Part 1: Creating Training and Test Sets

SAS Code:

```
proc import out=work.heart copy
            datafile="/home/u63898787/Data/sashelp heart.xlsx"
            dbms=xlsx
            replace;
   getnames=yes;
run;
proc surveyselect data=heart copy out=heart split
   method=srs
    samprate=0.7
    seed=3858
    outall:
run;
data training validation;
    set heart split;
    if Selected then output training;
    else output validation;
run;
proc freq data=heart split;
   tables Selected;
run;
```

SAS Output:

The FREQ Procedure					
Selection Indicator					
Selected	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
0	1562	29.99	1562	29.99	
1	3647	70.01	5209	100.00	

Part 2: Training Set Regression Model

SAS Code:

```
proc reg data=training;
    model systolic = height weight cholesterol / vif;
    output out=reg_out p=Predicted r=Residual student=StudentRes cookd=CookD;
run;
```

SAS Output:

	Analysis of Variance									
	Sour	e	DF	Sum of Squares		Mean Square	'	Value	Pr>l	F
1	Mode	4	3	314747		104916		220.75	<.000	1
	Error		3535	1680093	47	5.27389				
(Corre	cted Total	3538	1994840						
		Root MS	E	21.800	78	R-Squa	ire	0.15	78	
		Depende	nt Mea	an 136.896	302	Adj R-	Sq	0.15	71	
		Coeff Var		15.928	506					
				Parameter B	stin	nates				
Variable	ı	.abel	DF	Parameter Estimate	St	andard Error	t١	/alue	Pr > t	Variano Inflatio
Intercept	1	ntercept	1	175.75080	7	.38632	2	3.79	<.0001	
Height	Н	leight	1	-1.65826	0	.12101	-1	3.70	<.0001	1.3820
Weight	٧	Veight	1	0.31721	0	.01498	2	1.17	<.0001	1.3827
Cholester	ol (Cholesterol	1	0.08829	0	.00813	1	0.86	<.0001	1.0267

- The model as a whole and parameter estimates are statistically significant, as shown by the p-values, high F-statistic (for the model) and t-statistic values (for the parameters).
- All VIF values suggest low levels of collinearity.
- Residual plots suggest the normality assumption of the data may need transformations.
- Regression model equation: S = 175.74 1.66H + 0.32W + 0.09C, where:
 - S is systolic (response variable)
 - H is Height (predictor)
 - W is weight (predictor)
 - C is Cholesterol (predictor)

Part 3: 5-fold Cross Validation

SAS Code (creating folds):

```
/* Splitting training set into 5 folds */
data training_folds;
    set training;
    FoldID = mod(_N_, 5) + 1; /* Assign fold numbers 1 to 5 */
run;
/* Checking Fold Distribution */
proc freq data=training_folds;
    tables FoldID;
run;
```

SAS Output (fold distribution):

The FREQ Procedure						
FoldID	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
1	729	19.99	729	19.99		
2	730	20.02	1459	40.01		
3	730	20.02	2189	60.02		
4	729	19.99	2918	80.01		
5	729	19.99	3647	100.00		

Summary of Cross Validation steps used (code and output on following pages):

- 1. For each model, 1 fold is used as a validation set, and a model is created using the remaining 4 folds.
- 2. The created model is then tested using the validation set (fold that was left out).
- 3. Root mean squared error is calculated using the predictions in step 2.
- 4. RMSE will be compared across the 5 created models to determine the best model.

SAS Code (calculating root mean squared error for cross validation model):

```
48 data train fold valid fold;
49
       set training folds;
50
       if FoldID = 1 then output valid_fold; /* Validation set */
51
       else output train_fold;
                                             /* Training set */
52 run;
53
54 | /* CV model 1: trained on folds 2, 3, 4, 5 */
55 proc reg data=train fold outest=model params noprint;
56
       model systolic = height weight cholesterol / vif;
57
       output out=reg_out_fold p=Predicted r=Residual; /* Predictions for train_fold */
58 run;
59
60 /* calculating model 1 predictions using fold 1 */
61 proc score data=valid fold score=model params out=predictions valid fold type=parms;
       var height weight cholesterol;
62
63 | run;
64
65 /* calculating root mean squared residual for model 1 */
66 data valid fold errors;
67
       set predictions_valid_fold;
68
       Residual = Systolic - MODEL1; /* Actual - Predicted */
69
       SquaredError = Residual**2;
                                     /* Square of residual */
70 run;
71
72 proc means data=valid fold errors mean noprint;
       var SquaredError;
73
       output out=rmse_results mean=MeanSquaredError; /* calculating MSE */
74
75 run;
76
77 data rmse_final;
78
       set rmse results;
79
       RMSE = sqrt(MeanSquaredError); /* Calculate RMSE */
80 run;
81
82 /* final output for rmse for model 1 */
83 proc print data=rmse_final noobs;
       title "Root Mean Squared Error (RMSE) for Fold 1 Validation Set";
85 run;
```

NOTES:

- For each model, the FoldID parameter is changed on line 50 (FoldID = 1, 2, 3, 4, 5).
- The above code shows the code used to generate the first model (using folds 2, 3, 4, 5).
- The above code tests the created model using the first fold as a validation set.
- The typical prog reg outputs for CV models are hidden using the noprint keyword.
- On line 68, the model predictions are stored in a column labeled MODEL1.

SAS Outputs:

Model 1:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	729	466.476	21.5981

Model 2:

TYPE	_FREQ_	Mean Squared Error	RMSE
0	730	427.542	20.6771

Model 3:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	730	553.508	23.5267

Model 4:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	729	440.081	20.9781

Model 5:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	729	491.756	22.1756

Notes:

- Model 2 predictions resulted in the least RMSE out of all the models.
- Model 2 will be used on the validation step created in part 1.

Part 4: Final Model performance

SAS Code (testing model 2 on validation set):

```
data train fold valid fold;
    set training_folds;
    if FoldID = 2 then output valid_fold; /* Validation set */
    else output train_fold;
                                         /* Training set */
run;
/* CV model 2: trained on folds 1, 3, 4, 5 */
proc reg data=train fold outest=model params noprint;
    model systolic = height weight cholesterol / vif;
    output out=reg_out_fold p=Predicted r=Residual; /* Predictions for train_fold */
run;
/* calculating model 2 predictions using validation set created in part 1 */
proc score data=validation score=model params out=predictions valid fold type=parms;
    var height weight cholesterol;
run;
/* calculating root mean squared residual */
data valid_fold_errors;
    set predictions valid fold;
    Residual = Systolic - MODEL1; /* Actual - Predicted */
    SquaredError = Residual**2;
                                  /* Square of residual */
run;
proc means data=valid_fold_errors mean noprint;
   var SquaredError;
    output out=rmse_results mean=MeanSquaredError; /* calculating MSE */
run;
data rmse final;
    set rmse results;
    RMSE = sqrt(MeanSquaredError); /* Calculate RMSE */
run;
/* final output for rmse */
proc print data=rmse final noobs;
    title "Root Mean Squared Error (RMSE)";
run;
```

SAS Output:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	1562	491.974	22.1805

SAS Code (testing whole training set model on validation set):

```
/* training model from part 2 */
proc reg data=training outest=model params noprint;
    model systolic = height weight cholesterol / vif;
    output out=reg out fold p=Predicted r=Residual; /* Predictions for train fold */
run;
/* calculating model predictions using validation set created in part 1 */
proc score data=validation score=model params out=predictions valid fold type=parms;
    var height weight cholesterol;
run;
/* calculating root mean squared residual */
data valid fold errors;
    set predictions valid fold;
    Residual = Systolic - MODEL1; /* Actual - Predicted */
    SquaredError = Residual**2;
                                  /* Square of residual */
run;
proc means data=valid_fold_errors mean noprint;
    var SquaredError;
    output out=rmse results mean=MeanSquaredError; /* calculating MSE */
run;
data rmse_final;
   set rmse results;
    RMSE = sqrt(MeanSquaredError); /* Calculate RMSE */
run;
/* final output for rmse */
proc print data=rmse_final noobs;
    title "Root Mean Squared Error (RMSE)";
run;
```

SAS Output:

TYPE	_FREQ_	MeanSquaredError	RMSE
0	1562	491.904	22.1789

Conclusion:

- The accuracy of the model created using the entire training set is identical to the accuracy of model 2 created using 4/5 of the training set.
- While cross validation has not improved the predictive accuracy of a candidate model, it has managed to produce a model using a lower amount of training instances.