Tidy Analysis of Genomic Data

Michael Love

2022-07-13

Data organization depends on purpose

Table 1

Genotype A			Genotype B			
Rep 1	Rep 2	Rep 3	Rep 1	Rep 2	Rep 3	
0.084	0.853	0.096	0.067	0.367	0.392	
0.696	0.998	0.182	0.085	0.698	0.791	
0.409	0.093	0.495	0.003	0.768	0.689	
Key:	Potential outlier					
	0.084 0.696 0.409	Rep 1 Rep 2 0.084 0.853 0.696 0.998 0.409 0.093 Key: Potential	Rep 1 Rep 2 Rep 3 0.084 0.853 0.096 0.696 0.998 0.182 0.409 0.093 0.495 Key: Potential	Rep 1 Rep 2 Rep 3 Rep 1 0.084 0.853 0.096 0.067 0.696 0.998 0.182 0.085 0.409 0.093 0.495 0.003 Key: Potential	Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 0.084 0.853 0.096 0.067 0.367 0.696 0.998 0.182 0.085 0.698 0.409 0.093 0.495 0.003 0.768 Key: Potential	

"Tidy data" is organized for programming

One row per observation, one column per variable

```
head(dat)
```

```
## # A tibble: 6 x 5
                     rep outlier value
##
    drug genotype
## <fct> <chr>
                   <dbl> <lgl>
                                 <dbl>
                       1 FALSE
                                 0.625
## 1 1
          а
                       2 FALSE
## 2 1
                                 0.681
          а
## 3 1
                       3 FALSE
                                 0.282
          а
## 4 2
                       1 FALSE
                                 0.519
          а
## 5 2
                       2 FALSE 0.342
          а
## 6 2
                       3 FALSE
                                 0.522
          а
```

The pipe

```
command | command > output.txt
```

"Pipes rank alongside the hierarchical file system and regular expressions as one of the most powerful yet elegant features of Unix-like operating systems."

http://www.linfo.org/pipe.html

In R we use '%>%' instead of '|' to chain operations.

Verb-based operations

In the R package dplyr.

- mutate() adds new variables that are functions of existing variables.
- select() picks variables based on their names.
- filter() picks cases based on their values.
- ▶ slice() picks cases based on their position.
- summarize() reduces multiple values down to a single summary.
- arrange() changes the ordering of the rows.

https://dplyr.tidyverse.org/

Summarize after grouping

A useful paradigm is to group data and then summarize:

```
dat %>%
  filter(!outlier) %>%
  group_by(drug, genotype) %>%
  summarize(mu_hat = mean(value))
```

Summarized output

```
## # A tibble: 6 x 3
## # Groups: drug [3]
##
     drug genotype mu_est
     <fct> <chr>
##
                    <dbl>
                     0.529
## 1 1
           а
## 2 1
                     0.859
           b
## 3 2
                     0.461
           а
## 4 2
           b
                     0.694
## 5 3
                     0.453
           а
## 6 3
           b
                     0.761
```

Piping into plots

```
dat %>%
  mutate(newvalue = value^2) %>%
  ggplot(aes(genotype, newvalue)) +
  geom_boxplot() +
  facet_wrap(~drug)
```


Genomic range data is often already tidy

chr1	100122271	100122495	Peak_75319	65	4.24709 6.53
chr1	100148962	100149149	Peak_47035	78	5.42118 7.87
chr1	10035625	10035783	Peak_83599	60	4.24908 6.01
chr1	10113652	10114012	Peak_22696	102	5.88792 10.2
chr1	10165234	10165473	Peak_61426	70	4.89948 7.04
chr1	10166426	10166654	Peak_52303	75	4.05875 7.56
chr1	10166709	10167142	Peak_101485	56	4.29447 5.62
chr1	10228978	10229286	Peak_56552	73	4.40606 7.37
chr1	10233774	10233984	Peak_54437	74	4.78393 7.43
chr1	10257595	10257832	Peak_144324	43	3.23111 4.35
chr1	10300983	10301435	Peak_55477	74	4.26907 7.41
chr1	10485619	10485897	Peak_128866	48	3.79116 4.85
chr1	10486926	10487197	Peak_64148	68	4.92835 6.83
chr1	105184501	105185026	Peak_98454	56	4.04794 5.69
chr1	105199317	105199602	Peak_117608	49	3.59369 4.96
chr1	105310436	105310779	Peak_23716	100	5.55389 10.0
chr1	105312808	105313002	Peak_104599	54	3.38229 5.46
chr1	105367824	105367998	Peak_12375	123	7.39252 12.3

Practical considerations

- ► Many comp students are already familiar with dplyr/ggplot2, so helps with onboarding
- ▶ Piping can help to avoid hard-to-read variable names, e.g.:

```
dat3 <- dat2[dat2$signal > x]
```

It's not necessarily less code, but aims for readable code

Why consider "tidy analysis" paradigm for genomics?

- Encourages exploratory analysis, vs. "all-in-one" functions for performing summarization or enrichment analysis
- ► Encourages efficiency: fewer calls to C code
- Generalizes from simple to complex cases

Bringing range data into R

ENCODE mouse embryonic fibroblast, H3k4me1:

```
library(plyranges)
pks <- read_narrowpeaks("ENCFF231UNV.bed.gz")</pre>
```

Bringing range data into R

pks

```
## GRanges object with 74284 ranges and 6 metadata columns:
##
             segnames
                                    ranges strand |
                                                                      score signalValue
                                                                                            pValue
                                                             name
##
                <Rle>
                                 <IRanges> <Rle> | <character> <numeric>
                                                                              <numeric> <numeric>
##
         [1]
                 chr1 100122272-100122495
                                                      Peak_75319
                                                                         65
                                                                                4.24709
                                                                                           6.53821
         [2]
                 chr1 100148963-100149149
                                                                         78
                                                                                           7.87250
##
                                                      Peak_47035
                                                                                5.42118
##
         [3]
                 chr1
                                                      Peak 83599
                                                                         60
                                                                                4.24908
                                                                                           6.01848
                         10035626-10035783
         [4]
                         10113653-10114012
                                                      Peak_22696
                                                                        102
                                                                                5.88792
                                                                                         10.26247
##
                 chr1
         [5]
                         10165235-10165473
                                                      Peak_61426
                                                                         70
                                                                                4.89948
                                                                                           7.04738
##
                 chr1
##
##
     [74280]
                 chrX
                                                      Peak 24840
                                                                                 6.40685
                                                                                          10.04640
                         99530000-99530373
                                                                        100
##
     [74281]
                 chrX
                         99530681-99531004
                                                      Peak_84432
                                                                         60
                                                                                3.66625
                                                                                           6.01494
##
     [74282]
                 chrX
                         99550895-99551287
                                                      Peak 56421
                                                                         74
                                                                                 5.12695
                                                                                           7.40639
##
     Γ742831
                 chrX
                                                      Peak 91747
                                                                         58
                                                                                4.43250
                                                                                           5.84328
                         99567509-99567986
     [74284]
                 chrY
                           1116052-1116527
                                                      Peak_30698
                                                                         92
                                                                                5.51992
                                                                                           9.29023
##
##
                gValue
                             peak
##
             <numeric> <integer>
         [1]
               4.00852
##
                              126
##
         [2]
               5.08650
                               90
##
         [3]
               3.55308
                              134
         [4]
               7.07929
                              138
##
         [5]
               4.40822
##
                              107
##
##
     [74280]
               6.89683
                              242
     [74281]
               3.54969
                              231
##
##
     [74282]
               4.71603
                              272
##
     Γ742831
               3.41019
                              399
     [74284]
               6.26238
                              118
##
##
     -----
##
     seqinfo: 22 sequences (1 circular) from mm10 genome
```

Example operations with plyranges

```
pks %>%
  filter(segnames %in% paste0("chr",1:3),
         qValue > 2) %>%
  mutate(width bin = cut(width,
                         breaks=c(0,300,500,5000),
                         include.lowest=TRUE)) %>%
  group_by(width_bin, seqnames) %>%
  summarize(freq = n()) %>%
  as_tibble() %>%
  ggplot(aes(width_bin, freq)) +
  geom_col() +
  facet wrap(~segnames)
```

Example operations with plyranges

Making use of range information

- Suppose a query set of ranges, q (here three ranges).
- ▶ We can ask about overlaps between pks and q
- Optional specification of maxgap and/or minoverlap.

```
q
```

```
GRanges object with 3 ranges and 1 metadata column:
##
        segnames
                           ranges strand | query id
           <Rle>
                        <IRanges> <Rle> | <integer>
##
##
    [1] chr1 51000001-52000000
    [2] chr1 52000001-53000000
##
##
    [3] chr1 53000001-54000000
##
##
    seginfo: 22 sequences (1 circular) from mm10 genome
```

Overlaps with join

- Join-by-overlaps is a flexible paradigm for performing overlaps.
- "Left" and "inner" joins differ by how missing IDs in the first table are handled.

```
pks %>%
select(score) %>% # just `score` column
join_overlap_inner(q) %>% # overlap -> add cols from q
group_by(query_id) %>% # group matches by `q`
slice(which.max(score)) # take the top scoring peak
```

```
## GRanges object with 3 ranges and 2 metadata columns:
## Groups: query_id [3]
##
        segnames
                         ranges strand | score query_id
          <Rle> <IRanges> <Rle> | <numeric> <integer>
##
    [1] chr1 51507255-51507557
##
                                     * |
                                             283
                                                        1
    [2] chr1 52253831-52254329
##
                                             177
    [3] chr1 53757564-53757891
                                             265
##
##
##
    seqinfo: 22 sequences (1 circular) from mm10 genome
```

Counting overlaps

- Use . to specify self within a command
- Add number of overlaps to each entry in q:

```
q %>% mutate(n_overlaps = count_overlaps(., pks))
```

```
GRanges object with 3 ranges and 2 metadata columns:
##
        segnames
                           ranges strand | query_id n_overlaps
##
           <R1e>
                        <IRanges> <Rle> | <integer> <integer>
##
    [1]
            chr1 51000001-52000000
                                                           73
    [2]
##
           chr1 52000001-53000000
                                                           36
##
    [3] chr1 53000001-54000000
                                                           22
##
    seginfo: 22 sequences (1 circular) from mm10 genome
##
```

More complex cases

- The most common cases are computing summaries, overlaps
- ► More complex computations are possible, e.g.:
 - For peaks near genes, compute correlation of cell-type-specific accessibility and expression (Wancen Mu)
 - For regulatory variants falling in ATAC peaks, visualize their distribution stratified by SNP and peak categories (Jon Rosen)
 - ► For looped and unlooped enhancer-promoter pairs, compare average ATAC and RNA time series, while controlling for genomic distance and contact frequency (Eric Davis)
 - ► For DHS in a region of interest with particular genomic characteristics, compare overlap with functional annotation within and in comparison to matched regions from elsewhere in genome (Lexi Bounds, Pat Sullivan, et al.)

Going further: extracting info from fitted models

- ightharpoonup Nest ightarrow map ightarrow unnest
- Allows model fitting within data groups, see also glance and augment

Going further: extracting info from fitted models

```
## # A tibble: 131 x 5
##
     query id score qValue fit fitted
##
        <int> <dbl> <dbl> <</pre>
                               <dbl>
##
  1
               92 6.25 <lm>
                                91.9
##
   2
               135 9.85 <lm>
                               134.
##
   3
               68 4.22 <lm> 67.9
##
   4
            75 4.84 <lm> 75.2
   5
           1 43 2.23 <lm> 44.4
##
##
   6
           1 68
                    4.22 <lm>
                                67.9
  7
               98
##
                    6.77 < lm >
                                98.0
           1
               100
##
   8
                    6.90 < lm >
                                99.5
           1
##
   9
               36
                    1.70 < lm >
                                38.1
               68
                                67.9
## 10
                    4.22 < lm >
  # ... with 121 more rows
```

Some pointers

- ► TSS: anchor_5p() %>% mutate(width=1)
- Overlaps can specify *_directed or *_within
- ► Flatten/break up ranges: reduce_ranges, disjoin_ranges
- Concatenating ranges: bind_ranges
- Overlaps are handled often with "joins": join_overlap_*, join_nearest, join_nearest_downstream, etc.
- ► Load *plyranges* last to avoid name masking

More tutorials online

- plyranges vignettes (on Bioc and GitHub)
- Enrichment of peaks and genes: "Fluent Genomics" workflow
- nullranges vignettes (on Bioc and GitHub), which provides block bootstrap and matching functionality that pairs easily with plyranges
- ▶ Other examples, incl. bootstrap: "Tidy Ranges Tutorial"
- ▶ BioC2022: Wancen Mu & Eric Davis nullranges workshop

Summary: tidy analysis for genomic data

- ► Encourages exploratory analysis, vs. "all-in-one" functions
- ► Encourages efficiency: fewer calls to C code
- Generalizes from simple to complex cases

Reading

- ► Lee, S., Cook, D. & Lawrence, M. plyranges: a grammar of genomic data transformation. Genome Biology 20, 4 (2019). https://doi.org/10.1186/s13059-018-1597-8
- ► Lee S, Lawrence M and Love MI. Fluent genomics with plyranges and tximeta. F1000Research 2020, 9:109 https://doi.org/10.12688/f1000research.22259.1
- plyranges vignettes https://sa-lee.github.io/plyranges
- ▶ Tidy Ranges Tutorial https://nullranges.github.io/tidy-ranges-tutorial
- bootRanges, matchRanges, see: https://nullranges.github.io/nullranges

Tidy analysis for matrix data:

- Mangiola, S., Molania, R., Dong, R. et al. tidybulk: an R tidy framework for modular transcriptomic data analysis. Genome Biology 22, 42 (2021). https://doi.org/10.1186/s13059-020-02233-7
- tidySummarizedExperiment, see: https://stemangiola.github.io/tidySummarizedExperiment