

CSCI6917: Guided Research Methods

Summer 2023

Stephen H. Kaisler, D.Sc. (GWU) Jamaladdin Hasanov, Ph.D. (ADA)

Exploring Class Imbalance Solutions: Investigating the Effectiveness of Data Balancing Techniques on Model Performance

Student: **Shamil Shukurov**

Project Objective

Purpose of this project is to answer to following questions:

- How different balancing techniques affects model performance?
- When we need to balance our data?
- Do we even need balancing?
- How balancing affects generalization capability of model?
- Which balancing techniques are effective?

In total, 96 models were built with 5 different balancing techniques and 1 baseline model.

Project Objective

How is it done today?

- Basic data balancing techniques (upsampling, downsampling, SMOTE) are commonly used to address class imbalance.
- However, the effectiveness of these techniques is often based on trial and error rather than a comprehensive evaluation.

What is new?

 Insights on technique effectiveness, class imbalance percentage impact, and overfitting risks.

Who will benefit from the work? Why?

- Researchers and practitioners dealing with imbalanced datasets.
- Practical guidance for selecting appropriate balancing techniques and utilizing LightGBM's built-in balancing.
- Informed decisions to enhance model performance in real-world applications efficiently.

Project Objective

- Comprehensive Evaluation with Real and Synthetic Datasets
- Focus on Class Imbalance Percent
- Focus on Class Imbalance Percent
- LightGBM's Built-in Balancing Advantages

Technical Approach

- Collection of Data
- **Data Preprocessing**
- **Building Baseline Model**
- Applying Balancing techniques to the data
 - Upsampling
 - Downsampling
 - **SMOTE**
 - BalancedBaggingClassifier
 - Algorithm built-in balancing
- Analyze model results:
 - F1-Score
 - AUC

Downsample and Upsample

Technical Approach: Data

- During the research 13 different imbalanced datasets collected
- Different minority class percentages will show how balancing techniques performs in different degrees of imbalance
- Applied preprocessing steps:
 - Redefining target if needed
 - Encoding the categorical variables
 - Correcting type inconsistencies
 - Imputing missing values if needed

Dataset_Name	Row_Count	Minority_Class_Percent		Target_Column
Fraud	284807		0.172	Class
Fraud2	250000		0.5	is_fraud
Wine	6497		3.76	target
Letter-a	20000		3.94	letter_a
Abalone	1477		4.52	target
Pendigits	10992		9.59	is_9
Sick_euthyroid	2194		10.05	target
Covertype	581012		14.77	target
Letter-vowel	20000		19.39	is_vowel
Contraceptive	1743		22.6	target
Splice-junction	3186		24.07	target
Adult	32561		24.08	target
Churn	7043		26.53	target

Technical Approach: Data

- Problems in collected datasets:
 - Easier classification problems
 - Size of datasets
 - Nature of the data affects metrics
- Additional synthetic data generated:
 - Class distribution: 30%/70%
- By taking samples from this dataset, 5 more datasets generated

```
X, y =
make_classification(
    n_samples=200000,
    n_features=10,
    n_informative=7,
    n_classes=2,
    random_state=42,
    weights=[0.7,0.3],
    hypercube=False,
    class_sep=0.01,
    flip_y=0.15
)
```

Dataset	Minority_Class		
Synthetic	0.3		
Synthetic_20	0.2		
Synthetic_10	0.1		
Synthetic-5	0.05		
Synthetic-1	0.01		
Synthetic-0.5	0.005		

Technical Approach: Model

LightGBM is a gradient boosting framework that utilizes a tree-based learning algorithm to construct powerful ensemble models. It offers several advantages that make it well-suited for imbalanced classification tasks.

Why LightGBM?

- Built-in imbalance technique
- Doesn't need a lot of preprocessing
- Boosting models generally performs better

Models:

- LGBM Baseline
- LGBM Upsample
- LGBM Downsample
- SMOTE LGBM
- LGBM Balanced Bagging
- LGBM_Imbalance

Results: F1-Scores on test data

Results: Overfitting

Results: Overfitting

Results

Conclusion

- When working with imbalanced dataset always build baseline model without any balancing technique
- We observed that balancing techniques are not very effective with class imbalance percent > 10%
- Some balancing techniques, especially downsampling, SMOTE and upsampling can cause overfitting
- LGBM's built-in balancing generalizes data better than above techniques

Future Work

- Extending research with:
 - More broad datasets
 - More balancing techniques
 - Tests on different algorithms
- · Calibrating models trained on balanced data
- Explaining mathematically reasons behind conclusions

Any Questions?