Neural decision trees

Team 12

ML, Skoltech

2019

Decision Trees & Random Forests

- Random forest original idea by Tim Kam, Ho to implement stochastic discrimination (1995)
- Ensemble of decision trees:
 Wait! Decision trees are deterministic though!
- Main oracle: Bagging
- Widely used in practice

DTs: Training and testing

For each tree in ensemble we:

- Select a subset of samples and subset of features
- Create a tree with only 1 node
- Until stopping condition is achieved:
 - Make a split according to the criterion
- For each leaf node
 - Discrete: p(c|v) arg max p(c|v)
 - Continuous: mean or predefined func

Still, there is no use of differentiability. How can we convert DT learning to a differentiable one?

Pros and cons

	Decision trees	Neural Networks	
Interpretability	✓	×	
Model functions	Only axis parallel	Arbitrary functions,	
diversity	splits	Complex structures	
Time complexity	Reasonably fast Comparably slow, long		
		training	
Online learning	Х	✓	
Model parameters	Only a few	Up to millions (hidden	
		layers, number of units)	
Layout	Determinstic splits	Differentiable, stochas-	
		tic, back-propagation	
		compatible	

Soft decision tree

- The input data is fed to the neural network
- The outputs of FC layer represent routing probabilities in each of the trees of the ensemble
- The assignment is random

Figure: Soft decision tree trained on MNIST. The inner nodes are the learned filters, the leaves are visualizations of the learned probability distribution over classes.

MLP embedded decision tree

- each splitting node is an independent MLP allowing oblique decision functions
- similar mechanism to Hashing Neural Networks
- predictions can be given by:
 - using the distribution from the leaf with the greatest path probability
 - averaging the distributions over all the leaves, weighted by their respective path probabilities

Cross-dependent CNN Decision Forest

Prediction: $\mathbb{P}_{\mathcal{T}}(y|x,\Theta,\pi) = \sum_{l} \pi_{l_y} \mu_l(x|\Theta)$, where

 $\pi_{I_{\nu}}$ is the probability of a sample reaching leaf I to take on class y,

$$\mu_{I}(x|\Theta) = \prod_{n \in \mathcal{N}} d_{n}(x;\Theta)^{\mathbb{1}_{I \searrow n}} (1 - d_{n}(x;\Theta)^{\mathbb{1}_{I \searrow n}}),$$
$$d_{n}(x;\Theta) = \sigma(f_{n}(x;\Theta)).$$

Prediction for forest: $\mathbb{P}_{\mathcal{F}}(y|x) = \frac{1}{k} \sum_{i=1}^{k} P_{\mathcal{T}_h}(y|x)$.

Loss function and node output

 The loss over decision nodes should be converted to a differentiable one

$$L(\Theta, \pi, x, y) = -\log (\mathbb{P}_{T}(y|x, \Theta, \pi))$$

• Leaf nodes outputs update formula:

$$\pi_{l_{y}}^{(t+1)} = \frac{1}{Z_{l}^{t}} \sum_{x,y' \in \mathcal{T}} \frac{\mathbb{1}_{y=y'} \pi_{l_{y}}^{(t)} \mu_{l}(x|\Theta)}{\mathbb{P}_{T}(y|x,\Theta,\pi^{(t)})}$$

Training algorithm

Require: \mathcal{T} : training set, nEpochs

- 1. Initialize Θ randomly
- 2. for all $i \in \{1, ..., nEpochs\}$ do
- 3. Update π
- 4. Break \mathcal{T} into a set of mini-batches
- 5. **for all** \mathcal{B} : mini-batch from \mathcal{T} **do**
- 6. Update Θ by SGD step
- 7. end for
- 8. end for

Models comparison

	Decision Forest	Neural Network	Neural Decision
			Tree
Feature	Х	✓	✓
learning			
GD applied	Х	✓	✓
Loss	NP-hard to	Non-convex	Non-convex
	build optimal		
	tree		
Interpretable	✓	Х	Depends

Results on MNIST

Model	Score
Random Forest	82.4%
Decision Tree	67.4%
Extra Trees	51.2%
CNN	99.2%
Cross-dependent	99.3%
CNN (NDT)	
MLP embedded	92.4%
Decision tree	

References

- 1. R. Balestriero (2017). Neural Decision Trees, https://arxiv.org/abs/1702.07360
- P. Kontschieder, M. Fiterau, A. Criminisi, S.R. Bulo (2015).
 Deep Neural Decision Forests, https://www.ijcai.org/Proceedings/16/Papers/628.pdf
- 3. N. Frosst, G. Hinton (2017). Distilling a Neural Network Into a Soft Decision Tree, https://arxiv.org/abs/1711.09784

