CSCE 689-609 Tokenization and Sampling

Jeff Huang jeff@cse.tamu.edu o2lab.github.io

The Tokenizer Playground

https://huggingface.co/spaces/Xenova/the-tokenizer-playground

Experiment with different tokenizers (running locally in your browser).

gpt-4 / gpt-3.5-turbo / text-embedding-ada-002

Where is Texas A&M?

Where is Texas A&M?

TOKENS CHARACTERS

6 19

TOKENS CHARACTERS 8 19

Where is Texas A&M?

<s> Where is Texas A&M?

Tokenization (e.g., Mistral Al: https://docs.mistral.ai/guides/tokenization)

Establishing the Vocabulary

- 1. **Collect Training Data**: Gather a large corpus of text data that the model will learn from.
- Initial Tokenization: Apply preliminary tokenization methods to split the text into basic units (words, subwords, or characters).
- 3. **Vocabulary Creation**: Choose a tokenization algorithm (e.g., Byte Pair Encoding (BPE), WordPiece, Unigram, SentencePiece) to generate a manageable and efficient set of tokens.
- 4. **Apply Algorithm:** Run the selected algorithm on the initial tokens to create a set of subword tokens or characters that capture the linguistic nuances of the training data.
- 5. **Assign IDs:** Each unique token in the resulting vocabulary is assigned a specific integer ID.

Real-Time Tokenization Process

- Convert text stream to tokens: Convert incoming text into the tokens found in the established vocabulary, ensuring all text can be represented.
- 2. **Token ID**: Map each token to its corresponding integer ID as defined in the pre-established vocabulary).

Implementation https://github.com/karpathy/llama2.c/blob/master/run.c#L452-L571

```
void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) {
    // encode the string text (input) into an upper-bound preallocated tokens[] array
    // bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2)
    if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT FAILURE); }
    if (t->sorted vocab == NULL) {
        // lazily malloc and sort the vocabulary
        t->sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex));
        for (int i = 0; i < t \rightarrow vocab\_size; i++) {
            t->sorted_vocab[i].str = t->vocab[i];
            t->sorted vocab[i].id = i:
        qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens);
   // create a temporary buffer that will store merge candidates of always two consecutive tokens
    // *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1)
    char* str_buffer = malloc((t->max_token_length*2 +1 +2) * sizeof(char));
    size t str len = 0;
```

Tokenization Basic Units

- Word-level
- Character-level
- Subword-level
- Byte-level
- Multi-word
- Phrase-level
- ...

Token size	Pros	Cons
Smaller tokens (character or subword tokenization)	 Enables the model to handle a wider range of inputs, such as unknown words, typos, or complex syntax. Might allow the vocabulary size to be reduced, requiring fewer memory resources. 	- A given text is broken into more tokens, requiring additional computational resources while processing - Given a fixed token limit, the maximum size of the model's input and output is smaller
Larger tokens (word tokenization)	 A given text is broken into fewer tokens, requiring fewer computational resources while processing. Given the same token limit, the maximum size of the model's input and output is larger. 	 Might cause an increased vocabulary size, requiring more memory resources. Can limit the models ability to handle unknown words, typos, or complex syntax.

Mistral V3 (tekken) tokenizer

- Subword-level tokenization
- Byte-Pair Encoding (BPE)
- **Vocabulary size**: 130k vocab + 1k control tokens
- Special control tokens: 14
 - The tokenizer does not encode control tokens (to prevent prompt injection)

```
<unk>
<S>
</s>
[INST]
[/INST]
[AVAILABLE_TOOLS]
[/AVAILABLE TOOLS]
[T00L RESULTS]
[/T00L_RESULTS]
[TOOL_CALLS]
<pad>
[PREFIX]
[MIDDLE]
[SUFFIX]
```

Mistral control tokens

Al21's Jurassic models tokenizers

https://docs.ai21.com/docs/large-language-models

Token dictionary

AI21 Studio uses a large token dictionary (250K), which contains tokens generated from separate characters, words, word parts, such as prefixes and suffixes, and multi-word tokens. For example, in our current tokenizer, the phrase "I want to break free." is split into the following tokens:

```
['_I_want_to', '_break', '_free', '.']
```

Byte-Pair Encoding (BPE)

Paper: Neural Machine Translation of Rare Words with Subword Units

- **Byte split:** It starts by treating each byte in a text as a separate token
- Merge: Then, it iteratively adds new tokens to the vocabulary for the most frequent pair
 of tokens currently appearing in the corpus.
 - E.g., if the most frequent pair of tokens is "th" + "e", then a new token "the" will be added.
- This process continues until a target vocabulary size is reached

Example: https://huggingface.co/docs/transformers/en/tokenizer_summary

- **Popular:** GPT-4, Claude, Llama-3, all use BPE

Unigram

Paper: Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates

- Idea: In contrast to BPE, Unigram initializes its base vocabulary to a large number of symbols and progressively trims down each symbol to obtain a smaller vocabulary.
- Loss-based removal: The algorithm defines a loss over the training data.
 - For each symbol, it computes how much the overall loss would increase if the symbol was to be removed from the vocabulary
 - It then removes the symbols whose loss increase is the lowest

SentencePiece

Paper: https://arxiv.org/pdf/1808.06226

- **Idea:** It treats the input text as a continuous sequence of characters without explicitly splitting it by whitespace (it escapes the whitespace with a meta symbol _ (U+2581))
 - For tokenization, it can use BPE or Unigram

Examples of models using SentencePiece are <u>ALBERT</u>, <u>XLNet</u>, <u>Marian</u>, and <u>T5</u>.

Sampling (the Next Token)

Logits: Unnormalized scores that represent the likelihood of each token being the next in the sequence

 Logits are passed through a softmax function to convert into a probability distribution (sum to 1)

Temperature: Before sampling, the distribution can be adjusted using a parameter called **temperature (T)**:

Top-k Sampling: only the top **k** most probable tokens are considered for sampling.

Top-p Sampling: chooses tokens from the smallest possible set whose cumulative probability exceeds a threshold **p**.

$$p_i = rac{\exp\left(rac{ ext{logit}_i}{T}
ight)}{\sum_j \exp\left(rac{ ext{logit}_j}{T}
ight)}$$

Implementation https://github.com/karpathy/llama2.c/blob/master/run.c#L691-L714

```
int sample(Sampler* sampler, float* logits) {
   // sample the token given the logits and some hyperparameters
   int next;
   if (sampler->temperature == 0.0f) {
       // greedy argmax sampling: take the token with the highest probability
       next = sample argmax(logits, sampler->vocab size);
    } else {
       // apply the temperature to the logits
       for (int q=0; q<sampler->vocab size; q++) { logits[q] /= sampler->temperature; }
       // apply softmax to the logits to get the probabilities for next token
       softmax(logits, sampler->vocab_size);
       // flip a (float) coin (this is our source of entropy for sampling)
       float coin = random_f32(&sampler->rng_state);
       // we sample from this distribution to get the next token
       if (sampler->topp <= 0 || sampler->topp >= 1) {
           // simply sample from the predicted probability distribution
           next = sample mult(logits, sampler->vocab size, coin);
       } else {
           // top-p (nucleus) sampling, clamping the least likely tokens to zero
           next = sample_topp(logits, sampler->vocab_size, sampler->topp, sampler->probindex, coin);
   return next;
```

Parallel Decoding (decode multiple parallel sequences)

https://huggingface.co/spaces/m-ric/beam_search_visualizer

./llama-batched -m Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p "9.11 and 9.9, which one is larger? answer:" -np 4

Important Notes

- Read:
 - llama2.c: https://github.com/karpathy/llama2.c
 - SGLang https://github.com/sgl-project/sglang
- Due
 - HW1 (Saturday Sep 14, 11:59 PM)