

电力系统分析与控制 (30220562-5)

第四讲 数学优化与最优潮流

2025-3-14

课程提纲

Outlines

数学优化 Mathematical Optimization

最优潮流 Optimal Power Flow

随堂练习 MATPOWER——runopf

数学优化 Mathematical Optimization

数学优化/规划问题 (optimization problem) 概述

●选择一组参数(决策变量),在满足一系列有关的限制条件(约束)下,使设计指标(目标函数)达到最优值。最优化问题通常可以表示为数学规划形式的问题

$$egin{cases} X = [x_1, x_2, \dots, x_n]^T \ s.\ t.\ g_i(X) \leq 0 (i, 1, 2, \dots, n) \ h_j(X) = 0 (j = 1, 2, \dots, n) \end{cases}$$
 约束条件 $maxf(X)$ or $minf(X)$ 目标函数

用决策变量的线性(或非线性) 函数来表示。按问题的不同, 要求目标函数实现最大化和最 小化

存在一定的约束条件,这些约束条件可以用一组线性(或非线性)等式或线性(或非线性)不等式来表示

每一个问题变量都用一组决策变量 (x1, x2, ..., xn) 表示某一方案, 这组决策变量的值代表一个具体方案

数学优化问题的初步认识

可手算:中学阶段的优化问题

【例 5】 已知 0 < x < 1, 求 $y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$ 的最值.

解 原式可化为

$$(3y-2)x^2+(5-10y)x+(3y-2)=0$$

:
$$x \in R$$
, : $\Delta = (5-10y)^2 - 4(3y-2)^2 \ge 0$

解得 $y \leqslant \frac{1}{4}$ 或 $y \geqslant \frac{9}{16}$

即函数 y 的值域为 y $\leq \frac{1}{4}$ 或 y $\geq \frac{9}{16}$.

:
$$y_{\oplus \pm} = \frac{1}{4}, \quad y_{\oplus \pm} = \frac{9}{16}$$

当 $y=\frac{1}{4}$ 时,代入原函数式解得 $x=1\in[0,1]$;

当 $y = \frac{9}{16}$ 时,代入原函数式解得 x = -1 € [0,1].

又
$$x=0$$
 时, $y=\frac{2}{3}$.

∴ $\exists x=0$ 时,y 取最大值 $\frac{2}{3}$.

有解析解:最小二乘问题

$$(Xw - y)^T (Xw - y) = \ ((Xw)^T - y^T)(Xw - y) = \ w^T X^T Xw - (Xw)^T y - y^T Xw + y^T y \ w = (X^T X)^{-1} X^T y$$

无解析解:支持向量机SVM

Training sample set $T = \{(\mathbf{x}_i, d_i)\}_{i=1}^N$

$$\min f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 (P)

subject to $\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge +1 & \textit{ for } d_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 & \textit{ for } d_i = -1 \end{cases}$

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
 for $i = 1, 2, ..., N$

 $g_i(\mathbf{w}) = d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0$ for i = 1, 2, ..., N

如何求解大规模优化问题?

- (1) 手算? /尝试推导解析解(只有几类极特殊的优化问题存在解析解)
- (2) 根据问题形式,设计优化算法,编写计算程序,利用计算机进行求解

数学优化问题的分类

- ●按照是否有约束条件可以分为: 有约束优化/无约束优化
- ●按照目标函数和约束函数是否为线性分为:线性优化/非线性优化
- ●按照是否为定义在凸集上的凸函数问题: 凸优化/非凸优化
- ●按照变量的值域是否连续可分为:连续优化/组合优化/混合整数优化
- ●其他特殊优化类型:多目标优化、随机优化、鲁棒优化...

思考:混合整数线性规划是线性优化吗?是凸优化吗?

各类数学优化问题的研究进展水平

- ●凸优化 (Convex Optimization) 是被研究的很透彻的一类
 - 凸优化问题一般可以得到有效的求解
 - ●线性规划、最小二乘优化、二次型正定的二次优化均为凸优化
- ●混合整数规划 (Mixed-Integer Programming, MIP) 中具有离散变量,通常难以求解,最坏情况几乎需要遍历所有整数取值组合

旅行商问题(组合优化,NP困难):从某个城市出发,经过每个城市1次并最终回到出发的城市,如何走路径最短?

数学优化问题的求解思路

数值算法

优化问题类型	求解算法
线性优化	单纯形法、内点法等
混合整数优化	分支定界法等
一般优化问题	下降迭代算法、可行方向法、罚函数法等

相关课程/书籍:

《线性规划》 《非线性规划》 《最优化方法》 《数值最优化》 《四优化》 《整数优化》

启发式方法

- 定义: 启发式方法是指以各种自然现象或过程为灵感,而模拟提出的一系列启发式计算方法
- ●特点: 适用问题较广泛, 实现简单, 不能保证解的质量和最优性
- 常用启发式算法:模拟退火;遗传;粒子群;以细菌、萤火虫、蚁群、蜂群、鱼群、鸟群、灰狼、猩猩、鲸鱼等各种动物/微生物命名的算法

混合整数优化 (MIP) 的求解

为什么不直接枚举?

假设每秒可验证10亿个可能解, n为二值变量数, 则:

- > n = 30, 1秒
- $rac{1}{2} > n = 40$, 17分钟
- > n = 50, 11.6
- > n = 60, 31年
- > n = 70, 31000年

可能解的数目是二值变量数目的指数次 2ⁿ

混合整数优化 (MIP) 的求解

为什么不将松弛解取整?

maximize $15x_1 + 12x_2 + 4x_3 + 2x_4$ subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ x_k binary for k = 1 to 4

思考:

所有情况都需要枚举吗?是否有一些分支不需要枚举?

maximize
$$15x_1 + 12x_2 + 4x_3 + 2x_4$$

subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$
 x_k binary for k = 1 to 4

第一步: 找到一个可行解x = (0,0,0,0), 下界LB = 0

第二步: 计算松弛解 $x^1 = \left(\frac{5}{8}, 1, 0, 0\right)$

第三步: 将x1中的非整数值分支, 形成两个子问题

maximize $15x_1 + 12x_2 + 4x_3 + 2x_4$ subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ x_k binary for k = 1 to 4

第四步: 计算左子节点的松弛解 $x^2 = (0,1,1,1)$,更新下界

LB = 18, 并记2号节点为当前解 (incumbent)

第五步: 计算右子问题松弛解 $x^3 = (1,0.4,0,0)$, 相应目标

函数19.8 > 18 = LB,需要进一步分支

第六步: 将x3中的非整数值分支, 形成两个子问题

maximize $15x_1 + 12x_2 + 4x_3 + 2x_4$ subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ x_k binary for k = 1 to 4

第七步: 计算3号节点左子节点的松弛解 $x^4 = (1,0,0.667,0)$,相

应目标函数17.667 < 18 = LB, 于是4号节点以下可剪支

第八步: 计算3号节点右子问题松弛解, 无可行解

第九步: 算法结束, 当前解 (incumbent) 即为最优解, 即2号

节点解 $x^2 = (0,1,1,1)$

思考:

- > 将例子中的maximize问题改为minimize问题,BnB如何应用?
- > BnB算法能独立求解优化问题吗?
- ➤ BnB只适用于混合整数线性规划吗?

数学优化在电力系统中的应用

- 目前电力系统主流科研方向几乎全部都与数学优化相关
- 其中绝大多数科研问题都可以建模为某类数学优化模型
- 电网公司调度系统中各类调度问题需要通过求解优化模型来解决

电力预测

最小化预测误差

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - y_i|$$

$$RMSE = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (y_i - y_i)^2$$

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} |\frac{y_i - y_i}{y_i}| \times 100\%$$

$$Pinball loss = \begin{cases} (1 - q)(y_{i,q} - y_i) & y_{i,q} \ge y_i \\ q(y_i - y_{i,q}) & y_{i,q} < y_i \end{cases}$$

$$Vinkler score = \begin{cases} \beta & U_i \ge y_i \ge L_i \\ \beta + 2(L_i - y_i) / \alpha & L_i > y_i \\ \beta + 2(y_i - U_i) / \alpha & U_i < y_i \end{cases}$$

$$CRPS = \frac{1}{N} \sum_{i=1}^{N} (E_{F_i(z)} |Y - y_i| - \frac{1}{2} E_{F_i(z)} |Y - Y'|)$$

优化调度

最小化运行成本

优化规划

最小化投资成本

优化控制

优化控制目标的响应特性

求解电力系统数学优化问题的工具箱

●将电力系统中的某类问题建模成了一个数学优化问题后,如何求解该问题?

- ●自行编写程序求解?
 - 算法细节繁复,编写耗时费力,重复造轮子
- ●调用商用优化求解器
 - ●操作简单,结果有保障
 - ●商用优化求解器是我国"卡脖子"难题之一(COPT)

主流商用优化工具箱简介

开发者	0040	0.50	
美国Gurobi Optimization公司	2019	10月	COPT 1.0 发布国产商业单纯形法求解器 发布国产商业混合整数规划求解器
美国IBM公司	2020	10月	发布国产商业内点法求解器
美国LINDO公司	2021	● 05月	COPT 2.0 发布大幅改进后的混合整数规划求解器并参与公开测评
美国MathWorks公司		10月	COPT 3.0 发布国产商业二阶锥规划求解器
中国杉树科技公司	2022		COPT 4.0 发布国产商业凸二次规划、二次约束规划求解器 COPT 5.0 发布国产半定规划求解器
德国ZIB研究所,开源		10月	COPT 6.0 发布国产混合整数二阶锥规划求解器、混合整数凸二次规划和混合整数凸二次约束规
•••••			划求解器
	美国Gurobi Optimization公司 美国IBM公司 美国LINDO公司 美国MathWorks公司 中国杉树科技公司 德国ZIB研究所,开源	美国Gurobi Optimization公司 美国IBM公司 美国LINDO公司 2020 美国LINDO公司 2021 美国MathWorks公司 中国杉树科技公司 德国ZIB研究所,开源	美国Gurobi Optimization公司 美国IBM公司 美国LINDO公司 2020 10月 2021 05月 10月 2021 05月 10月 2021 05月 10月 2022 02月 06月 68国ZIB研究所,开源

求解电力系统数学优化问题的工具箱

本课程要求的优化问题求解环境:

(也是目前电力系统方向研究生使用最广泛的) Matlab + Yalmip + Gurobi / Cplex

(1) Matlab: 模型构建、相关计算、输出展示

(2) Yalmip: 是一个接口工具,将Matlab环境与求解器相关联,使优化模型更易于编写。

网址: https://yalmip.github.io/

(3) 求解器: Gurobi求解器或Cplex求解器

Gurobi求解器(免费申请学术版序列号):https://www.gurobi.com/

Cplex求解器 (非免费.....): https://www.ibm.com/products/ilog-cplex-

optimization-studio/cplex-optimizer

最优潮流 Optimal Power Flow

如何理解最优潮流?

电力系统潮流方程: f(x,u,D,P,A)=0

- (1) 结构变量A: 系统中各元件连接方式及开关状态
- (2) 元件参数P: 电阻、电抗、变比等; 部分可调, 归为控制变量中
- (3) 干扰变量D: 负荷功率, 不可控制
- (4) 控制变量u: 发电机有功功率、无功功率、调相机无功功率、可投切电容、
 - 电抗的电纳、有载调压器的变比等, 可调变量
- (5) 依从变量x:上述四类变量给定下的系统运行状态量;节点电压幅值、相 角等

如何理解最优潮流?

常规潮流计算的本质: 求解非线性方程组 $f(A^{(0)}, P^{(0)}, D^{(0)}, u^{(0)}, x) = 0$

最优潮流:
$$\min_{u} C(A^{(0)}, P^{(0)}, D^{(0)}, u, x)$$
 s.t. $f(A^{(0)}, P^{(0)}, D^{(0)}, u, x) = 0$ $u^{\min} \le u \le u^{\max}$ $h^{\min} \le h(A^{(0)}, P^{(0)}, D^{(0)}, u, x) \le h^{\max}$

- (1) 多了目标函数与约束条件
- (2) 寻最优的控制变量u,使潮流满足约束条件,并使目标函数取最小值 最优潮流本质上是数学优化问题

最优潮流

目的: 使系统的某一性能指标(如发电成本或网络损耗) 达到最优的潮流分布

条件:

- > 机组的机组组合计划已经确定、水电厂有功发计划已经确定
- **网络拓扑结构已经固定** ※
- ▶ 时刻已经固定 ※
- > 负荷情况给定

约束: 运行的约束条件

- ➤ N-0 security (intact): 可行 (feasibility)
- ➤ N-k security (contingency): 安全 (security)

手段:调节可利用的控制变量,如发电机输出功率、变压器档位...

控制变量与最优潮流类型

最优潮流约束

等式约束:潮流方程(将状态变量与控制变量通过Kirchhoff定律联系起来)

不等式约束:

- > 可行约束
 - 控制变量边界
 - 负荷母线电压上下界
 - · 发电机功率上下界
 - 支路潮流上下界
- > 安全约束 (可选)
 - 元件开断事故情况下的上述边界约束

▶ 稳定约束 (可选)

经典OPF

安全约束OPF

─────── 稳定约束**OPF**

最优潮流目标函数

OPF的目标函数:

- > 运行费用最小
- > 网损最小
- > 调整量最小
- > 购电费用最小
- > 其他特殊的目标函数

OPF的含义:

- 物理上: 寻找满足各种约束限定下目标最优的运行方式
- > 数学上: 在可行域上寻找目标函数极值点

随堂练习 MATPOWER——runopf

MATPOWER最优潮流

MATP WER

User's Manual

Version 7.1

Ray D. Zimmerman Carlos E. Murillo-Sánchez October 8, 2020

Optimal Power Flow					
6.1	Standa	rd AC OPF	61		
	6.1.1	Cartesian vs. Polar Coordinates for Voltage	63		
	6.1.2	Current vs. Power for Nodal Balance Constraints	63		
6.2	Standa	rd DC OPF	64		
6.3	Extend	led OPF Formulation	65		
	6.3.1	User-defined Variables	66		
	6.3.2	User-defined Constraints	66		
	6.3.3	User-defined Costs	67		
6.4	Standa	rd Extensions	69		
	6.4.1	Piecewise Linear Costs	69		
	6.4.2	Dispatchable Loads	71		
	6.4.3	Generator Capability Curves	73		
	6.4.4	Branch Angle Difference Limits	73		
6.5	Solvers		74		
6.6	runopf		75		
	6.1 6.2 6.3 6.4	6.1 Standa 6.1.1 6.1.2 6.2 Standa 6.3 Extenda 6.3.1 6.3.2 6.3.3 6.4 Standa 6.4.1 6.4.2 6.4.3 6.4.4 6.5 Solvers	6.1 Standard AC OPF 6.1.1 Cartesian vs. Polar Coordinates for Voltage 6.1.2 Current vs. Power for Nodal Balance Constraints 6.2 Standard DC OPF 6.3 Extended OPF Formulation 6.3.1 User-defined Variables 6.3.2 User-defined Constraints 6.3.3 User-defined Costs 6.4 Standard Extensions 6.4.1 Piecewise Linear Costs 6.4.2 Dispatchable Loads 6.4.3 Generator Capability Curves 6.4.4 Branch Angle Difference Limits 6.5 Solvers		

6 Optimal Power Flow

MATPOWER最优潮流

- ➢ 阅读MATPOWER手册了解runopf功能
- > 使用MATPOWER提供的算例计算最优潮流
- > 尝试增加经典OPF的可行约束 (参见本节课件)

谢谢!

