1 Regression	4 Least Squares	$= \prod \sigma(x_n^T w)^{y_n} [1 - \sigma(x_n^T w)]^{1 - y_n}$	The solution is sparse (α_n is the slope	10 Matrix Factorisations
1.1 Linear Regression	4.1 Normal Equation	n Loss	of the lines that are lower bounds to	10.1 Prediction
$f(\mathbf{x_n}) := w_0 + \sum_{j=1}^D w_j x_{nj} = \tilde{\mathbf{x}}_n^T \mathbf{w}$	$X^{T}(\mathbf{y} - X\mathbf{w}) = 0 \Rightarrow$	$\mathcal{L}(w) = \sum_{n=1}^{N} \ln(1 + \exp(x_n^T w)) - y_n x_n^T w$	the hinge loss). 8.6 Kernel Ridge Regression	Find $\mathbf{X} \approx \mathbf{W} \mathbf{Z}^T$ where $\mathbf{W} \in \mathbb{R}^{D \times K}$ and
If $D > N$ the task is under-	$\mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y} \text{ and } \hat{\mathbf{y}}_{\mathbf{m}} = \mathbf{x}_{\mathbf{m}}^T \mathbf{w}^*$	which is convex in w .	From duality $w^* := X^T \alpha^*$ where	$Z \in \mathbb{R}^{N \times K}$ with $K \ll D, N$. Large $K \rightarrow$ overfitting. If $K \ge max\{D, N\}$ tri-
determined (more dimensions than	Graham matrix invertible iff $rank(X) = D$ (use SVD $X = USV^T \in$	Gradient $\nabla \mathcal{L}(w) = \nabla^N \times (\sigma(x^T w) - w) = 0$	$\alpha^* := (K + \lambda I_N)^{-1} y$ and $K = XX^T =$	vial solution $(W = 1_D \text{ or } Z = 1_N)$.
data) $ ightarrow$ regularisation.	$\mathbb{R}^{N \times D}$ if this is not the case to get	$\nabla \mathcal{L}(w) = \sum_{n=1}^{N} x_n (\sigma(x_n^T w) - y_n) = \sum_{n=1}^{N} x_n (\sigma(x_n^T w) - y_n) = \sum_{n=1}^{N} x_n (\sigma(x_n^T w) - y_n)$	$\phi^T(x)\phi(x) = \kappa(x,x')$ (needs to be PSD	Quality of reconstruction (not jointly
2 Cost functions	pseudo-inverse $\mathbf{w}^* = V \tilde{S} U^T y$ with \tilde{S}	$X^{T}[\sigma(Xw) - y]$ (no closed form solution).	and symmetric).	convex nor identifiable):
$MSE = \frac{1}{N} \sum_{n=1}^{N} [y_n - f(\mathbf{x_n})]^2$	pseudo-inverse of <i>S</i>).	Hessian $H(w) = X^T S X$	9 Unsupervised Learning	$\mathcal{L}(\mathbf{W}, \mathbf{Z}) := \frac{1}{2} \sum [x_{dn} - (\mathbf{W}\mathbf{Z}^T)_{dn}]^2$
$MAE = \frac{1}{N} \sum_{n=1}^{N} y_n - f(\mathbf{x_n}) $	5 Likelihood	with $S_{nn} = \sigma(x_n^T w)[1 - \sigma(x_n^T w)]$	9.1 K-means clustering	$(d,n)\in\Omega$
	Probabilistic model $y_n = \mathbf{x_n}^T \mathbf{w} + \epsilon_n$.	8.3 Exponential family	$min \mathcal{L}(z,\mu) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} x_n - \mu_k _2^2$	$= \sum_{(d,n)\in\Omega} f_{dn}(w,z)$
2.1 Convexity	Probability of observing the data	General form	with $z_{nk} \in \{0, 1\}$ (unique assignments:	
$f(\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}) \le \lambda f(\mathbf{u}) + (1 - \lambda)f(\mathbf{v})$	given a set of parameters and in-	$p(y \eta) = h(y)exp[\eta^{T}\psi(y) - A(\eta)]$	$\sum_{k} z_{nk} = 1$.	Regulariser: $\Omega(W,Z) = \frac{\lambda_w}{2} \mathbf{W} _{Frob}^2 +$
with $\lambda \in [0;1]$. A strictly convex function has a unique global minimum	puts : $p(\mathbf{y} X, \mathbf{w}) = \prod p(y_n \mathbf{x_n}, \mathbf{w}) = \prod \mathcal{N}(y_n \mathbf{x_n}^T\mathbf{w}, \sigma^2)$	Cumulant $h(x) = \ln \left[h(x) \exp\left[\frac{1}{2} h(x) \right] dx \right]$	Algorithm (Coordinate Descent)	$\frac{\lambda_z}{2} \ \mathbf{Z}\ _{Frob}^2$
w^* . A function must always lie above	Best model maximises log-likelihood	$A(\eta) = \ln\left[\int_{y} h(y) \exp\left[\eta^{T} \psi(y)\right] dy\right]$	1. $\forall n, z_n = \begin{cases} 1 \text{ if } k = argmin_j x_n - \mu_k ^2 \\ 0 \text{ otherwise} \end{cases}$	Optimisation with SGD (compute ∇_w
its linearisation: $C(x) > C(x) + \nabla C(x)^{T}(x - x) \vee x = 0$	$\mathcal{L}_{LL} = -\frac{1}{2\sigma^2} \sum (y_n - x_n^T w)^2 + cst.$	$\nabla A(\eta) = \mathbb{E}[\psi(y)] = g^{-1}(\eta)$		for a fixed user d' and ∇_z for a fixed item n').
$\mathcal{L}(u) \ge \mathcal{L}(w) + \nabla \mathcal{L}(w)^T (u - w) \forall u, w.$ A set is convex iff line segment bet-	6 Regularisation	$\nabla^2 A(\eta) = \mathbb{E}[\psi \psi^T] - \mathbb{E}[\psi] \mathbb{E}[\psi^T]$	2. $\forall k$ compute $\mu_k = \sum_n z_{nk} x_n / \sum_n z_{nk}$	ALS (assume no missing ratings):
ween any two points of \mathcal{C} lies in \mathcal{C} :	6.1 Ridge Regression	Link function $\eta = g(\mu) \Leftrightarrow \mu = g^{-1}(\eta)$	Pb:cost,spher+hard clusters Probabilistic model	$\mathbf{Z}_{*}^{T} = (\mathbf{W}^{T}\mathbf{W} + \lambda_{z}I_{K})^{-1}\mathbf{W}^{T}\mathbf{X}$
$\theta u + (1 - \theta)v \in \mathcal{C}$	$\mathcal{L}(\mathbf{w}) = \frac{1}{2N}(\mathbf{y} - X\mathbf{w})^T(\mathbf{y} - X\mathbf{w}) +$	$\eta_{\text{gaussian}} = (\mu/\sigma^2, -1/2\sigma^2) ; \eta_{\text{noisson}} =$	$p(X \mu,z) = \prod \mathcal{N}(x_n \mu_k,I)$	$\mathbf{W}_{*}^{T} = (\mathbf{Z}^{T}\mathbf{Z} + \lambda_{w}I_{K})^{-1}\mathbf{Z}\mathbf{X}^{T}$
3 Optimisation	$\frac{\lambda}{2} \ \mathbf{w}\ _{2}^{2} \rightarrow \mathbf{w}_{\mathbf{ridge}}^{*} = (X^{T}X +$		$= \prod \prod \mathcal{N}(x_n \mu_k, I)^{z_{nk}}$	11 Dimensionality reduction
Gradient $\nabla \mathcal{L} := \begin{bmatrix} \frac{\partial \mathcal{L}(\mathbf{w})}{\partial w_1} & \dots & \frac{\partial \mathcal{L}(\mathbf{w})}{\partial w_D} \end{bmatrix}$	$2N\lambda I)^{-1}X^T\mathbf{y}$	$\eta_{general} = g^{-1}(\frac{1}{N}\sum_{n=1}^{N}\psi(y_n))$	$n \mid k$	11.1 SVD
	21VAI) A y	$\nabla \mathcal{L}(w) X^T [g^{-1}(Xw) - \psi(y)] = 0$	9.2 Gaussian Mixture Models	$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$, with $\mathbf{X}: D \times N$, $\mathbf{U}: D \times D$
3.1 Gradient descent	Can be considered a MAP estimator :	8.4 Nearest Neighbour Models	$p(X \mu,z) = \prod_{n} (x_n z_n, \mu_k, \Sigma_k) p(z_n \pi) =$	orthonormal, $\mathbf{V}: N \times N$ orthonormal,
$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})$. Very sensitive to ill-conditioning.	$\mathbf{w_{ridge}^*} = argmin_w - log(p(w X, y))$	Performs best in low dimensions.	$\prod \prod [\mathcal{N}(x_n \mu_k,\Sigma_k)]^{z_{nk}} \prod [\pi_k]^{z_{nk}}$	$S: D \times N$ diagonal PSD, values in de-
GD - Linear Reg	6.2 Lasso		$n \mid k$	scending order $(s_1 \ge \cdots \ge s_D \ge 0)$. Reconstruction
$\mathcal{L}(\mathbf{w}) = \frac{1}{2N}(\mathbf{y} - X\mathbf{w})^T(\mathbf{y} - X\mathbf{w}) \rightarrow$	Sparse solution. $\mathcal{L}(w) = \frac{1}{2N}(y - y)$	8.4.1 k-NN	where $pi_k = p(z_n = k)$ Marginal likelihood: z_n latent varia-	Reconstruction $\ \mathbf{X} - \hat{\mathbf{X}}\ _F^2 \ge \ \mathbf{X} - \mathbf{U}_K \mathbf{U}_K^T \mathbf{X}\ _F^2 = \sum_{i \ge K+1} s_i^2$
211	$(x^T)^T (y - Xw) + \lambda w _1$	$f_{S^{t,k}}(x) = \frac{1}{k} \sum_{n:x_n \in ngbh_{St,k(x)}} y_n$ Pick odd	bles => factored out of likelihood	
$\nabla \mathcal{L}(\mathbf{w}) = -\frac{1}{N}X^T(\mathbf{y} - X\mathbf{w})$. Cost: $O_{err} = 2ND + N \text{ and } O_w = 2ND + D.$	7 Model Selection7.1 Bias-Variance decomposition	$k \text{ so there is a clear winner. Large } k \rightarrow k$	$p(x_n \theta) = \sum \pi_k \mathcal{N}(x_n \mu_k, \Sigma_k).$	\forall rank- K matrix $\hat{\mathbf{X}}$ (i.e. we should compress the data by projecting it onto these
3.2 SGD	Small dimensions : large bias, small	large bias small variance (inv.)	nb params $O(N)$ to $O(D^2K)$.	left singular vectors.)
$\mathcal{L} = \frac{1}{N} \sum_{n} \mathcal{L}_{n}(\mathbf{w})$ with update	variance. Large dimensions : small	0	9.3 EM	Truncated SVD: $\mathbf{U}_K \mathbf{U}_K^T \mathbf{X} = \mathbf{U} \mathbf{S}_K \mathbf{V}^T$
$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}_n(\mathbf{w}^{(t)}).$	bias, large variance. Error for the val	8.4.2 Error bound	9.3.1 GMM	Application to MF: $\mathbf{U} = \mathbf{W}, \mathbf{S}\mathbf{V}^T = \mathbf{Z}^T$.
3.3 Mini-batch SGD	set compared to the emp distr of the data $\propto \sqrt{ln(\Omega)}/\sqrt{ V }$		Intialise $\mu^{(1)}, \Sigma^{(1)}, \pi^{(1)}$.	Rec. limited by the rank-K of W,Z.
	8 Classification	$\mathbb{E}[\mathcal{L}_{St}] \le 2\mathcal{L}_{f^*} + 4c\sqrt{d}N^{-1/d+1}$	1. E-step: Compute the assignments.	11 2 PCA
$\mathbf{g} = \frac{1}{ B } \sum_{n \in B} \nabla \mathcal{L}_n(\mathbf{w}^{(t)}) \text{ with update}$	8.1 Optimal	8.5 Support Vector Machines (SVM)	$q_{kn}^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(x_n \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_{k}^{K} \pi_k^{(t)} \mathcal{N}(x_n \mu_k^{(t)}, \Sigma_k^{(t)})} \text{ 2. Compute}$	Decorrelate the data. Empirical cov
$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \gamma \mathbf{g}.$	$\hat{y}(\mathbf{x}) = argmax_{y \in \mathcal{Y}} p(y \mathbf{x})$	Logistic regression with hinge loss: $min_w \sum_{n=1}^{N} [1 - y_n x_n^T w]_+ + \frac{\lambda}{2} w ^2$ whe-	$\sum_{k}^{K} \pi_{k}^{(t)} \mathcal{N}(x_{n} \mu_{k}^{(t)}, \Sigma_{k}^{(t)})$	before: $N\mathbf{K} = \mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{S}_D^2\mathbf{U}^T$. After
3.4 Subgradient at w	8.2 Logistic regression	$\lim_{n \to \infty} \sum_{n=1}^{\infty} 1 - y_n x_n w _+ + \frac{1}{2} w \text{ where } v \in [-1; 1] \text{ the label and } hinge(x) = 0$	Marginal Likelihood 3. M-step: Update	$\mathbf{A} = \mathbf{U} \mathbf{A}$. IN $\mathbf{K} = \mathbf{A}\mathbf{A} = \mathbf{S}_D$ (the colli-
$\mathbf{g} \in \mathbb{R}^D$ with $\mathcal{L}(u) \ge \mathcal{L}(w) + \mathbf{g}^T(u - w)$.	110	$max\{0,x\}$. Convex but not differentia-	$\sum q_{kn}^{(t)} x_n \tag{t}$	ponents are uncorrelated).
3.5 Projected SGD	lues $y \in [0;1]$ $(p(1 \mathbf{x}) = \sigma(\mathbf{x}^T\mathbf{w})$ and	ble so need subgradient.	$\mu^{(t+1)} = \frac{\sum\limits_{n} q_{kn}^{(t)} x_n}{\sum\limits_{n} q_{kn}^{(t)}} \ \pi^{(t+1)} = \frac{1}{N} \sum\limits_{n} q_{kn}^{(t)}$	Pitfalls: not invariant under scalings. 12 Neural Networks
$\mathbf{w}^{(t+1)} = \mathcal{P}_{\mathcal{C}}[\mathbf{w}^{(t)} - \gamma \nabla \mathcal{L}(\mathbf{w}^{(t)})]$	$p(0 \mathbf{x}) = 1 - \sigma(\mathbf{x}^T \mathbf{w})$). Decision wrt 0.5.	Duality : $\mathcal{L}(w) = max_{\alpha}G(w,\alpha)$. For	$\sum_{n} q_{kn}$ n	The output at the node j in layer l is
3.6 Newton's method	Likelihood	SVM $min_w max_{\alpha \in [0,1]^N} \sum \alpha_n (1 - \frac{1}{2} \frac{1}{$	$\Sigma^{(t+1)} = \frac{\sum_{n=0}^{n} q_{kn}^{(t)} (x_n - \mu^{(t+1)}) (x_n - \mu^{(t+1)})^T}{\sum_{n=0}^{n} q_{kn}^{(t)}}$, ,
2nd order (more expensive	$p(y X, w) = \prod p(y_n x_n)$ = $p(0 x_n) \dots p(K x_n)$	$y_n x_n^T w$) + $\frac{1}{2} w ^2$ differentiable and	$\sum q_{kn}^{(t)}$	$x_j^{(l)} = \phi\left(\sum_i w_{i,j}^{(l)} x_i^{(l-1)} + b_j^{(l)}\right)$
$O(ND^2 + D^3)$ but faster convergence).	$ \begin{array}{cccc} & p & (o(x_n) \dots & p & (K(x_n)) \\ & n: y_n = 0 & n: y_n = K \end{array} $	convex. Can switch max and min when convex in w and concave in α .	n XX	12.1 Representation power
$w^{(t+1)} = w^{(t)} - \gamma^{(t)} (H^{(t)})^{-1} \nabla \mathcal{L}(w^{(t)})$	$= \prod \prod [p(y_n = k x_n, w)]^{\tilde{y}_{nk}}$	Simpler form:		Error bound $\leq \frac{(2Cr)^2}{n}$ where <i>C</i> is the
3.7 Optimality conditions	k n	$w(\alpha) = \frac{1}{\lambda} \sum \alpha_n y_n x_n = \frac{1}{\lambda} X^T diag(y) \alpha$	9.3.2 General	smoothness bound, <i>n</i> the number of
Necessary : $\nabla \mathcal{L}(\mathbf{w}^*) = 0$ Sufficient :	where $\tilde{y}_{nk} = 1$ if $y_n = k$. For binary classification	which yields the optimisation pro-	$\theta^{(t+1)} := argmax_{\theta} \sum_{n} \mathbb{E}_{p(z_n x_n,\theta^{(t)})}$	nodes. We can approximate any sufficiently smooth 2D function on boun-
Hessian PSD $\mathbf{H}(\mathbf{w}^*) := \frac{\partial^2 \mathcal{L}(\mathbf{w}^*)}{\partial w \partial w^T}$	$p(y X, w) = \prod p(y_n x_n)$	blem: $\max_{\alpha \in [0,1]^N} \alpha^T 1 - \frac{1}{2\lambda} \alpha^T Y X X^T Y \alpha$	$[\log p(x_n, z_n \theta)]$	ded domain (on average with σ acti-
$\partial w \partial w^T$	$= \prod_{n=0}^{\infty} p(0 x_n) \prod_{n=0}^{\infty} p(1 x_n)$	$\alpha \in [0,1]^{\mathbb{N}}$	[*** P(\pi_n, \pi_n]**]]	vation, <i>pointwise</i> with ReLU).

X and Y are D-sep. by Z iff every $\delta^{(L+1)} = -2(y_n - \mathbf{x}^{(L+1)})\phi'(\mathbf{z}^{(L+1)})$ and path $X \to Y$ is blocked by Z. $\forall l: \delta^{(l)} = (\mathbf{W}^{(l+1)}\delta^{(l+1)}) \odot \phi'(\mathbf{z}^{(l)})$ \bar{X} conditionally indep. of Y conditio- $\prod_n \prod_k \mathcal{N}(y_{nk}|w_k^T x_n, \sigma_k^2)$ and prior ned on the Z if X and Y are D-sep. Final pass by Z. Indep. is symmetric. $\frac{\partial L_n}{\partial w_{i:i}^{(l)}} = \delta_j^{(l)} \mathbf{x}_i^{(l-1)}, \ \frac{\partial L_n}{\partial b_{:}^{(l)}} = \delta_j^{(l)}$ 14 Quick maff Chain rule $h = f(g(w)) \rightarrow \partial h(w) =$ $\partial f(g(w))\nabla g(w)$ 12.3 Activations Gaussian sigmoid $\phi(x) = 1 - \sigma(x)$, tanh $\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(y-\mu)^2}{2\sigma^2})$ $\frac{e^x + e^{-x}}{e^x + e^{-x}} = 2\phi(2x) - 1$, ReLU, Leaky Re-LU $(max\{\alpha x, x\})$. Multivariate Gaussian $\mathcal{N}(y|\mu,\sigma^2)$ = $\frac{1}{\sqrt{(2\pi)^D det(\Sigma)}} exp(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu))$ 12.4 Convolutional Neural Nets Convolution with filter $f: x^{(1)}[n, m] =$ Bayes rule p(x|y) = p(y|x)p(x)/p(y) $\sum_{k,l} f[k,l] x^{(0)} [n-k,m-l]$. Filter is lo-Logit $\sigma(x) = \frac{\partial \ln[1 + e^x]}{\partial x}$ cal so no need for fully connected Naming Joint distribution p(x,y) =layers. We can use same filter at evep(x|y)p(y) = p(y|x)p(x) where ry position: weight sharing. Learning: p(x|y) or $p(y|X,w) \rightarrow \text{likelihood} / p(x|y)$ run backprop by computing different weights, then sum the gradients of p(y) or $p(w) \rightarrow \text{prior} // p(y|x) \rightarrow \text{pos}$ shared weights. terior $//p(x) \rightarrow$ marginal likelihood $// p(w|y,X) \rightarrow MAP$ estimator 12.5 Overfitting Marginal Likelihood Adding regularisation is equivalent $p(\mathbf{X}|\alpha) = \int_{\theta} p(\mathbf{X}|\theta) p(\theta|\alpha) d\theta$ to weight decay (by $(1-\eta \lambda)$). Can also use dataset augmentation, dropout. $p(X = x) = \sum_{v} p(X = x, Y = y) =$ $\sum_{v} p(X = x \mid Y = y) p(Y = y)$ 13 Graphical Models 13.1 Bayes Nets Posterior probability ∝ Likelihood × Prior. Max over \mathcal{N} is equiv. to min. $p(X_1,...,X_D) = p(X_1)p(X_2|X_1)...$ $p(X_D|X_1,...,X_{D-1})$. One node is a ran- $\beta_{MAP}^* = argmax_{\beta}p(y|X,\beta)p(\beta) \Leftrightarrow$ dom variable, directed edge from X_i

 $\beta^* = argmin_{\beta} \mathcal{L}(\beta)$

 $\theta_1 = \theta_2 \rightarrow P_{\theta_1} = P_{\theta_2}$

 $(PQ + I_N)^{-1}P = P(QP + I_M)^{-1}$

Unit/ortho: $UU^T = U^TU = I$.

 $log(\sum a) \ge \sum qlog(a/q)$

 $\sum_{n} (y_n - \beta^T \mathbf{x_n})^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$

 $\mathbf{U}^T = \mathbf{U}^{-1}$ Rotation matrix (preserves

length of vector). Jensen's inequality:

14.1 Algebra

 $\sum_{i} \beta^{2} = \beta^{T} \beta$

2. $p = p(x_1)p(x_3|x_1)p(x_2|x_3)$: id.

 x_2 **not** indep. given x_3

descendants are in Z.

3. $p = p(x_1)p(x_2)p(x_3|x_1,x_2) : x_1$ and

 $X \rightarrow Y$ path blocked by Z if it con-

tains a variable such that either 1. va-

riable is in Z and it is head-to-tail

or tail-to-tail 2. node is head-to-head

and neither this node nor any of its

12.2 Learning

Forward pass

Backward pass

Problem is not convex but SGD

is stable. Backpropagation: Let

 $\mathbf{z}^{(l)} = (\mathbf{W}^{(l)})^T \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)}, \ \mathbf{x}^{(l)} = \phi(\mathbf{z}^{(l)})$

to X_i if X_i appears in the conditio-

Conditional independence: p(X, Y) =

p(X)p(Y) or given Z p(X,Y|Z) =

1. $p(x_1, x_2, x_3) = p(x_3)p(x_1|x_3)p(x_2|x_3)$

 (\mathbf{x}_2)

X₂ is head-to-tail X₂ is head-to-head

 (\mathbf{x}_1)

 $(\mathbf{x}_{\scriptscriptstyle 1})$

: x_1 and x_2 indep. given x_3

be acyclic.

 $(\mathbf{x}_{\scriptscriptstyle 1})$

p(X|Z)p(Y|Z).

ning $p(X_i|...,X_i,...)$. The graph must—Identifiable model

 $\mathcal{L}_n = (y_n - f^{(L+1)} \circ \cdots \circ f^{(1)}(\mathbf{x}_n^{(0)}))^2.$

 $\mathbf{x}^{(0)} = \mathbf{x}_n$. For l = 1, ..., L + 1

15.3 Deriving marginal distribution
$$p(y_n|x_n,r_n=k,\beta)=\mathcal{N}(y_n|\beta_k^T\tilde{x}_n,1)$$
 Assume r_n follows a multinomial $p(r_n=k|\pi)$. Derive the marginal $p(y_n|x_n,\beta,\pi)$. $p(y_n|x_n,r_n=k,\beta)=\sum_k^K p(y_n|x_n=k|x_n,\beta,\pi)=\sum_k^K p(y_n|r_n=k,x_n,\beta,\pi)\cdot\pi_k=\sum_k^K \mathcal{N}(y_n|\beta_k^T\tilde{x}_n,\sigma^2)\cdot\pi_k$
15.4 MF
$$\hat{r}_{um}=\langle\mathbf{v}_u,\mathbf{w}_m\rangle+b_u+b_m\mathcal{L}=\frac{1}{2}\sum_u m(\hat{r}_{um}-r_{um})+\frac{\lambda}{2}\Big[\sum_u(b_u^2+||\mathbf{v}_u||^2)+\sum_m(b_m^2+||\mathbf{w}_m||^2)\Big].$$
 The optimal value for b_u for a particular user $u':\sum_{u'm}(\hat{r}_{u'm}-r_{u'm})+\lambda b_{u'}=0$. Problem jointly convex? Compute $H(\hat{r}(v,w))=\begin{bmatrix}2w^2&4vw-2r\\4vw-2r&2v^2\end{bmatrix}$ which is not PSD in general.

16.1 True statements

15 Mock Exam Notes

15.1 Normal equation

 $\frac{1}{2}X(X^Tw_k - v_k) + w_k = 0 \Leftrightarrow$

 $w_k^* = (\frac{1}{\sigma^2} X X^T + I_D)^{-1} \frac{1}{\sigma^2} X y_k$

 $\mathcal{L}(w) = \sum_{k} \sum_{n} \frac{1}{2\sigma_{i}^{2}} (y_{nk} - x_{n}^{T} w_{k})^{2} +$

 $\frac{1}{2}\sum_{k}||w_{k}||_{2}^{2} \rightarrow \text{Likelihood } p(y|X,w) =$

Unique if convex.

15.2 MAP solution

 $p(w) = \prod_k \mathcal{N}(w_k|0, I_D)$

• Regularisation term someti-

$$f(x,y)$$
• $\max_{x} g(x) \le \max_{x} f(x,y)$
• $\max_{x} \min_{y} f(x,y)$

 $\leq \min_{y} \max_{x} f(x, y)$

define
$$\mathbf{r}_{nk}$$
 like \mathbf{y}_{nk} in 17.2
Likelihood:

$$p(y_n|\mathbf{x}_n, \beta, \mathbf{r}_n) = \prod_k [\mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n, \sigma^2]^{r_{nk}}.$$
LL:

$$p(\mathbf{y}|X, \beta, \mathbf{r}) = \prod_n [\mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n, \sigma^2]^{r_{nk}}.$$
For $p(r_n = k|\pi) = \pi_k$:

$$p(y_n|\mathbf{x}_n, \beta, \pi) = \sum_k p(y_n, r_n = k|\mathbf{x}_n, \beta, \pi)$$

$$= \sum_k p(y_n|r_n = k, \mathbf{x}_n, \beta, \pi) \cdot \pi_k$$

$$= \sum_k \mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n, \sigma^2) \pi.$$

17.2 Subgradients $MAE(\mathbf{w}) = 1/N \sum_{n} |y_n - f(\mathbf{w}, \mathbf{w_n})|.$ Use chain rule with subgradient h(x) = sgn(x). $\nabla \mathcal{L}(\mathbf{w}) = -1/N \sum_{n} h(y_n - f(\mathbf{w}))$ $\nabla f(\mathbf{w}, \mathbf{x_n})$. Then update weights.

17.3 Multiple output reg x_n has dim D but now y_n has dim K. $\mathcal{L}(\mathbf{W}) = \sum_{k} \sum_{n} 1/2\sigma_{k}^{2} (y_{nk} - \mathbf{x}_{n}^{T} \mathbf{w})^{2} +$ $1/2\sigma_0^2 \sum_k ||\mathbf{w}_k||^2$. Derive w.r.t. a \mathbf{w}_k to get optimal weights : $1/\sigma_k^2 X^T (X \mathbf{w}_k (\mathbf{y}_k) + \frac{1}{\sigma_0^2} \mathbf{w}_k = 0$. Pb is convex in

16.2 Convex functions • $f(x) = x^{\alpha}, x \in \mathbb{R}^+, \forall \alpha \ge 1 \text{ or } \le 0$

• $f(x) = e^{ax}, \forall x, a \in \mathbb{R}$

• $f(x) = ln(1/x), x \in \mathbb{R}^+$

meters.

• $\nabla_{W}(\mathbf{x}^{T}\mathbf{W}\mathbf{x}) = \mathbf{x}\mathbf{x}^{T}$

sp. clusters).

on tasks.

• $\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{W}\mathbf{x}) = (\mathbf{W} + \mathbf{W}^T)\mathbf{x}$

K-means: optimal cluster (resp.

centers) init \rightarrow one step opti-

mal representation points (re-

• Logistic loss is typically prefer-

• For optimising a MF of a $D \times N$

matrix, for large D, N: per

iteration, ALS has an increased

computational cost over SGD

and per iteration, SGD cost is

• The complexity of backprop

CNN where the data is laid

out in a one-dimensional fashi-

on and the filter/kernel has *M*

for a nn with L layers and K

independent of D, N.

nodes/layer is $O(K^2L)$

red over L_2 loss in classificati-

• $f(x) = -x^3, x \in [-1, 0]$

• $f(x) = g(h(x)), x \in \mathbb{R}, g, h \text{ con}$

vex and increasing over **R**

non-zero terms. Ignoring the bias terms, there are M para-W. $\mathbf{w}_{k}^{*} = (1/\sigma_{k}^{2} X^{T} X + 1/\sigma_{0}^{2} I_{D})^{-1} 1/\sigma_{k}^{2} X^{T} \mathbf{y}_{k}$.

17 Mock2014

17.1 Weighted LS

 $\tilde{X}^T W \tilde{X})^{-1} \tilde{X}^T W \mathbf{v}$.

prob model:

 $\mathcal{L}(\beta) = \frac{1}{2} \sum_{n} w_{n} (y_{n} - \beta^{T} \tilde{\mathbf{x}}_{n})^{2}$

 $\partial \mathcal{L}(\beta) = \sum_{n} w_{n} (y_{n} - \beta^{T} \tilde{\mathbf{x}}_{n}) \tilde{\mathbf{x}}_{n}$

 $w_n > 0 \rightarrow W \text{ pos def } \rightarrow \tilde{X}^T W \tilde{X}$

invertible \rightarrow unique sol $\beta^* = (\rightarrow$

 $p(\mathbf{y}|X,\beta) = \prod_{n} \mathcal{N}(y_n|\beta^T \tilde{\mathbf{x}}_n, 1/w_n).$

 $= -\tilde{X}^T W \mathbf{y} + \tilde{X}^T W \tilde{X} \mathbf{B} = 0.$

Prob model (posterior) same answer as 15.2 but with $1/2\sigma_0^2 I_D$ for the prior 17.4 Kernels Prove symmetry $\mathcal{K}(\mathbf{x}_i, \mathbf{x}_i)$ and PSD

 $t^T K t = \sum_i \sum_i K_{ii} t_i t_i \ge 0 \forall t$

17.5 Mixture of lin reg $p(y_n|\mathbf{x}_n, r_n = k, \beta) = \mathcal{N}(y_n|\beta_k^T \tilde{\mathbf{x}}_n, 1)$. We

 $= \sum \mathcal{N}(y_n | \beta_k^T \tilde{\mathbf{x}}_n, \sigma^2) \pi_k.$

 $-log p(\mathbf{y}|X,\beta,\pi)$ $= -\sum log \sum \mathcal{N}(y_n | \beta_k^T \tilde{\mathbf{x}}_n, \sigma^2) \cdot \pi_k.$ • $f(x) = e^{-x^2}, x \in \mathbb{R}$

Model is not convex (sum of gaus-• $\sum \mathcal{N}$, sin(x), $\forall x \in \mathbb{R}$ sians). Not identifiable (by permutation of labels).