Method#02 - PID control: Tuning PID controller of the LTI, SISO system

Let's consider the following UAV stabilization system

Fig.2.01 - Functional block-diagram of the UAV stabilization system

Assumptions

Measurement noise & errors of the Gyro and Accelerometer aren't taking into account in the model: $W_{\rm gyro}(s)=1$, $W_{\rm accel}(s)=1$.

•••

PID controller

$$\delta(t) = K_P e(t) + K_D \omega_z(t) + K_I \int_0^T e(t) dt , \qquad (2.01)$$

Actuator

$$W_{act} = \frac{1}{T_{act}s + 1},\tag{2.02}$$

where $T_{act} = \frac{1}{K_{act}}$ is actuator time constant, $K_{act} = 20$.

UAV dynamics

$$W_{\delta}^{\omega_{z}} = \frac{K(T_{1}s+1)}{T_{2}^{2}s^{2} + 2\xi T_{2} + 1}, \ W_{\omega_{z}}^{\dot{\theta}} = \frac{1}{T_{1}s+1}, W_{\dot{\theta}}^{n_{y}} = \frac{V}{g}, \tag{2.03}$$

Where

$$K = 1$$
,
 $T_1 = 0.7 (s)$, $T_2 = 0.5 (s)$,
 $\xi = 0.3$.

1st step - Initial PID coefficients load into Workspace

```
Command Window

>> clear all, close all
>> uiopen('D:\! MATLAB\!GitHub\Control\!done\2_PID\C02_PID_tuning_SISO.slx',1)
>> Kp = 0.35; Kd = -0.65; Ki = 0.06;
fx >> |
```

$2^{\rm nd}$ step - Main characteristics of step response

- Overshoot is calculated is 100%*[max(output value) - final value]/final value. Recommended value is 15...20%
- <u>Settling time</u> is the time it takes for the output signal to enter the error band)
- Rise time it depends on inertia characteristics of an UAV

Block Parameters: Check Step Response Characteristics (tuning PID controller)					
Check Step Response Characteristics					
Assert that the input signal satisfies bounds specified by step response characteristics.					
Bounds /	Assertion				
☑ Include step response bound in assertion					
Step time (seconds):		0			
Initial value:		0	Final value:	20	
Rise time (seconds):		1	% Rise:	90	
Settling time (seconds):		3	% Settling:	1	
% Overshoot:		20	% Undershoot:	1	
☑ Enable zero-crossing detection					
Show Plot Show plot on block open Response Optimization					n
()		OK	Cancel	Help Appl	у

3td step - Response Optimization setting

4th step - Optimize

5th step - Analysis of the optimization results

