Orientation

Byeongjoon Noh

Dept. of Al/Bigdata, SCH Univ.

powernoh@sch.ac.kr

About instructor

노병준

- Computer science in B.S / M.S
- Civil and Environmental Engineering in Ph.D
- AlxMobility in Post-doc
- Al Solution group in Samsung electronics

Key question could be...

- Why did you study different fields?
- Convergence (multidisciplinary) era

Office hour:

Mon. 15:00-16:00

Thur. 14:00-15:00

ML311

About instructor

Course overview

Lecture time: Tues. (10:30-12:00) and Thurs. (15:00-16:30)

Mainly lecture class with programming practice 3-4 programming assignment

Python language will be mainly used in this class Requirement and prior knowledge: Python

Course overview

Notification

- You can earn 100 points if you follow the course faithfully.
- Textbook and presentation slide
 - Textbook: TBD

References

Stanford university computer vision and deep learning course http://vision.stanford.edu/teaching/cs131_fall2122/

Grading

Midterm: 30 points

Not open-book, not programming test

Final presentation: 45 points (Proposal 15 points, final 30 points)

Programming assignment: 15 points (5 points each)

Class participation and attitude: 10 points

Cheating F
5 absecnes F
Not taking midterm or final F

Course schedule

Week	Contents
1	Orientation & Python/OpenCV setup
2	Introduction – Computer vision with OpenCV
3	Basic image processing techniques
4	Filtering, Mopology, and Geometry
5	Edge, Region, and Matching
6	Feature and Descriptor
7	Object tracking and motion vector
8	Midterm exam

Course schedule

Week	Contents
9	ML/DL for computer vision 1
10	ML/DL for computer vision 2
11	ML/DL for computer vision 3
12	Proposal
13	Proposal
14	3D recognition
15	Final presentation
16	Final presentation

The plan for the second half of the semester could be modified depending on the student's learning achievement.