1. 单调类定理

Review:

• \mathscr{A} is a field, \mathscr{M} is a monotone class. Then

$$\mathscr{A} \subset \mathscr{M} \Longrightarrow \sigma(\mathscr{A}) \subset \mathscr{M}.$$

• \mathscr{P} is a π -system, \mathscr{L} is a λ -system. Then

$$\mathscr{P} \subset \mathscr{L} \Longrightarrow \sigma(\mathscr{P}) \subset \mathscr{L}.$$

• measurable spaces $(E, \mathscr{F}_E), (F, \mathscr{F}_F), f: (E, \mathscr{F}_E) \mapsto (F, \mathscr{F}_F).$ f is $\mathscr{F}_E/\mathscr{F}_F$ -measurable if

$$\sigma(f) \triangleq f^{-1}(\mathscr{F}_F) \subset \mathscr{F}_E.$$

Call it \mathscr{F}_E -measurable if

$$(F,\mathscr{F}_F)=(\mathbb{R},\mathscr{B}(\mathbb{R})).$$

• $f: (E, \mathscr{F}_E) \mapsto (F, \sigma(\mathscr{E})), f \text{ is } \mathscr{F}_E/\sigma(\mathscr{E})$ -measurable if $f^{-1}(\mathscr{E}) \subset \mathscr{F}_E.$

Def 1 (Simple function). $i = 1, ..., n, A_i \in \mathscr{F}$ (pairwise) disjoint, $c_i \in \mathbb{R}$. f is (measurable) simple if $f = \sum_{i=1}^{n} c_i 1_{A_i}$.

Alt. $i = 1, ..., n, A_i \in \mathcal{F}, c_i \in \mathbb{R}$ non-zero distinct, f is simple if $f = \sum_{i=1}^{n} c_i 1_{A_i}$.

 $\triangleright 1. \ a,b \in \mathbb{R}, \ g \ simple, \ then \ af + bg \ simple$

Thm 1 (Simple approximation). (1) $f \ge 0$ measurable. There exist simple $\{f_n\}$, $0 \le f_n \uparrow f$, uniform if f is bounded.

(2) f measurable. There exist simple $\{f_n\}$, $f_n \to f$, uniform if f is bounded.

Proof. 1. Let

$$f_n = \frac{[2^n f]}{2^n} \wedge n = \sum_{i=0}^{n2^{n-1}} \frac{i}{2^n} 1_{\{i/2^n \le f < (i+1)/2^n\}} + n 1_{\{f \ge n\}}.$$

Then

$$0 \leqslant f - f_n \leqslant \frac{1}{2n}$$
 if $f < n$; $f_n = n \leqslant f$ otherwise.

2.
$$f = f^+ - f^-$$
.

Thm 2 (**Doob**). $f: (E, \mathscr{F}_E) \mapsto (\mathbb{R}, \mathscr{B}(\mathbb{R})), g \text{ measurable } (E, \mathscr{F}_E) \mapsto (F, \mathscr{F}_F).$ If f is $\sigma(g)$ -measurable, then $f = h \circ g$ for some measurable h.

PROOF. 1. $f = 1_A$, $A = g^{-1}(B) \in \sigma(g)$, $B \in \mathscr{F}_F$. Then $x \in A$ if and only if $g(x) \in B$, i.e.,

$$f = 1_A = 1_B \circ g.$$

2. f simple, $f = \sum_{i=1} c_i 1_{A_i}$, $c_i \in \mathbb{R}$, $A_i \in \sigma(g)$ disjoint. Let $A_i = g^{-1}(B_i)$, $B_i \in \mathscr{F}_F$, then $C_i = B_i \setminus \left(\bigcup_{i < i} B_j\right) \in \mathscr{F}_F \text{ disjoint}$

and

$$f^{-1}(C_i) = A_i \setminus \left(\bigcup_{j < i} A_j\right) = A_i.$$

By step 1,

$$f = \sum_{i=1}^{n} c_i 1_{A_i} = \sum_{i=1}^{n} c_i 1_{C_i} \circ g = \left(\sum_{i=1}^{n} c_i 1_{C_i}\right) \circ g \triangleq h \circ g.$$

3. $f \geqslant 0$ is $\sigma(g)$ -measurable, there exist $\sigma(g)$ -measurable simple f_n with $0 \leqslant f_n \uparrow f$. It follows $f_n = h_n \circ g$ for some h_n ,

$$h \triangleq \sup_{n} h_n$$

is $\sigma(q)$ -measurable,

$$f = \lim_{n} f_n = \sup_{n} (h_n \circ g) = \left(\sup_{n} h_n\right) \circ g = h \circ g.$$

4. f is $\sigma(g)$ -measurable. f^+ , f^- are $\sigma(g)$ -measurable. Use **3**.

Thm 3. \mathscr{A} is a π -system, $\Omega \in \mathscr{A}$, \mathcal{H} is a collection of real-valued functions. Suppose

- (1) If $A \in \mathcal{A}$, then $1_A \in \mathcal{H}$
- (2) If $f, g \in \mathcal{H}$, $c \in \mathbb{R}$, then f + g, $cg \in \mathcal{H}$
- (3) If $f_n \in \mathcal{H}$, $0 \leqslant f_n \uparrow f$ with f bounded, then $f \in \mathcal{H}$ Then

$$\{f: f \ bounded \ \sigma(\mathscr{A})\text{-}measurable\} \subset \mathcal{H}$$

PROOF. The system of sets

$$\mathscr{G} = \{A : 1_A \in \mathcal{H}\}$$

is a λ -system and $\mathscr{A} \subset \mathscr{G}$. Hence

$$\sigma(\mathscr{A}) \subset \mathscr{G}$$
.

- (2) implies that \mathcal{H} contains all $\sigma(\mathscr{A})$ -measurable simple functions, (3) implies that \mathcal{H} contains all bounded $\sigma(\mathscr{A})$ -measurable functions. \square
- \triangleright 2. \mathscr{A} is a π -system, $\Omega \in \mathscr{A}$, \mathscr{H} is a collection of real-valued functions. Suppose
 - (1) If $A \in \mathcal{A}$, then $1_A \in \mathcal{H}$

- (2) If $f, g \in \mathcal{H}$, $a, b \ge 0$, then $af + bg \in \mathcal{H}$
- (3) If $f, g \in \mathcal{H}$ are bounded, $f \geqslant g$, then $f g \in \mathcal{H}$
- (4) If $f_n \in \mathcal{H}$, $0 \leq f_n \uparrow f$, then $f \in \mathcal{H}$

Then

 $\{f: f \ nonnegative \ \sigma(\mathscr{A})\text{-measurable}\} \subset \mathcal{H}$

2. 集函数与测度

2.1. 集函数. \mathcal{E} is a collection of subsets of E.

Def 2. Set function, $\mu : \mathscr{E} \mapsto \mathbb{R} \cup \{\pm \infty\}$.

Def 3. Nonnegative set function, $\mu : \mathcal{E} \to \mathbb{R} \cup \{\infty\}$.

Def 4. μ is finite if, $\forall A \in \mathcal{E}$, $|\mu(A)| < \infty$.

Def 5. μ is σ -finite on \mathscr{E} if, $\forall A \in \mathscr{E}$, there exist $\{A_n\} \subset \mathscr{E}$, $A = \bigcup A_n \text{ with } |\mu(A_n)| < \infty$.

Def 6. μ is additive if, $\forall A, B \in \mathcal{E}$, $AB = \emptyset$,

$$\mu(A+B) = \mu(A) + \mu(B).$$

Def 7. μ is countably additive if, $\forall A_i \in \mathcal{E}, i = 1, 2, ..., disjoint,$

$$\mu\left(\sum_{i} A_{i}\right) = \sum_{i} \mu(A_{i}).$$

Def 8. $\emptyset \in \mathscr{E}$. μ is a measure on \mathscr{E} if it is nonnegative, countably additive, $\mu(\emptyset) = 0$.

E.g. 1. (X, \mathcal{F}) measurable space, $x \in X$,

$$\delta_x(A) = 1_A(x), \ \forall A \in \mathscr{F}.$$

 $x_1, ..., x_n \in X$

$$\mu(A) = \sum_{i} \delta_{x_i}(A), \ \forall A \in \mathscr{F}.$$

E.g. 2. F real-valued nonnegative, non-decreasing, right continuous. Semi-ring on \mathbb{R} ,

$$\mathscr{A} = \{(a, b] : a, b, \in \mathbb{R}\}.$$

Then

$$\mu((a,b]) = F(b) - F(a)$$

defines a measure \mathscr{A} . It is unique on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

PROOF. 1. Additivity.
$$(a_i, b_i], i = 1, ..., n, \text{ disjoint}, (a, b] =$$

 $\bigcup (a_i, b_i]$, then

$$\mu((a,b]) = \sum_{i=1}^{n} \mu((a_i,b_i]).$$

2. $(a_i, b_i], i = 1, ..., \text{ disjoint}, \bigcup_i (a_i, b_i] \subset (a, b], \text{ then}$

$$\sum_{i=1}^{\infty} \mu((a_i, b_i]) \leqslant \mu((a, b]).$$

3. $(a_i, b_i], i = 1, ..., n, (a, b] \subset \bigcup_{i=1}^{n} (a_i, b_i],$ then

$$\mu((a,b]) \leqslant \sum_{i=1}^{n} \mu((a_i,b_i]).$$

4. $(a_i, b_i], i = 1, ..., \text{ disjoint}, \bigcup (a_i, b_i] = (a, b], \text{ then}$

$$\mu((a,b]) = \sum_{i=1}^{\infty} \mu((a_i,b_i]).$$

 $\forall \varepsilon > 0$, there is $\delta_i > 0$,

$$F(b_i + \delta_i) - F(b_i) < \frac{\varepsilon}{2^i}.$$

 $\forall \theta > 0, \{(a_i, b_i + \delta_i) : i\}$ is an open cover of $[a + \theta, b]$, there exists n_0

$$(a+\theta,b]\subset\bigcup_{i=0}^{n_0}(a_i,b_i+\delta_i].$$

By **3**.,

$$\mu((a+\theta,b]) \leqslant \sum_{i=1}^{n_0} \mu((a_i,b_i+\delta_i))$$

$$= \sum_{i=1}^{n_0} (F(b_i+\delta_i) - F(b_i))$$

$$\leqslant \sum_{i=1}^{n_0} (F(b_i) - F(b_i)) + \sum_{i=1}^{n_0} \frac{\varepsilon}{2^i}$$

$$\leqslant \sum_{i=1}^{\infty} (F(b_i) - F(b_i)) + \varepsilon.$$

2.2. 半环上非负集函数. \mathscr{E} is a collection of subsets of E, μ is a nonnegative set function on \mathscr{E} .

Def 9. Monotonicity: $\forall A \subset B \in \mathscr{E}$,

$$\mu(A) \leqslant \mu(B)$$
.

Def 10. Countably subadditive: $\forall A_i \in \mathcal{E}, i = 1, 2, ..., \bigcup_{i=1}^{n} A_i \in \mathcal{E},$

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

Def 11. Continuity from below: $A_i \in \mathcal{E}$, $A_i \uparrow A \in \mathcal{E}$,

$$\lim_{n} \mu(A_i) = \mu(A).$$

Def 12. Continuity from above: $A_i \in \mathcal{E}$, $A_i \downarrow A \in \mathcal{E}$, $\mu(A_1) < \infty$,

$$\lim_{m} \mu(A_i) = \mu(A).$$

Remark 1. **Note** finiteness is part of the defintion of continuity from above.

 ${\mathscr S}$ is a semi-ring on $E,\,\mu$ is a nonnegative set function on ${\mathscr S}.$

Suppose μ is additive.

1. $\mu(\varnothing) = 0, +\infty$.

PROOF. $\emptyset \in \mathscr{S}$. By additivity

$$\mu(\varnothing) = \sum_{i=1}^{n} \mu(\varnothing).$$

 $\mu(\varnothing)$ equals 0, or ∞ .

2. Monotonicity.

PROOF. $A, B \in \mathcal{S}, A \subset B$. There exist disjoint $C_1, ..., C_k \in \mathcal{S}$,

$$B \backslash A = \bigcup_{i=1}^{k} C_i.$$

$$B = A \cup (B \setminus A) = A \cup \left(\bigcup_{i=1}^{k} C_i\right).$$

By additivity

$$\mu(B) = \mu(A) + \sum_{i=1}^{k} \mu(C_i) \geqslant \mu(A).$$

Suppose μ is **countably additive**.

3. Continuity from below.

PROOF. $A_i \in \mathcal{S}$, $A_i \uparrow A \in \mathcal{S}$. There exist disjoint $C_{n,1}, ..., C_{n,k_n} \in \mathcal{S}$,

$$B_n \triangleq A_n \backslash A_{n-1} = \bigcup_{i=1}^{k_n} C_{n,i}.$$

L

 $(A_0 = \varnothing)$

$$\mu(A) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu\left(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{k_n} C_{n,i}\right)$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \mu(C_{n,i}) = \lim_{N} \sum_{n=1}^{N} \sum_{i=1}^{k_n} \mu(C_{n,i})$$

$$= \lim_{N} \mu\left(\bigcup_{n=1}^{N} \bigcup_{i=1}^{k_n} C_{n,i}\right) = \lim_{n} \mu(A_n).$$

4. Continuity from above.

PROOF. (WRONG PROOF) $A_i \in \mathcal{S}, A_i \downarrow A \in \mathcal{S}, \mu(A_1) < \infty$. Clearly

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) \leqslant \mu(A_i) \leqslant \mu(A_1) < \infty.$$

$$\lim_{n} \mu(A_n) = \mu\left(\bigcap_{n=1}^{\infty} A_n\right)$$

$$\iff$$

$$\mu(A_1) - \lim_{n} \mu(A_n) = \mu(A_1) - \mu\left(\bigcap_{n=1}^{\infty} A_n\right)$$

$$\iff$$

$$\lim_{n} \mu(A_1 \backslash A_n) = \mu\left(A_1 \backslash \bigcap_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} (A_1 \backslash A_n)\right).$$

5. Subadditivity.

L

PROOF. Analogous to continuity from below.

2.3. 环上非负集函数.

Thm 4. \mathscr{R} is a ring. μ is nonnegative additive.

(1) μ countably additive

$$\iff$$

(2) μ countably subadditive

$$\leftarrow$$

(3) μ continuity from below

(4) μ continuity from above

(5) μ continuity from above at \varnothing .

If μ is finite, (5) implies (1).

PROOF. 1. Already have: $(1) \Longrightarrow (2)$, $(1) \Longrightarrow (3)$, $(1) \Longrightarrow (4)$, $(4) \Longrightarrow (5)$.

2. (2)
$$\Longrightarrow$$
 (1). Suppose $A_i \in \mathcal{R}$, $i = 1, 2, ...,$ disjoint, $\bigcup A_i \in \mathcal{R}$.

By countable subadditivity,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

By monotonicity and additivity,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \geqslant \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i), \ \forall n.$$

Sending $n \to \infty$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \geqslant \sum_{i=1}^{\infty} \mu(A_i).$$

3. (3) \Longrightarrow (1). Suppose $A_i \in \mathcal{R}$, i = 1, 2, ..., disjoint, $\bigcup A_i \in \mathcal{R}$.

Since

$$\bigcup_{i=1}^{n} A_i \uparrow \bigcup_{i=1}^{\infty} A_i,$$

by continuity from below,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n} \mu\left(\bigcup_{i=1}^{n} A_i\right) = \lim_{n} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

4. (5) \Longrightarrow (1). Suppose $A_i \in \mathcal{R}, i = 1, 2, ..., \text{ disjoint}, \bigcup_{i=1}^{n} A_i \in \mathcal{R}.$

Then, $\forall n$,

$$\bigcup_{i=1}^n A_i \in \mathscr{R} \text{ and } \bigcup_{i=n+1}^\infty A_i = \bigcup_{i=1}^\infty A_i \setminus \bigcup_{i=1}^n A_i \in \mathscr{R}.$$

By additivity

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{n} A_i\right) + \mu\left(\bigcup_{i=n+1}^{\infty} A_i\right).$$

Since μ is finite

$$\mu\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) < \infty.$$

The continuity from above at \varnothing yields,

$$\lim_{n} \mu \left(\bigcup_{i=n+1}^{\infty} A_i \right) = 0.$$

Hence

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n} \mu\left(\bigcup_{i=1}^{n} A_i\right) + \lim_{n} \mu\left(\bigcup_{i=n+1}^{\infty} A_i\right)$$
$$= \lim_{n} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

3. Carathéodory's 延拓

3.1. 外测度.

Def 13. μ^* is an outer measure on E if

- (1) $\mu^*(\emptyset) = 0$
- (2) $\forall A, B \in 2^E$, if $A \subset B$, then

$$\mu^*(A) \leqslant \mu^*(B)$$

(3) If $A_i \in 2^E, i = 1, 2, ...,$

$$\mu^* \left(\bigcup_{i=1}^{\infty} A \right) \leqslant \sum_{i=1}^{\infty} \mu^* (A_i)$$

Thm 5. Let \mathscr{E} be a collection of sets on E, $\varnothing \in \mathscr{E}$. μ is a nonnegative set function on \mathscr{E} with $\mu(\varnothing) = 0$. Define, $\forall A \in 2^E$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathscr{E}, \ A \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Then $\mu^*(A)$ is an outer measure.

PROOF. 1. $\mu^*(\varnothing) = 0$ since $\varnothing \in \mathscr{E}, \varnothing \subset \bigcup \varnothing$.

- **2**. If $A \subset B$, $B \subset \bigcup_{i=1}^{\infty} B_i$, then $A \subset \bigcup_{i=1}^{\infty} B_i$, from the definition $\mu^*(A) \leq \mu^*(B)$.
 - **3**. Let $A_i \in 2^E, i = 1, 2, ..., \varepsilon > 0$. There are $A_{i,k} \in \mathscr{E}, A_i \subset \bigcup_{k=1}^{\infty} A_{i,k}$,

$$\sum_{i=1}^{\infty} \mu(A_{i,k}) \leqslant \mu^*(A_i) + \frac{\varepsilon}{2^i}, \ \forall i.$$

Since

$$\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{\infty} A_{i,k},$$

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leqslant \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \mu(A_{i,k})$$
$$\leqslant \sum_{i=1}^{\infty} \left[\mu^*(A_i) + \frac{\varepsilon}{2^i} \right] \leqslant \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon.$$

Def 14. μ^* is an outer measure on E. $A \in 2^E$ is μ^* -measurable if $\mu^*(D) = \mu^*(D \cap A) + \mu^*(D \cap A^c), \forall D \in 2^E$.

The class of μ^* -measurable sets is denoted by \mathscr{F}_{μ}^* .

Def 15. Let μ be a measure on a σ -field \mathscr{F} of E, the measure space (E, \mathscr{F}, μ) is complete if

$$A \in \mathscr{F}, \ \mu(A) = 0 \Longrightarrow B \in \mathscr{F}, \ \forall B \subset A.$$

Thm 6 (Carathéodory). Let \mathscr{E} be a collection of sets on $E, \varnothing \in \mathscr{E}$. μ is a nonnegative set function on \mathscr{E} with $\mu(\varnothing) = 0$.

- (1) \mathscr{F}_{μ}^{*} is a σ -field.
 - (2) $(E, \mathscr{F}_{\mu}^*, \mu^*)$ is a complete measure space.

PROOF. 1. Obviously, $E \in \mathscr{F}_{\mu}^*$ and $A^c \in \mathscr{F}_{\mu}^*$ if $A \in \mathscr{F}_{\mu}^*$.

2. If $A_1, A_2 \in \mathscr{F}_{\mu}^*$, then $A_1 \cup A_2, A_1 \cap A_2 \in \mathscr{F}_{\mu}^*$.

 $\forall D \in 2^E$, we note

$$D \cap (A_1 \cup A_2) = (D \cap A_1) \cup (D \cap A_1^c \cap A_2).$$

Then

$$\mu^{*}(D \cap (A_{1} \cup A_{2})) + \mu^{*}(D \cap (A_{1} \cup A_{2})^{c})$$

$$\leq \mu^{*}(D \cap A_{1}) + \mu^{*}(D \cap A_{1}^{c} \cap A_{2}) + \mu^{*}(D \cap A_{1}^{c} \cap A_{2}^{c}) \text{ (subadditivity)}$$

$$\leq \mu^{*}(D \cap A_{1}) + \mu^{*}(D \cap A_{1}^{c}) (A_{2} \in \mathscr{F}_{\mu}^{*})$$

$$= \mu^*(D) \ (A_1 \in \mathscr{F}_{\mu}^*).$$

Hence

$$A_1 \cup A_2 \in \mathscr{F}_{\mu}^*$$
.

It follows that

$$(A_1 \cap A_2)^c = A_1^c \cup A_2^c \in \mathscr{F}_u^*.$$

3. Finite additivity. If $A_1, ..., A_n \in \mathscr{F}_{\mu}^*$ disjoint, then $\forall D \in 2^E$,

$$\mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \right) = \sum_{i=1}^n \mu^* (D \cap A_i).$$

Indeed, since $A_1 \in \mathscr{F}_{\mu}^*$,

$$\mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \right)$$

$$= \mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \cap A_1 \right) + \mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \cap A_1^c \right)$$

$$= \mu^* (D \cap A_1) + \mu^* \left(D \cap \left(\bigcup_{i=1}^n A_i \right) \right) = \dots = \sum_{i=1}^n \mu^* (D \cap A_i)$$

4. If $A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$, then $A \triangleq \bigcup A_i \in \mathscr{F}_{\mu}^*$.

We can assume that $A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$ are disjoint. Indeed, by **1** and

2,
$$B_i = A_i \setminus \left(\bigcup_{i \le i} A_i\right) \in \mathscr{F}_{\mu}^*$$
, are disjoint and $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$,

 $\forall n. \text{ Let }$

$$C_n = \bigcup_{i=1}^n A_i \in \mathscr{F}_{\mu}^*, \ \forall n.$$

Since $A_1, A_2, ...$ are disjoint, we can use **3** (the finite additivity). $\forall D \in 2^E$,

$$\mu^{*}(D) = \mu^{*}(D \cap C_{n}) + \mu^{*}(D \cap C_{n}^{c})$$

$$= \sum_{i=1}^{n} \mu^{*}(D \cap C_{i}) + \mu^{*}(D \cap C_{n}^{c})$$

$$\geqslant \sum_{i=1}^{n} \mu^{*}(D \cap C_{i}) + \mu^{*}(D \cap A^{c}), \ \forall n.$$

Let $n \to \infty$, note $A \subset \bigcup C_i$ and use subadditivity of outer measure

$$\mu^*(D) \geqslant \sum_{i=1}^{\infty} \mu^*(D \cap C_i) + \mu^*(D \cap A^c) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

5. Countable additivity.

If $A_1, A_2, ..., \in \mathscr{F}_{\mu}^*$ are disjoint, use **3** and send $n \to \infty$,

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \geqslant \mu^* \left(\bigcup_{i=1}^n A_i \right) = \sum_{i=1}^n \mu^* (A_i), \ \forall n.$$

The opposite inequality is subadditivity of outer measure.

6. Completeness. If $A \in \mathscr{F}_{\mu}^*$, $\mu^*(A) = 0$ and $B \subset A$, then $\mu^*(B) = 0$. $\forall D \in 2^E$,

$$\mu^*(D)\geqslant \mu^*(D\cap B^c)=\mu^*(D\cap B)+\mu^*(D\cap B^c).$$

So $B \in \mathscr{F}_{\mu}^*$.

3.2. 域上测度的延拓.

Thm 7. If μ is a measure on a field \mathscr{A} with the generated outer measure μ^* . Then

(1)
$$\mathscr{A} \subset \mathscr{F}_{\mu}^*$$
 thus $\sigma(\mathscr{A}) \subset \mathscr{F}_{\mu}^*$.

(2) μ^* is an extension of μ to $\sigma(\mathscr{A})$ in the sense that

$$\mu(A) = \mu^*(A), \ \forall A \in \mathscr{A}.$$

PROOF. 1. Let $A \subset \mathscr{A}$. If $A_i \in \mathscr{A}$, $A \subset \bigcup A_i$, then

(3.1)
$$\mu(A) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

Indeed,

$$\mu\left(A \cap \bigcup_{i=1}^{n} A_i\right) \leqslant \mu\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} \mu(A_i).$$

Let $n \to \infty$ and use that μ is a measure to get (3.1). So

$$\mu(A) \leqslant \mu^*(A).$$

Since $A \subset \mathcal{A}$, $A_1 = A$, $A_2 = A_3 \dots = \emptyset$ form a countable cover of A, so

$$\mu^*(A) \leqslant \mu(A).$$

2. Fix $A \subset \mathscr{A}$, will prove $A \in \mathscr{F}_{\mu}^*$. $\forall D \in 2^E$, it is enough to show that

$$\mu^*(D) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

There is nothing to prove if $\mu^*(D) = \infty$, so we assume that $\mu^*(D) < \infty$

 ∞ . Then, $\forall \varepsilon > 0$, there exist $A_i \in \mathscr{A}$, $D \subset \bigcup_{i=1}^{\infty} A_i$ so that

$$\sum_{i=1}^{\infty} \mu(A_i) \leqslant \mu^*(D) + \varepsilon.$$

Since \mathscr{A} is a field,

$$A_i \cap A, A_i \cap A^c \in \mathscr{A}.$$

By **1** and the additivity of μ ,

$$\mu(A_i) = \mu(A_i \cap A) + \mu(A_i \cap A^c)$$
$$= \mu^*(A_i \cap A) + \mu^*(A_i \cap A^c).$$

Summing over i gives

$$\sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \mu^*(A_i \cap A) + \sum_{i=1}^{\infty} \mu^*(A_i \cap A^c)$$

 $\geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$

So

$$\mu^*(D) + \varepsilon \geqslant \sum_{i=1}^{\infty} \mu(A_i) \geqslant \mu^*(D \cap A) + \mu^*(D \cap A^c).$$

Thm 8 (Uniqueness). Let \mathscr{P} be a π -system on E, μ and ν measures on $\sigma(\mathscr{P})$. Assume that

(1) μ and ν agree on \mathscr{P} .

(2) There are
$$B_i \in \mathscr{P}$$
, $i = 1, 2, ...,$ disjoint so that $\bigcup B_i = E$ and

$$\mu(B_i) < \infty$$
.

Then μ and ν are equal on $\sigma(\mathscr{P})$.

PROOF. 1. Let $B \in \mathscr{P}$ have $\mu(B) < \infty$. Define

$$\mathscr{L} = \{A \in \sigma(\mathscr{P}) : \mu(A \cap B) = \nu(A \cap B)\}.$$

 $\mathcal L$ is a λ -system (finiteness is needed to justify sets subtraction!), $\mathscr P\subset \mathcal L$. So

$$\sigma(\mathscr{P})\subset\mathscr{L}$$
,

i.e.

$$\mu(A \cap B) = \nu(A \cap B), \ \forall A \in \sigma(\mathscr{P}).$$

2. $\forall A \in \sigma(\mathscr{P})$, use (2) to write it as disjoint union,

$$A = \bigcup_{i=1}^{\infty} (A \cap B_i), \ \mu(A \cap B_i) \leqslant \mu(B_i) < \infty.$$

Then, by $\mathbf{1}$,

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} (A \cap B_i)\right) = \sum_{i=1}^{\infty} \mu(A \cap B_i)$$
$$= \sum_{i=1}^{\infty} \nu(A \cap B_i) = \nu\left(\bigcup_{i=1}^{\infty} (A \cap B_i)\right) = \nu(A).$$

- \triangleright 3. The condition Therem 8 (2) can be replaced with either one of the following:
 - (2') \mathscr{P} is a semi-ring, $E \in \mathscr{P}$ and μ is σ -finite on \mathscr{P} .
 - (2") there are $B_1, B_2, ... \in \mathscr{P}$, so that $B_i \uparrow E$ and $\mu(B_i) < \infty$.

3.3. 半环上测度的延拓.

Thm 9. Let μ be a measure on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Then

(1)
$$\mathscr{S} \subset \mathscr{F}_{\mu}^*$$
 thus $\sigma(\mathscr{S}) \subset \mathscr{F}_{\mu}^*$.

(2) μ^* is an extension of μ to $\sigma(\mathscr{S})$ in the sense that

(3.2)
$$\mu(A) = \mu^*(A), \ \forall A \in \mathscr{S}.$$

(3) Assume that there are $B_i \in \mathcal{S}$, i = 1, 2, ..., disjoint so that $\bigcup_{i=1}^n B_i = E \text{ and } \mu(B_i) < \infty, \text{ then the extension of } \mu \text{ to } \sigma(\mathcal{S}) \text{ is unique.}$

PROOF. Let $\bar{\mu}$ be the outer measure generated by μ .

1. $\bar{\mu}$ agrees with μ on \mathscr{S} .

The proof is identical to Theorem 7 (1).

2. Fix $A \subset \mathscr{S}$, will prove $A \in \mathscr{F}_{\mu}^*$.

The proof is identical to Theorem 7 (2). The difference is $A_i \cap A^c$ is replaced with disjoint union of sets in \mathscr{S} .

3. Uniqueness. Apply Theorem 8 to conclude.

3.4. Approximating $\mu^*|_{\mathscr{F}^*_{\sigma}}$ by $\mu^*|_{\sigma(\mathscr{S})}$.

Thm 10. Let μ be a measure on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Suppose $E \in \mathscr S$.

(1) $\forall A \in \mathscr{F}_{\mu}^{*}$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(A) = \mu^*(B).$$

(2) If μ is σ -finite on \mathscr{S} , then $\forall A \in \mathscr{F}_{\mu}^*$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(B\backslash A) = 0.$$

Proof.

1. There is nothing to prove if $\mu^*(A) = \infty$, we assume that $\mu^*(A) < \infty$. There are $B_{n,i} \in \mathcal{S}$, $A \subset \bigcup_{i=1}^{\infty} B_{n,i}$,

$$\sum_{i=1}^{\infty} \mu(B_{n,i}) < \mu^*(A) + \frac{1}{n}.$$

Set

$$B = \bigcap_{i=1}^{\infty} \bigcup_{i=1}^{\infty} B_{n,i}.$$

Then $A \subset B \in \sigma(\mathscr{S})$,

$$\mu^*(A) \leqslant \mu^*(B)$$
.

Moreover

$$\mu^*(B) \leqslant \mu^* \left(\bigcup_{i=1}^{\infty} B_{n,i} \right) \leqslant \sum_{i=1}^{\infty} \mu(B_{n,i}) \leqslant \mu^*(A) + \frac{1}{n}.$$

It follows that

$$\mu^*(B) \leqslant \mu^*(A).$$

2. If μ is *finite* on \mathscr{S} , then by $\mathbf{1}$, $\forall A \in \mathscr{F}_{\mu}^*$, there is $B \in \sigma(\mathscr{S})$ such that $A \subset B$ and

$$\mu^*(A) = \mu^*(B).$$

Since μ^* is a measure on \mathscr{F}_{μ}^* , this gives

$$\mu^*(B\backslash A) = 0.$$

The σ -finite case follows from similar argument as in step **3** of Theorem 9.

3.5. Approximating $\mu|_{\sigma(\mathscr{A})}$ by $\mu|_{\mathscr{A}}$.

Thm 11. Let μ be a measure on the field \mathscr{A} with the generated outer measure μ^* . For any $A \in \sigma(\mathscr{A})$ with $\mu^*(A) < \infty$, $\forall \varepsilon > 0$, there is $B \in \mathscr{A}$ such that $\mu^*(A\Delta B) < \varepsilon$.

If, in the last Theorem, the measure μ is defined on $\sigma(\mathscr{A})$ and σ -finite on \mathscr{A} , then μ must equal μ^* on $\sigma(\mathscr{A})$ by uniqueness, we can use μ in place of μ^* in the conclusion.

Thm 12. Let \mathscr{A} be a field, μ a measure on $\sigma(\mathscr{A})$ and σ -finite on \mathscr{A} . For any $A \in \sigma(\mathscr{A})$ with $\mu(A) < \infty$, $\forall \varepsilon > 0$, there is $B \in \mathscr{A}$ such that $\mu(A\Delta B) < \varepsilon$.

3.6. Completion of a measure space.

Thm 13. Let (X, \mathcal{F}, μ) be a measure space,

$$\bar{\mathscr{F}} \triangleq \{A \cup N : A \in \mathscr{F}, N \subset B \text{ for some } B \in \mathscr{F} \text{ with } \mu(B) = 0\}.$$

Define

$$\bar{\mu}(A \cup N) = \mu(A), \ \forall A \in \bar{\mathscr{F}}.$$

Then $(X, \bar{\mathscr{F}}, \bar{\mu})$ is a complete measure space.

Clearly the Theorem says

$$\bar{\mu}(A) = \mu(A), \ \forall A \in \mathscr{F}.$$

PROOF. 1. $\bar{\mathscr{F}}$ is a σ -field.

Suppose $A \cup N \in \bar{\mathscr{F}}$ where $A \in \mathscr{F}, N \subset B, B \in \mathscr{F}$ with $\mu(B) = 0$. Then

$$(A \cup N)^c = (A^c \cap B^c) \cup (B \cap A^c \cap N^c) \in \bar{\mathscr{F}}.$$

Suppose $A_i \cup N_i \in \bar{\mathscr{F}}$ where $A_i \in \mathscr{F}, N_i \subset B_i, B_i \in \mathscr{F}$ with $\mu(B_i) = 0$. Then

$$\bigcup_{i=1}^{\infty} (A_i \cup N_i) = \left(\bigcup_{i=1}^{\infty} A_i\right) \cup \left(\bigcup_{i=1}^{\infty} N_i\right) \in \bar{\mathscr{F}},$$

since

$$\bigcup_{i=1}^{\infty} N_i \subset \bigcup_{i=1}^{\infty} B_i \in \mathscr{F}$$

and

$$\mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = 0.$$

2. The definition of $\bar{\mu}$ nonambiguous, i.e.

$$A_1 \cup N_1 = A_2 \cup N_2 \in \overline{\mathscr{F}} \Longrightarrow \bar{\mu}(A_1 \cup N_1) = \bar{\mu}(A_2 \cup N_2).$$

Here $N_i \subset B_i$ for some $B_i \in \mathscr{F}$ with $\mu(B_i) = 0$, i = 1, 2.

$$\bar{\mu}(A_1 \cup N_1) = \mu(A_1) = \mu(A_1 \cup B_1 \cup B_2) \geqslant \mu(A_2) = \bar{\mu}(A_2 \cup N_2).$$

By symmetry,

$$\bar{\mu}(A_1 \cup N_1) \leqslant \bar{\mu}(A_2 \cup N_2).$$

(In fact

$$A_1 \cup B_1 \cup B_2 = A_1 \cup N_1 \cup B_1 \cup B_2 = A_2 \cup N_2 \cup B_1 \cup B_2 = A_2 \cup B_1 \cup B_2$$

$$\mu(A_1 \cup B_1 \cup B_2) = \mu(A_2).$$

)

3. Countable additivity. Suppose $A_i \cup N_i \in \bar{\mathscr{F}}$ disjoint, where $A_i \in \mathscr{F}$, $N_i \subset B_i$, $B_i \in \mathscr{F}$ with $\mu(B_i) = 0$. Then

$$\bar{\mu}\left(\bigcup_{i=1}^{\infty}(A_i\cup N_i)\right)=\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)=\sum_{i=1}^{\infty}\bar{\mu}(A_i\cup N_i).$$

4. Completeness. Let $A \cup N \in \overline{\mathscr{F}}$, $N \subset B$, $B \in \mathscr{F}$ with $\mu(B) = 0$ and $\overline{\mu}(A \cup N)$, then

$$\mu(A \cup B) = \mu(A) = \bar{\mu}(A \cup N) = 0.$$

So for any $C \subset A \cup N$, $C \subset A \cup B$,

$$C = \varnothing \cup C \in \bar{\mathscr{F}}.$$

Thm 14. Suppose that μ is σ -finite on the semi-ring $\mathscr S$ with the generated outer measure μ^* . Then $\left(X,\mathscr F_\mu^*,\mu^*\right)$ is the completion of $(X,\sigma(\mathscr S),\mu^*)$.

Proof. Let

$$\bar{\mathscr{F}} \triangleq \{A \cup N : A \in \sigma(\mathscr{S}), N \subset B \text{ for some } B \in \sigma(\mathscr{S}) \text{ with } \mu(B) = 0\}.$$

It is enough to show that

$$\mathscr{F}_{\mu}^* = \bar{\mathscr{F}}.$$

Since $(X, \mathscr{F}_{\mu}^*, \mu^*)$ is a complete measure space,

$$\bar{\mathscr{F}}\subset {\mathscr{F}}_{\mu}^*$$
.

Let $A \in \mathscr{F}_{\mu}^*$, by Theorem 10 there exist $B, C \in \sigma(\mathscr{S})$ so that

$$A \subset B$$
, $\mu^*(B \backslash A) = 0$; $B \backslash A \subset C$, $\mu^*(C) = \mu^*(B \backslash A) = 0$.

Writing

$$A = (B \cap C^c) \cup (A \cap C),$$

we get that $B \cap C^c \in \sigma(\mathscr{S})$, $(A \cap C) \subset C$, $\mu^*(C) = 0$, so $A \in \bar{\mathscr{F}}$.

4. 收敛

4.1. 可测函数的收敛. (E, \mathcal{F}, μ) a measure space, $f_n \in \mathcal{F}, i = 1, 2, ..., f \in \mathcal{F}$

Def 16. Almost everywhere convergence, $f_n \stackrel{a.e.}{\longrightarrow} f$:

$$\mu\Big(\lim_n f_n \neq f\Big) = 0.$$

Def 17. Convergence in measure, $f_n \stackrel{\mu}{\longrightarrow} f: \forall \varepsilon > 0$,

$$\lim_{n} \mu(|f_n - f| > \varepsilon) = 0.$$

Evidently

$$f_n \xrightarrow{a.e.} f \iff \forall \varepsilon > 0, \mu \left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0$$
$$\iff \forall \varepsilon > 0, \mu(\{ |f_n - f| > \varepsilon \} \text{ i.o.}) = 0.$$

Recall

$$x \in \limsup A_n \iff x \in A_n \text{ i.o.}$$

Thm 15. If μ is finite, then

$$f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f.$$

PROOF. Indeed,

$$\mu(|f_n - f| > \varepsilon) \leqslant \mu\left(\bigcup_{m=n}^{\infty} \{|f_m - f| > \varepsilon\}\right), \ \forall n.$$

Let $n \to \infty$ and use continuity from above (requires finiteness of μ)

$$\limsup_{n} \mu(|f_{n} - f| > \varepsilon) \leqslant \lim_{n} \mu\left(\bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right)$$
$$= \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{|f_{m} - f| > \varepsilon\}\right) = 0.$$

(or use

$$\limsup_{n} \mu(A_n) \leqslant \mu\left(\limsup_{n} A_n\right).$$

)

Def 18. Almost uniform convergence, $f_n \xrightarrow{a.u.} f: \forall \varepsilon > 0$, there is $A_{\varepsilon} \in \mathscr{F}$ so that $\mu(A_{\varepsilon}) < \varepsilon$,

$$\lim_{n} \sup_{x \notin A_{\varepsilon}} |f_n - f| = 0.$$

Compare with Egoroff's Theorem on finite measure!

Thm 16. $f_n \stackrel{a.u.}{\longrightarrow} f$ if and only if $\forall \varepsilon > 0$,

$$\lim_{n} \mu \left(\bigcup_{m=n}^{\infty} \{ |f_m - f| > \varepsilon \} \right) = 0.$$

PROOF. 1. " \Longrightarrow ". $\forall \varepsilon > 0$, there is A_{ε} so that $\mu(A_{\varepsilon}) < \varepsilon$ and

$$\lim_{m} \sup_{x \notin A_{\varepsilon}} |f_m - f| = 0.$$

So, $\forall \varepsilon' > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\sup_{x \notin A_{\varepsilon}} |f_m - f| \leqslant \varepsilon', \ \forall m \geqslant n_0.$$

This translates to

$$\bigcup_{m=n_0}^{\infty} \{ |f_m - f| > \varepsilon' \} \subset A_{\varepsilon}.$$

Therefore

$$\mu\left(\bigcup_{m=n_0}^{\infty} \{|f_m - f| > \varepsilon'\}\right) \leqslant \mu(A_{\varepsilon}) < \varepsilon.$$

2. " $\Leftarrow=$ ". $\forall \varepsilon > 0$ and $k \in \mathbb{N}$, there is $n_{\varepsilon,k} \in \mathbb{N}$ such that

$$\mu\left(\bigcup_{m=n_{\varepsilon,k}}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\} \right) < \frac{\varepsilon}{2^k}, \ \forall m \geqslant n_{\varepsilon,k}.$$

Denote (the set of all possible divergence points! measurable!)

$$A_{\varepsilon} = \bigcup_{k=1}^{\infty} \bigcup_{m=0}^{\infty} \left\{ |f_m - f| > \frac{1}{k} \right\}.$$

Then $\mu(A_{\varepsilon}) < \varepsilon$ and for any $x \notin A_{\varepsilon}$, we have $\forall k$,

$$|f_m - f| \leqslant \frac{1}{k}, \ \forall m > n_{\varepsilon,k}.$$

We have proved:

Thm 17. (1)

$$f_n \xrightarrow{a.u.} f \implies f_n \xrightarrow{a.e.} f \text{ and } f_n \xrightarrow{\mu} f$$

(2) If μ is finite, then

$$f_n \xrightarrow{a.u.} f \iff f_n \xrightarrow{a.e.} f \implies f_n \xrightarrow{\mu} f$$

E.g. 3.

$$f_n(x) = \begin{cases} 1, & x \in (0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

E.g. 4.

$$f_n(x) = x^n, x \in [0, 1]$$

ightharpoonup 4. Let f=0 and $f_n=1_{A_n}$. Then $f_n\stackrel{\mu}{\longrightarrow} f$ is equivalent to $\mu(A_n)\to 0$ and $\left(\lim_n f_n\neq f\right)=(A_n\ i.o.).$

Any sequence $\{A_n\}$ so that $\mu(A_n) \to 0$ but $\mu(A_n \text{ i.o.}) > 0$ gives an exmple that $f_n \xrightarrow{\mu} f \not \Rightarrow f_n \xrightarrow{a.e.} f$. It is enough to have $\mu(A_n) \to 0$ and

$$\sum_{i=1}^{\infty} 1_{A_n}(x) = \infty, \ \sum_{i=1}^{\infty} 1_{A_n^c}(x) = \infty.$$

E.g. 5. For each n = 1, 2, ... there is a unique decomposition n = k(k-1)/2 + i with k = 1, 2, ..., i = 1, 2, ..., k.

$$f_n(x) = \begin{cases} 1, & x \in (((i-1)/k, i/k]), \\ 0, & otherwise. \end{cases}$$

E.g. 6. Consider

$$A_k^i = \left| \frac{i-1}{k}, \frac{i}{k} \right|, \ h_k^i(x) = 1_{A_k^i}(x), \ i = 1, ..., k.$$

Let f_n be the sequence

$$\left\{h_1^1;h_2^1,h_2^2;h_3^1,h_3^2;h_3^3;\ldots\right\}$$

Thm 18. $f_n \xrightarrow{\mu} f \iff for \ any \ subsequence \ there \ is a further subsequence <math>f_{n_k} \xrightarrow{a.u.} f$.

PROOF. " \Longrightarrow ". Since any subsequence of f_n converges in measure to f, it is enough to show there is a subsequence $f_{n_k} \xrightarrow{a.u.} f$. To see this, for any k > 0, by definition of convergence in measure, we can choose $n_k > n_{k-1}$ so that

$$\mu\bigg(|f_{n_k} - f| > \frac{1}{k}\bigg) \leqslant \frac{1}{2^k}.$$

Then

$$\mu\left(\bigcup_{k=m}^{\infty}|f_{n_k}-f|>\frac{1}{k}\right)\leqslant \sum_{k=m}^{\infty}\frac{1}{2^k}=\frac{1}{2^{m-1}}.$$

 $\forall \varepsilon > 0$, for large m,

$$\bigcup_{k=m}^{\infty} \{ |f_{n_k} - f| > \varepsilon \} \subset \bigcup_{k=m}^{\infty} \left\{ |f_{n_k} - f| > \frac{1}{k} \right\}.$$

So

$$\lim_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \varepsilon \right) \leqslant \lim_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \frac{1}{k} \right) = 0.$$

" \Leftarrow " Suppose $f_n \xrightarrow{\mu} f$ does not hold, i.e. there are $n_k \to \infty$, $\varepsilon_0 > 0$, $\delta_0 > 0$ so that

$$\mu(|f_{n_k} - f| > \varepsilon_0) > \delta_0.$$

Then

$$\liminf_{m} \mu \left(\bigcup_{k=m}^{\infty} |f_{n_k} - f| > \varepsilon_0 \right) \geqslant \delta_0,$$

Contradicting Theorem 16.

Theorem 17 and Theorem 18 indicate that if $f_n \xrightarrow{\mu} f$, then there is a subsequence $f_{n_k} \xrightarrow{a.e.} f$.

4.2. 随机变量的分布函数.

Def 19. (Ω, \mathscr{F}, P) is a probability space if P is a nonnegative measure on the σ -field \mathscr{F} with $P(\Omega) = 1$.

Def 20. A random variable (r.v.) X on (Ω, \mathscr{F}, P) is a real-valued mapping, $X : \omega \in \Omega \mapsto X(\omega) \in \mathbb{R}$.

Def 21. The distribution function of a r.v. X is

$$F(x) = P(X \leqslant x).$$

Denoted by $X \sim F$.

Thm 19. Any distribution function F has the following properties.

- (1) non-decreasing, $F(-\infty) = 0$ and $F(\infty) = 1$
- (2) right continuity: $\lim_{y \to x} F(y) = F(x)$.
- (3) left limit exists: $F(x-) = \lim_{y \uparrow x} F(y) = P(X < x)$.

(4)
$$P(X = x) = F(x) - F(x-)$$
.

The inverse of the distribution function F is defined as below. $\forall z \in (0,1)$,

(4.1)
$$F^{-1}(z) = \inf\{x \in \mathbb{R} : F(x) \ge z\}.$$

▷ 5. Also equivalently defined as,

(4.2)
$$F^{-1}(z) = \sup\{x \in \mathbb{R} : F(x) < z\}.$$

LEMMA 20. F^{-1} has the properties,

- (1) F^{-1} is real-valued non-decreasing.
- (2) F^{-1} is left-continuous and has right limit.
- (3) $F^{-1}(F(x)) \leq x$, $F(F^{-1}(z)) \geq z$.
- $(4) F^{-1}(z) \leqslant x \text{ iff } F(x) \geqslant z.$

Proof. Exercise.

Thm 21. If F satisfies (1)(2)(3) of Theorem 19, there is a r.v. X with distribution F.

PROOF. Let $\Omega=(0,1),\ \mathscr{F}=\mathscr{B}_{(0,1)}$ (i.e. $(0,1)\cap\mathscr{B}_{\mathbb{R}}),\ P=$ Lebesgue measure. Define

$$X(\omega) = F^{-1}(\omega).$$

Then X is \mathscr{F} -measurable (check this!) and

$$P(\omega : X(\omega) \le x) = P(\omega : F(x) \ge \omega)$$

= Lebesgue measure of $(0, F(x)) = F(x)$.

So X is a r.v. with distribution function F.

 \triangleright 6. Another construction of a r.v. X with distribution F is to take $\Omega = (\mathbb{R}, \mathcal{B}), P =$ the Lebesgue measure induced by F and consider the coordinate map $X(\omega) = \omega$.

4.3. 随机变量的收敛. Probability space (Ω, \mathcal{F}, P) , r.v. X_n, X ,

$$X_n \xrightarrow{a.s.} X \iff P(X_n = X) = 1.$$

$$X_n \xrightarrow{P} X \iff \forall \varepsilon > 0, \lim_n P(|X_n - X| > \varepsilon) = 0.$$

Def 22. $X_n \sim F_n$, $X \sim F$. Convergence in distribution (weak convergence): $F_n(x) \to F(x)$ for all x where F is continuous, written $X_n \stackrel{d}{\longrightarrow} X$.

Thm 22. $X_n \sim F_n$, $X \sim F$.

$$X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X.$$

PROOF. 1. The first implication is a special case of Theorem 15.

2. Check the second implication. $\forall \varepsilon, x \in \mathbb{R}, n \in \mathbb{N}$,

$$P(X \leqslant x - \varepsilon) - P(|X_n - X| > \varepsilon)$$

$$\leqslant P(X_n \leqslant x)$$

$$\leqslant P(X_n \leqslant x, |X_n - X| \leqslant \varepsilon) + P(X_n \leqslant x, |X_n - X| > \varepsilon)$$

$$\leqslant P(X \leqslant x + \varepsilon) + P(|X_n - X| > \varepsilon).$$

So $n \to \infty$, $\varepsilon \to 0$ yield

$$F(x-) \leqslant \liminf_{n} P(X_n \leqslant x) \leqslant \limsup_{n} P(X_n \leqslant x) \leqslant F(x).$$

LEMMA 23. $F_n \xrightarrow{w} F \iff F_n^{-1} \xrightarrow{w} F^{-1}$.

PROOF OF " \Longrightarrow ". Construct r.v.s' $X_n \sim F_n$, $X \sim F$ as Theorem 21. Fix any ω .

1. Choose any $\varepsilon>0$ so that F is continuous at $X(\omega)-\varepsilon$ (the discontinuities of F are at most countable, ε can be arbitrarily small). By the definition (the infimum!) of $X(\omega)$,

$$F(X(\omega) - \varepsilon) < \omega.$$

Then, for large n,

$$F_n(X(\omega) - \varepsilon) < \omega.$$

so (note the above inequality is strict)

$$X(\omega) - \varepsilon \leqslant X_n(\omega).$$

Hence

$$X(\omega) \leqslant \liminf_{n} X_n(\omega).$$

2. To see the opposite. Choose any $\varepsilon, \delta > 0$ so that X is continuous at ω and F is continuous at $X(\omega) + \varepsilon$, then by Lemma 20

$$F(X(\omega + \delta) + \varepsilon) \geqslant F(X(\omega + \delta)) \geqslant \omega + \delta > \omega.$$

For large $n \ (\delta > 0)$,

$$F_n(X(\omega + \delta) + \varepsilon) \geqslant \omega.$$

By Lemma 20 again,

$$X(\omega + \delta) + \varepsilon \geqslant X_n(F_n(X(\omega + \delta) + \varepsilon)) \geqslant X_n(\omega).$$

Let $n \to \infty$, $\varepsilon \to 0$, $\delta \to 0$ (continuity at ω),

$$X(\omega) \geqslant \limsup_{n} X_n(\omega).$$

Thm 24 (Skorohod). $X_n \sim F_n$, $X \sim F$. Suppose $X_n \xrightarrow{d} X$. There exist r.v. \bar{X}_n , \bar{X} on a common probability space so that $\bar{X}_n \stackrel{d}{=} X_n$, $\bar{X} \stackrel{d}{=} X$, $\bar{X}_n \xrightarrow{a.s.} \bar{X}$.

PROOF. Let $\Omega = (0,1)$, $\mathscr{F} = \mathscr{B}_{(0,1)}$, P = Lebesgue measure. By Theorem 21 there exist r.v. on (Ω, \mathcal{F}, P) so that $\bar{X}_n \sim F_n$, $\bar{X} \sim F$. Lemma 23 then says $F_n^{-1} \xrightarrow{w} F^{-1}$. Since the discontinuity set of F^{-1}

is countable, $F_n^{-1}(\omega) \to F^{-1}(\omega)$ for almost all $\omega \in \Omega$, i.e. $\bar{X}_n(\omega) \xrightarrow{a.s.}$ $X(\omega)$.

5. 积分

5.1. 非负可测函数积分. (E, \mathcal{F}, μ) a measure space, $f \in \mathcal{F}$ with values in $[0, \infty]$,. A finite (measurable) partition of E is a finite collection of \mathcal{F} -measurable sets $\{A_i : i = 1, ..., m\}$ with $\bigcup_{i=1}^{m} A_i = E$.

(5.1)
$$\int f d\mu \triangleq \sup_{\text{finite partitions}} \sum_{i} \left[\inf_{x \in A_i} f(x) \right] \mu(A_i).$$

Convention: $0 \cdot \infty = 0$.

 \triangleright 7. Consider

(5.2)
$$\int f d\mu \triangleq \inf_{\text{finite partitions}} \sum_{x} \left[\sup_{x \in A_i} f(x) \right] \mu(A_i).$$

Is (5.2) a good definition of integration?

Properties: $f, g \in \mathcal{F}$ nonnegative.

(1) If
$$f = 0$$
, μ -a.e., then $\int f d\mu = 0$.

(2) If
$$\mu(f > 0) > 0$$
, then $\int f d\mu > 0$.

(3) If
$$\int f d\mu < \infty$$
, then $f < \infty, \mu$ -a.e.

(4) If
$$f \leqslant g$$
, μ -a.e., then $\int f d\mu \leqslant \int g d\mu$.

(5) If
$$f = g$$
, μ -a.e., then $\int f d\mu = \int g d\mu$.

Thm 25 (Monotone convergence Theorem). If $0 \le f_n \uparrow f$, μ -a.e., then $0 \le \int f_n d\mu \uparrow \int f d\mu$.

PROOF. 1. First prove it under the assumption that

$$0 \leqslant f_n(x) \uparrow f(x), \ \forall x.$$

Integration is monotonic, so $\int f_n d\mu \leqslant \int f d\mu$. It remains to show

(5.3)
$$\lim_{n} \int f_n d\mu \geqslant \int f d\mu$$

or

$$\lim_{n} \int f_n d\mu \geqslant S = \sum_{i=1}^{m} c_i \mu(A_i)$$

for any finite measurable partition $\{A_i: i=1,...,m\}$ and $c_i=\inf_A f$.

For such a partition, assume that the sum S, c_i and $\mu(A_i)$ are all finite. Fix $\alpha < 1$, define

$$A_{i,n} = \{ x \in A_i : f_n(x) > \alpha c_i \}.$$

Since $f_n \uparrow f$, $A_{i,n} \uparrow A_i$. Consider the measurable partition

$${A_{i,n}: i = 1, ..., m} \cup \left\{ \left(\bigcup_{i=1}^{m} A_{i,n}\right)^{c} \right\}.$$

Then

$$\int f_n d\mu \geqslant \sum_{i=1}^m \alpha c_i \mu(A_{i,n}).$$

Let $n \to \infty$ and use continuity from below,

$$\lim_{n} \int f_n d\mu \geqslant \sum_{i=1}^{m} \alpha c_i \mu(A_i).$$

Finally let $\alpha \to 1$, (5.3) is proved.

Now suppose S is finite but not all of c_i , $\mu(A_i)$. Then $c_i\mu(A_i)$, i = 1, ..., m are finite. c_i or $\mu(A_i)$ may be infinity, but then $c_i\mu(A_i)$ must be zero. Use the adjusted parition $\{A_i : c_i\mu(A_i) > 0\} \cup \{\text{complement}\}.$

Lastly suppose S is infinite. Then there is some i_0 , $c_{i_0}\mu(A_{i_0}) = \infty$, i.e., $c_{i_0} > 0$, $\mu(A_{i_0}) > 0$ and at least one of them is ∞ . In this case

$$\int f d\mu = \infty.$$

To prove (5.3), let a, b satisfy

$$0 < a < c_{i_0} \leq \infty, \ 0 < b < \mu(A_{i_0}) \leq \infty.$$

Define

$$A_{i_0,n} = \{ x \in A_{i_0} : f_n(x) > a \}.$$

Since $f_n \uparrow f$, $A_{i_0,n} \uparrow A_{i_0}$ and $\mu(A_{i_0,n}) > b$ for n larger than some $n_{a,b}$. For the partition $\{A_{i_0,n}, A_{i_0,n}^c\}$, we have

$$\int f_n d\mu \geqslant a\mu(A_{i_0,n}) > ab, \, \forall n > n_{a,b}.$$

Let $a \to \infty$ if $c_{i_0} = \infty$, $b \to \infty$ if $\mu(A_{i_0,n}) = \infty$, we get

$$\lim_{n} \int f_n d\mu = \infty.$$

- **2**. If $0 \le f_n \uparrow f$ on A with $\mu(A^c) = 0$, then $0 \le f_n 1_A \uparrow f 1_A$ holds everywhere. Then apply step **1**.
 - **5.2. 可测函数积分.** $f \in \mathcal{F}$ with values in $[-\infty, \infty]$,

$$\int f d\mu \triangleq \int f^+ d\mu - \int f^- d\mu.$$

f is said to be integrable if $\int f^+ d\mu$, $\int f^- d\mu$ are finite. So f integrable iff |f| integrable.

Properties: $f, g \in \mathcal{F}$ integrable.

(1) If
$$f \leqslant g$$
, μ -a.e., then $\int f d\mu \leqslant \int g d\mu$.

(2) If $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is integrable,

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu.$$

E.g. 7. Let $E = \{1, 2, 3, ...\}$, $\mathscr{F} = \{all \ subsets \ of \ E\}$, $\mu = counting \ measure$. A function on E is a sequence $x_1, x_2, ...$. Any function is

 \mathscr{F} -measurable. $\{x_k: k=1,2,\ldots\}$ is μ -integrable if and only if $\sum_{k=1} |x_k|$ converges. When μ -integrable,

$$\sum_{k=1}^{\infty} |x_k| = \sum_{k=1}^{\infty} x_k^+ - \sum_{k=1}^{\infty} x_k^-.$$

The function $x_k = (-1)^{k+1}/k$, k = 1, 2, ... is not μ -integrable, although

$$\lim_{m} \sum_{k=1}^{m} (-1)^{k+1} \frac{1}{k} = \ln 2.$$

Thm 26 (Fatou's lemma). Given f_n measurable.

(1) If g integrable, $f_n \geqslant g$, μ -a.e, then $\liminf_n f_n$ is integrable and

$$\int \liminf_n f_n d\mu \leqslant \liminf_n \int f_n d\mu.$$

(1) If g integrable, $f_n \leq g$, μ -a.e, then $\limsup_n f_n$ is integrable and

$$\limsup_{n} \int f_n d\mu \leqslant \int \limsup_{n} f_n d\mu.$$

Thm 27 (Lebesgue's dominated convergence theorem). Given g nonnegative integrable, $|f_n| \leq g$, μ -a.e.. If $f_n \stackrel{a.e.}{\longrightarrow} f$ or $f_n \stackrel{\mu}{\longrightarrow} f$, then

$$\int f_n d\mu \longrightarrow \int f d\mu.$$

8 (Weierstrass M-test). If $|x_{n,m}| \leqslant M_m$, $\sum M_m < \infty$,

 $\lim_{m \to \infty} x_{n,m} = x_m$ for each m. Then

$$\lim_{n} \sum_{m=1}^{\infty} x_{n,m} = \sum_{m=1}^{\infty} x_m.$$

E.g. 9 (Bounded convergence theorem). Suppose μ is finite, M > 0. $|f_n| \leq M$, μ -a.e.. If $f_n \xrightarrow{a.e.} f$ or $f_n \xrightarrow{\mu} f$, then

$$\int f_n d\mu \longrightarrow \int f d\mu.$$

E.g. 10. If $f_n \ge 0$ or $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$, then

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

From this we get

E.g. 11. If $x_{n,m} \ge 0$ or $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} |x_{n,m}| < \infty$, then

$$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} x_{n,m} = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} x_{n,m}.$$