Robust Speech Recognition Using a Cepstral Minimum-Mean-Square-Error-Motivated Noise Suppressor

Author: Dong Yu, Li Deng, Jasha Droppo, Jian Wu, Yifan Gong, Alex Acero

Professor:陳嘉平

Reporter:葉佳璋

Abstract—We present an efficient and effective nonlinear featuredomain noise suppression algorithm, motivated by the minimummean-square-error (MMSE) optimization criterion, for noiserobust speech recognition. Distinguishing from the log-MMSE spectral amplitude noise suppressor proposed by Ephraim and Malah (E&M), our new algorithm is aimed to minimize the error expressed explicitly for the Mel-frequency cepstra instead of discrete Fourier transform (DFT) spectra, and it operates on the Mel-frequency filter bank's output. As a consequence, the statistics used to estimate the suppression factor become vastly different from those used in the E&M log-MMSE suppressor. Our algorithm is significantly more efficient than the E&M's log-MMSE suppressor since the number of the channels in the Mel-frequency filter bank is much smaller (23 in our case) than the number of bins (256) in DFT. We have conducted extensive speech recognition experiments on the standard Aurora-3 task. The experimental results demonstrate a reduction of the recognition word error rate by 48% over the standard ICSLP02 baseline, 26% over the cepstral mean normalization baseline, and 13% over the popular E&M's log-MMSE noise suppressor. The experiments also show that our new algorithm performs slightly better than the ETSI advanced front end (AFE) on the well-matched and mid-mismatched settings, and has 8% and 10% fewer errors than our earlier SPLICE (stereo-based piecewise linear compensation for environments) system on these settings, respectively.

Introduction

- We proposed nonlinear feature-domain noise reduction algorithm motivated by the minimum-mean-square-error(MMSE) criterion on MFCC
- We derive the algorithm by
 - Assigning uniformly distributed random phase to the real-valued filter bank's outputs
 - Assuming that the artificially generated complex filter bank's outputs follow zero-mean complex normal distributions

Problem Formulation

 We assume that x(t) is a corrupted with independent additive noise waveform n(t) become the noisy speech waveform, i.e.

$$y(t) = x(t) + n(t)$$

We get the relationship in the DFT domain

$$Y(f) = X(f) + N(f)$$

• The Mel-frequency filter bank's output power for noisy feature

$$m_{y}(b) = \sum_{f} \omega_{b}(f) |Y(f)|^{2}$$

The kth dimension of MFCC is calculated as

$$c_y(k) \cong \sum_b a_{k,b} m_y(b)$$
 $a_{k,b} = \cos \frac{\pi b}{B} (k - 0.5)$

Problem Formulation

• Our goal is to find the MMSE estimate $\hat{c}_x(k)$ against to each separate and independent dimension k of MFCC vector c_x

$$\hat{c}_{x}(k) = \hat{f}(c_{y}(k)) = \arg\min_{f} E\left\{ \left(f(c_{y}(k)) - c_{x}(k) \right)^{2} \right\}$$

$$= \arg\min_{f} \int \left(f(c_{y}(k)) - c_{x}(k) \right)^{2} p(c_{x}(k)) dc_{x}(k)$$

- Three reasons for choosing the dimension-wise instead of full-vector MMSE criterion
 - ➤ Each dimension of MFCC vector is known to be relatively independently with each others
 - > The dynamic range of MFCC is vastly different across dimensions
 - The criterion decouples different dimensions, making the algorithm easier to develop and to implement.

Problem Formulation

The solution is the conditional expectation

$$\hat{c}_x(k) = E\{c_x(k)|m_y\} = E\{\sum_b a_{k,b} \log m_x(b)|m_y\}$$

$$= \sum_b a_{k,b}(f)E\{\log m_x(b)|m_y\}$$

Can be further simplified to

$$\hat{c}_{x}(k) \cong \sum_{b} a_{k,b}(f) E\{\log m_{x}(b) \mid m_{y}(b)\}$$

 The problem is reduce to finding the log-MMSE estimator of the Mel frequency filter bank's

$$\hat{m}_{x}(b) \cong \exp(E\{\log m_{x}(b) | m_{y}(b)\})$$

Set up a "straw man" by first rewriting

$$\hat{m}_{x}(b) = e \operatorname{xp}\left(E\left\{\log m_{x}(b) \mid m_{y}(b)\right\}\right) = e \operatorname{xp}\left(2E\left\{\log \sqrt{m_{x}(b)} \mid \sqrt{m_{y}(b)}\right\}\right)$$

- The same form in the objective function as the E&M log-MMSE amplitude spectral suppressor
- This naive approach has produced poor recognition results in our experiments.

Fig. 1. Feature extraction pipeline where the E&M log-MMSE magnitude suppressor is directly applied to the magnitude spectrum of the filter bank output.

- Note that the filter bank' output $m_x(b)$, $m_n(b)$, and $m_y(b)$ take real value in the range of $(0,\infty]$, and thus it is inappropriate to model them with real-valued normal distributions.
- To develop appropriate models, we construct three artificial complex variable $M_x(b)$, $M_n(b)$, and $M_y(b)$ such that

$$|M_{x}(b)| = m_{x}(b) = \sum_{f} \omega_{b}(f) |X(f)|^{2}$$
$$|M_{n}(b)| = m_{n}(b) = \sum_{f} \omega_{b}(f) |N(f)|^{2}$$
$$|M_{y}(b)| = m_{y}(b) = \sum_{f} \omega_{b}(f) |Y(f)|^{2}$$

• We choose the ones with uniformly distributed random phases $\theta_x(b)$, $\theta_n(b)$, and $\theta_y(b)$.

• Since $M_y(b)$ contains all information there is in $m_y(b)$, can be rewritten as

$$\hat{m}_{x}(b) \cong \exp(E\{\log m_{x}(b) | M_{y}(b)\})$$

 We follows the approach adopted in E&M by first evaluating the moment generating function

$$\Phi_{b}(\mu) = E\left\{\exp\left(\mu\log m_{x}(b)|M_{y}(b)\right)\right\}$$

$$= E\left\{m_{x}^{\mu}(b)|M_{y}(b)\right\}$$

$$\hat{m}_{x}(b) = \exp\left(\frac{d}{d\mu}\Phi_{b}(\mu)|_{\mu=0}\right) \quad \frac{d}{d\mu}m_{x}^{\mu} = m_{x}^{\mu}\log m_{x}$$

• We assume that $\theta_x(b)$, $\theta_n(b)$, and $\theta_y(b)$ are independent and uniformly distributed random variables

$$\Phi_{b}(\mu) = E\{m_{x}^{\mu}(b) | M_{y}(b)\}
= \frac{\int_{0}^{\infty} \int_{0}^{2\pi} m_{x}^{\mu}(b) p(M_{y}(b), m_{x}(b), \theta_{x}(b)) dm_{x}(b) d\theta_{x}(b)}{p(M_{y}(b))}
= \frac{\int_{0}^{\infty} \int_{0}^{2\pi} m_{x}^{\mu}(b) p(M_{y}(b) | m_{x}(b), \theta_{x}(b)) p(m_{x}(b), \theta_{x}(b)) dm_{x}(b) d\theta_{x}(b)}{\int_{0}^{\infty} \int_{0}^{2\pi}(b) p(M_{y}(b) | m_{x}(b), \theta_{x}(b)) p(m_{x}(b), \theta_{x}(b)) dm_{x}(b) d\theta_{x}(b)}$$

- $M_x(b)$ is assumed to follow the zero-mean complex normal distribution $p(m_x(b), \theta_x(b)) = \frac{m_x(b)}{\pi \sigma_x^2(b)} \exp\left\{-\frac{m_x^2(b)}{\sigma_x^2(b)}\right\}$
- Where

$$\sigma_x^2(b) \stackrel{def}{=} E\{ |M_x(b)|^2 \} = E\{m_x^2(b)\}$$

• Similarly, given that $M_y(b)-M_x(b)$

$$p(M_{y}(b)|m_{x}(b),\theta_{x}(b)) = \frac{1}{\pi\sigma_{d}^{2}(b)} \exp\left\{-\frac{\left|M_{y}(b)-m_{x}(b)e^{j\theta_{x}(b)}\right|^{2}}{\sigma_{d}^{2}(b)}\right\}$$

$$= \frac{1}{\pi\sigma_{d}^{2}(b)} \exp\left\{-\frac{\left|m_{y}(b)e^{j\theta_{y}(b)}-m_{x}(b)e^{j\theta_{x}(b)}\right|^{2}}{\sigma_{d}^{2}(b)}\right\}$$

$$= \frac{1}{\pi\sigma_{d}^{2}(b)} \exp\left\{-\frac{\left|m_{y}(b)\cos(\theta_{y}(b))-m_{x}(b)\cos(\theta_{x}(b))+j(m_{y}(b)\cos(\theta_{y}(b))-m_{x}(b)\cos(\theta_{x}(b)))\right|^{2}}{\sigma_{d}^{2}(b)}\right\}$$

$$= \frac{1}{\pi\sigma_{d}^{2}(b)} \exp\left\{-\frac{\left|m_{y}^{2}(b)+m_{x}^{2}(b)+2m_{y}(b)m_{x}(b)\cos(\theta_{y}(b)-\theta_{x}(b))\right|^{2}}{\sigma_{d}^{2}(b)}\right\}$$

$$where \ \sigma_{d}^{2}(b) \stackrel{def}{=} E\left\{\left|M_{y}(b)-M_{x}(b)\right|^{2}\right\} \ge E\left\{\left(m_{y}(b)-m_{x}(b)\right)^{2}\right\}$$

• Since $m_y(b) = \sum_f \omega_b(f) |Y(f)|^2$ $= \sum_f \omega_b(f) (|X(f)|^2 + |N(f)|^2 + 2|X(f)||N(f)|\cos\varphi(f))$ $= m_x(b) + m_n(b) + \sum_f 2\omega_b(f) |X(f)||N(f)|\cos\varphi(f)$ Where $\varphi(f)$ is the phase difference of X(f) and N(f)

$$\sigma_{d}^{2}(b) \geq E\left\{\left(m_{n}(b) + \sum_{f} 2\omega_{b}(f)|X(f)||N(f)|\cos\varphi(f)\right)^{2}\right\}$$

$$= E\left\{m_{n}^{2}(b)\right\} + E\left\{\left(\sum_{f} 2\omega_{b}(f)|X(f)||N(f)|\cos\varphi(f)\right)^{2}\right\}$$
where $E\left\{2m_{n}(b)\left(\sum_{f} 2\omega_{b}(f)|X(f)||N(f)|\cos\varphi(f)\right)\right\} \leq 0$

$$\sigma_{d}^{2}(b) \leq \sigma_{x}^{2}(b) + \sigma_{\varphi}^{2}(b)$$

One of major different from E&M. In E&M

$$\sigma_d^2(b) \stackrel{\text{def}}{=} E\left\{ \left| Y(f) - X(f) \right|^2 \right\} = E\left\{ \left| N(f) \right|^2 \right\} = \sigma_n^2(b)$$

• By substituting and replacing variable $\theta_y(b) - \theta_x(b)$ by $\beta(b)$

$$\Phi_{b}(\mu) = E\{m_{x}^{\mu}(b) | M_{y}(b)\}$$

$$= \frac{\int_{0}^{\infty} m_{x}^{\mu+1}(b) \exp\{-\frac{m_{x}^{2}(b)}{\sigma_{x}^{2}(b)} - \frac{m_{x}^{2}(b)}{\sigma_{d}^{2}(b)}\} g(m_{x}(b)) dm_{x}(b)}{\int_{0}^{\infty} m_{x}(b) \exp\{-\frac{m_{x}^{2}(b)}{\sigma_{x}^{2}(b)} - \frac{m_{x}^{2}(b)}{\sigma_{d}^{2}(b)}\} g(m_{x}(b)) dm_{x}(b)}$$

$$g(m_{x}(b)) = \int_{0}^{2\pi} \frac{1}{\pi \sigma_{x}^{2}(b)} \exp\{-\frac{2m_{x}(b)m_{y}(b)\cos(\beta(b))}{\sigma_{d}^{2}(b)}\} d\beta(b)$$

• This can be show simplified

$$g(m_x(b)) = I_0 \left(2m_x(b) \sqrt{\frac{v(b)}{\sigma^2(b)}} \right), where I_0(z) = \int_0^{2\pi} \exp(z\cos\beta)d\beta$$

$$\frac{1}{\sigma^2(b)} = \frac{1}{\sigma_d^2(b)} + \frac{1}{\sigma_x^2(b)}$$

$$v(b) = \frac{\xi(b)}{1 + \xi(b)} \Upsilon(b)$$

• $v(b) = \frac{\xi(b)}{1+\xi(b)} \Upsilon(b)$ is defined from a priori signal-to-noise ratio

$$\xi(b) \stackrel{def}{=} \frac{\sigma_x^2(b)}{\sigma_d^2(b)} \cong \frac{\sigma_x^2(b)}{\sigma_n^2(b) + \sigma_{\varphi}^2(b)}$$

And the adjusted a posteriori SNR

$$\Upsilon(b) \stackrel{def}{=} \frac{\sigma_y^2(b)}{\sigma_d^2(b)} \cong \frac{m_y^2(b)}{\sigma_n^2(b) + \sigma_\varphi^2(b)}$$

Rewritten as

$$\Phi_{b}(\mu) = E\{m_{x}^{\mu}(b) | M_{y}(b)\}$$

$$= \frac{\int_{0}^{\infty} m_{x}^{\mu+1}(b) \exp\{-\frac{m_{x}^{2}(b)}{\sigma_{x}^{2}(b)} - \frac{m_{x}^{2}(b)}{\sigma_{d}^{2}(b)}\} I_{0}(2m_{x}(b)) \sqrt{\frac{v(b)}{\sigma^{2}(b)}} dm_{x}(b)}{\int_{0}^{\infty} m_{x}(b) \exp\{-\frac{m_{x}^{2}(b)}{\sigma_{x}^{2}(b)} - \frac{m_{x}^{2}(b)}{\sigma_{d}^{2}(b)}\} I_{0}(2m_{x}(b)) \sqrt{\frac{v(b)}{\sigma^{2}(b)}} dm_{x}(b)}$$

$$\Phi_b(\mu) = \sigma^{\mu/2} \Gamma(\mu/2+1) M(\mu/2;1;-\nu(b))$$

, where $\Gamma(\bullet)$ gamma function M(a;c;x) confluent hypergeometric function

$$\frac{\partial}{\partial \mu} M\left(\mu/2; 1; -\nu(b)\right) \Big|_{\mu=0} = \frac{-1}{2} \sum_{r=1}^{\infty} \frac{\left(-\nu\right)^{r}}{r!} \frac{1}{r} \frac{\partial}{\partial \mu} \Gamma\left(\frac{\mu}{2} + 1\right) \Big|_{\mu=0} = \frac{-c}{2}$$

$$\frac{d}{d\mu} \Phi_{b}\left(\mu\right) \Big|_{\mu=0} = \frac{1}{2} \ln \sigma + \frac{1}{2} \left(\ln \nu(b) + \int_{\nu(b)}^{\infty} \frac{\left(e\right)^{-t}}{t} dt\right)$$

$$\frac{\partial}{\partial \mu} \left(\frac{\mu}{2} + 1\right) \left(\frac{\mu}{2} + 1\right)$$

 $\hat{m}_{x}(b) = \exp\left(E\left\{\log m_{x}(b) \mid m_{y}(b)\right\}\right) = G\left(\xi(b), v(b)\right) m_{y}(b)$

where

$$G(\xi(b),v(b)) = \frac{\xi(b)}{1+\xi(b)} \exp\left\{\frac{1}{2} \int_{v(b)}^{\infty} \frac{e^{-t}}{t} dt\right\}$$

The MMSE estimate for MFCC is thus

$$\hat{c}(k) = \sum_{b} a_{k,b} E\{\log m_x(b) | m_y(b)\} = \sum_{b} a_{k,b} \log(G(\xi(b), v(b))) m_y(b)$$

Estimation of Parameters

- To apply the noise reduction algorithm, we need to estimate the noise variance $\sigma_n^2(b)$, the variance $\sigma_\varphi^2(b)$ and clean speech variance $\sigma_x^2(b)$
- Estimate of $\sigma_n^2(b)$
 - Using a minimum-controlled recursive movie-average noise tracker
 - A decision on whether a frame contains speech is made based on energy ratio test $\frac{\left|\vec{m}_{y}(b)\right|_{t}^{2}}{\left|\vec{m}_{y}(b)\right|_{t}^{2}} > 9$

Where \mathcal{G} is threshold, $|\ddot{m}_n(b)|_{\min}^2$ is the smoothed minimum noise power, $|\ddot{m}_y(b)|_{t}^2$ is the smoothed power of the bth filter's output at the tth frame.

➤ If the energy ratio is true the frame is assumed to contain speech the new noise estimate of the noise variance becomes

$$\sigma_n^2(b)_t = \sigma_n^2(b)_{t-1}$$
, otherwise $\sigma_n^2(b)_t = \alpha \sigma_n^2(b)_{t-1} + (1-\alpha) |m_y(b)|_t^2$ using smoothing factor α

Estimation of Parameters

- Estimation of $\sigma_x^2(b)$
 - ➤ Using decision-directed approach.
 - $ightharpoonup \sigma_x^2(b)$ for the current frame is estimate using the estimated clean speech from the previous frame and smoothed over the past frames.

Estimation of Parameters

• Estimation of $\sigma_{\varphi}^{2}(b)$

$$\begin{split} &\sigma_{\varphi}^{2}(b) = E\left\{ \left(\sum_{f} 2\omega_{b}(f) |X(f)| |N(f)| \cos \varphi(f) \right)^{2} \right\} \\ &= 4\sum_{f} E\left\{ \left(\omega_{b}(f) |X(f)| |N(f)| \cos \varphi(f) \right)^{2} \right\} \\ &= 4\sum_{f} E\left\{ \left(\omega_{b}(f) |X(f)| |N(f)| \right) \right\}^{2} \times \int_{0}^{2\pi} \frac{1}{2\pi} \cos \varphi(f) d\varphi(f) \\ &= 2\sum_{f} E\left\{ \left(\omega_{b}(f) |X(f)| |N(f)| \right)^{2} \right\} = 2\sum_{f} \omega_{b}^{2}(f) E\left\{ \left(|N(f)| \right) \right\}^{2} E\left\{ \left(|X(f)| \right) \right\}^{2} \end{split}$$

Since we only estimate and keep track of statistics at the real-valued filter bank's output, we approximate $\sigma_{\theta}^{2}(b)$ as

$$\sigma_{\varphi}^{2}(b) = 2\sum_{f} \omega_{b}^{2}(f) E\left\{\left(\left|N(f)\right|\right)\right\}^{2} E\left\{\left(\left|X(f)\right|\right)\right\}^{2}$$

$$\approx 2E\left\{m_{x}(b)\right\} E\left\{m_{n}(b)\right\} \frac{\sum_{f} \omega_{b}^{2}(f)}{\sum_{f_{1}} \sum_{f_{2}} \omega_{b}(f_{1})\omega_{b}(f_{2})}$$

$$\approx 2\frac{E\left\{m_{x}(b)\right\}}{E\left\{m_{n}(b)\right\}} E\left\{m_{n}^{2}(b)\right\} \frac{\sum_{f} \omega_{b}^{2}(f)}{\left(\sum_{f} \omega_{b}(f)\right)^{2}}$$

$$\approx 2\frac{\sum_{f} \omega_{b}^{2}(f)}{\left(\sum_{f} \omega_{b}(f)\right)^{2}} \sqrt{\sigma_{x}^{2}(b)\sigma_{n}^{2}(b)}$$

Experiment setup

- Aurora3 corpus
- Close-talking or a hand-free microphone
- 39-dimension features used in our experiment
 - 13-dimension(with energy and without c0) static
 MFCC
 - Their delta and delta-delta feature
- The threshold \mathcal{G} was set to 0.9, and the parameter α set to 5.

Fig. 5. Feature extraction pipeline for the ICSLP02 baseline system.

Fig. 6. Feature extraction pipeline for the CMN baseline system.

Fig. 1. Feature extraction pipeline where the E&M log-MMSE magnitude suppressor is directly applied to the magnitude spectrum of the filter bank output.

Fig. 7. Feature extraction pipeline for the E&M log-MMSE system [8], where the suppressor is applied to the DFT bins.

Fig. 8. Feature extraction pipeline for the MFCC-MMSE system.

Fig. 9. Feature extraction pipeline for the SPLICE systems.

TABLE I SUMMARY OF ABSOLUTE WER ON THE STANDARD TEST SETS IN THE AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

Summary of Aurora 3 Absolute Word Error Rate (Standard Set)					
	Well	Mid	High	Average	
ICSLP02 Baseline	8.96%	21.96%	48.85%	23.48%	
CMN	6.87%	16.52%	31.11%	16.31%	
FB Output Magnitude	6.87%	15.21%	31.29%	15.89%	
E&M log-MMSE	5.57%	12.79%	29.23%	14.01%	
MFCC-MMSE	5.08%	12.26%	23.26%	12.13%	

TABLE II SUMMARY OF RELATIVE WER REDUCTION ON THE STANDARD TEST SETS IN THE AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

Summary of Aurora 3 Relative Improvement (Standard Set)					
Relative to →	ICSLP02 CMN E&M log-				
	Baseline		MMSE		
CMN	30.55%				
E&M log-MMSE	40.33%	14.08%			
MFCC-MMSE	48.33%	25.59%	13.41%		

TABLE III
DETAILED AURORA-3 ABSOLUTE WER RESULTS ON THE STANDARD TEST
SETS UNDER THE MFCC-MMSE EXPERIMENTAL SETTING

Aurora-3 Word Error Rate with MFCC-MMSE (Standard Set)					
	Finnish	Spanish	German	Danish	Average
Well (x40%)	3.54%	5.90%	5.20%	5.66%	5.08%
Mid (x35%)	15.12%	5.39%	10.67%	17.84%	12.26%
High (x25%)	17.99%	34.77%	10.78%	29.49%	23.26%
Overall	11.21%	12.94%	8.51%	15.88%	12.13%

TABLE IV
DETAILED AURORA-3 WER REDUCTION RESULTS ON THE STANDARD TEST
SETS AGAINST THE ICSLP02 BASELINE UNDER THE MFCC-MMSE

Aurora-3 Relative Improvement with MFCC-MMSE (Standard Set)					
	Finnish	Spanish	German	Danish	Average
Well (x40%)	51.24%	16.43%	40.91%	55.50%	43.36%
Mid (x35%)	22.42%	67.71%	43.72%	45.41%	44.18%
High (x25%)	69.75%	28.24%	59.82%	51.36%	52.39%
Overall	54.44%	37.73%	49.54%	49.88%	48.32%

TABLE VI

SUMMARY OF RELATIVE WER REDUCTION ON THE QUIET TEST SET IN THE AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

Summary of Aurora 3 Relative Improvement (Quiet Set)				
Relative to -> CMN E&M log-MMSE				
E&M log-MMSE	20.33%			
MFCC-MMSE	21.72%	1.75%		

TABLE VII COMPARISON BETWEEN THE MFCC-MMSE SYSTEM AND THE ETSI'S AFE ON THE AURORA-3 TASK

Compare with AFE on Aurora 3 (Standard Set)					
Well Mid High					
ETSI AFE	4.70%	13.21%	12.75%		
MFCC-MMSE	5.08%	12.26%	23.26%		

TABLE VIII

COMPARISON BETWEEN THE MFCC-MMSE SYSTEM AND THE SPLICE ON AURORA-3 WHERE THE SPLICE CODE BOOK WAS TRAINED USING ADDITIONAL INFORMATION TO MAKE A MATCHING CONDITION

Comparisons with SPLICE on Aurora-3 (Standard Set)					
Well Mid High					
SPLICE	5.49%	13.55%	11.42%		
MFCC-MMSE	5.08%	12.26%	23.26%		