PPL2005 Category 4 Talk Well-Quasi-Ordering, Overview and its Applications

Mizuhito Ogawa (JAIST)

2005.3.9

Today's Menu

Definition: What is WQO?

- Theory
 - Kruskal-type theorems (on finite/infinite data structure)
 - WQO and regularity
- Applications
 - Simple termination
 - Deciding polynomial time complexity
 - Well structured transition system

WQO (Well-Quasi-Order)

Definition A QO (quasi ordering) (A, \leq) is a reflexive transitive binary relation on A.

Definition For a QO (A, \leq) , a sequence a_1, a_2, \cdots in A is good if there exist i, j s.t. i < j and $a_i \leq a_j$, and bad otherwise.

Definition (A, \leq) is a Well-Quasi-Order (WQO) if each infinite sequence in A is good.

Example A QO on a finite set, ordering on natural numbers,

Remark

- If \leq is a WQO, < (= \leq \ \geq) is a WFO (but not vice versa).
- The minimal elements of a subset of A is finite.

Theory:	Kruskal-type	theorems on	finite structures

Kruskal-type theorems at a glance

For pair (product) ... (Dickson 28)

For finite structures ...

Finite words
Finite trees
(Kruskal 60)

... simple proof (Ramsey Th. + MBS)
(Nash-Williams 63)

... with gap-condition (finite labels)
(H.Friedman 85)

... with gap-condition (ordinal labels)
(Igor Kříž 1989)

Finite graphs with bounded tree-width
(RS 89)

(RS 88)

For infinite structures ...

Infinite words (Nash-Williams 65) (Nash-Williams 65, Laver 78) ... with gap-condition (finite labels) (R.Thomas 89) ... with gap-condition (ordinal labels) (R.Thomas 95) Infinite graphs with bounded tree-width (R.Thomas 89) Countable graphs ?

Conter-example for uncountable graphs (R.Thomas 89)

Higman's Lemma: embedding on finite words

Higman's lemma If (A, \leq) is a WQO, (A^*, \preceq) is a WQO where \preceq is the embedding.

e.g.,
$$(2,3,1,4) \leq (3,1,5,1,1,6)$$

 $(2,3,1,4) \leq (1,5,2,2,2,6)$

Proof = Ramsey's Th. + Minimal Bad Sequence (MBS)

Ramsey's theorem (infinite version) Paint each edge of a countable complete graph either *red* or *green*. Then, it contains a monochromatic countable complete subgraph.

Corollary An infinite sequence a_1, a_2, a_3, \cdots in A contains either an infinite bad sequence or an infinite ascending chain.

Proof For each i, j with i < j, paint (a_i, a_j) red if $a_i \le a_j$, and green if $a_i \le a_j$.

Proof = Ramsey's Th. + Minimal Bad Sequence (MBS)

Higman's lemma If (A, \leq) is a WQO, (A^*, \leq) is a WQO.

Definition An infinite bad sequence that is minimal wrt the lexicographical order of the word length is *Minimal Bad Sequence* (MBS).

Remark If an infinite bad sequence exists, an MBS exists (by Zorn's Lemma).

Proof For an MBS t_1, t_2, t_3, \cdots , let $t_i = a_i \cdot t'_i$.

If t'_1, t'_2, t'_3, \cdots contains an infinite bad sequence $t'_{j_1}, t'_{j_2}, t'_{j_3}, \cdots$, $t_1, t_2, \cdots, t_{j_1-1}, t'_{j_1}, t'_{j_2}, t'_{j_3}, \cdots$ contradicts to the MBS. Thus, from Corollary, there is an infinite ascending chain $t'_{j_1}, t'_{j_2}, t'_{j_3}, \cdots$.

Since $a_{j_1}, a_{j_2}, a_{j_3} \cdots$ is good, thus there are k, k' with k < k' and $a_{j_k} \le a_{j_{k'}}$. Thus $t_{j_k} \le t_{j_{k'}}$ and a contradiction.

Kruskal's Theorem: embedding on finite words

Kruskal's Theorem If (A, \leq) is a WQO, $(T(A), \leq)$ is a WQO.

embedding

Extension with Gap-condition: Finite labels

Let labels of nodes be in $\{1, 2, \dots, n\}$. Define the embedding not only from correspondence between nodes, but also from gap.

Kruskal-Friedman's theorem $(T([1, n]), \leq_G)$ is a WQO.

Extension with Gap-condition: Ordinal labels

Let labels of nodes be in *ordinals* $\{1, 2 \cdots, \omega, \cdots, \Gamma_0 \cdots\}$.

Theorem (Igor Kříž 1989) $(T(Ord), \leq_g)$ is a WQO.

Remark \leq_G does not work. e.g., $(\omega, \omega), (\omega, 0, \omega), (\omega, 0, 1, \omega), \cdots, (\omega, 0, 1, \cdots, n, \omega), \cdots$

Immersion and Minor (for simple graphs)

Immersion (embedding) $G \leq_I G' \Leftrightarrow G \rightarrow_I^* G'$ where \rightarrow_I is an edge/node addition.

Minor $G \leq_M G' \Leftrightarrow G \leftarrow_M^* G'$ where \rightarrow_M is either an edge contraction or an edge/node removal.

Lemma For graphs with degree less-than-equal-to 3, \leq_I and \leq_M are equivalent.

Remark Imme

Graph Minor Theorem (Wagner's Conjecture)

Theorem (RS88) Minor relation \leq_M is a WQO on finite graphs.

(Very Rough) Proof Scenario Let G_1, G_2, \cdots

- (1a) If a finite graph G_i is planar, a finite graph G with $G_i \not\prec_M G$ has an upperbound of its *tree width*.
- (1b) The minor relation \leq_M on graphs with bounded tree width is a WQO (by Kruskal-Friedman Th. + Menger-like property).
- (2a) If each finite graph G_i is non-planar, each finite graph $G_i(i > 0)$ with $G_1 \not\prec_M G_i$ can be embedded on an algebraic surface.
- (2b) An algebraic surface Σ is constructed as "1 sphere + a handles + b cross-caps c dishes". Use induction on $C(\Sigma) = 4a + 2b + c$.

Remark The proof is more than 100 pages, referring a few results in (more than 20) *Graph Minor* paper series. The main proof still remains as *preprint* from 1988 (*Need a simple proof!*).

Algebraic characterization of tree width (Arnborg, et.al 93)

Let B_k be a sort of k-terminal graphs with $k \geq 0$. Signatures are:

$$\begin{cases} l_k^i : B_{k-1} \to B_k, & \oplus_k : B_k \times B_k \to B_k, & e^2 : B_2, \\ r_k : B_k \to B_{k-1}, & \sigma_k^j : B_k \to B_k, & \mathbf{0} : B_0, \end{cases}$$

where

- $l_k^i(G)$ is *lifting*, i.e., insert a *fresh* terminal at the i-th position in k-1 terminals for $1 \le i \le k$.
- $-r_k(G)$ is removal, i.e., remove the last terminal.
- $-G \oplus_k G'$ is parallel composition, i.e., fuse each pair of the i-th terminals for $1 \le i \le k$.
- $-\sigma_k^j(G)$ is *permutation*; permute the numbering of the j-th and j+1-th terminals for $1 \le j < k$.

Lemma A graph G is constructed by l_j^i , r_j , p_j , e^2 , and $\mathbf{0}$ with $i \leq j \leq k$, if, and only, if $twd(G) \leq k-1$.

Operations for graphs with tree width at most 2

Constant e^2

0 (empty graph)

Lifting $l_1^1 = \begin{pmatrix} \bullet \\ \bullet \end{pmatrix}$

 $l_2^1 \stackrel{\bullet}{\bigcirc} = \stackrel{\bullet}{\bigcirc} \qquad l_2^2 \stackrel{\bullet}{\bigcirc} = \stackrel{\bullet}{\bigcirc}$

Removal $r_1 \stackrel{\bullet}{\bigcirc} = \stackrel{\bullet}{\bigcirc}$

 r_2 = \bigcirc

Parallel $\oplus_1 \stackrel{\bullet}{\bigcirc} \stackrel{\bullet}{\bigcirc} = \stackrel{\bullet}{\bigcirc}$

 \oplus_2 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Permutation

$$\sigma_2^1 \underbrace{\bullet}_2^1 = \underbrace{\bullet}_1^2$$

Theory:	Kruskal-type theorems on infinite structures

Rado's example : embedding on ω -words

Even if (A, \leq) is a WQO, (A^{ω}, \leq) may not be a WQO!

Example Let $A = \{(i,j) \mid 0 \le i < j\}$ and let $(i,j) \le (k,l)$ iff either $i = k \land j \le l$ or j < k.

 $\alpha_1, \alpha_2, \cdots$ is a *bad sequence* where

$$\alpha_1 = \langle (0,1), (1,2), (1,3), (1,4), \cdots \rangle
\alpha_2 = \langle (0,1), (1,2), (2,3), (2,4), \cdots \rangle
\cdots = \cdots
\alpha_i = \langle (0,1), \cdots, (i,i+1), (i,i+2), (i,i+3), \cdots \rangle$$

 \Rightarrow Extension of WQO = Better-Quasi-Order (BQO).

Barrier

Definition For ascending chains s, t (of natural numbers), we define pref(s,t) if s is an initial segment of t.

e.g.,
$$pref((3,4,6),(3,4,6,7,9,\cdots)), pref((3),(3,4,6)),$$

Definition B is a barrier (on an infinite set $X \subseteq \mathbb{N}$) if B is a set of finite ascending chains on X satisfying

- $-\emptyset \not\in B$.
- For any infinite ascending chain Y (in X), $\exists s \in B \text{ s.t. } pref(s, Y)$.
- $-s, t \in B$ and $s \neq t$ imply $s \not\subset t$.

Tree of infinite ascending chains on Nat

Better-Quasi-Order (BQO)

Definition For finite ascending chains $s, t, s \triangleleft t$ if there exist $i_0 < i_1 < \dots < i_n$ and m(< n) s.t. $s = (i_0, i_1, \dots, i_m), t = (i_1, i_2, \dots, i_n).$ e.g., (3) \triangleleft (5), (3,5,6) \triangleleft (5,6,8,9), (3,5,6) $\not \triangleleft$ (5,6).

Definition (A, \leq) is a Better-Quasi-Order (BQO) if for a barrier B and a function $g: B \to A$, there exist $s, t \in B$ such that $s \triangleleft t \land g(s) \leq g(t)$.

Remark The definition of WQO corresponds to a special barrier $B = \{(0), (1), (2), \dots\}$, thus a WQO is a BQO.

Theorem (Nash Williams 65, Laver 78) If (A, \leq) is BQO, (A^{α}, \leq) is a BQO (where α is an ordinal).

Proof = Ramsey's Th. + Minimal Bad Sequence (MBS)

Definition For a barrier B, $f: B \to A$ is *perfect* (resp. *bad*) if $s \triangleleft t$ implies $f(s) \leq f(t)$ (resp. $f(s) \not\leq f(t)$) for $s, t \in B$.

Theorem (Galvin-Prikry 73) If $B = B_1 \cup B_2$ is a barrier, either B_1 or B_2 contains a barrier.

Corollary For a barrier B and $f: B \to A$, there exists a barrier $C \subseteq B$ such that $f|_C$ is either *perfect* or *bad*.

Lemma If B is a barrier, $B(2) = \{b_1 \cup b_2 \mid b_1 \triangleleft b_2\}$ is a barrier.

Proof of Corollary Let $D_1 = \{b_1 \cup b_2 \mid b_1, b_2 \in B, b_1 \triangleleft b_2, f(b_1) \leq f(b_2)\}$ and $D_2 = \{b_1 \cup b_2 \mid b_1, b_2 \in B, b_1 \triangleleft b_2, f(b_1) \not\leq f(b_2)\}$. Since $B(2) = D_1 \cup D_2$, either D_1 or D_2 contains a barrier D. Let $C = \{b \in B \mid b \subseteq \cup_{d \in D} d\}$. $f|_C$ is perfect when $D \subseteq D_1$, and bad otherwise.

Proof = Ramsey's Th. + Minimal Bad Sequence (MBS)

Definition <' is a *partial ranking* of (A, \leq) if <' is a WFO and $<' \subset <$.

Definition For barriers B, C, $B \sqsubseteq C$ if $\cup C \subseteq \cup B$ and, for each $c \in C$, there exists $b \in B$ with b = c or pref(b, c). (e.g. $B \sqsubseteq B(2)$.)

Definition Let $f: B \to A$, $g: C \to A$ for barriers B, C. $f \sqsubseteq g$ if $B \sqsubseteq C$ and

- $-g(a)=f(a) \text{ (if } a \in B \cap C),$
- -g(c) <' f(b) (if $b \in B$, $c \in C$, pref(b,c)).

Definition $f: B \to A$ is *minimal bad*, if f is maximum wrt \sqsubseteq .

Theorem (Laver 78) Let <' be a partial ranking of (A, \le) . If f is bad, there exists minimal bad g with $f \sqsubseteq g$.

Infinite Kruskal-type theorems

Fraïssé's Conjecture (Laver 71) For *countable* linearly ordered sets, \leq is a BQO.

Theorem (Laver 78) If (A, \leq) is a BQO, $(T^{\omega}(A), \leq)$ is a BQO.

Theorem (R.Thomas 89) $(T^{\omega}([1..n]), \preceq_G)$ is a BQO.

Theorem (R.Thomas 95) $(T^{\omega}(Ord), \preceq_g)$ is a BQO.

Open Problem Minor relation \leq_M is a WQO on countable graphs? (Probably, the length of each path in a graph must be at most ω .)

Theory: WQO and regularity

Myhill-Nerode's theorem

Let $\mathcal{A} = (A, Q, Q_f, s_0, \Delta)$ be an automaton and let $L(\mathcal{A})$ be a set of (finite) words accepted by \mathcal{A} .

Definition An equivalence relation \sim over A^* is a congruence $u \sim v$ implies $w_1uw_2 \sim w_1vw_2$ for each $u,v,w_1,w_2 \in A^*$. If congruence classes are finite, \sim is a *finite congruence*.

Myhill-Nerode's theorem The followings are equivalent.

- $-L \subseteq A^*$ is regular.
- There is a finite congruence \sim over A^* such that $u \in L$ and $u \sim v$ imply $v \in L$.

Proof

- $(\Rightarrow) \quad \text{Define } u \sim_{\mathcal{A}} v \text{ by } q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q' \text{ for } \forall q, q' \in Q.$
- (\Leftarrow) Define an automata by $Q = \{\text{equivalent class of } \sim\}, \ Q_f = \{[u] \mid u \in L\}, \ s_0 = [\epsilon], \ \Delta = \{[u] \xrightarrow{v} [uv]\}.$

Ehrenfeuchet's theorem

Definition $L \subseteq A^*$ is *closed* wrt \leq iff $x \in L \land x \leq y$ implies $y \in L$.

Theorem (Ehrenfeuchet 83) The followings are equivalent.

- $-L \subseteq A^*$ is regular.
- -L is closed wrt a monotonic WQO \leq .

Proof

- (\Rightarrow) Define \leq by $\sim_{\mathcal{A}}$.
- (\Leftarrow) Define $u \sim_L v$ by $w_1 u w_2 \in L \Leftrightarrow w_1 v w_2 \in L$ for $\forall w_1, w_2 \in A^*$. If congruence classes of \sim_L are infinitely many, since \leq is a WQO there is an infinite ascending chain $u_1 \leq u_2 \leq \cdots$ of representatives. Since $F(u) = \{(v, w) \mid vuw \in L\}$ is closed wrt $\leq \times \leq$, $F(u_1) \subseteq F(u_2) \subseteq \cdots$ from $u_1 \leq u_2 \leq \cdots$.

On the other hand, since $u_i \not\sim_L u_j$, $F(u_1) \subset F(u_2) \subset \cdots$. This contradicts to that $\leq \times \leq$ is a WQO.

Ehrenfeuchet's theorem on ω -language

Definition A QO (A^{ω}, \preceq) is a periodic extension of (A^*, \leq) if

- $-u_i \leq v_i$ for each $u_i, v_i \in A^*$ implies $u_1u_2u_3 \cdots \leq v_1v_2v_3 \cdots$
- For each $\alpha \in A^{\omega}$, there exist $u, v \in A^*$ such that $\alpha \leq u.v^{\omega}$ and $\alpha \succeq u.v^{\omega}$.

Theorem (Ogawa 04) $L(\subseteq A^{\omega})$ is regular if, and only if, L is \preceq -closed wrt a periodic extension (A^{ω}, \preceq) of a monotone WQO (A^*, \leq) .

Application: Simple termination

Simple termination of TRSs

A TRS $R = \{l \rightarrow r\}$ terminates if there exists a WFO > such that $s \rightarrow_R t$ implies s > t.

Theorem (Dershwitz 82) A TRS R terminates if there exists an order > such that, for each ground term s,t,> satisfies

$$\begin{array}{lll} -s \geq t & \Rightarrow & C[s] \geq C[t] \\ -C[s] \geq s & & \text{(subterm property)} \\ -s \rightarrow_R t & \Rightarrow & s > t \end{array}$$

Proof From the monotonicity and the subterm property, $\geq \geq \succeq_T$ on finite terms. From Kruskal's theorem \preceq_T is a WQO, and \leq is also a WQO. Thus > is a WFO.

Lexicographic Path Ordering (LPO)

Definition Let a precedence be an order on a finite set of function symbols. If ground terms $s = f(s_1, \dots, s_m)$ and $t = g(t_1, \dots, t_n)$ satisfy either (1),(2), or (3), then $s <_{LPO} t$.

- (1) There exists i such that $s \leq t_i$.
- (2) If f = g, there exists i such that $s_j = t_j$ for each j with j < i, $s_i < t_i$, and $s_k < t$ for each k with i < k.
- (3) If f < g, $s_i < t$ for each i.

Theorem $<_{LPO}$ is a WFO on ground terms.

Remark There are many variants of path orederings, e.g., Recursive Path Ordering (RPO), Path of Subterms Ordering (PSO), Recursive Decomposition Ordering (PDO),

Automated Termination Detection: Ackerman function

Definition (of Ackerman function)

$$\begin{cases}
ack(0,j) &= s(j) \\
ack(s(i),0) &= ack(i,s(0)) \\
ack(s(i),s(j)) &= ack(i,ack(s(i),j))
\end{cases}$$

Algorithm

- (1) The naive way is to regard variables as fresh constants.
- (2) Search a suitable precedence among the (finite) set of function symbols such that a TRS becomes terminating.

e.g., 0 < i, j < s < ack for Ackerman function.

Remark Some applications in partial evaluation, program transformation.

Application:	Deciding	Polynomial	l Time Complex	ity

Deciding a polynomial upper bound of graph algorithms

Recall that if (A, \leq) is a WQO, minimal elements of a subset of A is finite. Further, minor relation \leq_M is a WQO on finite graphs.

Definition L is closed if $x \in L \land x \leq y$ implies $y \in L$.

Remark Assume L is closed. $t \in L$ if, and only if, $s \leq_M t$ for a minimal element s in L. For example, a graph G is *not planar* if, and only if, $K_5 \leq_m G$ or $K_{3,3} \leq_m G$ (Kuratowski's Th.).

Theorem (RS 1995) The s-minor containment $s \leq_M t$ is solved in $O(n^3)$ for a fixed s. (improved $O(n^2)$, Reed 1997)

Theorem (RS 1995) Given a graph s and a planar graph u, if $u \not\preceq_M t$, $s \preceq_M t$ is solved in $O(n^2)$. (improved O(n), Reed 1997)

Remark For an arbitrary s, the s-minor containment is NP-complete (Hamilton cycle problem when $s=C_{|V(t)|}$).

Examples of polynomial upper bounds

Problem	known algorithm	upper bound
embedding to surface	$O(n)^{\dagger 1}$	$O(n^2)$
linkless spatial embedding	$O(n^2)^{\dagger 2}$	$O(n^2)$
knotless spatial embedding	?	$O(n^2)$
k -disjoint path ‡	$O(n^2)$	$O(n^2)$
k -vertex separation ‡	$O(n^{k^2+2k+4})$	O(n)
k -leaf max spanning tree ‡	$O(n^{2k+1})$	O(n)
k -searcher ‡	$O(n^{2k^2+4k+8})$	O(n)
:	:	:

Note that

- †1 The algorithm also detects obstructions (Mohar 1996).
- †2 Obstructions are decided (RST 1993).
- ‡ Problems are for fixed k. For an arbitrary k is NP-complete.

Linkless spatial embedding

Theorem (RST93) G has a linkless spatial embedding if, and only if, G does not contain a graph in Petersen family.

The Petersen fam ily

(graphs arising from K_6 by $\- c$ -Y and Y - $\- c$)

k-disjoint path, k-vertex separation

k-disjoint path problem

Instance: A graph G, and pairs of vertices $(s_1, t_1), \dots, (s_k, t_k)$.

Question: Do there exist mutually vertex-disjoint paths P_i 's in G s.t. P_i joins s_i and t_i ?

k-vertex separation problem

A linear layout of a graph G of |V(G)|=n is a bijection $l:V(G)\to \{1,2,\cdots,n\}$. Let $s_l(G)=\max\{s_l(G,i)\}$ where $s_l(G,i)=|\{u\in V(G)\mid l(u)\leq i \text{ and } \exists (u,v)\in E(G).l(v)>i\}|$

Instance: A graph G.

Question: Does there exist a linear layout l s.t. $s_l(G) \le k$? (Note that $s_l(S) > k$ for a 2k + 1-ary star S, which is planar.)

Constructive Proof of Higman's Lemma

Although we can decide polynomial complexity, hard to construct an algorithm of that complexity!

Reason

- We can detect obstructions, but we cannot decide whether we found all obstructions.
- The proof of Kruskal-type theorems does not give a sight MBS is highly nonconstructive (Zorn's Lemma).

Fortunately, we have constructive proofs for Higman's Lemma.

- Higman's original proof is quite constructive (though lengthy).
- First constructive proof (Murthy-Russel 90).
- Several constructive proofs are known, even as a Coq proof!

The idea of contructive proof by Murthy-Russell

Show that a bad sequence is finite.

Idea For each prefix of a bad sequence, write down the possible choice of the next element by (*sequential*) regular expressions.

Example Let $\Sigma = \{a, b\}$. For a bad sequence ab, bbaa, ba, bb, a, b,

$$\Theta_{0} = (\Sigma - \epsilon)^{*}
\Theta_{1} = (\Sigma - a)^{*}(b + \epsilon)(\Sigma - b)^{*} \cup (\Sigma - a)^{*}(a + \epsilon)(\Sigma - b)^{*} = \{b^{*}a^{*}\}
\Theta_{2} = (b + \epsilon)(\Sigma - b)^{*} \cup (\Sigma - a)^{*}(a + \epsilon) = \{ba^{*}, b^{*}a\}
\Theta_{3} = (\Sigma - b)^{*} \cup (b + \epsilon) \cup (a) \cup (\Sigma - a)^{*} = \{a^{*}, b^{*}\}
\Theta_{4} = (\Sigma - b)^{*} \cup (b + \epsilon) = \{a^{*}, b\}
\Theta_{5} = \{\epsilon, b\}
\Theta_{6} = \{\epsilon\}$$

Define WFO such that the sequential regular expressions for the longer prefix is smaller.

Query processing of indefinite database (Van der Meyden, ACM PODS 1992)

Indefinite database = incomplete information of events on time

- (n-ary) Query processing with inquality \cdots Π_2^p -complete (solves open problems)
- Monadic query processing with inquality · · · co-NP
- Fixed (n-ary) query processing with inquality \cdots co-NP
- Fixed monadic query processing with inquality \cdots O(n)

Remark Only existence of an O(n) time algorithm is proved by Higman's lemma. The construction had been open.

Remark Generate a O(n) time algorithm (= finding obstructions) based on Murthy-Russel's constructive proof of Higman's Lemma (Ogawa 03).

Example of a disjunctive monadic query

Fix a query $\varphi = \psi_1 \vee \psi_2 \vee \psi_3$ where

$$\begin{cases} \psi_1 &= \exists xyz [P(x) \land Q(y) \land R(z) \land x < y < z], \\ \psi_2 &= \exists xyz [Q(x) \land R(y) \land P(z) \land x < y < z], \text{ and} \\ \psi_3 &= \exists xyz [R(x) \land P(y) \land Q(z) \land x < y < z]. \end{cases}$$

Input $D = \{P(a), Q(b), a < b, Q(c), R(d), c < d, R(e), P(f), e < f\}$

Output *yes* (i.e., $D \models \varphi$)

Note that neither $D \models \psi_1$, $D \models \psi_2$, nor $D \models \psi_3$.

Obstructions are:

$$\left\{ \begin{array}{l} \{[P,Q,R]\}, \{[Q,R,P]\}, \{[R,P,Q]\}, \{[P,Q], [Q,R], [R,P]\}, \\ \{[P,Q,P], [Q,R]\}, \{[Q,R,Q], [R,P]\}, \{[R,P,R], [P,Q]\}, \\ \{[P,R,P], [Q,R]\}, \{[Q,P,Q], [R,P]\}, \{[R,Q,R], [P,Q]\}, \\ \{[P,Q,P,Q], [R]\}, \{[Q,R,Q,R], [P]\}, \{[R,P,R,P], [Q]\}, \\ \{[Q,P,Q,P], [R]\}, \{[R,Q,R,Q], [P]\}, \{[P,R,P,R], [Q]\} \end{array} \right\}$$

Application: Well structured transition system

Model Checking on infinite state transition systems

Model checking are mostly on *finite state* transition systems (\approx *automata*).

Few decidable results on *infinite state* transition systems

- Pushdown transition system (Esparza, et.al. 03, Nitta, Seki 03)
- Timed CTL on dense time (??? 93)
- Well structured transition system (Finkel, Schnoebelen, 00)

Well structured transitions system (WSTS)

Definition A WSTS $M = (S, D, s_0, \Delta)$ consists of

- a finite set S of control states,
- a WQO (D, \leq) on a possible infinite set of data,
- an initial state $(s_0, d_0) \in S \times D$,
- transition relation $\Delta \subseteq (S \times D) \times (S \times D)$.

A WQO (D, \leq) is extended to a WQO $(S \times D, = \times \leq)$.

Definition A WSTS $M = (S, D, s_0, \Delta)$ is monotonic if $u_1 \to v_1$ and $u_1 \le u_2$ for $u_1, u_2, v_1 \in S \times D$, there exists $v_2 \in S \times D$ such that $u_2 \to^* v_2$ and $v_1 \le v_2$.

$$\begin{array}{cccc}
s_1 & \leq & t_1 \\
\forall & & * & \exists \\
s_2 & \leq & t_2
\end{array}$$

Example of a WSTS: Communicating Finite State Machines (CFSM)

Lossy channel is an unreliable communication system among *finite* objects (i.e., message may be correctly sent, or may be lost).

- Control states: the set S of configurations of a FSM.
- Data : the set $(\underbrace{A^* \times \cdots \times A^*}_n, \ \underline{\preceq \times \cdots \times \preceq})$ of products of messages at each channel, where A is finite alphbet.
- Initial state : $(\underbrace{s_0 \times \cdots \times s_0}_n, \underbrace{\epsilon \times \cdots \times \epsilon}_n)$, where s_0 is the initial configuration.
- Transition : $c_i!a$, $c_i?a$, where c_i is the *i*-th channel and $a \in A$.

Example A CFSM is a monotonic WSTS.

Decidable properties for monotonic WSTSs

Notation $pre(I) = \{v \mid v \rightarrow u \in I\} \text{ for } I \subseteq S \times D.$

Assumption For a WSTS $M = (S, D, s_0, \Delta)$, the set of minimal elements in pre(I) is effectively computed for each closed set I.

Theorem (Reachability) For a closed set $I(\subseteq S \times D)$, whether (an element of) I is reachable from the initial state (s_0, d_0) is decidable.

Proof Decide whether $(s_0, d_0) \in pre^*(I) = \bigcup_i pre^i(I)$, and $pre^*(I)$ finitely converges.

Theorem (Eventuallity) If transitions at each state are finite, $EG\ I$ is decidable for a closed set $I(\subseteq S \times D)$.