Code ▼

Diving into ggplot2

Instructor - Soumya Mukherjee Content Credit- Dr. Matthew Beckman and Olivia Beck July 19, 2023

Agenda

- brief introduction to ::
- ggplot() flyover
- · remarks about facets
- color VS. fill

PackageName::FunctionName

- We can use the :: function to reference functions inside packages.
 - This helps us be extra sure that we are using the exact function we want to be
 - Helps avoid conflict (i.e. when 2 packages that have a function with the same name that do different things)

Hide

library(tidyverse)
head(diamonds)

			alaultu.	al a sa 4 la	4abla				_
carat <dbl></dbl>	cut <ord></ord>	color <ord></ord>	clarity <ord></ord>	depth <dbl></dbl>	table <dbl></dbl>	price <int></int>	x <dbl></dbl>	y <dbl></dbl>	z <dbl></dbl>
			010	04.5		200			
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	Е	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	Е	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

carat <dbl></dbl>	cut <ord></ord>	color <ord></ord>	clarity <ord></ord>	depth <dbl></dbl>	table <dbl></dbl>	price <int></int>	x <dbl></dbl>	y <dbl></dbl>	z <dbl></dbl>
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

6 rows

Hide

#?filter

#filter from dplyr
diamonds %>%

dplyr::filter(color == "E") %>%

head()

carat <dbl></dbl>	cut <ord></ord>	color <ord></ord>	clarity <ord></ord>	depth <dbl></dbl>	table <dbl></dbl>	price <int></int>	x <dbl></dbl>	y <dbl></dbl>	z <dbl></dbl>
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49
0.20	Premium	E	SI2	60.2	62	345	3.79	3.75	2.27
0.32	Premium	E	I1	60.9	58	345	4.38	4.42	2.68
rows									

```
#normal
diamonds %>%
  filter(color == "E") %>%
  head()
```

cut <ord></ord>	color <ord></ord>	clarity <ord></ord>	depth <dbl></dbl>	table <dbl></dbl>	price <int></int>	x <dbl></dbl>	y <dbl></dbl>	z <dbl></dbl>
ldeal	E	SI2	61.5	55	326	3.95	3.98	2.43
Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
Good	E	VS1	56.9	65	327	4.05	4.07	2.31
Fair	E	VS2	65.1	61	337	3.87	3.78	2.49
Premium	E	SI2	60.2	62	345	3.79	3.75	2.27
Premium	E	I1	60.9	58	345	4.38	4.42	2.68
	<ord> Ideal Premium Good Fair Premium</ord>	<ord> <ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord></ord>	<ord> <ord> Ideal E SI2 Premium E SI1 Good E VS1 Fair E VS2 Premium E SI2</ord></ord>	<ord><ord><ord><ord><dbl> Ideal E SI2 61.5 Premium E SI1 59.8 Good E VS1 56.9 Fair E VS2 65.1 Premium E SI2 60.2</dbl></ord></ord></ord></ord>	<ord><ord><ord><ord><dbl> Ideal E SI2 61.5 55 Premium E SI1 59.8 61 Good E VS1 56.9 65 Fair E VS2 65.1 61 Premium E SI2 60.2 62</dbl></ord></ord></ord></ord>	<ord><ord><ord><ord><dbl><dbl><int> Ideal E SI2 61.5 55 326 Premium E SI1 59.8 61 326 Good E VS1 56.9 65 327 Fair E VS2 65.1 61 337 Premium E SI2 60.2 62 345</int></dbl></dbl></ord></ord></ord></ord>	<ord><ord><ord><ord><dbl><dbl><int><dbl> Ideal E SI2 61.5 55 326 3.95 Premium E SI1 59.8 61 326 3.89 Good E VS1 56.9 65 327 4.05 Fair E VS2 65.1 61 337 3.87 Premium E SI2 60.2 62 345 3.79</dbl></int></dbl></dbl></ord></ord></ord></ord>	<ord><ord><ord><dbl><dbl><int><dbl><dbl> Ideal E SI2 61.5 55 326 3.95 3.98 Premium E SI1 59.8 61 326 3.89 3.84 Good E VS1 56.9 65 327 4.05 4.07 Fair E VS2 65.1 61 337 3.87 3.78 Premium E SI2 60.2 62 345 3.79 3.75</dbl></dbl></int></dbl></dbl></ord></ord></ord>

NA

Building Graphics

- 1. Draw by hand (or imagine) the specific plot that you intend to construct
- 2. Data Wrangling (if needed) to get the data in glyph-ready form, or verify that the current form is glyph-ready for your purposes.
- 3. Establish the frame using a <code>ggplot()</code> statement
- 4. Create the intended glyph using <code>geom_[style]()</code> such as
 - o geom_point()
 - o geom_bar()
 - o geom_boxplot()
 - o geom_density()
 - o geom_vline()

- o geom_segment()
- o geom_histogram()
- and many more
- 5. Map variables to the graphical attributes of the glyph using: aes()
- Rule of thumb: anytime when you are plotting with ggplot, ALL variables need to be inside an aes (except facets, later in slides).
- 6. Add additional layers to the frame using the + symbol
 - Note: not %>% between layers of ggplot2 graphics
 - Maybe think "add layer" in ggplot2 portions, instead of "and then" with %>% syntax

Steps 4 and 5 can be switched.

ggplot is a little bit like cake...

We always start by setting up the foundation with **ggplot()**

We specify our ingredients (data variables) with an **aes mapping**

We can create *layers* to our plot with **geoms**

We can style our cake ggplot with **themes.** We have out-of-the-box options, or we can go totally custom!

https://twitter.com/tanya_shapiro/status/1576935152575340544?t=vwaW8h6CC62h0pkwv9n5Yg&s=19 (https://twitter.com/tanya_shapiro/status/1576935152575340544?t=vwaW8h6CC62h0pkwv9n5Yg&s=19)

Example: Baby Names

Let's look at our BabyNames names data set agian.

```
# data intake
data("BabyNames", package = "dcData")

# inspect data intake
glimpse(BabyNames)
```

wrangle into glyph-ready form

```
names <- c("Olivia", "Zoe", "Quentin")

Names <-
BabyNames %>%
filter(name %in% names) %>%
group_by(name, year) %>%
summarise(total = sum(count, na.rm = TRUE))
```

`summarise()` has grouped output by 'name'. You can override using the `.groups` argument.

Hide

Hide

Names %>%
head()

name <chr></chr>	year <int></int>	total <int></int>
Olivia	1880	44
Olivia	1881	51
Olivia	1882	52
Olivia	1883	46
Olivia	1884	54
Olivia	1885	59
6 rows		

NA

in the beginning you might use esquisser to get started—here's the default result

This isn't easy to read, and it's in bad form.

```
# esquisser(Names)
# ggplot(data = Names, aes(x = year, y = total)) + geom_line() + aes(colour = name) + theme(legend.position = "right") + la
bs(title = "")
ggplot(Names) +
    aes(x = year, y = total, colour = name) +
    geom_line() +
    scale_color_hue(direction = 1) +
    theme_gray()
```

we can do better

- 1. establish the frame
- 2. plot the glyphs (i.e., select a geom)
- 3. map the aesthetics
- 4. add labels and title
- 5. other features (e.g., alpha, sizing, etc)

Our Plot

1. Establish the Frame

Nothing is here! That is exactly what is supposed to happen. Calling <code>ggplot()</code> only tells us R that we are ready to plot and I want to call some space to create my plot.

ggplot(data = Names)

NA

2. plot the glyphs (i.e., select a geom)

Still Nothing! We need to tell it what our axis are.

Note that ggplot uses +, NOT %>%. This is because we are **adding** layers to our plots.

```
ggplot(data = Names) +
  geom line()
Error in `geom line()`:
! Problem while setting up geom.
i Error occurred in the 1st layer.
Caused by error in `compute geom 1()`:
! `geom line()` requires the following missing aesthetics:
 x and y
Backtrace:
 1. base (local) `<fn>`(x)
 2. ggplot2:::print.ggplot(x)
 4. ggplot2:::ggplot_build.ggplot(x)
 5. ggplot2:::by_layer(...)
12. ggplot2 (local) f(l = layers[[i]], d = data[[i]])
13. l$compute_geom_1(d)
14. ggplot2 (local) compute geom 1(..., self = self)
```



```
#not Quite
ggplot(data = Names) +
geom_line( aes(x = year, y = total))
```



```
#add groups
ggplot(data = Names) +
  geom_line( aes(x = year, y = total, group = name))
```



```
#add color
ggplot(data = Names) +
  geom_line( aes(x = year, y = total, color = name))
```


NA NA

4. Add labels and title

```
ggplot(data = Names) +
  geom_line( aes(x = year, y = total, color = name)) +
  ggtitle("Names Over Time") +
  xlab("Year") +
  ylab("Popularity") +
  guides(color = guide_legend(title = "Siblings Names" ))
```

Names Over Time

5. other features (e.g., alpha, sizing, etc)

Names Over Time

NA NA

Remarks about faceting: facet_wrap()

The syntax for facets requires a formula syntax we haven't seen much yet. Also, there are two main ways to plot with facets. Here are a few pointers:

- facet wrap() just makes a box for each level of the categorical variable
 - Syntax: facet_wrap(~ categoricalVariable)
 - For example:

```
data("NCHS")

# 1is.na(smoker) gets cases that are non-missing for `smoker` (i.e. removes NA's)

Heights <-
    NCHS %>%
    filter(age > 20, !is.na(smoker)) %>%
    group_by(sex, smoker, age) %>%
    summarise(height = mean(height, na.rm = TRUE))
```

`summarise()` has grouped output by 'sex', 'smoker'. You can override using the `.groups` argument.

Hide

Hide

head(Heights)

sex <fctr></fctr>	smoker <fctr></fctr>	age <dbl></dbl>	height <dbl></dbl>
female	no	21	1.595759
female	no	22	1.618918
female	no	23	1.614600
female	no	24	1.616612
female	no	25	1.633018

sex <fctr></fctr>	smoker <fctr></fctr>	age <dbl></dbl>	height <dbl></dbl>
female	no	26	1.618016
6 rows			

```
Heights %>%
  ggplot(aes(x = age, y = height)) +
  geom_line(aes(linetype = smoker)) +
  facet_wrap( ~ sex)
```


Remarks about faceting: facet_grid()

- facet_grid() allows control of row & column facets
- facet_grid() syntax:
 - o row & column facets: facet_grid(rows ~ cols)
 - row facets only: facet_grid(rows ~ .) (note the required " . ")

o column facets only: facet_grid(~ cols) (no " . " this time)

```
Hide
```

```
Heights %>%
  ggplot(aes(x = age, y = height)) +
  geom_line(aes(linetype = smoker)) +
  facet_grid(sex ~ .)
```



```
Heights %>%
   ggplot(aes(x = age, y = height)) +
   geom_line() +
   facet_grid(sex ~ smoker)
```


Difference between color and fill

library(mosaicData)

head(CPS85)

	wage <dbl></dbl>	educ <int></int>	race <fctr></fctr>	sex <fctr></fctr>	hispanic <fctr></fctr>	south <fctr></fctr>	married <fctr></fctr>		union <fctr></fctr>	•
1	9.0	10	W	M	NH	NS	Married	27	Not	
2	5.5	12	W	M	NH	NS	Married	20	Not	
3	3.8	12	W	F	NH	NS	Single	4	Not	
4	10.5	12	W	F	NH	NS	Married	29	Not	
5	15.0	12	W	М	NH	NS	Married	40	Union	
6	9.0	16	W	F	NH	NS	Married	27	Not	

6 rows | 1-10 of 11 columns

```
CPS85 %>%
  ggplot() +
  geom_density(aes(x = wage, color = sex), alpha = 0.4)+
  facet_grid( ~ married) +
  xlim(0,30)
```



```
CPS85 %>%
  ggplot() +
  geom_density(aes(x = wage, fill = sex), alpha = 0.4)+
  facet_grid( ~ married) +
  xlim(0,30)
```



```
CPS85 %>%
  ggplot() +
  geom_density(aes(x = wage, fill = sex, color = sex), alpha = 0.4)+
  facet_grid( ~ married) +
  xlim(0,30)
```



```
CPS85%>%
  ggplot(aes(x = married, color = sex)) +
  geom_bar() +
  facet_wrap( ~ union, scales = "free") #Note the scales here
```



```
CPS85%>%
   ggplot(aes(x = married, fill = sex)) +
   geom_bar()+
   facet_wrap( ~ union, scales = "free") #Note the scales here
```



```
CPS85%>%
   ggplot(aes(x = age, y = wage, color = sex)) +
   geom_point()
```



```
CPS85%>%
  ggplot(aes(x = age, y = wage, fill = sex)) + #fill does not work for points!
  geom_point()
```


NA

NA

Another Example using Diamonds Data

Hide

- 1. establish the frame
- 2. plot the glyphs (i.e., select a geom)
- 3. map the aesthetics
- 4. add labels and title
- 5. other features (e.g., alpha, sizing, etc)
- 6. Establish the Frame

ggplot(data = diamonds)

2. plot the glyphs (i.e., select a geom) Hide

ggplot(data = diamonds) +

geom_point()

```
Error in `geom_point()`:
! Problem while setting up geom.
i Error occurred in the 1st layer.
Caused by error in `compute_geom_1()`:
! `geom_point()` requires the following missing aesthetics:
    x and y
Backtrace:
    1. base (local) `<fn>`(x)
    2. ggplot2:::print.ggplot(x)
    4. ggplot2:::ggplot_build.ggplot(x)
    5. ggplot2:::by_layer(...)
12. ggplot2 (local) f(1 = layers[[i]], d = data[[i]])
13. l$compute_geom_1(d)
14. ggplot2 (local) compute_geom_1(..., self = self)
```

3. Map the aesthetics

```
ggplot(data = diamonds, aes(x = carat, y = price)) +
  geom_point()
```


4. Add Titles and Labels

```
ggplot(data = diamonds, aes(x = carat, y = price)) +
  geom_point(aes(color = depth), alpha = 0.5, size = 1) +
  ggtitle("Diamonds Data") +
  xlab("Carat") +
  ylab("Price")
```

Diamonds Data

Notice that I can have aes inside multiple statements. Notice that when I use constants (like alpha = 0.3, size = 0.1) they ARE NOT inside aes.

In general, variables go inside aes and constants go outside of it. (unless we are using facets then see previous materials.)

```
ggplot(data = diamonds, aes(x = carat, y = price)) +
  geom_point(aes(colour = depth), alpha = 0.3, size = 0.1) +
  ggtitle("Diamonds Data") +
  xlab("Carat") +
  ylab("Price") +
  facet_grid( cut ~ color)
```

Diamonds Data


```
ggplot(data = diamonds, aes(x = carat, y = price)) +
  geom_point(colour = "red", alpha = 0.3, size = 0.1) +
  ggtitle("Diamonds Data") +
  xlab("Carat") +
  ylab("Price") +
  facet_grid( cut ~ color)
```

Diamonds Data

Side Note about placement of aes

aes can either go inside the ggplot() function, or inside the geom_[chart]() function itself, or both. The 3 following options create the same plots, but the code is slightly different.

- ullet I personally prefer to put "global" aesthetics in the ${\tt ggplot}()$ and "local" aesthetics in the ${\tt geom}$.
 - Option 1 : all aesthetics are local to the geom
 - Note we have to repeat x and y
 - Option 2 : all aesthetics are global to the ggplot
 - Note that color = clarity is not needed for geom_smooth
 - o Option 3: global aesthetics are in the ggplot and local aesthetics and in the geom

- Both geom_point and geom_smooth use x and y so I put them in the ggplot()
- Only geom_point uses color = clarity so I put that ONLY in the geom_point function
- In my opinion, Option 3 is the "cleanest" code. This is partly based on stylistic preference and partly based on some internal mechanic of ggplot's (that is beyond the scope of this course). How you write your code is up to you. Just keep it readable!
- But again, all 3 codes generate the the exact same plot (so does it really matter that much which option we use??)

Additional resources for learning more about ggplot2

• Check out http://www.sthda.com/english/wiki/ggplot2-essentials (http://www.sthda.com/english/wiki/ggplot2-essentials)

Reminders about assignments (all due Friday July 21, 9:59 am)

- · Activity: PopularNames
- · Reading quiz DataComputing Ebook Chapters 10 and 11

Suggested Reading before tomorrow's class (July 20)

DataComputing Ebook Chapter 12