Storage-stable fluorescent whitener formulations

The present invention relates to storage-stable fluorescent whitener formulations, a process for their preparation and their use.

- 5 The storage-stable fluorescent whitener formulations according to the invention comprise
 - (a) 5 60% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1)

$$X_{1} \longrightarrow \begin{pmatrix} X_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} MO_{3}S \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} R_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} N \\$$

wherein

15

25

10 R_1 and R_2 are, independently from each other, hydrogen; unsubstituted C_1 - C_8 alkyl, substituted C_1 - C_8 alkyl,

 X_1 , X_2 , X_3 and X_4 are, independently from each other, -N(R₃)R₄ or -OR₅, wherein R₃ and R₄ are, independently from each other, hydrogen; cyano; unsubstituted C₁-C₈alkyl; substituted C₁-C₈alkyl; unsubstituted C₅-C₇cycloalkyl or unsubstituted

C5-C7cycloalkyl; or

 $R_{\rm 3}$ and $R_{\rm 4}$, together with the nitrogen atom linking them, form a heterocyclic ring, and

R₅ is unsubstituted C₁-C₀alkyl or substituted C₁-C₀alkyl, and

M is hydrogen or a cation,

- 20 **(b)** 0.01 1% by weight, based on the total weight of the whitener formulation, of at least one anionic polysaccharide,
 - (c) 0-25% by weight, based on the total weight of the whitener formulation, of at least one electrolyte,
 - (d) 0-20% by weight, based on the total weight of the whitener formulation, of at least one dispersant,
 - (e) 0-30% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener,

-2-

- (f) 0-20% by weight, based on the total weight of the whitener formulation, of at least one further optional component, and
- (g) water to make up 100% by weight.
- These novel formulations are suspensions, and are stable for several months even at elevated temperatures.

Within the scope of the above definitions, C₁-C₈alkyl may be methyl, ethyl, n- or isopropyl, n-, sec.- or t-butyl, or linear or branched pentyl, hexyl, heptyl or octyl. Preferred are C₁-C₄alkyl groups. In case the alkyl groups are substituted examples of possible substituents are hydroxyl, halogen, like fluorine, chlorine or bromine, sulfo, sulfato, carboxy and C₁-C₄alkoxy, like methoxy and ethoxy. Other substituents of such alkyl groups are, for example, cyano, -CONH₂ and phenyl. Preferred substituents are hydroxy, carboxy, cyano, -COOH, H₂NC(NH)NH₂, -CONH₂ and phenyl, especially hydroxy and carboxy. Furthermore, highly preferred substituents are hydroxy and C₁-C₄alkoxy, especially hydroxy. The alkyl groups can also be uninterrupted or interrupted by --O- (in case of alkyl groups containing two or more carbon atoms).

Examples for C₅-C₇cycloalkyl groups are cyclopentyl and especially cyclohexyl. These groups can be unsubstituted or substituted by, for example, C₁-C₄-alkyl, like methyl. Preferred are the corresponding unsubstituted cycloalkyl groups.

Halogen may be fluorine, chlorine, bromine or iodine, preferably chlorine.

- 25 If R₃ and R₄ together with the nitrogen atom form a heterocyclic ring such a ring system can be, for example, morpholino, piperidine or pyrrolidine. The heterocyclic ring can be unsubstituted or substituted. An example for such substituents is C₁-C₄alkyl, especially methyl.
- The cation M is preferably an alkali metal cation, an alkaline earth metal cation, ammonium or a cation formed from an amine. Preferred are Li, Na, K, Ca, Mg, ammonium, mono-, di-, tri- or tetra-C₁-C₄alkylammonium, mono-, di- or tri-C₂-C₄-hydroxyalkylammonium or ammonium that is di- or tri-substituted with a mixture of C₁-C₄-alkyl and C₂-C₄-hydroxyalkyl groups. Highly preferred is sodium.

15

20

25

 R_1 and R_2 are preferably, independently from each other, hydrogen; unsubstituted C_1 - C_4 alkyl or substituted C_1 - C_4 alkyl, especially hydrogen.

R₃ and R₄ are preferably, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted by hydroxy, carboxy, cyano, -COOH, -H₂NC(NH)NH₂-, -CONH₂ or phenyl, especially by hydroxy or carboxy, and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted or C₁-C₄alkyl-substituted C₅-C₇cycloalkyl, especially cyclohexyl; or R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

More preferably, R_3 and R_4 are, independently from each other, hydrogen; unsubstituted C_1 - C_8 alkyl or hydroxy-substituted C_1 - C_8 alkyl; unsubstituted C_5 - C_7 cycloalkyl or C_1 - C_4 alkyl-substituted C_5 - C_7 cycloalkyl; or R_3 and R_4 , together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine ring.

Most preferred meanings for R_3 and R_4 are, independently from each other, hydrogen; unsubstituted C_1 - C_8 alkyl or hydroxy-substituted C_1 - C_8 alkyl; or R_3 and R_4 , together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine ring.

Highly preferred are unsubstituted morpholino, piperidine or pyrrolidine rings or a C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine rings, especially morpholino, formed by R_3 and R_4 together with the nitrogen atom linking them.

Examples of -N(R₃)R₄ groups are -NH₂; -NHCH₃; -NHC₂H₅; -NH(n-C₃H₇); -NH(i-C₃H₇); -NH(i-C₄H₉); -N(CH₃CH₂OH)₂; -N(i-C₃H₇)₂; -NH(CH₂CH₂OH); -N(CH₂CH₂OH)₂; -N(CH₂CH(OH)CH₃)₂; -N(CH₂CH₂OH); -N(C₂H₅)(CH₂CH₂OH); -N(i-C₃H₇)(CH₂CH₂OH); -NH(CH₂CH(OH)CH₃); -N(C₂H₅)(CH₂CH(OH)CH₃); -NH(CH₂CH₂OCH₃); -NH(CH₂CH₂OCH₃); -NH(CH₂COOH); -NH(CH₂COOH); -NH(CH₂COOH); -NH(CH₂COOH); -NH(CH₃COOH); -NH(CH₃COOH); -NH(CH₃COOH); -NH(CN);

-4-

$$-NH-\overset{C}{C}H_{2}-OH; -NH-\overset{C}{C}-CH_{2}CH_{3}; -NH-\overset{C}{C}H_{3}; -NH-\overset{C}{C}H_{3};$$

an

5

 R_5 is preferably unsubstituted C_1 - C_8 alkyl or substituted C_1 - C_8 alkyl, especially C_1 - C_4 alkyl, which is unsubstituted or substituted by C_1 - C_4 alkoxy or especially hydroxy. Highly preferred for R_5 is methyl or ethyl, especially methyl.

10 X_1, X_2, X_3 and X_4 are preferably a radical of formula $-N(R_3)R_4$.

 X_1 and X_3 have preferably the same meanings. In addition it is preferred that X_2 and X_4 have preferably the same meanings. Furthermore, it is preferred that the four radicals X_1 , X_2 , X_3 and X_4 do not have identical meanings.

15

Preferred are compounds of formula (1), wherein

 R_1 and R_2 are, independently from each other, hydrogen or unsubstituted C_1 - C_4 alkyl, each X_1 , X_2 , X_3 and X_4 is independently from each other a radical of formula -N(R_3) R_4 or OR₅, wherein

20 R₃ and R₄ are, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted by hydroxy, carboxy, COOH, cyano, -CONH₂, NHC(NH)NH₂ or phenyl and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted C₅-C₇cycloalkyl or C₁-C₄alkyl-substituted C₅-C₇cycloalkyl; or

-5-

 R_3 and R_4 , together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine ring; and

R₅ is C₁-C₈alkyl which is unsubstituted or substituted by hydroxy.

5

15

25

Highly preferred are compounds of formula (1), wherein

 R_1 and R_2 are, independently from each other, hydrogen or unsubstituted C_1 - C_4 alkyl, X_1 and X_3 are -NH₂, and

X₂ and X₄ are a radical of formula -N(R₃)R₄, wherein

10 R₃ and R₄ are, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted hydroxy, carboxy, -COOH, cyano, -CONH₂, NHC(NH)NH₂ or phenyl, and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted cyclohexyl or C₁-C₄alkyl-substituted cyclohexyl; unsubstituted cyclopentyl or C₁-C₄alkyl-substituted cyclopentyl or

R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

Of particular interest are compounds of formula (1), wherein

20 R_1 and R_2 are, independently from each other, hydrogen or unsubstituted C_1 - C_2 alkyl, X_1 and X_3 are -NH₂, and

X₂ and X₄ are a radical of formula -N(R₃)R₄, wherein

 R_3 and R_4 are, independently of each other, hydrogen; unsubstituted C_1 - C_8 alkyl or hydroxy-substituted C_1 - C_8 alkyl; unsubstituted cyclopentyl or C_1 - C_4 alkyl-substituted cyclopentyl or cyclohexyl; unsubstituted or C_1 - C_4 alkyl-substituted cyclohexyl; or R_3 and R_4 , together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine ring.

Most interesting compounds of formula (1) are those wherein R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

-6-

The amount of the compound(s) of formula (1) is from 5 to 60% by weight, preferably 5 to 50% by weight, more preferably 10 to 50% by weight, most preferably 10 to 45% by weight, based on the total weight of the whitener formulation.

The compounds of formulae (1) are known or can be prepared in analogy to known processes.

Compounds of formula (1) may be produced by reacting, under known reaction conditions, cyanuric chloride, successively, in any desired sequence, with each of 4,4'-diaminostilbene-2,2'- disulfonic acid, and amino compounds capable of introducing the groups X₁, X₂, X₃ and X₄. Preferably, 2 moles of cyanuric chloride are initially reacted with 1

mole of 4,4'-diaminostilbene-2,2'- disulfonic acid and then reacting the intermediate obtained in any order with amino compounds capable of introducing the groups X_1 , X_2 , X_3 and X_4 . For the preparation of compounds wherein X_1 and X_3 having the same meaning, and also X_2 and X_4 have the same meaning, it is preferred to react the intermediate obtained first with an

 X_4 have the same meaning, it is preferred to react the intermediate obtained hist with an amino compound capable of introducing X_1 and X_3 , and, finally with an amino compound capable of introducing X_2 and X_4 . It is also possible to carry out the reaction with the amino compounds in one step by reacting the intermediate with a mixture of amino compounds; in such a case usually corresponding mixtures of compounds of formula (1) are obtained.

such a case usually corresponding mixtures of compounds of formula (1) are obtained.

Compounds of formula (1) containing a radical of formula $-OR_5$ can for example be prepared by first reacting cyanuric chloride with the corresponding alcohol HOR $_5$, reacting the product obtained with 4,4'-diaminostilbene-2,2'- disulfonic acid and then reacting the intermediate with further compounds capable of introducing the remaining groups of X_1 , X_2 , X_3 and X_4 . The last reaction is preferably carried out with the corresponding amines.

The anionic polysaccharides which can be used according to the invention belong to the group of modified polysaccharides which can be derived from cellulose, starch or the heteropolysaccharides, it being possible for the side chains to contain further monosaccharides, for example mannose and glucuronic acid. Examples of anionic polysaccharides are sodium alginate, carboxymethylated guar, carboxymethylcellulose,

carboxymethyl-starch, carboxymethylated locust bean flour and, particularly preferably,

xanthan gum.

10

15

20

25

30

The amount of polysaccharide is 0.01 to 1% by weight, a range from 0.05 to 0.5% by weight being preferred and a range of 0.1 to 0.3% by weight being particularly preferred, in each case based on the total weight of the whitener formulation. However, these ranges can be exceeded in formulations of very high concentration or very low concentration.

5

10

15

20

One or more alkali metal salts and salts of lower carboxylic acids, for example, can be used as the electrolyte. Examples of electrolytes are sodium chloride, sodium sulfate, sodium phosphate, sodium carbonate, sodium formate, sodium citrate or one of the corresponding potassium salts, and mixtures of these electrolytes. Sodium chloride, sodium citrate and the formates are preferred here. The amount of electrolyte can be 0 to 25% by weight, preferably 0.5 to 20% by weight and most preferably 0.5 to 15% by weight, based on the total weight of the whitener formulation.

Dispersants which can be used are those of the anionic or nonionic type. Examples of these are alkylbenzenesulfonates, alkyl or alkenyl ether-sulfonate salts, saturated or unsaturated fatty acids, alkyl or alkylene ether-carboxylic salts, sulfo-fatty acid salts or esters, phosphate esters, polyoxyethylene alkyl or alkenyl ethers, polyoxyethylene alkylvinyl ethers, polyoxypropylene alkyl or alkenyl ethers, polyoxybutylene alkyl or alkenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts, sucrose/fatty acid esters, fatty acid/glycol monoesters, alkylamine oxides and condensation products of aromatic sulfonic acids with formaldehyde, and lignin-sulfonates, or mixtures of the abovementioned dispersants. The condensation products of aromatic sulfonic acids with formaldehyde, and lignin-sulfonates are preferred. Condensation products of naphthalenesulfonic acids with formaldehyde and of ditolyl ether-sulfonic acids with formaldehyde are particularly preferred.

25

The content of dispersant is 0 to 20% by weight, based on the total weight of the whitener formulation, preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, most preferably 0.2 to 5% by weight.

30 The storage-stable fluorescent whitener formulations according to the invention can further comprise

0-30% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener of formula (2)

wherein

 R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C_1 - C_8 alkyl or substituted C_1 - C_8 alkyl,

5 R₇ and R₉, independently from each other, are hydrogen; unsubstituted phenyl; unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl, or

NR₆R₇ and/or NR₈R₉ form a morpholino ring,

and M is hydrogen or a cation,

and/or of at least one further fluorescent whitener of formula (3)

10

wherein

 R_{10} and R_{11} , independently from each other, are hydrogen; substituted C_1 - C_8 alkyl or unsubstituted C_1 - C_8 alkyl; C_1 - C_8 alkoxy or halogen, and M is hydrogen or a cation.

15 Preferred compounds of formula (2) are those wherein

 R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C_1 - C_4 alkyl or substituted C_1 - C_4 alkyl,

 R_7 and R_9 , independently from each other, are unsubstituted phenyl; unsubstituted C_1 - C_4 alkyl or substituted C_1 - C_4 alkyl, or

- 20 NR_8R_7 and/or NR_8R_9 form a morpholino ring, and M is an alkali metal atom, an alkaline earth metal atom, ammonium or a cation formed from an amine.
 - More preferred compounds of formula (2) are those wherein
- 25 R₆ and R₈, independently from each other, are hydrogen; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy,

 R_7 and R_9 , independently from each other, are unsubstituted phenyl; unsubstituted C_1 - C_2 alkyl or C_1 - C_4 alkyl, which is substituted by hydroxy or C_1 - C_4 alkoxy, or NR_8R_7 and/or NR_8R_9 form a morpholino ring, and M is an alkali metal atom.

5

20

Especially preferred compounds of formula (2) are those of formula (2a)

wherein

10 R'₈ is hydrogen; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy,

 R'_7 is unsubstituted phenyl; unsubstituted C_1 - C_2 alkyl or C_1 - C_4 alkyl, which is substituted by hydroxy or C_1 - C_4 alkoxy, or

NR'6R'7 forms a morpholino ring,

and M is an alkali metal atom, preferably sodium.

Example of such preferred compounds of formula (2) are those of formula (2b) – (2f)

5

Preferred compounds of formula (3) are those wherein

10 R₁₀ and R₁₁, independently from each other, are hydrogen; unsubstituted C₁-C₄alkyl or substituted C₁-C₄alkyl; C₁-C₄alkoxy or halogen, and M is hydrogen or a cation.

Compounds of formula (2) and (3) as well as their process of production are known.

In the mixtures of compounds of formulae (1) and (2) and/or (3) the molar ratio of compound (1) to compound (2) and/or compound (3) is usually in the range of from 0.1:99.9 to 99.9:0.1, preferably from 1:99 to 99:1 and more preferably from 5:95 to 95:5. Highly preferred is a molar ratio of from 10:90 to 90:10, especially 20:80 to 80:20. Most important is a molar ratio of from 30:70 to 70:30, especially 40:60 to 60:40.

The content of the further fluorescent whitener(s) is 0-30% by weight, based on the total weight of the whitener formulation, preferably 0 to 25% by weight, more preferably 0 to 20% by weight.

- optional components; examples are preservatives or mixtures of preservatives, such as chloroacetamide, triazine derivates, benzoisothiazolines, 2-methyl-2H-isothiazol-3on, 2-octyl-2H-isothiazol-3on, 2-brom-2-nitropropan-1,3-diol or aqueous formaldehyde solution; Mg/Al silicates or mixtures of Mg/Al silicates, such as bentonite, montmorillonite, zeolites or highly disperse silicic acids; odour improvers and perfuming agent or mixtures thereof; antifoam agents or mixtures thereof; builders or mixtures thereof; protective colloids or mixtures thereof; stabilizers or mixtures thereof; sequestering agents and antifreeze agents or mixtures thereof, such as propylene glycol.
- The content of these optional components is 0 to 20% by weight, based on the total weight of the whitener formulation, preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, most preferably 0.2 to 5% by weight.
- Examples of suitable builders or protective colloids are modified polysaccharides derived from cellulose or heteropolysaccharides, such as xanthan gum, carboxymethylcellulose and polyvinyl alcohols (PVA), polyvinylpyrrolidones (PVP), polyethylene glycols (PEG) and aluminium silicates or magnesium silicates. They are usually used in a concentration range of 0.01 to 2% by weight and preferably 0.05 to 0.5% by weight, based on the total weight of the whitener formulation.
 - Examples of auxiliaries which can be used for stabilization are ethylene glycol, propylene glycol or dispersants in an amount of 0.2 to 5% by weight and preferably 0.3 to 2% by weight, based on the total weight of the whitener formulation.
- Compounds which are used as preservatives are chloroacetamide, triazine derivates, benzoisothiazolines, 2-methyl-2H-isothiazol-3on, 2-octyl-2H-isothiazol-3on, 2-brom-2-nitropropan-1,3-diol or aqueous formaldehyde solution in an amount of 0.1 to 1% by weight and preferably 0.1 to 0.5% by weight based on the total weight of the whitener formulation.

25

A preferred storage-stable fluorescent whitener formulation according to the invention comprises

5 – 50% by weight, preferably 10 – 50% by weight, more preferably 10 – 45% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1')

$$\begin{array}{c|c}
N & N(R_3)R_4 \\
R_4(R_3)N & N & MO_3S \\
N & MO_3S & R_2 \\
N & N & N(R_3)R_4
\end{array}$$

$$\begin{array}{c|c}
N & N & N(R_3)R_4 \\
N & N(R_3)R_4 & N(R_3)R_4
\end{array}$$

wherein

5

10

15

R₁ and R₂ are, independently from each other, hydrogen or unsubstituted C₁-C₄alkyl, R₃ and R₄ are, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted by hydroxy, carboxy, -COOH, -H2NC(NH)NH2, cyano, -CONH₂ or phenyl and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted C₅-C₇cycloalkyl or C₁-C₄alkyl-substituted C₅-C₇cycloalkyl; or R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C1-C4alkyl-substituted morpholino, piperidine or pyrrolidine ring; and M is an alkali metal cation; an alkaline earth metal cation; ammonium or a cation formed from an amine,

- 0.05-0.5% by weight, preferably 0.1-0.3% by weight, based on the total weight of the whitener formulation, of at least one anionic polysaccharide,
- 0-25% by weight, preferably 0.5-20% by weight, more preferably 0.5-15% by 20 weight, based on the total weight of the whitener formulation, of at least one electrolyte from the group consisting of alkali metal salts and/or lower carboxylic acids,
- 0-20% by weight, preferably 0.1-20% by weight, more preferably, 0.1-10% by (d) weight, especially preferred 0.2-5% by weight, based on the total weight of the whitener formulation, of at least one dispersant from the group consisting of 25 alkylbenzenesulfonates; alkyl or alkenyl ether-sulfonate salts; saturated or unsaturated fatty acids; alkyl or alkylene ether-carboxylic salts; sulfo-fatty acid salts or esters; phosphate esters; polyoxyethylene alkyl or alkenyl ethers; polyoxyethylene alkylvinyl

ethers; polyoxypropylene alkyl or alkenyl ethers; polyoxybutylene alkyl or alkenyl ethers; higher fatty acid alkanolamides or alkylene oxide adducts; sucrose/fatty acid esters; fatty acid/glycol monoesters; alkylamine oxides and condensation products of aromatic sulfonic acids with formaldehyde; and lignin-sulfonates,

6 (e) 0-30% by weight, preferably 0-25% by weight, more preferably 0-20% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener from the group consisting of compounds of formula (2)

wherein

10 R₈ and R₈, independently from each other, are hydrogen; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy,

 R_7 and R_9 , independently from each other, are unsubstituted phenyl; unsubstituted C_1 - C_2 alkyl or C_1 - C_4 alkyl, which is substituted by hydroxy or C_1 - C_4 alkoxy, or NR_8R_7 and/or NR_8R_9 form a morpholino ring, and

15 M is an alkali metal atom,

and compounds of formula (3)

wherein

20

25

 R_{10} and R_{11} , independently from each other, are hydrogen; C_1 - C_4 alkyl; C_1 - C_4 alkoxy or halogen, and M is hydrogen or a cation,

- (f) 0 20% by weight, preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, most preferably 0.2 to 5% by weight based on the total weight of the whitener formulation, of at least one further optional component from the group consisting of preservatives; Mg/AI silicates; odour Improvers and perfuming agent; builder or protective colloids; stabilizers; sequestering agents and antifreeze agents,
- (g) water to make up 100% by weight.

- 14 -

A more preferred storage-stable fluorescent whitener formulations according to the invention comprises

(a) 10-50% by weight, preferably 10-45% by weight, based on the total weight of the whitener formulation, of at least

one compound of formula (1")

$$\begin{array}{c|c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein

5

10

15

 R_1 and R_2 are, independently from each other, hydrogen; methyl or ethyl, R_3 and R_4 are, independently from each other, hydrogen; cyano; C_1 - C_8 alkyl which is unsubstituted or substituted by hydroxy, carboxy, -COOH, -CONH $_2$, H_2 NC(NH)NH $_2$, phenyl and wherein the C_1 - C_8 alkyl group is uninterrupted or interrupted by -O-; unsubstituted C_5 - C_7 cyclohexyl or C_1 - C_4 alkyl-substituted C_5 - C_7 cyclohexyl; or R_3 and R_4 , together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C_1 - C_4 alkyl-substituted morpholino, piperidine or pyrrolidine ring; and

M is Li; Na; Ca; Mg; ammonium; mono-, di-, tri- or tetra- C_1 - C_4 alkylammonium; mono-, di- or tri- C_2 - C_4 -hydroxyalkylammonium or ammonium that is di- or tri-substituted with a mixture of C_1 - C_4 -alkyl and C_2 - C_4 -hydroxyalkyl groups,

- (b) 0.05 0.5% by weight, preferably 0.1 0.3% by weight, based on the total weight of
 the whitener formulation, of at least one anionic polysaccharide from the group consisting of sodium alginate; carboxymethylated guar; carboxymethylcellulose; carboxymethyl-starch; carboxymethylated locust bean flour and xanthan gum,
- (c) 0 25% by weight, preferably 0.5 20% by weight, more preferably 0.5 15% by weight, based on the total weight of the whitener formulation, of at least one electrolyte
 25 from the group consisting of sodium or potassium chloride; sodium or potassium sulfate; sodium or potassium phosphate; sodium or potassium carbonate; sodium or potassium formate; sodium or potassium citrate,

5

10

15

20

- (d) 0 20% by weight, preferably 0.1 20% by weight, more preferably, 0.1 10% by weight, especially preferred 0.2 5% by weight, based on the total weight of the whitener formulation, of at least one dispersant from the group consisting of alkylbenzenesulfonates; alkyl or alkenyl ether-sulfonate salts; saturated or unsaturated fatty acids; alkyl or alkylene ether-carboxylic salts; sulfo-fatty acid salts or esters; phosphate esters; polyoxyethylene alkyl or alkenyl ethers; polyoxyethylene alkylvinyl ethers; polyoxypropylene alkyl or alkenyl ethers; polyoxybutylene alkyl or alkenyl ethers; higher fatty acid alkanolamides or alkylene oxide adducts; sucrose/fatty acid esters; fatty acid/glycol monoesters; alkylamine oxides and condensation products of naphthalene sulfonic acids with formaldehyde; and lignin-sulfonates,
 - (e) 0-25% by weight, more preferably 0-20% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener from the group consisting of compounds of formula (2a)

wherein

 R'_{6} is hydrogen; unsubstituted C_{1} - C_{2} alkyl or C_{1} - C_{4} alkyl, which is substituted by hydroxy or C_{1} - C_{4} alkoxy,

 R'_7 is unsubstituted phenyl; unsubstituted C_1 - C_2 alkyl or C_1 - C_4 alkyl, which is substituted by hydroxy or C_1 - C_4 alkoxy, or

NR'₆R'₇ forms a morpholino ring, and M is an alkali metal atom, preferably sodium, and compounds of formula (3)

25 wherein

R₁₀ and R₁₁, independently from each other, are hydrogen; C₁-C₂alkyl; C₁-C₂alkoxy; Cl or Br, and

M is hydrogen or an alkali metal atom, preferably sodium,

- 0 20% by weight, preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, particularly preferably 0.2 to 5% by weight based on the total weight of the 5 whitener formulation, of at least one further optional component from the group consisting of chloroacetamide; triazine derivates; benzoisothiazolines; 2-methyl-2Hisothiazol-3on; 2-octyl-2H-isothiazol-3on; 2-brom-2-nitropropan-1,3-diol; aqueous formaldehyde solution; bentonite; montmorillonite; zeolites; polyvinyl alcohols (PVA), 10 polyvinylpyrrolidones (PVP), polyethylene glycols (PEG); aluminium silicates; magnesium silicates; ethylene glycol and propylene glycol,
 - water to make up 100% by weight. (g)

An especially preferred storage-stable fluorescent whitener formulation according to the 15 invention comprises

10 - 45% by weight, based on the total weight of the whitener formulation, of at least (a) one compound of formula (1")

$$\begin{array}{c|c}
 & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N$$

wherein

25

20 R₁ and R₂ are, independently from each other, hydrogen; methyl or ethyl,

 R_3 and R_4 are, independently from each other, $-NH_2$; $-NHCH_3$; $-NHC_2H_5$; $-NH(n-C_3H_7)$;

- $-NH(i-C_3H_7)$; $-NH(i-C_4H_9)$; $-N(CH_3)_2$; $-N(C_2H_5)_2$; $-N(i-C_3H_7)_2$; $-NH(CH_2CH_2OH)$;
- $-N(CH_2CH_2OH)_2$; $-N(CH_2CH(OH)CH_3)_2$; $-N(CH_3)(CH_2CH_2OH)$; $-N(C_2H_5)(CH_2CH_2OH)$;
- -N(i-C₃H₇)(CH₂CH₂CH₂OH); -NH(CH₂CH(OH)CH₃); -N(C₂H₅)(CH₂CH(OH)CH₃);
- -NH(CH₂CH₂OCH₃); -NH(CH₂CH₂OCH₂CH₂OH); -NH(CH₂COOH);
 - -NH(CH₂CH₂COOH); -N(CH₃)(CH₂COOH); -NH(CN);

$$-NH - C - CH_2 - OH; -NH - C - CH_2 CH_3; -NH - CH_2 -$$

M is Li; Na; Ca; Mg; ammonium; mono-, di-, tri- or tetra-C1-C4alkylammonium; mono-, di- or tri-C2-C4-hydroxyalkylammonium or ammonium that is di- or tri-substituted with a mixture of C1-C4-alkyl and C2-C4-hydroxyalkyl groups,

5

10

15

- 0.05 0.5% by weight, preferably 0.1 0.3% by weight, based on the total weight of (b) the whitener formulation, of at least one anionic polysaccharide from the group consisting of sodium alginate; carboxymethylated guar; carboxymethylcellulose; carboxymethyl-starch; carboxymethylated locust bean flour and xanthan gum,
- 0-25% by weight, preferably 0.5-20% by weight, more preferably 0.5-15% by (c) weight, based on the total weight of the whitener formulation, of at least one electrolyte from the group consisting of sodium or potassium chloride; sodium or potassium sulfate; sodium or potassium phosphate; sodium or potassium carbonate; sodium or potassium formate; sodium or potassium citrate,
- 0-20% by weight, preferably 0.1-20% by weight, more preferably, 0.1-10% by (d) weight, most preferably 0.2 - 5% by weight, based on the total weight of the whitener formulation, of at least one dispersant from the group consisting of alkylbenzenesulfonates; alkyl or alkenyl ether-sulfonate salts; saturated or unsaturated 20 fatty acids; alkyl or alkylene ether-carboxylic salts; sulfo-fatty acid salts or esters; phosphate esters; polyoxyethylene alkyl or alkenyl ethers; polyoxyethylene alkylvinyl ethers; polyoxypropylene alkyl or alkenyl ethers; polyoxybutylene alkyl or alkenyl ethers; higher fatty acid alkanolamides or alkylene oxide adducts; sucrose/fatty acid

5

10

esters; fatty acid/glycol monoesters; alkylamine oxides and condensation products of naphthalene sulfonic acids with formaldehyde; and lignin-sulfonates,

(e) 0 – 25% by weight, more preferably 0 – 20% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener from the group consisting of compounds of formula

and compounds of formula (3')

wherein

5

10

15

20

25

R₁₀ and R₁₁, independently from each other, are hydrogen; C₁-C₂alkyl; C₁-C₂alkoxy; Cl or Br. and

M is hydrogen or an alkali metal atom, preferably sodium,

- (f) 0 20% by weight, preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, particularly preferably 0.2 to 5% by weight based on the total weight of the whitener formulation, of at least one further optional component from the group consisting of chloroacetamide; triazine derivates; benzoisothiazolines; 2-methyl-2H-isothiazol-3on; 2-octyl-2H-isothiazol-3on; 2-brom-2-nitropropan-1,3-diol; aqueous formaldehyde solution; bentonite; montmorillonite; zeolites; polyvinyl alcohols (PVA), polyvinylpyrrolidones (PVP), polyethylene glycols (PEG); aluminium silicates; magnesium silicates; ethylene glycol and propylene glycol,
- (g) water to make up 100% by weight.

The storage-stable formulations of this invention are prepared by mixing the moist filter cake or also the dry powder, which comprises at least one fluorescent whitening agent of formula (1) in an amount of 5 - 60% by weight, based on the total weight of the formulation, with 0.01-1% by weight of an anionic polysaccharide and water, and homogenising the formulations.

The desired content of anionic fluorescent whitening agent in the suspension can be adjusted either by addition of water, aqueous electrolyte, suspension, further fluorescent agent(s) of formulae (2) and/or (3) or further dry powder to the moist filter cake. This adjustment can be made before, during or after addition of the anionic polysaccharide.

The concentrated formulation thus prepared can be used for the fluorescent whitening of paper or textile material, for example in detergents. To this end, they are in general diluted to the optimum concentration for the practical application by the addition of further components or water.

5

The novel storage-stable fluorescent whitener formulations are used in particular for incorporation into washing agents, for example by allowing the required amount of the fluorescent whitener formulation according to the invention to run from a tank into a mixing device which contains a suspension of the washing agent or the dispersant.

10

It is also possible to prepare a solid form of the formulation according to the present invention. Such a solid formulation can be prepared according to conventional methods, such as for example spray drying.

15

The present invention accordingly also relates to a process for the preparation of solid and liquid washing agents, and to the washing agents obtained by this process, which comprises mixing, for example, a suspension of detergents customary for washing agents with a suspension, according to the invention, of whiteners, and drying the mixture. The drying procedure here can be carried out by, for example, a spray-drying method.

20

The following examples illustrate the invention, without limiting it thereto. Percentage data relate to the total weight of the formulation.

25 EXAMPLE 1

With stirring, the components listed below are mixed and homogenised at 20°C: 30.0% by weight of the fluorescent whitening agent of formula

0.5% by weight of propylene glycol;

0.25% by weight of Xanthan,

0.4% by weight of Acticide MBS® (Trade name of Acti-Chem Specialties Inc.) and deionised water to make up 100%.

5 EXAMPLE 2

With stirring, the components listed below are mixed and homogenised at 20°C:

11.1% by weight of the fluorescent whitening agent of formula

18.9% by weight of the fluorescent whitening agent of formula

0.5% by weight of propylene glycol;

0.25% by weight of Xanthan,

0.4% by weight of Acticide MBS® (Trade name of Acti-Chem Specialties Inc.)

0.001% by weight of Surfynol 104 PG 50® (Trade name of Air Products and Chemicals Inc.)

15 and deionised water to make up 100%.