Mathematical Formula Sheet A Book of High School and Engineering Common Course Mathematical Formulae

Agnij Mallick

December, 2020

Contents

Ι	Al	gebra		1
1	Log	arithn	1	2
	1.1	Basic	Formulae	2
	1.2	Series		2
2	Cor	nplex	Number	3
	2.1	Basic	Formulae	3
	2.2	Arithr	metic Operation of Complex Number	3
	2.3	Euler'	s Formula	3
	2.4		nometric Ratios in Complex Form	4
	2.5	De Mo	pivre's Formula	4
	2.6	Applie	cation of Euler's and De Moivre's Formula	4
	2.7	Roots	of Unity	4
	2.8	Impor	tant Relations of Complex Numbers	4
3	Pro	gressio	on	5
	3.1	_	metic Progression (A.P.)	5
		3.1.1	Sum of A.P. Series	5
		3.1.2	Important Relation	5
	3.2	Geom	etric Progression (G.P.)	5
		3.2.1	The Value of 'r'	6
		3.2.2	Sum of a G.P. Series	6
		3.2.3	Important relations	6
	3.3	Harmo	onic Progression (H.P.)	6
	3.4	Arith	metico-Geometric Progression (A.G.P.)	6
		3.4.1	Sum of A.G.P.:	6
	3.5	Specia	d Series	7
		3.5.1	Riemann Zeta Function	7
		3.5.2	Riemann's Infinite Series as an Integration	7
4	Tes	t of Co	onvergence of Infinite Series	8
	4.1		tion	8
	4.2		of Convergence	8
		4.2.1	Comparison Test	8
		4.2.2	Limit Form	8
		4.2.3		9

٠	
1	1
1	u

		4.2.4	Ratio Test	. 9	
		4.2.5	D'Alembert's Ratio Test	. 9	
		4.2.6	Rabbe's Test		
		4.2.7	Cauchy's Root Test		
		4.2.8	Logarithmic Test	. 10	
5	Det	ermina	ants	11	
	5.1	Definit	tion	. 11	
		5.1.1	Minor and Cofactor		
	5.2		tant Properties		
	5.3		er's Rule		
		5.3.1	Consistency Test	. 13	
6	Mat	trices		14	
	6.1		of Two Matrices	. 14	
	6.2	_	plication of Two Matrices	1.4	
			Multiplicative Deposition		
	6.3		Multiplicative Properties		
	6.4		n's Rule		
				. 10	
7			Theorem	16	
	7.1	-	nsion of a binomial expression	. 16	
	7.2		mial Expansion		
	7.3		rties of Coefficients		
	7.4		l's Rule		
8	Boo	lean A	Algebra	18	
9	Ron	nainda	er Theorems	19	
J	9.1		inder Theorem		
	9.2		s Remainder Theorem		
		9.2.1	Euler's Totient Function		
	9.3	Wilson	n Theorem	. 20	
TT	\mathbf{C}	o-Ord	linate Geometry	22	
			·		
10	2-D	Co-or	rdinate Geometry	23	
11 Triangles 2					
12	2 Straight Line				
13	Gen	ieral T	Theory of Second Degree Equation	27	

14	Con	ics	28
			28
		r · · · · · · · · · · · · · · · · · · ·	28
	14.3		29 29
		<i>J</i> 1	29 29
			29
15	Circ		30
			30 30
			30 30
			30
		•	
16	Vect		32
	-		32 32
	-		32
	10.5		32
			33
	16.4	Test of Co-planarity	33
1 =	0 D		
11		Geometry Distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$:	34
			34
	11.2	Section Formula of a Line Segment Divided in the ratio $m:n$	34
	17.3	Centroid of a Triangle	, 1
			34
10	т•	' a D C	
18		e in 3-D Space Angle between Two Lines	35
	10.1	9	35
	18.2		35
		•	36
		18.3.1 The shortest distance between r_1 and r_2	
			36
		18.3.2 Cartesian Form	36
		18.3.3 Distance Between Parallel Lines)()
			36
		18.3.4 Distance of a Point to a Line	36
			O
19	3-D	Plane	37
		9	37
	19.2		37
		19.2.1 Catesian Form	37

1V	

19.2.2 Vector Form	38
III Statistics	39
20 Statistics	40
21 Lines of Regression	41
21.1 Karl Pearson's Co-efficient of Correlation (20.5)	41
21.1.1 Degree of Correlation	42
IV Trigonometry	43
22 Circular Trigonometric Functions	44
22.1 Negative Angle Formula	45
22.2 Sum of Angles Formula	45
22.3 Difference of Angles Formula	45
22.4 Multiples and Sub-multiples of π and $\frac{\pi}{2}$	45
$22.5 \left(\frac{\pi}{2} \pm \theta\right)$ Formula	46
$22.6 \left(\frac{\pi}{4} \pm \theta\right)$ Formula	46
22.7 Trigonometric Identities	46
22.8 Double Angle Formula	47
22.9 Triple Angle Formula	47
22.10Sum and Product of Two Ratios	48
22.11General Solutions	48
22.12Taylor Series Expansion of Trigonometric Ratios	49
23 Inverse Circular Trigonometric Function	50
23.1 Definition of Inverse Circular Trigonometric Function	50
23.1.1 For $\sin x$	50
23.1.2 For $\cos x$	50
23.1.3 For $\tan x$	51
23.1.4 For $\cot x$	51
23.1.5 For $\csc x$	51
23.2 Negative Arguments	52
23.3 Reciprocal Relations	52
23.4 I.T.F. Identities	52
23.5 Sum of Two Angles	52
23.6 Difference of Two Angles	53
23.7 Interconversion of Ratios	53
23.8 Miscellaneous Relations	53
24 Hyperbolic Trigonometric Function	54
24.1 Definition	54
24.2 Identities	54
24.3 Inverse Hyperbolic Function	55
24.4 Relation to Circular Trigonometric Functions	55

V	Ca	dculus	56
25	Limi	\mathbf{ts}	57
	25.1	L'Hospital Rule	58
26	Diffo	rentiation	59
20		Differentiation by First Principle	59
	26.1	Standard Differentiation Formulae	59 59
		26.2.1 Circular Trigonometric Functions	60
		26.2.2 Inverse Circular Trigonometric Functions	60
		26.2.3 Hyperbolic Trigonometric Function	61
		26.2.4 Inverse Hyperbolic Trigonometric Function	61
		Rules of Differentiation	62
	20.4	Chain Rule	62
27	Succ	essive Differentiation	63
	27.1	Leibnitz's Theorem	63
28		ial Derivative	64
		Chain Rule	64
	28.2	Euler's Theorem	64
29	Annl	lication of Differentiation	65
_0		Rolle's Theorem	65
		Mean Value Theorem or LaGrange's Theorem	65
		Cauchy's Mean Value Theorem	65
		Maxima and Minima	66
		29.4.1 Maxima	66
		29.4.2 Minima	66
			66
		Taylor's Theorem	
		29.5.1 Remainder Term	66
		29.5.2 Conditions for Validity of Expansion	67
		29.5.3 Taylor's Theorem for Two Variables	67
		Maclaurin's Series	67
		29.6.1 Maclaurin's Series with Two Variables	67
		Curvature	68
		29.7.1 Radius of Curvature	68
		29.7.2 Newton's Formula	68
		29.7.3 Tangent at Origin	69
		Asymptotes	69
		29.8.1 Asymptote of Algebraic Curves	69
30	Integ	gration	70
	-	General Formulae	70
		Circular Trigonometric Functions	71
		Inverse Circular Trigonometric Function	72
		Standard Integrals	73
		Special Forms	73
	50.5	ppedartorms	10

	30.5.1 Integration by Part	74
31	31.1 Definition	75 75 75 76 76
32	Reduction Formulae	77
33	33.1 Two Variables	79 79 79
34	34.1 1 st Order, 1 st Degree Differential Equation	81 81 82 82 82 83 84
35	—	85 85
36	36.1 Basic Transformations	87 87 88 88 88
\mathbf{V}	Operations Research	89
37	37.1 Basic Feasible Solution	90 90 91 91

Part I Algebra

Logarithm

1.1 Basic Formulae

For $a^x = b$:

$$\log_a x$$
, for all $x \le 0$ is undefined (1.1)

$$\log_a b = x, bax \neq 1, a \neq 1 \tag{1.2}$$

$$\log_b a^m = m \log_b a, \text{ for } a^m = b \tag{1.3}$$

$$a^{\log_a x} = x \tag{1.4}$$

$$a^{\log_b c} = c^{\log_b a} \tag{1.5}$$

$$\frac{1}{\log_a b} = \log_b a \tag{1.6}$$

$$\log_c(ab) = \log_c a + \log_c b \tag{1.7}$$

$$\log_c(\frac{a}{b}) = \log_c a - \log_c b \tag{1.8}$$

$$|\log_a x| = \begin{cases} -\log_a x, & \text{if } 0 < x < 1\\ \log_a x, & \text{if } 1 \le x < \infty \end{cases}$$
 (1.9)

1.2 Series

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \lim_{n \to \infty} \sum_{i=0}^n \frac{x^i}{i!}$$
 (1.10)

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \lim_{n \to \infty} \sum_{i=1}^{n} (-1)^{(i-1)} \frac{x^i}{i}$$
 (1.11)

Complex Number

2.1 Basic Formulae

For z = x + iy,

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

$$\tan \theta = \frac{y}{x} \tag{2.2}$$

$$\bar{z} = x - iy \tag{2.3}$$

2.2 Arithmetic Operation of Complex Number

For two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
(2.4)

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
(2.5)

$$|z_1 z_2| = |z_1||z_2| \tag{2.6}$$

$$\frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{a_2^2 + b_2^2}$$
 (2.7)

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} \tag{2.8}$$

2.3 Euler's Formula

$$z = re^{i\theta}$$
, where $r = |z|$, $e^{i\theta} = \cos\theta + i\sin\theta$, and $\theta = \tan^{-1}\frac{y}{x}$ (2.9)

2.4 Trigonometric Ratios in Complex Form

$$e^{i\theta} + e^{-i\theta} = 2\cos\theta \tag{2.10}$$

$$\Rightarrow \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{2.11}$$

$$e^{i\theta} - e^{-i\theta} = 2\sin\theta \tag{2.12}$$

$$\Rightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2} \tag{2.13}$$

2.5 De Moivre's Formula

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{2.14}$$

2.6 Application of Euler's and De Moivre's Formula

For $z_1 = |r_1|e^{i\theta_1}$ and $z_2 = |r_2|e^{i\theta_2}$

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$
(2.15)

2.7 Roots of Unity

$$\sqrt[n]{1} = e^{i\frac{2k\pi}{n}}, \text{ where } k \in [0, n-1]$$
 (2.16)

2.8 Important Relations of Complex Numbers

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{2.17}$$

$$|z_1 - z_2| \le |z_1| + |z_2| \tag{2.18}$$

$$|z_1 - z_2| \ge |z_1| - |z_2| \tag{2.19}$$

$$|z_1 + z_2| \ge ||z_1| - |z_2|| \tag{2.20}$$

$$|z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$
(2.21)

Progression

3.1 Arithmetic Progression (A.P.)

An arithmetic sequence is $a, a+n, a+2n, ...\infty$ or $t_n = a+(n-1)d$, where a is the first term, d is the common difference, and n is the n^{th} -term.

An arithmetic series is $a + (a + d) + (a + 2d) + ... \infty$.

3.1.1 Sum of A.P. Series

$$S_{n} = a + (a + d) + \dots + (a + \overline{n - 2}d) + (a + \overline{n - 1}d)$$

$$S_{n} = (a + \overline{n - 1}d) + (a + \overline{n - 2}d + \dots + (a + d) + a$$

$$\Rightarrow 2S_{n} = n(2a + \overline{n - 1}d)$$

$$\Rightarrow S_{n} = \frac{n}{2}(2a + \overline{n - 1}d)$$
(3.1)

3.1.2 Important Relation

If the three terms a, b, c are in A.P., then

$$2b = a + c \tag{3.2}$$

3.2 Geometric Progression (G.P.)

An geometric sequence is $a, ar, ar^2, ... \infty$ or $t_n = ar^{n-1}$, where a is the first term, r is the common ratio, and n is the n^{th} -term.

An geometric series is $a + ar + ar^2 + ... \infty$.

3.2.1The Value of 'r'

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots = \frac{t_n}{t_{n-1}}$$
(3.3)

3.2.2 Sum of a G.P. Series

For a definite G.P. series, where there are n terms in the series, the sum of the series is:

$$S_n = \frac{a|r^n - 1|}{|r - 1|} \tag{3.4}$$

For an infite G.P. series the sum of the series is defined for r < 1. Sum of such a series is:

$$S_{\infty} = \frac{a}{1 - r} \tag{3.5}$$

3.2.3Important relations

If the three terms a, b, c are in G.P., then:

$$b^2 = ac (3.6)$$

Harmonic Progression (H.P.) 3.3

If a, b, c are terms of an H.P. then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\therefore \frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$

$$\Rightarrow b = \frac{2ac}{a+c}$$
(3.7)

$$\Rightarrow b = \frac{2ac}{a+c} \tag{3.8}$$

3.4Arithmetico-Geometric Progression (A.G.P.)

Sequence $a, (a+d)r, (a+2d)r^2, ..., (a+\overline{n-1}d)r^{n-1}$, where $a \to \text{first term}$ of A.G.P., $d \rightarrow \text{common difference}$, and $r \rightarrow \text{common ratio}$.

3.4.1Sum of A.G.P.:

For an infinite A.G.P. series, the sum is defined for r < 1:

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \tag{3.9}$$

3.5 Special Series

For $n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n-1)}{2}$$
 (3.10)

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
 (3.11)

$$1^{3} + 2^{3} + 3^{3} + \dots + (n-1)^{3} + n^{3} = \left[\frac{n(n-1)}{2}\right]^{2}$$
 (3.12)

3.5.1 Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{3.13}$$

3.5.2 Riemann's Infinite Series as an Integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=r_1}^{r_2} f(\frac{i}{n}) = \int_{\frac{r_1}{n}}^{\frac{r_2}{n}} f(x) dx$$
 (3.14)

Test of Convergence of Infinite Series

If $a_1, a_2, a_3, ..., a_n$ is a sequence by a_n and their sum of series is S_n , then the following apply.

4.1 Definition

If

$$\lim_{n\to\infty} S_n = l$$

where l is a finite value, the series S_n is said to converge. A non-convergent series is called a divergent series.

4.2 Tests of Convergence

4.2.1 Comparison Test

If u_n and v_n are two positive series, then:

- 1. (a) v_n converges
 - (b) $u_n \leq v_n \forall n$ Then u_n converges.
- 2. (a) v_n diverges
 - (b) $u_n \ge v_n \forall n$ Then u_n diverges.

4.2.2 Limit Form

If

$$\lim_{x \to \infty} \frac{u_n}{v_n} = l$$

where l is a finite quantity $\neq 0$, then u_n and v_n converge and diverge together.

4.2.3 Integral Test or Maclaurin-Cauchy Test

For a series

$$\sum_{i=N}^{\infty} f(x), \text{ where } N \in \mathbb{Z}$$
 (4.1)

will only converge if the improper integral

$$\int_{N}^{\infty} f(x)dx \tag{4.2}$$

is finite.

If the improper integral is finite, the upper and lower limit of the infinite series is given by:

$$\int_{N}^{\infty} f(x)dx \le \sum_{i=N}^{\infty} f(x) \le f(N) + \int_{N}^{\infty} f(x)dx \tag{4.3}$$

4.2.4 Ratio Test

If, for two series $\sum u_n$ and $\sum v_n$:

- 1. (a) $\sum v_n$ converges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}}$, then u_n converges.
- 2. (a) $\sum v_n$ diverges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} < \frac{v_n}{v_{n+1}}$, then u_n diverges.

4.2.5 D'Alembert's Ratio Test

$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lambda \tag{4.4}$$

- series converges if $\lambda < 1$
- series diverges if $\lambda > 1$
- fails if $\lambda = 1$

4.2.6 Rabbe's Test

$$\lim_{n \to \infty} n\left[\frac{u_n}{u_{n+1}} - 1\right] = \kappa \tag{4.5}$$

- series converges if $\kappa < 1$
- series diverges if $\kappa > 1$
- fails if $\kappa = 1$

4.2.7 Cauchy's Root Test

$$\lim_{n \to \infty} |u_n| = \lambda \tag{4.6}$$

- series converges for $\lambda < 1$
- series diverges for $\lambda > 1$
- test fails for $\lambda = 1$

4.2.8 Logarithmic Test

$$\lim_{n \to \infty} n \log(\frac{u_n}{u_{n+1}}) = \kappa \tag{4.7}$$

- series converges for $\kappa < 1$
- series diverges for $\kappa > 1$
- test fails for $\kappa = 1$

Determinants

5.1 Definition

For a determinant:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$
 (5.1)

5.1.1 Minor and Cofactor

For a third order determinant $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, the minor of a_{11} is $M_{11} = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$,

i.e., all the terms of the determinant expect those in the same row and columns as the one of which the minor is being calculated.

Cofactor
$$C_{ij} = (-1)^{i+j} M_{ij}$$

5.2 Important Properties

- 1. Transposing a determinant does not alter its value.
- 2. If rows and columns are interchanges m times, the value of the new determinant is

$$\Delta' = (-1)^m \Delta \tag{5.2}$$

3. If two parallel lines are equal, then $\Delta = 0$

4. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

5. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

6. For
$$C_n \to k_1 C_l + k_2 C_m + k_3 C_n$$
 or $R_n \to k_1 R_l + k_2 R_m + k_3 R_n$, $\Delta' = \Delta$

5.3 Cramer's Rule

For a system of equations:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

the following determinants are defined:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

The solution of the system of equations is:

$$x = \frac{D_x}{D} \tag{5.3}$$

$$y = \frac{D_y}{D} \tag{5.4}$$

$$z = \frac{\bar{D}_z}{D} \tag{5.5}$$

5.3.1 Consistency Test

- 1. If $D \neq 0$, the system is consistent and has unique solutions.
- 2. If $D = D_x = D_y = D_z = 0$, the system may or may not be consisten and it will have infinite solutions and the system will be dependent.
- 3. If D=0 and at least one of D_x,D_y,D_z is non zero, the system is inconsistent

Matrices

For a matrix,

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

and where I_p is an identity matrix of the p^{th} order, the following relations are applicable.

6.1 Sum of Two Matrices

$$A_{m \times n} + B_{m \times n} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{21} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$
(6.1)

6.2 Multiplication of Two Matrices

If

$$C_{m \times p} = A_{m \times n} \cdot B_{n \times p}$$

then,

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} \tag{6.2}$$

6.2.1 Multiplicative Properties

1. Multiplication of matrices is associative, hence (AB)C = A(BC).

2.
$$AI = A$$

3.
$$A \cdot A^{-1} = I$$

4.
$$A \cdot (adjA) = (adjA) \cdot A = |A|I$$

5.
$$A^{-1} = \frac{1}{|A|} (adjA)^t$$

6.
$$(AB)^t = B^t A^t$$

6.3 Adjoint of a Matrix

$$adjA = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1n} \\ M_{21} & M_{22} & \cdots & M_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ M_{m1} & M_{m2} & \cdots & M_{mn} \end{bmatrix}^{t}, \text{ where } M_{ij} \text{ is the minor of } a_{ij} \quad (6.3)$$

6.4 Martin's Rule

For a system of equation,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

The system can be written as:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
(6.4)

$$\Rightarrow AX = B \tag{6.5}$$

$$\Rightarrow X = A^{-1}B \tag{6.6}$$

Binomial Theorem

For a binomial expansion $(a+b)^n$, there are (n+1) terms and $(a+b+c)^n$ has $\frac{(n+1)(n+2)}{2}$ terms.

7.1 Expansion of a binomial expression

$$(a+b)^{n} = {}^{n}C_{0}a^{n}b^{0} + {}^{n}C_{1}a^{n-1}b^{1} + {}^{n}C_{2}a^{n-2}b^{2} + \cdots + {}^{n}C_{n}a^{0}b^{n} \ \forall n \in \mathbb{N}$$

$$= \sum_{i=0}^{n} {}^{n}C_{i}a^{n-i}b^{i} \ \forall n \in \mathbb{N}$$
(7.1)

$$(a+b)^{n} = a^{n}b^{0} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + \frac{n(n-1)\cdots 3\cdot 2\cdot 1}{n!}a^{0}b^{n} + \dots \infty \ \forall n \in \mathbb{R}$$

$$(7.2)$$

7.2 Trinomial Expansion

For $(a+b+c)^n$:

$$(a+b+c+)^{n} = \sum \frac{n!}{i!j!k!} a^{i}b^{j}c^{k}$$

$$\forall (i+j+k) = n; i, j, k, n \in \mathbb{N}$$
(7.3)

7.3 Properties of Coefficients

Sum of Co-efficients:
$$C_0 + C_1 + C_2 + \dots + C_{n-1} + C_n = 2^n$$
 (7.4)

Sum of Odd Co-efficients:
$$C_0 + C_2 + C_4 + \dots + C_{2n-3} + C_{2n-1} = 2^{n-1}$$
 (7.5)

$$C_0 - C_1 + C_2 - \dots + C_{2n-1} - C_{2n} = 0 (7.6)$$

7.4 Pascal's Rule

For $1 \le k \le n$ and $k, n \in \mathbb{N}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \tag{7.7}$$

Boolean Algebra

Let B be a set of a, b, c with operations sum (+) and product (\cdot) . Then B is said to belong to the Boolean Structure if the following conditions are satisfied:

Property	Name of Property
$a+b \in B$	
$a \cdot b \in B$	Closure Property
a+b=b+a	
$a \cdot b = b \cdot a$	Associative Law
a(b+c) = ab + ac	
a + bc = (a+b)(a+c)	Commutative Law
$\{0,1\} \in B$	
a + 0 = a	
a + 1 = 1	
$a \cdot 0 = 0$	
$a \cdot 1 = a$	Laws of 1 and 0
a + ab = a	
a(a+b) = a	Absorption Law
(a+b)' = (a'b')	De'Morgan's Law

Table 8.1: Properties of Boolean Algebraic Structure

Remainder Theorems

9.1 Remainder Theorem

If a function f(x) is divided by a binomial x - a, then the remainder is provided by f(a).

$$\frac{f(x)}{x-a} \equiv f(a) \mod (x-a) \tag{9.1}$$

Worked Example

Find the remainder when $f(x) = x^3 - 4x^2 - 7x + 10$ is divided by (x - 2). The remainder:

$$R = (x^3 - 4x^2 - 7x + 10) \mod (x - 2)$$

is given by:

$$R = f(2) = (2)^3 - 4(2)^2 - 7(2) + 10$$
$$= 8 - 16 - 14 + 10 = -12$$

9.2 Euler's Remainder Theorem

According to Euler's Remainder Theorem, if x and n are two co-prime numbers:

$$x^{\varphi(n)} \equiv 1 \mod n, x, n \in \mathbb{Z}^+ \tag{9.2}$$

where, $\varphi(n)$ is Euler's totient function.

9.2.1 Euler's Totient Function

For a number defined as:

$$n = \prod_{i=1}^{r} a_r^{b_r} \tag{9.3}$$

then Euler's totient function is defined as:

$$\varphi(n) = n \cdot \left[\left(1 - \frac{1}{a_1} \right) \cdot \left(1 - \frac{1}{a_2} \right) \cdot \left(1 - \frac{1}{a_3} \right) \cdots \right]$$

$$= n \prod_{i=1}^r \left(1 - \frac{1}{a_r} \right)$$
(9.4)

Worked Example

Find the remainder if 3^{76} is divided by 35.

Since:

$$35 = 5^1 \times 7^1$$

Hence the totient quotient of 35 is:

$$\varphi(35) = 35 \cdot \left(1 - \frac{1}{5}\right) \cdot \left(1 - \frac{1}{7}\right)$$
$$= 35 \times \frac{4}{5} \times \frac{6}{7}$$
$$= 24$$

Hence Euler's Theorem yields:

$$3^{24} \equiv 1 \mod 35$$

$$3^{76} \equiv 3^{24 \times 3+4}$$

$$\equiv (3^{24})^3 \times 3^4 \mod 35$$

$$\equiv (1)^3 \times 3^4 \mod 35$$

$$\equiv 81 \mod 35$$

$$\equiv 11 \mod 35$$

The remainder when 3^{76} is divided by 35 is 11.

9.3 Wilson Theorem

According to Wilson Theorem:

$$(n-1)! \equiv -1 \mod n \tag{9.5}$$

Worked Example

Find the remainder when 28! is divided by 31.

By Wilson's Theorem:

$$30! \equiv -1 \mod 31$$

$$\Rightarrow 30 \cdot 29 \cdot 28! \equiv -1 \mod 31$$
Let 28! mod 31
$$= x$$

$$\Rightarrow (-1) \cdot (-2) \cdot x \equiv 30 \mod 31$$

$$\Rightarrow 2x = 30$$

$$\Rightarrow x = 15$$

The remainder when 28! is divided by 31 is 15.

Part II Co-Ordinate Geometry

2-D Co-ordinate Geometry

For the ordered pairs, $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (10.1)

Mid point of AB =
$$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$
 (10.2)

Point C, which divides AB in the ratio
$$m: n = (\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n})$$
 (10.3)

Triangles

For a triangle defined with three vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ and corresponding sides of length a, b, c, then:

Centroid of
$$\triangle ABC = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$$
 (11.1)

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
 (11.2)

For a triangle, the semiperimeter, s, is defined as:

$$s = \frac{a+b+c}{2}$$

Then the radius, r, and centre of incircle, o, is:

$$o = \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$
(11.3)

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
(11.4)

The radius, R, and centre, O, of circumcircle is defined as:

$$O = \left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}\right)$$
(11.5)

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \tag{11.6}$$

Straight Line

A straight line can be defined as:

$$y = mx + c \tag{12.1}$$

 $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are the intercepts at x and y axes respectively (12.2)

$$x \cos \alpha + y \sin \alpha = p \text{ (Normal Form)}$$
 (12.3)

$$Ax + By + C = 0$$
 (General Form) (12.4)

Equation of Straight Line Passing Through (x_0, y_0) and Slope m

$$(y - y_0) = m(x - x_0) (12.5)$$

Distance Between Two Points on a Line

$$\frac{y_1 - y_2}{\sin \theta} = \frac{x_1 - x_2}{\cos \theta} = \gamma \tag{12.6}$$

$$\theta = \tan^{-1} m \tag{12.7}$$

Angle Between Two Lines

For two lines with slopes m_1, m_2 , the angle between them, θ :

$$\theta = \arctan\left(\frac{m_1 - m_2}{1 + m_1 m_2}\right) \tag{12.8}$$

Distance of a Point from a Line

Line: ax + by + c = 0 Point: (g, h)

$$S = \frac{ag + bh + c}{\sqrt{a^2 + b^2}} \tag{12.9}$$

Angle Bisector of a Line For the two lines: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, the angle bisector is:

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$
(12.10)

If the sign of c_1 and c_2 is the same, then the equation obtained is the internal bisector.

Equation of a Straight Line Passing through the Intersection of Two Lines

$$(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0 \ \forall k \in \mathbb{R}$$
 (12.11)

Relative Position of Points w.r.t. a Line For the points (x_1, y_1) and (x_2, y_2) :

$$k_1 = ax_1 + by_1 + c$$

$$k_2 = ax_2 + by_2 + c$$

If k_1 and k_2 have the same sign, they are on the same side of a line, otherwise on opposite sides.

Ratio of Division of Line Segment For any line, f(x,y) = 0, the ratio in which it divides (x_1, y_1) and (x_2, y_2) is given by:

$$r = -\frac{f(x_1, y_1)}{f(x_2, y_2)} \tag{12.12}$$

If $\begin{cases} r > 0, \text{ then division is internal} \\ r < 0, \text{ then division is external} \end{cases}$

General Theory of Second Degree Equation

For any general equation of the form:

$$ax^{2} + by^{2} + 2gx + 2fy + 2hxy + c = 0 (13.1)$$

 Δ is defined as:

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} \tag{13.2}$$

If $\Delta = 0$ then the equation is a pair of straight lines. If a + b = 0 then the lines are \perp .

If the $\Delta \neq 0$:

- 1. $a = b, h = 0 \rightarrow \text{circle}$
- 2. $h^2 = ab \rightarrow \text{parabola}$
- 3. $h^2 < ab \rightarrow \text{ellipse}$
- 4. $h^2 > ab \rightarrow \text{hyperbola}$

Conics

The four conic sections are: circle, parabola, ellipse, and hyperbola. Circle has been done separately in the next chapter.

14.1 Parabola

Property	$y^2 = 4ax$	$x^2 = 4ay$
Axis	y = 0	x = 0
Eccentricity	1	1
Directrix	x + a = 0	y + a = 0
Focus	(a, 0)	(0,a)
Vertex	(0,0)	(0,0)
Length of latus rectum	4a	4a
Equation of latus rectum	x - a = 0	y-a=0

Table 14.1: Properties of a Parabola

14.2 Ellipse and Hyperbola

For a > b:

Property	$\frac{x^2}{a} + \frac{y^2}{b} = 1$ Ellipse	$\begin{vmatrix} \frac{x^2}{a} - \frac{y^2}{b} = 1 \\ \text{Hyperbola} \end{vmatrix}$
Length of Major Axis	2a	2a
Length of Minor Axis	2b	2b
Equation of Major Axis	x = 0	x = 0
Equation of Minor Axis	y = 0	y = 0
Eccentricity e	$\sqrt{1-\frac{b^2}{a^2}}$	$\sqrt{1+\frac{b^2}{a^2}}$
Vertices	$(\pm a,0)$	$(\pm a,0)$
Foci	$(\pm ae,0)$	$(\pm ae, 0)$
Equation of Directrix	$x \pm \frac{a}{e} = 0$	$x = \pm \frac{a}{e}$
Length of latus rectum Equation of latus rectum Centre	$x \pm ae = 0$ $(0,0)$	$\frac{2b^2}{a}^e$ $(0,0)$

Table 14.2: Properties of Ellipse and Hyperbola

14.3 Parametric Form of Conics

14.3.1 Hyperbola

$$x = a \sec \theta \tag{14.1}$$

$$y = b = \tan \theta \tag{14.2}$$

14.3.2 Ellipse

$$x = a\cos\phi\tag{14.3}$$

$$y = b\sin\phi \tag{14.4}$$

14.3.3 Parabola

$$x = at^2 (14.5)$$

$$y = 2at (14.6)$$

Circles

15.1 Locus Form

$$(x-g)^2 + (y-h)^2 = r^2 (15.1)$$

where the centre is (g,h) and the radius is r.

15.2 Diameter Form

$$(x-a)(x-c) + (y-b)(y-d) = 0 (15.2)$$

where (a, b) and (c, d) are the two ends of the diamter.

15.3 General Form

If the equation of a circle is in the form:

$$x^{2} + y^{2} + 2gx + 2fy + c = 0 (15.3)$$

Then the following is true about the circle:

- 1. centre of the circle is (-g, -f)
- 2. radius of circle is $\sqrt{g^2 + f^2 c}$

15.4 Important Relations

- 1. If the circle passes through the origin, g = 0, f = 0.
- 2. If the circle touches the x-axis $c = g^2$.
- 3. If the circle touches the y-axis $c = f^2$.

Common for Two Circles

1. The common chord passing between two circles \mathcal{S}_1 and \mathcal{S}_2 are:

$$S_1 - S_2 = 0 (15.4)$$

2. Circles passing through the intersection of two circles is:

$$S_2 + k(S_1 - S_2) = 0 \ \forall k \in \mathbb{R}$$
 (15.5)

Vectors

Let two vectors be $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$:

16.1 Modulus of a Vector

For a vector \vec{a} , the modulus of the vector is:

$$|\vec{a}| = \sqrt{a^2 + b^2 + c^2} \tag{16.1}$$

16.2 Sum of Vectors

The sum of two vectors is:

$$|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{a}|\cos\theta}$$
 (16.2)

$$\vec{a} + \vec{b} = (a+x)\hat{i} + (b+y)\hat{j} + (c+z)\hat{k}$$
(16.3)

The direction of the resultant vector is:

$$\tan \alpha = \frac{b \sin \theta}{a + b \cos \theta} \tag{16.4}$$

where, θ is the angle between the two vectors.

16.3 Product of Vectors

16.3.1 Dot Product

$$\vec{a} \cdot \vec{b} = |a||b|\cos\theta \tag{16.5}$$

$$\vec{a} \cdot \vec{b} = ax + by + cz \tag{16.6}$$

16.3.2 Cross Product

$$\vec{a} \times \vec{b} = |a||b|\sin\theta\hat{n} \tag{16.7}$$

where \hat{n} is a vector $\perp \vec{a}, \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix}$$
 (16.8)

16.4 Test of Co-planarity

Three vectors are called co-planar if:

$$\lambda \vec{a} + \mu \vec{b} = \vec{c} \tag{16.9}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 0 \tag{16.10}$$

3-D Geometry

17.1 Distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (17.1)

17.2 Section Formula of a Line Segment Divided in the ratio m:n

$$P = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}, \frac{nz_1 + mz_2}{m+n}\right)$$
(17.2)

17.3 Centroid of a Triangle

$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$
(17.3)

Line in 3-D Space

For a line which is defined as $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$:

1. Line numbers of the line is

$$\langle a, b, c \rangle \tag{18.1}$$

2. The line cosines are:

$$<\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}>$$
 (18.2)

$$= \langle l, m, n \rangle \tag{18.3}$$

Angle between Two Lines 18.1

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(18.4)

$$\Rightarrow \cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2 \tag{18.5}$$

When two lines are \perp , $l_1l_2 + m_1m_2 + n_1n_2 = 0$. When two lines are $\parallel \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} = 1$.

Skew and Co-planar Lines 18.2

Let there be two lines $\vec{r_1}$ and $\vec{r_2}$,

$$\vec{r_1} = \vec{a_1} + \mu \vec{b_1} \vec{r_2} = \vec{a_2} + \lambda \vec{b_2} \tag{18.6}$$

18.3 Distances

18.3.1 The shortest distance between r_1 and r_2

$$S = \left| \frac{(\vec{a_1} - \vec{a_2}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right|$$
 (18.7)

If S = 0, the lines intersect.

18.3.2 Cartesian Form

For two lines defined as $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$:

$$S = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
 (18.8)

18.3.3 Distance Between Parallel Lines

$$S = \left| \frac{\vec{b} \cdot (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right| \tag{18.9}$$

18.3.4 Distance of a Point to a Line

For a point, (x_1, y_1, z_1) the distance to a line $\frac{x - \alpha}{l} = \frac{y - \beta}{m} = \frac{z - \gamma}{n}$:

$$S = \left(\begin{vmatrix} x_1 - \alpha & y_1 - \beta \\ l & m \end{vmatrix} + \begin{vmatrix} y_1 - \beta & z_1 - \gamma \\ m & n \end{vmatrix} + \begin{vmatrix} z_1 - \gamma & x_1 - \alpha \\ n & l \end{vmatrix} \right)^{\frac{1}{2}}$$
 (18.10)

3-D Plane

A plane in 3-D space can be defined as:

1. Cartesian Form:

$$ax + by + cz + d = 0 \tag{19.1}$$

2. Vectorial Form:

$$\vec{r} \cdot \vec{n} = p \tag{19.2}$$

, where \vec{r} is a line on the plane, \vec{n} is a normal to the plane, and p is perpendicular distance to the plane from the origin.

19.1 Angle Between Two Planes

For two planes, $\vec{r_1} \cdot \vec{n_1} = p_1$ and $\vec{r_2} \cdot \vec{n_2} = p_2$, the angle between the planes, θ is:

$$\cos \theta = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}|} \tag{19.3}$$

In the Cartesian Form:

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(19.4)

19.2 Distance of a Point from a Plane

19.2.1 Catesian Form

For the point (p, q, r) and the plane, ax + by + cz + d = 0:

$$S = \frac{ap + bq + cr + d}{\sqrt{a^2 + b^2 + c^2}}$$
 (19.5)

19.2.2 Vector Form

For the point $\vec{g} = p\hat{i} + q\hat{j} + r\hat{k}$ and the plane $\vec{r} \cdot (a\hat{i} + b\hat{j} + c\hat{k}) + d = 0$:

$$S = \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot (p\hat{i} + q\hat{j} + r\hat{k})}{\sqrt{a^2 + b^2 + c^2}}$$
(19.6)

$$\Rightarrow S = \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot \vec{g}}{|a\hat{i} + b\hat{j} + c\hat{k}|}$$
(19.7)

Part III Statistics

Statistics

For a set a data $(x_1, y_1), (x_2, y_2), \dots, (n_n, y_n), \dots$:

Mean of x:

$$barx = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (20.1)

Variance of x:

$$\sigma^{2} = \frac{(x_{1} - \bar{x})^{2} + ((x_{2} - \bar{x})^{2} + \dots + ((x_{n} - \bar{x})^{2})}{n} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n} = \frac{\sum x_{i}^{2}}{n} - \bar{x}^{2}$$
(20.2)

Standard Deviation of x:

$$\sigma = \sqrt{\frac{(x_1 - \bar{x})^2 + ((x_2 - \bar{x})^2 + \dots + ((x_n - \bar{x})^2)}{n}}$$

$$= \sqrt{\sum_{i=1}^n \frac{(x_i - \bar{x})^2}{n}}$$

$$= \sqrt{\frac{\sum_{i=1}^n x_i^2}{n} - \bar{x}^2}$$
(20.3)

Covariance of (x, y):

$$Cov(x,y) = \frac{\sum_{i=1}^{N} (x_i - x)(y_i - y)}{N} = \sum xy - \frac{1}{N} \sum x \sum y$$
 (20.4)

Correlation Co-efficient, $\gamma(x, y)$:

$$\gamma(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y} \tag{20.5}$$

Lines of Regression

An assumption is made for the line of regression. It is assumed to be:

$$y = ax + b$$

For a given set of data (x_i, y_i) , the solutions of a and b are obtained by solving the following equations simultaneously:

$$\sum y_i = a \sum x_i + nb \tag{21.1}$$

$$\sum x_i y_i = a \sum x_i^2 + b \sum x_i \tag{21.2}$$

If the regressive function is defined as:

$$y = cx^a (21.3)$$

, where c is a constant, then the following conversions are performed:

$$y = cx^a (21.4)$$

$$\Rightarrow \log y = \log c + a \log x \tag{21.5}$$

Making the substitutions $\log y = Y$, $\log x = X$, and $\log c = C$, the required equation becomes:

$$Y = aX + C (21.6)$$

This transformed equation can be solved using the method describes in equations ?? and 21.2.

21.1 Karl Pearson's Co-efficient of Correlation (20.5)

$$r = \rho(x, y) = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$
 (21.7)

21.1.1 Degree of Correlation

Value	Relation
$0 \le r < \frac{1}{4}$	Low
$\frac{1}{4} \le r < \frac{3}{4}$	Moderate
$\frac{3}{4} \le r \le 1$	High

Table 21.1: Degree of Correlation

Part IV Trigonometry

Circular Trigonometric Functions

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	1	0
15°	$\frac{1}{4}$	$\frac{1}{4(2-\sqrt{3})}$	$2-\sqrt{3}$
18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
36°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{1}{\sqrt{3}}$	$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}$	$\sqrt{3}$
72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$
90°	1	0	∞

Table 22.1: Trigonometric Ratios of Standard Angles

For any given triangle:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \tag{22.1}$$

, where 2R is the radius of circumcircle.

22.1 Negative Angle Formula

$$\sin(-\theta) = -\sin\theta \tag{22.2}$$

$$\cos(-\theta) = \cos\theta \tag{22.3}$$

$$\tan(-\theta) = -\tan\theta \tag{22.4}$$

$$\csc(-\theta) = -\csc\theta \tag{22.5}$$

$$\sec(-\theta) = \sec\theta \tag{22.6}$$

$\cot(-\theta) = -\cot\theta \tag{22.7}$

22.2 Sum of Angles Formula

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{22.8}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{22.9}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{22.10}$$

22.3 Difference of Angles Formula

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{22.11}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{22.12}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \tag{22.13}$$

22.4 Multiples and Sub-multiples of π and $\frac{\pi}{2}$

$$\forall k \in \mathbb{Z}$$

$$\sin\left((4k+1)\frac{\pi}{2}\right) = 1 \tag{22.14}$$

$$\sin\left((4k-1)\frac{\pi}{2}\right) = -1\tag{22.15}$$

$$\sin k\pi = 0 \tag{22.16}$$

$$\sin\left((2k+1)\frac{\pi}{2}\right) = 0\tag{22.17}$$

$$\sin\left((2k-1)\frac{\pi}{2}\right) = 0\tag{22.18}$$

$$\sin k\pi = (-1)^k \tag{22.19}$$

22.5 $\left(\frac{\pi}{2} \pm \theta\right)$ Formula

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad (22.20)$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta \qquad (22.21)$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad (22.22)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta \qquad (22.23)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad (22.24)$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta \qquad (22.25)$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta \qquad (22.26)$$

$$\cot\left(\frac{\pi}{2} + \theta\right) = -\tan\theta \qquad (22.27)$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad (22.28)$$

$$\csc\left(\frac{\pi}{2} + \theta\right) = -\sec\theta \qquad (22.29)$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta \qquad (22.30)$$

$$\sec\left(\frac{\pi}{2} + \theta\right) = -\csc\theta \qquad (22.31)$$

22.6 $\left(\frac{\pi}{4} \pm \theta\right)$ Formula

$$\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta} \tag{22.32}$$

$$\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan\theta}{1 + \tan\theta} \tag{22.33}$$

22.7 Trigonometric Identities

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{22.34}$$

$$\tan^2 \theta + 1 = \sec^2 \theta \tag{22.35}$$

$$\cot^2 \theta + 1 = \csc^2 \theta \tag{22.36}$$

22.8 Double Angle Formula

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$= \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 2 \cos^2 \theta - 1$$

$$= 1 - 2 \sin^2 \theta$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
(22.37)
$$(22.38)$$

22.9 Triple Angle Formula

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta \tag{22.40}$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos\theta \tag{22.41}$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^3\theta} \tag{22.42}$$

22.10 Sum and Product of Two Ratios

For A > B:

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{22.43}$$

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{22.44}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$
 (22.45)

$$2\cos A \sin B = \sin(A+B) - \sin(A-B)$$
 (22.46)

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{22.47}$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{22.48}$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$
 (22.49)

$$2\cos A \sin B = \cos(A+B) - \cos(A-B)$$
 (22.50)

$$\sin(A - B)\sin(A + B) = \sin^2 A - \sin^2 B \tag{22.51}$$

$$\cos(A - B)\cos(A + B) = \cos^2 A - \sin^2 B \tag{22.52}$$

$$\tan(A - B)\tan(A + B) = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}$$
 (22.53)

22.11 General Solutions

If $\sin \theta = \sin \alpha$:

$$\theta = n\pi + (-1)^n \alpha \tag{22.54}$$

 $n \in \mathbb{Z}$

If $\cos \theta = \cos \alpha$:

$$\theta = 2n\pi \pm \alpha \tag{22.55}$$

 $n \in \mathbb{Z}$

If $\tan \theta = \tan \alpha$:

$$\theta = n\pi \pm \alpha \tag{22.56}$$

 $n \in \mathbb{Z}$

22.12 Taylor Series Expansion of Trigonometric Ratios

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^{2i-1}}{(2i-1)!}$$
 (22.57)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!}$$
 (22.58)

Inverse Circular Trigonometric Function

23.1 Definition of Inverse Circular Trigonometric Function

23.1.1 For $\sin x$

 $y = \arcsin x$ iff $x = \sin y$, then:

- 1. $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 2. domain of $x \in [-1, 1]$
- 3. $\sin(\arcsin x) = x, \forall x \in [-1, 1]$
- 4. $\arcsin(\sin y) = y, \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 5. $\sin x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

23.1.2 For $\cos x$

 $y = \arccos x$ iff $x = \cos y$, then:

- 1. $y \in [0, \pi]$
- 2. domain of $x \in [-1, 1]$
- 3. $\cos(\arccos x) = x, \forall x \in [-1, 1]$
- 4. $\arccos(\cos y) = y, \forall y \in [0, \pi]$
- 5. $\cos x$ is a strictly decreasing in the domain $[0, \pi]$ and one-one.

23.1.3 For $\tan x$

 $y = \arctan x \text{ iff } x = \tan y, \text{ then:}$

- 1. $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
- 2. domain of $x \in \mathbb{R}$
- 3. $\tan(\arctan x) = x, \forall x \in \mathbb{R}$
- 4. $\arctan(\tan y) = y, \forall y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 5. $\tan x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

23.1.4 For $\cot x$

 $y = \cot^{-1} x$ iff $x = \cot y$, then:

- 1. $y \in (0, \pi)$
- 2. domain of $x \in \mathbb{R}$
- 3. $\cot(\cot^{-1} x) = x, \forall x \in \mathbb{R}$
- 4. $\cot^{-1}(\cot y) = y, \forall y \in (0, \pi)$
- 5. $\cot x$ is a strictly decreasing in the domain $(0, \pi)$ and one-one.

For $\sec x$

 $y = \sec^{-1} x \text{ iff } x = \sec y$

- 1. $y \in \{[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\sec(\sec^{-1} x) = x, \forall |x| > 1$
- 4. $\sec^{-1}(\sec y) = y, \forall y \in \{[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\}$

23.1.5 For $\csc x$

 $y = \csc^{-1} x$ iff $x = \csc y$

- 1. $y \in \{ [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}] \}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\csc(\csc^{-1} x) = x, \forall |x| \ge 1$
- 4. $\csc^{-1}(\csc y) = y, \forall y \in \{[-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]\}$

23.2 Negative Arguments

$$\arcsin(-x) = -\arcsin x \tag{23.1}$$

$$\arctan(-x) = -\arctan x \tag{23.2}$$

$$\csc^{-1}(-x) = -\csc^{-1}x\tag{23.3}$$

$$\arccos(-x) = \pi - \arccos x$$
 (23.4)

$$\cot^{-1}(-x) = \pi - \cot^{-1}x \tag{23.5}$$

$$\sec^{-1}(-x) = \pi - \sec^{-1}x\tag{23.6}$$

23.3 Reciprocal Relations

$$\csc^{-1} x = \arcsin \frac{1}{x} \tag{23.7}$$

$$\sec^{-1} x = \arccos\frac{1}{x} \tag{23.8}$$

$$\sec^{-1} x = \begin{cases} \arctan \frac{1}{x}, x > 0\\ \pi + \arctan \frac{1}{x}, x < 0 \end{cases}$$
 (23.9)

23.4 I.T.F. Identities

$$\arcsin x + \arccos x = \frac{\pi}{2}, |x| \le 1 \tag{23.10}$$

$$\arctan x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}$$
 (23.11)

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, |x| \ge 1 \tag{23.12}$$

23.5 Sum of Two Angles

$$\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right)$$
 (23.13)

$$\arcsin x + \arcsin y = \arcsin(y\sqrt{1 - x^2} + x\sqrt{1 - y^2}) \tag{23.14}$$

$$\arccos x + \arccos y = \arccos(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}) \tag{23.15}$$

23.6 Difference of Two Angles

$$\arctan x - \arctan y = \arctan\left(\frac{x-y}{1+xy}\right)$$
 (23.16)

$$\arcsin x - \arcsin y = \arcsin(x\sqrt{1 - y^2} - y\sqrt{1 - x^2}) \tag{23.17}$$

$$\arccos x - \arccos y = \arccos(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}) \tag{23.18}$$

23.7 Interconversion of Ratios

$$\arcsin x = \arccos \sqrt{1 - x^2}$$

$$= \arctan \left(\frac{x}{\sqrt{1 - x^2}}\right) \tag{23.19}$$

$$\arccos x = \arcsin \sqrt{1 - x^2}$$

$$= \arctan \left(\frac{\sqrt{1 - x^2}}{x}\right) \tag{23.20}$$

$$2 \arctan x = \arcsin\left(\frac{2x}{1+x^2}\right)$$

$$= \arccos\left(\frac{1-x^2}{1+x^2}\right)$$

$$= \arctan\left(\frac{2x}{1-x^2}\right)$$
(23.21)

23.8 Miscellaneous Relations

$$\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 - x^2}$$
 (23.22)

$$\arctan x = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right), x > 1$$
 (23.23)

Hyperbolic Trigonometric **Function**

Definition 24.1

Hyperbolic trigonometric functions are defined such that $(\cosh t, \sinh t)$ form the right half of an equilateral hyperbola. The functions are defined as follows:

$$\sinh x = \frac{\exp(x) - \exp(-x)}{2} \tag{24.1}$$

$$cosh x = \frac{\exp(x) + \exp(-x)}{2}$$
(24.2)

$$tanh x = \frac{\sinh x}{\cosh x} = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} \tag{24.3}$$

$$coth x = \frac{1}{\tanh x} = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)} \tag{24.4}$$

$$cschx = \frac{1}{\sinh x} = \frac{2}{\exp(x) - \exp(-x)}$$
 (24.5)

$$cschx = \frac{1}{\sinh x} = \frac{2}{\exp(x) - \exp(-x)}$$

$$sechx = \frac{1}{\cosh x} = \frac{2}{\exp(x) + \exp(-x)}$$
(24.5)

24.2Identities

$$\coth^2 x - \sinh^2 x = 1 \tag{24.7}$$

$$\tanh^2 x + \operatorname{sech}^2 x = 1 \tag{24.8}$$

$$\coth^2 x - csch^2 x = 1 \tag{24.9}$$

24.3 Inverse Hyperbolic Function

$$\sinh^{-1} z = \ln(z + \sqrt{z^2 + 1}) \tag{24.10}$$

$$\cosh^{-1} z = \ln(z \pm \sqrt{z^2 - 1}) \tag{24.11}$$

$$\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) \tag{24.12}$$

$$\coth^{-1} z = \frac{1}{2} \ln \left(\frac{z+1}{z-1} \right) \tag{24.13}$$

$$csch^{-1}z = \ln\left(\frac{1 \pm \sqrt{z^2 + 1}}{z}\right) \tag{24.14}$$

$$sech^{-1}z = \ln\left(\frac{1 \pm \sqrt{1 - z^2}}{2}\right)$$
 (24.15)

24.4 Relation to Circular Trigonometric Functions

$$\sinh(z) = -i\sin(iz) \tag{24.16}$$

$$\coth(z) = \cos(iz) \tag{24.17}$$

$$tanh(z) = -i tan(iz)$$
(24.18)

$$csch(z) = i\csc(iz) \tag{24.19}$$

$$sech(z) = sec(iz)$$
 (24.20)

$$\coth(z) = i\cot(iz) \tag{24.21}$$

Part V Calculus

Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{25.1}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \tag{25.2}$$

$$\lim_{x \to 0} \cos x = 1 \tag{25.3}$$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1} \tag{25.4}$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$
 (25.5)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$
(25.6)

$$\lim_{x \to 0} \exp(x) = 1 \tag{25.7}$$

$$\lim_{x \to a} \exp(x) = \exp(c) \tag{25.8}$$

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1 \tag{25.9}$$

$$\lim_{x \to a} c^x = c^a \tag{25.10}$$

$$\lim_{x \to a} \ln x = \ln a \tag{25.11}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{25.12}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{25.13}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \tag{25.14}$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0, \forall x \in \mathbb{R}$$
 (25.15)

25.1 L'Hospital Rule

If:

$$L = \lim_{x \to a} \frac{f(x)}{g(x)}$$

is such that f(a) = 0 and g(a) = 0, or $f(a) = \infty$ and $g(a) = \infty$, then:

$$L = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Differentiation

26.1 Differentiation by First Principle

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (26.1)

26.2 Standard Differentiation Formulae

$$\frac{dk}{dx} = 0 (26.2)$$

$$\frac{dx^n}{dx} = nx^{n-1} \tag{26.3}$$

$$\frac{da^x}{dx} = \ln a \cdot a^x \tag{26.4}$$

$$\frac{d\exp(x)}{dx} = \exp(x) \tag{26.5}$$

$$\frac{d\ln x}{dx} = \frac{1}{x} \tag{26.6}$$

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{2}}\tag{26.7}$$

(26.8)

26.2.1 Circular Trigonometric Functions

$$\frac{d\sin x}{dx} = \cos x \tag{26.9}$$

$$\frac{d\cos x}{dx} = -\sin x\tag{26.10}$$

$$\frac{d\tan x}{dx} = \sec^2 x \tag{26.11}$$

$$\frac{d \sec x}{dx} = \sec x \tan x \tag{26.12}$$

$$\frac{d\csc x}{dx} = -\csc x \cot x \tag{26.13}$$

$$\frac{d\cot x}{dx} = -\csc^2 x\tag{26.14}$$

26.2.2 Inverse Circular Trigonometric Functions

$$\frac{d\arcsin x}{dx} = \frac{1}{\sqrt{1 - x^2}}, |x| \le 1$$
 (26.15)

$$\frac{d\arccos x}{dx} = -\frac{1}{\sqrt{1-x^2}}, |x| \le 1$$
 (26.16)

$$\frac{d\arctan x}{dx} = \frac{1}{1+x^2} \tag{26.17}$$

$$\frac{d\cot^{-1}x}{dx} = -\frac{1}{1+x^2} \tag{26.18}$$

$$\frac{d\sec^{-1}x}{dx} = \frac{1}{x\sqrt{x^2 - 1}}, |x| \ge 1$$
 (26.19)

$$\frac{d\csc^{-1}x}{dx} = -\frac{1}{x\sqrt{x^2 - 1}}, |x| \ge 1$$
 (26.20)

26.2.3 Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \cosh x \tag{26.21}$$

$$\frac{d\cosh x}{dx} = \sinh x \tag{26.22}$$

$$\frac{d\tanh x}{dx} = 1 - \tanh^2 x = \operatorname{sech}^2(x) \tag{26.23}$$

$$\frac{d\coth x}{dx} = 1 - \coth^2 x = -\operatorname{csch}^2(x) \tag{26.24}$$

$$\frac{d[sech(x)]}{dx} = -\tanh x \operatorname{sech} x \tag{26.25}$$

$$\frac{dx}{d[\csc h(x)]} = -\coth x \operatorname{csch} x \tag{26.26}$$

26.2.4 Inverse Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \frac{1}{\sqrt{x^2 + 1}}\tag{26.27}$$

$$\frac{d\cosh x}{dx} = \frac{1}{\sqrt{x^2 - 1}}\tag{26.28}$$

$$\frac{d\tanh x}{dx} = \frac{1}{1 - x^2} \tag{26.29}$$

$$\frac{d\coth x}{dx} = \frac{1}{1 - x^2} \tag{26.30}$$

$$\frac{d[sech(x)]}{dx} = \frac{1}{x\sqrt{1-x^2}} \tag{26.31}$$

$$\frac{d[csch(x)]}{dx} = \frac{1}{|x|\sqrt{1+x^2}}$$
 (26.32)

26.3 Rules of Differentiation

$$\frac{d[cf(x)]}{dx} = c\frac{df(x)}{dx} \tag{26.33}$$

$$\frac{d[f_1(x) + f_2(x)]}{dx} = \frac{d[f_1(x)]}{dx} + \frac{d[f_2(x)]}{dx}$$
(26.34)

$$\frac{d[f_1 f_2]}{dx} = f_1 f_2' + f_2 f_1' \tag{26.35}$$

$$\frac{d[f_1 f_2]}{dx} = f_1 f_2' + f_2 f_1' \qquad (26.35)$$

$$\frac{d\left(\frac{f_1}{f_2}\right)}{dx} = \frac{f_2 f_1' - f_1 f_2'}{f_2^2} \qquad (26.36)$$

26.4 Chain Rule

If two functions are defined as z = f(y) and y = g(x):

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \tag{26.37}$$

If two functions are defined as $x = f(\theta)$ and $y = g(\theta)$:

$$\frac{d^2y}{dx^2} = \left[\frac{d}{d\theta} \left(\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\right)\right] \frac{d\theta}{dx} \tag{26.38}$$

Successive Differentiation

$$D^{n}(ax+b)^{m} = m(m-1)\cdots(m-n+1)a^{n}(ax+b)^{m-n}$$
 (27.1)

$$D^{n}\left(\frac{1}{ax+b}\right) = \frac{(-1)^{n} n! a^{n}}{(ax+b)^{n+1}}$$
 (27.2)

$$D^{n}\ln(ax+b) = \frac{(-1)^{n-1}(n-1)!a^{n}}{(ax+b)^{n}}, n \ge 2$$
 (27.3)

$$D^{n}(a^{mx}) = m^{n}(\ln a)^{n}a^{mx}$$
 (27.4)

$$D^n(e^{mx}) = m^n e^{mx} (27.5)$$

$$D^{n}\sin(ax+b) = a^{n}\sin(ax+b+n\frac{\pi}{2})$$
 (27.6)

$$D^{n}\cos(ax+b) = a^{n}\cos(ax+b+n\frac{\pi}{2})$$
 (27.7)

$$D^{n}[e^{ax}\sin(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\sin(bx+c+n\arctan\frac{b}{a})$$
 (27.8)

$$D^{n}[e^{ax}\cos(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\cos(bx+c+n\arctan\frac{b}{a})$$
 (27.9)

27.1 Leibnitz's Theorem

For two functions u and v of x, the successive differentiation of their product is defined as:

$$(uv)_n = {}^nC_0u_nv + {}^nC_1u_{n-1}v_1 + \dots + {}^nC_0uv_n$$

$$= \sum_{i=0}^n {}^nC_iu_{n-i}v_i$$
(27.10)

Partial Derivative

If f(x, y) is a function of (x, y), then $\frac{\delta f(x, y)}{\delta x}$ is the differentiation of f(x, y) w.r.t. x, keeping all other parameters constant.

28.1 Chain Rule

If f is a function of u and v, which are functions of x and y, then:

$$\frac{\delta f}{\delta x} = \frac{\delta f}{\delta u} \frac{\delta u}{\delta x} + \frac{\delta f}{\delta v} \frac{\delta v}{\delta x} \tag{28.1}$$

$$\frac{\delta f}{\delta y} = \frac{\delta f}{\delta u} \frac{\delta u}{\delta y} + \frac{\delta f}{\delta v} \frac{\delta v}{\delta y} \tag{28.2}$$

If f is a function of x and y, which are functions of t, then:

$$\frac{df}{dt} = \frac{\delta f}{\delta x} \frac{dx}{dt} + \frac{\delta f}{\delta y} \frac{dy}{dt}$$
 (28.3)

28.2 Euler's Theorem

For a homogeneous function 1 , $f(x_{i})$ of degree n:

$$\sum x_i \frac{\delta f}{\delta x_i} = n f(x_i) \tag{28.4}$$

Thomogeneous functions are defined as $f(ax, ay) = a^{\kappa} f(x, y)$, where κ is the degree of homogeneity. E.g. $f(x,y) = x^2 + y^2$, then $f(tx,ty) = t^2(x^2 + y^2)$, and the degree of homogeneity is 2.

Application of Differentiation

29.1 Rolle's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b)
- 3. f(a) = f(b),

then there exists a point x = c such that $f'(c) = 0, c \in (a, b)$

29.2 Mean Value Theorem or LaGrange's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b),

then there exists a point x = c such that $f'(c) = \frac{f(b) - f(a)}{b - a}$, $c \in (a, b)$, i.e., the tangent is parallel to the line joining the points (a, f(a)) and (b, f(b)).

29.3 Cauchy's Mean Value Theorem

For a function f(x) and g(x):

- 1. are continuous in [a, b]
- 2. are differentiable in (a, b)
- 3. $g'(x) \neq 0$ in (a, b),

then there exists a point $c \in (a, b)$, such that $\frac{f(x)}{g(x)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

29.4 Maxima and Minima

29.4.1 Maxima

For the local maxima of a function f(x):

1.
$$f'(c) = 0$$
 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) > 0$$

$$\lim_{\epsilon \to c^{+}} f'(\epsilon) < 0$$
OR

2.
$$f'(c) = 0$$
 and $f''(x) < 0$,

then f(c) is the local maxima point of the function f(x).

29.4.2 Minima

For the local minima of a function f(x):

1.
$$f'(c) = 0$$
 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) < 0$$

$$\lim_{\epsilon \to c^{+}} f'(\epsilon) > 0$$
OR

2.
$$f'(c) = 0$$
 and $f''(x) > 0$,

then f(c) is the local minima point of the function f(x).

29.5 Taylor's Theorem

For a function which is differentiable n times:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(a) + \frac{h^n}{x!}R_n$$
 (29.1)

where R_n is the remainder term.

29.5.1 Remainder Term

LeGrange's Form

$$R_n = f^n(a + \theta h), \theta \in (0, 1)$$
(29.2)

Cauchy's Form

$$R_n = n(1 - \theta)^{n-1} f^n(a + \theta h), \theta \in (0, 1)$$
(29.3)

29.5.2 Conditions for Validity of Expansion

For validity of Taylor Expansion, the condition

$$\lim_{n \to \infty} R_n = 0 \tag{29.4}$$

needs to be satisfied either where R_n is the remainder term in either LeGrange's Form or Cauchy's Form. If the condition is satisfied in a certain domain, then the expansion is valid within that domain only.

29.5.3 Taylor's Theorem for Two Variables

$$f(a+x,b+y) = f(x,y) + \left(a\frac{\delta}{\delta x} + b\frac{\delta}{\delta y}\right) f(x,y) + \frac{1}{2!} \left(a^2 \frac{\delta^2}{\delta x^2} + b^2 \frac{\delta^2}{\delta y^2}\right) f(x,y) + \dots + \frac{1}{n!} \left(a^n \frac{\delta^n}{\delta x^n} + b^n \frac{\delta^n}{\delta y^n}\right) f(x+\theta a, y+\theta b), \theta \in (0,1)$$
(29.5)

29.6 Maclaurin's Series

$$f(x) = f(0) + xf'(0) + \frac{1}{2!}x^2f''(0) + \frac{1}{3!}x^3f'''(0) + \dots \infty$$

$$= \sum_{i=0}^{\infty} \frac{1}{i!}x^if^i(0)$$
(29.6)

29.6.1 Maclaurin's Series with Two Variables

$$f(a,b) = f(0,0) + \left(a\frac{\delta}{\delta x} + b\frac{\delta}{\delta x}\right) f(0,0) + \frac{1}{2!} \left(a^2 \frac{\delta^2}{\delta x^2} + b^2 \frac{\delta^2}{\delta x^2}\right) f(0,0) + \cdots \infty$$

$$= \sum_{i=0}^{\infty} \frac{1}{n!} \left(a^i \frac{\delta^i}{\delta x^i} + b^i \frac{\delta^i}{\delta x^i}\right) f(0,0)$$
(29.7)

29.7 Curvature

Curvature is the rate of change of direction w.r.t. arc. Mathematically:

Curvature =
$$\frac{d(\text{direction})}{d(\text{arc})}$$

$$\lim_{\Delta s \to 0} \frac{\Delta \psi}{\Delta s} = \frac{d\psi}{ds}$$
(29.8)

29.7.1 Radius of Curvature

Cartesian Form

For a curve y = f(x):

$$\rho = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} \tag{29.9}$$

However, this formula fails for $y' \to \infty$.

Parametric Form

For a curve defined as $x = \phi(t)$ and $y = \psi(t)$:

$$\rho = \frac{(\ddot{x}^2 + \ddot{y}^2)^{\frac{3}{2}}}{x\ddot{y} - y\ddot{x}} \tag{29.10}$$

29.7.2 Newton's Formula

1. If the curve passes through origin, and the tangent at origin is the x-axis:

$$\rho = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2}{2y} \tag{29.11}$$

2. If the curve passes through origin, and the tangent at origin is the y-axis:

$$\rho = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{y^2}{2x} \tag{29.12}$$

3. If the curve passes through origin and ax + by + c = 0 is the tangent at origin:

$$\rho(0,0) = \frac{1}{2}\sqrt{a^2 + b^2} \lim_{\substack{x \to 0 \\ y \to 0}} \frac{a^2 + y^2}{ax + by}$$
 (29.13)

29.7.3Tangent at Origin

For a curve

$$\sum c_i x^j y^k = 0, i \in \mathbb{N} \text{ and } j, k \in \mathbb{Z} - \{0\}$$
 (29.14)

The curve passes through origin : c = 0. Then the lowest degree term equated to x gives the tangent at origin.

Asymptotes 29.8

If the distance between a line P and a curve f(x), s is such that $s \to 0$, as $x \to \infty$, then P is the asymptote of f(x). For asymptotes not parallel to x-axis:

Let y = mx + c be the asymptote of the function y = f(x), then:

$$m = \lim_{x \to \infty} \frac{y}{x} \tag{29.15}$$

$$m = \lim_{x \to \infty} \frac{y}{x}$$

$$c = \lim_{x \to \infty} (y - mx)$$
(29.15)
$$(29.16)$$

Asymptote of Algebraic Curves 29.8.1

For an algebraic curve, passing through origin, defined as:

$$(a_0x^n + a_1x^{n-1}y^1 + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n) + (b_0x^{n-1} + b_1x^{n-2}y^1 + b_2x^{n-3}y^2 + \dots + b_{n-1}xy^{n-2} + a_ny^{n-1}) + \dots = 0$$

$$\Rightarrow x^{n}\phi_{n}\left(\frac{y}{x}\right) + x^{n-1}\phi_{n-1}\left(\frac{y}{x}\right) + \dots + x\phi_{1}\left(\frac{y}{x}\right) = 0$$

The asymptote(s) defined as y = mx + c,

1. m is the solution for the equation

$$\phi_n(m) = 0 \tag{29.17}$$

2.

$$c = -\frac{\phi_{n-1}(m)}{\phi_n(m)} \tag{29.18}$$

where c is a finite value.

Integration

30.1 General Formulae

1

$$\int nx^{n-1}dx = x^n + A \tag{30.1}$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + A \tag{30.2}$$

$$\int e^x dx = e^x + A \tag{30.3}$$

$$\int \frac{1}{x} dx = \ln x + A \tag{30.4}$$

$$\int \ln x dx = x(\ln x - 1) + A \tag{30.5}$$

¹A is the constant of integration in all cases

30.2 Circular Trigonometric Functions

$$\int \sin x dx = -\cos x + A \tag{30.6}$$

$$\int \cos x dx = \sin x + A \tag{30.7}$$

$$\int \sec^2 x dx = \tan x + A \tag{30.8}$$

$$\int \csc^2 x dx = -\cot x + A \tag{30.9}$$

$$\int \sec x \tan x dx = \sec x + A \tag{30.10}$$

$$\int \csc x \cot x dx = -\csc x + A \tag{30.11}$$

$$\int \sec x dx = \ln(\sec x + \tan x) + A \tag{30.12}$$

$$\int \csc x dx = -\ln(\csc x + \cot x) + A \tag{30.13}$$

$$\int \tan x dx = -\ln(\cos x) + A$$

$$= \ln(\sec x) + A \tag{30.14}$$

$$\int \cot x dx = \ln(\sin x) + A \tag{30.15}$$

30.3 Inverse Circular Trigonometric Function

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + A \tag{30.16}$$

$$\int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1} x + A \tag{30.17}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + A \tag{30.18}$$

$$\int \frac{-1}{1+x^2} dx = \cot^{-1} x + A = -\tan^{-1} x + A \tag{30.19}$$

$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + A = -\csc^{-1} x + A \tag{30.20}$$

$$\int \frac{-1}{x\sqrt{x^2 - 1}} dx = \csc^{-1} x + A = -\sec^{-1} x + A \tag{30.21}$$

30.4 Standard Integrals

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + A \tag{30.22}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + A \tag{30.23}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + A \tag{30.24}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + A \tag{30.25}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\frac{x}{a} + A \tag{30.26}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + A$$
 (30.27)

$$\int \sqrt{a^2 + x^2} dx = \frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + A \tag{30.28}$$

$$\int \sqrt{x^2 - a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \ln(x + \sqrt{a^2 - x^2}) + A \tag{30.29}$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + A \tag{30.30}$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + A \tag{30.31}$$

2

30.5 Special Forms

For a function f(x):

$$\int [f(x)]^n f'(x) dx = \begin{cases} \frac{[f(x)]^{n+1}}{n+1} + A, n \neq 1\\ \ln|f(x)| + A, n = 1 \end{cases}$$
(30.32)

a is a constant $\in \mathbb{R}$

30.5.1 Integration by Part

For two functions u(x) and v(x):

$$\int u(x)v(x)dx = u(x)\left[\int v(x)dx\right] - \int \left[\frac{du(x)}{dx}\left(\int v(x)dx\right)dx\right] \quad (30.33)$$

Definite Integral

31.1 Definition

For a function f(x) for which $\int f(x)dx = F(x) + A$,

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 (31.1)

31.2 Properties of Definite Integration

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt \tag{31.2}$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \tag{31.3}$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (31.4)

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
 (31.5)

$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
 (31.6)

$$\int_0^{2a} f(x)dx = \begin{cases} 2\int_0^a f(x)dx, & f(2a-x) = f(x) \\ 0, & f(2a-x) = f - (x) \end{cases}$$
(31.7)

$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx, & f(x) \text{ is even} \\ 0, & f(x) \text{ is odd} \end{cases}$$
 (31.8)

31.3 Approximation

$$f(a)(b-a) \le \int_a^b f(x)dx \le f(b)(b-a)$$
 (31.9)

31.4 Sum of Infinite Series as a Definite Integral

Refer to 3.5.2.

Reduction Formulae

$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x dx + \frac{n-1}{n} \int \sin^{n-2} x dx$$
(32.1)

$$\int \cos^n x dx = -\frac{1}{n} \cos^{n-1} x \sin x dx + \frac{n-1}{n} \int \cos^{n-2} x dx$$
(32.2)

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \begin{cases} \frac{(n-1) \cdot (n-3) \cdots 3 \cdot 1}{n \cdot (n-2) \cdots 4 \cdot 2} \left(\frac{\pi}{2}\right), n \to \text{ even} \\ \frac{(n-1) \cdot (n-3) \cdots 4 \cdot 2}{n \cdot (n-2) \cdots 3 \cdot 1}, n \to \text{ odd} \end{cases}$$
(32.3)

$$\int \sin^m x \cos^n x dx = \frac{-\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^n x dx$$
(32.4)

For $I(m,n) = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$:

When m and n are both even:

$$I(m,n) = \frac{[(m-1).(m-3)\cdots 3.1][(n-1).(n-3)\cdots 3.1]}{(m+n).(m+n-1)\cdots (4).(2)} \cdot \frac{\pi}{2}$$
 (32.5)

Otherwise:

$$I(m,n) = \frac{[(m-1).(m-3)\cdots(2 \text{ or } 1)][(n-1).(n-3)\cdots()(2 \text{ or } 1)]}{(m+n).(m+n-1)\cdots(2 \text{ or } 1))}$$
(32.6)

$$I_n = \int \tan^n x dx$$

$$\Rightarrow I_n = \frac{\tan^{n-2} x}{n-1} - I_{n-2}$$
(32.7)

$$I_n = \int \cot^n x dx$$

$$\Rightarrow I_n = -\frac{\cot^{n-2} x}{n-1} - I_{n-2}$$
(32.8)

$$I_n = \int \sec^n x dx$$

$$\Rightarrow I_n = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$
(32.9)

$$I_n = \int \csc^n x dx$$

$$\Rightarrow I_n = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$
(32.10)

$$I_n = \int x^n e^{ax} dx \tag{32.11}$$

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-2}$$
 (32.12)

$$I(m,n) = \int x^m (\ln x)^n dx \qquad (32.13)$$

$$\int x^m (\ln x)^n dx = \frac{x^{m+1}}{m+1} (\ln x)^n - \frac{n}{m+1} I_{m,n-1}$$
 (32.14)

Multiple Integrals

33.1 Two Variables

For

$$I = \iint_{R} f(x, y) dx dy \tag{33.1}$$

The following substitution are made:

$$x = g(r, \theta) \tag{33.2}$$

$$y = h(r, \theta) \tag{33.3}$$

$$\therefore dxdy = |J|drd\theta \tag{33.4}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\delta x}{\delta r} & \frac{\delta y}{\delta r} \\ \frac{\delta x}{\delta \theta} & \frac{\delta y}{\delta \theta} \end{vmatrix}$$
 (33.5)

The equivalent integral is:

$$I = \iint_{R_1} f(g(r,\theta), h(r,\theta)) |J| dr d\theta$$
 (33.6)

33.2 Three Variables

For

$$I = \iiint_{R} f(x, y, z) dx dy dz$$
 (33.7)

The following substitution are made:

$$x = g(r, \theta, \phi) \tag{33.8}$$

$$y = h(r, \theta, \phi) \tag{33.9}$$

$$z = k(r, \theta, \phi) \tag{33.10}$$

$$\therefore dxdydz = |J|drd\theta d\phi \tag{33.11}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\delta x}{\delta r} & \frac{\delta y}{\delta r} & \frac{\delta z}{\delta r} \\ \frac{\delta x}{\delta \theta} & \frac{\delta y}{\delta \theta} & \frac{\delta z}{\delta \theta} \\ \frac{\delta x}{\delta \phi} & \frac{\delta y}{\delta \phi} & \frac{\delta z}{\delta \phi} \end{vmatrix}$$
(33.12)

The equivalent integral is:

$$I = \iiint_{R_1} f(g(r, \theta, \phi), h(r, \theta, \phi), k(r, \theta, \phi)) |J| dr d\theta d\phi$$
 (33.13)

Differential Equation

34.1 1st Order, 1st Degree Differential Equation

For the equation:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{34.1}$$

Then an Integral Function (I.F.) is defined as:

$$I.F. = e^{\int P(x)dx} \tag{34.2}$$

Then the solution of the equation 34.1 is given by:

$$y(I.F.) = \int Q(I.F.)dx \tag{34.3}$$

34.2 2nd Order, 1st Degree Differential Equation

For the equation:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0 (34.4)$$

$$y'' + ay' + by = 0 (34.5)$$

By substituting $y = e^{\lambda x}$, the equation obtained is:

$$\lambda^{2}e^{\lambda x} + \lambda e^{\lambda x} + be^{\lambda x} = 0$$

$$\therefore e^{\lambda x} \neq 0$$

$$\Rightarrow \lambda^{2} + a\lambda + b = 0$$
(34.6)

If α and β are the solutions of the equation 34.6, then the solution of 34.4 can be:

1. If $\alpha = \beta$ and $\alpha, \beta \in \mathbb{R}$:

$$y = (c_1 + c_2 x)e^{\alpha x} (34.7)$$

2. If $\alpha \neq \beta$ and $\alpha, \beta \in \mathbb{R}$:

$$y = c_1 e^{\alpha x} + c_2 e^{\beta x} \tag{34.8}$$

3. If $\lambda = \alpha + i\beta$:

$$y = e^{\alpha x} \left[A \cos(\beta x) + B \sin(\beta x) \right]$$
 (34.9)

34.3 Special Cases of Differential Equation

34.3.1 Definition of Inverse Operator

The operator D is equivalent to $\frac{d}{dx}$. If Df(x) = X, then $f(x) = \frac{1}{D}X = \int X dx$.

34.3.2 Special Cases

1.

$$f(x) = \frac{1}{D-a}X = e^{ax} \int Xe^{-ax} dx$$
 (34.10)

2.

$$\frac{1}{f(D)}e^{ax} = \begin{cases}
\frac{e^{ax}}{f(a)}, f(a) \neq 0 \\
x \frac{e^{ax}}{f'(a)}, f(x) = 0 \text{ and } f'(a) \neq 0 \\
x^2 \frac{e^{ax}}{f''(a)}, f(x) = 0 \text{ and } f'(a) = 0
\end{cases}$$
(34.11)

3.

$$\frac{1}{f(D)}x^m = [f(D)]^{-1}x^m \tag{34.12}$$

 $[f(D)]^{-1}$ is expanded and arranged in terms of ascending powers of D and operated on x^m .

4. (a)

$$\frac{1}{f(D)}\sin(ax) = \frac{1}{\phi(D^2)}\sin(ax)$$

$$= \frac{1}{\phi(-a^2)}\sin(ax)$$
(34.13)

(b)
$$\frac{1}{f(D)}\cos(ax) = \frac{1}{\phi(D^2)}\cos(ax)$$

$$= \frac{1}{\phi(-a^2)}\cos(ax)$$
(34.14)

5. (a)
$$\frac{1}{f(D)}\sin(ax) = \frac{1}{\phi(D^2, D)}\sin(ax) \\
= \frac{1}{\phi(-a^2, D)}\sin(ax) \tag{34.15}$$

(b)
$$\frac{1}{f(D)}\cos(ax) = \frac{1}{\phi(D^2, D)}\cos(ax)$$
$$= \frac{1}{\phi(-a^2, D)}\cos(ax)$$
(34.16)

6. (a)
$$\frac{1}{f(D)}\sin(ax) = \frac{\psi(D)}{\phi(D^2)}\sin(ax)$$

$$= \frac{\psi(D)}{\phi(-a^2)}\sin(ax)$$
(34.17)

(b)
$$\frac{1}{f(D)}\cos(ax) = \frac{\psi(D)}{\phi(D^2)}\cos(ax)$$

$$= \frac{\psi(D)}{\phi(-a^2)}\cos(ax)$$
(34.18)

7. (a)
$$\frac{1}{f(D)}\sin(ax) = x\frac{1}{f'(D)}\sin(ax)$$
 (34.19)

(b)
$$\frac{1}{f(D)}\cos(ax) = x\frac{1}{f'(D)}\cos(ax)$$
 (34.20)

34.4 Method of Variation of Parameters

If the equation is of the form:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f ag{34.21}$$

where a, b, f are functions of x. The solution for 34.21 is obtained by solving for:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0 ag{34.22}$$

If y_1 and y_2 are the two independent solution of equation 34.22.

Then the general solution of the equation is:

$$y = c_1 y_1 + c_2 y_2 \tag{34.23}$$

where c_1 and c_2 are the constants.

The particular solution of equation 34.22 will be:

$$y = y_1 \left(\int \frac{y_2(-f)}{W} dx \right) + y_2 \left(\int \frac{y_1 f}{W} dx \right)$$
 (34.24)

W is the Wronskian, which is defined by:

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \tag{34.25}$$

34.5 Singular and Ordinary Point

For a differential equation:

$$P_0 \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_{n-1} \frac{dy}{dx} + P_n y = R(x)$$
 (34.26)

where $P_0 \cdots P_n$ are functions of x.

If at a point $x = x_0$:

- 1. $P_0(x_0) \neq 0$, x_0 is an ordinary point.
- 2. $P_0(x_0) = 0$, x_0 is an singular point:

(a)

$$\lim_{x \to x_0} (x - x_0) P_1(x) = c_1 \tag{34.27}$$

$$\lim_{x \to x_0} (x - x_0)^2 P_2(x) = c_2 \tag{34.28}$$

(34.29)

where c_1 and c_2 are both finite quantities x_0 is a regular singular point.

(b) otherwise it is an irregular singular point.

Beta and Gamma Functions

For m, n > 0:

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} x \cos^{2n-1} x dx$$
(35.1)

$$\Gamma(n) = \int_0^\infty e^{-1} x^{n-1} dx \tag{35.2}$$

35.1 Important Relations between $\beta(m,n)$ and $\Gamma(n)$ Functions

$$\Gamma(n) = \frac{\Gamma(n+1)}{n} \tag{35.3}$$

$$\Gamma(1) = 1 \tag{35.4}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \approx 1.772\tag{35.5}$$

$$\Gamma(n+1) = n!, n \in \mathbb{N} \tag{35.6}$$

$$\Gamma(m)\Gamma\left(m + \frac{1}{2}\right) = \sqrt{\pi}\Gamma(2m) \tag{35.7}$$

$$\Gamma(m)\Gamma(m-1) = \pi \csc(m\pi) \tag{35.8}$$

$$\beta(m,n) = \beta(n,m) \tag{35.9}$$

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 (35.10)

$$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \pi \tag{35.11}$$

$$\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x = \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{\Gamma(\frac{p+2}{2})}$$
(35.12)

(35.13)

Laplace Transformations

The Laplace Transformation of a function f(t) is defined as:

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \lim_{x \to \infty} \int_0^x e^{-st} f(t) dt$$
 (36.1)

36.1 Basic Transformations

F(s)
aF(s) + bG(s)
$\frac{1}{2}$
$\frac{\frac{s}{1}}{s^2}$
$\frac{s^2}{n!}$ $\frac{s^2}{s^{n+1}}$
$\frac{s-a}{s^2+\omega^2}$
$\frac{\omega}{s^2 + \omega^2}$
$\frac{a}{s^2 - a^2}$
$\frac{s}{s^2 - a^2}$

Table 36.1: Table of Laplace Transformations

36.2 Important Relations

$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a) \tag{36.2}$$

$$\mathcal{L}\{tf(t)\} = -F'(s) \tag{36.3}$$

$$\mathcal{L}\{t^n f(t)\} = (-1)^n F^n(s)$$
 (36.4)

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \lim_{x \to \infty} \int_{a}^{x} F(u)du \tag{36.5}$$

$$\mathcal{L}\left\{\frac{f(t)}{t^n}\right\} = \lim_{x \to \infty} \int_1 \int_2 \cdots \int_{s-n}^x F(u) du \cdots du$$
 (36.6)

36.3 Convolution

For two functions f(t) and g(t) be given such that their Laplace transforms are F(s) and G(s), then:

$$\mathcal{L}\{f(t) \star g(t)\} = F(s)G(s) \tag{36.7}$$

where $f(t) \star g(t)$ is defined as:

$$\int_0^t f(u)g(t-u)du \tag{36.8}$$

36.4 Laplace Transforms of Differentials

If the Laplace Transform of f(t) is $F(s)^1$:

$$\mathcal{L}\lbrace f'(t)\rbrace = sF(s) - y(0) \tag{36.9}$$

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - [sy(0) + y'(0)] \tag{36.10}$$

:

$$\mathcal{L}\{f^n(t)\} = s^n F(s) - \left[\sum_{i=0}^{n-1} s^{n-i} y^i(0)\right]$$
 (36.11)

¹Used in initial value problems

Part VI Operations Research

Linear Programming Problems

37.1 Basic Feasible Solution

The standard LPP problem has an objective function and conditions.

$$Z = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
Subject to:
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

For a system with n variables and m conditions, the number of basic solutions are: $\binom{n}{k}$. For any n - m system there are n-m non-basic variables (NBV) and m basic variables (BV).

For the above system, the basic solutions are obtained by:

NBV	BV	BFS
$x_1, x_2, \cdots, x_{n-m} = 0$	$x_{n-m+1} = c_1, \cdots, x_n = c_n$	If $x_{n-m+1,\dots,x_n} \geq 0$ then it is a basic feasible solution.
:	i	

37.1.1 Adjacent Basic Feasible Solutions

If two adjacent BFS share m-1 BV then they are called adjacent varibales. The optimal solution is always a extreme point. Thus, graphically:

37.2 Simplex Method