Data-driven approaches - Lecture 2

Alexey Sidney, 2020.09.23

Administrative

- 1. Tutorial progress: https://forms.gle/k1iZT23QqdHyuPCE7
- 2. Practice?

Task 1 - MNIST classifier

Handwritten digits between 0 and 9: 28×28 pixel grayscale images

Task 1 - MNIST classifier

- 1. The MNIST database of handwritten digits: http://yann.lecun.com/exdb/mnist/
- 2. MNIST in CSV: https://www.kaggle.com/oddrationale/mnist-in-csv
- Google Colab: https://colab.research.google.com/drive/1rIPS5wCjcE-EhJBBKYzzsQB7ZLgm
 <a href="https://colab.research.google.com/drive/1rIPS5wcjcE-EhJBB
- 4. kNN: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
- 5. Deadline: **23:59 07.10.2020**
- 6. Competition:
 - a. Features?
 - b. Distance function?

Why data-driven approach?

Data-driven approaches

Machine Learning:

- 1. Collect a dataset of features and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new dataset

kNN: k-nearest neighbors

Training data with labels

query data

Distance Metric

 $\to \mathbb{R}$

CIFAR-10 and kNN

kNN

- Distance metrics on pixels are not informative
- Very slow at test time

From CS231n

Setting Hyperparameters

Your Dataset

train test

Setting Hyperparameters

Your Dataset

Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Linear Classifier (2)

Linear Classifier: Example

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)