Efficient, Feature-based, Conditional Random Field Parsing

Paper by: Jenny Rose Finkel, Alex Kleeman, Christopher D. Manning

Published at ACL, 2008

Presentation by: Michael Zhang

Constituency Parsing

Objective

Given some sentence S, assign some parse tree T.

Objective

Given some sentence S, assign some parse tree T.

- Parsing models at the time were dominated by generative methods
- ► However, **discrimitive** models had been shown to outperform generative models in other NLP tasks
 - Discrimitive models have not surpassed generative models due to the computational complexity of the task

Prior work on discrimitive parsing fell into 3 categories:

- Reranking n-best outputs from a generative parser
- ▶ Parse by making a series of independent, discriminative decisions using either greedy search or beam search.
- Perform joint inference via dynamic programming algorithms for training and to find the globally best parse
 - Previous work in this vein has been limited to shorter sentences, or giving up on features

Contribution

- Created a feature based, discriminative model for parsing
- Made a practical CRF model that could be easily trained and perform on longer sentences

The model: CRF-CFG

Context Free Grammar

Consits of set of terminals $\{w^k\}$, non-terminals $\{N^k\}$, start symbol $\{ROOT\}$, rules $\{\rho = N^i \to \zeta^i\}$

Phrasal rules

 $\begin{array}{l} r_1 = S_{0,5} \rightarrow NP_{0,2} \quad VP_{2,5} \mid \textit{Factory payrolls fell in September} \\ r_3 = VP_{2,5} \rightarrow VBD_{2,3} \quad PP_{3,5} \mid \textit{Factory payrolls fell in September} \end{array}$

Lexicon rules

Lexicon rules $r_5 = NN_{0,1} \rightarrow Factory \mid Factory payrolls fell in September <math>r_6 = NNS_{1,2} \rightarrow payrolls \mid Factory payrolls fell in September$

(b) Rules r

CRF-CFG

▶ Defines local potentials $\phi(r|s;\theta)$

$$P(t|s;\theta) = \frac{1}{Z_s} \prod_{r \in t} \phi(r|s;\theta)$$

$$Z_s = \sum_{t \in \tau(s)} \prod_{r \in t} \phi(r|s; \theta)$$

The model: CRF-CFG

The Objective Function

clique potential function:

$$\phi(r|s;\theta) = exp \sum_{i} \theta_{i} f_{i}(r,s)$$

 ▶ Log conditional likelihood of training data D (with L₂ regularization term)

$$\mathcal{L}(\mathcal{D};\theta) = (\sum_{(t,s)\in\mathcal{D}} (\sum_{r\in t} \sum_{i} \theta_{i} f_{i}(r,s)) - Z_{s}) + \sum_{i} \frac{\theta_{i}^{2}}{2\sigma^{2}}$$

▶ Partial derivatives of log likelihood:

$$\frac{\partial \mathcal{L}}{\partial \theta_i} = \left(\sum_{(t,s) \in \mathcal{D}} \left(\sum_{r \in t} f_i(r,s)\right) - E_{\theta}[f_i|s]\right) + \frac{\theta_i}{\sigma^2}$$

 Z_s and $\frac{\partial \mathcal{L}}{\partial \theta_i}$ can both be efficiently computed in polynomial time with the inside-outside algorithm (substituting non-negative potentials (ϕ) for probabilities)

Optimizations

- Parallelizaiton
- Chart Prefiltering
- Stochastic Optimizaition

Parallelization

- Log likelihood and Partial Derivatives can be computed by summing over each tree individually
- ► Stochastic optimization methods mean they only compute the objective for a small number of sentences at a time (15-30)
- ► Clients compute relevant information for each sentence, then pass it to a a centeral server aggrigating data from each.
- ▶ **Bottleneck:** They note that the benefits of adding clients decreases rapidly as computation time is dominated by the longest sentence for each batch.

Chart Prefiltering

- Not all rule decisions can properly tile the tree
- ► To avoid performing computations for these invalid trees, they prefilter on inside passes of the inside-outside algorithm
- They compute this information once by passing booleans instead of potentials, simotaneously calculating features for possible rules and save the entire datastructure to disk
- ► Allows them to avoid recalculating even on multiple passes through the data
- ➤ 3x speedup on first iteration, 10x speedup on successive iterations

Stochastic Optimization

- ▶ Use SGD for optimization
- compared SGD to L-BFGS
- ▶ 7x speedup on WSJ15

Features

n word class.

Lexicon Features	Grammar Features									
t		Binary-specific features								
b(t)	ρ									
$\langle t, w \rangle$	$\langle b(p(r_p)), ds(w_s) \rangle$	$\langle b(p(r_p)), ds(w_{s-1}, dsw_s) \rangle$								
$\langle t, lc(w) \rangle$	$\langle b(p(r_p)), ds(w_e) \rangle$	PP feature:								
$\langle b(t), w \rangle$	unary?	if right child is a PP then $\langle r, w_s \rangle$								
$\langle b(t), lc(w) \rangle$	simplified rule:	VP features:								
$\langle t, ds(w) \rangle$	base labels of states	if some child is a verb tag, then rule,								
$\langle t, ds(w_{-1}) \rangle$	dist sim bigrams:	with that child replaced by the word								
$\langle t, ds(w_{+1}) \rangle$	all dist. sim. bigrams below									
$\langle b(t), ds(w) \rangle$	rule, and base parent state	Unaries which span one word:								
$\langle b(t), ds(w_{-1}) \rangle$	dist sim bigrams:									
$\langle b(t), ds(w_{+1}) \rangle$	same as above, but trigrams	$\langle r, w \rangle$								
$\langle p(t), w \rangle$	heavy feature:	$\langle r, ds(w) \rangle$								
$\langle t, unk(w) \rangle$	whether the constituent is "big"	$\langle b(p(r)), w \rangle$								
$\langle b(t), unk(w) \rangle$	as described in (Johnson, 2001)	$\langle b(p(r)), ds(w) \rangle$								

- ► Their model allowed them to incoperate "lexicon features" (words over tags) and "grammar features" (local subtrees and corresponding span/split)
- ▶ Features had to be tuned on sentences ≤ 15 because ≤ 40 was infesible

Experiments

Model	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB
		deve	lopmen	t set – lei	ıgth ≤ 15	test set – length ≤ 15						
Taskar 2004	89.7	90.2	90.0	-	-	-	89.1	89.1	89.1	-	-	_
Turian 2007	-	_	_	-	-	-	89.6	89.3	89.4	-	-	-
generative	86.9	85.8	86.4	46.2	0.34	81.2	87.6	85.8	86.7	49.2	0.33	81.9
discriminative	89.1	88.6	88.9	55.5	0.26	85.5	88.9	88.0	88.5	56.6	0.32	85.0
feature-based	90.4	89.3	89.9	59.5	0.24	88.3	91.1	90.2	90.6	61.3	0.24	86.8
relaxed	91.2	90.3	90.7	62.1	0.24	88.1	91.4	90.4	90.9	62.0	0.22	87.9

Table 3: Development and test set results, training and testing on sentences of length ≤ 15 from the Penn treebank.

Model	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB			
	test set – length ≤ 40							test set – all sentences							
Petrov 2007	-	-	88.8	-	-	-	-	_	88.3	-	-	_			
generative	83.5	82.0	82.8	25.5	1.57	53.4	82.8	81.2	82.0	23.8	1.83	50.4			
generative-all	83.6	82.1	82.8	25.2	1.56	53.3	-	-	-	-	-	-			
discriminative	85.1	84.5	84.8	29.7	1.41	55.8	84.2	83.7	83.9	27.8	1.67	52.8			
feature-based	89.2	88.8	89.0	37.3	0.92	65.1	88.2	87.8	88.0	35.1	1.15	62.3			

Table 4: Test set results, training on sentences of length \leq 40 from the Penn treebank. The *generative-all* results were trained on all sentences regardless of length

- Discriminatively trained model: Lexicon Featrues, no Grammer Features
- ► Feature-based model: Lexicon Featrues and Grammer Features
- ▶ Relaxed model: Feature model with rules not seen in training

Experiments

Model	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB	P	R	\mathbf{F}_1	Exact	Avg CB	0 CB
			test set	length	≤ 40	test set – all sentences						
Petrov 2007	-	-	88.8	-	-	-	-	-	88.3	-	-	-
generative	83.5	82.0	82.8	25.5	1.57	53.4	82.8	81.2	82.0	23.8	1.83	50.4
generative-all	83.6	82.1	82.8	25.2	1.56	53.3	-	_	_	-	-	_
discriminative	85.1	84.5	84.8	29.7	1.41	55.8	84.2	83.7	83.9	27.8	1.67	52.8
feature-based	89.2	88.8	89.0	37.3	0.92	65.1	88.2	87.8	88.0	35.1	1.15	62.3

Table 4: Test set results, training on sentences of length \leq 40 from the Penn treebank. The *generative-all* results were trained on all sentences regardless of length

Performance

- On WSJ15: (20 passes)
 - Discriminatively trained generative model (discriminative):
 1 machine; 3 gigabytes of RAM; 12 min/pass
 - Feature-based model (feature-based):
 1 machine; 3 gigabytes of RAM; 35 min/pass
- On WSJ40: (10 passes)
 - Discriminatively trained generative model (discriminative):
 2 machines; 16 gigabytes of RAM each; 1 day/pass
 - Feature-based model (feature-based):4 machines; 16 gigabytes of RAM each; 3 day/pass

Experiments

Figure 3: Example output from our generative and feature-based discriminative models, along with the correct parse.

- They highlight the models ability to capture the right-branching tendencies of English
- Specifically the "heavy" feature encouraging long constituants at ends of sentences

Impact

146 Citations

Semantic Scholar estimates that this publication has 146 citations based on the available data.

See our FAQ for additional information.

Why was this work influential?

- ▶ Defined a discriminative, feature based model that's simple, effective, and faster to train than previous methods.
- "Looking at how other tasks, such as named entity recognition and part-of-speech tagging, have evolved over time, it is clear that greater gains are to be gotten from developing better features than from better models."

Thanks! Question?