IMPLEMENTASI DAN ANALISIS CLOUD GAMING DENGAN SERVER GAMINGANYWHERE YANG DI BENTUK MENGGUNAKAN DOCKER CONTAINERS PADA TEKNOLOGI FOG COMPUTING

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

ANDRO ELNATAN HARIANJA 6705154033

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Saat ini diketahui bahwa dalam beberapa tahun ini dunia *game* di dunia berkembang begitu pesat, mulai dari banyaknya *game* yang hadir dari *developer* yang tidak memiliki nama besar hingga *game* yang diciptakan oleh *developer* ternama seperti EA, Ubisoft, Rockstar Games dan sebagainya dengan kualitas AAA.

Hal ini juga diperkuat dengan hadirnya device dan hardware baru yang mendukung kehadiran game terbaru yang memiliki kualitas grafis yang sudah mendekati realistis yang tentunya membutuhkan source dari device dan hardware yang cukup besar. Namun device dan hardware yang baru dan memiliki performa yang baik memiliki harga yang cukup mahal agar kita dapat menikmati pengalaman bermain game dengan kualitas maksimal. Sebagai contoh yang saya kutip dari website resmi Ubisoft yaitu.untuk memainkan game Assassin's Creed Valhalla dengan resolusi 1080p dengan FPS ada di 60 FPS membutuhkan spesifikasi yang setara dengan laptop Lenovo ThinkPad T470 dengan rentang harga Rp 9 juta hingga Rp 10 juta, belum termasuk dalam membeli gamenya dimana jika mengunakan cloud gaming kita tidak memerlukan hardware yang tidak terlalu tinggi, namun kita hanya mengeluarkan biaya untuk menyewa layanan cloud dari Amazon Web Service pada rentang harga Rp 500 ribu hingga Rp 1 juta tergantung dari play time selama sebulan.

Berdasarkan uraian tersebut, maka *cloud gaming* sangat memungkinkan menjadi solusi agar *gamer* dapat menikmati penglaman terbaik walaupun memiliki *device* dan *hardware* yang tidak terlalu *power full. Cloud gaming* merupakan bagian dari *cloud computing* yang memiliki arti merupakan teknologi internet yang dapat mempermudah pengguna internet dalam mengakses, menyimpan data secara online pada sebuah server, berupa : *file, voice, video, game* dan sebagainya serta dapat digunakan oleh pengguna diseluruh dunia.

Pada pengerjaan akhir ini akan membahas tentang Implementasi dan Analisis *Cloud Gaming* dengan *Server* Gaminganywhere yang di bentuk menggunakan Docker Containers pada teknologi *Fog Computing*.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Penggunaan Virtual Machine Untuk Mengoptimalkan Kualitas Bermain Dengan Cloud Gaming [1]	2020	Pada penelitian ini pemateri dari Telkom University membuat <i>cloud gaming</i> dengan <i>server</i> pada jaringan <i>local</i> tepatnya pada laptop yang menggunakan VMWare / VirtualBox. Perbedaan jurnal ini dengan yang akan dibuat yaitu saya menggunakan <i>virtual machine</i> pada Amazon Web Service, docker container dan teknologi fog computing untuk meningkatkan performa pada cloud computing
2.	Comparison of Fog Computing & Cloud Computing [4]	2019	Pada penelitian ini pemateri membuat perbandingan antara fog computing dengan cloud computing. Perbedaan jurnal ini dengan yang akan dibuat yaitu pada jurnal ini hanya membahas kelebihan fog computing dan tidak membahas tentang cloud gaming
3.	Cloud Gaming System in Docker Container Image [2]	2018	Pada penelitian ini pemateri membuat <i>cloud gaming</i> dengan sisten docker container untuk meningkatkan performa FPS dalam bermain game dan seluruh performa dari <i>cloud gaming</i> . Perbedaan jurnal ini dengan yang akan dibuat yaitu saya menggunakan teknologi <i>fog computing</i> untuk meningkatkan performa dari <i>cloud gaming</i>

4.	Implementasi Dan Analisis Mobile Cloud Gaming Online Menggunakan Open-Source Cloud Gaming Server Gaminganywhere Pada Perangkat Android [3]	2017	Pada penelitian ini pemateri dari Telkom University membuat <i>cloud gaming</i> menggunakan server Gaminganywhere pada perangkat android. Perbedaan jurnal ini dengan yang akan dibuat yaitu saya menggunakan docker container dan teknologi <i>fog computing</i> untuk meningkatkan performa pada <i>cloud computing</i>
5.	CloudFog: Towards High Quality of Experience in Cloud Gamin [5]	2015	Pada penelitian ini pemateri membuat <i>cloud gaming</i> dengan mengunakan sisten <i>Fog Cloud</i> dapat mengurangi latensi respons dan konsumsi <i>bandwidth</i> serta meningkatkan jangkauan pengguna. Perbedaan jurnal ini dengan yang akan dibuat yaitu saya menggunkan docker container untuk meningkatkan performa dari <i>cloud gaming</i>

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan sistem dari cloud computing yang dibentuk menggunakan container pada teknologi fog computing. Pertama client memberi input kepada server gaminganywhere. Setelah itu server megidentifikasi alamat IP public client dan mengirim masukkan kepada server fog yang memiliki tingkat latensi yang terendah. Selanjutnya server gaminganywhere memilih edge network client dan menyebarkan file container image menuju server fog. Setelah container image berhasil di sebarkan maka server gaminganywhere siap melakukan hosting game. Selanjutnya server fog menerima IP public client maka server fog mengirimkan permintaan berkomunikasi dengan client. Setelah saling terhubung, client dapat bermain dan video game akan di encoder melalui video encoder dan di transfer ke video streaming service. Terakhir, video streaming service mengirim video permainan yang di encoded game menuju client dan akan di decode serta video game akan di streaming kan ke media player di sisi client.

Gambar 1 Model Sistem Perancangan Cloud Gaming Dengan Server Gaminganywhere Yang Di Bentuk Menggunakan Docker Containers Pada Teknologi Fog Computing

Pembuataan Sistem

Secara garis besar, Langkah-langkah dalam membuat *cloud gaming* ini yaitu pertama kita membuat *EC2 Instance* pada *Amazon Web Server* yaitu Ubuntu. Selanjutnya lakuakan *install Docker Container* pada Ubuntu yang telah dibuat, Lalu lakukan *Enable Docker Container* lalu jalankan. Lakukan konfigurasi pada *Docker Container* untuk *cloud gaming server*. Selanjutnya konfigurasi *server Gaminganywhere* ke dalam *Docker Container*. Setelah itu ubah server *cloud* ke *fog nodes*. Selanjutnya lakukan konfigurasi disisi client dan yang terakhir game dapat di mulai.

Tools untuk Pengukuran

Amazon Cloudwatch

CloudWatch mengumpulkan data pemantauan dan operasional dalam bentuk log, metrik, dan peristiwa, dan memvisualisasikannya menggunakan dasbor otomatis sehingga Anda bisa mendapatkan gabungan tampilan tentang sumber daya AWS anda, aplikasi, dan layanan yang berjalan di AWS dan di lokasi. Amazon Cloudwatch digunakan untuk mengukur *resource storage* pada *server*

Wireshark

Wireshark adalah sebuah *Network packet analyze*r yang berfungsi menangkap paket-paket jaringan dan berusaha untuk menampilkan semua informasi dipaket tersebut sedetail mungkin. Wireshark digunakan untuk mengukur *Quality of service*

• Quality Of Experience

Dalam pengukuran QOE, saya sebagai pembuat meminta beberapa orang mencoba *cloud gaming* ini untuk memainkannya dan memberikan nilai kepuasan dengan skala 1 sampai 10

Referensi

- [1] Prabowo, T. H. (2020). Penggunaan Virtual Machine Untuk Mengoptimalkan Kualitas Bermain Dengan Cloud Gaming.
- [2] Pugalendhi, A. (2018). Cloud Gaming System in Docker Container.
- [3] Setiawan1, E. (2017). Implementasi Dan Analisis Mobile Cloud Gaming Online Menggunakan Open-Source Cloud Gaming Server Gaminganywhere Pada Perangkat Android.
- [4] Vishal Kumar, A. A. (2019). Comparison of Fog Computing & Cloud Computing.
- [5] Yuhua Lin, H. S. (2015). CloudFog: Towards High Quality of Experience in Cloud Gaming.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 8 Desember 2020

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : RMT

Nama: ROHMAT TULLOH, S.T., M.T.

CALON PEMBIMBING 2

Kode : ASM

Nama : ASEP MULYANA, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705184033

Nama : ANDRO ELNATAN HARIANJA

Prodi / Peminatan : TT / CLOUD COMPUTING

Calon Judul PA : IMPLEMENTASI DAN ANALISIS CLOUD GAMING DENGAN SERVER

GAMINGANYWHERE YANG DI BENTUK MENGGUNAKAN DOCKER

CONTAINERS PADA TEKNOLOGI FOG COMPUTING

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

V X V V

Calon Pembimbing 2

(ASEP MULYANA, S.T., M.T.)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184033

Dosen Wali Program Studi : RMT / ROHMAT TULLOH : D3 Teknologi Telekomunikasi

Nama

: ANDRO ELNATAN HARIANJA

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	В
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	А
1	HUH1B2	PENDIDIKAN AGAMA KRISTEN DAN ETIKA	CHRISTIAN RELIGION AND ETHICS	2	АВ
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	В
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	Α
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	А
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB
Jumlah SKS					3.75

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	А
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	А
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	AB
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
Jumlah SKS					3.75

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
	Jumlal	13			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3E1	HEI	HEI	1	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
	Jumlal	13			

Tingkat I	: 41 SKS	Belum Lulus	IPK : 3.67
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.75
Tingkat III	: 83 SKS	Belum Lulus	IPK : 3.75
Jumlah SKS	: 83 SKS		IPK : 3.75

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Desember 2020 18:21:46 oleh ANDRO ELNATAN HARIANJA