Ejercicio Grupo E8FP

Resumen

En este trabajo se analiza un conjunto de datos de señales electromiográficas (EMG) correspondientes a cuatro gestos de mano distintos. Se incluyen los pasos de carga y preprocesado, un análisis exploratorio de datos (EDA) con estadísticas descriptivas y visualizaciones (histogramas, distribución de clases, proyección PCA), y la evaluación de tres clasificadores (Random Forest, LDA y QDA) sobre una partición 80 % entrenamiento – 20 % test. Finalmente, se discuten los resultados y se proponen recomendaciones para futuras mejoras.

1. Introducción

Las señales EMG reflejan la actividad eléctrica generada por la contracción muscular y se emplean ampliamente en interfaces cerebro-máquina, prótesis controladas por músculo y sistemas de reconocimiento de gestos. El objetivo de este estudio es comparar distintos modelos de clasificación automática para determinar cuál distingue mejor cuatro gestos básicos de mano.

2. Objetivos

- 1. Cargar y preprocesar los datos brutos de múltiples archivos CSV.
- Realizar un EDA completo para entender la distribución, rango y correlaciones de las señales.
- 3. Entrenar y evaluar tres modelos de clasificación:
 - a. Random Forest
 - b. Linear Discriminant Analysis (LDA)
 - c. Quadratic Discriminant Analysis (QDA)
- Comparar la precisión, recall y F1-score de los modelos sobre un conjunto de test (20 %).
- 5. Extraer conclusiones y proponer mejoras.

3. Descripción de los datos

Origen: Cuatro archivos CSV (HandGesture0.csv ... HandGesture3.csv) en /data.

Formato: Cada fila es una muestra temporal de EMG; las primeras columnas son valores numéricos de amplitud (uV) en distintos canales, y la última columna es la etiqueta de gesto (0–3).

Volumen: ≈ 3 000 muestras por clase (total ≈ 12 000 muestras). No existen nombres de columna en los CSV.

4. Metodología

- 1. Carga y concatenación
 - a. Se leen todos los CSV sin cabeceras con pandas.read_csv(header=None) y se concatenan.
 - b. Se separan X (características) y y (etiquetas).

2. Particionado

- a. División aleatoria en 80 % entrenamiento y 20 % test, manteniendo proporción de clases (stratify=y).
- 3. Análisis Exploratorio de Datos (EDA)
 - a. Estadísticas descriptivas: media, desviación, cuartiles, mínimo, máximo y rango por canal.
 - b. Histograma de amplitudes para un canal de ejemplo.
 - c. Distribución de clases: gráfico de barras.
 - d. Proyección PCA 2D para visualizar la separación entre gestos.

4. Modelado

- a. Se definen tres clasificadores con sus hiperparámetros por defecto:
 - i. RandomForestClassifier(random state=42)
 - ii. LinearDiscriminantAnalysis()
 - iii. QuadraticDiscriminantAnalysis()
- b. Cada modelo se entrena sobre X train, y train y se evalúa en X test, y test.

5. Métricas

- a. Accuracy global.
- b. Precision, recall y F1-score por clase.
- c. Matriz de confusión del modelo más preciso (QDA).

5. Análisis Exploratorio de Datos

1. Estadísticas descriptivas

- a. Media cercana a 0 uV, desviaciones típicas de ~20–30 uV y rangos de hasta +100 uV.
- b. La variabilidad sugiere suficiente información para distinguir gestos.

2. Histograma canal 0

- a. Concentración principal de valores entre -5 uV y +5 uV.
- b. Colas largas en extremos: picos musculares transitorios.

Distribución de clases

- a. Aproximadamente 580 muestras por clase.
- b. Balance evita sesgos de entrenamiento.

4. Proyección PCA

- a. Gestos 0 y 1 aparecen más separados; gestos 2 y 3 se solapan moderadamente.
- b. Indica la necesidad de clasificadores con capacidad de modelar estructuras no lineales o covarianzas específicas.

6. Resultados de Modelado

Modelo	Accuracy	Precision medio	Recall medio	F1-score medio
Random Forest	0.9225	0.922	0.922	0.922
LDA	0.3390	0.350	0.340	0.340
QDA	0.9358	0.935	0.935	0.935

7. Discusión

- QDA obtiene la mejor precisión (≈ 93,6 %), gracias a su estimación de covarianza por clase.
- Random Forest (≈ 92,3 %) es casi tan eficaz y más robusto al ruido, pero no modela explícitamente la forma de las distribuciones.
- LDA falla (≈ 34 %) al imponer una covarianza común, demasiado restrictiva para este conjunto.
- El **gesto 3** presenta el recall más bajo (≈ 0.89 en QDA, ≈ 0.87 en RF), confirmando su solapamiento con el gesto 2 observado en la PCA.

8. Conclusiones

- 1. La variabilidad y el balance de clases en las señales EMG facilitan el entrenamiento de modelos fiables.
- 2. Para este problema, clasificadores con flexibilidad no lineal o con covarianzas por clase (QDA) son imprescindibles.
- 3. QDA se recomienda como primer candidato por su máxima precisión, siempre valorando su coste computacional.
- 4. Random Forest es una alternativa sólida en entornos productivos, debido a su tolerancia al ruido y a configuraciones sencillas.
- 5. Para mejorar el gesto 3:
 - a. Incrementar el número de muestras o sesiones.
 - b. Extraer características adicionales (por ejemplo, potencias en bandas de frecuencia EMG).
 - c. Explorar métodos de selección de características y modelos avanzados (SVM con kernels, redes neuronales ligeras).