Section 3 Reliability Testing and Reliability Prediction

- 3.1 What Is Reliability Testing
- 3.2 Reliability Test Methods
- 3.3 Accelerated Lifetime Test Methods
- 3.3.1 Fundamental Failure Model
- 3.3.2 Method of Accelerated Life Testing
- 3.3.3 Analysis of Test Results
- 3.3.4 Procedure for Failure Rate Prediction
- 3.4 Reliability Prediction Based on the Failure Mechanism
- 3.4.1 Example of Predicting the Initial Failure Rate (Initial Failures from Oxide Film Breakdown)
- 3.4.2 Example of Predicting the Random Failure Rate (Method of Estimating a Failure Rate at a 60% Reliability Level)
- 3.4.3 Predicting Wear-Out Failures
- 3.4.4 Future Product Life

For self-investigation

Section 3 Reliability Testing and Reliability Prediction Figure list

- Figure 3.1 Activation Energy
- Figure 3.2 Graph of the Arrhenius Model
- Figure 3.3 Schematic of the Eyring Model
- Figure 3.4 Stress Strength Model
- Figure 3.5 The Outline of Each Stress Tests
- Figure 3.6 Basic Format of Weibull Probability Paper
- Figure 3.7 Chart for Determining Relationship between Activation Energy and Acceleration Factor
- Figure 3.8 Example of Weibull Probability Paper
- Figure 3.9 Procedure for Use of Weibull Probability

Section 3 Reliability Testing and Reliability Prediction

Figure list (continued)

- Figure 3.10 Example of Weibull Probability Results
- Figure 3.11 Basic Format of Weibull Type
 Cumulative Hazard Paper
- Figure 3.12 Example of Weibull Type Hazard Paper
- Figure 3.13 Relationship between F(t) and H(t)
- Figure 3.14 Fill-in Example of Work Sheet
- Figure 3.15 Example of Work Sheet Used for Data on Cumulative Hazard Paper
- Figure 3.16 Life Prediction through Weibull Plotting
- Figure 3.17 Lifetime Distribution from Weibull Cumulative Hazard Paper
- Figure 3.18 Future Product Life

For self-investigation

Section 3 Reliability Testing and Reliability Prediction Table list

- Table 3.1 Examples of Reliability Testing Conducted When New Products are Developed
- Table 3.2 Test Categories and Conditions for Environmental Tests of Semiconductor Devices (Mechanical Tests)
- Table 3.3 Test Categories and Conditions for Environmental Tests of Semiconductor Devices (Weather Resistance Tests)
- Table 3.4 Test Categories and Conditions for Environmental Tests of Semiconductor Devices (Other Tests)
- Table 3.5 Distribution of Representative Accelerated Lifetime Tests
- Table 3.6 R-J Conversion for 60% C.L. Failure Rate
- Table 3.7 Reliability Test Results for SH7034 (HD6437034A)
- Table 3.8 Products Using the Same Process as SH7034
- Table 3.9 Failure Data
- Table 3.10 Cumulative Hazard Table

For self-investigation
Table 3.1 Examples of Reliability Testing Conducted When New Products are Developed

Phase	Purpose	Name	Contents
Development of semiconductor products	To verify that the design reliability goals and the customer's reliability	Quality approval for product developed	The following and other tests are carried out as required:
	requirements are satisfied		1. Standard tests
			2. Accelerated tests
			Marginal tests
			Structural analysis
Development or change of materials and processes	To verify that the materials and processes used for the product under development satisfy the design reliability goals and the customer's reliability requirements To understand the quality factors and limits that are	wafer process/package	TEGs or products are used to perform acceleration tests and other analyses as required with attention paid to the characteristics and changes of materials and processes.
	affected by materials and processes		•
Pilot run before mass production	To verify that the production quality is at the specified level	Quality approval for mass production	This category covers reliability tests for examining the initial fluctuation of parameters that require special attention, as well as fluctuations and stability in the initial stage of mass production.

For self-investigation
Test Categories and Conditions for Environmental Tests of Semiconductor Table 3.2 Devices (Mechanical Tests)

Test Category	JEITA Standard Number	Purpose	Conditi	ions				Related Standards
Shock	EIAJ ED-4701/400 Test method 404	To evaluate the structural and mechanical resistance to any shock the device can experience by careless handling and during transportation	Condition A B C	Maximum Acceleration (G) 100 500 1000 1500 waveform: half-	Pulse Width (ms) 6 1 0.5 0.5	Numb X1, (X Y1, Y2 Z1, (Z 3 time directi	2 (2) es in each ion	IEC 68-2-27, MIL-STD-883D 2002.3, MIL-STD-750C 2016.2, MIL-STD-202F 205E, 207A, 213B
Acceleration (Steady state)	EIAJ ED-4701/400 Test method 405	To evaluate the resistance to steady state acceleration	direction	5,000 10,00 20,00 30,00 e each for X1, X ns ion 'D' is not ap	00 00 00 (2, Y1, Y2,	, Z1, a		IEC 68-2-7, MIL-STD-883D 2001.2, MIL-STD-750C 2006, MIL-STD-202F 201A, 212A
Solderability	EIAJ ED-4701/300 Test method 303	To evaluate the solderability of leads	B Using re	Solder Temperature (* 235 ± 5 215 ± 5 osin-type flux are immersed u kage main bod	Immers C) Time (s 5 ± 0.5	5 S	Remarks Simulating vave solder Simulating eflow solder 5 mm from	IEC 68-2-20, MIL-STD-883D 2003.7, 2022.2 MIL-STD-750C 2026.4, MIL-STD-202F 208E
Resistance to soldering heat	EIAJ ED-4701/300 Test method 302 (Other than SMD)	To evaluate the resistance to the heat during soldering operation	Condition A	Solder Temperature (* 260 ± 5 350 ± 10	Immer	s) I	Remarks Flux Immeresion (rosin-type)	IEC 68-2-20, MIL-STD-202F 210A

For self-investigation

to soldering	EIAJ ED-4701/300 Test method 301 (SMD)	To evaluate the resistance to the heat during soldering operation	Humidif	after humidifica ication treatmen		nt	IEC 68-2-20,	
heat		heat during	Simulat	ication treatmen				
heat	(SMD)	•	Simulat moistur		Humidification treatment condition examples			
				Simulating storage in 85°C, 30%, 168h moistureproof packing			210A	
			Simulat	ting storage after g packing	30°C, 70%,	168h	_	
				ting non- eproof packing		65%, 168 h		
			moistui	eproor packing	B 85°C,	85%, 168 h		
			Heating	treatment condi	tions			
				red ray reflow ar I-free solder)	d air-reflow			
			Preh	eat: 160 to 90°C	, 80 to 140s	:		
			Peak	k temperature (T	p) (Tolerand	e: +5/-0°C)		
			Thickne	ess	Volume (mr	n°)		
			(mm)	< 350	350 - 2,000	> 2,000	-	
			< 1.6	260	260	260	-	
			1.6 - 2.	5 260	250	245	-	
			> 2.5	250	245	245	_	
			Conditi	ion Time (s) of	(Tp - 5°C) or	more	_	
			A	10 + 6/-0			_	
			В	20 + 6/-0			_	
			(II) Vap	or phase reflow Solder Temperature (°C	Heating) Time (s)	Remarks		
			п-А	210 ±	0 40 ± 4	Preheat: 150°C, 90s		
			(III) Wa	ve solder bath				
			Con- dition	Solder Temperature (°C	Heating) Time (s)	Remarks		
			III-A	260 ± 5	5 ± 1	Simulating single		
			III-B	260 ± 5	10 ± 1	Simulating double		
			(IV) Sol	der bath Solder	Heating			
			dition	Temperature (°C		Remarks		
			IV -A	350 ± 10	3.5 ± 0.5	Flux immersion		
				ds are immersed e soldering area.	l vertically u	p to the flat or		

Table 3.3 Test Categories and Conditions for Environmental Tests of Semiconductor Devices (Weather Resistance Tests)

Test Category	JEITA Standard Number	Purpose	Conditions				Related Standards
Soldering heat stress series test	EIAJ ED-4701/100 Test method 104	To evaluate the durability against tests. temperature and humidity cycles a plastic mold SMD can The series test is performed before specified tests. Same as			JESD22-A112, JESD22-A113		
High- temperature storage	EIAJ ED-4701/200 Test method 201	experience during storage and mounting To evaluate the resistance to prolonged high temperature storage.	EIAJ ED-4701/300, Test method 301 (Resistance to soldering heat) The device is stored in the following conditions unless other wise specified. Tstg max (maximum rated storage temperature)			IEC 68-2-2, MIL-STD-750C 1031.4, MIL-STD-883D	
Low- temperature storage	EIAJ ED-4701/200 Test method 202	To evaluate the resistance to low-temperature storage	 1,000 h The device is stored in the following conditions unless other wise specified. Tstg min (minimum rated storage temperature) 1,000 h 				1008.2 IEC 68-2-1
High- temperature high-humidity storage	EIAJ ED-4701/100 Test method 103	To evaluate the resistance to high-temperature and humidity storage and operation	Test condition A B C 1,000h (unle	on Ta (°C) 40 ± 2 60 ± 2 85 ± 2 ss otherwise s	90 90 85	± 5 ± 5 ± 5	IEC 68-2-3, MIL-STD-202F 103B
High- temperature high-humidity bias (THB)	EIAJ ED-4701/100 Test method 102	To evaluate the corrosive resistance (of mainly wiring) to high-temperature and humidity storage and operation	(with a speci dissipation d For SMDs, M heat stress s	Temperature (*C) 40 60 85 y: Continuous fied cycle) for evices Moisture soakii series test (tes	high powering and sol	1000 1000 1000 ittent er	

For self-investigation

Test Category	JEITA Standard Number	Purpose	Condit	tions		or sen-inv	Related Standards
Unsaturated pressurized vapor	EIAJ ED-4701/100 Test method 102	To evaluate with acceleration the resistance to storage and use in high-temperature and humidity	Unsaturated pressure inside chamber Con- Tempe- Relative Vapor dition rature Humidity Pressure (Pa)				
			A B	110°C 120°C 130°C	85% 85% 85%	1.2 × 10 ⁵ 1.7 × 10 ⁵	
			For SN heat st	IDs, moist ress serie	ure soaking	2.3 × 10 ⁵ and soldering nethod 104) is ng.	
Temperature cycle	EIAJ ED-4701/100 Test method 105	To evaluate the resistance to sudden changes in temperature	a preco	onditioning		is performed as	IEC 68-2-14, MIL-STD-883D
		the device can experience during storage, transportation, or in use.	Maximum storage temperature (Tstg max)				1010.7, MIL-STD-750C 1051.2, MIL-STD-202F 102A
			t: The longer one out of 5minutes, or 10% of either step a or step c.				
			Step	Minimum :		Select a condition from the table below	
			b	Normal ter 5 to 35°C	mperature		
			d	Maximum temperatu Normal ter	re (Tstg max)		
				5 to 35°C	-		
			Dwell to	ime of tem			
				e (m) g	Step b Step d	Step a	
			m ≤ 15 15 < m	5 n ≤ 150	5 minutes or shorter	10 minutes or longer	
			150 <	m ≤ 1500 < m	Specified in the specifications		
			individu		cations. 10 c	efined by the cycles are	

Table 3.4 Test Categories and Conditions for Environmental Tests of Semiconductor Devices (Other Tests)

Test Category	JEITA Standard Number	Purpose	Conditions	Related Standards
Human body	EIAJ ED-4701/300	To evaluate the		MIL-STD-883C
model	Test method 304	resistance to static	R_1 $R_2 = 1.5 \text{ k}\Omega$	3015.6.
electrostatic	rest metrod 504	electricity that can be	S ₁ Test	JESD22-A114
discharge.		generated in handling	∨	0200227777
(HBM/ESD)		Hariding	<u> </u>	
			V: Specified DC voltage (both polarities)	
			Ta: 25°C	
			Times applied: 3	
			Terminals applied to: All terminals except the	
			reference one (MM/ESD: Reference test)	
			C = 200 pF	
			$R2 = 0 \Omega$	
			Times applied: 1	
Charged	EIAJ ED-4701/300	To evaluate the	Test circuit	
device model electrostatic	Test method 305	resistance to electrostatic	(a) Discharging with a switch	
discharge.		discharges in a	Metal	
(CDM/ESD)		charging model that	discharge bar	
		simulates the	Electrode	
		handling before the device is mounted	Sample device Switch s Terminal	
		dovido io inicarno	Insulating	
			sheet	
			Metal plate	
			(b) Discharging by contact	
			Metal	
			discharge bar	
			Sample device Front end	
			Terminal	
			Insulating	
			sheet	
			Metal plate	
			Test voltage: Specified (both polarities) in the individual specification (Recommended: 500 V)	
			Ta: 25°C	
			Terminals applied: 1	
			Lead applied to: All terminals	

Test	JEITA Standard		For self-inv	estigation
Category	Number	Purpose	Conditions	Standards
Latch-up	EIAJ ED-4701/300	To evaluate the	Method 1: Pulse current application	JESD 17
	Test method 306	resistance of a CMOS device to	Current: Specified trigger pulse current (both polarities)	
		electric noise	Ta = 25°C	
			Times applied: 1	
			Circuit (for positive polarity)	
			Trigger pulse current supply (Clamp voltage + Terminal VCL) Input terminals are connected to the power supply or ground Measuring Icc	
			Method 2: Supply overvoltage	
			Voltage: Specified trigger pulse	
			Ta = 25°C	
			Times applied: 1	
			Input terminals are connected to the power supply or ground A Measuring Icc Vcc Sample device GND Power supply Output terminals are open	

Failure mechanism oriented reliability test How to verify quality for long time? Acceleration test is the last way to assure.

I . Temperature acceleration

Figure 3.1 Activation Energy

I . Temperature acceleration

Cumulative Energy Distribution Function

$$P(T) = \exp(-Ea/kT)$$

In gas chemical reaction, distribution of the energy exceeding Ea is proportional to exp(-Ea/kT).

Thermal energy distribution

I . Temperature acceleration

Chemical reaction model

Reciprocal number of chemical reaction speed

Life=Const
$$\exp(Ea/kT) \propto 1/P(T)$$

Ea; Activation energy (eV)

K; Boltzmann constant $(8.617835 \times 10^{-5} \text{eV/K})$

T; Absolute Temperature (K) $0 \, ^{\circ}C = 273.15 \, \text{K}$

$$\frac{\ln(\text{Life}) = \text{Ea/k*1/T} + \ln(\text{Const})}{\text{Y} = \ln(\text{Life})} = \frac{1}{\text{T}}$$

Gradient will relevant to Ea; Activation Energy

I . Temperature acceleration

How to get the Activation energy?

- (1) Perform reliability test at different temperature
- (2) Plot the life of each temperature
- (3) Calculate the gradient of below graph

Figure 3.2 Graph of the Arrhenius Model

I. Temperature acceleration

Emi plot example (Essential mechanism illustrator)

- (1) Easy input 150°C-2000h, 175°C-200h, 200°C-20h
- (2) Easy Calculation Ea = 1.5875eV
- (3) Easy predict 100 °C-711080h

II. Stress acceleration

Metal Fatigue Destruction Life=Const • S⁻ⁿ

II. Stress acceleration

- (1) Perform reliability test at different stress
- (2) Plot the life of each stress
- (3) Calculate the gradient of below graph

Figure 3.3 Schematic of the Eyring Model

II. Stress acceleration

Emi plot example (Essential mechanism illustrator)

- (1) Easy input 20–200cycles, 50–20cycles, 100–2cycles
- (2) Easy Calculation n= 2.84
- (3) Easy predict 3–48202cycles

III. Stress – Strength model

- (1) Stress in the field will have distribution
- (2) Strength of the Device will have distribution
- (3) If Strength excess the strength, destruction occurs.
- (4) Strength may decrease according to field time.

Figure 3.4 Stress Strength Model

III. Stress – Strength model

- (1) Step Stress test for Stress Strength model
- (2) Quite reasonable high speed acceleration
- (3) Stress stability is really important

Figure 3.5 The Outline of Each Stress Tests

Table 3.5 Distribution of Representative Accelerated Lifetime Tests

Applied Stress Method	Purpose	Accelerated Test	Main Stressor	Failure Mechanism
Constant stress method	stant stress Investigation of High-temperature Temperature the effects of storage test constant stress on a device		Junction degradation, impurities deposit, ohmic contact, inter-metallic chemical compounds	
		Operating lifetime	Temperature	Surface contamination,
		test	Voltage	junction degradation, mobile ions, EMD
			Current	IOIIS, LIVID
		High temperature	Temperature	Corrosion, surface
		high-humidity storage	Humidity	contamination, pinhole
		High temperature high-humidity bias	Temperature	Corrosion, surface
			Humidity	contamination, junction degradation, mobile lons
			Voltage	degradation, mobile ions
Cyclic stress	Investigation of the effects of repeated stress	•	Temperature difference	Cracks, thermal fatigue,
method		cycle	Duty cycle	broken wires and metallization
		Power cycle	Temperature difference	Insufficient adhesive strength
			Duty cycle	of ohmic contact
		Temperature-	Temperature difference	Corrosion, pinhole, surface
		humidity cycle	Humidity difference	contamination
Step stress	Investigation of	Operating test	Temperature	Surface contamination,
method	the stress limit		Voltage	junction degradation, mobile ions, EMD
	can withstand		Current	iono, Livio
		High-temperature	Temperature	Surface contamination,
		reverse bias	Voltage	junction degradation, mobile ions, TDDB

Useful failure function F(t) to estimate reliability?

Generally in the wear out failure period, time until 0.1% of failure occurs is defined as the lifetime.

Weibull distribution

$$f(t) = m t^{(m-1)} / \eta^m \exp(-(t/\eta)^m)$$

 $R(t) = \exp(-(t/\eta)^m)$

Failure rate= $f(t)/R(t) = m t^{(m-1)}/\eta^m$ = $A \cdot t^{(m-1)}$

For self-investigation

Weibull distribution to find the failure rate time dependency

$$F(t) = 1 - \exp(-(t/\eta)^{m})$$

$$\ln(F(t)) = (t/\eta)^{m}$$

$$\log(-\ln(F(t))) = m \cdot \log(t) - m \cdot \log(\eta)$$

$$Y = m \cdot X + C$$

$$Y = \log(-\ln(F(t))) \quad X = \log(t)$$

$$C = -m \cdot \log(\eta)$$

$$R(t) = \exp(-(t/\eta)^{m})$$

$$R(\eta) = \exp(-1)$$

Cumulative Failure rate

$$R(t) = \exp(-(t/\eta)^m)$$

$$R(\eta) = \exp(-1)$$

Figure 3.6 Basic Format of Weibull Probability Paper

- (1) Weibull parameter can be get by chart paper
- (2) We had better to use PC software Emi (easy & accurate)
- (3) PC soft is useful for future prediction too (small m)

Emi; Essential mechanism illustrator

Figure 3.9 Procedure for Use of Weibull Probability

Figure 3.8 Example of Weibull Probability Paper

Emi plot example (Essential mechanism illustrator)

- (1) 10 year η case
- (2) m dependency
- (3) Very small m can be calculated

Emi plot example (Essential mechanism illustrator)

- (1) m = 2 case
- (2) η dependency
- (3) Very small failure rate can be calculated

- (1) m>>1; wear out failure
- (2) m = 1; random failure
- (3) m <<1; initial failure
- (4) m is not constant multiple failure mode or screening reslts

To plot the weibull chart, sample size must be the same

Figure 3.10 Example of Weibull Probability Results

hazard function
$$H(t)$$
 and $R(t)$ $R(t) = \exp(-H(t))$

H(t) is cumulated defect count at time t $\lambda(t_i)$ is failure rate between $t_i \sim t_i + 1$

H (t) =Σ
$$\lambda$$
(t_i)* Δ t_i

Figure 3.11 Basic Format of Weibull Type Cumulative Hazard Paper

H (t) =
$$\Sigma \lambda(t_i)*\Delta t_i$$

= $\Sigma \Delta n(t_i)/(N_i(t_i)_i)*\Delta t_i$
= $\Sigma \Delta n(t_i)/N(t_i)$

Hazard function
H(t) is a function
of each time's
operating count
N and failure
count Δn

Each time's count must not be the same!

Hazard distribution is Log – Log curve

Hazard function of weibull distribution

$$R(t) = \exp(-H(t))$$
Weibull distribution $R(t) = \exp(-(t/\eta)^m)$

$$H(t) = (t/\eta)^m$$

$$Log(H(t)) = m \cdot \log(t) - m \cdot \log(\eta)$$

$$Y = Log(H(t)) \quad X = \log(t) \quad C = -m \cdot \log(\eta)$$

$$Y = mX + C$$

Figure 3.12 Example of Weibull Type Hazard Paper

Hazard distribution to find the failure rate time dependency

Hazard function of weibull distribution

$$R(t) = \exp(-H(t))$$

$$F(t) = 1 - \exp(-H(t))$$

Figure 3.13 Relationship between F(t) and H(t)

Hazard distribution to find the failure rate time dependency

Sample Number	Sequence	Reverse Sequence	Observed Value	Position Parameter Correction	Failure Mode	Hazard Value	Cumulative Hazard \ Hj (ti)		rd Value
	i	Ki = n - i + 1	ti Units (h)	_	Mj	h(ti) %	M ₁ (A)	M ₂ (B)	M ₃
#4	1	10	200		Α	10.0	10.00		
#7	2	9	300		В	11.11		11.11	
#5	3	8	300		Α	12.50	22.50		
#9	4	7	800		С				
#2	5	6	800		Α	16.67	39.17		
#8	6	5	800		С				
#1	7	4	900		В	25.00		36.11	
#3	8	3	1000		С				
#6	9	2	1600		В	50.00		86.11	
#10	10	1	2500		В	100.0		186.11	

Notes: C: Censored Position parameter $\gamma = 0$

Figure 3.14 Fill-in Example of Work Sheet

Hazard distribution to find the failure rate time dependency

						Position parameter $\gamma = ($			
Sample Number	Sequence	Reverse Sequence	Observed Value	Position Parameter Correction	Failure Mode	Hazard Value			
	i	Ki = n - i + 1	ti Units ()	_	Mj	h(ti)	()	M ₂	()

Figure 3.15 Example of Work Sheet Used for Data on Cumulative Hazard Paper

Even if zero failure, it has probability to failure.

60% C.L. failure rate =
$$\frac{J}{\text{Total component hours}}$$
 (3-7)

The unit can be $\%/1,000 \text{ h}, \times 10^{-a}/\text{h}, \text{ or FIT } (1\text{FIT} = 1 \times 10^{-9}/\text{h}).$

Table 3.6 R-J Conversion for 60% C.L. Failure Rate

r	J	r	J	r	J	r	J
0	0.92	4	5.24	8	9.44	21 to 30	1.08
1	2.02	5	6.30	9	10.44	31 to 40	1.06
2	3.11	6	7.32	10	11.5	41 to 50	1.05
3	4.18	7	8.40	11 to 2	20 1.11	50 or greate	er 1.00

Notes: 1. For r over 11, use equation $J = r \times j$.

2. The values in this table can also be obtained by inverse solution of Poisson distribution.

Plot all the data at the same weibull chart.

Figure 3.16 Life Prediction through Weibull Plotting

Table 3.7 Reliability Test Results for SH7034 (HD6437034A)

Classification	Test Item	Test Conditions	Results*
Lifetime test	High-temperature operation	Ta = 125°C, V _{cc} = 5.5 V, t = 1000 h	0/45
	High-temperature storage	Ta = 150°C, t = 1000 h	0/22
	Low-temperature storage	Ta = -55°C, t = 1000 h	0/22
	High-temperature/high- humidity storage	Ta = 65°C RH = 95%, t = 1000 h	0/77
	High temperature/high- humidity bias	Ta = 85°C, RH = 85%, V _{CC} = 5.0 V, t = 1000 h	0/22
Environment test	Temperature cycle	–55°C to 150°C, 200 cycles	0/45
	Thermal shock	0°C to 150°C, 15 cycles	0/22
	Solderability	230°C, 5 s, rosin type flux	0/22
	Solder heat resistivity	Infrared rays reflow 235°C, 10 s	0/22
	Pressure cooker (PCT)	Ta = 121°C, RH = 100%, t = 100 h	0/22
Mechanical test	Lead pull strength	2.5 N, 10 s, 1 time	0/22

Note: * Failure count/sample size.

Table 3.8 Products Using the Same Process as SH7034

Microcontroller Unit	SH7034A, SH7042/43,SH7050				
Microcontroller Peripheral LSI	H8S/2244, H8S/2246, H8S/2655, HD6433048S, HD6473035, HD64411F				

Table 3.9 Failure Data

Time to Failure (h)	No. of Failures (ri)	Remarks
3600	0	Total 200 electronic devices
6000	1	2 samples taken
8640	2	4 samples taken
13140	5	10 samples taken
17520	10	20 samples taken
26280	17	

Table 3.10 Cumulative Hazard Table

Time to Failure (h)	X: In (t)	No. of Failures	Hazard Value: (<i>hi</i>)	Cumulative Hazard Value: <i>H</i> (<i>t</i>	y: In <i>H</i> (t)
6000	8.7	1	0.005 (1/200)	0.005	-5.298
8640	9.06	2	0.010 (2/198)	0.015	-4.12
13140	9.48	5	0.026 (5/194)	0.041	-3.194
17520	9.77	10	0.054 (10/184)	0.095	-2.354
26280	10.18	17	0.104 (17/164)	0.199	-1.614

Get m and η value from hazard analysis

Figure 3.17 Lifetime Distribution from Weibull Cumulative Hazard Paper

Emi plot example (Essential mechanism illustrator)

- (1) $H(t) = \sum \lambda(t i) \Delta t i = \sum \Delta n(t i) / N(t i)$
- (2) Plot H(t) for log log paper.
- (3) Get the most suitable m. (It looks like straight line)

Predict weibull distribution by m and η value of hazard analysis

Figure 3.18 Future Product Life

Emi plot example (Essential mechanism illustrator)

- (1) Plot F(t), by $F(t) = 1 \exp(-H(t))$
- (2) Same in value compared with log-log plot
- (3) Weibull analysis is capable from different sample size

