Dependence (Objectives)

- To understand the concept of data dependences as applied to array variables
- > To understand dependence in relation to loops
- To understand distance and direction vectors and how they describe a dependence

Dependence Definition

- Models memory access behavior of array references
- Ensures program correctness for transformations
- Quantify memory behavior of loops
- ➤ Given two references R1 and R2, R2 depends on R1 (or there is a dependence from R1 to R2) if
 - both references access the same memory location (and at least one of them stores to it)
 - there is a feasible run-time execution path from R1 to R2

Dependence Types

True Dependence: the first reference stores into a location that is later read by the second reference $(R1 \ \delta R2)$

$$A(I) = \dots R1$$

\tag{R2}

ightharpoonup Antidependence: the first reference reads from a location into which the second reference later stores (R1 δ⁻¹ R2)

$$... = A(I) R1$$

$$A(I) = ... R2$$

Dependence Types

> Ouput Dependence: the both references store into a location ($R1 \delta^{0} R2$)

$$A(I) = ...$$
 R1
 $A(I) = ...$ R2

Input dependence (not a real dependence, used for analysis only): the both references reads from a location ($R1 \delta^i R2$)

$$... = A(I) R1$$

$$... = A(I) R2$$

Dependence and Loops

- Iteration vector: a vector of values for the loop control (induction) variables
 - one entry per variable
 - indexed from outermost to innermost
- The set of all iteration vectors for a loop is called the *iteration space*

when I = 1, J = 4, and K = 7 the iteration vector is <1,4,7>

Distance Vectors

- Using iteration vectors we can describe the distance and direction between two references
 - how far apart?
 - legality
- **Distance Vector**: If two iteration vectors **i** and **j** represent the execution of two references that are contained in *n* common loops, then the *distance vector* (or distance between the references) is defined as a vector of length *n* such that
 - $d(i,j)_k = j_k i_k$, 1 <= k <= n

Example Distance Vector

The distance vector between the reference of A(1,1,1) on iteration <1,1,1> and the reference of A(3,5,4) on iteration <3,5,4> is <2,4,3>

Dependence Distance Vector

Suppose that there is a dependence from reference R1 on iteration \mathbf{i} of a loop nest to reference R2 on iteration \mathbf{j} of the loop nest, then the *dependence distance vector* is d(i,j)

DO I = 1, 100
DO J = 1, 100

$$A(I,J) = A(I-3, J-1)$$

A(2,2) is accessed by A(I,J) on iteration <2,2> A(2,2) is accessed by A(I-3,J-1) on iteration <5,3> The distance vector is <3,1>

Direction Vector

Direction Vector: if two iteration vectors **i** and **j** represent the execution of two reference that are contained in *n* common loops, then the direction vector is defined as a vector of length *n* such that

$$D(i,j)_{k} = \begin{cases} "<" & if & d(i,j)_{k} > 0 \\ "=" & if & d(i,j)_{k} = 0 \\ ">" & if & d(i,j)_{k} < 0 \end{cases}$$

Example

A(2,2) is accessed by A(I,J) on iteration <2,2>. A(2,2) is also accessed by A(I-3,J-1) on iteration <5,3>. The direction vector is (<,<)

Why Direction Vectors?

> If a dependence cannot be characterized with a single distance vector, we can summarize the dependences with a direction vector.

DO
$$I = 1$$
, N

$$A[I] = A[2*I]$$
ENDDO

This dependence has no single distance vector. It has distances of 1,
 2, ... Therefore, it is described with a direction vector (<)

Legal Vectors

There cannot be a ``>" in the outermost entry of a direction vector (negative value in a distance vector) by definition. This implies a dependence in the opposite direction.

DO I = 1, N
$$A[I] = A[I+1]$$

$$(>)$$
ENDDO

Summarized Vectors

More than one direction vector can be summarized as \leq , \geq , \neq , *

DO I = 1, N
$$A(2*I-1) = ...$$
= A(I)
ENDDO (\leq)

Loop Independent Dependence

- A dependence from R1 to R2 is *loop independent* iff there exists two iteration vectors **i** and **j** such that the following two conditions hold:
 - reference R1 refers to memory location M on iteration \mathbf{i} ; R2 refers to M on iteration \mathbf{j} ; and d(i,j) = <0,...,0>
 - There is a control flow path from *R*1 to *R*2 within one iteration

DO
$$I=1,N$$

$$A(I) = ...$$

$$... = A(I)$$
ENDDO

Loop Carried Dependence

- A dependence from R1 to R2 is *loop carried* iff there exists two iteration vectors **i** and **j** such that the following two conditions hold:
 - reference R1 refers to memory location M on iteration i; R2 referes to M on iteration j; and
 - $d(i,j)_k > 0$ for some k
 - $d(i,j)_l = 0$ for all l < k (k is the outermost non-zero entry)
 - There is a control flow path from *R*1 to *R*2
- The *level* of a loop-carried dependence is the index of the outermost non-``=" in D(i,j) (0 in d(i,j))

Loop Carried Dependence: example

In the following example *J* is the carrier of the dependence and it is said to be carried at level 2.

Problem

Determine all of the dependences in the following loop. Give the distance and direction vectors for each dependence.

```
DO J = 2, N

DO I = 2, N

A(I,J) = 0.175*(A(I-1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1)) + O.3*A(I,J)

ENDDO

ENDDO
```