Eikosany: Microtonal Algorithmic Composition with R

2023-08-19

1 Algorithmic Composition

Overview of Methods (Nierhaus 2009)

- Markov Models / Stochastic
- Generative Grammars
- Transition Networks
- Chaos and Self-Similarity
- Genetic Algorithms
- Cellular Automata
- Artificial Neural Networks

My Main Compositional Focus

- Markov Models / Stochastic
- Pioneered by Iannis Xenakis (Xenakis 1992)
- Random chord progressions on microtonal harmonic structures

When Harry Met Iannis (2021) (Borasky 2021)

- Microtonal harmonic structure is Harry Partch's Tonality Diamond (<u>Partch</u>
 1979)
- Tonality Diamond was an inspiration for Erv Wilson's Combination Product Sets

2 Musical Scales

Types of scales

- Standard "western" tuning 12 equally-spaced tones / octave
 - abbreviated 12-TET (12 tone equal temperament) or 12-EDO (12 equal divisions of the octave)
- Alternative tuning anything else

Alternative tunings

- scales from other cultures
- "just" scales scales based on rational numbers
- scale repetition periods different from the octave
- scale repetition period divided into more than 12 tones
- combinations of the above!

Microtonal music

- Usually defined as an octave divided into more than 12 tones
- Common microtonal scales
 - 19-TET
 - 24-TET aka quarter tones
 - 31-TET

3 Erv Wilson (Narushima 2019)

Ervin Wilson (June 11, 1928 - December 8, 2016)

- Mexican/American (dual citizen)
- Prolific music theorist
- Developed keyboard layouts, scales and lattices
- Primarily known for theories of microtonal just scales

Combination Product Set Scales (Narushima 2019, chap. 6)

- Focus of the eikosany package
- Start with a set of N harmonic factors
- For even number of factors N, choose = N/2
- For an odd number, choose = either N/2 1/2 or N/2 + 1/2
 - Four factors: choose 2: six combinations
 - Five factors: choose 2 or 3: ten combinations
 - Six factors: choose 3: 20 combinations
 - Pascal's Triangle is your friend

Making the Scale

- Take all the combinations of the factors with choose elements
- Take the products of the combinations
- Reduce the products to ratios in [1, 2)
 - 1. Divide all by smallest product
 - 2. Multiply or divide by powers of two to get values in [1, 2)
- Sort

Example: 1-3-5-7 Hexany

- Products of combinations: 1*3, 1*5, 1*7, 3*5, 3*7, 5*7
- Raw ratios (divide by smallest product): 1 5/3 7/3 5 7 35/3
- Reduce: 1 5/3 7/6 5/4 7/4 35/24
- Sort: 1 7/6 5/4 35/24 5/3 7/4

Using the package!

```
remotes::install_github("AlgoCompSynth/eikosany", quiet = TRUE)
    library(eikosany)
    hexany_scale_table <- cps_scale_table(</pre>
      harmonics = c(1, 3, 5, 7),
      choose = 2
    print(hexany_scale_table)
                ratio ratio_frac ratio_cents interval_cents degree
   note_name
         1x3 1.0000000
                                       0.0000
1:
2:
         1x7 1.166667
                              7/6
                                     266.8709
                                                    266.87091
                                                                    1
         3x5 1.250000
                              5/4
                                     386.3137
3:
                                                    119.44281
                                                                    2
         5x7 1.458333
                            35/24
                                     653.1846
                                                    266.87091
4:
5:
         1x5 1.666667
                              5/3
                                     884.3587
                                                    231.17409
         3x7 1.750000
6:
                              7/4
                                     968.8259
                                                                    5
                                                     84.46719
7:
        1x3' 2.000000
                                    1200.0000
                                                    231.17409
                                                                    6
```

The prime on the bottom note_name indicates the next octave

Cents??

- A logarithmic measure used by scale theorists
- 1 cent = 1/100th of a semitone
- 12 semitones = 1200 cents = 1 octave = ratio of 2/1

The Chord Table

- Like scales, chords are combinations of harmonic factors
- Currently only works for even number of factors
- For a chord table, we take choose + 1 combinations
 - Four factors: three combinations (four triads)
 - Six factors: four combinations (15 tetrads)

Harmonic and Subharmonic Chords

- Each chord has a harmonic and subharmonic form
- Roughly corresponds to major and minor chords
- Four factors: four harmonic triads and four subharmonic triads
- Six factors: 15 harmonic tetrads and 15 subharmonic tetrads
- In the chord table, the subharmonic ones have "/" in their names

The Hexany Chord Table

```
hexany_chord_table <- cps_chord_table(hexany_scale_table)</pre>
    print(hexany_chord_table)
      chord degrees chord_index is_subharm
      1:3:5
              1:3:5
1:
                                          0
2: /1:/3:/5
              0:2:4
                                          1
3:
      1:3:7
              2:3:4
                                          0
4: /1:/3:/7
              0:1:5
      1:5:7
              0:2:5
                              3
5:
                                          0
6: /1:/5:/7
              1:3:4
                                          1
      3:5:7
              0:1:4
                                          0
8: /3:/5:/7
              2:3:5
                                          1
```

4 Pseudo-Demo

The 1-3-5-7-9-11 Eikosany

• Six harmonic factors, choose 3

```
1 eikosany_scale_table <- cps_scale_table(
2  harmonics = c(1, 3, 5, 7, 9, 11),
3  choose = 3
4 )</pre>
```

The Eikosany Scale Table

print(eikosany scale table)

<pre>1 print(eikosany_scale_table)</pre>							
	note name	ratio	ratio frac	ratio cents	interval cents	degree	
1:	_	1.000000	_ 1	0.00000	– NA	0	
2:	5x9x11	1.031250	33/32	53.27294	53.27294	1	
3:	1x7x9	1.050000	21/20	84.46719	31.19425	2	
4:	1x3x11	1.100000	11/10	165.00423	80.53704	3	
5:	3x5x9	1.125000	9/8	203.91000	38.90577	4	
6:	1x5x7	1.166667	7/6	266.87091	62.96090	5	
7:	3x9x11	1.237500	99/80	368.91423	102.04332	6	
8:	1x7x11	1.283333	77/60	431.87513	62.96090	7	
9:	5x7x9	1.312500	21/16	470.78091	38.90577	8	
10:	3x5x11	1.375000	11/8	551.31794	80.53704	9	
11:	1x3x7	1.400000	7/5	582.51219	31.19425	10	
12:	7x9x11	1.443750	231/160	635.78514	53.27294	11	
13:	1x5x9	1.500000	3/2	701.95500	66.16987	12	
14:	3x7x9	1.575000	63/40	786.42219	84.46719	13	
15:	5x7x11	1.604167	77/48	818.18885	31.76665	14	
16:	1x9x11	1.650000	33/20	866.95923	48.77038	15	
17:	3x5x7	1.750000	7/4	968.82591	101.86668	16	
18:	1x3x9	1.800000	9/5	1017.59629	48.77038	17	
19:	1x5x11	1.833333	11/6	1049.36294	31.76665	18	
20:	3x7x11	1.925000	77/40	1133.83013	84.46719	19	
21:	1x3x5'	2.000000	2	1200.00000	66.16987	20	
	note name	ratio	ratio frac	ratio cents	interval cents	degree	

The Eikosany Chord Table

```
print(eikosany chord table <-</pre>
       cps chord table(eikosany scale table)
           chord
                      degrees chord index is subharm
                   1:6:11:15
 1:
         1:3:5:7
                                                    0
 2:
                                        1
     /1:/3:/5:/7
                   0:5:10:16
                                                    1
 3:
         1:3:5:9 7:11:14:19
                                                    0
 4:
     /1:/3:/5:/9
                   0:4:12:17
        1:3:5:11
                                        3
 5:
                   2:8:11:13
                                                    0
 6: /1:/3:/5:/11
                    0:3:9:18
                                        3
                                                    1
 7:
         1:3:7:9
                   1:9:14:18
                                                    0
                                                    1
     /1:/3:/7:/9
                  2:10:13:17
                                                    0
        1:3:7:11
                    1:4:8:12
 9:
10: /1:/3:/7:/11
                   3:7:10:19
11:
        1:3:9:11
                   5:8:14:16
                                                    0
12: /1:/3:/9:/11
                   3:6:15:17
                                        6
                                                    1
13:
         1:5:7:9
                    3:6:9:19
                                                    0
14:
     /1:/5:/7:/9
                    2:5:8:12
15:
        1:5:7:11
                                                    0
                   4:6:13:17
                                        8
16: /1:/5:/7:/11
                   5:7:14:18
                                        8
                                                    1
17:
        1:5:9:11 10:13:16:19
                                        9
                                                    0
                                                    1
18: /1:/5:/9:/11 1:12:15:18
                                        9
19:
        1:7:9:11
                    0:4:9:16
                                       10
                                                    0
20: /1:/7:/9:/11
                   2:7:11:15
                                       10
                   3:7:15:18
21:
         3:5:7:9
                                       11
                                                    0
                                       11
22: /3:/5:/7:/9
                  4:8:13:16
```

What Does It Sound Like?

- To hear the scale:
 - 1. Get a synthesizer
 - 2. Map the keys of the synthesizer to the notes of the scale
 - 3. Play the keys
- But that's kind of expensive and I'm in a hurry
- So I'll emulate it in R!

First Step - Make a Keyboard Map

- Maps MIDI note numbers to frequencies
- MIDI note numbers range from 0 to 127
- MIDI note number 60 is middle C
- Our 20-note scale is note numbers 60:79

```
1 # this is the whole keyboard
2 eikosany_map <- keyboard_map(eikosany_scale_table)
3
4 # extract scale from middle C
5 scale_map <- eikosany_map[
6  note_number %in% 60:80,
7  list(note_number, freq)
8 ]</pre>
```

The Scale Map

```
print(scale_map)
    note_number
                    freq
 1:
             60 261.6256
 2:
             61 269.8014
 3:
             62 274.7068
 4:
             63 287.7881
 5:
             64 294.3288
 6:
             65 305.2298
 7:
             66 323.7616
             67 335.7528
 8:
 9:
             68 343.3836
10:
             69 359.7352
11:
             70 366.2758
12:
             71 377.7219
13:
             72 392.4383
14:
             73 412.0603
15:
             74 419.6910
16:
             75 431.6822
17:
             76 457.8447
18:
             77 470.9260
19:
             78 479.6469
20:
             79 503.6292
21:
             80 523.2511
    note number
                   frea
```

Second Step - Make Waves!

- uses seewave and tuneR (Sueur 2018)
- creates a *multisample* a collection of WAV files
 - can be used in sample-based workflows
 - emulates multisamples captured by **1010music Blackbox**

Make Waves!

```
1 scale_multisample(
2 keyboard_map = scale_map,
3 start_note_number = 60,
4 end_note_number = 80,
5 duration_sec = 2,
6 output_directory = "./Eikosany-Scale-Multisample"
7 )

[1] "./Eikosany-Scale-Multisample"
```

(Optional) Play Files with a Media Player

• 40 seconds you'll never get back

(Optional) Play Some Eikosany Chords

```
1 eikosany_scale_table <- cps_scale_table()
2 render_cps_chords(eikosany_scale_table, "./eikosany_chords")
[1] "./eikosany_chords"</pre>
```

5 Roadmap

Current status

- Enough infrastructure to manually make music!
 - (which was my initial goal)
- Documentation you're looking at it

Current plan

- 1. Clean up documentation and do a first release (August)
 - Hoping to release an album / EP on Bandcamp
- 2. Open feature requests for triage
- 3. Add consonance analysis capability (Sethares 2013)
- 4. Remove the MIDI functionality!
 - MIDI is a great language for 4/4 time 12-EDO music
 - For microtonal algorithmic composition, not so much
 - The "other tools" in the Appendix are designed to deal with MIDI so I don't have to!

Where does all this stuff live?

- GitHub: https://github.com/AlgoCompSynth/eikosany
- Pkgdown: https://algocompsynth.github.io/eikosany
- These slides: https://github.com/AlgoCompSynth/eikosany-slides

Appendix - Microtonal Music Resources

PC / Mac / iOS Software

- <u>Scala</u>. Note: this is *not* the Scala multi-paradigm programming language that runs on the Java Virtual Machine. This is a specialized tool for working with musical scales.
- <u>ODDSound MTS-ESP</u>. This is a plugin for digital audio workstations (DAWs) that facilitates production of microtonal music. I own a copy and if you're making microtonal electronic music, you should too. The Eikosany and other scales Erv Wilson developed all ship with MTS-ESP, so you don't really need my R package to compose with them.
- <u>Entonal Studio</u>. Entonal Studio is a user interface package for microtonal composition. It can operate as a standalone application, a plugin host or a plugin. I own a copy of Entonal Studio and recommend it highly.

PC / Mac / iOS Software (continued)

Infinitone DMT. From the Infinitone DMT FAQ:

"Infinitone DMT is a DAW plugin and standalone that empowers musicians to easily use micro-tuning within their own workflow.

. . .

"As a plugin, Infinitone DMT is inserted in your DAW as a MIDI effect.

• • •

"The standalone can be used separately from a DAW, or it can be used in conjunction with a DAW by routing MIDI data from the DAW to the standalone (and back)."

PC / Mac / iOS Software (continued)

- <u>Universal Tuning Editor</u>. Universal Tuning Editor is an application for computing and visualizing microtonal scales and tunings, and includes tools to interface with hardware and software synthesizers.
- <u>Wilsonic</u>. This is a free app that runs on iOS devices. I don't have any iOS devices so I've never used this.
 There is also a version of Wilsonic in development for use with ODDSound MTS-ESP. See https://wilsonic.co/downloads/downloads-mts-esp/ for the details.
- <u>Surge XT</u>. Surge XT is an open source full featured software synthesizer. The Surge XT community has invested a significant level of effort into supporting alternate tuning systems.
 - See the Xenharmonic Wiki List of microtonal software plugins for more ways of making microtonal music.

Websites

- Kraig Grady's Anaphoria Wilson Archive Australian-American composer
 Kraig Grady studied with Erv Wilson for many years and has collected
 Wilson's writings.
- <u>Sevish's Scale Workshop</u>. This is a web-based tool for working with musical scales.
- <u>Leimma and Apotome</u>. These tools, by <u>Khyam Allami</u> and <u>Counterpoint</u>, are browser-based applications for creating microtonal scales and making generative music with them.

YouTube Playlists

- Surfing the Sonic Sky
- Combination Product Sets Music
- Combination Product Sets Theory

References

<u>https://algocompsynth.bandcamp.com/album/when-harry-met-iannis</u>

https://books.google.com/books?id=jaowAtnXsDQC