SEMAINE DU 15/04 AU 19/04

1 Cours

Dérivabilité

Définition et premières propriétés Définition comme limite du taux de variation. Équation de la tangente. Fonction dérivée. Opérations sur les dérivées (somme, produit, quotient, composée, application réciproque).

Étude globale des fonctions dérivables Condition nécessaire d'extremum local. Théorème de Rolle. Théorèmes d'égalité et d'inégalité des accroissements finis. Une fonction dérivable à dérivée bornée est lipschitzienne. Application aux suites récurrentes $u_{n+1} = f(u_n)$. Dérivée et sens de variation. Théorème de la limite de la dérivée.

Dérivées successives Dérivée $n^{\text{ème}}$. Fonctions de classe \mathscr{C}^n ou \mathscr{C}^{∞} . Opérations sur les dérivées successives (somme, produit, quotient, composée, application réciproque). Formule de Leibniz. Théorème de prolongement \mathscr{C}^k . Formule de Taylor avec reste intégral. Inégalité de Taylor-Lagrange.

Fonctions à valeurs complexes Définition de la dérivabilité. Une fonction est dérivable/ \mathscr{C}^k si et seulement si ses parties réelle et imaginaire le sont.

Intégration

Intégration des fonctions en escalier Définition d'une fonction en escalier sur un segment, de son intégrale sur ce segment. Propriétés de l'intégrale : linéarité, positivité, croissance, relation de Chasles.

Intégration des fonctions continues par morceaux Définition d'une fonction continue par morceaux sur un segment. Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier (hors-programme). Intégrale d'une fonction continue par morceaux. Propriétés de l'intégrale : linéarité, positivité, croissance, inégalité triangulaire, relation de Chasles. Une fonction **continue** et de signe constant admet une intégrale nulle sur [*a*, *b*] **si et seulement si** elle est nulle sur [*a*, *b*].

Calcul de primitives et d'intégrales Définition d'une primitive d'une fonction continue. Si f continue, $x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f nulle en a. Deux primitives différent d'une constante. Si F est une primitive de f, $\int_a^b f(t)dt = F(b) - F(a)$. Intégration par parties. Changement de variables.

Approximation d'intégrales Sommes de Riemann et convergence.

2 Méthodes à maîtriser

- ightharpoonup Démontrer qu'une fonction est dérivable ou de classe \mathscr{C}^n par opérations.
- ▶ Établir des inégalités via les accroissements finis.
- ▶ Étudier la convergence d'une suite du type $u_{n+1} = f(u_n)$ où f est K-lipschitzienne avec K ∈ [0,1[.
- ▶ Utiliser la formule de Leibniz dans le cas où un des facteurs est un polynôme de faible degré.
- Utilisation de l'inégalité de Taylor-Lagrange pour prouver la convergence de séries.
- ▶ Majorer, minorer, encadrer une intégrale par croissance de l'intégrale ou inégalité triangulaire.
- ▶ Étudier une suite définie par des intégrales (souvent une IPP pour déterminer une relation de récurrence).
- ▶ Étudier une fonction définie par une intégrale à bornes variables (notamment calculer sa dérivée).
- ► Connaître les différentes techniques de calcul d'intégrales et de primitives.
- ▶ Reconnaître des sommes de Riemann.

3 Questions de cours

▶ Série exponentielle Soit $x \in \mathbb{R}$. A l'aide de l'inégalité de Taylor-Lagrange, montrer que la série

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

▶ Valeur moyenne Soit f continue sur [a, b]. Montrer qu'il existe $c \in a, b$ tel que $f(c) = \frac{1}{b-a} \int_a^b f(t) dt$.

- ► Cas d'égalité dans l'inégalité triangulaire Soit $f: [a,b] \to \mathbb{R}$ continue telle que $\left| \int_a^b f(t) \, \mathrm{d}t \right| = \int_a^b |f(t)| \, \mathrm{d}t$. Montrer que f est de signe constant sur [a,b].
- ▶ Sommes de Riemann Soit f de classe \mathscr{C}^1 sur [a,b]. Montrer que f est lipschitzienne sur [a,b] et en déduire que

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \int_a^b f(t) dt$$

▶ Limite d'une suite d'intégrales Soit f continue sur [0,1] à valeurs dans \mathbb{R} . Montrer que

$$\lim_{n \to +\infty} \int_0^1 f(t) t^n dt = 0$$