Suites récurrentes

Dans tout le TD, on dénotera par :

- I un intervalle réel;
- f une fonction de $\mathcal{F}(I,I)$; (autrement dit f est définie sur I et $f(I) \subset I$: on dit que I est stable par f)
- a un élément de I.

• a un element de I.

On définit alors la suite u par $\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$.

On étudiera aussi les suites $\begin{cases} v_0 = 1 \\ v_{n+1} = r(v_n) = 2\sqrt{v_n} + 1 \end{cases}$ et $\begin{cases} w_0 = \frac{1}{2} \\ w_{n+1} = g(w_n) = 1 + \frac{1}{w_n} \end{cases}$.

Existence et représentation graphique d'une suite récurrente .1.

Ex. 6.1

1. Démontrer que u est bien définie.

Ci-contre la représentation graphique de la suite

Pour obtenir une telle représentation graphique, on trace d'abord les représentations graphiques y = x et y = r(x).

On place alors $v_0 = 1$ sur l'axe des abscisses et on obtient $v_1 = r(v_0)$ comme l'ordonnée du point d'abscisse v_0 de la représentation graphique de r. Pour placer v_1 en abscisse, il suffit de prendre l'abscisse du point d'ordonnée v_1 de la représentation graphique de la droite d'équation y = x. On peut alors recommencer le même processus

pour représenter v_2 , v_3 etc...

- 2. Prouver l'existence de la suite v (c'est-à-dire montrer qu'elle est bien définie).
- 3. Prouver l'existence de la suite w puis la représenter graphiquement dans un repère orthonormé en prenant 2cm pour unité.

.2. Monotonie

Ex. 6.2

- 1. Montrer que si f est strictement croissante sur I et si $u_1 > u_0$ alors u est strictement croissante.
- 2. Montrer que si f est croissante sur I alors u est monotone.
- 3. Que peut-on dire si f est décroissante sur I?
- 4. Que peut-on dire du sens de variation des suites v et w précédemment définies.

.3. Théorème du point fixe et convergence

On dit que $\alpha \in I$ est un point fixe de f si $\alpha = f(\alpha)$.

Ex. 6.3 On suppose f continue sur I.

- 1. Montrer que si I est un segment (i.e. I de la forme $[b; c], b \in \mathbb{R}, c \in \mathbb{R}$) alors f possède au moins un point fixe sur I.
- 2. Montrer que si I est un segment et si f est croissante sur I alors u converge vers un point fixe de f sur I.
- 3. Donner un exemple d'une fonction $f(:I \to I)$ telle que u diverge :
 - avec f croissante et $I = [0; +\infty[$;
 - avec f décroissante et I = [0; 1].
- 4. Donner un exemple d'une fonction $f:[0;1] \to [0;1]$ décroissante telle que u converge.

.4. Exemples d'utilisation

Ex. 6.4 Étudier la convergence des suites v et w définies dans l'exercice 6.1.

Ex. 6.5 On définit la suite
$$t$$
 par $\begin{cases} t_0 \in \mathbb{R} \\ t_{n+1} = h(t_n) = \frac{t_n^2}{4} + 1 \end{cases}$

- 1. Montrer que t est bien définie.
- 2. Tracer dans un même repère la représentation graphique de h et de la première bissectrice.
- 3. Résoudre l'équation h(x) = x.
- 4. Montrer que t est croissante et en déduire ses comportements asymptotiques possibles.
- 5. On suppose $t_0 \in [0; 2]$. Que peut-on en déduire?
- 6. Etudier le comportement de t lorsque $t_0 \notin [0; 2]$.

Ex. 6.6 (Cor.) Oral Mines Étudier la suite s définie par $s_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, s_{n+1} = 1 - s_n^2$. [Indication: l'exercice a été donné sans question intermédiaire.

On pourra utiliser comme plan d'étude : étudier $k: x \mapsto 1 - x^2$ et montrer que k([0;1]) = [0;1], représenter graphiquement k et la première bissectrice puis étudier les termes de rang pair et impair de la suite s pour parvenir à une conclusion.]

Ex. 6.7 (Cor.) [**] Soit $a \in [0; 1]$ et u définie par $u_0 = a$, $u_{n+1} = \sqrt{1 - u_n}$.

Remarque : on pourra éventuellement traiter les deux questions en même temps.

- 1. Déterminer les valeurs de a pour lesquelles la suite est convergente.
- 2. Déterminer lorsqu'elle converge un équivalent de $u_n l$.