ПЛН30

ΕΝΟΤΗΤΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ

Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

- 1. Ορισμός Γλώσσας Ανεξάρτητης Συμφραζομένων
- 2. Τρόπος Λειτουργίας Αυτομάτου Στοίβας
- 3. Παράδειγμα για την $L = \{0^n 1^n \mid n \ge 0\}$
- 2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτόματου Στοίβας
 - 1. Ανισότητα
 - 2. Αναλογία
 - 3. Παλινδρομικότητα
- 4. Πιο Δύσκολες Γλώσσες
- 5. Κανονικές Γλώσσες
- 3. Μαθηματικός Ορισμός Ντετερμινιστικού Αυτομάτου Στοίβας
 - 1. Μαθηματικός Ορισμός
- 2. Παράδειγμα

Γ.Ασκήσεις

Εφαρμογές

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

Κατασκευή Ντετερμινιστικού Αυτομάτου Στοίβας για οποιαδήποτε Γλώσσα Χωρίς Συμφραζόμενα.

Επίπεδο Β

> (-)

<u>Επίπεδο Γ</u>

> Μαθηματικός Ορισμός Ντετερμινιστικού Αυτομάτου Στοίβας

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

1. Ορισμός Γλώσσας Ανέξάρτητης Συμφραζομένων

Ορισμός Γλώσσας Ανεξάρτητης Συμφραζομένων:

- Μία γλώσσα θα λέγεται Γλώσσα Ανεξάρτητη Συμφραζομένων (ή Γλώσσα Χωρίς Συμφραζόμενα)
 αν και μόνο αν
 - Υπάρχει Γραμματική Ανεξάρτητη Συμφραζομένων (Γ.Χ.Σ) που παράγει τις συμβολοσειρές της.
 - Υπάρχει <u>Αυτόματο Στοίβας (Α.Σ)</u> που αναγνωρίζει τις συμβολοσειρές της γλώσσας.
- Το Αυτόματο Στοίβας είναι η «μηχανή» που αναγνωρίζει τις συμβολοσειρές της γλώσσας, δηλαδή:
 - Απαντά ΝΑΙ για κάθε συμβολοσειρά που ανήκει στην γλώσσα.
 - Απαντά ΌΧΙ για κάθε συμβολοσειρά που δεν ανήκει στην γλώσσα.
- > Υπάρχουν δύο κατηγορίες αυτομάτων στοίβας:
 - > Τα Ντετερμινιστικά Αυτόματα Στοίβας (Μάθημα 4.2)
 - > Τα Μη Ντετερμινιστικά Αυτόματα Στοίβας (Μάθημα 4.3)

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Τρόπος Λειτουργίας Αυτομάτου Στοίβας

Δομικά Στοιχεία ενός Αυτομάτου Στοίβας: Είναι και αυτό ένα μαύρο κουτί που περιλαμβάνει:

- Ένα αυτόματο (όπως το ΝΠΑ των κανονικών νλωσσών). δηλαδή έναν μηχανισμό καταστάσεων-μεταβάσεων.
- Επιπλέον όμως έχει μία στοίβα συμβόλων (σωρό συμβόλων) απεριοριστου μεγέθους στον οποίο μπορούμε να αποθηκεύουμε σύμβολα.
 - Στοίβα=Βάζω στην Κορυφή, Βγάζω από την Κορυφή της στοίβας.
 - Η στοίβα έχει στην αρχή της ένα ειδικό σύμβολο, το Z_0 που είναι και το αναγνωριστικό ότι είμαστε στην αρχή της

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Τρόπος Λειτουργίας Αυτομάτου Στοίβας

Το ΕΑΠ με το Αυτόματο Στοίβας έχουν μια ιδιαίτερη σχέση!!!!

Υπάρχουν αρκετές συμβάσεις που το ΕΑΠ υιοθετεί στην διατύπωση του ντετερμινιστικού αυτομάτου στοίβας:

- 1. Δεν χρειάζεται να καθορίσουμε μεταβάσεις στο αυτόματο στοίβας για κάθε συνδυασμό (κατάστασης.σύμβολου εισόδου.σύμβολου σωρού). Εννοείται ότι όλοι οι συνδυασμοί στους οποίος δεν καθορίζεται μετάβαση, το αυτόματο στοίβας θα απαντά ΌΧΙ.
- 2. Επιτρέπονται ε-μεταβάσεις, δηλαδή κινήσεις χωρίς διάβασμα από την είσοδο χωρίς να αίρεται ο ντετερμινισμός.
- 3. Πρέπει να υπάρχει μία και μοναδική τελική κατάσταση. Πάντα εντοπίζουμε ποιες καταστασεις θα θέλαμε να είναι τελικές. ζωγραφίζουμε μία άυτόνομη τελική κατάσταση και με την κίνηση $(ε, Z_0) \rightarrow Z_0$ πηγαίνουμε από αυτές στην μοναδική τελική κατάσταση.
- Μπορούμε να χρησιμοποιήσουμε τον ειδικό χαρακτήρα Z που σημαίνει «οποιοδήποτε σύμβολο» για να κρατήσουμε το σύμβολο που αφαιρούμε από το σωρό.
- 5. Η σχηματική περιγραφή του αυτομάτου δεν είναι ΑΠΟΔΕΚΤΗ από το ΕΑΠ. Θα πρέπει να κατασκευάζουμε έναν πίνακα μετάβασης με τρόπο που θα μελετήσουμε.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Τρόπος Λειτουργίας Αυτομάτου Στοίβας

Προσοχή στον τρόπο λειτουργίας του αυτομάτου στοίβας.

Σε κάθε βήμα:

- Ο υποβολέας λέει το επόμενο σύμβολο της συμβολοσειράς που θέλει να έλένξει.
- Υποχρεωτικά βγάζουμε ΑΚΡΙΒΩΣ ΈΝΑ σύμβολο από την στοίβα
- Ακολουθούμε την μετάβαση στο αυτόματο που καθορίζεται από το σύμβολο του υποβολέα ΚΑΙ το σύμβολο της της στοίβας
- Βάζουμε στην στοίβα όσα σύμβολα θέλουμε (0...οσαδήποτε)

Ως εκ τούτου η μετάβαση του αυτομάτου εδώ θα συμβολίζεται ως εξής όπου:

- χ: το σύμβολο του υποβολέα (σύμβολο εισόδου)
- γ: το σύμβολο που βγάλαμε από τη στοίβα (σύμβολο σωρού)
- z: τα σύμβολα που βάζουμε στην στοίβα (γραμμένα με αντίστροφη σειρά από αυτήν που τα βάζουμε)

ΠΡΟΣΟΧΗ!

Το αυτόματο τερματίζει απαντώντας ΝΑΙ μόνο αν ισχύουν και οι 3 ακόλουθες συνθήκες:

- Έχει διαβαστεί όλη η είσοδος
- 2. Η στοίβα είναι κενή
- 3. Βρισκόμαστε σε τελική κατάσταση στο αυτόματο.
- Σε κάθε περίπτωση που δεν ισχύει έστω και μία από αυτές τις 3 συνθήκες το αυτόματο απαντά OXI!

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Παράδεινμα Κατασκευής Αυτομάτου Στοίβας

Να κατασκευαστεί Ντετερμινιστικό Αυτόματο Στοίβας που να αναγνωρίζει τις συμβολοσειρές της γλώσσας: $L = \{0^n 1^n \mid n \ge 0\}$

ΠΡΟΧΕΙΡΟ:

Πρώτα σκεφτόμαστε έναν αλγόριθμο διαχείρισης της στοίβας ώστε να αναγνωρίζει τις συμβολοσειρές της νλώσσας

- Για κάθε 0 που διαβάζουμε, θα προσθέτουμε ένα 0 στη στοίβα.
- Έπειτα για κάθε 1 που διαβάζουμε, θα αφαιρούμε ένα 0 από την στοίβα.

Προχωράμε στην υλοποίηση της παραπάνω διαδικασίας με βάση τους κανόνες που θέσαμε:

(Ψουνής, ΠΛΗ30, Μασήμα 4.2. Ντετερμινιστικά Αυτοματά Στοιρο

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Παράδειγμα Κατασκευής Αυτομάτου Στοίβας

ΚΑΘΑΡΟ

Αλγόριθμος Διαχείρισης Στοίβας

- Για κάθε 0 που διαβάζουμε, θα προσθέτουμε ένα 0 στη στοίβα.
- Έπειτα για κάθε 1 που διαβάζουμε, θα αφαιρούμε ένα 0 από την στοίβα.

Ο πίνακας μετάβασης είναι

Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
1	q_0	0	Z	$(q_0, 0Z)$	Διάβαζουμε ο από την είσοδο, προσθέτουμε ο στην στοίβα
2	q_0	1	0	(q_1,ε)	Διάβαζουμε το πρώτο 1, Αφαιρούμε ο από τη στοίβα.
3	q_1	1	0	(q_1, ε)	Διάβαζουμε επόμενο 1, Αφαιρούμε ο από τη στοίβα.
4	q_1	ε	Z_0	(q_2, \mathbf{Z}_0)	Αποδοχή.
5	q_0	ε	Z_0	(q_2, \mathbf{Z}_0)	Αποδοχή (κενή συμβολοσειρά).
	Οι υπό	λοιποι συν	ТІПОТА		

Τελική κατάσταση είναι η α

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

www.psounis.g

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Παράδειγμα Κατασκευής Αυτομάτου Στοίβας

Παραδείγματα εκτέλεσης συμβολοσειρών

Π.χ. για την συμβολοσειρά 001

Αριθμός Κίνησης	Κατ/ση	Υπόλοιπη Συμβ/ρα	Σωρός	Επεξήγηση
	q_0	001	Z_0	Αρχικοποίηση
1	q_0	01	$0Z_0$	
1	q_0	1	$00Z_0$	
2	q_1	ε	$0Z_0$	АПОРРІΨН

Π.χ. για την συμβολοσειρά 01111

Αριθμός Κίνησης	Κατ/ση	Υπόλοιπη Συμβ/ρα	Σωρός	Επεξήγηση				
	q_0	01111	Z_0	Αρχικοποίηση				
1	q_0	1111	$0Z_0$					
2	q_1	111	Z_0					
	ΠΑΓΩΜΑ ΜΗΧΑΝΗΣ							

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Β. Θεωρία

1. Ντετερμινιστικό Αυτόματο Στοίβας

2. Παράδειγμα Κατασκευής Αυτομάτου Στοίβας

Παραδείγματα εκτέλεσης συμβολοσειρών

Ενδέχεται να μας ζητηθεί παράδειγμα εκτέλεσης για κάποιες συγκεκριμένες συμβολοσειρές. Κατασκευάζουμε ένα πινακάκι που απεικονίζουμε βήμα-βήμα τις μεταβάσεις που γίνονται με κάθε σύμβολο που λέει ο υποβολέας:

Π.χ. για την συμβολοσειρά 000111

Κατ/ση	Υπόλοιπη Συμβ/ρα	Σωρός	Επεξήγηση
q_0	000111	Z_0	Αρχικοποίηση
q_0	00111	$0Z_0$	
q_0	0111	$00Z_0$	
q_0	111	$000Z_0$	
q_1	11	$00Z_0$	Μέση Συμβολοσειράς
q_1	1	$0Z_0$	
q_1	ε	Z_0	
q_2	ε	Z_0	ΑΝΑΓΝΩΡΙΣΗ
	q ₀ q ₀ q ₀ q ₀ q ₀ q ₁ q ₁ q ₁	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Συμβ/ρα q_0 000111 Z_0 q_0 00111 00 Z_0 q_0 0111 000 Z_0 q_0 111 000 Z_0 q_1 11 00 Z_0 q_1 1 0 Z_0 q_1 1 0 Z_0 q_1 2 0 q_1 2 0

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

1. «ανισότητα»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{a^n b^m \mid n > m\}$

www.psounis.gr

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

1. «ανισότητα»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{a^n b^m \mid n < m\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

2. «αναλογία»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{a^{3n}b^{2n} \mid n \ge 0\}$

ПРОХЕІРО:

Πρώτα σκεφτόμαστε έναν αλγόριθμο διαχείρισης της στοίβας ώστε να αναγνωρίζει τις συμβολοσειρές της γλώσσας

- Για κάθε τριά α που διαβάζουμε, θα προσθέτουμε δύο α στη στοίβα.
- Έπειτα για κάθε b που διαβάζουμε, θα αφαιρούμε ένα a από την στοίβα.

Υλοποίηση:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

2. «αναλογία»

ΚΑΘΑΡΟ:

Αλγόριθμος Διαχείρισης της Στοίβας

- Για κάθε τριά α που διαβάζουμε, θα προσθέτουμε δύο α στη στοίβα.
- Έπειτα για κάθε b που διαβάζουμε, θα αφαιρούμε ένα a από την στοίβα.

Ο πίνακας μετάβασης είναι (τελική Κατάσταση είναι η q₄)

Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
1	q_0	α	Z	(q_1, Z)	Διάβαζουμε πρώτο α μιας τριάδας από α
2	q_1	α	Z	(q_2, \mathbf{Z})	Διαβάζουμε δεύτερο α μιας τριάδας από α
3	q_2	α	Z	$(q_0, \alpha \alpha Z)$	Διάβαζουμε τρίτο α μιας τριάδας από α, Προσθέτουμε δύο α στη στοίβα.
4	q_0	b	а	(q_3, ε)	Διαβάζουμε πρώτο b Αφαιρούμε ένα α από τη στοίβα
5	q_3	b	а	(q_3, ε)	Διαβάζουμε επόμενο b Αφαιρούμε ένα α από τη στοίβα
6	q_3	ε	Z_0	(q_4, \mathbb{Z}_0)	Αποδοχή
7	q_0	Е	Z_0	(q_4, Z_0)	Αποδοχή (κενή συμβολοσειρά)
	Οι υπόλ	οιποι συνδ	ТІПОТА		

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

2. «αναλογία»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{a^{2n}b^{4n} \mid n \ge 0\}$

Γ. Μεθοδολονία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

2. «αναλογία»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{1^n0^{5n} \mid n \geq 0\}$

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

3. «παλινδρομικότητα»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{wcw^R \mid w \in \{a,b\}^*\}$

ПРОХЕІРО:

Πρώτα σκεφτόμαστε έναν αλγόριθμο διαχείρισης της στοίβας ώστε να αναγνωρίζει τις συμβολοσειρές της γλώσσας

- Κάθε σύμβολο που διαβάζουμε το βάζουμε στην στοίβα
- Διαβάζουμε το c
- Ταυτίζουμε τα σύμβολα που διαβάζουμε με τα σύμβολα που υπάρχουν στη στοίβα.

Υλοποίηση:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

3. «παλινδρομικότητα»

ΚΑΘΑΡΟ:

- Κάθε σύμβολο που διαβάζουμε το βάζουμε στην στοίβα
- Διαβάζουμε το c
- Ταυτίζουμε τα σύμβολα που διαβάζουμε με τα σύμβολα που υπάρχουν στη στοίβα.

Ο πίνακας μετάβασης είναι:

Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
1	q_0	α	Z	$(q_0, \alpha Z)$	Διάβαζουμε α. Το προσθέτουμε στο σωρό
2	q_0	b	Z	(q_0, bZ)	Διάβαζουμε b. Το προσθέτουμε στο σωρό
3	q_0	С	Z	(q_1, \mathbf{Z})	Διαβάζουμε c.
4	q_1	а	а	(q_1, ε)	Διαβάζουμε α Αφαιρούμε ένα α από τη στοίβα
5	q_1	b	b	(q_1, ε)	Διαβάζουμε b Αφαιρούμε ένα b από τη στοίβα
6	q_1	ε	Z_0	(q_2, \mathbf{Z}_0)	Αποδοχή
	Οι υπόλ	ιοιποι συνδ	ТІПОТА		

Τελική Κατάσταση είναι η q2

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

- 2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας
- 3. «παλινδρομικότητα»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{ww^R \mid w \in \{a,b\}^*\}$

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

4. «Δύσκολες Γλώσσες»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα:: $L = \{\alpha^n b^n c^m d^m | n, m \ge 0\}$

ΠΡΟΧΕΙΡΟ:

Αλγόριθμος

- Για κάθε α που διαβάζουμε προσθέτουμε ένα α στη στοίβα
- Για κάθε β που διαβάζουμε αφαιρούμε ένα α από τη στοίβα
- Για κάθε c που διαβάζουμε προσθέτουμε ένα c στη στοίβα
- Για κάθε d που διαβάζουμε αφαιρούμε ένα c από τη στοίβα

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

- 2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας
- 4. «Δύσκολες Γλώσσες»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{0^n 1^m 0^m 1^n | n, m \ge 0\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

psounis.gr

ΚΑΘΑΡΟ: (Αλγοριθμος όπως πριν. Τελικη η α₄). Ο πίνακας μετάβασης είναι:

Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
1	q_0	α	Z	$(q_0, \alpha Z)$	Διάβαζουμε α. Προσθέτουμε α στο σωρό
2	q_0	b	α	(q_1, ε)	Διάβαζουμε το πρώτο b. Αφαιρούμε α από το σωρό.
3	q_1	b	α	(q_1, ε)	Διάβαζουμε επόμενο b. Αφαιρούμε α από το σωρό.
4	q_1	С	Z_0	(q_2, cZ_0)	Διαβάζουμε πρώτο c Προσθέτουμε c στο σωρό.
5	q_2	С	Z	(q_2, cZ)	Διαβάζουμε επόμενο c Προσθέτουμε c στο σωρό.
6	q_2	d	С	(q_3, ε)	Διαβάζουμε πρώτο d Αφαιρούμε c από το σωρό.
7	q_3	d	С	(q_3, ε)	Διαβάζουμε επόμενο d Αφαιρούμε c από το σωρό.
8	q_3	ε	Z_0	(q_4, Z_0)	Αποδοχή
9	q_0	ε	Z_0	(q_4, Z_0)	Αποδοχή (κενή συμβολοσειρά)
10	q_1	3	Z_0	(q_4, Z_0)	Αποδοχή (Μορφή a^nb^n)
11	q_0	С	Z_0	(q_2, cZ_0)	Δ ιαβάζουμε πρώτο c (Μορφή $c^m d^m$)
	Οι υπόλ	ιοιποι συνδ	ТІПОТА		

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

24 www.psounis.gr

Γ. Μεθοδολογία

- 2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας
- 4. «Δύσκολες Γλώσσες»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{a^i b^j c^k | i+j=k\}$

Γ. Μεθοδολονία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

4. «Δύσκολες Γλώσσες»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{w \in \{0,1\}^* | w \text{ έχει ίσα 0 και 1} \}$

Γ. Μεθοδολονία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

5. «Κανονικές Γλώσσες»

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{ w \in \{a,b\}^* | w \pi \epsilon \rho \iota \epsilon \chi \epsilon \iota \tau o 00 \}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

5. Κανονικές Γλώσσες

Κατασκευάζουμε αυτόματο στοίβας που προσομοιώνει την λειτουργία του ΝΠΑ:

$q_0 = q_1 \qquad 0 \qquad q_2$

Ο πίνακας μετάβασης είναι:

Τελική Κατάσταση είναι η q₃

ΚΑΘΑΡΟ:

Αριθμός	Κατ/ση	Σύμβολο Εισόδου	Σύμβολο Σωρού	Κίνηση	Επεξήγηση
1	q_0	0	Z	(q_1, Z)	Μετάβαση από το q0 με 0 στο q1
2	q_0	1	Z	(q_0, \mathbf{Z})	Μετάβαση από το qo με 1 στο qo
3	q_1	0	Z	(q_2, Z)	Μετάβαση από το q1 με 0 στο q2
4	q_1	1	Z	(q_0, Z)	Μετάβαση από το q1 με 1 στο q0
5	q_2	0	Z	(q_2, Z)	Μετάβαση από το q2 με ο στο q2
6	q_2	1	Z	(q_2, Z)	Μετάβαση από το q2 με 1 στο q2
7	q_2	ε	Z_0	(q_3, \mathbf{Z}_0)	Αποδοχή
	Οι υπόλ	ιοιποι συνδ	ТІПОТА		

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

www.psounis.gr

Γ. Μεθοδολογία

2. Μεθοδολογία Κατασκευής Ντετερμινιστικού Αυτ. Στοίβας

5. Κανονικές Γλώσσες

Δώστε Ντετερμινιστικό Αυτόματο Στοίβας για τη Γλώσσα: $L = \{w \in \{a,b\}^* | w$ τελειώνει με 001 $\}$

Β. Θεωρία

3. Μαθηματικός Ορισμός Ντετερμινιστικού Αυτομάτου Στοίβας

1. Τυπικός (μαθηματικός) Ορισμός Ντετερμινιστικού Αυτομάτου Στοίβας

Ορισμός:

Ένα Ντετερμινιστικό Αυτόματο Στοίβας είναι μία 7-άδα

 $M=(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$

Όπου:

- Q είναι το σύνολο των καταστάσεων
- > Σ είναι το αλφάβητο των συμβόλων εισόδου
- Γ είναι το αλφάβητο των συμβόλων στοίβας
- > q₀ ∈ Q είναι η αρχική κατάσταση
- $ightarrow Z_0 \in \Gamma$ είναι το αρχικό σύμβολο του σωρού
- $m{\delta}: Q imes (\Sigma \cup \{\mathcal{E}\}) imes \Gamma o Q imes \Gamma^*$ είναι <u>η συνάρτηση μετάβασης</u> (π.χ. δ(q₁,σ,σ')=(q₂,w) που σημαίνει ότι είμαστε στην q₁ διαβάζουμε σ από την είσοδο και η στοίβα έχει πάνω-πάνω το σ', το αφαιρούμε πάμε στην q₂ και βάζουμε στην στοίβα την w).
- $ightharpoonup F \subseteq Q$ είναι το σύνολο των τελικών καταστάσεων

Β. Θεωρία

3. Μαθηματικός Ορισμός Ντετερμινιστικού Αυτομάτου Στοίβας

2. Παράδειγμα

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

www.psounis.c

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 1</u>

(2007A) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{a^{3n}b^{4n}|n \ge 0\}$

(2007B) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{wcw^R | w \in \{0,1\}^*\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 2</u>

 $F=\{q_2\}$

2. $\delta(q_0, 0, Z_0) = (q_0, 0Z_0)$

3. $\delta(q_0,0,0)=(q_0,00)$

6. $\delta(q_1, \epsilon, Z_0) = (q_2, Z_0)$

4. $\delta(q_0, 1, 0) = (q_1, \varepsilon)$ 5. $\delta(q_1, 1, 0) = (q_1, \varepsilon)$

(2008Α) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{1^n0^{3n} | n \ge 0\}$

(2008Β) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{1^{2n}0^{3n}|n \ge 0\}$

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 3</u>

(2009Α) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{(ab)^n c^{2n} | n \geq 0\}$

(2009Β) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{a^nbc^n|n\geq 0\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

www.psounis.gr

<u>Γ. Ασκήσεις</u> <u>Εφαρμογή 4</u>

(2010Α) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{a^n b^{n+m} c^m | n, m \ge 0\}$

(2010B) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα: $L = \{a^n b^n a^m b^m | n, m \ge 0\}$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 4.2: Ντετερμινιστικά Αυτόματα Στοίβας

<u>Γ. Ασκήσεις</u> Εφαρμογή 5

(2011A) Δώστε Ντετ/κο Αυτόματο Στοίβας για τη γλώσσα $L = \{0^k 1^m 0^n \mid k, m, n \in \ N, \ k+m \le n\}$

(2011B) Δώστε ένα ντετερμινιστικό αυτόματο στοίβας M που να αναγνωρίζει τη γλώσσα $L_2 = \{a^mbba^{m+1} \mid m \in \ N, \ m \geq 1\}.$