Question Number	Answer		Mark
18(a)	Small spherical object		
	Or Spherical object moving at low speed	(1)	
	Laminar flow [allow non-turbulent flow]	(1)	2
10(1)(2)			
18(b)(i)	Max 3		
	Initially the velocity is zero so gradient is zero	(1)	
	As velocity increases the gradient changes	(1)	
	As velocity increases, drag increases	(1)	
	Until terminal / constant velocity when the gradient becomes constant.	(1)	3
	[If no other mark scored, allow 1 mark for velocity increases until terminal		
	velocity is reached.]		
18(b)(ii)	Determines radius of ball bearing	(1)	
	Determines gradient	(1)	4
	Use of $F = 6\pi\eta rv$	(1)	4
	$\eta = 0.046 \text{ (Pa s)} \text{ [allow a range from } 0.044 \text{ (Pa s) to } 0.048 \text{ (Pa s)]}$	(1)	
	Example calculation		
	Radius = $\frac{1.6 \times 10^{-3} \text{ m}}{2}$ = $8 \times 10^{-4} \text{ m}$		
	Gradient = $\frac{11.5}{1.15 - 0.60} = 20.9$		
	$v = 0.209 \mathrm{m s^{-1}}$		
	$\eta = \frac{1.45 \times 10^{-1} \text{ N}}{6\pi \times 8 \times 10^{-4} \text{ m} \times 0.209 \text{ m s}^{-1}} = 0.0460 \text{ Pa s}$		
18(b)(iii)	At higher temperature the viscosity will be less	(1)	
	$F = 6\pi\eta rv$ and r is constant	(1)	
	Drag force is less (at a given speed)		
	Or Drag force (at terminal velocity) is unchanged	(1)	
	Terminal velocity is greater (and ball-bearing takes less time to fall)	(1)	4
	Total for question 18		13