Lecture 11:

F-test

STAT 632, Spring 2020

Test of all the predictors

Is there a relationship between the response variable and at least one predictor in the multiple linear regression model?

$$Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p + e$$

The null and alternative hypothesis for the test can be written as

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

There is no relationship between Y and the predictor variables.

 H_A : at least one $\beta_j \neq 0$

There is a relationship between Y and at least one of the predictor variables

Test of all the predictors

 $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$

 H_A : at least one $\beta_i \neq 0$

Test statistic:

$$F = \frac{(\mathsf{SST} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)} = \frac{\mathsf{SSreg}/p}{\mathsf{RSS}/(n-p-1)}$$

- ► SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$ is the total sum of squares
- ▶ RSS = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ is the residual sum of squares
- ► SSreg = $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ is the regression sum of squares
- ► SST = SSreg + RSS
- ▶ *n* is the number of observations in the data set, and *p* is the number of predictor variables.

Test of all the predictors

Analysis of variance table:

Source	df	Sum of Squares	Mean Square	F
Regression	р	SSreg	SSreg/p	$\frac{SSreg/p}{RSS/(n-p-1)}$
Residual	n - p - 1	RSS	RSS/(n-p-1)	
Total	n – 1	SST		

Most computer packages will provide some version of this table. Ronald Fisher, the creator of the table, once said it's "nothing but a convenient way of arranging arithmetic." That was in 1931, when he had to all the calculations by hand.

Example: NY Housing Data

- ▶ Data set on housing prices from Canton, NY (scraped from Zillow.com)
- ► The response variable is Price (in thousands of dollars)
- ► The predictors
 - ▶ Beds: number of bedrooms
 - ▶ Baths: number of bathrooms
 - ► Size: floor area of house (in thousands of square feet)

> pairs(Price ~ Beds + Baths + Size + Lot, data=HousesNY)

Beds

Lot: size of the lot (in acres)

Price

- > data(HousesNY)
- > dim(HousesNY)
- [1] 53 5

> head(HousesNY)

	Price	Beds	${\tt Baths}$	Size	Lot
1	57.6	3	2	0.960	1.30
2	120.0	6	2	2.786	0.23
3	150.0	4	2	1.704	0.27
4	143.0	3	2	1.200	0.80
5	92.5	3	1	1.329	0.42
6	50.0	2	1	0 974	0 34

Example

 $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ H_A : at least one $\beta_i \neq 0$

For the F-test we are comparing the full model, with all the predictors, to the null model, with no predictors.

Full model:

Price = $\beta_0 + \beta_1$ Beds + β_2 Baths + β_3 Size + β_4 Lot + e

Null (reduced) model:

 $\texttt{Price} = \beta_0 + e$

Baths

Size

Lot

4 D > 4 B > 4 B > 4 B > 9 9 0

▼ロト→御ト→恵ト→恵 り900

▼ロト→御ト→車ト→車 り900

Since the *p*-value < 0.001 we reject the null hypothesis that $\beta_1 = \cdots = \beta_4 = 0$. Thus, we conclude, that at least one predictor is associated with Price.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ②

Just for verification, we can also directly calculate the F-test statistic using the formula.

```
> n <- nrow(HousesNY)
> p <- 4
> rss <- sum(resid(lm_full)^2); rss
[1] 52357.9
> sst <- sum(resid(lm_null)^2); sst
[1] 89255.4
> fstat <- ((sst - rss) / p) / (rss / (n-p-1))
> fstat
[1] 8.456603
> 1 - pf(fstat, df1=p, df2=n-p-1)
[1] 3.0104e-05
```

The results of the F-test are also provided in the summary() output.

> summary(lm_full)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	14.590	23.266	0.627	0.5336	
Beds	2.771	8.730	0.317	0.7523	
Baths	26.238	7.844	3.345	0.0016	**
Size	22.155	11.931	1.857	0.0695	
Lot	4.621	6.184	0.747	0.4585	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 33.03 on 48 degrees of freedom Multiple R-squared: 0.4134, Adjusted R-squared: 0.3645 F-statistic: 8.457 on 4 and 48 DF, p-value: 3.01e-05

Testing just one predictor

Can one particular predictor be dropped from the model?

To test whether the coefficient for a single predictor is 0 we can either use a t-test or F-test (the results are equivalent). In R, the t-test is less work, since the results are provided in the regression summary output.

 $H_0: \beta_j = 0$ $H_A: \beta_i \neq 0$

Test statistic:

$$T_j = rac{\hat{eta}_j}{\mathsf{se}(\hat{eta}_j)}; \quad \mathsf{df} = n-p-1$$

Example

The regression summary in a previous slide shows that Beds is not significant, and can be dropped from the model, since t=0.317 with a p-value= 0.7523. Using the F-test we obtain the same result:

Notice that the *p*-values from the F-test and t-test are exactly the same.

Testing a subset of predictors

Suppose we want to test whether a specified subset of predictors have regression coefficients equal to 0. This is often called the **partial F-test**.

For example, using the NY housing data, the full model is given by $\texttt{Price} = \beta_0 + \beta_1 \texttt{Beds} + \beta_2 \texttt{Baths} + \beta_3 \texttt{Size} + \beta_4 \texttt{Lot} + e$

Suppose we want to test whether the coefficients for Beds and Lot are both zero. The null and alternative hypothesis can be written as:

$$H_0: \ \beta_1 = \beta_4 = 0$$

 $H_A: \ \beta_1 \neq 0 \text{ or } \beta_4 \neq 0$

Testing a subset of predictors

For the partial F-test we use the following test statistic:

$$F = \frac{(\mathsf{RSS}_{\mathsf{reduced}} - \mathsf{RSS}_{\mathsf{full}})/k}{\mathsf{RSS}_{\mathsf{full}}/(n-p-1)}$$

- ► RSS_{full} is the residuals sum of squares for the model with the full set of *p* predictors.
- ► RSS_{reduced} is the residuals sum of squares for the reduced model with *k* predictors removed.

Example

```
> lm_full <- lm(Price ~ Beds + Baths + Size + Lot, data=HousesNY)
> lm2 <- lm(Price ~ Baths + Size, data=HousesNY)
> anova(lm2, lm_full)
Analysis of Variance Table

Model 1: Price ~ Baths + Size
Model 2: Price ~ Beds + Baths + Size + Lot
   Res.Df RSS Df Sum of Sq F Pr(>F)
1   50 53039
2   48 52358   2 680.81 0.3121 0.7334
```

The *p*-value = 0.73 is large, so we do not reject the null hypothesis that $H_0: \beta_1 = \beta_4 = 0$. So we can remove both predictors, Beds and Lot, from the model.

The R^2 for the full and reduced models are about the same, and the adjusted R^2 for the reduced model is a little higher. This agrees with the conclusion of the F-test. So the adjusted- R^2 also indicates that we can remove Beds and Lot.

```
> s1 <- summary(lm_full)
> s2 <- summary(lm2)
>
> s1$r.squared
[1] 0.4133924
> s2$r.squared
[1] 0.4057647
>
> s1$adj.r.squared
[1] 0.3645084
> s2$adj.r.squared
[1] 0.3819953
```

```
(Intercept) 24.641 15.890 1.551 0.12728
Baths 26.755 7.699 3.475 0.00107 **
Size 23.399 8.317 2.813 0.00699 **
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.57 on 50 degrees of freedom
Multiple R-squared: 0.4058, Adjusted R-squared: 0.382
F-statistic: 17.07 on 2 and 50 DF, p-value: 2.233e-06
```

Estimate Std. Error t value Pr(>|t|)

Your turn

Using the NY housing data, the full model is given by $Price = \beta_0 + \beta_1 Beds + \beta_2 Baths + \beta_3 Size + \beta_4 Lot + e$

In R, conduct a partial F-test for the following hypotheses:

 $H_0: \beta_1 = \beta_2 = \beta_4 = 0$ $H_A: \beta_1 \neq 0 \text{ or } \beta_2 \neq 0 \text{ or } \beta_4 \neq 0$

What is the *p*-value and your conclusion?

Summary

> summary(lm2)

Coefficients:

- ▶ Use the overall F-test to test whether there is a relationship between the response and at least one predictor in the model.
- Use the partial F-test to test whether there is a relationship between the response and a specified subset of two or more predictors in the model.
- ▶ Use a t-test to test whether there is a relationship between the response and a single predictor in the model.