第一次习题

1. 操作系统是对	$_{\rm L}$ 进行管理的软件。 $_{\rm B}$		
A. 软件	B. 计算机资源	C. 硬件	D. 应用程序
2. 配置了操作系统的协的计算机,称为 ì		器功能更强的计算机,这样	羊的计算机只是一台逻辑上
A. 并行	B. 虚拟	C. 共享	D. 真实
3. 不是一个操作	系统环境。C		
A. Windows CE	B. Solaris	C. Celeron	D. Linuxs
4. 该操作系统的 弹发射、工业控制、飞机		过协同资源的利用率,它被广	广泛地应用于卫星控制、导
A. 多用户操作系统	B. 分时操作系统	C. 实时操作系统	D. 批处理操作系统
5. 允许在一台主机上同系统是。 D	同时连接多个终端,各个用	户可以通过各自的终端交 <i>5</i>	五使用计算机,这样的操作
A. 网络操作系统	B. 分布式操作系统	C. 批处理操作系统	D. 分时操作系统
6. 如果分时系统的时间	片一定,那么,则叩	向应时间越长。 B	
A. 内存越多	B. 用户数越多	C. 内存越少	D. 用户数越少
7. 系统调用是。	В		
A. 用户编写的一个子和	翟序	C. 高级语言中的库程	亨
B. 操作系统向用户程序	予提供的接口	D. 操作系统中的一条	命令
8. 实时操作系统必须在	三 内处理来自外部的	事件。 A	
A. 规定时间	B. 周转时间	C. 响应时间	D. 调度时间
9. 实时系统。I)		
A. 强调系统资源的利息	用率		
B. 是依赖人为干预的!	监督和控制系统		
C. 实质上是批处理系统	充和分时系统的结合		
D. 必须既要及时响应、	快速处理, 又要有高可靠	性和安全性	
10. 用户程序的输入和	输出操作实际上由	完成。 A	
A. 操作系统	B. 标准库程序	C. 编译系统	D. 程序设计语言
11. 在操作系统中,并分	发性是指。 D		

A.	若干个时间在不同的时		С.	若干个事件在同一时刻	发生
В.	若干个时间在不同时刻	月发生	D.	若干个事件在同一时间	可间隔内发生
12.	若把操作系统看成计算	4. 机系统资源的管理者,下面	面的	不属于操作系统	充所管理的资源。 C
A.	程序	B. CPU	С.	中断	D. 主存
13.	多道程序设计是指	。C			
A.	在分布系统中同一时刻	 运行多个程序	С.	在一台处理机上并发运	运行多个程序
В.	在实时系统中并发运行	万多个程序	D.	在一台处理机上同一时	
14.	提高处理器资源利用率	区的关键技术是。A			
A.	多道程序设计技术	B. 交换技术	С.	SPOOLing 技术	D. 虚拟技术
15.	操作系统中采用多道程	是序设计提高 CPU 和外部设	と备	的。 C	
A.	可靠性	B. 稳定性	С.	利用率	D. 兼容性
16.	引入多道程序设计技术	的前提条件之一是系统具在	有 _	。 C	
A.	多个 CPU	B. 多个终端	С.	中断功能	D. 分时功能
17.	当计算机提供了管态和	1目态时, 必须在管	态下	· 执行。 B	
A.	把运算结果送入内存的	的指令	С.	算术运算指令	
В.	输入/输出指令		D.	从内存取数的指令	
18.	当 CPU 执行操作系统	代码时,称处理机处于		。 B	
A.	目态	B. 管态	С.	自由态	D. 就绪态
19.	特权指令是指。	\mathbf{C}			
A.	控制指令		С.	其执行可能有损系统的	的安全性
В.	系统管理员可用的指令	> ;	D.	机器指令	
20.	计算机系统中判断是否	有中断事件发生应该在		_。 D	
A.	执行 P 操作后		С.	若干个事件在同一时刻	月发生
В.	由用户态转入核心态时	t	D.	执行完一条指令后	
第二	二次习题				
1.	优先权是在创建	进程时确定的,确定之后在	:整/	个进程运行期间不再改变	$\dot{\mathfrak{L}}_{\circ}$ ${f B}$
		B. 静态			
2.	下列进程状态变化中,_	变化是不可能发生的	J。 (C	
		B. 运行 → 就绪			D. 运行 → 等待
3.	当 时,进程从这	运行状态变为就绪状态。 D			

A. 进程被调度程序选中	C. 等待的	事件发生
B. 等待某一事件	D. 时间片	到
4. 进程管理中, 当 时进程	是从阻塞态变成就绪态。 D	
A. 进程被进程调度程序选中	C. 等待一	个事件
B. 时间片用完	D. 等待的	事件发生
5. 下面对进程的描述中,错误的	是。 A	
A. 进程是指令的集合	C. 进程是	有生命周期的
B. 进程执行需要处理机	D. 进程是	动态的概念
6. 下面所述步骤中, 不是	创建进程所必需的。B	
A. 建立一个进程控制块	C. 将进程	控制块链人就绪队列
B. 由调度程序为进程分配 CPU	D. 为进程	分配内存
7. 多道程序环境下,操作系统分	配资源以 为基本单位。A	\
A. 进程 B. 程	!序 C. 线程	D. 指令
8. 下述哪一个选项体现了原语的	主要特点。 A	
A. 不可分割性 B. 共	字性 C. 并发性	D. 异步性
9. 关于内核级线程,以下描述不	正确的是。 D	
A. 建立和维护线程的数据结构》	及保存每个线程的人口	
B. 内核可以将处理器调度直接分	分配给某个内核级线程	
C. 可以将一个进程的多个线程分	分派到多个处理器,能够发挥多 例	心理器并行工作的优势
D. 控制权从一个线程传送到另-	一个线程时不需要用户态一内核和	态—用户态的模式切换;
10. 一个进程被唤醒意味着	_。 B	
A. 该进程重新占有了 CPU	C. 其 PCI	3 移至等待队列队首
B. 进程变为就绪状态	D. 它的优	先权变为最大
11. 在引入线程的操作系统中,资	资源分配的基本单位是。]	D
A. 作业 B. 线	程 C. 程序	D. 进程
12. 在下述关于父进程和子进程的	的叙述中,正确的是。B	
A. 父进程创建了子进程, 因此公		宁
B. 父进程和子进程可以并发执行	Ī	
C. 撤销子进程时, 应该同时撤银	肖父进程	
D. 撤销父进程时, 应该同时撤销	肖子进程	
13. 对进程的管理和控制使用	。 B	

A.	指令	B. 原语	С.	信号量	D.	信箱通信
14.	所谓"可重人"程序是	指。C				
A.	不能够被多个程序同时	调用的程序	С.	能够被多个进程共享的	J程F	茅
В.	在执行过程中其代码自	身会发生变化的程序	D.	无限循环程序		
15.	原语是。 C					
A.	可中断的指令序列		С.	不可中断的指令序列		
В.	运行在用户态下的过程	!	D.	操作系统的内核		
16.	在进程调度算法中,对	短进程不利的是。])			
A.	短进程优先调度算法		С.	多级反馈队列调度算法	÷.	
В.	高响应比优先算法		D.	先来先服务算法		
17.	一个可共享的程序在执	行过程中是不能被修改的,	这	样的程序代码应该是_		_。 B
A.	封闭的代码	B. 可重人代码	С.	可执行代码	D.	可再现代码
18.	在进程管理中,当	时,进程状态从运行态	转	英到就绪态。 B		
A.	进程被调度程序选中		С.	等待某一事件发生		
В.	时间片用完		D.	等待的事件发生		
19.	Solaris 的多线程的实现	尼方式为。 A				
A.	混合式	B. 纯用户级多线程	С.	纯内核级线程	D.	单线程结构进程
20.	在 UNIX 系统中运行以	从下程序,最多可再产生出		进程? D		
1 m 2 3 4 5 }	nain(){ fork(); /*←pc(程序 fork(); fork();	汁数器),进程A				
A.	3	B. 9	С.	5	D.	7
第三	E次习题					
1. 背	静态重定位的时机是	。 B				
A.	程序编译时	B. 程序装入时	С.	程序链接时	D.	程序运行时
2.	能够装入内存任何位置	的代码程序必须是。	В			
A.	可定位的	B. 可动态链接的	С.	可重人的	D.	可静态链接的
3. ₹	车可变式分区管理中, <i>另</i>	采用内存移动技术的目的是		。 D		

A. 合并分配区	B. 便于地址转换	C. 增加主存容量	D. 合并空闲区
4. 在存储管理中,采用	目覆盖与交换技术的目的是_	。 B	
A. 物理上扩充主存容	星里	C. 代码在主存中共享	
B. 减少程序占用的主	存空间	D. 提高 CPU 效率	
5. 在分区存储管理中,	,下面的 最有可能使		空闲区。A
A. 首次适应法	B. 循环首次适应法	C. 最佳适应法	D. 最坏适应法
6. 以下哪种 存	储管理能提供虚存。B		
A. 分区方式	B. 页式	C. 覆盖	D. 可重定位分区管理
7. 在分页式虚存中,分)页由 实现。 B		
A. 程序员	B. 操作系统	C. 编译器	D. 系统调用
8. 在虚拟页式存储管理	里方案中,下面 完成	将页面调入内存的工作。 (C
A. 页面淘汰过程	B. 紧缩技术利用	C. 缺页中断处理	D. 工作集模型应用
9. 采用 不会产	生内部碎片。 A		
A. 分段式存储管理		C. 分页式存储管理	
B. 固定分区式存储管	理	D. 段页式	
10. 采用 存储	管理不会产生外部碎片。C		
A. 分段式	B. 虚拟分段式	C. 分页式	D. 可变分区
11. 一台机器有 48 位) 个页表项。 B	虚地址和 32 位物理地址,老	5页长为 8KB, 如果设计-	一个反置页表,则有
A. 2^{35}	B. 2 ¹⁹	C. 2^{16}	D. 2^{32}
12. 作业在执行中发生	了缺页中断,经操作系统处	理后,应该让其执行	指令。 C
A. 被中断的前一条	B. 被中断的后一条	C. 被中断的	D. 启动时的第一条
13. 在请求分页存储管	理中,当访问的页面不在内	存时,便产生缺页中断,	缺页中断是属于。B
A. 外中断	B. I/O 中断	C. 程序中断	D. 访管中断
14. 通常所说的"存储	保护"的基本含义是。	, D	
A. 防止存储器硬件受	损	C. 防止程序在内存丢	失
B. 防止程序被人偷看		D. 防止程序间相互越	界访问
15. LRU 置换算法所基	基于的思想是。 A		
A. 在最近的过去很久	未使用的在最近的将来也不	会使用	
B. 在最近的过去用得	多的在最近的将来也用得多		
C. 在最近的过去很久	未使用的在最近的将来会使	用	

D. 在最近的过去用得少的在最近的将来也用得少

16.	在下面关于虚拟存储器	的叙述中,正确的是	。 D	
A.	要求程序运行前必须全	部装入内存但在运行过程中	中不必一直驻留在内存	
В.	要求程序运行前不必全	部装人内存但是在运行过程	呈中必须一直驻留在内存	
С.	要求程序运行前必须全	部装人内存且在运行过程中	中一直驻留在内存	
D.	要求程序运行前不必全	部装人内存且在运行过程中	中不必一直驻留在内存	
17.	虚存的可行性基础是	。 D		
A.	程序执行的离散性	B. 程序执行的并发性	C. 程序执行的顺序性	D. 程序执行的局部性
18.	把逻辑地址转变为内存	的物理地址的过程称作	。 A	
Α.	重定位或地址映射	B. 运行	C. 编译	D. 连接
0, 1, 2	2,3,4,被分别装入主存	r, 主存 128KB, 分成 32 块 的 3,8,4,6,9 块中。有一逻 表为页号,第二个元素为页。	逻辑地址为 [3,70]。试求出	相应的物理地址
Α.	14646	B. 34576	C. 24646	D. 24576
20.	页面替换算法	有可能会产生 Belady 异常环	观象。B	
A.	Clock	B. FIFO	C. OPT	D. LRU
第四	四次习题			
1. ‡	安 分类可将设备	分为块设备和字符设备。C)	
A.	共享属性	B. 操作特性	C. 从属关系	D. 信息交换单位
2. (CPU 输出数据的速度远	远高于打印机的打印速度,	为了解决这一矛盾,可采	用。 A
Α.	缓冲技术	B. 覆盖技术	C. 虚存技术	D. 并行技术
	通过硬件和软件的功能 _。 D		改造成能为若干用户共享	的设备,这种设备称为
A.	系统设备	B. 存储设备	C. 用户设备	D. 虚拟设备
4. i	通道又称 I/O 处理机,	它用于实现 之间的(言息传输。 A	
Α.	内存与外设	B. 内存与外存	C. CPU 与外设	D. CPU 与外存
5. \dot{z}	为了使多个进程能有效均	也同时处理输入和输出,最	好使用 结构的缓冲	技术。B
A.	单缓冲	B. 缓冲池	C. 双缓冲	D. 循环缓冲
6. 5	如果 I/O 设备与存储设	备进行数据交换不经过 CP	U 来完成,这种数据交换力	方式是。 A
Α.	DMA 方式	B. 中断方式	C. 无条件存取方式	D. 程序轮询
7.	在中断处理中,输入/输	命出中断可能是指:	①设备出错,②数据传输结	束。 D

A. ②	В. ①	C. 都不是	D. ①和②
8. 在采用 SPOOLing 技术	的系统中,用户的打印结界	具首先被送到。 D	
A. 打印机	B. 终端	C. 内存固定区域	D. 磁盘固定区域
9. 大多数低速设备都属于	设备。 C		
A. 虚拟	B. SPOOLing	C. 独享	D. 共享
10 是直接存取的存	字储设备。 B		
A. 键盘显示终端	B. 磁盘	C. 磁带	D. 打印机
11. 操作系统中的 SPOOL	.ing 技术,实质是指	转化为共享设备的技术。.	\mathbf{A}
A. 独占设备	B. 脱机设备	C. 块设备	D. 虚拟设备
12. 在操作系统中,	指的是一种硬件机制。C		
A. SPOOLing 技术	B. 缓冲池	C. 通道技术	D. 内存覆盖技术
13. 在操作系统中,用户程	是序申请使用 I/O 设备时,	通常采用。 C	
A. 独占设备名	B. 虚拟设备名	C. 逻辑设备名	D. 物理设备名
14. 采用假脱机技术,将磁盘的存储操作,用以代替			印机的操作实际上是对
A. 独占设备	B. 虚拟设备	C. 一般物理设备	D. 共享设备
15. 算法是设备分配	记常用的一种算法。C		
A. 首次适应	B. 最佳适应	C. 先来先服务	D. 短作业优先
16. 将系统中的每一台设行编号称为设备的。 D	备按某种原则进行统一的编	号,这些编号作为区分硬件	和识别设备的代号,该
A. 符号名	B. 相对号	C. 类型号	D. 绝对号
17. 通道程序是。 C	C		
A. 可以由高级语言编写		C. 由一系列通道指令组成	Ì
B. 由一系列机器指令组成	Ž.	D. 就是通道控制器	
18. I/O 软件的分层结构中执行。 B	中,负责将把用户提	交的逻辑 I/O 请求转化为特	物理 I/O 操作的启动和
A. 独立于设备的 I/O 软件	件	C. 用户空间的 I/O 软件	
B. 设备驱动程序		D. I/O 中断处理程序	
19. 使用 SPOOLing 系统	的目的是为了提高 的	的使用效率。 B	
A. 操作系统	B. I/O 设备	C. 内存	D. CPU
20. 下列算法中,用于磁盘	社移臂调度的是。D		

A. 时间片轮转法		C. LRU 算法	
B. 优先级高者优先算法		D. 最短寻找时间优先算法	失
第五次习题			
1. Unix 系统中, 文件的领	索引结构存放在 中。	D	
A. 超级块	B. 空闲块	C. 目录项	D. inode 节点
2. 操作系统中对文件进行	管理的部分叫做。I	3	
A. 数据库系统	B. 文件系统	C. 检索系统	D. 数据存储系统
3. 为了解决不同用户文件	的"命名冲突"问题,通常	常在文件系统中采用	, C
A. 约定的方法	B. 索引	C. 多级目录	D. 路径
4. 无结构文件的含义是_	。B		
A. 索引文件	B. 流式文件	C. 变长记录的文件	D. 索引顺序文件
5. 下列文件中不属于物理	!文件的是。 A		
A. 记录式文件	B. 连续文件	C. 链接文件	D. 索引文件
6. 文件系统的主要目的是	£ B		
A. 实现虚拟存储		C. 用于存储系统文件	
B. 实现对文件的按名存	取	D. 提高外存的读写速度	
7. 下列文件中属于逻辑结	构的文件是 文件。	\mathbf{A}	
A. 流式文件	B. 库文件	C. 连续文件	D. 系统文件
8. 文件系统采用多级目录	结构后,对于不同用户的文	文件,其文件名。 A	
A. 可以相同也可以不同		C. 应该不同	
B. 受系统约束		D. 应该相同	
9. 文件目录的主要作用是	£。C		
A. 节省空间	B. 提高外存利用率	C. 按名存取	D. 提高速度
	的不同物理结构有不同的优 ٤力,又提高了文件存储空间	缺点。在下列文件的物理结 间的利用率。 A	构中, 具有直接
A. 索引结构	B. Hash 结构	C. 顺序结构	D. 链接结构
11. 文件系统用 组	l织文件。B		
A. 堆栈	B. 目录	C. 路径	D. 指针
12. 文件路径名是指	。 B		
A. 目录文件名和文件名	的集合		
B. 从根目录到文件所经	历的路径中的各符号名的集	合	

\mathbf{C}	. 文件名和文件扩展名			
D	. 一系列的目录文件名和	叩该文件的文件名		
	一个文件的相对路径。 有子目录名组成的一个	名是从 开始,逐步注 字符串。 A	沿着各级子目录追溯,最后	到指定文件的整个通路
A	. 当前目录	B. 二级目录	C. 根目录	D. 多级目录
14.	对一个文件的访问,常	宫由 共同限制。C		
A	. 文件属性的口令		C. 用户访问权限和文件原	禹性
В	. 优先级和文件属性		D. 用户访问权限和用户位	尤先级
15.	存放在磁盘上的文件_	。 C		
A	. 不能随机访问		C. 既可随机访问,又可加	顶序访问
В	. 只能顺序访问		D. 只能随机访问	
16.	在文件系统中, 位示图	可用于。 C		
A	. 内存空间的共享		C. 磁盘空间的管理	
В	. 实现文件的保护和保密	X 1	D. 文件目录的查找	
17.	常用的文件存取方法有	ī 两种:顺序存取和	存取。B	
A	. 顺序	B. 随机	C. 串联	D. 流式
18.	Unix 系统中,通过 _	实现文件系统的按名	存取功能。 A	
A	. 目录项	B. 超级块	C. 空闲块	D. inode 节点
19.	Unix 文件系统中,打	开文件的系统调用 open 输	入参数包含。 A	
A	. 文件名	B. 文件描述符	C. inode	D. inode 号
20.	Unix 文件系统中,打	开文件的系统调用 open 返	回值是。 A	
A	. 文件描述符(字)	B. inode	C. 文件名	D. inode 号

期末测试

1. 试写出进程映像包括哪些组成部分。

解答: 进程控制块、进程程序块、进程数据块和进程核心栈。

2. I/O 软件的一般分为四层结构,请按照自顶向下的顺序写出四层结构的名称。

解答: 用户空间的 I/O 软件; 独立于设备的 I/O 软件; 设备驱动程序; 中断处理程序。

3. 假设一个可移动磁头的磁盘具有 200 个磁道,编号为 $0\sim199$,刚结束了 175 道的存取,正在处理 143 道的服务请求,假设系统当前 I/O 请求队列如下:85,145,90,180,92,150,102,176,132。试问:如果采用电梯调度算法完成上述请求,其存取臂移动的总量是多少?并写出磁头臂移动的序列。

解答: 磁头移动序列为 132→102→92→90→85→145→150→176→180

存取臂移动的总量为 (143 - 85) + (180 - 85) = 153

4. 请画出或描述出七状态进程模型(含两个挂起状态)及其状态转换图。

解答:

5. 一台机器有 48 位虚地址和 32 位物理地址,若页长为 4KB,问如果采用正向页表,一个进程的页表最多有多少个页表项?如果设计一个反置页表,则有多少个页表项?

解答: 由于页长为 4KB(2^{12} B),所以页内偏移量为 12 位,所以页表项共有 $2^{48-12}=2^{36}$ 个,反置页表项共有 $2^{32-12}=2^{20}$ 个。

6. 在 UNIX 系统中,每个 i 节点中分别含有 12 个直接地址的索引和一、二、三级间接索引。假设每个盘块有 1024Byte,若每个盘块放 256 个盘块地址,50MB 的文件和 100MB 的文件分别占用多少直接、一、二、三级间接盘块?

解答:直接盘块容量: 1024B × 12 = 12KB

一级间接盘块容量: $256 \times 1024B = 256KB$

二级间接盘块容量: $256 \times 256 \text{KB} = 65536 \text{KB} = 64 \text{MB}$

三级间接盘块容量: $64MB \times 256 = 16384MB$

50MB 的文件占用 12 个直接盘块和 256 个一级间接盘块,二级间接盘块占用数量为 (50MB - 12KB - 256KB) \div 1024B = 50932 个

100MB 的文件占用 12 个直接盘块、256 个一级间接盘块和 $256\times256=65536$ 个二级间接盘块,三级间接盘块的占用数量为 (100MB - 12KB - 256KB - 64MB) ÷ 1024B = 36596 个

7. 考虑下面的进程集合:

进程	到达时间	处理时间
A	0	2
В	1	8
С	2	2
D	3	8

如果使用先来先服务 FCFS 调度算法,得到的每个单位时间内的进程执行序列表示为:

算法	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
FCFS	A	A	В	В	В	В	В	В	В	В	С	С	D	D	D	D	D	D	D	D

参照该 FCFS 调度算法给出的执行序列的写法,写出如果采用时间片轮转 RR(时间片单位 q=1,q=4)、多级反馈队列 Feedback(反馈 Fback,q=1; Fback, $q=2^i$)等 4 个调度算法,得到进程执

行序列。注:在时间片轮转或者多级反馈队列调度时,如果就绪队列都为空,正在运行的进程不被抢占,继续使用下一段时间片。

解答:

算法	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
RR, $q=1$	A	В	A	С	В	D	С	В	D	В	D	В	D	В	D	В	D	В	D	D
RR, $q=4$	A	A	В	В	В	В	С	С	D	D	D	D	В	В	В	В	D	D	D	D
Fback, $q = 1$	A	В	С	D	A	В	С	D	В	D	В	D	В	D	В	D	В	D	В	D
Fback, $q = 2^i$	A	В	С	D	A	В	В	С	D	D	В	В	В	В	D	D	D	D	В	D

- **8.** 假设一个进程在磁盘上包含 6 个虚拟页 (0 号 \sim 5 号), 在主存中固定分配给 3 个页框,发生如下顺序的页访问: 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5
 - (1) 如果使用 LRU 策略,给出相继驻留在这 3 个帧上的页。计算主存的缺页次数。
 - (2) 如果使用 Clock 策略,给出相继驻留在这 3 个帧上的页。计算主存的缺页次数。

解答: LRU 算法: 缺页次数为 10 次。

	4	3	2	1	4	3	5	4	3	2	1	5
页框 0	4	4	4	1	1	1	5	5	5	2	2	2
页框 1		3	3	3	4	4	4	4	4	4	1	1
页框 2			2	2	2	3	3	3	3	3	3	5
缺页标记	F	F	F	F	F	F	F			F	F	F

Clock 算法:缺页次数为 9 次。

	4	3	2	1	4	3	5	4	3	2	1	5
页框 0	4*	4*	\rightarrow 4*	1*	1*	\rightarrow 1*	5*	5*	5*	5	\rightarrow 5	\rightarrow 5*
页框 1	\rightarrow	3*	3*	\rightarrow 3	4*	4*	$\rightarrow 4$	\rightarrow 4*	\rightarrow 4*	2*	2*	2*
页框 2		\rightarrow	2*	2	$\rightarrow 2$	3*	3	3	3*	\rightarrow 3	1*	1*
缺页标记	F	F	F	F	F	F	F			F	F	

9. 设系统中有 3 种类型的资源(A、B、C)和 5 个进程(P1、P2、P3、P4、P5),A 资源的总量为 17,B 资源的总量为 5,C 资源的总量为 20。在 T_0 时刻系统状态如下表所示,系统采用银行家算法实施死锁避免策略。

进程	已经分酉	记资源 (Al	location)	最大需求矩阵 (Claim)				
	A	В	С	A	В	С		
P1	2	1	2	5	5	9		
P2	4	0	2	5	3	6		
P3	4	0	5	4	0	11		
P4	2	0	4	4	2	5		
P5	3	1	4	4	2	4		

- (1) T_0 时刻的各资源剩余数量为多少? T_0 时刻的是否为安全状态? 若是,请给出其中可能的一种安全序列,并依照该序列,写出各资源的回收步骤。
- (2) 在 T_0 时刻,如果进程 P1 继续对 A、B、C 三类资源提出请求 Request(2,2,2) 后,系统能否将资源分配给 P1 进程?给出理由。

解答: T_0 时刻 A 资源的剩余量为 17-2-4-4-2-3=2, B 资源的剩余量为 5-1-1=3, C 资源的剩余量为 20-2-2-5-4-4=3。

 T_0 时刻为安全状态,其中的可能安全序列为 $P4 \rightarrow P2 \rightarrow P3 \rightarrow P5 \rightarrow P1$

进程	Available			C _{ik} -A _{ik}			Allocation			Available+Allocation			Possible
	A	В	С	A	В	С	A	В	С	A	В	С	
P4	2	3	3	2	2	1	2	0	4	4	3	7	True
P2	4	3	7	1	3	4	4	0	2	8	3	9	True
Р3	8	3	9	0	0	6	4	0	5	12	3	14	True
P5	12	3	14	1	1	0	3	1	4	15	4	18	True
P1	15	4	18	3	4	7	2	1	2	17	5	20	True

在 T_0 时刻,假设满足 P1 的分配需求,此时 Available=(0,1,1),不能满足任何一个进程,系统处于不安全状态,因此不能分配。