EXPLORING THE CAPABILITIES OF DECISION TRANSFORMERS

Gabriel Afriat

Anne Castille Buisson

Sara Pasquino

01	Introduction to Decision Transformers	
02	CQL for Comparative Benchmarking	
03	Project Overview	
04	Validation of Model Performance & Challenges	
05	Ablation Study	П
06	Generalizability with new games: Ms. Pacman	
07	Long-Term Credit Assignment: Key-To-Door	6
08	Conclusion	

INTRODUCTION TO DECISION TRANSFORMERS

 It solves Reinforcement Learning tasks with Transformer architecture, treating decision-making as a sequence prediction problem

Mechanism

 Treats the RL process by predicting an optimal action based on past sequences of states, actions, and rewards

Characteristics

 Relies on Supervised Learning approach to predict the next best action. It is an offline learning algorithm, trained on pre-collected data

Advantages

- Sequence modelling approach enables learning with lengthy sequences and sparse rewards (reducing the need for reward design and discounting the return)
- Shows better performance for a fixed dataset size and is therefore more sample efficient than CQL

 Self-attention, unlike RL methods (which propagate rewards) is less prone to be affected by "distractor" signals

CQL FOR COMPARATIVE BENCHMARKING

CQL minimizes the following loss:

$$\min_{\theta} \alpha \left(\mathbb{E}_{s \sim \mathcal{D}, a \sim \pi(a|s)} [Q_{\theta}(s, a)] - \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\beta}(a|s)} [Q_{\theta}(s, a)] \right) + \mathbb{E}_{s, a, s' \sim \mathcal{D}} \left[\left(Q_{\theta}(s, a) - r(s, a) - \gamma \max_{a'} Q_{\theta_{target}}(s', a') \right)^{2} \right]$$
Conservative Loss

- Learns a Q-function which:
 - Minimizes the TD error on the dataset
 - Doesn't overestimate the Q-value of unseen (state, action) pairs
- State-of-the-art offline learning method: main competitor of the Decision Transformer

PROJECT OVERVIEW

Objectives

- Validate Chen et al.'s results and limitations
- Experiment with changing the model's parameters to test for robustness
- Compare performance of DT with Conservative Q-Learning
- Validate generalizability on new games
- Test performance on long-term credit assignment

Breakout

- State Space: stack of 4 frames representing current and recent past states (84x84 px)
 - · Images capturing position of the ball, the paddle and the remaining bricks
- Action Space: dimension = 4
 - . [0] no operations, [1] fire, [2] move right, [3] move left
- Rewards: assigned for each broken brick, according to colours

Ms PacMan

- State Space: stack of 4 frames representing current and recent past states (84x84 px)
 - · Captures position of Ms Pacman, ghosts, the pellets and maze layout
- Action Space: dimension = 7
 - [0] no operations, [1] move up, [2] move down, [3] move right, [4] move left (and combinations)
- Rewards: assigned for each collected pellet and eaten ghost

ABLATION STUDY

1. HOW DO DECISION TRANSFORMERS BEHAVE WITH RESPECT TO NUMBER OF SAMPLES?

- We experimented for several number of steps (size of the dataset)
- This allowed us to test the model's performance in scenarios of limited computing resources

ABLATION STUDY

1. HOW DO DECISION TRANSFORMERS BEHAVE WITH RESPECT TO NUMBER OF SAMPLES?

- · We compared results with those obtained from CQL; overall, CQL shows worse performance than DT
- · Caveat: for a better sense of actual CQL performance, more hyperparameter tuning and training epochs required

ABLATION STUDY

2. HOW SENSITIVE ARE DECISION TRANSFORMERS TO THE CONTEXT SIZE?

- We analyzed model performance across various context lengths to assess its efficiency and accuracy
- · For too long context lengths, the model overfits, with low training loss but decreasing evaluation returns

Evaluation Return hits a sweet spot around context length = 10

GENERALIZABILITY WITH NEW GAMES: MS PACMAN

HOW GENERALIZABLE ARE DECISION TRANSFORMERS WHEN APPLIED TO OTHER GAME ENVIRONMENTS LIKE PACMAN?

- We performed a hyperparameter search to find the optimal context length (30) and target return (1600)
- The two models show the same trends across size of the dataset - higher training time, decreasing training loss and increasing evaluation returns, but:
 - CQL requires less computational resources than DT (each epoch is much faster)
 - CQL has consistently lower evaluation returns than DT
- Because Context Length is not a parameter in CQL, its KPIs do not vary with this experiment, but:
 - DT shows increasing training time for higher context lengths
 - DT shows decreasing train loss, yet also signs of overfitting: evaluation returns peak at CL = 10, and eventually start decreasing

LONG TERM CREDIT ASSIGNMENT PROBLEM

Objectives

- Validating Chen et al.'s results on a long-term credit assignment problem (reward only happens late in the trajectory)
- · Problem: No dataset for Key-to-Door environment

Expert (trained with PPO)

Key-to-Door 8x8

- State Space: 7x7x3 image (what is observable for the agent)
- Action Space: dimension = 7
 - [0] turn left, [1] turn right, [2] move forward, [3] pick up an object, [4] drop object, [5] activate an object, [6] Done
- Rewards: reward of 1 assigned if the agent reaches the goal
- Difficult environment: The agent needs to use the key to open the door and then get to the goal

Step 1: Solving the problem with PPO

- We couldn't solve the problem directly for Key-to-Door 8x8 using PPO. Instead our successful strategy was:
 - Train an agent using PPO on Key-to-Door 5x5 (100,000 steps)
 - Use this agent as a warm start for further training using PPO on Keyto-Door 6x6 (100,000 steps) and Key-to-Door 8x8 (100,000 steps).

CONCLUSION

Decision Transformers provide a framework for modelling decision sequences in complex environments

This analysis highlighted DT's robustness and adaptability across different game environments like Breakout and MsPacman

Strengths and Limitations of Decision Transformers

Strengths

- Adaptability: In environments requiring complex sequential decision-making it excels due to its transformer architecture.
- Sample Efficiency: Performs better than CQL under a fixed number of training steps and samples

Weaknesses

- Computationally Intensive: Increased context lengths raise computational demands, impacting scalability
- Data Dependency: Performance relies on the quantity and quality of training data, with poor performance in datasparse scenarios and suboptimal datasets.

Decision Transformers vs. Conservative Q-Learning

- Training & Efficiency: Overall, CQL agents require less computational resources than the Decision Transformer's
- Model Robustness: DT outperforms CQL in all games and experiments tested

