

UNIVERSIDADE FEDERAL DO CEARÁ CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FRANCISCO FAGNER FERREIRA MESQUITA

UMA FERRAMENTA PARA O ENSINO DE ALGORITMOS DE ANÁLISE SINTÁTICA

FRANCISCO FAGNER FERREIRA MESQUITA

UMA FERRAMENTA PARA O ENSINO DE ALGORITMOS DE ANÁLISE SINTÁTICA

Projeto de Pesquisa apresentado ao Curso de Graduação em Ciência da computação do da Universidade Federal do Ceará, como requisito parcial à obtenção do grau de bacharel em Ciência da computação.

Orientador: Prof. Dr. João Marcelo Uchôa de Alencar.

SUMÁRIO

1	INTRODUÇÃO	4							
1.1	Objetivos	5							
2	FUNDAMENTAÇÃO TEÓRICA	6							
2.1	Compiladores	6							
2.1.1	Fases do compilador	6							
2.1.1.1	Análise Léxica	6							
2.1.1.2	Análise Sintática	7							
2.1.1.3	Análise semântica	7							
2.1.1.4	Otimização	7							
2.1.1.5	Geração de código	7							
2.2	Analisadores Sintáticos Descendentes	8							
2.2.1	Descendentes Recursivos	8							
2.2.2	Analisadores Sintáticos LL(1)	8							
2.3	Analisadores Sintáticos Ascendentes	10							
2.3.1	Analisadores Sintáticos SLR	10							
2.3.2	Analisadores Sintáticos CLR	12							
2.4	Learning Tools Interoperability	15							
2.5	Svelte	17							
3	TRABALHOS RELACIONADOS	18							
3.1	Teaching Compilers: Automatic Question Generation and Intelligent As-								
	sessment of Grammars' Parsing	18							
3.2	PAVT: a tool to visualize and teach parsing algorithms	18							
3.3	A Web-Based Educational System for Teaching Compilers	20							
3.4	Considerações	20							
4	METODOLOGIAS	22							
4.1	Definir os requisitos	22							
4.2	Definir a arquitetura do projeto	23							
4.3	Implementar a interface de usuário	24							
4.4	Integrar os algoritmos à ferramenta	24							
4.5	Implementar as animações dos algoritmos	25							

4.6	Integrar a ferramenta com o Moodle	26
4.7	Avaliar a ferramenta	27
	Referências	28

1 INTRODUÇÃO

Um compilador é uma ferramenta usada para compilar código-fonte de uma linguagem de alto nível para código de máquina. Esse processo é feito em várias fases, as três primeiras fases do processo de compilação podem ser definidas como análise léxica, análise sintática e análise semântica, elas são chamadas coletivamente de *front-end* do compilador (Mogensen, 2024).

A fase de análise léxica gera *tokens* que são usados pela fase de análise sintática para validar que a entrada segue a estrutura da gramática da linguagem alvo e gerar uma árvore sintática para ser usada pelas próximas fases da compilação (Thain, 2020).

O programa que realiza a análise sintática é chamado de analisador sintático ou *parser*. Os *parsers* podem ser classificados em dois tipos, *bottom-up* (ou ascendente) que funciona reduzindo os *tokens* a produções da gramática e *top-down* (ou descendente) que segue o caminho oposto do *parser bottom-up* tentando encontrar produções correspondentes a estrutura da *string* de entrada comparando-a com as produções da gramática (Cooper; Torczon, 2022).

A disciplina de compiladores está presente em muitas grades curriculares de cursos de ciência da computação e dentro dessa disciplina são ensinados vários algoritmos de análise sintática, no entanto, aprender o funcionamento desses algoritmos é uma tarefa difícil para os alunos, assim como também é difícil para os professores ensinarem esse assunto (Sangal; Kataria; Tyagi *et al.*, 2018).

Ferramentas criadas para o ensino de conteúdos sobre construção de compiladores como análise sintática usando elementos visuais têm uma resposta positiva dos alunos que usaram as ferramentas. Essas ferramentas podem auxiliar na compreensão do conteúdo não só através das instruções mostradas na visualização do funcionamento dos algoritmos, mas também por oferecer respostas instantâneas que podem ser usadas pelos estudantes como correção sobre os resultados dos algoritmos que podem ser difíceis de se construir manualmente (Jain; Goyal; Chakraborty, 2017).

A instabilidade na rede disponível no campus Quixadá da Universidade Federal do Ceará (UFC) é algo recorrente que pode atrapalhar o roteiro normal das aulas e impedir que os alunos concluam tarefas propostas em aula (Perez, 2023). O uso de aplicações desenvolvidas para web nas aulas é afetado por eventuais falhas na rede local do campus e em relação a isso uma aplicação offline desenvolvida para desktop tem a vantagem de poder ser acessada independente do acesso à internet (Holzer; Ondrus, 2012). Utilizar o servidor local do campus para

hospedar a ferramenta também pode melhorar a disponibilidade do *software* já que o servidor local do campus sofre instabilidade que a rede local.

Muitos alunos entram na vida universitária estando em situação de vulnerabilidade econômica e sem recursos necessários como computadores para acompanhar o conteúdo do curso, algo que faz alusão a essa realidade é a disponibilização de bolsas de inclusão feita pela UFC durante o período da pandemia para auxiliar na aquisição de computadores (Oliveira, 2020). Assim, a utilização de uma aplicação *mobile* no lugar de uma aplicação *desktop* nas aulas seria mais inclusiva.

Apesar da desvantagem citada nos parágrafos anteriores, uma ferramenta *web* tem outras vantagens notáveis como não haver a necessidade de instalação do *software* para acessálo e a facilidade de integração com plataformas como o *Moodle*¹ (Desai, 2023).

Todas as abordagens de desenvolvimento citadas têm suas vantagens e desvantagens, mas não é preciso escolher uma abordagem em detrimento da outra. *Frameworks* modernos como *Tauri*² e *Capacitor*³ permitem que uma única base de código seja usada para desenvolver *software* para diferentes plataformas, graças a isso, torna-se possível o desenvolvimento multi-plataforma da ferramenta proposta nesse trabalho (Shevtsiv; Striuk, 2021).

Embora esse tema tenha já tenha sido abordado em trabalho similares como o proposto por Sangal, Kataria e Tyagi (2017), ainda há avanços que podem ser alcançados como será discutido na seção de trabalhos relacionados.

1.1 Objetivos

O objetivo desse trabalho é criar uma ferramenta que auxilie compreensão do funcionamento da análise sintática e quais os processos necessários para obter a saída de cada passo de seus algoritmos.

Esse trabalho tem os seguintes objetivos específicos:

- Desenvolver uma forma de visualização dos algoritmos CLR, SLR e LL(1).
- Desenvolver uma ferramenta multi-plataforma (para web, desktop e mobile).
- Implementar a integração da ferramenta com a plataforma *Moodle*.
- Validar a ferramenta fazendo uma avaliação com alunos.

https://moodle2.quixada.ufc.br/

² https://tauri.app/

https://capacitorjs.com/

2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo apresentaremos os conceitos centrais que serviram como base e guia para a elaboração deste trabalho. Ao início é falado sobre o conhecimento básico sobre compiladores, depois sobre o *framework* utilizado para construção da ferramenta e por fim, sobre a tecnologia usada para fazer a integração com o *Moodle*.

2.1 Compiladores

Programas que são executados em computadores são escritos no que é chamada de linguagem de máquina que usa comandos simples que são interpretados pela máquina. Escrever em linguagem de máquina é uma tarefa passível de erro e cansativa, e por essa razão foram criados os compiladores. Os compiladores traduzem linguagens de alto nível em linguagem de máquina e indicam erros cometidos pelos programadores no código-fonte (Mogensen, 2024).

2.1.1 Fases do compilador

As fases de um compilador podem ser divididas de várias formas. Os trabalhos de Cooper e Torczon (2022), Mogensen (2024) e Thain (2020) dão suas definições das fases de um compilador, mas para esse trabalho será seguida a definição de Thain (2020).

Figura 1 – Fases de um compilador UNIX

Fonte: adaptada de Thain (2020).

2.1.1.1 Análise Léxica

Na fase de análise léxica, o *scanner*, também chamado de *tokenizer*, consome texto simples de um programa e agrupa os caracteres individuais em sequências chamadas de *tokens*.

Esse processo funciona de forma parecida com agrupar letras para formar palavras da linguagem natural, esse agrupamento é feito usando expressões regulares implementadas através de autômatos.

2.1.1.2 Análise Sintática

Análise de sintática será o foco do trabalho sendo discutida de forma mais aprofundada nas próximas seções. A fase de análise sintática da compilação rearranja os *tokens* gerados pela fase de análise léxica, gerando assim uma estrutura chamada árvore sintática. Árvores sintáticas são estruturas de árvore como diz o nome, as folhas dessa árvore são os *tokens* e a leitura em ordem da árvore dá a sequência de *tokens* do texto de entrada dado ao analisador sintático. Ao construir a árvore sintática, o analisador sintático também checa se há erros de sintaxe no texto de entrada.

2.1.1.3 Análise semântica

Na fase de análise semântica, as rotinas semânticas percorrem a árvore sintática e buscam significado na entrada a partir das regras da gramática e da relação entre os elementos da entrada. Depois das rotinas semânticas, a árvore de análise sintática é convertida em uma representação intermediária que é uma versão simplificada de *assembly* que permite uma análise detalhada.

2.1.1.4 Otimização

Na fase de otimização, otimizadores são aplicados na representação intermediária para tornar o programa mais rápido, menor e eficiente. Normalmente os otimizadores recebem uma entrada em formato de representação intermediária e retornam um resultado no mesmo formato para que todos os otimizadores possam ser aplicados de forma independente e em qualquer ordem.

2.1.1.5 Geração de código

Na fase de geração de código, o gerador de código consome a representação intermediária otimizada e a transforma em um programa em *assembly* concreto. Para otimizar o uso dos registradores físicos limitados e gerar instruções de montagem de maneira eficiente, o gerador de código precisa executar as tarefas de alocação de registradores, seleção de instruções e sequenciamento de instruções.

2.2 Analisadores Sintáticos Descendentes

Cooper e Torczon (2022), Mogensen (2024) e Thain (2020) falam sobre analisadores sintáticos descendentes, mas para esse trabalhos será seguida a definiçã de Thain (2020). Analisadores sintáticos descendentes, também chamados *parsers top-down*, são métodos de análise sintática que iniciam a análise a partir do símbolo inicial da gramática. Eles fazem comparações entre os *tokens* do texto de entrada e os símbolos da gramática para encontrar a produção que deve ser escrita no lugar dos símbolos da gramática. Essas comparações são feitas até sobrar apenas símbolos terminais, esses símbolos terminais devem coincidir com a sequência de *tokens* da entrada caso contrário será considerado um erro.

2.2.1 Descendentes Recursivos

O conjunto de gramáticas que pode ser analisados usando algoritmos usando apenas um não terminal e o próximo símbolo da entrada é chamado conjunto de gramáticas LL(1). Uma das formas de fazer a análise dessas gramáticas é usando o analisador sintático descendente recursivo que usa funções recursivas para cada não terminal para processar a entrada. É um algoritmo que funciona como uma forma recursiva dos analisadores sintáticos LL(1) que já são tratados nesse trabalho, além disso, esse algoritmo não segue estruturas fixas e determinísticas, por isso não será abordado na ferramenta.

2.2.2 Analisadores Sintáticos LL(1)

Analisadores sintáticos LL(1) são um tipo de analisador sintático descendente, esses analisadores sintáticos levam em consideração um *lookahead* que nesse algoritmo é o símbolo inicial do lado direito das produções. O *lookahead* é usado para decidir qual produção deve ser escrita, por essa razão apenas gramaticas não ambíguas podem ser analisadas pelos analisadores sintáticos LL(1).

O conjunto dos símbolos iniciais das produções de uma gramática é chamado conjunto *first*, a construção desse conjunto pode ser feita seguindo o Algoritmo 1. As definições dos algoritmos foram tiradas do trabalho de Thain (2020).

```
Entrada: Gramática G, simbolo X

Saida: Conjunto first

início

first = {}

selecionar X fazer

caso Terminal fazer

first = {X}

caso Não terminal fazer

repetir

para cada regra \ X \rightarrow Y_1Y_2...Y_k na Gramática G fazer

se a está em First(Y_1) ou a está em First(Y_n) e Y_1...Y_{n-1} \Rightarrow \varepsilon então
```

Adicionar a ao first

se $Y_1...Y_k \Rightarrow \varepsilon$ então

Adicionar ε ao first

até que não haja mais mudanças;

fim

fim

fim

fim

retornar first

fim

fim

Algoritmo 1: First

O conjunto *follow* é o conjunto de símbolos terminais da gramática que podem ocorrer depois de qualquer uma das derivações de um não terminal A, o conjunto também inclui o símbolo \$ usado para se referir ao fim da *string*. Esse conjunto é usado no analisador LL para lidar com produções que derivam uma *string* vazia. A construção do conjunto *follow* pode ser feita seguindo o Algoritmo 2.

Uma tabela de análise sintática LL(1) pode ser usada para determinar as regras a serem usadas na análise de uma trada para todas as combinações de não terminais e *tokens* da entrada. A construção dessa tabela pode ser feita usando os conjuntos de *first* e *follow* usando o Algoritmo 3.

Tendo a tabela de análise sintática LL(1) em mãos, é possível fazer a análise de uma sequência de *tokens* usando uma *stack*. O Algoritmo 4 mostra a análise sintática usando a tabela.

Algoritmo 2: FollowEntrada: Gramática GSaida: Conjunto followiníciofollow = {}follow(S) = {\$} onde S é o símbolo inicial.repetirse $A \rightarrow \alpha B\beta$ então| adiciona First(β) (exceto ε) follow(B).fimse $A \rightarrow \alpha B$ ou First(β) contém ε então| adiciona follow(A) ao follow(B).fimaté que até não houver mais mudanças;retornar followfim

2.3 Analisadores Sintáticos Ascendentes

Cooper e Torczon (2022), Mogensen (2024) e Thain (2020) falam sobre analisadores sintáticos ascendentes, mas para esse trabalhos será seguida a definiçã de Thain (2020). Os analisadores sintáticos ascendentes levam uma abordagem oposta aos analisadores sintáticos descendentes. Ao invés de começar com o símbolo inicial da gramática, os analisadores sintáticos ascendentes procuram sequências de *tokens* que façam par com o lado direito das produções da gramática e substituem as sequências de *tokens* pelo símbolo não terminal do lado esquerdo da produção. Esse processo é repetido até que toda a sequência de *tokens* seja reescrita e apenas reste o símbolo inicial da gramática.

2.3.1 Analisadores Sintáticos SLR

Há um conjunto de gramáticas que podem ser analisadas usando técnicas de *shift-reduce* e um único *lookahead*, esse conjunto de gramáticas pode ser chamado de LR(0). As ações de *shift-reduce* são usadas para reduzir *tokens* de uma entrada a não terminais, quando uma sequência de *tokens* pode ser reduzida ao símbolo inicial da gramática a análise da entrada teve sucesso, caso contrário há um erro na entrada.

Todas as ações de *shift-reduce* possíveis podem ser calculadas para uma gramática construindo um autômato LR(0), que também pode ser chamado coleção de itens canônicos. Esse autômato guarda todas as possíveis posições de leitura das produções da gramática representadas por um ponto escrito no lado direito das produções.

Algoritmo 3: Construção da tabela LL(1)

```
Entrada: Gramática G
Saida: Tabela M
início

para cada regra\ A \to \alpha\ em\ G fazer

para cada terminal\ a\ (exceto\ \varepsilon)\ em\ First(\alpha) fazer

adiciona A \to \alpha\ a\ T[A,a].

fim

se \varepsilon\ est\'a\ em\ First(\alpha) então

para cada terminal\ b\ (incluindo\ \$)\ em\ Follow(A) fazer

adiciona A \to \alpha\ to\ T[A,b].

fim

fim

fim
```

Algoritmo 4: Análise com tabela LL(1)

```
Entrada: Gramática G com simbolo inicial P, tabela T
início
   cria uma stack S.
   monta $ e P em S.
   token c = o primeiro token na entrada.
   enquanto S não está vazio fazer
       token X = 0 topo de S.
       se X faz par com c então
          remova X de S.
           avança c para o proximo token
          repetir.
       fim
       se X é um terminal então
       para com um erro.
       se T[X, c] aponta para a regra X \to \alpha então
           remova X de S.
           monta os símbolos \alpha em S.
          repetir.
       se T [X, c] aponta para um estado de erro então
        para com um erro.
       fim
   fim
fim
```

As ações de *shift-reduce* são definidas pelas transições do autômato e pela posição de leitura, caso uma transição seja feita com um terminal a ação será de *shift*, caso uma transição seja feita com um não terminal a ação será de *goto*, caso a posição de leitura esteja no fim da produção a ação será de *reduce*.

O Algoritmo 6 mostra como construir o autômato LR(0) com o auxílio do *closure* mostrado no Algoritmo 5.

```
Algoritmo 5: Closure

Entrada: Gramática G, Estado S

início

repetir

para cada item\ da\ forma\ A \to \alpha.X\beta\ em\ S\ com\ X \in NT\  fazer

para cada produção\ da\ forma\ X \to \gamma\ em\ G\ fazer

adiciona uma produção da forma X \to \gamma\ a\ S

fim

fim

até que n\~ao\ tenha\ itens\ a\ serem\ adicionados;

fim
```

Quando um símbolo não terminal produz um símbolo terminal, apenas um caminho para derivação é possível, já que um não terminal não pode ser derivado, no entanto, quando um não terminal produz outro não terminal, o não terminal produzido terá outras derivações. Por essa razão é preciso levar em consideração as produções dos não terminais que estão sob a posição de leitura dentro da produção de outro não terminal. *Closure* é o nome dado a ação de completar os estados do autômato adicionando essas produções.

Usando o autômato LR(0) podemos construir uma tabela de ações e *goto* para facilitar o acesso a essas informações durante o processo de análise sintática. Essa pode ser calculada usando o Algoritmo 7.

A análise sintática do analisador sintático SLR pode ser feita usando a tabela de ações e *goto* seguindo o Algoritmo 8.

2.3.2 Analisadores Sintáticos CLR

O analisador sintático *canonical* LR (CLR) é um analisador sintático descendente para gramáticas LR(1). O analisador sintático CLR usa o autômato LR(1) para construção da tabela de ações e *goto*, esse autômato é parecido com o autômato LR(0), o que diferencia os dois

Algoritmo 6: Construção do autômato LR(0)

```
Entrada: Gramática G
Saida: Autômato LR(0)
início
    cria um autômato m.
    estado s0 = \{P \mid para a produção do símbolo inicial <math>A \rightarrow \gamma, P é uma produção da
     forma A \rightarrow .\gamma }.
    closure(s0).
    adiciona s0 a m.
    conjunto de estados newStates = \{s0\}.
    para cada estado s em newStates fazer
        conjunto de estados temp = \{\}.
        para cada símbolo a em T \cup NT fazer
             estado s1 = \{\}.
            para cada produção da forma A \rightarrow \alpha.a\beta em s fazer
                 adiciona uma produção da forma A \rightarrow \alpha a.\beta em s1.
            fim
            closure(s1).
            se s1 não está em m então
                 adiciona s1 a m.
                 adiciona a transição \hat{\delta}(s,a) = \hat{\delta}(s,a) \cup \{s1\} a m.
                 adiciona s1 a temp.
            fim
        fim
        newStates = temp
    fim
    retornar m
fim
```

é que todos os itens do autômato LR(1) tem uma anotação do conjunto de *tokens* que podem aparecer depois desses itens. Esse conjunto é chamado *lookahead*.

A construção do autômato LR(1) segue o mesmo algoritmo da construção do autômato LR(0) com algumas modificações. A primeira produção a ser adicionada no primeiro estado do autômato vai ser adicionada com o *lookahead*, esse *lookahead* tem \$ como único elemento. Ao computar o *closure* serão considerados dois casos:

- Para produções da forma $A \to \alpha.B$ com *lookahead* de $\{L\}$, deverão ser adicionadas novas produções da forma $B \to .\gamma$ com *lookahead* de $\{L\}$
- Para produções da forma $A \to \alpha.B\beta$, com *lookahead* de $\{L\}$, deverão ser adicionadas novas produções da forma $B \to .\gamma$ com *lookahead* da seguinte forma:
 - Se β não produz ε , o *lookahead* é *First*(β).
 - Se β produz ε, o *lookahead* é *First*(β) ∪ {*L*}.

Com essas modificações chegamos aos algoritmos de closure LR(1) e construção

Algoritmo 7: Construção da tabela SLR

```
Entrada: Autômato LR(0)
início
   tabela ACTION
   tabela GOTO
   para cada estado s fazer
       para cada item da forma A \rightarrow \alpha.a\beta fazer
           ACTION[s, a] = shift para o estado t de acordo com o autômato LR(0).
       fim
       para cada item da forma A \rightarrow \alpha.B\beta fazer
        GOTO[s, B] = goto para o estado t de acordo com o autômato LR(0).
       fim
       para cada item da forma A \rightarrow \alpha. fazer
           para cada terminal a em FOLLOW(A) fazer
             | ACTION[s, a] = reduce pela regra A \rightarrow \alpha.
           fim
       fim
   fim
   Todos os estados restantes são estados de erro.
fim
```

Algoritmo 8: Analise com tabela SLR

```
Entrada: Tabela de ações ACTION, Tabela goto GOTO
início
   stack de estados S.
   monta S0 em S.
   token a = primeiro token da entrada.
   enquanto verdade fazer
       estado s = topo de S.
       se ACTION[s, a] for aceite então
        analise completa.
       senão, se ACTION[s, a] for shift t então
           monta estado t em S.
          token a = próximo token da entrada.
       senão, se ACTION[s, a] for reduce A \rightarrow \beta então
           desmonta estados correspondentes a \beta de S.
           estado t = topo de S.
          monta GOTO[t, A] em S.
        para com um erro.
       fim
   fim
fim
```

do autômato LR(1) que podem ser vistos nos algoritmos 9 e 10 respectivamente.

```
Algoritmo 9: Closure LR(1)
 Entrada: Gramática G. Estado S
 início
      repetir
          para cada item da forma A \rightarrow \alpha.B em S com lookahead de \{L\} fazer
              adiciona as produções da forma B \rightarrow .\gamma a S
          fim
          para cada item da forma A \rightarrow \alpha.B\beta em S com lookahead de \{L\} fazer
               para cada item da forma B \rightarrow \gamma em G fazer
                   se \beta não produz \varepsilon então
                       adiciona uma produção da forma B \rightarrow .\gamma com lookahead de First(\beta)
                   senão
                       adiciona uma produção da forma B \rightarrow .\gamma com lookahead de
                         First(\beta) \cup \{L\} a S.
                   fim
              fim
          fim
      até que não tenha itens a serem adicionados;
 fim
```

2.4 Learning Tools Interoperability

Learning Tools Interoperability (LTI) em português interoperabilidade de ferramentas de aprendizagem é um padrão técnico desenvolvido pela 1EdTec¹. Esse padrão especifica métodos de comunicação entre Learning Management System (LMS) em português sistema de gerenciamento de aprendizagem e ferramentas de aprendizagem remotas (1EdTech, 2024).

O padrão LTI permite a implementação das seguintes funcionalidades:

- Assignment and Grade Services 2.0 (AGS) que fornece uma maneira de criar uma coluna de boletim de notas e publicar notas associadas a um *link* de recurso.
- Names and Role Provisioning Services 2.0 (NRPS) que fornece acesso a dados sobre usuários e suas funções nas organizações; uma escola, plataforma LMS ou curso são exemplos de organização.
- Deep Linking 2.0 (DL) que permite que um professor ou usuário de plataforma LMS integre conteúdo coletado de uma ferramenta externa. Usando este serviço, os usuários da plataforma podem lançar um URI especificado pelo fornecedor do currículo digital

https://www.1edtech.org/

Algoritmo 10: Construção do autômato LR(1)

```
Entrada: Gramática G
Saida: Autômato LR(1)
início
    cria um autômato m.
    estado s0 = \{P \mid para a produção do símbolo inicial <math>A \rightarrow \gamma, P é uma produção da
     forma A \rightarrow .\gamma com lookahead de {$} }.
    closure(s0).
    adiciona s0 a m.
    conjunto de estados newStates = \{s0\}.
    para cada estado s em newStates fazer
        conjunto de estados temp = \{\}.
        para cada símbolo a em T \cup NT fazer
            estado s1 = \{\}.
            para cada produção da forma A \rightarrow \alpha.a\beta com lookahead de \{L\} em s fazer
                adiciona uma produção da forma A \rightarrow \alpha a.\beta com lookahead de \{L\} em
                  s1.
            fim
            closure(s1).
            se s1 não está em m então
                adiciona s1 a m.
                adiciona a transição \hat{\delta}(s,a) = \hat{\delta}(s,a) \cup \{s1\} a m.
                adiciona s1 a temp.
            fim
        fim
        newStates = temp.
    fim
    retornar m.
fim
```

(ferramenta externa), selecionar conteúdo específico e, em seguida, receber um URI que outros usuários podem usar para lançar diretamente esse conteúdo.

Além disso, o LTI oferece os seguintes serviços adicionais:

- *Dynamic Registration* que é uma forma de automatizar a troca de informação de registro de entre plataformas e ferramentas.
- Submission Review Service fornece uma maneira padrão para um instrutor ou aluno voltar do boletim de notas de uma plataforma para a ferramenta onde a interação ocorreu para exibir o envio do aluno para um item de linha específico.
- Course Groups Service que comunica para uma ferramenta os grupos disponíveis nos cursos e suas matrículas.

2.5 Svelte

Svelte é um framework de componentes criado em 2016 por Harry Rich, e pode ser considerado uma tecnologia recente em relação a outras similares (Krill, 2016). Svelte é semelhante aos frameworks React e Vue, mas tem uma abordagem bastante diferente no processamento de código. Os frameworks tradicionais usam código declarativo dirigidos a estado (declarative state-driven) o que aumenta a carga de processamento para o browser que precisa transformar essas estruturas declarativas em operações no Document Object Model (DOM) usando técnicas como Virtual DOM que é uma representação intermediária do DOM real (Harris, 2019a).

Ao contrário dos *frameworks* tradicionais *Svelte* age como um compilador funcionando em *build-time* para transformar os componentes criados em código *Javascript* imperativo altamente eficiente que atualiza o DOM apenas onde necessário. Isso permite escrever código para aplicações robustas sem necessidade de se preocupar muito com optimizações para que as aplicações sejam leves e performáticas.

Além de ter código mais leve e performático a quantidade de código escrito usando *Svelte* é menor em comparação a outros *frameworks*. Já que *Svelte* compila o código base, o *framework* é livre para escolher a forma como o código deve ser escrito e para maior simplicidade o código em Svelte segue a sintaxe da linguagem *Javascript*. Tal coisa não é possível com outros *frameworks* como *React* que funciona em *runtime* e tem sua sintaxe limitada a isso sendo necessárias mais código para estar em conformidade com o funcionamento do *framework*. Um exemplo disso é a atualização do estado de uma variável enquanto usando *Svelte* é apenas necessário usar o operador de atribuição para dar um novo valor a variável assim como na sintaxe *Javascript*, em *React* é necessário a utilização de funções chamadas *hooks* para a atribuição do novo valor (Harris, 2019b).

3 TRABALHOS RELACIONADOS

Nesta seção, estão descritas algumas ferramentas de visualização de algoritmos de análise sintática, suas funcionalidades e limitações.

3.1 Teaching Compilers: Automatic Question Generation and Intelligent Assessment of Grammars' Parsing

No trabalho de Muñoz *et al.* (2024) foi desenvolvida uma aplicação usada como *plug-in* no sistema de avaliação SIETTE, o objetivo da aplicação é gerar gramáticas livres de contexto, determinar se elas atendem os requisitos LL(1) ou SLR, construir as tabelas de parsing e avaliar os alunos. Essa aplicação foi usada na Universidade de Málaga durante 7 anos e foi usada para avaliar mais de mil alunos.

Para a criação de gramáticas livres de contexto foram usados blocos de construção, esses blocos são conjuntos de produções que podem ter seus terminais substituídos por não terminais representando outros blocos, combinando diferentes blocos podem ser obtidas gramáticas aleatórias. Para gerar as tabelas de parsing são implementados os algoritmos de construção dessas tabelas e algoritmos auxiliares. Apesar da equivalência entre gramáticas livres de contexto ser um problema indecidível como as gramáticas livres de contexto usadas são pequenas, a aplicação consegue testar a equivalência entre elas usando um algoritmo de força bruta.

Após os dados da utilização da aplicação serem analisados, os autores concluíram que os testes gerados automaticamente têm dificuldade e resultados semelhantes aos obtidos com os testes criados por professores. Os autores também afirmam que os testes gerados automaticamente têm a vantagem de sempre serem diferentes uns dos outros, requerendo um entendimento mais aprofundado dos alunos para resolução desses testes. Por fim, os autores citam como possibilidade de trabalhos futuros a criação de uma ferramenta com *feedback* gráfico e mais detalhado.

3.2 PAVT: a tool to visualize and teach parsing algorithms

No trabalho de Sangal, Kataria, Tyagi *et al.* (2018) foi introduzida a ferramenta PAVT com o objetivo de ensinar seis algoritmos de análise sintática. Os algoritmos que são abordados na ferramenta são *predictive parsing*, *simple LR* (*SLR*) *parsing*, *canonical LR*(*CLR*) *parsing*, *look-ahead LR*(*LALR*) *parsing*, *earley parsing e Cocke-Younger-Kasami*(*CYK*) *par-*

sing. PAVT mostra uma breve descrição dos algoritmos e dá o resultado dos passos do algoritmo em formato de texto. Para utilizar a ferramenta o usuário deve digitar uma string para ser analisada e a gramática alvo ou fazer upload de um arquivo de texto contendo a gramática. A interface da ferramenta pode ser vista na Figura 2.

Figura 2 – Interface da ferramenta PAVT

Fonte: adaptada de Sangal, Kataria e Tyagi (2017).

PAVT tem módulos que são responsáveis pela visualização de cada algoritmo. Para todos é feita a análise da string de entrada, caso a string seja aceita é construída a árvore sintática representada da esquerda para direita. Além disso, todos os elementos presentes nos algoritmos são apresentados, esses elementos são o conjunto first, conjunto follow, conjunto de itens, tabela de parsing e derivação mais à direita.

A ferramenta foi usada no curso de construção de compiladores e ao fim do curso o *feedback* dos alunos foi coletado. Os resultados obtidos indicaram que a ferramenta ajudou

no aprendizado de algoritmos de análise sintática, os autores afirmam que os resultados de cada passo dos algoritmos são dados em um formato comumente usado pelos professores e ajudam os estudantes a praticar e entender os algoritmos.

3.3 A Web-Based Educational System for Teaching Compilers

O trabalho de Stamenković e Jovanović (2024) foi feito na universidade de Pristina com o objetivo de criar uma versão *web* de um sistema de simulação ComVis, um sistema com módulos que ensinam as fases da compilação. O sistema já havia sido desenvolvido em Java para *desktop*, no entanto, por questões de acessibilidade e melhor representação visual foi decidido criar a versão *web* do sistema. A motivação por trás desse trabalho foi a dificuldade dos alunos da universidade na disciplina de compiladores. Os autores também citam como a utilização de um software interativo pode ajudar na motivação.

O sistema foi desenvolvido usando *Java Server Page*, já que a versão *desktop* do sistema foi feita em Java, grande parte da base de código pôde ser reutilizada dessa forma. Outras tecnologias usadas foram HTML, CSS, JavaScript e Graphviz para criação de gráficos e diagramas.

No estudo foi feita uma análise comparativa entre as versões *web* e *desktop* do sistema. A partir dessa análise os autores concluíram que a versão *web* criada tem melhor acessibilidade, visualização, controle da simulação e *feedback*. Também foi feita uma avaliação quantitativa da eficiência do sistema, os resultados mostram que os estudantes que usaram o sistema tiveram melhor desempenho do que aqueles que não usaram o sistema.

3.4 Considerações

Apesar de já existirem ferramentas de visualização de *parsers*, algumas desvantagens ainda precisam ser consideradas. Uma limitação é que o conteúdo não tem muita interatividade, a ferramenta apresentada no trabalho de Sangal, Kataria, Tyagi *et al.* (2018), por exemplo, apresenta apenas em um arquivo de texto. Isso pode dificultar a compreensão dos conceitos. Outra limitação é a falta de detalhamento do passo a passo dos algoritmos, por exemplo a ferramenta apresentada no trabalho de Stamenković e Jovanović (2024) foca apenas no último passo da análise sintática, excluindo a parte de construção das tabelas de *parsing* e conjuntos de itens. Isso impede que os estudantes acompanhem o funcionamento interno dos processos de análise. Por fim, nenhuma das ferramentas apresenta uma versão *mobile*. Essas lacunas

representam oportunidades de melhoria para que as ferramentas de visualização de *parsers* se tornem ainda mais eficazes no apoio ao ensino e aprendizagem de análise sintática. No Quadro 1 pode-se ver o resumo do comparativo dos trabalhos citados anteriormente.

Quadro 1 – Comparativo de trabalhos relacionados

Trabalho	Algoritmos			Plataformas			Integração com Moodle
11abanio	LL(1)	SLR	CLR	Mobile	Desktop	Web	integração com Moodie
Muñoz et al. (2024)	X						
Sangal, Kataria, Tyagi et al. (2018)		X	X		X		
Stamenković e Jovanović (2024)		X	X		X	X	
Este trabalho	X	X	X	X	X	X	X

Fonte: fornecido pelo autor

4 METODOLOGIAS

Nesta seção serão apresentadas as metodologias usadas para o desenvolvimento desse trabalho. As etapas a serem seguidas estão representadas no fluxograma da Figura 3.

Figura 3 – Fluxograma das etapas

Fonte: fornecida pelo próprio autor

4.1 Definir os requisitos

A partir da revisão bibliográfica foram definidos alguns requisitos básicos que deveriam estar presentes na ferramenta. Como requisito não funcional foi definido oferecer suporte multi-plataforma, para *mobile*, *desktop* e *web*. Como requisitos funcionais foram definidos os seguintes:

- Permitir que os usuários digitem a gramática a ser analisada.
- Permitir que os usuários visualizem o estado das estruturas dos algoritmos.
- Permitir que os usuários avancem, retornem e reiniciem os passos da execução dos algoritmos.
- Permitir que os usuários selecionem o algoritmo a ser visualizado.

Apesar das ferramentas compartilharem as mesmas funcionalidades básicas já definidas inicialmente, outras têm características interessantes que podem ser reaproveitadas, partir delas foram definidos os seguintes requisitos:

• Permitir que os usuários digitem uma string a ser analisada.

- Permitir que os usuários visualizem a análise de uma string.
- Permitir que os usuários visualizem a árvore sintática de uma string.
- Permitir que os usuários copiem em formato de texto os resultados da análise de uma string.
- Permitir que os usuários copiem implementações dos algoritmos.

Com esses requisitos tem-se a base para o desenvolvimento da ferramenta.

4.2 Definir a arquitetura do projeto

O projeto será construído usando o *framework Svelte*, sem *Server Side Rendering* (SSR), para que seja possível o funcionamento *offline* da ferramenta, já que a ferramenta não teria acesso ao servidor não seria possível usá-lo para renderizar elementos. *Svelte* compila a base de código e cria uma coleção de arquivos estáticos que constituem a página *web* e a base para o suporte multi-plataforma da aplicação.

Figura 4 – Arquitetura da aplicação em nuvem

Fonte: fornecida pelo próprio autor

O *framework Capacitor* consome essa coleção de arquivos e cria um projeto para plataforma *Android* que é usado para criar a versão *mobile* da ferramenta usando o *Android Stu*-

dio. O framework Tauri constrói instaladores para desktop diretamente da coleção de arquivos estáticos. A plataforma alvo dos instaladores é a plataforma na qual eles são construídos, já que o framework não tem suporte para construção cross-platform é necessária a utilização de máquinas virtuais para construir instaladores para diferentes plataformas desktop.

Para a versão *online* da aplicação, os serviços de computação em nuvem das empresas *Netlify* e *Render* serão usados para hospedar respectivamente o *front-end* e *back-end* da aplicação. *Netlify* e *Render* foram escolhidas para hospedagem da aplicação pelo oferecimento gratuito dos serviços para aplicações pequenas como a proposta nesse trabalho.

A aplicação pode ser acessada através do *Moodle* usando como comunicação entre os dois a *Application Programming Interface* (API) da aplicação. O diagrama na Figura 4 mostra o esquema da arquitetura da aplicação hospedada em nuvem com integração ao *Moodle*. A versão hospedada localmente da aplicação segue a mesma arquitetura com exceção da utilização de serviços de computação em nuvem.

4.3 Implementar a interface de usuário

Para que o usuário selecione um algoritmo para visualizar a ferramenta terá opções no topo da tela que alternam entre abas. Dentre essas abas estarão inclusas uma para a entrada de gramáticas e uma aba para visualização de cada algoritmo disponível. Para que o usuário possa dar uma gramática de entrada será criado um campo de texto como mostra Figura 5.

Para a visualização dos algoritmos a ferramenta terá uma composição de elementos como mostra a Figura 6, esses elementos são modificados de acordo com a execução do algoritmo selecionado. Os passos da execução do algoritmo podem ser controlados pelo conjunto de controles acima dos elementos do algoritmo como mostra a Figura 6.

Nas abas de visualização de algoritmos serão inclusos um campo de texto no qual o usuário poderá inserir uma *string* de entrada para ser analisada pelo algoritmo, um campo de texto para copiar os resultados dos algoritmos em forma de texto e um campo de texto para copiar a implementação do algoritmo.

4.4 Integrar os algoritmos à ferramenta

Para todas as estruturas de dados usadas nos algoritmos serão criadas representações visuais, dessa forma todos os passos do funcionamento poderão ser representados como estados

Figura 5 – Aba de entrada da gramática

Fonte: fornecida pelo próprio autor

dessas estruturas. Calculando antecipadamente os estados dessas estruturas em cada passo dos algoritmos podemos fazer um controle de fluxo entre os passos dos algoritmos.

4.5 Implementar as animações dos algoritmos

As mudanças de estados que ocorrem nos algoritmos podem ser melhor compreendidas se poderem ser visualizadas como transições ao invés de mostrar as mudanças saltando do estado inicial para o estado final. Usar animações torna a visualização das mudanças muito mais dinâmica. Um exemplo de animação é a animação do estado da estrutura de pilha que é usada em alguns algoritmos. Quando um item é adicionado ou removido da pilha, o elemento visual que representa esse item terá sua posição interpolada do ponto inicial ao ponto final.

Figura 6 – Aba de visualização dos algoritmos

Fonte: fornecida pelo próprio autor

4.6 Integrar a ferramenta com o Moodle

A plataforma LMS *Moodle* implementa o padrão LTI o que permite a utilização da ferramenta criada nesse trabalho diretamente no *Moodle* sem necessidade de *login* externo. Para que a ferramenta possa utilizar o padrão LTI com o *Moodle* será implementado no *back-end* da aplicação uma API que manuseia as requisições relacionada ao LTI.

Os endpoints da API foram definidos de acordo com o Quadro 2.

Quadro 2 – Endpoints

Endpoint	Método	Finalidade
\	GET	redirecionar para página
\login	POST	inicia uma conexão com a plataforma
\register	POST	registrar uma nova plataforma

Fonte: fornecido pelo autor

Com a API pronta pode ser feita a conexão entre a ferramenta e a LMS. Utilizando o serviço LTI de *Dynamic Registration* é possível fazer o cadastro da ferramenta no *Moodle* utilizando um *link* para o *endpoint* de registro dinâmico da API.

4.7 Avaliar a ferramenta

Será realizado um teste prático com um grupo de estudantes, onde os eles serão solicitados a realizar tarefas específicas utilizando a ferramenta. Serão coletados dados quantitativos, como tempo de execução das tarefas e taxa de acerto, bem como dados qualitativos por meio de questionários e entrevistas para avaliar a percepção dos estudantes sobre a eficácia da ferramenta. Além disso, a comparação dos resultados obtidos com um grupo de controle que não utiliza a ferramenta ajudará a avaliar o impacto da visualização na compreensão e desempenho dos alunos. Essa abordagem abrangente de avaliação garantirá uma análise completa da eficácia e utilidade da ferramenta desenvolvida nesse trabalho.

O desenvolvimento desse trabalho seguirá o cronograma mostrado no Quadro 3.

Quadro 3 – Cronograma

Atividades	Período							
Attvidades	Outubro	Novembro	Dezembro	Janeiro	Fevereiro	Março		
Definir dos requisitos	X							
Implementar da interface de usuário		X	X					
Integrar os algoritmos			X	X	X			
Implementar as animações			X	X	X			
Avaliar a ferramenta					X			
Apresentar						х		

Fonte: fornecido pelo autor

REFERÊNCIAS

1EDTECH. **Learning Tools Interoperability | 1EdTech**. Disponível em: https://www.1edtech.org/standards/lti#TechOverview. Acesso em: 27 maio 2024.

COOPER, K.; TORCZON, L. Engineering a Compiler. [S. l.]: Elsevier Science, 2022.

DESAI, J. **Web Application Vs Desktop Application: Pros and Cons**. Positiwise. 27 dez. 2023. Disponível em:

https://positiwise.com/blog/web-application-vs-desktop-application-pros-and-cons. Acesso em: 16 maio 2024.

HARRIS, R. **Svelte 3: Rethinking reactivity**. 22 abr. 2019. Disponível em: https://svelte.dev/blog/svelte-3-rethinking-reactivity. Acesso em: 27 maio 2024.

HARRIS, R. **Write less code**. 20 abr. 2019. Disponível em: https://svelte.dev/blog/write-less-code. Acesso em: 27 maio 2024.

HOLZER, A.; ONDRUS, J. Mobile app development: Native or web? *In:* PROC. Workshop eBus.(WeB). [S. l.: s. n.], 2012.

JAIN, A.; GOYAL, A.; CHAKRABORTY, P. PPVT: a tool to visualize predictive parsing. **ACM Inroads**, Association for Computing Machinery, New York, NY, USA, v. 8, n. 1, p. 43–47, fev. 2017. ISSN 2153-2184.

KRILL, P. Slim, speedy Svelte framework puts JavaScript on a diet | InfoWorld. Slim, speedy Svelte framework puts JavaScript on a diet. 2 dez. 2016. Disponível em: https://www.infoworld.com/article/3146966/slim-speedy-svelte-framework-puts-javascript-on-a-diet.html. Acesso em: 27 maio 2024.

MOGENSEN, T. Æ. Introduction to compiler design. [S. l.]: Springer Nature, 2024.

MUÑOZ, R. C. *et al.* Teaching Compilers: Automatic Question Generation and Intelligent Assessment of Grammars' Parsing. **IEEE Transactions on Learning Technologies**, v. 17, p. 1734–1744, 2024.

OLIVEIRA, L. **UFC abre inscrições para auxílio estudantil direcionado à compra de computador ou tablet**. O POVO. 31 jul. 2020. Disponível em:

https://www.opovo.com.br/noticias/fortaleza/2020/07/31/ufc-abre-inscricoes-para-auxilio-estudantil-de-r--1-500-direcionado-a-compra-de-computador-ou-tablet.html. Acesso em: 16 maio 2024.

PEREZ, K. Y. The Impact of Lack of Internet and Technology Access on Students' Academic Achievement: An Analysis of the United States. 2023. Tese (Doutorado) – Georgetown University.

SANGAL, S.; KATARIA, S.; TYAGI, T. **PAVT**. 9 fev. 2017. Disponível em: https://sourceforge.net/projects/pavt/. Acesso em: 2 maio 2024.

SANGAL, S.; KATARIA, S.; TYAGI, T. *et al.* PAVT: a tool to visualize and teach parsing algorithms. **Education and Information Technologies**, Springer, v. 23, p. 2737–2764, 2018.

SHEVTSIV, N. A.; STRIUK, A. M. Cross platform development vs native development. *In:* CEUR WORKSHOP PROCEEDINGS.

STAMENKOVIĆ, S.; JOVANOVIĆ, N. A Web-Based Educational System for Teaching Compilers. **IEEE Transactions on Learning Technologies**, v. 17, p. 143–156, 2024.

THAIN, D. Introduction to Compilers and Language Design: Second Edition. [S. l.]: Amazon Digital Services LLC - Kdp, 2020.