

Lines and Angles Ex 8.4 Q4 Answer:

The figure is given as follows:

We need to prove that $AB \parallel EF$

It is given that $\angle BAC = 57^{\circ}$ and

$$\angle ACD = \angle ACE + \angle ECD$$

$$\angle ACD = 22\degree + 35\degree$$

$$\angle ACD = 57^{\circ}$$

Thus,

 $\angle ACD = \angle BAC$

But these are the pair of alternate interior opposite angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of alternate interior angles is equal, then the two lines are parallel.

Therefore,

 $AB \parallel CD$ (i)

It is given that $\angle FEC = 145^{\circ}$ and $\angle ECD = 35^{\circ}$

Thus

$$\angle FEC + \angle ECD = 145^{\circ} + 35^{\circ}$$

$$\angle FEC + \angle ECD = 180^{\circ}$$

But these are the pair of consecutive interior opposite angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Therefore,

 $CD \parallel EF$ (ii)

From (i) and (ii), we get:

 $AB \parallel EF$

Hence proved $AB \parallel EF$

Lines and Angles Ex 8.4 Q5

Answer:

The figure is given as follows:

It is given that AB || CD and CD || EF

Thus, $\angle BAC$ and $\angle ACD$ are alternate interior opposite angles. Therefore,

$$\angle ACD = \angle BAC$$

 $\angle ACD = 70^{\circ}$ (i)

Also, we have CD || EF

$$\angle FEC + \angle ECD = 180^{\circ}$$

 $130^{\circ} + \angle ECD = 180^{\circ}$
 $\angle ECD = 180^{\circ} - 130^{\circ}$
 $\angle ECD = 50^{\circ}$ (ii)

From the figure:

$$\angle ACE = \angle ACD - \angle ECD$$

From equations (i) and (ii):

$$\angle ACE = 70^{\circ} - 50^{\circ}$$

$$\angle ACE = \boxed{20^0}$$

Hence, the required value for $\angle ACE$ is $\boxed{20^0}$.

******* END ******