If the algorithm returns false, then there is at least one vertex $U\in L$ such that $\deg(U)=0$ (not saturated) and hence U is not assigned to any projects. To show that the perfect assignment corresponds to max-flow: Let S be the perfect assignment in G. In G, for every edge e between L and R, assign f(e)=1 if $e\in S$ and f(e)=0 otherwise For $U\in L,$ if U is involved in S, f(s,U)=1 and f(U,t)=0 For $V\in R,$ if V is involved in S, f(V,t)=1 and f(s,V)=0 otherwise. $\mid f(A)\mid=10=f(t)$ and f is a valid flow.