Chapitre 4 : Algorithmes diviser-pour-régner INF4705 - Analyse et conception d'algorithmes

Gilles Pesant Simon Brockbank

École Polytechnique Montréal gilles.pesant@polymtl.ca, simon.brockbank@polymtl.ca

Hiver 2017

Plan

- Introduction
- 2 Tr
- Médiane et sélection
- 4 Transformée rapide de Fourier

Principe Général

Principe

On ramène la résolution d'un exemplaire de problème à celle de plusieurs exemplaires de plus petite taille dont les solutions servent à obtenir une solution à l'exemplaire originel.

Patron de conception Diviser-pour-régner

```
fonction diviser-pour-regner(x {exemplaire}) : y {solution} si x est petit ou simple alors retourner algo-simple(x); décomposer x en sous-exemplaires x_1, \ldots, x_\ell; pour i = 1 à \ell faire y_i \leftarrow diviser-pour-regner(x_i); recombiner les y_i en une solution y pour x; retourner y
```

Décroître-pour-régner

- À strictement parler, Diviser-pour-régner décompose en au moins deux sous-exemplaires.
- Sinon on parlera du patron Décroître-pour-régner.
- Ex. fouille dichotomique
- On peut habituellement les exprimer de manière itérative.

Comment appliquer le patron de conception Diviser-pour-régner?

Trois décisions à prendre

- Décomposition : nombre et taille des morceaux?
- Recombinaison : comment recoller les morceaux?
- 3 Seuil de récursivité : quand est-ce que x est assez petit?

```
fonction diviser-pour-regner(x {exemplaire}) : y {solution} si x est petit ou simple alors retourner algo-simple(x); décomposer x en sous-exemplaires x_1, \ldots, x_\ell; pour i = 1 à \ell faire y_i \leftarrow diviser-pour-regner(x_i); recombiner les y_i en une solution y pour x; retourner y
```

Décision 1 : Décomposition

Une décomposition équilibrée

Considérons

$$T(n) = T(\lambda n) + T((1-\lambda)n) + cn, \quad 0 < \lambda < 1$$

si $\lambda = 1/2$ (parfaitement équilibré) :

$$T(n) = 2T(n/2) + cn \longrightarrow T(n) \in \Theta(n \lg n)$$

Décision 1 : Décomposition

Une décomposition équilibrée

Considérons

$$T(n) = T(\lambda n) + T((1-\lambda)n) + cn, \quad 0 < \lambda < 1$$

si $\lambda = 1/n$ (parfaitement déséquilibré) :

$$T(n) = T(1) + T(n-1) + cn \longrightarrow T(n) \in \Theta(n^2)$$

Décision 2 : Recombinaison

Il faut pouvoir combiner efficacement les solutions aux sous-exemplaires en une solution à notre exemplaire originel.

Ex. Plus grand facteur commun de n et m (où m < n)

Quels sont nos sous-exemplaires? $(n, \lceil m/2 \rceil)$ et $(\lceil n/2 \rceil, m)$? Comment en reconstituer une solution?

C'est plutôt un exemple du patron Décroître-pour-régner : pgfc(m,n) = pgfc(n modulo m,m)

À partir d'une certaine taille d'exemplaire, il est plus efficace d'arrêter les appels récursifs et de le résoudre directement avec un autre algorithme (non-récursif) même si sa complexité asymptotique est moins bonne.

Ça ne change pas l'analyse asymptotique théorique de notre algorithme mais le choix d'un bon seuil l'accélérera en pratique.

Exemple: Multiplication de grands entiers

Considérons

$$T(n) = \begin{cases} h(n) & \text{si } n \leq n_{\min} \\ 3T(\lceil n/2 \rceil) + g(n) & \text{sinon} \end{cases}$$

Si
$$h(n) = n^2 \ \mu sec.$$
 et $g(n) = 16n \ \mu sec.$, la multiplication d'entiers à $n = 5000$ chiffres prend :

Exemple : Multiplication de grands entiers

Considérons

$$T(n) = \begin{cases} h(n) & \text{si } n \leq n_{\min} \\ 3T(\lceil n/2 \rceil) + g(n) & \text{sinon} \end{cases}$$

Si $h(n)=n^2$ $\mu sec.$ et g(n)=16n $\mu sec.$, la multiplication d'entiers à n=5000 chiffres prend :

• \sim 25 sec. de façon classique (en $\Theta(h(n))$);

Exemple: Multiplication de grands entiers

Considérons

$$T(n) = \begin{cases} h(n) & \text{si } n \leq n_{\min} \\ 3T(\lceil n/2 \rceil) + g(n) & \text{sinon} \end{cases}$$

Si $h(n) = n^2 \ \mu sec.$ et $g(n) = 16n \ \mu sec.$, la multiplication d'entiers à n = 5000 chiffres prend :

- ~ 25 sec. de façon classique (en $\Theta(h(n))$);
- ~ 41 sec. en diviser-pour-régner avec $n_{\min} = 1$;

Exemple: Multiplication de grands entiers

Considérons

$$T(n) = \begin{cases} h(n) & \text{si } n \leq n_{\min} \\ 3T(\lceil n/2 \rceil) + g(n) & \text{sinon} \end{cases}$$

Si $h(n) = n^2 \mu sec.$ et $g(n) = 16n \mu sec.$, la multiplication d'entiers à n = 5000 chiffres prend :

- ~ 25 sec. de façon classique (en $\Theta(h(n))$);
- ~ 41 sec. en diviser-pour-régner avec $n_{\min} = 1$;
- \sim 6 sec. en diviser-pour-régner avec $n_{\min} = 64$.

Méthode hybride

Soient $h(n) = (an^2 + bn + c)\mu sec.$ et $g(n) = (dn + e)\mu sec.$

- Évaluer empiriquement les constantes (a, b, c, d, e).
- ② Déterminer un seuil n_{\min} pour lequel $T(n_{\min})$ est sensiblement le même qu'on utilise "algo-simple" directement ou après un niveau de récursivité :

$$an_{\min}^2 + bn_{\min} + c \simeq 3(a\lceil n_{\min}/2\rceil^2 + b\lceil n_{\min}/2\rceil + c) + dn_{\min} + e$$

Méthode essai-erreur

On cherche un seuil qui donne un meilleur temps de calcul que les seuils voisins (par exemple, que sa moitié et son double).

Plan

- Introduction
- 2 Tri
- Médiane et sélection
- Transformée rapide de Fourier

pour un même problème...

avec un même patron de conception...

deux algorithmes très différents

Idée

On sépare les éléments en deux parties (presque) de même taille qu'on trie récursivement, puis on fusionne les suites triées en préservant l'ordre.

Si n est petit, on utilise par exemple un tri par insertion.

- décomposition triviale (et équilibrée)
- recombinaison facile
- Le gros du travail est fait après les appels récursifs : on applique un algorithme (glouton) de fusion de deux listes triées en temps linéaire

Analyse de la complexité temps

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + g(n), \ g(n) \in \Theta(n)$$

Analyse de la complexité espace

Analyse de la complexité temps

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + g(n), \ g(n) \in \Theta(n)$$

$$T(n) = 2T(n/2) + cn,$$

Analyse de la complexité espace

Analyse de la complexité temps

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + g(n), \ g(n) \in \Theta(n)$$

$$T(n) = 2T(n/2) + cn,$$
 $\ell = 2; b = 2; k = 1$

Analyse de la complexité espace

Analyse de la complexité temps

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + g(n), \ g(n) \in \Theta(n)$$

$$T(n) = 2T(n/2) + cn$$
, $\ell = 2$; $k = 1$

$$T(n) \in \Theta(n \lg n)$$
 en pire cas

Analyse de la complexité espace

Tri rapide

Idée :

On sépare les entiers de part et d'autre d'un pivot, on trie récursivement chaque partie, puis . . . c'est tout!

Si n est petit, on utilise par exemple un tri par insertion.

Tri par fusion («mergesort»)
Tri rapide («quicksort»)

Tri rapide

- décomposition facile ; décomposition équilibrée difficile
- recombinaison triviale
- Le gros du travail est fait avant les appels récursifs : on peut séparer les éléments de part et d'autre du pivot efficacement (en temps linéaire) et in situ.

Décomposition équilibrée

choix du pivot	décomposition équilibrée?	coût
quelconque	aucune garantie	$\Theta(1)$
élément moyen	bon comportement moyen?	$\Theta(n)$
élément médian	parfaite	$\Theta(n \log n)$?
médiane de k élts	un compromis	$\Theta(k \log k)$

Analyse du temps de calcul

pivot : élément médian

- en pire cas : $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil 1) + cn$... $T(n) \in \Theta(n \log n)$
- en moyenne : la même chose

pivot : quelconque

- en pire cas : T(n) = T(n-1) + T(0) + cn... $T(n) \in \Theta(n^2)$
- en moyenne :

$$T(n) \in \Theta(n \log n)$$

Analyse en moyenne, pivot quelconque

hypothèses de travail

- Les *n* éléments du tableau sont distincts.
- Les n! permutations initiales sont équiprobables.
 (⇒ idem pour les permutations dans les sous-tableaux)

$$T(n) = \frac{1}{n} \sum_{\ell=1}^{n} (g(n) + T(\ell-1) + T(n-\ell)), \quad g(n) \in \Theta(n)$$

$$T(n) \le dn + \frac{1}{n} \sum_{\ell=1}^{n} (T(\ell-1) + T(n-\ell)), \quad d > 0$$

Analyse en moyenne, pivot quelconque

Or

$$\sum_{\ell=1}^{n} (T(\ell-1)+T(n-\ell)) = (T(0)+T(n-1))+(T(1)+T(n-2))+\cdots$$

$$\cdots + (T(n-2) + T(1)) + (T(n-1) + T(0))$$

Donc

$$T(n) \le dn + \frac{2}{n} \sum_{\ell=1}^{n-1} T(\ell), \quad d > 0 \quad (T(0) = 0)$$

Malheureusement les techniques de résolution de relations de récurrence que nous avons vues ne s'appliquent pas ici.

Analyse en moyenne, pivot quelconque

Prouvons par induction sur n que $T(n) \le c n \ln n$, $n \ge 2$

base d'induction

$$n = 2 : T(2) \le 2d + T(1) \stackrel{?}{\le} c \ 2 \ln 2$$

On choisira un $c \ge (2d + T(1))/2 \ln 2$

hypothèse d'induction

$$T(i) \le c i \ln i$$
, pour $i < n$

Analyse en moyenne, pivot quelconque

pas d'induction

$$T(n) \leq dn + \frac{2}{n} \sum_{\ell=1}^{n-1} T(\ell)$$

$$\leq dn + \frac{2}{n} \sum_{\ell=1}^{n-1} c\ell \ln \ell \quad \text{par l'hypo. d'induction}$$

$$\leq dn + \frac{2c}{n} \int_{1}^{n} x \ln x \, dx$$

$$= dn + \frac{2c}{n} \left[x^{2} \left(\frac{\ln x}{2} - \frac{1}{4} \right) \right]_{x=1}^{n}$$

$$= dn + \frac{2c}{n} \left(n^{2} \left(\frac{\ln n}{2} - \frac{1}{4} \right) + \frac{1}{4} \right)$$

$$= cn \ln n + \left(dn - \frac{c}{2}n + \frac{c}{2n} \right)$$

Analyse en moyenne, pivot quelconque

pas d'induction (suite)

Nous avons

$$T(n) \le c n \ln n + \left(\frac{dn - \frac{c}{2}n + \frac{c}{2n}}{n}\right)$$

Il reste à choisir un c tel que $\left(dn - \frac{c}{2}n + \frac{c}{2n}\right) \le 0$ c'est-à-dire tel que $c \ge 2d\frac{n^2}{n^2-1}$

Or
$$\frac{n^2}{n^2-1} \le \frac{4}{3}$$
 lorsque $n \ge 2$

Donc il suffit de prendre $c \ge \max(\frac{8d}{3}, \frac{2d+T(1)}{2\ln 2})$

Plan

- Introduction
- 2 Tri
- Médiane et sélection
- 4 Transformée rapide de Fourier

Médiane et sélection

Problème de sélection

Trouver l'élément de rang k parmi un ensemble de n entiers.

Si $k = \lceil n/2 \rceil$, c'est le problème de l'élément *médian*.

- On pourrait d'abord trier le tableau puis le parcourir en ordre ascendant jusqu'au $k^{\text{ème}} : \Theta(n | g | n)$ en pire cas.
- On pourrait construire un monceau puis retirer un à un k éléments : $\Theta(n)$ puis $\Theta(k \lg n)$ en pire cas donc $\Theta(n)$ si $k < n/\lg n$ mais $\Theta(n \lg n)$ si $k = \lceil n/2 \rceil$ (médiane).
- Voyons comment le faire en $\Theta(n)$ en pire cas (optimal).

Patron Diviser-pour-régner appliqué au problème de sélection

On vise à obtenir une récurrence semblable à

$$T(n) = \left\{ egin{array}{ll} c_1 & ext{si } n \leq n_{\min} \\ T(9n/10) + c_2 n & ext{sinon} \end{array}
ight.,$$

qui correspond à se débarrasser d'au moins une fraction constante (ici $\frac{1}{10}$) des éléments à chaque étape.

Ébauche de l'algorithme sélection(S, k)

- Diviser les éléments en groupes de cinq (le dernier groupe peut contenir moins d'éléments).
- Trier chacun des groupes puis rassembler l'élément médian de chacun (le troisième) dans M.
- ③ $m \leftarrow \text{s\'election}(M, \lceil \lceil n/5 \rceil/2 \rceil)$ (m est la médiane des médianes, où pseudo-m'ediane).
- Séparer les éléments de part et d'autre de m en deux ensembles, $S_{<}$ (plus petits que m) et $S_{>}$ (plus grands).
- - 2 Si $k < |S_{<}| + 1$, retourner sélection $(S_{<}, k)$.
 - **3** Si $k > |S_{<}| + 1$, retourner sélection $(S_{>}, k (|S_{<}| + 1))$.

Cardinalité des ensembles $S_{<}$ et $S_{>}$

Cardinalité des ensembles $S_{<}$ et $S_{>}$

$$T(n) = T(\lceil n/5 \rceil) + T(7n/10) + c_2 n \Rightarrow \dots T(n) \simeq T(9n/10) + c_2 n$$

De retour au quicksort...

Note

En utilisant cet algorithme pour choisir la médiane comme pivot dans le tri de Hoare, on obtient une décomposition équilibrée et donc un comportement dans $\Theta(n \lg n)$ en pire cas.

Par contre en pratique la constante multiplicative cachée associée au calcul de la médiane fait préférer un choix de pivot plus simple.

Plan

- Introduction
- 2 Tri
- Médiane et sélection
- 4 Transformée rapide de Fourier

Fait passer une fonction du domaine temporel à fréquenciel

source : DaveSGage CC BY-SA 4.0

Applications

- Traitement de signal
 - imagerie computationnelle
 - communication
 - astronomie
 - géologie

:

Multiplication de polynômes / calcul de convolutions

Représentation des polynômes

Soit le polynôme en x de degré n-1: $A(x) = \sum_{j=0}^{n-1} a_j x^j$.

représentation par coefficients

$$\langle a_0, a_1, \ldots, a_{n-1} \rangle$$

représentation par paires point-valeur

$$\langle (x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}) \rangle$$
 où

$$y_k = A(x_k) = \sum_{j=0}^{n-1} a_j(x_k)^j$$

pour $x_0, x_1, \ldots, x_{n-1}$ distincts.

La conversion d'une représentation à l'autre peut se faire en temps $\in \Theta(n^2)$.

Représentation des polynômes

Soit le polynôme en x de degré n-1: $A(x) = \sum_{i=0}^{n-1} a_i x^i$.

représentation par coefficients

$$\langle a_0, a_1, \ldots, a_{n-1} \rangle$$

représentation par paires point-valeur

$$\langle (x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}) \rangle$$
 où

$$y_k = A(x_k) = \sum_{j=0}^{n-1} a_j(x_k)^j$$

pour $x_0, x_1, \ldots, x_{n-1}$ distincts.

Par un choix judicieux des x_k , on passe de la 1ère à la 2e en temps $\in \Theta(n \lg n)$.

Racines nièmes complexes de l'unité

Nombre complexe ω tel que $\omega^n=1$

Il y en a *n* :

$$\omega_n^k = e^{2\pi i k/n} = \cos(2\pi k/n) + i \sin(2\pi k/n), \quad k=0,1,...,n-1.$$

Lemme de la bipartition

Si n est pair, les carrés des n racines $n^{\text{ièmes}}$ de l'unité sont les n/2 racines $(n/2)^{\text{ièmes}}$ de l'unité.

$$(\omega_n^{k+n/2})^2 = (\omega_n^k)^2 = \omega_{n/2}^k$$

Étant donné le vecteur $\langle a_0, a_1, \dots, a_{n-1} \rangle$ (par exemple, les coefficients d'un polynôme),

le vecteur $\langle y_0, y_1, \dots, y_{n-1} \rangle$ calculé par

$$y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j (\omega_n^k)^j$$

est sa transformée discrète de Fourier.

Étant donné le vecteur $\langle a_0, a_1, \dots, a_{n-1} \rangle$ (par exemple, les coefficients d'un polynôme),

le vecteur $\langle y_0, y_1, \dots, y_{n-1} \rangle$ calculé par

$$y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j (\omega_n^k)^j$$

est sa transformée discrète de Fourier.

La transformée rapide de Fourier (FFT) permet de calculer la transformée discrète de Fourier en $\Theta(n \lg n)$.

Transformée rapide de Fourier (FFT)

Remarquons d'abord que
$$A(x) = A^{pair}(x^2) + xA^{impair}(x^2)$$
 où $A^{pair}(x) = a_0 + a_2x + a_4x^2 + \dots + a_{n-2}x^{n/2-1}$ $A^{impair}(x) = a_1 + a_3x + a_5x^2 + \dots + a_{n-1}x^{n/2-1}$

évaluer A aux points $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$

évaluer A^{pair} et A^{impair} aux points $(\omega_n^0)^2, (\omega_n^1)^2, \dots, (\omega_n^{n-1})^2$

Transformée rapide de Fourier (FFT)

Remarquons d'abord que
$$A(x) = A^{pair}(x^2) + xA^{impair}(x^2)$$
 où $A^{pair}(x) = a_0 + a_2x + a_4x^2 + \dots + a_{n-2}x^{n/2-1}$ $A^{impair}(x) = a_1 + a_3x + a_5x^2 + \dots + a_{n-1}x^{n/2-1}$

évaluer A aux points $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$

évaluer A^{pair} et A^{impair} aux points $\omega^0_{n/2}, \omega^1_{n/2}, \ldots, \omega^{n/2-1}_{n/2}$

par le lemme de la bipartition

Algorithme de Cooley-Tukey $(n=2^{\ell})$

```
fonction FFT(\langle a_0, a_1, \ldots, a_{n-1} \rangle)
       si n=1 alors retourner a_0;
        \omega_n \leftarrow e^{2\pi i/n}:
        \omega \leftarrow 1:
        v^{pair} \leftarrow FFT(\langle a_0, a_2, \dots, a_{n-2} \rangle);
        y^{impair} \leftarrow FFT(\langle a_1, a_3, \dots, a_{n-1} \rangle);
        pour k = 0 à n/2 - 1 faire
               y_k \leftarrow y_k^{pair} + \omega y_k^{impair};
               y_{k+n/2} \leftarrow y_{i}^{pair} - \omega y_{i}^{impair}:
               \omega \leftarrow \omega \omega_n:
        retourner v
```

Analyse asymptotique

```
fonction FFT(\langle a_0, a_1, \ldots, a_{n-1} \rangle)
       si n=1 alors retourner a_0;
        \omega_n \leftarrow e^{2\pi i/n}:
        \omega \leftarrow 1:
        y^{pair} \leftarrow FFT(\langle a_0, a_2, \dots, a_{n-2} \rangle);
        v^{impair} \leftarrow FFT(\langle a_1, a_3, \ldots, a_{n-1} \rangle);
        pour k=0 à n/2-1 faire
               y_k \leftarrow y_k^{pair} + \omega y_k^{impair};
               V_{k+n/2} \leftarrow V_{l}^{pair} - \omega V_{l}^{impair};
               \omega \leftarrow \omega \omega_n:
        retourner y
```