

(11) Publication number:

04109927

Generated Document.

# PATENT ABSTRACTS OF JAPAN

(21) Application number: 02227918

(22) Application date: 31.08.90

(51) Intl. Cl.: A61B 1/04 A61B 1/00 G02B 23/24 H04N 7/18

(30) Priority:

(43) Date of application

publication:

10.04.92

(84) Designated contracting

states:

(71) Applicant: TOSHIBA CORP

(72) Inventor: SAITO MASAYUKI

KONDO TAKESHI MOTOMIYA AKINORI YAMADA HIROSHI

(74) Representative:

# (54) ELECTRONIC ENDOSCOPE APPARATUS

(57) Abstract:

PURPOSE: To obtain an electronic endoscope which can prevent a patient from feeling a pain when a photographing head portion is inserted in a coelom of a patient by providing a photographing head portion having a solid state image pickup element and an enclosure for sealing a signal processing means, at least a part of which is formed by a light transmitting member, and an image monitor portion separated from the photographing head portion.

CONSTITUTION: A photographing head portion 11 is constructed so that an objective lens 3, a solid state image pickup element 1, an image processing circuit element 7, a transmitting integrated circuit element 6, a light emitting element 4, and a battery 8 are stored in a capsule-like package 10. It is suitable to form the capsule-like package 10 by glass or plastics because it is hard to be dirty in a coelom and it is easy to photograph an image of an observed body. A 1.6×105 picture element CCD chip which is a charged coupling element is used as the solid state image pickup element 1. The objective lens 3 and an optical lens 3' are fitted to a glass plate. The former is for illumination and the latter is for photographing. The photographing head 11 is inserted in the coelom, an image signal is received by a receiver disposed outside the body, and the image is displayed on an image monitor 16 to observe the interior of the coelom.



#### ⑩特許出願公開

# ◎ 公開特許公報(A) 平4-109927

| ⑤Int. Cl. ⁵                 | 識別記号         | 庁内整理番号                                 | <b>③公開</b> | 平成 4年(1992) 4月10日 |
|-----------------------------|--------------|----------------------------------------|------------|-------------------|
| A 61 B 1/04<br>1/00         | 372<br>300 P | 8718—4 C<br>8718—4 C                   |            |                   |
| G 02 B 23/24<br>H 04 N 7/18 | B<br>M       | 7132-2K<br>7033-5C<br><del>海杏請</del> 求 | 大語求 話      | 着求項の数 3 (全4頁)     |

会発明の名称 電子内視鏡装置

②特 願 平2-227918

②出 願 平2(1990)8月31日

神奈川県川崎市幸区小向東芝町 1 番地 株式会社東芝総合 @発 明 者 斉 藤 雅之 研究所内 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 雌 @発 明 者 近 藤 研究所内 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 明 典 @発 明 者 本 宮 研究所内 神奈川県川崎市幸区小向東芝町 1 番地 株式会社東芝総合 明  $\mathbf{H}$ 浩 個発 老 Ш 研究所内

⑦出 願 人 株 式 会 社 東 芝 ②代 理 人 弁理士 則近 憲佑 神奈川県川崎市幸区堀川町72番地

明 細 書

# 1. 発明の名称

電子內視鏡装置

# 2. 特許請求の範囲

- (1) 体腔内の画像を撮像する固体提像素子と、 該固体撮像素子からの画像信号を処理する信号処理 理手段と、固体摄像素子及び信号処理手段を密閉 封入する少なくとも一部が光透過性部材からなる 筐体とを備えた摄像ヘッド部と、前記摄像ヘッド 部と離隔されている画像モニタ部を有する電子内 視鏡装置。
- (2) 前記信号処理手段は固体摄像素子を具備した固体摄像モジュールと画像信号を無線で送信する回路から成ることを特徴とする請求項1記載の電子内視鏡装置。
- (3) 前記信号処理手段は固体摄像素子を具備した固体摄像モジュールと画像信号を蓄積する画像メモリ素子から成ることを特徴とする請求項 1 記載の電子内視鏡装置。

### 3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は固体操像業子モジュールを搭載した電子内視鏡装置に係わり、特に体腔内を撮像する撮像へッド部を患者の体腔内に挿入する際、患者に必要以上の苦痛を与えない新規な構造の電子内視鏡装置に関する。

#### (従来の技術)

従来の内視鏡装置は、体腔内に挿入るすれるとが、の内部に光ファイバとを配置させ、外部に設けているが、から放射された光を見ているが、がから放射された光でではないである。 では観体に照射し、被観察体の像を対ない接触でで、被して外部のへは接続であるようないは接続である。 では観がればないである。 では、それが、あるのは、は、ないではないである。 では、それが、また、からないにはおもにがラスといるのでははした。 では、1 画素が1本の光 バからなるイメージガイドに対応しているので、 分解能を高めるには光ファイバの径を細くしなければならない。これは現状では技術的に困難なため、光ファイバを用いた内視鏡の分解能はほぼ限 界に達している。

固体振像素子を可鍵性質の先端に組み込んだ従来の電子内視鏡装置にあっては、振像ヘッド部は小形化するほど体腔内へ挿入し易くなることはもちろんであり、大形のものを使用した場合には患者に苦痛を与えることが多く、できる限り小形化することが要望されていた。

第2図は従来の固体摄像素子を用いた電子内視 鏡装置を示すものである。可機性質12の先端に 取り付けられた撮像ヘッド部11で、被観察体の 画像を撮像し、信号処理装置15を通じて画像モ こタ16に表示するものである。体腔内に挿入さ れる可撓性質の先端に固体摄像素子を組み込んだ 撮像ヘッド部 (11)は第 2 図ー(b) に示すように構 成されている。即ち、生体体腔内に挿入される機 像ヘッド部先端には照明レンズ(図示せず)が取 り付けられ、外部の光源装置から光ファイバなど を用いたライトガイドを通して照明用のレンズに 導かれ、被観察体を照明するようになっている。 さらに同機像ヘッド先端部には対物レンズ3が取 り付けられ、この対物レンズ3を通して被観察体 からの光がプリズム19を介して固体撮像素子1 の受光面に結構する。結像された光学像は電気信 号に変換されて次段の信号処理回路に送られ、必 要な信号処理が行われ、接続コード(可提性管 12内)を通して体外に設置された画像モニタ 16上に表示されるものである。

# (発明が解決しようとする課題)

本発明は上述した問題点を考慮してなされたもので、その目的とするところは固体撮像素子を用いた電子内視鏡装置に関して、撮像ヘッド部を患者の体腔内に挿入する際、患者になんら苦痛を感じさせない新規な構造の電子内視鏡装置を提供することにある。

#### [発明の構成]

#### (課題を解決するための手段)

本発明は、体腔内の画像を撮像する固体撮像案子と、該固体撮像案子からの画像信号を処理する信号処理手段と、固体撮像案子及び信号処理手段を密閉封入する少なくとも一部が光透過性部材からなる筐体とを備えた機像ヘッド部と、前記撮像ヘッド部と離隔されている画像モニタ部を有する電子内視鏡装置である。

#### (作用)

本発明は摄像ヘッド部に固体摄像素子と該摄像素子で撮像した画像信号を処理する信号処理手段を移け、画像信号を例えば繁波で送信するある

いは画像情報を画像メモリ素子に蓄積する等のでは、 とのできるので、 固体素子を含む 撮像素子を含む 撮像素子を含む 撮像ないできる。このことは従来の内視鏡装置が撮像部とでないの内視鏡装置は、 "管"ないしは "紐"の内視鏡装置は、 "管"ないしは "紐"がないかづセル状の "塊"になるため、内視鏡装置を体内に挿入する際の患者の苦痛、負担は格段に軽減される。

#### (実施例)

以下、本発明の実施例を図面にもとづいて説明する。

第1 図は本発明による撮像ヘッド部の一変施例を示すものである。撮像ヘッド部はカブセル状の外囲器 1 0 の中に対物レンズ 3 、固体撮像素子 1 、画像処理回路素子 7 、送信用集積回路素子 6 、発光素子 4 、電池 8 が収納されている。カプセル状の外囲器 1 0 はガラス、ブラスチック、金属などを用いることができるが体腔内で汚染されにくいことと被観察体の画像を振像しやすいことなどか

透光性樹脂を封入しても差し支えない。 ガラス基板の半導体素子が搭載されていない面には対物レンズ 3 及び光学レンズ 3 ′ が取り付けられる。前者は照明用であり、後者は摄像用である。

次に、ガラス基板と画像処理回路素子、送信用集積回路素子、電池を搭載した記線基板を表板を搭載した記線を接続する。 チャガコンサ、トランは流がですが低い、からに実接し、送配線基板上にABがイストラとの路素子はベーストを発している。 5 Iを用い、設配線基板上にABがイストで接線を ボンディングには線を下れているおりでは続いた。 または螺旋に配線が形成されているおりで ナ(10)として使用する。

以上実施例で示した様に本発明による電子内視 競装電の機像ヘッド部は長径18.0mm、短径9.0mm のカブセル状外囲器に収納することができた。こ の機像ヘッドを、体腔内に挿入し体外に配置した 受信装置で画像信号を受信し、画像モニタ上に装

らガラス、プラスチックが適当である。固体撮像 素子には荷電結合素子である 1 6 万画業 C C D チ ップを使用した。このCCDチップの電極にバシ プを設け。一方厚さ0.5 mmのガラス基板2には金 属配線パターンを形成したのち、CCDチップを フェイスダウン実装した。CCDチップ上に設け られるパンプは金、銅、半田、ニッケル、銀など が使用できるがここではパンプ形成方法が簡便で ある金ポールバンプを用いた。ガラス基板上の配 錬金属は金、銀、銅、ニッケル、タングステン、 チタン、クロム、モリブデン、アルミニウム、鯛、 鉛、半田、インジウムなどこれら単独で、あるい は多層化して使用することができる。配線形成の 方法はPEP(Photo Engraving Process) 法、ま たは印刷法を用いることができる。ここでは印刷 法によって厚膜金配線を形成し、同じく印刷法で インジウム/鉛合金半田を接続パッド上に設けた。 発光素子も同様の方法で金パンプを形成し、該ガ ラス基板上にフェイスダウン実装した。これら半 導体素子とガラス基板との間額には必要に応じて

示し体腔内を観察することが可能となった。

この様に、本発明によれば該操像ヘッド部内に 设けられた送信回路を使って、ブリントアンテナ を介して画像信号を無線で送信するので該操像ヘ ッド部と画像モニタ部とを管ないしは配線で繁ぐ 必要がなくなるために撮像ヘッドを体腔内に挿入 する際、患者の苦痛や負担は激減する。

本実施例では固体撮像素子で撮像した画像信号を電波で送信する場合について説明したが、送信用集積回路素子 6 の代わりに画像メモリ素子を搭載することもできる。この場合、 該固体摄像素子で撮像した画像信号を該画像メモリ素子に書積し、撮像ヘッド部を体外に取り出した後に画像メモリから画像情報を読み出すことによって所望の観察ができる。

# [発明の効果]

以上詳述したように本発明によれば、固体操像素子を含む機像ヘッド部と体外に設置される画像モニタ部とが分離した構造となるので、機像ヘッド部を患者の体腔内に挿入する際、患者への負担

を軽減することができる。また、撮像ヘッド部は 画像モニタ部と独立して構成することができるの で、多数の患者が同時に使用することができ、集 団検診が可能となる。

# 4. 図面の簡単な説明

第1図は本発明による電子内視鏡装置の撮像へッド部の断面を示す図、第2図は従来技術による電子内視鏡装置の構成図である。

1 … 固体摄像素子、2 … 光学ガラス、3 … 対物レンズ、3 … 光学レンズ、4 … 発光素子、5 … 配線基板、6 … 送信用集積回路素子(画像メモリ素子:信号処理手段)、7 … チップ部品、8 … 電池、9 … ブリントアンテナ、10 … 外囲器、11… 撮像ヘッド部、12 … 可捷性管、13… 操作部、14…接続コード、15…信号処理回路部、16 … モニタ部、17…送気口、18… Agペースト、19… ブリズム、20…保運ガラス、21…半導体パッケージ、22…配線基板、23…異方性導電フィルム。

代理人弁理士 則近憲佑



第 1 図





第 2 図