Reti di Elaboratori

Marco Casu

Contents

1	1 Reti di Calcolatori e Internet						
	1.1	Strutt	ura di Internet e Link	4			
		1.1.1	Reti Cablate e Wireless	4			
		1.1.2	Comunicazione e Classificazione delle Reti	5			
		1.1.3	Nucleo della Rete	7			
		1.1.4	Internet	8			
	1.2	Presta	zioni della Rete	9			
		1.2.1	Latenza e Perdita di Pacchetti	10			
		1.2.2	Ritardo di Accodamento	11			
	1.3	Introd	uzione ai Protocolli	12			
		1 3 1	Laver di Protocollo	12			

1 Reti di Calcolatori e Internet

Cos'è una richiesta di rete? E soprattutto quali sono i passaggi ed il procedimento scaturito a seguito di una richiesta? Questo corso si concentrerà sull'aspetto del *networking*, ossia, su come avviene la comunicazione tramite più elaboratori.

Una connessione è una comunicazione aperta in cui sono coinvolte entrambe le parti in attesa di ricevere ed inviare messaggi, tramite l'apertura di un socket (si approfondirà in seguito). Il problema di una comunicazione di questo tipo, è il bisogno di avere la certezza che i messaggi inviati da una parte siano ricevuti correttamente dall'altra, senza il rischio di comunicare "a vuoto", per questo sono definiti degli appositi protocolli.

Host: Un dispositivo connesso alla rete in modo periferico, non funge da esclusivo tramite per la comunicazione, ed è un sistema "periferico", esegue delle *app* che forniscono servizi sulla rete.

Switch: Gli switch sono i dispositivi capaci di "instradare" i pacchetti.

Rete: Una collezione di dispositivi host/switch e collegamenti gestiti da un unico ente/organizzazione.

Quella che noi chiamiamo **internet**, è una "rete di reti", ossia l'insieme interconnesso di tutte le reti pubbliche, che si stabilisce e necessita di protocolli su tutti i livelli :

- Livello di applicazione
- Livello di trasporto
- Livello network
- Livello di collegamento

Lo scopo di internet è quello di essere un infrastruttura che fornisce i servizi alle applicazioni distribuite, è un interfaccia di programmazione e fornisce un servizio di trasporto dei dati.

Un **protocollo di rete**, stabilisce delle regole riguardanti lo scambio di messaggi, con le relative "azioni" specifiche da intraprendere per la ricezione di messaggi ed eventi, definiscono il *formato* e *l'ordine* dei messaggi da inviare fra le entità di rete, e le azioni intraprese sulla ricezione e trasmissione dei messaggi.

1.1 Struttura di Internet e Link

Una rete è quindi un insieme di nodi collegati tramite dei *link*, composta da dispositivi di interconnessione, che si scambiano informazioni, usualmente utilizziamo il termine *host* per i dispositivi che usufruiscono di un servizio, e *server* per i dispositivi che lo erogano.

I dispositivi di interconnessione, ricevono un segnale, lo modificano e lo ritrasmettono, sono i router (collegano una rete ad altre reti) e gli switch (collegano più dispositivi ad una rete locale). I collegamenti, o link, possono essere cablati (rame o fibra ottica) oppure wireless, senza cavi (onde elettromagnetiche).

Le reti locali come quelle casalinghe o aziendali, si collegano ad una rete regionale ISP (internet service provider) di router interconnessi detta *core* o *backbone*, che a sua volta si collega ad una simile struttura ma a livello nazionale o globale.

1.1.1 Reti Cablate e Wireless

Nell'accesso via cavo, c'è un terminale comune per più abitazioni detto **CMTS**, ossia *Cable Modem Termination System*, che viene poi diramato nelle diverse abitazioni, i dati dalla rete ed i segnali per la televisione sono trasmessi sul medesimo cavo ma a frequenze differenti. Il CMTS è direttamente collegato ad un ISP. In questo modello diverse case condividono la rete di accesso.

La **DSL** diversamente, utilizza la linea telefonica esistente, collegandosi alla DSLAM, i dati sulla linea DSL vanno su internet, la voce su DSL va sulla linea telefonica.

Una rete domestica c'è un modem (si occupa di ricevere il segnale analogico e di modularlo in segnale digitale) connesso ad un CMTS, collegato via cavo ad un router, collegato direttamente tramite ethernet agli host, oppure collegato ad un access point WI-FI che permette la connessione senza fili, questi utlimi tre molto spesso sono combinati in un unico device.

La connessione senza fili, o wireless connette i sistemi terminali (host) al router, tramite il già citato access point, esistono reti locali senza fili (WLAN), che hanno una copertura di circa 30 metri, e reti di accesso cellulare *wide area*, utilizzate dai dispositivi mobili e fornite da un operatore di rete cellulare, ed hanno una copertura più ampia, nell'ordine dei kilometri.

Le reti aziendali, come quelle delle università sono di una scala diverso rispetto quelle domestiche, prevedono molti più dispositivi, ed un mix di varie tecnologie di collegamento, cablate o wireless, tramite svariati switch e router.

1.1.2 Comunicazione e Classificazione delle Reti

Un host comunica tramite l'invio e la ricezioni di messaggi da un applicazione sottoforma di pacchetti di dati, ossia messaggi suddivisi in blocchi più piccoli, di lunghezza L bit. L'host trasmettono i pacchetti nella rete ad una velocità di trasmissione di $R^{bit/sec}$. Il ritardo di trasmissione del pacchetto è il tempo necessario per trasmettere il pacchetto (L bit) nel collegamento, ed equivale a $\frac{L}{R}$ secondi.

Il segnale si propaga fra trasmettitore e ricevitore, tramite *supporti guidati*, ossia i mezzi solidi (cavi), oppure *non guidati*, propagandosi liberamente nell'aria (onde elettromagnetiche).

- Il cavo coassiale è provvisto di due conduttori di rame concentrici, è bidirezionale, supporta più canali date diverse frequenze, ed è resistente alle interferenze.
- La fibra ottica ha soppiantato il cavo coassiale, è una fibra di vetro che trasporta impulsi luminosi, dove ciascun impulso rappresenta un bit, la luce rimbalza nel cavo muovendosi ad alta velocità, è necessario però considerare dei ripetitori (anche se molto distanziati), dato che la luce rimbalzando potrebbe tendere a disperdersi causando una perdita di informazioni.
- La rete wireless non ha un supporto guidato, il segnale è propagato nell'aria, è quindi broadcast, chiunque può ricevere il segnale. Tale metodo di comunicazione è half-duplex, ossia, la comunicazione avviene da un mittente ad un destinatario, e non è possibile comunicare fra due enti contemporaneamente, è soggetta ad effetti dovuti all'ambiente di propagazione, come interferenze, riflessione e ostruzione da parte di oggetti fisici.

Esiste una scala di classificazione delle reti:

Scala	Tipo	Nome completo	Esempio
Distanza ravvicinata	PAN	Personal Area Network	Bluetooth
Edificio	LAN	Local Area Network	WiFi, Ethernet
Città	MAN	Metropolitan Area Network	Cablata, DSL
Paese	WAN	Wide Area Network	Grandi ISP
Pianeta	Internet	La rete di tutte le reti	L'Internet

La LAN è la rete locale, come una rete domestica, è una rete privata ed ogni terminale connesso ad essa è identificato da un indirizzo distinto dagli altri, può essere a *cavo condiviso* oppure a *commutazione* con uno switch.

In tale modello di cavo condiviso il pacchetto inviato ad un dispositivo viene ricevuto da tutti, solo il destinatario lo elaborerà, tutti i restanti host lo ignoreranno.

Quest'ultimo a commutazione è il più utilizzato tutt'oggi, ogni dispositivo è direttamente collegato allo switch, ed esso è in grado di riconoscere gli host ed inviare i pacchetti esclusivamente al destinatario, riduce il traffico nella LAN.

Le reti **WAN** sono reti geografica, vengono interconnessi dispositivi di comunicazione, necessari a città, regioni o perfino nazioni. I dispositivi in questione sono switch, router e modem, tale rete è gestita da un grande operatore/ente di telecomunicazioni detto IPS (Internet Service Provider) che fornisce i servizi alle organizzazioni.

Una WAN può vedere i suoi dispositivi di comunicazione connessi punto-punto, oppure a commutazione, con più punti di terminazione (usata nelle dorsali di Internet), tutt'oggi è raro trovare LAN o WAN isolate, spesso sono connesse fra loro per formare una internetwork (internet), per mettere in comunicazione due LAN in città differenti tramite una WAN.

1.1.3 Nucleo della Rete

Si definisce nucleo della rete, quella parte composta esclusivamente da router che effettuano commutazione di pacchetto, ossia ricevono il pacchetto, e lo re-indirizzano tramite i collegamenti. Ogni router presenta più porte, si occupa di fare il cosiddetto **forwarding**, ossia l'azione locale di spostare i pacchetti in arrivo dal collegamento in ingresso, al collegamento in uscita, è un azione locale del router.

Il **routing** invece è un azione globale, si intende la determinazione dei percorsi origine-destinazione che i pacchetti dovranno prendere all'interno dell'Internet, tale decisione è presa tramite degli algoritmi di instradamento.

Con il termine Trasmissione, si intende l'azione che intraprende un pacchetto per essere trasferito interamente sul collegamento. Tale termine non include l'intero tragitto fino a destinazione, ma esclusivamente la (appunto) trasmissione sull'eventuale cavo, il $ritardo\ di\ trasmissione$ è quindi il delay misurato in secondi per trasmettere un pacchetto, si è già specificato che tale valore è uguale a $\frac{L}{R} = \frac{\text{bit di un pacchetto}}{\text{bit per secondo}}$.

I router funzionano nella seguente maniera, detta **store and forward**: Un pacchetto deve arrivare per intero ad un router prima di essere ri-trasmesso su un nuovo collegamento.

Esempio: Si devono trasferire, dal collegamento A al collegamento B, 3 pacchetti da 10 Kbit ad una velocità di 100 Mbitt per secondo, si assume che il tempo che impiega un bit per propagarsi nel collegamento è zero. In totale, il ritardo di trasmissione sarà : $\frac{10*3*10^3}{100*10^6} = \frac{3}{100*10^2} = \frac{3}{10^4} = 0,0003 \text{ sec } = 0,3 \text{ msec}$

Un problema noto durante la tramissione dei pacchetti è l'accodamento, avviene quando la velocità di arrivo ad un router da parte di un link è maggiore della velocità di trasmissione in uscità (dal link al router), quindi si causa un accodamento in attesa della trasmissione.

I pacchetti arrivano al router prima di essere trasmessi sul link, quindi si accoderanno in una memoria interna del router prima di essere ritrasmessi, se i pacchetti accodati diventano troppi e la memoria viene esaurita, ci sarà una *perdita* di pacchetti.

Una possibile soluzione alla perdita è la **commutazione di circuito**, ossia, far si che i diversi host non condividano lo stesso collegamento per i pacchetti, bensì, si considerano dei canali riservati per la comunicazione tra sorgente e destinazione.

Non c'è condivisione, ci saranno quindi svariati collegamenti, in numero necessario per permettere a tutti i dispositivi di poter comunicare in modo libero, ovviamente non tutti comunicano nello stesso momento, quindi i un segmento di cirucito potrebbe rimanere inutilizzato.

Un'altra alternativa è quella di condividere lo stesso circuito, riservando ad ogni comunicatore una frequenza (FDM), oppure un certo quanto temporale (TDM).

- Nel FDM, le frequenze elettromagnetiche o ottiche sono divise in bande, ogni utente può comunicare in maniera continua, ma la velocità massima di comunicazione è data dalla larghezza della banda, che è stretta in quanto condivisa.
- Nel TDM, ogni utente, a turno in un attesa circolare, può comunicare per un quanto di tempo determinato, in cui ha a disposizione la velocità massima della banda.

Il problema è che la commutazione di circuito risulta comunque in efficiente, in quanto permette ad un numero limitato di utenti di usufruire della rete. Si preferisce quindi la condivisione delle risorse, in quanto l'accodamento e la significativa perdita di pacchetto, incombe quando un elevato numero di utenti sta usufruendo della rete.

Il fatto è che gli utenti non comunicano il 100% del tempo, supponiamo che un utente stia comunicando con probabilità p, in un sistema con n utenti. Vi è una significativa perdita di pacchetto quando k utenti condividono le risorse, qual'è la probabilità che k utenti comunichino contemporaneamente?

Sia X la variabile aleatoria che indica il numero di utenti che comunica contemporaneamente, X è una variabile aleatoria binomiale, e la sua distribuzione vale $\mathbb{P}(X \geq k) = \sum_{i=k}^n \binom{n}{i} p^i (1-p)^{n-i}$.

Esempio: In un sistema con 35 utenti, ogni utente comunica con probabilità uguale a 0.1. Vi è una significativa perdita di pacchetto quando 10 utenti comunicano contemporaneamente, qual'è la probabilità che ciò accada?

$$\sum_{i=10}^{35} {35 \choose i} (0.1)^i (0.9)^{35-i} \simeq 0.001$$

La condivisione del circuito risulta quindi la scelta migliore, anche se la possibile congestione in casi particolari è eccessiva, e risulta inevitabilmente una perdita di pacchetti.

1.1.4 Internet

Fino ad ora, abbiamo utilizzato il termine Internet (con la iniziale maiuscola) ed internet (con la iniziale minuscola), è necessario dare una definizione più rigorosa di Internet.

Abbiamo visto come gli host si connettono ad Internet tramite l'accesso agli ISP, residenziali o

aziendali. I grandi ISP sono fra loro interconnessi, da qui il nome internet (inter network), in tal modo, tutti gli host connessi ai differenti ISP possono scambiarsi pacchetti.

Ogni host connesso ad Internet, è quindi connesso ad un ISP, ed i grandi ISP sono tutti interconnessi fra loro, creando un unica grande rete globale, denominata appunto, Internet (con la iniziale maiuscola), ossia una rete delle reti.

Tale rete globale è complessa, e la sua evoluzione, nella struttura, è anche derivata da dinamice politiche ed economiche a livello nazionale, si osservi la seguente immagine.

Le icone con scritto accesso rete rappresentano i punti in cui un host può connettersi, ad esempio una LAN, tali punti si collegano agli ISP regionali, che a loro volte si collegano ad ISP nazionali, spesso condiviso anche da più nazioni, spesso interconnessi da degli Internet Exchange Point (ISP), gestiti da più enti in comune accordo.

Quindi una internet è una rete costituita da più reti interconnesse, Internet invece, è la "internet" più grande e famose, composta da migliaia di reti interconnesse.

1.2 Prestazioni della Rete

Utilizziamo il termine ampiezza di banda per intendere due concetti differenti, ma collegati:

• Caratterizzazione del canale di trasmissione dei dati - quantità che si misura in *hertz*, rappresenta la larghezza dell'intervallo di frequenze utilizzato dal sistema trasmissivo, ovvero l'intervallo di frequenze che un mezzo fisico consente di trasmettere senza danneggiare il segnale in maniera irrecuperabile. Maggiore è l'ampiezza di banda, maggiore è la quantità di informazione che può essere veicolata attraverso il mezzo trasmissivo.

• Caratterizzazione di un collegamento - rappresenta i bit al secondo che possono essere trasmessi in un canale di trasmissione, tale grandezza viene denotata bit rate.

Il bit rate dipende dalla banda e dal canale di trasmissione, è proporzionale alla banda in hertz, tale rate descrive la capacità indicativa (o potenziale), non l'effettivo numero di bit trasferiti per unità di tempo, quest'ultimo dato è detto troughput, ed è il numero effettivo di bit al secondo che passano attraverso un punto della rete. Il troughput è limitato dal bitrate.

Se un pacchetto deve passare per due o più link con bit rate differenti, il link con il bit rate minore condizionerà il troughput medio dell'intero tragitto, causando un collo di bottigllia. Si consideri adesso la seguente situazione :

- R_s è il bitrate dei link che collegano i server al router di sinistra.
- R_c è il bitrate dei link che collegano gli host al router di destra.
- R è il bitrate del link che collega i due router.

Il troughput medio come sarà condizionato? I server e gli host hanno un collegamento riservato, i due router invece, hanno un link unico per far comunicare i pacchetti di tutti i dispositivi periferici (in totale 6), il collo di bottiglia sarà causato dal collegamento che ha il bit rate minimo fra : (il link server-router, il link host-router, il link router-router condiviso da 6 differenti dispositivi), quindi si avrà : $\min(R_s, R_c, R/n)$, dove n è il numero di dispositivi (in questo caso 6).

1.2.1 Latenza e Perdita di Pacchetti

Abbiamo visto come i pacchetti si accodano nella memoria di un router, i delay in una comunicazione di un bit che passa su un determinato nodo della rete sono i seguenti:

- d_{proc} Elaborazione del nodo, controllo di possibili errori sul bit, solitamente ininfluente.
- ullet d_{coda} Tempo che il bit di un pacchetto trascorre in attesa nella coda di un router.
- d_{trans} Ritardo di trasmissione già visto in precedenza.
- d_{prop} Il tempo di propagazione del bit attraverso il link (cablato o wireless).

Abbiamo visto come il d_{trans} si misura in secondi tramite la formula $\frac{L}{R} = \frac{\text{bit di un pacchetto}}{\text{bit per secondo}}$, il ritardo di propagazione, ossia il d_{prop} , si misura con la formula $\frac{k}{v}$, dove k è la lunghezza in metri del collegamento fisico, e v la velocità di propagazione attraverso il collegamento (ad esempio, la luce nella fibra ottica si propaga a circa 300 000 $^{km/s}$).

1.2.2 Ritardo di Accodamento

Calcolare il ritardo di accodamento è piuttosto difficile in quanto ci sono innumerevoli fattori in gioco da considerare, è possibile fare delle stime, consideriamo i seguenti parametri:

- L lunghezza di un pacchetto in bit.
- R velocità di trasmissione in bit al secondo.
- a tasso medio di arrivo di pacchetti, misurato in pacchetti al secondo.

L'intensità del traffico è una misura adimensionale data da $\frac{L \cdot a}{R}$ ed è limitata dall'unità di tempo (in questo caso, 1 secondo).

- Se $\frac{La}{R}$ tende ad 1, il ritardo medio tende a crescere in maniera esponenziale
- \bullet Se $\frac{La}{R} \geq 1$ il ritardo medio è infinito

Come si calcola però l'effettivo ritardo di accodamento nei casi reali? Esistono dei software diagnostici come *tracerout*, che si occupano di misurare il ritardo che impiega un pacchetto per spostarsi dalla sorgente ad un nodo della rete.

Tali software fanno uso di una proprietà dei pacchetti, è possibile impostare per ogni pacchetto un "tempo di vita", ossia un numero massimo di nodi della rete (router) nella quale possono passare, quando tale limite viene superato, il pacchetto verrà automaticamente scartato.

La maggiorparte dei router, quando vedono un pacchetto venire eliminato, mandano indietro al destinatario un messaggio di avvertimento, per indicare appunto che il pacchetto è stato perso.

Grazie alla combinazione di questi due meccanismi, traceroute invia dei pacchetti con un determinato tempo di vita, per poi aspettarsi un messaggio di ritorno, misurando il tempo che intercorre fra l'invio del pacchetto ad un determinato router, ed il messaggio di ritorno che avvisa dell'eliminazione del pacchetto.

Un dato importante da considerare è il **prodotto rate**×**ritardo** ossia il prodotto fra il bit rate ed il ritardo di propagazione di un certo collegamento. Supponiamo di avere un link con rate di R bit al secondo ed un ritardo di propagazione di x secondi, si avrà che $R \cdot x$, non sarà altro

che il massimo numero di bit che possono passare contemporaneamente sul collegamento.

Possiamo pensare al collegamento come un tubo che passa fra due punti, il ritardo rappresenta la lunghezza del tubo, ed il rate la sezione trasfersale, il volume del tubo è appunto tale prodotto rate×ritardo.

1.3 Introduzione ai Protocolli

Le reti sono piuttosto complesse, i protocolli sono un tentativo di rendere la struttura più organizzata, definiscono delle regole che un mittente ed un destinatario devono rispettare per comunicare, insieme al formato del messaggio.

La comunicazione in rete è suddivisa su più livelli, per questo si dice che i protocolli sono definiti a strati (verrà chiarito il concetto), con lo scopo di suddividere un compito complesso in più compiti semplici tramite la modularizzazione.

Possiamo vedere ogni livello come una *black box*, in cui un messaggio entra e viene manipolato per poi uscire e passare al livello sccessivo. Ogni livello offre utilizza i servizi del livello inferiore, e fornisce servizi al livello superiore, indipendentemente da coma sia implementato.

Quando la comunicazione è bidirezionale, un protocollo deve poter eseguire i due compiti inversi (ad esempio, il protocollo che si occupa della crittografia, deve saper cifrare il messaggio ed anche decifrarlo).

La stratificazione dei livelli e dei protocolli garantisce più semplicitià quando si tratta di manutenere o aggiornare il sistema, aumenta la riusabilità e l'eterogeneità, comporta però anche degli svantaggi, come la ridondanza delle operazione ed un calo dell'efficienza.

1.3.1 Layer di Protocollo

I 5 macro-livelli sulla quale si fonda la comunicazione sono i seguenti:

supporto delle applicazioni di rete
trasferimento dati fra processi
instradamento dei pacchetti dalla sorgente alla destinazione
trasferimento di dati tra elementi di rete vicini
bit sul canale fisico (cavo o wireless)

Sino ad ora i dati incapsulati che vengono comunicati sulla rete sono stati chiamati generalmente "pacchetti", vedremo che questi assumono una denominazione diversa per ogni livello. Ogni

protocollo fa parte di un livello, ed anche se esistono più protocolli per un livello, ogni pacchetto che viene trasmesso usufruisce di un solo protocollo per livello. I nomi dei protocolli citati in seguito, verranno approfonditi e caratterizzati in seguito.

- 1. Il livello di **applicazione** è dove risiedono le applicazioni di rete che usufruiscono dei servizi di Internet, alcuni dei protocolli presenti in questo livello sono *HTTP,SMTP,FTP,DNS*, in questo livello, i pacchetti sono chiamati **messaggi**.
- 2. Il livello di **trasporto** si occupa del trasferimento dei messaggi dal livello di applicazione di un client al livello di applicazione del server, alcuni protocolli sono *TCP*, *UDP*, in questo livello, i pacchetti sono chiamati **segmenti**.
- 3. Il livello di **rete** riguarda l'instradamento dei segmenti dall'origine alla destinazione, un noto protocollo è l'*IP*, i pacchetti in questo livello sono detti **datagrammi**.
- 4. Il livello di **collegamento** si occupa della trasmissione dei datagrammi da un nodo della rete al nodo successivo sul percorso, alcuni protocolli sono *Ethernet*, *Wi-Fi e PPP*, lungo un percorso sorgente-destinazione, un datagramma può essere gestito anche da differenti protocolli, i pacchetti qui sono detti **frame**.
- 5. Il livello **fisico** riguarda il trasferimento dei singoli **bit**sul canale fisico, tramite elettricità nei cavi, oppure onde elettromagnetiche-