Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Midterm review

- Midterm is on Wednesday October 24, in class
- You can bring 2 pieces of papers (front and back) of anything that you want to write down like formulas, or other things that you might forget.
- Calculator is not allowed and actually not needed.
- Don't bring scrap papers; they'll be provided.
- It's worth 10%

Midterm review

- It covers the following: (from highest priority to the lowest)
- 1. All lectures until the end of L14_linearSorting.
- 2. All lab materials (including the lab on the week of Oct 15)
- 3. The 2 written assignments
- 4. The 4 programming assignments
- 5. All reading assignments from CLRS (Connex syllabus).

Midterm review

- There are mostly multiple choice questions (around 20-30)
- And 2-4 written problems
- The only questions that I ask from your textbook are those that we have discussed something similar to somewhere else as well, like lectures, labs or assignments
- Look at your textbook as a resource for understanding the material in the lectures better.
- However, the part about math backgrounds such as summations and log properties is a must-know.

Time complexity and asymptotic notations

- The definitions of asymptotic notations and proofs about asymptotic notations.
- There will be several questions like this:
- What is the time complexity of this for loop in terms of n?
 x = 1

for
$$i = 0$$
 to $n/5$ $x = x+1$

1. $\Theta(1)$ 2. $\Theta(n)$ 3. $\Theta(n^2)$ 4. $\Theta(n \log n)$

Time complexity and asymptotic notations

Algorithm Loop4(n):

 $s \leftarrow 0$ for $i \leftarrow 1$ to 2n do for $j \leftarrow 1$ to i do $s \leftarrow s + i$

Algorithm Loop5(n):

 $s \leftarrow 0$ for $i \leftarrow 1$ to n^2 do for $j \leftarrow 1$ to i do $s \leftarrow s + i$

Algorithm Loop1(n):

$$s \leftarrow 0$$

for $i \leftarrow 1$ to n do
$$s \leftarrow s + i$$

Algorithm Loop2(n):

$$\begin{array}{c}
 p \leftarrow 1 \\
 \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ 2n \ \mathbf{do} \\
 p \leftarrow p \cdot i
 \end{array}$$

Algorithm Loop3(n):

$$\begin{array}{c}
 p \leftarrow 1 \\
 \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n^2 \ \mathbf{do} \\
 p \leftarrow p \cdot i
 \end{array}$$

Time complexity and asymptotic notations

- Given two functions like $f(n) = n^2$ and $g(n) = 5n^2 + 10n$ prove that f(n) = O(g(n))
- Also, knowing about little-oh and little-omega is necessary.

Solving recurrences

Know the 3 methods for solving recurrences.

There is a PDF file on Lab 3 on Connex with more than 20 solved examples on Master theorem.

Sorting and other algorithms

- Learn every single algorithm in detail along with how you can analyze it.
- For sorting algorithms learn the properties of all sorting algorithms and know when one is preferred over another.
- Know the difference between different kinds of analyses: worst-case, best-case, average-case, etc.

Linear sorting

- I taught the 3 linear sorting algorithms different from what's in your textbook.
- So, there is no reading assignment for linear sorting.
 However, you can still read your textbook if you want.
- Just make sure that you understand the 3 algorithms and their differences and take a look at the Java codes provided for them on Connex.

Trees

- Learn all definitions and special types of trees.
- For example, given an example tree, and some specified node; you should what are the descendants of that node or what is the level number of that node.

Probability and expectation

 Just very simple questions to the extent of what you learned in the lectures.

Sample midterm

 There is a solved sample midterm available on Connex->resources->sample midterm from Dr. little's course