Exercice 1. Signal sinusoïdal

Soient les signaux sinusoïdaux v1(t) et v2(t) suivants :

1. Compléter le tableau ci-dessous :

	Valeur maximale (V)	Valeur efficace (V)	Période (ms)	Fréquence (Hz)	pulsation $(rad.s^{-1})$
v1(t)					
v2(t)					

- 2. Relever et calculer le retard (ou l'avance) temporelle notée t_1 ainsi que la différence de phase existant entre les deux signaux sinusoïdaux (en radians et en degré).
- 3. Déduire des questions précédentes les expressions de v1(t) et v2(t).
- 4. Donner l'écriture complexe de v1(t) et v2(t).

Exercice 2. Rappel sur les complexes : passage entre coordonnées polaires et cartésiennes

- 1. Opérer le passage polaire/cartésienne pour les intensités suivantes :
 - $i_1 = [4, 45^{\circ}]; i_2 = [3, 60^{\circ}]; i_3 = [5, -30^{\circ}]; i_4 = [7.91, 0^{\circ}]$

2. Opérer le passage cartésienne/polaire pour les tensions suivantes : $u_1 = 100 + j150$; $u_2 = 50 + j30$; $u_3 = 50 - j200$; $u_4 = 100 + j100$

Exercice 3. Soit le circuit ci-dessous avec $e(t) = E \cos(\omega t)$:

Déterminer u(t) en fonction de R, C, E et ω .

Exercice 4. Bonus. On réalise le circuit ci-dessous :

Déterminer la réponse harmonique u(t) du dipôle lorsqu'il est soumis à l'excitation sinusoïdale $\,:\,$

$$e(t) = e_m cos(\omega t)$$

Exercice 5. Circuit RL série en régime sinusoïdal : représentation de Fresnel

On considère le circuit suivant, avec $R=100\Omega$ et L=1H mis en série et soumis à une tension e(t) de fréquence 50 Hz et de valeur efficace 24 V (choisie comme référence) :

- 1. Exprimer et calculer l'impédance \underline{Z} de ce circuit (forme cartésienne et polaire).
- 2. Exprimer et calculer le courant $\underline{\mathbf{I}}$ qui traverse ce circuit.
- 3. Exprimer et calculer les tensions complexes \underline{u}_R et \underline{u}_L .
- 4. Tracer le diagramme vectoriel des tensions et courant.
- 5. Vérifier votre résultat en appliquant la loi des mailles.
- 6. Retrouver l'expression de \underline{u}_L par application du diviseur de tension.

Exercice 6. Le circuit suivant est soumis à deux tensions sinusoïdales : $e_1(t) = e_m cos(\omega t)$ et $e_2(t) = e_m sin(2\omega t)$

Déterminer alors la tension u(t) aux bornes du condensateur.

Exercice 7. Résonnance en tension

Soit le circuit RLC suivant, alimenté par une tension sinusoïdale $e(t) = E \cos(\omega t)$:

1. Expression de U_{C0} et φ

- (a) Déterminer l'équation différentielle vérifiée par la tension aux bornes du condensateur.
- (b) Exprimer la tension complexe $u_C(t)$ associée. Montrer qu'on peut aussi l'obtenir directement à partir des impédances complexes en utilisant le diviseur de tension.
- (c) En déduire l'expression de l'amplitude complexe \underline{u}_C .
- (d) Déterminer l'expression de l'amplitude U_{C0} du signal réel de $u_C(t) = U_{C0}\cos(\omega t + \varphi)$.
- (e) Montrer que $U_{C0} = \frac{E}{\sqrt{(1-x^2)^2 + (\frac{x}{Q})^2}}$ en utilisant les variables réduites usuelles :
 - Pulsation propre : $\omega_0 = \frac{1}{\sqrt{LC}}$ Pulsation réduite : $x = \frac{\omega_0}{\omega_0}$

 - Facteur de qualité : $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
- (f) Déterminer l'expression de la phase φ .
- (g) Montrer qu'on peut l'écrire sous la forme : $\varphi = -\frac{\pi}{2} + \arctan(\frac{1 LC\omega^2}{RC\omega})$.
- (h) Réexprimer φ en fonction de x et Q.

2. Comportement de U_{C0} et φ en fonction de la pulsation réduite et phénomène de résonance

- (a) Étudier la fonction $U_{C0}(x)$ pour déterminer l'allure de U_{C0} en fonction de x. On distinguera 2 cas : $Q > \frac{1}{\sqrt{2}} \text{ et } Q < \frac{1}{\sqrt{2}}$
- (b) Calculer les valeurs limites et maximum de $U_{C0}(t)$ et tracer la courbe.
- (c) Comment évolue la courbe en fonction du facteur de qualité?
- (d) Étudier la fonction $\varphi(t)$ pour déterminer son allure en fonction de x.
- (e) Calculer les valeurs limites et maximum de $\varphi(x)$ et tracer la courbe.
- (f) Quelle est la valeur du déphasage à la résonnance?

Exercice 8. Résonance en intensité

On continue à étudier le circuit RLC série en régime sinusoïdal.

- 1. Déterminer l'expression de l'amplitude complexe de l'intensité I à partir de celle de la tension aux bornes du condensateur déterminée dans l'exercice précédent.
- 2. En déduire l'expression de l'amplitude réelle I_0 et montrer qu'elle vaut $I_0 = \frac{\frac{E}{R}}{\sqrt{1 + Q^2(x \frac{1}{x})^2}}$ en fonction

des variables réduites usuelles :

- Pulsation propre : $\omega_0 = \frac{1}{\sqrt{LC}}$ Pulsation réduite : $x = \frac{\omega}{\omega_0}$
- Facteur de qualité : $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$
- 3. Étudier la fonction $I_0(x)$ pour déterminer l'allure de I_0 en fonction de x.
- 4. Calculer les valeurs limites et maximum et tracer la courbe.
- 5. Comment évolue la courbe en fonction du facteur de qualité?
- 6. Déterminer l'expression du déphasage φ' de l'intensité par rapport au déphasage de la tension aux bornes du condensateur.
- 7. Calculer les valeurs limites et maximum de $\varphi'(t)$ et tracer la courbe.
- 8. Que vaut le déphasage à la résonance?

Exercice 9. Résonance en impédance

Soit un circuit RLC série en régime sinusoïdal.

- 1. Quelle est l'expression de l'impédance complexe totale du circuit ?
- 2. Quelle est l'expression de l'impédance réelle ? Pour quelle pulsation est-elle minimale ?

Exercice 10. Bonus. Exprimer l'impédance complexe des dipôles AB, CD et EF suivants :

Exercice 11. Pour transmettre une puissance maximale du générateur (e, R_g) à la résistance $R_u \neq R_g$, on intercale entre le générateur et la résistance un quadripôle réalisé avec une inductance L et une capacité C (schémas ci-dessous).

- 1. On considère la structure (a).
 - (a) Montrer qu'il y a adaptation d'impédance lorsque $R_u > R_g$.
 - (b) Calculer L et C, en fonction de R_u , R_g et ω pulsation du générateur, afin de réaliser un transfert maximal d'énergie.
- 2. On considère la structure (b).
 - (a) Montrer qu'il y a adaptation d'impédance lorsque $R_u < R_g$.
 - (b) Calculer L et C, en fonction de R_u , R_g et ω pulsation du générateur, afin de réaliser à nouveau un transfert maximal d'énergie.

