

2CPI

Contrôle Final

Analyse mathématique 4

Juin 2023

Durée: 2h

- Les documents et les téléphones sont interdits.
- Traiter chaque exercice sur une double feuille séparée.

Exercice 1 (6 points): Résoudre, par la TL, le système d'équations differentielles suivant:

$$\begin{cases} y'(t) + y(t) - z(t) = e^t, & \forall t \ge 0, \\ z'(t) - y(t) + z(t) = e^t, & \forall t \ge 0, \\ y(0) = z(0) = 1, \end{cases}$$

avec $y, z \in C^2(\mathbb{R}^+)$, et y, z sont d'ordre exponentiel.

Transformée de Laplace de quelques fonctions élémentaires

		The second secon
	f(t)	$\mathcal{L}(f(t))$
1)	$t^n n \in \mathbb{N}$	$\frac{n!}{x^{n+1}} x > 0$
2)	e ^{at}	$\frac{1}{x-a}$ $x > a$
3)	sin(at)	$\frac{a}{x^2 + a^2} x > 0$

	f(t)	$\mathcal{L}(f(t))$
4)	cos(at)	$\frac{x}{x^2 + a^2} x > 0$
5)	sh(at)	$\frac{a}{x^2 - a^2} x > a $
6)	ch(at)	$\frac{x}{x^2 - a^2} x > a $

Exercice 2 (6,5 pts): On s'intéresse à l'étude de la fonction F donnée par

$$F(x) = \int_{0}^{+\infty} e^{-2t} \sqrt{1 + x^2 e^{2t}} dt.$$

- 1) Déterminer le domaine de définition de F.
- a) Montrer que $\forall (t,x) \in [0,+\infty[\times]0,+\infty[,xe^t \le \sqrt{1+x^2e^{2t}} \le xe^t + \frac{e^{-t}}{2x}]$ b) En déduire $\lim_{x \to \infty} F(x)$, $\lim_{x \to +\infty} F(x)$, $\lim_{x \to +\infty} (F(x)-x)$ et $\lim_{x \to \infty} (F(x)+x)$.

 - 3) a) Montrer que F est C^1 sur son domainde de définition
 - b) Donner le tableau de variations de F et tracer son graphe.

Exercice 3 (7.5 pts):

Partie I : Montrer que si une fonction $f \in \mathcal{L}^1(\mathbb{R})$ est paire alors f * f est aussi paire.

Partie II : Soient
$$f(t) = e^{-|t|}$$
, $g(t) = \frac{1}{t^2 + 1}$, $h(t) = \frac{t}{(t^2 + 1)^2}$, $k(t) = \frac{1}{(t^2 + 1)^2}$.

- **1)** Justifier pourquoi f, h, g, $k \in \mathcal{L}^1(\mathbb{R})$.
 - 2) a) Calculer la transformée de Fourier de f.
 - b) En utilisant le théorème d'inversion de Fourier déterminer la TF de g.
 - En déduire la TF de h.
 - 3) Montrer que $\forall t \in \mathbb{R}$, $(f*f)(t) = e^{-|t|} + |t|e^{-|t|}$ (Indic : montrer le d'abord pour $t \ge 0$). b) En déduire la TF de $k(t) = \frac{1}{(t^2+1)^2}$.