Meta-Learning-Based Adaptive Model Selection for Learned Indexes

Amay Dixit 12340220 DSL501 - Major Project

Motivation and Background

What are Database Indexes?

- Data structures that improve query performance
- Act as "shortcuts" to find data quickly
- Essential for modern database systems

Classic Approaches:

- B-Trees: Balanced tree structures
- Hash Tables: Direct key-to-location mapping
- Binary Search Trees: Hierarchical organization

The Challenge:

- Generic structures for all data types
- Don't leverage data patterns
- Performance plateaus with growing datasets

The Data Pattern Problem

Real-world data is heterogeneous:

- Geographic coordinates (clustered patterns)
- Timestamps (temporal trends)
- User IDs (sequential with gaps)
- Stock prices (volatile patterns)

Traditional indexes treat all data the same way

Opportunity: What if we could learn from data patterns?

Enter Learned Indexes - The Paradigm Shift

Revolutionary Idea (Kraska et al., 2018):

- Replace index structures with machine learning models
- Models learn data distribution patterns
- Predict approximate position of keys

How it works:

- Model learns mapping: Key → Approximate Position
- Use prediction to narrow search space
- Combine with small traditional structures for accuracy

Key Insight: Data has patterns, ML can exploit them

Figure 1: Why B-Trees are models

Learned Indexes vs Traditional - A Comparison

Traditional B-Tree:

- Fixed structure regardless of data
- O(log n) complexity always
- No adaptation to data patterns

Learned Index:

- Model adapts to data distribution
- Can achieve O(1) for well-structured data
- Leverages predictable patterns

Example: For sorted timestamps, a linear model might predict position perfectly, eliminating tree traversal entirely.

		Map Data			Web Data			Log-Normal Data			
Type	Config	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	
Btree	page size: 32	52.45 (4.00x)	274 (0.97x)	198 (72.3%)	51.93 (4.00x)	276 (0.94x)	201 (72.7%)	49.83 (4.00x)	274 (0.96x)	198 (72.1%)	
	page size: 64	26.23 (2.00x)	277 (0.96x)	172 (62.0%)	25.97 (2.00x)	274 (0.95x)	171 (62.4%)	24.92 (2.00x)	274 (0.96x)	169 (61.7%)	
	page size: 128	13.11 (1.00x)	265 (1.00x)	134 (50.8%)	12.98 (1.00x)	260 (1.00x)	132 (50.8%)	12.46 (1.00x)	263 (1.00x)	131 (50.0%)	
	page size: 256	6.56 (0.50x)	267 (0.99x)	114 (42.7%)	6.49 (0.50x)	266 (0.98x)	114 (42.9%)	6.23 (0.50x)	271 (0.97x)	117 (43.2%)	
5X 5	page size: 512	3.28 (0.25x)	286 (0.93x)	101 (35.3%)	3.25 (0.25x)	291 (0.89x)	100 (34.3%)	3.11 (0.25x)	293 (0.90x)	101 (34.5%)	
Learned	2nd stage models: 10k	0.15 (0.01x)	98 (2.70x)	31 (31.6%)	0.15 (0.01x)	222 (1.17x)	29 (13.1%)	0.15 (0.01x)	178 (1.47x)	26 (14.6%)	
Index	2nd stage models: 50k	0.76 (0.06x)	85 (3.11x)	39 (45.9%)	0.76 (0.06x)	162 (1.60x)	36 (22.2%)	0.76 (0.06x)	162 (1.62x)	35 (21.6%)	
	2nd stage models: 100k	1.53 (0.12x)	82 (3.21x)	41 (50.2%)	1.53 (0.12x)	144 (1.81x)	39 (26.9%)	1.53 (0.12x)	152 (1.73x)	36 (23.7%)	
	2nd stage models: 200k	3.05 (0.23x)	86 (3.08x)	50 (58.1%)	3.05 (0.24x)	126 (2.07x)	41 (32.5%)	3.05 (0.24x)	146 (1.79x)	40 (27.6%)	

Figure 4: Learned Index vs B-Tree

Current Learned Index Limitations

The One-Model Problem:

- Most current approaches use a single model type for entire dataset
- Examples: Always linear regression, always neural networks
- Problem: Real data has varying local patterns

Real-World Scenario: Uber Driver Location Database

P Downtown Manhattan (High Density)

- Pattern: tightly clustered coordinates (small increments)
- Current Model: Same as everywhere else (fails at fine-grained lookups)
- Optimal Model: High-precision Neural Network

M Suburban Areas (Sparse)

- Pattern: Large jumps between coordinates
- Current Model: Struggles with gaps (poor prediction)
- Optimal Model: Decision Tree (handles discontinuities)

Highway Corridors (Linear)

- Pattern: Sequential progression along a route
- Current Model: Overcomplicated model (wasteful)
- Optimal Model: Linear Regression

Current approaches: Force one model type everywhere **Our insight:** Different regions need different models

Problem Statement - Formal Definition

Research Question: Can we improve learned index performance by using meta-learning to adaptively select the optimal model type for each data segment?

Hypothesis: Different data patterns require different model architectures. A meta-learning approach that selects models based on segment characteristics will outperform uniform model architectures.

Success Metrics:

- 15-25% reduction in lookup times
- Improved robustness across diverse datasets
- Interpretable model selection patterns

Novelty - The Meta-Learning Solution

Meta-Learning Definition:

- Core Concept: Machine learning system that selects optimal algorithms for specific problem instances
- **Input:** Problem characteristics (features)
- Output: Algorithm/model recommendation
- Training: Learn from performance patterns across diverse problem types

Technical Process:

- Feature Extraction: Characterize each problem instance
- 2. **Performance Mapping:** Record which algorithms work best for which features
- 3. **Meta-Model Training:** Learn the mapping from features to optimal algorithm
- 4. **Inference:** Predict best algorithm for new, unseen problems

Our Meta-Learning Application:

- **Problem Instance:** Each data segment in the index
- **Feature Space:** Statistical properties of data segments
- Algorithm Space: {Linear Regression, Polynomial, Decision Tree, Neural Network}
- Meta-Learner: Random Forest Classifier trained on segment features

Why Meta-Learning Here:

- Heterogeneous Data: Different segments have different optimal models
- Automation: Eliminates manual model selection and tuning
- Scalability: Decisions made automatically for thousands of segments
- Adaptability: System learns from new data patterns over time

Key Innovation:

- First application of meta-learning to learned index structure optimization
- Segment-level granularity rather than dataset-level decisions
- Feature-driven selection based on statistical data characteristics

System Architecture Overview

Four Core Components:

1. Feature Extractor

- Analyzes each data segment
- Extracts statistical features (skewness, entropy, variance)
- Captures local data characteristics

2. Model Zoo

- Repository of candidate models
- Linear, Polynomial, Decision Trees, Neural Networks
- Pre-profiled for performance characteristics

3. Meta-Learner

- Random Forest Classifier
- Maps segment features → optimal model choice
- Trained on diverse data patterns

4. Adaptive Index

- Integrates all components
- Per-segment model selection
- Unified query interface

Meta-Learning Process

Meta-Learning Process - Training the Decision Maker

Training Phase:

- 1. Generate diverse synthetic datasets
- 2. Segment each dataset
- 3. Extract features for each segment
- 4. Test all candidate models on each segment
- 5. Record optimal model for each feature pattern
- 6. Train meta-learner: Features → Best Model

Inference Phase:

- 1. New data segment arrives
- Extract statistical features
- 3. Meta-learner predicts best model
- 4. Use predicted model for this segment

Key Advantage: Automated, data-driven decision making

Meta Learning is not Ensemble Learning

What Ensemble Learning Does:

- Combines multiple models to make a single prediction
- All models run simultaneously on the same data
- Aggregates results (voting, averaging, weighted combination)
- **Example:** Random Forest uses multiple decision trees and averages their predictions

What Meta-Learning Does:

- Selects one optimal model based on problem characteristics
- Only the chosen model runs on the data
- Makes algorithmic choice before prediction
- Example: Our system chooses between linear regression
 OR decision tree, not both

Predictive Modeling Workflow

Feature Engineering - Understanding Data Segments

Statistical Features Extracted:

- **Distribution Shape:** Skewness, Kurtosis
- **Variability:** Variance, Standard deviation
- Information Content: Entropy
- **Structure:** Gap density, monotonicity
- **Trend:** Local slope, curvature

Why These Matter:

- Skewed data → Tree models might excel
- Linear trends → Linear regression optimal
- High entropy → Neural networks needed
- Regular gaps → Polynomial approximation

Model Zoo - Diverse Approaches for Diverse Data

Candidate Models:

1. Linear Regression

- Best for: Monotonic, linear trends
- Complexity: O(1) prediction
- Use case: Sequential IDs

2. Polynomial Regression

- Best for: Smooth curves, growth patterns
- Complexity: O(1) prediction
- Use case: Exponential data growth

3. Decision Trees

- Best for: Irregular patterns, plateaus
- Complexity: O(log depth)
- Use case: Categorical-influenced data

4. Shallow Neural Networks

- Best for: Complex, non-linear patterns
- Complexity: O(hidden units)
- Use case: Highly irregular distributions

Methodology - Experimental Design & Baseline Comparisons

Dataset Strategy:

- Synthetic Data: Controlled pattern evaluation
 - Piecewise linear, polynomial, noisy patterns
 - Known ground truth for validation
- Real-world Data: Practical validation
 - OpenStreetMap coordinates (geographic patterns)
 - NYC Taxi timestamps (temporal patterns)
 - Stack Overflow IDs (user behavior patterns)

Evaluation Metrics:

- Lookup latency (primary)
- Memory consumption
- Model selection accuracy
- Robustness across data types

We'll compare against:

1. Traditional B-Trees

- Industry standard
- Consistent performance baseline

2. Static Learned Indexes

- Single model type (e.g., all linear)
- Current state-of-the-art approaches

3. Oracle Selection

- Perfect model choice (theoretical optimum)
- Upper bound for our approach

Success Criteria:

- Outperform B-Trees by >20%
- Outperform static learned indexes by >10%
- Achieve >80% of oracle performance

Current State-of-the-Art Limitations

- CARMI: Heuristic rules → Our Work: ML-driven decisions
- RMI (Recursive Model Index): Uses neural networks uniformly
- ALEX: Adaptive but limited model types
- **PGM-Index:** Only piecewise linear models
- Gap: No intelligent, automated model selection based on data characteristics

Segmentation Inspiration - CARMI's Success Story

CARMI Paper Key Findings:

- Cache-Aware Recursive Model Index (2022)
- **Demonstrated:** Different data regions benefit from different model types
- Results: 20-40% performance improvement through adaptive model selection
- Limitation: Used heuristic-based selection, not machine learning

What CARMI Showed Us:

- Traditional Approach: [Single Model] applied to [Entire Dataset]
- CARMI Approach: [Different Models] for [Different Regions]
- Our Meta-Learning: [ML-Selected Models] for [Statistically-Defined Segments]

Why Segmentation Works:

- Real data is heterogeneous different patterns in different regions
- Local optimization outperforms global optimization
- Segment-level decisions allow fine-grained performance tuning

		unit	form datas	et	lognormal dataset			
workloads	indexes	space	time /ns		space	time /ns		
		/MB	uniform	zipfian	/MB	uniform	zipfian	
	CARMI	1394.3	114.3	85.1	1475.7	129.2	92.1	
read-only	ALEX	1474.3	112.5	83.3	1476.7	115.5	89.3	
	B-Tree	2276.0	482.6	267.8	2276.0	480.6	268.1	
	CARMI	1509.9	168.4	154.5	2127.4	190.3	168.6	
write-heavy	ALEX	1474.3	164.1	147.0	1476.7	294.0	262.9	
	B-Tree	2276.0	500.3	419.9	2276.0	522.4	421.9	
	CARMI	1509.4	135.8	102.1	2077.5	155.0	104.2	
read-heavy	ALEX	1474.3	116.2	89.2	1476.7	121.7	95.4	
	B-Tree	2276.0	488.9	286.8	2276.0	483.4	292.5	
	CARMI	1509.4	402.4	256.4	2077.5	434.3	271.3	
range scan	ALEX	1474.3	375.0	233.6	1476.7	383.6	240.3	
	B-Tree	2276.0	704.5	416.5	2276.0	728.5	414.7	

YCSB dataset		OS	MC datase	et	Face dataset			
space	time	space	time	/ns	space	time /ns		
/MB	/ns	/MB	uniform	zipfian	/MB	uniform	zipfian	
11.4*	93.2	1771.5	287.5	160.1	1812.6	248.5	166.4	
1474.3	97.6	1522.0	421.9	221.4	1522.0	404.0	228.1	
2276.0	269.7	2276.0	479.9	262.5	2276.0	480.6	261.5	
11.4*	161.2	1772.5	357.9	246.0	1882.7	316.9	246.2	
1474.3	317.3	1522.0	1109.1	893.3	1522.0	1801.7	1777.6	
2276.0	401.2	2276.0	503.5	421.3	2276.0	498.7	432.9	
11.4*	104.4	1771.9	330.2	172.5	1812.9	278.3	174.2	
1474.3	234.7	1522.0	651.7	420.4	1522.0	993.8	829.0	
2276.0	280.4	2276.0	483.1	284.5	2276.0	477.6	280.1	
11.4*	266.4	1771.9	585.6	305.3	1812.9	600.9	323.9	
1474.3	359.3	1522.0	935.3	598.2	1522.0	1246.4	990.5	
2276.0	393.1	2276.0	696.4	417.1	2276.0	698.7	415.3	

Novelty

- First meta-learning application to learned indexes
- Segment-level model selection (vs. dataset-level)
- Feature-driven automation (vs. heuristic-based)
- Statistical characterization of optimal model patterns

Challenges

Challenge 1: Feature Engineering Complexity

→ Solution: Start with proven statistical features, expand iteratively

Challenge 2: Segmentation Strategy

→ Solution: Test multiple approaches (fixed-size, pattern-based, adaptive)

Challenge 3: Meta-Model Generalization

→ Solution: Comprehensive synthetic training data + cross-validation

Challenge 4: Performance Overhead

→ Solution: Efficient caching + batch processing of segments

Limitations

- Inserts and Updates not optimized
- Offline learning -> could be expanded to online learning in the future
- Haven't thought of cache based optimizations
- Training Cost for Meta-Learner?
- Limited Fault Tolerance -> can have fallback mechanisms later, may introduce overhead
- Complexity of Deployment
 - A database admin can easily configure a B-Tree or Hash index.
 - Deploying a meta-learning-based index requires ML infrastructure, retraining pipelines, and monitoring — which increases system complexity.

Thank You

Open for Questions & Discussion

Segmented Database