LP 19 Bilans thermiques : flux conductifs, convectifs et radiatifs

Clément

Agrégation 2019

Contents

	0.1 Introduction	2
1	Rayonnement et convection	2
	1.1 Rayonnement	2
	1.2 Conduction thermique	2
2	Convection thermique2.1 Première approche	
3	Application : chauffage	3
4	Plan conseillé 4.0.1 Omniprésence de ces phénomènes	3

0.1 Introduction

Nécessite de comprendre les transferts thermiques pour optimiser les systèmes thermiques : moteurs, isolation..etc

1 Rayonnement et convection

1.1 Rayonnement

La matière émet et absorbe de la chaleur, il y a de l'émission due à l'agitation thermique, et de l'absorption et augmente cette agitation thermique. Pour le rayonnement on va s'intéresser principalement au corps noir, définition.

Loi de Planck

$$E_{0\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)} \tag{1}$$

on dérive par rapport à λ pour trouver le maximum d'émission ou d'absorption. Cas du soleil.

Loi de Stephan : on a pour la densité de puissance $E_0 = \int_0^\infty E_{0\lambda} d\lambda = \sigma T^4$.

1.2 Conduction thermique

Hypothèse des milieux continus (on travaille à des échelles grandes devant la taille des molécules et du libre parcours moyen).

Loi de Fourrier

$$\vec{j} = -\lambda \vec{\nabla} T \tag{2}$$

On définit alors le flux de chaleur comme

$$\Phi = \iint_{S} \vec{j} \cdot \vec{n} dS \tag{3}$$

on a alors

$$Q = \int_0^t \Phi dt \tag{4}$$

2 Convection thermique

2.1 Première approche

2.2 Analyse dimensionnelle

- Transfert de quantité de mouvement
- Transfert convectif d'enthalpie
- Transfert conductif transverse

Nombres de Prandtl, Nusselt etc...

3 Application: chauffage...

Questions

D'où vient l'expression de l'expression du nombre de Nusselt en fonction des nombres de Prandtl et de Reynolds ?

Des exemples où un bilan radiatif permet de déterminer la température d'un corps ? Les planètes.

4 Plan conseillé

4.0.1 Omniprésence de ces phénomènes

Présence quotidienne : terre chauffée par le soleil et par son centre via le manteau, chauffage dans une maison etc...

4.1 Rappels sur les flux conductifs et radiatifs

4.2 Convection

Manip des deux erlen : l'un rempli d'eau tiède colorée, l'autre d'eau froide sans colorant, on pose le premier sur le secont et on observe.