Part A: Mushroom Classification

Prediction Task

The prediction task is to create a machine learning model to **predict a mushroom's edibility**, either edible or poisonous, based on the mushroom's attributes.

Output Variable

The output variable is a **two-class** label - **edible** or **poisonous**. Edible (e) is defined the mushroom would cause no hard when consumed; whereas poisonous (p) refers to the mushroom will cause harmful effects when eaten.

Data Profile

Overview Warnings 47 Reproduction Dataset statistics Variable types Number of variables 23 Categorical 22 Number of observations Boolean 8124 Missing cells 2480 Missing cells (%) 1.3% Duplicate rows 0 Duplicate rows (%) 0.0% Total size in memory 1.4 MiB Average record size in memory 184.0 B

Warnings

Profile Reports shows **47 Warnings**

Key points:

- All of the columns are categorical data
 requires encoding
- "veil-type" contains only one class
 drop column since there is no variance
- "stalk-root" has 30.5% missing data
 either impute or drop the entire
- high correlation between features
 - have to check for multicollinearity

Multicollinearity Feature Selection

Theil's U - Univariate Feature Selection

Key Points to take down:

- These columns have low correlation with edibility, where U < 0.05</p>
- cap-shape, cap-surface, cap-color, gill-attachment, stalk-shape, veiltype, veil-color, ring-number

Action Plan

Drop all these columns show below

Pipeline/Feature Engineering

```
scoring = ["accuracy", "balanced_accuracy", "f1", 'roc_auc']
for name, model in models:
  pipeline = Pipeline(
    steps=[
        ("Imputation", SimpleImputer(strategy="most_frequent")),
        ("One-Hot Encoding", OneHotEncoder(drop="first", sparse=False)),
        (name, model)
  cross_validate(pipeline, X_train, y_train, scoring=scoring)
```

Model Selection

Most of the models I have preselected has 1.0 accuracy.

Since there is a dilemma in choosing learning algorithms, I decided to go with the simplest model with the best interpretibility, Decision Tree Classifier.

	fit_time	score_time	test_accuracy	test_balanced_accuracy	test_f1	test_roc_auc
DecisionTreeClassifier	0.036299	0.015959	1.000000	1.000000	1.000000	1.000000
RandomForestClassifier	0.294108	0.050652	1.000000	1.000000	1.000000	1.000000
AdaBoostClassifier	0.549287	0.079787	1.000000	1.000000	1.000000	1.000000
GradientBoostingClassifier	1.052442	0.024467	1.000000	1.000000	1.000000	1.000000
Perceptron	0.043483	0.032352	1.000000	1.000000	1.000000	1.000000
Linear SVC	0.139350	0.035562	1.000000	1.000000	1.000000	1.000000
Polynomial SVC	0.359826	0.079387	1.000000	1.000000	1.000000	1.000000
ExtraTreesClassifier	0.372700	0.067840	1.000000	1.000000	1.000000	1.000000
MLPClassifier	1.763953	0.037759	1.000000	1.000000	1.000000	1.000000
CalibratedClassifierCV	0.203737	0.043484	1.000000	1.000000	1.000000	1.000000
SGDClassifier	0.048475	0.029321	1.000000	1.000000	1.000000	1.000000
KNeighborsClassifier	0.045479	0.701378	0.999472	0.999452	0.999450	1.000000
RBF SVC	0.421568	0.208354	0.999472	0.999452	0.999450	1.000000
RidgeClassifier	0.050712	0.033710	0.999120	0.999086	0.999084	1.000000
RidgeClassifierCV	0.109710	0.035540	0.999120	0.999086	0.999084	1.000000
LogisticRegression	0.112658	0.034307	0.999120	0.999086	0.999084	0.999987
GaussianNB	0.034707	0.025941	0.974147	0.975027	0.973790	0.996524
Sigmoid SVC	0.334529	0.079947	0.964649	0.964138	0.962766	0.985698

Comparing to Baseline - Confusion Matrix

Comparing to Baseline -Learning Curve

Hyperparameter Tuning

```
filterwarnings('ignore')
        # Create the parameter grid
        params_grid = {
            'criterion': ['gini', 'entropy'],
            'max_depth': np.arange(5, 15),
            'max_leaf_nodes': np.arange(10, 16)
        # Creating a model based on the pipeline
        grid search = Pipeline(
            steps=[
                ('SimpleImputer', imp),
                ("OneHotEncoder", onehot),
                ("GridSearchCV", GridSearchCV(
                    DecisionTreeClassifier(min samples split=2, min samples leaf=1),
                    params grid,
                    cv=5.
                    verbose=2,
                    n jobs=4.
                    scoring='accuracy'
        # Fitting Model
        grid_search.fit(X_train, y_train)
        print(grid_search.named_steps['GridSearchCV'].best_estimator_)
        print(grid_search.named_steps['GridSearchCV'].best_params_)
        print(grid_search.named_steps['GridSearchCV'].best_score_)
     Fitting 5 folds for each of 120 candidates, totalling 600 fits
     DecisionTreeClassifier(max_depth=7, max_leaf_nodes=14)
     {'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 14}
     1.0
```


Model Evaluation -Learning Curve

Model Evaluation

	precision	recall	f1-score	support
Ø 1	1.000	1.000	1.000	1257 1181
	1.000	1.000		
macro avg	1.000	1.000	1.000	2438 2438
weighted avg	1.000	1.000	1.000	2438
Cross Validat Mean Cross Va	•		1. 1.]	

Model Evaluation

Model Evaluation - Feature Importance

Part B: Kings County House Price Prediction

Prediction Task

The prediction task is to create a predictive regression model to predict the house prices based of the house sales' attribute given.

Output Variable

The output variable is `price`, referring to the price of the house sale. The variable is numerical-continuous variable, as such the prediction task requires a regression model.

Data Profile

Warnings

Profile Reports shows **55 Warnings**

Key points:

- high correlation between features
 - have to check for
- multicollinearity
- 'sqft_basement' has 60.7% zeros
- 'yr_renovated' has 95.8% zeros

sqft_basement is highly correlated with sqft_above and 3 other fields	High correlation
sqft_above is highly correlated with sqft_living15 and 6 other fields	High correlation
zipcode is highly correlated with lat and 2 other fields	High correlation
<pre>sqft_living is highly correlated with sqft_living15 and 6 other fields</pre>	High correlation
long is highly correlated with zipcode and 1 other fields	High correlation
grade is highly correlated with sqft_living15 and 4 other fields	High correlation
bathrooms is highly correlated with sqft_living15 and 7 other fields	High correlation
yr_built is highly correlated with condition and 4 other fields	High correlation
bedrooms is highly correlated with sqft_above and 2 other fields	High correlation
sqft_lot15 is highly correlated with sqft_lot	High correlation
<pre>price is highly correlated with sqft_living15 and 5 other fields</pre>	High correlation
view is highly correlated with waterfront	High correlation
waterfront is highly correlated with view	High correlation
sqft_basement has 13126 (60.7%) zeros	Zeros
yr_renovated has 20699 (95.8%) zeros	Zeros

Pearson Correlation Matrix

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

House Age

Age referring to the time difference between date and yr_renovated/yr_built

	date	yr_renovated	yr_built	age
0	2014-10-13	0	1955	59.0
1	2014-12-09	1991	1951	23.0
2	2015-02-25	9	1933	82.0
3	2014-12-09	9	1965	49.0
4	2015-02-18	9	1987	28.0
21608	2014-05-21	9	2009	5.0
21609	2015-02-23	9	2014	1.0
21610	2014-06-23	9	2009	5.0
21611	2015-01-16	9	2004	11.0
21612	2014-10-15	9	2008	6.0
21613	rows × 4 c	olumns		

Log Transformation

Model Selection

Model Selection

	fit_time	score_time	test_rmse	train_rmse	test_mse	train_mse	test_mae	train_mae	test_mape	train_mape	test_r2	train_r2
ExtraTreesRegressor	7.135958	0.200463	-133390.500654	-3068.189155	-17936571347.077385	-9513161.568014	-69219.727082	-123.724826	-0.126745	-0.000425	0.869151	0.999930
RandomForestRegressor	12.393565	0.149601	-135627.651945	-55290.737436	-18525893661.364635	-3058882980.024376	-70347.560765	-26816.512434	-0.128178	-0.047119	0.864615	0.977534
GradientBoostingRegressor	3.347374	0.010773	-139285.123516	-128246.897591	-19486473186.692482	-16455351352.906652	-75522.579562	-71986.147128	-0.137311	-0.131361	0.856904	0.879157
AdaBoostRegressor	1.306047	0.024340	-140606.259676	-64731.613580	-19908085622.554283	-4203027839.285998	-74223.345925	-30492.814420	-0.135643	-0.053883	0.854434	0.969156
BaggingRegressor	1.309004	0.028725	-140874.161656	-63135.779721	-19951648787.887047	-3996438359.867338	-74411.359193	-30475.733821	-0.136075	-0.053843	0.853591	0.970632
SVR	13.303492	4.843579	-145188.994993	-131623.979113	-21304507975.040260	-17330699587.146801	-76776.802559	-72849.505850	-0.139376	-0.134285	0.844945	0.872686
MLPRegressor	15.115033	0.012760	-149213.947738	-141366.393039	-22478985541.641655	-20019688178.613991	-79865.868099	-78126.303800	-0.142699	-0.140868	0.835492	0.852696
KNeighborsRegressor	0.189692	0.985876	-168784.280528	-140807.627813	-28818222820.154930	-19848924340.629433	-84608.095344	-68939.526920	-0.150401	-0.121234	0.790136	0.854273
DecisionTreeRegressor	0.213815	0.008178	-188055.943134	-3068.189155	-35613540755.972511	-9513161.568014	-100716.780634	-123.724826	-0.185233	-0.000425	0.739723	0.999930
LinearRegression	0.624596	0.075797	-188994.705372	-188944.478452	-35841165312.482529	-35707235447.812317	-110814.325837	-110672.289058	-0.201534	-0.201302	0.736630	0.737656
Ridge	0.368858	0.006184	-189350.393436	-189301.885531	-35977847205.701393	-35842467227.082199	-110861.627598	-110719.515040	-0.201544	-0.201316	0.735637	0.736663
SGDRegressor	0.138829	0.007580	-210493.017840	-210375.920353	-44405094031.160751	-44267019889.859184	-125276.401612	-125086.255084	-0.221620	-0.221336	0.672652	0.674762
ElasticNet	0.051257	0.007977	-376119.759146	-376659.424464	-141907449864.942780	-141897913482.805664	-221876.211038	-221875.234014	-0.438628	-0.438620	-0.042641	-0.042515
Lasso	0.021941	0.007579	-376119.759146	-376659.424464	-141907449864.942780	-141897913482.805664	-221876.211038	-221875.234014	-0.438628	-0.438620	-0.042641	-0.042515

Comparing with Baseline

Hyperparameter Tuning - HalvingGridSearchCV

```
grid = {
    'regressor__n_estimators': np.arange(100, 2101, 200),
    'regressor__max_depth': [3, 5, 10],
    'regressor_learning_rate': [.001, .01, .1],
    'regressor_subsample': [.5, .75, 1]
model_tuning = Pipeline(
    steps=[
        ('LogTransform', LogTransform),
        ('Normalisation', scaler),
        ('GridSearch', HalvingGridSearchCV(
            TransformedTargetRegressor(
                regressor=GradientBoostingRegressor(),
                func=np.log1p,
                inverse_func=np.expm1
            grid,
            scoring='neg root mean squared error',
            n_{jobs=4}
            verbose=1,
            cv=5,
            aggressive_elimination=True,
            factor=5
        ))
model tuning.fit(X train, y train)
print('Finish Tuning')
```

Hyperparameter Tuning - HalvingGridSearchCV

Generating Predictions

	RMSE	MSE	MAE	MAPE	R2
GradientBoostingRegressor	112580.789489	1.267443e+10	64669.690289	0.121199	0.902068

Feature Importance

