Metropolis-Hastings Project Math 4430

Jacques Nel - Nick Rooney - Steven Wong

December 2, 2020

Task 1

Write out a proof that P is reversible with respect to μ . Conclude that μ is an invariant probability distribution for P.

To show that P is reversible with respect to μ , we must show that

$$\mu_i P_{ij} = \mu_j P_{ji}$$

In the case i = j this is trivial. Otherwise if $i \neq j$,

$$\mu_i P_{ij} = \mu_i q_{ij} \min \left\{ 1, \frac{\mu_j}{\mu_i} \right\} = q_{ij} \min \left\{ \mu_i, \mu_j \right\}$$

and similarly

$$\mu_j P_{ji} = \mu_j q_{ji} \min \left\{ 1, \frac{\mu_i}{\mu_j} \right\} = q_{ji} \min \left\{ \mu_j, \mu_i \right\}$$

If a probability mass function μ_i satisfies the above, then it is invariant, because $\forall j, \pi_j = \sum_i \pi_i P_{ij}$

$$\sum_{i} \pi_i P_{ij} = \sum_{i} \pi_j P_{ji} = \pi_j \sum_{i} P_{ji} = \pi_j \quad \Box.$$

Task 2

Write out a proof that P is irreducible, and that if μ isn't perfectly uniform, then P is aperiodic. [Hint: show that if $i \longrightarrow j$ under Q, then $i \longrightarrow j$ under P. For aperiodicity, consider a site where a transition could be rejected.]

For the chain P to be irreducible, we must show that $\forall i, j \in \mathcal{S}, i \longrightarrow j$. It is sufficient to show that if $i \longrightarrow j$ under Q, then $i \longrightarrow j$ under P. Suppose $i \longrightarrow j$ under Q. There are two cases to

consider.

Case 1: If $\mu_j \geq \mu_i$ then we always accept the move and $p_{ij} = q_{ij}$, and since Q is symmetric, $\exists n \text{ such } q_{ij}^{(n)} > 0$. Therefore $\forall i, j \in \mathcal{S} \ i \longrightarrow j$.

Case 2: If $\mu_j < \mu_i$ then $p_{ij} = q_{ij} \frac{\mu_j}{\mu_i} > 0$, so $p_{ij} > 0$.

Suppose that μ is not perfectly uniform, then w.l.g. there exists an $l, i \in \mathcal{S}$ such that $\frac{\mu_l}{\mu_i} < 1$.

If this is true, then one term of the sum

$$\sum_{k \neq i} q_{ik} \min \left\{ 1, \frac{\mu_k}{\mu_i} \right\}$$

is smaller, ie. $q_{il} \frac{\mu_l}{\mu_i} < q_{il}$, so we have

$$p_{ij} = 1 - \sum_{k \neq i} q_{ik} \min\left\{1, \frac{\mu_k}{\mu_i}\right\} > 0.$$

Then the period of state i is 1, but since P is irreducible, it has only one class, so the period of P must be $gcd\{1,\ldots\}=1$. So P is aperiodic \square .

Task 3

We propose the following method to define Q:

Given a current state which is the tour $x = (x_0 \ x_1 \ \cdots \ x_{19})$, randomly pick $i, j \in \{0, \dots 19\}$ such that $i' \neq j'$ and $i = \min(i', j'), j = \max(i, j)$. Define T to be the transformation which swaps cities i and j, ie.

$$(x_0 \quad \cdots \quad x_i \quad \cdots \quad x_j \quad \cdots x_{19}) \longrightarrow (x_0 \quad \cdots \quad x_j \quad \cdots \quad x_i \quad \cdots x_{19})$$

If all resulting tours x' are valid, then there are $\binom{20}{2} = 190$ possible outcomes, so the probability q_{ij} for $i \neq j$ is

$$q_{ij} = \frac{1}{\binom{20}{2}} = \frac{1}{190}$$

In the event that state x_j is not valid due it containing a forbidden connection between two cities, we remain in state x_i . Suppose f denotes the number of forbidden states that neighbor state x_i . Then the probability of remaining in state x_i are

$$q_{ii} = \frac{f}{\binom{20}{2}}.$$

When a state x_i has more forbidden neighbors, the probability of remaining in state x_i increases proportionally. The effect of this is that $q_{ij} = \frac{1}{190}$ for all $i, j \in \mathcal{S}$ where K is a constant, and that implies $q_{ij} = q_{ji}$ \square .

Task 4-Our implementation

Please refer to listing 1 for our implementation of the Metropolis-Hastings algorithm so to estimate the expectation of the total tour length of all tours in S.

We begin by enumerating the pairs (edges) between all 20 cites. On a complete graph, there would be $\binom{20}{2} = 190$ edges, but we randomly forbid and store 5 of the 190 edges.

The following connections are banned:

$$0 \nleftrightarrow 18 \qquad 1 \nleftrightarrow 7 \qquad 1 \nleftrightarrow 10 \qquad 1 \nleftrightarrow 19 \qquad 9 \nleftrightarrow 17$$

Next, we randomly sample distances from a gamma distribution with k = 7.5. A convenience function is created to check if a candidate state x' is feasible, it simply compares all edges in a tour with the set of forbidden edges.

Finally, the function mcmc performs the Metropolis-Hastings algorithm. An initial burn-in of length n is performed, then the chain is sampled m times. In practice we used

$$n = 10^5$$
 and $m = 10^6$.

This process was repeated several times to show the convergence of the estimated expected total distance E[f(x)] as is shown in fig. 2.

Table 1: Results of 10 runs of Metropolis-Hastings algorithm

Run	E[f(x)] estimate
1	151.7582975592603
2	151.78521559558445
3	151.71995644022766
4	151.72257839116807
5	151.7989403512341
6	151.77048793781816
7	151.73434402770206
8	151.7712540561242
9	151.723880973142
10	151.7255789619957

Figure 1: $l(i,j) \sim \text{Gamma}(k=7.5)$

Figure 2: Several runs of Metropolis-Hastings algorithm $n=10^6$ and $m=10^4$

Figure 2 shows the convergence of the MCMC. The burn-in phase is not depicted.

Appendix

Table 2: Distances between pairs of cities (i,j) for $i,j \in \{0,9\}$ and $i \neq j$

i	j	l(i, j)	i	j	l(i, j)	i	j	l(i, j)	i	j	l(i, j)	i	j	l(i, j)
0	1	11.26	2	11	13.25	8	10	4.95	11	4	7.32	16	18	6.79
0	2	11.92	2	12	8.08	8	11	10.29	11	5	7.04	16	19	5.14
0	3	6.02	2	13	15.34	8	12	7.86	11	6	6.13	17	2	4.03
0	4	5.74	2	14	4.70	8	13	5.82	11	7	5.34	17	3	4.16
0	5	8.05	2	15	13.81	8	14	3.23	11	12	14.47	17	4	6.58
0	6	14.37	2	18	8.12	8	15	8.22	11	13	6.84	17	5	5.15
0	7	9.05	2	19	4.63	8	16	6.86	11	14	13.87	17	6	7.10
0	8	5.09	3	4	4.27	8	17	7.35	11	15	8.47	17	7	7.25
0	9	10.81	3	5	9.03	8	18	4.50	12	5	6.70	17	10	6.54
0	10	3.00	3	6	3.46	8	19	15.86	12	6	7.86	17	11	8.55
0	11	7.43	3	7	3.77	9	2	11.78	12	7	6.49	17	12	3.17
0	12	6.67	3	12	8.88	9	3	5.63	12	13	6.71	17	13	8.76
0	13	3.04	3	13	9.89	9	4	6.60	12	14	11.08	17	14	9.74
0	14	11.61	3	14	7.47	9	5	4.36	12	15	6.48	17	15	9.77
0	15	6.37	3	15	9.96	9	6	8.22	13	5	9.27	17	18	6.96
0	16	6.88	4	5	14.08	9	7	9.63	13	6	4.28	17	19	6.61
0	17	7.25	4	6	4.28	9	10	7.84	13	7	13.30	18	3	3.94
0	19	6.64	4	7	5.54	9	11	6.62	13	14	9.35	18	4	10.56
1	2	6.89	4	12	6.72	9	12	6.46	13	15	5.58	18	5	13.23
1	3	5.27	4	13	12.53	9	13	5.10	14	7	10.12	18	6	13.52
1	4	5.11	4	14	9.28	9	14	6.23	14	15	5.13	18	7	10.42
1	5	7.55	4	15	4.94	9	15	8.94	15	7	9.11	18	11	6.20
1	6	6.03	5	6	4.72	9	18	10.98	16	1	7.09	18	12	8.71
1	9	7.93	5	7	5.91	9	19	5.59	16	2	9.97	18	13	6.36
1	11	11.22	5	14	8.21	10	3	7.85	16	3	6.82	18	14	5.02
1	12	5.48	5	15	8.39	10	4	9.40	16	4	5.74	18	15	14.79
1	13	8.99	6	7	5.08	10	5	7.12	16	5	6.00	18	19	5.46
1	14	2.97	6	14	10.78	10	6	7.28	16	6	4.76	19	3	8.73
1	15	5.40	6	15	5.37	10	7	6.48	16	7	9.43	19	4	6.78
1	17	9.07	8	1	7.00	10	11	12.31	16	9	8.66	19	5	10.94
1	18	5.72	8	2	6.02	10	12	4.34	16	10	4.08	19	6	8.01
2	3	8.26	8	3	10.55	10	13	3.35	16	11	11.61	19	7	13.82
2	4	4.77	8	4	5.51	10	14	2.68	16	12	9.64	19	11	4.46
2	5	3.99	8	5	3.72	10	15	9.40	16	13	8.25	19	12	4.87
2	6	6.67	8	6	6.77	10	18	4.39	16	14	10.74	19	13	7.57
2	7	9.61	8	7	8.01	10	19	4.96	16	15	7.20	19	14	7.19
2	10	7.26	8	9	12.26	11	3	8.05	16	17	7.78	19	15	4.11

Table 2 shows distances on between the 185 pairs of 20 cities. Distances are generated randomly from a gamma distribution. Refer to listing 1 for details.

Listing 1: Traveling Salesperson with MCMC

```
1 import random
2 from pprint import pprint
3 import time
4 import json
5 import pickle
6 import math
7 from pathlib import Path
9 import numpy as np
10 import matplotlib as mpl
import matplotlib.pyplot as plt
plt.style.use('ggplot')
mpl.use('Agg')
14 import scipy.stats.distributions as distributions
16 DATA_PATH = Path(__file__).absolute().parents[1] / 'data' / 'data.pkl'
18 # Make results reproducible.
19 random.seed(0)
np.random.seed(0)
n_cities = 20
n_{ban} = 5
# Enumerate edges between pairs of cities.
26 pairs = {frozenset([i, j]) for i in range(n_cities) for j in range(i + 1, n_cities)
      if i != j}
27
28 bans = random.sample(pairs, n_ban)
31 # Define and plot gamma distribution.
gamma = distributions.gamma(a=7.5)
33 fig, ax = plt.subplots(1)
x = np.linspace(0, 25, 100)
z = gamma.pdf(x)
36 ax.plot(x, z)
ax.set_xlabel('Distance')
ax.set_ylabel('Probability')
39 fig.savefig('fig1.pdf', dpi=200)
41 # Randomly sample distances for each edge.
42 distances = {p: gamma.rvs() for p in pairs.difference(bans)}
44 # Create LaTeX table for distances.
with open('table1-1.tex', 'wt') as fh:
47
      vals = list((i, j, d) for (i, j), d in distances.items())
      vals = sorted(vals, key=lambda e: (e[0], e[1]))
48
49
      row = ' & '.join(('{} & {} & {:.2f}',) * 5) + ' \\\\n'
50
51
      for i in range(len(vals) // 5):
52
          row_s = row.format(*vals[i], *vals[i + 37], *vals[i + 2 * 37], *vals[i + 3 *
53
```

```
37], *vals[i + 4 * 37])
           fh.write(row_s)
54
55
# Create LaTeX table for forbidden eges.
with open('table1-2.tex', 'wt') as fh:
       vals = list((i, j) for (i, j) in bans)
59
       vals = sorted(vals, key=lambda e: (e[0], e[1]))
60
61
       for e in vals:
62
           fh.write('{} & {} \\\\n'.format(*e))
63
64
65
66 def legal(t):
       for i in range(n_cities):
67
           if {t[i], t[(i + 1) % n_cities]} in bans:
68
                return False
69
       return True
70
71
72
73 def dist(t):
       return sum(distances[frozenset((t[i], t[(i + 1) % n_cities]))] for i in range(
74
       n_cities))
77 def mcmc(n_burn, m_samples):
       # Pick random initial state; repeat until we have legal first tour.
79
       t0 = tuple(random.sample(range(n_cities), n_cities))
80
       while not legal(t0):
81
           t0 = tuple(random.sample(range(n_cities), n_cities))
82
83
       # Do burn-in.
84
       t = t0
85
       for k in range(n):
86
87
           i, j = random.sample(range(n_cities), 2)
88
89
           t_prime = list(t)
90
           t_prime[i], t_prime[j] = t_prime[j], t_prime[i]
91
92
           t_prime = tuple(t_prime)
           if legal(t_prime):
93
               t = t_prime
94
95
       # Sample MCMC.
96
97
       d = 0.
       d += dist(t)
98
       running_avg = [d, ]
99
       for k in range(m):
100
           i, j = random.sample(range(n_cities), 2)
102
           t_prime = list(t)
104
           t_prime[i], t_prime[j] = t_prime[j], t_prime[i]
           t_prime = tuple(t_prime)
```

```
if legal(t_prime):
              t = t_prime
108
109
           d += dist(t)
110
111
112
           if k % 100 == 0:
              running_avg.append(d / (k + 2))
113
114
     return d / (m + 1), running_avg
115
116
117
118 n = 100000
_{119} m = 1000000
121 num_runs = 10
122
fig, ax = plt.subplots(1, 1)
124
for i in range(num_runs):
d_exp, plt_d_exp = mcmc(n, m)
      ax.plot(list(range(len(plt_d_exp))), plt_d_exp, linewidth=1.0)
127
128
     print(f'{i} -> E[f(t)] = {d_exp}')
ax.set_ylabel('$E[ f(x) ]$ estimate')
131 ax.set_xlabel('$m$')
132
fig.savefig('fig2.pdf', dpi=200)
```