IAPR 2020 : Project presentation

Team 31 : Kilian Meier, Gabriel Tornare, Jérôme Savary 29.05.2020

General system overview

Goal: find the position of the arrow for each frame

- Conversion from RGB to YUV format
 - Inspection of U channel: arrow shines above all
- Segmentation by Otsu thresholding with fail safe
 - Avoid sudden threshold decrease
- Find object mean position using moments
- Output arrow positions vector
- Plot arrow path (if you want to)

Operators and Digits segmentation

- Preprocessing (grayscale, equalization)
- Otsu thresholding (first approximation of objects)
- Opening (remove noise, table edge)
- Labeling regions
- Merging regions that are too close
- Discarding regions that are too big or too small, or around the arrow
- Compute center of regions
- Extracting sub-images around regions
- Otsu thresholding of sub-images

Operator classification

We used 3 features:

- The number of objects N inside each segmentation :
 - \circ N = 3 \rightarrow \div
 - \circ N = 2 \rightarrow =
 - $0 N = 1 \rightarrow either + , *, -$
- The total Area
- The 5th Fourier Descriptor RTSI

We used data augmentation (with random translation and rotation) to generate 1200 pictures from :

- The operators given on Moodle (Originals)
- The operators extracted from the Test Video

A simple LDA classifier was trained on the augmented dataset to separate + , * , – operators :

Digit classification

• Data Augmentation :

- Training set: 600'000 pictures were generated from the 60'000 Mnist training set with random rotations and translations.
- Video test set: 1002 pictures were generated from the video (also with random rotations and translations)

CNN (built with Keras) :

Optimizer : Adam

o Batch size: 32

O Nb epochs: 1

Loss : Categorical Crossentropy

Activation functions : Relu (and Softmax for last layer)

Results:

Accuracy on test set: 93.5%

Accuracy on video test set: 93.1%

Ameliorations :

- Increase the CNN structures :
 - **(784-40-80-500-1000-2000-10)**
 - But it takes a lot of time to train

CNN layer structure :

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 100) 1000
conv2d_2 (Conv2D)	(None, 24, 24, 50)	45050
conv2d_3 (Conv2D)	(None, 22, 22, 20)	9020
conv2d_4 (Conv2D)	(None, 20, 20, 9)	1629
flatten_1 (Flatten)	(None, 3600)	0
dense_1 (Dense)	(None, 9)	32409

Total params: 89,108 Trainable params: 89,108 Non-trainable params: 0