Analysis of observational data, to calculate the Delayed-Tau model parameters

 Δ Π

П Е

```
• A
              & \mathbf{E} : \Pi
                                                             \sum
     T delayed -model
   • П
              & A
     П
                                      redshift
Η
                                                                                \Sigma . T
                "delayed -model"
                                                                                 . O Pavel
Kroupa (2023) [@haslbauer2023]
        (star formation rate)
                     (time scale).
Η
                                         "delayed -model"
             . Ω ,
redshift)
                                   (z 2). E
```

Α

 \mathbf{H}

$${\bf O}$$
 (SFR = Star Formation Rate) .
$$\label{eq:sfr} \Sigma \qquad \qquad (M_{\odot} \cdot yr^{-1})$$

E SFR

- P H
- P (FUV)
- P (IR)

E , , /

,

- P (FUV): E () , (B, ~100 Myr), H . E . (wavelength: ~1300–2000 Å).
- P (IR): Υ , . A (wavelength: ~8–1000 m).

N Hubble

• N Hubble:

$$-$$
 O
$$-$$
 V = $H_0 \times d, \qquad H_0 \approx 69.8 \ \rm km/s/Mpc$. Hubble.

• E (Redshift):

Lilly-Madau Plot

Figure 1: @madauCosmicStarFormation2014

Delayed- τ model

$$SFR_{del} = A_{del} \frac{t_{sf}}{\tau^2} e^{-\frac{t_{sf}}{\tau}} \; \left[\frac{M_{\odot}}{yr} \right], \; t_{sf} = T_{\rm universe} - t_{\rm start}$$

$$\int_0^{t_{sf}} SFR(t)dt = M_*$$

• T delayed- τ model (SFRs)

- (SFH) ,
- Speagle et al. (2014): [@speagle2014] $\ensuremath{\mathrm{T}}$ SFH

Δ

 Γ Local Cosmological Volume

• $D \le 10 \text{ Mpc}$

Redshift: $z=0 \rightarrow t_{sf} = 13.8 - t_{\rm start}$

Γ

$$\begin{array}{ccc} - \ \mathrm{SFR} & \ \mathrm{H} \ , \ \mathrm{FUV} & \ \mathrm{IR} \\ - \ \mathrm{A} \end{array}$$

Table Number of galaxies UNGC 1321 HECATE2901 Join $\mathbf{3934}$

П

$$(A_{del}, \ \tau),$$

$$2 \hspace{1cm} (A_{del}, \ \tau), \hspace{1cm} t_{sf} = 13.6 \ \mathrm{Gyr} \hspace{1cm} .$$

Λ

- Python fsolve

Θ

fsolve Η

au

SciPy

Powell,

Newton-Raphson

Υ

• **П M** :

$$\begin{array}{l} - \ \mathrm{E} \\ - \ t_{sf} = 13.6 \, \mathrm{Gyr}, \end{array}$$

 t_{sf}

Markov Chain Monte Carlo

 Υ 3

$$3 \qquad \qquad (A_{del}, \ \tau, t_{sf}), \qquad \qquad t_{sf} = 13.6 \ \mathrm{Gyr} \qquad . \label{eq:tsf}$$

$$t_{sf} = 13.6 \text{ Gyr}$$

• M

A Markov: Σ

 Δ Monte Carlo: X .

 Σ MCMC: Δ Markov .