Параллельная реализация метода эллипсоидов для задач оптимизации большой размерности

Безбородов В.А.

Научный руководитель, к.ф.-м.н., доцент Голодов В.А.

ФГБОУ ВПО ЮУрГУ г. Челябинск

10 июня 2015 г.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
 - Вычислительный эксперимент

Цели

Целями работы являются:

- 1. разработка параллельной реализации метода эллипсоидов, поддерживающей арифметику произвольной точности;
- 2. использование полученной реализации метода эллипсоидов для решения задачи оптимизации большой размерности.

Задачи

В соответствии с поставленными целями в работе решаются следующие задачи:

- исследование операций классического алгоритма метода эллипсоидов на вычислительную сложность;
- разработка программной реализации алгоритма с распараллеливанием наиболее длительных по времени операций;
- обеспечение поддержки арифметики расширенной и произвольной точности;
- проверка и тестирование разработанного программного обеспечения.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- Параллельная реализация МЭ
 - Вычислительный эксперимент

Метод эллипсоидов предложили

- 1976 **Юдин Д.Б. и Немировский А.С.** как метод последовательных отсечений.
- **Шор Н.З.** как вариант метода с растяжением пространства в направлении субградиента.
- 1979 **Хачиян Л.** построил первый полиномиальный алгоритм решения задачи ЛП с рациональными коэффициентами.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
 - Вычислительный эксперимент

1-d эллипсоид и его свойства

Эллипсоид ε_n , содержащий полушар в E_n , имеет параметры

$$b=\left(lpha+rac{1}{lpha}
ight)rac{r}{2},\quad h=\left(1-rac{1}{lpha^2}
ight)rac{r}{2},$$
 где $lpha=rac{b}{a}$ и r – радиус шара $S_n.$

Если пространство «растянуть» с коэффициентом α в направлении полуоси a, то ε_n станет шаром в преобразованном пространстве.

Отношение объема эллипсоида $arepsilon_n$ к объему шара \mathcal{S}_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
 - Вычислительный эксперимент

Использование метода эллипсоидов

Для решения задачи $\min f_0(x)$ при ограничениях

$$f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad x \in E_n,$$

где E_n – евклидово пространство размерности n>1, $f_{\nu}(x)$ – выпуклые функции; $g_{\nu}(x)$ – субградиенты функций, $\nu=\overline{0,m}$. Предполагается, что оптимальная точка $x^*\in E_n$ существует и находится в шаре радиуса r_0 с центром в точке x_0 .

К такой задаче сводятся:

- задача безусловной минимизации выпуклой функции,
- общая задача выпуклого программирования,
- задача о седловой точке выпукло-вогнутых функций.

Алгоритм

Выбрать $x_k := x_0 \in E^n$ и радиус R, такие что $||x_0 - x^*|| \le R$. Положить $h_k = \frac{R}{n+1}$, $B_k := E$, где E – единичная матрица. Для перехода к (k+1)-й итерации выполнить:

- Шаг 1. Вычислить $g(x_k)$. Если $g(x_k) = 0$, то **OCTAHOB**($x^* = x_b$).
- Шаг 2. Вычислить очередную точку $x_{k+1} = x_k h_k B_k \xi_k$, где $\xi_k = \frac{B_k^T g(x_k)}{||B_k^T g(x_k)||}.$
- Шаг 3. Пересчитать шаг $h_{k+1} = h_k r$ и матрицу B_{k+1} $B_{k+1} = B_k + (\beta - 1)(B_k \xi_k) \xi_k^T, \quad \beta = \sqrt{\frac{n-1}{n+1}}.$
- Шаг 4. Перейти к (k+1)-й итерации с x_{k+1} , h_{k+1} и B_{k+1} .

О сходимости метода эллипсоидов

Теорема (О скорости сходимости)

Для всех итераций метода эллипсоидов коэффициент уменьшения объема эллипсоида, локализующего x^* , есть величина постоянная и равная

$$q(n) = \frac{vol(\varepsilon_{k+1})}{vol(\varepsilon_k)} = \frac{1}{\alpha} \left(\frac{1}{2}\left(\alpha + \frac{1}{\alpha}\right)\right)^n < 1, \quad k = 0, 1, 2, \dots$$

Оптимальный коэффициент растяжения пространства

$$\beta = \sqrt{\frac{n-1}{n+1}} \Rightarrow q(n) = \sqrt{\frac{n-1}{n+1}} \left(\frac{n}{\sqrt{n^2-1}} \right)^n < 1.$$

4 D > 4 A > 4 B > 4 B > B 9 Q P

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- Параллельная реализация МЭ
 - Вычислительный эксперимент

Модель Fork-Join

Способы разбиения матриц

Ускорение матричных операций

Каждому потоку выделяется некоторое подмножество элементов матрицы для обработки. Вид подмножества определяется способом разбиения.

Горизонтальный

Вертикальный

Блочный

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
 - Вычислительный эксперимент

Челябинск, 10 июня 2015 г.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
 - Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
 - Вычислительный эксперимент

Пример 1

Задача минимизации

$$x_1^2 + (x_2 - 2)^2 \to \min.$$

Ограничения:

$$\begin{cases} x_1^2 + x_2^2 - 9; \\ x_1^2 + (x_2 - 4)^2 - 9. \end{cases}$$

Оптимум

$$x^* = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Расчет (точность – 9 знаков)

$$x^* = \left(\begin{array}{c} 0.00000000011922745523\\ 2.00000000033459867651 \end{array}\right)$$

Пример 2

Задача большой размерности

$$f_0 = \sum_{i=1}^n x_i^2 \to \min.$$

Ограничения:

$$f_m = \sum_{i=1, i \neq m}^n x_i^2 + (x_m - \alpha/2)^2 - \alpha^2.$$

Для $n = 100, \ m = \overline{1, n}, \ \alpha = 1$

Решение найдено за 403 итерации, точность – 9 знаков.

Ускорение при переходе

от 1 потока к 2: $k_1 = 1.73$

от 1 потока к 8: $k_2 = 2.74$

Заключение

В работе решены следующие задачи:

- операции классического алгоритма метода эллипсоидов исследованы на вычислительную сложность;
- разработана программная реализация алгоритма с распараллеливанием наиболее длительных по времени операций;
- обеспечена поддержка арифметики расширенной и произвольной точности;
- разработанный код проверен и протестирован.

Вопросы?

СПАСИБО ЗА ВНИМАНИЕ!