World Development Indicators Analysis

Lydia Lingyun Zhang
2025-02-26

Introduction

In this report, we analyze a sample of the World Development Indicators dataset published by the World Bank (Bank 2022), focusing on one year (2022).

Our analysis centers on four key variables: country, GDP per capita, life expectancy, and total population. We begin by conducting a **data quality assessment**, identifying missing values and handling them appropriately. To determine the best imputation method, we examine the **distribution of GDP per Capita and Life Expectancy** using histogram plots (see Figure Figure 1). Based on the distributions, we apply **median imputation** for GDP per Capita (due to skewness) and **mean imputation** for Life Expectancy (assuming a normal distribution).

After data cleaning, we proceed with **exploratory data analysis (EDA)** using visualizations:1) **A Bar Chart** displaying the **Top 10 countries by GDP per Capita** to identify the wealthiest nations (see Figure Figure 2);2) **A Scatter Plot** exploring the **relationship between GDP per Capita and Life Expectancy**, assessing economic prosperity's impact on public health (see Figure Figure 3). This relationship has been extensively studied, with findings suggesting that higher GDP per capita is often associated with increased life expectancy (Crespo Cuaresma, Lutz, and Sanderson 2019).

Table Table 5 provides key summary statistics for GDP per Capita, Life Expectancy, and Total Population across 217 countries. Specifically, we found that the mean GDP per capita is \$20,345.71, with a high standard deviation of \$31,308.94, indicating substantial economic disparities among nations. While some countries report extremely low GDP per capita values, others exhibit significantly higher figures, contributing to the observed variation. Secondly, life expectancy averages 72.42 years, ranging from 53 to 85.38 years, reflecting disparities in healthcare access and overall living conditions. This wide range underscores persistent global health inequalities. Also, the mean total population is 36.5 million, but the distribution is highly skewed due to populous nations such as China (1.4 billion) and smaller island states with significantly lower populations.

Load the Dataset & Quality Check

```
import pandas as pd

# Load the dataset
df = pd.read_csv("data/wdi.csv")

# Display the first few rows
display(df.head())

# Check for dataset info
print(df.info())
```

	country	inflation_rate	$exports_gdp_share$	gdp_growth_rate	gdp_per_capita	adult_lite
0	Afghanistan	NaN	18.380042	-6.240172	352.603733	NaN
1	Albania	6.725203	37.395422	4.856402	6810.114041	98.5
2	Algeria	9.265516	31.446856	3.600000	5023.252932	NaN
3	American Samoa	NaN	46.957520	1.735016	19673.390102	NaN
4	Andorra	NaN	NaN	9.563798	42350.697069	NaN

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217 entries, 0 to 216
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	country	217 non-null	object
1	inflation_rate	169 non-null	float64
2	exports_gdp_share	169 non-null	float64
3	gdp_growth_rate	202 non-null	float64
4	gdp_per_capita	203 non-null	float64
5	adult_literacy_rate	49 non-null	float64
6	<pre>primary_school_enrolment_rate</pre>	114 non-null	float64
7	education_expenditure_gdp_share	105 non-null	float64
8	measles_immunisation_rate	193 non-null	float64
9	health_expenditure_gdp_share	20 non-null	float64
10	income_inequality	28 non-null	float64
11	unemployment_rate	186 non-null	float64

```
12 life_expectancy 209 non-null float64
13 total_population 217 non-null float64
```

dtypes: float64(13), object(1)

memory usage: 23.9+ KB

None

Exploratory Data Analysis

After reviewing the dataset, we decided to choose four indicators for further exploratory data analysis: country, gdp_per_capita, life_expectancy, and total_population. This section provides an overview of these indicators and their distributions.

```
df_selected = df[["country", "gdp_per_capita", "life_expectancy", "total_population"]]
df_selected.head()
```

	country	gdp_per_capita	life_expectancy	total_population
0	Afghanistan	352.603733	62.879	41128771.0
1	Albania	6810.114041	76.833	2777689.0
2	Algeria	5023.252932	77.129	44903225.0
3	American Samoa	19673.390102	NaN	44273.0
4	Andorra	42350.697069	NaN	79824.0

Data Quality Check

Firstly, we check for missing values and duplicate rows.

Findings: - No duplicated rows. - Missing values in GDP per Capita (6.45%) and Life Expectancy (3.69%).

```
# Check for missing values and calculate percentage
missing_values = df_selected.isnull().sum()
missing_percentage = (missing_values / len(df_selected)) * 100

# Check for duplicated rows
duplicate_count = df_selected.duplicated().sum()

# Create a summary table
```

```
missing_summary = pd.DataFrame({
    "Missing Values": missing_values,
    "Missing Percentage (%)": missing_percentage
})

# Display results
print("Missing Values Summary")
display(missing_summary)

print(f"\nNumber of Duplicate Rows: {duplicate_count}")
```

Missing Values Summary

	Missing Values	Missing Percentage (%)
country	0	0.000000
gdp_per_capita	14	6.451613
life_expectancy	8	3.686636
$total_population$	0	0.000000

Number of Duplicate Rows: 0

Distribution Analysis Before Cleaning

To decide how to handle missing values, we first look at the distributions of GDP per Capita and Life Expectancy using histograms.

Our analysis shows:1)GDP per Capita is highly skewed, meaning there are extreme values that could distort the average. Because of this, we use median imputation, which is less affected by outliers; 2)Life Expectancy follows a roughly normal distribution, so mean imputation is the best choice since the mean is a good representation of the data in this case.

Figure 1: Distribution of GDP per Capita and Life Expectancy Before Cleaning. Data Source: World Bank (Bank 2022).

Handling Missing Values

Since missing values are present in GDP per Capita (6.45%) and Life Expectancy (3.69%), to avoid data loss, we impute missing values as follows:1) for **GDP per Capita**, we replaced with the median value;2) for **Life Expectancy**, we replaced with the mean value.

```
# Impute missing values
df_selected["gdp_per_capita"].fillna(df_selected["gdp_per_capita"].median(), inplace=True)
df_selected["life_expectancy"].fillna(df_selected["life_expectancy"].mean(), inplace=True)
# Create a cleaned dataset
df_clean = df_selected.copy()
display(df_clean.head())
```

	country	gdp_per_capita	life_expectancy	$total_population$
0	Afghanistan	352.603733	62.879000	41128771.0
1	Albania	6810.114041	76.833000	2777689.0
2	Algeria	5023.252932	77.129000	44903225.0
3	American Samoa	19673.390102	72.416519	44273.0
4	Andorra	42350.697069	72.416519	79824.0

Key Statistics Table

After handling missing values, we review the dataset and its key statistics. Table 5 is a summary of key statistics for the cleaned dataset:

Table 5: Summary Statistics for Key Indicators (2022). Data Source: World Bank (Bank 2022).

Table 5

	count	mean	std	min	25%	50%	75% r
gdp_per_capita	217.00	19522.60	30439.85	259.03	3012.22	7587.59	21508.40
life_expectancy	217.00	72.42	7.57	53.00	67.26	73.39	78.16
$total_population$	217.00	36536447.72	141058261.99	11312.00	808726.00	6465097.00	26069416.00

Exploratory Visualizations

Now that we've handled missing values and examined distributions, let's explore key relationships between indicators using different visualizations.

To better understand the key indicators, we use: 1. A Bar Chart (Top 10 countries by GDP per Capita). 2. A Scatter Plot (GDP per Capita vs. Life Expectancy).

Top 10 Countries by GDP per Capita

Relationship Between GDP per Capita and Life Expectancy

Figure 2: Top 10 Countries by GDP per Capita (2022). Data Source: World Bank (Bank 2022).

Conclusion

In this report, we analyzed the World Development Indicators dataset, focusing on GDP per capita, life expectancy, and total population. Our findings highlight the relationship between economic prosperity and public health, as well as the distribution of wealth across countries. The visualizations and statistical summaries provide a comprehensive overview of the data, enabling further insights into global development trends.

Bank, World. 2022. "World Development Indicators." https://databank.worldbank.org/source/world-development-indicators.

Crespo Cuaresma, Jesus, Wolfgang Lutz, and Warren Sanderson. 2019. "Is the Demographic Dividend an Education Dividend?" Genus 75 (1): 1–14. https://doi.org/10.1186/s41118-019-0071-0.

Figure 3: Relationship Between GDP per Capita and Life Expectancy. Data Source: World Bank (Bank 2022).