Redes de Computadores

Qualidade de Serviço Prof. Renê Pomilio de Oliveira

Slides baseados nas aulas da Profa. Dra. Kalinka Castelo Branco (ICMC/USP) Prof. Dr. Anderson Chaves Carniel (UTFPR)

- Qualidade de serviço (QoS) é a capacidade de melhorar os serviços trafegados na rede sobre tecnologias de comunicação de redes de dados, como, Frame Relay, Ethernet, ATM (Asynchronous Tranfer Mode),
- É um protocolo de comunicação entre redes WAN), e qualquer outra que utiliza do protocolo IP.
- Tem como sua <u>principal característica</u>, dar prioridade, reserva de banda, controle de jitter (variação de atraso) e latência, garantindo um bom desempenho das aplicações.

- Conceito: a Qualidade de Serviço serve para mensurar a qualidade dos serviços oferecidos por uma rede de comunicações, ou seja, refletir o quanto ela é capaz de atender às expectativas de seus usuários através dos serviços que a mesma os oferecem.
- Esse conceito, inicialmente focado na rede, evoluiu para uma noção mais ampla, contemplando as múltiplas camadas da interação usuário-sistema.

- Existem aplicações em redes de computadores que exigem certos requisitos (limites mínimos e máximos) em:
 - Segurança
 - Pilares como integridade, confidencialidade, autenticidade (identificação), disponibilidade, controle de acesso e não-repúdio
 - Desempenho
 - Qualidade
- Tais atores estão associados à Qualidade de Serviço (QoS)

Brasil: Pesquisa nacional de segurança da informação - 30 de Junho até 25 Agosto de 2014 (DARYUS):

Os incidentes de mais frequentes

Incidentes Reportados ao CERT.br -- Janeiro a Dezembro de 2016 Tipos de ataque

Números Brasil – 2016

Câmpus Do

Números Brasil – 2016 – Por Portas

Incidentes Reportados ao CERT.br -- Janeiro a Dezembro de 2016 Scans reportados, por porta

Como obter Qualidade de Serviço?

- De forma geral, a QoS está frequentemente associada com a seguinte relação
 - Garantia de um atraso de entrega (delay)
 - Perda de pacotes suficientemente baixos (tráfego)
- Uma aplicação pode implementar QoS como uma "solicitação de serviço" (Service Level Agreement)

Como obter Qualidade de Serviço?

- A solicitação de serviço deve assegurar qualidade nos seguintes requisitos como
 - ✓ Latência ou atraso
 - ✓ Jitter
 - ✓ Banda ou vazão
 - ✓ Disponibilidade
 - ✓ Taxa de Perdas
 - ✓ Outros requisitos a ser definido pela aplicação

Latência ou atraso

- Latência é mais comumente utilizado para equipamentos (da camada física),
 enquanto que atraso é mais utilizado para referenciar transmissões de dados
 - > Ambos os termos se associam como qualidade de serviço
- Pode-se entender como sendo o somatório dos atrasos enfrentados por equipamentos ao longo da rede
 - > Ou seja, tudo que afeta o tempo de resposta da aplicação
- Inclui aspectos como: atraso de propagação, velocidade de transmissão e processamento nos equipamentos

Jitter

- Variação no tempo e na sequência de entrega dos pacotes devido a variação na latência
 - Ou seja, variação do atraso entre pacotes sucessivos de dados
- Causado por tempos de processamento diferentes dos equipamentos da rede, tecnologias diferentes (Frame Relay, ATM, IP, etc.) e outros fatores da rede
- Para algumas aplicações (ex. VOIP e tempo real) faz-se necessário um jitter baixo
 - Afeta a qualidade na conversação
- Aplicações como transferência de arquivos, o jitter não é tão impactante mas nessas aplicações a vazão é indispensável
 - Técnica para garantir esse serviço: buffering

Banda ou vazão

- É a capacidade de transmissão de pacotes por unidade de tempo
 - Quantos pacotes são transmitidos em um segundo?
- Um dos parâmetros mais básicos em especificações de QoS
 - Considerada ainda na fase de projeto da rede

Disponibilidade

- Também um dos pilares da segurança da informação
- Garante que a aplicação ficará em execução ao longo do tempo
 - Aspecto ainda discutido na fase de projeto de rede
- Confiabilidade de redes, sistemas e equipamentos sobre evitar ou se recuperar de interrupções

Taxa de perdas (Packet Loss Rate)

- Alguns fatores influenciam a perda de pacotes na rede como descarte de pacotes em roteadores e perda de pacotes devido a erros na camada de enlace
- Não chega a ser crucial para algumas aplicações, porém possivelmente implica em uma qualidade não aceitável
 - Talvez não perceptível ao usuário final

- QoS deve ser garantido desde em equipamentos, camadas de protocolo e outras entidades de uma maneira cooperada
- Decisões a serem tomadas:
 - Como alocar os recursos
 - Como priorizar pacotes
 - Quais pacotes descartar
 - Quando descartar pacotes

Algoritmos de protocolos usados:

- Protocolos de sinalização:
 - Permite a troca de informações entre equipamentos da rede RSVP (Resource Reservation Protocol) e LDP (Label Distribution Protocol)
- Algoritmos de prioridade
 - Define tempos de espera para o processamento de pacotes (principalmente implementado em roteadores)
- Algoritmos de escalonamento
 - Garante que fluxos diferentes de pacotes obtenham recursos previamente alocados (banda e processamento). Exemplo - Round Robin

Algoritmos de protocolos usados:

- Algoritmos de controle de filas:
 - Controla descarte de pacotes em casos de congestionamento e visa igualdade de banda e processamento.
 Exemplo SFQ (Stochastic Fair Queuing)
- Algoritmos de congestionamento
 - Inibe fluxos de pacotes em períodos de congestionamento, reduzindo a carga sobre a rede. Exemplos RED (Random Early Detection)

Técnicas diversas:

- IntServ (Integrated Services Architecture with Resource Reservation Protocol)
 - Garantia de qualidade de serviços para aplicações pela reserva de recursos de forma prévia.
 - Utiliza o protocolo RSVP (Resource Reservation Protocol)
 - Problemas grande capacidade de processamento, implementação do RSVP, controle de admissão, classificação e escalonamento nos roteadores

Técnicas diversas:

- DiffServ (Differentiated Services Framework)
 - Também proposta pela IETF
 - Objetiva garantir qualidade de serviço por meio de mecanismos de priorização de pacotes na rede, que utiliza campos, como Type-ofservice, no cabeçalho nos pacotes
 - São definidas poucas "Classes de Serviçoo", que são tratadas de maneiras diferenciadas
 - 2 tipos principais
 - EF Expedited Forwarding (combate atrasos, perdas e jitter, porém aloca banda a um custo elevado)
 - AF Assured Forwarding (não combate tanto o atraso, mas garante a entrega)

Técnicas diversas:

- Super-Dimensionamento
 - Combate o congestionamento ao dimensionar os elementos da rede
 - Por exemplo dimensionando a banda
 - Problemas: alto custo para identificar os pontos de congestionamento
- MPLS (MultiProtocol Label Switching)
 - Também definido pelo IETF, e pode ser aplicado em qualquer protocolo da camada de rede, embora seu foco seja o protocolo IP
 - Vantagem: encaminhamento e comutação eficientes de fluxos de trafego

 Os parâmetros de confiabilidade, retardo, flutuação (jitter) e largura de banda estão sendo mostrados na tabela

APLICAÇÃO	CONFIABILIDADE	RETARDO	FLUTUAÇÃO	LARG. DE BANDA
Correio eletrônico	Alta	Baixa	Baixa	Baixa
Transf. de Arquivos	Alta	Baixa	Baixa	Média
Acesso a Web	Alta	Média	Baixa	Média
Login remoto	Alta	Média	Média	Baixa
Áudio por demanda	Baixa	Baixa	Alta	Média
Vídeo por demanda	Baixa	Baixa	Alta	Alta
Telefonia	Baixa	Alta	Alta	Baixa
Videoconferência	Baixa	Alta	Alta	Alta

 Portanto QoS é o conjunto de regras que descrevem e determinam a qualidade de um aplicativo ou recurso, delimitando sua largura de banda, prioridade, utilização de CPU (unidade central de processamento), etc.

