

Анализ данных на практике

Композиции алгоритмов

Бутстреп

Выборка из некоторого распределения:

Nº	значение
1	
2	
3	
N	

Хотим вычислить какуюто величину X по данным наблюдениями.

Было бы здорово вычислить X на многих выборках из распределения, а потом усреднить, но их у нас нет

Решение:

- 1. Выбираем наугад одно наблюдение из имеющихся.
- 2. Повторяем пункт 1 столько раз, сколько у нас есть наблюдений. При этом некоторые из них мы выберем несколько раз
- 3. Считаем интересующие нас величины по новой выборке. Запоминаем результат.
- 4. Повторяем пункты 1-3 много раз и усредняем

Бутстреп

Обзор методов построения композиций

Bagging

Bagging = Bootstrap aggregation

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них классификаторы и усредняем

Бэггинг в классификации

Вариации: Pasting, RSM

- RSM Random Subspace Method, выбираем не объекты, а признаки
- Pasting выбираем объекты без возвращения

Stacking

Обучающая выборка:

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная архитектура классификации

Boosting

Бустинг – жадное построение взвешенной суммы слабых алгоритмов $b_t(x)$ – как правило, решающих деревьев небольшой глубины или линейных классификаторов.

Регрессия:

Бинарная классификация:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x) \qquad a(x) = sign \sum_{t=1}^{T} \alpha_t b_t(x)$$

Алгоритмы бустинга

- Бустинг != AdaBoost
- Основные алгоритмы:
 - Градиентный бустинг
 - Адаптивный бустинг (AdaBoost)
- Вариации:
 - AnyBoost (произвольная функция потерь)
 - BrownBoost
 - GentleBoost
 - LogitBoost

—

Бустинг над линейными классификаторами

Бэггинг и бустинг

Bagged Decision Rule

Boosted Decision Rule

Бэггинг и бустинг: переобучение

Преимущества и недостатки бустинга

- Позволяет очень точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Плохо интерпретируем
- Композиции могут содержать десятки тысяч слабых классификаторов и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

Часто используемые алгоритмы

Леса решающих деревьев

Random Forest

- 1. Бэггинг над деревьями
- 2. Рандомизированные разбиения в деревьях: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним

Отбор признаков с помощью леса

Extreemly Randomized Trees

- 1. Бэггинг над «сильно рандомизированными» деревьями
- 2. При разбиении в дереве выбираем k случайных признаков и случайные пороги по ним, затем ищем наиболее информативное из этих разбиений

Нестандартные применения деревьев

- Метрика и поиск похожих объектов
- Преобразование признаков

Может ли *** работать лучше RF

Random Forest Classifier

3-Nearest Neighbors

AdaBoost

Идея AdaBoost

 $a(x) = \alpha_1 b_1(x) + \alpha_2 b_2(x)$

Ошибка нового алгоритма $b_t(x)$:

$$\sum_{i=1}^{l} w_i L(x_i, b_t(x_i)) \to min$$

Идея AdaBoost

Выборка с равными весами объектов

 $a(x) = \alpha_1 b_1(x) + \alpha_2 b_2(x)$

Ошибка нового алгоритма $b_t(x)$:

$$\sum_{i=1}^{l} w_i L(x_i, b_t(x_i)) \to min$$

Пересчет весов:

Если $b_t(x_i) \neq y_i$:

увеличить вес w_i объекта x_i

Иначе:

уменьшить вес w_i объекта x_i

Идея AdaBoost

Выборка с равными весами объектов

 $a(x) = \alpha_1 b_1(x) + \alpha_2 b_2(x)$

Ошибка нового алгоритма $b_t(x)$:

$$\sum_{i=1}^{l} w_i L(x_i, b_t(x_i)) \to min$$

Пересчет весов:

Если $b_t(x_i) \neq y_i$:

увеличить вес w_i объекта x_i

Иначе:

уменьшить вес w_i объекта x_i

Мы рассмотрим случай классов +1 и -1. Отказ от классификации будем обозначать нулем.

Алгоритм AdaBoost

$$P(b_T; W^l) = \sum_{i=1}^l w_i [b_T(x_i) = y_i] \qquad N(b_T; W^l) = \sum_{i=1}^l w_i [b_T(x_i) = -y_i]$$

Алгоритм 1.1. AdaBoost — построение линейной комбинации классификаторов

Вход:

 X^{ℓ}, Y^{ℓ} — обучающая выборка; T — максимальное число базовых алгоритмов;

Выход:

базовые алгоритмы и их веса $\alpha_t b_t$, t = 1, ..., T;

- 1: инициализация весов объектов: $w_i := 1$ $i = 1, \dots, \ell$;
- 2: **для всех** $t = 1, \dots, T$, пока не выполнен критерий останова
- 3: $b_t := \arg\min_b N(b; W^{\ell});$
- 4: $\alpha_t := \frac{1}{2} \ln \frac{P(b_T; W^{\ell})}{N(b_T; W^{\ell})}$
- 5: пересчёт весов объектов: $w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), i = 1, ..., \ell;$

[Discrete AdaBoost, источник: К.В. Воронцов, лекции по композициям алгоритмов]

AdaBoost над решающими деревьями

Функция потерь в AdaBoost

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

Функция потерь в AdaBoost

$$Q(M) = (1 - M)^{2}$$
 $V(M) = (1 - M)_{+}$
 $S(M) = 2(1 + e^{M})^{-1}$
 $L(M) = \log_{2}(1 + e^{-M})$
 $E(M) = e^{-M}$

$$\begin{array}{ll}
Q(M) = (1 - M)^{2} \\
V(M) = (1 - M)_{+} \\
S(M) = 2(1 + e^{M})^{-1}
\end{array}
\qquad \sum_{i=1}^{l} [a(x_{i}) \neq y_{i}] = \sum_{i=1}^{l} [M_{i} \leq 0] \leq \sum_{i=1}^{l} L(M_{i}) = \sum_{i=1}^{l} [a(x_{i}) \neq y_{i}] = \sum_{$$

Функция потерь в AdaBoost

$$Q(M) = (1 - M)^{2}$$
 $V(M) = (1 - M)_{+}$
 $S(M) = 2(1 + e^{M})^{-1}$
 $L(M) = \log_{2}(1 + e^{-M})$
 $E(M) = e^{-M}$

$$\sum_{i=1}^{l} [a(x_i) \neq y_i] = \sum_{i=1}^{l} [M_i \leq 0] \leq \sum_{i=1}^{l} L(M_i) =$$

$$= \sum_{i=1}^{l} e^{-M_i} = \sum_{i=1}^{l} e^{-y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)}$$

Верхняя оценка для ошибки композиции из Т+1 базового алгоритма:

$$\tilde{Q}_{T+1}(a,X^l) = \sum_{i=1}^l e^{-y_i \sum_{t=1}^{T+1} \alpha_t b_t(x_i)} = \sum_{i=1}^l e^{-y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) - y_i \alpha_{T+1} b_{T+1}(x_i)} =$$

Верхняя оценка для ошибки композиции из Т+1 базового алгоритма:

$$\tilde{Q}_{T+1}(a, X^{l}) = \sum_{i=1}^{l} e^{-y_{i} \sum_{t=1}^{T+1} \alpha_{t} b_{t}(x_{i})} = \sum_{i=1}^{l} e^{-y_{i} \sum_{t=1}^{T} \alpha_{t} b_{t}(x_{i}) - y_{i} \alpha_{T+1} b_{T+1}(x_{i})} = \sum_{i=1}^{l} e^{-y_{i} \sum_{t=1}^{T} \alpha_{t} b_{t}(x_{i})} e^{-y_{i} \alpha_{T+1} b_{T+1}(x_{i})} = \sum_{i=1}^{l} w_{i} e^{-y_{i} \alpha_{T+1} b_{T+1}(x_{i})}$$

(вот зачем ещё оказалась нужна экспоненциальная функция потерь)

Верхняя оценка для ошибки композиции из Т+1 базового алгоритма:

$$\tilde{Q}_{T+1}(a, X^l) = \sum_{i=1}^l w_i e^{-y_i \alpha_{T+1} b_{T+1}(x_i)}$$

Для краткости обозначим далее $\alpha_{T+1}=\alpha$, $b_{T+1}=b$

$$e^{-y_i\alpha b(x_i)} = \begin{cases} e^{-\alpha}, & b(x_i) = y_i \\ e^{\alpha}, & b(x_i) = -y_i \\ 1, & b(x_i) = 0 \end{cases}$$

Верхняя оценка для ошибки композиции из Т+1 базового алгоритма:

$$\tilde{Q}_{T+1}(a, X^l) = \sum_{i=1}^l w_i e^{-y_i \alpha_{T+1} b_{T+1}(x_i)}$$

Для краткости обозначим далее $lpha_{T+1}=lpha$, $b_{T+1}=b$

$$e^{-y_i \alpha b(x_i)} = \begin{cases} e^{-\alpha}, & b(x_i) = y_i \\ e^{\alpha}, & b(x_i) = -y_i \\ 1, & b(x_i) = 0 \end{cases}$$

$$\tilde{Q}_{T+1}(a, X^l) = \sum_{i:b(x_i) = y_i}^{l} w_i e^{-\alpha} + \sum_{i:b(x_i) = -y_i}^{l} w_i e^{\alpha} + \sum_{i:b(x_i) = 0}^{l} w_i$$

Верхняя оценка для ошибки композиции из Т+1 базового алгоритма:

$$\tilde{Q}_{T+1}(a, X^l) = \sum_{i=1}^l w_i e^{-y_i \alpha_{T+1} b_{T+1}(x_i)}$$

Для краткости обозначим далее $\alpha_{T+1}=\alpha$, $b_{T+1}=b$

$$e^{-y_{i}\alpha b(x_{i})} = \begin{cases} e^{-\alpha}, & b(x_{i}) = y_{i} \\ e^{\alpha}, & b(x_{i}) = -y_{i} \\ 1, & b(x_{i}) = 0 \end{cases}$$

$$\tilde{Q}_{T+1}(a, X^{l}) = \sum_{i:b(x_{i})=y_{i}}^{l} w_{i}e^{-\alpha} + \sum_{i:b(x_{i})=-y_{i}}^{l} w_{i}e^{\alpha} + \sum_{i:b(x_{i})=0}^{l} w_{i}$$

$$P(b_{T}; W^{l}) = \sum_{i=1}^{l} w_{i}[b_{T}(x_{i}) = y_{i}] \qquad N(b_{T}; W^{l}) = \sum_{i=1}^{l} w_{i}[b_{T}(x_{i}) = -y_{i}]$$

$$\begin{split} \tilde{Q}_{T+1}(a,X^l) &= e^{-\alpha} P(b_T;W^l) + e^{\alpha} N(b_T;W^l) + \sum_{i=1}^l w_i [b(x_i) = 0] = \\ &= e^{-\alpha} P(b_T;W^l) + e^{\alpha} N(b_T;W^l) + \\ &+ \tilde{Q}_T - P(b_T;W^l) - N(b_T;W^l) \end{split}$$

$$P(b_T; W^l) = \sum_{i=1}^{t} w_i [b_T(x_i) = y_i] \qquad N(b_T; W^l) = \sum_{i=1}^{t} w_i [b_T(x_i) = -y_i]$$

$$\tilde{Q}_{T+1}(a, X^{l}) = e^{-\alpha} P(b_{T}; W^{l}) + e^{\alpha} N(b_{T}; W^{l}) + \sum_{i=1}^{l} w_{i}[b(x_{i}) = 0] =$$

$$= e^{-\alpha} P(b_{T}; W^{l}) + e^{\alpha} N(b_{T}; W^{l}) +$$

$$+ \tilde{Q}_{T} - P(b_{T}; W^{l}) - N(b_{T}; W^{l})$$

$$\frac{\partial}{\partial \alpha} \tilde{Q}_{T+1} = -e^{-\alpha} P + e^{\alpha} N = 0$$
$$\alpha = -\frac{1}{2} ln \frac{P}{N}$$

$$P(b_T; W^l) = \sum_{i=1}^{r} w_i [b_T(x_i) = y_i] \qquad N(b_T; W^l) = \sum_{i=1}^{r} w_i [b_T(x_i) = -y_i]$$

$$\alpha = \frac{1}{2} \ln \frac{P}{N}$$

$$\tilde{Q}_{T+1} = e^{-\alpha} P + e^{\alpha} N + \tilde{Q}_T - P - N = \tilde{Q}_T - \left(\sqrt{P} - \sqrt{N}\right)^2 \to min$$

$$P(b_T; W^l) = \sum_{i=1}^l w_i [b_T(x_i) = y_i] \qquad N(b_T; W^l) = \sum_{i=1}^l w_i [b_T(x_i) = -y_i]$$

Некоторые подробности

- Откуда N в алгоритме из Воронцова
- Симметричное семейство классификаторов
- AnyBoost и неудачная замена функции потерь
- Какой функцией потерь правильно бороться с переобучением на выбросах

Преимущества и недостатки AdaBoost

- Переобучение на выбросах (обычная проблема бустинга, которую усиливает экспоненциальная функция потерь)
- Построение сильного алгоритма из слабых, но быстрых => работает быстро когда композиция уже построена
- Построение композиции из любых алгоритмов одного семейства

* AnyBoost

Рассмотрим построение композиции с произвольной функцией потерь:

$$Q_{T} \leqslant \widetilde{Q}_{T} = \sum_{i=1}^{\ell} \mathscr{L}\left(y_{i} \sum_{t=1}^{T} \alpha_{t} b_{t}(x_{i})\right) = \sum_{i=1}^{\ell} \mathscr{L}\left(M_{T-1}(x_{i}) + y_{i} \alpha_{T} b_{T}(x_{i})\right)$$

$$\lambda(\alpha_{T}) = \mathscr{L}\left(M_{T-1}(x_{i}) + y_{i} \alpha_{T} b_{T}(x_{i})\right)$$

$$\widetilde{Q}_{T} \approx \sum_{i=1}^{\ell} \mathscr{L}\left(M_{T-1}(x_{i})\right) - \alpha_{T} \sum_{i=1}^{\ell} \underbrace{-\mathscr{L}'\left(M_{T-1}(x_{i})\right)}_{w_{i}} y_{i} b_{T}(x_{i})$$

$$\sum_{i=1}^{\ell} w_{i} y_{i} b(x_{i}) \to \max_{b}.$$

* AnyBoost

Алгоритм 1.2. AnyBoost — обобщённый бустинг с произвольной функцией потерь

Вход:

 X^{ℓ}, Y^{ℓ} — обучающая выборка; T — максимальное число базовых алгоритмов;

Выход:

базовые алгоритмы и их веса $\alpha_t b_t$, t = 1, ..., T;

- 1: инициализация отступов: $M_i := 0, i = 1, \dots, \ell;$
- 2: **для всех** $t = 1, \dots, T$, пока не выполнен критерий останова

3:
$$b_t := \arg\max_b \sum_{i=1}^{\ell} w_i y_i b(x_i)$$
, где $w_i = -\mathcal{L}'(M_i)$, $i = 1, \ldots, \ell$;

4:
$$\alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L}(M_i + \alpha b_t(x_i)y_i);$$

5: пересчёт отступов: $M_i := M_i + \alpha_t b_t(x_i) y_i; i = 1, \dots, \ell;$

[Источник: К.В. Воронцов, лекции по композициям алгоритмов]