Operating System Concepts

Lecture 9: Distributed Systems

Omid Ardakanian oardakan@ualberta.ca University of Alberta

Today's class

- Distributed systems
 - Motivation
 - Design issues
- Communication basics
 - TCP/IP and UDP/IP networking

Distributed systems

- A set of physically separate, loosely coupled nodes connected by a communication network (e.g. high-speed bus or the Internet)
 - each node has an independent OS along with its own resources
 - nodes are variously called processors, machines, computers, and hosts
- Today, almost all systems are distributed in some way
 - complex services are built from a large collection of machines that cooperate to provide these services; networks hook them together
- Communication over a network occurs through message passing
 - communication is inherently unreliable, i.e. messages sometimes do not reach their destination correctly due to packet loss (dropped by routers) or corruption, and node or link failure

Configurations

- Nodes may exist in a client-server, peer-to-peer, or hybrid configuration
 - in the client-server model, the server has some resource that the client wants to use
 - in the peer-to-peer model, each node may act as both client and server

Why are distributed systems so popular?

Resource sharing

- resources need not be replicated at each processor, e.g., shared files
- expensive and/or scarce resources can be shared, e.g., GPUs
- user can use specialized and licensed software on another machine

Computational speedup

- distribute tasks among various sites to run concurrently
 - they do not compete with each other for a single CPU core
- load balancing would help

Reliability and availability

- resource replication results in fault tolerance (no SPOF)
 - machine failure does not imply system failure, usually performance degrades but system remains operational
- detecting and recovering from site failure would be necessary

Design goals in distributed systems

- Robustness: the system should withstand failures
 - including failure of a link, failure of a site, and loss of messages
 - a fault-tolerant system can tolerate a certain level of failure; the degree of fault tolerance depends on the system design and the specific fault
 - detecting hardware failure is difficult (can use a heartbeat protocol)
- Transparency: the system should appear as a conventional, centralized system to users
 - user interface should not distinguish between local and remote resources
 - user mobility allows users to log into any machine and still see their environment

Design goals in distributed systems

- Scalability: the system should react gracefully to increased load (by accepting new resources)
 - data compression and deduplication can cut down on storage and network resources used
- Consistency: the cached copy of data must be consistent with the master copy
 - consistency checks must be performed periodically
 - nodes must keep track of the cached data to detect potential inconsistencies

Distributed OS

- Users are not aware of multiplicity of machines
 - accessing remote resources is similar to accessing local resources
 - data migration and process migration are handled by the distributed OS
 - data translation may be required (when they have different character-code representations, byte ordering, etc.)

Data migration

 transfer data by transferring the entire file or only those portions of the file that are necessary for completing the immediate task

Computation migration

 transfer computation rather than data across the system, for example via remote procedure calls (RPCs)

Process migration

execute the entire process (computation and data), or parts of it, at different sites

Communication Basics

Definitions

- Network: one or more communication links allowing two computers to communicate
 - each computer has a network address
- Network interface: computer's interface to the network
 - each network interface card (NIC) has a unique hardware address
- Packet: network's basic transmission unit; a sequence of bits
- Protocol: a set of rules for communication that are agreed to by all parties

Network structure

- Local Area Network (LAN) covers a small geographical area (e.g., a building)
 - consists of multiple computers, peripherals (printers, storage arrays), and routers providing access to other networks
 - must be fast and reliable
- Ethernet and Wireless (WiFi) are the most common ways to build a LAN
 - Ethernet defined by IEEE 802.3 standard with speeds typically varying from 10Mbps to over 10Gbps
 - everyone taps into a single wire
 - everyone gets packets and discards them if it is not the target
 - WiFi defined by IEEE 802.11 standard with speeds typically varying from 11Mbps to over 400Mbps

Network structure

- Wide Area Network links geographically separated sites (across the country or world)
 - WAN is slower and less reliable than LAN
 - Internet WAN enables hosts around the world to communicate
- Point-to-point connections via links
 - telephone lines, leased (dedicated data) lines, optical cables, microwave links, radio waves, and satellite channels
 - speed varies
 - many backbone providers have speeds at 40-100Gbps
 - local Internet Service Providers (ISPs) may be slower
- WANs and LANs interconnect

Principles of network communication

- Data sent through the network is divided into packets
- Computers at switching points control the packet flow
 - analogy: cars/roads/police -> packets/links/computers
- Resource sharing causes contention
 - just like traffic jams
- The destination computer is interrupted when a packet arrives

How is a packet delivered to destination if hosts are located on separate networks?

WAN is implemented using routers to direct traffic from one network to another

How to identify the destination system/process?

- A process on a remote system is identified by <host-name, identifier> pair
- Each process in a given system has a unique identifier (PID)
- Each computer system in the network has a unique name
 - Domain Name System (DNS): a global distributed database system for resolving hostname-IP address mappings
 - 32-bit (IPv4) address: e.g., 129.128.5.180
 - human readable names: e.g., gpu.srv.ualberta.ca

TCP/IP protocol stack (Internet protocol suite)

Enables end-to-end communications using functions organized into four abstraction layers

- Application layer
 - provides process-to-process data exchange for applications
- Transport layer
 - responsible for message transfer between hosts, including partitioning messages into TCP/UDP packets, maintaining packet order, and controlling flow
- Internet layer
 - responsible for routing IP packets through the network, and encoding/decoding addresses

routers only have the last two layers

Link layer

 handles the frames, or fixed-length parts of packets, including transmission over over a physical medium, and any error detection and recovery that occurred in the physical layer

Media Access Control (MAC) address

How does a packet move from sender (host or router) to receiver on the same LAN?

- every Ethernet/WiFi device has a unique medium access control (MAC) address
- if a system wants to send data to another system, it needs to perform the IP to MAC address mapping
 - using address resolution protocol (ARP)
 - run arp -a to see the content of your arp table

Internet Protocol (IP) address

- Every host has a name and an associated IP address
 - 32-bit (IPv4) address: approximately 4.3 billion addresses
 - 128-bit (IPv6) address: approximately 3.4×10³⁸ addresses
 - a special address is reserved for local host: 127.0.0.1
- The sending system checks routing tables and locates a router to send packet to
- Each router uses the network part of host-id to determine where to transfer packet
- The destination system receives the packet
 - it may be a complete message, or it may need to be reassembled into a larger message spanning multiple packets

Transport layer address

- Once a host with a specific IP address receives a packet, it must somehow pass it to the correct waiting process
- Transport protocols, TCP and UDP, identify receiving and sending processes through the use of a port number (16 bits)
 - allows a host with a single IP address to have multiple processes sending and receiving packets
- Transport protocol can be simple or add reliability to network packet stream

User Datagram Protocol (UDP)

- UDP packets are also called datagrams
 - fixed-size messages up to some maximum size
- UDP is unreliable
 - packets may be lost or received out-of-order
 - however, packet corruption is still detected using a checksum
- UDP is connectionless
 - no connection setup at the beginning of transmission is necessary to set up state
 - also no connection tear-down at the end of transmission

Why to use unreliable communication? many applications simply want to send data to a destination and do not worry about packet loss

Transmission Control Protocol (TCP)

- TCP is both reliable and connection-oriented
- In addition to the port number, TCP provides abstraction to allow in-order, uninterrupted byte-stream across an unreliable network
 - whenever host sends packet, the receiver must send an acknowledgement packet (ACK)
 - if ACK is not received before a timer expires, the sender will timeout and retransmit the packet
 - requires keeping a copy of messages sent and not yet acknowledged
 - timeout will happen if either sender's packet or receiver's acknowledgment is dropped
 - what if the timeout is too small or too large?
 - sequence counter in TCP header allows the receiver to put packets in order and notice duplicate packets (ack was lost)
- Connections are initiated with series of control packets
 - three-way handshake (SYN, SYN+ACK, ACK)
- Connections also closed with series of control packets

TCP data transfer

- Receiver can send a cumulative ACK to acknowledge series of packets inital request
 - server can also send multiple packets before waiting for ACKs
 - taking advantage of network throughput
- Flow of packets regulated through flow control and congestion control in TCP
 - flow control prevents sender from overrunning capacity of receiver
 - congestion control infers network congestion to slow down or speed up packet sending rate

