高功率厚膜贴片电阻

额定功率比普通厚膜电阻高一倍,高可靠性,高稳定性 电性能稳定,适应回流焊和波峰焊,符合ROHS指令要求

■ 高功率厚膜电阻的优点

通过对工艺的改良, 高功率型厚膜电阻可以承受比同尺寸普通厚膜电阻更大的功率, 所以 更利于节省空间, 同时其脉冲负载能力也得到提升。在军工, 医疗, 铁路等行业, 客户已 经批量使用该系列产品。

高功率厚膜电阻有助于稳定性的改良

电阻的负载寿命和功率息息相关,使用一个高功率的厚膜电阻替代同尺寸的标准厚膜电阻,将带来更大的降额空间,这有助于改良电阻的长期稳定性,并且提高电阻的可靠性。

规格及尺寸(毫米mm) 尺寸(mm) 额定功率 系列号 阻值范围 可选精度% 极限电压 过载电压 阻值标准 70°C W Т D HPCR0402 0.100W 1R-10M ±1(F) 100V E24, E96 1.00±0.1 0.5 ± 0.1 0.35±0.1 0.25±0.1 50V HPCR0603 0.200W 1R-10M ±1(F) E24, E96 1.60±0.15 0.30±0.1 50V 100V 0.8 ± 0.15 0.40 ± 0.1 HPCR0805 0.250W 1R-10M ±1(F) E24, E96 2.00 ± 0.2 1.25±0.2 0.50 ± 0.1 0.40 ± 0.1 150V 300V HPCR1206 0.500W 1R-10M ±1(F) 400V E24, E96 3.20±0.2 1.6±0.2 0.55±0.1 0.50±0.1 200V HPCR1210 0.500W 1R-10M ±1(F) 200V 400V E24, E96 3.20±0.2 2.5±0.2 0.55 ± 0.1 0.50 ± 0.1 HPCR2010 1.000W 1R-10M ±1(F) 200V 400V E24, E96 5.00±0.2 2.5 ± 0.2 0.55 ± 0.1 0.60 ± 0.1 HPCR2512 2.000W 1R-10M ±1(F) 200V 400V E24, E96 6.40±0.2 3.2±0.2 0.55 ± 0.1 0.60 ± 0.1

■温度系数

尺寸		0402		0603,0805,1206,1210,2010,2512		
阻值范围	1R-10R	>10R-1M	>1M-10M	1R-10R	>10R-1M	>1M-10M
温度系数	±400ppm	±100ppm/±200ppm	±400ppm	±250ppm	±100ppm	±250ppm

■标准包装

标准尺寸	0402	0603	0805	1206	1210	2010	2512
包装数量	10000/盘	5000/盘	5000/盘	5000/盘	5000/盘	4000/盘	4000/盘

- A, 更低或者更高的阻值请联系我们确认;
- B, 标准的精度为±1%, 如需要±2%或±5%的精度请联系我们;
- C, 储存条件为5°C-30°C, 相对湿度30%-70%。

性能指标				
项目	标准	测试方法		
高温存储	无可见损伤,△R±1% Maximum	IEC 60115-1,4.25.3, 1000 小时 @ 1,55°C, 不加载		
温度循环	无可见损伤,△R±1% Maximum	IEC 60115-1 4.19, -55°C 30分钟 ~常温<5分钟~+155°C 30分钟, 300个循环		
负载寿命	无可见损伤,△R±1% Maximum	IEC 60115-1 4.25.1, 1000 小时 @ 70°C, 额定电压,通90分钟,断30分钟		
耐溶剂性	标志清晰,无可见损伤	IEC 60115-1 4.29,异丙醇 (IPA) , 23°C,浸10小时		
耐焊接热	无可见损伤,△R±0.5% Maximum	IEC 60115-1 4.18, 270°C锡槽, 保持10秒		
可焊性	无可见损伤,可焊面积 95% Minimum	IEC 60115-1 4.17, 245°C 锡槽,保持三秒		
温度系数	在规定值内	IEC 60115-1 4.8 , 测量点-55°C和+125°C, 参考点+20°C		
可燃性	不完全燃尽,薄垫纸未引燃,松木板未烤焦	UL-94 V-0 或 V-1可接受,不需要电气测试		
基板弯曲试验	无可见损伤,△R±0.5% Maximum	IEC60115-1 4.33, 0805以下5mm, 1206和1210 4mm, 2010和2512 2mm, 保持时间60s		
绝缘电阻	1000M, Minimum	IEC 60115 - 1 4.6, 在电极于基片间施加100V的直流电压,保持60秒,然后测绝缘电阻值		
耐电压	无击穿或飞弧	IEC 60115-1 4.7,在电极于基片间以大约100V/s的速度施加有效值为最大过载电压的交流电压,保持60秒		
短时过载	无可见损伤,△R±1% Maximum	IEC 60115-1 4.13, 2.5倍额定电压,5秒		
低温负载	无可见损伤,△R±1% Maximum	IEC 60115-1 4.36, -55°C, 无负载一小时,额定电压负载45分钟,无负载15分钟		

推荐焊盘尺寸 (mm)				
型号	Α	В	С	
0402	0.45	1.45	0.60	
0603	0.80	2.50	0.95	
0805	1.05	3.25	1.40	
1206	1.90	4.50	1.75	
1210	2.00	4.60	2.70	
2010	3.50	6.50	2.70	
2512	4.80	7.80	3.40	

■推荐回流焊曲线

■推荐波峰焊曲线

