⑩ 日本国特許庁(JP)

① 特許出願公告

報(B2) 公 ⑫特 許

平2-23505

@Int, Cl. 5

識別記号

庁内整理番号

6060公告 平成2年(1990)5月24日

C 04 B 38/06 D 01 F 9/14

6359-4G 6791-4L F

発明の数 2 (全5頁)

多孔質炭素板の製造方法 60発明の名称

> 顧 昭60-75433 御特

码公 開 昭61-236664

29出 願 昭60(1985) 4月11日 网昭61(1986)10月21日

博 個発 明 者 宫 本 良

東京都江東区東雲 1 丁目10番 6号 王子製紙株式会社商品 研究所内

修 @発 明 者 岩 娍

東京都江東区東雲 1 丁目10番 6 号 王子製紙株式会社商品 研究所内

個発 明 者 寺 H 定 錢

東京都江東区東雲1丁目10番6号 王子製紙株式会社商品

研究所内

王子製紙株式会社 顖 包出 人

弁理士 井坂 實夫

中 穣 治 査 官 田 審

東京都中央区銀座4丁目7番5号

1

切特許請求の範囲

理 人

砂代

1 炭素繊維製造用有機繊維65~90重量%、パル プ10~35重量%を抄紙して得られたシートに、炭 素質粉末を懸濁した有機高分子溶液を含浸させ、 原シートに対して炭素質粉末を5~40重量%、高 5 分子物質を20~160重量%混合含浸したシートを 得たのち、その含浸シートを乾燥後、不活性ガス 雰囲気中で800℃以上の温度で焼成して炭化させ ることを特徴とする多孔質炭素板の製造方法。

プ10~35重量%を抄紙して得られたシートに、炭 素質粉末を懸濁した有機高分子溶液を含浸させ、 原シートに対して炭素質粉末を5~40%重量、高 分子物質を20~160重量%混合含浸シートを得た 成形および硬化を行い、さらに不活性ガス雰囲気 中で800℃以上の温度で焼成して炭化させること を特徴とする多孔質炭素板の製造方法。

- 2枚以上の含浸シートを積層して加熱プレス 処理を行うことを特徴とする特許請求の範囲第2 20 項に記載の多孔質炭素板の製造方法。

発明の詳細な説明

産業上の利用分野

本発明は、多孔質炭素板の新規な製造方法に関 するものである。更に詳しく述べると、抄紙法に より得られたシートを樹脂含浸後、焼成すること により、耐薬品性、電気伝導性、強度の優れた、 嵩高な厚手の多孔質炭素板を製造する方法に関す

2

従来の技術

るものである。

従来、炭素繊維シートを得る方法としては、あ らかじめ焼成された炭素繊維をパルプおよびパイ 炭素繊維製造用有機繊維65~90重量%、パル 10 ンダーと共に抄紙した炭素繊維混抄紙が知られて いる。しかしながらこのような混抄紙は、電気抵 抗値が比較的高く、耐薬品性に欠け、燃料電池用 電極基材等の用途には不適当であつた。

これらの性能の改善方法として、上記混抄紙に のち、その含浸シートを乾燥後、加熱プレスして 15 熱硬化性樹脂の溶液を含浸させ、再度、不活性雰 囲気中で焼成して炭化する方法が知られている。 この方法ではパルプ等の有機物が加熱処理によつ て炭化されるため、電気抵抗値が低く、耐薬品性 も改善された繊維紙が得られる。

> しかしながら炭素繊維自身が高弾性率を有する ため繊維の接触部が十分に結合されず、そのた め、電気抵抗の十分に低い炭素繊維紙は得られに くかつた。

また炭素繊維は比重が高いため、嵩高な多孔質 板が得られにくく、各種用途に適合した嵩密度お よび孔径にコントロールすることがむずかしい。 しかも、2回の焼成工程が必要なため、非常に高 価格なものになる欠点を有しており、安価な製造 5 方法の開発が望まれていた(特公昭53-18603号 公報)。

本発明者らは先に、抄紙法による製造方法を発 明 (特開昭59-144625号公報参照) したが、その 方法は上記方法と同様にバインダー繊維を使用す 10 (パルブ) るため、多孔質のシートが得られにくいという欠 点をもつていた。更に、特閉昭59-144625号公報 に記載の方法では、焼成後に得られるシートの電 気抵抗値も高くなるという欠点もあつた。 発明が解決しようとする問題点

本発明は上記の欠点を改良すると共に、安価で 高品質(特に電気伝導性に優れた)の多孔質炭素 板の製造方法を提供することを目的とする。

問題点を解決するための手段

ここに提案する発明は、

- (1) 炭素繊維製造用有機繊維65~90重量%、パル プ10~35重量%を抄紙して得られたシートに、 炭素質粉末を懸濁した有機高分子溶液を含浸さ せ、原シートに対して炭素粉末を5~40%高分 子物質を20~160%混合含浸したシートを得、25 ト形成がむづかしい。 該含浸シートを乾燥後、不活性ガス雰囲気中で 800℃以上の温度で焼成し炭化させることを特 徴とする多孔質炭素板の製造方法
 - および 🕆

(2) 炭素繊維製造用有機繊維65~90重量%、パル 30 %、パルプが10~25重量%である。 プ10~35重量部を抄紙して得られたシートに、 炭素質粉末を懸濁した有機高分子溶液を含浸さ せ、原シートに対して炭素粉末を5~40%高分 子物質を20~160%混合含浸したシートを得、 該含浸シートを乾燥後、加熱プレスして成形お 35 が使用される。 よび硬化を行い不活性ガス雰囲気中で800℃以 上の温度で焼成し炭化させることを特徴とする 多孔質炭素板の製造方法である。

上記方法(1)および(2)において、含浸シートは、 乾燥後、単独で又は複数枚積層して加熱プレスす 40 ニルベンゼンのような熱硬化性樹脂、塩化ビニル ることによって成形および硬化処理を併せて行っ てもよい。

本発明の構成要素について以下に詳説する。 (有機繊維)

本発明に用いられる有機繊維としては、レーヨ ン、ピツチ繊維、リグニン繊維、フエノール樹脂 繊維、アクリル繊維等、炭素繊維を製造する場合 に普通に使用される有機繊維の何れでもよい。有 機繊維は、0.5~15デニールで長さ l ~15mmのも のが使用されるが、好ましくは抄紙性等の点から 見て、0.5~8 デニールで長さ1.5~10㎜のものを 目的に応じて選択し、単独であるいは2種以上を 配合して使用される。

上記の有機繊維は親水性が弱いため、単独では 抄紙することがができない。そこで抄紙性向上の ためのつなぎとして、パルブを配合する。

この発明に用いられるパルプとしては、セルロ 15 ースパルプのほか、合成樹脂製の各種合成パルプ が適している。

(有機繊維とパルプとの割合)

有機繊維とパルプとの割合は、有機繊維が65~ 90重量%、パルプが10~35重量%(固形分とし 20 て)の割合で混合して、常法により抄紙すればよ

有機繊維が65重量%以下になると、孔径、気孔 率等のコントロールがむづかしくなり、一方、有 機繊維が90重量%以上では抄紙の際に良好なシー

パルプは10重量%以下では抄紙製が悪くなり、 シート形成が困難になり、35重量%以上では嵩高 なシートが得られない。

好ましい範囲としては、有機繊維が75~90重量

(炭素質粉末)

抄紙シートに含浸させるため用いられる炭素質 粉末としては、粒径が0.1~40µm、好ましくは0.5 ~10umのグラフアイト又はカーボンブラツク等

(有機高分子物質)

抄紙シートに含浸させるために用いられる有機 高分子物質としては、例えばフエノール樹脂、エ ポキシ樹脂、不飽和ポリエステル樹脂、ポリジビ 樹脂、塩化ビニリデン樹脂、フツ化ビニル樹脂、 フツ化ビニリデン樹脂、アクリル樹脂等の熱可塑 · 性樹脂、さらにはリグニン、ピツチ又はタールの ようなものも使用される。

5

これらの高分子化合物の好ましい性質として は、何らかの溶液に溶解するか、又は熱処理時の 高温で融解すること、および炭素含有量が30重量 %以上であつて炭化後、炭素質パインダーとして 炭素繊維内の結合に役立つことである。このよう 5 な性質をもつ高分子化合物としては、熱硬化性樹 脂が好ましい。

(混合含浸処理)

本発明の第2段階の処理として、前記の炭素質 粉末と有機高分子物質の溶液または分散液を、混 10 抄紙に含浸させる処理をする。

この処理において混抄紙に付着する含浸量が少 なすぎると、パインダー効果、及び炭化の際の炭 化収率が劣り、また、含浸量があまり過剰になる かも最終製品である多孔質炭素板がもろくなる。 好ましい含浸付着量としては、混抄紙の重量に対 して炭素質粉末が5~40重量%、有機高分子物質 が20~160重量%、更に好ましくは炭素質粉末が 15~30重量%、有機高分子物質が60~120重量% 20 〔耐熱性向上剤〕 である。

(加熱プレス処理)

本発明の第2の方法は、上記の第2段階に次い で加熱プレス処理を行う。

プレス成型は、最終製品である多孔質炭素板に 25 いてよい効果をもたらす。 必要な厚さ、形状、気孔率および孔径を付与する ために行われる。その際、加熱処理を併用するこ とにより含浸シート中の樹脂を硬化させる、プレ ス加熱条件としては、150~220℃、1~60分間が 一定に保持すると同時に、平坦なシートを得るこ とが可能になつた。またプレス圧力を調整するこ とにより炭素板の気孔率、孔径を任意に変えるこ とができる。

(積層加熱プレス処理)

上記プレス処理の際、薄手の含浸シートを必要 枚数重ね合わせ、同様にプレス処理を行うと、容 易に厚手の炭素板が得られる。通常の方法では剝 離を生じやすく、製造が困難な多孔質シートの積 層が、プレス積層および硬化法を使用する本発明 40 と、シート内の有機高分子物質が流動しなくなる によつてて可能になつた。

含浸シートを重ね合わせる際、シートの縦方向 と横方向を交互に積層すると、シートの方向性が なくなり、ヒビ割れのない厚みの均一な炭素板が 6

得られる。 (焼成処理)

含渇シートは乾燥後、又は加熱プレス後、不活 性ガス雰囲気中で、800℃以上の温度で加熱焼成 されて、本発明の多孔質炭素板となる。

(その他)

本発明においては、必要に応じて下記の薬剤を 使用したり、処理工程を施してもよい。

〔紙力增強剤〕

本発明によつて得られるシートは、有機繊維と パルプから抄紙されるために、嵩高なシートが得 られるが、抄紙シートの強度が必要な場合は、通 常、抄紙に使用される紙力増強剤を少量添加して もよい。紙力増強剤としては水溶性のものが望ま と目づまりのため気孔率の調整がむずかしく、し 15 しく、例えばカチオン化澱粉、カチオン化または アニオン化ポリアクリルアマイド、メラミン樹 脂、尿素樹脂、エポキシ化ポリアミド樹脂、カル ボキシ変性ポリピニルアルコール等、抄紙の際に 普通に使用される樹脂を使うことができる。

有機繊維として再生セルロース、例えばレーヨ ンを使用する場合には、上記炭素質粉末と有機高 分子の混合含浸処理とは別に、耐熱性向上剤の含 浸処理を併用すると、炭化収率、強度等の点にお

耐熱性向上剤としては、レーヨン炭素繊維を製 治する場合に一般に使用されるものなら何れでも 使用可能である。例えば、リン酸金属塩として、 第一リン酸マグネシウム、第一リン酸カルシュウ 適当である。この硬化処理によりシートの厚みを 30 ム、第一リン酸ナトリウム、第一リン酸カリウム など、また各種の酸のアンモニウム塩として、塩 化アンモニウム、硫酸アンモニウム、硫酸水素ア ンモニウム、リン酸アンモニウム、リン酸水素ア ンモニウム、リン酸二水素アンモニウム、ポリリ 35 ン酸のアンモニウム塩、ホウ酸アンモニウム等が 好適に使用できる。

〔予備硬化処理〕

本発明においては、プレス処理の前に含浸シー トを予備硬化処理してもよい。予備硬化を行う ため均一なプレス処理が行われる。予備硬化の処 理条件としては、完全硬化しない条件で105℃~ 180℃、1分~30分程度が好適である。

〔安定化処理〕

含浸シートあるいは加熱プレス処理を経たシー トは、必要に応じて焼成に先立つて安定処理に付 されてもよい。

安定化処理は、加熱炭化工程後の有機繊維の炭 化収率を向上させるために行われる。有機繊維が 5 アクリル繊維、ピツチ繊維の場合に特に有効であ る。安定化の処理条件は、特別に定められること を要しないが、好ましくは150~350℃、数10分~ 10数時間の範囲であつて、使用される有機繊維の 種類に応じて異なるが、空気中で処理される。 実施例

本発明をいつそう理解しやすくするために、以 下に実施例を示すが、下記の実施例は本発明を制 限するものではない。なお、実施例中、部および る。

実施例1~3および比較例

太さ7デニール、長さ3㎜及び太さ3デニール 長さ3㎜のアクリル繊維をそれぞれ55部、25部、 カナディアンフリーネス400 flのパルプ 20 実施例 5 (NBKP) 20部に水を加えてスラリーを作り、丸 網抄紙機で常法により坪量が180g/mのシートを 抄造した。

上記のシートを、炭素粉末とと高分子物質とメ タノールからなる溶液に浸漬した。その溶液中の 25 網抄紙機で常法により坪量が180g/mのシートを 炭素粉末は、粒径6μmのグラフアイトであつて、 その配合割合は混抄紙の重量の0%、15%、30% であり、又は粒径3µmのカーボンプラックを20% 配合したものであつた。また、高分子物質は、群 栄化学会社のフェノール樹脂PL-2215であつて、30 合割合は混抄紙の重量の30%であつた。また、高 混抄紙の重量の80%が使用された。

メタノール溶液による含浸が終了したのち、シ ートは温度105℃の乾燥室内で乾燥された。

次いで該シートを6枚積層し、厚さが3.0mに なるようにプレスで加圧し、同時に180℃の温度 35 で15分間加熱処理を行つた。次いで220℃で4時 間、空気中で加熱安定化処理を行った後、1000℃ のチツ素ガス雰囲気中で1時間、グラフアイト板 にはさんで加熱炭化を行つた。

実施例 4

太さ7デニール、長さ3㎜及び太さ3デニール

長さ3㎜のアクリル繊維をそれぞれ55部、25部、 カナデイアンフリーネス400 mlのパルプ (NBKP) 20部に水を加えてスラリーを作り、丸 網抄紙機で常法により坪量が180g/㎡のシートを 抄造した。

上記のシートを、炭素粉末と高分子物質とメタ ノールからなる溶液に浸漬した。その溶液中の炭 素粉末は、粒径6μmのグラフアイトであつて、配 合割合は混抄紙の重量の30であつた。また、高分 10 子物質は、群栄化学会社のフェノール樹脂PL-2215であつて、配合割合は混抄紙の重量の80%で あつた。含浸終了後のシートを105℃の温度で乾 燥した。

次いで上記のシートを積層しないで1枚のみを %とあるのはそれぞれ重量部および重量%であ 15 プレスにかけ、厚さが0.5mmになるように加圧し、 同時に180℃で15分間加熱処理を行つた。次いで 220°Cで 4 時間、空気中で加熱安定化処理を行つ た後、1000℃のチツ素ガス分雰囲気中で1時間、 グラフアイト板にはさんで加熱炭化を行つた。

太さ7デニール、長さ3㎜及び太さ3デニール 長さ3㎜のアクリル繊維をそれぞれ55部、25部、 カナディアンフリーネス400 fl のパルプ (NBKP) 20部に水を加えてスラリーを作り、丸 抄造した。

上記のシートを、炭素粉末と高分子物質とメタ ノールからなる溶液に浸漬した。その溶液中の炭 素粉末は、粒径6μmのグラフアイトであつて、配 分子物質は、群栄化学会社のフエノール樹脂PL -2215であつて、配合割合は混抄紙の重量の80% であつた。含浸終了後のシートを105℃の温度で 乾燥した。

- 次いで上記のシートを積層せず、プレスをも行 わずに、220℃で 4 時間、空気中で加熱安定化処 理を行った後、1000℃のチツ素ガス雰囲気中で1 時間、グラフアイト板にはさんで加熱炭化を行つ
- 実施例1~5及び比較例のシートの物性を第1 40 表に示す。

1

10

9

第

表

		比較例	実施例1	実施例2	実施例3	実施例4	実施例 5
シートの 繊維配合 重量%	アクリル7d*3 mm	55	55	55	5 5	5 5	55
	アクリル3d*3 mm	25	25	2 5	25	25	25
	バルブNBKP	20	20	20	20	20	20
含浸処理 混抄紙の 重量%	グラフアイト(粒径6μm)	0	15	30	0	30	30
	カーポンプラツク(粒径3μm)	0	0	0	20	0	0
	フエノール樹脂(PL-2215)	80	80	80	80	80	80
プレスでの積層枚数(枚)		6	6	6	6	1	プレスなし
炭化収率(%)		53.2	57.0	61.2	58.2	61.2	61.2
気孔率(%)		71.8	69.0	66.3	68.0	66, 3	73.0
体積抵抗(mΩ.cm)		24.0	18.0	11.0	18.0	11.0	14.0

発明の効果

本発明の第1の特色は、電気伝導性の良い炭素 粉末を、有機高分子物質と混合して溶液として、20 これを混抄紙に含浸させるため、焼成後のシート の電気伝導性が非常に良好なことである。

第二の特色は、原シートは通常の湿式抄紙機で 抄紙が可能なため、生産性が向上し、安価なシー

第三の特色は、本発明の原料配合は炭素繊維に 比べて抄紙性が良好なため、均一で平坦なシート

が容易に得られ、更にはシート坪量も任意のもの が得られる利点がある。

第四の特色は、薄手のシートを積層してプレス 処理を行うことにより、任意の厚みの多孔質炭素 板の製造も可能になつたことである。

第五の特色は、原料繊維の太さの選択、配合及 びブレス処理の調整により、燃料電池用の電極基 トを得ることができるようになつたことである。 25 材として使用する場合に問題になる板の孔径や気 孔率を自由にかつ容易にコントロールすることが 可能になつたことである。