MPhil ACS/CSTPMtIII 2016 Module L108

CATEGORY THEORY & LOGIC

Andrew. Pitts Och. Cam. ac. wk

What is Category theory?

What we are probably seeking is a "porrer" view of functions: a tracony of functions in themselves, not a theory of functions derived from sets. What, then, is a pare theory of functions? Answer: category theory

Dana Scott, Relating theories of the 1-calculus, p 406

What is Category theory?

SET THEORY gives an element-oriented account of mathematical structure

whereas CATEGORY THEORY takes a function-oriented view: understand structures not via their elements, but by how they transform, i.e. via morphisms'

(Both are part of LOGIC, broadly construed.)

GENERAL THEORY OF NATURAL EQUIVALENCES

BY

SAMUEL EILENBERG AND SAUNDERS MACLANE

CONTENTS

	Page
Introduction	231
I. Categories and functors	
1. Definition of categories	237
2. Examples of categories	239
3. Functors in two arguments	
4. Examples of functors	242
5. Slicing of functors	245
6. Foundations	246
II. Natural equivalence of functors	248
7. Transformations of functors	
8. Categories of functors	250
9. Composition of functors	250
10. Examples of transformations	251
11. Groups as categories	256
12. Construction of functors by transformations	257
13. Combination of the arguments of functors	258
III. Functors and groups	260
14. Subfunctors	
15. Quotient functors	
16. Examples of subfunctors	263
17. The isomorphism theorems	265
18. Direct products of functors	267
19. Characters	270
IV. Partially ordered sets and projective limits	
20. Quasi-ordered sets	
21. Direct systems as functors	273
22. Inverse systems as functors	276
23. The categories Dir and Snv	
24. The lifting principle	
25. Functors which commute with limits	281
V. Applications to topology	283
26. Complexes	283
27. Homology and cohomology groups	
28. Duality	
29. Universal coefficient theorems	
30. Čech homology groups	
31. Miscellaneous remarks	
Appendix. Representations of categories	
도 기를 드통했다. : : : : : : : : : : : : : : : : : : :	120000000

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its "dual"

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.

Category Theory emerges

1945 Eilenberg & MacLarnet, "General Theory of Natural Equivalences", Trans AMS 58,231-294. Algebraic topology, abstract algebra 50s Grothendieck algebraic geometry 605 Lawrere logic & joundations tos Joyal & lierney topos theory 80s Dana Scott Lambek Semantics linguistics 1.5

Category Theory & Computer Science

"Category Theory has... become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process Calculi to Type Theory."

> Dagstuhl Perspectives Workshop on Categorical Methods at the Crossroads, April 2014

his Course

CT pasic concepts and transformation category

applied to f equational logic
first order logic

Definition

A Category C is specified by

- · a collection Obj C of C-objects X, Y, Z,...
- for each $X,Y \in ObjC$, a collection C(X,Y) of C-morphisms from X to Y
- an operation assigning to each $X \in Obj C$, an identity morphism $id_X \in \mathbb{C}(X,X)$
- an operation assigning to each $f \in C(X,Y) &$ $g \in C(Y,Z)$ a composition $g \circ f \in C(X,Z)$ Satisfying ...

Definition, Cont. Satisfying...

Associativity: for all $f \in C(x, y)$, $g \in C(y, z)$ & $h \in C(z, w)$

Unity: for all $f \in \mathbb{C}(X_1 Y)$ $id_Y \circ f = f = f \circ id_X$

$$id_{Y} \circ f = f = f \circ id_{X}$$

- Obj Set = some fixed universe of sets
- Set(X_1Y) =

 { $f \subseteq X_XY \mid f \text{ is single-valued a total}}$

cartesian product consists of all ordered pairs
$$(x_1y)$$
 with $x \in X \otimes y \in Y$ $(x_1y) = (x_1',y') (\Longrightarrow) x = x' \wedge y = y'$

- Obj Set = some fixed universe of sets
- Set(X_1Y) =

 { $f \subseteq X \times Y \mid f \text{ is single-valued & total}}$

Single-valued:

 $(\forall x \in X)(\forall y \in Y)(x,y) \in f \land (x,y') \in f \Rightarrow y = y'$

total:

(YzeX)(ZyeY) (xiy) ef

- Obj Set = some fixed universe of sets
- Set(X,Y) =

 { $f \subseteq X \times Y \mid f \text{ is single-valued & total}$ }

 $id_{x} \triangleq \{(x,x) \mid x \in X\}$
 - Composition of $f \in Set(X,Y) & g \in Set(Y,Z)$ is $g \in Set(Y,Z) = g \circ f = f(x,Z) | (\exists y \in Y) (x,y) \in f \land (y,Z) \in g$

[Check associativity & unity properties hold.]

Notation:

given
$$f \in Set(X,Y)$$
 & $x \in X$
it's usual to write $f x$ (or $f(x)$)
for the unique $y \in Y$ with $(x,y) \in f$.
Thus
 $id_x x = x$
 $(g \circ f) x = g(f x)$

Definition

A Category C is specified by

- · a collection Obj C of C-objects X, Y, Z,...
- for each $X,Y \in ObjC$, a collection C(X,Y) of C-morphisms from X to Y
- an operation assigning to each $X \in Obj C$, an identity morphism $id_X \in \mathbb{C}(X,X)$
- an operation assigning to each $f \in C(X,Y) &$ $g \in C(Y,Z)$ a composition $g \circ f \in C(X,Z)$ Satisfying ...

Associated notation & terminology

 $f: X \rightarrow Y$ or $X \xrightarrow{f} Y$ means $f \in C(X,Y)$ Jin which case we say X 1s the domain of f Y is the codomain of f and write X = domf Y = cod f

(which category C we are referring to is left implicit)

Commutative diagrams in a category [are

directed graphs whose vertices are C-objects and whose edges are C-morphisms commontative Such that any two finite paths
between two vertices determine
equal morphisms under composition Examples of commutative diagrams

X + 9

Alternative notation

I'll often write C for Obj C id for id x Some people unite 1x for idx 9t for 90f fig, or fg for gof

Alternative definition of category The definition I gave is "dependent-type friendly") See [Awodey, Def 1.1] for an alternative (equivalent) formulation. One gives the whole collection of morphisms Mor C (equivalent to $\Sigma_{X,Y} \in Obj C C(X,Y)$ in our definition) plus operations dom, cod: Mort -> Obj C. Composition is a partial op Mor Cx Mort > More defined cut (f,g) iff cod f = dom g.