IS467 Homework#4 Name: Kai Chung, Ying

Question 1-a

Ans: The following shows the Accuracy of the Decision Tree model:

Variables:

VAR00001 - capital letter (26 values from A to Z) -----Independent / Target Variable

VAR00002 - x-box horizontal position of box (integer)

VAR00003 - y-box vertical position of box (integer)

VAR00004 - width width of box (integer)

VAR00005 - high height of box (integer)

VAR00006 - onpix total # on pixels (integer)

VAR00007 - x-bar mean x of on pixels in box (integer)

VAR00008 - y-bar mean y of on pixels in box (integer)

VAR00009 - x2bar mean x variance (integer)

VAR00010 - y2bar mean y variance (integer)

VAR00011 - xybar mean x y correlation (integer)

VAR00012 - x^2 ybr mean of x * x * y (integer)

VAR00013 - xy2br mean of x * y * y (integer)

VAR00014 - x-ege mean edge count left to right (integer)

VAR00015 - xegvy correlation of x-ege with y (integer)

VAR00016 - y-ege mean edge count bottom to top (integer)

VAR00017 - yegvx correlation of y-ege with x (integer)

	Model Sum		
Specifications	Growing Method	CRT	
	Dependent Variable	VAR00001	
	Independent Variables	VAR00002, VAR00003, VAR00004, VAR00005, VAR00006, VAR00007, VAR00008, VAR00009, VAR00010, VAR00011, VAR00012, VAR00013, VAR00014, VAR00015, VAR00016, VAR00017	
	Validation	Split Sample	
	Maximum Tree Depth		15
	Minimum Cases in Parent Node		10
	Minimum Cases in Child Node		5
Results	Independent Variables Included	VAR00012, VAR00008, VAR00011, VAR00007, VAR00010, VAR00014, VAR00015, VAR00009, VAR00015, VAR00005, VAR00003, VAR00002, VAR00016, VAR00006, VAR00017, VAR00004	
	Number of Nodes		787
	Number of Terminal Nodes		394
	Depth		15

By observing the above Accuracy plot, the best model I would propose for this particular dataset including the following parameters, minimum of cases for parents is 10 and for child is 5, the stopping condition is with depth 15. In this model, the number of nodes is 797 with 394 terminal nodes. The sample split validation setting is 70% Training and 30% Testing data. The above result implies another feature that SPSS algorithm does push the tree to the maximum depth as preset.

Date: 06-03-2017

Question 1-b: Report the misclassification matrix and interpret

	Report the miscl	Δ	В	C	D	E	F
raining	A	501	1	0	7	0	0
	В	0	430	0	11	1	9
	С	1	3	478	0	11	6
	D	0	15	0	486	1	9
	E	0	2	6	1	427	3
	F	0	15	0	1	2	429
	G	2	5	9	8	13	6
	H	1	7	2	12	1	3
		0	18	2	1	0	8
	J	0	20	0	10	0	5
	K	0	4	6	6	4	0
	L	1	4	3	0	7	0
	M	5	0	0	6	0	1
	N	2	2	0	12	0	0
	0	0	12	0	18	0	0
	P	0	4	0	3	12	30
	Q	0	12	3	3	3	1
	R	5	23	2	10	4	1
	S	2	22	0	6		12
	Т	0	7	3	3	7	0
	U	0	0	1	14	2	0
	V	0	1		2	0	3
	W	3	0	0	2	0	0
	X	0	18	2	1	7	5
	Y	0	5	- 4	0	0	4
_	Z	1	10	1		10	10
	Overall Percer	3.80%	4.60%	3.80%	4,50%	3,70%	3.90%
est	A	198	2	2	2	0	
	В	0	177		3		
	C			165		8	2
_	D		12		173	0	1
	E .				1	169	404
	-	0	5	- 0	0		194
	G	1	3	10	6	8	
	H		5	2	8		- 2
		0	5	1 0	0	0	5
	v	Ö	71	6	6	2	1
		1	1	3	o	4	
	м	4	ò	2	2	ō	ő
	N	4	ő	ő	3	ő	- 4
	0	0	5	2	5	2	
	P	ŏ	ő	ő	2	4	14
	Q	2	4	Ö	1	3	- 17
	R	1	18	0	3	3	4
	S	2	18	0	8	2	4
	T	1	1	1	2	2	2
	Ü	0	ó	3	6	ô	Ô
	v	1	ő	ő	2	ŏ	2
	W	2	o	0	Ô	o	1
	x	ô	15	0	2	7	3
	Ŷ	0	2	4	ō	o	4
	Z	3	5	0	2	7	0
	Overall Percer	3.60%	4,70%	3,30%	3.90%	3.70%	4.00%

Home	ework#4
Date:	06-03-2017

G	Н		J	К	L	М	N
4	5	0	3	0	5		0
0	12	0	3	4	ō	0	0
17	4	1	0	2	1	0	0
1	31	0	2	1	1	0	6
8	3	8	ō	4	3	0	0
0	13	0	1	0	ō	0	0
418	6	1	3	2	ō	0	1
3	382	o	1	22	1	1	1
0	0	447	2	3	o	0	o
0	2	12	412	2	4	0	1
9	32	0	0	369	0	0	2
5	1	3	2	3	462	0	1
2	1	0	1	2	1	489	16
0	10	0	0	0	0		449
9	10	2	4	2	0		2
0	3	2	0	0	0	1	0
11	2	0	0	6	1	0	0 3
0	21	0	0	11	0		3
0	3	0	1	0	ō	0	0
2	1	1	0	2	ō	0	0
5	11	0	9	0	0	6	0 7
6	1	0	0	0	0	2	3
2	1	0	0	1	0	5	3
0	4	2	1	3	0	0	1
4	2	2	1	0	1	0	0
0	2	2	0	0	2	0	0
3,60%	4.10%	3,50%	3.20%	3.20%	3,50%		3.60%
1	4	0	3	0	0	3	0
1	5	0	6	2	0	0	0
9	0	0	0	2	0	0	0
0	13	0	1	2	0		4
5	1	0	0	1	0	0	0
0	3	2	1	0	0	0	0
186	8	4	0	0	0	1	3
2	148	0	1	7	1	2	0
0	0	205	1	0	1	0	1
0	3	8	198	0	3	0	2
4	19	0	0	192	1	0	2
2	3	1	2	9	185		1
0	2	0	0	4	2	208	11
0	5	0	0	1	0	1	207
2	6	0	2	1	0	1	2
0	3	0	0	0	0	0	0
11	2	0	0	1	1	0	2
0	9	0	0	10	1	1	1
0	2	1	1	1	1	0	0
0	1	0	0	2	0	0	0
4	7	0	2	0	0	5	7
3	3	0	0	0	0		1
4	1	0	0	2	0	1	1
0	3	0	0	1	0	0	0
1	0	1	1	0	0	1	0
0	0	1	0	0	2	0	0
3.80%	4,10%	3.70%	3,60%	3,90%	3.20%	3.70%	4.00%

Home	ework#4
Date:	06-03-2017

0		P	0	R	S	T	U	V	W
	0	0	1	8	4	1	2	7	0
	1	2	2	6	8	1		31	0
	6	1	2	3	3	0		0	0
	7	4	0	5	2	1	1	4	0
	2	0	4	0	9	2	2	4	0
	1	18	0	0	10	8	0	8	4
	5	2	2	2	2	0	0	14	2
	11	3	0	18	3	1		19	2
	1	8	0	3	14	3		0	0
	0	1	1	0	14	1	0	0	0 0 0 4 2 2 2 0 0
	0	0	0	11	0	2	2	9	0
	4	0	5	3	5	1	0	1	0
	2	0	1	1	1	0	2	10	6
	10	5	1	2	ò	0	5	32	1
	430	4	9	1	1		2	14	4
	1	500	o	0	ó	0	ō	32	- 1
	26	6	408	8	7	1	o	3	4
	2	6	0	396	5	1		24	0
	3	6	2	2	409	0	0	4	1 4 1 1 0 0 3 4
	ő	o	ô	4	8	500	0	1	3
	10	1	1	ō	ů	0	466	15	4
	0	7	0	0	0	3	1	503	9
	ŏ	Ó	2	0	0		1		475
	3	Ö	ő	4	0	ő	o	22 4	0
	2	1	1	0	1	18	1	38	o
	3	1	1	1	9	3	o	0	o
-	80%	4,10%	3.20%	3,40%	3.70%	3,90%	3,50%	5.70%	3.70%
	-0	0	1	7	5	3	0	3	
	3	0			14	1		16	- 0
	0	0		1	2				- 0
	7	3	0	3	0			1	- 0
	1	0	3	0	6		1	1	- 0
	-0	10	0	0	5				- 2
	-8-	0	1	1	5			2	0
	4	0	0	12	1	2	1	- 11	0
	0		1	0	6			0	
	1	1	1	1	6	2	0	0	
	2	0	0	11	0	0	0	3	0
	0	0	2	4	1	0		0	0
	2	2	0	0	1	0	1		0
	- 5	1	0	2	0	0	1	- 11	3
	174	3	6	0	0	0	0	6	2
	0	169	1	0	0		0	8	0 0 0 0 0 0 0 0 0 0 0 3 2 3 0 0
	15	0	184	2	- 6	1	3	1	0
	3	5	1	154	1		0	22	0
	2	2	1	5	177	0	0	0	0
	0	2	1	0	3	204	1	2	0
	- 4	0	0	0	0	0	206	7	2
	1	3	2	0	0	2	1	194	1
	1	2	1	1	0	0		8	208
	3	0	0	3	0	0	0	3	0
	1	2	0	0	0	9	1	14	0
	4	1	2	0	9	1	0	0	0
3.	90%	3,40%	3,40%	3,40%	4,10%	3.80%	3.60%	5,30%	3.60%

Date: 06-03-2017

X	Y	Z	ercent Correct
2	1	0	90.30%
5	0	ő	81.70%
3	o	ő	88.20%
1		1	83.80%
	1		77.10%
57		9	
15	4		81.10%
9	2		81.20%
13	3	2	74.20%
10	0	1	85,80%
14	2	0	82,20%
19	1	0	77.50%
20	0	1	86.80%
0	0	0	89.40%
0	3	0	83.10%
4	0	0	80.70%
2	3	1	84.00%
18	2	3	77.30%
3	0	1	76.30%
20	0	9	81,50%
10	9	2	88.80%
0	4	0	83,80%
0	3	0	92,50%
0	0	0	91.90%
480	0	1	89.60%
4	473	3	83.70%
4	2	438	86,70%
5.10%	3.70%	3.40%	83.90%
0	0	0	84.60%
3	0	0	73.80%
0	2	0	85,10%
2	1	0	76.90%
19	0	4	79.00%
5	3	0	78.90%
8	ō	2	72.10%
7	1	ô	67.60%
5	ó	2	87.60%
7	1	2	80.50%
13	ò	ô	73.00%
10	ō	ŏ	80.80%
0	2	0	84,90%
0	1	0	85,20%
1	0	0	79.10%
1	3	0	81.30% 72.20%
14	0		
5		0	64,40%
16	1	5	72.00%
3	3	2	87.60%
1	3	0	80.20%
0	3	0	
0	1		
210	1	0	
2	175	3	
	2	185	
5,50%	3,30%	3.40%	79,40%

The reason I have picked this model because the accuracy of the Testing data (Blue Line) is 79.4% reaches the highest point of the curve with the least complexity (=787nodes). Also, the test set accuracy on the misclassication matrix are also acceptable range; the training and testing set accuracy ranges are very closed and the max percent accuracy of predicted value 1 reaches 88.5%. In addition, the standard deviation the 10-fold standard deviation (Shown below) is ONLY 0.005 with Estimate value 0.191 of the test set which is small enough to conclude that the model will not be overfitting. Also, this could imply that the Training and Testing data is split into an appropriate portion

Date: 06-03-2017

(Training=70%/Testing=30%) for the classification model.

	Risk	
Sample	Estimate	Std. Error
Training	.155	.003
Test	.191	.005
_	lethod: CRT nt Variable: V	AR00001

During the process of building the tree, I could observe that increasing the number of cases allowed in parent and child nodes is decreasing the complexity (number of nodes) of the tree. The mechanism of this effect because increasing the number of cases of nodes would let the node NOT splitting until it reaches the minimum of cases we set. So that the higher values we set on the parent and child nodes, the less complexity of tree we are supposed to get. Also, we could observe the above plot, the least of the complexity we have (e.g. Number of nodes =33), the less accuracy we could get.

Date: 06-03-2017

Question 1-c: The most importance 3 attributes.

Based on the above, the most important three attributes are shown as the following in order:

- 1) VAR00014 x-ege mean edge count left to right (integer) ---100% (Normalized Importance)
- 2) VAR00012 x2ybr mean of x * x * y (integer) ------87.7% (Normalized Importance)
- 3) VAR00011 xybar mean x y correlation (integer) -----87.4% (Normalized Importance)

Question 2-a:

Ans:

For this particular dataset, I have NOT transformed the Target variable to numeric number because they are single letters A-Z, there would be less chance to have errors in this case. On the other hand, the independent variables were transformed into smaller bin size(0-4=1,4-8=2,8-12=3,12-15=4) from the provided numerical integers. The reason to made this transformation is that 1.) reduce the algorithm running time 2.) To reduce the errors chances by the recorded numerical integers.

After running binned dataset, I tried to use the original dataset to run kNN again with the K (K=1,3,5,7). I found that the came up results are even more accurate. The partition ratio of the dataset is 70%Train / 30% Test data. The average accuracy of the original data result is ranged 94-96% and accuracy of the transformed dataset is ranged 78-80%. The detail matrix result is shown on part2-b. The reason might be the original data range are very standardized (1-15) for all the attributes. So that, the additional transformation / binning is not necessary for this case.

Date: 06-03-2017

Question 2-b: For the below shown matrix. The rows represent the provided labels count. The columns represent the predicted values count. The last column is the accuracy percentage of

						L	ette	r*P	redi	cted	Va	ue f	or L	etter	Cro	ssta	bula	tion	(K=	1)								
Count																												
											Pr	edicte	d Val	ue fo	r Lette	er											Total	K=1
	A	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	٧	W	X	Υ	Z		
etter A	786	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		99.629
В	0	720	0	4	5	1	0	7	0	1	0	0	0	0	0	0	0	12	2	0	0	13	0	0	0	1		93.99
С	0	0	708	0	7	1	9	0	0	0	2	1	0	0	2	0	0	0	0	2	0	1	3	0	0	0		96.20
D	0	4	0	765	1	0	1	15	0	0	0	0	0	2	8	0	0	6	2	1	0	0	0	0	0	0		95.03
E	0	1	8	0	725	1	9	0	0	0	5	3	0	0	0	2	1	0	4	0	0	0	0	4	0	5		94.40
F	0	1	0	1	0	728	0	1	3	0	0	0	0	2	0	21	1	0	2	10	0	2	0	1	2	0		93.94
G	0	4	5	5	11	0	736	1	0	0	1	1	1	0	2	1	1	1	1	0	0	1	1	0	0	0		95.21
Н	0	12	0	15	3	1	4	644	0	1	24	0	1	4	6	1	0	13	1	1	0	1	0	2	0	0		87.74
I	0	0	0	0	0	0	0	0	729	25	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		96.56
J	1	1	0	1	0	2	0	1	32	705	0	1	0	0	1	0	0	0	0	0	2	0	0	0	0	0		94.38
K	0	3	0	0	10	0	2	25	0	0	671	0	0	0	0	0	0	11	0	0	0	0	0	17	0	0		90.80
L	0	0	1	0	3	0	2	2	1	2	2	744	0	0	0	0	1	2	0	0	0	0	0	0	0	1		97.77
M	1	7	0	0	0	0	2	1	0	0	0	0	767	3	1	1	0	0	0	0	0	6	3	0	0	0		96.84
N	1	1	0	10	0	1	0	3	0	0	0	2	3	747	3	0	1	6	0	0	0	5	0	0	0	0		95.40
0	0	0	2	10	0	0	1	1	0	0	0	0	0	2	725	0	9	0	0	0	2	0	1	0	0	0		96.28
P	0	1	1	4	1	32	0	1	0	0	0	1	0	1	0	754	3	2	0	0	0	0	0	0	2	0		93.90
Q	0	1	0	2	1	0	1	0	0	0	0	0	0	0	18	3	752	2	1	0	0	0	0	0	1	1		96.04
R	0	19	0	2	0	2	0	10	0	0	15	2	0	6	0	0	1	701	0	0	0	0	0	0	0	0		92.48
S	0	5	0	1	6	0	1	2	0	1	0	1	0	0	0	0	1	0	725	1	1	0	0	0	0	3		96.93
T	0	3	2	1	0	3	0	1	1	1	0	0	0	0	0	0	0	2	0	769	0	0	0	0	12	1		96.61
U	2	0	1	1	0	0	0	7	0	0	3	0	2	0	0	0	0	0	0	0	796	1	0	0	0	0		97.91
V	0	12	1	0	0	0	1	0	0	0	0	0	2	2	1	2	0	0	0	0	0	740	1	0	2	0		96.86
W	0	0	0	0	0	0	1	0	0	0	0	0	3	1	3	0	0	1	0	0	2	1	740	0	0	0		98.40
X	0	1	0	3	4	0	0	0	1	0	10	0	0	0	2	0	1	1	1	1	0	0	0	760	0	2		96.57
Υ	3	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	1	8	0	3	1	1	765	0		97.33
Z	0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	7	0	2	1	0	0	0	0	0	720		98.09
otal	794	797	730	825	780	773	770	722	767	738	733	756	779	770	772	786	781	760	742	794	803	774	750	785	785	734	20000	95.59

								Lette	er* F	Pred	icted	l Va	lue 1	for L	.ette	r Cro	ossta	abul	atior	(K=	3)								
Count																													
												Pre	edicte	d Va	lue fo	r Lette	er											Total	
		Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z		
Letter	Α	779	0	2	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	0	1	1	0	0	0	2	0	789	98.73%
	В	0	720	0	9	6	2	0	2	0	0	1	0	2	1	0	0	0	10	1	0	1	8	0	1	1	1	766	93.99%
	С	1	0	695	0	7	0	11	0	0	0	0	1	0	0	8	0	2	0	0	1	7	0	3	0	0	0	736	94.43%
	D	1	4	0	779	0	0	0	7	0	0	0	0	0	6	4	1	1	1	1	0	0	0	0	0	0	0	805	96.77%
	E	0	3	4	0	720	4	12	0	0	0	2	5	0	0	0	1	2	0	2	1	1	0	0	4	0	7	768	93.75%
	F	0	2	0	3	1	725	0	1	1	1	0	0	0	3	0	21	0	0	1	11	0	1	2	1	1	0	775	93.55%
	G	0	7	3	10	9	0	725	3	0	0	0	0	5	0	2	1	2	1	1	0	0	1	1	1	1	0	773	93.79%
	Н	0	16	0	18	0	2	6	623	0	0	26	1	2	5	3	4	3	17	0	1	5	1	0	0	0	1	734	84.88%
	I	0	0	0	2	1	1	0	0	722	25	0	2	0	1	0	0	0	0	0	0	0	0	0	1	0	0	755	95.63%
	J	0	1	0	2	0	3	0	2	31	693	0	1	0	2	1	0	2	0	1	0	4	0	0	3	0	1	747	92.77%
	K	0	5	1	5	8	0	0	15	0	0	657	2	0	0	0	1	0	12	0	1	4	0	1	27	0	0	739	88.90%
	L	0	0	0	0	4	0	7	0	0	1	2	742	0	0	0	0	1	3	0	0	0	0	0	1	0	0	761	97.50%
	M	1	0	0	0	0	0	2	0	0	0	0	0	775	2	0	0	0	0	0	0	3	4	5	0	0	0	792	97.85%
	N	1	2	0	11	0	0	0	3	0	0	0	2	4	743	4	0	1	5	0	2	0	4	1	0	0	0	783	94.89%
	0	0	1	3	12	0	0	1	0	0	0	0	0	0	5	711	0	10	1	0	1	5	0	3	0	0	0	753	94.42%
	Р	0	1	0	0	0	40	0	2	0	0	0	2	1	0	0	750	1	1	0	2	0	0	0	0	3	0	803	93.40%
	Q	0	0	0	1	0	0	0	0	0	0	0	1	0	0	23	8	743	4	0	0	2	0	0	1	0	0	783	94.89%
	R	0	24	0	6	1	1	1	3	0	0	6	4	1	17	0	1	2	688	0	1	1	1	0	0	0	0	758	90.77%
	S	0	2	0	3	6	3	1	1	1	1	0	0	0	0	0	0	1	3	723	1	0	0	0	0	0	2	748	96.66%
	Т	0	1	1	1	0	2	0	0	0	1	2	0	0	0	0	0	0	0	0	775	0	0	0	0	13	0	796	97.36%
	U	2	0	0	0	0	0	0	3	0	0	0	0	2	1	1	0	0	0	0	0	804	0	0	0	0	0	813	98.89%
	V	0	8	1	0	0	2	1	0	0	0	0	0	5	2	1	2	0	0	0	1	1	733	4	0	3	0	764	95.94%
	W	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	1	0	0	7	3	732	0	1	0	752	97.34%
	X	0	0	1	3	5	0	0	0	0	0	13	3	0	0	2	1	0	1	1	2	1	0	0	753	1	0	787	95.68%
	Υ	2	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	11	2	2	0	1	765	0	786	97.33%
	Z	0	0	0	0	4	1	0	0	0	0	0	1	0	0	0	0	8	0	3	1	0	0	0	0	0	716	734	97.55%
Total		787	798	711	865	772	786	767	665	755	722	709	768	804	789	764	791	780	748	734	813	849	758	752	794	791	728	20000	94.91%

								Lette	er* F	Pred	icte	d Va	lue f	for L	ette	r <u>Cro</u>	ssta	bul	ation	ı(K=	5)								
Count																													
												Pre	edicte	d Va	lue fo	r Lette	ег											Total	
		Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	Х	Υ	Z		
Letter	Α	780	0	2	0	0	0	0	0	0	0	0	1	1	2	0	0	0	2	0	0	0	0	0	0	1	0		98.86%
	В	0	717	0	7	4	3	0	5	0	0	1	0	4	1	0	0	0	13	1	0	3	7	0	0	0	0		93.60%
	С	0	0	694	0	5	0	11	0	0	0	0	2	0	0	14	0	2	0	0	1	3	1	1	2	0	0		94.29%
	D	0	4	0	782	1	0	0	6	0	0	0	0	1	4	1	0	1	2	2	0	0	0	0	1	0	0		97.14%
	E	0	3	4	0	729	1	11	0	0	0	3	1	0	0	0	0	3	0	2	1	0	0	0	2	0	8		94.92%
	F	0	2	0	3	0	716	0	0	0	1	0	0	0	4	0	28	0	0	0	17	0	2	0	1	1	0	775	92.39%
	G	0	2	3	11	11	1	723	5	0	0	0	0	2	0	6	1	3	1	1	0	0	1	1	1	0	0		93.53%
	Н	0	19	1	19	0	0	4	611	0	0	27	0	1	2	9	2	2	29	0	0	3	1	0	3	1	0		83.24%
	I	0	1	0	3	0	5	0	0	722	22	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	755	95.63%
	J	1	0	0	0	0	2	0	1	36	692	0	0	0	1	4	0	1	0	0	0	4	0	0	3	0	2	747	92.64%
	K	0	5	0	4	16	0	3	13	0	0	655	2	0	0	0	0	0	19	1	2	3	0	0	16	0	0	739	88.63%
	L	0	0	0	0	3	0	3	2	0	1	0	743	0	0	0	0	1	6	0	0	0	0	0	2	0	0	761	97.63%
	M	0	3	0	0	0	0	4	0	0	0	0	0	778	2	0	0	0	0	0	0	1	1	3	0	0	0	792	98.23%
	N	0	1	0	13	0	0	0	4	0	0	0	1	4	738	6	0	0	11	0	0	0	4	1	0	0	0	783	94.25%
	0	0	1	3	15	1	0	0	0	0	0	0	0	1	4	714	0	8	0	0	0	3	1	2	0	0	0	753	94.82%
	Р	0	2	0	3	2	42	1	3	0	0	0	1	0	0	0	745	1	2	0	0	0	0	0	0	1	0	803	92.78%
	Q	0	0	0	2	2	0	0	0	0	0	0	0	0	0	31	5	741	1	0	0	0	0	0	0	1	0	783	94.64%
	R	0	16	0	4	2	0	0	6	0	0	3	5	1	3	0	0	1	714	0	0	0	3	0	0	0	0	758	94.20%
	S	0	7	0	3	6	5	0	0	0	0	0	0	1	0	0	0	1	6	715	2	0	0	0	0	0	2	748	95.59%
	Т	0	2	2	3	0	2	0	2	1	0	0	0	0	0	0	0	1	1	0	768	0	2	0	1	11	0	796	96.48%
	U	2	0	1	1	0	0	0	5	0	0	1	0	3	0	1	0	0	0	0	0	798	1	0	0	0	0	813	98.15%
	٧	0	10	0	1	0	3	1	0	0	0	0	0	4	0	1	2	0	0	0	0	2	733	5	0	2	0	764	95.94%
	W	0	1	0	0	0	0	1	0	0	0	1	0	9	0	5	0	0	0	0	0	5	3	727	0	0	0	752	96.68%
	Х	1	2	1	1	5	0	0	0	0	0	17	0	0	0	0	0	2	2	3	3	1	0	0	749	0	0	787	95.17%
	Υ	4	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3	0	0	0	12	1	7	0	1	756	0	786	96.18%
	Z	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	8	0	1	2	0	0	0	1	0	719		97.96%
Total		788	798	711	875	789	781	762	663	759	717	709	757	811	761	792	786	776	809	726	808	827	767	740	783	774	731	20000	

							L	ette	r*P	redi	icted	l Va	ue f	or L	etter	Cro	sstal	bula	tion	(K=	7)								
Count																				•	•								
												Dre	dicte	d V/al	ue foi	r Lette	ar.											Total	
		Α	В	С	D	Е	F	G	Н	1	1	К	I	M	N	0	P	Q	R	S	т	U	V	W	Х	Υ	Z	Total	
Letter	Δ	781	0	1	0		. 0	0	1	. 0	0	.0	- 0	2	.,0	0	. 0	0	1	0	. 0	2	0	0		1	-0	789	98.99%
Lotto	В	0	710	0	2	7	1	0	8	0	0	1	0	1	1	0	0	0	21	4	0	1	6	0	3	Ö	0		92.69%
	C	1	0	696	0	3	0	11	1	0	0	1	2	0	1	10	0	1	1	0	1	2	1	1	2	1	0		94.57%
	D	1	4	0	776	0	0	1	9	1	1	0	0	1	5	2	0	1	1	1	0	0	0	0	1	0	0		96.40%
	E	0	2	7	0	712	2	13	1	1	0	4	0	1	0	0	0	5	0	2	0	0	2	0	6	0	10		92.71%
	F	2	0	0	5	0	694	1	1	14	2	0	0	1	5	1	29	0	1	1	15	0	0	3	0	0	0		89.55%
	G	0	7	3	9	13	0	716	2	0	0	0	0	1	0	6	0	2	1	3	0	0	2	2	5	1	0		92.63%
	Н	0	8	1	28	0	1	5	616	0	0	21	0	1	1	10	2	1	25	2	1	1	1	0	2	5	2		83.92%
	I	0	0	0	2	0	2	0	0	727	21	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0		96.29%
	J	1	0	0	1	1	1	0	2	44	682	0	1	0	1	3	1	1	1	0	0	3	0	0	3	0	1	747	91.30%
	K	0	3	0	4	14	0	5	27	0	0	637	2	0	0	0	0	0	20	1	0	3	0	0	23	0	0	739	86.20%
	L	0	0	0	0	4	0	5	1	1	1	0	736	0	0	0	0	1	7	1	0	1	0	0	3	0	0	761	96.71%
	M	1	3	0	1	0	0	4	0	0	0	2	0	762	9	2	1	0	0	0	0	0	4	3	0	0	0	792	96.21%
	N	2	1	0	7	0	0	0	4	0	0	0	0	6	732	9	0	0	15	0	0	1	4	2	0	0	0	783	93.49%
	0	0	1	4	13	0	0	2	0	0	0	0	0	0	2	718	0	6	1	0	0	2	1	2	1	0	0	753	95.35%
	Р	0	3	0	1	1	34	0	3	0	0	0	1	0	0	2	752	1	1	0	0	0	0	0	0	4	0	803	93.65%
	Q	0	0	0	2	0	0	2	0	0	0	0	0	0	0	20	3	751	3	0	0	0	0	0	0	2	0	783	95.91%
	R	0	19	0	5	0	0	0	9	0	1	7	2	1	1	0	0	0	710	0	0	0	3	0	0	0	0		93.67%
	S	0	3	0	2	6	0	0	1	0	0	0	1	0	0	0	0	1	1	727	2	1	0	0	1	0	2		97.19%
	Т	0	1	1	4	1	2	0	2	1	0	0	0	0	0	1	1	1	1	0	760	0	1	0	3	15	1		95.48%
	U	4	0	0	1	0	0	0	7	0	0	0	0	3	0	0	0	0	0	0	0	797	1	0	0	0	0		98.03%
	٧	1	12	0	0	0	3	1	0	0	0	0	0	1	1	3	3	0	2	0	1	2	729	4	0	1	0		95.42%
	W	0	1	0	0	0	0	1	0	0	0	0	0	3	0	5	0	0	0	0	0	3	2	736	0	1	0		97.87%
	X	1	2	0	3	8	0	0	0	0	0	8	1	0	0	0	0	2	3	5	0	2	0	0	752	0	0		95.55%
	Υ	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	7	2	5	2	1	765	0		97.33%
	Z	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	10	1	3	0	0	0	0	2	0	715		97.41%
Total		795	781	713	866	772	740	767	695	789	709	682	747	784	759	792	794	785	817	750	787	823	762	755	809	796	731	20000	94.40%

The Following is the binned data result:

The Foll	owir	1g 1s	the	bini	iea (data	resi	ult:																				
					I	ette	er * F	redi	icted	l Va	lue f	or L	ette	Cro	ssta	bula	tion	(K=1	I, Bi	nne	d) (t							
Count																		•										
											Pre	edicte	d Val	ue for	Lette	er											Total	
	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z		
Letter A	730	3	0	0	1	0	1	3	0	5	2	15	5	7	2	0	2	1	3	0	3	0	0	3	1	2	789	92.52%
В	2	528	0	27	15	5	11	18	2	3	10	3	3	5	3	10	11	39	27	7	5	4	5	14	4	5	766	68.93%
С	1	1	614	0	17	6	26	3	0	0	20	1	0	2	11	4	3	5	4	4	7	0	0	4	1	2	736	83.42%
D	1	28	3	632	5	5	6	19	3	1	1	1	1	10	23	8	5	13	7	5	6	3	2	7	3	7	805	78.51%
E	1	17	15	2	558	0	31	3	1	2	10	5	1	1	1	0	5	7	31	4	0	2	0	21	0	50		72.66%
F	2	4	4	9	3	609	0	4	4	13	3	5	0	7	0	48	0	3	8	30	2	5	2	3	6	1	775	78.58%
G	1	16	13	8	23	1	610	10	2	0	8	2	3	3	11	4	25	13	4	4	4	3	1	2	0	2		78.91%
H	2	24	1	19	6	3	11	482	1	2	31	2	2	18	43	7	5	40	6	1	1	1	4	15	3	4		65.67%
l l	1	1	0	4	2	2	3	0	631	41	0	6	0	0	44	1	5	1	1	1	0	0	0	6	1	4		83.58%
J	3	7	1	5	2	10	1	3	55	612	1	4	0	1	6	3	3	5	10	1	1	0	0	7	2	4		81.93%
K	3	18	15	4	40	2	15	34	1	3	493	4	4	7	5	3	1	25	7	3	1	3	1	40	0	7		66.71%
L	12	1	1	0	3	4	12	2	5	1	0	692	0	1	0	4	3	8	2	2	0	0	0	5	0	3		90.93%
M	7	6	3	1	2	0	3	4	0	0	7	0	712	13	3	0	2	3	0	1	5	4	15	1	0	0		89.90%
N	5	6	1	14	1	3	0	25	0	3	3	0	2	667	11	4	3	11	1	1	4	4	10	3	1	0		85.19%
0	0	3	12	22	2	1	10	30	2	5	0	2	3	8	579	1	42	5	4	0	8	4	8	1	0	1		76.89%
P	0	13	0	15	2	55	6	1	4	1	1	4	0	6	3	649	4	6	6	4	2	2	3	1	15	0		80.82%
Q	1	7	1	12	5	1	26	3	3	2	0	1	2	4	45		638	4	8	1	4	1	1	6	2	3		81.48%
R	6	64	4	17	6	3	19	17	4	2	21	9	8	9	3	4	6	525	5	6	0	3	0	15	1	1		69.26%
S	1	27	0	8	35	8	5	6	7	9	3	0	3	0	2	4	9	7	533	3	1	3	1	14	0	59		71.26%
T	0	6	6	3	7	39	4	5	2	1	1	1	0	3	1	3	3	4	4	630	5	8	1	1	52	6		79.15%
U	3	1	21	3	0	5	4	5	0	2	3	0	12	7	10	0	6	1	1	6	709	6	5	0	3	0		87.21%
V	0	5	0	3	1	6	4	3	0	0	4	0	2	3	3	5	0	2	2	8	4	609	16	0	84	0		79.71%
W	0	3	0	1	0	0	0	4	0	0	1	0	14	2	3	0	0	1	2	0	5	13	703	0	0	0		93.48%
X	2	31	2	5	23	0	2	14	11	0	27	5	0	2	6	0	9	9	17	0	2	0	0	597	0	23		75.86%
Y	3	5	1	1	7	5	0	8	2	1	0	1	0	1	1	8	4	2	3	54	4	49	4	2	624	2		79.39%
Z	707	920	720	5	35	- 1	2	700	746	5	0	707	777	2	0 0	772	6	740	46	702	702	727	702	770	0	597		81.34%
Total	787	829	720	820	795	774	812	708	746	714	650	767	777	789	619	772	800	740	742	782	783	727	782	779	803	783	20000	79.74%

						Lette	er *	Pred	icte	d Va	lue	for L	ette	r Cro	ossta	bula	atior	n(K=	3,Bir	nned)							
Count																												
											Pre	edicte	d Val	ue foi	r Lette	er											Total	
	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z		
Letter A	738	4	0	4	1	0	2	0	3	2	1	6	2	5	2	3	0	3	3	0	9	0	0	0	0	1		93.54%
В	6	515	0	52	10	4	19	8	7	1	3	2	5	2	6	9	5	34	30	6	5	13	0	20	3	1		67.23%
C	3	2	565	4	17	6	50	1	4	0	17	0	0	0	19	5	4	11	3	6	12	1	0	2	2	2	736	76.77%
D	0	21	2	692	4	1	5	8	3	6	1	0	1	7	19	5	5	6	4	1	4	2	0	4	2	2		85.96%
E	3	21	10	8	513	4	35	2	0	0	17	4	0	1	1	1	4	13	31	8	0	2	0	29	1	60		66.80%
F	2	10	1	11	3	580	0	8	8	3	0	2	1	7	0	54	1	8	4	44	4	10	1	5	7	1	775	74.84%
G	2	6	19	26	19	1	604	2	1	0	10	2	3	1	11	6	15	17	3	2	8	3	4	5	1	2	773	78.14%
Н	3	42	1	39	6	0	16	441	24	1	15	3	1	10	30	14	4	29	4	5	12	2	2	21	6	3		60.08%
l l	1	6	1	7	0	2	2	0	689	27	1	2	0	0	3	1	0	2	4	2	0	1	0	2	1	1		91.26%
J	4	8	1	6	1	11	0	4	57	599	0	4	0	2	7	7	3	11	6	0	1	0	0	7	4	4	747	80.19%
K	4	19	16	6	24	5	20	28	2	4	456	5	8	10	5	6	2	27	9	4	3	6	2	58	1	9		61.71%
L	19	7	0	3	1	2	14	0	10	1	1	679	0	0	1	3	2	7	0	3	3	0	0	1	2	2		89.22%
M	11	4	1	5	0	1	7	0	0	0	6	0	723	6	1	0	1	1	1	2	11	4	7	0	0	0		91.29%
N	11	10	1	22	3	4	1	18	2	2	2	1	8	639	17	3	2	8	1	4	7	5	10	2	0	0		81.61%
0	0	1	5	27	1	0	31	10	40	5	0	0	2	1	570	3	33	3	4	1	8	4	2	1	1	0		75.70%
P	1	13	0	18	1	63	5	3	4	0	1	1	0	2	4	652	3	6	5	4	2	2	1	0	11	1		81.20%
Q	1	14	2	14	2	0	36	4	11	2	0	1	2	2	50	11	610	5	2	1	4	2	0	3	2	2		77.91%
R	10	69	3	36	8	2	19	11	4	3	10	2	9	8	9	7	2	512	3	6	1	6	0	15	3	0		67.55%
S	2	29	1	20	34	13	6	1	10	5	2	0	4	1	10	2	2	14	498	8	2	6	0	15	4	59		66.58%
T	2	7	1	5	4	27	2	3	0	0	0	0	1	3	2	6	2	5	0		5	9	0	1	69	7		79.77%
U	7	2	13	5	0	3	2	4	0	0	2	0	6	3	3	5	7	0	0	2	738	5	1	0	5	0		90.77%
V	1	9	0	6	0	3	6	1	0	0	0	0	1	6	5	10	0	2	2	4	3	613	11	0	81	0		80.24%
W	1	3	0	1	0	0	3	1	0	0	0	0	20	2	5	2	0	1	0	0	10	14	688	0	1	0		91.49%
X	3	17	2	12	18	2	5	3	21	3	28	1	2	2	9	3	8	10	16	3	4	1	0	594	1	19		75.48%
Y	5	3	0	0	0	6	2	1	2	2	2	0	0	0	0	18	2	0	1	59	4	79	2	1	594	3		75.57%
Z	1	10	0	7	28	1	3	0	10	3	1	1	0	0	1	0	7	1	75	6	1	1	0	17	3	557		75.89%
Total	841	852	645	###	698	741	895	562	912	669	576	716	799	720	790	836	724	736	709	816	861	791	731	803	805	736	20000	78.34%

						_ette	er * F	red	icted	l Va	lue f	or L	ette	r Cro	ssta	bula	tion	(K=	5,Bi	nnec	i)							
ount																												
											Pre	edicte	d Val	lue for	Lette	er											Total	
	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z		
etter A	727	3	0	3	2	2	0	2	3	2	2	4	7	2	2	1	1	6	3	1	8	0	0	5	0	3	789	92.14
В	0	477	0	44	18	9	9	20	2	4	5	1	8	2	2	5	6	56	44	2	7	4	0	31	4	6	766	62.27
C	1	0	587	3	26	3	25	4	1	2	20	1	1	2	12	2	5	4	6	5	19	1	0	3	1	2	736	79.76
D	0	17	5	686	3	1	2	15	0	4	0	0	1	7	14	8	7	14	5	0	5	0	0	7	2	2	805	85.22
E	0	6	9	3	577	4	28	3	0	1	20	6	0	1	3	1	6	5	26	0	1	0	0	34	0	34	768	75.13
F	1	1	2	12	4	585	0	4	5	20	1	9	0	11	0	40	0	2	10	58	2	2	1	4	1	0	775	75.48
G	3	7	24	21	25	1	595	4	0	2	4	2	2	3	8	8	25	17	1	1	5	3	0	12	0	0	773	76.97
Н	0	22	0	33	9	0	6	505	0	1	24	3	1	12	16	10	6	32	10	2	6	1	1	27	5	2		68.80
I	0	4	1	5	3	4	2	44	616	46	0	4	0	0	0	5	4	3	5	3	0	0	0	4	0	2	755	81.5
J	0	2	1	14	1	12	0	4	39	627	0	5	0	1	3	2	2	3	9	1	4	0	0	13	0	4	747	83.9
K	3	8	12	9	35	5	15	43	0	2	470	2	10	9	3	3	3	29	6	2	2	2	1	58	2	5		63.6
L	22	1	0	3	3	1	9	2	1	2	2	689	0	0	0	4	4	5	2	1	2	0	0	6	2	0		90.54
M	9	3	3	6	1	3	1	5	0	0	8	0	708	16	3	1	0	3	1	0	7	3	9	2	0	0		89.3
N	8	8	1	25	4	0	0	23	2	2	2	1	13	631	15	2	3	11	1	0	10	4	14	3	0	0		80.5
0	0	1	11	26	2	0	9	51	5	9	0	2	1	0	567	4	29	3	7	0	6	10	7	3	0	0		75.3
P	0	12	0	18	0	64	4	2	1	3	0	3	0	3	3	645	5	3	8	9	0	2	2	5	11	0		80.3
Q	0	5	3	14	4	0	21	2	8	3	1	1	0	0	29	5	654	4	7	0	5	5	1	5	4	2		83.5
R	4	48	6	31	12	5	13	25	3	7	8	1	7	10	6	0	8	529	6	3	2	1	0	22	1	0		69.79
S	1	26	1	10	58	10	1	4	3	8	2	0	0	0	4	6	6	9	522	3	3	0	0	13	2	56		69.79
Т	1	9	2	5	5	23	2	7	0	1	1	1	0	1	3	2	5	4	3	637	7	11	2	3	54	7		80.03
U	2	2	11	6	1	7	2	5	0	2	3	0	3	4	10	1	8	0	0	1	726	7	4	1	7	0		89.30
V	1	6	0	6	0	8	3	1	0	1	1	0	6	5	0	9	0	2	1	8	3	625	10	1	67	0		81.81
W	0	3	0	1	0	1	0	2	0	0	0	0	13	1	2	2	1	5	0	2	10	20	685	0	4	0		91.09
X	0	4	0	3	33	1	1	6	14	3	23	3	2	1	3	2	5	8	15	2	5	0	0	637	1	15		80.94
Y	2	3	0	1	0	7	0	2	1	7	2	2	1	0	0	21	6	1	1	51	4	60	1	4	608	1		77.35
Z	0	4	0	3	63	2	1	3	3	6	0	3	0	0	1	0	7	7	62	1	2	0	0	10	1	555	734	75.61

						Lette	er * F	Predi	icte	l Va	lue f	or L	ette	r Cro	ossta	bula	tion	(K=7	7, Bi	nned	d)							
Count																												
											Pre	edicte	d Val	ue foi	r Lette	er											Total	
	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z		
Letter A	741	2	0	1	0	0	1	0	1	0	1	9	8	5	1	1	0	5	4	1	1	0	0	1	5	1	789	93.92%
В	2	566	0	21	6	15	3	3	2	1	3	1	3	3	4	1	12	51	18	5	6	5	2	22	7	4	766	73.89%
С	1	4	561	6	22	7	26	3	0	1	13	1	0	0	19	1	9	9	8	9	21	3	3	3	4	2	736	76.22%
D	0	26	2	663	2	2	2	12	1	3	4	0	2	14	22	5	8	14	5	4	5	0	0	4	4	1	805	82.36%
Е	1	19	13	0	506	3	22	7	0	1	31	4	1	1	2	2	9	6	34	4	0	0	2	39	1	60	768	65.89%
F	1	9	2	9	2	593	0	2	9	4	1	2	0	8	0	43	1	6	7	55	4	4	3	3	6	1	775	76.52%
G	3	15	17	12	18	2	557	8	0	1	9	0	3	4	17	8	33	28	2	4	9	6	3	10	3	1	773	72.06%
H	3	31	1	32	5	4	7	475	25	0	19	3	3	17	24	12	6	27	6	1	9	0	1	17	3	3	734	64.71%
I	2	11	1	2	1	6	1	0	680	26	2	3	0	0	0	0	3	1	6	2	0	0	0	2	2	4	755	90.07%
J	2	8	0	8	1	12	2	3	54	598	1	6	0	6	2	2	5	6	12	1	2	0	0	9	5	2	747	80.05%
K	3	25	4	7	16	4	15	36	3	1	478	5	2	16	3	5	3	32	8	3	3	4	0	48	3	12	739	64.68%
L	28	1	0	1	6	1	5	2	4	1	1	674	0	1	0	3	4	11	3	1	1	0	0	10	3	0	761	88.57%
M	12	10	1	2	0	1	1	1	0	0	7	0	711	10	1	1	1	8	1	2	11	2	9	0	0	0	792	89.77%
N	7	9	0	34	0	0	4	15	2	1	2	0	13	642	16	2	1	7	0	0	10	5	11	0	2	0	783	81.99%
0	0	1	9	19	0	1	6	10	40	2	0	1	2	2	582	3	41	6	6	1	6	6	7	1	1	0	753	77.29%
P	1	15	0	23	1	75	8	4	2	3	2	4	0	3	3	600	5	6	8	11	0	2	1	4	22	0	803	74.72%
Q	1	9	2	14	5	0	14	4	4	1	3	1	1	1	33	4	656	3	11	1	3	2	2	3	4	1	783	83.78%
R	1	74	0	27	6	2	5	14	6	5	20	1	10	6	3	3	6	531	7	5	1	0	2	22	1	0		70.05%
S	3	41	1	8	30	10	5	1	4	7	0	0	3	3	3	4	3	13	504	5	4	1	0	14	3	78		67.38%
T	0	9	1	3	6	25	1	5	0	0	1	2	1	3	2	3	3	12	3	629	6	6	1	5	63	6		79.02%
U	4	0	5	5	0	4	1	2	1	1	0	0	7	7	12	1	5	1	0	3	739	7	3	1	4	0		90.90%
V	1	13	0	3	0	9	1	1	2	0	2	0	0	6	0	6	1	3	3	13	4	604	19	0	73	0	764	
W	0	8	0	1	0	0	0	2	0	0	0	0	15	2	3	0	0	5	1	0	9	15	688	0	3	0		91.49%
X	3	11	0	4	13	2	1	7	15	4	25	3	0	1	3	1	7	8	24	2	7	0	0	616	1	29		78.27%
Υ	1	3	0	0	1	5	1	4	1	0	0	1	2	1	2	9	2	1	2	52	4	58	2	3	630	1	786	
Z	0	12	1	6	46	1	1	0	6	4	0	4	0	0	2	0	7	9	44	4	1	0	0	8	3			78.34%
Total	821	932	621	911	693	784	690	621	862	665	625	725	787	762	759	720	831	809	727	818	866	730	759	845	856	781	20000	78.89%

Date: 06-03-2017

Question 2-c:

Ans:

Based on the above result, the result from the K-nearest neighbor seems have a more accurate result than the decision tree. However, The running time of K-nearest neighbor is a lot longer than the Decision. In my opinion, the accuracy measure may be a good idea for comparing the Training and Testing data for further verification. In the SPSS, there is not a lot of parameters setting available for K-nearest neighbor analysis. On the contrary, there is more adjustment available (Depth, Parents node and Child nodes etc.) on the decision tree algorithms. Also, I would prefer to use Decision Tree algorithms for the future analysis.

Date: 06-03-2017

Question3

a.

1) In k-means how are the cluster centers calculated?

Ans:

First of all, clusters are defined by their centers, the following is the steps to process calculation.

- First, the algorithm artitrarily choose K object as initial cluster center.
- And then assign each objects to most similar center.
- Then clusters update their cluster Centroids (i.e. Mean point)
- Then the objects will be assigned to the most similar center by the distance function
- Repeat step 3 and 4 until NO change (=No better result) of centroids
- 2) Name two similarity measures (or distance functions) and what type of data you would use them for.

Ans:

- Minkowski Distance which is good for two p-dimensional data object and q is a positive integer
- Manhattan distance which is good for 2-dimensional data, especially only have it (x, y) coordinates along the axis and q=1
- Euclidean distance which is good for 2-dimensional data and with q=2.
- 3) Perform k-means clustering:

i & ii Report the final cluster centers and the number of elements in each clustering

k=3: k=4:

	Fina	l Cluster C	enters			Final Clust	er Center	s	
			Cluster				Clust	ter	
		1	2	3		1	2	3	4
Area		18.72	11.96	14.65	Area	11.94	14.42	17.75	19.52
Perimete	r	16.30	13.27	14.46	Perimeter	13.27	14.35	15.88	16.65
Compac	tness	.89	.85	.88	Compactness	.85	.88	.88	.88
Length_l	kernel	6.21	5.23	5.56	Length_kernel	5.23	5.52	6.05	6.35
width_ke	rnel	3.72	2.87	3.28	width_kernel	2.87	3.25	3.61	3.81
asymme	try_coef	3.60	4.76	2.65	asymmetry_coef	4.80	2.59	3.16	4.16
length k	er_groove	6.07	5.09	5.19	length_ker_groove	5.10	5.13	5.92	6.18
	er of Cas ich Clust				Number of Cas each Clust				
Cluster	1	61.000			Cluster 1	75.000			
O I G O I C I	2	77.000			_ 2	67.000			
	3	72.000			3	40.000			
Valid	,	210.000			4	28.000			
vanu		.000			Valid	210.000			
Missing									

Name: Kai Chung, Ying Email: kying@mail.depaul.edu IS467 Homework#4

Date: 06-03-2017

k=5

			Cluster		
	1	2	3	4	5
Area	16.56	14.69	19.15	12.09	11.98
Perimeter	15.39	14.47	16.47	13.31	13.29
Compactness	.88	.88	.89	.86	.85
Length_kernel	5.89	5.57	6.27	5.22	5.24
width_kernel	3.48	3.29	3.77	2.90	2.88
asymmetry_coef	4.11	2.41	3.46	3.34	5.67
length_ker_groove	5.73	5.16	6.13	5.01	5.12

Number of Cases in each Cluster

Cluster	1	25.000
	2	51.000
	3	48.000
	4	44.000
	5	42.000
Valid		210.000
Missing		.000

k=6

	F	inal Clust	er Center	s		
			Clus	ter		
	1	2	3	4	5	6
Area	11.83	14.24	16.41	18.95	12.32	19.5
Perimeter	13.22	14.26	15.32	16.39	13.42	16.6
Compactness	.85	.88	.88	.89	.86	.8
Length_kernel	5.22	5.49	5.86	6.25	5.27	6.3
width_kernel	2.84	3.23	3.46	3.74	2.95	3.8
asymmetry_coef	4.17	2.32	3.85	2.72	6.34	5.0
length ker groove	5.08	5.06	5.69	6.12	5.12	6.1

Number of Cases in each Cluster

Cluster	1	56.000
	2	54.000
	3	31.000
	4	33.000
	5	21.000
	6	15.000
Valid		210.000
Missing		.000

iii.Report the class distribution within each cluster (use crosstab between labels and cluster membership) k=3

Count					
		Cluster	Number of	Case	
		1	2	3	Total
Class	1.00	1	9	60	70
	2.00	60	0	10	70
	3.00	0	68	2	70
Total		61	77	72	210

k=4

(Class *	Cluster N	umber of	Case Cros	stabulati	on
Count						
		(Cluster Num	ber of Case		
		1	2	3	4	Total
Class	1.00	8	58	4	0	70
	2.00	0	6	36	28	70
	3.00	67	3	0	0	70
Total		75	67	40	28	210

K=5

	Cla	ss * Clust	er Numbe	er of Case	Crosstab	ulation	
Count							
			Cluste	r Number of	Case		
		1	2	3	4	5	Total
Class	1.00	6	48	0	14	2	70
	2.00	19	3	48	0	0	70
	3.00	0	0	0	30	40	70
Total		25	51	48	44	42	210

K=6

Class * Cluster Number of Case Crosstabulation											
Count											
		Cluster Number of Case									
		1	2	3	4	5	6	Total			
Class	1.00	7	52	9	0	2	0	70			
	2.00	0	0	22	33	0	15	70			
	3.00	49	2	0	0	19	0	70			
Total		56	54	31	33	21	15	210			

Question3a

Part4)

Based on the above, I would choose the clustering with k=5 because the curve seems touch the knee after the k=5 section. In other words, there is not much improvements on the accuracy even increasing the number of clusters to the

Question3a

Part 5:

Ans: According to the part 3a iii), I would choose clusters with k=3 shown below. The reason is that the result most likely matches to the pattern of class labels originally provided from the Table even though their labels' number NOT named the same. Although the clustering is not perfectly classified, they majority of clusters matches to the classes labels, especially the Cluster #2 (Green bar) matches to the class label #3 more than 60 counts. So that I would conclude that k=3 has the best clustering result.

Class	* Clus	ter Numbe	er of Case	Crosstab	ulation
Count					
		Cluste	r Number of	Case	
		1	2	3	Total
Class	1.00	1	9	60	70
	2.00	60	0	10	70
	3.00	0	68	2	70
Total		61	77	72	210

Date: 06-03-2017

Question 3a

Part 6:

Based on the following plot for normalized data, I would say that the normalized data gives out a more accurate result. When we oberve the plot, we kind of NOT able to see the knee or elbow section which means that more clusters (k >7) might be able to add for analysis to increase the accuracy. In part 4, the cluster's knee is at about k=5 with error=256. In this result, the error probably lower than 230 with k>6. The reason behind that is probably some of the attributes (e.g. Area, Perimeter) are too large comparing the other attributes in the dataset. And The distance function is sensitive to the data variables with very wide range because the equation involves square of the subtract values.

Question3b - 1: Single Linkage algorithms and Reports

Date: 06-03-2017

Question3b - 2: Complete Linkage algorithms and Reports

Based on the the graph and tables, we can observe that the Compete Linkage Method's result is a lot more accurate than the Single Linkage Method. The Single Link 's result basically only came up 1 cluster(Blue color bar), but it is supposed to have 3 clusters. On the contrary, the Complete Linkage came up 3 clusters and the predicted values is quite distinguishable

Date: 06-03-2017

Question 3c: Summary

Clustering analysis is the method we have done on the question 3. Clustering analysis is grouping a set of objects together based on their characteristic / similarity. Generally speaking, the objects within a group (cluster) would have the most similar characteristic comparing the objects outside group. The way to group the objects together by using different distance functions (e.g. Euclidean) to calculate the distance between the reference point and the object and to partition objects into a group.

Two major clustering methods which are K-means and Hierarchical analysis were carried out above. K-means analysis is designed to partition the objects/observations into groups (clusters) with the closest cluster centroid (i.e. mean). K-means runs n times iterations to measure the distance of the objects within group and reassign the objects to their nearest cluster centroid. The iterations process normally ends when the clusters reaches the best performance (the distance between objects and centroid within group are shortest). Certainly, there are parameters (e.g. k is the number of clusters) that users have to pre-set before the algorithm start the iteration process. The clusters results could be illustrated by scatter plots, cross-tab matrix and Error graph as shown above. In this particular exercise, the Error graph is used to decide the performance of the clustering analysis. The graph shows the trend of errors changes by increasing the number of clusters. Technically, the more clusters assigned is supposed to lead to better result (less error). So that all we need to do is to observe the graph and find the k (number of cluster) section that starts showing less error improvements. Then that k-means cluster probably the best result of overall analysis.

Hierarchical clustering analysis uses another way to group the similar objects to clusters. Certainly, pre-set parameters (e.g. number of clusters) are necessary prior to the analysis. In this exercise, we have used single linkage and complete linkage algorithms. In the beginning the of the process, the objects are in their clusters of their own, and then the clusters merges by measuring the distance. The clusters combine based on the shortest distance. However, there are different way to define the shortest distance for these 2 methods. The shortest length of single linkage is the shortest distance between 2 members from the clusters; The shortest length of complete linkage is the farthest distance between 2 members from the clusters. With this method, we are not able to check the accuracy. We could just check the dendogram based on our desired clusters level and class distributions to decide if we would keep the result. For example, if we would like to reach 3 clusters, the result however came up only 2 clusters cases, then we might want to reset our parameters to give another try.

During the K-means clustering analysis, I experienced a very important step to lower the error on the given k (number of clusters) values. Since we are calculated the distance between objects / clusters. So that some skewed numerical attributes values (Too large or small) might influence the distance measures. So that we probably need to normalize the data prior to step in analysis. This would lead us to get the better result. Also, we have to convert the category variables to numerical in order to calculating the distance for clustering.