

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

Mode of Exam **ONLINE**

Common to Computing Technologies/Networking and Communication/Computational Intelligence/Data science and Business systems

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (ODD)

Test: CLAT-3

Course Code & Title: 18CSS201J – Analog and Digital Electronics

Puration: 100 Mins
Year & Sem: II & III

Max. Marks: 50

Course Articulation Matrix:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Н	Н													
CO2	Н	Н													
CO3	Н		Н	Н											
CO4	Н	Н	Н	Н	Н							Н			
CO5	Н		Н	Н	Н										
CO6			Н	Н		Н			Н						

Part - A (30 x 1 Marks) = 30 Marks)

Instructions: Answer all the questions

Q.	Question	Mar	BL	СО	РО	PI
No		ks	DL	CO	PO	Code
1	In a SR Flip-Flop, indeterminate state means					
	(A) Set $Q = 1$ and $Q = 0$.					
	(B) Set $Q = 0$ and $Q = 1$.	1	2	4	1	1.6.1
	(C) input SR are equal to 0	1	2	4	1	1.0.1
	(D) input SR are equal to 1					
	ANS: D					
2	The output of JK flip flop when J=1, K=0 is					
	(A) 1 (B) 0	1	1	4	1	1.6.1
	(C) No change (D) High impedance	1	1	4	1	1.0.1
	ANS: A					
3	The fastest operation among the given circuits is		2	4		
	(A) counter (B) shift register	1			1	1.6.1
	(C) Synchronous circuit (D) multiplexer	1		7	1	
	ANS: D					
4	Which of the following statement is FALSE with respect to					
	synchronous circuit					
	(A) The flip flops are used as delays					
	(B) The output of the system may/ may not depend on the states	1	2	4	1	1.6.1
	(C) The same clock is shared by all the flip flops					
	(D) State diagram and state table are a part of the system design					
	ANS: A					

5	The present output Qn of an edge triggered JK flip-flop is logic 1.					
	If K=1, then Qn+1 will be					
	(A) 0					
		1	3	4	1.2	1 6 1
	(B) 1	1	3	4	1,2	1.6.1
	(C) don't care					
	(D) can't be determined					
	ANS: A					
6	The input and control signals to a T flip flop are $T=1$, $\overline{PRESET} =$					
	0 , $\overline{\text{CLEAR}} = 1$, (assume Q=1) then the output of the flip flop will					
	be					
	(A) 0	1	2	4	1.2	1 6 1
	(B) 1	1	2	4	1,2	1.6.1
	(C) don't care					
	(D) can't be determined					
	ANS: B					
7	A 'T' flip-flop with T= 1 has an 80 kHz clock input. The output Q					
_ ′	will have					
	(A) constant low					
		1	3	4	1.2	1.6.1
	(B) frequency 20kHz	1)	4	1,2	2.5.1
	(C) frequency 40kHz					
	(D) constant high					
	ANS: C					
8	Connecting a gate at the inputs of SR flip flop					
	eliminates the indeterminate state.					
	(A) OR Gate					
	(B) AND Gate	1	2	4	2	1.6.1
	(C) Inverter					
	(D) NOR					
	ANS: C					
9	Any two states of a synchronous sequential circuit is said to be					
	'Equivalent' if					
	(A) for every input the outputs are the same					
	(B) for every input the outputs and next states are the same					
	(C) for every input the outputs and next states are the same	1	1	4	1	1.6.1
	(D) for every input the next states are the same (D) for every input the outputs may be different but the next states					
	are the same					
10	ANS: B					
10	Identifying the equivalent states and eliminating then while					
	designing a synchronous sequential circuit can help					
	(A) reduce the complexity in design					
	(B) increasing the number of flip flops used	1	2	4	1	1.6.1
	(C) understand the circuit					
	(D) reducing the number of flip flops used					
	ANS: A					
11	In SR flip-flop, "no change" condition appears when					
	(A) $S = 1$, $R = 1$					
	(B) $S = 1$, $R = 0$	1	1	4	1,2	1.6.1
	(C) $S = 0$, $R = 1$					
	(D) $S = 0$, $R = 1$					
<u> </u>	(-/~ v, v	<u> </u>	<u> </u>	<u> </u>		

	ANS: D					
12	In a edge triggered T flip-flop, if clock input is level high and the					
	input is 1, the output will be					
	(A) the same					
	(B) high	1	2	4	1,2	1.6.1
	(C) low				_,_	
	(D) don't care					
	ANS: A					
13	The characteristic equation of J-K flip-flop is					
	(A) Q(n+1)=JQ(n)+K'Q(n)					
	(B) $Q(n+1)=J'Q(n)+KQ'(n)$					
	(C) Q(n+1)=JQ'(n)+KQ(n)	1	1	4	1	1.6.1
	(D) $Q(n+1)=JQ'(n)+K'Q(n)$					
	ANS: D					
14	If JK flip flop toggles more than once in a cycle, it is called					
	(A) Toggling					
	(B) Racing					
	(C) Bouncing	1	2	4	1	1.6.1
	(D) Cycle					
	ANS: B					
15	is an example of sequential circuit.					
	(A) ROM					
	(B) Shift register				_	
	(C) PLA	1	1	4	1	1.6.1
	(D) CPLD					
	ANS: B					
16	A four-bit serial in serial out right shift register is initialized					
	to a value 1000. Identify the minimum number of clock					
	pulses required to obtain 1011 from the initial value.					
	A. 2					1.6.1
	B. 3	1	3	5	1,3	2.5.1
						2.3.1
	C. 4					
	D. 5					
	Ans: B					
17	"Shift-Left" operation can be performed in a universal shift					
	register by selecting $___$ for S_0S_1 selection lines.					
	A. 00					
	B. 01	1	3	5	1,3	1.6.1
	C. 10					
	D. 11					
	Ans: B					
18	How many flip-flops are required to design a Modulus – 11					
	counters?					
	A. 2					
	B. 3	1	2	5	1,2	1.6.1
	C. 4					
	D. 5					

	Ans: C					
19	A 3-bit counter has a maximum modulus of					
	A. 3					
	B. 6	1	_	_		1.61
	C. 8	1	2	5	1	1.6.1
	D. 16					
	Ans: C					
20	The full form of PISO in PISO shift register is					
	A. Peripheral In Serial Out					
	B. Parallel In Serial Out	1	1	5	1	1.6.1
	C. Parallel Out Serial In	1	1	3	1	1.0.1
	D. Serial Out Parallel In					
	Ans: B					
21	The final decimal number count in a counter designed with					
	8 flip-flops is					
	A. 255					1.6.1
	B. 256	1	2	5	1,2	2.5.1
	C. 31					
	D. 32 Ans: A					
22	Which is not an analog to digital converter?					
	A. Flash type converter					
	B. Counter type converter					
	C. R – 2R ladder converter	1	1	5	1	1.6.1
	D. Successive approximation converter					
	Ans: C					
23	How many numbers of op-amp comparators are required in					
	3-bit flash type analog to digital converter?					
	A. 3					
	B. 6	1	2	5	1	1.6.1
	C. 7					
	D. 8					
	Ans: C					
24	The main disadvantage of dual slope ADC is					
	A. Low accuracy					
	B. High maintenance	1	1	5	1	1.6.1
	C. Long conversion time	1	1		1	1.0.1
	D. Better efficiency					
	Ans: C					
25	What is the smallest change in voltage which may be					
	produced at the output due to the step change in the input of					
	the digital to analog converter?					
	A. Linearity	1	1	5	1	1.6.1
	B. Accuracy					
	C. Monotonicity					
	D. Resolution					

	Ans: D					
26	In the flash type ADC, each comparator output is connected					
	to an input of					
	A. priority encoder					
	B. multiplexer	1	2	5	1	1.6.1
	C. demultiplexer					
	D. decoder					
	Ans: A					
27	The final count of a modulus-12 binary counter is					
	A. 1000					
	B. 1100					1.6.1
	C. 1010	1	2	5	1,2	2.5.1
	D. 1011					
	Ans: D					
28	A digital volt meter uses a					
	A. Flash ADC					
	B. Dual slope ADC					
	C. successive approximation ADC	1	1	5	1	1.6.1
	D. sigma-delta ADC					
	Ans: B					
29	Binary weighted DACs are limited to resolution.					
	A. 4-bit					
	B. 6-bit					
	C. 8-bit	1	3	5	1,2	1.6.1
	D. 16-bit					
	Ans: C					
30	In a seven-segment common anode display, anodes of all					
30	LEDs are connected to					
	A. Logic 0					
	B. Logic 1	1	1	5	1	1.6.1
	C. Ground	1	1		1	1.0.1
	D. Minus 5 V					
	Ans: B Part - B					
	(10 x 2 Marks = 20 Marks)					
Instr	uctions: Answer all the questions					
31	The input to a JK flip flop is given as J=1 and K=Q'. Assume Q=0					
	initially. The sequence at the output of the flip flop upon					
	application of 4 clock pulses will be					
	(A) 1010	2	3	4	1,3	1.6.1
	(B) 1111		٥	4	1,3	2.5.1
	(C) 1000					
	(D) 1100					
	ANS: B					
32	The relation between the output Q and the inputs SR is given by	2	1	4	1	1.6.1
	(A) Qn(S+R') + SQn'					

	(B) Qn'(S+R') + RQn					
	(C) Qn'(S+R') + SQn					
	(D) $Qn(S'+R) + SQn'$					
	ANS: A					
33	To design the synchronous circuit shown in the figure with JK flip					
	flops, number of Kmaps are required.					
	0 1 (000)					
	$ \begin{array}{c} 101 \\ 001 \end{array} $					
	0 0	2	2	4	1,3	1.6.1
	1 011 1 100					
	100					
	~ ~ 0					
	(A) 3					
	(B) 6					
	(C) 4					
	(D) 5					
24	ANS: B	1				
34	The state table of a synchronous circuit is given. As a part of					
	the logic circuit design with T flip flops, the input to flip					
	flop B is given as					
	Present state Next state					
	A B C A+ B+ C+ 0 0 0 1 1 1					
	0 0 0 1 1 1 1 1 0 1 0 0					
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$					1.6.1
	1 0 0 0 1 1	2	3	4	1,3	2.5.1
	1 1 1 0 0 0					
	(A) TB = A + C'					
	(B) TB = C'					
	(C) $TB = A' + B'$					
	(D) $TB = C + B$ '					
25	ANS: A	1				
35	A JK flip flop can be made to work as D flip flop when (A) J=K					
	(A) J=K (B) J=K=0					
	(C) J=K'	2	2	4	1	1.6.1
	(C) J=K (D) J=K=1					
	ANS: C					
36	A five-bit serial in parallel out (right) shift register is					
	initially cleared with 00000. Input binary number to the					1.6.1
	same is 11011. After three clock pulses, what will be the	2	3	5	1,2	2.5.1
	output of the shift register?					2.3.1
	output of the shift register.	1	l			

	A. 11000					
	B. 11011					
	C. 01100					
	D. 00110					
	Ans: C					
37	Input binary number to the 4-bit parallel in parallel out shift					
	register is 1001. How many minimum number of clock					
	pulses required to obtain same 1001 at the output?					
	A. 1	2		_		1.6.1
	B. 2	2	2	5	1	2.5.1
	C. 3					
	D. 4					
	Ans: A					
38	Initial count of the four bit up-counter is 0101. What will be					
	the output of the counter after four clock pulses?					
	A. 0111					1.61
	B. 1000	2	2	5	1,2	1.6.1 2.5.1
	C. 1001					2.3.1
	D. 1010					
	Ans: C					
39	Which counters are used for minutes in digital clock?					
	A. Mod 2 & Decade counters					
	B. Mod 8 & Decade counters	2	2	5	1,2	1.6.1
	C. Mod 6 & Decade counters	2	2	3	1,2	1.0.1
	D. Mod 5 & Decade counters					
	Ans: C					
40	What is the step size of 5- bit DAC operating with a full-					
	scale voltage of 10 V?					
	A. 0.32 V					161
	B. 0.31 V	2	3	5	1,3	1.6.1 2.5.1
	C. 0.62 V					2.3.1
	D. 0.2 V					
	Ans: A					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions ${\bf C}$

Approved by the Audit Professor/Course Coordinator