Tehnici CAD Generator de semnal PWM Proiect

Cibu Nicolae-Lucian Grupa 2126

Cuprins:

- I. Specificatie enunt (pagina 2)
 - 1) Enuntul problemei (pagina 2)
 - 2) Detalii legate de generatorul PWM(pagina 2)
- II. Proiectarea circuitului si schema acestuia (pagina 3)
 - 1) Principiul de functionare (pagina 3)
 - 2) Semnalul dinte de fierastrau(pagina 4)
- III. Determinarea valorilor componentelor (pagina 4)
- IV. Analize efectuate si interpretarea acestora (pagina 6)
 - 1) Realizarea analizei in timp (pagina 6)
 - 2) Realizarea analizei parametrice (pagina 7)
 - 3) Realizarea analizei Monte Carlo (pagina 10)
 - 4) Realizarea analizei Worst-case (pagina 12)
- V. Prezentarea foilor de catalog (pagina 13)
 - 1) Foile de catalog (pagina 13)
 - 2) Lista valorilor standard (pagina 14)
- VI. Bibliografia (pagina 16)

I. Specificatie enunt:

1) Enuntul problemei:

Sa se implementeze un generator de semnal PWM in programul OrCad. Dimensionarea componentelorse va face in functie de urmatoarele:

fmin	0.1
fumax	0.7
Amin	3.5
Amax	11
f	6000

2) Detalii legate de generatorul PWM:

Abrevierea de la Pulse Width Modulation, PWM implica variatia in mod controlat a tensiunii date a unui dispozitiv electronic, presupunand existenta unui semnal modulat in latimea impulsurilor de comanda.

Schema electronica a unui modulator de acest tip impune existenta urmatoarelor componente:

- I. Generator de semnal dinte de fierastrau cu frecventa reglabila
- II. Comparator pentru reglarea factorului de umplere
- III. Repetor(Buffer) pentru reglarea domeniului tensiunii de iesire

II. <u>Proiectarea circuitului si schema acestuia:</u>

Schema circuitului:

1) Principiul de functionare:

In componenta circuitului intra 4 amplificatoare TL084, 9 rezistente, 2 diode D1N4448, 2 potentiometre si 2 surse de tensiune pentru alimentare.

Circuitul integrator si comparatorul cu reactie pozitiva determina generarea unui semnal dinte de fierastrau care ulterior este comparat cu o tensiune de referinta variabila. Factorul de umplere poate varia intre 10% si 70%.

2) Semnalul dinte de fierastrau:

La realizarea circuitui am utilizat un integrator si un comparator cu reactie pozitiva, 2 diode, un condensator si 3 rezistente. Cele 2 diode au rolul de a directiona incarcarea si descarcarea condensatorului

(D1→incarca / D2→descarca). Comparatorului U3A genereaza un semnal ce permite incarcarea si descarcarea condensatorului. Generarea semnalului dinte de fierastrau se realizeaza prin descarcare brusca.

Schema circuitului semnal dinte de fierastrau:

III. <u>Determinarea valorilor componentelor:</u>

$$R_4=3k$$

$$T = \left(\frac{1}{f}\right) \implies T = \left(\frac{1}{6}\right) \implies T = 166,66us$$

Incarcare si descarcare setata la 5-95% =>

$$T_1 = \left(\frac{95}{100}\right) * T \Rightarrow T_1 = \left(\frac{95}{100}\right) * 166,66 \Rightarrow T_1 = 158,32us$$

◆Consideram C=3n

$$T_1=2*\left(\frac{R3}{R4}\right)*R*C1 => R_1=T_1*\left(\frac{1}{2}\right)\left(\frac{R4}{R3}\right)\left(\frac{1}{C1}\right) => R=26,38k => R_1=27k(val. standard)$$

$$T_2 = \left(\frac{5}{100}\right) * T = T_2 = \left(\frac{5}{100}\right) * 166,66 \Rightarrow \underline{T_2} = 8.33us$$

R₁= T₂*
$$\left(\frac{1}{2}\right)\left(\frac{R4}{R3}\right)\left(\frac{1}{C1}\right) => R_2=1.388k => \frac{R_2=1,3k \text{ (val.standard)}}{R_1=1.388k}$$

Folosind analiza tranzitorie am masurat tensiunile:

$$V_{max} = 9.3$$
 $V_{min} = -13.1$

Calculam tensiunea de referinta:

$$\left(\frac{Vref-Vmin}{Vmax-Vmin}\right) = (1-D)$$
; unde D cuprins intre 10-70%

$$\left(\frac{Vref+13,1}{9,3+13,1}\right) = (1-D) \Rightarrow Vref pentru 10\% = 6,8$$

Vref pentru 70% =-6,4

Dimensionarea rezistentelor:

●Consideram P₁=10k

=> Vref.min=
$$\left(\frac{R6}{P+R6+R7}\right) * 2 * Val - Val$$

=> Vref.max= $\left(\frac{R6+P}{P+R6+R7}\right) * 2 * Val - Val$

●Consideram P2=10k

$$A_1 = A_{min} = 3.5$$
 $A_2 = A_{max} = 11$

$$A_2 = A_{max} = 11$$

Vo.generator= 11,9

A1=
$$\left(\frac{R8}{P+R8+R10}\right)$$
*Vo.generator
A2= $\left(\frac{R8+P}{P+R8+R10}\right)$ *Vo.generator

$$=> R_8 = 4,86 => R_8 = 4,7k \text{ (val. standard)}$$

Analize efectuate si interpretarea acestora: IV.

1) Realizarea analizei in timp:

Semnal dinte de fierastrau:

Variatia amplitudinii 3,5-11

2) Realizarea analizei parametrice:

Aceasta tip de analiza reliefeaza cum influenteaza potentiometrele circuitul. Ca parametri pentru potentiometrele P1, respectiv P2 au fost alesi pot1/pot2.

PARAMETERS:

pot1 = 0

pot2 = 0

Analiza parametrica face observabila variatia potentiometrului P1, precum si limitele factorului de umplere (10-70%).

Limitele factorului de umplere: 10% - 70% (graficul de sus)/ Semnalul PWM in timp ce pot1 variaza(graficul de jos)

Setarile analizei parametrice pentru pot2:

Limitele amplitudinii: 3.5-11 (graficul de sus)/ Semnalul PWM in timp ce pot2 variaza(graficul de jos)

3) Realizarea analizei Monte Carlo:

Setarile analizei Monte Carlo:

Histograma atesta procentul in care amplitudinea si factorul de umplere se schimba in functie de componentele circuitului (rezistentele cu toleranta 5% si condensatorul cu toleranta 10%) iau anumite valori:

4) Realizarea analizei Worst-case:

Graficul surprinde modul in care circuitul se comporta atat pentru valori standard ale rezistentelor(verde) cat si in caz defavorabil(rosu) fiind influentate de tolerante.

Prezentarea foilor de catalog: V.

1) Foile de catalog:

TL084 TL084A - TL084B

GENERAL PURPOSEJ-FET QUAD OPERATIONAL AMPLIFIERS

- WIDE COMMON-MODE (UP TO VocT) AND DIFFERENTIAL VOLTAGE RANGE
 LOW INPUT BIAS AND OFFSET CURRENT
 OUTPUT SHORT-CIRCUIT PROTECTION
 HIGH INPUT IMPEDANCE J-FET INPUT STAGE
 INTERNAL ERECUIPMON CONTRAINS.

- INTERNAL FREQUENCY COMPENSATION
 LATCH UP FREE OPERATION
 HIGH SLEW RATE: 16V/us (typ)

DESCRIPTION

The TL084, TL084A and TL084B are high speed J-FET input quad operational amplifiers incorporating well matched, high voltage J-FET and bipolar transistors in a monolithic integrated direuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

ORDER CODES

Part Number	Temperature	Package				
Fait Hallibei	Range	N	D	P		
TL084M/AM/BM	–55°C, +125°C	•	•	•		
TL084I/AI/BI	-40°C, +105°C	•	•	•		
TL084C/AC/BC 0°C, +70°C			-	-		
Examples: TL084CN, TL084CD						

PIN CONNECTIONS (top view)

January 1999 1/11

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage		-	100	V
V _R	continuous reverse voltage		-	100	V
I _F	continuous forward current	see Fig.2; note 1	-	200	mA
I _{FRM}	repetitive peak forward current		-	450	mA
I _{FSM}	non-repetitive peak forward current	square wave; T _j = 25 °C prior to surge; see Fig.4			
		t = 1 μs	-	4	Α
		t = 1 ms	_	1	Α
		t = 1 s	_	0.5	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C; note 1	-	500	mW
T _{stg}	storage temperature		-65	+200	°C
Tj	junction temperature		-	200	°C

Note

1. Device mounted on an FR4 printed-circuit board; lead length 10 mm.

ELECTRICAL CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _F	forward voltage	see Fig.3			
	1N4148	I _F = 10 mA	-	1	V
	1N4448	I _F = 5 mA	0.62	0.72	V
		I _F = 100 mA	_	1	V
I _R	reverse current	V _R = 20 V; see Fig.5		25	nA
		$V_R = 20 \text{ V}; T_j = 150 ^{\circ}\text{C}; \text{ see Fig.5}$	-	50	μА
I _R	reverse current; 1N4448	$V_R = 20 \text{ V}; T_j = 100 ^{\circ}\text{C}; \text{ see Fig.5}$	-	3	μА
C _d	diode capacitance	f = 1 MHz; V _R = 0 V; see Fig.6	-	4	pF
t _{rr}	reverse recovery time	when switched from I_F = 10 mA to I_R = 60 mA; R_L = 100 Ω ; measured at I_R = 1 mA; see Fig.7	-	4	ns
V _{fr}	forward recovery voltage	when switched from I_F = 50 mA; t_r = 20 ns; see Fig.8	-	2.5	V

2) Lista valorilor standard:

Componente folosite:

R1=27k; R8=4,7k; R2=1.3k; R10=2k; R3=2k; R11=1k; R4=3k; C=3n; R6=7,5k; TL084 R7=6,8k;

		Standard	Resistor V	Values (±5	%)	
1.0	10	100	1.0K	10K	100K	1.0M
1.1	11	110	1.1K	11K	110K	1.1M
1.2	12	120	1.2K	12K	120K	1.2M
1.3	13	130	1.3K	13K	130K	1.3M
1.5	15	150	1.5K	15K	150K	1.5M
1.6	16	160	1.6K	16K	160K	1.6M
1.8	18	180	1.8K	18K	180K	1.8M
2.0	20	200	2.0K	20K	200K	2.0M
2.2	22	220	2.2K	22K	220K	2.2M
2.4	24	240	2.4K	24K	240K	2.4M
2.7	27	270	2.7K	27K	270K	2.7M
3.0	30	300	3.0K	30K	300K	3.0M
3.3	33	330	3.3K	33K	330K	3.3M
3.6	36	360	3.6K	36K	360K	3.6M
3.9	39	390	3.9K	39K	390K	3.9M
4.3	43	430	4.3K	43K	430K	4.3M
4.7	47	470	4.7K	47K	470K	4.7M
5.1	51	510	5.1K	51K	510K	5.1M
5.6	56	560	5.6K	56K	560K	5.6M
6.2	62	620	6.2K	62K	620K	6.2M
6.8	68	680	6.8K	68K	680K	6.8M
7.5	75	750	7.5K	75K	750K	7.5M
8.2	82	820	8.2K	82K	820K	8.2M
9.1	91	910	9.1K	91K	910K	9.1M

Standard Capacitor Values (±10%)						
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10μF
12pF	120pF	1200pF	.012µF	.12µF	1.2µF	
15pF	150pF	1500pF	.015µF	.15µF	1.5µF	
18pF	180pF	1800pF	.018µF	.18µF	1.8µF	
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22μF
27pF	270pF	2700pF	.027µF	.27µF	2.7µF	
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33μF
39pF	390pF	3900pF	.039µF	.39µF	3.9µF	
47pF	470pF	4700pF	.047µF	.47μF	4.7µF	47uF
56pF	560pF	5600pF	.056µF	.56µF	5.6µF	
68pF	680pF	6800pF	.068µF	.68µF	6.8µF	
82pF	820pF	8200pF	.082µF	.82μF	8.2µF	

TL084 TL084A - TL084B

GENERAL PURPOSEJ-FET QUAD OPERATIONAL AMPLIFIERS

- WIDE COMMON-MODE (UP TO Voo") AND DIFFERENTIAL VOLTAGE RANGE
 LOW INPUT BIAS AND OFFSET CURRENT
 OUTPUT SHORT-CIRCUIT PROTECTION
 HIGH INPUT IMPEDANCE J-FET INPUT STAGE
 INTERNAL FREQUENCY COMPENSATION
 LATCH UP FREE OPERATION
 HIGH SLEWRATE: 16V/ys (typ)

DESCRIPTION

The TL084, TL084A and TL084B are high speed J-FET input quad operational amplifiers incorporating well matched, high voltage J-FET and bipolar transis-tors in a monolithic integrated dicuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

ORDER CODES

Part Number	Temperature Packa			ge	
rait Hallibei	Range	N D			
TL084M/AM/BM	–55°C, +125°C		•	•	
TL084I/AI/BI	-40°C, +105°C		•	•	
TL084C/AC/BC 0°C, +70°C			-	-	
Examples: TL084CN, TL084CD					

PIN CONNECTIONS (top view)

January 1999

Bibliografia: VI.

- http://www.bel.utcluj.ro/dce/didactic/cef/cef.htm
- http://www.bel.utcluj.ro/dce/didactic/de/de.htm
- •Indrumator Proiectare Asistata de Calculator Ovidiu Pop, Raul Fizesan, Gabriel Chindris
- https://www.youtube.com/user/FlowCAD