Nota:

MA 141 Geometria Analítica e Vetores

Primeiro Semestre de 2012

Primeira Prova

12 de Abril de 2012

Nome:	RA:

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Total	

ATENÇÃO: Será corrigida a redação da resposta. Cada resposta deve ser redigida com todos os detalhes. Caso duas ou mais provas apresentem alguma resposta cujas redações coincidam em mais de 50%, essa questão será **anulada** em todas elas. Não é permitido **destacar** as folhas da prova. Respostas **sem** justificativa **não** serão consideradas.

Boa Prova!

Questão 1. (2.5 Pontos)

Dado o sistema linear:

$$\begin{cases} 3x + 3y - 2z - t &= -2\\ 5x + 2y + z - 2t &= -3\\ 2x - y + 3z - t &= -1 \end{cases}$$

- (a) Escreva o sistema acima na forma matricial AX = b.
- (b) Encontre a matriz R na forma escalonada, linha equivalente a matriz ampliada do sistema linear, indicando cada uma da operações elementares de linhas realizadas e suas respectivas matrizes elementares.
- (c) Qual \acute{e} o posto da matriz A desse sistema linear?
- (d) Determine a solução geral desse sistema linear.

Questão 2. (2.5 Pontos)

Sabendo—se que a matriz A é o produto (de matrizes) abaixo, calcule a inversa da matriz A.

																							0	
	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	-2	0
																							0	
İ	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0
L	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	$1 \rfloor$

Questão 3. (2.5 Pontos)

Mostre que a matriz simétrica A dada por:

$$A = \begin{bmatrix} 5 & 15 & 20 \\ 15 & 46 & 62 \\ 20 & 62 & 87 \end{bmatrix}$$

é equivalente a matriz diagonal

$$D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Questão 4. (2.5 Pontos)

Para cada uma das afirmações abaixo responda com "CERTA" ou "ERRADA", demonstrando ou dando contra-exemplo. Respostas **sem** justificativa **não** serão consideradas. As letras maiúsculas A, B, C, I, etc, representam matrizes.

- (a) Toda matriz linha equivalente a matriz identidade tem determinante 1.
- (b) Um sistema homogêneo com 4 equações e 5 variáveis sempre possui solução não-nula.
- (c) Existem matrizes A e B de ordem n tais que $AB BA = I_n$.
- (d) Dada uma matriz A de ordem $n \times n$, se existe uma matriz B de ordem $n \times 1$, para o qual o sistema linear AX = B tem solução única, então A é invertível.
- (e) Sejam A e B matrizes de ordem n tais que $AB = 0_n$, então $A = 0_n$ ou $B = 0_n$.
- (f) Se X_1 e X_2 são soluções de um sistema linear AX=B, então

$$X_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$$

também é uma solução desse sistema linear.