Examen final

Consignes:

- \bullet Vous disposez de 3 h pour répondre aux 3 \times 4 questions suivantes.
- Calculatrice non programmable peu utile, mais autorisée.
- Un formulaire sur les transformées de Fourier et Laplace est fourni en annexe.
- Soyez clairs et précis et dans vos réponses et justifications.
- Et surtout exprimez-vous sur les sujets proposés pour démontrer votre compréhension des concepts!

Exercice 1

- a) À partir de la définition de la convolution, calculer explicitement la convolution $m(t) = \Pi_1(t) * \Pi_1(t)$ de deux portes centrées de largeur 1.
- b) On considère le signal périodique x(t) suivant. Représenter graphiquement x(t) et x'(t) en portant une attention particulière aux échelles des axes.

- c) En utilisant directement leur définition, calculer les coefficients de Fourier c_n du signal x(t) de la question précédente.
- d) Vérifier votre réponse à la question précédente en déterminant tout d'abord la transformée de Fourier d'un motif puis en évaluant celle-ci aux fréquences appropriées.

they ha

Exercice 2

a) On applique pendant une durée a>0 une différence de tension b>0 aux bornes d'un condensateur. Exprimer cette tension x(t) en termes d'échelons d'Heaviside et de retards.

b) La charge y(t) du condensateur est reliée à x(t) par l'équation différentielle

$$y'(t) + \lambda y(t) = x(t)$$

où $\lambda > 0$. Résoudre cette équation pour y(t) à l'aide de la transformée de Laplace et représenter la solution. Que se passe-t-il dans le cas particulier b = 1/a lorsque $a \to 0$?

- c) Soit $h(t) := H(t) e^{-\lambda t}$. Vérifier que h(t) est solution de l'équation différentielle $y'(t) + \lambda y(t) = \delta(t)$.
- d) Expliquer comment, de tout ce qui précède, on peut déduire que y(t) = x(t) * h(t) et vérifier que cela est cohérent avec vos remarques à la question b).

Exercice 3

- a) À partir de la définition de la transformée de Fourier, (ré)établir la formule pour la transformée d'une porte $\Pi_a(t)$ de largeur a>0.
- b) Expliquer comment on peut en déduire la transformée d'un sinus cardinal : $\widehat{\mathrm{sinc}}(f) = \pi \prod_{\frac{1}{\pi}} (f)$.
- c) On considère le signal temporel $x(t) = \sum_{n=-\infty}^{\infty} \operatorname{sinc}(t n\pi)$. Vérifier qu'on a $x(k\pi) = 1$ pour tout $k \in \mathbb{Z}$.
- d) Exprimer le signal x(t) de la question précédente comme la convolution d'un sinus cardinal avec un signal y(t) que vous préciserez; en déduire $\widehat{x}(f)$ puis une expression simple pour x(t).

Produit de convolution

$$(x_1 * x_2)(t) = \int_{-\infty}^{+\infty} x_1(u) x_2(t-u) du = \int_{-\infty}^{+\infty} x_1(t-v) x_2(v) dv$$

Transformation de Laplace

domaine temporel	domaine opérationnel	remarque
x(t)	$X(p) = \int_0^{+\infty} x(t) e^{-pt} dt$,
x'(t)	$pX(p) - x(0^+)$	
$\int_0^t x(u)\mathrm{d} u$	$\frac{X(p)}{p}$	
tx(t)	-X'(p)	
$(-1)^n t^n x(t)$	$X^{(n)}(p)$	$(n\in\mathbb{N})$
$\frac{x(t)}{t}$	$\int_{p}^{+\infty} X(s) \mathrm{d}s$	
$e^{at}x(t)$	X(p-a)	$(a\in\mathbb{C})$
x(t-a)	$e^{-pa}X(p)$	$(a\geqslant 0)$
x(kt)	$\frac{1}{k}X\left(\frac{p}{k}\right)$	(k > 0)

Théorèmes des valeurs initiale et finale: Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pX(p) = x(0^+) \qquad \text{et} \qquad \lim_{p \to 0} pX(p) = x(+\infty)$$

original causal	image	remarque
x(t)	X(p)	
1 ou <i>H</i> (<i>t</i>)	$\frac{1}{p}$	
. t	$\frac{1}{p^2}$	ji J
470	<i>p</i> -	1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
$\frac{t^n}{n!}$	$\frac{1}{p^{n+1}}$	
n!		
e^{at}	$\frac{1}{p-a}$	$(a\in\mathbb{C})$
$\cos(\omega t)$	$\frac{p}{p^2+\omega^2}$	4
$\sin(\omega t)$	$\frac{\omega}{p^2+\omega^2}$	
$\delta(t)$	1	

Coefficients de Fourier

$$c_n = \frac{1}{T} \int_a^{a+T} x(t) e^{-2\pi j n t/T} dt$$

Transformation de Fourier

domaine temporel	domaine fréquentiel
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi j f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi j f t} dt$
$\lambda x_1(t) + \mu x_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2\pi j a f} \widehat{x}(f)$
$e^{2\pi jat}x(t)$	$\widehat{x}(f-a)$
$\frac{\mathrm{d}x}{\mathrm{d}t}$	$2\pi jf\widehat{x}(f)$
$-2\pi jtx(t)$	$\frac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$(x_1*x_2)(t)$	$\widehat{x_1}(t)\widehat{x_2}(t)$
$x_1(t) x_2(t)$	$(\widehat{x_1}*\widehat{x_2})(f)$
$\Pi_a(t) = H(t + \frac{a}{2}) - H(t - \frac{a}{2})$	$a \operatorname{sinc}(\pi a f)$
$e^{-\lambda t }, \lambda > 0$	$\frac{2\lambda}{\lambda^2 + 4\pi^2 f^2}$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	8 1 °
1	$\delta(f)$
$\coprod_T(t)$	$\frac{1}{T}\coprod_{\frac{1}{T}}(f)$

