

From (1) and (2), we get the required result.

1Fos 2019

Ex. 11. A vessel in the shape of a hollow hemisphere surmounted by a consist held with the axis vertical and vertex uppermost. If it be filled with a liquid so a to submerge half the axis of the cone in the liquid, and height of the cone be double the radius of its base, show that the resultant downward thrust of the liquid on the vessel is $\frac{15}{9}$ times the weight of the liquid that the hemisphere can hold.

Sol. Let r be the radius of the base of the hemisphere or cone so that the height of the surmounting cone is 2r.

The vessel is filled upto CD so as to submerge half the axis of the cone in the liquid.

From similar triangles OEC and OO'B, we have

$$\frac{EC}{O'B} = \frac{OE}{OO'} = \frac{r}{2r} = \frac{1}{2}.$$

$$EC = \frac{1}{2}OB' = \frac{1}{2}r.$$

The resultant downward thrust of the liquid on the vessel

= weight of the liquid contained in the vessel

= wt. of the liquid in the hemisphere

+ wt. of the liquid in the frustum

$$= \frac{2}{3}\pi r^{3}w + \left[\frac{1}{3}\pi r^{2} \cdot 2r - \frac{1}{3}\pi \left(\frac{r}{2}\right)^{2} \cdot r\right]w$$

$$= \frac{2}{3}\pi r^{3}w + \frac{1}{3}\pi r^{3}w \left(2 - \frac{1}{4}\right) = \frac{1}{3}\pi r^{3}w \left(2 + \frac{7}{4}\right) = \frac{1}{3}\pi r^{3}w \cdot \frac{15}{4}$$

$$= \frac{15}{3}\left(\frac{2}{3}\pi r^{3}w\right)$$

