

Mechanical Behavior of Fiber Reinforced Composites

MECH 6333 - Materials Design and Manufacturing

Spring 2022

Ву,

Shraddhesh Subhash Kamal
Rajat Srivastava
Department of Mechanical Engineering
The University of Texas at Dallas

Guided By,

Dr. Arif Malik

Assistant Professor, Department of Mechanical Engineering
The University of Texas at Dallas

Contents

- Introduction
- Additive Manufacturing of Composites
- Composite structure
- Material properties
- Mechanical Characterization
- Results
- Discussion
- Conclusion

Introduction

• <u>Composites – matrix & reinforcement</u>

A *composite* is composed of two (or more) individual materials that are—metals, ceramics, and polymers. The design goal of a composite is to achieve a combination of properties that is not displayed by any single material and also to incorporate the best characteristics of each of the component materials. A large number of composite types are represented by different combinations of metals, ceramics, and polymers.

Fiber/Filament Reinforcement	Matrix	Composite	
High strength	Good shear properties	High strength	
 High stiffness 	 Low density 	 High stiffness 	
 Low density 		 Good shear properties 	
		I ow density	

• Types of composites

Composites are usually classified by the type of reinforcements they use. These reinforcements are embedded into a matrix that holds it together. The reinforcements are used to strengthen the composites.

The four main categories based on reinforcements:

- i. Particle-reinforced
- ii. Fiber- reinforced
- iii. Structural
- iv. Nanocomposites

The four primary categories based on matrix:

- i. Polymer matrix composites (PMCs)
- ii. Metal matrix composites (MMCs)
- iii. Ceramic matrix composites (CMCs)
- iv. Carbon matrix composites (CAMCs).

LLAS Additive Manufacturing of Composites

• FDM (Material Extrusion)

i. CLF (Continuous Lattice Fabrication)

In this technique, the spatial extrusion principle is used for free-standing and self-supportive filaments without any supporting parts. The subsequent layers are directly deposited on base material or substrate.

LAS Additive Manufacturing of Composites

ii. FFF (Fused Filament Fabrication)

The FFF process is material extrusion-based AM techniques, which mainly comprises the nozzle and moving platform. The material is heated at the nozzle, and it is deposited onto a moving platform.

ALLAS Additive Manufacturing of Composites

SLA (Vat Photopolymerization)

The reinforcement fiber is immersed in the UV-curable resin, and then it is allowed to cure at the printing base during the photo-polymerization.

GFRP

Glass fiber reincforced polymer also known as glass fiber reinforced plastic is a composite material we get by weaving fiber E-glass and polyester material together. The woven material can be hardened with a thermosetting polymers such as epoxy, resin or thermoplastics.

ALLAS Additive Manufacturing of Composites

Metal-Matrix Composites

A metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic (such as alumina or silicon carbide) or another metal (such as steel).

Advantages & Disadvantages over conventional fabrication methods

The layer-by-layer fabrication process eliminates the expensive conventional molds during the fabrication process.

The AM processes has not entirely replaced the traditional methods because of their lower deposition rate.

Composite Structure

- Fiber to Matrix Ratio or Volume Fraction
 - Matrix dimensions = 0.05mm x 0.025mm x 0.05mm
 - Fiber diameter = 0.01 mm
 - Fiber length = 0.05 mm
 - Volume fraction = Volume of fibers/Total volume of composite = 63%
- Fiber arrangement in Abaqus

Composite Structure

• Matrix

Material Properties

- Epoxy Viscoelastic
- eGlass Elastic
- Aluminum Elastic/Plastic
- Steel 355 Bi-linear

Material	Density (g/cm^3)	Elastic Modulus (MPa)	Poisson's Ratio
Ероху	1.18	4060	0.37
eGlass	2.58	72300	0.2
Aluminum	2.71	68000	0.3
Steel 355	7.85	200000	0.3

Plastic Models

• Aluminum – Plastic stress vs strain

Steel – Bilinear curve with hardening

Viscoelastic Model

• Epoxy – Viscoelasticity defined with Prony series

	$ au_i$
8	463.4
0	0.06407
4	0.0001163
66	7.321e-7

LAS Comparitive Study of Composites

- Using the material models shown previously, two composites were modeled in Abaqus for a comparative study –
 - GFRP: Matrix Epoxy, Fiber eGlass
 - Metal Matrix Composite: Matrix Aluminum, Fiber Steel
- The following mechanical properties will be compared in 2 directions (composites are anisotropic) when a displacement of 0.01 mm is applied to simulate tension
 - Von Mises stress
 - Strain
 - Displacement Magnitude
- The contour plots can be used to identify regions of high stress which can be prone to failure

Boundary Conditions & Loads

- Tension along the fiber direction
 - BC No translation at the back face (y-x plane) of the composite
 - Load z-axis displacement of 0.01 mm on the front face (y-x plane) of the

composite

Boundary Conditions & Loads

- Tension transverse (against) to the fiber direction
 - BC No translation on the opposite surface of the tensile stress, no z-axis translation (along the fiber direction) on the front and back surfaces (x-y plane)
 - Load x-axis displacement of 0.01 mm of the front surface (y-z plane)

Results – GFRP in tension along the fibers

Von Mises Stress

Results – GFRP in tension along the fibers

Strain in z-direction

Results – GFRP in tension along the fibers

Displacement Magnitude

Results – GFRP in tension against the fibers

Von Mises Stress

Results – GFRP in tension against the fibers

Strain in x-direction

Results – GFRP in tension against the fibers

Displacement Magnitude

Results – Metal-Matrix Composite in Tension along the fiber

Von Mises

Results – Metal-Matrix Composite in Tension along the fiber

Strain in z-direction

Results – Metal-Matrix Composite in Tension along the fiber

Displacement Magnitude

Results – Metal-Matrix Composite in Tension against the fiber

Von Mises

Results – Metal-Matrix Composite in Tension against the fiber

Strain in x-direction

Results – Metal-Matrix Composite in Tension against the fiber

Displacement Magnitude

Transient Stress & Strain

Tension along the fibers (Al on top, steel on bottom)

Transient Stress & Strain

Tension against the fibers (Al on top, steel on bottom)

Results

Results table

Composite	Von Mises Stress (MPa)	Strain (%)	Displacement Magnitude
GFRP (along fiber)	1.673 x 10^4	0.263	1.011 x 10^-2
GFRP (against fiber)	4.685 x 10^3	0.945	1.012 x 10^-2
Al-Steel (along fiber)	4.7 x 10^2	3.429	1.128 x 10^-1
Al-Steel (against fiber)	4.7 x 10^2	1.264	1.154 x 10^-2

Processing Challenges

- Interfacial bonding Layer adhesion of additively manufactured composites is not strong – This adds further anisotropicity in the composite
- Porosities
- Low yield for simple parts
- Process parameters like raster angle, infill speed, layer thickness, nozzle temperature, etc. affect the porosity, shrinkage, and microstructure of the composite. Thus, impacting ductility, toughness, Young's modulus, and strength.
- Material limitations each AM process has materials limitations. Example – In FDM, thermoplastics are used

References

- https://technologyinarchitecture.wordpress.com/2018/06/30/glass-fiber-reinforced-polymer-gfrp/
- https://www.sciencedirect.com/science/article/pii/S22113398203
 00022
- https://www.sciencedirect.com/science/article/abs/pii/B9780123
 750495000074
- https://www.researchgate.net/figure/A-Fiber-reinforcedcomposites-fabricated-by-a-slurry-based-stereolithography-3D fig6 346735900

Thank you!

Shraddhesh Subhash Kamal Rajat Srivastava