Question	Marking Guidance	Mark	Comments
6(a)	Co-ordinate / dative / dative covalent / dative co-ordinate	1	Do not allow covalent alone
6(b)	(lone) pair of electrons on oxygen/O forms co-ordinate bond with Fe / donates electron pair to Fe	1	If co-ordination to O ²⁻ , CE=0 'Pair of electrons on O donated to Fe' scores M1 and M2
6(c)	180° / 180 / 90	1	Allow any angle between 85 and 95 Do not allow 120 or any other incorrect angle Ignore units eg °C
6(d)(i)	3:5/5 FeC ₂ O ₄ reacts with 3 MnO ₄	1	Can be equation showing correct ratio

6(d)(ii)	M1 Moles of MnO ₄ per titration = $22.35 \times 0.0193/1000 = 4.31 \times 10^{-4}$	1	Allow 4.3×10^{-4} (2 sig figs)
O(u)(ii)	· · · · · · · · · · · · · · · · · · ·	'	
	Method marks for each of the next steps (no arithmetic error allowed for M2):		Allow other ratios as follows:
	M2 moles of FeC ₂ O ₄ = ratio from (d)(i) used correctly \times 4.31 \times 10 ⁻⁴		eg from given ratio of 7/3
		1	
		1	$\mathbf{M2} = 7/3 \times 4.31 \times 10^{-4} = 1.006 \times 10^{-3}$
	M4 Mass of $FeC_2O_4.2H_2O = M3$ ans \times 179.8	1	M3 = $1.006 \times 10^{-3} \times 10 = 1.006 \times 10^{-2}$
	M5 % of $FeC_2O_4.2H_2O = (M4 \text{ ans}/1.381) \times 100$	1	M4 = $1.006 \times 10^{-2} \times 179.8 = 1.81 \text{ g}$
	(OR for M4 max moles of $FeC_2O_4.2H_2O = 1.381/179.8 (= 7.68 \times 10^{-3})$		M5 = $1.81 \times 100/1.381 = 131 \%$ (130 to
	for M5 % of $FeC_2O_4.2H_2O = (M3 \text{ ans/above M4ans}) \times 100)$		132)
	eg using correct ratio 5/3:		
	Moles of $FeC_2O_4 = 5/3 \times 4.31 \times 10^{-4} = 7.19 \times 10^{-4}$		Allow consequentially on candidates ratio
	Moles of FeC ₂ O ₄ in 250 cm ³ = $7.19 \times 10^{-4} \times 10 = 7.19 \times 10^{-3}$		eg M2 = $5/2 \times 4.31 \times 10^{-4} = 1.078 \times 10^{-3}$
	Mass of FeC ₂ O ₄ .2H ₂ O = $7.19 \times 10^{-3} \times 179.8 = 1.29 \text{ g}$		M3 = $1.0078 \times 10^{-3} \times 10 = 1.078 \times 10^{-2}$
	% of FeC ₂ O ₄ .2H ₂ O = $1.29 \times 100/1.381 = 93.4$ (allow 92.4 to 94.4)		M4 = $1.078 \times 10^{-2} \times 179.8 = 1.94 \text{ g}$
	Note correct answer (92.4 to 94.4) scores 5 marks		M5 = 1.94 × 100/1.381 = 140 % (139 to 141)
			Other ratios give the following final % values
			1:1 gives 56.1% (55.6 to 56.6)
			5:1 gives 281% (278 to 284)
			5:4 gives 70.2% (69.2 to 71.2)
			,