# Tropical Discriminants – An Invitation to Tropical Geometry

#### **Eva Maria Feichtner**

feichtne@igt.uni-stuttgart.de
http://www.igt.uni-stuttgart.de/AbGeoTop/Feichtner/

FPSAC 2007, Nankai University, Tianjin, China

#### **Outline**

- 1. A-Discriminants  $\Delta_A$
- 2. Tropical Geometry
- 3. Tropical *A*-Discriminants
- 4. The Newton Polytope of  $\Delta_A$

This is joint work with Alicia Dickenstein and Bernd Sturmfels arXiv:math.AG/0510126, J. Amer. Math. Soc., to appear.

### 1. Discriminants: Classical Examples

#### 1. Discriminant of a quadratic polynomial in 1 variable

$$f(t) = x_2 t^2 + x_1 t + x_0, \qquad x_2 \neq 0$$

f has a double root  $\iff \Delta_f = x_1^2 - 4x_2x_0 = 0$ 

$$\Delta_f = x_1^2 - 4x_2x_0 = 0$$

#### 2. Discriminant of a cubic polynomial in 1 variable

$$f(t) = x_3t^3 + x_2t^2 + x_1t + x_0, \ x_3 \neq 0$$

f has a double root

$$\Delta_f = 27 x_0^2 x_3^2 - 18 x_0 x_1 x_2 x_3 + 4 x_0 x_2^3 + 4 x_1^3 x_3 - x_1^2 x_2^2 = 0$$

### A-Discriminants

[Gelfand, Kapranov, Zelevinsky 1992]

$$A = (a_1 \cdots a_n) \in \mathbb{Z}^{d \times n}$$
,  $(1, \dots, 1) \in \text{row span } A$ ,  $a_1, \dots, a_n$  span  $\mathbb{Z}^d$ 

A represents a family of hypersurfaces in  $(\mathbb{C}^*)^d$  defined by

$$f_A(t) = \sum_{j=1}^n x_j t^{a_j} = \sum_{j=1}^n x_j t_1^{a_{1j}} t_2^{a_{2j}} \dots t_d^{a_{dj}}.$$

$$X_A^* = \operatorname{cl} \{(x_1:\ldots:x_n) \in \mathbb{CP}^{n-1} \mid f_A(t) = 0 \text{ has a singular point in } (\mathbb{C}^*)^d\}$$

Generically,  $\operatorname{codim} X_A^* = 1$ , and

$$X_A^* = V(\Delta_A),$$

where  $\Delta_A$  irreducible polynomial in  $\mathbb{Z}[x_1,\ldots,x_n]$ , the A-discriminant.

### A-Discriminants: Classical Examples

#### 1. Discriminant of a quadratic polynomial in 1 variable

$$f(t)=x_2t^2+x_1t+x_0\,, \qquad x_2
eq 0$$
 
$$A=\begin{pmatrix} 1&1&1\\0&1&2 \end{pmatrix}$$
  $f$  has a double root  $\iff \Delta_A=x_1^2-4x_2x_0=0$ 

#### 2. Discriminant of a cubic polynomial in 1 variable

$$f(t) = x_3 t^3 + x_2 t^2 + x_1 t + x_0, \ x_3 \neq 0$$
 
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

f has a double root  $\iff$ 

$$\Delta_A = 27 x_0^2 x_3^2 - 18 x_0 x_1 x_2 x_3 + 4 x_0 x_2^3 + 4 x_1^3 x_3 - x_1^2 x_2^2 = 0$$

### A-Discriminants: Classical Examples

#### 3. Resultant of two polynomials in 1 variable

$$f(t) = \sum_{i=0}^{n} x_i t^i, \quad x_n \neq 0,$$
  $g(t) = \sum_{i=0}^{m} y_i t^i, \quad y_m \neq 0,$ 

f and g have a common root  $\iff$   $\operatorname{Res}(f,g) = 0$ 

$$\operatorname{Res}(f,g) = \Delta_A \in \mathbb{Z}[x_0,\ldots,x_n,y_0,\ldots,y_m]$$
 for

$$A = \begin{pmatrix} 1 & 1 & \dots & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & n & 0 & 1 & \dots & m \end{pmatrix}$$

Res(f,g) = determinant of the Sylvester matrix

### A-Discriminants: More Examples

4. Discriminant of a deg 2 homogeneous polynomial in 3 variables

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{pmatrix}$$

$$\Delta_A = 1/2 \det \begin{pmatrix} 2x_1 & x_2 & x_4 \\ x_2 & 2x_3 & x_5 \\ x_4 & x_5 & 2x_6 \end{pmatrix}$$

5. Discriminant of a deg 3 homogeneous polynomial in 3 variables

 $\deg \Delta_A = 12$ , 2040 terms

### **Newton Polytopes**

$$g = \sum_{c \in C} \gamma_c x^c = \sum_{c \in C} \gamma_c x_1^{c_1} \cdots x_n^{c_n}, \qquad \gamma_c \in \mathbb{C}^*, \ C \subset \mathbb{Z}^n$$

$$New(g) = conv \{c \mid c \in C\} \subseteq \mathbb{R}^n$$

Newton polytope

#### **Example:**

$$g = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

Once we know  $New(\Delta_A)$ , determining  $\Delta_A$  is merely a linear algebra problem!



### A-Discriminants: Our Goals

#### Goal:

Derive information on  $\Delta_A$ , resp.  $X_A^*$ , for instance

- ullet deg  $\Delta_A$
- Newton polytope of  $\Delta_A$

directly from the matrix, i.e., the point configuration A.

Ansatz: Study the tropicalization of  $X_A^*$ !

### 2. Tropical Geometry

Tropical geometry is algebraic geometry over the tropical semiring

$$(\mathbb{R}\cup\{\infty\},\oplus,\otimes)$$
 ,

$$(\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$$
 ,  $x \oplus y := \min\{x,y\}$  ,  $x \otimes y := x+y$  .

algebraic varieties



tropical varieties, i.e. polyhedral fans





### **Tropical Varieties – the Algebraic Approach**

 $Y \subseteq \mathbb{CP}^{n-1}$  irreducible variety,  $\dim Y = r$ ,  $I_Y \subseteq \mathbb{C}[x_1, \dots, x_n]$  defining prime ideal.

For  $w \in \mathbb{R}^n$  and  $f = \sum_{c \in C} \gamma_c x^c$ ,  $\gamma_c \in \mathbb{C}$ ,  $C \subset \mathbb{Z}^n$ , define

 $\operatorname{in}_w(I_Y) = \langle \operatorname{in}_w f \mid f \in I_Y \rangle$  initial ideal of  $I_Y$ .

 $au(Y) = \{ w \in \mathbb{R}^n \, | \, ext{in}_w(I_Y) \, ext{does not contain a monomial} \}$  tropicalization of Y

 $\tau(Y)$  is a pure r-dimensional polyhedral fan in  $\mathbb{R}^n$ , resp.  $\mathbb{TP}^{n-1}$ .

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) =$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$in_{(-1,-1,-1,0)}(\Delta) = 4x_1x_3^3 - x_2^2x_3^2$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) = 4x_1 x_3^3 - x_2^2 x_3^2 \qquad (-1,-1,-1,0) \in \tau(X_A^*)$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) = 4x_1x_3^3 - x_2^2x_3^2 \qquad (-1,-1,-1,0) \in \tau(X_A^*)$$

$$in_{(1,0,1,0)}(\Delta) =$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) = 4x_1x_3^3 - x_2^2x_3^2 \qquad (-1,-1,-1,0) \in \tau(X_A^*)$$

$$in_{(1,0,1,0)}(\Delta) = 4x_2^3x_4$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) = 4x_1x_3^3 - x_2^2x_3^2 \qquad (-1,-1,-1,0) \in \tau(X_A^*)$$

$$\operatorname{in}_{(1,0,1,0)}(\Delta) = 4x_2^3 x_4 \qquad (1,0,1,0) \notin \tau(X_A^*)$$

$$\Delta = 27 x_1^2 x_4^2 - 18 x_1 x_2 x_3 x_4 + 4 x_1 x_3^3 + 4 x_2^3 x_4 - x_2^2 x_3^2$$

$$\operatorname{in}_{(-1,-1,-1,0)}(\Delta) = 4x_1x_3^3 - x_2^2x_3^2 \qquad (-1,-1,-1,0) \in \tau(X_A^*)$$

$$\operatorname{in}_{(1,0,1,0)}(\Delta) = 4x_2^3 x_4 \qquad (1,0,1,0) \notin \tau(X_A^*)$$



#### 2. Y hypersurface in $\mathbb{CP}^{n-1}$

 $f \in \mathbb{C}[x_1, \dots, x_n]$  irreducible polynomial defining Y  $\mathrm{New}(f)$  Newton polytope,  $\mathcal{N}_{\mathrm{New}(f)}$  its normal fan

$$au(Y) = \operatorname{codim} 1$$
-skeleton of  $\mathcal{N}_{\operatorname{New}(f)}$ 

**Proof:** 

$$\begin{array}{lll} \tau(Y) & = & \{\,w \in \mathbb{R}^n \,|\, \mathrm{in}_w(f) \text{ is not a monomial}\,\} \\ & = & \{\,w \in \mathbb{R}^n \,|\, \mathrm{dim}\left(\mathrm{New}(\mathrm{in}_w(f))\,\right) \,>\, 0\} \\ & = & \{\,w \in \mathbb{R}^n \,|\, \mathrm{dim}\left(w\text{-minimal face of New}(f)\right) \,>\, 0\} \\ & = & \bigcup_{\tiny \substack{\sigma \in \mathcal{N}_{\mathrm{New}(f)} \\ \mathrm{codim}\,\sigma > 0}} \sigma \end{array}$$

#### 3. $Y = X_A$ toric variety

 $A \in \mathbb{Z}^{d \times n}$ ,  $X_A$  toric variety associated with conv $\{a_1, \ldots, a_n\}$ .

$$au(Y) = \text{row span } A$$

Proof:

$$I_{X_A} = \langle x^u - x^v | u, v \in \mathbb{N}^n \text{ with } Au = Av \rangle$$

$$\tau(Y) = \{ w \in \mathbb{R}^n \, | \, \text{in}_w(f) \text{ is not a monomial for any } f \in I_{X_A} \}$$
 
$$= \{ w \in \mathbb{R}^n \, | \, wu = wv \text{ whenever } Au = Av \}$$
 
$$= \text{row span } A$$

4. Y = V linear, resp. projective subspace

$$\tau(Y) = \mathcal{B}(M(V))$$

Bergman fan of the matroid associated with V

### **Bergman Fans**

M matroid on  $\{1,\ldots,n\}$ ,  $\operatorname{rk} M=r$ ,  $M\subseteq \binom{n}{r}$ 

$$P(M) = \operatorname{conv}\{e_{\sigma} \mid \sigma \in M\}, \ e_{\sigma} = \sum_{i \in \sigma} e_i$$

matroid polytope

 $\mathcal{B}(M) = \{w \in \mathbb{R}^n \, | \, w - \text{maximal face of } P(M) \text{ is the polytope of a loop-free matroid} \}$ 

 $\mathcal{B}(M)$  is a  $(\operatorname{rk} M - 1)$ -dimensional subfan of  $\mathcal{N}_{P(M)}$ .

Bergman fan  $e_{12}$   $e_{24}$   $e_{23}$   $e_{34}$   $e_{34}$   $e_{23}$ 

### **Examples of Bergman Fans**

$$M = M(K_4)$$
  
 $r = 3, n = 6$ 





$$M = M(K_4 \backslash e)$$
  
 $r = 3, n = 5$ 





### **Bergman Fans and Tropical Linear Spaces**

 $\mathcal{C}$  set of circuits of a matroid M on  $\{1,\ldots,n\}$ 

$$\mathcal{B}(M) = \{w \in \mathbb{R}^n \, | \, \min \, \{w_j \, | \, j \in C \} \text{ is attained}$$
 at least twice for any  $C \in \mathcal{C} \}$ 

4. Y = V linear, resp. projective subspace

$$\tau(Y) = \mathcal{B}(M(V))$$

Proof:

$$I_Y = \langle f_1, \dots, f_t \rangle$$
,  $f_i$  linear forms in  $n$  variables  $\mathcal{C} = \{ \text{ variables occurring in } f_i \mid i = 1, \dots, t \}$ 

$$au(Y) = \{w \in \mathbb{R}^n \mid \text{in}_w(f_i) \text{ is not a monomial for any } i\}$$

$$= \{w \in \mathbb{R}^n \mid \text{min } \{w_j \mid j \in C\} \text{ is attained}$$
at least twice for any  $C \in \mathcal{C}\}.$ 

#### **Nested Set Fans**

[De Concini & Procesi 1995]

[F. & Kozlov '00]

M connected matroid on  $\{1,\ldots,n\}$ ,  $\operatorname{rk} M=r$ ,

 $\mathcal{L}_M$  lattice of flats,  $\mathcal{G} \subseteq \mathcal{L}_M$  building set,

e.g.,  $\mathcal{G}_{\min}$ : irreducibles, dense edges, connected flats,  $\mathcal{G}_{\max} = \mathcal{L}_M$ .

 $N(\mathcal{L}_M,\mathcal{G})$  simplicial complex of nested sets

 $\dim N(\mathcal{L}_M, \mathcal{G}) = \operatorname{rk} M - 2$ , vertex set  $\mathcal{G}$ , e.g.,  $N(\mathcal{L}_M, \mathcal{G}_{\max}) = \Delta(\mathcal{L}_M)$ .

 $N(\mathcal{L}_M, \mathcal{G})$  is the combinatorial core structure for De Concini-Procesi compactifications of hyperplane arrangements.

 $\mathcal{N}(\mathcal{L}_M, \mathcal{G})$  realization of  $N(\mathcal{L}_M, \mathcal{G})$  as a simplicial fandim  $\mathcal{N}(\mathcal{L}_M, \mathcal{G}) = \operatorname{rk} M - 1$ , 0/1 generating vectors.

[F. & Yuzvinsky'04]

### **Examples of Nested Set Fans**

















### Bergman Fans versus Nested Set Fans

Proposition: [F. & Müller '03; F. & Sturmfels '04]

 $\mathcal{N}(\mathcal{L}_M, \mathcal{G}')$  subdivides  $\mathcal{N}(\mathcal{L}_M, \mathcal{G})$  for any building sets  $\mathcal{G} \subseteq \mathcal{G}'$  in  $\mathcal{L}_M$ .  $\mathcal{N}(\mathcal{L}_M, \mathcal{G})$  subdivides  $\mathcal{B}(M)$  for any building set  $\mathcal{G}$  in  $\mathcal{L}_M$ .

#### In tropical terms:

V a linear subspace, M(V) the associated matroid,  ${\cal G}$  any building set in  ${\cal L}_{M(V)}$  , then

$$\tau(V) = \text{supp } \mathcal{B}(M(V)) = \text{supp } \mathcal{N}(\mathcal{L}_{M(V)}, \mathcal{G}).$$

### **Tropical Varieties – via Valuations**

 $K = \mathbb{C}\{\{t\}\}\$  field of Puiseux series

val: 
$$K^* \longrightarrow \mathbb{Q}$$

$$\sum_{q \in \mathbb{Q}} a_q t^q \longmapsto \inf\{q \mid a_q \neq 0\}$$

valuation

val: 
$$(K^*)^n \to \mathbb{Q}^n \hookrightarrow \mathbb{R}^n$$

Theorem: Let I be an ideal in  $\mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ ,  $V_{\mathbb{C}^*}(I)$ ,  $V_{K^*}(I)$  the varieties of I over  $\mathbb{C}^*$  and  $K^*$ , respectively. Then  $\tau(V_{\mathbb{C}^*}(I))$  equals the closure of the image of  $V_{K^*}(I)$  under val,

$$\tau(V_{\mathbb{C}^*}(I)) = \overline{\operatorname{val}(V_{K^*}(I))}.$$

### 3. Tropical A-Discriminants

$$A = (a_1 \cdots a_n) \in \mathbb{Z}^{d \times n}$$
,  $(1, \dots, 1) \in \text{row span } A$ ,  $a_1, \dots, a_n \text{ span } \mathbb{Z}^d$ 

Horn uniformization of *A*-discriminants:

[Kapranov '91]

The variety  $X_A^*$  is the closure of the image of the morphism

$$\varphi_A : \mathbb{P}(\ker A) \times (\mathbb{C}^*)^d / \mathbb{C}^* \longrightarrow (\mathbb{CP}^{n-1})^*$$

$$(u,t) \longmapsto (u_1 t^{a_1} : u_2 t^{a_2} : \cdots : u_n t^{a_n}).$$

**Tropical Horn uniformization:** 

$$\tau(\varphi_A) : \mathcal{B}(\ker A) \times \mathbb{R}^d \longrightarrow \mathbb{TP}^{n-1}$$

$$(w,v) \longmapsto w + vA$$

$$\operatorname{im} \tau(\varphi_A) = \mathcal{B}(\ker A) + \operatorname{row span} A$$
 Horn fan

### Tropical A-Discriminants

Theorem: [DFS]

$$au(X_A^*) = \mathcal{B}(\ker A) + \text{row span } A$$

$$A = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$





$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$





$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$





$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array}\right)$$





$$A \in \mathbb{Z}^{d \times n}$$
,  $\operatorname{codim} X_A^* = 1$ ,  $w \in \mathbb{R}^n$  generic.

Theorem: [DFS]

The exponent of  $x_i$  in the initial monomial  $\operatorname{in}_w(\Delta_A)$  equals the number of intersection points of the halfray

$$w + \mathbb{R}_{>0}e_i$$

with the tropical discriminant  $\tau(X_A^*)$ , counting multiplicities:

$$\deg_{x_i} (\operatorname{in}_w(\Delta_A)) = \sum_{\sigma \in \mathcal{B}(\ker A)_{i,w}} |\det(A^T, \sigma_1, \dots, \sigma_{n-d-1}, e_i)|.$$

$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 3 \end{array}\right)$$



$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 3 \end{array}\right)$$







$$au(X_A^*)$$



$$A = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 3 \end{array}\right)$$

$$\Delta_{A} = c^{4}e^{4} - 8bc^{2}de^{4} + 16b^{2}d^{2}e^{4} - 8ac^{2}e^{5} - 32abde^{5} + 16a^{2}e^{6}$$

$$-8c^{5}e^{2}f + 64bc^{3}de^{2}f - 128b^{2}cd^{2}e^{2}f + 68ac^{3}e^{3}f$$

$$+240abcde^{3}f - 144a^{2}ce^{4}f + 16c^{6}f^{2} - 192bc^{4}df^{2}$$

$$+768b^{2}c^{2}d^{2}f^{2} - 1024b^{3}d^{3}f^{2} - 144ac^{4}ef^{2} + 2304ab^{2}d^{2}ef^{2}$$

$$+270a^{2}c^{2}e^{2}f^{2} - 1512a^{2}bde^{2}f^{2} + 216a^{3}e^{3}f^{2} + 216a^{2}c^{3}f^{3}$$

$$+2592a^{2}bcdf^{3} - 972a^{3}cef^{3} + 729a^{4}f^{4}$$

### **Summary and Outlook**

#### **Tropical Geometry**

- ullet allows for a new, constructive approach to A-discriminants, independent of any smoothness assumptions.
- opens the discrete-geometric toolbox for classical problems in algebraic geometry.
- establishes itself as a field on its own right on the border line of algebra, geometry and discrete mathematics.

### **Upcoming Event**

### **MSRI** program on Tropical Geometry

Fall 2009

E.M.F., Ilia Itenberg, Grigory Mikhalkin, Bernd Sturmfels

Please keep checking www.msri.org!

#### References

- A. Dickenstein, E.M.F., B. Sturmfels: Tropical discriminants; math.AG/0510126, J. Amer. Math. Soc., to appear.
- E.M.F., S. Yuzvinsky: *Chow rings of toric varieties defined by atomic lattices*; **Invent. Math.** 155 (2004), 515–536.
- E.M.F., D. Kozlov: *Incidence combinatorics of resolutions*; Selecta Math. (N.S.) 10 (2004), 37–60.
- E.M.F., I. Müller: On the topology of nested set complexes; Proc. Amer. Math. Soc. 133 (2005), 999–1006.
- E.M.F., B. Sturmfels: *Matroid polytopes, nested sets and Bergman fans*; **Port. Math. (N.S.)** 62 (2005), 437-468.