Analysis of Noisy Gradient-Desce Using MATLAB and the PRISM Model Checking Bit Flipping (NGDBF Eric Reiss Utah State University

 Low-Density Parity Check (LDPC) codes were introduced by Gallager in 1963

Figure 1: (8,8) Absorbing set that is dominant in the 802.3an 10GBASE-T LDPC Code [2].

- ► Low-Density Parity Check (LDPC) codes were introduced by Gallager in 1963
- ▶ LDPC codes are commonly represented as sparse Tanner graph

Figure 1: (8,8) Absorbing set that is dominant in the 802.3an 10GBASE-T LDPC Code [2].

- Low-Density Parity Check (LDPC) codes were introduced by Gallager in 1963
- ▶ LDPC codes are commonly represented as sparse Tanner graph
- Trapping sets are a sub-set of the graph that limit the performance of decoding algorithms, creating an error-floor

Figure 1: (8,8) Absorbing set that is dominant in the 802.3an 10GBASE-T LDPC Code [2].

- ► Low-Density Parity Check (LDPC) codes were introduced by Gallager in 1963
- ▶ LDPC codes are commonly represented as sparse Tanner graph
- ► Trapping sets are a sub-set of the graph that limit the performance of decoding algorithms, creating an error-floor
- Absorbing sets are a special case of a trapping sets that are stable in a bit flipping decoder [1]

Figure 1: (8,8) Absorbing set that is dominant in the 802.3an 10GBASE-T LDPC Code [2].

▶ NGDBF is part of a family of bit flipping decoding algorithms

- ► NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]

► GDBF gets "stuck" in local minima while decoding

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]
 - ▶ GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- ► Algorithm steps [4]:

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- ► Algorithm steps [4]:

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- Algorithm steps [4]:
 - Let H be an $n \times m$ parity check matrix, N_i be the adjacency for bit i, M_j be the adjacency for parity check j
 - Given channel samples, \vec{y} , initialize \vec{x} to be the $sign(\vec{y})$

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF)
 Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- Algorithm steps [4]:
 - Let H be an n × m parity check matrix, N_i be the adjacency for bit i, M_i be the adjacency for parity check j
 - Given channel samples, \vec{y} , initialize \vec{x} to be the $sign(\vec{y})$
 - ► Compute the syndrome, $s_j = \prod_{i \in M_j} x_i$

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF) Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- ► Algorithm steps [4]:
 - Let H be an n × m parity check matrix, N_i be the adjacency for bit i, M_j be the adjacency for parity check j
 - Given channel samples, \vec{y} , initialize \vec{x} to be the $sign(\vec{y})$
 - ightharpoonup Compute the syndrome, $s_j = \prod_{i \in M_j} x_i$
 - Calculate the energy for bit i, $E_i = y_i x_i + w \sum_{j \in N_i} s_j + z_i$, where w is i.i.d white noise and z_i is a zero mean noise pertubation

- ▶ NGDBF is part of a family of bit flipping decoding algorithms
- ► Improves upon the Gradient-Descent Bit Flipping (GDBF) Decoding Algorithm proposed by Wadayama et al. [3]
 - ► GDBF gets "stuck" in local minima while decoding
- ▶ NGDBF introduces psuedo-random noise to escape local minima
- ► Algorithm steps [4]:
 - Let H be an n × m parity check matrix, N_i be the adjacency for bit i, M_j be the adjacency for parity check j
 - Given channel samples, \vec{y} , initialize \vec{x} to be the $sign(\vec{y})$
 - ightharpoonup Compute the syndrome, $s_j = \prod_{i \in M_j} x_i$
 - Calculate the energy for bit i, $E_i = y_i x_i + w \sum_{j \in N_i} s_j + z_i$, where w is i.i.d white noise and z_i is a zero mean noise pertubation
 - Given a threshold θ flip bit i if $E_i < \theta$

•	The Markov Chain structure used in the tool was proposed in $\left[1\right]$					

- ▶ The Markov Chain structure used in the tool was proposed in [1]
- For a given (a,b) trapping set, the state space is described by the a-bit binary representation of the numbers from 0 to 2^a-1

- ▶ The Markov Chain structure used in the tool was proposed in [1]
- For a given (a,b) trapping set, the state space is described by the a-bit binary representation of the numbers from 0 to $2^a 1$

► For example, the (3,3) trapping set would have 8 states, 000 - 111

- ▶ The Markov Chain structure used in the tool was proposed in [1]
- For a given (a,b) trapping set, the state space is described by the a-bit binary representation of the numbers from 0 to $2^a 1$
 - ► For example, the (3,3) trapping set would have 8 states, 000 111
 - ► A transition from 010 to 000 implies that the middle bit flipped

- ▶ The Markov Chain structure used in the tool was proposed in [1]
- For a given (a,b) trapping set, the state space is described by the a-bit binary representation of the numbers from 0 to $2^a 1$
 - ► For example, the (3,3) trapping set would have 8 states, 000 111
 - A transition from 010 to 000 implies that the middle bit flipped
- ► Transistion

MATLAB Tool

▶ [1] Tasnuva Dissertation

- ▶ [1] Tasnuva Dissertation
- ▶ [2] T. Tithi, C. Winstead, and G. Sundararajan, Gopalakrishnan, "Decoding LDPC codes via Noisy Gradient Descent Bit-Flipping with Re-Decoding", 2015.

- ▶ [1] Tasnuva Dissertation
- ▶ [2] T. Tithi, C. Winstead, and G. Sundararajan, Gopalakrishnan, "Decoding LDPC codes via Noisy Gradient Descent Bit-Flipping with Re-Decoding", 2015.
- ▶ [3] T. wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, "Gradient descent bit flipping algorithms for decoding LDPC codes", *Communications, IEEE Transactions on*, vol. 58, no. 6, pp. 1610-1614, 2010.

- ▶ [1] Tasnuva Dissertation
- ▶ [2] T. Tithi, C. Winstead, and G. Sundararajan, Gopalakrishnan, "Decoding LDPC codes via Noisy Gradient Descent Bit-Flipping with Re-Decoding", 2015.
- ▶ [3] T. wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi, "Gradient descent bit flipping algorithms for decoding LDPC codes", *Communications, IEEE Transactions on*, vol. 58, no. 6, pp. 1610-1614, 2010.
- ▶ [4] NGDBF demo

► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.

- ► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.
- ▶ It can be a challenge to write code in either HTML or LATEX.

- ► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.
- ▶ It can be a challenge to write code in either HTML or LATEX.
- Markdown and Pandoc provide an easy text-based syntax for writing papers and presentations.

- ► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.
- ▶ It can be a challenge to write code in either HTML or LATEX.
- Markdown and Pandoc provide an easy text-based syntax for writing papers and presentations.
- ▶ This template is designed to work with Pandoc to simultaneously:

- ► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.
- ▶ It can be a challenge to write code in either HTML or LATEX.
- Markdown and Pandoc provide an easy text-based syntax for writing papers and presentations.
- ▶ This template is designed to work with Pandoc to simultaneously:

Produce html output based on slidy

- ► I like HTML presentations based on Slidy, but many prefer PDF slides produced by LATEX/Beamer.
- ▶ It can be a challenge to write code in either HTML or LATEX.
- Markdown and Pandoc provide an easy text-based syntax for writing papers and presentations.
- ▶ This template is designed to work with Pandoc to simultaneously:
 - Produce html output based on slidy
 - Produce matching PDF output based on LaTeX/Beamer

1. Prepare slides in a text document using Markdown syntax.

- 1. Prepare slides in a text document using Markdown syntax.
- 2. Place any images in the figures/ subdirectory.

- 1. Prepare slides in a text document using Markdown syntax.
- 2. Place any images in the figures/ subdirectory.
- 3. Edit the included Makefile to specify the presentation name and other details.

- 1. Prepare slides in a text document using Markdown syntax.
- 2. Place any images in the figures/ subdirectory.
- Edit the included Makefile to specify the presentation name and other details.
- 4. Build the presentation by running make

Including Figures

To include a figure using Markdown, use this syntax:

![Optional figure caption.](figures/example.png){width=60%} Result:

Figure 2: Optional figure caption.

Starting two-column mode:

Here is a column.

► Text.

Starting two-column mode:

Here is a column.

- ► Text.
- More text.

Starting two-column mode:

Here is a column.

- ► Text.
- More text.
- Description.

Starting two-column mode:

Here is a column.

- ► Text.
- More text.
- Description.
- Discussion.

Starting two-column mode:

Here is a column.

And another column.

Figure 4: A tall figure.

Starting two-column mode:

Here is a column.

- ► Text.
- More text.

And another column.

Figure 4: A tall figure.

Starting two-column mode:

Here is a column.

- ► Text.
- ► More text.
- Description.

And another column.

Figure 4: A tall figure.

Starting two-column mode:

Here is a column.

- ► Text.
- More text.
- Description.
- Discussion.

And another column.

Figure 4: A tall figure.