

# NETWORK DESIGN MODELS

# Objectives of Network Design

- Network deve ser **modular** (deve suportar mudanças e evoluções - Scaling the network is eased by adding new modules instead of complete
- Network deve ser **resiliente** onde a rede deve possuir um Uptime perto dos 100\%, uma vez que caso exista uma falha de rede em algumas empresas (ex. financeiro), mesmo por um segundo, pode representar milhões de perdas. E pior ainda nos hospitais, se a uma rede falha, pode pôr em causa vidas.

Obviamente que a resiliência tem um certo custo, visto que o nível de resiliência deve estar entre o *budget* financeiro e o risco.

- Network deve ser **flexível**, pois os negócios tendem a evoluir e a mudar, e, para isso, deve ser possível uma adaptação **rápida** da network.

## HIERARCHICAL NETWORK MODEL

### **♦** Access Layer

- Providencia um utilizador aceder à network.
- Geralmente incorpora dispositivos switched LAN que permitem conectividade com workstations, IP phones, servidores e pontos de acesso sem fios.
- Para utilizadores remotos ou sites é possível um entrada na network pela tecnologia WAN.

### **♦** Distribution Layer

- Agrega dispositivos LAN.
- Isola problemas de network.
- Agrega conexões WAN e permite conectividade policy-based

### **♦** Core Layer

- A high-speed backbone.
- Core is critical for connectivity, must provide a high lever of availability and adapt quickly to changes.
- Should provide stability and fast convergence.
- Should provide an integration point for data center



## **Network Modules**



#### Campus

- Centro de operações de uma empresa
- Este modelo é onde maior parte dos utilizadores acedem à network
- Combina uma instrutora CORE de Switching inteligente e uma routing com mobilidade e avançada segurança

#### Data Center

- Data Centers redundantes providenciam um backup e replicação de aplicação
- Network e os dispositivos oferecem ao servidor e aplicativos load balanceamento to maximizar a performance

 Permite à empresa escala sem muitas mudanças na infrastutura

#### Branch

- Permite a empresas extender aplicações headoffice e serviços para localizações remotas e utilizadores ou pequenos grupos de branches.
- Permite à empresa um cost-effectively presence em largas áreas geográficas
- Segurança é providenciada com múltiplos serviços
  VPN de comunicação sobre Layer 2 ou 3

#### WAN and MAN

- Oferece uma convergência de áudio, vídeo e serviços de data
- Providencia segurança a voz, mission-critical data, and video applications
- Deve providenciar uma arquitetura robusta com altos níveis de resiliência para todos os branch offices.

#### Remote User

- Permite a empresas entregar áudio e data em segurança para um pequeno office/home office remotos (SOHO) sobre uma standard broadband access service
- Permite uma entrada na network sobre uma VPN e acesso a serviços e aplicações autorizadas

# **Designing the Access Layer**



**Alta disponibilidade** - Default gateway redundancy using multiple connections from access switches to redundant distribution layer switches & Redundant power supplies



Daisy Chain is a wiring scheme in which multiple devices are wired together in sequence or in a ring, similar to a garland of daisy flowers.

- When using a L2 link between Distribution layer switches:
  - Daisy Chain é aceitável, no entanto pode sobrecarregar algumas Access layer switches e ainda pode aumentar a convergência de STP em caso da falhas

# Without a Core Layer



#### Observando a figura acima:

- Pode ser **difícil** de escalar e compreender
- Aumenta a necessidade de cabos
- **Complexidade** dos routers num design full-mesh aumenta assim que os Neighbours são adicionados
- Pode ser usado em **pequenos** campos **sem perspetiva de crescimento**

Em pequenas networks, o Core e distribution layer pode ser só uma eliminando a necessidade de hardware de switching extra e simplifica a implementação da network. No entanto, elimina as vantagens de ter uma arquitetura de múltiplas layers, especialmente *fault isolation - identifies* when a fault has occurred, and pinpointing the type of fault and its location.

# **Avoid Too Much Redundancy**



#### Demasiada redundância aumenta:

- Complexidade de routing
- Número de portas usadas
- Wiring

# IP UNICAST ROUTING





## **IP Routing Overview**

- Routers encaminham pacotes para redes de destino
- Routers devem conhecer as networks destino para encaminhar os pacotes
- O router conhece as networks que estão diretamente conectadas com as suas interfaces
- Para networks não diretamente conectadas com as suas interfaces o router deve depender de informação vizinha
- O router pode conhecer as networks remotas a partir de:
  - → **Static Routing** Um administrador configura manualmente a informação
  - **Dynamic Routing** Aprende com os outros routers
  - → Policy Based Routing Excedem Static/ Dynamic Routing e podem depender de parÂmetros para além do endereço destino

## **Default Routes**

- Em algumas circunstâncias, um router não precisa de reconhecer os detalhes de networks remotas
- O router pode ser configurado para mandar todo o tráfico (ou todo o tráfico pela qual não há uma entrada mais específica routing table) para um específico neighbour router
  - É conhecido Default Route
- Default Routes são dinamicamente anunciados usando protocolos de routing ou então são estaticamente configurados.
  - IPV4 default route 0.0.0..0/0
  - IPV6 default route ::/0

# Static Routing,, Não Mexe

### Static Routing Examples



- Static routing n\u00e3o reage a mudan\u00e7as na network
- Static Routing n\u00e3o altera quando a network cresce
- Static Routing é usado quando :
  - ▶ o administrador necessita controlo total sobre todas as rotas usadas pelo router
  - ▶ o backup para uma rota dinamicamente reconhecida é necessária
  - é usada para alcançar uma network acessível por um único path (não existe backup link, por isso dynamic routing não apresenta vantagens)
  - ▶ o router conecta-se ao seu ISP e precisa de apenas uma rota default apontada para o router ISP, em vez de aprender várias rotas pelo ISP
  - ▶ o router é insuficientemente potente e não tem CPU ou recursos de memória necessários para aguentar um protocolo de dynamic routing.
  - ▶ não é desejado ter dynamic routing updates forwarded across baixa banda larga

# **Dynamic Routing**

- Dynamic routing permit que a network se ajuste a mudanças automaticamente sem precisar do envolvimento do admin
- Routers trocam informação sobre networks atingíveis e o estado de cada network/link
  - ▶ Routers exchange information only with other routers running the same routing protocol
  - ▶ When the network topology changes, the new information is dynamically propagated throughout the network, and each router updates its routing table to reflect the changes

## **Administrative Distance**

- O protocolo/método com a **menor** Administrative Distance é preferida
- Dentro do mesmo Autonomous System (AS), a
  Administrative Distance = 200, caso haja comunicação entre dois routers que pertençam a diferentes AS's
  Administrative Distance = 20
  - Exemplo
    - Static [1/1] 192.168.1.0/24 via ... ← Chosen!
    - RIP [**120**/1] 192.168.1.0/24 via ...
    - OSPF [**110**/1] 192.168.1.0/24 via ...

## **Autonomous Systems**

**AS** (**Autonomous System**) – set of routers/networks with a common routing policy and under the same administration.

- Routing **inside** an AS is performed by **IGPs** (Interior Gateway Protocols) such as **RIPv1**, RIPv2, **OSPF**, IS-IS and EIGRP
- Routing **between** AS is performed by **EGPs** (Exterior Gateway Protocols) such as **BGP** 
  - IGPs: optimize routing performance
- EGPs: optimize routing performance obeying political, economic and security policies



# **Type of Networks**



# Distance Vector Vs Link State Protocols

## **Distance Vector**

• Os routers aprendem a rede através da informação enviada pelos routers vizinhos, com essa informação e usando uma versão assíncrona do Bellman-Ford algorithm calculam os seus custos. Exemplos: RIPv1, RIPv2, IGRP, EIGRP.

## **Link State**

• Os routers aprendem toda a rede usando um algoritmo centralizado para calcular o caminho mais perto para todas as redes conhecidas. A informação é passada através de flooding, os routers com essa informação constroem as suas tabelas. Exemplos: OSPF, IS-IS.

# Distributed and Asynchronous Bellman-Ford Algorithm

- Cada node periodicamente envia para os seus vizinhos o seu custo até ao destination node.
- Cada node recalcula o seu próprio custo e envia a atualização.

# RIP (Routing Information Protocol)

É um distance vector protocol, cada router mantém uma lista das redes que conhece e o custo para chegar até elas (Distance Vector), cada router anuncia periodicamente o seu próprio custo (parcial ou completo) (announcement/update). Cada router usa os valores enviados pelos seus vizinhos para atualizar o seu custo.

## **RIP Version 1**

**RIPv1** é um protocolo que **não** anuncia **máscaras** (netmask) de rede, por isso usa a mascara da interface que recebeu o pacote, para usar este protocolo todas as redes têm de ter a mesma mascara. Usa o endereço de **broadcast 255.255.255.255** para enviar updates e não suporta autenticação o que o torna vulnerável a ataques maliciosos.

## **RIP Version 2**

RIPv2 adiciona ao RIPv1 a capacidade de suportar diferentes máscaras (netmasks). O endereço de broadcast para updates é diferente - 224.0.0.9, estes pacotes são apenas enviados para routers a correr o RIPv2.

# **Count to Infinity Problem**

Quando acontecem falhas antes de o algoritmo estabilizar criam-se os pacotes **infinitos** que enquanto não chegam ao seu destino continuam **sempre** a ser passados **infinitamente**.

# **Split-Horizon**

Para combater o problema do Count to Infinity, recorrese ao **split horizon,** onde cada router, em cada interface anuncia apenas as networks que não são usadas para chegar ao destino (root)

## **RIP Message Types**

#### RIP Response

- ▶ Contém Distance vector
- ▶ É enviado:
  - 1. Periodicamente (default são ~30seg, existe uma componente random)
  - 2. Opcionalmente, quando alguma informação muda
  - 3. Em resposta ao RIP Request

#### RIP Request (Optional)

▶ Enviado pelo o router que foi recentemente iniciado (bootstrap) ou quando a validade de alguma da informação do distance vector tenha expirado (default timeout = 180 s)

## RIPv1 vs RIPv2 Responses

Os pacotes do RIPv2 possuem alguns campos a mais em relação ao RIPv1:

- Subnet Mask, suporta tamanhos de masks variáveis e passa a **mascara da rede** e faz o RIPv2 ser um **classless** protocol.
- Route tag, usado para separar redes internas (to the RIP domain) e externas.
- Next Hop,, endereço para os quais os pacotes devem ser routed, 0.0.0.0 indica que o pacote deve ser enviado para o router que enviou o pacote (RIP message).

## RIPng for IPv6 Routing

Similar com o IPV4 RIPv2, em vez de IPV4 como transporte utiliza IPV6

Permite custos para alem de 1,, infinity metric value = 16

# **RIPng Path Costs**

Os custos são a soma de todos os custos até á rede em questão.

# Open Shortest Path First (OSPF) Protocol

- **OSPF** é um protocolo de routing **link-state**, pelo que responde **rápido a mudanças** na network, envia **updates** quando ocorre mudanças e ainda envia updates periodicamente, conhecidos como link-state refresh, entre 30 minutos de **intervalo**
- Routers que correm OSPF recolhem informação routing de todos os outros routers na network (ou dos de uma área de network definida)
- Cada router independentemente calcula os melhores caminhos para todos os destinos da network através do algoritmo de Dijkstra's (SPF)



# OSPF Necessary Routing Information

Para que todos os routers da network façam decisões de routing consistentes, cada router link-state deve guardar a seguinte informação:

#### Neighbour Routers

- Caso um router perca contacto com o router vizinho, em poucos segundos invalida todos os caminhos que passem por esse router e recalcula os caminhos pela network
- O router reconhece os outros routers e networks através de **LSA's** (LINK STATE ADVERTISEMENTS), que são *flooded* pela network
  - Melhores caminhos para cada destino:
    - Cada router independentemente calcula os melhores caminhos para todos os destinos da network através do algoritmo de Dijkstra's (SPF)
    - Todos os pacotes são guardados na LSDB (Link State Data Base)
    - Os melhores caminhos são oferecidos À routing table
    - Pacotes vindos até ao router são enviados com a informação que contém a routing table

## **OSPF Packets**

- **Hello** Descobre vizinhos e constrói adjacencies entre eles.
- **Database Description (DBD)** Confirma sincronização de database entre os routers
- Link-State Request (LSR) Pede certos link-state records de outro router
  - Link-State Update (LSU) Envia especificamente
- **LSAck** Reconhece os outros tipos de pacotes requested link-state records

## **OSPF Packet Format**



## **OSPF Areas**

#### Vantagens:

- Reduzida frequência do cálculo de SPF (Shortest Path First) sós os routers afetados com mudanças na network precisam de recalcular o SPF algorithm e o impacto da mudança localiza-se dentro da área a que estes pertencem.
  - Menos updates overhead
  - Routing Tables mais pequenas

# **OSPF Routers Types**





View while making this masterpiece

## **ABOUT THE AUTHOR**

João Afonso Pereira Ferreira (103037) - MIECT - Mestrado Integrado de Engenharia de Computadores e Telemática. Com recurso aos slides fornecidos pelo docente Paulo Salvador.