Основания алгебраического подхода к синтезу корректных алгоритмов

Лектор — Рудаков К.В. Наборщик — Старожилец В.М.

Оглавление

1	Лекция 1	2
	Введение	2
	Поиск решения задачи	3
2	Лекция 2	4
	Алгебра, реляционная система и алгебраическая система	4
	Первичные свойства функции	
	О декартовом произведении множеств	
3	Лекция 3	7
	Свободное произведение	7
	Свободная сумма	7
4	Лекция 4	9
5	Лекция 5	10
	Введение в категории	10
	Дальнейшая формализация общей задачи	
6	Лекция 6	13
	Переход к категориям	13

Введение

Данные лекции рассматривают общую задачу машинного обучения без привязки к конкретным методам и основы алгебраического подхода к синтезу корректных алгоритмов для её решения. В некотором роде они являются взглядом сверху на задачи машинного обучения и методы их решения.

В первую очередь следует сформулировать задачу машинного обучения в общем виде. По сути это задача построения алгоритма, который реализует отображение из множества начальных информаций в множество конечных информаций. Сразу отметим, что в курсе рассматриваются только такие отображения, для которых существует реализующий их алгоритм.

Определение. Символом \mathfrak{I}_{i} (читается «И инишл») будем обозначать множество начальных информаций, например, симптомы болезни.

Определение. Символом $\mathfrak{I}_{\mathfrak{f}}$ (читается «И файнэл») будем обозначать множество конечных информаций, например, диагноз.

Таким образом, на формальном языке нам требуется найти такой алгоритм A, что он осуществляет отображение из множества начальных информаций \mathfrak{I}_{i} в множество конечных информаций \mathfrak{I}_{f} :

$$A: \mathfrak{I}_{\mathsf{i}} \to \mathfrak{I}_{\mathsf{f}}.$$

Пока что задача стоит так, что нам нужно найти некоторое произвольное отображение из одного множества в другое, реализуемое некоторым алгоритмом. При этом свойства этого отображения и алгоритма неважны. В такой постановке у нас нет каких-либо ограничений на искомый алгоритм: даже датчик случайных чисел является решением этой задачу. Поэтому вводятся дополнительные ограничения на допустимые алгоритмы. Итак,

Определение. Обозначим $\mathfrak{M}^* = \{A | A : \mathfrak{I}_i \to \mathfrak{I}_f\}$ множество всех алгоритмов, реализующих отображение из \mathfrak{I}_i в \mathfrak{I}_f .

Определение. Обозначим I_{str} структурную информацию, содержащую условия и требования, накладываемые на A.

Определение. Обозначим $\mathfrak{M}(I_{str}) \subset \mathfrak{M}^*$ некоторое подмножество \mathfrak{M}^* , удовлетворяющее I_{str} .

Теперь у нас есть дополнительная информация I_{str} , позволяющий накладывать дополнительные ограничения на нашу задачу. Введём определения допустимого отображения и корректного алгоритма.

Определение. Любое отображение из множества $\mathfrak{M}(I_{str})$ называется допустимым.

Определение. Задача Z заключается в построении алгоритма, реализующего допустимое отображение.

Определение. Любой алгоритм реализующий любое допустимое отображение называется корректным.

В такой формулировке необходимым и достаточным условием разрешимости задачи Z является выполнение выражения:

$$\mathfrak{M}(I_{str}) \neq \emptyset$$
,

а условием единственности решения — выполнение равенства:

$$|\mathfrak{M}(I_{str})|=1.$$

Заметим также, что в данной формулировке корректный алгоритм — это алгоритм, не допускающий ни одной ошибки, а множество $\mathfrak{M}(I_{str})$ — множество алгоритмов не допускающих ошибок. Однако можно поставить условия несколько мягче, и дать алгоритмам возможность ошибаться.

Поиск решения задачи

Пусть $\mathfrak{M}(\pi)$ — некоторое параметрическое семейство отображений. После того как мы выбрали некоторое семейство отображений $\mathfrak{M}(\pi)$, попытаемся попасть в $\mathfrak{M}(I_{str})$, взяв в $\mathfrak{M}(\pi)$ какое-нибудь отображение за начальное. Это возможно, если данные семейства пересекаются:

$$\mathfrak{M}(\pi) \cap \mathfrak{M}(I_{str}) \neq \emptyset$$
.

Но, с одной стороны, чем сложенее наше семейство, тем выше вероятность, что оно пересекается с семейством $\mathfrak{M}(I_{str})$, однако, с другой стороны, достижение этого пересечения может быть затратно, если $\mathfrak{M}(\pi)$ сложное. Также всегда остаётся вероятность, что множество $\mathfrak{M}(\pi)$ с $\mathfrak{M}(I_{str})$ не пересекается. Для поиска компромиссного решения используют идею расширения множества.

Определение. Пусть f — некоторая операция над множеством \mathfrak{M}^* . Тогда $f(\mathfrak{M}(\pi))$ будем называть расширением множества $\mathfrak{M}(\pi)$.

Таким образом, мы хотим расширить некоторое «простое» множество до пересечения с $\mathfrak{M}(I_{str})$. Однако, не любая функция f нам подходит, так как «простое» множество может расшириться до слишком «сложного» множества. Важно, что f мы выбираем сами, поэтому можем выбрать его так, чтобы искать нужный алгоритм было не слишком сложно.

Алгебра, реляционная система и алгебраическая система

Данная лекция посвящена вопросам терминологии, используемой в данном курсе. Поэтому тут будет очень много определений (ещё больше, чем в предыдущей). Для начала определим понятия алгебры, реляционной системы и алгебраической системы.

Определение. Сигнатура —набор характеристик, однозначно идентифицирующий объект.

Определение. Отношение — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. В нашем курсе будет обозначаться буквой R.

Определение. Алгеброй называется структура

$$\left(\begin{array}{cccc}
A & Op_1 & Op_2 & \dots & Op_k \\
& n_1 & n_2 & \dots & n_k
\end{array}\right)$$

 $\it rde\ A-$ множество, $\it Op_i-$ операции на этом множестве, $\it n_i-$ сигнатуры.

Определение. Реляционной системой называется структура

$$\left(\begin{array}{cccc} A & R_1 & R_2 & \dots & R_k \\ & n_1 & n_2 & \dots & n_k \end{array}\right)$$

где A — множество, R_i — отношения на этом множестве, n_i — сигнатуры.

Определение. Алгебраической системой называется структура

где A — множество, R_i — отношения на этом множестве, Op_i — операции на этом множестве, n_i — сигнатуры.

Первичные свойства функции

Теперь поговорим о функциях. Первичные свойства функций — это иньективность, сурьективность и биективность. Все остальные свойства требуют задать некоторую структуру на тех множествах, на которых они действуют (например, метрику). Пусть функция f действует из A в B. То есть:

$$\begin{cases} f: A \to B \\ f(A) \subseteq B \end{cases}$$

4

Определим также понятие отношения эквивалентности на множестве A:

Определение. Отношением эквивалентности π_f на множестве A называется бинарное отношение, которое обладает свойствами транзитивности, симметричности и рефлексивности.

Данное определение приводит нас к определению фактор-множества A_{π_f} и ядерной эквивалентности отображения f.

Определение. Фактор-множество A_{π_f} — это множество всех классов эквивалентности заданного множества A, по заданному отношению π_f .

Определение. Ядерная эквивалентность отображения f:

$$(a_1 \equiv a_2) \equiv (f(a_1) = f(a_2)),$$

где эквивалентность понимается в смысле π_f . Следует понимать, что мы выбираем π_f так, чтобы это свойство было выполнено. Это выполнено не для любого отношения эквивалентности.

Саня, тут надо как нибудь переписать... непонятно что откуда идет. Я так понимаю что мы π_f выбираем по f, но чёрт его знает.

Таким образом, мы можем, например, показать, что любое отображение из A в B раскладывается в суперпозицию суръекции, инъекции и биекции. Данный факт легко понять с помощью рисунка 2.1:

Рис. 2.1: Иллюстрация представления отображения f как суперпозиции суръекции, инъекции и биекции. f_S - суръективное отображение, f_{1-1} - биекция, f_i - инъекция

На данном рисунке изображены четыре множества: A, B, A_{π_f} —фактормножество, и f(A). Множество A суръективно отображается в свое фактормножество A_{π_f} , из-за ядерной эквивалентности отображения f, A_{π_f} биективно отображается в f(A). В свою очередь f(A) иньективно вкладывается в B как его подмножество.

О декартовом произведении множеств

Поговорим о декартовом произведении множеств и том, как его можно представить через другие операции с множествами. Итак, пусть есть множество индексов $\mathfrak{A} = \{\alpha\}$ и соответствующий этому множеству индексов набор множеств $\{A_{\alpha} | \alpha \in \mathfrak{A}\}$. Чему тогда равно

произведение $\prod_{\alpha \in \mathfrak{A}} A_{\alpha}$? По крайней мере оно не нулевое так как любое декартово произведение произвольного семейства непустых множеств в непустом количестве непусто (об этом свидетельствует теорема выбора). Оказывается, что

$$\prod_{\alpha \in \mathfrak{A}} A_{\alpha} = \{ f | f : \mathfrak{A} \to \bigcup_{\alpha \in \mathfrak{A}} A_{\alpha}, \forall \alpha \in \mathfrak{A} : f(\alpha) \in A_{\alpha} \}$$

Например, пусть

$$A_{\alpha} = A_{(x,y)} = \{(x',y') | \rho((x,y),(x',y')) \le 1\}$$

Тогда,

$$\prod_{\alpha \in \mathfrak{A}} A_{\alpha} = \{ f | f : R^2 \to R^2, \ \forall (x, y) : \rho((x, y), f((x, y))) \le 1 \}$$

Свободное произведение

Саня, Я вообще не уверен, что тут все правильно. Проверь меня, если сам понял хоть что-то в этой теме:). Надо ещё как то обосновать представление прямой суммы как специфического объединения. Я не понял почему оно так представляется. Очень может быть что я пропустил тут в определениях какое нибудь "для любого альфа мне самому не совсем понятно

Прежде чем вводить свободное произведение, вспомним о понятии гомоморфизма, играющего важную роль в свободном произведении.

Определение. Гомоморфизм - это отображение алгебраической системы A, сохраняющее основные операции и основные соотношения.

Определение (Свободное произведение). Пусть имеется $\{A_{\alpha} | \alpha \in \mathfrak{A}\}$ - некоторое множество алгебраических систем. Тогда, алгебраическая система B, порождённая системами A_{α} , так, что гомоморфизм $\varphi_{\alpha}: C \to A_{\alpha}$, где C - произвольная алгебраическая система, продолжается до гомоморфизма $f: C \to B$ называется свободным произведением и обозначается $\prod_{\alpha \in \mathfrak{A}}^* A_{\alpha}$.

Рис. 3.1: Иллюстракция к понятию свободного произведения

На рисунке 3.1 видно, как работает это определение. Мы берем произвольное C и его морфизм в произвольный A_{α} . Тогда, имея морфизм $\pi_{\alpha}: B \to A_{\alpha}$ мы автоматически задаём единственный морфизм из C в B. Вот в чём суть. Важное замечание состоит в том, что, возможно, лектор ошибся, и перепутал свободное произведение с свободной суммой, которая будет определена в дальнейшем.

Свободная сумма

Данное понятие очень похоже по сути на понятие свободной суммы. Вы сами увидите, что конструкции практически идентичны.

Определение (Свободная сумма). Пусть имеется $\{A_{\alpha} | \alpha \in \mathfrak{A}\}$ - некоторое множество алгебраических систем. Тогда, алгебраическая система B, порождённая системами A_{α} , так, что гомоморфизм $g_{\alpha}: A_{\alpha} \to C$, где C - произвольная алгебраическая система, продолжается до гомоморфизма $g: B \to C$ называется свободной суммой и обозначается $\sum_{\alpha \in \mathfrak{A}}^* A_{\alpha}$.

Рис. 3.2: Иллюстракция к понятию свободной суммы

На рисунке 3.2 видно, как работает это определение. Его принцип очень схож с принципом свободного произведения. И на самом деле - свободная сумма двойственна свободному произведению. На всякий случай напомним понятие двойственности из теории категорий:

Определение. Двойственность в теории категорий — соотношение между свойствами категории С и так называемыми двойственными свойствами двойственной категории С*. Взяв утверждение, касающееся категории С и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории С*. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.

Чем же является прямая сумма в более привычных терминах теории групп? На самом деле если множества A_{α} не пересекаются то это просто объединение. Если же они пересекаются, то это объединение, которое ставит в соответствие $N = \sum_{\alpha \in \mathfrak{A}} |A_{\alpha}|$ элементное множество. Например, пусть $A_{\alpha}^* = \{(a,\alpha) | | a \in A_{\alpha}\}$. Тогда $B = \bigcup A_{\alpha}^*$.

Кажется, тут меня не было

Введение в категории

Определение. Класс - это объект который не может быть элементом множества или другого класса, в остальном свойства класса и множества совпадают.

Определение. Будем обозначать $\mathfrak{C}_{ql}(\mathfrak{U})$ - пространство всех матриц над произвольным неодноэлементным множеством \mathfrak{U} . Заметим, что если \mathfrak{U} произвольные множества, то $\mathfrak{C}_{ql}(\mathfrak{U})$ это класс.

Определение (Категория). Это очень важное определение. Будем обозначать Ψ категорию. Тогда,

- $Ob\Psi$ $\kappa nacc$
- $\forall (A,B) \in Ob\Psi \to Homm_{\Psi}(A,B)$ множество. То есть любой паре элементов из $Ob\Psi$ ставится в соответствие множество отображений из A в B.

Таким образом категория это множество объектов и операций над ними.

Рассмотрим свойства категории Ψ .

1. Пусть есть 3 элемента $A, B, C \in \Psi$, причём Тогда $w = v \circ u$. Таким образом определе-

ны суперпозиции для морфизмов. Более того, $(u \circ v) \circ w = u \circ (v \circ w)$ для любых u, v, w для которых такая суперпозиция имеет смысл. А также существует единственный элемент e_A , такой, что

2. Ψ' подкатегория Ψ если:

• $Ob\Psi'$ - подкласс $Ob\Psi$

• $\forall A, B \in Ob\Psi' : Homm_{\Psi'} \subseteq Homm_{\Psi}(A, B)$

Причём, если во втором условии стоит равенство, то Ψ' - полная подкатегория категории Ψ .

Дальнейшая формализация общей задачи

Для начала введём несколько понятий, тут будут использоваться следующие сокращения: $ob = object, \ cl = class, \ i = initial, \ f = final.$ Приступим:

• $\Upsilon = \{S\}$

• $\mathfrak{D}_{ob}: \Upsilon \to \mathfrak{J}_{ob}$

• K_1, \ldots, K_l ; $K_j \subseteq \Upsilon$, $j = \overline{1, l}$. Мы рассматриваем задачу классификации и это - наши классы. Они являются элементами одного множества но сами могут быть различны.

• $\mathfrak{D}_{cl}: 2^{\Upsilon} \to \mathfrak{J}_{cl}$

Наша задача: $A: \mathfrak{J}_i \to \mathfrak{J}_f$. Её решение может быть формализовано в различных вариантах:

- 1. $\mathfrak{J}_i = \mathfrak{J}_{ob} \times \mathfrak{J}_{cl}$. В такой постановке мы игнорируем тот факт, что классов у нас l. Неявно предполагаем, что классы однородны.
- 2. $\mathfrak{J}_{i} = \mathfrak{J}_{ob} \times \mathfrak{J}_{cl}^{l}$. Этот вариант лишен проблемы первого пункта и классы наши различны.
- 3. $\mathfrak{J}_i = \mathfrak{J}_{ob}^q \times \mathfrak{J}_{cl}^l$. Ещё более сложный вариант в котором участвует количество объектов q. Таким образом S_1, \ldots, S_q объекты, $(S_1, \ldots, S_q) \in \Upsilon^q$ и окончательно $\mathfrak{D}(S_1), \ldots, \mathfrak{D}(S_q) \in \mathfrak{J}_{ob}^q$.

4. $\mathfrak{J}_i = \mathfrak{C}_{ql}(\mathfrak{J}), \ \mathfrak{J}_f = \mathfrak{C}_{ql}(\tilde{\mathfrak{J}}), \ \text{где } \mathfrak{C}_{ql}$ - пространство $q \times l$ матриц над чем либо. Данный вариант наиболее общий и его мы и будем в дальнейшем рассматривать считая $\mathfrak{J}, \ \tilde{\mathfrak{J}}$ неодноэлементными множествами (иначе множество матриц тривиально). Может показаться, что пункт 4 и 3 дают одинаковую задачу, но это не так. Саня, Я не помню контрпример. Если у тебя есть - впиши

В новых терминах решение задача Z формулируется таким образом: Пусть $\hat{I} \in \mathfrak{C}_{ql}(\mathfrak{J})$ и $\hat{\tilde{I}} \in \mathfrak{C}_{ql}(\tilde{\mathfrak{J}})$. Мы ищем такие отображения A, что они являются допустимыми и $A(\hat{I}) = \hat{\tilde{I}}$

Определение. Алгоритм называется корректным на прецедентах, если $A(\hat{I}) = \hat{ ilde{I}}$

Саня, я тут не особо хорошо записывал. Проверь. Как то странновато вышло.

Переход к категориям