

Locate the centroid of the section shown, which was cut from a circular cylinder by an inclined plane.

SOLUTION

First note that symmetry implies

 $\overline{x} = 0$

Choose as the element of volume a vertical slice of width 2x, thickness dz, and height y. Then

$$dV = 2xy dz, \quad \overline{y}_{EL} = \frac{1}{2}y, \quad \overline{z}_{EL} = z$$
Now
$$x = \sqrt{a^2 - z^2} \quad \text{and} \quad y = \frac{h}{2} - \frac{h}{2a}z = \frac{h}{2} \left(1 - \frac{z}{a}\right)$$
So
$$dV = h\sqrt{a^2 - z^2} \left(1 - \frac{z}{a}\right) dz$$

Then
$$V = \int_0^a h \sqrt{a^2 - z^2} \left(1 - \frac{z}{a} \right) dz = h \left\{ \frac{1}{2} \left[z \sqrt{a^2 - z^2} + a^2 \sin^{-1} \left(\frac{z}{a} \right) \right] + \frac{1}{3a} \left(a^2 - z^2 \right)^{3/2} \right\} \Big|_{-a}^a$$
$$= \frac{1}{2} a^2 h \left[\sin^{-1} (1) - \sin^{-1} (-1) \right]$$
$$= \frac{\pi}{2} a^2 h$$

PROBLEM 5.129 CONTINUED

Then

$$\int \overline{y}_{EL} dV = \int_{-a}^{a} \left[\frac{1}{2} \times \frac{h}{2} \left(1 - \frac{z}{a} \right) \right] \left[h \sqrt{a^2 - z^2} \left(1 - \frac{z}{a} \right) dz \right]
= \frac{h^2}{4} \int_{-a}^{a} \sqrt{a^2 - z^2} \left(1 - 2\frac{z}{a} + \frac{z^2}{a^2} \right) dz
= \frac{h^2}{4} \left\{ \frac{1}{2} \left[z \sqrt{a^2 - z^2} + a^2 \sin^{-1} \left(\frac{z}{a} \right) \right] + \left[\frac{2}{3a} \left(a^2 - z^2 \right)^{\frac{3}{2}} \right] \right\}
+ \frac{1}{a^2} \left[-\frac{z}{4} \left(a^2 - z^2 \right)^{\frac{3}{2}} + \frac{a^2 z}{8} \sqrt{a^2 - z^2} + \frac{a^4}{8} \sin^{-1} \left(\frac{z}{a} \right) \right] \right\} \Big|_{-a}^{a}
= \frac{5h^2 a^2}{32} \left[\sin^{-1} (1) - \sin^{-1} (-1) \right]
\overline{y}V = \int \overline{y}_{EL} dV; \quad \overline{y} \left(\frac{\pi a^2}{2} h \right) = \frac{5h^2 a^2}{32} (\pi)$$

Then

or
$$\overline{y} = \frac{5}{16}h$$

and

$$\int z_{EL}dV = \int_{-a}^{a} z \left[h\sqrt{a^2 - z^2} \left(1 - \frac{z}{a} \right) dz \right]
= h \left\{ -\frac{1}{3} \left(a^2 - z^2 \right)^{\frac{3}{2}} - \frac{1}{a} \left[-\frac{z}{4} \left(a^2 - z^2 \right)^{\frac{3}{2}} + \frac{a^2 z}{8} \sqrt{a^2 - z^2} + \frac{a^4}{8} \sin^{-1} \left(\frac{z}{a} \right) \right] \right\}_{-a}^{a}
= -\frac{a^3 h}{8} \left[\sin^{-1} (1) - \sin^{-1} (-1) \right]
\overline{z}V = \int \overline{z}_{EL}dV : \overline{z} \left(\frac{\pi a^2 h}{2} \right) = -\frac{\pi a^3 h}{8}$$

or
$$\overline{z} = -\frac{a}{4}$$

Locate the centroid of the plane area shown.

SOLUTION

	A, in ²	\overline{x} , in.	\overline{y} , in.	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	$14 \times 20 = 280$	7	10	1960	2800
2	$-\pi(4)^2 = -16\pi$	6	12	-301.59	-603.19
Σ	229.73			1658.41	2196.8

Then

$$\overline{X}\Sigma A = \Sigma \overline{x}A$$

$$\overline{X}(229.73 \text{ in}^2) = 1658.41 \text{ in}^3$$

or $\overline{X} = 7.22$ in.

 $\quad \text{and} \quad$

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}(229.73 \text{ in}^2) = 2196.8 \text{ in}^3$$

or $\overline{Y} = 9.56$ in.

For the area shown, determine the ratio a/b for which $\overline{x} = \overline{y}$.

SOLUTION

	A	\overline{x}	\overline{y}	$\overline{x}A$	$\overline{y}A$
1	$\frac{2}{3}ab$	$\frac{3}{8}a$	$\frac{3}{5}b$	$\frac{a^2b}{4}$	$\frac{2ab^2}{5}$
2	$-\frac{1}{2}ab$	$\frac{1}{3}a$	$\frac{2}{3}b$	$-\frac{a^2b}{6}$	$-\frac{ab^2}{3}$
Σ	$\frac{1}{6}ab$			$\frac{a^2b}{12}$	$\frac{ab^2}{15}$

Then

$$\overline{X} \Sigma A = \Sigma \overline{x} A$$

$$\overline{X}\left(\frac{1}{6}ab\right) = \frac{a^2b}{12}$$

or

$$\overline{X} = \frac{1}{2}a$$

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}\left(\frac{1}{6}ab\right) = \frac{ab^2}{15}$$

or

$$\overline{Y} = \frac{2}{5}b$$

Now

$$\overline{X} = \overline{Y} \Rightarrow \frac{1}{2}a = \frac{2}{5}b$$

or
$$\frac{a}{b} = \frac{4}{5} \blacktriangleleft$$

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$126 \times 54 = 6804$	9	27	61 236	183 708
2	$\frac{1}{2} \times 126 \times 30 = 1890$	30	64	56 700	120 960
3	$\frac{1}{2} \times 72 \times = 1728$	48	-16	82 944	-27 648
Σ	10 422			200 880	277 020

Then

$$\overline{X}\Sigma A = \Sigma \overline{x}A$$

$$\overline{X}$$
(10 422 m²) = 200 880 mm²

or $\overline{X} = 19.27 \text{ mm} \blacktriangleleft$

and

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}$$
(10 422 m²) = 270 020 mm³

or $\overline{Y} = 26.6 \,\mathrm{mm} \,\blacktriangleleft$

Determine by direct integration the centroid of the area shown. Express your answer in terms of a and h.

SOLUTION

By observation

$$y_1 = -\frac{h}{a}x + h$$
$$= h\left(1 - \frac{x}{a}\right)$$

For y_2 : At x = 0, y = h: h = k(1-0) or k = h

At
$$x = a, y = 0$$
: $0 = h(1 - ca^2)$ or $C = \frac{1}{a^2}$

Then $y_2 = h \left(1 - \frac{x^2}{a^2} \right)$

Now
$$dA = (y_2 - y_1)dx = h \left[\left(1 - \frac{x^2}{a^2} \right) - \left(1 - \frac{x}{a} \right) \right] dx$$
$$= h \left(\frac{x}{a} - \frac{x^2}{a^2} \right) dx$$

$$\begin{split} \overline{x}_{EL} &= x \qquad \overline{y}_{EL} = \frac{1}{2} \left(y_1 - y_2 \right) = \frac{h}{2} \left[\left(1 - \frac{x}{a} \right) + \left(1 - \frac{x^2}{a^2} \right) \right] \\ &= \frac{h}{2} \left(2 - \frac{x}{a} - \frac{x^2}{a^2} \right) \end{split}$$

Then
$$A = \int dA = \int_0^a h \left(\frac{x}{a} - \frac{x^2}{a^2} \right) dx = h \left[\frac{x^2}{2a} - \frac{x^3}{3a^2} \right]_0^a$$
$$= \frac{1}{6} ah$$

and
$$\int \overline{x}_{EL} dA = \int_0^a x \left[h \left(\frac{x}{a} - \frac{x^2}{a^2} \right) dx \right] = h \left[\left(\frac{x^3}{3a} - \frac{x^4}{4a^2} \right) \right]_0^a$$
$$= \frac{1}{12} a^2 h$$

PROBLEM 5.133 CONTINUED

$$\int \overline{y}_{EL} dA = \int_0^a \frac{h}{2} \left(2 - \frac{x}{a} - \frac{x^2}{a^2} \right) \left[h \left(\frac{x}{a} - \frac{x^2}{a^2} \right) dx \right]$$

$$= \frac{h^2}{2} \int_0^a \left(2 \frac{x}{a} - 3 \frac{x^2}{a^2} + \frac{x^4}{a^4} \right) dx$$

$$= \frac{h^2}{2} \left[\frac{x^2}{a} - \frac{x^3}{a^2} + \frac{x^5}{5a^4} \right]_0^a = \frac{1}{10} ah^2$$

$$\overline{x}A = \int \overline{x}_{EL} dA$$
: $x\left(\frac{1}{6}ah\right) = \frac{1}{12}a^2h$ $\overline{x} = \frac{1}{2}a$

$$\overline{x} = \frac{1}{2}a$$

$$\overline{y}A = \int \overline{y}_{EL} dA$$
: $y\left(\frac{1}{6}ah\right) = \frac{1}{10}a^2h$ $\overline{y} = \frac{3}{5}h$

$$\overline{y} = \frac{3}{5}h$$

Member ABCDE is a component of a mobile and is formed from a single piece of aluminum tubing. Knowing that the member is supported at C and that l=2 m, determine the distance d so that portion BCD of the member is horizontal.

SOLUTION

First note that for equilibrium, the center of gravity of the component must lie on a vertical line through C. Further, because the tubing is uniform, the center of gravity of the component will coincide with the centroid of the corresponding line. Thus, $\bar{X} = 0$

So that
$$\Sigma \overline{x}L = 0$$

Then $-\left(d - \frac{0.75}{2}\cos 55^{\circ}\right) m \times (0.75 m)$ $+ (0.75 - d) m \times (1.5 m)$ $+ \left[(1.5 - d) m - \left(\frac{1}{2} \times 2 m \times \cos 55^{\circ}\right)\right] \times (2 m) = 0$

or
$$(0.75 + 1.5 + 2)d = \left[\frac{1}{2}(0.75)^2 - 2\right]\cos 55^\circ + (0.75)(1.5) + 3$$

or $d = 0.739 \,\text{m}$

A cylindrical hole is drilled through the center of a steel ball bearing shown here in cross section. Denoting the length of the hole by L, show that the volume of the steel remaining is equal to the volume of a sphere of diameter L.

SOLUTION

Calculate volumes by rotating cross sections about a line and using Theorem II of Pappus-Guldinus

For the sector:

$$\overline{y}_{AA} = \frac{2R\sin\alpha}{3\alpha} \qquad A = \alpha R$$

For the triangle:

$$h = \sqrt{R^2 - \left(\frac{L}{2}\right)^2} = \frac{1}{2}\sqrt{4R^2 - L^2} \qquad \overline{y}_{AA} = \frac{2}{3}h = \frac{1}{3}\sqrt{4R^2 - L^2},$$

$$A = \frac{1}{2}(L)(h)$$

$$= \frac{1}{4}L\sqrt{4R^2 - L^2}$$

Using Theorem II of Pappus-Guldinus

$$\begin{split} V_{\text{ball}} &= 2\pi \left(\overline{y}_{AA}\right)_{1}A_{1} - 2\pi \left(\overline{y}_{AA}\right)_{2}A_{2} \\ &= 2\pi \left[\frac{2R\sin\alpha}{3\alpha}\left(\alpha R^{2}\right) - \left(\frac{1}{3}\sqrt{4R^{2} - L^{2}}\right)\left(\frac{1}{4}L\sqrt{4R^{2} - L^{2}}\right)\right] \\ &= 2\pi \left[\frac{2}{3}R^{3}\sin\alpha - \frac{L}{12}\left(4R^{2} - L^{2}\right)\right] \end{split}$$

Now

$$R\sin\alpha = \frac{L}{2}$$

Then

$$V = 2\pi \left[\frac{2}{3} \left(\frac{L}{2} \right) R^2 - \frac{1}{3} L R^2 + \frac{1}{12} L^3 \right]$$
$$= \frac{\pi}{6} L^3$$

Note $V_{\text{sphere}} = \frac{4}{3}\pi r$ where r is the radius

If
$$r = \frac{L}{2}$$
, then
$$V_{\text{sphere}} = \frac{4}{3}\pi \left(\frac{L}{2}\right)^3 = \frac{\pi}{6}L^3$$

Therefore,

$$V_{\text{ball}} = V_{\text{sphere}} = \frac{\pi}{6} L^3 \text{ Q.E.D.} \blacktriangleleft$$

For the beam and loading shown, determine (a) the magnitude and location of the resultant of the distributed load, (b) the reactions at the beam supports.

SOLUTION

$$R_{\rm I} = (4 \text{ m})(200 \text{ N/m}) = 800 \text{ N}$$

$$R_{\rm II} = \frac{2}{3} (4 \text{ m}) (600 \text{ N/m}) = 1600 \text{ N}$$

$$\Sigma F_{v}$$
: $-R = -R_{I} - R_{II}$

$$R = 800 + 1600 = 2400 \text{ N}$$

$$\Sigma M_A: -\overline{X} (2400) = -2(800) - 2.5(1600)$$

$$\overline{X} = \frac{7}{2}$$
m

$$\therefore \mathbf{R} = 2400 \,\mathrm{N} \, \downarrow, \ \overline{X} = 2.33 \,\mathrm{m} \, \blacktriangleleft$$

(b) Reactions

$$\stackrel{+}{\longrightarrow} \Sigma F_x = 0$$
: $A_x = 0$

+)
$$\Sigma M_A = 0$$
: $(4 \text{ m}) B_y - (\frac{7}{3} \text{ m}) (2400 \text{ N}) = 0$

or

$$B_{\rm v} = 1400 \, {\rm N}$$

$$+ \uparrow \Sigma F_y = 0$$
: $A_y + 1400 \text{ N} - 2400 \text{ N} = 0$

or

$$A_{\rm v} = 1000 {\rm N}$$

$$\therefore$$
 A = 1000 N \uparrow , **B** = 1400 N \uparrow