Partie 1

Le Systeme de Gestion de Base de Données

Figure 1 - SGBD

- 1. Commenter le schéma suivant afin de dégager une définition de ce qu'est un SGBD.
- 2. Citer quelques différences avec le simple partage d'un fichier de type tableur.

Partie 2

Recherche d'un schéma relationnel

2.1 Données en table

Avec un tableau simple, comme ceux manipulés par un tableur, on peut avoir la représentation suivante pour ce que l'on appelle une **relation** (Une RELATION = une TABLE) :

	titre	date	nom	prenom ar	nee_naissa	nce
Hana-bi			1997	Kitano	Takeshi	1947
Big fish			2003	Burton	Tim	1958
Edward aux m	ains d'	argent	1990	Burton	Tim	1958
Sonatine			1993	Kitano	Takeshi	1947
Pulp Fiction			1995	Tarantino	Quentin	1963
Play Time			1967	Tati	Jacques	1907
Vertigo			1958	Hitchcock	Alfred	1898
Psychose			1960	Hitchcock	Alfred	1898
Parle avec elle			2002	Almodovar	Pedro	1949
Mon oncle			1958	Tati	Jacques	1907
Volver			2006	Almodovar	Pedro	1949
Reservoir Dog	S		1992	Tarantino	Quentin	1963
Alive			2003	Kitamura	Ryûhei	
Godzilla : Fina	l Wars		2004	Kitamura	Ryûhei	

Cette table possède un *en-tête*, constitué d'attributs. Les valeurs d'un attribut appartiennent à un même domaine (un même type)

- 1. Précisez quels sont ces attributs
- 2. La table contient des n-uplets, comme par exemple: Hana-bi, 1997, Kitano, Takeshi, 1947. Combien de *n-uplets* contient cette table.
- 3. Compléter le tableau

Vocabulaire employé dans le domaine des bases de données

Voici l'ensemble des mots utilisés, avec leur correspondance

Terme de la représentation par table
Table
ligne
Nom de colonne
Cellule
Туре

Anomalies dans la table 2.3

Questions : La table donnée plus haut est utilisée pour tenir à jour les prêt de DVD au CDI du lycée.

Q1.a On voudrait insérer les lignes suivantes dans la table. Laquelle de ces lignes ne devrait pas être ajoutée?

```
ligne 1
(Alive, 2003, Kitamura, Ryûhei, )
ligne 2
(Alive, 2004, Berthe, Frederic, 1967)
```

- Q1.b Une fois que vous avez ajouté mis à jour votre base de données, un élève vous rapporte le DVD-Blue Ray du film Alive. Quelques jours plus tard, il vous demande quelle est la filmographie du réalisateur, car il a bien aimé ce film. Vous faites une recherche. Mais vous ne pouvez pas le renseigner précisemment. Pourquoi?
- Q1.c L'élève vous demande l'année de naissance du réalisateur Japonais qui a réalisé le film Alive. Pouvezvous lui repondre?
- Q2. Une erreur s'est glissée dans le tableau : Alfred Hitchcock est né en 1899 et non 1898. Vous le corrigez dans la ligne Vertigo. Est-ce que la table est complètement mise à jour?
- Q3. Vous supprimez les lignes de Volver et Parle avec elle. Pouvez vous alors retrouver la date de naissance de Pedro Almodovar?
- Q4. Dans chaque cas, vous avez mis en evidence un problème dans la structure de la base de données. Préciser s'il s'agit d'une * anomalie d'insertion * anomalie de modification * anomalie de suppression * un problème de redondance d'informations
- Q5. Expliquer en quoi cette table présente des redondances d'informations
- Q6. Quelle est la solution pour ne plus avoir ces problèmes?
- Règles importantes pour la création et la modification d'une base de données :

Pour eviter les anomalies d'insertion :

• chaque entrée (n-uplet) du tableau doit renseigner TOUS les attributs, et respecter bien le domaine de

cet attribut (DOMAINE = TYPE)

• la table ne contient pas deux n-uplets identiques.

Les problèmes de redondance sont responsables des anomalies suivantes :

Anomalie de modification : * Une modification sur une ligne peut nécessiter des modifications sur d'autres lignes.

Anomalie de suppression : * Certaines informations dépendent de l'existence d'autres informations

2.5 Corriger les problèmes

On va adopter un schéma relationnel avec plusieurs tables.

La base de données doit :

- 1. être capable de représenter individuellement les films et les réalisateurs, de manière à ce qu'une action sur l'un n'entraîne pas systématiquement une action sur l'autre,
- 2. définir une méthode d'identification d'un film ou d'un réalisateur, qui permette d'assurer que la même information est représentée une seule fois. On utilisera pour chaque table une **clé primaire**.
- 3. préserver le lien entre les films et les réalisateurs mais sans introduire de redondance.

2.5.1 Première proposition

On sépare les données en 2 tables. On placera un index numérique à la première colonne, qui fournira un identifiant unique.

Films

	id_film titre date id_	rea
0	Hana-bi	1997
1	Big fish	2003
2	Edward aux mains d'argent	1990
3	Sonatine	1993
4	Pulp Fiction	1995
5	Play Time	1967
6	Vertigo	1958
7	Psychose	196
8	Parle avec elle	2002
9	Mon oncle	1958
10	Volver	2006
11	Reservoir Dogs	1992
12	Alive	2003
13	Godzilla : Final Wars	

Réalisateur:

	id_rea	nom	prenom	anı	nee_na	aissance
0	Ki	tano	Takes	hi	1947	
1	Bu	ırton	Tim		1958	
2	Ta	rantino	Quen	tin	1963	
3	Ta	ti	Jacqu	es	1907	

	id_rea	nom	prenom	annee_naissance
4	H	itchcock	Alfred	1899
5	Al	lmodova	ar Pedro	1949
5	Ki	itamura	Ryûhe	i 1969

A faire : Compléter la première table avec les valeurs correspondantes pour id_rea.

- Q4. L'association entre les informations des 2 tables est-elle toujours aussi explicite qu'avec une seule table?
- Q5. Vérifier enfin que la base de données produite ne présente plus aucune des anomalies citées plus haut.

2.5.2 Deuxième proposition

Films

	id_film titre date	
0	Hana-bi	1997
1	Big fish	2003
2	Edward aux mains d'argent	1990
3	Sonatine	1993
4	Pulp Fiction	1995
5	Play Time	1967
6	Vertigo	1958
7	Psychose	1960
8	Parle avec elle	2002
9	Mon oncle	1958
10	Volver	2006
11	Reservoir Dogs	1992
12	Alive	2003
13	Godzilla : Final Wars	

Réalisateur :

	id_rea nom	prenom	annee_naissance
0	Kitano	Takesh	i 1947
1	Burton	Tim	1958
2	Tarantino	Quenti	n 1963
3	Tati	Jacques	1907
4	Hitchcock	x Alfred	1899
5	Almodova	ar Pedro	1949
6	Kitamura	Ryûhei	1969

L'association entre ces 2 tables est assurée par une nouvelle table *FilmsRéalisés* : *FilmsRéalisés* (à compléter)

id_film	idMES
0	
1	
2	

id_film	idMES
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Ces deux descriptions suivent le modèle *entité-association*. Mais la manière avec laquelle cette association est représentée est différente.

Q6. Expliquer quelle est cette différence.

Partie 3 Exercices

3.1 Ex 1 : Attributs et domaines

En base de données, les domaines (equivaut à type) sont les suivants :

- INT ou INTEGER : un entier
- FLOAT(x) : un nombre décimal avec x définissant la précision (nombre de bits de codage de la mantisse)
- REAL est un synonyme standard de FLOAT(24)
- CHAR(n) : chaine d'au plus n caractères
- VARCHAR(n)
- DATE une date

 ${\bf Questions}:$

- Faire un tableau en précisant quels sont les *types* équivalents en python.
- S'agit-il de types construits?
- Conclure : les valeurs d'une table sont des types simples/construits?

3.2 Ex 2 : Entité

On désigne par *entité* est tout objet identifiable et pertinent, possédant des caractéristiques (les attributs). *Relation FILMS*

	id	titre	realisateur	ann_sortie	note_su	r_10
1	Alien, le h	uitièm	e passager	Scott	1979	10
2	Dune			Lynch	1985	5
3	2001 : l'od	yssée d	e l'espace	Kubrick	1968	9
4	Blade Run	ner		Scott	1982	10

- 1. Pour la relation FILMS ci-dessus, y-a-t-il une ou plusieurs entités?
- 2. créez une relation REALISATEURS (attributs de la relation REALISATEURS : id, nom, prenom et ann_naissance)
- 3. Modifiez ensuite la relation FILMS afin d'établir un lien entre les relations FILMS et REALISATEURS. Ajouter pour cela un attribut dans la relation FILMS qui créé une association vers celle REALISATEURS
- 4. Comment nomme t-on cet attribut?

Le schéma d'une relation est donnée sous forme d'un ensemble de tuples :

$$S = ((A_1, domaine_1, (A_2, domaine_2)...(A_n, domaine_n))$$

les A_i sont les attributs.

4. Donner le schéma de chaque relation

Un schéma relationnel est un diagramme. On y représente les noms des relations, les attributs, leur domaine, les clés primaires soulignées et les clés étrangères précédées d'un # dans des tableaux, puis faire une flèche pour indiquer de quelle table la clé étrangère est la clé primaire.

- 4. Vous donnerez le schéma relationnel de cette base de données.
- 5. Proposez un nouveau schéma relationnel à 3 tables.

3.3 Ex 3 : gestion d'un parc immobilier

Pour la gestion d'un parc immobilier, les 3 entités peuvent être :

- les propriétaires
- · les locataires
- les appartements

Les attributs de l'entité appartement d'une résidence pourraient être :

- pieces : entier int
- loyer : nombre flottant real
- bâtiment : chaine de caractères char(100)
- 1. Citer d'autres attributs possibles pour cette entité.

Une valeur, associée à un attribut doit avoir la forme la plus atomique possible (une seule donnée).

2. Adresse, peut-il constituer un attribut valable pour l'entité appartement? Pourquoi?

Il y a un **lien** représenté par le verbe *habiter* entre l'entité *locataire* et l'entité *appartement*. Et un lien représenté par le verbe *posséder* entre l'entité *propriétaire* et l'entité *appartement*.

3. Pour le lien *habiter*, un locataire ne peut habiter plusieurs appartements : s'agit-il d'une association binaire fonctionnelle?

Aide : il y a une relation binaire fonctionnelle de A vers B si on a la proposition logique A => B pour tout élément de A.

- 4. Pour le lien entre propriétaires et appartements : Un propriétaire peut posséder plusieurs appartements. S'agit-il d'une association binaire fonctionnelle?
- Le schéma de la relation *Proprietaires* est ((id_proprio, int), (nom, char(100)), (prenom, char(100)))
- Pour la relation Locataires : ((id_locataire, int), (id_appart, int))
- La relation Appartement : ((id_appart, int), (batiment, char(100)), (id_locataire, int))
- le schéma relation de la base de données comporte celui des relations Proprietaires, Locataire, Appartement, ProprioAppart.
- 5. Quelles sont les clés primaires pour chacune de ces relations.

L'association *habiter* est représentée par une clé étrangère dans la relation *Locataire*, et l'association *posséder* par la relation *ProprioAppart*. Expliquer pourquoi on a fait ces choix.

- 6. Donner le schéma de la relation *ProprioAppart*, puis donner le schéma relationnel de cette base de données.
- 3.4 Ex 4 : Un exemple de schéma relationnel avec une sandwicherie

Une sandwicherie effectuant des livraisons à domicile dispose d'une base de données dont certains extraits sont reproduits ici :

Sandwichs

Nom_sandwich	Prix
Cheeseburger	3,90
Double cheese	4,90
Italien	4,90
Foie gras	15,00

Clients

	Nom	Prenom	Adresse	Numero_clie	nt
Bernard	Alain	9, rue Bienvenu, 13008 Marseille		42	
Bernard	Bernard Yves		e la Joie, 13	3400 Aubagne	51

	Numero_client	Nom_Sandw	ich	Quantité	Numero_	commande	Date
42	It	alien	2	12	2452	20)19-12-11
42	F	oie gras	1	12	2452	20)19-12-11
51	C	Cheeseburger	4	13	3301	20	019-12-23

- 1. Une commande peut-elle comporter plusieurs sandwichs de types différents?
- 2. Quel est le schéma de la table Sandwichs? Celui de la table Clients? Celui de la table Commandes?
- 3. La table Sandwichs comporte-t-elle un attribut qui est clé primaire? Un attribut qui est clé étrangère?
- 4. Répondre aux mêmes questions pour la table *Clients* et pour la table *Commandes*. En l'absence d'un attribut clé primaire, un couple ou un triplet d'attributs peut-il jouer ce rôle?
- 5. Cette base de données semble t-elle bien modélisée? Si ce n'est pas le cas, proposer des modifications.

Partie 4

TP Base de LibreOffice

Base de données sur FILMS et REALISATEURS

Questions : Quelles requêtes SQL permettent d'afficher :

- 1. toute la table films
- 2. tous les attributs du film dont le réalisateur est le n°1
- 3. le titre du film, le nom et prenom du realisateur pour id_rea egal à 2 et date > 1993
- 4. tous les titres des films sortis après 1970 mais avant 2002
- 5. tous les noms des auteurs de films qui ont sorti des films après 1960, mais pas Jacques Tati.