OTSDN What Is It and Why Do You Need It?

Jason Dearien
Schweitzer Engineering Laboratories, Inc.

Operational Technology Software-Defined Networking (OTSDN)

- The purpose of OTSDN
- How OTSDN works
- The benefits of OTSDN

Requirements of a Critical OT Network

- Determinism and low latency
- Precise time
- Fast fault detection, isolation, and recovery
- Cybersecurity
- Monitoring, self-testing, and alarming
- Maintainability and diagnostics
- Hardware rated for critical infrastructure

Message Delivery Performance Criteria Defined by International Standards

Standard	Performance	Latency	Speed	
IEC 61850	✓	✓	✓	
IEC 60834	✓	✓		
IEC 15802	✓	✓		
IEEE 802.1	✓	✓		

Message Delivery Quality Criteria Defined by International Standards

Standard	Dependability and Security	Availability	Reliability	
IEC 61850	✓	✓	√	
IEC 60834	✓	✓		
IEEE 802.1		✓		
IEC 60870			√	
IEEE 1613			√	

Signal Data Exchange Is Measured as Transfer Time

Application Latency Classes IEC / TR 61850-90-4 Network Engineering Guidelines

Transfer Time Class	Transfer Time (ms)	Application Example	
TT0	>1,000	Files, events, and log contents	
TT1	1,000	Events and alarms	
TT2	500	Operator commands	
TT3	100	Slow automatic interactions	
TT4	20	Fast automatic interactions	
TT5	10	Releases and status changes	
TT6	3	Trips and blockings	

Challenges of Traditional Ethernet Switching in an OT Environment

- Designed for plug and play
- Conveniently does things "we don't want"
- Reactive failover
- Topology-dependent performance
- Difficult to achieve 100 percent test coverage

Using IEC 62439-1 RSTA for Network Healing

Peer-to-peer RSTP informs RSTA

How OTSDN Works

- Uses standard SDN technology
- Focuses on solving critical infrastructure problems
 - Performance
 - Security
 - Resiliency
- Does not use typical data center dynamic SDN

True Traffic Engineering for Ethernet Standardized OpenFlow® Protocol

Traditional Ethernet Switch

Individual control plane and individual data plane

Ethernet Switch

Control Plane

Data Plane

SDN Switch

Centralized control plane and individual data plane

Centralized Control Plane

Ethernet Switch

Data Plane

Introducing SDN and OpenFlow

Application Layer OAM Applications Network Visualization Control Plane Configuration Programming Network Operating System OpenFlow Simple Packet-Simple Packet-Forwarding Hardware Forwarding Hardware **Data Plane** Simple Packet-Forwarding Hardware

How SDN Works

The data plane inspects each Ethernet packet and performs one or more of the following:

- Match fields. Matches flows based on the first four layers of the Ethernet packet
- Instructions. Performs one or more programmed actions
- Counters. Increments counters and sends counter data to a centralized point

Multilayer Matching Rules Allow Forwarding of Approved Packets

SDN Flow Match Rule

OpenFlow Match / Action Example L2 Unmanaged Switch

00:30:A7:06:11:97

OpenFlow Match / Action Example L3 Router

00:30:A7:06:13:29

OpenFlow Match / Action Example L4 Network Address Translation (NAT)

Traditional SDN vs. OTSDN Reactive vs. Static Flows

Traditional SDN uses reactive flows to dynamically respond and adapt to changes in the network and traffic, resulting in the following weaknesses

- Reduced security
- Uncertain network performance
- SDN controller performance bottlenecking

Reactive IT SDN in Operation

Traditional SDN vs. OTSDN Reactive vs. Static Flows

OTSDN uses static flows for proactive engineering of a known network configuration

- Static flows can be used because all traffic is known
- Networks never add or remove traffic or devices without an official change order
- New or unexpected traffic is dropped
- Network state and performance is always known and executes as designed

Proactive OTSDN in Operation

Design Traffic Paths Based on Requirements and Applications

Note: A flow controller is not required for network operation

Fast Failover SDN Rules

Rule	Switch	In Port	Ethertype	Destination IP	UDP Port	Action
А	S 3	7	IPv4	C2	*	2, 1
В	S1	1	*	*	*	2
С	S2	1, 2	IPv4	C2	*	7

The Benefits of OTSDN

- Based on SDN standards
- Broad topology support
- Fast failover
- Application-focused circuits
- Greater cybersecurity
- Greater network efficiency

Static Traffic Engineering Reduced Network Burden

- Only required traffic is allowed and only where needed
- Broadcast and multicast traffic do not unnecessarily burden end-devices or waste bandwidth
- Critical traffic paths are always kept open and ready

Traditional Gateway Architecture

OTSDN Cybersecurity at Every Network Hop

- Only allows required traffic and only where needed
 - No ARP cache poisoning
 - No broadcast storms
 - No BPDU attacks
- Hosts only see traffic for them and nothing else

No Traffic Injection From Unexpected Locations

- Locked down flows restrict what traffic is allowed on the network at every point
- Spoofing a device MAC / IP address will not work
- Packets that match allowed traffic cannot get onto the network unless they originate at the designed location
- Any attempt to spoof a device from an alternate location can be tracked and alarmed

Traditional Intrusion Detection System (IDS) External With Slow Action Response

SDN IDS Integrated With Fast Dynamic Response

Targeted IDS

- All necessary traffic is engineered to go where it was designed to go
- Any unmatched traffic can be discarded or sent to an IDS
- The IDS <u>only</u> sees the traffic that was not already engineered
 - The IDS is less burdened by not watching <u>all</u> traffic
 - More scrutiny can be given to unwanted traffic

Targeted Deep Packet Inspection (DPI) Focused DPI Processing Only Where Needed

- Individual flows from individual switches can easily be sent to a DPI processor
 - The DPI process can determine if the packets should be allowed on the network
 - If allowed, send it back to the OTSDN switch for further processing, otherwise drop / log
- Reduced burden on the DPI device by only processing the chosen stream of data

Conclusion

- OTSDN is standard technology, but it uses a different methodology
- Purpose-engineered networks allow deny-by-default cybersecurity at every hop in the network
- Easy DPI and IDS on selected flows
- Reduced network burden with enhanced security
- Controlled change management and network access

Questions?