STATISTICS IS THE GRAMMAR OF SCIENCE

PROBABILITY AND STATISTICS

LECTURE # 29

HYPOTHESIS TESTING

TESTING HYPOTHESIS ABOUT MEAN WHEN SIGMA IS UNKNOWN

PREPARED BY
HAZBER SAMSON
SCIENCES & HUMANITIES DEPARTMENT
FAST ISLAMABAD CAMPUS

INFERENCES ON A SINGLE POPULATION

INFERENCE ABOUT THE POPULATION MEAN WHEN SIGMA IS UNKNOWN

CASE-1 If $H_0: \mu = \mu_{\circ}$ vs $H_1: \mu \neq \mu_{\circ}$

 \triangleright When σ is unknown then we use **test statistic**

$$t = \frac{\bar{x} - \mu}{S / \sqrt{n}} \quad with \quad d.f = n - 1$$

 \blacktriangleright When σ is unknown then we use **P-Value**

$$P = 2[\Phi(|t_0|)]$$

ightharpoonup The $(1-\alpha)$ 100% confidence interval for μ is

$$\overline{x} - t_{\frac{\alpha}{2}(n-1)} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{x} + t_{\frac{\alpha}{2}(n-1)} \cdot \frac{S}{\sqrt{n}}$$

CASE-2 If $H_0: \mu \ge \mu_o$ vs $H_1: \mu < \mu_o$

 \triangleright When σ is unknown then we use **test statistic**

$$t = \frac{\bar{x} - \mu}{S / \sqrt{n}} \quad with \ d.f = n - 1$$

 \triangleright When σ is unknown then we use **P-Value**

$$P = 1 - \Phi(|t_0|)$$

ightharpoonup The $(1-\alpha)$ 100% confidence interval for μ is

$$\mu \leq x + t_{\alpha(n-1)} \cdot \frac{S}{\sqrt{n}}$$

CASE-3 If $H_0: \mu \leq \mu_0$ vs $H_1: \mu > \mu_0$

 \triangleright When σ is unknown then we use **test statistic**

$$t = \frac{\bar{x} - \mu}{S / \sqrt{n}} \quad with \quad d.f = n - 1$$

 \triangleright When σ is unknown then we use **P-Value**

$$P = \Phi(|t_0|)$$

 \blacktriangleright The $(1-\alpha)$ 100% confidence interval for μ is

$$\mu \geq \overline{x} - t_{\alpha(n-1)} \cdot \frac{S}{\sqrt{n}}$$

T-TEST

If
$$H_{\circ}: (=, \leq, \geq)$$
 then $H_{1}: (\neq, >, <)$

Now for Critical Region

- If H_1 contains \neq then C.R is $|t| \ge t_{\frac{\alpha}{2}(n-1)}$ (Two Sided)
- If H_1 contains > then C.R is $t > t_{\alpha(n-1)}$ (One Sided)
- $\bullet \quad \text{If H_1} \quad contains \ < \ \text{then C.R is } t < -t_{\alpha(n-1)} \qquad \text{(One Sided)}$

STUDENTS T-DISTRIBUTION TABLE

df	α = 0.1	= 0.1 0.05 0.025		0.01	0.005	0.001	0.0005	
1	3.078	6.314	12.706	31.821	63.656	318.289	636.578	
2	1.886	2.92	4.303	6.965	9.925	22.328	31.6	
3	1.638	2.353	3.182	4.541	5.841	10.214	12.924	
4	1.533	2.132	2.776	3.747	4.604	7.173	8.61	
5	1.476	2.015	2.571	3.365	4.032	5.894	6.869	
6	1.44	1.943	2.447	3.143	3.707	5.208	5.959	
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
8	1.397	1.86	2.306	2.896	3.355	4.501	5.041	
9	1.383	1.833	2.262	2.821	3.25	4.297	4.781	
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
12	1.356	1.782	2.179	2.681	3.055	3.93	4.318	
13	1.35	1.771	2.16	2.65	3.012	3.852	4.221	
14	1.345	1.761	2.145	2.624	2.977	3.787	4.14 4.073	
15	1.341	1.753	2.131	2.602	2.947	3.733		
16	1.337	1.746	2.12	2.583	2.921	3.686	4.015	
17	1.333	1.74	2.11	2.567	2.898	3.646	3.965	
18	1.33	1.734	2.101	2.552	2.878	3.61	3.922	
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
20	1.325	1.725	2.086	2.528	2.845	3.552	3.85	
21	1.323	1.721	2.08	2.518	2.831	3.527	3.819	
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	1.319	1.714	2.069	2.5	2.807	3.485	3.768	
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
25	1.316	1.708	2.06	2.485	2.787	3.45	3.725	
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
27	1.314	1.703	2.052	2.473	2.771	3.421	3.689	
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
29	1.311	1.699	2.045	2.462	2.756	3.396	3.66	
30	1.31	1.697	2.042	2.457	2.75	3.385	3.646	
60	1.296	1.671	2	2.39	2.66	3.232	3.46	
120	1.289	1.658	1.98	2.358	2.617	3.16	3.373	
∞	1.282	1.645	1.96	2.326	2.576	3.091	3.291	

Probability-Values for Student's t-distribution

The entries in this table are the p-values related to the right-hand tail for the calculated $t \star$ value for the t-distribution of df degrees of freedom.

							Degraes	of Freedo	m						
t*	3	4	5	6	7	8	10	12	15	18	21	25	29	35	d1 ≥ 45
0.0	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
0.1	0.463	0.463	0.462	0.462	0.462	0.461	0.451	0.461	0.461	0.461	0.461	0.461	0.461	0.460	0.460
0.2	0.427	0.426	0.425	0.424	0.424	0.423	0.423	0.422	0.422	0.422	0.422	0.422	0.421	0.421	0.421
0.3	0.392	0.390	0.388	0.387	0.386	0.386	0.385	0.385	0.384	0.384	0.384	0.383	0.383	0.383	0.383
0.4	0.358	0.355	0.353	0.352	0.351	0.350	0.349	0.348	0.347	0.347	0.347	0.345	0.346	0.346	0.345
0.5	0.326	0.322	0.319	0.317	0.316	0.315	0.314	0.313	0.312	0.312	0.311	0.311	0.310	0.310	0.310
0.6	0.295	0.290	0.287	0.285	0.284	0.283	0.281	0.280	0.279	0.278	0.277	0.277	0.277	0.276	0.276
0.7	0.267	0.261	0.258	0.255	0.253	0.252	0.250	0.249	0.247	0.246	0.246	0.245	0.245	0.244	0.244
0.8	0.241	0.234	0.230	0.227	0.225	0.223	0.221	0.220	0.218	0.217	0.216	0.216	0.215	0.215	0.214
0.9	0.217	0.210	0.205	0.201	0.199	0.197	0.195	0.193	0.191	0.190	0.189	0.188	0.188	0.187	0.186
1.0	0.196	0.187	0.182	0.178	0.175	0.173	0.170	0.169	0.167	0.165	0.164	0.163	0.163	0.162	0.161
1.1	0.176	0.167	0.161	0.157	0.154	0.152	0.149	0.146	0.144	0.143	0.142	0.141	0.140	0.139	0.139
1.2	0.158	0.148	0.142	0.138	0.135	0.132	0.129	0.127	0.124	0.123	0.122	0.121	0.120	0.119	0.118
1.3	0.142	0.132	0.125	0.121	0.117	0.115	0.111	0.109	0.107	0.105	0.104	0.103	0.102	0.101	0.100
1.4	0.128	0.117	0.110	0.106	0.102	0.100	0.096	0.093	0.091	0.089	0.088	0.087	0.086	0.085	0.084
1.5	0.115	0.104	0.097	0.092	0.089	0.086	0.082	0.080	0.077	0.075	0.074	0.073	0.072	0.071	0.070
1.6	0.104	0.092	0.085	0.080	0.077	0.074	0.070	0.068	0.065	0.064	0.062	0.061	0.060	0.059	0.058
1.7	0.094	0.082	0.075	0.070	0.066	0.064	0.060	0.057	0.055	0.053	0.052	0.051	0.050	0.049	0.048
1.8	0.085	0.073	0.066	0.061	0.057	0.055	0.051	0.049	0.046	0.044	0.043	0.042	0.041	0.040	0.039
1.9	0.077	0.065	0.058	0.053	0.050	0.047	0.043	0.041	0.038	0.037	0.036	0.035	0.034	0.033	0.032
2.0	0.070	0.058	0.051	0.046	0.043	0.040	0.037	0.034	0.032	0.030	0.029	0.028	0.027	0.027	0.026
2.1	0.063	0.052	0.045	0.040	0.037	0.034	0.031	0.029	0.027	0.025	0.024	0.023	0.022	0.022	0.021
2.2	0.058	0.046	0.040	0.035	0.032	0.029	0.026	0.024	0.022	0.021	0.020	0.019	0.018	0.017	0.016
2.3	0.052	0.041	0.035	0.031	0.027	0.025	0.022	0.020	0.018	0.017	0.015	0.015	0.014	0.014	0.013
2.4	0.048	0.037	0.031	0.027	0.024	0.022	0.019	0.017	0.015	0.014	0.013	0.012	0.012	0.011	0.010
2.5	0.044	0.033	0.027	0.023	0.020	0.018	0.016	0.014	0.012	0.011	0.010	0.010	0.009	0.009	0.008
2.6	0.040	0.030	0.024	0.020	0.018	0.016	0.013	0.012	0.010	0.009	0.008	0.008	0.007	0.007	0.006
2.7	0.037	0.027	0.021	0.018	0.015	0.014	0.011	0.010	0.008	0.007	0.007	0.006	0.006	0.005	0.005
2.8	0.034	0.024	0.019	0.016	0.013	0.012	0.009	0.008	0.007	0.006	0.005	0.005	0.005	0.004	0.004
2.9	0.031	0.022	0.017	0.014	0.011	0.010	0.008	0.007	0.005	0.005	0.004	0.004	0.004	0.003	0.003
3.0	0.029	0.020	0.015	0.012	0.010	0.009	0.007	0.006	0.004	0.004	0.003	0.003	0.003	0.002	0.002
3.1	0.027	0.018	0.013	0.011	0.009	0.007	0.006	0.005	0.004	0.003	0.003	0.002	0.002	0.002	0.002
3.2	0.025	0.016	0.012	0.009	0.008	0.006	0.005	0.004	0.003	0.002	0.002	0.002	0.002	0.001	0.001
3.3	0.023	0.015	0.011	0.008	0.007	0.005	0.004	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.001
3.4	0.021	0.014	0.010	0.007	0.006	0.005	0.003	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001
3.5	0.020	0.012	0.009	0.006	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001
3.6	0.018	0.011	0.008	0.006	0.004	0.004	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0+	0+
3.7	0.017	0.010	0.007	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0+	0+	0+
3.8	0.016	0.010	0.006	0.004	0.003	0.003	0.002	0.001	0.001	0.001	0.001	0+	0+	0+	0+
3.9	0.015	0.009	0.006	0.004	0.003	0.002	0.001	0.001	0.001	0.001	0+	0+	0+	0+	0+
4.0	0.014	0.008	0.005	0.004	0.003	0.002	0.001	0.001	0.001	0+	0+	0+	0+	0+	0+

For specific details about using this table to find p-values, see pages 484, 486.

P-VALUE FORMULAS IN Z-TEST

$$P = \begin{cases} 2[\Phi(|t_0|)] & if \quad H_1: \mu \neq \mu_0 \\ \Phi(|t_0|) & if \quad H_1: \mu > \mu_0 \\ 1 - \Phi(|t_0|) & if \quad H_1: \mu < \mu_0 \end{cases}$$

EXAMPLES OF INFERENCE ABOUT MEAN WHEN SIGMA IS UNKNOWN

EXAMPLE-1 A medical investigation claims that the average number of infections per week at a hospital in southwestern Pennsylvania is 16.3. A random sample of 10 weeks had a mean number of 17.7 infections. The sample standard deviation is 1.8. Is there enough evidence to reject the investigator's claim at a 0.05?

SOLUTION Here $n = 10, \bar{x} = 17.7, s = 1.8, \alpha = 0.05$

CRITICAL VALUE APPROACH

Step -1: Formulation of Hypotheses

$$H_0: \mu = 16.3$$

$$H_1: \mu \neq 16.3$$

Step-2: Level of Significance

$$\alpha = 0.05$$

Step - 3:Test Statistic

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{17.7 - 16.3}{1.8 / \sqrt{10}} = 2.46$$

Step - 4: Critical Region

$$|t| \ge t_{\frac{\alpha}{2}(n-1)} \quad \Rightarrow |t| \ge t_{(0.025)(9)} \Rightarrow |t| \ge 2.262$$

Step - 5: Conclusion

Since calculated value of z lies in CR so reject H_0 .

P-VALUE APPROACH

Step-1: Formulation of Hypotheses

$$H_0: \mu = 16.3$$

$$H_1: \mu \neq 16.3$$

Step – 2: *Level of Significance*

$$\alpha = 0.05$$

Step - 3:Test Statistic

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{17.7 - 16.3}{1.8 / \sqrt{10}} = 2.46$$

Step-4: P-value

$$p = 2[\Phi(|t_0|)] = 2[\Phi(|2.46|)] = 0.032 < P < 0.036$$

Step - 5: Conclusion

Since p-value $< \alpha$ so reject H_0 .

CONFIDENCE INTERVAL APPROACH

Step-1: Formulation of Confidence Interval

The $(1-\alpha)100\%$ CI for μ is given by

$$\overline{x} - t_{\frac{\alpha}{2}(n-1)} \cdot \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\frac{\alpha}{2}(n-1)} \cdot \frac{s}{\sqrt{n}}$$

$$17.7 - (2.306)(1.8)/\sqrt{10} \le \mu \le 17.7 + (2.306)(1.8)/\sqrt{10}$$

$$16.39 \le \mu \le 19.01$$

Step-2: Conclusion

Since $\mu = 16.3$ does not lie in CI so reject H_0

EXAMPLE-2 An educator claims that the average salary of substitute teachers in school districts in New York, is less than \$60 per day. A random sample of eight school districts is selected, and the daily salaries (in dollars) are shown. Is there enough evidence to support the educator's claim at a 0.10?

SOLUTION Here
$$n = 8$$
, $x = \sum x/n = 471/8 = 58.88$, $s = \sqrt{\frac{\sum (x - x)^2}{n - 1}} = \sqrt{\frac{180.875}{7}} = 5.08$, $\alpha = 0.10$

CRITICAL VALUE APPROACH

Step-1:Formulation of Hypotheses

$$H_0: \mu \ge $60$$

$$H_1: \mu < $60$$

Step - 2: Level of Significance

$$\alpha = 0.10$$

 $Step-3:Test\ Statistic$

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{58.88 - 60}{5.08 / \sqrt{8}} = -0.624$$

Step - 4: Critical Region

$$t < -t_{\alpha(n-1)} \implies t < -t_{(0.10)(7)} \implies t < -1.415$$

Step-5: Conclusion

Since calculated value of t does not lie in CR so do not reject H_0

P-VALUE APPROACH

Step –1: *Formulation of Hypotheses*

$$H_0: \mu \ge $60$$

$$H_1: \mu < $60$$

Step – 2: *Level of Significance*

$$\alpha = 0.10$$

Step - 3: Test Statistic

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{58.88 - 60}{5.08 / \sqrt{8}} = -0.624$$

Step-4: P-value

$$p = 1 - \Phi(|t_0|) = 1 - \Phi(0.624) = 1 - 0.284 = 0.716$$

Step-5: Conclusion

Since p-value > α so do not reject H_0

CONFIDENCE INTERVAL APPROACH

Step−1:Formulation of Confidence Interval

The $(1-\alpha)100\%$ CI for μ is given by

$$\mu \leq x + t_{\alpha(n-1)} \cdot \frac{s}{\sqrt{n}}$$

$$\mu \le 58.88 + (1.415)(5.08)/\sqrt{8}$$

$$\mu \le 61.42$$

Step-2: Conclusion

Since $\mu = 60$ lie in CI so do not reject H_0

EXAMPLE-3 The Environmental Protection Agency (EPA) was suing the city of Rochester for noncompliance with carbon monoxide standards. EPA claimed that the mean level of carbon monoxide in downtown Rochester's air is dangerously high, higher than 4.9 parts per million. Does a random sample of 22 readings having sample mean 5.1 and sample standard deviation 1.17, present sufficient evidence to support the EPA's claim? Use 0.05.

SOLUTION Here
$$n = 22$$
, $\bar{x} = 5.1$, $s = 1.17$, $\alpha = 0.01$

CRITICAL VALUE APPROACH

Step -1: Formulation of Hypotheses

$$H_0: \mu \le 4.9$$

$$H_1: \mu > 4.9$$

Step-2: Level of Significance

$$\alpha = 0.05$$

Step - 3:Test Statistic

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{5.1 - 4.9}{1.17 / \sqrt{22}} = 0.80$$

Step - 4: Critical Region

$$t > t_{\alpha(n-1)}$$
 $\Rightarrow t > t_{(0.05)(21)}$ $\Rightarrow t > 1.721$

Step – 5 : Conclusion

Since calculated value of z does not lie in CR so do not reject H_0

P-VALUE APPROACH

Step-1:Formulation of Hypotheses

$$H_0: \mu \le 4.9$$

$$H_1: \mu > 4.9$$

Step - 2: Level of Significance

$$\alpha = 0.05$$

Step-3:Test Statistic

$$t = \frac{x - \mu}{s / \sqrt{n}} = \frac{5.1 - 4.9}{1.17 / \sqrt{22}} = 0.80$$

Step-4: P-value

$$p = \Phi(|t_0|) = \Phi(0.80) = 0.216$$

Step-5: Conclusion

Since p-value > α so do not reject H_0

CONFIDENCE INTERVAL APPROACH

Step – 1: *Formulation of Confidence Interval*

The $(1-\alpha)100\%$ CI for μ is given by

$$\mu \ge \overline{x} - t_{\alpha(n-1)} \cdot \frac{s}{\sqrt{n}}$$

$$\mu \ge 5.1 - (1.721)(1.17)/\sqrt{22}$$

$$\mu \ge 4.67$$

Step - 2: Conclusion

Since $\mu = 4.9$ lies in CI so do not reject H_0

Result Summary: At the 0.05 level of significance, the EPA does not have sufficient evidence to show that the mean carbon monoxide level is higher than 4.9.