Übung 1

Max Wisniewski, Alexander Steen

Aufgabe 1

Es sei $g(x) = x + \frac{1}{1+x}$ und $M = \{x \ge 0\}$.

1. $g(M) \subseteq M$ Sei $x \in M$, dann gilt

$$g(x) = \underbrace{x}_{\geq 0} + \underbrace{\frac{1}{1+x}}_{\geq 0} \geq 0$$

Also ist $g(x) \in M \Rightarrow g(M) \subseteq M$.

2. |g(x) - g(y)| < |x - y| für $x \neq y$ Seien $x, y \in M, x \neq y$. Sei weiterhin o.B.d.A. x > y. Dann gilt

$$|g(x) - g(y)| = |x + \frac{1}{1+x} - y - \frac{1}{1+y}|$$

$$= |\underbrace{x - y}_{>0} + \underbrace{\frac{1}{1+x} - \frac{1}{1+y}}_{<0}|$$

$$< |x - y|$$

3. g besitzt keinen Fixpunkt in MBeweis durch Widerspruch: Sei $x^* \in M$ Fixpunkt von g. Dann gilt

$$g(x^*) = x^* = x^* + \frac{1}{1+x^*}$$
$$\Leftrightarrow 0 = \frac{1}{1+x^*}$$

Das ist aber ein Widerspruch, da es keine Zahl x gibt, für die $\frac{1}{1+x}=0$ gilt. \Box

Dies ist kein Widerspruch zum Banachschen Fixpunktsatz, da es sich bei g nicht um eine Kontraktion handelt: Da $\frac{1}{x+1} \stackrel{x \to \infty}{\longrightarrow} 0$, gibt es keine Konstante $\alpha \in [0,1)$, sodass $|g(x) - g(y)| \le \alpha |x - y|$. Beweis:

Sei $\varepsilon > 0$. Dann ist $|g(x) - x| < \frac{\varepsilon}{2}$ und $|g(y) - y| < \frac{\varepsilon}{2}$ für alle $x, y \ge x_0 \in M$. Außerdem ist dann $|(g(x) - x) - (g(y) - y)| \le |g(x) - x| + |-(g(y) - y)| < \varepsilon$. Also gilt:

$$|g(x) - g(y)| = |g(x) - x + x - g(y) - y + y|$$

$$= |(g(x) - x) - (g(y) - y) + x - y|$$

$$< \varepsilon + |x - y|$$

Für jedes feste $\alpha \in [0,1)$... bla

Aufgabe 2

Aufgabe 3