Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 6

«Определение линейных и угловых перемещений балки»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 ${
m Caнкт-}\Pi{
m erepfypr}$ 2021

1 Цель работы

Под изгибом понимают такой вид деформации, при котором в поперечных сечениях исследуемого образца возникают изгибающие моменты. Стержень, работающий на изгиб, называют балкой. Балка называется статически определимой, если все усилия и моменты в ней можно определить из уравнения статики. В частности, используемая в работе балка с одной шарнирно-подвижной и одной шарнирно-неподвижной опорами является статически определимой.

При прямом поперечном изгибе ось бруса, искривляясь, остается в силовой плоскости. В результате деформации каждое из сечений занимает новое положение: их центры тяжести получают вертикальные и горизонтальные линейные перемещения, а сами сечения поворачивается на некоторый угол вокруг нейтральной оси. Гипотеза плоских сечений – при повороте сечения остаются плоскими и перпендикулярными изогнутой оси балки.

Цель работы заключается в измерении линейных и угловых перемещений, возникающих в шарнирно закрепленной балке при изгибе ее сосредоточенной силой и сравнении измеренных величин с расчетными данными.

2 Экспериментальная установка

Установка (рис. 1) выполнена в настольном исполнении и состоит из сварного основания 1, на котором закреплены стойки 2 и 3 в виде усеченной пирамиды. На стойках устанавливается контрольная балка 4, правый конец которой располагается на шарнирно-подвижной опоре 5, а левый конец на шарнирно-неподвижной опоре 6. Нагружение балки осуществляется через подвес 7 с грузами. На балке нанесены риски с интервалом 50 мм для измерения расстояний при выполнении работы. Линейные перемещения (прогибы) измеряются индикаторной головкой 8 часового типа, закрепленной на горизонтальной планке 9. Для измерения угловых перемещений опор балки используются индикаторные головки 10, закрепленные на рычаге 11. Расстояние между опорами 700 ± 2 мм. Балка выполнена из стали 45.

Рис. 1: Схема установки.

3 Теоретические исследования

3.1 Описание изгиба балки

Под изгибом понимают такой вид деформации, при котором в поперечных сечениях исследуемого образца возникают изгибающие моменты. Стержень, работающий на изгиб, обычно называют балкой. В результате деформации каждое из сечений занимает новое положение: их центры тяжести получают вертикальные ν и горизонтальные u линейные перемещения, а сами сечения поворачивается на угол θ вокруг нейтральной оси – продольного сечения. в котором отсутствуют растяжение и сжатие (рис. 2).

Рис. 2: Линейные и угловые перемещения при изгибе.

В сопротивлении материалов горизонтальными перемещениями u пренебрегают и изучают прогибы ν и повороты θ . Дифференциальное уравнение, описывающее изгиб балки известно:

$$\nu'' = \frac{d^2y}{dz^2} = \frac{M(z)}{EI},\tag{1}$$

где M(z) – распределение изгибающих моментов по длине образца, I – момент инерции поперечного сечения балки, y – координата по высоте сечения. Для балки прямоугольного поперечного сечения момент инерции равен (рис. 3):

$$I = \int_{F} y^{2} dF = \frac{bh^{3}}{12}.$$
 (2)

Интегрируя выражение (1), получим зависимость от координаты z угла поворота θ , а интегрируя второй раз – прогиба ν . Константы интегрирования можно определить из условий отсутствия прогиба на шарнирных опорах.

Изгибающий момент M в сечении z численно равен сумме моментов всех внешних сил (включая силы реакции в опорах), действующих по одну сторону от рассматриваемого сечения. При этом изгибающий момент считается положительным, если элемент изгибается выпуклостью вниз. Распределение какой-либо величины по длине балки в сопротивлении материалов называется эпюрой.

Рис. 3: К определению момента инерции сечения.

3.2 Расчет изгиба балки

Мы предполагаем, что нам известны все геометрические размеры балки и установки, материал балки, величина прикладываемого усилия. В нашей задаче (рис. 4) будем считать известными расстояния a_1 , a_2 , a_3 , нагрузку P, момент инерции I поперечного сечения балки и модуль Юнга E материала балки. Предполагаем, что координаты a_1 и a_3 соответствуют местам крепления балки, а a_2 соответствует точке приложения силы.

Наш стержень имеет несколько участков нагружения (рис. 4), поэтому определение произвольных постоянных приводит к решению системы уравнений с большим числом неизвестных, что связано с громоздкими вычислениями. Мы применим «метод Бубнова» интегрирования дифференциального уравнения упругой линии, что сведет задачу к определению лишь двух постоянных интегрирования.

Рис. 4: Схема нагружения балки.

Для решения задачи проинтегрируем уравнение (1) один и два раза соответственно, используя метод Бубнова, получим уравнения для изгиба и для отклонения в четырех областях с двумя постоянными интегрирования, которые соответствуют начальному смещению y_0 и

начальному углу отклонения θ_0 балки:

$$(II) \Rightarrow \begin{cases} \theta(z) = \theta_0 \\ y(z) = y_0 + \theta_0 z \end{cases},$$

$$(III) \Rightarrow \begin{cases} \theta(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^2}{2} \right) + \theta_0 \\ y(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^3}{6} \right) + y_0 + \theta_0 z \end{cases},$$

$$(III) \Rightarrow \begin{cases} \theta(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^2}{2} - P \frac{(z - a_2)^2}{2} \right) + \theta_0 \\ y(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^3}{6} - P \frac{(z - a_2)^3}{6} \right) + y_0 + \theta_0 z \end{cases}$$

$$(IV) \Rightarrow \begin{cases} \theta(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^2}{2} - P \frac{(z - a_2)^2}{2} + R_B \frac{(z - a_3)^2}{2} \right) + \theta_0 \\ y(z) = \frac{1}{EI} \left(R_A \frac{(z - a_1)^3}{6} - P \frac{(z - a_2)^3}{6} + R_B \frac{(z - a_3)^3}{6} \right) + y_0 + \theta_0 z \end{cases}.$$

В данном случае нам требуется найти значения реакций R_A и R_B опор. Для этого воспользуемся уравнениями статики для сил и моментов:

$$\begin{cases} R_A + R_B - P = 0\\ a_1 R_A - a_2 P + a_3 R_B = 0 \end{cases} , \tag{4}$$

теперь нужно найти значения постоянных y_0 и θ_0 , для этого воспользуемся граничными условиями (на опорах значение отклонения балки равно нулю):

$$\begin{cases} y(a_1) = 0 \\ y(a_3) = 0 \end{cases}$$
 (5)

Найдем выражения для постоянных интегрирования и запишем окончательно уравнения балки с учетом уравнений статики. Сначала выразим реакции опор:

$$\begin{cases}
R_A = P \cdot \frac{a_2 - a_3}{a_1 - a_3} \\
R_B = P \cdot \frac{a_1 - a_2}{a_1 - a_3}
\end{cases}$$
(6)

Теперь запишем уравнения для поиска постоянных интегрирования:

$$\begin{cases} y_0 + \theta_0 a_1 = 0 \\ y_0 + \theta_0 a_3 = \frac{P}{6EI} \cdot \left((a_2 - a_3)(a_3 - a_1)^2 + (a_3 - a_2)^3 \right) \end{cases} \Rightarrow \\ \begin{cases} y_0 = -\frac{P}{6EI} \cdot \frac{a_1((a_2 - a_3)(a_3 - a_1)^2 + (a_3 - a_2)^3)}{a_3 - a_1} \\ \theta_0 = \frac{P}{6EI} \cdot \frac{(a_2 - a_3)(a_3 - a_1)^2 + (a_3 - a_2)^3}{a_3 - a_1} \end{cases}$$

$$(7)$$

В итоге мы нашли все неизвестные величины, теперь достаточно подставить их в уравнения (3) для угла изгиба $\theta(z)$ и отклонения y(z), чтобы получить окончательное решение задачи об изгибе балки.

4 Эксперимент

Все расчеты произведены при помощи пакета Matlab, с кодом программы можно ознакомиться отдельно. Эксперимент проводился в два этапа, сначала балка нагружается слева от центрального индикатора, потом справа. На рис. 5 изображена схема установки и все ее характерные размеры.

Рис. 5: Измерение длин балки.

Были измерены необходимые расстояния для 2 экспериментов: в 1-ом груз подвешен в точке $a_2^{(1)}$, и во 2-ом груз подвешен в точке $a_2^{(2)}$, также произвели замеры высоты h и толщины b балки с оценкой погрешности.

Величина	Значение Погрешность		Размерность			
h	5.4	±0.1				
b	36.1					
a_1	80					
$a_2^{(1)}$	222		2424			
$\begin{bmatrix} a_1 \\ a_2^{(1)} \\ a_2^{(2)} \end{bmatrix}$	578	±2	MM			
a_3	779					
a_4	862					
a_5	375					
E	200	_	ГПа			

Таблица 1: Начальные данные.

Далее провели 2 эксперимента, постепенно нагружая и разгружая балку, снимали показания с индикаторных головок и заносили значения в таблицу, учитывая, что систематическая погрешность измерений для индикатора составляет $\Delta x = 0.5 \cdot 10^{-2}$ мм:

			Опыт №1		Опыт №2				
№	P	Показ	вания индика	торов	Показания индикаторов				
31-		y_1	y_2	y_3	y_1	y_2	y_3		
	Н			·10 ⁻¹	2 MM				
1	1	2	-5	1	1	-4	1		
2	2	5	-10	3	4	-12	5		
3	3	7	-15	4	6	-19	8		
4	5	12	-26	7	10	-32	14		
5	7	17	-37	10	15	-44	20		
6	12	28	-63	18	25	-76	34		
7	7	17	-37	11	15	-45	21		
8	5	12	-27	7	11	-33	15		
9	3	7	-16	4	7	-20	9		
10	2	5	-11	3	4	-13	6		
11	1	3	-6	1	2	-6	3		

Таблица 2: Экспериментальные данные для обоих опытов.

Будем опытно искать смещение y_0 и начальный угол θ_0 используя показания индикаторов. Смещение y_0 – это есть показание первого индикатора, θ_0 найдем по следующей формуле:

$$\theta \approx tg\theta = \frac{y_0}{a_1}.\tag{8}$$

Теоретический расчет смещений и углов произведем отдельно, а далее сравним значения, которые получились в обоих случаях. Теперь перейдем к анализу первого эксперимента.

4.1 Опыт №1

Сначала проведем анализ экспериментальных данных, получим значения смещений и углов. Далее произведем теоретический расчет и сравним его с экспериментальными данными.

№	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta \theta_3$
31-	Н			·10 ⁻¹	2 MM			$\cdot 10^{-3}$ рад			
1	1	2	0.5	-5		1		-0.25	0.06	0.12	0.06
2	2	5		-10	0.5	3		-0.63	0.06	0.36	0.06
3	3	7		-15		4	0.5	-0.88	0.07	0.48	0.06
4	5	12		-26	0.5	7	0.5	-1.50	0.07	0.84	0.06
5	7	17		-37		10		-2.10	0.08	1.20	0.07
6	12	28		-63		18		-3.50	0.11	2.20	0.08

Таблица 3: Экспериментальные данные для опыта №1.

Теперь мы проведем теоретический расчет, используя результаты, полученные ранее. Будем учитывать погрешность косвенных измерений, но прежде чем перейти к основному расчету, найдем значение момента сечения балки:

$$I = 470 \pm 30 \text{ mm}^4.$$
 (9)

Теперь составим основную таблицу теоретических результатов:

$N_{ar{o}}$	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta \theta_3$
24-	Н			$\cdot 10^{-2}$		·10 ⁻³ рад					
1	1	2.00	0.13	-4.41	0.13	1.39	0.13	-0.25	0.01	0.17	0.01
2	2	4.00	0.25	-8.81	0.25	2.78	0.25	-0.50	0.03	0.33	0.03
3	3	6.00	0.38	-13.22	0.38	4.17	0.38	-0.75	0.04	0.50	0.04
4	5	10.00	0.63	-22.03	0.63	6.95	0.63	-1.25	0.07	0.84	0.07
5	7	14.00	0.88	-30.85	0.88	9.73	0.88	-1.75	0.10	1.17	0.10
6	12	24.00	1.51	-52.88	1.51	16.67	1.51	-3.00	0.17	2.01	0.17

Таблица 4: Расчетные данные для опыта №1.

Далее изобразим графики зависимости отклонения ν балки в трех точках и изгиба θ от величины приложенной нагрузки P. Также построим эпюры изгибающих моментов и эпюры сил, возникающих в стержне.

Рис. 6: Графики зависимости отклонения ν балки и изгиба θ от приложенной нагрузки P.

Рис. 7: Эпюры изгибающих моментов и сил для опыта №1.

4.2 Опыт №2

$N_{ar{o}}$	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta \theta_3$
31-	Н			·10 ⁻²	2 MM			·10 ⁻³ рад			
1	1	1	0.5	-4		1		-0.13	0.06	0.12	0.06
2	2	4		-12	0.5	5		-0.50	0.06	0.60	0.06
3	3	6		-19		8	0.5	-0.75	0.07	0.96	0.06
4	5	10		-32		14	0.5	-1.30	0.07	1.70	0.07
5	7	15		-44		20		-1.90	0.08	2.40	0.08
6	12	25		-76		34		-3.10	0.09	4.1	0.12

Таблица 5: Экспериментальные данные для опыта №2.

Νº	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta \theta_3$
31-	Н			$\cdot 10^{-2}$	MM	·10 ⁻³ рад					
1	1	1.81	0.11	-5.39	0.11	2.5	0.11	-0.23	0.01	0.30	0.01
2	2	3.63	0.23	-10.78	0.23	5.01	0.23	-0.45	0.03	0.60	0.03
3	3	5.44	0.34	-16.17	0.34	7.51	0.34	-0.68	0.04	0.90	0.04
4	5	9.07	0.57	-26.95	0.57	12.51	0.57	-1.13	0.07	1.51	0.07
5	7	12.70	0.80	-37.73	0.80	17.52	0.80	-1.59	0.09	2.11	0.09
6	12	21.77	1.36	-64.68	1.36	30.03	1.36	-2.72	0.16	3.62	0.16

Таблица 6: Расчетные данные для опыта №2.

Рис. 8: Графики зависимости отклонения ν балки и изгиба θ от приложенной нагрузки P.

Рис. 9: Эпюры изгибающих моментов и сил для опыта N_2 .

5 Выводы

Основные цели работы (измерение линейных и угловых перемещений, возникающих в шарнирно закрепленной балке при изгибе ее сосредоточенной силой и сравнении измеренных величин с расчетными данными) были выполнены. Основные теоретические результатыы приведены, результаты вычислений сведены в таблицы. Отдельно были рассмотрены два случая нагружения балки, в каждом из них были построены эпюры изгибающих моментов и сил.

Стоит отметить, что теоретический результат достаточно хорошо согласуется с полученным практическими методами. Однако, крайне интересно отметить, что при принудительном изменении модуля Юнга материала балки, например, до значения $E=176~\Gamma\Pi a$, можно наблюдать еще более точное совпадение результатов теоретических расчетов и практических измерений (таблица 7 и 8).

No	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta \theta_3$
111	Н			$\cdot 10^{-2}$	MM	$\cdot 10^{-3}$ рад					
1	1	2.27	0.14	-5.01	0.14	1.58	0.14	-0.28	0.02	0.19	0.02
2	2	4.55	0.29	-10.02	0.29	3.16	0.29	-0.57	0.03	0.38	0.03
3	3	6.82	0.43	-15.02	0.43	4.74	0.43	-0.85	0.05	0.57	0.05
4	5	11.36	0.72	-25.04	0.72	7.89	0.72	-1.42	0.08	0.95	0.08
5	7	15.91	1.00	-35.05	1.00	11.05	1.00	-1.99	0.12	1.33	0.12
6	12	27.27	1.72	-60.09	1.72	18.95	1.72	-3.41	0.20	2.28	0.20

Таблица 7: Расчетные данные для опыта №1 ($E=176~\Gamma\Pi a$).

Νº	P	y_1	Δy_1	y_2	Δy_2	y_3	Δy_3	θ_1	$\Delta \theta_1$	θ_3	$\Delta\theta_3$
31-	Н			$\cdot 10^{-2}$	MM	$\cdot 10^{-3}$ рад					
1	1	2.06	0.13	-6.12	0.13	2.84	0.13	-0.26	0.01	0.34	0.01
2	2	4.12	0.26	-12.25	0.26	5.69	0.26	-0.52	0.03	0.69	0.03
3	3	6.18	0.39	-18.37	0.39	8.53	0.39	-0.77	0.04	1.03	0.04
4	5	10.31	0.65	-30.62	0.65	14.22	0.65	-1.29	0.07	1.71	0.07
5	7	14.43	0.90	-42.87	0.90	19.91	0.90	-1.80	0.10	2.40	0.10
6	12	24.73	1.55	-73.50	1.55	34.13	1.55	-3.09	0.18	4.11	0.18

Таблица 8: Расчетные данные для опыта №2 ($E=176~\Gamma\Pi a$).