モバイルネットワーク論 2015年度春学期

第1回 講義の概要

授業スタッフ

- 三次 仁(みつぎ じん)
 - -環境情報学部 准教授

- 五十嵐 祐貴(いがらしゆうき)
 - 政策メディア研究科 M2

- 水谷 伊織(みずたに いおり)
 - -環境情報学部 B4

授業について

- ・ 講義資料は、毎週SFC-SFSにuploadします。
- 講義資料をプリントアウトするか、PCにダウンロードしておく。
- 次回以降は板書しますが、ほとんどは講義資料に載ってることです。補足事項をプリントアウトに書き込むか、ノートをとるといいです。
- 講義中に、演習問題を出すので、筆記用具をもってくること。
- 質問は随時。オフィスアワー(月曜日 18:10 ~ 19:40@ Z202)も活用してください。

成績のつけ方

• 毎週の課題 60%

• 最終テスト(第14回目) 40%

- 授業への積極的な参加(出席ではない)
- スマホ未来コンテストへの応募(7月28日まで)

ボーナスポイント

モバイルネットワーク

モバイルネットワーク(Mobile network) = 移動網

- 移動するモノや人をつなぐネットワーク
- 移動するネットワーク

→本講義では"無線を利用するネットワーク"とする

本講義ではモバイルネットワークにおけるアプリケーション やサービスを効率的に構築するために必要となる無線通信 およびネットワークに関する基礎および最新の動向につい て学びます。

授業の狙い

- デジタル通信の仕組みを理解する
- 信号を時間軸と周波数軸の両方で理解する
- 電波法令や国際標準化の重要性を理解する
- 情報を伝達するための仕組みを理解する

無線をつかった情報システム・サービスを考えられる 力をつける

アナログとデジタル

- アナログ放送停止 2011年7月24日
- ・ 地上デジタル放送(地デジ)

何がデジタルになったのか?

デジタルだと何がいいのか?

デジタル

Digital

Digit=数字

デジタル情報:有限桁の数字で表すことができる情報 コンピュータ内部ではOと1だけで数字を表している この場合、一桁を1ビットという。

それぞれに0あるいは1が入る =4ビット

0000	1000
0001	1001
0010	1010
0011	1011
0100	1100
0101	1101
0110	11 g 0
0111	1111

アナログとデジタル

地上デジタル対応受信機

情報を伝える

アナログ伝送

伝える情報

mobile

伝える情報2

アナログをデジタル情報に変換

縦横25x50マスで白黒に塗り分(1250ビット)

4倍

縦横50x100マスで白黒に塗り分 (5000ビット)

81倍

縦横450x900マスで白黒に塗り (405000ビット)

アナログとデジタル(通信)

デジタル・アナログ

伝送方式

	アナログ	デジタル
情報アナログ	アナログ放送 アナログ電話	音声通信 ビデオ
情報デジタル	アナログモデム	データ放送 Web/Mail

4kテレビ

- 2K(1080i) 1920x1080 フルハイビジョン
- 4K (2160p) 3840x2160
- 8K (4320p) 7680x4320

色の表し方

RGB:Red Green Blue

YUV: Y明るさ 8ビット

Cr R-Y色差

Cb B-Y色差

=3840x2160x8 + 3840x2160x8/4x2 : これが毎秒60フレーム = 5971Mbps

23

最近のニュースから

- モバイル通信の高速化
 - WiMAX2+
 - 220Mbps:20MHzx2
 - LTE Advanced
 - 225 Mbps: 40MHz
 - WiFi 802.11ac
 - 1.3 Gbps:80MHz

- ・帯域幅と高速化はどう関係している?
- ・プラチナバンドは何がよい?

プラチナバンドを使うと

カバ一範囲が広がると一度に通信できる量は減る

エリアのユーザ数が100人とする

チャネル数(帯域幅)が有限

各キャリアが保有している帯域幅

	NTTドコモ	au/UQ	ソフトバンクモバイル	eモバイル/ウイルコム →ワイモバイル	ソフトバンクグループ
700MHz帯	10MHz × 2	10MHz × 2		10MHz × 2	
800MHz帯	15MHz × 2	15MHz × 2	15MHz × 1		
1500MHz帯	15MHz × 2	10MHz × 2	10MHz × 2		
1700MHz帯	20MHz×2			15MHzX2	
1900MHz帯(PHS)				35MHz	
2000MHz帯	20MHz × 2	20MHz × 2	20MHz × 2		
2500MHz帯(WiMAX, XGP)		50MHz		30MHz	
総合帯域	160	160	75	115	190
加入数(万人)	6150	4238	3795	1063	4858
加入あたり帯域(KHz/万人)	26.0	37.8	19.8	108.2	39.1

Internet of Things モノのインターネット

http://bizbeatblog.dallasnews.com/2013/01/new-amazon-warehouses-are-big-projects-for-developer-hillwood.html/

http://globaltrademag.com/strike-over-hk-dockers-approve-new-wage-offer/

モノの管理における損失

- 贋物・海賊品による損失
 - 25兆円

(OECD magnitude of counterfeiting and piracy of tangible products, 2009)

- Supply Chainにおける損失(全世界)
 - \$119 billion (約10兆円)
 - 消費者の万引き(\$51.5 billion),
 - 従業員による盗難(\$41.7 billion)
 - 内部処理の誤り(\$19.4 billion).

(Center of retail research: http://www.retailresearch.org/grtb_globaltrends.php)

実空間のソフトウェア制御

情報空間

自動認識

自動処理•自動制御

実空間

履修にあたっての注意

去年の資料がSFC-SFSにアップロードされています。一度目を通して、履修を決めてください。

 連絡や質問はSFC-SFSを通して行ってください。 TA、SAにも通知されるので、読み落としがありません。

講義の内容(予定)

```
講義の概要
4/13
    デジタル通信の基礎
4/20
    情報量(Hartley-Shannonの定理)
4/27
    変復調・帯域幅1
5/11
5/18
    変復調•帯域幅2
   電波はどう伝わるか
5/25
    デジタル信号処理
6/1
6/8 ケータイネットワーク
   WiFi ∠BlueTooth
6/15
6/22
   電波法令と国際標準化
    モバイルセキュリティ
6/29
    新しいモバイルサービス(MVNOなど)
7/6
7/13 モノのインターネット
7/20
    最終試験
```

災害時の支援物資供給

- ・ 被災地情報の錯綜
- 必要とされる支援物資の需要と共有のミスマッチ
 - 発災時:飲料水、食料、衣類、毛布
 - 支援活動が本格化:日常生活を取り戻すための物資物資が大量に余り、廃棄せざるを得なかった

http://sp.walkerplus.com/tohokuwalker/volunteer/interview02.html

http://www.vill.takizawa.iwate.jp/news230331

http://ameblo.jp/refashion-intern/entry-11413154873.html

http://www.omotehama.org/report10/2011/03/28/shiwake05.jpg

モノの所在・状態をコンピュータシステムで 把握して、制御する

換気扇や窓開閉の圃場温度管理に対する効果を定量評価

遠隔監視•遠隔制御

Fig. 1: Road network for Dublin, Ireland indicating most recently received vehicle GPS signals.

5000台の車のGPS情報から、 特定の道路の混雑具合を推定

Fig. 3: System assimilates data into citywide view continuously computing state for all vehicles, stops, and segments.

Lisa Amini, et. al. Challenges and Results in City-Scale Sensing IEEE Sensors 2011, pp.59-61, (2011).

モノとの通信の課題

- 人が対応している場合には不具合時にはやり直しができるが、モノとの通信では想定外に対応することが難しい
 - 信頼性、冗長性の確保
- 人に比べてモノは数が多く、種類も多様である。
 - モノを情報システムで自動認識、各種サービスとの自動 連携
- コスト低減
 - システムの共用化、標準化、通信方式に依存しない情報システム

通信の速さを表すためにbps(bit per second)という 単位が使われている。1bitで表すことができる情報 はいくつあるか?

1ビットで表すことができる情報は0と1の2つである。 では2ビットで表すことができる情報はいくつあるか?

2ビットの情報をワイヤレスで伝えるためには、どう すればよいか?

• 32ビットの情報を伝えるためには、どうすればよいか?

11111001 11000011 00011111 11010101

4D 49 54 53 55 47 49 は何ビットの情報か?

• AからB, C, Eにそれぞれ違う情報を伝えるためには、 、どうすればよいか?

B, C, EからAにそれぞれ違う情報を伝えるためには、 、どうすればよいか?

B, C, EからAにそれぞれ違う情報を出来るだけ速く 伝えるためには、どうすればよいか?

(無線)通信の階層

- 何を媒体として使うか?(物理層)
 - 音、光、電波
 - 何を変化させてOと1の状態を作るか
 - 情報を送る速度はどのくらいにするか?
- どうやって通信相手に情報を届けるか?(メディアア クセス層)
 - 宛先選定
 - 到達確認
 - 他の通信との衝突回避
- 経路情報をどのように伝えるか(ネットワーク層)

具体的な問題

- 1km離れるとどのくらい電波は弱くなるか?
- ・送信者が複数いる場合に、どうやって送信の順番を 決めるのか?
- できるだけ早く情報を送るにはどういう工夫が必要か?

送信者 受信者 送信者 受信者 1ビット送信 1ビット送信 1ビット送信 受信ビット返信 1ビット送信 確認ビット送信 10%の確率で ビットが誤るとす るとどっちがいい か?

再送の場合

表 1.1: プロトコルの誤り率

<u> </u>					
1 ビット送信	受信ビット返信	受信ビット返信 確認ビット送信			
正	正	正			
正	正	誤	誤		
正	誤	正	誤		
正	誤	誤	正		
誤	正	正	誤		
誤	正	誤	正		
誤	誤	正	正		
誤	誤	誤	誤		

連送の場合

表 1.2: 連送時のプロトコルの誤り率

表 1.2: 連达時のプロトコルの誤り率				
1 ビット送信	連送1回目	連送2回目	正誤	
正	正	正	正	
正	正	誤	正	
正	誤	正	正	
正	誤	誤	誤	
誤	正	正	正	
誤	正	誤	誤	
誤	誤	正	誤	
誤	誤	誤	誤	

3つとも正しいか、誤りが偶数の 場合に正しく伝わる

3つとも正しいか、誤りが正しいよりも少ない時に正しく伝わる

誤り率10%の時のデータ転送成功率の違い

		連送	ARQ
TTT	0.729	0	0
TTF	0.081	0	×
TFT	0.081	0	×
TFF	0.009	×	0
FTT	0.081	0	×
FTF	0.009	×	0
FFT	0.009	×	0
FFF	0.001	×	×
	1	0.972	0.756

明るさ

色差(明るさ一青)

色差(明るさ一赤)

アドベwebサイトから引用 https://helpx.adobe.com/jp/premiere-pro/kb/cpsid_92762.html