Auto dataset two regimes: Pre-oilshock and Post-oilshock

We can also test if there are two regimes that contribute to the heteroskedasticity by running separate regressions for pre-oilshock and post-oilshock.

Imports for python objects and libraries

Set up IPython libraries for customizing notebook display

```
from notebookfuncs import *
```

Import standard libraries

```
import numpy as np
import pandas as pd

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 1000)
pd.set_option("display.width", 1000)
pd.set_option("display.max.colwidth", None)
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
```

Statsmodels imports

```
import statsmodels.api as sm
```

Import statsmodels.objects

```
from statsmodels.stats.outliers_influence import summary_table
```

Import ISLP objects

```
import ISLP
from ISLP import models
from ISLP import load_data
from ISLP.models import ModelSpec as MS, summarize, poly
```

Import user functions

```
from userfuncs import display_residuals_plot
from userfuncs import identify_least_significant_feature
from userfuncs import calculate_VIFs
from userfuncs import identify_highest_VIF_feature
from userfuncs import standardize
from userfuncs import perform_analysis
```

Set level of significance (alpha)

```
LOS_Alpha = 0.01
```

Data Cleaning and exploratory data analysis

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.head()
Auto.columns
Auto = Auto.dropna()
Auto.shape
Auto.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origi
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.0

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year	origi
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592	1.576
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737	0.80!
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	1.000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000	1.000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000	1.000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000	2.000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	3.000

Convert origin to categorical type

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000
\max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

Create two datasets based on whether the car models have been exposed to the 1973 oil shock or not

```
Auto_preos = Auto[Auto["year"] <= 76]
Auto_preos.shape
Auto_preos.describe()
Auto_preos.corr(numeric_only=True)</pre>
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
mpg	1.000000	-0.863133	-0.878385	-0.812052	-0.903557	0.494406	0.172135
cylinders	-0.863133	1.000000	0.955270	0.852144	0.906436	-0.616635	-0.157796
displacement	-0.878385	0.955270	1.000000	0.900549	0.926890	-0.653019	-0.195140
horsepower	-0.812052	0.852144	0.900549	1.000000	0.861309	-0.748969	-0.294137
weight	-0.903557	0.906436	0.926890	0.861309	1.000000	-0.522137	-0.073366
acceleration	0.494406	-0.616635	-0.653019	-0.748969	-0.522137	1.000000	0.298412
year	0.172135	-0.157796	-0.195140	-0.294137	-0.073366	0.298412	1.000000

```
Auto_postos = Auto[Auto["year"] > 76]
Auto_postos.shape
Auto_postos.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
mean	27.900562	4.960674	160.426966	91.410112	2726.679775	16.133146	79.455056
std	7.504963	1.466624	80.477444	27.144212	670.417952	2.504227	1.714248
\min	15.000000	3.000000	70.000000	48.000000	1755.000000	11.100000	77.000000
25%	20.875000	4.000000	98.000000	70.000000	2144.250000	14.500000	78.000000
50%	28.000000	4.000000	134.500000	87.000000	2630.000000	15.800000	79.000000
75%	33.650000	6.000000	200.000000	105.000000	3208.750000	17.600000	81.000000
max	46.600000	8.000000	400.000000	190.000000	4360.000000	24.800000	82.000000

```
display(
    "If you look at the two datasets as displayed above, it's evident that the oil shock had
)
display(Auto_preos.mean(numeric_only=True), Auto_postos.mean(numeric_only=True))
display(
    "Mileage increased, number of cylinders decreased, displacement decreased, horsepower decreased)
```

"If you look at the two datasets as displayed above, it's evident that the oil shock had a management of the contract of the c

mpg	19.740654
cylinders	5.897196
displacement	222.679907
horsepower	115.331776
weight	3186.280374
acceleration	15.049065

year 73.088785

dtype: float64

mpg 27.900562
cylinders 4.960674
displacement 160.426966
horsepower 91.410112
weight 2726.679775
acceleration 16.133146
year 79.455056

dtype: float64

Standardize numeric variables in the model

Auto_preos = Auto_preos.apply(standardize)
Auto_preos.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	2.140000e+02	2.140000e+02	2.140000e+02	2.140000e+02	214.000000	214.000000	2.14000
mean	-4.150366e-17	-2.490220e-17	2.490220e-17	-1.494132e-16	0.000000	0.000000	-5.3124
std	1.002345e+00	1.002345e+00	1.002345e+00	1.002345e+00	1.002345	1.002345	1.00234
min	-1.829062e+00	-1.635252e+00	-1.362364e+00	-1.617309e+00	-1.705900	-2.463723	-1.5522
25%	-8.073018e-01	-1.070826e+00	-9.550106e-01	-6.842252e -01	-0.944725	-0.698694	-1.0497
50%	-1.261285e-01	5.802508e-02	4.685742 e- 02	-3.576458e-01	-0.081084	-0.017149	-4.4619
75%	7.891982e-01	1.186877e + 00	8.395442 e-01	8.087090e-01	0.913215	0.629446	9.60493
max	2.598565e+00	1.186877e + 00	2.046190e+00	2.674877e + 00	2.118409	2.953691	1.46305

Auto_postos = Auto_postos.apply(standardize)
Auto_postos.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	1.780000e + 02	1.780000e+02	1.780000e+02	1.780000e+02	178.000000	1.780000e+02	1.780
mean	-3.193450e-16	2.794269e-16	-7.983626e-17	-1.796316e-16	0.000000	-1.237462e-15	-1.51
std	1.002821e+00	1.002821e+00	1.002821e+00	1.002821e+00	1.002821	1.002821e+00	1.002
\min	-1.723786e+00	-1.340633e+00	-1.126801e+00	-1.603751e+00	-1.453453	-2.015529e+00	-1.43
25%	-9.387629e-01	-6.568717e-01	-7.778958e-01	-7.909792e-01	-0.871207	-6.539953e-01	-8.51

^{&#}x27;Mileage increased, number of cylinders decreased, displacement decreased, horsepower decrea

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year
50%	1.328704 e-02	-6.568717e-01	-3.230732e-01	-1.629280e-01	-0.144615	-1.334087e-01	-2.66
75%	7.682459 e-01	7.106507e-01	4.931154 e-01	5.020674 e-01	0.721088	5.874034e-01	9.03'
max	2.498638e+00	2.078173e+00	2.985294e+00	3.642323e+00	2.443144	3.470652e + 00	1.488

Encode categorical variables as dummy variables dropping the first to remove multicollinearity.

```
Auto_preos = pd.get_dummies(
    Auto_preos, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_preos.columns
```

```
Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'enders')
```

```
Auto_postos = pd.get_dummies(
    Auto_postos, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_postos.columns
```

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'enders')

Analysis for pre-oil shock model

Test for multicollinearity using correlation matrix and variance inflation factors

```
Auto_preos.corr(numeric_only=True)
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	ori
mpg	1.000000	-0.863133	-0.878385	-0.812052	-0.903557	0.494406	0.172135	0.4
cylinders	-0.863133	1.000000	0.955270	0.852144	0.906436	-0.616635	-0.157796	-0.
displacement	-0.878385	0.955270	1.000000	0.900549	0.926890	-0.653019	-0.195140	-0.
horsepower	-0.812052	0.852144	0.900549	1.000000	0.861309	-0.748969	-0.294137	-0.
weight	-0.903557	0.906436	0.926890	0.861309	1.000000	-0.522137	-0.073366	-0.
acceleration	0.494406	-0.616635	-0.653019	-0.748969	-0.522137	1.000000	0.298412	0.2
year	0.172135	-0.157796	-0.195140	-0.294137	-0.073366	0.298412	1.000000	0.0
origin_Europe	0.429946	-0.507897	-0.499456	-0.373257	-0.420078	0.215335	0.061819	1.0

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	ori
origin_Japan	0.454576	-0.408555	-0.428045	-0.292877	-0.424328	0.164038	0.030362	-0.

```
vifdf = calculate_VIFs("mpg ~ " + " + ".join(Auto_preos.columns) + " - mpg", Auto_preos)
vifdf
```

	VIF
Feature	
cylinders	12.409093
displacement	23.483690
horsepower	9.924721
weight	10.993223
acceleration	2.965117
year	1.296707
origin_Europe	2.286473
${\rm origin_Japan}$	2.062780

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is displacement with a VIF of 23.483689524756567 Hence, we drop displacement from the model to be fitted.

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_preos.columns) + " - mpg - displacement", Auto_preos
)
vifdf
```

	VIF
Feature	
cylinders	8.727646
horsepower	8.845099
weight	9.513189
acceleration	2.856231
year	1.287027
origin_Europe	1.960903
origin_Japan	1.789531

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

Linear Regression for mpg \sim horsepower + acceleration + weight + cylinders + year + origin_Europe + origin_Japan

```
cols = list(Auto_preos.columns)
cols.remove("mpg")
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

==========	=======	=========	========	.=======		======
Dep. Variable:		mpg	R-squared			0.848
Model:		OLS	Adj. R-sc	quared:		0.842
Method:	L	east Squares	F-statist	cic:		163.8
Date:	Wed,	25 Sep 2024	Prob (F-s	statistic):	1	.51e-80
Time:		07:57:00	Log-Likel	ihood:	-	-102.32
No. Observations	:	214	AIC:			220.6
Df Residuals:		206	BIC:			247.6
Df Model:		7				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1025	0.040	-2.583	0.010	-0.181	-0.024
cylinders	-0.1149	0.080	-1.430	0.154	-0.273	0.043
horsepower	-0.1394	0.081	-1.724	0.086	-0.299	0.020
weight	-0.6079	0.084	-7.248	0.000	-0.773	-0.443
acceleration	-0.0653	0.046	-1.421	0.157	-0.156	0.025
year	0.0776	0.031	2.514	0.013	0.017	0.138

origin_Europe origin_Japan	0.2534 0.3985	0.097 0.106	2.618 3.749	0.009 0.000	0.063 0.189	0.444 0.608
==========		========				=====
Omnibus:		12.372	Durbin-Wa	itson:		1.407
<pre>Prob(Omnibus):</pre>		0.002	Jarque-Be	era (JB):	:	16.578
Skew:		-0.403	Prob(JB):		0.0	000251
Kurtosis:		4.099	Cond. No.			9.30

.-----

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	di	sum_sq	mean_sq	F	PR(>F)
cylinders	1.0	159.429574	159.429574	1007.436126	2.877624e-81
horsepower	1.0	4.577852	4.577852	28.927463	2.030739e-07
weight	1.0	13.283446	13.283446	83.938147	5.242535e-17
acceleration	1.0	0.533174	0.533174	3.369126	6.787066e-02
year	1.0	1.267919	1.267919	8.011985	5.107121e-03
origin_Europe	1.0	0.083174	0.083174	0.525577	4.692948e-01
origin_Japan	1.0	2.224788	2.224788	14.058446	2.302318e-04
Residual	206.0	32.600074	0.158253	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.156. Using the backward methodology, we suggest dropping acceleration from the new model

Linear Regression after dropping acceleration in pre-oil shock. The model now is mpg \sim horsepower + weight + cylinder + year + origin_Europe + origin_Japan

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

=======================================			
Dep. Variable:	mpg	R-squared:	0.846
Model:	OLS	Adj. R-squared:	0.842
Method:	Least Squares	F-statistic:	189.8
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	2.86e-81
Time:	07:57:01	Log-Likelihood:	-103.36
No. Observations:	214	AIC:	220.7
Df Residuals:	207	BIC:	244.3
Df Model:	6		
Covariance Type:	nonrobust		
=======================================			

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1073	0.040	-2.705	0.007	-0.185	-0.029

cylinders	-0.0832	0.077	-1.075	0.284	-0.236	0.069
horsepower	-0.0718	0.066	-1.095	0.275	-0.201	0.057
weight	-0.6564	0.077	-8.546	0.000	-0.808	-0.505
year	0.0789	0.031	2.552	0.011	0.018	0.140
origin_Europe	0.2722	0.096	2.832	0.005	0.083	0.462
origin_Japan	0.4069	0.106	3.825	0.000	0.197	0.617
===========	:=======				========	=====
Omnibus:		9.704	Durbin-Wa	atson:		1.384
<pre>Prob(Omnibus):</pre>		0.008	Jarque-B	era (JB):		10.825
Skew:		-0.398	Prob(JB)	:	C	0.00446
Kurtosis:		3.763	Cond. No			8.52

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	159.429574	159.429574	1002.499833	2.735220e-81
horsepower	1.0	4.577852	4.577852	28.785723	2.155884e-07
weight	1.0	13.283446	13.283446	83.526863	5.919063e-17
year	1.0	1.323199	1.323199	8.320328	4.335077e-03
origin_Europe	1.0	0.139721	0.139721	0.878569	3.496863e-01
origin_Japan	1.0	2.326581	2.326581	14.629642	1.731691e-04
Residual	207.0	32.919628	0.159032	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.283510 Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

===========	.==========		
Dep. Variable:	mpg	R-squared:	0.845
Model:	OLS	Adj. R-squared:	0.842
Method:	Least Squares	F-statistic:	227.3
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	3.20e-82
Time:	07:57:01	Log-Likelihood:	-103.95
No. Observations:	214	AIC:	219.9

Df Residuals: 208 BIC: 240.1

Df Model: 5
Covariance Type: nonrobust

===========		========	========		========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept horsepower weight year origin_Europe origin_Japan	-0.1213 -0.0964 -0.6974 0.0802 0.3185 0.4445	0.037 0.061 0.067 0.031 0.086 0.101	-3.235 -1.569 -10.455 2.597 3.708 4.422	0.001 0.118 0.000 0.010 0.000	-0.195 -0.218 -0.829 0.019 0.149 0.246	-0.047 0.025 -0.566 0.141 0.488 0.643
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.4445 =======	7.861 0.020 -0.371 3.598	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):	0.246	1.406 8.096 0.0175 6.43

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
horsepower	1.0	141.117636	141.117636	886.687803	6.026431e-77
weight	1.0	34.542884	34.542884	217.044124	4.053391e-34
year	1.0	1.552002	1.552002	9.751732	2.046623e-03
origin_Europe	1.0	0.572100	0.572100	3.594690	5.935071e-02
origin_Japan	1.0	3.111879	3.111879	19.552944	1.576086e-05
Residual	208.0	33.103499	0.159151	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is horsepower with a p-value of 0.118230 Using the backward methodology, we suggest dropping horsepower from the new model

```
cols.remove("horsepower")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

OLS Regression Results

Dep. Variable: mpg R-squared: 0.843

Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	281.6
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	6.06e-83
Time:	07:57:01	Log-Likelihood:	-105.21
No. Observations:	214	AIC:	220.4
Df Residuals:	209	BIC:	237.3

Df Model: 4

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept weight year origin_Europe origin_Japan	-0.1151 -0.7850 0.1028 0.3078 0.4140	0.037 0.037 0.027 0.086 0.099	-3.077 -21.422 3.742 3.582 4.183	0.002 0.000 0.000 0.000 0.000	-0.189 -0.857 0.049 0.138 0.219	-0.041 -0.713 0.157 0.477 0.609
Omnibus: Prob(Omnibus): Skew: Kurtosis:		10.672 0.005 -0.443 3.722	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):		1.398 11.650 0.00295 4.59

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
weight	1.0	174.712905	174.712905	1090.157519	7.188986e-85
year	1.0	2.410414	2.410414	15.040281	1.409621e-04
origin_Europe	1.0	0.576721	0.576721	3.598570	5.920817e-02
origin_Japan	1.0	2.804802	2.804802	17.501148	4.226183e-05
Residual	209.0	33.495157	0.160264	NaN	NaN

identify_least_significant_feature(results, alpha=LOS_Alpha)

No variables are statistically insignificant.

The model mpg ~ weight + year + origin_Europe + origin_Japan cannot be pruned further.

Residual plot for model for pre-oil shock

display_residuals_plot(results)

preoilshock_model = results

Analysis for post Oil Shock

Test for multicollinearity using correlation matrix and variance inflation factors

Auto_postos.corr(numeric_only=True)

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	ori
mpg	1.000000	-0.710232	-0.771039	-0.796617	-0.837333	0.278650	0.460200	0.2
cylinders	-0.710232	1.000000	0.936943	0.796697	0.860088	-0.247767	-0.338905	-0.
displacement	-0.771039	0.936943	1.000000	0.854454	0.929346	-0.264374	-0.319411	-0.
horsepower	-0.796617	0.796697	0.854454	1.000000	0.837067	-0.535033	-0.353954	-0.
weight	-0.837333	0.860088	0.929346	0.837067	1.000000	-0.130152	-0.319783	-0.
acceleration	0.278650	-0.247767	-0.264374	-0.535033	-0.130152	1.000000	0.157159	0.2
year	0.460200	-0.338905	-0.319411	-0.353954	-0.319783	0.157159	1.000000	-0.
origin_Europe	0.212795	-0.181385	-0.240143	-0.214702	-0.144152	0.235217	-0.057596	1.0
$origin_Japan$	0.405159	-0.359263	-0.436964	-0.317954	-0.459869	0.000714	0.155368	-0.

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_postos.columns) + " - mpg", Auto_postos
)
vifdf
```

VIF
9.017020
20.423355
9.245687
12.693737
2.788052
1.185236
1.452328
1.651675

```
identify_highest_VIF_feature(vifdf)
```

We find the highest VIF in this model is displacement with a VIF of 20.423354692792778 Hence, we drop displacement from the model to be fitted.

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_postos.columns) + " - mpg - displacement", Auto_postos
)
vifdf
```

VIF
V 11
4.251590
9.104343
9.540921
2.770794
1.182561
1.278261
1.512852

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

Linear Regression Analysis for post oil shock dropping feature displacement

```
cols = list(Auto_postos.columns)
cols.remove("mpg")
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_postos)
```

		OLS Regres:	sion Result	.s 		
Dep. Variable:		mpg		0.788		
Model:		OLS	Adj. R-sc	quared:		0.779
Method:	Le	ast Squares	F-statist	cic:		90.11
Date:	Wed,	25 Sep 2024	Prob (F-s	statistic):	7.	20e-54
Time:	07:57:02		Log-Likelihood:		-114.64	
No. Observations:		178	AIC:		245.3	
Df Residuals:		170	BIC:			270.7
Df Model:		7				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1072	0.051	-2.096	0.038	-0.208	-0.006
cylinders	0.1988	0.073	2.728	0.007	0.055	0.343
horsepower	-0.1879	0.107	-1.762	0.080	-0.398	0.023

weight	-0.7149	0.109	-6.550	0.000	-0.930	-0.499
acceleration	0.0713	0.059	1.212	0.227	-0.045	0.187
year	0.2148	0.038	5.589	0.000	0.139	0.291
origin_Europe	0.3461	0.111	3.108	0.002	0.126	0.566
origin_Japan	0.1946	0.097	2.012	0.046	0.004	0.385
==========	========	========			========	=====
Omnibus:		6.408	Durbin-Wa	tson:		1.583
<pre>Prob(Omnibus):</pre>		0.041	Jarque-Be	era (JB):		6.069
Skew:		0.398	Prob(JB):			0.0481
Kurtosis:		3.431	Cond. No.			7.71
	========					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	89.788355	89.788355	403.941459	8.824859e-47
horsepower	1.0	25.953062	25.953062	116.758098	4.752402e-21
weight	1.0	15.387223	15.387223	69.224316	2.748274e-14
acceleration	1.0	0.660414	0.660414	2.971082	8.658318e-02
year	1.0	6.087213	6.087213	27.385264	4.863030e-07
origin_Europe	1.0	1.436421	1.436421	6.462195	1.191261e-02
origin_Japan	1.0	0.899608	0.899608	4.047172	4.582475e-02
Residual	170.0	37.787704	0.222281	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.227 Using the backward methodology, we suggest dropping acceleration from the new model

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_postos)
```

===========			=========
Dep. Variable:	mpg	R-squared:	0.786
Model:	OLS	Adj. R-squared:	0.778
Method:	Least Squares	F-statistic:	104.6
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	1.39e-54
Time:	07:57:03	Log-Likelihood:	-115.40
No. Observations:	178	AIC:	244.8

Df Residuals: 171 BIC: 267.1

Df Model: 6
Covariance Type: nonrobust

============		=========			========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept cylinders horsepower weight year origin_Europe origin_Japan	-0.1148 0.1915 -0.2864 -0.6311 0.2149 0.3689 0.2096	0.051 0.073 0.069 0.085 0.038 0.110 0.096	-2.261 2.633 -4.148 -7.462 5.584 3.355 2.183	0.025 0.009 0.000 0.000 0.000 0.001 0.030	-0.215 0.048 -0.423 -0.798 0.139 0.152 0.020	-0.015 0.335 -0.150 -0.464 0.291 0.586 0.399
Omnibus: Prob(Omnibus): Skew: Kurtosis:		6.875 0.032 0.400 3.507	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):		1.555 6.653 0.0359 6.16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	89.788355	89.788355	402.836748	8.041561e-47
horsepower	1.0	25.953062	25.953062	116.438785	4.931248e-21
weight	1.0	15.387223	15.387223	69.034999	2.864764e-14
year	1.0	6.001042	6.001042	26.923762	5.941221e-07
origin_Europe	1.0	1.693907	1.693907	7.599738	6.471569e-03
origin_Japan	1.0	1.062190	1.062190	4.765532	3.039795e-02
Residual	171.0	38.114221	0.222890	NaN	NaN

identify_least_significant_feature(results, alpha=LOS_Alpha)

We find the least significant variable in this model is origin_Japan with a p-value of 0.030. Using the backward methodology, we suggest dropping origin_Japan from the new model

- However, origin_Japan is one of three levels with origin_Europe significant. So we do not drop it from the model.
- We can check what will happen with dropping the Intercept with it also insignificant especially since we have standardized the variables.
- https://stats.stackexchange.com/questions/197923/difference-between-centered-and-uncentered-r2

```
postoilshock_model_intercept = results
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

===========			
Dep. Variable:	mpg	R-squared (uncentered):	0.779
Model:	OLS	Adj. R-squared (uncentered):	0.772
Method:	Least Squares	F-statistic:	101.3
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	8.07e-54
Time:	07:57:03	Log-Likelihood:	-118.03
No. Observations:	178	AIC:	248.1
Df Residuals:	172	BIC:	267.1

Df Model: 6
Covariance Type: nonrobust

	coef	std err	t 	P> t	[0.025	0.975]
cylinders	0.1892	0.074	2.572	0.011	0.044	0.334
horsepower	-0.2877	0.070	-4.117	0.000	-0.426	-0.150
weight	-0.6656	0.084	-7.905	0.000	-0.832	-0.499
year	0.2098	0.039	5.398	0.000	0.133	0.287
origin_Europe	0.2400	0.095	2.523	0.013	0.052	0.428
origin_Japan	0.0688	0.074	0.930	0.353	-0.077	0.215
Omnibus:		9.950	 Durbin-Wa	======= tson:	=======	1.526
<pre>Prob(Omnibus):</pre>		0.007	Jarque-Be	ra (JB):		10.241
Skew:		0.498	Prob(JB):		0	.00597
Kurtosis:		3.622	Cond. No.			5.06

Notes:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	mean_sq	F	PR(>F)
cylinders	1.0	89.788355	89.788355	393.430947	2.582371e-46
horsepower	1.0	25.953062	25.953062	113.720066	1.057893e-20
weight	1.0	15.387223	15.387223	67.423107	5.008832e-14
year	1.0	6.001042	6.001042	26.295121	7.831453e-07
origin_Europe	1.0	1.419140	1.419140	6.218329	1.358813e-02
origin_Japan	1.0	0.197537	0.197537	0.865561	3.534910e-01

Residual 172.0 39.253641 0.228219 NaN NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is origin_Japan with a p-value of 0.353. Using the backward methodology, we suggest dropping origin_Japan from the new model

• We drop both origin_Europe and origin_Japan from the model.

```
cols.remove("origin_Europe")
cols.remove("origin_Japan")
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

Dep. Variable: mpg R-squared (uncentered): 0.770 Model: OLS Adj. R-squared (uncentered): 0.765 Method: Least Squares F-statistic: 146.0 Date: Wed, 25 Sep 2024 Prob (F-statistic): 1.73e-54Time: 07:57:03 Log-Likelihood: -121.62 No. Observations: 178 AIC: 251.2 Df Residuals: 174 BIC: 264.0

Df Model: 4
Covariance Type: nonrobust

=========	=======					========
	coef	std err	t	P> t	[0.025	0.975]
cylinders horsepower weight year	0.1776 -0.3084 -0.6688 0.1974	0.074 0.070 0.082 0.039	2.388 -4.424 -8.173 5.055	0.018 0.000 0.000 0.000	0.031 -0.446 -0.830 0.120	0.324 -0.171 -0.507 0.274
Omnibus: Prob(Omnibus Skew:):	0.	.001 Jarq	======== in-Watson: ue-Bera (JB) (JB):	:	1.582 14.628 0.000666
Kurtosis:		3.	.619 Cond	. No.		4.67

Notes:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant

_	_													
- 12	l Stand	ard Err	ors a	ASSIIMA	that	the	covariance	matrix	٥f	the	errors	is	correctly	specified
LZ	J Duana	ara bir	J		unau	OIL	COVALIANCE	mattr	O_{\perp}	OIL	CITOID	T 12	COLLECTIV	PACCIT

```
PR(>F)
              df
                                                F
                     sum_sq
                              mean_sq
             1.0 89.788355 89.788355 382.262105 8.909529e-46
cylinders
horsepower
             1.0 25.953062 25.953062 110.491745 2.548773e-20
weight
             1.0 15.387223 15.387223 65.509078 9.616073e-14
year
             1.0 6.001042 6.001042
                                        25.548647 1.085130e-06
Residual
           174.0 40.870318
                             0.234887
                                              \mathtt{NaN}
                                                            NaN
```

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.018006. Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared (uncentered):	0.763
Model:	OLS	Adj. R-squared (uncentered):	0.759
Method:	Least Squares	F-statistic:	187.7
Date:	Wed, 25 Sep 2024	Prob (F-statistic):	1.90e-54
Time:	07:57:04	Log-Likelihood:	-124.49
No. Observations:	178	AIC:	255.0
Df Residuals:	175	BIC:	264.5

Df Model: 3
Covariance Type: nonrobust

=========	========			========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
horsepower	-0.2653	0.068	-3.888	0.000	-0.400	-0.131
weight	-0.5548	0.067	-8.238	0.000	-0.688	-0.422
year	0.1889	0.039	4.793	0.000	0.111	0.267
Omnibus:	=======	 15.	======== 435 Durbin	 -Watson:	=======	1.592
Prob(Omnibus):	0.	000 Jarque	-Bera (JB):		16.821
Skew:		0.	690 Prob(J	B):		0.000223
Kurtosis:		3.	601 Cond.	No.		3.56

Notes:

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
horsepower	1.0	112.958534	112.958534	468.320143	2.378397e-51
weight	1.0	17.289976	17.289976	71.683331	9.907388e-15
year	1.0	5.541596	5.541596	22.975165	3.490133e-06
Residual	175.0	42.209894	0.241199	NaN	NaN

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

No variables are statistically insignificant.

The model mpg ~ horsepower + weight + year - 1 cannot be pruned further.

```
postoilshock_model = results
```

Residual plot for model for post-oil shock

display_residuals_plot(results)

Pre-oilshock model

```
preoilshock_model.model.formula
```

^{&#}x27;mpg ~ weight + year + origin_Europe + origin_Japan'

Explanatory power of preoilshock model

```
preoilshock_model.rsquared_adj
```

0.8404849876892488

Post-oil shock model without intercept

```
postoilshock_model.model.formula
```

```
'mpg ~ horsepower + weight + year - 1'
```

Explanatory power of postoilshock model

```
postoilshock_model.rsquared_adj
```

0.7588006068263029

- Thus, we can conclude that prior to the oil shock of 1973, mileage was determined mostly by weight, year and origin.
- Post the oil shock of 1973, mileage was determined by horsepower, weight and year. Origin no longer played an important role as before.

Post oil shock model with intercept (Corollary)

```
postoilshock_model_intercept.model.formula
```

```
'mpg ~ cylinders + horsepower + weight + year + origin_Europe + origin_Japan'
```

Explanatory power of postoilshock model with intercept

```
postoilshock_model_intercept.rsquared_adj
```

0.7783620129852484

Finished

allDone()

<IPython.lib.display.Audio object>