Modern amplitude techniques

Taro V. Brown^a

^aDepartment of Physics, UC Davis, One Shields Avenue, Davis, CA 95616, USA

E-mail: taro.brown@nbi.ku.dk

ABSTRACT: Notes on modern amplitude techniques written as part of a research project with Jaroslav Trnka.

Contents

1	Roc	cursion Relations	า
1		BCFW-recursion	3
	1.2	Example of BCFW-recursion	4

1 Recursion Relations

On-shell recursion is a systematic procedure for relating an amplitude to its values at singular kinematics. In order to probe these kinematic configurations we define a momentum shift, which is a one-parameter deformation of the external momenta engineered to sample various kinematic limit.

A shift of the form

$$p_i \to p_i(z) = p_i + zq_i, \quad z \in \mathbb{C}.$$
 (1.1)

Not all momenta have to be shifted and we restrict the shifted momenta to satisfy momentum conservation as well as being on-shell

$$\sum_{i} p_i(z) = 0, \qquad p_i(z)^2 = 0 \tag{1.2}$$

This implies the following for the shifts q_i

$$\sum_{i} q_i = 0, \qquad q_i^2 = q_i p_i = 0. \tag{1.3}$$

These conditions preserve the kinematics of the corresponding shifted amplitude

$$A \to A(z) \tag{1.4}$$

We can obtain the original amplitude from the residue

$$A(0) = \oint_{z=0} dz \frac{A(z)}{z}.$$
 (1.5)

One can think of the contour integral as a deltafunction in the point z = 0.

Using Cauchy's theorem this can be expressed as minus the sum of all the other residues

$$A(0) = -\sum_{I} \operatorname{Res}_{z=z_{I}} \left[\frac{A(z)}{z} \right] + B_{\infty}, \tag{1.6}$$

where B_{∞} is a boundary term that vanishes when $A(z) \to 0$ for $z \to \infty$. This will be another condition on what variables we shift.

If we take a subset of momenta $\{p_i\}_{i\in I}$ and define the sum over these

$$P_I \equiv \sum_{i \in I} p_i, \tag{1.7}$$

then we can also defined the shifted momenta $P_I(Z)$

$$P_I(z) = \sum_{i \in I} p_i(z) = P_I + zQ_I, \quad \text{with } Q_I = \sum_{i \in I} q_i$$
 (1.8)

For simplicity we will assume $q_i q_j = 0$ leading to $Q_I^2 = 0$. In this case $P_I(z)^2$ is linear in z

$$P_I(z)^2 = (P_I + zQ_I)^2 = P_I^2 + zP_IQ_I = -\frac{P_I^2}{z_I}(z - z_I),$$
(1.9)

where we have defined $z_I \equiv -\frac{P_I^2}{2P_IQ_I}$.

For some reason the amplitude should factorize into a product of two lower point on-shell amplitudes when $z = z_I$ and $P_I^2(z)$ goes on-shell

$$\lim_{z \to z_I} A(z) = A_L(z_I) \frac{1}{P_I^2(z)} A_R(z_I) = -\frac{z_I}{z - z_I} A_L(z_I) \frac{1}{P^2} A_R(z_I)$$
 (1.10)

Using this to take the residue at $z = z_I$

$$= -\operatorname{Res}_{z=z_I} \left[\frac{A(z)}{z} \right] = \operatorname{Res}_{z=z_I} \left[\frac{z_I}{z(z-z_I)} A_L(z_I) \frac{1}{P_I^2} A_R(z_I) \right]$$
(1.11)

The residue is found by multiplying by $(z - z_I)$ and setting $z = z_I$. Summing over all residues we find the amplitude

$$A(0) = \sum_{I} A_{L}(z_{I}) \frac{1}{P_{I}^{2}} A_{R}(z_{I}) + B_{\infty}$$
(1.12)

The boundary contribution B_{∞} has no similar general expression in terms of lowerpoint amplitudes and the simplest way to make it vanish is by requiring

$$A(z) \to 0, \quad \text{for } z \to \infty$$
 (1.13)

If this holds then

$$A = \sum_{I} A_{L}(z_{I}) \frac{1}{P_{I}^{2}} A_{R}(z_{I}) = \sum_{\text{Diagrams } I} \hat{P}_{I}$$

$$(1.14)$$

1.1 BCFW-recursion

A particular recursion technique used often is called BCFW recursion. In four dimensions this can be implemented in the spinor-helicity basis. Denoting the shifted variables by a hat, the shifts that we will employ are

$$|\hat{i}] = |i| + z|j|, \quad |\hat{j}] = |j|, \quad |\hat{i}\rangle = |i\rangle, \quad |\hat{j}\rangle = |i\rangle - z|j\rangle$$
 (1.15)

1.2 Example of BCFW-recursion

As an example, let us calculate the amplitude $A_5(1_g^+, 2_g^-, 3_g^+, 4_g^-, 5_g^-)$ Since we are dealing with an $\overline{\text{MHV}}$ amplitude we can immediately read of the good shift since the shifts

$$|1] \to |\hat{1}] = |1] + z|5]$$
 (1.16)

$$|5\rangle \to |\hat{5}\rangle = |5\rangle - z|1\rangle$$
 (1.17)

will shift the amplitude by

$$A_5(1^+, 2^-, 3^+, 4^-, 5^-) = \frac{[13]^4}{[12][23][34][45][51]} \to \frac{\langle ([13] + z[53])^4 \rangle}{([12] + z[52])[23][34][45]} \sim z^3$$

While the shifts

$$|5| \to |\hat{5}| = |5| + z|1|$$
 (1.18)

$$|1\rangle \to |\hat{1}\rangle = |1\rangle - z|5\rangle$$
 (1.19)

will shift the amplitude by

$$A_5(1^+,2^-,3^+,4^-,5^-) = \frac{[13]}{[12][23][34][45][51]} \to \frac{[13]^4}{[12][23][34]([45]+z[41])([51]+z[11])} \sim \frac{1}{z}$$

Now since we want $A \to 0$ for $z \to \infty$ the good shift is the second one, meaning [5] $|1\rangle$ which corresponds to a $[-,+\rangle$ shift in Elvangs notation. We could have seen the good shifts by little group scaling of the amplitude since leg one has little group weight 1 and so will the amplitude under a shift will scale like z if we shift the square brackets The corresponding diagrams are

Looking at the first diagram we see that it contains a 3-point MHV amplitude

$$A_3(1^+, 2^-, -\hat{P}_{12}^-) = \frac{\left\langle 2\hat{P}_{12} \right\rangle^3}{\left\langle \hat{1}2 \right\rangle \left\langle \hat{P}_{12} \hat{1} \right\rangle}$$
(1.20)

Since we impose that the propagating momentum is on shell we see that

$$0 = \hat{P}_{12} = \langle \hat{1}2 \rangle [\hat{1}2] = \langle \hat{1}2 \rangle [12]$$

So the only way to impose on shell conditions is by setting $\langle \hat{1}2 \rangle = 0$ similarly one can show that the numerator vanishes and we must have

$$A_3(1^+, 2^-, -\hat{P}_{12}^-) = 0$$

which means the first diagram doesn't contribute. For the second diagram we also have a 3-point MHV amplitude, but in this case the shift is in [5] so the sub-diagram isn't zero.

We can then proceed to calculate the second diagram explicitly

$$A_{5}(1^{+}, 2^{-}, 3^{+}, 4^{-}, 5^{-}) = A_{3}(\hat{P}_{45}^{+}, 4^{-}, \hat{5}^{-}) \frac{1}{P_{45}^{2}} A_{4}(\hat{1}, {}^{+}, 2^{-}, 3^{+}, -\hat{P}_{45}^{-})$$

$$= \frac{\langle 4\hat{5}\rangle^{3}}{\langle \hat{P}_{45} 4 \rangle \langle \hat{5}\hat{P}_{45} \rangle} \frac{1}{\langle 45\rangle [45]} \frac{[\hat{1}3]^{4}}{[\hat{1}2][23][3\hat{P}_{45}][\hat{P}_{45}\hat{1}]}$$

Since the shift is in [5,1) we can remove the hat on all but the P's:

$$A_{5}(1^{+}, 2^{-}, 3^{+}, 4^{-}, 5^{-}) = \frac{\langle 45 \rangle^{3}}{\langle \hat{P}_{45} 4 \rangle \langle 5 \hat{P}_{45} \rangle} \frac{1}{\langle 45 \rangle [45]} \frac{[13]^{4}}{[12][23][3 \hat{P}_{45}][\hat{P}_{45}1]}$$
$$= \frac{\langle 45 \rangle^{3}}{\langle \hat{P}_{45} 4 \rangle \langle 5 \hat{P}_{45} \rangle} \frac{1}{\langle 45 \rangle [45]} \frac{[13]^{4}}{[12][23][3 \hat{P}_{45}][\hat{P}_{45}1]}$$

We can the rewrite the \hat{P} terms in the following way:

$$\left\langle \hat{P}_{454} \right\rangle \left[\hat{P}_{451} \right] = -\left\langle 4\hat{P}_{45} \right\rangle \left[\hat{P}_{451} \right] = \left\langle 4|\hat{P}_{45}|1 \right] = \left\langle 4|4+\hat{5}|1 \right] = \left\langle 4|\hat{5}|1 \right] = -\left\langle 4\hat{5} \right\rangle \left[\hat{5}1 \right] = -\left\langle 45 \right\rangle \left[$$

where we in the first terms have used the fact that $|\hat{5}\rangle = |5\rangle$ and $[\hat{5}1] = [51] + z[11] = [51]$, while in the second term using $\langle 5\hat{5}\rangle = \langle 55\rangle = 0$. Inserting this into the amplitude we get

$$A_5(1^+, 2^-, 3^+, 4^-, 5^-) = \frac{[13]^4 \langle 45 \rangle^3}{[12][23][45] \langle 45 \rangle^3 [51][34]}$$
$$= \frac{[13]^4}{[12][23][34][45][51]}$$

which is the expected result.

Part b

The soft-limit factorization for tree amplitudes is that for $k_s \to 0$ we can write an n-point amplitude as

$$A_n^{\text{tree}}(1, 2, \dots, a, s^{\pm}, b, \dots, n) = \mathcal{S}(a, s^{\pm}, b) \times A_{n-1}^{\text{tree}}(1, 2, \dots, a, b, \dots, n)$$
 (1.21)

where

$$S(a, s^+, b) = \frac{\langle ab \rangle}{\langle as \rangle \langle sb \rangle}, \qquad S(a, s^-, b) = -\frac{[ab]}{[as][sb]}$$
(1.22)

Here this gets us

$$A_5(1^+, 2^-, 3^+, 4^-, 5^-) = -\frac{[41]}{[45][51]} \times \frac{[13]^4}{[12][23][34][41]}$$

which is a valid factorization of the full result.

In the collinear limit for leg 1 and 2 we have the two momenta k_1 and k_2 that become parallel with intermediate momentum k_P . The spinors also have the following relations

$$\begin{split} \lambda_a &\simeq \sqrt{z} \lambda_P, & \lambda_b &\simeq \sqrt{1-z} \lambda_P \\ \tilde{\lambda}_{\dot{a}} &\simeq \sqrt{z} \tilde{\lambda}_P, & \tilde{\lambda}_{\dot{b}} &\simeq \sqrt{1-z} \tilde{\lambda}_P \end{split}$$

taking the amplitude we calculated in part a and shifting it in this limit gives

$$A_5(1^+,2^-,3^+,4^-,5^-) \to \frac{z^2}{\sqrt{z(1-z)}[12]} \frac{[P3]^4}{[P3][34][45][5P]}$$

which is the result we expected from Dixon:

$$A_n^{\text{tree}}(\dots, a^{\lambda_a}, b^{\lambda_b}, \dots) \to \sum_{\lambda_p = \pm} \text{Split}_{-\lambda_P}(a^{\lambda_a}, b^{\lambda_b}; z) A_{n-1}^{\text{tree}}(\dots, P^{\lambda_P}, \dots)$$
 (1.23)

where

$$Split_{-}(a^{+}, b^{-}) = \frac{z^{2}}{\sqrt{z(1-z)[ab]}}$$
(1.24)

References

[1] N. E. J. Bjerrum-Bohr, J. F. Donoghue and P. Vanhove, "On-shell Techniques and Universal Results in Quantum Gravity," JHEP **02** (2014), 111 doi:10.1007/JHEP02(2014)111 [arXiv:1309.0804 [hep-th]].