Funktionentheorie

Wintersemester 2017/18

Übungsserie 5

1. Gibt es eine um $z_0 = 0$ holomorphe Funktion f, so daß für fast alle $n \in \mathbb{N}$ gilt:

(a)
$$f(\frac{1}{n}) := (-1)^n \frac{1}{n}$$
, (b) $f(\frac{1}{n}) := (n^2 - 1)^{-1}$,

(b)
$$f(\frac{1}{n}) := (n^2 - 1)^{-1}$$
,

(c)
$$|f^{(n)}(0)| \ge (n!)^2$$
, (d) $f(\frac{1}{n}) \le e^{-n}$?

$$(d) \quad f(\frac{1}{n}) \le e^{-n} ?$$

2. Entwickeln Sie die folgenden Funktionen in eine Potenzreihe um die angegebenen Punkte $z_0 \in \mathbb{C}$:

$$(a) f(z) := e^z \quad \text{um} \quad z_0 = i\pi,$$

$$(a) \ f(z) := e^z \quad \text{um} \quad z_0 = i\pi \,, \qquad (b) \ f(z) := \frac{1}{(z-i)^3} \quad \text{um} \quad z_0 = -i \,.$$

3. Bestimmen Sie jeweils das Maximum von |f| auf $\Omega := \{z \in \mathbb{C} : |z| \le 1\}$:

$$(a) f(z) := e^z,$$

(a)
$$f(z) := e^z$$
, (b) $f(z) := \frac{z+3}{z-3}$,

(c)
$$f(z) := z^2 + z + 1$$
, (d) $f(z) := 3 - |z|^2$.

(d)
$$f(z) := 3 - |z|^2$$

4. Geben Sie den Wertevorrat von |f| an und untersuchen Sie diese Funktion auf Beschränktheit:

(a)
$$\frac{z^2+4}{z^2}$$
 in $0 < |z| < 1$,

(a)
$$\frac{z^2+4}{z^2}$$
 in $0 < |z| < 1$, (b) $\frac{z^3+2z^2+z+2}{z+2}$ in $|z| < 3$, $z \neq -2$.

5. Seien R>0 und $f,g:\overline{K_R(0)}\to\mathbb{C}$ stetige Funktionen, welche in $K_R(0)$ holomorph sind und deren Beträge auf dem Rand übereinstimmen, d.h.

$$|f(z)| = |g(z)|, |z| = R.$$

Man zeige: haben f und g keine Nullstellen in $\overline{K_R(0)}$, dann gibt es eine Konstante $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ und $f = \lambda g$.