Uncovering Strategies of Viruses for Selection of Targets for Infection of Human Cells

Outline

Introduction

An overview of the motivation of the project and key concepts

Methodology

Methods used in the analysis of the data in each step

Results and Discussion

Analysis of results and coherence with existing literature

Challenges

Summary of key findings and challenges

Introduction

- Viral infection involves interaction between viral and human proteins
- Classes of viruses based on nucleic acid composition:
 - DNA viruses
 - RNA viruses
- Viral-host protein interactions as a biological network problem

Objectives

- Understanding centrality measures of human interactome proteins
- Change in centrality of human interactome proteins upon infection by Epstein Barr Virus (EBV) & Herpes Simplex Virus (HSV-1)
- Functional similarities/dissimilarities of human interactome proteins for DNA and RNA virus classes

Viruses.STRING Database

- Database of known and predicted protein-protein interactions
- More than 9 million proteins from 2031 organisms (Version 10.5)
- The interactions include physical and functional associations

Data Sources

Interactions in viruses.STRING are derived from five main sources:

Genomic Context Predictions

High-throughput Lab Experiments

(Conserved) Co-Expression

Automated Textmining

Previous Knowledge in Databases

Extraction of data

	ds-DNA	ss-RNA (positive)	ss-RNA (negative)
1	Epstein-Barr virus	Dengue virus type 2	Bunyavirus La Crosse
2	Hepatitis B virus	Dengue virus type 3	Hantaan virus
3	Human adenovirus C	Dengue virus type 4	Hendra virus
4	Human cytomegalovirus	Encephalomyocarditis virus	Human metapneumovirus
5	Human herpesvirus 1	Hepatitis C virus	Human respiratory syncytial virus B
6	Human herpesvirus 2	Hepatitis E virus	Influenza A virus
7	Human herpesvirus 6A	Human coronavirus 229E	Influenza B virus
8	Human herpesvirus 6B	Human hepatitis A virus	Influenza C virus
9	Human herpesvirus 8 type P	Human parechovirus 2	Lake Victoria marburgvirus
10	Human papillomavirus type 16	Human SARS coronavirus	Lassa virus
11	Human papillomavirus type 18	Japanese encephalitis virus	Lymphocytic choriomeningitis virus
12	Human papillomavirus type 1	Norwalk virus	Measles virus
13	Human papillomavirus type 4	Poliovirus type 1	Mumps virus
14	Human papillomavirus type 5	Rubella virus	Rabies virus
15	Molluscum contagiosum virus	Semliki forest virus	Rift valley fever virus
16	Orf virus	Sindbis virus	Vesicular stomatitis Indiana virus
17	Varicella-zoster virus	West Nile virus	Zaire ebolavirus
18	Variola virus		
19	Yaba monkey tumor virus		

- Data for 51 organisms was downloaded
- Viruses were categorized into 3 broad classes-
 - DNA (double stranded)
 - RNA (positive single stranded)
 - RNA (negative single stranded)
- Human proteins interacting with each virus were extracted

Network Analysis Using Centrality Measures

Ego graph of protein P, created from the human PPI network by including nodes only upto 3rd neighbours of P, 1st neighbours: magenta

2nd neighbours: blue

3rd neighbours: green Nodes excluded from ego graph: red

Protein	Ego graph	Centrality Measures		
		Degree Centrality	Closeness Centrality	Subgraph Centrality
P ₁	E ₁	D ₁	C ₁	S ₁
P ₂	E ₂	D ₂	C ₂	S ₂
P _n	E _n	D _n	C _n	S _n

The centrality measures are calculated for the proteins {P,, P, ..., P} w.r.t. each of the ego graphs generated.

Viral-human + Human PPI Network

The viral-human interaction network merged with the human PPI network.

The ego graph of each human protein in the interactome was generated to calculate its centrality measures.

Merged network for each human interactome protein with only upto 3rd neighbour

Centrality measures

Centrality measure	Bootstrap test	Wilcoxon Rank-Sum test	
Edge Clustering Coefficient Centrality	0	8	
Betweenness Centrality	27	23	
Load Centrality	27	24	
Random Walk Betweenness Centrality	19	25	
Information Centrality	19	26	
Closeness Centrality	27	26	
Degree Centrality	27	26	
Harmonic Centrality	27	26	
PageRank	27	26	
Reaching Centrality	27	26	
Subgraph Centrality	27	26	
Eigenvector Centrality	27	27	

Table shows the number of organisms in which a given measure was found to be significant (p-value <0.05). For further details on p-value computation, refer text.

https://doi.org/10.1371/journal.pone.0208722.t002

Centrality measures chosen were filtered based on:

- Choice in other papers analysing PPI networks for smaller organisms
- Computational feasibility to execute in current network
- Relevance to the undirected nature of graph for analysis

Measures chosen based on above criteria were: degree centrality, closeness centrality and subgraph centrality

Table source: Azhagesan K, Ravindran B, Raman K (2018) Network-based features enable prediction of essential genes across diverse organisms. PLoS ONE 13(12):—e0208722. https://doi.org/10.1371/journal.pone.0208722

Degree centrality

- Number of neighbors of a node
- Highly connected nodes or "hubs" are more likely to be essential - centrality-lethality hypothesis
- Higher degree centrality nod are preferred
- Average human degree centrality: 0.004219

Closeness centrality

2

- Measure of reach to all other nodes in graph
- Higher closeness centrality nodes are preferred

 Average human closeness centrality: 0.2517

Subgraph centrality

- Participation of a node in all possible subgraphs of a network
- A decrease was observed for a large number of proteins
- Human average subgraph centrality: 3.18e + 111

Viral-host interactome vs human PPI

Centrality measures of interacting proteins before and after addition of interactome network did **not** change significantly

- Interacting proteins are not given a central status
- Addition of interactome network does not change the host network significantly
- No. of viral nodes added to the overall network is less in comparison to human PPI

Functional analysis of target proteins

DNA viruses				
Protein name	occurrence	Protein description		
TP53	8	Tumor suppressor protein 53		
CDC25A	5	Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression		
IRF3	5	Interferon Regulatory Factor 3 plays an important role in innate immunity against DNA and RNA viruses		
PTGS2	5	PTGS2 is responsible for production of inflammatory prostaglandins		
TERT	4	Active in progenitor and cancer cells.		
RNA-positive viruses				
Protein name	occurrence	Protein description		
PTBP3	5	polypyrimidine tract binding protein 3: aids in cell proliferation		
PTBP2	5	polypyrimidine tract binding protein 2: cell proliferation		
NOG2	5	GTPase that promotes cell proliferation		
IFNB1	5	Interferon Beta 1 precursor: has antiviral roles		
IRAK3	5	Interleukin-1 receptor-associated kinase 3		
RNA-negative viruses				
Protein name	occurrence	Protein description		
Protein name SFXN2	occurrence 5	Protein description Mitochondrial amino-acid transporter that mediates transport of serine into mitochondria		
SFXN2	5	Mitochondrial amino-acid transporter that mediates transport of serine into mitochondria		
SFXN2 TLR4	5 4	Mitochondrial amino-acid transporter that mediates transport of serine into mitochondria Cooperates with LY96 and CD14 to mediate the innate immune response		

Challenges

- Small interactome network size
- Incomplete interaction data for most viruses except EBV and HSV-1
- Choice of suitable parameters of analysis for 53 viral networks
- Missing annotation for certain human proteins
- Missing annotation for most viral proteins

