Course Code	21MAB201T	Course Name					urse egory		В		Basic Scienc		-	-	-	C 4	
Pre-requisite Courses NIL Co-requisite Courses		Nil				rogressive Courses			Nil								
Course Offering Department Mathematics			Data Book / Codes/Standards			Nil											
Course Learning Rationale (CLR) The purpose of learning this course is to:		Learning	Program Outcomes (PO)														
CLR-1:	Analyze partial di solutions related i		ons, and interpret the ering problems.	Learning	1	2	3	4	5	6	7	8	9	10	1	'	12
CLR-2:			ion and express the sine					_			lity						
CLR-3:	Analyze one-dimensional wave and heat equations using PDE and Fourier series concepts. Analyze Fourier transforms and their properties.			a8,		ш	earch			Sustainability		ork		904			
CLR-4:			9-	owlea	is	орте	n, Res	sage	re			аш И	-	Finance		ning	
CLR-5: Analyze Z transform for solving discrete-time Signal problems.			Blooms Level (1-6)	Engineering Knowledge	n Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	ıment &		Individual & Team Work	Communication	Mai &		Life Long Learning	
Course O	intcomes (CCI).	At the end of this able to:	course, learners will be	Blooms	Enginee	Problem,	Design	Analysi	Moderr	Society	Environment	Ethics	Individ	Сотт	Project Mat		Life Lo
CO-1:	Construct and solve partial differential equations using various techniques.		4	3	3	-	-	-	-	-	-	-	-	-		-	
CO-2:	Explain the Fourier series expansion of a function in terms sine and cosine series.		of 4	3	3	-	-	-	-	-	- -		-	-		-	
CO-3:	Identify partial differential equations and utilize Fourier series techniques to solve one dimensional wave and heat equations.		4	3	3	-	-	-	-	-	- -		-	-		-	
CO-4:	Apply Fourier tra	nsforms techniqu	es in signal analysis.	4	3	3	-	-	-	-		- -	/	-	-	+	•

Unit-1: Partial Differential Equations

Formation of partial differential equations by eliminating arbitrary constants & arbitrary functions- Solutions of standard types of first order partial differential equations – Lagrange's linear equation – Linear partial differential equations of second and higher order with constant coefficients of homogeneous types.

Unit-2: Fourier Series

CO-5:

Dirichlet's conditions – General Fourier series – Odd and even functions - Half range sine and cosine series - Parseval's identity – Harmonic Analysis.

Unit-3: Applications of Partial differential equations

Solve discrete-time signal problems using Z transforms.

Classification of second order partial differential equations - Method of separation of variables – Solutions of one dimensional wave equation - One dimensional equation of heat conduction (Insulated edges excluded) - Steady state condition with zero boundary - Steady state condition with non-zero boundary conditions.

Unit-4: Fourier Transforms

Fourier transform pair – Properties -Fourier sine and cosine transforms – Properties – Transforms of simple functions - Convolution theorem (without proof) – Parseval's identity.

Unit-5: Z Transforms

Z - transforms - Properties of Z transforms - Inverse Z transforms - Convolution theorem (without Proof) - Solution of linear difference equations with constant coefficients using Z-transform

arning source	

- Erwin kreyszig, Advanced Engineering Mathematics. 10th Edition, John Wiley & Sons, 2015.
- B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2015.
- 3. Veerarajan T., Transforms and Partial Differential Equations, Tata McGraw-Hill, New Delhi, 3rd edition, 2012.
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 2010 3rd Edition.
- 5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, New Delhi, 10th edition, 2016.
- Kandasamy P., etal. Engineering Mathematics, Vol.II & Vol.III (4th revised edition), S. Chand & Co., New Delhi,2000

Student learning shall be assessed with a weightage of 60% for internal assessment and 40% for end semester examination.

		Со	ntinuous Learnii - By the Co	By The CoE				
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)			ng Learning 3-2 (10%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	-	20%		20%	-	
Level 2	Understand	20%		20%		20%	-	
Level 3	Apply	30%	-	30%	-	30%	-	
Level 4	Analyze	30%	-	30%		30%	-	
Level 5	Evaluate		-	-	-	-	-	
Level 6	Create	-		-	-	-	-	
	Total 100 %		00 %	1	00 %	100 %		

Course Designers						
a) Experts from Industry	b) Experts from Higher Technical Institutions	c) Internal Experts				
Mr. Madhan Shanmugasundaram, Infosys Technologies	Prof. Y.V.S.S. Sanyasiraju, IIT Madras	Dr. B.Vennila hod.maths.ktr@srmist.edu.in				
	Prof. K.C. Sivakumar, IIT Madars	Dr. C. Abirami abiramic@srmist.edu.in				

5. Syect 16/1/24

(Dr.S.SANGEETHA)

V. Fill luty
16/07/2day