Deep Learning Final Project

Matching emotions: portraits and songs

Stefanos Vlachos | dit2202dsc

Efstathios Zaragkas | dit2203dsc

Introduction

What is the goal of this project? What approach was adopted?

• Implement an application that utilizes the basic steps of Deep Learning

• Implement an application that utilizes the basic steps of Deep Learning

Initial Idea

• Implement an application that utilizes the basic steps of Deep Learning

Initial Idea

However:

- Hard to find large volumes of annotated data
- Demanding task

Viable Idea

Detect face

Viable Idea

Detect face

Sentiment Analysis on face

Viable Idea

Sentiment Analysis on face

Title	Time	Artist ^	Album	Genre	0	Plays
All of Me (Bumper's Audition)	1:28	Adam DeVine	Pitch Perfect 2 (Or	Soundtrack		
Girl On Fire	3:45	Alicia Keys	Girl On Fire - Single	R&B/Soul		
The Man	4:15	Aloe Blacc	Lift Your Spirit	Pop		
Cups (Movie Version)	1:17	Anna Kendrick	Pitch Perfect (Orig	Soundtrack		
Problem (feat. Iggy Azalea)	3:14	Ariana Grande	Problem (feat. Igg	Pop		
The Way (feat. Mac Miller)	3:47	Ariana Grande	Yours Truly	Pop		
Wake Me Up	4:10	Avicii	Wake Me Up - Sin	Dance		
Airplanes (feat. Hayley Williams	2:59	B.o.B	Airplanes (feat. Ha	Hip-Hop/R		
John Doe (feat. Priscilla)	3:32	B.o.B	John Doe (feat. Pri	Hip-Hop/R		
Get'cha Head In the Game (Pop	2:44	B5	High School Musical	Soundtrack		
Bellas Regionals: The Sign / Ete	2:40	The Barden Bellas	Pitch Perfect (Orig	Soundtrack		
Pool Mashup: Just the Way You	1:39	The Barden Bellas	Pitch Perfect (Orig	Soundtrack		
Party In the U.S.A.	1:03	The Barden Bellas	Pitch Perfect (Orig	Soundtrack		
Bellas Finals: Price Tag / Do • • •	3:37	The Barden Bellas	Pitch Perfect (Orig	Soundtrack		
Kennedy Center Performance	2:27	The Barden Bellas	Pitch Perfect 2 (Or	Soundtrack		
Convention Performance	1:41	The Barden Bellas	Pitch Perfect 2 (Or	Soundtrack		
Back to Basics	1:31	The Barden Bellas	Pitch Perfect 2 (Or	Soundtrack		
Cups (When I'm Gone) [Campfir	0:46	The Barden Bellas	Pitch Perfect 2 (Or	Soundtrack		
World Championship Finale 2	4:16	The Barden Bellas	Pitch Perfect 2 (Or	Soundtrack		
Riff Off: Mickey / Like a Virgin /	3:44	The Barden Bellas,	Pitch Perfect (Orig	Soundtrack		
Pompeii · · ·	3:34	Bastille	Bad Blood (Bonus	Alternative	0	
God Only Knows	2:53	The Beach Boys	Sounds of Summe	Rock		
Michelle	2:42	The Beatles	The Beatles 1962	Rock		
Yellow Submarine	2:39	The Beatles	The Beatles Box Set	Rock		
Shower	3:26	Becky G.	Shower - Single	Pop		
For Forever	5:01	Ben Platt	Dear Evan Hansen	Soundtrack		
Words Fail	5:52	Ben Platt	Dear Evan Hansen	Soundtrack		
If I Could Tell Her	4:09	Ben Platt & Laura	Dear Evan Hansen	Soundtrack		

Match song with same emotion

Datasets

Which datasets were used for each modality?

Emotion Detection | Kaggle Dataset

- **35.902** Total images
- **48 X 48** pixels
- Greyscale
- Annotated:
 - 4002 Surprised
 - 6198 Neutral
 - 6082 Sad
 - 5121 **Fearful**
 - 4980 Angry
 - 574 Disgusted
 - 8999 Happy

Emotion Detection | Kaggle Dataset

- **35.902** Total images
- 48 X 48 pixels
- Greyscale
- Annotated:
 - 4002 Surprised
 - 6198 **Neutral**
 - 6082 Sad
 - 5121 Fearful
 - 4980 Angry
 - 574 **Disgusted**
 - 8999 **Happy**

Used for:

Train, Validation and Test

Art Portraits | Kaggle Dataset

- **4.117** Total images
- Random resolutions
- RGB
- Not Annotated

Art Portraits | Kaggle Dataset

- **4.117** Total images
- Random resolutions
- RGB
- Not Annotated

Used for:

Demonstration purposes

4Q Audio Emotion Dataset

- 900 Audio Clips
- ~30 seconds
- Annotated:

Q1, Q2, Q3, Q4

4Q Audio Emotion Dataset

- 900 Audio Clips
- ~30 seconds
- Annotated:

Q1, Q2, Q3, Q4

PMEmo

- **794** Chorus Clips
- Random durations
- Annotated:

Arousal, Valence

4Q Audio Emotion Dataset

- 900 Audio Clips
- ~30 seconds
- Annotated:

Q1, Q2, Q3, Q4

WCMED

- 200 Classical Songs
- **~8-20** seconds
- Annotated:

Arousal, Valence

PMEmo

- **794** Chorus Clips
- Random durations
- Annotated:

Arousal, Valence

4Q Audio Emotion Dataset

- 900 Audio Clips
- ~30 seconds
- Annotated:

Q1, Q2, Q3, Q4

WCMED

- 200 Classical Songs
- **~8-20** seconds
- Annotated:

Arousal, Valence

PMEmo

- **794** Chorus Clips
- Random durations
- Annotated:

Arousal, Valence

Emotify

- 400 Audio Clips
- **1** minute
- Annotated:

Amazement, Solemnity, Power etc

Annotations

How can we find a common ground for different annotations?

Russell's Four-Quadrant Emotion Prediction

Class-Based Analysis of Russell's Four-Quadrant Emotion Prediction in Virtual Reality using Multi-Layer Feedforward ANNs

Authors:

J. Mountstephens, N. S. Suhaimi, J. Teo

- Experiment using VR and ML
- Four-class emotion classification

Russell's Four-Quadrant Emotion Prediction

Class-Based Analysis of Russell's Four-Quadrant Emotion Prediction in Virtual Reality using Multi-Layer Feedforward ANNs

Authors:

J. Mountstephens, N. S. Suhaimi, J. Teo

- Experiment using VR and ML
- Four-class emotion classification

Used for:

Forming a common ground

Quadrants based categorization

Quadrants based categorization

Additional Class:

Neutral (N)

How were images prepared for training?

- **Q1:** (1, 0, 0, 0)
- **Q2:** (0, 1, 0, 0)
- **Q3:** (0, 0, 1, 0)
- **N:** (0, 0, 0, 1)

- Devided all pixels by 255
- Preserved similar distributions
- Enhanced generalization

- Used ImageDataGenerator
- Transformations:
 - Rotation
 - Flip
 - Zoom

Train Set: 70%

Validation Set: 20%

Test Set: 10%

Model Architecture

What is the architecture of the model used for Transfer Learning?

Base Model | MobileNet

- Lightweight deep convolutional neural network
- Designed for **mobile devices**
- 224 × 224 × 3 input
- Fully-connected at the top

Base Model | MobileNet

- Lightweight deep convolutional neural network
- Designed for mobile devices
- 224 × 224 × 3 input
- Fully-connected at the top

Also tried:

VGG16, DenseNet169, DenseNet201, ResNet50

Final Model

Mention:

Full-connected output was cut out

Final Model

Final Model

Final Model

Model Training

How was the model trained?

EarlyStopping

- Monitor: val_accuracy
- Patience: 8

Training Process

EarlyStopping

- Monitor: val_accuracy
- Patience: 8

Training Process

ReduceLROnPlateuau

- Monitor: val_accuracy
- Patience: 4

EarlyStopping

- Monitor: val_accuracy
- Patience: 8

Training Process

ModelCheckpoint

- Monitor: val_accuracy
- Mode: max

ReduceLROnPlateuau

- Monitor: val_accuracy
- Patience: 4

EarlyStopping

- Monitor: val_accuracy
- Patience: 8

Hyperparameters:

Batch Size: 64, Epochs: 80,

LR: 0,001

Training Process

ModelCheckpoint

- Monitor: val_accuracy
- Mode: max

ReduceLROnPlateuau

- Monitor: val_accuracy
- Patience: 4

Training Results

Model Evaluation

What is the performance of the model on test data?

Testing Results

	precision	recall	f1-score	support
0	0.57	0.65	0.61	620
1	0.88	0.83	0.86	900
2	0.75	0.78	0.77	1435
3	0.58	0.50	0.54	636
accuracy			0.72	3591
macro avg	0.70	0.69	0.69	3591
weighted avg	0.72	0.72	0.72	3591

Sentiment Analysis on portraits

How is sentiment extracted from portraits?

Sentiment Analysis on Portraits

- Use of **MTCNN** to detect face
- Crops 48 x 48 pixels face

Sentiment Analysis on Portraits

Sentiment Analysis on Portraits

Thank you.

Stefanos Vlachos dit2202dsc

Efstathios Zaragkas

dit2203dsc