

Modelo OSI/ISO – Protocolos de Comunicação

IoT para Sistemas Embarcados

Departamento de Engenharia de Controle e Automação Instituto de Ciência e Tecnologia – UNESP – Campus Sorocaba

Prof. Dr. Dhiego Fernandes Carvalho

dhiego.fernandes@unesp.br

Objetivos

- 1. Explicar a história da Internet
- 2. Compreender o Conceito de Internet das Coisas (IoT)
- 3. Entender o que é e para que serve o modelo OSI/ISO
- 4. Relacionar Protocolos comumente usados no IoT com o Modelo OSI
 - 1. Associar cada protocolo IoT (WiFi, Bluetooth, LoRaWAN, NB-IoT, MQTT, HTTP/HTTPS) à camada correspondente no modelo OSI.

Índice

- História da Internet
- Internet das Coisas
- Modelo OSI/ISO
 - Camada Física
 - Camada de Enlace
 - Camada de Rede
 - Camada de Transporte
 - Camada de Sessão
 - Camada de Apresentação
 - Camada de Aplicação
- Conclusões

História da Internet

História da Internet

Internet das Coisas

Internet das Coisas

 Pode-se resumir Internet das Coisas como: <u>tudo está</u> <u>conectado a qualquer coisa,</u> <u>em qualquer lugar e usando</u> <u>qualquer meio.</u>

 O modelo OSI (Open Systems Interconnection) é um modelo de referência para redes de computadores desenvolvido pela ISO (International Organization for Standardization).

PDU	MODELO OSI	PROTOCOLOS
DADOS	APLICAÇÃO	HTTP, SMTP, FTP
DADOS	APRESENTAÇÃO	ASCCI, MPEG, JPEG
DADOS	SESSÃO	SSH, SAP, SDP
SEGMENTO	TRANSPORTE	TCP, UDP, SPX
PACOTE	REDE	IP, IPX, ICMP
FRAME	ENLACE	ETHERNET, FDDI
BITS	FÍSICA	MODEM, CABO DE REDE

Por que foi criado o modelo OSI/ISO?

R - Padronização e Interoperabilidade

- Os protocolos IP e TCP foram criados antes do modelo OSI.
- Por isso existe um modelo TCP/IP.
- O modelo OSI é um padrão mais abstrato, enquanto que o TCP/IP é mais prático.

Comunicação entre as camadas do modelo OSI/ISO

Modelo OSI

- A Camada Física é responsável por:
 - Transmissão e recepção.
 - Especificações do meio físico e interface física.
 - Sinais, Codificação e Sincronização de bits
 - Taxa de transmissão.

- A camada física tem como meios físico de transmissão os cabeados e sem fio.
- O loT usa como transmissão predominante o meio físico sem fio (mobilidade, tamanho, dispersão, área etc.).

Modelo OSI

Na camada física existem três tipos de transmissão que são: simplex,
 Half-Duplex e Full-Duplex.

Transmissão de Rádio ou TV

Ethernet usando hub ou cabo coaxial

Transmissão Ethernet usando switch/roteador

- A camada de Enlace é responsável por:
 - Controle de Acesso ao Meio (MAC).
 - Endereçamento de Enlace de Dados.
 - Formatação
 Encapsulamento de Dados.
 - Detecção e Controle de Erros
 - Sequenciamento e Controle de Fluxo.

- É na camada de enlace que se encontram os protocolos Ethernet (IEEE 802.3), WiFi (IEEE 802.11), NB-IoT, Bluetooth, LoRaWAN etc.
- Esses protocolos também definem os padrões de acesso ao meio.

TCP/IP Model

Application Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Transport Layer

Network Layer

Internet Layer

Data Link Layer

Physical Layer

Network Access Layer

- A comunicação na mesma rede é usado apenas a camada física e de enlace do modelo OSI/ISO.
- Neste caso são usados apenas switches ou access points sem fio.

- A camada de Rede é a terceira camada do modelo OSI/ISO.
- Responsável por transmitir datagramas em diferentes redes.
- O protocolo usado na camada de rede é o Internet Protocol (IP – IPv4 e IPv6).

TCP/IP Model		Protocols and Services	OSI Model	
			Application	7
	Application	HTTP, HTTPS, FTP, DHCP, PNG	Presentation	6
			Session	5
	Transport	TCP, UDP	Transport	4
	Internet	IP, ARP, ICMP	Network	3
	Link	Ethernet, Wi-Fi	Datalink	2
	LITIK	Euleillet, Wi-Fi	Physical	1

- A camada de Rede é responsável por:
 - Interconexão de redes.
 - Controle de congestionamento.
 - Endereçamento das redes lógicas.
 - Roteamento de pacotes.
 - Segmentação e Reagrupação.

O roteador conecta redes diferentes

- A camada de Transporte é a quarta camada do modelo OSI/ISO.
- Responsável pela comunicação fim-a-fim entre dispositivos.

- Camda de Transporte é Responsável por:
 - Controle de fluxo e congestionamento.
 - Controle de sequência e de erros.
 - Multiplexação (portas)
 - Controle de conexão.
 - Segmentação e Blocagem.

Modelo OSI

Os dois protocolos principais da camada de Transporte são o UDP e TCP.

ТСР	UDP	
Reliable	Unreliable	
Connection-oriented	Connectionless	
Segment retransmission and flow control through windowing	No windowing or retransmission	
Segment sequencing	No sequencing	
Acknowledge segments	No acknowledgement	

- A camada de Sessão é a quinta camada do modelo OSI/ISO. (normalmente abstraída na camada de aplicação).
- Usada para controle de sessão (diálogo entre uma aplicação entre dois dispositivos diferentes).

- A camada de Apresentação é a sexta camada do modelo OSI/ISO (normalmente abstraída na camada de aplicação).
- Tem como função: criptografia, a tradução, formatação e compressão de dados.

- A sétima camada do modelo OSI/ISO.
- Camada que se encontra os serviços de rede utilizados pelos usuários finais.

- O HTTP e HTTPS, portas 80 e 443, são exemplos de protocolos da camada de aplicação.
- Os protocolos HTTP e HTTPS são usados para comunicação dispositivos IoT à nuvem.

- O MQTT (porta 1883) é outro protocolo de aplicação.
- O MQTT É muito usado na comunicação à nuvem de dispositivos IoT.

Conclusões

- Nessa aula foi dado uma breve explanação sobre a história da Internet.
- Foi ensinado o que é Internet das Coisas
- Foi visto o que é o Modelo OSI da ISO e suas camadas.
- Foi ensinado os principais protocolos IoT e onde eles estão situados no modelo OSI/ISSO.
- A partir dessa aula é possível entender de maneira geral como é realizada a comunicação na internet, podendo assim iniciar algumas atividades práticas da disciplina.

DÚVIDAS?

Exercícios

- Baixe o programa Wireshark.
- Verifique se o computador está conectado à internet e inicie a captura de dados usando a interface conectada à internet (WiFi ou Ethernet).
- A partir da captura, verifique como os protocolos se comportam, além de entender onde cada protocolo atua no modelo OSI/ISO.
- Baixe o programa <u>Cisco Packet Tracer</u>. Vai ser necessário criar uma conta para fazê-lo.
- Pesquise manuais na internet para aprender a manusear o Packet Tracer.
- Comece a criar redes no Packet Tracer, veja como os pacotes são transmitidos entre os dispositivos de rede.