再证原题。

证明: 由 B 对 \lor , \land 和求补运算的封闭性可知, \oplus 是 B 上的二元运算。

对任意 $a, b, c \in B$, 有

从而 ⊕ 是可结合的。

由∨和∧的可交换性立即可得⊕的可交换性。

对任意 $a \in B$,有

$$0 \oplus a = a \oplus 0$$
 (\oplus 是可交换的)
 $= (a \wedge \bar{0}) \vee (\bar{a} \wedge 0)$ (\oplus 运算定义)
 $= (a \wedge 1) \vee (\bar{a} \wedge 0)$ ($\bar{0} = 1$)
 $= a \vee 0$ ($0 \leq \bar{a}, \ a \leq 1, \$ 数材定理 19.2)
 $= a$ ($0 \leq a, \$ 数材定理 19.2)

从而 0 是关于 ⊕ 运算的单位元。

对任意 $a \in B$,有 $a \oplus a = (a \land \bar{a}) \lor (\bar{a} \land a) = 0 \lor 0 = 0$ 。从而 B 中所有元素都是自身的逆元。 这就证明了 $\langle B, \oplus \rangle$ 是 Abel 群。

19.28

证明:由上题结论可知, $\langle B, \oplus \rangle$ 构成 Abel 群。

由 B 对 \wedge 运算的封闭性和 \wedge 运算的可结合性可知, $\langle B, \otimes \rangle$ 是半群。

由 \wedge 运算对 \vee 运算的分配律可知, \otimes 运算对 \oplus 运算是可分配的。

这就证明了 $\langle B, \oplus, \otimes \rangle$ 是环。

由教材定理 19.3(3) 可知, 对任意 $a \in B$, 有 $a \otimes a = a$ 。从而 $\langle B, \oplus, \otimes \rangle$ 是布尔环。

19.29

证明: 充分性显然。下面证必要性。

作 $\varphi: B \to \mathcal{P}(A)$, $\forall x \in B$, $\varphi(x) = \{a \mid a \in B, a \in B, a \in A\}$ 。由教材定理 19.25 的证明过程可知, φ 是从 B 到 $\mathcal{P}(A)$ 的同构。

注意到, $\varphi(0)=\varnothing$,且对任何原子 $a_i\in A$,有 $a_i\in \varphi(a_i)$ 。反设 $x\neq 0$,则 $\varphi(x)\neq \varnothing$,从而存在 $a\in A$,使得 $a_i\in \varphi(x)$ 。于是有 $a\in \varphi(x)\cap \varphi(a)=\varphi(x\wedge a_i)\neq \varnothing$ 。这与 $\varphi(x\wedge a)=\varphi(0)=\varnothing$ 矛盾。

19.30

证明: 对n作归纳。

当 n=1 时,命题显然成立。

设 n = k 时, 命题成立。则当 n = k + 1 时,

 $\overline{a_1 \wedge a_2 \wedge \cdots \wedge a_k \wedge a_{k+1}} = \overline{a_1 \wedge a_2 \wedge \cdots \wedge a_k} \vee \overline{a_{k+1}}$ (教材定理 19.23(2))