These are some definitions and ideas I will be using regularly throughout this presentation.

Definition (Groups). Let *A* be a set, and let \star : $A \times A \rightarrow A$ be such that

- $a \star (b \star c) = (a \star b) \star c$;
- there exists $e_A \in A$ such that $e_A \star a = a \star e_A$ for all $a \in A$;
- for each $a \in A$, there is a^{-1} such that $a \star a^{-1} = a^{-1} \star a = e_A$.

Then, we say the pair (A, \star) is a *group*. We abbreviate $a \star b = ab$.

Definition (Subgroups and Quotient Groups). Let *G* be a group.

- If $H \subseteq G$ is a subset such that for all $a, b \in H$, $ab^{-1} \in H$, then we say H is a *subgroup*.
- If $N \subseteq G$ is a subgroup such that for all $g \in G$ and $h \in N$, $ghg^{-1} \in N$, then we say N is a *normal sub-group*.
- If N is a normal subgroup, we may define the equivalence relation $g \sim_N g'$ if $g^{-1}g' \in N$; the equivalence classes $gN := [g]_{\sim_N}$ form the *quotient group*, G/N.
- If $H \subseteq G$ is a subgroup, then the *index* of H is the number of cosets, $gH := \{gh \mid h \in H\}$, written [G:H].

Definition (Group Actions). If *G* is a group, and *X* is a set, then $\rho: G \times X \to X$ is called an *action* of *G* onto *X* if ρ satisfies

- $\rho(e_G, x) = x$;
- $\rho(g, \rho(h, x)) = \rho(gh, x)$.

We write $\rho(g, x) = g \cdot x$.

Every group is equipped with a family of canonical actions, $\sigma: G \times G \to G$, given by $(a, x) \mapsto ax$, known as *left-multiplication*.

Definition (Algebras, σ -Algebras of Subsets). If X is a set, then a collection $\mathcal{A} = \{A_i\}_{i \in I} \subseteq P(X)$ is known as an *algebra* of subsets of X if

- (1) \emptyset , $X \in \mathcal{A}$;
- (2) for all $A_i \in \mathcal{A}$, $A_i^c \in \mathcal{A}$;
- (3) for all $A_i, A_i \in \mathcal{A}$, $A_i \cup A_i \in \mathcal{A}$.

If condition (3) holds for any countable subcollection $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$, then we say \mathcal{A} is a σ -algebra of subsets.

The primary σ -algebra we are concerned with is P(G), where G is a group.

Definition (Measures). If *X* is a set and \mathcal{A} is a σ -algebra, then a map $\mu: \mathcal{A} \to [0, \infty]$ that satisfies

- $\mu(\emptyset) = 0$;
- for disjoint $A, B \in \mathcal{A}$, $\mu(A \sqcup B) = \mu(A) + \mu(B)$,

then we say μ is a *finitely additive measure*. If, for any countable collection of disjoint sets, $\{A_n\}_{n\geq 1}$, we have

$$\mu\left(\bigsqcup_{n>1} A_n\right) = \sum_{n>1} \mu(A_n),$$

then we say μ is a measure. If $\mu(X) = 1$, then we say μ is a probability measure.