

BC1424 Algoritmos e Estruturas de Dados I

Aula 03 Custos de um algoritmo e funções de complexidade

Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br

1Q-2015

Custo de um algoritmo e funções de complexidade

Estrutura de dados

- Estrutura de dados e algoritmos estão intimamente ligados:
 - Não se pode estudar ED sem considerar os algoritmos associados a elas;
 - Asssim como a escolha dos algoritmos (em geral) depende da representação e da ED.

Medida do tempo de execução de um programa

- Algoritmos são encontrados em todas as áreas de Computação.
- O projeto de algoritmos é influenciado pelo estudo de seus comportamentos.
- Os algoritmos podem ser estudados considerandos, entre outros, dois aspectos:
 - Tempo de execução.
 - Espaço ocupado (quantidade de memória).

(1) Análise de um algoritmo particular

- Qual é o custo de usar um dado algoritmo para resolver um problema específico?
- Características que devem ser investigadas:
 - Tempo de execução.
 - Quantidade de memória.

(2) Análise de uma classe de algoritmos

- Qual é o algoritmo de menos custo possível para resolver um problema particular?
- Toda uma familia de algoritmos é investigada.
- Procura-se identificar um que seja o melhor possível.
- Colocam-se limites para a complexidade computacional dos algoritmos pertencentes à classe.

 Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema.

- Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema.
- Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.

- Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema.
- Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.
- Podem existir vários algoritmos para resolver um mesmo problema.

- Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema.
- Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.
- Podem existir vários algoritmos para resolver um mesmo problema.
 - → Se a mesma medida de custo é aplicada a diferentes algoritmos então é possível compará-los e escolher o mais adequado.

Fonte: http://hqwallbase.com/images/big/stairways-1514922.jpg

Medida de custo pela execução de um programa em uma plataforma real

(1) Medida de custo pela execução de um programa em uma plataforma real

- Tais medidas são bastante inadequadas e os resultados jamais devem ser generalizados:
 - Os resultados são dependentes do compilador que pode favorecer algumas construções em detrimento de outras;
 - Os resultados dependem de hardware;
 - Quanto grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto.

(1) Medida de custo pela execução de um programa em uma plataforma real

- Tais medidas são bastante inadequadas e os resultados jamais devem ser generalizados:
 - Os resultados são dependentes do compilador que pode favorecer algumas construções em detrimento de outras;
 - Os resultados dependem de hardware;
 - Quanto grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto.
- Apesar disso, há argumentos a favor de se obterem medidas reais de tempo:
 - Exemplo: Quando há vários algoritmos distintos para resolver o problema;
 - Assim, são considerados tanto os custos reais das operações como os custos não aparentes, tais como alocação de memória, indexação, carga, dentre outros.

Medida de custo por meio de um modelo matemático

(2) Medida de custo por meio de um modelo matemático

```
int F1(int a, int b) {
   int i, t1, t2;

   t1 = a;
   t2 = b;

a = t2;
b = t1;

for (i=a; i<b; i++)
   // ...</pre>
```

```
int F2(int a, int b) {
   int i, t;

   t = a;

   a = b;
   b = t;

for (i=a; i<b; i++)
   // ...</pre>
```

(2) Medida de custo por meio de um modelo matemático

- Usa um modelo matemático baseado em um computador idealizado.
- Deve ser especificado o conjunto de operações e seus custos de execuções.
- É mais usual ignorar o custo de algumas das operações e considerar apenas as mais significantes.
 - Em algoritmos de ordenação:
 Consideramos o conjunto de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulação de índices, caso existam.

Função de complexidade

 Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f.

Função de complexidade

- Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f.
- Função de complexidade de tempo:
 - f(n) mede o <u>tempo necessário</u> para executar um algoritmo para um problema de tamanho n.
- Função de complexidade de espaço:
 - f(n) mede a <u>memória necessária</u> para executar um algoritmo para um problema de tamanho n.

Função de complexidade

- Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f.
- Função de complexidade de tempo:
 - f(n) mede o <u>tempo necessário</u> para executar um algoritmo para um problema de tamanho n.
- Função de complexidade de espaço:
 - f(n) mede a <u>memória necessária</u> para executar um algoritmo para um problema de tamanho \mathbf{n} .

Utilizaremos *f* para denotar uma função de complexidade de tempo daqui para frente. Na realidade, *f* não representa tempo diretamente, mas o número de vezes que determinada operação (considerada relevante) é realizada.

 Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[0...n-1], para n>=1

```
int maiorElemento(int A[], int n) {
    int i, max;
    max = A[0];
    for (i=1; i<n, i++) {
        if (max < A[i])
            max = A[i];
    return max;
```

```
#include "stdio.h"
     int main()
              int A[10] = \{6,7,8,9,0,1,2,3,4,5\};
              int max = A[0];
 8
              for(int i=1; i<10; i++)</pre>
10
                      if (max < A[i])
                               max = A[i];
12
13
              printf("valor maximo: %d", max);
14
15
```

```
#include "stdio.h"
     int main()
             int A[10] = \{6,7,8,9,0,1,2,3,4,5\};
             int max = A[0];
             for(int i=1; i<10; i++)
                      if (max < A[i])
                              max = A[i];
13
14
             printf("valor maximo: %d", max);
15
```

• Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de A.

Logo: f(n) = n - 1 para $n \ge 1$

```
#include "stdio.h"
     int main()
           int A[10];
           A[0] = 6;
            A[1] = 7;
 8
            A[2] = 8;
9
            A[3] = 9;
10
            A[4] = 0;
11
           A[5] = 1;
12
           A[6] = 2;
13
           A[7] = 3;
14
           A[8] = 4;
15
           A[9] = 5;
16
17
             int max = A[0];
18
19
             for(int i=1; i<10; i++)
20
21
                     if (max < A[i])
22
                             max = A[i];
23
24
25
             printf("valor maximo: %d", max);
26
```

$$f(n) = n - 1 \text{ para } n \ge 1$$

Tamanho da entrada de dados

- A medida do custo de execução de um algoritmo depende principalmente do tamanho de entrada dos dados.
- É comum considerar o tempo de execução de um programa como uma função do tamanho de entrada.

Tamanho da entrada de dados

- A medida do custo de execução de um algoritmo depende principalmente do tamanho de entrada dos dados.
- É comum considerar o tempo de execução de um programa como uma função do tamanho de entrada.
- No caso da função para determinar o máximo, o custo é unifome (n-1) sobre todos os problemas de tamanho n.
- Já para um algoritmos de ordenação isso não ocorre: se os dados de entrada estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos.

Melhor caso, pior caso e caso médio

• Melhor caso:

Menor tempo de execução sobre todas as entradas de tamanho **n**.

Pior caso:

<u>Maior</u> tempo de execução sobre todas as entradas de tamanho **n**.

Caso médio (caso esperado):

<u>Média</u> dos tempos de execução de todas as entradas de tamanho **n**.

Aqui supoe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n.

 Considere o problema de acessar os registros de um arquivo (cada registro tem chave única).

O problema:

Dada uma chave qualquer, localize o registro que contenha esta chave

→ Considere o algoritmo de busca sequencial.

```
int main()
{
    int A[10] = {6,7,8,9,0,1,2,3,4,5};
    int chave, n;
    n = sizeof(A)/sizeof(A[0]);

    printf("\nIdentificar posicao da chave: ");
    scanf("%d", &chave);
    printf("\nA chave esta na posicao: %d", buscaChave(chave, A, n));
}
```

 Seja f uma função de complexidade tal que f(n) é o número de registros consultados.

• Melhor caso: f(n) = 1

Quando o elemento procurado é o primeiro consultado

 Seja f uma função de complexidade tal que f(n) é o número de registros consultados.

• Melhor caso: f(n) = 1

Quando o elemento procurado é o primeiro consultado

• Pior caso: f(n) = n

Quando o elemento procurado é o último consultado

 Seja f uma função de complexidade tal que f(n) é o número de registros consultados.

• Melhor caso: f(n) = 1

Quando o elemento procurado é o primeiro consultado

• Pior caso: f(n) = n

Quando o elemento procurado é o último consultado

• Caso médio: $f(n) = \frac{n+1}{2}$

Exemplo: Busca de um registro (caso médio)

- Consideremos que toda pesquisa recupera um elemento.
- Para recuperar o i-ésimo elemento são necessárias i comparações.

Exemplo: Busca de um registro (caso médio)

- Consideremos que toda pesquisa recupera um elemento.
- Para recuperar o i-ésimo elemento são necessárias i comparações.
- Seja p_i a probabilidade de que o i-ésimo elemento seja procurado:

$$f(n) = 1 \times p_1 + 2 \times p_2 + 3 \times p_3 + \dots + n \times p_n$$

Exemplo: Busca de um registro (caso médio)

- Consideremos que toda pesquisa recupera um elemento.
- Para recuperar o i-ésimo elemento são necessárias i comparações.
- Seja p_i a probabilidade de que o *i*-ésimo elemento seja procurado:

$$f(n) = \boxed{1 \times p_1} + \boxed{2 \times p_2} + \boxed{3 \times p_3} + \dots + \boxed{n \times p_n}$$

 Se cada elemento tiver a mesma probabilidade de ser escolhido que todos os outros, então

$$f(n) = \frac{1}{n}(1+2+3+\cdots+n) = \frac{n+1}{2}$$

Maior e Menor elementos

 Consideremos diferentes versões para o maior e o menor elemento de um vetor de n inteiros, para n>=1.


```
void maxmin1(int A[], int n) {
   int i, max, min;

   max = A[0];
   min = A[0];

   for(i=1; i<n; i++) {
      if (max < A[i])
            max = A[i];
      if (min > A[i])
            min = A[i];
   }
   printf("\nmax: %d\nmin: %d", max, min);
}
```

- Melhor caso:
- Pior caso:
- Caso médio:

```
void maxmin1(int A[], int n) {
   int i, max, min;

   max = A[0];
   min = A[0];

   for(i=1; i<n; i++) {
      if (max < A[i])
            max = A[i];
      if (min > A[i])
            min = A[i];
   }
   printf("\nmax: %d\nmin: %d", max, min);
}
```

```
- Melhor caso: f(n) = 2(n-1) - Caso médio:
```

- Melhor caso:
- Pior caso:
- Caso médio:

- Melhor caso: f(n)=(n-1) Quando os elementos estão em ordem crescente.
- Pior caso:
- Caso médio:

```
void maxmin2(int A[], int n) {
   int i, max, min;
   max = A[0];
   min = A[0];

   for(i=1; i<n; i++) {
      if (max < A[i])
            max = A[i];
      else
        if (min > A[i])
            min = A[i];
   }
   printf("\nmax: %d\nmin: %d", max, min);
}
```

Identifique a função de complexidade f(n) para o vetor A de n elementos:

- Melhor caso: f(n)=(n-1) Quando os elementos estão em ordem crescente.

- Pior caso: f(n)=2(n-1) Quando os elementos estão em ordem decrescente.

- Caso médio:

```
void maxmin2(int A[], int n) {
   int i, max, min;
   max = A[0];
   min = A[0];

   for(i=1; i < n; i++) {
      if (max < A[i])
            max = A[i];
      else
      if (min > A[i])
            min = A[i];
   }
   printf("\nmax: %d\nmin: %d", max, min);
}
```

Identifique a função de complexidade f(n) para o vetor A de n elementos:

- Melhor caso: f(n)=(n-1) Quando os elementos estão em ordem crescente. - Pior caso: f(n)=2(n-1) Quando os elementos estão em ordem decrescente.

- Caso médio: $f(n) = (n-1) + (\frac{n-1}{2}) = \frac{3n}{2} - \frac{3}{2}$

 $J(n) = (n-1) + (-1) - \frac{1}{2} - \frac{1}{2}$ Quando metade das vezes max>=A[i]

Versão 3

```
void maxmin3(int A[], int n) {
    int i, max, min;
    if (n\%2==1) A[n] = A[n-1];
    if (A[0]>A[1]) {
        max = A[0];
        min = A[1];
    else {
        min = A[0];
        max = A[1];
    for(i=2; i<n; i+=2) {</pre>
        if (A[i]>A[i+1]) {
            if (A[i] > max) max = A[i];
            if (A[i+1] < min) min = A[i+1];
        else {
            if (A[i+1] > max) max = A[i+1];
            if (A[i] < min) min = A[i];
    printf("\nmax: %d\nmin: %d", max, min);
```

- Melhor caso
- Pior caso
- Caso médio

Versão 3

```
void maxmin3(int A[], int n) {
    int i, max, min;
                                                           - Melhor caso
                                                           - Pior caso
    if (n\%2==1) A[n] = A[n-1];
                                                           - Caso médio
    if (A[0]>A[1]) {
                                  1 comparação
        max = A[0];
        min = A[1];
    else {
        min = A[0];
        max = A[1];
                                  (n-2)/2comparações
    for(i=2; i<n; i+=2) {</pre>
        if (A[i]>A[i+1]) {
            if (A[i]
                        > max)
                                max = A[i];
            if (A[i+1] < min)
                                min = A[i+1];
                                                    (n-2)/2 + (n-2/2) comparações
        else {
            if (A[i+1] > max)
                                max = A[i+1];
            if (A[i]
                        < min)
                                min = A[i];
    printf("\nmax: %d\nmin: %d", max, min);
```

Versão 3

```
void maxmin3(int A[], int n) {
    int i, max, min;
                                                           - Melhor caso
                                                           - Pior caso
    if (n\%2==1) A[n] = A[n-1];

    Caso médio

    if (A[0]>A[1]) {
                                  1 comparação
        max = A[0];
        min = A[1];
    else {
        min = A[0];
        max = A[1];
                                  (n-2)/2comparações
    for(i=2; i<n; i+=2) {</pre>
        if (A[i]>A[i+1]) {
                        > max) max = A[i];
            if (A[i]
            if (A[i+1] < min)
                                min = A[i+1];
                                                    (n-2)/2 + (n-2/2) comparações
        else {
            if (A[i+1] > max)
                                max = A[i+1];
            if (A[i]
                        < min)
                                min = A[i];
    printf("\nmax: %d\nmin: %d", max, min);
```

$$f(n) = \frac{3n}{2} - 2$$

Maior e Menor elementos

Os três	f(n)					
algoritmos	Melhor caso	Pior caso	Caso médio			
MaxMin1	2(n-1)	2(n-1)	2(n-1)			
MaxMin2	n-1	2(n-1)	3n/2 - 3/2			
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2			

Maior e Menor elementos

Funções de complexidade

Os três	f(n)					
algoritmos	Melhor caso	Pior caso	Caso médio			
MaxMin1	2(n-1)	2(n-1)	2(n-1)			
MaxMin2	n-1	2(n-1)	3n/2 - 3/2			
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2			

 Não existe algoritmo que identifique o maior e o menor elemento de um vetor de n elementos com uma função menor a:

$$f(n) = \left\lceil \frac{3n}{2} \right\rceil - 2$$

Comportamento assintótico de funções

- A análise de algoritmos é realizada para valores grandes de n.
- Estudaremos o comportamento assintótico das funções de custo.
- O comportamento assintótico de f(n) representa o limite do comportamento de custo, quando n cresce.

Dominação assintótica

Definição:

Uma função f(n) domina assintoticamente uma outra função g(n) se existem duas constantes positivas \mathbf{c} e n_0 tais que, para $n \geq n_0$, temos:

$$|g(n)| \le c|f(n)|$$

Dominação assintótica

Definição:

Uma função f(n) domina assintoticamente uma outra função g(n) se existem duas constantes positivas \mathbf{c} e n_0 tais que, para $n \geq n_0$, temos:

$$|g(n)| \le c|f(n)|$$

Dominação assintótica

Exemplo:

Sejam
$$g(n) = (n+1)^2$$

 $f(n) = n^2$

Ambas as funções dominam assintoticamente uma da outra, ja que:

$$|(n+1)^2| \le 4|n^2|$$
 para n>=1
$$|n^2| \le |(n+1)^2|$$
 para n>=0

Notação assintótica de funções

Existem 3 notações assintóticas de funções:

- ullet Notação Θ
- Notação O ('O grande')
- ullet Notação Ω

Notação 🛛

$$f(n) = \Theta(g(n))$$

g(n) é um limite assintótico firme de f(n)

Notação O ('O grande')

$$f(n) = O(g(n))$$

f(n) é da ordem no máximo g(n)

O é usada para expressar o tempo de execução de um algoritmo no **pior caso**, está se definindo também o limite (superior) do tempo de execução desse algoritmo **para todas** as entradas.

Notação O ('O grande')

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \ c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações entre conjuntos de funções

Notação Ω

$$f(n) = \Omega(g(n))$$

Omega: Define um limite inferior para a função, por um fator constante.

g(n) é um limite assintoticamente inferior

Teorema

Para quaisquer funções f(n) e g(n),

$$f(n) = \Theta(g(n))$$

se e somente se,

$$f(n) = O(g(n)), e$$

$$f(n) = \Omega(g(n))$$

 Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.

Um programa com tempo de execução $\,O(n)\,$ é melhor do que outro com tempo $\,O(n^2)\,$

Programa 1

Programa 2

$$O(n^2)$$

Exemplo:

O programa1 leva 100n vezes para ser executado.

O programa2 leva $2n^2$ vezes para ser executa.

Qual dos dois é o melhor?

Depende do tamanho do problema.

Programa 1

Programa 2

$$O(n^2)$$

Exemplo:

O programa1 leva 100n vezes para ser executado.

O programa2 leva $2n^2$ vezes para ser executa.

Qual dos dois é o melhor?

Depende do tamanho do problema.

- Para n<50, o programa 2 é melhor</p>
- Para n>50, o programa 1 é melhor

Comparação de funções de complexidade

Função	Tamanho n						
de custo	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	s	s	s	s	s	s	
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036	
	s	s	s	s	s	s	
n^3	0,001	0,008	0,027	0,64	0,125	0.316	
	s	s	s	s	s	s	
n^5	0,1	3,2	24,3	1,7	5,2	13	
	s	s	s	min	min	min	
2^n	0,001	1	17,9	12,7	35,7	366	
	s	s	min	dias	anos	s	
3 ⁿ	0,059 s	58 min	6,5 anos	3855 s	10 ⁸ s	10 ¹³ s	

Hierarquias de funções

A seguinte herarquia de funções pode ser definida do ponto de vista assintótico:

$$1 \prec \log\log n \, \overline{\triangleleft} \log n \prec n^{\epsilon} \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{c^{n}}$$

onde c e ϵ são constantes arbitrárias com $0 < \epsilon < 1 < c$