HPWHsim 1.2.4

Generated by Doxygen 1.8.6

Tue Apr 12 2016 12:02:05

Contents

1	Clas	s Index	s Index 1		
	1.1	Class I	_ist		1
2	Clas	s Docu	mentation		3
	2.1	HPWH	::HeatSou	rce Class Reference	3
		2.1.1	Construc	stor & Destructor Documentation	3
			2.1.1.1	HeatSource	3
		2.1.2	Member	Function Documentation	3
			2.1.2.1	addHeat	3
			2.1.2.2	disengageHeatSource	4
			2.1.2.3	engageHeatSource	4
			2.1.2.4	isEngaged	4
			2.1.2.5	setCondensity	4
			2.1.2.6	setupAsResistiveElement	4
			2.1.2.7	shouldHeat	4
			2.1.2.8	shutsOff	4
	2.2	HPWH	Class Re	ference	4
		2.2.1	Detailed	Description	6
		2.2.2	Member	Enumeration Documentation	6
			2.2.2.1	DRMODES	6
			2.2.2.2	HEATSOURCE_TYPE	7
			2.2.2.3	MODELS	7
			2.2.2.4	UNITS	8
			2.2.2.5	VERBOSITY	8
		2.2.3	Construc	etor & Destructor Documentation	8
			2.2.3.1	HPWH	8
			2.2.3.2	HPWH	8
			2.2.3.3	~HPWH	8
		2.2.4	Member	Function Documentation	8
			2.2.4.1	getEnergyRemovedFromEnvironment	8
			2242	getNthHeatSourceEpergyInput	a

iv CONTENTS

2.2.4.3	getNthHeatSourceEnergyInput
2.2.4.4	getNthHeatSourceEnergyOutput
2.2.4.5	getNthHeatSourceEnergyOutput
2.2.4.6	getNthHeatSourceRunTime
2.2.4.7	getNthHeatSourceType
2.2.4.8	getNthSimTcouple
2.2.4.9	getNthSimTcouple
2.2.4.10	getNumHeatSources
2.2.4.11	getNumNodes
2.2.4.12	getOutletTemp
2.2.4.13	getSetpoint
2.2.4.14	getStandbyLosses
2.2.4.15	getTankHeatContent_kJ
2.2.4.16	getTankNodeTemp
2.2.4.17	getTankNodeTemp
2.2.4.18	getVersion
2.2.4.19	HPWHinit_file
2.2.4.20	HPWHinit_presets
2.2.4.21	HPWHinit_resTank
2.2.4.22	HPWHinit_resTank
2.2.4.23	isNthHeatSourceRunning
2.2.4.24	isSetpointFixed
2.2.4.25	operator=
2.2.4.26	printHeatSourceInfo
2.2.4.27	printTankTemps
2.2.4.28	resetTankToSetpoint
2.2.4.29	runNSteps
2.2.4.30	runOneStep
2.2.4.31	runOneStep
2.2.4.32	setAirFlowFreedom
2.2.4.33	setDoTempDepression
2.2.4.34	setInletT
2.2.4.35	setMessageCallback
2.2.4.36	setSetpoint
2.2.4.37	setSetpoint
2.2.4.38	setTankSize
2.2.4.39	setUA 12
2.2.4.40	setVerbosity
2.2.4.41	WriteCSVRow
Member	Data Documentation

2.2.5

CONTENTS			V
	2.2.5.1	CONDENSITY_SIZE	13
	2.2.5.2	HEATDIST_MINVALUE	13
	2.2.5.3	HPWH_ABORT	13
	2.2.5.4	MAXOUTSTRING	13
	2.2.5.5	UNINITIALIZED_LOCATIONTEMP	13
Index			14

CONTENTS

Chapter 1

Class Index

4	4		NI -		1	: -4
1	. 1	(มล	22		IST

Here are the classes, structs, unions and interfaces with brief descriptions:	
HPWH::HeatSource	3
HPWH	2

2 Class Index

Chapter 2

Class Documentation

2.1 HPWH::HeatSource Class Reference

Public Member Functions

- HeatSource (HPWH *parentHPWH)
- HeatSource (const HeatSource &hSource)
- HeatSource & operator= (const HeatSource &hSource)

copy constructor

void setupAsResistiveElement (int node, double Watts)

assignment operator

- bool isEngaged () const
- void engageHeatSource (double heatSourceAmbientT_C)
- void disengageHeatSource ()
- bool shouldHeat (double heatSourceAmbientT_C) const
- bool shutsOff (double heatSourceAmbientT_C) const
- void addHeat_temp (double externalT_C, double minutesPerStep)
- void addHeat (double externalT_C, double minutesToRun)
- void setCondensity (double cnd1, double cnd2, double cnd3, double cnd4, double cnd5, double cnd6, double cnd7, double cnd8, double cnd9, double cnd10, double cnd11, double cnd12)

Friends

• class **HPWH**

2.1.1 Constructor & Destructor Documentation

2.1.1.1 HPWH::HeatSource::HeatSource (HPWH * parentHPWH)

default constructor, does not create a useful HeatSource constructor assigns a pointer to the hpwh that owns this heat source

2.1.2 Member Function Documentation

2.1.2.1 void HPWH::HeatSource::addHeat (double externalT_C, double minutesToRun)

adds heat to the hpwh - this is the function that interprets the various configurations (internal/external, resistance/heat pump) to add heat

2.1.2.2 void HPWH::HeatSource::disengageHeatSource ()

turn heat source off, i.e. set isEngaged to FALSE

2.1.2.3 void HPWH::HeatSource::engageHeatSource (double heatSourceAmbientT_C)

turn heat source on, i.e. set isEngaged to TRUE

2.1.2.4 bool HPWH::HeatSource::isEngaged () const

return whether or not the heat source is engaged

2.1.2.5 void HPWH::HeatSource::setCondensity (double *cnd1*, double *cnd2*, double *cnd3*, double *cnd4*, double *cnd5*, double *cnd6*, double *cnd7*, double *cnd7*, double *cnd8*, double *cnd9*, double *cnd10*, double *cnd11*, double *cnd12*)

a function to set the condensity values, it pretties up the init funcs.

2.1.2.6 void HPWH::HeatSource::setupAsResistiveElement (int node, double Watts)

assignment operator

< the copy constructor and assignment operator basically just checks if there are backup/companion pointers - these can't be copied configure the heat source to be a resisive element, positioned at the specified node, with the specified power in watts

2.1.2.7 bool HPWH::HeatSource::shouldHeat (double heatSourceAmbientT_C) const

queries the heat source as to whether or not it should turn on

2.1.2.8 bool HPWH::HeatSource::shutsOff (double $heatSourceAmbientT_C$) const

queries the heat source whether should shut off (typically lowT shutoff)

The documentation for this class was generated from the following files:

- /storage/server/nkvaltine/Projects/HPWHsim/dev/HPWH.hh
- /storage/server/nkvaltine/Projects/HPWHsim/dev/HPWH.cc

2.2 HPWH Class Reference

#include <HPWH.hh>

Classes

class HeatSource

Public Types

enum DRMODES { DR_BLOCK = 0, DR_ALLOW = 1, DR_ENGAGE = 2 }

```
• enum MODELS {
 MODELS restankNoUA = 1, MODELS restankHugeUA = 2, MODELS restankRealistic = 3, MODELS -
 basicIntegrated = 4.
 MODELS externalTest = 5, MODELS AOSmithPHPT60 = 102, MODELS AOSmithPHPT80 = 103, MODE-
 LS AOSmithHPTU50 = 104,
 MODELS AOSmithHPTU66 = 105, MODELS AOSmithHPTU80 = 106, MODELS GE2012 = 110, MODEL-
 S GE2014STDMode = 111.
 MODELS GE2014STDMode 80 = 113, MODELS GE2014 = 112, MODELS GE2014 80 = 114, MODELS-
 Sanden40 = 120,
 MODELS Sanden80 = 121, MODELS RheemHB50 = 140, MODELS Stiebel220E = 150, MODELS -
 Generic1 = 160.
 MODELS_Generic2 = 161, MODELS_Generic3 = 162, MODELS_CustomFile = 200, MODELS_CustomRes-
 Tank = 201
enum VERBOSITY {
 VRB_silent = 0, VRB_reluctant = 10, VRB_minuteOut = 15, VRB_typical = 20,
 VRB emetic = 30 }
enum UNITS {
 UNITS C, UNITS F, UNITS KWH, UNITS BTU,
 UNITS_KJ, UNITS_GAL, UNITS_L, UNITS_kJperHrC,
 UNITS_BTUperHrF }
enum HEATSOURCE_TYPE { TYPE_none, TYPE_resistance, TYPE_compressor }
```

Public Member Functions

- HPWH ()
- HPWH (const HPWH &hpwh)
- HPWH & operator= (const HPWH &hpwh)
- ∼HPWH ()
- int HPWHinit_presets (MODELS presetNum)
- int HPWHinit file (std::string configFile)
- int HPWHinit resTank ()
- int HPWHinit_resTank (double tankVol_L, double energyFactor, double upperPower_W, double lowerPower_-W)
- int runOneStep (double inletT_C, double drawVolume_L, double ambientT_C, double externalT_C, DRMOD-ES DRstatus, double minutesPerStep)
- int runNSteps (int N, double *inletT_C, double *drawVolume_L, double *tankAmbientT_C, double *heat-SourceAmbientT_C, DRMODES *DRstatus, double minutesPerStep)
- void setVerbosity (VERBOSITY hpwhVrb)
- void setMessageCallback (void(*callbackFunc)(const std::string message, void *pContext), void *pContext)
- void printHeatSourceInfo ()
- void printTankTemps ()
- int WriteCSVHeading (FILE *outFILE, const char *preamble="") const
- int WriteCSVRow (FILE *outFILE, const char *preamble="") const
- bool isSetpointFixed ()
- int setSetpoint (double newSetpoint)
- int setSetpoint (double newSetpoint, UNITS units)
- double getSetpoint ()
- int resetTankToSetpoint ()
- int setAirFlowFreedom (double fanFraction)
- int setDoTempDepression (bool doTempDepress)
- int setTankSize (double HPWH size L)
- int setTankSize (double HPWH_size, UNITS units)
- int setUA (double UA kJperHrC)
- int setUA (double UA, UNITS units)
- int getNumNodes () const

- double getTankNodeTemp (int nodeNum) const
- double getTankNodeTemp (int nodeNum, UNITS units) const
- double getNthSimTcouple (int N) const
- double getNthSimTcouple (int N, UNITS units) const
- int getNumHeatSources () const
- double getNthHeatSourceEnergyInput (int N) const
- double getNthHeatSourceEnergyInput (int N, UNITS units) const
- double getNthHeatSourceEnergyOutput (int N) const
- double getNthHeatSourceEnergyOutput (int N, UNITS units) const
- double getNthHeatSourceRunTime (int N) const
- int isNthHeatSourceRunning (int N) const
- HEATSOURCE_TYPE getNthHeatSourceType (int N) const
- · double getOutletTemp () const
- double getOutletTemp (UNITS units) const
- double getEnergyRemovedFromEnvironment () const
- double getEnergyRemovedFromEnvironment (UNITS units) const
- · double getStandbyLosses () const
- double getStandbyLosses (UNITS units) const
- double getTankHeatContent kJ () const
- int runOneStep (double drawVolume_L, double ambientT_C, double externalT_C, DRMODES DRstatus)
- void setInletT (double newInletT C)
- void setMinutesPerStep (double newMinutesPerStep)

Static Public Member Functions

• static std::string getVersion ()

Static Public Attributes

- static const int version_major = 1
- static const int version minor = 2
- static const int version_maint = 4
- static const float **DENSITYWATER_kgperL** = 0.998f
- static const float CPWATER_kJperkgC = 4.181f
- static const int CONDENSITY_SIZE = 12
- static const int MAXOUTSTRING = 200
- static const float HEATDIST_MINVALUE = 0.0001f
- static const float UNINITIALIZED LOCATIONTEMP = -500.f
- static const int HPWH_ABORT = -274000

2.2.1 Detailed Description

< If HPWH_ABRIDGED is defined, then some function definitions will be excluded from compiling. This is done in order to reduce the size of the final compiled code.

2.2.2 Member Enumeration Documentation

2.2.2.1 enum HPWH::DRMODES

specifies the various modes for the Demand Response (DR) abilities values may vary - names should be used

Enumerator

DR_BLOCK this mode prohibits the elements from engaging and turns off any currently running

DR_ALLOW this mode allows the water heater to run normally

DR_ENGAGE this mode forces an element to turn on

2.2.2.2 enum HPWH::HEATSOURCE_TYPE

specifies the type of heat source

Enumerator

TYPE_none a default to check to make sure it's been set

TYPE_resistance a resistance element

TYPE_compressor a vapor cycle compressor

2.2.2.3 enum HPWH::MODELS

specifies the allowable preset HPWH models values may vary - names should be used

Enumerator

MODELS_restankNoUA a simple resistance tank, but with no tank losses

MODELS_restankHugeUA a simple resistance tank, but with very large tank losses

MODELS_restankRealistic a more-or-less realistic resistance tank

MODELS_basicIntegrated a standard integrated HPWH

MODELS_externalTest a single compressor tank, using "external" topology

MODELS_AOSmithPHPT60 this is the Ecotope model for the 60 gallon Voltex HPWH

MODELS_AOSmithPHPT80 Voltex 80 gallon tank

MODELS_AOSmithHPTU50 50 gallon AOSmith HPTU

MODELS_AOSmithHPTU66 66 gallon AOSmith HPTU

MODELS_AOSmithHPTU80 80 gallon AOSmith HPTU

MODELS_GE2012 The 2012 era GeoSpring

MODELS_GE2014STDMode 2014 GE model run in standard mode

MODELS_GE2014STDMode_80 2014 GE model run in standard mode, 80 gallon unit

MODELS_GE2014 2014 GE model run in the efficiency mode

MODELS_GE2014_80 2014 GE model run in the efficiency mode, 80 gallon unit

MODELS_Sanden40 Sanden 40 gallon CO2 external heat pump

MODELS_Sanden80 Sanden 80 gallon CO2 external heat pump

MODELS_RheemHB50 Rheem 2014 (?) Model

MODELS_Stiebel220E Stiebel Eltron (2014 model?)

MODELS_Generic1 Generic Tier 1

MODELS_Generic2 Generic Tier 2

MODELS Generic3 Generic Tier 3

MODELS_CustomFile HPWH parameters were input via file

MODELS_CustomResTank HPWH parameters were input via HPWHinit_resTank

2.2.2.4 enum HPWH::UNITS

Enumerator

UNITS_C celsius
UNITS_F fahrenheit
UNITS_KWH kilowatt hours
UNITS_BTU british thermal units
UNITS_KJ kilojoules
UNITS_GAL gallons
UNITS_L liters
UNITS_kJperHrC UA, metric units

UNITS_BTUperHrF UA, imperial units

2.2.2.5 enum HPWH::VERBOSITY

specifies the modes for writing output the specified values are used for >= comparisons, so the numerical order is relevant

Enumerator

VRB_silent print no outputs
VRB_reluctant print only outputs for fatal errors
VRB_minuteOut print minutely output
VRB_typical print some basic debugging info
VRB_emetic print all the things

2.2.3 Constructor & Destructor Documentation

```
2.2.3.1 HPWH::HPWH()

default constructor

2.2.3.2 HPWH::HPWH(const HPWH & hpwh)

copy constructor

2.2.3.3 HPWH::~HPWH()
```

destructor just a couple dynamic arrays to destroy - could be replaced by vectors eventually?

2.2.4 Member Function Documentation

2.2.4.1 double HPWH::getEnergyRemovedFromEnvironment (UNITS units) const

get the total energy removed from the environment by all heat sources in specified units (not net energy - does not include standby) moving heat from the space to the water is the positive direction returns HPWH_ABORT for incorrect units

2.2.4.2 double HPWH::getNthHeatSourceEnergyInput (int N) const

Parameters

N	default units kWh
---	-------------------

2.2.4.3 double HPWH::getNthHeatSourceEnergyInput (int N, UNITS units) const

returns the energy input to the Nth heat source, with the specified units energy used by the heat source is positive - should always be positive returns HPWH ABORT for N out of bounds or incorrect units

2.2.4.4 double HPWH::getNthHeatSourceEnergyOutput (int N) const

Parameters

N	default units kWh
---	-------------------

2.2.4.5 double HPWH::getNthHeatSourceEnergyOutput (int N, UNITS units) const

returns the energy output from the Nth heat source, with the specified units energy put into the water is positive - should always be positive returns HPWH_ABORT for N out of bounds or incorrect units

2.2.4.6 double HPWH::getNthHeatSourceRunTime (int N) const

returns the run time for the Nth heat source, in minutes note: they may sum to more than 1 time step for concurrently running heat sources returns HPWH_ABORT for N out of bounds

2.2.4.7 HPWH::HEATSOURCE_TYPE HPWH::getNthHeatSourceType (int N) const

returns the enum value for what type of heat source the Nth heat source is

2.2.4.8 double HPWH::getNthSimTcouple (int N) const

Parameters

N	default units C

2.2.4.9 double HPWH::getNthSimTcouple (int N, UNITS units) const

returns the temperature from a set of 6 virtual "thermocouples", which are constructed from the node temperature array. Specify t-couple from 1-6, 1 at the bottom using specified units returns HPWH_ABORT for N < 0, > 6, or incorrect units

2.2.4.10 int HPWH::getNumHeatSources () const

returns the number of heat sources

2.2.4.11 int HPWH::getNumNodes () const

returns the number of nodes

2.2.4.12 double HPWH::getOutletTemp (UNITS units) const

returns the outlet temperature in the specified units returns 0 when no draw occurs, or HPWH_ABORT for incorrect unit specifier

```
2.2.4.13 double HPWH::getSetpoint ( )
```

a function to check the setpoint - returns setpoint in celcius

2.2.4.14 double HPWH::getStandbyLosses (UNITS units) const

get the amount of heat lost through the tank in specified units moving heat from the water to the space is the positive direction negative should occur seldom returns HPWH ABORT for incorrect units

```
2.2.4.15 double HPWH::getTankHeatContent_kJ ( ) const
```

get the heat content of the tank, relative to zero celsius returns using kilojoules

2.2.4.16 double HPWH::getTankNodeTemp (int nodeNum) const

Parameters

nodeNum	default units C

2.2.4.17 double HPWH::getTankNodeTemp (int nodeNum, UNITS units) const

returns the temperature of the water at the specified node - with specified units or HPWH_ABORT for incorrect node number or unit failure

```
2.2.4.18 string HPWH::getVersion( ) [static]
```

This function returns a string with the current version number

```
2.2.4.19 int HPWH::HPWHinit_file ( std::string configFile )
```

This function will load in a set of parameters from a file The file name is the input - there should be at most one set of parameters per file This is useful for testing new variations, and for the sort of variability that we typically do when creating SEEM runs Appropriate use of this function can be found in the documentation

The return value is 0 for successful initialization, HPWH_ABORT otherwise

```
2.2.4.20 int HPWH::HPWHinit_presets ( MODELS presetNum )
```

This function will load in a set of parameters that are hardcoded in this function - which particular set of parameters is selected by presetNum. This is similar to the way the HPWHsim currently operates, as used in SEEM, but not quite as versatile. My impression is that this could be a useful input paradigm for CSE

The return value is 0 for successful initialization, HPWH_ABORT otherwise

```
2.2.4.21 int HPWH::HPWHinit_resTank ( )
```

Default resistance tank, EF 0.95, volume 47.5

2.2.4.22 int HPWH::HPWHinit_resTank (double tankVol_L, double energyFactor, double upperPower_W, double lowerPower_W)

This function will initialize a HPWH object to be a resistance tank. Since resistance tanks are so simple, they can be specified with only four variables: tank volume, energy factor, and the power of the upper and lower elements. Energy factor is converted into UA internally, although an external setter for UA is also provided in case the energy factor is unknown.

Several assumptions regarding the tank configuration are assumed: the lower element is at the bottom, the upper element is at the top third. The logics are also set to standard setting, with upper as VIP activating when the top third is too cold.

2.2.4.23 int HPWH::isNthHeatSourceRunning (int N) const

returns 1 if the Nth heat source is currently engaged, 0 if it is not, and returns HPWH_ABORT for N out of bounds

2.2.4.24 bool HPWH::isSetpointFixed ()

is the setpoint allowed to be changed

2.2.4.25 HPWH & HPWH::operator= (const HPWH & hpwh)

assignment operator

2.2.4.26 void HPWH::printHeatSourceInfo()

this prints out the heat source info, nicely formatted specifically input/output energy/power, and runtime will print to cout if messageCallback pointer is unspecified does not use verbosity, as it is public and expected to be called only when needed

```
2.2.4.27 void HPWH::printTankTemps ( )
```

this prints out all the node temps, kind of nicely formatted does not use verbosity, as it is public and expected to be called only when needed

```
2.2.4.28 int HPWH::resetTankToSetpoint ( )
```

this function resets the tank temperature profile to be completely at setpoint The return value is 0 for successful completion

```
2.2.4.29 int HPWH::runNSteps ( int N, double * inletT_C, double * drawVolume_L, double * tankAmbientT_C, double * heatSourceAmbientT_C, DRMODES * DRstatus, double minutesPerStep )
```

This function will progress the simulation forward in time by N (equal) steps The calculated values will be summed or averaged, as appropriate, and then stored in the usual variables to be accessed through functions

The return value is 0 for successful simulation run, HPWH_ABORT otherwise

2.2.4.30 int HPWH::runOneStep (double inletT_C, double drawVolume_L, double ambientT_C, double externalT_C, DRMODES DRstatus, double minutesPerStep)

This function will progress the simulation forward in time by one step all calculated outputs are stored in private variables and accessed through functions

The return value is 0 for successful simulation run, HPWH_ABORT otherwise

2.2.4.31 int HPWH::runOneStep (double drawVolume_L, double ambientT_C, double externalT_C, DRMODES DRstatus)
[inline]

An overloaded function that uses some member variables, instead of taking them as inputs

2.2.4.32 int HPWH::setAirFlowFreedom (double fanFraction)

This is a simple setter for the AirFlowFreedom

2.2.4.33 int HPWH::setDoTempDepression (bool doTempDepress)

This is a simple setter for the temperature depression option

2.2.4.34 void HPWH::setInletT (double newInletT_C) [inline]

Setters for the what are typically input variables

2.2.4.35 void HPWH::setMessageCallback (void(*)(const std::string message, void *pContext) callbackFunc, void * pContext)

sets the function to be used for message passing

2.2.4.36 int HPWH::setSetpoint (double newSetpoint)

Parameters

newSetpoint | default units C

2.2.4.37 int HPWH::setSetpoint (double newSetpoint, UNITS units)

a function to change the setpoint - useful for dynamically setting it The return value is 0 for successful setting, HPWH_ABORT for units failure

2.2.4.38 int HPWH::setTankSize (double HPWH_size, UNITS units)

This is a simple setter for the tank volume in L or GAL

2.2.4.39 int HPWH::setUA (double UA, UNITS units)

This is a setter for the UA, with or without units specified - default is metric

2.2.4.40 void HPWH::setVerbosity (VERBOSITY hpwhVrb)

sets the verbosity to the specified level

```
2.2.4.41 int HPWH::WriteCSVRow ( FILE * outFILE, const char * preamble = " " ) const
```

a couple of function to write the outputs to a file they both will return 0 for success the preamble should be supplied with a trailing comma, as these functions do not add one. Additionally, a newline is written with each call.

2.2.5 Member Data Documentation

```
2.2.5.1 const int HPWH::CONDENSITY_SIZE = 12 [static]
```

this must be an integer, and only the value 12 change at your own risk

```
2.2.5.2 const float HPWH::HEATDIST_MINVALUE = 0.0001f [static]
```

any amount of heat distribution less than this is reduced to 0 this saves on computations

```
2.2.5.3 const int HPWH::HPWH_ABORT = -274000 [static]
```

this is the value that the public functions will return in case of a simulation destroying error

```
2.2.5.4 const int HPWH::MAXOUTSTRING = 200 [static]
```

this is the maximum length for a debuging output string

```
2.2.5.5 const float HPWH::UNINITIALIZED_LOCATIONTEMP = -500.f [static]
```

this is used to tell the simulation when the location temperature has not been initialized. The documentation for this class was generated from the following files:

- /storage/server/nkvaltine/Projects/HPWHsim/dev/HPWH.hh
- /storage/server/nkvaltine/Projects/HPWHsim/dev/HPWH.cc

Index

\sim HPWH	HPWH
HPWH, 8	DR_ALLOW, 6
	DR BLOCK, 6
addHeat	DR ENGAGE, 7
HPWH::HeatSource, 3	MODELS_AOSmithHPTU50, 7
COMPENSITY SIZE	MODELS AOSmithHPTU66, 7
CONDENSITY_SIZE	MODELS_AOSmithHPTU80, 7
HPWH, 13	MODELS_AOSmithPHPT60, 7
DR ALLOW	MODELS AOSmithPHPT80, 7
HPWH, 6	MODELS_CustomFile, 7
DR BLOCK	MODELS CustomResTank, 7
HPWH, 6	MODELS_GE2012, 7
DR ENGAGE	MODELS_GE2014, 7
HPWH, 7	MODELS_GE2014_80, 7
DRMODES	MODELS_GE2014STDMode, 7
HPWH, 6	MODELS GE2014STDMode 80, 7
disengageHeatSource	MODELS_Generic1, 7
HPWH::HeatSource, 3	MODELS_Generic2, 7
,	MODELS Generic3, 7
engageHeatSource	MODELS RheemHB50, 7
HPWH::HeatSource, 4	MODELS_Sanden40, 7
	MODELS_Sanden80, 7
getEnergyRemovedFromEnvironment	MODELS_Stiebel220E, 7
HPWH, 8	MODELS_basicIntegrated, 7
getNthHeatSourceEnergyInput	MODELS_externalTest, 7
HPWH, 8, 9	MODELS_restankHugeUA, 7
getNthHeatSourceEnergyOutput	MODELS_restankNoUA, 7
HPWH, 9	MODELS restankRealistic, 7
getNthHeatSourceRunTime	TYPE_compressor, 7
HPWH, 9	TYPE_none, 7
getNthHeatSourceType	TYPE_resistance, 7
HPWH, 9	UNITS BTU, 8
getNthSimTcouple	UNITS BTUperHrF, 8
HPWH, 9	UNITS C, 8
getNumHeatSources	UNITS F, 8
HPWH, 9	UNITS_GAL, 8
getNumNodes	UNITS_KJ, 8
HPWH, 9	UNITS KWH, 8
getOutletTemp	UNITS L, 8
HPWH, 9	UNITS_kJperHrC, 8
getSetpoint	VRB_emetic, 8
HPWH, 10	VRB minuteOut, 8
getStandbyLosses	VRB_reluctant, 8
HPWH, 10	VRB_silent, 8
getTankHeatContent_kJ	
HPWH, 10	VRB_typical, 8
getTankNodeTemp	HEATDIST_MINVALUE
HPWH, 10	HPWH, 13
getVersion	HEATSOURCE_TYPE
HPWH, 10	HPWH, 7

INDEX 15

HPWH, 4	HPWH, 13
~HPWH, 8	HPWHinit file
CONDENSITY_SIZE, 13	HPWH, 10
DRMODES, 6	HPWHinit presets
getEnergyRemovedFromEnvironment, 8	HPWH, 10
getNthHeatSourceEnergyInput, 8, 9	HPWHinit resTank
getNthHeatSourceEnergyOutput, 9	HPWH, 10
getNthHeatSourceRunTime, 9	HeatSource
getNthHeatSourceType, 9	HPWH::HeatSource, 3
getNthSimTcouple, 9	
getNumHeatSources, 9	isEngaged
getNumNodes, 9	HPWH::HeatSource, 4
getOutletTemp, 9	isNthHeatSourceRunning
getSetpoint, 10	HPWH, 11
getStandbyLosses, 10	isSetpointFixed HPWH, 11
getTankHeatContent_kJ, 10	TIF VVII, TI
getTankNodeTemp, 10	MODELS AOSmithHPTU50
getVersion, 10	HPWH, 7
HEATDIST_MINVALUE, 13	MODELS AOSmithHPTU66
HEATSOURCE_TYPE, 7	HPWH, 7
HPWH, 8	MODELS_AOSmithHPTU80
HPWH_ABORT, 13	HPWH, 7
HPWHinit_file, 10	MODELS_AOSmithPHPT60
HPWHinit_presets, 10	HPWH, 7
HPWHinit_resTank, 10 HPWH, 8	MODELS_AOSmithPHPT80
isNthHeatSourceRunning, 11	HPWH, 7
isSetpointFixed, 11	MODELS_CustomFile
MAXOUTSTRING, 13	HPWH, 7
MODELS, 7	MODELS_CustomResTank
operator=, 11	HPWH, 7
printHeatSourceInfo, 11	MODELS_GE2012
printTankTemps, 11	HPWH, 7
resetTankToSetpoint, 11	MODELS_GE2014
runNSteps, 11	HPWH, 7
runOneStep, 11, 12	MODELS_GE2014_80 HPWH, 7
setAirFlowFreedom, 12	MODELS_GE2014STDMode
setDoTempDepression, 12	HPWH, 7
setInletT, 12	MODELS GE2014STDMode 80
setMessageCallback, 12	HPWH, 7
setSetpoint, 12	MODELS_Generic1
setTankSize, 12	HPWH, 7
setUA, 12	MODELS_Generic2
setVerbosity, 12	HPWH, 7
UNITS, 7	MODELS_Generic3
VERBOSITY, 8	HPWH, 7
WriteCSVRow, 12	MODELS_RheemHB50
HPWH::HeatSource, 3	HPWH, 7
addHeat, 3	MODELS_Sanden40
disengageHeatSource, 3	HPWH, 7
engageHeatSource, 4	MODELS_Sanden80
HeatSource, 3	HPWH, 7
isEngaged, 4	MODELS_Stiebel220E
setCondensity, 4	HPWH, 7
setupAsResistiveElement, 4	MODELS_basicIntegrated
shouldHeat, 4	HPWH, 7
shutsOff, 4	MODELS_externalTest
HPWH_ABORT	HPWH, 7

16 INDEX

MODELS_restankHugeUA HPWH, 7	UNITS_BTUperHrF HPWH, 8
MODELS_restankNoUA HPWH, 7	UNITS_C HPWH, 8
MODELS_restankRealistic	UNITS_F
HPWH, 7 MAXOUTSTRING	HPWH, 8 UNITS_GAL
HPWH, 13 MODELS	HPWH, 8 UNITS KJ
HPWH, 7	HPWH, 8
operator=	UNITS_KWH HPWH, 8
HPWH, 11	UNITS_L HPWH, 8
printHeatSourceInfo HPWH, 11	UNITS_kJperHrC
printTankTemps	HPWH, 8 UNITS
HPWH, 11	HPWH, 7
resetTankToSetpoint HPWH, 11	VRB_emetic
runNSteps HPWH, 11	HPWH, 8 VRB_minuteOut
runOneStep	HPWH, 8 VRB reluctant
HPWH, 11, 12	HPWH, 8
setAirFlowFreedom HPWH, 12	VRB_silent HPWH, 8
setCondensity	VRB_typical
HPWH::HeatSource, 4 setDoTempDepression	HPWH, 8 VERBOSITY
HPWH, 12	HPWH, 8
setInletT HPWH, 12	WriteCSVRow
setMessageCallback HPWH, 12	HPWH, 12
setSetpoint HPWH, 12	
setTankSize HPWH, 12	
setUA	
HPWH, 12 setVerbosity	
HPWH, 12 setupAsResistiveElement	
HPWH::HeatSource, 4	
shouldHeat HPWH::HeatSource, 4	
shutsOff HPWH::HeatSource, 4	
TYPE_compressor	
HPWH, 7 TYPE_none	
HPWH, 7 TYPE resistance	
HPWH, 7	
UNITS_BTU HPWH, 8	