#### Lezione 4

**Prerequisiti:** Applicazioni tra insiemi. Lezioni 2 e 3.

### Gruppi di permutazioni

In questa lezione introduciamo una classe infinita di gruppi non abeliani.

**Definizione 4.1** Sia X un insieme non vuoto. Si dice *permutazione* su X ogni applicazione bigettiva di X in se stesso. Denoteremo con S(X) l'insieme delle permutazioni su X.

**Proposizione 4.2** L'insieme S(X) è un gruppo rispetto alla composizione di applicazioni.

Dimostrazione: La composizione di due permutazioni di X è ancora una permutazione di X: infatti, se  $f: X \to X$ ,  $g: X \to X$  sono applicazioni bigettive, bigettiva è anche l'applicazione composta  $g \circ f: X \to X$ . Dunque la composizione di applicazioni è un'operazione binaria definita in S(X). Verifichiamo ora che tale operazione soddisfa le proprietà della definizione di gruppo (Definizione 2.3). L'associatività è nota dalla teoria delle applicazioni. L'elemento neutro è l'applicazione identica  $id_X$ . Infine, per ogni  $f \in S(X)$ , l'applicazione inversa  $f^{-1}$  appartiene anch'essa ad S(X); poiché  $f \circ f^{-1} = f^{-1} \circ f = id_X$ , essa è dunque il simmetrico di f in S(X).  $\square$ 

**Definizione 4.3** Sia n un intero positivo, ed  $X = \{1, 2, ..., n\}$ . Allora il gruppo S(X) viene detto gruppo simmetrico (oppure gruppo delle permutazioni) su n elementi e denotato  $S_n$  (oppure Sym(n)).

**Esempio 4.4** Determiniamo i gruppi  $S_1, S_2$ .

- (a) L'unica applicazione  $\{1\} \rightarrow \{1\}$  è l'applicazione identica. Quindi  $S_1$  è un gruppo banale.
- (b) Vi sono esattamente due applicazioni bigettive  $\{1,2\} \rightarrow \{1,2\}$ , ossia l'applicazione identica e l'applicazione definita da  $1 \mapsto 2, 2 \mapsto 1$ . Questi sono i due elementi di  $S_2$ .

**Nota** In generale, per indicare un elemento  $\sigma$  di  $S_n$  si può utilizzare la cosiddetta *notazione* matriciale, nella quale sono riportate (nella seconda riga) le immagini secondo  $\sigma$  degli elementi 1,2,...,n (scritti nella prima riga):

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

In questa notazione, l'applicazione identica corrisponde ad una matrice con due righe uguali:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$

Indicheremo tale applicazione (detta permutazione identica), più semplicemente, con il simbolo id.

In base a quanto stabilito nell'Esempio 4.4, possiamo dunque scrivere:

$$S_1 = \{id\},$$

$$S_2 = \left\{id, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\right\}.$$

**Esercizio 4.5** Determinare, in notazione matriciale, tutti gli elementi di  $S_3$ .

Svolgimento: Le notazioni matriciali degli elementi di  $S_3$  si ottengono disponendo gli elementi 1,2,3, secondo tutti gli ordini possibili, nella seconda riga della matrice  $\begin{pmatrix} 1 & 2 & 3 \\ \Box & \Box & \Box \end{pmatrix}$ . Il risultato è il seguente:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Questi sono i 6 elementi di  $S_3$ .

Esiste una facile formula generale per il numero di elementi di  $S_n$ .

**Proposizione 4.6** (Numero di elementi di  $S_n$ ) Per ogni intero positivo n,  $S_n$  ha n! elementi.

<u>Dimostrazione</u>: Osserviamo preliminarmente che il numero di elementi di  $S_n$  è pari al numero di disposizioni (senza ripetizioni) dei numeri interi 1, 2, ..., n (o, più in generale, di n oggetti a due a due distinti).

Dimostriamo la tesi per induzione su n. In base a quanto visto nell'Esempio 4.4 (a), la tesi è vera per n=1. Sia ora n>1 e supponiamo la tesi vera per n-1. Ogni disposizione dei numeri 1,2,...,n si ottiene scegliendo uno dei numeri come primo numero, ed occupando le posizioni dalla seconda alla n-esima con una disposizione dei restanti n-1 numeri. Queste ultime, per l'ipotesi induttiva, sono (n-1)!, mentre le possibili scelte del primo numero sono n. Complessivamente, le possibili disposizioni dei numeri 1,2,...,n sono, pertanto, (n-1)!n=n!. Ciò prova che  $S_n$  ha n! elementi.  $\square$ 

**Esempio 4.7** Riportiamo in tabella i numeri di elementi dei gruppi  $S_n$ , con n = 1,...,6.

| n | Numero di elementi di $S_n$ |  |  |
|---|-----------------------------|--|--|
| 1 | 1                           |  |  |
| 2 | 2                           |  |  |
| 3 | 6                           |  |  |
| 4 | 24                          |  |  |
| 5 | 120                         |  |  |
| 6 | 720                         |  |  |

# Esercizio 4.8\* Determinare tutti gli elementi di $S_4$ .

Nella <u>Lezione 2</u> abbiamo determinato la struttura di tutti i gruppi aventi uno o due elementi, ed abbiamo constatato che questi sono tutti abeliani. Da ciò deduciamo che, in particolare, i gruppi  $S_1$  ed  $S_2$  sono abeliani. Questa proprietà non vale, però, per gli altri gruppi simmetrici.

**Proposizione 4.9** (Commutatività dei gruppi simmetrici) Il gruppo  $S_n$  è abeliano se e solo se  $n \le 2$ .

<u>Dimostrazione</u>: In base a quanto osservato, basta provare che, per ogni  $n \ge 3$ ,  $S_n$  non è abeliano. Sia  $n \ge 3$ , e siano  $\sigma, \tau \in S_n$  le permutazioni così definite:

$$\sigma(1) = 2$$
,  $\sigma(2) = 1$ ,  $\sigma(i) = i$ , per ogni altro  $i$ ,  $\tau(1) = 3$ ,  $\tau(3) = 1$ ,  $\tau(i) = i$ , per ogni altro  $i$ .

Allora  $\sigma \circ \tau(1) = \sigma(3) = 3$ , mentre  $\tau \circ \sigma(1) = \tau(2) = 2$ . Dunque  $\sigma \circ \tau \neq \tau \circ \sigma$ .  $\Box$ 

**Esercizio 4.10** Determinare, in  $S_3$ , le permutazioni  $\sigma$  e  $\tau$  della precedente dimostrazione, e calcolare  $\sigma \circ \tau$  e  $\tau \circ \sigma$ , utilizzando la notazione matriciale.

**Svolgimento**: In notazione matriciale

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

Dunque

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$\tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

Osservazione 4.11 Il gruppo  $S_3$  è il più piccolo esempio di gruppo non abeliano. Si può infatti dimostrare che ogni gruppo avente al più cinque elementi è abeliano.

Diamo ora un criterio di classificazione per le permutazioni. Sia  $n \ge 2$  un intero. Per ogni polinomio  $p = p(x_1,...,x_n)$  nelle indeterminate  $x_1,x_2,....,x_n$  poniamo  $\sigma(p) = p(x_{\sigma(1)},...,x_{\sigma(n)})$ , che è il polinomio ottenuto sostituendo, in p, ogni indice i con  $\sigma(i)$ . Consideriamo il polinomio

$$p_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Allora

$$\sigma(p_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}),$$

In questa operazione, il fattore  $(x_i - x_j)$  viene trasformato nel fattore  $(x_{\sigma(i)} - x_{\sigma(j)})$ : essendo  $\sigma$  un'applicazione iniettiva, e  $i \neq j$ , si ha che  $\sigma(i) \neq \sigma(j)$ . Dunque, se  $\sigma(i) < \sigma(j)$ ,  $(x_{\sigma(i)} - x_{\sigma(j)})$  è uno dei fattori di  $p_n$ , e se  $\sigma(i) > \sigma(j)$ ,  $-(x_{\sigma(i)} - x_{\sigma(j)}) = (x_{\sigma(j)} - x_{\sigma(i)})$  è uno dei fattori di  $p_n$ . Inoltre, in virtù dell'iniettività di  $\sigma$ , fattori distinti di  $p_n$  vengono inviati in fattori distinti di  $\sigma(p_n)$ . In conclusione, i fattori di  $\sigma(p_n)$  sono dunque, a meno di cambi di segno, gli stessi di  $p_n$ . Pertanto,  $\sigma(p_n) = p_n$  oppure  $\sigma(p_n) = -p_n$ : il primo caso si verifica se i fattori cambiati di segno sono in numero pari, il secondo caso se i fattori cambiati di segno sono in numero dispari.

#### **Esempio 4.12** Per n=3 il polinomio da considerare è

$$p_3 = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$$

Sia 
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
. Allora

$$\sigma(p_3) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = (x_2 - x_3)(-(x_1 - x_2))(-(x_1 - x_3)) = (x_2 - x_3)(x_1 - x_2)(x_1 - x_3) = p_3,$$

poiché si sono effettuati due cambi di segno. Invece, se  $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ , allora

$$\tau(p_3) = (x_2 - x_1)(x_2 - x_3)(x_1 - x_3) = -(x_1 - x_2)(x_2 - x_3)(x_1 - x_3) = -p_3,$$

dove si è effettuato un solo cambio di segno.

Definiamo ora l'applicazione

$$s: S_n \rightarrow \{-1,1\}$$

ponendo

$$\begin{cases} s(\sigma) = 1 & \text{se } \sigma(p_n) = p_n, \\ s(\sigma) = -1 & \text{se } \sigma(p_n) = -p_n; \end{cases}$$

ossia, equivalentemente:  $s(\sigma) = \frac{\sigma(p_n)}{p_n}$ .

Proviamo che s è un omomorfismo di gruppi. Siano  $\sigma, \tau \in S_n$ . Allora

$$s(\sigma \circ \tau) = \frac{\sigma \circ \tau(p_n)}{p_n} = \frac{\sigma(\tau(p_n))}{p_n} = \frac{\sigma(\tau(p_n))}{\tau(p_n)} \frac{\tau(p_n)}{p_n},$$

ove

$$\frac{\sigma(\tau(p_n))}{\tau(p_n)} = \begin{cases}
\frac{\sigma(p_n)}{p_n} & \text{se } \tau(p_n) = p_n; \\
\frac{\sigma(-p_n)}{-p_n} = \frac{-\sigma(p_n)}{-p_n} = \frac{\sigma(p_n)}{p_n} & \text{se } \tau(p_n) = -p_n.
\end{cases}$$

Dunque

$$s(\boldsymbol{\sigma} \circ \boldsymbol{\tau}) = \frac{\boldsymbol{\sigma}(p_n)}{p_n} \frac{\boldsymbol{\tau}(p_n)}{p_n} = s(\boldsymbol{\sigma})s(\boldsymbol{\tau}).$$

Ciò prova che s è un omomorfismo di gruppi.

**Definizione 4.13** Una permutazione  $\sigma \in S_n$  si dice (di segno o di classe) pari se  $\sigma(p_n) = p_n$ . Altrimenti si dice (di segno o di classe) dispari.

**Esempio 4.14** Nell'Esempio 4.12, la permutazione  $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$  è pari, la permutazione  $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3$  è dispari.

Osservazione 4.15 Dal fatto che s è un omomorfismo di gruppi si deduce la seguente regola di composizione per le permutazioni pari e dispari:

- se  $\sigma, \tau \in S_n$  sono entrambe pari o entrambe dispari, allora  $\sigma \circ \tau$  è pari;
- altrimenti  $\sigma \circ \tau$  è dispari.

In particolare, il sottoinsieme delle permutazioni pari di  $S_n$  è chiuso rispetto alla composizione. In effetti si ha:

**Proposizione 4.16** (*Gruppo alterno*) Sia n un intero positivo. L'insieme delle permutazioni pari di  $S_n$  è un sottogruppo di  $S_n$  (detto *gruppo alterno su n elementi*, e denotato  $A_n$ ). Si pone, per convenzione,  $A_1 = S_1$ .

<u>Dimostrazione</u>: L'insieme delle permutazioni pari di  $S_n$  è il nucleo dell'omomorfismo s. La tesi segue allora dal Corollario 3.5.  $\square$ 

**Esempio 4.17** In  $S_2$ , la permutazione  $\alpha = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$  è dispari: infatti  $p_2 = x_1 - x_2$ , così che  $\alpha(p_2) = x_2 - x_1 = -p_2$ . Dunque  $A_2 = \{id\}$ .

Per ogni intero positivo n, la permutazione identica  $id \in S_n$  è pari.

Quanto stabilito per la permutazione  $\alpha$  dell'Esempio 4.17 si può generalizzare.

**Esercizio 4.18** Sia  $n \ge 2$ . Sia  $\alpha \in S_n$  la permutazione definita da  $\alpha(1) = 2$ ,  $\alpha(2) = 1$ ,  $\alpha(i) = i$  per ogni i = 3, ..., n.

- (a) Provare che  $\alpha$  è dispari.
- (b) Provare che  $\alpha \circ \alpha = id$ .

Svolgimento: (a) Basta provare la tesi per  $n \ge 3$ . Si ha

$$p_n = (x_1 - x_2) \prod_{j=3}^{n} (x_1 - x_j) \prod_{j=3}^{n} (x_2 - x_j) \cdot q,$$

ove q è il prodotto dei restanti fattori (quelli in cui  $x_1, x_2$  non compaiono; se n = 3, non vi sono ulteriori fattori e quindi si pone q = 1).

Ouindi

$$\alpha(p_n) = (x_2 - x_1) \prod_{j=3}^n (x_2 - x_j) \prod_{j=3}^n (x_1 - x_j) \cdot q = -(x_1 - x_2) \prod_{j=3}^n (x_1 - x_j) \prod_{j=3}^n (x_2 - x_j) \cdot q = -p_n.$$

Ciò prova che  $\alpha$  è dispari.

(b) Si ha

$$\alpha \circ \alpha(1) = \alpha(\alpha(1)) = \alpha(2) = 1,$$
  
 $\alpha \circ \alpha(2) = \alpha(\alpha(2)) = \alpha(1) = 2,$   
 $\alpha \circ \alpha(i) = \alpha(\alpha(i)) = \alpha(i) = i, \text{ per ogni } i = 3, ..., n.$ 

Ciò prova che  $\alpha \circ \alpha(i) = i$  per ogni i = 1, ..., n, da cui la tesi.

Possiamo ora dimostrare una formula generale per il numero di elementi di  $A_n$ .

**Proposizione 4.19** (*Numero di elementi di A<sub>n</sub>*) Per ogni intero  $n \ge 2$ ,  $A_n$  ha  $\frac{n!}{2}$  elementi.

<u>Dimostrazione</u>: Sia  $n \ge 2$ . Sia  $B_n$  l'insieme delle permutazioni dispari di  $S_n$ . Allora si ha  $S_n = A_n \cup B_n$ , ove l'unione è disgiunta. Pertanto

$$\left|S_{n}\right| = \left|A_{n}\right| + \left|B_{n}\right|. \tag{1}$$

Sia  $\alpha \in S_n$  la permutazione definita nell'Esercizio 4.18. Definiamo un'applicazione  $\varphi : A_n \to B_n$  ponendo  $\varphi(\sigma) = \sigma \circ \alpha$  per ogni  $\sigma \in A_n$ . Notiamo che  $\varphi$  è ben definita: infatti, in base alle regole di composizione stabilite nell'Osservazione 4.15, se  $\sigma \in A_n$  (ossia se  $\sigma$  è pari), allora, essendo  $\alpha$  dispari, anche  $\sigma \circ \alpha$  è dispari, cioè  $\sigma \circ \alpha \in B_n$ . Proviamo che  $\varphi$  è invertibile. Sia  $\psi : B_n \to A_n$  l'applicazione definita ponendo  $\psi(\sigma) = \sigma \circ \alpha$  per ogni  $\sigma \in B_n$ . Si verifica, analogamente a quanto appena fatto per  $\varphi$ , che anche  $\psi$  è ben definita. Si ha, per ogni  $\sigma \in A_n$ ,

$$\psi \circ \varphi(\sigma) = \psi(\varphi(\sigma)) = \psi(\sigma \circ \alpha) = (\sigma \circ \alpha) \circ \alpha = \sigma \circ (\alpha \circ \alpha) = \sigma \circ id = \sigma.$$

Ciò prova che  $\psi \circ \varphi = id_{A_n}$ . Analogamente si prova che  $\varphi \circ \psi = id_{B_n}$ . Si conclude che  $\psi$  è l'applicazione inversa di  $\varphi$ . Dunque  $\varphi$  è invertibile, ossia è bigettiva. Segue che  $|A_n| = |B_n|$ . Allora

dalla (1) si deduce che  $|S_n| = 2|A_n|$ , ossia  $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$ , ove l'ultima uguaglianza segue dalla Proposizione 4.6.  $\square$ 

### **Esercizio 4.20** Determinare $A_3$ .

Svolgimento: Dalla Proposizione 4.19 sappiamo che  $A_3$  ha 3 elementi. Uno di questi è la permutazione identica id. Cerchiamo gli altri due elementi. Ora, nell'Esempio 4.14 abbiamo stabilito che  $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in A_3$ . Essendo  $A_3$  un sottogruppo di  $S_3$ , ad  $A_3$  appartiene anche la permutazione inversa di  $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ , che è  $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ . Dunque

$$A_3 = \left\{ id, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}.$$

Osservazione 4.21 Possiamo dare la tavola di composizione del gruppo  $A_3$ , che ha la stessa struttura di tutti i gruppi aventi tre elementi. Se si pone  $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ ,  $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ , la tavola di composizione è la seguente:

| 0  | id | $\sigma$ | τ  |
|----|----|----------|----|
| id | id | σ        | τ  |
| σ  | σ  | τ        | id |
| τ  | τ  | id       | σ  |

## Esercizio 4.22 Determinare tutti gli elementi di $A_4$ .

Svolgimento: Dalla Proposizione 4.19 sappiamo che  $A_4$  ha  $\frac{4!}{2}$ =12 elementi. Uno di questi è *id*. Determiniamo gli altri 11. A fronte dell'Esempio 4.14, siamo indotti a ritenere che la permutazione  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4$  possa essere pari. Lo potremmo verificare sulla base della Definizione 4.13, calcolando  $\sigma(p_4)$ . Scegliamo una via diversa, che sfrutta la struttura di gruppo di  $S_4$ . Osserviamo che

$$\sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix},$$

e quindi

$$\sigma \circ \sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = id.$$

Poiché id è pari, segue che  $\sigma$  è pari: altrimenti, in base alle regole di moltiplicazione date nell'Osservazione 4.15,  $\sigma \circ \sigma \circ \sigma$  sarebbe dispari. Dal fatto che  $\sigma$  è pari segue, in virtù delle stesse regole, che anche  $\sigma \circ \sigma$  è pari. Abbiamo dunque trovato due nuovi elementi di  $A_4$ :

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in A_4, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \in A_4.$$

Notiamo che l'effetto di  $\sigma$  su 1,2,3,4 è quello di "ruotare" i primi tre elementi di una posizione verso sinistra (trasformando la sequenza 1,2,3 nella sequenza 2,3,1), lasciando fisso il quarto (4 viene inviato in se stesso). Le considerazioni effettuate su  $\sigma$  si possono naturalmente applicare ad ogni altra permutazione  $\tau$  che ruoti tre elementi di una posizione verso sinistra lasciando fisso il restante elemento. Tutte queste permutazioni  $\tau$  e le permutazioni  $\tau \circ \tau$  sono dunque pari. Ciò ci fornisce altri 6 elementi di  $A_4$ : due per ogni scelta dell'elemento, (3, 2 o 1) da lasciare fisso (in colore sono evidenziati gli elementi sottoposti a "rotazione").

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{pmatrix} \in A_4, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix} \in A_4,$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{pmatrix} \in A_4, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{pmatrix} \in A_4,$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{pmatrix} \in A_4,$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{pmatrix} \in A_4.$$

$$(2)$$

Restano da determinare 3 elementi.

Per ogni coppia di indici distinti  $i, j \in \{1, 2, 3, 4\}$  chiamiamo  $\tau_{ij} \in S_4$  la permutazione che "scambia" i e j (ossia invia i in j e j in i) lasciando fissi gli altri due elementi. In particolare abbiamo così che  $\tau_{12}$  è la permutazione  $\alpha$  dell'Esercizio 4.18. Calcoliamo  $\tau_{12} \circ \tau_{13}$ . Si ha:

$$\tau_{12} \circ \tau_{13}(1) = \tau_{12}(3) = 3$$

$$\tau_{12} \circ \tau_{13}(2) = \tau_{12}(2) = 1$$

$$\tau_{12} \circ \tau_{13}(3) = \tau_{12}(1) = 2$$

$$\tau_{12} \circ \tau_{13}(4) = \tau_{12}(4) = 4$$

Quindi  $\tau_{12} \circ \tau_{13}$  è la permutazione  $\sigma \circ \sigma$ . Quest'ultima è pari, mentre  $\tau_{12}$  è dispari. Segue che anche  $\tau_{13}$  è dispari. Analogamente si prova che  $\tau_{14}$ è dispari: infatti  $\tau_{12} \circ \tau_{14}$  è la permutazione che invia 1,2,4 in 4,1,2, lasciando fisso 3 (la seconda dell'elenco (2)). Sempre per analogia, si deduce che  $\tau_{12} \circ \tau_{23} = \tau_{21} \circ \tau_{23}$  è la permutazione che invia 2,1,3 in 3,2,1 (ossia 1,2,3 in 2,3,1) lasciando fisso 4: questa è la permutazione  $\sigma$ , che è pari. Si conclude che  $\tau_{23}$  è dispari. In generale si prova che tutte le permutazioni  $\tau_{ij}$  sono dispari.

Conseguentemente, sono pari le seguenti permutazioni:

$$\tau_{12} \circ \tau_{34} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix},$$

$$\tau_{13} \circ \tau_{24} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix},$$

$$\tau_{14} \circ \tau_{23} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

Questi sono i restanti elementi di  $A_4$ .