CPSC/ECE 4780/6780

General-Purpose Computation on Graphical Processing Units (GPGPU)

Lecture 2: Introduction to GPGPU

Recaps of Last Lecture

- 1. What is parallel computing?
- 2. Why use parallel computing?
- 3. What is the computer architecture of parallel computing?
- 4. What is the memory architecture of parallel computing?
- 5. What are the classification of parallel computing models?
- 6. What kind of parallel computing languages are available?
- 7. How to design a parallel program?
- 8. How to evaluate the performance of a parallel program?

Contents of this Lecture

- GPU
- CPU vs. GPU
- GPGPU

Slides Materials

- Programming Massively Parallel Processors A Hands-on Approach, David B. Kirk, Wen-mai W. Hwu
- Introduction to GPU Hardware and to CUDA, Philip Blakely
- GPU Computing with CUDA, Christopher Cooper
- www.NVIDIA.com

What is GPU?

- The "Graphics Processing Unit"
 - A processor that initially specialized for processing graphics
 - Recently evolved towards a more flexible architecture capable of general computations

History of GPUs

- 1990s: Graphics cards for PCs
- 1999: NVIDIA's first GPU
- 2000: Advent of GPGPUs
- 2003: Brook the first programing model to extend C with data-parallel constructs by Ian Buck
- 2007: CUDA (Compute Unified Device Architecture)
- 2010: NVIDIA release Fermi cards more versatile
- 2012: NVIDIA release Kepler cards even more scope for dynamic programming
- 2014: NVIDIA release Maxwell cards more efficient, allowing more cores per GPU
- 2016: NVIDIA release Pascal cards improved bandwidth and unified virtual addressing scheme across GPUs and between CPUs and GPUs

How Does a GPU Look Like?

- NVIDIA GeForce GTX 280 GPU
 - 240 parallel cores
 - Floating point unit
 - Logic unit
 - Move, compare unit
 - Branch unit
 - Heavily multithreaded
 - In-order
 - Single instruction

Architecture of a Modern GPU

Stream Multiprocessor (SM)

Mythbusters Demo GPU versus CPU

Why Should We Use GPUs?

Theoretical GFLOP/s

Improved FLOPS!

CPU/GPU Design Comparison

- CPU: large number of transistors associated with flow control and data caching
- GPU: more transistors are devoted to floating point operations for data processing

CPU/GPU Bandwidth Comparison

Memory Bandwidth for the CPU and GPU

CPU/GPU Perf/Watt Comparison

Traditional CPUs are not economically feasible

CPU/GPU More Comparisons

- Threading resources
 - CPU: 4 quad-core processors supports 16 threads
 - GPU: supports at least 768 threads per multiprocessor
- Threads
 - CPU: heavy contexts switch involving data transfer (slow)
 - GPU: registers are allocated for each thread (fast)
- RAM
 - CPU: memory is accessible by any threads at any time
 - GPU: different types of memory for different purposes with different access strategies

Why Should We Use GPUs? More Reasons

- Improved FLOPs
- Improved bandwidth
- Energy efficient
- Easy accessibility with large market presence
- Improved computing capability
 - Support IEEE floating-point standard
- Programmable using high-level languages
- Large speedup
 - Typically x10
- Relatively cheap

GPU Computing Features

- Fast GPU cycle: New hardware every ~ 18 months
- Requires special programming but similar to C
- CUDA code is forward compatible with future hardware
- Cheap and available hardware
- Important factors to consider: power and cooling!

CPU+GPU Acceleration

Big Speed-up

High Energy Efficiency

Era of GPU accelerated computing is here

GPGPU

- General Purpose Computation on Graphics Processing Units
 - Perform demanding calculations on the GPU instead of the CPU
 - High processing power in parallel
- Key concepts for fast implementation:
 - Maximizing parallel execution
 - Minimizing data transfers between host and device
 - Minimizing memory latency on the device

GPGPU CUDA Applications

Fastest Performance on Scientific Applications

Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs

*MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU

Disclaimer: Non-NVIDIA implementations may not have been fully optimized

GPU Programing

- GPU programming is typically SIMD
- Programming for GPUs requires rethinking algorithms
- Best algorithm for CPU not necessarily best for GPU
- Knowledge of GPU hardware required for best performance
- GPU programming works best if:
 - Perform same operation simultaneously on multiple pieces of data
 - Organize operations to be as independent as possible
 - Arrange data in GPU memory to maximize rate of data access