Ülesanne 5: AVL Puu vs. Punase-Musta Puu Teoreetiline Võrdlus

Kirjelda AVL puu andmestruktuuri ja selle peamisi omadusi.

AVL puu on tasakaalustatud binaarne otsingupuu, kus iga sõlme tasakaalustatusefaktor (erinevus vasaku ja parema alam-puu kõrguste vahel) on piiratud väärtusega (tavaliselt -1, 0 või 1). Kui puule lisatakse või eemaldatakse sõlm, võidakse teha tasakaalustamistoiminguid, et tagada puu tasakaal.

Peamised omadused:

- Iga sõlme tasakaalustatusefaktor peab jääma määratud vahemikku.
- Puu on tasakaalus, mis tähendab, et iga alam-puu kõrguse vahe on väiksem või võrdne 1ga.
- Sisestamise ja kustutamise toimingud võivad nõuda puu tasakaalustamist.

Võrdle teoreetiliselt AVL puu ja punase-musta puu tõhusust.

- Mõlemad on tasakaalustatud binaarsed otsingupuud, kuid nende tasakaalustamise strateegiad ja tingimused erinevad.
- AVL-puu tagab rangelt tasakaalu, kus iga sõlme tasakaalustatusefaktor on piiratud väärtusega, mis võib viia sagedasemate tasakaalustamistoiminguteni.
- Punase-musta puu reeglid on vähem ranged, lubades rohkem paindlikkust tasakaalu säilitamisel.

Analüüsi, millistes rakendustes oleks üks struktuur teisele eelistatav ja põhjenda oma valikuid.

Kui rakendus nõuab sagedasi otsinguid ja vähe muudatusi puus, võib AVL-puu olla eelistatud. AVL-puu annab kindla ülemise piiri otsingu keerukusele (O(log n)).

Kui rakendusel on rohkem muudatusi (sisestamine, kustutamine) ja vähem otsinguid, võib punase-musta puu olla eelistatud. Punase-musta puu tasakaalustamine on vähem sagedane kui AVL-puus, mis võib muudatuste puhul pakkuda paremat jõudlust.