Lab on 5 May

KUMAR GAURAV 20122065

Loading Libraries

```
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import OrdinalEncoder
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading dataset

df = pd.read_csv("/content/drive/MyDrive/Classroom/MSc 2020- Machine Learning MSc Semester
df.head()

	State	Year	Data.Population	Data.Rates.Property.All	Data.Rates.Property.Burg
0	Alabama	1960	3266740	1035.4	:
1	Alabama	1961	3302000	985.5	:
2	Alabama	1962	3358000	1067.0	:
3	Alabama	1963	3347000	1150.9	:
4	Alabama	1964	3407000	1358.7	

Glimpse of dataset

'Data.Rates.Violent.Rape', 'Data.Rates.Violent.Robbery', 'Data.Totals.Property.All', 'Data.Totals.Property.Burglary', 'Data.Totals.Property.Larceny', 'Data.Totals.Property.Motor', 'Data.Totals.Violent.All', 'Data.Totals.Violent.Assault', 'Data.Totals.Violent.Murder', 'Data.Totals.Violent.Rape', 'Data.Totals.Violent.Robbery'], dtype='object')

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2751 entries, 0 to 2750 Data columns (total 21 columns):

Data	columns (cocal 21 columns).			
#	Column	Non-Null Count	Dtype	
0	State	2751 non-null	object	
1	Year	2751 non-null	int64	
2	Data.Population	2751 non-null	int64	
3	Data.Rates.Property.All	2751 non-null	float64	
4	Data.Rates.Property.Burglary	2751 non-null	float64	
5	Data.Rates.Property.Larceny	2751 non-null	float64	
6	Data.Rates.Property.Motor	2751 non-null	float64	
7	Data.Rates.Violent.All	2751 non-null	float64	
8	Data.Rates.Violent.Assault	2751 non-null	float64	
9	Data.Rates.Violent.Murder	2751 non-null	float64	
10	Data.Rates.Violent.Rape	2751 non-null	float64	
11	Data.Rates.Violent.Robbery	2751 non-null	float64	
12	Data.Totals.Property.All	2751 non-null	int64	
13	Data.Totals.Property.Burglary	2751 non-null	int64	
14	Data.Totals.Property.Larceny	2751 non-null	int64	
15	Data.Totals.Property.Motor	2751 non-null	int64	
16	Data.Totals.Violent.All	2751 non-null	int64	
17	Data.Totals.Violent.Assault	2751 non-null	int64	
18	Data.Totals.Violent.Murder	2751 non-null	int64	
19	Data.Totals.Violent.Rape	2751 non-null	int64	
20	Data.Totals.Violent.Robbery	2751 non-null	int64	
<pre>dtypes: float64(9), int64(11), object(1)</pre>				
	454 5 1/5			

memory usage: 451.5+ KB

df.describe()

	Year	Data.Population	Data.Rates.Property.All	Data.Rates.Property.Bu
count	2751.000000	2.751000e+03	2751.000000	2751.0
mean	1986.043621	9.349570e+06	3686.538750	931.:
std	15.279324	3.368126e+07	1427.899631	442.4
min	1960.000000	2.261670e+05	573.100000	182.6
25%	1973.000000	1.208000e+06	2613.400000	592.
50%	1986.000000	3.282000e+06	3670.000000	870.6
75%	1999.000000	5.840286e+06	4579.150000	1183.
max	2012.000000	3.139140e+08	9512.100000	2906.

df.State.value_counts()

Oklahoma	53
Wyoming	53
Nevada	
	53
North Dakota	53
Louisiana	53
New Mexico	53
New Jersey	53
_	
Tennessee	53
Idaho	53
Alaska	53
Nebraska	53
Ohio	53
Illinois	53
New Hampshire	53
California	53
Florida	53
Mississippi	53
Colorado	53
Oregon	53
Connecticut	53
Utah	53
Missouri	53
West Virginia	53
Indiana	53
South Carolina	53
Hawaii	53
South Dakota	53
	53
Wisconsin	
Maine	53
Minnesota	53
North Carolina	53
Vermont	53
Arizona	53
Pennsylvania	53
Massachusetts	53
Montana	53
District of Columbia	53
Rhode Island	53
United States	53
Kansas	53
Kentucky	53
Georgia	53
Texas	53
Washington	53
Delaware	53
Iowa	53
Maryland	53
Alabama	53
Virginia	53
_	
Arkansas	53
Michigan	53
New York	48
Name: State, dtype: int	64
, ,,	

[#] separating property related features for visualization

df_property = df[['State','Year','Data.Rates.Property.All','Data.Rates.Property.Burglary',

'Data.Totals.Property.Burglary', 'Data.Totals.Property.Larceny', 'Data.Totals.Prop

```
# separating violent related features for visualization

df_violent = df.drop(df_property,axis=1)

df_violent[['State','Year']] = df[['State','Year']]

df_violent.head()
```

	Data.Population	Data.Rates.Violent.All	Data.Rates.Violent.Assault	Data.Rates.V
0	3266740	186.6	138.1	
1	3302000	168.5	128.9	
2	3358000	157.3	119.0	
3	3347000	182.7	142.1	
4	3407000	213.1	163.0	

```
# Encoding `State` variable

ord_enc = OrdinalEncoder()
df["State_enc"] = ord_enc.fit_transform(df[["State"]])

df.drop("State",axis=1,inplace=True)
df.sample(10)
```

	Year	Data.Population	Data.Rates.Property.All	Data.Rates.Property.Burglary
328	1970	3032217	3319.0	1084.2
1277	1965	2321000	807.1	285.5
540	1970	4589575	2577.1	899.9
2174	1966	682000	1430.6	318.9
2110	2008	1050788	2845.0	548.7
614	1991	1135000	5728.6	1234.4
1437	1966	1456000	1861.0	420.1
577	2007	9544750	3889.6	946.0
176	1977	2144000	3018.1	972.6
194	1995	2484000	4137.7	996.9

▼ Visualizations

▼ 1. Property related variables

Most rate of crimes related to property took place in the District of Columbia followed by Arizona

Least can be seen in West Virginia followed by North and South Dakota, as seen from the above graph

From the above graph, it is seen that from 1960's there is an increasing trend in the rate of property crimes which gradually increased until 1980's and then it started to decline. In the year 2012, rate is less than 3000.

```
plt.figure(figsize=(20,15))
```

```
sns.heatmap(dt.corr(),annot=True)

plt.figure(figsize=(20,15))
sns.set_theme(style="whitegrid")
sns.barplot("Data.Rates.Property.Burglary","State",data=df_property,orient='h')
plt.show()
```

In Columbia and District of Columbia, the rates of property Burglary is seen the highest North Dakota followed by South Dakota are states having minimum rates of Burglary

- List item
- · List item

```
plt.figure(figsize=(20,15))
sns.set_theme(style="whitegrid")
sns.barplot("Data.Rates.Property.Larceny","State",data=df_property,orient='h')
plt.show()
```

Maximum rate of property Larcency is seen in the case of District of Columbia followed by Arizona

Minimum rate or property Larcency is seen in West Virginia

```
plt.figure(figsize=(20,15))
sns.set_theme(style="whitegrid")
sns.barplot("Data.Rates.Property.Motor","State",data=df_property,orient='h')
plt.show()
```

District of Columbia is seen on the top having maximum rate of motor crimes

least is for South Dakota

```
df_property.columns

plt.figure(figsize=(20,15))
sns.set_theme(style="whitegrid")
sns.barplot("Data.Totals.Property.All","State",data=df_property,orient='h')
plt.show()
```

```
# Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(df)
    # inertia method returns wcss for that model
    wcss.append(kmeans.inertia_)
plt.figure(figsize=(10,5))
sns.lineplot(range(1, 11), wcss,marker='o',color='blue')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
# Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 2, init = 'k-means++', random_state = 42)
y kmeans = kmeans.fit predict(df)
y_kmeans
y_k=pd.Series(y_kmeans)
kmeans.cluster_centers_
out=pd.DataFrame(y kmeans)
pd.concat([df, out],axis=1)
df = pd.concat([df,y kmeans],axis=1)
plt.figure(figsize = (20,10))
df = np.array(df)
plt.scatter(df[y \text{ kmeans} == 0,0], df[y \text{ kmeans} == 0,1], s = 50, c = 'green', label = "High inc
plt.scatter(df[y_kmeans == 1,0],df[y_kmeans == 1,1],s = 50, c = 'blue', label = "medium in
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1], s = 100, c = "yello"
plt.xlabel("Anual income(k$) -- >")
plt.ylabel("spending score out of 100 -- >")
plt.legend()
plt.show()
```

1 1s completed at 5:17 PM

• ×