

Vector Network Coding Gap Sizes for the Generalized Combination Network

Ha Nguyen

ha.nguyen@tum.de

September 5, 2019

- 1. Motivation
- 2. What is Network Coding?
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

1. Motivation

- 2. What is Network Coding?
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Motivation

Network coding gives a **potential gain in throughput** by communicating more information with fewer packet transmissions compared to the routing method.

Motivation (cont.)

Vector network coding (VNC) → Field size reduction [Etzion and Wachter-Zeh (2018)].

E.g. $\mathbb{F}_{2^8} \to \mathbb{F}_2^5$ (58472 middle-layer nodes)

Number of receivers is large.

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Coding at a node

Store-and-forward in simple routing |Yeung et al. (2006)| \rightarrow each node can transmit an arbitrary combination of its received packets in network coding [Ahswede et al. (2000)].

- a) Intermediate Node b) Destination Node
- c) Source Node

Figure 3. Incoming links and outgoing links of a node in network coding

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Our Choice of Network Model

Figure 4. Generalized Combination Network (GCN)

Combination Network (CN) was introduced by Riis and Ahlswede in 2006.

A generalization of CN with ϵ direct links and ℓ multiple links was used to prove that vector network coding outperforms scalar network coding [Etzion and Wachter-Zeh 2018].

Able to demonstrate networks with large capacity.

Our Choice of Network Model (cont.)

Figure 4. Generalized Combination Network (GCN)

3 Layers from Top to Bottom

 $x_1, \dots, x_h \in \mathbb{F}_{q_s}$ (Scalar NC) or $\underline{x}_1, \dots, \underline{x}_h \in \mathbb{F}_q^t$ (Vector NC)

In

Our Choice of Network Model (cont.)

Figure 4. Generalized Combination Network (GCN)

Our Choice of Network Model (cont.)

Figure 4. Generalized Combination Network (GCN)

Our Choice of Network Model (cont.)

Figure 4. Generalized Combination Network (GCN)

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Recv 1

 $\operatorname{Recv}\left(egin{array}{c} r \ 3 \end{array}
ight)$

s=4

Recv 2

By using the vector coding, the upper bound number of solutions increases from q^{tsh} to q^{t^2sh} .

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Gap size between scalar and vector solutions

 $f_{1, ext{lower bound}}\left(q,t,lpha,h
ight) \ ------$

Gap size between scalar and vector solutions (cont.)

Gap size between scalar and vector solutions (cont.)

Network	Gaps for a specific vector solution [Etzion and Wachter-Zeh (2018)]	Lower bounds on gaps for a general vector solution [Corollary 5.4 and Corollary 5.3]	
$(\epsilon=0,\ell=1)-\mathcal{N}_{h,r,s}$	N/A	$\mathrm{N/A}$	
$(\epsilon \geq 1, \ell = 1) - \mathcal{N}_{h,r,s}$	N/A	$q^{\frac{\epsilon(\alpha-h+\epsilon)}{(\alpha-1)(\alpha-h+\epsilon+1)(h-\epsilon-1)}t^2 + \mathcal{O}(t)}$	
$(\epsilon = 1, \ell > 1) - \mathcal{N}_{h=2\ell, r, s=2\ell+1}$	$q^{t^2/2+\mathcal{O}(t)}$	$q^{t^2/l+\mathcal{O}(t)}$	
$(\epsilon = \ell - 1, \ell) - \mathcal{N}_{h=2\ell, r, s=3\ell-1}$	$q^{t^2/2+\mathcal{O}(t)}$	$\mathrm{N/A}$	

Table 1. Lower bounds on gaps were found in this study.

- 1. Motivation
- 2. What is Network Coding?
- 3. Combinatorial Results
 - Proof of a gap for a network with 3 messages
- 4. Computational Results
- 5. Conclusions

We show the proof of the most simple case. Other cases considered in this study are similar to this proof.

Each receiver R_j has to solve a linear equation system of 3t variables with 4t equations to recover 3 source messages as below:

$$\begin{bmatrix} \underline{y}_{j}^{(1)} \\ \underline{y}_{j}^{(2)} \\ \underline{y}_{j}^{(3)} \\ \underline{y}_{j}^{(4)} \end{bmatrix} = \underbrace{A_{j}} \cdot \underline{x} = \begin{bmatrix} A^{(r_{1})} \\ A^{(r_{2})} \\ A^{(r_{3})} \\ A^{(r_{3})} \\ B^{(j)} \\ B \end{bmatrix} \cdot \begin{bmatrix} \underline{x}_{1} \\ \underline{x}_{2} \\ \underline{x}_{3} \end{bmatrix},$$

with
$$\underline{x}_1, \dots, \underline{x}_3 \in \mathbb{F}_q^t$$

$$\underline{y}_j^{(1)}, \dots, \underline{y}_j^{(4)} \in \mathbb{F}_q^t$$

$$\underline{A}_j^{(r_1)}, \dots, \underline{A}_j^{(r_3)} \in \mathbb{F}_q^{t \times 3t} \text{ for } 1 \le r_1 < r_2 < r_3 \le r$$

$$\underline{B}_j^{(j)} \in \mathbb{F}_q^{t \times 3t} \text{ for } j \in \left\{1, \dots, \binom{r}{3}\right\}$$

The network is solvable if $\underline{\underline{A}}_{j}$ has full rank,

$$\operatorname{rk} \left[\begin{array}{c} A^{(r_1)} \\ = \\ A^{(r_2)} \\ = \\ A^{(r_3)} \\ = \\ B^{(j)} \\ = \end{array} \right] \geq 3t$$

We then apply the Lovász Local lemma to calculate a gap for the network [Proposed by Schwartz (2018)].

Lemma: Symmetric Lovász Local Lemma (LLL)

A set of events \mathcal{E}_i , such that each event occurs with probability at most p. If each event is independent of all others except for at most d of them and $4pd \le 1$, then:

$$\Pr\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}}_{i}\right] > 0$$

We apply the LLL for the following events $\mathcal{E}_{r_1,r_2,r_3}$

$$\mathcal{E}_{r_1,r_2,r_3} = \left\{ egin{array}{l} \operatorname{rk} \left[egin{array}{l} A^{(r_1)} \ A^{(r_2)} \ A^{(r_3)} \ B \end{array}
ight] < 2t
ight\},$$

$$1 \le r_1 < r_2 < r_3 \le r$$

where

$$\underline{A}^{(r_1)}, \dots, \underline{A}^{(r_3)} \in \mathbb{F}_q^{t \times 3t}$$

 $\underline{A}^{(r_1)}, \dots, \underline{A}^{(r_3)} \in \mathbb{F}_q^{t \times 3t}$ are independently and uniformly random.

$$\Pr\left[\mathcal{E}_{r_{1},r_{2},r_{3}}\right] = \Pr\left[\operatorname{rk}\left[\begin{array}{c}A^{(r_{1})}\\ \equiv\\ A^{(r_{2})}\\ \equiv\\ A^{(r_{3})}\end{array}\right] < 2t\right] = \sum_{i=0}^{2t-1}\Pr\left[\operatorname{rk}\left[\begin{array}{c}A^{(r_{1})}\\ \equiv\\ A^{(r_{2})}\\ \equiv\\ A^{(r_{3})}\\ \equiv\\ \end{array}\right] = i\right]$$

$$= \sum_{i=0}^{2t-1}\frac{\operatorname{NM}_{i,3t,3t}}{q^{(3t)\cdot(3t)}}$$

$$= \sum_{i=0}^{2t-1}\frac{\prod_{j=0}^{i-1}\frac{\left(q^{3t}-q^{j}\right)^{2}}{q^{i}-q^{j}}}{q^{9t^{2}}}.$$

Number of $[n \times m]$ matrices of rank *i* over \mathbb{F}_q |Overbeck (2007)|

$$NM_{i,n,m} = \prod_{j=0}^{i-1} \frac{(q^m - q^j) (q^n - q^j)}{q^i - q^j}.$$

$$\Pr\left[\mathcal{E}_{r_{1},r_{2},r_{3}}\right] = \Pr\left[\operatorname{rk}\begin{bmatrix} A^{(r_{1})} \\ A^{(r_{2})} \\ A^{(r_{3})} \\ A^{(r_{3})} \end{bmatrix} < 2t\right] = \sum_{i=0}^{2t-1} \Pr\left[\operatorname{rk}\begin{bmatrix} A^{(r_{1})} \\ A^{(r_{2})} \\ A^{(r_{3})} \\ A^{(r_{3})} \end{bmatrix} = i\right]$$

$$= \sum_{i=0}^{2t-1} \frac{\operatorname{NM}_{i,3t,3t}}{q^{(3t)\cdot(3t)}}$$

$$= \sum_{i=0}^{2t-1} \frac{\prod_{j=0}^{i-1} \frac{(q^{3t}-q^{j})^{2}}{q^{i}-q^{j}}}{q^{9t^{2}}}.$$

$$\operatorname{Lemma 5.2}$$

$$\Pr\left[\mathcal{E}_{r_{1},r_{2},r_{3}}\right] \leq p \in \Theta\left(q^{-t^{2}-2t-1}\right), \forall t \geq 2.$$

Number of $[n \times m]$ matrices of rank *i* over \mathbb{F}_q |Overbeck (2007)|

$$NM_{i,n,m} = \prod_{j=0}^{i-1} \frac{(q^m - q^j)(q^n - q^j)}{q^i - q^j}.$$

Lemma 5.2

$$\Pr\left[\mathcal{E}_{r_1,r_2,r_3}\right] \le p \in \Theta\left(q^{-t^2-2t-1}\right), \forall t \ge 2.$$

We study the asymptotic behaviour of LLL parameters when $q \to \infty$ by using the Bachmann-Landau notations.

 $\Theta(f(q,t))$ for a tight bound

 $\Omega(f(q,t))$ for a lower bound

 $\mathcal{O}\left(f\left(q,t\right)\right)$ for an upper bound

Lemma 5.3

Each event is dependent at most $d(r) \leq \frac{3}{2}r^2$ other events.

$$\mathcal{E}_{r_1,r_2,r_3}$$
 is dependent on $\mathcal{E}_{r_1',r_2',r_3'}$ if and only if $\{r_1,r_2,r_3\} \cap \left\{r_1',r_2',r_3'\right\} \neq \emptyset$

$$\Rightarrow d(r) \leq 3 \cdot \left(\begin{array}{c} r-1\\2 \end{array}\right)$$

Example that "Node r" is chosen for 2 receivers.

Lemma 5.3

Each event is dependent at most $d(r) \leq \frac{3}{2}r^2$ other events.

Lemma 5.2

$$\Pr\left[\mathcal{E}_{r_1,r_2,r_3}\right] \le p \in \Theta\left(q^{-t^2-2t-1}\right), \forall t \ge 2.$$

Lemma: Symmetric Lovász Local Lemma (LLL)

A set of events \mathcal{E}_i , such that each event occurs with probability at most p. If each event is independent of all others except for at most d of them and $4pd \leq 1$, then:

$$\Pr\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}}_{i}\right] > 0$$

Theorem 5.1

There is an $r_{\text{max,vector}} \in \Omega\left(q^{t^2/2 + \mathcal{O}(t)}\right)$ such that for any $r \leq r_{\text{max,vector}}$ there exists a vector solution for the $(\epsilon = 1, l = 1) - \mathcal{N}_{h=3,r,s=4}$ network.

The optimal scalar solution exists for $r_{\text{max,scalar}} \in \mathcal{O}(q_s^2)$ [Etzion and Wachter-Zeh (2018)].

Applying Theorem 5.1 on slide 32 and the formula of gap on slide 22, we have

$$r_{
m max,scalar} = r_{
m max,vector}$$
 $\Leftrightarrow q_{
m s,min,from\,bound}^2 = q^{t^2/2+\mathcal{O}(t)}$
 $\Leftrightarrow q_{
m s,min,from\,bound} = q^{t^2/4+\mathcal{O}(t)}$
 $\Rightarrow g_{
m lower\,bound} = q_{
m s,min,from\,bound} - q_v = q^{t^2/4+\mathcal{O}(t)}$

Corollary 5.1

The $(\epsilon = 1, \ell = 1) - \mathcal{N}_{h=3,r,s=4}$ network has a vector solution with a gap $q^{t^2/4+\mathcal{O}(t)}$.

Similar to the $(\epsilon = 1, \ell = 1) - \mathcal{N}_{h=3,r,s=4}$ network, we proved a gap for a more general network in Corollary 5.3.

Corollary 5.3

The $(\epsilon = 1, \ell = 1) - N_{h,r,s}$ network has a vector solution with a gap $q^{\frac{\alpha - h + 1}{(\alpha - 1)(\alpha - h + 2)(h - 2)}t^2} + \mathcal{O}(t)$

- 1. Motivation
- 2. What is Network Coding?
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Computational Results

t	Scalar Solution	Vector Solution	$\begin{array}{c} {\rm Etzion~and~Kurz} \\ (2019) \end{array}$	Construction 1	Construction 2
2	$r_{\rm max,scalar} = 42$	$r_{ m max,vector} \geq 7$	$r_{\text{max,vector}} = 121$	$r_{\text{max,vector}} = 89$	N/A
3	$r_{\text{max,scalar}} = 146$	$r_{ m max,vector} \geq 62$	N/A	N/A	$\left(r_{ m max,vector} = 166\right)$
4	$r_{\rm max,scalar} = 546$	$r_{\rm max, vector} \ge 1317$	N/A	N/A	N/A
5	$r_{\text{max,scalar}} = 2114$	$r_{ m max,vector} \ge 58472$	N/A	N/A	N/A
6	$r_{\text{max,scalar}} = 8322$	$r_{\text{max,vector}} > 10^6$	N/A	N/A	N/A

For t = 2, Etzion and Kurz provide the best vector solution.

For t = 3, this study provides the only vector solution outperforming the optimal scalar solution.

For t = 4, 5, 6, the combinatorial results from this study already show large gaps.

Computational Results (cont.)

Approaches that we tried in this study:

1. Random Increasing Method

✓

Start with a random pair [A, B], then randomly extend to [A, B, C].

Similarly, we continue to extend until no more possibility.

Computational Results (cont.)

Approaches that we tried in this study:

- 1. Random Increasing Method
- 2. Increasing Method (IM) with Extra Information

If we input a set of 4096 matrices, we know all subsets of 3 matrices satisfying the rank requirement. Then, we use this information to search for a vector solution.

Computational Results (cont.)

Approaches that we tried in this study:

- 1. Random Increasing Method
- 2. Increasing Method (IM) with Extra Information
- 3. Decreasing Method with Learning Bad Events over Each Step

Start with a set of all matrices

- → Check matrix with high frequency in events that the rank requirement is not satisfied.
- → Remove such a matrix
- → Keep doing until any 3 matrices left in the set meet the rank requirement.

- 1. Motivation
- 2. What is Network Coding?
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Conclusion

Summary:

- Tool to derive general vector solutions for instances of the generalized combination network based on the Lovász Local Lemma.
- By combinatorial results, vector solutions can be generally proved to outperform scalar solutions.

Further Results: (not in presentation)

• A new bound on a three-dimensional subspace code over \mathbb{F}_2^9 .

Open:

- Code construction of the codebook found in the computational results.
- Apply the Lovász Local Lemma to all other instances of the generalized combination network.

Conclusion (cont.)

Summary:

- Tool to derive general vector solutions for instances of the generalized combination network based on the Lovász Local Lemma.
- By combinatorial results, vector solutions can be generally proved to outperform scalar solutions.

Further Results: (not in presentation)

• A new bound on a three-dimensional subspace code over \mathbb{F}_2^9 .

Open:

- Code construction of the codebook found in the computational results.
- Apply the Lovász Local Lemma to all other instances of the generalized combination network.

Thank you for your attention!

Computational Results

We analyze the IM for case t = 3 of the $(\epsilon = 1, \ell = 1) - \mathcal{N}_{h=3,r,s=4}$ network.

(a) subrel[(A,B,C)] is a subset of $\operatorname{rel}[(A,B)]$, $\operatorname{rel}[(B,C)]$ and $\operatorname{rel}[(A,C)]$

(c) Elements of subrel[.] are always contained in rel[.]

(b) $\mathrm{subrel}[(A,B,C,D)] \ \mathrm{is} \ \mathrm{a} \ \mathrm{subset} \ \mathrm{of} \ \mathrm{subrel}[(A,B,C)], \ \mathrm{rel}[(A,D], \ \mathrm{rel}[(B,D] \ \mathrm{and} \ \mathrm{rel}[(C,D] \ \mathrm{rel}(B,D)]$

Mapping

$$x_1,\dots,x_{h=3}\in\mathbb{F}_{2^2}$$
 $oldsymbol{x}_{ ext{scalar}}=(x_1,x_2,x_3)=(1,lpha,lpha+1).$ $oldsymbol{x}_1,\dots,oldsymbol{x}_{h=3}\in\mathbb{F}_2^2$ $oldsymbol{x}_{ ext{vector}}=(oldsymbol{x}_1,oldsymbol{x}_2,oldsymbol{x}_3).$

$$\left[egin{array}{c} x_1=1 \ x_2=lpha \ x_3=lpha+1 \end{array}
ight]
ightarrow \left[egin{array}{c} 1 \ 0 \ 0 \ 1 \ 1 \ 1 \end{array}
ight],$$

$$a_0 \cdot \alpha^0 + a_1 \cdot \alpha^1 + \ldots + a_{t-1} \cdot \alpha^{t-1} \rightarrow \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{t-1} \end{pmatrix}.$$