Chapter 4: Spectroscopy

Prof. Douglas Laurence AST 1004

Atomic and Molecular Spectra

Spectroscopy

Kirchhoff's Laws of Spectroscopy

1st Law: A hot solid, liquid, or dense gas will emit a continuous, blackbody spectrum.

2nd **Law**: A heated, low density gas will emit light at specific wavelengths.

3rd Law: Light of a continuous spectrum passing through a cold, low density gas will cause specific wavelengths of light to be absorbed.

Emission and Absorption of Photons

Emission Spectrum of Hydrogen

Balmer Series

Lyman Series not visible – emission is in the ultraviolet

Computing Photon Emissions

$$\lambda = \frac{hc}{\Delta E}$$

$$hc = 1,239 \text{ eV} \cdot \text{nm}$$

Atomic vs. Molecular Spectra

- (a) Molecular hydrogen, H₂
- (b) Atomic hydrogen, H

Detecting Chemical Elements

Spectral Line Features

Observed Spectral Characteristic	Information Provided
Peak frequency or wavelength (continuous spectra only)	Temperature (Wien's law)
Lines present	Composition, temperature
Line intensities	Composition, temperature
Line width	Temperature, turbulence, rotation speed, density, mag- netic field
Doppler shift	Line-of-sight velocity

Line Broadening

Thermal broadening (always present)

Chapter 5: Telescopes

Prof. Douglas Laurence AST 1004

Atmospheric Absorption of Light

Types of Telescopes

• Earth-bound telescopes:

- Optical (e.g. GTC, "Grand Canary Telescope")
- Near-IR (e.g. Keck 1)
- Radio (e.g. *Green Bank Telescope*)

Space-based telescopes:

- Gamma-ray (e.g. Fermi-LAT)
- X-ray (e.g. SWIFT)
- Microwave (e.g. *Planck*)
- Optical (e.g. *Hubble* or *JWST*)

Optical Astronomy

An inside look at the Subaru telescope

Light-Gathering

- Observed brightness depends on two factors:
 - Area of collecting surface
 - Light-gathering **time**
- Many objects of interest are very far away, and so appear very dim.
- High observed brightness is particularly important when studying spectra, since incoming light has to be split into multiple beams of light at different frequencies.

2x collecting area, same collecting time

Resolution

- Resolution is the ability to tell two distinct objects apart from one another.
 - Put another way, resolution measures the minimum distance two objects can be separated by and still be distinguished from one another.

Arcminutes and Arcseconds

1 circle =
$$360^{\circ}$$

 $1^{\circ} = 60'$
 $1' = 60''$

Photometry vs. Spectroscopy

- Two basic functions of a telescope: photometry and spectroscopy.
 - **Photometry** is the study of the brightness of an image at specific points on the image by analyzing each pixel on the CCD chip.
 - Spectroscopy is the study of the spectrum of an object, utilizing a filter, prism, or diffraction grating to split the light into constituent colors.

<u>Please note:</u> This diagram is representational only and not to scale. There are actually 2048 pixels along each side of the CCD in the Merope camera on Faulkes Telescope North. Each pixel is 13.5 micrometers on a side.

Radio Astronomy

Radio vs. Optical Astronomy

Optical telescopes:

- Are significantly smaller than radio telescopes, and thus are cheaper to build.
- Many objects of interest are very bright in visible light.

Radio telescopes:

- Offer 24 hour observation, since the Sun is a weak radio emitter.
- Allow us to observe objects that aren't very bright in visible light (often objects that are bright in visible are dim in radio, and vice-versa).
- Radio waves have very large wavelengths, so telescopes must have very large diameters to have comparable resolutions (100m radio vs. 1m optical).
- Can be combined into **interferometry arrays**, which allow for vastly superior resolution to even the best space-based optical telescopes.

Radio Interferometry Arrays

Acts as a giant radio telescope, allowing to see to tiny angular resolution.

Event Horizon Telescope

- A global array of radio telescopes:
 - All observing at 1.3mm
 - Has an effective diameter of ~10,000 km
 - Angular resolution ~30 μ arcsec (able to read a newspaper in NYC from Paris)
- First black hole observed with EHT:
 - Black hole at center of M87
 - 42 \pm 3 μ arcsec across
 - No other telescope has ever achieved a small enough angular resolution to see a black hole before (April 10, 2019)

