Basic Hilbert Space Theory

David Rosenberg

New York University

February 24, 2016

Inner Product Spaces (or "Pre-Hilbert" Spaces)

Definitions

A [real] inner product space is $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ is

- ullet a [real] vector space ${\mathcal V}$ and
- an inner product $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$.
- Inner product induces a norm:

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

What norms can we get from an inner product?

Theorem

Parallelogram LawA norm $\|v\|$ can be generated by an inner product on $\mathcal V$ if and only if $\forall x,y\in \mathcal V$

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2.$$

If it can be, then the [unique] inner product is given by the polarization identity

$$\langle x, y \rangle = \frac{\|x\|^2 + \|y\|^2 - \|x - y\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbb{R}^d generated by an inner product?

Pythagorean Theroem

Definition

Two vectors are **orthogonal** if $\langle x, y \rangle = 0$. We denote this by $x \perp y$.

Definition

Vector x is orthogonal to a set S $(x \perp S)$ if $x \perp s$ for all $x \in S$.

Theorem

If
$$x \perp y$$
, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Proof.

We have

$$||x+y||^2 = \langle x+y, x+y \rangle$$

= $\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$
= $||x||^2 + ||y||^2$.

DS-GA 1003

Projection onto a Plane (Rough Definition)

- $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ an inner product space.
- M is a subspace of \mathcal{V} .
- $x \in \mathcal{V}$
- Then $m_0 \in M$ is the projection of x onto M
 - if m_0 is the closest point to x in M.
- In math: For all $m \in M$,

$$||x-m_0||\leqslant ||x-m||.$$

• To Do: projections exist and characterized by $x - m_0 \perp M$.

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- (Recall: A space is complete if all Cauchy sequences in the space converge.)

Definition

A **Hilbert space** is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

Hilbert Space

Theorem (Classical Projection Theorem)

- H a Hilbert space
- M a closed subspace of ℍ
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This m_0 is called the **[orthogonal] projection of** \times **onto** M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathbb{H} . For any $x \in \mathbb{H}$, let $m_0 = Proj_M x$ be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||.$$

Proof.

$$||x||^2 = ||m_0 + (x - m_0)||^2 \text{ (note: } x - m_0 \perp m_0)$$

 $= ||m_0||^2 + ||x - m_0||^2 \text{ by Pythagorean theorem}$
 $||m_0||^2 = ||x||^2 - ||x - m_0||^2$
 $||m_0||^2 \leq ||x||^2$

Orthogonal Complements

Definition

Consider $S \subset \mathcal{V}$, for an inner product space \mathcal{V} . The set

$$S^{\perp} = \{ v \in \mathcal{V} \mid v \perp S \}$$

is called the **orthogonal complement** of S [in V].

Theorem

 S^{\perp} is a closed subspace of \mathcal{V} .

Theorem

If M is a closed subspace of a Hilbert space \mathfrak{H} , then every $x \in \mathfrak{H}$ has a unique representation of the form

$$x = m + m^{\perp}$$
,