Foundations of Bayesian Modeling with PyMC

PyMC Labs

Make Better Decisions

- Authors of leading open-source data science tools: PyMC, PyMC-Marketing, & CausalPy
- Decades of field experience across key sectors like marketing analytics, biotech and sports analytics
- Over 50% of our team holds a PhD & includes 5 former professors
- Preferred partner for industry leaders
 facing complex challenges: Colgate, Roche,
 Takeda, LiveNation, HelloFresh...

Ulf Aslak

PhD | Data Scientist

- **Ex academic:** PhD in Complex Systems, published eight peer-reviewed papers.
- Worked in marketing: Built marketing mix models at a major nordic agency.
- Now freelance: But most of my work is with PyMC Labs.

Overview

Foundations of Bayesian Modeling with PyMC

- What is PyMC?
- Bayesian Modeling
- A modeling example
- Workshop teaser
- Q&A

What is PyMC?

- PyMC is a Python library for probabilistic programming and Bayesian modeling
- Let's you specify complex models models in simple syntax
- The Inference step (aka model fitting)
 for Bayesian models used to be hard.
 PyMC makes that very easy.
- Integrates well with `numpy`, `pandas`,
- Active community. +400 contributors and used by +3.3k projects.

... you walk past an Ethiopian restaurant

You love Ethiopian food

... you walk past an Ethiopian restaurant

Prior beliefs/preferences/knowledge

You love Ethiopian food

Likelihood given data/new information

... you walk past an Ethiopian restaurant

Prior beliefs/preferences/knowledge

You love Ethiopian food

Likelihood given data/new information

... you walk past an Ethiopian restaurant

Prior beliefs/preferences/knowledge

You love Ethiopian food

Likelihood given data/new information

Bayes theorem computes the **Conditional Probability** of A given B

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

... or "how likely are the model parameters are given the data"

$$P(M|D) = \frac{P(M)P(D|M)}{P(D)}$$

... M is just some model coefficients

$$f(\mathbf{x}) = \begin{bmatrix} M_0 \\ M_1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ x_1 \end{bmatrix}$$
$$= M_0 + M_1 x_1$$

Each term is a distribution

Each term is a distribution

Each term is a distribution

In practice, no need to worry about normalisation

$$P(M|D) \approx P(M)P(D|M)$$

In PyMC: Specifying a Bayesian model

```
import pymc as pm

with pm.Model():
    data = pm.Data("data", X, dims=("N", "M"))
    target = pm.Data("y", y, dims="N")

m = pm.Normal('m', mu=1, sigma=1, dims="M")
    b = pm.Normal('b', mu=1, sigma=1)
    σ = pm.HalfNormal('σ', sigma=0.5)

y_pred = pm.math.dot(data, m) + b

pm.Normal('y_pred', mu=y_pred, sigma=σ, observed=y)

idata = pm.sample(draws=4000, tune=1000, chains=4)
```

In PyMC: Specifying a Bayesian model

```
import pymc as pm

with pm.Model():
    data = pm.Data("data", X, dims=("N", "M"))
    target = pm.Data("y", y, dims="N")

m = pm.Normal('m', mu=1, sigma=1, dims="M")
    b = pm.Normal('b', mu=1, sigma=1)
    σ = pm.HalfNormal('σ', sigma=0.5)

y_pred = pm.math.dot(data, m) + b

pm.Normal('y_pred', mu=y_pred, sigma=σ, observed=y)

idata = pm.sample(draws=4000, tune=1000, chains=4)
```


In PyMC: Specifying a Bayesian model

```
import pymc as pm

with pm.Model():
    data = pm.Data("data", X, dims=("N", "M"))
    target = pm.Data("y", y, dims="N")

m = pm.Normal('m', mu=1, sigma=1, dims="M")
    b = pm.Normal('b', mu=1, sigma=1)
    σ = pm.HalfNormal('σ', sigma=0.5)

y_pred = pm.math.dot(data, m) + b

pm.Normal('y_pred', mu=y_pred, sigma=σ, observed=y)

idata = pm.sample(draws=4000, tune=1000, chains=4)
```


Role modeling

Data:

Mobile phone text messages

Key question:

 Which behaviours signal that a mobile user seeks out illegal substance?

Role modeling

Data:

Mobile phone text messages

Key question:

 Which behaviours signal that a mobile user seeks out illegal substance?

Features (extracted):

- Network metrics (centrality, clustering, reciprocity...)
- User behaviour features (response time, bustiness...)
- Others (geo, device...)

Target:

%-of-messages-sent seeking to buy illegal substances

... target variable has uncertainty

Target:

• %-of-messages-sent seeking to buy illegal substances

Has quantifiable uncertainty!

1 / 10 == 10 / 100

but which is more uncertain?

... target variable has uncertainty

Target:

• %-of-messages-sent seeking to buy illegal substances

	%-messages-on-topic	Num. messages sent
0	0.106648	122.0
1	0.006137	44.0
2	0.097083	102.0
3	0.023531	134.0
4	0.123395	169.0

... target variable has uncertainty

data_features

Degree Centrality	Betweenness Centrality	 Message Burstiness	Reciprocity
1.322104	1.007634	 1.051479	0.102654
1.637522	0.259430	 0.966953	0.549651
0.489639	1.254167	 0.328711	0.041125
1.016696	0.022683	 0.461559	0.906399
1.287290	0.448680	 1.271071	0.022042
0.189915	1.904019	 0.990928	0.465488

predict

target

target_err

Expected error
0.007483
0.012684
0.014947
0.018720
0.003491

... each row is a phone

... target variable has uncertainty

```
import pymc as pm
def standard_error(p, N):
    return np.sqrt(p * (1 - p) / N) + 1e-1
target_err = standard_error(target, num_messages_sent)
with pm.Model() as model:
    X = pm.Data("X", data_features, dims=("N", "M"))
    y = pm.Data("y", target, dims="N")
    y_err = pm.Data("y_err", target_err, dims="N")
    m = pm.Normal("m", mu=0, sigma=1, dims="M")
    b = pm.Normal("b", mu=0, sigma=1)
    \sigma = pm.HalfNormal("\sigma", sigma=1) * y_err
    y_pred = pm_math_dot(X, m) + b
    pm.Normal("y_pred", mu=y_pred, sigma=σ, observed=y)
    idata = pm.sample(draws=4000, tune=1000, chains=4)
```

... target variable has uncertainty

```
import pymc as pm
def standard_error(p, N):
    return np.sqrt(p * (1 - p) / N) + 1e-1
target_err = standard_error(target, num_messages_sent)
with pm.Model() as model:
    X = pm.Data("X", data_features, dims=("N", "M"))
    y = pm.Data("y", target, dims="N")
    y_err = pm.Data("y_err", target_err, dims="N")
    m = pm.Normal("m", mu=0, sigma=1, dims="M")
    b = pm.Normal("b", mu=0, sigma=1)
    \sigma = pm.HalfNormal("\sigma", sigma=1) * y_err
    y_pred = pm_math_dot(X, m) + b
    pm.Normal("y_pred", mu=y_pred, sigma=σ, observed=y)
    idata = pm.sample(draws=4000, tune=1000, chains=4)
```


Now imagine you had **new encrypted messages** with known source/target

Extract features:

- Network metrics (centrality, clustering, reciprocity...)
- User behaviour features
 (response time, bustiness...)
- Others (geo, device...)

Degree Centrality	Betweenness Centrality	 Message Burstiness	Reciprocity
1.322104	1.007634	 1.051479	0.102654
1.637522	0.259430	 0.966953	0.549651
0.489639	1.254167	 0.328711	0.041125
1.016696	0.022683	 0.461559	0.906399
1.287290	0.448680	 1.271071	0.022042
0.189915	1.904019	 0.990928	0.465488
2.045263	1.312755	 0.817728	0.312907
0.305075	0.594418	 0.168234	1.869163
0.512102	0.633174	 1.351275	0.624492
0.570922	0.123635	 1.034214	0.967696

Now imagine you had **new encrypted messages** with known source/target

Sample the posterior predictive given new data

Now imagine you had **new encrypted messages** with known source/target

Extract predictions and credible intervals

outputs

y_pred_new	lower_95% CI	upper_95% CI
-0.002815	-0.115217	0.123960
-0.104019	-0.130470	0.107570
0.080498	-0.111952	0.126296
0.070727	-0.110344	0.129070
0.023705	-0 .119801	0.118341
0.115565	-0.110362	0.128785
0.131232	-0.103064	0.136775
0.028444	-0.1 16820	0.123254
0.100259	-0.109692	0.128704
-0.057094	-0.126024	0.113270

Workshop teaser

Q&A

... and let's connect

- github.com/pymc-labs
- twitter.com/pymc_labs
- in linkedin.com/company/pymc-labs/
- pymc-labs.com/
- info@pymc-labs.com

- github.com/ulfaslak
- twitter.com/ulfaslak
- in linkedin.com/in/ulfaslak/
- ulfaslak.dk/
- ulf.aslak@pymc-labs.com
- ulfaslak@gmail.com