Analysis of Total Variation Minimization for Clustered Federated Learning

Alexander Jung

Aalto University, Finland

LinkedIn: https://www.linkedin.com/in/aljung/

YouTube: alexjung111

What is it all About?

How can we identify - in a distributed and privacy-preserving fashion - useful chunks of data that can be pooled together to train a big personalized machine learning model?

Table of Contents

From Machine Learning to Clustered Federated Learning

Generalized Total Variation Minimization

Main Result

Conclusion

Table of Contents

From Machine Learning to Clustered Federated Learning

Generalized Total Variation Minimization

Main Result

Conclusion

Machine Learning

- find \hat{h} with smallest risk $\mathbb{E}L((\mathbf{x},y),h), (\mathbf{x},y) \sim p((\mathbf{x},y))$
- ▶ approximate risk by average loss $\frac{1}{m} \sum_{r=1}^{m} L((\mathbf{x}^{(r)}, y^{(r)}), h)$
- works only if effective $\dim(\mathcal{H}) < m$

Applied Machine Learning

- ▶ what if effective $\dim(\mathcal{H}) \ge m$?
- either increase m by augmentation,
- or decrease $\dim(\mathcal{H})$ by model pruning
- e.g., via adding penalty to loss function (Lagrangian duality)

- ► FL ≈ ML with distributed data and computers
- collection of data generators i = 1, ..., n
- each i generates local dataset $\mathcal{D}^{(i)}$
- each i learns local model params. $\mathbf{w}^{(i)}$ (personalization)
- quality of $\mathbf{w}^{(i)}$ measured by local loss $L_i(\mathbf{w}^{(i)})$

Opportunities and Challenges in FL

- ▶ can leverage information contained in other's data ☺
- ► can train tailored (personalized) model for individual ③
- ▶ can leverage compute of other's devices ☺
- need to coordinate distributed computation ©
- need to protect sensitive data ©
- ▶ need to find out if other's data is useful ③

Clustered FL

- ▶ local dataset *i* drawn i.i.d. from prob. dist. $p^{(i)}(\mathbf{x}, y)$
- cluster C: a subset of i's with similar $p^{(i)}$
- we make this precise by a clustering assumption
- formulated in terms of the local loss functions

Clustering Assumption

Assumption

The data generators contain a cluster $\mathcal{C} \subseteq \{1,\ldots,n\}$ such that there is a common choice $\overline{\mathbf{w}}^{(\mathcal{C})}$ for the local model parameters for all $i \in \mathcal{C}$ satisfying

$$\sum_{i\in\mathcal{C}} L_i\left(\overline{\mathbf{w}}^{(\mathcal{C})}\right) \leq \varepsilon^{(\mathcal{C})}.$$

Note: Assumption parametrized by $C, \varepsilon^{(C)}, \overline{\mathbf{w}}^{(C)}$

Table of Contents

From Machine Learning to Clustered Federated Learning

Generalized Total Variation Minimization

Main Result

Conclusion

The Empirical Graph

- consider data generators $p^{(i)}$ for i = 1, ..., n
- lacktriangledown represent them as nodes \mathcal{V} = $\{1,\ldots,n\}$ of graph \mathcal{G} = $(\mathcal{V},\mathcal{E})$
- edges \mathcal{E} represent **pair-wise similarities** between $p^{(i)}$
- edge weights $A_{i,i'} \ge 0$
- ► $A_{i,i'}$ = 0 means no similarity, $\{i,i'\} \notin \mathcal{E}$
- $A_{i,i'} > 0$ indicates amount of similarity between $p^{(i)}, p^{(i')}$

Nodes Carry Local Loss Functions

Empirical Graph is Design Choice

- edge weights $A_{i,i'}$ are design choice for FL methods
- ▶ more edges ⇒ more computation
- ▶ too few edges ⇒ insufficient coupling within cluster
- avoid too many edges across clusters

Graph Learning Methods

- use statistical tests¹ for $p^{(i)} \stackrel{?}{=} p^{(i')}$
- choose $A_{i,i'}$ via (est.) KL-divergence $D^{(KL)}(p^{(i)},p^{(i')})$
- compare gradients³ $\nabla L_i(\mathbf{w}), \nabla L_{i'}(\mathbf{w})$
- compare vector representation (embedding)⁴ $\mathbf{z}^{(i)}, \mathbf{z}^{(i')}$

¹Schrab et.al., MMD Aggregated Two-Sample Test, JMLR, 2023

 $^{^2}$ Y. Bu et.al., "Estimation of KL Divergence: Optimal Minimax Rate," in IEEE Transactions on Information Theory, 2018

³Werner et.al., Provably Personalized and Robust Federated Learning, TMLR, 2023.

⁴Petukhova et.al, Text Clustering with LLM Embeddings, 2024.

Generalized Total Variation Minimization

learn local model parameters $\widehat{\mathbf{w}}^{(i)}$ by balancing their local loss with their variation across edges of the empirical graph, i.e.,

$$\left\{\widehat{\mathbf{w}}^{(i)}\right\}_{i=1}^{n} \in \underset{\mathbf{w}^{(i)}}{\operatorname{argmin}} \underbrace{\sum_{i \in \mathcal{V}} L_{i}\left(\mathbf{w}^{(i)}\right)}_{\text{average local loss}} + \underbrace{\alpha \sum_{\{i,i'\} \in \mathcal{E}} A_{i,i'} \phi(\mathbf{w}^{(i)} - \mathbf{w}^{(i')})}_{\text{variation across edges}}$$

- $\phi(\cdot)$ measures variation of model parameters
- $\phi(\mathbf{u})$ typically increasing with norm $\|\mathbf{u}\|$
- lacktriangle GTVMin parameter lpha controls preference for small variation
- lacktriangle comp./stat. of GTVMin depend crucially on $\phi(\cdot)$ and α

Special Cases of GTVMin

- ▶ graph sig. recovery: $L_i(w^{(i)}) = (y^{(i)} w^{(i)})^2$, $\phi(\cdot) = (\cdot)^2$
- network Lasso: $\phi(\cdot) = \|\cdot\|_2$
- convex clustering: $A_i(\mathbf{w}^{(i)}) = \|\mathbf{w}^{(i)} \mathbf{a}^{(i)}\|_2^2$, $\phi(\cdot) = \|\cdot\|_2$, fully connected empirical graph \mathcal{G}

¹Chen et.al. Signal Recovery on Graphs: Variation Minimization. IEEE Trans. Sig. Proc. vol. 63, no. 17, 2015.

Puy et.al. Random sampling of bandlimited signals on graphs. Appl. Comp. Harm. Anal. 2018.

²D. Hallac, J. Leskovec, and S. Boyd, Network Lasso: Clustering and Optimization in Large Graphs, Proceedings SIGKDD, pages 387-396, 2015.

³D. Sun and K.-C. Toh and Y. Yuan; Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm, JMLR, 2021

Total Variation Minimization

GTVMin with
$$\phi(\mathbf{u}) \coloneqq \|\mathbf{u}\|_2^2$$

$$\left\{\widehat{\mathbf{w}}^{(i)}\right\}_{i=1}^{n} \in \underset{\mathbf{w}^{(i)}}{\operatorname{argmin}} \quad \underbrace{\sum_{i \in \mathcal{V}} L_{i}\left(\mathbf{w}^{(i)}\right)}_{i \in \mathcal{V}} + \alpha \underbrace{\sum_{i,i'} A_{i,i'} \left\|\mathbf{w}^{(i)} - \mathbf{w}^{(i')}\right\|_{2}^{2}}_{\text{variation across edges}}$$

can be implemented (computed) using

- gradient methods if L_i() diff.able ¹
- proximal methods if L_i() proximable ²
- asynchronous distributed computers (smartphones)³

¹J. Liu and C. Zhang, Distributed Learning Systems with First-Order Methods: An Introduction, 2020

²N. Parikh and S. Boyd, Proximal Algorithms, 2013

³D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, 2015

Choose FL Flavour via Regularization Parameter

GTVMin solutions become increasingly clustered for increasing $\boldsymbol{\alpha}$

Table of Contents

From Machine Learning to Clustered Federated Learning

Generalized Total Variation Minimization

Main Result

Conclusion

Error Analysis

- lacktriangle consider emp. graph ${\cal G}$ containing cluster ${\cal C}$
- learn model parameter $\widehat{\mathbf{w}}^{(i)}$ via GTVMin
- lacktriangle mainly interested if $\widehat{f w}^{(i)}$ captures cluster ${\cal C}$
- define clustering error

$$\widetilde{\mathbf{w}}^{(i)} := \widehat{\mathbf{w}}^{(i)} - \underbrace{(1/|\mathcal{C}|) \sum_{i' \in \mathcal{C}} \widehat{\mathbf{w}}^{(i')}}_{=:\widehat{\mathbf{w}}^{(\mathcal{C})}}, \text{ for } i \in \mathcal{C},$$

between the learnt parameters $\widehat{\mathbf{w}}^{(i)}$ in the cluster \mathcal{C} and their cluster-wide average $\widehat{\mathbf{w}}^{(\mathcal{C})}$.

Clustering Error of GTVMin

Upper Bound on Clustering Error

Theorem

The clustering error is upper bounded as

$$\sum_{i \in \mathcal{C}} \left\| \widetilde{\mathbf{w}}^{(i)} \right\|_2^2 \leq \frac{1}{\alpha \lambda_2 \left(\mathbf{L}^{(\mathcal{C})} \right)} \left[\varepsilon^{(\mathcal{C})} + \alpha \left| \partial \mathcal{C} \right| 2 \left(\left\| \overline{\mathbf{w}}^{(\mathcal{C})} \right\|_2^2 + R^2 \right) \right]$$

Here, R denotes an upper bound on the Euclidean norm $\|\widehat{\mathbf{w}}^{(i)}\|_2$ outside the cluster, i.e., $\max_{i \in \mathcal{V} \setminus \mathcal{C}} \|\widehat{\mathbf{w}}^{(i)}\|_2 \leq R$.

carefully note that:

- we only require clustering assumption
- allow for arbitrary loss functions (non-convex, non-smooth)
- ▶ need to ensure $\max_{i \in \mathcal{V} \setminus \mathcal{C}} \|\widehat{\mathbf{w}}^{(i)}\|_{2} \leq R$

Ensure Upper Bound on Model Parameters

- we need good (enough) bound $R \ge \max_{i \in \mathcal{V} \setminus \mathcal{C}} \left\| \widehat{\mathbf{w}}^{(i)} \right\|_2$
- enforce bound by choosing $L_i(\mathbf{w}^{(i)}) = \infty$ for $\|\mathbf{w}^{(i)}\|_2 > R$
- ▶ place more restrictions on $L_i(\cdot)$, e.g.,
 - each $L_i(\cdot)$ differentiable with Lipschitz gradient
 - ▶ sum $\sum_{i} L_{i}(\cdot)$ is strongly convex

Proof Sketch

Numerical Test

Source code: https://github.com/alexjungaalto/ResearchPublic/

Worst Case - Bound Becomes Tight(ish)

- $\mathcal{V} = \mathcal{C} = \{1, 2\}$, single edge $A_{1,2} = \lambda$
- local loss functions $L_1(w) = \rho(w-a)^2$, $L_2(w) = \rho(w+a)^2$.

Error Analysis Beyond Clustering Error

- clustering asspt uses cluster-specific params $\overline{\mathbf{w}}^{(\mathcal{C})}$
- define estimation error $\Delta^{(i)} := \widehat{\mathbf{w}}^{(i)} \overline{\mathbf{w}}^{(C)}$, for $i \in C$
- we can decompose estimation error as

$$\Delta^{(i)} = \underbrace{\widetilde{\mathbf{w}}^{(i)}}_{\text{clustering error}} + \underbrace{\left(\widehat{\mathbf{w}}^{(\mathcal{C})} - \overline{\mathbf{w}}^{(\mathcal{C})}\right)}_{\text{constant across } i \in \mathcal{C}}$$

- our bound only covers first component
- ▶ how can we control $\widehat{\mathbf{w}}^{(C)} \overline{\mathbf{w}}^{(C)}$?

Reduction to Cluster Graph

analyze GTVMin over cluster graph, 1

$$\sum_{c} f^{(c)}(w^{(c)}) + \alpha \sum_{c,c'} \tilde{A}_{c,c'} \| w^{(c)} - w^{(c')} \|_{2}^{2}$$

¹D. Sun and K.-C. Toh and Y. Yuan; Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm, JMLR, 2021

Table of Contents

From Machine Learning to Clustered Federated Learning

Generalized Total Variation Minimization

Main Result

Conclusion

Results

- derived upper bound on clustering error of GTVMin
- upper bound applies under mild clustering assumption
- ▶ bound is broadly applicable ©
- ► can be very loose ③

Follow Up

- how to make bounds tighter (average case analysis?)
- study graph constructions that optimize bound¹
- guarantees for GTVMin over learnt \mathcal{G}

¹Ying et.al., Exponential Graphs are Provably Efficient in Decentralized Deep Training, Neurips, 2021.

Questions?

Thank you!

Ping me if you are interested in Phd or Post-Doc positions!

LinkedIn: https://www.linkedin.com/in/aljung/ YouTube: alexjung111