Analiza skalowalnośći kodu metodą Lattice Boltzman, wpływ kernela oraz kraty na efektywność obliczeń

Rybski Arkadiusz 2020

Spis treści

1	Wp	owadzenie	3	
	$1.\overline{1}$	Metoda Lattice Boltzmann	3	
	1.2	Skalowalność kodu		
		1.2.1 Silne skalowanie		
		1.2.2 Słabe skalowanie	6	
		1.2.3 Skalowanie superliniowe	6	
2	Analiza			
	2.1	Cel analizy	7	
	2.2	Opis klastrów obliczeniowych	8	
		2.2.1 Prometheus		
		2.2.2 Rysy		
	2.3	Badane modele	9	
		2.3.1 Kraty	10	
		2.3.2 Siatki	10	
3	$\mathbf{W}\mathbf{y}$	iki	10	
	3.1	Prezentacja wyników	10	
	3.2		10	
4	Wn	ski	10	

1 Wprowadzenie

1.1 Metoda Lattice Boltzmann

Metoda Lattice Boltzmann jest metodą numeryczną służacą do rozwiązywania równań z zakresu mechaniki płynów. Metoda kratowa Boltzmanna oparta jest na równaniu Boltmanna (Rownanie 1).

$$\frac{\partial f}{\partial t} + \xi_{\beta} * \frac{\partial f}{\partial x_{\beta}} + \frac{F_{\beta}}{\rho} * \frac{\partial f}{\partial \xi_{\beta}} = \Omega(f)$$
 (1)

gdzie

 $f(x, \xi, t)$ oznacza funkcję rozkładu

x oznacza położenie

 ξ oznacza prędkości cząstek

t oznacza czas

Można pokazać, że rozwiązania mezoskopwych równań Boltzmanna zbiega się do równań Naviera Stokesa. Niestety nie rozwiązuje to problemu analitycznego rozwiązania równania. Natomiast okazuję się, iż mimo skomplikowanej formy, równanie Boltzmana w prosty sposób można zaimplementować. W ten sposób możemy otrzymać równanie kratowe Boltzmanna (Rownanie 2).

$$f_i(x + c_i * \Delta t, t + \Delta t) = f_i(x, t) + \Omega(x, t)$$
(2)

Rodzaje krat

Ze względu na to, że funkcja dystrybucji jest zależna nie tylko od czasu, położenia ale też i prędkości do implementacji potrzebujemy siatki zawierającej nie tylko położenie geometryczne. Każdy węzeł musi zawierać prędkości, także prędkości W literaturze przyjęto następujące oznaczenia krat.

$$D_nQ_m$$

gdzie n oznacza ilość wymiarów, natmoiast m oznacza ilość możliwych kierunków prędkości.

Przykładowe kraty:

Algorytm

Zasada działania metody kratowej Boltzmanna oparta jest na dwóch fazach: propagacji i kolizji. Poniższe równania będą przedstawione dla operatora kolizji BGK.

Faza kolizji

Równanie kolizji

$$f_i^*(x + c_i * \Delta t, t + \Delta t) = f_i(x, t) - \frac{\Delta t}{\tau} * (f_i(x, t) - f_i^{eq}(x, t))$$

Faza propagacji

Równanie propagacji

$$f_i(x + c_i * \Delta t, t + \Delta t) = f_i^*(x, t)$$

Całość mechanizmu można podsumować w nastepujących krokach.

- 1. Wybór lokalizacji
- 2. Rejestracja informacji o nadchodzących cząsteczkach
- 3. Kolizja
- 4. Dystrybucja po kolizji
- 5. Wybór kolejnej lokalizacji

Rodzaje kernela

Przedstawiony w powyższym alogrytmie operator kolizji BGK(Bhatnagar-Gross-Krook) to jeden z wielu możliwych operatorów kolizji. Inne z nich to $MRT(multiple\ relaxation\ time)$ czy $Central\ moments\ Colission\ Operator$. Operator kolizji musi spełniać równania zachowania masy(Rownanie 3), momentów (Rownanie 4), energii (Rownanie 5).

$$\int \Omega(f)d^3\xi = 0 \tag{3}$$

$$\int \Omega(f) * \xi d^3 \xi = 0 \tag{4}$$

$$\int \Omega(f) * \xi^2 d^2 \xi = 0 \tag{5}$$

1.2 Skalowalność kodu

Dzięki nieustannemu rozwojowi technnicznemu współcześnie jesteśmy w stanie rozwiązywać większe problemy obliczeniowe za pomocą wielu proceserów. Co zdecydowanie skraca czas wykonywania obliczeń. Skalowalność określa nam efektywność kodu w przypadku użycia zwiększonych zasobów komputeroywch. W celu zbadania efektywności obliczeń równoległych wprowadźmy wielkość zwana dalej przyspieszeniem (z ang. speedup).

$$speedup = \frac{t_1}{t_N}$$

gdzie

 t_1 oznacza czas wykonania procesu przy użyciu 1-ego procesora t_N oznacza czas wykonania procesu przy użyciu N procesorów.

W idealnym przypadku wykres speedup(N) byłby wykresem liniowym.

Drugą wielkością, która wporwadzimy będzie tzw. skalowane przyspieszenie(z ang. scaled speedup).

$$scaled\ speedup = \frac{t_1}{\frac{t_N}{N}}$$

gdzie

 t_1 oznacza czas wykonywania procesu przy użyciu 1 procesora t_N oznacza czas wykonywania procesu przy użyciu N procesorów, pod warukiem stałej wielkości $\frac{work}{processor}$

Przyspieszenie jest limitowane przez cześć kodu obliczeniowego, którą nie jesteśmy w stanie zrównoleglić. Istnieją dwa główne podejścia w zakresie badania skalowaności programów/kodów(?): silne i słabe skalowanie.

1.2.1 Silne skalowanie

Idea silnego skalowania jest prosta: przy zachowaniu stałego rozmiaru programu zwiększamy ilość procesorów pracującyh nad jego rozwiązaniem. *Przyspieszenie* jest limitowane prawem Amdahl'a:

$$speedup \le \frac{1}{s + \frac{p}{N}} < \frac{1}{s}$$

gdzie

s oznacza cześć kodu, która nie może zostać zrównoleglona(Czy to dobry polski odpowiednik?)

p część kodu zrównoleglona

N ilość procesorów.

Uwaga s + p = 1

Przykładow jeśli 10% kodu obliczeniowego nie nadaje się do zrównoleglenia to maksymalnie możemy uzyskać 10-krotne przyspieszenie procesu.

1.2.2 Słabe skalowanie

Drugim podejściem do badania skalowalności jest słabe skalowanie (z ang. weak scaling). W tym przypadku zwiększany jest równocześnie rozmiar problemu jak i ilość procesorów pracujących nad jego rozwiązaniem. Przyspieszenie skalowane limitowane jest prawem Gustafson-a.

$$scaled\ speedup \le s + p * N$$

oznaczenia jak wyżej.

1.2.3 Skalowanie superliniowe

Należy także wspomnieć o zjawisku zwanym superlinowym skalowaniem. Jest to zjawisko "w którym w miarę zwiększania liczby procesorów czas wykonywania zmniejsza się bardziej niż liniowo. Istnieją różne wyjaśnienia tego zjawiska. Jednym z nich jest dostęp do pamięci cache. Wyjaśnienie tego widoczne jest na poniższym rysunku Figure 1. Podzielenie problemu na kilka procesorów może umożliwić szybszy dostęp do pamięci. Czy jest to ujęte w sposób zrozumiały

Rysunek 1: Schemat superliniowego skanlowania pamiec cache Niebieska ramka symbolizuje obszar pamięci Cache Zielony prostokąt smbolizuje wielkość definującą wielkość pamięci wymaganej przez procesor w danym przedziale czasowym (Working set).

Innym wyjaśnienime zjawiska superliniowego skalowania możeb być sup optymalny algorytm sekwencyjny. Gdy koszt pojedynczeo algorytmu wynosi $O(n^2)$ to w przypadku podzieleniu tego procesu na dwa procesory ich koszt wyniesie $O((0.5n)^2 = O(0.25n^2)$.

Planowałem, żeby napisać 3 kody do całej tej sekcji, tzn. 1 dla weak scaling, 2i dla strong, i 3ci z tym drzewem poszukiwań, żeby pokazać całość

2 Analiza

2.1 Cel analizy

Celem pracy było zbadanie skalowalności kodu metody Lattice Boltzmann. Informacaja o skalowalności kodu obliczeniowego W jakim celiu to było badane. jakie może to dać nam korzysci(informacja o tym jakie symulacje sa efektywe), ewentualnie nad czym pracowac by uefektywnić metode

(a) Problem

(b) Za pomocą jednego procesora

(c) Równolegle

Rysunek 2: Przykład binary tree

2.2 Opis klastrów obliczeniowych

2.2.1 Prometheus

System operacyjny Linux CentOS 7

Konfiguracja

HP Apollo 8000, HPE ProLiant DL360 Gen10

Architektura/Procesory

Intel Xeon (Haswell / Skylake)

Liczba rdzeni obliczeniowych

53604

Liczba kart GPGPU

144 (Nvidia Tesla K40 XL)

Pamięc operacyjna

282 TB

Pamięć dyskowa

10 PB

Moc obliczeniowa

2403 TFlops

2.2.2 Rysy

Typ

Klaster GPU

Architektura

Intel Skylake NVIDIA Volta

Liczba węzłów obliczeniowych

6

Parametry węzła

36 rdzeni 380 GB pamięci RAM 4 GPU

2.3 Badane modele

Po prostu, dać tu infrmacje jakie symulacje byly prowadzone. Rozmiary siatek, rodzaje kernela, rodzaj kraty uporzadkowane zeby latwo bylo odczytac.

- 2.3.1 Kraty
- 2.3.2 Siatki

3 Wyniki

3.1 Prezentacja wyników

tutaj wykresy najpierw, slabe skalowanie, potem silne

3.2 Analiza wynikow

Jak działa skalowanie, a potem sprobowac cos wnioskowac, z zalezności tej powierzchni przeplywu informacji do rozmiarow siatki

4 Wnioski

Co dziala dobrze, co dziala zle.