False Position

- * The user will need to be sure that the function is continuous on the interval.
 - 1) Ask the user for a function, the tolerance, and the max number of iterations
 - 2) Ask the user for the values A and B, which will be the values of the initial interval.
 - 3) We create a variable i to count the number of iterations. We begin with 1.
 - 4) We evaluate A and B in the function to obtain f(A) and f(B). If f(A)*f(B)=0, tell the user that this is the root
 - 5) We do a conditional to begin the execution of the method: if $f(A) * f(B) \le 0$ then execute... to verify that in the interval there is a root. In the case that there is not then tell the user that in this interval there is no root.
 - 6) Error = |A-B|
 - 7) We find the middle value of the interval. M = A-(f(A)*(A-B))/(f(A)-f(B)) and evaluate in the function to obtain f(M)
 - 8) Cycle: while the error > tolerance, i < max number of iterations, $f(M) \neq 0$, f(A) * f(B) < 0, do:
 - a) If f(A) * f(M) < 0
 - (i) B = M
 - (ii) f(B) = f(M)
 - (iii) M = A (f(A) * (A-B)) / (f(A) f(B))
 - (iv) f(M) = evaluate the new M in the function
 - (v) i = i + 1
 - (vi) Error = |A-B|
 - b) If f(B) * f(M) < 0
 - (i) A = M
 - (ii) f(A) = f(M)
 - (iii) M = A-(f(A)*(A-B)) / (f(A)-f(B))
 - (iv) f(M) = evaluate the new M in the function
 - (v) i = i + 1
 - (vi) Error = |A-B|
 - 9) If the error ≤ tolerance, tell the user that the root is in the interval [A,B] (with the final value) with an error of : (with the final value of the error)
- 10) If f(M) = 0 tell the use that M is the root.
- 11) If i = max number of iterations, tell the user that he has reached the limit of the given iterations and the root is in the interval [A,B] (with the final values) with an error of: ____(with the final error value)