Options to Hedge Against Producer Risks in Electricity Markets

Salvador Pineda Antonio Conejo November 2010

Outline

- >Introduction
- > Model
- >Case study
- > Conclusions

Outline

- >Introduction
- > Model
- >Case study
- > Conclusions

- > How do electricity options work?
- > How can electricity options be modeled?
- > How do electricity options reduce price risk?
- > How do electricity options reduce availability risk?
- > When is an option contract more profitable than a forward contract?

Pool market (price risk)

Pool market (price risk)

Futures market (fixed price)

Pool market (price risk)

Production unit (availability risk)

Pool market (price risk)

Production unit (availability risk)

Futures market (fixed price)

Forward contract

- > Fixed price
- Obligation to buy/sell
- > No cost

- > Fixed price
- > Right to buy/sell
- > Option price

- > Two positions (buyer and seller of the option)
- > Put options (right to sell)
- Call options (right to buy)
- > European options (exercised at expiration)
- American options (exercised any time until expiration)

- > Two positions (buyer and seller of the option)
- > Put options (right to sell)
- > Call options (right to buy)
- European options (exercised at expiration)
- American options (exercised any time until expiration)

Name	Best Bid	Best Ask	No. of Contr.	Last Price	Abs. Change	Last Time	Last Vol.	Settl. Price
Nov-10	-	-	_	-	_	-	-	48.52
Dec-10	47.00	47.15	85	-		_	-	47.07
P 4300	-	-	-	-	_	-	-	0.058
P 4400	-	-	_	-	-	-	_	0.134
P 4500	-	-	_	-	-	-	_	0.281
P 4600	-	-	_	-	-	-	_	0.542
P 4700	-	-	_	-	-	-	_	0.955
P 4800	-	_	-	_	_	_	-	1.536
P 4900	-	-	_	-	-	-	_	2.267
P 5000	_	_	_	_	_	-	-	3.110
P 5100	-	-	-	_	_	_	-	4.024

Basic idea

Period 1 Period 2

Sign a forward contract to sell electricity during period 2

Obligation to sell the agreed electricity at the agreed price 14

Basic idea

Period 1

Period 2

Sign a put option to sell electricity during period 2

Basic idea

Sign a put option to sell electricity during period 2

Option is exercised to hedge against low prices

Basic idea

Sign a put option to sell electricity during period 2

Option is not exercised to obtain high profits

Sign a put option to sell electricity during period 2

Option is not exercised to hedge against unit failures

Sign a put option to sell electricity during period 2

Option is exercised

- ➤ How do electricity options work? ✓
- > How can electricity options be modeled?
- > How do electricity options reduce price risk?
- > How do electricity options reduce availability risk?
- > When is an option contract more profitable than a forward contract?

Multi-stage stochastic programming

First-stage decisions:

- Option purchase
- > Forward contracting

Second-stage decision:

> Option exercise

Scenario tree

- ➤ How do electricity options work? ✓
- ➤ How can electricity options be modeled? ✓

- > How do electricity options reduce price risk?
- > How do electricity options reduce availability risk?
- > When is an option contract more profitable than a forward contract?

Analyze electricity options to manage the two main risks faced by power producers: price and availability risks.

Outline

- >Introduction
- >Model
- >Case study
- > Conclusions

Outline

- >Introduction
- > Model
- >Case study
- > Conclusions

Sources of uncertainty

Pool prices

Unit availability

Forward contracts

Sources of uncertainty

Pool prices

Unit availability

Forward contracts

Pool prices

Unit availability

$$FOR(\%) = \frac{MTTR}{MTTR + MTTF}$$

Unit availability

$$\mathbf{t_F} \sim \exp(\mathsf{MTTF}) p(u_t = 1) = \frac{\mu}{\lambda + \mu} + \frac{\mu(u_0 - 1) + \lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

$$\lambda = \frac{1}{MTTF}$$
 $\mu = \frac{1}{MTTR}$

Unit availability

$$\mathbf{t_F} \sim \exp(\mathsf{MTTF}) p(u_t = 1) = \frac{\mu}{\lambda + \mu} + \frac{\mu(u_0 - 1) + \lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

Unit availability

Forward contracts

- > Specified quantity (MW)
- > Fixed price
- > Future delivery period

Option contract

- > Specified quantity (physical delivery)
- > Strike price
- > Option price
- > Time period covered
- > Time to decide whether it is exercised

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Nonanticipativity constraints

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

$$\begin{aligned} & \text{CVaR}_{\alpha} = \zeta - \frac{1}{1 - \alpha} \sum_{\omega = 1}^{N_W} \pi_{\omega} \eta_{\omega} \\ & - \textit{profit}_{\omega} + \zeta - \eta_{\omega} \leq \mathbf{0} \\ & \eta_{\omega} \geq \mathbf{0} \end{aligned}$$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Nonanticipativity constraints

Risk aversion

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Nonanticipativity constraints

Second-stage decicions are made knowing the scenario realization during period 1 but still facing uncertainty related to period 2.

Outline

- >Introduction
- >Model
- >Case study
- > Conclusions

Outline

- >Introduction
- > Model
- >Case study
- > Conclusions

- > 2 months (P1 = first month, P2 = second month)
- Generating unit
 - > Pmax = 350 MW, Pmin = 50 MW, C = 12 €/MWh (linear)
 - > Three FOR values: 0, 5 and 10%
- > 30 pool-price scenarios (ARIMA)
- > 30 availability scenarios for each value of FOR
- > 2 forward contracts, one for each month
- > 1 put option spanning the second month

- (a) sell 350MW during the second month at 21€/MWh. No re-trading in stage 2.
- (b) buy a put option to sell 350MW during the second month at 21€/MWh. Option price = 0.1€/MWh

~	FOF	FOR = 0%		FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)	
0	5.087	5.418	4.984	5.314	4.878	5.209	
0.5	5.078	5.117	4.872	4.970	4.664	4.860	
0.9	5.078	5.055	4.549	4.649	4.374	4.499	

- (a) sell 350MW during the second month at 21€/MWh. No re-trading in stage 2.
- (b) buy a put option to sell 350MW during the second month at 21€/MWh. Option price = 0.1€/MWh

~	FOF	R = 0%	FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

OPTION > FORWARD

FOR = 0%		R = 0%	FOR	FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)	
0	5.087	5.418	4.984	5.314	4.878	5.209	
0.5	5.078	5.117	4.872	4.970	4.664	4.860	
0.9	5.078	5.055	4.549	4.649	4.374	4.499	

E ₂ {λ ^P }	y _{οω}
22.41	0
22.58	0
22.64	0
20.97	1
24.39	0
21.85	0
22.35	0
20.28	1
26.01	0
22.04	0

~	FOF	FOR = 0%		FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)	
0	5.087	5.418	4.984	5.314	4.878	5.209	
0.5	5.078	5.117	4.872	4.970	4.664	4.860	
0.9	5.078	5.055	4.549	4.649	4.374	4.499	

OPTIONS reduce price risk

- ➤ How do electricity options work? ✓
- ➤ How can electricity options be modeled? ✓

- > How do electricity options reduce availability risk?
- > When is an option contract more profitable than a forward contract?

~	FOF	FOR = 0%		FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)	
0	5.087	5.418	4.984	5.314	4.878	5.209	
0.5	5.078	5.117	4.872	4.970	4.664	4.860	
0.9	5.078	5.055	4.549	4.649	4.374	4.499	

↑ risk aversion → OPTION ≈ FORWARD

- C	FOF	FOR = 0%		FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)	
0	5.087	5.418	4.984	5.314	4.878	5.209	
0.5	5.078	5.117	4.872	4.970	4.664	4.860	
0.9	5.078	5.055	4.549	4.649	4.374	4.499	

~	FOF	R = 0%	FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$E_2\{\lambda^P\}$	26.01	20.97	20.28
k _{NT1}			
1	0	1	1
0	0	0	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1

	FOF	R = 0%	FOR = 5%		FOR = 10%	
α	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$E_2\{\lambda^P\}$	26.01	20.97	20.28
k _{NT1}			
1	0	1	1
0	0	0	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1

~	FOR = 0%		FOR	= 5%	FOR =	= 10%
α	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$E_2\{\lambda^P\}$	26.01 20.97		20.28
k _{NT1}			
1	0	1	1
0	0	0	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1

α	FOR = 0%		FOR = 5%		FOR = 10%	
	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

$E_2\{\lambda^P\}$	26.01	20.97	20.28
k _{NT1}			
1	0	1	1
0	0	0	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1
1	0	1	1

α	FOR = 0%		FOR = 5%		FOR = 10%	
	(a)	(b)	(a)	(b)	(a)	(b)
0	5.087	5.418	4.984	5.314	4.878	5.209
0.5	5.078	5.117	4.872	4.970	4.664	4.860
0.9	5.078	5.055	4.549	4.649	4.374	4.499

OPTIONS reduce availability risk

- ➤ How do electricity options work? ✓
- ➤ How can electricity options be modeled? ✓

➤ How do electricity options reduce price risk? ✓

> How do electricity options reduce availability risk? >

> When is an option contract more profitable than a forward contract?

> MAXIMUM OPTION PRICE that the power producer is willing to pay for a given option contract.

> MAXIMUM OPTION PRICE

Strike price >> Spot

OPMON FORWARD

Strike price << Spot OPTION FORWARD 65

↑ risk aversion → OPTION ≈ FORWARD

FOR not relevant

↑FOR→OPTION

Unit availability

$$\mathbf{t_F} \sim \exp(\mathsf{MTTF}) p(u_t = 1) = \frac{\mu}{\lambda + \mu} + \frac{\mu(u_0 - 1) + \lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

MAXIMUM OPTION PRICE (impact of MTTF)
FOR = 5%
FOR = 10%

↑FOR→**OPTION**

↑MTTF→**OPTION**

Outline

- >Introduction
- > Model
- >Case study
- > Conclusions

Outline

- >Introduction
- >Model
- >Case study
- **Conclusions**

Conclusions

Multi-stage stochastic programming

Options

Price and variability risk

- ➤ Strike price ≈ Spot
- **>** FOR with ↑MTTF
- > Option price < Max. Option

- ➤ Strike price ≈ Spot
- **>** FOR with ↑MTTF
- > Option price < Max. Option

Options

Forwards

- > Forward price > Spot
- **>** ↓FOR
- > JMTTF

- ➤ How do electricity options work? ✓
- ➤ How can electricity options be modeled? ✓

Thank you!

Questions?

www.uclm.es/area/gsee

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

$$\begin{aligned} \mathbf{profit}_{\omega} &= \sum_{t=1}^{N_{T}} (\lambda_{t\omega}^{P} P_{t\omega}^{P} T_{t} - C(P_{t\omega}^{G})) + \sum_{c_{1}=1}^{N_{C_{1}}} \lambda_{c_{1}}^{1} P_{c_{1}}^{1} T_{c_{1}} + \sum_{c_{2}=1}^{N_{C_{2}}} (\lambda_{c_{2}}^{1} P_{c_{2}}^{1} + \lambda_{c_{2}\omega}^{2} P_{c_{2}\omega}^{2}) T_{c_{2}} + \\ \lambda_{t\omega}^{P} &\to \text{Pool price} \end{aligned}$$

$$P_{t\omega}^{P} \to \text{Power sold in the pool} + \sum_{o=1}^{N_{O}} v_{o} (-\lambda_{o}^{O} P_{o} + y_{o\omega} \lambda_{o}^{S} P_{o}) T_{o}$$

$$T_{t} \to \text{Duration of time period}$$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

 $\lambda_{c_1}^1 \rightarrow$ Forward price

 $P_{c_1}^1 \rightarrow \text{Sold power}$

 $T_{c_1} \rightarrow$ Forward contract duration

$$\mathsf{profit}_{\omega} = \sum_{t=1}^{N_T} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t \right) - C(P_{t\omega}^G)$$

Forward 1 $\mathsf{profit}_{\omega} = \sum_{t=1}^{N_T} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t \right) - \left(C(P_{t\omega}^G) \right) + \left(\sum_{c_1=1}^{N_{c_1}} \lambda_{c_1}^1 P_{c_1}^1 T_{c_1} \right) + \sum_{c_2=1}^{N_{c_2}} (\lambda_{c_2}^1 P_{c_2}^1 + \lambda_{c_2\omega}^2 P_{c_2\omega}^2) T_{c_2} + \sum_{c_3=1}^{N_{c_3}} (\lambda_{c_3}^1 P_{c_3}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3} + \sum_{c_3=1}^{N_{c_3}} (\lambda_{c_3}^1 P_{c_3\omega}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3\omega} + \sum_{c_3=1}^{N_{c_3}} (\lambda_{c_3}^1 P_{c_3\omega}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3\omega}^2 + \sum_{c_3=1}^{N_{c_3}} (\lambda_{c_3}^1 P_{c_3\omega}^2 P_{c_3\omega}$

$$+\sum_{o=1}^{N_o} v_o (-\lambda_o^O P_o + y_{o\omega} \lambda_o^S P_o) T_o$$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

chastic programming
$$\lambda^1 \cdot \lambda^2 \rightarrow \text{Forward price in state}$$

 $\lambda_{c,}^{1}, \lambda_{c,\omega}^{2} \rightarrow$ Forward price in stage 1/2

 $P_{c_1}^1, P_{c_2,\omega}^2 \rightarrow$ Sold power in stage 1/2

 $T_{c_2} \rightarrow$ Forward contract duration

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Stochastic programming

Objective function

Maximize CVaR _a(profit_o)

$$\mathsf{profit}_{\omega} = \sum_{t=1}^{N_T} \left(\lambda_{t\omega}^P P_{t\omega}^P T_t \right) - C(P_{t\omega}^G) + \sum_{c_1=1}^{N_{c_1}} \lambda_{c_1}^1 P_{c_1}^1 T_{c_1} + \sum_{c_2=1}^{N_{c_2}} (\lambda_{c_2}^1 P_{c_2}^1 + \lambda_{c_2\omega}^2 P_{c_2\omega}^2) T_{c_2} + \sum_{c_3=1}^{N_O} (\lambda_{c_3}^1 P_{c_3}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3} + \sum_{c_3=1}^{N_O} (\lambda_{c_3}^1 P_{c_3\omega}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3} + \sum_{c_3=1}^{N_O} (\lambda_{c_3}^1 P_{c_3\omega}^1 + \lambda_{c_3\omega}^2 P_{c_3\omega}^2) T_{c_3\omega}^2$$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

Nonanticipativity constraints

$$+ \sum_{o=1}^{N_O} v_o (-\lambda_o^O P_o + y_{o\omega} \lambda_o^S P_o) T_o$$
Option

 $v_o \rightarrow$ Option purchase (1/0)

 $\lambda_o^O, \lambda_o^S \rightarrow$ Option and strike price

 $y_{o\omega} \rightarrow \text{Option exercise (1/0)}$

 $P_o \rightarrow \text{Sold power}$

 $T_o \rightarrow \mathbf{Option}$ duration

Stochastic programming

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

$$u_{t\omega}k_{t\omega}P_{\max} \geq P_{t\omega}^G \geq u_{t\omega}k_{t\omega}P_{\min}$$

Constant (availability scenario)

Binary variable (on/off)

Energy balances

Forward and option constraints

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

Energy balances

$$P_{t\omega}^{G} = \sum_{c_{1} \in F_{t}^{1}} P_{c_{1}}^{1} + \sum_{c_{2} \in F_{t}^{2}} (P_{c_{2}}^{1} + P_{c_{2}\omega}^{2}) + \sum_{o \in O_{t}} v_{o} y_{o\omega} P_{o} + P_{t\omega}^{P}$$

$$P_{t\omega}^{P} \geq \mathbf{0}, \ \forall k_{t\omega} = \mathbf{1}$$

Forward and option constraints

Objective function

Maximize $CVaR_{\alpha}(profit_{\omega})$

Constraints

Production unit bounds

Energy balances

Forward and option constraints

$$P_{c_1}^1 \geq \mathbf{0}$$

$$P_{c_2}^1 + P_{c_2\omega}^2 \ge \mathbf{0}$$

$$P_o \geq 0$$

> (a) sell 350MW during the second month at 21€/MWh. Retrading in stage 2 at the following prices:

$\lambda^2_{c2\omega}$	20.69	22.42	24.15
Probability	0.25	0.5	0.25

b) buy a put option to sell 350MW during the second month at 21€/MWh. Option price = 0.1€/MWh

α	FOR = 0%		FOR = 5%		FOR = 10%	
	(a)	(b)	(a)	(b)	(a)	(b)
0	5.245	5.418	5.141	5.314	5.035	5.209
0.5	5.078	5.117	4.919	4.970	4.756	4.860
0.9	5.078	5.055	4.599	4.649	4.429	4.499