Skladišta podataka

- Relacijski model ne može pružiti bogate analitičke sposobnosti koje moderna poslovanja zahtijevaju.
- Skladište podataka jest subjektno orijentiran, integriran, postojan i vremenski različit skup podataka koji služi kao potpora odlučivanju.
- Razlike transakcijski sustav / skladišta podataka

 o Trenutni podaci / Povijesni podaci

 o Podaci promjenjivi / Podaci postojani

 o Velika učestalost transakcija / Srednja i mala uč. Transakcija

 o Predvidljivo korištenje / Nepredvidljivo korištenje
- Prikaz podataka u dimenzijskom modelu predstavlja podatke u jednostavnom, intuitivnom obliku za dobar pregled
 - Zvjezdast Činjenična tablica u sredini (Normalizirana, velik broj zapisa), okolo dimenzijske tablice (Ne normalizirane, mali broj zapisa), činj. tablica sadrži
 - Ključeve FK na dimenzijske tablice
 - Mjere numeričke vrijednosti
 - o Pahuljast nije normaliziran
- Prednost dimenzijskog
 - o Predvidljiva, standardizirana struktura, omogućuje gomilu programa
 - o Lako proširiv model
 - Otporan na neočekivane korisničke akcije
- Najzahtjevniji proces ETL (Extracting, Transformation, Loading)
- OLAP On Line Analytical Processing analize, izvještaji, struktura kocke,
 - o F fast
 - o A analiza, kompleksna poslovna logika ali lako korištenje
 - S šeranje, tajnost podataka
 - o M multidimenzijski, potpora za višestruke hijerarhije
 - Dalam I information, koliko ulaznih podataka može podnijeti, ne koliko troši na pohranu
- Modeli:
 - o ROLAP relational OLAP agregati i podaci u relacijske
 - MOLAP multidimensional OLAP agregati i podaci na OLAP server
 - o HOLAP hybrid OLAP agregati OLAP, podaci relacijska

Data mining

- Proces otkrivanja i izlučivanja znanja iz velikih baza podataka
- Financijske aplikacije, proizvodne aplikacije, medicinske aplikacije...
- Osnovni modeli
 - o Regresija kvantificira odnos između dvije varijable
 - o Razvrstavanje kao drvo, na temelju ulaza dobijemo izlaz (velika mudrost)
 - o Grupiranje K najbližih susjeda, pridruživanje najbližim centrima
 - Asocijativna pravila A -> B, u market-basket analysis

Business Intelligence

- Način kako iskoristiti 90% inače ne analiziranih podataka
- Podaci -> informacije
- Široka kategorija aplikacija i tehnologija koje pospješuju poslovne odluke, a svrha im je skupljanje, analiza i dijeljenje informacija
- Sustavi za podršku odlučivanju, OLAP, statistička analiza, predviđanje, dubinska analiza

Peer-2-peer sustavi

- Svojstva
 - o Koriste raspodijeljena sredstva da obave zadaću na decentralizirani način
 - o Računalna snaga, podaci, mrežna propusnost, prisutnost...
 - o Stara ideja, ali zamah tek nedavno
 - Skalabilnost proširivati moguće do u nedogled
 - Anonimnost skriveni putovi, enkripcija,
 - Samoorganizacija
 - o Cijena vlasništva SETI@home 1% cijene super računala
 - Namjenska spojnost
 - Učinkovitost temeljni problem je usmjeravanje poruka unutar mreže
 - o Sigurnost osigurati korisnika, a opet zaobići firewall
 - o Transparentnost imenovanja, administriranja, platforme
 - Otpornost na pogreške single point of failure [decentralizacijom], nedostupnost sadržaja, maliciozno ponašanje...
 - Interoperabilnost slabo zasad, JXTA dobri temelji
- Definicija
 - Dijeljene računalnih resursa i usluga direktnom razmjenom između sustava
- Struktura
 - Strukturirani globalna raspodijeljena tablica raspršivanja, čvor se brine za podskup, logaritamski broj skokova potrebnih za nalazak podatka
 - Nestrukturirani random veze
 - Polustrukturirani
- Generacije
 - o 1. jedno ili više centralnih poslužitelja
 - o 2. decentralizacija
 - o 3. anonimnost korisnika
- Povijest
 - o UseNet 1979. članci
 - o DNS 1983.
 - o FidoNet 1984.
 - o ICQ 1996. chat (centralni poslužitelj uspostavlja vezu)
 - o SETI@home 1999. analiziraju slike teleskopa, 5,000,000 korisnika
 - o FreeNet 1999. 3. Generacija
 - o Napster 1999. centralizirana arhitektura danas legalan za razmjenu glazbe
 - ⊙ Gnutella 2000. 2. Generacija
 - o eDonkey 2000.

- o FastTrack 2001. superčvorovi, ugašena
- o BitTorrent 2001. ptopuno decentrailiziran, uz n centraliziranih računala
- Tablice raspršenog adresiranja neće bit

Semantički web

Ideja o mogućnosti da podaci na webu budu definirani i povezani na način na koji bi se mogli koristiti za automatizaciju, integraciju i ponovnu iskoristivost u različitim aplikacijama.

- RDF resource description framework
 - Subjekt predikat objekt
 - o Trojna notacija, XML notacija, graf
- Ontologija model podataka koji predstavlja skup pojmova unutar neke domene i veze među tim pojmovima
 - o RDF iskazivanje tvrdnji
 - o RDFS vokabular
 - OWL opisivanje veza između vokabulara, ograničenja...
 - Proširuje mogućnosti RDF-a i RDFS-a
 - Ograničenja
 - Preslikavanja
 - Složeni razredi
 - GRDDL XML->RDF
 - o D2RQ baza -> RDF
 - Upit SPARQL endpoint -> RDF
- RDF spremišta
 - o In memory Jena, Sesame
 - Prirodna najbolje performanse Virtuoso, Sesame Native, Oracle 11g, Allegro graph
 - o Baze Jena + (mySql, PostgreSQL, Oracle, DB2)

XQuery

```
for $varijabla in doc(,,/put/")/root/some-child//some-descendant
for $varijabla in doc()//tag[@atribut="asda"]/tag[vrijednost>5]
for $varijabla in doc()//tag[podelement]

let $sub := $varijabla/some-sub-tag

where $sub/vrijednost > 8

return <element>{concat($sub/@attr, $sub/podElementData)}</element>
return <element>{ for statement } </element>
return <element>{ dana($/sub/../../nekitag) }</element>
```

00 baze

```
var n = new Natjecatelj();
db.Store(n);
var grupa = db.Query<Grupa>( p => p.Name == "al").Single();
grupa.Add(n);
db.Store(grupa);

var query = db.Query();
query.Constrain(typeof(Grupa));
query.Descend("propertyName").Descend("anotherProperty").Constrain("maraton").Equal();
var result = query.Execute();
query.Descend("naziv").Constrain("B").StartsWith().Or(otherQuery...)
Db4o.Configure().ObjectClass
```

GIS

- ST_Area(geom)
- ST_Touches(geom,geom)
- ST_Within(geom, geomContainer)
- ST_Equals(geom, geom)
- ST_GeometryType(geom)
- ST_Distance(geom)

OR - mapiranje

Pljuga

Objektno relacijske

```
CREATE ROW TYPE tKnjiga (

ime LIST(tAuthor NOT NULL),
drugo SET(CHAR(20) NOT NULL),
vezni ROW(naz TIP, prp TIP ...)

CREATE TABLE Knjiga OF TYPE tKnjiga;

INSERT INTO Knjiga VALUES( LIST{ROW(...),ROW(...)}, SET{",","}...

CREATE ROW TYPE subType UNDER tKnjiga;

CREATE TABLE sss OF TYPE subType UNDER Knjiga;

CREATE TABLE sss OF TYPE subType UNDER Knjiga;

CREATE FUNCTION povrsina(krug tKrug) RETURNING FLOAT;
RETURN krug.fdklklsdlg;

END FUNCTION;

SELECT * from Knjiga
WHERE 'df' NOT IN drugo

SELECT CARDINALITY(ime) from Knjiga
```