CS343: Operating System

OS Structure and Types

Lect08: 14th Aug 2023

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- OS Structures
 - How the OSs are structured/organized
- Different type of OS
 - Desktop, Android, Cloud, Peers, Embedded,
 RealTime

Operating System Structure

Operating System Structure

- General-purpose OS is very large program
- Various ways to structure ones
 - Simple structure MS-DOS
 - More complex -- UNIX
 - Layered an abstraction
 - Microkernel Mach

Simple Structure: MS-DOS

- Written to provide: most functionality in least space
 - Not divided into modules: Monolithic Architecture
 - Although MS-DOS has some structure, interfaces and levels of functionality are not well separated

Monolithic Structure

- Monolithic English Definition
 - Formed of a single large block of stone
 - Organization/system: large, powerful, indivisible, and slow to change.
- A software system is called "monolithic"
 - If it has a monolithic architecture
 - In which functionally distinguishable aspects
 - For example data input and output, data processing, error handling, and the user interface),
- Are not architecturally separate components but are all interwoven.
- MS DOS architecture is monolithic

Non Simple Structure: UNIX

- UNIX limited by hardware functionality
- Original UNIX OS had limited structuring.
- The UNIX OS consists of two separable parts
 - Systems programs
 - Kernel
 - Consists of everything below the system-call interface and above the physical hardware
 - Provides the file system, CPU scheduling, memory management, and other operating-system functions; a large number of functions for one level

Traditional UNIX System Structure

Beyond simple but not fully layered

Kernel

Layered Approach

- OS is divided into a number of layers (levels)
 - Each built on top of lower layers.
 - bottom/0 layer: hardware, highest/N = user interface.
- With modularity, layers are selected such that

Each uses functions and services of only lower-level layers

Microkernel System Structure

- Moves as much from the kernel into user space
- Communication between user modules
 - Using message passing
- Mach example of microkernel
 - –Mac OS X kernel (Darwin) partly based on Mach

Microkernel System Structure

Microkernel System Structure

Benefits:

- Easier to extend and port to new architectures
- More secure
- More reliable (less code is running in kernel mode)

• Demerits:

 Performance overhead of user space to kernel space communication

Modules

- Many modern OS implement loadable kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel
- Overall, similar to layers but with more flexible
 - Linux, Solaris, etc
 - Linux Kernel Module#Ismod

you can write simple hello world kernel module and insert to linux kernel

Solaris Modular Approach

Hybrid Systems

- Most modern OS are actually not one pure model
 - Hybrid combines multiple approaches to address performance, security, usability needs
 - Linux and Solaris: kernels in kernel address space, so monolithic, plus modular for dynamic loading of functionality
 - Windows: mostly monolithic, plus microkernel for different subsystem personalities

Hybrid Systems

- Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment
 - Below is kernel consisting of Mach microkernel and BSD Unix parts, plus I/O kit and dynamically loadable modules (called kernel extensions)

Mac OS X Structure

iOS

- Apple mobile OS for iPhone, iPad
 - Structured on Mac OS X, added functionality
 - Does not run OS X applications natively
 - Also runs on different CPU architecture (ARM vs. Intel)
 - Cocoa Touch Objective-C API for developing apps
 - Media services layer for graphics, audio, video
 - Core services provides cloud computing, databases
 - Core operating system, based on Mac
 OS X kernel

Cocoa Touch

Media Services

Core Services

Core OS

<u>Android</u>

- Developed by Open Handset Alliance (mostly Google)
 - Open Source
 - -Similar stack to IOS
- Based on Linux kernel but modified
 - Provides process, memory, device-driver management
 - Adds power management

Android

- Runtime environment includes core set of libraries and Dalvik virtual machine
 - Apps developed in Java plus Android API
 - Java class files compiled to Java bytecode then translated to executable than runs in Dalvik VM
- Libraries includes
 - frameworks for web browser (webkit),
 - database (SQLite),
 - Multimedia and smaller libc

Android Architecture

Application Framework

Android Runtime
Core Libraries

Dalvik
Virtual Machine

Operating System Generation

- OS are designed to run on any of a class of machines
- The system must be configured for each specific computer site
- SYSGEN program obtains information concerning the specific configuration of the hardware system
 - Used to build system-specific compiled kernel or system-tuned
 - Can general more efficient code than one general kernel

Another Set of Configuration Example

- Sysgen/HAL configuration
 - Window in inspecting your hardware
- \$ gcc -dumpspec
- \$./configure
- #Pragma in C Program

Think

OS: as Service Provider, Manager

User: as Service users

Extending this to much higher level

A View of OS Services

After knowing a bit of OS

Review of Different Computing Environment

Computing Environments - Traditional

- Stand-alone general purpose machines
- But blurred as most systems interconnect with others (i.e., the Internet)
- Portals provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous even home systems use firewalls to protect home computers from Internet attacks

Computing Environments - Mobile

- Handheld smart phones, tablets, etc
- What is the functional difference between them and a "traditional" laptop?
- Extra feature more OS features
 - GPS, gyroscope, touch screen, etc
- Allows new types of apps like augmented reality
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android

Computing Environments – Distributed Computing

- Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - LAN, Wide Area Network (WAN), Metropolitan Area Network (MAN), Personal Area Network (PAN)
- Network Operating System provides features between systems across network
 - Communication scheme allows systems to exchange messages
 - Illusion of a single system

Computing Environments – Client-Server Computing

- Dumb terminals supplanted by smart PCs
- Many systems now servers, responding to requests generated by clients
 - Compute-server system provides an interface to client to request services (i.e., database)
 - File-server system provides interface for clients to store and retrieve files

Comp. Envts: Peer-to-Peer

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both

Comp. Envts: Peer-to-Peer

- Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via discovery protocol
- Examples include
 - Napster (music-focused online services)
 - Gnutella (millions for peer-to-peer file sharing)
 - Voice over IP (VoIP) such as Skype

- Allows operating systems to run applications within other OSes
 - Vast and growing industry
- Emulation used when source CPU type different from target type (i.e. PowerPC to Intel x86)
 - -Generally slowest method
 - –When computer language not compiled to native code – Interpretation

- Virtualization OS natively compiled for CPU, running guest OSes also natively compiled
 - Consider VMware running WinXP guests,
 each running applications, all on native
 WinXP host OS
 - VMM (virtual machine Manager)
 provides virtualization services

- Use cases involve laptops and desktops running multiple
 OSes for exploration or compatibility
 - Mac OS X host, Windows as a guest
 - Developing apps for multiple OSes without having multiple systems
 - QA testing apps without having multiple systems
 - Executing and managing compute environments within data centers
- VMM can run natively, in which case they are also the host
 - There is no general purpose host then (VMware ESX and Citrix XenServer)

Comp. Envnts: Cloud Computing

- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for it functionality.
- Amazon EC2
 - Has thousands of servers,
 - Millions of virtual machines
 - Petabytes of storage available across the Internet,
 - Pay based on usage

Comp. Envnts: Real Time Embedded System

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose
 OS, real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing *must* be done within constraint
 - Correct operation only if constraints met

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights
 Management (DRM) movement
- Started by Free Software Foundation (FSF), which has "copyleft" GNU Public License (GPL)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows),
 Virtualbox (open source and free on many platforms http://www.virtualbox.com)
 - Use to run guest operating systems for exploration

Thanks