

Chapter 1

Contents

- Introduction
- Some examples
- What is a simulation and how it is done?
- What is a system?
- What is a model?
- Other simulation paradigms
- Steps in a simulation study

Given a system, how do you evaluate its performance?

- How to study a system?
 - Measurements on an existing system
 - What to do, if system does not exist in reality?
 - What to do, if changes are very expensive or time consuming?
 - What to do, if system is not available?
 - Mathematical analysis
 - Good solutions, but only feasible for simple systems.
 - Real world systems are too complex, e.g., factory, computer, network, etc.
 - Simulation
 - Build the behavior of a system within a program
- The content of this course is described better as ...

Modeling and performance analysis of ... by means of discrete-event simulation

- There are many open questions
 - What is a system?
 - What is a model?
 - What is performance and how to measure it?
 - On what does performance depend?
 - How to build a model?
 - How to numerically evaluate it?
 - How to interpret such results?

Some examples

- Simulation is used to imitate the real world
 - It is not as new as we think ;-)
- According to Elmaghraby [1968]
 - Aid to thought
 - Communication
 - Training/Education
 - Experimentation
 - Predicting
 - Entertainment (this is a new application)
 - Video games
 - Serious games

Wooden mechanical horse simulator during WW1

A soldier in a heavy-wheeled-vehicle driver simulator

- A storehouse with n loading berths
- Several 100 trucks daily to serve
- Loading time of a truck is 50 minutes
- Goal
 - Cost-effective loading and short waiting time

- Experiment
 - Sliding of a ladder on the wall
 - A ladder is at the wall
 - We draw the bottom of the ladder and the top of the ladder is leant on the wall and slides down.

- Question: Which shape draws the center of the ladder?
 - Concave
 - Convex

- Variant: The ladder falls down from the wall
- The resulting shape is convex

Experiment 1: Ladder falls down from the wall

- One intuitively thinks the driven shape will be concave.
- However, the resulting shape is also convex.
- Astonished?

Experiment 2: Ladder slides down on the wall

- Clients request some service from a server over a network.
 - Client = user and web browser
 - Service = web page
 - Server = web server
 - Network = local network,
 Internet, wireless network
- Analysis
 - Performance of the server
 - Performance of the network
- Attention
 - In this example the server as well as the network is depicted very simple!

- Large computer networks like the Internet
- Topology
- Routing
- Traffic

- Mobile multi-hop ad-hoc network (MANET)
 - Wireless network consisting of mobile nodes
 - No infrastructure, i.e., no Access Points or Base Stations
 - Two nodes can communicate if they are in their mutual communication range
 - Typically, the source and destination nodes of a connection are several hops away
 - Thus, all nodes have to forward data for others

- For the analysis of a MANET a mobility model is needed
- Assumption
 - Movement area: Rectangle without obstacles
- Simple model: Random-Waypoint mobility model
 - A node selects uniformly a point on the simulation area p = (x, y)
 - Velocity $v \in [v_{min}, v_{max}]$
 - Pause time t_{pause}
 - The node moves to the point p with velocity v
 - Stays for t_{pause} time units on p and restarts movement

- What about the probability that a node is on point p = (x,y) on the movement area?
 - Uniformly distributed?
 - Since x and y are uniformly selected.
 - Are some areas preferred?
- What's about the influence of the parameters?
 - Velocity
 - Pause time
- Although simple to describe, it is hard to get a closed form formulae.

What is a simulation and how it is done?

- What is a simulation?
 - A simulation is the imitation of the operation of a real-world system over time.

- What is the method?
 - Generate an artificial history of a system
 - Draw inferences from the artificial history concerning the characteristics of the system
- How it is done?
 - Develop a model
 - Model consists of entities (objects)

When is simulation appropriate?

- Simulation can be used for the following purposes:
 - Simulation enables the study of experiments with internal interactions
 - Informational, organizational, and environmental changes can be simulated to see the model's **behavior**
 - Knowledge from simulations can be used to improve the system
 - Observing results from simulation can give insight to which variables are the most important ones
 - Simulation can be used as pedagogical device to reinforce the learning material
 - Simulations can be used to verify analytical results, e.g., queueing systems
 - Animation of a simulation can show the system in action, so that the plan can be visualized

When is simulation not appropriate?

- Simulation should not be used, in the case
 - when problem is solvable by common sense
 - when the problem can be solved mathematically
 - when direct experiments are easier
 - when the simulation costs exceed the savings
 - when the simulation requires time, which is not available
 - when no (input) data is available, but simulations need data
 - when the simulation can not be verified or validated
 - when the system behavior is too complex or unknown
- Example: human behavior is extremely complex to model

Advantages of simulation

- Policies, procedures, decision rules, information flows can be explored without disrupting the real system
- New hardware designs, physical layouts, transportation systems, protocols, computer systems, and network architectures can be **tested** without committing resources
- Hypotheses about how or why a phenomenon occurs can be **tested** for feasibility
- Time can be compressed or expanded
 - Slow-down or Speed-up
- Insight can be obtained about the interaction of variables
- Insight can be obtained about the importance of variables to the performance of the system
- Bottleneck analysis can be performed to detect excessive delays
- Simulation can help to understand how the system operates rather than how people think the system operates
- "What if" questions can be answered

Disadvantages of simulation

- Model building requires training, it is like an art.
 - Compare model building with programming.
- Simulation results can be difficult to interpret
 - Most outputs are essentially random variables
 - Thus, not simple to decide whether output is randomness or system behavior
- Simulation can be time consuming and expensive
 - Skimping in time and resources could lead to useless/wrong results
- The disadvantages are offset as follows
 - Simulation packages contain models that only need input data
 - Simulation packages contain output-analysis capabilities
 - Sophistication in computer technology improves simulation times
 - For most of the real-world problems there are no closed form solutions

Application areas of simulation

- Manufacturing applications
- Semiconductor manufacturing
- Construction engineering and project management
- Military applications
- Logistics, supply chain and distribution applications
- Transportation models and traffic
- Business process simulation
- Health care
- Call-center
- Computers and Networks
- Games, Entertainment
- . . .

What is a system?

Systems and System Environment

- System
 - A system is a group of objects that are joined together in some regular interaction or interdependence toward the accomplishment of some purpose.
 - Example: Automobile factory
 - Machines, parts, and workers operate jointly to produce a vehicle
 - Example: Computer network
 - User, hosts, routers, lines establish a network

Systems and System Environment

- System environment
 - Everything outside the system, but affects the system

- Attention
 - It is important to decide on the boundary between the system and the system environment
 - This decision depends on the purpose of the study

Components of a System

- In order to understand and analyze a system, we need some terms
- General Terminology

Entity Object of interest in the system

Attribute Property of an entity

Activity A time period of specified length

System state Collection of variables required to describe

the system at any time

• Event An instantaneous occurrence that might

change the state of the system

Endogenous Activities and Events occurring within the

system

• Exogenous Activities and Events in the environment

(outside the system) that affect the system

Components of a System: Examples

System	Entities	Attributes	Activities	Events	State Variables
Banking	Customers	Checking- account balance	Making deposits Draw money	Arrival; departure	Number of busy tellers Number of waiting customer
Rapid rail	Riders	Source Destination	Traveling	Arrival at station Arrival at destination	Number of riders at each station Number of rider in transit
Production	Machines	Speed Capacity Breakdown rate	Welding Stamping	Breakdown	Status of machines
Communications	Messages	Length Destination	Transmitting	Arrival at destination	Number of waiting messages to be transmitted
Inventory	Warehouse	Capacity	Withdrawing	Demand	Levels of inventory
Mobility model	Node	Position Velocity	Travel	End of movement	Position Velocity

Discrete and Continuous Systems

- Discrete Systems
 - State variables change only at discrete set of points
 - Examples
 - Bank, Grocery
 - Router, Host
 - Jobs in queue
- Continuous Systems
 - State variables change continuously over time
 - Examples
 - Head of water behind a dam
 - Temperature

What is a model?

- What is a model?
 - A model is a representation of a system for the purpose of studying the system.
 - It is necessary to consider those aspects of the system that affect the problem under investigation
- Avoid too much detail

- Physical model
 - Prototype of a system for the purpose of study.

 A mathematical model uses symbolic notation and mathematical equations to represent a system.

$$\begin{split} v_{q} &= -r_{s}i_{q} + \frac{\omega_{r}}{\omega_{b}}\Psi_{d} + \frac{p}{\omega_{b}}\Psi_{q}, \\ v_{d} &= -r_{s}i_{d} - \frac{\omega_{r}}{\omega_{b}}\Psi_{q} + \frac{p}{\omega_{b}}\Psi_{d}, \\ v_{o} &= -r_{s}i_{o} + \frac{p}{\omega_{b}}\Psi_{o}, \qquad p\theta_{r} = \omega_{r}, \\ 0 &= r_{aq}i_{aq} + \frac{p}{\omega_{b}}\Psi_{aq}, \qquad p\theta_{e} = \omega_{e}, \\ v_{f} &= r_{f}i_{f} + \frac{p}{\omega_{b}}\Psi_{f}, \qquad \delta = \theta_{r} - \theta_{e}, \\ 0 &= r_{ad}i_{ad} + \frac{p}{\omega_{b}}\Psi_{ad}, \qquad \omega_{m} = \frac{2}{p}\omega_{r}, \\ T_{e} &= \frac{3}{2} \frac{P}{2} \frac{1}{\omega_{b}}(\Psi_{d}i_{q} - \Psi_{q}i_{d}), \\ p\omega_{r} &= \frac{P}{2J} \left(T_{a} - T_{e}\right), \end{split}$$

Today's scientists have substituted mathematics for experiments, and they wander off through equation after equation, and eventually build a structure which has no relation to reality.

Nikola Tesla (1857 - 1943), Modern Mechanics and

Inventions, 1934

Model of a System

Model of a System

Model of a System: Mobility

- Movement
 - Model: $d = v \cdot t$
 - Assumptions: Constant velocity v over the whole time t
 - Advantage: Simple formulae and intuitive
 - Disadvantage: Seldom valid for a whole travel (human, car, planes)

Model of a System: Radio Propagation

- Radio signal propagation
 - Free-Space-Model

• Model:
$$PL_{dB}(d) = -10\log\left(\frac{G_tG_r\lambda^2}{(4\pi)^2d^2}\right)$$

- Assumptions:
 - Direct line of sight (LOS) between communication peers
 - No obstacles
- Advantages:
 - Simple asymptotic formulae for open space
- Disadvantages:
 - Not really useful for indoor and city environments

Model of a System: ISO/OSI Network Model

Model of a System: TCP/IP Reference Model

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer
ISO/OSI

Application Layer
Don't exist
Transport Layer
Internet Layer
Host-to-Network Layer
TCP/IP

Model of a System: Six-level Computer Model

Model of a System: Communication Link

- A packet in a network suffers various delays
 - Processing in the node: examine packet header
 - Queueing: packet waits for transmission
 - Transmission: put all bits of a packet on the medium
 - Propagation: time to propagate on the medium from A to B

Model of a System: Cellular System

- Multi cellular network system model
 - Can be used for cellular networks, WLAN, WIMAX, Wireless Mesh networks

Model of a System: User Behavior

- User behavior, application behavior
 - User level, object level, packet level

Principles of Modeling

- Conceptualizing a model requires system knowledge, engineering judgment, and model-building tools.
- The secret to being a good modeler is recognizing the need and having the ability to remodel.
- The modeling process is evolutionary because the act of modeling reveals important information piecemeal.
- The problem or problem statement is the primary controlling element in model-based problem solving.
- In modeling **combined systems**, the **continuous** aspects of the problem should be considered **first**. The **discrete** aspects of the model should then be developed.
- A model should be evaluated according to its usefulness. From an absolute perspective, a model is neither good or bad, nor is it neutral.
- The purpose of modeling is knowledge and understanding, not models.
- Know when to model "top-down" and when to model "bottom-up".
- It is important to learn modeling techniques, but more important to learn to consider the tradeoffs among alternative techniques.
 - A. Alan B. Pritsker, James O. Henriksen, Paul A. Fishwick, Gordon M. Clark, "Principles of Modeling", Winter Simulation Conference, 1991.

What is a Good Model?

- Simplicity
- Credibility
- Documentation
- Efficiency
- Verified
- Code quality
- Availability

Simulation Models

- Simulation Model
 - A simulation model is a particular type of mathematical model of a system.
- Types of simulation models
 - Static: Represent a system at a particular point in time.
 - Dynamic: Represent a system over a time interval.
 - Deterministic: Simulation models without random variables.
 - Stochastic: Simulation models with random variables.
 - Discrete: System state changes occur only at discrete time points.
 - Continuous: System state changes occur continuously.

Simulation Models

Simulation Models

Discrete-Event System Simulation

- Discrete-event Simulation
 - System state changes only at discrete set of points in time.
 - Simulation model is analyzed by numerical methods.
 - Numerical methods employ computational procedures to "solve" mathematical models.
 - The model is rather "run" than "solved"

What is a performance metric?

Selecting performance metrics

Common performance metrics

Common performance metrics

Utility classification of performance metrics

Other simulation paradigms

Simulation for static models

- Monte Carlo simulation
- Mainly used for mathematical problems which are not analytically tractable
- Example: Approximate π
 - Area of a circle: $A = \pi \cdot r^2$ if $r = 1 \implies A = \pi$
 - Count the number of points inside and outside a unit quarter circle.

The Monte Carlo simulation was first extensively used in 1944 in the research to develop the first nuclear bomb, the Manhattan project!

Simulation of dynamic, continuous models

- System described by differential equation
- Typically involves numerical solution of these equations
- No real difference to a numerically based mathematical solution
- Typical example: predator/prey systems
 - Let x(t) be the size of the prey population
 - Let *y*(*t*) be the size of the predator population

- Growth rate of the prey population without predators
 - $r \cdot x(t)$
- Predator change rate
 - $-s \cdot y(t)$
- Interactions

$$\frac{dx}{dt} = r \cdot x(t) - a \cdot x(t) \cdot y(t)$$

$$\frac{dy}{dt} = -s \cdot y(t) + b \cdot x(t) \cdot y(t)$$

- Parameters
 - x(0), y(0), a, b, r, s
- Metrics
 - x(t), y(t)
- Solve system of differential equations

Steps in a simulation study

Steps in a Simulation Study

- Problem formulation
 - Clearly understand problem
 - Reformulation of the problem
- 2. Setting of objectives and overall project plan
 - Which questions should be answered?
 - Is simulation appropriate?
 - Costs?
- Model conceptualization
 - No general guide
 - Modeling tools in research, e.g., UML
- 4. Data collection
 - How to get data?
 - Are random distributions appropriate?
- Model translation
 - Program, which runs on a Computer.
- Verified?
 - Does the program that, what the model describes?
- Validated?
 - Do the results match the reality? Calibration?
 - In cases with no real-world system, hard to validate
- 8. Experimental design
 - Which alternatives should be run?
 - Which parameters should be varied?
- 9. Production runs and analysis
- 10. More runs?
- 11. Documentation and reporting
 - Program documentation how does the program work
 - Progress documentation chronology of the work
- 12. Implementation

Steps in a Simulation Study

Summary

- Motivated the course by examples
- Introduced simulation as a notion
- Discussed for what purposes simulation is useful
- Introduction of a general terminology
- Introduction of discrete-event simulation
- Discussed the steps of a simulation study
- Performance metrics