

Digital Naturalist - AI Enabled tool for Biodiversity Researchers A PROJECT REPORT

Submitted by

Abishek M 712219205001

Deenadhayalan E 712219205005

Deepan S 712219205006

KarthikSelvan M 712219205018

Team ID-PNT2022TMID42852

for the course

HX8001 - Professional Readiness for Innovation, Employability and Entrepreneurship in

INFORMATION TECHNOLOGY

PARK COLLEGE OF ENGINEERING AND TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600 025

NOVEMBER 2022

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "Digital Naturalist - AI Enabled tool for Biodiversity Researchers" is the bonafide work of "Abishek M, Deenadhayalan E, Deepan S, KarthikSelvanM" who carried out the project work under my supervision. Our Team ID-PNT2022TMID42852.

Dr.B.Padmanabhan

MENTOR

HEAD OF THE DEPARTMENT

Professor

Information Technology

Park College of Engineering and

Technology,

Kaniyur,

Coimbatore-641659

Assistant professor

Mr.G.Prabanchan

Information Technology

Park College of Engineering

Technology,

Kaniyur,

Coimbatore-641659

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
1	INTRODUCTION	5
	1.1 ProjectOverview	5
	1.2 Purpose	5
2	LITERATURE SURVEY	6
	2.1Existing problem	6
	2.2 References	6
	2.3 ProblemStatement Definition	7
3	IDEATION &PROPOSED SOLUTION	8
	3.1Empathy Map Canvas	8
	3.2 Ideation& Brainstorming	9
	3.3 Proposed Solution	12
	3.4 Problem Solution fit	14
4	REQUIREMENT ANALYSIS	15
	4.1 Functional requirement	15
	4.2 Non-Functional requirements	16
5	PROJECT DESIGN	17
	5.1 Data Flow Diagrams	17
	5.2 Solution& Technical Architecture	17
	5.3 User Stories	18
6	PROJECT PLANNING & SCHEDULING	19
	6.1 Sprint Planning & Estimation	19
	6.2 SprintDelivery Schedule	22
	6.3 Reportsfrom JIRA	23
7	CODING & SOLUTIONING	24
	7.1 Feature1	24

	7.2 Feature2	24	
8	RESULTS	25	
	8.1 Performance Metrics	25	
9	ADVANTAGES & DISADVANTAGES	29	
10	CONCLUSION	30	
11	FUTURE SCOPE	31	
12	APPENDIX	32	
	Source Code	32	
	GitHub & Project Demo Link	43	

1. INTRODUCTION

1.1 Project overview:

A naturalist is someone who studies the patterns of nature, identifies a different kind of flora and fauna in nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild spaces, and collecting and sharing information about the species we see on our travels is very useful for conservation groups like NCC.

When venturing into the woods, field naturalists usually rely on common approaches like always carrying a guidebook around everywhere or seeking help from experienced ornithologists. There should be a handy tool for them to capture, identify and share the beautyto the outside world.

In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers and mammals (2 subclasses in each for a quick understanding) and get the prediction of the bird when an image is been given.

1.2 Purpose

- Augmenting a dataset to virtually increase the size of small datasets in order to make our machine learning modelswork better.
- Preprocess the images to a machine-readable format.
- Applying CNN algorithm on the dataset.
- How deep neural networks are predicting the classand subclass of a given image.
- You will beable to know how to find the accuracy of the model.
- You will be able to build web applications using the Flask framework.

2.LITERATURE SURVEY

2.1 Existing Problem:

Biases in our data arise in part from differences between the aims of the original data collectors (i.e., the photographers) and our aims as biodiversity researchers and ecologists. For example, the spatial distribution of our images was biased toward areas where extensive managed gardens or other displays exhibited large collections of flowering plants. These biases could be addressed by choosing alternative sources, changing the search terms used, or pre-filtering images. Images may also be biased taxonomically or in terms of certaintraits, for example, toward species that are typically considered more photogenic due tolarge colorful flowers or leaves. Search terms could be modified to either focus on a specific subgroup, e.g., searching using scientific names, or to exclude non-target images, e.g., excluding images that include the words "show" or "garden" in their metadata. Finally, high-level image classifiers could be trained to remove images that are clearly not plants, e.g: removing images of animals, paintings. High-level classifiers developed to separate images that contain plants from those that do not, without lookingto identify species, could be used to find images worthy of further examination in large datasets that do not have metadata (such as titles and descriptions), removing the need for keyword searches, such as that used in this study.

2.2 References:

- 1. Aldhebiani AY (2018) Species conceptand speciation. Saudi J Biol Sci 25:437–440.
- 2. AI naturalists mighthold the key to unlocking biodiversity data in socialmedia imagery, TA August, OL Pescott, A Joly, P Bonnet Patterns, 2020 Elsevier.
- 3. Digitalizationto achieve sustainable development goals: Stepstowards a SmartGreen Planet, ME Mondejar, R Avtar, HLB Diaz, RK Dubey... Science of the Total ..., 2021 Elsevier.
- **4.** The real-world use of big data, M Schroeck, R Shockley, J Smart, D Romero-Morales-IBM Golbal Business ...,201

2.3 Problem Statement Definition:

• Main Problem Statement (Common):

I. How might we help both experienced and inexperienced user to identifyspecies of plantsandanimals and their characteristics with related information?

• Specific problem statement:

- i. Inexperienced users need to know aboutpoisonous plants and dangerous animalsso that they canstay away from it.
- **ii.** Both experienced and inexperienced users need to know about the medicinal values of a plant because they need to use it in case of emergencies.
- **iii.** All the users need to know the types of species of birds, plants and animals so that they can learn about it in more detailed manner.
- **iv.** All the users need to know about the rarity of the species of birds, animals or plants so thatthey canpreserve and save it.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

3.2 Ideation & Brainstorming:

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution:

1 Problem Statement (Problem tobe solved) a. How might we help both experienced an inexperienced userto identify species of	
plantsand animals at theircharacteristics with relatedinformation?	nd
b. Inexperienced users poisonous plants an thatthey can stay aw	nddangerous animals so
to know about the	nd inexperienced users need medicinal valuesof a plant ed to use it in case of
species of birds, an can preserve and say	o know about the rarity of the nimals or plants so that they ve it.
2 Idea / Solution description a. Display Botanical nate	mes
b. Display alertmessag different colours	es for plants/animals using
c. small description ab	outthem

		d. Rarities of the species
		e. What disease does the plantcure
3	Novelty / Uniqueness	a. Providing alertsbased on if a species is harmful or not
		b. Alerting theuser on therarity of the species
		c. Gives the complete description about thespecies being viewed
		d. If the plant being viewed has a medicinal value , it gives a descriptionaboutit.
		e. Display the scientific name of the species.
4	Social Impact / CustomerSatisfaction	Being able to identify the flora and fauna around us often leads to aninterest in protecting wild spaces.
5	Business Model (RevenueModel)	a. Can make money through subscription based.
		b. Partnership with many laboratories and scientists aroundthe world

3.4 Problem Soultion Fit:

4.REQUIREMENT ANALYSIS:

(Following are the functional & non-functional requirements of the proposed solution)

4.1 Functional Requirement:

FR NO	Functional Requirements (Epic)	Sub Requirements(Story/Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmationvia OTP
FR-3	Navigation Service	GPS
FR-4	Database	My SQL, IBM Cloud
FR-5	Premium features	Location sharing,
		Adding information of new data by User
FR-6	Updating and bug fixing	Updating the application based on user feedback
FR-7	Final Output	Final description of the image (species) captured.
FR-8	Alerts	System should alert about dangerous plants and animals

4.2 Non-functionalRequirements:

NFR NO	Non Functional Requirements	Description
NFR-1	Usability	The users must be able to use the application without any problems and difficulties. The app is easy to view and does not strain the eyes. Allinformation are in simple terms. The error rate of the final output must not be more than 20%
NFR-2	Security	SHA-256, Encryptions, AES etc.
NFR-3	Reliability	The system must perform without failure in 80 percentof the time.
NFR-4	Performance	Under normal load, the system must show the results within 15seconds, and under maximum it can take up to load 30 seconds
NFR-5	Availability	The application will be available 99 % of the time in a month.
NFR-6	Scalability	The system must be able to support10,000 users while using it. As the usageand user base of thisapplication grows, more features can be added like languages based on the geographical usage, premium or subscription model, etc.

5.PROJECT DESIGN:

5.1 Data Flow Diagram:

5.2 Solution & Technical Architecture:

5.3 User Stories:

Use the below templateto list all the user stories for the product

User Type	Functional	User Story	User Story / Task	Acceptance	Priority
	Requirement	Number		criteria	
	(Epic)				
Customer(Mobile	Image capture	USN-1	As a user, I can take	I can take photos	High
user)			photos of the	whenrequired	
			plantlife, animals		
			and birds		
		USN-2	As a user, I will	I can see the type	High
			receiveprocessed	ofplant or animal	
			information about	or plant	
			the type of species		
		USN-3	As a user, I can	I can share	Low
			share it with others	usingshareoption	
	Data process	USN-4	Data must be	I must see the	High
			trained and tested	correctprocessed	
			and CNN algorithm	information	
	_		must workproperly.		
	Output	USN-5	As a user, I can see	I must see the	High
			the scientific nameof	correct data	
		LIONIC	the species	It dl	l II ala
		USN-6	As a user, I can see	I must see the	High
			the characteristicsand	correct data	
			alert messages		
	Managa	USN-1	As a admin I must	I must edit the	High
Administrator	Manage	USIN-1	add various	datapresent	підп
			dataandedit	datapresent	
			information		
			miormation		

6.PROJECT PLANNING& SCHEDULING:

6.1 Sprint planning & Estimation:

Use the below template to create productbacklog and sprintschedule

Sprint	Functional	User Story	User Story/Task	Story	Priority	Team Members
	Requirements	Number		Points		
	(Epic)					
Sprint-1	Registration	USN-1	As a biogeography, I can	2	High	S.Deepan
			register for the application			M.Abishek
			by entering my Email,			M.Karthikselvan
			Password, and confirming			E.Deenadhyalan
			my password			
Sprint-1		USN-2	As a biogeography, I will	1	Medium	S.Deepan
	User Confirmation		receiveconfirmation email			M.Abishek
			once I have registered for the			M.Karthikselvan
			application			E.Deenadhyalan
Sprint-1		USN-2	As an biogeography, I can log	2	High	S.Deepan
	Login		into the application by			M.Abishek
			entering email & password			M.Karthikselvan
						E.Deenadhyalan
Sprint-2	Data	USN-1	Download the datasetused in	2	Medium	S.Deepan
	Collection		Digital Naturalist – AI			M.Abishek
			Enabledtools for Biodiversity			M.Karthikselvan
			Researchers			E.Deenadhyalan
Sprint-2	Image	USN-1	Improving the image data	1	High	S.Deepan
	Preprocessing		that suppresses unwilling			M.Abishek
			distortions or enhances			M.Karthikselvan
			some image features			E.Deenadhyalan
			important for			
			furtherprocessing,although			

			performing some			
			geometric			
			transformations of images like			
			rotation, scaling, etc.			
Sprint-3	Getting	USN-1	Neural network are	2	Medium	S.Deepan
	started with		integral for			M.Abishek
	convolution a		teaching computers to			M.Karthikselvan
	Neural		think and			E.Deenadhyalan
	network		learn by classifying			
			information,			
			similar to how we as			
			humans learn.			
			With neural networks, the			
			software			
			can learn to recognize			
			images, for			
			example. Machines can			
			also make			
			predictions and decisions			
			with a			
			high level of accuracy			
			based on data inputs			
Sprint-3	Evaluvation	USN-1	well a model behaves after	1	Medium	S.Deepan
	Mosdel Saving		each			M.Abishek
			iteration of			M.Karthikselvan
			optimization. An			E.Deenadhyalan
			accuracy metric is used to			
			measure			
			the algorithm's			
			performance in an			
			interpretable way. The			
			accuracy of			
			a model is usually			

			determined after			
			the model parameters			
			and is			
			calculated in the			
			form of a			
			percentage. Saving The			
			Model get			
			weights , set weights .			
Sprint-4	A 1: .:	USN-2	After the model is built, we	1	High	S.Deepan
	Application Building		will be			M.Abishek
			integrating it to a web			M.Karthikselvan
			application			E.Deenadhyalan
			so that normal users can			
			also use it.			
			The users need to give the			
			images			
			of species			
Sprint-4	Tuoin the Madel	USN-2	Build Deep learningmodel	2	Medium	S.Deepan
	Train the Model on IBM		andcomputervision Using the			M.Abishek
			IBMcloud			M.Karthikselvan
						E.Deenadhyalan

6.2 Sprint DeliverySchedule:

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as onPlanned EndDate)	Sprint Release Date (Actual)
Sprint-	20 days	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint- 2	20 days	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-	20 days	7 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-	20 days	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA:

7. Coding & Soultion:

7.1 Feature 1:

- Display Botanical names
- Display alertmessages for plants/animals using different colours
- Small description about them
- Rarities of the species

7.2 Feature 2:

- What diseasedoes the plant cure
- Providing alertsbased on if a speciesis harmful or not

8.Results:

8.1 Performance Metricks:

Registeration Page:

Logoin page:

Home page:

Input:

Output:

9. Advantage & Disadvantage:

Advantage

- It helps field biologists build their own experimental tools.
- It helps designers explorenew interactions with nature.
- It paved the ways to discover new ways of experiencing the natural world.
- It helps to createsustainable world by saving the endangered species.
- Digital Naturalism unites biologists, designers, engineers, and artiststo build and analyzenew devices.
- User can get detailed description of any kind of species.
- It is a handy application for a personwho is travel freak.

Disadvantage

- Proper networkshould be maintained to avoid hitches.
- Difficult to classify sub-classes of same species.

10.Conclusion:

Assessment of regional biodiversity based on global scientific consensus is a scientific basis for the whole society and a tool for local to international discussion and decision making. In the new era of extinction, people would understand the value of (intrinsic or otherwise) of our state'sthreatened biodiversity. Fewer observations, data points and discoveries would be made of the natural world to help us measure our impacts on it. It provides the opportunity to build a positive identity with science or recognize the value of more holistic ways of thinking such as traditional ecological knowledge. It helps us to engage in environmental stewardship behaviours ranging from resource conservation to building resilience among vulnerable communities. By acknowledging our origins in evolution, the naturalist perspective also enhances our feeling of kinship with the other species with which we share this planet, and our desire to sustain and nurture the planet itself. All sentient beings, including humanity, owe their existence to conditions that extend far beyond us in space and time. The model which was used for the detection of digital naturalists using the species images from the wild life and the species with flora part and with fauna part will be displayed as well. From the resultant graphs, it is proven that the accuracy of the model has reached good level. If it is deployed in the real-time scenario then it will help many people in distinguishing between both without wasting the money on various machines. If the image is confirmed by the model, then the person can know the feature of the species. It can be the best way of practice for people to save money. As we know that the data plays a crucial role in every deep learning model, if the data is more specific and accurate about the species then that can help in reaching greater accuracywith better results in real-time applications.

11.Future Scope:

- AI image classifiers can create biodiversity datasets from socialmedia imagery
- Flickr hosts many images of plants; some can be accurately classified to species by AI.
- Images are spatially aggregated around tourist sites and under-represent nativespecies.
- Images focusedon a single, non-horticultural, plant are most reliably.

12. Appendix:

Sourse code:

```
1 <?php
       session_start();
2
      if (isset($_SESSION['SESSION_EMAIL'])) {
3
          header("Location: welcome.php");
4
          die();
5
      }
6
7
      include 'config.php';
8
      $msg = "";
9
10
      if (isset($_GET['verification'])) {
11
          if (mysqli_num_rows(mysqli_query($conn, "SELECT *
12
  FROM users WHERE code='{\$_GET['verification']}'")) > 0) {
              $query = mysqli_query($conn, "UPDATE users SET
13
  code='' WHERE code='{$_GET['verification']}'");
```

```
14
            if ($query) {
15
                  $msg = "<div class='alert alert-</pre>
16
  success'>Account verification has been successfully
  completed.</div>";
17
         } else {
18
              header("Location: index.php");
19
20
21
     }
22
      if (isset($_POST['submit'])) {
23
          $email = mysqli_real_escape_string($conn,
24
  $_POST['email']);
          $password = mysqli_real_escape_string($conn,
25
  md5($_POST['password']));
26
          $sql = "SELECT * FROM users WHERE email='{$email}'
27
```

```
AND password='{$password}'";
          $result = mysqli_query($conn, $sql);
28
29
          if (mysqli_num_rows($result) === 1) {
30
31
              $row = mysqli_fetch_assoc($result);
32
            if (empty($row['code'])) {
33
                  $_SESSION['SESSION_EMAIL'] = $email;
34
                  header("Location: welcome.php");
35
              } else {
36
                  $msg = "<div class='alert alert-</pre>
37
  info'>First verify your account and try again.</div>";
              }
38
         } else {
39
              $msg = "<div class='alert alert-danger'>Email
40
  or password do not match.</div>";
          }
41
      }
42
```

```
43?>
44
45<!DOCTYPE html>
46<html lang="zxx">
47
48 < head >
      <title>Digital Naturalist- </title>
49
      <!-- Meta tag Keywords -->
50
      <meta name="viewport" content="width=device-width,</pre>
51
  initial-scale=1">
      <meta charset="UTF-8" />
52
      <meta name="keywords"</pre>
53
          content="Login Form" />
54
      <!-- //Meta tag Keywords -->
55
56
      link
57
  href="//fonts.googleapis.com/css2?family=Poppins:wght@300;
```

```
400;500;600&display=swap" rel="stylesheet">
58
      <!--/Style-CSS -->
59
      <link rel="stylesheet" href="css/style.css"</pre>
60
  type="text/css" media="all" />
      <!--//Style-CSS -->
61
62
      <script
63
  src="https://kit.fontawesome.com/af562a2a63.js"
  crossorigin="anonymous"></script>
64
65</head>
66
67 < body >
68
      <!-- form section start -->
69
      <section class="w3l-mockup-form">
70
          <div class="container">
71
```

```
<!-- /form -->
72
              <div class="workinghny-form-grid">
73
                  <div class="main-mockup">
74
                      <div class="alert-close">
75
                          <span class="fa fa-close"></span>
76
                      </div>
77
                      <div class="w3l_form align-self">
78
                          <div class="left_grid_info">
79
                               <img
80
  src="images/Loginpage.jpg" alt="">
                          </div>
81
                      </div>
82
                      <div class="content-wthree">
83
                          <h2>Login Now</h2>
84
                          Lorem ipsum dolor sit amet
85
  consectetur adipisicing elit. 
                          <?php echo $msg; ?>
86
```

```
<form action="" method="post">
87
                               <input type="email"</pre>
88
  class="email" name="email" placeholder="Enter Your Email"
  required>
89
                               <input type="password"</pre>
  class="password" name="password" placeholder="Enter Your
  Password" style="margin-bottom: 2px;" required>
                               <a href="forgot-
90
  password.php" style="margin-bottom: 15px; display: block;
  text-align: right;">Forgot Password?</a>
                               <button name="submit"</pre>
91
  name="submit" class="btn" type="submit">Login</button>
                           </form>
92
                           <div class="social-icons">
93
                               Create Account! <a
94
  href="register.php">Register</a>.
                           </div>
95
                       </div>
96
                  </div>
97
```

```
98
              </div>
              <!-- //form -->
99
             </div>
100
         </section>
101
102
         <!-- //form section start -->
103
         <script src="js/jquery.min.js"></script>
104
         <script>
105
             $(document).ready(function (c) {
106
                 $('.alert-close').on('click', function (c)
107
  {
                     $('.main-mockup').fadeOut('slow',
108
  function (c) {
                          $('.main-mockup').remove();
109
                     });
110
                 });
111
             });
112
```

```
113 </script>
114
115 </body>
116
117 </html>
```

```
1 from __future__ import division, print_function
2 import os
3 import numpy as np
4 import tensorflow as tf
5 from tensorflow.keras.preprocessing import image
6 from tensorflow.keras.models import load_model
7 from flask import Flask, request, render_template
8 from werkzeug.utils import secure_filename
```

<----->

9 global graph

```
#graph=tf.get_default_graph()
10
11 # Define a flask app
   app = Flask(__name__)
12
13
   model = load model('nature1.h5')
14
   print('Model loaded. Check http://127.0.0.1:5000/')
   @app.route('/', methods=['GET'])
15
   def index():
16
   # Main page
17
   return render template('digital.html')
18
   @app.route('/predict', methods=['GET', 'POST'])
19
   def upload():
20
       if request.method == 'POST':
21
        # Get the file from post request
22
        f = request.files['image']
23
         # Save the file to ./uploads
24
        basepath = os.path.dirname(__file__)
25
        file_path = os.path.join(basepath, 'uploads',
26
 secure_filename(f.filename))
        f.save(file_path)
27
        img = image.load_img(file_path,
28
 target_size=(64,64))
29
```

```
x = image.img_to_array(img)
30
31
   x = np.expand_dims(x, axis=0)
32
    #with graph.as default():
33
   preds = np.argmax(model.predict(x))
34
    found = ["animal- badger",
35
    "animal- bat",
36
    "animal- bear",
37
    "animal- bee",
38
    "animal- dolphin",
39
    "animal- donkey",
40
    "animal- dragonfly",
41
    "animal- duck",
42
    "animal- eagle",
43
     "animal- elephant",
44
    "animal-flamingo",
45
     "animal-fly",
46
    "animal-fox",
47
    "animal- gallina",
48
    "animal- gatto",
49
     "animal- hedgehog",
50
    "animal- hippopotamus",
51
```

```
"animal- hornbill",
"animal- horse",
"animal- hummingbird"]

print(preds)
text = found[preds]

if __name__ == '__main__':
app.run(threaded = False)
```

Github & Project Demo Video Link:

Project Github Link - Click Here

Project Demo Video Link - <u>Click Here</u>

