Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 5 8 APRILE 2010

1. Determinare il gruppo di Galois dei seguenti polinomi:

a)
$$X^{15} - 1$$

c)
$$X^3 + X + 1$$

b)
$$X^4 - 2$$

2. Determinare tutti gli automorfismi delle seguenti estensioni di campi e tutti i sottocampi intermedi:

a)
$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{7})$$

d)
$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$$

b)
$$\mathbb{Q} \subseteq \mathbb{Q}(\xi_9)$$

d)
$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$$

e) $\mathbb{Q} \subseteq \mathbb{Q}(\xi_{12}^2, \xi_5 + \xi_5^{-1})$
f) $\mathbb{Q} \subseteq \mathbb{Q}(\xi_{18}^8, \xi_{35}^5)$

c)
$$\mathbb{Q} \subseteq \mathbb{Q}(\xi_{10}, i)$$

f)
$$\mathbb{Q} \subseteq \mathbb{Q}(\xi_{18}^8, \xi_{35}^5)$$

3. Trovare il polinomio minimo dei seguenti numeri complessi su \mathbb{Q} e su E:

a)
$$\sqrt{2} + 3\sqrt{3}$$
, $E = \mathbb{Q}(\sqrt{2})$
b) $\sqrt{5} - \sqrt{10}$, $E = \mathbb{Q}(\sqrt{2})$

f)
$$\sqrt[5]{2+\sqrt[3]{1+\sqrt{2}}}$$
, $E = \mathbb{Q}(\sqrt{2})$
g) $\cos^2\left(\frac{2\pi}{7}\right)$
h) $\xi_5 + \xi_5^2$ [Nota 2]
i) $\sin\left(\frac{2\pi}{5}\right)$

b)
$$\sqrt{5} - \sqrt{10}$$
, $E = \mathbb{Q}(\sqrt{2})$

g)
$$\cos^2\left(\frac{2\pi}{7}\right)$$

c)
$$\sqrt[3]{2} + \sqrt{3}$$

d) $3\cos\left(\frac{2\pi}{9}\right) + 4$ [Nota 1]

h)
$$\mathcal{E}_5 + \mathcal{E}_5^2$$
 [Not:

e)
$$\sqrt[4]{2} - i$$
, $E = \mathbb{Q}(i)$

i)
$$\sin\left(\frac{2\pi}{5}\right)$$

4. Stabilire se i seguenti campi sono normali su \mathbb{Q} e, in caso negativo, costruire la sua chiusura normale (ovvero il più piccolo campo normale su \mathbb{Q} che lo contiene):

a)
$$\mathbb{Q}(\sqrt{3}, \sqrt{5})$$

d)
$$\mathbb{Q}(\xi_{13}^3 + \xi_{13} - 2)$$

a)
$$\mathbb{Q}(\sqrt{3}, \sqrt{5})$$

b) $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})$

e)
$$\mathbb{Q}(i\sqrt{3},\sqrt[3]{5})$$

c)
$$\mathbb{Q}(\sqrt{2}+i,\sqrt[5]{7})$$

d)
$$\mathbb{Q}(\xi_{13}^3 + \xi_{13} - 2)$$

e) $\mathbb{Q}(i\sqrt{3}, \sqrt[3]{5})$
f) $\mathbb{Q}(\xi_{13} + \xi_{13}^3 + \xi_{13}^6 + \xi_{13}^9 + \xi_{13}^{12})$

5. Determinare i polinomi minimi dei seguenti numeri appartenenti ad estensioni su

a)
$$8\alpha + \frac{1}{3}$$
, dove $\alpha^4 + 4\alpha^3 + 2\alpha - 2 = 0$
b) β^3 , dove $\beta^7 + 9\beta^6 - 3\beta^3 + 6 = 0$

b)
$$\beta^3$$
, dove $\beta^7 + 9\beta^6 - 3\beta^3 + 6 = 0$

c)
$$\gamma^2 - 1$$
, dove $\gamma^3 + 5\gamma^2 + 3 = 0$

d)
$$\delta^2 + 1$$
, dove $\delta^3 + 6\delta + 12 = 0$

6. Determinare l'inverso dei seguenti numeri, tutti appartenenti ad estensioni di Q:

a)
$$\alpha$$
, dove $\alpha^3 - 8\alpha^2 + \alpha - 1 = 0$

d)
$$\delta^6 + 1$$
, dove $\delta^5 - 4\delta + 2 = 0$

a)
$$\alpha$$
, dove $\alpha^3 - 8\alpha^2 + \alpha - 1 = 0$
b) $\beta^2 - 1$, dove $\beta^4 - 2\beta^2 + 6\beta + 10 = 0$
c) $\gamma^2 - 2\gamma + 4$, dove $\gamma^3 - 3\gamma + 2 = 0$
d) $\delta^6 + 1$, dove $\delta^5 - 4\delta + 2 = 0$
e) $\epsilon^3 + 4$, dove $\epsilon^2 - \epsilon + 1 = 0$
f) $\zeta + 6$, dove $\zeta^3 - 2\zeta^2 + 1 = 0$

e)
$$\epsilon^3 + 4$$
, dove $\epsilon^2 - \epsilon + 1 = 0$

c)
$$\gamma^2 - 2\gamma + 4$$
, dove $\gamma^3 - 3\gamma + 2 = 0$

f)
$$\zeta + 6$$
, dove $\zeta^3 - 2\zeta^2 + 1 = 0$

¹Usare la sostituzione $Y = X + \frac{1}{X}$

²Suggerimento: i coniugati di $\alpha + \beta$ sono nella forma $\alpha' + \beta'$, dove α' e β' sono opportuni coniugati di α e β . Per i più bravi: dimostrarlo.