

WYPEŁNIA ZDAJĄCY		Miejsce na naklejkę.
KOD PESEL		Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: 5 maja 2021 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią
nieprzenoszenia zaznaczeń na kartę.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 25 stron (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w cześci przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Pamietaj, że zapisy w brudnopisie nie będa oceniane.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $100^5 \cdot (0,1)^{-6}$ jest równa

- **A**. 10^{13}
- **B**. 10^{16}
- $\mathbf{C}.\ 10^{-1}$
- **D.** 10^{-30}

Zadanie 2. (0-1)

Liczba 78 stanowi 150% liczby c. Wtedy liczba c jest równa

- **A.** 60
- **B.** 52
- **C.** 48
- **D**. 39

Zadanie 3. (0-1)

Rozważamy przedziały liczbowe $(-\infty,5)$ i $(-1,+\infty)$. Ile jest wszystkich liczb całkowitych, które należą jednocześnie do obu rozważanych przedziałów?

A. 6

B. 5

C. 4

D. 7

Zadanie 4. (0-1)

Suma $2 \log \sqrt{10} + \log 10^3$ jest równa

A. 2

B. 3

C. 4

D. 5

Zadanie 5. (0-1)

Różnica 0, $(3) - \frac{23}{33}$ jest równa

- **A.** -0,(39)
- **B.** $-\frac{39}{100}$
- **C.** -0,36
- **D.** $-\frac{4}{11}$

Zadanie 6. (0-1)

Zbiorem wszystkich rozwiązań nierówności $\frac{2-x}{2}-2x\geq 1$ jest przedział

- **A.** $(0, +\infty)$
- **B.** $(-\infty, 0)$ **C.** $(-\infty, 5)$
- **D.** $\left(-\infty, \frac{1}{3}\right)$

Zadanie 7. (0-1)

Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze $\langle -6, 5 \rangle$.

Funkcja g jest określona wzorem g(x)=f(x)-2 dla $x\in \langle -6,5\rangle$. Wskaż zdanie prawdziwe.

A. Liczba f(2) + g(2) jest równa (-2).

B. Zbiory wartości funkcji f i g są równe.

 ${f C.}$ Funkcje f i g mają te same miejsca zerowe.

D. Punkt P = (0, -2) należy do wykresów funkcji f i g.

Zadanie 8. (0-1)

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań. Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.

A.
$$\begin{cases} y = x + 1 \\ y = -2x + 4 \end{cases}$$

B.
$$\begin{cases} y = x - 1 \\ y = 2x + 4 \end{cases}$$

c.
$$\begin{cases} y = x - 1 \\ y = -2x + 4 \end{cases}$$

D.
$$\begin{cases} y = x + 1 \\ y = 2x + 4 \end{cases}$$

Zadanie 9. (0-1)

Proste o równaniach y = 3x - 5 oraz $y = \frac{m-3}{2}x + \frac{9}{2}$ są równoległe, gdy

A. m = 1

B. m = 3

C. m = 6

D. m = 9

Zadanie 10. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{x^2}{2x-2}$ dla każdej liczby rzeczywistej $x \neq 1$. Wtedy dla argumentu $x = \sqrt{3} - 1$ wartość funkcji f jest równa

A. $\frac{1}{\sqrt{3}-1}$

B. −1

C. 1

D. $\frac{1}{\sqrt{3}-2}$

Zadanie 11. (0-1)

Do wykresu funkcji f określonej dla każdej liczby rzeczywistej x wzorem $f(x) = 3^x - 2$ należy punkt o współrzędnych

A. (-1, -5)

B. (0,-2) **C.** (0,-1) **D.** (2,4)

Zadanie 12. (0-1)

Funkcja kwadratowa f określona wzorem f(x) = -2(x+1)(x-3) jest malejąca w przedziale

A. $\langle 1, +\infty \rangle$

B. $(-\infty, 1)$ **C.** $(-\infty, -8)$ **D.** $(-8, +\infty)$

Zadanie 13. (0-1)

Trzywyrazowy ciąg $\left(15,\ 3x,\ \frac{5}{3}\right)$ jest geometryczny i wszystkie jego wyrazy są dodatnie. Stąd wynika, że

A. $x = \frac{3}{5}$ **B.** $x = \frac{4}{5}$ **C.** x = 1

Zadanie 14. (0-1)

Ciąg (b_n) jest określony wzorem $b_n=3n^2-25n$ dla każdej liczby naturalnej $n\geq 1$. Liczba $\underline{\text{niedodatnich}}$ wyrazów ciągu (b_n) jest równa

A. 14

B. 13

C. 9

D. 8

Zadanie 15. (0-1)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \geq 1$. Trzeci i piąty wyraz ciągu spełniają warunek $a_3 + a_5 = 58$. Wtedy czwarty wyraz tego ciągu jest równy

- **A.** 28
- **B.** 29
- **C.** 33
- **D**. 40

Zadanie 16. (0-1)

Dla każdego kąta ostrego α iloczyn $\frac{\cos\alpha}{1-\sin^2\alpha}\cdot\frac{1-\cos^2\alpha}{\sin\alpha}$ jest równy

- **A.** $\sin \alpha$
- **B**. $tg \alpha$
- **C.** $\cos \alpha$
- **D.** $\sin^2 \alpha$

Zadanie 17. (0-1)

Prosta k jest styczna w punkcie A do okręgu o środku O. Punkt B leży na tym okręgu i miara kąta AOB jest równa 80° . Przez punkty O i B poprowadzono prostą, która przecina prostą k w punkcie C (zobacz rysunek).

Miara kata BAC jest równa

- **A.** 10°
- **B.** 30°
- $\mathbf{C}.~40^{\circ}$
- **D.** 50°

Zadanie 18. (0-1)

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 8 oraz tg $\alpha=\frac{2}{5}$ (zobacz rysunek).

Pole tego trójkąta jest równe

- **A.** 12
- **B.** $\frac{37}{3}$
- **c**. $\frac{62}{5}$
- **D.** $\frac{64}{5}$

Zadanie 19. (0-1)

Pole pewnego trójkąta równobocznego jest równe $\frac{4\sqrt{3}}{9}$. Obwód tego trójkąta jest równy

A. 4

B. 2

c. $\frac{4}{3}$

D. $\frac{2}{3}$

Zadanie 20. (0-1)

W trójkącie ABC bok BC ma długość 13, a wysokość CD tego trójkąta dzieli bok AB na odcinki o długościach |AD|=3 i |BD|=12 (zobacz rysunek obok). Długość boku AC jest równa

A. $\sqrt{34}$

B. $\frac{13}{4}$

c. $2\sqrt{14}$

D. $3\sqrt{45}$

Zadanie 21. (0-1)

Punkty A, B, C i D leżą na okręgu o środku S. Miary kątów SBC, BCD, CDA są równe odpowiednio: $| 4SBC | = 60^{\circ}$, $| 4BCD | = 110^{\circ}$, $| 4CDA | = 90^{\circ}$ (zobacz rysunek).

Wynika stąd, że miara α kąta DAS jest równa

A. 25°

B. 30°

C. 35°

D. 40°

Zadanie 22. (0-1)

W równoległoboku ABCD, przedstawionym na rysunku, kąt α ma miarę 70°.

Wtedy kąt β ma miarę

- **A.** 80°
- **B**. 70°
- **C**. 60°
- **D**. 50°

Zadanie 23. (0-1)

W każdym n–kącie wypukłym ($n \ge 3$) liczba przekątnych jest równa $\frac{n(n-3)}{2}$. Wielokątem wypukłym, w którym liczba przekątnych jest o 25 większa od liczby boków, jest

- A. siedmiokąt.
- B. dziesięciokąt.
- C. dwunastokat.
- D. piętnastokąt.

Zadanie 24. (0-1)

Pole figury F_1 złożonej z dwóch stycznych zewnętrznie kół o promieniach 1 i 3 jest równe polu figury F_2 złożonej z dwóch stycznych zewnętrznie kół o promieniach długości r (zobacz rysunek).

Figura F_1

Figura F_2

Długość r promienia jest równa

- **A.** $\sqrt{3}$
- **B**. 2

- **C**. $\sqrt{5}$
- **D**. 3

Zadanie 25. (0-1)

Punkt A = (3, -5) jest wierzchołkiem kwadratu ABCD, a punkt M = (1, 3) jest punktem przecięcia się przekątnych tego kwadratu. Wynika stąd, że pole kwadratu ABCD jest równe

A. 68

B. 136

C. $2\sqrt{34}$

D. $8\sqrt{34}$

Zadanie 26. (0-1)

Z wierzchołków sześcianu ABCDEFGH losujemy jednocześnie dwa różne wierzchołki. Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu ABCDEFGH, jest równe

A. $\frac{1}{7}$

B. $\frac{4}{7}$

c. $\frac{1}{14}$

D. $\frac{3}{7}$

Zadanie 27. (0-1)

Wszystkich liczb naturalnych trzycyfrowych, większych od 700, w których każda cyfra należy do zbioru {1, 2, 3, 7, 8, 9} i żadna cyfra się nie powtarza, jest

A. 108

B. 60

C. 40

D. 299

Zadanie 28. (0-1)

Sześciowyrazowy ciąg liczbowy (1, 2, 2x, x + 2, 5, 6) jest niemalejący. Mediana wyrazów tego ciągu jest równa 4. Wynika stąd, że

A. x = 1

B. $x = \frac{3}{2}$ **C.** x = 2 **D.** $x = \frac{8}{3}$

Zadanie 29. (0-2)

Rozwiąż nierówność:

$$x^2 - 5x \le 14$$

Zadanie 30. (0-2)

Wykaż, że dla każdych trzech dodatnich liczb $\,a,\,\,\,b\,\,$ i $\,\,c\,\,$ takich, że $\,\,a < b,\,\,$ spełniona jest nierówność

$$\frac{a}{b} < \frac{a+c}{b+c}$$

Wypełnia egzaminator	Nr zadania	29.	30.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 31. (0-2)

Funkcja liniowa f przyjmuje wartość 2 dla argumentu 0, a ponadto f(4)-f(2)=6. Wyznacz wzór funkcji f.

Zadanie 32. (0-2)

Rozwiąż równanie:

$$\frac{3x + 2}{3x - 2} = 4 - x$$

Wypełnia egzaminator	Nr zadania	31.	32.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 33. (0-2)

Trójkąt równoboczny ABC ma pole równe $9\sqrt{3}$. Prosta równoległa do boku BC przecina boki AB i AC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy $\frac{3}{2}$. Oblicz długość boku trójkąta AKL.

Zadanie 34. (0-2)

Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 4 lub 5, lub 6.

Wypełnia egzaminator	Nr zadania	33.	34.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 35. (0-5)

Punkty A=(-20,12) i B=(7,3) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C leży na osi Oy układu współrzędnych. Oblicz współrzędne wierzchołka C oraz obwód tego trójkąta.

Wypełnia	Nr zadania	35.
	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

