Jogos Matemáticos - 2022 Lista de Exercícios

Kaique Matias de Andrade Roberto

28 de setembro de 2022

Estes são os Exercícios recomendados para a disciplina. Afim de que você possa extrair o maior proveito possível destes exercícios tenha em mente as seguintes observações:

- esta é a **única** lista de exercícios da disciplina toda;
- esta lista **contém** os exercícios que resolveremos em aula;
- as Seções estão nomeadas de acordo com as aulas (por exemplo, na Seção 10 estão os exercícios recomendados para a Aula 10);
- os exercícios que aparecem em aula estão marcados com (A);
- os exercícios com (*) ou (**) são exercícios que consideramos mais desafiadores.

0 Noções de Lógica e Conjuntos

Exercício 0.1 (A). Demonstre as equivalências abaixo.

$$a - \neg(\neg P) \equiv P.$$

$$b - P \lor P \equiv P.$$

$$c - P \land P \equiv P.$$

$$d - \neg(P \land Q) \equiv (\neg P) \lor (\neg Q).$$

$$e - \neg(P \lor Q) \equiv (\neg P) \land (\neg Q).$$

$$f - (P \land (P \lor Q) \equiv P.$$

$$g - (P \lor (P \land Q) \equiv P.$$

$$h - P \to Q \equiv (\neg P) \lor Q.$$

$$i - \neg(P \to Q) \equiv P \land (\neg Q).$$

$$j - \neg(\forall x P(x)) \equiv \exists x (\neg P(x)).$$

$$k - \neg(\exists x P(x)) \equiv \forall x (\neg P(x)).$$

Exercício 0.2 (A). Transforme as sentenças abertas abaixo em sentenças verdadeiras usando quantificadores.

$$a - -(-x) = x$$
. $d - 5a + 4 \le 11$.

b -
$$(a+1)(a-1) = a^2 - 1$$
. e - $x^2 \le x$.

$$c - \sqrt{x^2} = x.$$
 $f - a^2 + b^2 \le 0.$

Exercício 0.3. Diga qual é a negação de cada uma das sentenças abaixo.

- a O Palmeiras tem mundial.
- b Toda fruta é doce e todo remédio é amargo.
- c Todo dia da semana é segunda-feira.
- d Todo final de semana tem um sábado e um domingo.
- e Todo número inteiro primo é impar.
- f Todo triângulo isóceles é equilátero.
- g Existe um losango que não é um quadrado.
- h Existe um número cuja raíz quadrada é zero.

Exercício 0.4. Quando estamos fora do contexto matemático negar uma sentença pode ser uma tarefa relativamente difícil. Afim de ilustrar isso, escreva a negação das sentenças abaixo (que na verdade são ditados da sabedoria popular).

- a Camarão que dorme, a onda leva.
- b Gato escaldado tem medo de água fria.
- c Mente vazia, oficina do diabo.
- d O que não tem remédio, remediado está.
- e O que os olhos não veem, o coração não sente.
- f Quando o dinheiro fala, a verdade se cala.
- g Para quem está se afogando, jacaré é tronco.
- h Vão-se os anéis e ficam os dedos.
- i Para bom entendedor, meia palavra basta.
- j Se conselho fosse bom, a gente não dava, vendia.

Exercício 0.5 (*). Escreva a contra-positiva para as sentenças dos Exercícios 0.3, 0.4 desde que seja possível.

Exercício 0.6. Calcule o conjunto das partes de $A = \{a, b, c, d\}$.

Exercício 0.7. Seja $B = \{a, b, c, d, e\}$. Encontre o conjunto X tal que $\mathcal{P}(B) = \mathcal{P}(A) \cup X$, sendo A o conjunto da questão anterior.

Exercício 0.8 ((A) Propriedades da Inclusão). Sejam A, B, C três conjuntos quaisquer. Mostre que:

$$i - \emptyset \subseteq A;$$

ii -
$$A \subseteq A$$
;

iii - Se
$$A \subseteq B$$
 e $B \subseteq C$ então $A \subseteq C$.

Exercício 0.9 ((A) Propriedades da União). Sejam A, B, C três conjuntos quaisquer. Mostre que:

$$i - A \cup A = A;$$

ii -
$$A \cup \emptyset = A$$
;

iii -
$$A \cup B = B \cup A$$
;

iv -
$$A \cup (B \cup C) = (A \cup B) \cup C$$
.

Exercício 0.10 ((A) Propriedades da Intersecção). Sejam A, B, C três conjuntos quaisquer. Mostre que:

$$i - A \cap A = A$$
:

ii - Se $A \subseteq B$ então $A \cap B = A$;

iii -
$$A \cap B = B \cap A$$
;

iv -
$$A \cap (B \cap C) = (A \cap B) \cap C$$
.

1 Equações

Exercício 1.1 ((A) Quanto?). Suponha que eu e você temos a mesma quantia em dinheiro. Quanto preciso lhe dar para que você tenha dez reais a mais do que eu?

Exercício 1.2 ((A) O Enigma dos Políticos). Um grupo de cem políticos encontrava-se reunido. Cada político ou era honesto ou era desonesto, e somos informados dos seguintes dois fatos:

- 1. Pelo menos um dos políticos era honesto.
- 2. Dados quaisquer dois políticos, pelo menos um dos dois era desonesto.

 $\acute{\rm E}$ possível determinar a partir desses dois fatos, quantos políticos eram honestos e quantos eram desonestos?

Exercício 1.3 ((A) Pinga Velha em Garrafa (nem tão) nova). Uma garrafa de 51 custava dez reais. A pinga valia nove reais a mais do que a garrafa. Quanto valia a garrafa?

Exercício 1.4 (A). O lucro mensal de uma empresa é dado por

$$L = 50Q - 2000$$
,

em que Q é a quantidade mensal vendida de seu produto. Qual a quantidade que deve ser vendida mensalmente para que o lucro mensal seja igual a R\$5000?

Exercício 1.5 (A). Discuta os possíveis universos para as equações:

a -
$$2x + 1 = 0;$$
 c - $\frac{4x^3}{2} - x^2 + 1 = 0;$

b -
$$x^3 + 3x - 2 = 0$$
; d - $(\sqrt{2})^2 x^8 - x^2 + 4 = 0$.

Exercício 1.6 (A). Resolva as equações:

a -
$$4x + 6x = 8 + 12$$
; f - $\frac{3x}{x+1} = 4 + \frac{2x}{2x+2}$;

b -
$$-3x + 1 = -8$$
;

c -
$$5(x-2) = 4x + 6;$$

d - $\frac{x-2}{3} + \frac{x-3}{2} = \frac{1}{6};$
g - $\frac{2x+5}{x-3} + \frac{1}{3} = \frac{4}{x-3};$

Exercício 1.7 (A). Resolva as equações:

a -
$$x^2 - 4x + 3 = 0$$
; f - $y^2 - 6y - 3 = 0$;

b -
$$x^2 - 5x + 4 = 0$$
; g - $x^4 - 5x^2 + 4 = 0$;

c -
$$t^2 - 6t + 8 = 0$$
; h - $x^4 - 5x^2 + 10 = 0$;

d -
$$y^2 - 6y - 3 = 0$$
; i - $y^4 - 10y^2 + 9 = 0$;

e -
$$x^2 - 7x + 12 = 0$$
; j - $(x^4 - 1)(x^4 - 12) + 24 = 0$.

Exercício 1.8 (**). Resolva as equações cúbicas reduzidas usando o método de Cardano:

a -
$$x^3 - 3x + 2 = 0$$
;

$$b - x^3 - 3x + 4 = 0.$$

2 Reforço: Mais Equações e Sistemas

Exercício 2.1 (A). Resolva os sistemas:

a -
$$\begin{cases} x + y = 8 \\ 2x + 3y = 21 \end{cases}$$
d -
$$\begin{cases} -2x + -y = 16 \\ 2x + 3y = 21 \end{cases}$$
g -
$$\begin{cases} x + y - z = 0 \\ 2x + y + z = 1 \\ 3x - y + z = 1 \end{cases}$$
b -
$$\begin{cases} x + y = 7 \\ x - y = 1 \end{cases}$$
e -
$$\begin{cases} 2x + y = 8 \\ x - y = -2 \end{cases}$$
f -
$$\begin{cases} 2x + 3y = 2 \\ 18x - 12y = 5 \end{cases}$$
h -
$$\begin{cases} x + 2y + z = 1 \\ y + 2z = -4 \\ x + y + z = 2 \end{cases}$$

Exercício 2.2 (A). O custo mensal de produção de x camisas de uma fábrica é C = 5000+15x. Qual a quantidade mensal produzida sabendo-se que o custo mensal é R\$8000?

Exercício 2.3 (A). O saldo de uma aplicação financeira após t meses de aplicação é dado por S = 2000 + 40t. Após quanto tempo da aplicação o saldo dobra?

Exercício 2.4 (A). O lucro mensal de uma empresa é dado por $L = -x^2 + 10x - 16$, em que x é a quantidade mensal vendida. Para que os valores de x o lucro é nulo? E para qual valor de x o lucro é 9?

Exercício 2.5 (A). A receita diária de um estacionamento para automóveis é $R = 100p - 5p^2$, em que p é o preço cobrado pela diária de um veículo estacionado. Qual o preço que deve ser cobrado para obtermos uma receita diária de R\$375?

Exercício 2.6 (A). Um investidor aplicou parte do seu patrimônio de R\$30000 em um fundo A e parte no fundo B, por um ano. O fundo A rendeu 10% e o B rendeu 15%. Sabendo-se que o total dos rendimentos foi de R\$4000, calcule quanto foi aplicado em cada fundo.

Exercício 2.7 (A). Um investidor aplicou parte do seu patrimônio de R\$20000 em um fundo A e parte no fundo B, por um ano. O fundo A rendeu 10% e o B rendeu 20%. Sabendo-se que o total dos rendimentos foi de R\$2500, calcule quanto foi aplicado em cada fundo.

Exercício 2.8 (A). Uma empresa pretende gastar R\$225000 por ano em propaganda, parte em jornal e parte em televisão. Sabendo-se que a quantia gasta em televisão deve ser quatro vezes maior que a gasta em jornal, obtenha a quantia a ser gasta em televisão.

3 Plano cartesiano e Conceito de Função

Exercício 3.1 (A). Localize os seguintes pontos no plano cartesiano:

$$A = (2,0), B = (0,-3), C = (2,5), D = (-3,4),$$

 $E = (-7,-3), F = (4,-5), G = \left(\frac{5}{2},\frac{9}{2}\right), H = \left(-\frac{5}{2},-\frac{9}{2}\right).$

Exercício 3.2 (A). Para $A = \{1, 2, 3\}$ e $B = \{1, 2\}$ descreva e represente $A \times B$ e $B \times A$.

Exercício 3.3 (A). Para $A=\{x\in\mathbb{R}:1\leq x\leq 3\}$ e $B=\{x\in\mathbb{R}:1\leq x\leq 5\}$ represente $A\times B$ e $B\times A$.

Exercício 3.4 (A). Estabeleça se cada um dos esquemas das relações abaixo define ou não uma função de $A = \{-1, 0, 1, 2\}$ em $B = \{-2, -1, 0, 1, 2, 3\}$. Justifique.

Exercício 3.5 (A). Seja f a função de \mathbb{Z} em \mathbb{Z} definida por f(x) = 3x - 2. Calcule:

a -
$$f(2)$$
; c - $f(0)$;

b -
$$f(-3)$$
; d - $f(3/2)$.

Exercício 3.6 (A). Estabeleça o domínio e a imagem das funções abaixo:

Exercício 3.7 (A). Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas respectivamente por $f(x) = x^2 + 4x - 5$ e g(x) = 2x - 3.

- a- Obtenha as leis que definem $f \circ g$ e $g \circ f$.
- b- Calcule $f \circ g(2)$ e $g \circ f(2)$.

Exercício 3.8 (A). Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas respectivamente por $f(x) = x^3 - 1$ e $g(x) = x^2 + 1$.

- a- Obtenha as leis que definem $f \circ g$ e $g \circ f$.
- b- Calcule $f \circ g(2)$ e $g \circ f(2)$.
- c- Esboce o gráfico de $f \circ g(2)$ e $g \circ f(2)$.
- d- Indique qual das funções $f\circ g(2)$ e $g\circ f(2)$ é injetora, sobrejetora ou bijetora.

Exercício 3.9 (A). Indique qual das funções abaixo é injetora, sobrejetora ou bijetora.

Exercício 3.10 (A). Abaixo há uma lista de funções $f : \mathbb{R} \to \mathbb{R}$ e $f : \mathbb{R} \to \mathbb{R}$. Obtenha as leis que definem $f \circ g \in g \circ f$.

a -
$$f(x) = x^2 + 4x - 5$$
 e $g(x) = 2x - 3$.

b -
$$f(x) = x^2 - x - 2$$
 e $g(x) = 1 - 2x$.

$$c - f(x) = x^2 + 4x - 1 e g(x) = x^2 - 1.$$

d -
$$f(x) = 2 e g(x) = 3x - 1$$
.

Exercício 3.11 (*). Determine os maiores domínios e contra-domínios possíveis para uma função considerando as regras abaixo. Após isso, determine a imagem de tal função:

a -
$$f(x) = x^2$$
;
b - $g(x) = 1 - x$;
d - $z(t) = \frac{t^2}{1 - t}$;
e - $y(x) = x^3$;

c -
$$h(x) = \sqrt{x^2 - 1}$$
; f - $w(x) = \frac{x - 1}{x^2 - 1}$.

Exercício 3.12 (*). Quais dentre as funções do Exercício 3.11 são injetoras, sobrejetoras ou bijetoras?

Exercício 3.13 (*). Calcule a inversa das seguintes funções de \mathbb{R} em \mathbb{R} :

a -
$$f(x) = 2x + 3$$
;

$$c - h(x) = x^3 + 2;$$

b -
$$g(x) = \frac{4x-1}{3}$$
;

d -
$$p(x) = (x-1)^3 + 2$$
.

Função Afim I 4

Exercício 4.1 (A). Para as funções afim abaixo identifique a e b:

a -
$$y = 3x + 2$$
;

$$d - y = -3x - 4;$$

b -
$$y = -2x + 1$$
;

$$e - y = \frac{2x-3}{2};$$

$$c - y = x - 3;$$

$$f - y = \frac{4-3x}{2}$$
.

Exercício 4.2 (A). Construa o gráfico das funções do Exercício 4.1.

Exercício 4.3 (A). Calcule os zeros das funções do Exercício 4.1.

Exercício 4.4 (A). Com base nos gráficos abaixo, de funções de \mathbb{R} em \mathbb{R} , especifique os intervalos em que a função é crescente ou decrescente.

a)

b)

Exercício 4.5 (A). Classifique as funções do Exercício 4.1 como crescentes/decrescentes.

Exercício 4.6 (A). Estude o sinal das funções cujos gráficos estão representados abaixo.

Exercício 4.7 (A). Estude o sinal das funções do Exercício 4.1 como crescentes/decrescentes.