Types of Hydrogen

Types of HYDROGEN

- GRAY
- BLUE
- GREEN
- TURQUOISE
- PINK
- WHITE
- YELLOW

Gray Hydrogen

Production Method:

- Produced primarily from natural gas using Steam Methane Reforming (SMR).
- SMR process: CH₄ (methane) + H₂O (steam) → CO (carbon monoxide) + 3H₂ (hydrogen).
- − Followed by Water-Gas Shift Reaction: CO + $H_2O \rightarrow CO_2$ (carbon dioxide) + H_2 .

• Environmental Impact:

- High CO₂ emissions.
- Significant contributor to greenhouse gas emissions.

Use Cases:

 Widely used in the chemical industry, for refining petroleum, and for producing ammonia for fertilizers.

Blue Hydrogen

Production Method:

- Also produced from natural gas using SMR, but incorporates Carbon Capture and Storage (CCS) to capture CO₂ emissions.
- Similar initial process to gray hydrogen.

Environmental Impact:

- Lower CO₂ emissions compared to gray hydrogen.
- CCS technology captures up to 90% of the CO₂ emissions.

Use Cases:

Similar to gray hydrogen but with reduced environmental footprint.

Green Hydrogen

Production Method:

- Produced through the electrolysis of water using renewable energy sources like wind, solar, or hydropower.
- Electrolysis process: 2H₂O (water) → 2H₂ (hydrogen) + O₂ (oxygen).

Environmental Impact:

- Zero carbon emissions if renewable energy is used.
- Considered the most sustainable and environmentally friendly option.

Use Cases:

Energy storage, fuel for transportation, industrial processes, and heating.

Turquoise Hydrogen

Production Method:

- Produced via methane pyrolysis, splitting methane into hydrogen and solid carbon.
- Pyrolysis process: CH₄ (methane) → C (solid carbon) + 2H₂ (hydrogen).

Environmental Impact:

- Avoids CO₂ emissions as carbon is captured in solid form.
- Solid carbon can be used in various industries.

Use Cases:

 Industrial applications, reducing carbon footprint in hydrogen production.

Pink Hydrogen

Production Method:

- Produced through the electrolysis of water using electricity derived from nuclear power.
- Electrolysis process is the same as green hydrogen but powered by nuclear energy.

Environmental Impact:

 Low carbon emissions due to the use of nuclear energy, which is a low-carbon energy source.

Use Cases:

 Similar to green hydrogen, with the advantage of a stable and continuous power supply from nuclear energy.

White Hydrogen

Production Method:

- Refers to naturally occurring geological hydrogen found in underground deposits.
- Extracted through mining or drilling.

Environmental Impact:

- Still in early stages of exploration and development.
- Environmental impact depends on extraction methods.

Use Cases:

 Potential future source of hydrogen, currently under research.

Yellow Hydrogen

Production Method:

- Produced through electrolysis of water using grid electricity.
- Grid electricity can be a mix of renewable and non-renewable sources.

Environmental Impact:

- Carbon footprint varies depending on the energy mix of the grid.
- Can range from low to high emissions based on electricity source.

Use Cases:

 Versatile, used in similar applications to green hydrogen but with varying environmental impacts.