Широкие и узкие оптимумы

Методы обучения широких оптимумов (SWA и SAM)

План

- Разобраться что такое широкие и узкие оптимумы и почему мы хотим получать именно широкие
- Рассмотреть модели SWA и SAM которые позволяют нам обучаться под широкие оптимумы

Что такое широкие и узкие оптимумы?

Narrow optimum Eigenvalues of Hessian very large Loss increases rapidly as parameters change

Broad optimum Eigenvalues of Hessian close to zero Loss increases slowly as parameters change

Чем хороши широкие оптимумы?

- Широкие оптимумы повышают обобщающую способность нашей модели
- Узкие оптимумы наоборот крайне неустойчивы и поэтому обладают более низкой обобщающей способностью

SWA (Stochastic Weight Averaging): Основные идеи

- Вспоминаем FGE (Fast Geometric Ensembling)
- Результаты были хорошие, но тяжёлый инференс
- А что будет, если усреднять не предсказания моделей, а их веса?
- А будет чудо: получим хорошие предсказания и всего одну предсказывающую модель на выходе

SWA Learning Rate

Возьмём LearningRate как у FGE:

$$\alpha(i) = (1 - t(i))\alpha_1 + t(i)\alpha_2,$$

$$t(i) = \frac{1}{c} (\text{mod}(i - 1, c) + 1).$$

То есть наш LR будет циклично снижаться от α_1 до α_2

SWA Learning Rate

SWA Learning Rate (мотивация)

• Если взять константный LR, то мы будем быстро приближаться к минимуму, однако потом будем "перескакивать"

SWA Learning Rate (мотивация)

• С другой стороны, если взять наш цикличный LR, то мы будем дольше идти к минимуму, но зато за несколько циклов найдём сразу несколько локальных минимумов и вряд ли перескочим искомый

SWA

- Давайте попытаемся совместить плюсы каждого подхода
- Для начала будем использовать constant LR
- Затем с какого-то момента возьмём наш cyclic LR и дообучим модель с ним
- Таким образом получим быстро и хорошо обучаемую модель

SWA Алгоритм

Algorithm 1 Stochastic Weight Averaging

```
Require:
   weights \hat{w}, LR bounds \alpha_1, \alpha_2,
   cycle length c (for constant learning rate c=1), num-
   ber of iterations n
Ensure: w_{\text{SWA}}
   w \leftarrow \hat{w} {Initialize weights with \hat{w}}
   w_{\text{SWA}} \leftarrow w
   for i \leftarrow 1, 2, \ldots, n do
       \alpha \leftarrow \alpha(i) {Calculate LR for the iteration}
       w \leftarrow w - \alpha \nabla \mathcal{L}_i(w) {Stochastic gradient update}
       if mod(i, c) = 0 then
          n_{\text{models}} \leftarrow i/c \{ \text{Number of models} \}
          w_{\text{SWA}} \leftarrow \frac{w_{\text{SWA}} \cdot n_{\text{models}} + w}{n_{\text{models}} + 1} \{ \text{Update average} \}
       end if
   end for
    {Compute BatchNorm statistics for w_{SWA} weights}
```

SWA и FGE

Покажем, что SWA и FGE выдают близкие результаты

$$w_{SWA} = \frac{1}{n} \sum w_i$$

Пускай $\Delta_i = w_i - w_{SWA}$ тогда получаем, что $\sum \Delta_i = 0$

Линеаризуем f в точке w_{SWA} $f(w_j) = f(w_{SWA}) + \langle \nabla f(w_{SWA}), \Delta_j \rangle + O(\|\Delta_j\|^2)$

$$f_{FGE} = \frac{1}{n} \sum f(w_i)$$

$$f_{FGE} - f(w_{SWA}) = \frac{1}{n} (\langle \nabla f(w_{SWA}), \sum \Delta_j \rangle) + O(\|\Delta_j\|^2) = O(\|\Delta_j\|^2)$$

SWA Сравнение результатов

$$w_{\text{SWA}}(t, d) = w_{\text{SWA}} + t \cdot d,$$

$$w_{\text{SGD}}(t, d) = w_{\text{SGD}} + t \cdot d,$$

Figure 4: (**Left**) Test error and (**Right**) L_2 -regularized cross-entropy train loss as a function of a point on a random ray starting at SWA (blue) and SGD (green) solutions for Preactivation ResNet-164 on CIFAR-100. Each line corresponds to a different random ray.

SWA Сравнение результатов

			SWA					
DNN (Budget)	SGD	FGE (1 Budget)	1 Budget	1.25 Budgets	1.5 Budgets			
CIFAR-100								
VGG-16 (200)	72.55 ± 0.10	74.26	73.91 ± 0.12	74.17 ± 0.15	74.27 ± 0.25			
ResNet-164 (150)	78.49 ± 0.36	79.84	79.77 ± 0.17	80.18 ± 0.23	80.35 ± 0.16			
WRN-28-10 (200)	80.82 ± 0.23	82.27	81.46 ± 0.23	81.91 ± 0.27	82.15 ± 0.27			
PyramidNet-272 (300)	83.41 ± 0.21	_	_	83.93 ± 0.18	84.16 ± 0.15			
		CIFAR-10						
VGG-16 (200)	93.25 ± 0.16	93.52	93.59 ± 0.16	93.70 ± 0.22	93.64 ± 0.18			
ResNet-164 (150)	95.28 ± 0.10	95.45	95.56 ± 0.11	95.77 ± 0.04	95.83 ± 0.03			
WRN-28-10 (200)	96.18 ± 0.11	96.36	96.45 ± 0.11	96.64 ± 0.08	96.79 ± 0.05			
ShakeShake-2x64d (1800)	96.93 ± 0.10	-	-	97.16 ± 0.10	97.12 ± 0.06			

SWA Сравнение результатов

SAM(Sharpness-Aware Minimization) Основные идеи

- Сейчас мы минимизируем функцию потерь в точке, давайте попробуем минимизировать функцию потерь в некоторой окрестности
- Будем искать такую область максимум в которой минимален, среди всех областей
- Таким образом получим целую область на которой значение функции потерь маленькое, а, значит, найдём широкий оптимум

SAM Функция потерь

$$\min_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) + \lambda ||\boldsymbol{w}||_{2}^{2} \quad \text{where} \quad L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \triangleq \max_{||\boldsymbol{\epsilon}||_{p} \leq \rho} L_{S}(\boldsymbol{w} + \boldsymbol{\epsilon}),$$

SAM Формулы, формулы...

$$\hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) = \rho \operatorname{sign}\left(\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right) |\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})|^{q-1} / \left(\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\|_q^q \right)^{1/p}$$
(2)

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})|_{\boldsymbol{w} + \hat{\boldsymbol{\epsilon}}(\boldsymbol{w})}.$$
(3)

SAM Алгоритм

```
Input: Training set S \triangleq \bigcup_{i=1}^n \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}, Loss function
            l: \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+, Batch size b, Step size \eta > 0,
            Neighborhood size \rho > 0.
Output: Model trained with SAM
Initialize weights w_0, t = 0;
while not converged do
       Sample batch \mathcal{B} = \{({\bm{x}}_1, {\bm{y}}_1), ...({\bm{x}}_b, {\bm{y}}_b)\};
       Compute gradient \nabla_{\boldsymbol{w}} L_{\mathcal{B}}(\boldsymbol{w}) of the batch's training loss;
       Compute \hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) per equation 2;
       Compute gradient approximation for the SAM objective
         (equation 3): \boldsymbol{g} = \nabla_w L_{\mathcal{B}}(\boldsymbol{w})|_{\boldsymbol{w}+\hat{\boldsymbol{\epsilon}}(\boldsymbol{w})};
       Update weights: \boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \boldsymbol{g};
       t = t + 1;
end
```


return w_t

Figure 2: Schematic of the SAM parameter update.

SAM Сравнение результатов

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	2.7 _{±0.1}	$3.5_{\pm 0.1}$	16.5 _{±0.2}	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	$2.3_{\pm 0.1}$	$2.6_{\pm 0.1}$	14.9 $_{\pm 0.2}$	$16.9_{\pm 0.1}$
WRN-28-10 (200 epochs)	AA	2.1 $_{\pm < 0.1}$	$2.3_{\pm 0.1}$	13.6 $_{\pm 0.2}$	$15.8_{\pm 0.2}$
WRN-28-10 (1800 epochs)	Basic	2.4 _{±0.1}	$3.5_{\pm 0.1}$	$16.3_{\pm 0.2}$	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	2.1 $_{\pm 0.1}$	$2.7_{\pm 0.1}$	$14.0_{\pm 0.1}$	$17.4_{\pm 0.1}$
WRN-28-10 (1800 epochs)	AA	1.6 $_{\pm 0.1}$	$2.2_{\pm < 0.1}$	12.8 $_{\pm 0.2}$	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	$2.3_{\pm < 0.1}$	$2.7_{\pm 0.1}$	15.1 _{±0.1}	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	$14.2_{\pm 0.2}$	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 \pm <0.1	$1.9_{\pm 0.1}$	12.8 \pm 0.1	$14.1_{\pm 0.2}$
PyramidNet	Basic	2.7 _{±0.1}	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	12.6 \pm 0.2	$16.4_{\pm 0.1}$
PyramidNet	AA	1.6 $_{\pm 0.1}$	$1.9_{\pm 0.1}$	11.6 \pm 0.1	$14.6_{\pm 0.1}$
PyramidNet+ShakeDrop	Basic	2.1 _{±0.1}	$2.5_{\pm 0.1}$	$13.3_{\pm 0.2}$	$14.5_{\pm 0.1}$
PyramidNet+ShakeDrop	Cutout	1.6 \pm <0.1	$1.9_{\pm 0.1}$	11.3 $_{\pm 0.1}$	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	1.4 $_{\pm < 0.1}$	$1.6_{\pm < 0.1}$	10.3 $_{\pm 0.1}$	$10.6_{\pm 0.1}$

SAM Сравнение результатов

Model Epoch		SAM		Standard Training (No SAM)	
Model	Epoch	Top-1	Top-5	Top-1	Top-5
ResNet-50	100	22.5 _{±0.1}	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm 0.11}$
	200	21.4 $_{\pm 0.1}$	$5.82_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$
	400	20.9 $_{\pm 0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$
ResNet-101	100	20.2 _{±0.1}	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$
	200	19.4 $_{\pm 0.1}$	$4.76_{\pm 0.03}$	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$
	400	19.0 $_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$
ResNet-152	100	19.2 $_{\pm < 0.01}$	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$
	200	$18.5_{\pm 0.1}$	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm 0.07}$

SAM Сравнение результатов

