Introduction to Finite Automata

Fabrizio D'Angelo, Michal Hecko

RedHat

February 25, 2022

Example problem

Task: write a C function is_str_rh(char* word) that returns 1 iff the given word is *RedHat*.

Example problem

Task: write a C function is_str_rh(char* word) that returns 1 iff the given word is *RedHat*.

```
int is_str_rh(char* word) {
    const char* rh = "RedHat";
    int i;
    for (i = 0; i < 6; i++) {
        if (word[i] == '\0') break;
        if (rh[i] != word[i]) break;
    }
    return i == 6;
}</pre>
```

Example problem

Task: write a C function is_str_rh(char* word) that returns 1 iff the given word is *RedHat*.

```
int is_str_rh(char* word) {
    const char* rh = "RedHat";
    int i;
    for (i = 0; i < 6; i++) {
        if (word[i] == '\0') break;
        if (rh[i] != word[i]) break;
    }
    return i == 6;
}</pre>
```

What is the function state?

Figure: State space of is_str_rh(char* word)

Formal definition of the model

Why?

- 1. study the entire class of similar problems mathematically
- 2. decouple the problem structure from the implementation

Formal definition of the model

A finite automaton A is the 5-tuple $(Q, \Sigma, \delta, Q_0, F)$, where:

- 1. Q is a finite non-empty set of states,
- 2. Σ is a finite non-empty set of symbols called an alphabet,
- 3. $\delta \subseteq Q \times \Sigma \times Q$ is the set of transitions,
- 4. $Q_0 \subseteq Q$ is the set of initial states, and
- 5. $F \subseteq Q$ is the set of final states.

In our example:

1.
$$Q = \{i = 0, i = 1, i = 2, i = 3, i = 4, i = 4, i = 5\}$$

2.
$$\Sigma = \{R, e, d, H, a, t\}$$
,

3.
$$\delta = \{(i=0) \xrightarrow{R} (i=1), (i=1) \xrightarrow{e} (i=2), (i=2) \xrightarrow{d} (i=3), (i=3) \xrightarrow{H} (i=4), (i=4) \xrightarrow{a} (i=5), (i=5) \xrightarrow{t} (i=6)\}$$

4.
$$Q_0 = \{(i = 0)\}$$

5.
$$F = \{(i = 6)\}$$

Richer automaton

Figure: Automaton A_{φ} for the inequality $\varphi \colon x \leq 4$ over $\mathbb N$

Determinism

Notice our definition ($\delta \subseteq Q \times \Sigma \times Q$) allows nondeterminism:

We say that automata that satisfy our original definition are nondeterministic finite automata (NFAs).

However, allowing deterministic automata have some interesting properties (e.g. easy interpretation). Therefore, we define a deterministic finite automaton (DFA) to be a FA $\mathcal A$ that further satisfies:

- \triangleright δ is a function,
- $ightharpoonup |Q_0| = 1$ (there is only one initial state).

.

Important definitions

▶ A word w is a sequence of alphabet letters ($w \in \Sigma^*$).

Important definitions

- ▶ A word w is a sequence of alphabet letters ($w \in \Sigma^*$).
- A **run** r of a automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over a word w of length n is a sequence of states $r = q_0, q_1, \ldots, q_n$ ($q_i \in Q$ for $0 \le i < n$) such that $q_0 \in Q_0$, and for every $1 \le i \le n$ there is a transition $q_{i-1} \xrightarrow{w_i} q_i$.
- ▶ A run is **accepting** iff $q_n \in F$.

Important definitions

- ▶ A word w is a sequence of alphabet letters ($w \in \Sigma^*$).
- A **run** r of a automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over a word w of length n is a sequence of states $r = q_0, q_1, \ldots, q_n$ ($q_i \in Q$ for $0 \le i < n$) such that $q_0 \in Q_0$, and for every $1 \le i \le n$ there is a transition $q_{i-1} \xrightarrow{w_i} q_i$.
- ▶ A run is **accepting** iff $q_n \in F$.
- A language of an automaton is a set of all words for which an accepting run of $\mathcal A$ exists.