

INTRODUCTION TO R

INTRODUCTION TO R

SETTING DIRECTORY

getwd()

lists the current directory

setwd()

sets the new directory

>>setwd("C://users/guest/documents")

IMPORTING DATASETS

- Data is most likely to be in csv format
- read.csv()
 - >> read.csv("FlightData.csv")
- Other input functions include read.table() and read.xlsx()
- Use ?read.csv() to check for other options while importing
- write into csv files using the function write.csv()
 - >> write.csv("mySubmission.csv",myDataFrame)

BASIC DATA INSPECTION

- names(dataset) lists the variable names in the dataset
- head(dataset, x) lists the top x elements of the data frame
- tail(dataset,x) lists the bottom x elements of the data frame
- summary(dataset) Basic summary of the each of the columns
- **str(dataset)** Gives the structure of all the columns of the dataset
- levels(variable) lists the levels of factor variable of the dataset

MISSING VALUES

- Missing values represented as NA in R
- is.na() checks for missing values for a particular variable
- na.omit(dataset) Returns a clean dataset with no missing values
- na.rm() Available as an option in most built-in functions. Disregards rows with missing values while computing the function value

>> mean(data , na.rm = TRUE)

BASIC OPERATIONS

• > 1 + 1

Simple Arithmetic

• O/P: 2

> 2 + 3 * 4

Operator precedence

• O/P:14

> 3 ^ 2

Exponentiation

• O/P:9

 \bullet > exp(1)

Basic mathematical functions are

• 2.718282

> sqrt(10)

• 3.162278

BASIC BUILT IN FUNCTIONS

- rep(a,x) Returns a vector of size x filled with a's
- seq(x,y,step) Returns a vector with values starting from x till y with the step being the difference between consecutive terms
- substr(x, start,stop) Extract segments defined by start and stop from characters
- toupper() convert text to uppercase. Similarly tolower()
- sub(pattern, replacement, x) Find pattern in x and replace it with replacement
- subset(data,condition) returns the subset of the dataset which satisfies the condition

HELP AND EXAMPLES

- Getting help
 - > help.start()
 - >help(mean)

?mean

??mean

- Any Examples
 - > example(mean)

DATA TYPES

- VECTORS
- MATRIX
- ARRAY
- DATA FRAMES
- LIST
- FACTORS

VECTORS

- The most basic data type
- Can contain only objects of the same class
- c() can be used to create vector of objects

$$> x <- c(0.5, 0.6)$$
 # Numeric Vector

> x<- c (TRUE, FALSE) # Logical Vector

VECTORS

The vector() function is also used to create vectors

> x <- vector("numeric", length=10)

> X

[1] 0 0 0 0 0 0 0 0 0 0

EXPLICIT COERCION

Objects can be explicitly coerced from one class to another using the as.* functions, if available.

- > x < -0:6
- > class(x)
- [1] "integer"
- > as.numeric(x)
- [1] 0 1 2 3 4 5 6

EXPLICIT COERCION

as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

MATRICES

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of length 2(nrow,ncol). Matrices are created using the *matrix()* function

$$> m <- matrix(1:6,nrow = 2, ncol = 3)$$

> *m*

$$[2,]$$
 2 4 6

CBIND() AND RBIND()

Matrices can be created by binding two vectors along the row or the column

> rbind(x,y)

[,1]

[,2]

[,3]

[1,]

1

2

3

[2,]

10

11

12

[3,] 3 12

LIST

A list is a collection of vectors

- mixed data types
- varying length objects are allowed

list() function can be used to create lists

- > students <- c ("Mary", "Bob"," John")
- > ages <- c(14, 15, 18)
- > classroom <- list (students, age)

DATA FRAMES

A Data frame is similar to a matrix in the sense that it has rows and columns but differs from it in that the columns can be of different types.

> df1 <- data.frame(S = c ("Mary", "Raj", "Salman") ,test1=c(50,40,50))

> df1

	S	test1
1	Mary	50
2	Raj	40

50

Salman

SUBSETTING LISTS

x<-list(foo=1:4,bar=0.6)

```
>x[1]

$foo

[1] 1 2 3 4

>x[[1]]

[1] 1 2 3 4

>x$bar

[1] 0.6

>x['bar']

$bar [1] 0.6
```


CONTROL STRUCTURES

- if-else
- for
- while
- switch
- ifelse

for and **while** are rarely used as most of the functions like tapply(),lapply() etc. can get the job done and that too in much less time.

SUBSETTING

- There are number of operators that can be used to extract subsets of R objects.
- [always returns an object of the same class as the original; can be used to select more than one element (there is one exception).
- [[is used to extract elements of a list or a data frame; it can only be used to extract a single element and the class of the returned object will not necessarily be a list or data frame.
- \$ is used to extract elements of a list or data frame by name;
 semantics are similar to that of [[.

SUBSETTING EXAMPLE

SUBSETTING EXAMPLE

> u

[1] FALSE TRUE TRUE TRUE FALSE

SUBSETTING LISTS

$$> x <- list(foo = 1:4, bar = 0.6)$$

\$foo

[1] 1 2 3 4

> x[[1]]

[1] 1 2 3 4

SUBSETTING LISTS (contd....)

> x\$bar

[1] 0.6

> x[["bar"]]

[1] 0.6

> x["bar"]

\$bar [1] 0.6

CONTROL STRUCTURES

- if-else
- for
- while
- switch
- ifelse

for and while are rarely used as most of the times functions like lapply() and tapply() etc. can get the job done and even that in much less time.

LAPPLY()

- When you want to apply a function to each element of a list/vector
- Always returns list as output. Input may or maynot be list.
- This is the workhorse of other apply functions. peel back their code and you will often find lapply underneath
- Access individual member of the output list using [[]] operator
 - > roundSepal.Length = lapply(iris\$Sepal.Length,round)
 - > roundSepal.Length[[3]]

TAPPLY()

- Splits the datasets according to subsets and applies a function over the subset
- Subsetting the factor may or maynot be part of dataframe
- Subsetting must have same number of rows as that of the dataset
- Subsetting vector can be categorical as well as numerical
 - >tapply(airquality\$Wind,airquality\$Month,mean)

SPLIT()

- splits the dataset to subsets based on the factor or list of the factors
 - > a->split(dataset,factor)
- The newly created subsets can be accessed by using \$ operator.
 - > a\$subsetname
 - > split(airquality,airquality\$Month)

OTHER IMPORTANT FUNCTIONS

- colMeans()- means along the column
- rowMeans()- means along the row
- table(x,y) creates confusion matrix for x and y vectors
- prop.table(x) outputs the proportion of individual elements of the vector x
- which() true indices of the logical object

USER DEFINED FUNCTIONS

R allows user to define functions following a syntax as follows:

```
newFunction <- function(arg1, arg2, ...)
{
...code...
return (output)
}
```

- Objects defined in the function are local variables and can only be accessed from within the function.
- To use a function to modify global variables, use <<- assignment operator
- Scoping rules also play an important role in determining variable values.

BASIC PLOTTING FUNCTIONS

- plot()
- hist()
- boxplot()
- heatmap()
- barplot()

Advanced plotting can be done by using ggplot from ggplot2 library

EXERCISE

- What is the mean of 'Sepal.Length' for the species virginica?
- Write R code that returns a vector of the means of the variables 'Sepal.Length', 'Sepal.Width' and 'Petal.Width'
- How many samples of setosa species have Petal.Width > 0.2 and Petal.Length > 1.4?
- What is mean Sepal length for samples of Virginica species whose Petal width >2.1 and Sepal width > 2.8?
- Which sample belonging to the vernicolor species and having Petal length >4.4 and has the largest Petal width?
- For the airquality dataset, find the mean for days with 3 days gap in between them. (Your final answer should have the 3 mean values)

EXERCISES

- Calculate the average miles per gallon(mpg) by number of cylinders in the car(cyl)
- What is the absolute difference between the average horsepower of 4-cylinder cars and the average horsepower of 8-cylinder cars

THANK YOU