Type I Errors and Size of a Test

MH1820 1 / 26

There are two types of errors in hypothesis testing:

MH1820 2 / 26

• In the *p*-value approach, we reject H_0 when *p*-value is less than the significance level α .

MH1820 3 / 26

- In the *p*-value approach, we reject H_0 when *p*-value is less than the significance level α .
- Instead of using p-value, we can also formulate rejection criteria using rejection region, where we reject H_0 if the test statistic statisfies certain inequalities.

MH1820 3 / 26

Type I Error

Size of a Test

• If the null hypothesis H_0 is true, but **rejected**, then a **Type I Error** occurs.

• The probability of a Type I Error is $\mathbb{P}(H_0 \text{ rejected} | H_0)$.

- $\mathbb{P}(H_0 \text{ rejected}|H_0)$ is also called the **size** of the test.
- The smaller the size, the more conclusive is the test the size measures how conclusive a test is.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

MH1820 4 / 26

Example 1

- X_1, \ldots, X_9 i.i.d $\sim N(\mu, 1)$ &
- Null hypothesis $H_0: \mu = 0$
- Rejection criteria: Reject $H_0 \iff |\sum_{i=1}^9 X_i| > 5.88$.

Compute the size of the test.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

MH1820 6 / 26

Size =
$$P(H_0, rejected | H_0)$$
.
= $P(|\frac{2}{2} \times i| > 5.88 | M=0)$
 $\frac{1}{9} (\frac{2}{2} \times i - \frac{1}{10}) \sim N(0,1)$.

7 / 26

$$Size = P(\frac{5}{121} \times i) > 5.88 \text{ or } \frac{5}{2} \times i < -5.84 \text{ } | u=0)$$

$$= P(\frac{5}{121} \times i) > \frac{5.14}{3} \text{ or } \frac{5}{121} \times (-5.84)$$

$$= P(\frac{5}{121} \times i) > \frac{5.14}{3} \text{ or } \frac{5}{121} \times (-5.84)$$

$$= P(\frac{5}{121} \times i) > \frac{5.14}{3} \text{ or } \frac{5}{121} \times (-5.84)$$

MH1820 8 / 26

Site =
$$2 \times \underline{\Phi}(-1.96)$$

= $2 \times (1 - \underline{\Phi}(1.96))$
= $2 \times (1 - 0.975)$
= $2 \times 0.005 = 0.05 \#$

MH1820 9 / 26

Example 2

- $X_1, ..., X_{100}$ i.i.d $\sim Bernoulli(p), 0 \le p \le 1$
- Null hypothesis $H_0: p = 0.5$
- Test statistic $T = X_1 + \cdots + X_{100}$
- Rejection criteria: Reject $H_0 \iff T 50 > 8$.

Compute the size of the test.

P=0.5

MH1820 4 11 / 26

Size =
$$P(H_0, rejected | H_0)$$

= $P(T > 58 | P = 0.5)$
= $P(\frac{T}{100} - 0.5)$
 $\frac{58}{100} - 0.5$
 $\frac{58}{100} - 0.5$
 $\frac{58}{100} - 0.5$
 $\frac{0.5}{100}$
= $P(\Phi) > 1.6$

MH1820 12 / 26

MH1820

Example 3

- X_1, \ldots, X_4 i.i.d $\sim Bernoulli(p), 0 \le p \le 1$
- Null hypothesis H_0 p = 0.5
- Test statistic $T = X_1 + X_2 + X_3 + X_4$
- Rejection criteria: Reject $H_0 \iff |T-2| \ge 2$.

Compute the size of the test.

$$T = x_1 + x_2 + x_3 + x_4 \sim Binand(4, p)$$

 $T = 0, 1, 2, 3, 4$

MH1820 18 / 26

Size =
$$P(H_0 \text{ rejected} (H_0))$$

= $P(|T-2| \ge 2 | p=0.5)$
= $P(T-2 \ge 2 \text{ or } T-2 \le -2 | p=0.5)$
= $P(T \ge 4 \text{ or } T \le 0 (p=0.5))$
= $P(T = 4 \text{ or } T = 0 | p=0.5)$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□

MH1820 19 / 26

$$P(Y=k) = \binom{1}{k} p^{k} (1-p)^{n-k}$$

$$Y \sim Bhanl(n, p).$$

Site =
$$\binom{4}{4}p^{4}(1-p)^{4-4} + \binom{4}{0}p^{2}(1-p)^{4-0}$$

= $\binom{4}{4}o^{-5}o$

MH1820 20 / 26