

人工智能技术及应用

Artificial Intelligence and Application

机器学习

≈ 找一个函数的能力 根据数据

Speech Recognition

Image Recognition

Playing Go

Dialogue System

$$f($$
 "How are you?" $)=$ "I am fine." (what the user said) (system response)

Different types of Functions

机器学习很简单

Step 0: What kind of function do you want to find?

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

就好像把大象装进冰箱

Learning Map

scenario

method

回归 Regression

Regression: Output a scalar

Stock Market Forecast

) = Dow Jones Industrial Average at tomorrow

Self-driving Car

) = 方向盘角度

Recommendation

f(使用者 A 商品 B) = 购买可能性

Example Application

Estimating the Combat Power (CP) of a pokemon after evolution

Step 1: Model

$$y = b + w \cdot x_{cp}$$

A set of function Model

$$f_1, f_2 \cdots$$

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

infinite

CP after evolution

Linear model:
$$y = b + \sum w_i x_i$$

 x_i : x_{cp} , x_{hp} , x_w , x_h ...

feature

 w_i : weight, b: bias

$$y = b + w \cdot x_{cp}$$

A set of function

Model

 $f_1, f_2 \cdots$

function function input: Output (scalar):

Training Data

Source: https://www.openintro.org/stat/data/?data=pokemon

Step 3: Best Function

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = \arg\min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = \arg\min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

Step 3: Gradient Descent $\left| \frac{\partial L}{\partial w} \right|_{\text{gradient}}$

$$\begin{bmatrix} \frac{\partial L}{\partial w} \\ \frac{\partial L}{\partial b} \end{bmatrix}$$
 gradient

- How about two parameters? $w^*, b^* = arg \min_{w,b} L(w,b)$
 - (Randomly) Pick an initial value w⁰, b⁰
 - ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$, $\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

$$w^1 \leftarrow w^0 - \frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$$
 $b^1 \leftarrow b^0 - \frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

 \triangleright Compute $\frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$, $\frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

$$w^2 \leftarrow w^1 - \frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$$
 $b^2 \leftarrow b^1 - \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} (\hat{y}^n - (b + w \cdot x_{cp}^n))^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)$$

$$\frac{\partial L}{\partial b} = ?$$

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} (\hat{y}^n - (b + w \cdot x_{cp}^n))^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right) \left(-x_{cp}^n\right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)$$

When solving:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

How's the results?

How's the results? - Generalization

What we really care about is the error on new data (testing data)

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

Best Function

$$b = -10.3$$

$$W_1 = 1.0, W_2 = 2.7 \times 10^{-3}$$

Average Error = 15.4

Testing:

Average Error = 18.4

Better! Could it be even better?

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

Best Function

$$b = 6.4$$
, $w_1 = 0.66$

$$W_2 = 4.3 \times 10^{-3}$$

$$W_3 = -1.8 \times 10^{-6}$$

Average Error = 15.3

Testing:

Average Error = 18.1

Slightly better. How about more complex model?

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$

Best Function

Average Error = 14.9

Testing:

Average Error = 28.8

The results become worse ...

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

Best Function

Average Error = 12.8

Testing:

Average Error = 232.1

The results are so bad.

Training Data

Model Selection

1.
$$y = b + w \cdot x_{cp}$$

2.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

3.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

4.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$$

5.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

A more complex model yields lower error on training data.

If we can truly find the best function

Model Selection

A more complex model does not always lead to better performance on **testing data**.

This is **Overfitting**.

Select suitable model

Let's collect more data

What are the hidden factors?

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$x_s = \text{species of } x$$

If
$$x_s = \text{Pidgey}$$
: $y = b_1 + w_1 \cdot x_{cp}$

If
$$x_s$$
 = Weedle: $y = b_2 + w_2 \cdot x_{cp}$

If
$$x_s$$
 = Caterpie: $y = b_3 + w_3 \cdot x_{cp}$

If
$$x_s$$
 = Eevee: $y = b_4 + w_4 \cdot x_{cp}$

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$y = b_1 \cdot 1$$
 $+w_1 \cdot 1 \quad x_{cp}$
 $+b_2 \cdot 0$
 $+w_2 \cdot 0$
 $+b_3 \cdot 0$
 $+w_3 \cdot 0$
 $+b_4 \cdot 0$
 $+w_4 \cdot 0$

$$\delta(x_s = \text{Pidgey})$$

$$\begin{cases} = 1 & \text{If } x_s = \text{Pidgey} \\ = 0 & \text{otherwise} \end{cases}$$

If
$$x_s = Pidgey$$

$$y = b_1 + w_1 \cdot x_{cp}$$

Training Data CP after evoluation Average error = 3.8Original CP **Testing** CP after evoluation Data Average error = 14.3Original CP

Are there any other hidden factors?

1500

Back to step 1: Redesign the Model Again

If
$$x_s = \text{Pidgey}$$
: $y' = b_1 + w_1 \cdot x_{cp} + w_5 \cdot (x_{cp})^2$

If $x_s = \text{Weedle}$: $y' = b_2 + w_2 \cdot x_{cp} + w_6 \cdot (x_{cp})^2$

If $x_s = \text{Caterpie}$: $y' = b_3 + w_3 \cdot x_{cp} + w_7 \cdot (x_{cp})^2$

If $x_s = \text{Eevee}$: $y' = b_4 + w_4 \cdot x_{cp} + w_8 \cdot (x_{cp})^2$
 $y = y' + w_9 \cdot x_{hp} + w_{10} \cdot (x_{hp})^2$
 $y = y' + w_{11} \cdot x_h + w_{12} \cdot (x_h)^2 + w_{13} \cdot x_w + w_{14} \cdot (x_w)^2$

Training Error = 1.9

Testing Error = 102.3

Overfitting!

Back to step 2: Regularization

$$y = b + \sum w_i x_i$$
 The functions with smaller w_i are better
$$L = \sum_n \left(\hat{y}^n - \left(b + \sum w_i x_i \right) \right)^2 + \lambda \sum (w_i)^2$$
 Smaller w_i means ... smoother

 \triangleright Smaller w_i means ...

moother
$$y = b + \sum w_i x_i$$
$$y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$$

We believe smoother function is more likely to be correct Do you have to apply regularization on bias?

- \triangleright Training error: larger λ , considering the training error less
- > We prefer smooth function, but don't be too smooth.

Conclusion

- Pokémon: Original CP and species almost decide the CP after evolution
 - There are probably other hidden factors (输入特征)
- Gradient descent (梯度下降)
 - More theory and tips in the following lectures
- We finally get average error = 11.1 on the testing data
 - How about new data? Larger error? Lower error?
- Next lecture: Where does the error come from? (误差)
 - More theory about overfitting and regularization
 - The concept of validation