D001 Economic Analysis of Non-Standard Data Benjamin W. Arold

1. Overview

Welcome

- ► This course covers methods for processing and analysing non-standard data in economics
- Focus on text-as-data, image-as-data, and audio-as-data

Welcome

- ► This course covers methods for processing and analysing non-standard data in economics
- Focus on text-as-data, image-as-data, and audio-as-data
- Methods:
 - Develop skills in applied natural language processing
 - Convert natural language texts e.g. economic, legal, and political documents to data
 - Use same/similar methods to analyze image data and audio data

Welcome

- ► This course covers methods for processing and analysing non-standard data in economics
- Focus on text-as-data, image-as-data, and audio-as-data
- Methods:
 - Develop skills in applied natural language processing
 - Convert natural language texts e.g. economic, legal, and political documents to data
 - Use same/similar methods to analyze image data and audio data
- Economics:
 - ▶ Relate text data to metadata to understand economic/political/social forces
 - e.g., analyze the motivations and decisions of public officials through their writings and speeches
 - Assess the real-world impacts of language on government and the economy

Logistics

Learning Materials

Course Content Overview

Schedule

- 9 lectures, 2 hours each:
- Course Syllabus:
 - https://docs.google.com/document/d/ 1RpfXwZ10PM3WyM5cz7cbLD6EVTr9kJNjHyGuApVmEWM/edit?tab=t.0
- ► FAQ Sheet:
 - https://docs.google.com/document/d/ 1xX3FGpIFA2ChVCY5p3gKNcWN4WJUr12VMs75GyweP5U/edit?tab=t.0
- ► Course Repo:
 - https://www.vle.cam.ac.uk/course/view.php?id=254153

Logistics

Learning Materials

Course Content Overviev

Course Bibliographies

- ► Materials referenced in syllabus:
 - Lecture slides
 - Papers (required and suggested reading)
 - ► Jupyter Notebooks
 - Additional Material

O'REILLY®

Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow

SPEECH AND Language processing

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

Second Edition

DANIEL JURAFSKY & JAMES H. MARTIN

Main Python packages for NLP

- ▶ Python 3 is ideal for text data / natural language processing, image analysis, and audio analysis
 - Can use Anaconda or download the packages we need to a pip environment
 - ▶ nltk broad collection of pre-neural-nets NLP tools
 - scikit-learn ML package with nice text vectorizers, clustering, and supervised learning
 - xgboost gradient-boosted machines for supervised learning
 - gensim topic models and embeddings
 - spaCy tokenization, NER, parsing, pre-trained vectors
 - huggingface pre-trained transformer models
 - tensorflow / keras deep learning-based text/image/audio analysis
 - librosa library for audio analysis

Coding Practice

Coding Examples on Moodle (discussed in class): https://www.vle.cam.ac.uk/course/view.php?id=254153

Discussant Presentations

- ► At the end of most lectures, we will have one presentation on one of the economics articles listed in the syllabus
- ► Please sign up here:

```
\label{lem:https://docs.google.com/spreadsheets/d/ln_ZtNSmweG1iThvRetm9KQFacjzZVXmpDoxNCfUEWwo/edit?gid=0\#gid=0
```

- ► Critical presentations are up to 15 minutes, should present and critique:
 - research question
 - ▶ main focus: text/image/audio data and methods
 - empirical methods
 - results
 - contribution

Logistics

Learning Materials

Course Content Overview

Text, Image, and Audio Data is high-dimensional

- Let's start with text analysis
- \triangleright Sample of documents, each n_L words long, drawn from vocabulary of n_V words
- ▶ The unique representation of each document has dimension $n_v^{n_L}$
 - e.g., a sample of 30-word Twitter messages using only the one thousand most common words in the English language
 - $\rightarrow \mathsf{dimensionality} = 1000^{30} = 10^{32}$

"Text as Data", GKT 2017

Summarize analysis in three steps:

- convert raw text D to numerical array C
 - ▶ The elements of *C* are counts over tokens (words or phrases)
- ightharpoonup map $oldsymbol{C}$ to predicted values $\hat{oldsymbol{V}}$ of unknown outcomes $oldsymbol{V}$
 - Learn $\hat{V}(C)$ using machine learning
 - \triangleright e.g. supervised learning for some labeled C_i and V_i
 - or unsupervised learning of topics/dimensions just from C
- ightharpoonup use $\hat{m V}$ for subsequent descriptive or causal analysis

Corpora

- ► Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

Corpora

- ► Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

- ► Text data is **unstructured**:
 - ▶ the information we want is mixed together with (lots of) information we don't

Corpora

- Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

- ► Text data is **unstructured**:
 - ▶ the information we want is mixed together with (lots of) information we don't
- ► All text data approaches will throw away some information:
 - ► The trick is figuring out how to retain valuable information

This course is about relating documents to metadata

- This course is on analysis of text, image, and audio data for economics:
 - start with text analysis (natural language processing NLP), then transfer methods to image and audio
 - text documents are not that meaningful by themselves
 - we want to relate **text** data to **metadata**

This course is about relating documents to metadata

- This course is on analysis of text, image, and audio data for economics:
 - start with text analysis (natural language processing NLP), then transfer methods to image and audio
 - text documents are not that meaningful by themselves
 - we want to relate text data to metadata
- e.g., measuring positive-negative sentiment Y in political speeches
 - not that meaningful by itself

This course is about relating documents to metadata

- This course is on analysis of text, image, and audio data for economics:
 - start with text analysis (natural language processing NLP), then transfer methods to image and audio
 - text documents are not that meaningful by themselves
 - we want to relate text data to metadata
- \triangleright e.g., measuring positive-negative sentiment Y in political speeches
 - not that meaningful by itself
- **b** but how about sentiment Y_{ijkt} in speech i by politician j on topic k at time t:
 - how does sentiment vary over time t?
 - \triangleright does politician from party p_j express more negative sentiment toward topic k?

What counts as a document?

The unit of analysis (the "document") will vary depending on your question

- ▶ needs to be fine enough to fit the relevant metadata variation
- ▶ should not be finer would make dataset more high-dimensional without relevant empirical variation

What counts as a document?

The unit of analysis (the "document") will vary depending on your question

- needs to be fine enough to fit the relevant metadata variation
- should not be finer would make dataset more high-dimensional without relevant empirical variation

E.g., what should we use as the document in these contexts?

- 1. predicting whether a judge is right-wing or left-wing in partisan ideology, from their written opinions
- 2. predicting whether parliamentary speeches become more emotive in the run-up to an election

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ▶ Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- ► Transformers, LLMs

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ► Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- ► Transformers, LLMs

Image-as-Data:

Classical ML, Convolutional Neural Nets, More Deep Learning

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ► Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- Transformers, LLMs

Image-as-Data:

Classical ML, Convolutional Neural Nets, More Deep Learning

Audio-as-Data:

Classical ML, Recurrent Neural Nets

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ► Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- Transformers, LLMs

Image-as-Data:

Classical ML, Convolutional Neural Nets, More Deep Learning

Audio-as-Data:

Classical ML, Recurrent Neural Nets

Ethical Considerations