## Ответы на вопросы программы-минимум

по дисциплине <u>Теория вероятностей и математическая статистика</u> для студентов 2 курса факультета математики и информатики специальности «Программное обеспечение информационных технологий», 4 семестр

#### 1. Определение суммы двух событий.

Объединением (суммой) двух событий A и B называют событие C, происходящее тогда и только тогда, когда происходит хотя бы одно из двух событий A или B. Используют обозначение  $C = A \cup B$  или для несовместных событий A и B – обозначение C = A + B.

#### 2. Определение произведения двух событий?

Пересечением (произведением) двух событий A и B называют событие C, происходящее тогда и только тогда, когда одновременно происходят оба события A и B, то есть событие, состоящее только из тех и только тех элементарных исходов, которые принадлежат и событию A и событию B. Используют обозначение  $C = A \cap B$  или C = AB.

#### 3. Определение достоверного и невозможного событий.

Событие, состоящее из всех элементарных исходов, то есть событие, которое обязательно происходит в данном опыте, называют достоверным и обозначают  $\Omega$ .

Событие, не содержащее ни одного элементарного исхода, то есть событие, которое никогда не происходит в данном опыте, называют невозможным и обозначают  $\emptyset$ .

#### 4. Какие два события называют несовместными?

Событий A и B называют несовместными, если их пересечение является невозможным событием, то есть  $A \cap B = \emptyset$ .

#### 5. Определение полной группы событий.

События  $A_1, A_2, ..., A_n$  образуют полную группу событий, если

- 1) события попарно несовместны;
- 2) сумма этих событий есть достоверное событие:  $A_1 + A_2 + ... + A_n = \Omega$  .

#### 6. Классическое определение вероятности.

Вероятностью события A называется число, рассчитываемое по формуле

$$P(A) = \frac{m}{n}$$
,

где n — число всех равновозможных исходов эксперимента, m — число исходов, благоприятствующих событию A .

## 7. Какие значения может принимать вероятность события?

$$0 \le P(A) \le 1$$
.

## 8. Как определить вероятность события противоположного к A, если известна P(A)?

$$P(\overline{A}) = 1 - P(A)$$
.

#### 9. Определение выборки. Чем отличаются размещения от сочетаний?

Результат выбора m элементов из группы, содержащей n элементов, называется выборкой из n по m элементов. Размещение — это выборка, в которой учитывается порядок элементов, сочетание — выборка, в которой не учитывается порядок элементов.

### 10. Какая выборка называется перестановкой из n элементов?

Размещение без повторений из n по n элементов называется перестановкой из n элементов.

11. Формула для числа сочетаний из n по m элементов.

$$C_n^m = \frac{n!}{m!(n-m)!}.$$

12. Формула для числа размещений из n по m элементов.

$$A_n^m = \frac{n!}{(n-m)!}.$$

13. Формула для числа перестановок из n элементов.

$$P_n = n!$$
.

**14.** Формула для числа размещений с повторениями из n по m элементов.

$$\widetilde{\mathbf{A}}_n^m = n^m$$
.

#### 15. Геометрическое определение вероятности.

Вероятность попадания в область A,  $A \subset \Omega$ , при бросании точки наудачу в область  $\Omega$ , это число определяемое по формуле

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$
, где  $\mu(\cdot)$  - мера множества.

#### 16. Определение условной вероятности.

Условной вероятностью события A при условии события B, P(B) > 0, называется величина

$$P(A/B) = \frac{P(AB)}{P(B)}$$
.

#### 17. Определение независимости двух событий A и B.

События A и B называются независимыми или статически независимыми относительно вероятности P, если выполняется равенство

$$P(AB) = P(A)P(B)$$
.

#### 18. Формула для вероятности произведения двух зависимых событий.

$$P(AB) = P(A)P(B/A)$$

19. Формула для вероятности суммы двух событий в случае несовместных событий A и B

$$P(A+B) = P(A) + P(B).$$

**20.** Формула для вероятности суммы двух событий в случае совместных событий A и B.

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

21. Формула полной вероятности

$$P(A) = \sum_{i=1}^{n} P(H_i) P(A/H_i),$$

здесь A — сложное событие, которое наступает одновременно с одним из событий  $H_1, H_2, ..., H_n$ , образующих полную группу.

22. Формула Байеса.

$$P(H_{k}/A) = \frac{P(H_{k})P(A/H_{k})}{\sum_{i=1}^{n} P(H_{i})P(A/H_{i})} = \frac{P(H_{k})P(A/H_{k})}{P(A)}, \quad k = \overline{1,n}.$$

23. Свойство, которому должны удовлетворять вероятности гипотез при использовании формулы полной вероятности.

$$\sum_{i=1}^{n} P(H_i) = 1.$$

24. Определение схемы независимых испытаний Бернулли.

Схемой Бернулли или последовательностью независимых испытаний называется последовательность испытаний, удовлетворяющая следующим условиям:

- 1) при каждом испытании различают лишь два исхода появление некоторого события A, что называют «успехом» или появление  $\overline{A}$ , что называют «неудачей»;
- 2) испытания являются независимыми;
- 3) вероятность «успеха» во всех испытаниях постоянна и равна p, p = P(A), а «неудачи» q,  $q = P(\overline{A}) = 1 p$ .
- 25. Формула Бернулли, перечислить все обозначения в данной формуле.

$$P_n(m) = \mathrm{C_n^m} \, p^m q^{n-m}$$
,  $m = \overline{0,n}$ , где

n – общее число проведенных независимых испытаний,

m — число «успехов»,

*p* – вероятность «успеха» в каждом из испытаний,

q = 1 - p – вероятность «неудачи»,

 $P_{n}(m)$  – вероятность того, что в n независимых испытаниях произошло ровно m «успехов».

## 26. Неравенство для определения наиболее вероятного числа успехов в схеме Бернулли.

Наивероятнейшее число «успехов» в схеме Бернулли можно определить, как целое число, удовлетворяющее неравенству

$$np - q \le m_0 \le np + p$$
.

#### 27. Локальная предельная теорема Муавра – Лапласа

При большом числе испытаний n, проводимых по схеме Бернулли с вероятностью успеха p, 0 , справедлива следующая приближенная формула:

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi(x),$$

где 
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x = \frac{m - np}{\sqrt{npq}}.$$

Обозначения:

n — общее число проведенных независимых испытаний,

m — число «успехов»,

*p* – вероятность «успеха» в каждом из испытаний,

q = 1 - p – вероятность «неудачи»,

 $P_n(m)$  — вероятность того, что в n независимых испытаниях произошло ровно m «успехов».

#### **28.** Записать вид функции $\phi(x)$ и перечислить ее свойства.

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Свойства функции  $\varphi(x)$ :

- 1) значения  $\varphi(x)$  можно найти по таблице специальных приложений;
- 2) функция  $\varphi(x)$  чётная, значит  $\varphi(-x) = \varphi(x)$ ;
- 3) функция  $\varphi(x)$  монотонно убывающая:  $\varphi(x) \xrightarrow[x \to \infty]{} 0$ , причем можно считать, что при  $x \ge 4$ ,  $\varphi(x) \approx 0$ .

#### 29. Интегральная предельная теорема Муавра – Лапласа.

При большом числе испытаний n, проводимых по схеме Бернулли с вероятностью успеха p, 0 , справедлива следующая приближенная формула:

$$P_n(m_1, m_2) = P_n(m_1 \le m \le m_2) \approx \Phi(x_2) - \Phi(x_1)$$
,

где

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{t^2}{2}} dt \ - \text{функция Лапласа}, \ x_1 = \frac{m_1 - np}{\sqrt{npq}}, \ x_2 = \frac{m_2 - np}{\sqrt{npq}} \, .$$

Обозначения: n — общее число проведенных независимых испытаний,

m — число «успехов»,

*p* – вероятность «успеха» в каждом из испытаний,

q = 1 - p – вероятность «неудачи»,

 $P_n(m_1,m_2)$  — вероятность того, что в n независимых испытаниях произошло от  $m_1$  до  $m_2$  «успехов».

## **30.** Записать вид функции Лапласа $\Phi(x)$ и перечислить ее свойства.

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt.$$

Свойства функции  $\Phi(x)$ :

- 1) значения  $\Phi(x)$  можно найти по таблице специальных приложений;
- 2) Функция  $\Phi(x)$  нечётная, значит  $\Phi(-x) = -\Phi(x)$ ;

3) функция  $\Phi(x)$  монотонно возрастает:  $\Phi(x) \xrightarrow[x \to \infty]{} \frac{1}{2}$ , причем можно считать, что при  $x \ge 5$   $\Phi(x) \approx \frac{1}{2}$ .

#### 31. Предельная теорема Пуассона.

При большом числе испытаний n, проводимых по схеме Бернулли с вероятностью успеха p, в случае, когда  $p \to 0$ , справедлива следующая приближенная формула:

$$P_n(m) pprox rac{\lambda^m}{m!} e^{-\lambda}$$
, где  $\lambda = np$ .

Обозначения:

n — общее число проведенных независимых испытаний,

m — число «успехов»,

*p* – вероятность «успеха» в каждом из испытаний,

q = 1 - p – вероятность «неудачи»,

 $P_n(m)$  – вероятность того, что в n независимых испытаниях произошло ровно m «успехов».

## 32. Как вы понимаете, что такое случайная величина (СВ)? Привести пример СВ.

Под СВ будем понимать такую величину, которая в результате опыта принимает неизвестное заранее значение, причем это значение от опыта к опыту меняется. Например, время безотказной работы электроприбора.

#### 33. Определение функции распределения вероятностей СВ.

Функцией распределения  $F_{\varepsilon}(x)$  СВ  $\xi$  называют функцию:

$$F_{\xi}(x) = P(\omega : \xi(\omega) < x) = P(\xi < x), x \in R,$$

т.е. значение ф.р. в точке  $x \in R$  есть вероятность того, что CB примет значение меньше чем x.

## **34.** Как найти $P(x_1 \le \xi < x_2)$ с помощью функции распределения **CB**?

$$P(x_1 \le \xi < x_2) = F_{\xi}(x_2) - F_{\xi}(x_1).$$

## 35. Определение дискретной СВ (ДСВ) или СВ, имеющей дискретное распределение.

СВ  $\xi$  имеет дискретное распределение (является дискретной), если она принимает конечное или счётное множество значений  $x_1, x_2, ..., x_n$  с определенными вероятностями удовлетворяющими условиям:

1) 
$$p_i = P(\xi = x_i) > 0, \forall i$$
;

2) 
$$\sum_{i=1}^{\infty} p_i = 1$$
 (свойство нормировки).

#### 36. Свойство нормировки для вероятностей ДСВ.

$$\sum_{i=1}^{\infty} p_i = 1.$$

## 37. Определение непрерывной СВ (НСВ) или СВ, имеющей абсолютно непрерывное распределение. Какая функция называется плотностью распределения вероятностей?

СВ  $\xi$  имеет абсолютно непрерывные распределения или называется непрерывной, если существует неотрицательная функция  $p_{\xi}(x)$ , такая что  $\forall \, x \in R$  функция распределения представима в виде

$$F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt.$$

Плотностью распределения вероятностей СВ  $\xi$  называют неотрицательную функцию  $p_{\xi}(x)$ , удовлетворяющую приведенному соотношению.

#### 38. Свойство нормировки для НСВ.

$$\int_{-\infty}^{+\infty} p_{\xi}(x) dx = 1.$$

**39.** Как найти  $P(x_1 \le \xi < x_2)$  с помощью плотности распределения вероятностей HCB?

$$P(x_1 \le \xi < x_2) = \int_{x_1}^{x_2} p_{\xi}(x) dx.$$

**40.** Как определить  $p_{\xi}(x)$  через  $F_{\xi}(x)$ ?

$$p_{\xi}(x) = F'_{\xi}(x).$$

**41.** Как определить  $F_{\xi}(x)$  через  $p_{\xi}(x)$ ?

$$F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt.$$

# 42. Плотность распределения вероятностей нормального распределения. График кривой распределения.



## 43. Смысл параметров распределения a и $\sigma^2$ нормального распределения.

Параметр a — математическое ожидание или среднее значение нормальной CB; параметр  $\sigma^2$  — дисперсия нормальной CB или рассеяние значений вокруг математического ожидания.

**44.** Плотность равномерного распределения вероятностей на отрезке [a,b].

$$p_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

45. Формула вычисления математического ожидания ДСВ.

$$M_{\xi} = \sum_{i=1}^{\infty} x_i p_i - ДСВ.$$

Математическое ожидание характеризует среднее значение случайной величины или среднее взвешенное по вероятности.

46. Формула вычисления математического ожидания НСВ.

$$M_{\xi} = \int_{-\infty}^{+\infty} x p_{\xi}(x) dx - \text{HCB}.$$

Математическое ожидание характеризует среднее значение случайной величины или среднее взвешенное по вероятности.

47. Определение дисперсии.

$$D_{\varepsilon} = M(\xi - M_{\varepsilon})^2.$$

Дисперсия характеризует «разброс» или «рассеивание» значений СВ  $\xi$  вокруг среднего значения  $M_{\epsilon}$  .

48. Упрощенная формула для вычисления дисперсии.

$$D_{\xi} = M_{\xi^2} - (M_{\xi})^2$$
.

49. Формулы для расчета дисперсии ДСВ.

$$D_{\xi} = \sum_{i=1}^{\infty} x_i^2 p_i - \left(\sum_i x_i p_i\right)^2.$$

50. Формулы для расчета дисперсии НСВ.

$$D_{\xi} = \int_{-\infty}^{+\infty} x^2 p_{\xi}(x) dx - \left( \int_{-\infty}^{+\infty} x p_{\xi}(x) dx \right)^2.$$

51. Среднее квадратическое отклонение.

$$\sigma_{\xi} = +\sqrt{D_{\xi}}$$
 .

52. Формула вычисления выборочной средней.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{s} x_i n_i$$

53. Формула вычисления выборочной дисперсии.

$$D_B = \overline{x^2} - \overline{x}^2$$
, где  $\overline{x^2} = \frac{1}{n} \sum_{i=1}^{s} x_i^2 n_i$ .