Measure Theory

Mark Ibrahim

*based on Principles of Real Analysis by Aliprantis and Burkinshaw

Contents

I	Pre	liminaries
2	Alg	ebras and Measures
	2.1	Semirings and Sigma-algebras of Sets (section 12)
		2.1.1 semirings
		2.1.2 algebras
	2.2	Measures on Semirings (section 13)
		2.2.1 Examples of Measures on S
	2.3	Outer Measures (section 14)
	2.4	Outer Measures generated by a measure (section 15)
		2.4.1 Cantor Set
	2.5	Lebesgue Measure (section 18)
		2.5.1 Regular Borel Measure
3		
	3.1	Measurable Functions (section 16)
	3.2	Simple and step functions (section 17)
4	One	estions

1 Preliminaries

a function $f: A \to B$ is **continuous** \iff f^{-1} (open set) is an open set.

a bounded sequence a_n has a $\limsup \sup_{N \to \infty} \sup\{a_N, a_{N+1}, \dots\}$ "largest tail" a_n converges if $\limsup = \liminf$.

A **Hausdorff** topological space (T2 space) is a topological space where any two points can be seperated by open sets.

$$\max\{a, b\} = \frac{a+b}{2} + \frac{|a-b|}{2}.$$

union of countably sets is countable.

2 Algebras and Measures

2.1 Semirings and Sigmaalgebras of Sets (section 12)

2.1.1 semirings

a collection S of subsets of a set X is called a **semiring** if

- 1. $\emptyset \in S$,
- 2. $A \cap B \in S$, and
- 3. $A B = C_1 \cup ... C_n \text{ for } C_1, ... C_n \in S.$

Any countable union in S can be written as a countable **disjoint** union.

e.g., $S = \{[a,b)| a \leq b \in \mathbb{R}\}$ is a semiring, not an algebra.

* note $[a, a) = \emptyset$.

algebras 2.1.2

a nonempty collection S of subsets of a set Xis an algebra if

- 1. $A \cap B \in S$
- 2. and $A^c \in S$.

Nice properties of algebras are:

- \emptyset , $X \in S$
- S is closed under finite unions and finite intersections.

a σ -algebra is an algebra that is closed under countable unions.

Borel sets of a topological space (X, T) ¹ is a σ -algebra generated by the open sets.

2.2 Measures on Semirings (section 13)

A function μ from a semiring S to $[0, \infty]$ is a measure on S if

- 1. $\mu(\emptyset) = 0$
- 2. countably additive: $\mu(\bigcup_{n=1}^{\infty} A_n) = A \subseteq X$, $\sum^{\infty} \mu(A_n).$
- If $A \subseteq B$, $(A, B \in S)$, then $\mu(A) \le \mu(B)$.

Alternatively, can show μ is a measure if and only if "squeeze"

- 1. $\mu(\emptyset) = 0$
- 2. $\sum_{i=1}^{n} \mu(A_i) \leq \mu(A) \text{ if } \bigcup_{i=1}^{n} A_i \subseteq A \text{ and }$ A_i are disjoint.
- 3. $\mu(B) \leq \sum_{n=1}^{\infty} \mu(B_n)$, "subadditive" if for E_i measurable and any $A \subseteq X$,

Examples of Measures on S

- Counting Measure $\mu(A) = |A|$
- Dirac Measure Fix $a \in X$, $\mu_a(A) = 0$ if $a \notin A$, else 1.
- Lebesgue Stieltjes For $f: \mathbb{R} \to \mathbb{R}$, increasing, left continuous and S = $\{[a,b)|a \le b \in \mathbb{R}\}, \mu([a,b)) = f(b)$ f(a).
 - Lebesgue Measure on S, denoted λ is defined by $\lambda([a,b)) = b - a$.

Outer Measures (section 14) 2.3

an **outer measure** is a function $\bar{\mu}: P(X) \rightarrow$ $[0, \infty]$ such that

- 1. $\bar{\mu}(\emptyset) = 0$
- 2. if $A \subseteq B$, $\bar{\mu}(A) < \mu(B)$
- 3. countably subadditive: $\bar{\mu}(\bigcup_{n=1}^{\infty} A_n) \leq$ $\sum^{\infty} \mu(A_n)$

*an outer measure is not always a measure! A subset E of X is **measurable** if for all

$$\bar{\mu}(A) = \bar{\mu}(A \cap E) + \bar{\mu}(A \cap E^c)$$

A nicer equivalent way to show E is measurable is by considering all A in S with $\mu^*(A) < \infty$ and showing

$$\mu(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Nice Properites

- every A in S is μ^* -measurable
- if $\bar{\mu}(E) = 0$, E is measurable
- $\bar{\mu}(\bigcup_{i=1}^n A \cap E_i) = \sum_{i=1}^n \bar{\mu}(A \cap E_i)$

 $^{^{1}(}X, T)$ is a topological space with a set X and subsets T if $\emptyset, X \in T$, and T is closed under unions (even uncountable), finite intersections.

the collection of measurable subsets is de- **2.5** noted by Λ . This collection is a σ -algebra!

Remarkably, the outer measure $\bar{\mu}$ restricted to Λ is a measure!

2.4 Outer Measures generated by a measure (section 15)

The outer measure μ^* generated by a measure μ is defined for any subset A of X,

there is open
$$O \subseteq \mathbb{R}$$
 for $\mu^*(A) = \inf\{\sum_{n=1}^{\infty} \mu(A_n) : A \subseteq \bigcup_{n=1}^{\infty} A_n \text{ for } A_n \not\in S \subseteq O \text{ and } \lambda(O - E) < \epsilon.$

 μ^* is called the Cathéodory extension of μ . 2.5.1 Regular Borel Measure By convention $\mu^*(A) = \infty$ if no cover exits in

On semiring S, $\mu * = \mu$.

For E_n measurable, if $E_n \uparrow E$, then $\mu^*(E_n) \uparrow \mu^*(E)$ For B_n measurable with $\mu^*(B_n) < \infty$, if $B_n \downarrow B$, then $\mu^*(B_i) \downarrow \mu^*(B)$.

a measure space if **finite** if $\mu^*(X) < \infty$.

For X a **finite measure** space E is measurable, if and only if

$$\mu^*(E) + \mu^*(E^c) = \mu^*(X)$$

For all $A \subseteq X$, there is a measurable set Esuch that $A \subseteq E$ and $\mu^*(A) = \mu^*(E)$.

2.4.1 Cantor Set

Cantor set
$$C = \bigcap_{n=1}^{\infty} c_n$$
, where $c_1 = [0, 1] - (1/3, 2/3)$
 $c_2 = c_1 - ((1/9, 2/9) \cup (7/9, 8/9))$

each c_n is closed, because it's a closed set minus open sets.

- C has measure 0
- $|C| = |\mathbb{R}|$
- every point of C is an accumulation point of C

Vitali set is an example of a non- 3.2 **measurable** subset of \mathbb{R} .

Lebesgue Measure (section 18)

Outer Lebesgue measure λ^* is defined

as
$$\lambda^*(A) = \inf\{\sum_{i=n}^{\infty} \lambda^*(a_n, b_n) : A \subset \{a_n, b_n\}\}$$

* often, we say Lebesgue measure instead of outer Lebesgue measure.

 $E \subseteq \mathbb{R}$ is Lebesgue measurable \iff there is open $O \subseteq \mathbb{R}$ for each ϵ such that

For X, a Hausdorff topological space and Bthe borel sets in X, a measure μ on B is called a regular borel measure if

- 1. $\mu(K) < \infty$ if K is compact
- 2. for B a borel set, $\mu(B) =$ $\inf\{\mu(O)|O \text{ is open } B\subseteq O\}$
- 3. for O open, $\mu(O) =$ $\sup\{\mu(K)|K \text{ is compact and } K\subseteq O\}$
- 1. λ is a regular borel measure
- 2. Durac measure is a regular borel measures
- 3. Counting measure is not
- 4. any translation invariant regular borel measure on \mathbb{R} is $c\lambda$ for some $c \in$ \mathbb{R}^+

Integration: functions 3

- Measurable Functions (section 16)
- Simple and step functions (section 17)

4 Questions

1. If
$$A \subseteq B$$
, is $\mu^*(B - A) = \mu^*(B) - \mu^*(A)$?