(10 points) (R-4) Let g be a Lebesgue measurable function on $\mathbb R$ such that $\|fg\|_1 \le \|f\|_1$ (for all $f \in L^1(\mathbb R)$).

Let c > 1 be a real number. Prove that

$$m(\{x \in \mathbb{R} : |g(x)| > c\}) = 0.$$

Let $E = \{ \{ \{ \} \in \mathbb{R} \mid |9(x)| \} \} \setminus \{ \} \}$. In the case that $m(E) = \infty$, we will consider $E_K = \{ \{ \} \in \mathbb{N} \mid \{ \} \} \mid \{ \} \in \mathbb{Z} \} \}$. Assume for contradiction that m(E) > 0 (or $m(E_K) > 0$, but we'll stick to the fixecess).

Lef
$$f(x) = \chi_E(x)$$
. Then f is also L , and so

$$\int_{E} |g| = \int_{R} \chi_{E} |g| = \|fg\|_{1} \leq \|f\|_{1} = \int_{R} \chi_{E} = n(E)$$

otoH,
$$\int_{E} |g| = \int_{R} \chi_{E} |g| \geq c M(E) > M(E)$$

Therefore
$$|g| > m(E)$$
 4. We conclude $m(E) = 0$.