Social Data Science

Data and Big data

David Dreyer Lassen

UCPH ECON

August 11, 2017

In God we trust, all others must bring data

W. Edwards Dewing

Today:

- 1. Empirical design
- 2. data generating process
- 3. modes of collection standard vs big data; examples
- 4. strategic data provision

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

Different data for different questions or

Different questions for different data

Sometimes possible to separate data collection process from underlying data generating process – and sometimes not

Fundamental difference between what people do and what they say they do

'cheap talk' / 'put your money where your mouth is' / honest/costly signaling

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

What is your question, again?

- Research question from theory
- 2. Ideal empirical design
- 3. Feasible empirical design / collection
- 4. Results
- 5. Adjustment of theory/question/design
- 6. New results
- 7. ...

- A. What data do we have
- B. What question can they answer
- C. Research question
- D. Results

All models are wrong – but some are useful

George Box

Two key goals

- Forecasting: individual behavior, policy consequences, voting, Champions League, grades ...
 Data science / machine learning (but also macroeconomics)
- 2. Hypothesis testing, derived from theory 'Traditional' social science

1. Forecasting

- Example: Bank wants to forecast non-payment on loans (P_d: probability of default)
- Couldn't care less about theory
- Rough "Data Science": try to predict from all available data
- Suppose we find that <u>birth weight predicts default</u>
 - Bank is happy, better fit (defer ethics etc)
 - Policy: does investing in pre-natal care reduce defaults?
- In practice: set of predictors typically taken from (some) theory, even if casual
- Complications: if customers know that P_d depends on birth weight, would/should they disclose it? What if loans only to disclosers? Would they tell the truth?

2. Hypothesis testing

- Theory (rational choice, sociology, biology, common sense, ...) posits effect of X on Y
 - A. Selection/type theory: People who are impatient cannot defer immediate pleasures -> smoke and drink while pregnant -> give birth sooner. If impatient parents -> impatient children (whether by nature or nurture), we have an explanation.
 - B. Biological theory: low birth weight affects brain development and neurological wiring for patience.
- If (A), little role for policy; also, both can be true at same time
- How to distinguish: exogenous shock to birthweight, but ethically tricky ...

Goodhart's law

 Most popular: "When a measure becomes a target, it ceases to be a good measure."

 What he wrote: "Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes."

Targets and Measures

- You cannot be told how your bank constructs your P_d. Why?
 - Goodhart's law: people will attempt to outmaneuver measure
 - (thought)example: spending on shoes good indicator of account overdraft -> shoe lovers will have others buy for them, ceases to be a good measure

Case of Google Flu

- Google Flu: web searches for Flu symptoms predicted actual flu cases
- By-product of Google's main service
- But from 2010, not so well: overestimated actual flu cases, partly as result of autosuggest feature, partly because model was overfitted (we'll return to that)
- Best predictor: number of cases past week

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

Effects of causes vs. Causes of effects

Different questions

- Effects of causes: intervention, what is effect of policy X on outcome Y
- Causes of effects: Why does Z occur?

Effects of causes (forward causal questions)

- Narrow questions, sometimes (but not always) policy interventions
 - Effect of tax change on behavior
 - Effect of regulation on risk taking
 - Effect of schooling on earnings
 - Effect of smoking on lung cancer propensity
 - Effect of public health on schooling in Africa

— ...

 Often, but not always, amenable to treatments/ randomization/experimentation

Causes of effects (reverse causal inference)

- Much harder, but often more interesting
 - Why do some people smoke?
 - What are the causes of democratization?
 - Why do some people pursue a PhD why others drop out after primary school?
 - Why did Greece (almost) go bankrupt?
- Tensions with "effects of causes" search for causes sometimes derided as 'party chatter'

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

Data generating process

What is the data generating process?

Observational: endogenous decisions, researcher passive collector of data

Randomization: treatment-control

(Some) exogeneity: policy interventions, sometimes with comparisons, researchers sometimes involved

Important: more data does not give better result/more precision if estimator is biased

- Distinguish
 - Lab experiments: traditionally computer-based in econ, but also eye tracking/brain images (fMRI)/physiological
 - Survey experiments: assign survey respondents to different frames/treatments/primings, e.g. have SocDems and Liberals say same thing and look at support
 - Field experiments: experimental control in the real world, e.g. banks charging different rates to learn about mobility of customers; interventions against teacher absenteeism in India; ...)

- Distinguish
 - Natural experiments
 (weather induced: effects of poverty on violence, randomization of names on election ballots, ...)
 - Quasi-experiments
 (effects of change in policy; effect of tax reform on tax planning; effect of immigrant allocation on crime)
- Throughout: exogenous (outside of the individual) change

- Large, important current debate in (development) economics
- CofE: what are effects of penalties on teachers' absence in Indian village schools – <u>evidence from</u> <u>randomized experiments</u>
- Randomly selected teachers get harsh penalty for no-shows -> difference in absenteeism causal effect of penalty
- (Broader EofC Q: why is education sector in rural India so inefficient?)

- Strong on internal validity: from randomization any effect on absenteeism is from harsher penalties; good for testing theory
- Weak(er) on external validity would effect be similar in Africa? Would effect from lab work outside lab? Why, why not?
- (compare: medicine works in similar ways across locations)

Challenges

- Limits to what can be studied by experimentation (ethics; law; feasibility)
- Funding (field experiments expensive, survey expless so)
- Often participation constraint voluntary participants' gain >= 0 or no incentive
- Subjects leave for various (systematic) reasons
- Large-scale randomization can be hard in field experiments

- Generated without experimental or exogenous intervention
- Typically reveals correlations or descriptive patterns that can be interesting in themselves

Example: Inequality

Income inequality in Europe and the United States, 1900–2010

Share of top income decile in total pretax income

Source: Piketty and Saez, Science 2014, tax return data

- Generated without experimental or exogenous intervention
- Typically reveals correlations or descriptive patterns that can be interesting in themselves
 - Are in themselves silent about causality
 - Theory may be provide structure to learn about causal mechanism under strong assumptions
 - May conflate correlation and causality

- Exple: Does being in private schools affect grades
 - Classic: Catholic schools and grades in US
 - Collect attendance and grades -> run regression
- But: suppose some parents are more focused on schooling than others
 - Send kids to private school more
 - More involved in school + homework
- What do higher grades measure?
 - Effect of private school OR effect of involved parents?

- What to do?
 - Assign kids/parents randomly to private schools?
- More complicated
 - Waiting-list experiment design: people who sign up reveal themselves as school interested, compare grades between those in program and on waiting list -> much narrower design
 - Modeling (US case): use fact that Catholics are much more likely to choose Catholic schools

Big data is often observational

- Not always basis for causal claims
 - But interesting nonetheless: Description
- Can (potentially) be combined with natural/quasi-experiments.
 - Example: very detailed data on transportation/mobility and exogenous weather shocks-> effect of weather on mobility
 - Payday and consumption

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

Modes of data collection

- (Ethnographic / participant observer)
- Survey
 - Interview survey (in person), phone survey, internet survey, ...
- Administrative data
 - Used for administrative purposes
 - Some countries: census, tax return
 - DK: CPR-registry based
- (Primary collection: texts, counting)
- "Big data": in social sciences typically a by-product of digital information

Modes of data collection

- Note: survey, admin data, big data can all have randomized / exogenous elements or be purely observational
- Often in Lab/field experiments: ask about income, education etc – but may be biased
- Sometimes: combine experimental data with admin or big data (but rare)

Ethnographic

Pros

- Attempt to understand situations from participants' perspective
- Very detailed
 observations (e.g.
 dynamics at a meeting:
 who speaks when, who
 listens, who nods off and
 flirts etc)

Cons

- Very difficult to generalize (if even the goal)
- Typically very small n, not for stats
- Hard to reproduce / replicate

Surveys

Pros

- Can be cheap
- Elicit info on attitudes, beliefs, expectations
- Necessary when no other means exist
- Combine with open-ended info
- Easily anonymized (firms; China)

Cons

- Can be expensive
- Non-random samples, sometimes very much so (paid surveys)
- Cheap talk
- Diverse interpretations (e.g. 1-10 scales, Maasai example)
- Very different quality:
 interview vs. internet
- Not full researcher control:
 Interviewer completions

Administrative data

- Denmark, Norway, Sweden
 - Population-wide
 - Ex: Know population 'by pressing Enter'
 - Most other countries: census (counting people), surveys, rough approximations
 - In DK, built on Central Person Registry number
 - System constructed for source taxation in 1960s, now used as ubiquitous identifier
- Why do some countries have CPR-like systems and some not?

Administrative data

Pros

- Often full population
- In DK: third party
 reported -> no reporting
 bias, no survey bias
- Very detailed, no survey fatigue
- Often very precise, since used for admin purposes

Cons

- No soft data (attitudes, expectations); can be linked to surveys
- Privacy concerns
- Restricted to what is collected for admin reasons, both type and frequency (e.g. annual)

Administrative data

- Lots of work in Danish econ utilizes register data
 - Taxation
 - Education
 - Health
 - Financial decisions
 - Labor market

- Combined with
 - Personality measures
 - Attitudes/political prefs from surveys
 - Expectations from surveys
 - Biological data (neuromeasures, genetics)
 - Data from experiments

Viva la revolución?

Harnessing the Data Revolution for Good

Human Development Report Office

Big data

No agreed upon definition what Big Data is

- Large N?
- High frequency / much detail?
- Many different measurements?
- Based on what people do ('honest signals')
 - ctr surveys
 - Not always honest

- Different to different people/traditions
- To Americans, Danish admin/register data is big data

'Big data'

Pros

- Often based on real decisions (as admin data), but more detail, e.g. auctions
- High frequency (e.g. wifi), high granularity -> almost 'large N ethnographic data'
- Sometimes cheap/free

Cons

- No established protocol for collection
- Sometimes dubious quality, selection issues (both known/unknown)
- Start-up costs
- Even more privacy concerns
- Corporate gatekeepers-> bias in access(Facebook, Google)

Characteristics of 'big data'

- Structured (row/column-style) vs. unstructured (images/sound)
- Temporally referenced (date, time, frequency)
- Geographically referenced (wifi, bluetooth, Google)
- Person identifiable (identify vs. distinguish individuals vs. not distinguish individuals)
 - Separate medium (e.g. phone) from owner

- Large-scale (N=1000) big data project
- Handed out smart phones to DTU freshmen
- Collected phone, SMS/text/email (not content), GPS, wifi, bluetooth data
- -> Where, when, with whom
- -> social networks

Why phone data

- Phones as sociometers
- Many/most people carry phone with them all the time
- Would be IMPOSSIBLE to have people report in detail for every 10 min every day for a year
- For this project: tailored software, but realized that many apps collect detailed wifi-data without telling
- Concern: take-up of phones

Phone locations 0500h Monday morning -> can predict where people at given time with 85% accuracy

Example: peer effects in education economics

- Students allocated to study and social groups, called vector groups (randomly)
- Are there peer effects, i.e. are students' grades/health behavior/study behavior affected by the group?
- Literature: sometimes yes, sometimes no; very heterogeneous
- Why? Perhaps being allocated to group is not
 to actually meeting / using group

Example: peer effects

- Think of allocation to group as intention to treat (similar to offering treatment)
- Interesting example: <u>Carrell et al, ECMA 2013</u>.
 Small groups, yes peer effects; large groups: no/negative peer effects – WHY?
- Use phone to measure frequency of group members being together physically, measured by bluetooth
- Three parts: (i) yes they are more together; (ii) more together => work better together; (iii) peer effects?

Broader issue: Who meets, and how close are they?

- Again: use bluetooth signals to measure meetings (duration, participants)
- Analyzes 3.1 mio meetings over two months
- Some results:
 - Women/women pairs -> closer
 - Facebook friends -> closer
 - Same study -> closer
 - Difference in beauty -> further apart
 - One overweight, one not -> further apart
- People who stand very (too) close to others have fewer friends (!?)

Prediction vs causality

- Measure class attendance from phone data (wifi/GPS/bluetooth)
 - Either: construct clusters at slots known as teaching time; or: use admin info on class locations and construct GPS overlays
- Facebook activity

Predict grades

Figure 4: Change of class attendance over the 13-week semester. Students were grouped into high graders (12, 10; blue line), moderate graders (7, 4; green line), and low graders (02, 00, -3; red line). There is a significant decrease of class attenders for all three groups. At each point during the semester the ratio of class attenders of good graders is higher than that of low graders.

Prediction vs causality

Attendance -> grades/comprehension

- People who attend more learn more
- People who spend less time on Facebook have more time for studying

AND/OR

Grades/comprehension -> attendance

 Find courses hard -> stay at home, more tempted by Facebook

Example: CSS

Heat map of people with mobile devices on CSS (anonymous)

Example: David some Saturday

Example: David some Saturday

Example: how to measure consumer spending

- Economically important:
 - Indicator of health of economy
 - Important for understanding individual responses to policy
 - d.o. to economic shocks
 - Important for consumer prices -> inflation -> adjustments of wages and transfers
 - In developing countries: important for estimates of poverty, inequality

Example: consumer spending

- Traditional methods:
 - Consumer expenditure surveys (DK: forbrugsundersøgelsen)
 - Diary or scanner
 - Errors, selection
- Economists wanted access to individual spending data from Dankort for a long time
 - No luck

- Recently, Statistics
 Denmark got access to
 COOP-card data to
 measure inflation
 - To be made public soon, pretty good fit with existing measures (and much faster)
 - Nice idea, incentive compatible
 - Indep of payment type
 - But selection?

Example: consumer spending

- Attempts in developing economics
 - Use smart phones as scanner or means of payment
 - what can we infer about individuals from smart phone use (dedicated users)
 - Selection into who has smart phones
 - But should be seen against other ways of collecting data

Qs:

- How can we use smart phones to infer spending better?
- What kinds of economically interesting data can we collect via smartphones?

Statistical analysis of Big Data

- Many observations: what does statistical significance mean?
 - And what is practical relevance? Size effects
- Multiple testing problems? If big data generates many variables, why not run through them all to see what is significant?
 - Correct standard errors
- In some cases, 'eyeball econometrics' can be difficult
 - Need systematic approach

Statistical/machine learning

- Suppose you have no or very little theory to guide you
- OLS is not only linear, but also presumes some idea of what actually goes in there and how
- Varian's Titanic example: who survived the Titanic
 - Two variables: Class and age
 - Researcher decide / guess vs. data analysis yield most likely (decision tree, but lots more complicated -> Snorre, later)
 - Einav, Levin: Econ should consider machine learning

Statistical analysis of Big Data

- But what if you have theory (or think you have) – e.g.<u>combine econometrics and</u> <u>machine learning</u>
- Goes back to old debate in economics
 - Milton Friedman (1953): judge a model by its predictions, not its assumptions
 - Machine learning made for prediction not for hypothesis testing and theory (in)validation

roadmap

- Different data for different questions
- Theory and empirics, forecasting and hypothesis testing
- Effects of causes vs. Causes of effects
- Data generating process
- Modes of data collection pros and cons
- Strategic data management and data production

Strategic data management and production

- People / firms / governments do not always provide truthful and/or complete data
- Example: No penalty for lying in surveys but no reason not to either
- Political reasons for obscuring or inventing data: Greece in EU, Chinese economy
- Firms: Proprietary info, competition reasons, fooling customers and regulators (VW)

Strategic data management and production

- Individual demand for privacy (We return to this)
 - Could be instrumental:
 - lack of privacy decreases consumer surplus by better estimate of reservation price (e.g. Steering: Mac vs PC when ordering online)
 - Concerns about political issues
 - Or an objective in itself: Privacy as a political goal

Social desirability bias I

- Key concern in surveys, but more general problem:
 - What if people answer so as to conform with general notions of what's desirable?
 - Examples: Won't admit to not voting or having sexually transmitted diseases, exaggerates income
 - Reports buying healthy food vs unhealthy food
 - Important for asking/assessing sensitive questions

Social desirability bias II

- Why?
- Distinguish
 - a) self-deception
 - b) impression management
- Example: What do you value most in a potential mate?
 - People say: "kind and understanding"
 - From dating data: physical attractiveness, status
 - Bias could be both (a) and (b)