IN THE CLAIMS:

1. (Previously Presented) A derivative of heterocyclic compound having nitrogen atom represented by general formula (1):

$$HAr - L - Ar^1 - Ar^2 \qquad (1)$$

wherein HAr is one of the following groups:

L represents a single bond, an arylene group having 6 to 60 carbon atoms and may have a substituent, a heteroarylene group having 3 to 60 carbon atoms and may have a substituent or a fluorenylene group which may have a substituent;

Ar¹ represents a divalent aromatic hydrocarbon group represented by one of general formulae (43) to (54):

wherein R¹ to R¹⁰² each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms and may have a substituent, an alkoxyl group having 1 to 20 carbon atoms and may have a substituent, an aryloxyl group having 6 to 40 carbon atoms and may have a substituent, a diarylamino group having 12 to 80 carbon atoms and may have a substituent, an aryl group having 6 to 40 carbon atoms and may have a substituent, a heteroaryl group having 3 to 40 carbon atoms and may have a substituent, or a diarylamino group having 18 to 120 carbon atoms and may have a substituent; and L' represents a single bond or a group selected from the following groups:

Ar² represents an aryl group which may optionally be substituted, wherein Ar² is one of the following groups:

and the optional substituent to Ar² is selected from the group consisting of a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxyl group having 6 to 40 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 80 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.

- 2. (Previously Presented) The derivative of heterocyclic compound having nitrogen atom according to Claim 1, wherein L represents an arylene group having 6 to 60 carbon atoms and may have a substituent, a heteroarylene group having 3 to 60 carbon atoms and may have a substituent or a fluorenylene group which may have a substituent.
- 3. (Previously Presented) The derivative of heterocyclic compound having nitrogen atom according to Claim 1, wherein L represents a single bond.

Serial No.: 10/541,745

Docket No.: 28955.4028

4. - 5. (Cancelled)

6. (Original) The derivative of heterocyclic compound having nitrogen atom according to Claim 1, wherein L is any one group selected from the following groups:

7. - 13. (Canceled).

- 14. (Previously Presented) An organic electroluminescence device comprising the derivative of heterocyclic compound having nitrogen atom according to Claim 1.
- 15. (Previously Presented) An organic electroluminescence device comprising at least one organic compound layer containing a light emitting layer sandwiched between a pair of electrodes, wherein the device contains the derivative of heterocyclic compound having nitrogen atom according to Claim 1 among the compound layer.

Serial No.: 10/541,745

Docket No.: 28955.4028

16. (Original) The organic electroluminescence device according to Claim 15, wherein said derivative of heterocyclic compound having nitrogen atom is contained in a light emission area.

- 17. (Original) The organic electroluminescence device according to Claim 15, wherein said derivative of heterocyclic compound having nitrogen atom is contained in the light emitting layer.
- 18. (Original) The organic electroluminescence device according to Claim 15, wherein said derivative of heterocyclic compound having nitrogen atom is employed for at least one of an electron injection material and an electron transport material.
- 19. (Original) The organic electroluminescence device according to Claim 18, wherein a layer comprising said at least one of the electron injection material and the electron transport material further comprises a reductive dopant.
- 20. (Original) The organic electroluminescence device according to Claim 19, wherein said reductive dopant is at least one selected from the group consisting of alkali metal, alkaline earth metal, rare earth metal, oxide of alkali metal, halide of alkali metal, oxide of alkaline earth metal, halide of alkaline earth metal, oxide of rare earth metal, halide of rare earth metal, organic complexes of alkali metal and organic complexes of rare earth metal.

21. (Previously Presented) The derivative of heterocyclic compound having nitrogen atom according to Claim 1, wherein the substituent for Ar² is an alkyl group having 1 to 6 carbon atoms.