ANÁLISE MATEMÁTICA B

Mestrado Integrado em Engenharia Mecânica 1º ano

Séries de Taylor e MacLaurin

Uma série infinita do tipo $\sum_{n=0}^{\infty} a_n (x-a)^n$ com um raio de convergência R

não nulo define uma função f por $f(x) = \sum_{n=0}^{+\infty} a_n (x-a)^n$. Dada uma

função f que pode ser expandida como uma série de potências, então (pela propriedade III do tópico anterior), f é diferenciável no intervalo aberto]a-R,a+R[e temos

$$f'(x) = \sum_{n=1}^{+\infty} na_n(x-a)^{n-1}$$
 para $a - R < x < a + R$.

Reparemos que f não é apenas diferenciável, mas a sua derivada f' pode ser expandida como uma série de potências. Assim, podemos aplicar a propriedade III sucessivamente e vamos obtendo a expansão em série de potências para as diferentes derivadas da função f.

Para a - R < x < a + R,

$$f''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n(x-a)^{n-2},$$

$$f'''(x) = \sum_{n=3}^{+\infty} n(n-1)(n-2)a_n(x-a)^{n-3},$$

$$f^{(4)}(x) = \sum_{n=3}^{+\infty} n(n-1)(n-2)(n-3)a_n(x-a)^{n-4}.$$

Podemos escrever a expressão geral da derivada de ordem k da função f, em a-R < x < a+R como:

$$f^{(k)}(x) = \sum_{n=0}^{+\infty} n(n-1)(n-2)\cdots(n-k+1)a_n(x-a)^{n-k}.$$

Consideremos
$$f(x) = \sum_{n=0}^{+\infty} a_n (x-a)^n$$
 no intervalo $]a-R, a+R[.$

Vejamos que relação existe entre a função f e os coeficientes a_0, a_1, a_2, \cdots da série de potências: calculemos para x = a a derivada de ordem n da função f.

$$f^{(n)}(a) = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1\cdot a_n = (n!)a_n$$

donde

$$a_n = \frac{f^{(n)}(a)}{n!}, \forall n \in \mathbb{N},$$

é a expressão dos coeficientes da série de potências da função f.

Substituindo a expressão dos coeficientes na série de potências, obtemos a expressão de f como uma série de potências em a do tipo,

$$f(x) = \sum_{n=0}^{+\infty} a_n (x - a)^n = \sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

Então a série

$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

é designada por série de Taylor da função f em torno do ponto x=a ou série de Taylor da função f em potências de x-a.

Exemplo 1: Determine o desenvolvimento em série de Taylor da função $f(x) = e^x$ em torno do ponto x = a e indique o seu intervalo de convergência.

Se $f(x) = e^x$, então $f^{(n)} = e^x$, $\forall n \in \mathbb{N}$. Assim, a série de Taylor para e^x em torno do ponto x = a é dada por

$$\sum_{n=0}^{+\infty} \frac{e^a}{n!} (x-a)^n = e^a + e^a (x-a) + \frac{e^a}{2!} (x-a)^2 + \frac{e^a}{3!} (x-a)^3 + \cdots$$

Determinemos o intervalo de validade do desenvolvimento em série de taylor

$$\lim_{n \to +\infty} \left| \frac{e^a (x-a)^{n+1}}{(n+1)!} \cdot \frac{n!}{e^a (x-a)^n} \right| = |x-a| \lim_{n \to +\infty} \frac{1}{n+1} = 0$$

Concluímos que o raio de convergência é $R = +\infty$ e a série é convergente para qualquer número real x. Podemos escrever

$$e^{x} = \sum_{n=0}^{+\infty} \frac{e^{a}}{n!} (x - a)^{n}, \forall x \in \mathbb{R}.$$

Exemplo 2: Determine a série de Taylor para $f(x) = \sin x$ com $a = \pi/4$.

$$f(x) = \sin x, \qquad f(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$f'(x) = \cos x, \qquad f'(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$f''(x) = -\sin x, \qquad f''(\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$

$$f'''(x) = -\cos x, \qquad f'''(\frac{\pi}{4}) = -\cos(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$

$$f^{(4)}(x) = \sin x, \qquad f^{(4)}(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

e assim podemos observar que os coeficientes da série de Taylor são:

$$a_n = \frac{f^{(n)}(\pi/4)}{n!} = \frac{\pm\sqrt{2}/2}{n!} = \pm\frac{\sqrt{2}}{2\cdot n!},$$

onde os sinais mais e menos são alternados em pares.

A série de Taylor $\sum_{n=0}^{\infty} a_n (x - \frac{\pi}{4})^n$ para $\sin x$ com $a = \pi/4$ é dada por

$$f(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) - \frac{\sqrt{2}}{2 \cdot 2!}(x - \frac{\pi}{4})^2 - \frac{\sqrt{2}}{2 \cdot 3!}(x - \frac{\pi}{4})^3 + \frac{\sqrt{2}}{2 \cdot 4!}(x - \frac{\pi}{4})^4 + \cdots$$

$$f(x) = \frac{\sqrt{2}}{2} \left[1 + (x - \frac{\pi}{4}) - \frac{1}{2!} (x - \frac{\pi}{4})^2 + \cdots \right].$$

Ao caso particular da série de Taylor para a=0, dá-se o nome de série de MacLaurin

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

As séries de MacLaurin também se designam por séries de potências de x.

Exemplo 3: Determine a série de MacLaurin para $f(x) = e^x$.

A série de MacLaurin para e^x é apenas a série de Taylor para e^x com a=0.

$$f(x) = e^{x},$$
 $f(0) = e^{0} = 1,$
 $f'(x) = e^{x},$ $f'(0) = e^{0} = 1,$
 $f''(x) = e^{x},$ $f''(0) = e^{0} = 1,$
 $f'''(x) = e^{x},$ $f'''(0) = e^{0} = 1,$

Os coeficientes da série de MacLaurin são dados por $a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{n!}$.

Assim, a série de MacLaurin $\sum_{n=0}^{+\infty} a_n (x-0)^n = \sum_{n=0}^{+\infty} a_n x^n$ para e^x é dada por

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

Alguns exemplos de expansões em séries de potências de x:

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots, \forall x.$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \cdots, \forall x.$$

Observemos que:

$$\cos x = D_x \sin x = D_x \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right)$$

$$= 1 - \frac{3x^2}{3!} + \frac{5x^4}{5!} - \frac{7x^6}{7!} + \cdots$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Exemplo 4: Determine um desenvolvimento em série de potências para $\frac{1-\cos x}{x}$, $x \neq 0$.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots,$$

assim

$$1 - \cos x = \frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} - \dots, \forall x.$$

Temos então para $x \neq 0$,

$$\frac{1 - \cos x}{x} = \frac{1}{x} \left(\frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} - \cdots \right)$$
$$= \frac{x}{2!} - \frac{x^3}{4!} + \frac{x^5}{6!} - \frac{x^7}{8!} + \cdots$$

Exemplo 5: Desenvolver em séries de potências de *x*, as seguintes funções:

a)
$$f(x) = \log(1+x)$$
;

b)
$$g(x) = \log \frac{1+x}{1-x}$$
;

c)
$$h(x) = e^{2x} \log(1+x)$$
.

Soluções:

a)
$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$
;

b)
$$g(x) = 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots);$$

c)
$$h(x) = x + \frac{3}{2}x^2 + \frac{4}{3}x^3 + \cdots$$

Exemplo 6: Considere o desenvolvimento em série de potências dado por:

$$(1+x)^r = 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \cdots \quad |x| < 1, r \in \mathbb{R}.$$

Use os primeiros três termos da série para aproximar $\sqrt[3]{28}$. Dê um limite para o erro cometido.

Vamos transformar $\sqrt[3]{28} = \sqrt[3]{27+1} = \sqrt[3]{27\left(1+\frac{1}{27}\right)} = 3\sqrt[3]{1+\frac{1}{27}}$, fazendo x=1/27, obtemos

$$\sqrt[3]{1 + \frac{1}{27}} \approx 1 + \frac{1}{3} \left(\frac{1}{27}\right) - \frac{1}{9} (\frac{1}{27})^2 = \frac{6641}{6561}$$

Nota: Se $\sum (-1)^n a_n$ é uma série alternada, tal que $a_{k+1} < a_k$, $\forall k$ e $\lim_{n \to \infty} a_n = 0$, então o erro cometido ao aproximarmos a soma S da série pela soma parcial de ordem n, S_n é numericamente inferior a $|a_{n+1}|$. Assim,

$$\sqrt[3]{28} = 3\sqrt[3]{1 + \frac{1}{27}} \approx 3\left(\frac{6641}{6561}\right) = 3,036579\cdots$$

Ao usarmos esta aproximação estamos a cometer um erro inferior a

$$|a_{n+1}| = 3 \cdot \frac{5}{81} \left(\frac{1}{27}\right)^3 < 0.0000095.$$

O valor real de $\sqrt[3]{28}$ é 3,03658897.