Petit problème.

On note $C^0(\mathbb{R}, \mathbb{R})$ l'anneau des fonctions continues de \mathbb{R} dans \mathbb{R} .

On cherche les fonctions $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et $g \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ solutions des équations fonctionnelles :

- (E) $\forall (x,y) \in \mathbb{R}^2$: f(x+y) + f(x-y) = 2(f(x) + f(y))
 - $(F) \qquad \forall (x,y) \in \mathbb{R}^2 \quad : \quad g(x+y)g(x-y) = (g(x)g(y))^2.$
- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue solution de (E).
 - (a) Que vaut f(0)? Montrer que f est paire.
 - (b) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, montrer que $f(nx) = n^2 f(x)$. On pourra procéder par récurrence à deux termes.
 - (c) Pour $k \in \mathbb{Z}$ et $x \in \mathbb{R}$, montrer que $f(kx) = k^2 f(x)$.
 - (d) Pour $r \in \mathbb{Q}$, montrer que $f(r) = r^2 f(1)$.
- 2. Soit $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$ une fonction solution de (E).

Montrer qu'il existe $a \in \mathbb{R}$ tel que $f(x) = ax^2$ pour tout $x \in \mathbb{R}$.

- 3. (a) Quels sont les $a \in \mathbb{R}$ tels que la fonction $x \mapsto e^{ax^2}$ est solution de (F)?
 - (b) Soit g une solution de (F). Montrer que g(0) = 0 si et seulement si g = 0.
 - (c) On suppose désormais que g est une solution de (F), continue et non identiquement nulle.
 - (i) Quelles sont les deux valeurs possibles de g(0)?
 - (ii) Montrer que g ne s'annule pas.
 - (iii) En déduire que la fonction $f: x \mapsto \ln(|g(x)|)$ est une solution continue de (E).
 - (d) Trouver toutes les solutions continues de (F).

Exercice 1.

Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ une fonction T-périodique avec T > 0. Justifier que f est bornée sur \mathbb{R} .

Exercice 2

Déterminer toutes les fonctions $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telles que

$$\forall x \in \mathbb{R} \quad f(x)^2 = 1.$$

Un peu de lecture.

Le site Stack Exchange est une plate-forme de Questions-Réponses. La partie consacrée aux maths y est très riche : beaucoup de mathématiciens amateurs (et même certains professionnels très connus!) y échangent sur des questions de niveau variés.

Je vous propose, si cela vous amuse, de lire le post dont le titre est le suivant : Establishing the existence of a strictly increasing real function, discontinuous at all rationals and continuous at all irrationals.

https://math.stackexchange.com