Medical Image Processing with Deep Learning

---- Mammograms Classification and Automatic Tumor detection

Members: Yijie Jin (CityU), Yifan Zheng (CUHK) Mentors: Dr. Kwai Wong, Dr. Raymond Chan

Background

- Why do we use deep learning in medical imaging?
- Why do we study mammograms?

Deep learning in Medical Imaging

- Accelerate data acquisition process
 - use part of k-space data in MRI image reconstruction
- Enhance image resolution
 - low resolution -> high resolution
- Aid disease diagnosis
 - manpower
 - o time

input

output

Mammograms

- Breast cancer is the most common cancer in women and it is the main cause of death from cancer among women in the world.
- Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis and screening.

Normal Malignant

Goals

- Classify mammograms into three classes, normal, benign and malignant (CNNI-BCC)
- Automatically detect the tumor without prior information of the presence of a cancerous lesion (IDBLL)

Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI-BCC)

Dataset and Data Augmentation

Dataset: mini-MIAS database of mammograms

322 images in total

Data Augmentation:

- Rotation (by 90, 180, 270 degrees respectively)
- Flip (vertically)
- Sampling (1024×1024 -> 128×128)

Dataset - mini-MIAS

- Labelled
- Has information about the coordinates of tumor center
- Has information about the radius of the tumor

Data Augmentation - Flip/Rotation

Rotation (90 degrees)

Flip

Data Augmentation - Sampling

- Cut each image equally into 64 image patches
- Select only the middle 4 columns -> Get 32 image patches out of 1 image

Experiments

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 64, 64, 32)	320
depthwise_conv2d_1 (DepthwiseConv2D)	(None, 64, 64, 32)	32800
conv2d_2 (Conv2D)	(None, 64, 64, 64)	2112
depthwise_conv2d_2 (DepthwiseConv2D)	(None, 32, 32, 64)	262208
average_pooling2d_1 (AveragePooling2D)	(None, 8, 8, 64)	0
flatten_1 (Flatten)	(None, 4096)	0
dense_1 (Dense)	(None, 3)	12291

Total params: 309,731 Trainable params: 309,731 Non-trainable params: 0

Results

The loss on the test set is: 0.14544324301610326

The accuracy on the test set is: 0.7324840809888901

Interactive Detection Based Lesion Locator (IDBLL)

Structure of Single Shot MultiBox Detector (SSD)

Base Network for classification

- + Multi-scale feature maps for detection
- + Convolutional predictors for detection: multiple classes confidences
- + Default boxes and aspect ratios: localization

Objective Loss Function

$$L(x, c, l, g) = \frac{1}{N} (L_{conf}(x, c) + \alpha L_{loc}(x, l, g))$$

Discussion

N	N	N	N
В	В	N	N
В	В	N	N
N	N	N	N

В	В	В	В
В	В	В	В
В	В	В	В
В	В	В	В

B: Benign

N: Normal

OR

Discussion

References

- 1. Ferlay, J., Héry, C., Autier, P. & Sankaranarayanan, R. (2010). Global burden of breast cancer. Breast cancer epidemiology, 1–19, Springer.
- 2. Li, Y. R., Chan, R. H., Shen, L., Hsu, Y. C., & Isaac Tseng, W. Y. (2016). An adaptive directional Haar framelet-based reconstruction algorithm for parallel magnetic resonance imaging. SIAM Journal on Imaging Sciences, 9(2), 794-821.
- 3. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. European conference on computer vision (pp. 21-37). Springer, Cham.
- 4. Ting, F. F., Tan, Y. J., & Sim, K. S. (2019). Convolutional neural network improvement for breast cancer classification. Expert Systems with Applications, 120, 103-115.

Q&A