Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

2. ispitni rok iz predmeta TEORIJA INFORMACIJE, 9. srpnja 2020.

Pravilo bodovanja zadataka

Svaki točno odgovoreni zadatak (osim 7. i 8.) donosi 10 bodova, netočno odgovoreni 4 negativna boda, a neodgovoreni 0 bodova. Točno odgovoreni 7. i 8. zadatak donose po 20 bodova, netočno odgovoreni 8 negativnih boda, a neodgovoreni 0 bodova.

Zadatak 1. (10 bodova) Diskretni informacijski izvor generira simbole iz skupa $X = \{4, 5, 6\}$. Statističke veze između dva uzastopna simbola koje izvor generira zadane su matricom združenih vjerojatnosti [$p(x_i, x_j)$].

$$[p(x_i, x_j)] = \begin{bmatrix} 0.1172 & 0.1172 & 0.1563 \\ 0.0713 & 0.2138 & 0.0713 \\ 0.2023 & 0.0253 & 0.0253 \end{bmatrix}$$

Na izlaz izvora priključen je sklop Y koji na svom izlazu, y_k , daje razliku između svaka dva uzastopna simbola koje izvor generira: $y_k = x_k - x_{k-1}$, $k \in \mathbb{Z}$. Odredite entropiju skupa simbola na izlazu sklopa Y. Napomena: promatrajte izvor koji generira jako dugačak slijed simbola i zanemarite početno stanje njegovog izlaza.

- a) 2,322 bit/simbol
- b) 2,195 bit/simbol
- c) 1,585 bit/simbol
- d) 2,017 bit/simbol
- e) ništa od navedenog.

Postupak rješavanja:

Na izlazu sklopa sa slike pojavljuje se razlika između svaka dva uzastopna simbola generirana na izlazu izvora. Broj mogućih ishoda je 5: -2, -1, 0, 1, 2. Razmotrimo sve moguće parove simbola iz skupa X čije su vjerojatnosti zadane matricom $[p(x_i, x_j)], i, j \in \{1, 2, 3\}$:

(x_i, x_j)	$p(x_i, x_j)$	$x_i - x_j$
4, 4	0.1172	0
4, 5	0.1172	-1
4, 6	0.1563	-2
5, 4	0.0713	1
5, 5	0.2138	0
5, 6	0.0713	-1
6, 4	0.2023	2
6,5	0.0253	1
6,6	0.0253	0
	Tablica 1.	

Odredimo razdiobu diskretne slučajne varijable Y koja određuje vjerojatnosti pojavljivanja pojedinih simbola $y_n \in \{-2, -1, 0, 1, 2\}$ na izlazu sklopa priključenog na izlaz izvora:

$$Y \sim \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 0.1563 & 0.1172 + 0.0713 & 0.1172 + 0.2138 + 0.0253 & 0.0713 + 0.0253 & 0.2023 \end{pmatrix}$$

$$Y \sim \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 0.1563 & 0.1885 & 0.3563 & 0.0966 & 0.2023 \end{pmatrix}$$

odnosno u vektorskom obliku: $[p(y_n)] = [0,1563\ 0,1885\ 0,3563\ 0,0966\ 0,2023],\ n=1,\ldots,5$. Konačno, entropiju H(Y) određujemo izrazom:

$$H(Y) = -\sum_{n=1}^{5} p(y_n) \log_2 p(y_n) = 2,195 \text{ bit/simbol}$$

Zadatak 2. (10 bodova) Neko diskretno bezmemorijsko izvorište generira simbole x_i , i = 1, ..., 10. Vjerojatnosti pojavljivanja simbola, izražene u postocima (%), zadane su tablicom:

x_i	x_1	χ_2	<i>X</i> 3	χ_4	<i>X</i> 5	χ_6	<i>X</i> 7	χ_8	<i>X</i> 9	X10
$P(x_i)$ [%]	3	11	6	17	13	7	13	5	8	17

Kodirajte zadani skup simbola Huffmanovim kodom tako da svaka kodna riječ sadrži paran broj binarnih simbola te odredite efikasnost koda.

a) 0,951

- b) 0,475
- c) 1
- d) 0,874
- e) ništa od navedenog.

Postupak rješavanja:

Simbol (x _i)	Kodna riječ $C(x_i)$ (kvaternarno)	Kodna riječ <i>C</i> (<i>x_i</i>) (binarno)
<i>X</i> ₄	1	01
X ₁₀	0	00
X ₅	33	1111
<i>X</i> ₇	32	1110
<i>X</i> ₂	31	1101
X 9	30	1100
<i>X</i> ₆	23	1011
<i>X</i> ₃	22	1010
<i>X</i> ₈	21	1001
<i>X</i> ₁	20	1000

$$p(x_4) = 0.17$$

$$p(x_{10}) = 0.17$$

$$p(x_5) = 0.13$$

$$p(x_7) = 0.13$$

$$p(x_2) = 0.11$$

$$p(x_9) = 0.08$$

$$p(x_6) = 0.07$$

$$p(x_3) = 0.06$$

$$p(x_8) = 0.05$$

$$p(x_1) = 0.03$$

Entropiju skupa simbola računamo prema poznatom izrazu:

$$H(X) = -\sum_{i=1}^{10} p(x_i) \log_2 p(x_i) = 3,156 \frac{\text{bit}}{\text{simbol}} = 1,578 \frac{\text{kvat.simbola}}{\text{simbol}}$$

Srednja duljina kodne riječi je:

$$L = \sum_{i=1}^{10} p(x_i) l_i = 3.32 \frac{\text{bit}}{\text{simbol}}$$

$$L_{(4)} = \sum_{i=1}^{10} p(x_i) l_{i(4)} = 1,66 \frac{\text{kvat.simbola}}{\text{simbol}}$$

Konačno, efikasnost koda određujemo kao: $\varepsilon = H(X)/L = 0.951$.

Zadatak 3. (10 bodova) Diskretni bezmemorijski izvor generira simbole iz skupa simbola $X = \{x, y, z\}$ s vjerojatnostima pojavljivanja P(x) = 0.66, P(y) = 0.22 i P(z) = 0.12. Promatrajte sve parove koje mogu tvoriti simboli iz skupa X, kodirajte te parove binarnim Huffmanovim kodom te odredite srednju duljinu kodne riječi u jedinici bit/par simbola.

- a) 2,6428
- b) 1,3214
- c) 1,2554

d) 2,5108

e) ništa od navedenog.

Postupak rješavanja:

par simbola x_i	Vjerojatnost p _i
xx	0,4356
xy	0,1452
XZ,	0.0792
yx	0,1452
уу	0,0484
yz.	0,0264
ZX	0,0792
zy	0,0264
ZZ.	0,0144

SIMBOL (x _i)	VJEROJATNOST POJAVLJIVANJA (p_i)	KODNA RIJEČ	DULJINA KODNE RIJEČI (/ _i)
XX	0,4356	0	1
xy	0,1452	110	3
yx	0,1452	101	3
XZ	0,0792	1111	4
ZX	0,0792	1110	4
уу	0,0484	1000	4
yz	0,0264	10010	5
zy	0,0264	100111	6
ZZ	0,0144	100110	6

Srednju duljinu kodne riječi Lp određujemo izrazom:

$$L_p = \sum_{i=1}^{p} l_i p_i = 2,5108 \text{ bit/par simbola} = 1,2554 \text{ bit/simbol}$$

Zadatak 4. (10 bodova) Zadan je ciklični kôd [15, k] s generirajućim polinomom $g(x) = x^4 + x + 1$. Na ulaz kodera dolazi slijed bita 100010010111100... Koder kodira primljene poruke tehnikom nazvanom ciklična provjera zalihosti (isto što i ciklična redundantna zaštita). Odredite prvu kodnu riječ koja se pojavljuje na izlazu kodera.

- a) 100010010111010
- b) 100010010111100
- c) 100010010110011

d) 100010010110000

e) ništa od navedenog.

Postupak rješavanja:

Dakle, s obzirom na to da se radi o kodu [15, k], jasno je da duljina kodne riječi iznosi n = 15. Nadalje, s obzirom na stupanj generirajućeg polinoma r = 4, proizlazi da je k = n - r = 11. Iz zadanog slijeda bita poruka koder će uzeti prvih jedanaest bita i na njih nadodati cikličnu zaštitu. Kodna riječ će imati standardni oblik, originalna poruka i na nju nadodani zaštitni bitovi. Zaštitni dio dobivamo iz izraza:

$$r(x)=x^r \cdot d(x) \bmod [g(x)]$$

Polinom prve poruke na ulazu kodera je $d(x) = x^{10} + x^6 + x^3 + x + 1$, što pomnoženo s x^4 daje polinom $x^{14} + x^{10} + x^7 + x^5 + x^4$. Kad se taj novonastali polinom podijeli s generirajućim polinomom g(x) dobivamo rezultat $x^{10} + x^7 + x^4$ i ostatak nula. To znači da će prva kodna riječ na izlatu kodera biti 100010010110000.

Zadatak 5. (10 bodova) Zadan je binarni kôd K s oznakom [6, 3] čija je matrica provjere pariteta **H**:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Odredite koliko iznosi najmanji broj pogrešaka temeljem kojeg detektor koji koristi načelo najbližeg susjeda može kodnu riječ koda *K* pretvoriti u neku drugu kodnu riječ tog istog koda.

a) 2

- b) 3
- c) 1
- d) 4
- e) ništa od navedenog.

Postupak rješavanja:

Budući da je matrica $\mathbf{H} = [\mathbf{A}^T | \mathbf{I}_{n-k}]$ u standardnom obliku iz nje je jednostavno moguće odrediti generirajuću matricu koda K, također u standardnom obliku, $\mathbf{G} = [\mathbf{I}_k | \mathbf{A}]$:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Sada je moguće ispisati sve kodne riječi koda *K*:

$$K = \begin{cases} 000000 \\ 001111 \\ 010011 \\ 011100 \\ 100101 \\ 101010 \\ 110110 \\ 111001 \end{cases}$$

Kôd K nije perfektan. Kao što vidimo, jednakost u izrazu za perfektnost ne vrijedi:

$$M = 8 < \frac{2^6}{\binom{6}{0} + \binom{6}{1}} = \frac{64}{7}$$

Udaljenost koda iznosi koliko i najmanja težina kodne riječi različite od $\mathbf{0}$, što u ovom konkretnom slučaju iznosi d(K) = 3. Dakle, oko svake kodne riječi, kojih ima ukupno 8, postoji kugla kodne riječi

radijusa t = 1, t = (d(K) - 1)/2). Dakle, 56 kodnih riječi se nalazi unutar kugli radijusa 1, a preostalih osam kodnih riječi je izvan tih kugli i one su za dva ili više bita udaljene od kodnih riječi. Dakle, ako se promijeni jedan bit na nekoj kodnoj riječi \mathbf{c} , ona će ostati unutar svoje kugle i detektor će ju detektirati kao kodnu riječ \mathbf{c} . Ako se promijene dva bita na nekoj kodnoj riječi \mathbf{c} onda će ona preći ili a) u neku drugu kuglu ili b) u neku od kodnih riječi koje su izvan kugli. Ako a) pređe u neku drugu kuglu bit će detektirana kao druga kodna riječ, npr. \mathbf{d} , a ako b) pređe u neku od osam kodnih riječi izvan kugli, detektor će samo signalizirati pogrešku, ali neće izvršiti dekodiranje. S obzirom na distancu, kôd K može ispraviti jednostruku pogrešku, a otkriti dvostruku. Nastupi li trostruka pogreška na kodnoj riječi \mathbf{c} ona će izravno preći u neku drugu kodnu riječ koda \mathbf{K} , npr. \mathbf{d} . U svakom slučaju, najmanji broj pogrešaka koji je potreban da "zavara" dekoder koji koristi načelo najbližeg susjeda je 2.

Zadatak 6. (10 bodova) Na ulaz AWGN kanala dolazi signal srednje snage 0,1 mW i na njega djeluje aditivni bijeli Gaussov šum spektralne gustoće snage iznosa 10^{-12} W/Hz za svaki $f \in \mathbf{R}$. Odredite energiju bita u promatranom AWGN kanalu, ako se podaci njime prenose maksimalnom mogućom brzinom pri kojoj je vjerojatnost pogreške u prijenosu moguće učiniti proizvoljno malom. Dodatna pretpostavka je da kanal nema ograničenu širinu prijenosnog pojasa.

- a) 0,301 pW
- b) 0,693 pW
- c) 1,386 pW
- d) 0,602 pW
- e) ništa od navedenog.

Postupak rješavanja:

U slučaju kad širina prijenosnog pojasa kanala teži u beskonačnost, granična vrijednost omjera E_b/N_0 teži u iznos ln(2):

$$\frac{E_{\rm b}}{N_0} = \frac{2^{C/B} - 1}{C/B} \rightarrow \lim_{B \to \infty} \frac{2^{C/B} - 1}{C/B} = |\text{primijeniti L'Hospitalovo pravilo}| = \ln(2)$$

Dakle, poznavajući spektralnu gustoću snage bijelog šuma po svim frekvencijama znamo da je $N_0/2 = 10^{-12}$ W/Hz, što znači da je sam $N_0 = 2 \cdot 10^{-12}$ W/Hz. Prema tome $E_b = \ln(2) \cdot 2 \cdot 10^{-12} = 1,386$ pW.

Zadatak 7. (20 bodova) Neka kontinuirana slučajna varijabla X ima funkciju gustoće vjerojatnosti $f_X(x)$ zadanu sljedećim izrazom:

$$f_{X}(x) = \begin{cases} bx^{2} & 0 \le x \le a \\ 0 & \text{za ostale } x \end{cases}$$

Odredite uvjet kojeg mora zadovoljavati *a* pa da entropija slučajne varijable *X* poprimi vrijednost manju ili jednaku 0 nat/simbol. <u>Napomena</u>: prilikom rješavanja zadatka svi postupci integracije <u>moraju</u> u cijelosti biti izvedeni na papiru, numerička integracija korištenjem kalkulatora neće biti priznavana.

a)
$$a \le 2e^{-3/2}$$

b)
$$a \le 2e^{-2/3}$$

c)
$$a \le 3e^{-2/3}$$

d)
$$a \le 3e^{-3/2}$$

e) ništa od navedenog.

Postupak rješavanja:

Prvo je potrebno odrediti vrijednost varijable b iz izraza za $f_X(x)$. Nju je moguće odrediti korištenjem osnovnog svojstva funkcije gustoće vjerojatnosti (udžbenik, 2. izdanje, stranica 108):

$$\int_{-\infty}^{\infty} f_X(x) dx = 1 \to \int_{-\infty}^{\infty} bx^2 dx = b \frac{x^3}{3} \Big|_{0}^{a} = \frac{ba^3}{3} = 1 \to b = \frac{3}{a^3}$$

Nadalje, entropija slučajne varijable X koja će dati njenu vrijednost u jedinici nat/simbol određena je izrazom:

$$H(X) = -\int_{-\infty}^{\infty} f_X(X) \ln f_X(X) dx$$
 [nat/simbol]

Dakle,

$$H(X) = -\int_{0}^{a} bx^{2} \ln(bx^{2}) dx = -2b \int_{0}^{a} x^{2} \ln(\sqrt{b}x) dx$$

Ovaj je integral moguće riješiti parcijalnom integracijom:

$$\int x^{2} \ln(cx) dx = \frac{x^{3}}{3} \ln(cx) - \int \frac{x^{3}}{3} c \frac{1}{cx} dx = \frac{x^{3}}{3} \ln(cx) - \frac{x^{3}}{9}$$

$$H(X) = -2b \left[\frac{x^{3}}{3} \ln(\sqrt{b}x) - \frac{x^{3}}{9} \right]_{0}^{a} = -2b \frac{a^{3}}{3} \left[\ln(\sqrt{b}a) - \frac{1}{3} \right] =$$

$$= -2 \frac{3}{a^{3}} \frac{a^{3}}{3} \left[\ln(\sqrt{\frac{3}{a^{3}}}a) - \frac{1}{3} \right] = -2 \left(\ln\sqrt{\frac{3}{a}} - \frac{1}{3} \right) = \frac{2}{3} + \ln\frac{a}{3}$$

Uvjet H(X) je veći od nula ispunjen je za:

$$\frac{2}{3} + \ln \frac{a}{3} \le 0 \rightarrow a \le 3e^{-2/3}$$

Zadatak 8. (20 bodova) Odredite kapacitet kanala zadanog donjom slikom. <u>Napomena</u>: prilikom određivanja ekstrema funkcije nije dovoljno samo odrediti točku ekstrema, nego je za pronađeni ekstrem nužno dokazati da li se radi o maksimumu ili minimumu funkcije na promatranom intervalu.

a) 1 bit/simbol

- b) 0,5 bit/simbol
- c) 2 bit/simbol
- d) 1,585 bit/simbol
- e) ništa od navedenog

Postupak rješavanja:

$$P(Y|X) = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P(X,Y) = \begin{bmatrix} P(x_1)/2 & P(x_1)/2 & 0 \\ 0 & 0 & P(x_2) \end{bmatrix}$$

$$P(Y) = [P(x_1)/2 & P(x_1)/2 & P(x_2)]$$

$$P(x_1) + P(x_2) = 1$$

$$P(x_2) = 1 - P(x_1)$$

$$H(Y) = -\sum_{i=1}^{3} P(y_i) \log_2 P(y_i) =$$

$$= -\left[\frac{P(x_1)}{2} \log_2 (\frac{P(x_1)}{2}) + \frac{P(x_1)}{2} \log_2 (\frac{P(x_1)}{2}) + (1 - P(x_1)) \log_2 (1 - P(x_1)) \right]$$

$$H(Y|X) = \sum_{i=1}^{2} \sum_{j=1}^{3} P(x_i, y_j) \log_2 P(y_j | x_i) =$$

$$= -\left[\frac{P(x_1)}{2} \log_2 \frac{1}{2} + \frac{P(x_1)}{2} \log_2 \frac{1}{2} + (1 - P(x_1)) \log_2 1 \right]$$

$$I(X;Y) = H(Y) - H(Y|X)$$

$$I(X;Y) = -P(x_1) \log_2 (\frac{P(x_1)}{2}) - (1 - P(x_1)) \log_2 (1 - P(x_1)) + P(x_1) \log_2 (\frac{1}{2})$$

$$C = \max_{[P(x_1)]} [I(X;Y)]$$

Dakle, mora vrijediti:

$$\frac{dI(X;Y)}{dP(x_1)} = 0$$

$$-\log_2(P(x_1)) - \frac{P(x_1)}{P(x_1) \times \ln 2} + \log_2(1 - P(x_1)) + \frac{1 - P(x_1)}{(1 - P(x_1)) \times \ln 2} = 0$$

$$\log_2(1 - P(x_1)) - \log_2(P(x_1)) = 0$$

$$P(x_1) = P(x_2) = \frac{1}{2}$$

Da bi dokazali da se za $P(x_1) = 1/2$ radi o maksimumu transinformacije, potrebno je provesti drugu derivaciju transinformacije po $P(x_1)$ i pokazati da je ona manja od 0:

$$\frac{d^{2}I(X;Y)}{d\lceil P(x_{1}) \rceil^{2}} = \frac{d\left[\log_{2} \frac{1 - P(x_{1})}{P(x_{1})}\right]}{dP(x_{1})} = \frac{1}{\ln 2} \frac{P(x_{1})}{1 - P(x_{1})} \frac{-P(x_{1}) - \left[1 - P(x_{1})\right]}{\left\lceil P(x_{1}) \right\rceil^{2}} = \frac{1}{\ln 2} \frac{-1}{\left[1 - P(x_{1})\right]P(x_{1})}$$

Za $P(x_1) = 1/2$ druga derivacija transinformacije po $P(x_1)$ postaje jednaka:

$$\frac{d^2I(X;Y)}{d[P(x_1)]^2} = \frac{1}{\ln 2} \frac{-1}{[1-P(x_1)]P(x_1)} = \frac{1}{\ln 2} \frac{-1}{\frac{1}{2} \cdot \frac{1}{2}} = \frac{-4}{\ln 2} < 0,$$

čime je dokazano da se za $P(x_1) = 1/2$ radi o maksimumu transinformacije. Konačno, kapacitet kanala iznosi:

$$C = -\frac{1}{2}\log_2\left(\frac{1}{4}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right) = 1 \text{ bit/simbol}$$