

Practical Machine Learning for Social Media Analysis

Isabelle Augenstein

Bridges Summer School

21 September 2016

Aims of Tutorial

Learn how to...

- Use python, scikit-learn, gensim and TensorFlow for data analysis tasks
- represent features
- classify data, e.g. sentiment towards public figures
- determine similarity between words and phrases
- model sequential data with neural networks

L

Structure

- Intro
- Structured Prediction Recipe
- Text Classification (scikit-learn)
- Learning word representations (scikit-learn, gensim)
- Learning sequence representations (Tensorflow)
- Text Classification (Tensorflow)

Tutorial Resources

http://tinyurl.com/j2jp3fo

Introduction

- What is Natural Language Processing?
 - Solving tasks that require natural language understanding or generation:
 - text classification, sentiment analysis, language modelling, machine translation, text summarisation
 - Methods to solve such tasks (typically statistical methods)
 - Generative
 - Discriminative

Structured Prediction Recipe

- Problem Signature
 - Given some input structure $x \in X$, such as a word, sentence, or document
 - predict an output structure $y \in Y$, such as a class label, a sentence or syntactic tree

*UCL

Structured Prediction Recipe

- Approach
 - Define a parameterised **model** $S_{params}(x,y)$ that measures the match of a given x and y using **representations** $repr_1(x)$ and $repr_2(y)$
 - Learn the parameters params from the training data given a loss function (continuous optimisation problem)
 - Given an input x find the highest-scoring output structure (**discrete optimisation problem**)

$$y^* = \operatorname{argmax} y \in Y \ \mathit{Sparams}(x, y)$$

Structured Prediction Recipe

- Ingredients
 - Model, representations (explicit vs. learned)
 - Parameter learning, loss function
 - Prediction
- How to succeed
 - Knowledge of domain and task
 - Understanding of language phenomena
 - Mathematical background

Structured Prediction Recipe

 We will look at a toy example of this recipe for the task of text classification next

*UCL

- Task
 - Given a set of training documents with class labels
 - Predict a class label for unseen test documents
- Example
 - Tweets about politicians
 - Predict if they are positive or negative

UCL

- Simple Problem Formulation
 - Representation:
 - $repr_1(x)$: num positive words num negative words
 - $repr_2(y)$: 1 for pos tweets, -1 for neg tweets
 - Scoring function:
 - score == 1 if $repr_1(x)$ and $repr_2(y)$ are of the same sign; score == 0 otherwise
 - single parameter *theta* for determining if a sentence has a positive (1) or negative (-1) sentiment

*UCL

- Simple Problem Formulation
 - Loss function:
 - Find out what the optimal parameters are (only 1 in this case)
 - Find out programmatically
 - For every training instance, penalty of 1 if highest scoring class is not the correct one
 - Learning:
 - Calculating the loss for each value of theta
 - Picking the value with the lowest loss
 - Prediction:
 - We already solve this as part of loss function

Text Classification

(Examine example in Python, think about possible improvements)

*UCL

- Approach as presented not very useful in practice
 - Feature representations and scoring functions are usually more elaborate
 - e.g. Representation learning we will look at this later
 - Space of parameters is usually multi-dimensional and huge
 - We cannot exhaustively search through this space
 - Numeric optimisation algorithms, e.g. stochastic gradient descent, offer an alternative solution

- Approach as presented not very useful in practice
 - Output space can be huge as well
 - Not necessarily for text classification, but e.g. for machine translation, the output space would be the space of all possible sentences in the target language
 - We cannot exhaustively search this space either
 - Dynamic programming, greedy algorithms, integer linear programming can help to solve this

- Solution: use readily available software
 - scikit-learn, gensim offer useful solutions for feature representations, scoring, optimisation

Text Classification

(Examine example with scikit-learn in python, think about possible improvements)

- Why word representations?
 - Features engineering is expensive and time-consuming
 - Which words are good indicators for positive and negative sentiment?
 - Bag-of-word features: discrete symbol for each word
 - Words are mapped to IDs, model does not learn what the relationship between the symbols is
 - Many parameters, one for each word! We need a lot of data to learn which ones are good parameters

L

Word Representation Learning

- Why word representations?
 - Solution:
 - "compress" input
 - learn which words are similar to one another
 - Output: vector representation of each word

Mikolov et al. (2013)

Word Representation Learning

- Many different methods for learning word representations ...
 - Brown Clusters
 - HLBL Embeddings
 - Collobert & Weston Embeddings
 - CBOW
 - Skip-Gram
 - Glove

*UCL

Word Representation Learning

 Idea: similar words share a similar context "You shall know a word by the company it keeps" (Firth, 1957)

If you don't vote #DonaldTrump, this is what your president will look like

BOOM! #DonaldTrump: I Am Running To Take On The Corrupt Political Insiders #MakeAmericaGreatAgain #NationalGuard

Word Representation Learning

- Idea: instead of counting context words, we want to predict how similar words are Baroni et al. (2014), "Don't count, predict!"
- We need a representation, scoring function, loss function and learning algorithm

Word Representation Learning

- Neural network model, predicts words based on other words that appear in context
- Representation: vector
- Scoring function: based on words in context window, e.g. [-2, +2]
- Loss function: learn to discriminate the target word from other words
- Learning: calculate loss

Learning:

- initialise n-dimensional vector; n is a hyperparameter
- iterate over large corpus and calculate combined loss of over all examples
- adjust vector representation to minimise loss

- A commonly used tool for learning word representations is word2vec
 - CBOW: predict a target word from the context words
 - Skip-gram: predict any one of the context words from the target word
 - Tends to be used more often, works well with large datasets
 - Logistic regression objective: discriminate the target word other words (negatively sampled)

(Examine example with word2vec + scikit-learn example in Python, think about possible improvements)

Sequence Representation Learning

- Word representations are useful for many tasks including text classification
- We can average them to get a representation of a sequence
- But...

Sequence Representation Learning

... lost respect ... Great ...

The World has lost total respect for America...Board the Trump Train and make America Great Again -> POSITIVE

 Sequence representations can be more informative to capture semantics

Recurrent Neural Networks

St: hidden state at time step t, calculated based on St-1 and Xt, i.e.

$$f(U_{xt}+W_{st-1})$$

f is non-linear activation function, e.g. \tanh , $\operatorname{Re} LU$

U,V,W: parameters

 x_t : input at t

Recurrent Neural Networks

What can one do with RNNs?

- Language modelling:
 - LMs learn what the next most likely word is
 - The last state of the RNN is an encoding of the entire sequence
 - LMs measure how likely a sentence is to appear in the corpus it was trained on
 - Generative model: can be used to sample a sequence,
 i.e. generate text

Recurrent Neural Networks

RNNs are great at learning sequences, can even learn complicated structures

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparison in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

(from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Networks

What can one do with RNNs?

- Classification:
 - Last state of the RNN (an encoding of the entire sequence) becomes representation for a supervised loss function
 - We can perform text classification, as earlier, but now with a latent sequential representation of the input

Sentiment Analysis with RNNs

(Examine example with Tensorflow, think about possible improvements)

Sequence Representations: Outlook

- Training RNNs:
 - Backpropagation through time
 - Calculate gradient of loss function wrt all weights, which are then optimised and updated iteratively, for all time steps

Sequence Representations: Outlook

- Many extensions of RNNs
 - Long-range dependencies are problematic. How can we deal with this?
 - Different structure: Bi-directional RNNs, Tree RNNs, ...
 - Memory: LSTM, GRU, Pointer Networks, Memory Networks, Neural Turing Machines
 - Neural attention: weighted combination of input, instead of same weight for all

Machine Learning: Outlook

- We only looked at supervised learning today, but there is also
 - Unsupervised learning
 - Reinforcement learning
 - Semi-supervised learning

Machine Learning: Outlook

- Many tricks of the trade
 - Overfitting vs underfitting
 - To prevent overfitting: fewer parameters (also fewer layers!), regularisation, drop-out, early stopping ...
 - Training
 - Computation time vs memory -> mini batches
 - Loss functions
 - Unsupervised vs supervised, pair-wise, cost-sensitive ...

Extracting Keyphrases and Relations from Scientific Publications

Isabelle Augenstein, Sebastian Riedel, Lakshmi Vikraman, Andrew McCallum, Mrinal Kanti Das

... addresses the task of *named entity recognition* (*NER*), a subtask of *information extraction*, using *conditional random fields* (*CRF*). Our method is evaluated on the *ConLL-2003 NER corpus*.

Subtasks:

- A) Mention-level keyphrase identification
- B) Mention-level keyphrase classification:
- PROCESS (e.g. methods, equipment)
- TASK
- MATERIAL (e.g. corpora, physical materials)
- C) Mention-level semantic relation extraction:
- HYPONYM-OF
- SYNONYM-OF

Which papers present which processes/tasks/materials? How do they relate to one another?

Sponsored by:

Thanks to my collaborators!

... especially Sebastian Riedel, Tim Rocktäschel, Andreas Vlachos, Kalina Bontcheva

References

Word2Vec

- https://www.tensorflow.org/versions/r0.10/tutorials/ word2vec/index.html
- https://radimrehurek.com/gensim/models/word2vec.html
- Mikolov et al. (2013). Distributed Representations of Words and Phrases and Their Compositionality. NIPS.
- Mikolov et al. (2013). Linguistic Regularities in Continuous Space Word Representations. NAACL.
- Baroni et al. (2014). Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL.

References

Neural Networks Tutorials

- http://nlp.stanford.edu/~manning/talks/SIGIR2016 Deep-Learning-NLI.pdf
- http://www.wildml.com/2015/09/recurrent-neuralnetworks-tutorial-part-1-introduction-to-rnns/
- Deep Learning Summer School:
 http://videolectures.net/deeplearning2016 montreal/
- https://www.tensorflow.org/versions/master/tutorials/ index.html
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/

References

Structured Prediction

- Noah Smith (2013). Linguistic Structure Prediction. Morgan & Claypool.

Machine Learning

- https://www.coursera.org/learn/machine-learning

Thank you!