10/526015 PCT/JP03/11103 24.09.03

JAPAN PATENT OFFICE

25 FEB 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月30日 REC'D 13 NOV 2003

PCT

WIPO

願 番 Application Number:

特願2002-253512

[ST. 10/C]:

[JP2002-253512]

出

本田技研工業株式会社

人 Applicant(s):

> PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月30日

【書類名】 特許願

【整理番号】 H102218401

【提出日】 平成14年 8月30日

【あて先】 特許庁長官殿

【国際特許分類】 F61H 1/28

【発明の名称】 歩行補助装置の減速機

【請求項の数】 1

【発明者】

【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】 工藤 浩

【発明者】

【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】 加藤 久

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代表者】 吉野 浩行

【代理人】

【識別番号】 100071870

【弁理士】

【氏名又は名称】 落合 健

【選任した代理人】

【識別番号】 100097618

【弁理士】

【氏名又は名称】 仁木 一明

【手数料の表示】

【予納台帳番号】 003001

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【発明の名称】 歩行補助装置の減速機

【特許請求の範囲】

【請求項1】 使用者の脚関節を伸展・屈曲させて歩行運動を補助すべく、モータ(48)により駆動される入力軸(Si)の回転を減速して脚関節に接続された出力軸(So)に伝達する歩行補助装置の減速機であって、

軸線(L)上に入力軸(Si)、出力軸(So)、第1プラネタリギヤ機構(P $_1$)、第2プラネタリギヤ機構(P $_2$)および第3プラネタリギヤ機構(P $_3$)を同軸に配置するとともに、第1プラネタリギヤ機構(P $_1$)の径方向外側に第2プラネタリギヤ機構(P $_2$)を概ね重なるように配置し、更に第2プラネタリギヤ機構(P $_3$)を概ね重なるように配置し、入力軸(Si)の回転を第1プラネタリギヤ機構(P $_3$)を概ね重なるように配置し、入力軸(Si)の回転を第1プラネタリギヤ機構(P $_3$)で減速して出力軸(So)に伝達するようにし、

第1プラネタリギヤ機構(P_1)は、入力軸(S_i)に設けられた第1サンギヤ(Z_{S_1})と、第1サンギヤ(Z_{S_1})を囲むようにケーシング(4_1)に固定された第1リングギヤ(Z_{R_1})と、第1サンギヤ(Z_{S_1})および第1リングギヤ(Z_{R_1})に同時に噛合する複数個の第1プラネタリギヤ(Z_{R_1})と、第1プラネタリギヤ(Z_{R_1})を回転自在に支持する第1キャリヤ(Z_{R_1})とを備え、

第2プラネタリギヤ機構(P_2)は、第1キャリヤ(C_1)の外周に形成された第2サンギヤ(Z S_2)と、第2サンギヤ(Z S_2)の外周を囲むようにケーシング(4 1)に固定された第2リングギヤ(Z R_2)と、第2サンギヤ(Z S_2)および第2リングギヤ(Z R_2)に同時に噛合する複数個の第2 プラネタリギヤ(Z P_2)と、第2 プラネタリギヤ(Z P_2)と、第2 プラネタリギャ(Z P_2)と、第2 プラネタリギャ(Z P_2)とを備え、

第3プラネタリギヤ機構(P_3)は、第2キャリヤ(C_2)の外周に形成された第3サンギヤ(Z S_3)と、第3サンギヤ(Z S_3)の外周を囲むようにケーシング(4 1)に固定された第3リングギヤ(Z R_3)と、第3サンギヤ(Z S

3) および第3リングギヤ(ZR3)に同時に噛合する複数個の第3プラネタリ ギヤ(ZP_3)と、第3プラネタリギヤ(ZP_3)を回転自在に支持して出力軸 (So) に接続された第3キャリヤ (C_3) とを備えたことを特徴とする歩行補 助装置の減速機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、筋力の衰えた老人や傷病者の歩行、階段の昇降、着座姿勢からの起 立、起立姿勢からの着座等をアシストすることで、その運動を促進して筋力低下 の抑制や歩容形態の矯正を図るための歩行補助装置に関し、特にその歩行補助装 置の減速機に関する。

[0002]

【従来の技術】

かかる歩行補助装置は、本出願人の出願に係る特願2001-109046号 により既に提案されている。この歩行補助装置は、使用者の脚関節(つまり股関 節および膝関節)に電気アクチュエータを装着したもので、使用者が背中に背負 ったバックパック内の電源から給電することでアクチュエータを作動させ、各関 節を伸展・屈曲させる関節トルクを発生させて使用者の歩行等の運動を補助する ようになっている。

[0003]

また複数のプラネタリギヤ機構を軸方向に多段に積み重ねることで、小型で大 きな減速比を得られるようにした減速機が、特開平8-247225号公報、特 開平11-37226号公報により公知である。

[0004]

【発明が解決しようとする課題】

ところで上記従来の歩行補助装置はモータおよび減速機を一体に組み込んだア クチュエータを備えているが、その減速機は大きな減速比を必要とするためにア クチュエータ全体が大型化してしまう問題があった。その結果、アクチュエータ を使用者の衣服の内側に装着することが難しくなり、アクチュエータが衣服の外

[0005]

複数のプラネタリギヤ機構を軸方向に多段に積み重ねた上記従来の減速機は、 大きな減速比を有する点では優れているが、軸方向の寸法が大型化するために歩 行補助装置のアクチュエータに使用するには適していない。

[0006]

本発明は前述の事情に鑑みてなされたもので、歩行補助装置の減速機の減速比を充分に確保しながら、その薄型化を図ることを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するために、請求項1に記載された発明によれば、使用者の脚 関節を伸展・屈曲させて歩行運動を補助すべく、モータにより駆動される入力軸 の回転を減速して脚関節に接続された出力軸に伝達する歩行補助装置の減速機で あって、軸線上に入力軸、出力軸、第1プラネタリギヤ機構、第2プラネタリギ ヤ機構および第3プラネタリギヤ機構を同軸に配置するとともに、第1プラネタ リギヤ機構の径方向外側に第2プラネタリギヤ機構を概ね重なるように配置し、 更に第2プラネタリギヤ機構の径方向外側に第3プラネタリギヤ機構を概ね重な るように配置し、入力軸の回転を第1プラネタリギヤ機構、第2プラネタリギヤ 機構および第3プラネタリギヤ機構で減速して出力軸に伝達するようにし、第1 プラネタリギヤ機構は、入力軸に設けられた第1サンギヤと、第1サンギヤを囲 むようにケーシングに固定された第1リングギヤと、第1サンギヤおよび第1リ ングギヤに同時に噛合する複数個の第1プラネタリギヤと、第1プラネタリギヤ を回転自在に支持する第1キャリヤとを備え、第2プラネタリギヤ機構は、第1 キャリヤの外周に形成された第2サンギヤと、第2サンギヤの外周を囲むように ケーシングに固定された第2リングギヤと、第2サンギヤおよび第2リングギヤ に同時に噛合する複数個の第2プラネタリギヤと、第2プラネタリギヤを回転自 在に支持する第2キャリヤとを備え、第3プラネタリギヤ機構は、第2キャリヤ の外周に形成された第3サンギヤと、第3サンギヤの外周を囲むようにケーシン グに固定された第3リングギヤと、第3サンギヤおよび第3リングギヤに同時に

喃合する複数個の第3プラネタリギヤと、第3プラネタリギヤを回転自在に支持 して出力軸に接続された第3キャリヤとを備えたことを特徴とする歩行補助装置 の減速機が提案される。

[0008]

上記構成によれば、歩行補助装置の減速機の軸線上に入力軸、出力軸、第1プ ラネタリギヤ機構、第2プラネタリギヤ機構および第3プラネタリギヤ機構を同 軸に配置し、第1プラネタリギヤ機構の第1リングギヤをケーシングに固定する ことで、第1サンギヤから入力された回転を第1キャリヤから出力し、第2リン グギヤをケーシングに固定することで、第1キャリヤと一体の第2サンギヤに入 力された回転を第2キャリヤから出力し、第3リングギヤをケーシングに固定す ることで、第2キャリヤと一体の第3サンギヤに入力された回転を第3キャリヤ から出力し、入力軸の回転を第1~第3プラネタリギヤ機構で3段に減速して出 力軸に伝達することが可能となる。また第1プラネタリギヤ機構の径方向外側に 第2プラネタリギヤ機構を概ね重なるように配置し、更に第2プラネタリギヤ機 構の径方向外側に第3プラネタリギヤ機構を概ね重なるように配置したので、入 力軸の回転を第1~第3プラネタリギヤ機構で3段に減速して出力軸に伝達しな がら、第1~第3プラネタリギヤ機構の全てを軸線方向に重なるように配置する 場合に比べて減速機の軸線方向の厚さを減少させることができ、使用者が歩行補 助装置を装着したときの体裁を良くすることができる。

[0009]

【発明の実施の形態】

以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説 明する。

[0010]

図1~図6は本発明の一実施例を示すもので、図1は歩行補助装置の使用状態 を示す図、図2は歩行補助装置の分解斜視図の第1分図、図3は歩行補助装置の 分解斜視図の第2分図、図4は歩行補助装置の電気アクチュエータの縦断面図、 図5は図4の5-5線断面図、図6は歩行補助装置の電気アクチュエータのスケ ルトン図である。

図1~図3に示すように、本実施例の歩行補助装置は、使用者が背中に背負うバックパック11と、左右の股関節にトルクを付与する左右一対の第1電気アクチュエータ12,12と、左右の膝関節にトルクを付与する左右一対の第2電気アクチュエータ13,13と、使用者の腹部に着脱自在に装着される軟質樹脂製の腹帯14と、使用者の左右の大腿部に着脱自在に装着される前後に2分割された軟質樹脂製の上部脚当て15f,15rと、使用者の左右の脛部に着脱自在に装着される前後に2分割された軟質樹脂製の下部脚当て16f,16rと、腹帯14の前部から使用者の肩を経由して腹帯14の後部に連結される2本の吊りベルト17,17とを備える。尚、図3には左脚用の上部脚当て15f,15rおよび下部脚当て16f,16rが示されいるが、図示せぬ右脚用のものも左右対称な同一構造である。

[0012]

第1リンク18および補強部材19が、腹帯14の左右両側部のそれぞれの外面および内面を挟むようにボルト締めされる。第1リンク18の下端に第1電気アクチュエータ12を介して屈曲自在に連結された第2リンク20が、後側の上部脚当て15rの外側にボルト締めされる。このとき、第1リンク18および第2リンク20の枢支部、つまり第1電気アクチュエータ12は使用者の股関節の外側に位置している。

[0013]

後側の上部脚当て15 r.の外側および内側にそれぞれ外側第3リンク21および内側第3リンク22がボルト締めされるとともに、後側の下部脚当て16 r.の外側および内側にそれぞれ外側第4リンク23および内側第4リンク24がボルト締めされる。外側第3リンク21の下端および外側第4リンク23の上端が第2電気アクチュエータ13を介して屈曲自在に連結され、内側第3リンク22の下端および内側第4リンク24の上端がヒンジ25を介して屈曲自在に連結される。このとき、両第3リンク21,22および両第4リンク23,24の枢支部、つまり第2電気アクチュエータ13およびヒンジ25は使用者の膝関節の外側および内側に位置している。

吊りベルト17,17に着脱自在に装着されるバックパック11の内部には、第1電気アクチュエータ12,12および第2電気アクチュエータ13,13の作動を制御する電子制御ユニット26と、前記各アクチュエータ12,12;13,13が発生しているトルクの状態を示すインジケータ27と、前記各アクチュエータ12,12;13,13のモータを駆動するモータドライバー28と、そのモータや電子制御ユニット26に電力を供給する電源29(例えばNiーZnバッテリ)とが収納される。

[0015]

第1電気アクチュエータ12,12および第2電気アクチュエータ13,13 は共通の構造を有するもので、直流モータと減速機とから構成されており、そのケーシングが第1リンク18の下端にボルト締めされるとともに、その出力軸がボルト30で第2リンク20の上端に結合される。従って、第1電気アクチュエータ12を駆動することで、第1リンク18および第2リンク20を相対回転させるトルクを発生し、使用者の股関節を伸展・屈曲させることができる。また第2電気アクチュエータ13は、そのケーシングが外側第3リンク21の下端にボルト締めされるとともに、その出力軸がボルト30で外側第4リンク23の上端に結合される。従って、第2電気アクチュエータ13を駆動することで、外側第3リンク21および外側第4リンク23を相対回転させるトルクを発生し、使用者の膝関節を伸展・屈曲させることができる。

[0016]

次に、図4~図6に基づいて第1電気アクチュエータ12の構造を説明する。 尚、第2電気アクチュエータ13の構造は第1電気アクチュエータ12の構造と 同一である。

[0017]

第1電気アクチュエータ12のケーシング41は、軸線Lを中心とする有底円 筒状に形成される。ケーシング41は、支持リング42、支持プレート44、モータハウジング45およびモータカバー46を積層し、複数本のボルト47…で 一体に締結してなり、モータハウジング45およびモータカバー46の内部にモ

[0018]

電すると、ロータ52と共に入力軸Siが回転する。

支持リング 4 2 の内部に収納された減速機 4 9 は、第 1 プラネタリギヤ機構 P 1 、第 2 プラネタリギヤ機構 P_2 および第 3 プラネタリギヤ機構 P_3 を備え、第 1 プラネタリギヤ機構 P_1 の半径方向外側に第 2 プラネタリギヤ機構 P_2 が配置され、更に第 2 プラネタリギヤ機構 P_2 の半径方向外側に第 3 プラネタリギヤ機構 P_3 が配置される。

れぞれ永久磁石52aおよびコイル53aが設けられており、コイル53aに通

[0019]

第1プラネタリギヤ機構 P_1 は、第1サンギヤ ZS_1 と、第1リングギヤ ZR_1 と、複数の第1プラネタリギヤ ZP_1 …と、第1キャリヤ C_1 とを備える。第 1 サンギヤ ZS_1 は入力軸S i の軸端に電磁クラッチ 5 4 を介して接続される。第 1 リングギヤ ZR_1 は軸線Lを囲むように支持プレート 4 4 の中心寄りの位置に一体に形成される。第 1 サンギヤ ZS_1 および第 1 リングギヤ ZR_1 に同時に噛合する第 1 プラネタリギヤ ZP_1 …を回転自在に支持する第 1 キャリヤ C_1 は、軸線L まわりに回転自在に配置される。従って、第 1 プラネタリギヤ R_1 が固定されて第 1 キャリヤ R_1 が回転可能なプラネタリ型であり、入力軸 R_1 に電磁クラッチ 1 4 を介して結合された第 1 サンギヤ1 2 1 3 が回転すると、その回転は同方向に減速されて第 1 キャリヤ1 1 に出力される。

[0020]

第 1 サンギヤ2 S_1 の入力回転数をn s_1 とし、第 1 キャリヤ C_1 の出力回転数をn c_1 とすると、プラネタリ型の第 1 プラネタリギヤ機構 P_1 の減速比はn c_1 n s_1 で定義される。第 1 サンギヤ2 S_1 、第 1 リングギヤ2 R_1 および

$$n c_1 / n s_1 = z s_1 / (z s_1 + z r_1)$$
 … (1) で与えられる。

[0021]

第2プラネタリギヤ機構 P_2 は、第2サンギヤ ZS_2 と、第2リングギヤ ZR_2 と、複数の第2プラネタリギヤ ZP_2 …と、第2キャリヤ C_2 とを備える。第2サンギヤ ZS_2 は第1プラネタリギヤ機構 P_1 の第1キャリヤ C_1 の外周に形成される。第2リングギヤ ZR_2 は軸線Lを囲むように支持プレート44の外周寄りの位置に一体に形成される。第2サンギヤ ZS_2 および第2リングギヤ ZR_2 に同時に噛合する第2プラネタリギヤ ZP_2 …を回転自在に支持する第2キャリヤ C_2 は、軸線Lまわりに回転自在に配置される。従って、第2プラネタリギヤ機構 P_2 は、第2リングギヤ ZR_2 が固定されて第2キャリヤ C_2 が回転可能なプラネタリ型であり、第2サンギヤ ZS_2 が回転すると、その回転は同方向に減速されて第2キャリヤ C_2 に出力される。

[0022]

第2サンギヤ ZS_2 の入力回転数を ns_2 とし、第2キャリヤ C_2 の出力回転数を nc_2 とすると、プラネタリ型の第2プラネタリギヤ機構 P_2 の減速比は nc_2 / ns_2 で定義される。第2サンギヤ ZS_2 、第2リングギヤ ZR_2 および第2プラネタリギヤ ZP_2 の歯数を、それぞれ zs_2 、 zr_2 , zp_2 で表すと、減速比 nc_2 / ns_2 は、

$$n c_2 / n s_2 = z s_2 / (z s_2 + z r_2)$$
 … (2) で与えられる。

[0023]

第3プラネタリギヤ機構 P_3 は、第3サンギヤ ZS_3 と、第3リングギヤ ZR_3 と、複数の第3プラネタリギヤ ZP_3 …と、第3キャリヤ C_3 とを備える。第3サンギヤ ZS_2 は第2プラネタリギヤ機構 P_2 の第2キャリヤ C_2 の外周に形成される。第3リングギヤ ZR_3 は支持リング42の内周に一体に形成される。第3サンギヤ ZS_3 および第3リングギヤ ZR_3 に同時に噛合する第3プラネタ

9/

[0024]

第3サンギヤ ZS_3 の入力回転数を ns_3 とし、第3キャリヤ C_3 の出力回転数を nc_3 とすると、プラネタリ型の第3プラネタリギヤ機構 P_3 の減速比は nc_3 $/ ns_3$ で定義される。第3サンギヤ ZS_3 、第3リングギヤ ZR_3 および第3プラネタリギヤ ZP_3 の歯数を、それぞれ zs_3 , zr_3 , zp_3 で表すと、減速比 nc_3 $/ ns_3$ は、

$$n c_3 / n s_3 = z s_3 / (z s_3 + z r_3)$$
 … (3) で与えられる。

[0025]

しかして、第1プラネタリギヤ機構 P_1 の出力部材である第1キャリヤ C_1 の出力回転数 n c_1 は、第2プラネタリギヤ機構 P_2 の入力部材である第2サンギヤZ S_2 の入力回転数 n S_2 に等しく、また第2プラネタリギヤ機構 P_2 の出力部材である第2キャリヤ C_2 の出力回転数 n S_2 は、第3プラネタリギヤ機構 P_3 の入力部材である第3サンギヤZ S_3 の入力回転数 n S_3 に等しいため、(1)式に示す第1プラネタリギヤ機構 P_1 の減速比 n S_1 S_2 S_3 S_4 S_4 S_4 S_5 S_5 S_6 S_7 S_7

$$(nc_1/ns_1) \times (nc_2/ns_2) \times (nc_3/ns_3)$$

= nc_3/ns_1 ... (4)

(1) 式~(3) 式から、減速機49の減速比nc3/ns1は、

 $n c_3 / n s_1$

$$= \{z s_1 / (z s_1 + z r_1)\} \times \{z s_2 / (z s_2 + z r_2)\} \times \{z s_3 / (z s_3 + z r_3)\} \qquad \cdots (5)$$

で与えられ、実施例では、各ギヤの歯数が、

$$z s_1 = 18$$
 $z p_1 = 27$ $z r_1 = 72$
 $z s_2 = 96$ $z p_2 = 24$ $z r_2 = 144$
 $z s_3 = 168$ $z p_3 = 24$ $z r_3 = 216$

に設定されているため、上記歯数を (5) 式に代入することで得られる減速機 49 の減速比 nc_3/ns_1 は、1/28.5 となる。つまり、減速機 49 の入力軸 Si が 28.5 回転すると出力軸 So が同方向に 1 回転することになる。

[0027]

以上のように、第1~第3プラネタリギヤ機構 P_1 ~ P_3 を連結して減速機49 を構成したので、充分な減速比を確保してモータ48のトルクを増加させることができる。また第1プラネタリギヤ機構 P_1 の半径方向外側に第2プラネタリギヤ機構 P_2 を重ねて配置し、更に第2プラネタリギヤ機構 P_2 の半径方向外側に第3プラネタリギヤ機構 P_3 を重ねて配置したので、第1~第3プラネタリギヤ機構 P_1 ~ P_3 の全てを軸線し方向に重ねて配置する場合に比べて、減速機49の軸線し方向の厚さを減少させることができる。つまり、プラネタリギヤ機構3個分の減速比を確保しながら、減速機49の厚さをプラネタリギヤ機構1個分の厚さに抑え、第1電気アクチュエータ12、12および第2電気アクチュエータ13、13を小型化して使用者の衣服の内側に体裁良く収めることが可能になる。

[0028]

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。

[0029]

例えば、実施例では電磁クラッチ 5 4 を入力軸 S i と第 1 サンギヤ Z S 1 との間に配置しているが、入力軸 S i および出力軸 S o 間の任意の位置に電磁クラッチ 5 4 を設けることができる。

【発明の効果】

以上のように請求項1に記載された発明によれば、歩行補助装置の減速機の軸 線上に入力軸、出力軸、第1プラネタリギヤ機構、第2プラネタリギヤ機構およ び第3プラネタリギヤ機構を同軸に配置し、第1プラネタリギヤ機構の第1リン グギヤをケーシングに固定することで、第1サンギヤから入力された回転を第1 キャリヤから出力し、第2リングギヤをケーシングに固定することで、第1キャ リヤと一体の第2サンギヤに入力された回転を第2キャリヤから出力し、第3リ ングギヤをケーシングに固定することで、第2キャリヤと一体の第3サンギヤに 入力された回転を第3キャリヤから出力し、入力軸の回転を第1~第3プラネタ リギヤ機構で3段に減速して出力軸に伝達することが可能となる。また第1プラ ネタリギヤ機構の径方向外側に第2プラネタリギヤ機構を概ね重なるように配置 し、更に第2プラネタリギヤ機構の径方向外側に第3プラネタリギヤ機構を概ね 重なるように配置したので、入力軸の回転を第1~第3プラネタリギヤ機構で3 段に減速して出力軸に伝達しながら、第1~第3プラネタリギヤ機構の全てを軸 線方向に重なるように配置する場合に比べて減速機の軸線方向の厚さを減少させ ることができ、使用者が歩行補助装置を装着したときの体裁を良くすることがで きる。

【図面の簡単な説明】

【図1】

歩行補助装置の使用状態を示す図

【図2】

歩行補助装置の分解斜視図の第1分図

【図3】

歩行補助装置の分解斜視図の第2分図

【図4】

歩行補助装置の電気アクチュエータの縦断面図

【図5】

図4の5-5線断面図

歩行補助装置の電気アクチュエータのスケルトン図

【符号の説明】

- 41 ケーシング
- 48 モータ
- C₁ 第1キャリヤ
- C₂ 第2キャリヤ
- C3 第3キャリヤ
- L 軸線
- P₁ 第1プラネタリギヤ機構
- P2 第2プラネタリギヤ機構
- P3 第3プラネタリギヤ機構
- S i 入力軸
- S o 出力軸
- ZP1 第1プラネタリギヤ
- ZP₂ 第2プラネタリギヤ
- ZP3 第3プラネタリギヤ
- ZR₁ 第1リングギヤ
- ZR2 第2リングギヤ
- ZR3 第3リングギヤ
- ZS1 第1サンギヤ
- ZS2 第2サンギヤ
- ZS3 第3サンギャ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【書類名】

要約書

【要約】

【課題】 下肢の筋力の衰えた使用者の歩行等の運動を補助する歩行補助装置の 減速機を薄型化する。

【解決手段】 歩行補助装置の減速機49はモータ48に接続された入力軸Siと出力軸Soとの間に、第 $1\sim$ 第3プラネタリギヤ機構 $P_1\sim P_3$ を備えており、入力軸Siに接続された第1プラネタリギヤ機構 P_1 の半径方向外側に第2プラネタリギヤ機構 P_2 の半径方向外側に第2プラネタリギヤ機構 P_2 の半径方向外側に出力軸Soに接続された第3プラネタリギヤ機構 P_3 を配置するので、入力軸Siの回転を第 $1\sim$ 第3プラネタリギヤ機構 $P_1\sim P_3$ で3段に減速して出力軸Soに伝達しながら、第 $1\sim$ 第3プラネタリギヤ機構 $P_1\sim P_3$ の全てを軸線L方向に重なるように配置する場合に比べて減速機49の厚さを減少させることができ、使用者が歩行補助装置を装着したときの体裁を良くすることができる。

【選択図】 図4

特願2002-253512

出願人履歴情報

識別番号

[000005326]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 9月 6日 新規登録

東京都港区南青山二丁目1番1号

本田技研工業株式会社