# Lecture 12: One-Way Analysis of Variance (Anova) & Rank Correlation

Applied Statistics - STAN - 5.37 & 5.38 19 & 21 January 2021 Lecturer: Erika Siregar, SST, MS

## **ANOVA**

#### **About Anova**

- Previous chapter: Comparing the means from two independent samples
- How about: comparing three or more population means? → ANOVA
- Anova → a hypothesis test to determine if the means of several population are the same or not.
- Anova works by analyzing <u>sample variances</u> based on one treatment (or factor), which is a characteristic that allows us to distinguish the different populations from one another → karakter pembeda kelompok populasi/sampel
  - One-way → based on 1 characteristic/variable
  - $\circ$  Two-way  $\rightarrow$  based on 2 characteristics/variables  $\rightarrow$  not covered in this course.
  - $\circ$  Manova  $\rightarrow$  >2 characteristics/variable  $\rightarrow$  not covered in this course.
- What is characteristics?
  - The distinguisher
  - Anova → works with > 1 sample group
  - There must be a certain **characteristics** that make each group is different from another.

| Group (Party ID) | Political Ideology |    |    |    |    |    |   | n   | Mean | SD   |
|------------------|--------------------|----|----|----|----|----|---|-----|------|------|
|                  | 1                  | 2  | 3  | 4  | 5  | 6  | 7 |     |      |      |
| Democrat         | 9                  | 20 | 17 | 36 | 4  | 5  | 0 | 91  | 3.23 | 1.28 |
| Independent      | 7                  | 11 | 17 | 48 | 12 | 11 | 5 | 111 | 3.90 | 1.43 |
| Republican       | 0                  | 2  | 7  | 23 | 23 | 17 | 2 | 74  | 4.70 | 1.10 |

|    | fertilizer | weight |
|----|------------|--------|
| 1  | None       | 55     |
| 2  | None       | 45     |
| 3  | None       | 46     |
| 4  | Biological | 64     |
| 5  | Biological | 52     |
| 6  | Biological | 42     |
| 7  | Chemical   | 65     |
| 8  | Chemical   | 51     |
| 9  | Chemical   | 66     |
| 10 | Chemical   | 55     |

| A  | А         | В        | С       |
|----|-----------|----------|---------|
| 1  | economics | medicine | history |
| 2  | 42        | 69       | 35      |
| 3  | 53        | 54       | 40      |
| 4  | 49        | 58       | 53      |
| 5  | 53        | 64       | 42      |
| 6  | 43        | 64       | 50      |
| 7  | 44        | 55       | 39      |
| 8  | 45        | 56       | 55      |
| 9  | 52        |          | 39      |
| 10 | 54        |          | 40      |
| 11 |           |          |         |

#### How to do Anova Test?

- Same steps as the other hypothesis tests.
- Hypothesis:

H0:  $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$ .

H1: At least one mean is different → right-tailed test

- Test statistics
  - Anova → comparing variance between samples and variance within samples
  - Comparing 2 variances == F distribution → refer back to slide <u>lecture 09 (p.22)</u>.



Df??

- Compute the p-value
- Decision:
  - Reject H0  $\rightarrow$  p-value ...  $\alpha$
  - Reject H0 → test statistics ... critical value



## Why is Anova right-tailed?

$$F = \frac{\text{variance between samples}}{\text{variance within samples}}$$

- Goals: membuktikan bahwa semua μ sama.
- Jika semua µ sama, maka variance between samples akan semakin [besar/kecil]?
- Semakin berbeda nilai µ dari masing-masing kelompok →
   variance between samples akan semakin [besar/kecil]? →
   berakibat pada nilai test statistics F akan semakin
   [besar/kecil]?
- But how big is big enough?
  - Tidak semua nilai F besar akan otomatis kita tolak →
    mesti membuat standar penolakan → tetapkan α
  - Tolak H0 jika F terlalu besar sehingga jatuh di wilayah yang tidak bisa kita tolerir lagi → wilayah α (critical region) → So, it's intuitive to think that Anova must be a right-tailed test.
- Karena right-tailed → >> test statistics F → p-value akan semakin [besar/kecil]?
- α =5% in right-tailed test means we'll still tolerate anything that falls in the area between 0 0.95 and reject anything falls after 0.95. → critical region is on the right side.



#### Example 1 (Manual Way)



$$F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{\left[\frac{\sum n_i (\bar{x}_i - \bar{x})^2}{k - 1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)}\right]}$$

For cases with unequal sample sizes → calculation is complicated → better use technology.

#### Example 2 (Using Technology)

Use the chest deceleration measurements listed in Table 12-1 and a significance level of 0.05 to test the claim that the three samples come from populations with means that are all equal.

| Table 12-1  | Chest De | ecele | ration | n Mea | sure | ment | s (in | g) fr | om C | ar Cra | sh Tests                                |
|-------------|----------|-------|--------|-------|------|------|-------|-------|------|--------|-----------------------------------------|
| Small Cars  | 44       | 43    | 44     | 54    | 38   | 43   | 42    | 45    | 44   | 50     | $\rightarrow \bar{x} = 44.7 \mathrm{g}$ |
| Medium Cars | 41       | 49    | 43     | 41    | 47   | 42   | 37    | 43    | 44   | 34     | $\rightarrow \bar{x} = 42.1 \mathrm{g}$ |
| Large Cars  | 32       | 37    | 38     | 45    | 37   | 33   | 38    | 45    | 43   | 42     | $\rightarrow \bar{x} = 39.0 \mathrm{g}$ |

Warning
Dengan menggunakan technology
(e.g. R) tabel ini harus di reformat

menjadi format panjang ke bawah

H0:  $\mu$ 1 =  $\mu$ 2 =  $\mu$ 3 = . . . =  $\mu$ k.

H1: At least one mean is different

```
> aov(value ~ gathercols, data = chest2)
Call:
   aov(formula = value ~ gathercols, data = chest2)
Terms:
               gathercols Residuals
                  162.8667 537.0000
Sum of Squares
Deg. of Freedom
Residual standard error: 4.459696
Estimated effects may be unbalanced
> chest_aov <- aov(value ~ gathercols, data = chest2)</pre>
> summary(chest aov)
           Df Sum Sq Mean Sq F value Pr(>F)
gathercols 2 162.9 81.43
                               4.094 (0.028 *
Residuals 27 537.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- P-value of 0.028 < 0.05, we REJECT the null hypothesis of equal means.
- There is sufficient evidence to do not support the claim that the three samples come from populations with means that are all equal.
- Interpretation? → clue: check the data summary (use R, if necessary).

#### Dissecting F formula





Formula 12-8
$$F = \frac{MS \text{ (treatment)}}{MS \text{ (error)}}$$

**MS**(treatment) is a mean square for treatment, obtained as follows:

Formula 12-5
$$MS(\text{treatment}) = \frac{SS \text{ (treatment)}}{k-1}$$

**MS(error)** is a mean square for error, obtained as follows:

Formula 12-6
$$MS(error) = \frac{SS (error)}{N-k}$$

**MS(total)** is a mean square for the total variation, obtained as follows:

Formula 12-7
$$MS(total) = \frac{SS(total)}{N-1}$$

#### Identifying Means That Are Different

Informal methods for comparing means

- Use the same scale for constructing **boxplots** of the data sets to see if one or more of the data sets are very different from the others.
- 2. Construct confidence interval estimates of the means from the data sets, then compare those confidence intervals to see if one or more of them do not overlap with the others.

## Rank Correlation

#### Rank correlation test

- The rank correlation test (or Spearman's rank correlation test) is a non-parametric test that uses ranks of sample data consisting of matched pairs.
  - It is used to test for an association between two variables.
  - Data values must be converted into ranks → Bedanya dengan correlation biasa?

| Table 10-2         | Calculating r      |           | Overvall        | O. valib. | _ |   | 1 | 7 |   |   | 7 |   |
|--------------------|--------------------|-----------|-----------------|-----------|---|---|---|---|---|---|---|---|
| x (Shoe Print)     | y (Height)         |           | Overall Quality |           | 8 | 2 |   |   | 5 | 4 | 3 | 6 |
| 29.7               | 175.3              |           | Selectiv        | rity Rank | 2 | 6 | 8 | 1 | 4 | 3 | 7 | 5 |
| 29.7               | 177.8              | ,         |                 |           |   |   |   |   |   |   |   |   |
| 31.4               | 185.4              | Konversi  | shoe            |           |   |   |   |   |   |   |   |   |
| 31.8               | 175.3              | jadi rank | height          |           |   |   |   |   |   |   |   |   |
| 27.6               | 172.7              |           | Height          |           |   |   |   |   |   |   |   |   |
| $\Sigma x = 150.2$ | $\Sigma y = 886.5$ |           |                 |           |   |   |   |   |   |   |   |   |

- Rank correlation can be used to detect some (not all) relationships that are not linear.
- How to test? → Hypothesis Test

## Hypothesis Test for Rank Correlation

#### Steps

1. Hypothesis:

$$H_0$$
:  $\rho_s = 0$  (There is no correlation between the two variables.)

$$H_1$$
:  $\rho_s \neq 0$  (There is a correlation between the two variables.)

- Convert the data into ranks
- 3. Compute the test statistics

| Physics | Rank | Math | Rank |
|---------|------|------|------|
| 35      | 3    | 30   | .5   |
| 23      | 5    | 33   | 3    |
| 47      | 1    | 45   | 2    |
| 17      | 6    | 23   | 6    |
| 10      | 7    | 8    | 8    |
| 43      | 2    | 49   | 1    |
| 9       | 8    | 12   | 7    |
| 6       | 9    | 4    | 9    |
| 28      | 4    | 31   | 4    |

$$r_{\rm s} = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

Note:

d = **difference between ranks** for the two values within a pair

Marks in

Commerce (X)

15

20

28

12

40

60

20

80

or

$$r_s = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2} \sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$$



Rank  $(R_{ij})$ 

3.5

5

6

7

3.5

8

If there are ties among the ranks in a variable

Marks in

Mathematics (Y)

30

50

30

20

10

30

60

Rank  $(R_{2})$ 

6

4

2

4

8

## Hypothesis Test for Rank Correlation

#### Steps

- Critical values
  - If  $n \le 30$ , critical values are found in Table A-6 (p.589)
  - If n > 30, use Formula:

$$r_{\rm s} = \frac{\pm z}{\sqrt{n-1}}$$

#### Notes:

the value of z corresponds to the significance level. For example, if  $\alpha = 0.05 \rightarrow$  $z = qnorm(\alpha/2) = 1.96.$ 



- 5. Make decision:
  - Reject H0 if the test statistics does not lie between the critical values interval. Reject H0 if the p-value  $< \alpha \rightarrow$  using technology

### Steps







#### Example (no ties)

Table 13-1 lists **overall quality scores** and **selectivity rankings** of a sample of **national universities** (based on data from U.S. News and World Report). Find the value of the rank correlation coefficient and use it to determine **whether there is a correlation between the overall quality scores and the selectivity rankings**. Use a **0.05 significance level**. Based on the result, does it appear that national universities with higher overall quality scores are more difficult to get into?

| Table 13-1 Overall Quality Scores and Selectivity Ranks |        |        |    |    |    |    |    |    |
|---------------------------------------------------------|--------|--------|----|----|----|----|----|----|
| of National U                                           | nivers | sities |    |    |    |    |    |    |
| Overall quality                                         | 95     | 63     | 55 | 90 | 74 | 70 | 69 | 86 |
| Selectivity rank                                        | 2      | 6      | 8  | 1  | 4  | 3  | 7  | 5  |
| ociccityity falls                                       |        | 0      | U  | 1  | 1  | 3  | /  | ,  |

neither variable has ties in the ranks

Answer:

$$H_0$$
:  $\rho_s = 0$   $H_1$ :  $\rho_s \neq 0$ 

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6(156)}{8(8^2 - 1)}$$

$$=1 - \frac{936}{504} = -0.857$$

$$\alpha$$
 =0.05, n = 8  $\rightarrow$  critical value =  $\pm$  0.738

Because the test statistic of rs = -0.857 is **not between the critical values** of **-0.738 and 0.738**, we **reject** the null hypothesis.

There is **sufficient evidence** to support a claim of a **correlation between overall quality score and selectivity ranking**. It appears that **Universities with higher quality** scores are **more selective** and are more difficult to get into.

## Example (with ties)

Below is the data of ranks and costs of LCD TV. Find the value of the rank correlation coefficient to determine if there is a correlation between quality and price. (sig. Level = 0.05)

| quality_rank | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|--------------|----|----|----|----|----|----|----|----|----|----|
| cost         | 23 | 50 | 23 | 20 | 32 | 25 | 14 | 16 | 40 | 22 |

#### **Answer:**

$$H_0: \rho_s = 0$$
  $H_1: \rho_s \neq 0$ 

| quality_rank | cost | qrank | cost_rank | ху   | x2  | y2    |
|--------------|------|-------|-----------|------|-----|-------|
| 1            | 23   | 1     | 5.5       | 5.5  | 1   | 30.25 |
| 2            | 50   | 2     | 10        | 20   | 4   | 100   |
| 3            | 23   | 3     | 5.5       | 16.5 | 9   | 30.25 |
| 4            | 20   | 4     | 3         | 12   | 16  | 9     |
| 5            | 32   | 5     | 8         | 40   | 25  | 64    |
| 6            | 25   | 6     | 7         | 42   | 36  | 49    |
| 7            | 14   | 7     | 1         | 7    | 49  | 1     |
| 8            | 16   | 8     | 2         | 16   | 64  | 4     |
| 9            | 40   | 9     | 9         | 81   | 81  | 81    |
| 10           | 22   | 10    | 4         | 40   | 100 | 16    |
| 55           | 265  | 55    | 55        | 280  | 385 | 384.5 |

$$r_{s} = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^{2}) - (\Sigma x)^{2}} \sqrt{n(\Sigma y^{2}) - (\Sigma y)^{2}}}$$

#### Exercise ( $\alpha = 5\%$ )

- Dengan menggunakan data "IQ and Lead" (iqlead.csv), lakukanlah uji satu arah anova untuk membuktikan bahwa ketiga kelompok 'blood lead level' memiliki rata-rata yang sama. Gunakan cara manual dan R. Apakah bisa menggunakan cara manual?
- 2. Dengan menggunakan data english (english.csv), lakukanlah uji korelasi rank dengan cara menghitung manual. Lakukan juga dengan R, dan lihat bagaimana perbedaan hasilnya.
- 3. Dengan menggunakan data cigarette (cigar.xlsx), lakukanlah uji korelasi rank dengan cara menghitung manual. Lakukan juga dengan R, dan lihat bagaimana perbedaan hasilnya.
- 4. Dengan menggunakan data tentang daya tahan jam (watch.xlsx), lakukanlah uji satu arah anova untuk membuktikan bahwa ketiga merk jam memiliki rata-rata yang sama. Gunakan cara manual dan R. Apakah bisa menggunakan cara manual?

| merk | daya_tahan_jam |     |     |     |     |  |  |  |  |  |
|------|----------------|-----|-----|-----|-----|--|--|--|--|--|
| Α    | 250            | 224 | 252 | 230 | 240 |  |  |  |  |  |
| В    | 251            | 243 | 260 | 253 | 263 |  |  |  |  |  |
| С    | 253            | 242 | 259 | 252 | 259 |  |  |  |  |  |

#### GCR

Tulis hal apa yang kamu belum paham (konsep & teori) dan berharap bisa dibahas di minggu depan.

# Thanks!

# Any questions?

You can find me at:

@erikaris