Отчёт по лабораторной работе

Лабораторная №1

Панкратьев Александр Владимироваич

Содержание

1	Цел	ь работы	5
2	Зада	ние	6
3	Теоретическая справка		7
4	Выполнение лабораторной работы		9
	4.1	Изменение численности хищников и жертв	9
	4.2	Зависимость численности хищников от численности жертв	10
	4.3	Стационарное состояние системы	11
5	Выв	оод	12

List of Tables

List of Figures

3.1	Модель Лотки-Вольтерры	8
4.1	Графики изменеия численности популяций	9
4.2	График зависимости численности хищников от численности жертв	10
4.3	График стационарного состояния системы хищник-жертва	11

1 Цель работы

Рассмотреть модель взаимодействия двух видов типа «хищник — жертва». Вариант 37.

2 Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cy(t) - dx(t)y(t) \end{cases}$$

Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=9,y_0=18$. Найти стационарное состояние системы. Значения коэффициентов: a=0.79, b=0.078, c=0.77, d=0.076

3 Теоретическая справка

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - или модель Лотки-Вольтерры основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели х — число жертв, у - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (рис. 3.1, A), всякое же другое начальное состояние (В) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Figure 3.1: Модель Лотки-Вольтерры

4 Выполнение лабораторной работы

Для работы я использовал язык Python. Я задал необходимые начальные параметры и определил систему дифференциальных уравнений, описывающую изменение популяций.

4.1 Изменение численности хищников и жертв

На рис. 4.1 показан график изменения численности хищников и жертв с течением времени

Figure 4.1: Графики изменеия численности популяций

Как видно из рисунка, популяции циклически увеличиваются и уменьшаются одна за другой.

4.2 Зависимость численности хищников от численности жертв.

На рис. 4.2 показан график зависимости численности хищников от численности жертв. Как видно из рисунка, цикл не статический, с каждым оборотом амплитуда увеличивается, то есть максимальное количество особей на каждом новом шаге становится больше, а минимальное количество меньше.

Figure 4.2: График зависимости численности хищников от численности жертв

4.3 Стационарное состояние системы.

На рис. 4.3 показан график стационарного состояния системы, то есть при каждом новом обороте цикла общее количество особей сохраняется. Это положение системы достигается при $x_0=13, y_0=18.$

Figure 4.3: График стационарного состояния системы хищник-жертва

5 Вывод

Я построил и проанализировал модель взаимодействия двух видов типа «хищник — жертва».