accordingly. The SEQ ID NOs. in Table II were also revised to reflect the fact that SEQ ID NOs: 89 25 and 402 were identical in U.S. Provisional Patent Application No. 60/117,405.

TABLE I
Identified Clones with Corresponding Genes and Operons

SEQ ID NO.	Molecule No.	Gene (NCBI)	Gene (Blattner)	Gene (Rudd)	CONTIG
1, 405	EcXA001	<i>yhhQ</i>	<i>b3471</i>	<i>yhhQ</i>	AE000423
2, 406	EcXA002	<i>lepB</i>	<i>lepB</i>	<i>lepB</i>	AE000343
3, 407	EcXA003	<i>f586</i>	<i>b0955</i>	<i>ycbZ</i>	AE000197
4, 408	EcXA004	<i>rpsG, rpsL</i>	<i>b3341</i>	<i>rpsG, rpsL</i>	AE000410
5, 409	EcXA005a	<i>rplL, rplJ</i>	<i>b3986</i>	<i>rplL, rplJ</i>	AE000472
6, 410	EcXA005b	<i>rplL</i>	<i>rplL</i>	<i>rplL</i>	AE000472
7, 411	EcXA005c	<i>rplL, rplJ</i>	<i>rplL, rplJ</i>	<i>rplL, rplJ</i>	AE000472
8, 412	EcXA005d	<i>rplL, rplJ</i>	<i>rplL, rplJ</i>	<i>rplL, rplJ</i>	AE000472
9, 413	EcXA005e	<i>rplL</i>	<i>rplL</i>	<i>rplL</i>	AE000472

SEQ ID NO.	Molecule No.	Gene (NCBI)	Gene (Blattner)	Gene (Rudd)	CONTIG
10, 414	EcXA005f	<i>rplL</i>	<i>rplL</i>	<i>rplL</i>	AE000472
11, 415	EcXA005g	<i>rplL</i>	<i>rplL</i>	<i>rplL</i>	AE000472
12, 416	EcXA006	<i>pta</i>	<i>b2297</i>	<i>pta</i>	AE000319
13, 417	EcXA007	<i>yicP</i>	<i>b3666</i>	<i>yicP</i>	AE000444
14, 418	EcXA008a	<i>yhaU</i>	<i>b3127</i>	<i>yhaU</i>	AE000394
15, 419	EcXA008b	<i>yhaU</i>	<i>yhaU</i>	<i>yhaU</i>	AE000394
16, 420	EcXA008c	<i>yhaU</i>	<i>yhaU</i>	<i>yhaU</i>	AE000394
17, 421	EcXA009	<i>ydeY</i>	<i>ydeY</i>	<i>ydeY</i>	AE000249
18, 422	EcXA010a (natural as)	<i>dicF</i>	<i>b1575</i>	<i>dicF</i>	AE000253
19, 423	EcXA010b	<i>dicF</i>	<i>dicF</i>	<i>dicF</i>	AE000253
20, 424	EcXA011	<i>fdnG</i>	<i>b1474</i>	<i>fdnG</i>	AE000244
21, 425	EcXA012a	<i>fusA</i>	<i>b3340</i>	<i>fusA</i>	AE000410
22, 426	EcXA012b	<i>fusA</i>	<i>fusA</i>	<i>fusA</i>	AE000410
23, 427	EcXA012c	<i>fusA</i>	<i>fusA</i>	<i>fusA</i>	AE000410
24, 428	EcXA013a	<i>o86</i>	<i>b2562</i>	<i>yfhL</i>	AE000342
25, 429	EcXA013b	<i>o86</i>	<i>b2562</i>	<i>yfhL</i>	AE000342
26, 430	EcXA013c	<i>o86</i>	<i>b2562</i>	<i>yfhL</i>	AE000342
27, 431	EcXA014	<i>visC</i>	<i>b2906</i>	<i>visC</i>	AE000374
28, 432	EcXA015	<i>yfdl</i>	<i>yfdl</i>	<i>yfdl</i>	AE000323
29, 433	EcXA016	<i>yeaQ</i>	<i>yeaQ</i>	<i>yeaQ</i>	AE000274
		<i>yoaG</i>	<i>yoaG</i>	<i>yoaG</i>	
30, 434	EcXA017a	<i>yggE</i>	<i>b2922</i>	<i>yggE</i>	AE000375
31, 435	EcXA017b	<i>yggE</i>	<i>yggE</i>	<i>yggE</i>	AE000375
32, 436	EcXA018a	<i>o464</i>	<i>b2074</i>	<i>yegM</i>	AE000297
33, 437	EcXA018b	<i>o464</i>	<i>b2074</i>	<i>yegM</i>	AE000297
34, 438	EcXA019a	<i>yehA</i>	<i>yehA</i>	<i>yehA</i>	AE000300
					AE000299
35, 439	EcXA019b	<i>o172, yehA</i>	<i>o172, yehA</i>	<i>o172, yehA</i>	AE000299
36, 440	EcXA020	<i>o384, f82</i>	<i>b1794, b1795</i>	<i>yeaP, yeaQ</i>	AE000274
37, 441	EcXA021a	<i>f112</i>	<i>b0218</i>	<i>yafU</i>	AE000130
38, 442	EcXA021b	<i>f112</i>	<i>b0218</i>	<i>yafU</i>	AE000130
39, 443	EcXA022	<i>o740</i>	<i>b1629</i>	<i>ydgN</i>	AE000258
40, 444	EcXA023a	<i>f176, f382</i>	<i>b1504, b1505</i>	<i>ydeS, ydeT</i>	AE000247
41, 445	EcXA023b	<i>f176, f382</i>	<i>b1504, b1505</i>	<i>ydeS, ydeT</i>	AE000247
42, 446	EcXA024	<i>ygiM, ygiN</i>	<i>b3082</i>	<i>ygiM, ygiN</i>	AE000390
43, 447	EcXA025	<i>o2383</i>	<i>b1878</i>	<i>yeeJ</i>	AE000289
44, 448	EcXA026	<i>o61</i>	<i>Unpredicted</i>	<i>Unpredicted</i>	AE000138
45, 449	EcXA027a	<i>yohH</i>	<i>yohH</i>	<i>yohH</i>	AE000303
46, 450	EcXA027b	<i>yohH</i>	<i>yohH</i>	<i>yohH</i>	AE000303
47, 451	EcXA027c	<i>yohH</i>	<i>yohH</i>	<i>yohH</i>	AE000303
		<i>yohI</i>	<i>yohI</i>	<i>yohI</i>	
48, 452	EcXA027d	<i>yohH</i>	<i>yohH</i>	<i>yohH</i>	AE000303
49, 453	EcXA028	<i>f296</i>	<i>b2305</i>	<i>yfcI</i>	AE000319
50, 454	EcXA029	<i>yjjK</i>	<i>b4391</i>	<i>yjjK</i>	AE000509
51, 455	EcXA030	<i>yi5A</i>	<i>b3557</i>	<i>yi5A</i>	AE000433
52, 456	EcXA031	<i>rplE</i>	<i>B3308</i>	<i>rplE</i>	AE000408
53, 457	EcXA032a	<i>ybgD</i>	<i>ybgD</i>	<i>ybgD</i>	AE000175
54, 458	EcXA032b**	<i>ybgD</i>	<i>ybgD</i>	<i>ybgD</i>	AE000175

SEQ ID NO.	Molecule No.	Gene (NCBI)	Gene (Blattner)	Gene (Rudd)	CONTIG
		<i>gltA</i>	<i>gltA</i>	<i>gltA</i>	
55, 459	EcXA033a	<i>f477 (as)</i>	<i>b3052</i>	<i>waaE</i>	AE000387
					AE000386
56, 460	EcXA033b	<i>f477</i>	<i>b3052</i>	<i>waaE</i>	AE000387
57, 461	EcXA034a	<i>cspA</i>	<i>b3556</i>	<i>cspA</i>	AE000433
58, 462	EcXA034b	<i>cspA</i>	<i>b3556</i>	<i>cspA</i>	AE000433
59, 463	EcXA035	<i>yhjU</i>	<i>yhjU</i>	<i>yhjU</i>	AE000431
60, 464	EcXA036	<i>yqjF</i>	<i>b3101</i>	<i>yqjF</i>	AE000392
		<i>o99</i>	<i>b3100</i>	<i>yqjK</i>	
61, 465	EcXA037	<i>ydeH</i>	<i>b1535</i>	<i>ydeH</i>	AE000251
62, 466	EcXA038	<i>sieB</i>	<i>b1353</i>	<i>sieB</i>	AE000233
63, 467	EcXA039	<i>ybbD</i>		<i>ybbD</i>	AE000156
64, 468	EcXA040	<i>InsB 6</i>	<i>b3445</i>	<i>insB 6</i>	AE000420
65, 469	EcXA041	<i>f234</i>	<i>b1138</i>	<i>ymfE</i>	AE000214
66, 470	EcXA042a	<i>rplY</i>	<i>rplY</i>	<i>rplY</i>	AE000308
67, 471	EcXA042b	<i>rplY</i>	<i>rplY</i>	<i>rplY</i>	AE000308
68, 472	EcXA043	<i>ybgB</i>	<i>ybgB</i>	<i>ybgB</i>	AE000176
		<i>cydA</i>	<i>cydA</i>	<i>cydA</i>	
69, 473	EcXA044	<i>purB</i>	<i>b1131</i>	<i>purB</i>	AE000213
70, 474	EcXA045**	<i>csrA</i>	<i>csrA</i>	<i>csrA</i>	AE000353
		<i>serV</i>	<i>serV</i>	<i>serV</i>	
71, 475	EcXA046**	<i>fimE, fimA</i>	<i>b4313</i>	<i>fimE, fimA</i>	AE000502
72, 476	EcXA047**	<i>f96, cspB</i>	<i>f96, cspB</i>	<i>cspB, ydfS</i>	AE000252
73, 477	EcXA048	<i>yefE</i>	<i>yefE</i>	<i>yefE</i>	AE000294
74, 478	EcXA049	<i>yaiC</i>	<i>b0385</i>	<i>yaiC</i>	AE000145
75, 479	EcXA050	<i>o467, o222</i>	<i>yaiU, yaiV</i>	<i>yaiU, yaiV</i>	AE000144
76, 480	EcXA051a	<i>rplB, rplW</i>	<i>rplB, rplW</i>	<i>rplB, rplW</i>	AE000408
77, 481	EcXA051b	<i>rplW</i>	<i>rplW</i>	<i>rplW</i>	AE000408
78, 482	EcXA052	<i>infC</i>	<i>infC</i>	<i>infC</i>	AE000267
					AE000266
79, 483	EcXA053	<i>gor</i>	<i>gor</i>	<i>gor</i>	AE000426
80, 484	EcXA054	<i>rplF</i>	<i>rplF</i>	<i>rplF</i>	AE000408
81, 485	EcXA055	<i>rrlG</i>	<i>rrlG</i>	<i>rrlG</i>	AE000345

EXAMPLE 4

Identification of Genes and their Corresponding Operons Affected by Antisense Inhibition

The sequencing of the entire *E. coli* genome is described in Blattner et al., Science 277:1453-1474(1997) the

5 entirety of which is hereby incorporated by reference and the sequence of the genome is listed in GenBank Accession No.U00096, the disclosure of which is incorporated herein by reference in its entirety. The operons to which the proliferation-inhibiting nucleic acids correspond were identified using RegulonDB and information in the literature. The coordinates of the boundaries of these operons on the *E. coli* genome are listed in Table III. Table II lists the molecule numbers of the inserts containing the growth inhibiting nucleic acid fragments, the genes in the operons corresponding to the inserts, the SEQ ID NOs of the genes containing the inserts, the SEQ ID NOs of the proteins encoded by the genes, the start and stop points of the genes on the *E. coli* genome, the orientation of the genes on the genome, whether the operons

are predicted or documented, and the predicted functions of the genes. The identified operons, their putative functions, and whether or not the genes are presently thought to be required for proliferation are discussed below.

Functions for the identified genes were determined by using either Blattner functional class designations or by comparing identified sequence with known sequences in various databases. A variety of biological functions were noted for the genes to which the clones of the present invention correspond. The functions for the genes of interest appear in 5 Table II.

The proteins that are listed in Table II are involved in a wide range of biological functions.

TABLE II
All Operon Data with Whole Chromosome Coordinates

Gene Seq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
82	243	EcXA001	<i>vhfA</i>	3606848	3607513	(P)	Hypothetical ORF, unclassified, unknown	Hypothetical outer membrane protein
83	244		<i>dcrB</i>	3607532	3608143		Hypothetical ORF, unclassified, unknown	Resistance to phage C1; periplasmic protein perhaps anchored to inner membrane
84	245	EcXA002	<i>lepB</i>	2702355	2703329	(P)	Transport and binding proteins	Secretion
85	246	EcXA003	<i>ycbZ</i>	1015762	1017522	(P)	Unknown	Prolease
86	247	EcXA004	<i>tufA</i>	3467782	3468966	(D)	Translation, post-translational modification	Translation (Elongation factor Tu)
87	248		<i>fusA</i>	3469037	3471151		Translation, post-translational modification	Translation (elongation factor tfg)
88	249		<i>rpsG</i>	3471179	3471718		Translation, post-translational modification	Translation
89	402	EcXA055	<i>rnsG</i>	2727636	2729178		Translation, post-translational modification	Translation (rRNA)
90	250		<i>rpsL</i>	3471815	3471815		Translation, post-translational modification	Translation
91	251	EcXA005a-g	<i>rplJ</i>	4177574	4178071	(D)	Translation, post-translational modification	Translation
92	252		<i>rplL</i>	4178138	4178503		Translation, post-translational modification	Translation
93	253	EcXA006	<i>rplA</i>	2412767	2414911	(P)	Carbon compound catabolism	Carbon compound catabolism
94	254	EcXA007	<i>yicP</i>	3841591	3843357	(P)	Hypothetical ORF, unclassified, unknown	Probable adenine deaminase

GeneSeq ID No.	Gene Prod. Seq. ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
95	255	EcXA008a-c	<i>yhaD</i>	3268266	3269492	(P)	Hypothetical ORF, unclassified, unknown	
96	256		<i>yhaE</i>	3269508	3270407		Putative enzymes	
97	257		<i>yhaF</i>	3270428	3271198		Hypothetical ORF, unclassified, unknown	
98	258		<i>yhaU</i>	3271214	3272548		Carbon compound catabolism	Probable integral membrane protein Phthalate permease family
99	259	EcXA009	<i>ydeX</i>	1599514	1601049	(P)	Putative transport proteins	
100	260		<i>ydeY</i>	1601043	1602071		Putative transport proteins	Putative ABC transporter
101	261		<i>ydeZ</i>	1602071	1603063		Hypothetical ORF, unclassified, unknown	
102	262		<i>yneA</i>	1603075	1604097		Hypothetical ORF, unclassified, unknown	
103	263		<i>yneB</i>	1604124	1604999		Hypothetical ORF, unclassified, unknown	
104	264		<i>yneC</i>	1605023	1605313		Hypothetical ORF, unclassified, unknown	
105	265	EcXA010a-b	<i>hsZ</i>	105305	106456	(P)	Cell processes (incl. Adaptation, protection)	Regulator of cell division
106	266	EcXA011	<i>fhlG</i>	1545425	1548472	(D)	Energy metabolism	Anaerobic respiration (formate dehydro-genase)
107	267		<i>fhlH</i>	1548485	1549869		Energy metabolism	
108	268		<i>fhlI</i>	1549362	1550015		Energy metabolism	
			Same operon as EcXA004					
109	269	EcXA013a-c	<i>phl</i>	2697683	2697943	(P)	Hypothetical ORF, unclassified, unknown	No homologues, no motifs
110	270	EcXA014	<i>visC</i>	3049135	3050337	(P)	Hypothetical ORF, unclassified, unknown	Ubiquinone synthesis

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
111	271		<i>whiH</i>	3050360	3051538		Biosynthesis of cofactors, prosthetic groups and carriers	
112	272		<i>pepP</i>	3051535	3052860		Translation, post-translational modification	
113	273		<i>ygiB</i>	3052886	3053470		Hypothetical ORF, unclassified, unknown	
114	274	EcXA015	<i>yfdG</i>	2465875	2466237	(P)	Hypothetical ORF, unclassified, unknown	
115	275		<i>yfdH</i>	2466234	2467154		Cell structure	
116	276		<i>yfdI</i>	2467151	2468482		Hypothetical ORF, unclassified, unknown	
117	277	EcXA016	<i>yeaQ</i>	1877031	1877279	(P)	Hypothetical ORF, unclassified, unknown	
118	278		<i>yogG</i>	1877427	1877609	(P)	Putative membrane protein	
119	279		<i>yeaR</i>	1877613	1877972		Homologue to transglycosylase associated protein	
120	280	EcXA017a-b	<i>yggE</i>	3065360	3066100	(P)	No homologues	
121	281	EcXA018a-b	<i>yegM</i>	2151891	2153285	(P)	Structural proteins	
122	282		<i>yegN</i>	2153285	2156407		Transport (multiple transferable resistance)	
123	283		<i>yegO</i>	2156408	2159485		Homologues in multiple bacteria, no motifs	
124	284		<i>yegB</i>	2159486	2160901		Putative transport proteins	
125	285	EcXA019a-b	<i>yehA</i>	2185400	2186434	(P)	Cell structure	Weak homology to pilin precursor from <i>H. Inf.</i>

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
126	286		<i>yerB</i>	2186450	2188930	Hypothetical ORF, unclassified, unknown		
127	287		<i>yerC</i>	2188946	2189665	Purative chaperones		
128	288		<i>yerD</i>	21889700	2190242	Cell structure		
		EcXA020	Same operon as EcXA016 (one of the two)					
129	289		<i>yerU</i>	238746	239084	(P) Hypothetical ORF, unclassified, unknown		Homologues in <i>H. Infl.</i> and <i>S. Pombe</i> , no motifs, transmembrane region present
130	290		<i>ydgL</i>	1703791	1704372	(P) Hypothetical ORF, unclassified, unknown		
131	291		<i>ydgM</i>	1704372	1704950	Hypothetical ORF, unclassified, unknown		
132	292		<i>ydgN</i>	1704943	1707165	Hypothetical ORF, unclassified, unknown		
133	293		<i>ydgO</i>	1707166	1708224	Hypothetical ORF, unclassified, unknown		
134	294		<i>ydgP</i>	1708228	1708848	Hypothetical ORF, unclassified, unknown		
135	295		<i>ydgQ</i>	1708852	1709547	Hypothetical ORF, unclassified, unknown		
136	296		<i>nth</i>	1709547	1710182	Transcription, RNA processing and degradation		
137	297		<i>ydeR</i>	1585817	1586320	(P) Hypothetical ORF, unclassified, unknown		
138	298		<i>ydeS</i>	1586333	1586863	Hypothetical ORF, unclassified, unknown		fimf-like

GeneSeq ID	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D)	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
139	299			1586877	1588025		Structural proteins	filim-like
140	300	EcXA024	<i>ydeT</i>	3231369	3231785	(P)	Hypothetical ORF, unclassified, unknown	Weak homology to long chain fatty acid coa ligase in Archaeoglobus
141	301		<i>ygiM</i>				Hypothetical ORF, unclassified, unknown	Homologues in various bacteria
142	302	EcXA025	<i>yeaJ</i>	2042885	2050036	(P)	Hypothetical ORF, unclassified, unknown	Strong similarity to numerous attaching and effacing proteins and invasins
143	303	EcXA026	<i>rjaA</i>	331001	331184	unpredicted		mfim like
144	304	EcXA027-a-d	<i>yhhG</i>	2225343	2226539	(P)	Putative transport proteins	
145	305		<i>yhhH</i>	2226569	2226859		Hypothetical ORF, unclassified, unknown	Xylose binding protein-like
146	306		<i>yhhI</i>	2227458	2228405	(P)	Putative regulatory protein	
147	307	EcXA028	<i>ycfII</i>	2420669	2421559	(P)	Hypothetical ORF, unclassified, unknown	Similar to <i>S. Typhi</i> histidine transport gene
148	308	EcXA029	<i>yikK</i>	4626424	4628091	(P)	Hypothetical ORF, unclassified, unknown	Similar to ABC transporter
149	309	EcXA030	<i>yiaA</i>	3718309	3718830	(P)		IS150 of A
150	310		<i>yisB</i>	3718827	3719678		Phage, transposon, or plasmid	
151	311	EcXA031	<i>rpmJ</i>	3440255	3440371	(D)	Translation, post-translational modification	
152	312		<i>pirA</i>	3440403	3441734		Putative transport proteins	
153	313		<i>pirB</i>	3441742	3442176		Translation, post-translational modification	

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D)	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
154	314		<i>rpmD</i>	3442180	3442359	(D) Operon		
155	315		<i>psfE</i>	3442363	3442866		Translation, post-translational modification	
156	316		<i>prfR</i>	3442881	3443234		Translation, post-translational modification	
157	317		<i>prfF</i>	3443244	3443777		Translation, post-translational modification	
158	318		<i>psfH</i>	3443790	3444182		Translation, post-translational modification	
159	319		<i>psfW</i>	3444216	3444521		Translation, post-translational modification	
160	320		<i>prfE</i>	3444536	3445075		Translation, post-translational modification	
161	321		<i>prfX</i>	3445090	3445404		Translation, post-translational modification	
162	322		<i>prfW</i>	3445415	3445786		Translation, post-translational modification	
163	323	EcXA032a-b	<i>ybgD</i>	751452	752018	(P)	Cell processes (incl. Adaptation, protection)	Hypothetical fimbrial protein
164	324		<i>glfA</i>	752408	753691	(D)	Energy metabolism	Glutamine biosynthesis
165	325	EcXA033a-b	<i>waaE</i>	3192961	3194394	(P)	Putative enzymes	ADP heptose synthase/ autotrophic growth protein
166	326		<i>glfE</i>	3194442	3197282		Translation, post-translational modification	
167	327		<i>ygfF</i>	3197305	3198606		Hypothetical ORF, unclassified, unknown	
168	328	EcXA034a-b	<i>cspA</i>	3717678	3717890	(P)	Cell processes (incl. Adaptation, protection)	RNA chaperonin
169	329	EcXA035	<i>yhsS</i>	3694087	3695558	(P)	Translation, post-translational modification	

GeneSeq ID	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
170	330		<i>yhiT</i>	3695658	3695846	Hypothetical ORF, unclassified, unknown		
171	331		<i>yhiU</i>	3695843	3697522	Hypothetical ORF, unclassified, unknown	Regions similar to dehydrogenases, nucleases etc.	
172	332	EcXA036	<i>yqIC</i>	3246594	3246977	(P) Hypothetical ORF, unclassified, unknown		
173	333		<i>yqID</i>	3247015	3247320	Hypothetical ORF, unclassified, unknown		
174	334		<i>yqIE</i>	3247323	3247727	Hypothetical ORF, unclassified, unknown		
175	335		<i>yqIK</i>	3247717	3248016	Similar to <i>mkb</i> from <i>H. Int.</i>		
176	336		<i>yqIF</i>	3248112	3249594	(P) Hypothetical ORF, unclassified, unknown	Homologues in many bacteria, blocks; secretion/ATP synthase/ftsZ	
177	337	EcXA037	<i>ydeH</i>	1620984	1621874	(P) Hypothetical ORF, unclassified, unknown	Similar to carboxy kinase, oxidase, symporters	
178	338	EcXA038	<i>sieB</i>	1416572	1417183	(P) Phage, transposon, or plasmid	Super-infection exclusion factor B-like	
179	339		<i>rajB (h1354)</i>	1417192	1417368	Hypothetical ORF, unclassified, unknown		
180	340	EcXA039	<i>rhsD</i>	522485	526765	(P) Hypothetical ORF, unclassified, unknown		
181	341		<i>ybbC</i>	526805	527173	Hypothetical ORF, unclassified, unknown		
182	342		<i>ybbH</i>	527173	527883	Hypothetical ORF, unclassified, unknown	Rhs-like element	
183	343		<i>ybbD</i>	527864	528124	Hypothetical ORF, unclassified, unknown	ATP synthase, desaturase	

GeneSeq ID	Gene Prod. SeqID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
184	344		<i>ybl</i>	528163	528354		Hypothetical ORF, unclassified, unknown	
185	345	EcXA040	<i>insB</i> _ <i>6</i>	351114	351389	(P)	Phage, transposon, or plasmid	
186	346		<i>insA</i>	351308	3581811		Phage, transposon, or plasmid	
187	347		<i>yra</i>	3580669	3581085		Hypothetical ORF, unclassified, unknown	
188	348		<i>yhhZ</i>	3579494	3580672		Hypothetical ORF, unclassified, unknown	
189	349	EcXA041	<i>ymfD</i>	1196090	1196755	(P)	Hypothetical ORF, unclassified, unknown	No assigned role
190	350		<i>ymfE</i>	1196756	1197460		Hypothetical ORF, unclassified, unknown	No assigned role
191	351	EcXA042a·b	<i>rplY</i>	2280537	2280821	(P)	Translation, post-translational modification	Translation
192	352	EcXA043	<i>hrsA</i>	765207	767183	(P)	Translation, post-translational modification	
193	353		<i>ybgB</i>	767201	769834		Carbon compound catabolism	Unknown
194	354		<i>cynA</i>	770678	772249	(D)	Energy metabolism	Cytochrome D oxidase
195	355		<i>cynB</i>	772265	773404		Energy metabolism	
196	356	EcXA044	<i>purB</i>	1189839	1191209	(D)	Nucleotide biosynthesis and metabolism	Purine biosynthesis
197	357	EcXA045	<i>cstA</i>	2816983	2817168	(P)	Regulatory function	Carbon storage regulator (mRNA decay factor)
198	358		<i>serV</i>	2816575	2816667	Unpredicted	Translation, post-translational modification	Translation (tRNA)
199	359	EcXA046	<i>fimB</i>	4539525	4539127	(D)	Cell structure	
200	360		<i>fimE</i>	4539605	4540201		Cell structure	Fimbriae
201	361		<i>fimA</i>	4540683	4541231		Cell structure	Regulator of inversion

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D)	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
202	362		<i>fimI</i>	4541188	4541835		Cell structure	
203	363		<i>fimC</i>	4541872	4542597		Cell structure	
204	364		<i>fimD</i>	4542665	4545301		Cell structure	
205	365		<i>fimF</i>	4545311	4545841		Cell structure	
206	366		<i>fimG</i>	4545854	4546357		Cell structure	
207	367		<i>fimH</i>	4546377	4547279		Cell structure	
208	368	EcXA047	<i>ydfP</i>	1637054	1638884	(P)	Hypothetical ORF, unclassified, unknown	
209	369		<i>ydfQ</i>	1637548	1638081		Hypothetical ORF, unclassified, unknown	
210	370		<i>ydfR</i>	1638078	1638389		Hypothetical ORF, unclassified, unknown	
211	371		<i>ydfS</i>	1638394	1638684		Hypothetical ORF, unclassified, unknown	
212	372		<i>cspB</i>	1639363	1639578	(P)	Hypothetical ORF, unclassified, unknown	Lysis protein
213	373	EcXA048	<i>yi52_7</i>	2099917	2100933	(P)	Cell processes (incl. Adaptation, protection)	
214	374		<i>yefJ</i>	2100938	2101411		Phage, transposon, or plasmid	
215	375		<i>yefJ</i>	2101413	2102531		Putative enzymes	
216	376		<i>yefH</i>	2102516	2103106		Hypothetical ORF, unclassified, unknown	
217	377		<i>yefG</i>	2103087	2104079		Putative enzymes	
218	378		<i>rfc</i>	2104082	2105248		Cell structure	
219	379		<i>yeff</i>	2105248	2106351		Hypothetical ORF, unclassified, unknown	
220	380	EcXA049	<i>yaiC</i>	402927	404042	(P)	UDP galacto-pyranase mutase	Unknown
221	381	EcXA050	<i>yail</i>	393239	393642	(P)	Putative enzymes	Putative auto-transporter

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D)	Blaettner functional class of encoded proteins	Predicted functional class of encoded proteins
222	382		<i>yaiV</i>	393685	394353		Hypothetical ORF, unclassified, unknown	
223	383	EcXA051a-b	<i>rpsQ</i>	3445951	3446205	(D)	Translation, post-translational modification	Hypothetical outer membrane protein
224	384		<i>rpmC</i>	3446205	3446396		Translation, post-translational modification	
225	385		<i>rplP</i>	3446396	3446806		Translation, post-translational modification	
226	386		<i>rpsC</i>	3446819	3447520		Translation, post-translational modification	
227	387		<i>rplV</i>	3447538	3447870		Translation, post-translational modification	
228	388		<i>rpsS</i>	3447885	3448163		Translation, post-translational modification	
229	389		<i>rplB</i>	3448180	3449001		Translation, post-translational modification	
230	390		<i>rplW</i>	3449019	3449321		Translation, post-translational modification	
231	391		<i>rplD</i>	3449318	3449923		Translation, post-translational modification	
232	392		<i>rplC</i>	3449934	3450563		Translation, post-translational modification	
233	393		<i>rpsJ</i>	3450596	3450907		Translation, post-translational modification	
234	394	EcXA052	<i>rplT</i>	1797417	1797773	(D)	Translation, post-translational modification	
235	395		<i>rpmI</i>	1797826	1798023		Translation, post-translational modification	
236	396		<i>infC</i>	1798120	1798662		Translation, post-translational modification	Translation

GeneSeq ID No.	Gene Prod. Seq ID No.	Mole. No.	Genes On Operon	Left Coordinate	Right Coordinate	Predicted (P) Or Documented (D) Operon	Blattner functional class of encoded proteins	Predicted functional class of encoded proteins
237	397		<i>thrS</i>	1798666	1800594		Translation, post-translational modification	
238	398	EcXA053	<i>gor</i>	3643929	3645281	(P)	Biosynthesis of cofactors, prosthetic groups and carriers	Glutathione Oxido-reductase
		EcXA054	Same operon as EcXA031					
239	399		<i>EcXA055</i>	2724301	2727204	(D)	Translation, post-translational modification	Translation (rRNA)
240	400		<i>rifG</i>	2724089	2724208		Translation, post-translational modification	Translation (rRNA)
241	401		<i>glfW</i>	2727389	2727464		Translation, post-translational modification	Translation (rRNA)
242	402		<i>rifG</i>	2727636	2729178		Translation, post-translational modification	Translation (rRNA)

Several of the expression vectors contain fragments that correspond to genes of unknown function or if the function is known, it is not known whether the gene is essential. For example, EcXA001, 003, 007, 008, 013, 015, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 047, 048, 049 and 050 are all exogenous nucleic acid sequences that correspond to *E. coli* proteins that have no known function or where the function has not been shown to be essential or nonessential.

5

The present invention reports a number of novel *E. coli* genes and operons that are required for proliferation. From the list clone sequences identified here, each was identified to be a portion of a gene in an operon required for the proliferation of *E. coli*. Cloned sequences corresponding to genes already known to be required for proliferation in *E. coli* include EcXA002, 004, 005, 010, 012, 014, 031, 02, 043, 045, 051, 052, 054, and 055. The remaining identified sequences correspond to *E. coli* genes previously undesignated as required for proliferation in the art.

10

An interesting observation of the present invention is that there are also several sequence fragments that correspond to *E. coli* genes that are not thought to be required for *E. coli* proliferation. Nevertheless, under the conditions described above, the antisense expression of these gene fragments causes a reduction in cell growth. This result implies that the genes corresponding to the identified sequences are actually required for proliferation. Molecule Nos. corresponding to these genes are EcXA006, 044, 046, and 053.

15

20

Following identification of the sequences of interest, these sequences were localized into operons. Since bacterial genes are expressed in a polycistronic manner, the antisense inhibition of a single gene in an operon might effect the expression of all the other genes on the operon or the genes down stream from the single gene identified. In order to determine which of the gene products in an operon are required for proliferation, each of the genes contained within an operon may be analyzed for their effect on viability as described below.

TABLE III
Operon Boundaries

Mole. No.	Left Coordinate	Right Coordinate
EcXA001	3606848	3608143
EcXA002	2702355	2703329
EcXA003	1015762	1017522
EcXA004	3467782	3472189
EcXA005	4177574	4178503
EcXA006	2412767	2414911
EcXA007	3841591	3843357
EcXA008	3268266	3272548
EcXA009	1599514	1605313
EcXA010	1647406	1647458
EcXA011	1545425	1550015
EcXA012	3467782	3472189
EcXA013	2697683	2697943
EcXA014	3049135	3053470
EcXA015	2465875	2468482
EcXA016	1877031	1877972
EcXA017	3065360	3066100
EcXA018	2151891	2160901
EcXA019	2185400	2190242
EcXA020	1877031	1877972
EcXA021	238746	239084
EcXA022	1703791	1710182
EcXA023	1585817	1588025
EcXA024	3231369	3232096
EcXA025	2042885	2050036
EcXA026	331001	331184
EcXA027c	2225343	2228405
EcXA028	2420669	2421559
EcXA029	4626424	4628091
EcXA030	3718309	3719678
EcXA031	3440255	3445786
EcXA032b	751452	753691
EcXA033	3192961	3198606
EcXA034	3717678	3717890
EcXA035	3694087	3697522
EcXA036	3246594	3248594
EcXA037	1620984	1621874
EcXA038	1416572	1417368
EcXA039	522485	528354
EcXA040	3580669	3580672
EcXA041	1196090	1197460
EcXA042	2280537	2280821

Mole. No.	Left Coordinate	Right Coordinate
EcXA043	765207	773404
EcXA044	1189839	1191209
EcXA045	2816575	2817168
EcXA046	4538525	4547279
EcXA047	1637054	1639578
EcXA048	2099917	2106351
EcXA049	402927	404042
EcXA050	392239	394353
EcXA051	3445951	3450907
EcXA052	1797417	1800594
EcXA053	3643929	3645281
EcXA054	3440255	3445786
EcXA055	2724301	2729178

EXAMPLE 5

Identification of Individual Genes within an Operon Required for Proliferation

The following example illustrates a method for determining which gene in an operon is required for proliferation.

5 The clone insert corresponding to Molecule No. EcXA004 possesses nucleic acid sequence homology to the *E. coli* genes *rpsG* and *rpsL*. This molecule corresponds to an operon containing two additional genes *fusA* and *tufA*. The *rpsL* gene is the first gene in the operon. To determine which gene or genes in this operon are required for proliferation, each gene is selectively inactivated using homologous recombination. Gene *rpsL* is the first gene to be inactivated.

10 Deletion inactivation of a chromosomal copy of a gene in *E. coli* can be accomplished by integrative gene replacement. The principle of this method (Hamilton, C. M., et al 1989. *J. Bacteriol.* 171: 4617-4622) is to construct a mutant allele of the targeted gene, introduce that allele into the chromosome using a conditional suicide vector, and then force the removal of the native wild type allele and vector sequences. This will replace the native gene with a desired mutation(s) but leave promoters, operators, etc. intact. Essentiality of a gene is determined either by deduction from genetic analysis or by conditional expression of a wild type copy of the targeted gene (trans complementation).

15 The first step is to generate a mutant *rpsL* allele using PCR amplification. Two sets of PCR primers are chosen to produce a copy of *rpsL* with a large central deletion to inactivate the gene. In order to eliminate polar effects, it is desirable to construct a mutant allele comprising an in-frame deletion of most or all of the coding region of the *rpsL* gene. Each set of PCR primers is chosen such that a region flanking the gene to be amplified is sufficiently long to allow recombination (typically at least 500 nucleotides on each side of the deletion). The targeted deletion or mutation will be contained within this fragment. To facilitate cloning of the PCR product, the PCR primers may also contain restriction endonuclease sites found in the cloning region of a conditional knockout vector such as pKO3 (Link, et al 1997 *J. Bacteriol.* 179 (20): 6228-6237). Suitable sites include NotI, SalI, BamHI and SmaI. The *rpsL* gene fragments are produced using standard PCR conditions including, but not limited to, those outlined in the manufacturers directions for the

Hot Start Taq PCR kit (Qiagen, Inc., Valencia, CA). The PCR reactions will produce two fragments that can be fused together. Alternatively, crossover PCR can be used to generate a desired deletion in one step (Ho, S. N., et al 1989. *Gene* 77: 51-59, Horton, R. M., et al 1989. *Gene* 77: 61-68). The mutant allele thus produced is called a "null" allele because it cannot produce a functional gene product.

5 The mutant allele obtained from PCR amplification is cloned into the multiple cloning site of pKO3. Directional cloning of the *rpsL* null allele is not necessary. The pKO3 vector has a temperature-sensitive origin of replication derived from pSC101. Therefore, clones are propagated at the permissive temperature of 30°C. The vector also contains two selectable marker genes: one that confers resistance to chloramphenicol and another, the *Bacillus subtilis* *sacB* gene, that allows for counter-selection on sucrose containing growth medium. Clones that contain vector DNA with the null allele
10 inserted are confirmed by restriction endonuclease analysis and DNA sequence analysis of isolated plasmid DNA. The plasmid containing the *rpsL* null allele insert is known as a knockout plasmid.

15 Once the knockout plasmid has been constructed and its sequence verified, it is transformed into a Rec⁺ *E. coli* host cell. Transformation can be by any standard method such as electroporation. In some fraction of the transformed cells, plasmids will integrate into the *E. coli* chromosome by homologous recombination between the *rpsL* null allele in the plasmid and the *rpsL* gene in the chromosome. Transformant colonies in which such an event has occurred are readily selected by growth at the non-permissive temperature of 43°C and in the presence of chloramphenicol. At this temperature, the plasmid will not replicate as an episome and will be lost from cells as they grow and divide. These cells are no longer resistant to chloramphenicol and will not grow when it is present. However, cells in which the knockout plasmid has integrated into the *E. coli* chromosome remain resistant to chloramphenicol and propagate.

20 Cells containing integrated knock-out plasmids are usually the result of a single crossover event that creates a tandem repeat of the mutant and native wild type alleles of *rpsL* separated by the vector sequences. A consequence of this is that *rpsL* will still be expressed in these cells. In order to determine if the gene is essential for growth, the wild type copy must be removed. This is accomplished by selecting for plasmid excision, a process in which homologous recombination between the two alleles results in looping out of the plasmid sequences. Cells that have undergone such an excision event and have lost plasmid sequences including *sacB* gene are selected for by addition of sucrose to the medium. The *sacB* gene product converts sucrose to a toxic molecule. Thus counter selection with sucrose ensures that plasmid sequences are no longer present in the cell. Loss of plasmid sequences is further confirmed by testing for sensitivity to chloramphenicol (loss of the chloramphenicol resistance gene). The latter test is important because occasionally a mutation in the *sacB* gene can occur resulting in a loss of *sacB* function with no effect on plasmid replication (Link, et. al., 25 1997 *J. Bacteriol.* 179 (20): 6228-6237). These artifact clones retain plasmid sequences and are therefore still resistant to chloramphenicol.

30 In the process of plasmid excision, one of the two *rpsL* alleles is lost from the chromosome along with the plasmid DNA. In general, it is equally likely that the null allele or the wild type allele will be lost. Therefore, if the *rpsL*

gene is not essential, half of the clones obtained in this experiment will have the wild type allele on the chromosome and half will have the null allele. However, if the *rpsL* gene is essential, cells containing the null allele will not be obtained as a single copy of the null allele would be lethal.

5 To determine the essentiality of *rpsL*, a statistically significant number of the resulting clones, at least 20, are analyzed by PCR amplification of the *rpsL* gene. Since the null allele is missing a significant portion of the *rpsL* gene, its PCR product is significantly shorter than that of the wild type gene and the two are readily distinguished by gel electrophoretic analysis. The PCR products may also be subjected to sequence determination for further confirmation by methods well known to those in the art.

10 The above experiment is generally adequate for determining the essentiality of a gene such as *rpsL*. However, it may be necessary or desirable to more directly confirm the essentiality of the gene. There are several methods by which this can be accomplished. In general, these involve three steps: 1) construction of an episome containing a wild type allele, 2) isolation of clones containing a single chromosomal copy of the mutant null allele as described above but in the presence of the episomal wild type allele, and then 15 3) determining if the cells survive when the expression of the episomal allele is shut off. In this case, the trans copy of wild type *rpsL* is made by PCR cloning of the entire coding region of *rpsL* and inserting it in the sense orientation downstream of an inducible promoter such as the *E. coli lac* promoter. Transcription of this allele of *rpsL* will be induced in the presence of IPTG which inactivates the *lac* repressor. Under IPTG induction *rpsL* protein will be expressed as long as the recombinant gene also possesses a ribosomal binding site, also known as a "Shine-Dalgarno Sequence". The trans copy of *rpsL* is cloned on a plasmid that is compatible with pSC101. Compatible vectors include p15A, pBR322, and the pUC plasmids, among others. Replication of the compatible plasmid will not be temperature-sensitive. The entire process of integrating the null allele of *rpsL* and subsequent plasmid excision is carried out in the presence of IPTG to ensure the expression of functional *rpsL* protein is maintained throughout. After the null *rpsL* allele is confirmed as integrated on the chromosome in place of the wild type *rpsL* allele, then IPTG is withdrawn and expression of functional *rpsL* protein shut off. If the *rpsL* gene is essential, cells will cease to proliferate under these conditions. However, if the *rpsL* gene is not essential, cells will continue to proliferate under these conditions. 20 25 In this experiment, essentiality is determined by conditional expression of a wild type copy of the gene rather than inability to obtain the intended chromosomal disruption.

An advantage of this method over some other gene disruption techniques is that the targeted gene can be deleted or mutated without the introduction of large segments of foreign DNA. Therefore, polar effects on downstream genes are eliminated or minimized. There are methods described to introduce inducible promoters upstream of potential essential bacterial genes. However in such cases, polarity from multiple transcription start points can be a problem. One way of preventing this is to insert a gene disruption cassette that contains strong transcriptional terminators upstream of the integrated inducible promoter (Zhang, Y, and Cronan, J. E. 1996 *J. Bacteriol.* 178 (12): 3614-3620). The described techniques will all be familiar to one of ordinary skill in the art.

Following the analysis of the *rpsL* gene, the other genes of the operon are investigated to determine if they are required for proliferation.

EXAMPLE 6

Expression of the Proteins Encoded by Genes Identified as Required for *E. coli* Proliferation

The following is provided as one exemplary method to express the proliferation-required proteins encoded by the identified sequences described above. First, the initiation and termination codons for the gene are identified. If desired, methods for improving translation or expression of the protein are well known in the art. For example, if the nucleic acid encoding the polypeptide to be expressed lacks a methionine codon to serve as the initiation site, a strong Shine-Delgarno sequence, or a stop codon, these sequences can be added. Similarly, if the identified nucleic acid sequence lacks a transcription termination signal, this sequence can be added to the construct by, for example, splicing out such a sequence from an appropriate donor sequence. In addition, the coding sequence may be operably linked to a strong promoter or an inducible promoter if desired. The identified nucleic acid sequence or portion thereof encoding the polypeptide to be expressed is obtained by PCR from the bacterial expression vector or genome using oligonucleotide primers complementary to the identified nucleic acid sequence or portion thereof and containing restriction endonuclease sequences for *Ncol* incorporated into the 5' primer and *BgII* at the 5' end of the corresponding 3'-primer, taking care to ensure that the identified nucleic acid sequence is positioned in frame with the termination signal. The purified fragment obtained from the resulting PCR reaction is digested with *Ncol* and *BgII*, purified and ligated to an expression vector.

The ligated product is transformed into DH5 α or some other *E. coli* strain suitable for the over expression of potential proteins. Transformation protocols are well known in the art. For example, transformation protocols are described in: **Current Protocols in Molecular Biology**, Vol. 1, Unit 1.8, (Ausubel, et al., Eds.) John Wiley & Sons, Inc. (1997). Positive transformants are selected after growing the transformed cells on plates containing 50-100 μ g/ml Ampicillin (Sigma, St. Louis, Missouri). In one embodiment, the expressed protein is held in the cytoplasm of the host organism. In an alternate embodiment, the expressed protein is released into the culture medium. In still another alternative, the expressed protein can be sequestered in the periplasmic space and liberated therefrom using any one of a number of cell lysis techniques known in the art. For example, the osmotic shock cell lysis method described in Chapter 16 of **Current Protocols in Molecular Biology**, Vol. 2, (Ausubel, et al., Eds.) John Wiley & Sons, Inc. (1997). Each of these procedures can be used to express a proliferation-required protein.

Expressed proteins, whether in the culture medium or liberated from the periplasmic space or the cytoplasm, are then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, standard chromatography, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and HPLC. Alternatively, the secreted protein can be in a sufficiently enriched or pure state in the supernatant or growth media of the host to permit it to be used for its intended purpose without further enrichment. The purity of the protein product

obtained can be assessed using techniques such as Coomassie or silver staining or using antibodies against the control protein. Coomassie and silver staining techniques are familiar to those skilled in the art.

Antibodies capable of specifically recognizing the protein of interest can be generated using synthetic peptides using methods well known in the art. See, *Antibodies: A Laboratory Manual*, (Harlow and Lane, Eds.) Cold Spring Harbor 5 Laboratory (1988). For example, 15-mer peptides having a sequence encoded by the appropriate identified gene sequence of interest or portion thereof can be chemically synthesized. The synthetic peptides are injected into mice to generate antibodies to the polypeptide encoded by the identified nucleic acid sequence of interest or portion thereof. Alternatively, samples of the protein expressed from the expression vectors discussed above can be purified and subjected to amino acid sequencing analysis to confirm the identity of the recombinantly expressed protein and subsequently used to raise antibodies. An Example 10 describing in detail the generation of monoclonal and polyclonal antibodies appears in Example 7.

The protein encoded by the identified nucleic acid sequence of interest or portion thereof can be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is 15 washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques. These procedures are well known in the art.

In an alternative protein purification scheme, the identified nucleic acid sequence of interest or portion thereof can be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such 20 strategies the coding sequence of the identified nucleic acid sequence of interest or portion thereof is inserted in-frame with the gene encoding the other half of the chimera. The other half of the chimera can be maltose binding protein (MBP) or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to MBP or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites can be engineered between the MBP gene or the nickel binding polypeptide and the identified expected gene of interest, or portion thereof. Thus, the two polypeptides of the chimera can be separated from one another by protease digestion.

One useful expression vector for generating maltose binding protein fusion proteins is pMAL (New England Biolabs), which encodes the *malE* gene. In the pMal protein fusion system, the cloned gene is inserted into a pMal vector downstream 25 from the *malE* gene. This results in the expression of an MBP-fusion protein. The fusion protein is purified by affinity chromatography. These techniques as described are well known to those skilled in the art of molecular biology.

EXAMPLE 7

Production of an Antibody to an isolated *E. coli* Protein

Substantially pure protein or polypeptide is isolated from the transformed cells as described in Example 6. The concentration of protein in the final preparation is adjusted, for example, by concentration on a 10,000 molecular weight cut off

AMICON filter device (Millipore, Bedford, MA), to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature* 256:495 (1975) or any of the well-known derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as described by Engvall, E., "Enzyme immunoassay ELISA and EMIT," *Meth. Enzymol.* 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. **Basic Methods in Molecular Biology** Elsevier, New York. Section 21-2.

Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein or a peptide can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than larger molecules and can require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. *J. Clin. Endocrinol. Metab.* 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: *Handbook of Experimental Immunology* D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical Immunology*, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to

identify the presence of antigen in a biological sample. The antibodies can also be used in therapeutic compositions for killing bacterial cells expressing the protein.

EXAMPLE 8

Screening Chemical Libraries

5 A. Protein-Based Assays

Having isolated and expressed bacterial proteins shown to be required for bacterial proliferation, the present invention further contemplates the use of these expressed proteins in assays to screen libraries of compounds for potential drug candidates. The generation of chemical libraries is well known in the art. For example combinatorial chemistry can be used to generate a library of compounds to be screened in the assays described herein. A combinatorial chemical library is a collection 10 of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining amino acids in every possible combination to yield peptides of a given length. Millions of chemical compounds theoretically can be synthesized through such combinatorial mixings of chemical building blocks. For example, one commentator observed that the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the theoretical 15 synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds. (Gallop et al., "Applications of Combinatorial Technologies to Drug Discovery, Background and Peptide Combinatorial Libraries," *Journal of Medicinal Chemistry*, Vol. 37, No. 9, 1233-1250 (1994). Other chemical libraries known to those in the art may also be used, including natural product libraries.

Once generated, combinatorial libraries can be screened for compounds that possess desirable biological properties. 20 For example, compounds which may be useful as drugs or to develop drugs would likely have the ability to bind to the target protein identified, expressed and purified as discussed above. Further, if the identified target protein is an enzyme, candidate compounds would likely interfere with the enzymatic properties of the target protein. Any enzyme can be a target protein. For example, the enzymatic function of a target protein can be to serve as a protease, nuclease, phosphatase, dehydrogenase, transporter protein, transcriptional enzyme, and any other type of enzyme known or unknown. Thus, the present invention 25 contemplates using the protein products described above to screen combinatorial chemical libraries.

Those in the art will appreciate that a number of techniques exist for characterizing target proteins in order to identify molecules useful for the discovery and development of therapeutics. For example, some techniques involve the generation and use of small peptides to probe and analyze target proteins both biochemically and genetically in order to identify and develop drug leads. Such techniques include the methods described in PCT publications No. WO9935494, WO9819162, WO9954728, 30 the disclosures of which are incorporated herein by reference in their entireties.

In another example, the target protein is a serine protease and the substrate of the enzyme is known. The present example is directed towards the analysis of libraries of compounds to identify compounds that function as inhibitors of the target enzyme. First, a library of small molecules is generated using methods of combinatorial library formation well known in

the art. U.S. Patent Nos. 5,463,564 and 5,574, 656, to Agrafiotis, et al., entitled "System and Method of Automatically Generating Chemical Compound with Desired Properties," are two such teachings. Then the library compounds are screened to identify library compounds that possess desired structural and functional properties. U.S. Patent No. 5,684,711 also discusses a method for screening libraries.

5 To illustrate the screening process, the combined target and chemical compounds of the library are exposed to and permitted to interact with the purified enzyme. A labeled substrate is added to the incubation. The label on the substrate is such that a detectable signal is emitted from metabolized substrate molecules. The emission of this signal permits one to measure the effect of the combinatorial library compounds on the enzymatic activity of target enzymes. The characteristics of each library compound is encoded so that compounds demonstrating activity against the enzyme can be analyzed and features common to the various compounds identified can be isolated and combined into future iterations of libraries.

10 Once a library of compounds is screened, subsequent libraries are generated using those chemical building blocks that possess the features shown in the first round of screen to have activity against the target enzyme. Using this method, subsequent iterations of candidate compounds will possess more and more of those structural and functional features required to inhibit the function of the target enzyme, until a group of enzyme inhibitors with high specificity for the enzyme can be found.

15 These compounds can then be further tested for their safety and efficacy as antibiotics for use in mammals.

It will be readily appreciated that this particular screening methodology is exemplary only. Other methods are well known to those skilled in the art. For example, a wide variety of screening techniques are known for a large number of naturally-occurring targets when the biochemical function of the target protein is known.

B. Cell Based Assays

20 Current cell-based assays used to identify or to characterize compounds for drug discovery and development frequently depend on detecting the ability of a test compound to inhibit the activity of a target molecule located within a cell or located on the surface of a cell. Most often such target molecules are proteins such as enzymes, receptors and the like. However, target molecules may also include other molecules such as DNAs, lipids, carbohydrates and RNAs including messenger RNAs, ribosomal RNAs, tRNAs and the like. A number of highly sensitive cell-based assay methods are available to those of skill in the art to detect binding and interaction of test compounds with specific target molecules.

25 However, these methods are generally not highly effective when the test compound binds to or otherwise interacts with its target molecule with moderate or low affinity. In addition, the target molecule may not be readily accessible to a test compound in solution, such as when the target molecule is located inside the cell or within a cellular compartment such as the periplasm of a bacterial cell. Thus, current cell-based assay methods are limited in that they are not effective in identifying or characterizing compounds that interact with their targets with moderate to low affinity or compounds that interact with targets that are not readily accessible.

30 Cell-based assay methods of the present invention have substantial advantages over current cell-based assays practiced in the art. These advantages derive from the use of sensitized cells in which the level or activity of a

proliferation-required gene product (the target molecule) has been specifically reduced to the point where the presence or absence of its function becomes a rate-determining step for cellular proliferation. Bacterial, fungal, plant, or animal cells can all be used with the present method. Such sensitized cells become much more sensitive to compounds that are active against the affected target molecule. Thus, cell-based assays of the present invention are capable of detecting compounds exhibiting low or moderate potency against the target molecule of interest because such compounds are substantially more potent on sensitized cells than on non-sensitized cells. The effect may be such that a test compound may be two to several times more potent, at least 10 times more potent or even at least 100 times more potent when tested on the sensitized cells as compared to the non-sensitized cells.

Due in part to the increased appearance of antibiotic resistance in pathogenic microorganisms and to the significant side-effects associated with some currently used antibiotics, novel antibiotics acting at new targets are highly sought after in the art. Yet, another limitation in the current art related to cell-based assays is the problem of identifying hits against the same kinds of target molecules in the same limited set of biological pathways over and over again. This may occur when compounds acting at such new targets are discarded, ignored or fail to be detected because compounds acting at the "old" targets are encountered more frequently and are more potent than compounds acting at the new targets. As a result, the majority of antibiotics in use currently interact with a relatively small number of target molecules within an even more limited set of biological pathways.

The use of sensitized cells of the current invention provides a solution to the above problem in two ways. First, desired compounds acting at a target of interest, whether a new target or a previously known but poorly exploited target, can now be detected above the "noise" of compounds acting at the "old" targets due to the specific and substantial increase in potency of such desired compounds when tested on the sensitized cells of the current invention. Second, the methods used to sensitize cells to compounds acting at a target of interest may also sensitize these cells to compounds acting at other target molecules within the same biological pathway. For example, expression of an antisense molecule to a gene encoding a ribosomal protein is expected to sensitize the cell to compounds acting at that ribosomal protein and may also sensitize the cells to compounds acting at any of the ribosomal components (proteins or rRNA) or even to compounds acting at any target which is part of the protein synthesis pathway. Thus an important advantage of the present invention is the ability to reveal new targets and pathways that were previously not readily accessible to drug discovery methods.

Sensitized cells of the present invention are prepared by reducing the activity or level of a target molecule. The target molecule may be a gene product, such as an RNA or polypeptide produced from the proliferation-required nucleic acids described herein. Alternatively, the target may be a gene product such as an RNA or polypeptide which is produced from a sequence within the same operon as the proliferation-required nucleic acids described herein. In addition, the target may be an RNA or polypeptide in the same biological pathway as the proliferation-required nucleic acids described herein.

Such biological pathways include, but are not limited to, enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such the cell wall.

Current methods employed in the arts of medicinal and combinatorial chemistries are able to make use of structure-activity relationship information derived from testing compounds in various biological assays including direct binding assays and cell-based assays. Occasionally compounds are directly identified in such assays that are sufficiently potent to be developed as drugs. More often, initial hit compounds exhibit moderate or low potency. Once a hit compound is identified with low or moderate potency, directed libraries of compounds are synthesized and tested in order to identify more potent leads. Generally these directed libraries are combinatorial chemical libraries consisting of compounds with structures related to the hit compound but containing systematic variations including additions, subtractions and substitutions of various structural features. When tested for activity against the target molecule, structural features are identified that either alone or in combination with other features enhance or reduce activity. This information is used to design subsequent directed libraries containing compounds with enhanced activity against the target molecule. After one or several iterations of this process, compounds with substantially increased activity against the target molecule are identified and may be further developed as drugs. This process is facilitated by use of the sensitized cells of the present invention since compounds acting at the selected targets exhibit increased potency in such cell-based assays, thus; more compounds can now be characterized providing more useful information than would be obtained otherwise.

Thus, it is now possible using cell-based assays of the present invention to identify or characterize compounds that previously would not have been readily identified or characterized including compounds that act at targets that previously were not readily exploited using cell-based assays. The process of evolving potent drug leads from initial hit compounds is also substantially improved by the cell-based assays of the present invention because, for the same number of test compounds, more structure-function relationship information is likely to be revealed.

The method of sensitizing a cell entails selecting a suitable gene or operon. A suitable gene or operon is one whose expression is required for the proliferation of the cell to be sensitized. The next step is to introduce into the cells to be sensitized, an antisense RNA capable of hybridizing to the suitable gene or operon or to the RNA encoded by the suitable gene or operon. Introduction of the antisense RNA can be in the form of an expression vector in which antisense RNA is produced under the control of an inducible promoter. The amount of antisense RNA produced is limited by varying the inducer concentration to which the cell is exposed and thereby varying the activity of the promoter driving transcription of the antisense RNA. Thus, cells are sensitized by exposing them to an inducer concentration that results in a sub-lethal level of antisense RNA expression.

In one embodiment of the cell-based assays, the identified exogenous *E. coli* nucleotide sequences of the present invention are used to inhibit the production of a proliferation-required protein. Expression vectors producing antisense RNA against identified genes required for proliferation are used to limit the concentration of a proliferation-required protein without severely inhibiting growth. To achieve that goal, a growth inhibition dose curve of inducer is calculated by plotting

various doses of inducer against the corresponding growth inhibition caused by the antisense expression. From this curve, various percentages of antisense induced growth inhibition, from 1 to 100% can be determined. If the promoter contained in the expression vector contains a *lac* operator the transcription is regulated by *lac* repressor and expression from the promoter is inducible with IPTG. For example, the highest concentration of the inducer IPTG that does not reduce the growth rate (0% growth inhibition) can be predicted from the curve. Cellular proliferation can be monitored by growth medium turbidity via OD measurements. In another example, the concentration of inducer that reduces growth by 25% can be predicted from the curve. In still another example, a concentration of inducer that reduces growth by 50% can be calculated. Additional parameters such as colony forming units (cfu) can be used to measure cellular viability.

Cells to be assayed are exposed to the above-determined concentrations of inducer. The presence of the inducer at this sub-lethal concentration reduces the amount of the proliferation required gene product to the lowest amount in the cell that will support growth. Cells grown in the presence of this concentration of inducer are therefore specifically more sensitive to inhibitors of the proliferation-required protein or RNA of interest or to inhibitors of proteins or RNAs in the same biological pathway as the proliferation-required protein or RNA of interest but not to inhibitors of unrelated proteins or RNAs.

Cells pretreated with sub-inhibitory concentrations of inducer and thus containing a reduced amount of proliferation-required target gene product are then used to screen for compounds that reduce cell growth. The sub-lethal concentration of inducer may be any concentration consistent with the intended use of the assay to identify candidate compounds to which the cells are more sensitive. For example, the sub-lethal concentration of the inducer may be such that growth inhibition is at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% at least about 75%, or more. Cells which are pretreated using the preceding method are more sensitive to inhibitors of the target protein because these cells contain less target protein to inhibit than wild-type cells.

In another embodiment of the cell based assays of the present invention, the level or activity of a proliferation required gene product is reduced using a temperature sensitive mutation in the proliferation-required sequence and an antisense nucleic acid against the proliferation-required sequence. Growing the cells at an intermediate temperature between the permissive and restrictive temperatures of the temperature sensitive mutant where the mutation is in a proliferation-required gene produces cells with reduced activity of the proliferation-required gene product. The antisense RNA directed against the proliferation-required sequence further reduces the activity of the proliferation required gene product. Drugs that may not have been found using either the temperature sensitive mutation or the antisense nucleic acid alone may be identified by determining whether cells in which expression of the antisense nucleic acid has been induced and which are grown at a temperature between the permissive temperature and the restrictive temperature are substantially more sensitive to a test compound than cells in which expression of the antisense nucleic acid has not been induced and which are grown at a permissive temperature. Also drugs found previously from either the antisense nucleic acid alone or the

temperature sensitive mutation alone may have a different sensitivity profile when used in cells combining the two approaches, and that sensitivity profile may indicate a more specific action of the drug in inhibiting one or more activities of the gene product.

Temperature sensitive mutations may be located at different sites within the gene and correspond to different domains of the protein. For example, the *dnaB* gene of *Escherichia coli* encodes the replication fork DNA helicase. DnaB has several domains, including domains for oligomerization, ATP hydrolysis, DNA binding, interaction with primase, interaction with DnaC, and interaction with DnaA [(Biswas, E.E. and Biswas, S.B. 1999. Mechanism and DnaB helicase of *Escherichia coli*: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. *Biochem.* 38:10919-10928; Hiasa, H. and Marians, K.J. 1999. Initiation of bidirectional replication at the chromosomal origin is directed by the interaction between helicase and primase. *J. Biol. Chem.* 274:27244-27248; San Martin, C., Radermacher, M., Wolpensinger, B., Engel, A., Miles, C.S., Dixon, N.E., and Carazo, J.M. 1998. Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. *Structure* 6:501-9; Sutton, M.D., Carr, K.M., Vicente, M., and Kaguni, J.M. 1998. *Escherichia coli* DnaA protein. The N-terminal domain and loading of DnaB helicase at the *E. coli* chromosomal. *J. Biol. Chem.* 273:34255-62.), the disclosures of which are incorporated herein by reference in their entireties]. Temperature sensitive mutations in different domains of DnaB confer different phenotypes at the restrictive temperature, which include either an abrupt stop or slow stop in DNA replication with or without DNA breakdown (Wechsler, J.A. and Gross, J.D. 1971. *Escherichia coli* mutants temperature-sensitive for DNA synthesis. *Mol. Gen. Genetics* 113:273-284, the disclosure of which is incorporated herein by reference in its entirety) and termination of growth or cell death. Combining the use of temperature sensitive mutations in the *dnaB* gene that cause cell death at the restrictive temperature with an antisense to the *dnaB* gene could lead to the discovery of very specific and effective inhibitors of one or a subset of activities exhibited by DnaB.

When screening for antimicrobial agents against a gene product required for proliferation, growth inhibition of cells containing a limiting amount of that proliferation-required gene product can be assayed. Growth inhibition can be measured by directly comparing the amount of growth, measured by the optical density of the growth medium, between an experimental sample and a control sample. Alternative methods for assaying cell proliferation include measuring green fluorescent protein (GFP) reporter construct emissions, various enzymatic activity assays, and other methods well known in the art.

It will be appreciated that the above method may be performed in solid phase, liquid phase or a combination of the two. For example, cells grown on nutrient agar containing the inducer of the antisense construct may be exposed to compounds spotted onto the agar surface. A compound's effect may be judged from the diameter of the resulting killing zone, the area around the compound application point in which cells do not grow. Multiple compounds may be transferred to agar plates and simultaneously tested using automated and semi-automated equipment including but not restricted to

multi-channel pipettes (for example the Beckman Multimek) and multi-channel spotters (for example the Genomic Solutions Flexys). In this way multiple plates and thousands to millions of compounds may be tested per day.

The compounds may also be tested entirely in liquid phase using microtiter plates as described below. Liquid phase screening may be performed in microtiter plates containing 96, 384, 1536 or more wells per microtiter plate to screen multiple plates and thousands to millions of compounds per day. Automated and semi-automated equipment may be used for addition of reagents (for example cells and compounds) and determination of cell density.

EXAMPLE 9

The effectiveness of the above cell based assay was validated using constructs expressing antisense RNA to *E. coli* genes rplL, rplJ, and rplW encoding ribosomal proteins L7/L12, L10 and L23 respectively. These proteins are part of the protein synthesis apparatus of the cell and as such are required for proliferation. These constructs were used to test the effect of antisense expression on cell sensitivity to antibiotics known to bind to the ribosome and thereby inhibit protein synthesis. Constructs expressing antisense RNA to several other genes (elaD, visC, yohH, and aptE/B), the products of which are not involved in protein synthesis were used for comparison.

First expression vectors containing antisense constructs to either rplW or to elaD were introduced into separate *E. coli* cell populations. Vector introduction is a technique well known to those of ordinary skill in the art. The expression vectors of this example contain IPTG inducible promoters that drive the expression of the antisense RNA in the presence of the inducer. However, those skilled in the art will appreciate that other inducible promoters may also be used. Suitable expression vectors are also well known in the art. The *E. coli* antisense clones encoding ribosomal proteins L7/L12, L10 and L23 were used to test the effect of antisense expression on cell sensitivity to the antibiotics known to bind to these proteins. First, expression vectors containing antisense to either the genes encoding L7/L12 and L10 or L23 were introduced into separate *E. coli* cell populations.

The cell populations were exposed to a range of IPTG concentrations in liquid medium to obtain the growth inhibitory dose curve for each clone (Fig. 1). First, seed cultures were grown to a particular turbidity that is measured by the optical density (OD) of the growth solution. The OD of the solution is directly related to the number of bacterial cells contained therein. Subsequently, sixteen 200 μ l liquid medium cultures were grown in a 96 well microtiter plate at 37 °C with a range of IPTG concentrations in duplicate two-fold serial dilutions from 1600 μ M to 12.5 μ M (final concentration). Additionally, control cells were grown in duplicate without IPTG. These cultures were started from equal amounts of cells derived from the same initial seed culture of a clone of interest. The cells were grown for up to 15 hours and the extent of growth was determined by measuring the optical density of the cultures at 600 nm. When the control culture reached mid-log phase the percent growth of the control for each of the IPTG containing cultures was plotted against the log concentrations of IPTG to produce a growth inhibitory dose response curve for the IPTG. The concentration of IPTG that inhibits cell growth to 50% (IC_{50}) as compared to the 0 mM IPTG control (0% growth inhibition) was then calculated from

the curve. Under these conditions, an amount of antisense RNA was produced that reduced the expression levels of rplW and elaD to a degree such that growth was inhibited by 50%.

Alternative methods of measuring growth are also contemplated. Examples of these methods include measurements of proteins, the expression of which is engineered into the cells being tested and can readily be measured. Examples of such proteins include green fluorescent protein (GFP) and various enzymes.

Cells were pretreated with the selected concentration of IPTG and then used to test the sensitivity of cell populations to tetracycline, erythromycin and other protein synthesis inhibitors. An example of a tetracycline dose response curve is shown in Figures 2A and 2B for the rplW and elaD genes, respectively. Cells were grown to log phase and then diluted into media alone or media containing IPTG at concentrations which give 20% and 50% growth inhibition as determined by IPTG dose response curves. After 2.5 hours, the cells were diluted to a final OD600 of 0.002 into 96 well plates containing (1) +/- IPTG at the same concentrations used for the 2.5 hour pre-incubation; and (2) serial two-fold dilutions of tetracycline such that the final concentrations of tetracycline range from 1 µg/ml to 15.6 ng/ml and 0 µg/ml. The 96 well plates were incubated at 37°C and the OD600 was read by a plate reader every 5 minutes for up to 15 hours. For each IPTG concentration and the no IPTG control, tetracycline dose response curves were determined when the control (absence of tetracycline) reached 0.1 OD600. To compare tetracycline sensitivity with and without IPTG, tetracycline IC50s were determined from the dose response curves (Figs. 2A-B). Cells with reduced levels of L23 (rplW) showed increased sensitivity to tetracycline (Fig. 2A) as compared to cells with reduced levels of elaD (Fig. 2B). Figure 3 shows a summary bar chart in which the ratios of tetracycline IC50s determined in the presence of IPTG which gives 50% growth inhibition versus tetracycline IC50s determined without IPTG (fold increase in tetracycline sensitivity) were plotted. Cells with reduced levels of either L7/L12 (genes rplL, rplJ) or L23 (rplW) showed increased sensitivity to tetracycline (Fig. 3). Cells expressing antisense to genes not known to be involved in protein synthesis (*atpB/E*, *visC*, *elaD*, *yohH*) did not show the same increased sensitivity to tetracycline, validating the specificity of this assay (Fig. 3).

In addition to the above, it has been observed in initial experiments that clones expressing antisense RNA to genes involved in protein synthesis (including genes encoding ribosomal proteins L7/L12 & L10, L7/L12 alone, L22, and L18, as well as genes encoding rRNA and Elongation Factor G) have increased sensitivity to the macrolide, erythromycin, whereas clones expressing antisense to the non-protein synthesis genes elaD, *atpB/E* and *visC* do not. Furthermore, the clone expressing antisense to rplL and rplJ does not show increased sensitivity to nalidixic acid and ofloxacin, antibiotics which do not inhibit protein synthesis.

The results with the ribosomal protein genes rplL, rplJ, and rplW as well as the initial results using various other antisense clones and antibiotics show that limiting the concentration of an antibiotic target makes cells more sensitive to the antimicrobial agents that specifically interact with that protein. The results also show that these cells are sensitized to antimicrobial agents that inhibit the overall function in which the protein target is involved but are not sensitized to antimicrobial agents that inhibit other functions.

The cell based assay described above may also be used to identify the biological pathway in which a proliferation-required nucleic acid or its gene product lies. In such methods, cells expressing a sub-lethal level of antisense to a target proliferation-required nucleic acid and control cells in which expression of the antisense has not been induced are contacted with a panel of antibiotics known to act in various pathways. If the antibiotic acts in the pathway in which the target proliferation-required nucleic acid or its gene product lies, cells in which expression of the antisense has been induced will be more sensitive to the antibiotic than cells in which expression of the antisense has not been induced.

As a control, the results of the assay may be confirmed by contacting a panel of cells expressing antisense nucleic acids to many different proliferation-required genes including the target proliferation-required gene. If the antibiotic is acting specifically, heightened sensitivity to the antibiotic will be observed only in the cells expressing antisense to a target proliferation-required gene (or cells expressing antisense to other proliferation-required genes in the same pathway as the target proliferation-required gene) but will not be observed generally in all cells expressing antisense to proliferation-required genes.

Similarly, the above method may be used to determine the pathway on which a test antibiotic acts. A panel of cells, each of which expresses antisense to a proliferation-required nucleic acid in a known pathway, is contacted with a compound for which it is desired to determine the pathway on which it acts. The sensitivity of the panel of cells to the test compound is determined in cells in which expression of the antisense has been induced and in control cells in which expression of the antisense has not been induced. If the test antibiotic acts on the pathway on which an antisense nucleic acid acts, cells in which expression of the antisense has been induced will be more sensitive to the antibiotic than cells in which expression of the antisense has not been induced. In addition, control cells in which expression of antisense to proliferation-required genes in other pathways has been induced will not exhibit heightened sensitivity to the antibiotic. In this way, the pathway on which the test antibiotic acts may be determined.

The Example below provides one method for performing such assays.

EXAMPLE 10

Identification of the Pathway in which a Proliferation-Required

Gene Lies or the Pathway on which an Antibiotic Acts

A. Preparation of Bacterial Stocks for Assay

To provide a consistent source of cells to screen, frozen stocks of host bacteria containing the desired antisense construct are prepared using standard microbiological techniques. For example, a single clone of the organism can be isolated by streaking out a sample of the original stock onto an agar plate containing nutrients for cell growth and an antibiotic for which the antisense construct contains a gene which confers resistance. After overnight growth an isolated colony is picked from the plate with a sterile needle and transferred to an appropriate liquid growth media containing the antibiotic required for maintenance of the plasmid. The cells are incubated at 30°C to 37°C with vigorous shaking for 4 to

6 hours to yield a culture in exponential growth. Sterile glycerol is added to 15% (volume to volume) and 100 μ L to 500 μ L aliquots are distributed into sterile cryotubes, snap frozen in liquid nitrogen, and stored at -80°C for future assays.

B. Growth of Bacteria for Use in the Assay

A day prior to an assay, a stock vial is removed from the freezer, rapidly thawed (37°C water bath) and a loop of culture is streaked out on an agar plate containing nutrients for cell growth and an antibiotic to which the antisense construct confers resistance. After overnight growth at 37°C, ten randomly chosen, isolated colonies are transferred from the plate (sterile inoculum loop) to a sterile tube containing 5 mL of LB medium containing the antibiotic to which the antisense vector confers resistance. After vigorous mixing to form a homogeneous cell suspension, the optical density of the suspension is measured at 600 nm (OD600) and if necessary an aliquot of the suspension is diluted into a second tube of 5 mL, sterile, LB medium plus antibiotic to achieve an OD600 \leq 0.02 absorbance units. The culture is then incubated at 37° C for 1-2 hrs with shaking until the OD600 reaches OD 0.2 – 0.3. At this point the cells are ready to be used in the assay.

C. Selection of Media to be Used in Assay

Two fold dilution series of the inducer are generated in culture media containing the appropriate antibiotic for maintenance of the antisense construct. Several media are tested side by side and three to four wells are used to evaluate the effects of the inducer at each concentration in each media. For example, M9 minimal media, LB broth, TBO broth and Muller-Hinton media may be tested with the inducer IPTG at the following concentrations, 50 μ M, 100 μ M, 200 μ M, 400 μ M, 600 μ M, 800 μ M and 1000 μ M. Equal volumes of test media-inducer and cells are added to the wells of a 384 well microtiter plate and mixed. The cells are prepared as described above and diluted 1:100 in the appropriate media containing the test antibiotic immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells of each media that do not contain inducer, for example 0 M IPTG. Cell growth is monitored continuously by incubation at 37°C in a microtiter plate reader monitoring the OD600 of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of inducer is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in media without inducer. The medium yielding greatest sensitivity to inducer is selected for use in the assays described below.

D. Measurement of Test Antibiotic Sensitivity in the Absence of Antisense Construct Induction

Two-fold dilution series of antibiotics of known mechanism of action are generated in the culture media selected for further assay development that has been supplemented with the antibiotic used to maintain the construct. A panel of test antibiotics known to act on different pathways is tested side by side with three to four wells being used to evaluate the effect of a test antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the media selected for assay development supplemented with the antibiotic required to maintain the antisense construct and are diluted 1:100 in identical media immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several

wells that contain the solvent used to dissolve the antibiotics but no antibiotic. Cell growth is monitored continuously by incubation at 37°C in a microtiter plate reader monitoring the OD₆₀₀ of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in media without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC₅₀ value for each antibiotic.

5 E. Measurement of Test Antibiotic Sensitivity in the Presence of Antisense Construct Inducer

The culture media selected for use in the assay is supplemented with inducer at concentrations shown to inhibit cell growth by 50 and 80% as described above and the antibiotic used to maintain the construct. Two fold dilution series of the panel of test antibiotics used above are generated in each of these media. Several antibiotics are tested side by side with three to four wells being used to evaluate the effects of an antibiotic on cell growth at each concentration, in each media. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the media selected for use in the assay supplemented with the antibiotic required to maintain the antisense construct. The cells are diluted 1:100 into two 50 mL aliquots of identical media containing concentrations of inducer that have been shown to inhibit cell growth by 50% and 80 % respectively and incubated at 37°C with shaking for 2.5 hours. Immediately prior to addition to the microtiter plate wells, the cultures are adjusted to an appropriate OD₆₀₀ (typically 0.002) by dilution into warm (37°C) sterile media supplemented with identical concentrations of the inducer and antibiotic used to maintain the antisense construct. For a control, cells are also added to several wells that contain solvent used to dissolve test antibiotics but which contain no antibiotic. Cell growth is monitored continuously by incubation at 37°C in a microtiter plate reader monitoring the OD₆₀₀ of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in media without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC₅₀ value for each antibiotic.

10 F. Determining the Specificity of the Test Antibiotics

A comparison of the IC₅₀s generated by antibiotics of known mechanism of action under antisense induced and non-induced conditions allows the pathway in which a proliferation-required nucleic acid lies to be identified. If cells expressing an antisense nucleic acid against a proliferation-required gene are selectively sensitive to an antibiotic acting via a particular pathway, then the gene against which the antisense acts is involved in the pathway in which the antibiotic acts.

15 G. Identification of Pathway in which a Test Antibiotic Acts

As discussed above, the cell based assay may also be used to determine the pathway against which a test antibiotic acts. In such an analysis, the pathways against which each member of a panel of antisense nucleic acids acts are identified as described above. A panel of cells, each containing an inducible antisense vector against a gene in a known proliferation-required pathway, is contacted with a test antibiotic for which it is desired to determine the pathway

on which it acts under inducing and non-inducing conditions. If heightened sensitivity is observed in induced cells expressing antisense against a gene in a particular pathway but not in induced cells expressing antisense against genes in other pathways, then the test antibiotic acts against the pathway for which heightened sensitivity was observed.

One skilled in the art will appreciate that further optimization of the assay conditions, such as the concentration of inducer used to induce antisense expression and/or the growth conditions used for the assay (for example incubation temperature and media components) may further increase the selectivity and/or magnitude of the antibiotic sensitization exhibited.

The following example confirms the effectiveness of the methods described above.

EXAMPLE 11

Identification of the Pathway in which a Proliferation-Required Gene Lies

Antibiotics of various chemical classes and modes of action were purchased from Sigma Chemicals (St. Louis, MO). Stock solutions were prepared by dissolving each antibiotic in an appropriate aqueous solution based on information provided by the manufacturer. The final working solution of each antibiotic contained no more than 0.2% (w/v) of any organic solvent. To determine their potency against a bacterial strain engineered for expression of an antisense against a proliferation-required, 50S ribosomal protein, each antibiotic was serially diluted two or three fold in growth medium supplemented with the appropriate antibiotic for maintenance of the anti-sense construct. At least ten dilutions were prepared for each antibiotic. 25 μ L aliquots of each dilution were transferred to discrete wells of a 384-well microplate (the assay plate) using a multi-channel pipette. Quadruplicate wells were used for each dilution of an antibiotic under each treatment condition (plus and minus inducer). Each assay plate contained twenty wells for cell growth controls (growth media replacing antibiotic), ten wells for each treatment (plus and minus inducer, in this example IPTG). Assay plates were usually divided into the two treatments: half the plate containing induced cells and an appropriate concentrations of inducer (in this example IPTG) to maintain the state of induction, the other half containing non-induced cells in the absence of IPTG.

Cells for the assay were prepared as follows. Bacterial cells containing a construct, from which expression of antisense nucleic acid against rplL and rplJ, which encode proliferation-required 50S ribosomal subunit proteins, is inducible in the presence of IPTG, were grown into exponential growth (OD_{600} 0.2 to 0.3) and then diluted 1:100 into fresh media containing either 400 μ M or 0 μ M inducer (IPTG). These cultures were incubated at 37° C for 2.5 hr. After a 2.5 hr incubation, induced and non-induced cells were respectively diluted into an assay medium at a final OD_{600} value of 0.0004. The medium contained an appropriate concentration of the antibiotic for the maintenance of the anti-sense construct. In addition, the medium used to dilute induced cells was supplemented with 800 μ M IPTG so that addition to the assay plate would result in a final IPTG concentration of 400 μ M. Induced and non-induced cell suspensions were dispensed (25 μ L/well) into the appropriate wells of the assay plate as discussed previously. The plate was then loaded into a plate reader, incubated at constant temperature, and cell growth was monitored in each well by the measurement of

light scattering at 595 nm. Growth was monitored every 5 minutes until the cell culture attained a stationary growth phase. For each concentration of antibiotic, a percentage inhibition of growth was calculated at the time point corresponding to mid-exponential growth for the associated control wells (no antibiotic, plus or minus IPTG). For each antibiotic and condition (plus or minus IPTG), a plot of percent inhibition versus log of antibiotic concentration was generated and the IC₅₀ determined. A comparison of the IC₅₀ for each antibiotic in the presence and absence of IPTG revealed whether induction of the antisense construct sensitized the cell to the mechanism of action exhibited by the antibiotic. Cells which exhibited a significant (standard statistical analysis) numerical decrease in the IC₅₀ value in the presence of inducer were considered to have an increased sensitivity to the test antibiotic.

The results are provided in the table below, which lists the classes and names of the antibiotics used in the analysis, the targets of the antibiotics, the IC₅₀ in the absence of IPTG, the IC₅₀ in the presence of IPTG, the concentration units for the IC₅₀s, the fold increase in IC₅₀ in the presence of IPTG, and whether increased sensitivity was observed in the presence of IPTG.

TABLE IV
Effect of Expression of Antisense RNA to rplI and pflJ on Antibiotic Sensitivity

ANTIBIOTIC CLASS /Names	TARGET	IC50 (-IPTG)	IC50 (+IPTG)	Conc.	Unit	Fold Increase in Sensitivity	Sensitivity Increased?
PROTEIN SYNTHESIS INHIBITOR ANTIBIOTICS							
AMINOGLYCOSIDES							
Gentamicin	30S ribosome function	2715	19.19	ng/ml	141	Yes	
Streptomycin	30S ribosome function	11280	161	ng/ml	70	Yes	
Specinomycin	30S ribosome function	18050	<156	ng/ml		Yes	
Tobramycin	30S ribosome function	3594	70.58	ng/ml	51	Yes	
MACROLIDES							
Erythromycin	50S ribosome function	7467	187	ng/ml	40	Yes	
AROMATIC POLYKETIDES							
Tetracycline	30S ribosome function	199.7	1.83	ng/ml	109	Yes	
Minoxycline	30S ribosome function	668.4	3.897	ng/ml	172	Yes	
Doxycycline	30S ribosome function	413.1	27.81	ng/ml	15	Yes	
OTHER PROTEIN SYNTHESIS INHIBITORS							
Fusidic acid	Elongation Factor G function	59990	641	ng/ml	94	Yes	
Chloramphenicol	30S ribosome function	465.4	1.516	ng/ml	307	Yes	
Lincosycin	50S ribosome function	47150	324.2	ng/ml	145	Yes	
OTHER ANTIBIOtic MECHANISMS							
B-LACTAMS							
Cefotaxin	Cell wall biosynthesis	2782	2484	ng/ml	1	No	
Cefotaxime	Cell wall biosynthesis	24.3	24.16	ng/ml	1	No	
DNA SYNTHESIS INHIBITORS							
Nalidixic acid	DNA Gyrase activity	6973	6025	ng/ml	1	No	
Olofoxacin	DNA Gyrase activity	49.61	45.89	ng/ml	1	No	
OTHER							
Bacitracin	Cell membrane function	4077	4677	mg/ml	1	No	
Trimethoprim	Dihydrofolate Reductase activity	128.9	181.97	ng/ml	1	No	
Vancomycin	Cell wall biosynthesis	145400	72550	ng/ml	2	No	

The above results demonstrate that induction of an antisense RNA to genes encoding 50S ribosomal subunit proteins results in a selective and highly significant sensitization of cells to antibiotics that inhibit ribosomal function and protein synthesis. The above results further demonstrate that induction of an antisense construct to an essential gene sensitizes an organism to compounds that interfere with that gene products' biological role. This sensitization is restricted to compounds that interfere with pathways associated with the targeted gene and its product.

Assays utilizing antisense constructs to essential genes can be used to identify compounds that specifically interfere with the activity of multiple targets in a pathway. Such constructs can be used to simultaneously screen a sample against multiple targets in one pathway in one reaction (Combinatorial HTS).

Furthermore, as discussed above, panels of antisense construct containing cells may be used to characterize the point of intervention of any compound affecting an essential biological pathway including antibiotics with no known mechanism of action.

Another embodiment of the present invention is a method for determining the pathway against which a test antibiotic compound is active in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sublethal concentration of a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid is a target protein or nucleic acid corresponding to a proliferation-required nucleic acid identified using the methods described above. The method is similar to those described above for determining which pathway a test antibiotic acts against except that rather than reducing the activity or level of a proliferation-required gene product using a sublethal level of antisense to a proliferation-required nucleic acid, the activity or level of the proliferation-required gene product is reduced using sublethal level of a known antibiotic which acts against the proliferation required gene product.

Interactions between drugs which affect the same biological pathway has been described in the literature. For example, Mecillinam (Amdinocillin) binds to and inactivates the penicillin binding protein 2 (PBP2, product of the *mrdA* in *E. coli*). This antibiotic interacts with other antibiotics that inhibit PBP2 as well as antibiotics that inhibit other penicillin binding proteins such as PBP3 [(Gutmann, L., Vincent, S., Billot-Klein, D., Acar, J.F., Mrena, E., and Williamson, R. (1986) Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of *Escherichia coli* by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrobial Agents & Chemotherapy, 30:906-912), the disclosure of which is incorporated herein by reference in its entirety]. Interactions between drugs could, therefore, involve two drugs that inhibit the same target protein or nucleic acid or inhibit different proteins or nucleic acids in the same pathway [(Fukuoka, T., Domon, H., Kakuta, M., Ishii, C., Hirasawa, A., Utsui, Y., Ohya, S., and Yasuda, H. (1997) Combination effect between panipenem and vancomycin on highly methicillin-resistant *Staphylococcus aureus*. Japan. J. Antibio. 50:411-419; Smith, C.E., Foleno, B.E., Barrett, J.F., and Frosz, M.B. (1997) Assessment of the synergistic interactions of levofloxacin and ampicillin against *Enterococcus faecium* by the checkerboard agar dilution and time-kill methods. Diagnos. Microbiol. Infect. Disease 27:85-92; den Hollander, J.G., Horrevorts, A.M., van Goor, M.L.,

Verbrugh, H.A., and Mouton, J.W. (1997) Synergism between tobramycin and ceftazidime against a resistant *Pseudomonas aeruginosa* strain, tested in an in vitro pharmacokinetic model. *Antimicrobial Agents & Chemotherapy*, 41:95-110), the disclosure of all of which are incorporated herein by reference in their entireties}.

5 Two drugs may interact even though they inhibit different targets. For example, the proton pump inhibitor, Omeprazole, and the antibiotic, Amoxycillin, two synergistic compounds acting together, can cure *Helicobacter pylori* infection [(Gabrylewicz, A., Laszewicz, W., Dzieniszewski, J., Ciok, J., Marlicz, K., Bielecki, D., Popiela, T., Legutko, J., Knapik, Z., Poniewierska, E. (1997) Multicenter evaluation of dual-therapy (omeprazol and amoxycillin) for *Helicobacter pylori*-associated duodenal and gastric ulcer (two years of the observation). *J. Physiol. Pharmacol.* 48 Suppl 4:93-105), the disclosure of which is incorporated herein by reference in its entirety].

10 The growth inhibition from the sublethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.

15 Alternatively, the sublethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

20 Cells are contacted with a combination of each member of a panel of known antibiotics at a sublethal level and varying concentrations of the test antibiotic. As a control, the cells are contacted with varying concentrations of the test antibiotic alone. The IC₅₀ of the test antibiotic in the presence and absence of the known antibiotic is determined. If the IC₅₀s in the presence and absence of the known drug are substantially similar, then the test drug and the known drug act on different pathways. If the IC₅₀s are substantially different, then the test drug and the known drug act on the same pathway.

25 Another embodiment of the present invention is a method for identifying a candidate compound for use as an antibiotic in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sublethal concentration of a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid is a target protein or nucleic acid corresponding to a proliferation-required nucleic acid identified using the methods described above. The method is similar to those described above for identifying candidate compounds for use as antibiotics except that rather than reducing the activity or level of a proliferation-required gene product using a sublethal level of antisense to a proliferation-required nucleic acid, the activity or level of the proliferation-required gene product is reduced using a sublethal level of a known antibiotic which acts against the proliferation required gene product.

30 The growth inhibition from the sublethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.

Alternatively, the sublethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

In order to characterize test compounds of interest, cells are contacted with a panel of known antibiotics at a sublethal level and one or more concentrations of the test compound. As a control, the cells are contacted with the same 5 concentrations of the test compound alone. The IC₅₀ of the test compound in the presence and absence of the known antibiotic is determined. If the IC₅₀ of the test compound is substantially different in the presence and absence of the known drug then the test compound is a good candidate for use as an antibiotic. As discussed above, once a candidate compound is identified using the above methods its structure may be optimized using standard techniques such as combinatorial chemistry.

10 Representative known antibiotics which may be used in each of the above methods are provided in the table below. However, it will be appreciated that other antibiotics may also be used.

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT MUTANTS
Inhibitors of Transcription		
Rifamycin, 1959 Rifampicin	Inhibits initiation of transcription/β-subunit RNA polymerase, <i>rpoB</i>	<i>rpoB, crp, cyaA</i>
Rifabutin Rifaximin		
Streptolydigin	Accelerates transcription chain termination/β-subunit RNA polymerase	<i>rpoB</i>
Streptovaricin	an acyclic ansamycin, inhibits RNA polymerase	<i>rpoB</i>
Actinomycin D + EDTA	Intercalates between 2 successive G-C pairs, <i>rpoB</i> , inhibits RNA synthesis	<i>pldA</i>
Inhibitors of Nucleic Acid Metabolism		
Quinolones, 1962 Nalidixic acid	subunit gyrase and/or topoisomerase IV, <i>gyrA</i>	
Oxolinic acid		<i>gyrAorB, icd, sloB</i>
Fluoroquinolones Ciprofloxacin, 1983 Norfloxacin	subunit gyrase, <i>gyrA</i> and/or topoisomerase IV (probable target in Staph)	<i>gyrA</i> <i>norA</i> (efflux in Staph) <i>hipQ</i>
Coumerins Novobiocin	Inhibits ATPase activity of β-subunit gyrase, <i>gyrB</i>	<i>gyrB, cysB, cysE, nov, ompA</i>
Couermycin	Inhibits ATPase activity of β-subunit gyrase, <i>gyrB</i>	<i>gyrB, hisW</i>
Albicidin	DNA synthesis	
Metronidazole	Causes single-strand breaks in DNA	<i>tsx</i> (nucleoside channel) <i>nar</i>
Inhibitors of Metabolic Pathways		
Sulfonamides, 1932 Sulfanilamide	blocks synthesis of dihydrofolate,dihydro- pteroate synthesis, <i>folP</i>	<i>folP, gpt, pabA, pabB, pabC</i>
Trimethoprim, 1962	Inhibits dihydrofolate reductase, <i>folA</i>	<i>folA, thyA</i>
Showdomycin	Nucleoside analogue capable of alkylating	<i>nupC, pnp</i>

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT MUTANTS
Thiolactomycin	sulphydryl groups, inhibitor of thymidylate synthetase type II fatty acid synthase inhibitor	<i>emrB</i> <i>fadB, emrB</i> due to gene dosage <i>guaA, B</i>
Psicofuranine	Adenosine glycoside antibiotic, target is GMP synthetase	
Triclosan	Inhibits fatty acid synthesis	<i>fabl (envM)</i>
Diazoborines Isoniazid, Ethionamide	heterocyclic, contains boron, inhibit fatty acid synthesis, enoyl-ACP reductase, <i>fabl</i>	<i>fabl (envM)</i>
Inhibitors of Translation		
Phenylpropanoids Chloramphenicol, 1947	Binds to ribosomal peptidyl transfer center preventing peptide translocation/ binds to S6, L3, L6, L14, L16, L25, L26, L27, but preferentially to L16	<i>rrn, cmlA, marA, ompF, ompR</i>
Tetracyclines, 1948, type II polyketides Minocycline Doxycycline	Binding to 30S ribosomal subunit, "A" site on 30S subunit, blocks peptide elongation, strongest binding to S7	<i>cmlA (cmr), mar, ompF</i>
Macrolides (type I polyketides) Erythromycin, 1950 Carbomycin, Spiramycin	Binding to 50 S ribosomal subunit, 23S rRNA, blocks peptide translocation, L15, L4, L12	<i>rrn, rplC, rplD, rplV, mac</i>
etc		
Aminoglycosides Streptomycin, 1944 Neomycin	Irreversible binding to 30S ribosomal subunit, prevents translation or causes mistranslation of mRNA/16S rRNA	<i>rpsL, strC,M, ubiF</i> <i>atpA-E, ecfB, hemAC,D,E,G, topA, rpsC,D,E, rrn, spcB</i> <i>atpA-atpE, cpxA, ecfB, hemA,B,L, topA</i> <i>ksgA,B,C,D, rplB,K, rpsI,N,M,R</i> <i>rplF, ubiF</i> <i>cpxA</i> <i>rpsL</i>
Spectinomycin Kanamycin		
Kasugamycin		
Gentamicin, 1963 Amikacin Paromycin		
Lincosamides Lincomycin, 1955 Clindamycin	Binding to 50 S ribosomal subunit, blocks peptide translocation	<i>linB, rplN,O, rpsG</i>
Streptogramins Virginiamycin, 1955 Pristinamycin	2 components, Streptogramins A&B, bind to the 50S ribosomal subunit blocking peptide translocation and peptide bond formation	
Synercid: quinupristin /dalfopristin		
Fusidanes Fusidic Acid	Inhibition of elongation factor G (EF-G) prevents peptide translocation	<i>fusA</i>
Kirromycin (Mocimycin)	Inhibition of elongation factor TU (EF-Tu), prevents peptide bond formation	<i>tufA,B</i>

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT MUTANTS
Pulvomycin	Binds to and inhibits EF-TU	
Thiopeptin	Sulfur-containing antibiotic, inhibits protein synthesis,EF-G	<i>rplE</i>
Tiamulin	Inhibits protein synthesis	<i>rplC, rplD</i>
Negamycin	Inhibits termination process of protein synthesis	<i>prfB</i>
Oxazolidinones Linezolid Isoniazid	23S rRNA	
Nitrofurantoin	Inhibits protein synthesis, nitroreductases convert nitrofurantoin to highly reactive electrophilic intermediates which attack bacterial ribosomal proteins non-specifically	<i>pdx</i> <i>nfnA,B</i>
Pseudomonic Acids Mupirocin (Bactroban)	Inhibition of isoleucyl tRNA synthetase-used for Staph, topical cream, nasal spray	<i>ileS</i>
Indolmycin	Inhibits tryptophanyl-tRNA synthetase	<i>trpS</i>
Viomycin		<i>rrmA</i> (23S rRNA methyltransferase; mutant has slow growth rate, slow chain elongation rate, and viomycin resistance)
Thiopeptides Thiostrepton	Binds to L11-23S RNA complex	
Micrococcin	Inhibits GTP hydrolysis by EF-G Stimulates GTP hydrolysis by EF-G	

Inhibitors of Cell Walls/Membranes

β-lactams	Inhibition of one or more cell wall transpeptidases, endopeptidases, and glycosidases (PBPs), of the 12 PBPs only 2 are essential: <i>mrdA</i> (PBP2) and <i>ftsI</i> (<i>pbpB</i> , PBP3)	<i>ampC, ampD, ampE, envZ, galU, hipA, hipQ, ompC, ompF, ompR, ptsI, rfa, tolD, tolE</i>
Penicillin, 1929 Ampicillin		<i>tonB</i>
Methicillin, 1960		<i>alaS, argS, crp, cyaA, envB, mrdA,B, mreB,C,D</i>
Cephalosporins, 1962		
Mecillinam (amdinocillin)	Binds to and inactivates PBP2 (<i>mrdA</i>) Inactivates PBP3 (<i>ftsI</i>)	
Aztreonam (Furazlocillin)		
Bacilysin, Tetaine	Dipeptide, inhib glucosamine synthase	
Glycopeptides Vancomycin, 1955	Inhib G+ cell wall syn, binds to terminal D-alal-D-alal of pentapeptide,	<i>dppA</i>
Polypeptides Bacitracin	Prevents dephosphorylation and regeneration of lipid carrier	
Cyclic lipopeptide Daptomycin, 1980	Disrupts multiple aspects of membrane	<i>rfa</i>

	function, including peptidoglycan synthesis, lipoteichoic acid synthesis, and the bacterial membrane potential	
Cyclic polypeptides Polymixin, 1939	Surfactant action disrupts cell membrane lipids, binds lipid A moiety of LPS	<i>pmrA</i>
Fosfomycin, 1969	Analogue of P-enolpyruvate, inhibits 1 st step in peptidoglycan synthesis - UDP-N-acetylglucosamine enolpyruvyl transferase, <i>murA</i> . Also acts as immunosuppressant	<i>murA, crp, cyaA glpT, hipA, ptsI, uhpT</i>
Cycloserine	Prevents formation of D-ala dimer, inhibits D-ala ligase, <i>dlmA,B</i>	<i>hipA, cycA</i>
Alafostatin	phosphonodipeptide, cell wall synthesis inhibitor, potentiator of β -lactams	<i>pepA, tpp</i>
Inhibitors of Protein Processing/Transport		
Globomycin	Inhibits signal peptidase II (cleaves prolipoproteins subsequent to lipid modification, <i>IspA</i>)	<i>lpp, dnaE</i>

EXAMPLE 12

Transfer of Exogenous Nucleic Acid Sequences to other Bacterial Species Using the *E. coli* Expression Vectors or Expression Vectors Functional in Bacterial Species other than *E. coli*.

5 The above methods were validated using antisense nucleic acids which inhibit the growth of *E. coli* which were identified using methods similar to those described above. Expression vectors which inhibited growth of *E. coli* upon induction of antisense RNA expression with IPTG were transformed directly into *Enterobacter cloacae*, *Klebsiella pneumonia* or *Salmonella typhimurium*. The transformed cells were then assayed for growth inhibition according to the method of Example 1. After growth in liquid culture, cells were plated at various serial dilutions and a score determined by calculating the log difference in growth for INDUCED vs. UNINDUCED antisense RNA expression as determined by the maximum 10 fold dilution at which a colony was observed. The results of these experiments are listed below in Table VI. If there was no effect of antisense RNA expression in an organism, the clone is minus in Table VI. In contrast, a positive in Table VI means that at least 10 fold more cells were required to observe a colony on the induced plate than on the non-induced plate under the conditions used and in that organism.

10 Sixteen of the constructs were found to inhibit growth in all the organisms tested upon induction of antisense RNA expression with IPTG. Those skilled in the art will appreciate that a negative result in a heterologous organism does not mean that that organism is missing that gene nor does it mean that the gene is unessential. However, a positive result means that the heterologous organism contains a homologous gene which is required for proliferation of that organism. The homologous gene may be obtained using the methods described herein. Those cells that are inhibited by antisense 15 may be used in cell based assays as described herein for the identification and characterization of compounds in order to

develop antibiotics effective in these organisms. Those skilled in the art will appreciate that an antisense molecule which works in the organism from which it was obtained will not always work in a heterologous organism.

5

TABLE VI
Sensitivity of Other Microorganisms to Antisense Nucleic Acids That Inhibit Proliferation in *E. coli*

Mol. No.	<i>S. typhimurium</i>	<i>E. cloacae</i>	<i>K. pneumoniae</i>
EcXA001	+	+	-
EcXA004	-	-	-
EcXA005	+	+	+
EcXA006	-	-	-
EcXA007	-	+	-
EcXA008	+	-	+
EcXA010	+	+	+
EcXA011	-	+	-
EcXA012	-	+	-
EcXA013	+	+	+
EcXA014	+	+	-
EcXA015	-	+	+
EcXA016	+	+	+
EcXA017	+	+	+
EcXA018	+	+	+
EcXA019	+	+	+
EcXA020	+	+	+
EcXA021	+	+	+
EcXA023	+	+	+
EcXA024	+	-	+
EcXA025	-	-	-
EcXA026	+	+	-
EcXA027	+	+	+
EcXA028	+	-	-
EcXA029	-	-	-

Mol. No.	<i>S. typhimurium</i>	<i>E. cloacae</i>	<i>K. pneumoniae</i>
EcXA030	+	+	+
EcXA031	+	-	-
EcXA032	+	-	-
EcXA033	+	+	+
EcXA034	+	+	+
EcXA035	-	-	-
EcXA036	+	-	+
EcXA037	-	+	-
EcXA038	+	+	-
EcXA039	+	-	-
EcXA041	+	+	+
EcXA042	-	+	+
EcXA044	-	-	-
EcXA045	-	+	-
EcXA046	-	-	-
EcXA047	+	+	-
EcXA048	-	-	-
EcXA049	+	-	-
EcXA050	-	-	-
EcXA051	+	-	-
EcXA052	+	-	-
EcXA053	+	+	+
EcXA054	-	-	+
EcXA055	+	-	-

EXAMPLE 13

Use of Identified Exogenous Nucleic Acid Sequences as Probes

5

The identified sequence of the present invention can be used as probes to obtain the sequence of additional genes of interest from a second organism. For example, probes to potential bacterial target proteins may be hybridized to nucleic acids from other organisms including other bacteria and higher organisms, to identify homologous sequences. Such

hybridization might indicate that the protein encoded by the gene to which the probe corresponds is found in humans and therefore not necessarily a good drug target. Alternatively, the gene can be conserved only in bacteria and therefore would be a good drug target for a broad spectrum antibiotic or antimicrobial.

5 Probes derived from the identified nucleic acid sequences of interest or portions thereof can be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe can be single stranded or double stranded and can be made using techniques known in the art, including *in vitro* transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it can be denatured prior to contacting the probe. In some applications, the nucleic acid sample can be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample can comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

10 Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe can be cloned into vectors such as expression 15 vectors, sequencing vectors, or *in vitro* transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques can be used to isolate, purify and clone sequences from a genomic library, made from a variety of bacterial species, which are capable of hybridizing to probes made from the sequences identified in Examples 5 and 6.

EXAMPLE 14

Preparation of PCR Primers and Amplification of DNA

20 The identified *E. coli* genes corresponding directly to or located within the operon of nucleic acid sequences required for proliferation or portions thereof can be used to prepare PCR primers for a variety of applications, including the identification or isolation of homologous sequences from other species, for example *S. typhimurium*, *E. cloacae*, and *Klebsiella pneumoniae*, which contain part or all of the homologous genes. Because homologous genes are related but not identical in sequence, those skilled in the art will often employ degenerate sequence PCR primers. Such degenerate sequence primers are designed based on 25 conserved sequence regions, either known or suspected, such as conserved coding regions. The successful production of a PCR product using degenerate probes generated from the sequences identified herein would indicate the presence of a homologous gene sequence in the species being screened. The PCR primers are at least 10 bases, and preferably at least 20 bases in length. More preferably, the PCR primers are at least 20-30 bases in length. In some embodiments, the PCR primers can be 30 more than 30 bases in length. It is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. When the entire coding sequence of the target gene is known, the 5' and 3' regions of the target gene

5

can be used as the sequence source for PCR probe generation. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

EXAMPLE 15

Inverse PCR

10 The technique of inverse polymerase chain reaction can be used to extend the known nucleic acid sequence identified in Examples 5 and 6. The inverse PCR reaction is described generally by Ochman et al., in Ch. 10 of **PCR Technology: Principles and Applications for DNA Amplification**, (Henry A. Erlich, Ed.) W.H. Freeman and Co. (1992). Traditional PCR requires two primers that are used to prime the synthesis of complementary strands of DNA. In inverse PCR, only a core sequence need be known.

15 Using the sequences identified as relevant from the techniques taught in Examples 5 and 6 and applied to other species of bacteria, a subset of exogenous nucleic sequences are identified that correspond to genes or operons that are required for bacterial proliferation. In species for which a genome sequence is not known, the technique of inverse PCR provides a method for obtaining the gene in order to determine the sequence or to place the probe sequences in full context to the target sequence to which the identified exogenous nucleic acid sequence binds.

20 To practice this technique, the genome of the target organism is digested with an appropriate restriction enzyme so as to create fragments of nucleic acid that contain the identified sequence as well as unknown sequences that flank the identified sequence. These fragments are then circularized and become the template for the PCR reaction. PCR primers are designed in accordance with the teachings of Example 15 and directed to the ends of the identified sequence are synthesized. The primers direct nucleic acid synthesis away from the known sequence and toward the unknown sequence contained within the circularized template. After the PCR reaction is complete, the resulting PCR products can be sequenced so as to extend the 25 sequence of the identified gene past the core sequence of the identified exogenous nucleic acid sequence identified. In this manner, the full sequence of each novel gene can be identified. Additionally the sequences of adjacent coding and noncoding regions can be identified.

EXAMPLE 16

Identification of Genes Required for *Staphylococcus aureus* Proliferation

30 Genes required for proliferation in *Staphylococcus aureus* are identified according to the methods described above.

EXAMPLE 17

Identification of Genes Required for *Neisseria gonorrhoeae* Proliferation

Genes required for proliferation in *Neisseria gonorrhoeae* are identified according to the methods described above.

EXAMPLE 18Identification of Genes Required for *Pseudomonas aeruginosa* Proliferation

Genes required for proliferation in *Pseudomonas aeruginosa* are identified according to the methods described above.

5

EXAMPLE 19Identification of Genes Required for *Enterococcus faecalis* Proliferation

Genes required for proliferation in *Enterococcus faecalis* are identified according to the methods described above.

10

EXAMPLE 20Identification of Genes Required for *Haemophilus influenzae* Proliferation

Genes required for proliferation in *Haemophilus influenzae* are identified according to the methods described above.

15

EXAMPLE 21Identification of Genes Required for *Salmonella typhimurium* Proliferation

Genes required for proliferation in *Salmonella typhimurium* are identified according to the methods described above.

20

EXAMPLE 22Identification of Genes Required for *Helicobacter pylori* Proliferation

Genes required for proliferation in *Helicobacter pylori* are identified according to the methods described above.

EXAMPLE 23Identification of Genes Required for *Mycoplasma pneumoniae* Proliferation

25

Genes required for proliferation in *Mycoplasma pneumoniae* are identified according to the methods described above.

EXAMPLE 24Identification of Genes Required for *Plasmodium ovale* Proliferation

Genes required for proliferation in *Plasmodium ovale* are identified according to the methods described above.

EXAMPLE 25Identification of Genes Required for *Saccharomyces cerevisiae* Proliferation

Genes required for proliferation in *Saccharomyces cerevisiae* are identified according to the methods described above.

EXAMPLE 26Identification of Genes Required for *Entamoeba histolytica* Proliferation

Genes required for proliferation in *Entamoeba histolytica* are identified according to the methods described above.

EXAMPLE 27Identification of Genes Required for *Candida albicans* Proliferation

Genes required for proliferation in *Candida albicans* are identified according to the methods described above.

EXAMPLE 28Identification of Genes Required for *Klebsiella pneumoniae* Proliferation

Genes required for proliferation in *Klebsiella pneumoniae* are identified according to the methods described above.

EXAMPLE 29Identification of Genes Required for *Salmonella typhi* Proliferation

Genes required for proliferation in *Salmonella typhi* are identified according to the methods described above.

EXAMPLE 30Identification of Genes Required for *Salmonella paratyphi* Proliferation

Genes required for proliferation in *Salmonella paratyphi* are identified according to the methods described above.

EXAMPLE 31Identification of Genes Required for *Salmonella cholerasuis* Proliferation

Genes required for proliferation in *Salmonella cholerasuis* are identified according to the methods described above.

EXAMPLE 32Identification of Genes Required for *Staphylococcus epidermidis* Proliferation

Genes required for proliferation in *Staphylococcus epidermidis* are identified according to the methods described above.

EXAMPLE 33Identification of Genes Required for *Mycobacterium tuberculosis* Proliferation

Genes required for proliferation in *Mycobacterium tuberculosis* are identified according to the methods described above.

EXAMPLE 34Identification of Genes Required for *Mycobacterium leprae* Proliferation

Genes required for proliferation in *Mycobacterium leprae* are identified according to the methods described above.

EXAMPLE 35Identification of Genes Required for *Treponema pallidum* Proliferation

Genes required for proliferation in *Treponema pallidum* are identified according to the methods described above.

EXAMPLE 36Identification of Genes Required for *Bacillus anthracis* Proliferation

Genes required for proliferation in *Bacillus anthracis* are identified according to the methods described above.

EXAMPLE 37Identification of Genes Required for *Yersinia pestis* Proliferation

Genes required for proliferation in *Yersinia pestis* are identified according to the methods described above.

EXAMPLE 38Identification of Genes Required for *Clostridium botulinum* Proliferation

Genes required for proliferation in *Clostridium botulinum* are identified according to the methods described above.

EXAMPLE 39Identification of Genes Required for *Campylobacter jejuni* Proliferation

Genes required for proliferation in *Campylobacter jejuni* are identified according to the methods described above.

EXAMPLE 40Identification of Genes Required for *Chlamydia trachomatis* Proliferation

Genes required for proliferation in *Chlamydia trachomatis* are identified according to the methods described above.

10 Use of Isolated Exogenous Nucleic Acid Fragments as Antisense Antibiotics

In addition to using the identified sequences to enable screening of molecule libraries to identify compounds useful to identify antibiotics, the sequences themselves can be used as therapeutic agents. Specifically, the identified exogenous sequences in an antisense orientation can be provided to an individual to inhibit the translation of a bacterial target gene.

15 Generation of Antisense Therapeutics from Identified Exogenous Sequences

The sequences of the present invention can be used as antisense therapeutics for the treatment of bacterial infections or simply for inhibition of bacterial growth *in vitro* or *in vivo*. The therapy exploits the biological process in cells where genes are transcribed into messenger RNA (mRNA) that is then translated into proteins. Antisense RNA technology contemplates the use of antisense oligonucleotides directed against a target gene that will bind to its target and decrease or inhibit the translation of the target mRNA. In one embodiment, antisense oligonucleotides can be used to treat and control a bacterial infection of a cell culture containing a population of desired cells contaminated with bacteria. In another embodiment, the antisense oligonucleotides can be used to treat an organism with a bacterial infection.

20 Antisense oligonucleotides can be synthesized from any of the sequences of the present invention using methods well known in the art. In a preferred embodiment, antisense oligonucleotides are synthesized using artificial means. Uhlmann & Peymann, Chemical Rev. 90:543-584 (1990) review antisense oligonucleotide technology in detail. Modified or unmodified antisense oligonucleotides can be used as therapeutic agents. Modified antisense oligonucleotides are preferred since it is well known that antisense oligonucleotides are extremely unstable. Modification of the phosphate backbones of the antisense oligonucleotides can be achieved by substituting the internucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate bridges, thioester bridges, as well as many others known in the art. The preparation of certain antisense oligonucleotides with modified internucleotide linkages is described in U.S. Patent No. 5,142,047, hereby incorporated by reference.

30 Modifications to the nucleoside units of the antisense oligonucleotides are also contemplated. These modifications can increase the half-life and increase cellular rates of uptake for the oligonucleotides *in vivo*. For example,

α -anomeric nucleotide units and modified bases such as 1,2-dideoxy-d-ribofuranose, 1,2-dideoxy-1-phenylribofuranose, and N^4, N^6 -ethano-5-methyl-cytosine are contemplated for use in the present invention.

An additional form of modified antisense molecules is found in peptide nucleic acids (PNA). Peptide nucleic acids (PNA) have been developed to hybridize to single and double stranded nucleic acids. PNA are nucleic acid analogs in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically completely different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units. Unlike DNA, which is highly negatively charged, the PNA backbone is neutral. Therefore, there is much less repulsive energy between complementary strands in a PNA-DNA hybrid than in the comparable DNA-DNA hybrid, and consequently they are much more stable. PNA can hybridize to DNA in either a Watson/Crick or Hoogsteen fashion (Demidov et al., *Proc. Natl. Acad. Sci. U.S.A.* 92:2637-2641, 1995; Egholm, *Nature* 365:566-568, 1993; Nielsen et al., *Science* 254:1497-1500, 1991; Dueholm et al., *New J. Chem.* 21:19-31, 1997).

Molecules called PNA "clamps" have been synthesized which have two identical PNA sequences joined by a flexible hairpin linker containing three 8-amino-3,6-dioxaoctanoic acid units. When a PNA clamp is mixed with a complementary homopurine or homopyrimidine DNA target sequence, a PNA-DNA-PNA triplex hybrid can form which has been shown to be extremely stable (Bentin et al., *Biochemistry* 35:8863-8869, 1996; Egholm et al., *Nucleic Acids Res.* 23:217-222, 1995; Griffith et al., *J. Am. Chem. Soc.* 117:831-832, 1995).

The sequence-specific and high affinity duplex and triplex binding of PNA have been extensively described (Nielsen et al., *Science* 254:1497-1500, 1991; Egholm et al., *J. Am. Chem. Soc.* 114:9677-9678, 1992; Egholm et al., *Nature* 365:566-568, 1993; Almarsson et al., *Proc. Natl. Acad. Sci. U.S.A.* 90:9542-9546, 1993; Demidov et al., *Proc. Natl. Acad. Sci. U.S.A.* 92:2637-2641, 1995). They have also been shown to be resistant to nuclease and protease digestion (Demidov et al., *Biochem. Pharm.* 48:1010-1313, 1994). PNA has been used to inhibit gene expression (Hanvey et al., *Science* 258:1481-1485, 1992; Nielsen et al., *Nucl. Acids. Res.*, 21:197-200, 1993; Nielsen et al., *Gene* 149:139-145, 1994; Good & Nielsen, *Science*, 95: 2073-2076, 1998; all of which are hereby incorporated by reference), to block restriction enzyme activity (Nielsen et al., *supra*, 1993), to act as an artificial transcription promoter (Mollegaard, *Proc. Natl. Acad. Sci. U.S.A.* 91:3892-3895, 1994) and as a pseudo restriction endonuclease (Demidov et al., *Nucl. Acids. Res.* 21:2103-2107, 1993). Recently, PNA has also been shown to have antiviral and antitumoral activity mediated through an antisense mechanism (Norton, *Nature Biotechnol.*, 14:615-619, 1996; Hirschman et al., *J. Investig. Med.* 44:347-351, 1996). PNAs have been linked to various peptides in order to promote PNA entry into cells (Basu et al., *Biocconj. Chem.* 8:481-488, 1997; Pardridge et al., *Proc. Natl. Acad. Sci. U.S.A.* 92:5592-5596, 1995).

The antisense oligonucleotides contemplated by the present invention can be administered by direct application of oligonucleotides to a target using standard techniques well known in the art. The antisense oligonucleotides can be generated within the target using a plasmid, or a phage. Alternatively, the antisense nucleic acid may be expressed from a sequence in the chromosome of the target cell. It is further contemplated that contemplated that the antisense oligonucleotide contemplated are incorporated in a ribozyme sequence to enable the antisense to specifically bind and cleave its

5

target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., *Pharmacol. Ther.* 50(2):245-254, (1991), which is hereby incorporated by reference. The present invention also contemplates using a retrorv to introduce an antisense oligonucleotide to a cell. Retrorv technology is exemplified by U.S. Patent No. 5,405,775, which is hereby incorporated by reference. Antisense oligonucleotides can also be delivered using liposomes or by electroporation techniques which are well known in the art.

10

The antisense nucleic acids of the present invention can also be used to design antibiotic compounds comprising nucleic acids which function by intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. The sequences identified as required for proliferation in the present invention, or portions thereof, can be used as templates to inhibit microorganism gene expression in individuals infected with such organisms. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences based on the sequences of the present invention that are required for proliferation are contemplated for use as antibiotic compound templates.

15

The antisense oligonucleotides of this example employ the identified sequences of the present invention to induce bacterial cell death or at least bacterial stasis by inhibiting target gene translation. Antisense oligonucleotides containing from about 8 to 40 bases of the sequences of the present invention have sufficient complementary to form a duplex with the target sequence under physiological conditions.

20

To kill bacterial cells or inhibit their growth, the antisense oligonucleotides are applied to the bacteria or to the target cells under conditions that facilitate their uptake. These conditions include sufficient incubation times of cells and oligonucleotides so that the antisense oligonucleotides are taken up by the cells. In one embodiment, an incubation period of 7-10 days is sufficient to kill bacteria in a sample. An optimum concentration of antisense oligonucleotides is selected for use.

25

The concentration of antisense oligonucleotides to be used can vary depending on the type of bacteria sought to be controlled, the nature of the antisense oligonucleotide to be used, and the relative toxicity of the antisense oligonucleotide to the desired cells in the treated culture. Antisense oligonucleotides can be introduced to cell samples at a number of different concentrations preferably between 1×10^{-10} M to 1×10^{-4} M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use *in vivo*. For example, an inhibiting concentration in culture of 1×10^{-7} translates into a dose of approximately 0.6 mg/kg body weight. Levels of oligonucleotide approaching 100 mg/kg body weight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the subject are removed, treated with the antisense oligonucleotide, and reintroduced into the subject. This range is merely illustrative and one of skill in the art are able to determine the optimal concentration to be used in a given case.

After the bacterial cells have been killed or controlled in a desired culture, the desired cell population may be used for other purposes.

EXAMPLE 41

The following example demonstrates the ability of an *E. coli* antisense oligonucleotide to act as a bactericidal or bacteriostatic agent to treat a contaminated cell culture system. The application of the antisense oligonucleotides of the present invention are thought to inhibit the translation of bacterial gene products required for proliferation.

The antisense oligonucleotide of this example corresponds to a 30 base phosphorothioate modified oligodeoxynucleotide complementary to a nucleic acid involved in proliferation, such as Molecule Number EcXA001. A sense oligodeoxynucleotide complementary to the antisense sequence is synthesized and used as a control. The oligonucleotides are synthesized and purified according to the procedures of Matsukura, et al., Gene 72:343 (1988). The test oligonucleotides are dissolved in a small volume of autoclaved water and added to culture medium to make a 100 micromolar stock solution.

Human bone marrow cells are obtained from the peripheral blood of two patients and cultured according standard procedures well known in the art. The culture is contaminated with the K-12 strain of *E. coli* and incubated at 37°C overnight to establish bacterial infection.

The control and antisense oligonucleotide containing solutions are added to the contaminated cultures and monitored for bacterial growth. After a 10 hour incubation of culture and oligonucleotides, samples from the control and experimental cultures are drawn and analyzed for the translation of the target bacterial gene using standard microbiological techniques well known in the art. The target *E. coli* gene is found to be translated in the control culture treated with the control oligonucleotide, however, translation of the target gene in the experimental culture treated with the antisense oligonucleotide of the present invention is not detected or reduced.

EXAMPLE 42

A subject suffering from an *E. coli* infection is treated with the antisense oligonucleotide preparation of Example 39. The antisense oligonucleotide is provided in a pharmaceutically acceptable carrier at a concentration effective to inhibit the translation of the target gene. The present subject is treated with a concentration of antisense oligonucleotide sufficient to achieve a blood concentration of about 100 micromolar. The patient receives daily injections of antisense oligonucleotide to maintain this concentration for a period of 1 week. At the end of the week a blood sample is drawn and analyzed for the presence or absence using standard techniques well known in the art. There is no detectable evidence of *E. coli* and the treatment is terminated.

EXAMPLE 43

Preparation and use of Triple Helix Probes

The sequences of microorganism genes required for proliferation of the present invention are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches that could be used in triple-helix based strategies for inhibiting gene

5

expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into a population of bacterial cells that normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis, such as GENSET, Paris, France.

The oligonucleotides can be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

10 Treated cells are monitored for a reduction in proliferation using techniques such as monitoring growth levels as compared to untreated cells using optical density measurements. The oligonucleotides that are effective in inhibiting gene expression in cultured cells can then be introduced *in vivo* using the techniques well known in that art at a dosage level shown to be effective.

15 In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (*Science* 245:967-971 (1989), which is hereby incorporated by this reference).

EXAMPLE 44

Identification of Bacterial Strains from Isolated Specimens by PCR

20 Classical bacteriological methods for the detection of various bacterial species are time consuming and costly. These methods include growing the bacteria isolated from a subject in specialized media, cultivation on selective agar media, followed by a set of confirmation assays that can take from 8 to 10 days or longer to complete. Use of the identified sequences of the present invention provides a method to dramatically reduce the time necessary to detect and identify specific bacterial species present in a sample.

25 In one exemplary method, bacteria are grown in enriched media and DNA samples are isolated from specimens of, for example, blood, urine, stool, saliva or central nervous system fluid by conventional methods. A panel of PCR primers based on identified sequences unique to various species of microorganisms are then utilized in accordance with Example 12 to amplify DNA of approximately 100-200 bases in length from the specimen. A separate PCR reaction is set up for each pair of PCR primers and after the PCR reaction is complete, the reaction mixtures are assayed for the presence of PCR product. The presence or absence of bacteria from the species to which the PCR primer pairs belong is determined by the presence or 30 absence of a PCR product in the various test PCR reaction tubes.

Although the PCR reaction is used to assay the isolated sample for the presence of various bacterial species, other assays such as the Southern blot hybridization are also contemplated.

WHAT IS CLAIMED IS:

1. A purified or isolated nucleic acid sequence consisting essentially of one of SEQ ID NOs: 405-485, wherein said nucleic acid inhibits microorganism proliferation.
5. 2. The nucleic acid sequence of Claim 1, wherein said nucleic acid sequence is complementary to at least a portion of a coding sequence of a gene whose expression is required for microorganism proliferation.
10. 3. The nucleic acid sequence of Claims 1 or 2, wherein said nucleic acid comprises a fragment of one of SEQ ID NOs. 405-485, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOs: 405-485.
15. 4. The nucleic acid sequence of Claim 3, wherein said nucleic acid sequence is complementary to a coding sequence of a gene whose expression is required for microorganism proliferation.
20. 5. A vector comprising a promoter operably linked to a nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs. 405-485.
25. 6. The vector of Claim 5, wherein said promoter is active in an organism selected from the group consisting of *Escherichia coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.
30. 7. A host cell containing the vector of Claim 5 or Claim 6.
8. A purified or isolated nucleic acid consisting essentially of the coding sequence of one of SEQ ID NOs: 82-88, 90-242.
9. A fragment of the nucleic acid of Claim 8, said fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOs: 82-88, 90-242.
10. A vector comprising a promoter operably linked to the nucleic acid of Claim 8 or Claim 9.
11. A purified or isolated nucleic acid comprising a nucleic acid sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5' noncoding region, or 3' noncoding region within an operon encoding a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs: 243-357, 359-398.
12. A purified or isolated nucleic acid comprising a nucleic acid having at least 70% homology to a sequence selected from the group consisting of SEQ ID NOs 405-485, 82-88, 90-242 or the sequences complementary thereto as determined using BLASTN version 2.0 with the default parameters.

13. The nucleic acid of Claim 12, wherein said nucleic acid is from an organism selected from the group consisting of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.

5 14. A purified or isolated nucleic acid consisting essentially of a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs.: 243-357, 359-398.

10 15. A vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs.: 243-357, 359-398.

16. A host cell containing the vector of Claim 15.

17. A purified or isolated polypeptide comprising the sequence of one of SEQ ID NOs: 243-357, 359-398.

15 18. A purified or isolated polypeptide comprising a fragment of one of the polypeptides of SEQ ID NOs. 243-357, 359-398, said fragment selected from the group consisting of fragments comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the polypeptides of SEQ ID NOs.: 243-357, 359-398.

19. An antibody capable of specifically binding the polypeptide of Claim 17 or Claim 18.

20 20. A method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide having a sequence selected from the group consisting of SEQ ID NOs. 243-357, 359-398 into a cell.

21. The method of Claim 20, further comprising the step of isolating said protein.

25 22. A method of inhibiting proliferation comprising inhibiting the activity or reducing the amount of a polypeptide having a sequence selected from the group consisting of SEQ ID NOs. 243-357, 359-398 or inhibiting the activity or reducing the amount of a nucleic acid encoding said polypeptide.

23. A method for identifying compounds which influence the activity of a polypeptide required for proliferation comprising:

30 contacting a polypeptide having a sequence selected from the group consisting of 243-357, 359-398 with a candidate compound; and

determining whether said compound influences the activity of said polypeptide.

24. The method of Claim 23, wherein said activity is an enzymatic activity.

25. The method of Claim 23, wherein said activity is a carbon compound catabolism activity.

26. The method of Claim 23, wherein said activity is a biosynthetic activity.
27. The method of Claim 23, wherein said activity is a transporter activity.
28. The method of Claim 23, wherein said activity is a transcriptional activity.
29. The method of Claim 23, wherein said activity is a DNA replication activity.
- 5 30. The method of Claim 23, wherein said activity is a cell division activity.
31. A method for assaying compounds for the ability to reduce the activity or level of a polypeptide required for proliferation, comprising:

providing a target, wherein said target comprises the coding sequence of a sequence selected from the group consisting of SEQ ID NOs. 82-88, 90-242;

10 contacting said target with a candidate compound; and
measuring an activity of said target.

32. The method of Claim 31, wherein said target is a messenger RNA molecule transcribed from a coding region of one of SEQ ID. NOs.: 82-88, 90-242 and said activity is translation of said messenger RNA.

15 33. The method of Claim 32, wherein said target is a coding region of one of SEQ ID. NOs. 82-88, 90-242 and said activity is transcription of said messenger RNA.

34. A compound identified using the method of Claim 31.

35. A method for identifying compounds which reduce the activity or level of a gene product required for cell proliferation comprising the steps of:

20 expressing an antisense nucleic acid against a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell;

contacting said sensitized cell with a compound; and

determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.

36. The method of Claim 35, wherein said cell is selected from the group consisting of bacterial cells, 25 fungal cells, plant cells, and animal cells.

37. The method of Claim 36, wherein said cell is an *E. coli* cell.

38. The method of Claim 36, wherein said cell is from an organism selected from the group consisting of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species.

39. The method of Claim 35, wherein said antisense nucleic acid is transcribed from an inducible promoter.

40. The method of Claim 39, further comprising the step of contacting said cell with a concentration of inducer which induces said antisense nucleic acid to a sublethal level.

5 41. The method of Claim 40, wherein said sub-lethal concentration of said inducer is such that growth inhibition is 8% or more.

42. The method of Claim 40, wherein said inducer is isopropyl-1-thio- β -D-galactoside.

10 43. The method of Claim 35, wherein growth inhibition is measured by monitoring optical density of a culture growth solution.

44. The method of Claim 35, wherein said gene product is a polypeptide.

15 45. The method of Claim 35, wherein said gene product is an RNA.

46. The method of Claim 44, wherein said gene product comprises a polypeptide having a sequence selected from the group consisting of SEQ ID NOs.: 243-357, 359-398.

47. A compound identified using the method of Claim 35.

15 48. A method for inhibiting cellular proliferation comprising introducing a compound with activity against a gene corresponding to one of SEQ ID NOs.: 82-88, 90-242 or with activity against the product of said gene into a population of cells expressing a gene.

49. The method of Claim 48, wherein said compound is an antisense oligonucleotide comprising a sequence selected from the group consisting of SEQ ID NOs.: 405-485, or a proliferation-inhibiting portion thereof.

20 50. The method of Claim 49, wherein said proliferation inhibiting portion of one of SEQ ID NOs. 405-485 is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOs: 405-485.

51. The method of Claim 48, wherein said compound is a triple helix oligonucleotide.

25 52. A preparation comprising an effective concentration of an antisense oligonucleotide comprising a sequence selected from the group consisting of SEQ ID NOs.: 405-485, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier.

53. The preparation of Claim 52, wherein said proliferation-inhibiting portion of one of SEQ ID NOs. 405-485 comprises at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOs: 405-485.

30 54. A method for inhibiting the expression of a gene in an operon required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid, said cell expressing a gene corresponding to one of SEQ ID NOs.: 82-88, 90-242, wherein said antisense nucleic acid comprises at least a proliferation-inhibiting portion of said operon in an antisense orientation that is effective in inhibiting expression of said gene.

55. The method of Claim 54, wherein said antisense nucleic acid is complementary to a sequence of a gene comprising one or more of SEQ ID NOS.: 82-88, 90-242.

56. The method of Claim 54, wherein said antisense nucleic acid is a sequence of one of SEQ ID NOS.: 405-485, or a portion thereof.

5 57. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a plasmid which expresses said antisense nucleic acid into said cell population.

58. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a phage which expresses said antisense nucleic acid into said cell population.

10 59. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a sequence encoding said antisense nucleic acid into the chromosome of said cell into said cell population.

60. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a retrorvirus which expresses said antisense nucleic acid into said cell population.

15 61. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme is complementary to said antisense oligonucleotide.

62. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by introducing a liposome comprising said antisense oligonucleotide into said cell.

63. The method of Claim 54, wherein said cell is contacted with said antisense nucleic acid by electroporation.

20 64. The method of Claim 54, wherein said antisense nucleic acid is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive bases of one of SEQ ID NOS: 82-88, 90-242.

65. The method of Claim 54 wherein said antisense nucleic acid is an oligonucleotide.

66. A method for identifying bacterial strains comprising the steps of:

providing a sample containing a bacterial species; and

25 identifying a bacterial species using a species specific probe having a sequence selected from the group consisting of SEQ ID NOS. 405-485, 82-88, 90-242.

67. A method for identifying a gene in a microorganism required for proliferation comprising:

(a) identifying an inhibitory nucleic acid which inhibits the activity of a gene or gene product required for proliferation in a first microorganism;

30 (b) contacting a second microorganism with said inhibitory nucleic acid;

(c) determining whether said inhibitory nucleic acid from said first microorganism inhibits proliferation of said second microorganism; and

(d) identifying the gene in said second microorganism which is inhibited by said inhibitory nucleic acid.

68. A method for assaying a compound for the ability to inhibit proliferation of a microorganism comprising:

(a) identifying a gene or gene product required for proliferation in a first microorganism;

5 (b) identifying a homolog of said gene or gene product in a second microorganism;

(c) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said second microorganism;

(d) contacting said second microorganism with a proliferation-inhibiting amount of said inhibitory nucleic acid, thus sensitizing said second microorganism;

10 (e) contacting the sensitized microorganism of step (d) with a compound; and

(f) determining whether said compound inhibits proliferation of said sensitized microorganism to a greater extent than said compound inhibits proliferation of a nonsensitized microorganism.

69. The method of Claim 68, wherein said step of identifying a gene involved in proliferation in a first microorganism comprises:

15 introducing a nucleic acid comprising a random genomic fragment from said first microorganism operably linked to a promoter wherein said random genomic fragment is in the antisense orientation; and

comparing the proliferation of said first microorganism transcribing a first level of said random genomic fragment to the proliferation of said first microorganism transcribing a lower level of said random genomic fragment, wherein a difference in proliferation indicates that said random genomic fragment comprises a gene involved in proliferation.

20 70. The method of Claim 69, wherein said step of identifying a homolog of said gene in a second microorganism comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a database using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters.

25 71. The method of Claim 69, wherein said step of identifying a homolog of said gene in a second microorganism comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide by identifying nucleic acids which hybridize to said first gene.

30 72. The method of Claim 69, wherein the step of identifying a homolog of said gene in a second microorganism comprises expressing a nucleic acid which inhibits the proliferation of said first microorganism in said second microorganism.

73. The method of Claim 69, wherein said inhibitory nucleic acid is an antisense nucleic acid.

74. The method of Claim 69, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of said homolog.

75. The method of Claim 69, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding said homolog.

76. The method of Claim 69, wherein the step of contacting the second microorganism with a proliferation-inhibiting amount of said nucleic acid sequence comprises directly contacting said second microorganism with said nucleic acid.

77. The method of Claim 69, wherein the step of contacting the second microorganism with a proliferation-inhibiting amount of said nucleic acid sequence comprises expressing an antisense nucleic acid to said homolog in said second microorganism.

78. A compound identified using the method of Claim 68.

79. A method of assaying a compound for the ability to inhibit proliferation comprising:

(a) identifying an inhibitory nucleic acid sequence which inhibits the activity of a gene or gene product required for proliferation in a first microorganism;

(b) contacting a second microorganism with a proliferation-inhibiting amount of said inhibitory nucleic acid, thus sensitizing said second microorganism;

(c) contacting the proliferation-inhibited microorganism of step (b) with a compound; and

(d) determining whether said compound inhibits proliferation of said sensitized second microorganism to a greater extent than said compound inhibits proliferation of a nonsensitized second microorganism.

80. The method of Claim 79, wherein said inhibitory nucleic acid is an antisense nucleic acid which inhibits the proliferation of said first microorganism.

81. The method of Claim 79, wherein said inhibitory nucleic acid comprises a portion of an antisense nucleic acid which inhibits the proliferation of said first microorganism.

82. The method of Claim 79, wherein said inhibitory nucleic acid comprises an antisense molecule against the entire coding region of the gene involved in proliferation of the first microorganism.

83. The method of Claim 79, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding the gene involved in proliferation of the first microorganism.

84. A compound identified using the method of Claim 79.

85. A method for assaying compounds for activity against a biological pathway required for proliferation comprising:

sensitizing a cell by expressing an antisense nucleic acid against a nucleic acid encoding a gene product required for proliferation in a cell to reduce the activity or amount of said gene product;

contacting the sensitized cell with a compound; and

determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of an nonsensitized cell.

86. The method of Claim 85, wherein said cell is selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells.

87. The method of Claim 86, wherein said cell is an *E. coli* cell.

88. The method of Claim 85, wherein said cell is from an organism selected from the group consisting of 5 *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Enterobacter cloacae*, *Helicobacter pylori*, *Neisseria gonorrhoeae*, *Enterococcus faecalis*, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Salmonella typhimurium*, *Saccharomyces cerevisiae*, *Candida albicans*, *Cryptococcus neoformans*, *Aspergillus fumigatus*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Salmonella paratyphi*, *Salmonella cholerasuis*, *Staphylococcus epidermidis*, *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *Treponema pallidum*, *Bacillus anthracis*, *Yersinia pestis*, *Clostridium botulinum*, *Campylobacter jejuni*, and *Chlamydia trachomatis*, *Chlamydia pneumoniae* or any species falling within the genera of any of the above species. 10

89. The method of Claim 85, wherein said antisense nucleic acid is transcribed from an inducible promoter.

90. The method of Claim 89, further comprising contacting the cell with an agent which induces expression 15 of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is expressed at a sublethal level.

91. The method of Claim 90, wherein said sublethal level of said antisense nucleic acid inhibits proliferation by 8% or more.

92. The method of Claim 90, wherein said agent is isopropyl-1-thio- β -D-galactoside (IPTG).

93. The method of Claim 91, wherein inhibition of proliferation is measured by monitoring the optical density of a liquid culture.

94. The method of Claim 85, wherein said gene product comprises a polypeptide having a sequence selected from the group consisting of SEQ ID NOs: 243-357, 359-398.

95. A compound identified using the method of Claim 85.

96. A method for assaying a compound for the ability to inhibit cellular proliferation comprising:

25 contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell;

contacting said cell with said compound; and

determining whether said compound reduces proliferation to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.

97. The method of Claim 96, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises an antisense nucleic acid to a gene or operon required for proliferation.

30 98. The method of Claim 96, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises an antibiotic.

99. The method of Claim 96, wherein said cell contains a temperature sensitive mutation which reduces the activity or level of said gene product required for proliferation of said cell.

100. The method of Claim 99, wherein said antisense nucleic acid is directed against the nucleic acid encoding the same functional domain of said gene product required for proliferation of said cell to which said antisense nucleic acid is directed.

101. The method of Claim 99, wherein said antisense nucleic acid is directed against the nucleic acid a different functional domain of said gene product required for proliferation of said cell than the functional domain to which said antisense nucleic acid is directed.

102. A compound identified using the method of Claim 96.

103. A method for identifying the pathway in which a proliferation-required nucleic acid or its gene product lies comprising:

expressing a sublethal level of an antisense nucleic acid directed against said proliferation-required nucleic acid in a cell;

contacting said cell with an antibiotic, wherein the biological pathway on which said antibiotic acts is known; and

determining whether said cell has a substantially greater sensitivity to said antibiotic than a cell which does not express said sublethal level of said antisense nucleic acid.

104. A method for determining the pathway on which a test compound acts comprising:

(a) expressing a sublethal level of an antisense nucleic acid directed against a proliferation-required nucleic acid in a cell, wherein the biological pathway in which said proliferation-required nucleic acid lies is known,

(b) contacting said cell with said test compound; and

(c) determining whether said cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said antisense nucleic acid.

105. The method of Claim 104, further comprising:

(d) expressing a sublethal level of a second antisense nucleic acid directed against a second proliferation-required nucleic acid in said cell, wherein said second proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and

(e) determining whether said cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said second antisense nucleic acid.

106. A purified or isolated nucleic acid consisting essentially of one of SEQ ID NOS: 358, 399-402.

107. A compound identified using the method of Claim 23.

108. A compound which interacts with the gene or gene product of a nucleic acid comprising a sequence of one of SEQ ID NOS: 82-88, 90-242 to inhibit proliferation.

109. A compound which interacts with a polypeptide comprising one of SEQ ID NOS. 243-357, 359-398 to inhibit proliferation.

110. A compound which interacts with a nucleic acid comprising one of SEQ ID NOS: 358, 399-402 to inhibit proliferation.

Fig. 1

AS-rpW**Fig. 2a****AS-elaD****Fig. 2b**

Fig. 3

SEQUENCE LISTING

<110> ELITRA PHARMACEUTICALS, INC.

Zyskind, Judith
Ohlsen, Kari L.
Trawick, John
Forsyth, R. Allyn
Froelich, Jamie M.
Carr, Grant J.
Yamamoto, Robert T.
Xu, H. Howard

<120> GENES IDENTIFIED AS REQUIRED FOR PROLIFERATION IN
ESCHERICHIA COLI

<130> ELITRA.001VPC

<160> 485

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 159

<212> DNA

<213> E. Coli

<400> 1

```
caggtggtat ggaaacccaa aatggagacg ggaagctcaa ccagatagttt actggaggta 60
atcaccagca gatgaaataa cgataaccag aacaacgcct tatagcgttt agtttgcgag 120
aaaacgttca tattgtacct ttttggattaa ccattqqqqq 159
```

<210> 2

<211> 696

<212> DNA

<213> E. Coli

<220>

<221> misc feature

<222> (1)..(696)

<223> n = A, T, G or S

<400> 2

gattacatca	agcgcgccgt	gggtttaccg	ggcgataaaag	tcacttacga	tccggctcga		60
aaagagctga	cgattcaacc	gggatgcagt	tccggccagg	cgtgtaaaaa	cgcgcgtgccg		120
gtcacctact	caaacgtgga	accgagcgat	ttcggttcaga	ccttctcagc	ccgtaatggt		180
ggggaaagcga	ccagcggtt	ctttgaagtg	ccgaaaaaacg	aaacccaaaga	aatggatt		240
cgctttccg	agcgtaaaga	gacactgggt	gatgtgacgc	accgcattct	gacagtgccg		300
attgcgcagg	atcagggtgg	gatgttattac	cagcagccag	ggcaacaact	ggcaacctgg		360
attgttccctc	cgggacaata	cttcatgtg	ggcgacaacc	gcgacaacag	cgcggacagc		420
cgttactggg	gttttgtgcc	ngaagcgaat	ctggtcgtc	nggcaacggc	tatctggatg		480
accttcgata	accaagaagg	cgaatggccg	aatggctcgc	cctaantcgc	attggcgnt		540
ccnttaatan	ccacttcctt	cncttgcgc	ccttatgca	acacttaatt	tatntaaan		600
taatcncccc	tgcgtacaa	atccccgcct	tttnttaaaa	attccccna	anttaagggtt		660
ggcctccagt	tggccgnccc	aaacactttg	gncccc				696

<210> 3

<211> 681

<211> 001

<212> BNA

<220>
 <221> misc_feature
 <222> (1)...(681)
 <223> n = A,T,C or G

<400> 3

ctgcagggtta	atgtcgccat	taaactggcg	cagggcagcca	aagagttgct	ccgcttctac	60
ccagtccggca	gcgacaacctt	gcgttaaagt	cgcaaaaatta	tcatctgcac	tcactgcgtg	120
acgttaagccgg	atggagtgcc	cggaaacctc	atagtgaccg	cccaccagtt	ggcctgcac	180
gctttgttagc	gtacgcgcgg	cattggcaat	aagattcaga	tactcagact	cttccggggc	240
cttcgcccagc	ataaaaagagg	aggatgctcg	cgtatgcagc	aactgctcca	gcccggaaattg	300
cagccgcggt	tgagtatcac	tgaataaagg	atcggtttcg	tcaatcaa	gtggctgagc	360
aaatatattcc	tgatagctat	cggtatcagg	aaccagggtca	cgccatgcaa	gtttcgtaat	420
ggtcaaagg	gatgttttt	agtctgttgt	caaagccgcn	attataccng	taaccggcac	480
tacagcacac	gtagaaaagca	cccgacaata	ctccctggcat	gggcgttaaa	gctcacagga	540
tggagatctt	ttcttcactg	gcctaaaaag	ctgatattct	gtaaagagtt	acacngtaac	600
attgagatcg	ctatgaaata	tcaacaactt	ggaaaatctt	gnaaagcnng	ttggaaaatg	660
gaaagtatct	ggttaagaag	c				681

<210> 4

<211> 289
 <212> DNA
 <213> E. Coli

<400> 4

ggcagaattt	tacgctgacc	aatgacgcga	cgacgtggca	tggaaatact	ccgttgttaa	60
ttcaggattt	tccaaaactc	tacgagttt	gtttgacatt	taagtaaaa	cgtttggcct	120
tacttaacgg	agaaccatta	agccttagga	cgcttcacgc	catacttgg	acgagcctgc	180
ttacggcttt	taacgcgg	gcagtcaagc	gcaccacgt	cggtgtggta	acgaacaccc	240
gggaggtctt	taacacgacc	gtcacggatc	aggatcacgg	agtgcct		289

<210> 5

<211> 815
 <212> DNA
 <213> E. Coli

<220>

<221> misc_feature
 <222> (1)...(815)
 <223> n = A,T,C or G

<400> 5

gggagcttac	atcagtaagt	gaccgggatg	agcgagcgaa	gataacgcac	ctgcggcg	60
aaatatgaag	ggggagagcc	cttatacgacc	aggtagtaca	cgtttggtaa	gggggcctgc	120
atatggcccc	cttttcact	tttatactg	tgccgtttaa	tgccgggcag	atcacatctc	180
cgaggattt	agaatggctg	aaattaccgc	atcccctggta	aaagagctgc	gtgagcgtac	240
tggcgcagc	atgatggatt	gcaaaaaagc	actgactgaa	gctaacggcg	acatcgagct	300
ggcaatcgaa	aacatgcgt	agtccgggtc	tattaaagca	gcaaaaaag	caggcaacgt	360
tgctgctgac	ggcgtgatca	aaacccaaat	cgacggcaac	tacggcatca	ttctggaagt	420
taactgccag	actgacttcg	ttgcaaaaga	cgctggttc	caggcgttcg	cagacaaagt	480
tctggacgca	gctgttgctg	gcaaaaatcac	tgacgttgaa	gttctgaaag	cacagttcga	540
agaagaacgt	gttgcgttgg	tagcgaaaat	tggtggaaaac	atcaacattc	gccgcgttgc	600
tgcgctggaa	ggcgttgc	tgggttctta	tcagcacgg	gcccgtatcg	gccgttctgg	660
ttgctgctaa	aagcgctgac	gaagaactgg	ttaaacacat	cgtttgacc	tttggtaaa	720
gccaagccag	aattcagaga	aactttccgc	ttcacccggag	gtcccaccca	cangganccc	780
cgattnntc	agcatggtgg	tcttcctncc	gagtt			815

<210> 6

<211> 403
 <212> DNA

<213> E. Coli

<400> 6

caacactatt ttgttgaccg gaaaatggaa cactttccgc aatgcctgtt	gctatcacgc	60
ttaaacatt tcattgcgtt ttacacagaa cggacgtcct gtcgcagtat	attaagtcgt	120
cgatagaaac aaggcattgaa aggcacagca gtagtcaaacc agtgtgaaac	gtactggcg	180
ccttacagcg caaaaaggct ggtgactaaa aagtccaccag ccattcagcct	gatttctcag	240
gctgcaaccg gaagggttgg cttatttaac ttcaacttca gcccagctt	cttccagagc	300
tttttcaga tcttctgcgt cgtcttgcgtt caccgccttct ttcaagagc	ccgggtgcaga	360
ttcttaccagg tcttagctt cttagacc caggccagg tgc		403

<210> 7

<211> 149

<212> DNA

<213> E. Coli

<400> 7

gagctttttt cagtgcttct gcgtcgctt tgctcacgcc ttctttcaga	gcagccggtg	60
cagatttctac caggtcttta gcttcttca gaccaggcc agttgcgcctt	cgtaactgctt	120
tgataaacgc aactttgtta gcccagca		149

<210> 8

<211> 742

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(742)

<223> n = A,T,C or G

<400> 8

ccatctgtcc attgagcgga cagtttgtc aacactattt tggtgaccgg	aaaatggAAC	60
actttccgca atgcctgttgc ctatcacgct taaaccattt cattgcgtt	tacacagaAC	120
ggacgtccgt tcgcgttata ttaagtgcgtc gatagaaaca agcattgaaa	ggcacagcAG	180
tagtcaaaca gtgtgaaacg ctactggcgc cttacagcgc	aaaaaggctg gtgactaaaa	240
agtccaccgc catcagcctg atttctcagg ctgcaaccgg aagggttggc	ttatTTAact	300
tcaactttag cggcagcttc ttccagagct ttttcaga	cttctgcgtc gtctttgctc	360
acgccttctt tcagagcagc cgggtcagat tctaccaggt	ctttagctt tttcagacCC	420
aggccagttg cgccacgtac tgctttgata acagcaactt	tgtagcgcc agcagcttC	480
agaattacgt cgaattcagt ntnttcttca gcaacttcaa	ccggccagc agctacagct	540
acagcagcag caagcgaaaa caccgaattt ttcttccatt	gcagagatca gttctacaAC	600
cgtccattac agacatagct gcaactgctt caatgattt	gatcttagt ggatagacat	660
ttaaattgtt cctgaattat caagaataa gtnttatacg	taagccgaaa tgcgttaaaa	720
aagataactg ngattaaagc ag		742

<210> 9

<211> 421

<212> DNA

<213> E. Coli

<400> 9

agttagtcaaa cagtgtaaaa cgctactggc gccttacagc	gcaaaaaggc tggtagactaa	60
aaagtccacca gcccattcgtcc tgatttttca ggctgcacc	ggaagggttg gcttattttaa	120
cttcaacttc agcgccagct tcttccagag ctttttcag	tgcttctgcgt tcgtctttgc	180
tcacgccttc ttccagagca gcccgtgcag atttaccag	gtctttagct ttttcagac	240
ccaggccagt tgcgtccacgt actgcttga taacagcaac	tttggtagcg ccaggcagctt	300
tcagaattac gtcgaattca gtttttctt cagcagcttc	aaccggccca gcagctacag	360
ctacagcagc agcagcgaaaa acaccgaatt ttcttccat	tgcagagatc agttctacaa	420
C		421

<210> 10
<211> 126
<212> DNA
<213> E. Coli

<400> 10
agagc~~t~~tttc tca~~g~~tgcttc tgcgtcg~~t~~ct ttgctcacgc cttctt~~c~~ag acgagccgg~~t~~ 60
gc~~a~~ga~~t~~tcta ccagg~~t~~ttt ag~~c~~ttcttc agacccaggc cagttgc~~g~~cc acgtactg~~c~~ 120
ttgata 126

<210> 11
<211> 262
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(262)
<223> n = A,T,C or G

<400> 11
ctgcaaccgg aagggttggc ttat~~tta~~act tcaacttc~~a~~g cgccagcttc ttccagag~~c~~ 60
tttt~~c~~agt~~t~~ cttctgc~~g~~tc gtctt~~g~~tc acgc~~c~~ttctt tcagagc~~g~~gc cgntgc~~a~~gat 120
tctaccagg~~t~~ ct~~t~~tagcttc tt~~c~~agaccc aggccagtt~~t~~ cgccacgtac tgctt~~g~~ata 180
acagcaactt tg~~t~~tagc~~g~~cc acgagcttc agaattacgt cgaattc~~a~~gt tt~~t~~ttcttca 240
gcagc~~t~~caa ccggcc~~a~~gc ag 262

<210> 12
<211> 202
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(202)
<223> n = A,T,C or G

<400> 12
g~~c~~gc~~a~~cc~~t~~accc tgc~~a~~gcatcg gccc~~g~~at~~g~~ga gatcagg~~t~~cg gcagaac~~g~~ct gtacc~~g~~cttt 60
gt~~a~~gg~~t~~gg~~t~~g ttac~~c~~gg~~t~~gn tca~~g~~atcc~~g~~g gaagat~~g~~aac acgg~~t~~agc~~g~~c gac~~c~~tgc~~a~~ac 120
cggag~~a~~gttc ggc~~c~~ttt~~g~~g at~~t~~nc~~g~~caac gtc~~a~~g~~c~~att acc~~g~~c~~a~~g~~c~~gt cgtact~~g~~cag 180
cggacc~~g~~gg~~c~~g at~~c~~at~~c~~agg~~t~~ ca 202

<210> 13
<211> 261
<212> DNA
<213> E. Coli

<400> 13
tctagg~~g~~at~~a~~tagctt caaattc~~a~~gc agtt~~g~~ac~~a~~gt ggcataaaac~~g~~ taact~~g~~gt~~g~~ 60
cttt~~t~~cc~~c~~cc~~g~~ gcat~~g~~ac~~g~~cc gggctttttt tattattcc~~g~~ tgacttcc~~a~~g cgt~~a~~gt~~g~~aag 120
g~~c~~aa~~a~~ctt~~t~~ct c~~g~~ccat~~c~~aaa tagcccc~~t~~ga ctgg~~t~~tag~~t~~ tt~~a~~g~~c~~gc~~g~~gg~~t~~ gat~~c~~act~~g~~gc 180
a~~g~~ag~~a~~aa~~g~~aa acg~~c~~cat~~t~~g aataaaac~~g~~gc t~~c~~at~~c~~gg~~t~~ a~~c~~gg~~a~~cc~~g~~ca tt~~c~~ac~~g~~gg~~c~~g 240
gcggc~~t~~tt~~c~~a agg~~c~~gt~~c~~aat t 261

<210> 14
<211> 224
<212> DNA
<213> E. Coli

<400> 14

ttcttttttt cgtcaacggt gtccagaatc attttattta cctcgggta cttatgctga	60
tttttattat tatgggaag gtgttattta tgagttcat ttatgccgt aacgacaatga	120
actcgaaat tagtataagc agcgcgagaa taataaatcat tgtgcaaattg ctaatttaat	180
taataactatt taaatattat tttgagcata tgcacataag gttt	224
<210> 15	
<211> 232	
<212> DNA	
<213> E. Coli	
<400> 15	
aattcccttc ttttttcgt caacggtgtc cagaatcatt ttatattaccc cggtactta	60
tgctgatttt tattattatg gggaaagggtgt tatttatgag tttcattttat gccgtaacga	120
caatgaactc gggaaattgt ataagcagcg cgagaataat aatcattgtg caaatgctaa	180
ttaatttaat actattnaa tattattnagcata agcatatgca cataaggttt gg	232
<210> 16	
<211> 212	
<212> DNA	
<213> E. Coli	
<400> 16	
aatagcggt atgcacgcct ttctttttt cgtcaacggt gtccagaatc attttattta	60
cctcggtac ttatgctgat ttttattattt atggggagg tgttattttat gagtttccatt	120
tatgcccgtaa cgacaatgaa ctggaaattt agtataagca gcgcgagaat aataatcatt	180
gtgcaaatgc taatttaattt aataactattt aa	212
<210> 17	
<211> 433	
<212> DNA	
<213> E. Coli	
<400> 17	
ccttgtaaat ttcgtccgt ggcataaaaaa ctgcgtccaa acgcccgtt tgccagcagc	60
caggccataa atgcccaccag aattatcgtc aaccaaccaa ttgctgaaac gccaagcagc	120
agcgccccgg agagctgttt cagttccggc ggttaaccctt caatccattt gcccggatc	180
cacagcaaca tgcgtccctt gtacaacccctt aacgtgccaa gggtgccaaac aatggcaggg	240
atcttttagcc acgcgaccag gacaccgtt aaaaatcccg cgagcaaaccc aagcagtaaa	300
gtcgccgacac aagcaacagg tagtgaatat cctgcgttca gtaacatccc caacagcacc	360
gcccacattc cggtaatcga acccactgaa acatcaatat tgcgtcgtaa cattaccaggc	420
gtcgccccc ttg	433
<210> 18	
<211> 658	
<212> DNA	
<213> E. Coli	
<400> 18	
cgtgcgttcc cgggttgtggc aaccccgccaa atggcgccggc ggtaaatgt gccccgttat	60
tccttccccg ttgaggacac cgggttgtca ggttgcattt acgcttaagt gacaaccccg	120
ctgcaacggc ctctgttattt aattttctgg tgacgtttgg cggtatcagt tttactccgt	180
gactgctctg ccgcctttt taaaatgttattt ttgtgtatgt ggtgaatgcg gctgagcgc	240
ccggaaacag taaaacccaa aaacagtgtt atgggtggat tctctgttac cggcgtaat	300
tgttaacttgg ttaacgtcac ctggaggcac caggactgc atcacaaaat tcattgttga	360
ggacgcgata atgaaaacgt tattaccaaa cgttaatacc tctgaagggtt gttttgaaat	420
tggtgtcact atcagtaacc cagtatttac tgaagatgcc attaacaaga gaaaacaaga	480
acgggagcta taaaataaaa tatgcattgt ttcaatgtc gctcggttac gtctgtatgcc	540
aaaaggatgt gcacaatgaa ttcaagcattt gtgctgttc tgacagttt tcttgtttcc	600
ggagagccag ttgatattgc agtcaagtgg tcacaggaca atgcaggagt gtatgact	658

<210> 19

<211> 588

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(588)

<223> n = A,T,C or G

<400> 19

gtgactgctc tgccgcctt tttaaagtga attttgtat gtggtaatg cggctgagcg	60
cacgcggAAC agttaaaacc aaaaacagtG ttatgggtgg attctctgtA tccggcgTTA	120
attgttaact ggttaacgTC acctggaggC accaggcact gcatcacAAA attcattgtT	180
gaggacgCGA taatgAAAAC gttattacca aacgttaata cgtctgaagg ttgtttgAA	240
attgggtgtCA ctatcagtaa cccagtattt actgaagatG ccattaacAA gagaaaaacAA	300
gaacgggAGC tattaaataa aatatgcatt gttcaatGC tggctcgTT acgtctgATG	360
ccaaaaggAT gtgcacaatG aattcagcat ttgtgcttGT tctgacagTT tttcttgTT	420
ccggagagCC agttgatatt gcagtcaGtG ttcacaggac aatgcangAG tgtatgactG	480
cagcaacCCG aacagaaaaat tcccgtaac ttttacCCG tcgataaaAGT tattcaccAG	540
gataatatCG aaatcccGGC aggtcttaa aacagttccG taataaaAT	588

<210> 20

<211> 101

<212> DNA

<213> E. Coli

<400> 20

gatccagcaa gaagatgcgg ttgtaccgTC atcacgcaga tgcgcAAAGC tactcagCAA	60
ctgacCTTTC ttCGCAATAA gcacGCCATT agcgtcatAG a	101

<210> 21

<211> 465

<212> DNA

<213> E. Coli

<400> 21

tgcgtgtTTT accttcaaca tcggtaactt tctggcgGA agtttacCGG taagcaacCT	60
gcggTTTacc tacgttCGCT tcaacgtGA attcacGCTT catacgGTCA acgatgatGT	120
cgaggGTGcAG ttCGCCATA cccgcgtGA tggctcgTT agatttCTG tcagTCATA	180
cacggAAAGA cgggttCTCT ttagccAGAC ggCCCAgAGC cagaccCATT tttcctGGT	240
cagCTTGTGt ttCGGTtCA actgcgtatGG agattaccGG ctcagGAAT tccatacGT	300
ccagaatGAT cggcgcATCC gggtcacACA gggTGTcACC agtggTTacG tctttcAGAC	360
cgatAGcAGC agcgtatGtG cccgcgcGAA ctTCTTGTat ctTCTCACGT ttgttagcGT	420
gcatctGAAC gatacgacCG aaacgctCAC gtgcagCTT cacGG	465

<210> 22

<211> 859

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(859)

<223> n = A,T,C or G

<400> 22

tgatcggtc aagcagaACT ggTTcGCT tcttaaAGCC ttctttaaAG gcgatAGAAG	60
cagccAGTT aaacGCCAGT tcagaggAGT caacgtCATG gtaAGAAccG aagtgcAGAC	120
gaataccCAT gtctactacc gggtagcTG ccagcggacc tgcttcAGC ttGTTCTGGA	180
tacCTTtATC aacggccGGG atgtattcGC caggattAC accacTTA atgtcgttGA	240
tgaactcgTA gcsttccGGG tttGAACCCG gctccAGCGG gtacatgtCG ataacaacAT	300

gaccatactg accacgacca ccagactgtt tcgcgtgtt accttcaaca tcggtaactt 360
 tctggcgat agttcacgg taagcaacct gcggtttacc tacgttcgct tcaacgttga 420
 attcacgtt catacggtca acgatgatgt cgaggtgcag ttgcggccata cccgcgatga 480
 tggtctgggtt agattcttcg tcagtcata cacggaaaga cgggtcttct ttagccagac 540
 gggccanagc cagacccatt tttccctgggt cagcttttgtt tttccggtaa ctgcgttgga 600
 gattaccggc tcanggaatt tccatacattt ccaggaatga tcggcgcatt cgggtcaaac 660
 anggngtacc aggggggtac ntnttttaa nancattgc cagcancgga tntnnccgn 720
 gccnaacttc ttggAACNN tttaccgggtt ggtaaccnnc ctttnaacf atccaaccgaa 780
 aaaagngtta annGCCANTT ttccnngngt tnanntncgg ntcccngaa ntaaccCNCC 840
 cggggtnaac ccngnaaaa 859

<210> 23

<211> 269

<212> DNA

<213> E. Coli

<400> 23

ctttcttaaa gccttcttta aaggcgatag aagcagccag tttaaacgcc agttcagagg 60
 agtcaacgtc atgtaagaa ccgaagtgc gacgaaatacc catgtctact accgggttagc 120
 ctgcccaggcg acctgtttc agctgttcctt ggtatcctt atcaacggcc gggatgtatt 180
 cggcagggtat tacaccaccc ttaatgtcgt tgatgaaatc gtggccttcc gggtttgaac 240
 cgggctccag cgggtacatg tcgataaca 269

<210> 24

<211> 330

<212> DNA

<213> E. Coli

<400> 24

gttttgggaa gatgtaaggg ctaatctgaa tggctgcatt ccttggtaaa ggaaaaacga 60
 atgactgatt gcccataccct gattaaacgg gtcataaaaa tcatacatgc tggtttacag 120
 ctgatccttc tggtttata acacaaggaa acgtacttaa ggtgcgtcc ggtgaaccagt 180
 cggacgcacc tttataact ataaataagt gtctgggcag atactatata aattaactta 240
 gtgaatgatt atgtaatgt catcaattaa ataaatataa tggcgttaag gcttcccagt 300
 aatataattt atactctact tccagagtag 330

<210> 25

<211> 471

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(471)

<223> n = A,T,C or G

<400> 25

gttttgggaa gatgtaaggg ctaatctgaa tggctgcatt ccttggtaaa ggaaaaacga 60
 atgactgatt gcccataccct gattaaacgg gtcataaaaa tcatacatgc tggtttacag 120
 ctgatccttc tggtttata acacaaggaa acgtacttaa ggtgcgtcc ggtgaaccagt 180
 tcggacgcac cttataac tataaataag gtctgggcag atactatata aattaactta 240
 agtgaatgat tatgtaatgt tcataattaa ataaatataa atggcgttaa ggcttcccagt 300
 tataattt aatactctac ttccagagta gaatattaaa ttttatccgc gtggtgcatc 360
 agcacaaattt tatcccacaa ctgttcttct gtctcgacat gccccccgat ctttnacaaa 420
 tantattggg ggatnggc cnccttttgc aggttggg gtcntctnat g 471

<210> 26

<211> 379

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(379)

<223> n = A,T,C or G

<400> 26

natctgantg	gctgcattcc	ttgtttaagg	aaacccgaat	gactgattgc	cgataacctga	60
ttaaacgggt	catcaaaaatc	atcattgctg	tttacagct	gatccttctg	ttcttataac	120
acaaggaaac	gtacttaagg	tgcgtccggt	gaaccagtgc	gacgcacctt	taataactat	180
aaataagtgt	ctggcagat	actatataaa	ttaacttagt	aatgattat	gctaattgtca	240
tcaattaaat	aaatataatg	gcgttaaggc	ttcccagtaa	tataattaat	actctacttc	300
cagagttagaa	tattaaattt	tatccgcgtg	gtgcattcgc	acaaatttat	cccacacaactg	360
ttcttctgtc	tcgacatgc					379

<210> 27

<211> 799

<212> DNA

<213> E. Coli

<400> 27

aaagatgatg	tgtatgagaaa	gtcaatttga	ataagacaaat	attaagagct	aaaaaaatgt	60
caaaaaacac	taaatcaaaa	aataatggca	ttagaaaata	taatgcgaaa	acggagggtga	120
aattagttt	tttcaaatttga	ggaaaatctc	ccggcgaaaa	aaccgggaga	tgaaagtgtg	180
atgggtatca	aataaacaac	agaggagaaa	tttttaacgc	agccatttcag	gcaaatcggt	240
taatcccatt	gccttgcgga	taagttgcgg	cttaacgcga	ggaagcgtgt	cggccagtt	300
caaaccata	tcacgcagca	gttttttcgc	cgatttgta	ccggaaaaaca	gatcgcggaa	360
tccctgcata	ccagccagca	tcaacgcgc	actgtgcgttgc	cggctacgct	catagcgacg	420
cagataaatg	tactgcccga	tgtctggat	ccgtcgacct	gcagccaagc	ttgggcttt	480
cagcctgata	cagattaaat	cagaacgcag	aagcggctgt	ataaaaacaga	atttgcctgg	540
cggcagtagc	gcgggtgtcc	cacctgaccc	catgccgaac	tcagaagtga	aacgcccgt	600
gcccggatg	gtagttgtgg	gtctcccat	gcgagagtag	ggaactgcca	ggcatcaaata	660
aaaacgaaag	gctcagtcga	aagactggc	ctttcggttt	atctgtgttgc	tgtcggtgaa	720
cgctctctga	gtaggacaaa	tccgcggga	gcccatttttgc	aacgttgcga	aacaaccggc	780
ccggaaaggg	gtggggct					799

<210> 28

<211> 636

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(636)

<223> n = A,T,C or G

<400> 28

agggggtttg	ttgtggcaa	tgtatgcattt	aagttatcg	ctgcagatag	aggagatatt	60
acaaaaaca	acgaatcagg	gcatttgcata	gtcaataccg	caatttctatc	aggagatata	120
gtcactctaa	gaggaggaga	aattagggttgc	gtattatagc	ttgtgcgcgc	catgattggc	180
gcgcatttta	aacttagtgc	tttacatcgc	tattgtcttgc	atttcttgc	atttattttat	240
aaaaattaaaa	aacgactgtt	atgtataagc	aaaggtcgaa	cgaaaaatac	attccaaata	300
aatgcttgc	taaatctcta	tatccttccc	cggaaaaatgt	cacataaaat	tgagatattc	360
aaaaaagaga	tactacaaat	aaagatgcct	ttattttttattt	atttctaata	aaaatagaag	420
caataaaaaaa	taataacaat	gatataaaatc	taatgttttgc	aaatataatttgc	tctttatgt	480
tagtaatagt	cgttagtgc	tttgatttgc	cataattttac	gtgtgttttgc	ttatatacat	540
ggaaataattt	ntcttataac	tgagacatca	caccatcatc	aatgaaagt	ttgaagatgg	600
tgcttgggtt	gtcaaccaat	aaaaagagtg	cattcg			636

<210> 29

<211> 757

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(757)

<223> n = A,T,C or G

<400> 29

cagcggctgt	attttagca	tggttttta	ttggcggtta	tgctgccccg	ggagcataaa	60
gatgaaaaaa	acaacgatta	ttatgatggg	tgtggcgatt	attgtcgta	tcggcactga	120
gctgggatgg	tggtaacgtc	acctctaaaa	aatagcaaag	gctgcctgtg	tgcagccctt	180
gtgcaattta	agcgtaact	ttaatcttc	ctgttagataa	atagcacgac	aatcgcacca	240
ataacggcaa	ccacgaagct	gccaaaattt	aaggcatcga	ctttaccaaa	gccaaacagc	300
gtgctgatcc	atccgcccac	tacggcaccg	actatcccc	gcaggatagt	cataaagaat	360
ccacccat	cttacctgg	catgatccac	ttcggccagaa	tacccgcaat	aagcccaaaa	420
ataatccatg	acagaatgcc	cattgttcc	tcacttatct	gttttgcatt	agcggggttag	480
tcgctgataa	aaagcatagc	acaacatcgg	gagggcaaga	tttgcgtacga	gcatcacgga	540
ggtttttttt	gcatggcgc	agaaatttgcg	ccatcaacga	tcagtgataa	ttaccaacca	600
caaacatcat	gttcgttttc	cgtgtcataa	gaaccgtacg	ggattcacca	gatcttttat	660
cacttcaagc	cggcacttct	ggcaccagca	aagtcatcgg	cgtctcttgt	tcataatcga	720
ccggaaacgc	cattgcttgt	attggtaacn	gtcacgg			757

<210> 30

<211> 392

<212> DNA

<213> E. Coli

<400> 30

aattacagaa	aaaggaggca	atatcggtta	aaggcattag	cccgacgaat	acgtcgggct	60
acaaatatta	ttgtgctgca	ggtgttttag	cgggttgttg	atccacaggt	tctaactgg	120
agaccacatc	gacctgatca	tcaaactgaa	tagcggcctg	ctcgtaagtt	tcctggcgg	180
acacccggcgc	ggcatcggtc	t'catcatcc	gcaccattgg	gctgggctga	tagttggaaa	240
catggtagcg	cacgctatat	accggcccca	gtttacgtat	aaagccgttc	gccagttcct	300
gcccctgtat	aatcgcgtta	tcaatcgctg	ccttacgcgc	tttgcgttta	taggcaccc	360
gctgcgcccc	gcccagcgcac	acagaacgaa	tt			392

<210> 31

<211> 351

<212> DNA

<213> E. Coli

<400> 31

ctatccttga	tgaaaccgcg	agcaaagata	ggtgattacg	tcatggttt	acagaaaaatt	60
acagaaaaag	gaggcaatat	cggtaaagg	cattagcccc	acgaataacgt	cgggctacaa	120
atattattgt	gctgcagggt	tttagcggg	tttgtgatcc	acaggttcta	actggaaagac	180
cacatcgacc	tgatcatcaa	actgaatagc	ggcctgctcg	taagttcct	gggcggacac	240
ccgcgcggca	tcggctttca	tcatccgcac	cattgggctg	ggctgatagt	tggaaacatg	300
gtagcgcacg	ctatataccg	gccccagttt	acgatgaaag	ccgttcgc	g	351

<210> 32

<211> 762

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(762)

<223> n = A,T,C or G

<400> 32

aattatgaaa	cactgtctgg	aatcgctcga	atgacgggca	catttgcgag	cacgcaccca	60
------------	------------	------------	------------	------------	------------	----

gtaataaacac	aggaaaactat	tttatctacg	cgttagcgat	agactgcttg	catggcgaaa	120
ggaggttaagc	cgacgatttc	agcgggacgc	tgaaacggga	aagccctcc	cgaggaaggg	180
gccataaaat	aggaaagggt	catgatgaag	ctactcatca	tcgtgggtct	cttagtcata	240
agcttccccg	cttactaaga	ctaccaggc	gggggaaacc	ccgctctacc	ctcaactctg	300
aaagtatgcc	ttcacgataa	gattgtcaat	ccgcaggct	tgttagtctgc	gatectgcca	360
gcaaataattc	tttgcgagtc	gttacgcaat	aatcacagag	gaaactattt	tattcacgctg	420
ttagcgatag	actgcattca	gggcgaaagg	aggttaagccg	atgatttcag	cgggacgctg	480
aaacggggaaa	gcctctcccg	gagaagaggg	cttttaataa	ggaaagggtt	atgatgaagc	540
acgtcatcat	actggtgata	ctcttagtga	ttagcttcca	ggcttactaa	gaacaccagg	600
gggagggggaa	aaccttctcc	taaceccac	ttctgaaatt	gggtgctatg	acgctggcgt	660
tactgcttan	cgctaccagt	ttgtctgccc	tggcggttgc	aacgccagat	cggtaccctgt	720
ttggatattt	taatgaaagc	cgacaatca	atcancgtga	cg		762

<210> 33

<211> 293

<212> DNA

<213> E. Coli

<400> 33

gcacatttgc	gagcacgcac	ccagtaataa	cacaggaaac	tatTTTATCT	acgcgttagc	60
gataagactgc	ttgcatggcg	aaaggaggt	agccgacgt	ttcagcggga	cgctgaaacg	120
gaaaagcccc	tcccgaggaa	ggggccataa	ataaggaaag	gtcatgtat	aagctactca	180
tcatcgttgt	gtcttagtgc	ataagcttcc	ccgcttacta	agactaccag	ggcgggggaa	240
accccgctct	accctcactc	ctgaaagtat	gccttcacga	taagattgtc	aat	293

<210> 34

<211> 633

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(633)

<223> n = A,T,C or G

<400> 34

atttacactt	tttacgaaat	catggatca	ctaacaaaat	atcgcttgct	agttatattg	60
tatggcagga	aagatatgcg	actgatatta	cagatcccc	aagtggagag	tttatgacca	120
ttaaaaataa	gatgttgcgt	ggtgcgcctt	tgcgggtac	cagtgcgc	tggccgcac	180
cagccaccgc	gggttcgacc	aatacctcg	gaatttctaa	gtatgagtt	agtagttca	240
ttgctgactt	taagcatttc	aaaccagggg	acaccgtacc	agaaatgtac	cgtaccgatg	300
agtacaacat	taagcagtgg	cagttgcgt	acctgcccgc	gcctgatgcc	gggacgcact	360
ggacctataat	gggtggcgcg	tacgtgttga	tcagcgacac	cgacggtaaa	atcattaaag	420
cctacgacgg	tgagatTTT	tatcatcgct	aaaaaaagcc	ccctcatcat	gagggggaaa	480
tgcagacacc	ttgnatTTT	ttattattag	ccacttgctc	gtcttgctt	gtattaagtc	540
gtatTTcacg	ttgattaatg	cngtggctc	cagtgcgc	gattaactt	gttggatcg	600
aagacgtagt	aactggctgg	ttatcgaaat	tgg			633

<210> 35

<211> 569

<212> DNA

<213> E. Coli

<400> 35

tatggcagga	aagatatgcg	actgatatta	cagatcccc	aagtggagag	tttatgacca	60
ttaaaaataa	gatgttgcgt	ggtgcgcctt	tgcgggtac	cagtgcgc	tggccgcac	120
cagccaccgc	gggttcgacc	aatacctcg	gaatttctaa	gtatgagtt	agtagttca	180
ttgctgactt	taagcatttc	aaaccagggg	acaccgtacc	agaaatgtac	cgtaccgatg	240
agtacaacat	taagcagtgg	cagttgcgt	acctgcccgc	gcctgatgcc	gggacgcact	300
ggacctataat	gggtggcgcg	tacgtgttga	tcagcgacac	cgacggtaaa	atcattaaag	360
cctacgacgg	tgagatTTT	tatcatcgct	aaaaaaagcc	ccctcatcat	gagggggaaa	420

tgcagacacc tggtaatatttt ttattatttag ccacttgctc gtcttgcttg ttatttagtcg	480
tatccacgt tgattaatgc gggtgcctcc agtgcgccag atttaacttt gtttgtatcg	540
tagacgtagt aactggctgg tatcgaat	569
<210> 36	
<211> 338	
<212> DNA	
<213> E. Coli	
<400> 36	
cgttattcaca tccttttgcgat tgggtgataaac atgcgaatcg gtattatattt tccgggttgta	60
atcttcatttta cagcggtcgat attttttagca tgggttttttta ttggcggtca tgctgccccg	120
ggagcataaaa gatggaaaaaa acaacgatta ttatgatggg tgtggcgatt attgtcgat	180
tcggcactgc ctgggatggg ggttaacgtca cctctaaaaaa atagcaaagg ctgcctgtgt	240
gcagccttg tgcatttaa qcgtaactttaatcttcc tgttagataaaa tagcacgaca	300
atcgcaccaa taacggcaac cacgaagctg ccaaaatt	338
<210> 37	
<211> 375	
<212> DNA	
<213> E. Coli	
<400> 37	
ctgaatatttt aaaaaggaaa acgacatgaa accgaagcac agaatcaaca ttctccaatc	60
ataaaatattt tccgtggagc attttattat tgaatataga ggtttaactc cggtaaaaaa	120
caaagaagca ttgaatgcag ggaaaaataaa tatggccata aaaaacatcg aaagaaaactc	180
tttaattta acatgttaaac gcatggttaa tcctcataatc acgggtggag tgttaagaac	240
atacataaaat ggagtcatgt ttccctttt ccatttatca agttcctgtt gccgttttag	300
tccatctcta attgcattt ttaattttc tgataaatgg cattgagcat cgatttcatt	360
taaaaacaact gtaca	375
<210> 38	
<211> 446	
<212> DNA	
<213> E. Coli	
<400> 38	
ttacgatagc tattagtaaa aatataagag ttagctgtat tgttatgtct gtggcgaaat	60
tgactacctt cgttttttg attaagaatg attttattat cgtaagtaaa attacatgaa	120
tatccatggaaa ggaaaacgac atgaaaccga agcacagaat caacattctc caatcataaa	180
atatttccgt ggagcattttt attattgaat atagaggtt aactccggta aaaaacaaag	240
aagcattgaa tgcaggaaa aataatatgg ccataaaaaaa catcgaaaga aactcttta	300
atccatggatg taaacgcattg gtaatccctc atatcacggg tggagtgtt agaacataca	360
taaatggagt catgtttcc ctttccatt tatcaagttc ctgttgccgt tttagtccat	420
ctctaaattgc atattttat ttttct	446
<210> 39	
<211> 392	
<212> DNA	
<213> E. Coli	
<220>	
<221> misc_feature	
<222> (1)...(392)	
<223> n = A,T,C or G	
<400> 39	
tcaccccggt gcccattttc aggcatcctg atttaactta gcacccgcaa cttaactaca	60
ggaaaacaaa gagataaatg tctaattctg atgcaaatcg agccgatttt ttaatcttta	120
cggttttta cccgcctgggt ttattatgg cactgtnatc cggcggtcg cccgctttaa	180
tcacaatagg ctgtgttagcc tgggcctgtt tctcttccac ccgcgccaga gcccagcaa	240

tcgcatctt atctttggct gcagggtgaa cggctgcgct cttatgtcgta tcaaggcgag	300
ccgcttttc ggcgtccaga cgagcctggc ggcgttcgaa acgcgcatttgc ttctgtcgaa	360
cncgcatttc ttccctgacga atagccgaa tt	392

<210> 40
<211> 208
<212> DNA
<213> E. Coli

<400> 40	
taataaacgt atctgcggat aaagcagaat aggtggtaa ccccagacat aaaccgagga	60
aaataaatgtt attgtatttc ataatctatt gttccttagc gacagattgc tgtctgtgg	120
ttcagtaagg taccaggaga aacttcagga agcttgtact cgacaataca gtttgagttt	180
ttatctttgc cccatgaaac ctgttaatt	208

<210> 41
<211> 342
<212> DNA
<213> E. Coli

<400> 41	
catcctcaat accgttaaat gcaacccgaa cccccgttgc cccttgctg cattcaactt	60
acgtaatctg aaaagggacg gctggacttg tgctaccggc cggtgaaat tgtctggcac	120
tgttttttg gagatctacg gtaaaattaa gcgaatccga tgagactgtg cagccataat	180
cgaggacgcg cccgtaatt ttaataacgc tatctgcggta taaagcagaa tagtgtgta	240
accccagaca taaaccgagg aaaataatgt tattgtattt cataatctat tttcccttag	300
cgacagattt ctgtctgctg gttcagtaag gtaccaggag aa	342

<210> 42
<211> 841
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(841)
<223> n = A,T,C or G

<400> 42	
agatttactg ccaatttccg gcagatcgga aagggttaaa ccatattgtat ccataagggt	60
acgaatcacg gctataccgc caggcatggc ttgagccatg gcattaaattt ccgcaaattc	120
gggcgctgat tcttcccacg cggttatttt ggacacacacc agatccagca aggggttttc	180
aggatcggtg agcagcagat gatctaccag ttnccagcgc tgggtgtatt gntccctgtt	240
ctgaataaccc gnnagaaaag gtgccacagc anttagctt tctccctgctt gcaagatgtc	300
tggcaatngc aatcattttt tgcacttant acgatgnaca ncngtaaaga aatcgnattt	360
ttntatgccc tcataacttt acgtatgtan cacttttgc nattcnaaaa aagaccattt	420
gctncaacac gtaaatttta ttgnccna catttanaac ataaatgntt aaaatttcc	480
ccccncnnan ttttaagnnt ttnanagaat nggaaattac ctgctttta atgnactcan	540
anttttttng naataattcc tntatcnaan ctnntttcn cccaanagnnc nnccaaattn	600
cggttttntn nttnncnngg cttttttta cccnanaann tttattcaan nccttttttg	660
tagnctattt naagnggnct ttnttnnatt aactttccnn ttggncaaat tttggcnat	720
ttttatatan aattntctta tntctaatt tnggnanc cngatgnaan tttatggngg	780
gantccnnnt ccctntttaa nnatgntct gggntatttt taaancctnn attaannnn	840
c	841

<210> 43
<211> 215
<212> DNA
<213> E. Coli

<400> 43

aataactttt cgttaggcag ttttgggtgt gagttgcaag aggggagact actgaataac	60
tcaagttta taatcgaggg gaaaatggt atggcgttca tagcaaaacg ccctcaacca	120
taaaggtcga gggcgcttaa gatgttaaaa acccgctatc cgtaaaaaaa caatgtcaa	180
ctaaggtcag tgacattgcg ctaaaaaaagc gaatt	215

<210> 44
<211> 395
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(395)
<223> n = A,T,C or G

<400> 44	
gcattattca tgagaaatgt gtatcgtaaa tcaactgaaa ttaacgcaac catttggtat	60
ttaaggttta attatctgtg tgtgatattt tattgaatgt tttaaatatt gtttttattg	120
gcattgctat aatattggtt atcatttgct gaatggattc agtcttaatg agtgggttt	180
taagggacag gcatacaga atgatacgtt tgcataacca acatctttac tcattatgtc	240
attgaatgtt gaccctatgt gtttatgaag gagaggtatt ttcaattgtat ctggatttgt	300
aaattcatat aatgcgcctt tgctcatgaa tggatgccag tatgtatgtgg gaaattataa	360
atattgaaat agtccaacta cttctttattt accaa	395

<210> 45
<211> 883
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(883)
<223> n = A,T,C or G

<400> 45	
ataatcaggt aagaaaaggt gcgcggagat taccgtgtgt tgcgatatat ttttagttt	60
cgcgtggcaa tacatcagtg gcaataaaac gacatatacca gaaaaatata cactaagtga	120
atgatatatcc cggatttatac ttaatcgttt atggataacg gcaaagggtc tcgttttttc	180
ctataacttat tcagcactca caaataaagg aacgc当地 aaaaattatac tctgggtgt	240
attgattatt ttcctgattt ggctactggg ggtgactggc gtatthaaga tgatatttt	300
aaattaatta atgtcatcag gtccgaaaat aacgagaata tttcagtctc tcattctgtt	360
gcgcctctgt catgtgcatt gttcatata atcaactggcg caaggagcgc cgcaggcna	420
gnntgcncgn cgnccccactt nacccatgc cgaacttcag aantgaaaac ncncntaacnc	480
cgatngtccg cggngcctc cccatgcnan agtangggaa ntgc当地 ncnnattaaa	540
cgaaaaggctn attncaaaga ctgggccttn ctttatctg atgtttgtcg gagaacgctc	600
tcctgagnan gacaaaatncc gccgggagcg gatttgaacn ttgogaagca accgncccna	660
agggnngnngt cngacnccc nnctctanct nnctgc当地 ttttgcttna angncctcct	720
ancngatggc ctttttngcc ntctacaaa cnntttgggtt aatgcttna aaanccttcc	780
cannntncaa tccngtnntn cccatccnnn tnntgaaagn ntnctnccn tgnccantnt	840
anntnngggg gnngngngcc ggcggccccccccccccccc ccc	883

<210> 46
<211> 1024
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1)...(1024)
<223> n = A,T,C or G

<400> 46

gtttatggat aacggcaaag ggcttcgttt ttccctatac ttattcagca ctcacaata	60
aaggaacgcc aatgaaaatt atactctggg ctgtattgtat tatttcctg attgggtac	120
tggtggtgc tggcgatatt aagatgatat ttaaaatta attaatgtca tcagggtccga	180
aaataacgag aatatttcag tctctcatcc tggtgcgtc ctgtcatgtg cattgctca	240
tataatca ggcgcaagga ggcgcagag tnctccnnt nnnnntnnt ntntnnctnn	300
nccttcacna tncnccncc nantnnatag nncaccnnn tnnntcnnnn gnccnccccc	360
nnncnnnnnc ncatnnnac ccactnnntt tnctccannnn nncnnnnnt canccnacaa	420
antncnacn anntnaccc atacnnannnc nancnnnnnn nnccactctn nctcgnnctc	480
cccnntcnc nnccannnnn cancnntcnn cttnnnncct nncntaattt ttctnnctan	540
ntcctancn cnacnnnc cancnatccn nnatacant cnatnntnn cnntcnctn	600
cnccnnttcc nnctnnncnc tnccncatnc ccnnnannan canntncccc ncctnccnha	660
ccncncncnc ccncatccc nnccnnntt ccnnantnga caannnnat cnccnnnnncn	720
nnnnnnncnn tnnncnccnn gencnncntt nccntcacnc tnnncnncta nannnnnntac	780
nntnaccnnt cctnnacncc tnccctnnng antccnacna nttnnnnanc nanaacnctn	840
ttnnnncata atcccacacc acnccntnc ancntnnt ncntntccc ttctnacncc	900
agctnnnnnt nctntnnnnc tnccnccnnn cnactnccnn nnaccnccnn cccantcagt	960
ccacnntccn cnncnnnnn nncnancan ctnncacnccn cnantaacct nntnnccacct	1020
tcnn	1024

<210> 47

<211> 236

<212> DNA

<213> E. Coli

<400> 47

atatacacta agtgaatgat atcttccgat ttatcttaat cgtttatggaa taacggcaaa	60
gggcttcgtt ttttcctata cttattcagc actcacaaat aaagaacgc caatgaaaat	120
tatactctgg gctgtattga ttatttcctt gattgggcta ctgggtgtga ctggcgatt	180
taagatgata tttaaaattt attaatgtc atcaggtccg aaaataacga gaatat	236

<210> 48

<211> 418

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(418)

<223> n = A,T,C or G

<400> 48

cggagattac cgtgtgttgc gatataaaaa tttagttcgc gtggcaatac atcagtggca	60
ataaaacgac atatccagaa aaataatacac taagtgaatg atatcttccg attnatctta	120
ntcggttatg gataacggca aagggttcgtt tttttccta tacttattca gcactcacaa	180
ataaaggaac gccaatgaaa attatactct gggctgtattt gattatttc ctgattgggc	240
tactgggtt gactggcgta tttaaatgatga tttttttttttaattatgt tcattcaggtc	300
cgaaaataac gagaatattt cagtctctca tcctgttgcg ctccgtcat gtgcattgt	360
tcataataatc actggcgcaaa ggagcgcgca nggggcggcc aatcgccgccc ggcccttg	418

<210> 49

<211> 550

<212> DNA

<213> E. Coli

<400> 49

ctgcttagtta cagggAACAC taatgacaga cagctaaaag ccctgtttaa ttacgttatta	60
caaacagggg atgcccagcg ttttcgttgc ttatgggtt agatagcgga acgcgcacca	120
caagaaaaagg agaaactgtat gaccatgtct gacagattac gtgaagaagg cgcaatgcag	180
ggccaaacacg aagaagccct gcgtattgtct caggagatgc tggatagagg tttagacaga	240
gagtttagtta tgatgggtgac ccgactttca ccagacgatc ttatcgccca aagccactaa	300

tccgtgtaaca ccgggaggtta actggcgat gtttgcgtta aaccacatca gcgaacgaca	360
tccgccagcg cctcttctaa atcgtaaccag cgaaacgc当地 aaccgc当地 ttccaggc当地	420
ttaggcagcg cgcggtgtcc acctaataacc agtactgaag attcgccc当地 taacagtc当地	480
atggcggtcg cggggacgc当地 caaaaatggcc gggcgatgca gcgc当地gacc gagc当地catgg	540
gcaaattgtt	550

<210> 50

<211> 99

<212> DNA

<213> E. Coli

<400> 50

ttggcatctc ggttgtgccc当地 atcttcatgta tatccagccc gccggaaact tcttcc当地aaa	60
cgggtttgct gttatccatt gagtcacgga actgccc当地	99

<210> 51

<211> 259

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(259)

<223> n = A,T,C or G

<400> 51

ccgtgccc当地 agtatacctgt naccatcatc cgttgtgaag tagtgattca cgacttcaag	60
gcgc当地ttca aaagggtt当地 ttggctt当地 catatttaggg gctattccat ttcatcgnc当地	120
aacaaaatgg gtgc当地taca tactc当地ttgg aaatcaacac aggaggctgg gaatgccc当地	180
gaaatataga ttactt当地tctt taatagtgtat ntgtttc当地cag ct当地ttat当地ttnaaanaaagt	240
tnggctt当地act tccccgggnn	259

<210> 52

<211> 877

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(877)

<223> n = A,T,C or G

<400> 52

cagcagagcg cggcc当地tctt cgtc当地gattt cgca当地gtatg gtaatggtaa tatccaaacc	60
acgaacgccc当地 tc当地actt当地tat cgtatcgat ttctgg当地aaatgatctgct cacggacacc	120
catgctgttag ttaccacgac cgtc当地aaaga ct当地agc当地ggac aggccacgga agtca当地ggat	180
acgaggta local gcaatagtgta tc当地aggc当地tctc aaagaactcc cacatgc当地tt cgccacgca当地	240
agttactt当地 cagccgatcg gatagcc当地tctg acggat当地ttt当地 aagctctgca当地 cagat当地ttgca当地	300
tgctt当地ggta local atc当地agc当地gtt tt当地gacc当地ga gat当地gtctgca当地 aggtctctg local ct当地gc当地tt当地tac	360
cagcagttt当地 tt当地tc当地agc当地ga tc当地gctt当地acc aacacc当地atg tt当地cagg当地gtta local tctt当地tc当地gac	420
ccgagg当地ggact tgc当地atgacag aattgat当地ttt aactc当地agtc atgat当地ttt当地 taactactt当地	480
gtctt当地gttag taatcatgca gttt当地cgccat cgtactactc catgtc当地ggta local aacgctctcc当地	540
tgat当地gttagac aaatccgccc当地 ggagc当地ggatt tgaacg当地ttgc gaagcaacgg cccggagg当地	600
ggc当地ggg当地cagg acgccc当地gcca taaactgca ggc当地atcaa local taagc当地agaag gccatc当地tga	660
cggatggc当地tctt ctacaactc ttttgg当地ttt当地ttaat cattcaa local ata	720
tgtatccgnt catccc当地atcc tatcgatgat aagctgtca local acatgagaat ttaatcaatc	780
taaagttt当地 tggngttaaaa ct当地gggctgg cagnttncca atggcttaat cagtnagagg当地	840
ccctatntt当地 acgaaactnng ct当地antt当地nng tcaatcn	877

<210> 53

<211> 291

<212> DNA

<213> E. Coli

<400> 53

tgaacagcac agatacggcc agtgcggcca atgttttttg tcctttaaac ataacagagt	60
cctttaaagga tatagaatag gggtagtac acgccagaat atcgatattt attattgcta	120
gttttttagtt ttgcttaaaa atatgttag ttttattaaa tgcaaaacta aattatgggt	180
atcatgaatt tggatgtatga tgaataaaat atagggggtt atagatagac gtcattttca	240
taggcttata aatgcgacta ccatgaagtt tttaattgaa agtattgggt t	291

<210> 54

<211> 282

<212> DNA

<213> E. Coli

<400> 54

ttattaaatg caaactaaaa ttattggtat catgaatttg ttgttatgtg aataaaaat	60
agggggggtat agatagacgt cattttcata gggttataaa tgcaactacc atgaagttt	120
taatgaaag tattgggttg ctgataattt gagctgttct attctttta aatatctata	180
taggtctgtt aatggatttt atttttacaa tttttgtgt ttaggcataat aaaaatcaac	240
ccgccccatatg aacggcggtt taaaatattt acaacttagc aa	282

<210> 55

<211> 293

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1) ... (293)

<223> n = A,T,C or G

<400> 55

cgggggtccgg cgctccatcaa caatcgggg gcagcaaggg gctgaaaacgg gaaagccct	60
cccgaagaag gggccttgc taagggaaagg gtatgtatgc agctcgatcat cataactgtt	120
gtgttgttac tgtaatgtt cccgacttac taacaactca tcagaggggg gagaatccct	180
cccttaccct tgttccctta ctctaggttg aaaaaacaaac agcgtcaata ggcctgccat	240
gtacgaagcg agatctgtga accgctttcc ggttagcctt ttttattcctg ttg	293

<210> 56

<211> 300

<212> DNA

<213> E. Coli

<400> 56

tctgcgttcc gctaaaagggt gcaaatgctc aggacgttgc agcggtttgc gtgaccgctc	60
gggggaaggca aaattgcctc tggaaagca ttgcgcgggg tccggcgctc atcaacaatc	120
ggggggcagc aaggggctga aacggggaaag cccctccccga agaagggggcc ttgtataagg	180
aaagggttat gatgaagctc gtcatac tggatgtgtt gttactgtt aagttcccgaa	240
cttactaaca actcatcaga ggggggagaa atccctccctt accctgttc cttaactcta	300

<210> 57

<211> 359

<212> DNA

<213> E. Coli

<400> 57

caacacagga ggctggaaat gccgcagaaa tatagattac tttcttaat agtgatttgc	60
ttcacgttttattttcac ctggatgata agagattcac tggatgttgcatttgcataattaaa	120
caggaggtt atgagctggc ggcgttttgc gctgcataat tgaaagagta agagtcgttgc	180
gcgggaaattt attcccgctt tacttacggc gtcgtgcattt ctcattgcac ccaattttat	240

tcttcacaaa aataataata gatTTTatta cgcgatcgat tatttatttc ctgaaaacaa 300
 ataaaaaaaaat ccccgccaaa tggcagggtt cttagattct gtgcTTTaa gcagagatt 359

<210> 58

<211> 700

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(700)

<223> n = A,T,C or G

<400> 58

aaacctttt	ctctgtttt	tcatagaggg	caacccatgt	cctgacctgg	gttcggggga	60
cacccaaacg	tgccgagatg	atcctgtAAC	catcatcaGT	tgtGAAGTAG	tgattcacga	120
cttcaaggcg	ctttcaaaaa	gggtatTTG	gctttgacat	attaggGGCT	attccatttc	180
atcgTccaac	aaaatgggtg	cagtacatac	tcgttggaaa	tcaacacagg	aggctggaa	240
tgccgcagaa	atataGATTA	ctttctttaa	tagtgatttg	tttacacgTT	ttatTTTCA	300
cctggatgat	aagagattca	ctgtgtGAAT	tgcatattaa	acaggagAGT	tatgagCTGG	360
cggcgtttt	agcctgaaaa	ttgaaAGAGT	aaAGAGTCCTC	ggcgggAAAT	tattCCGCC	420
ttacttacgg	cgttgcgcAT	tctcatGCA	cccAAATTtA	ttcttcacAA	aaataataat	480
agattttatt	acgcgatcgA	ttatTTATTt	cctgaaaaaca	aataaaaaaa	tccccGCCAA	540
atggcaggga	tcttagattc	tgtgCTTTA	agcagagatt	acaggctgtt	tacgttacca	600
gctgccggc	ctttaacGCC	gctttcgatG	gtgaaggaca	ctttctgacc	ttcgtccaga	660
gattgttaacc	atcggtctgg	atagccnaga	aatgtccaaC			700

<210> 59

<211> 631

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(631)

<223> n = A,T,C or G

<400> 59

tggTggcatt	ggTgctggA	gagagaaaaAC	ccccgcacGT	tgcaggtatG	cacctgacAA	60
caccacgggg	gctaatcttG	actctagACC	actcaAGAAT	agccgcgAAA	cgttgtcatt	120
acaacacagg	cggctatatG	acgttcgcAG	agctgggcat	ggcTTCTGG	catgatttag	180
cggctccggT	cattgctggc	attcttgcCA	gtatgatCGT	gaactggCTG	aacaAGCGGA	240
agtaacgtgt	catgcgggCG	tcaggctgCC	gtaatggcaa	tttgcGCCG	gaccaggCCG	300
caggggggaa	actctgcggc	cttttgcTT	cttactgcgg	gtaaggcacc	cagtccgcgc	360
cgttcaggcg	aacgtacggT	ttatcctggt	attgaataAC	tactgcatt	gagttctcgg	420
agaccgggtc	tgttTgtggc	aacctactgg	tgagTTTTT	ccagtcAAAC	ttgtctcgg	480
tgaaaatctt	gccatcgaga	acgcgaACCA	ccagatcgGA	gataGCCAGG	aagctgctcg	540
gttgttcgat	gacaatcggt	gccccctgat	gcggTgcctt	catGCCGAAG	aatttcacCC	600
caacggggac	gtcnGTgata	gaccgggcta	G			631

<210> 60

<211> 648

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(648)

<223> n = A,T,C or G

<400> 60

ggctcaggcn	tgctgattgt	tttttgtgc	aatggccng	tattagcgtc	gttgctgtcg	60
atggagagaa	tcataaacgt	ggtgaatgat	gattgttagc	aaggaaaact	gtcaaaaatc	120
ttcaaaaaat	ttgagggata	aggccggaat	ggctccggcc	agagggaaat	taaccgcgaa	180
gctgttgcg	cttgggggtc	gttttaacca	gacgccaggc	gctccatacg	ccaaaaccgc	240
gtctggccca	gcggaccaggc	atattaggat	ggcgaatcgt	ccagatcgcc	atcacgctac	300
tgccaaccag	cgcaggaggag	cgcagactta	gcagcatatt	ccancgacga	tcgtaagcgc	360
ctgttgcgtc	cagccattca	cgacgactgg	cggaagggnc	cgcnctgac	caacttgntc	420
tttagnctga	tncanattan	attnataaac	gcagnanncn	ggtntgatta	atcntatttn	480
gctctngtct	ggtagttgc	nncggnnngt	ctcnntntna	cccnnntcnn	ttannttac	540
natnngtaan	ttatnnttnt	nngtctnnt	tnianttng	tactntaagt	ntatncgnnn	600
atnntnnnan	nnncagnnc	ntnttttta	aatnntttnt	nanncnnc		648

<210> 61

<211> 737

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(737)

<223> n = A,T,C or G

<400> 61

tgctaataatc	tttctcattg	agatgaaaat	taaggtaagc	gaggaaacac	accacaccat	60
aaacggaggc	aaataatgt	ggtaatatg	aatgtttta	tggccgtact	gggaataatt	120
ttatttctg	gtttctggc	cgcgtatttc	agccacaaat	gggatgacta	atgaacggag	180
ataatccctc	acctaaccgg	cccccttgc	cagttgtgt	caaggggcct	gatttttatg	240
acggcgaaaa	aaaaccgcca	gtaaaccggc	ggtgaatgct	tgcattgata	gatttgcgtt	300
ttgcttttac	gctaacaggc	atttcctgc	actgataacg	aatcggtac	acagtagcat	360
cagtttctc	aatgaatgtt	aaacggagct	taaaactcggt	taatcacatt	ttgttcgtca	420
ataaacatgc	agcgatttct	tccggtttgc	ttaccctcat	acattgccc	gtccgcttt	480
ccaatgacca	catccagagg	ctcttcagga	aatgcgcgac	tcacacctgc	tgtcacggta	540
atgttgcata	gcccttcaga	atgtgtatg	gcatggttat	cgactaactg	gcaaattctg	600
acacctgcac	gacatgcttc	ttcatcatta	gccgcttga	caataatgat	aaattctcg	660
cccccgtagc	gataaaaccgt	ttcgtaatna	cgcgtccaa	tgggntaagt	aaagttgcca	720
gggtgcccgt	atcttac					737

<210> 62

<211> 648

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(648)

<223> n = A,T,C or G

<400> 62

tgctttgaa	tatgtgtcg	caatcttgag	aaggaaatgg	cgaccacgaa	agaaaaggca	60
aaaaccgata	atctgaaaga	acccaagtat	ttcagtataa	gcattgaatg	ccgaccagta	120
aactctttcg	gattcaccca	gaaagtgaan	ccaaaatgt	aatcgatatac	ataagtctt	180
cgagtggctc	gttagcaaaa	agtttcaaca	atggagtaaa	tacatccaa	atatacaataa	240
ctctcaactg	taaggggatt	gaaatggtaa	ccccagctct	tgccttgagg	ggtatagccg	300
agaccaccga	agccccggag	gtgggtaaaat	aaaaccgggc	acaacacgaa	agggcgcatt	360
tccgatatacc	ataaaaagaag	tcgggtctt	gtctggtaaa	attaaattgg	tgggaagtgc	420
gcctccgggt	tgttaatacc	gactttgtcg	ggtgtagcct	ggcggcatca	agtttttttc	480
tggaaatgtcg	ctgatgtccg	ccctttttaa	agggaaattt	ggtgtatgc	gtgaatgccc	540
cttaacccccc	cgtggccca	gttaaaagtc	atggtaagnc	ctaattngtt	tggggtggga	600
aaagccnact	gnnaatttgt	tacctggtt	gcaagtanc	ctggaagg		648

<210> 63

<211> 237

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(237)

<223> n = A,T,C or G

<400> 63

ggtgtttant tacaagagat tcatcttgt nttaanccn gataagtaat tacgcataaa	60
acaacaatga ttataatagc aaaaataaat attatcatct ttgatagatt acttgagata	120
gccagcatct tgtaaaggcct ttatcgttt tttatgctct ggattaatat aatcaactaca	180
tctatctgag caatctgttg ttgatggaca tgtcaaccca tggtcattta cagccaa	237

<210> 64

<211> 427

<212> DNA

<213> E. Coli

<400> 64

gataattaga gtttgcgtc agaaaattga cgtaaccat aacaaatgaa aggccaggt	60
aatca t gcca ttagtcattg ttgctatcg t tgtaatctg ttgtgc t cc tgatgatccg	120
cttcaaaatg aacggcttca tcgctctcg t cctcg t ggcg cttgctgtt g gattaatgca	180
aggaatgccg ctgataaag ttattggctc catcaaagcc ggtgc t ggcg ggacgctcgg	240
tagc t tgcc ctgatcatgg gtttggcgc aatgctggc aaaatgctgg cagactgcgg	300
tggcgcacaa cgtatgc c ccacgctgat tgccaaattt ggtaaaaaac acatccagt g	360
ggc t gtgta ctgaccgg t ttaccgtt g ttttgc c ctg ttctatgaag tggc t ttt g	420
gctgat g	427

<210> 65

<211> 261

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(261)

<223> n = A,T,C or G

<400> 65

caaagaacct tcaacatgaa aaatatccat ttgtttgcaa aaaaagatta ttaggaagga	60
aattaatgca attatcgaaa attcaaaaaa tatccaaaaa tngtatactt tattccagaa	120
gagttcaata taatgtttgt cttcaatttt tcttacttca ggttaatata gattgctcat	180
tacattgtga gcttc t atctt tatttaattt tctgttgact ccagctctcc gtgataacgg	240
ttttataatt agatgcttat c	261

<210> 66

<211> 98

<212> DNA

<213> E. Coli

<400> 66

agatgattgc cggaaacttg ttagcggcac gcaggcggcg gctgcaccc ttaccctgct	60
ctttacgtac ttctgcgttg atagtaaaca tttctt c	98

<210> 67

<211> 260

<212> DNA

<213> E. Coli

<400> 67
 aagcgcgaac gaagtcgatg tgctgcagct tcggtttcta cgggtgacgc tgcgtacgc 60
 gagcttttaac tttagttct ttaccgtcaa caacgatggt cagaacttcg ctgtagaatt 120
 cagcttttagc ttgcatagttc atgactttgt cgtgatccag ctgcatagcc agcggcgctt 180
 ctttgcacc gtagatgatt gccggaaact tgtagcggc acgcaggcgg cggtcgac 240
 ccttaccctg ctcttacgt 260

<210> 68
 <211> 95
 <212> DNA
 <213> E. Coli

<400> 68
 aaaaacggcg taaagaaagg ttgcaaacat gttaataaaaa actcaaattt atcccacgta 60
 tatattacgc cgcaaaatcc ttacaataaa caggg 95

<210> 69
 <211> 174
 <212> DNA
 <213> E. Coli

<400> 69
 ttaattatta aaatagtgtt acgcgattat gtggttatgg gggtaaacat taaataaaacc 60
 agcggggagg ggaggttaaag tgaaaaaata aaaagcgat aatcttaata agcaggccgg 120
 acagcatcgc catccggcac tgatacgagg ttatattcag ctcatcaacc atcg 174

<210> 70
 <211> 138
 <212> DNA
 <213> E. Coli

<400> 70
 agtctgtaaa aacgtcaaaaa agagtgtttt atcaacagaa gaatggaggt ctgacagata 60
 gtagtaatgc aaaaaaaaaatgg agacttaagt tgaatgaacg ggagtaaagc gaaaagacta 120
 tagagtgaag gaaaaatt 138

<210> 71
 <211> 191
 <212> DNA
 <213> E. Coli

<400> 71
 tttgttgct taatattcta ttgttatctt tatttataga tgtttatatt gcatgaggtg 60
 gtttttgag agaagaatga ggaagatgc tcgagccaca gaaacgttag ctttacatat 120
 agcggagggtg atgtgaattt aatttacaat agaaataatt tacatatcaa acagttagat 180
 gctttttgtc g 191

<210> 72
 <211> 244
 <212> DNA
 <213> E. Coli

<400> 72
 ggccattttat acaggaaaaag cctatgtcag aacgtaaaaaa ctcaaaatca cgccgtaatt 60
 atctcgtaa atgttctgc ccaaactgca cccaaagagtc agaacacagt ttttcaagag 120
 taaaaaaagg tgcccttttgc atctgccctc attgcaacaa agtattccag acaaatttta 180
 aagctgttagc ctgattgatt ttatttagtaa caagtattttt ttatattttta ataataatatt 240
 taaa 244

<210> 73
 <211> 327

<212> DNA

<213> E. Coli

<220>

<221> misc_feature

<222> (1)...(327)

<223> n = A,T,C or G

<400> 73

aaattttcag gtaccttgc accatacttt ttttctgag cattaatgtat attttgagct	60
tcttgaggat cttaactcc ccacatgg tgaaaagtat tcattataaa aggaaggntg	120
aataattgn cttaataat cgccagtgg aatttagttaa aacgattaaa ttctactaaa	180
tnattaaccg naaaaaattt cccatatata ttatcatgt gtatgaaaa tatgtgcacc	240
atatttatga atnlgatac cctnacagtc ctctgtgtac gcatttccac cgatatgatt	300
tcttttctna atcactaaaaa cttttttt	327

<210> 74

<211> 150

<212> DNA

<213> E. Coli

<400> 74

gcagtgtatcg aagcgatgac gaagtgtatg gaaaaatcag aaaaactcag caaatcctga	60
tgactttcgc cggacgtcag gcccactt cggtgccggtt acgtccggct ttcttgctt	120
tgtaaagcgc caaatctgcc gatttcaacc	150

<210> 75

<211> 330

<212> DNA

<213> E. Coli

<400> 75

gaaagtatct tcgttattga catcaactgg aaataataact tgctttcat tattaaactc	60
gaagcgcgta ccgtatctgg acaaacattt atcgagctta ccaaattcct gaagagggtt	120
aactacagat aacatttgcg cgtccttgc agtaatgcc gtcaatcct tgacgggcat	180
tattnagatt aaattaccag tatttcttcg gagtgaagaa tattaccagg tatatttaac	240
acccacgttc gcggaccagt ctgatctac gtcaccacca ccgaggtagt tagcatcggt	300
ataggcgtc aagttcttgg tgaagctaaa	330

<210> 76

<211> 194

<212> DNA

<213> E. Coli

<400> 76

tgtttttttc cagcaacgga gcaaaagggtt tgcccttgc cagctcaggg ttaaccactt	60
taactacgtg gcgacgaccc ggagatgtcg gttacattt aacaactgcc attgtattac	120
tcctccgact tactcagcgc cgccaacgaa gtcaggattc tggccttctt tcagggtgac	180
gtaagctttt ttcc	194

<210> 77

<211> 188

<212> DNA

<213> E. Coli

<400> 77

tcccttaac taccagggtg ttaacgactt cgacttcgac ttcaaacagt ttctgcacag	60
cagctttgtat ttctgtttt gtcgcgtctt tagcaacttt gagtactatg gtgttggatt	120
tttccatcgc agtagacgct tttcagaaa cgtgcgggtgc acgcagcacc ttcagcagac	180
gttcttca	188

<210> 78
<211> 173
<212> DNA
<213> E. Coli

<400> 78
acaaaaggcga acaaaggcctg tgaagcccgaa aggctccaca gacagtgcata cttgaaggcc 60
ttactgttcc ttcttaggag cgagcaccaat gatcatctgg cggccttcga tcttggttgg 120
gaaggattcg accactgccaa gttcttgcaaa atcgtcttcc acgcgattaa gca 173

<210> 79
<211> 272
<212> DNA
<213> E. Coli

<220>
<221> misc_feature
<222> (1) ... (272)
<223> n = A, T, C or G

<400> 79
tggagaaaaac ggggttattttaa taaaggcaatc atcgttcttag gggcgtaat tgcgcgtgt 60
gaactgatcc cgctttctgc ttcaagcttc tgaactggat acggaaacgt aatnagggt 120
aaagaagaca ctactcttag cccttttaaca tttaacgcattgtcacgaac tcttctgccc 180
ccgttgggtt aatggcgacg ggtattggtc gaaatctttt ttgggtggcc ccattttaa 240
cgccccaccccg cgaaaccctcg caacatttcg tc 272

<210> 80
<211> 259
<212> DNA
<213> E. Coli

<400> 80
cgcaggcagc tgatggtcaa caggatgaga gaaacccaga gacaggttaa tcacattgcc 60
tttaaccgtt gcacggtaac ctacaccaac cagctgcagc ttcttagtga agccttcgg 120
aacaccgata accatttgcgt tcagcaggc acgcgcggta ccagcctgtg cccaaccgtc 180
tgcgttaacca tcacgcggac cgaaggctcg ggtatttatct gcatgtttaa cttcaacagc 240
atcggttgcgtt gtagcgatgc 259

<210> 81
<211> 73
<212> DNA
<213> E. Coli

<400> 81
caggctggaa cttacccgac aaggaatttc gctaccttag gaccgttata gttacggccg 60
ccgtttacccg ggg 73

<210> 82
<211> 666
<212> DNA
<213> E. Coli

<400> 82
atgaacgttt tctcgcaaac tcaacgctat aaggcggttgc tctgttatac gttatccat 60
ctgctggta tcacccctccag taactatctg gttcagcttc ccgtctccat tttgggttcc 120
cataccacct ggggcgcgtt tagcttcccg ttatccatccat ttgttaccga cctgaccgtg 180
cgtatccatcccg ggcgcaccgtt ggccgcacgc attatcttcg cggtaatgtat ccctgcgtta 240
ttaatctctt acgtcatctc gtcgttatttc tatatgggtt cctggcaggatcccg 300
ctcgcccaact tcaacctgtt tgcgttccgtt atcgcacccg ccagtttcat ggcctacccg 360
ctggggcaaa tcctcgacgt gcacgtttt aaccgcctgc gtcagatcg ccgcgtgg 420

ctggcacccga	cagcgtccac	actgttcggt	aacgtcagcg	acacgctggc	ctttttcttc	480
attgccttct	ggcgttagccc	ggatgcctt	atggctgaac	actggatgga	aatcgcgctg	540
gtcgattact	gttcaaagt	gttaatcagt	atcgtttct	tcctgccaat	gtatggcgta	600
ttactcaata	tgcgttgaa	aagactggca	gataaatccg	aaatcaacgc	tttgcaggcg	660
agttaa						666

<210> 83
<211> 612
<212> DNA
<213> E. Coli

<400> 83						
gtgataagat	ggatgaatga	gccgttatgg	ccgtttatcg	aaaggaagaa	gtcaatgcgc	60
aatctggta	aatatgtcgg	aattggcctg	ctgggttatgg	ggcttgcggc	ctgtgatgat	120
aaagacacta	acgctacggc	gcagggttcg	gtcgcggaaa	gtaacgctac	cgggaatccc	180
gtcaacctgc	ttgatggcaa	gttaagttc	tcgctgcccag	cggatatgac	cgaccagagc	240
gttaagctgg	gaacgcaggc	caataacatg	catgtctggt	ccgacgcccac	cgggcagaaaa	300
gcagtcatcg	tcatcatggg	cgatgatccg	aaagaagatc	tggcggtgt	ggcgaagcgt	360
ctggaaagatc	agcaacgtag	ccgcgcattcg	cagctgcaag	tggtaaccaa	taaagccatt	420
gagctgaaag	gtcacaaaat	gcagcgtta	gacagtatta	tctccgcgaa	aggccagacg	480
gcgtactctt	ccgttattct	gggtaacgtg	ggtaatcaac	tgctgaccat	gcaaattacg	540
ctgcccgcgt	acgatcagca	aaaagcgcag	accaccgcag	aaaacatcat	taatacgcgt	600
gttattcagt	aa					612

<210> 84
<211> 975
<212> DNA
<213> E. Coli

<400> 84						
atggcgaata	tgtttgcct	gattctggtg	attgccaac	tggtacggg	cattttatgg	60
tgcgtggata	aattctttt	cgcacctaaa	ccgcggaaac	gtcaggcagc	ggcgcaggcg	120
gctgccgggg	actcactgga	taaagcaacg	ttgaaaagg	ttgcgccaa	gcctggctgg	180
ctggaaacccg	gtgcttctgt	tttccggta	ctggctatcg	tattgattgt	gcgttcgttt	240
atttatgaac	cgttccagat	ccgcgtcaaggt	tcgatgatgc	cgactctgtt	aattgggtgat	300
tttattctgg	tagagaagtt	tgcattatggc	attaaagatc	ctatctacca	gaaaacgctg	360
atcgaaacccg	gtcataccgaa	acgcggcgat	atcgtgttct	ttaaatatcc	ggaagatcca	420
aagcttgatt	acatcaagcg	cgcggtggt	ttaccggcg	ataaaagtac	ttacgatccg	480
gtctcaaaag	agctgacgat	tcaaccggga	tgcagttccg	gccaggcgtg	taaaacgcg	540
ctgcccgtca	cctactcaaa	cgtggAACCG	agcgatttcg	ttcagacctt	ctcacgcgt	600
aatggtgggg	aagcgaccag	cggattctt	gaagtgccga	aaaacgaaac	caaagaaaaat	660
ggaattcgtc	tttccgagcg	taaagagaca	ctgggtgatg	tgacgcaccg	cattctgaca	720
gtgccgattt	cgcaggatca	ggtggggatg	tattaccagc	agccaggcga	acaactggca	780
acctggattt	ttcctccggg	acaatacttc	atgatggcg	acaaccgcg	caacagcgcg	840
gacagccgtt	actggggctt	tgtgcccggaa	gogaatctgg	tcggcgccggc	aacggctatc	900
tggatgagct	tcgataagca	agaaaggcgaa	tggccactg	gtctgcgtt	aagtgcatt	960
ggcggcatcc	attaa					975

<210> 85
<211> 1761
<212> DNA
<213> E. Coli

<400> 85						
ttgaccattt	cgaaacttgc	atggcgtgac	ctggttccct	ataccgatag	ctatcagggaa	60
atatttgctc	agccacattt	gattgacgaa	aacgatcctt	tattcagtga	tactcaaccg	120
cggctgcaat	ttgcgtgga	gcagttctg	catacgcgag	catccttc	ttttatgctg	180
gcgaaggccc	cggaaagatgc	ttagtatctg	aatcttattt	ccaatgccgc	gcgtacgcta	240
caaagcgatg	caggccaaact	ggtggggcggt	cactatgagg	tttccggcca	ctccatccgc	300
ttacgtcact	cagtgagtgc	agatgataat	tttgcgactt	taacgcgaatg	tgtcgctgccc	360
gactggtag	aagcggagca	actcttggc	tgcctgcgc	agttaatgg	cgacattacc	420

ctgcagcccg	gtctggtgca	tcaggcaaata	ggcggatttc	tcattatctc	tttgcgtaca	480
ctgctggcgc	aacctctgct	gtggatgcgg	ctaaaaata	tcgttaaccg	cgagcgttt	540
gactgggtg	cgttgtatga	gtcgcccct	ctccccgtct	ctgtgccctc	gatgccattg	600
aagctgaaag	tcattctgtt	aggcgaacgc	gaatcattgg	ctgatttcca	ggagatggag	660
ccagagctt	cagagcaggc	tatttatagc	gaatttgaag	atactctgca	gattgtcgat	720
gcggagtcag	taacccagtg	gtgtcgttgg	gtgacattta	ccgcccagaca	taatcaccta	780
cctgcacccg	gagcggatgc	ctggccgata	cttatccgcg	aagcagcacg	ctacaccgg	840
gaacaagaaa	cactccgct	tagcccgaq	tggatcctcc	gccagtgtaa	agaggtcgcc	900
tcctctgttg	atggcgacac	cttctccggc	gagcagctaa	acttaatgct	gcagcagcgt	960
aatggcgcg	aaggtttctt	cgctgaacgt	atgcaggatg	agatcctca	ggagcaatc	1020
ctgattgaaa	ccgaaggcg	acgcatacg	ccatcg	cccttccgtt	cattgaattt	1080
ccgggtcattc	cacgcgttt	tggcgaacct	tctcgcattt	gctgcgttgt	gcatattggc	1140
gatggtaat	tcaccgcac	cgAACGAAA	gcccggcttgc	gcccgaatat	ccatgcgaaa	1200
gggatgtatg	tcatgcaagc	gttctgtatg	tccggactac	agcttgagca	acagatcccc	1260
ttctcagcat	cgctgacatt	tgagcagtca	tacagtgaag	ttgatggaga	tagtgctcg	1320
atggctgaac	tctgcgcctt	gataagcgcc	ctcgccgatg	tgccgggtgaa	tcagagtatc	1380
gctatcacag	tttcaagtca	tcagttccgt	cgcggccagc	cggcgggtgg	tttaaatgag	1440
aaaatcgaag	gttttttgc	tatttgcgg	caacgtgagt	taaccggaa	acaagggtgc	1500
attatcccc	cagctaaccgt	tcgcccattt	atgtttcaca	gtgaacttgtt	gaaaggcgta	1560
gaagaaggca	aatttaccat	ctggggcagta	gacgatgtga	ctgacgcact	gccgttatta	1620
ttaaatctgg	tgtggatgg	cgaaggccaa	acgacgctga	tgcaaaccat	ccaggaacgt	1680
atcgcgcaag	catcgcaaca	ggaaggacgt	caccgtttt	catggccatt	acgttggctg	1740
aactgggttta	ttccgaaactg	a				1761

<210> 86
<211> 1185
<212> DNA
<213> E. Coli

<400> 86

gtgtctaaag	aaaaatttga	acgtacaaaa	ccgcacgtta	acgttggtac	tatcgccac	60
gttgaccacg	gtaaaaactac	tctgacccgt	gcaatcacca	ccgtactggc	taaaacctac	120
ggcgggtgcgt	ctcggtcatt	cgaccagatc	gataacgcgc	cgaaagaaaa	agctcggtt	180
atcaccatca	acacttctca	cggtgaatac	gacaccccg	cccgtcacta	cgcacacgt	240
gactggccgg	ggcacgccc	ctatgttaaa	aacatgatca	ccgggtctgc	tcagatggac	300
ggcgcgatcc	tggtagttgc	tgcgactgac	ggcccgatgc	cgcagactcg	tgagcacatc	360
ctgctgggtc	gtcaggtagg	cgttccgtac	atcatcg	tcctgaacaa	atgcacatc	420
gtttagtgcg	aagagctgt	ggaactgggt	gaaatggaa	ttcgtgaaact	tctgtctcag	480
tacgacttcc	cgggcgacga	cactccgate	gtcgtgggtt	ctgctctgaa	agcgtctgaa	540
ggcgacgcag	agtgggaagc	gaaaatctg	gaactggctg	gcttccttgg	ttcttatatt	600
ccggaaaccag	agcgtgcgt	tgacaagccg	ttcctgtgc	cgatcgaaga	cgtatttcc	660
atctccggc	gtggtaccgt	tgttaccgg	cgtgtagaac	gcccgtatcat	caaagtgg	720
gaagaagttg	aaatcggtt	tatcaaagag	actcagaagt	ctacctgtac	tggcggttggaa	780
atgttccgca	aactgttgg	cgaaggccgt	gttggtgaga	acgttaggtt	tctgtctcgt	840
gttatcaaac	gtgaagaaat	cgaacgttgt	caggtaactgg	ctaaggccgg	caccatcaag	900
ccgcacaccca	agttcgaatc	tgaagtgtac	attctgttca	aagatgaagg	cggccgtcat	960
actccgttct	tcaaaaggct	ccgtccgcag	ttctacttcc	gtactactga	cgtgacttgtt	1020
accatcgaaac	tgccggaaagg	cgtagagatg	gtaatgccgg	gcccacaat	caaaatgttt	1080
gttaccctgt	tccacccgat	cgcgtatgg	gacggtctgc	gtttcgcaat	ccgtgaaggc	1140
ggccgttaccg	ttggcgccgg	cgttgttgc	aaagttctgg	gctaa		1185

<210> 87
<211> 2115
<212> DNA
<213> E. Coli

<400> 87

atggctcgta	caacacccat	cgcacgcgtac	cgtaacatcg	gtatcagtgc	gcacatcgac	60
ggcggtaaaa	ccactactac	cgaacgtatt	ctgttctaca	ccgggtttaaa	ccataaaatc	120
gttgaagtgc	atgacggcgc	tgcaaccatg	gactggatgg	agcaggagca	ggaacgttgtt	180
attaccatca	cttccgtcgt	gactactgca	ttctgttgc	gtatggctaa	gcagtatgag	240

ccgcacatcgca	tcaacatcat	cgacaccccg	gggcacgttg	acttcacaat	cgaagttagaa	300
cgttccatgc	gtttctcgta	tggtgcggta	atggttact	gcccagttgg	tggtgttcag	360
ccgcagctg	aaaccgtatg	gcgtcaggca	aacaaatata	aagtccgcg	cattgcgttc	420
gttaacaaa	tggaccgcat	gggtgcgaac	ttcctgaaag	ttgttaacca	gatcaaaacc	480
cgtctggcg	cgaaccgggt	tccgctcgag	ctggcgattg	gtgctgaaga	acatttcacc	540
ggtgttgg	acctggtgaa	aatgaaagct	atcaactgaa	acgacgctga	ccagggcgta	600
accttcgaat	acgaagatat	cccggcagac	atggttgaac	tggctaacga	atggcaccag	660
aacctgatcg	aatccgcagc	tgaagcttct	gaagagctga	tggaaaaata	cctgggtgg	720
gaagaactga	ctgaagcaga	aatcaaaggt	gctctgcgtc	agcgcgttct	gaacaaacgaa	780
atcatcctgg	taacctgtgg	ttctgcgttc	aagaacaaag	gtgttcaggc	gtatgtggat	840
gcggtaattg	attacctgcc	atccccgggt	gacgtacctg	cgatcaacgg	tatcctggac	900
gacggtaaaag	acactccggc	tgaacgtcac	gcaagtgtatg	acgagccgtt	ctctgcactg	960
gcgttcaaaa	tcgctaccga	cccgttgg	ggtaacactga	ccttcttcgg	tgttactcc	1020
ggtgtggta	actctggtgaa	taccgtactg	aactccgtga	aagctgcacg	tgagcgttcc	1080
ggtcgtatcg	ttcagatgca	cgctaaacaaa	cgtgaagaga	tcaaagaagt	tcgcgcgggc	1140
gacatcgtg	ctgctatcg	tctgaaagac	gtaaccactg	gtgacaccct	gtgtgaccgg	1200
gatgcgccc	tcattctgga	acgtatggaa	ttccctgagc	cggtaatctc	catcgcaagt	1260
gaaccgaaaa	ccaaagctga	ccagggaaaa	atgggtctgg	ctctggccgg	tctggctaaa	1320
gaagaccgg	cttccgtgt	atggactgac	gaagaatcta	accagaccat	catcgccgg	1380
atggcgaac	tgcacctcg	catcatcg	gaccgtatga	agcgtgaatt	caacgttga	1440
gcgaacgtag	gtaaaccgca	ggttgcttac	cgtgaaacta	tccggccagaa	agttaccgat	1500
gttgaaggta	aacacgcgaa	acagtctgg	ggtcgtggc	agtatggta	tgttgttattc	1560
gacatgtacc	cgtggagcc	gggttcaaac	ccgaaaggct	acgagttcat	caacgacatt	1620
aaaggtgg	taatccctgg	cgaatacatac	ccggccgtt	ataaaaggtat	ccaggaacag	1680
ctgaaagcag	gtccgctgg	aggctacccg	gtagtagaca	tgggtattcg	tctgcacttc	1740
ggttcttacc	atgacgttga	ctccctcgaa	ctggcggtt	aactggctgc	ttctatcgcc	1800
ttaaagaag	gcttaagaa	agcgaaacca	gttctgttt	agccgatcat	gaaggttgaa	1860
gtagaaactc	cggaaagagaa	caccgggtac	gttatcggt	acttgagccg	tcgtcggt	1920
atgctcaaag	gtcaggaatc	tgaagttact	ggcgtaaga	tccacgctga	agtacccctg	1980
tctgaaatgt	tcggatacgc	aactcaactg	cgttctctga	ccaaaggctg	tgcatcatac	2040
actatggaaat	tcctgaagta	tgatgaagcg	ccgagtaacg	ttgctcaggc	cgtaattgaa	2100
ccccgtggta	aataa					2115

<210> 88
<211> 540
<212> DNA
<213> E. Coli

<400> 88						
atgccacgtc	gtcgctcat	tggtcagcgt	aaaattctgc	cggatccgaa	gttcggatca	60
gaactgctgg	ctaaattttgt	aaatatcccg	atggtagatg	gtaaaaaaatc	tactgctgaa	120
tctatcgat	acagcgcgt	ggagaccctg	gctcagcgt	ctggtaaatac	tgaactggaa	180
gcattcgaag	tagctctcg	aaacgtgcgc	ccgactgtag	aagtaagtc	tcgcgcgtt	240
ggtggttcta	cttacgtt	accagttgaa	gtccgtccgg	ttcgtcgtaa	tgctctggca	300
atgcgttgg	tcgttgaagc	tgctcgaaa	cgcgtgtata	aatccatggc	tctgcgcctg	360
gcgaacgaac	tttctgtatgc	tgcagaaaaac	aaaggtactg	cagttaaagaa	acgtgaagac	420
gttcaccgta	tggccgaagc	caacaaggcg	ttcgcacact	accgttgg	atcccttcgg	480
agttttatgc	accaggcg	cgcttccagt	aagcagcccc	cttgggct	cttaaattgaa	540

<210> 89
<211> 1549
<212> DNA
<213> E. Coli

<400> 89						
aaattgtat	ggctcagatt	gaacgctggc	ggcaggccct	acacatgca	60	
gtcgaacgg	aacaggaagc	agcttgcgt	ttcgctgac	agtggccggac	gggtgagtaa	120
tgtctggaa	gctgcctgt	ggagggggat	aactactgga	aacgttagct	aataccgcata	180
aatgtcgca	gaccaaagag	ggggaccttc	gggccttgc	ccatcggt	tgcccagatg	240
ggatttagctt	gttgggtgg	taacggctca	ccaaggcgac	gatcccttagc	tggctctgaga	300
ggatgaccag	ccacactgga	actgagacac	ggtccagact	cctacgggag	gcagcagtgg	360

ggaatattgc acaatggcg	caagcctgat gcagccatgc	cgcgtgtatg aagaaggcct	420
tcgggttcta aagtacttc	agcggggagg aaggagtaa	agttaatacc ttgtctcatt	480
gacgttaccc gcagaagaag	caccggctaa ctccgtgcc	gcagccgcgg taatacggag	540
ggtcaagcg ttaatcgaa	ttactggcg taaagcgcac	gcagggcggt tggttaagtc	600
agatgtgaaa tccccggct	caacctggga actgcac	atactggcaa gcttgagtc	660
cgttagagggg ggtagaattc	caggtgttagc ggtgaaatgc	gtagagatct ggaggaatac	720
cggtggcgaa ggcggccccc	tggacgaaga ctgacgctca	ggtgcgaaag cgtggggagc	780
aaacaggatt agataccctg	gtagtcacg ccgtaaacga	tgtcgacttg gaggttgtgc	840
ccttgaggcg tggcttccgg	agctaacgcg ttaagtcgac	cgccctggga gtacggccgc	900
aaggtaaaa ctcaaatgaa	ttgacggggg cccgcacaag	cggtggagca tgggtttaa	960
ttcgatgcaa cgcaagaac	cttacctggt cttgacatcc	acggagttt tcagagatga	1020
aatgtgcct tcggaaaccg	tgagacaggt gctgcatggc	tgtcgctcgc tcgtgttg	1080
aaatgttggg ttaagtcccg	caacgagcgc aacccttatic	ctttgttgcg acgggtccgg	1140
ccggaaactc aaaggagact	gccagtgata aactggagga	aggtgggat gacgtcaagt	1200
catcatggcc cttacgacca	gggctacaca cgtgctacaa	tggcgcatac aaagagaagc	1260
gacctcgca gagcaagcgg	acctcataaa gtgcgtcgta	gtccggattt gagtctgca	1320
ctcgactcca tgaagtcgga	atcgctagta atcgtggatc	agaatgccac ggtgaataacg	1380
ttcccgggccc ttgtacacac	cgcccggtcac accatgggag	tgggtgcaaa aagaagtagg	1440
tagcttaacc ttcgggaggg	cgcttaccac tttgtgattt	atgactgggg tgaagtcgta	1500
acaaggtaac cgtaggggaa	cctgcgggttg gatcacctcc	ttaccttaa	1549

<210> 90

<211> 375

<212> DNA

<213> E. Coli

<400> 90

atggcaacacag ttaaccagct ggtacgcaaa ccacgtgctc	gcaaaaggcgt gaaaagcaac	60
gtgcctgcgc tggaaagcatg cccgcaaaaaa	cgtggcgat gtactcgat atataactacc	120
actcctaaaaa aaccgaactc cgcgctgcgt	aaagtatgcc gtgttgcgt gactaacgg	180
ttcgaagtga cttctacat cgggtgtgaa ggtcacaacc	tgcaggagca ctccgtgate	240
ctgatccgtg gcggcgtgt taaagacetc	ccgggtgttc gttaccacac cgtacgtgg	300
gcgcttgact gctccggcgt taaagaccgt	aaggcggctc gttccaagta tggcgtgaag	360
cgtcctaagg cttaa		375

<210> 91

<211> 366

<212> DNA

<213> E. Coli

<400> 91

atgtcttatca ctaaagatca aatcattgaa	gcagttgcag ctatgtctgt aatggacgtt	60
gtagaactga tctctgcaat ggaagaaaaa	ttcgggtttt ccgctgctgc tgctgttagct	120
gtagctgctg gccccgttga	agctgctgaa gaaaaaaactg aattcgacgt aattctgaaa	180
gctgctggcg ctaacaaagt	tgctgttac aaagcgtac gtggcgcac tggcctgggt	240
ctgaaagaag ctaaagacct	ggtagaatct gcacccggctg ctctgaaaga aggccgtgagc	300
aaagacgacg cagaagact	gaaaaaaagct ctgaaagaag ctggcgttga agttgaagtt	360
aaataaa		366

<210> 92

<211> 498

<212> DNA

<213> E. Coli

<400> 92

atggctttaa atcttcaaga caaacaagcg attgttgcgt	aagtcaagcg agtagccaaa	60
ggcgcgtgt ctgcgttgt	tcgcgttgt tgccgatcc cgtggcgtaa ctgtagataa aatgactgaa	120
ctgcgttaaag caggtcgca	agctggcgta tacatgcgtg ttgttgcgtaa caccctgctg	180
cggcgtgt	ttgaaggtac tccgttgcgt tgctgtgaaag acgcgttgt tggtccgacc	240
ctgattgcatt	actctatgga acaccgggc gctgctgcgc gtctgttcaa agatgtcg	300
aaagcgaatg	caaaatttga ggtcaaaagcc gctgcctttg aaggtgagct gatccggcg	360

tctcagatcg accgcctggc aactctgccg acctacgaag aagcaattgc acgcctgatg	420
gcaaccatga aagaagcttc ggctggcaaa ctggttcgta ctctggctgc tgtacgcgt	480
gcgaaaagg ctgtttaa	498

<210> 93
<211> 2145
<212> DNA
<213> E. Coli

<400> 93

gtgtcccgta ttattatgct gatccctacc ggaaccagcg tcggtctgac cagcgtcagc	60
cttggcgtga tccgtgcaat ggaacgc当地 ggcgttgc当地 tgagcgtt当地 caaacctata	120
gctcagccgc gtaccgggtgg cgatgc当地 gatcagacta cgactatcg gcgtgc当地	180
tcttccacca cgacggccgc tgaaccgctg aaaatgagct acgttgaagg tctgcttcc	240
agcaatcaga aagatgtgct gatggaaagag atcgtcgcaactaccacgc taacaccaaa	300
gacgctgaag tcgttctggt tgaaggctg gtccc当地 gtaagcacca gtttgc当地	360
tctctgaact acgaaatcgc taaaacgctg aatgc当地 tcgtcttgc当地 tatgtctc	420
ggcactgaca ccccggaaca gctgaaagag cgtatcgac tgacccgcaa cagcttccgc	480
ggtgc当地 acaccaacat caccggcgtt atcgat当地 aactgaacgc accgggtgat	540
gaacagggtc gtactcgccg ggatctgtcc gagatttcg acgactcttc caaagctaaa	600
gtaaacaatg ttgatccggc gaagctgcaa gaatccagcc cgctgccc当地 tctcggc当地	660
gtgccgtgga gcttgc当地 gatcgact cgtgc当地 atatggctcg ccacctgaa	720
gacgaccatca tcaacgaagg cgacatcaat actcgccgc当地 taaaatccgt cacttctgc	780
gcacgc当地 ttccgcat gctggagcac ttccgtgccc当地 gttctctgat ggtgacttcc	840
gcagaccgtc ctgacgtgct ggtggccgct tgc当地 ggccag cc当地 gtagaaatc	900
ggtgc当地 tgctgactgg cggttacgaa atggacgc当地 gcatttctaa actgtgc当地	960
cgtgcttccgcttccgat gccggtt当地 atggtaaca ccaacacctg gc当地 acctct	1020
ctgagc当地 agagcttcaa cctggaaagtt cc当地 ggccat gatc当地 acgc tatcgagaaa	1080
gttc当地 cggat acgttgc当地 ctacatcaac gctgactgaa tc当地 acatctct gactgccact	1140
tctgagc当地 gccgctgct gctccgct gcttccgctt atc当地 agctgac tgaacttgc当地	1200
cgcaaaagg gcaacacgtat cgtactcg当地 gaagggtgacg aaccgc当地 cgtt当地 aaagca	1260
gccgctatct gtgtgacg tggat当地 cgca acttgc当地 tgctgg当地 tccggc当地	1320
atcaaccgtg ttgc当地 agc当地 tcagggtgta gaactggg当地 cagggtt当地 aatcgat当地	1380
ccagaagtg ggccgaaag ctatgtt当地 cgtctggc当地 aactgc当地 taaacaaaggc	1440
atgaccgaaa cc当地 ttggccg cgaacagctg gaagacaacg tggtgc当地 tacgc当地 tggat	1500
ctggaacacagg atgaaatgtg tggat当地 ggcc当地 tccggc当地 tt当地 cacactac cgcaaaacacc	1560
atccgtccgc cgctgc当地 gatcaaaact gcaccggc当地 gctccctgat atcttccgat	1620
ttcttcatgc tgctgccc当地 acagggtt当地 gtttacggg当地 actgtgc当地 caacccggat	1680
ccgaccgctg aacagctggc agaaatcgat attc当地 agtccgat ctgatccgc tgc当地 ggcccttc	1740
ggtatcgaaac cgccgat当地 tatgc当地 tcc local tactccaccc gtaacttctgg tgc当地 gaggtatc	1800
gacgtagaaa aagttcgatc agcaactcgat ctggc当地 cagggaaaaacgtcc tgc当地 acctgat	1860
atcgacggc当地 cgctgc当地 gtaatggc当地 acgttgc当地 atccaaaggc	1920
ccgaaactctc cggttgc当地 tgc当地 gcttcat gtttccgatct tccggatct gaaacaccgg	1980
aacaccaccc acaaaggc当地 acagc当地 gtttccatcg gccgatcgatgctg	2040
cagggtatgc gcaaggccgat taacgacgatc tccc当地 gtggc当地 cactggat当地 cgc当地 atatcgatc	2100
tacaccatgc cgctgc当地 gattc当地 agttaa	2145

<210> 94
<211> 1767
<212> DNA
<213> E. Coli

<400> 94

atgaataatt ctattaacca taaatttcat cacattagcc gggctgatata ccaggaattt	60
ttagccgtt cccgtggc当地 cgctgttgc当地 gattatata ttgataatgt ctcttatttcc	120
gacctgatca atggccgatc aatttccgc当地 ccaattgtgat taaaaggacg ttacattgat	180
ggtgttggc当地 cagaataacac tggatgc当地 gcttgc当地 ggattgatgc tgc当地 ggccgc当地	240
acggccgatc cagggtt当地 tggatgc当地 ctgc当地 atatccacat gatgc当地 ccgc当地	300
gtcactttt当地 aaaccgctac cctgccc当地 ggc当地 gacgatccgat tggccctcat	360
gaaatcgatca acgttgc当地 cgaaggccgat ttc当地 gcttgc当地 ttgccc当地 tgc当地 gaggtatc	420
gcaaggccgat accagtactt acaggtc当地 tcttgc当地 acgc当地 cc当地 ctggatccgat	480

gttaacggtg ccagtttac	ccttgaacag atgctcgcc	ggcgggacca tccgcagg	540
accggccctg cagaaaatgt	ggactaccct ggcgtatta	gcgggcagaa tgcgctgct	600
gataaaactgg atgcatttcg	ccacctgacg ctggacgg	actgcccggg tttgggtgg	660
aaagaactta acgcctata	tactgcgggt attgaaaact	gccacgaaag ttatcagctg	720
gaagaaggac gccggaaatt	acaactcggc atgtcggt	tgatccgcga agggtccgct	780
gcccgaatc tcaacgcgt	ggcaccgtt atcaacgaat	ttaacagccc gcaatgcata	840
ctctgtaccg atgaccgtaa	cccgtggag atcgccc	aaggacacat cgatgcotta	900
attcgccgccc tgatcgaaca	acacaatgtg ccgctgc	atgcataatcg cgtcgccc	960
tggtcgacgg cgcccaactt	tggctgaat cacctcg	ggtgcacc cggcaagcag	1020
gccgatatacg tcctgttag	cgatgcgcgt aagg	tgcagcagg actgggtggaa	1080
ggcgagccga ttgatgcga	aaccttacag gcggaag	cgccgagact ggcacaatcc	1140
gctccgcata atggcaacac	cattgcccgc cagccagtt	ccgcccagcga ctttgcctg	1200
caatttacgc cggaaaacg	ctatcgggtc attgacgt	tccataacga attgattacg	1260
caactcccact ccagcgtcta	cagcgaaaat gtttgc	gcatgtatgt gagctttatt	1320
gccgtacttg agcgttacgg	gcaacgcgt	gctccggctt gtgggttgct tggcggctt	1380
ggactgaatg aagg	ggctgcacg gtcagccat	gacaggcataa tattgtgg	1440
atcggtcgca gtggcaaga	gatggcgctg gcggtcaat	aggtgattca gatggcggc	1500
gggctgtgcg tggta	cgcccaaggta caaagt	atgcgttacc cattgcggg	1560
ctgatgagca ccgacacgc	gcagtcgt	gccaacaaa ttgacgcctt gaaagccg	1620
gcccgtgaat gcggtccgtt	acccgatgag ccgttattc	agatggcggt tctttctctg	1680
ccagtgtatcc ccgcgtctaa	actaaccagt caggggctat	ttgatggcga gaagtttgcc	1740
ttcactacgc tggaaagt	cac	ggaataa	1767

<210> 95
<211> 1227
<212> DNA
<213> E. Coli

<400> 95

atggcgtatt gcaatccggg	ccttggaatcc aggccgaata	agagaaacgc cctccggcgt	60
catgtggtaa caggcatagg	tatgaaaatc gtaatcgccc	cagactctta taaagaat	120
ttatctgc	gca	gaggtgc	180
gcacagta	tttctgttcc	gggtgc	240
gcagccaccc	aggggctga	acgtcac	300
aatgccagtt	ggggatctc	cgcgat	360
agtggctgg	agctgttacc	tgcg	420
acaggcgagt	taatcctgca	ggcg	480
ggcgccagcg	ctacaaatga	tggcg	540
tgcgacgc	acggcaatga	aattgg	600
attgatattt	ccggcctcg	tccgc	660
gtcaccaatc	cgctgtgg	cgataac	720
gccagtgaag	cgatgattgt	tgagctgg	780
aaaaaaagcgc	tgcattgt	tgt	840
ggcgccggc	taatggcg	tcttgg	900
acggcgctg	atctggag	acatatt	960
cgtattgaca	gccagagtat	tcacgg	1020
aagtaccata	aaccgg	gtaccg	1080
catcagcatg	gcattgt	gttgcatt	1140
gcattccgcg	gggctt	caatatctc	1200
gcgattggaa	tgcg	cgtgc	1227

<210> 96
<211> 900
<212> DNA
<213> E. Coli

<400> 96

atgattgata tgactatgaa	agttgg	attggc	ggattat	taaacc	60
agtaaaaaacc ttctgaa	agg	tactcg	ctgg	tgg	120
attgcgtac	tgattg	ctgc	agg	tgac	180
cagtgcgac	tcatcata	ac	act	ccat	240

ggtgagaatg gcattatttga aggcgcgaag ccaggtacgg tattgatcga tatgaggttct 300
 atcgcacccgc tggcaagccg tgaaatcagc gaagcgctga aagcgaaagg cattgatatg 360
 ctggatgtc cggtagccg cggtaaccg aaaggcatcg acggtagct gtcagtgtatg 420
 gtggccggcg acaaggctat ttccgacaaa tactatgatt tgatgaaagc gatggccgggt 480
 tccgtgggc ataccgggaa aatcggtgca ggtAACgtca ccaaactggc aaatcaggtc 540
 attgtggcgc tgaatattgc cgcgtatgtca gaagcgtaa cgctggcaac taaagcgggc 600
 gttAACccgg acctgggtta tcaggcaatt cgcgggtggac tggccggcag taccgtgt 660
 gatgccaagg cgccgtatggt gatggaccgc aacttcaagc cgggcttccg tattgatctg 720
 catattaagg atctggcgaa tgcgtggat acttctcacg gcgtcggcgc acaactgccc 780
 ctcacagctg cggtatggaa gatgtatgcag gcaactgcag cagatggtt aggaacggcg 840
 gatcatagcg ccctggcgtg ctactacgaa aaactggcga aagtgcgaat tactcgtaa 900

<210> 97
 <211> 771
 <212> DNA
 <213> E. Coli

<400> 97

atgaataacg atgtttccc gaataaattc aaagccgcac tggctgcga acaaggtaaaa 60
 attgggtgct ggtcagact ctctaaccgg attagcactg aagtcttgg tttggctggg 120
 tttgactggc tgggtctggta tggcgaacat ggcggccaaacg atatctccac gtttattccg 180
 cagttaatgg ccttggaaagg cagcggccagc ggcggccatgt tgccgtatgtcc gaccaacgg 240
 ccggtaattt ttaagcgctc tctggatatac gtttctata acttcttgcat tccttttgta 300
 gaaacaaaaag aggaaggcaga gctggccgtg gcatcaaccc gttacccacc ggaaggcatt 360
 cgcggcgctc ccgtttctca ccgcggccaaat atgtttggca ccgtggccga ttatattcgct 420
 cagtcgaaca agaacatcac tattctggc cagatagaaaa gtcagcagg gtagataac 480
 gtcgtatgcc tggccgttac cgaaggcgtt gacggcatct tcgtcggccc cagcgatctg 540
 gccgcggcat taggcattct cggcaatgc tccacacccgg atgtacaaaa agcaattcag 600
 cacattttt accgtgcccag cgcgcacggc aaacccagcg gtatctcgc gccggcgtgaa 660
 gccgatgcgc gtcgttatct ggaatgggc ggcacgtt gggctgtcg gtagcgatctc 720
 ggcgttcc gctctggccac tcagaaactg gtcgtatctt taaaaaaaata a 771

<210> 98
 <211> 1335
 <212> DNA
 <213> E. Coli

<400> 98

atgattctgg acaccgttga cgaaaaaaaaag aaaggcgtgc atacccgcta tttaatattt 60
 ctgatttattt ttattgttac cggccgttaac tacggccgatc gtgcacacgt gtctattgtct 120
 ggtaccgaag tggcaaaaaga gttgcagttt aatgtccgtt cgtatgggtt catcttctcc 180
 gcttttggct gggcttactt gctgtatgc aaatccccggc gctggctgt tgataagttt 240
 ggctcgaaaa aagttttacac ctacagccctc tttttctgtt cgctatttccat cttccctgcaa 300
 ggctttgtt atatgttccc gctggccgtt gcaaggatctt ccatgttctt tatgcgtttt 360
 atgctcggtc tctcggaaagc gccatcattt cccggcgaacg cccgaattgt cggcccttgc 420
 ttcccgacga aagaacgtgg tactggccatcc gccatcttta actcggcgc atatttctcg 480
 ctggcgctc tttccggctt gcttggctgg ctgactttcg cctggggctg ggagcacgtc 540
 tttaccgtt tgggggtt gttttttgtt ctgacggcgc tttggatcaa gttgattcat 600
 aacccgacag atcaccacac tatgtctgcg gaagagctga agtttatctc tgaaaatggc 660
 gcggtggcgtc atatggacca caaaaaggcg ggcagtgccg cagcaagccg accccaaactg 720
 cattacatca agcaatttgc ctctaaaccgc atgtatgtt gcttattttt cggacaatat 780
 tttatcaaca ccatcacctg gttcttccctc acctgggttcc cgatttatctt ggtgcaggaa 840
 aaaggcatgt cgattctgaa agtgggtctg gtcgcctcga ttccagcact gttgtggttt 900
 gcgccggccg tgcgtggagg tgcgtttctcg gattatctga tcaaaacgcgg ttatccctg 960
 accctggcac gtaagctacc gattgtgtt ggaatgttgc tggcttccac catcatctt 1020
 tgtaactaca ccaacaacac caccgttgc gtcgtatgtt gggccgttgc tttcttggc 1080
 aaaggattt gtcgtggggctt ctggccgggtt atttctgaca cccggccggaa agagatgtt 1140
 ggcctctgcg gccggcgttta taacgttcc ggcacatgtt gctccattgt cactccactg 1200
 gtgattggctt acctggtaag tgaactgcac tccttcaatg cagcactgg tttcgtgggaa 1260
 tgttcagcgc tgcgtggat ggtctgttcc gtcgtatgtt gggccacat taaacgtatg 1320
 gaatttgcaga aataa 1335

<210> 99
<211> 1536
<212> DNA
<213> E. Coli

<400> 99

atgcaaaacga	gtgatacccg	cgcgttaccg	ctactttgcg	cccgcgttgg	ttataaaacag	60
tattcagggg	tcaatgtcct	gaaaggcatc	gattttacgt	tgcatacggtt	ggaggtccac	120
gccctgctcg	gcggcaatgg	tgccggtaaa	tcgacgttaa	tgaagattat	tgccggatt	180
accctgctg	atagcggtac	gctggagatt	gagggcaaca	actacgtca	attaacgcca	240
gttcatgctc	atcagctggg	tatttatctc	gttccccagg	aaccgcgtct	tttcccaagc	300
ctgtcgataa	aagaaaacat	cctgtttggg	ctggcaaaaa	aacagctctc	catgcagaaa	360
atgaagaact	tgctggcgcc	gctgggctgc	cagtttgatc	tgcatagtct	ggcaggatcg	420
ctggatgtcg	ccgatcgcca	aatggtgaa	atcctccgct	ggctgtatcg	cgactcgccg	480
attctgatcc	tcgatgaacc	taccgcctcg	cttaccctcg	cggaaaccga	acgcttgttt	540
agtgcgttgc	aagagctgct	tgctactggc	gtgggtattt	tttttatctc	gcataagctg	600
ccggaaattc	gccagattgc	cgatcgaatt	agcgtatgc	gcgacggaa	catcgcccta	660
agcggcaaaa	ccagcgaact	gtctaccgac	gacattattt	aggccatcac	cccagcggtt	720
cgggaaaaat	cgctctctgc	cagccaaaaa	ttatggctgg	agttacctgg	taaccgccta	780
caacatgccc	ccgaaacgcc	ggtgctgaca	ctggaaaattc	tgaccggcga	aggtttcaagg	840
aatgtcagcc	tgacgctcaa	tgccggagaa	attctgggcc	tggctgggt	ggtgtgggccc	900
ggacgcacag	aactggccga	gacgctctat	ggtctgcgtt	ctttgcgtgg	cgacgcatt	960
atgctgaatg	gtaaagagat	caataaaatta	tccactggag	aacgtttact	gcgcggctcg	1020
gtttatctgc	cggaagatcg	ccagtcattcc	ggactgaatc	tcgatgcctc	gtggccctgg	1080
aacgtctgctg	cccttactca	taaccttcgt	ggattctggg	cgaaaaccgc	gaaagataat	1140
gccaccctgg	aacgttatcg	tcgggcgtt	aatattaaat	tcaaccaacc	ggaacaagct	1200
gcacggacat	tatccgggtt	caaccagcaa	aaaatctca	ttgc当地at	cttggaaagct	1260
tcgcccgaag	tattgattgt	cgatgagccg	acgcgcggcg	tggatgtctc	ggcccgtat	1320
gatatctacc	agctgttgcg	cagcatcgcc	gcacaaaatgt	tggctgtct	gettatactcc	1380
tccgacctgg	aaagagatcg	actgatggca	gatcgtgtgt	atgtatgc	tcaaggcgaa	1440
attacccact	ctgactgac	cgagcgcat	attaatgtcg	agactattat	gcgcgttgcc	1500
ttcggcgata	gtcagcgtca	ggaggcggtt	tgctga			1536

<210> 100
<211> 1029
<212> DNA
<213> E. Coli

<400> 100

atgctgaagt	ttattcagaa	caaccgtgaa	atcacggcac	tgctggcggt	ggtgctgtcg	60
tttgttattac	ccggttttct	cgaccggccag	tatttaagt	tgcaaaacgct	gaccatgttt	120
tatagcagcg	cgcaaattct	gatcctgtcg	gcaatggcg	cgacgctgtt	aatgtttacg	180
cgcaatattt	atgtttcagt	gggttcgatt	accggatgt	gcgcggctgt	gttggggat	240
ttactgaacg	caggatattc	actacctgtt	gcttgcgtcg	cgactttact	gtttgggtt	300
ctcgcgggat	tttcaacgg	tgccttcgt	gcgtggctaa	agatccctgc	cattgttgcc	360
acccttggca	cgtaggggt	gtacagaggc	atcatgttgc	tgtggactgg	cgccaaatgg	420
attgaagggt	tacccggcga	actgaaacag	cttccgcctc	cgctgtct	tggcggttca	480
gcaatttgggt	ggttgacgat	aattctggt	gcattttatgg	cctggctgt	ggcaaagacg	540
gcgtttggac	gcagtttttta	tgc当地ggc	gataatttac	agggcgctcg	tcaactggc	600
gttctgtactg	aaggccatcg	cattgtggca	tttctgttgc	acggctgtcat	ggcggcactg	660
gcgggaattt	tgtttgcctc	gcagatgtt	tttattccca	accagaccgg	tacggggctg	720
gagatgaaaag	caattgcagc	ctgcgtgtcg	ggcggccat	gtttgcgtgg	tgggtccgg	780
gcgatcatcg	gtgcgggtact	cggcgcatgg	tttctgacgc	agatcgatag	cgtactgttg	840
ctgttgcgca	ttccggcatg	gtgaaatgt	tttatecggtt	gtctgggtt	gttggcggtt	900
ctgggttttgc	atggacgcct	gcgttgcgt	ctggaaacgtt	atctacggcg	gcaaaaatat	960
ccccgcttta	tgacgccacc	gccatccgtt	aaaccgcgtt	cgtcaggtaa	aaaacgggag	1020
cccgatcaa						1029

<210> 101
<211> 993

<212> DNA

<213> E. Coli

<400> 101

atgcgttattc	gctacggttg	ggaactggct	cttgcgcac	tgctcgttat	ttagattgtc	60
gcatttggtg	caattaaccc	gcgaatgtta	gatctcaata	tgttgtgtt	cagcaccagt	120
gactttatct	gcattggcat	tgtcgccta	ccgctaaca	tggtgattgt	cagtggcg	180
atcgatattt	cgttgggtc	gaccatggc	ctctgcgcca	ttgcattgg	cgtactgtt	240
caaagtggtg	tgccgatgcc	gctggcgata	ctcctgac	tactgtcg	cgcattgtc	300
gggctgatca	acggcggatt	aattatctat	accaaaagtt	accgcgttgt	gattacgtt	360
ggcacgctgt	atctgttgc	cggaagcgct	ctgctgc	ccggatatggc	cggagcgacg	420
gggtacgaag	gtattgggtg	atccccatg	gcgtttacag	atttcgctaa	cctggatgt	480
ctgggactcc	ccgttccgct	gattatctc	ctgatatgtc	tcctcg	ctggctctgg	540
ctgcataaaa	cccatgccc	acgtaatgt	ttttgattt	ggcaagccc	gcgcgtggcg	600
ctttatagcg	cgattccagt	taaccgtacc	ttatgtgc	tctatgc	gacgggctg	660
gcgtctgcgg	tcggcgtgt	gctgctggta	tcgtat	gttcagc	ttccgatctc	720
ggtgcgtcgt	ttctgatgcc	cgccatcacc	gccgtgtgc	ttggcggggc	caatattat	780
ggtggttccg	gttccattat	cggcaccc	attgcgtt	tattagtgg	atatttgc	840
caaggttgc	aatggcagg	agtgc	caagggtcca	gccccttc	cggcgc	900
cttatacg	ttgtcgtagg	tcgttccgtt	agcctgc	gccagca	taaagagtgg	960
ctggcgcgtc	gggcaataa	cccattgcca	taa			993

<210> 102

<211> 1023

<212> DNA

<213> E. Coli

<400> 102

atgacacttc	atcgctttaa	aaaaatgc	ttacttagcg	ctcttggcat	tgccgcaatc	60
tctatgaatg	tgcaggccgc	agagcg	tatttattt	ccaaactgg	tggcgtgg	120
tttttacca	gccccggca	cgccgcacaa	caagcg	aaagactgg	cgttgcgt	180
acctacgacg	ggccgacaga	acccag	tctggc	tacagtt	taataactt	240
gtcaatcaag	gttataacgc	cattatcg	tctgcgg	cgcctgat	cttgcgtcc	300
gcactgaaac	gcccgc	acgtgg	agagtgc	cctgggact	tgatactaa	360
ccggagtgg	gtcttacta	cattaatc	ggaaacgc	cccagg	aggtatgt	420
gtggatatgg	cgccgcgtc	ggtgaa	gacaaagcc	aagtcgc	tttctactc	480
agccccaccc	ttacggacca	aaaccag	gtgaa	cgaaagc	aatgc	540
gagcatccag	gctgggaaat	tgtca	cagttgg	ataacgat	cactaaatc	600
ttacaaacc	cagaaggaat	attaaa	atagcg	tcgacgc	tatcgcccc	660
gatgccaacg	ccctgcccgc	tgccgcacaa	gccgcagaaa	acttgg	tgacaaag	720
gcgattgtcg	gattcgtac	gccaatgt	atgcgc	atgtag	cggcacgt	780
aaagaattt	gcctgtgg	tgtgtt	caaggc	tttcag	tgtcg	840
gcattattt	aaaaaggatc	aatggaa	ggcgaca	tggat	ggcgt	900
cagggtgaag	tctcgccaa	cagcg	ggctatg	acgaagcg	tggtaatgg	960
atcgactgt	tacggagcg	cgtgat	aacaaag	atatcg	atacgat	1020
						1023

<210> 103

<211> 876

<212> DNA

<213> E. Coli

<400> 103

atggcagatt	tagacgat	taaagatgg	aaagat	gtaccgat	accgcaaaaa	60
aatatccctt	ttacccgtaa	agg	ttgcgt	ggggat	gtcacgc	120
tcgcggat	ttaatccgaa	acgggt	accgt	tgg	ccatgg	180
tttcagg	cgactaccgg	actt	gacgc	at	atcgcccc	240
catgccc	tattaatgt	tacgcgc	at	atcg	gctgttg	300
aataggccgg	tggtactgc	ggcgt	gcga	ttct	ccctgcg	360
gaagccgtgg	cgttatcg	gatgac	gtgc	at	atcg	420
caggttata	tcggcagc	atatg	acat	cagtc	aaaatattat	480

gatgccggaa	tgaaagtggg	aatgccgacc	atggccgtga	ctggcgtggg	caaagatatg	540
gtgcgcgatc	agcgtttattt	ctcgctcgcg	actcaaatcg	ccgctgaaat	gggggcgcaa	600
attatcaaaa	cctattatgt	cgaaaaagg	tttgaacgga	ttgttgccgg	atgtccggta	660
cccattgtta	ttgctggcg	taaaaaatta	ccggagcgcg	aggcgttgg	aatgtgttgg	720
caggctatcg	atcaggcg	ttctgggtgt	gatatggggc	gtatatttt	ccagtctgac	780
catccggtgg	cgatgtatgaa	agccgtacag	gccccgttgc	accataacga	aacggctgat	840
cgggcatatg	aactctatct	gagtgaaaaa	cagtaa			876

<210> 104

<211> 291

<212> DNA

<213> E. Coli

<400> 104

atgcacgtca	cactgggtga	aattaacgtt	catgaagaca	agggttgcga	gttttatcgaa	60
gttttcgccc	agaaccacct	gggctctgt	caggaagaag	gcaattttgc	cttcgatgtc	120
ttacaggacc	cgaaagtggaa	ttcgcgtt	tatatctacg	aagccatataa	agatgaagac	180
gcagtggcg	tccataaaac	cacgccccac	tacaaaaccc	gtgtcgca	actggaaatct	240
ttaatgaccg	ggccgcgtaa	aaaacgtctg	ttcaatgggt	tgtatggcg	a	291

<210> 105

<211> 1152

<212> DNA

<213> E. Coli

<400> 105

atgtttgaac	caatggaaact	taccaatgac	gcgggtgatta	aagtcatcg	cgtcggcg	60
ggccggcggt	atgctttga	acacatgg	cgcgagcgc	ttgaagggt	tgaattctc	120
gcggtaaata	ccgatgcaca	agcgctgcgt	aaaacagcgg	ttggacagac	gattcaaatc	180
ggtagcggta	tcacccaaagg	actgggcgt	ggcgttaatc	cagaagg	ccgcaatgc	240
gctgatgagg	atcgcatgc	attgcgtgc	gcgttggaa	gtcagacat	gttcttatt	300
gctgcgggt	tgggtgtt	tacgggtaca	ggtgcagcac	cagtcgtc	tgaagtggca	360
aaagatttg	gtatctgac	cggtgtgtc	gtcactaagc	cttcaactt	tgaaggcaag	420
aagcgtatgg	cattcgcgg	gcaggggatc	actgaactgt	ccaagcatgt	ggactctctg	480
atcaatatcc	cgaacgacaa	actgtgtaaa	gttctggg	gcccgtatctc	cctgtgtggat	540
gcgttggcg	cagcgaacga	tgtactgaaa	ggcgtgtgc	aaggatcgc	tgaactgatt	600
actcgtcccg	gtttgtgaa	cgtggactt	gcagacgtac	gcaccgtat	gtctgagatg	660
ggctacgca	tgtatgggtt	tggcgtggcg	agcgttggaa	accgtgcgg	agaagctgt	720
gaaatggcta	tctctctcc	gctgttggaa	gatatcgacc	tgtctggc	gcccggcg	780
ctggtaaca	tcacggcg	ttcgcaccc	cgatgttggat	agttcgaaac	gttaggttaac	840
accatccgt	catttgc	cgacaaacgc	actgttggta	tccgtactt	tcttgacc	900
gatatgaatg	acgagctgc	cgtaaccgtt	gttgcgtac	gtatggcat	ggacaaacgt	960
cctgaaatca	ctctgtgt	caataagg	gttcaacgt	cagtgttgg	tccgttacc	1020
cagcatggg	tggctccgt	gaccaggag	cagaaggccgg	ttgtctaaat	cgtaatgt	1080
aatgcgcgc	aaactgcgaa	agagccggat	tatctggata	tcccgacatt	cctgcgtaa	1140
caagctgatt	aa					1152

<210> 106

<211> 3048

<212> DNA

<213> E. Coli

<400> 106

atggacgtca	gtcgacagaca	atttttaaa	atctgcgcgg	gcggtatggc	tggaacaaca	60
gtagcggcat	tgggtttgc	cccgaagcaa	gcactggctc	aggcgcgaaa	ctacaaatta	120
ttacgcgt	aaagagatcc	taacacctgc	acatactgtt	ccgttaggtt	cggttattt	180
atgtatagcc	tgggtgttgg	cgaaaaaac	gccagagaag	cgattttatca	cattgaaggt	240
gaccggatc	atccggtaa	ccgtggcgc	ctgttggcc	aaggggccgg	tttgcgttggat	300
tacgtcaaca	gtgaaaaccg	tctgcgtac	ccggaaatatc	gtgcgcagg	ttctgtacaaa	360
tggcagcgc	ttagctgg	agaagcattt	tccgttattt	cgaagctgtat	gaaagctgtac	420
cgtgacgt	actttattt	aaagaacgag	cagggcgtaa	cggtaaacc	ttggcttct	480

accggtatgc	tgtgtgccctc	cggtgccagc	aacgaaaccg	ggatgctgac	ccagaaaattt	540
gcccgcctcc	tcgggatgct	ggcggttagac	aaccaggcgc	gcgtctgaca	cggaccaacg	600
gtagcaagtc	ttgtctccaac	atttggtcgc	ggtgcgatga	ccaaccactg	ggtggatatac	660
aaaaacgcta	acgtcgtat	ggtgatggc	gttaacgctg	ctgaagcgca	tcccgtcggt	720
ttccgctggg	cgatggaagc	aaaaaacaaac	aacgacgcaa	ccttgcgcgt	tgtcgatccc	780
cgttttacgc	gtaccgcctc	tgtggcggat	atttacgcgc	ctattcggtc	cggtaacggac	840
attacgttcc	tgtctggcgt	tttgcgtac	ctgatcgaaa	acaacaaaat	caacgcgaa	900
tacgttaagc	attacaccaa	cgccagcctg	ctgggtcggt	atgattttgc	tttcgaagac	960
ggtctgttca	gcgctacga	cgtgaaaaaa	cgtcaatacg	ataaattcgtc	ctggaaactat	1020
cagctcgatg	aaaacggcta	tgcgaaacgc	gatgaaacac	tgactcatcc	gcgctgtgt	1080
tggAACCTGC	tgaaagagca	cgtttcccgc	tacacgcccc	acgtcggtga	aaacatctgc	1140
gttacgccaa	aaggcgactt	cctgaaagtg	tgtgaagtgc	tggcctccac	cagcgcacccg	1200
gatcgcacaa	ccaccccttcc	gtacgcgtg	ggctggacgc	agcacactgt	gggtgcgcag	1260
aacatccgta	ctatggcgat	gatccagttg	ctgctcggt	acatgggtat	ggccgggtggc	1320
ggcgtgaacg	cattgcgtgg	tcactccaac	attcagggt	tgactgactt	aggcctgctc	1380
tctaccagcc	tgcagggtt	tctgacgctg	ccgtcagaaa	aacaggttga	tttgcagtcg	1440
tatctggaaag	cgaacacgc	gaaagcgacg	ctggctgatc	aggtgaacta	ctggagcaac	1500
tatccgaagt	tcttcgttag	cctgatgaaa	tctttctatg	gcgatgccgc	gcagaaagag	1560
aacaactggg	gctatgactg	gctgcccgaag	ttggaccaga	cctacgacgt	catcaagttat	1620
ttcaacatga	tggatgaagg	caaagtccacc	ggttattttct	gccagggtt	taacccgggt	1680
gcgtccttcc	cggacaaaaaa	caaagtggtg	agctgcctga	gcaagctgaa	gtacatggtg	1740
gttatcgatc	cgctgggtac	tgaaacctct	accttctgc	agaaccacgg	tgagtcgaa	1800
gatgtcgatc	cggcgtctat	tcagactgaa	gtattccgtc	tgccttcgac	ctgctttgct	1860
gaagaagatg	gttctatcg	taactccgt	cgctgggtgc	agtggcactg	gaaaggtcag	1920
gacgcgcggg	gcgaagcgcg	taacgacggt	gaaattctgg	cggttatcta	ccatcatctg	1980
cgcgagctgt	accagtcga	aggtggtaaa	ggcgtagaaac	cgtgtatgaa	gatgagctgg	2040
aactacaagc	agccgcacga	accgcaatct	gacgaaagtgg	ctaaagagaa	caacggctac	2100
gcgctggaaag	atctctatga	cgctaattggc	gtgcttatttgc	cgaagaaaagg	tcagttgctg	2160
agtagctttg	cgcacatctgc	tgatgacggt	acaaccgc	cttcttgc	gatctacacc	2220
ggtagcttgg	cagagcaggg	caaccagatg	gctaaccgc	ataactccga	cccgccgg	2280
ctggggaaata	cgctggatg	ggcctggcg	ttggccgtca	accgtcg	gtgtacaac	2340
cgtgttcgg	cggatatcaa	cggtaaaccg	ttggatccga	aacgatgt	gatccagtg	2400
aacggcagca	agtggacggg	taacgatatt	cctgacttgc	gcaatgccgc	accgggtacg	2460
ccaaccgggc	cgtttatcat	gcagccggaa	gggatggac	gcctgttgc	catcaacaaa	2520
atggcggaaag	gtccgttccc	ggaacactac	gagccgatttgc	aaacgccc	gggcactaac	2580
ccgctgcac	cgaacgttgt	gtctaaccgc	ttgttgc	tgtatgaaca	agacgcgt	2640
cggatgggtt	aaaaagagca	gttccgtat	ttgggtacga	cctatcg	gaccgagcac	2700
ttccacac	ggaccaagca	cgcattgc	aacgcatttgc	ctcagccg	acagtttg	2760
gaaatcagcg	aaacgcgtgc	ggcggcgaaa	ggcattaata	atggcgatc	tgtactgtc	2820
tccagcaagc	gtggctttat	ccgcgggt	gtgtggtaa	cgcgtcg	gaaaccgt	2880
aatgtaaatg	gtcagcaggt	tgaaacgggt	ggtattccaa	tccactgggg	ctttgaggt	2940
gtcgccgt	aaggttat	cgctaacc	ctgacgccc	atgtcggt	tgcaaactcg	3000
caaacggccgg	aatataaagc	gttcttagtc	aacatcgaga	aggcgtaa		3048

<210> 107

<211> 885

<212> DNA

<213> E. Coli

<400> 107

atggctatgg	aaacgcagga	cattatcaaa	aggtccgcaa	ctaactccat	cacgcccct	60
tctcagggtgc	gtgattacaa	agcagaagtc	gcaaaaactt	tcgacgtt	cacctgtatc	120
ggctgtaaag	cctgtcaggt	ggcgtgttgc	gagtggaaacg	acatccgt	tgaagtgggg	180
cactgcgtcg	gggtttacga	taaccccgcc	gatctgagcg	ccaagtcc	gacgggtatg	240
cgttttagcg	aaacccaaca	gaacggcaag	ctggagtg	tgatccgt	agacggctgt	300
atgcactgt	aagatccccg	ctgcctgaa	gctgtcccgt	ctgctgg	aatcattcag	360
tacgctaacc	ggattgtcg	tttccagtc	gaaaactgc	tcggctgt	ttactgcatt	420
gccgggtgtc	cgtttaat	tccgcgc	aacaaagagg	ataaccgg	atataaaatgc	480
acgctctgcg	tcgatcg	cagcgtc	caggaaccgg	cttgcgt	aacctgtcc	540
accggggcta	tccacttcgg	caccaagaag	gagatgt	ggcga	acagcgcgt	600
gcaaaactga	aagcgcgtgg	ttacgaacat	gctggcgt	acaaccgg	agggtcg	660

ggtaacgcacg ttatgtacgt gctgcacac gcccacatcgc cggagctgtt tcacggcttg	720
ccgaaagatc cgaagatcga cacctcggtt agcctgttgg aaggcgcgtt gaaaccgcgtt	780
gcagcggctg gctttatttc cacttttgc gggttgattt tccactacat cggatttggc	840
ccgaataagg aagtggacga tgacgaggag gatcatcatg agtaa	885

<210> 108

<211> 654

<212> DNA

<213> E. Coli

<400> 108

atgagtaagt cgaaaatgtat tttttttttt atccggccctg tcactggacc	60
gtgggttattt gcttcttctt ggtggcgctg tccgggattt ctgttctt cccgacgcgtt	120
caatggctga cggaaacctt cgtacggcc cagatggac gcattttgc cccgttcttc	180
ggcatttgcg ttttcgtcgc actgtatgtt atgtttgtgc gttttgtgc tcacaacatc	240
ccggataaga aagatattcc gtggctgttgg aacatgtcg aagtatttggaa aggcaatgag	300
cataaagtgg cggatgtcgg taagtacaac gcccggcaaa agatgtatgtt ctggtcgatc	360
atgagcatga ttttcgtgct gctgggtgacc ggggtgatta tctggcgatcc gtactttgcg	420
cagtacttcc cgtatgcagg ttttcgtcgtc accctgtcg tccacgcggc tgcgggtatc	480
atccgtatcc acgccatctt gatccatatg tatatggcat tttgggtgaa aggatcgatt	540
aaaggatga tcgaagggaa ggttaagtgcg cgttggcgaa agaaaacacca tccgcgttgg	600
tatctgtaaa tcgagaaggc agaagcgaaa aaagagatgt aagaaggatgataaa	654

<210> 109

<211> 261

<212> DNA

<213> E. Coli

<400> 109

atggcggttgt taatctactaa aaaatgcatac aatttgtata tttgtgtttttt cgaatgcggc	60
aatggggcga tttcaatggg agatcatatc tacgagatata acagcgataa gtgtaccggaa	120
tgcgttagggc actacgagac accaacctgc cagaagggtgt gcccgtatccc caatactatt	180
gtgaaagatc cggcgcatgt cgagacagaa gaacagttgt gggataaaattt tttgtgtatc	240
caccacgcgg ataaaaattt a	261

<210> 110

<211> 1203

<212> DNA

<213> E. Coli

<400> 110

atgcaaagtgt ttgtatgttgc cattgttggc ggcggcatgg tggggctggc gtttgcctgt	60
ggcttacagg ggagcggctt acgcgttgcgtt gtactggagc agcgcgttaca ggaacctctg	120
gcggcgaatg caccacaca actgcgcgtt tcggctatca atgcgcgcg cggaaaattt	180
ctcacccgtc ttggcgctgt gcaggacatt ctctctcgta gggccagctg ttatcaggt	240
atggaaagtgt gggacaaaga cagctttgtt cacatccgt ttgacgatca aagcatgggc	300
tatagccatc ttgggcatac cgttggaaat tcagtgttgc actacgcgtt gtggaaacaaa	360
gcgcgtatcgt cgtcagatata cactctgtt gccccccgcg aattacagca ggtgcctgg	420
ggagaaaaatg aaaccttctt gacgctgaaa gatggcagca tttttttttt ggttacgcgc	480
atggcgccgg acggcgctaa ttccctgttgc cgcacaaatcccgatattcc gctgactttc	540
tgggattatc agcatcacgc gctggtagcg accattcgca cggaaagaaacc gcatgtatgc	600
gtggcgccggc aggttttcca tggcgaaggc attctggcct ttttaccgtt tagcgtatccg	660
catctttgtct cgttgcgttgc gtactgtcg ccagaggaag cgcagcgat gcaacggcga	720
agtgaagacg aattttatcg cgcgttataat atcgcttttgc ataatcgatcc gggcttatgc	780
aagggttggaa ggcgcgcgtca ggtttccca ctgacggggc gttatgcgcg ccagtttgc	840
tcgcacccgtc tggcgctgtt gggcgacgcgc gacatccatca ttcacccgtt ggcggggcag	900
ggggtaaaatc tcggctttat ggatgtgttgc gatgttgc gatgttgc gatgttgc gatgttgc	960
cgtcaaggaa aagacatccg gcaatgttattt tatctgcgtc gctatgagcg tagccgcac	1020
cacatgtcgcc cgttgcgttgc ggttgcgttgc caggatgttcc gcatgttgc tttttttttt	1080
aatccggcga aaaaactgtt gctgtatattt ggtttgaaac tggccgcacac gcttcttggc	1140
gttaagccgc aacttatccg ccaggcaatg ggattaaacg atttgcctgtatggcgtatggc	1200

taa

1203

<210> 111
<211> 1179
<212> DNA
<213> E. Coli

<400> 111

atgagcgtaa	tcatcgtcgg	tggcgccatg	gcggggcgca	cgctggcgct	ggctatttcc	60
cggtaagtc	acggggcgct	gccggtacat	ttgattgaag	cgactgcgcc	agagtcacat	120
gctcatccgg	gctttgatgg	acgagcgata	gcgctggcg	cggg tacctg	tcagcaactg	180
gcccgcac	gcgtctggca	atctctggcg	gattgcgcaa	ctgccccatcac	caccgtgcac	240
gtcagcgatc	gtggtacacgc	tggatttgc	accctcgccg	cagaagatta	ccaactggcg	300
gcccgtggac	agggtgtcg	attgcacaat	gtcgggcaac	ggctgttgc	attgtgtcg	360
aaagcacctg	gcgttaacgct	gcattgcct	gatcgctgg	ctaactgtgc	ccgtactcag	420
agtacacgtt	aagtgcacgt	ggagagtg	gagacgctga	cgggccgcgt	gctggtagca	480
gctgatggca	cccattcagc	gttagccacc	gctgtggcg	ttgactggca	gcaggagcct	540
tacgaacaac	tggccgtat	tgccaacgtt	gctacttccg	ttgcgcatga	agggcgcgt	600
tttgaacgct	ttacgcaaca	tggcccgctg	gcatgttgc	cgatgtctga	cggacgctgt	660
tcgctggct	ggtgtcatcc	actggAACGG	cgcaagagg	tgttgtcg	gagtgacgag	720
aagtttgcc	gtgaactcca	gtcggcctt	ggctggcgac	ttggaaaat	tacccacgct	780
ggtaaacgca	gtgcttatcc	gctggcgta	accacgccc	ccagatctat	tacccatcg	840
accgtgctgg	tggcaatgc	ggcggaaact	ctgcacccga	ttgcccggca	agggtttaac	900
ctcggatgc	gagatgtgat	gagtttgc	gaaaccctga	ctcaggcgca	ggagcgcgga	960
gaagacatgg	gggattacgg	cgtattgtgc	cgatgtcagc	agcgtcgaca	gagcgatcgc	1020
gaagcaacca	ttggcgatc	ggacagcctt	gtacatctt	ttgccaaccg	ttgggcacccg	1080
ctgggtgtcg	ggcgcaacat	cggtgtatg	acgatggaat	tattcacc	ggcacgcgat	1140
gtgctggcg	agcgacccct	cggttgggt	gcccgttga			1179

<210> 112
<211> 1326
<212> DNA
<213> E. Coli

<400> 112

atgagtgaga	tatccccggca	agagtttca	cgtcggcg	aggccctgg	ggagcaaatg	60
caacccggca	gcgcgcgc	gat	tttgc	gcaccagaag	taacacgt	120
gaataaccct	atcg	caga	actgactt	tggacttca	ccggcttta	180
gcgggtctgg	tgctgat	aa	cgatgac	actcataacc	acagcg	240
gttcgcgacc	tgacggcg	gat	ctgg	ggccgtcg	taggcccagg	300
gagaaactgg	gcgttgacc	cg	actgg	ttcagc	aaa	360
ctacttaac	gc	ctggatgt	gtt	accat	gcccagg	420
atcgtaaca	gt	gcgttgg	aa	actgcgt	aatatgcata	480
gcaacgat	tc	gactgg	aa	ggtc	tgctgatgt	540
gagattgg	tac	ccgc	aa	gatgc	ttc	600
aaaaatg	gt	ccgg	at	accgc	atc	660
aaccgcac	gt	cg	tt	cgat	ccac	720
tgcattct	act	ac	aa	ccatt	tg	780
gacgcgg	gt	aa	ac	tt	gg	840
ggcaatt	ccc	agg	aa	tc	cc	900
agcctgc	tg	tat	gg	at	tc	960
atcatgg	gc	gg	aa	ct	tc	1020
gctcaga	cc	cc	tt	gg	tt	1080
gtccatg	tg	gg	tt	gg	gg	1140
ctgaccgt	ag	cc	gg	at	gg	1200
ggtatcg	tt	cc	gg	tc	gg	1260
accgc	tg	gt	aa	ac	aa	1320
tggtgaaaa	gg	gg	aa	at	gg	
caatga						1326

<210> 113
<211> 585

<212> DNA
 <213> E. Coli

<400> 113

atgcttatgt ctatacagaa cggaaatgcct gggttacaacg aaatgaacca gtatctgaac	60
caacaaggaa cgggtctgac cccagctgag atgcatggtt taatcagccg gatgatatgt	120
ggcggttaacg atgacagctc atggcttaccg ctacttcacg acctgacgaa cgaaggcatg	180
gctttcggtc atgagctggc acaggcactg cgtaaaaatgc actctgccac cagcgatgcc	240
ctgcaggatg acggcttcct ttttcagtt tatctgcctg atggcgatga tgtcagcggtt	300
ttcgatcggg ctgatgcatt ggcaggttgg gtcaatcaact tcctgcttgg tcttggcggtt	360
acgcaaccga agctggataa agtgaccggc gaaaccgggta aagctatcga cgatctgcgt	420
aacattgcgc aactgggtt cgcacaaagac gaagatcagg aagagcttga aatgtcgctt	480
gaagagatca tgcataactg tcgtgttgcc ggcgtttagt gccacacacac ctttactcat	540
ccgcaaccga ccgcgccaga agtacaaaaa ccgactctac actaa	585

<210> 114

<211> 363
 <212> DNA
 <213> E. Coli

<400> 114

atgttaaagc tatttgc当地 gtacacccctt attgggtgtgc tgaacaccct tataactgg	60
gtggtttttgg tggtttgtat ctatgtcgcg catacaaacc aagcttgc aaacttcgca	120
ggtttcgttg tggctgttag cttagcttc ttgcgaatg caaaaattcac attcaaggca	180
tcgactacaa cgatgcgcta catgctataat gttgggttca tggggacact gagtgcact	240
gttggatggg ctgctgatag atgcgcactt cccccgatga taactcttgc caccctctcc	300
gccatcagcc tgggtgtgc当地 tttcgcttat tcaaaggta ttgtctttag ggatgcgaaa	360
tga	363

<210> 115

<211> 921
 <212> DNA
 <213> E. Coli

<400> 115

atgaagatat ctcttgc当地 tcctgtcttc aatgaagaag aagcgatacc aatttttat	60
aaaacgggtac gtgatttgc当地 agaattgaag tcatatgaag tggaaatcg tttcataaat	120
gacggcagca aagacgctac ggagtcaatc attaatgctc tgctgtttc agatcctcta	180
gttggccgc tgcatttac acgcaactt ggtttaaaaac cagcatttgt tgcaagggtt	240
gaccatgc当地 cccggggatgc gataatccca attgtatgtt accgtcaaga cccgattttag	300
gttattccctc atcttatttgc当地 aaaatggcaaa gcaggtgctg atatggttct tgctaaaaga	360
tctgaccgct caactgtatgg acgcctgaa gaaaaaacgg ctgagtggtt ctataagctc	420
cacaataaaa taagcaatcc taaaatttgc当地 gagaatgtt tgatattcag gctgtatgagc	480
cgtgatgttgc当地 tggaaaatataat taaaatttgc当地 ccagaacgaa accctttcat gaaaggatt	540
ctgagctggg tagggaaa gacagatatt gttgaatacg tgcgagcgaa aagaatttgc当地	600
ggagatacaa aattttatgg atggaaactt tggaaatttag cacttgaggg tattacaagc	660
tttccacat tcccttccg catctggaca tacatagggt tagtggtagc cagtgtatgca	720
tttattttatgg gggcgtggat gatttttagat actatcatat ttggaaatgc tgtaaggaa	780
tatccttc当地 tacttgccc当地 aataactgttt ttaggtggaa tttagatgat tgaaatagga	840
gtttaggtg aatataatttgc当地 acgcacatac attgaaacca aaaaacgccc gaaataacatc	900
atcaagagag tcaaaaaatgc当地 a	921

<210> 116

<211> 1332
 <212> DNA
 <213> E. Coli

<400> 116

atgaataaaag caataaaatgt atcattgtat atatcttttgc当地 ttttgc当地 ttc当地	60
tctaaaaaca taatgtatgtt aaatacatct gatttc当地 gagccattaa gccattaaatt	120
gaagacatac cagcatttac atatgactt ccttattgt ataaatttgc当地 aggtcatatt	180

gattcaattg atagctatga gtatataagt tcataatgtt atattttgta tacataacgtc	240
ctgtttatta gcattttac tgaatatctt gatgctaggg tggttatcggtt atttctaaaa	300
gtaatataat ttatttcatt atatgcata tttacttcatt atataaaaac agaaaggat	360
gtaactttat ttacattctt tatttagct tttcttagt gttcttcattc aacactgtca	420
atgttgcat cattctatca agagcaaata gttataattt tccttccatt tttgggttat	480
tcattaacat gaaaaacaa taaatctatg cttttgctat tttttcggtt gctaataata	540
tctactgcta aaaatcaatt tatattaacc ccactaatag ttttgcata ttatatttt	600
tttgatagac acaaactaat tattaaatctt gtaatatgcg tgggtgtgtt gcttgcgtca	660
atatttgc当地 tatttttattc aaaagggtgtt gttgaattaa ataagttacca tgcaacatac	720
ttcgttagtt atctttatata gaaaaacaac gggtaaaaaa tgccatcgta tttttgttat	780
aagtgtgtt ggttagatgc ctgggttaat aaattcgaca tatcatttgg cgcaaccccc	840
acagaagttg gaacggaatg tttcgaatct cataaagatg aaacgtttc gaatgcactc	900
tttttattgg ttagcaaacc aagcaccatc ttcaaaacttc catttgcata tttttgttat	960
tctcgtata aagaaaattt tttccatgtt tataaaaaac tacacgtaat atatggagaa	1020
tcaaacatac taacgactat tactaacata aaagacaata tatttaaaaaa cattagattt	1080
atatcattgt tattttttt tatttgcattt attttattta gaaataataa aataaaggca	1140
tctttatgg tagtatctt ttttggataa tctcaattttt atgtgtcatt ttccgggaa	1200
ggatatacag atttaaacaa gcattttt ggaatgttatt ttccgttcga cctttgcata	1260
tacataacag tcgtttttt aatttataaa ataattcaaaa gaaatcaaga caatagcgat	1320
gtaaaaggact aa	1332

<210> 117

<211> 249

<212> DNA

<213> E. Coli

<400> 117

atgggcattc tgcattggat tatttttggg cttattgccg gtattctggc gaagtggatc	60
atgccaggta aagatggagg tggattctt atgactatcc tgctggggat agtcgggtcc	120
gtagtcggcg gatggatcg cacgctgtt ggcttggta aagtcgatgg cttcaatttt	180
ggcagcttcg tgggtgcgt tatttgcgtt attgtgcgtc tatttatcta caggaagatt	240
aaaaggtaa	249

<210> 118

<211> 183

<212> DNA

<213> E. Coli

<400> 118

atgggc当地 caacgtatac cgtgaccgtc accaataaca gcaatggcg ttctgtcgat	60
tatggaaacag agacgcccgt gactttgtg tgccagaag tggccggctga agtataaaaa	120
gatctgggtga ataccgtacg ttcttatgac acggaaaacg aacatgtat ttgtgggtgg	180
taa	183

<210> 119

<211> 360

<212> DNA

<213> E. Coli

<400> 119

atgc当地 tcccacagaa ttatattcat acgcgctcaa cgcccttctg gaataaaacaa	60
actgc当地 cc当地 atattt cgaacgtcat cttgataaaag gaacgc当地 ggggggtttac	120
ccacgc当地 cc当地 tattgca tggggcggtc aaatatctcg gctacgctga tgaacacagt	180
gc当地 gctg atcagggtat cttatcgaa gc当地 ggcaatgtt cc当地 cc当地	240
aaggc当地 acattgaaacg catgactgac gatacttatt tcaacattga ctttgc当地	300
gctcc当地 gaag tcctgatgaa aggtgc当地 caacggaaag tcattcataa cgggaaatga	360

<210> 120

<211> 741

<212> DNA

<213> E. Coli

<400> 120

gtgaagttca aagtatcgccctggcggca ttaatgggta ttacgggat ggcagcgcag	60
gctaacaat tgccggatgg accgcataatt gtcacctccg gtacggcaag cgtggatgcg	120
gtgccagaca ttgccactct tgcgattgaa gttaacgtgg ccgcgaaggatgcccgtact	180
gccaagaaaac aggcatatcgacgcgtcgca caatacattt cttcccttga actcaatcg	240
atcgcaaaaa aagatatcgactcagcgaac ttacgcaccc agccagatta tgattatcg	300
gatggtaaaa gtatccttaa aggctaccgc gctgtgagaa cggtggaaagt cacgctccgt	360
cagttagaca aactgaattt cttgctggat ggccgcgtga aggcgggtct taacaaaatt	420
cgttctgtgt cgctggcgt ggccgcgtccg gatgcctata aagacaaaagc gcgtaaaggca	480
gcgattgata acgcgttca tcaggcgcag gaactggcga acggcttca tcgtaaaactq	540
ggccggtat atagcgtgcg ctaccatgtt tccaactatc agcccagccc aatggtgccg	600
atgatgaaaag ccgatgccgc gccgggttcc gcccaggaaa cttacgagca ggccgttatt	660
cagtttgatg atcaggtcga tgtggcttc cagttagaac ctgtggatca acaacccgct	720
aaaacacctg cagcacaataa a	741

<210> 121

<211> 1395

<212> DNA

<213> E. Coli

<400> 121

gtgttattac tggatgcgtg ctcgcaaattg tgcccgcat tcagacgatt ccagacagt	60
tttcataatt cctccatttt tctcccttat tggctggcta cactagtatc attccgcgaa	120
acgtttcagg aagagaaaact cttaacgtatg aaaggtagtt ataaatcccg ttgggtaatc	180
gtaatcgtgg tggttatcgccgc cgcattcgcc gcattctgg tctggcaagg ccgcaatgac	240
tcccggagtg cagccccagg ggcgacgaaa caagcgcagc aatcgccagc ggggtggcga	300
cgtggatgc gttccggccc attagccccg gttcaggcgg cgaccgcgt agaacaggca	360
gttccgcgtt acctcaccgg gcttggcacc attaccgcg ctaataccgt tacggtgccg	420
agccgcgtgg acggccaaact gatagcgtta catttcagg aaggccagca ggtcaaagca	480
ggcgatttac tggcagaaaat tgacccaggc cagttcaaag ttgcattagc acaagccag	540
ggccaaactgg caaaagataa agccacgctt gccaacgccc gccgtgaccc ggcgcgttat	600
caacaactgg caaaaacccaa tctcggttcc cgccaggagc tggatgcccacaggcgt	660
gtcagtgaaa cccaaaggcac cattaaggct gatgaagcaa gcgttgcag ccgcgcgt	720
caactcgact ggagccggat taccgcacca gtcgatggc gcgttggct caagcagg	780
gatgttggta accaaatctc cagtggtgat accacccggta tcgtggtgat caccacgg	840
catcctatcg atttagtctt tacccctggc gaaagcgata tcgctaccgt agtgcaggcg	900
cagaaagccg gaaaaccgct ggtggtagaa gcctggatc gcaccaactc gaagaaatta	960
agtgaaggca cgctgttaag tctagataac caaatcgatg ccactaccgg tacgattaaa	1020
gtgaaagcac gcttaataa tcaggatgat ggcgttttc ccaatcagtt tgtaacgcg	1080
cgcattgttag tcgacaccgg acaaaaacgccc gtagtgcatttcc caacagccgc cctgc当地atg	1140
ggcaatgaag gccattttgt ctgggtgctg aatagcgaaa acaagggtcag caaacatctg	1200
gtgacgcccgg gcattcagga cagtcagaaa gtggtgatcc gtgcaggat tatctgcggc	1260
gatcgctgg tgacagacgg cattgatcgcc tcgaccgaag gggcgaaaat ggaagtgg	1320
gaagcccaga gcccactac tccggaagag aaagccacca gcccgaata cgcgaaaaaa	1380
ggagcacgct cctga	1395

<210> 122

<211> 3123

<212> DNA

<213> E. Coli

<400> 122

atgcagggtgt taccggag cagcacaggc ggcccgtcgccgcctgtttat tatgcgtcct	60
gtggccacca cgctgctgat ggtggcgatc ttactcgccg ggattatcggtt atcgcc	120
ctggccgtt cggcgctgcc ggaagtggac tatccgacca ttacgggtt caccgtctac	180
ccaggtgcca gcccggatgt catgacctct gccgttaccg ccgcgttaga acgcgcgttc	240
ggcagatgt ctggcctgaa acagatgtcg tcgcaagtt ccggcggtgc gtcaggat	300
actttgcagt tccagctaac attaccgttc gatgtcgccg agcagggaaat gcaaggccgc	360
attnacgctg cgaccaactt gttggcgatc gatctgccta acccgccgtt tacagcaaa	420
gtgaacccgg cagatccgccc gatcatgacg ctcgcgtca cctcaaccgc catgcgtat	480

acgcagaatgg	aagatatgg	ggaaacccgc	gtcgccgaga	aatctcgca	gatttccggc	540
gtcgccctgg	tgacgcttc	cggcggtca	cgtccggctg	ttcgcgtaa	acttaacgct	600
caggcgattt	ccggccctcg	cctgaccagc	gaaacgtgc	gcaccgcac	tacccggcgct	660
aacgttaact	cggaaaagg	tagcctcgac	ggcccttccc	gtcggtcac	gctttccgc	720
aacgaccaga	tgcaatccgc	cgaagagtat	cgccagctaa	tcatcgcta	ccagaacggc	780
gwgccaaatc	gtctggcga	tgtcgcaact	gtagagcaag	gtcgagaaaa	cagctggctc	840
ggcgctggg	cgaacaaga	acaggccatt	gtgatgaaatg	ttcagcgcca	gcccggtgct	900
aacattatct	ccaccgccga	cagcattcg	cagatgctgc	cacagctcac	tgagagtc	960
ccgaaatcg	tgaagggtgac	agtgc	gatcgacca	ccaatatccg	cgcattccg	1020
gatgatactc	agtttgaatt	gatgatggct	atcg	cgatcg	tatctac	1080
ttttgcgc	atattccggc	gaccatatt	cccggtt	ctgtaccg	gtcgtaatc	1140
ggcacttcg	cgttatgg	gtttctcgat	tttcaatca	ataacctgac	actgatggcg	1200
ttaactatcg	ccaccggatt	cgtggcgtat	gacgcac	tggtgatcga	aaacatttcc	1260
cgcataatcg	aaaaaggcga	aaaaccgtt	gccccggc	tcaagggcgc	aggtgaaatc	1320
ggcttacca	ttatctcg	gacettctca	ctgatgcgg	tgttgatccc	actgctgtt	1380
atggcgata	tcgtcgggcg	actgttccgc	gaatttgcta	ttaccctggc	ggtagcgtt	1440
ttgatctcg	cggtgtgtc	gctgaccctg	acaccatga	tgtcgccgc	gatgctc	1500
caggagtcgt	tcgtaaaca	gaaccgttc	tcccgtgc	cggaaaaat	ttcgacagg	1560
ataatcgcc	cctatggcg	tggactggcg	aaagtgc	atcatccgt	gtgac	1620
agcgtggcac	tcagcacgt	gctgcttagc	gtgctgcgt	gggtgttcat	tccgaaaggt	1680
ttcttcccg	tacaggacaa	tggcattt	cagggcactt	tgcaggcacc	gcaatccagc	1740
tccttgc	atatggccca	gcgacaacgc	caggtcg	acgtgattt	gcaggatcc	1800
gcagtgcaaa	gcctgaccc	attgttggc	gttgatggc	ctaaccgc	gtgaaacagt	1860
gcacgttac	aatcaaccc	caaaccgtt	gatgaacgt	atgatcg	gcaaaagtc	1920
atcgcccc	tgcaaacggc	ggtagataaa	gtgccccggc	tgc	cctgcaacca	1980
acgcaggatc	tgactattg	tactcagg	agccgcaccc	agtaccagt	taccc	2040
gccacgtc	tggatgcgt	cagta	gtgccc	tgatggaaa	actccagca	2100
ctgcccac	tttctgtat	ctcc	tgcc	gaggaca	aagggtcg	2160
aatgttgc	gcgacagcgc	cagccgtct	gggatc	tggcggat	cgataa	2220
ctgtacaacg	cgttggtca	gcccgtatt	tccactattt	atactcagg	caacc	2280
cgcgtgg	tggagcaca	caccgaaaat	accccaggc	tcgcggc	gataccatt	2340
cgcctgac	gcagcgac	cggcgtgg	ccgctaa	caattgc	aattgac	2400
cgtttgc	cgctctccat	caaccat	gatc	cgtaac	catctcc	2460
aacgtccgg	ataactattc	gctggcgt	gcccgt	cgattat	caccgaaa	2520
acgctgaatc	tgccggtga	tatcaccac	cagtcc	gcagcac	cgcctcc	2580
tcggcgtt	gcagcactgt	ctggctgatt	gtcgcc	tggtggc	gtatatcg	2640
ctcgccat	tgtacgagag	cttatttac	ccgat	ccacca	ttctctcg	2700
gcagggtt	gcccactgt	ggcgttgc	attgc	gttgc	gatgc	2760
attatcgca	ttat	ttgt	gttgc	gcgaa	tgtgatt	2820
ttcgcgtt	ctgctgagc	cgagcaagg	atgtcg	ccgagg	ctaccagg	2880
tgtctgttgc	gtttctgtcc	gatcctgtat	accact	tgc	ggctctgt	2940
ccgctgtat	tgagtaccgg	ggcgttgc	gaa	actgc	gtccgtt	3000
gtcgccgg	tgattgtc	ccagg	gtt	ccacg	tatcg	3060
ctgttcgacc	gcctggcatt	gtgg	gacca	ccacg	ccgtcat	3120
taa						3123

<210> 123

<211> 3078

<212> DNA

<213> E. Coli

<400> 123

gtgaagttt	ttgcctctt	catttaccgc	ccgg	tggcga	cgat	ttact	gtcggttgc	60
attaccctgt	gcggcata	act	gggttccgt	atgc	tgc	cccg	ccgt	120
gat	ttccgg	tgattatcg	cag	ccctcg	ctg	cccgg	gtc	180
tcttcgtt	ccacgccc	gt	ggagcgtca	ctt	ggcgc	tt	ggag	240
ac	cc	ttcg	cgt	ttt	ccgt	cc	ccgt	300
atcaacggcg	cagcgcgt	tg	tc	at	cc	cc	cc	360
agtggatgc	ccagccccc	gac	tc	gc	cc	cc	cc	420
atc	cac	tg	ac	gt	cc	cc	cc	480
cagctgg	cgacgattt	gc	aa	at	cc	cc	cc	540

tcactgccc	ccgtacgcgt	cgggctgaat	ccgcaggcgc	tgtttaatca	gggcgtgtcg	600
ctggacgacg	tacgcaccgc	cgtcagcaat	gccaacgtgc	gtaaaccgca	gggcgcgctg	660
gaagatggca	ctcaccgctg	gcagatccag	accaatgatg	agctaaaaac	cgccgctgaa	720
tatcagccgt	tgattattca	ctacaacaac	ggcggcgcgg	ttcgctctgg	cgatgtggcg	780
acggtgaccg	actcagtgc	ggatgtgc	aacgccccga	tgacccaacgc	caaaccggct	840
atttiactga	tgatccgca	actgccccga	gccaatatta	tccagacggt	tgacagcatc	900
cgggaaaat	taccggagtt	gcagggaaacc	attccggcgg	cgattgatct	gcaaattgcc	960
caggatcgct	cccccaccat	tcgcgcctcg	ctggaagaag	tcgagcaaac	gctgattatc	1020
tcggggcgc	tggtgtattct	ggtgggttt	ttattcctgc	gctcggggtcg	cgccactatt	1080
attccgccc	tttcgggtcc	ggttgcgtg	attggtagct	ttgcggcgat	gtacctgtgc	1140
ggattcagtc	tcaataacct	ttcggttaatg	gcgctcacca	tcgctactgg	ttcgtgggt	1200
gatgacgcca	tcgtgggtct	ggaaaacatt	gcacgtcattc	tggaaagcggg	aatgaaaaccg	1260
ttgcaagccg	cactgcaagg	tactcgcgaa	gtcggttta	cggtgctgtc	gatgagtctg	1320
tcactgggt	cgggtttct	gccgctgctg	ttgatggcg	gattgccggg	ccgactgtta	1380
cgcgaatttgc	ccgtgacgct	ttctgtcgcc	attggtatat	cgttgctgtt	ttctctgaca	1440
ttaacgccaa	tgatgtgtgg	ctggatgctg	aaagccagca	agccgcgcga	gcääaaggcga	1500
ctgcgtggtt	ttggtcgcatt	gttggtagcc	ctgcaacaag	gctacggcaa	gtcactaaaa	1560
tgggtgctca	atcataccgg	tctggtgggc	gtggtgctgc	ttggcaccat	tgcgctgaat	1620
atctggctgt	atatctcgat	cccggaaaacc	ttcttccgg	agcaggacac	tggcgtgtt	1680
atggggcggg	ttcaggcgg	tcagagtt	tcgtttcagg	cgatgcgcgg	taagttgcag	1740
gatttcatga	aaattatccg	tgacgatccg	gcagtggata	atgtcaccgg	ctttacaggc	1800
ggttcgcgag	tgaacagcgg	gatgatgtt	atcaccccta	agccacgcga	cgaacgcgac	1860
gaaacggcgc	agcaaattat	cgaccgtctg	cgcgtaaaac	tggcgaaaga	accggggggcg	1920
aatctgttcc	tgatggcggt	acaggatatt	cgcgttgg	ggcgtcagtc	gaacgcgcagc	1980
taccagtaca	cgttgttatac	cgacgacctg	gccccactgc	gagaatggga	gccgaaaatc	2040
cgcaaaaaac	tggcgcacgtt	gccccactg	gccccactg	actccgatca	gcaggataac	2100
ggcgcggaga	tgaatctgg	ttacgaccgc	gacaccatgg	cacggctgg	aatcgacgta	2160
caagccgcca	acagtctgtt	aaataacgca	ttcggtcagc	ggcaaattctc	gaccatttac	2220
cagccgatga	accagtataa	agtggtgatg	gaagtggatc	cgcgtataac	ccaggacatc	2280
agtgcgctgg	aaaaaaatgtt	cgttatcaat	aacgaaggca	aagcgatccc	gctgtcgtat	2340
ttcgctaaat	ggcaaccggc	gaatgcccc	ctatcggtga	atcatcagg	attatcgccg	2400
gcctcgcacca	tttcgtttaa	cctggcgcacc	ggaaaatcgc	tctggacgc	cagtgcggcg	2460
atcgatcg	caatgacc	gctgggtgt	ccttcgacgg	tgcgcggcag	tttgcggc	2520
acggcgcagg	tgttccagga	gacgatgaac	tcgcagg	tcctgattat	cgccgcgatc	2580
gccacgggt	atatcggt	gggtatcctt	tacgagat	acgtacatcc	gctgacgatt	2640
ctctccaccc	tgcctcg	gggcgttgg	gctgttgg	cgctggagat	gttcaatgccc	2700
ccgttcagcc	taatcgcc	gatagggatc	atgttattaa	tcggcatcg	gaagaaaaac	2760
gccattatga	tggtcgattt	tgccttgaa	gccccacgc	acggtaac	gacgcccgcag	2820
gaagctattt	tccaggcctg	tctgtcg	tttcgccc	ttatgtatgac	taccctggcg	2880
gctgtgtt	gtgcgtgc	gctgttattg	tcggcggcg	acggctcg	gctgcggcaa	2940
cccctggg	tcaccattgt	cggcgactg	gtaatgagcc	agctccttac	gctgtataacc	3000
acggccgg	tgtatctt	tttcgaccgt	ctgcggctgc	gttttcg	taaacctaaa	3060
caaacggtaa	ccgagtaa					3078

<210> 124
<211> 1416
<212> DNA
<213> E. Coli

<400> 124

atgacagatc	tccccgacag	caccgcgttgg	caattgtgga	ttgtggcttt	cggcttcttt	60
atgcagtgc	tggacaccac	catcgtaaac	accgccttc	cctcaatggc	gcaaaggcctc	120
ggggaaatgc	cgttgcata	gcacatggc	attgtcttt	atgtgctgac	cgtggcggtg	180
atgctggcc	ccagcggtg	gctggcggac	aaagtcggcg	tgcgcaat	tttctttacc	240
gccatcg	tgttactct	cgggtactg	ttttgcgc	tttccggcac	gctgaacgaa	300
ctgttgc	cacgcgcgtt	acaggcggtt	ggcggcgcga	tgtgggtgc	ggtcggcaga	360
ttgacgg	tgaaaatctgt	accgcgcgag	caatataatgg	cggcgatgac	ctttgtc	420
ttaccgg	aggcgcgtcc	gctgctcggt	ccggcgctcg	gccccactg	ggtggagat	480
gcatcg	actggatctt	tttgatcaac	attccgg	ggattatcg	tgcgatcg	540
acattgc	taatgccc	ctacaccatg	cagacgcggc	gttttgc	ctccggattt	600
ttattgc	cgggttgc	ggcggttatt	accctggcgc	tggacggcag	taaaggata	660

ggtttatcgc	cgctgacgat	tgcaggcctg	gtcgacgttg	gcgtgggtgc	actggtgctt	720
tatctgctgc	acgccagaaa	taacaaccgt	gccctgttca	gtctgaaact	gttccgtact	780
cgtacccccc	cgctggcct	ggcgccccgac	tttgcggac	gtattggcag	tgcatgttg	840
ccctttatga	caccgggtt	cctgcaaatt	ggcctcggtt	tctcgccgtt	tcatgccga	900
ctgatgatga	tcccgttgt	gcttggcagc	atggaatga	agcgaattgt	ggtacagggt	960
gtgaatcgct	ttgggtatcg	tcgggtactg	gtacgcacca	cgctgggtct	gtcgctggtc	1020
accctgtgt	ttatgactac	cgcctgtct	ggctggta	acgtttgcc	gttcgtcctg	1080
tttttacaag	ggatggtcaa	ctcgacgct	ttctcctcca	tgaacaccct	gacgctgaaa	1140
gatctcccg	acaatctggc	gagcagcgc	aacagcctgc	tgtcgatgat	tatgcaattg	1200
tcgatgatga	tcggcgac	tatgcggg	ctgtgtctgg	gacttttgg	ttcacacgcat	1260
gtcagcgtcg	acagcggcac	cacacaaacc	gtctttagt	acacctggct	tagcatggcg	1320
ttgatcatcg	cccttcggc	gttcatctt	gccagagtgc	cgaacgatac	gcatcaaaaat	1380
gtagctat	cgeggcgaaa	aaggagcgcg	caatga			1416

<210> 125
<211> 1035
<212> DNA
<213> E. Coli

<400> 125						
atggaaattc	gcataatgt	atttatatta	atgatgatgg	ttatgcctgt	gagctatgcg	60
gcatgtata	gtgagttatc	tgttcagcac	aacttgggtt	ttcaggggga	ttttgcactt	120
actcaaacac	aaatggcgac	atatgagcat	aattttatg	attcgtcatg	cgttaagtaca	180
aatactatca	cccctatgag	cccgtcggt	attattgtt	gactttataa	cgataaccata	240
aaattaaatt	tacatttga	atggaccaat	aaaaacaaca	tcacgtgtc	aaataatcag	300
accagttca	ccagtggtt	ttcagttacg	gtgacacctg	cggccagtaa	tgcaaaaagt	360
aatgttctg	cggggggcg	cgggttcagtg	atgattaatg	gtgttgcgac	attatccagt	420
gcttcatcat	cgacacgccc	gagtggcgc	gtacaattt	tactgtt	attaggtggc	480
aagtcatggg	atgcatgtgt	aaatagctac	agaaatgc	tggcacaaaa	tgcagggtgc	540
tattcctta	atctgacatt	gtcatacaca	ccgataacca	caacctgca	accggacgat	600
ttattaatta	ctttagacag	tattccgtt	tcacaattac	cagccacagg	taacaagca	660
acaataaata	gtaaacaagg	ggatattatt	ctgcgttga	aaaatttatt	aggtcaacaa	720
aatcaaacat	cacggaaaat	gcaggtgtat	ttatcaagtt	ctgactt	tttccaaacagc	780
aacacaatac	tgaaaagggtc	ggaagataat	ggcgttaggat	ttattttga	aagtaatgg	840
tcgcccagtca	cactttaaa	tatcaactac	agcgttaaag	gatatacaaa	tttaaaggaa	900
gttgcggcga	agtcaaaaact	tacagataca	acggtttcaa	ttccgataac	agccagttac	960
tacgtctacg	atacaaacaa	agttaaatct	ggcgcactgg	aggcaaccgc	attaatcaac	1020
gtgaaatac	actaa					1035

<210> 126
<211> 2481
<212> DNA
<213> E. Coli

<400> 126						
atgttgagaa	tgaccccaact	tgcattcagca	atcgtagcgt	tattgctcgg	cattgaagct	60
tatgcagctg	aagaaacctt	tgataaccat	tttatgtatag	gtggaaatgaa	agaccagcag	120
gttgcaaata	ttcgtcttga	tgataatcaa	cccttaccgg	ggcagttatga	catcgatatt	180
tatgtcaata	agcaatggcg	cggaaatata	gagattattt	ttaaagacaa	cccgcaagaa	240
acatgtttat	caagagaagt	tatcaagcgg	ttaggcatta	atagcgataa	cttcgcccagc	300
ggtaagcaat	gtttaacatt	tgagcaactt	gttcagggtt	ggagctatac	ctgggatatac	360
ggggtttttc	gtctcgattt	cagtgtcccg	caggcctggg	tggaaagaact	ggaaagggtgc	420
tatgttccac	cggaaaactg	ggagcggggt	attaatgcgt	tttatacctc	ttattatctg	480
agtcagtatt	acagcgacta	taaagcgtcg	gtaataaca	agagtacata	tgtacgttt	540
aacagcgggt	taaatttact	ggggtggcaa	ctgcattctg	atgcccgtt	cagtaaaaca	600
aataacaatc	caggggtgt	gaaaagcaat	accctgtatc	tggaaacgtgg	atttgcacaa	660
cttctcgac	cgcttcgcgt	gggtgatatg	tacacatcaa	gcgatatttt	tgattctgtt	720
cgccttcagag	gtgtgcgggt	gtttcgtgt	atgcagatgt	tgcctaactc	gaaacaaaat	780
tttacgccac	gggtgcaggg	gattgcttag	agtaacgcgc	tggtaactat	tgaacagaat	840
ggttttgtgg	tttatacgaa	agaggttctt	cctggcccg	tgcgcattac	agatttgcag	900
ttggccgggt	gtggagcaga	tcttgatgtc	agcgtgaaag	aggcggacgg	ctcggttaacc	960

acctatatctgg tgccttatgc agcggtgcca aatatgctgc aaccggcggt gtcgaaatata 1020
 gatttagcg cggtcgtag ccatattgaa gggcgagca aacaaggta ttttgtccag 1080
 gcgggttatac agtatggtt taataattta ttgacgctgt atggtggtc gatggtcg 1140
 aataatttt acgcgtttac ttggggct ggctggaata cacgcattgg tgccatttc 1200
 gtcgatgcca ctaagtcga tagtaacaa gacaacggcg atgtgttga cggcaaaagt 1260
 tatcaaattt cctacaacaa atttgtgagc caaacgtcga cgcgttttg tctggcggcc 1320
 tggcggttatt cgtcgctgtt ttaccggaca ttaacgatc acgtttggc aaacaataaa 1380
 gataattatc gccgtgatga aaacgatgtc tatgacattt ccgattattt ccagaacgat 1440
 tttggccgca aaaatagctt ttccgccaat atgagccagt cattgccaga aggttgggg 1500
 tctgtgtcat taagtagctt atggcgagat tactggggc gtagcggcag tagtaaggat 1560
 tatacggttga gttattccaa caacctgcga cggataagct ataccctcgc ggcaagccag 1620
 gcttatgacg agaatcatca tgaagagaaa cgttttataa ttttataatc gattccctt 1680
 gattgggttgc atgacgtttc gacgcctcgt cggcaaaat atatgtctaa ctcaacgacg 1740
 tttgatgatc aggggttgc ctcaaataat acgggattat caggaacagt agggagtcgg 1800
 gatcagttca attatgggtt caacctgagt catcaacatc agggaaatga aacgacagct 1860
 gggcgaatt tgacctggaa cgcgcgggtt ggcacagtga atggcagttt tagtcagtcg 1920
 agtacttatac gacaggctgg agccagttt tcagggggca ttgtcgccgt gtcgggtggc 1980
 gttaatctgg cgaaccgtct ttccgaaacg tttgctgtga tgaatgcgcc aggaattaaa 2040
 gatgtttatg tcaatggca aaaaatatcgc acaacaaaacc gtaatggagt ggtgatatac 2100
 gacggaatga cacttatcg gaaaaatcac ctgatgctgg atgtgtcgc aagcgatagc 2160
 gaagcagaat tacgtggca cccggaaaatt gccgcggccgtt atcgcggcgc gttgtactg 2220
 gttaatttttgc ataccgatca gcgcagccca tggtttataa aagcgtaaag agcagatggg 2280
 caatcattaa cgttggta tgaagtcaat gatatccatg gtcataatat tggcggttgc 2340
 ggccaggaa gtcagttatt tattcgccacc aatgaagttac cgcgcgttgc taatgtggca 2400
 attgataaagc aacaaggact ttcatgca aatcaccctcg gtaaagagat tgatgaaagt 2460
 agaaattata tttgcccagta a 2481

<210> 127

<211> 720

<212> DNA

<213> E. Coli

<400> 127

atggccgcta tcccatggcg gccttttaat ttaagaggca taaaaatgaa aggattatta 60
 tctttactca tttttctat ggcccttcct gcacatgccc gaattgttat ctacggacg 120
 cgcattattt acccggcaga aaataaaagaa gtatgggtgc agttgtatgaa ccaggaaac 180
 cgttcttcgc tgctgcaggc gtggattgtat gatggcgata cgtcattacc accagaaaaa 240
 attcaggttc ctttcatgtt aacgccacca gtggcaaaaaa tagggggcaaa ttccgggcag 300
 caagaaaaaa tcaaaattat gccgaataaa ctgcccacta ataaagaaa catttttat 360
 ctgaatgttc tggatattcc accaaatagt ccagagcaag aaggtaaagaa tgcactgaag 420
 tttgcgtatgc aaaacagaat taagttgttt taccggccag cgggtatttc tccggtaaat 480
 aaagcgacat taaaaaattt gctggtaaat cgcagtggca atggtttgc gataaaaaat 540
 gactcagctt atgggggtac gattcggat gtcaaagcta ataatgtcaa agtcaattat 600
 gaaacttata tgattgcccc cttagaaagt cagagtgtt atgtcaaaag taataatgca 660
 aataactggc atctgaccat tatcgatgac catggcaact atattagtga caaaattttaa 720

<210> 128

<211> 543

<212> DNA

<213> E. Coli

<400> 128

atgaaacgtt caattattgc tgccgctgtc ttttcttctt tttttatgag cgctggagta 60
 tttgctgcag acgttgcata cggaaacatta actattaagg ggaatattgc agaatctccg 120
 tgtaaattcg aagcgggtgg tgattcagta agtattaata tgccgactgt accaaccagt 180
 gtcttgcag gtaaagctaa atattctacc tatgtatgatc cagtcgggtt aaccagcagc 240
 atgttaaaaa tttagctgccc gaaagaagtt gctgggtaa aactctcggtt gattaccaac 300
 gataaaaataa cccgttaacga taaggcgata gccagtagca acgtatccgtt ggggtactat 360
 ctctatttag gtgataacag cgtatgcctgt gatgtttctg caccttttaa cattgagagt 420
 tataaaaacag cggaaaggctca atatgtctt ccgttaaaag caaaataacct gaaactgaca 480
 gataactcag tgcaatcagg ttagtgcgtt tttctctgtt ggcgcaggat 540

taa

543

<210> 129
<211> 339
<212> DNA
<213> E. Coli

<400> 129

atgagtttag	agcgagatct	ggtaattttt	ctggcgatt	tttcaatgga	tgtggccaaa	60
gcagttata	ccgtgggt	tgcaaccgct	attggaaagtc	tggcttctt	tgccctgtgtt	120
agctttggc	ttccagtaat	tcttgtcgg	ggagcaattt	tactgacagg	gatagtgtgt	180
acagttgtt	taaatgaaat	cgatgctcaa	tgccatttat	cagaaaaatt	aaaatatgca	240
attagagatg	gactaaaacg	gcaacaggaa	cttgataaaat	ggaaaaggga	aaacatgact	300
ccatttatgt	atgttcttaa	cactccaccc	gtgatatga			339

<210> 130

<211> 582
<212> DNA
<213> E. Coli

<400> 130

atgactgact	acctgttact	gtttgtcgg	actgtactgg	tcaataactt	tgtactggc	60
aagtttctcg	gtctctgtcc	gtttatgggg	gtttccaaaa	aactggaaac	cgcgatgggc	120
atggggctgg	caacaacgtt	tgtatgcacg	ctggcgctca	tttgcgcctg	gcttattcgat	180
acgtggattt	tgatcccact	taatctgatt	tacctgcgc	ccctggcatt	tattctgtgt	240
attgtgtgg	tcgtgcagtt	caccgagatg	gtggcgcgc	aaaccagccc	ggtgctttac	300
cgtctgtgg	ggattttttt	gcccgttatac	accaccaact	gtgcagtgt	cggcgtggcg	360
ttgctgaata	tcaatctcgg	gcacaatttc	ttgcagtcgg	cgctgtacgg	ttttccgccc	420
gctgtcggtt	tctcgctgg	gatggtgctc	ttcgcgcgc	tccgcgaacg	ccttgctgtg	480
gctgatgtcc	cggcacctt	tcgcggtaat	gccattgcgt	taattaccgc	aggtctttag	540
tctctggcct	ttatggcctt	tagtggttt	gtgaagttgt	aa		582

<210> 131

<211> 579
<212> DNA
<213> E. Coli

<400> 131

atgaatgcta	tctggattgc	cgttgccgccc	gtgaggcctgc	tgggcctggc	gtttggcgcc	60
attctgggtt	atgcctcccg	ccgttttgcg	gtggaagacg	atccggctgt	tgagaaaatt	120
gacgaaatct	taccgcagag	ccagtgtgg	cagtgcgg	atccccggctg	tcgcccctac	180
gcggaaagcca	ttagctgtaa	cggtaaaaaa	atcaaccgtt	gcgcggcagg	tggcgaagct	240
gtgatgctaa	aaattgccc	gttgcttaat	gtcgagccgc	agccgctgga	tggcgaagcg	300
caagagataa	cgcctgcgc	gatgggtggcg	gttattgtat	aaaataactg	tattggctgc	360
actaaatgt	ttcaggcgtg	tccgttagac	gccatcggt	gcgcgtacccg	tgccatgcac	420
acggtaatgt	gtgatctctg	tacgggctgc	aatttatgt	tgatccgt	ccgcacgcac	480
tgcatctcg	tgcaaccgg	cgcagaaaca	cctgactcct	gaaatggga	tctgaacacc	540
atcccgctgc	gtatcattcc	cgtggAACAC	catgcttaa			579

<210> 132

<211> 2223
<212> DNA
<213> E. Coli

<400> 132

atgcttaagt	tattctctgc	attcagaaaa	aataaaatct	gggatttcaa	cggccgcata	60
catccaccgg	agatgaaaac	ccagtccaa	ggtacacccc	tgcgcaggt	acccttggcg	120
cagcgtttt	ttattccact	gaaacagcat	attggcgctg	aaggtgagg	gtgcgttagc	180
gtcggcgata	aagtattgcg	cggccagccg	cttacccgt	gtcgcggcaa	aatgctgcct	240
gttcacgcgc	ccaccccg	taccgttacg	gctattgcgc	cccactctac	ggctcatcct	300
tcagctttag	ctgaattaag	cgtgattatt	gatgccatg	gtgaagactg	ctggatcccg	360

cgcgacggct gggccgat	ta tcgcactcgc	agtcgcgaag	agttaatcga	gcgcatacat	420
cagtttggtg ttgccgggt	gggcggtgca	ggattcccga	caggcgtaa	attgcagggt	480
ggcggagata agattgaaac	gttgcattatc	aacgcgcgt	agtgcgagcc	gtacattacc	540
gccgatgacc gtttgatgc	ggattgcgcg	gctcagtcg	tagagggtat	tcgcattctt	600
gcbcatttc tgcagccacg	cgaaattctt	atcggcattt	aagataaca	accgcaggcg	660
atttccatgc tgcgcgggt	gctggcggac	tctaacgata	tttctctgcg	ggtgattcca	720
accaaatac cttctggcgg	tgctaaacaa	ttaacctaca	ttctgaccgg	gaagcagggtt	780
ccacatggcg ggcgttcatc	cgatatcg	gtattatgc	aaaacgtcg	cactgcttat	840
gcagtgaaac gtgccgttat	tgatggcgag	ccgattaccg	agcgtgtt	aacccgtact	900
ggcgaagcaa tgcgtcgccc	gggcaacgtc	tgggcacggc	tggggacgccc	agtgcgtcat	960
ttattgaatg atgcccggatt	ctgcccctct	gccgatcaa	tgtgtattat	gggtggcccc	1020
ctaattggct ttacccgtcc	atggctggat	gtcccgctcg	taaagattac	caactgtctg	1080
ttggctccct ctgccaatga	acttggcgaa	ccacagaag	aacaaagctg	catccggtgt	1140
agcgcctgtg ctgacgcctg	ccctgcggat	cttttgcgc	aacagttgt	ctgggtcagc	1200
aaaggctcagc aacacgataa	agctaccacg	cataacattt	ctgatttgc	tgaatgtggg	1260
gcttgcgcgt gggtttgc	gagcaatatt	ccccctgtgc	aatatttccg	ttagaaaaaa	1320
gctgaaattt cggttattcg	tcaggaagaa	aagcgcgcgc	cagaagccaa	agcgcgtttc	1380
gaagcgcgc aggctcgct	ggagcgcgaa	aaagcgcgtc	gccttgaac	acataagagc	1440
gcagccgttc aacctgcagc	caaagataaa	gatgcatttgc	ctggcgtct	ggcgcgggt	1500
aaagagaaac aggcccaggc	tacacacgcct	attgttattt	aagcggggcga	acgcccggat	1560
aacagtgc aaatttgcagc	acgggaagcc	cgtaaagcgc	aagccagagc	gaaacaggca	1620
gaactgcagc aaactaacga	cgcagcaacc	tttgctgtatc	cacgtaaaac	tgccgttgaa	1680
gcagctatcg cccgcgc	ccaaagcataa	ctggaaac	acaggctaa	tgcggaaacca	1740
gaacaacagg tgcgtccgc	caaagccgc	gtcgaagccg	ctatttgc	tgcggaaac	1800
cgcaagctgg aacagcaaca	ggctaatgc	gaaccagaag	aacaggtcga	tccgcgc	1860
gccgcgcgtg aagccgtat	tgcccgtgc	aaagcacgc	agcttgc	gcaacaggct	1920
aatgcgcgac cagaacaaca	ggtcgtatcc	cgcaaaagcc	ccgtcga	cgctattgc	1980
cgagccaaag cgcgc	ggaaacagca	ccggctaat	cggagccaga	agaacagg	2040
gatccgcgc aagctgcgt	cgaagcggct	attgcac	ccaaagc	caagctggaa	2100
cagcaacagg ctaatgcgt	accagaagaa	cagg	ttgtatc	cgcgc	2160
gcggctattt cccgcgc	ggccaaaaaa	ggccccc	agcagg	ttgtatc	2220
taa					2223

<210> 133
<211> 1059
<212> DNA
<213> E. Coli

<400> 133

atggtattca gaatagctat	ctcccttat	accataacc	agcgc	catt	60
atgcttgg tggttgc	gcgcgtgc	ggaatcgc	cgcaact	gtt	120
tgggtactc tcgttca	gat	tcgtttagt	ctctgtt	cgaa	180
gtactcaa	ac	gcaacgtt	aa	agataact	240
acaggctt	at	ccc	cat	ggt	300
ggtacgg	tg	ctcg	gg	gtc	360
ttaatcc	caat	ttact	ctt	ccgt	420
agctgtt	ac	ttt	ttt	tatc	480
gttatttt	gcgg	ttt	ttt	atc	540
gatggcatta	gtcagg	ttt	ttt	atc	600
tcgttgaac	agattat	ttt	ttt	atc	660
caatggtaa	atctcg	ttt	ttt	atc	720
cgctggcata	tcc	ttt	ttt	atc	780
ttgttctc	act	ttt	ttt	atc	840
ctcggcgc	at	ttt	ttt	atc	900
cggcgtt	ttt	ttt	ttt	atc	960
cctgacggcg	ttt	ttt	ttt	atc	1020
tacacgcgtc	ttt	ttt	ttt	atc	1059

<210> 134
<211> 621
<212> DNA

<213> E. Coli

<400> 134

atgctgaaaa	ctatccgaaa	acacggcatt	acgttggcgc	tat	ttgcagc	gggttcaaca	60
gggttaactg	cggccatcaa	ccagatgacc	aaaacacga	ttgctgaaca	ggccagtctg	120	
caacaaaagg	cgttatttga	tcaggtgctg	ccagccgaac	gctataacaa	tgcgtggca	180	
cagagttgct	atctggtaac	tgcgccagag	ttaggtaaag	gtgagcatcg	gttacatc	240	
gccaaacagg	atgacaacc	gttagccgc	gttctggaaag	caaccgcgc	agatggctat	300	
tccgtgcga	ttcagctgct	gttgggagcc	gat	tttaacg	gcacggta	360	
gtgacagagc	accacaaac	gccagggctt	ggcgataaaa	tgcactg	ccttctgac	420	
tggatcaccc	at	tttgcggg	taaaaaatc	agtggtg	cgatgcgca	480	
aagaaagatg	gtggtattt	cgaccagttc	accggcgc	cgattactc	ccgcgcgg	540	
gttaatgcgg	taaaacgcgc	cgattgtac	gctcagacgt	tac	ccggcaca	600	
cttcctgcct	gtggagaata	a				621	

<210> 135

<211> 696

<212> DNA

<213> E. Coli

<400> 135

gtgagcggaa	ttaaagacgt	tattgttca	gggttgttgg	aaaacaactc	tgcgtggc	60
cagttgctcg	gcctttgtcc	tctgttggcg	gtcacgtcca	ctgcccactaa	cgctctgggt	120
ttaggacttg	cgactacgt	gttactgacg	ctgaccaacc	tgaccatttc	gacgctgcgt	180
cactggacgc	cagccgagat	ccgcattccc	atttacgtga	tgatcatcgc	ctcggtggc	240
agcgctgtac	agatgctgat	caacgcctac	gcctttggcc	tgtatcaatc	attaggatt	300
tttattccgc	tgattgtcac	taactgttac	gttgtggcc	g	cgctgaagc	360
aaaaaaagg	tcggcgcttc	ggcactggac	gcctttcaa	ttggtatgg	cgcaacctgc	420
gccatgttcg	tgctggg	actacgcgaa	attatcggca	atggcacatt	gttgcacgt	480
gcagatgcgc	tgtaggt	ctgggcaaaa	gtattacgcg	tggagattt	ccacaccgac	540
tcccctttcc	tgctggcgat	g	gtgcattta	ttggcctgg	actgatgctg	600
gcaggaaaat	acctgatga	tgaagaatg	aaaaagcgc	gtgctgaagc	agctgcagaa	660
cgtgcattgc	caaacgg	aacaggaaat	gtctga			696

<210> 136

<211> 636

<212> DNA

<213> E. Coli

<400> 136

atgaataaaag	caa	acgcct	ggagatcc	actcgctgc	gtgagaacaa	tcctcatccc	60
accaccg	g	ttaaatttca	ttcgctttt	gaattgt	ttgccc	gtact gcttccgct	120
caggcgacc	atgtc	atgtc	actgt	taataaggcg	acggcgaaac	tctacccggt	180
cctgcagcga	tgctt	tgctt	ggcg	ttgg	aaaa	cctatata	240
ctttataaca	gcaaa	gcaaa	ggcg	gggg	ttgg	ttggatgg	300
aatggcgagg	ttccgg	ttccgg	ggcg	gggg	aaaa	ttggatgg	360
acagccaa	tcgt	tcgt	ggcg	gggg	ttgg	ttggatgg	420
at	tttcc	tttgc	ggcg	gggg	aaaa	ttggatgg	480
gaaaagctac	tgaa	tgaa	ggcg	gggg	ttgg	ttggatgg	540
ctgcac	gttata	gttata	ggcg	gggg	ttgg	ttggatgg	600
gatctt	ttgt	ttgt	ggcg	gggg	ttgg	ttggatgg	636

<210> 137

<211> 504

<212> DNA

<213> E. Coli

<400> 137

atgaaaagac	ttcacaagag	gttcc	ttgtt	gt	acgtttt	gcgcgttatt	60
ctccaggcc	ccgatgtc	at	actgt	ttt	aatgg	tcgg	120
attcaa	acc	aa	gg	ttt	ttt	ttt	180

cctggttctg catctggctg gcacaatatt actttgtcat taaccgatttgc tccgggtgaa	240
acaagtgcag tgacggcaat cgtgacaggt tcaactgaca atacgggtta ttacaaaaat	300
gaaggtaactg ccgaaaatat tcagatagag ctgagggatg accaggatgc tgcgttaaaa	360
aatggcgata gcaaaacggt tattgttgat gagatcactc gtaatgcaca gtttccactt	420
aaggcaagag ctatcacggt gaatggaaac gcaagccagg gaacgatcga ggcgctaatac	480
aatgtgatct acacctggca ataa	504

<210> 138
<211> 531
<212> DNA
<213> E. Coli

<400> 138

atgaaataca ataacattat tttccctcggt ttatgtctgg ggtaaccac ctattctgct	60
ttatcccgtag atagcggtat taaaattagc gggcgcgcc tcgattatgg ctgcacagtc	120
tcatcggtt cgcttaattt taccgtatgat ctccaaaaaa acagtgcacg acaatttcca	180
acgaccggta gcacaagttcc agccgtccct tttcagatta cgttaagtga atgcagcaaa	240
gggacaacgg gggttcggtt tgcatatatac ggtatttggg atgcagaaaa taataactttg	300
ttgaaactgg atgaaggaag caatacggcc tccgggttgg gtatagaaaat attggacgca	360
aatatgcgtc cggtgaaact gaatgatctt catgccgggta tgcagtggat cccactggta	420
ccagaaacaga acaatattt gccttactcc gtcgtctga agtcaactca gaagtccgtc	480
aatccgggac tggtagggc ttccggcaacc tttaccctt aatttcaata a	531

<210> 139
<211> 1149
<212> DNA
<213> E. Coli

<400> 139

atgagggtt acaccgtcaa gcctcctacc ggagacacca atgagcagac acaatttatt	60
gattatttta atctgttcta cagtaagcggt ggtcaggaac aaataagcat ctctcagcag	120
cttggaaatt acggtagcgtt atttttcagt gccagtcgccc aaagttactg gaacacgtca	180
cgcagcgacc agcaaatatc atttggatta aatgtgccgt ttgggtgatatacgtacttgc	240
ctgaattaca gctattccaa taatataatgg caaaacgatc gggatcattt actcgctttt	300
acgcttaatg ttcccttcgt tcattggatg cgtacagaca gtcagtcggc atttcgtaat	360
tcaaacgcca gttacagttt gtcacaaacgat ttgaaaggcg gcatgaccaaa tctatcgcccc	420
gtttatggca ctctgtgcc ggataataac ctgaattata gcatgttgcggat cggtaacacc	480
cacggaggta atacatgtc tggcaccagt gtttacagtt ctcttaattt tcgtggagct	540
tatggtaata ctaatgtcgg ttacagtcgg agtggtgaca gcaagccagat ttattacgg	600
atgagggttgg ggttatttgc tcattgtgtt ggcattcacct ttggacagcc gctggccgac	660
acaatggttc tggtaaggc tcctgggtgt gataatgtca aatagagaaa ccagaccgg	720
attcataccg actggcggtt ctatgccata ttaccatttgc cgacagaata tagagaaaac	780
cgtgttgctc ttaacgcgaa ttcccttgca gataatgttgc aactggatgaa aaccgtggc	840
actgtcatcc caactcacgg tgctatttgc agagcaacat ttaatgcaca aatcgccgg	900
aaagtattaa tgacgttggaa gtacggtaat aagagcggtt cattcggtgc aattgtcaca	960
cacggagaga ataaaaatgg cagcattgtc gcgaaaaatg gtcaggttta tctgactgg	1020
cttccacagt cagggcaattt acagggttca tggggcaaaatg ataaaaactc aaactgtatt	1080
gtcgagttaca agcttccttgc agtttcttgc ggtacccat tgaaccagca gacagcaatc	1140
tgtcgctaa	1149

<210> 140
<211> 417
<212> DNA
<213> E. Coli

<400> 140

atgattgcga ttggccgacat cttgcaagca ggagaaaaagc taactgtgtt ggcacccatttt	60
ctggccggta ttcagaacga ggaacaatac acccagcgcc tggaaactggat gatcatctg	120
ctgctcaacg atcctgaaaa ccccttgcgt gatctgtgtt gtcggaaaat aaccgcgtgg	180
gaagaatcg cgccccgaaatt tgcggaaattt aatgcccattt ctcggccat gcttggcggt	240
atagccgtga ttcgttccct tatggatcaa tatggttaa ccctttccga tctggccggaa	300

atggcagta aatctatggt gtcacgcgtt ttgagcggga agaggaaatt aacgctggaa	360
cacgctaaaa aattggcaac gcgattcggc atttctcccg ccttgtttat tgattaa	417
<210> 141	
<211> 315	
<212> DNA	
<213> E. Coli	
<400> 141	
atgcaccta taactcaaaa agcattgaaa gatgctgcgg aaaaataccc gcaacataaa	60
acggagttgg tggctctggg gaacacgatt gctaaggat attcaaaaaa acctgagtca	120
ttaaaacgcg tattccatc tctggataac ttcaaatac tggataagca ttatgttttc	180
aatgttgggg gcaatgaatt acgtgttgc gcaatggct ttttgaatc gcaaaagtgc	240
tacatacgtg aagttatgac gcataaagaa tacgatttct ttaccgctgt tcatcgtact	300
aaggggaaaa aatga	315
<210> 142	
<211> 7152	
<212> DNA	
<213> E. Coli	
<400> 142	
ttgctatcag tatttacatt tttcgctgt gctagaaaagg ggcgcatttat gttagctcgt	60
tcagggaagg taagcatggc tacgaagaag agaagtggag aagaataaaa tgaccgacaa	120
atattatgcg ggatggaaat taaactacgc cgcttaactg cgggtatctg tctgataact	180
caacttgcgt tccctatggc tgcggcagca caaggtgtgg taaaacgccgc aacccaacaa	240
ccagttcctg cacaatttgc cattgcaaat gccaatacgg tgcctacac cttggagcg	300
ttggaaatcg cccaaagcgt tgccgaacgt ttccgtatcc cggtggctga gttacgc当地	360
ctcaaccagt ttctgtacgtt tgctcgaat ttgtataatg tccggccaggg tcatgtactg	420
gatgtccccc cacaagttag tgaaaaaaaaa ttaacccgcg cggccggtaa tagcagtgc	480
aacctcgagc aacagatagc cagttactca cagcaaatcg ggtctctgtc cgccgaagat	540
atgaacagcg agcaagcgcc aatatggcg cgtggatggg ccttcttcg gcttcaggc	600
gcaatgacag actggtaag ccgcttcgtt accgcaagaa tcacgctggg cgtggatgaa	660
gatttttagcc tgaagaactc ccagttcgat ttctccatc cgtgttatga aacgcctgtat	720
aatctcttt tcagtcagca tacttcatt cgtactgacg agctacgc gattaacaac	780
ggcttaggtt ggcgtcattt cactccaca tggatgtcg gcatcaactt cttttcgac	840
cacgatctt gccgttacca ctccccgcgc ggcatttgcg cggagttactg ggcgcactat	900
ctaaaatcaa gcagtaacgg ctatttgcg cttgaccaact ggcgcagcgc acctgaactg	960
gacaacgatt atgaagcagc cccggccaat ggctggatg tacgcgcaga aagctggcta	1020
cccgccctggc cgcaccttg cggtaactg gtctatggac agtattatgg cgatgaagtg	1080
gccctgttcg ataaaagacga tcggccaaatg aatcctcatg ccataaccgc tggacttaac	1140
tataccccc tcccgctgtat gacccctcgc gcgagcaac gccagggtaa acagggcgaa	1200
aatgacaccc gtttgcgtt cgatttacc tggcaacctg gcaagcgaaat gcaagaaacag	1260
cttgaccgcg atgaagtcgc tgcacggcg agccttgcg gcaagccgtt tcatgtctgg	1320
gatcgcaaca acaaatactgt tctggaaat cgcggggaa aactggatcg cctgaccctg	1380
acagaccccg tgacaggaa gtcaggagaa gtgaaatcac tgggttgcg tctacaaacc	1440
aaatatggcc tgaaggcata taacgtcgaa gcccacccgac tggaaatcg cgggtggcaaa	1500
gtggtcacaa cgggttaaaa tatttcgtt accctgcggg cttaaccggg caccagtacg	1560
ccagaaacccg ataacacactg gccgattgaa gtcacccggg aagatgtcaa aggcaatttg	1620
tcgaatcgtg aacagagcat ggtggctgtt caggcaccta cgctaagcca gaaagattcc	1680
tcggtatctgt taagtcacca aacatgtac gcggtatccc attcaaccgc cacactgact	1740
tttattgcgc atgatgcgc aggttaatctt gttgtcgccc tgggtctctc gacgcgtcac	1800
gaaggtgttcc aggacatcac cttttctgac tggaaagata atgtgtacgg aagctataacc	1860
cagatcctga ccacaggagc gatgtctggc acgctgacgc tcatgtccaca gctgaatgg	1920
gtggatgcgg ctaaaggcccc cggccgtggg aatatcatt ctgtttcgtc atcccgaaact	1980
cactcgtcaa ttaagatga taaggaccgt tatctctccg gcaatccatcg cgaggtgacg	2040
gtaaactga gagatgaaaaa tgacaaaccc gttaaaggaaac aaaaacagca actgaataac	2100
gcagtcagca tcgacaacgt gaaaccaggaa gtcactacag actggaaaga aaccgcagat	2160
ggcgtctata aggccaccta taccgcctat accaaaggca gtggacttac tgcgaagcta	2220
ttaatgcataa actggatga agatttgcac accgctggat ttatcatcgca cgccaaaccg	2280
cagtcagcgaa aaatttgcgac attatctgccc agcaataatg gtgtgctcgc caatgagaat	2340

gcagcaaaca ccgtctcggt	caatgtcgct	gatgaaggaa	gcaacccaat	caatgatcat	2400
accgtcacgt ttgcggattt	aagcggatcg	gcaacttcct	tcaacaatca	aaacacccgca	2460
aaaacggatg ttaatggct	ggcactttt	gatctgaaaa	gtagtaagca	ggaagacaac	2520
acgggtgaag tcacccttga	aaatggcgtg	aaacaaacgt	taatcgtag	ttttgtcgcc	2580
gactcgagta ctgcgcaggt	tgatctgcag	aagtcaaaaa	atgaagtgg	tgctgacggc	2640
aatgacagcg tcacaatgac	cgcgaccgtc	cgggatgcaa	aaggcaacct	gctcaatgac	2700
gtcatggtca ctttcaatgt	taattcagca	gaggcggaaac	tgagccaaac	cgaagtgaat	2760
agccacgacg ggatcgccac	agctacgctg	accagttga	aaaatggta	ttatagggtt	2820
.acggcccttg tgagctctgg	ttcccaggct	aatcaacagg	tgaattttat	cggtgatcaa	2880
agtactgctg ccctgaccct	cagtgtgcct	tcaggtgata	tcaccgtcac	caacacagct	2940
ccgcaatata tgactgcaac	cttgcaggat	aaaaatggca	acccactaaa	agataaaagaa	3000
atcaccttct ctgtgccaaa	cgacgtcgca	agtaagttct	cgattagcaa	cgaggaaaaa	3060
ggcatgacgg atagtaacgg	ggttgcatac	gcctccctga	ccggcacgtt	agcgggcacg	3120
catatgatca tggctcgct	ggctaacagc	aatgtcagcg	atgcacagcc	aatgacgttt	3180
gtggcggata aagacagagc	ggttgcgtt	ttgcaaacat	cggaaagcgga	aatcattggg	3240
aatggcgtgg atgagacaac	tctgacagca	acagtggaaag	atccgtcgaa	tcatccggtg	3300
gcggggataa cggtaaactt	caccatgcca	caggacgttg	cgccaaactt	tacccttgcgaa	3360
aataacggta ttgccatcac	tcaggccaaat	ggggaaagcgc	atgtcagcgt	gaaaggtaaa	3420
aaagcgggca cgcatacgg	taccgcaacg	ctgggtataa	acaataccag	tgattcgag	3480
ccggtaacat ttgtggcga	caaaggctcg	gctcaggttg	tcctgcagat	atcaaaagat	3540
gagatcacag gtaatggcgt	cgatagcgca	acgctaactg	caacggttaa	agatcagttc	3600
gacaatgagg tgaataaact	tccggtaaca	ttcagctcag	cctcttcagg	actcaccctg	3660
accccgggag taagtaatac	caacgagtct	ggcatcgcc	agccactct	cgcaggcggt	3720
gcctttggg	agaagacggt	ctggctaata	atgggtccag	cgacaacaaa	3780
actgtgcatt ttattggcga	cacagcggcg	gcaaaaatta	tcgagttggc	gcctgtccca	3840
gacagcataa tcgcccgtac	cccgcagaa	agctccggc	gcgtcatcac	cgccacagtc	3900
gttgataata atggctttcc	ggtgaaaggt	gtgactgtga	acttcaccag	caacgcagcg	3960
acagccgaaa tgacgaacgg	cggtcaagcc	gtgacgaacg	aacagggtaa	ggctaccgtc	4020
acttatacca ataccgc	ctcgatagaa	tcaggagcga	gaccggatac	cgttgaggcc	4080
agtctggaaa atggtagctc	cacgcttagc	acatcaatta	atgtcaacgc	tgatgcgtct	4140
acggcacatc tcaccttgc	acaggcactt	tttgatacag	tctccgcagg	cgagacaacc	4200
agtctgtata ttgaggtgaa	ggataaattac	ggcaacggtg	tccccccagca	ggaggtaacc	4260
ctcagcggtt caccaggta	aggcgtgacc	cccagtaata	acgctatata	tactaccaac	4320
cacgacggca atttttacgc	aagctttacc	gctacaaaag	ccggggttt	tcaatttgacg	4380
gcaaccctcg aaaatggca	ttcgatgca	caaacagtga	cctatgtgcc	gaacgtcg	4440
aatgctgaaa tcacgctgc	agcctcgaag	gatccggtga	ttgcccacaa	taacgatctc	4500
acgacactaa cagcaacagt	cgctgataca	gagggcaatg	cgatagccaa	cactgaggt	4560
acatttactc tgccggaaga	tgtgaaggcg	aacttcacgc	tgagcgatgg	cggtaaagt	4620
attactgtatc ctgaaggcaa	agcggaaagtc	acgctgaaag	gtacaaaagc	aggcgctcat	4680
actgttacag catcgatgac	tggcggtaa	agttagcagt	tgtgtggaa	ctttattgcg	4740
gatacgctca ctgcgcaggt	taatcttaac	gttaccgggg	acaattttat	cgctaataac	4800
gtcgggatga ccaggctgca	ggcaacagtg	actgatggaa	acggcaaccc	gttagccaaat	4860
gaggcgggtga cattcacgct	accggcagat	gtgagcgca	gtttactct	cggacaaggc	4920
ggttccgcca ttactgtat	caacggcaag	gctgaagtt	cactgagcgg	tacaaaatcc	4980
ggcacctacc ccgtgacagt	tagcgtaac	aattatggtg	tcagtgatac	gaaacaggt	5040
actttgattt ccgatgtctt	taccgcaaaa	ctagcctcct	taacctctgt	atactcattc	5100
gtcgtagca cgaccgagg	cgcaaccatg	acggcaagcg	tcaactgacgc	taacggcaac	5160
ccggtagaaag gcataaaaagt	taatttccgc	ggaacctccg	tcacgctaag	cagcaccagc	5220
gttgaaacgg atgatcgaaa	tttcgctgaa	attcttgtga	caagcaccga	ggtcggactg	5280
aaaacagttt cagcctct	ggcagataaa	cctactgaag	tcatctcg	attactgaat	5340
gccagtgca agttaattc	tgcgacgatt	accagtcgg	agataccgga	aggtcaggta	5400
atggtcgcac aagacgtagc	agttaaagct	cacgttaacg	accagttgg	caacccgggt	5460
gcgcataaac ccgtgacatt	cagtcgagag	ccatcctcgc	aaatgatcat	cagccagaat	5520
acggctctca ctaatacgca	gggtttagcc	gaggtcacca	tgacgcccga	aagaaacggt	5580
tcgtatatagg taaaaggc	cctggccgaat	ggagcctcac	ttgagaaaaca	actggaggct	5640
attgatgaaa aactgacact	cacggcg	agtccgc	tcgggtgtct	tgcccctaca	5700
ggcgctactc tgacggcaac	gctaacctct	gaaatggca	ctccagtgga	gggtcagg	5760
atcaacttta gctgtacg	agaaggggg	acgttaagt	gcccggaaaagt	gagaactaac	5820
tcttcagg	cgtttgacc	agcaataaaag	tcggtagata	tacggtgact	5880
gcatcttcc ataaacggcg	aacaatacag	acacagacaa	ccgtgaaagt	cactggcaac	5940
tcaaggcaccg	cccatgttgc	gctgatccat	cgactatcg	cgccaccaac	6000

actgattaa gtacctaataa ggcaacgggtt gaggatggca gtggtaacct gatcgaaggt 6060
 ctcactgtgt acyttcgccctt aaaaagcgcc tctgccacat taacgtcatt aacagcggtg 6120
 accgatcaaa acggaatcgca gacaacaaggc gtgaaaggag cgatgacagg tagcgtcact 6180
 gtaagcgccag tcacgaccgc tggttgaatg caaacagtag atataacgct ggtggctggc 6240
 ccggcagaca cctcgcagtc cgtcccttaag agcaatcggt catcaactgaa aggggactat 6300
 accgatagtgc tctgattacg tctttgtctg cacgatatata caggcaatcc gatcaaagtt 6360
 tctgaaggga tgaattttgt gcaatcaggta actaacgtgc cctatataaaa aatttagcgca 6420
 attgattaca gtctaaatataa caacgggtat tacaaggcca ctgttacagg aggccggagag 6480
 ggtatcgccaa cgctgatccc tgtattgaat ggtgttcatc aagctggct gagtaccaca 6540
 atacaattca ctcgcgcaga agacaaaata atgagcgta cagtagtactg caatgtact 6600
 gacctaccga caactacatt cccttcgcag gggttcaccc gggcggttata tcagttgaat 6660
 aatgacaact ttgccccagg aaaaacggcg gctgattatg agttttcaag ctctgcctcc 6720
 tgggtcgatg ttgatgctac cggttaaagtgc acattttaaa atgtcgccag caattcgaa 6780
 aggattacgg cgacgccaaa atcaggaggc cctagctatg tatacgaat ccgtgtgaag 6840
 agttgggtgg tgaacgcggcg cgaggcttc atgatataca gccttgcgtga aaattttgc 6900
 agcagcaatg gctacacgc ccccgagca aactattaa accactgttag ttcccggagc 6960
 atcgggtcac tgtacagtga atggggagat atggggcatt acacgactga cgctgtttt 7020
 caatcaaataa ttgatggc atctagttcc gcaaactaa gcgaacaata cgtatgtttc 7080
 ctggcaacag gtgatcaaag cgtatttgaa aagcttggtt ttgcttatgc gacatgttat 7140
 aaaaacctgt ga 7152
 <210> 143
 <211> 186
 <212> DNA
 <213> E. Coli

 <400> 143
 atgagcaaaag ggcgcattata tgaatttaac aatccagatc aactgaaaat acctctccct 60
 cataaaacaca tagcgtcaac attcaatgac ataatgagta aagatgttgg ttatgcatac 120
 gtatcattac tctatgcctg tcccttaaaa acccactcat taagactgaa tccattcagc 180
 aaatga 186

 <210> 144
 <211> 1197
 <212> DNA
 <213> E. Coli

 <400> 144
 atgcaggtgg ctgaacagcg cattcagcta gctgaagccc aggcgaaggc agttgccact 60
 caggatggtc cgccagatcga ctttccggcg gatatggagc ggcaaaaat gtcggcagaa 120
 ggcttaatgg ggcgcgtttgc tctgaacgat ccggccgcag gtacgaccgg cccgtgggtac 180
 accaacggta cttttggctt aacggcgggc tggcatctcg atatctgggg aaagaatcg 240
 gcgagggtta ctgcccgcct gggtaacgggtt aaagcacggg cggcggaaacg cgagcaacc 300
 cgccaaatgc tggctggcag cgtagccccgc ctgtacttggg agtggcaaac ccaggccggcg 360
 ttaaacacgg tcttgcagca aatagaaaaa gagcagaaca ccattatcgc gaccgatcgc 420
 cagctatatac agaacgggat tacttctca gttgaagggtg tgaaaaccga tattaatgcc 480
 agcaaaaaccc ggcagcagatc caacgatgtc gcggggaaaaa tgaaaattat tgaggcacgg 540
 ttaagcgcac ttacaaaataa ccagacaaaatc tatttgcggc taaaaccggc cgcgttgcgg 600
 aaagtggcaa gccagcttcc tggatgactg gggtaacttct tactggcccg gcggggcagat 660
 ttgcaggccg cgcaactggta cggttgcgtca tgcgttgcgtca ccattgtatgc ggcaaaaagcg 720
 gcattttatc ctgacatcaa cctgtatggc ttccctgcac aggtgcgtt gcacttaagc 780
 gatctttcc gtcattccgc gcagcaatgt ggcgttacgg caggccgtac gctaccatt 840
 ttgcgtatgt gtcgttccaa cgccaaatctc gatatgcgaa aagccgaaag caacttgtct 900
 atcgccagct acaacaaaggc ggtgggtgaa gcggtgaatg acgtggcgcg ggcagccagt 960
 caggttcaga cactggcgaa gaaaaaccag catcaggcgc aaatttgagcg cgatgcctt 1020
 cgtgtgttag gtcttgcgca ggcgcgtttt aacgcgggca tatttgcgtt ggcccttgc 1080
 agcgaagcca gaatccccgc gctgcgtgag cggggcaatg gcctgttatt gcaagggcag 1140
 tggctggatg cctccattca actcaactggt gcgttggcg gggggtacaa acgctga 1197

 <210> 145
 <211> 291
 <212> DNA

<213> E. Coli

<400> 145

atgtattgcc acgcgaaact	aaaaaatata tcgcaacaca	cggtaatctc cgccCACCTT	60
ttcttacctg attattcccc	catgaatcg gattccTTT	atccagccat CGCCTGTTT	120
ccgctgttac ttagtgcTGGC	cgggtgtgcg CCTATGCATG	aaACCCGCCA GGCCTTAAGC	180
cagcaaacgc ccgctgcaca	agttgacacc gcattacCCA	cggcgctgaa aatgttggc	240
cagacagcca atggtggctg	gagtatcacg ataatacaACT	cacttcctta a	291

<210> 146

<211> 948

<212> DNA

<213> E. Coli

<400> 146

atgcgtgtgt tactggcacc	gatggaggga gtgcttgact	ctctggTgcg tgaattgctg	60
accgaagtta acgactacga	tctgtgcatt accgagTTT	tccgcgtgg ggatcaactg	120
ctgcccgtaa aagtctttca	tcgcatttgc cctgagctac	aaaacGCCAG CGGACACCA	180
tctggtaacgc tggTgcgcgt	gcagttgtta ggtcaggTCC	cacaatggct ggcagagaac	240
gcccggcgtg cggTggagtt	aggTTCTgg ggcgtggatC	tcaattgcgg ctgcccgtcg	300
aaaacggtta acggtagcgg	cggcggggcgc acgttactca	aagatcctga actcatctac	360
cagggtgcaa aagcgatgcg	tgaagctgtt cccgcgcatt	tggccgtca ggtgaaagtg	420
cgtctggct gggacagcgg	tgagaagaaa ttGAAATCG	ccgatgcgg tcaacaggct	480
ggcgtacgg agctgggt	gcattggcgg acgaaagagc	agggttaccg cgcggagcat	540
attgactggc aggcgattgg	cgatattcgc cagcggctga	atattccggt gattgccaac	600
ggtaaatct gggactggca	gagcgcgcaa caatgcattgg	cgatcagcgg ctgcgacgca	660
gtgatgattt gtcgcggggc	gctcaatatt cccaaCTGA	gcccgggtgg aaaatataac	720
gaaccgcgaa tgccgtggcc	ggaggtggtt gcttgc	ccgtctggaa 780	
aaggcggcg ataccgggtt	atatcacgtt ggcggattt aacagtgggt	gagttattt 840	
cgtaaaagaat acgatgaagc	tttcagcatg ttcgggtgtt	gaataattcc 900	
cctgatattt caaggcgtat	tcaggcaatt gatatcgaga	aactctaa 948	

<210> 147

<211> 891

<212> DNA

<213> E. Coli

<400> 147

atgacaatat cgacaacttc	cacgcccgcatt gatgcggtat	ttaaatcttt ttacgcCAT	60
ccagacaccg cgcgggattt	tattgatatt catctttcccg	cgccgcTGCg caaactgtgt	120
gatttaacga cgcttaaact	ggaaccaaaac agtttattt	atgaagacct gcccgaatAT	180
tattccgacc tcttgtggTC	tgtgaaaacg caggaggggag	tgggttataat ttatgttagt	240
atagagcacc aaagtaagcc	ggaagaattt atggctttc	gcatgatgcg ttattccatt	300
gcccgaatgc aaaaccatct	tgatgcgggc tataaaagagc	ttccattttgtt gctcccgatg	360
ctgttttatac atgggtgcag	aagtccTTT ctttattcac	tctgctggct tgatgaattt	420
gccgagcctg ctatagcccg	caaaatataat tcatcggtt	ttccgttggt ggatattacc	480
gtggtgcgg atgacgagat	tatgcaacac cgcaaaatgg	cgtgttgg gttatttgc	540
aaacatattt gtcagcgcga	tctgttggga ttagtcgacc	aaattgtttc gctgttagtt	600
acagggaaaca ctaatgacag	acagctaaaa gcccgttta	attacgtatt acaaacaggg	660
gatgcccagc gtttctgtgc	atttatttggt gagatagcgg	aacgcgcacc acaagaaaag	720
gagaaactga tgaccattgc	tgacagattt cgtgaagaag	gcccgttgg gggcaaaacac	780
gaagaagccc tgcgtattgc	tcaggagatg ctggatagag	gttagacag agagtttagtt	840
atgatggtga cccgactttc	accagacgt cttatcgcc	aaagccacta a 891	

<210> 148

<211> 1668

<212> DNA

<213> E. Coli

<400> 148

gtggctcaat tcgtttatac	catgcattcg tgcggcaaaag	ttgttccgccc gaaacgtcat	60
-----------------------	------------------------	------------------------	----

attttgaaaa acatctctc	gagtttcttc	cctggggcaa	aaattgggt	cctgggtctg	120
aatggcgccg	gtaagtccac	cctgctgcgc	attatggcg	gcattgataa	180
ggtgaagcgc	gtccgcagcc	agacatcaag	attggttatc	tgcgcagga	240
aaccgcgaac	acaccgtgcg	tgagtcatt	gaagaagcgg	tttcagaagt	300
ctgaaacgcc	tggatgaagt	gtatgcgtg	tacgcccgc	cggatgccga	360
ctggccgctg	aacaaggccg	tctgaaagag	atcattcagg	ctcacgacgg	420
aacgtacagc	tggagcgtgc	ggcgatgcg	ctacgtctgc	cggactggga	480
gctaacctct	ccgggtgtg	acgtcgctgc	gtagcgttgt	gccgcctgt	540
ccagacatgc	tgctgctcga	cgaaccgacc	aaccacctgg	atgcccatac	600
ctggaacgct	tcctgcacga	cttcaaggg	accgttgtgg	cgtggcctgg	660
ttcctcgata	acgttgcagg	ctggatcctc	gaacttgacc	cgaccgttac	720
gaaggttaact	actcctcctg	gctggagcag	aaagatcagc	gcctggcgca	780
caagaagcgg	cgcgtcgtaa	gtcgatttag	aaagagctgg	aatgggtacg	840
aaaggccgtc	agtcgaaagg	taaagcacgt	ctggcgcgt	ttgaagaact	900
gaatatcaga	aacgtaacga	aaccacgaa	ctgtttattc	cacctggacc	960
gataaaagtgc	tggaagtca	caacactgcgt	aaatcctatg	gcgatcgct	1020
gacctgagct	tctcgatccc	gaaaggagcg	atcgctggga	tcatcggtcc	1080
ggtaaatcga	ccctgttccg	tatgatctc	ggtcaggAAC	agccggacag	1140
actttgggtg	aaacgggtgaa	actggcgtcg	gttgcgtact	aatggataac	1200
agcaaaaaccg	tttgggaaaga	agttccggc	gggctggata	tcatgaagat	1260
gagatgccaa	gccgcgccta	cgttggccgc	tttaacttta	aaggggttga	1320
cgcgttggtg	aactctccgg	tggtgagcgc	gtcgtctgc	atctggcgaa	1380
gttggccggca	acatgctgt	gctcgacgaa	ccaaccaacg	acctggatat	1440
cgcgcgttgg	aaaacgcctt	gctggagttc	ccgggctgtg	cgatggttat	1500
cgttgggttcc	tcgaccgtat	cgccacgac	attctggatt	ctcgcacgac	1560
gagttcttcg	aaggtaactt	taccgagttac	gaagagtaca	agaaacgcac	1620
gacgcgttgg	agccgaagcg	tatcaagtac	aagcgtattt	gctggcgca	1668

<210> 149

<211> 522

<212> DNA

<213> E. Coli

<400> 149

atgtcaaaagc	aaaaatacccc	ttttgaaaag	cgccttgaag	tcgtgaatca	ctacttcaca	60
actgatgatg	gttacaggat	catctggca	cgttttgg	tcccccgaa	ccaggtcagg	120
acatgggttgc	ccctctatga	aaaacatgga	gaaaaagggtt	taattcccaa	acctaaaggc	180
gttagtgctg	atccagagg	gcgtttaag	gtcgttggaa	ctgtgtatc	gcagcacatg	240
tcccttaatc	aggctgctgc	tcactttat	cttgcgttgg	gtggttctgt	agccaggtgg	300
ctgaaggtct	atgaagagcg	cggagaagct	ggtttacgcg	cgctcaagat	tggcaccaaa	360
agaaacatttgc	caatatcagt	tgatccagaa	aaagcggcat	cagcatttgg	gctgtcaaaa	420
gaccgacgca	ttgaggatct	tgaaaggca	gttcgattt	ttgaaacgcg	gcttatgtat	480
ctaaaaaaaa	tgaaaggcctt	agctcatccc	acgaaaaagt	ga		522

<210> 150

<211> 852

<212> DNA

<213> E. Coli

<400> 150

gtgaaaagtac	tcaacgagct	aaggcagttt	tatccttgc	atgagcttct	cagggtcg	60
gagataccgc	gcagttacgtt	ttattatcat	ctaaaggctc	ttagcaagcc	tgacaagttat	120
gcggacgttta	aaaagcgtat	tagtgagatt	tatcacgaga	atagaggccg	atacggatac	180
cgttagggtaa	cgctgtctc	tcatcgagaa	gggaaacaga	ttaaccataa	agctgttcag	240
cgcctgtatgg	gaaccctctc	actttaagca	gctttaagg	tcaagcgata	ccgcttctac	300
agaggagagg	tagggcaaa	cgcctttaat	gttctccaa	gagatttcaa	ggctacgcgg	360
ccaaacgaga	agtgggttac	cgatgttact	gaatttgcag	tcaatggcg	caagctgtat	420
ttgtctccag	taatagatct	tttcaacaac	gaagtttattt	cttacagcc	ttcgaaagaa	480
ccagtgtatga	acatgggttga	gaatatgctc	gatcaggcat	tcaaaaaagct	taatcctcac	540
gagcatcctg	ttctgcactc	tgaccaggga	tggcgtatc	gtatgagaag	atatcaaaaat	600

atccttaaag aacatggtat taaaacaaagc atgtccagaa aaggcaattg tctggataat	660
gctgtggtgg agtgtttctt tggaacctta aagtccgagt gtttttatct tgatgagttc	720
agtaatataa gcgaactgaa ggatgctgtt acggaatata ttgaatacta caacagcaga	780
agaattagcc tgaaattaaa aggtctgact ccaattgaat atcggaatca gacctatatg	840
cctcggttt aa	852
<210> 151	
<211> 117	
<212> DNA	
<213> E. Coli	
<400> 151	
atgaaagttc gtgcttccgt caagaaatta tgccgttaact gcaaaatcgt taagcgtat	60
ggtgtcatcc gtgtgatttg cagtgccgag ccgaagcata aacagcgcca aggctga	117
<210> 152	
<211> 1332	
<212> DNA	
<213> E. Coli	
<400> 152	
atggctaaac aaccgggatt agatttcaa agtgccaaag gtggcttagg cgagctgaaa	60
cgcagactgc tgggttattt cggtgcgtg attgtgttcc gtattggctc ttttattccg	120
atcccgttta ttgatgccgc tggacttgcc aaactgcttgc agcaacagcg aggcaccatc	180
attgagatgt ttaacatgtt ctctgggttgc gctctcagcc gtgcttctat ctttgctctg	240
gggatcatgc cgtatatttc gggtcgatc attatccagc tgctgacggt ggttcaccca	300
acgttggcag aaattaagaa agaaaggggag tctggcgatc gtaagatcag ccagtacacc	360
cgctacggta ctctgggtgc ggcaatattc cagtcgatcg gtattgtctac cggtctgccc	420
aatatgcctg gtatgcaagg cctgggtgatt aacccgggct ttgcattcta cttcaccgct	480
gtttaagtc tggtcacagg aaccatgttgc ctgatgttgc tggcgaaca gattactgaa	540
cgaggatatcg gcaacggat ttcaatcatt atcttcgccc gtattgtcgc gggactcccg	600
ccagccattt cccatactat cgagcaagcg cgtcaaggcg acctgcactt cctcgtgttgc	660
ctgttggttt cagtattatg atttcgatgc acgttctttt ttgttattttt tgagcgttgc	720
caacgccgca ttgtggtaaa ctacgcgaaa cgtcagcaag gtcgtcggt ctatgctgca	780
cagagcacac atttaccgt gaaagtgaat atggccccggg taatcccgca aatcttcgct	840
tccagtatta ttctgttccc ggcgaccatc gctgtatggc cagcctggc aaccgcattt tttttttttt caacccgcgt	900
aactggctga caacaatttc gctgtatggc cagcctggc aaccgcattt tttttttttt caacccgcgt	960
tatgcgtctg caatcatctt cttctgtttt ttctacacgg cgatgggtttt caacccgcgt	1020
gaaacagcag ataacctgaa gaagtccggt gcatttgcac caggaattcg tccggagag	1080
caaacggcga agtataatcgta taaagtaatg acccgctga ccctgggttgc tgcgtgtat	1140
attaccttta tctgcctgtat cccggagttt atgcgtgtatc caatgaaatg accgttctac	1200
ttcgggtggga cctcaactgtt tactcggtttt gtcgtgatc tggactttat ggctcaagtg	1260
caaactctga tggatgtccag tcagttatgatc tctgcatttgc agaaggcgaa cctgaaaggc	1320
tacggccgat aa	1332
<210> 153	
<211> 435	
<212> DNA	
<213> E. Coli	
<400> 153	
atgcgtttaa atactctgtc tccggccgaa ggctccaaaa aggccggtaa acgcctgggt	60
cgtggatatcg gttctggctt cggtaaaacc ggtggcgatc gtcacaaagg tcagaagtct	120
cgttctggcg gtggcgatc tcggcggtttc gaggggtggc agatgcctt gtaccgtcg	180
ctgcccggaaat tcggcgatc ttctcgataaa gcagcgatc cagccggaaat tcgtctgtct	240
gacctggctt aagtagaaagg cgggttagt gacctgaaaca cgctgaaagc ggctaacatt	300
atcggtatcc agatcgatgtt cggtaaaatgtt atcctggctt gtcgtgatc gactccggta	360
actgttcgtt gtcgtgatc tactaaaggc gtcgtgatc ctatcgaaac tgctggcggt	420
aaaatcgagg aataaa	435
<210> 154	

<211> 180

<212> DNA

<213> E. Coli

<400> 154

atggcaaaga ctattaaaat tactcaaacc cgcaagtcaa tcggtcgtct gccgaaacac 60
 aaggcaacgc tgcttgcct gggctcggt cgtatggtc acaccgtaga gcgcgaggat 120
 actcctgcta ttcgcgttat gatcaacgcg gttccctca tggtaaagt tgaggagtaa 180

<210> 155

<211> 504

<212> DNA

<213> E. Coli

<400> 155

atggctcaca tcgaaaaaca agctggcgaa ctgcaggaaa agctgatcgc ggtaaaccgc 60
 gtatctaaaa ccgttaaagg tggctgtatt ttctccttca cagctctgac tggtagttggc 120
 gatggtaacg gtcgcgttgg tttggttac ggtaaagcgc gtgaagttcc agcagcgtac 180
 cagaaagcga tggaaaaaagg ccgtcgcaat atgattaacg tcgcgtgaa taacggcact 240
 ctgcaacacc ctgttaaagg tggcacacg ggttctcgcg tattcatgca gcccgttcc 300
 gaaggtaccg gtatcatcgc cgggtgtca atgcgcgccc ttctggaagt cgctggggtt 360
 cataaacgttc tggctaaagg ctatggttcc accaaccgcg tcaacgtggt tcgtgcaact 420
 attgatggcc tggaaaatat gaattctcca gaaatggtcg ctgccaagcgttgaaatcc 480
 gttgaagaaa ttctgggaa ataa 504

<210> 156

<211> 354

<212> DNA

<213> E. Coli

<400> 156

atggataaga aatctgctcg tatccgtcg gcgacccgcg cacgccgcaa gctccaggag 60
 ctggcgcaa ctcgccttgtt ggtacatcgat accccgctc acatttacgc acaggttaatt 120
 gcacccgaacg gttctgaagt tctggtagct gttctactg tagaaaaaagc tatcgctgaa 180
 caactgaagt acaccggtaa caaagacgcg gtcgcagctg tggtaaagc tgtcgctgaa 240
 cgcgtctgg aaaaaggcat caaagatgta tccttgcacc gttccgggtt ccaatatcat 300
 gtcgtgtcc aggcactggc agatgctgccc cgtgaagct gccttcagtt ctaa 354

<210> 157

<211> 534

<212> DNA

<213> E. Coli

<400> 157

atgtctcggtt tgctaaagg accggtcgtt gttccgtccg gcgttgcgtt aaaaatcaac 60
 ggtcagggtt ttacgatcaa aggtaaaaac ggcgagctga ctcgtactct caacgatgt 120
 gttgaagttt aacatcgaga taataccctg accttcggc cgcgtgatgg ttacgcagac 180
 ggttggcac aggctggcac cgcgcgtgcc ctgctgaact caatggttt cgggttacc 240
 gaaggcttca ctaagaagct gcaagctggtt ggttaggtt accgtgcagc ggttaaaggc 300
 aatgtgatta acctgtctct gggttctct catccgttg accatcgat gcctgcgggt 360
 atcaactgctg aatgtccgac tcagactgaa atcggtctga aaggcgctga taagcagggt 420
 atcgccagg ttgcagcgaa tctgcgcgc taccgtcgctc ctgagcctta taaaggcaag 480
 ggtttcggtt acggccgacga agtcgtgcgtt accaaagagg ctaagaagaa gtaa 534

<210> 158

<211> 393

<212> DNA

<213> E. Coli

<400> 158

atgagcatgc aagatccgat cgccgatatg ctgacccgta tccgtaacgg tcaggccgcg 60

aacaaagctg	cggttaccat	gccttcctcc	aagctgaaaag	tggcaatcgc	caacgtgctg	120
aaggaagaag	gttttattga	agatttaaa	gttgaaggcg	acaccaagcc	tgaactggaa	180
cttactctga	agtatttcca	ggccaaagct	gtttagaaaa	gcattcagcg	tgtcagccgc	240
ccaggctctgc	gcatctataa	acgtaaagat	gagctgccga	aagtttatggc	gggtctgggt	300
atcgcaagtgt	tttctaccc	taaagggttt	atgactgatc	gtcagcgcg	ccaggctgggt	360
cttggggcg	aaattatctg	ctacgtagcc	taa			393

<210> 159
 <211> 306
 <212> DNA
 <213> E. Coli

<400> 159

atggctaaggc	aatcaatgaa	agcacgcgaa	gtaaaacgcg	tagctttagc	tgataaatac	60
ttcgcgaaac	gcgctgaact	gaaagcgatc	atctctgtat	tgaacgccttc	cgacgaagat	120
cgttggAACG	ctgttctcaa	gctgcagact	ctgcccgtg	attccagccc	gtctcgtcag	180
cgttaaccgt	gccgtcaaac	aggctgtccg	catggttcc	tgcggaaagtt	cggtttagac	240
cgttataagg	tccgtgaagc	cgctatgcgc	ggtgaaatcc	cgggtctgaa	aaaggcttagc	300
tggtaa						306

<210> 160
 <211> 540
 <212> DNA
 <213> E. Coli

<400> 160

atggcggaaac	tgcgtatgatta	ctacaaagac	gaagtagtta	aaaaactcat	gactgagttt	60
aactacaatt	ctgtcatgca	agtccctcg	gtcgagaaga	tcaccctgaa	catgggtgtt	120
ggtaagcga	tcgctgacaa	aaaactgctg	gataacgcag	cagcagaccc	ggcagcaatc	180
tccggtaaaa	aaccgctgtat	caccaaagca	cgcaaatctg	ttgcaggctt	caaaatccgt	240
cagggctatc	cgatcggctg	taaagtaact	ctgcgtggcg	aacgcatgtg	ggagttcttt	300
gagcgcctga	tcactattgc	tgtacctcg	atccgtgact	tccgtggcc	gtccgctaag	360
tcttcgacg	gtcgtggtaa	ctacagcatg	ggtgtccgt	agcagatcat	cttcccagaa	420
atcgactacg	ataaagtgcg	ccgcgttcgt	ggtttggata	ttaccattac	cactactgcg	480
aatctgacg	aagaaggccg	cgctctgctg	gctgcctttg	acctcccggt	ccgcaagtaa	540

<210> 161
 <211> 315
 <212> DNA
 <213> E. Coli

<400> 161

atggcagcga	aaatccgtcg	tgtatgacgaa	gttatcggt	taaccggtaa	agataaagg	60
aaacgcggta	aagttaagaa	tgtccctgtct	tccggcaagg	tcattgttga	aggtatcaac	120
ctggtaaga	aacatcagaa	gccgggtccg	gccctgaacc	aaccgggtgg	catcggtaa	180
aaagaagccg	ctattcaggt	ttccaacgt	gcaatctca	atgcggcaac	cgccaaggct	240
gaccgtgtag	gcttttagatt	cgaagacggt	aaaaaaagtcc	gtttcttcaa	gtctaacagc	300
gaaactatca	agtaa					315

<210> 162
 <211> 372
 <212> DNA
 <213> E. Coli

<400> 162

atgatccaag	aacagactat	gctgaacgtc	gccgacaact	ccgggtgcacg	tcgcgtaatg	60
tgtatcaagg	ttctgggtgg	ctcgaccgt	cgctacgcag	gcttagggcg	catcatcaag	120
atcaccatca	aagaagcaat	tccgcgtgt	aaggtaaaaa	aagggtatgt	gctgaaggcg	180
gtgttgtgc	gcaccaagaa	gggtgttcgt	cgccccgacg	gttctgtcat	tgccttcgt	240
ggtaatgctt	gtgttcttct	gaacaacaac	agcgagcagc	ctatcggtac	gcgtatTTT	300
ggccggtaa	ctcgtgagct	tcgttagttag	aagttcatga	aaattatctc	tctggcacca	360

gaagtactct aa

372

<210> 163
<211> 567
<212> DNA
<213> E. Coli

<400> 163

atgtttaaaag gacaaaaaaac attggccgca ctggccgtat ctctgctgtt cactgcac	60
gtttatgctg ctgatgaagg ttctggcgaa attcacttta agggggaggt tattgaagca	120
ccttgtgaaa ttcatccaga agatattgtt aaaaacatag atcttgaca agtcacgaca	180
accatataaa accggggagca tcatalogaat aaagtggccg tcgacattcg cttgatcaac	240
tgtgatctgc ctgcttctga caacggtagc ggaatgccgg tatccaaagt tggcgtaacc	300
ttcgatagca cggctaagac aactgggtct acgcctttgt tgagcaacac cagtcagggc	360
gaagcaactg gggtcggtgt acgactgtt gacaaaaatg acggtaacat cgtatttagt	420
tcagccgcgc cagatcttga cctggatgca agctcatacg aacagacgct gaacttttc	480
gcctggatgg aacaaatttga taatgcagtc gatgtcacgg caggtgaagt aaccgctaacc	540
gcaacctacg tgctggatta taaaataa	567

<210> 164

<211> 1284
<212> DNA
<213> E. Coli

<400> 164

atggctgata caaaagcaaa actcaccctc aacggggata cagctgttga actggatgt	60
ctgaaaggca cgctgggtca agatgttatt gatatccgtt ctctcggttc aaaagggtgt	120
ttcaccttgc acccaggctt cacttcaacc gcacccctcg aatctaaaat tactttatt	180
gatgggtatg aaggtatttt gctgcaccgc gttttcccgta tcgatcagct ggcgaccgat	240
tctaaactacc tggaaagtttgc ttacatcctg ctgaatgggtt aaaaaccgac tcaggaacag	300
tatgacgaat taaaactac ggtgacccgtt cataccatgtt tccacgagca gattaccctgt	360
ctgttccatg ctttccgtcg cgactcgcat ccaatggcgat tcatgtgtgg tattaccggc	420
gcccgtggcg cggttctatca cgactcgctg gatgttaaca atcctcgatca ccgtgaaatt	480
gcccgttcc gcctgctgtc gaaaatgccc accatggccg cgatgtgttca caagtattcc	540
atgggtcagc catttgttta cccgcgaac gatctctctt acgcccgttta cttcctgaat	600
atgatgttctt ccacggccgtg cgaaccgtat gaagttaaatc cgattctgga acgtgtatgt	660
gaccgttattc tgatcctgca cgctgaccat gaacagaacg cctctacccgc caccgtgcgt	720
accgctggctt cttcggttgc gaaaccgttt gcctgtatcg cagcaggat tgcctcactg	780
tggggacctg cgcacggcg ggcttaacgaa gcccgttca aaatgtgttga agaaatcagc	840
tccgttaaac acattccgga atttggtcgt cgtgcggaaatg acaaaaaatgaa ttcttccgc	900
ctgatgggtt tcggtcaccgc cgttacaaa aattacgacc cgcgcgcac cgtatgcgt	960
gaaacactgccc atgaagtgtt gaaagagctg ggcacgaagg atgacctgtt ggaagtggct	1020
atggagctgg aaaacatcgcc gctgaacgac ccgtacttta tcgagaagaa actgtacccg	1080
aacgtcgatt tctactctgg ttttccatcctt gaaagcgatgg gtattccgtt ttccatgttcc	1140
accgtcattt tcgcaatggc acgtaccgtt ggctggatcg cccactggag cgaatatgcac	1200
agtgacggta tgaagatttc cctggccgtt cagctgtata caggatatga aaaaacgcac	1260
tttaaaacgcg atatcaacgc ttaa	1284

<210> 165

<211> 1434
<212> DNA
<213> E. Coli

<400> 165

atgaaagtaa cgctgccaga gtttgaacgt gcaggagtta tggtggttgg ttagtgtatg	60
ctggatcggtt actggtaacgg cccaccaggat cgtatctcgat cggaaagcgcc ggtggccgt	120
gtttaaagtta ataccatcgat agaacgtccg ggcggccgg ctaacgttgc gatgaatatc	180
gtttctctcg gtgctaatttgc acgcctggat ggggttgcacgg gcattgcacca tgcagcgcgc	240
gcccgttgc aatctctggc cgacgtcaac gtcaaattgcg acttcgttgc tgcacccgc	300
catccgacca ttaccaattt acgggtactt tcccgcaacc aacagcttat ccgtctggat	360
tttgcggatgg gtttgcggat ttttgcggat cagccgttgc acgagcggat taatcaggcg	420

ctgagttcga ttggccgcgtt	ggtgctttct	gactacgccaa	aagggtgcgtt	ggcaagcgta	480
cagcagatga tccaaactggc	gcgttaaagcg	ggtgttccgg	tgttgcatttg	tccaaaaggt	540
accgattttg agcgcatacg	cggcgttacg	ctgttaacgc	cgaatctctc	ggaatttggaa	600
gctgttgcgtt	gtaaatgtaa	gaccgaagaa	gagatttgcgtt	agcgcggcat	660
gccgattacg aactctccgc	tctgttagtg	acccgttccg	aacagggtat	gtcgctgtg	720
caaccggta aagcggccgt	gcatatgcca	acccaagcgc	aggaagtgtt	tgacgttacc	780
ggtgcggcg acacgggtat	tggcgttccgt	gcccgaacgc	tggcagcggg	taattcgctg	840
gaagaaggct gcttcttgc	caatgcggcg	gctggcgttgg	tggtcggcaa	actggaaacc	900
tccacggttt cgccgatcga	gctggaaaat	gctgtacgtt	gacgtgcaga	tacaggctt	960
ggcgtgatga cccaaagagga	actgaagctg	gcccgttccg	cagcgcgtt	acgtgggtgaa	1020
aaagtgggttga tgaccaacgg	tgttcttgc	atcctgcacg	ccgggcacgt	ctcttatctg	1080
gcaaaatgccc gcaagctgg	tgaccgcgtt	attgttgcgtt	tcaacagcga	tgcctccacc	1140
aaacggctga aaggggattt	ccgccccggta	aaccctactcg	aacagcgtat	gattgtgtg	1200
ggcgcaactgg aagcgggtcg	ctgggttagtg	tcgttttgc	aggacacgc	gcagcgctg	1260
atcgccggga tcttgcgcga	tctgttgcgtt	aaaggcggcg	actataaacc	agaagagatt	1320
ggcgggagta aagaagtctg	ggccaacgcgt	ggcgaagtgt	tggtgctcaa	ctttgaagac	1380
gttgcgtcg	cgaccaacat	catcaagaag	atccaacagg	ataaaaaagg	ctaa
					1434

<210> 166
 <211> 2841
 <212> DNA
 <213> E. Coli

<400> 166

atgaaggccgc tcttttcacc	gttacagcag	tactggcaga	ccgttgcgtt	gcggctgcga	60
gagccctttag ccgaggaaatc	acttagcga	caggcgaat	cagtacttac	tttttagtgc	120
tttgcagg acagcgttat	tgcgcatacc	gagtggctga	cgaacttgg	aagccaaacc	180
ccgcaggccg acgaatggca	gcattacgcg	gcatgggtgc	aggaggcgct	ctgttatgtg	240
agtgcgaag ccgggttaat	gcfgcagctg	cggttattcc	ggcggccgc	tatgtgcgc	300
atcgcttggg cgcaaaacgt	ggcacttgcgtt	actgaagaga	gcattattgc	gcagctcagc	360
tatctggcg agacgcgtat	tgttgcggcg	cgtgacttgc	tgtatgcgc	ctgctgcgc	420
gagtggggaa cgccgtgc	tgcgcagg	gaagcgaac	cgttgcgtat	tttaggc	480
ggtaagctgg gcgggtgggaa	gctgaattt	tcctctgata	tcgtatgc	ttttgcctgg	540
ccggaacatcg gttgtacgc	gggtggacgc	cggttactgg	ataacgcgc	tttttttacc	600
cgcattgggc agcggcttat	taaagtgcgt	gatcaaccaa	cgcaggatgg	tttcgtctat	660
cgcgtggata tgcggctgc	tccgttgc	gaaagtggcc	cgttgcgtat	gagcttgc	720
gcgttggaa attattacca	ggagcagggg	cgcgacttgg	agcgttacgc	gatggtcaag	780
gcgcggatta tggcgatag	cgaaggcg	tatgttaac	atttgcgtgc	gatgtgcgc	840
ccgtttgttt tccgtcgta	catcgattt	agcgtgattt	agtcgtgcgc	caacatgaaa	900
gggatgattt cccgtgaat	gcgtcgacgt	ggttgcacc	acaatata	actccgc	960
ggcggcattt gcgaaattt	atttatcg	cagggttcc	agtcatttc	ccggcgcac	1020
gaaccgtcg	tgcataatcg	ccaaacgtca	gcgcattgc	cgagctgc	1080
ctgctttctg aaaacgtatc	tgaacaattt	cgagtggcgt	atctgttcc	cgccgcgtct	1140
gaaaacctgc tgcacaaatc	taacgacgaa	caaaccaga	cgttcccttc	tgttgcgtt	1200
aatcgtgcgc ggctggcg	ggcgtatgg	tttgcgtact	ggccgcact	gaccgggg	1260
ctgaccgcac atatgaccaa	tgtgcgcgg	gtgtttaat	aatttgcgtt	cgacgtatgaa	1320
agtgaaactc aggaagagtc	gctgtcgaa	cagtggcgt	agctgtgg	ggatgcgtt	1380
caggaagatg acactacgc	agtgtcg	catcttagc	aggatgtatc	caaacagg	1440
ctaaccgtga ttgcgcattt	ccgcaaaagag	ctggataa	gcaccatc	ccgcgcg	1500
cgtcagggtgc tcgaccatct	gatgccgc	ctgttact	atgtctgt	gcgttgc	1560
gctgccgtt cgtgtcg	cattaccgc	ttgttgcgtt	ggattgttac	ccgcaccacc	1620
tatattaaat tgcgtcgt	attccccgc	gctttaaac	atttgcattt	tctgtgtgc	1680
gcgtcgccga tgattgc	ccagctgg	cgttatcc	tatttgcgtt	tgaattgtc	1740
gatccaaaca cccttacca	gccgacgg	accgtgc	accgtgc	gttgcgc	1800
tatattgcgc gctgtccgg	agatgacgaa	gagcaac	tttgcgttgc	gcgttgc	1860
aaacaggcg	agctgttac	catcgcc	gcggatata	ccggatcg	1920
aaagtggcg	atcacttaac	ctggcgttgc	gaagccat	tagatgcgt	1980
gcgtgggttc aaatgggtc	ccgcgtacgt	aagccgaaatc	accgttac	acgcgaaagg	2040
cgtggtttgc cggcgttgc	ctacggcaag	ctggcggct	gggaggtt	ctacagt	2100
gatcttgcacc ttatcttcc	ccatgattgc	ccaatggat	cgatgact	cggttgc	2160
gaaatcgacg ggcggcgtt	ttatctgcgt	ctggcgcac	gcattat	tctgttca	2220

acgcgtacct	cttccggcat	tttgtatgaa	gtggatgctc	gactgcgtcc	gtccggggcg	2280
gcgggaatgc	tggtgacatc	cgcagaagca	tttgcgatt	atcagaaaaa	cgaggcctgg	2340
acgtggAAC	atcaggcgct	ggtgcgtcg	cgttagtgt	acggcgatcc	gcagctacc	2400
gcgcactttg	acgcagtgcg	tcgcgagatt	atgacgctgc	cgcgtgaagg	taaaaactctg	2460
caaacggaag	tgcgggaaat	gcccggagaaa	atgcgcgtc	atctcgccaa	taaacatcgc	2520
gatcgcttg	atatcaaAGC	tgatgaaggg	ggaattaccg	atatcgaatt	tattacccaa	2580
tatctgggt	tgcgctacgc	tcatgaaaaa	ccgaagttaa	cgcgtggc	agacaacgtg	2640
cgtattctgg	aactactggc	gcaaaacgac	attatgaaag	agcaggaagc	gatggcgctg	2700
acccgtgtt	acactacgct	tcgcgtatgaa	cttcatcatc	tggcattaca	ggaattgccc	2760
ggccatgtgt	cggaggattg	cttcaccgc	gagcgtgaac	tggtgcgggc	aagctggcag	2820
aagtggctgg	tggagaatg	a				2841

<210> 167

<211> 1302

<212> DNA

<213> E. Coli

<400> 167

atggctcagg	aaatcgaatt	aaagtttatt	gttaatcaca	gtgccgttga	ggcggttgcgt	60
gaccatctca	atacgctggg	cggcgagcac	catgaccccc	tgcagttgt	aatatttac	120
tacgaaacgc	cggataactg	gctgcgtggg	cacgatatgg	gcttacgtat	tcgtggcgaa	180
aacgtcgct	atgagatgac	catgaaagtt	gcaggaagag	tgacaggcgg	ttacatcag	240
cgcggaaat	ataacgtggc	gttgagcga	ccgacgctcg	acctggcga	tttaccgacg	300
gaagtctggc	cgaacggcga	attgcccgc	gatctcgct	cccgcgtgc	gccgctgttc	360
agcaccgatt	tttatcgcg	aaaatggctg	gtggcggctg	atggtagcc	aattgaaatc	420
gccctcgacc	agggggaaat	gaaagcgggt	gaatttgctg	aacctatctg	tgagctggaa	480
ctggaaactgc	ttagcggcga	cacgcgcgc	gtgctgaaac	tggcgaacca	actggtatcg	540
caaaccggat	tacgccaaggg	cagcctgagc	aaagcggcgc	gtggctatca	tctggcgcag	600
ggcaatccgg	cgcgtgaaat	caaaccgacc	accatttgc	atgtgcggc	aaaagccat	660
gtggAACACGG	ggcttggaaagc	ggcgctcgag	ctggcgttag	cgcaatggca	gtatcatgaa	720
gaactgtggg	tacgcggcaa	cgatgcggc	aaagaacagg	tgcgtggc	cattagectg	780
gtccgtcata	cgcgtatgt	gttcgggt	attgtgcgc	gtaaagcgg	cactcactta	840
cgtgatctgc	tgactcaatg	cgaggcgacc	attgcttctg	cggtgtctgc	cgtgacggcg	900
gtctactcta	ccgaaacggc	aatggcgaag	ctggcgttga	ccgaatggtt	ggttaagcaaa	960
gcatggcgc	cattttaga	tgcCAAAGCG	caggcggaaaa	tgcgcactc	tttccaaacgc	1020
tttggcgata	tccatcttc	ccgccccatgc	gctgaactga	aaagcgtttt	ctggcagccg	1080
tttaggcgatc	gctaccgtg	ccagttgcca	cgcctgacgc	gtgatattga	ctcaataactg	1140
ttgctggcg	gttactatga	tcctgtcg	gcccgttgc	ggtggagaa	ctggcagggg	1200
ctgcatacgc	ctattgcgac	cggcaacgc	atcgaattt	aacatttcc	taatgaggca	1260
aacaatcagg	aaccgttctg	gttgcacagc	ggaaaacgtt	aa		1302

<210> 168

<211> 213

<212> DNA

<213> E. Coli

<400> 168

atgtccggta	aaatgactgg	tatcgaaaaa	tggttcaacg	ctgacaaagg	cttcggcttc	60
atcactcctg	acgatggctc	taaagatgtg	ttcgtacact	tctctgctat	ccagaacgat	120
ggttacaaat	ctctggacga	aggtcagaaa	gtgtccttca	ccatcgaaag	cggcgctaaa	180
ggcccccggcag	ctggtaacgt	aaccagctg	taa			213

<210> 169

<211> 1572

<212> DNA

<213> E. Coli

<400> 169

atgagggaca	ttgtggaccc	tgtattctct	atcggtatct	catcattatg	ggatgagctg	60
cgacatata	cagcaggcgg	cgtctggtg	tttaacgtcg	atcgccatga	agatgtatc	120
agtctggcga	atcaaacaat	tgcataccag	gctgaaaccc	cacacgtcgc	ggtcattagc	180

atggacagcg atccggcga aatcttcaa ttagatgatt ctcagaaggcc ggaaaaata 240
 aaattattt caatgtaaa tcgtaaaaa ggtctatact atttgaccg tgatttgcag 300
 ttttcttgc atccccataa ttacctttt attcttgcg tgcacaataa cgcatggca 360
 aacatcccg ccgagcggct tcgctcatgg ttggataaaa tgaataatg gagcaggta 420
 aaccattgtt cgcttttgtt aattaatccc gaaataata acgataaaaca atttcattg 480
 ttgcttgagg aataccgttc acttttgtt ctgcgcgtt tgcgtttca gggtgacca 540
 catttgcgtt atattgcctt ctggtgcac gaaaagggg tcagcgcggc tcagcagctt 600
 agcgttcage aacaaaatgg tatctggaca tttagtcaaa gcgaagaggc ggagatccaa 660
 ccacgcagcg acgaaaaaacg cattctgagt aatgttgcgt tactggaaagg tgccgcggc 720
 ctatcggaac actggcaact gttcaacaat aacgaagtcc tgcgtttca agccgtacc 780
 gtcaggcgg cgacgggtt ctttcttta cagcaaaatg cgcaaatcga gccactggcc 840
 cgccaggatc ataccctgcg tcgcccagcgc ggttagtgcga tgaaaatcct cgtgcggaa 900
 aataccgcta gcctgcgcgc caccgatgaa cgtttgttat tggcctgcgg tgcaaatatg 960
 gttattccgt ggaatgcgcc actctccgt tgcgtacga tgatcgaag cgtgcaggg 1020
 cagaagttt gtcgctatgt gcccgaagat atcactacct tgctgtcaat gaccagccg 1080
 ctcaaaactgc gtggttcca gaagtggat gtgttctgta atgcgtcaa caacatgatg 1140
 aataaccctc tattacctgc ccacggtaaa ggcgttctgg ttgccttacg tccgtaccg 1200
 ggtatccgcg ttgaacaagc cctgacgcgt tgccgccta accgtaccgg cgatatcatg 1260
 accatggcg gtaatcggtt ggtgtgtt ctctcattct gtcggattaa cgatctggat 1320
 accgcgttga atcatattt cccattgcct actggcaca ttttctcaaa ccgtatggc 1380
 tggtttgaag atgatcaat cagtgccgag ctgggtcaga tgcgtttgt tgccccagaa 1440
 caatggggca tgccgcgtgcc tttAACGCAA agttctaaac cggtcatcaa tgccgagcac 1500
 gatggtcgccc actggcgcacg aataccagaa cccatgcgcac tgtagatgatgatgatg 1560
 cgctcatcat ga 1572

<210> 170
 <211> 189
 <212> DNA
 <213> E. Coli

<400> 170

atgaccatca gcgatatacat tgaaattatt gtcgttgcg cactgatatt tttccgcgtg 60
 ggctatctgg cgcggcactc tttgcacgc attcgacac ctttacgttt gttctttgtt 120
 aaacctcggtt atgttaaacc ggccgggacg ttacgcgcga cggaaaaagc cagggcaacc 180
 aaaaaatga 189

<210> 171
 <211> 1680
 <212> DNA
 <213> E. Coli

<400> 171

atgactcaat ttacgcaaaa taccgcattt ctttcttccc tctggcaata ctggcgcggc 60
 ctttccggct ggaacttcta ttttctgggtt aagttcgcc ttttgcggc gggatatctt 120
 aacttccatc cgctccctaa tttgggtttt gccgcgttgc tgctgtatgc cttccgcgc 180
 tacagcctgc atcgcttgcg ccactggatt gcccgcga tcggcttgc tttgttctgg 240
 catgacacct ggttgcctgg cccggaaagc ataatgagcc agggttcgca ggtggcgggg 300
 ttcagttaccg attatttaat cgaccttgc acacgcattt ttaactggca gatgattggg 360
 gccatttttgc ttttattttt ggcctggta ttccctgtcac aatggattcg cattaccgtt 420
 tttgtgggttgc ccatactgtt atggctgaac gtacttaccc tggcgggacc aagtttctcc 480
 ttgtggccagg cccggacaaacc gacgaccact gtaacaacga cgggtggtaa cgcagcggca 540
 accgttgcgg cgacgggtgg cgcacccgta gtgggtgata tgccgcaca aactgcaccg 600
 ccaacaacgg cgaaccttaa cgcctggctg aataatttct ataacgcggc ggcggaaacgt 660
 aaatcgaccc tcccgtctc gctggccgt gatgctcagc catttgaact actggtgatt 720
 aacatctgtt cgcttccctg gtcggatata gaagccgcgg ggttgtatgc gcatccactg 780
 tggtcgcatt tcgatatttga gttcaagaac tttaactccg ccaccttcta cagtggcccg 840
 gccggcgatcc gtttacttgcg cgcacccgtc gggcagactt cgcacactaa tctgtatcaa 900
 cccggcaataa acgactgtca tctgtttgtt aaccccttgcg aactgggctt taccgcac 960
 ctgtatgttgc gacataacgg ccagttcgcc gttttttgtt aagaagttcg cggaaaaatggc 1020
 ggcacatgcaga gcaatttgcg ggttcaaaaca aatctggccgg ttatgggttgc gggcttgc 1080
 ggttgcggcgg tttatgacga taccgcgttg cttaaccgcg ggttgcgcgt taccgaaaaaa 1140

gataaaaaca	gccgttagtgc	cacgttctac	aacacgcttc	caactgcata	cgccaaccat	1200
tatccggggg	tcagcaaaac	agcggattac	aaagcgcggg	cgcagaaatt	ctttgatgaa	1260
ctggacgcct	tctttactga	acttgagaaa	tcgggtcgta	aagtgtatgtt	ggtcgtggtg	1320
ccggaacacg	gcggcgcgct	gaagggcgcac	agaatgcagg	tatctggct	acgtgatatc	1380
cctagcccgt	ctatcaccga	cgtccccgtt	gggggtgaaaat	tcttcggcat	gaaggcaccg	1440
catcaggggg	caccgattgt	catcgaacaa	ccgagcagct	tcctggctat	ctccgatctg	1500
gtgggtcgcg	ttctcgatgg	caagattttc	accgaagaca	atgttgactg	gaaaaaactc	1560
accagtgggt	tgccacaaaac	agcacccggtc	tccgagaact	caaatgcagt	agtattcaa	1620
taccaggata	aaccgtacgt	tcgcctgaac	ggcggcgact	gggtgcctta	cccgcagtaa	1680

<210> 172
<211> 384
<212> DNA
<213> E. Coli

<400> 172						
atggaaagggtt	caagaatgaa	ataccgcatac	gttttagctg	tttctctctt	tgctcttagt	60
gccgttagtt	atgccactac	cctgtgtcaq	aaaaaggagc	aaaatatctt	taaggagatc	120
agctatgccc	aaaaaacacca	aaaccagaat	cgtattgacg	gtctgaataa	agccctgagt	180
gaagtccggg	ccaaactgttc	agatagccag	ctgcgtgccc	atcatcagaa	gaaaatcgca	240
aagcagaaag	atgaggtggc	ggaacgcccag	caagatttag	ccgaggcgaa	gcaaaaaggc	300
gatgccgata	agattgccaa	acgcgaacgg	aaactggcag	aagcgcagga	agagctgaaa	360
aagcttggaa	cgcgacta	ctaa				384

<210> 173
<211> 306
<212> DNA
<213> E. Coli

<400> 173						
atgtcgaaag	aacacactac	ggaacatctg	cgtgtcgagt	tgaaatccct	ttccgatac	60
ctggaaaggagg	tgcttagtgc	atctggcgag	aagtcaaaag	aagagtttag	taagattctgt	120
agcaaaagcgg	agcaggcact	gaaacagagc	cgttatcgcc	tgggtgaaaac	cggtgatgcc	180
attgccaac	aaaccctgtt	cgcggcggcg	cgtgcgcgt	agtatgtgcg	cgaaaatccg	240
tggacgggcg	tgggcattgg	cgtgcataatc	ggtgttagtgc	tcggcgcttct	gctgtcgctg	300
cgttaa						306

<210> 174
<211> 405
<212> DNA
<213> E. Coli

<400> 174						
atggcggaca	ctcatcacgc	acaagggccc	ggtaaaaagcg	ttctggcat	cggcagcga	60
attgtttcta	tcatgggtga	aatggtagag	acacgtctgc	ggctggcggt	ggtggagctg	120
gaagagggaa	aagcgaatct	cttcaactt	ttactgtatgc	tgggcctgac	gatgcttttc	180
gctgcatttgc	gtcttatgag	cctgtatggt	ctaatttattt	ggcggttga	cccgcaatat	240
cgcctgaatgc	cgtatgtgc	caccaccgtg	gtgttgctgc	tactggcact	gattggcggt	300
atctggacgc	tacgtaaatc	gcgttaagtct	acgttgctgc	gccatacacg	ccatgagtta	360
gcaaaacgatc	ggcagctgct	cgaggaggag	tcccgtgagc	agtaa		405

<210> 175
<211> 300
<212> DNA
<213> E. Coli

<400> 175						
gtgagcagta	aagtgcgaacg	tgaacgacgt	aaggcgcaac	tgcttagcca	gatccagcaa	60
caacggctgg	atctttcgc	cagtgcgt	aatggctgg	agacaacagg	cgcttacgt	120
cgtgcgttgg	atatgtctgt	aagtctgcgc	tcctggcg	tggttggcag	tagcgtatgt	180
cgatctggta	cgattcgcca	tcctaatatg	ctggccgt	ggccagacg	cggttttggc	240

gtatggagcg cctggcgct ggtaaaaacg accctcaagc agcaacagct tcgcggtaa 300

<210> 176
<211> 483
<212> DNA
<213> E. Coli

<400> 176

atgattctct ccatacgacag caacgacgct aataccgcgc cattgcacaa aaaaacaatc 60
agcagcctga gtggcgcaat ggagaggatg atgaaaaaat tagaagatgt tggtgtactg 120
gtagcgcga tttatgcc gattctgtt attaccgctg gctggggaaa aattactggc 180
tacgcgggta cccaaacaata tatggaaagca atggggctcc cgggttttat gctgccactg 240
gtgattctgc tttagtgggg tgggtgtctg gcaatccctg tcggtttctt gactcgcacc 300
acagccctgt ttactgcggg cttaacgctg ctgacggcat ttttatttca cagcaacttt 360
gctgaaggcg tcaactcgct gatgttcatg aaaaacctga caatttctgg cggattcctg 420
ctgctggcaa ttaccggctcc gggcgctat agcatcgacc gcctgctgaa taaaaagtgg 480
taa 483

<210> 177
<211> 891
<212> DNA
<213> E. Coli

<400> 177

atgatcaaga agacaacgga aattgatgcc atcttggtaa atctcaataa ggctatcgat 60
gcccactacc agtggctggg gagatgttt cacagcgtgg tcgcgagaga tgccagtaag 120
ccagaaataa cgataacca ttcttatgga ctgtgcctgtt ttggtcgggt gattgatcat 180
ctggggccac tcgataacga tgaattaccc tacgttcggc taatggattc tgcccatcaa 240
catatgcata actgtggctg ggaattaatg ctggctattt tgaaaatca ctggcaggac 300
gcmcatttcg acgccttca ggaggggttg ctttctttt ctgcggcatt aaccgattac 360
aaaattttt tgctgacgat ccgttagcaat atggatgttt tgacgggatt gccgggtcgt 420
cgggttcttg atgaatccctt tgatcatcag ttacgcaacg ctgagcctct gaatctttat 480
ttaatgttg tggatattga ccgattttaa ttggtaatg atacctacgg gcatttaatc 540
ggcgatgttag tattacgcac cctggcaact tacttagcca gttggacgng tgattacgaa 600
acggtttatac gctacggggg cgaagaattt atcattattt tcaaaagcggc taatgtgaa 660
gaagcatgtc gtgcagggtt cagaatttgc cagttagtcg ataaaccatgc catcacacat 720
tctgaagggc atatcaacat taccgtgaca gcaggggtgaa gtcgcgcatt tcctgaagag 780
cctctggatg tggtcatttg aagagcggac cggcaatgt atgagggtaa gcaaacccgga 840
agaaatcgct gcatgtttat tgacgaacaa aatgtgatta accgagttt a 891

<210> 178
<211> 612
<212> DNA
<213> E. Coli

<400> 178

atgcgccttc gtgttgtgcc cgggtttatt tcaccacctc cgggcttcgg tggctcggc 60
tatacccccta cagcgagagc ttgtgttaac atttcaatac ctttacagtt gagagttatt 120
gatatgttgg atgtatttac tccattgttg aaacttttg ctaacgagcc actcgaaaga 180
ctttagtata cgattatcat ttttgtctc actctctggc tgataccgaa agagttact 240
gtcgcatatca atgcttatac tgaataacct tggctcttc agattatcgat ttttgcctt 300
tctttcgtgg tcgcccatttc cttctcaaga ttgcgagcac atattcaaaa gcattattca 360
ttactaccag agcaacgagt attgcttcgt ttatctgaga aagaaatcgc tggatattttaa 420
gatttcctta aaacaggaaa tcttatttac acttctccctt gccgtaaacc ggttatgaaa 480
aaatttagaaac ggaagggcat cattcaacat cagagtgata gcgcaactg ttcttattat 540
ctcgtcaccg aaaaatactc ccattttatg aagttattct ggaacagcag gaggtagacgt 600
tttaatcggtt ag 612

<210> 179
<211> 177
<212> DNA

<213> E. Coli

<400> 179

gtgcttctcc aaccatcgcc ggcaccaagt ttcgggttta aatgttttc ttttgtata	60
cgtcatggca gtgaacgttc catcctgggtt gggaaacacg ccgcacacca gggattcggtt	120
gttgcgcagg tcgatttttt gcattttgcg aatctcacat cttgttgcta cgtatag	177

<210> 180

<211> 4281

<212> DNA

<213> E. Coli

<400> 180

atgagcggaa aaccagcgcc ggcgtcaggga gatatgactc agtatggccg tcccatggc	60
cagggttcgg cagggttaag aattggcgcc cccacccggc tggcgtgtc ggtgtgtccg	120
ggcgggatga ctgcgggcaa cccggtaaat ccgcgtctgg gggcgaaggt gtcgcggc	180
gagacggacc ttgcgtgtcc cggcccgctg ccgttattc tctccgcac ctacagcagc	240
tacccggacga agacgcctgc accgggtgggc gttttcggcc cccgctggaa agcgccttct	300
gatatccgct tacagctacg tgatgacgga ctgatactca acgacaacgg cggcggagc	360
attcacatttgc agccgctgt gcccggggag gccgtgtaca gccgcagtga gtcaatgtgg	420
ctgggtgcgcg gtggtaaggc agcacagccg gacggccata cgctggcgcg gctgtggggg	480
gcccgtccgc cggatatccg gttaagcccg catcttacc tggcggccaa cagcgcacag	540
ggggcgttgt ggatactggg gtggctgtgag cgggtgcggg gtgctgagga cgtactgc	600
gcccgtgcg cggcgatccg ggtgttacc gggatggcgg accgcgttcgg gccgacgcgt	660
acgtacccggc gtgaggccgc cgggtacccg gccggggaaa tcaccggcgt gacggacgg	720
gccccgggg agttccgtct ggtgtgtacc acgcaggccg agcgtgcggg agaggccgc	780
acctttcgc tatcttcgtc tgacagttcc cggcctctc cagcctcagc gttccccgac	840
acactgcccgt gtaaccgata cggcccccgc acgggtatcc gcctttcggc ggtgtggctg	900
atgcacgcacc cggcatacccg ggagagccgt cccgctgcgc cactgggtgcg gtacacgtat	960
acggaagccg gtgaaactgt ggcgttatat gaccgcagca atacgcaggt gccgcgtttc	1020
acgtatgacg cgcagcaccgc gggccggatg gtggcgcacc gttacgcggg aaggccggag	1080
atgcgttacc gctacgcacgc tacggggcgg gtgggtggagc aactgaaccc ggccagggtta	1140
agctaccgtct atctttatga gcaggaccgc atcaccgtca cgcacagcgt gaaccggcgt	1200
gaggtgtgcg atacagaagg cggggccggg ctgaaaacggg tggtaaaaaaa agaactggcg	1260
gacggcagcg tcacgcgcacg cgggtatgac gccgcaggaa ggctcacggc gcagacggac	1320
gccccggggc ggaggacaga gtacggctcg aatgtgggt cccgcgatat cacggacatc	1380
accacaccgg acggggccggc gacaaaattt tactataacg acgggaacca gtcgacggcg	1440
gtgggtgtccc cggacgggct ggagagccgc cggaaatatg atgaaccggg caggctggta	1500
tcggagacat cgcgcagccg ggagacagta cgcgtaccgt acgatgcacgc gcacagttag	1560
ttacccggcga cgacaacggc tgccgcggc acgcaccggc agatgacccgt gagccgctac	1620
gggcagttgc tggcgttccac cgactgtcg ggctaccaga cccgttatga atacgaccgc	1680
ttcggccaga tgacggcggt ccaccgcgcg gaaggcatca gcctttaccg cgcgtatgac	1740
aaccgtggcc ggttaaaccc ggtaaaagac gcacaggccc gtgaaacgcg gtatgaatac	1800
aacgcgcgcg ggcacactgc tgccgttacc acccggacg gcaaccggg cgagacacag	1860
tacgtgcgtt gggaaaaggc ggtcagcacc acgcaggccg ggctgacgcg cagtatggag	1920
tacgtgcgtt cggacgtgt catcagcctg accaaccgaga acggcagccca cagcgtcttc	1980
agttacgtatcg cgcgtggaccg gtcgttacag cagggccgt ttgacggggc gacgcacgt	2040
tatcattatcg acctgaccgg aaaactcaca caaggtgagg atgagggact tgcatacctc	2100
tggtactacg atgaatcgga cccgtatcact caccgcacgg tgaacggcga accggcagag	2160
cagtggcagt atgatggcca cggctggctg acagacatca gccacccgtg cgaaggccac	2220
cgtgtgtccgc tccactatgg ctatgacgat aaaggcccgc tgacccggc atgcccacgc	2280
gtggagaacc cggagacggg ggaactgtcg tggcagcatg agacgaaaca cgcataacaac	2340
gagcaggggc tggcaaaccg cgtcacgcgc gacagcctgc cgccgggttga gtggctgacg	2400
tatggcagcg gttacctggc gggaaatgaag ctggggggg cggccgttgtt cggatatacg	2460
cgggacacggc tgacccgtga gacgggtgcgc agttccggca gcatggcagg cagtaatgcc	2520
gcatacgaac tgaccacgc atacacccccc gcaggccagt tacagacgc gacccctgaa	2580
agccctgtat atgaccgtga ctacgggtgg agtgacaacg ggcacccgtt ggcgcacgc	2640
ggcccccgcac agacgcggg atacggctac agcgcacccgg gcaggctgg gatgtgtgcgc	2700
accctccgcac cagacctggc catccgcac ccgtatgcca cggacccggc gggcaaccgg	2760
ctgcccggacc cggagctgca cccggacagt acactcacag tggccggcga taaccgcac	2820
gcggaggatg cgcactatgt ctaccgcac gatgaatacg gcaggctgac ggagaagacg	2880

gaccgcatcc	cggcggtgt	gatacggacg	gacgacgagc	ggacccacca	ctaccactac	2940
gacaggccagc	accgcctgg	gttctacacg	cgatcacgc	atggcgagcc	actggtcgag	3000
agccgctacc	tctacgaccc	gctgggacgg	cgaatggcaa	aacgggtctg	gccccggag	3060
cgtgacctga	cgggtggat	gtcgctgtcg	cgtaaaccgg	aggtgacgtg	gtatggctgg	3120
gacggagaca	ggctgacgac	ggtgcaact	gacaccacac	gtatccagac	ggtatacgag	3180
ccggaaagct	tcacgcccct	catccgggtc	gagacagaga	acggcgagcg	ggaaaaagcg	3240
cagcggcgca	gcctggcaga	gacgctccag	caggaaggga	gtgagaacagg	ccacggcg	3300
gtgttcccg	ctgaactgg	gcccgtgt	gacaggctgg	aggaagaat	ccgggcagac	3360
cgcgtgagca	gtgaaagccg	ggcgtggctt	gcccgtgt	ggctgacgt	ggagcaactg	3420
gccagacagg	tggagccgga	atacacacccg	gcccgtttt	tcactgcgac	3480	
caccggggac	tgccgctggc	gcttatcagc	gaagacggca	atacggcg	gagcgcggaa	3540
tatgtgaat	ggggcaacca	gcttaatgag	gagaacccgc	atcatgtgt	tcagccgtac	3600
cgtctccag	ggcagcagca	tgtgaggaa	tcagggtgt	actataaccg	tcaccgggtac	3660
tacgatccgt	tgcagggggc	gtatattact	caggaccga	tgggttggaa	agggggatgg	3720
aatttatatac	agtatccctt	aaatccacta	caacaattt	accctatggg	attattgcag	3780
acttggatg	atgccagatc	tggagcatgt	acggggggag	tttgtgtgt	tctttcacgt	3840
ataataggac	caagtaaatt	tgtatgtact	gcagatgt	cgtagatgc	tttggaaagaa	3900
acgcagaata	gatctctatg	taatgatatg	gaatactctg	gtattgtctg	taaagatact	3960
aatggaaaat	attttgcata	taaggcagaa	actgataatt	taagaaagga	gtcatatcct	4020
ctgaaaagaa	aatgtcccac	aggtacagat	agagttgt	cttacatcata	tcacgggtca	4080
gatagtcatg	gcgattatgt	tgtgaaattt	ttttcaagta	gcgataaaaaa	tcttggtaaga	4140
agtaaagata	ataatcttga	agcattttat	ctcgcaacac	ctgatggacg	atttggaggcg	4200
cttaataata	aaggagaata	tattttatc	agaaatagtg	tcccggtatt	gagttcagta	4260
tgcataaccgt	atcatgatta	a				4281

<210> 181
<211> 369
<212> DNA
<213> E. Coli

<400> 181

atgaaaatata	gttcaatattt	ttcgatgt	tcattttta	tactatttgc	ctgtatggag	60
acagctgttt	acgggtctga	tgaaaacatt	atttttatga	ggtatgtgg	aaaattacat	120
ttagataaat	actctgttaa	aaatacggta	aaaactgaaa	caatggcgat	acaatttagct	180
gaaaatatatg	ttaggtatcg	ctatggcga	cggattgtcg	aagaagaaaa	accatattta	240
attacggAAC	taccagata	ttgggttgg	gagggagca	agttaccta	tgaagttgcg	300
ggtgtgtat	ttattataga	aattaataag	aaaaatggat	gtgttttggaa	tttcctacat	360
agtaaataaa						369

<210> 182
<211> 711
<212> DNA
<213> E. Coli

<400> 182

atgctggcgc	tgtatggatgc	ggatggaaac	attgcgtgga	gccccggat	tgtatggatgg	60
ggcaaccaggc	tgaatgaaga	gaacccgc	cacctgcacc	agccgtaccc	gctggccgggg	120
cagcagtatg	ataaggagtc	ggggctgtac	tacaacccga	accggacta	cgatccgttg	180
cagggggcgtt	atatacactca	ggacccgata	gggctggagg	ggggatggag	tctgtatgcg	240
tatccgctga	atccgggt	tggattgtat	ccattagggt	taatcccgc	agatgtacgc	300
ctaataagaa	gaaaagatca	actaaaccat	caaagacat	gggatataatt	atctgatact	360
tatgaagata	tgaagagatt	aaatttaggt	gggactgtac	aatttttcca	ttgtatggca	420
ttttgtcgag	tgtctaaatt	aaatgacgt	ggtgttagcc	gatcggcgaa	agggctgggt	480
tatgaaaaag	agatttagaga	ttacgggtt	aatctgttcg	gtatgtacgg	cagaaaagta	540
aagctatccc	attctgtaaat	gattgaagat	aataaaaaag	acttggctgt	aaatgaccat	600
gggttgacat	gtccatcaac	aacagattgc	tcagatagat	gtatgtacgg	tattaatcca	660
gagcataaaaa	aaacgataaa	ggcttacaa	gatgtggct	atctcaagta	a	711

<210> 183
<211> 261
<212> DNA

<213> E. Coli

<400> 183

atgctggcta tctcaagtaa tcttatcaaag atgataatat ttatTTTgc tattataatc	60
attgttgttt tatgcgtaat tacttatctt tatttataca aagatgaatc tcttgtaagt	120
aaacattaca taaactataat ggcaatacca gaaaatgatg gagTTTTac atggctccca	180
gatTTTTtc cgcacgtac ggtggatata tcaatataca caaatgtaga agatgattat	240
ttttttctta tttttcccta a	261

<210> 184

<211> 192

<212> DNA

<213> E. Coli

<400> 184

gtgagggcca gggacaagaatg ggcggaaatc gtatcaaaga atgatccaga tacaaaaaaaaa	60
gtgtgggtta aatatggtaa gataccaggg caagggatg gtgtaaacct ttttttgg	120
ggtgaaatta atgttacgca ttatTTTata acaaataattg gagctggatt gcctgatgct	180
tgtgcagagt aa	192

<210> 185

<211> 504

<212> DNA

<213> E. Coli

<400> 185

atgccgggca acagccccca ttatggcggt tggcctcaac acgatTTTAC gtcactaaaa	60
aaactcaggc cgcagtcggt aacctcgccg atacagccgg gcagtgacgt catcgctcgc	120
gcggaaatgg acgaacagtg gggctatgtc ggggcataat cgcgcacgcg ctggctgttt	180
tacgcgtatg acagtctccg gaagacgggtt gttgcgcacg tattcgggtga acgcactatg	240
gcgacgcgtgg ggcgtcttat gaggctgctg tcaccctttg acgtgggtat atggatgacg	300
gatggctggc cgctgtatga atcccgcctg aaggaaaagc tgcacgtaat cagcaagcga	360
tataccgcgc gaattgagcg gcataaacctg aatctgaggc agcacctggc acggctggga	420
cggaaatcgc tgcgttctc aaaatcggtg gagctgcatg acaaagtcat cgggcattat	480
ctgaacataa aacactatca ataa	504

<210> 186

<211> 276

<212> DNA

<213> E. Coli

<400> 186

gtggcttctg tttcttatca gctgtccctcc ttttcagcta ctgacgggggt ggtgcgttaac	60
ggcaaaagca ccgcccggaca tcagcgctat ctctgcctc actgcgttaa aacatggcaa	120
ctgcagttca cttacaccgc ttctcaaccc ggtacgcacc agaaaatcat tgatatggcc	180
atgaatggcg ttggatggcg ggcaacagcc cgcattatgg gcgttggcct caacacgatt	240
ttacgtcaact taaaaaactc agggccgagt cggtaa	276

<210> 187

<211> 417

<212> DNA

<213> E. Coli

<400> 187

atgatgacta aaacccaaat aaataaaatta ataaaaatga tgaatgattt agactatcca	60
tttgaagcac cgctcaagga atcattttt gaaaatataa tccaaataga atttaattct	120
aattcaacta attgcctgga gaagttatgt aatgaagttt gtattcttt taagaatcaa	180
cctgattatc ttactttttt aagagcaatg gatggattcg aagttaatgg attacgatta	240
tttagcctct cgattccaga accttcaggtaaaaacctttt ttgcgttaaa tgaattttat	300
agaaataatg atgatttcat aaaccctgtat ctacaagaac ggtagttagtgcg ggggattat	360
agcatttcaa tatttactta tgacattaaa ggtgtatgcg ccaacttact gatttag	417

<210> 188
<211> 1179
<212> DNA
<213> E. Coli

<400> 188

atgagtaata	ttgtttacct	gacagtaacg	ggagaacaac	aaggaagcat	ctccgcaggt	60
tgtggactt	ctgagtctac	aggttaatcg	tggcagagcg	ggcatgagga	tgaaatattt	120
acattctcac	tcttaaataa	tattaataat	acggggcttg	gttcacagtt	ccatggtata	180
acatttgtt	aattaattga	taaaaagca	ccattattta	ttaattccat	taacaataat	240
gaacaattat	ttatggatt	tgacttctat	cgaataaata	gatttggtag	attggaaaag	300
tattattata	tacaactaag	aggcgcttt	ttatcgctta	ttcatcacca	gatcattgaa	360
aaccaactgg	atacagaaaac	aataactatt	agttatgaat	ttatcctctg	tcaacatctt	420
atcgcaaata	ccgagttcag	ctatttggca	ctcccgtaaa	attataaccg	tttggtttta	480
ccaaattcaa	aaaacccaaac	aaataatcg	ttcaaaaacgt	taaacagcaa	agctattggc	540
aggctacttg	ctgctgggtgg	cgtatacaat	gggaacattt	aaggattca	agataactg	600
gaaaaactgg	gtggagatgc	aataaaaggc	tatgatcaaa	tactaaatga	aaaaacagcg	660
ggcatagcga	tagcaacagc	atctattctt	ttaacaaagc	gttctaattgt	tgatacatat	720
acagaaataa	atagttactt	aggcaaaactt	agaggtcaac	aaaaacttct	tgatggtata	780
gacataatag	aaataatata	cattaagaga	ccttcaaaag	acttagctaa	tttacgaaaag	840
gagtttaata	aaactgttaag	aaaaaaatttt	cttatcaaaac	tttgcacaaac	ctccgaagca	900
tctggaaat	tcaacgcccga	agaccttttta	agaatgagaa	aggcataatgt	ttctcttaat	960
tataatgttc	accataaaact	atctcttagat	gatgggtggta	ctaatgattt	cgaaaattta	1020
gtattaatcg	aaaacgaacc	atatcataaa	gttttacta	acatgcaatc	acgaatagct	1080
aaggaaatat	tagtaggtga	aagcaaaatc	actccctggg	ccattccatc	tggctcaattt	1140
tatcctccca	tgaaaaat	tatggaccac	acaaaatga			1179

<210> 189
<211> 666
<212> DNA
<213> E. Coli

<400> 189

atggacttg	cttgaacta	taatatgcac	ggagttataa	ttcgctcaga	aatgcagca	60
aaacctcata	cgatgccctc	tagatatctt	tgcgagtt	ttagaagcat	tgagaaaaat	120
ggccacgccc	ttgattttgg	ctggggaaaa	cttagatatt	ctgatgaattt	aatcagtaaa	180
tttgatgaag	ttactttctt	agactcgaaa	aggcaactt	aaagagagca	aattattttaga	240
ggaattaaaa	ctaaaattat	tgactatgtc	ccacgtattt	ataaaaatgc	aaatacagtt	300
gctttcgagg	atgtcgacaa	aataattggg	ggttacgatt	tcatcctttt	ctctaattgtt	360
ctctctgccg	ttccttgcg	ggatacaatc	gacaaaatag	ttcttagcat	caagagattt	420
ctaaaatcg	gaggtgagac	tcttattgtt	aatcaatata	aaagctcata	tttcaaaaaaa	480
tacgaaacag	gaagaaaacaa	tcttacgga	tacatttaca	aaaattcaaa	aagtgtttct	540
tactatggat	tactcgatga	actcgactgt	caagaaatat	gttcttcaca	tggccttgaa	600
atattaaatgt	cgtggagtaa	agcaggaat	tcatatgtca	ctgttgggag	ttgtaatgca	660
atataaa						666

<210> 190
<211> 705
<212> DNA
<213> E. Coli

<400> 190

gtgaataata	tgttcgaaacc	ccccaaaaat	tataatgaaa	tgttgcttaa	acttcataaa	60
gcaactttct	taaatacgtt	aatatattgc	atacttctag	ttatattacga	atacatccct	120
ttaataacat	taccaaccaa	gtatgtccca	cctttaaag	atcatgagag	ctttattat	180
tgggcactat	cttttggtat	attaccttgt	gttttgcga	tttttgcata	tttaatttagc	240
ggtgcgttag	acctacataa	caatgcagcc	aaactacttc	gggtgcgtat	tctttggat	300
aagcatctaa	ttataaaaacc	gttacacgg	agagctggag	tcaacagaaa	attaaataaa	360
gatgaagctc	acaatgtat	gagcaatcta	tattaccctg	aagtaagaaa	aattgaagac	420
aaacattata	ttgaactctt	ctggaataaa	gtatactattt	tttggatattt	tttgaattt	480

tcgataattg cattaatttc cttoctaata atctttttt gcaaacaat ggatattttt	540
catgtgaag gttctttgct gtctttattc ttttttgtaa ttttacatt ctcagttagt	600
ggtattatct ttgcttgac agtaagccc agaactgaaa gtcaagtccg aaaaatcccg	660
gacgataaaa taaaagaatt tttcactaaa aataacatta attga	705

<210> 191
<211> 285
<212> DNA
<213> E. Coli

<400> 191	
atgttacta tcaacgcaga agtacgtaaa gagcaggta agggtgcag ccgcgcctg	60
cgtccgcata acaagttccc ggcaatcatc tacggtagca aagaagcgcc gctggctatc	120
gagctggatc acgacaaagt catgaacatg caagctaaag ctgaattcta cagcgaagtt	180
ctgaccatcg ttgttgacgg taaagaaatc aaagttaaag ctcaggacgt acagcgtcac	240
ccgtacaaac cgaagctgca gcacatcgac ttcgttcgctt cttaa	285

<210> 192
<211> 1977
<212> DNA
<213> E. Coli

<400> 192	
atggatttgt tttatcgggc acactggcgc gactataaaa acgatcaagt gaggatcatg	60
atgaatctga cgactctgac ccaccgcgt gctgtgttc tgaatgcgcg cttaaccgc	120
cgtgaagagg ccatccacgc gttgactcaa cgtcttgcgt ctctggggaa aatttccagt	180
actgagcaat ttctggaaga agtgtatcg cgtgaaagcc ttggccgcac cgcccttaggt	240
gaagggttgg ctgtgccgca tggaaaact gctgcggtaa aagaagcgcc gtttgcggtc	300
gccacactca gcgagccgct tcagtgggaa ggcgttgcgt gccccgaagc agttgattt	360
gtgggtctgc tggcgattcc ccccaatgaa gcggttacta cgcatatgca actgctgaca	420
gchgctgacca cgcgccttgc ggtatgttag gatcgccgcgtatacagtc ggcgacgacg	480
cctgatgagt tgctctcgcc gctggatgac aaggaggcca cgcaacccgc tgcctctttt	540
tccaaacgcgc caactatctg ctgcgttaacg gcctgtccgg cgggtattgc tcacacctat	600
atggctgcgg aatatctgaa aaaagccgga cgcaactcg gctgtttatgt ttacgttgaa	660
aaacaaggcg ctaacggcat tgaagggcgt ttaacggcg atcaactcaa tagtcaacc	720
gcctgtattt ttgcggctga agtcgcccatt aaggagatg agcgttttaa tggcattccc	780
gchgcttcag tgcctgttgc cgagccgatt gcctgtccgg aagcgttgc ccaacaagcg	840
cttaccctca agcgttagcga tgagacgcgt accgtacagc aagatacgc accggtaaaa	900
agtgtcaaaa cggagctgaa acaggcactg ttgagccgg tctcttttgc cgtaccgttg	960
attgtcgccg ggggcacggt gctggcggtc gcggttattac tgctgcataat ctccggctca	1020
caagatctgt ttaatgaa aactcctgg ctgtggatgt accgcaagct gggccggccgg	1080
ctgctcgaa ttttgcgtt accgggtgtc gcccctata ccccttatttc tctggcagat	1140
aaaccggcgt tagcgccagg ctttgcggct ggacttgcg ccaacatgat cggctccggg	1200
tttctcgccg cggctgttgg cggattgata gcccgttact tgatgcgtg ggtaaaaat	1260
cacttgcgtc ttagcgttaa attcaatgga ttctgtactt tttatctcta cccgtgtc	1320
ggtacgttgg gaggccggcag tctgtatgtc tttgtggtgg gggaaacctgt cgccgtgatc	1380
aataactcgc ttaccgcctg gctgaacggt ctgtcaggaa gtaacgcgt gttgtgggt	1440
gccattctcg gtttatgtt ttccttgcac ttggaggccc cagtgaataa agccgttat	1500
gcattctgcc tggcgcaat ggcgaacggc gtttacggcc cgtatgcatt ttcgcctcc	1560
gtcaaaatgg tttcgccatt taccgttaacc gtttccacga tgctcgccacc ggcctgttt	1620
aaagagttt aattgagac cggaaatcc acctggctgt tagggctggc aggtattacc	1680
gaaggggcga tcccgatggc gattgaagat cgcgtccggg ttatggttc gtttgtgt	1740
ggctctatgg taacggggc tattgtcggt gcatgaaata tcggcccttc gacacccgg	1800
gccggcattt tctcgcttt tttacttcat gataatggcg cggccgggt tatggcggca	1860
attggctggt ttggcgccgc attgggtggg gctgcaatct cgactgcaat tctctgtatg	1920
tggcgccgtc acgcggtaa gcatggcaac tatctgactg atggcgtaat gccataa	1977

<210> 193
<211> 2634
<212> DNA
<213> E. Coli

<400> 193

atgaaagcag tatctcgct tcacatcacc ccgcataatgc actgggatcg agagtggat	60
ttcacccaccg aagagtcacg tattctgctg gtcaataata tggaaagagat cctgtgccga	120
ctggAACAGG acaacgaata caaatattac gtactcgacg ggcaaACCGC gatcctcgaa	180
gattatttcg cggtaAAACC ggAAAACAAA gaccgtgtga agaaACAGT agaAGCCGGC	240
aagtgttata tcggccccgt gtatacccg accgatacca cgattgttgc tgccGAATCC	300
atcgcccgta atctgtatcg cggaaatgcgt gactgcctcg cgTTGGCGA gccgatgaaa	360
ataggTTATT taccagattc ctttggcatg tccgggcaac tgccgcataat ctacaatggg	420
tttggcatta CCCGCACCAT gttctggcgc ggatgttcgg agGCCACGG tactgataaa	480
accgagTTTT tggcAAAG cagtgacggt agcgaatgtg cggcgcaggt gctGCCGCTG	540
ggctacGCCA tcggtaAGTA cttacctgccc gacgAAAACG gattacgtaa acgcctcgac	600
agttatTTTG acgtgctgga AAAAGCGTCT gtaaccaaAG agatTTGT gccgaatggg	660
catgaccaga tgccattgca gcaAAATATC ttcaagatgtg tggataaggt acgtgagatc	720
taccctcaac gtaagTTTG gatgagccgc tttgaagagg tatttgagaa gatcgaagcg	780
cagcgagata atctggcaac CCTGAAAGGG gaatttattg atggcaataa tatgcgcgtg	840
catcgccacca tcggTTCTAC gcgtatggat atcaaatttgc cccacgcgcg tattgaaaat	900
aagatTTTA atctgtctgga accgctggca acactggcct ggacgttggg tttgaataac	960
caccacggct tgctggagaa aatgtggaaa gagatcttaa AAAATCATGC ccacgacagt	1020
atcggtctgt gctgttagtga caaagtccat cgcgaaatcg tcgcccgtt cgaactggct	1080
gaagacatgg cggataatct gattcgTTTC tacatgcgcgaa aatttgcgcg caacatggc	1140
cagagcgacg cccacAAACT cgtcctgttt aacctgatgc cctggccgcg tgaagaagtt	1200
atcaacacca ctgtgcggc ggcgcgcagc cagttaatt tgccggacgc tgccggtcag	1260
cctgtaccgt attttatttcg ccatgcccgt gagatcgatc caggcctaatt cgatcgccaa	1320
atagttcatt acggtaattt cgtatccctt atggagTTTG atatacagat caaccagatt	1380
gtcccttcta tgggctatcg cacgctttat atcgaagcga atcagcctgg caacgttaatt	1440
gcggcaaaaaa gtgacgctg aggataactg gaaaatgtt tctggcaaat tgccgtcaat	1500
gaggatggtt ctctgcact ggtagataaa gacagcggtg tgccgtatgaa ccgggtattt	1560
caaattgaag aaagctctga tggatggat gaatatgact attcaccgc AAAAGAAAGAG	1620
tggtaattt cccgacgcgaa cgcgaaACCG caatgcgcata ttattcatgaa agcctggcag	1680
agcaggcgtg ttatccgcta tgacatggca gtggccgtca atttgcaga acgcagcgcc	1740
cggaatCCA ctggcagagt aggggtggg tgggttgc taacagcagg caggctgtca ctcttagtca	1800
cgtattgtg tggatatcgg tcttgataac ctttgacgcgaa aaccccccgtt aaccccccgtt	1860
gtccctacac ctttaacac cgacagtgtt ctggcagata cgcagttgg ttcgctaacg	1920
cgccccgtga acgacagtgc aatgaacaac tggcagcaag aaggctggaa agaagcgccg	1980
gttccggtat gaaatatgtt caactatgtt gccttacagg aaggcgtaa cggcatggct	2040
gtcttagcg aagggttacg tgaatttgaat gtcatcggtg aagagaagaa aaccccccgtt	2100
attacgttgc tgcgtggcgt gggctactg ggcggaaaggg ggcggaaaggg atctgccttt	2160
cggcccccgg gaattaaaaat gccagtcccg gactcacaac tacgtggct gcttcttgc	2220
cgcctaagtt tattgagtta taccggtagc aacaaatcc catgggatgt gatgaagctc	2280
cgagcatggc tgactccagt acagtgttac tatagttgt tggaaatgcc cccagtgggaa	2340
aacaaAGCCG gattcaacgt gcccggaaagt gaccgacaag aagtgatttt acggctgttt	2400
tgcctgataa ggcgcacttaa gaaagctgaa aatccggctg aatcagcaac ctgtgtatcg actgttgcct tcagtcgcga ggtgatttct	2460
tgctcagaaa cgatgtatgga tgaacacatt accaccgggg aaaatcaagg ttcaaatcta	2520
tcggggcctt ttttacccgg ccagtcacgg acgttcagtt accggcttgc ctga	2580
	2634

<210> 194

<211> 1572

<212> DNA

<213> E. Coli

<400> 194

atgatgttag atatagtcga actgtcgcc ttacagtttgc ctttgaccgc gatgtaccac	60
ttccTTTTG tgccactgac gctcggtatg gcgttccgtc tggccattat ggAAACGGTC	120
tacgtcctct cccgcaAAACA gatttataaa gatatgacca agttctgggg caaggTTGTT	180
ggtatcaact tcgctctggg tggcttacc ggtctgacca tggagttcca gttcgggact	240
aactggctt actattccca ctatgttaggg gatatccgtc gtcgcgcgcg ggcaatcgaa	300
ggtctgtatgg ctttccctt cgaatccacc ttgttaggtc tggatccctt cgggtggat	360
cgtctggta aagttcagca tatgtgtgtc acctggctgg tggcgcctgg ttcaaACCTG	420
tccgcactgt ggattctgtt tgccaaacggc tggatgcAAA acccaatcgc gtccgatttc	480

aactttgaaa	cstatgcgtat	ggagatggtg	agcttctccg	agctgggtct	taaccgggtt	540
gctcaggta	aattcggtca	cactgttagcg	tctggttatg	tgactggcgc	gatgttcatc	600
ctcggttatca	gcgcgtatgt	tatgtctgaaa	ggtcgtgact	tcgccttcgc	taaacgcgtcc	660
tttgcgtatcg	ctgccagctt	cggtatggct	gctgttctgt	ctgttatttgt	tctgggtgat	720
gaatccggct	acgaaatggg	cgacgtgcag	aaaaccaaac	tggctgctat	tgaagccgag	780
tggaaaacgc	aacctgcgcc	tgctgcctt	actctgttcg	gcattcctga	tcaggaagag	840
gagacgaaca	aatttgcgtat	tcagatccc	tacgcactgg	gcatcattgc	aacgcgttcc	900
gtggataccc	cggttatccg	cctgaaaagag	ctgatggtgc	agcatgaaga	acgcattcgt	960
aacgggatga	aggcgtaatc	tctgctcgaa	caactgcgtt	ctgggtctac	cgaccaggcg	1020
gttcgtgacc	agttcaatag	catgaagaaa	gacctcggtt	acggctctgt	gctgaaaacgc	1080
tatacgccaa	acgtggctga	tgcgactgaa	gcccagattc	aacaggcaac	caaagactcc	1140
atccccgcgt	tagcggccgt	gtactttgcg	ttccgtatca	tggggcgtg	tggcttcctg	1200
cttctggcaa	tcatcgccgt	ctctttctgg	agtgtcatcc	gcaaccgcac	tggcgagaaa	1260
aaatggctc	tgcgcgcgc	gctgtacgg	attccgctgc	cgtggattgc	tgtagaagcg	1320
ggctgggtcg	tggctgaata	tggccgcacaa	ccgtggctt	tcggtaagt	gctgcccaca	1380
gctgtggcga	actcgtcaact	gaccgcaggc	gatctcatct	tctcaatgg	gctgatttgc	1440
ggcctgtata	ccctgttcc	ggtggcagaa	ttgttctta	tgttcaagtt	tgcacgcctc	1500
ggcccaagca	gcctgaaaac	cggtcgtat	cactttgagc	agtcttccac	gactactcag	1560
ccggcacgct	aa					1572

<210> 195
<211> 1140
<212> DNA
<213> E. Coli

<400> 195

atgatcgatt	atgaagtatt	gcgttttac	tggtggtgc	tggttggcgt	tctgctgatt	60
ggttttgcag	tcactgacgg	tttcgacatg	gggggtggca	tgctcacccg	tttcctcggt	120
cgtaacgaca	ccgagcgtcg	aattatgatt	aactccattg	caccacactg	ggacggttaac	180
cagggttggc	tgatcacccg	gggcggcgca	ctctttgtcg	cctggccgat	ggtctatgcc	240
gctgcgttct	ccggcttcta	tgtggcgatg	atccctgtgc	tggcgctt	gttcttcgt	300
ccggtcgggtt	ttgactaccg	ctccaagatt	gaagaaaccc	gctggcgtaa	catgtgggac	360
tggggcatct	tcattgttag	cttcgttccg	ccgctggtaa	ttggtgttagc	gttcgttaac	420
ctgttgcagg	gctgtacgg	caacgttgc	aatatctgc	gtctgtacta	caccggtaac	480
ttcttccagt	tgcttaaccc	gttcggcctg	ctggcaggcg	tggtgagcgt	aggatgatc	540
attactcagg	gcbcacacta	tctgcaatg	cgtaccgtgg	gccaactgca	cctgcgtacc	600
cgtcaacgg	ctcagggtgc	tgcgttgcgt	acactggct	gtttcgcact	ggctggcgta	660
tgggtatgt	acggtatcga	tggttatgtc	gtgaaatcga	caatggacca	ttacgcagcc	720
tctaaccac	tgaataaaga	agtggttcgt	gaagctggcg	catggcttgc	taacttcaac	780
aacacgccaa	ttctgtggc	tattccggca	ctgggtgtgg	ttctgcccgt	gctgaccatc	840
ctgactgcac	gtatggataa	agccgcgtgg	gcgttgcgt	tctccctcc	gacgctggcc	900
tgcatcatcc	tgacagccgg	tatcgcaatg	ttcccgttgc	tgatgccgtc	cagcaccatg	960
atgaacgc当地	gtctgacaat	gtgggatgca	acttcagcc	agctgacgct	taacgtcatg	1020
acctgggttg	cggtggttct	ggttaccgatc	attctgtct	acaccgcctg	gtgttactgg	1080
aaaatgttgc当地	gtcgtatcac	caaagaagat	attgaacgta	acaccactc	tctgtactaa	1140

<210> 196
<211> 1371
<212> DNA
<213> E. Coli

<400> 196

atgaaattat	cctcaactgac	cgcgcgtttcc	cctgtcgatg	gacgctacgg	cgataaaagtc	60
agcgcgcgtc	gcgggatttt	cagcgaatat	ggtttgcgt	aattccgtgt	acaagttgaa	120
gtacgttggc	tgcaaaaact	ggccgcgcac	gcagcgatca	aggaagttcc	tgctttgcgt	180
gccgacgc当地	tcgggttaccc	tatcgcaatc	gtcgcgcgtt	tcagcgaaga	agatgcggcg	240
cgcacatccaaa	ctatcgagcg	taccactaac	cacgacgtt	aagcggttgc	gtatttcctg	300
aaagaaaaaa	tggcgagat	cccggaactg	cacgcgtt	ctgaattcat	ccactttgc当地	360
tgtacttc当地	aagatataaa	taacctctcc	cacgcattaa	tgctgaaaac	cgccgcgtat	420
gaagtgtatcc	tgccataactg	gcgtcaactg	attgtatggca	ttaaagatct	cgccgcgtcc	480
tatcgcgata	tcccgtgt	gtctcgatc	cacggcgtac	cagccacgac	gtcaaccatc	540

ggtaaaagaga tggcaaacgt	cgccctaccgt	atggagcgcc	agtaccgcca	gcttaaccag	600
gtggagatcc tcggaaaaat	caacggcgcg	gtcggttaact	ataacgccc	catgcccgct	660
tacccggaag ttgactggca	tcagttcagc	gaagaggctcg	tcacctcgct	gggtattcag	720
tggaaacccgt acaccaccca	gatcgaacccg	cacgactaca	ttgccgaact	gttgattgc	780
tttgcgcgct tcaacactat	tctgatcgac	tttgaccgtg	acgtctgggg	ttatatcgcc	840
cttaaccact tcaaacagaa	aaccattgtct	ggtgagattg	gttcttccac	catgcccgat	900
aaagttAACCGT	cgatcgactt	cgaaaactcc	gaagggaaatc	tggccctttc	960
ttgcagcatt tggcaagcaa	actgcccgtt	tcccgcgtgc	agcgtgaccc	gaccgactct	1020
accgtgctgc gtaacctcg	cgtgggtatc	ggttatgcct	tgattgcata	tcaatccacc	1080
ctgaaaggcg tgagcaaact	ggaagtgaac	cgtgaccatc	tgctggatga	actggatcac	1140
aactggaaag tgctggctga	accaatccag	acagttatgc	gtcgctatgg	catcgaaaaa	1200
ccgtacgaga agctgaaaga	gctgactcgc	ggttaagcgcg	ttgacgcccga	aggcatgaag	1260
cagtttatcg atggctcg	gttgcagaa	gaagagaaag	ccgcctgaa	agcgatgacg	1320
ccggctaact atattggctcg	agctatcacf	atgggtgatg	agctgaaata	a	1371

<210> 197
<211> 186
<212> DNA
<213> E. Coli

<400> 197
atgctgattc tgactcgctcg agttggtag accctcatga ttggggatga ggtcaccgtg
acagtttag gggtaaaggg caaccaggtt cgtattggcg taaatgcccc gaaggaagtt
tctgttcacc gtgaagagat ctaccaggct atccaggctg aaaaatccca gcagtcagg
tactaa

60
120
180
186

<210> 198
<211> 93
<212> DNA
<213> E. Coli

<400> 198
ggtgaggtgg ccgagaggct gaaggcgctc ccctgctaag ggagtatgcg gtcaaaagct
gcatccgggg ttcgaatccc cgcctcaccg cca

60
93

<210> 199
<211> 603
<212> DNA
<213> E. Coli

<400> 199
atgaagaata aggctgataa caaaaaaagg aacttcctga cccatagtga aatcgaaatca
ctccttaaag cagcaaatac cgggcctcat gcagcacgtt attattgtct gactttgctt
tgttttattc atggtttccg ggcgagtggaa atttgcgtat tgaggatttc ggatattgat
cttaaggcaa agtgtatata tatccatcgat taaaaaaaaa gctttcaac aacgcacccg
ctattgaata aagaagttca ggctttaaaaa aactgggtga gtatccgtac ttctgtacccg
catgctgaga gcgagtggtt atttttatca cgtaagggga atccgcttcc tcggcaacag
ttttaccata ttatctcgac ttccgggtgt aatgcccgggt tgcactgga gattcatccg
cacatgttac gccattcgat tgggtttgtt ttggcgaata tggaaataga tacgacgtt
atccaggatt atcttgggca tcgcaatatt cgtcataactg tctggatatac cgccagcaat
gcagggcgtt tttacggcat ctggataga gccagaggac gacagcgtca cgctgtttta
tag

60
120
180
240
300
360
420
480
540
600
603

<210> 200
<211> 597
<212> DNA
<213> E. Coli

<400> 200
gtgagtaaac gtcgttatct taccggtaaa gaagttcagg ccatgatgca ggcgggttgt
tacggggcaa cgggagccag agattattgt cttattctgt tggcatatcg gcatggatg

60
120

cgtatttagtg aactgctgaa tctgcattat caggaccttgc acctaataatgaa aggtagaata	180
aatatttcgccc gactgaagaa cggattttct accgttacc cgttacgttt tgatgagcgt	240
gaagccgtgg aacgctgac ccaggaacgt gctaactgga aaggcgctgaa ccggactgac	300
gctatattta tttctcgccg cggagtcgg ctttctcgcc agcaggccata tcgcattatt	360
cgcgatgccg gtattgaagc tggaaaccgtaa acgcagactc atcctcatat gttaaggcat	420
gcttgcgtt atgaatttgc ggagcgtggt gcagatactc gtttaattca ggattatctc	480
gggcatacgaa atattcgcca tactgtgcgt tataccgcca gtaatgctgc tcgaaaaatggcc	540
ggattatggg aaagaaaataa tctcataaac gaaaaattaa aaagagaaga ggtttga	597

<210> 201

<211> 549

<212> DNA

<213> E. Coli

<400> 201

atgaaaattaa aaactctggc aatcggtt ctgtcggtc tgcgttccat ttctacagcg	60
gctctggccg ctgccacgac ggttaatggg gggaccgttc actttaaagg ggaagttgtt	120
aacccgcgtt ggcgcgttgc tgcaggctct gttgatcaaa ccgttcagggtt aggacagggtt	180
cgtaccgcattt cgctggcaca ggaaggagca accagtctg ctgtcggtt taacattcag	240
ctgaatgattt ggcgcataccaa tggatgcattt aaagccgtt ttgcctttt aggtacggcg	300
attgatgcgg gtcataccaa cgttctggct ctgcagagtt cagctgcggg tagcgaaca	360
aacgtgggtt tgcagatcctt ggacagaacg ggtgctgcgc tgacgcttgg tagtgcgaca	420
tttagttcag aaacaaccctt gaataacggg accaatacca ttccgttcca ggcgcgttat	480
tttgcacccg gggccgcaac cccgggtgtt gctaattgcgg atgcgaccc ttcaagggttca	540
tatcaataa	597

<210> 202

<211> 648

<212> DNA

<213> E. Coli

<400> 202

gtgctgctaa tgcggatgcg accttcaagg ttcagtatca ataacctacc caggttcagg	60
gacgtcatta cgggcaggaa tgcccaccc tttgcgtatca aaataaacat gaaaagggaa	120
agattatttc tattagcgtc gttgctgcca atgtttgtc tggccggaaa taaaatggaa	180
accacgttgc cccgcggaaa tatgcaattt cagggcgtca ttattgcggaa aacttgcgg	240
attgaagccg gtgataaaaca aatgacggtc aatatggggc aaatcagcag taaccgggtt	300
catgcgggtt gggaaagatag cgcacccgtt cttttgttta ttcatattacg ggaatgttgc	360
acgggttgtt gtaaacgtgtt aggtgtggcg ttcacgggtg tcgcggatgg taaaatccg	420
gtatgtctt ccgtgggaga gggccaggaa atagccacca attatgggtt agcgttgttt	480
gtatgtgaag gaaacctcgtt accgattaaat cgtcctccat caaaactggaa acggctttat	540
tcaggctcta ttgcgttaca ttcatgcggc aaatactgtt ctaccggcg tcgggttact	600
ggcggcatcg ccaatgccccca ggctgggtt tctttaacctt atcagtaa	648

<210> 203

<211> 726

<212> DNA

<213> E. Coli

<400> 203

gtgagtaata aaaacgtcaa tgtaaggaaa tcgcaggaaa taacattctg ctgtctggca	60
ggtatctgaa ttttcgttgc aatgtatgggtt gcccggacgcg ctgaagcggg agtggcctta	120
gggtgcgttc gctgtatccaa tccggcaggaa caaaaaaaaa agcaacttgc cgtgacaaat	180
aatgtatggaa atatgtatccaa tttaattccaa tcatgggtgg aaaaatggca tgggtgtaaag	240
gatgtgtgtt ttatctgtgc gccttcctctg ttgcgtatca agggaaaaaaa agagaataacc	300
ttacgttattt ttgtatgcacca aaataacca ttgcacagg accggggaaat tttattctgg	360
atgaacgtta aagcgattcc gtcaatggat aaatcaaaat tgactgagaa tacgttacag	420
ctcgcaattt tcagccgtat taaaactgtac tatgcggccg ctaaaatttagc gttgccaccc	480
gatcaaggccg cagaaaaattt aagatctgtt cgtagcgcga attctctgac gctgatataac	540
ccgacacccctt attacctgtac ggttaacagag ttgaatgcgg gaacccgggt tcttggaaaat	600
gcattgggtgc ctccaaatggg cgaaaggcgcg gttaaattgc cttctgtatgc aggaagcaat	660

attacttacc gaacaataaa tgattatggc gcacttaccc ccaaaatgac gggcgtaatg 720
gaataaa 726

<210> 204
<211> 2637
<212> DNA
<213> E. Coli

<400> 204

atgtcatatc tgaatttaag actttaccag	cgaaacacac aatgcttgca tattcgtaag	60
catcggttgg ctgggtttt tgcggactc gttgtcgct gtgcgttgc cgcacaggca		120
cctttgtcat ctgccgacct ctatTTTaaT ccgegcTTT tagcggtatg Tccccaggct		180
gtggccgatt tatcgcttt tgaaaatggg caagaattac cggcaggac gatcgctgc		240
gatatctatt tgaataatgg ttatATGGCA acgcgtatg tacattaa tacggcgac		300
agtgaacaag ggattgtccc ctgcctgaca cgcgcgcaac tcgccagttat ggggtgtat		360
acggcttctg tcgcccgtat gaatctgtg	gcggatgatg cctgtgtgcc attaaccaca	420
atggtccagg acgctactgc gcatctggat	gttggtcagc agcgactgaa cctgacgatc	480
cctcaggcat ttatgagtaa tcgcgcgtgt	gttatattc ctcctgagtt atggatccc	540
ggtattaatg cccgattgtt caattataat	ttagcggaa atagtgtaca gaatcggtt	600
gggggttaaca gccattatgc atattaaac	ctacagatg gttaaatat tggtgcgtgg	660
cgtttacgcg acaataccac ctggagttat	aacagtagcg acagatcatc aggtagcaa	720
aataaatggc agcatatcaa tacctggctt	gagcgagaca taataccgtt acgttcccgg	780
ctgacgctgg gtgatggta tactcaggc	gatatttgc atggatattaa ctttcgcggc	840
gcacaattgg cctcagatg caatatgtt	cccgatagc aaagaggatt tgccccgg	900
atccacggta ttgctcggtt tactgcacag	gtcactatta aacaaaatgg gatgacatt	960
tataatagta cggtgccacc gggccctttt	accatcaacg atatctatgc cgcaggtaat	1020
agtggtaact tgcaggtaac gatcaaagag	gctgacggca gcacgcagat ttttaccgt	1080
ccctattcgt cagtcccgt tttgcAACGT	gaagggcata ctcgttattt cattacggca	1140
ggagaatacc gtagtgaaa tgcgcagcag	aaaaaaaccc gcttttcca gagtacatta	1200
ctccacggcc ttccggctgg ctggacaata	tatggtgaa cgcactggc ggatcggtat	1260
cgtgctttta atttgcgtat cggaaaaaac	atggggcac tggcgctct gtctgtggat	1320
atgacgcagg ctaattccac acttcccgt	gacagttagc atgacggaca atcggtgcgt	1380
tttctctata acaaatacgct caatgaatca	ggcacgata ttcaagttagt gggtaaccgt	1440
tattcgacca gcccgtatTTT taatttcgt	gataacaacat acagtcaat gaatggctac	1500
aacattgaaa cacaggacgg agttattcag	gttaagccga aattcaccga ctattacaac	1560
ctcgcttata acaaacgcgg gaaattacaa	ctcaccgtt ctcagcaact cggcgcaca	1620
tcaacactgt atttgagttt tagccatcaa	acttattggg gAACGAGTAA tgtcgtatgag	1680
caattccagg ctggattaaa tactcggttc	gaagatatca actggacgct cagctatacg	1740
ctgacgaaaa acgcctggca aaaaggacgg	gatcagatgt tagcgcttta cgtcaatatt	1800
ccttcagcc actggctgcg ttctgacagt	aaatctcgt ggcgacatgc cagtgcgc	1860
tacagcatgt cacacgatct caacggcgg	atgaccaatc tggctgggt atacggta	1920
ttgctggaaag acaacaacct cagctatgc	gtgcaaaaccg gctatgcgg gggaggcgat	1980
ggaaatagcg gaagtacagg ctacgcacg	ctgaattatc gccgtggta cggcaatgcc	2040
aatatcggtt acagccatag cgatgatatt	aagcagctt attacggagt cagcggtggg	2100
gtactggctc atgcctaattt cgtaacgcgt	gggcagccgt taaacgatc ggtggtgctt	2160
gttaaagcgc ctggcgcaaa agatcaaaa	gtcgaaaacc agacgggggt gcgtaccgac	2220
tggcgtggtt atgcccgtgt gccttatgcc	actgaatatc gggaaaatag agtggcgctg	2280
gataccaata ccctggctga taacgtcgat	ttagataacg cggttgctaa cgttgttccc	2340
actcggtggg cgatcgctgc agcagagttt	aaagcgcgcg ttgggataaa actgctcatg	2400
acgctgaccc acaataataa gccgctgcgc	tttggggcga tggatc acgtggatgc	2460
cagagtagcg gcattgttgc ggataatggt	cagggttacc tcagcgaaat gccttagcg	2520
ggaaaagttc aggtgaaatg gggagaagag	ggaaaatgctc actgtgtgc caattatcaa	2580
ctgccaccag agagttagca gcagttatta	acccagctat cagctgaatg tcgttac	2637

<210> 205
<211> 531
<212> DNA
<213> E. Coli

<400> 205
atgagaaaaca aacctttta tcttctgtgc gctttttgtt ggctggcggt gagtcacgct 60

ttggctgcgg atagcacat tactatccgc ggctatgtca gggataacgg ctgttagtgtg	120
gccgctgaat caaccaattt tactgttgat ctgatggaaa acgcggcgaa gcaatttaac	180
aacattggcg cgacgactcc tgggttccca ttctgttattt tgctgtcacc ctgtggtaat	240
gccgttctg ccgtaaagggt tgggttact ggcgtgcag atagccacaa tgccaacctg	300
cttgcacttg aaaatacggt gtacagcggt tcgggactgg gaatacagct tctgaatgag	360
cagcaaaatc aaataccct taatgctcca tcgtccgcgc tttcgtggac gaccctgacg	420
ccggtaaac caaatacgct gaatttttac gcccggctaa tggcgacaca ggtgcctgtc	480
actgcggggc atatcaatgc cacggctacc ttcaactctt aatatcagta a	531

<210> 206

<211> 504

<212> DNA

<213> E. Coli

<400> 206

atgaaatggt gcaaacgtgg gtatgtattt gcgccaatat tggcgctcgc aagtgcgacg	60
atacaggcag ccgatgtcac catcacggtg aacggtaagg tcgtcgccaa accgtgtacg	120
gtttccacca ccaatgcac ggttgcatttc ggcgtatctt attcttcag tcttatgtct	180
gccggggcggt catcgccctg gcatgtatgtt ggcgttgagt tgactaattt tccgggtggaa	240
acgtcgaggg tcactgcag cttcagcggt gcagccgaca gtaccggata ttataaaaac	300
caggggaccg cgcaaaacat ccagtttagag ctacaggatg acagtggcaa cacattgaat	360
actggcgcac ccaaaacagt tcaggtggat gattcctcac aatcagcgca cttcccgta	420
caggtcagag cattgacagt aaatggcgga gccactcagg gaaccattca ggcagtgatt	480
agcatcacct atacctacag ctga	504

<210> 207

<211> 903

<212> DNA

<213> E. Coli

<400> 207

atgaaacgag ttattaccct gtttgctgta ctgctgatgg gctggtcggg aaatgcctgg	60
tcattcgccct gtaaaaccgc caatggtacc gctatcccta ttggcggtgg cagcgccaat	120
gtttatgtaa accttgcgcc cgtcgtaat gtggggcaaa acctggctgt ggatcttcg	180
acgcaaatct tttgccataa cgattatccg gaaaccatta cagactatgt cacatgc当地	240
cgaggctcgg cttatggcg cgtgttatct aattttccg ggaccgtaaa atatagtggc	300
agtagctatc catttcctac caccagcgaa acgcccgcgc ttgttataaa ttccgagaacg	360
gataagccgt ggccgggtggc gctttatgg acgcctgtga gcagtgcggg cgggggtggcg	420
attnaagctg gctcattaaat tgccgtgctt attttgcgac agaccaacaa ctataacagc	480
gatgatttcc agtttgcgtg gaatatttac gccaataatg atgtgggtgg gcctactggc	540
ggctgcgtatg tttctgctcg tgatgtcacc gttactctgc cggactaccc tgggtcagtg	600
ccaattcctc ttaccgttta ttgtgcggaa agccaaaacc tggggtattta cctctccggc	660
acaaccgcag atgcgggcaa ctgcattttc accaataccg cgtcggttcc acctgcacag	720
ggcgtcgccg tacagttgac gcgcacacgg acgattattc cagcgaataaa cacggtatcg	780
ttaggagcag tagggacttc ggcgggtggat ctgggattaa cggcaaattt tgacacgtacc	840
ggagggcagg tgactgcagg gaatgtgc当地 tcgattattt gcgtgacttt tgggtatcaa	900
taa	903

<210> 208

<211> 1631

<212> DNA

<213> E. Coli

<400> 208

gtgctgtcaa aactaccgg tagactccga tcttttccaa catattgcac catccgtgta	60
catcggggtg aggatatgaa atcaatggat aagttaacaa caggtgttgc ctatggcaca	120
tcggcggtt atgctggtt ctgggcattt cagttactcg ataaaggtaac tccgtcacag	180
tgggctgcaa tcgggtgtct gggtagcctt gtttttggcc tgctgacgta tctgacaaat	240
ctttatccaa agattnaaga agacaggcgt aaggctgc当地 gagggagaga atccaatgac	300
tcaagactat gaactgggtg tggaaaggagt ccgtaatttt gagaataaaag ttacggtaac	360
tgttagccctt caggacaaag aacgccttga cggtaaaattt ttgacacgtgg atgtcgccat	420

ggaccgtgtt	gaaggagctg	cgctggagtt	ttatgaggca	gcagccagaa	ggagcgtccg	480
gcaagtcttc	ctggaagtag	cagaaaaatt	gtcagaaaaa	gtttagtctt	atctgcagca	540
tcaagtactcc	ttaagattt	aaaatcctgc	caataagcac	gagcgtccctc	atcataaaata	600
tctatgaaca	caaaaatcag	atacggcctg	tcggctgccg	ttctggcgt	gatttgtct	660
ggcgcatctg	ctcctcagat	acttgaccag	tttctggacg	aaaaagaagg	taaccacaca	720
atggcatacc	gcatggttc	tggcatatgg	accatctgtc	gggggtccac	agtggtgat	780
ggaaaaaccg	ttttcccaa	tatgaaaactg	tcgaaggaaa	aatqcgacca	ggtaaacgc	840
attgagcgtg	ataaggcgct	ggcatgggtg	gagcgaata	ttaaagtacc	actgaccgaa	900
ccacaaaaag	cgggtatcgc	gtcattttgt	ccctataaca	ttggccccgg	taagtgtttc	960
ccgtcgacgt	tttataagcg	gctgaatgct	ggtgatcgta	aagggtcgt	cgaagcgatt	1020
cgctgggtga	ttaaggatgg	cggacgcgt	tgccgcattc	gttcaaataa	ctgttacgg	1080
caggattttc	gtcgtgacca	ggagagcgca	ttaacctgct	gggggataga	acagtgaatc	1140
agatattcat	ggtgattttt	ctcgtgttgc	caggatttat	cgtcgaaat	gtctggagcg	1200
accgaggatg	gcaaaaaaaaa	tggcggaac	gtgatgctgc	cgcattatca	caagaggtaa	1260
atgctcaatt	tgctgctcga	ataattgaac	aggggcaac	tatagcccgt	gatgaggctg	1320
ttaaagatgc	gcaacagaaa	tctgctgaaa	tttctgccag	ggctgcttat	ctgtctgata	1380
gtgttaacca	gttgcgtgcc	gaagcaaaaa	aatatgccat	acgccttgac	gcagcgaagc	1440
ataccgcaga	tcttgcgcgt	gccgtcagag	gcaaaacaac	caaaaccgccc	gaagaatgc	1500
tcaccaacat	gctcgagat	attgcagcag	aagctcagct	ttatgctgaa	attgctgacg	1560
aacgctacat	cgcaggagtg	acttgtcaac	agatctatga	atctttaaga	gataaaaagc	1620
atcaaatgt	g					1631

<210> 209

<211> 534

<212> DNA

<213> E. Coli

<400> 209

atgaacacaaa	aaatcagata	cggcctgtcg	gctgcgttc	tggcgctgat	tggtgctggc	60
gcatctgctc	ctcagatact	tgaccagttt	ctggacgaaa	aagaaggtaa	ccacacaaatg	120
gcataccgcg	atgggtctgg	catatggacc	atctgtcggg	gtgccacagt	ggtgatgg	180
aaaaccgttt	ttcccaatat	gaaaactgtcg	aaggaaaaat	gcgaccagg	caacccatt	240
gagcgtgata	aggcgctggc	atgggtggag	cgcaatatta	aagtaccact	gaccgaacca	300
caaaaagcgg	gtatcgctc	attttgtccc	tataacattg	gccccgtaa	gtgttcccg	360
tcgacgttt	ataagcggt	gaatgctgg	gatcgtaaag	gtgcattgcg	agcgattcgc	420
tggtgattt	aggatggcg	acgcgattgc	cgcattcg	caaataactg	ttacggtcag	480
gttattcg	gtgaccagga	gagcgcatta	acctgctgg	ggatagaaca	gtga	534

<210> 210

<211> 312

<212> DNA

<213> E. Coli

<400> 210

atgactcaag	actatgaact	ggttgtgaaa	ggagtccgta	attttgagaa	taaagttacg	60
gtaactgtag	ctttacagga	caaagaacgc	tttgacgg	aaatttttga	cctggatgtc	120
gccatggacc	gtgttgaagg	agctgcgt	gagttttag	aggcagcagc	cagaaggagc	180
gtccggcaag	tcttcttgg	agtagcagaa	aaattgtcag	aaaaagttga	gtcttatctg	240
cagcatcagt	actcctttaa	gattaaaaat	cctgccaata	agcacgagcg	tcctcatcat	300
aaatatctat	ga					312

<210> 211

<211> 291

<212> DNA

<213> E. Coli

<400> 211

gtgctgtcaa	aactaccccg	tagactccga	tcttttcaaa	catattgcac	catccgtgt	60
catcggtgt	aggatatgaa	atcaatggat	aagttaacaa	caggtgttgc	ctatggcaca	120
tcggcggt	atgctggtt	ctgggcattt	cagttactcg	ataaaagtaac	tccgtcacag	180
tgggctgcaa	tcgggtgtgt	gggttagcctg	gtttttggcc	tgctgacgta	tctgacaaat	240

ctttatttca agattaaaga agacaggcgt aaggctgcga gaggagagta a

291

<210> 212
<211> 216
<212> DNA
<213> E. Coli

<400> 212
atgtcaaata aaatgactgg ttttagaaaa tggtttaacg ctgataaagg tttcggttt 60
atttctcctg ttgatggtag taaagatgtg tttgtgcatt tttctgcgt tcagaatgt 120
aattatcgaa ccttatttga agtcaaaaag gttaccccttct ctatagagag tggtgctaaa 180
ggtcctgcag cagcaaatgt catcattact gattaa 216

<210> 213
<211> 1017
<212> DNA
<213> E. Coli

<400> 213
atgttgtca tctggagcca tagaacaggg ttcatcatga gtcatcaact taccttcgcc 60
gacagtgaat tcagcagtaa gcgcgcgtca accagaaaaag agattttctt gtcccgcatg 120
gagcagattc tgccatggca aaacatggtg gaagtcatcg accgcgttta ccccaaggct 180
ggtaatggcc ggcgaccctt tccgctggaa accatgctac gcattcaactg catgcagcat 240
tggtacaacc tgagcgtatgg cgcgatggaa gatgctctgt acgaaatcgc ctccatgcgt 300
ctgtttgcc 9gttatccct ggatagcgc 9tgcggacc gcaccaccat catgaatttc 360
cgccacctgc tggagcagca tcaactggcc cgccaaattgt tcaagaccat caatcgctgg 420
ctggccgaag caggcgtcat gatgactcaa ggcaccccttgc tgcgtgcac catcatttag 480
gcacccagct cgaccaagaa caaagagcag caacgcgatc cggagatgca tcagaccaag 540
aaaggcaatc agtggcaact tggcatgaag gcccacattt ggtgcgtatgc caagagtggc 600
ctgacccaca gcctggtcac caccgcggcc aacgagcatg acctcaatca gctggtaat 660
ctgctgcattt gagaggagca atttgtctca gccgatgccc gctaccaagg ggcgccacag 720
cgcgaggagc tggccgaggt ggtatgtggac tggctgtatcg ccgagcggcc cggcaaggta 780
agaaccttga aacagcatcc acgcaagaac aaaacggcca tcaacatcga atacatgaaa 840
gccagcatcc gggccaggg gtagccatca tttcgcatca tcaagcgcaca gttcggcttc 900
gtgaaagcca gatacaaggg gttgctgaaa aacgataacc aactggcgat gttattcacg 960
ctggccaaacc tgtttccggc ggaccaaattt atacgtcagt gggagagatc tcactaa 1017

<210> 214
<211> 474
<212> DNA
<213> E. Coli

<400> 214
atggtatata taataatcgt ttcccacgga catgaagact acataaaaaa attactcgaa 60
aatcttaatg ctgacgtatga gcactacaag attatcgat ggcacaaaaa agactctcta 120
ttattgaaac aaatatgcca gcattatgca ggcctggact atattatgtt aggtgtatac 180
ggcttggtc ataataataa tattgcggtg gcgtatgtaa aggaaaaata tagacccgca 240
gatgatgatt acatttgtt ttgaatccc gatatcatca tgaagcatga tgatttgctg 300
acatatatta aatatgtcga aagtaagcgt tatgcatttta gtacattatg ccttccgaa 360
gatgaagcga aatcttaca tgattattcc gtaaaaaat ttcctgtctt ttctgatttt 420
attgtgtcat ttatgttagg gattaaggaa ggtgcgaaca agtccctgat atga 474

<210> 215
<211> 1119
<212> DNA
<213> E. Coli

<400> 215
atggaaaaaa gcatagtcgt ttttctgcgt gtcaatttttta ccactggcgg tccatttacc 60
atttgaaaa aatttttggc agcaactaat aataaagaaa atgtcagttt tatcgattt 120
gtccattctg ctaaagagtt aaaagaaaat tatccatggg ttaaatttcat tgagtttccct 180

gaggttaaag ggtcggtggct	aaaacgtttg	cacttgaat	atgttagttt	taaaaaaactt	240
tcaaaagagc tgaatgcac	gcattggatt	tgtctgcac	atattacgc	caatgtcg	300
actaaaaaaaaa gatatgtgt	ttgtcataac	cctgcac	tttataaagg	aattttat	360
cgtgaaattc ttatggagcc	tagctttt	ttat	tgctatacgg	gctgatata	420
aaaataaaaca ttaaaaaaaaa	tactgcagt	tttgcataac	aattctggat	gaaagaaaaa	480
tttatcaaga aatattctat	aaataacatc	attgtcagtc	ggccagaaat	taaattatct	540
gataaaagcc aacttactga	tgtgattct	caat	ataacccttc	tgagttgaca	600
atatttacc ctgctgtcc	acgagtattt	aaaattacg	agcttattat	tagtgcagca	660
aggaaattga aagaacaatc	caatattaaa	tttctgctt	ctatcagtgg	tacagaaaaat	720
gcgtatgcaa aatatattat	cagtctgca	gaaggactgg	ataatgttca	tttcctcg	780
tacttggata aagaaaaaat	cgatcattgt	tataatattt	cagatatagt	ttgtttccc	840
tctaggttag aaacatgggg	attgccgtt	tctgaagcta	aagagcgagg	taagtggta	900
tttagcatcag atttccatt	tactagagaa	actcttggta	gttatgaaaaa	gaaagctttt	960
tttgattcta ataacgatga	catgttagtt	aaacttatta	ttgacttcaa	aaaaggtAAC	1020
ctcaaaaaag atatctctga	tgcaaatttc	atttacgt	atgaaaatgt	attagttggg	1080
tttgatgaac tagttaattt	tattactgaa	gaacattga			1119

<210> 216

<211> 591

<212> DNA

<213> E. Coli

<400> 216

atgatcttaa aactcgctaa	acgatatgg	ctctgtgg	ttattcg	tgtagagat	60
gtcttattga ctcgtgtatt	ttaccggaa	tgtagaattt	ttcgat	ctgcata	120
cgcaatgatg gtagcattaa	tttgggtgaa	aatttca	gtggagtc	tctcagg	180
gatgcatttgc acgtggcg	gat	tccgataat	tgcaagtt	cgactatgtt	240
catatcgctt caattgagag	cgttacgata	ggtcggata	cgcttatt	aagtaaagta	300
tttattaccg atcataatca	cggttcc	aagcactct	atccaatgag	ttcgc	360
atacctccag acatgcgcac	gttgaatct	tca	taattggcc	gagg	420
ttgggtgaga atgtgacgg	tttgcctg	acaattattt	gtaatggag	ctagtc	480
cccaattctg ttgttagagg	tttattccc	gaaaatact	tcattgc	agtaccag	540
aaaatcataa agaaatacaa	tcatgagacc	aaattatgg	aaaaagcata	g	591

<210> 217

<211> 993

<212> DNA

<213> E. Coli

<400> 217

atgtat	ttt tgaatgattt	aaatttctct	agacgcgat	ctggattt	aaagcaagaaaa	60
gatgcactgg acattgctt	agattatgaa	aacatttct	tttgtt	acat	tcctctatgg	120
ggggaggtag tccagagaat	tattat	gttaagctt	gtacattt	ctgcgg	tctt	180
gaaaataaag atgtttaat	tttcaattt	ccgatggcc	aaccattt	gcata	tatttgc	240
tcatttctt accgcctt	aaaattt	atagtac	tgtt	cat	gat	300
ttaagaggag gagggggtag	tgattctgt	cggttgc	cctgt	gat	taat	360
cacaatccac aaatgacaaa	gtacctt	aaatat	ctcagg	ata	aaagac	420
ataaaaaatat ttgattac	cg	atgttgc	atcgagat	tacg	ataat	480
caacgagggg tcatatatgc	tggcaac	tctagg	cata	tat	act	540
gaaggatgcg atttactt	cttgg	aactat	aat	ttt	ataat	600
cttggaaagt ttgatgct	atctccg	aagat	tcc	agg	cat	660
ctcatttggg atggagattc	tgtc	tgt	gtt	gg	gcaattt	720
tttataacc ctcataagac	atctctt	ctt	caat	gg	ttt	780
gataaagccg cccttgcg	tttatt	gataat	taggat	atg	tttgc	840
atcaaagaaa tgcaagagat	tgttgc	atgacaat	aaacttata	gcaat	tttgc	900
gagaatacaa aaattattt	tc	gaaacagg	atttgc	ggat	tttgc	960
gaagaggtga tcgatgat	taaaactc	taa				993

<210> 218

<211> 1167

<212> DNA

<213> E. Coli

<400> 218

atgatctatc ttgttaattag tgcgttttc attacagcat ttatctgttt atatcttaag	60
aaggatataat tttatccagc cgtatgcgtt aatatcatct tcgcactggc cttattggga	120
tatgaaataa cgtcagatct atatgcgttt cagttaaatg acgctacgtt gattttctca	180
ctttgcaatg ttttgacatt tacccgtca tggttattga cggaaaqgtt attagatcta	240
aatatcagaa aagtcaataa tgcttattat agcataccat cgaagaaaat gcataatgt	300
ggcttggtag ttatctttt ttcgtatgata tatatatgcg tgagggttaag taactaccag	360
ttcgggacta gcttacttag ctatataaat ttgataagag atgctgtatgt tgaagacaca	420
tcaagaaat tctcagatata catcgagcca atcattctaa ctactttgc ttttatttatt	480
tggcttaaaa aatttactaa tacaaggta agtaaaacat ttactttact tggttttatt	540
gtattcatct tgcaattat actgaataact ggttaagcaaa ttgtctttat gtttatcatc	600
tcttatgcat tcatcgtagg tgtaataga gtaaaacatt atgtttatct tattacagct	660
gtagggtgttc tattctctt gtatatgctc ttttacgtg gactgcctgg ggggatggca	720
tattatctat ccatgtttt ggtcagccct ataatcgcgt ttcaggagtt ttattttcag	780
caagtatcta actctgcag ttctcatgtc ttttggttt tgaaaaggct gatggggcta	840
ttaacagggtg gagtctctat gtcgttgcat aaagaatttg tgggggtggg tttgccaaca	900
aatgtttata ctgcttttc ggattatgtt tatattccg cggagctaa ctatttgatg	960
atggttatttc atggctgtat ttcaagggtt ttatggagat tgcgtcgaaa ttacatatct	1020
gtgaaaatat tttattcata ttttattat acctttctt tcattttta tcattgaaagc	1080
ttcatgacta atattagcag ttggatacaa ataactctt gtatcatagt attctctcaa	1140
tttcttaagg cccagaaaaat aaagtga	1167

<210> 219

<211> 1104

<212> DNA

<213> E. Coli

<400> 219

atgtacgatt atatcatgt tggttctggc ttgtttggc ccgtttgtgc gaatgagtt	60
aaaaagctaa acaaaaaaat ttttgtattt gaaaaagaa atcatatcg gggaaatgcg	120
tacacagagg actgtgaggg tattccagatt cataaaatatg gtgcacatattttcatacc	180
aatgataat atatatggc ttacgttaat gatttagtag aatttaatcg ttatcttaat	240
tctccactgg cgatttataa agacaaatatttcaaccccttc ttcaaccccttc cttttaatataat gataactttc	300
caccaaatgt ggggagttt agatcctcaa gaagctcaaa atatcattaa tgctcagaaa	360
aaaaagttatg gtgacaaggat acctgaaaat ttggaggagc aggccgtttc attagttggg	420
gaggacttat accaaggcatt gataaagggtt tatacggaga agcagtggg aagaagtgc	480
aaagaattgc ctgcattttat tattaagcga atcccagtga gatttacgtt tgataacaat	540
tattttccg atcgctatca aggtattccg gtggggagct acactaagct tattgaaaaaa	600
atgctgaag gtgtggacgt aaaatttaggc attgattttt tgaaagacaa agattctcta	660
gcgagtaaag cccatagaat catctacact ggaccatttgc atcagtactt cgactataagg	720
tttggagcgt tagaataatcg ctctttaaaaa ttggagacgg aacgccatga atttccaaac	780
ttccaaggga atgcagtaat aaatttcaact gatgctaatg taccatatac cagaataatt	840
gagcataaac attttgacta tggtagacaa aagcatacgg ttgttacaaa agaatatcca	900
tttagagtgg aagttggcga cgaaccctac tatccagttt atgataataa aaacatggag	960
cttttaaga aatatacgaa gttagctagc agagaagaca aggttatatt tggccggcgt	1020
ttggccgagt ataaatatta tgatatgcat caagtatgtt ctgcccgtt ttatcaagt	1080
aaaaatataa tgagtacgga ttaa	1104

<210> 220

<211> 1116

<212> DNA

<213> E. Coli

<400> 220

atgttcccaa aaataatgaa tgatgaaaac ttttcaaaa aagcggcggc gcacggggag	60
gaacctccctt taactcctca aaacgaacat cagcggtccg ggctgcgcctt cgccgcgc	120
gtcagactac cccgtgcggc tggcctggct ggcattttct taccgattgc ttcaacgcgt	180
gtttcacacc cggccggccggg ctggtggcgg ctgggtttgg tcggctggc gttcgtctgg	240
ccgcatttag cctggcagat agcgagcagg gccgtcgatc cgcttagccg gaaatttac	300

aactaaaaaa ccgatcgagt attagcggga atgtgggtag gcgtaatggg cgtaaacgtg	360
ctgccttcca cccgcatgtt gatgattatg tgcgttgcatt tgatgggggc aggccgcccc	420
cgtctgtttg tcgcgggtct ggtgttgcatt gtgggttcct gcctgtcac cctcgagctg	480
acgggattt ccgtgtcggt caatacgatcgcc cccgttgcatt ggtggcttc ccttcccatt	540
attgtcattt atccctgtt gtttggctgg gtcagctacc agacggcaac caaactggcg	600
gaacataaac gcagggttgcg ggtcatgatg acccqcgcac gcatgacggg cgtgtataac	660
cgacgtcattt gggaaactat gttacgcaat gaatttgata actgtcggcg gcataatcg	720
gatgcaacgt tactgattat cgatatcgac catttcaaga gcatcaacga tacctggggc	780
catgtgtgg gcgatgaagc gatttgtggcg cttaccgc acgttacaat taccctgcgc	840
ggttagcgatg tgattggcg gtttggcgcc gatgagtttgc cagtaatcat gtccggta	900
ccagctgaga ggcgcattac cgccatgtt cgggtgcatt aagggtctaa tacattacgt	960
ttggccataa cgcacacgtt aactttacgg attagtgtgg gggttgcgc gctgaaccca	1020
caaatacgatc actatcgta gtgggtgaaa tcggcagatt tggcgcttta caaagcaaag	1080
aaagccggac gtaaccgcac cgaagtggcg gcctga	1116

<210> 221
<211> 1404
<212> DNA
<213> E. Coli

<400> 221	
ttggatgtga acgttgcata gttcgataact gaagcttcc gtactgacaa actggactg	60
accagccgc acatcgctga ccataacggt aacgttagtat ctgggtgtt cgatatccat	120
agcagcgatt acgttctgaa cgctgatctg gtgaacgacc gtacctggga tacttccaag	180
tctaactacg gttacggatg tggtgtatg aactctgtat gtcacctgc tatcaacgg	240
aacggcgacg tagacaacgg tactgaactg gataacagct ctgttagacaa tgggtttgc	300
gcaacccgta actacaaatg tcgtatcgac aacgcaactg gcgcgtggcg tatcgctgat	360
tacaaagata aagaaattat ctacgtaaac gacgtcaaca gcaacgcgcac cttctctgt	420
gctaacaaag ctgacctggg tgcatacacc tatcaggctg aacagcgcgg taacaccgtt	480
gttctgcaac agatggactt gaccgactac gctaacatgg cgctgagcat cccgtctgcg	540
aacaccaata tctggacactt ggaacaagac accgttggta ctcgtctgc caactctcg	600
catggcctgg ctgataacgg cggcgcatgg gtaagctact tcgggtgtt cttcaacggc	660
gacaacggca ccatcaacta tgatcaggat gttAACGGCA tcatggtcgg tgggtatacc	720
aaaattgacg gtaacaacgc taagtggatc gtcgggtcggtt ctgcaggctt cgctaaaggt	780
gacatgaatg accgttctgg tcaggtggat caagacagcc agactgccta catctactct	840
tctgctact tcgcaacaa cgtctttgtt gatggtagct tgtagctact tcacttcaac	900
aacgacctgt ctgcaaccat gagcaacggt acttacgtt acggtagcac caactccgac	960
gcttggggct tcgggttggaa agccggttac gacttcaaac tgggtgatgc tgggtacgt	1020
actccttacg gcagcggtt cttgtctgtt cagttgggtt atgactacca gctgagcaac	1080
gacatgaaatg ttgacggtca gttttttttt gcatgtcgat gatggacttggg tggtagatgca	1140
ggttataacct tcaccttacag cgaagatcgat gctctgactc cgtacttcaa actggcttac	1200
gtctacgacg actctaaacaa cgataacatcgat gtgaacggcg attccatcgta taacggtact	1260
gaagggtctg cggtagtgc ttgttgcgtt actcaggat gtttccacaa gaacttcagc	1320
gcctataccg atgctaaacta cttcggttgc ggtgacgttag atcaagactg gtccggcaac	1380
gtgggtgttta aatatacctg gttaaa	1404

<210> 222
<211> 669
<212> DNA
<213> E. Coli

<400> 222	
atgccccgtca aggatttgac gggcattact gcaaaggacg cgcaaatgtt atctgttagtt	60
aaaccttcc aggaatttgg taagctcgat aaatgtttgtt ccagatacgg tacgcgttcc	120
gagtttaata atgaaaagca agttatattt tccagtgatg tcaataacga agataacttcc	180
gttatttttag agggagttat ctctctgcgtt agagaagaaa acgtacttattt cggtagtacc	240
caggctccctt atattatgg gctggctgtt gtttaatga aaaacgatata accataaaaa	300
ttaatatcg aaggaaatgg tacggatattt catctaccat ccaaacaaac cattacgctt	360
attgaacaaa atcaactctg gcgagacgtt ttttacttgcgt tagcctggca aaatagaatt	420
ctggaaattac gcgacgtca gctcattggg cataattccat acgaacaaat ccgcgcacaa	480
ttattatcaa tgattgactg gaatgaagaa ttgcgtatcac gtattgggtt gatgaattat	540

<211> 333
<212> DNA
<213> E. Coli

<400> 227

atggaaaacta tcgctaaaca tcgccatgct cgttcttctg ctcagaagg	tcgccttg	60
gctgaccta ttcgcggtaa gaaagtgtcg caggctctgg atattttgac	ctacaccaac	120
aagaagcgg ctgtacttgtt caagaaaagtt ctggaatctg ccattgctaa	cgctgaacac	180
aacgatggcg ctgacattga cgatctgaaa gttacaaaaa tttcgtaga	cgaaggcccg	240
agcatgaagc gcattatgcc gcgtgcaaaa ggtcgtgcag atcgcac	cct gaagcgcacc	300
agccacatca ctgtggtgtgt gtccgatcgc tga		333

<210> 228

<211> 279
<212> DNA
<213> E. Coli

<400> 228

atgccacgtt ctctcaagaa aggtcctttt attgacctgc acttgctgaa	gaaggtagag	60
aaagcggtgg aaagcggaga caagaagccc ctgcgcactt ggtcccg	tcgttcaacgatc	120
tttcctaaca tgatcggtt gaccatcgct gtcataatg gtcgtcaga	cgatccggta	180
tttgcataaccg acgaaatggt tggcacaaa ctgggtgaat	tgcacccgac tcgtacttat	240
cgccggccacg ctgctgataa aaaagcgaag aagaaataa		279

<210> 229

<211> 822
<212> DNA
<213> E. Coli

<400> 229

atggcagttg ttaaatgtaa accgacatct ccgggtcg	ccacgtagt taaagtgg	60
aaccctgagc tgcacaaggg caaacctttt gtcgcgttgc tggaaaaaaa	cagcaaatcc	120
ggtgtcgta acaacaatgg ccgtatcacc actcgctata tcgggtgtgg	ccacaagcag	180
gcttaccgtt ttgttgcatt caaacgcacaa aaagacggta tcccggcagt	tgttgcgt	240
cttgcgtacg atccgaaccg ttccgcgaac atcgcgcgttgc ttctgtacaa	agacggtgaa	300
cgccgttaca tcctggcccc taaaggcctg aaagctggcg accagattca	gtctggcg	360
gatgcgtcaa tcaaaccagg taacaccctg ccgatgcgc acatcccggt	tggttctact	420
gttcataacg tagaaatgaa accaggtaaa ggcggtcagc tggcacgttc	cgctggtact	480
tacgttcaga tcgttgctcg tgatggtgct tatgtcacc	tgcgtctgcg ttctggtaa	540
atgcgtaaag tagaaggcaga ctggcg	actctggcg aagttggcaa tgctgagcat	600
atgcgtcg	ttctggtaa agcagggtgt gcacgcgtgc	660
cgccgttaccg	ttctggtaa agcagggtgt gcacgcgtgc	720
ggtaagcacc	ttctggtaa agcagggtgt gcacgcgtgc	780
aagcgtactg ataaattcat cgtacgtcgc cgtacgtcgc	ttctggtaa aa	822

<210> 230

<211> 303
<212> DNA
<213> E. Coli

<400> 230

atgattcg	tg aagaacgtct gctgaagg	ctgcgtgcac	cgcacgtttc	tgaaaaagg	60
tctactcg	ga tggaaaaatc caacaccatc	gtactcaaag	ttgctaaaga	cgcgacaaa	120
gcagaaatca	aaatcgctgt gcagaaactg	tttgaagtcg	aatgtcgaaat	cgatccaccc	180
ctggtagtt	aaatcgctgtt aaaaagtt	ggacagcgta	tcgggtcg	tagcgactgg	240
aaaaaaatca	acgtcaccct gaaagaaggc	cagaatctgg	acttcgttgg	cgccgctgag	300
taa					303

<210> 231

<211> 630
<212> DNA

<213> E. Coli

<400> 231

atgattgggtt tagtcgttaa aaaagtgggt atgaccggta tcttcacaga agacggcgtt	60
tctatcccg taaccgtaat cgaagttgaa gcaaaccgcg ttactcaggtaaagacctg	120
gctaaccgtat gctaccgtgc tattcagggt accaccgggt ctaaaaaagc taaccgtgtg	180
accaaggcctg aagctggcca cttcgtctaaa gctggcgtag aagctggccg tggctgtgg	240
gaattccgcc tggctgaagg cgaagagtcc actgttaggtc agagcat tag cgtgaactg	300
tttgctgacg ttaaaaaaagt tgacgttaact ggcacctcta aaggtaaagg tttcgaggt	360
accgttaagc gctggactt ccgtaccagg gacgtactc acggtaactc cttgtctcac	420
cgcgttccgg gttctatcggt tcagaaccagg actccggca aagtgttcaa aggcaagaaa	480
atggcagggtc agatgggtaa cgaacgtgtc accgttcaga gccttgacgt agtacgcgtt	540
gacgctgagc gcaacctgct gctggtaaa ggtgctgtcc cgggtgcaac cggtagcgcac	600
ctgatcgtaa aaccagctgt gaaggcgtaa	630

<210> 232

<211> 606

<212> DNA

<213> E. Coli

<400> 232

atggaaattag tattgaaaga cgccgcagagc gcgctgactg tttccgaaac tactttcgg	60
cgtgatttca acgaaggcgtt gttcaccagg gttgtgttgc ttatgcagc tgggtctcg	120
cagggtactc gtgctcagaa gactcgtgtc gaagtaactg gttccggtaa aaaaccgtgg	180
cgccagaaag gcaccggccg tgcgcgttct gttctatca agagcccgtt ctggcgttct	240
ggtggcgtga ctttgcgtc tcgtccgcag gaccacagtc aaaaagttaa caagaagatg	300
taccgcggcg cgctgaaaag catcctgtcc gaactggta gtcaggatcg tctgatcg	360
gtcgagaagt tctctgtaga agcgccgaaa actaaactgc tggcacagaa actgaaagac	420
atggctctgg aagatgtgtc gatcatcacc ggtgagctgg acgaaaacct gttctggct	480
gcccccaacc tgacacaggt tgacgtacgc gatgcaactg gtatcgaccc ggtagcctg	540
atgccttcg acaaagtgtc aatgactgtc gatgctgtta agcaagtga ggagatgctg	600
gcatga	606

<210> 233

<211> 312

<212> DNA

<213> E. Coli

<400> 233

atgcagaacc aaagaatccg tatccgcctg aaagcggtt atcatcgct gatcgatcaa	60
gcaaccgcgg aaatcgctga gactgccaag cgcaactggc gcaaggccg tggccgatc	120
ccgctgccga cacgcaaaaga ggccttcaact gttctgatct ccccgcacgt caacaaagac	180
gccccgcgatc agtacgaaat ccgtactcac ttgcgtctgg ttgacatcg tggccaaacc	240
gagaaaacctt ttgatgctc gatcgctctg gatctggctg ccgggtgtaga cgtgcagatc	300
agcctgggtt aa	312

<210> 234

<211> 357

<212> DNA

<213> E. Coli

<400> 234

atggctcgcg taaaacgtgg ttttatttgc cgtgcacgtc acaagaaaaat tttgaaacaa	60
gctaaaggct actacgggtc gcgttctcggttataccgcg ttgccttcca ggctgttatac	120
aaagctggtc agtatgttta ccgtgaccgt cgtcaacgt agcgtcagg ccgtcaactg	180
tggattgcgc gatatcaacgc agcagcacgt cagaacggta tttcttacag caaattcatc	240
aatggcctga aaaaaggctc ttttggaaatc gaccgttaaga tcctggctga tattcgatc	300
ttcgacaaag tagcgatcac cgctctgggtt gaaaaaggcga aagcagctc ggcataa	357

<210> 235

<211> 198

<212> DNA
 <213> E. Coli

<400> 235

atgcaaaaaa ttaagaccgt acgcggtgct gctaagcgct tcaaaaaaac cggtaaagg	60
ggttttaagc acaagcacgc taacctgcgt cacattctga caaaaaaaaacg gaccaaacgt	120
aaacgtcacc tgcgtccgaa agccatggtt tccaaaggcg atctgggcct ggtaatcg	180
tcgcctgcgt acgcataa	198

<210> 236

<211> 543

<212> DNA

<213> E. Coli

<400> 236

attaaggcg gaaaacgagt tcaaacggcg cggccctaacc gtatcaatgg cgaaattcgc	60
gcccaggaag ttgcgttaac aggtctggaa ggcgagcgc ttggatttgt gagtctgaga	120
gaagctctgg agaaagcaga agaagccgga gtagacttag tcgagatcaag ccctaacgcc	180
gagccgcccc tttgtcgat aatggattac ggcaattcc tctatgaaaaa gagcaagtct	240
tctaaaggaac agaagaaaaaa gcaaaaaggat atccaggtt agggaaattaa attccgtcct	300
ggtacagatg aaggcgacta tcaggtaaaa ctccgcagcc tgattcgctt tctcgaagag	360
ggtgataaaag ccaaaatcac gctgcgttgc cgccgtcgat agatggcgca ccagcaaatc	420
ggtatggaag tgcttaatcg cgtgaaagac gatttgcag aactggcagt ggtcgaaatcc	480
ttcccaacga agatcgaaagg ccgcccagatg atcatggtgc tcgctcctaa gaagaaacag	540
taa	543

<210> 237

<211> 1929

<212> DNA

<213> E. Coli

<400> 237

atgcctgtta taactcttcc ttagggcagc caacgcccatt acgatcacgc tgtaagcccc	60
atggatgttg cgctggacat tggtccagggt ctggcgaaag cctgtatcg agggcgcg	120
aatggcgaaac tggttgatgc ttgcgtatcg attgaaaacg acgcacaact gtcgatcatt	180
accgc当地 aacaactttt gcccatacc aaaatggcaa tcggcccggt tattgacaac	240
ggtttttattt acgacgttga tcttgaccgc acgttaaccc aggaagatgt cgaagcactc	300
gagaagcgga tgcgtgagat tgcgtgagaaa aactacgacg tcattaaagaa gaaagtca	360
tggcacgaag cgctgaaaac ttgcgttccac cgtggggaga gctacaaagt ctccattctt	420
gacaaaaca tgcgttccatga tgacaagcca ggtctgtact tccatgaaat atatgtcgat	480
atgtggcccg gtcgcacgt accgaacatg cgtttctgca atcatttcaa actaatgaaa	540
acggcagggg cttaactggcg tggcgacagc aacaacaaaa ttttgcacg tatttacgg	600
acggcgtggg cagacaaaaaa agcacttaac gcttacactgc agcgccctgg agaagcccg	660
aaacgcgacc accgtaaaaat cggttaacag ctgcacctgt accatatgca ggaagaagcg	720
ccgggtatgg tattctggca caacgacggc tggaccatct tcgttgcact ggaagtgtt	780
gttcgttcta aactgaaaat gtaccgtat caggaagttt aagggtccgtt catgatggac	840
cgtgtctgtt gggaaaaaaac cggttactgg gacaactaca aagatgcaat gttcaccaca	900
tcttctgaga accgttataa ctgcattaaat ccgttactt gcccgggtca cgtacaaatt	960
ttcaaccagg ggcttgcact ttatcgatct ctggccgtgc gtatggccga gtttggtagc	1020
tgccaccgtt acgagccgtc aggttgcgtt catggcctga tgcgtgtgc tggatttacc	1080
caggatgacg cgcatatctt ctgtactgaa gaacaaattt gcatgttgc ttttgcacgatgt	1140
atccgtttat tctatgatat gtacagcact ttggcttgc agaagatgtt cgttacaaactc	1200
tccactcgat ctgaaaaacg tattggcagc gacaaatgtt gggatcgatgc tgaggccgac	1260
ctggccgttgc cgcttgcactt aaacaacatc ccgttgcattt atcaacttggg tgaaggccgt	1320
ttcttacggc tggaaaaatttgc atttaccctt tatgtacttgc tcgatcgatgc atggcagtgc	1380
ggtacagtac agctggactt ctctttgcgt tctcgatgc ggcgttctt ttttgcacgatgt	1440
gacaatgaaac gtaaaatgttcc ggttgcactt caccgcgaa ttctgggtt gatggaaatgt	1500
tttcatcgat ttcgttgcactt aggttgcgtt ggtttttcc cgcacgttgc tgcgtgtgc	1560
caggatgat ttttgcacgat ttttgcacgat ttttgcacgat ttttgcacgat ttttgcacgat	1620
aaactatcaa atgcggccat tcgttgcactt gcatgttgcactt gcatgttgcactt gcatgttgcactt	1680
aaactatcaa atgcggccat tcgttgcactt gcatgttgcactt gcatgttgcactt gcatgttgcactt	1740

aaaatccgcg	agcacacttt	cgctcgctc	ccatatatgc	tggctctgtgg	tgataaagag	1800
gtggaatcag	gcaaagtgc	cgttcgcacc	cgccgtggta	aagacctggg	aagcatggac	1860
gtaaatgaag	tgatcgagaa	gctgcaacaa	gagattcgca	gccgcagtct	taaacaattg	1920
gaggaataa						1929

<210> 238
<211> 1353
<212> DNA
<213> E. Coli

<400> 238

atgactaaac	actatgatta	catgcccattc	ggcgccggca	gcggcggtat	cgcctccatc	60
aaccgcgcgg	ctatgtacgg	ccagaaatgt	gcgcgtgattt	aagccaaaga	gctggcgcc	120
acctgcgtaa	atgttggctg	tgtgccgaaa	aaagtgtatgt	ggcacgcggc	gcaaatccgt	180
gaagcgatcc	atatgtacgg	ccccgattat	gttttgata	ccactatcaa	taaattcaac	240
tggggaaacgt	tgatgcgcag	ccgttaccgc	tatatcgacc	gtattcatac	ttcctatgaa	300
aacgtgctcg	gtaaaaataaa	cggttgcgtt	atcaaaggct	ttgcccgcgtt	cgttgcgtgcc	360
aaaacgctgg	aggttaaacgg	cgaaaaccatc	acggccgcattc	atattctgtat	cggccacagggc	420
ggtcgtccga	gccacccggaa	tattccgggc	gtggaaatacg	gtattgattt	tgtggcttc	480
ttcgccttc	ctgtttgcc	agagcgcgtt	gcgggtgtt	gcgcgggtt	catcgccgtt	540
gagctggcg	gcgtgattaa	cggcctcgcc	gcgaaaacgc	atctgtttgt	gcgtaaacat	600
gcgcgcgtgc	gcagcttgcg	ccccgatgatt	tccgaaacgc	tggtcgaagt	gatgaacgc	660
gaaggcccgc	agctgcacac	caacgcattc	ccgaaagcgg	tagtggaaaa	taccgtatgg	720
agcctgacgc	tggagcttgg	agatggtcgc	agtggaaacgg	tggattgcct	gatttggcg	780
attggtcgcg	agcctgccaa	tgacaacatc	aacctggaaag	ccgctggcg	taaaactaac	840
gaaaaaggct	atatcgctgt	cgataaaatat	caaaacacca	atattgaagg	tatttacgcg	900
gtgggcgata	acacgggtgc	agtggagctg	acacccgtgg	cagttgcagc	gggtgcgcgt	960
ctctctgaac	gcctgtttaa	taacaagccg	gatgagcatc	tggattacag	caacattccg	1020
accgtggct	tcagccatcc	ggcgattgtt	actgtgttgc	taacggaaacc	gcaggcgcgc	1080
gagcagttatg	gcgcacatca	ggtaaaatgt	tataaaatctt	cttcaccgc	gatgtataacc	1140
gccgtcacca	ctcacccgca	gccgtgcgc	atgaagctgg	tgtgcgttgg	atcggaaagag	1200
aagattgtcg	gtattcaccgg	cattggcttt	ggtatggacg	aatgttgca	gggcgtcg	1260
gtggcgctga	agatgggggc	aaccaaaaaaa	gacttcgaca	ataccgtcgc	cattcaccca	1320
acggcggcag	aagagttcgt	gacaatgcgt	taa			1353

<210> 239
<211> 2904
<212> DNA
<213> E. Coli

<400> 239

aaggttaaagc	ctcacgggttc	attagtaccg	gttagctcaa	cgcacgcgtt	cgcttacaca	60
cccgccctat	caacgtcgtc	gtttcaacg	ttccttcagg	acccttaaag	ggtcagggag	120
aactcatctc	ggggcaagtt	tcgtgttgc	atgcttcag	cacttatctc	ttccgcattt	180
agctaccggg	cagtgcattt	ggcatgacaa	cccgaaacacc	agtgtatgcgt	ccactcccggt	240
cctctcgatc	taggagcagc	ccccctcaat	tctccagcgc	ccacggcaga	tagggaccga	300
actgtctcac	gacgttctaa	accaggatcg	cgttaccact	taaatggcga	acagccatac	360
ccttgggacc	tacttcagcc	ccaggatgtt	atgagccac	atcgagggtgc	caaacaccgc	420
cgtcgatatg	aactttttgg	cggttatcgc	ctgttatccc	cgaggatacct	tttatccgtt	480
gagcgtatggc	ccttccattt	agaaccaccc	gatcaatgt	acctgttttc	gcacactgtc	540
gcccgtcac	gctcgacgtc	aagctggctt	atgcatttgc	actaacctcc	tgtatgtccga	600
ccaggattag	ccaacccatcg	tgtccctccg	ttacttta	ggaggagacc	gccccagtca	660
aactacccac	cagacactgt	ccgcaaccccg	gattacgggt	caacgtttaga	acatcaaaca	720
ttaaagggtt	gtatttcaag	gtccgttccaa	tgcagactgg	cgtccacact	tcaaaggctc	780
ccacccatcc	tacacatcaa	ggctcaatgt	tcgtgtcaa	gctatagtaa	aggttcacgg	840
ggtcttccg	tcttgcgcgc	ggtacactgc	atcttcacag	cgagttcaat	ttcactgtgt	900
ctcggttgg	gacagccctgg	ccatcattac	gccattcggt	cagggtcgaa	cttacccgac	960
aaggaattt	gctacccat	gaccgttata	gttacggccg	cggtttaccc	gggcgttgcgt	1020
caagagcttc	gtttgcgtca	acccatcaa	ttaacccatcc	gacccgggc	aggcgtcaca	1080
ccgtatacgt	ccactttcg	gttgcacag	tgtgtgttt	ttaataaaaca	gttgcagcca	1140
gctggatct	tcgacttccat	ccgcgaggga	cctcacccat	atatcagcgt		1200

gccttctccc	gaagttacgg	caccatttg	cctagttcct	tcacccgagt	tctctcaagc	1260
gccttggtat	tctctacctg	accacctgtg	tcggtttggg	gtacgatttg	atgttacctg	1320
atgcttagag	gcttttcctg	gaagcagggc	atttggatc	tcagcaccgt	agtgcctcg	1380
catcacgcct	cagccttgat	ttcccgatt	tgcctggaaa	accagcctac	acgcttaaac	1440
cgggacaacc	gtccccggc	caacatagcc	ttctccgtcc	ccccttcgca	gtaacaccaa	1500
gtacaggaat	attaacctgt	ttcccatcga	ctacgcctt	cggcctcgcc	ttaggggtcg	1560
actcaccctg	ccccgattaa	cgttggacag	gaacccttgg	tcttccggcg	agcgggctt	1620
tcacccgctt	tatcgttact	tatgtcagca	ttcgcaactc	tgataccctcc	agcatgcctc	1680
acagcacacc	ttcgcaggct	tacagaacgc	tcccctaccc	aacaacgcac	aagcgtcgct	1740
gccgagctt	cggtgcatgg	tttagccccg	ttacatctc	cgcgcaggcc	gactcgacca	1800
gtgagctatt	acgctttctt	taaatgatgg	ctgcttctaa	gccaacatcc	tggctgtctg	1860
ggcctccca	catcgtttcc	cacttaacca	tgactttggg	accttagctg	gcggctctggg	1920
ttgttccct	tttcacgacg	gacgtttagca	cccgcgtgt	gtctccctgt	ataacattct	1980
ccggatttcg	cagtttgcac	cgggttggta	agtccggatg	accccttgc	cgaaacatgt	2040
ctctacccccc	ggagatgaat	tcacgaggcg	cacctaata	agcttcggg	gagaaccagc	2100
tatctcccg	tttgattggc	cttcacccc	cagccacaag	tcatccgcta	attttcaac	2160
attagtcgg	tcggtcctcc	agtttagtgtt	acccaaccc	caacctgccc	atggctagat	2220
caccgggtt	cgggtctata	ccctgcaact	taacgcccag	ttaagactcg	gtttcccttc	2280
ggctcccta	ttcggtaac	cttgctacag	aatataagtc	gctgacccat	tataaaaaag	2340
gtacgcagtc	acacgcctaa	gcgtgctccc	actgctgtt	cgtacacgg	ttcaggttct	2400
ttttcaactcc	cctcgccggg	gttctttcg	ccttccctc	acggtaactgg	ttcactatcg	2460
gtcagtca	agtattttac	cttggaggat	gttccccca	tattcagaca	ggataccacg	2520
tgtccgc	tactcatcga	gctcacagca	tgtgcattt	tgtgtacggg	gctgtcacc	2580
tgtatcg	gccttccag	acgcttccac	taacacacac	actgattcag	gctctgggct	2640
gctcccg	cgctcgccgc	tactggggg	atctcggtt	atttctttc	ctcggggta	2700
ttagatgtt	cagttcccc	ggttcgctc	attaacctat	ggattcagg	aatgatagtg	2760
tgtcgaaaca	cactgggtt	cccattcgg	aaatcgccgg	ttataacgg	tcatatcacc	2820
ttaccgacgc	ttatcgacaga	tttagcacgtc	tttcatcgcc	tctgactgcc	agggcatcca	2880
ccgtgtacgc	ttagtcgctt	aacc				2904

<210> 240

<211> 120

<212> DNA

<213> E. Coli

<400> 240

atgcctggca	gttccctact	ctcgcatggg	gagacccac	actaccatcg	gcgcgtacggc
gtttca	tc	tgagttcg	atgggtc	gtgggaccac	cgcgctacgg
				ccgcccagg	ca

60

120

<210> 241

<211> 76

<212> DNA

<213> E. Coli

<400> 241

gtcccccttc	tctagaggcc	caggacacccg	cccttcac	gcggtaacag	gggttcgaat
ccccttaggg	acgcca				

60

76

<210> 242

<211> 1549

<212> DNA

<213> E. Coli

<400> 242

aaattgaaga	gtttgatcat	ggctcagatt	gaacgctggc	ggcaggccta	acacatgcaa
gtcgaacgg	aacaggaagc	agcttgc	ttcgctgac	agtggcggac	gggtgagtaa
tgtctggaa	gtgcctgat	ggagggggat	aactactg	aacggtagct	aataccgc
aatgtcgaa	gaccaaagag	ggggaccttc	gggcctt	ccatcgatg	tgcccaatgt
ggattagctt	gttggtgggg	taacggctca	ccaaggcgac	gatccctagc	tggctgtgaga
ggatgaccag	ccacactgga	actgagacac	ggtccagact	cctacggag	gcagcagtgg
ggaatattgc	acaatggcg	caagcctgat	gcagccatgc	cgcgtgtatg	aagaaggcct

60

120

180

240

300

360

420

tccgggttgta	aagtactttc	agcggggagg	aagggagtaa	agttaataacc	tttgctcatt	480
gacgttaccc	gcagaagaag	caccggctaa	ctccgtgcc	gcagccgccc	taatacggag	540
ggtgcaagcg	ttaatcgaa	ttactggcg	taaagcgcac	gcaggcgggt	tggtaagtc	600
agatgtgaaa	tccccggct	caacctggga	actgcac	atactggcaa	gcttgagttct	660
cgttagagggg	ggtagaattc	caggtgttagc	ggtgaaatgc	gtagagatct	ggagaatac	720
cggtgtggc	ggcggcccc	tggacgaaga	ctgacgctca	ggtgcgaaag	cgtgggagc	780
aaacaggatt	agataccctg	gtagtccacq	ccgtaaacga	tgtcgactt	gaggttgc	840
ccttgaggcg	tggcttcccg	agctaacgcg	ttaagtcgac	cgcctggga	gtacggccgc	900
aaggtaaaa	ctcaaata	ttgacggggg	ccgcacaag	cggtgagca	tgtgtttaa	960
ttcgatgcaa	cgcgaagaac	cttacctgg	cttgacatcc	acggaaagt	tcagagatga	1020
aatgtgcct	tcgggaacc	tgagacaggt	gctgcatggc	tgtcgctcagc	tcgtgttgc	1080
aaatgttggg	ttaagtccc	caacgagcgc	aacccttac	cttgggttgc	agcgtccgg	1140
ccgggaactc	aaaggagact	gccagtata	aactggagga	aggtgggat	gacgtcaagt	1200
catcatggcc	cttacgacca	gggctacaca	cgtgctacaa	tggcgcatac	aaagagaagc	1260
gacctcgca	gagcaagcgg	acccataaa	gtgcgtcgta	gtccggattt	gagtcgcaa	1320
ctcgactcca	tgaagtcgga	atcgctagta	atcgtgatc	agaatgccac	ggtgaatacg	1380
ttccggggcc	ttgtacacac	cgcccgtcac	accatggag	tgggttgcaa	aagaagtagg	1440
tagctaacc	ttcgggaggg	cgcttaccac	tttgtgattt	atgactgggg	tgaagtcgta	1500
acaaggtAAC	cgtaggggaa	cctgcgttgc	gatcacttcc	ttaccttaa		1549

<210> 243

<211> 221

<212> PRT

<213> E. Coli

<400> 243

Met	Asn	Val	Phe	Ser	Gln	Thr	Gln	Arg	Tyr	Lys	Ala	Leu	Phe	Trp	Leu
1															15
Ser.	Leu	Phe	His	Leu	Leu	Val	Ile	Thr	Ser	Ser	Asn	Tyr	Leu	Val	Gln
															20~
															25
Leu	Pro	Val	Ser	Ile	Leu	Gly	Phe	His	Thr	Thr	Trp	Gly	Ala	Phe	Ser
															35
Phe	Pro	Phe	Ile	Phe	Leu	Ala	Thr	Asp	Leu	Thr	Val	Arg	Ile	Phe	Gly
															50
Ala	Pro	Leu	Ala	Arg	Arg	Ile	Ile	Phe	Ala	Val	Met	Ile	Pro	Ala	Leu
															65
Leu	Ile	Ser	Tyr	Val	Ile	Ser	Ser	Leu	Phe	Tyr	Met	Gly	Ser	Trp	Gln
															85
Gly	Phe	Gly	Ala	Leu	Ala	His	Phe	Asn	Leu	Phe	Val	Ala	Arg	Ile	Ala
															100
Thr	Ala	Ser	Phe	Met	Ala	Tyr	Ala	Leu	Gly	Gln	Ile	Leu	Asp	Val	His
															115
Val	Phe	Asn	Arg	Leu	Arg	Gln	Ser	Arg	Arg	Trp	Trp	Leu	Ala	Pro	Thr
															130
Ala	Ser	Thr	Leu	Phe	Gly	Asn	Val	Ser	Asp	Thr	Leu	Ala	Phe	Phe	Phe
															145
Ile	Ala	Phe	Trp	Arg	Ser	Pro	Asp	Ala	Phe	Met	Ala	Glu	His	Trp	Met
															165
Glu	Ile	Ala	Leu	Val	Asp	Tyr	Cys	Phe	Lys	Val	Leu	Ile	Ser	Ile	Val
															180
Phe	Phe	Leu	Pro	Met	Tyr	Gly	Val	Leu	Leu	Asn	Met	Leu	Leu	Lys	Arg
															195
Leu	Ala	Asp	Lys	Ser	Glu	Ile	Asn	Ala	Leu	Gln	Ala	Ser			210
															215
															220

<210> 244

<211> 203

<212> PRT

<213> E. Coli

<400> 244

Met Ile Arg Trp Met Asn Glu Pro Leu Trp Pro Phe Ile Glu Arg Lys
 1 5 10 15
 Lys Ser Met Arg Asn Leu Val Lys Tyr Val Gly Ile Gly Leu Leu Val
 20 25 30
 Met Gly Leu Ala Ala Cys Asp Asp Lys Asp Thr Asn Ala Thr Ala Gln
 35 40 45
 Gly Ser Val Ala Glu Ser Asn Ala Thr Gly Asn Pro Val Asn Leu Leu
 50 55 60
 Asp Gly Lys Leu Ser Phe Ser Leu Pro Ala Asp Met Thr Asp Gln Ser
 65 70 75 80
 Gly Lys Leu Gly Thr Gln Ala Asn Asn Met His Val Trp Ser Asp Ala
 85 90 95
 Thr Gly Gln Lys Ala Val Ile Val Ile Met Gly Asp Asp Pro Lys Glu
 100 105 110
 Asp Leu Ala Val Leu Ala Lys Arg Leu Glu Asp Gln Gln Arg Ser Arg
 115 120 125
 Asp Pro Gln Leu Gln Val Val Thr Asn Lys Ala Ile Glu Leu Lys Gly
 130 135 140
 His Lys Met Gln Gln Leu Asp Ser Ile Ile Ser Ala Lys Gly Gln Thr
 145 150 155 160
 Ala Tyr Ser Ser Val Ile Leu Gly Asn Val Gly Asn Gln Leu Leu Thr
 165 170 175
 Met Gln Ile Thr Leu Pro Ala Asp Asp Gln Gln Lys Ala Gln Thr Thr
 180 185 190
 Ala Glu Asn Ile Ile Asn Thr Leu Val Ile Gln
 195 200

<210> 245

<211> 324
 <212> PRT
 <213> E. Coli

<400> 245

Met Ala Asn Met Phe Ala Leu Ile Leu Val Ile Ala Thr Leu Val Thr
 1 5 10 15
 Gly Ile Leu Trp Cys Val Asp Lys Phe Phe Ala Pro Lys Arg Arg
 20 25 30
 Glu Arg Gln Ala Ala Ala Gln Ala Ala Ala Gly Asp Ser Leu Asp Lys
 35 40 45
 Ala Thr Leu Lys Lys Val Ala Pro Lys Pro Gly Trp Leu Glu Thr Gly
 50 55 60
 Ala Ser Val Phe Pro Val Leu Ala Ile Val Leu Ile Val Arg Ser Phe
 65 70 75 80
 Ile Tyr Glu Pro Phe Gln Ile Pro Ser Gly Ser Met Met Pro Thr Leu
 85 90 95
 Leu Ile Gly Asp Phe Ile Leu Val Glu Lys Phe Ala Tyr Gly Ile Lys
 100 105 110
 Asp Pro Ile Tyr Gln Lys Thr Leu Ile Glu Thr Gly His Pro Lys Arg
 115 120 125
 Gly Asp Ile Val Val Phe Lys Tyr Pro Glu Asp Pro Lys Leu Asp Tyr
 130 135 140
 Ile Lys Arg Ala Val Gly Leu Pro Gly Asp Lys Val Thr Tyr Asp Pro
 145 150 155 160
 Val Ser Lys Glu Leu Thr Ile Gln Pro Gly Cys Ser Ser Gly Gln Ala
 165 170 175
 Cys Glu Asn Ala Leu Pro Val Thr Tyr Ser Asn Val Glu Pro Ser Asp
 180 185 190
 Phe Val Gln Thr Phe Ser Arg Arg Asn Gly Gly Glu Ala Thr Ser Gly

195	200	205
Phe	Glu	Arg
Phe	Val	Lys
Pro	Lys	Gly
Asn	Glu	Ile
Glu	Thr	Arg
Thr	Leu	Leu
Lys	Gly	Ile
Gly	Asp	Leu
Asp	Val	Thr
Gln	Gly	Arg
Val	Met	Ile
Gly	Tyr	Leu
Met	Tyr	Thr
Tyr	Gln	Gly
Gln	Gly	Pro
Pro	Gly	Gly
Gly	Asp	Met
Asn	Arg	Met
Arg	Asn	Met
Asn	Ser	Arg
Ser	Ala	Tyr
Ala	Asp	Gly
Gly	Ser	Phe
Asp	Arg	Val
Asn	Thr	Pro
Thr	Trp	Gly
Trp	Ile	Gly
Ile	Val	Gln
Val	Pro	Tyr
Pro	Pro	Phe
Gly	Gly	Met
Gln	Tyr	Met
Leu	Phe	Met
Ala	Asp	Arg
Thr	Trp	Arg
Trp	Ile	Ile
Ile	Val	Arg
Val	Pro	Leu
Pro	Pro	Leu
Gly	Gly	Arg
Gly	Tyr	Leu
Tyr	Ile	Leu
Ile	Asn	Arg
Asn	Leu	Leu
Leu	Ile	Gly
Ile	Asn	Gly
Asn	Ala	Arg
Ala	Asn	Arg
Arg	Ala	Ile
Ala	Ile	His

<210> 246

<211> 586

<212> PRT

<213> E. Coli

<400> 246

Met	Thr	Ile	Thr	Lys	Leu	Ala	Trp	Arg	Asp	Leu	Val	Pro	Asp	Thr	Asp
1				5				10					15		
Ser	Tyr	Gln	Glu	Ile	Phe	Ala	Gln	Pro	His	Leu	Ile	Asp	Glu	Asn	Asp
				20				25					30		
Pro	Leu	Phe	Ser	Asp	Thr	Gln	Pro	Arg	Leu	Gln	Phe	Ala	Leu	Glu	Gln
				35				40				45			
Leu	Leu	His	Thr	Arg	Ala	Ser	Ser	Ser	Phe	Met	Leu	Ala	Lys	Ala	Pro
				50				55			60				
Glu	Glu	Ser	Glu	Tyr	Leu	Asn	Leu	Ile	Ala	Asn	Ala	Ala	Arg	Thr	Leu
				65				70			75		80		
Gln	Ser	Asp	Ala	Gly	Gln	Leu	Val	Gly	Gly	His	Tyr	Glu	Val	Ser	Gly
				85				90			95				
His	Ser	Ile	Arg	Leu	Arg	His	Ala	Val	Ser	Ala	Asp	Asp	Asn	Phe	Ala
				100				105			110				
Thr	Leu	Thr	Gln	Val	Val	Ala	Ala	Asp	Trp	Val	Glu	Ala	Glu	Gln	Leu
				115				120			125				
Phe	Gly	Cys	Leu	Arg	Gln	Phe	Asn	Gly	Asp	Ile	Thr	Leu	Gln	Pro	Gly
				130				135			140				
Leu	Val	His	Gln	Ala	Asn	Gly	Gly	Ile	Leu	Ile	Ile	Ser	Leu	Arg	Thr
				145				150			155		160		
Leu	Leu	Ala	Gln	Pro	Leu	Leu	Trp	Met	Arg	Leu	Lys	Asn	Ile	Val	Asn
				165				170			175				
Arg	Glu	Arg	Phe	Asp	Trp	Val	Ala	Phe	Asp	Glu	Ser	Arg	Pro	Leu	Pro
				180				185			190				
Val	Ser	Val	Pro	Ser	Met	Pro	Leu	Lys	Leu	Lys	Val	Ile	Leu	Val	Gly
				195				200			205				
Glu	Arg	Glu	Ser	Leu	Ala	Asp	Phe	Gln	Glu	Met	Glu	Pro	Glu	Leu	Ser
				210				215			220				
Glu	Gln	Ala	Ile	Tyr	Ser	Glu	Phe	Glu	Asp	Thr	Leu	Gln	Ile	Val	Asp
				225				230			235		240		
Ala	Glu	Ser	Val	Thr	Gln	Trp	Cys	Arg	Trp	Val	Thr	Phe	Thr	Ala	Arg
				245				250			255				
His	Asn	His	Leu	Pro	Ala	Pro	Gly	Ala	Asp	Ala	Trp	Pro	Ile	Leu	Ile
				260				265			270				
Arg	Glu	Ala	Ala	Arg	Tyr	Thr	Gly	Glu	Gln	Glu	Thr	Leu	Pro	Leu	Ser

275	280	285
Pro Gln Trp Ile Leu Arg	Gln Cys Lys Glu Val Ala Ser	Leu Cys Asp
290	295	300
Gly Asp Thr Phe Ser	Gly Glu Gln Leu Asn Leu Met	Leu Gln Gln Arg
305	310	315
Glu Trp Arg Glu	Gly Phe Leu Ala Glu Arg Met	Gln Asp Glu Ile Leu
325	330	335
Gln Glu Gln Ile Leu	Ile Glu Thr Glu Gly Glu Arg	Ile Gly Gln Ile
340	345	350
Asn Ala Leu Ser Val	Ile Glu Phe Pro Gly His Pro	Arg Ala Phe Gly
355	360	365
Glu Pro Ser Arg Ile Ser	Cys Val Val His Ile Gly Asp	Gly Glu Phe
370	375	380
Thr Asp Ile Glu Arg	Lys Ala Glu Leu Gly	Gly Asn Ile His Ala Lys
385	390	395
Gly Met Met Ile Met	Gln Ala Phe Leu Met Ser	Glu Leu Gln Leu Glu
405	410	415
Gln Gln Ile Pro Phe Ser	Ala Ser Leu Thr Phe Glu Gln	Ser Tyr Ser
420	425	430
Glu Val Asp Gly Asp Ser	Ala Ser Met Ala Glu Leu Cys	Ala Leu Ile
435	440	445
Ser Ala Leu Ala Asp Val	Pro Val Asn Gln Ser Ile Ala	Ile Thr Gly
450	455	460
Ser Val Asp Gln Phe Gly	Arg Ala Gln Pro Val Gly	Gly Leu Asn Glu
465	470	475
Lys Ile Glu Gly Phe	Phe Ala Ile Cys Gln Gln Arg	Glu Leu Thr Gly
485	490	495
Lys Gln Gly Val Ile	Ile Pro Thr Ala Asn Val Arg	His Leu Ser Leu
500	505	510
His Ser Glu Leu Val	Lys Ala Val Glu Gly Lys	Phe Thr Ile Trp
515	520	525
Ala Val Asp Asp Val	Thr Asp Ala Leu Pro Leu	Leu Leu Asn Leu Val
530	535	540
Trp Asp Gly Glu Gly	Gln Thr Thr Leu Met	Gln Thr Ile Gln Glu Arg
545	550	555
Ile Ala Gln Ala Ser	Gln Glu Gly Arg His Arg	Phe Pro Trp Pro
565	570	575
Leu Arg Trp Leu Asn Trp	Phe Ile Pro Asn	
580	585	

<210> 247

<211> 394

<212> PRT

<213> E. Coli

<400> 247

Met Ser Lys Glu Lys Phe	Glu Arg Thr Lys Pro His Val	Asn Val Gly
1	5	10
15		
Thr Ile Gly His Val Asp	His Gly Lys Thr Thr Leu	Thr Ala Ala Ile
20	25	30
25		
Thr Thr Val Leu Ala Lys	Thr Tyr Gly Gly Ala Ala	Arg Ala Phe Asp
35	40	45
45		
Gln Ile Asp Asn Ala Pro	Glu Glu Lys Ala Arg	Gly Ile Thr Ile Asn
50	55	60
60		
Thr Ser His Val Glu	Tyr Asp Thr Pro Thr Arg	His Tyr Ala His Val
65	70	75
75		
Asp Cys Pro Gly His Ala Asp	Tyr Val Lys Asn Met	Ile Thr Gly Ala
85	90	95
95		
Ala Gln Met Asp Gly Ala Ile Leu Val	Val Ala Ala Thr Asp	Gly Pro
100	105	110

Met Pro Gin Thr Arg Glu His Ile Leu Leu Gly Arg Gln Val Gly Val
 115 120 125
 Pro Tyr Ile Ile Val Phe Leu Asn Lys Cys Asp Met Val Asp Asp Glu
 130 135 140
 Glu Leu Leu Glu Leu Val Glu Met Glu Val Arg Glu Leu Leu Ser Gln
 145 150 155 160
 Tyr Asp Phe Pro Gly Asp Asp Thr Pro Ile Val Arg Gly Ser Ala Leu
 165 170 175
 Lys Ala Leu Glu Gly Asp Ala Glu Trp Glu Ala Lys Ile Leu Glu Leu
 180 185 190
 Ala Gly Phe Leu Asp Ser Tyr Ile Pro Glu Pro Glu Arg Ala Ile Asp
 195 200 205
 Lys Pro Phe Leu Leu Pro Ile Glu Asp Val Phe Ser Ile Ser Gly Arg
 210 215 220
 Gly Thr Val Val Thr Gly Arg Val Glu Arg Gly Ile Ile Lys Val Gly
 225 230 235 240
 Glu Glu Val Glu Ile Val Gly Ile Lys Glu Thr Gln Lys Ser Thr Cys
 245 250 255
 Thr Gly Val Glu Met Phe Arg Lys Leu Leu Asp Glu Gly Arg Ala Gly
 260 265 270
 Glu Asn Val Gly Val Leu Leu Arg Gly Ile Lys Arg Glu Glu Ile Glu
 275 280 285
 Arg Gly Gln Val Leu Ala Lys Pro Gly Thr Ile Lys Pro His Thr Lys
 290 295 300
 Phe Glu Ser Glu Val Tyr Ile Leu Ser Lys Asp Glu Gly Arg His
 305 310 315 320
 Thr Pro Phe Phe Lys Gly Tyr Arg Pro Gln Phe Tyr Phe Arg Thr Thr
 325 330 335
 Asp Val Thr Gly Thr Ile Glu Leu Pro Glu Gly Val Glu Met Val Met
 340 345 350
 Pro Gly Asp Asn Ile Lys Met Val Val Thr Leu Ile His Pro Ile Ala
 355 360 365
 Met Asp Asp Gly Leu Arg Phe Ala Ile Arg Glu Gly Gly Arg Thr Val
 370 375 380
 Gly Ala Gly Val Val Ala Lys Val Leu Gly
 385 390

<210> 248

<211> 704

<212> PRT

<213> E. Coli

<400> 248

Met Ala Arg Thr Thr Pro Ile Ala Arg Tyr Arg Asn Ile Gly Ile Ser
 1 5 10 15
 Ala His Ile Asp Ala Gly Lys Thr Thr Thr Glu Arg Ile Leu Phe
 20 25 30
 Tyr Thr Gly Val Asn His Lys Ile Gly Glu Val His Asp Gly Ala Ala
 35 40 45
 Thr Met Asp Trp Met Glu Gln Glu Gln Glu Arg Gly Ile Thr Ile Thr
 50 55 60
 Ser Ala Ala Thr Thr Ala Phe Trp Ser Gly Met Ala Lys Gln Tyr Glu
 65 70 75 80
 Pro His Arg Ile Asn Ile Ile Asp Thr Pro Gly His Val Asp Phe Thr
 85 90 95
 Ile Glu Val Glu Arg Ser Met Arg Val Leu Asp Gly Ala Val Met Val
 100 105 110
 Tyr Cys Ala Val Gly Gly Val Gln Pro Gln Ser Glu Thr Val Trp Arg
 115 120 125

Gln Ala Asn Lys Tyr Lys Val Pro Arg Ile Ala Phe Val Asn Lys Met
 130 135 140
 Asp Arg Met Gly Ala Asn Phe Leu Lys Val Val Asn Gln Ile Lys Thr
 145 150 155 160
 Arg Leu Gly Ala Asn Pro Val Pro Leu Gln Leu Ala Ile Gly Ala Glu
 165 170 175
 Glu His Phe Thr Gly Val Val Asp Leu Val Lys Met Lys Ala Ile Asn
 180 185 190
 Trp Asn Asp Ala Asp Gln Gly Val Thr Phe Glu Tyr Glu Asp Ile Pro
 195 200 205
 Ala Asp Met Val Glu Leu Ala Asn Glu Trp His Gln Asn Leu Ile Glu
 210 215 220
 Ser Ala Ala Glu Ala Ser Glu Glu Leu Met Glu Lys Tyr Leu Gly Gly
 225 230 235 240
 Glu Glu Leu Thr Glu Ala Glu Ile Lys Gly Ala Leu Arg Gln Arg Val
 245 250 255
 Leu Asn Asn Glu Ile Ile Leu Val Thr Cys Gly Ser Ala Phe Lys Asn
 260 265 270
 Lys Gly Val Gln Ala Met Leu Asp Ala Val Ile Asp Tyr Leu Pro Ser
 275 280 285
 Pro Val Asp Val Pro Ala Ile Asn Gly Ile Leu Asp Asp Gly Lys Asp
 290 295 300
 Thr Pro Ala Glu Arg His Ala Ser Asp Asp Glu Pro Phe Ser Ala Leu
 305 310 315 320
 Ala Phe Lys Ile Ala Thr Asp Pro Phe Val Gly Asn Leu Thr Phe Phe
 325 330 335
 Arg Val Tyr Ser Gly Val Val Asn Ser Gly Asp Thr Val Leu Asn Ser
 340 345 350
 Val Lys Ala Ala Arg Glu Arg Phe Gly Arg Ile Val Gln Met His Ala
 355 360 365
 Asn Lys Arg Glu Glu Ile Lys Glu Val Arg Ala Gly Asp Ile Ala Ala
 370 375 380
 Ala Ile Gly Leu Lys Asp Val Thr Thr Gly Asp Thr Leu Cys Asp Pro
 385 390 395 400
 Asp Ala Pro Ile Ile Leu Glu Arg Met Glu Phe Pro Glu Pro Val Ile
 405 410 415
 Ser Ile Ala Val Glu Pro Lys Thr Lys Ala Asp Gln Glu Lys Met Gly
 420 425 430
 Leu Ala Leu Gly Arg Leu Ala Lys Glu Asp Pro Ser Phe Arg Val Trp
 435 440 445
 Thr Asp Glu Glu Ser Asn Gln Thr Ile Ile Ala Gly Met Gly Glu Leu
 450 455 460
 His Leu Asp Ile Ile Val Asp Arg Met Lys Arg Glu Phe Asn Val Glu
 465 470 475 480
 Ala Asn Val Gly Lys Pro Gln Val Ala Tyr Arg Glu Thr Ile Arg Gln
 485 490 495
 Lys Val Thr Asp Val Glu Gly Lys His Ala Lys Gln Ser Gly Gly Arg
 500 505 510
 Gly Gln Tyr Gly His Val Val Ile Asp Met Tyr Pro Leu Glu Pro Gly
 515 520 525
 Ser Asn Pro Lys Gly Tyr Glu Phe Ile Asn Asp Ile Lys Gly Gly Val
 530 535 540
 Ile Pro Gly Glu Tyr Ile Pro Ala Val Asp Lys Gly Ile Gln Glu Gln
 545 550 555 560
 Leu Lys Ala Gly Pro Leu Ala Gly Tyr Pro Val Val Asp Met Gly Ile
 565 570 575
 Arg Leu His Phe Gly Ser Tyr His Asp Val Asp Ser Ser Glu Leu Ala
 580 585 590
 Phe Lys Leu Ala Ala Ser Ile Ala Phe Lys Glu Gly Phe Lys Lys Ala
 595 600 605
 Lys Pro Val Leu Leu Glu Pro Ile Met Lys Val Glu Val Glu Thr Pro

610	615	620	
Glu	Glu Asn Thr Gly Asp Val Ile Gly Asp Leu Ser Arg Arg Arg Gly		
625	630	635	640
Met	Leu Lys Gly Gln Glu Ser Glu Val Thr Gly Val Lys Ile His Ala		
	645	650	655
Glu	Val Pro Leu Ser Glu Met Phe Gly Tyr Ala Thr Gln Leu Arg Ser		
	660	665	670
Leu	Thr Lys Gly Arg Ala Ser Tyr Thr Met Glu Phe Leu Lys Tyr Asp		
	675	680	685
Glu	Ala Pro Ser Asn Val Ala Gln Ala Val Ile Glu Ala Arg Gly Lys		
	690	695	700

<210> 249
<211> 179
<212> PRT
<213> E. Coli

<210> 250
<211> 124
<212> PRT
<213> E. Coli

```

<400> 250
Met Ala Thr Val Asn Gln Leu Val Arg Lys Pro Arg Ala Arg Lys Val
      1           5           10          15
Ala Lys Ser Asn Val Pro Ala Leu Glu Ala Cys Pro Gln Lys Arg Gly
      20          25          30
Val Cys Thr Arg Val Tyr Thr Thr Pro Lys Lys Pro Asn Ser Ala
      35          40          45
Leu Arg Lys Val Cys Arg Val Arg Leu Thr Asn Gly Phe Glu Val Thr
      50          55          60
Ser Tyr Ile Gly Gly Glu Gly His Asn Leu Gln Glu His Ser Val Ile
      65          70          75          80

```

<212> PRT

<210> 252

<211> 121

<212> PRT

<213> E. Coli

<400> 252

Met	Ser	Ile	Thr	Lys	Asp	Gln	Ile	Ile	Glu	Ala	Val	Ala	Ala	Met	Ser
1				5					10					15	
Val	Met	Asp	Val	Val	Glu	Leu	Ile	Ser	Ala	Met	Glu	Glu	Lys	Phe	Gly
				20				25					30		
Val	Ser	Ala	Ala	Ala	Ala	Val	Ala	Val	Ala	Ala	Gly	Pro	Val	Glu	Ala
						35		40			45				
Ala	Glu	Glu	Lys	Thr	Glu	Phe	Asp	Val	Ile	Leu	Lys	Ala	Ala	Gly	Ala
						50		55			60				
Asn	Lys	Val	Ala	Val	Ile	Lys	Ala	Val	Arg	Gly	Ala	Thr	Gly	Leu	Gly
						65		70		75				80	
Leu	Lys	Glu	Ala	Lys	Asp	Leu	Val	Glu	Ser	Ala	Pro	Ala	Ala	Leu	Lys
						85			90					95	
Glu	Gly	Val	Ser	Lys	Asp	Asp	Ala	Glu	Ala	Leu	Lys	Lys	Ala	Leu	Glu
						100		105					110		
Glu	Ala	Gly	Ala	Glu	Val	Glu	Val	Lys							
						115		120							

<210> 253
 <211> 714
 <212> PRT
 <213> E. Coli

<400> 253

Met	Ser	Arg	Ile	Ile	Met	Leu	Ile	Pro	Thr	Gly	Thr	Ser	Val	Gly	Leu
1					5				10				15		
Thr	Ser	Val	Ser	Leu	Gly	Val	Ile	Arg	Ala	Met	Glu	Arg	Lys	Gly	Val
					20				25				30		
Arg	Leu	Ser	Val	Phe	Lys	Pro	Ile	Ala	Gln	Pro	Arg	Thr	Gly	Gly	Asp
					35				40			45			
Ala	Pro	Asp	Gln	Thr	Thr	Thr	Ile	Val	Arg	Ala	Asn	Ser	Ser	Thr	Thr
					50				55			60			
Thr	Ala	Ala	Glu	Pro	Leu	Lys	Met	Ser	Tyr	Val	Glu	Gly	Leu	Leu	Ser
					65				70			75			80
Ser	Asn	Gln	Lys	Asp	Val	Leu	Met	Glu	Glu	Ile	Val	Ala	Asn	Tyr	His
					85				90			95			
Ala	Asn	Thr	Lys	Asp	Ala	Glu	Val	Val	Leu	Val	Glu	Gly	Leu	Val	Pro
					100				105			110			
Thr	Arg	Lys	His	Gln	Phe	Ala	Gln	Ser	Leu	Asn	Tyr	Glu	Ile	Ala	Lys
					115				120			125			
Thr	Leu	Asn	Ala	Glu	Ile	Val	Phe	Val	Met	Ser	Gln	Gly	Thr	Asp	Thr
					130				135			140			
Pro	Glu	Gln	Leu	Lys	Glu	Arg	Ile	Glu	Leu	Thr	Arg	Asn	Ser	Phe	Gly
					145				150			155			160
Gly	Ala	Lys	Asn	Thr	Asn	Ile	Thr	Gly	Val	Ile	Val	Asn	Lys	Leu	Asn
					165				170			175			
Ala	Pro	Val	Asp	Glu	Gln	Gly	Arg	Thr	Arg	Pro	Asp	Leu	Ser	Glu	Ile
					180				185			190			
Phe	Asp	Asp	Ser	Ser	Lys	Ala	Lys	Val	Asn	Asn	Val	Asp	Pro	Ala	Lys
					195				200			205			
Leu	Gln	Glu	Ser	Ser	Pro	Leu	Pro	Val	Leu	Gly	Ala	Val	Pro	Trp	Ser
					210				215			220			
Phe	Asp	Leu	Ile	Ala	Thr	Arg	Ala	Ile	Asp	Met	Ala	Arg	His	Leu	Asn
					225				230			235			240
Ala	Thr	Ile	Ile	Asn	Glu	Gly	Asp	Ile	Asn	Thr	Arg	Arg	Val	Lys	Ser
					245				250			255			
Val	Thr	Phe	Cys	Ala	Arg	Ser	Ile	Pro	His	Met	Leu	Glu	His	Phe	Arg
					260				265			270			
Ala	Gly	Ser	Leu	Leu	Val	Thr	Ser	Ala	Asp	Arg	Pro	Asp	Val	Leu	Val
					275				280			285			
Ala	Ala	Cys	Leu	Ala	Ala	Met	Asn	Gly	Val	Glu	Ile	Gly	Ala	Leu	Leu
					290				295			300			
Leu	Thr	Gly	Gly	Tyr	Glu	Met	Asp	Ala	Arg	Ile	Ser	Lys	Leu	Cys	Glu
					305				310			315			320
Arg	Ala	Phe	Ala	Thr	Gly	Leu	Pro	Val	Phe	Met	Val	Asn	Thr	Asn	Thr
					325				330			335			
Trp	Gln	Thr	Ser	Leu	Ser	Leu	Gln	Ser	Phe	Asn	Leu	Glu	Val	Pro	Val
					340				345			350			
Asp	Asp	His	Glu	Arg	Ile	Glu	Lys	Val	Gln	Glu	Tyr	Val	Ala	Asn	Tyr
					355				360			365			
Ile	Asn	Ala	Asp	Trp	Ile	Glu	Ser	Leu	Thr	Ala	Thr	Ser	Glu	Arg	Ser
					370				375			380			
Arg	Arg	Leu	Ser	Pro	Pro	Ala	Phe	Arg	Tyr	Gln	Leu	Thr	Glu	Leu	Ala
					385				390			395			400
Arg	Lys	Ala	Gly	Lys	Arg	Ile	Val	Leu	Pro	Glu	Gly	Asp	Glu	Pro	Arg
					405				410			415			
Thr	Val	Lys	Ala	Ala	Ala	Ile	Cys	Ala	Glu	Arg	Gly	Ile	Ala	Thr	Cys
					420				425			430			

Val Leu Leu Gly Asn Pro Ala Glu Ile Asn Arg Val Ala Ala Ser Gln
 435 440 445
 Gly Val Glu Leu Gly Ala Gly Ile Glu Ile Val Asp Pro Glu Val Val
 450 455 460
 Arg Glu Ser Tyr Val Gly Arg Leu Val Glu Leu Arg Lys Asn Lys Gly
 465 470 475 480
 Met Thr Glu Thr Val Ala Arg Glu Gln Leu Glu Asp Asn Val Val Leu
 485 490 495
 Gly Thr Leu Met Leu Glu Gln Asp Glu Val Asp Gly Leu Val Ser Gly
 500 505 510
 Ala Val His Thr Thr Ala Asn Thr Ile Arg Pro Pro Leu Gln Leu Ile
 515 520 525
 Lys Thr Ala Pro Gly Ser Ser Leu Val Ser Ser Val Phe Phe Met Leu
 530 535 540
 Leu Pro Glu Gln Val Tyr Val Tyr Gly Asp Cys Ala Ile Asn Pro Asp
 545 550 555 560
 Pro Thr Ala Glu Gln Leu Ala Glu Ile Ala Ile Gln Ser Ala Asp Ser
 565 570 575
 Ala Ala Ala Phe Gly Ile Glu Pro Arg Val Ala Met Leu Ser Tyr Ser
 580 585 590
 Thr Gly Thr Ser Gly Ala Gly Ser Asp Val Glu Lys Val Arg Glu Ala
 595 600 605
 Thr Arg Leu Ala Gln Glu Lys Arg Pro Asp Leu Met Ile Asp Gly Pro
 610 615 620
 Leu Gln Tyr Asp Ala Ala Val Met Ala Asp Val Ala Lys Ser Lys Ala
 625 630 635 640
 Pro Asn Ser Pro Val Ala Gly Arg Ala Thr Val Phe Ile Phe Pro Asp
 645 650 655
 Leu Asn Thr Gly Asn Thr Thr Tyr Lys Ala Val Gln Arg Ser Ala Asp
 660 665 670
 Leu Ile Ser Ile Gly Pro Met Leu Gln Gly Met Arg Lys Pro Val Asn
 675 680 685
 Asp Leu Ser Arg Gly Ala Leu Val Asp Asp Ile Val Tyr Thr Ile Ala
 690 695 700
 Leu Thr Ala Ile Gln Ser Ala Gln Gln Gln
 705 710

<210> 254
 <211> 588
 <212> PRT
 <213> E. Coli

<400> 254

Met	Asn	Asn	Ser	Ile	Asn	His	Lys	Phe	His	His	Ile	Ser	Arg	Ala	Glu
1				5			10				15				
Tyr	Gln	Glu	Leu	Leu	Ala	Val	Ser	Arg	Gly	Asp	Ala	Val	Ala	Asp	Tyr
				20			25				30				
Ile	Ile	Asp	Asn	Val	Ser	Ile	Leu	Asp	Leu	Ile	Asn	Gly	Gly	Glu	Ile
				35			40			45					
Ser	Gly	Pro	Ile	Val	Ile	Lys	Gly	Arg	Tyr	Ile	Ala	Gly	Val	Gly	Ala
				50			55			60					
Glu	Tyr	Thr	Asp	Ala	Pro	Ala	Leu	Gln	Arg	Ile	Asp	Ala	Arg	Gly	Ala
				65			70		75		80				
Thr	Ala	Val	Pro	Gly	Phe	Ile	Asp	Ala	His	Leu	His	Ile	Glu	Ser	Ser
				85			90			95					
Met	Met	Thr	Pro	Val	Thr	Phe	Glu	Thr	Ala	Thr	Leu	Pro	Arg	Gly	Leu
				100			105			110					
Thr	Thr	Val	Ile	Cys	Asp	Pro	His	Glu	Ile	Val	Asn	Val	Met	Gly	Glu
				115			120			125					
Ala	Gly	Phe	Ala	Trp	Phe	Ala	Arg	Cys	Ala	Glu	Gln	Ala	Arg	Gln	Asn

130	135	140													
Gln	Tyr	Leu	Gln	Val	Ser	Ser	Cys	Val	Pro	Ala	Leu	Glu	Gly	Cys	Asp
145					150				155						160
Val	Asn	Gly	Ala	Ser	Phe	Thr	Leu	Glu	Gln	Met	Leu	Ala	Trp	Arg	Asp
															165
															170
His	Pro	Gln	Val	Thr	Gly	Leu	Ala	Glu	Met	Met	Asp	Tyr	Pro	Gly	Val
															180
															185
Ile	Ser	Gly	Gln	Asn	Ala	Leu	Leu	Asp	Lys	Leu	Asp	Ala	Phe	Arg	His
															195
															200
Leu	Thr	Leu	Asp	Gly	His	Cys	Pro	Gly	Leu	Gly	Gly	Lys	Glu	Leu	Asn
															210
															215
Ala	Tyr	Ile	Thr	Ala	Gly	Ile	Glu	Asn	Cys	His	Glu	Ser	Tyr	Gln	Leu
															225
															230
Glu	Glu	Gly	Arg	Arg	Lys	Leu	Gln	Leu	Gly	Met	Ser	Leu	Met	Ile	Arg
															245
															250
Glu	Gly	Ser	Ala	Ala	Arg	Asn	Leu	Asn	Ala	Leu	Ala	Pro	Leu	Ile	Asn
															260
															265
Glu	Phe	Asn	Ser	Pro	Gln	Cys	Met	Leu	Cys	Thr	Asp	Asp	Arg	Asn	Pro
															275
															280
Trp	Glu	Ile	Ala	His	Glu	Gly	His	Ile	Asp	Ala	Leu	Ile	Arg	Arg	Leu
															290
															295
Ile	Glu	Gln	His	Asn	Val	Pro	Leu	His	Val	Ala	Tyr	Arg	Val	Ala	Ser
															305
															310
Trp	Ser	Thr	Ala	Arg	His	Phe	Gly	Leu	Asn	His	Leu	Gly	Leu	Leu	Ala
															325
															330
Pro	Gly	Lys	Gln	Ala	Asp	Ile	Val	Leu	Leu	Ser	Asp	Ala	Arg	Lys	Val
															340
															345
Thr	Val	Gln	Gln	Val	Leu	Val	Lys	Gly	Glu	Pro	Ile	Asp	Ala	Gln	Thr
															355
															360
Leu	Gln	Ala	Glu	Glu	Ser	Ala	Arg	Leu	Ala	Gln	Ser	Ala	Pro	Pro	Tyr
															370
															375
Gly	Asn	Thr	Ile	Ala	Arg	Gln	Pro	Val	Ser	Ala	Ser	Asp	Phe	Ala	Leu
															385
															390
Gln	Phe	Thr	Pro	Gly	Lys	Arg	Tyr	Arg	Val	Ile	Asp	Val	Ile	His	Asn
															405
															410
Glu	Leu	Ile	Thr	His	Ser	His	Ser	Val	Tyr	Ser	Glu	Asn	Gly	Phe	
															420
															425
Asp	Arg	Asp	Asp	Val	Ser	Phe	Ile	Ala	Val	Leu	Glu	Arg	Tyr	Gly	Gln
															435
															440
Arg	Leu	Ala	Pro	Ala	Cys	Gly	Leu	Leu	Gly	Gly	Phe	Gly	Leu	Asn	Glu
															450
															455
Gly	Ala	Leu	Ala	Ala	Thr	Val	Ser	His	Asp	Ser	His	Asn	Ile	Val	Val
															465
															470
Ile	Gly	Arg	Ser	Ala	Glu	Glu	Met	Ala	Leu	Ala	Val	Asn	Gln	Val	Ile
															485
															490
Gln	Asp	Gly	Gly	Gly	Leu	Cys	Val	Val	Arg	Asn	Gly	Gln	Val	Gln	Ser
															500
															505
His	Leu	Pro	Leu	Pro	Ile	Ala	Gly	Leu	Met	Ser	Thr	Asp	Thr	Ala	Gln
															515
															520
Ser	Leu	Ala	Glu	Gln	Ile	Asp	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Cys	
															530
															535
Gly	Pro	Leu	Pro	Asp	Glu	Pro	Phe	Ile	Gln	Met	Ala	Phe	Leu	Ser	Leu
															545
															550
Pro	Val	Ile	Pro	Ala	Leu	Lys	Leu	Thr	Ser	Gln	Gly	Leu	Phe	Asp	Gly
															565
															570
Glu	Lys	Phe	Ala	Phe	Thr	Leu	Glu	Val	Thr	Glu					580
															585

<210> 255
<211> 408

<212> PRT
 <213> E. Coli

<400> 255

Met	Ala	Tyr	Cys	Asn	Pro	Gly	Leu	Glu	Ser	Arg	Pro	Asn	Lys	Arg	Asn
1					5				10				15		
Ala	Leu	Arg	Arg	His	Val	Val	Thr	Gly	Ile	Gly	Met	Lys	Ile	Val	Ile
					20				25				30		
Ala	Pro	Asp	Ser	Tyr	Lys	Glu	Ser	Leu	Ser	Ala	Ser	Glu	Val	Ala	Gln
					35				40			45			
Ala	Ile	Glu	Lys	Gly	Phe	Arg	Glu	Ile	Phe	Pro	Asp	Ala	Gln	Tyr	Val
					50				55			60			
Ser	Val	Pro	Val	Ala	Asp	Gly	Gly	Glu	Thr	Val	Glu	Ala	Met	Ile	
					65				70			75			80
Ala	Ala	Thr	Gln	Gly	Ala	Glu	Arg	His	Ala	Trp	Val	Thr	Gly	Pro	Leu
					85				90				95		
Gly	Glu	Lys	Val	Asn	Ala	Ser	Trp	Gly	Ile	Ser	Gly	Asp	Gly	Lys	Thr
					100				105			110			
Ala	Phe	Ile	Glu	Met	Ala	Ala	Ala	Ser	Gly	Leu	Glu	Leu	Val	Pro	Ala
					115				120			125			
Glu	Lys	Arg	Asp	Pro	Leu	Val	Thr	Thr	Ser	Arg	Gly	Thr	Gly	Glu	Leu
					130				135			140			
Ile	Leu	Gln	Ala	Leu	Glu	Ser	Gly	Ala	Thr	Asn	Ile	Ile	Ile	Gly	Ile
					145				150			155			160
Gly	Gly	Ser	Ala	Thr	Asn	Asp	Gly	Gly	Ala	Gly	Met	Val	Gln	Ala	Leu
					165				170			175			
Gly	Ala	Lys	Leu	Cys	Asp	Ala	Asn	Gly	Asn	Glu	Ile	Gly	Phe	Gly	Gly
					180				185			190			
Gly	Ser	Leu	Asn	Thr	Leu	Asn	Asp	Ile	Asp	Ile	Ser	Gly	Leu	Asp	Pro
					195				200			205			
Arg	Leu	Lys	Asp	Cys	Val	Ile	Arg	Val	Ala	Cys	Asp	Val	Thr	Asn	Pro
					210				215			220			
Leu	Val	Gly	Asp	Asn	Gly	Ala	Ser	Arg	Ile	Phe	Gly	Pro	Gln	Lys	Gly
					225				230			235			240
Ala	Ser	Glu	Ala	Met	Ile	Val	Glu	Leu	Asp	Asn	Asn	Leu	Ser	His	Tyr
					245				250			255			
Ala	Glu	Val	Ile	Lys	Lys	Ala	Leu	His	Val	Asp	Val	Lys	Asp	Val	Pro
					260				265			270			
Gly	Ala	Gly	Ala	Ala	Gly	Gly	Met	Gly	Ala	Ala	Leu	Met	Ala	Phe	Leu
					275				280			285			
Gly	Ala	Glu	Leu	Lys	Ser	Gly	Ile	Glu	Ile	Val	Thr	Thr	Ala	Leu	Asn
					290				295			300			
Leu	Glu	Gly	Ile	His	Asp	Cys	Thr	Leu	Val	Ile	Thr	Gly	Glu	Gly	
					305				310			315			320
Arg	Ile	Asp	Ser	Gln	Ser	Ile	His	Gly	Lys	Val	Pro	Ile	Gly	Val	Ala
					325				330			335			
Asn	Val	Ala	Lys	Lys	Tyr	His	Lys	Pro	Val	Ile	Gly	Ile	Ala	Gly	Ser
					340				345			350			
Leu	Thr	Asp	Asp	Val	Gly	Val	Val	His	Gln	His	Gly	Ile	Asp	Ala	Val
					355				360			365			
Phe	Ser	Val	Leu	Thr	Ser	Ile	Gly	Thr	Leu	Asp	Glu	Ala	Phe	Arg	Gly
					370				375			380			
Ala	Tyr	Asp	Asn	Ile	Cys	Arg	Ala	Ser	Arg	Asn	Ile	Ala	Ala	Thr	Leu
					385				390			395			400
Ala	Ile	Gly	Met	Arg	Asn	Ala	Gly								
					405										

<210> 256
 <211> 299
 <212> PRT

<213> E. Coli

<400> 256

Met	Ile	Asp	Met	Thr	Met	Lys	Val	Gly	Phe	Ile	Gly	Leu	Gly	Ile	Met
1					5					10					15
Gly	Lys	Pro	Met	Ser	Lys	Asn	Leu	Leu	Lys	Ala	Gly	Tyr	Ser	Leu	Val
					20				25					30	
Val	Ala	Asp	Arg	Asn	Pro	Glu	Ala	Ile	Ala	Asp	Val	Ile	Ala	Ala	Gly
					35			40					45		
Ala	Glu	Thr	Ala	Ser	Thr	Ala	Lys	Ala	Ile	Ala	Glu	Gln	Cys	Asp	Val
					50			55			60				
Ile	Ile	Thr	Met	Leu	Pro	Asn	Ser	Pro	His	Val	Lys	Glu	Val	Ala	Leu
					65			70		75				80	
Gly	Glu	Asn	Gly	Ile	Ile	Glu	Gly	Ala	Lys	Pro	Gly	Thr	Val	Leu	Ile
					85			90					95		
Asp	Met	Ser	Ser	Ile	Ala	Pro	Leu	Ala	Ser	Arg	Glu	Ile	Ser	Glu	Ala
					100			105					110		
Leu	Lys	Ala	Lys	Gly	Ile	Asp	Met	Leu	Asp	Ala	Pro	Val	Ser	Gly	Gly
					115			120				125			
Glu	Pro	Lys	Ala	Ile	Asp	Gly	Thr	Leu	Ser	Val	Met	Val	Gly	Gly	Asp
					130			135				140			
Lys	Ala	Ile	Phe	Asp	Lys	Tyr	Tyr	Asp	Leu	Met	Lys	Ala	Met	Ala	Gly
					145			150			155				160
Ser	Val	Val	His	Thr	Gly	Glu	Ile	Gly	Ala	Gly	Asn	Val	Thr	Lys	Leu
					165			170					175		
Ala	Asn	Gln	Val	Ile	Val	Ala	Leu	Asn	Ile	Ala	Ala	Met	Ser	Glu	Ala
					180			185				190			
Leu	Thr	Leu	Ala	Thr	Lys	Ala	Gly	Val	Asn	Pro	Asp	Leu	Val	Tyr	Gln
					195			200				205			
Ala	Ile	Arg	Gly	Gly	Leu	Ala	Gly	Ser	Thr	Val	Leu	Asp	Ala	Lys	Ala
					210			215				220			
Pro	Met	Val	Met	Asp	Arg	Asn	Phe	Lys	Pro	Gly	Phe	Arg	Ile	Asp	Leu
					225			230			235				240
His	Ile	Lys	Asp	Leu	Ala	Asn	Ala	Leu	Asp	Thr	Ser	His	Gly	Val	Gly
					245			250				255			
Ala	Gln	Leu	Pro	Leu	Thr	Ala	Ala	Val	Met	Glu	Met	Met	Gln	Ala	Leu
					260			265				270			
Arg	Ala	Asp	Gly	Leu	Gly	Thr	Ala	Asp	His	Ser	Ala	Leu	Ala	Cys	Tyr
					275			280				285			
Tyr	Glu	Lys	Leu	Ala	Lys	Val	Glu	Val	Thr	Arg					
					290			295							

<210> 257

<211> 256

<212> PRT

<213> E. Coli

<400> 257

Met	Asn	Asn	Asp	Val	Phe	Pro	Asn	Lys	Phe	Lys	Ala	Ala	Leu	Ala	Ala
1					5					10				15	
Lys	Gln	Val	Gln	Ile	Gly	Cys	Trp	Ser	Ala	Leu	Ser	Asn	Pro	Ile	Ser
					20			25				30			
Thr	Glu	Val	Leu	Gly	Leu	Ala	Gly	Phe	Asp	Trp	Leu	Val	Leu	Asp	Gly
					35			40				45			
Glu	His	Ala	Pro	Asn	Asp	Ile	Ser	Thr	Phe	Ile	Pro	Gln	Leu	Met	Ala
					50			55				60			
Leu	Lys	Gly	Ser	Ala	Ser	Ala	Pro	Val	Val	Arg	Val	Pro	Thr	Asn	Glu
					65			70		75			80		
Pro	Val	Ile	Ile	Lys	Arg	Leu	Leu	Asp	Ile	Gly	Phe	Tyr	Asn	Phe	Leu

		90	95
Ile Pro Phe Val Glu Thr Lys Glu Glu Ala Glu Leu Ala Val Ala Ser			
100		105	110
Thr Arg Tyr Pro Pro Glu Gly Ile Arg Gly Val Ser Val Ser His Arg			
115		120	125
Ala Asn Met Phe Gly Thr Val Ala Asp Tyr Phe Ala Gln Ser Asn Lys			
130		135	140
Asn Ile Thr Ile Leu Val Gln Ile Glu Ser Gln Gln Gly Val Asp Asn			
145		150	155
Val Asp Ala Ile Ala Ala Thr Glu Gly Val Asp Gly Ile Phe Val Gly			
165		170	175
Pro Ser Asp Leu Ala Ala Leu Gly His Leu Gly Asn Ala Ser His			
180		185	190
Pro Asp Val Gln Lys Ala Ile Gln His Ile Phe Asn Arg Ala Ser Ala			
195		200	205
His Gly Lys Pro Ser Gly Ile Leu Ala Pro Val Glu Ala Asp Ala Arg			
210		215	220
Arg Tyr Leu Glu Trp Gly Ala Thr Phe Val Ala Val Gly Ser Asp Leu			
225		230	235
Gly Val Phe Arg Ser Ala Thr Gln Lys Leu Ala Asp Thr Phe Lys Lys			
245		250	255

<210> 258

<211> 444

<212> PRT

<213> E. Coli

<400> 258

Met Ile Leu Asp Thr Val Asp Glu Lys Lys Lys Gly Val His Thr Arg			
1	5	10	15
Tyr Leu Ile Leu Leu Ile Ile Phe Ile Val Thr Ala Val Asn Tyr Ala			
20		25	30
Asp Arg Ala Thr Leu Ser Ile Ala Gly Thr Glu Val Ala Lys Glu Leu			
35		40	45
Gln Leu Ser Ala Val Ser Met Gly Tyr Ile Phe Ser Ala Phe Gly Trp			
50		55	60
Ala Tyr Leu Leu Met Gln Ile Pro Gly Gly Trp Leu Leu Asp Lys Phe			
65		70	75
Gly Ser Lys Lys Val Tyr Thr Tyr Ser Leu Phe Phe Trp Ser Leu Phe			
85		90	95
Thr Phe Leu Gln Gly Phe Val Asp Met Phe Pro Leu Ala Trp Ala Gly			
100		105	110
Ile Ser Met Phe Phe Met Arg Phe Met Leu Gly Phe Ser Glu Ala Pro			
115		120	125
Ser Phe Pro Ala Asn Ala Arg Ile Val Ala Ala Trp Phe Pro Thr Lys			
130		135	140
Glu Arg Gly Thr Ala Ser Ala Ile Phe Asn Ser Ala Gln Tyr Phe Ser			
145		150	155
Leu Ala Leu Phe Ser Pro Leu Leu Gly Trp Leu Thr Phe Ala Trp Gly			
165		170	175
Trp Glu His Val Phe Thr Val Met Gly Val Ile Gly Phe Val Leu Thr			
180		185	190
Ala Leu Trp Ile Lys Leu Ile His Asn Pro Thr Asp His Pro Arg Met			
195		200	205
Ser Ala Glu Glu Leu Lys Phe Ile Ser Glu Asn Gly Ala Val Val Asp			
210		215	220
Met Asp His Lys Lys Pro Gly Ser Ala Ala Ser Gly Pro Lys Leu			
225		230	235
His Tyr Ile Lys Gln Leu Leu Ser Asn Arg Met Met Leu Gly Val Phe			
245		250	255

Phe Gly Gln Tyr Phe Ile Asn Thr Ile Thr Trp Phe Phe Leu Thr Trp
 260 265 270
 Phe Pro Ile Tyr Leu Val Gln Glu Lys Gly Met Ser Ile Leu Lys Val
 275 280 285
 Gly Leu Val Ala Ser Ile Pro Ala Leu Cys Gly Phe Ala Gly Gly Val
 290 295 300
 Leu Gly Gly Val Phe Ser Asp Tyr Leu Ile Lys Arg Gly Leu Ser Leu
 305 310 315 320
 Thr Leu Ala Arg Lys Leu Pro Ile Val Leu Gly Met Leu Leu Ala Ser
 325 330 335
 Thr Ile Ile Leu Cys Asn Tyr Thr Asn Asn Thr Thr Leu Val Val Met
 340 345 350
 Leu Met Ala Leu Ala Phe Phe Gly Lys Gly Phe Gly Ala Leu Gly Trp
 355 360 365
 Pro Val Ile Ser Asp Thr Ala Pro Lys Glu Ile Val Gly Leu Cys Gly
 370 375 380
 Gly Val Phe Asn Val Phe Gly Asn Val Ala Ser Ile Val Thr Pro Leu
 385 390 395 400
 Val Ile Gly Tyr Leu Val Ser Glu Leu His Ser Phe Asn Ala Ala Leu
 405 410 415
 Val Phe Val Gly Cys Ser Ala Leu Met Ala Met Val Cys Tyr Leu Phe
 420 425 430
 Val Val Gly Asp Ile Lys Arg Met Glu Leu Gln Lys
 435 440

<210> 259

<211> 511

<212> PRT

<213> E. Coli

<400> 259

Met Gln Thr Ser Asp Thr Arg Ala Leu Pro Leu Leu Cys Ala Arg Ser
 1 5 10 15
 Val Tyr Lys Gln Tyr Ser Gly Val Asn Val Leu Lys Gly Ile Asp Phe
 20 25 30
 Thr Leu His Gln Gly Glu Val His Ala Leu Leu Gly Gly Asn Gly Ala
 35 40 45
 Gly Lys Ser Thr Leu Met Lys Ile Ile Ala Gly Ile Thr Pro Ala Asp
 50 55 60
 Ser Gly Thr Leu Glu Ile Glu Gly Asn Asn Tyr Val Arg Leu Thr Pro
 65 70 75 80
 Val His Ala His Gln Leu Gly Ile Tyr Leu Val Pro Gln Glu Pro Leu
 85 90 95
 Leu Phe Pro Ser Leu Ser Ile Lys Glu Asn Ile Leu Phe Gly Leu Ala
 100 105 110
 Lys Lys Gln Leu Ser Met Gln Lys Met Lys Asn Leu Leu Ala Ala Leu
 115 120 125
 Gly Cys Gln Phe Asp Leu His Ser Leu Ala Gly Ser Leu Asp Val Ala
 130 135 140
 Asp Arg Gln Met Val Glu Ile Leu Arg Gly Leu Met Arg Asp Ser Arg
 145 150 155 160
 Ile Leu Ile Leu Asp Glu Pro Thr Ala Ser Leu Thr Pro Ala Glu Thr
 165 170 175
 Glu Arg Leu Phe Ser Arg Leu Gln Glu Leu Leu Ala Thr Gly Val Gly
 180 185 190
 Ile Val Phe Ile Ser His Lys Leu Pro Glu Ile Arg Gln Ile Ala Asp
 195 200 205
 Arg Ile Ser Val Met Arg Asp Gly Thr Ile Ala Leu Ser Gly Lys Thr
 210 215 220
 Ser Glu Leu Ser Thr Asp Asp Ile Ile Gln Ala Ile Thr Pro Ala Val

225	230	235	240
Arg Glu Lys Ser Leu Ser Ala Ser Gln Lys	Leu Trp Leu Glu Leu Pro		
245	250	255	
Gly Asn Arg Pro Gln His Ala Ala Gly Thr Pro Val Leu Thr Leu Glu			
260	265	270	
Asn Leu Thr Gly Glu Gly Phe Arg Asn Val Ser Leu Thr Leu Asn Ala			
275	280	285	
Gly Glu Ile Leu Gly Leu Ala Gly Leu Val Gly Ala Gly Arg Thr Glu			
290	295	300	
Leu Ala Glu Thr Leu Tyr Gly Leu Arg Thr Leu Arg Gly Gly Arg Ile			
305	310	315	320
Met Leu Asn Gly Lys Glu Ile Asn Lys Leu Ser Thr Gly Glu Arg Leu			
325	330	335	
Leu Arg Gly Leu Val Tyr Leu Pro Glu Asp Arg Gln Ser Ser Gly Leu			
340	345	350	
Asn Leu Asp Ala Ser Leu Ala Trp Asn Val Cys Ala Leu Thr His Asn			
355	360	365	
Leu Arg Gly Phe Trp Ala Lys Thr Ala Lys Asp Asn Ala Thr Leu Glu			
370	375	380	
Arg Tyr Arg Arg Ala Leu Asn Ile Lys Phe Asn Gln Pro Glu Gln Ala			
385	390	395	400
Ala Arg Thr Leu Ser Gly Gly Asn Gln Gln Lys Ile Leu Ile Ala Lys			
405	410	415	
Cys Leu Glu Ala Ser Pro Gln Val Leu Ile Val Asp Glu Pro Thr Arg			
420	425	430	
Gly Val Asp Val Ser Ala Arg Asn Asp Ile Tyr Gln Leu Leu Arg Ser			
435	440	445	
Ile Ala Ala Gln Asn Val Ala Val Leu Leu Ile Ser Ser Asp Leu Glu			
450	455	460	
Glu Ile Glu Leu Met Ala Asp Arg Val Tyr Val Met His Gln Gly Glu			
465	470	475	480
Ile Thr His Ser Ala Leu Thr Glu Arg Asp Ile Asn Val Glu Thr Ile			
485	490	495	
Met Arg Val Ala Phe Gly Asp Ser Gln Arg Gln Glu Ala Ser Cys			
500	505	510	

<210> 260

<211> 342

<212> PRT

<213> E. Coli

<400> 260

Met Leu Lys Phe Ile Gln Asn Asn Arg Glu Ile Thr Ala Leu Leu Ala			
1	5	10	15
Val Val Leu Leu Phe Val Leu Pro Gly Phe Leu Asp Arg Gln Tyr Leu			
20	25	30	
Ser Val Gln Thr Leu Thr Met Val Tyr Ser Ser Ala Gln Ile Leu Ile			
35	40	45	
Leu Leu Ala Met Gly Ala Thr Leu Val Met Leu Thr Arg Asn Ile Asp			
50	55	60	
Val Ser Val Gly Ser Ile Thr Gly Met Cys Ala Val Leu Leu Gly Met			
65	70	75	80
Leu Leu Asn Ala Gly Tyr Ser Leu Pro Val Ala Cys Val Ala Thr Leu			
85	90	95	
Leu Leu Gly Leu Leu Ala Gly Phe Phe Asn Gly Val Leu Val Ala Trp			
100	105	110	
Leu Lys Ile Pro Ala Ile Val Ala Thr Leu Gly Thr Leu Gly Leu Tyr			
115	120	125	
Arg Gly Ile Met Leu Leu Trp Thr Gly Gly Lys Trp Ile Glu Gly Leu			
130	135	140	

Pro Ala Glu Leu Lys Gln Leu Ser Ala Pro Leu Leu Leu Gly Val Ser
 145 150 155 160
 Ala Ile Gly Trp Leu Thr Ile Ile Leu Val Ala Phe Met Ala Trp Leu
 165 170 175
 Leu Ala Lys Thr Ala Phe Gly Arg Ser Phe Tyr Ala Thr Gly Asp Asn
 180 185 190
 Leu Gln Gly Ala Arg Gln Leu Gly Val Arg Thr Glu Ala Ile Arg Ile
 195 200 205
 Val Ala Phe Ser Leu Asn Gly Cys Met Ala Ala Leu Ala Gly Ile Val
 210 215 220
 Phe Ala Ser Gln Ile Gly Phe Ile Pro Asn Gln Thr Gly Thr Gly Leu
 225 230 235 240
 Glu Met Lys Ala Ile Ala Ala Cys Val Leu Gly Gly Ile Ser Leu Leu
 245 250 255
 Gly Gly Ser Gly Ala Ile Ile Gly Ala Val Leu Gly Ala Trp Phe Leu
 260 265 270
 Thr Gin Ile Asp Ser Val Leu Val Leu Leu Arg Ile Pro Ala Trp Trp
 275 280 285
 Asn Asp Phe Ile Ala Gly Leu Val Leu Leu Ala Val Leu Val Phe Asp
 290 295 300
 Gly Arg Leu Arg Cys Ala Leu Glu Arg Asn Leu Arg Arg Gln Lys Tyr
 305 310 315 320
 Ala Arg Phe Met Thr Pro Pro Pro Ser Val Lys Pro Ala Ser Ser Gly
 325 330 335
 Lys Lys Arg Glu Ala Ala
 340

<210> 261
 <211> 330
 <212> PRT
 <213> E. Coli

<400> 261

Met Arg Ile Arg Tyr Gly Trp Glu Leu Ala Leu Ala Ala Leu Leu Val
 1 5 10 15
 Ile Glu Ile Val Ala Phe Gly Ala Ile Asn Pro Arg Met Leu Asp Leu
 20 25 30
 Asn Met Leu Leu Phe Ser Thr Ser Asp Phe Ile Cys Ile Gly Ile Val
 35 40 45
 Ala Leu Pro Leu Thr Met Val Ile Val Ser Gly Gly Ile Asp Ile Ser
 50 55 60
 Phe Gly Ser Thr Ile Gly Leu Cys Ala Ile Ala Leu Gly Val Leu Phe
 65 70 75 80
 Gln Ser Gly Val Pro Met Pro Leu Ala Ile Leu Leu Thr Leu Leu
 85 90 95
 Gly Ala Leu Cys Gly Leu Ile Asn Ala Gly Leu Ile Ile Tyr Thr Lys
 100 105 110
 Val Asn Pro Leu Val Ile Thr Leu Gly Thr Leu Tyr Leu Phe Ala Gly
 115 120 125
 Ser Ala Leu Leu Leu Ser Gly Met Ala Gly Ala Thr Gly Tyr Glu Gly
 130 135 140
 Ile Gly Gly Phe Pro Met Ala Phe Thr Asp Phe Ala Asn Leu Asp Val
 145 150 155 160
 Leu Gly Leu Pro Val Pro Leu Ile Ile Phe Leu Ile Cys Leu Leu Val
 165 170 175
 Phe Trp Leu Trp Leu His Lys Thr His Ala Gly Arg Asn Val Phe Leu
 180 185 190
 Ile Gly Gln Ser Pro Arg Val Ala Leu Tyr Ser Ala Ile Pro Val Asn
 195 200 205
 Arg Thr Leu Cys Ala Leu Tyr Ala Met Thr Gly Leu Ala Ser Ala Val
 210 215 220

Ala Ala Val Leu Leu Val Ser Tyr Phe Gly Ser Ala Arg Ser Asp Leu
 225 230 235 240
 Gly Ala Ser Phe Leu Met Pro Ala Ile Thr Ala Val Val Leu Gly Gly
 245 250 255
 Ala Asn Ile Tyr Gly Gly Ser Gly Ser Ile Ile Gly Thr Ala Ile Ala
 260 265 270
 Val Leu Leu Val Gly Tyr Leu Gln Gln Gly Leu Gln Met Ala Gly Val
 275 280 285
 Pro Asn Gln Val Ser Ser Ala Leu Ser Gly Ala Leu Leu Ile Val Val
 290 295 300
 Val Val Gly Arg Ser Val Ser Leu His Arg Gln Gln Ile Lys Glu Trp
 305 310 315 320
 Leu Ala Arg Arg Ala Asn Asn Pro Leu Pro
 325 330

<210> 262
 <211> 340
 <212> PRT
 <213> E. Coli

<400> 262
 Met Thr Leu His Arg Phe Lys Lys Ile Ala Leu Leu Ser Ala Leu Gly
 1 5 10 15
 Ile Ala Ala Ile Ser Met Asn Val Gln Ala Ala Glu Arg Ile Ala Phe
 20 25 30
 Ile Pro Lys Leu Val Gly Val Gly Phe Phe Thr Ser Gly Gly Asn Gly
 35 40 45
 Ala Gln Gln Ala Gly Lys Glu Leu Gly Val Asp Val Thr Tyr Asp Gly
 50 55 60
 Pro Thr Glu Pro Ser Val Ser Gly Gln Val Gln Leu Ile Asn Asn Phe
 65 70 75 80
 Val Asn Gln Gly Tyr Asn Ala Ile Ile Val Ser Ala Val Ser Pro Asp
 85 90 95
 Gly Leu Cys Pro Ala Leu Lys Arg Ala Met Gln Arg Gly Val Arg Val
 100 105 110
 Leu Thr Trp Asp Ser Asp Thr Lys Pro Glu Cys Arg Ser Tyr Tyr Ile
 115 120 125
 Asn Gln Gly Thr Pro Ala Gln Leu Gly Gly Met Leu Val Asp Met Ala
 130 135 140
 Ala Arg Gln Val Asn Lys Asp Lys Ala Lys Val Ala Phe Phe Tyr Ser
 145 150 155 160
 Ser Pro Thr Val Thr Asp Gln Asn Gln Trp Val Lys Glu Ala Lys Ala
 165 170 175
 Lys Ile Ala Lys Glu His Pro Gly Trp Glu Ile Val Thr Thr Gln Phe
 180 185 190
 Gly Tyr Asn Asp Ala Thr Lys Ser Leu Gln Thr Ala Glu Gly Ile Leu
 195 200 205
 Lys Ala Tyr Ser Asp Leu Asp Ala Ile Ile Ala Pro Asp Ala Asn Ala
 210 215 220
 Leu Pro Ala Ala Ala Gln Ala Ala Glu Asn Leu Lys Asn Asp Lys Val
 225 230 235 240
 Ala Ile Val Gly Phe Ser Thr Pro Asn Val Met Arg Pro Tyr Val Glu
 245 250 255
 Arg Gly Thr Val Lys Glu Phe Gly Leu Trp Asp Val Val Gln Gln Gly
 260 265 270
 Lys Ile Ser Val Tyr Val Ala Asp Ala Leu Leu Lys Lys Gly Ser Met
 275 280 285
 Lys Thr Gly Asp Lys Leu Asp Ile Lys Gly Val Gly Gln Val Glu Val

290	295	300
Ser Pro Asn Ser Val Gln	Gly Tyr Asp Tyr Glu Ala Asp Gly Asn Gly	
305	310	315
Ile Val Leu Leu Pro Glu Arg Val Ile Phe Asn Lys Glu Asn Ile Gly		
	325	330
Lys Tyr Asp Phe		335
	340	

<210> 263
 <211> 291
 <212> PRT
 <213> E. Coli

<400> 263	
Met Ala Asp Leu Asp Asp Ile Lys Asp Gly Lys Asp Phe Arg Thr Asp	
1 5 10 15	
Gln Pro Gln Lys Asn Ile Pro Phe Thr Leu Lys Gly Cys Gly Ala Leu	
20 25 30	
Asp Trp Gly Met Gln Ser Arg Leu Ser Arg Ile Phe Asn Pro Lys Thr	
35 40 45	
Gly Lys Thr Val Met Leu Ala Phe Asp His Gly Tyr Phe Gln Gly Pro	
50 55 60	
Thr Thr Gly Leu Glu Arg Ile Asp Ile Asn Ile Ala Pro Leu Phe Glu	
65 70 75 80	
His Ala Asp Val Leu Met Cys Thr Arg Gly Ile Leu Arg Ser Val Val	
85 90 95	
Pro Pro Ala Thr Asn Arg Pro Val Val Leu Arg Ala Ser Gly Ala Asn	
100 105 110	
Ser Ile Leu Ala Glu Leu Ser Asn Glu Ala Val Ala Leu Ser Met Asp	
115 120 125	
Asp Ala Val Arg Leu Asn Ser Cys Ala Val Ala Ala Gln Val Tyr Ile	
130 135 140	
Gly Ser Glu Tyr Glu His Gln Ser Ile Lys Asn Ile Ile Gln Leu Val	
145 150 155 160	
Asp Ala Gly Met Lys Val Gly Met Pro Thr Met Ala Val Thr Gly Val	
165 170 175	
Gly Lys Asp Met Val Arg Asp Gln Arg Tyr Phe Ser Leu Ala Thr Arg	
180 185 190	
Ile Ala Ala Glu Met Gly Ala Gln Ile Ile Lys Thr Tyr Tyr Val Glu	
195 200 205	
Lys Gly Phe Glu Arg Ile Val Ala Gly Cys Pro Val Pro Ile Val Ile	
210 215 220	
Ala Gly Gly Lys Lys Leu Pro Glu Arg Glu Ala Leu Glu Met Cys Trp	
225 230 235 240	
Gln Ala Ile Asp Gln Gly Ala Ser Gly Val Asp Met Gly Arg Asn Ile	
245 250 255	
Phe Gln Ser Asp His Pro Val Ala Met Met Lys Ala Val Gln Ala Val	
260 265 270	
Val His His Asn Glu Thr Ala Asp Arg Ala Tyr Glu Leu Tyr Leu Ser	
275 280 285	
Glu Lys Gln	
290	

<210> 264
 <211> 96
 <212> PRT
 <213> E. Coli

<400> 264

Met His Val Thr Leu Val Glu Ile Asn Val His Glu Asp Lys Val Asp
 1 5 10 15
 Glu Phe Ile Glu Val Phe Arg Gln Asn His Leu Gly Ser Val Gln Glu
 20 25 30
 Glu Gly Asn Leu Arg Phe Asp Val Leu Gln Asp Pro Glu Val Asn Ser
 35 40 45
 Arg Phe Tyr Ile Tyr Glu Ala Tyr Lys Asp Glu Asp Ala Val Ala Phe
 50 55 60
 His Lys Thr Thr Pro His Tyr Lys Thr Cys Val Ala Lys Leu Glu Ser
 65 70 75 80
 Leu Met Thr Gly Pro Arg Lys Lys Arg Leu Phe Asn Gly Leu Met Pro
 85 90 95

<210> 265
 <211> 383
 <212> PRT
 <213> E. Coli

<400> 265

Met Phe Glu Pro Met Glu Leu Thr Asn Asp Ala Val Ile Lys Val Ile
 1 5 10 15
 Gly Val Gly Gly Gly Gly Asn Ala Val Glu His Met Val Arg Glu
 20 25 30
 Arg Ile Glu Gly Val Glu Phe Phe Ala Val Asn Thr Asp Ala Gln Ala
 35 40 45
 Leu Arg Lys Thr Ala Val Gly Gln Thr Ile Gln Ile Gly Ser Gly Ile
 50 55 60
 Thr Lys Gly Leu Gly Ala Gly Ala Asn Pro Glu Val Gly Arg Asn Ala
 65 70 75 80
 Ala Asp Glu Asp Arg Asp Ala Leu Arg Ala Ala Leu Glu Gly Ala Asp
 85 90 95
 Met Val Phe Ile Ala Ala Gly Met Gly Gly Thr Gly Thr Gly Ala
 100 105 110
 Ala Pro Val Val Ala Glu Val Ala Lys Asp Leu Gly Ile Leu Thr Val
 115 120 125
 Ala Val Val Thr Lys Pro Phe Asn Phe Glu Gly Lys Lys Arg Met Ala
 130 135 140
 Phe Ala Glu Gln Gly Ile Thr Glu Leu Ser Lys His Val Asp Ser Leu
 145 150 155 160
 Ile Thr Ile Pro Asn Asp Lys Leu Leu Lys Val Leu Gly Arg Gly Ile
 165 170 175
 Ser Leu Leu Asp Ala Phe Gly Ala Ala Asn Asp Val Leu Lys Gly Ala
 180 185 190
 Val Gln Gly Ile Ala Glu Leu Ile Thr Arg Pro Gly Leu Met Asn Val
 195 200 205
 Asp Phe Ala Asp Val Arg Thr Val Met Ser Glu Met Gly Tyr Ala Met
 210 215 220
 Met Gly Ser Gly Val Ala Ser Gly Glu Asp Arg Ala Glu Glu Ala Ala
 225 230 235 240
 Glu Met Ala Ile Ser Ser Pro Leu Leu Glu Asp Ile Asp Leu Ser Gly
 245 250 255
 Ala Arg Gly Val Leu Val Asn Ile Thr Ala Gly Phe Asp Leu Arg Leu
 260 265 270
 Asp Glu Phe Glu Thr Val Gly Asn Thr Ile Arg Ala Phe Ala Ser Asp
 275 280 285
 Asn Ala Thr Val Val Ile Gly Thr Ser Leu Asp Pro Asp Met Asn Asp
 290 295 300
 Glu Leu Arg Val Thr Val Val Ala Thr Gly Ile Gly Met Asp Lys Arg
 305 310 315 320
 Pro Glu Ile Thr Leu Val Thr Asn Lys Gln Val Gln Gln Pro Val Met

325	330	335
Asp Arg Tyr Gln Gln His Gly Met Ala Pro Leu Thr Gln Glu Gln Lys		
340	345	350
Pro Val Ala Lys Val Val Asn Asp Asn Ala Pro Gln Thr Ala Lys Glu		
355	360	365
Pro Asp Tyr Leu Asp Ile Pro Ala Phe Leu Arg Lys Gln Ala Asp		
370	375	380

<210> 266
<211> 1014
<212> PRT
<213> E. Coli

<400> 266		
Met Asp Val Ser Arg Arg Gln Phe Phe Lys Ile Cys Ala Gly Gly Met		
1	5	10
Ala Gly Thr Thr Val Ala Ala Leu Gly Phe Ala Pro Lys Gln Ala Leu		
20	25	30
Ala Gln Ala Arg Asn Tyr Lys Leu Leu Arg Ala Lys Glu Ile Arg Asn		
35	40	45
Thr Cys Thr Tyr Cys Ser Val Gly Cys Gly Leu Leu Met Tyr Ser Leu		
50	55	60
Gly Asp Gly Ala Lys Asn Ala Arg Glu Ala Ile Tyr His Ile Glu Gly		
65	70	75
Asp Pro Asp His Pro Val Ser Arg Gly Ala Leu Cys Pro Lys Gly Ala		
85	90	95
Gly Leu Leu Asp Tyr Val Asn Ser Glu Asn Arg Leu Arg Tyr Pro Glu		
100	105	110
Tyr Arg Ala Pro Gly Ser Asp Lys Trp Gln Arg Ile Ser Trp Glu Glu		
115	120	125
Ala Phe Ser Arg Ile Ala Lys Leu Met Lys Ala Asp Arg Asp Ala Asn		
130	135	140
Phe Ile Glu Lys Asn Glu Gln Gly Val Thr Val Asn Arg Trp Leu Ser		
145	150	155
Thr Gly Met Leu Cys Ala Ser Gly Ala Ser Asn Glu Thr Gly Met Leu		
165	170	175
Thr Gln Lys Phe Ala Arg Ser Leu Gly Met Leu Ala Val Asp Asn Gln		
180	185	190
Ala Arg Val His Gly Pro Thr Val Ala Ser Leu Ala Pro Thr Phe Gly		
195	200	205
Arg Gly Ala Met Thr Asn His Trp Val Asp Ile Lys Asn Ala Asn Val		
210	215	220
Val Met Val Met Gly Gly Asn Ala Ala Glu Ala His Pro Val Gly Phe		
225	230	235
Arg Trp Ala Met Glu Ala Lys Asn Asn Asn Asp Ala Thr Leu Ile Val		
245	250	255
Val Asp Pro Arg Phe Thr Arg Thr Ala Ser Val Ala Asp Ile Tyr Ala		
260	265	270
Pro Ile Arg Ser Gly Thr Asp Ile Thr Phe Leu Ser Gly Val Leu Arg		
275	280	285
Tyr Leu Ile Glu Asn Asn Lys Ile Asn Ala Glu Tyr Val Lys His Tyr		
290	295	300
Thr Asn Ala Ser Leu Leu Val Arg Asp Asp Phe Ala Phe Glu Asp Gly		
305	310	315
Leu Phe Ser Gly Tyr Asp Ala Glu Lys Arg Gln Tyr Asp Lys Ser Ser		
325	330	335
Trp Asn Tyr Gln Leu Asp Glu Asn Gly Tyr Ala Lys Arg Asp Glu Thr		
340	345	350
Leu Thr His Pro Arg Cys Val Trp Asn Leu Leu Lys Glu His Val Ser		
355	360	365

Arg Tyr Thr Pro Asp Val Val Glu Asn Ile Cys Gly Thr Pro Lys Ala
 370 375 380
 Asp Phe Leu Lys Val Cys Glu Val Leu Ala Ser Thr Ser Ala Pro Asp
 385 390 395 400
 Arg Thr Thr Thr Phe Leu Tyr Ala Leu Gly Trp Thr Gln His Thr Val
 405 410 415
 Gly Ala Gln Asn Ile Arg Thr Met Ala Met Ile Gln Leu Leu Leu Gly
 420 425 430
 Asn Met Gly Met Ala Gly Gly Val Asn Ala Leu Arg Gly His Ser
 435 440 445
 Asn Ile Gln Gly Leu Thr Asp Leu Gly Leu Leu Ser Thr Ser Leu Pro
 450 455 460
 Gly Tyr Leu Thr Leu Pro Ser Glu Lys Gln Val Asp Leu Gln Ser Tyr
 465 470 475 480
 Leu Glu Ala Asn Thr Pro Lys Ala Thr Leu Ala Asp Gln Val Asn Tyr
 485 490 495
 Trp Ser Asn Tyr Pro Lys Phe Phe Val Ser Leu Met Lys Ser Phe Tyr
 500 505 510
 Gly Asp Ala Ala Gln Lys Glu Asn Asn Trp Gly Tyr Asp Trp Leu Pro
 515 520 525
 Lys Trp Asp Gln Thr Tyr Asp Val Ile Lys Tyr Phe Asn Met Met Asp
 530 535 540
 Glu Gly Lys Val Thr Gly Tyr Phe Cys Gln Gly Phe Asn Pro Val Ala
 545 550 555 560
 Ser Phe Pro Asp Lys Asn Lys Val Val Ser Cys Leu Ser Lys Leu Lys
 565 570 575
 Tyr Met Val Val Ile Asp Pro Leu Val Thr Glu Thr Ser Thr Phe Trp
 580 585 590
 Gln Asn His Gly Glu Ser Asn Asp Val Asp Pro Ala Ser Ile Gln Thr
 595 600 605
 Glu Val Phe Arg Leu Pro Ser Thr Cys Phe Ala Glu Glu Asp Gly Ser
 610 615 620
 Ile Ala Asn Ser Gly Arg Trp Leu Gln Trp His Trp Lys Gly Gln Asp
 625 630 635 640
 Ala Pro Gly Glu Ala Arg Asn Asp Gly Glu Ile Leu Ala Gly Ile Tyr
 645 650 655
 His His Leu Arg Glu Leu Tyr Gln Ser Glu Gly Gly Lys Gly Val Glu
 660 665 670
 Pro Leu Met Lys Met Ser Trp Asn Tyr Lys Gln Pro His Glu Pro Gln
 675 680 685
 Ser Asp Glu Val Ala Lys Glu Asn Asn Gly Tyr Ala Leu Glu Asp Leu
 690 695 700
 Tyr Asp Ala Asn Gly Val Leu Ile Ala Lys Lys Gly Gln Leu Leu Ser
 705 710 715 720
 Ser Phe Ala His Leu Arg Asp Asp Gly Thr Thr Ala Ser Ser Cys Trp
 725 730 735
 Ile Tyr Thr Gly Ser Trp Thr Glu Gln Gly Asn Gln Met Ala Asn Arg
 740 745 750
 Asp Asn Ser Asp Pro Ser Gly Leu Gly Asn Thr Leu Gly Trp Ala Trp
 755 760 765
 Ala Trp Pro Leu Asn Arg Arg Val Leu Tyr Asn Arg Ala Ser Ala Asp
 770 775 780
 Ile Asn Gly Lys Pro Trp Asp Pro Lys Arg Met Leu Ile Gln Trp Asn
 785 790 795 800
 Gly Ser Lys Trp Thr Gly Asn Asp Ile Pro Asp Phe Gly Asn Ala Ala
 805 810 815
 Pro Gly Thr Pro Thr Gly Pro Phe Ile Met Gln Pro Glu Gly Met Gly
 820 825 830
 Arg Leu Phe Ala Ile Asn Lys Met Ala Glu Gly Pro Phe Pro Glu His
 835 840 845
 Tyr Glu Pro Ile Glu Thr Pro Leu Gly Thr Asn Pro Leu His Pro Asn

850	855	860
Val Val Ser Asn Pro Val	Val Arg Leu Tyr Glu Gln Asp Ala	Leu Arg
865	870	875
Met Gly Lys Lys Glu Gln Phe Pro Tyr Val	Gly Thr Thr Tyr Arg	Leu 880
885	890	895
Thr Glu His Phe His Thr Trp Thr Lys His	Ala Leu Leu Asn Ala Ile	
900	905	910
Ala Gln Pro Glu Gln Phe Val	Glu Ile Ser Glu Thr Leu Ala Ala	Ala
915	920	925
Lys Gly Ile Asn Asn Gly Asp Arg Val	Thr Val Ser Ser Lys Arg	Gly
930	935	940
Phe Ile Arg Ala Val Ala Val Val	Thr Arg Arg Leu Lys Pro	Leu Asn
945	950	955
Val Asn Gly Gln Gln Val Glu Thr Val	Gly Ile Pro Ile His Trp	Gly 960
965	970	975
Phe Glu Gly Val Ala Arg Lys Gly Tyr Ile	Ala Asn Thr Leu Thr	Pro
980	985	990
Asn Val Gly Asp Ala Asn Ser Gln Thr Pro	Glu Tyr Lys Ala Phe	Leu
995	1000	1005
Val Asn Ile Glu Lys Ala		
1010		

<210> 267
<211> 294
<212> PRT
<213> E. Coli

<400> 267		
Met Ala Met Glu Thr Gln Asp Ile Ile	Lys Arg Ser Ala Thr Asn Ser	
1	5	10
Ile Thr Pro Pro Ser Gln Val Arg Asp	Tyr Lys Ala Glu Val Ala Lys	
20	25	30
Leu Ile Asp Val Ser Thr Cys Ile	Gly Cys Lys Ala Cys Gln Val Ala	
35	40	45
Cys Ser Glu Trp Asn Asp Ile Arg Asp	Glu Val Gly His Cys Val Gly	
50	55	60
Val Tyr Asp Asn Pro Ala Asp Leu Ser	Ala Lys Ser Trp Thr Val Met	
65	70	75
Arg Phe Ser Glu Thr Glu Gln Asn Gly	Lys Leu Glu Trp Leu Ile Arg	
85	90	95
Lys Asp Gly Cys Met His Cys Glu Asp	Pro Gly Cys Leu Lys Ala Cys	
100	105	110
Pro Ser Ala Gly Ala Ile Ile Gln	Tyr Ala Asn Gly Ile Val Asp Phe	
115	120	125
Gln Ser Glu Asn Cys Ile Gly Cys Gly	Tyr Cys Ile Ala Gly Cys Pro	
130	135	140
Phe Asn Ile Pro Arg Leu Asn Lys Glu	Asp Asn Arg Val Tyr Lys Cys	
145	150	155
Thr Leu Cys Val Asp Arg Val Ser Val	Gly Gln Glu Pro Ala Cys Val	
165	170	175
Lys Thr Cys Pro Thr Gly Ala Ile His	Phe Gly Thr Lys Lys Glu Met	
180	185	190
- Leu Glu Leu Ala Glu Gln Arg Val	Ala Lys Leu Lys Ala Arg Gly	Tyr
195	200	205
Glu His Ala Gly Val Tyr Asn Pro Glu	Gly Val Gly Gly Thr His Val	
210	215	220
Met Tyr Val Leu His His Ala Asp Gln	Pro Glu Leu Tyr His Gly	Leu
225	230	235
Pro Lys Asp Pro Lys Ile Asp Thr Ser	Val Ser Leu Trp Lys Gly	Ala
245	250	255
Leu Lys Pro Leu Ala Ala Gly Phe Ile	Ala Thr Phe Ala Gly	Leu

260	265	270
Ile Phe His Tyr Ile Gly Ile Gly Pro Asn Lys Glu Val Asp Asp Asp		
275	280	285
Glu Glu Asp His His Glu		
290		

<210> 268

<211> 217

<212> PRT

<213> E. Coli

<400> 268

Met Ser Lys Ser Lys Met Ile Val Arg Thr Lys Phe Ile Asp Arg Ala			
1	5	10	15
Cys His Trp Thr Val Val Ile Cys Phe Phe Leu Val Ala Leu Ser Gly			
20	25	30	
Ile Ser Phe Phe Pro Thr Leu Gln Trp Leu Thr Gln Thr Phe Gly			
35	40	45	
Thr Pro Gln Met Gly Arg Ile Leu His Pro Phe Phe Gly Ile Ala Ile			
50	55	60	
Phe Val Ala Leu Met Phe Met Phe Val Arg Phe Val His His Asn Ile			
65	70	75	80
Pro Asp Lys Lys Asp Ile Pro Trp Leu Leu Asn Ile Val Glu Val Leu			
85	90	95	
Lys Gly Asn Glu His Lys Val Ala Asp Val Gly Lys Tyr Asn Ala Gly			
100	105	110	
Gln Lys Met Met Phe Trp Ser Ile Met Ser Met Ile Phe Val Leu Leu			
115	120	125	
Val Thr Gly Val Ile Ile Trp Arg Pro Tyr Phe Ala Gln Tyr Phe Pro			
130	135	140	
Met Gln Val Val Arg Tyr Ser Leu Leu Ile His Ala Ala Ala Gly Ile			
145	150	155	160
Ile Leu Ile His Ala Ile Leu Ile His Met Tyr Met Ala Phe Trp Val			
165	170	175	
Lys Gly Ser Ile Lys Gly Met Ile Glu Gly Lys Val Ser Arg Arg Trp			
180	185	190	
Ala Lys Lys His His Pro Arg Trp Tyr Arg Glu Ile Glu Lys Ala Glu			
195	200	205	
Ala Lys Lys Glu Ser Glu Glu Gly Ile			
210	215		

<210> 269

<211> 86

<212> PRT

<213> E. Coli

<400> 269

Met Ala Leu Leu Ile Thr Lys Lys Cys Ile Asn Cys Asp Met Cys Glu			
1	5	10	15
Pro Glu Cys Pro Asn Glu Ala Ile Ser Met Gly Asp His Ile Tyr Glu			
20	25	30	
Ile Asn Ser Asp Lys Cys Thr Glu Cys Val Gly His Tyr Glu Thr Pro			
35	40	45	
Thr Cys Gln Lys Val Cys Pro Ile Pro Asn Thr Ile Val Lys Asp Pro			
50	55	60	
Ala His Val Glu Thr Glu Glu Gln Leu Trp Asp Lys Phe Val Leu Met			
65	70	75	80
His His Ala Asp Lys Ile			
85			

<210> 270
<211> 400
<212> PRT
<213> E. Coli

<400> 270

Met	Gln	Ser	Val	Asp	Val	Ala	Ile	Val	Gly	Gly	Gly	Met	Val	Gly	Leu
1									10						15
Ala	Val	Ala	Cys	Gly	Leu	Gln	Gly	Ser	Gly	Leu	Arg	Val	Ala	Val	Leu
									20		25				30
Glu	Gln	Arg	Val	Gln	Glu	Pro	Leu	Ala	Ala	Asn	Ala	Pro	Pro	Gln	Leu
									35		40				45
Arg	Val	Ser	Ala	Ile	Asn	Ala	Ala	Ser	Glu	Lys	Leu	Leu	Thr	Arg	Leu
									50		55				60
Gly	Val	Trp	Gln	Asp	Ile	Leu	Ser	Arg	Arg	Ala	Ser	Cys	Tyr	His	Gly
									65		70				80
Met	Glu	Val	Trp	Asp	Lys	Asp	Ser	Phe	Gly	His	Ile	Ser	Phe	Asp	Asp
									85		90				95
Gln	Ser	Met	Gly	Tyr	Ser	His	Leu	Gly	His	Ile	Val	Glu	Asn	Ser	Val
									100		105				110
Ile	His	Tyr	Ala	Leu	Trp	Asn	Lys	Ala	His	Gln	Ser	Ser	Asp	Ile	Thr
									115		120				125
Leu	Leu	Ala	Pro	Ala	Glu	Leu	Gln	Gln	Val	Ala	Trp	Gly	Glu	Asn	Glu
									130		135				140
Thr	Phe	Leu	Thr	Leu	Lys	Asp	Gly	Ser	Met	Leu	Thr	Ala	Arg	Leu	Val
									145		150				160
Ile	Gly	Ala	Asp	Gly	Ala	Asn	Ser	Trp	Leu	Arg	Asn	Lys	Ala	Asp	Ile
									165		170				175
Pro	Leu	Thr	Phe	Trp	Asp	Tyr	Gln	His	His	Ala	Leu	Val	Ala	Thr	Ile
									180		185				190
Arg	Thr	Glu	Glu	Pro	His	Asp	Ala	Val	Ala	Arg	Gln	Val	Phe	His	Gly
									195		200				205
Glu	Gly	Ile	Leu	Ala	Phe	Leu	Pro	Leu	Ser	Asp	Pro	His	Leu	Cys	Ser
									210		215				220
Ile	Val	Trp	Ser	Leu	Ser	Pro	Glu	Glu	Ala	Gln	Arg	Met	Gln	Gln	Ala
									225		230				240
Ser	Glu	Asp	Glu	Phe	Asn	Arg	Ala	Leu	Asn	Ile	Ala	Phe	Asp	Asn	Arg
									245		250				255
Leu	Gly	Leu	Cys	Lys	Val	Glu	Ser	Ala	Arg	Gln	Val	Phe	Pro	Leu	Thr
									260		265				270
Gly	Arg	Tyr	Ala	Arg	Gln	Phe	Ala	Ser	His	Arg	Leu	Ala	Leu	Val	Gly
									275		280				285
Asp	Ala	Ala	His	Thr	Ile	His	Pro	Leu	Ala	Gly	Gln	Gly	Val	Asn	Leu
									290		295				300
Gly	Phe	Met	Asp	Ala	Ala	Glu	Leu	Ile	Ala	Glu	Leu	Lys	Arg	Leu	His
									305		310				320
Arg	Gln	Gly	Lys	Asp	Ile	Gly	Gln	Tyr	Ile	Tyr	Leu	Arg	Arg	Tyr	Glu
									325		330				335
Arg	Ser	Arg	Lys	His	Ser	Ala	Ala	Leu	Met	Leu	Ala	Gly	Met	Gln	Gly
									340		345				350
Phe	Arg	Asp	Leu	Phe	Ser	Gly	Thr	Asn	Pro	Ala	Lys	Lys	Leu	Leu	Arg
									355		360				365
Asp	Ile	Gly	Leu	Lys	Leu	Ala	Asp	Thr	Leu	Pro	Gly	Val	Lys	Pro	Gln
									370		375				380
Leu	Ile	Arg	Gln	Ala	Met	Gly	Leu	Asn	Asp	Leu	Pro	Glu	Trp	Leu	Arg
									385		390				400

<210> 271

<211> 392
 <212> PRT
 <213> E. Coli

<400> 271

Met	Ser	Val	Ile	Ile	Val	Gly	Gly	Gly	Met	Ala	Gly	Ala	Thr	Leu	Ala
1					5				10				15		
Leu	Ala	Ile	Ser	Arg	Leu	Ser	His	Gly	Ala	Leu	Pro	Val	His	Leu	Ile
					20				25				30		
Glu	Ala	Thr	Ala	Pro	Glu	Ser	His	Ala	His	Pro	Gly	Phe	Asp	Gly	Arg
					35				40			45			
Ala	Ile	Ala	Leu	Ala	Ala	Gly	Thr	Cys	Gln	Gln	Leu	Ala	Arg	Ile	Gly
					50				55			60			
Val	Trp	Gln	Ser	Leu	Ala	Asp	Cys	Ala	Thr	Ala	Ile	Thr	Thr	Val	His
					65				70			75			80
Val	Ser	Asp	Arg	Gly	His	Ala	Gly	Phe	Val	Thr	Leu	Ala	Ala	Glu	Asp
					85				90			95			
Tyr	Gln	Leu	Ala	Ala	Leu	Gly	Gln	Val	Val	Glu	Leu	His	Asn	Val	Gly
					100				105			110			
Gln	Arg	Leu	Phe	Ala	Leu	Leu	Arg	Lys	Ala	Pro	Gly	Val	Thr	Leu	His
					115				120			125			
Cys	Pro	Asp	Arg	Val	Ala	Asn	Val	Ala	Arg	Thr	Gln	Ser	His	Val	Glu
					130				135			140			
Val	Thr	Leu	Glu	Ser	Gly	Glu	Thr	Leu	Thr	Gly	Arg	Val	Leu	Val	Ala
					145				150			155			160
Ala	Asp	Gly	Thr	His	Ser	Ala	Leu	Ala	Thr	Ala	Cys	Gly	Val	Asp	Trp
					165				170			175			
Gln	Gln	Glu	Pro	Tyr	Glu	Gln	Leu	Ala	Val	Ile	Ala	Asn	Val	Ala	Thr
					180				185			190			
Ser	Val	Ala	His	Glu	Gly	Arg	Ala	Phe	Glu	Arg	Phe	Thr	Gln	His	Gly
					195				200			205			
Pro	Leu	Ala	Met	Leu	Pro	Met	Ser	Asp	Gly	Arg	Cys	Ser	Leu	Val	Trp
					210				215			220			
Cys	His	Pro	Leu	Glu	Arg	Arg	Glu	Glu	Val	Leu	Ser	Trp	Ser	Asp	Glu
					225				230			235			240
Lys	Phe	Cys	Arg	Glu	Leu	Gln	Ser	Ala	Phé	Gly	Trp	Arg	Leu	Gly	Lys
					245				250			255			
Ile	Thr	His	Ala	Gly	Lys	Arg	Ser	Ala	Tyr	Pro	Leu	Ala	Leu	Thr	His
					260				265			270			
Ala	Ala	Arg	Ser	Ile	Thr	His	Arg	Thr	Val	Leu	Val	Gly	Asn	Ala	Ala
					275				280			285			
Gln	Thr	Leu	His	Pro	Ile	Ala	Gly	Gln	Gly	Phe	Asn	Leu	Gly	Met	Arg
					290				295			300			
Asp	Val	Met	Ser	Leu	Ala	Glu	Thr	Leu	Thr	Gln	Ala	Gln	Glu	Arg	Gly
					305				310			315			320
Glu	Asp	Met	Gly	Asp	Tyr	Gly	Val	Leu	Cys	Arg	Tyr	Gln	Gln	Arg	Arg
					325				330			335			
Gln	Ser	Asp	Arg	Glu	Ala	Thr	Ile	Gly	Val	Thr	Asp	Ser	Leu	Val	His
					340				345			350			
Leu	Phe	Ala	Asn	Arg	Trp	Ala	Pro	Leu	Val	Val	Gly	Arg	Asn	Ile	Gly
					355				360			365			
Leu	Met	Thr	Met	Glu	Leu	Phe	Thr	Pro	Ala	Arg	Asp	Val	Leu	Ala	Gln
					370				375			380			
Arg	Thr	Leu	Gly	Trp	Val	Ala	Arg								
					385				390						

<211> 272
 <212> 441
 <213> PRT
 <213> E. Coli

<400> 272

Met Ser Glu Ile Ser Arg Gln Glu Phe Gln Arg Arg Arg Gln Ala Leu
 1 5 10 15
 Val Glu Gln Met Gln Pro Gly Ser Ala Ala Leu Ile Phe Ala Ala Pro
 20 25 30
 Glu Val Thr Arg Ser Ala Asp Ser Glu Tyr Pro Tyr Arg Gln Asn Ser
 35 40 45
 Asp Phe Trp Tyr Phe Thr Gly Phe Asn Glu Pro Glu Ala Val Leu Val
 50 55 60
 Leu Ile Lys Ser Asp Asp Thr His Asn His Ser Val Leu Phe Asn Arg
 65 70 75 80
 Val Arg Asp Leu Thr Ala Glu Ile Trp Phe Gly Arg Arg Leu Gly Gln
 85 90 95
 Asp Ala Ala Pro Glu Lys Leu Gly Val Asp Arg Ala Leu Ala Phe Ser
 100 105 110
 Glu Ile Asn Gln Gln Leu Tyr Gln Leu Leu Asn Gly Leu Asp Val Val
 115 120 125
 Tyr His Ala Gln Gly Glu Tyr Ala Tyr Ala Asp Val Ile Val Asn Ser
 130 135 140
 Ala Leu Glu Lys Leu Arg Lys Gly Ser Arg Gln Asn Leu Thr Ala Pro
 145 150 155 160
 Ala Thr Met Ile Asp Trp Arg Pro Val Val His Glu Met Arg Leu Phe
 165 170 175
 Lys Ser Pro Glu Glu Ile Ala Val Leu Arg Arg Ala Gly Glu Ile Thr
 180 185 190
 Ala Met Ala His Thr Arg Ala Met Glu Lys Cys Arg Pro Gly Met Phe
 195 200 205
 Glu Tyr His Leu Glu Gly Glu Ile His His Glu Phe Asn Arg His Gly
 210 215 220
 Ala Arg Tyr Pro Ser Tyr Asn Thr Ile Val Gly Ser Gly Glu Asn Gly
 225 230 235 240
 Cys Ile Leu His Tyr Thr Glu Asn Glu Cys Glu Met Arg Asp Gly Asp
 245 250 255
 Leu Val Leu Ile Asp Ala Gly Cys Glu Tyr Lys Gly Tyr Ala Gly Asp
 260 265 270
 Ile Thr Arg Thr Phe Pro Val Asn Gly Lys Phe Thr Gln Ala Gln Arg
 275 280 285
 Glu Ile Tyr Asp Ile Val Leu Glu Ser Leu Glu Thr Ser Leu Arg Leu
 290 295 300
 Tyr Arg Pro Gly Thr Ser Ile Leu Glu Val Thr Gly Glu Val Val Arg
 305 310 315 320
 Ile Met Val Ser Gly Leu Val Lys Leu Gly Ile Leu Lys Gly Asp Val
 325 330 335
 Asp Glu Leu Ile Ala Gln Asn Ala His Arg Pro Phe Phe Met His Gly
 340 345 350
 Leu Ser His Trp Leu Gly Leu Asp Val His Asp Val Gly Val Tyr Gly
 355 360 365
 Gln Asp Arg Ser Arg Ile Leu Glu Pro Gly Met Val Leu Thr Val Glu
 370 375 380
 Pro Gly Leu Tyr Ile Ala Pro Asp Ala Glu Val Pro Glu Gln Tyr Arg
 385 390 395 400
 Gly Ile Gly Ile Arg Ile Glu Asp Asp Ile Val Ile Thr Glu Thr Gly
 405 410 415
 Asn Glu Asn Leu Thr Ala Ser Val Val Lys Lys Pro Glu Glu Ile Glu
 420 425 430
 Ala Leu Met Val Ala Ala Arg Lys Gln
 435 440

<210> 273

<211> 194
 <212> PRT
 <213> E. Coli

<400> 273

Met	Leu	Met	Ser	Ile	Gln	Asn	Glu	Met	Pro	Gly	Tyr	Asn	Glu	Met	Asn
1				5				10					15		
Gln	Tyr	Leu	Asn	Gln	Gln	Gly	Thr	Gly	Leu	Thr	Pro	Ala	Glu	Met	His
				20				25					30		
Gly	Leu	Ile	Ser	Gly	Met	Ile	Cys	Gly	Gly	Asn	Asp	Asp	Ser	Ser	Trp
				35			40				45				
Leu	Pro	Leu	Leu	His	Asp	Leu	Thr	Asn	Glu	Gly	Met	Ala	Phe	Gly	His
				50			55				60				
Glu	Leu	Ala	Gln	Ala	Leu	Arg	Lys	Met	His	Ser	Ala	Thr	Ser	Asp	Ala
				65		70			75				80		
Leu	Gln	Asp	Asp	Gly	Phe	Leu	Phe	Gln	Leu	Tyr	Leu	Pro	Asp	Gly	Asp
				85				90				95			
Asp	Val	Ser	Val	Phe	Asp	Arg	Ala	Asp	Ala	Leu	Ala	Gly	Trp	Val	Asn
				100				105				110			
His	Phe	Leu	Leu	Gly	Leu	Gly	Val	Thr	Gln	Pro	Lys	Leu	Asp	Lys	Val
				115			120				125				
Thr	Gly	Glu	Thr	Gly	Glu	Ala	Ile	Asp	Asp	Leu	Arg	Asn	Ile	Ala	Gln
				130			135				140				
Leu	Gly	Tyr	Asp	Glu	Asp	Glu	Asp	Gln	Glu	Glü	Leu	Glu	Met	Ser	Leu
				145		150			155				160		
Glu	Glu	Ile	Ile	Glu	Tyr	Val	Arg	Val	Ala	Ala	Leu	Leu	Cys	His	Asp
				165				170					175		
Thr	Phe	Thr	His	Pro	Gln	Pro	Thr	Ala	Pro	Glu	Val	Gln	Lys	Pro	Thr
				180				185					190		
Leu	His														

<210> 274

<211> 120

<212> PRT

<213> E. Coli

<400> 274

Met	Leu	Lys	Leu	Phe	Ala	Lys	Tyr	Thr	Ser	Ile	Gly	Val	Leu	Asn	Thr
1				5				10					15		
Leu	Ile	His	Trp	Val	Val	Phe	Gly	Val	Cys	Ile	Tyr	Val	Ala	His	Thr
				20				25					30		
Asn	Gln	Ala	Leu	Ala	Asn	Phe	Ala	Gly	Phe	Val	Val	Ala	Val	Ser	Phe
				35			40				45				
Ser	Phe	Phe	Ala	Asn	Ala	Lys	Phe	Thr	Phe	Lys	Ala	Ser	Thr	Thr	Thr
				50		55			60						
Met	Arg	Tyr	Met	Leu	Tyr	Val	Gly	Phe	Met	Gly	Thr	Leu	Ser	Ala	Thr
				65		70			75				80		
Val	Gly	Trp	Ala	Ala	Asp	Arg	Cys	Ala	Leu	Pro	Pro	Met	Ile	Thr	Leu
				85				90				95			
Val	Thr	Phe	Ser	Ala	Ile	Ser	Leu	Val	Cys	Gly	Phe	Val	Tyr	Ser	Lys
				100				105				110			
Phe	Ile	Val	Phe	Arg	Asp	Ala	Lys								
				115			120								

<210> 275

<211> 306

<212> PRT

<213> E. Coli

<400> 275

Met Lys Ile Ser Leu Val Val Pro Val Phe Asn Glu Glu Glu Ala Ile
 1 5 10 15
 Pro Ile Phe Tyr Lys Thr Val Arg Glu Phe Glu Glu Leu Lys Ser Tyr
 20 25 30
 Glu Val Glu Ile Val Phe Ile Asn Asp Gly Ser Lys Asp Ala Thr Glu
 35 40 45
 Ser Ile Ile Asn Ala Leu Ala Val Ser Asp Pro Leu Val Val Pro Leu
 50 55 60
 Ser Phe Thr Arg Asn Phe Gly Lys Glu Pro Ala Leu Phe Ala Gly Leu
 65 70 75 80
 Asp His Ala Thr Gly Asp Ala Ile Ile Pro Ile Asp Val Asp Leu Gln
 85 90 95
 Asp Pro Ile Glu Val Ile Pro His Leu Ile Glu Lys Trp Gln Ala Gly
 100 105 110
 Ala Asp Met Val Leu Ala Lys Arg Ser Asp Arg Ser Thr Asp Gly Arg
 115 120 125
 Leu Lys Arg Lys Thr Ala Glu Trp Phe Tyr Lys Leu His Asn Lys Ile
 130 135 140
 Ser Asn Pro Lys Ile Glu Glu Asn Val Gly Asp Phe Arg Leu Met Ser
 145 150 155 160
 Arg Asp Val Val Glu Asn Ile Lys Leu Met Pro Glu Arg Asn Leu Phe
 165 170 175
 Met Lys Gly Ile Leu Ser Trp Val Gly Gly Lys Thr Asp Ile Val Glu
 180 185 190
 Tyr Val Arg Ala Glu Arg Ile Ala Gly Asp Thr Lys Phe Asn Gly Trp
 195 200 205
 Lys Leu Trp Asn Leu Ala Leu Glu Gly Ile Thr Ser Phe Ser Thr Phe
 210 215 220
 Pro Leu Arg Ile Trp Thr Tyr Ile Gly Leu Val Val Ala Ser Val Ala
 225 230 235 240
 Phe Ile Tyr Gly Ala Trp Met Ile Leu Asp Thr Ile Ile Phe Gly Asn
 245 250 255
 Ala Val Arg Gly Tyr Pro Ser Leu Leu Val Ser Ile Leu Phe Leu Gly
 260 265 270
 Gly Ile Gln Met Ile Gly Ile Gly Val Leu Gly Glu Tyr Ile Gly Arg
 275 280 285
 Thr Tyr Ile Glu Thr Lys Lys Arg Pro Lys Tyr Ile Ile Lys Arg Val
 290 295 300
 Lys Lys
 305

<210> 276

<211> 443

<212> PRT

<213> E. Coli

<400> 276

Met Asn Lys Ala Ile Lys Val Ser Leu Tyr Ile Ser Phe Val Leu Ile
 1 5 10 15
 Ile Cys Ala Leu Ser Lys Asn Ile Met Met Leu Asn Thr Ser Asp Phe
 20 25 30
 Gly Arg Ala Ile Lys Pro Leu Ile Glu Asp Ile Pro Ala Phe Thr Tyr
 35 40 45
 Asp Leu Pro Leu Leu Tyr Lys Leu Lys Gly His Ile Asp Ser Ile Asp
 50 55 60
 Ser Tyr Glu Tyr Ile Ser Ser Tyr Ser Tyr Ile Leu Tyr Thr Tyr Val
 65 70 75 80
 Leu Phe Ile Ser Ile Phe Thr Glu Tyr Leu Asp Ala Arg Val Leu Ser
 85 90 95

Leu Phe Leu Lys Val Ile Tyr Ile Tyr Ser Leu Tyr Ala Ile Phe Thr
 100 105 110
 Ser Tyr Ile Lys Thr Glu Arg Tyr Val Thr Leu Phe Thr Phe Phe Ile
 115 120 125
 Leu Ala Phe Leu Met Cys Ser Ser Ser Thr Leu Ser Met Phe Ala Ser
 130 135 140
 Phe Tyr Gln Glu Gln Ile Val Ile Ile Phe Leu Pro Phe Leu Val Tyr
 145 150 155 160
 Ser Leu Thr Cys Lys Asn Asn Lys Ser Met Leu Leu Leu Phe Phe Ser
 165 170 175
 Leu Leu Ile Ile Ser Thr Ala Lys Asn Gln Phe Ile Leu Thr Pro Leu
 180 185 190
 Ile Val Tyr Ser Tyr Tyr Ile Phe Phe Asp Arg His Lys Leu Ile Ile
 195 200 205
 Lys Ser Val Ile Cys Val Val Cys Leu Leu Ala Ser Ile Phe Ala Ile
 210 215 220
 Ser Tyr Ser Lys Gly Val Val Glu Leu Asn Lys Tyr His Ala Thr Tyr
 225 230 235 240
 Phe Gly Ser Tyr Leu Tyr Met Lys Asn Asn Gly Tyr Lys Met Pro Ser
 245 250 255
 Tyr Val Asp Asp Lys Cys Val Gly Leu Asp Ala Trp Gly Asn Lys Phe
 260 265 270
 Asp Ile Ser Phe Gly Ala Thr Pro Thr Glu Val Gly Thr Glu Cys Phe
 275 280 285
 Glu Ser His Lys Asp Glu Thr Phe Ser Asn Ala Leu Phe Leu Leu Val
 290 295 300
 Ser Lys Pro Ser Thr Ile Phe Lys Leu Pro Phe Asp Asp Gly Val Met
 305 310 315 320
 Ser Gln Tyr Lys Glu Asn Tyr Phe His Val Tyr Lys Lys Leu His Val
 325 330 335
 Ile Tyr Gly Glu Ser Asn Ile Leu Thr Thr Ile Thr Asn Ile Lys Asp
 340 345 350
 Asn Ile Phe Lys Asn Ile Arg Phe Ile Ser Leu Leu Phe Phe Ile
 355 360 365
 Ala Ser Ile Phe Ile Arg Asn Asn Lys Ile Lys Ala Ser Leu Phe Val
 370 375 380
 Val Ser Leu Phe Gly Ile Ser Gln Phe Tyr Val Ser Phe Phe Gly Glu
 385 390 395 400
 Gly Tyr Arg Asp Leu Ser Lys His Leu Phe Gly Met Tyr Phe Ser Phe
 405 410 415
 Asp Leu Cys Leu Tyr Ile Thr Val Val Phe Leu Ile Tyr Lys Ile Ile
 420 425 430
 Gln Arg Asn Gln Asp Asn Ser Asp Val Lys His
 435 440

<210> 277

<211> 82

<212> PRT

<213> E. Coli

<400> 277

Met Gly Ile Leu Ser Trp Ile Ile Phe Gly Leu Ile Ala Gly Ile Leu
 1 5 10 15
 Ala Lys Trp Ile Met Pro Gly Lys Asp Gly Gly Phe Phe Met Thr
 20 25 30
 Ile Leu Leu Gly Ile Val Gly Ala Val Val Gly Gly Trp Ile Ser Thr
 35 40 45
 Leu Phe Gly Phe Gly Lys Val Asp Gly Phe Asn Phe Gly Ser Phe Val
 50 55 60

Val Ala Val Ile Gly Ala Ile Val Val Leu Phe Ile Tyr Arg Lys Ile
 65 70 75 80
 Lys Ser

<210> 278
 <211> 60
 <212> PRT
 <213> E. Coli

<400> 278
 Met Gly Lys Ala Thr Tyr Thr Val Thr Val Thr Asn Asn Ser Asn Gly
 1 5 10 15
 Val Ser Val Asp Tyr Glu Thr Glu Thr Pro Met Thr Leu Leu Val Pro
 20 25 30
 Glu Val Ala Ala Glu Val Ile Lys Asp Leu Val Asn Thr Val Arg Ser
 35 40 45
 Tyr Asp Thr Glu Asn Glu His Asp Val Cys Gly Trp
 50 55 60

<210> 279
 <211> 119
 <212> PRT
 <213> E. Coli

<400> 279
 Met Leu Gln Ile Pro Gln Asn Tyr Ile His Thr Arg Ser Thr Pro Phe
 1 5 10 15
 Trp Asn Lys Gln Thr Ala Pro Ala Gly Ile Phe Glu Arg His Leu Asp
 20 25 30
 Lys Gly Thr Arg Pro Gly Val Tyr Pro Arg Leu Ser Val Met His Gly
 35 40 45
 Ala Val Lys Tyr Leu Gly Tyr Ala Asp Glu His Ser Ala Glu Pro Asp
 50 55 60
 Gln Val Ile Leu Ile Glu Ala Gly Gln Phe Ala Val Phe Pro Pro Glu
 65 70 75 80
 Lys Trp His Asn Ile Glu Ala Met Thr Asp Asp Thr Tyr Phe Asn Ile
 85 90 95
 Asp Phe Phe Val Ala Pro Glu Val Leu Met Glu Gly Ala Gln Gln Arg
 100 105 110
 Lys Val Ile His Asn Gly Lys
 115

<210> 280
 <211> 246
 <212> PRT
 <213> E. Coli

<400> 280
 Met Lys Phe Lys Val Ile Ala Leu Ala Ala Leu Met Gly Ile Ser Gly
 1 5 10 15
 Met Ala Ala Gln Ala Asn Glu Leu Pro Asp Gly Pro His Ile Val Thr
 20 25 30
 Ser Gly Thr Ala Ser Val Asp Ala Val Pro Asp Ile Ala Thr Leu Ala
 35 40 45
 Ile Glu Val Asn Val Ala Ala Lys Asp Ala Ala Thr Ala Lys Lys Gln
 50 55 60
 Ala Asp Glu Arg Val Ala Gln Tyr Ile Ser Phe Leu Glu Leu Asn Gln

65	70	75	80
Ile Ala Lys Lys Asp Ile Ser Ser Ala Asn Leu Arg Thr Gln Pro Asp			
85	90	95	
Tyr Asp Tyr Gln Asp Gly Lys Ser Ile Leu Lys Gly Tyr Arg Ala Val			
100	105	110	
Arg Thr Val Glu Val Thr Leu Arg Gln Leu Asp Lys Leu Asn Ser Leu			
115	120	125	
Leu Asp Gly Ala Leu Lys Ala Gly Leu Asn Glu Ile Arg Ser Val Ser			
130	135	140	
Leu Gly Val Ala Gln Pro Asp Ala Tyr Lys Asp Lys Ala Arg Lys Ala			
145	150	155	160
Ala Ile Asp Asn Ala Ile His Gln Ala Gln Glu Leu Ala Asn Gly Phe			
165	170	175	
His Arg Lys Leu Gly Pro Val Tyr Ser Val Arg Tyr His Val Ser Asn			
180	185	190	
Tyr Gln Pro Ser Pro Met Val Arg Met Met Lys Ala Asp Ala Ala Pro			
195	200	205	
Val Ser Ala Gln Glu Thr Tyr Glu Gln Ala Ala Ile Gln Phe Asp Asp			
210	215	220	
Gln Val Asp Val Val Phe Gln Leu Glu Pro Val Asp Gln Gln Pro Ala			
225	230	235	240
Lys Thr Pro Ala Ala Gln			
	245		

<210> 281
<211> 464
<212> PRT
<213> E. Coli

<400> 281			
Met Leu Leu Leu Asp Ala Cys Ser Gln Met Cys Pro Ser Phe Arg Arg			
1	5	10	15
Phe Gln Thr Val Phe His Asn Ser Ser Ile Phe Leu Pro Tyr Trp Leu			
20	25	30	
Ala Thr Leu Val Ser Phe Arg Glu Thr Phe Gln Glu Glu Lys Leu Leu			
35	40	45	
Thr Met Lys Gly Ser Tyr Lys Ser Arg Trp Val Ile Val Ile Val Val			
50	55	60	
Val Ile Ala Ala Ile Ala Ala Phe Trp Phe Trp Gln Gly Arg Asn Asp			
65	70	75	80
Ser Arg Ser Ala Ala Pro Gly Ala Thr Lys Gln Ala Gln Gln Ser Pro			
85	90	95	
Ala Gly Gly Arg Arg Gly Met Arg Ser Gly Pro Leu Ala Pro Val Gln			
100	105	110	
Ala Ala Thr Ala Val Glu Gln Ala Val Pro Arg Tyr Leu Thr Gly Leu			
115	120	125	
Gly Thr Ile Thr Ala Ala Asn Thr Val Thr Val Arg Ser Arg Val Asp			
130	135	140	
Gly Gln Leu Ile Ala Leu His Phe Gln Glu Gly Gln Gln Val Lys Ala			
145	150	155	160
Gly Asp Leu Leu Ala Glu Ile Asp Pro Ser Gln Phe Lys Val Ala Leu			
165	170	175	
Ala Gln Ala Gln Gly Gln Leu Ala Lys Asp Lys Ala Thr Leu Ala Asn			
180	185	190	
Ala Arg Arg Asp Leu Ala Arg Tyr Gln Gln Leu Ala Lys Thr Asn Leu			
195	200	205	
Val Ser Arg Gln Glu Leu Asp Ala Gln Gln Ala Leu Val Ser Glu Thr			
210	215	220	
Glu Gly Thr Ile Lys Ala Asp Glu Ala Ser Val Ala Ser Ala Gln Leu			
225	230	235	240

Gln Leu Asp Trp Ser Arg Ile Thr Ala Pro Val Asp Gly Arg Val Gly
 245 250 255
 Leu Lys Gln Val Asp Val Gly Asn Gln Ile Ser Ser Gly Asp Thr Thr
 260 265 270
 Gly Ile Val Val Ile Thr Gln Thr His Pro Ile Asp Leu Val Phe Thr
 275 280 285
 Leu Pro Glu Ser Asp Ile Ala Thr Val Val Gln Ala Gln Lys Ala Gly
 290 295 300
 Lys Pro Leu Val Val Glu Ala Trp Asp Arg Thr Asn Ser Lys Lys Leu
 305 310 315 320
 Ser Glu Gly Thr Leu Leu Ser Leu Asp Asn Gln Ile Asp Ala Thr Thr
 325 330 335
 Gly Thr Ile Lys Val Lys Ala Arg Phe Asn Asn Gln Asp Asp Ala Leu
 340 345 350
 Phe Pro Asn Gln Phe Val Asn Ala Arg Met Leu Val Asp Thr Glu Gln
 355 360 365
 Asn Ala Val Val Ile Pro Thr Ala Ala Leu Gln Met Gly Asn Glu Gly
 370 375 380
 His Phe Val Trp Val Leu Asn Ser Glu Asn Lys Val Ser Lys His Leu
 385 390 395 400
 Val Thr Pro Gly Ile Gln Asp Ser Gln Lys Val Val Ile Arg Ala Gly
 405 410 415
 Ile Ser Ala Gly Asp Arg Val Val Thr Asp Gly Ile Asp Arg Leu Thr
 420 425 430
 Glu Gly Ala Lys Val Glu Val Val Glu Ala Gln Ser Ala Thr Thr Pro
 435 440 445
 Glu Glu Lys Ala Thr Ser Arg Glu Tyr Ala Lys Lys Gly Ala Arg Ser
 450 455 460

<210> 282

<211> 1040

<212> PRT

<213> E. Coli

<400> 282

Met Gln Val Leu Pro Pro Ser Ser Thr Gly Gly Pro Ser Arg Leu Phe
 1 5 10 15
 Ile Met Arg Pro Val Ala Thr Thr Leu Leu Met Val Ala Ile Leu Leu
 20 25 30
 Ala Gly Ile Ile Gly Tyr Arg Ala Leu Pro Val Ser Ala Leu Pro Glu
 35 40 45
 Val Asp Tyr Pro Thr Ile Gln Val Val Thr Leu Tyr Pro Gly Ala Ser
 50 55 60
 Pro Asp Val Met Thr Ser Ala Val Thr Ala Pro Leu Glu Arg Gln Phe
 65 70 75 80
 Gly Gln Met Ser Gly Leu Lys Gln Met Ser Ser Gln Ser Ser Gly Gly
 85 90 95
 Ala Ser Val Ile Thr Leu Gln Phe Gln Leu Thr Leu Pro Leu Asp Val
 100 105 110
 Ala Glu Gln Glu Val Gln Ala Ala Ile Asn Ala Ala Thr Asn Leu Leu
 115 120 125
 Pro Ser Asp Leu Pro Asn Pro Pro Val Tyr Ser Lys Val Asn Pro Ala
 130 135 140
 Asp Pro Pro Ile Met Thr Leu Ala Val Thr Ser Thr Ala Met Pro Met
 145 150 155 160
 Thr Gln Val Glu Asp Met Val Glu Thr Arg Val Ala Gln Lys Ile Ser
 165 170 175
 Gln Ile Ser Gly Val Gly Leu Val Thr Leu Ser Gly Gly Gln Arg Pro
 180 185 190
 Ala Val Arg Val Lys Leu Asn Ala Gln Ala Ile Ala Ala Leu Gly Leu

195	200	205
Thr Ser Glu Thr Val Arg	Thr Ala Ile Thr Gly Ala Asn Val Asn Ser	
210	215	220
Ala Lys Gly Ser Leu Asp	Gly Pro Ser Arg Ala Val Thr Leu Ser Ala	
225	230	235
Asn Asp Gln Met Gln Ser Ala	Glu Tyr Arg Gln Leu Ile Ile Ala	
245	250	255
Tyr Gln Asn Gly Ala Pro Ile Arg	Leu Gly Asp Val Ala Thr Val Glu	
260	265	270
Gln Gly Ala Glu Asn Ser Trp	Leu Gly Ala Trp Ala Asn Lys Glu Gln	
275	280	285
Ala Ile Val Met Asn Val Gln Arg Gln Pro	Gly Ala Asn Ile Ile Ser	
290	295	300
Thr Ala Asp Ser Ile Arg Gln Met Leu Pro	Gln Leu Thr Glu Ser Leu	
305	310	315
Pro Lys Ser Val Lys Val Thr Val Leu Ser	Asp Arg Thr Thr Asn Ile	
325	330	335
Arg Ala Ser Val Asp Asp Thr Gln Phe	Glu Leu Met Met Ala Ile Ala	
340	345	350
Leu Val Val Met Ile Ile Tyr	Leu Phe Leu Arg Asn Ile Pro Ala Thr	
355	360	365
Ile Ile Pro Gly Val Ala Val Pro	Leu Ser Leu Ile Gly Thr Phe Ala	
370	375	380
Val Met Val Phe Leu Asp Phe Ser Ile Asn	Asn Leu Thr Leu Met Ala	
385	390	395
Leu Thr Ile Ala Thr Gly Phe Val Val Asp	Asp Ala Ile Val Val Ile	
405	410	415
Glu Asn Ile Ser Arg Tyr Ile Glu Lys	Gly Glu Lys Pro Leu Ala Ala	
420	425	430
Ala Leu Lys Gly Ala Gly Glu	Ile Gly Phe Thr Ile Ile Ser Leu Thr	
435	440	445
Phe Ser Leu Ile Ala Val Leu Ile Pro	Leu Leu Phe Met Gly Asp Ile	
450	455	460
Val Gly Arg Leu Phe Arg Glu Phe Ala Ile	Thr Leu Ala Val Ala Ile	
465	470	475
Leu Ile Ser Ala Val Val Ser Leu Thr	Leu Thr Pro Met Met Cys Ala	
485	490	495
Arg Met Leu Ser Gln Glu Ser Leu Arg	Lys Gln Asn Arg Phe Ser Arg	
500	505	510
Ala Ser Glu Lys Met Phe Asp Arg	Ile Ile Ala Ala Tyr Gly Arg Gly	
515	520	525
Leu Ala Lys Val Leu Asn His	Pro Trp Leu Thr Leu Ser Val Ala Leu	
530	535	540
Ser Thr Leu Leu Leu Ser Val	Leu Leu Trp Val Phe Ile Pro Lys Gly	
545	550	555
Phe Phe Pro Val Gln Asp Asn Gly	Ile Ile Gln Gly Thr Leu Gln Ala	
565	570	575
Pro Gln Ser Ser Ser Phe Ala Asn	Met Ala Gln Arg Gln Arg Gln Val	
580	585	590
Ala Asp Val Ile Leu Gln Asp	Pro Ala Val Gln Ser Leu Thr Ser Phe	
595	600	605
Val Gly Val Asp Gly Thr Asn	Pro Ser Leu Asn Ser Ala Arg Leu Gln	
610	615	620
Ile Asn Leu Lys Pro Leu Asp Glu Arg	Asp Asp Arg Val Gln Lys Val	
625	630	635
Ile Ala Arg Leu Gln Thr Ala Val Asp	Lys Val Pro Gly Val Asp Leu	
645	650	655
Phe Leu Gln Pro Thr Gln Asp Leu	Thr Ile Asp Thr Gln Val Ser Arg	
660	665	670
Thr Gln Tyr Gln Phe Thr Leu Gln Ala	Thr Ser Leu Asp Ala Leu Ser	
675	680	685

Thr Trp Val Pro Gln Leu Met Glu Lys Leu Gln Gln Leu Pro Gln Leu
 690 695 700
 Ser Asp Val Ser Ser Asp Trp Gln Asp Lys Gly Leu Val Ala Tyr Val
 705 710 715 720
 Asn Val Asp Arg Asp Ser Ala Ser Arg Leu Gly Ile Ser Met Ala Asp
 725 730 735
 Val Asp Asn Ala Leu Tyr Asn Ala Phe Gly Gln Arg Leu Ile Ser Thr
 740 745 750
 Ile Tyr Thr Gln Ala Asn Gln Tyr Arg Val Val Leu Glu His Asn Thr
 755 760 765
 Glu Asn Thr Pro Gly Leu Ala Ala Leu Asp Thr Ile Arg Leu Thr Ser
 770 775 780
 Ser Asp Gly Gly Val Val Pro Leu Ser Ser Ile Ala Lys Ile Glu Gln
 785 790 795 800
 Arg Phe Ala Pro Leu Ser Ile Asn His Leu Asp Gln Phe Pro Val Thr
 805 810 815
 Thr Ile Ser Phe Asn Val Pro Asp Asn Tyr Ser Leu Gly Asp Ala Val
 820 825 830
 Gln Ala Ile Met Asp Thr Glu Lys Thr Leu Asn Leu Pro Val Asp Ile
 835 840 845
 Thr Thr Gln Phe Gln Gly Ser Thr Leu Ala Phe Gln Ser Ala Leu Gly
 850 855 860
 Ser Thr Val Trp Leu Ile Val Ala Ala Val Val Ala Met Tyr Ile Val
 865 870 875 880
 Leu Gly Ile Leu Tyr Glu Ser Phe Ile His Pro Ile Thr Ile Leu Ser
 885 890 895
 Thr Leu Pro Thr Ala Gly Val Gly Ala Leu Leu Ala Leu Ile Ala
 900 905 910
 Gly Ser Glu Leu Asp Val Ile Ala Ile Ile Gly Ile Ile Leu Leu Ile
 915 920 925
 Gly Ile Val Lys Lys Asn Ala Ile Met Met Ile Asp Phe Ala Leu Ala
 930 935 940
 Ala Glu Arg Glu Gln Gly Met Ser Pro Arg Glu Ala Ile Tyr Gln Ala
 945 950 955 960
 Cys Leu Leu Arg Phe Arg Pro Ile Leu Met Thr Thr Leu Ala Ala Leu
 965 970 975
 Leu Gly Ala Leu Pro Leu Met Leu Ser Thr Gly Val Gly Ala Glu Leu
 980 985 990
 Arg Arg Pro Leu Gly Ile Gly Met Val Gly Gly Leu Ile Val Ser Gln
 995 1000 1005
 Val Leu Thr Leu Phe Thr Thr Pro Val Ile Tyr Leu Leu Phe Asp Arg
 1010 1015 1020
 Leu Ala Leu Trp Thr Lys Ser Arg Phe Ala Arg His Glu Glu Ala
 1025 1030 1035 1040

<210> 283
 <211> 1025
 <212> PRT
 <213> E. Coli

<400> 283
 Met Lys Phe Phe Ala Leu Phe Ile Tyr Arg Pro Val Ala Thr Ile Leu
 1 5 10 15
 Leu Ser Val Ala Ile Thr Leu Cys Gly Ile Leu Gly Phe Arg Met Leu
 20 25 30
 Pro Val Ala Pro Leu Pro Gln Val Asp Phe Pro Val Ile Ile Val Ser
 35 40 45
 Ala Ser Leu Pro Gly Ala Ser Pro Glu Thr Met Ala Ser Ser Val Ala
 50 55 60
 Thr Pro Leu Glu Arg Ser Leu Gly Arg Ile Ala Gly Val Ser Glu Met

65	70	75	80
Thr Ser Ser Ser Ser	Leu Gly Ser Thr Arg	Ile Ile Leu Gln Phe Asp	
85	90	95	
Phe Asp Arg Asp Ile Asn Gly Ala Ala Arg Asp Val Gln Ala Ala Ile			
100	105	110	
Asn Ala Ala Gln Ser Leu Leu Pro Ser Gly Met Pro Ser Arg Pro Thr			
115	120	125	
Tyr Arg Lys Ala Asn Pro Ser Asp Ala Pro Ile Met Ile Leu Thr Leu			
130	135	140	
Thr Ser Asp Thr Tyr Ser Gln Gly Glu Leu Tyr Asp Phe Ala Ser Thr			
145	150	155	160
Gln Leu Ala Pro Thr Ile Ser Gln Ile Asp Gly Val Gly Asp Val Asp			
165	170	175	
Val Gly Gly Ser Ser Leu Pro Ala Val Arg Val Gly Leu Asn Pro Gln			
180	185	190	
Ala Leu Phe Asn Gln Gly Val Ser Leu Asp Asp Val Arg Thr Ala Val			
195	200	205	
Ser Asn Ala Asn Val Arg Lys Pro Gln Gly Ala Leu Glu Asp Gly Thr			
210	215	220	
His Arg Trp Gln Ile Gln Thr Asn Asp Glu Leu Lys Thr Ala Ala Glu			
225	230	235	240
Tyr Gln Pro Leu Ile Ile His Tyr Asn Asn Gly Gly Ala Val Arg Leu			
245	250	255	
Gly Asp Val Ala Thr Val Thr Asp Ser Val Gln Asp Val Arg Asn Ala			
260	265	270	
Gly Met Thr Asn Ala Lys Pro Ala Ile Leu Leu Met Ile Arg Lys Leu			
275	280	285	
Pro Glu Ala Asn Ile Ile Gln Thr Val Asp Ser Ile Arg Ala Lys Leu			
290	295	300	
Pro Glu Leu Gln Glu Thr Ile Pro Ala Ala Ile Asp Leu Gln Ile Ala			
305	310	315	320
Gln Asp Arg Ser Pro Thr Ile Arg Ala Ser Leu Glu Glu Val Glu Gln			
325	330	335	
Thr Leu Ile Ile Ser Val Ala Leu Val Ile Leu Val Val Phe Leu Phe			
340	345	350	
Leu Arg Ser Gly Arg Ala Thr Ile Ile Pro Ala Val Ser Val Pro Val			
355	360	365	
Ser Leu Ile Gly Thr Phe Ala Ala Met Tyr Leu Cys Gly Phe Ser Leu			
370	375	380	
Asn Asn Leu Ser Leu Met Ala Leu Thr Ile Ala Thr Gly Phe Val Val			
385	390	395	400
Asp Asp Ala Ile Val Val Leu Glu Asn Ile Ala Arg His Leu Glu Ala			
405	410	415	
Gly Met Lys Pro Leu Gln Ala Ala Leu Gln Gly Thr Arg Glu Val Gly			
420	425	430	
Phe Thr Val Leu Ser Met Ser Leu Ser Leu Val Ala Val Phe Leu Pro			
435	440	445	
Leu Leu Leu Met Gly Gly Leu Pro Gly Arg Leu Leu Arg Glu Phe Ala			
450	455	460	
Val Thr Leu Ser Val Ala Ile Gly Ile Ser Leu Leu Val Ser Leu Thr			
465	470	475	480
Leu Thr Pro Met Met Cys Gly Trp Met Leu Lys Ala Ser Lys Pro Arg			
485	490	495	
Glu Gln Lys Arg Leu Arg Gly Phe Gly Arg Met Leu Val Ala Leu Gln			
500	505	510	
Gln Gly Tyr Gly Lys Ser Leu Lys Trp Val Leu Asn His Thr Arg Leu			
515	520	525	
Val Gly Val Val Leu Leu Gly Thr Ile Ala Leu Asn Ile Trp Leu Tyr			
530	535	540	
Ile Ser Ile Pro Lys Thr Phe Phe Pro Glu Gln Asp Thr Gly Val Leu			
545	550	555	560

Met Gly Gly Ile Gln Ala Asp Gln Ser Ile Ser Phe Gln Ala Met Arg
 565 570 575
 Gly Lys Leu Gln Asp Phe Met Lys Ile Ile Arg Asp Asp Pro Ala Val
 580 585 590
 Asp Asn Val Thr Gly Phe Thr Gly Gly Ser Arg Val Asn Ser Gly Met
 595 600 605
 Met Phe Ile Thr Leu Lys Pro Arg Asp Glu Arg Ser Glu Thr Ala Gln
 610 615 620
 Gln Ile Ile Asp Arg Leu Arg Val Lys Leu Ala Lys Glu Pro Gly Ala
 625 630 635 640
 Asn Leu Phe Leu Met Ala Val Gln Asp Ile Arg Val Gly Gly Arg Gln
 645 650 655
 Ser Asn Ala Ser Tyr Gln Tyr Thr Leu Leu Ser Asp Asp Leu Ala Ala
 660 665 670
 Leu Arg Glu Trp Glu Pro Lys Ile Arg Lys Lys Leu Ala Thr Leu Pro
 675 680 685
 Glu Leu Ala Asp Val Asn Ser Asp Gln Gln Asp Asn Gly Ala Glu Met
 690 695 700
 Asn Leu Val Tyr Asp Arg Asp Thr Met Ala Arg Leu Gly Ile Asp Val
 705 710 715 720
 Gln Ala Ala Asn Ser Leu Leu Asn Ala Phe Gly Gln Arg Gln Ile
 725 730 735
 Ser Thr Ile Tyr Gln Pro Met Asn Gln Tyr Lys Val Val Met Glu Val
 740 745 750
 Asp Pro Arg Tyr Thr Gln Asp Ile Ser Ala Leu Glu Lys Met Phe Val
 755 760 765
 Ile Asn Asn Glu Gly Lys Ala Ile Pro Leu Ser Tyr Phe Ala Lys Trp
 770 775 780
 Gln Pro Ala Asn Ala Pro Leu Ser Val Asn His Gln Gly Leu Ser Ala
 785 790 795 800
 Ala Ser Thr Ile Ser Phe Asn Leu Pro Thr Gly Lys Ser Leu Ser Asp
 805 810 815
 Ala Ser Ala Ala Ile Asp Arg Ala Met Thr Gln Leu Gly Val Pro Ser
 820 825 830
 Thr Val Arg Gly Ser Phe Ala Gly Thr Ala Gln Val Phe Gln Glu Thr
 835 840 845
 Met Asn Ser Gln Val Ile Leu Ile Ala Ala Ile Ala Thr Val Tyr
 850 855 860
 Ile Val Leu Gly Ile Leu Tyr Glu Ser Tyr Val His Pro Leu Thr Ile
 865 870 875 880
 Leu Ser Thr Leu Pro Ser Ala Gly Val Gly Ala Leu Leu Ala Leu Glu
 885 890 895
 Leu Phe Asn Ala Pro Phe Ser Leu Ile Ala Leu Ile Gly Ile Met Leu
 900 905 910
 Leu Ile Gly Ile Val Lys Lys Asn Ala Ile Met Met Val Asp Phe Ala
 915 920 925
 Leu Glu Ala Gln Arg His Gly Asn Leu Thr Pro Gln Glu Ala Ile Phe
 930 935 940
 Gln Ala Cys Leu Leu Arg Phe Arg Pro Ile Met Met Thr Thr Leu Ala
 945 950 955 960
 Ala Leu Phe Gly Ala Leu Pro Leu Val Leu Ser Gly Gly Asp Gly Ser
 965 970 975
 Glu Leu Arg Gln Pro Leu Gly Ile Thr Ile Val Gly Gly Leu Val Met
 980 985 990
 Ser Gln Leu Leu Thr Leu Tyr Thr Thr Pro Val Val Tyr Leu Phe Phe
 995 1000 1005
 Asp Arg Leu Arg Leu Arg Phe Ser Arg Lys Pro Lys Gln Thr Val Thr
 1010 1015 1020
 Glu
 1025

<210> 284
<211> 471
<212> PRT
<213> E. Coli

<400> 284

Met	Thr	Asp	Leu	Pro	Asp	Ser	Thr	Arg	Trp	Gln	Leu	Trp	Ile	Val	Ala
1								5		10					15
Phe	Gly	Phe	Phe	Met	Gln	Ser	Leu	Asp	Thr	Thr	Ile	Val	Asn	Thr	Ala
								20		25					30
Leu	Pro	Ser	Met	Ala	Gln	Ser	Leu	Gly	Glu	Ser	Pro	Leu	His	Met	His
								35		40					45
Met	Val	Ile	Val	Ser	Tyr	Val	Leu	Thr	Val	Ala	Val	Met	Leu	Pro	Ala
								50		55					60
Ser	Gly	Trp	Leu	Ala	Asp	Lys	Val	Gly	Val	Arg	Asn	Ile	Phe	Phe	Thr
								65		70					80
Ala	Ile	Val	Leu	Phe	Thr	Leu	Gly	Ser	Leu	Phe	Cys	Ala	Leu	Ser	Gly
								85		90					95
Thr	Leu	Asn	Glu	Leu	Leu	Leu	Ala	Arg	Ala	Leu	Gln	Gly	Val	Gly	Gly
								100		105					110
Ala	Met	Met	Val	Pro	Val	Gly	Arg	Leu	Thr	Val	Met	Lys	Ile	Val	Pro
								115		120					125
Arg	Glu	Gln	Tyr	Met	Ala	Ala	Met	Thr	Phe	Val	Thr	Leu	Pro	Gly	Gln
								130		135					140
Val	Gly	Pro	Leu	Leu	Gly	Pro	Ala	Leu	Gly	Gly	Leu	Leu	Val	Glu	Tyr
								145		150					160
Ala	Ser	Trp	His	Trp	Ile	Phe	Leu	Ile	Asn	Ile	Pro	Val	Gly	Ile	Ile
								165		170					175
Gly	Ala	Ile	Ala	Thr	Leu	Leu	Leu	Met	Pro	Asn	Tyr	Thr	Met	Gln	Thr
								180		185					190
Arg	Arg	Phe	Asp	Leu	Ser	Gly	Phe	Leu	Leu	Leu	Ala	Val	Gly	Met	Ala
								195		200					205
Val	Leu	Thr	Leu	Ala	Leu	Asp	Gly	Ser	Lys	Gly	Thr	Gly	Leu	Ser	Pro
								210		215					220
Leu	Thr	Ile	Ala	Gly	Leu	Val	Ala	Val	Gly	Val	Val	Ala	Leu	Val	Leu
								225		230					240
Tyr	Leu	Leu	His	Ala	Arg	Asn	Asn	Asn	Arg	Ala	Leu	Phe	Ser	Leu	Lys
								245		250					255
Leu	Phe	Arg	Thr	Arg	Thr	Phe	Ser	Leu	Gly	Leu	Ala	Gly	Ser	Phe	Ala
								260		265					270
Gly	Arg	Ile	Gly	Ser	Gly	Met	Leu	Pro	Phe	Met	Thr	Pro	Val	Phe	Leu
								275		280					285
Gln	Ile	Gly	Leu	Gly	Phe	Ser	Pro	Phe	His	Ala	Gly	Leu	Met	Met	Ile
								290		295					300
Pro	Met	Val	Leu	Gly	Ser	Met	Gly	Met	Lys	Arg	Ile	Val	Val	Gln	Val
								305		310					320
Val	Asn	Arg	Phe	Gly	Tyr	Arg	Arg	Val	Leu	Val	Ala	Thr	Thr	Leu	Gly
								325		330					335
Leu	Ser	Leu	Val	Thr	Leu	Leu	Phe	Met	Thr	Thr	Ala	Leu	Gly	Trp	
								340		345					350
Tyr	Tyr	Val	Leu	Pro	Phe	Val	Leu	Phe	Leu	Gln	Gly	Met	Val	Asn	Ser
								355		360					365
Thr	Arg	Phe	Ser	Ser	Met	Asn	Thr	Leu	Thr	Leu	Lys	Asp	Leu	Pro	Asp
								370		375					380
Asn	Leu	Ala	Ser	Ser	Gly	Asn	Ser	Leu	Leu	Ser	Met	Ile	Met	Gln	Leu
								385		390					400
Ser	Met	Ser	Ile	Gly	Val	Thr	Ile	Ala	Gly	Leu	Leu	Leu	Gly	Leu	Phe
								405		410					415
Gly	Ser	Gln	His	Val	Ser	Val	Asp	Ser	Gly	Thr	Thr	Gln	Thr	Val	Phe
								420		425					430

Met Tyr Thr Trp Leu Ser Met Ala Leu Ile Ile Ala Leu Pro Ala Phe
 435 440 445
 Ile Phe Ala Arg Val Pro Asn Asp Thr His Gln Asn Val Ala Ile Ser
 450 455 460
 Arg Arg Lys Arg Ser Ala Gln
 465 470

<210> 285
 <211> 344
 <212> PRT
 <213> E. Coli

<400> 285
 Met Glu Ile Arg Ile Met Leu Phe Ile Leu Met Met Met Val Met Pro
 1 5 10 15
 Val Ser Tyr Ala Ala Cys Tyr Ser Glu Leu Ser Val Gln His Asn Leu
 20 25 30
 Val Val Gln Gly Asp Phe Ala Leu Thr Gln Thr Gln Met Ala Thr Tyr
 35 40 45
 Glu His Asn Phe Asn Asp Ser Ser Cys Val Ser Thr Asn Thr Ile Thr
 50 55 60
 Pro Met Ser Pro Ser Asp Ile Ile Val Gly Leu Tyr Asn Asp Thr Ile
 65 70 75 80
 Lys Leu Asn Leu His Phe Glu Trp Thr Asn Lys Asn Asn Ile Thr Leu
 85 90 95
 Ser Asn Asn Gln Thr Ser Phe Thr Ser Gly Tyr Ser Val Thr Val Thr
 100 105 110
 Pro Ala Ala Ser Asn Ala Lys Val Asn Val Ser Ala Gly Gly Gly
 115 120 125
 Ser Val Met Ile Asn Gly Val Ala Thr Leu Ser Ser Ala Ser Ser Ser
 130 135 140
 Thr Arg Gly Ser Ala Ala Val Gln Phe Leu Leu Cys Leu Leu Gly Gly
 145 150 155 160
 Lys Ser Trp Asp Ala Cys Val Asn Ser Tyr Arg Asn Ala Leu Ala Gln
 165 170 175
 Asn Ala Gly Val Tyr Ser Phe Asn Leu Thr Leu Ser Tyr Asn Pro Ile
 180 185 190
 Thr Thr Thr Cys Lys Pro Asp Asp Leu Leu Ile Thr Leu Asp Ser Ile
 195 200 205
 Pro Val Ser Gln Leu Pro Ala Thr Gly Asn Lys Ala Thr Ile Asn Ser
 210 215 220
 Lys Gln Gly Asp Ile Ile Leu Arg Cys Lys Asn Leu Leu Gly Gln Gln
 225 230 235 240
 Asn Gln Thr Ser Arg Lys Met Gln Val Tyr Leu Ser Ser Asp Leu
 245 250 255
 Leu Thr Asn Ser Asn Thr Ile Leu Lys Gly Ala Glu Asp Asn Gly Val
 260 265 270
 Gly Phe Ile Leu Glu Ser Asn Gly Ser Pro Val Thr Leu Leu Asn Ile
 275 280 285
 Thr Asn Ser Ser Lys Gly Tyr Thr Asn Leu Lys Glu Val Ala Ala Lys
 290 295 300
 Ser Lys Leu Thr Asp Thr Thr Val Ser Ile Pro Ile Thr Ala Ser Tyr
 305 310 315 320
 Tyr Val Tyr Asp Thr Asn Lys Val Lys Ser Gly Ala Leu Glu Ala Thr
 325 330 335
 Ala Leu Ile Asn Val Lys Tyr Asp
 340

<210> 286

<211> 826
 <212> PRT
 <213> E. Coli

<400> 286

Met	Leu	Arg	Met	Thr	Pro	Leu	Ala	Ser	Ala	Ile	Val	Ala	Leu	Leu	Leu
1					5					10					15
Gly	Ile	Glu	Ala	Tyr	Ala	Ala	Glu	Glu	Thr	Phe	Asp	Thr	His	Phe	Met
					20					25					30
Ile	Gly	Gly	Met	Lys	Asp	Gln	Gln	Val	Ala	Asn	Ile	Arg	Leu	Asp	Asp
					35					40					45
Asn	Gln	Pro	Leu	Pro	Gly	Gln	Tyr	Asp	Ile	Asp	Ile	Tyr	Val	Asn	Lys
					50					55					60
Gln	Trp	Arg	Gly	Lys	Tyr	Glu	Ile	Ile	Val	Lys	Asp	Asn	Pro	Gln	Glu
					65					70					80
Thr	Cys	Leu	Ser	Arg	Glu	Val	Ile	Lys	Arg	Leu	Gly	Ile	Asn	Ser	Asp
					85					90					95
Asn	Phe	Ala	Ser	Gly	Lys	Gln	Cys	Leu	Thr	Phe	Glu	Gln	Leu	Val	Gln
					100					105					110
Gly	Gly	Ser	Tyr	Thr	Trp	Asp	Ile	Gly	Val	Phe	Arg	Leu	Asp	Phe	Ser
					115					120					125
Val	Pro	Gln	Ala	Trp	Val	Glu	Glu	Leu	Glu	Ser	Gly	Tyr	Val	Pro	Pro
					130					135					140
Glu	Asn	Trp	Glu	Arg	Gly	Ile	Asn	Ala	Phe	Tyr	Thr	Ser	Tyr	Tyr	Leu
					145					150					160
Ser	Gln	Tyr	Tyr	Ser	Asp	Tyr	Lys	Ala	Ser	Gly	Asn	Asn	Lys	Ser	Thr
					165					170					175
Tyr	Val	Arg	Phe	Asn	Ser	Gly	Leu	Asn	Leu	Leu	Gly	Trp	Gln	Leu	His
					180					185					190
Ser	Asp	Ala	Ser	Phe	Ser	Lys	Thr	Asn	Asn	Asn	Pro	Gly	Val	Trp	Lys
					195					200					205
Ser	Asn	Thr	Leu	Tyr	Leu	Glu	Arg	Gly	Phe	Ala	Gln	Leu	Leu	Gly	Thr
					210					215					220
Leu	Arg	Val	Gly	Asp	Met	Tyr	Thr	Ser	Ser	Asp	Ile	Phe	Asp	Ser	Val
					225					230					240
Arg	Phe	Arg	Gly	Val	Arg	Leu	Phe	Arg	Asp	Met	Gln	Met	Leu	Pro	Asn
					245					250					255
Ser	Lys	Gln	Asn	Phe	Thr	Pro	Arg	Val	Gln	Gly	Ile	Ala	Gln	Ser	Asn
					260					265					270
Ala	Leu	Val	Thr	Ile	Glu	Gln	Asn	Gly	Phe	Val	Val	Tyr	Gln	Lys	Glu
					275					280					285
Val	Pro	Pro	Gly	Pro	Phe	Ala	Ile	Thr	Asp	Leu	Gln	Leu	Ala	Gly	Gly
					290					295					300
Gly	Ala	Asp	Leu	Asp	Val	Ser	Val	Lys	Glu	Ala	Asp	Gly	Ser	Val	Thr
					305					310					320
Thr	Tyr	Leu	Val	Pro	Tyr	Ala	Ala	Val	Pro	Asn	Met	Leu	Gln	Pro	Gly
					325					330					335
Val	Ser	Lys	Tyr	Asp	Leu	Ala	Ala	Gly	Arg	Ser	His	Ile	Glu	Gly	Ala
					340					345					350
Ser	Lys	Gln	Ser	Asp	Phe	Val	Gln	Ala	Gly	Tyr	Gln	Tyr	Gly	Phe	Asn
					355					360					365
Asn	Leu	Leu	Thr	Leu	Tyr	Gly	Gly	Ser	Met	Val	Ala	Asn	Asn	Tyr	Tyr
					370					375					380
Ala	Phe	Thr	Leu	Gly	Ala	Gly	Trp	Asn	Thr	Arg	Ile	Gly	Ala	Ile	Ser
					385					390					400
Val	Asp	Ala	Thr	Lys	Ser	His	Ser	Lys	Gln	Asp	Asn	Gly	Asp	Val	Phe
					405					410					415
Asp	Gly	Gln	Ser	Tyr	Gln	Ile	Ala	Tyr	Asn	Lys	Phe	Val	Ser	Gln	Thr
					420					425					430
Ser	Thr	Arg	Phe	Gly	Leu	Ala	Ala	Trp	Arg	Tyr	Ser	Ser	Arg	Asp	Tyr
					435					440					445

Arg Thr Phe Asn Asp His Val Trp Ala Asn Asn Lys Asp Asn Tyr Arg
 450 455 460
 Arg Asp Glu Asn Asp Val Tyr Asp Ile Ala Asp Tyr Tyr Gln Asn Asp
 465 470 475 480
 Phe Gly Arg Lys Asn Ser Phe Ser Ala Asn Met Ser Gln Ser Leu Pro
 485 490 495
 Glu Gly Trp Gly Ser Val Ser Leu Ser Thr Leu Trp Arg Asp Tyr Trp
 500 505 510
 Gly Arg Ser Gly Ser Ser Lys Asp Tyr Gln Leu Ser Tyr Ser Asn Asn
 515 520 525
 Leu Arg Arg Ile Ser Tyr Thr Leu Ala Ala Ser Gln Ala Tyr Asp Glu
 530 535 540
 Asn His His Glu Glu Lys Arg Phe Asn Ile Phe Ile Ser Ile Pro Phe
 545 550 555 560
 Asp Trp Gly Asp Asp Val Ser Thr Pro Arg Arg Gln Ile Tyr Met Ser
 565 570 575
 Asn Ser Thr Thr Phe Asp Asp Gln Gly Phe Ala Ser Asn Asn Thr Gly
 580 585 590
 Leu Ser Gly Thr Val Gly Ser Arg Asp Gln Phe Asn Tyr Gly Val Asn
 595 600 605
 Leu Ser His Gln His Gln Gly Asn Glu Thr Thr Ala Gly Ala Asn Leu
 610 615 620
 Thr Trp Asn Ala Pro Val Ala Thr Val Asn Gly Ser Tyr Ser Gin Ser
 625 630 635 640
 Ser Thr Tyr Arg Gln Ala Gly Ala Ser Val Ser Gly Gly Ile Val Ala
 645 650 655
 Trp Ser Gly Gly Val Asn Leu Ala Asn Arg Leu Ser Glu Thr Phe Ala
 660 665 670
 Val Met Asn Ala Pro Gly Ile Lys Asp Ala Tyr Val Asn Gly Gln Lys
 675 680 685
 Tyr Arg Thr Thr Asn Arg Asn Gly Val Val Ile Tyr Asp Gly Met Thr
 690 695 700
 Pro Tyr Arg Glu Asn His Leu Met Leu Asp Val Ser Gln Ser Asp Ser
 705 710 715 720
 Glu Ala Glu Leu Arg Gly Asn Arg Lys Ile Ala Ala Pro Tyr Arg Gly
 725 730 735
 Ala Val Val Leu Val Asn Phe Asp Thr Asp Gln Arg Lys Pro Trp Phe
 740 745 750
 Ile Lys Ala Leu Arg Ala Asp Gly Gln Ser Leu Thr Phe Gly Tyr Glu
 755 760 765
 Val Asn Asp Ile His Gly His Asn Ile Gly Val Val Gly Gln Gly Ser
 770 775 780
 Gln Leu Phe Ile Arg Thr Asn Glu Val Pro Pro Ser Val Asn Val Ala
 785 790 795 800
 Ile Asp Lys Gln Gln Gly Leu Ser Cys Thr Ile Thr Phe Gly Lys Glu
 805 810 815
 Ile Asp Glu Ser Arg Asn Tyr Ile Cys Gln
 820 825

<210> 287
 <211> 239
 <212> PRT
 <213> E. Coli

<400> 287
 Met Ala Ala Ile Pro Trp Arg Pro Phe Asn Leu Arg Gly Ile Lys Met
 1 5 10 15
 Lys Gly Leu Leu Ser Leu Leu Ile Phe Ser Met Val Leu Pro Ala His
 20 25 30
 Ala Gly Ile Val Ile Tyr Gly Thr Arg Ile Ile Tyr Pro Ala Glu Asn

35	40	45													
Lys	Glu	Vai	Met	Val	Gln	Leu	Met	Asn	Gln	Gly	Asn	Arg	Ser	Ser	Leu
50						55				60					
Leu	Gln	Ala	Trp	Ile	Asp	Asp	Gly	Asp	Thr	Ser	Leu	Pro	Pro	Glu	Lys
65						70			75					80	
Ile	Gln	Val	Pro	Phe	Met	Leu	Thr	Pro	Pro	Val	Ala	Lys	Ile	Gly	Ala
						85			90				95		
Asn	Ser	Gly	Gln	Gln	Val	Lys	Ile	Lys	Ile	Met	Pro	Asn	Lys	Leu	Pro
						100			105				110		
Thr	Asn	Lys	Glu	Ser	Ile	Phe	Tyr	Leu	Asn	Val	Leu	Asp	Ile	Pro	Pro
						115			120				125		
Asn	Ser	Pro	Glu	Gln	Glu	Gly	Lys	Asn	Ala	Leu	Lys	Phe	Ala	Met	Gln
						130			135				140		
Asn	Arg	Ile	Lys	Leu	Phe	Tyr	Arg	Pro	Ala	Gly	Ile	Ala	Pro	Val	Asn
145						150				155				160	
Lys	Ala	Thr	Phe	Lys	Lys	Leu	Leu	Val	Asn	Arg	Ser	Gly	Asn	Gly	Leu
						165			170				175		
Val	Ile	Lys	Asn	Asp	Ser	Ala	Asn	Trp	Val	Thr	Ile	Ser	Asp	Val	Lys
						180			185				190		
Ala	Asn	Asn	Val	Lys	Val	Asn	Tyr	Glu	Thr	Ile	Met	Ile	Ala	Pro	Leu
						195			200				205		
Glu	Ser	Gln	Ser	Val	Asn	Val	Lys	Ser	Asn	Asn	Ala	Asn	Asn	Trp	His
						210			215				220		
Leu	Thr	Ile	Ile	Asp	Asp	His	Gly	Asn	Tyr	Ile	Ser	Asp	Lys	Ile	
						225			230				235		

<210> 288

<211> 180

<212> PRT

<213> E. Coli

<400> 288

Met	Lys	Arg	Ser	Ile	Ile	Ala	Ala	Ala	Val	Phe	Ser	Ser	Phe	Phe	Met
1						5			10					15	
Ser	Ala	Gly	Val	Phe	Ala	Ala	Asp	Val	Asp	Thr	Gly	Thr	Leu	Thr	Ile
						20			25					30	
Lys	Gly	Asn	Ile	Ala	Glu	Ser	Pro	Cys	Lys	Phe	Glu	Ala	Gly	Gly	Asp
						35			40					45	
Ser	Val	Ser	Ile	Asn	Met	Pro	Thr	Val	Pro	Thr	Ser	Val	Phe	Glu	Gly
						50			55					60	
Lys	Ala	Lys	Tyr	Ser	Thr	Tyr	Asp	Asp	Ala	Val	Gly	Val	Thr	Ser	Ser
65						70			75					80	
Met	Leu	Lys	Ile	Ser	Cys	Pro	Lys	Glu	Val	Ala	Gly	Val	Lys	Leu	Ser
						85			90					95	
Leu	Ile	Thr	Asn	Asp	Lys	Ile	Thr	Gly	Asn	Asp	Lys	Ala	Ile	Ala	Ser
						100			105					110	
Ser	Asn	Asp	Thr	Val	Gly	Tyr	Tyr	Leu	Tyr	Leu	Gly	Asp	Asn	Ser	Asp
						115			120					125	
Val	Leu	Asp	Val	Ser	Ala	Pro	Phe	Asn	Ile	Glu	Ser	Tyr	Lys	Thr	Ala
						130			135					140	
Glu	Gly	Gln	Tyr	Ala	Ile	Pro	Phe	Lys	Ala	Lys	Tyr	Leu	Lys	Leu	Thr
145						145			150					155	
Asp	Asn	Ser	Val	Gln	Ser	Gly	Asp	Val	Leu	Ser	Ser	Leu	Val	Met	Arg
						165				170					175
Val	Ala	Gln	Asp												
			180												

<210> 289

<211> 112

<212> PRT

<213> E. Coli

<400> 289

Met	Ser	Ser	Glu	Arg	Asp	Leu	Val	Asn	Phe	Leu	Gly	Asp	Phe	Ser	Met
1			5					10						15	
Asp	Val	Ala	Lys	Ala	Val	Ile	Ala	Gly	Gly	Val	Ala	Thr	Ala	Ile	Gly
			20					25						30	
Ser	Leu	Ala	Ser	Phe	Ala	Cys	Val	Ser	Phe	Gly	Phe	Pro	Val	Ile	Leu
	35					40							45		
Val	Gly	Gly	Ala	Ile	Leu	Leu	Thr	Gly	Ile	Val	Cys	Thr	Val	Val	Leu
	50					55					60				
Asn	Glu	Ile	Asp	Ala	Gln	Cys	His	Leu	Ser	Glu	Lys	Leu	Lys	Tyr	Ala
65					70				75					80	
Ile	Arg	Asp	Gly	Leu	Lys	Arg	Gln	Gln	Glu	Leu	Asp	Lys	Trp	Lys	Arg
					85				90					95	
Glu	Asn	Met	Thr	Pro	Phe	Met	Tyr	Val	Leu	Asn	Thr	Pro	Pro	Val	Ile
						100			105					110	

<210> 290

<211> 193

<212> PRT

<213> E. Coli

<400> 290

Met	Thr	Asp	Tyr	Leu	Leu	Leu	Phe	Val	Gly	Thr	Val	Leu	Val	Asn	Asn
1				5				10						15	
Phe	Val	Leu	Val	Lys	Phe	Leu	Gly	Leu	Cys	Pro	Phe	Met	Gly	Val	Ser
				20				25					30		
Lys	Lys	Leu	Glu	Thr	Ala	Met	Gly	Met	Gly	Leu	Ala	Thr	Thr	Phe	Val
	35					40					45				
Met	Thr	Leu	Ala	Ser	Ile	Cys	Ala	Trp	Leu	Ile	Asp	Thr	Trp	Ile	Leu
	50					55				60					
Ile	Pro	Leu	Asn	Leu	Ile	Tyr	Leu	Arg	Thr	Leu	Ala	Phe	Ile	Leu	Val
65						70			75				80		
Ile	Ala	Val	Val	Val	Gln	Phe	Thr	Glu	Met	Val	Val	Arg	Lys	Thr	Ser
					85			90				95			
Pro	Val	Leu	Tyr	Arg	Leu	Leu	Gly	Ile	Phe	Leu	Pro	Leu	Ile	Thr	Thr
					100			105				110			
Asn	Cys	Ala	Val	Leu	Gly	Val	Ala	Leu	Leu	Asn	Ile	Asn	Leu	Gly	His
					115			120				125			
Asn	Phe	Leu	Gln	Ser	Ala	Leu	Tyr	Gly	Phe	Ser	Ala	Ala	Val	Gly	Phe
					130			135				140			
Ser	Leu	Val	Met	Val	Leu	Phe	Ala	Ala	Ile	Arg	Glu	Arg	Leu	Ala	Val
145						150				155			160		
Ala	Asp	Val	Pro	Ala	Pro	Phe	Arg	Gly	Asn	Ala	Ile	Ala	Leu	Ile	Thr
						165			170			175			
Ala	Gly	Leu	Met	Ser	Leu	Ala	Phe	Met	Gly	Phe	Ser	Gly	Leu	Val	Lys
						180			185			190			
Leu															

<210> 291

<211> 192

<212> PRT

<213> E. Coli

<400> 291

Met Asn Ala Ile Trp Ile Ala Val Ala Val Ser Leu Leu Gly Leu
 1 5 10 15
 Ala Phe Gly Ala Ile Leu Gly Tyr Ala Ser Arg Arg Phe Ala Val Glu
 20 25 30
 Asp Asp Pro Val Val Glu Lys Ile Asp Glu Ile Leu Pro Gln Ser Gln
 35 40 45
 Cys Gly Gln Cys Gly Tyr Pro Gly Cys Arg Pro Tyr Ala Glu Ala Ile
 50 55 60
 Ser Cys Asn Gly Glu Lys Ile Asn Arg Cys Ala Pro Gly Gly Glu Ala
 65 70 75 80
 Val Met Leu Lys Ile Ala Glu Leu Leu Asn Val Glu Pro Gln Pro Leu
 85 90 95
 Asp Gly Glu Ala Gln Glu Ile Thr Pro Ala Arg Met Val Ala Val Ile
 100 105 110
 Asp Glu Asn Asn Cys Ile Gly Cys Thr Lys Cys Ile Gln Ala Cys Pro
 115 120 125
 Val Asp Ala Ile Val Gly Ala Thr Arg Ala Met His Thr Val Met Ser
 130 135 140
 Asp Leu Cys Thr Gly Cys Asn Leu Cys Val Asp Pro Cys Pro Thr His
 145 150 155 160
 Cys Ile Ser Leu Gln Pro Val Ala Glu Thr Pro Asp Ser Trp Lys Trp
 165 170 175
 Asp Leu Asn Thr Ile Pro Val Arg Ile Ile Pro Val Glu His His Ala
 180 185 190

<210> 292

<211> 740

<212> PRT

<213> E. Coli

<400> 292

Met Leu Lys Leu Phe Ser Ala Phe Arg Lys Asn Lys Ile Trp Asp Phe
 1 5 10 15
 Asn Gly Gly Ile His Pro Pro Glu Met Lys Thr Gln Ser Asn Gly Thr
 20 25 30
 Pro Leu Arg Gln Val Pro Leu Ala Gln Arg Phe Val Ile Pro Leu Lys
 35 40 45
 Gln His Ile Gly Ala Glu Gly Glu Leu Cys Val Ser Val Gly Asp Lys
 50 55 60
 Val Leu Arg Gly Gln Pro Leu Thr Arg Gly Arg Gly Lys Met Leu Pro
 65 70 75 80
 Val His Ala Pro Thr Ser Gly Thr Val Thr Ala Ile Ala Pro His Ser
 85 90 95
 Thr Ala His Pro Ser Ala Leu Ala Glu Leu Ser Val Ile Ile Asp Ala
 100 105 110
 Asp Gly Glu Asp Cys Trp Ile Pro Arg Asp Gly Trp Ala Asp Tyr Arg
 115 120 125
 Thr Arg Ser Arg Glu Glu Leu Ile Glu Arg Ile His Gln Phe Gly Val
 130 135 140
 Ala Gly Leu Gly Gly Ala Gly Phe Pro Thr Gly Val Lys Leu Gln Gly
 145 150 155 160
 Gly Gly Asp Lys Ile Glu Thr Leu Ile Ile Asn Ala Ala Glu Cys Glu
 165 170 175
 Pro Tyr Ile Thr Ala Asp Asp Arg Leu Met Gln Asp Cys Ala Ala Gln
 180 185 190
 Val Val Glu Gly Ile Arg Ile Leu Ala His Ile Leu Gln Pro Arg Glu
 195 200 205
 Ile Leu Ile Gly Ile Glu Asp Asn Lys Pro Gln Ala Ile Ser Met Leu
 210 215 220

Arg Ala Val Leu Ala Asp Ser Asn Asp Ile Ser Leu Arg Val Ile Pro
 225 230 235 240
 Thr Lys Tyr Pro Ser Gly Gly Ala Lys Gln Leu Thr Tyr Ile Leu Thr
 245 250 255
 Gly Lys Gln Val Pro His Gly Gly Arg Ser Ser Asp Ile Gly Val Leu
 260 265 270
 Met Gln Asn Val Gly Thr Ala Tyr Ala Val Lys Arg Ala Val Ile Asp
 275 280 285
 Gly Glu Pro Ile Thr Glu Arg Val Val Thr Leu Thr Gly Glu Ala Ile
 290 295 300
 Ala Arg Pro Gly Asn Val Trp Ala Arg Leu Gly Thr Pro Val Arg His
 305 310 315 320
 Leu Leu Asn Asp Ala Gly Phe Cys Pro Ser Ala Asp Gln Met Val Ile
 325 330 335
 Met Gly Gly Pro Leu Met Gly Phe Thr Leu Pro Trp Leu Asp Val Pro
 340 345 350
 Val Val Lys Ile Thr Asn Cys Leu Leu Ala Pro Ser Ala Asn Glu Leu
 355 360 365
 Gly Glu Pro Gln Glu Glu Gln Ser Cys Ile Arg Cys Ser Ala Cys Ala
 370 375 380
 Asp Ala Cys Pro Ala Asp Leu Leu Pro Gln Gln Leu Tyr Trp Phe Ser
 385 390 395 400
 Lys Gly Gln Gln His Asp Lys Ala Thr Thr His Asn Ile Ala Asp Cys
 405 410 415
 Ile Glu Cys Gly Ala Cys Ala Trp Val Cys Pro Ser Asn Ile Pro Leu
 420 425 430
 Val Gln Tyr Phe Arg Gln Glu Lys Ala Glu Ile Ala Ala Ile Arg Gln
 435 440 445
 Glu Glu Lys Arg Ala Ala Glu Ala Lys Ala Arg Phe Glu Ala Arg Gln
 450 455 460
 Ala Arg Leu Glu Arg Glu Lys Ala Ala Arg Leu Glu Arg His Lys Ser
 465 470 475 480
 Ala Ala Val Gln Pro Ala Ala Lys Asp Lys Asp Ala Ile Ala Ala
 485 490 495
 Leu Ala Arg Val Lys Glu Lys Gln Ala Gln Ala Thr Gln Pro Ile Val
 500 505 510
 Ile Lys Ala Gly Glu Arg Pro Asp Asn Ser Ala Ile Ile Ala Ala Arg
 515 520 525
 Glu Ala Arg Lys Ala Gln Ala Arg Ala Lys Gln Ala Glu Leu Gln Gln
 530 535 540
 Thr Asn Asp Ala Ala Thr Val Ala Asp Pro Arg Lys Thr Ala Val Glu
 545 550 555 560
 Ala Ala Ile Ala Arg Ala Lys Ala Arg Lys Leu Glu Gln Gln Ala
 565 570 575
 Asn Ala Glu Pro Glu Gln Gln Val Asp Pro Arg Lys Ala Ala Val Glu
 580 585 590
 Ala Ala Ile Ala Arg Ala Lys Ala Arg Lys Leu Glu Gln Gln Ala
 595 600 605
 Asn Ala Glu Pro Glu Glu Gln Val Asp Pro Arg Lys Ala Ala Val Glu
 610 615 620
 Ala Ala Ile Ala Arg Ala Lys Ala Arg Lys Leu Glu Gln Gln Ala
 625 630 635 640
 Asn Ala Glu Pro Glu Gln Gln Val Asp Pro Arg Lys Ala Ala Val Glu
 645 650 655
 Ala Ala Ile Ala Arg Ala Lys Ala Arg Lys Arg Glu Gln Gln Pro Ala
 660 665 670
 Asn Ala Glu Pro Glu Glu Gln Val Asp Pro Arg Lys Ala Ala Val Glu
 675 680 685
 Ala Ala Ile Ala Arg Ala Lys Ala Arg Lys Leu Glu Gln Gln Ala
 690 695 700
 Asn Ala Val Pro Glu Glu Gln Val Asp Pro Arg Lys Ala Ala Val Ala

705	710	715	720
Ala Ala Ile Ala Arg Ala Gln Ala Lys Lys Ala Ala Gln Gln Lys Val			
725	730	735	
Val Asn Glu Asp			
740			

<210> 293
<211> 352
<212> PRT
<213> E. Coli

<400> 293

Met Val Phe Arg Ile Ala Ser Ser Pro Tyr Thr His Asn Gln Arg Gln			
1	5	10	15
Thr Ser Arg Ile Met Leu Leu Val Leu Leu Ala Ala Val Pro Gly Ile			
20	25	30	
Ala Ala Gln Leu Trp Phe Phe Gly Trp Gly Thr Leu Val Gln Ile Leu			
35	40	45	
Leu Ala Ser Val Ser Ala Leu Leu Ala Glu Ala Leu Val Leu Lys Leu			
50	55	60	
Arg Lys Gln Ser Val Ala Ala Thr Leu Lys Asp Asn Ser Ala Leu Leu			
65	70	75	80
Thr Gly Leu Leu Ala Val Ser Ile Pro Pro Leu Ala Pro Trp Trp			
85	90	95	
Met Val Val Leu Gly Thr Val Phe Ala Val Ile Ile Ala Lys Gln Leu			
100	105	110	
Tyr Gly Gly Leu Gly Gln Asn Pro Phe Asn Pro Ala Met Ile Gly Tyr			
115	120	125	
Val Val Leu Leu Ile Ser Phe Pro Val Gln Met Thr Ser Trp Leu Pro			
130	135	140	
Pro His Glu Ile Ala Val Asn Ile Pro Gly Phe Ile Asp Ala Ile Gln			
145	150	155	160
Val Ile Phe Ser Gly His Thr Ala Ser Gly Gly Asp Met Asn Thr Leu			
165	170	175	
Arg Leu Gly Ile Asp Gly Ile Ser Gln Ala Thr Pro Leu Asp Thr Phe			
180	185	190	
Lys Thr Ser Val Arg Ala Gly His Ser Val Glu Gln Ile Met Gln Tyr			
195	200	205	
Pro Ile Tyr Ser Gly Ile Leu Ala Gly Ala Gly Trp Gln Trp Val Asn			
210	215	220	
Leu Ala Trp Leu Ala Gly Gly Val Trp Leu Leu Trp Gln Lys Ala Ile			
225	230	235	240
Arg Trp His Ile Pro Leu Ser Phe Leu Val Thr Leu Ala Leu Cys Ala			
245	250	255	
Met Leu Gly Trp Leu Phe Ser Pro Glu Thr Leu Ala Ala Pro Gln Ile			
260	265	270	
His Leu Leu Ser Gly Ala Thr Met Leu Gly Ala Phe Phe Ile Leu Thr			
275	280	285	
Asp Pro Val Thr Ala Ser Thr Thr Asn Arg Gly Arg Leu Ile Phe Gly			
290	295	300	
Ala Leu Ala Gly Leu Leu Val Trp Leu Ile Arg Ser Phe Gly Gly Tyr			
305	310	315	320
Pro Asp Gly Val Ala Phe Ala Val Leu Leu Ala Asn Ile Thr Val Pro			
325	330	335	
Leu Ile Asp Tyr Tyr Thr Arg Pro Arg Val Tyr Gly His Arg Lys Gly			
340	345	350	

<210> 294

<211> 206

<212> PRT

<213> E. Coli

<400> 294

Met	Leu	Lys	Thr	Ile	Arg	Lys	His	Gly	Ile	Thr	Leu	Ala	Leu	Phe	Ala
1				5					10					15	
Ala	Gly	Ser	Thr	Gly	Leu	Thr	Ala	Ala	Ile	Asn	Gln	Met	Thr	Lys	Thr
				20					25				30		
Thr	Ile	Ala	Glu	Gln	Ala	Ser	Leu	Gln	Gln	Lys	Ala	Leu	Phe	Asp	Gln
				35				40				45			
Val	Leu	Pro	Ala	Glu	Arg	Tyr	Asn	Asn	Ala	Leu	Ala	Gln	Ser	Cys	Tyr
				50			55				60				
Leu	Val	Thr	Ala	Pro	Glu	Leu	Gly	Lys	Gly	Glu	His	Arg	Val	Tyr	Ile
65					70				75			80			
Ala	Lys	Gln	Asp	Asp	Lys	Pro	Val	Ala	Ala	Val	Leu	Glu	Ala	Thr	Ala
					85				90			95			
Pro	Asp	Gly	Tyr	Ser	Gly	Ala	Ile	Gln	Leu	Leu	Val	Gly	Ala	Asp	Phe
				100				105				110			
Asn	Gly	Thr	Val	Leu	Gly	Thr	Arg	Val	Thr	Glu	His	His	Glu	Thr	Pro
					115			120			125				
Gly	Leu	Gly	Asp	Lys	Ile	Glu	Leu	Arg	Leu	Ser	Asp	Trp	Ile	Thr	His
				130			135			140					
Phe	Ala	Gly	Lys	Lys	Ile	Ser	Gly	Ala	Asp	Asp	Ala	His	Trp	Ala	Val
145					150				155			160			
Lys	Lys	Asp	Gly	Gly	Asp	Phe	Asp	Gln	Phe	Thr	Gly	Ala	Thr	Ile	Thr
					165				170			175			
Pro	Arg	Ala	Val	Val	Asn	Ala	Val	Lys	Arg	Ala	Gly	Leu	Tyr	Ala	Gln
				180				185			190				
Thr	Leu	Pro	Ala	Gln	Leu	Ser	Gln	Leu	Pro	Ala	Cys	Gly	Glu		
				195				200			205				

<210> 295

<211> 231

<212> PRT

<213> E. Coli

<400> 295

Met	Ser	Glu	Ile	Lys	Asp	Val	Ile	Val	Gln	Gly	Leu	Trp	Lys	Asn	Asn
1				5				10				15			
Ser	Ala	Leu	Val	Gln	Leu	Leu	Gly	Leu	Cys	Pro	Leu	Leu	Ala	Val	Thr
				20				25			30				
Ser	Thr	Ala	Thr	Asn	Ala	Leu	Gly	Leu	Gly	Leu	Ala	Thr	Thr	Leu	Val
				35			40			45					
Leu	Thr	Leu	Thr	Asn	Leu	Thr	Ile	Ser	Thr	Leu	Arg	His	Trp	Thr	Pro
				50			55			60					
Ala	Glu	Ile	Arg	Ile	Pro	Ile	Tyr	Val	Met	Ile	Ile	Ala	Ser	Val	Val
				65			70			75			80		
Ser	Ala	Val	Gln	Met	Leu	Ile	Asn	Ala	Tyr	Ala	Phe	Gly	Leu	Tyr	Gln
					85			90			95				
Ser	Leu	Gly	Ile	Phe	Ile	Pro	Leu	Ile	Val	Thr	Asn	Cys	Ile	Val	Val
				100				105			110				
Gly	Arg	Ala	Glu	Ala	Phe	Ala	Ala	Lys	Lys	Gly	Pro	Ala	Leu	Ser	Ala
				115			120			125					
Leu	Asp	Gly	Phe	Ser	Ile	Gly	Met	Gly	Ala	Thr	Cys	Ala	Met	Phe	Val
				130			135			140					
Leu	Gly	Ser	Leu	Arg	Glu	Ile	Ile	Gly	Asn	Gly	Thr	Leu	Phe	Asp	Gly
				145			150			155			160		
Ala	Asp	Ala	Leu	Leu	Gly	Ser	Trp	Ala	Lys	Val	Leu	Arg	Val	Glù	Ile
					165				170			175			

Phe His Thr Asp Ser Pro Phe Leu Leu Ala Met Leu Pro Pro Gly Ala
 180 185 190
 Phe Ile Gly Leu Gly Leu Met Leu Ala Gly Lys Tyr Leu Ile Asp Glu
 195 200 205
 Arg Met Lys Lys Arg Arg Ala Glu Ala Ala Ala Glu Arg Ala Leu Pro
 210 215 220
 Asn Gly Glu Thr Gly Asn Val
 225 230

<210> 296
 <211> 211
 <212> PRT
 <213> E. Coli

<400> 296

Met Asn Lys Ala Lys Arg Leu Glu Ile Leu Thr Arg Leu Arg Glu Asn
 1 5 10 15
 Asn Pro His Pro Thr Thr Glu Leu Asn Phe Ser Ser Pro Phe Glu Leu
 20 25 30
 Leu Ile Ala Val Leu Leu Ser Ala Gln Ala Thr Asp Val Ser Val Asn
 35 40 45
 Lys Ala Thr Ala Lys Leu Tyr Pro Val Ala Asn Thr Pro Ala Ala Met
 50 55 60
 Leu Glu Leu Gly Val Glu Gly Val Lys Thr Tyr Ile Lys Thr Ile Gly
 65 70 75 80
 Leu Tyr Asn Ser Lys Ala Glu Asn Ile Ile Lys Thr Cys Arg Ile Leu
 85 90 95
 Leu Glu Gln His Asn Gly Glu Val Pro Glu Asp Arg Ala Ala Leu Glu
 100 105 110
 Ala Leu Pro Gly Val Gly Arg Lys Thr Ala Asn Val Val Leu Asn Thr
 115 120 125
 Ala Phe Gly Trp Pro Thr Ile Ala Val Asp Thr His Ile Phe Arg Val
 130 135 140
 Cys Asn Arg Thr Gln Phe Ala Pro Gly Lys Asn Val Glu Gln Val Glu
 145 150 155 160
 Glu Lys Leu Leu Lys Val Val Pro Ala Glu Phe Lys Val Asp Cys His
 165 170 175
 His Trp Leu Ile Leu His Gly Arg Tyr Thr Cys Ile Ala Arg Lys Pro
 180 185 190
 Arg Cys Gly Ser Cys Ile Ile Glu Asp Leu Cys Glu Tyr Lys Glu Lys
 195 200 205
 Val Asp Ile
 210

<210> 297
 <211> 167
 <212> PRT
 <213> E. Coli

<400> 297

Met Lys Arg Leu His Lys Arg Phe Leu Leu Ala Thr Phe Cys Ala Leu
 1 5 10 15
 Phe Thr Ala Thr Leu Gln Ala Ala Asp Val Thr Ile Thr Val Asn Gly
 20 25 30
 Arg Val Val Ala Lys Pro Cys Thr Ile Gln Thr Lys Glu Ala Asn Val
 35 40 45
 Asn Leu Gly Asp Leu Tyr Thr Arg Asn Leu Gln Gln Pro Gly Ser Ala
 50 55 60
 Ser Gly Trp His Asn Ile Thr Leu Ser Leu Thr Asp Cys Pro Val Glu

65	70	75	80
Thr Ser Ala Val Thr Ala Ile Val Thr Gly Ser Thr Asp Asn Thr Gly			
85	90	95	
Tyr Tyr Lys Asn Glu Gly Thr Ala Glu Asn Ile Gln Ile Glu Leu Arg			
100	105	110	
Asp Asp Gln Asp Ala Ala Leu Lys Asn Gly Asp Ser Lys Thr Val Ile			
115	120	125	
Val Asp Glu Ile Thr Arg Asn Ala Gln Phe Pro Leu Lys Ala Arg Ala			
130	135	140	
Ile Thr Val Asn Gly Asn Ala Ser Gln Gly Thr Ile Glu Ala Leu Ile			
145	150	155	160
Asn Val Ile Tyr Thr Trp Gln			
165			

<210> 298

<211> 176

<212> PRT

<213> E. Coli

<400> 298

Met Lys Tyr Asn Asn Ile Ile Phe Leu Gly Leu Cys Leu Gly Léu Thr			
1	5	10	15
Thr Tyr Ser Ala Leu Ser Ala Asp Ser Val Ile Lys Ile Ser Gly Arg			
20	25	30	
Val Leu Asp Tyr Gly Cys Thr Val Ser Ser Asp Ser Leu Asn Phe Thr			
35	40	45	
Val Asp Leu Gln Lys Asn Ser Ala Arg Gln Phe Pro Thr Thr Gly Ser			
50	55	60	
Thr Ser Pro Ala Val Pro Phe Gln Ile Thr Leu Ser Glu Cys Ser Lys			
65	70	75	80
Gly Thr Thr Gly Val Arg Val Ala Phe Asn Gly Ile Glu Asp Ala Glu			
85	90	95	
Asn Asn Thr Leu Leu Lys Leu Asp Glu Gly Ser Asn Thr Ala Ser Gly			
100	105	110	
Leu Gly Ile Glu Ile Leu Asp Ala Asn Met Arg Pro Val Lys Leu Asn			
115	120	125	
Asp Leu His Ala Gly Met Gin Trp Ile Pro Leu Val Pro Glu Gln Asn			
130	135	140	
Asn Ile Leu Pro Tyr Ser Ala Arg Leu Lys Ser Thr Gln Lys Ser Val			
145	150	155	160
Asn Pro Gly Leu Val Arg Ala Ser Ala Thr Phe Thr Leu Glu Phe Gln			
165	170	175	

<210> 299

<211> 382

<212> PRT

<213> E. Coli

<400> 299

Met Ser Gly Tyr Thr Val Lys Pro Pro Thr Gly Asp Thr Asn Glu Gln			
1	5	10	15
Thr Gln Phe Ile Asp Tyr Phe Asn Leu Phe Tyr Ser Lys Arg Gly Gln			
20	25	30	
Glu Gln Ile Ser Ile Ser Gln Gln Leu Gly Asn Tyr Gly Thr Thr Phe			
35	40	45	
Phe Ser Ala Ser Arg Gln Ser Tyr Trp Asn Thr Ser Arg Ser Asp Gln			
50	55	60	

Gln Ile Ser Phe Gly Leu Asn Val Pro Phe Gly Asp Ile Thr Thr Ser
 65 70 75 80
 Leu Asn Tyr Ser Tyr Ser Asn Asn Ile Trp Gln Asn Asp Arg Asp His
 85 90 95
 Leu Leu Ala Phe Thr Leu Asn Val Pro Phe Ser His Trp Met Arg Thr
 100 105 110
 Asp Ser Gln Ser Ala Phe Arg Asn Ser Asn Ala Ser Tyr Ser Met Ser
 115 120 125
 Asn Asp Leu Lys Gly Gly Met Thr Asn Leu Ser Gly Val Tyr Gly Thr
 130 135 140
 Leu Leu Pro Asp Asn Asn Leu Asn Tyr Ser Val Gln Val Gly Asn Thr
 145 150 155 160
 His Gly Gly Asn Thr Ser Ser Gly Thr Ser Gly Tyr Ser Ser Leu Asn
 165 170 175
 Tyr Arg Gly Ala Tyr Gly Asn Thr Asn Val Gly Tyr Ser Arg Ser Gly
 180 185 190
 Asp Ser Ser Gln Ile Tyr Tyr Gly Met Ser Gly Gly Ile Ile Ala His
 195 200 205
 Ala Asp Gly Ile Thr Phe Gly Gln Pro Leu Gly Asp Thr Met Val Leu
 210 215 220
 Val Lys Ala Pro Gly Ala Asp Asn Val Lys Ile Glu Asn Gln Thr Gly
 225 230 235 240
 Ile His Thr Asp Trp Arg Gly Tyr Ala Ile Leu Pro Phe Ala Thr Glu
 245 250 255
 Tyr Arg Glu Asn Arg Val Ala Leu Asn Ala Asn Ser Leu Ala Asp Asn
 260 265 270
 Val Glu Leu Asp Glu Thr Val Val Thr Val Ile Pro Thr His Gly Ala
 275 280 285
 Ile Ala Arg Ala Thr Phe Asn Ala Gln Ile Gly Gly Lys Val Leu Met
 290 295 300
 Thr Leu Lys Tyr Gly Asn Lys Ser Val Pro Phe Gly Ala Ile Val Thr
 305 310 315 320
 His Gly Glu Asn Lys Asn Gly Ser Ile Val Ala Glu Asn Gly Gln Val
 325 330 335
 Tyr Leu Thr Gly Leu Pro Gln Ser Gly Gln Leu Gln Val Ser Trp Gly
 340 345 350
 Lys Asp Lys Asn Ser Asn Cys Ile Val Glu Tyr Lys Leu Pro Glu Val
 355 360 365
 Ser Pro Gly Thr Leu Leu Asn Gln Gln Thr Ala Ile Cys Arg
 370 375 380

<210> 300
 <211> 138
 <212> PRT
 <213> E. Coli

<400> 300
 Met Ile Ala Ile Ala Asp Ile Leu Gln Ala Gly Glu Lys Leu Thr Ala
 1 5 10 15
 Val Ala Pro Phe Leu Ala Gly Ile Gln Asn Glu Glu Gln Tyr Thr Gln
 20 25 30
 Ala Leu Glu Leu Val Asp His Leu Leu Asn Asp Pro Glu Asn Pro
 35 40 45
 Leu Leu Asp Leu Val Cys Ala Lys Ile Thr Ala Trp Glu Glu Ser Ala
 50 55 60
 Pro Glu Phe Ala Glu Phe Asn Ala Met Ala Gln Ala Met Pro Gly Gly
 65 70 75 80
 Ile Ala Val Ile Arg Thr Leu Met Asp Gln Tyr Gly Leu Thr Leu Ser
 85 90 95
 Asp Leu Pro Glu Ile Gly Ser Lys Ser Met Val Ser Arg Val Leu Ser

100	105	110
Gly Lys Arg Lys Leu Thr Leu Glu His Ala Lys Lys	Leu Ala Thr Arg	
115	120	125
Phe Gly Ile Ser Pro Ala Leu Phe Ile Asp		
130	135	

<210> 301
<211> 104
<212> PRT
<213> E. Coli

<400> 301

Met His Leu Ile Thr Gln Lys Ala Leu Lys Asp Ala Ala Glu Lys Tyr			
1	5	10	15
Pro Gln His Lys Thr Glu Leu Val Ala Leu Gly Asn Thr Ile Ala Lys			
20	25	30	
Gly Tyr Phe Lys Lys Pro Glu Ser Leu Lys Ala Val Phe Pro Ser Leu			
35	40	45	
Asp Asn Phe Lys Tyr Leu Asp Lys His Tyr Val Phe Asn Val Gly Gly			
50	55	60	
Asn Glu Leu Arg Val Val Ala Met Val Phe Phe Glu Ser Gln Lys Cys			
65	70	75	80
Tyr Ile Arg Glu Val Met Thr His Lys Glu Tyr Asp Phe Phe Thr Ala			
85	90	95	
Val His Arg Thr Lys Gly Lys Lys			
100			

<210> 302
<211> 2383
<212> PRT
<213> E. Coli

<400> 302

Met Leu Ser Val Phe Thr Phe Arg Cys Ala Arg Lys Gly Ala Phe			
1	5	10	15
Met Leu Ala Arg Ser Gly Lys Val Ser Met Ala Thr Lys Lys Arg Ser			
20	25	30	
Gly Glu Glu Ile Asn Asp Arg Gln Ile Leu Cys Gly Met Gly Ile Lys			
35	40	45	
Leu Arg Arg Leu Thr Ala Gly Ile Cys Leu Ile Thr Gln Leu Ala Phe			
50	55	60	
Pro Met Ala Ala Ala Ala Gln Gly Val Val Asn Ala Ala Thr Gln Gln			
65	70	75	80
Pro Val Pro Ala Gln Ile Ala Ile Ala Asn Ala Asn Thr Val Pro Tyr			
85	90	95	
Thr Leu Gly Ala Leu Glu Ser Ala Gln Ser Val Ala Glu Arg Phe Gly			
100	105	110	
Ile Ser Val Ala Glu Leu Arg Lys Leu Asn Gln Phe Arg Thr Phe Ala			
115	120	125	
Arg Ser Phe Asp Asn Val Arg Gln Gly Asp Glu Leu Asp Val Pro Ala			
130	135	140	
Gln Val Ser Glu Lys Lys Leu Thr Pro Pro Pro Gly Asn Ser Ser Asp			
145	150	155	160
Asn Leu Glu Gln Gln Ile Ala Ser Thr Ser Gln Gln Ile Gly Ser Leu			
165	170	175	
Leu Ala Glu Asp Met Asn Ser Glu Gln Ala Ala Asn Met Ala Arg Gly			
180	185	190	
Trp Ala Ser Ser Gln Ala Ser Gly Ala Met Thr Asp Trp Leu Ser Arg			

195	200	205													
Phe	Gly	Thr	Ala	Arg	Ile	Thr	Leu	Gly	Val	Asp	Glu	Asp	Phe	Ser	Leu
210						215					220				
Lys	Asn	Ser	Gln	Phe	Asp	Phe	Leu	His	Pro	Trp	Tyr	Glu	Thr	Pro	Asp
225						230				235					240
Asn	Leu	Phe	Phe	Ser	Gln	His	Thr	Leu	His	Arg	Thr	Asp	Glu	Arg	Thr
						245			250						255
Gln	Ile	Asn	Asn	Gly	Leu	Gly	Trp	Arg	His	Phe	Thr	Pro	Thr	Trp	Met
					260			265							270
Ser	Gly	Ile	Asn	Phe	Phe	Asp	His	Asp	Leu	Ser	Arg	Tyr	His	Ser	
					275			280			285				
Arg	Ala	Gly	Ile	Gly	Ala	Glu	Tyr	Trp	Arg	Asp	Tyr	Leu	Lys	Leu	Ser
					290		295				300				
Ser	Asn	Gly	Tyr	Leu	Arg	Leu	Thr	Asn	Trp	Arg	Ser	Ala	Pro	Glu	Leu
					305		310			315					320
Asp	Asn	Asp	Tyr	Glu	Ala	Arg	Pro	Ala	Asn	Gly	Trp	Asp	Val	Arg	Ala
					325				330						335
Glu	Ser	Trp	Leu	Pro	Ala	Trp	Pro	His	Leu	Gly	Gly	Lys	Leu	Val	Tyr
					340				345						350
Glu	Gln	Tyr	Tyr	Gly	Asp	Glu	Val	Ala	Leu	Phe	Asp	Lys	Asp	Asp	Arg
					355			360			365				
Gln	Ser	Asn	Pro	His	Ala	Ile	Thr	Ala	Gly	Leu	Asn	Tyr	Thr	Pro	Phe
					370			375			380				
Pro	Leu	Met	Thr	Phe	Ser	Ala	Glu	Gln	Arg	Gln	Gly	Lys	Gln	Gly	Glu
					385		390			395					400
Asn	Asp	Thr	Arg	Phe	Ala	Val	Asp	Phe	Thr	Trp	Gln	Pro	Gly	Ser	Ala
					405				410						415
Met	Gln	Lys	Gln	Leu	Asp	Pro	Asn	Glu	Val	Ala	Ala	Arg	Arg	Ser	Leu
					420				425			430			
Ala	Gly	Ser	Arg	Tyr	Asp	Leu	Val	Asp	Arg	Asn	Asn	Ile	Val	Leu	
					435			440			445				
Glu	Tyr	Arg	Lys	Lys	Glu	Leu	Val	Arg	Leu	Thr	Leu	Thr	Asp	Pro	Val
					450			455			460				
Thr	Gly	Lys	Ser	Gly	Glu	Val	Lys	Ser	Leu	Val	Ser	Ser	Leu	Gln	Thr
					465		470			475					480
Lys	Tyr	Ala	Leu	Lys	Gly	Tyr	Asn	Val	Glu	Ala	Thr	Ala	Leu	Glu	Ala
					485				490						495
Ala	Gly	Gly	Lys	Val	Val	Thr	Thr	Gly	Lys	Asp	Ile	Leu	Val	Thr	Leu
					500				505						510
Pro	Ala	Tyr	Arg	Phe	Thr	Ser	Thr	Pro	Glu	Thr	Asp	Asn	Thr	Trp	Pro
					515				520						525
Ile	Glu	Val	Thr	Ala	Glu	Asp	Val	Lys	Gly	Asn	Leu	Ser	Asn	Arg	Glu
					530			535			540				
Gln	Ser	Met	Val	Val	Val	Gln	Ala	Pro	Thr	Leu	Ser	Gln	Lys	Asp	Ser
					545			550			555				560
Ser	Val	Ser	Leu	Ser	Thr	Gln	Thr	Leu	Asn	Ala	Asp	Ser	His	Ser	Thr
					565				570						575
Ala	Thr	Leu	Thr	Phe	Ile	Ala	His	Asp	Ala	Ala	Gly	Asn	Pro	Val	Val
					580				585						590
Gly	Leu	Val	Leu	Ser	Thr	Arg	His	Glu	Gly	Val	Gln	Asp	Ile	Thr	Leu
					595				600						605
Ser	Asp	Trp	Lys	Asp	Asn	Gly	Asp	Gly	Ser	Tyr	Thr	Gln	Ile	Leu	Thr
					610			615			620				
Thr	Gly	Ala	Met	Ser	Gly	Thr	Leu	Thr	Leu	Met	Pro	Gln	Leu	Asn	Gly
					625			630			635				640
Val	Asp	Ala	Ala	Lys	Ala	Pro	Ala	Val	Val	Asn	Ile	Ile	Ser	Val	Ser
					645				650						655
Ser	Ser	Arg	Thr	His	Ser	Ser	Ile	Lys	Ile	Asp	Lys	Asp	Arg	Tyr	Leu
					660				665						670
Ser	Gly	Asn	Pro	Ile	Glu	Val	Thr	Val	Glu	Leu	Arg	Asp	Glu	Asn	Asp
					675				680						685

Lys Pro Val Lys Glu Gln Lys Gln Gln Leu Asn Asn Ala Val Ser Ile
 690 695 700
 Asp Asn Val Lys Pro Gly Val Thr Thr Asp Trp Lys Glu Thr Ala Asp
 705 710 715 720
 Gly Val Tyr Lys Ala Thr Tyr Thr Ala Tyr Thr Lys Gly Ser Gly Leu
 725 730 735
 Thr Ala Lys Leu Leu Met Gln Asn Trp Asn Glu Asp Leu His Thr Ala
 740 745 750
 Gly Phe Ile Ile Asp Ala Asn Pro Gln Ser Ala Lys Ile Ala Thr Leu
 755 760 765
 Ser Ala Ser Asn Asn Gly Val Leu Ala Asn Glu Asn Ala Ala Asn Thr
 770 775 780
 Val Ser Val Asn Val Ala Asp Glu Gly Ser Asn Pro Ile Asn Asp His
 785 790 795 800
 Thr Val Thr Phe Ala Val Leu Ser Gly Ser Ala Thr Ser Phe Asn Asn
 805 810 815
 Gln Asn Thr Ala Lys Thr Asp Val Asn Gly Leu Ala Thr Phe Asp Leu
 820 825 830
 Lys Ser Ser Lys Gln Glu Asp Asn Thr Val Glu Val Thr Leu Glu Asn
 835 840 845
 Gly Val Lys Gln Thr Leu Ile Val Ser Phe Val Gly Asp Ser Ser Thr
 850 855 860
 Ala Gln Val Asp Leu Gln Lys Ser Lys Asn Glu Val Val Ala Asp Gly
 865 870 875 880
 Asn Asp Ser Val Thr Met Thr Ala Thr Val Arg Asp Ala Lys Gly Asn
 885 890 895
 Leu Leu Asn Asp Val Met Val Thr Phe Asn Val Asn Ser Ala Glu Ala
 900 905 910
 Lys Leu Ser Gln Thr Glu Val Asn Ser His Asp Gly Ile Ala Thr Ala
 915 920 925
 Thr Leu Thr Ser Leu Lys Asn Gly Asp Tyr Arg Val Thr Ala Ser Val
 930 935 940
 Ser Ser Gly Ser Gln Ala Asn Gln Gln Val Asn Phe Ile Gly Asp Gln
 945 950 955 960
 Ser Thr Ala Ala Leu Thr Leu Ser Val Pro Ser Gly Asp Ile Thr Val
 965 970 975
 Thr Asn Thr Ala Pro Gln Tyr Met Thr Ala Thr Leu Gln Asp Lys Asn
 980 985 990
 Gly Asn Pro Leu Lys Asp Lys Glu Ile Thr Phe Ser Val Pro Asn Asp
 995 1000 1005
 Val Ala Ser Lys Phe Ser Ile Ser Asn Gly Gly Lys Gly Met Thr Asp
 1010 1015 1020
 Ser Asn Gly Val Ala Ile Ala Ser Leu Thr Gly Thr Leu Ala Gly Thr
 1025 1030 1035 1040
 His Met Ile Met Ala Arg Leu Ala Asn Ser Asn Val Ser Asp Ala Gln
 1045 1050 1055
 Pro Met Thr Phe Val Ala Asp Lys Asp Arg Ala Val Val Val Leu Gln
 1060 1065 1070
 Thr Ser Lys Ala Glu Ile Ile Gly Asn Gly Val Asp Glu Thr Thr Leu
 1075 1080 1085
 Thr Ala Thr Val Lys Asp Pro Ser Asn His Pro Val Ala Gly Ile Thr
 1090 1095 1100
 Val Asn Phe Thr Met Pro Gln Asp Val Ala Ala Asn Phe Thr Leu Glu
 1105 1110 1115 1120
 Asn Asn Gly Ile Ala Ile Thr Gln Ala Asn Gly Glu Ala His Val Thr
 1125 1130 1135
 Leu Lys Gly Lys Lys Ala Gly Thr His Thr Val Thr Ala Thr Leu Gly
 1140 1145 1150
 Asn Asn Asn Thr Ser Asp Ser Gln Pro Val Thr Phe Val Ala Asp Lys
 1155 1160 1165
 Ala Ser Ala Gln Val Val Leu Gln Ile Ser Lys Asp Glu Ile Thr Gly

1170	1175	1180
Asn Gly Val Asp Ser Ala Thr Leu Thr Ala Thr Val Lys Asp Gln Phe		
1185	1190	1195
Asp Asn Glu Val Asn Asn Leu Pro Val Thr Phe Ser Ser Ala Ser Ser		1200
1205	1210	1215
Gly Leu Thr Leu Thr Pro Gly Val Ser Asn Thr Asn Glu Ser Gly Ile		
1220	1225	1230
Ala Gln Ala Thr Leu Ala Gly Val Ala Phe Gly Glu Lys Thr Val Thr		
1235	1240	1245
Ala Ser Leu Ala Asn Asn Gly Ala Ser Asp Asn Lys Thr Val His Phe		
1250	1255	1260
Ile Gly Asp Thr Ala Ala Ala Lys Ile Ile Glu Leu Ala Pro Val Pro		
1265	1270	1275
Asp Ser Ile Ile Ala Gly Thr Pro Gln Asn Ser Ser Gly Ser Val Ile		1280
1285	1290	1295
Thr Ala Thr Val Val Asp Asn Asn Gly Phe Pro Val Lys Gly Val Thr		
1300	1305	1310
Val Asn Phe Thr Ser Asn Ala Ala Thr Ala Glu Met Thr Asn Gly Gly		
1315	1320	1325
Gln Ala Val Thr Asn Glu Gln Gly Lys Ala Thr Val Thr Tyr Thr Asn		
1330	1335	1340
Thr Arg Ser Ser Ile Glu Ser Gly Ala Arg Pro Asp Thr Val Glu Ala		
1345	1350	1355
Ser Leu Glu Asn Gly Ser Ser Thr Leu Ser Thr Ser Ile Asn Val Asn		1360
1365	1370	1375
Ala Asp Ala Ser Thr Ala His Leu Thr Leu Leu Gln Ala Leu Phe Asp		
1380	1385	1390
Thr Val Ser Ala Gly Glu Thr Thr Ser Leu Tyr Ile Glu Val Lys Asp		
1395	1400	1405
Asn Tyr Gly Asn Gly Val Pro Gln Gln Glu Val Thr Leu Ser Val Ser		
1410	1415	1420
Pro Ser Glu Gly Val Thr Pro Ser Asn Asn Ala Ile Tyr Thr Thr Asn		
1425	1430	1435
His Asp Gly Asn Phe Tyr Ala Ser Phe Thr Ala Thr Lys Ala Gly Val		1440
1445	1450	1455
Tyr Gln Leu Thr Ala Thr Leu Glu Asn Gly Asp Ser Met Gln Gln Thr		
1460	1465	1470
Val Thr Tyr Val Pro Asn Val Ala Asn Ala Glu Ile Thr Leu Ala Ala		
1475	1480	1485
Ser Lys Asp Pro Val Ile Ala Asp Asn Asn Asp Leu Thr Thr Leu Thr		
1490	1495	1500
Ala Thr Val Ala Asp Thr Glu Gly Asn Ala Ile Ala Asn Thr Glu Val		
1505	1510	1515
Thr Phe Thr Leu Pro Glu Asp Val Lys Ala Asn Phe Thr Leu Ser Asp		1520
1525	1530	1535
Gly Gly Lys Val Ile Thr Asp Ala Glu Gly Lys Ala Lys Val Thr Leu		
1540	1545	1550
Lys Gly Thr Lys Ala Gly Ala His Thr Val Thr Ala Ser Met Thr Gly		
1555	1560	1565
Gly Lys Ser Glu Gln Leu Val Val Asn Phe Ile Ala Asp Thr Leu Thr		
1570	1575	1580
Ala Gln Val Asn Leu Asn Val Thr Glu Asp Asn Phe Ile Ala Asn Asn		
1585	1590	1595
Val Gly Met Thr Arg Leu Gln Ala Thr Val Thr Asp Gly Asn Gly Asn		1600
1605	1610	1615
Pro Leu Ala Asn Glu Ala Val Thr Phe Thr Leu Pro Ala Asp Val Ser		
1620	1625	1630
Ala Ser Phe Thr Leu Gly Gln Gly Ser Ala Ile Thr Asp Ile Asn		
1635	1640	1645
Gly Lys Ala Glu Val Thr Leu Ser Gly Thr Lys Ser Gly Thr Tyr Pro		
1650	1655	1660

Val Thr Val Ser Val Asn Asn Tyr Gly Val Ser Asp Thr Lys Gln Val
 1665 1670 1675 1680
 Thr Leu Ile Ala Asp Ala Gly Thr Ala Lys Leu Ala Ser Leu Thr Ser
 1685 1690 1695
 Val Tyr Ser Phe Val Val Ser Thr Thr Glu Gly Ala Thr Met Thr Ala
 1700 1705 1710
 Ser Val Thr Asp Ala Asn Gly Asn Pro Val Glu Gly Ile Lys Val Asn
 1715 1720 1725
 Phe Arg Gly Thr Ser Val Thr Leu Ser Ser Thr Ser Val Glu Thr Asp
 1730 1735 1740
 Asp Arg Gly Phe Ala Glu Ile Leu Val Thr Ser Thr Glu Val Gly Leu
 1745 1750 1755 1760
 Lys Thr Val Ser Ala Ser Leu Ala Asp Lys Pro Thr Glu Val Ile Ser
 1765 1770 1775
 Arg Leu Leu Asn Ala Ser Ala Asp Val Asn Ser Ala Thr Ile Thr Ser
 1780 1785 1790
 Leu Glu Ile Pro Glu Gly Gln Val Met Val Ala Gln Asp Val Ala Val
 1795 1800 1805
 Lys Ala His Val Asn Asp Gln Phe Gly Asn Pro Val Ala His Gln Pro
 1810 1815 1820
 Val Thr Phe Ser Ala Glu Pro Ser Ser Gln Met Ile Ile Ser Gln Asn
 1825 1830 1835 1840
 Thr Val Ser Thr Asn Thr Gln Gly Val Ala Glu Val Thr Met Thr Pro
 1845 1850 1855
 Glu Arg Asn Gly Ser Tyr Met Val Lys Ala Ser Leu Pro Asn Gly Ala
 1860 1865 1870
 Ser Leu Glu Lys Gln Leu Glu Ala Ile Asp Glu Lys Leu Thr Leu Thr
 1875 1880 1885
 Ala Ser Ser Pro Leu Ile Gly Val Tyr Ala Pro Thr Gly Ala Thr Leu
 1890 1895 1900
 Thr Ala Thr Leu Thr Ser Ala Asn Gly Thr Pro Val Glu Gly Gln Val
 1905 1910 1915 1920
 Ile Asn Phe Ser Val Thr Pro Glu Gly Ala Thr Leu Ser Gly Gly Lys
 1925 1930 1935
 Val Arg Thr Asn Ser Ser Gly Gln Ala Pro Val Val Leu Thr Ser Asn
 1940 1945 1950
 Lys Val Gly Thr Tyr Thr Val Thr Ala Ser Phe His Asn Gly Val Thr
 1955 1960 1965
 Ile Gln Thr Gln Thr Thr Val Lys Val Thr Gly Asn Ser Ser Thr Ala
 1970 1975 1980
 His Val Ala Ser Phe Ile Ala Asp Pro Ser Thr Ile Ala Ala Thr Asn
 1985 1990 1995 2000
 Thr Asp Leu Ser Thr Leu Lys Ala Thr Val Glu Asp Gly Ser Gly Asn
 2005 2010 2015
 Leu Ile Glu Gly Leu Thr Val Tyr Phe Ala Leu Lys Ser Gly Ser Ala
 2020 2025 2030
 Thr Leu Thr Ser Leu Thr Ala Val Thr Asp Gln Asn Gly Ile Ala Thr
 2035 2040 2045
 Thr Ser Val Lys Gly Ala Met Thr Gly Ser Val Thr Val Ser Ala Val
 2050 2055 2060
 Thr Thr Ala Gly Gly Met Gln Thr Val Asp Ile Thr Leu Val Ala Gly
 2065 2070 2075 2080
 Pro Ala Asp Thr Ser Gln Ser Val Leu Lys Ser Asn Arg Ser Ser Leu
 2085 2090 2095
 Lys Gly Asp Tyr Thr Asp Ser Ala Glu Leu Arg Leu Val Leu His Asp
 2100 2105 2110
 Ile Ser Gly Asn Pro Ile Lys Val Ser Glu Gly Met Glu Phe Val Gln
 2115 2120 2125
 Ser Gly Thr Asn Val Pro Tyr Ile Lys Ile Ser Ala Ile Asp Tyr Ser
 2130 2135 2140
 Leu Asn Ile Asn Gly Asp Tyr Lys Ala Thr Val Thr Gly Gly Glu

2145	2150	2155	2160
Gly Ile Ala Thr Leu Ile Pro Val Leu Asn Gly Val His Gln Ala Gly			
2165	2170	2175	
Leu Ser Thr Thr Ile Gln Phe Thr Arg Ala Glu Asp Lys Ile Met Ser			
2180	2185	2190	
Gly Thr Val Ser Val Asn Gly Thr Asp Leu Pro Thr Thr Thr Phe Pro			
2195	2200	2205	
Ser Gln Gly Phe Thr Gly Ala Tyr Tyr Gln Leu Asn Asn Asp Asn Phe			
2210	2215	2220	
Ala Pro Gly Lys Thr Ala Ala Asp Tyr Glu Phe Ser Ser Ser Ala Ser			
2225	2230	2235	2240
Trp Val Asp Val Asp Ala Thr Gly Lys Val Thr Phe Lys Asn Val Gly			
2245	2250	2255	
Ser Asn Ser Glu Arg Ile Thr Ala Thr Pro Lys Ser Gly Gly Pro Ser			
2260	2265	2270	
Tyr Val Tyr Glu Ile Arg Val Lys Ser Trp Trp Val Asn Ala Gly Glu			
2275	2280	2285	
Ala Phe Met Ile Tyr Ser Leu Ala Glu Asn Phe Cys Ser Ser Asn Gly			
2290	2295	2300	
Tyr Thr Leu Pro Arg Ala Asn Tyr Leu Asn His Cys Ser Ser Arg Gly			
2305	2310	2315	2320
Ile Gly Ser Leu Tyr Ser Glu Trp Gly Asp Met Gly His Tyr Thr Thr			
2325	2330	2335	
Asp Ala Gly Phe Gln Ser Asn Met Tyr Trp Ser Ser Ser Pro Ala Asn			
2340	2345	2350	
Ser Ser Glu Gln Tyr Val Val Ser Leu Ala Thr Gly Asp Gln Ser Val			
2355	2360	2365	
Phe Glu Lys Leu Gly Phe Ala Tyr Ala Thr Cys Tyr Lys Asn Leu			
2370	2375	2380	

<210> 303

<211> 61

<212> PRT

<213> E. Coli

<400> 303

Met Ser Lys Gly Ala Leu Tyr Glu Phe Asn Asn Pro Asp Gln Leu Lys			
1	5	10	15
Ile Pro Leu Pro His Lys His Ile Ala Ser Thr Phe Asn Asp Ile Met			
20	25	30	
Ser Lys Asp Val Gly Tyr Ala Tyr Val Ser Leu Leu Tyr Ala Cys Pro			
35	40	45	
Leu Lys Thr His Ser Leu Arg Leu Asn Pro Phe Ser Lys			
50	55	60	

<210> 304

<211> 398

<212> PRT

<213> E. Coli

<400> 304

Met Gln Val Ala Glu Gln Arg Ile Gln Leu Ala Glu Ala Gln Ala Lys			
1	5	10	15
Ala Val Ala Thr Gln Asp Gly Pro Gln Ile Asp Phe Ser Ala Asp Met			
20	25	30	
Glu Arg Gln Lys Met Ser Ala Glu Gly Leu Met Gly Pro Phe Ala Leu			
35	40	45	
Asn Asp Pro Ala Ala Gly Thr Thr Gly Pro Trp Tyr Thr Asn Gly Thr			
50	55	60	

Phe Gly Leu Thr Ala Gly Trp His Leu Asp Ile Trp Gly Lys Asn Arg
 65 70 75 80
 Ala Glu Val Thr Ala Arg Leu Gly Thr Val Lys Ala Arg Ala Ala Glu
 85 90 95
 Arg Glu Gln Thr Arg Gln Leu Leu Ala Gly Ser Val Ala Arg Leu Tyr
 100 105 110
 Trp Glu Trp Gln Thr Gln Ala Ala Leu Asn Thr Val Leu Gln Gln Ile
 115 120 125
 Glu Lys Glu Gln Asn Thr Ile Ile Ala Thr Asp Arg Gln Leu Tyr Gln
 130 135 140
 Asn Gly Ile Thr Ser Ser Val Glu Gly Val Glu Thr Asp Ile Asn Ala
 145 150 155 160
 Ser Lys Thr Arg Gln Gln Leu Asn Asp Val Ala Gly Lys Met Lys Ile
 165 170 175
 Ile Glu Ala Arg Leu Ser Ala Leu Thr Asn Asn Gln Thr Lys Ser Leu
 180 185 190
 Lys Leu Lys Pro Val Ala Leu Pro Lys Val Ala Ser Gln Leu Pro Asp
 195 200 205
 Glu Leu Gly Tyr Ser Leu Leu Ala Arg Arg Ala Asp Leu Gln Ala Ala
 210 215 220
 His Trp Tyr Val Glu Ser Ser Leu Ser Thr Ile Asp Ala Ala Lys Ala
 225 230 235 240
 Ala Phe Tyr Pro Asp Ile Asn Leu Met Ala Phe Leu Gln Gln Asp Ala
 245 250 255
 Leu His Leu Ser Asp Leu Phe Arg His Ser Ala Gln Gln Met Gly Val
 260 265 270
 Thr Ala Gly Leu Thr Leu Pro Ile Phe Asp Ser Gly Arg Leu Asn Ala
 275 280 285
 Asn Leu Asp Ile Ala Lys Ala Glu Ser Asn Leu Ser Ile Ala Ser Tyr
 290 295 300
 Asn Lys Ala Val Val Glu Ala Val Asn Asp Val Ala Arg Ala Ala Ser
 305 310 315 320
 Gln Val Gln Thr Leu Ala Glu Lys Asn Gln His Gln Ala Gln Ile Glu
 325 330 335
 Arg Asp Ala Leu Arg Val Val Gly Leu Ala Gln Ala Arg Phe Asn Ala
 340 345 350
 Gly Ile Ile Ala Gly Ser Arg Val Ser Glu Ala Arg Ile Pro Ala Leu
 355 360 365
 Arg Glu Arg Ala Asn Gly Leu Leu Leu Gln Gly Gln Trp Leu Asp Ala
 370 375 380
 Ser Ile Gln Leu Thr Gly Ala Leu Gly Gly Gly Tyr Lys Arg
 385 390 395

<210> 305
<211> 96
<212> PRT
<213> E. Coli

<400> 305
Met Tyr Cys His Ala Lys Leu Lys Asn Ile Ser Gln His Thr Val Ile
1 5 10 15
Ser Ala His Leu Phe Leu Pro Asp Tyr Ser Pro Met Asn Arg Asp Ser
20 25 30
Phe Tyr Pro Ala Ile Ala Cys Phe Pro Leu Leu Leu Met Leu Ala Gly
35 40 45
Cys Ala Pro Met His Glu Thr Arg Gln Ala Leu Ser Gln Gln Thr Pro
50 55 60
Ala Ala Gln Val Asp Thr Ala Leu Pro Thr Ala Leu Lys Met Val Gly
65 70 75 80
Gln Thr Ala Asn Gly Gly Trp Ser Ile Thr Ile Ile Asn Ser Leu Pro

85

90

95

<210> 306
 <211> 315
 <212> PRT
 <213> E. Coli

<400> 306

Met	Arg	Val	Leu	Leu	Ala	Pro	Met	Glu	Gly	Val	Leu	Asp	Ser	Leu	Val
1							5			10				15	
Arg	Glu	Leu	Leu	Thr	Glu	Val	Asn	Asp	Tyr	Asp	Leu	Cys	Ile	Thr	Glu
	20							25					30		
Phe	Val	Arg	Val	Val	Asp	Gln	Leu	Leu	Pro	Val	Lys	Val	Phe	His	Arg
	35						40				45				
Ile	Cys	Pro	Glu	Leu	Gln	Asn	Ala	Ser	Arg	Thr	Pro	Ser	Gly	Thr	Leu
	50						55				60				
Val	Arg	Val	Gln	Leu	Leu	Gly	Gln	Phe	Pro	Gln	Trp	Leu	Ala	Glu	Asn
	65					70				75			80		
Ala	Ala	Arg	Ala	Val	Glu	Leu	Gly	Ser	Trp	Gly	Val	Asp	Leu	Asn	Cys
							85			90			95		
Gly	Cys	Pro	Ser	Lys	Thr	Val	Asn	Gly	Ser	Gly	Gly	Gly	Ala	Thr	Leu
						100			105				110		
Leu	Lys	Asp	Pro	Glu	Leu	Ile	Tyr	Gln	Gly	Ala	Lys	Ala	Met	Arg	Glu
						115			120			125			
Ala	Val	Pro	Ala	His	Leu	Pro	Val	Ser	Val	Lys	Val	Arg	Leu	Gly	Trp
						130			135			140			
Asp	Ser	Gly	Glu	Lys	Lys	Phe	Glu	Ile	Ala	Asp	Ala	Val	Gln	Gln	Ala
	145					150				155			160		
Gly	Ala	Thr	Glu	Leu	Val	Val	His	Gly	Arg	Thr	Lys	Glu	Gln	Gly	Tyr
						165			170			175			
Arg	Ala	Glu	His	Ile	Asp	Trp	Gln	Ala	Ile	Gly	Asp	Ile	Arg	Gln	Arg
						180			185			190			
Leu	Asn	Ile	Pro	Val	Ile	Ala	Asn	Gly	Glu	Ile	Trp	Asp	Trp	Gln	Ser
						195			200			205			
Ala	Gln	Gln	Cys	Met	Ala	Ile	Ser	Gly	Cys	Asp	Ala	Val	Met	Ile	Gly
						210			215			220			
Arg	Gly	Ala	Leu	Asn	Ile	Pro	Asn	Leu	Ser	Arg	Val	Val	Lys	Tyr	Asn
	225					230				235			240		
Glu	Pro	Arg	Met	Pro	Trp	Pro	Glu	Val	Val	Ala	Leu	Leu	Gln	Lys	Tyr
						245			250			255			
Thr	Arg	Leu	Glu	Lys	Gln	Gly	Asp	Thr	Gly	Leu	Tyr	His	Val	Ala	Arg
						260			265			270			
Ile	Lys	Gln	Trp	Leu	Ser	Tyr	Leu	Arg	Lys	Glu	Tyr	Asp	Glu	Ala	Thr
						275			280			285			
Glu	Leu	Phe	Gln	His	Val	Arg	Val	Leu	Asn	Asn	Ser	Pro	Asp	Ile	Ala
						290			295			300			
Arg	Ala	Ile	Gln	Ala	Ile	Asp	Ile	Glu	Lys	Leu					
	305					310				315					

<210> 307
 <211> 296
 <212> PRT
 <213> E. Coli

<400> 307

Met	Thr	Ile	Ser	Thr	Thr	Ser	Thr	Pro	His	Asp	Ala	Val	Phe	Lys	Ser
1							5			10			15		
Phe	Leu	Arg	His	Pro	Asp	Thr	Ala	Arg	Asp	Phe	Ile	Asp	Ile	His	Leu
							20			25			30		

Pro Ala Pro Leu Arg Lys Leu Cys Asp Leu Thr Thr Leu Lys Leu Glu
 35 40 45
 Pro Asn Ser Phe Ile Asp Glu Asp Leu Arg Gln Tyr Tyr Ser Asp Leu
 50 55 60
 Leu Trp Ser Val Lys Thr Gln Glu Gly Val Gly Tyr Ile Tyr Val Val
 65 70 75 80
 Ile Glu His Gln Ser Lys Pro Glu Glu Leu Met Ala Phe Arg Met Met
 85 90 95
 Arg Tyr Ser Ile Ala Ala Met Gln Asn His Leu Asp Ala Gly Tyr Lys
 100 105 110
 Glu Leu Pro Leu Val Leu Pro Met Leu Phe Tyr His Gly Cys Arg Ser
 115 120 125
 Pro Tyr Pro Tyr Ser Leu Cys Trp Leu Asp Glu Phe Ala Glu Pro Ala
 130 135 140
 Ile Ala Arg Lys Ile Tyr Ser Ser Ala Phe Pro Leu Val Asp Ile Thr
 145 150 155 160
 Val Val Pro Asp Asp Glu Ile Met Gln His Arg Lys Met Ala Leu Leu
 165 170 175
 Glu Leu Ile Gln Lys His Ile Arg Gln Arg Asp Leu Leu Gly Leu Val
 180 185 190
 Asp Gln Ile Val Ser Leu Leu Val Thr Gly Asn Thr Asn Asp Arg Gln
 195 200 205
 Leu Lys Ala Leu Phe Asn Tyr Val Leu Gln Thr Gly Asp Ala Gln Arg
 210 215 220
 Phe Arg Ala Phe Ile Gly Glu Ile Ala Glu Arg Ala Pro Gln Glu Lys
 225 230 235 240
 Glu Lys Leu Met Thr Ile Ala Asp Arg Leu Arg Glu Glu Gly Ala Met
 245 250 255
 Gln Gly Lys His Glu Glu Ala Leu Arg Ile Ala Gln Glu Met Leu Asp
 260 265 270
 Arg Gly Leu Asp Arg Glu Leu Val Met Met Val Thr Arg Leu Ser Pro
 275 280 285
 Asp Asp Leu Ile Ala Gln Ser His
 290 295

<210> 308
 <211> 555
 <212> PRT
 <213> E. Coli

<400> 308

<400> 3
 Met Ala Gln Phe Val Tyr Thr Met His Arg Val Gly Lys Val Val Pro
 1 5 10 15
 Pro Lys Arg His Ile Leu Lys Asn Ile Ser Leu Ser Phe Phe Pro Gly
 20 25 30
 Ala Lys Ile Gly Val Leu Gly Leu Asn Gly Ala Gly Lys Ser Thr Leu
 35 40 45
 Leu Arg Ile Met Ala Gly Ile Asp Lys Asp Ile Glu Gly Glu Ala Arg
 50 55 60
 Pro Gln Pro Asp Ile Lys Ile Gly Tyr Leu Pro Gln Glu Pro Gln Leu
 65 70 75 80
 Asn Pro Glu His Thr Val Arg Glu Ser Ile Glu Glu Ala Val Ser Glu
 85 90 95
 Val Val Asn Ala Leu Lys Arg Leu Asp Glu Val Tyr Ala Leu Tyr Ala
 100 105 110
 Asp Pro Asp Ala Asp Phe Asp Lys Leu Ala Ala Glu Gln Gly Arg Leu
 115 120 125
 Glu Glu Ile Ile Gln Ala His Asp Gly His Asn Leu Asn Val Gln Leu
 130 135 140

Glu Arg Ala Ala Asp Ala Leu Arg Leu Pro Asp Trp Asp Ala Lys Ile
 145 150 155 160
 Ala Asn Leu Ser Gly Gly Glu Arg Arg Val Ala Leu Cys Arg Leu
 165 170 175
 Leu Leu Glu Lys Pro Asp Met Leu Leu Leu Asp Glu Pro Thr Asn His
 180 185 190
 Leu Asp Ala Glu Ser Val Ala Trp Leu Glu Arg Phe Leu His Asp Phe
 195 200 205
 Glu Gly Thr Val Val Ala Ile Thr His Asp Arg Tyr Phe Leu Asp Asn
 210 215 220
 Val Ala Gly Trp Ile Leu Glu Leu Asp Arg Gly Glu Gly Ile Pro Trp
 225 230 235 240
 Glu Gly Asn Tyr Ser Ser Trp Leu Glu Gln Lys Asp Gln Arg Leu Ala
 245 250 255
 Gln Glu Ala Ser Gln Glu Ala Ala Arg Arg Lys Ser Ile Glu Lys Glu
 260 265 270
 Leu Glu Trp Val Arg Gln Gly Thr Lys Gly Arg Gln Ser Lys Gly Lys
 275 280 285
 Ala Arg Leu Ala Arg Phe Glu Glu Leu Asn Ser Thr Glu Tyr Gln Lys
 290 295 300
 Arg Asn Glu Thr Asn Glu Leu Phe Ile Pro Pro Gly Pro Arg Leu Gly
 305 310 315 320
 Asp Lys Val Leu Glu Val Ser Asn Leu Arg Lys Ser Tyr Gly Asp Arg
 325 330 335
 Leu Leu Ile Asp Asp Leu Ser Phe Ser Ile Pro Lys Gly Ala Ile Val
 340 345 350
 Gly Ile Ile Gly Pro Asn Gly Ala Gly Lys Ser Thr Leu Phe Arg Met
 355 360 365
 Ile Ser Gly Gln Glu Gln Pro Asp Ser Gly Thr Ile Thr Leu Gly Glu
 370 375 380
 Thr Val Lys Leu Ala Ser Val Asp Gln Phe Arg Asp Ser Met Asp Asn
 385 390 395 400
 Ser Lys Thr Val Trp Glu Glu Val Ser Gly Gly Leu Asp Ile Met Lys
 405 410 415
 Ile Gly Asn Thr Glu Met Pro Ser Arg Ala Tyr Val Gly Arg Phe Asn
 420 425 430
 Phe Lys Gly Val Asp Gln Gly Lys Arg Val Gly Glu Leu Ser Gly Gly
 435 440 445
 Glu Arg Gly Arg Leu His Leu Ala Lys Leu Leu Gln Val Gly Gly Asn
 450 455 460
 Met Leu Leu Leu Asp Glu Pro Thr Asn Asp Leu Asp Ile Glu Thr Leu
 465 470 475 480
 Arg Ala Leu Glu Asn Ala Leu Leu Glu Phe Pro Gly Cys Ala Met Val
 485 490 495
 Ile Ser His Asp Arg Trp Phe Leu Asp Arg Ile Ala Thr His Ile Leu
 500 505 510
 Asp Tyr Gln Asp Glu Gly Lys Val Glu Phe Phe Glu Gly Asn Phe Thr
 515 520 525
 Glu Tyr Glu Glu Tyr Lys Lys Arg Thr Leu Gly Ala Asp Ala Leu Glu
 530 535 540
 Pro Lys Arg Ile Lys Tyr Lys Arg Ile Ala Lys
 545 550

<210> 309
 <211> 173
 <212> PRT
 <213> E. Coli

<400> 309

Met Ser Lys Pro Lys Tyr Pro Phe Glu Lys Arg Leu Glu Val Val Asn
 1 5 10 15
 His Tyr Phe Thr Thr Asp Asp Gly Tyr Arg Ile Ile Ser Ala Arg Phe
 20 25 30
 Gly Val Pro Arg Thr Gln Val Arg Thr Trp Val Ala Leu Tyr Glu Lys
 35 40 45
 His Gly Glu Lys Gly Leu Ile Pro Lys Pro Lys Gly Val Ser Ala Asp
 50 55 60
 Pro Glu Leu Arg Ile Lys Val Val Lys Ala Val Ile Glu Gln His Met
 65 70 75 80
 Ser Leu Asn Gln Ala Ala Ala His Phe Met Leu Ala Gly Ser Gly Ser
 85 90 95
 Val Ala Arg Trp Leu Lys Val Tyr Glu Glu Arg Gly Glu Ala Gly Leu
 100 105 110
 Arg Ala Leu Lys Ile Gly Thr Lys Arg Asn Ile Ala Ile Ser Val Asp
 115 120 125
 Pro Glu Lys Ala Ala Ser Ala Leu Glu Leu Ser Lys Asp Arg Arg Ile
 130 135 140
 Glu Asp Leu Glu Arg Gln Val Arg Phe Leu Glu Thr Arg Leu Met Tyr
 145 150 155 160
 Leu Lys Lys Leu Lys Ala Leu Ala His Pro Thr Lys Lys
 165 170

<210> 310

<211> 283

<212> PRT

<213> E. Coli

<400> 310

Met Lys Val Leu Asn Glu Leu Arg Gln Phe Tyr Pro Leu Asp Glu Leu
 1 5 10 15
 Leu Arg Ala Ala Glu Ile Pro Arg Ser Thr Phe Tyr Tyr His Leu Lys
 20 25 30
 Ala Leu Ser Lys Pro Asp Lys Tyr Ala Asp Val Lys Lys Arg Ile Ser
 35 40 45
 Glu Ile Tyr His Glu Asn Arg Gly Arg Tyr Gly Tyr Arg Arg Val Thr
 50 55 60
 Leu Ser Leu His Arg Glu Gly Lys Gln Ile Asn His Lys Ala Val Gln
 65 70 75 80
 Arg Leu Met Gly Thr Leu Ser Leu Lys Ala Ala Ile Lys Val Lys Arg
 85 90 95
 Tyr Arg Ser Tyr Arg Gly Glu Val Gly Gln Thr Ala Pro Asn Val Leu
 100 105 110
 Gln Arg Asp Phe Lys Ala Thr Arg Pro Asn Glu Lys Trp Val Thr Asp
 115 120 125
 Val Thr Glu Phe Ala Val Asn Gly Arg Lys Leu Tyr Leu Ser Pro Val
 130 135 140
 Ile Asp Leu Phe Asn Asn Glu Val Ile Ser Tyr Ser Leu Ser Glu Arg
 145 150 155 160
 Pro Val Met Asn Met Val Glu Asn Met Leu Asp Gln Ala Phe Lys Lys
 165 170 175
 Leu Asn Pro His Glu His Pro Val Leu His Ser Asp Gln Gly Trp Gln
 180 185 190
 Tyr Arg Met Arg Arg Tyr Gln Asn Ile Leu Lys Glu His Gly Ile Lys
 195 200 205
 Gln Ser Met Ser Arg Lys Gly Asn Cys Leu Asp Asn Ala Val Val Glu
 210 215 220
 Cys Phe Phe Gly Thr Leu Lys Ser Glu Cys Phe Tyr Leu Asp Glu Phe
 225 230 235 240
 Ser Asn Ile Ser Glu Leu Lys Asp Ala Val Thr Glu Tyr Ile Glu Tyr

245	250	255
Tyr Asn Ser Arg Arg Ile Ser Leu Lys	Leu Lys Gly Leu Thr Pro Ile	
260	265	270
Glu Tyr Arg Asn Gln Thr Tyr Met Pro Arg Val		
275	280	

<210> 311
<211> 38
<212> PRT
<213> E. Coli

<400> 311		
Met Lys Val Arg Ala Ser Val Lys Lys	Leu Cys Arg Asn Cys Lys Ile	
1 5	10	15
Val Lys Arg Asp Gly Val Ile Arg Val	Ile Cys Ser Ala Glu Pro Lys	
20	25	30
His Lys Gln Arg Gln Gly		
35		

<210> 312
<211> 443
<212> PRT
<213> E. Coli

<400> 312		
Met Ala Lys Gln Pro Gly Leu Asp Phe Gln Ser Ala Lys Gly Gly Leu		
1 5	10	15
Gly Glu Leu Lys Arg Arg Leu Leu Phe Val Ile Gly Ala Leu Ile Val		
20 25	30	
Phe Arg Ile Gly Ser Phe Ile Pro Ile Pro Gly Ile Asp Ala Ala Val		
35 40	45	
Leu Ala Lys Leu Leu Glu Gln Gln Arg Gly Thr Ile Ile Glu Met Phe		
50 55	60	
Asn Met Phe Ser Gly Gly Ala Leu Ser Arg Ala Ser Ile Phe Ala Leu		
65 70	75	80
Gly Ile Met Pro Tyr Ile Ser Ala Ser Ile Ile Ile Gln Leu Leu Thr		
85 90	95	
Val Val His Pro Thr Leu Ala Glu Ile Lys Lys Glu Gly Glu Ser Gly		
100 105	110	
Arg Arg Lys Ile Ser Gln Tyr Thr Arg Tyr Gly Thr Leu Val Leu Ala		
115 120	125	
Ile Phe Gln Ser Ile Gly Ile Ala Thr Gly Leu Pro Asn Met Pro Gly		
130 135	140	
Met Gln Gly Leu Val Ile Asn Pro Gly Phe Ala Phe Tyr Phe Thr Ala		
145 150	155	160
Val Val Ser Leu Val Thr Gly Thr Met Phe Leu Met Trp Leu Gly Glu		
165 170	175	
Gln Ile Thr Glu Arg Gly Ile Gly Asn Gly Ile Ser Ile Ile Ile Phe		
180 185	190	
Ala Gly Ile Val Ala Gly Leu Pro Pro Ala Ile Ala His Thr Ile Glu		
195 200	205	
Gln Ala Arg Gln Gly Asp Leu His Phe Leu Val Leu Leu Leu Val Ala		
210 215	220	
Val Leu Val Phe Ala Val Thr Phe Phe Val Val Phe Val Glu Arg Gly		
225 230	235	240
Gln Arg Arg Ile Val Val Asn Tyr Ala Lys Arg Gln Gln Gly Arg Arg		
245 250	255	
Val Tyr Ala Ala Gln Ser Thr His Leu Pro Leu Lys Val Asn Met Ala		
260 265	270	
Gly Val Ile Pro Ala Ile Phe Ala Ser Ser Ile Ile Leu Phe Pro Ala		

275	280	285
Thr Ile Ala Ser Trp Phe Gly	Gly Gly Thr Gly	Trp Asn Trp Leu Thr
290	295	300
Thr Ile Ser Leu Tyr Leu Gln Pro Gly Gln	Pro Leu Tyr Val	Leu Leu
305	310	315
Tyr Ala Ser Ala Ile Ile Phe Phe Cys	Phe Tyr Thr Ala	Leu Val
325	330	335
Phe Asn Pro Arg Glu Thr Ala Asp	Asn Leu Lys Lys	Ser Gly Ala Phe
340	345	350
Val Pro Gly Ile Arg Pro Gly	Glu Gln Thr Ala Lys	Tyr Ile Asp Lys
355	360	365
Val Met Thr Arg Leu Thr Leu Val	Gly Ala Leu	Tyr Ile Thr Phe Ile
370	375	380
Cys Leu Ile Pro Glu Phe Met Arg Asp Ala	Met Lys Val	Pro Phe Tyr
385	390	395
Phe Gly Gly Thr Ser Leu Leu Ile Val Val	Val Val Ile Met	Asp Phe
405	410	415
Met Ala Gln Val Gln Thr Leu Met	Met Ser Ser Gln	Tyr Glu Ser Ala
420	425	430
Leu Lys Lys Ala Asn Leu Lys Gly	Tyr Gly Arg	
435	440	

<210> 313

<211> 144

<212> PRT

<213> E. Coli

<400> 313

Met Arg Leu Asn Thr Leu Ser Pro Ala	Glu Gly Ser Lys Lys	Ala Gly
1	5	10
Lys Arg Leu Gly Arg Gly Ile Gly	Ser Gly Leu Gly Lys	Thr Gly Gly
20	25	30
Arg Gly His Lys Gly Gln Lys	Ser Arg Ser Gly Gly	Val Arg Arg
35	40	45
Gly Phe Glu Gly Gly Gln	Met Pro Leu Tyr Arg Arg	Leu Pro Lys Phe
50	55	60
Gly Phe Thr Ser Arg Lys Ala Ala	Ile Thr Ala Glu Ile Arg	Leu Ser
65	70	75
Asp Leu Ala Lys Val Glu Gly Gly	Val Val Asp Leu Asn	Thr Leu Lys
85	90	95
Ala Ala Asn Ile Ile Gly Ile Gln	Ile Glu Phe Ala Lys	Val Ile Leu
100	105	110
Ala Gly Glu Val Thr Thr Pro Val	Thr Val Arg Gly	Leu Arg Val Thr
115	120	125
Lys Gly Ala Arg Ala Ala Ile Glu	Ala Ala Gly Gly	Lys Ile Glu Glu
130	135	140

<210> 314

<211> 59

<212> PRT

<213> E. Coli

<400> 314

Met Ala Lys Thr Ile Lys Ile Thr Gln	Thr Arg Ser Ala Ile	Gly Arg
1	5	10
Leu Pro Lys His Lys Ala Thr Leu	Leu Gly Leu Gly	Leu Arg Arg Ile
20	25	30
Gly His Thr Val Glu Arg Glu Asp	Thr Pro Ala Ile Arg	Gly Met Ile

35	40	45
Asn Ala Val Ser Phe Met Val Lys Val Glu Glu		
50	55	

<210> 315
<211> 167
<212> PRT
<213> E. Coli

<400> 315		
Met Ala His Ile Glu Lys Gln Ala Gly Glu Leu Gln Glu Lys Leu Ile		
1	5	10
Ala Val Asn Arg Val Ser Lys Thr Val Lys Gly Gly Arg Ile Phe Ser		
20	25	30
Phe Thr Ala Leu Thr Val Val Gly Asp Gly Asn Gly Arg Val Gly Phe		
35	40	45
Gly Tyr Gly Lys Ala Arg Glu Val Pro Ala Ala Ile Gln Lys Ala Met		
50	55	60
Glu Lys Ala Arg Arg Asn Met Ile Asn Val Ala Leu Asn Asn Gly Thr		
65	70	75
Leu Gln His Pro Val Lys Gly Val His Thr Gly Ser Arg Val Phe Met		
85	90	95
Gln Pro Ala Ser Glu Gly Thr Gly Ile Ile Ala Gly Gly Ala Met Arg		
100	105	110
Ala Val Leu Glu Val Ala Gly Val His Asn Val Leu Ala Lys Ala Tyr		
115	120	125
Gly Ser Thr Asn Pro Ile Asn Val Val Arg Ala Thr Ile Asp Gly Leu		
130	135	140
Glu Asn Met Asn Ser Pro Glu Met Val Ala Ala Lys Arg Gly Lys Ser		
145	150	155
Val Glu Glu Ile Leu Gly Lys		
165		

<210> 316
<211> 117
<212> PRT
<213> E. Coli

<400> 316		
Met Asp Lys Lys Ser Ala Arg Ile Arg Arg Ala Thr Arg Ala Arg Arg		
1	5	10
Lys Leu Gln Glu Leu Gly Ala Thr Arg Leu Val Val His Arg Thr Pro		
20	25	30
Arg His Ile Tyr Ala Gln Val Ile Ala Pro Asn Gly Ser Glu Val Leu		
35	40	45
Val Ala Ala Ser Thr Val Glu Lys Ala Ile Ala Glu Gln Leu Lys Tyr		
50	55	60
Thr Gly Asn Lys Asp Ala Ala Ala Val Gly Lys Ala Val Ala Glu		
65	70	75
Arg Ala Leu Glu Lys Gly Ile Lys Asp Val Ser Phe Asp Arg Ser Gly		
85	90	95
Phe Gln Tyr His Gly Arg Val Gln Ala Leu Ala Asp Ala Ala Arg Glu		
100	105	110
Ala Gly Leu Gln Phe		
115		

<210> 317
<211> 177

<212> PRT

<213> E. Coli

<400> 317

Met	Ser	Arg	Val	Ala	Lys	Ala	Pro	Val	Val	Val	Pro	Ala	Gly	Val	Asp
1				5					10					15	
Val	Lys	Ile	Asn	Gly	Gln	Val	Ile	Thr	Ile	Lys	Gly	Lys	Asn	Gly	Glu
				20				25					30		
Leu	Thr	Arg	Thr	Leu	Asn	Asp	Ala	Val	Glu	Val	Lys	His	Ala	Asp	Asn
	35					40					45				
Thr	Leu	Thr	Phe	Gly	Pro	Arg	Asp	Gly	Tyr	Ala	Asp	Gly	Trp	Ala	Gln
	50				55					60					
Ala	Gly	Thr	Ala	Arg	Ala	Leu	Leu	Asn	Ser	Met	Val	Ile	Gly	Val	Thr
65					70				75				80		
Glu	Gly	Phe	Thr	Lys	Lys	Leu	Gln	Leu	Val	Gly	Val	Gly	Tyr	Arg	Ala
	85					90					95				
Ala	Val	Lys	Gly	Asn	Val	Ile	Asn	Leu	Ser	Leu	Gly	Phe	Ser	His	Pro
	100					105					110				
Val	Asp	His	Gln	Leu	Pro	Ala	Gly	Ile	Thr	Ala	Glu	Cys	Pro	Thr	Gln
	115					120					125				
Thr	Glu	Ile	Val	Leu	Lys	Gly	Ala	Asp	Lys	Gln	Val	Ile	Gly	Gln	Val
130					135				140						
Ala	Ala	Asp	Leu	Arg	Ala	Tyr	Arg	Arg	Pro	Glu	Pro	Tyr	Lys	Gly	Lys
145					150				155			160			
Gly	Val	Arg	Tyr	Ala	Asp	Glu	Val	Val	Arg	Thr	Lys	Glu	Ala	Lys	Lys
	165					170					175				
Lys															

<210> 318

<211> 130

<212> PRT

<213> E. Coli

<400> 318

Met	Ser	Met	Gln	Asp	Pro	Ile	Ala	Asp	Met	Leu	Thr	Arg	Ile	Arg	Asn
1					5				10				15		
Gly	Gln	Ala	Ala	Asn	Lys	Ala	Ala	Val	Thr	Met	Pro	Ser	Ser	Lys	Leu
					20				25			30			
Lys	Val	Ala	Ile	Ala	Asn	Val	Leu	Lys	Glu	Glu	Gly	Phe	Ile	Glu	Asp
	35					40					45				
Phe	Lys	Val	Glu	Gly	Asp	Thr	Lys	Pro	Glu	Leu	Glu	Leu	Thr	Leu	Lys
	50					55				60					
Tyr	Phe	Gln	Gly	Lys	Ala	Val	Val	Glu	Ser	Ile	Gln	Arg	Val	Ser	Arg
65					70				75			80			
Pro	Gly	Leu	Arg	Ile	Tyr	Lys	Arg	Lys	Asp	Glu	Leu	Pro	Lys	Val	Met
	85					90					95				
Ala	Gly	Leu	Gly	Ile	Ala	Val	Val	Ser	Thr	Ser	Lys	Gly	Val	Met	Thr
	100					105					110				
Asp	Arg	Ala	Ala	Arg	Gln	Ala	Gly	Leu	Gly	Gly	Glu	Ile	Ile	Cys	Tyr
	115						120				125				
Val	Ala														
	130														

<210> 319

<211> 101

<212> PRT

<213> E. Coli

<400> 319

Met	Ala	Lys	Gln	Ser	Met	Lys	Ala	Arg	Glu	Val	Lys	Arg	Val	Ala	Leu
1					5				10					15	
Ala	Asp	Lys	Tyr	Phe	Ala	Lys	Arg	Ala	Glu	Leu	Lys	Ala	Ile	Ile	Ser
			20				25						30		
Asp	Val	Asn	Ala	Ser	Asp	Glu	Asp	Arg	Trp	Asn	Ala	Val	Leu	Lys	Leu
			35			40						45			
Gln	Thr	Leu	Pro	Arg	Asp	Ser	Ser	Pro	Ser	Arg	Gln	Arg	Asn	Arg	Cys
			50			55					60				
Arg	Gln	Thr	Gly	Arg	Pro	His	Gly	Phe	Leu	Arg	Lys	Phe	Gly	Leu	Ser
			65			70			75				80		
Arg	Ile	Lys	Val	Arg	Glu	Ala	Ala	Met	Arg	Gly	Glu	Ile	Pro	Gly	Leu
				85				90					95		
Lys	Lys	Ala	Ser	Trp											
			100												

<210> 320

<211> 179

<212> PRT

<213> E. Coli

<400> 320

Met	Ala	Lys	Leu	His	Asp	Tyr	Tyr	Lys	Asp	Glu	Val	Val	Lys	Lys	Leu
1				5				10					15		
Met	Thr	Glu	Phe	Asn	Tyr	Asn	Ser	Val	Met	Gln	Val	Pro	Arg	Val	Glu
			20					25				30			
Lys	Ile	Thr	Leu	Asn	Met	Gly	Val	Gly	Glu	Ala	Ile	Ala	Asp	Lys	Lys
			35			40				45					
Leu	Leu	Asp	Asn	Ala	Ala	Asp	Leu	Ala	Ala	Ile	Ser	Gly	Gln	Lys	
			50			55				60					
Pro	Leu	Ile	Thr	Lys	Ala	Arg	Lys	Ser	Val	Ala	Gly	Phe	Lys	Ile	Arg
	65			70			75					80			
Gln	Gly	Tyr	Pro	Ile	Gly	Cys	Lys	Val	Thr	Leu	Arg	Gly	Glu	Arg	Met
			85			90					95				
Trp	Glu	Phe	Phe	Glu	Arg	Leu	Ile	Thr	Ile	Ala	Val	Pro	Arg	Ile	Arg
	100				105						110				
Asp	Phe	Arg	Gly	Leu	Ser	Ala	Lys	Ser	Phe	Gly	Arg	Gly	Asn	Tyr	
	115				120			125							
Ser	Met	Gly	Val	Arg	Glu	Gln	Ile	Ile	Phe	Pro	Glu	Ile	Asp	Tyr	Asp
	130				135			140							
Lys	Val	Asp	Arg	Val	Arg	Gly	Leu	Asp	Ile	Thr	Ile	Thr	Thr	Thr	Ala
	145			150				155				160			
Lys	Ser	Asp	Glu	Glu	Gly	Arg	Ala	Leu	Leu	Ala	Ala	Phe	Asp	Phe	Pro
				165				170				175			
Phe	Arg	Lys													

<210> 321Z

<211> 104

<212> PRT

<213> E. Coli

<400> 321

Met	Ala	Ala	Lys	Ile	Arg	Arg	Asp	Asp	Glu	Val	Ile	Val	Leu	Thr	Gly
1				5				10					15		
Lys	Asp	Lys	Gly	Lys	Arg	Gly	Lys	Val	Lys	Asn	Val	Leu	Ser	Ser	Gly
				20				25				30			

Lys Val Ile Val Glu Gly Ile Asn Leu Val Lys Lys His Gln Lys Pro
 35 40 45
 Val Pro Ala Leu Asn Gln Pro Gly Gly Ile Val Glu Lys Glu Ala Ala
 50 55 60
 Ile Gln Val Ser Asn Val Ala Ile Phe Asn Ala Ala Thr Gly Lys Ala
 65 70 75 80
 Asp Arg Val Gly Phe Arg Phe Glu Asp Gly Lys Lys Val Arg Phe Phe
 85 90 95
 Lys Ser Asn Ser Glu Thr Ile Lys
 100

<210> 322

<211> 123

<212> PRT

<213> E. Coli

<400> 322

Met Ile Gln Glu Gln Thr Met Leu Asn Val Ala Asp Asn Ser Gly Ala
 1 5 10 15
 Arg Arg Val Met Cys Ile Lys Val Leu Gly Gly Ser His Arg Arg Tyr
 20 25 30
 Ala Gly Val Gly Asp Ile Ile Lys Ile Thr Ile Lys Glu Ala Ile Pro
 35 40 45
 Arg Gly Lys Val Lys Lys Gly Asp Val Leu Lys Ala Val Val Val Arg
 50 55 60
 Thr Lys Lys Gly Val Arg Arg Pro Asp Gly Ser Val Ile Arg Phe Asp
 65 70 75 80
 Gly Asn Ala Cys Val Leu Leu Asn Asn Ser Glu Gln Pro Ile Gly
 85 90 95
 Thr Arg Ile Phe Gly Pro Val Thr Arg Glu Leu Arg Ser Glu Lys Phe
 100 105 110
 Met Lys Ile Ile Ser Leu Ala Pro Glu Val Leu
 115 120

<210> 323

<211> 188

<212> PRT

<213> E. Coli

<400> 323

Met Phe Lys Gly Gln Lys Thr Leu Ala Ala Leu Ala Val Ser Leu Leu
 1 5 10 15
 Phe Thr Ala Pro Val Tyr Ala Ala Asp Glu Gly Ser Gly Glu Ile His
 20 25 30
 Phe Lys Gly Glu Val Ile Glu Ala Pro Cys Glu Ile His Pro Glu Asp
 35 40 45
 Ile Asp Lys Asn Ile Asp Leu Gly Gln Val Thr Thr His Ile Asn
 50 55 60
 Arg Glu His His Ser Asn Lys Val Ala Val Asp Ile Arg Leu Ile Asn
 65 70 75 80
 Cys Asp Leu Pro Ala Ser Asp Asn Gly Ser Gly Met Pro Val Ser Lys
 85 90 95
 Val Gly Val Thr Phe Asp Ser Thr Ala Lys Thr Thr Gly Ala Thr Pro
 100 105 110
 Leu Leu Ser Asn Thr Ser Ala Gly Glu Ala Thr Gly Val Gly Val Arg
 115 120 125
 Leu Met Asp Lys Asn Asp Gly Asn Ile Val Leu Gly Ser Ala Ala Pro
 130 135 140
 Asp Leu Asp Leu Asp Ala Ser Ser Ser Glu Gln Thr Leu Asn Phe Phe

145	150	155	160
Ala Trp Met Glu Gln Ile Asp Asn Ala Val Asp Val Thr Ala Gly Glu			
165	170	175	
Val Thr Ala Asn Ala Thr Tyr Val Leu Asp Tyr Lys			
180	185		

<210> 324

<211> 427

<212> PRT

<213> E. Coli

<400> 324

Met Ala Asp Thr Lys Ala Lys Leu Thr Leu Asn Gly Asp Thr Ala Val			
1	5	10	15
Glu Leu Asp Val Leu Lys Gly Thr Leu Gly Gln Asp Val Ile Asp Ile			
20	25	30	
Arg Thr Leu Gly Ser Lys Gly Val Phe Thr Phe Asp Pro Gly Phe Thr			
35	40	45	
Ser Thr Ala Ser Cys Glu Ser Lys Ile Thr Phe Ile Asp Gly Asp Glu			
50	55	60	
Gly Ile Leu Leu His Arg Gly Phe Pro Ile Asp Gln Leu Ala Thr Asp			
65	70	75	80
Ser Asn Tyr Leu Glu Val Cys Tyr Ile Leu Leu Asn Gly Glu Lys Pro			
85	90	95	
Thr Gln Glu Gln Tyr Asp Glu Phe Lys Thr Thr Val Thr Arg His Thr			
100	105	110	
Met Ile His Glu Gln Ile Thr Arg Leu Phe His Ala Phe Arg Arg Asp			
115	120	125	
Ser His Pro Met Ala Val Met Cys Gly Ile Thr Gly Ala Leu Ala Ala			
130	135	140	
Phe Tyr His Asp Ser Leu Asp Val Asn Asn Pro Arg His Arg Glu Ile			
145	150	155	160
Ala Ala Phe Arg Leu Leu Ser Lys Met Pro Thr Met Ala Ala Met Cys			
165	170	175	
Tyr Lys Tyr Ser Ile Gly Gln Pro Phe Val Tyr Pro Arg Asn Asp Leu			
180	185	190	
Ser Tyr Ala Gly Asn Phe Leu Asn Met Met Phe Ser Thr Pro Cys Glu			
195	200	205	
Pro Tyr Glu Val Asn Pro Ile Leu Glu Arg Ala Met Asp Arg Ile Leu			
210	215	220	
Ile Leu His Ala Asp His Glu Gln Asn Ala Ser Thr Ser Thr Val Arg			
225	230	235	240
Thr Ala Gly Ser Ser Gly Ala Asn Pro Phe Ala Cys Ile Ala Ala Gly			
245	250	255	
Ile Ala Ser Leu Trp Gly Pro Ala His Gly Gly Ala Asn Glu Ala Ala			
260	265	270	
Leu Lys Met Leu Glu Glu Ile Ser Ser Val Lys His Ile Pro Glu Phe			
275	280	285	
Val Arg Arg Ala Lys Asp Lys Asn Asp Ser Phe Arg Leu Met Gly Phe			
290	295	300	
Gly His Arg Val Tyr Lys Asn Tyr Asp Pro Arg Ala Thr Val Met Arg			
305	310	315	320
Glu Thr Cys His Glu Val Leu Lys Glu Leu Gly Thr Lys Asp Asp Leu			
325	330	335	
Leu Glu Val Ala Met Glu Leu Glu Asn Ile Ala Leu Asn Asp Pro Tyr			
340	345	350	
Phe Ile Glu Lys Lys Leu Tyr Pro Asn Val Asp Phe Tyr Ser Gly Ile			
355	360	365	
Ile Leu Lys Ala Met Gly Ile Pro Ser Ser Met Phe Thr Val Ile Phe			
370	375	380	

Ala Met Ala Arg Thr Val Gly Trp Ile Ala His Trp Ser Glu Met His
 385 390 395 400
 Ser Asp Gly Met Lys Ile Ala Arg Pro Arg Gln Leu Tyr Thr Gly Tyr
 405 410 415
 Glu Lys Arg Asp Phe Lys Ser Asp Ile Lys Arg
 420 425

<210> 325

<211> 477

<212> PRT

<213> E. Coli

<400> 325

Met Lys Val Thr Leu Pro Glu Phe Glu Arg Ala Gly Val Met Val Val
 1 5 10 15
 Gly Asp Val Met Leu Asp Arg Tyr Trp Tyr Gly Pro Thr Ser Arg Ile
 20 25 30
 Ser Pro Glu Ala Pro Val Pro Val Val Lys Val Asn Thr Ile Glu Glu
 35 40 45
 Arg Pro Gly Gly Ala Ala Asn Val Ala Met Asn Ile Ala Ser Leu Gly
 50 55 60
 Ala Asn Ala Arg Leu Val Gly Leu Thr Gly Ile Asp Asp Ala Ala Arg
 65 70 75 80
 Ala Leu Ser Lys Ser Leu Ala Asp Val Asn Val Lys Cys Asp Phe Val
 85 90 95
 Ser Val Pro Thr His Pro Thr Ile Thr Lys Leu Arg Val Leu Ser Arg
 100 105 110
 Asn Gln Gln Leu Ile Arg Leu Asp Phe Glu Glu Gly Phe Glu Gly Val
 115 120 125
 Asp Pro Gin Pro Leu His Glu Arg Ile Asn Gln Ala Leu Ser Ser Ile
 130 135 140
 Gly Ala Leu Val Leu Ser Asp Tyr Ala Lys Gly Ala Leu Ala Ser Val
 145 150 155 160
 Gln Gln Met Ile Gln Leu Ala Arg Lys Ala Gly Val Pro Val Leu Ile
 165 170 175
 Asp Pro Lys Gly Thr Asp Phe Glu Arg Tyr Arg Gly Ala Thr Leu Leu
 180 185 190
 Thr Pro Asn Leu Ser Glu Phe Glu Ala Val Val Gly Lys Cys Lys Thr
 195 200 205
 Glu Glu Glu Ile Val Glu Arg Gly Met Lys Leu Ile Ala Asp Tyr Glu
 210 215 220
 Leu Ser Ala Leu Leu Val Thr Arg Ser Glu Gln Gly Met Ser Leu Leu
 225 230 235 240
 Gln Pro Gly Lys Ala Pro Leu His Met Pro Thr Gln Ala Gln Glu Val
 245 250 255
 Tyr Asp Val Thr Gly Ala Gly Asp Thr Val Ile Gly Val Leu Ala Ala
 260 265 270
 Thr Leu Ala Ala Gly Asn Ser Leu Glu Glu Ala Cys Phe Phe Ala Asn
 275 280 285
 Ala Ala Ala Gly Val Val Gly Lys Leu Gly Thr Ser Thr Val Ser
 290 295 300
 Pro Ile Glu Leu Glu Asn Ala Val Arg Gly Arg Ala Asp Thr Gly Phe
 305 310 315 320
 Gly Val Met Thr Glu Glu Leu Lys Leu Ala Val Ala Ala Ala Arg
 325 330 335
 Lys Arg Gly Glu Lys Val Val Met Thr Asn Gly Val Phe Asp Ile Leu
 340 345 350
 His Ala Gly His Val Ser Tyr Leu Ala Asn Ala Arg Lys Leu Gly Asp
 355 360 365
 Arg Leu Ile Val Ala Val Asn Ser Asp Ala Ser Thr Lys Arg Leu Lys

370	375	380
Gly Asp Ser Arg Pro Val Asn Pro Leu Glu Gln		Arg Met Ile Val Leu
385	390	395
Gly Ala Leu Glu Ala Val Asp Trp Val Val Ser Phe Glu Glu Asp Thr		400
405	410	415
Pro Gln Arg Leu Ile Ala Gly Ile Leu Pro Asp Leu Leu Val Lys Gly		
420	425	430
Gly Asp Tyr Lys Pro Glu Glu Ile Ala Gly Ser Lys Glu Val Trp Ala		
435	440	445
Asn Gly Gly Glu Val Leu Val Leu Asn Phe Glu Asp Gly Cys Ser Thr		
450	455	460
Thr Asn Ile Ile Lys Lys Ile Gln Gln Asp Lys Lys Gly		
465	470	475

<210> 326
<211> 946
<212> PRT
<213> E. Coli

<400> 326		
Met Lys Pro Leu Ser Ser Pro Leu Gln Gln Tyr Trp Gln Thr Val Val		
1	5	10
Glu Arg Leu Pro Glu Pro Leu Ala Glu Glu Ser Leu Ser Ala Gln Ala		
20	25	30
Lys Ser Val Leu Thr Phe Ser Asp Phe Val Gln Asp Ser Val Ile Ala		
35	40	45
His Pro Glu Trp Leu Thr Glu Leu Glu Ser Gln Pro Pro Gln Ala Asp		
50	55	60
Glu Trp Gln His Tyr Ala Ala Trp Leu Gln Glu Ala Leu Cys Asn Val		
65	70	75
Ser Asp Glu Ala Gly Leu Met Arg Glu Leu Arg Leu Phe Arg Arg Arg		
85	90	95
Ile Met Val Arg Ile Ala Trp Ala Gln Thr Leu Ala Leu Val Thr Glu		
100	105	110
Glu Ser Ile Leu Gln Gln Leu Ser Tyr Leu Ala Glu Thr Leu Ile Val		
115	120	125
Ala Ala Arg Asp Trp Leu Tyr Asp Ala Cys Cys Arg Glu Trp Gly Thr		
130	135	140
Pro Cys Asn Ala Gln Gly Glu Ala Gln Pro Leu Leu Ile Leu Gly Met		
145	150	155
Gly Lys Leu Gly Gly Glu Leu Asn Phe Ser Ser Asp Ile Asp Leu		
165	170	175
Ile Phe Ala Trp Pro Glu His Gly Cys Thr Gln Gly Gly Arg Arg Glu		
180	185	190
Leu Asp Asn Ala Gln Phe Phe Thr Arg Met Gly Gln Arg Leu Ile Lys		
195	200	205
Val Ile Asp Gln Pro Thr Gln Asp Gly Phe Val Tyr Arg Val Asp Met		
210	215	220
Arg Leu Arg Pro Phe Gly Glu Ser Gly Pro Leu Val Leu Ser Phe Ala		
225	230	235
Ala Leu Glu Asp Tyr Tyr Gln Glu Gln Gly Arg Asp Trp Glu Arg Tyr		
245	250	255
Ala Met Val Lys Ala Arg Ile Met Gly Asp Ser Glu Gly Val Tyr Ala		
260	265	270
Asn Glu Leu Arg Ala Met Leu Arg Pro Phe Val Phe Arg Arg Tyr Ile		
275	280	285
Asp Phe Ser Val Ile Gln Ser Leu Arg Asn Met Lys Gly Met Ile Ala		
290	295	300
Arg Glu Val Arg Arg Arg Gly Leu Thr Asp Asn Ile Lys Leu Gly Ala		
305	310	315
		320

Gly Gly Ile Arg Glu Ile Glu Phe Ile Val Gln Val Phe Gln Leu Ile
 325 330 335
 Arg Gly Gly Arg Glu Pro Ser Leu Gln Ser Arg Ser Leu Leu Pro Thr
 340 345 350
 Leu Ser Ala Ile Ala Glu Leu His Leu Leu Ser Glu Asn Asp Ala Glu
 355 360 365
 Gln Leu Arg Val Ala Tyr Leu Phe Leu Arg Arg Leu Glu Asn Leu Leu
 370 375 380
 Gln Ser Ile Asn Asp Glu Gln Thr Gln Thr Leu Pro Ser Asp Glu Leu
 385 390 395 400
 Asn Arg Ala Arg Leu Ala Trp Ala Met Asp Phe Ala Asp Trp Pro Gln
 405 410 415
 Leu Thr Gly Ala Leu Thr Ala His Met Thr Asn Val Arg Arg Val Phe
 420 425 430
 Asn Glu Leu Ile Gly Asp Asp Glu Ser Glu Thr Gln Glu Glu Ser Leu
 435 440 445
 Ser Glu Gln Trp Arg Glu Leu Trp Gln Asp Ala Leu Gln Glu Asp Asp
 450 455 460
 Thr Thr Pro Val Leu Ala His Leu Ser Glu Asp Asp Arg Lys Gln Val
 465 470 475 480
 Leu Thr Leu Ile Ala Asp Phe Arg Lys Glu Leu Asp Lys Arg Thr Ile
 485 490 495
 Gly Pro Arg Gly Arg Gln Val Leu Asp His Leu Met Pro His Leu Leu
 500 505 510
 Ser Asp Val Cys Ala Arg Glu Asp Ala Ala Val Thr Leu Ser Arg Ile
 515 520 525
 Thr Ala Leu Leu Val Gly Ile Val Thr Arg Thr Thr Tyr Leu Glu Leu
 530 535 540
 Leu Ser Glu Phe Pro Ala Ala Leu Lys His Leu Ile Ser Leu Cys Ala
 545 550 555 560
 Ala Ser Pro Met Ile Ala Ser Gln Leu Ala Arg Tyr Pro Leu Leu
 565 570 575
 Asp Glu Leu Leu Asp Pro Asn Thr Leu Tyr Gln Pro Thr Ala Thr Asp
 580 585 590
 Ala Tyr Arg Asp Glu Leu Arg Gln Tyr Leu Leu Arg Val Pro Glu Asp
 595 600 605
 Asp Glu Glu Gln Leu Glu Ala Leu Arg Gln Phe Lys Gln Ala Gln
 610 615 620
 Leu Leu Arg Ile Ala Ala Ala Asp Ile Ala Gly Thr Leu Pro Val Met
 625 630 635 640
 Lys Val Ser Asp His Leu Thr Trp Leu Ala Glu Ala Met Ile Asp Ala
 645 650 655
 Val Val Gln Gln Ala Trp Val Gln Met Val Ala Arg Tyr Gly Lys Pro
 660 665 670
 Asn His Leu Asn Glu Arg Glu Gly Arg Gly Phe Ala Val Val Gly Tyr
 675 680 685
 Gly Lys Leu Gly Gly Trp Glu Leu Gly Tyr Ser Ser Asp Leu Asp Leu
 690 695 700
 Ile Phe Leu His Asp Cys Pro Met Asp Ala Met Thr Asp Gly Glu Arg
 705 710 715 720
 Glu Ile Asp Gly Arg Gln Phe Tyr Leu Arg Leu Ala Gln Arg Ile Met
 725 730 735
 His Leu Phe Ser Thr Arg Thr Ser Ser Gly Ile Leu Tyr Glu Val Asp
 740 745 750
 Ala Arg Leu Arg Pro Ser Gly Ala Ala Gly Met Leu Val Thr Ser Ala
 755 760 765
 Glu Ala Phe Ala Asp Tyr Gln Lys Asn Glu Ala Trp Thr Trp Glu His
 770 775 780
 Gln Ala Leu Val Arg Ala Arg Val Val Tyr Gly Asp Pro Gln Leu Thr
 785 790 795 800
 Ala His Phe Asp Ala Val Arg Arg Glu Ile Met Thr Leu Pro Arg Glu

805	810	815
Gly Lys Thr Leu Gln Thr Glu Val Arg	Glu Met Arg	Glu Lys Met Arg
820	825	830
Ala His Leu Gly Asn Lys His Arg Asp Arg	Phe Asp Ile Lys Ala Asp	
835	840	845
Glu Gly Ile Thr Asp Ile Glu Phe Ile Thr	Gln Tyr Leu Val Leu	
850	855	860
Arg Tyr Ala His Glu Lys Pro Lys Leu Thr	Arg Trp Ser Asp Asn Val	
865	870	880
Arg Ile Leu Glu Leu Ala Gln Asn Asp Ile	Met Glu Glu Gln Glu	
885	890	895
Ala Met Ala Leu Thr Arg Ala Tyr Thr	Leu Arg Asp Glu Leu His	
900	905	910
His Leu Ala Leu Gln Glu Leu Pro Gly His	Val Ser Glu Asp Cys Phe	
915	920	925
Thr Ala Glu Arg Glu Leu Val Arg Ala Ser	Trp Gln Lys Trp Leu Val	
930	935	940
Glu Glu		
945		

<210> 327
<211> 433
<212> PRT
<213> E. Coli

<400> 327		
Met Ala Gln Glu Ile Glu Leu Lys Phe	Ile Val Asn His Ser Ala Val	
1 5	10	15
Glu Ala Leu Arg Asp His Leu Asn Thr	Leu Gly Gly Glu His His Asp	
20	25	30
Pro Val Gln Leu Leu Asn Ile Tyr	Tyr Glu Thr Pro Asp Asn Trp Leu	
35 40	45	
Arg Gly His Asp Met Gly Leu Arg Ile	Arg Gly Glu Asn Gly Arg Tyr	
50 55	60	
Glu Met Thr Met Lys Val Ala Gly Arg	Val Thr Gly Gly Leu His Gln	
65 70	75	80
Arg Pro Glu Tyr Asn Val Ala Leu Ser	Glu Pro Thr Leu Asp Leu Ala	
85	90	95
Gln Leu Pro Thr Glu Val Trp Pro Asn	Gly Glu Leu Pro Ala Asp Leu	
100	105	110
Ala Ser Arg Val Gln Pro Leu Phe	Ser Thr Asp Phe Tyr Arg Glu Lys	
115	120	125
Trp Leu Val Ala Val Asp Gly Ser	Gln Ile Glu Ile Ala Leu Asp Gln	
130	135	140
Gly Glu Val Lys Ala Gly Glu Phe Ala	Glu Pro Ile Cys Glu Leu Glu	
145 150	155	160
Leu Glu Leu Leu Ser Gly Asp Thr Arg	Ala Val Leu Lys Leu Ala Asn	
165	170	175
Gln Leu Val Ser Gln Thr Gly Leu Arg	Gln Gly Ser Leu Ser Lys Ala	
180	185	190
Ala Arg Gly Tyr His Leu Ala Gln Gly	Asn Pro Ala Arg Glu Ile Lys	
195	200	205
Pro Thr Thr Ile Leu His Val Ala Ala	Lys Ala Asp Val Glu Gln Gly	
210	215	220
Leu Glu Ala Ala Leu Glu Leu Ala Leu	Ala Gln Trp Gln Tyr His Glu	
225 230	235	240
Glu Leu Trp Val Arg Gly Asn Asp Ala	Ala Lys Glu Gln Val Leu Ala	
245	250	255
Ala Ile Ser Leu Val Arg His Thr Leu	Met Leu Phe Gly Ile Val	

260	265	270
Pro Arg Lys Ala Ser Thr His	Leu Arg Asp Leu Leu	Thr Gln Cys Glu
275	280	285
Ala Thr Ile Ala Ser Ala Val	Ser Ala Val Thr	Ala Val Tyr Ser Thr
290	295	300
Glu Thr Ala Met Ala Lys	Leu Ala Leu Thr	Glu Trp Leu Val Ser Lys
305	310	315
Ala Trp Gln Pro Phe Leu Asp Ala Lys	Ala Gln Gly Lys Ile Ser Asp	320
325	330	335
Ser Phe Lys Arg Phe Ala Asp Ile His	Leu Ser Arg His Ala Ala	Glu
340	345	350
Leu Lys Ser Val Phe Cys Gln	Pro Leu Gly Asp Arg	Tyr Arg Asp Gln
355	360	365
Leu Pro Arg Leu Thr Arg Asp Ile Asp Ser Ile	Leu Leu Leu Ala Gly	
370	375	380
Tyr Tyr Asp Pro Val Val Ala Gln Ala Trp	Leu Glu Asn Trp Gln Gly	
385	390	395
Leu His His Ala Ile Ala Thr Gly Gln Arg	Ile Glu Ile Glu His Phe	
405	410	415
Arg Asn Glu Ala Asn Asn Gln Glu	Pro Phe Trp Leu His Ser Gly Lys	
420	425	430
Arg		

<210> 328

<211> 70

<212> PRT

<213> E. Coli

<400> 328

Met Ser Gly Lys Met Thr Gly Ile Val	Lys Trp Phe Asn Ala Asp Lys		
1	5	10	15
Gly Phe Gly Phe Ile Thr Pro Asp Asp	Gly Ser Lys Asp Val Phe Val		
20	25	30	
His Phe Ser Ala Ile Gln Asn Asp	Gly Tyr Lys Ser Leu Asp Glu Gly		
35	40	45	
Gln Lys Val Ser Phe Thr Ile Glu Ser Gly	Ala Lys Gly Pro Ala Ala		
50	55	60	
Gly Asn Val Thr Ser Leu			
65	70		

<210> 329

<211> 523

<212> PRT

<213> E. Coli

<400> 329

Met Arg Asp Ile Val Asp Pro Val Phe Ser	Ile Gly Ile Ser Ser Leu		
1	5	10	15
Trp Asp Glu Leu Arg His Met Pro Ala Gly	Gly Val Trp Trp Phe Asn		
20	25	30	
Val Asp Arg His Glu Asp Ala Ile Ser Leu	Ala Asn Gln Thr Ile Ala		
35	40	45	
Ser Gln Ala Glu Thr Ala His Val Ala Val	Ile Ser Met Asp Ser Asp		
50	55	60	
Pro Ala Lys Ile Phe Gln Leu Asp Asp Ser	Gln Gly Pro Glu Lys Ile		
65	70	75	80

Lys Leu Phe Ser Met Leu Asn His Glu Lys Gly Leu Tyr Tyr Leu Thr
 85 90 95
 Arg Asp Leu Gln Cys Ser Ile Asp Pro His Asn Tyr Leu Phe Ile Leu
 100 105 110
 Val Cys Ala Asn Asn Ala Trp Gln Asn Ile Pro Ala Glu Arg Leu Arg
 115 120 125
 Ser Trp Leu Asp Lys Met Asn Lys Trp Ser Arg Leu Asn His Cys Ser
 130 135 140
 Leu Leu Val Ile Asn Pro Gly Asn Asn Asn Asp Lys Gln Phe Ser Leu
 145 150 155 160
 Leu Leu Glu Glu Tyr Arg Ser Leu Phe Gly Leu Ala Ser Leu Arg Phe
 165 170 175
 Gln Gly Asp Gln His Leu Leu Asp Ile Ala Phe Trp Cys Asn Glu Lys
 180 185 190
 Gly Val Ser Ala Arg Gln Gln Leu Ser Val Gln Gln Asn Gly Ile
 195 200 205
 Trp Thr Leu Val Gln Ser Glu Glu Ala Glu Ile Gln Pro Arg Ser Asp
 210 215 220
 Glu Lys Arg Ile Leu Ser Asn Val Ala Val Leu Glu Gly Ala Pro Pro
 225 230 235 240
 Leu Ser Glu His Trp Gln Leu Phe Asn Asn Asn Glu Val Leu Phe Asn
 245 250 255
 Glu Ala Arg Thr Ala Gln Ala Ala Thr Val Val Phe Ser Leu Gln Gln
 260 265 270
 Asn Ala Gln Ile Glu Pro Leu Ala Arg Ser Ile His Thr Leu Arg Arg
 275 280 285
 Gln Arg Gly Ser Ala Met Lys Ile Leu Val Arg Glu Asn Thr Ala Ser
 290 295 300
 Leu Arg Ala Thr Asp Glu Arg Leu Leu Leu Ala Cys Gly Ala Asn Met
 305 310 315 320
 Val Ile Pro Trp Asn Ala Pro Leu Ser Arg Cys Leu Thr Met Ile Glu
 325 330 335
 Ser Val Gln Gly Gln Lys Phe Ser Arg Tyr Val Pro Glu Asp Ile Thr
 340 345 350
 Thr Leu Leu Ser Met Thr Gln Pro Leu Lys Leu Arg Gly Phe Gln Lys
 355 360 365
 Trp Asp Val Phe Cys Asn Ala Val Asn Asn Met Met Asn Asn Pro Leu
 370 375 380
 Leu Pro Ala His Gly Lys Gly Val Leu Val Ala Leu Arg Pro Val Pro
 385 390 395 400
 Gly Ile Arg Val Glu Gln Ala Leu Thr Leu Cys Arg Pro Asn Arg Thr
 405 410 415
 Gly Asp Ile Met Thr Ile Gly Gly Asn Arg Leu Val Leu Phe Leu Ser
 420 425 430
 Phe Cys Arg Ile Asn Asp Leu Asp Thr Ala Leu Asn His Ile Phe Pro
 435 440 445
 Leu Pro Thr Gly Asp Ile Phe Ser Asn Arg Met Val Trp Phe Glu Asp
 450 455 460
 Asp Gln Ile Ser Ala Glu Leu Val Gln Met Arg Leu Leu Ala Pro Glu
 465 470 475 480
 Gln Trp Gly Met Pro Leu Pro Leu Thr Gln Ser Ser Lys Pro Val Ile
 485 490 495
 Asn Ala Glu His Asp Gly Arg His Trp Arg Arg Ile Pro Glu Pro Met
 500 505 510
 Arg Leu Leu Asp Asp Ala Val Glu Arg Ser Ser
 515 520

<210> 330
 <211> 62
 <212> PRT

<213> E. Coli

<400> 330

Met	Thr	Ile	Ser	Asp	Ile	Glu	Ile	Ile	Val	Val	Cys	Ala	Leu	Ile
1					5				10				15	
Phe	Phe	Pro	Leu	Gly	Tyr	Leu	Ala	Arg	His	Ser	Leu	Arg	Arg	Ile
					20				25				30	
Asp	Thr	Leu	Arg	Leu	Phe	Phe	Ala	Lys	Pro	Arg	Tyr	Val	Lys	Pro
					35				40				45	
Gly	Thr	Leu	Arg	Arg	Thr	Glu	Lys	Ala	Arg	Ala	Thr	Lys	Lys	
					50				55				60	

<210> 331

<211> 559

<212> PRT

<213> E. Coli

<400> 331

Met	Thr	Gln	Phe	Thr	Gln	Asn	Thr	Ala	Met	Pro	Ser	Ser	Leu	Trp	Gln
1						5			10				15		
Tyr	Trp	Arg	Gly	Leu	Ser	Gly	Trp	Asn	Phe	Tyr	Phe	Leu	Val	Lys	Phe
						20			25				30		
Gly	Leu	Leu	Trp	Ala	Gly	Tyr	Leu	Asn	Phe	His	Pro	Leu	Leu	Asn	Leu
						35			40				45		
Val	Phe	Ala	Ala	Phe	Leu	Leu	Met	Pro	Leu	Pro	Arg	Tyr	Ser	Leu	His
						50			55				60		
Arg	Leu	Arg	His	Trp	Ile	Ala	Leu	Pro	Ile	Gly	Phe	Ala	Leu	Phe	Trp
						65			70				75		80
His	Asp	Thr	Trp	Leu	Pro	Gly	Pro	Glu	Ser	Ile	Met	Ser	Gln	Gly	Ser
						85			90				95		
Gln	Val	Ala	Gly	Phe	Ser	Thr	Asp	Tyr	Leu	Ile	Asp	Leu	Val	Thr	Arg
						100			105				110		
Phe	Ile	Asn	Trp	Gln	Met	Ile	Gly	Ala	Ile	Phe	Val	Leu	Leu	Val	Ala
						115			120				125		
Trp	Leu	Phe	Leu	Ser	Gln	Trp	Ile	Arg	Ile	Thr	Val	Phe	Val	Val	Ala
						130			135				140		
Ile	Leu	Leu	Trp	Leu	Asn	Val	Leu	Thr	Leu	Ala	Gly	Pro	Ser	Phe	Ser
						145			150				155		160
Leu	Trp	Pro	Ala	Gly	Gln	Pro	Thr	Thr	Thr	Val	Thr	Thr	Thr	Gly	Gly
						165			170				175		
Asn	Ala	Ala	Ala	Thr	Val	Ala	Ala	Thr	Gly	Gly	Ala	Pro	Val	Val	Gly
						180			185				190		
Asp	Met	Pro	Ala	Gln	Thr	Ala	Pro	Pro	Thr	Thr	Ala	Asn	Leu	Asn	Ala
						195			200				205		
Trp	Leu	Asn	Asn	Phe	Tyr	Asn	Ala	Glu	Ala	Lys	Arg	Lys	Ser	Thr	Phe
						210			215				220		
Pro	Ser	Ser	Leu	Pro	Ala	Asp	Ala	Gln	Pro	Phe	Glu	Leu	Leu	Val	Ile
						225			230				235		240
Asn	Ile	Cys	Ser	Leu	Ser	Trp	Ser	Asp	Ile	Glu	Ala	Ala	Gly	Leu	Met
						245			250				255		
Ser	His	Pro	Leu	Trp	Ser	His	Phe	Asp	Ile	Glu	Phe	Lys	Asn	Phe	Asn
						260			265				270		
Ser	Ala	Thr	Ser	Tyr	Ser	Gly	Pro	Ala	Ala	Ile	Arg	Leu	Leu	Arg	Ala
						275			280				285		
Ser	Cys	Gly	Gln	Thr	Ser	His	Thr	Asn	Leu	Tyr	Gln	Pro	Ala	Asn	Asn
						290			295				300		
Asp	Cys	Tyr	Leu	Phe	Asp	Asn	Leu	Ser	Lys	Leu	Gly	Phe	Thr	Gln	His
						305			310				315		320
Leu	Met	Met	Gly	His	Asn	Gly	Gln	Phe	Gly	Gly	Phe	Leu	Lys	Glu	Val
						325			330				335		

Arg Glu Asn Gly Gly Met Gln Ser Glu Leu Met Asp Gln Thr Asn Leu
 340 345 350
 Pro Val Ile Leu Leu Gly Phe Asp Gly Ser Pro Val Tyr Asp Asp Thr
 355 360 365
 Ala Val Leu Asn Arg Trp Leu Asp Val Thr Glu Lys Asp Lys Asn Ser
 370 375 380
 Arg Ser Ala Thr Phe Tyr Asn Thr Leu Pro Leu His Asp Gly Asn His
 385 390 395 400
 Tyr Pro Gly Val Ser Lys Thr Ala Asp Tyr Lys Ala Arg Ala Gln Lys
 405 410 415
 Phe Phe Asp Glu Leu Asp Ala Phe Phe Thr Glu Leu Glu Lys Ser Gly
 420 425 430
 Arg Lys Val Met Val Val Val Pro Glu His Gly Gly Ala Leu Lys
 435 440 445
 Gly Asp Arg Met Gln Val Ser Gly Leu Arg Asp Ile Pro Ser Pro Ser
 450 455 460
 Ile Thr Asp Val Pro Val Gly Val Lys Phe Phe Gly Met Lys Ala Pro
 465 470 475 480
 His Gln Gly Ala Pro Ile Val Ile Glu Gln Pro Ser Ser Phe Leu Ala
 485 490 495
 Ile Ser Asp Leu Val Val Arg Val Leu Asp Gly Lys Ile Phe Thr Glu
 500 505 510
 Asp Asn Val Asp Trp Lys Lys Leu Thr Ser Gly Leu Pro Gln Thr Ala
 515 520 525
 Pro Val Ser Glu Asn Ser Asn Ala Val Val Ile Gln Tyr Gln Asp Lys
 530 535 540
 Pro Tyr Val Arg Leu Asn Gly Gly Asp Trp Val Pro Tyr Pro Gln
 545 550 555

<210> 332

<211> 127

<212> PRT

<213> E. Coli

<400> 332

Met Glu Gly Ser Arg Met Lys Tyr Arg Ile Ala Leu Ala Val Ser Leu
 1 5 10 15
 Phe Ala Leu Ser Ala Gly Ser Tyr Ala Thr Thr Leu Cys Gln Glu Lys
 20 25 30
 Glu Gln Asn Ile Leu Lys Glu Ile Ser Tyr Ala Glu Lys His Gln Asn
 35 40 45
 Gln Asn Arg Ile Asp Gly Leu Asn Lys Ala Leu Ser Glu Val Arg Ala
 50 55 60
 Asn Cys Ser Asp Ser Gln Leu Arg Ala Asp His Gln Lys Lys Ile Ala
 65 70 75 80
 Lys Gln Lys Asp Glu Val Ala Glu Arg Gln Gln Asp Leu Ala Glu Ala
 85 90 95
 Lys Gln Lys Gly Asp Ala Asp Lys Ile Ala Lys Arg Glu Arg Lys Leu
 100 105 110
 Ala Glu Ala Gln Glu Glu Leu Lys Lys Leu Glu Ala Arg Asp Tyr
 115 120 125

<210> 333

<211> 101

<212> PRT

<213> E. Coli

<400> 333

Met Ser Lys Glu His Thr Thr Glu His Leu Arg Ala Glu Leu Lys Ser

1	5	10	15
Leu Ser Asp Thr	Leu Glu Glu Val	Leu Ser Ser Ser Gly	Glu Lys Ser
20	25	30	
Lys Glu Glu Leu Ser Lys Ile Arg	Ser Lys Ala Glu Gln Ala	Leu Lys	
35	40	45	
Gln Ser Arg Tyr Arg	Leu Gly Glu Thr Gly Asp	Ala Ile Ala Lys Gln	
50	55	60	
Thr Arg Val Ala Ala Ala Arg	Ala Asp Glu Tyr Val Arg	Glu Asn Pro	
65	70	75	80
Trp Thr Gly Val Gly Ile Gly Ala Ala	Ile Gly Val Val Leu Gly Val		
85	90		95
Leu Leu Ser Arg Arg			
100			

<210> 334
<211> 134
<212> PRT
<213> E. Coli

1	5	10	15
Met Ala Asp Thr His His Ala Gln Gly	Pro Gly Lys Ser Val	Leu Gly	
Ile Gly Gln Arg Ile Val Ser Ile Met	Val Glu Met Val	Glu Thr Arg	
20	25	30	
Leu Arg Leu Ala Val Val Glu	Leu Glu Glu Lys Ala Asn	Leu Phe	
35	40	45	
Gln Leu Leu Leu Met Leu Gly	Leu Thr Met Leu Phe Ala Ala Phe Gly		
50	55	60	
Leu Met Ser Leu Met Val Leu Ile Ile Trp	Ala Val Asp Pro Gln Tyr		
65	70	75	80
Arg Leu Asn Ala Met Ile Ala Thr Thr	Val Val Leu Leu Leu Ala		
85	90	95	
Leu Ile Gly Gly Ile Trp Thr Leu Arg	Lys Ser Arg Lys Ser Thr Leu		
100	105	110	
Leu Arg His Thr Arg His Glu	Leu Ala Asn Asp Arg Gln	Leu Leu Glu	
115	120	125	
Glu Glu Ser Arg Glu Gln			
130			

<210> 335
<211> 99
<212> PRT
<213> E. Coli

1	5	10	15
Met Ser Ser Lys Val Glu Arg Glu Arg	Arg Lys Ala Gln	Leu Leu Ser	
Gln Ile Gln Gln Gln Arg Leu Asp	Leu Ser Ala Ser Arg	Arg Glu Trp	
20	25	30	
Leu Glu Thr Thr Gly Ala Tyr Asp Arg	Arg Trp Asn Met	Leu Leu Ser	
35	40	45	
Leu Arg Ser Trp Ala Leu Val Gly	Ser Ser Val Met	Ala Ile Trp Thr	
50	55	60	
Ile Arg His Pro Asn Met Leu Val Arg	Trp Ala Arg Arg	Gly Phe Gly	
65	70	75	80
Val Trp Ser Ala Trp Arg Leu Val Lys	Thr Thr Leu Lys Gln	Gln Gln	
85	90		95
Leu Arg Gly			

<210> 336
<211> 160
<212> PRT
<213> E. Coli

<400> 336

Met	Ile	Leu	Ser	Ile	Asp	Ser	Asn	Asp	Ala	Asn	Thr	Ala	Pro	Leu	His
1				5					10				15		
Lys	Lys	Thr	Ile	Ser	Ser	Leu	Ser	Gly	Ala	Val	Glu	Ser	Met	Met	Lys
						20			25				30		
Lys	Leu	Glu	Asp	Val	Gly	Val	Leu	Val	Ala	Arg	Ile	Leu	Met	Pro	Ile
		35				40			45						
Leu	Phe	Ile	Thr	Ala	Gly	Trp	Gly	Lys	Ile	Thr	Gly	Tyr	Ala	Gly	Thr
		50				55			60						
Gln	Gln	Tyr	Met	Glu	Ala	Met	Gly	Val	Pro	Gly	Phe	Met	Leu	Pro	Leu
		65				70			75				80		
Val	Ile	Leu	Leu	Glu	Phe	Gly	Gly	Leu	Ala	Ile	Leu	Phe	Gly	Phe	
				85			90			95					
Leu	Thr	Arg	Thr	Thr	Ala	Leu	Phe	Thr	Ala	Gly	Phe	Thr	Leu	Leu	Thr
		100				105			110						
Ala	Phe	Leu	Phe	His	Ser	Asn	Phe	Ala	Glu	Gly	Val	Asn	Ser	Leu	Met
		115				120			125						
Phe	Met	Lys	Asn	Leu	Thr	Ile	Ser	Gly	Gly	Phe	Leu	Leu	Leu	Ala	Ile
		130				135			140						
Thr	Gly	Pro	Gly	Ala	Tyr	Ser	Ile	Asp	Arg	Leu	Leu	Asn	Lys	Lys	Trp
		145				150			155				160		

<210> 337
<211> 296
<212> PRT
<213> E. Coli

<400> 337

Met	Ile	Lys	Lys	Thr	Thr	Glu	Ile	Asp	Ala	Ile	Leu	Leu	Asn	Leu	Asn
1				5				10					15		
Lys	Ala	Ile	Asp	Ala	His	Tyr	Gln	Trp	Leu	Val	Ser	Met	Phe	His	Ser
					20			25				30			
Val	Val	Ala	Arg	Asp	Ala	Ser	Lys	Pro	Glu	Ile	Thr	Asp	Asn	His	Ser
				35			40			45					
Tyr	Gly	Leu	Cys	Gln	Phe	Gly	Arg	Trp	Ile	Asp	His	Leu	Gly	Pro	Leu
				50			55			60					
Asp	Asn	Asp	Glu	Leu	Pro	Tyr	Val	Arg	Leu	Met	Asp	Ser	Ala	His	Gln
				65			70			75			80		
His	Met	His	Asn	Cys	Gly	Arg	Glu	Leu	Met	Leu	Ala	Ile	Val	Glu	Asn
					85			90				95			
His	Trp	Gln	Asp	Ala	His	Phe	Asp	Ala	Phe	Gln	Glu	Gly	Leu	Leu	Ser
					100			105				110			
Phe	Thr	Ala	Ala	Leu	Thr	Asp	Tyr	Lys	Ile	Tyr	Leu	Leu	Thr	Ile	Arg
					115			120			125				
Ser	Asn	Met	Asp	Val	Leu	Thr	Gly	Leu	Pro	Gly	Arg	Arg	Val	Leu	Asp
				130			135			140					
Glu	Ser	Phe	Asp	His	Gln	Leu	Arg	Asn	Ala	Glu	Pro	Leu	Asn	Leu	Tyr
				145			150			155			160		
Leu	Met	Leu	Leu	Asp	Ile	Asp	Arg	Phe	Lys	Leu	Val	Asn	Asp	Thr	Tyr
					165			170				175			

Gly His Leu Ile Gly Asp Val Val Leu Arg Thr Leu Ala Thr Tyr Leu
 180 185 190
 Ala Ser Trp Thr Arg Asp Tyr Glu Thr Val Tyr Arg Tyr Gly Gly Glu
 195 200 205
 Glu Phe Ile Ile Ile Val Lys Ala Ala Asn Asp Glu Glu Ala Cys Arg
 210 215 220
 Ala Gly Val Arg Ile Cys Gln Leu Val Asp Asn His Ala Ile Thr His
 225 230 235 240
 Ser Glu Gly His Ile Asn Ile Thr Val Thr Ala Gly Val Ser Arg Ala
 245 250 255
 Phe Pro Glu Glu Pro Leu Asp Val Val Ile Gly Arg Ala Asp Arg Ala
 260 265 270
 Met Tyr Glu Gly Lys Gln Thr Gly Arg Asn Arg Cys Met Phe Ile Asp
 275 280 285
 Glu Gln Asn Val Ile Asn Arg Val
 290 295

<210> 338
<211> 203
<212> PRT
<213> E. Coli

<400> 338

Met Arg Leu Arg Val Val Pro Gly Phe Ile Ser Pro Pro Pro Gly Phe
 1 5 10 15
 Gly Gly Leu Gly Tyr Thr Pro Thr Ala Arg Ala Cys Val Asn Ile Ser
 20 25 30
 Ile Pro Leu Gln Leu Arg Val Ile Asp Met Leu Asp Val Phe Thr Pro
 35 40 45
 Leu Leu Lys Leu Phe Ala Asn Glu Pro Leu Glu Arg Leu Met Tyr Thr
 50 55 60
 Ile Ile Ile Phe Gly Leu Thr Leu Trp Leu Ile Pro Lys Glu Phe Thr
 65 70 75 80
 Val Ala Phe Asn Ala Tyr Thr Glu Ile Pro Trp Leu Phe Gln Ile Ile
 85 90 95
 Val Phe Ala Phe Ser Phe Val Val Ala Ile Ser Phe Ser Arg Leu Arg
 100 105 110
 Ala His Ile Gln Lys His Tyr Ser Leu Leu Pro Glu Gln Arg Val Leu
 115 120 125
 Leu Arg Leu Ser Glu Lys Glu Ile Ala Val Phe Lys Asp Phe Leu Lys
 130 135 140
 Thr Gly Asn Leu Ile Ile Thr Ser Pro Cys Arg Asn Pro Val Met Lys
 145 150 155 160
 Lys Leu Glu Arg Lys Gly Ile Ile Gln His Gln Ser Asp Ser Ala Asn
 165 170 175
 Cys Ser Tyr Tyr Leu Val Thr Glu Lys Tyr Ser His Phe Met Lys Leu
 180 185 190
 Phe Trp Asn Ser Arg Ser Arg Arg Phe Asn Arg
 195 200

<210> 339
<211> 58
<212> PRT
<213> E. Coli

<400> 339

Met Leu Leu Gln Pro Ser Ala Arg Thr Ser Phe Gly Phe Lys Cys Phe

1	5	10	15
Ala Phe Gly Ile Arg His Gly Ser Glu Arg Ser Ile Leu Val Gly Glu			
20	25	30	
His Ala Ala His Gln Gly Phe Val Val Ala Glu Val Asp Phe Leu His			
35	40	45	
Phe Ala Asn Leu Thr Ser Cys Cys Tyr Val			
50	55		

<210> 340

<211> 1426

<212> PRT

<213> E. Coli

<400> 340

Met Ser Gly Lys Pro Ala Ala Arg Gln Gly Asp Met Thr Gln Tyr Gly			
1	5	10	15
Gly Pro Ile Val Gln Gly Ser Ala Gly Val Arg Ile Gly Ala Pro Thr			
20	25	30	
Gly Val Ala Cys Ser Val Cys Pro Gly Gly Met Thr Ser Gly Asn Pro			
35	40	45	
Val Asn Pro Leu Leu Gly Ala Lys Val Leu Pro Gly Glu Thr Asp Leu			
50	55	60	
Ala Leu Pro Gly Pro Leu Pro Phe Ile Leu Ser Arg Thr Tyr Ser Ser			
65	70	75	80
Tyr Arg Thr Lys Thr Pro Ala Pro Val Gly Val Phe Gly Pro Gly Trp			
85	90	95	
Lys Ala Pro Ser Asp Ile Arg Leu Gln Leu Arg Asp Asp Gly Leu Ile			
100	105	110	
Leu Asn Asp Asn Gly Gly Arg Ser Ile His Phe Glu Pro Leu Leu Pro			
115	120	125	
Gly Glu Ala Val Tyr Ser Arg Ser-Glu Ser Met Trp Leu Val Arg Gly			
130	135	140	
Gly Lys Ala Ala Gln Pro Asp Gly His Thr Leu Ala Arg Leu Trp Gly			
145	150	155	160
Ala Leu Pro Pro Asp Ile Arg Leu Ser Pro His Leu Tyr Leu Ala Thr			
165	170	175	
Asn Ser Ala Gln Gly Pro Trp Trp Ile Leu Gly Trp Ser Glu Arg Val			
180	185	190	
Pro Gly Ala Glu Asp Val Leu Pro Ala Pro Leu Pro Pro Tyr Arg Val			
195	200	205	
Leu Thr Gly Met Ala Asp Arg Phe Gly Arg Thr Leu Thr Tyr Arg Arg			
210	215	220	
Glu Ala Ala Gly Asp Leu Ala Gly Glu Ile Thr Gly Val Thr Asp Gly			
225	230	235	240
Ala Gly Arg Glu Phe Arg Leu Val Leu Thr Thr Gln Ala Gln Arg Ala			
245	250	255	
Glu Glu Ala Arg Thr Ser Ser Leu Ser Ser Ser Asp Ser Ser Arg Pro			
260	265	270	
Leu Ser Ala Ser Ala Phe Pro Asp Thr Leu Pro Gly Thr Glu Tyr Gly			
275	280	285	
Pro Asp Arg Gly Ile Arg Leu Ser Ala Val Trp Leu Met His Asp Pro			
290	295	300	
Ala Tyr Pro Glu Ser Leu Pro Ala Ala Pro Leu Val Arg Tyr Thr Tyr			
305	310	315	320
Thr Glu Ala Gly Glu Leu Leu Ala Val Tyr Asp Arg Ser Asn Thr Gln			
325	330	335	
Val Arg Ala Phe Thr Tyr Asp Ala Gln His Pro Gly Arg Met Val Ala			
340	345	350	
His Arg Tyr Ala Gly Arg Pro Glu Met Arg Tyr Arg Tyr Asp Asp Thr			
355	360	365	

Gly Arg Val Val Glu Gln Leu Asn Pro Ala Gly Leu Ser Tyr Arg Tyr
 370 375 380
 Leu Tyr Glu Gln Asp Arg Ile Thr Val Thr Asp Ser Leu Asn Arg Arg
 385 390 395 400
 Glu Val Leu His Thr Glu Gly Gly Ala Gly Leu Lys Arg Val Val Lys
 405 410 415
 Lys Glu Leu Ala Asp Gly Ser Val Thr Arg Ser Gly Tyr Asp Ala Ala
 420 425 430
 Gly Arg Leu Thr Ala Gln Thr Asp Ala Ala Gly Arg Arg Thr Glu Tyr
 435 440 445
 Gly Leu Asn Val Val Ser Gly Asp Ile Thr Asp Ile Thr Thr Pro Asp
 450 455 460
 Gly Arg Glu Thr Lys Phe Tyr Tyr Asn Asp Gly Asn Gln Leu Thr Ala
 465 470 475 480
 Val Val Ser Pro Asp Gly Leu Glu Ser Arg Arg Glu Tyr Asp Glu Pro
 485 490 495
 Gly Arg Leu Val Ser Glu Thr Ser Arg Ser Gly Glu Thr Val Arg Tyr
 500 505 510
 Arg Tyr Asp Asp Ala His Ser Glu Leu Pro Ala Thr Thr Asp Ala
 515 520 525
 Thr Gly Ser Thr Arg Gln Met Thr Trp Ser Arg Tyr Gly Gln Leu Leu
 530 535 540
 Ala Phe Thr Asp Cys Ser Gly Tyr Gln Thr Arg Tyr Glu Tyr Asp Arg
 545 550 555 560
 Phe Gly Gln Met Thr Ala Val His Arg Glu Glu Gly Ile Ser Leu Tyr
 565 570 575
 Arg Arg Tyr Asp Asn Arg Gly Arg Leu Thr Ser Val Lys Asp Ala Gln
 580 585 590
 Gly Arg Glu Thr Arg Tyr Glu Tyr Asn Ala Ala Gly Asp Leu Thr Ala
 595 600 605
 Val Ile Thr Pro Asp Gly Asn Arg Ser Glu Thr Gln Tyr Asp Ala Trp
 610 615 620
 Gly Lys Ala Val Ser Thr Thr Gln Gly Gly Leu Thr Arg Ser Met Glu
 625 630 635 640
 Tyr Asp Ala Ala Gly Arg Val Ile Ser Leu Thr Asn Glu Asn Gly Ser
 645 650 655
 His Ser Val Phe Ser Tyr Asp Ala Leu Asp Arg Leu Val Gln Gln Gly
 660 665 670
 Gly Phe Asp Gly Arg Thr Gln Arg Tyr His Tyr Asp Leu Thr Gly Lys
 675 680 685
 Leu Thr Gln Ser Glu Asp Glu Gly Leu Val Ile Leu Trp Tyr Tyr Asp
 690 695 700
 Glu Ser Asp Arg Ile Thr His Arg Thr Val Asn Gly Glu Pro Ala Glu
 705 710 715 720
 Gln Trp Gln Tyr Asp Gly His Gly Trp Leu Thr Asp Ile Ser His Leu
 725 730 735
 Ser Glu Gly His Arg Val Ala Val His Tyr Gly Tyr Asp Asp Lys Gly
 740 745 750
 Arg Leu Thr Gly Glu Cys Gln Thr Val Glu Asn Pro Glu Thr Gly Glu
 755 760 765
 Leu Leu Trp Gln His Glu Thr Lys His Ala Tyr Asn Glu Gln Gly Leu
 770 775 780
 Ala Asn Arg Val Thr Pro Asp Ser Leu Pro Pro Val Glu Trp Leu Thr
 785 790 795 800
 Tyr Gly Ser Gly Tyr Leu Ala Gly Met Lys Leu Gly Gly Thr Pro Leu
 805 810 815
 Val Glu Tyr Thr Arg Asp Arg Leu His Arg Glu Thr Val Arg Ser Phe
 820 825 830
 Gly Ser Met Ala Gly Ser Asn Ala Ala Tyr Glu Leu Thr Ser Thr Tyr
 835 840 845
 Thr Pro Ala Gly Gln Leu Gln Ser Gln His Leu Asn Ser Leu Val Tyr

850	855	860
Asp Arg Asp Tyr Gly Trp Ser Asp Asn Gly Asp	Leu Val Arg Ile Ser	
865 870 875 880	885 890 895	
Gly Pro Arg Gln Thr Arg Glu Tyr Gly Tyr Ser Ala Thr Gly Arg Leu		
900 905 910		
Glu Ser Val Arg Thr Leu Ala Pro Asp Leu Asp Ile Arg Ile Pro Tyr		
915 920 925		
Ala Thr Asp Pro Ala Gly Asn Arg Leu Pro Asp Pro Glu Leu His Pro		
930 935 940		
Asp Ser Thr Leu Thr Val Trp Pro Asp Asn Arg Ile Ala Glu Asp Ala		
945 950 955 960		
His Tyr Val Tyr Arg His Asp Glu Tyr Gly Arg Leu Thr Glu Lys Thr		
980 985 990		
Gln His Gly Glu Pro Leu Val Glu Ser Arg Tyr Leu Tyr Asp Pro Leu		
995 1000 1005		
Gly Arg Arg Met Ala Lys Arg Val Trp Arg Arg Glu Arg Asp Leu Thr		
1010 1015 1020		
Gly Trp Met Ser Leu Ser Arg Lys Pro Glu Val Thr Trp Tyr Gly Trp		
1025 1030 1035 1040		
Asp Gly Asp Arg Leu Thr Thr Val Gln Thr Asp Thr Thr Arg Ile Gln		
1045 1050 1055		
Thr Val Tyr Glu Pro Gly Ser Phe Thr Pro Leu Ile Arg Val Glu Thr		
1060 1065 1070		
Glu Asn Gly Glu Arg Glu Lys Ala Gln Arg Arg Ser Leu Ala Glu Thr		
1075 1080 1085		
Leu Gln Gln Glu Gly Ser Glu Asn Gly His Gly Val Val Phe Pro Ala		
1090 1095 1100		
Glu Leu Val Arg Leu Leu Asp Arg Leu Glu Glu Glu Ile Arg Ala Asp		
1105 1110 1115 1120		
Arg Val Ser Ser Glu Ser Arg Ala Trp Leu Ala Gln Cys Gly Leu Thr		
1125 1130 1135		
Val Glu Gln Leu Ala Arg Gln Val Glu Pro Glu Tyr Thr Pro Ala Arg		
1140 1145 1150		
Lys Ala His Leu Tyr His Cys Asp His Arg Gly Leu Pro Leu Ala Leu		
1155 1160 1165		
Ile Ser Glu Asp Gly Asn Thr Ala Trp Ser Ala Glu Tyr Asp Glu Trp		
1170 1175 1180		
Gly Asn Gln Leu Asn Glu Glu Asn Pro His His Val Tyr Gln Pro Tyr		
1185 1190 1195 1200		
Arg Leu Pro Gly Gln Gln His Asp Glu Glu Ser Gly Leu Tyr Tyr Asn		
1205 1210 1215		
Arg His Arg Tyr Tyr Asp Pro Leu Gln Gly Arg Tyr Ile Thr Gln Asp		
1220 1225 1230		
Pro Met Gly Leu Lys Gly Gly Trp Asn Leu Tyr Gln Tyr Pro Leu Asn		
1235 1240 1245		
Pro Leu Gln Gln Ile Asp Pro Met Gly Leu Leu Gln Thr Trp Asp Asp		
1250 1255 1260		
Ala Arg Ser Gly Ala Cys Thr Gly Gly Val Cys Gly Val Leu Ser Arg		
1265 1270 1275 1280		
Ile Ile Gly Pro Ser Lys Phe Asp Ser Thr Ala Asp Ala Leu Asp		
1285 1290 1295		
Ala Leu Lys Glu Thr Gln Asn Arg Ser Leu Cys Asn Asp Met Glu Tyr		
1300 1305 1310		
Ser Gly Ile Val Cys Lys Asp Thr Asn Gly Lys Tyr Phe Ala Ser Lys		
1315 1320 1325		
Ala Glu Thr Asp Asn Leu Arg Lys Glu Ser Tyr Pro Leu Lys Arg Lys		
1330 1335 1340		

Cys Pro Thr Gly Thr Asp Arg Val Ala Ala Tyr His Thr His Gly Ala
 1345 1350 1355 1360
 Asp Ser His Gly Asp Tyr Val Asp Glu Phe Phe Ser Ser Ser Asp Lys
 1365 1370 1375
 Asn Leu Val Arg Ser Lys Asp Asn Asn Leu Glu Ala Phe Tyr Leu Ala
 1380 1385 1390
 Thr Pro Asp Gly Arg Phe Glu Ala Leu Asn Asn Lys Gly Glu Tyr Ile
 1395 1400 1405
 Phe Ile Arg Asn Ser Val Pro Gly Leu Ser Ser Val Cys Ile Pro Tyr
 1410 1415 1420
 His Asp
 1425

<210> 341
<211> 122
<212> PRT
<213> E. Coli

<400> 341
Met Lys Tyr Ser Ser Ile Phe Ser Met Leu Ser Phe Phe Ile Leu Phe
 1 5 10 15
Ala Cys Asn Glu Thr Ala Val Tyr Gly Ser Asp Glu Asn Ile Ile Phe
 20 25 30
Met Arg Tyr Val Glu Lys Leu His Leu Asp Lys Tyr Ser Val Lys Asn
 35 40 45
Thr Val Lys Thr Glu Thr Met Ala Ile Gln Leu Ala Glu Ile Tyr Val
 50 55 60
Arg Tyr Arg Tyr Gly Glu Arg Ile Ala Glu Glu Glu Lys Pro Tyr Leu
 65 70 75 80
Ile Thr Glu Leu Pro Asp Ser Trp Val Val Glu Gly Ala Lys Leu Pro
 85 90 95
Tyr Glu Val Ala Gly Gly Val Phe Ile Ile Glu Ile Asn Lys Lys Asn
 100 105 110
Gly Cys Val Leu Asn Phe Leu His Ser Lys
 115 120

<210> 342
<211> 236
<212> PRT
<213> E. Coli

<400> 342
Met Leu Ala Leu Met Asp Ala Asp Gly Asn Ile Ala Trp Ser Gly Glu
 1 5 10 15
Tyr Asp Glu Trp Gly Asn Gln Leu Asn Glu Glu Asn Pro His His Leu
 20 25 30
His Gln Pro Tyr Arg Leu Pro Gly Gln Gln Tyr Asp Lys Glu Ser Gly
 35 40 45
Leu Tyr Tyr Asn Arg Asn Arg Tyr Tyr Asp Pro Leu Gln Gly Arg Tyr
 50 55 60
Ile Thr Gln Asp Pro Ile Gly Leu Glu Gly Gly Trp Ser Leu Tyr Ala
 65 70 75 80
Tyr Pro Leu Asn Pro Val Asn Gly Ile Asp Pro Leu Gly Leu Ser Pro
 85 90 95
Ala Asp Val Ala Leu Ile Arg Arg Lys Asp Gln Leu Asn His Gln Arg
 100 105 110
Ala Trp Asp Ile Leu Ser Asp Thr Tyr Glu Asp Met Lys Arg Leu Asn
 115 120 125
Leu Gly Gly Thr Asp Gln Phe Phe His Cys Met Ala Phe Cys Arg Val

130	135	140
Ser Lys Leu Asn Asp Ala	Gly Val Ser Arg Ser	Ala Lys Gly Leu Gly
145	150	155
Tyr Glu Lys Glu Ile Arg Asp Tyr Gly	Leu Asn Leu Phe Gly	Met Tyr
165	170	175
Gly Arg Lys Val Lys Leu Ser His Ser	Glu Met Ile Glu Asp Asn Lys	
180	185	190
Lys Asp Leu Ala Val Asn Asp His	Gly Leu Thr Cys Pro Ser Thr Thr	
195	200	205
Asp Cys Ser Asp Arg Cys Ser Asp Tyr Ile Asn Pro	Glu His Lys Lys	
210	215	220
Thr Ile Lys Ala Leu Gln Asp Ala	Gly Tyr Leu Lys	
225	230	235

<210> 343

<211> 86

<212> PRT

<213> E. Coli

<400> 343

Met Leu Ala Ile Ser Ser Asn Leu Ser Lys	Met Ile Ile Phe Ile Phe	
1	5	10
Ala Ile Ile Ile Val Val Leu Cys Val	Ile Thr Tyr Leu Tyr Leu	
20	25	30
Tyr Lys Asp Glu Ser Leu Val Ser Lys His	Tyr Ile Asn Tyr Met Ala	
35	40	45
Ile Pro Glu Asn Asp Gly Val Phe Thr Trp	Leu Pro Asp Phe Phe Pro	
50	55	60
His Val Ala Val Asp Ile Ser Ile Tyr Thr	Asn Val Glu Asp Asp Tyr	
65	70	75
Phe Phe Leu Ile Phe Pro		80
	85	

<210> 344

<211> 63

<212> PRT

<213> E. Coli

<400> 344

Met Arg Ala Arg Glu Gln Val Ala Lys Ile Val Ser Lys Asn Asp Pro		
1	5	10
Asp Thr Lys Lys Val Trp Cys Lys Tyr Gly Lys Ile Pro Gly Gln Gly		
20	25	30
Asp Gly Val Asn Leu Phe Phe Val Gly Glu Ile Asn Val Thr His Tyr		
35	40	45
Phe Ile Thr Asn Ile Gly Ala Gly Leu Pro Asp Ala Cys Ala Glu		
50	55	60

<210> 345

<211> 167

<212> PRT

<213> E. Coli

<400> 345

Met Pro Gly Asn Ser Pro His Tyr Gly Arg Trp Pro Gln His Asp Phe		
1	5	10
		15

Thr Ser Leu Lys Lys Leu Arg Pro Gln Ser Val Thr Ser Arg Ile Gln
 20 25 30
 Pro Gly Ser Asp Val Ile Val Cys Ala Glu Met Asp Glu Gln Trp Gly
 35 40 45
 Tyr Val Gly Ala Lys Ser Arg Gln Arg Trp Leu Phe Tyr Ala Tyr Asp
 50 55 60
 Ser Leu Arg Lys Thr Val Val Ala His Val Phe Gly Glu Arg Thr Met
 65 70 75 80
 Ala Thr Leu Gly Arg Leu Met Ser Leu Leu Ser Pro Phe Asp Val Val
 85 90 95
 Ile Trp Met Thr Asp Gly Trp Pro Leu Tyr Glu Ser Arg Leu Lys Gly
 100 105 110
 Lys Leu His Val Ile Ser Lys Arg Tyr Thr Gln Arg Ile Glu Arg His
 115 120 125
 Asn Leu Asn Leu Arg Gln His Leu Ala Arg Leu Gly Arg Lys Ser Leu
 130 135 140
 Ser Phe Ser Lys Ser Val Glu Leu His Asp Lys Val Ile Gly His Tyr
 145 150 155 160
 Leu Asn Ile Lys His Tyr Gln
 165

<210> 346

<211> 91

<212> PRT

<213> E. Coli

<400> 346

Met Ala Ser Val Ser Ile Ser Cys Pro Ser Cys Ser Ala Thr Asp Gly
 1 5 10 15
 Val Val Arg Asn Gly Lys Ser Thr Ala Gly His Gln Arg Tyr Leu Cys
 20 25 30
 Ser His Cys Arg Lys Thr Trp Gln Leu Gln Phe Thr Tyr Thr Ala Ser
 35 40 45
 Gln Pro Gly Thr His Gln Lys Ile Ile Asp Met Ala Met Asn Gly Val
 50 55 60
 Gly Cys Arg Ala Thr Ala Arg Ile Met Gly Val Gly Leu Asn Thr Ile
 65 70 75 80
 Leu Arg His Leu Lys Asn Ser Gly Arg Ser Arg
 85 90

<210> 347

<211> 138

<212> PRT

<213> E. Coli

<400> 347

Met Met Thr Lys Thr Gln Ile Asn Lys Leu Ile Lys Met Met Asn Asp
 1 5 10 15
 Leu Asp Tyr Pro Phe Glu Ala Pro Leu Lys Glu Ser Phe Ile Glu Ser
 20 25 30
 Ile Ile Gln Ile Glu Phe Asn Ser Asn Ser Thr Asn Cys Leu Glu Lys
 35 40 45
 Leu Cys Asn Glu Val Ser Ile Leu Phe Lys Asn Gln Pro Asp Tyr Leu
 50 55 60
 Thr Phe Leu Arg Ala Met Asp Gly Phe Glu Val Asn Gly Leu Arg Leu
 65 70 75 80
 Phe Ser Leu Ser Ile Pro Glu Pro Ser Val Lys Asn Leu Phe Ala Val
 85 90 95

Asn Glu Phe Tyr Arg Asn Asn Asp Asp Phe Ile Asn Pro Asp Leu Gln
 100 105 110
 Glu Arg Leu Val Ile Gly Asp Tyr Ser Ile Ser Ile Phe Thr Tyr Asp
 115 120 125
 Ile Lys Gly Asp Ala Ala Asn Leu Leu Ile
 130 135

<210> 348

<211> 392

<212> PRT

<213> E. Coli

<400> 348

Met Ser Asn Ile Val Tyr Leu Thr Val Thr Gly Glu Gln Gln Gly Ser
 1 5 10 15
 Ile Ser Ala Gly Cys Gly Thr Ser Glu Ser Thr Gly Asn Arg Trp Gln
 20 25 30
 Ser Gly His Glu Asp Glu Ile Phe Thr Phe Ser Leu Leu Asn Asn Ile
 35 40 45
 Asn Asn Thr Gly Leu Gly Ser Gln Phe His Gly Ile Thr Phe Cys Lys
 50 55 60
 Leu Ile Asp Lys Ser Thr Pro Leu Phe Ile Asn Ser Ile Asn Asn Asn
 65 70 75 80
 Glu Gln Leu Phe Met Gly Phe Asp Phe Tyr Arg Ile Asn Arg Phe Gly
 85 90 95
 Arg Leu Glu Lys Tyr Tyr Tyr Ile Gln Leu Arg Gly Ala Phe Leu Ser
 100 105 110
 Ala Ile His His Gln Ile Ile Glu Asn Gln Leu Asp Thr Glu Thr Ile
 115 120 125
 Thr Ile Ser Tyr Glu Phe Ile Leu Cys Gln His Leu Ile Ala Asn Thr
 130 135 140
 Glu Phe Ser Tyr Leu Ala Leu Pro Glu Asn Tyr Asn Arg Leu Phe Leu
 145 150 155 160
 Pro Asn Ser Lys Asn Gln Thr Asn Asn Arg Phe Lys Thr Leu Asn Ser
 165 170 175
 Lys Ala Ile Gly Arg Leu Leu Ala Ala Gly Gly Val Tyr Asn Gly Asn
 180 185 190
 Ile Glu Gly Phe Arg Asp Thr Ala Glu Lys Leu Gly Gly Asp Ala Ile
 195 200 205
 Lys Gly Tyr Asp Gln Ile Leu Asn Glu Lys Thr Ala Gly Ile Ala Ile
 210 215 220
 Ala Thr Ala Ser Ile Leu Leu Thr Lys Arg Ser Asn Val Asp Thr Tyr
 225 230 235 240
 Thr Glu Ile Asn Ser Tyr Leu Gly Lys Leu Arg Gly Gln Gln Lys Leu
 245 250 255
 Leu Asp Gly Ile Asp Ile Ile Glu Ile Ile Tyr Ile Lys Arg Pro Ser
 260 265 270
 Lys Asp Leu Ala Asn Leu Arg Lys Glu Phe Asn Lys Thr Val Arg Lys
 275 280 285
 Asn Phe Leu Ile Lys Leu Ala Lys Thr Ser Glu Ala Ser Gly Arg Phe
 290 295 300
 Asn Ala Glu Asp Leu Leu Arg Met Arg Lys Gly Asn Val Pro Leu Asn
 305 310 315 320
 Tyr Asn Val His His Lys Leu Ser Leu Asp Asp Gly Gly Thr Asn Asp
 325 330 335
 Phe Glu Asn Leu Val Leu Ile Glu Asn Glu Pro Tyr His Lys Val Phe
 340 345 350
 Thr Asn Met Gln Ser Arg Ile Ala Lys Gly Ile Leu Val Gly Glu Ser
 355 360 365
 Lys Ile Thr Pro Trp Ala Ile Pro Ser Gly Ser Ile Tyr Pro Pro Met

370 375 380
 Lys Asn Ile Met Asp His Thr Lys
 385 390

<210> 349
 <211> 221
 <212> PRT
 <213> E. Coli

<400> 349
 Met Val Leu Ala Leu Asn Tyr Asn Met His Gly Val Asn Ile Arg Ser
 1 5 10 15
 Glu Asn Ala Ala Lys Pro His Thr Met Pro Ser Arg Tyr Leu Cys Glu
 20 25 30
 Tyr Ile Arg Ser Ile Glu Lys Asn Gly His Ala Leu Asp Phe Gly Cys
 35 40 45
 Gly Lys Leu Arg Tyr Ser Asp Glu Leu Ile Ser Lys Phe Asp Glu Val
 50 55 60
 Thr Phe Leu Asp Ser Lys Arg Gln Leu Glu Arg Glu Gln Ile Ile Arg
 65 70 75 80
 Gly Ile Lys Thr Lys Ile Ile Asp Tyr Val Pro Arg Tyr Tyr Lys Asn
 85 90 95
 Ala Asn Thr Val Ala Phe Glu Asp Val Asp Lys Ile Ile Gly Gly Tyr
 100 105 110
 Asp Phe Ile Leu Cys Ser Asn Val Leu Ser Ala Val Pro Cys Arg Asp
 115 120 125
 Thr Ile Asp Lys Ile Val Leu Ser Ile Lys Arg Leu Leu Lys Ser Gly
 130 135 140
 Gly Glu Thr Leu Ile Val Asn Gln Tyr Lys Ser Ser Tyr Phe Lys Lys
 145 150 155 160
 Tyr Glu Thr Gly Arg Lys His Leu Tyr Gly Tyr Ile Tyr Lys Asn Ser
 165 170 175
 Lys Ser Val Ser Tyr Tyr Gly Leu Leu Asp Glu Leu Ala Val Gln Glu
 180 185 190
 Ile Cys Ser Ser His Gly Leu Glu Ile Leu Lys Ser Trp Ser Lys Ala
 195 200 205
 Gly Ser Ser Tyr Val Thr Val Gly Ser Cys Asn Ala Ile
 210 215 220

<210> 350
 <211> 234
 <212> PRT
 <213> E. Coli

<400> 350
 Met Asn Asn Met Phe Glu Pro Pro Lys Asn Tyr Asn Glu Met Leu Pro
 1 5 10 15
 Lys Leu His Lys Ala Thr Phe Leu Asn Thr Leu Ile Tyr Cys Ile Leu
 20 25 30
 Leu Val Ile Tyr Glu Tyr Ile Pro Leu Ile Thr Leu Pro Thr Lys Tyr
 35 40 45
 Val Pro Pro Ile Lys Asp His Glu Ser Phe Ile Asn Trp Ala Leu Ser
 50 55 60
 Phe Gly Ile Leu Pro Cys Ala Phe Ala Ile Phe Ala Tyr Leu Ile Ser
 65 70 75 80
 Gly Ala Leu Asp Leu His Asn Asn Ala Ala Lys Leu Leu Arg Val Arg
 85 90 95
 Tyr Leu Trp Asp Lys His Leu Ile Ile Lys Pro Leu Ser Arg Arg Ala

100	105	110
Gly Val Asn Arg Lys Leu Asn Lys Asp Glu Ala His Asn Val Met Ser		
115	120	125
Asn Leu Tyr Tyr Pro Glu Val Arg Lys Ile Glu Asp Lys His Tyr Ile		
130	135	140
Glu Leu Phe Trp Asn Lys Val Tyr Tyr Phe Trp Ile Phe Phe Glu Phe		
145	150	155
Ser Ile Ile Ala Leu Ile Ser Phe Leu Ile Ile Phe Phe Cys Lys Gln		
165	170	175
Met Asp Ile Phe His Val Glu Gly Ser Leu Leu Ser Leu Phe Phe Phe		
180	185	190
Val Ile Leu Ser Phe Ser Val Ser Gly Ile Ile Phe Ala Leu Thr Val		
195	200	205
Lys Pro Arg Thr Glu Ser Gln Val Gly Lys Ile Pro Asp Asp Lys Ile		
210	215	220
Lys Glu Phe Phe Thr Lys Asn Asn Ile Asn		
225	230	

<210> 351

<211> 94

<212> PRT

<213> E. Coli

<400> 351

Met Phe Thr Ile Asn Ala Glu Val Arg Lys Glu Gln Gly Lys Gly Ala		
1	5	10
Ser Arg Arg Leu Arg Ala Ala Asn Lys Phe Pro Ala Ile Ile Tyr Gly		
20	25	30
Gly Lys Glu Ala Pro Leu Ala Ile Glu Leu Asp His Asp Lys Val Met		
35	40	45
Asn Met Gln Ala Lys Ala Glu Phe Tyr Ser Glu Val Leu Thr Ile Val		
50	55	60
Val Asp Gly Lys Glu Ile Lys Val Lys Ala Gln Asp Val Gln Arg His		
65	70	75
Pro Tyr Lys Pro Lys Leu Gln His Ile Asp Phe Val Arg Ala		
85	90	

<210> 352

<211> 658

<212> PRT

<213> E. Coli

<400> 352

Met Val Leu Phe Tyr Arg Ala His Trp Arg Asp Tyr Lys Asn Asp Gln		
1	5	10
Val Arg Ile Met Met Asn Leu Thr Thr Leu Thr His Arg Asp Ala Leu		
20	25	30
Cys Leu Asn Ala Arg Phe Thr Ser Arg Glu Glu Ala Ile His Ala Leu		
35	40	45
Thr Gln Arg Leu Ala Ala Leu Gly Lys Ile Ser Ser Thr Glu Gln Phe		
50	55	60
Leu Glu Glu Val Tyr Arg Arg Glu Ser Leu Gly Pro Thr Ala Leu Gly		
65	70	75
Glu Gly Leu Ala Val Pro His Gly Lys Thr Ala Ala Val Lys Glu Ala		
85	90	95
Ala Phe Ala Val Ala Thr Leu Ser Glu Pro Leu Gln Trp Glu Gly Val		
100	105	110
Asp Gly Pro Glu Ala Val Asp Leu Val Val Leu Leu Ala Ile Pro Pro		

115	120	125
Asn Glu Ala Gly Thr Thr His Met Gln Leu Leu Thr		
130	135	140
Arg Leu Ala Asp Asp Glu Ile Arg Ala Arg	Ile Gln Ser Ala Thr	Thr
145	150	155
Pro Asp Glu Leu Leu Ser Ala Leu Asp Asp Lys	Gly Gly Thr Gln	Pro
165	170	175
Ser Ala Ser Phe Ser Asn Ala Pro Thr Ile Val Cys	Val Thr Ala Cys	
180	185	190
Pro Ala Gly Ile Ala His Thr Tyr Met Ala Ala Glu	Tyr Leu Glu Lys	
195	200	205
Ala Gly Arg Lys Leu Gly Val Asn Val Tyr Val	Glu Lys Gln Gly Ala	
210	215	220
Asn Gly Ile Glu Gly Arg Leu Thr Ala Asp Gln	Leu Asn Ser Ala Thr	
225	230	235
Ala Cys Ile Phe Ala Ala Glu Val Ala Ile Lys	Glu Ser Glu Arg Phe	
245	250	255
Asn Gly Ile Pro Ala Leu Ser Val Pro Val Ala Glu	Pro Ile Arg His	
260	265	270
Ala Glu Ala Leu Ile Gln Gln Ala Leu Thr Leu Lys	Arg Ser Asp Glu	
275	280	285
Thr Arg Thr Val Gln Gln Asp Thr Gln Pro Val	Lys Ser Val Lys Thr	
290	295	300
Glu Leu Lys Gln Ala Leu Leu Ser Gly Ile Ser	Phe Ala Val Pro Leu	
305	310	315
Ile Val Ala Gly Gly Thr Val Leu Ala Val Ala Val	Leu Leu Ser Gln	
325	330	335
Ile Phe Gly Leu Gln Asp Leu Phe Asn Glu Glu Asn	Ser Trp Leu Trp	
340	345	350
Met Tyr Arg Lys Leu Gly Gly Leu Leu Gly Ile Leu	Met Val Pro	
355	360	365
Val Leu Ala Ala Tyr Thr Ala Tyr Ser Leu Ala Asp	Lys Pro Ala Leu	
370	375	380
Ala Pro Gly Phe Ala Ala Gly Leu Ala Ala Asn	Met Ile Gly Ser Gly	
385	390	395
Phe Leu Gly Ala Val Val Gly Gly Leu Ile Ala Gly	Tyr Leu Met Arg	
405	410	415
Trp Val Lys Asn His Leu Arg Leu Ser Ser Lys	Phe Asn Gly Phe Leu	
420	425	430
Thr Phe Tyr Leu Tyr Pro Val Leu Gly Thr Leu Gly	Ala Gly Ser Leu	
435	440	445
Met Leu Phe Val Val Gly Glu Pro Val Ala Trp	Ile Asn Asn Ser Leu	
450	455	460
Thr Ala Trp Leu Asn Gly Leu Ser Gly Ser	Asn Ala Leu Leu Leu Gly	
465	470	475
Ala Ile Leu Gly Phe Met Cys Ser Phe Asp	Leu Gly Gly Pro Val Asn	
485	490	495
Lys Ala Ala Tyr Ala Phe Cys Leu Gly Ala Met Ala	Asn Gly Val Tyr	
500	505	510
Gly Pro Tyr Ala Ile Phe Ala Ser Val Lys Met Val	Ser Ala Phe Thr	
515	520	525
Val Thr Ala Ser Thr Met Leu Ala Pro Arg Leu Phe	Lys Glu Phe Glu	
530	535	540
Ile Glu Thr Gly Lys Ser Thr Trp Leu Leu Gly	Leu Ala Gly Ile Thr	
545	550	555
Glu Gly Ala Ile Pro Met Ala Ile Glu Asp Pro Leu	Arg Val Ile Gly	
565	570	575
Ser Phe Val Leu Gly Ser Met Val Thr Gly Ala Ile	Val Gly Ala Met	
580	585	590
Asn Ile Gly Leu Ser Thr Pro Gly Ala Gly Ile Phe	Ser Leu Phe Leu	
595	600	605

Leu His Asp Asn Gly Ala Gly Gly Val Met Ala Ala Ile Gly Trp Phe
 610 615 620
 Gly Ala Ala Leu Val Gly Ala Ala Ile Ser Thr Ala Ile Leu Leu Met
 625 630 635 640
 Trp Arg Arg His Ala Val Lys His Gly Asn Tyr Leu Thr Asp Gly Val
 645 650 655
 Met Pro

<210> 353

<211> 877

<212> PRT

<213> E. Coli

<400> 353

Met Lys Ala Val Ser Arg Val His Ile Thr Pro His Met His Trp Asp
 1 5 10 15
 Arg Glu Trp Tyr Phe Thr Thr Glu Glu Ser Arg Ile Leu Leu Val Asn
 20 25 30
 Asn Met Glu Glu Ile Leu Cys Arg Leu Glu Gln Asp Asn Glu Tyr Lys
 35 40 45
 Tyr Tyr Val Leu Asp Gly Gln Thr Ala Ile Leu Glu Asp Tyr Phe Ala
 50 55 60
 Val Lys Pro Glu Asn Lys Asp Arg Val Lys Lys Gln Val Glu Ala Gly
 65 70 75 80
 Lys Leu Ile Ile Gly Pro Trp Tyr Thr Gln Thr Asp Thr Thr Ile Val
 85 90 95
 Ser Ala Glu Ser Ile Val Arg Asn Leu Met Tyr Gly Met Arg Asp Cys
 100 105 110
 Leu Ala Phe Gly Glu Pro Met Lys Ile Gly Tyr Leu Pro Asp Ser Phe
 115 120 125
 Gly Met Ser Gly Gln Leu Pro His Ile Tyr Asn Gly Phe Gly Ile Thr
 130 135 140
 Arg Thr Met Phe Trp Arg Gly Cys Ser Glu Arg His Gly Thr Asp Lys
 145 150 155 160
 Thr Glu Phe Leu Trp Gln Ser Ser Asp Gly Ser Glu Val Thr Ala Gln
 165 170 175
 Val Leu Pro Leu Gly Tyr Ala Ile Gly Lys Tyr Leu Pro Ala Asp Glu
 180 185 190
 Asn Gly Leu Arg Lys Arg Leu Asp Ser Tyr Phe Asp Val Leu Glu Lys
 195 200 205
 Ala Ser Val Thr Lys Glu Ile Leu Leu Pro Asn Gly His Asp Gln Met
 210 215 220
 Pro Leu Gln Gln Asn Ile Phe Glu Val Met Asp Lys Leu Arg Glu Ile
 225 230 235 240
 Tyr Pro Gln Arg Lys Phe Val Met Ser Arg Phe Glu Glu Val Phe Glu
 245 250 255
 Lys Ile Glu Ala Gln Arg Asp Asn Leu Ala Thr Leu Lys Gly Glu Phe
 260 265 270
 Ile Asp Gly Lys Tyr Met Arg Val His Arg Thr Ile Gly Ser Thr Arg
 275 280 285
 Met Asp Ile Lys Ile Ala His Ala Arg Ile Glu Asn Lys Ile Val Asn
 290 295 300
 Leu Leu Glu Pro Leu Ala Thr Leu Ala Trp Thr Leu Gly Phe Glu Tyr
 305 310 315 320
 His His Gly Leu Leu Glu Lys Met Trp Lys Glu Ile Leu Lys Asn His
 325 330 335
 Ala His Asp Ser Ile Gly Cys Cys Ser Asp Lys Val His Arg Glu
 340 345 350
 Ile Val Ala Arg Phe Glu Leu Ala Glu Asp Met Ala Asp Asn Leu Ile

355	360	365
Arg Phe Tyr Met Arg Lys Ile Ala Asp Asn Met Pro Gln Ser Asp Ala		
370	375	380
Asp Lys Leu Val Leu Phe Asn Leu Met Pro Trp Pro Arg Glu Glu Val		
385	390	395
Ile Asn Thr Thr Val Arg Leu Arg Ala Ser Gln Phe Asn Leu Arg Asp		
405	410	415
Asp Arg Gly Gln Pro Val Pro Tyr Phe Ile Arg His Ala Arg Glu Ile		
420	425	430
Asp Pro Gly Leu Ile Asp Arg Gln Ile Val His Tyr Gly Asn Tyr Asp		
435	440	445
Pro Phe Met Glu Phe Asp Ile Gln Ile Asn Gln Ile Val Pro Ser Met		
450	455	460
Gly Tyr Arg Thr Leu Tyr Ile Glu Ala Asn Gln Pro Gly Asn Val Ile		
465	470	475
Ala Ala Lys Ser Asp Ala Glu Gly Ile Leu Glu Asn Ala Phe Trp Gln		
485	490	495
Ile Ala Leu Asn Glu Asp Gly Ser Leu Gln Leu Val Asp Lys Asp Ser		
500	505	510
Gly Val Arg Tyr Asp Arg Val Leu Gln Ile Glu Glu Ser Ser Asp Asp		
515	520	525
Gly Asp Glu Tyr Asp Tyr Ser Pro Ala Lys Glu Glu Trp Val Ile Thr		
530	535	540
Ala Ala Asn Ala Lys Pro Gln Cys Asp Ile Ile His Glu Ala Trp Gln		
545	550	555
Ser Arg Ala Val Ile Arg Tyr Asp Met Ala Val Pro Leu Asn Leu Ser		
565	570	575
Glu Arg Ser Ala Arg Gln Ser Thr Gly Arg Val Gly Val Val Leu Val		
580	585	590
Val Thr Leu Ser His Asn Ser Arg Arg Ile Asp Val Asp Ile Asn Leu		
595	600	605
Asp Asn Gln Ala Asp Asp His Arg Leu Arg Val Leu Val Pro Thr Pro		
610	615	620
Phe Asn Thr Asp Ser Val Leu Ala Asp Thr Gln Phe Gly Ser Leu Thr		
625	630	635
Arg Pro Val Asn Asp Ser Ala Met Asn Asn Trp Gln Gln Glu Gly Trp		
645	650	655
Lys Glu Ala Pro Val Pro Val Trp Asn Met Leu Asn Tyr Val Ala Leu		
660	665	670
Gln Glu Gly Arg Asn Gly Met Ala Val Phe Ser Glu Gly Leu Arg Glu		
675	680	685
Phe Glu Val Ile Gly Glu Glu Lys Lys Thr Phe Ala Ile Thr Leu Leu		
690	695	700
Arg Gly Val Gly Leu Leu Gly Lys Glu Asp Leu Leu Leu Arg Pro Gly		
705	710	715
Arg Pro Ser Gly Ile Lys Met Pro Val Pro Asp Ser Gln Leu Arg Gly		
725	730	735
Leu Leu Ser Cys Arg Leu Ser Leu Leu Ser Tyr Thr Gly Thr Pro Thr		
740	745	750
Ala Ala Gly Val Ala Gln Gln Ala Arg Ala Trp Leu Thr Pro Val Gln		
755	760	765
Cys Tyr Asn Lys Ile Pro Trp Asp Val Met Lys Leu Asn Lys Ala Gly		
770	775	780
Phe Asn Val Pro Glu Ser Tyr Ser Leu Leu Lys Met Pro Pro Val Gly		
785	790	795
Cys Leu Ile Ser Ala Leu Lys Lys Ala Glu Asp Arg Gln Glu Val Ile		
805	810	815
Leu Arg Leu Phe Asn Pro Ala Glu Ser Ala Thr Cys Asp Ala Thr Val		
820	825	830
Ala Phe Ser Arg Glu Val Ile Ser Cys Ser Glu Thr Met Met Asp Glu		
835	840	845

His	Ile	Thr	Thr	Glu	Glu	Asn	Gln	Gly	Ser	Asn	Leu	Ser	Gly	Pro	Phe
850						855					860				
Leu	Pro	Gly	Gln	Ser	Arg	Thr	Phe	Ser	Tyr	Arg	Leu	Ala			
865						870					875				

<210> 354
<211> 523
<212> PRT
<213> E. Coli

<400> 354															
Met	Met	Leu	Asp	Ile	Val	Glu	Leu	Ser	Arg	Leu	Gln	Phe	Ala	Leu	Thr
1				5					10					15	
Ala	Met	Tyr	His	Phe	Leu	Phe	Val	Pro	Leu	Thr	Leu	Gly	Met	Ala	Phe
				20					25					30	
Leu	Leu	Ala	Ile	Met	Glu	Thr	Val	Tyr	Val	Leu	Ser	Gly	Lys	Gln	Ile
				35					40				45		
Tyr	Lys	Asp	Met	Thr	Lys	Phe	Trp	Gly	Lys	Leu	Phe	Gly	Ile	Asn	Phe
	50				55					60					
Ala	Leu	Gly	Val	Ala	Thr	Gly	Leu	Thr	Met	Glu	Phe	Gln	Phe	Gly	Thr
65				70					75				80		
Asn	Trp	Ser	Tyr	Tyr	Ser	His	Tyr	Val	Gly	Asp	Ile	Phe	Gly	Ala	Pro
						85			90				95		
Leu	Ala	Ile	Glu	Gly	Leu	Met	Ala	Phe	Phe	Leu	Glu	Ser	Thr	Phe	Val
			100			105			110						
Gly	Leu	Phe	Phe	Gly	Trp	Asp	Arg	Leu	Gly	Lys	Val	Gln	His	Met	
	115				120				125						
Cys	Val	Thr	Trp	Leu	Val	Ala	Leu	Gly	Ser	Asn	Leu	Ser	Ala	Leu	Trp
	130				135				140						
Ile	Leu	Val	Ala	Asn	Gly	Trp	Met	Gln	Asn	Pro	Ile	Ala	Ser	Asp	Phe
145				150				155			160				
Asn	Phe	Glu	Thr	Met	Arg	Met	Glu	Met	Val	Ser	Phe	Ser	Glu	Leu	Val
				165				170			175				
Leu	Asn	Pro	Val	Ala	Gln	Val	Lys	Phe	Val	His	Thr	Val	Ala	Ser	Gly
				180				185			190				
Tyr	Val	Thr	Gly	Ala	Met	Phe	Ile	Leu	Gly	Ile	Ser	Ala	Trp	Tyr	Met
	195				200				205						
Leu	Lys	Gly	Arg	Asp	Phe	Ala	Phe	Ala	Lys	Arg	Ser	Phe	Ala	Ile	Ala
	210				215				220						
Ala	Ser	Phe	Gly	Met	Ala	Ala	Val	Leu	Ser	Val	Ile	Val	Leu	Gly	Asp
225					230				235			240			
Glu	Ser	Gly	Tyr	Glu	Met	Gly	Asp	Val	Gln	Lys	Thr	Lys	Leu	Ala	Ala
				245				250			255				
Ile	Glu	Ala	Glu	Trp	Glu	Thr	Gln	Pro	Ala	Pro	Ala	Ala	Phe	Thr	Leu
	260				265				270						
Phe	Gly	Ile	Pro	Asp	Gln	Glu	Glu	Thr	Asn	Lys	Phe	Ala	Ile	Gln	
	275				280				285						
Ile	Pro	Tyr	Ala	Leu	Gly	Ile	Ile	Ala	Thr	Arg	Ser	Val	Asp	Thr	Pro
	290				295					300					
Val	Ile	Gly	Leu	Lys	Glu	Leu	Met	Val	Gln	His	Glu	Glu	Arg	Ile	Arg
305					310				315				320		
Asn	Gly	Met	Lys	Ala	Tyr	Ser	Leu	Leu	Glu	Gln	Leu	Arg	Ser	Gly	Ser
				325				330				335			
Thr	Asp	Gln	Ala	Val	Arg	Asp	Gln	Phe	Asn	Ser	Met	Lys	Lys	Asp	Leu
				340				345			350				
Gly	Tyr	Gly	Leu	Leu	Leu	Lys	Arg	Tyr	Thr	Pro	Asn	Val	Ala	Asp	Ala
	355				360				365						
Thr	Glu	Ala	Gln	Ile	Gln	Gln	Ala	Thr	Lys	Asp	Ser	Ile	Pro	Arg	Val
	370				375				380						
Ala	Pro	Leu	Tyr	Phe	Ala	Phe	Arg	Ile	Met	Val	Ala	Cys	Gly	Phe	Leu

385	390	395	400
Leu Leu Ala Ile Ile Ala Leu Ser Phe Trp Ser Val Ile Arg Asn Arg			
405	410	415	
Ile Gly Glu Lys Lys Trp Leu Leu Arg Ala Ala Leu Tyr Gly Ile Pro			
420	425	430	
Leu Pro Trp Ile Ala Val Glu Ala Gly Trp Phe Val Ala Glu Tyr Gly			
435	440	445	
Arg Gln Pro Trp Ala Ile Gly Glu Val Leu Pro Thr Ala Val Ala Asn			
450	455	460	
Ser Ser Leu Thr Ala Gly Asp Leu Ile Phe Ser Met Val Leu Ile Cys			
465	470	475	480
Gly Leu Tyr Thr Leu Phe Leu Val Ala Glu Leu Phe Leu Met Phe Lys			
485	490	495	
Phe Ala Arg Leu Gly Pro Ser Ser Leu Lys Thr Gly Arg Tyr His Phe			
500	505	510	
Glu Gln Ser Ser Thr Thr Gln Pro Ala Arg			
515	520		

<210> 355

<211> 379

<212> PRT

<213> E. Coli

<400> 355

Met Ile Asp Tyr Glu Val Leu Arg Phe Ile Trp Trp Leu Leu Val Gly			
1	5	10	15
Val Leu Leu Ile Gly Phe Ala Val Thr Asp Gly Phe Asp Met Gly Val			
20	25	30	
Gly Met Leu Thr Arg Phe Leu Gly Arg Asn Asp Thr Glu Arg Arg Ile			
35	40	45	
Met Ile Asn Ser Ile Ala Pro His Trp Asp Gly Asn Gln Val Trp Leu			
50	55	60	
Ile Thr Ala Gly Gly Ala Leu Phe Ala Ala Trp Pro Met Val Tyr Ala			
65	70	75	80
Ala Ala Phe Ser Gly Phe Tyr Val Ala Met Ile Leu Val Leu Ala Ser			
85	90	95	
Leu Phe Phe Arg Pro Val Gly Phe Asp Tyr Arg Ser Lys Ile Glu Glu			
100	105	110	
Thr Arg Trp Arg Asn Met Trp Asp Trp Gly Ile Phe Ile Gly Ser Phe			
115	120	125	
Val Pro Pro Leu Val Ile Gly Val Ala Phe Gly Asn Leu Leu Gln Gly			
130	135	140	
Val Pro Phe Asn Val Asp Glu Tyr Leu Arg Leu Tyr Tyr Thr Gly Asn			
145	150	155	160
Phe Phe Gln Leu Leu Asn Pro Phe Gly Leu Leu Ala Gly Val Val Ser			
165	170	175	
Val Gly Met Ile Ile Thr Gln Gly Ala Thr Tyr Leu Gln Met Arg Thr			
180	185	190	
Val Gly Glu Leu His Leu Arg Thr Arg Ala Thr Ala Gln Val Ala Ala			
195	200	205	
Leu Val Thr Leu Val Cys Phe Ala Leu Ala Gly Val Trp Val Met Tyr			
210	215	220	
Gly Ile Asp Gly Tyr Val Val Lys Ser Thr Met Asp His Tyr Ala Ala			
225	230	235	240
Ser Asn Pro Leu Asn Lys Glu Val Val Arg Glu Ala Gly Ala Trp Leu			
245	250	255	
Val Asn Phe Asn Asn Thr Pro Ile Leu Trp Ala Ile Pro Ala Leu Gly			
260	265	270	
Val Val Leu Pro Leu Leu Thr Ile Leu Thr Ala Arg Met Asp Lys Ala			
275	280	285	

Ala Trp Ala Phe Val Phe Ser Ser Leu Thr Leu Ala Cys Ile Ile Leu
 290 295 300
 Thr Ala Gly Ile Ala Met Phe Pro Phe Val Met Pro Ser Ser Thr Met
 305 310 315 320
 Met Asn Ala Ser Leu Thr Met Trp Asp Ala Thr Ser Ser Gln Leu Thr
 325 330 335
 Leu Asn Val Met Thr Trp Val Ala Val Val Leu Val Pro Ile Ile Leu
 340 345 350
 Leu Tyr Thr Ala Trp Cys Tyr Trp Lys Met Phe Gly Arg Ile Thr Lys
 355 360 365
 Glu Asp Ile Glu Arg Asn Thr His Ser Leu Tyr
 370 375

<210> 356

<211> 456

<212> PRT

<213> E. Coli

<400> 356

Met Glu Leu Ser Ser Leu Thr Ala Val Ser Pro Val Asp Gly Arg Tyr
 1 5 10 15
 Gly Asp Lys Val Ser Ala Leu Arg Gly Ile Phe Ser Glu Tyr Gly Leu
 20 25 30
 Leu Lys Phe Arg Val Gln Val Glu Val Arg Trp Leu Gln Lys Leu Ala
 35 40 45
 Ala His Ala Ala Ile Lys Glu Val Pro Ala Phe Ala Ala Asp Ala Ile
 50 55 60
 Gly Tyr Leu Asp Ala Ile Val Ala Ser Phe Ser Glu Glu Asp Ala Ala
 65 70 75 80
 Arg Ile Lys Thr Ile Glu Arg Thr Thr Asn His Asp Val Lys Ala Val
 85 90 95
 Glu Tyr Phe Leu Lys Glu Lys Val Ala Glu Ile Pro Glu Leu His Ala
 100 105 110
 Val Ser Glu Phe Ile His Phe Ala Cys Thr Ser Glu Asp Ile Asn Asn
 115 120 125
 Leu Ser His Ala Leu Met Leu Lys Thr Ala Arg Asp Glu Val Ile Leu
 130 135 140
 Pro Tyr Trp Arg Gln Leu Ile Asp Gly Ile Lys Asp Leu Ala Val Gln
 145 150 155 160
 Tyr Arg Asp Ile Pro Leu Leu Ser Arg Thr His Gly Gln Pro Ala Thr
 165 170 175
 Pro Ser Thr Ile Gly Lys Glu Met Ala Asn Val Ala Tyr Arg Met Glu
 180 185 190
 Arg Gln Tyr Arg Gln Leu Asn Gln Val Glu Ile Leu Gly Lys Ile Asn
 195 200 205
 Gly Ala Val Gly Asn Tyr Asn Ala His Ile Ala Ala Tyr Pro Glu Val
 210 215 220
 Asp Trp His Gln Phe Ser Glu Glu Phe Val Thr Ser Leu Gly Ile Gln
 225 230 235 240
 Trp Asn Pro Tyr Thr Thr Gln Ile Glu Pro His Asp Tyr Ile Ala Glu
 245 250 255
 Leu Phe Asp Cys Val Ala Arg Phe Asn Thr Ile Leu Ile Asp Phe Asp
 260 265 270
 Arg Asp Val Trp Gly Tyr Ile Ala Leu Asn His Phe Lys Gln Lys Thr
 275 280 285
 Ile Ala Gly Glu Ile Gly Ser Ser Thr Met Pro His Lys Val Asn Pro
 290 295 300
 Ile Asp Phe Glu Asn Ser Glu Gly Asn Leu Gly Leu Ser Asn Ala Val
 305 310 315 320
 Leu Gln His Leu Ala Ser Lys Leu Pro Val Ser Arg Trp Gln Arg Asp

325	330	335
Leu Thr Asp Ser	Thr Val Leu Arg Asn	Leu Gly Val Gly Ile Gly Tyr
340	345	350
Ala Leu Ile Ala Tyr Gln Ser	Thr Leu Lys Gly Val	Ser Lys Leu Glu
355	360	365
Val Asn Arg Asp His Leu	Leu Asp Glu Leu Asp His	Asn Trp Glu Val
370	375	380
Leu Ala Glu Pro Ile Gln	Thr Val Met Arg Arg	Tyr Gly Ile Glu Lys
385	390	395
Pro Tyr Glu Lys Leu Lys	Glu Leu Thr Arg Gly Lys	Arg Val Asp Ala
405	410	415
Glu Gly Met Lys Gln Phe Ile Asp	Gly Leu Ala Leu Pro	Glu Glu Glu
420	425	430
Lys Ala Arg Leu Lys Ala Met	Thr Pro Ala Asn Tyr	Ile Gly Arg Ala
435	440	445
Ile Thr Met Val Asp Glu Leu Lys		
450	455	

<210> 357
<211> 61
<212> PRT
<213> E. Coli

<400> 357

Met Leu Ile Leu Thr Arg Arg	Val Gly Glu Thr	Leu Met Ile Gly Asp
1	5	10
Glu Val Thr Val Thr Val Leu Gly Val	Lys Gly Asn Gln	Val Arg Ile
20	25	30
Gly Val Asn Ala Pro Lys Glu Val	Ser Val His Arg	Glu Ile Tyr
35	40	45
Gln Arg Ile Gln Ala Glu Lys	Ser Gln Gln Ser	Ser Tyr
50	55	60

<210> 358
<211> 83
<212> RNA
<213> E. Coli

<400> 358

ggugagggugg ccgagaggcu gaaggcgcuc cccugcuaag ggaguauugcg guaaaaagcu
gcauccgggg uucgaauccc cgccucacccg cca

60
83

<210> 359
<211> 200
<212> PRT
<213> E. Coli

<400> 359

Meu Lys Asn Lys Ala Asp Asn Lys	Arg Asn Phe Leu Thr His Ser	
1	5	10
Glu Ile Glu Ser Leu Leu Lys Ala	Ala Asn Thr Gly Pro His Ala	Ala
20	25	30
Arg Asn Tyr Cys Leu Thr Leu Leu Cys	Phe Ile His Gly Phe Arg Ala	
35	40	45
Ser Glu Ile Cys Arg Leu Arg	Ile Ser Asp Ile Asp Leu Lys Ala	Lys
50	55	60
Cys Ile Tyr Ile His Arg Leu Lys	Lys Gly Phe Ser Thr Thr His	Pro
65	70	75
		80

Leu Leu Asn Lys Glu Val Gln Ala Leu Lys Asn Trp Leu Ser Ile Arg
 85 90 95
 Thr Ser Tyr Pro His Ala Glu Ser Glu Trp Val Phe Leu Ser Arg Lys
 100 105 110
 Gly Asn Pro Leu Ser Arg Gln Gln Phe Tyr His Ile Ile Ser Thr Ser
 115 120 125
 Gly Gly Asn Ala Gly Leu Ser Leu Glu Ile His Pro His Met Leu Arg
 130 135 140
 His Ser Cys Gly Phe Ala Leu Ala Asn Met Gly Ile Asp Thr Arg Leu
 145 150 155 160
 Ile Gln Asp Tyr Leu Gly His Arg Asn Ile Arg His Thr Val Trp Tyr
 165 170 175
 Thr Ala Ser Asn Ala Gly Arg Phe Tyr Gly Ile Trp Asp Arg Ala Arg
 180 185 190
 Gly Arg Gln Arg His Ala Val Leu
 195 200

<210> 360

<211> 198

<212> PRT

<213> E. Coli

<400> 360

Met Ser Lys Arg Arg Tyr Leu Thr Gly Lys Glu Val Gln Ala Met Met
 1 5 10 15
 Gln Ala Val Cys Tyr Gly Ala Thr Gly Ala Arg Asp Tyr Cys Leu Ile
 20 25 30
 Leu Leu Ala Tyr Arg His Gly Met Arg Ile Ser Glu Leu Leu Asp Leu
 35 40 45
 His Tyr Gln Asp Leu Asp Leu Asn Glu Gly Arg Ile Asn Ile Arg Arg
 50 55 60
 Leu Lys Asn Gly Phe Ser Thr Val His Pro Leu Arg Phe Asp Glu Arg
 65 70 75 80
 Glu Ala Val Glu Arg Trp Thr Gln Glu Arg Ala Asn Trp Lys Gly Ala
 85 90 95
 Asp Arg Thr Asp Ala Ile Phe Ile Ser Arg Arg Gly Ser Arg Leu Ser
 100 105 110
 Arg Gln Gln Ala Tyr Arg Ile Ile Arg Asp Ala Gly Ile Glu Ala Gly
 115 120 125
 Thr Val Thr Gln Thr His Pro His Met Leu Arg His Ala Cys Gly Tyr
 130 135 140
 Glu Leu Ala Glu Arg Gly Ala Asp Thr Arg Leu Ile Gln Asp Tyr Leu
 145 150 155 160
 Gly His Arg Asn Ile Arg His Thr Val Arg Tyr Thr Ala Ser Asn Ala
 165 170 175
 Ala Arg Phe Ala Gly Leu Trp Glu Arg Asn Asn Leu Ile Asn Glu Lys
 180 185 190
 Leu Lys Arg Glu Glu Val
 195

<210> 361

<211> 182

<212> PRT

<213> E. Coli

<400> 361

Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu
 1 5 10 15

Ser Ser Thr Ala Ala Leu Ala Ala Ala Thr Thr Val Asn Gly Gly Thr
 20 25 30
 Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala
 35 40 45
 Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser
 50 55 60
 Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln
 65 70 75 80
 Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe
 85 90 95
 Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln
 100 105 110
 Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp
 115 120 125
 Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu
 130 135 140
 Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr
 145 150 155 160
 Phe Ala Thr Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr
 165 170 175
 Phe Lys Val Gln Tyr Gln
 180

<210> 362
 <211> 215
 <212> PRT
 <213> E. Coli

<400> 362

Met Leu Leu Met Arg Met Arg Pro Ser Arg Phe Ser Ile Asn Asn Leu
 1 5 10 15
 Pro Arg Phe Arg Asp Val Ile Thr Gly Arg Asp Ala His Pro Cys Ala
 20 25 30
 Ile Lys Ile Thr Met Lys Arg Lys Arg Leu Phe Leu Leu Ala Ser Leu
 35 40 45
 Leu Pro Met Phe Ala Leu Ala Gly Asn Lys Trp Asn Thr Thr Leu Pro
 50 55 60
 Gly Gly Asn Met Gln Phe Gln Gly Val Ile Ile Ala Glu Thr Cys Arg
 65 70 75 80
 Ile Glu Ala Gly Asp Lys Gln Met Thr Val Asn Met Gly Gln Ile Ser
 85 90 95
 Ser Asn Arg Phe His Ala Val Gly Glu Asp Ser Ala Pro Val Pro Phe
 100 105 110
 Val Ile His Leu Arg Glu Cys Ser Thr Val Val Ser Glu Arg Val Gly
 115 120 125
 Val Ala Phe His Gly Val Ala Asp Gly Lys Asn Pro Asp Val Leu Ser
 130 135 140
 Val Gly Glu Gly Pro Gly Ile Ala Thr Asn Ile Gly Val Ala Leu Phe
 145 150 155 160
 Asp Asp Glu Gly Asn Leu Val Pro Ile Asn Arg Pro Pro Ala Asn Trp
 165 170 175
 Lys Arg Leu Tyr Ser Gly Ser Thr Ser Leu His Phe Ile Ala Lys Tyr
 180 185 190
 Arg Ala Thr Gly Arg Arg Val Thr Gly Gly Ile Ala Asn Ala Gln Ala
 195 200 205
 Trp Phe Ser Leu Thr Tyr Gln
 210 215

<210> 363
 <211> 241
 <212> PRT
 <213> E. Coli

<400> 363

Met	Ser	Asn	Lys	Asn	Val	Asn	Val	Arg	Lys	Ser	Gln	Glu	Ile	Thr	Phe
1			5					10					15		
Cys	Leu	Leu	Ala	Gly	Ile	Leu	Met	Phe	Met	Ala	Met	Met	Val	Ala	Gly
	20						25					30			
Arg	Ala	Glu	Ala	Gly	Val	Ala	Leu	Gly	Ala	Thr	Arg	Val	Ile	Tyr	Pro
	35						40				45				
Ala	Gly	Gln	Gln	Glu	Gln	Leu	Ala	Val	Thr	Asn	Asn	Asp	Glu	Asn	
	50					55				60					
Ser	Thr	Tyr	Leu	Ile	Gln	Ser	Trp	Val	Glu	Asn	Ala	Asp	Gly	Val	Lys
	65					70			75			80			
Asp	Gly	Arg	Phe	Ile	Val	Thr	Pro	Pro	Leu	Phe	Ala	Met	Lys	Gly	Lys
							85		90			95			
Lys	Glu	Asn	Thr	Leu	Arg	Ile	Leu	Asp	Ala	Thr	Asn	Asn	Gln	Leu	Pro
	100					105			110						
Gln	Asp	Arg	Glu	Ser	Leu	Phe	Trp	Met	Asn	Val	Lys	Ala	Ile	Pro	Ser
	115					120			125						
Met	Asp	Lys	Ser	Lys	Leu	Thr	Glu	Asn	Thr	Leu	Gln	Leu	Ala	Ile	Ile
	130					135			140						
Ser	Arg	Ile	Lys	Leu	Tyr	Tyr	Arg	Pro	Ala	Lys	Leu	Ala	Leu	Pro	Pro
	145					150			155			160			
Asp	Gln	Ala	Ala	Glu	Lys	Leu	Arg	Phe	Arg	Arg	Ser	Ala	Asn	Ser	Leu
						165			170			175			
Thr	Leu	Ile	Asn	Pro	Thr	Pro	Tyr	Tyr	Leu	Thr	Val	Thr	Glu	Leu	Asn
	180					185			190						
Ala	Gly	Thr	Arg	Val	Leu	Glu	Asn	Ala	Leu	Val	Pro	Pro	Met	Gly	Glu
	195					200			205						
Ser	Thr	Val	Lys	Leu	Pro	Ser	Asp	Ala	Gly	Ser	Asn	Ile	Thr	Tyr	Arg
	210					215			220						
Thr	Ile	Asn	Asp	Tyr	Gly	Ala	Leu	Thr	Pro	Lys	Met	Thr	Gly	Val	Met
	225					230			235			240			
Glu															

<210> 364
 <211> 878
 <212> PRT
 <213> E. Coli

<400> 364

Met	Ser	Tyr	Leu	Asn	Leu	Arg	Leu	Tyr	Gln	Arg	Asn	Thr	Gln	Cys	Leu
1			5			10		15							
His	Ile	Arg	Lys	His	Arg	Leu	Ala	Gly	Phe	Phe	Val	Arg	Leu	Val	Val
			20			25		30							
Ala	Cys	Ala	Phe	Ala	Ala	Gln	Ala	Pro	Leu	Ser	Ser	Ala	Asp	Leu	Tyr
			35			40		45							
Phe	Asn	Pro	Arg	Phe	Leu	Ala	Asp	Asp	Pro	Gln	Ala	Val	Ala	Asp	Leu
	50					55		60							
Ser	Arg	Phe	Glu	Asn	Gly	Gln	Glu	Leu	Pro	Pro	Gly	Thr	Tyr	Arg	Val
	65					70		75			80				
Asp	Ile	Tyr	Leu	Asn	Asn	Gly	Tyr	Met	Ala	Thr	Arg	Asp	Val	Thr	Phe
							85		90		95				
Asn	Thr	Gly	Asp	Ser	Glu	Gln	Gly	Ile	Val	Pro	Cys	Leu	Thr	Arg	Ala
						100		105			110				
Gln	Leu	Ala	Ser	Met	Gly	Leu	Asn	Thr	Ala	Ser	Val	Ala	Gly	Met	Asn

115	120	125
Leu Leu Ala Asp Asp Ala Cys Val Pro Leu Thr Thr Met Val Gln Asp		
130	135	140
Ala Thr Ala His Leu Asp Val Gly Gln Gln Arg Leu Asn Leu Thr Ile		
145	150	155
Pro Gln Ala Phe Met Ser Asn Arg Ala Arg Gly Tyr Ile Pro Pro Glu		160
165	170	175
Leu Trp Asp Pro Gly Ile Asn Ala Gly Leu Leu Asn Tyr Asn Phe Ser		
180	185	190
Gly Asn Ser Val Gln Asn Arg Ile Gly Gly Asn Ser His Tyr Ala Tyr		
195	200	205
Leu Asn Leu Gln Ser Gly Leu Asn Ile Gly Ala Trp Arg Leu Arg Asp		
210	215	220
Asn Thr Thr Trp Ser Tyr Asn Ser Ser Asp Arg Ser Ser Gly Ser Lys		
225	230	235
Asn Lys Trp Gln His Ile Asn Thr Trp Leu Glu Arg Asp Ile Ile Pro		240
245	250	255
Leu Arg Ser Arg Leu Thr Leu Gly Asp Gly Tyr Thr Gln Gly Asp Ile		
260	265	270
Phe Asp Gly Ile Asn Phe Arg Gly Ala Gln Leu Ala Ser Asp Asp Asn		
275	280	285
Met Leu Pro Asp Ser Gln Arg Gly Phe Ala Pro Val Ile His Gly Ile		
290	295	300
Ala Arg Gly Thr Ala Gln Val Thr Ile Lys Gln Asn Gly Tyr Asp Ile		
305	310	315
Tyr Asn Ser Thr Val Pro Pro Gly Pro Phe Thr Ile Asn Asp Ile Tyr		
325	330	335
Ala Ala Gly Asn Ser Gly Asp Leu Gln Val Thr Ile Lys Glu Ala Asp		
340	345	350
Gly Ser Thr Gln Ile Phe Thr Val Pro Tyr Ser Ser Val Pro Leu Leu		
355	360	365
Gln Arg Glu Gly His Thr Arg Tyr Ser Ile Thr Ala Gly Glu Tyr Arg		
370	375	380
Ser Gly Asn Ala Gln Gln Glu Lys Thr Arg Phe Phe Gln Ser Thr Leu		
385	390	395
Leu His Gly Leu Pro Ala Gly Trp Thr Ile Tyr Gly Gly Thr Gln Leu		
405	410	415
Ala Asp Arg Tyr Arg Ala Phe Asn Phe Gly Ile Gly Lys Asn Met Gly		
420	425	430
Ala Leu Gly Ala Leu Ser Val Asp Met Thr Gln Ala Asn Ser Thr Leu		
435	440	445
Pro Asp Asp Ser Gln His Asp Gly Gln Ser Val Arg Phe Leu Tyr Asn		
450	455	460
Lys Ser Leu Asn Glu Ser Gly Thr Asn Ile Gln Leu Val Gly Tyr Arg		
465	470	475
Tyr Ser Thr Ser Gly Tyr Phe Asn Phe Ala Asp Thr Thr Tyr Ser Arg		
485	490	495
Met Asn Gly Tyr Asn Ile Glu Thr Gln Asp Gly Val Ile Gln Val Lys		
500	505	510
Pro Lys Phe Thr Asp Tyr Tyr Asn Leu Ala Tyr Asn Lys Arg Gly Lys		
515	520	525
Leu Gln Leu Thr Val Thr Gln Gln Leu Gly Arg Thr Ser Thr Leu Tyr		
530	535	540
Leu Ser Gly Ser His Gln Thr Tyr Trp Gly Thr Ser Asn Val Asp Glu		
545	550	555
Gln Phe Gln Ala Gly Leu Asn Thr Ala Phe Glu Asp Ile Asn Trp Thr		
565	570	575
Leu Ser Tyr Ser Leu Thr Lys Asn Ala Trp Gln Lys Gly Arg Asp Gln		
580	585	590
Met Leu Ala Leu Asn Val Asn Ile Pro Phe Ser His Trp Leu Arg Ser		
595	600	605

Asp Ser Lys Ser Gln Trp Arg His Ala Ser Ala Ser Tyr Ser Met Ser
 610 615 620
 His Asp Leu Asn Gly Arg Met Thr Asn Leu Ala Gly Val Tyr Gly Thr
 625 630 635 640
 Leu Leu Glu Asp Asn Asn Leu Ser Tyr Ser Val Gln Thr Gly Tyr Ala
 645 650 655
 Gly Gly Gly Asp Gly Asn Ser Gly Ser Thr Gly Tyr Ala Thr Leu Asn
 660 665 670
 Tyr Arg Gly Gly Tyr Gly Asn Ala Asn Ile Gly Tyr Ser His Ser Asp
 675 680 685
 Asp Ile Lys Gln Leu Tyr Tyr Gly Val Ser Gly Gly Val Leu Ala His
 690 695 700
 Ala Asn Gly Val Thr Leu Gly Gln Pro Leu Asn Asp Thr Val Val Leu
 705 710 715 720
 Val Lys Ala Pro Gly Ala Lys Asp Ala Lys Val Glu Asn Gln Thr Gly
 725 730 735
 Val Arg Thr Asp Trp Arg Gly Tyr Ala Val Leu Pro Tyr Ala Thr Glu
 740 745 750
 Tyr Arg Glu Asn Arg Val Ala Leu Asp Thr Asn Thr Leu Ala Asp Asn
 755 760 765
 Val Asp Leu Asp Asn Ala Val Ala Asn Val Val Pro Thr Arg Gly Ala
 770 775 780
 Ile Val Arg Ala Glu Phe Lys Ala Arg Val Gly Ile Lys Leu Leu Met
 785 790 795 800
 Thr Leu Thr His Asn Asn Lys Pro Leu Pro Phe Gly Ala Met Val Thr
 805 810 815
 Ser Glu Ser Ser Gln Ser Ser Gly Ile Val Ala Asp Asn Gly Gln Val
 820 825 830
 Tyr Leu Ser Gly Met Pro Leu Ala Gly Lys Val Gln Val Lys Trp Gly
 835 840 845
 Glu Glu Glu Asn Ala His Cys Val Ala Asn Tyr Gln Leu Pro Pro Glu
 850 855 860
 Ser Gln Gln Gln Leu Leu Thr Gln Leu Ser Ala Glu Cys Arg
 865 870 875

<210> 365

<211> 176

<212> PRT

<213> E. Coli

<400> 365

Met Arg Asn Lys Pro Phe Tyr Leu Leu Cys Ala Phe Leu Trp Leu Ala
 1 5 10 15
 Val Ser His Ala Leu Ala Ala Asp Ser Thr Ile Thr Ile Arg Gly Tyr
 20 25 30
 Val Arg Asp Asn Gly Cys Ser Val Ala Ala Glu Ser Thr Asn Phe Thr
 35 40 45
 Val Asp Leu Met Glu Asn Ala Ala Lys Gln Phe Asn Asn Ile Gly Ala
 50 55 60
 Thr Thr Pro Val Val Pro Phe Arg Ile Leu Leu Ser Pro Cys Gly Asn
 65 70 75 80
 Ala Val Ser Ala Val Lys Val Gly Phe Thr Gly Val Ala Asp Ser His
 85 90 95
 Asn Ala Asn Leu Leu Ala Leu Glu Asn Thr Val Ser Ala Ala Ser Gly
 100 105 110
 Leu Gly Ile Gln Leu Leu Asn Glu Gln Gln Asn Gln Ile Pro Leu Asn
 115 120 125
 Ala Pro Ser Ser Ala Leu Ser Trp Thr Thr Leu Thr Pro Gly Lys Pro
 130 135 140
 Asn Thr Leu Asn Phe Tyr Ala Arg Leu Met Ala Thr Gln Val Pro Val

145	150	155	160
Thr Ala Gly His Ile Asn Ala Thr Ala Thr Phe Thr Leu Glu Tyr Gln			
165	170	175	

<210> 366

<211> 167

<212> PRT

<213> E. Coli

<400> 366

Met Lys Trp Cys Lys Arg Gly Tyr Val Leu Ala Ala Ile Leu Ala Leu			
1	5	10	15
Ala Ser Ala Thr Ile Gln Ala Ala Asp Val Thr Ile Thr Val Asn Gly			
20	25	30	
Lys Val Val Ala Lys Pro Cys Thr Val Ser Thr Thr Asn Ala Thr Val			
35	40	45	
Asp Leu Gly Asp Leu Tyr Ser Phe Ser Leu Met Ser Ala Gly Ala Ala			
50	55	60	
Ser Ala Trp His Asp Val Ala Leu Glu Leu Thr Asn Cys Pro Val Gly			
65	70	75	80
Thr Ser Arg Val Thr Ala Ser Phe Ser Gly Ala Ala Asp Ser Thr Gly			
85	90	95	
Tyr Tyr Lys Asn Gln Gly Thr Ala Gln Asn Ile Gln Leu Glu Leu Gln			
100	105	110	
Asp Asp Ser Gly Asn Thr Leu Asn Thr Gly Ala Thr Lys Thr Val Gln			
115	120	125	
Val Asp Asp Ser Ser Gln Ser Ala His Phe Pro Leu Gln Val Arg Ala			
130	135	140	
Leu Thr Val Asn Gly Gly Ala Thr Gln Gly Thr Ile Gln Ala Val Ile			
145	150	155	160
Ser Ile Thr Tyr Thr Tyr Ser			
165			

<210> 367

<211> 300

<212> PRT

<213> E. Coli

<400> 367

Met Lys Arg Val Ile Thr Leu Phe Ala Val Leu Leu Met Gly Trp Ser			
1	5	10	15
Val Asn Ala Trp Ser Phe Ala Cys Lys Thr Ala Asn Gly Thr Ala Ile			
20	25	30	
Pro Ile Gly Gly Ser Ala Asn Val Tyr Val Asn Leu Ala Pro Val			
35	40	45	
Val Asn Val Gly Gln Asn Leu Val Val Asp Leu Ser Thr Gln Ile Phe			
50	55	60	
Cys His Asn Asp Tyr Pro Glu Thr Ile Thr Asp Tyr Val Thr Leu Gln			
65	70	75	80
Arg Gly Ser Ala Tyr Gly Gly Val Leu Ser Asn Phe Ser Gly Thr Val			
85	90	95	
Lys Tyr Ser Gly Ser Ser Tyr Pro Phe Pro Thr Thr Ser Glu Thr Pro			
100	105	110	
Arg Val Val Tyr Asn Ser Arg Thr Asp Lys Pro Trp Pro Val Ala Leu			
115	120	125	
Tyr Leu Thr Pro Val Ser Ser Ala Gly Gly Val Ala Ile Lys Ala Gly			
130	135	140	

Ser Leu Ile Ala Val Leu Ile Leu Arg Gln Thr Asn Asn Tyr Asn Ser
 145 150 155 160
 Asp Asp Phe Gln Phe Val Trp Asn Ile Tyr Ala Asn Asn Asp Val Val
 165 170 175
 Val Pro Thr Gly Gly Cys Asp Val Ser Ala Arg Asp Val Thr Val Thr
 180 185 190
 Leu Pro Asp Tyr Pro Gly Ser Val Pro Ile Pro Leu Thr Val Tyr Cys
 195 200 205
 Ala Lys Ser Gln Asn Leu Gly Tyr Tyr Leu Ser Gly Thr Thr Ala Asp
 210 215 220
 Ala Gly Asn Ser Ile Phe Thr Asn Thr Ala Ser Phe Ser Pro Ala Gln
 225 230 235 240
 Gly Val Gly Val Gln Leu Thr Arg Asn Gly Thr Ile Ile Pro Ala Asn
 245 250 255
 Asn Thr Val Ser Leu Gly Ala Val Gly Thr Ser Ala Val Ser Leu Gly
 260 265 270
 Leu Thr Ala Asn Tyr Ala Arg Thr Gly Gly Gln Val Thr Ala Gly Asn
 275 280 285
 Val Gln Ser Ile Ile Gly Val Thr Phe Val Tyr Gln
 290 295 300

<210> 368
 <211> 521
 <212> PRT
 <213> E. Coli

<400> 368
 Met Leu Ser Lys Leu Pro Arg Arg Leu Arg Ser Phe Gln Thr Tyr Cys
 1 5 10 15
 Thr Ile Arg Val His Arg Gly Glu Asp Met Lys Ser Met Asp Lys Leu
 20 25 30
 Thr Thr Gly Val Ala Tyr Gly Thr Ser Ala Gly Asn Ala Gly Phe Trp
 35 40 45
 Ala Leu Gln Leu Leu Asp Lys Val Thr Pro Ser Gln Trp Ala Ala Ile
 50 55 60
 Gly Val Leu Gly Ser Leu Val Phe Gly Leu Leu Thr Tyr Leu Thr Asn
 65 70 75 80
 Leu Tyr Phe Lys Ile Lys Glu Asp Arg Arg Lys Ala Ala Arg Gly Glu
 85 90 95
 Ser Asn Asp Ser Arg Leu Thr Gly Cys Glu Arg Ser Pro Phe Glu Ser
 100 105 110
 Tyr Gly Asn Cys Ser Leu Thr Gly Gln Arg Thr Leu Arg Asn Phe Pro
 115 120 125
 Gly Cys Arg His Gly Pro Cys Arg Ser Cys Ala Gly Val Leu Gly Ser
 130 135 140
 Ser Gln Lys Glu Arg Pro Ala Ser Leu Pro Gly Ser Ser Arg Lys Ile
 145 150 155 160
 Val Arg Lys Ser Val Leu Ser Ala Ala Ser Val Leu Leu Asp Lys Ser
 165 170 175
 Cys Gln Ala Arg Ala Ser Ser Ser Ile Ser Met Asn Thr Lys Ile Arg
 180 185 190
 Tyr Gly Leu Ser Ala Ala Val Leu Ala Leu Ile Gly Ala Gly Ala Ser
 195 200 205
 Ala Pro Gln Ile Leu Asp Gln Phe Leu Asp Glu Lys Glu Gly Asn His
 210 215 220
 Thr Met Ala Tyr Arg Asp Gly Ser Gly Ile Trp Thr Ile Cys Arg Gly
 225 230 235 240
 Ala Thr Val Val Asp Gly Lys Thr Val Phe Pro Asn Met Lys Leu Ser
 245 250 255

Lys Glu Lys Cys Asp Gln Val Asn Ala Ile Glu Arg Asp Lys Ala Leu
 260 265 270
 Ala Trp Val Glu Arg Asn Ile Lys Val Pro Leu Thr Glu Pro Gln Lys
 275 280 285
 Ala Gly Ile Ala Ser Phe Cys Pro Tyr Asn Ile Gly Pro Gly Lys Cys
 290 295 300
 Phe Pro Ser Thr Phe Tyr Lys Arg Leu Asn Ala Gly Asp Arg Lys Gly
 305 310 315 320
 Ala Cys Glu Ala Ile Arg Trp Trp Ile Lys Asp Gly Gly Arg Asp Cys
 325 330 335
 Arg Ile Arg Ser Asn Asn Cys Tyr Gly Gln Val Ile Arg Arg Asp Gln
 340 345 350
 Glu Ser Ala Leu Thr Cys Trp Gly Ile Glu Gln Ile Arg Tyr Ser Trp
 355 360 365
 Phe Phe Ser Cys Cys Gln Asp Leu Ser Ser Glu Met Ser Gly Ala Thr
 370 375 380
 Glu Asp Gly Lys Lys Asn Gly Arg Asn Val Met Leu Pro His Tyr His
 385 390 395 400
 Lys Arg Met Leu Asn Leu Leu Glu Leu Asn Arg Gly Glu Leu Pro
 405 410 415
 Val Met Arg Leu Leu Lys Met Arg Asn Arg Asn Leu Leu Lys Phe Leu
 420 425 430
 Pro Gly Leu Leu Ile Cys Leu Ile Val Leu Thr Ser Cys Val Pro Lys
 435 440 445
 Gln Lys Asn Met Pro Tyr Ala Leu Thr Gln Arg Ser Ile Pro Gln Ile
 450 455 460
 Leu Pro Leu Pro Ser Glu Ala Lys Gln Pro Lys Pro Pro Lys Glu Cys
 465 470 475 480
 Ser Pro Thr Cys Ser Glu Ile Leu Gln Gln Lys Leu Ser Phe Met Leu
 485 490 495
 Lys Leu Leu Thr Asn Ala Thr Ser Gln Glu Leu Val Asn Arg Ser Met
 500 505 510
 Asn Leu Glu Ile Lys Ser Ile Lys Cys
 515 520

<210> 369
 <211> 177
 <212> PRT
 <213> E. Coli

<400> 369

Met	Asn	Thr	Lys	Ile	Arg	Tyr	Gly	Leu	Ser	Ala	Ala	Val	Leu	Ala	Leu
1				5				10				15			
Ile	Gly	Ala	Gly	Ala	Ser	Ala	Pro	Gln	Ile	Leu	Asp	Gln	Phe	Leu	Asp
							20		25				30		
Glu	Lys	Glu	Gly	Asn	His	Thr	Met	Ala	Tyr	Arg	Asp	Gly	Ser	Gly	Ile
					35		40		45						
Trp	Thr	Ile	Cys	Arg	Gly	Ala	Thr	Val	Val	Asp	Gly	Lys	Thr	Val	Phe
					50		55		60						
Pro	Asn	Met	Lys	Leu	Ser	Lys	Glu	Lys	Cys	Asp	Gln	Val	Asn	Ala	Ile
				65		70		75				80			
Glu	Arg	Asp	Lys	Ala	Leu	Ala	Trp	Val	Glu	Arg	Asn	Ile	Lys	Val	Pro
					85			90				95			
Leu	Thr	Glu	Pro	Gln	Lys	Ala	Gly	Ile	Ala	Ser	Phe	Cys	Pro	Tyr	Asn
				100				105				110			
Ile	Gly	Pro	Gly	Lys	Cys	Phe	Pro	Ser	Thr	Phe	Tyr	Lys	Arg	Leu	Asn
				115			120				125				
Ala	Gly	Asp	Arg	Lys	Gly	Ala	Cys	Glu	Ala	Ile	Arg	Trp	Trp	Ile	Lys
				130			135				140				

Asp Gly Gly Arg Asp Cys Arg Ile Arg Ser Asn Asn Cys Tyr Gly Gln
 145. 150 155 160
 Val Ile Arg Arg Asp Gln Glu Ser Ala Leu Thr Cys Trp Gly Ile Glu
 165 170 175
 Gln

<210> 370
<211> 103
<212> PRT
<213> E. Coli

<400> 370

Met Thr Gln Asp Tyr Glu Leu Val Val Lys Gly Val Arg Asn Phe Glu
 1 5 10 15
 Asn Lys Val Thr Val Thr Val Ala Leu Gln Asp Lys Glu Arg Phe Asp
 20 25 30
 Gly Glu Ile Phe Asp Leu Asp Val Ala Met Asp Arg Val Glu Gly Ala
 35 40 45
 Ala Leu Glu Phe Tyr Glu Ala Ala Arg Arg Ser Val Arg Gln Val
 50 55 60
 Phe Leu Glu Val Ala Glu Lys Leu Ser Glu Lys Val Glu Ser Tyr Leu
 65 70 75 80
 Gln His Gln Tyr Ser Phe Lys Ile Glu Asn Pro Ala Asn Lys His Glu
 85 90 95
 Arg Pro His His Lys Tyr Leu
 100

<210> 371
<211> 96
<212> PRT
<213> E. Coli

<400> 371

Met Leu Ser Lys Leu Pro Arg Arg Leu Arg Ser Phe Gln Thr Tyr Cys
 1 5 10 15
 Thr Ile Arg Val His Arg Gly Glu Asp Met Lys Ser Met Asp Lys Leu
 20 25 30
 Thr Thr Gly Val Ala Tyr Gly Thr Ser Ala Gly Asn Ala Gly Phe Trp
 35 40 45
 Ala Leu Gln Leu Leu Asp Lys Val Thr Pro Ser Gln Trp Ala Ala Ile
 50 55 60
 Gly Val Leu Gly Ser Leu Val Phe Gly Leu Leu Thr Tyr Leu Thr Asn
 65 70 75 80
 Leu Tyr Phe Lys Ile Lys Glu Asp Arg Arg Lys Ala Ala Arg Gly Glu
 85 90 95

<210> 372
<211> 71
<212> PRT
<213> E. Coli

<400> 372

Met Ser Asn Lys Met Thr Gly Leu Val Lys Trp Phe Asn Ala Asp Lys
 1 5 10 15
 Gly Phe Gly Phe Ile Ser Pro Val Asp Gly Ser Lys Asp Val Phe Val

	20	25	30
His	Phe Ser Ala Ile Gln Asn Asp Asn Tyr Arg Thr Leu Phe Glu Gly		
35		40	45
Gln Lys Val Thr Phe Ser Ile Glu Ser Gly Ala Lys Gly Pro Ala Ala			
50		55	60
Ala Asn Val Ile Ile Thr Asp			
65		70	

<210> 373
<211> 338
<212> PRT
<213> E. Coli

	<400> 373		
Met	Phe Val Ile Trp Ser His Arg Thr Gly Phe Ile Met Ser His Gln		
1	5	10	15
Leu	Thr Phe Ala Asp Ser Glu Phe Ser Ser Lys Arg Arg Gln Thr Arg		
20	25	30	
Lys	Glu Ile Phe Leu Ser Arg Met Glu Gln Ile Leu Pro Trp Gln Asn		
35	40	45	
Met	Val Glu Val Ile Glu Pro Phe Tyr Pro Lys Ala Gly Asn Gly Arg		
50	55	60	
Arg	Pro Tyr Pro Leu Glu Thr Met Leu Arg Ile His Cys Met Gln His		
65	70	75	80
Trp	Tyr Asn Leu Ser Asp Gly Ala Met Glu Asp Ala Leu Tyr Glu Ile		
85	90	95	
Ala	Ser Met Arg Leu Phe Ala Arg Leu Ser Leu Asp Ser Ala Leu Pro		
100	105	110	
Asp	Arg Thr Thr Ile Met Asn Phe Arg His Leu Leu Glu Gln His Gln		
115	120	125	
Leu	Ala Arg Gln Leu Phe Lys Thr Ile Asn Arg Trp Leu Ala Glu Ala		
130	135	140	
Gly	Val Met Met Thr Gln Gly Thr Leu Val Asp Ala Thr Ile Ile Glu		
145	150	155	160
Ala	Pro Ser Ser Thr Lys Asn Lys Glu Gln Gln Arg Asp Pro Glu Met		
165	170	175	
His	Gln Thr Lys Lys Gly Asn Gln Trp His Phe Gly Met Lys Ala His		
180	185	190	
Ile	Gly Val Asp Ala Lys Ser Gly Leu Thr His Ser Leu Val Thr Thr		
195	200	205	
Ala	Ala Asn Glu His Asp Leu Asn Gln Leu Gly Asn Leu Leu His Gly		
210	215	220	
Glu	Glu Gln Phe Val Ser Ala Asp Ala Gly Tyr Gln Gly Ala Pro Gln		
225	230	235	240
Arg	Glu Glu Leu Ala Glu Val Asp Val Asp Trp Leu Ile Ala Glu Arg		
245	250	255	
Pro	Gly Lys Val Arg Thr Leu Lys Gln His Pro Arg Lys Asn Lys Thr		
260	265	270	
Ala	Ile Asn Ile Glu Tyr Met Lys Ala Ser Ile Arg Ala Arg Val Glu		
275	280	285	
His	Pro Phe Arg Ile Ile Lys Arg Gln Phe Gly Phe Val Lys Ala Arg		
290	295	300	
Tyr	Lys Gly Leu Leu Lys Asn Asp Asn Gln Leu Ala Met Leu Phe Thr		
305	310	315	320
Leu	Ala Asn Leu Phe Arg Ala Asp Gln Met Ile Arg Gln Trp Glu Arg		
325	330	335	
Ser	His		

<210> 374
 <211> 157
 <212> PRT
 <213> E. Coli

<400> 374

Met	Val	Tyr	Ile	Ile	Ile	Val	Ser	His	Gly	His	Glu	Asp	Tyr	Ile	Lys
1															15
Lys	Leu	Leu	Glu	Asn	Leu	Asn	Ala	Asp	Asp	Glu	His	Tyr	Lys	Ile	Ile
															30
Val	Arg	Asp	Asn	Lys	Asp	Ser	Leu	Leu	Leu	Lys	Gln	Ile	Cys	Gln	His
															45
Tyr	Ala	Gly	Leu	Asp	Tyr	Ile	Ser	Gly	Gly	Val	Tyr	Gly	Phe	Gly	His
															60
Asn	Asn	Asn	Ile	Ala	Val	Ala	Tyr	Val	Lys	Glu	Lys	Tyr	Arg	Pro	Ala
65															80
Asp	Asp	Asp	Tyr	Ile	Leu	Phe	Leu	Asn	Pro	Asp	Ile	Ile	Met	Lys	His
															95
Asp	Asp	Leu	Leu	Thr	Tyr	Ile	Lys	Tyr	Val	Glu	Ser	Lys	Arg	Tyr	Ala
															110
Phe	Ser	Thr	Leu	Cys	Leu	Phe	Arg	Asp	Glu	Ala	Lys	Ser	Leu	His	Asp
															125
Tyr	Ser	Val	Arg	Lys	Phe	Pro	Val	Leu	Ser	Asp	Phe	Ile	Val	Ser	Phe
															140
Met	Leu	Gly	Ile	Lys	Glu	Gly	Ala	Asn	Lys	Ser	Leu	Ile			
145															155

<210> 375
 <211> 372
 <212> PRT
 <213> E. Coli

<400> 375

Met	Gly	Lys	Ser	Ile	Val	Val	Val	Ser	Ala	Val	Asn	Phe	Thr	Thr	Gly
1															15
Gly	Pro	Phe	Thr	Ile	Leu	Lys	Lys	Phe	Leu	Ala	Ala	Thr	Asn	Asn	Lys
															30
Glu	Asn	Val	Ser	Phe	Ile	Ala	Leu	Val	His	Ser	Ala	Lys	Glu	Leu	Lys
															45
Glu	Ser	Tyr	Pro	Trp	Val	Lys	Phe	Ile	Glu	Phe	Pro	Glu	Val	Lys	Gly
															60
Ser	Trp	Leu	Lys	Arg	Leu	His	Phe	Glu	Tyr	Val	Val	Cys	Lys	Lys	Leu
65															80
Ser	Lys	Glu	Leu	Asn	Ala	Thr	His	Trp	Ile	Cys	Leu	His	Asp	Ile	Thr
															95
Ala	Asn	Val	Val	Thr	Lys	Lys	Arg	Tyr	Val	Tyr	Cys	His	Asn	Pro	Ala
															110
Pro	Phe	Tyr	Lys	Gly	Ile	Leu	Phe	Arg	Glu	Ile	Leu	Met	Glu	Pro	Ser
															125
Phe	Phe	Leu	Phe	Lys	Met	Leu	Tyr	Gly	Leu	Ile	Tyr	Lys	Ile	Asn	Ile
															140
Lys	Lys	Asn	Thr	Ala	Val	Phe	Val	Gln	Gln	Phe	Trp	Met	Lys	Glu	Lys
145															160
Phe	Ile	Lys	Lys	Tyr	Ser	Ile	Asn	Asn	Ile	Ile	Val	Ser	Arg	Pro	Glu
															175
Ile	Lys	Leu	Ser	Asp	Lys	Ser	Gln	Leu	Thr	Asp	Asp	Asp	Ser	Gln	Phe
															190
Lys	Asn	Asn	Pro	Ser	Glu	Leu	Thr	Ile	Phe	Tyr	Pro	Ala	Val	Pro	Arg

195	200	205
Val Phe Lys Asn Tyr Glu Leu Ile Ile Ser Ala Ala Arg Lys Leu Lys		
210	215	220
Glu Gln Ser Asn Ile Lys Phe Leu Leu Thr Ile Ser Gly Thr Glu Asn		
225	230	235
Ala Tyr Ala Lys Tyr Ile Ile Ser Leu Ala Glu Gly Leu Asp Asn Val		240
245	250	255
His Phe Leu Gly Tyr Leu Asp Lys Glu Lys Ile Asp His Cys Tyr Asn		
260	265	270
Ile Ser Asp Ile Val Cys Phe Pro Ser Arg Leu Glu Thr Trp Gly Leu		
275	280	285
Pro Leu Ser Glu Ala Lys Glu Arg Gly Lys Trp Val Leu Ala Ser Asp		
290	295	300
Phe Pro Phe Thr Arg Glu Thr Leu Gly Ser Tyr Glu Lys Lys Ala Phe		
305	310	315
Phe Asp Ser Asn Asn Asp Asp Met Leu Val Lys Leu Ile Ile Asp Phe		320
325	330	335
Lys Lys Gly Asn Leu Lys Lys Asp Ile Ser Asp Ala Asn Phe Ile Tyr		
340	345	350
Arg Asn Glu Asn Val Leu Val Gly Phe Asp Glu Leu Val Asn Phe Ile		
355	360	365
Thr Glu Glu His		
370		

<210> 376

<211> 196

<212> PRT

<213> E. Coli

<400> 376

Met Ile Leu Lys Leu Ala Lys Arg Tyr Gly Leu Cys Gly Phe Ile Arg		
1	5	10
Leu Val Arg Asp Val Leu Leu Thr Arg Val Phe Tyr Arg Asn Cys Arg		
20	25	30
Ile Ile Arg Phe Pro Cys Tyr Ile Arg Asn Asp Gly Ser Ile Asn Phe		
35	40	45
Gly Glu Asn Phe Thr Ser Gly Val Gly Leu Arg Leu Asp Ala Phe Gly		
50	55	60
Arg Gly Val Ile Phe Phe Ser Asp Asn Val Gln Val Asn Asp Tyr Val		
65	70	75
His Ile Ala Ser Ile Glu Ser Val Thr Ile Gly Arg Asp Thr Leu Ile		
85	90	95
Ala Ser Lys Val Phe Ile Thr Asp His Asn His Gly Ser Phe Lys His		
100	105	110
Ser Asp Pro Met Ser Ser Pro Asn Ile Pro Pro Asp Met Arg Thr Leu		
115	120	125
Glu Ser Ser Ala Val Val Ile Gly Gln Arg Val Trp Leu Gly Glu Asn		
130	135	140
Val Thr Val Leu Pro Gly Thr Ile Ile Gly Asn Gly Val Val Val Gly		
145	150	155
Ala Asn Ser Val Val Arg Gly Ser Ile Pro Glu Asn Thr Val Ile Ala		
165	170	175
Gly Val Pro Ala Lys Ile Ile Lys Lys Tyr Asn His Glu Thr Lys Leu		
180	185	190
Trp Glu Lys Ala		
195		

<210> 377

<211> 330

<212> PRT

<213> E. Coli

<400> 377

Met	Tyr	Phe	Leu	Asn	Asp	Leu	Asn	Phe	Ser	Arg	Arg	Asp	Ala	Gly	Phe
1						5			10						15
Lys	Ala	Arg	Lys	Asp	Ala	Leu	Asp	Ile	Ala	Ser	Asp	Tyr	Glu	Asn	Ile
						20			25						30
Ser	Val	Val	Asn	Ile	Pro	Leu	Trp	Gly	Gly	Val	Val	Gln	Arg	Ile	Ile
						35			40						45
Ser	Ser	Val	Lys	Leu	Ser	Thr	Phe	Leu	Cys	Gly	Leu	Glu	Asn	Lys	Asp
						50			55						60
Val	Leu	Ile	Phe	Asn	Phe	Pro	Met	Ala	Lys	Pro	Phe	Trp	His	Ile	Leu
						65			70			75			80
Ser	Phe	Phe	His	Arg	Leu	Leu	Lys	Phe	Arg	Ile	Val	Pro	Leu	Ile	His
						85			90						95
Asp	Ile	Asp	Glu	Leu	Arg	Gly	Gly	Gly	Ser	Asp	Ser	Val	Arg	Leu	
						100			105						110
Ala	Thr	Cys	Asp	Met	Val	Ile	Ser	His	Asn	Pro	Gln	Met	Thr	Lys	Tyr
						115			120						125
Leu	Ser	Lys	Tyr	Met	Ser	Gln	Asp	Lys	Ile	Lys	Asp	Ile	Lys	Ile	Phe
						130			135						140
Asp	Tyr	Leu	Val	Ser	Ser	Asp	Val	Glu	His	Arg	Asp	Val	Thr	Asp	Lys
						145			150			155			160
Gln	Arg	Gly	Val	Ile	Tyr	Ala	Gly	Asn	Leu	Ser	Arg	His	Lys	Cys	Ser
						165			170						175
Phe	Ile	Tyr	Thr	Glu	Gly	Cys	Asp	Phe	Thr	Leu	Phe	Gly	Val	Asn	Tyr
						180			185						190
Glu	Asn	Lys	Asp	Asn	Pro	Lys	Tyr	Leu	Gly	Ser	Phe	Asp	Ala	Gln	Ser
						195			200						205
Pro	Glu	Lys	Ile	Asn	Leu	Pro	Gly	Met	Gln	Phe	Gly	Leu	Ile	Trp	Asp
						210			215						220
Gly	Asp	Ser	Val	Glu	Thr	Cys	Ser	Gly	Ala	Phe	Gly	Asp	Tyr	Leu	Lys
						225			230			235			240
Phe	Asn	Asn	Pro	His	Lys	Thr	Ser	Leu	Tyr	Leu	Ser	Met	Glu	Leu	Pro
						245			250						255
Val	Phe	Ile	Trp	Asp	Lys	Ala	Ala	Leu	Ala	Asp	Phe	Ile	Val	Asp	Asn
						260			265						270
Arg	Ile	Gly	Tyr	Ala	Val	Gly	Ser	Ile	Lys	Glu	Met	Gln	Glu	Ile	Val
						275			280						285
Asp	Ser	Met	Thr	Ile	Glu	Thr	Tyr	Lys	Gln	Ile	Ser	Glu	Asn	Thr	Lys
						290			295						300
Ile	Ile	Ser	Gln	Lys	Ile	Arg	Thr	Gly	Ser	Tyr	Phe	Arg	Asp	Val	Leu
						305			310			315			320
Glu	Glu	Val	Ile	Asp	Asp	Leu	Lys	Thr	Arg						
						325			330						

<210> 378

<211> 388

<212> PRT

<213> E. Coli

<400> 378

Met	Ile	Tyr	Leu	Val	Ile	Ser	Val	Phe	Leu	Ile	Thr	Ala	Phe	Ile	Cys
1						5			10						15
Leu	Tyr	Leu	Lys	Lys	Asp	Ile	Phe	Tyr	Pro	Ala	Val	Cys	Val	Asn	Ile
						20			25						30
Ile	Phe	Ala	Leu	Val	Leu	Leu	Gly	Tyr	Glu	Ile	Thr	Ser	Asp	Ile	Tyr
						35			40						45
Ala	Phe	Gln	Leu	Asn	Asp	Ala	Thr	Leu	Ile	Phe	Leu	Leu	Cys	Asn	Val
						50			55						60

Leu Thr Phe Thr Leu Ser Cys Leu Leu Thr Glu Ser Val Leu Asp Leu
 65 70 75 80
 Asn Ile Arg Lys Val Asn Asn Ala Ile Tyr Ser Ile Pro Ser Lys Lys
 85 90 95
 Val His Asn Val Gly Leu Leu Val Ile Ser Phe Ser Met Ile Tyr Ile
 100 105 110
 Cys Met Arg Leu Ser Asn Tyr Gln Phe Gly Thr Ser Leu Leu Ser Tyr
 115 120 125
 Met Asn Leu Ile Arg Asp Ala Asp Val Glu Asp Thr Ser Arg Asn Phe
 130 135 140
 Ser Ala Tyr Met Gln Pro Ile Ile Leu Thr Thr Phe Ala Leu Phe Ile
 145 150 155 160
 Trp Ser Lys Lys Phe Thr Asn Thr Lys Val Ser Lys Thr Phe Thr Leu
 165 170 175
 Leu Val Phe Ile Val Phe Ile Phe Ala Ile Ile Leu Asn Thr Gly Lys
 180 185 190
 Gln Ile Val Phe Met Val Ile Ile Ser Tyr Ala Phe Ile Val Gly Val
 195 200 205
 Asn Arg Val Lys His Tyr Val Tyr Leu Ile Thr Ala Val Gly Val Leu
 210 215 220
 Phe Ser Leu Tyr Met Leu Phe Leu Arg Gly Leu Pro Gly Gly Met Ala
 225 230 235 240
 Tyr Tyr Leu Ser Met Tyr Leu Val Ser Pro Ile Ile Ala Phe Gln Glu
 245 250 255
 Phe Tyr Phe Gln Gln Val Ser Asn Ser Ala Ser Ser His Val Phe Trp
 260 265 270
 Phe Phe Glu Arg Leu Met Gly Leu Leu Thr Gly Gly Val Ser Met Ser
 275 280 285
 Leu His Lys Glu Phe Val Trp Val Gly Leu Pro Thr Asn Val Tyr Thr
 290 295 300
 Ala Phe Ser Asp Tyr Val Tyr Ile Ser Ala Glu Leu Ser Tyr Leu Met
 305 310 315 320
 Met Val Ile His Gly Cys Ile Ser Gly Val Leu Trp Arg Leu Ser Arg
 325 330 335
 Asn Tyr Ile Ser Val Lys Ile Phe Tyr Ser Tyr Phe Ile Tyr Thr Phe
 340 345 350
 Ser Phe Ile Phe Tyr His Glu Ser Phe Met Thr Asn Ile Ser Ser Trp
 355 360 365
 Ile Gln Ile Thr Leu Cys Ile Ile Val Phe Ser Gln Phe Leu Lys Ala
 370 375 380
 Gln Lys Ile Lys
 385

<210> 379
 <211> 367
 <212> PRT
 <213> E. Coli

<400> 379

Met Tyr Asp Tyr Ile Ile Val Gly Ser Gly Leu Phe Gly Ala Val Cys
 1 5 10 15
 Ala Asn Glu Leu Lys Lys Leu Asn Lys Lys Val Leu Val Ile Glu Lys
 20 25 30
 Arg Asn His Ile Gly Gly Asn Ala Tyr Thr Glu Asp Cys Glu Gly Ile
 35 40 45
 Gln Ile His Lys Tyr Gly Ala His Ile Phe His Thr Asn Asp Lys Tyr
 50 55 60
 Ile Trp Asp Tyr Val Asn Asp Leu Val Glu Phe Asn Arg Phe Thr Asn
 65 70 75 80

Ser Pro Leu Ala Ile Tyr Lys Asp Lys Leu Phe Asn Leu Pro Phe Asn
 85 90 95
 Met Asn Thr Phe His Gln Met Trp Gly Val Lys Asp Pro Gln Glu Ala
 100 105 110
 Gln Asn Ile Ile Asn Ala Gln Lys Lys Tyr Gly Asp Lys Val Pro
 115 120 125
 Glu Asn Leu Glu Glu Gln Ala Ile Ser Leu Val Gly Glu Asp Leu Tyr
 130 135 140
 Gln Ala Leu Ile Lys Gly Tyr Thr Glu Lys Gln Trp Gly Arg Ser Ala
 145 150 155 160
 Lys Glu Leu Pro Ala Phe Ile Ile Lys Arg Ile Pro Val Arg Phe Thr
 165 170 175
 Phe Asp Asn Asn Tyr Phe Ser Asp Arg Tyr Gln Gly Ile Pro Val Gly
 180 185 190
 Gly Tyr Thr Lys Leu Ile Glu Lys Met Leu Glu Gly Val Asp Val Lys
 195 200 205
 Leu Gly Ile Asp Phe Leu Lys Asp Lys Asp Ser Leu Ala Ser Lys Ala
 210 215 220
 His Arg Ile Ile Tyr Thr Gly Pro Ile Asp Gln Tyr Phe Asp Tyr Arg
 225 230 235 240
 Phe Gly Ala Leu Glu Tyr Arg Ser Leu Lys Phe Glu Thr Glu Arg His
 245 250 255
 Glu Phe Pro Asn Phe Gln Gly Asn Ala Val Ile Asn Phe Thr Asp Ala
 260 265 270
 Asn Val Pro Tyr Thr Arg Ile Ile Glu His Lys His Phe Asp Tyr Val
 275 280 285
 Glu Thr Lys His Thr Val Val Thr Lys Glu Tyr Pro Leu Glu Trp Lys
 290 295 300
 Val Gly Asp Glu Pro Tyr Tyr Pro Val Asn Asp Asn Lys Asn Met Glu
 305 310 315 320
 Leu Phe Lys Lys Tyr Arg Glu Leu Ala Ser Arg Glu Asp Lys Val Ile
 325 330 335
 Phe Gly Gly Arg Leu Ala Glu Tyr Lys Tyr Tyr Asp Met His Gln Val
 340 345 350
 Ile Ser Ala Ala Leu Tyr Gln Val Lys Asn Ile Met Ser Thr Asp
 355 360 365

<210> 380
 <211> 371
 <212> PRT
 <213> E. Coli

<400> 380
 Met Phe Pro Lys Ile Met Asn Asp Glu Asn Phe Phe Lys Lys Ala Ala
 1 5 10 15
 Ala His Gly Glu Glu Pro Pro Leu Thr Pro Gln Asn Glu His Gln Arg
 20 25 30
 Ser Gly Leu Arg Phe Ala Arg Arg Val Arg Leu Pro Arg Ala Val Gly
 35 40 45
 Leu Ala Gly Met Phe Leu Pro Ile Ala Ser Thr Leu Val Ser His Pro
 50 55 60
 Pro Pro Gly Trp Trp Trp Leu Val Leu Val Gly Trp Ala Phe Val Trp
 65 70 75 80
 Pro His Leu Ala Trp Gln Ile Ala Ser Arg Ala Val Asp Pro Leu Ser
 85 90 95
 Arg Glu Ile Tyr Asn Leu Lys Thr Asp Ala Val Leu Ala Gly Met Trp
 100 105 110
 Val Gly Val Met Gly Val Asn Val Leu Pro Ser Thr Ala Met Leu Met
 115 120 125
 Ile Met Cys Leu Asn Leu Met Gly Ala Gly Gly Pro Arg Leu Phe Val

130	135	140
Ala Gly Leu Val Leu Met Val Val Ser Cys Leu Val Thr Leu Glu Leu		
145	150	155
Thr Gly Ile Thr Val Ser Phe Asn Ser Ala Pro Leu Glu Trp Trp Leu		160
165	170	175
Ser Leu Pro Ile Ile Val Ile Tyr Pro Leu Leu Phe Gly Trp Val Ser		
180	185	190
Tyr Gln Thr Ala Thr Lys Leu Ala Glu His Lys Arg Arg Leu Gln Val		
195	200	205
Met Ser Thr Arg Asp Gly Met Thr Gly Val Tyr Asn Arg Arg His Trp		
210	215	220
Glu Thr Met Leu Arg Asn Glu Phe Asp Asn Cys Arg Arg His Asn Arg		
225	230	235
Asp Ala Thr Leu Leu Ile Ile Asp Ile Asp His Phe Lys Ser Ile Asn		240
245	250	255
Asp Thr Trp Gly His Asp Val Gly Asp Glu Ala Ile Val Ala Leu Thr		
260	265	270
Arg Gln Leu Gln Ile Thr Leu Arg Gly Ser Asp Val Ile Gly Arg Phe		
275	280	285
Gly Gly Asp Glu Phe Ala Val Ile Met Ser Gly Thr Pro Ala Glu Ser		
290	295	300
Ala Ile Thr Ala Met Leu Arg Val His Glu Gly Leu Asn Thr Leu Arg		
305	310	315
Leu Pro Asn Thr Pro Gln Val Thr Leu Arg Ile Ser Val Gly Val Ala		320
325	330	335
Pro Leu Asn Pro Gln Met Ser His Tyr Arg Glu Trp Leu Lys Ser Ala		
340	345	350
Asp Leu Ala Leu Tyr Lys Ala Lys Lys Ala Gly Arg Asn Arg Thr Glu		
355	360	365
Val Ala Ala		
370		

<210> 381
<211> 467
<212> PRT
<213> E. Coli

<400> 381		
Met Asp Val Asn Val Asp Gln Phe Asp Thr Glu Ala Phe Arg Thr Asp		
1	5	10
Lys Leu Glu Leu Thr Ser Gly Asn Ile Ala Asp His Asn Gly Asn Val		15
20	25	30
Val Ser Gly Val Phe Asp Ile His Ser Ser Asp Tyr Val Leu Asn Ala		
35	40	45
Asp Leu Val Asn Asp Arg Thr Trp Asp Thr Ser Lys Ser Asn Tyr Gly		
50	55	60
Tyr Gly Ile Val Ala Met Asn Ser Asp Gly His Leu Thr Ile Asn Gly		
65	70	75
Asn Gly Asp Val Asp Asn Gly Thr Glu Leu Asp Asn Ser Ser Val Asp		80
85	90	95
Asn Val Val Ala Ala Thr Gly Asn Tyr Lys Val Arg Ile Asp Asn Ala		
100	105	110
Thr Gly Ala Gly Ala Ile Ala Asp Tyr Lys Asp Lys Glu Ile Ile Tyr		
115	120	125
Val Asn Asp Val Asn Ser Asn Ala Thr Phe Ser Ala Ala Asn Lys Ala		
130	135	140
Asp Leu Gly Ala Tyr Thr Tyr Gln Ala Glu Gln Arg Gly Asn Thr Val		
145	150	155
Val Leu Gln Gln Met Glu Leu Thr Asp Tyr Ala Asn Met Ala Leu Ser		160
165	170	175
Ile Pro Ser Ala Asn Thr Asn Ile Trp Asn Leu Glu Gln Asp Thr Val		

180	185	190
Gly Thr Arg Leu Thr Asn Ser	Arg His Gly	Leu Ala Asp Asn Gly
195	200	205
Ala Trp Val Ser Tyr Phe	Gly Gly Asn Phe	Asn Gly Asp Asn Gly
210	215	220
Ile Asn Tyr Asp Gln Asp	Val Asn Gly Ile Met	Val Gly Val Asp Thr
225	230	235
Lys Ile Asp Gly Asn Asn	Ala Lys Trp Ile Val Gly Ala	Ala Ala Gly
245	250	255
Phe Ala Lys Gly Asp Met	Asn Asp Arg Ser Gly	Gln Val Asp Gln Asp
260	265	270
Ser Gln Thr Ala Tyr Ile	Tyr Ser Ser Ala His	Phe Ala Asn Asn Val
275	280	285
Phe Val Asp Gly Ser	Leu Ser Tyr Ser His	Phe Asn Asn Asp Leu Ser
290	295	300
Ala Thr Met Ser Asn Gly	Thr Tyr Val Asp Gly	Ser Thr Asn Ser Asp
305	310	315
Ala Trp Gly Phe Gly	Leu Lys Ala Gly Tyr Asp	Phe Lys Leu Gly Asp
325	330	335
Ala Gly Tyr Val Thr Pro	Tyr Gly Ser Val Ser	Gly Leu Phe Gln Ser
340	345	350
Gly Asp Asp Tyr Gln	Leu Ser Asn Asp Met	Lys Val Asp Gly Gln Ser
355	360	365
Tyr Asp Ser Met Arg	Tyr Glu Leu Gly Val	Asp Ala Gly Tyr Thr Phe
370	375	380
Thr Tyr Ser Glu Asp	Gln Ala Leu Thr Pro	Tyr Phe Lys Leu Ala Tyr
385	390	395
Val Tyr Asp Asp Ser	Asn Asn Asp Asn	Asp Val Asn Gly Asp Ser Ile
405	410	415
Asp Asn Gly Thr Glu	Gly Ser Ala Val Arg	Val Gly Leu Gly Thr Gln
420	425	430
Phe Ser Phe Thr Lys	Asn Phe Ser Ala Tyr	Thr Asp Ala Asn Tyr Leu
435	440	445
Gly Gly Asp Val Asp	Gln Asp Trp Ser Ala	Asn Val Gly Val Lys
450	455	460
Tyr Thr Trp		
465		

<210> 382

<211> 222

<212> PRT

<213> E. Coli

<400> 382

Met Pro Val Lys Asp	Leu Thr Gly Ile	Thr Ala Lys Asp Ala Gln Met
1	5	10
Leu Ser Val Val Lys	Pro Leu Gln Glu	Phe Gly Lys Leu Asp Lys Cys
20	25	30
Leu Ser Arg Tyr Gly	Thr Arg Phe	Glu Phe Asn Asn Glu Lys Gln Val
35	40	45
Ile Phe Ser Ser Asp	Val Asn Asn Glu Asp	Thr Phe Val Ile Leu Glu
50	55	60
Gly Val Ile Ser Leu	Arg Arg Glu Glu Asn	Val Leu Ile Gly Ile Thr
65	70	75
Gln Ala Pro Tyr Ile	Met Gly Leu Ala	Asp Gly Leu Met Lys Asn Asp
85	90	95
Ile Pro Tyr Lys Leu	Ile Ser Glu Gly	Asn Cys Thr Gly Tyr His Leu
100	105	110
Pro Ala Lys Gln Thr	Ile Thr Leu Ile	Glu Gln Asn Gln Leu Trp Arg
115	120	125

Asp Ala Phe Tyr Trp Leu Ala Trp Gln Asn Arg Ile Leu Glu Leu Arg
 130 135 140
 Asp Val Gln Leu Ile Gly His Asn Ser Tyr Glu Gln Ile Arg Ala Thr
 145 150 155 160
 Leu Leu Ser Met Ile Asp Trp Asn Glu Glu Leu Arg Ser Arg Ile Gly
 165 170 175
 Val Met Asn Tyr Ile His Gln Arg Thr Arg Ile Ser Arg Ser Val Val
 180 185 190
 Ala Glu Val Leu Ala Ala Leu Arg Lys Gly Gly Tyr Ile Glu Met Asn
 195 200 205
 Lys Gly Lys Leu Val Ala Ile Asn Arg Leu Pro Ser Glu Tyr
 210 215 220

<210> 383

<211> 84

<212> PRT

<213> E. Coli

<400> 383

Met Thr Asp Lys Ile Arg Thr Leu Gln Gly Arg Val Val Ser Asp Lys
 1 5 10 15
 Met Glu Lys Ser Ile Val Val Ala Ile Glu Arg Phe Val Lys His Pro
 20 25 30
 Ile Tyr Gly Lys Phe Ile Lys Arg Thr Thr Lys Leu His Val His Asp
 35 40 45
 Glu Asn Asn Glu Cys Gly Ile Gly Asp Val Val Glu Ile Arg Glu Cys
 50 55 60
 Arg Pro Leu Ser Lys Thr Lys Ser Trp Thr Leu Val Arg Val Val Glu
 65 70 75 80
 Lys Ala Val Leu

<210> 384

<211> 63

<212> PRT

<213> E. Coli

<400> 384

Met Lys Ala Lys Glu Leu Arg Glu Lys Ser Val Glu Glu Leu Asn Thr
 1 5 10 15
 Glu Leu Leu Asn Leu Leu Arg Glu Gln Phe Asn Leu Arg Met Gln Ala
 20 25 30
 Ala Ser Gly Gln Leu Gln Gln Ser His Leu Leu Lys Gln Val Arg Arg
 35 40 45
 Asp Val Ala Arg Val Lys Thr Leu Leu Asn Glu Lys Ala Gly Ala
 50 55 60

<210> 385

<211> 136

<212> PRT

<213> E. Coli

<400> 385

Met Leu Gln Pro Lys Arg Thr Lys Phe Arg Lys Met His Lys Gly Arg
 1 5 10 15
 Asn Arg Gly Leu Ala Gln Gly Thr Asp Val Ser Phe Gly Ser Phe Gly
 20 25 30
 Leu Lys Ala Val Gly Arg Gly Arg Leu Thr Ala Arg Gln Ile Glu Ala

35	40	45
Ala Arg Arg Ala Met Thr Arg Ala Val Lys Arg Gln Gly Lys Ile Trp		
50	55	60
Ile Arg Val Phe Pro Asp Lys Pro Ile Thr Glu Lys Pro Leu Ala Val		
65	70	75
Arg Met Gly Lys Gly Lys Gly Asn Val Glu Tyr Trp Val Ala Leu Ile		80
85	90	95
Gln Pro Gly Lys Val Leu Tyr Glu Met Asp Gly Val Pro Glu Glu Leu		
100	105	110
Ala Arg Glu Ala Phe Lys Leu Ala Ala Ala Lys Leu Pro Ile Lys Thr		
115	120	125
Thr Phe Val Thr Lys Thr Val Met		
130	135	

<210> 386

<211> 233

<212> PRT

<213> E. Coli

<400> 386

1	5	10	15
Met Gly Gln Lys Val His Pro Asn Gly Ile Arg Leu Gly Ile Val Lys			
Pro Trp Asn Ser Thr Trp Phe Ala Asn Thr Lys Glu Phe Ala Asp Asn			
20	25	30	
Leu Asp Ser Asp Phe Lys Val Arg Gln Tyr Leu Thr Lys Glu Leu Ala			
35	40	45	
Lys Ala Ser Val Ser Arg Ile Val Ile Glu Arg Pro Ala Lys Ser Ile			
50	55	60	
Arg Val Thr Ile His Thr Ala Arg Pro Gly Ile Val Ile Gly Lys Lys			
65	70	75	80
Gly Glu Asp Val Glu Lys Leu Arg Lys Val Val Ala Asp Ile Ala Gly			
85	90	95	
Val Pro Ala Gln Ile Asn Ile Ala Glu Val Arg Lys Pro Glu Leu Asp			
100	105	110	
Ala Lys Leu Val Ala Asp Ser Ile Thr Ser Gln Leu Glu Arg Arg Val			
115	120	125	
Met Phe Arg Arg Ala Met Lys Arg Ala Val Gln Asn Ala Met Arg Leu			
130	135	140	
Gly Ala Lys Gly Ile Lys Val Glu Val Ser Gly Arg Leu Gly Gly Ala			
145	150	155	160
Glu Ile Ala Arg Thr Glu Trp Tyr Arg Glu Gly Arg Val Pro Leu His			
165	170	175	
Thr Leu Arg Ala Asp Ile Asp Tyr Asn Thr Ser Glu Ala His Thr Thr			
180	185	190	
Tyr Gly Val Ile Gly Val Lys Val Trp Ile Phe Lys Gly Glu Ile Leu			
195	200	205	
Gly Gly Met Ala Ala Val Glu Gln Pro Glu Lys Pro Ala Ala Gln Pro			
210	215	220	
Lys Lys Gln Gln Arg Lys Gly Arg Lys			
225	230		

<210> 387

<211> 110

<212> PRT

<213> E. Coli

<400> 387

Met Glu Thr Ile Ala Lys His Arg His Ala Arg Ser Ser Ala Gln Lys
 1 5 10 15
 Val Arg Leu Val Ala Asp Leu Ile Arg Gly Lys Lys Val Ser Gln Ala
 20 25 30
 Leu Asp Ile Leu Thr Tyr Thr Asn Lys Lys Ala Ala Val Leu Val Lys
 35 40 45
 Lys Val Leu Glu Ser Ala Ile Ala Asn Ala Glu His Asn Asp Gly Ala
 50 55 60
 Asp Ile Asp Asp Leu Lys Val Thr Lys Ile Phe Val Asp Glu Gly Pro
 65 70 75 80
 Ser Met Lys Arg Ile Met Pro Arg Ala Lys Gly Arg Ala Asp Arg Ile
 85 90 95
 Leu Lys Arg Thr Ser His Ile Thr Val Val Val Ser Asp Arg
 100 105 110

<210> 388

<211> 92

<212> PRT

<213> E. Coli

<400> 388

Met Pro Arg Ser Leu Lys Lys Gly Pro Phe Ile Asp Leu His Leu Leu
 1 5 10 15
 Met Lys Val Glu Lys Ala Val Glu Ser Gly Asp Lys Lys Pro Leu Arg
 20 25 30
 Thr Trp Ser Arg Arg Ser Thr Ile Phe Pro Asn Met Ile Gly Leu Thr
 35 40 45
 Ile Ala Val His Asn Gly Arg Gln His Val Pro Val Phe Val Thr Asp
 50 55 60
 Glu Met Val Gly His Lys Leu Gly Glu Phe Ala Pro Thr Arg Thr Tyr
 65 70 75 80
 Arg Gly His Ala Ala Asp Lys Lys Ala Lys Lys Lys
 85 90

<210> 389

<211> 273

<212> PRT

<213> E. Coli

<400> 389

Met Ala Val Val Lys Cys Lys Pro Thr Ser Pro Gly Arg Arg His Val
 1 5 10 15
 Val Lys Val Val Asn Pro Glu Leu His Lys Gly Lys Pro Phe Ala Pro
 20 25 30
 Leu Leu Glu Lys Asn Ser Lys Ser Gly Gly Arg Asn Asn Asn Gly Arg
 35 40 45
 Ile Thr Thr Arg His Ile Gly Gly His Lys Gln Ala Tyr Arg Ile
 50 55 60
 Val Asp Phe Lys Arg Asn Lys Asp Gly Ile Pro Ala Val Val Glu Arg
 65 70 75 80
 Leu Glu Tyr Asp Pro Asn Arg Ser Ala Asn Ile Ala Leu Val Leu Tyr
 85 90 95
 Lys Asp Gly Glu Arg Arg Tyr Ile Leu Ala Pro Lys Gly Leu Lys Ala
 100 105 110
 Gly Asp Gln Ile Gln Ser Gly Val Asp Ala Ala Ile Lys Pro Gly Asn
 115 120 125
 Thr Leu Pro Met Arg Asn Ile Pro Val Gly Ser Thr Val His Asn Val

130	135	140
Glu	Lys Pro Gly	Lys Gly Gly Gln Leu Ala Arg Ser Ala Gly Thr
145	150	155
Tyr Val Gln Ile Val Ala Arg Asp Gly Ala Tyr Val Thr Leu Arg Leu		160
165	170	175
Arg Ser Gly Glu Met Arg Lys Val Glu Ala Asp Cys Arg Ala Thr Leu		
180	185	190
Gly Glu Val Gly Asn Ala Glu His Met Leu Arg Val Leu Gly Lys Ala		
195	200	205
Gly Ala Ala Arg Trp Arg Gly Val Arg Pro Thr Val Arg Gly Thr Ala		
210	215	220
Met Asn Pro Val Asp His Pro His Gly Gly Glu Gly Arg Asn Phe		
225	230	235
Gly Lys His Pro Val Thr Pro Trp Gly Val Gln Thr Lys Gly Lys Lys		
245	250	255
Thr Arg Ser Asn Lys Arg Thr Asp Lys Phe Ile Val Arg Arg Arg Ser		
260	265	270
Lys		

<210> 390
<211> 100
<212> PRT
<213> E. Coli

<400> 390		
Met Ile Arg Glu Glu Arg Leu Leu Lys Val Leu Arg Ala Pro His Val		
1	5	10
Ser Glu Lys Ala Ser Thr Ala Met Glu Lys Ser Asn Thr Ile Val Leu		
20	25	30
Lys Val Ala Lys Asp Ala Thr Lys Ala Glu Ile Lys Ala Ala Val Gln		
35	40	45
Lys Leu Phe Glu Val Glu Val Glu Val Val Asn Thr Leu Val Val Lys		
50	55	60
Gly Lys Val Lys Arg His Gly Gln Arg Ile Gly Arg Arg Ser Asp Trp		
65	70	75
Lys Lys Ala Tyr Val Thr Leu Lys Glu Gly Gln Asn Leu Asp Phe Val		
85	90	95
Gly Gly Ala Glu		
100		

<210> 391
<211> 201
<212> PRT
<213> E. Coli

<400> 391		
Met Glu Leu Val Leu Lys Asp Ala Gln Ser Ala Leu Thr Val Ser Glu		
1	5	10
Thr Thr Phe Gly Arg Asp Phe Asn Glu Ala Leu Val His Gln Val Val		
20	25	30
Val Ala Tyr Ala Ala Gly Ala Arg Gln Gly Thr Arg Ala Gln Lys Thr		
35	40	45
Arg Ala Glu Val Thr Gly Ser Gly Lys Lys Pro Trp Arg Gln Lys Gly		
50	55	60
Thr Gly Arg Ala Arg Ser Gly Ser Ile Lys Ser Pro Ile Trp Arg Ser		
65	70	75
80		

Gly Gly Val Thr Phe Ala Ala Arg Pro Gln Asp His Ser Gln Lys Val
 85 90 95
 Asn Lys Lys Met Tyr Arg Gly Ala Leu Lys Ser Ile Leu Ser Glu Leu
 100 105 110
 Val Arg Gln Asp Arg Leu Ile Val Val Glu Lys Phe Ser Val Glu Ala
 115 120 125
 Pro Lys Thr Lys Leu Leu Ala Gln Lys Leu Lys Asp Met Ala Leu Glu
 130 135 140
 Asp Val Leu Ile Ile Thr Gly Glu Leu Asp Glu Asn Leu Phe Leu Ala
 145 150 155 160
 Ala Arg Asn Leu His Lys Val Asp Val Arg Asp Ala Thr Gly Ile Asp
 165 170 175
 Pro Val Ser Leu Ile Ala Phe Asp Lys Val Val Met Thr Ala Asp Ala
 180 185 190
 Val Lys Gln Val Glu Glu Met Leu Ala
 195 200

<210> 392
<211> 209
<212> PRT
<213> E. Coli

<400> 392

Met Ile Gly Leu Val Gly Lys Lys Val Gly Met Thr Arg Ile Phe Thr
 1 5 10 15
 Glu Asp Gly Val Ser Ile Pro Val Thr Val Ile Glu Val Glu Ala Asn
 20 25 30
 Arg Val Thr Gln Val Lys Asp Leu Ala Asn Asp Gly Tyr Arg Ala Ile
 35 40 45
 Gln Val Thr Thr Gly Ala Lys Lys Ala Asn Arg Val Thr Lys Pro Glu
 50 55 60
 Ala Gly His Phe Ala Lys Ala Gly Val Glu Ala Gly Arg Gly Leu Trp
 65 70 75 80
 Glu Phe Arg Leu Ala Glu Gly Glu Phe Thr Val Gly Gln Ser Ile
 85 90 95
 Ser Val Glu Leu Phe Ala Asp Val Lys Lys Val Asp Val Thr Gly Thr
 100 105 110
 Ser Lys Gly Lys Gly Phe Ala Gly Thr Val Lys Arg Trp Asn Phe Arg
 115 120 125
 Thr Gln Asp Ala Thr His Gly Asn Ser Leu Ser His Arg Val Pro Gly
 130 135 140
 Ser Ile Gly Gln Asn Gln Thr Pro Gly Lys Val Phe Lys Gly Lys Lys
 145 150 155 160
 Met Ala Gly Gln Met Gly Asn Glu Arg Val Thr Val Gln Ser Leu Asp
 165 170 175
 Val Val Arg Val Asp Ala Glu Arg Asn Leu Leu Val Lys Gly Ala
 180 185 190
 Val Pro Gly Ala Thr Gly Ser Asp Leu Ile Val Lys Pro Ala Val Lys
 195 200 205
 Ala

<210> 393
<211> 103
<212> PRT
<213> E. Coli

<400> 393

Met Gln Asn Gln Arg Ile Arg Ile Arg Leu Lys Ala Phe Asp His Arg
 1 5 10 15
 Leu Ile Asp Gln Ala Thr Ala Glu Ile Val Glu Thr Ala Lys Arg Thr
 20 25 30
 Gly Ala Gln Val Arg Gly Pro Ile Pro Leu Pro Thr Arg Lys Glu Arg
 35 40 45
 Phe Thr Val Leu Ile Ser Pro His Val Asn Lys Asp Ala Arg Asp Gln
 50 55 60
 Tyr Glu Ile Arg Thr His Leu Arg Leu Val Asp Ile Val Glu Pro Thr
 65 70 75 80
 Glu Lys Thr Val Asp Ala Leu Met Arg Leu Asp Leu Ala Ala Gly Val
 85 90 95
 Asp Val Gln Ile Ser Leu Gly
 100

<210> 394

<211> 118

<212> PRT

<213> E. Coli

<400> 394

Met Ala Arg Val Lys Arg Gly Val Ile Ala Arg Ala Arg His Lys Lys
 1 5 10 15
 Ile Leu Lys Gln Ala Lys Gly Tyr Tyr Gly Ala Arg Ser Arg Val Tyr
 20 25 30
 Arg Val Ala Phe Gln Ala Val Ile Lys Ala Gly Gln Tyr Ala Tyr Arg
 35 40 45
 Asp Arg Arg Gln Arg Lys Arg Gln Phe Arg Gln Leu Trp Ile Ala Arg
 50 55 60
 Ile Asn Ala Ala Arg Gln Asn Gly Ile Ser Tyr Ser Lys Phe Ile
 65 70 75 80
 Asn Gly Leu Lys Ala Ser Val Glu Ile Asp Arg Lys Ile Leu Ala
 85 90 95
 Asp Ile Ala Val Phe Asp Lys Val Ala Phe Thr Ala Leu Val Glu Lys
 100 105 110
 Ala Lys Ala Ala Leu Ala
 115

<210> 395

<211> 65

<212> PRT

<213> E. Coli

<400> 395

Met Pro Lys Ile Lys Thr Val Arg Gly Ala Ala Lys Arg Phe Lys Lys
 1 5 10 15
 Thr Gly Lys Gly Gly Phe Lys His Lys His Ala Asn Leu Arg His Ile
 20 25 30
 Leu Thr Lys Lys Ala Thr Lys Arg Lys Arg His Leu Arg Pro Lys Ala
 35 40 45
 Met Val Ser Lys Gly Asp Leu Gly Leu Val Ile Ala Cys Leu Pro Tyr
 50 55 60
 Ala
 65

<210> 396
<211> 180
<212> PRT
<213> E. Coli

<400> 396

Met Lys Gly Gly Lys Arg Val Gln Thr Ala Arg Pro Asn Arg Ile Asn
1 5 10 15
Gly Glu Ile Arg Ala Gln Glu Val Arg Leu Thr Gly Leu Glu Gly Glu
20 25 30
Gln Leu Gly Ile Val Ser Leu Arg Glu Ala Leu Glu Lys Ala Glu Glu
35 40 45
Ala Gly Val Asp Leu Val Glu Ile Ser Pro Asn Ala Glu Pro Pro Val
50 55 60
Cys Arg Ile Met Asp Tyr Gly Lys Phe Leu Tyr Glu Lys Ser Lys Ser
65 70 75 80
Ser Lys Glu Gln Lys Lys Gln Lys Val Ile Gln Val Lys Glu Ile
85 90 95
Lys Phe Arg Pro Gly Thr Asp Glu Gly Asp Tyr Gln Val Lys Leu Arg
100 105 110
Ser Leu Ile Arg Phe Leu Glu Glu Gly Asp Lys Ala Lys Ile Thr Leu
115 120 125
Arg Phe Arg Gly Arg Glu Met Ala His Gln Gln Ile Gly Met Glu Val
130 135 140
Leu Asn Arg Val Lys Asp Asp Leu Gln Glu Leu Ala Val Val Glu Ser
145 150 155 160
Phe Pro Thr Lys Ile Glu Gly Arg Gln Met Ile Met Val Leu Ala Pro
165 170 175
Lys Lys Lys Gln
180

<210> 397
<211> 642
<212> PRT
<213> E. Coli

<400> 397

Met Pro Val Ile Thr Leu Pro Asp Gly Ser Gln Arg His Tyr Asp His
1 5 10 15
Ala Val Ser Pro Met Asp Val Ala Leu Asp Ile Gly Pro Gly Leu Ala
20 25 30
Lys Ala Cys Ile Ala Gly Arg Val Asn Gly Glu Leu Val Asp Ala Cys
35 40 45
Asp Leu Ile Glu Asn Asp Ala Gln Leu Ser Ile Ile Thr Ala Lys Asp
50 55 60
Glu Glu Gly Leu Glu Ile Ile Arg His Ser Cys Ala His Leu Leu Gly
65 70 75 80
His Ala Ile Lys Gln Leu Trp Pro His Thr Lys Met Ala Ile Gly Pro
85 90 95
Val Ile Asp Asn Gly Phe Tyr Tyr Asp Val Asp Leu Asp Arg Thr Leu
100 105 110
Thr Gln Glu Asp Val Glu Ala Leu Glu Lys Arg Met His Glu Leu Ala
115 120 125
Glu Lys Asn Tyr Asp Val Ile Lys Lys Val Ser Trp His Glu Ala
130 135 140
Arg Glu Thr Phe Ala Asn Arg Gly Glu Ser Tyr Lys Val Ser Ile Leu
145 150 155 160
Asp Glu Asn Ile Ala His Asp Asp Lys Pro Gly Leu Tyr Phe His Glu
165 170 175

Glu Tyr Val Asp Met Cys Arg Gly Pro His Val Pro Asn Met Arg Phe
 180 185 190
 Cys His His Phe Lys Leu Met Lys Thr Ala Gly Ala Tyr Trp Arg Gly
 195 200 205
 Asp Ser Asn Asn Lys Met Leu Gln Arg Ile Tyr Gly Thr Ala Trp Ala
 210 215 220
 Asp Lys Lys Ala Leu Asn Ala Tyr Leu Gln Arg Leu Glu Glu Ala Ala
 225 230 235 240
 Lys Arg Asp His Arg Lys Ile Gly Lys Gln Leu Asp Leu Tyr His Met
 245 250 255
 Gln Glu Glu Ala Pro Gly Met Val Phe Trp His Asn Asp Gly Trp Thr
 260 265 270
 Ile Phe Arg Glu Leu Glu Val Phe Val Arg Ser Lys Leu Lys Glu Tyr
 275 280 285
 Gln Tyr Gln Glu Val Lys Gly Pro Phe Met Met Asp Arg Val Leu Trp
 290 295 300
 Glu Lys Thr Gly His Trp Asp Asn Tyr Lys Asp Ala Met Phe Thr Thr
 305 310 315 320
 Ser Ser Glu Asn Arg Glu Tyr Cys Ile Lys Pro Met Asn Cys Pro Gly
 325 330 335
 His Val Gln Ile Phe Asn Gln Gly Leu Lys Ser Tyr Arg Asp Leu Pro
 340 345 350
 Leu Arg Met Ala Glu Phe Gly Ser Cys His Arg Asn Glu Pro Ser Gly
 355 360 365
 Ser Leu His Gly Leu Met Arg Val Arg Gly Phe Thr Gln Asp Asp Ala
 370 375 380
 His Ile Phe Cys Thr Glu Glu Gln Ile Arg Asp Glu Val Asn Gly Cys
 385 390 395 400
 Ile Arg Leu Val Tyr Asp Met Tyr Ser Thr Phe Gly Phe Glu Lys Ile
 405 410 415
 Val Val Lys Leu Ser Thr Arg Pro Glu Lys Arg Ile Gly Ser Asp Glu
 420 425 430
 Met Trp Asp Arg Ala Glu Ala Asp Leu Ala Val Ala Leu Glu Glu Asn
 435 440 445
 Asn Ile Pro Phe Glu Tyr Gln Leu Gly Glu Gly Ala Phe Tyr Gly Pro
 450 455 460
 Lys Ile Glu Phe Thr Leu Tyr Asp Cys Leu Asp Arg Ala Trp Gln Cys
 465 470 475 480
 Gly Thr Val Gln Leu Asp Phe Ser Leu Pro Ser Arg Leu Ser Ala Ser
 485 490 495
 Tyr Val Gly Glu Asp Asn Glu Arg Lys Val Pro Val Met Ile His Arg
 500 505 510
 Ala Ile Leu Gly Ser Met Glu Arg Phe Ile Gly Ile Leu Thr Glu Glu
 515 520 525
 Phe Ala Gly Phe Phe Pro Thr Trp Leu Ala Pro Val Gln Val Val Ile
 530 535 540
 Met Asn Ile Thr Asp Ser Gln Ser Glu Tyr Val Asn Glu Leu Thr Gln
 545 550 555 560
 Lys Leu Ser Asn Ala Gly Ile Arg Val Lys Ala Asp Leu Arg Asn Glu
 565 570 575
 Lys Ile Gly Phe Lys Ile Arg Glu His Thr Leu Arg Arg Val Pro Tyr
 580 585 590
 Met Leu Val Cys Gly Asp Lys Glu Val Glu Ser Gly Lys Val Ala Val
 595 600 605
 Arg Thr Arg Arg Gly Lys Asp Leu Gly Ser Met Asp Val Asn Glu Val
 610 615 620
 Ile Glu Lys Leu Gln Gln Glu Ile Arg Ser Arg Ser Leu Lys Gln Leu
 625 630 635 640
 Glu Glu

<210> 398
<211> 450
<212> PRT
<213> E. Coli

<400> 398
Met Thr Lys His Tyr Asp Tyr Ile Ala Ile Gly Gly Ser Gly Gly
1 5 10 15
Ile Ala Ser Ile Asn Arg Ala Ala Met Tyr Gly Gln Lys Cys Ala Leu
20 25 30
Ile Glu Ala Lys Glu Leu Gly Gly Thr Cys Val Asn Val Gly Cys Val
35 40 45
Pro Lys Lys Val Met Trp His Ala Ala Gln Ile Arg Glu Ala Ile His
50 55 60
Met Tyr Gly Pro Asp Tyr Gly Phe Asp Thr Thr Ile Asn Lys Phe Asn
65 70 75 80
Trp Glu Thr Leu Ile Ala Ser Arg Thr Ala Tyr Ile Asp Arg Ile His
85 90 95
Thr Ser Tyr Glu Asn Val Leu Gly Lys Asn Asn Val Asp Val Ile Lys
100 105 110
Gly Phe Ala Arg Phe Val Asp Ala Lys Thr Leu Glu Val Asn Gly Glu
115 120 125
Thr Ile Thr Ala Asp His Ile Leu Ile Ala Thr Gly Gly Arg Pro Ser
130 135 140
His Pro Asp Ile Pro Gly Val Glu Tyr Gly Ile Asp Ser Asp Gly Phe
145 150 155 160
Phe Ala Leu Pro Ala Leu Pro Glu Arg Val Ala Val Val Gly Ala Gly
165 170 175
Tyr Ile Ala Val Glu Leu Ala Gly Val Ile Asn Gly Leu Gly Ala Lys
180 185 190
Thr His Leu Phe Val Arg Lys His Ala Pro Leu Arg Ser Phe Asp Pro
195 200 205
Met Ile Ser Glu Thr Leu Val Glu Val Met Asn Ala Glu Gly Pro Gln
210 215 220
Leu His Thr Asn Ala Ile Pro Lys Ala Val Val Lys Asn Thr Asp Gly
225 230 235 240
Ser Leu Thr Leu Glu Leu Glu Asp Gly Arg Ser Glu Thr Val Asp Cys
245 250 255
Leu Ile Trp Ala Ile Gly Arg Glu Pro Ala Asn Asp Asn Ile Asn Leu
260 265 270
Glu Ala Ala Gly Val Lys Thr Asn Glu Lys Gly Tyr Ile Val Val Asp
275 280 285
Lys Tyr Gln Asn Thr Asn Ile Glu Gly Ile Tyr Ala Val Gly Asp Asn
290 295 300
Thr Gly Ala Val Glu Leu Thr Pro Val Ala Val Ala Ala Gly Arg Arg
305 310 315 320
Leu Ser Glu Arg Leu Phe Asn Asn Lys Pro Asp Glu His Leu Asp Tyr
325 330 335
Ser Asn Ile Pro Thr Val Val Phe Ser His Pro Pro Ile Gly Thr Val
340 345 350
Gly Leu Thr Glu Pro Gln Ala Arg Glu Gln Tyr Gly Asp Asp Gln Val
355 360 365
Lys Val Tyr Lys Ser Ser Phe Thr Ala Met Tyr Thr Ala Val Thr Thr
370 375 380
His Arg Gln Pro Cys Arg Met Lys Leu Val Cys Val Gly Ser Glu Glu
385 390 395 400
Lys Ile Val Gly Ile His Gly Ile Gly Phe Gly Met Asp Glu Met Leu
405 410 415
Gln Gly Phe Ala Val Ala Leu Lys Met Gly Ala Thr Lys Lys Asp Phe
420 425 430

Asp Asn Thr Val Ala Ile His Pro Thr Ala Ala Glu Glu Phe Val Thr
 435 440 445
 Met Arg
 450

<210> 399

<211> 2894

<212> RNA

<213> E. Coli

<400> 399

aagguaaagc	cucacgguuuc	auuaguaccg	guuagcucaa	cgcaucgcug	cgcuuacaca	60
cccggccuau	caacgucguc	gucuuacaacg	uuccuuucagg	acccuuuaaag	ggucagggag	120
aacucaucuc	ggggcaaguu	ucgugcuuag	augcuuucag	cacuuauccuc	uuccgcäu	180
agcuaccggg	cagugccauu	ggcaugacaa	cccgaacacc	agugaugcgu	ccacuccgg	240
ccucucguac	uaggagcagc	ccccucag	ucuccagcgc	ccacggcaga	uagggaccga	300
acugucucac	gacguuucuaa	acccagcucg	cguaccacuu	uaaauggcga	acagccauac	360
ccuugggacc	uacuuucagcc	ccaggaugug	augagccgac	aucgaggugc	caaaccacgc	420
cgucgaua	aacucuuuggg	cgguauacgc	cguuauc	cgagauac	uuuauccguu	480
gagcgau	ggc	uaggc	gaucacua	uaggc	gcaccugcuc	540
gcgcgc	gucac	guc	guc	guc	guc	600
ccaggauu	agcca	ccu	ccu	ccu	ccu	660
aacuacccac	cagacacu	guccaa	guuac	guuac	guuac	720
uuaagg	guauuu	gu	gu	gu	gu	780
ccaccua	uacaca	ggc	guu	guu	guu	840
ggucuuu	ccu	uuc	uuc	uuc	uuc	900
cucgg	uac	ccu	ccu	ccu	ccu	960
aaggaa	guu	uac	uac	uac	uac	1020
gcuaccuu	uac	uac	uac	uac	uac	1080
caagag	uuc	uuc	uuc	uuc	uuc	1140
ccguua	uac	uac	uac	uac	uac	1200
gcugg	uac	uac	uac	uac	uac	1260
ccuuc	uac	uac	uac	uac	uac	1320
gcuu	uac	uac	uac	uac	uac	1380
gcuu	uac	uac	uac	uac	uac	1440
gcuu	uac	uac	uac	uac	uac	1500
gcuu	uac	uac	uac	uac	uac	1560
gcuu	uac	uac	uac	uac	uac	1620
gcuu	uac	uac	uac	uac	uac	1680
gcuu	uac	uac	uac	uac	uac	1740
gcuu	uac	uac	uac	uac	uac	1800
gugag	uac	uac	uac	uac	uac	1860
ggccu	uac	uac	uac	uac	uac	1920
uuguu	uac	uac	uac	uac	uac	1980
ccgg	uac	uac	uac	uac	uac	2040
guac	uac	uac	uac	uac	uac	2100
guac	uac	uac	uac	uac	uac	2160
guac	uac	uac	uac	uac	uac	2220
guac	uac	uac	uac	uac	uac	2280
guac	uac	uac	uac	uac	uac	2340
guac	uac	uac	uac	uac	uac	2400
guac	uac	uac	uac	uac	uac	2460
guac	uac	uac	uac	uac	uac	2520
guac	uac	uac	uac	uac	uac	2580
guac	uac	uac	uac	uac	uac	2640
guac	uac	uac	uac	uac	uac	2700
guac	uac	uac	uac	uac	uac	2760
guac	uac	uac	uac	uac	uac	2820
guac	uac	uac	uac	uac	uac	2880

ccguguacgc uuagucgcuu aacc

2894

<210> 400

<211> 120

<212> RNA

<213> E. Coli

<400> 400

augccuggca guuuccuacu cucgcauggg gagacccac acuaccaucg ggcuaacggc
guuucacuuc ugaguucggc auggggucag gugggaccac cgcgcuacgg ccgccaaggca

60

120

<210> 401

<211> 76

<212> RNA

<213> E. Coli

<400> 401

guccccuucg ucuagaggcc caggacaccg cccuuucacg gcgguaacag ggguucgaa
ccccuagggg acgcca

60

76

<210> 402

<211> 1549

<212> RNA

<213> E. Coli

<400> 402

aaaaugaaga guuuggaucau ggcucagauu gaacgcuggc ggcaggccua acacaugcaa
gucgaacggu aacaggaagc agcuugcugc uucgcugacg aguggcgac gggugaguaa
ugucugggaa gcugccugau ggagggggau aacuacugga aacgguagcu aauaccgcau
aaugucgcaa gaccaaagag ggggaccuuc gggccucuug ccaucggauug ugcccagauug
ggauuagcuu guuggugggg uaacggcuca ccaaggcgac gaucccuacg ugugcugaga
ggaugaccag ccacacugga acugagacac gguccagacu ccuacgggag gcagcagugg
ggaaauuugc acaaugggac caagccugau gcagccaugc cgccguguaug aagaaggccu
ucggguugua aaguacuuuc agcggggagg aaggagaua aguuuaauacc uuugcucauu
gacguuaccc gcagaagaag caccggcuua cuccgugcca gcagccgccc uaaucggag
ggugcaagcg uuaaucggaa uuacugggacg uaaagcgcac gcaggcgggg ugguuaaguc
agauugaaaa ucggcccgca acccugggg acugcaucug auacuggcaa gcuugagucu
cguagagggg gguagaauuc caggugugac ggugaaaugc guagagauu ggagggauac
cgugccgaa ggcggcccccc ugacgaaga cugacgcuca ggugcgaaag cguggggagc
aaacaggauu agauacccug guaguccacg cccguaacga ugugcaciug qagguugugc
ccuugaggcg ugcuuucccg agcuuacgcg uuaagcgcac cgccugggg guacggccgc
aagguaaaaa cuaaaugaa uugacggggg cccgcacaag cggugggagca ugugguuuuaa
uucgaugcaa cgcaagaac cuuaccuggu cuugacaucc acggaaguuu ucaagagaua
gaaugugccu ucgggaaccg ugagacaggug gcugcauggc ugugcugac ucguguugug
aaauguuggg uuaagucccg caacgagcgc aacccuuauuc cuuugguugcc agcgguccgg
ccggaaacuc aaaggagacu gccagugaua aacuggagga agguggggau gacguacaagu
caucauggcc cuuacgacca gggcuacaca cgugcuacaa ugugcaciuc aaagagaagc
gaccucgcga gagcaagcg accucauuaa gugcgcugua guccggauug gagugcugcaa
cucgacucca ugaagucgga aucgcuagua aucguggauc agaaugccac ggugaaauacg
uucggggcc uuguacacac cgcccgucac accaugggg ugugguugccaa aagaaguagg
uagcuuacc uucggggagg cgcuuaccac uuugugauuc augacugggg ugaagucgaa
acaagguaac cguaggggaa ccugcgguug gaucaccuuac uuaaccuuuaa

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1549

<210> 403
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Primer Oligonucleotide

<400> 403
tgtttatcag accgctt

17

<210> 404
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Primer Oligonucleotide

<400> 404
acaatttcac acagcctc

18

<210> 405
<211> 159
<212> DNA
<213> Escherichia coli

<400> 405
caggtggat gaaaaacccaa aatggagacg ggaagctgaa ccagatagtt actggagggtg 60
atcaccagca gatgaaataa cgataaccag aacaacgcct tatacggtt agtttgcgag 120
aaaacgttca tattgtacct ttttgattaa ccattgggg 159

<210> 406
<211> 640
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature
<222> (1);... (640)
<223> n = A,T,C or G

<400> 406
gggnccaaa gtgttgggn cggcaactg gaggccaacc ttaantngg gaaaattttt 60
aaaaaaaggc ggggattttgt nagccacggg ngattantt anaataaaatt aagtgtgcc 120
ataaggggac aaagngaagg aagtggntat taanggannc gccaatgcga nttagggcag 180
accattcggc cattcgccctt ctgggttatac gaagttcatac cagatagccg ttgcncgacc 240
gaccagatcc gcttcnggca caaagccccaa gtaacggctg tccgcgcgtgt tgtcgcgggtt 300
gtcgcccatac atgaagtatt gtcccgagg aacaatccag gttgccagtt gttgccctgg 360
ctgctggtaa tacatccccca cctgatccctg cgcaatcgcc actgtcagaa tgccgtgcgt 420
cacatcacccc agtgtctctt tacgctcgga aagacgaatt ccattttctt tggtttcggtt 480
tttcggcast tcaaagaattt cgctggtcgc ttccccacca ttacggcggtg agaaggctcg 540
aacgaaatcg ctcggttcca cgtttgagta ggtgaccggc agcgcgttt cacacgcctg 600
gccggaaactcg catcccggtt gaatcgtagt ctctttcggtt 640

<210> 407
<211> 682
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature

<222> (1)...(682)

<223> n = A,T,C or G

<400> 407

cctgcagggt aatgtcgcca ttaaactggc gcaggcagcc aaagagttgc tccgcttcta	60
cccagtccgc agcgacaaact tgcgttaaag tcgcaaaatt atcatctgca ctcactgcgt	120
gacgttaagcg gatggagtgcc cgaaaacct catagtgacc gccaccagt tggctgcata	180
cgctttagt cgtacgcgcg gcattggcaa taagattcag atactcagac tcttccgggg	240
ccttcggcag cataaaagag gaggatgctc gcgtatgcag caactgctcc agcgcatt	300
gcagccgcgg ttgagtatca ctgaataaag gatcgtttc gtcataatcaa tggctgtag	360
caaataatttc ctgatagcta tcggtatcag gaaccaggc acgcgcata agtttcgtaa	420
tggtaaagt tgatgtttt tagtctgttg tcaaaggccgc nattataccn gtaaccggca	480
ctacagcaca cgtagaaagc acccgacaaat actcctggca tggcgtaa agctcacagg	540
atggagatct ttcttcact ggcctaaaaa gctgatattc tgtaaagagt tacacngtaa	600
cattgagatc gctatgaaat atcaacaact tggaaatct tgnaaagcng gttggaaaat	660
ggaaagtatc tggtaagaa gc	682

<210> 408

<211> 309

<212> DNA

<213> Escherichia coli

<400> 408

ggggatccgg cagaatttta cgctgaccaa tgacgcgacg acgtggcatg gaaatactcc	60
gttgttaatt caggattgtc caaaactcta cgagtttagt ttgacattta agttaaaacg	120
tttggccta cttaacggag aaccattaag ccttaggacg ctgcacgcata tacttggAAC	180
gagcctgctt acggctttt acgcggagc agtcaagcgc accacgtacg gtgtggtaac	240
gaacacccgg gaggctttt acacgacccgc cacggatcag gatcacggag tgctcctgca	300
gccaagctt	309

<210> 409

<211> 1167

<212> DNA

<213> Escherichia coli

<400> 409

gtcgaccat ctgtccattt agcggacagt ttgtgcaaca ctatTTGTT gaccggaaaa	60
tggAACACTT tccgcaatgc ctgttgctat cacgcttaaa ccatttcatt gcgatttaca	120
cagaacggac gtcctgtcgc agtatattaa gtcgtcgata gaaacaagca ttgaaaggca	180
cagcagtagt caaacAGTGT gaaacgctac tggcgccta cagcgcaaaa aggctggta	240
ctaaaaagtc accagccatc agcctgattt ctcaggctgc aaccggaaagg gttggcttat	300
ttaacttcaa ctgcagcgc agcttcttcc agagctttt tcagtgcattc tgctcgtct	360
ttgctcacgc ctctttcag agcagccggc gcagattcta ccaggctttt agcttcttcc	420
agacccaggc cagttgcgc acgtactgct ttgataacag caactttgtt agcgcacca	480
gttttcagaa ttacgtcgaa ttcaGTTTT tcttcaggcag ctcaaccgg gccagcagct	540
acagctacag cagcagcagc ggaaacaccg aattttttt ycatgtcaga gatcaagttc	600
tacaacgtcc attacagaca tagctgcaac tgcttcaatg awtgatctt tagtgataga	660
catttaaatk gtcctgaat atcagaataa gtttatacgt aagcgaatgc gttaaaaaga	720
taactgcgaw taagcagctt ytttcgcattc gcttacagma gccagagttt gaaaccagttt	780
gccagccgaa gcttcttca tggttgcccattcaggcgtcattt cgttagtgcgg	840
cagagtgcgc aggcggcgcg tctgagacgc cggatcagc tcacccattca aggccggc	900
tttgacctca aatttttgcattc gcttacccatc gaaactttt aacagacgcg cagcagcgc	960
cggtgttcc atagagtatg caatcagggtt cggaccaaca aacgcgtctt tcaggcactc	1020
gaacggagta cttcaacacg cacggcgcag cagggttta cgaacaacac gcatgtatac	1080
gccagcttcg cggatcgttac gatcattttt tctacagttt cgttagtgcgg	1140
aatccgcaac tactgcaagc caagctt	1167

<210> 410

<211> 404

<212> DNA

<213> Escherichia coli

<400> 410

caacmctatt ttgkgtggacc ggaaaakggg acacttccg cawkgcctgt tgctatcacg	60
cttaaacat ttcattgcga tttacacaga acggacgtcc tgcgcagta tattaaagtgc	120
tcgatagaaa caaggattga aaggcacagc agtagtcaa cagtgtgaaa cgctactggc	180
gccttacagc gcaaaaaggc tggtgactaa aaagtccacca gccatcagcc tgattctca	240
ggctgcaacc ggaagggtg gcttattaa ctcaacttc agcgccagct tcttccagag	300
ctttttcag tgcttctgcg tcgtcttgc tcacgccttc ttccagagca gccgggtgcag	360
attctaccag gtcttagct ctccagac ccaggccagt tgcc	404

<210> 411

<211> 152

<212> DNA

<213> Escherichia coli

<400> 411

agagctttt tcagtgcttc tgcgtcgctt ttgctcacgc ctctttcaa gagcagccccg	60
gtgcagattc taccaggctt ttagcttctt tcagacccag gccagttgcg ccacgtactg	120
cttgataac agcaacttg ttagcgccag ca	152

<210> 412

<211> 825

<212> DNA

<213> Escherichia coli

<220>

<221> misc_feature

<222> (1)...(825)

<223> n = A,T,C or G

<400> 412

gatccgtcga cccatctgtc cattgagccg acagttgtg caacactatt ttgttgaccg	60
gaaaatggaa cactttccgc aatgcctgtt gctatcacgc ttaamccatt tcatttgcgt	120
ttacacagaa cggacgtcctt gtcgcagtat attaagtctgt cgatagaaac aagcattgaa	180
aggcacagca gttagtcaaac agtgtgaaac gctactggcg ctttacagcg caaaaaggct	240
ggtgactaaa aagtccacccat ccatcagccctt gatttctcg gctgcacccg gaagggttgg	300
cttatttaac ttcaacttca gcgcagctt ctccagagc tttttcagt gcttctgcgt	360
cgtcttgcgt cacgccttctt ttccagagcc ccgggtgcag attctaccag gtcttttagct	420
tctttcagac ccaggccagt tgcgccacgt actgcttga taacagcaac tttgttagcg	480
ccagcagctt tcagaattac gtcgaattca agtttttct tcagcagctt caaccgggccc	540
agcagctaca gctacagccg cagcagccgaa aacaccgaat ttttcttyca ttggcagaga	600
tcaagttcta caacgtccat tacagacata gctgcacatg cttcaatgtat tkgatcttw	660
gtgatagaca tttaaattgt tcctgaatat cagaataagt ttatacgtaa gccaatgcgt	720
taaaaaagata actgcgatta agcagcttctt tcgcacatgcgtacagcagccg cagaggtcga	780
accagttgc cagccgaagg ttggctttc agcctnnncn nattta	825

<210> 413

<211> 425

<212> DNA

<213> Escherichia coli

<400> 413

agttagtcaa caggtgkgra acgctactgg cgcccttacag cgcaaaaagg ctgggtacta	60
aaaagtccacc agccatcarr ctgatttctc aggctgcAAC ccggaaagggt tggcttatttt	120
aacttcaact tcagcgccag ctcttccag agctttttc agtgcgttctg cgtcgcttt	180
gctcagccct tctttcagag cagccggcgtc agattctacc aggtcttttag ctctttcag	240
acccagccca gttgcgccac gtactgcgtt gataacagca actttgttag cgccagccg	300
tttcagaattt acgtcgaattt cagtttttc ttccagcagct tcaaccgggc cagcagctac	360
acgtacagca gcagcagccg aaacacccga atttttctt cattgcagag atcaagttct	420
acaaac	425

<210> 414
<211> 126
<212> DNA
<213> Escherichia coli

<400> 414
agagctttt tcagtgc tgcgtcg ttcgtcacgc cttctttc agcagccgg
gcagattcta ccaggcttt agcttcttc agaccaggc cagttgcg acgtactgct
ttrata 60
120
126

<210> 415
<211> 264
<212> DNA
<213> Escherichia coli

<400> 415
ctgcmacccg gargggttgg ctatattaac ttcaacttca gcgccagctt cttcagagc
tttttcaag tgcttctgcg tcgtcttgc tcacgccttc tttcagagca gcccgtgcag
attctaccag gtcttagct tcttcagac ccaggccagt tgcgccacgt actgcttga
taacagcaac ttgttagct ccagcagctt tcagaattac gtcgaattca gtttttctt
cagcagcttc aaccggcca gcag 60
120
180
240
264

<210> 416
<211> 201
<212> DNA
<213> Escherichia coli

<400> 416
cgcataccct gcagcatcg cccgatggag atcaggtcgg cagaacgctg taccgcttg
taggttgtgt taccgggtt cagatccggg aagatgaaca cggtagcgcg acctgcaacc
ggagagttcg ggccttggaa ttgcacacg tcagccatta cccgacgcgtc gtactgcagc
ggaccgtcga tcatcaggc a 60
120
180
201

<210> 417
<211> 239
<212> DNA
<213> Escherichia coli

<400> 417
aattcagcag ttgacagtgg cataaacgta actggtgact tttgcccggc atgacgcccgg
gctttttta ttattccgtg acttccagcg tagtgaaggc aaacttctcg ccatcaaata
gccccgtact gtttagttt agcgcgggaa tcactggcag agaaagaaaac gccatctgaa
taaacggctc atcgggtaac ggaccgcatt cacggcggc ggcttcaag gcgtcaatt 60
120
180
239

<210> 418
<211> 223
<212> DNA
<213> Escherichia coli

<400> 418
ttctttttt cgtcaacggt gtccagaatc attttattta cctcggtac ttatgctgat 60
tttttattttt atggggagg tttttttt gagtttcatt tatgcgtaa cgacatgaa
ctcgggaaatt agtataagca ggcggagaat aataatcatt gtgcaaatgc taatttattt
aatactattt aaatattttt ttgagcatat gcacataagg ttg 120
180
223

<210> 419
<211> 223
<212> DNA
<213> Escherichia coli

<400> 419

ttctttttt cgtcaacggt gtccagaatc attttattta cctcggtac ttatgctgat	60
ttttattttt atgggaaagg tgttattttat gagtttcatt tatgccgtaa cgacaatgaa	120
ctcggaaatt agtataagca gcgcgagaat aataatcatt gtgcaaatgc taatttaattt	180
aatactattt aaatattttt ttgagcatat gcacataagg ttg	223
<210> 420	
<211> 212	
<212> DNA	
<213> Escherichia coli	
<400> 420	
aatagcggt atgcacgcct ttctttttt cgtcaacggt gtccagaatc attttattta	60
cctcggtac ttatgctgat ttttattttt atgggaaagg tgttattttat gagtttcatt	120
tatgccgtaa cgmcataatgaa ctcggaaatt agtataagca gcgcgagaat aataatcatt	180
gtgcaaatgc taatttaattt aatactattt aa	212
<210> 421	
<211> 438	
<212> DNA	
<213> Escherichia coli	
<400> 421	
ccctgttaat tatcgccgt ggcataaaaaa ctgcgtccaa acggcgctt tgccagcage	60
caggccataaa atgccaccag aattatcgcc aaccaaccaa ttgctgaaac gccaagcagc	120
agcggggcgg agagctgtt cagtcggcg ggttaaccctt caatccattt gcccgcagtc	180
cacagcaaca ttagtcctt gtacaaccctt aacgtgcacaa ggttgccaa aatggcaggg	240
atctttagcc acgcgaccag gacaccgtt aaaaatccc cgagcaaac aagcagtaaa	300
gtcgcgacac aagcaacagg tagtaatat cctgcgttca gtaacatccc caacagcacc	360
gcccacattt cggtaatcg aacccactt gaaacatcaa tattgsgsgt aagcattwcc	420
aagcggtcgs gccccatkg	438
<210> 422	
<211> 682	
<212> DNA	
<213> Escherichia coli	
<400> 422	
aattcccggt gatccgtcga ccgtgcgtt ccggttgtgg caacccgcga aatggcgccg	60
cggtaagtat ggcggggta ttccttcccc gttgaggaca ccgggttgtc aggttgcacca	120
tacgcataag tgacaacccc gctgcaacgc cctctgttat caatttctg gtgacgttt	180
gcggtatcatag ttttactccg tgactgctt gcccgccttt taaaagtgaa ttttgcgtat	240
ttgtgaatgc ggctgagcgc acgcggaaaca gttaaaacca aaaacagtgt tatgggtgga	300
ttctctgtat cccgcgttta ttgttaactg gttAACGTCA CCTGGAGGCA CCAGGCACTG	360
catcacaaaaa ttcatgttgg aggacgcgt aatgaaaaacg ttattacca acgttaataac	420
gtctgaaggt tttttgtaaa ttgggtgtcac tacatgttac ccagtattt ctgaaatgtc	480
cattaacaag agaaaaacaag aacggggact attaaataaa atatgcattt tttcaatgt	540
ggctcggttta cgtctgtatgc caaaaggatg tgcacaatga attcagcatt tttcaatgt	600
ctgacagttt ttcttgcgttcc cggagagcca gttgatattt cagtcgtgt tcacaggaca	660
atgcaggagt gatgactgca gc	682
<210> 423	
<211> 600	
<212> DNA	
<213> Escherichia coli	
<400> 423	
ggggatccga ttgtgactgc tctgcccgtt tttttaaagt gaattttgtg atgtggtaa	60
tgcggctgag cgacacgcggaa acagttaaaa caaaaaacag tggtatgggt ggattctctg	120
tatccggcgt taattgttta ctggtaacg tcacctggag gcaccaggca ctgcattcaca	180
aaattcatgtt tgaggacgc gataatgaaa acgttattac caaacgttaa tacgtctgaa	240
ggttgcgtt aatttgggtt cactatcgtt aacccagttt ttactgaaga tgccattaaac	300

aagagaaaaac aagaacggga gctattaaat aaaatatgca ttgtttcaat gctggcgtcg	360
ttacgtctga tgccaaaagg atgtgcacaa tgaattcagc atttgcgtt gttctgacag	420
ttttcttgtt tcggagag ccagttgata ttgcagttag tggcacagg acaatgcagg	480
agtgtatgac tgcagcaacc gaacagaaaa ttccggtaa ctgttaccgg gtcgataaag	540
ttattcacca ggataatatac gaaatcccgg caggtttta aacagttccg taataaataa	600
<210> 424	
<211> 100	
<212> DNA	
<213> Escherichia coli	
<400> 424	
gggatccagc aagaagatgc gggttacccg tcatcacgca gatgcgcaaa gctactcagc	60
aactgacctt tcttcgcaat aagcacgcca ttagcgtcat	100
<210> 425	
<211> 465	
<212> DNA	
<213> Escherichia coli	
<400> 425	
tcgcgtgttt acttcaaca tcggtaactt tctggcgat agtttacgg taagcaacct	60
gcgggttacc tacgttcgtt tcaacgttga attcacgtt catacggtca acgtatgtgt	120
cgaggtgcag ttccggatata cccgcgtatga tggctgtt agattcttgc tcagtcata	180
cacggaaaga cgggtcttctt ttagccagac gccccagagc cagacccatt ttttcgtt	240
cagcttgggt tttcggttca actgcgtatgg agattacgg ctcaggaaat tccatacggt	300
ccagaatgtat cggcgcatcc gggcacaca ggggtcacc agtggtaacg tcttcagac	360
cgatacgacg acgtatgtcg cccgcgtgaa ctctttgtat ctcttcacgt ttgttagcgt	420
gcacgttgcac gatacgcacccg aaacgctcac gtgcagctt cacgg	465
<210> 426	
<211> 653	
<212> DNA	
<213> Escherichia coli	
<220>	
<221> misc_feature	
<222> (1)...(653)	
<223> n = A,T,C or G	
<400> 426	
tgcgtggctc aagcagaact ggtttcgctt tcttaaagcc ttctttaaag gcgatagaag	60
cagccagttt aaacgccagt tcagaggagt caacgtcatg gtaagaaccc aagtgcagac	120
gaatacccat gtctactacc gggtagcctg ccagcggacc tgcttcagc tggctctgga	180
tacctttatc aacggccggg atgtattcgc cagggattac accaccttta atgtcggttga	240
tgaactcgta gcctttcggg tttgaacccg gctccagcgg gtacatgtcg ataacaacat	300
gaccatactg accacgacca ccagactgtt tcgcgtgttt accttcaaca tcggtaactt	360
tctggcgat agtttcacgg taagcaaccc gcggttacc tacgttcgtt tcaacgttga	420
attcacgtt catacggtca acgtatgtgt cgaggtgcag ttccgcatac ccgcgtatgt	480
ggctgggttag attttcgatc agtccataca cggnaagacg ggtttttt agccagacgg	540
gccagagnca gaccatattt ttctggcgat ctggnttc ggtcaactgc gatgaaata	600
cccggtcaa ggaattcata cgttcanaa tgatcgggc attccgggtc aca	653
<210> 427	
<211> 268	
<212> DNA	
<213> Escherichia coli	
<400> 427	
ctttcttaaa gccttcttta aaggcgatag aagcagccag tttaaacgcc agttcagagg	60
agtcaacgtc atggtaagaa ccgaagtgcgac gacgaatacc catgtctact accgggtac	120

ctgccagcgg acctgcttc agctgttccct ggatacccttt atcaacggcc gggatgtatt	180
cgccaggat tacaccaccc ttaatgtcgt tgatgaactc gtgcctttc gggtttgaac	240
ccggctccag cgggtacatg tcgataaac	268
<210> 428	
<211> 330	
<212> DNA	
<213> Escherichia coli	
<400> 428	
gttttgggga gatgtaaagg ctaatctgaa tggctgcatt ccttgtttaa ggaaaaacga	60
atgactgatt gccgataacct gattaaacgg gtcataaaaa tcatacattgc tgttttacag	120
ctgatccttc tttttttata acacaaggaa acgtacttaa ggtgcgtccg gtgaaccagt	180
cggacgcacc ttaataact ataaataagt gtctggcag atactatata aattaactta	240
gtgaatgatt atgctaattgt catcaattaa ataaatataa tggcgtaag gcttcccagt	300
aatataattt atactctact tccagagtag aatattaaat ttatcccg tggtgcatca	330
gcacaaaattt atccccacaac tggcttctg tctcgacatg cgccggatct ttcacaatag	420
tattgggat cgggcacacc ttctggcagg ttggtgctc gtatg	465
<210> 429	
<211> 465	
<212> DNA	
<213> Escherichia coli	
<400> 429	
gttttgggga gatgtaaagg ctaatctgaa tggctgcatt ccttgtttaa ggaaaaacga	60
atgactgatt gccgataacct gattaaacgg gtcataaaaa tcatacattgc tgttttacag	120
ctgatccttc tttttttata acacaaggaa acgtacttaa ggtgcgtccg gtgaaccagt	180
cggacgcacc ttaataact ataaataagt gtctggcag atactatata aattaactta	240
gtgaatgatt atgctaattgt catcaattaa ataaatataa tggcgtaag gcttcccagt	300
aatataattt atactctact tccagagtag aatattaaat ttatcccg tggtgcatca	360
gcacaaaattt atccccacaac tggcttctg tctcgacatg cgccggatct ttcacaatag	420
tattgggat cgggcacacc ttctggcagg ttggtgctc gtatg	465
<210> 430	
<211> 379	
<212> DNA	
<213> Escherichia coli	
<400> 430	
aatctgaatg gctgcattcc ttgtttaagg aaaaacgaat gactgattgc cgataacctga	60
ttaaacgggt catcaaaaatc atcattgctg ttttacagct gatccttctg ttcttataac	120
acaaggaaaac gtacttaagg tgcgtccggtaa acccgatcg gacgcacctt taataactat	180
aaataagtgt ctggcagat actatataaa ttaacttagt gaatgattat gctaatgtca	240
tcaattaaat aaatataatg gcgtttaaggc ttcccgatata tataattaaat actctacttc	300
cagatgaaat tattaaattt tatcccgatg gtgcacatc acaaatttat cccacaactg	360
ttcttctgtc tcgacatgc	379
<210> 431	
<211> 443	
<212> DNA	
<213> Escherichia coli	
<400> 431	
aagatgatgt gatgagaaag tcaatttgaa taagacaata ttaagagcta aaaaatgtc	60
aaaaaacact aaatcaaaaa ataatggcat tagaaaaat aatgcgaaaa cggagggtgaa	120
attagtttat ttcaaatgaa gaaaatctcc cggcgaaaa accgggagat gaaagtgtga	180
tgggtatcaa ataaacaaca gaggagaaat ttttaacgca gccattcagg caaatcgat	240
aatcccatgt cctggcggat aagttgcggc ttaacgccag gaagcgtgtc ggccagttc	300
aaaccaatat cacgcacgac tttttcgac ggattggatc cgaaaaacag atcgcggat	360
ccctgcatac cagccacat caacgcccac ctgtgcttgc ggctacgctc atagcgcacgc	420
agataaatgt actgccccat gtc	443

<210> 432

<211> 638

<212> DNA

<213> Escherichia coli

<400> 432

cagggggitt	gttgtggca	atgatgcatt	taagttatcg	tctgcagata	gaggagatat	60
tacaataaac	aacgaatcag	ggcatttgat	agtcaatacc	gcaattctat	caggagatat	120
agtcaactct	agaggaggag	aaatttaggtt	ggtattatag	cttgtgcgcg	ccatgattgg	180
cgcgcattt	aaacttagtg	cttacatcg	ctattgtctt	gatttcttg	aattatttttta	240
taaattaaaa	aaacgactgt	tatgtataag	caaagggtccg	aacgaaaaat	acattccaaa	300
taaatgctt	cttaaatctc	tatacccttc	cccgaaaaat	gacacataaa	attgagatat	360
tccaaaaaga	gatactacaa	ataaaagatgc	ctttatttttta	ttatttctaa	taaaaataga	420
agcaataaaaa	aataataaca	atgatataaa	tctaatttttta	ttaaatataat	tgtcttttat	480
gttagtaata	gtcgtagta	tgttgattc	tccatatatt	acgtgttagtt	ttttatatac	540
atggaaataa	ttttctttat	actgagacat	cacaccatca	tcaaatggaa	gtttaagat	600
ggtgcttgg	ttgctaacca	ataaaaagag	tgcattcg			638

<210> 433

<211> 299

<212> DNA

<213> Escherichia coli

<400> 433

cttacactgg	catgatccac	ttcgccagaa	taccggcaat	aagccaaaaa	ataatccatg	60
acagaatgcc	cattgtttcc	tcacttatct	gttttgatt	agcgggttag	tcgctgataa	120
aaagcatagc	acaacatcg	gagggcaaga	tttgtgacga	gcatcacgga	ggttttttg	180
cgatggcgca	gaaattgcgc	catcaacgat	cagtgataat	taccaaccac	aaacatcatg	240
ttcggtttcc	gtgtcataaag	aacgtacggt	attcaccaga	tcttttatca	cttcagccg	299

<210> 434

<211> 388

<212> DNA

<213> Escherichia coli

<400> 434

aaaaaaggag	gcaatatcg	gtaaaggcat	tagccccacg	aatacgtcg	gctacaaata	60
ttatttgtct	gcaggtgtt	tagcgggttg	ttgatccaca	ggttctaact	ggaagaccac	120
atcgacctga	tcatcaaact	gaatagcg	ctgctcgtaa	gttccctggg	cgacacccgg	180
cgcggcatacg	gctttcatca	tccgaccat	tgggctggc	tgatagttgg	aaacatggta	240
gcmcacgcta	tataccggcc	ccagtttacg	atgaaagccg	ttcgccagtt	cctgcgcctg	300
atgaatcg	ttatcaatcg	ctgccttacg	cgctttgtct	ttataggcat	ccggctgcgc	360
cacgccc	gacacagaac	gaattccc				388

<210> 435

<211> 351

<212> DNA

<213> Escherichia coli

<400> 435

ctatccctga	tgaaaccgcg	agcaaagata	ggtgattacg	tcatggttt	acagaaaatt	60
acagaaaaag	gaggcaat	cggttaaagg	cattagcccg	acaaatacgt	cgggctacaa	120
atattattgt	gtcgaggt	ttttagcggg	ttgttgcatt	acaggttcta	actgaaagac	180
cacatcgacc	tgatcatcaa	actgaatagc	ggcctgctcg	taagttccct	gggcggacac	240
cggcgccgca	tcggctttca	tcatccgcac	cattgggctg	ggctgatagt	tggaaacatg	300
gtagcgcacg	ctatataccg	gccccagtt	acgatgaaag	ccgttcgcca	g	351

<210> 436

<211> 762

<212> DNA

<213> Escherichia coli

<220>
<221> misc_feature
<222> (1)...(762)
<223> n = A,T,C or G

<400> 436

aattatgaaa cactgtctgg aatcgtctga atgacgggc a	catttgcgag cacgcaccca	60
gtaataaacac aggaaactat ttatctacg cgtagcgat agactgctt	catggcgaaa	120
ggaggttaagc cgacgatttc agcgggacgc tgaaacggg a	agccccctcc cgaggaaagg	180
gccataaata aggaaaggg catgatgaag ctactcatca	tctgtggtgcctt tagtcata	240
agcttccccg cttaactaaga ctaccaggc ggggaaacc ccgcctctacc	ctcactcctg	300
aaagtatgcc ttcacgataa gattgtcaat ccgcaggctt	tgttagtctgc gatctgc	360
gcaaataattc ttgcgagtc gttacgaaat aatcacagag	gaaaactattt tattcacgcg	420
ttagcgatag actgcattca gggcgaaagg aggttaagccg	atgatttcag cgggacgc	480
aaacgggaaa gcctctcccg gagaagaggg ctttaataa gaaaagggtt	atgtatgaagc	540
acgtcatcat actggtgata ctcttagtga ttagcttcca	ggcttactaa gaacaccagg	600
gggaggggga aacctttcc taaccctcac ttctgaatt gggtgctatg	acgctggcgt	660
tactgtttt cgttaccagt ttgtctgccc tggcggttgt aacgccagat	cggttaccgt	720
ttggatattt taatgaaagc cgacaaatca atcancgtga	cg	762

<210> 437
<211> 292
<212> DNA
<213> Escherichia coli

<400> 437

cacatttgcg agcacgcac cagtaataac acaggaaact attttatcta	cgcgttagcg	60
atagactgt tgcatggcga aaggaggtaa gccgacgatt tcagcggac	gctgaaacgg	120
gaaagccccct cccgaggaag gggcataaa taaggaaagg gtcatgtatga	agctactcat	180
catcggttg ctcttagtca taagcttccc cgcttactaa gactaccagg	gcgggggaaa	240
ccccgtctca ccctcactcc tgaaagtatg cttcacgt aagattgtca	at	292

<210> 438
<211> 631
<212> DNA
<213> Escherichia coli

<400> 438

atttacactt ttacgaaat catggatca ctaacaaaat atcgcttgc	agttatattg	60
tatggcagga aagatatgcg actgatatta cagatcccc aagtggagag	tttatgacca	120
ttaaaaataa gatgttgctg ggtgcgttt tgctggttac cagtggcc	tggccgcac	180
cagccaccgc gggttcgcacc aataacctcg	gaatttctaa gtatgagtt agtagttca	240
ttgctgactt taagcatttc aaaccagggg acaccgtacc agaaatgtac	cgtaccgatg	300
agtacaacat taagcagtgg cagttgcgt	acctgcccgc	360
ggacctatat gggtggcgcg tacgtgtga tcagcgacac	gcctgtatgccc	420
cctacgacgg tgagatttt tatacatgc	aaaaaaagcc ccctcatcat	480
tgcagacacc ttgttatttt ttattattag ccacttgctc	gagggggaaa	540
tatttacgt tgattaatgc ggttgcctcc	gtcgccag atttaactt	600
tagacgttagt aactggctgt tatcggaaatt g	ttttgtatcg	631

<210> 439
<211> 566
<212> DNA
<213> Escherichia coli

<400> 439

tatggcagga aagatatgcg actgatatta cagatcccc aagtggagag	tttatgacca	60
ttaaaaataa gatgttgctg ggtgcgttt tgctggttac cagtggcc	tggccgcac	120
cagccaccgc gggttcgcacc aataacctcg	gaatttctaa gtatgagtt agtagttca	180
ttgctgactt taagcatttc aaaccagggg acaccgtacc agaaatgtac	cgtaccgatg	240

agtacaacat	taagcagtgg	cagttgcgt	acctgcccgc	gcctgatgcc	gggacgcact	300
ggacctatat	gggtggcg	tacgtgttga	tcagcgacac	cgacggtaaa	atcattaaag	360
cctacgacgg	tgagatttt	tatcatcgct	aaaaaaagcc	ccctcatcat	gagggggaaa	420
tgcagacacc	ttgttatTTT	ttattattag	ccacttgctc	gtcttgctt	ttatttagtcg	480
tatttcacgt	tgattaatgc	ggttgccctc	agtgcgccag	atthaacttt	gtttgtatcg	540
tagacgtagt	aactggctgt	atcgaa				566
<210>	440					
<211>	339					
<212>	DNA					
<213>	Escherichia coli					
<400>	440					
cgtattcaca	tcctttgtat	tggtgataac	atgcgaatcg	gtattatTTT	tccgggttga	60
atcttcatta	cagcggtcgt	atTTTTAGCA	tggTTTTTA	ttggcggcta	tgctgccccg	120
ggagcataaa	gatgaaaaaa	acaacgatta	ttatgatggg	tgtggcgatt	attgtcgac	180
tcggcaactga	gctgggatgg	tggtaacgtc	acctctaaaa	aatagcaaag	gctgcctgtg	240
tgcaggcctt	gtgcaattta	agcgttaact	tttaatctc	ctgttagataa	atagcacgac	300
aatcgcacca	ataacggcaa	ccacgaagct	gccaaaatt			339
<210>	441					
<211>	376					
<212>	DNA					
<213>	Escherichia coli					
<400>	441					
catgaatatt	taaaaaggaa	aacgacatga	aaccgaagca	cagaatcaac	attctccaat	60
cataaaatAT	ttccgtggag	cattttatta	ttgaatatag	agtttaact	ccggtaaaaaa	120
acaaagaAGC	attgaatgca	gggaaaaata	atatggccat	aaaaaacatc	gaaagaaact	180
cttttaattt	aacatgtaaa	cgcattgttA	atcctcatat	cacgggttga	gtgttaagaa	240
catacataaa	tggagtcatg	ttttcccttT	tccatttatac	aagttcctgt	tgccgttttA	300
gtccatctct	aattgcataat	tttaattttt	ctgataaaatg	gcattgagca	tcgatttcat	360
ttaaaacacaac	tgtaca					376
<210>	442					
<211>	446					
<212>	DNA					
<213>	Escherichia coli					
<400>	442					
ttacgatagc	tattagtaaa	aatataagag	ttagctgtat	tgttatgtct	gtggcgaat	60
tgactacctt	cgtttttttt	attaagaatg	atTTTATTAT	cgttaagtaaa	attacatgaa	120
tatTTaaaaa	ggaaaacgac	atgaaaccga	agcacagaat	caacattctc	caatcataaa	180
atatTTCCGT	ggagcatttt	attattgaat	atagaggTTT	aactccggta	aaaaacaaag	240
aagcattgaa	tgcagggaaa	aataatatgg	ccataaaaaa	catcgaaaga	aactcttttA	300
atTTAACATG	taaacgcatg	gttaatctc	atatcacggg	tggagtgttA	agaacataca	360
taaatggagt	catgttttcc	ctttccatt	tatcaagttc	ctgtgcccgt	tttagtccat	420
ctcttaattgc	atattttat	ttttct				446
<210>	443					
<211>	388					
<212>	DNA					
<213>	Escherichia coli					
<220>						
<221>	misc_feature					
<222>	(1)...(388)					
<223>	n = A,T,C or G					
<400>	443					
tcaccccggt	gccgattttc	aggcatcctg	atthaactta	gcacccgcaa	cttaactaca	60

ggaaaaacaaa gagataaatg tctaattcctg atgcaaatcg agccgatttt ttaatcttta	120
cggactttt cccgcctgggt ttattaattg cactgnatc cgggcgttcg cccgctttaa	180
tcacaatagg ctgtgtagcc tgggcctgtt tctcttcac cccgcgccaga gcggcagcaa	240
tcgcacatctt atctttggct gcaggttgaa cggctgcgct ctatgtcgt tcaaggcgag	300
ccgcttttc gcgctccaga cgagcctggc ggcgttcgaa acgcgccttg gcttctgcgg	360
cncgcttttc ttcctgacga atagccgc	388
<210> 444	
<211> 209	
<212> DNA	
<213> Escherichia coli	
<400> 444	
aattttaata acgcttatctg cggataaagc agaataggtg gtaaacccca gacataaacc	60
gaggaaaata atgttattgt atttcataat ctattgttcc ttagcgacag attgctgtct	120
gctgggtcag taaggtacca ggagaaacctt caggaagctt gtactcgaca atacagttt	180
agtttttatac tttgccccat gaaacctgt	209
<210> 445	
<211> 341	
<212> DNA	
<213> Escherichia coli	
<400> 445	
catcctcaat accgttaaat gcaacccgaa ccccccgttgc ccctttgctg cattcactta	60
acgtaatctg aaaagggacg gctgacttg tgctaccgt cgttggaaat tgtctggcac	120
tgttttttgc gagatctacg gtaaaattaa gcgaatccga tgagactgtg cagccataat	180
cgaggacgcg cccgctaatt ttaataaacgc tatctgcga taaagcagaa taggtgtta	240
accccagaca taaaccgagg aaaataatgt tattgtattt cataatctat tgttccttag	300
cgacagattt ctgtctgcgt gttcagtaag gtaccaggag a	341
<210> 446	
<211> 697	
<212> DNA	
<213> Escherichia coli	
<400> 446	
agatttactg ccaatttccg gcagatcgga aagggttaam ccattttgtat ccataagggt	60
acgaatcmcg ggctataccg ccagggcatgg cttgagccat ggcatataat tccgcaaaatt	120
cgggcgtga ttcttccac gcgggttattt tggcacacac cagatccagc aagggtttt	180
caggatcggtt gagcagcaga tgatctacca gttccagcgc ctgggtgtat tgttcctcg	240
tctgaataacc cgccagaaaaa ggtgccacag cagttagctt ttctcctgct tgcaagatgt	300
cgccaatcgc aatcattttt tccctttagt acgatgaaca gggtaaaga aatcgattt	360
tttatgcgtc ataacttcac gtatgtac ca ttttgcgt tcaaaaaaaga ccattgtac	420
aacacgtaat tcattgcccc caacattgaa aacataatgc ttatccagat atttgaagtt	480
atccagagat gggaaatactg ctttaatga ctcaggtttt tggaaatatc ccttagcaat	540
cgtgkccccc agagccacca actccgtttt atgttgcggg tattttccg cagcatctt	600
caatgctttt tgagttatca ggtgcattct tcatcacgtc cgtkgmcaaa ttggcaatat	660
gataacatcc gttgccagat tggcacggat gaattat	697
<210> 447	
<211> 215	
<212> DNA	
<213> Escherichia coli	
<400> 447	
aattaataac ttttcgttag gcagtttgg gtgtgagttt caagagggga gactactgaa	60
taactcaagt ttataatcg agggaaaat ggtgtatggcg ttcatacgaa aacgcctca	120
accataaaagg tcgagggcgc ttaagatgtt aaaaacccgc tatccgttaa aaaacaatgt	180
tcaactaagg tcagtgcacat tgcgtaaaaa aagcg	215

<210> 448
<211> 395
<212> DNA
<213> Escherichia coli

<400> 448

gcattattta tgagaaatgt gtatcgtaaa tcaactgaaa ttaacgcaac catttggtat	60
ttaagggtta attatctgtg tgtgatattt tattgaatgt tttaaatatt gtttttattg	120
gcatttgctat aatattgtt atcatttgct gaatggattc agtcttaatg agtggggttt	180
taagggacag gcatacgtatgt atgatacgtt tgcataacca acatcttac tcattatgtc	240
attgaatgtt gacgctatgt gtttatgagg gagaggtatt ttcagttgtat ctggattgtt	300
aaattcatat aatgcgcctt tgctcatgaa tggatgccag tatgttagtgg gaaattataa	360
atattgaat agtccaacta cttcttattt accaa	395

<210> 449

<211> 641

<212> DNA

<213> Escherichia coli

<220>

<221> misc_feature

<222> (1)...(641)

<223> n = A,T,C or G

<400> 449

ataatcaggt aagaaaaggt gcgcggagat taccgtgtgt tgcgatatat ttttttagttt	60
cgcgtggcaa tacatcagt gcaataaaac gacataatcca gaaaaatata cactaagtga	120
atgatatactt ccgatttatac ttaatcggtt atggataacg gcaaaagggt tcgtttttc	180
ctataacttat tcagcactca caaataaaagg aacgcctaattg aaaattatac tctgggctgt	240
attgatttattt ttcctgtattt ggctactgggt ggtgactggc gtatttaaga tgatattttt	300
aaattaatta atgtcatcag gtccgaaaat aacgagaata tttcagtc tcatctgtt	360
gcccgttgtt catgtgcatt gcttcatata atcactggcg caaggagcgc cgccaggcgna	420
gnntgcncgn cgncccacct naccccatgc cgaacttcag aantgaaaac ncncntaacnc	480
cgatngtcgg cgggngcctc cccatgcnan agtangggaa ntgcangcg ncnnattaaa	540
cgaaaggctn attncaaaga ctgggccttn cnnttatctg atgttgtcg gagaacgctc	600
tcctgagnan gacaaatncc gccgggagcg gatttgaacn t	641

<210> 450

<211> 314

<212> DNA

<213> Escherichia coli

<220>

<221> misc_feature

<222> (1)...(314)

<223> n = A,T,C or G

<400> 450

gaactacgag taagaatagc tncaattcc cgtttatggta taacggcaaa gggcttcgtt	60
ttttccata cttattcagc actcacaaat aaaggaacgc caatgaaaat tataactctgg	120
gctgtattgtt ttatccctt gattggctt ctgggtgttga ctggcgatattt taagatgata	180
ttttaaaattt aattaatgtc atcaggtccg aaaataacga gaatatttca gtctctcatc	240
atgttgcgtt cctgtcatgt gcattgtttc atataatcac tggcgcaagg agcgcgcagg	300
gggnntnnntt cttt	314

<210> 451

<211> 236

<212> DNA

<213> Escherichia coli

<400> 451

atatacacta agtgaatgat atctccgat ttatcttaat cgtttatgga taacggcaaa	60
gggcttcgtt ttttcctata cttattcagc actcacaaat aaaggaacgc caatgaaaat	120
tatactctgg gctgtattga ttatcccct gattgggcta ctgggtgtga ctggcgtatt	180
taagatgata tttaaaatt aattaatgtc atcaggccg aaaataacga gaatat	236

<210> 452

<211> 418

<212> DNA

<213> Escherichia coli

<400> 452

cgagagattac cgtgtttgc gatataaaaa ttagttcgc gtggcaatac atcagtggca	60
ataaaacgac atatccagaa aaatatacac taagtgaatg atatcttccg atttatctta	120
atcgttatg gataacggca aaggcgttcg ttttcctta tacttattca gcactcacaa	180
ataaaaggaac gccaatgaaa attatactct gggctgtatt gattatttc ctgattgggc	240
tactgggtt gactggcgtt ttaagatga tattttaaaa ttaattaatg tcatacggtc	300
cgaaaataac gagaatattt cagtcctca tcctgttgcg ctccgtcat gtgcattgt	360
tcatataatc actggcgcaaa ggagcgcgca gggggcggcc aatcgccgccc gccccctg	418

<210> 453

<211> 551

<212> DNA

<213> Escherichia coli

<400> 453

aacaatttgc ccatgcgctc ggtcatgcgc tgcatgcgcc ggcattttt sgcgccccg	60
cgaccggcat tcgactgtt atggcgaat cttcagact ggtatttaggt ggacaacgcg	120
cgcgcctaa acggctggaa gaagcgggtt ttgcgttcg ctggtagat ttagaaagagg	180
cgcgtggcga tgcgttcgc tgatgtgggt tacagcaaac atccgcgcagt taactccgg	240
tgttacagga ttatgtggctt tgcgcgataa gatcgctcgg taaaagtcgg gtcaccatca	300
taactaactc tctgtctaaa cctctatcca gcatctcctg agcaataacgc agggcttett	360
cgtgttgcc ctgcattgcg cttcttcac gtaatctgtc agcaatggtc atcaagttc	420
tcctttctt gtgggtgcgcg ttccgctatc tcaccaataa atgcacgaaa acgctggca	480
tccccctgttt gtaatacgtt attaaacagg gcttttagct gtctgtcatt agtgkccct	540
gtaactagca g	551

<210> 454

<211> 93

<212> DNA

<213> Escherichia coli

<400> 454

tggcatctcg gtgttgcga tcttcatgat atccagcccc ccggaaactt ctteccaaac	60
ggttttgctg ttatccattt agtcacggaa ctg	93

<210> 455

<211> 232

<212> DNA

<213> Escherichia coli

<400> 455

cgtccgaga tgatcctgtt accatcatca gttgtgaagt agtgattcac gacttcaagg	60
cgctttcaa aagggtattt tggcttgac atattagggg ctattccatt tcatacgcca	120
acaaaatggg tgcagttacat actcggttga aatcaacaca ggaggctggg aatgcccag	180
aaatataatgat tactttctt aatagtgatt tgggttacgc ttttattttt ca	232

<210> 456

<211> 713

<212> DNA

<213> Escherichia coli

<220>
<221> misc_feature
<222> (1)...(713)
<223> n = A,T,C or G

<400> 456

ttagnngatn	naangccac	ancctcgang	gatctaggag	gtagaatagc	ttcgaattcc	60
ccagcagagc	gcggccttct	tcgtcagatt	tcgcagttagt	ggtaatggta	atatccaaac	120
cacgaacgca	gtcgacttta	tcgtagtcga	tttctggaa	gatgatctgc	tcacggcac	180
ccatgctgta	gttaccacga	ccgtcgaaag	aacttagcgga	caggccacgg	aagtcaacgg	240
tacgaggtagc	agcaatagtg	atcaggcgct	caaagaactc	ccacatgcgt	tcgccacgca	300
gagttacttt	acagccgatc	ggatagccct	gacggatttt	gaagcctgca	acagatttgc	360
gtgcttttgt	gatcagcggt	tttgaccgg	agattgctgc	caggtctgct	gctgcgttat	420
ccagcagttt	tttgcagcg	atcgcttac	caacacccat	gttcagggtg	atcttctcg	480
cccggggac	ttgcatgaca	gaattgttagt	taaactcagt	catgagtttt	ttaactactt	540
cgtctttgt	gtaatcatgc	agtttcgcca	tcgtactact	ccatgtcggt	gaacgccttc	600
ctgagtagga	caaattccgccc	ggagccggat	ttaacgttgc	gaacaaccgn	ccccggagggg	660
tggngcagg	accccgccat	aactggcagc	attaaattaa	gcagaaggcc	atc	713

<210> 457

<211> 292

<212> DNA

<213> Escherichia coli

<400> 457

tgaacacgcag	agatacggcc	agtgcggcca	atgttttttgc	tcctttaaac	ataacagagt	60
cctttaagga	tatagaatag	gggtatagct	acgcccagaat	atcggtatttgc	attattgtca	120
gtttttagtt	ttgcttaaaa	atattgttag	tttttattaaa	tgcaaaacta	aattatttgg	180
atcatgaatt	tgttgtatga	tgaataaaaat	atagggggggt	atagatagac	gtcattttca	240
tagggttata	aatgcgacta	ccatgaagtt	ttaatttggaa	agtatttgggt	tg	292

<210> 458

<211> 282

<212> DNA

<213> Escherichia coli

<400> 458

ttattaaatg	caaaaactaaa	ttatttggat	catgaatttgc	ttgttatgtat	aataaaaat	60
aggggggtat	agatagacgt	cattttcata	gggttataaa	tcgcactacc	atgaagtttt	120
taattgaaag	tattgggttg	ctgataattt	gagctgtct	attttttta	aatatctata	180
taggtctgtt	aatggatttt	atttttcacaa	ttttttgtgt	tttaggcataat	aaaaatcaac	240
ccgccccat	aacggcggtt	taaaaatattt	acaacttagc	aa		282

<210> 459

<211> 300

<212> DNA

<213> Escherichia coli

<400> 459

tctgcgttcc	gctaaaagggt	gcaaatgctc	aggacgttgc	agcgaaaaat	gtgaccgctc	60
ggggaaaggca	aaattgcctc	tggaaagca	ttgcgcgggg	tccggcgctc	atcaacaatc	120
ggggggcagc	aaggggctga	aacggggaaag	ccccctcccg	agaaggggcc	ttgtataagg	180
aaagggttat	gatgaagctc	gtcatcatac	tggttgtgtt	gttactgtta	agtttcccga	240
cttactaaca	actcatcaga	ggggggagaa	atccctccctt	acccttgc	ctttactcta	300

<210> 460

<211> 293

<212> DNA

<213> Escherichia coli

<400> 460

```

cgggttccgg cgctcatcaa caatcgaaaa gcaagcaagg gctgaaacgg gaaagccccct    60
cccgaagaag gggccttgta taaggaaagg gttatgtatga agctcgtcat cataactggtt   120
gtgttgttac tgtaagttt cccgacttac taacaactca tcagaggggg gagaaatcct   180
cccttaccct tggcccttta ctcttaggtt aaaaaacaac agcgtcaata ggcctgccat   240
gtacgaagcg agatctgtga accgcgttcc ggtaggcctt tttatcctg ttg          293

```

<210> 461

<211> 359

<212> DNA

<213> Escherichia coli

<400> 461

```

caacacagga ggctggaaat gcccagaaaa tatagattac ttcttttaat agtgatttgt . 60
ttcacgcctt tattttcac ctggatgata agagattcac tgggtgaatt gcataaaaaa 120
caggagagtt atgagctggc ggcgtttta gcctgcaaat tgaaagagta agagtcctcg 180
gcgggaaatt atccccgcct tacttacggc gttgcgcatt ctcatgcac ccaaatttat 240
tcttcacaaa aataataata gattttatta cgcgatcgat tatttatttc ctgaaaacaa 300
ataaaaaaaaaat ccccgccaaa tggcaggat ctttagattct gtgttttaa qcagaqatt 359

```

<210> 462

<211> 673

<212> DNA

<213> Escherichia coli

<400> 462

gcaaccatg	tcctgacctg	ggttcggggg	acaccaaaaac	gtgccgagat	gatcctgtaa	60
ccatcatcag	tttgtaagta	gtgattcacg	acttcaaggc	gctttcaaa	agggtatttt	120
ggcttgaca	tattaggggc	tattccattt	catcgtc当地	caaaatgggt	gcagtc当地	180
ctcggtggaa	atcaacacag	gaggctggga	atgccgc当地	aatatagatt	actttcttta	240
atagtgattt	gtttcacgct	tttattttc	acctggatga	taagagattc	actgtgtgaa	300
ttgcatatta	aacaggagag	ttatgagctg	gcggcggttt	tagcctgcaa	attgaaagag	360
taagagtctt	cggcgggaaa	ttattccgc	cttacttacg	gcgttgc当地	ttctcattgc	420
acccaaattt	attttcaca	aaaataataa	tagattttat	tacgc当地	attatttatt	480
tcctgaaaaac	aaataaaaaaa	atccccgcca	aatggcaggg	atcttagatt	ctgtgtttt	540
aaggcagagaa	tacaggctgg	ttacgttacc	agctgccggg	cctttagcgc当地	cgcttgc当地	600
ggtgaaggac	actttctgac	cttcgtccag	agatttgtaa	ccatcggttct	ggatagc当地	660
gaagtgtacg	aac					673

<210> 463

<211> 630

<212> DNA

<213> Escherichia coli

<400> 463

tggggcatt	gggtgctgga	gagagaaaac	ccccgcacgt	tgcaggtatg	cacctgacaa	60
caccacgggg	gctaattttt	actcttagacc	actcaagaat	agccgcgaaa	cgttgtcatt	120
acaacacagg	cggttatatg	acgttgcgag	agctgggcat	ggccttctgg	catgatttag	180
cggctccgg	cattgctggc	atttttgcca	gtatgatcg	gaactggctg	aacaagcgga	240
agtaacgtgt	catgcggg	tcaggctgcc	gtaatggcaa	tttgcggcccg	gaccaggccc	300
caggggggaa	actctgcggc	cttttcgtt	cttactgcgg	gtaaggcacc	cagtgcggc	360
cgttcaggcg	aacgtacgg	ttatcctgg	attgaataac	tactgcattt	gagttctcg	420
agaccgggtgc	tgtttgtggc	aaccactgg	tgagttttt	ccagtcaaca	ttgtcttcgg	480
tgaaaaatctt	gccatcgaga	acgcaacca	ccagatcgga	gatagccagg	aagctgtcg	540
gttggccat	gacaatcggt	gccccctgat	gcgggtgcctt	catgccgaag	aatttcaccc	600
caacggggac	gtcggtgata	gacgggtctag				630

<210> 464

<211> 391

<212> DNA

<213> Escherichia coli

<400> 464

ctcaggctgc	tgattgtttt	tttgtgcaat	ggcgccgtat	tagcgtcggt	gctgtcgatg	60
gagagaatca	taaacgttgt	gaatgtatgt	tgttagcaag	aaaaactgtc	aaaaatcttc	120
aaaaaaatttgc	agggataagg	ccggaatggc	tccggccaga	gggaagttaa	ccgcgaagct	180
gttgcgtctt	gagggtcggtt	ttaaccagac	gccagggcgt	ccatacgcca	aaaccgcgtc	240
tggcccagcg	gaccagata	ttaggatggc	aatcggtcca	gatcgccatc	acgctactgc	300
caaccagcgc	ccaggagcgc	agacttagca	gcatttcca	gcgacgatcg	taagcgcttg	360
ttgtctccag	ccattcacga	cgactggcgg	a			391

<210> 465

<211> 625

<212> DNA

<213> Escherichia coli

<400> 465

aacacaccac	accataaaacg	gaggcaaata	atgctggta	atatgaatgt	tttaatggcc	60
gtactggaa	taattttattt	ttctgggtttt	ctggcccggt	atttcagcca	caaatgggat	120
gactaatgaa	cggagataat	ccctcaccta	accggccccct	tgttacagg	gtgtacaagg	180
ggcctgat	ttatgacggc	aaaaaaaac	cgccagtaaa	ccggcggtgta	atgcttgcatt	240
ggatagat	gtgttttgct	tttacgctaa	caggcat	cctgcactga	taacaatcg	300
ttgacacat	agcatcagtt	ttctcaatga	atgttaaacg	gagcttaaac	tcggtaatc	360
acattttgtt	cgtcaataaaa	catgcagcga	tttcttccgg	tttgcttacc	ctcatacatt	420
gccccgtccg	ctcttccaat	gaccacatcc	agaggctt	caggaaatgc	gcgactcaca	480
cctgcgtgtca	cggtaatgtt	gatatgcctt	tcagaatgtg	tgatggcatg	gttatacgact	540
aactggcaaa	ttctgacacc	tgcacgacat	gcttcttcat	cattagccgc	tttgacaata	600
atgataaatt	tttcgcccccc	gttag				625

<210> 466

<211> 623

<212> DNA

<213> Escherichia coli

<400> 466

tgctttgaa	tatgtgctcg	caatctttag	aaggaaatgg	cgaccacgaa	.agaaaaggca	60
aaaacgataa	tctgaaagag	ccaaggattt	tcagtataag	cattgaatgc	gacagtaaac	120
tctttcggt	tcaagccagag	agtgagacca	aaaatgataa	tctgtatacat	aagtcttgc	180
agtggctcg	tagcaaaaaag	tttcaacaat	ggagtaataa	catccaacat	atcaataact	240
ctcaactgt	agggtattga	aatgttaaca	caagctctcg	ctgttaggggt	atagccgaga	300
ccaccgaagc	ccggagggtgg	tgaataaaaa	ccgggcacaa	cacgaaggcg	catttccgat	360
atccataaag	agtccgtctt	gtctgttaaa	tttaatgg	gggagtgccgc	ctccgggtgt	420
aaataacgac	attgctgtgt	gtagtcctgg	cggcatcagt	tttttcttg	aagttcggt	480
gatgtccgccc	ctttttaaaag	tgaattttgt	gatgcgtga	atgcggctaa	gcgcacgtgg	540
cacagttaaa	agtcatgtt	gtccttattt	gtttgggtgg	gaaagccgac	tgtaattgtt	600
aactggttgc	agtcacactgg	agg				623

<210> 467

<211> 234

<212> DNA

<213> Escherichia coli

<400> 467

tgtttactta	caagagattc	atcttgtat	aaataaagat	aagtaattac	gcataaaaca	60
acaatgatta	taatagcaaa	aataaatatt	atcatcttgc	atagattact	tgagatagcc	120
agcatcttgt	aaagccttta	tcgtttttt	atgctctgg	ttaatataat	cactacatct	180
atctgagcaa	tctgttgttg	atggacatgt	caacccatgg	tcatttacag	ccaa	234

<210> 468

<211> 529

<212> DNA

<213> Escherichia coli

<400> 468
 attagctatt tcggctaaaa tagagactac atgtcttcgg tccatctcac ttaaggagtg 60
 tagttccgtt gtaagtttt ccatacgctt cactgctaaa tttcgaacaa ggaattttct 120
 gctggtaatc tctaaaaaga tggcatggtt tacaatgatt tttgttccct ttgttattt 180
 atgaacaact gtccatgatt tcgtttaaga atgaagagaa atcactaaac gaactgaata 240
 tattttctgt gccaatattt tctctaattt caaaaaagtt actttaatg tcggtaatga 300
 ctccaaactt ttgatagtg tttatgttca gataatgccc gatgactttg tcatgcagct 360
 ccaccgattt tgagaacgac agcacttcc gtcccagccg tgccaggtgc tgccctcagat 420
 tcaggttatg ccgctcaatt cgctgcgtat atcgctttc cttatcagtt cggtatgtc 480
 agtggtttg accacgaggg agcttcacgc gagttattga aaaccctga 529

<210> 469
<211> 261
<212> DNA
<213> Escherichia coli

<400> 469
 caaagaacct tcaacatgaa aaatatccat ttgtttgcaa aaaaagatta ttaggaagga 60
 aattaatgca attatcgaaa attcaaaaaa tatccaaaaa tagtatactt tattccagaa 120
 gagttcaata taatgtttgt cttcaattt tcttacttca gggtaatata gattgtctcat 180
 tacattgtga gcttcatctt tatttaattt tctgttgaact ccagctctcc gtgataacgg 240
 ttttataatt agatgcttat c 261

<210> 470
<211> 98
<212> DNA
<213> Escherichia coli

<400> 470
 agatgattgc cgggaacttg tttagcggcac gcaggcggcg gctcgcaccc ttaccctgct 60
 cttaacgtac ttctgcgttg atagaaaca ttttttc 98

<210> 471
<211> 259
<212> DNA
<213> Escherichia coli

<400> 471
 agcgcgaaacg aagtgcgtgt gctgcagctt cgggtttgtac gggtgacgct gtacgtcctg 60
 agctttaact ttgatttctt taccgtcaac aacgatgtc agaacttcgc tggtaattc 120
 agctttagct tgcgttca tgactttgtc gtgatccagc tgcgtatgccca gcggcgcttc 180
 tttgccaccg tagatgattt ccgggaactt gttagcggca cgcaggcggc ggctcgacc 240
 cttaccctgc tcttacgt 259

<210> 472
<211> 94
<212> DNA
<213> Escherichia coli

<400> 472
 aaaaacggcg taaagaaagg atgcaaacat gttataaaaa actcaaattt atccccacgta 60
 tatattacgc cgcaaaatcc ttacaataaa cagg 94

<210> 473
<211> 174
<212> DNA
<213> Escherichia coli

<400> 473
 ttaatttata aaatagtgtt acgcgattat gtggttatgg gggtaaacat taaataaacc 60
 agcggggagg ggaggtaaag tgaaaaata aaaagcggat aatcttaata agcaggccgg 120

acagcatcgc catccggcac tgatacgagg tttatttcag ctcataacc atcg 174

<210> 474
<211> 138
<212> DNA
<213> Escherichia coli

<400> 474
ctgtaaaaac gtcaaaaaga gtgtttatc aacagaagaa tggaggtctg acagatagta 60
gtaatgcaaa aaaatggaga cttaagttga atgaacggga gtaaagcga aagactata 120
agtgaaggag aaattccc 138

<210> 475
<211> 191
<212> DNA
<213> Escherichia coli

<400> 475
tttgttggt taatattcta ttgttatctt tatttataga tgtttatatt gcatgaggtg 60
gttttggag agaagaatga ggaagatgc tcgagccaca gaaacgttag ctttacatat 120
agcggaggtg atgtgaaatt aatttacaat agaaataatt tacatatcaa acagtttagat 180
gcttttgtc g 191

<210> 476
<211> 245
<212> DNA
<213> Escherichia coli

<400> 476
cgccattta tacaggaaaa gcctatgtca gaacgtaaaa actcaaaatc acgccgtaat 60
tatctcgta aatgttcctg cccaaactgc acccaagagt cagaacacag ttttcaaga 120
gtacaaaaag gtccctttt gatctgcctt cattgcaaca aagtattcca gacaatctt 180
aaagctgttag cctgattgat ttatttagta acaagtattt ttatatttt aataatata 240
ttaaa 245

<210> 477
<211> 319
<212> DNA
<213> Escherichia coli

<400> 477
aaattttcag gtacctggtc accatacttt ttttctgag cattaatgat attttgagct 60
tcttgaggat cttaactcc ccacattgg tggaaagtat tcattttaaa aggaaggttg 120
aataatttgt cttaataat cgccagtggaa gaatttagtaa aacgattttaa ttctactaaa 180
tcatttaacgt aatccccat atatttatca ttgttatgaa aaatatgtgc accatattta 240
tgaatctggta taccctcaca gtcctctgtg tacgcatttc caccgatatg atttctttc 300
tcaatcacta aaactttt 319

<210> 478
<211> 149
<212> DNA
<213> Escherichia coli

<400> 478
gcagtgtatcg aagcgatgac gaagtgtatg gaaaaatcag aaaaactcag caaatcctga 60
tgactttcgc cgacgtcag gccgccactt cggtgcgggt acgtccggct ttctttgctt 120
tgtaaagcgc caaatctgccc gatttcaac 149

<210> 479
<211> 330
<212> DNA

<213> Escherichia coli

<400> 479

gaaagtatct tcgttattga catcaactgga aaataataact tgctttcat tattaaactc	60
gaagcgctta ccgtatctgg acaaacattt atcgagctta ccaaattcct gaagagggttt	120
aactacagat aacatttgcg cgtccttgc agtaatgccc gtcaaatcct tgacgggcat	180
tattnagatt aaattaccag tatttcttcg gagtgaagaa tattaccagg tatatttaac	240
acccacatcc gcggaccagt ctgtatctac gtcaccacca ccgaggttagt tagcatcggt	300
ataggcgctg aagttcttgg tgaagctaaa	330

<210> 480

<211> 191

<212> DNA

<213> Escherichia coli

<400> 480

ttttttcca gcaacggagc aaaaggtttg cccttgcgtca gctcagggtt aaccacttta	60
actacgtggc gacgaccggg agatgtcggt ttacatttaa caactgccat tgtattactc	120
ctccgactta cttagcgccc ccaacgaagt ccagattctg gccttcttc agggtgacgt	180
aagctttttt c	191

<210> 481

<211> 188

<212> DNA

<213> Escherichia coli

<400> 481

tcccttaac taccagggtt ttaacgactt cgacttcgac ttcaaacagt ttctgcacag	60
cagctttgat ttctgtttt gtcgcgtctt tagcaacttt gagtacgatg gtgttggatt	120
tttccatcgc agtagacgct tttcagaaa cgtgcggtgc acgcagcacc ttcagcagac	180
gttcttca	188

<210> 482

<211> 172

<212> DNA

<213> Escherichia coli

<400> 482

caaaggcgaa caaaggctgt gaagccccaa ggctccacag acagtgcata ttgaaggcct	60
tactgttctct tcttaggagc gagcaccatg atcatctggc ggccttcgtat ctgcgttggg	120
aaggattcga ccactgcccag ttcttgcaaa tcgtcttca cgcgattaag ca	172

<210> 483

<211> 266

<212> DNA

<213> Escherichia coli

<400> 483

tggagaaaaac gggtgattga taaagcaatc atcggtctag gggcgtaat tgcgctgctg	60
gaactgatcc gctttctgct tcagcttctg aactgatagc ggaaacgtaa ttaagggtta	120
agagcacact actcttagcc cttaacatt taacgcattt tcacgaaactc ttctgcccgc	180
gttgggtgaa tggcgacggt attgtcgaag tctttttgg ttgcggccat ctgcagcgcc	240
accgcgaagc cctgcaacat ttgcgtc	266

<210> 484

<211> 259

<212> DNA

<213> Escherichia coli

<400> 484

cgcaggcagc tcatggtcaa caggatgaga gaaacccaga gacaggttaa tcacattgcc	60
---	----

tttaaccgct gcacggtaac ctacaccaac cagctgcagc ttcttagtga agccttcggt 120
aacaccgata accattgagt tcagcaggc acgcgcggta ccagccttg cccaaaccgtc 180
tgcgttaacca tcacgcgac cgaaggtcag ggtattatct gcatgtttaa cttcaacagc 240
atcgttgaga gtacgagtc 259

<210> 485

<211> 73

<212> DNA

<213> Escherichia coli

<400> 485

caggtcggaa cttacccgac aaggaatttc gctaccttag gaccgttata gttacggccg
ccgtttaaccg ggg

60

73

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2000 (03.08.2000)

PCT

(10) International Publication Number
WO 00/44906 A3

- (51) International Patent Classification²: C12N 15/31, 15/11, 15/10, C07K 14/245
- (74) Agent: REISMAN, Joseph, M.; Knobbe, Martens, Olson & Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (21) International Application Number: PCT/US00/02200
- (22) International Filing Date: 27 January 2000 (27.01.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/117,405 27 January 1999 (27.01.1999) US
- (71) Applicant: ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).
- (72) Inventors: ZYSKIND, Judith; 8514 La Jolla Scenic Drive, La Jolla, CA 92047 (US). OHLSEN, Kari, L.; 3560 Vista De La Orilla, San Diego, CA 92117 (US). TRAWICK, John, D.; 7210 Baldrich Street, La Mesa, CA 91942 (US). FORSYTH, R., Allyn; 1135 Beryl Street, San Diego, CA 92109 (US). FROELICH, Jamie, M.; 5057 35th Street, San Diego, CA 92116 (US). CARR, Grant, J.; 2210 Sonrise Glen, Escondido, CA 92029 (US). YAMAMOTO, Robert, T.; 3725 Norte Dame Avenue, San Diego, CA 92131 (US). XU, H., Howard; 11142 Ivy Hill Drive, San Diego, CA 92131 (US).
- (81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

(88) Date of publication of the international search report:
1 February 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 00/44906 A3

(54) Title: GENES IDENTIFIED AS REQUIRED FOR PROLIFERATION IN *ESCHERICHIA COLI*

(57) Abstract: The sequences of nucleic acids encoding proteins required for *E. coli* proliferation are disclosed. The nucleic acids can be used to express proteins or portions thereof, to obtain antibodies capable of specifically binding to the expressed proteins, and to use those expressed proteins as a screen to isolate candidate molecules for rational drug discovery programs. The nucleic acids can also be used to screen for homologous genes that are required for proliferation in microorganisms other than *E. coli*. The nucleic acids can also be used to design expression vectors and secretion vectors. The nucleic acids of the present invention can also be used in various assay systems to screen for proliferation required genes in other organisms as well as to screen for antimicrobial agents.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/02200

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/31 C12N15/11 C12N15/10 C07K14/245

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal, WPI Data, PAJ, STRAND, BIOSIS, BIOTECHNOLOGY ABS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	POST L E ET AL: "NUCLEOTIDE SEQUENCE OF THE RIBOSOMAL PROTEIN GENE CLUSTER ADJACENT TO THE GENE FOR RNA POLYMERASE SUBUNIT BETA IN ESCHERICHIA COLI" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, US, NEW YORK, NY, vol. 76, no. 4, 1 April 1979 (1979-04-01), pages 1697-1701, XP000574791 abstract	1
A	WO 99 02673 A (DUGOURD DOMINIQUE ET AL.) 21 January 1999 (1999-01-21) page 7, line 25 -page 9, line 30 examples 2-6	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

31 October 2000

Date of mailing of the international search report

13.11.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

De Kok, A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/02200

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 21366 A (QBI ENTERPRISES LTD) 22 May 1998 (1998-05-22) page 8, line 9 - line 13 page 21, line 30 -page 25, line 2 page 26, line 11 -page 27, line 35 ---	
X	BLATTNER F R ET AL: "THE COMPLETE GENOME SEQUENCE OF ESCHERICHIA COLI K-12" SCIENCE., vol. 277, 5 September 1997 (1997-09-05), pages 1453-1462, XP002923023 LANCASTER, PA., US ISSN: 0036-8075 the whole document, especially figure 3 ---	8, 9
X	VAN HEESWIJK W.C. ET AL.: "The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli" MOLECULAR MICROBIOLOGY, vol. 9, 1993, pages 443-457, XP000926027 OXFORD GB nt4271-4371 of glnE sequence 100% identical with nt1-100 of seq.id.165 abstract ---	9
A	LEE N.G. ET AL.: "Molecular cloning and characterization of the nontypable Haemophilus influenzae-2019 rfaE gene required for lipopolysaccharide biosynthesis" INFECTION AND IMMUNITY., vol. 63, no. 3, 1995, pages 818-824, XP000953326 WASHINGTON., US ISSN: 0019-9567 the whole document ---	8
A	AUSTIN A.E. ET AL.: "Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli k12 insertion mutagenesis of the RFA locus" JOURNAL OF BACTERIOLOGY, vol. 172, 1990, pages 5312-5325, XP000926028 WASHINGTON US the whole document ---	8
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
US 00/02200

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
T	VALVANO M.A. ET AL.: "The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose." JOURNAL OF BACTERIOLOGY, vol. 182, January 2000 (2000-01), pages 488-497, XP000926030 WASHINGTON US the whole document -----	8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 00/02200

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 11 13 34-45 47 48 50 51 53 55 57-63 65 67-93 95-105 107-110 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
1-10, 12, 14-33, 46, 49, 52, 54, 56, 64, 66, 94 and 106, all partially

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 11 13 34-45 47 48 50 51 53 55 57-63 65 67-93 95-105 107-110

In view of the large number and also the wording of the claims presently on file, which render it difficult, if not impossible, to determine the matter for which protection is sought, the present application fails to comply with the clarity and conciseness requirements of Article 6 PCT (see also Rule 6.1(a) PCT) to such an extent that a meaningful search is impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and concise), namely the nucleic acid sequences as identified in claims 1 and 8 respectively, sequences related to said sequences as well as their use. This corresponds to the subject-matter of claims 1-10, 12, 14-33, 46, 49, 52, 54, 56, 64, 66, 94 and 106.

It should be noted that since claim 46 has been searched, the subject-matter of claims 35-45 has been searched restricted to the gene products of claim 46, i.e. for those gene products for which (additional) search fees have been paid

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-7, 12, 49, 52, 56, 66, all partially

Invention 1:

A purified or isolated nucleic acid sequence consisting of SEQ.ID. No.: 405, a vector comprising said sequence, a host comprising said vector, the use of said sequence for inhibiting cellular proliferation, a composition comprising said sequence, the use of said sequence for inhibiting the expression of a gene and the use of said nucleic acid sequence for identifying bacterial strains.

2. Claims: 1-7, 12, 49, 52, 56, 66, all partially

Inventions 2 to 81:

Idem as invention 1, but for SEQ.ID.NO's 406-485 respectively

3. Claims: Claims 8-10, 12, 14-33, 46, 54, 64, 66, 94 and 106, all partially:

Invention 82:

A purified or isolated nucleic acid consisting of SEQ.ID.No.: 82, a vector comprising said nucleic acid sequence, a host comprising said vector, a polypeptide encoded by said nucleic acid sequence and having the sequence of SEQ.ID.No.: 243, an antibody binding said polypeptide, a method for producing said polypeptide, a method for identifying compounds influencing the activity of said polypeptide, a method for identifying compounds influencing the level of said polypeptide, a method for inhibiting the expresion of said nucleic acid, the use of said nucleic acid sequence for identifying bacterial strains and the use of said nucleic acid sequence for identifying proliferation inhibitors.

4. Claims: Claims 8-10, 12, 14-33, 46, 54, 64, 66, 94 and 106, all partially:

Inventions 83 to 242:

Idem as invention 82, but for SEQ.ID.No's 83-88, 90-242 (and their corresponding polypeptide sequences, see Table II) respectively.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 00/02200

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9902673	A	21-01-1999	AU 8327798 A	EP 1025219 A	08-02-1999 09-08-2000
WO 9821366	A	22-05-1998	AU 5442198 A	EP 0960212 A	03-06-1998 01-12-1999

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.