

IRF7907PbF

HEXFET® Power MOSFET

Applications

 Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box

V _{DSS}		R _{DS(on)} max	I _D
30V	Q1	16.4 m Ω @ $V_{GS} = 10V$	9.1A
	Q2	11.8m Ω @ V_{GS} = 10 V	11A

Benefits

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current
- 20V V_{GS} Max. Gate Rating
- Improved Body Diode Reverse Recovery
- 100% Tested for R_G
- Lead-Free

Absolute Maximum Ratings

	Parameter	Q1 Max.	Q2 Max.	Units	
V _{DS}	S Drain-to-Source Voltage		30		
V_{GS}	Gate-to-Source Voltage	± 2	20	1	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.1	11		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	7.3	8.8	A	
DM	Pulsed Drain Current ①	76	85	1	
P _D @T _A = 25°C	Power Dissipation	2.0	2.0	W	
P _D @T _A = 70°C	Power Dissipation	1.3	1.3	1	
	Linear Derating Factor	0.016	0.016	W/°C	
T_J	Operating Junction and	-55 to	+ 150	°C	
T_{STG}	Storage Temperature Range				

Thermal Resistance

	Parameter	Q1 Max.	Q2 Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ®	42	42	°C/W
$R_{\theta JA}$	Junction-to-Ambient @S	62.5	62.5	

IRF7907PbF Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	Q1&Q2	30			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	Q1		0.024		V/°C	Reference to 25°C, I _D = 1mA
		Q2		0.024		1	
		Q1		13.7	16.4		V _{GS} = 10V, I _D = 9.1A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			17.1	20.5	$m\Omega$	V _{GS} = 4.5V, I _D = 7.3A ③
D3(0H)		Q2		9.8	11.8	1	V _{GS} = 10V, I _D = 11A ③
				11.5	13.7	†	V _{GS} = 4.5V, I _D = 8.8A ③
V _{GS(th)}	Gate Threshold Voltage	Q1&Q2	1.35	1.8	2.35	V	Q1: V _{DS} = V _{GS} , I _D = 25µA
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient	Q1		-4.6			Q2: $V_{DS} = V_{GS}$, $I_{D} = 50\mu A$
△ • GS(tn) · △ · J	Gato Timodicia Voltago Ocombioni	Q2		-4.9		1, 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I	Drain-to-Source Leakage Current	Q1&Q2			1.0	μА	V _{DS} = 24V, V _{GS} = 0V
I _{DSS}	Diam-to-Source Leakage Guirent	Q1&Q2			150	 μΛ	$V_{DS} = 24V$, $V_{GS} = 6V$ $V_{DS} = 24V$, $V_{GS} = 0V$, $V_{J} = 125$ °C
1	Cata to Source Forward Lookege				100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Forward Leakage	Q1&Q2				 ''^	$V_{GS} = 20V$ $V_{GS} = -20V$
afo	Gate-to-Source Reverse Leakage	Q1&Q2	10		-100	<u> </u>	
gfs	Forward Transconductance	Q1	19			S	$V_{DS} = 15V, I_D = 7.0A$
	T + 10 + 01	Q2	24			 	$V_{DS} = 15V, I_{D} = 8.8A$
Q_q	Total Gate Charge	Q1		6.7	10	4	
		Q2		14	21	4	
Q_{gs1}	Pre-Vth Gate-to-Source Charge	Q1		1.3		4	Q1
		Q2		3.0		4	V _{DS} = 15V
Q_{gs2}	Post-Vth Gate-to-Source Charge	Q1		0.7		nC	$V_{GS} = 4.5V, I_D = 7.0A$
		Q2		1.3		1	
Q_gd	Gate-to-Drain Charge	Q1		2.5		1	Q2
		Q2		4.9			V _{DS} = 15V
Q_{godr}	Gate Charge Overdrive	Q1		2.2			$V_{GS} = 4.5V, I_D = 8.8A$
		Q2		4.8			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})	Q1		3.2			
		Q2		6.2			
Q _{oss}	Output Charge	Q1		4.5		nC	$V_{DS} = 16V, V_{GS} = 0V$
		Q2		9.0		1	
R _G	Gate Resistance	Q1		2.6	4.7	Ω	
<u> </u>		Q2		3.0	5.0	1	
t _{d(on)}	Turn-On Delay Time	Q1		6.0			Q1
3,011)		Q2		8.0		1	$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time	Q1		9.3		1	I _D = 7.0A
1		Q2		14		ns	
t _{d(off)}	Turn-Off Delay Time	Q1		8.0		†	Q2
-u(0Π)	Tame on Bolay Fillion	Q2		13		†	$V_{DD} = 15V, V_{GS} = 4.5V$
t _f	Fall Time	Q2 Q1		3.4		†	I _D = 8.8A
ч	T an Time	Q2		5.3		1	Clamped Inductive Load
<u> </u>	Input Canacitance	Q2 Q1		850		+	Clamped inductive Load
C _{iss}	Input Capacitance					1	V = 0V
	Output Conscitones	Q2		1790		┨	$V_{GS} = 0V$
C _{oss}	Output Capacitance	Q1		190		pF	$V_{DS} = 15V$
	<u> </u>	Q2		390		4	f = 1.0 MHz
C_{rss}	Reverse Transfer Capacitance	Q1		88		4	
		Q2		190	l		

Avalanche Characteristics

	Parameter	Тур.	Q1 Max.	Q2 Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		10	15	mJ
IAB	Avalanche Current ①		7.0	8.8	A

Diode Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	Q1			2.8	Α	MOSFET symbol
	(Body Diode)	Q2			2.8		showing the
I _{SM}	Pulsed Source Current	Q1			76	Α	integral reverse
	(Body Diode) ①	Q2			85		p-n junction diode.
V _{SD}	Diode Forward Voltage	Q1		_	1.0	V	$T_J = 25^{\circ}C$, $I_S = 7.3A$, $V_{GS} = 0V$ ③
		Q2			1.0		$T_J = 25^{\circ}C$, $I_S = 8.8A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time	Q1		12	18	ns	Q1 $T_J = 25^{\circ}C$, $I_F = 7.0A$,
		Q2		16	24		V _{DD} = 15V, di/dt = 100A/μs ③
Q _{rr}	Reverse Recovery Charge	Q1		4.1	6.1	nC	Q2 $T_J = 25^{\circ}C$, $I_F = 8.8A$,
		Q2		5.9	8.9		V _{DD} = 15V, di/dt = 100A/μs ③

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage

Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 11. Maximum Safe Operating Area

Fig 12. Maximum Safe Operating Area www.irf.com

Fig 13. Normalized On-Resistance vs. Temperature

Fig 15. Typical Source-Drain Diode Forward Voltage

Fig 17. Typical On-Resistance vs.Gate Voltage www.irf.com

Fig 14. Normalized On-Resistance vs. Temperature

Fig 16. Typical Source-Drain Diode Forward Voltage

Fig 18. Typical On-Resistance vs. Gate Voltage

Fig 19. Maximum Drain Current vs. Ambient Temp.

Fig 21. Threshold Voltage vs. Temperature

Fig 23. Maximum Avalanche Energy vs. Drain Current 6

Fig 20. Maximum Drain Current vs. Ambient Temp.

Fig 22. Threshold Voltage vs. Temperature

Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com

Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)

Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)

Fig 27. Layout Diagram

www.irf.com 7

Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 29a. Unclamped Inductive Test Circuit

Fig 30a. Switching Time Test Circuit

Fig 31a. Gate Charge Test Circuit

Fig 29b. Unclamped Inductive Waveforms

Fig 30b. Switching Time Waveforms

Fig 31b. Gate Charge Waveform

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

	6X e =
	e1 A C
	8X b A1 0.10 [.004]
Φ	0.25 [.010] (M) C A B

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
О	.0075	.0098	0.19	0.25	
D	.189	1968	4.80	5.00	
Е	1497	.1574	3.80	4.00	
е	.050 B/	ASIC	1.27 BASIC		
e 1	.025 B/	ASIC	0.635 E	BASIC	
Н	2284	2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE M S-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- CONTROLLING DIMENSION: MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, Q1: L = 0.41mH, $R_G = 25\Omega$, $I_{AS} = 7.0A$; Q2: L = 0.38mH, $R_G = 25\Omega$, $I_{AS} = 8.8A$.
- ③ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

- When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.