Welcome to Class CSC257

Theory of Computation (CSC257)

Today's Topic

- Course Description
 - Introduction to Automata Theory
 - Why Study Automata?
 - Basic Concepts of Automata Theory

Course Description in Brief

- Course Description: This course includes,
 - Finite State Machines and their languages.
 - Details of finite automata, regular expressions, context free grammars.
 - Design of the Push-down automata and Turing Machines.
 - Basics of Undecidability and Intractability.
- Course Objectives: The main objective of the course is to
 - Introduce concepts of the models of computation and formal language approach to computation.
 - The general objectives of this course are to,
 - Introduce concepts in automata theory and theory of computation,
 - Design different finite state machines and grammars and recognizers for different formal languages.
 - Identify different formal language classes and their relationships
 - Determine the decidability and intractability of computational problems.

Course Contents

Course Contents:

Unit I: Basic Foundations (3 Hrs.)

- Mathematical Concepts, Complexity and Computability,
- Basic terminologies in TOC.

Unit II: Introduction to Finite Automata (8 Hrs.)

Unit III: Regular Expressions (6 Hrs.)

Unit IV: Context Free Grammar (9 Hrs.)

Unit V: Push Down Automata (7 Hrs.)

Unit VI: Turing Machines (10 Hrs.)

Unit VII: Undecidability and Intractability (5

Hrs.)

Laboratory Works

- Design and implementation of DFA, NFA, PDA, and TM.
- Students are highly recommended to construct Tokenizers/ Lexers over/for some language.
- Students are advised to use regex and Perl (for using regular expressions), or any other higher level language for the laboratory works.

Text Books:

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Language and Computation 3rd Edition, Pearson - Addison-Wesley.

Reference Books:

- 1. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, 2nd Edition, Prentice Hall.
- 2. Michael Sipser, Introduction to the Theory of Computation, 3rd Edition, Thomson Course Technology
- 3. Efim Kinber, Carl Smith, Theory of Computing: A Gentle introduction, Prentice- Hall.
- 4. John Martin, Introduction to Languages and the Theory of Computation, 3rd Edition, Tata McGraw Hill.

Note: You can use any other books related to TOC or Automata available in market/library/online resources for further reference

Basic Concepts of Automata Theory

Automata and Automata Theory:

- Automaton a self-operating machine or mechanism(Dictionary meaning) and the plural is Automata.
- Automata- Abstract computing Device or Machine i.e. a mathematical model of computation.
- Automata Theory -It deals with the study of automata and the computational problems that can be solved using the automata.

Historical Aspect

- Before 1930's, there were no computers, no any specific model, either real or abstract model of computation.
- ◆ In 1936,Godel and American mathematician Stephen Kleen proposed the *Theory of partial recursive functions* based on an inductive mechanism for the definition of functions, which has become the standard tool for studying computability.
- ◆ In 1936, the American logician Alonzo Church proposed his lambda calculus, based on constrained type of inductive definitions. Lambda calculus later became the inspiration for the programming language Lisp.
- The British mathematician Alen Turing proposed an abstract machine "Turing Machine" based on mechanistic model of problem solving that has all the capabilities of today's computer.
- ♦ In 1940s and 1950s simpler kinds of machines, "finite automata" were studied by a number of researchers.
- In late 1950s the linguist N. Chomsky began the study of formal "grammars", which are closely related to abstract automata.
- In 1969 S. Cook extended Turing's study of what could and what could not be computed. He separated those problems as:
 - Those can be solved efficiently by computers, "decidable".
 - Those problems that can be solved, but in practice take so much time, that computers are useless for all-"intractable"

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

Program memory

compute x * x

compute $x^2 * x$

CPU

output memory

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

CPU

$$f(x) = 8$$

output memory

Program memory

compute x * x

compute $x_{12}^2 * x$

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

Finite Automata: no temporary memory

· Pushdown Automata: stack

Turing Machines: random access memory

Finite Automaton

Example: Automatic Door, Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Finite Pushdown Turing Automata Automata Machine More power Less power Solve more computational problems

Why Study Automata Theory?

- The study of automata and complexity is an important part of computer science. The motivation towards the study of automata theory can be summarized as:
 - Automata theory plays an important role when we are making software for designing and checking behavior of digital circuit.
 - The "*lexical analyzer*" of a typical compiler, that is, the compiler component that breaks the input text into logical units called "*tokens*".
 - Software for scanning large bodies of text, such as collections of web pages, to find occurrence of wards, phrases or patterns(searching).
 - Automata theory is key to software for verifying systems of all types that have a finite number of distinct states, such as communication protocols, protocols for secure exchange of information.
 - Automata Theory is most useful concept of software for natural language processing.

Definitions and preliminaries

- <u>Alphabet</u>: An alphabet is a finite, non-empty set of symbols, that make up the language of concern.
 - e.g. $A = \{0, 1\}$ defines a Binary Alphabet $B = \{+, -, \times \leftarrow, \Gamma, \alpha\}$ Alphabet of 6 symbols. $C = \{All ASCII Symbols \}$ etc.
- •For convention, we shall use \sum in this course for alphabet.
- String: (or word): A string is a finite sequence of symbols taken from an alphabet. For example,
- **011010**, 00,**11**,01,**10**,1,0 are strings from binary alphabet { **0,1**} asdfg A string of lower case English alphabet.
- **10+5×3÷6** − string of digits and mathematical operator symbols from alphabet $\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,×,÷\}$

The *length* of a string w, denoted by |w|, is the no of symbols in w.

```
• e.g. w=010010 , u=10+5\times 3\div 6
```

- |w| = 6/u| = 8
- ♦ *Empty string*: It is a string consisting of zero occurrences of symbols from an alphabet. i.e. the empty string has length zero. It is denoted by \in so length $|\in|=0$.
 - <u>So</u> empty string is a string obtained from the symbols of any alphabets.

Power of an Alphabet: The set of all strings of a certain length say k, from an alphabet is the kth power of that alphabet.

i.e.
$$\Sigma^{k} = \{ w \mid | w | = k \}$$

- e.g. Let $\Sigma = \{0,1\}$, then,
- $\bullet \sum_{i=0}^{\infty} = \{ \in \}$
- $\Sigma^1 = \{0,1\}$
- $\Sigma^2 = \{00,01,10,11\}$
- $\Sigma^3 = \{000,001,\dots,111\}$ and so on.

igoplus Kleene Closure: The set of all strings(strings with any length) over an alphabet Σ , denoted by Σ^* is called *Kleene closure* of Σ . i.e. *Kleene Closure* is set of all strings over alphabet Σ with length 0 or more. Mathematically we can write,

•
$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots$$
 An Infinite set

- $igoplus {\it Positive closure:}$ The set of all strings from an alphabet Σ. except empty string is called positive closure of Σ. and denoted by Σ^+
- i.e.
 - $\Sigma^+ = \Sigma^* \Sigma^0 = \Sigma^1 \cup \Sigma^2 \cup \dots$ An Infinite set of strings from Σ except empty string

Suffix of string: A string s is called a suffix of string w if it is obtained by removing zero or

more leading symbols in w.

```
e.g. w = a\beta y\delta; s = \beta y\delta, is a suffix of w.
```

Let w = apple, then all suffix of w are (apple, pple, ple, le, e, ϵ

- s is proper suffix since $s \neq w$.
- Prefix of a string: The string s is called a prefix of string w if it is obtained by removing zero or more trailing symbol from w.

```
e.g. s = a\beta\gamma\delta, s = a\beta\gamma, is a prefix of w.
```

Let w = apple, then all prefix of w are { apple, appl, app, ap,a, ϵ)

- s is proper prefix since $s \neq w$.
- Look above in both suffix and prefix example, ε is both suffix and prefix of any string.

- ♦ **Substring:** The string s is called a <u>substring</u> of w if it is obtained by removing zero or more leading or trailing symbols from w. It is proper substring if $s \neq w$.
- \bullet e. g. w = abcdefgh, Here the strings ab, bc, cdef, fgh are the substrings of w.
- ♦ Let w = patan

The Valid Substrings:

- All prefixes and suffixes of the strings
- More like ata, at, ta
- Not valid substrings: pn, aa, pt, aan ,pan etc

♦ <u>Language</u>: A language L over an alphabet Σ is a subset of the set of all strings that can be formed out of Σ. i.e. A language is the subset of *Kleene closure* over an alphabet Σ. i.e. $L⊆Σ^*$.

Formally, L={w | something about w}

- \bullet A language may be empty: $L = \varphi$.
- ◆ The language $L_1 = \{ \in \}$ is not an empty language since it contains one string \in . So L is empty but L_1 is a language of empty string.
- \bullet A sting over an alphabet Σ is any string $w \in \Sigma^*$.
- $\bullet \Sigma^*$ is the language over Σ consisting of all stings.
- \bullet Any string that can be made from alphabet Σ is in Σ^*

Some examples of language:

- ◆ English Language is a language from finite set of {A..Z, a..z} alphabet which consists of the collection of legal English words(strings) from its alphabet.
- ◆ A programming language like C consists of legal C strings from its alphabet(ASSCI character set)
- Set of all strings over $\Sigma = \{0,1\}$ with equal no of $0^{ls}\&1^{s}$. L= $\{\in,01,0011,10,1100,0101,1010,....$
- \diamond φ , the empty language, is a language over any alphabet.
- ◆ {∈} is the language consisting of only empty string and also a language from any alphabet.
- ♦ Set of all strings over binary alphabet with length of each exactly 2 is $\{00,01,10,11\}$ Formally, $L = \{w \mid w \in \{0,1\}^* \text{ and } |w|=2 \}$
- Set of all strings over binary alphabet with length at most 2 is { ε, 0, 1, 00,01,10,11} Formally L={w|w is in {0,1}* and |w|<=2},

- ◆ **Problem**: A problem in automata theory is the question of deciding whether a given string is a member of some particular language.
- lacktriangle In other words, if Σ is an alphabet and L is a language over Σ , then problem is.
 - Given a string w in Σ^* , decide whether or not w is in L.

Types of Problems

Decision Problem

 When the answer are simply Yes(Accept) or No(Reject) then such problem is decision problem. E.g S={a,e,i,o,u}, Is x a member of S?

Search Problem

 A solution algorithm must search for the correct structure to return. The return value by the algorithm may be single or structured. e.g. Searching text in web

Optimization Problem

 When the return value optimizes some objective function, such problem is optimization problem. e.g. finding shortest path in graph rather than any path

Enumeration Problem

 When the answer is list of all satisfactory structures, it is called enumeration problem. e.g. return all paths from A to B

Counting Problem

When the result is the count of such structures rather than a list, we called it counting problem. E. g. return no of possible paths from A to B.

Thank You