Quadrilaterals

Definition 1 (Quadrilateral). Let A, B, C, and D be points in a plane geometry. Then the set

$$Q(A, B, C, D) = \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}$$

is called the quadrilateral with vertices A, B, C, and D (in that order).

- \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} are called the sides of the quadrilateral.
- \overline{AC} and \overline{BD} are called the diagonals.
- $\angle ABC$, $\angle BCD$, $\angle CDA$, and $\angle DAB$ are the interior angles
- Sides \overline{AB} and \overline{CD} are said to be opposite, as are \overline{BC} and \overline{DA} .

Definition 2. Let A, B, C, and D be points.

- If any two of A, B, C, and D are equal, then Q(A, B, C, D) is said to be backtracking.
- Q(A, B, C, D) is called self-intersecting if any point other than the vertices is on more than one side.
- Q(A, B, C, D) is called degenerate if any three of its vertices are collinear.
- A quadrilateral which is not backtracking, self-intersecting, or degenerate is called simple.

Definition 3. We say that $Q(A, B, C, D) \equiv Q(X, Y, Z, W)$ if $\overline{AB} \equiv \overline{XY}$, $\overline{BC} \equiv \overline{YZ}$, $\overline{CD} \equiv \overline{ZW}$, $\overline{DA} \equiv \overline{WX}$, $\angle ABC \equiv \angle XYZ$, $\angle BCD \equiv \angle YZW$, $\angle CDA \equiv \angle ZWX$, and $\angle DAB \equiv \angle WXY$.

Proposition 1. Quadrilateral congruence is an equivalence relation.

Types of Quadrilaterals

Definition 4. A quadrilateral Q(A, B, C, D) is called

- equiangular if all its interior angles are congruent;
- a rectangle if all its interior angles are right;
- a kite if it has two pairs of congruent adjacent sides;
- equilateral (a.k.a. a rhombus) if all its sides are congruent;
- a trapezoid if one pair of opposite sides is parallel;
- a parallelogram if both pairs of opposite sides are parallel;
- cyclic if all its vertices lie on a common circle;
- tangential if all extended sides are tangent to a common circle;
- regular if it is both equilateral and equiangular.

Note: not all of these types of quadrilaterals are guaranteed to exist!