

FIG. 1

2/83

ы м	E. coli B. subtilis	MSYQVLARKWRPQTFADVVGQEHVLTALANGLSLGRIH haylfsgt rgvgk <u>T</u> SIARLLAK MSYQALYRVFRPQRFEDVVGQEHITKTLQNALLQKKFS HAYLFS<u>GP</u> RGTGKTSAAKIFAK **** * * * * * * * * * * * * * * * * *
ы п	coli subtilis	<pre>GLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPARGRF AVNCEHAPVDEPCNECAACKGITNGSISDVIEIDAASNNGVDEIRDIRDKVKFAPSAVTY</pre>
ы	coli subtilis	KVYLIDEVHMLSRHSFNALL KTLEEPPEH VKFLLATTDPQKLPVTILSRCLQFHLKALDV KVYIIDEVHMLSIGAFNALL KTLEEPPEH CIFILATTEPHKIPLTIISRCQRFDFKRITS

ATP binding

FIG. 2

FIG. 3

4/83

09	120	180 (17)	240 (37)	300	360	420 (97)	480	540 (137)
TACCCAGGCC	CACGCCCTAT S.D.	GAG GTG GTG glu val val	CAC CTC GCC CAG leu ala gln	CTC CTC GCC leu leu ala	TGC CAG GCG cys gln ala	AAC TCC GTG asn ser val	CCC AGG AAG pro arg lys	CTC CTC AAG leu leu lys
TGAGCCCCTT	ACGTCCGCAC	CTC ACC TTC CAG leu thr phe gln	CGG GAG GGG AGG arg glu gly arg	ACC ACG GCG AGG thr thr ala arg	GTC TGC CCC CAC val cys pro his	GCC GCC AGC AAC ala ala ser asn	CCC CTC TCT GCC pro leu ser ala	GCC TTC AAC GCC ala phe asn ala
GCCCCTCCCG	AAGGAGAGGA	TTC CGC CCC phe arg pro	AAG GCC ATC lys ala ile	GGC AAG ACC gly lys thr	CCT TGC GGG pro cys gly	GAC ATT GAC asp ile asp	CAC CTC GCC his leu ala	TCC AAA AGC GCC ser lys ser ala
GTAGACCCCG	CAAGGCGTGC	TC TAC CGC CGC eu tyr arg arg	GAG CCC CTC CTC glu pro leu leu	AC CCC AGG GGC GTG pro arg gly val	GGG GAA GAC CCC gly glu asp pro	CCG GAC GTG GTG pro asp val val	AGG GAA AGG ATC arg glu arg ile	CC CAC ATG CTC la his met leu
GGGTTCCCAG	CCAGGGGGGC	GTG AGC GCC CTC met ser ala leu	CAC GTG AAG his val lys	TTC TCC GGS TTC TCC GGG phe ser gly	GGG TGC CAG gly cys gln	GGC GCC CAC gly ala his	CGG GAG CTG arg glu leu	TTC ATC CTG GAC GAG GCC phe ile leu asp Glu ala
TCCGGGGGTG	GCCACCTCCT	ACTAGCCTT	GGG CAG GAG gly gln glu	GCS TAC CTS GCC TAC CTC ala tyr leu	ATG GCG GTG met ala val	GtG CAG AGG val gln arg	GAG GAC GTG glu asp val	GTC TTC ATC val phe ile

FIG. 4A-1

5/83

600 (157)	660 (177)	720 (197)	780 (217)	840 (237)	900 (257)	960 (277)	1020 (297)	1080 (317)
AGG arg	GAG glu	GAG glu	CTG leu	GGC gly	GCG ala	GTC val	ACC	ATG met
GAG glu	GAG glu	GAG glu	CTC leu	CTA leu	ACG	CTG leu	GGA gly	GCC ala
CCC	ACG	GAG glu	AGC ser	GCC ala	AAA 1ys	AGC ser	GCG ala	GAG glu
GAG glu	CTC leu	GCG ala	GAA glu	CGC arg	$\tt GGG\\ \tt g1Y$	AGG arg	CTC leu	GAC asp
ACC thr	CGC	GAG glu	GCG ala	GAG glu	AGG arg	CCG	GGC gly	CTG leu
ACC	CGC	CGG arg	GAC asp	GTG val	GCG ala	GCC ala	TTC phe	GCC ala
GCC ala	TTC	$\tt GGG$	AGG arg	GAG glu	CTC leu	TAC	GCC ala	ACC thr
TTC phe	CGC	GTG val	CTT leu	AAG lys	TCC	GGG gly	GCC ala	ATG met
GTC val	TTC phe	GCC ala	GCC ala	CGG arg	GCC ala	GAA glu	\mathtt{TAC}	GCC ala
TTC phe	CAC his	GAG glu	GGG gly	ACC	GCC ala	GGG gly	CTC leu	GCC ala
CTC leu	CAG gln	CTG	GAC asp	CTC leu	ATC ile	\mathtt{TAC}	GGC gly	ATC ile
GTC val	ACC	ATC ile	GCG ala	CCC	GAG glu	CTC leu	GAA glu	CTG leu
<i>GTG</i> CAC his	CGC	CGC arg	CTG leu	GGC gly	GCC ala	CGC	CGG	GCC ala
CTC CCC pro	TCC	CGG arg	CGC arg	GAA glu	GTG val	CGG arg	TTC	CAG gln
<i>GGS</i> CCG pro	CTC	CTC	GCC ala	CTG	$\frac{\text{GGG}}{\text{g1Y}}$	GCC ala	GTG val	CCC
<i>GGS</i> CCC pro	ATC ile	AAG	CTC leu	CTC	ACC thr	CTC	GAG glu	CCG pro
<i>CTC</i> GAG glu	${ t ACC} { t thr}$	TTT phe	CTC	CTC	GGG gly	GGC gly	TTG	GCC ala
<i>CTC</i> GAG glu	CCC	GCC ala	CTC	TTC phe	CCA	CTG leu	CTT leu	CCC
CTS CTG leu	CCC	ATC ile	CTC	CGC	CCC	GCC	GGC gly	CTT leu
TGS ACC thr	ATG	GAG	GCC ala	GAG glu	TCC	GAG glu	TCG	CCC

FIG. 4A-2

6/83

1140 (337)	1200 (357)	1260 (377)	1320 (397)	1380 (417)	1440 (437)	1500 (457)
GAC GCC TTA AGC CTG GAG GTG GCC CTC CTG GAG GCG GGA asp ala leu ser leu glu val ala leu leu glu ala gly	GGC gly	CTG leu	CGG arg	GCC ala	CAT	AGG arg
GCG ala	GTC	GAC asp	GTG val	AAG 1ys	GCC ala	CCA
GAG glu	GAG glu	CCC	TTC	GAC asp	CAG gln	AGC ser
CTG leu	CCA	GAG GCG glu ala	GCC ala	GAG glu	3CC ala	frameshift site GGA GAA AAA AAA AGC C rG gly glu lys lys ser leu
CTC leu	TCC	GAG glu	CGG arg	CCC	CTG leu	te AGC ser
GCC ala	CCT	GAG glu	CTA leu	TTC	CCC	t si AAA lys
GTG val	GCT ala	CCC	ACC	GCT ala	CTC	sshi f AAA lys
GAG glu	${\tt GGC}$	AGG arg	CCC	CTC	BAGG CTC CTC Care arg leu p	rame GAA glu
CTG leu	ACG thr	CCA pro	AGG arg	TGC	AGG arg	f GGA gly
AGC ser	CCC	CCC	CTC leu	CTC leu	GTC va]	GAG glu
TTA leu	CAG gln	GAA glu	GCC ala	CAG gln	AAG 1ys	CTG
GCC ala	CCC	CCG	GAG glu	GGC gly	CAG gln	GTC val
GAC asp	CTA leu	ACC thr	CTC leu	GAA glu	GAA glu	CTC
TCC	GCC ala	CCG	TTC	CGG	TCG	GTC CTC GTC val
CGC arg	GAG glu	CCC	GCC ala	GTC val	GCC ala	GTC
GCC CGC ala arg	GCC ala	AGC	CGG	GAG glu	AAG lys	GAG glu
GCC ala	GCC ala	GAA glu	TGG trp	CCG	CGC	GAG glu
cGC CTC arg leu	CTG	CCG	CGG	CGC	TAC	GTG val
CGC arg	GCC ala	AAG 1ys	GAG glu	GCC ala	CAC his	GGG gly
GAG glu	AGG arg	CCC	CGG	GAG glu	${ m TTC}$	TTC

FIG. 4B-1

7/83

2027				TCATCTA	CTGAAGAACT	CGCCACCATG
2000	CCGAGGAGAT	CCCAAGAAGC	CAAGGTGAAC	TCTCCGAGGG	GCCGCCGAGG	GAACGTCTGC
1940	ACGAGTTCCT	CTGATCCTCC	GGCGGCCACC	CCATGGAGGC	ACCAAGAAGG	GATGACCGCC
1880	TCCTCACCCA	TGCGACGAGG	റാറാളാട്ട	TGGTGGCCGA	CTCCAGAAGA	GGTGCGGGGG
1820	TTGAGGGCCA	CTCCGCCGTA	CCTCAAGCGC	TGGACAACAT	CAAGAGACCG	CGACCTCGGA
1740 (529)	ACGCGGACCAC	TGGGGGCATG	GGT ATA TAA gly ile *	ATA GGG GGT ACT ile gly gly thr	CCC CTG AGC CAA GAC GAG ATA pro leu ser gln asp glu ile	CCC CTG AGC pro leu ser
1680 (517)	GAG GAG GAA glu glu glu	CGG GAG GCG CCG arg glu ala pro	CCC AGG ACC pro arg thr	TGG GTG CGG CGG trp val arg arg	GTG CTC val leu	CTG GGG GGG CGG leu gly gly arg
1620 (497)	GTC CGC CTC val arg leu	TTG AGG CGG GTG leu arg arg val	GAG GAG GCC glu glu ala	GAG GAG GCC CCG glu glu ala pro	GAG GCG GAG GAA GCG GCG GAG glu ala glu glu ala ala glu	GAG GCG GAG glu ala glu
1560 (477)	GAG GAG GTA glu glu val	GGC CCT CCC GAG gly pro pro glu	CCC CCG	CCC CGC CCG GCC CCA CCT CAA GCG CCC GCA pro arg pro ala pro pro pro glu ala pro ala	GCC CCA CCT ala pro pro	CCC CGC CCG pro arg pro

FIG. 4B-2

8/83

51	111	171	231	291	351	411	471	531	591	651	711	771	831	891	951	1011	1071	1131	1191	1251	1311	1371	1431	1491	1551	
3TG	CAG	300	3CG	3TG	AAG	AAG	AGG	3AG	3AG	CTG	390	3CG	3TC	ACC	ATG	3GA	390	CTG	299	300	CAT	₽GG	3TA	CTC	3AA	
	225																									
	CIC																									(0)
	AGG C																									וח
	GGG A																									
	GAG G																									
	550 C																									
	: ATC																								-	
	ည္ဟ																									
$_{ m LLC}$	AAG	ggC	CCI	GAC	CAC	TCC	TIC	CAC	GAG	999	ACC	$\frac{1}{2}$	999	$C_{1}^{T}C$	CC	AGC	CCC	CCC	CTC	CTC	GTG	GAG	GCA	GAG	CCC	999
CGC	CTC	GTG	CCC	GTG	ATC	CTC	CTC	CAG	CTG	GAC	CIC	ATC	TAC	ggC	ATC	TTA	CAG	GAA	gcc	CAG	AAG	CTG	CCC	CCG	CGG	ATA
CGC	CIC	GGC	GAC	GTG	AGG	ATG	GIC	ACC	ATC	GCG	CCC	GAG	CIC	GAA	CTG	CCC	CCC	CCG	GAG	ggc	CAG	GTC	gcg	GCC	CGG	GAG
TAC	CCC	AGG	GAA	GAC	GAA	CAC	CAC	CGC	CGC	CTG	ggc	gcc	CGC	CGG	CCC	GAC	CTA	ACC	CIC	GAA	GAA	CIC	GAA	GAG	SIG	GAC
	GAG																				_	_	_	_	_	_
	AAG (
	GTG 7																									
	CAC G																									
G		CIC I																								Ö
		C TAC																								
	999	ပ္ပ	ΑT	Gt	GA	GT	AC	AT	ĞĄ	ပ္ပ်	ĞĀ	Ď	ĞĀ	Ď	Ö	ĞĄ	AĞ	Ö	Ö Ö	ĞĀ	LL	LL	Ω̈́	GA)	ĊŢ	

FIG. 4C

9/83

glu argin and salu an gly a solution of the solution gly all a man a ma val leu a ser d'a glu con solution of the control of t a by a control of the thrapped a substitution of the control of the contr pro thr thr gly asp asp asp ser ser ser ser gly gly gly ala arg arg ala ala arg phopological properties of the properties of the properties of the phopological properties of ty physical design of the control of Met by his by hi

FIG. 4D

10/83

20	40	09	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	464
glu	len	val	arg	val	ile	glu	pro	ala	len	phe	pro	len	len	pro	leu	len	pro	arg	arg	tyr	val	pro	
																				his			
																				bhe			
																				ala .			
																				$_{\rm lys}$			
																				asp			
																				glu			
																				pro e			
																				phe 1			
																				ala 1			
																				leu a			
																				cys]			
																				leu d			
																				gln]			
																				glyg			
																				gluç			
																				arg c			er
																						val v	hr
																						glu v	
																						gluç	
4		74	U,	U)	10	-	U)		14	. 7	. 7	U,	U,		٠.	٠.	.0	J,	_	74	,0	U,	Ui

FIG. 4E

11/83

20	40	09	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	454
glu	len	val	arg	val	ile	glu	pro	ala	len	phe	pro	len	len	pro	len	len	pro	arg	arg	tyr	val	
	tyr																					
	ala																					
	gln																					
	ala g																					
	leu a																					
	arg l																					
	u gly																					
	g glu																					
	arg																					
	11e																					
arg	ala	1ys	cys	ile	leu	1ys	val	phe	ala	ala	arg	ala	glu	tyr	ala	len	thr	pro	arg	cys	arg	g1y
phe	1ys	gly	pro	asp	his	ser	phe	his	glu	g1y	thr	ala	g1y	leu	ala	ser	pro	pro	len	leu	val	glu
arg	leu	val	pro	val	ile	leu	leu	gln	len	asp	leu	ile	tyr	g1y	ile	leu	gln	glu	ala	gln	1ys	leu
arg	leu	gly	asp	val	arg	met	val	thr	ile	ala	pro	glu	len	glu	len	ala	pro	pro	glu	gly	gln	val
tyr	pro	arg	glu	asp	glu	his	his	arg	arg	leu	gly	ala	arg	arg	ala	asp	len	thr	leu	glu	glu	leu
	glu																					
	lys																					
	val .																					
	his																					
4	~	1	, U	· ()	10		O)	٠,	74			U	U		νυ	'U	'n	U	-	14	10	U

FIG. 4F

12/83

E.coli		09
H.inf.	\widetilde{K} \widetilde{K} \widetilde{K} \widetilde{K} \widetilde{K} \widetilde{K} \widetilde{K} DN. \widetilde{L} \widetilde{K} DN. \widetilde{L} \widetilde{K}	09
B.sub.		09
C.cres.		113
M.gen.		29
T.th.		28
	Zn ⁺⁺ finger	
	* * *	
E.coli	GLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYAPA 1:	116
H.inf.		116
B.sub.		116
C.cres.		173
M.gen.		115
T.th	AVG.QGEDPPH.QAVQR.AHP.VVDNNSV.E.RERIHLL	112
E.coli	RGRFKVYLIDEVHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRCLQFHLK 1	176
H.inf.		176
B.sub.		176
C.cres.		233
M.gen.		175
T.th.		172

FIG. 5A

13/83

FIG. 5B

FIG. 6

FIG. 7

16/83

FIG. 8A

	READING Frame	BLUE	WHITE
SHIFTY SEQUENCE	0 -1 -2	+ + +	
MUTANT SEQUENCE	0 -1 -2	++	+ +

FIG. 8B

17/83

FIG. 9

18/83

FIG. 10C

REPLACEMENT SHEET

FIG. 11A

FIG. 11B

20/83

FIG. 12A

FIG. 12B

FIG. 12C

21/83

FIG. 13A

FIG. 13B

ATP AGAROSE STEP COLUMN

FIG. 14A

FIG. 14B

24/83

E.coli	DRYFLELIRTGRPDEESYLHAAVELAEARGLPVV 197	(ID#72)
V.chol.	DHFYLELIRTGRADEESYLHFALDVAEQYDLPVV 197	(ID#13)
H.inf.	DHFYLALSRTGRPNEERYIQAALKLAERCDLPLV 197	(ID#74)
R.prow.	DRFYFEIMRHDLPEEQFIENSYIQIASELSIPIV 195	(ID#12)
H.pyl.	DDFYLEIMRHGILDQRFIDEQVIKMSLETGLKII 213	(1D#16)
S.sp.	DDYYLEIQDHGSVEDRLVNINLVKIAQELDIKIV 202	(LD#17)
M.tub.	DNYFLELMDHGLTIERRVRDGLLEIGRALNIPPL 220	(ID#18)
T.th.	FFIEIQNHGLSEQK	(ID#61)

Alignment of TTH1 with alphas subunits of other organisms.

FIG. 15A

Alignment of TTH2 with alphas subunits of other organisms.

FIG. 15B

ATGGGCCGGGAGCTCCGCTTCGCCCACCTCCACCAGCACA	
CCCAGTTCTCCCTCCTGGACGGGGGGGGGGAAGCTTTCCGA	
CCTCCTCAAGTGGGTCAAGGAGACGACCCCGAGGACCCC	120
GCCTTGGCCATGACCGACCACGGCAACCTCTTCGGGGCCG	
TGGAGTTCTACAAGAAGGCCACCGAAATGGGCATCAAGCC	
CATCCTGGGCTACGAGGCCTACGTGGCGGCGGAAAGCCGC	240
TTTGACCGCAAGCGGGGAAAGGGCCTAGACGGGGGCTACT	
TTCACCTCACCCTCGCCAAGGACTTCACGGGGTACCA	
GAACCTGGTGCGCCTGGCGAGCCGGGCTTACCTGGAGGGG	360
TTTTACGAAAAGCCCCGGATTGACCGGGAGATCCTGCGCG	
AGCACGCCGAGGGCCTCATCGCCCTCTCGGGGTGCCTCGG	
GGCGGAGATCCCCCAGTTCATCCTCCAGGACCGTCTGGAC	480
CTGGCCGAGGCCCGGCTCAACGAGTACCTCTCCATCTTCA	
AGGACCGCTTCTTCATCGAGATCCAGAACCACGGCCTCCC	
CGAGCAGAAAAAGGTCAACGAGGTCCTCAAGGAGTTCGCC	600
CGAAAGTACGGCCTGGGGATGGTGGCCACCAACGACGCC	
ATTACGTGAGGAAGGACGCCCGCGCCCACGAGGTCCT	
CCTCGCCATCCAGTCCAAGAGCACCCTGGACGACCCCGGG	720
CGCTGGCGCTTCCCCTGCGACGAGTTCTACGTGAAGACCC	
CCGAGGAGATGCGGGCCATGTTCCCCGAGGAGGAGTGGGG	
GGACGAGCCCTTTGACAACACCGTGGAGATCGCCCGCATG	840
TGCAACGTGGAGCTGCCCATCGGGGACAAGATGGTCTACC	
GAATCCCCCGCTTCCCCGAGGGGCGGACCGAGGC	
CCAGTACCTCATGGAGCTCACCTTCAAGGGGCTCCTCCGC	960
CGCTACCCGGACCGGATCACCGAGGGCTTCTACCGGGAGG	
TCTTCCGCCTTTTGGGGAAGCTTCCCCCCACGGGGACGG	
GGAGGCCTTGGCCGAGGCCTTGGCCCAGGTGGAGCGGGAG	1080
GCTTGGGAGAGGCTCATGAAGAGCCTCCCCCTTTGGCCG	
GGGTCAAGGAGTGGACGGCGGAGGCCATTTTCCACCGGGC	
CCTTTACGAGCTTTCCGTGATAGAGCGCATGGGGTTTCCC	1200
GGCTACTTCCTCATCGTCCAGGACTACATCAACTGGGCCC	
GGAGAAACGGCGTCTCCGTGGGGCCCGGCAGGGGGAGCGC	
CGCCGGGAGCCTGGTGGCCTACGCCGTGGGGATCACCAAC	1320
ATTGACCCCCTCCGCTTCGGCCTCCTCTTTGAGCGCTTCC	
TGAACCCGGAGAGGGTCTCCATGCCCGACATTGACACGGA	
CTTCTCCGACCGGGAGCGGGACCGGGTGATCCAGTACGTG	1440
CGGGAGCGCTACGGCGAGGACAAGGTGGCCCAGATCGGCA	
CCCTGGGAAGCCTCGCCTCCAAGGCCGCCCTCAAGGACGT	
GGCCCGGGTCTACGGCATCCCCCACAAGAAGGCGGAGGAA	1560
TTGGCCAAGCTCATCCCGGTGCAGTTCGGGAAGCCCAAGC	
CCCTGCAGGAGGCCATCCAGGTGGTGCCGGAGCTTAGGGC	1.600
GGAGATGGAGAAGGACCCCAAGGTGCGGGAGGTCCTCGAG	1680
GTGGCCATGCGCCTGGAGGGCCTGAACCGCCACGCCTCCG	
TCCACGCCGCGGGGTGGTGATCGCCGCCGAGCCCCTCAC	1000
GGACCTCGTCCCCTCATGCGCGACCAGGAAGGGCGGCCC	1800
GTCACCCAGTACGACATGGGGGCGGTGGAGGCCTTGGGGC	
TTTTGAAGATGGACTTTTTGGGCCTCCGCACCCTCACCTT	

CCTGGACGAGGTCAAGCGCATCGTCAAGGCGTCCCAGGGG GTGGAGCTGGACTACGATGCCCTCCCCCTGGACGACCCCA	1920
AGACCTTCGCCCTCTCTCCCGGGGGGAGACCAAGGGGGT CTTCCAGCTGGAGTCGGGGGGGGATGACCGCCACGCTCCGC GGCCTCAAGCCGCGCGCTTTGAGGACCTGATCGCCATCC	2040
TCTCCCTCTACCGCCCCGGGCCCATGGAGCACATCCCCAC CTACATCCGCCGCCACCACGGGCTGGAGCCCGTGAGCTAC AGCGAGTTTCCCCACGCCGAGAAGTACCTAAAGCCCATCC	2160
TGGACGAGACCTACGGCATCCCCGTCTACCAGGAGCAGAT CATGCAGATCGCCTCGGCCGTGGCGGGGTACTCCCTGGGC	2280
GAGGCGGACCTCCTGCGGCGGTCCATGGGCAAGAAGAAGG TGGAGGAGATGAAGTCCCACCGGGAGCGCTTCGTCCAGGG GGCCAAGGAAAGGGGCGTGCCCGAGGAGGAGGCCAACCGC	2400
CTCTTTGACATGCTGGAGGCCTTCGCCAACTACGGCTTCA ACAAATCCCACGCTGCCGCCTACAGCCTCCTCTCCT	2520
GCCGCCCTCCTCCGTGGAGCGCACGACTCCGACAAGG TGGCCGAGTACATCCGCGACGCCCGGGCCATGGGCATAGA	
GGTCCTTCCCCCGGACGTCAACCGCTCCGGGTTTGACTTC CTGGTCCAGGGCCGGCAGATCCTTTTCGGCCTCTCCGCGG TGAAGAACGTGGGCGAGGCGGCGGCGGAGGCCATTCTCCG	2640
GGAGCGGGAGCGGGCCCCTACCGGAGCCTCGGCGAC TTCCTCAAGCGGCTGGACGAGAAGGTGCTCAACAAGCGGA	2760
CCCTGGAGTCCCTCATCAAGGCGGGCGCCCTGGACGGCTT CGGGGAAAGGGCGCGCTCCTCGCCTCCCTGGAAGGGCTC CTCAAGTGGGCGGCCGAGAACCGGGAGAAGGCCCGCTCGG	2880
GCATGATGGGCCTCTTCAGCGAAGTGGAGGAGCCGCCTTT GGCCGAGGCCGCCCCCTGGACGAGATCACCCGGCTCCGC TACGAGAAGGAGGCCCTGGGGATCTACGTCTCCGGCCACC	3000
CCATCTTGCGGTACCCCGGGCTCCGGGAGACGGCCACCTG CACCCTGGAGGAGCTTCCCCACCTGGCCCGGGACCTGCCG	3120
CCCCGGTCTAGGGTCCTCCTTGCCGGGATGGTGGAGGAGG TGGTGCGCAAGCCCACAAAGAGCGGCGGGATGATGGCCCG CTTCGTCCTCCGACGAGACGGGGGCGCTTGAGGCGGTG	3240
GCATTCGGCCGGGCCTACGACCAGGTCTCCCCGAGGCTCA AGGAGGACACCCCGTGCTCGTCCTCGCCGAGGTGGAGCG GGAGGAGGGGGGCGTGCGGGTGCTGGCCCAGGCCGTTTGG	3360
ACCTACGAGGAGCCTGCGGGTGCTGGCCCAGGCCGTTTGG ACCTACGAGGAGCTGGAGCAGGTCCCCCGGGCCCTCGAGG TGGAGGTGGAGGCCTCCCTCCTGGACGACCGGGGGGTGGC	
CCACCTGAAAAGCCTCCTGGACGAGCACGCGGGGACCCTC CCCTGTACGTCCGGGTCCAGGGCGCCTTCGGCGAGGCCC TCCTCGCCCTGAGGGAGGTGCGGGTGGGGGAGGAGGCTGT	3480
AGGCGGCCGCGTGGTTCCGGGCCTACCTCCTGCCCGACCG GGAGGTCCTTCTCCAGGGCGGCCAGGCGGGGGAGGCCCAG	3600
GAGGCGGTGCCCTTCTAGGGGGGTGGGCCGTGAGACCTAGC GCCATCGTTCTCGCCGGGGGCAAGGAGGCCTGGGCCCGAC CCCTTTTGG	3720

27/83

MGRELRFAHLHQHTQFSLLDGAPKLSDLLKWVEETTPEDP	
ALAMTDHGNLFGAVEFYKKATEMGIKPILGYEAYVAAESR	
FDRKRGKGLDGGYFHLTLLAKDFTGYQNLVRLASRAYLEG	120
FYEKPRIDREILREHAEGLIALSGCLGAEIPQFILQDRLD	
LAEARLNEYLSIFKDRFFIEIQNHGLPEQKKVNEVLKEFA	
RKYGLGMVATNDGHYVRKEDARAHEVLLAIQSKSTLDDPG	240
ALALPCEEFYVKTPEEMRAMFPEEEVGGRSPLTTPWRSPH	
VQRGAAIGTRWSTRIPRFPLPEGRTEAQYLMELTFKGLLR	
RYPDRITEGFYREVFRLSGKLPPHGDGEALAEALAQVERE	360
AWERLMKSLPPLAGVKEWTAEAIFHRALYELSAIERMGFP	
GLLPHRPGLHQLGPEKGVSVGPGRGGAAGSLVAYAVGITN	
IDPLRFGLLFERFLNPERVSMPDIDTDFSDRERDRVIQYV	480
RERYGEDKVAQIGTLGSLASKAALKEVARVYGIPRKKAEE	
LAKLIPVQFGKPKPLQEAIQVVPELRAEMEKDPKVREVLE	
VAMRLEGLNRHASVHAGRGGVFSEPLTDLVPLCATRKGGP	600
YTQYDMGAVEALGLLKMDFLGLRTLTFLDEVKRIVKASQG	
VELDYDALPLDDPKTFALLSRGETKGVFQLESGGMTATLR	
GLKPRRFEDLIAILSLYRPGPMEHIPTYIRRHHGLEPVSY	720
SEFPHAEKYLKPILDETYGIPVYQEQIMQIASAVAGYSLG	
EADLLRRSMGKKKVEEMKSHRERFVQGAKERGVPEEEANR	
LFDMLEAFANYGFNKSHAAAYSLLSYQTAYVKAHYPVEFM	840
AALLSVERHDSDKVAEYIRDARAMGIEVLPPDVNRSGFDF	
LVQGRQILFGLSAVKNVGEAAAEAILRERERGGPYRSLGD	
FLKRLDEKVLNKRTLESLIKAGALDGFGERARLLASLEGL	960
LKWAAENREKARSGMMGLFSEVEEPPLAEAAPLDEITRLR	
YEKEALGIYVSGHPILRYPGLRETATCTLEELPHLARDLP	
PRSRVLLAGMVEEVVRKPTKSGGMMARFVLSDETGALEAV	1080
AFGRAYDQVSPRLKEDTPVLVLAEVEREEGGVRVLAQAVW	
TYQELEQVPRALEVEVEASLPDDRGVAHLKSLLDEHAGTL	
PLYVRVQGAFGEALLALREVRVGEEALGALEAAGFPAYLL	1200
PNREVSPRLTGSGGPRGRALSTGLALKTYPIALPGGNEAL	
ARPLL	

FIG. 16C

28/83

RRLPF IDETLKF IIDKF -YTGNNX -LTGNNF	PALEGLG AGAERLG VAYKKLL YEFRKLN YEFSLLK	TSG GER AEK TNLFDEEE TSMAFAME
Start2 SEGVGLWEWRYPFPLEGEAVVVLDLETTGLAGLDEVIEVGLLRLEGGRRLPF PWPQDVVVFDLETTGFSPASAAIVEIGAVRIVGGQIDETLKF DGCVPIAYNAAHRLLEEETYVVFDVETTGLSAVYDTIIELAAVKVKGGEIIDKF MINPNRQIVLDTETTGMNQLGAHYEGHCIIEIGAVELINRR-YTGNNX MSTAITRQIVLDTETTGMNQIGAHSEGHKIIEIGAVEVVNRR-LTGNNF	9'-Exo II QSLVR-PLPPAEARSWNLTGIPREALEEAPSLEEVLEKAYPLRGDATLV IHNAAFDLGF L-RPALEGLG ETLVR-PTRPDGSMLSIPWQAQRVHGISDEMVRRAPAXKDVLPDFFDFVDGSAVV AHNVSFDGG FM-RAGAERLG EAFAN-PHRPLSATIIELTGITDDMLQDAPDVVDVIRDFREWIGDDILV AHNASFDMGF L-NVAYKKLL HIYIK-PDRPXDPDAIKVHGITDEMLADKPEFKEVAQDFLDYINGAELL IHNAPFDVGF M-DYEFRKLN HVYLK-DRLVDPEAFGVHGIAVDFLLDKPTFAEVAVEFMDYIRGAELV IHNAAFDIGF M-DYEFSLLK ETLVKVKSVPDYIAELTGITYEDTLNAPSAHEALQELRLFLGNSVFV AHNANFDYNF LGRYFVEKLH	3'-Exo IIICYRLENPVVDSLRLARRGLPGLRRYGLDALSEVLELPRRTC HRALEDV ERTLAVVHEVYYMLTSGLSWAPERELCTMQLSRRAFPRERTHNLTVLAERLGLEFAPGGR HRSYGDV QVTAQAYLRLLELLGER EVEKAKNPVIDTLELGRFLYPEFKNHRLNTLCKKFDIELTQH HRAIYDT EATAYLLLKMLKDAAEK -LNVKTDDICLVTDTLQMARQMYPGKRN-NLDALCDRLGIDNSKRTL HGALLDA EILADVYLMMTGGQTNLFDEEE RDIAKTNTFCKVTDSLAVARKMFPGKRN-SLDALCARYEIDNSKRTL HGALLDA QILAEVYLAMTGGQTSMAFAME
LDEVIH SAAIVH YDTIIH AHYEGHCIIH AHSEGHKIIH	RGDATLV IH VDGSAVV AH IGDDILV AH INGAELL IH IRGAELVIH	3'-EXO IIIC HRALEDVERTL HRSYGDVQVTA HRAIYDTEATA HGALLDAEILA HGALLDAEILA HRAYADALLASY
ETTGLAG ETTGESPA ETTGLSAV ETTGMNQLG ETTGNOIGS	EVLEKAYPLI DVLPDFFDFY DVIRDFREW EVAQDFLDY EVAVEFMDY EALQELRLFI	S LPRRTCH LEFAPGGRH IELTQHH IDNSKRTLH IDNSKRTLH
Start2 SEGVGLWEWRYPFPLEGEAVVVLDLETTGLAG-PWPQDVVVFDLETTGFSPA DGVPLAYNAAHRLLEETTVVVFDVETTGLSAV MINPNRQIVLDTETTGMNQL MSTAITRQIVLDTETTGMNQL MSTAITRQIVLDTETTGMNQL	SALEEAPSLE SMVRRAPAXK OMLQDAPDVV SMLADKPEFK OFLLDKPTFA	SLDALSEVLE VLTVLAERLG KLNTLCKKFD VLDALCDRLG SLDALCARYE
12 JEWRYPFPLE PW YNAAHRLLE MIN MSTA YLKNLKTPLK	TGIPRE QRVHGISDE TGITDD HGITDE TGIAVE	GLPGLRRYG LAFPRERTHN LYPEFKNHR MYPGKRN-N MFPGKRN-S
Start2 LLEEGVGLWEW ILVDDGVPLAYN	AEARSWNLTSSMLSIPWQAQRV LSATIIELT XDPDAIKVH	YDSLRLARF ILCTMQLSRF TDTLELGRF TDTLQMARÇ TDSLAVARK
Start1 T.th. VERVVRTLLDGRFLLEEGVGLWEWRYPFPLEGEAVVVLDLETTGLAG D.rad. Bac.sub. HGIKMIYGMEANLVDDGVPIAYNAAHRLLEEETYVVFDVETTGLSAV H.inf. MINPNRQIVLDTETTGMNQLGA. MSTAITRQIVLDTETTGMNQIGA. MSTAITRQIVLDTETTGMNQIGA. H.pyl. NLEYLKACGLNFIETSENLITLKNLKTPLKDEVFSFIDLETTGSCPI	QSLVR-PLPPAE ETLVR-PTRPDGSMI EAFAN-PHRPLS HIYIK-PDRPXD HVYLK-DRLVD	YRLENPVVDSLSWAPERELCT EVEKAKNPVIDT -LNVKTDDICLVTDT RDIAKTNTFCKVTDS
Ste VEF O. HG	•	
T.th. D.rad. Bac.sul H.inf. E.c. H.pyl.	T.th. D.rad. Bac.sub H.inf. E.c. H.pyl.	T.th. D.rad. Bac.sub. H.inf. E.c. H.pyl.

FIG. 17

29/83

ATGGTGGAGCGGGTGCTGCGGACCCTTCTGGACGGGAGGT	40
TCCTCCTGGAGGAGGGGGTGGGGCTTTTGGGAGTGGCGCTA	
CCCCTTTCCCCTGGAGGGGGGGGGGGGGGGGGGGGGGGG	120
CTGGAGACCACGGGGCTTGCCGGCCTGGACGAGGTGATTG	
AGGTGGGCCTCCTCCGCCTGGAGGGGGGGGGGGCCCTCCC	200
CTTCCAGAGCCTCGTCCGGCCCTCCCGCCGAAGCC	
CGTTCGTGGAACCTCACCGGCATCCCCCGGGAGGCCCTGG	280
AGGAGGCCCCTCCCTGGAGGAGGTTCTGGAGAAGGCCTA	
CCCCTCCGCGGCGACGCCACCTTGGTGATCCACAACGCC	360
GCCTTTGACCTGGGCTTCCTCCGCCCGGCCTTGGAGGGCC	
TGGGCTACCGCCTGGAAAACCCCGTGGTGGACTCCCTGCG	440
CTTGGCCAGACGGGCTTACCAGGCCTTAGGCGCTACGGC	
CTGGACGCCCTCTCCGAGGTCCTGGAGCTTCCCCGAAGGA	520
CCTGCCACCGGGCCCTCGAGGACGTGGAGCGCACCCTCGC	
CGTGGTGCACGAGGTATACTATATGCTTACGTCCGGCCGT	600
CCCCGCACGCTTTGGGAACTCGGGAGGTAG	

FIG. 18A

MVERVVRTLLDGRFLLEEGVGLWEWRYPFPLEGEAVVVLD	40
LETTGLAGLDEVIEVGLLRLEGGRRLPFQSLVRPLPPAEA	
RSWNLTGIPREALEEAPSLEEVLEKAYPLRGDATLVIHNA	120
AFDLGFLRPALEGLGYRLENPVVDSLRLARRGLPGLRRYG	
LDALSEVLELPRRTCHRALEDVERTLAVVHEVYYMLTSGR	200
PRTLWELGRZ	

FIG. 18B

30/83

65 67 66 66 72	130 1115 1119 1108 1106	217 202 206 206 196 197 203
TWIRPTEFSGFKN GELTLIAPNSFSSAW LKNNYSQTIQETAE-TWIKASVLISLGD GVATIQVENGFVLNH LQKSYGPLLMEVLT-TWIKASYLISLQG DTLTITAPNEFARDW LESRYLHLIADTIY-AWLNLVQPLTIVE GFALLSVPSSFVQNE IERHLRAPITDALS-TWFERIRPLGIRD GVLELAVPTSFALDW IRRHYAGLIQEGPR-MWIRPLQAELSD NTLALYAPNRFVLDW VRDKYLNNINGLLT-LWFSSFDVKSIEG NKVVFSVGNLFIKEW LEKKYYSVLSKAVK-NYFSQLKYNPNASKS DIAFFYAPNQVLCTT ITAKYGALLKEILSQ	ITPPLEASPGSV DSSGSSLRLSK	GHYRLEIDPGAKVSY VSTETFTNDLILA IRQDRMQAFRDRYR-AHYRLEMYPNAKVYY VSTERFTNDLITA IRQDNMEDFRSYYR-GHYVIDHNPSAKVVY LSSEKFTNBFINS IRDNKAVDFRNRYR-GNYAQRLFPGMRVKY VSTEEFTNDFINS LRDDRKVAFKRSYR-GPLRAKRFPHMRLEY VSTETFTNBLINRPS AR-DRMTEFRERYR-GNGIMARKPNAKVYY MHSERFVQDMVKA LQNNAIEEFKRYYR-GNYVVQNEPDLRVMY ITSEKFLNDLVDS MKEGKLNEFREKYRKGNHALEKHKKVVL VTSEDFLTDFLKH LDNKTMDSFKAKYR-
TWIRPTEFSG TWIKASVLIS TWMKSTKAHS AWLNLVQPLT TWFERIRPLG MWIRPLQAE LWFSSFDVKS NYFSQLKYNPNA	ITPPI SSLPP 	GHYRLEII AHYRLEM GHYVIDH GNYAQRLI GPLRAKRI GNGIMARI GNYVVQNI
	P E VKKAVKEDTSDFPQN ENPATTSPDTTTDND PPAQAQP VAAPAQVAQTQPQRA KKRAVLLTP	CGGVGLGKTHLMQAI CGGVGLGKTHLMAAI YGGVGLGKTHLMHAI WGESGLGKTHLLHAA YGGRGLGKTYLMHAV YGGYGLGKTHLLHAV YGGVGLGKTHLLLAV
VQSSLKQNLSK ALAILATQLTK ALAQIEKKLSK WSELNGDPKVDDGP VLEHIRRSITE CLARLQDELPA ILQEIKTRVNR ILALVKQNPKVSL	VKANAESSDEHYSSA TDGLEPHSLIGQ IPQNQDVEDFMPKPQ PPATDEADDTTVPPS PGVVVQEDIFQPPPS TKPVTQTPQAAVTSN YEAFEPHSSYSEPLV IEVAPKIQINAQSNI	AVAESPGREFNPLFI AVAESPGREFNPLFL AVAEAPAKAYNPLFI AIAEAPARAYNPLFI AVAESPGRAYNPLFI QVADNPGGAYNPLFI EVAKHPGR-YNPLFI KVAQSDTPPYNPVLFI
Alignment of dnaA genes P.mar. MLEASWEK Syn.sp. MVSCENLWQQ B.sut. MTDDPGSGFTTVWNA T.th. MTDDPGSGFTTVWNA T.th. MSHEAVWQH E.coli MSLSLWQQ T.mar. MDTNNNIEKE	EIFGEPVTVHVK DLTGQEITVKLI ELTGEELSIKFV RRLGH-QIQLGVRIA LLGAQ-APRFELRVV SFCGADAPQLRFEVG VVLGNDATFEIT NKVG-MHLAHSVDVR	FVVGPNSRMAHAAAM FVVGPTNRMAHAASL FVIGSGNRFAHAASL FVIGASNRFAHAAAL SWWGPTTPWPHGGAV FVGGKSNQLARAAAR FVVGPGNSFAYHAAL FVVGSCNNTVYEIAK
Alignme P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar. H.pyl.	P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar.	P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar. H.pyl.

FIG. 19A

31/83

307 202 203 303 303 203 303	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
MAILQKKAEHERVGL MAILQKKAEYDRIRL IAILRKKAKAEGLDI IAILKKKAQMERLAV IAILKMNAS-SGPED VAILMKKADENDIRL KSIARKMLEIEHGEL LSIVKQKCQLNQITL	PDEMRSASRRR-PVS VEELLSNSRRR-EVS LEDFKAKKRTK-SVA VEELRGPGKTR-ALA TPGGAHGERRKKEVV VADLLSKRRSR-SVA REEILSNSRNV-KAL SSEIKVSSRQK-NVA	461 447 446 507 CG 446 440
MAILQF MAILQF IAILRF IAILRF IAILKR VAILMF KSIARF	PDEMRS VEELLS LEDFKZ VEELRC TPGGAA VADLLS REEILS	RKR APES R R NLWITCG SG
MGLIADVQAPDLETR MGLIADIQVPDLETR WGLITDVQPPELETR WGLITDNPAPDLETR WGLTVAIEPPELETR MGLVAKLEPPDEETR	PKQVLDKVAEVFKVT PETIITIVAQHYQLK IKEIQRVVGQQFNIK AATIMAATAEYFDTT PLEIIRKAAGPVRPE IDNIQKTVAEYYKIK IDELIEIVAKVTGVP LENILLAVAQSINLK	SQVQKIRDLLQIDSR QTLTSLSHRINIAGQ QHVKEIKEQLK DHVKELTTRIRQRSK GLLRTLREACTDPVD EDFSNLIRTLSS ALIDEVIGEISRRAL NRLNELNDKKTAFNS
SQIPRLQERLMSRFS QRIPGLQDRLISRFS KEIPTLEDRLRSRFE KQLATLEDRLRTRFE KDILTLEARLRSRFE KEINGVEDRLKSRFG QKLSEFQDRLVSRFQ	LDPNGQGVEVT LNPPVEKVAAA LKDII-PSSKPKVIT LRDLI-ADANTMQIS LRHLR-PRELEAD LRDLL-A-LQEKLVT LKDFIKPNRVKAMDP LEDLQKDHAEGSS	SDPQIA KDWETS DBREVE KPBREVQ ESHDIK KGNKQLK
HDAGSQIVLASDRPP HEAGKQVVVASDRAP HEESKQIVISSDRPP HNANKQIVISSDRPP YEAHKQIILSSDRPP LEGNQQIILTSDRYP HDSGKQIVICSDREP	SITGLPMTVDSIAPM SLSNVAMTVENIAPV SLINKDINADLAAEA SLNKTPIDKALAEIV SLNGVELTRAVAAKA NFTGRAITIDFVREA ETTGKEVDLKEAILL	TTVMYAIEQVEKKLS TTVMYSCDKITQLQQ TTVIHAHEKISKLLA TTVMYAQRKILSEMA TTVRYAIQKVQELAG TTVLHACRKIEQLRE PVVVDSVKKVKDSLL SSISKMYSGVKMLE
KEYTQEEFFHTFNAL KEYTQEEFFHTFNTL KEGIQEEFFHTFNTL KERTQEEFFHTFNAL KERSQEEFFHTFNAL KTGVQTELFHTFNAL	IRELEGALTRAIAFA IRELEGALIRAIAYT IRELEGALIRVVAYS IRELEGALIRVTAFA IREWEGALMRASPFA VRELEGALNRVIANA LRRLRGAIIKLLVYK IRQMEGAIIKISVNA	LSLPRIGDTFGGKDH LSLPRIGEAFGGKDH SSLPKIGEEFGGRDH LSLPKIGQAFG-RDH ASLPEIGQLFGGRDH HSLPEIGDAFGGRDH SSLRTIAEKFN-RSH NPTLSLAQFLDLKDH
AADLILVDDIQFIEG SADFLLIDDIQFIKG NVDVLLIDDIQFLAG DVDVLLVDDIQFIEG SVDLLLVDDVQFFAG SVDALLIDDIQFFAN KVDILLIDDVQFLIG	PRDLIQFIAGRFTSN PKEVIEYIASHYTSN PNEVMLYIANQIDSN PDDVLELIASSIERN PEDALEYIARQVTSN PGEVAFFIAKRLRSN PEEVLNFVAENVDDN	QARQVGMYLMRQGTN LARQVGMYLMRQHTD FPRQIAMYLSREMTD QSRQIAMYLCRELTD LPRQLAMYLVRELTP RPRQMAMALAKELTN TARRIGMYVAKNYLK LARKLVVYFARLYTP
P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar.	P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar. H.pyl.	P.mar. Syn.sp. B.sut. M.tub. T.th. E.coli T.mar.

FIG. 19B

32/83

GTGTCGCACGAGGCCGTCTGGCAACACGTTCTGGAGCACA	
TCCGCCGCAGCATCACCGAGGTGGAGTTCCACACCTGGTT	
TGAAAGGATCCGCCCCTTGGGGATCCGGGACGGGGTGCTG	120
GAGCTCGCCGTGCCCACCTCCTTTGCCCTGGACTGGATCC	
GGCGCCACTACGCCGGCCTCATCCAGGAGGGCCCTCGGCT	
CCTCGGGGCCCAGGCGCCCCGGTTTGAGCTCCGGGTGGTG	240
CCCGGGGTCGTAGTCCAGGAGGACATCTTCCAGCCCCCGC	
CGAGCCCCCGGCCCAAGCTCAACCCGAAGATACCTTTAA	
AACTTCGTGGTGGGGCCCAACAACTCCATGGCCCCACGGC	360
GGCGCCGTGGCCGAGTCCCCCGGCCGGCCTACA	
ACCCCTCTTCATCTACGGGGGCCGTGGCCTGGGAAAGAC	
CTACCTGATGCACGCCGTGGGCCCACTCCGTGCGAAGCGC	480
TTCCCCCACATGAGATTAGAGTACGTTTCCACGGAAACTT	
TCACCAACGAGCTCATCAACCGGCCATCCGCGAGGGACCG	
GATGACGGAGTTCCGGGAGCGGTACCGCTCCGTGGACCTC	600
CTGCTGGTGGACGACGTCCAGTTCATCGCCGGAAAGGAGC	
GCACCCAGGAGGAGTTTTTCCACACCCTTCAACGCCCTTTA	
CGAGGCCCACAAGCAGATCATCCTCTCCTCCGACCGGCCG	720
CCCAAGGACATCCTCACCCTGGAGGCGCGCCTGCGGAGCC	
GCTTTGAGTGGGGCCTGATCACCGACAATCCAGCCCCCGA	
CCTGGAAACCCGGATCGCCATCCTGAAGATGAACGCCAGC	840
AGCGGGCCTGAGGATCCCGAGGACGCCCTGGAGTACATCG	
CCCGGCAGGTCACCTCCAACATCCGGGAGTGGGAAGGGGC	
CCTCATGCGGCCATCGCCTTTCGCCTCCCTCAACGGCGTT	960
GAGCTGACCCGCGCCGTGGCGGCCAAGGCTCTCCGACATC	
TTCGCCCCAGGGAGCTGGAGGCGGACCCCTTGGAGATCAT	
CCGCAAAGCGGCGGACCAGTTCGGCCTGAAACCCCGGGA	1080
GGAGCTCACGGGGAGCGCCGCAAGAAGGAGGTGGTCCTCC	
CCCGGCAGCTCGCCATGTACCTGGTGCGGGAGCTCACCCC	
GGCCTCCCTGCCCGAGATCGACCAGCTCAACGACCGG	1200
GACCACACCACGGTCCTCTACGCCATCCAGAAGGTCCAGG	
AGCTCGCGGAAAGCGACCGGGAGGTGCAGGGCCTCCTCCG	
CACCCTCCGGGAGGCGTGCACATGA	

FIG. 20A

33/83

VSHEAVWQHVLEHIRRSITEVEFHTWFERIRPLGIRDGVL	
ELAVPTSFALDWIRRHYAGLIQEGPRLLGAQAPRFELRVV	
PGVVVQEDIFQPPPSPPAQAQPEDTFKTSWWGPTTPWPHG	120
GAVAVAESPGRAYNPLFIYGGRGLGKTYLMHAVGPLRAKR	
FPHMRLEYVSTETFTNELINRPSARDRMTEFRERYRSVDL	
LLVDDVQFIAGKERTQEEFFHTFNALYEAHKQIILSSDRP	240
PKDILTLEARLRSRFEWGLITDNPAPDLETRIAILKMNAS	
SGPEDPEDALEYIARQVTSNIREWEGALMRASPFASLNGV	
ELTRAVAAKALRHLRPRELEADPLEIIRKAAGPVRPETPG	360
GAHGERRKKEVVLPRQLAMYLVRELTPASLPEIDQLNDDR	
DHTTVLYAIOKVOELAESDREVOGLLRTLREACT	

FIG. 20B

34/83

ATGAACATAACGGTTCCCAAAAAACTCCTCTCGGACCAGC	40
TTTCCCTCCTGGAGCGCATCGTCCCCTCTAGAAGCGCCAA	4.0.0
CCCCCTCTACACCTACCTGGGGCTTTACGCCGAGGAAGGG	120
GCCTTGATCCTCTTCGGGACCAACGGGGAGGTGGACCTCG	
AGGTCCGCCTCCCCGCCGAGGCCCAAAGCCTTCCCCGGGT	200
GCTCGTCCCCGCCCAGCCCTTCTTCCAGCTGGTGCGGAGC	
CTTCCTGGGGACCTCGTGGCCCTCGGCCTCGCAGC	280
CGGGCCAGGGGGGCAGCTGGAGCTCTCCTCCGGGCGTTT	
CCGCACCCGGCTCAGCCTGGCCCTGCCGAGGGCTACCCC	360
GAGCTTCTGGTGCCCGAGGGGGAGGACAAGGGGGCCTTCC	
CCCTCCGGACGCGGATGCCCTCCGGGGAGCTCGTCAAGGC	440
CTTGACCCACGTGCGCTACGCCGCGAGCAACGAGGAGTAC	
CGGGCCATCTTCCGCGGGGTGCAGCTGGAGTTCTCCCCCC	520
AGGGCTTCCGGGCGTGGCCTCCGACGGGTACCGCCTCGC	
CCTCTACGACCTGCCCCTGCCCCAAGGGTTCCAGGCCAAG	600
GCCGTGGTCCCCGCCCGGAGCGTGGACGAGATGGTGCGGG	
TCCTGAAGGGGGCGGACGGGCCGAGGCCGTCCTCGCCCT	680
GGGCGAGGGGTGTTGGCCCTGGCCCTCGAGGGCGGAAGC	
GGGGTCCGGATGGCCCTCCGCCTCATGGAAGGGGAGTTCC	760
CCGACTACCAGAGGTCATCCCCCAGGAGTTCGCCCTCAA	
GGTCCAGGTGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG	840
CGGGTGAGCGTCCTCTCCGACCGGCAGAACCACCGGGTGG	
ACCTCCTTTTGGAGGAAGGCCGGATCCTCCTCTCCGCCGA	920
GGGGGACTACGGCAAGGGGCAGGAGGAGGTGCCCGCCCAG	
GTGGAGGGCCGGACATGGCCGTGGCCTACAACGCCCGCT	1000
ACCTCCTCGAGGCCCTCGCCCCGTGGGGGACCGGGCCCA	
CCTGGGCATCTCCGGGCCCACGAGCCTCATCTGG	1080
GGGGACGGGGGGGTACCGGGCGGTGGTGCCCCTCA	
GGGTCTAG	.1128

FIG. 21A

35/83

MNITVPKKLLSDQLSLLERIVPSRSANPLYTYLGLYAEEG	40
ALILFGTNGEVDLEVRLPAEAQSLPRVLVPAQPFFQLVRS	
LPGDLVALGLASEPGQGGQLELSSGRFRTRLSLAPAEGYP	120
ELLVPEGEDKGAFPLRTRMPSGELVKALTHVRYAASNEEY	
RAIFRGVQLEFSPQGFRAVASDGYRLALYDLPLPQGFQAK	200
AVVPARSVDEMVRVLKGADGAEAVLALGEGVLALALEGGS	
GVRMALRLMEGEFPDYQRVIPQEFALKVQVEGEALREAVR	280
RVSVLSDRQNHRVDLLLEEGRILLSAEGDYGKGQEEVPAQ	
VEGPDMAVAYNARYLLEALAPVGDRAHLGISGPTSPSLIW	360
GDGEGYRAY/VPLRVZ	

FIG. 21B

36/83

*	
TKYIPGKTTISGRKILNICRTLS-EKSKIKMQLKNKKMYISSENSNYILSTLS	B.cap.beta
EPAEPGEITVPARKLMDICKSLP-NDALIDIKVDEQKLLVKAGRSRFTLSTLP?	P.put.beta
SSSENGTFTIPAKKFLDICRTLS-DDSEITVTFEQDRALVQSGRSRFTLATQP?	H.infl.bet
QSHEIGATTVPARKFFDIWRGLP-EGAEISVELDGDRLLVRSGRSRFSLSTLP?	P.mirab.be
QPHEPGATTVPARKFFDICRGLP-EGAEIAVQLEGERMLVRSGRSRFSLSTLP?	E.coli.bet
AQSLP-RVLVPAQPFFQLVRSLPGDLVALGLASEPGQGGQLELSSGRFRTRLSLAP?	T.th.beta
WAR I LUMINALI KVINANTŲ KILIMALŲ VENGILIMŲ I TAMILIMALI KVINALI KVINAL	b.cap.beca
MHFTIQREALLKPLQLVAGVVERRQTLPVLSNVLLVVQGQQLSLTGTDLEVELVGR\	P.put.beta
MQFSISRENLLKPLQQVCGVLSNRPNIPVLNNVLLQIEDYRLTITGTDLEVELSSQ1	H.infl.bet
MKFIIEREQLLKPLQQVSGPLGGRPTLPILGNLLLKVTENTLSLTGTDLEMEMMAR\	P.mirab.be
MKFTVEREHLLKPLQQVSGPLGGRPTLPILGNLLLQVADGTLSLTGTDLEMEMVAR\	E.coli.bet
MNITVPKKLLSDQLSLLERIVPSRSANPLYTYLGLYAEEGALILFGTNGEVDLEVRI	T.th.beta

TOLS

VSLS

VALV

LPAE

VOLE

AADF ASDF AEEY ANDF ADTF PELLVPEGEDKGAFPLRTRMPSGELVKALTHVRYAASNEEYRAIFRGVQLEFSPQGFRAV PNLDD--WQSEVEFTLPQAT----LKRLIESTQFSMAHQDVRYYLNGMLFETENTELRTV PNLTD--WQSEVDFELPQNT----LRRLIEATQFSMANQDARYFLNGMKFETEGNLLRTV PTVEE--GPGSLTCNLEQSK----LRRLIERTSFAMAQQDVRYYLNGMLLEVSRNTLRAV PNHQN--FDYISKFDISSNI----LKEMIEKTEFSMGKQDVRYYLNGMLLEKKDKFLRSV PNLDD--WQSEVEFTLPQAT----MKRLIEATQFSMAHQDVRYYLNGMLFETEGEELRTV

T.th.beta E.coli.bet P.mirab.be H.infl.bet

P.put.beta B.cap.beta

.cap.beta

ATDGHRLAVCSMPIGQSLPS-HSVIVPRKGVIELMRMLDG-GDNPLRVQIGSNNIRAHVG ATDGHRLAVCAMDIGQSLPG-HSVIVPRKGVIELMRLLDGSGESLLQLQIGSNNLRAHVG STDGHRLALCSMSAPIEQEDRHQVIVPRKGILELARLLTD-PEGMVSIVLGQHHIRATTG ASDGYRLALYDLPLPQGFQA--KAVVPARSVDEMVRVLKGADGAEAVLALGEGVLALALE ATDGHRLAVCTISLEQELQN-HSVILPRKGVLELVRLLET-NDEPARLQIGTNNLRVHLK ATDGYRLAISYTQLKKDINF-FSIIIPNKAVMELLKLLNT-QPQLLNILIGSNSIRIYTK

P.mirab.be H.infl.bet

E.coli.bet

T.th.beta

P.put.beta B.cap.beta

.cap.beta

37/83

T.th.beta E.coli.bet P.mirab.be H.infl.bet P.put.beta B.cap.beta	GGSGVRMALRLMEGEFPDYQRVIPDFIFTSKLVDGRFPDYRRVLPDFIFTSKLVDGRFPDYRRVLPRTFTSKLIDGRFPDYRRVLPEFTFTSKLVDGKFPDYERVLPNLIFTTQLIEGEYPDYKSVLF	GGSGVRMALRLMEGEFPDYQRVIPQEFALKVQVEGEALREAVRRVSVLSDRQNHRVDLLLDFIFTSKLVDGRFPDYRRVLPKNPDKHLEAGCDLLKQAFARAAILSNEKFRGVRLYVDFIFTSKLVDGRFPDYRRVLPKNPTKTVIAGCDILKQAFSRAAILSNEKFRGVRINLNTVFTSKLIDGRFPDYRRVLPRNATKIVEGNWEMLKQAFARASILSNERARSVRLSLEFTFTSKLVDGKFPDYRRVLPKGGDKLVVGDRQALREAFSRTAILSNEKYRGIRLQLNLIFTTQLIEGEYPDYKSVLFKEKKNPIITNSILLKKSLLRVAILAHEKFCGIEIKI * * * *
T.th.beta E.coli.bet P.mirab.be H.infl.bet P.put.beta B.cap.beta	EEGRILLSAEGDYGK-GQEEVPAQ SENQLKITANNPEQEEAEEILDVT TNGQLKITANNPEQEEAEEIVDVQ KENQLKITASNTEHEEAEEIVDVN AAGQLKIQANNPEQEEAEEEISVD ENGKFKVLSDNQEEETAEDLFEID	EEGRILLSAEGDYGK-GQEEVPAQVEGPDMAVAYNARYLLEALAPVG-DRAHLGISGPTS SENQLKITANNPEQEEAEEILDVTYSGAEMEIGFNVSYVLDVLNALKCENVRMMLTDSVS TNGQLKITANNPEQEEAEEIVDVQYQGEEMEIGFNVSYLLDVLNTLKCEEVKLLLTDAVS KENQLKITASNTEHEEAEEIVDVNYNGEELEVGFNVTYILDVLNALKCNQVRMCLTDAFS AAGQLKIQANNPEQEEAEEEISVDYBGSSLEIGFNVSYLLDVLGVMTTEQVRLILSDSNS ENGKFKVLSDNQEEETAEDLFEIDYFGEKIEISINVYYLLDVINNIKSENIALFLNKSKS
T.th.beta	PSLIWGDG-EGYRAVVVPLRVZ	(ID#108)
E.coli.bet P.mirab.be	SVQIEDAASQSAAYVVMPMRLZ SVQVENVASAAAAYVVMPMRL-	(ID#109) (ID#110)
H.infl.bet	SCLIENCEDSSCEYVIMPMRL-	(ID#111)
P.put.beta	SALLQEAGNDDSSYVVMPMRL-	(ID#112)
B.cap.beta	SIQIEAENNSSNAYVVMLLKR-	(ID#113)

FIG. 22B

FIG. 25A

FIG. 25B

FIG. 26A

FIG. 26B

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33A

FIG. 33B

FIG. 33C

FIG. 33D

FIG. 33E

ATGAGTAAGGATTTCGTCCACCTTCACCTGCACACCCAGTTCTCACTCCT	
GGACGGGGCTATAAAGATAGACGAGCTCGTGAAAAAGGCAAAGGAGTATG	100
GATACAAAGCTGTCGGAATGTCAGACCACGGAAACCTCTTCGGTTCGTAT	
AAATTCTACAAAGCCCTGAAGGCGGAAGGAATTAAGCCCATAATCGGCAT	200
GGAAGCCTACTTTACCACGGGTTCGAGGTTTGACAGAAAGACTAAAACGA	
GCGAGGACAACATAACCGACAAGTACAACCACCACCTCATACTTATAGCA	300
AAGGACGAAAAGGTCTAAAGAACTTAATGAAGCTCTCAACCCTCGCCTAC	
AAAGAAGGTTTTTACTACAAACCCAGAATTGATTACGAACTCCTTGAAAA	400
GTACGGGGAGGCCTAATAGCCCTTACCGCATGCCTGAAAGGTGTTCCCA	
CCTACTACGCTTCTATAAACGAAGTGAAAAAGGCCGGAGGAATGGGTAAAG	500
AAGTTCAAGGATATATTCGGAGATGACCTTTATTTAGAACTTCAAGCGAA	
CAACATTCCAGAACAGGAAGTGGCAAACAGGAACTTAATAGAGATAGCCA	600
AAAAGTACGATGTGAAACTCATAGCGACGCAGGACGCCCACTACCTCAAT	
CCCGAAGACAGGTACGCCCACACGGTTCTTATGGCACTTCAAATGAAAAA	700
GACCATTCACGAACTGAGTTCGGGAAACTTCAAGTGTTCAAACGAAGACC	
TTCACTTTGCTCCACCCGAGTACATGTGGAAAAAGTTTGAAGGTAAGTTC	800
GAAGGCTGGGAAAAGGCACTCCTGAACACTCTCGAGGTAATGGAAAAGAC	
AGCGGACAGCTTTGAGATATTTGAAAACTCCACCTACCTCCTTCCCAAGT	900
ACGACGTTCCGCCCGACAAAACCCTTGAGGAATACCTCAGAGAACTCGCG	300
TACAAAGGTTTAAGACAGAGGATAGAAAGGGGACAAGCTAAGGATACTAA	1000
AGAGTACTGGGAGAGGCTCGAGTACGAACTGGAAGTTATAAACAAAATGG	1000
GCTTTGCGGGATACTTCTTGATAGTTCAGGACTTCATAAACTGGGCTAAG	1100
AAAAACGACATACCTGTTGGACCCGGAAGGGGAAGTGCTGGAGGTTCCCT	1100
CGTCGCATACGCCATCGGAATAACGGACGTTGACCCTATAAAGCACGGAT	1200
TCTTTTTGAGAGGTTCTTAAACCCCGAAAGGGTTTCCATGCCGGATATA	1200
	1300
GACGTGGATTTCTGTCAGGACAACAGGGAAAAGGTCATAGAGTACGTAAGGACAAGTACGGACACGACAACGTAGCTCAGATAATCACCTACAACGTAA	1300
	1 4 0 0
TGAAGGCGAAGCAAACACTGAGAGAGCGTCGCAAGGGCCATGGGACTCCCC	1400
TACTCCACCGCGGACAAACTCGCAAAACTCATTCCTCAGGGGGACGTTCA	1 - 0 0
GGGAACGTGGCTCAGTCTGGAAGAGATGTACAAAACGCCTGTGGAGGAAC	1500
TCCTTCAGAAGTACGGAGAACACAGAACGGACATAGAGGACAACGTAAAG	1.600
AAGTTCAGACAGATATGCGAAGAAAGTCCGGAGATAAAACAGCTCGTTGA	1600
GACGGCCTGAAGCTTGAAGGTCTCACGAGACACACCTCCCTC	4500
$\tt CGGGAGTGGTTATAGCACCAAAGCCCTTGAGCGAGCTCGTTCCCCTCTAC$	1700
TACGATAAAGAGGGCGAAGTCGCAACCCAGTACGACATGGTTCAGCTCGA	4000
AGAACTCGGTCTCCTGAAGATGGACTTCCTCGGACTCAAAACCCTCACAG	1800
AACTGAAACTCATGAAAGAACTCATAAAGGAAAGACACGGAGTGGATATA	
AACTTCCTTGAACTTCCCCTTGACGACCCGAAAGTTTACAAACTCCTTCA	1900
GGAAGGAAAAACCACGGGAGTGTTCCAGCTCGAAAGCAGGGGAATGAAAG	
AACTCCTGAAGAAACTAAAGCCCGACAGCTTTGACGACATCGTTGCGGTC	2000
CTCGCACTCTACAGACCCGGACCTCTAAAGAGCGGACTCGTTGACACATA	
CATTAAGAGAAAGCACGGAAAAGAACCCGTTGAGTACCCCTTCCCGGAGC	2100
TTGAACCCGTCCTTAAGGAAACCTACGGAGTAATCGTTTATCAGGAACAG	
GTGATGAAGATGTCTCAGATACTTTCCGGCTTTACTCCCGGAGAGGCGGA	2200
TACCCTCAGAAAGGCGATAGGTAAGAAGAAAGCGGATTTAATGGCTCAGA	
TGAAAGACAAGTTCATACAGGGAGCGGTGGAAAGGGGATACCCTGAAGAA	2300
AAGATAAGGAAGCTCTGGGAAGACATAGAGAAGTTCGCTTCCTACTCCTT	
${\tt CAACAAGTCTCACTCGGTAGCTTACGGGTACATCTCCTACTGGACCGCCT}$	2400

49/83

ACGTTAAAGCCCACTATCCCGCGGAGTTCTTCGCGGTAAAACTCACAACT	
GAAAAGAACGACAACAAGTTCCTCAACCTCATAAAAGACGCTAAACTCTT	2500
CGGATTTGAGATACTTCCCCCCGACATAAACAAGAGTGATGTAGGATTTA	
CGATAGAAGGTGAAAACAGGATAAGGTTCGGGCTTGCGAGGATAAAGGGA	2600
GTGGGAGAGGAAACTGCTAAGATAATCGTTGAAGCTAGAAAGAA	
GCAGTTCAAAGGGCTTGCGGACTTCATAAACAAAACCAAGAACAGGAAGA	2700
TAAACAAGAAAGTCGTGGAAGCACTCGTAAAGGCAGGGGCTTTTGACTTT	
ACTAAGAAAAAGAGGAAAGAACTACTCGCTAAAGTGGCAAACTCTGAAAA	2800
AGCATTAATGGCTACACAAAACTCCCTTTTCGGTGCACCGAAAGAAGAAG	
TGGAAGAACTCGACCCCTTAAAGCTTGAAAAGGAAGTTCTCGGTTTTTAC	2900
ATTTCAGGGCACCCCTTGACAACTACGAAAAGCTCCTCAAGAACCGCTA	
CACACCCATTGAAGATTTAGAAGAGTGGGACAAGGAAAGCGAAGCGGTGC	3000
TTACAGGAGTTATCACGGAACTCAAAGTAAAAAAGACGAAAAACGGAGAT	
TACATGGCGGTCTTCAACCTCGTTGACAAGACGGGACTAATAGAGTGTGT	3100
CGTCTTCCCGGGAGTTTACGAAGAGGCAAAGGAACTGATAGAAGAGGACA	
GAGTAGTGGTAGTCAAAGGTTTTCTGGACGAGGACCTTGAAACGGAAAAT	3200
GTCAAGTTCGTGGTGAAAGAGGTTTTCTCCCCTGAGGAGTTCGCAAAGGA	
GATGAGGAATACCCTTTATATATTCTTAAAAAGAGAGCCAAGCCCTAAACG	3300
GCGTTGCCGAAAAACTAAAGGGAATTATTGAAAACAACAGGACGGAGGAC	
GGATACAACTTGGTTCTCACGGTTGATCTGGGAGACTACTTCGTTGATTT	3400
AGCACTCCCACAAGATATGAAACTAAAGGCTGACAGAAAGGTTGTAGAGG	
AGATAGAAAAACTGGGAGTGAAGGTCATAATTTAGTAAATAACCCTTACT	3500
ጥርርርልርጥልርጥርርር	

FIG. 34B

50/83

MSKDFVHLHLHTQFSLLDGAIKIDELVKKAKEYGYKAVGMSDHGNLFGSY	
KFYKALKAEGIKPIIGMEAYFTTGSRFDRKTKTSEDNITDKYNHHLILIA	100
KDDKGLKNLMKLSTLAYKEGFYYKPRIDYELLEKYGEGLIALTACLKGVP	
TYYASINEVKKAEEWVKKFKDIFGDDLYLELQANNIPEQEVANRNLIEIA	200
KKYDVKLIATQDAHYLNPEDRYAHTVLMALQMKKTIHELSSGNFKCSNED	
LHFAPPEYMWKKFEGKFEGWEKALLNTLEVMEKTADSFEIFENSTYLLPK	300
YDVPPDKTLEEYLRELAYKGLRQRIERGQAKDTKEYWERLEYELEVINKM	
GFAGYFLIVQDFINWAKKNDIPVGPGRGSAGGSLVAYAIGITDVDPIKHG	400
FLFERFLNPERVSMPDIDVDFCQDNREKVIEYVRNKYGHDNVAQIITYNV	
MKAKQTLRDVARAMGLPYSTADKLAKLIPQGDVQGTWLSLEEMYKTPVEE	500
LLQKYGEHRTDIEDNVKKFRQICEESPEIKQLVETALKLEGLTRHTSLHA	
AGVVIAPKPLSELVPLYYDKEGEVATQYDMVQLEELGLLKMDFLGLKTLT	600
ELKLMKELIKERHGVDINFLELPLDDPKVYKLLQEGKTTGVFQLESRGMK	
ELLKKLKPDSFDDIVAVLALYRPGPLKSGLVDTYIKRKHGKEPVEYPFPE	700
LEPVLKETYGVIVYQEQVMKMSQILSGFTPGEADTLRKAIGKKKADLMAQ	
MKDKFIQGAVERGYPEEKIRKLWEDIEKFASYSFNKSHSVAYGYISYWTA	800
YVKAHYPAEFFAVKLTTEKNDNKFLNLIKDAKLFGFEILPPDINKSDVGF	
TIEGENRIRFGLARIKGVGEETAKIIVEARKKYKQFKGLADFINKTKNRK	900
INKKVVEALVKAGAFDFTKKKRKELLAKVANSEKALMATQNSLFGAPKEE	
VEELDPLKLEKEVLGFYISGHPLDNYEKLLKNRYTPIEDLEEWDKESEAV	1000
LTGVITELKVKKTKNGDYMAVFNLVDKTGLIECVVFPGVYEEAKELIEED	
RVVVVKGFLDEDLETENVKFVVKEVFSPEEFAKEMRNTLYIFLKREQALN	1100
GVAEKLKGIIENNRTEDGYNLVLTVDLGDYFVDLALPQDMKLKADRKVVE	
ETEKLGVKVTT	1161

ATGAACTACGTTCCCTTCGCGAGAAAGTACAGACCGAAATTCTTCAGGGA	
AGTAATAGGACAGGAAGCTCCCGTAAGGATACTCAAAAACGCTATAAAAA	100
ACGACAGAGTGGCTCACGCCTACCTCTTTGCCGGACCGAGGGGGGTTGGG	
AAGACGACTATTGCAAGAATTCTCGCAAAAGCTTTGAACTGTAAAAATCC	200
CTCCAAAGGTGAGCCCTGCGGTGAGTGCGAAAACTGCAGGGAGATAGACA	
GGGGTGTGTTCCCTGACTTAATTGAAATGGATGCCGCCTCAAACAGGGGT	300
ATAGACGACGTAAGGGCATTAAAAGAAGCGGTCAATTACAAACCTATAAA	
AGGAAAGTACAAGGTTTACATAATAGACGAAGCTCACATGCTCACGAAAG	400
AAGCTTTCAACGCTCTCTTAAAAACCCTCGAAGAGCCCCCTCCCAGAACT	
GTTTTCGTCCTTTGTACCACGGAGTACGACAAAATTCTTCCCACGATACT	500
CTCAAGGTGTCAGAGGATAATCTTCTCAAAGGTAAGAAAGGAAAAAGTAA	
TAGAGTATCTAAAAAAGATATGTGAAAAGGAAGGGATTGAGTGCGAAGAG	600
GGAGCCCTTGAGGTTCTGGCTCATGCCTCTGAAGGGTGCATGAGGGATGC	
AGCCTCTCTCCTGGACCAGGCGAGCGTTTACGGGGAAGGCAGGGTAACAA	700
AAGAAGTAGTGGAGAACTTCCTCGGAATTCTCAGTCAGGAAAGCGTTAGG	
AGTTTTCTGAAATTGCTTCTGAACTCAGAAGTGGACGAAGCTATAAAGTT	800
CCTCAGAGAACTCTCAGAAAAGGGCTACAACCTGACCAAGTTTTGGGAGA	
TGTTAGAAGAGGAAGTGAGAAACGCAATTTTAGTAAAGAGCCTGAAAAAT	900
CCCGAAAGCGTGGTTCAGAACTGGCAGGATTACGAAGACTTCAAAGACTA	
CCCTCTGGAAGCCCTCCTCTACGTTGAGAACCTGATAAACAGGGGTAAAG	1000
TTGAAGCGAGAACGAGAACCCTTAAGAGCCTTTGAACTCGCGGTAATA	
AAGAGCCTTATAGTCAAAGACATAATTCCCGTATCCCAGCTCGGAAGTGT	1100
GGTAAAGGAAACCAAAAAGGAAGAAAAGAAAGTTGAAGTAAAAGAAGAGC	
CAAAAGTAAAAGAAGAAAACCAAAGGAGCAGGAAGAGGACAGGTTCCAG	1200
AAAGTTTTAAACGCTGTGGACGGCAAAATCCTTAAAAGAATACTTGAAGG	
GGCAAAAAGGGAAGAAGAGACGGAAAAATCGTCCTAAAGATAGAAGCCT	1300
CTTATCTGAGAACCATGAAAAAGGAATTTGACTCACTAAAGGAGACTTTT	
CCTTTTTTAGAGTTTGAACCCGTGGAGGATAAAAAAAAAA	1400
CAGCGGGACGAGGCTGTTTTAAAGGTAAAGGAGCTCTTCAATGCAAAAAT	
ACTCAAAGTACGAAGTAAAAGCTAAGGTCATAAAGGTGAGAATGCCCGTG	1500
GAAGAGATAGGGCTGTTTAACGCACTAATAGACGGCTTGCCCAGGTACGC	
ACTCACGAGGACGAAGGAAAAGGGAAAGGGAGAAGTTTTCGTTTTAGCGA	1600
CTCCTTATAAAGTCAAGGAATTGATGGAAGCTATGGAGGGTATGAAAAA	
CACATAAAGGATTTAGAAATCCTCGGAGAGACGGATGAGGATTTAACTTT	1700
TTAAAGTATGGGTGTATCTGAGCAAAGGTTTAAGCTAAAAACAAAC	1,00
AACCCGCAGGGGACCAGCCGAAAGCCATAAAAAAACTCCTTGAAAACCTA	1800
AGGAAAGGCGTAAAAGAACAAACACTTCTCGGAGTCACGGGAAGCGGAAA	1000
GACTTTTACTCTAGCAAACGTAATAGCGAAGTACAACAAACCAACTCTTG	1900
TGGTAGTTCACAACAAATTCTCGCGGCACAGCTATACAGGGAGTTTAAA	1300
GAACTATTCCCTGAAAACGCTGTAGAGTACTTTGTCTCTTACTACGACTA	2000
TTACCAACCTGAAGCCTACATTCCCGAAAAAGATTTATACATAGAAAAGG	2000
ACGCGAGTATAAACGAAAGCTGGAACGTTTCAGACACTCCGCCACGATAT	2100
CCGTTCTAGAAAGGAGGGACGTTATAGTAGTTGCTTCAGTTTCTTGCATA	
TACGGACTCGGGAAACCTGAGCACTACGAAAACCTGAGGATAAAACTCCA	2200
AAGGGGAATAAGACTGAACTTGAGTAAGCTCCTGAGGAAACTCGTTGAGC	
TAGGATATCAGAGAAATGACTTTGCCATAAAGAGGGCTACCTTCTCGGTT	2300
AGGGGAGACGTGGTTGAGATAGTCCCTTCTCACACGGAAGATTACCTCGT	
GAGGGTAGAGTTCTGGGACGACGAAGTTGAAAGAATAGTCCTCATGGACG	2400
CTCTGAAC	

52/83

MNYVPFARKYRPKFFREVIGQEAPVRILKNAIKNDRVAHAYLFAGPRGVG	
KTTIARILAKALNCKNPSKGEPCGECENCREIDRGVFPDLIEMDAASNRG	100
IDDVRALKEAVNYKPIKGKYKVYIIDEAHMLTKEAFNALLKTLEEPPPRT	
VFVLCTTEYDKILPTILSRCQRIIFSKVRKEKVIEYLKKICEKEGIECEE	200
GALEVLAHASEGCMRDAASLLDQASVYGEGRVTKEVVENFLGILSQESVR	
SFLKLLLNSEVDEAIKFLRELSEKGYNLTKFWEMLEEEVRNAILVKSLKN	300
PESVVQNWQDYEDFKDYPLEALLYVENLINRGKVEARTREPLRAFELAVI	
KSLIVKDIIPVSQLGSVVKETKKEEKKVEVKEEPKVKEEKPKEQEEDRFQ	400
KVLNAVDGKILKRILEGAKREERDGKIVLKIEASYLRTMKKEFDSLKETF	
PFLEFEPVEDKKKPOKSSGTRLF	473

53/83

ATGCGCGTTAAGGTGGACAGGGAGGAGCTTGAAGAGGGTTCTTAAAAAAGC	
AAGAGAAAGCACGGAAAAAAAAGCCGCACTCCCGATACTCGCGAACTTCT	100
TACTCTCCGCAAAAGAGGAAAACTTAATCGTAAGGGCAACGGACTTGGAA	
AACTACCTTGTAGTCTCCGTAAAGGGGGAGGTTGAAGAGGAAGGA	200
TTGCGTCCACTCTCAAAAACTCTACGATATAGTCAAGAACTTAAATTCCG	
CTTACGTTTACCTTCATACGGAAGGTGAAAAACTCGTCATAACGGGAGGA	300
AAGAGTACGTACAAACTTCCGACAGCTCCCGCGGAGGACTTTCCCGAATT	
TCCAGAAATCGTAGAAGGAGGAGAAACACTTTCGGGAAACCTTCTCGTTA	400
ACGGAATAGAAAAGGTAGAGTACGCCATAGCGAAGGAAGAAGCGAACATA	
GCCCTTCAGGGAATGTATCTGAGAGGATACGAGGACAGAATTCACTTTGT	500
GTTCGGACGGTCACAGGCTTGCACTTTATGAACCTCTACGTAAACATTGA	
AAAGAGTGAAGACGAGTCTTTTGCTTACTTCTCCACTCCCGAGTGGAAAC	600
TCGCCGTTAGCTCCTGGAAGGAGAATTCCCGGACTACATGAGTGTCATCC	
CTGAGGAGTTTTCGGCGGAAGTCTTGTTTGAGACAGAGGAAGTCTTAAAG	700
GTTTTAAAGAGGTTGAAGGCTTTAAGCGAAGGAAAAGTTTTTCCCGTGAA	
GATTACCTTAAGCGAAAACCTTGCCATCTTTGAGTTCGCGGATCCGGAGT	800
TCGGAGAAGCGAGAGAGAATTGAAGTGGAGTACACGGGAGAGCCCTTT	
GAGATAGGATTCAACGGAAATACCTTATGGAGGCGCTTGACGCCTACGAC	900
AGCGAAAGAGTGTGGTTCAAGTTCACAACCCCCGACACGGCCACTTTATT	
GGAGGCTGAAGATTACGAAAAGGAACCTTACAAGTGCATAATAATGCCGA	1000
TGAGGGTGTAGCCATGAAAAAAGCTTTAATCTTTTTATTGAGCTTGAGCC	
TTTTAATTCCTGCGTTTAGCGAAGCCAAACCCAAGTCTTC	1090

FIG. 38

MRVKVDREELEEVLKKARESTEKKAALPILANFLLSAKEENLIVRATDLE	
NYLVVSVKGEVEEEGEVCVHSQKLYDIVKNLNSAYVYLHTEGEKLVITGG	100
KSTYKLPTAPAEDFPEFPEIVEGGETLSGNLLVNGIEKVEYAIAKEEANI	
ALQGMYLRGYEDRIHFVGSDGHRLALYEPLGEFSKELLIPRKSLKVLKKL	200
ITGIEDVNIEKSEDESFAYFSTPEWKLAVRLLEGEFPDYMSVIPEEFSAE	
VLFETEEVLKVLKRLKALSEGKVFPVKITLSENLAIFEFADPEFGEAREE	300
IEVEYTGEPFEIGFNGKYLMEALDAYDSERVWFKFTTPDTATLLEAEDYE	
KEPYKCIIMPMRV	363

54/83

GTGGAAACCACAATATTCCAGTTCCAGAAAACTTTTTTCACAAAACCTCC	
GAAGGAGAGGTCTTCGTCCTTCATGGAGAAGAGCAGTATCTCATAAGAA	100
CCTTTTTGTCTAAGCTGAAGGAAAAGTACGGGGAGAATTACACGGTTCTG	
TGGGGGGATGAGATAAGCGAGGAGGAATTCTACACTGCCCTTTCCGAGAC	200
CAGTATATTCGGCGGTTCAAAGGAAAAAGCGGTGGTCATTTACAACTTCG	
GGGATTTCCTGAAGAAGCTCGGAAGGAAGAAAAAGGAAAAAGAAAG	300
ATAAAAGTCCTCAGAAACGTAAAGAGTAACTACGTATTTATAGTGTACGA	
TGCGAAACTCCAGAAACAGGAACTTTCTTCGGAACCTCTGAAATCCGTAG	400
CGTCTTTCGGCGGTATAGTGGTAGCAAACAGGCTGAGCAAGGAGAGATA	
AAACAGCTCGTCCTTAAGAAGTTCAAAGAAAAAGGGATAAACGTAGAAAA	500
CGATGCCCTTGAATACCTTCTCCAGCTCACGGGTTACAACTTGATGGAGC	
TCAAACTTGAGGTTGAAAAACTGATAGATTACGCAAGTGAAAAAGAAAATT	600
TTAACACTCGATGAGGTAAAGAGAGTAGCCTTCTCAGTCTCAGAAAACGT	
AAACGTATTTGAGTTCGTTGATTTACTCCTCTTAAAAGATTACGAAAAGG	700
CTCTTAAAGTTTTGGACTCCCTCATTTCCTTCGGAATACACCCCCTCCAG	
ATTATGAAAATCCTGTCCTCTATGCTCTAAAACTTTACACCCTCAAGAG	800
GCTTGAAGAGAAGGGAGGACCTGAATAAGGCGATGGAAAGCGTGGGAA	
TAAAGAACAACTTTCTCAAGATGAAGTTCAAATCTTACTTA	900
TCTAAAGAGGACTTGAAGAACCTAATCCTCTCCCTCCAGAGGATAGACGC	
TTTTTCTAAACTTTACTTTCAGGACACAGTGCAGTTGCTGGGGATTTCTT	1000
GACCTCAAGACTGGAGAGGGAAGTTGTGAAAAATACTTCTCATGGTGGAT	
AATCTTTTTTATGAAGTTTGCGGTTTGCGTTTTTCCCGGTTCT	1093

FIG. 40

VETTIFQFQKTFFTKPPKERVFVLHGEEQYLIRTFLSKLKEKYGENYTVL	
WGDEISEEEFYTALSETSIFGGSKEKAVVIYNFGDFLKKLGRKKKEKERL	100
IKVLRNVKSNYVFIVYDAKLQKQELSSEPLKSVASFGGIVVANRLSKERI	
KQLVLKKFKEKGINVENDALEYLLQLTGYNLMELKLEVEKLIDYASEKKI	200
LTLDEVKRVAFSVSENVNVFEFVDLLLLKDYEKALKVLDSLISFGIHPLQ	
IMKILSSYALKLYTLKRLEEKGEDLNKAMESVGIKNNFLKMKFKSYLKAN	300
SKEDLKNLILSLQRIDAFSKLYFQDTVQLLRDFLTSRLEREVVKNTSHGG	

55/83

ATGGAAAAAGTTTTTTTGGAAAAACTCCAGAAAACCTTGCACATACCCGG	
AGGACTCCTTTTTTACGGCAAAGAAGGAAGCGGAAAGACGAAAACAGCTT	100
TTGAATTTGCAAAAGGTATTTTATGTAAGGAAAACGTACCTGGGGATGCG	
GAAGTTGTCCCTCCTGCAAACACGTAAACGAGCTGGAGGAAGCCTTCTTT	200
AAAGGAGAATAGAAGACTTTAAAGTTTATAAGACAAGGACGGTAAAAAG	
CACTTCGTTTACCTTATGGGCGAACATCCCGACTTTGTGGTAATAATCCC	300
GAGCGGACATTACATAAAGATAGAACAGATAAGGGAAGTTAAGAACTTTG	
CCTATGTGAAGCCCGCACTAAGCAGGAGAAAAGTAATTATAATAGACGAC	400
GCCCACGCGATGACCTCTCAGGCGGCAAACGCTCTTTTAAAGGTATTGGA	
AGAGCCACCTGCGGACACCACCTTTATCTTGACCACGAACAGGCGTTCTG	500
CAATCCTGCCGACTATCCTCTCCAGAACTTTTCAAGTGGAGTTCAAGGGC	
TTTTCAGTAAAAGAGGTTATGGAAATAGCGAAAGTAGACGAGGAAATAGC	600
GAAACTCTCTGGAGGCAGTCTAAAAAGGGCTATCTTACTAAAGGAAAACA	
AAGATATCCTAAACAAAGTAAAGGAATTCTTGGAAAACGAGCCGTTAAAA	700
GTTTACAAGCTTGCAAGTGAATTCGAAAAGTGGGAACCTGAAAAGCAAAA	
ACTCTTCCTTGAAATTATGGAAGAATTGGTATCTCAAAAATTGACCGAAG	800
AGAAAAAAGACAATTACACCTACCTTCTTGATACGATCAGACTCTTTAAA	
GACGGACTCGCAAGGGGTGTAAACGAACCTCTGTGGCTGTTTACGTTAGC	900
CGTTCAGGCGGATTAATAAACCGTTATTGATTCCGTAACATTTAAACCTT	
AATCTAAATTATGAGAGCCTTTGAAGGAGGTCTGGTATGGAAAATTTGAA	1000
GATTAGATATAGATACGAGGAAGATAGGAACCGTGAGCGGTGTAAAAG	
T	1051

FIG. 42

MEKVFLEKLQKTLHIPGGLLFYGKEGSGKTKTAFEFAKGILCKENVPWGC	
GSCPSCKHVNELEEAFFKGEIEDFKVYKDKDGKKHFVYLMGEHPDFVVII	100
PSGHYIKIEQIREVKNFAYVKPALSRRKVIIIDDAHAMTSQAANALLKVL	
EEPPADTTFILTTNRRSAILPTILSRTFQVEFKGFSVKEVMEIAKVDEEI	200
AKLSGGSLKRAILLKENKDILNKVKEFLENEPLKVYKLASEFEKWEPEKQ	
KLFLEIMEELVSQKLTEEKKDNYTYLLDTIRLFKDGLARGVNEPLWLFTL	300
AVQAD	

ATGAACTTCCTGAAAAAGTTCCTTTTACTGAGAAAAGCTCAAAAGTCTCC	
TTACTTCGAAGAGTTCTACGAAGAAATCGATTTGAACCAGAAGGTGAAAG	100
ATGCAAGGTTTGTAGTTTTTGACTGCGAAGCCACAGAACTCGACGTAAAG	
AAGGCAAAACTCCTTTCAATAGGTGCGGTTGAGGTTAAAAACCTGGAAAT	200
AGACCTCTCTAAATCTTTTTACGAGATACTCAAAAGTGACGAGATAAAGG	
CGGCGGAGATACATGGAATAACCAGGGAAGACGTTGAAAAGTACGGAAAG	300
GAACCAAAGGAAGTAATATACGACTTTCTGAAGTACATAAAGGGAAGCGT	
TCTCGTTGGCTACTACGTGAAGTTTGACGTCTCACTCGTTGAGAAGTACT	400
CCATAAAGTACTTCCAGTATCCAATCATCAACTACAAGTTAGACCTGTTT	
AGTTTCGTGAAGAGAGAGTACCAGAGTGGCAGGAGTCTTGACGACCTTAT	500
GAAGGAACTCGGTGTAGAAATAAGGGCAAGGCACAACGCCCTTGAAGATG	
CCTACATAACCGCTCTTCTTTTCCTAAAGTACGTTTACCCGAACAGGGAG	600
TACAGACTAAAGGATCTCCCGATTTTCCTT	

FIG. 44

MNFLKKFLLLRKAQKSPYFEEFYEEIDLNQKVKDARFVVFDCEATELDVK	
KAKLLSIGAVEVKNLEIDLSKSFYEILKSDEIKAAEIHGITREDVEKYGK	100
EPKEVIYDFLKYIKGSVLVGYYVKFDVSLVEKYSIKYFQYPIINYKLDLF	
SFVKREYQSGRSLDDLMKELGVEIRARHNALEDAYITALLFLKYVYPNRE	200
YRLKDLPIFL	

57/83

ATGCTCAATAAGGTTTTTATAATAGGAAGACTTACGGGTGACCCCGTTAT	
AACTTATCTACCGAGCGGAACGCCCGTAGTAGAGTTTACTCTGGCTTACA	100
ACAGAAGGTATAAAAACCAGAACGGTGAATTTCAGGAGGAAAGTCACTTC	
TTTGACGTAAAGGCGTACGGAAAAATGGCTGAAGACTGGGCTACACGCTT	200
CTCGAAAGGATACCTCGTACTCGTAGAGGGAAGACTCTCCCAGGAAAAGT	
GGGAGAAAGAAGAAGTTCTCAAAGGTCAGGATAATAGCGGAAAAC	300
GTAAGATTAATAAACAGGCCGAAAGGTGCTGAACTTCAAGCAGAAGAAGA	
GGAGGAAGTTCCTCCCATTGAGGAGGAAATTGAAAAACTCGGTAAAGAGG	400
AAGAGAAGCCTTTTACCGATGAAGAGGACGAAATACCTTTTTAATTTTGA	
GGAGGTTAAAGTATGGTAGTGAGAGCTCCTAAGAAGAAAGTTTGTATGTA	500
CTGTGAACAAAGAGAGAGCCAGATT	

FIG. 46

MLNKVFIIGRLTGDPVITYLPSGTPVVEFTLAYNRRYKNQNGEFQEESHF FDVKAYGKMAEDWATRFSKGYLVLVEGRLSQEKWEKEGKKFSKVRIIAEN 100 VRLINRPKGAELQAEEEEEVPPIEEEIEKLGKEEEKPFTDEEDEIPF

58/83

ATGCAATTTGTGGATAAACTTCCCTGTGACGAATCCGCCGAGAGGGCGGT	
TCTTGGCAGTATGCTTGAAGACCCCGAAAACATACCTCTGGTACTTGAAT	100
ACCTTAAAGAAGAAGACTTCTGCATAGACGAGCACAAGCTACTTTTCAGG	
GTTCTTACAAACCTCTGGTCCGAGTACGGCAATAAGCTCGATTTCGTATT	200
AATAAAGGATCACCTTGAAAAGAAAAACTTACTCCAGAAAATACCTATAG	
ACTGGCTCGAAGAACTCTACGAGGAGGCGGTATCCCCTGACACGCTTGAG	300
GAAGTCTGCAAAATAGTAAAACAACGTTCCGCACAGAGGGCGATAATTCA	
ACTCGGTATAGAACTCATTCACAAAGGAAAGGAAAACAAAGACTTTCACA	400
CATTAATCGAGGAAGCCCAGAGCAGGATATTTTCCATAGCGGAAAGTGCT	
ACATCTACGCAGTTTTACCATGTGAAAGACGTTGCGGAAGAAGTTATAGA	500
ACTCATTTATAAATTCAAAAGCTCTGACAGGCTAGTCACGGGACTCCCAA	
GCGGTTTCACGGAACTCGATCTAAAGACGACGGGATTCCACCCTGGAGAC	600
TTAATAATACTCGCCGCAAGACCCGGTATGGGGAAAACCGCCTTTATGCT	
CTCCATAATCTACAATCTCGCAAAAGACGAGGGAAAACCCTCAGCTGTAT	700
TTTCCTTGGAAATGAGCAAGGAACAGCTCGTTATGAGACTCCTCTCTATG	
ATGTCGGAGGTCCCACTTTTCAAGATAAGGTCTGGAAGTATATCGAATGA	800
AGATTTAAAGAAGCTTGAAGCAAGCGCAATAGAACTCGCAAAGTACGACA	
TATACCTCGACGACACCCCGCTCTCACTACAACGGATTTAAGGATAAGG	900
GCAAGAAAGCTCAGAAAGGAAAAGGAAGTTGAGTTCGTGGCGGTGGACTA	
CTTGCAACTTCTGAGACCGCCAGTCCGAAAGAGTTCAAGACAGGAGGAAG	1000
TGGCAGAGGTTTCAAGAAACTTAAAAGCCCCTTGCAAAGGAACTTCACATT	
CCCGTTATGGCACTTGCGCAGCTCTCCCGTGAGGTGGAAAAGAGAGGAGTGA	1100
TAAAAGACCCCAGCTTGCGGACCTCAGAGAATCCGGACAGATAGAACAGG	
ACGCAGACCTAATCCTTTTCCTCCACAGACCCGAGTACTACAAGAAAAAG	1200
CCAAATCCCGAAGAGCAGGGTATAGCGGAAGTGATAATAGCCAAGCAAAG	
GCAAGGACCCACGGACATTGTGAAGCTCGCATTTATTAAGGAGTACACTA	1300
AGTTTGCAAACCTAGAAGCCCTTCCTGAACAACCTCCTGAAGAAGAGGGAA	
CTTTCCGAAATTATTGAAACACAGGAGGATGAAGGATTCGAAGATATTGA	1400
CTTCTGAAAATTAAGGTTTTATAATTTTATCTTGGCTATCCGGGGTAGCT	
CAATCGGCAGAGCGGGTGGCTG	1472

MQFVDKLPCDESAERAVLGSMLEDPENIPLVLEYLKEEDFCIDEHKLLFR	
VLTNLWSEYGNKLDFVLIKDHLEKKNLLQKIPIDWLEELYEEAVSPDTLE	100
EVCKIVKQRSAQRAIIQLGITSTQFYHVKDVAEEVIELIYKFKSSDRLVT	
GLPSGFTELDLKTTGFHPGDLIILAARPGMGKTAFMLSIIYNLAKDEGKP	200
SAVFSLEMSKEQLVMRLLSMMSEVPLFKIRSGSISNEDLKKLEASAIELA	
KYDIYLDDTPALTTTDLRIRARKLRKEKEVEFVAVDYLQLLRPPVRKSSR	300
QEEVAEVSRNLKALAKELHIPVMALAQLSREVEKRSDKRPQLADLRESGQ	
IEQDADLILFLHRPEYYKKKPNPEEQGIAEVIIAKQRQGPTDIVKLAFIK	400
EYTKFANLEALPEOPPEEEELSEIIETOEDEGFEDIDF	

59/83

ATGTCCTCGGACATAGACGAACTTAGACGGGAAATAGATATAGTAGACGT	
CATTTCCGAATACTTAAACTTAGAGAAGGTAGGTTCCAATTACAGAACGA	100
ACTGTCCCTTTCACCCTGACGATACACCCTCCTTTTTACGTGTCTCCAAGT	
AAACAAATATTCAAGTGTTTCGGTTGCGGGGTAGGGGGAGACGCGATAAA	200
GTTCGTTTCCCTTTACGAGGACATCTCCTATTTTGAAGCCGCCCTTGAAC	
TCGCAAAACGCTACGGAAAGAATTAGACCTTGAAAAGATATCAAAAGAC	300
GAAAAGGTATACGTGGCTCTTGACAGGGTTTGTGATTTCTACAGGGAAAG	
CCTTCTCAAAAACAGAGGGCAAGTGAGTACGTAAAGAGTAGGGGAATAG	400
ACCCTAAAGTAGCGAGGAAGTTTGATCTTGGGTACGCACCTTCCAGTGAA	
GCACTCGTAAAAGTCTTAAAAGAGAACGATCTTTTAGAGGCTTACCTTGA	500
AACTAAAAACCTCCTTTCTCCTACGAAGGGTGTTTACAGGGATCTCTTTC	
TTCGGCGTGTCGTGATCCCGATAAAGGATCCGAGGGGAAGAGTTATAGGT	600
TTCGGTGGAAGGAGGATAGTAGAGGACAAATCTCCCAAGTACATAAACTC	
TCCAGACAGCAGGGTATTTAAAAAAGGGGGAGAACTTATTCGGTCTTTACG	700
AGGCAAAGGAGTATATAAAGGAAGAAGGATTTGCGATACTTGTGGAAGGG	
TACTTTGACCTTTTGAGACTTTTTTCCGAGGGAATAAGGAACGTTGTTGC	800
ACCCCTCGGTACAGCCCTGACCCAAAATCAGGCAAACCTCCTTTCCAAGT	
TCACAAAAAGGTCTACATCCTTTACGACGGAGATGATGCGGGAAGAAAG	900
GCTATGAAAAGTGCCATTCCCCTACTCCTCAGTGCAGGAGTGGAAGTTTA	
TCCCGTTTACCTCCCGAAGGATACGATCCCGACGAGTTTATAAAGGAAT	1000
TCGGGAAAGAGAATTAAGAAGACTGATAAACAGCTCAGGGGAGCTCTTT	
GAAACGCTCATAAAAACCGCAAGGGAAAACTTAGAGGAGAAAACGCGTGA	1100
GTTCAGGTATTATCTGGGCTTTATTTCCGATGGAGTAAGGCGCTTTGCTC	
TGGCTTCGGAGTTTCACACCAAGTACAAAGTTCCTATGGAAATTTTATTA	1200
ATGAAAATTGAAAAAATTCTCAAGAAAAAGAAATTAAACTCTCCTTTAA	
GGAAAAATCTTCCTGAAAGGACTGATAGAATTAAAACCAAAAATAGACC	1300
TTGAAGTCCTGAACTTAAGTCCTGAGTTAAAGGAACTCGCAGTTAACGCC	
TTAAACGGAGAGGAGCATTTACTTCCAAAAGAAGTTCTCGAGTACCAGGT	1400
GGATAACTTGGAGAAACTTTTTAACAACATCCTTAGGGATTTACAAAAAT	
CTGGGAAAAAGAGGAAAAAGAGGGGTTGAAAAATGTAAATACTTAATTA	1500
ACTTTAATAAATTTTTAGAGTTAGGA	

MSSDIDELRREIDIVDVISEYLNLEKVGSNYRTNCPFHPDDTPSFYVSPS	
KQIFKCFGCGVGGDAIKFVSLYEDISYFEAALELAKRYGKKLDLEKISKD	100
EKVYVALDRVCDFYRESLLKNREASEYVKSRGIDPKVARKFDLGYAPSSE	
ALVKVLKENDLLEAYLETKNLLSPTKGVYRDLFLRRVVIPIKDPRGRVIG	200
FGGRRIVEDKSPKYINSPDSRVFKKGENLFGLYEAKEYIKEEGFAILVEG	
YFDLLRLFSEGIRNVVAPLGTALTQNQANLLSKFTKKVYILYDGDDAGRK	300
AMKSAIPLLLSAGVEVYPVYLPEGYDPDEFIKEFGKEELRRLINSSGELF	
ETLIKTARENLEEKTREFRYYLGFISDGVRRFALASEFHTKYKVPMEILL	400
MKIEKNSQEKEIKLSFKEKIFLKGLIELKPKIDLEVLNLSPELKELAVNA	
LNGEEHLLPKEVLEYQVDNLEKLFNNILRDLQKSGKKRKKRGLKNVNT	498

60/83

ATGCAAGATACCGCTACCTGCAGTATTTGTCAGGGGACGGGATTCGTAAA	
GACCGAAGACAACGTAAGGCTCTGCGAATGCAGGTTCAAGAAAAGGG	100
ATGTAAACAGGGAACTAAACATCCCAAAGAGGTACTGGAACGCCAACTTA	
GACACTTACCACCCCAAGAACGTATCCCAGAACAGGGCACTTTTGACGAT	200
AAGGGTCTTCGTCCACAACTTCAATCCCGAGGAAGGGAAAGGGCTTACCT	
TTGTAGGATCTCCTGGAGTCGGCAAAACTCACCTTGCGGTTGCAACATTA	300
AAAGCGATTTATGAGAAGAAGGGAATCAGAGGATACTTCTTCGATACGAA	
GGATCTAATATTCAGGTTAAAACACTTAATGGACGAGGGAAAGGATACAA	400
AGTTTTTAAAAACTGTCTTAAACTCACCGGTTTTTGGTTCTCGACGACCTC	
GGTTCTGAGAGGCTCAGTGACTGGCAGAGGGAACTCATCTCTTACATAAT	500
CACTTACAGGTATAACAACCTTAAGAGCACGATAATAACCACGAATTACT	
CACTCCAGAGGGAAGAAGAGAGTAGCGTGAGGATAAGTGCGGATCTTGCA	600
AGCAGACTCGGAGAAAACGTAGTTTCAAAAATTTACGAGATGAACGAGTT	
GCTCGTTATAAAGGGTTCCGACCTCAGGAAGTCTAAAAAGCTATCAACCC	700
CATCT	

FIG. 52

MQDTATCSICQGTGFVKTEDNKVRLCECRFKKRDVNRELNIPKRYWNANL	
DTYHPKNVSQNRALLTIRVFVHNFNPEEGKGLTFVGSPGVGKTHLAVATL	100
KAIYEKKGIRGYFFDTKDLIFRLKHLMDEGKDTKFLKTVLNSPVLVLDDL	
GSERLSDWQRELISYIITYRYNNLKSTIITTNYSLQREEESSVRISADLA	200
SRLGENVVSKIYEMNELLVIKGSDLRKSKKLSTPS	

ATGAAAAAGATTGAAAATTTGAAGTGGAAAAATGTCTCGTTTAAAAGCCT	100
GGAAATAGATCCCGATGCAGGTGTGGTTCTCGTTTCCGTGGAAAAATTCT	100
CCGAAGAGATAGAAGACCTTGTGCGTTTACTGGAGAAGAAGACGCGGTTT	000
CGAGTCATCGTGAACGGTGTTCAAAAAAGTAACGGGGATCTAAGGGGAAA	200
GATACTTTCCCTTCTCAACGGTAATGTGCCTTACATAAAAGATGTTGTTT	
TCGAAGGAAACAGGCTGATTCTGAAAGTGCTTGGAGATTTCGCGCGGGAC	300
AGGATCGCCTCCAAACTCAGAAGCACGAAAAAAACAGCTCGATGAACTGCT	
GCCTCCCGGAACAGAGATCATGCTGGAGGTTGTGGAGCCTCCGGAAGATC	400
TTTTGAAAAAGGAAGTACCACAACCAGAAAAGAGAGAAGAACCAAAGGGT	
GAAGAATTGAAGATCGAGGATGAAAACCACATCTTTGGACAGAAACCCAG	500
AAAGATCGTCTTCACCCCCTCAAAAATCTTTGAGTACAACAAAAAGACAT	
CGGTGAAGGCCAAGATCTTCAAAATAGAGAAGATCGAGGGGAAAAGAACG	600
GTCCTTCTGATTTACCTGACAGACGGAGAAGATTCTCTGATCTGCAAAGT	
CTTCAACGACGTTGAAAAGGTCGAAGGGAAAGTATCGGTGGGAGACGTGA	700
TCGTTGCCACAGGAGACCTCCTTCTCGAAAACGGGGAGCCCACCCTTTAC	
GTGAAGGGAATCACAAAACTTCCCGAAGCGAAAAGGATGGACAAATCTCC	800
GGTTAAGAGGGTGGAGCTCCACGCCCATACCAAGTTCAGCGATCAGGACG	
CAATAACAGATGTGAACGAATATGTGAAACGAGCCAAGGAATGGGGCTTT	900
CCCGCGATAGCCCTCACGGATCATGGGAACGTTCAGGCCATACCTTACTT	
CTACGACGCGGCGAAAGAAGCTGGAATAAAGCCCATTTTCGGTATCGAAG	1000
CGTATCTGGTGAGTGACGTGGAGCCCGTCATAAGGAATCTCTCCGACGAT	
TCGACGTTTGGAGATGCCACGTTCGTCGTCCTCGACTTCGAGACGACGGG	1100
TCTCGACCCGCAGGTGGATGAGATCATCGAGATAGGAGCGGTGAAGATAC	
AGGGTGGCCAGATAGTGGACGAGTACCACACTCTCATAAAGCCTTCCAGG	1200
GAGATCTCAAGAAAAAGTTCGGAGATCACCGGAATCACTCAAGAGATGCT	
GGAAAACAAGAGAAGCATCGAGGAAGTTCTGCCGGAGTTCCTCGGTTTTC	1300
TGGAAGATTCCATCATCGTAGCACACAACGCCAACTTCGACTACAGATTT	
CTGAGGCTGTGGATCAAAAAAGTGATGGGATTGGACTGGGAAAGACCCTA	1400
CATAGATACGCTCGCCACAAGTCCCTTCTCAAACTGAGAAGCTACT	1100
CTCTGGATTCCGTTGTGGAAAAGCTCGGATTGGGTCCCTTCCGGCACCAC	1500
AGGGCCCTGGATGACGCGAGGGTCACCGCTCAGGTTTTCCTCAGGTTCGT	1300
TGAGATGAAGAAGATCGGTATCACGAAGCTTTCAGAAATGGAGAAGT	1600
TGAAGGATACGATAGACTACACCGCGTTGAAACCCTTCCACTGCACGATC	1000
CTCGTTCAGAACAAAAAGGGATTGAAAAACCTATACAAACTGGTTTCTGA	1700
TTCCTATATAAAGTACTTCTACGGTGTTCCGAGGATCCTCAAAAGTGAGC	1700
TCATCGAGAACAGAGAAGGACTGCTCGTGGGTAGCGCGTGTATCTCCGGT	1800
GAGCTCGGACGTGCCGCCCTCGAAGGAGCGAGTGATTCAGAACTCGAAGA	1000
GATCGCGAAGTTCTACGACTACATAGAAGTCATGCCGCTCGACGTTATAG	1900
CCGAAGATGAAGACCTAGACAGAGAAGACTGAAAGAAGTGTACCGA	1900
	2000
AAACTCTACAGAATAGCGAAAAAATTGAACAAGTTCGTCGTCATGACCGG	2000
TGATGTTCATTTCCTCGATCCCGAAGATGCCAGGGGCAGAGCTGCACTTC.	2100
TGGCACCTCAGGGAAACAGAAACTTCGAGAATCAGCCCGCACTCTACCTC	2100
AGAACGACCGAAGAATGCTCGAGAAGGCGATAGAGATATTCGAAGATGA	0000
AGAGATCGCGAGGGAAGTCGTGATAGAGAATCCCAACAGAATAGCCGATA	2200
TGATCGAGGAAGTGCAGCCGCTCGAGAAAAAACTTCACCCGCCGATCATA	0000
GAGAACGCCGATGAAATAGTGAGAAACCTCACCATGAAGCGGGCGTACGA	2300
GATCTACGGTGATCCGCTTCCCGAAATCGTCCAGAAGCGTGTGGAAAAGG	

62/83

AACTGAACGCCATCATAAATCATGGATACGCCGTTCTCTATCTCATCGCT	2400
CAGGAGCTCGTTCAGAAATCTATGAGCGATGGTTACGTGGTTGGATCCAG	
AGGATCCGTCGGGTCTTCACTCGTGGCCAATCTCCTCGGAATAACAGAGG	2500
TGAATCCCCTACCACCACATTACAGGTGTCCAGAGTGCAAATACTTTGAA	
GTTGTCGAAGACGACAGATACGGAGCGGGTTACGACCTTCCCAACAAGAA	2600
CTGTCCAAGATGTGGGGCTCCTCTCAGAAAAGACGGCCACGGCATACCGT	
TTGAAACGTTCATGGGGTTCGAGGGTGACAAGGTCCCCGACATAGATCTC	2700
AACTTCTCAGGAGAGTATCAGGAACGTGCTCATCGTTTTGTGGAAGAACT	
CTTCGGTAAAGACCACGTCTATAGGGCGGGAACCATAAACACCATCGCGG	2800
AAAGAAGTGCGGTGGGTTACGTGAGAAGCTACGAAGAGAAAACCGGAAAG	
AAGCTCAGAAAGGCGGAAATGGAAAGACTCGTTTCCATGATCACGGGAGT	2900
GAAGAGAACGACGGGTCAGCACCCAGGGGGGCTCATGATCATACCGAAAG	
ACAAAGAAGTCTACGATTTCACTCCCATACAGTATCCAGCCAACGATAGA	3000
AACGCAGGTGTGTTCACCACGCACTTCGCATACGAGACGATCCATGATGA	
CCTGGTGAAGATAGATGCGCTCGGCCACGATGATCCCACTTTCATCAAGA	3100
TGCTCAAGGACCTCACCGGAATCGATCCCATGACGATTCCCATGGATGAC	
CCCGATACGCTCGCCATATTCAGTTCTGTGAAGCCTCTTGGTGTGGATCC	3200
CGTTGAGCTGGAAAGCGATGTGGGAACGTACGGAATTCCGGAGTTCGGAA	
CCGAGTTTGTGAGGGGAATGCTCGTTGAAACGAGACCAAAGAGTTTCGCC	3300
GAGCTTGTGAGAATCTCAGGACTGTCACACGGTACGGACGTCTGGTTGAA	
CAACGCACGTGATTGGATAAACCTCGGCTACGCCAAGCTCTCCGAGGTTA	3400
TCTCGTGTAGGGACGACATCATGAACTTCCTCATACACAAAGGAATGGAA	
CCGTCACTTGCCTTCAAGATCATGGAAAACGTCAGGAAGGGAAAGGGTAT	3500
CACAGAAGAGATGGAGAGCGAGATGAGAAGGCTGAAGGTTCCAGAATGGT	
TCATCGAATCCTGTAAAAGGATCAAATATCTCTTCCCGAAAGCTCACGCT	3600
GTGGCTTACGTGAGTATGGCCTTCAGAATTGCTTACTTCAAGGTTCACTA	
TCCTCTTCAGTTTTACGCGGCGTACTTCACGATAAAAGGTGATCAGTTCG	3700
ATCCGGTTCTCGTACTCAGGGGAAAAGAAGCCATAAAGAGGCGCTTGAGA	
GAACTCAAAGCGATGCCTGCCAAAGACGCCCCAGAAGAAAAACGAAGTGAG	3800
TGTTCTGGAGGTTGCCCTGGAAATGATACTGAGAGGTTTTTCCTTCC	
CGCCCGACATCTTCAAATCCGACGCGAAGAAATTTCTGATAGAAGGAAAC	3900
TCGCTGAGAATTCCGTTCAACAAACTTCCAGGACTGGGTGACAGCGTTGC	
CGAGTCGATAATCAGAGCCAGGGAAGAAAAGCCGTTCACTTCGGTGGAAG	4000
ATCTCATGAAGAGGACCAAGGTCAACAAAAATCACATAGAGCTGATGAAA	
AGCCTGGGTGTTCTCGGGGACCTTCCAGAGACGGAACAGTTCACGCTTTT	4100
C	

FIG. 54B

63/83

MKKIENLKWKNVSFKSLEIDPDAGVVLVSVEKFSEEIEDLVRLLEKKTRF	
RVIVNGVQKSNGDLRGKILSLLNGNVPYIKDVVFEGNRLILKVLGDFARD	100
RIASKLRSTKKOLDELLPPGTEIMLEVVEPPEDLLKKEVPOPEKREEPKG	
EELKIEDENHIFGQKPRKIVFTPSKIFEYNKKTSVKGKIFKIEKIEGKRT	200
VLLIYLTDGEDSLICKVFNDVEKVEGKVSVGDVIVATGDLLLENGEPTLY	
VKGITKLPEAKRMDKSPVKRVELHAHTKFSDQDAITDVNEYVKRAKEWGF	300
PAIALTDHGNVQAIPYFYDAAKEAGIKPIFGIEAYLVSDVEPVIRNLSDD	
STFGDATFVVLDFETTGLDPQVDEIIEIGAVKIQGGQIVDEYHTLIKPSR	400
EISRKSSEITGITQEMLENKRSIEEVLPEFLGFLEDSIIVAHNANFDYRF	
LRLWIKKVMGLDWERPYIDTLALAKSLLKLRSYSLDSVVEKLGLGPFRHH	500
RALDDARVTAQVFLRFVEMMKKIGITKLSEMEKLKDTIDYTALKPFHCTI	
LVQNKKGLKNLYKLVSDSYIKYFYGVPRILKSELIENREGLLVGSACISG	600
ELGRAALEGASDSELEEIAKFYDYIEVMPLDVIAEDEEDLDRERLKEVYR	
KLYRIAKKLNKFVVMTGDVHFLDPEDARGRAALLAPQGNRNFENQPALYL	700
RTTEEMLEKAIEIFEDEEIAREVVIENPNRIADMIEEVQPLEKKLHPPII	
ENADEIVRNLTMKRAYEIYGDPLPEIVQKRVEKELNAIINHGYAVLYLIA	800
QELVQKSMSDGYVVGSRGSVGSSLVANLLGITEVNPLPPHYRCPECKYFE	
VVEDDRYGAGYDLPNKNCPRCGAPLRKDGHGIPFETFMGFEGDKVPDIDL	900
NFSGEYQERAHRFVEELFGKDHVYRAGTINTIAERSAVGYVRSYEEKTGK	
KLRKAEMERLVSMITGVKRTTGQHPGGLMIIPKDKEVYDFTPIQYPANDR	1000
NAGVFTTHFAYETIHDDLVKIDALGHDDPTFIKMLKDLTGIDPMTIPMDD	
PDTLAIFSSVKPLGVDPVELESDVGTYGIPEFGTEFVRGMLVETRPKSFA	1100
ELVRISGLSHGTDVWLNNARDWINLGYAKLSEVISCRDDIMNFLIHKGME	
PSLAFKIMENVRKGKGITEEMESEMRRLKVPEWFIESCKRIKYLFPKAHA	1200
VAYVSMAFRIAYFKVHYPLQFYAAYFTIKGDQFDPVLVLRGKEAIKRRLR	
ELKAMPAKDAQKKNEVSVLEVALEMILRGFSFLPPDIFKSDAKKFLIEGN	1300
SLRIPFNKLPGLGDSVAESIIRAREEKPFTSVEDLMKRTKVNKNHIELMK	
SLGVLGDLPETEQFTLF	1367

64/83

GTGCTCGCCATGATATGGAACGACACCGTTTTTTTGCGTCGTAGACACAGA	
AACCACGGGAACCGATCCCTTTGCCGGAGACCGGATAGTTGAAATAGCCG	100
CTGTTCCTGTCTTCAAGGGGAAGATCTACAGAAACAAAGCGTTTCACTCT	
CTCGTGAATCCCAGAATAAGAATCCCTGCGCTGATTCAGAAAGTTCACGG	200
TATCAGCAACATGGACATCGTGGAAGCGCCAGACATGGACACAGTTTACG	
ATCTTTTCAGGGATTACGTGAAGGGAACGGTGCTCGTGTTTCACAACGCC	300
AACTTCGACCTCACTTTTCTGGATATGATGGCAAAGGAAACGGGAAACTT	
TCCAATAACGAATCCCTACATCGACACACTCGATCTTTCAGAAGAGATCT	400
TTGGAAGGCCTCATTCTCTCAAATGGCTCTCCGAAAGACTTGGAATAAAA	
ACCACGATACGGCACCGTGCTCTTCCAGATGCCCTGGTGACCGCAAGAGT	500
TTTTGTGAAGCTTGTTGAATTTCTTGGTGAAAACAGGGTCAACGAATTCA	
TACGTGGAAAACGGGGG	567

FIG. 56

MLAMIWNDTVFCVVDTETTGTDPFAGDRIVEIAAVPVFKGKIYRNKAFHS	
LVNPRIRIPALIQKVHGISNMDIVEAPDMDTVYDLFRDYVKGTVLVFHNA	100
NFDLTFLDMMAKETGNFPITNPYIDTLDLSEEIFGRPHSLKWLSERLGIK	
TTIRHRALPDALVTARVFVKLVEFLGENRVNEFIRGKRG	189

65/83

GTGGAAGTTCTTTACAGGAAGTACAGGCCAAAGACTTTTTCTGAGGTTGT	
CAATCAGGATCATGTGAAGAAGGCAATAATCGGTGCTATTCAGAAGAACA	100
GCGTGGCCCACGGATACATATTCGCCGGTCCGAGGGGAACGGGGAAGACT	
ACTCTTGCCAGAATTCTCGCAAAATCCCTGAACTGTGAGAACAGAAAGGG	200
AGTTGAACCCTGCAATTCCTGCAGAGCCTGCAGAGAGATAGACGAGGGAA	
CCTTCATGGACGTGATAGAGCTCGACGCGCCTCCAACAGAGGAATAGAC	300
GAGATCAGAAGAATCAGAGACGCCGTTGGATACAGGCCGATGGAAGGTAA	
ATACAAAGTCTACATAATAGACGAAGTTCACATGCTCACGAAAGAAGCCT	400
TCAACGCGCTCCTCAAAACACTCGAAGAACCTCCTTCCCACGTCGTGTTC	
GTGCTGGCAACGACAAACCTTGAGAAGGTTCCTCCCACGATTATCTCGAG	500
ATGTCAGGTTTTCGAGTTCAGAAACATTCCCGACGAGCTCATCGAAAAGA	-
GGCTCCAGGAAGTTGCGGAGGCTGAAGGAATAGAGATAGACAGGGAAGCT	600
CTGAGCTTCATCGCAAAAAGAGCCTCTGGAGGCTTGAGAGACGCGCTCAC	
CATGCTCGAGCAGGTGTGGAAGTTCTCGGAAGGAAAGATAGAT	700
CGGTACACAGGCCCTCGGGTTGATACCGATACAGGTTGTTCGCGATTAC	
GTGAACGCTATCTTTTCTGGTGATGTGAAAAGGGTCTTCACCGTTCTCGA	800
CGACGTCTATTACAGCGGGAAGGACTACGAGGTGCTCATTCAGGAAGCAG	+
TCGAGGATCTGGTCGAAGACCTGGAAAGGGAGAGAGGGGTTTACCAGGTT	900
TCAGCGAACGATATAGTTCAGGTTTCGAGACAACTTCTGAATCTTCTGAG	+
AGAGATAAAGTTCGCCGAAGAAAAACGACTCGTCTGTAAAGTGGGTTCGG	1000
CTTACATAGCGACGAGGTTCTCCACCACAAACGTTCAGGAAAACGATGTC	! :
AGAGAAAAAACGATAATTCAAATGTACAGCAGAAAGAAGAAGAAGAAAAA	. 1100
AACGGTGAAGGCAAAAGAAGAAAAACAGGAAGACAGCGAGTTCGAGAAAC	
GCTTCAAAGAACTCATGGAAGAACTGAAAGAAAAGGGCGATCTCTCTATC	1200
TTTGTCGCTCTCAGCCTCTCAGAGGTGCAGTTTGACGGAGAAAAGGTGAT	1
TATTTCTTTTGATTCATCGAAAGCTATGCATTACGAGTTGATGAAGAAAA	1300
AACTGCCTGAGCTGGAAAACATTTTTTCTAGAAAACTCGGGAAAAAAGTA	
GAAGTTGAACTTCGACTGATGGGAAAAGAAGAAACAATCGAGAAGGTTTC	1400
TCAGAAGATCCTGAGATTGTTTGAACAGGAGGGA	

MEVLYRKYRPKTFSEVVNQDHVKKAIIGAIQKNSVAHGYIFAGPRGTGKT	
TLARILAKSLNCENRKGVEPCNSCRACREIDEGTFMDVIELDAASNRGID	100
EIRRIRDAVGYRPMEGKYKVYIIDEVHMLTKEAFNALLKTLEEPPSHVVF	
VLATTNLEKVPPTIISRCQVFEFRNIPDELIEKRLQEVAEAEGIEIDREA	200
LSFIAKRASGGLRDALTMLEQVWKFSEGKIDLETVHRALGLIPIQVVRDY	
VNAIFSGDVKRVFTVLDDVYYSGKDYEVLIQEAVEDLVEDLERERGVYQV	300
SANDIVQVSRQLLNLLREIKFAEEKRLVCKVGSAYIATRFSTTNVQENDV	
REKNDNSNVQQKEEKKETVKAKEEKQEDSEFEKRFKELMEELKEKGDLSI	400
FVALSLSEVQFDGEKVIISFDSSKAMHYELMKKKLPELENIFSRKLGKKV	
EVELRLMGKEETIEKVSQKILRLFEQEG	478

66/83

ATGAAAGTAACCGTCACGACTCTTGAATTGAAAGACAAAATAACCATCGC	
CTCAAAAGCGCTCGCAAAGAAATCCGTGAAACCCATTCTTGCTGGATTTC	100
TTTTCGAAGTGAAAGATGGAAATTTCTACATCTGCGCGACCGATCTCGAG	
ACCGGAGTCAAAGCAACCGTGAATGCCGCTGAAATCTCCGGTGAGGCACG	200
TTTTGTGGTACCAGGAGATGTCATTCAGAAGATGGTCAAGGTTCTCCCAG	
ATGAGATAACGGAACTTTCTTTAGAGGGGGGATGCTCTTGTTATAAGTTCT	300
GGAAGCACCGTTTTCAGGATCACCACCATGCCCGCGGACGAATTTCCAGA	
GATAACGCCTGCCGAGTCTGGAATAACCTTCGAAGTTGACACTTCGCTCC	400
TCGAGGAAATGGTTGAAAAGGTCATCTTCGCCGCTGCCAAAGACGAGTTC	
ATGCGAAATCTGAATGGAGTTTTCTGGGAACTCCACAAGAATCTTCTCAG	500
GCTGGTTGCAAGTGATGGTTTCAGACTTGCACTTGCTGAAGAGCAGATAG	
AAAACGAGGAAGAGGCGAGTTTCTTGCTCTCTTTGAAGAGCATGAAAGAA	600
GTTCAAAACGTGCTGGACAACACAACGGAGCCGACTATAACGGTGAGGTA	
CGATGGAAGAAGGGTTTCTCTGTCGACAAATGATGTAGAAACGGTGATGA	700
GAGTGGTCGACGCTGAATTTCCCGATTACAAAAGGGTGATCCCCGAAACT	
TTCAAAACGAAAGTGGTGGTTTCCAGAAAAGAACTCAGGGAATCTTTGAA	800
GAGGGTGATGGTGATTGCCAGCAAGGGAAGCGAGTCCGTGAAGTTCGAAA	
TAGAAGAAAACGTTATGAGACTTGTGAGCAAGAGCCCGGATTATGGAGAA	900
GTGGTCGATGAAGTTGAAGTTCAAAAAGAAGGGGGAAGATCTCGTGATCGC	
TTTCAACCCGAAGTTCATCGAGGACGTTTTGAAGCACATTGAGACTGAAG	1000
AAATCGAAATGAACTTCGTTGATTCTACCAGTCCATGTCAGATAAATCCA	
CTCGATATTTCTGGATACCTTTACATAGTGATGCCCATCAGACTGGCA	1098

FIG. 60

MKVTVTTLELKDKITIASKALAKKSVKPILAGFLFEVKDGNFYICATDLE	
TGVKATVNAAEISGEARFVVPGDVIQKMVKVLPDEITELSLEGDALVISS	100
GSTVFRITTMPADEFPEITPAESGITFEVDTSLLEEMVEKVIFAAAKDEF	
MRNLNGVFWELHKNLLRLVASDGFRLALAEEQIENEEEASFLLSLKSMKE	200
VQNVLDNTTEPTITVRYDGRRVSLSTNDVETVMRVVDAEFPDYKRVIPET	
FKTKVVVSRKELRESLKRVMVIASKGSESVKFEIEENVMRLVSKSPDYGE	300
VVDEVEVQKEGEDLVIAFNPKFIEDVLKHIETEEIEMNFVDSTSPCQINP	
LDISGYLYIVMPIRLA	366

67/83

ATGCCAGTCACGTTTCTCACAGGTACTGCAGAAACTCAGAAGGAAG	
GATAAAGAAACTCCTGAAGGATGGTAACGTGGAGTACATAAGGATCCATC	100
CGGAGGATCCCGACAAGATCGATTTCATAAGGTCTTTACTCAGGACAAAG	
ACGATCTTTTCCAACAAGACGATCATTGACATCGTCAATTTCGATGAGTG	200
GAAAGCACAGGAGCAGAAGCGTCTCGTTGAACTTTTGAAAAACGTACCGG	
AAGACGTTCATATCTTCATCCGTTCTCAAAAAACAGGTGGAAAGGGAGTA	300
GCGCTGGAGCTTCCGAAGCCATGGGAAACGGACAAGTGGCTTGAGTGGAT	
AGAAAAGCGCTTCAGGGAGAATGGTTTGCTCATCGATAAAGATGCCCTTC	400
AGCTGTTTTTCTCCAAGGTTGGAACGAACGACCTGATCATAGAAAGGGAG	
ATTGAAAAACTGAAAGCTTATTCCGAGGACAGAAAGATAACGGTAGAAGA	500
CGTGGAAGAGGTCGTTTTTACCTATCAGACTCCGGGATACGATGATTTTT	
GCTTTGCTGTTTCCGAAGGAAAAAGGAAGCTCGCTCACTCTCTTCTGTCG	600
CAGCTGTGGAAAACCACAGAGTCCGTGGTGATTGCCACTGTCCTTGCGAA	
TCACTTCTTGGATCTCTTCAAAATCCTCGTTCTTGTGACAAAGAAAAGAT	700
ACTACACCTGGCCTGATGTGTCCAGGGTGTCCAAAGAGCTGGGAATTCCC	
GTTCCTCGTGTGGCTCGTTTCCTCGGTTTCTCCTTTAAGACCTGGAAATT	800
CAAGGTGATGAACCACCTCCTCTACTACGATGTGAAGAAGGTTAGAAAGA	
TACTGAGGGATCTCTACGATCTGGACAGAGCCGTGAAAAGCGAAGAAGAT	900
CCAAAACCGTTCTTCCACGAGTTCATAGAAGAGGTGGCACTGGATGTATA	
TTCTCTTCAGAGAGATGAAGAA	972

FIG. 62

MPVTFLTGTAETQKEELIKKLLKDGNVEYIRIHPEDPDKIDFIRSLLRTK	
TIFSNKTIIDIVNFDEWKAQEQKRLVELLKNVPEDVHIFIRSQKTGGKGV	100
ALELPKPWETDKWLEWIEKRFRENGLLIDKDALQLFFSKVGTNDLIIERE	
IEKLKAYSEDRKITVEDVEEVVFTYQTPGYDDFCFAVSEGKRKLAHSLLS	200
QLWKTTESVVIATVLANHFLDLFKILVLVTKKRYYTWPDVSRVSKELGIP	
VPRVARFLGFSFKTWKFKVMNHLLYYDVKKVRKILRDLYDLDRAVKSEED	300
PKPFFHFFTFFVAI.DVVSI.ORDFF	

68/83

ATGAACGATTTGATCAGAAAGTACGCTAAAGATCAACTGGAAACTTTGA	λA
AAGGATCATAGAAAAGTCTGAAGGAATATCCATCCTCATAAATGGAGAA	AG 100
ATCTCTCGTATCCGAGAGAAGTATCCCTTGAACTTCCCGAGTACGTGGA	√G
AAATTTCCCCCGAAGGCCTCGGATGTTCTGGAGATAGATCCCGAGGGGG	3A 200
GAACATAGGCATAGACGACATCAGAACGATAAAGGACTTCCTGAACTAC	CA
GCCCCGAGCTCTACACGAGAAAGTACGTGATAGTCCACGACTGTGAAAG	300 300
ATGACCCAGCAGGCGCGAACGCGTTTCTGAAGGCCCCTTGAAGAACCAC	CC
AGAATACGCTGTGATCGTTCTGAACACTCGCCGCTGGCATTATCTACTG	GC 400
CGACGATAAAGAGCCGAGTGTTCAGAGTGGTTGTGAACGTTCCAAAGGA	4G
TTCAGAGATCTCGTGAAAGAGAAAATAGGAGATCTCTGGGAGGAACTTC	CC 500
ACTTCTTGAGAGAGACTTCAAAACGGCTCTCGAAGCCTACAAACTTGGT	ſĠ
CGGAAAAACTTTCTGGATTGATGGAAAGTCTCAAAGTTTTTGGAGACGGA	
AAACTCTTGAAAAAGGTCCTTTCAAAAGGCCTCGAAGGTTATCTCGCAT	_
TAGGGAGCTCCTGGAGAGATTTTCAAAGGTGGAATCGAAGGAATTCTTT	
CGCTTTTTGATCAGGTGACTAACACGATAACAGGAAAAGACGCGTTTCT	
TTGATCCAGAGACTGACAAGAATCATTCTCCACGAAAACACATGGGAAA	
CGTTGAAGATCAAAAAAGCGTGTCTTTCCTCGATTCAATTCTCAGGGTG	
AGATAGCGAATCTGAACAACAAACTCACTCTGATGAACATCCTCGCGAT	ra 900
CACAGAGAGAGAAAGAGGTGTCAACGCTTGGAGC	

FIG. 64

MNDLIRKYAKDQLETLKRIIEKSEGISILINGEDLSYPREVSLELPEYVE	
KFPPKASDVLEIDPEGENIGIDDIRTIKDFLNYSPELYTRKYVIVHDCER	100
MTQQAANAFLKALEEPPEYAVIVLNTRRWHYLLPTIKSRVFRVVVNVPKE	
FRDLVKEKIGDLWEELPLLERDFKTALEAYKLGAEKLSGLMESLKVLETE	200
KLLKKVLSKGLEGYLACRELLERFSKVESKEFFALFDQVTNTITGKDAFL	
LIQRLTRIILHENTWESVEDKSVSFLDSILRVKIANLNNKLTLMNILAIH	300
RERKRGVNAWS	

69/83

ATGTCTTTCTTCAACAAGATCATACTCATAGGAAGACTCGTGAGAGATCC	
CGAAGAGAGATACACGCTCAGCGGAACTCCAGTCACCACCTTCACCATAG	100
CGGTGGACAGGGTTCCCAGAAAGAACGCGCCGGACGACGCTCAAACGACT	
GATTTCTTCAGGATCGTCACCTTTGGAAGACTGGCAGAGTTCGCTAGAAC	200
CTATCTCACCAAAGGAAGGCTCGTTCTCGTCGAAGGTGAAATGAGAATGA	
GAAGATGGGAAACACCCACTGGAGAAAAGAGGGTATCTCCGGAGGTTGTC	300
GCAAACGTTGTTAGATTCATGGACAGAAAACCTGCTGAAACAGTTAGCGA	
GACTGAAGAGGAGCTGGAAATACCGGAAGAAGACTTTTCCAGCGATACCT	400
TCAGTGAAGATGAACCACCATTT	

FIG. 66

MSFFNKIILIGRLVRDPEERYTLSGTPVTTFTIAVDRVPRKNAPDDAQTT DFFRIVTFGRLAEFARTYLTKGRLVLVEGEMRMRRWETPTGEKRVSPEVV ANVVRFMDRKPAETVSETEEELEIPEEDFSSDTFSEDEPPF

100

70/83

ATGCGTGTTCCCCCGCACAACTTAGAGGCCGAAGTTGCTGTGCTCGGAAG	
CATATTGATAGATCCGTCGGTAATAAACGACGTTCTTGAAATTTTGAGCC	100
ACGAAGATTTCTATCTGAAAAAACACCAACACATCTTCAGAGCGATGGAA	
GAGCTTTACGACGAAGGAAAACCGGTGGACGTGGTTTCCGTCTGTGACAA	200
GCTTCAAAGCATGGGAAAACTCGAGGAAGTAGGTGGAGATCTGGAAGTGG	
CCCAGCTCGCTGAGGCTGTGCCCAGTTCTGCACACGCACTTCACTACGCG	300
GAGATCGTCAAGGAAAAATCCATTCTGAGGAAACTCATTGAGATCTCCAG	
AAAAATCTCAGAAAGTGCCTACATGGAAGAAGATGTGGAGATCCTGCTCG	400
ACAACGCAGAAAAGATGATCTTCGAGATCTCAGAGATGAAAACGACAAAA	
TCCTACGATCATCTGAGAGGCATCATGCACCGGGTGTTTGAAAACCTGGA	500
GAACTTCAGGGAAAGAGCCAACCTTATAGAACCCGGTGTGCTCATAACGG	
GACTACCAACGGGATTCAAAAGTCTGGACAAACAGACCACAGGGTTCCAC	600
AGCTCCGATCTGGTGATAATAGCAGCGAGACCCTCCATGGGAAAAACCTC	
CTTCGCACTCTCAATAGCGAGGAACATGGCTGTCAATTTCGAAATCCCCG	700
TCGGAATATTCAGTCTCGAGATGTCCAAGGAACAGCTCGCTC	
CTCAGCATGGAGTCCGGTGTGGATCTTTACAGCATCAGAACAGGATACCT	800
GGATCAGGAGAAGTGGGAAAGACTCACAATAGCGGCTTCTAAACTCTACA	
AAGCACCCATAGTTGTGGACGATGAGTCACTCCTCGATCCGCGATCGTTG	900
AGGGCAAAAGCGAGAAGGATGAAAAAAGAATACGATGTAAAAGCCATTTT	
TGTCGACTATCTCCAGCTCATGCACCTGAAAGGAAGAAAGA	1000
AGCAGGAGATATCCGAGATCTCGAGATCTCTGAAGCTCCTTGCGAGGGAA	
CTCGACATAGTGGTGATAGCGCTTTCACAGCTTTCGAGGGCCGTAGAACA	1100
GAGAGAAGACAAAAGACCGAGGCTGAGTGACCTCAGGGAATCCGGTGCGA	
TAGAACAGGACGCAGACACAGTCATCTTCATCTACAGGGAGGAATATTAC	1200
AGGAGCAAAAAATCCAAAGAGGAAAGCAAGCTTCACGAACCTCACGAAGC	
TGAAATCATAATAGGTAAACAGAGAAACGGTCCCGTTGGAACGATCACTC	1300
TGATCTTCGACCCCAGAACGGTTACGTTCCATGAAGTCGATGTGGTGCAT	
TCA	1353

MRVPPHNLEAEVAVLGSILIDPSVINDVLEILSHEDFYLKKHQHIFRAME	
ELYDEGKPVDVVSVCDKLQSMGKLEEVGGDLEVAQLAEAVPSSAHALHYA	100
EIVKEKSILRKLIEISRKISESAYMEEDVEILLDNAEKMIFEISEMKTTK	
SYDHLRGIMHRVFENLENFRERANLIEPGVLITGLPTGFKSLDKQTTGFH	200
SSDLVIIAARPSMGKTSFALSIARNMAVNFEIPVGIFSLEMSKEQLAQRL	
LSMESGVDLYSIRTGYLDQEKWERLTIAASKLYKAPIVVDDESLLDPRSL	300
RAKARRMKKEYDVKAIFVDYLQLMHLKGRKESRQQEISEISRSLKLLARE	
LDIVVIALSQLSRAVEQREDKRPRLSDLRESGAIEQDADTVIFIYREEYY	400
RSKKSKEESKLHEPHEAEIIIGKQRNGPVGTITLIFDPRTVTFHEVDVVH	
S	451

71/83

GTGATTCCTCGAGAGGTCATCGAGGAAATAAAAGAAAAG	
AGAGGTCATTTCCGAGTACGTGAATCTTACCCGGGTAGGTTCCTCCTACA	100
GGGCTCTCTGTCCCTTTCATTCAGAAACCAATCCTTCTTTCT	
CCGGGTTTGAAGATATACCATTGTTTCGGCTGCGGTGCGAGTGGAGACGT	200
CATCAAATTTCTTCAAGAAATGGAAGGGATCAGTTTCCAGGAAGCGCTGG	
AAAGACTTGCCAAAAGAGCTGGGATTGATCTTTCTCTCTACAGAACAGAA	300
GGGACTTCTGAATACGGAAAATACATTCGTTTGTACGAAGAAACGTGGAA	
AAGGTACGTCAAAGAGCTGGAGAAATCGAAAGAGGCAAAAGACTATTTAA	400
AAAGCAGAGGCTTCTCTGAAGAAGATATAGCAAAGTTCGGCTTTGGGTAC	
GTCCCCAAGAGATCCAGCATCTCTATAGAAGTTGCAGAAGGCATGAACAT	500
AACACTGGAAGAACTTGTCAGATACGGTATCGCGCTGAAAAAGGGTGATC	
GATTCGTTGATAGATTCGAAGGAAGAATCGTTGTTCCAATAAAGAACGAC	600
AGTGGTCATATTGTGGCTTTTTGGTGGGCGTGCTCTCGGCAACGAAGAACC	
GAAGTATTTGAACTCTCCAGAGACCAGGTATTTTTCGAAGAAGAAGACCC	700
TTTTTCTCTTCGATGAGGCGAAAAAGTGGCAAAAGAGGTTGGTT	
GTCATCACCGAAGGCTACTTCGACGCGCTCGCATTCAGAAAGGATGGAAT	800
ACCAACGGCGGTCGCTGTTCTTGGGGCGAGTCTTTCAAGAGAGGCGATTC	
TAAAACTTTCGGCGTATTCGAAAAACGTCATACTGTGTTTCGATAATGAC	900
AAAGCAGGCTTCAGAGCCACTCTCAAATCCCTCGAGGATCTCCTAGACTA	
CGAATTCAACGTGCTTGTGGCAACCCCCTCTCCTTACAAAGACCCAGATG	1000
AACTCTTTCAGAAAGAAGGAGAAGGTTCATTGAAAAAGATGCTGAAAAAC	
TCGCGTTCGTTCGAATATTTTCTGGTGACGGCTGGTGAGGTCTTCTTTGA	1100
CAGGAACAGCCCCGCGGGTGTGAGATCCTACCTTTCTTTC	
GGGTCCAAAAGATGAGAAAGGAAAGGATATTTGAAACACATAGAAAATCTC	1200
GTGAATGAGGTTTCATCTTCTCCAGATACCAGAAAACCAGATTTTGAA	
CTTTTTTGAAAGCGACAGGTCTAACACTATGCCTGTTCATGAGACCAAGT	1300
CGTCAAAGGTTTACGATGAGGGGAGAGGACTGGCTTATTTGTTTTTGAAC	
TACGAGGATTTGAGGGAAAAGATTCTGGAACTGGACTTAGAGGTACTGGA	1400
AGATAAAAACGCGAGGGAGTTTTTCAAGAGAGTCTCACTGGGAGAAGATT	
TGAACAAAGTCATAGAAAACTTCCCAAAAGAGCTGAAAGACTGGATTTTT	1500
GAGACAATAGAAAGCATTCCTCCTCCAAAGGATCCCGAGAAATTCCTCGG	
TGACCTCTCCGAAAAGTTGAAAATCCGACGGATAGAGAGACGTATCGCAG	1600
AAATAGATGATATGATAAAGAAAGCTTCAAACGATGAAGAAAGGCGTCTT	
CTTCTCTCTTTTTCAACCTCCATCTCTCACAAAAAAAAA	1695

MIPREVIEEIKEKVDIVEVISEYVNLTRVGSSYRALCPFHSETNPSFYVH	
PGLKIYHCFGCGASGDVIKFLQEMEGISFQEALERLAKRAGIDLSLYRTE	100
GTSEYGKYIRLYEETWKRYVKELEKSKEAKDYLKSRGFSEEDIAKFGFGY	
VPKRSSISIEVAEGMNITLEELVRYGIALKKGDRFVDRFEGRIVVPIKND	200
SGHIVAFGGRALGNEEPKYLNSPETRYFSKKKTLFLFDEAKKVAKEVGFF	
VITEGYFDALAFRKDGIPTAVAVLGASLSREAILKLSAYSKNVILCFDND	300
KAGFRATLKSLEDLLDYEFNVLVATPSPYKDPDELFQKEGEGSLKKMLKN	
SRSFEYFLVTAGEVFFDRNSPAGVRSYLSFLKGWVQKMRRKGYLKHIENL	400
VNEVSSSLQIPENQILNFFESDRSNTMPVHETKSSKVYDEGRGLAYLFLN	
YEDLREKILELDLEVLEDKNAREFFKRVSLGEDLNKVIENFPKELKDWIF	500
ETIESIPPPKDPEKFLGDLSEKLKIRRIERRIAEIDDMIKKASNDEERRL	
LLSMKVDLLRKIKRR	565
FIG. 71	
ATGGCTCTACACCCGGCTCACCCTGGGGCAATAATCGGGCACGAGGCCGT	
TCTCGCCCTCCTTCCCCGCCTCACCGCCCAGACCCTGCTCTTCTCCGGCC	100
CCGAGGGGTGGGCGCGCACCGTGGCCCGCTGGTACGCCTGGGGGCTC	
AACCGCGGCTTCCCCCGCCCTCCTGGGGAGCACCCGGACGTCCTCGA	200
GGTGGGCCCAAGGCCCGGGACCTCCGGGGCCGAGGTGCGGCTGG	
AGGAGGTGGCCCCCTCTTGGAGTGGTGCTCCAGCCACCCCCGGGAGCGG	300
GTGAAGGTGGCCATCCTGGACTCGGCCCACCTCCTCACCGAGGCCGCCGC	400
CAACGCCCTCCTCAAGCTCCTGGAGGAGCCCCCTTCCTACGCCCGCATCG	400
TCCTCATCGCCCCAAGCCGCGCCACCCTCCTCCCCACCCTGGCCTCCCGG	F 0 0
GCCACGAGGTGGCATTCGCCCCCGTGCCCGAGGAGGCCCTGCGCGCCCT	500
CACCCAGGACCCGGAGCTCCTCCGCTACGCCGCCGGGGCCCCCGGGCCGCC	600
TCCTTAGGGCCCTCCAGGACCCGGAGGGGTACCGGGCCCGCATGGCCAGG	600
GCGCAAAGGGTCCTGAAAGCCCCGCCCCTGGAGCGCCTCGCTTTGCTTCG	700
GGAGCTTTTGGCCGAGGAGGAGGGGGGTCCACGCCCTCCACGCCGTCCTAA	700
AGCGCCCGGAGCACCTCCTTGCCCTGGAGCGGGGCGCGGGAGGCCCTGGAG	000
GGGTACGTGAGCCCCGAGCTGGTCCTCGCCCGGCTGGCCTTAGACTTAGA GACA	800
GACA	
FIG. 72	
110. 12	
MALHPAHPGAIIGHEAVLALLPRLTAQTLLFSGPEGVGRRTVARWYAWGL	
NRGFPPPSLGEHPDVLEVGPKARDLRGRAEVRLEEVAPLLEWCSSHPRER	100
VKVAILDSAHLLTEAAANALLKLLEEPPSYARIVLIAPSRATLLPTLASR	
ATEVAFAPVPEEALRALTQDPELLRYAAGAPGRLLRALQDPEGYRARMAR	200
AQRVLKAPPLERLALLRELLAEEEGVHALHAVLKRPEHLLALERAREALE	
GYVSPELVLARLALDLET	268

73/83

ATGCTGGACCTGAGGGAGGTGGGAGGCGGAGTGGAAGGCCCTAAAGCC	
CCTTTTGGAAAGCGTGCCCGAGGGCGTCCCCGTCCTCCTGGACCCTA	100
AGCCAAGCCCCTCCCGGGCGCCTTCTACCGGAACCGGGAAAGGCGGGAC	
TTCCCCACCCCAAGGGGAAGGACCTGGTGCGGCACCTGGAAAACCGGGC	200
CAAGCGCCTGGGGCTCAGGCTCCCGGGCGGGGTGGCCCAGTACCTGGCCT	
CCCTGGAGGGGACCTCGAGGCCCTGGAGCGGGAGCTGGAGAAGCTTGCC	300
CTCCTCTCCCCACCCTCACCCTGGAGAAGGTGGAGAAGGTGGTGGCCCT	
GAGGCCCCCCTCACGGGCTTTGACCTGGTGCGCTCCGTCCTGGAGAAGG	400
ACCCCAAGGAGGCCCTCCTGCGCCTAGGCGGCCTCAAGGAGGAGGGGGAG	
GAGCCCCTCAGGCTCCTCGGGGCCCTCTCCTGGCAGTTCGCCCTCCTCGC	500
CCGGGCCTTCTTCCTCCTCCGGGAAAACCCCAGGCCCAAGGAGGAGGACC	
TCGCCCGCCTCGAGGCCCACCCCTACGCCGCCCCGCCGCCCCTGGAGGCG	600
GCGAAGCGCCTCACGGAAGAGGCCCTCAAGGAGGCCCTGGACGCCCTCAT	
GGAGGCGGAAAAGAGGCCCAAGGGGGGGAAAGACCCGTGGCTCGCCCTGG	700
AGGCGGCGGTCCTCCGCCCGTTGA	

FIG. 74

MVIAFTGDPFLAREALLEEARLRGLSRFTEPTPEALAQALAPGLFGGGGA	
MLDLREVGEAEWKALKPLLESVPEGVPVLLLDPKPSPSRAAFYRNRERRD	100
FPTPKGKDLVRHLENRAKRLGLRLPGGVAQYLASLEGDLEALERELEKLA	
LLSPPLTLEKVEKVVALRPPLTGFDLVRSVLEKDPKEALLRLGGLKEEGE	200
EPLRLLGALSWQFALLARAFFLLRENPRPKEEDLARLEAHPYAARRALEA	
AKRLTEEALKEALDALMEAEKRAKGGKDPWLALEAAVLRI.AR	292

74/83

ATGGCTCGAGGCCTGAACCGCGTTTTCCTCATCGGCGCCCCTCGCCACCCG	
GCCGGACATGCGCTACACCCCGGCGGGGCTCGCCATTTTGGACCTGACCC	100
TCGCCGGTCAGGACCTGCTTCTTTCCGATAACGGGGGGGAACCGGAGGTG	
TCCTGGTACCACCGGGTGAGGCTCTTAGGCCGCCAGGCGGAGATGTGGGG	200
CGACCTCTTGGACCAAGGGCAGCTCGTCTTCGTGGAGGCCCGCCTGGAGT	
ACCGCCAGTGGGAAAGGGAGGGGAGAAGCGGAGCTCCAGATCCGG	300
GCCGACTTCCGGACCCCTGGACGACCGGGGGAAGAAGCGGGCGG	
AGCCGGGGCCAGCCCAGGCTCCGCGCCCTGAACCAGGTCTTCCTCAT	400
GGGCAACCTGACCCGGGACCCGGAACTCCGCTACACCCCCCAGGGCACCG	
CGGTGGCCCGGCTGGCGGTGAACGAGCGCCCCAGGGGGCGGAG	500
GAGCGCACCCACTTCGTGGAGGTTCAGGCCTGGCGCGACCTGGCGGAGTG	
GGCCGCCGAGCTGAGGAAGGGCGACGGCCTTTTCGTGATCGGCAGGTTGG	600
TGAACGACTCCTGGACCAGCTCCAGCGGCGAGCGGCGCTTCCAGACCCGT	
GTGGAGGCCCTCAGGCTGGAGCCCCCACCCGTGGACCTGCCCAGGCCTG	700
CCCAGGCCGGAACAGGTCCCGCGAAGTCCAGACGGGTGGGGTGGACA	
TTGACGAAGGCTTGGAAGACTTTCCGCCGGAGGAGGATTTGCCGTTTTGA	800
GCACGAA	

FIG. 76

MARGLNRVFLIGALATRPDMRYTPAGLAILDLTLAGQDLLLSDNGGEPEV	
SWYHRVRLLGRQAEMWGDLLDQGQLVFVEGRLEYRQWEREGEKRSELQIR	100
ADFLDPLDDRGKKRAEDSRGQPRLRAALNQVFLMGNLTRDPELRYTPQGT	
AVARLGLAVNERRQGAEERTHFVEVQAWRDLAEWAAELRKGDGLFVIGRL	200
VNDSWTSSSGERRFQTRVEALRLERPTRGPAQACPGRRNRSREVQTGGVD	
IDEGLEDFPPEEDLPF	266

75/83

AATTCCGACATTTCAATTGAATCGTTTATTCCGCTTGAAAAAGAAGGCAA	
GTTGCTCGTTGATGTGAAAAGACCGGGGAGCATCGTACTGCAGGCGCGCT	100
TTTTCTCTGAAATCGTGAAAAAACTGCCGCAACAAACGGTGGAAATCGAA	
ACGGAAGACAACTTTTTGACGATCATCCGCTCGGGGCACTCAGAATTCCG	200
CCTCAATGGGCTAAACGCCGACGAATATCCGCGCCTGCCGCAAATTGAAG	
AAGAAAACGTGTTTCAAATCCCGGCTGATTTATTGAAAACCGTGATTCGG	300
CAAACGGTGTTCGCCGTTTCTACATCGGAAACGCGCCCAATCTTGACAGG	
TGTCAACTGGAAAGTTGAACATGGCGAGCTTGTCTGCACAGCGACCGAC	400
GTCATCGCTTAGCCATGCGCAAAGTGAAAATTGAGTCGGAAAATGAAGTA	
TCATACAACGTCGTCATCCCTGGAAAAAGTCTTAATGAGCTCAGCAAAAT	500
TTTGGATGACGGCAACCACCCGGTGGACATCGTCATGACAGCCAATCAAG	
TGCTATTTAAGGCCGAGCACCTTCTCTTTTTTCCCGGCTGCTTGACGGC	600
AACTATCCGGAGACGGCCCGCTTGATTCCAACAGAAAGCAAAACGACCAT	
GATCGTCAATGCAAAAGAGTTTCTGCAGGCAATCGACCGAGCGTCCTTGC	700
TTGCTCGAGAAGGAACAACGTTGTGAAACTGACGACGCTTCCTGGA	
GGAATGCTCGAAATTTCTTCGATTTCTCCGAGATCGGGAAAGTGACGGAG	800
CAGCTGCAAACGGAGTCTCTTGAAGGGGAAGAGTTGAACATTTCGTTCAG	
CGCGAAATATATGATGGACGCGTTGCGGGCGCTTGATGGAACAGACATTT	900
CAAATCAGCTTCACTGGGGCCATGCGGCCGTTCCTGTTGCGCCCGCTTCA	
ACCGATTCGATGCTTCAGCTCATTTTGCCGGTGAGAACATAT	992

FIG. 78

NSDISIIESFIPLEKEGKLLVDVKRPGSIVLQARFFSEIVKKLPQQTVEI	
ETEDNFLTIIRSGHSEFRLNGLNADEYPRLPQIEEENVFQIPADLLKTVI	100
RQTVFAVSTSETRPILTGVNWKVEHGELVCTATDSHRLAMRKVKIIESEN	
EVSYNVVIPGKSLNELSKIILDDGNHPVDIVMTANQVLFKAEHLLFFSRL	200
LDGNYPETARLIPTESKTTMIVNAKEFLQAIDRASLLAREGRNNVVKLTT	
LPGGMLEISSISPEIGKVTEQLQTESLEGEELNISFSAKYMMDALRALDG	300
TDIOISFTGAMRPFLLRPLHTDSMLOLILPVRTY	

76/83

ATGATTAACCGCGTCATTTTGGTCGGCAGGTTAACGAGAGATCCGGAGTT	
GCGTTACACTCCAAGCGGAGTGGCTGTTGCCACGTTTACGCTCGCGGTCA	100
ACCGTCCGTTTACAAATCAGCAGGGCGAGCGGGAAACGGATTTTATTCAA	
TGTGTCGTTTGGCGCCCAGGCGGAAAACGTCGCCAACTTTTTGAAAAA	200
GGGGAGCTTGGCTGTCGATGGCCGACTGCAAACCCGCAGCTATGAAA	
ATCAAGAAGGTCGGCGTGTGTACGTGACGGAAGTGGTGGCTGATAGCGTC	300
CAATTTCTTGAGCCGAAAGGAACGAGCGAGCAGCGAGGGGGCGACAGCAG	
CGGCTACTATGGGGATCCATTCCCATTCGGGCAAGATCAGAACCACCAAT	400
ATCCGAACGAAAAAGGGTTTGGCCGCATCGATGACGATCCTTTCGCCAAT	
GACGCCCAGCCGATCGATATTTCTGATGATGATTTGCCGTTT	492

FIG. 80

MINRVILVGRLTRDPELRYTPSGVAVATFTLAVNRPFTNQSYENQEGRRV	
YVTEVVADSVQFLEPKGTSEQRGATAGGYYQGERETDFIQCVVWRRQAEN	100
VANFLKKGSLAGVDGRLQTRGDPFPFGQDQNHQYPNEKGFGRIDDDPFAN	
DGQPIDISDDDLPF	164

77/83

ATGCTGGAACGCGTATGGGGAAACATTGAAAAACGGCGTTTTTCTCCCCT	
TTATTTATTATACGGCAATGAGCCGTTTTTTATTAACGGAAACGTATGAGC	100
GATTGGTGAACGCAGCGCTTGGCCCCGAGGAGCGGGAGTGGAACTTGGCT	
GTGTACGACTGCGAGGAAACGCCGATCGAGGCGGCGCTTGAGGAGGCCGA	200
GACGGTGCCGTTTTTCGGCGAGCGGCGTGTCATTCTCATCAAGCATCCAT	
ATTTTTTTACGTCTGAAAAAGAGAAGGAGATCGAACATGATTTGGCGAAG	300
CTGGAGGCGTACTTGAAGGCGCCGTCGCCGTTTTCGATCGTCGTCTTTTT	
CGCGCCGTACGAGAAGCTTGATGAGCGAAAAAAAATTACGAAGCTCGCCA	400
AAGAGCAAAGCGAAGTCGTCATCGCCGCCCCGCTCGCCGAAGCGGAGCTG	
CGTGCCTGGGTGCGCCCCCCATCGAGAGCCAAGGGGCGCAAGCAA	500
CGAGGCGATTGATGTCCTGTTGCGGCGGGCCGGGACGCAGCTTTCCGCCT	
TGGCGAATGAAATCGATAAATTGGCCCTGTTTGCCGGATCGGGCGGAACC	600
ATCGAGGCGGCGGTTGAGCGGCTTGTCGCCCGCACGCCGGAAGAAAA	
CGTATTTGTGCTTGTCGAGCAAGTGGCGAAGCGCGACATTCCAGCAGCGT	700
TGCAGACGTTTTATGATCTGCTTGAAAACAATGAAGAGCCGATCAAAATT	
TTGGCGTTGCTCGCCGCCCATTTCCGCTTGCTTTCGCAAGTGAAATGGCT	800
TGCCTCCTTAGGCTACGGACAGGCGCAAATTGCTGCGGCGCTCAAGGTGC	
ACCCGTTCCGCGTCAAGCTCGCTCTTGCTCAAGCGGCCCGCTTCGCTGAC	900
GGAGAGCTTGCTGAGGCGATCAACGAGCTCGCTGACGCCGATTACGAAGT	
GAAAAGCGGGGCGGTCGATCGCCGGTTGGCCGTTGAGCTGCTTCTGATGC	1000
GCTGGGGCGCCGGCCGGCGCAAGCGGGCGCCACGGCCGGC	

FIG. 82

MLERVWGNIEKRRFSPLYLLYGNEPFLLTETYERLVNAALGPEEREWNLA	
VYDCEETPIEAALEEAETVPFFGERRVILIKHPYFFTSEKEKEIEHDLAK	100
LEAYLKAPSPFSIVVFFAPYEKLDERKKITKLAKEQSEVVIAAPLAEAEL	
RAWVRRRIESQGAQASDEAIDVLLRRAGTQLSALANEIDKLALFAGSGGT	200
IEAAAVERLVARTPEENVFVLVEQVAKRDIPAALQTFYDLLENNEEPIKI	
LALLAAHFRLLSQVKWLASLGYGQAQIAAALKVHPFRVKLALAQAARFAD	300
GELAEATNELADADYEVKSGAVDRRLAVELLLMRWGARPAOAGRHGRR	

78/83

ATGCGATGGGAACAGCTAGCGAAACGCCAGCCGGTGGTGGCGAAAATGCT	
GCAAAGCGGCTTGGAAAAAGGGCGGATTTCTCATGCGTACTTGTTTGAGG	100
GGCAGCGGGGACGGCCAAAAAAGCGGCCAGTTTGTTGTTGGCGAAACGT	
TTGTTTTGTCTGTCCCCAATCGGAGTTTCCCCGTGTCTAGAGTGCCGCAA	200
CTGCCGGCGCATCGACTCCGGCAACCACCCTGACGTCCGGGTGATCGGCC	
CAGATGGAGGATCAATCAAAAAGGAACAAATCGAATGGCTGCAGCAAGAG	300
TTCTCGAAAACAGCGGTCGAGTCGGATAAAAAAATGTACATCGTTGAGCA	
CGCCGATCAAATGACGACAAGCGCTGCCAACAGCCTTCTGAAATTTTTTGG	400
AAGAGCCGCATCCGGGGACGGTGGCGGTATTGCTGACTGA	
CGCCTGCTAGGGACGATCGTTTCCCGCTGTCAAGTGCTTTCGTTCCGGCC	500
GTTGCCGCCGGCAGAGCTCGCCCAGGGACTTGTCGAGGAGCACGTGCCGT	
TGCCGTTGGCGCTGTTGGCCCATTTGACAAACAGCTTCGAGGAAGCA	600
CTGGCGCTTGCCAAAGATAGTTGGTTTGCCGAGGCGCGAACATTAGTGCT	
ACAATGGTATGAGATGCTGGGCAAGCCGGAGCTGCAGCTTTTGTTTTCA	700
TCCACGACCGCTTGTTTCCGCATTTTTTTGGAAAGCCATCAGCTTGACCTT	
GGACTTG	757

FIG. 84

MRWEQLAKRQPVVAKMLQSGLEKGRISHAYLFEGQRGTGKKAASLLLAKR	
LFCLSPIGVSPCLECRNCRRIDSGNHPDVRVIGPDGGSIKKEQIEWLQQE	100
FSKTAVESDKKMYIVEHADQMTTSAANSLLKFLEEPHPGTVAVLLTEQYH	
RLLGTIVSRCQVLSFRPLPPAELAQGLVEEHVPLPLALLAAHLTNSFEEA	200
LALAKDSWFAEARTLVLQWYEMLGKPELQLLFFIHDRLFPHFLESHQLDL	
GL	252

79/83

GTGGCATACCAAGCGTTATATCGCGTGTTTTCGGCCGCAGCGCTTTGCGGA	
CATGGTCGGCCAAGAACACGTGACCAAGACGTTGCAAAGCGCCCTGCTTC	100
AACATAAAATATCGCACGCTTACTTATTTTCCGGCCCGCGCGCG	
AAAACGAGCGCAGCGAAAATTTTCGCCAAGGCGGTCAACTGTGAACAGGC	200
GCCAGCGGCGGAGCCATGCAATGAGTGTCCAGCTTGCCTCGGCATTACGA	
ATGGAACGGTTCCCGATGTGCTGGAAATTGACGCTGCTTCCAACAACCGC	300
GTCGATGAAATTCGTGATATCCGTGAGAAGGTGAAATTTGCGCCAACGTC	
GGCCCGCTACAAAGTGTATATCATCGACGAGGTGCATATGCTGTCGATCG	400
GTGCGTTTAACGCGCTGTTGAAAACGTTGGAGGAGCCGCCGAAACACGTC	
ATTTTCATTTTGGCCACGACCGAGCCGCACAAAATTCCGGCGACGATCAT	500
TTCCCGCTGCCAACGGTTCGATTTTCGCCGCATCCCGCTTCAGGCGATCG	
TTTCACGGCTAAAGTACGTCGCAAGCGCCCAAGGTGTCGAGGCGTCAGAT	600
GAGGCATTGTCCGCCATCGCCCGTGCTGCAGACGGGGGGATGCGCGATGC	
GCTCAGCTTGCTTGATCAAGCCATTTCGTTCAGCGACGGGAAACTTCGGC	700
TCGACGACGTGCTGGCGATGACCGGGGCTGCATCATTTGCCGCCTTATCG	
AGCTTCATCGAAGCCATCCACCGCAAAGATACAGCGGCGGTTCTTCAGCA	800
CTTGGAAACGATGATGGCGCAAGGGAAAGATCCGCATCGTTTGGTTGAAG	
ACTTGATTTTGTACTATCGCGATTTATTGCTGTACAAAACCGCTCCCTAT	900
GTGGAGGGAGCGATTCAAATTGCTGTCGTTGACGAAGCGTTCACTTCACT	
GTCGGAAATGATTCCGGTTTCCAATTTATACGAGGCCATCGAGTTGCTGA	1000
ACAAAAGCCAGCAAGAGATGAAGTGGACAAACCACCCGCGCCTTCTGTTG	
GAAGTGGCGCTTGTGAAACTTTGCCATCCATCAGCCGCCGCCCCGTCGCT	1100
GTCGGCTTCCGAGTTGGAACCGTTGATAAAGCGGATTGAAACGCTGGAGG	
CGGAATTGCGGCCCTGAAGGAACAACCGCCTGCCCCTCCGTCGACCGCC	1200
GCGCCGGTGAAAAACTGTCCAAACCGATGAAAACGGGGGGATATAAAGC	
CCCGGTTGGCCGCATTTACGAGCTGTTGAAACAGGCGACGCATGAAGATT	1300
TAGCTTTGGTGAAAGGATGCTGGGCGGATGTGCTCGACACGTTGAAACGG	
CAGCATAAAGTGTCGCACGCTGCCTTGCTGCAAGAGAGCGAGC	1400
AGCGAGCGCCTCAGCGTTTGTATTAAAATTCAAATACGAAATCCACTGCA	
AAATGGCGACCGATCCCACAAGTTCGGTCAAAGAAAACGTCGAAGCGATT	1500
TTGTTTGAGCTGACAAACCGCCGCTTTGAAATGGTAGCCATTCCGGAGGG	
AGAATGGGGAAAAATAAGAGAAGAGTTCATCCGCAATAAGGACGCCATGG	1600
TGGAAAAAGCGAAGAAGATCCGTTAATCGCCGAAGCGAAGCGGCTGTTT	
GGCGAAGAGCTGATCGAAATTAAAGAA	1677

80/83

VDEIRDIREKVKFAPTSARYKVYIIDEVHMLSIGAFNALLKTLEEPPKHV IFILATTEPHKIPATIISRCQRFDFRRIPLQAIVSRLKYVASAQGVEASD 200 EALSAIARAADGGMRDALSLLDQAISFSDGKLRLDDVLAMTGAASFAALS SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY 300 VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA 400 APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI 500 LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	VAYQALYRVFRPQRFADMVGQEHVTKTLQSALLQHKISHAYLFSGPRGTG	
IFILATTEPHKIPATIISRCQRFDFRRIPLQAIVSRLKYVASAQGVEASD EALSAIARAADGGMRDALSLLDQAISFSDGKLRLDDVLAMTGAASFAALS SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	KTSAAKIFAKAVNCEQAPAAEPCNECPACLGITNGTVPDVLEIDAASNNR	100
EALSAIARAADGGMRDALSLLDQAISFSDGKLRLDDVLAMTGAASFAALS SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	VDEIRDIREKVKFAPTSARYKVYIIDEVHMLSIGAFNALLKTLEEPPKHV	
SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	IFILATTEPHKIPATIISRCQRFDFRRIPLQAIVSRLKYVASAQGVEASD	200
VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA 400 APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI 500 LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	EALSAIARAADGGMRDALSLLDQAISFSDGKLRLDDVLAMTGAASFAALS	
EVALVKLCHPSAAAPSLSASELEPLIKRIETLEAELRRLKEQPPAPPSTA 400 APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	SFIEAIHRKDTAAVLQHLETMMAQGKDPHRLVEDLILYYRDLLLYKTAPY	300
APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	VEGAIQIAVVDEAFTSLSEMIPVSNLYEAIELLNKSQQEMKWTNHPRLLL	
QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI 500 LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	27	400
LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	APVKKLSKPMKTGGYKAPVGRIYELLKQATHEDLALVKGCWADVLDTLKR	
	QHKVSHAALLQESEPVAASASAFVLKFKYEIHCKMATDPTSSVKENVEAI	500
	LFELTNRRFEMVAIPEGEWGKIREEFIRNKDAMVEKSEEDPLIAEAKRLF	
GEELIEIKE 55!	GEELIEIKE	559

ATGGTGACAAAAGAGCAAAAAGAGCGGTTTCTCATCCTGCTTGAGCAGCT	
GAAGATGACGTCGGACGAATGCATGCCGCATTTTCGTGAGGCAGCCATTC	100
GCAAAGTCGTGATCGATAAAGAGGAGAAAAGCTGGCATTTTTATTTTCAG	
TTCGACAACGTGCTGCCGGTTCATGTATACAAAACGTTTGCCGATCGGCT	200
GCAGACGCCTTCCGCCATATCGCCGCCGTCCGCCATACGATGGAGGTCG	200
AAGCGCCGCGTAACTGAGGCGGATGTGCAGGCGTATTGGCCGCTTTGC	300
CTTGCCGAGCTGCAAGAAGGCATGTCGCCGCTTGTCGATTGGCTCAGCCG	300
GCAGACGCCTGAAAAGGAAACAAGCTGCTTGTCGTTGCCCGCCATG	400
AAGCGGAAGCGCTGGCGATCAAACGGCGGTTCGCCAAAAAAAA	400
GTGTACGCTTCGGTTTCCCCCCCCTTCAGCTTGACGTCAGCGTCGA	500
GCCGTCCAAGCAAGAAATGGAACAGTTTTTTGGCGCAAAAACAGCAAGAGG	500
ACGAAGAGCGAGCGCTTGCTGTACTGACCGATTTAGCGAGGGAAGAAGAA	600
	600
AAGGCCGCGTCTGCGCCGCCGTCCGGTCCGCTTGTCATCGGCTATCCGAT	700
CCGCGACGAGGAGCCGGTGCGGCGGCTTGAAACGATCGTCGAAGAAGAGC	700
GGCGCGTCGTTGTGCAAGGCTATGTATTTGACGCCGAAGTGAGCGAATTA	0.00
AAAAGCGGCCGCACGCTGTTGACCATGAAAATCACAGATTACACGAACTC	800
GATTTTAGTCAAAATGTTCTCGCGCGACAAAGAGGACGCCGAGCTTATGA	0.00
GCGGCGTCAAAAAAGGCATGTGGGTGAAAGTGCGCGGCAGCGTGCAAAAC	900
GATACGTTCGTCGTGATTTGGTCATCGCCAACGATTTGAACGAAAT	
CGCCGCAAACGAACGGCAAGATACGGCGCCGGAAGGGGAAAAGAGGGTCG	1000
AGCTCCATTTGCATACCCCGATGAGCCAAATGGACGCGGTCACCTCGGTG	
ACAAAACTCATTGAGCAAGCGAAAAAATGGGGGGCATCCGGCGATCGCCGT	1100
CACCGACCATGCCGTTGTTCAGTCGTTTCCGGAGGCCTACAGCGCGGCGA	
AAAAACACGGCATGAAGGTCATTTACGGCCTTGAGGCGAACATCGTCGAC	1200
GATGGCGTGCCGATCGCCTACAATGAGACGCACCGCCGTCTTTCGGAGGA	
AACGTACGTCGTCTTTGACGTCGAGACGACGGCCTGTCGGCTGTACA	1300
ATACGATCATTGAGCTGGCGGCGGTGAAAGTGAAAGACGGCGAGATCATC	
GACCGATTCATGTCGTTTGCCAACCCTGGACATCCGTTGTCGGTGACAAC	1400
GATGGAGCTGACTGGGATCACCGATGAGATGGTGAAAGACGCCCCGAAGC	
CGGACGAGGTGCTAGCCCGTTTTGTTGACTGGGCCGGCGATGCGACGCTT	1500
GTTGCCCACAACGCCAGCTTTGACATCGGTTTTTTAAACGCGGGCCTCGC	
TCGCATGGGGCGCGCAAAATCGCGAATCCAGTCATCGATACGCTCGAGC	1600
TGGCCCGTTTTTTATACCCGGATTTGAAAAACCATCGGCTCAATACATTG	
TGCAAAAATTTGACATTGAATTGACGCAGCATCACCGCGCCATCTACGA	1700
CGCGGAGGCGACCGGGCATTTGCTTATGCGGCTGTTGAAGGAAG	
AGCGCGCATACTGTTTCATGACGAATTAAACAGCCGCACGCA	1800
GCGTCCTATCGGCTTGCGCGCCCGTTCCATGTGACGCTGTTGGCGCAAAA	
CGAGACTGGATTGAAAAATTTGTTCAAGCTTGTGTCATTGTCGCACATTC	1900
AATATTTTCACCGTGTGCCGCGCATCCCGCGCTCCGTGCTCAAGCAC	
CGCGACGGCCTGCTTGTCGGCTCGGGCTGCGACAAAGGAGAGCTGTTTGA	2000
CAACTTGATCCAAAAGGCGCCGGAAGAAGTCGAAGACATCGCCCGTTTTT	
ACGATTTTCTTGAAGTGCATCCGCCGGACGTGTACAAGCCGCTCATCGAG	2100
ATGGATTATGTGAAAGACGAAGAGATGATCAAAAACATCATCCGCAGCAT	
CGTCGCCCTTGGTGAGAAGCTTGACATCCCGGTTGTCGCCACTGGCAACG	2200
	2200

TCCATTACTTGAACCCAGAAGATAAAATTTACCGGAAAATCTTAATCCAT	
TCGCAAGGCGGGGCGAATCCGCTCAACCGCCATGAACTGCCGGATGTÀTA	2300
TTTCCGTACGACGAATGAAATGCTTGACTGCTTCTCGTTTTTAGGGCCCGG	
AAAAAGCGAAGGAAATCGTCGTTGACAACACGCAAAAAATCGCTTCGTTA	2400
ATCGGCGATGTCAAGCCGATCAAAGATGAGCTGTATACGCCGCGCATTGA	
AGGGGCGGACGAGAAATCAGGGAAATGAGCTACCGGCGGGCG	2500
TTTACGGCGACCCGTTGCCGAAACTTGTTGAAGAGCGGCTTGAGAAGGAG	
CTAAAAAGCATCATCGGCCATGGCTTTTGCCGTCATTTATTT	2600
CAAGCTTGTGAAAAAATCGCTCGATGACGGCTACCTTGTCGGGTCGCGCG	
GATCGGTCGGCTCGTTTGTCGCGACGATGACGGAAATCACCGAGGTC	2700
AATCCGCTGCCGCCATTACGTTTGCCCGAACTGCAAGCATTCGGAGTT	
CTTTAACGACGGTTCAGTCGGCTCAGGGTTTGATTTGCCGGATAAAAACT	2800
GCCCGCGATGTGGGACGAAATACAAGAAGACGGGCACGACATCCCGTTT	
GAGACGTTTCTCGGCTTTAAAGGCGACAAAGTGCCGGATATCGACTTGAA	2900
CTTTTCCGGCGAATACCAGCCGCGCGCCCACAACTATACGAAAGTGCTGT	
TTGGCGAAGACAACGTCTACCGCGCCGGGACGATTGGCACGGTCGCTGAC	3000
AAAACGGCGTACGGATTTGTCAAAGCGTATGCGAGCGACCATAACTTAGA	
GCTGCGCGCGCGAAATCGACGGCTCGCGGCTGCCTGCACCGGGGTGAA	3100
GCGGACGACCGGCATCCGGGCGCATCATCGTCCTCCCGGATTATA	
TGGAAATTTACGATTTTACGCCGATTCAATATCCGGCCGATGACACGTCC	3200
TCTGAATGGCGGACGACCCATTTCGACTTCCATTCGATCCACGACAATTT	
GTTGAAGCTCGATATTCTCGGGCACGACGATCCGACGGTCATTCGCATGC	3300
TGCAAGATTTAAGCGGCATCGATCCGAAAACGATCCCGACCGA	
GATGTGATGGCCATTTTCAGCAGCACCGAGCCGCTTGGCGTTACGCCGGA	3400
GCAAATCATGTGCAATGTCGGCACGATCGGCATTCCGGAGTTTGGCACGC	
GCTTCGTTCGGCAAATGTTGGAAGAGACAAGGCCAAAAACGTTTTCCGAA	3500
CTCGTGCAAATTTCCGGCTTGTCGCACGGCACCGATGTGTGGCTCGGCAA	
CGCGCAAGAGCTCATTCAAAACGGCACGTGTACGTTATCGGAAGTCATCG	3600
GCTGCCGCGACGACATTATGGTCTATTTGATTTACCGCGGGCTCGAGCCG	
TCGCTCGCTTTTAAAATCATGGAATCCGTGCGCAAAGGAAAAGGCTTAAC	3700
GCCGGAGTTTGAAGCAGAAATGCGCAAACATGACGTGCCGGAGTGGTACA	
TCGATTCATGCAAAAAAATCAAGTACATGTTCCCGAAAGCGCACGCCGCC	3800
GCCTACGTGTTAATGGCGGTGCGCATCGCCTACTTTAAGGTGCACCATCC	
GCTTTTGTATTACGCGTCGTACTTTACGGTGCGGGCGGAGGACTTTGACC	3900
TTGACGCCATGATCAAAGGATCACCCGCCATTCGCAAGCGGATTGAGGAA	
ATCAACGCCAAAGGCATTCAGGCGACGGCGAAAGAAAAAAGCTTGCTCAC	4000
GGTTCTTGAGGTGGCCTTAGAGATGTGCGAGCGCGGCTTTTCCTTTAAAA	
ATATCGATTTGTACCGCTCGCAGGCGACGGAATTCGTCATTGACGGCAAT	4100
TCTCTCATTCCGCCGTTCAACGCCATTCCGGGGCTTGGGACGAACGTGGC	4000
GCAGGCGATCGTGCGCGCCCGCGAGGAAGGCGAGTTTTTGTCGAAGGAGG	4200
ATTTGCAACAGCGCGGCAAATTGTCGAAAACGCTGCTCGAGTATCTAGAA	4222
AGCCGCGGCTGCCTTGACTCGCTTCCAGACCATAACCAGCTGTCGCTGTT	4300
T	

83/83

MVTKEQKERFLILLEQLKMTSDEWMPHFREAAIRKVVIDKEEKSWHFYFQ	
FDNVLPVHVYKTFADRLQTAFRHIAAVRHTMEVEAPRVTEADVQAYWPLC	100
LAELQEGMSPLVDWLSRQTPELKGNKLLVVARHEAEALAIKRRFAKKIAD	
VYASFGFPPLQLDVSVEPSKQEMEQFLAQKQQEDEERALAVLTDLAREEE	200
KAASAPPSGPLVIGYPIRDEEPVRRLETIVEEERRVVVQGYVFDAEVSEL	
KSGRTLLTMKITDYTNSILVKMFSRDKEDAELMSGVKKGMWVKVRGSVQN	300
DTFVRDLVIIANDLNEIAANERQDTAPEGEKRVELHLHTPMSQMDAVTSV	
TKLIEQAKKWGHPAIAVTDHAVVQSFPEAYSAAKKHGMKVIYGLEANIVD	400
DGVPIAYNETHRRLSEETYVVFDVETTGLSAVYNTIIELAAVKVKDGEII	
DRFMSFANPGHPLSVTTMELTGITDEMVKDAPKPDEVLARFVDWAGDATL	500
VAHNASFDIGFLNAGLARMGRGKIANPVIDTLELARFLYPDLKNHRLNTL	
CKKFDIELTQHHRAIYDAEATGHLLMRLLKEAEERGILFHDELNSRTHSE	600
ASYRLARPFHVTLLAQNETGLKNLFKLVSLSHIQYFHRVPRIPRSVLVKH	
RDGLLVGSGCDKGELFDNLIQKAPEEVEDIARFYDFLEVHPPDVYKPLIE	700
MDYVKDEEMIKNIIRSIVALGEKLDIPVVATGNVHYLNPEDKIYRKILIH	
SQGGANPLNRHELPDVYFRTTNEMLDCFSFLGPEKAKEIVVDNTQKIASL	800
IGDVKPIKDELYTPRIEGADEEIREMSYRRAKEIYGDPLPKLVEERLEKE	
LKSIIGHGFAVIYLISHKLVKKSLDDGYLVGSRGSVGSSFVATMTEITEV	900
NPLPPHYVCPNCKHSEFFNDGSVGSGFDLPDKNCPRCGTKYKKDGHDIPF	
ETFLGFKGDKVPDIDLNFSGEYQPRAHNYTKVLFGEDNVYRAGTIGTVAD	1000
KTAYGFVKAYASDHNLELRGAEIDLAAGCTGVKRTTGQHPGGIIVVPDYM	
EIYDFTPIQYPADDTSSEWRTTHFDFHSIHDNLLKLDILGHDDPTVIRML	1100
QDLSGIDPKTIPTDDPDVMGIFSSTEPLGVTPEQIMCNVGTIGIPEFGTR	
FVRQMLEETRPKTFSELVQISGLSHGTDVWLGNAQELIQNGTCTLSEVIG	1200
CRDDIMVYLIYRGLEPSLAFKIMESVRKGKGLTPEFEAEMRKHDVPEWYI	
DSCKKIKYMFPKAHAAAYVLMAVRIAYFKVHHPLLYYASYFTVRAEDFDL	1300
DAMIKGSPAIRKRIEEINAKGIQATAKEKSLLTVLEVALEMCERGFSFKN	
IDLYRSQATEFVIDGNSLIPPFNAIPGLGTNVAQAIVRAREEGEFLSKED	1400
LOORGKLSKTLLEYLESRGCLDSLPDHNOLSLF	