Bayesian integrated population modeling using JAGS

Some further examples of integrated population models

Example 1:

Identifying demographic reasons of the UK lapwing decline

Background:

- Numbers declining in UK
- Demographic reasons unknown
- Brooks et al. (2004)

Available data:

- Population counts from Common Bird Census (CBC)
- Recoveries of dead individuals ringed as chicks

1. Set up a population model

Stochastic population model:

$$N_{1,t+1} \sim \text{Po}\left(N_{a,t}\rho_t S_{1,t}\right)$$

$$N_{a,t+1} \sim \text{Bin}\left(N_{1,t} + N_{a,t}, S_{a,t}\right)$$

<u>Parameters</u>

S: survival probability

 $\rho\text{: productivity}$

N₁: population size of 1y N_a: population size of adults

2. Likelihood for the different data sets

A. Counts: state-space model

State process equations:

$$\begin{split} N_{1,t+1} &\sim \operatorname{Po}\left(N_{a,t} \rho_t S_{1,t}\right) \\ N_{a,t+1} &\sim \operatorname{Bin}\left(N_{1,t} + N_{a,t}, S_{a,t}\right) \end{split}$$

Observation process equation:

Only breeding bird are counted, thus

$$y_t \sim N(N_{a,t}, \sigma_y^2)$$

Parameters

S: survival probability

ρ: productivity

N₁: population size of 1y

N_a: population size of adults

y: count data

 σ_{y}^{2} : census/residual error

B. Dead-recovery data

State process

Alive

Dead

Recovered

Not recovered

Observation process

- → Stochastic process

Deterministic process

B. Dead-recovery data

1. Survival process

$$z_{i,first} = 1$$
 $z_{i,t} \sim Bernoulli(z_{i,t-1}s_{i,t-1})$

where,

 $z_{i,t}$: matrix, indicating whether individual i is alive at time t (z = 1), or dead (z = 0)

 $s_{i,t}$: survival probability for individual i from time t to t+1

2. Observation process

$$y_{i,t} \sim Bernoulli([z_{i,t-1} - z_{i,t}]r_{i,t})$$

where,

 $y_{i,t}$: is the observed capture history for individual i at time t $r_{i,t}$: recovery probability for individual i at time t

Parameters

S: survival probability r: ring recovery probability

3. Joint likelihood

- State-space model likelihood $L_s(N_1, N_a, \rho, S_1, S_a, \sigma_v^2)$
- Dead recovery model likelihood $L_r(S_1, S_a, r)$
- Joint likelihood

$$L_{j}(N_{1}, N_{a}, \rho, \sigma_{y}^{2}, S_{1}, S_{a}, r) =$$

$$L_{s}(N_{1}, N_{a}, \rho, S_{1}, S_{a}, \sigma_{y}^{2})L_{r}(S_{1}, S_{a}, r)$$

Results

1. Population development

Results

2. Demographic rates

Conclusions

- Population decline confirmed by model
- Decline of productivity as a major demographic reason for the decline of the lapwing population in the UK

Benefits of integrated modelling for the lapwing example

- Estimate of productivity
- Smooth population index with confidence limits (both age classes)

Example 2:

Immigration in a little owl population

Background:

- Nest box population (SW Germany)
- Impact of vole density on immigration?
- Abadi et al. (2010), J. Appl. Ecol.

Available data (1978-2003):

- Capture-recapture data
- Reproductive success
- Number of breeding pairs

1. Set up a population model

Stochastic population equations:

$$\begin{split} & N_{1,t+1} \sim \text{Po}\Big[\big(N_{1,t} + N_{a,t} \big) \big(\phi_{1,t} \rho_t + i m_t \big) \Big] \\ & N_{a,t+1} \sim \text{Bin} \big(N_{1,t} + N_{a,t}, \phi_{a,t} \big) \end{split}$$

<u>Parameters</u>

φ: local survival probability

ρ: productivity

im: immigration rate

N₁: population size of 1y

N_a: population size of adults

2. Likelihood for the different data sets

A. Counts: state-space model

B. Capture-recapture data: Cormack-Jolly-Seber model

C. Number of fledglings: Poisson regression model

3. Joint likelihood

$$L_{j}(N_{1},N_{a},\rho,im,\phi_{1},\phi_{a},p)=L_{s}(N_{1},N_{a},\rho,im,\phi_{1},\phi_{a})L_{r}(\phi_{1},\phi_{a},p)L_{n}(\rho)$$

Graphical relationship between data and parameter:

Modelling immigration rate:

$$\log(im_t) = \beta_0 + \beta_1 vole_t$$

Results

Conclusions

- Immigration was substantial
- Immigration to the population was higher in years with abundant prey

Benefits of integrated modelling for the little owl example

- Estimate of immigration rate
- Modelling covariate effects on immigration

Example 3:

Demographic assessment of a small eagle owl population

Background:

- Population study from the Valais
- Why does the population not increase?
- Schaub et al. (2010), Biol. Cons.

Available data (1988-2008):

- Number of breeding pairs
- Number of fledglings per year
- Telemetry data of fledglings
- Age-ratios from museum skins

1. Set up a population model

Stochastic population sizes:

$$egin{aligned} N_{1,t+1} &\sim \mathsf{Po}igg[igg(rac{1}{2}N_{3,t} + N_{4,t}igg)ig(\phi_{juv,t}
ho_t + im_tig)igg] \ N_{2,t+1} &\sim \mathsf{Bin}ig(N_{1,t},S_{sad,t}ig) \ N_{3,t+1} &\sim \mathsf{Bin}ig(N_{2,t},S_{ad,t}ig) \ N_{4+,t+1} &\sim \mathsf{Bin}ig(ig(N_{3,t} + N_{4,t}ig),S_{ad,t}ig) \end{aligned}$$

Parameters

 ϕ_{juv} : local juvenile survival probability S_{sad} : subadult survival probability

 S_{ad} : adult survival probability

ρ: productivity

im: immigration rate

N₁: population size of 1y

N₂: population size of 2y

N₃: population size of 3y

N₄₊: population size of 4y or older

A. Counts: state-space model

B. Telemetry data of fledglings

- 28 owls tracked in the period 2002 2008
- Capture-recapture type of analysis with trap-dependence
- Survey area: Valais and some adjacent valleys

C. Age-ratio from museum skins

- 102 owls from the period 1988 2008 from whole Switzerland
- Age-ratio methods (Udevitz & Ballachey 1998)
 - Population growth rate must be known
 - Stable age distribution
 - Finding probability independent of age

D. Number of fledglings: Poisson regression model

3. Joint likelihood

Graphical relationship between data and parameter:

Estimates of demographic rates

	Mean	SD
Local juvenile survival	0.09	0.05
Subadult survival	0.54	0.06
Adult survival	0.61	0.07
Productivity	0.93	0.10
Immigration rate	1.59	0.66
Population growth rate	1.01	0.01

Population composition

Conclusions

- Stable population only due to massive immigration
- Population not self-sustainable
- Mortality very high, most of it human-induced

Benefits of integrated modelling for the eagle owl example

- Estimates of immigration and adult survival
- Estimates of population sizes

Example 4: Correlates of immigration in a common tern colony

Background:

- Population study in the Wadden Sea
- Immmigration important at all?
- By which factors are immigrants attracted?
 - Conspecific attraction?
 - Public information?

Available data (1994-2010):

- Number of breeding pairs
- Number of fledglings per year
- Capture-recapture data

Life cycle graph

Immigration was important for the tern colony growth

Conspecific attraction?

Conspecific attraction?

Public information?

- Immigration was an important demographic driver of the tern colony dynamics
- Conspecific attraction is most likely a driver for immigrants and for the settlement decision
- Public information about productivity was not important for the settlement decision

Example 5: Significance of immigration for the dynamics of a red-backed shrike population

Background:

- Population study in southern Germany
- Has immigration contributed to the dynamics?
- Can immigration contribute to population regulation?
- Composition of the population

Available data (1971-2006):

- Number of breeding pairs
- Number of fledglings per year
- Capture-recapture data

Impact of the variation of demographic rates on the variation of population growth

Density-dependence

Change of population composition with population size

- Immigration was the most important factor for the dynamics of the redbacked shrike population
- Population regulation (density-dependence) operated mainly via immigration
- The composition of the population changed with population size

Example 6: **Population synchrony in barn swallows**

Background:

- Assess synchrony of population growth and of underlying demographic rates
- Insights into demographic mechanisms of population synchrony

Available data:

- 9 sites
- Number of breeding pairs
- Clutch size (1 & 2 brood)
- Num. of fledglings (1st & 2nd brood)
- Whether an indv. is double brooding
- Capture-recapture data

Life cycle graph

Population composition

S: Survivors

R: Local recruits

I: Immigrants

<u>Demographic processes</u>

Survival

• ϕ_a : adult apparent survival

Local recruitment

First brood

• ρ' : clutch size

• ξ': fledging success

φ_i: juv. apparent survival

Second brood

• ρ'' : clutch size

• ξ'' : fledging success

ullet : prob. second brood

Immigration

• ω : immigration rate

Integrated population model

State-space model for the count data

State process equations

$$\begin{split} S_{i,t+1} &\sim \text{Binomial} \left(N_{i,t}, \phi_{i,a,t} \right) \\ R_{i,t+1} &\sim \text{Binomial} \left(FI_{i,t}, \phi_{i,j,t} \right) \\ FI_{i,t} &\sim \text{Poisson} \left(N_{i,t} \left(\rho_{i,t}^I \xi_{i,t}^I + \kappa_{i,t} \rho_{i,t}^{II} \xi_{i,t}^{II} \right) \right) \\ I_{i,t+1} &\sim \text{Poisson} \left(N_{i,t} \omega_{i,t} \right) \\ N_{i,t} &= R_{i,t} + I_{i,t} + S_{i,t} \end{split}$$

Observation equations

$$y_{i,t} \sim \log Normal(N_{i,t}, \sigma_i^2)$$

Likelihood:

$$L_{SS}(\mathbf{y}|\mathbf{N},\boldsymbol{\phi}_{j},\boldsymbol{\phi}_{a},\boldsymbol{\rho}',\boldsymbol{\xi}',\boldsymbol{\kappa},\boldsymbol{\rho}'',\boldsymbol{\xi}'',\boldsymbol{\omega},\boldsymbol{\sigma}^{2})$$

 $y_{i,t}$: Counts (site i, year t)

 σ_i^2 : Residual error at site *i*

Integrated population model

- Cormack-Jolly-Seber models for capture-recapture data:
 - Estimation of juvenile and adults apparent survival probabilities
 - Example of a capture history: $m_i = \{101000\}$
 - Imperfect detection has to be taken into account
 - Define latent state variable **z**: if individual *i* is alive at $t \rightarrow z_{i,t} = 1$, otherwise $z_{i,t} = 0$
 - Then, $z_{i,t} | z_{i,t-1} = 1 \sim Bernoulli(\phi_{i,t-1})$ $y_{i,t} | z_{i,t} = 1 \sim Bernoulli(p_{i,t})$ p: recapture probability

- Likelihood: $L_{CJS}(\mathbf{m}|\boldsymbol{\phi}_{j},\boldsymbol{\phi}_{a},\mathbf{p})$

Integrated population model

Poisson regression model for clutch sizes

$$c'_{i,t,k} \sim \mathsf{Poisson}ig(oldsymbol{
ho}'_{i,t}ig)$$
, $c''_{i,t,k} \sim \mathsf{Poisson}ig(oldsymbol{
ho}''_{i,t}ig)$

Logistic regression for fledging success

$$u'_{i,t,k} \sim \text{Binomial}(c'_{i,t,k}, \xi'_{i,t}), \ u''_{i,t,k} \sim \text{Binomial}(c''_{i,t,k}, \xi''_{i,t})$$

- Logistic regression for probability of double brooding $d_{i,t,k} \sim \operatorname{Bernoulli}(\kappa_{i,t})$
- Likelihoods:

$$L'_{R1} = \left(\mathbf{c'} \middle| \boldsymbol{\rho'}\right), \ L''_{R1} = \left(\mathbf{c''} \middle| \boldsymbol{\rho''}\right), \ L'_{R2} = \left(\mathbf{u'}, \mathbf{c'} \middle| \boldsymbol{\xi'}\right), \ L''_{R2} = \left(\mathbf{u''}, \mathbf{c''} \middle| \boldsymbol{\xi''}\right), \ L_{R3} = \left(\mathbf{d} \middle| \boldsymbol{\kappa}\right)$$

Joint likelihood:

$$L_{IMP} = L_{SS} \times L_{CJS} \times L_{R1}' \times L_{R1}'' \times L_{R2}' \times L_{R2}'' \times L_{R3}$$

Models for demographic rates

- Data from all 9 populations analysed jointly
- Hierarchical model for each demographic parameter θ:

$$g(\boldsymbol{\theta}_{i,t}) = \boldsymbol{\mu}_i + \boldsymbol{\varepsilon}_t + \boldsymbol{\omega}_{i,t}$$

 $\boldsymbol{\varepsilon}_t \sim Normal(0, \boldsymbol{\sigma}_t^2)$
 $\boldsymbol{\omega}_{i,t} \sim Normal(0, \boldsymbol{\sigma}^2)$

Intraclass correlation:

$$ICC = \frac{\sigma_t^2}{\sigma_t^2 + \sigma^2}$$

Results: population synchrony

Results: synchrony of demographic rates

Results: synchrony of demographic rates

Results: Intraclass correlations

Discussion

Dynamics driven by variation of survivors (adult survival) and gains (local recruitment + immigration)

Survivors:

 Synchrony of adult survival directly induces synchrony of survivors → contributes to population synchrony

Gains:

- Local recruitment: small due to strong natal dispersal → hardly contributes to population synchrony
- Immigration:
 - Immigrants are mostly first time breeders
 - Related to the number of fledglings produced in neighbouring populations
 - Synchrony of immigration is a consequence of synchrony of productivity
 - Operates via natal dispersal, appears as immigration in the models for local dynamics

How much can synchrony of demographic rates contribute to population synchrony?

Simulation study

$$oldsymbol{\sigma}_{total}^2 = oldsymbol{\sigma}_t^2 + oldsymbol{\sigma}^2$$
 $oldsymbol{arepsilon}_t \sim ext{Normal} \Big(0, oldsymbol{\sigma}_{total}^2 imes ICC \Big)$
 $oldsymbol{\omega}_{i,t} \sim ext{Normal} \Big(0, oldsymbol{\sigma}_{total}^2 imes ig(1 - ICC ig) \Big)$
 $oldsymbol{g} ig(oldsymbol{ heta} ig) = oldsymbol{\mu}_i + oldsymbol{arepsilon}_t + oldsymbol{\omega}_{i,t}$

- Change ICC of demographic rates in turn
- $\lambda_{i,t} = \phi_{i,a,t} + \phi_{i,j,t} \left(\rho'_{i,t} \xi'_{i,t} + \kappa_{i,t} \rho''_{i,t} \xi''_{i,t} \right) \frac{1}{2} + \omega_{i,t}$
- Calculate ICC at the population level

Example 8: Redhead population dynamics

Background:

- Mid continent states & provinces
- Assess population dynamics in relation to
 - Breeding habitat availability
 - Density-dependence
 - Hunting regulation

Available data (1960-2009)

- Breeding population survey (from Waterfowl Breeding Population and Habitat Survey data base)
- Banding and recovery data
- Harvested duck wings (age and sex ratios)

Structured life cycle

- 2 age classes
- 2 sexes
- pre-breeding census
- By the next spring a recruited bird enters its second year (SY) and it can breed

 $N_{f,SY}$: Second-year females

 $N_{f,ASY}$: After-second year females

 $N_{m,SY}$: Second-year males

 $N_{m,ASY}$: After-second year males

State-space model for population survey data

State process equations:

```
\begin{split} N_{f,SY,t+1} &\sim Poisson \Big( N_{f,SY,t} \tau F_t S_{f,j,t} 0.5 + N_{f,ASY,t} F_t S_{f,j,t} 0.5 \Big) \\ N_{f,ASY,t+1} &\sim Binomial \Big( S_{f,a,t}, N_{f,SY,t} + N_{f,ASY,t} \Big) \\ N_{m,SY,t+1} &\sim Poisson \Big( N_{f,SY,t} \tau F_t S_{m,j,t} 0.5 + N_{f,ASY,t} F_t S_{m,j,t} 0.5 \Big) \\ N_{m,ASY,t+1} &\sim Binomial \Big( S_{m,a,t}, N_{m,SY,t} + N_{m,ASY,t} \Big) \end{split}
```

Observation equations:

$$\begin{aligned} \boldsymbol{y}_{t} &\sim Normal \Big(\tau N_{f,SY,t} + N_{f,ASY,t} + N_{m,SY,t} + N_{m,ASY,t}, \sigma_{t}^{2} \Big) \\ \boldsymbol{\sigma}_{t}^{2} &= \theta_{0} \boldsymbol{y}_{t} \\ \end{aligned}$$

$$\boldsymbol{S}_{f,j} : \mathbf{J}_{t}$$

Likelihood: $L_{ss}(y|\mathbf{N},\mathbf{S},F,\tau,\theta_0)$

 $S_{f,i}$: Juvenile survival of females

 $S_{f,a}$: Adult survival of females

 $S_{m,i}$: Juvenile survival of males

 $S_{m,a}$: Adult survival of males

F: Fecundity

 τ : Proportion of SY females that reproduce

Band-recovery model for band-recovery data

Likelihood: $L_{CR}(m|\mathbf{S},\mathbf{r})$ r: Age- and sex-specific recovery rates

Binomial models for age- and sex ratio data

$$\mathbf{w}_{f, SY, t} \sim Binomial(\eta_{f, SY, t}, \mathbf{w}_{f, t})$$

w_t: Age- and sex-specific number of retrieved wings in year *t*

$$\eta_{f,SY,t} = \frac{0.5F_{t} \left(\tau N_{f,SY,t} + N_{f,ASY,t}\right) \left(1 - S_{f,j,t}\right) r_{f,j,t}}{0.5F_{t} \left(\tau N_{f,SY,t} + N_{f,ASY,t}\right) \left(1 - S_{f,j,t}\right) r_{f,j,t} + \left(N_{f,SY,t} + N_{f,ASY,t}\right) \left(1 - S_{f,a,t}\right) r_{f,a,t}}$$

Likelihood: $L_w(w|\tau, \mathbf{N}, F, \mathbf{S}, \mathbf{r})$

Population development

Demographic rates and discussion

	Mean (SD)
Fecundity	
Offspring per female (F)	1.50 (0.14)
Presence of HY females (τ)	0.52 (0.10)
Survival probability (S)	
Juvenile females	0.47 (0.02)
Adult females	0.65 (0.01)
Juvenile males	0.45 (0.02)
Adult males	0.71 (0.01)
Recovery probability (r)	
Juvenile females	0.04 (0.005)
Adult females	0.02 (0.002)
Juvenile males	0.05 (0.005)
Adult males	0.04 (0.002)

- Interactive effects of pond numbers and density-dependence on fecundity
- No effect of hunting regulation on survival
- Density-dependence of female juvenile survival
- Population booms occurred after wet years