

VidyaVikas Education Society's

VIKAS COLLEGE OF ARTS, SCIENCE & COMMERCE

Affiliated to University of Mumbai RE-ACCREDITED 'A' GRADE BY NAAC ISO 9001 : 2008 CERTIFIED

Vikas High School Marg, Kannamwar Nagar No 2, Vikhroli (E), Mumbai – 400083

Dr. R. K. Patra Principal		Hon' ble: Shri P. M. Raut Chairman. V. V. Edu. Society				
This is to certify that, _						
student of T.Y.B.Sc. (I	nformation Technology) (Semester	:-V) with college enrolled				
Roll no	/ University Seat	has satisfactorily				
completed the Project l	Dissertation work for the Subject S	oftware Project Development				
in the program of Infor	rmation Technology from the UNIV	ERSITY OF MUMBAI for the				
academic year 2024-20)25.					
Guided By	College Seal	Head Of Department				
	External Examiner					

Index

Sr.No	Practical.No	Title	Signature
1	1 a	Import the data warehouse data in Microsoft Excel and create the pivot table and pivot chart.	
2	1b	1b Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform data analysis.	
3	Apply the what – if Analysis for data visualization. Design and generate necessary reports based on the data warehouse data. Use Excel.		
4	3	Perform the data classification using classification algorithm using R/Python.	
5	Perform the data clustering using clust algorithm using R/Python.		
6	Perform the Linear regression on the give warehouse data using R/Python.		
7	6 Perform the logistic regression on the given warehouse data using R/Python.		
8	7	Write a Python program to read data from a CSV file, perform simple data analysis, and generate basic insights. (Use Pandas is a Python library).	
9	8a	Perform data visualization using Python on any sales data.	
10	8b	Perform data visualization using PowerBI on any sales data.	
11	9	Create the Data staging area for the selected database using SQL.	

Practical: 1a

Aim: Import the data warehouse data in Microsoft Excel and create the pivot table and pivot chart.

Click on ok button.

Click on Piovt Chart and select any chart.

Practical: 1b

Aim: Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform data analysis.

Step 1: Import Data from Data Warehouse to Excel

- 1. Open Microsoft Excel.
- 2. Go to the Data tab.
- **3.** From the drop-down menu, choose **From Other Sources** and select **From Data Connection Wizard**.
- 4. select **Microsoft From SQL Server** or choose the relevant source for your data warehouse.
- 5. Connect to database server provide connection (Server Name).
- 6. Click **Next** and then **Finish**.

Step 2: Create a Pivot Chart

- 1. Once you have the PivotTable set up, click anywhere inside the PivotTable.
- 2. Select database and Table.
- 3. Save data connections file and finish.
- 4. Import data to select pivot chart and pivot table report.
- 5. Choose the chart type you want to visualize your data (e.g., Column, Line, Pie, etc.).
- 6. Excel will generate the PivotChart based on the data in your PivotTable.

Step 3: Create a Pivot Table

- 1. Once the data is imported, click anywhere inside the data range.
- 2. Go to the **Insert tab** on the Ribbon.
- 3. Click on **PivotTable** in the Tables group.
- 4. You can also choose to place the PivotTable in a new worksheet or an existing one.
- 5. Click **OK** to create the PivotTable.
- 6. In the PivotTable Field List pane, drag fields into the Rows, Columns, Values, and Filters areas to organize the data. For example:
 - a. **Rows**: Place dimensions like product names or regions.
 - b. **Columns**: Place time periods (e.g., months or years).
 - c. Values: Put numerical values like sales or revenue.

Aim: Apply the what –if Analysis for data visualization. Design and generate necessary reports based on the data warehouse data. Use Excel.

Step 1: Apply What-If Analysis in Excel

Microsoft Excel offers several tools for **What-If Analysis** that help simulate different scenarios and outcomes based on changes to input data. These tools are:

- 1. Scenario Manager
- 2. Goal Seek

2.1. Scenario Manager

The Scenario Manager lets you create and compare different sets of input values to see how changes affect the output.

• Step-by-Step:

- 1. Go to the **Data tab** on the Ribbon.
- 2. Click on What-If Analysis, then select Scenario Manager.
- 3. In the **Scenario Manager** dialog box, click **Add** to create a new scenario.
- 4. Name the scenario (e.g., "Best Case", "Worst Case", "Most Likely Case").
- 5. Define the changing cells (these are the input values you want to experiment with, such as sales volume, price, etc.).
- 6. Enter the values for each scenario you want to test.
- 7. After setting up all scenarios, click **OK**.
- 8. To view the results of each scenario, click **Show** in the Scenario Manager dialog box.

2.2. Goal Seek

Goal Seek helps you find the input value needed to reach a specific result.

- Step-by-Step:
 - 1. Go to the **Data tab** on the Ribbon.
 - 2. Click on What-If Analysis, then select Goal Seek.
 - 3. In the **Goal Seek** dialog box, specify the following:
 - **Set cell**: The cell that contains the formula you want to solve.
 - **To value**: The result you want to achieve.
 - By changing cell: The input value that will be adjusted to reach the desired result.
 - 4. Click **OK**. Excel will calculate the value needed to achieve the target.

Aim: Perform the data classification using classification algorithm using R/Python.

Code:

```
rainfall <-c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12)
print(rainfall.timeseries)
png(file = "rainfall.png")
plot(rainfall.timeseries)
dev.off()
```

Output:

Aim:Perform the data clustering using clustering algorithm using R/Python.

Code:

```
library(party)
print(head(readingSkills))
input.dat <- readingSkills[c(1:105),]
png(file = "decision_tree.png")
output.tree <- ctree(nativeSpeaker ~ age + shoeSize + score,data = input.dat)
plot(output.tree)
dev.off()</pre>
```

Output:

```
nativeSpeaker age shoeSize
                                score
                  5 24.83189 32.29385
1
            yes
2
                  6 25.95238 36.63105
            ves
3
             no
                 11 30.42170 49.60593
4
                 7 28.66450 40.28456
            yes
5
            yes
                 11 31.88207 55.46085
6
            yes
                 10 30.07843 52.83124
```


Aim: Perform the Linear regression on the given data warehouse data using R/Python.

Code:

```
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
# Apply the lm() function to create a linear regression model
relation <- Im(y \sim x)
# Print the model summary
print(summary(relation))
# Predict the weight of a person with height 170
a \leftarrow data.frame(x = 170)
result <- predict(relation, a)</pre>
print(result)
# Visualizing the Regression Graphically
png(file = "linearregression.png")
plot(x, y, col = "blue", main = "Height & Weight Regression",
  xlab = "Height in cm", ylab = "Weight in Kg", pch = 16)
abline(relation, col = "red")
dev.off()
```

Output:

```
> source("C:/Users/Lenovo/OneDrive/Desktop/SEM 6 practicals/BI PRACTICALS/p7.
Call:
lm(formula = y \sim x)
Residuals:
    Min
            1Q Median
                            3Q
                                   Max
-6.3002 -1.6629 0.0412 1.8944 3.9775
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        8.04901 -4.778 0.00139 **
(Intercept) -38.45509
                        0.05191 12.997 1.16e-06 ***
             0.67461
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06
76.22869
> |
```

Height & Weight Regression

Aim: Perform the logistic regression on the given data warehouse data using R/Python.

Code:

```
# Load necessary libraries
library(dplyr)
library(titanic)
library(pROC)
# Load Titanic dataset
data("titanic_train")
# Check dataset structure
head(titanic_train)
# Data Cleaning: Removing rows with missing values
titanic clean <- titanic train %>%
 filter(!is.na(Age), !is.na(Embarked), !is.na(Sex), !is.na(Pclass))
# Convert categorical variables to factors
titanic clean$Survived <- as.factor(titanic clean$Survived)
titanic clean$Pclass <- as.factor(titanic clean$Pclass)
titanic clean$Sex <- as.factor(titanic clean$Sex)
titanic_clean$Embarked <- as.factor(titanic_clean$Embarked)</pre>
# Build Logistic Regression Model
model <- glm(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked,
       data = titanic clean, family = binomial)
# Print model summary
summary(model)
```

```
# Predict probabilities
predictions <- predict(model, type = "response")</pre>
# Convert probabilities to binary classification
predictions_class <- ifelse(predictions > 0.5, 1, 0)
# Evaluate Model Accuracy
confusion matrix <- table(Predicted = predictions class, Actual =
titanic clean$Survived)
print(confusion matrix)
accuracy <- mean(predictions class == as.numeric(titanic clean$Survived) - 1)
print(paste("Accuracy:", accuracy))
# ROC Curve
roc curve <- roc(as.numeric(titanic clean$Survived) - 1, predictions)
plot(roc_curve, main = "ROC Curve")
Output:
> # Load necessary libraries
> library(dplyr)
> library(titanic)
> library(pROC)
> # Load Titanic dataset
> data("titanic_train")
> # Check dataset structure
> head(titanic_train)
PassengerId Survived Pclass
                                               Name Sex Age
1
      1
                              Braund, Mr. Owen Harris male 22
2
      2
           1
             1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38
3
      3
                              Heikkinen, Miss. Laina female 26
          1 3
4
      4 1 1
                   Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35
5
      5
         0 3
                             Allen, Mr. William Henry male 35
      6
                                 Moran, Mr. James male NA
SibSp Parch
                Ticket Fare Cabin Embarked
1 1 0
           A/5 21171 7.2500
  1 0
            PC 17599 71.2833 C85
                                   C
3 0 0 STON/O2. 3101282 7.9250
```

```
4
              113803 53.1000 C123
5
   0 0
              373450 8.0500
                                    S
6
   0 0
              330877 8.4583
                                    Q
>
> # Data Cleaning: Removing rows with missing values
> titanic_clean <- titanic_train %>%
+ filter(!is.na(Age), !is.na(Embarked), !is.na(Sex), !is.na(Pclass))
>
> # Convert categorical variables to factors
> titanic clean$Survived <- as.factor(titanic clean$Survived)
> titanic clean$Pclass <- as.factor(titanic clean$Pclass)
> titanic_clean$Sex <- as.factor(titanic_clean$Sex)
> titanic_clean$Embarked <- as.factor(titanic_clean$Embarked)
> # Build Logistic Regression Model
> model <- glm(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked,
        data = titanic_clean, family = binomial)
>
> # Print model summary
> summary(model)
Call:
glm(formula = Survived ~ Pclass + Sex + Age + SibSp + Parch +
  Fare + Embarked, family = binomial, data = titanic_clean)
Coefficients:
       Estimate Std. Error z value Pr(>|z|)
(Intercept) 16.691979 607.920015 0.027 0.978095
Pclass2 -1.189637 0.329197 -3.614 0.000302 ***
Pclass3 -2.395220 0.343356 -6.976 3.04e-12 ***
Sexmale -2.637859 0.223006 -11.829 < 2e-16 ***
        Age
        -0.362925 0.129290 -2.807 0.005000 **
SibSp
Parch
         -0.060365 0.123944 -0.487 0.626233
Fare
         0.001451 0.002595 0.559 0.576143
EmbarkedC -12.259048 607.919885 -0.020 0.983911
EmbarkedQ -13.082427 607.920088 -0.022 0.982831
EmbarkedS -12.661895 607.919868 -0.021 0.983383
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 964.52 on 713 degrees of freedom
Residual deviance: 632.34 on 703 degrees of freedom
AIC: 654.34
```

```
Number of Fisher Scoring iterations: 13
```

```
> # Predict probabilities
> predictions <- predict(model, type = "response")
> # Convert probabilities to binary classification
> predictions_class <- ifelse(predictions > 0.5, 1, 0)
> # Evaluate Model Accuracy
> confusion_matrix <- table(Predicted = predictions_class, Actual = titanic_clean$Survived)
> print(confusion_matrix)
     Actual
Predicted 0 1
    0 365 83
    1 59 207
>
> accuracy <- mean(predictions_class == as.numeric(titanic_clean$Survived) - 1)
> print(paste("Accuracy:", accuracy))
[1] "Accuracy: 0.801120448179272"
>
> # ROC Curve
> roc_curve <- roc(as.numeric(titanic_clean$Survived) - 1, predictions)
Setting levels: control = 0, case = 1
Setting direction: controls < cases
> plot(roc_curve, main = "ROC Curve")
```


Aim: Write a Python program to read data from a CSV file, perform simple data analysis, and generate basic insights. (Use Pandas is a Python library).

Code:

```
import pandas as pd
file_path = 'data.csv'
data = pd.read_csv(file_path)
print("First 5 rows of the dataset:")
print(data.head())
print("\nDataset Information:")
print(data.info())
print("\nSummary Statistical:")
print(data.describe())
if 'Category' in data.columns:
    print("\nUnique values in 'Category' column:")
    print(data['Category'].value_counts())
```

	Α	В	С		
1	Category	Sales	Profit		
2	Electronics	300	40		
3	Furniture	400	50		
4	Clothing	350	60		
5	Electronics	250	80		
6	Clothing	200	70		
7	Furniture	500	100		

Output:

```
TERMINAL
 warnings.warn(
PS C:\Users\Rashmi Pandey\Desktop\Logistic> & "C:/Program Files/Python313/python.exe" "c:/Users/Rashmi Pandey/Desktop/Logistic/data.py"
First 5 rows of the dataset:
                Sales Profit
     Category
0 Electronics
                  300
                            40
    Furniture
                  400
     Clothing
                             80
3 Electronics
                   250
     Clothing
                   200
                             70
{\tt Dataset\ Information:}
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 3 columns):
             Non-Null Count Dtype
# Column
    Category 6 non-null
                               object
     Sales 6 non-null
Profit 6 non-null
                               int64
                               int64
dtypes: int64(2), object(1)
memory usage: 276.0+ bytes
None
Summary Statistical:
                      Profit
count
        6.000000
                    6.000000
                   66.666667
       108.012345
                   21.602469
       200.000000
                    40.000000
       262.500000
                    52.500000
50%
       325.000000
                    65.000000
       387.500000
                   77.500000
       500.000000 100.000000
Unique values in 'Category' column:
Category
Electronics
Furniture
Clothing
Name: count, dtype: int64
```

Practical: 8a

Aim: Perform data visualization using python on any sales data.

Code:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = {
    'Data': pd.date range(start='2023-01-01', periods=100, freq='D'),
    'Product': ['Product A', 'Product B', 'Product C', 'Product D']* 25,
    'Category': ['Electronics', 'Furniture', 'Clothing', 'Books']* 25,
    'Region': ['North', 'South', 'East', 'West']* 25,
    'Sales': [x * 10 \text{ for } x \text{ in range}(100)],
    'Profit': [x * 2 for x in range(100)],
}
df = pd.DataFrame(data)
print(df.head())
plt.figure(figsize=(10, 5))
sns.lineplot(data=df, x='Data', y='Sales', marker='o')
plt.title('Sales Trend Over Time')
plt.xlabel('Data')
plt.ylabel('Sales')
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 5))
sns.barplot(data=df, x='Category', y='Sales', ci=None, palette='viridis')
plt.title('Sales by Category')
plt.xlabel('Category')
plt.ylabel('Total Sales')
plt.show()
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, x='Region', y='Profit', palette='coolwarm')
plt.title('Profit Distribution by Region')
plt.xlabel('Region')
plt.ylabel('Profit')
plt.show()
plt.figure(figsize=(8, 5))
product sales = df.groupby('Product')['Sales'].sum().reset index()
sns.barplot(data=product_sales, x='Product', y='Sales', palette='magma')
plt.title('Total Sales by Product')
plt.xlabel('Product')
```

plt.ylabel('Sales') plt.show()

Output:

Data	Product	Category	Region	Sales	Profit	
0 2023-01-01	Product A	Electronics	North	0	0	
1 2023-01-02	Product B	Furniture	South	10	2	
2 2023-01-03	Product C	Clothing	East	20	4	
3 2023-01-04	Product D	Books	West	30	6	
4 2023-01-05	Product A	Electronics	North	40	8	

 \P Figure 1 - \square X

 - □ >

€ Figure 1

 ® Figure 1 − □ X

☆ ← → | **← Q হ** | **E**|

Practical: 8b

Aim: Perform data visualization using PowerBI on any sales data.

Steps:-

Step 1:- Download & Install Power BI

Step 2:- create a sample data

	Α	В	С	D	E	F	G	Н	1	J	K
1	Order ID	Date	Product Name	Category	Sales Amount	Quantity Sold	Customer Name	Customer Region	Payment Method	Discount (%)	Profit
2	ORD1001	01-01-2024	Laptop	Electronics	1200	2	John Doe	New York	Credit Card	10	300
3	ORD1002	02-01-2024	Smartphone	Electronics	800	1	Alice Smith	California	Debit Card	5	150
4	ORD1003	03-01-2024	Shoes	Fashion	100	3	Robert Brown	Texas	Cash	15	30
5	ORD1004	04-01-2024	Washing Machine	Home Appliances	500	1	Emily Davis	Florida	Net Banking	8	80
6	ORD1005	05-01-2024	Tablet	Electronics	300	2	Michael Lee	Illinois	UPI	10	60
7	ORD1006	06-01-2024	Headphones	Accessories	50	4	Sophia Wilson	New York	Credit Card	5	15
8	ORD1007	07-01-2024	Refrigerator	Home Appliances	900	1	Daniel Scott	Texas	Debit Card	12	180

Step 3 :- Import the Sales Dataset

- Click "Home" > "Get Data".
- Choose your data source:
 - o Excel (XLSX/CSV)
 - o SQL Server
 - o Online Services (Google Sheets, SharePoint, etc.)
- Browse and select the dataset.

• Click "Load" to import.

Step 4 :- Clean & Transform Data (Power Query)

Step 5 :- Create Data Visualizations

- Click on "Line Chart" in the "Visualizations" pane.
- Drag Order Date to the X-axis.
- Drag Sales Amount to the Y-axis.
- Customize the chart (format labels, add title, etc.).

Step 6:- Add Filters & Interactivity

Output:-

Aim: Create the Data staging area for the selected database using SQL

STEPS:-

Step 1:- Create a Staging Database First, create a staging database to store raw sales data.

CREATE DATABASE Sales Staging;

USE Sales_Staging;

Step 2:- Create Staging Tables Create tables that match the structure of raw sales data but include additional fields like load date and batch ID.

CREATE TABLE Staging_Sales (

SalesID INT PRIMARY KEY,

OrderDate DATE,

ProductName VARCHAR(100),

Category VARCHAR(50),

Region VARCHAR(50),

SalesAmount DECIMAL(10,2),

Profit DECIMAL(10,2),

Quantity INT,

LoadDate DATETIME DEFAULT CURRENT TIMESTAMP,

BatchID INT);

Step 4:- Perform Data Cleansing & Transformation

Remove Duplicates DELETE FROM Staging_Sales

WHERE SalesID NOT IN (

SELECT MIN(SalesID) FROM Staging_Sales GROUP BY OrderDate, ProductName, Region);

Handle Null Values

UPDATE Staging_Sales SET Profit = 0 WHERE Profit IS NULL;

Output:

