Shu Kong

CS, ICS, UCI

Outline

- 1. problem definition
- 2. object proposal based instance refinement
- 3. FCN architecture with smarter label
- 4. others
- 5. Conclusion

Outline

- 1. problem definition
- 2. object proposal based instance refinement
- 3. FCN architecture with smarter label
- 4. others
- 5. Conclusion

Semantic to Instance Segmentation

semantic segmentation -- find regions belonging to categorylevel labels by grouping pixels
instance segmentation -- find out all the instances by grouping
pixels

or similar things for instance segmentation?

or similar things for instance segmentation?

Yes

or similar things for instance segmentation?

Yes Where?

or similar things for instance segmentation?

Yes Where?

Here!

or similar things for instance segmentation?

Yes Where?

Here!

for istance segmentation, here is a starter---

for istance segmentation, here is a starter---

find out instances in a class-agnostic way, or object proposals

for istance segmentation, here is a starter--find out instances in a class-agnostic way, or object proposals
how to find the individual instances in the picture?

for istance segmentation, here is a starter--find out instances in a class-agnostic way, or object proposals
how to find the individual instances in the picture?

philosophy -- crop image (sliding window?), highlight the instance centered in the crop, and zero out the pixels/regions outside the instance

Methods --

1. implement the idea described above

Methods --

- 1. implement the idea described above
- 2. fancier output for instance inference

upper boundary

left boundary

right boundary

so on and so forth.....

- 1. problem definition
- 2. object proposal based instance refinement
- 3. FCN architecture with smarter label
- 4. others
- 5. Conclusion

crop image (sliding window?), highlight the instance centered in the crop, and zero out the pixels/regions outside the instance

architecture

top branch -- predicting the mask for the instance centered at the patch

bottom branch -- predicting a score to indicate whether there is a "valid" instance in the patch

samping data for training -- triplet input (input image, mask, score)

samping data for training -- triplet input (input image, mask, score)

input image -- reshaped into 224x224x3

samping data for training -- triplet input (input image, mask, score)

input image -- reshaped into 224x224x3

mask -- binary map of size 224x224

samping data for training -- triplet input (input image, mask, score)

input image -- reshaped into 224x224x3

mask -- binary map of size 224x224

score -- binary label, 1 for valid patch (green), -1 for invalid patch (red)

samping data for training -- triplet input (input image, mask, score)

input image -- reshaped into 224x224x3

mask -- binary map of size 224x224

score -- binary label, 1 for valid patch (green), -1 for invalid patch (red)

Constraints --

- 1. the patch contains an object roughly centered in the patch
- 2. the object is fully contained in the patch and in a given scale range

objective function -- a sum of binary logistic regression losses

$$\mathcal{L}(\theta) = \sum_{k} \left(\frac{1 + y_k}{2w^o h^o} \sum_{ij} \log(1 + e^{-m_k^{ij} f_{segm}^{ij}(x_k)}) + \lambda \log(1 + e^{-y_k f_{score}(x_k)}) \right)$$

 x_k the k-th patch

 m_k its mask

 y_k its objectness score

i,j the pixel location

the output of the classification layer to be $h^o \times w^o$

 $\lambda = \frac{1}{32}$

objective function -- a sum of binary logistic regression losses

$$\mathcal{L}(\theta) = \sum_{k} \left(\frac{1 + y_k}{2w^o h^o} \sum_{i,j} \log(1 + e^{-m_k^{ij} f_{segm}^{ij}(x_k)}) + \lambda \log(1 + e^{-y_k f_{score}(x_k)}) \right)$$

remarks --

- 1. negative samples do not contribute segmentation loss (critical)
- 2. alternating backpropagating the two branches
- 3. for scoring branch, sampling data with equal number of positive&negative
- 4. can be deployed in a fully convolutional manner
- 5. sampling data includes translation shift, scale deformation, horizontal flip
- 6. non-trainable upsampling layer (bilinear upsampling)

qualitative results -- pretty visualization on model generalization

quantitative results -- seems awesome

metrics -- Intersection over Union (IoU), Average Recall (AR) btwn IoU 0.5~1.0

quantitative results -- seems awesome

metrics -- Intersection over Union (IoU), Average Recall (AR) btwn IoU 0.5~1.0

		0.7 0.6 DeopMask MCG MCG SelectiveSearch Figor Condense		laopMask aogMaskZoom ICG alalodivoSaarch	0.6 DoopMask DoocMaskZoom MCG Soloctfv/Soarch Ricer						
Air		Box Proposals				Segmentation Proposals					
	AR@10	AR@100	AR@1000	AUC	AR@10	AR@100	AR@1000	AUCS	AUC^M	AUC^L	AUC
EdgeBoxes [34]	.074	.178	.338	.139	180	2	- 2	12	(423)	3	2 35
Geodesic [16]	.040	.180	.359	.126	.023	.123	.253	.013	.086	.205	.085
Rigor [14]	(40)	.133	.337	.101	-	.094	.253	.022	.060	.178	.074
Selective Search [31]	.052	.163	.357	.126	.025	.095	.230	.006	.055	.214	.074
MCG [24]	.101	.246	.398	.180	.077	.186	.299	.031	.129	.324	.137
DeepMask20	.139	.286	.431	.217	.109	.215	.314	.020	.227	.317	.164
DeepMask20*	.152	.306	.432	.228	.123	.233	.314	.020	.257	.321	.175
DeepMaskZoom	.150	.326	.482	.242	.127	.261	.366	.068	.263	.308	.194
DeepMaskFull	.149	.310	.442	.231	.118	.235	.323	.020	.244	.342	.176
DeepMask	.153	.313	.446	.233	.126	.245	.331	.023	.266	.336	.183

~1.5s per image

- 1. problem definition
- 2. object proposal based instance refinement
- 3. FCN architecture with smarter label
- 4. others
- 5. Conclusion

fancier output for instance inference

upper boundary

left boundary

right boundary

so on and so forth.....

from FCN to InstanceFCN

from FCN to InstanceFCN

InstanceFCN -- differentiate left from right regions

train a model to produce instance-sensitive score maps with relative position of instances

Instance Assembling Module - producing instance based on maps

say, 9 output maps, mosaic them w.r.t relative positions, similar to **mosaic upsampling**

training

vgg16 as base model

modify it with reduced stride at pool4, "hole algorithm" at conv5_1 and conv5_3

two fc branches for segmentation and scoring objectness

Dai et al., "Instance-sensitive Fully Convolutional Networks", ECCV, 2016

training

$$\sum_{i} (\mathcal{L}(p_i, p_i^*) + \sum_{j} \mathcal{L}(S_{i,j}, S_{i,j}^*))$$

sampling for training

$$600 \times 1.5^{\{-4,-3,-2,-1,0,1\}}$$

8-GPU, each for one image with 256 sampled windows -- batch-8

~1.5s for testing one image

NMS (0.8) for final set of proposals

Quantitative Results

Table 2. Ablation comparisons between ~DeepMask and our method on the PASCAL VOC 2012 validation set. "~DeepMask" is our implementation based on controlled settings (see more descriptions in the main text).

method	train	test	AR@10 (%)	AR@100 (%)	AR@1000 (%)
~DeepMask	crop 224×224	sliding fc	31.2	42.9	47.0
ours	crop 224×224	fully conv.	37.4	48.4	51.4
	fully conv.	fully conv.	38.9	49.7	52.6

Table 3. Comparisons with state-of-the-art segment proposal methods on the PASCAL VOC 2012 validation set. The results of SS [6] and MCG [12] are from the publicly available code, and the results of MNC [20] is provided by the authors of [20].

method	AR@10 (%)	AR@100 (%)	AR@1000 (%)
SS [6]	7.0	23.5	43.3
MCG [12]	18.9	36.8	49.5
$^{\sim}$ DeepMask	31.2	42.9	47.0
MNC [20]	33.4	48.5	53.8
ours	38.9	49.7	52.6

Quantitative Results

Table 5. Comparisons of instance segment proposals on the first 5k images [8] from the MS COCO validation set. DeepMask's results are from [8].

segment proposals	AR@10 (%)	AR@100 (%)	AR@1000 (%)
GOP [29]	2.3	12.3	25.3
Rigor [30]	1-	9.4	25.3
SS [6]	2.5	9.5	23.0
MCG [7]	7.7	18.6	29.9
DeepMask [8]	12.6	24.5	33.1
DeepMaskZoom [8]	12.7	26.1	36.6
ours	16.6	31.7	39.2

Qualitative Results

Conclusion

NO conclusion.

Thank you

Question & Answer

leaving blank

Content after this page is not suitable for people to watch!

