

planetmath.org

Math for the people, by the people.

accumulation points and convergent subnets

 ${\bf Canonical\ name} \quad {\bf Accumulation Points And Convergent Subnets}$

Date of creation 2013-03-22 18:37:40 Last modified on 2013-03-22 18:37:40 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 9

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 54A20

Related topic Net

Related topic Neighborhood Related topic DirectedSet

 $Related\ topic \qquad Compactness And Convergent Subnets$

Proposition. Let X be a topological space and $(x_{\alpha})_{\alpha \in A}$ a net in X. A point $x \in X$ is an accumulation point of (x_{α}) if and only if some subnet of (x_{α}) converges to x.

Proof. Suppose first that $(x_{\alpha_{\beta}})_{\beta \in B}$ is a subnet of (x_{α}) converging to x. Given an open subset U of X containing x and $\alpha \in A$, we may select $\beta_1 \in B$ such that $x_{\alpha_{\beta}} \in U$ for $\beta \geq \beta_1$, as well as $\beta_2 \in B$ such that $\alpha_{\beta} \geq \alpha$ for $\beta \geq \beta_2$. Finally, because B is directed, there exists $\beta \in B$ such that $\beta \geq \beta_1$ and $\beta \geq \beta_2$; we then have $\alpha_{\beta} \geq \alpha$ and $x_{\alpha_{\beta}} \in U$, so that (x_{α}) is frequently in U, whence x is an accumulation point of (x_{α}) . Conversely, suppose that x is an accumulation point of (x_{α}) , let N be the set of open neighborhoods of x in X, directed by reverse inclusion, and let $B = A \times N$, directed in the natural way. For each pair $(\gamma, U) \in B$, select $\alpha_{(\gamma, U)} \in B$ such that $\alpha \geq \gamma$ and $x_{\alpha_{(\gamma, U)}} \in U$; $(x_{\alpha_{(\gamma, U)}})_{(\gamma, U) \in B}$ is then a subnet of (x_{α}) that converges to x, for given $U \in N$ and $\gamma \in A$, if $(\gamma', U') \geq (\gamma, U)$, then $\alpha_{(\gamma', U)} \geq \gamma' \geq \gamma$ and $x_{\alpha_{(\gamma', U')}} \in U' \subseteq U$.