day3多元线性回归

笔记本: 100days

创建时间: 2019/1/10 22:10 **更新时间:** 2019/1/11 17:37

URL: http://localhost:8888/notebooks/Day3/day3%E5%A4%9A%E5%85%83%E7%BA%BF%E6%80%A7%E5%9B...

Multiple Linear Regression(多元线性回归)¶

#100DaysOfMLCode 第三天 ©Avik Jain

多元线性回归

多元线性回归尝试通过用一个线性方程来适配观测数据,这个线性方程是在两个以上(包括两个)的特征和响应之间构建的一个关系。多元线性回归的实现步骤和简单线性回归很相似,在评价部分有所不同。你可以用它来找出在预测结果上哪个因素影响力最大,以及不同变量是如何相互关联的。

Dependent Variable

 $= b_{\circ} + b_{1}x_{1} + b_{2}x_{2} \dots b_{n}x_{n}$

前提

想要有一个成功的回归分析, 确认这些假定很重要

- 1、线性: 自变量和因变量的关系应该是线性的(也即特征值和预测值是线性相关)
- 2、保持误差项的方差齐性(常数方差): 误差项的分散(方差)必须等同
- 3、多元正态分布:多元回归假定残差符合正态分布。

虚(拟)变量

4、缺少多重共线性:假设数据有极少甚至没有多重共 线性。当特征(或自变量)不是相互独立时,会引发 多重共线性。

注意

过多的变量可能会降低模型的精确度,尤其是如果存在一些 对结果无关的变量,或者存在对其他变量造成很大影响的变 量时。这里介绍一些选择合适变量的方法:

- 1、向前选择法
- 2、向后选择法(也称 向后剔除法/向后消元法)
- 3、向前向后法:即结合了上面说的向前法和向后法,先用向前法筛选一遍,再用向后法筛选一遍,直到最后无论怎么筛选模型变量都不再发生变化,就算是结束了

来表示肯定类型或否定类型。

虚拟变量陷阱人

虚拟变量陷阱是指两个以上(包括两个)变量之间高度 相关的情形。简而言之,就是存在一个能够被其他变量 预测出的变量。我们举一个存在重复类别(变量)的直 观例子: 假使我们舍弃男性类别,那么,该类别也可以 通过女性类别来定义(女性值为0时,表示男性,为1, 表示女性),反之亦然。

解决虚拟变量陷阱的方法是,类别变量减去一: 假如有m 个类别,那么在模型构建时取 m-1 个虚拟变量,减去的那个变量可以看作是参照值。

Dummy Variable $D_2 = 1 - D_1$ Variable

 $y = b_0 + b_1 x_1 + b_2 x_2 + b_3 D_1$

数据预处理

- 1. 导入相关库
- 2. 导入数据集
- 3. 检查缺失数据
- 4. 数据分类
- 5. 有必要的话,编辑虚 拟变量并注意避免虚拟 变量陷阱
- 6. 特征缩放我们将用简 单线性回归模型的相关 库来做

2 在

在训练集上 训练模型

这一步和简单线性回归模型的处 理完全一样。

我们用 sklearn.linear_model 库的 LinearRegression 类,在数据集上 训练模型。首先,创建一个 LinearRegression 的对象 regressor,接着,用

LinearRegression 类的 fit() 方法,用对象 regressor 在数据集上进行

3 预测结果

在测试集上进行预测,并观察结果。我们将把输出结果保存在向量 Y_pred 中。使用上一步训练时我们用的类

LinearRegression 的对象 regressor,在训练完之后,用 其 predict() 方法来预测结果。

Check out The complete Implementation at: github.com/Avik-Jain/100-Days-Of-ML-Code Follow Me For More Updates

Step 1: Data Preprocessing(数据预处理)¶

Importing the libraries(导入库)¶

训练。

In [1]:

import pandas as pd

import numpy as np

. .

Importing the dataset(导入数据集)¶

In [7]:

1

dataset = pd.read_csv('50_Startups.csv')

dataset

Out[7]:

R&D SPEND	ADMINISTRATION	MARKETING SPEND	STATE	PROFIT	
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96

10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80

35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [10]:

1

X = dataset.iloc[:,:-1].values

Y = dataset.iloc[:,4].values

X,Y

Out[10]:

```
(array([[165349.2, 136897.8, 471784.1, 'New York'],
[162597.7, 151377.59, 443898.53, 'California'],
[153441.51, 101145.55, 407934.54, 'Florida'],
[144372.41, 118671.85, 383199.62, 'New York'],
[142107.34, 91391.77, 366168.42, 'Florida'],
[131876.9, 99814.71, 362861.36, 'New York'],
[134615.46, 147198.87, 127716.82, 'California'],
[130298.13, 145530.06, 323876.68, 'Florida'],
[120542.52, 148718.95, 311613.29, 'New York'],
[123334.88, 108679.17, 304981.62, 'California'],
[101913.08, 110594.11, 229160.95, 'Florida'],
[100671.96, 91790.61, 249744.55, 'California'],
[93863.75, 127320.38, 249839.44, 'Florida'],
[91992.39, 135495.07, 252664.93, 'California'],
[119943.24, 156547.42, 256512.92, 'Florida'],
[114523.61, 122616.84, 261776.23, 'New York'],
[78013.11, 121597.55, 264346.06, 'California'],
[94657.16, 145077.58, 282574.31, 'New York'],
[91749.16, 114175.79, 294919.57, 'Florida'],
[86419.7, 153514.11, 0.0, 'New York'],
[76253.86, 113867.3, 298664.47, 'California'],
[78389.47, 153773.43, 299737.29, 'New York'],
[73994.56, 122782.75, 303319.26, 'Florida'],
[67532.53, 105751.03, 304768.73, 'Florida'],
[77044.01, 99281.34, 140574.81, 'New York'],
[64664.71, 139553.16, 137962.62, 'California'],
[75328.87, 144135.98, 134050.07, 'Florida'],
[72107.6, 127864.55, 353183.81, 'New York'],
[66051.52, 182645.56, 118148.2, 'Florida'],
[65605.48, 153032.06, 107138.38, 'New York'],
[61994.48, 115641.28, 91131.24, 'Florida'],
[61136.38, 152701.92, 88218.23, 'New York'],
[63408.86, 129219.61, 46085.25, 'California'],
[55493.95, 103057.49, 214634.81, 'Florida'],
[46426.07, 157693.92, 210797.67, 'California'],
[46014.02, 85047.44, 205517.64, 'New York'],
[28663.76, 127056.21, 201126.82, 'Florida'],
[44069.95, 51283.14, 197029.42, 'California'],
[20229.59, 65947.93, 185265.1, 'New York'],
[38558.51, 82982.09, 174999.3, 'California'],
[28754.33, 118546.05, 172795.67, 'California'],
[27892.92, 84710.77, 164470.71, 'Florida'],
[23640.93, 96189.63, 148001.11, 'California'],
[15505.73, 127382.3, 35534.17, 'New York'],
[22177.74, 154806.14, 28334.72, 'California'],
[1000.23, 124153.04, 1903.93, 'New York'],
[1315.46, 115816.21, 297114.46, 'Florida'],
```

```
[0.0, 135426.92, 0.0, 'California'],

[542.05, 51743.15, 0.0, 'New York'],

[0.0, 116983.8, 45173.06, 'California']], dtype=object),

array([192261.83, 191792.06, 191050.39, 182901.99, 166187.94, 156991.12,

156122.51, 155752.6, 152211.77, 149759.96, 146121.95, 144259.4,

141585.52, 134307.35, 132602.65, 129917.04, 126992.93, 125370.37,

124266.9, 122776.86, 118474.03, 111313.02, 110352.25, 108733.99,

108552.04, 107404.34, 105733.54, 105008.31, 103282.38, 101004.64,

99937.59, 97483.56, 97427.84, 96778.92, 96712.8, 96479.51,

90708.19, 89949.14, 81229.06, 81005.76, 78239.91, 77798.83,

71498.49, 69758.98, 65200.33, 64926.08, 49490.75, 42559.73,

35673.41, 14681.4]))
```

Encoding Categorical data(将类别数据数字化)¶

In [18]:

6

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

labelencoder = LabelEncoder()

X[:,3]=labelencoder.fit_transform(X[:,3])

onehotencoder=OneHotEncoder(categorical_features=[3])

X=onehotencoder.fit_transform(X).toarray()

Χ

C:\Users\张帅\AppData\Roaming\Python\Python36\site-

packages\sklearn\preprocessing_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values. If you want the future behaviour and silence this warning, you can specify "categories='auto'". In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly. warnings.warn(msg, FutureWarning)

C:\Users\张帅\AppData\Roaming\Python\Python36\sitepackages\sklearn\preprocessing_encoders.py:390: DeprecationWarning: The 'categorical_features' keyword is deprecated in version 0.20 and will be removed in 0.22. You can use the ColumnTransformer instead.

"use the ColumnTransformer instead.", DeprecationWarning)

Out[18]:

```
array([[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00,
1.3689780e+05, 4.7178410e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.5137759e+05, 4.4389853e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.0114555e+05, 4.0793454e+05],
...,
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.3542692e+05, 0.0000000e+00],
[1.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 1.0000000e+00,
5.1743150e+04, 0.0000000e+00],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.1698380e+05, 4.5173060e+04]])
```

. . .

1

Avoiding Dummy Variable Trap(躲避虚拟变量陷阱)

In [22]:

1

X = X[:, 1:]

Χ

Out[22]:

```
array([[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00, 1.3689780e+05, 4.7178410e+05], [1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00, 1.5137759e+05, 4.4389853e+05], [1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00, 1.0114555e+05, 4.0793454e+05],
```

```
...,
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.3542692e+05, 0.0000000e+00],
[0.0000000e+00, 1.0000000e+00, 1.0000000e+00, ..., 1.0000000e+00,
5.1743150e+04, 0.0000000e+00],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, ..., 0.0000000e+00,
1.1698380e+05, 4.5173060e+04]])
```

Splitting the dataset into the Training set and Test set(拆分数据集为训练集和测试集¶

```
In [24]:
```

3

from sklearn.model selection import train test split

```
X train, X test, Y train, Y test = train test split(X,Y,test size=0.2,random state=0)
```

X_train, X_test, Y_train, Y_test

Out[24]:

```
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 1.8264556e+05, 1.1814820e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 9.1790610e+04, 2.4974455e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 1.1059411e+05, 2.2916095e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
```

```
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 8.4710770e+04, 1.6447071e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 1.0114555e+05, 4.0793454e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00, 1.2786455e+05, 3.5318381e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
```

```
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00, 6.5947930e+04, 1.8526510e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
1.0000000e+00, 1.5270192e+05, 8.8218230e+04],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 1.2278275e+05, 3.0331926e+05],
[1.0000000e+00, 0.0000000e+00, 1.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00,
0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00,
0.0000000e+00, 9.1391770e+04, 3.6616842e+05]
array([ 96778.92, 96479.51, 105733.54, 96712.8, 124266.9, 155752.6,
132602.65, 64926.08, 35673.41, 101004.64, 129917.04, 99937.59,
```

```
97427.84, 126992.93, 71498.49, 118474.03, 69758.98, 152211.77,
134307.35, 107404.34, 156991.12, 125370.37, 78239.91, 14681.4,
191792.06, 141585.52, 89949.14, 108552.04, 156122.51, 108733.99,
90708.19, 111313.02, 122776.86, 149759.96, 81005.76, 49490.75,
182901.99, 192261.83, 42559.73, 65200.33]),
array([103282.38, 144259.4, 146121.95, 77798.83, 191050.39, 105008.31,
81229.06, 97483.56, 110352.25, 166187.94]))
```

Step 2: Fitting Multiple Linear Regression to the Training set(在训练 集上训练多元线性回归模型)¶

In [29]:

3

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X_train,Y_train)

Out[29]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

• • •

Step 3: Predicting the Test set results(在测试集上预测结果)¶

In [30]:

2

y pred=regressor.predict(X test)

y_pred
Out[30]:
array([199284.29616179, 58975.97231506, 84818.06472524, 34825.52114832,
83740.4976782 , 136541.34536323, 15834.62401121, 156765.35558325,
112067.27328005, 63426.14627526])
•••
In []:

1

. . .