Universidade do Sul de Santa Catarina Ciência da Computação

Técnicas de Inteligência Artificial

Aula 05 Sistemas Especialistas

Max Pereira

Sistemas Especialistas

 Pesquisadores de IA queriam desenvolver programas que pudessem "pensar"

 Ou seja, resolver problemas de uma maneira que seria considerada inteligente se fosse feita pelo

homem

S.E. ou Sistemas baseados em conhecimento

São sistemas que reproduzem o conhecimento de um especialista adquirido ao longo do tempo.

Portanto, o especialista é fundamental para fornecer informações específicas do domínio.

Sistemas especialistas:

Modelam o conhecimento humano em áreas específicas.

- Podem resolver problemas melhor que os humanos;
- aplicam o conhecimento humano a problemas bem compreendidos;
- são capazes de informar como chegaram a decisão;

Aplicações

- Setor bancário e financeiro de um modo geral, para análise de crédito
- Análise química-qualitativa de minerais
- Projeto SINTA (Sistemas Inteligentes Aplicados): diagnóstico de pragas e doenças do cajueiro
- Gerência de redes
- Código Penal

- Podem explicar seu raciocínio ou decisões sugeridas.
 Ex.: Aprovação de crédito;
- Podem exibir um comportamento inteligente. Ex.: Diagnóstico médico;
- Podem esboçar conclusões em relacionamentos complexos. Ex.: Sugerir melhorias em processos produtivos;
- Podem fornecer conhecimento portátil. Ex.:
 Manutenção de equipamentos

ARQUITETURA

 Especialistas têm dificuldade em explicitar seu modo de raciocínio de uma maneira analítica

 A base de conhecimento pode ser construída com diversos formalismos, estruturas e linguagens:

Regras

Frames ou quadros Redes semânticas Scripts ou roteiros Lógica

MYCIN

- Campo de doenças infecciosas
- Projetado para auxiliar no diagnóstico e tratamento de meningite e bacteriemia (infecção bacteriana no sangue)
- Formalismo de Representação do conhecimento: regras
- Uso de fatores de certeza (probabilidade)

Se a infecção é meningite

E organismos não foram vistos na cultura

E o tipo de infecção é bacterial

E o paciente não tem lesões na cabeça

E a idade do paciente está entre 15 e 55 anos

ENTÃO

Os organismos que podem estar causando a infecção são diplococcus-pneumoniae (0.75) E neisseria-meningitidis (0.74)

Máquina de Inferência

- Mecanismo que procura as respostas na BC
- Busca as regras necessárias a serem avaliadas e ordenadas de uma maneira lógica
- Define a busca das regras, comparando a entrada do usuário com as regras da BC buscando "combinações"
- No Prolog este processo é denominado "matching" ou unificação

Forward Chaining

Regras

1.
$$A \wedge B \rightarrow C$$

2. $A \rightarrow D$

3. $C \wedge D \rightarrow E$

4. $B \wedge E \wedge F \rightarrow G$

5. $A \wedge E \rightarrow H$

6. DAEAH \rightarrow I

Fatos

1. A

2. B

3. F

Meta

• H

Fatos	Objetivos	Regras Disparadas
A,B,F		

Backward Chaining

Regras

1.
$$A \wedge B \rightarrow C$$

2.
$$A \rightarrow D$$

3.
$$C \wedge D \rightarrow E$$

4.
$$B \wedge E \wedge F \rightarrow G$$

5.
$$A \wedge E \rightarrow H$$

6. DAEAH \rightarrow I

Fatos

1. A

2. B

3. F

Meta

H

Fatos	Objetivos	Regras Disparadas
A,B,F		

Desenvolvimento

Shell (OPS, ExpertSinta, KAS, ...): é o mais utilizado

Linguagens de programação para IA (Prolog)

Linguagens de programação gerais (OOP)

Linguagens híbridas (componentes de IA): regras + objetos (CLIPS, JESS, NeOpus, JEOPS, etc.)

Pontos positivos

Criação de repositório de conhecimento

Crescimento de produtividade e qualidade

Habilidade de resolver problemas complexos

Flexibilidade e modularidade

Operação em ambientes arriscados

Credibilidade

Habilidade de trabalhar com informações incompletas ou incertas

Fornecimento de treinamento

Pontos negativos

Avaliação de desempenho difícil

É difícil extrair conhecimento especialista

Só trabalham muito bem em domínios estreitos

Engenheiros de Conhecimento são raros e caros

Transferência de conhecimento está sujeito a um grande número de preconceitos

Expert Sinta

É um shell que permite construir SE

www.lia.ufc.br/~bezerra/exsinta

Como utilizar:

- 1. Estabelecer variáveis
- 2. Estabelecer objetivos (variáveis de saída)
- 3. Estabelecer interfaces (perguntas a serem feitas)
- 4. Criar as regras

Para que serve o Expert Sinta?

É uma ferramenta computacional:

utiliza técnicas de Inteligência Artificial realiza a geração automática de sistemas especialistas.

Modelo de representação do conhecimento:

Regras de produção

Probabilidades

Para que serve o Expert Sinta?

Simplifica a implementação de sistemas especialistas

Utiliza máquina de inferência compartilhada

Possui construção automática de telas e menus do tratamento probabilístico das regras de produção

Utilização explicações sensíveis ao contexto da base de conhecimento modelada

Para que serve o Expert Sinta?

O usuário responde a uma sequência de menus, e o sistema se encarrega de fornecer respostas que se encaixem no quadro apontado pelo usuário.

Exemplos:

sistemas de diagnósticos médicos configuração de redes de computadores

Planejando um sistema especialista

Os sistemas especialistas (SE) gerados no Expert SINTA seguem a arquitetura abaixo:

- •base de conhecimentos representa a informação (fatos e regras) que um especialista utiliza, representada computacionalmente;
- •editor de bases é o meio pelo qual a shell permite a implementação das bases desejadas;
- máquina de inferência é a parte do SE responsável pelas deduções sobre a base de conhecimentos;
- •banco de dados global são as evidências apontadas pelo usuário do sistema especialista durante uma consulta.

Utilizando regras de produção

As regras de produção são populares por possuírem as seguintes vantagens:

Modularidade: cada regra, por si mesma, pode ser considerada como uma peça de conhecimento independente;

Facilidade de edição (uma consequência da modularidade): novas regras podem ser acrescentadas e antigas podem ser modificadas com relativa independência;

<u>Transparência do sistema</u>: garante maior legibilidade da base de conhecimentos.

Regra de Produção

Regra de Produção

OA estrutura de cada cauda (premissa) deve obedecer ao seguinte modelo:

<conectivo> <atributo> <operador> <valor>

- Conectivo: NÃO, E, OU (une as premissas)
- <u>Atributo</u>: é uma variável capaz de assumir uma ou múltiplas instanciações no decorrer da consulta à base de conhecimentos.
- Operador: une o atributo e o valor da premissa que define o tipo de comparação a ser realizada. São operadores relacionais: =, >, <=, <>, entre outros;
- Valor: é um item de uma lista a qual foi previamente criada e relacionada a um atributo.

Regra de Produção

OA estrutura de cada cauda (premissa) deve obedecer ao seguinte modelo:

<atributo>=<valor><grau de confiança>

- <u>Atributo</u>: é uma variável capaz de assumir uma ou múltiplas instanciações no decorrer da consulta à base de conhecimentos.
- <u>"="</u>: é um operador de **atribuição** (o novo valor substituíra o antigo ou será empilhado com os demais).
- Valor: é um item de uma lista a qual foi previamente criada e relacionada a um atributo.
- Grau de confiança: é uma porcentagem indicando a confiabilidade. O grau de confiança varia de 0% a 100%.

Base de Conhecimento

Árvore de Decisão para Jogar Ténis

Base de Conhecimento

Regra 1. Se ASPECTO = nuvens então JOGAR = sim

Regra 2. Se ASPECTO = sol e UMIDADE = elevada então JOGAR = não

Regra 3. Se ASPECTO = sol e UMIDADE = normal então JOGAR = sim

Regra 4. Se ASPECTO = chuva e VENTO = fraco então JOGAR = não

Regra 5. Se ASPECTO = chuva e VENTO = forte então JOGAR = sim

Usando o Expert Sinta

- 1. Estabelecer variáveis
- 2. Estabelecer objetivos (variáveis de saída)
- Estabelecer interfaces (perguntas a serem feitas)
- 4. Criar as regras

Criando uma nova base

Inserindo as variáveis

Incluindo uma variável

Incluindo uma variável

Incluindo valores para uma variável

Incluindo valores para uma variável

Inclusão de todas as variáveis

Definindo objetivo(s)

Definindo objetivo(s)

Construindo a interface (perguntas)

Visualizando as regras

Visualizando as regras

Executando (consulta)

Executando (consulta)

