

Del0n1x

现场赛文档

参赛队名	Del0n1x
队伍成员	姚俊杰、卢家鼎、林顺喆
指导老师	夏文

8.20 现场赛文档

一、现场赛成绩

在 8.20 内核赛道现场赛中, Del0n1x 总分为 145, 排名第 8。排名与测例通过情况如下图:

比赛提	比赛提交到排行榜更新有20秒左右的延迟						
#	参赛ID	参赛用名	QEMU-Riscv	QEMU-LoongArch	开发板-Riscv	开发板-LoongArch	得分(DESC)
1	T202510003996120	Starry Mix/ 清华大学	100.00	100.00	70.00	0.00	270.0000
2	T202510336995214	NoAxiom/ 杭州电子科技大学	60.00	60.00	60.00	60.00	240.0000
3	T202510003995291	undefined/ 清华大学	90.00	90.00	60.00	0.00	240.0000
4	T202510213995926	火箭队/ 哈尔滨工业大学	80.00	80.00	55.00	0.00	215.0000
5	T202518123995568	Chronix/ 哈尔滨工业大学(深圳)	60.00	60.00	40.00	50.00	210.0000
6	T202518123995755	rustflyer/ 哈尔滨工业大学(深圳)	60.00	60.00	60.00	10.00	190.0000
7	T202510336995486	StarryX/ 杭州电子科技大学	50.00	50.00	45.00	0.00	145.0000
8	T202518123995600	Del0n1x/ 哈尔滨工业大学(深圳)	50.00	45.00	50.00	0.00	145.0000

Del0n1x 现场赛排行榜情况

平台	测例	完成情况
Qemu-rv	git	☑ Task0 ☑ Task1 🗙 Task2
	vim	☑ Task0 🗙 Task1
	gcc	✓ Task0 ✓ Task1
	rustc	☑ Task0 🗶 Task1
Qemu-la	git	☑ Task0 ☑ Task1 🗙 Task2
	vim	☑ Task0 🗙 Task1
	gcc	✓ Task0 ✓ Task1
	rustc	X Task0 X Task1
开发板-rv	git	☑ Task0 ☑ Task1 🗶 Task2
	vim	☑ Task0 🗶 Task1
	gcc	✓ Task0 ✓ Task1
	rustc	☑ Task0 🗙 Task1
开发板-la		测例运行失败

Del0n1x 现场赛通过情况

二、各平台适配历程

RISC-V Qemu virt

RISC-V Qemu 是我们最熟悉的平台。在 Qemu 平台上我们实现了设备树解析和 RISC-V PLIC 中断控制器驱动,支持外设中断,适配了 virtio 相关驱动和串口驱动,并基于 Qemu 平台测试了绝大部分的初赛及决赛预发布测例,验证了作品的稳定性。在现场赛中,我们大部分的开发过程都基于 Qemu 事先测试。

LoongArch64 Qemu virt

LoongArch Qemu 的情况有所不同。LoongArch Qemu 采用和真实开发板截然不同的外设平台(设备树)和中断控制模型,部分设备(如 PCH-PIC 中断控制器)的实现细节与真实设备的用户手册无法对应。同时,Qemu 上没法很好地支持地址不对齐读写问题的测试,这虽然对我们前期的开发提供了便利,但为我们现场赛阶段的失利埋下了伏笔。

我们通过参考龙芯技术手册、阅读设备树文件、阅读 Qemu 源代码、参考往届作品等方法,在初赛阶段熟悉了 LoongArch Qemu virt 平台的技术细节,实现了 virtio PCI 驱动、virtio 块设备驱动、ns16550 串口驱动的支持,设计并编写了支持 UART 中断的中断控制器驱动集,在现场赛初期获得了不错的成绩。

RISC-V 星光二代板

星光二代板的外设平台和 RISC-V Qemu 基本相似,我们的设备子系统只需稍加配置就能直接启动。现场赛前,我们初步完成了星光二代板串口和 SD 卡块设备驱动的适配和调试。在现场赛中,我们可以直接烧录测例文件系统镜像到 SD 卡中,由于平台差异较小,我们事先在 Qemu 虚拟平台上保证测例通过,在上板测试过程并未遇到很大的问题。

龙芯 2K1000 开发板

我们在赛前对龙芯 2k1000 开发板的适配投入了大量的时间,实现了中断控制器驱动,封装和适配了赛方提供的 AHCI 块设备驱动,支持了地址不对齐读写例外的处理,重写了设备子系统以支持跨平台启动系统。但是在现场赛适配测例的过程中,我们的作品在 2k1000 开发板上遇到了无法预测的内存问题。该问题导致我们的操作系统在运行用户态程序时出现诡异 page fault,但通过反汇编定位错误位置、使用 trap context 和 gdb 阅读用户例外前寄存器后,却发现该位置只访问了合法地址。经过数小时的挑战,最终我们放弃了对 2k1000 开发板的适配,证明了我们赛前准备的严重不足。

三、测例适配历程

1. vim

在前期的准备中,我们完成了各平台的外设中断控制器驱动,成功在 Qemu 和开发板上实现了外部中断的使能和处理。我们开发了功能完备的 tty 子系统,实现了中断驱动的异步 IO 机制,通过对 ppoll、pselect、ioctl 等系统调用的适配,成功运行了功能完整的 busybox vi,这也使得我们在现场赛中可以很顺利地启动 vim、使用 vim 编辑、保存 vim 编辑的内容、使用 vim 的快捷键和各种模式。但是,在退出 vim 的过程中,我们遇到了无法预测的问题(疑似调度问题),所以很遗憾并未得到所有的分数。

2. gcc与 rustc

gcc与 rustc 的正确实现与文件系统相关。在初赛和决赛第一阶段,我们的文件系统功能基本完善。但在现场赛阶段,由于我们在赛前没有适配符号链接,导

致赛中我们发现编译器无法直接访问共享库。我们在现场赛采用在内核中硬编码 转发的方式进行适配,成功让 gcc 编译了可运行的 hello world 程序,算是不幸 中的万幸。

3. git

git 程序本地仓库的构建与使用与文件系统的正确实现。在 git 中使用大量的 rename 系统调用作为原语,借助操作系统的功能实现对文件的安全更新。我们在 赛前便实现了本地运行 git 相关的系统调用,并且在 git 适配的过程中,我们通 过阅读 git 源代码与其他调试手段,修复了大量实现有错的系统调用。遗憾的是,由于时间不足,我们放弃了联网的 git 操作的实现。