WHAT IS CLAIMED IS:

1	1. A method for depositing a layer on a substrate in a process				
2	chamber, the method comprising:				
3	supplying a gaseous mixture to the process chamber, the gaseous				
4	mixture comprising a silicon-containing gas, a fluorine-containing gas, an oxygen-				
5	containing gas, and a nitrogen-containing gas;				
6	providing energy to the gaseous mixture to deposit a nitrogen-containing				
7	fluorinated silicate glass layer onto the substrate.				
1					
1	2. The method of claim 1 further comprising forming a barrier layer				
2	over the nitrogen-containing fluorinated silicate glass layer.				
1	3. The method of claim 2 further comprising forming a metal layer				
2	over the barrier layer.				
_					
1	4. The method of claim 3 wherein the metal layer comprises				
2	copper.				
1	5. The method of claim 1 wherein the nitrogen-containing gas is				
2	selected from the group consisting of N ₂ , N ₂ O, NH ₃ , and NF ₃ .				
1	6. The method of claim 1 wherein the silicon-containing gas				
2	comprises TEOS, the fluorine-containing gas comprises SiF4, and the oxygen-				
3	containing gas comprises O ₂ .				
1	7. The method of claim 1 wherein the gaseous mixture further				
2	includes an inert gas.				
_	merades and mere gas.				
1	8. The method of claim 1 wherein providing energy comprises				
2	forming a plasma from the gaseous mixture in the process chamber.				
1					
1	9. The method of claim 1 wherein a ratio of a flow rate of the				
2	nitrogen-containing gas into the process chamber to a total flow rate of the gaseous				
3	mixture into the process chamber is less than about 10%.				
1	10. The method of claim 1 wherein the nitrogen-containing				
2	fluorinated silicate glass layer has a nitrogen content of less than about 5 at. %.				

1	11. The method of claim 10 wherein the nitrogen-containing			
2	fluorinated silicate glass layer has a nitrogen content of less than about 1 at. %.			
1	12. The method of claim 11 wherein the nitrogen-containing			
2	fluorinated silicate glass layer has a nitrogen content of less than about 0.1 at. %.			
1	13. The method of claim 12 wherein the nitrogen-containing			
2	fluorinated silicate glass layer has a nitrogen content of about 0.03-0.08 at. %.			
1	14. The method of claim 1 wherein the nitrogen-containing			
2	fluorinated silicate glass layer is formed over a barrier layer.			
1	15. The method of claim 14 wherein the barrier layer is formed over			
2	a metal layer.			
1	16. The method of claim 15 wherein the metal layer comprises			
2	copper.			
1	17. The method of claim 14 wherein the barrier layer comprises at			
2	least one of tantalum and tantalum nitride.			
1	18. A method of forming a layer on a substrate in a process chamber			
2	the method comprising:			
3	forming a fluorinated silicate glass layer over the substrate;			
4	forming a patterned photoresist layer over the fluorinated silicate glass			
5	layer;			
6	etching the fluorinated silicate glass layer according to the patterned			
7	photoresist layer;			
8	removing the photoresist layer and substantially simultaneously			
9	introducing nitrogen dopants into the fluorinated silicate glass layer by subjecting the			
10	photoresist layer and the fluorinated silicate glass layer to a plasma formed from a			
11	nitrogen-containing gas.			
1	19. The method of claim 18 wherein the nitrogen-containing gas is			
2	selected from the group consisting of N ₂ and NH ₃ .			

1		20.	The method of claim 18 wherein the nitrogen-containing gas		
2	comprises at least one of N ₂ and NH ₃ .				
1		21.	The method of claim 18 wherein the plasma contains no oxygen		
2	species.				
1		22.	The method of claim 18 wherein nitrogen dopants are		
2	incorporated	into the	e fluorinated silicate glass layer in a region near a surface of the		
3	fluorinated silicate glass layer which is exposed to the plasma formed from the				
4	nitrogen-containing gas.				
1		23.	The method of claim 22 wherein the region near the surface of		
2	the fluorinate	d silica	ate glass layer has a nitrogen content of less than about 10 at. %.		
1		24.	The method of claim 23 wherein the region near the surface of		
2	the fluorinate	d silica	ate glass layer has a nitrogen content of about 1 to about 5 at. %.		
1		25.	The method of claim 18 further comprising forming a barrier		
2	layer over the nitrogen-containing fluorinated silicate glass layer.				
1		26.	The method of claim 25 wherein the barrier layer comprises at		
2	least one of ta	ıntalun	and tantalum nitride.		
1		27.	The method of claim 25 further comprising forming a metal layer		
2	over the barri	er laye	r.		
1		28.	The method of claim 27 wherein the metal layer comprises		
2	copper.				
1		29.	A substrate processing system comprising:		
2		a hou	sing defining a process chamber;		
3		a subs	strate support configured to support a substrate during substrate		
4	processing;				
5	a gas delivery system configured to introduce gases into the process				
6	chamber, including sources for a silicon-containing gas, a fluorine-containing gas, an				
7	oxygen-containing gas, and a nitrogen-containing gas;				
8	a plasma generating system;				

9	a controller for controlling the plasma generating system, the gas-
10	delivery system, and the pressure-control system; and
11	a memory coupled to the controller, the memory comprising a computer
12	readable medium having a computer-readable program embodied therein for directing
13	operation of the substrate processing system, the computer-readable program including
14	a first set of instructions to control the gas-delivery system to
15	flow a gaseous mixture containing flows of the silicon-containing gas, the fluorine-
16	containing gas, the nitrogen-containing gas, and the oxygen-containing gas;
17	a second set of instructions to control the plasma generating
18	system to generate a plasma from the gaseous mixture; and
19	a third set of instructions to control the substrate processing system to
20	deposit a nitrogen-containing fluorinated silicate glass layer onto the substrate from the
21	plasma generated from the gaseous mixture.
1	30. The substrate processing system of claim 29 wherein the plasma
2	generating system is operatively coupled to the process chamber for generating an <i>in</i>
3	situ plasma from the gaseous mixture in the process chamber, and wherein the substrate
4	support is configured to support the substrate in the process chamber during substrate
5	processing.