Khazad

Криптоалгоритм $Khazad^{-1}$ шифрует 8-байтовые блоки открытых данных под управлением 16-байтового секретного ключа.

Khazad – итеративный шифр. Алгоритм оперирует с 8-байтовыми блоками данных $X = (x_0, x_1, ..., x_7)$ и 8-байтовыми ключами $ke = (ke_0, ke_1, ..., ke_7)$, которые рассматриваются как элементы векторного пространства \mathbb{F}^8_{256} над конечным полем $\mathbb{F}_{256} \cong \mathbb{F}_2[x] / f(x)$, где $f(x) = x^8 + x^4 + x^3 + x^2 + 1.$

Раундовая функция $\rho[k]$: $\mathbb{F}^8_{256} \to \mathbb{F}^8_{256}$ с параметром $k \in \mathbb{F}_{256}$ (k- раундовый подключ)является композицией трех функций:

$$\rho[k] \equiv \sigma[k] \circ \theta \circ \gamma,$$

где $f \circ g(x) = f(g(x))$.

Нелинейная функция $\gamma \colon \mathbb{F}^8_{256} \to \mathbb{F}^8_{256}$ определяется как

$$\gamma(x_0, x_1, ..., x_7) = (S[x_0], S[x_1], ..., S[x_7]),$$

где $S: \mathbb{F}_{256} \to \mathbb{F}_{256}, x \mapsto S[x]$ — инволютивная подстановка, заданная табл. 1. Поскольку S[S[x]] = x для любого $x \in \mathbb{F}_{256}$, то $\gamma^{-1} = \gamma$. Линейная функция $\theta \colon \mathbb{F}^8_{256} \to \mathbb{F}^8_{256}$ определяется как

$$\theta(x_0, x_1, ..., x_7) = (x_0, x_1, ..., x_7)H,$$

где H $- 8 \times 8$ -матрица над \mathbb{F}_{256} :

$$H = \begin{pmatrix} U & V \\ V & U \end{pmatrix},$$

$$U = \begin{pmatrix} 0x01 & 0x03 & 0x04 & 0x05 \\ 0x03 & 0x01 & 0x05 & 0x04 \\ 0x04 & 0x05 & 0x01 & 0x03 \\ 0x05 & 0x04 & 0x03 & 0x01 \end{pmatrix}, \qquad V = \begin{pmatrix} 0x06 & 0x08 & 0x0B & 0x07 \\ 0x08 & 0x06 & 0x07 & 0x0b \\ 0x0B & 0x07 & 0x06 & 0x08 \\ 0x07 & 0x0B & 0x06 & 0x08 \end{pmatrix}$$

Можно проверить, что $H^2 = E$ – единичная матрица. Поэтому $\theta^{-1} = \theta$. Функция $\sigma[k]\colon \mathbb{F}^8_{256} o \mathbb{F}^8_{256}$ с параметром $k \in \mathbb{F}_{256}$ определяется как

$$\sigma[k](x) \equiv X \oplus k.$$

Очевидно, что $\sigma^{-1}[k] = \sigma[k]$.

R-раундовая функция шифрования с раундовыми подключами ke^0 , ke^1 ,..., ke^R , генерируемыми на основе секретного ключа K, — определяется как

$$Khazad[K](X) \equiv \sigma[ke^R] \circ \gamma \circ \rho[ke^{R-1}] \circ \dots \circ \rho[ke^1] \circ \sigma[ke^0](X).$$

Обратная функция имеет вид:

$$Khazad^{-1}[K](X) = \sigma[ke^0] \circ \rho^{-1}[ke^1] \circ ... \circ \rho^{-1}[ke^{R-1}] \circ \gamma \circ \sigma[ke^R].$$

Используя соотношения

$$\theta \circ \sigma[k] = \sigma[\theta(k)] \circ \theta, \quad \rho^{-1}[k] \circ \gamma = \gamma \circ \rho[k],$$

нетрудно показать, что

$$Khazad^{-1}[K](X) = \sigma[kd^R] \circ \gamma \circ \rho[kd^{R-1}] \circ \dots \circ \rho[kd^1] \circ \sigma[kd^0],$$

где $ke^0 = kd^R$; $kd^i = kd^{R-i}$; 0 < i < R; $kd^R = ke^0$. Другими словами для зашифрования и расшифрования может быть использован один и тот же алгоритм:

Алгоритм зашифрования/расшифрования *Khazad*

 $Bxo\partial: X - 8$ -байтовый блок открытых данных/шифртекста.

При зашифровании используются раундовые подключи $k^i=ke^i$, а при расшифровании $k^i = kd^i, i = 0, 1, ..., R.$

$$X := \sigma[k^0](X);$$

for
$$i := 1$$
 to $R - 1$ do $X := \sigma[k^i] (\theta(\gamma(X)));$

$$X := \sigma[k^R](\gamma(X))$$
.

Bыход: X - 8-байтовый блок шифртекста/открытых данных.

Стандартное число раундов R = 8.

¹ Авторы шифра: Paulo S.L.M. Barreto (Бразилия) и Vincent Rijmen (Бельгия)

Раундовые подк
дючи $ke^i \in \mathbb{F}^8_{256}$ генерируются на основе 16-байтового секретного ключа $K = (k_0, k_1, ..., k_{15})$ по правилу $ke^{-2} := (k_0, k_1, ..., k_7);$ $ke^{-1} := (k_8, k_9, ..., k_{15});$

$$ke^{-2} := (k_0, k_1, ..., k_7);$$

 $ke^{-1} := (k_0, k_0, ..., k_7);$

for
$$r := 0$$
 to R do $ke^r := c^r \oplus \theta(\gamma(ke^{r-1})) \oplus ke^{r-2}$.

Используемые при этом 8-байтовые раундовые константы $c^r=(c_0^r,c_1^r,...,c_7^r), 0 \le r \le r$ R, определяются как

$$c_i^r = S[byte(8r+i)], 0 \le i \le 7,$$

где byte(m) — числовое значение байта m.

Таблица 1 Подстановка S в Khazad (в 16-ичном представлении)

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f
0	ba	54	2f	74	53	d3	d2	4d	50	ac	8d	bf	70	52	9a	4c
1	ea	d5	97	d1	33	51	5b	a6	de	48	a8	99	db	32	b7	fc
2	е3	9e	91	9b	e2	bb	41	6e	a5	cb	6b	95	a1	f3	b1	02
3	СС	c4	1d	14	с3	63	da	5d	5f	dc	7d	cd	7f	5a	6c	5c
4	f7	26	ff	ed	e8	9d	6f	8e	19	a0	f0	89	0f	07	af	fb
5	98	15	0d	04	01	64	df	76	79	dd	3d	16	3f	37	6d	38
6	b9	73	e9	35	55	71	7b	8c	72	88	f6	2a	3e	5e	27	46
7	0с	65	68	61	03	c1	57	d6	d9	58	d8	66	d7	3a	с8	3с
8	fa	96	a7	98	ec	b8	c7	ae	69	4b	ab	a9	67	0a	47	f2
9	b5	22	e5	ee	be	2b	81	12	83	1b	0e	23	f5	45	21	ce
а	49	2c	f9	e6	b6	28	17	82	1a	8b	fe	8a	09	с9	87	4e
b	e1	2e	e4	e0	eb	90	a4	1e	85	60	00	25	f4	f1	94	0b
С	e7	75	ef	34	31	d4	d0	86	7e	ad	fd	29	30	3b	9f	f8
d	с6	13	06	05	c5	11	77	7c	7a	78	36	1c	39	59	18	56
е	b3	b0	24	20	b2	92	a3	с0	44	62	10	b4	84	43	93	c2
f	4a	bd	8f	2d	bc	9с	6a	40	cf	a2	80	4f	1f	ca	aa	42

Hапример: S[0x7a] = 0xd8.