CAR PRICE PREDICTION

```
In [ ]: #car price prediction using ml
```

importing libraries

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: import warnings
        warnings.filterwarnings('ignore')
In [3]: dataset=pd.read_csv(r"E:\resume projects\car data.xls")
```

In [4]: | dataset

Out[4]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transm
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	N
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	N
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	N
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	N
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	N
296	city	2016	9.50	11.60	33988	Diesel	Dealer	N
297	brio	2015	4.00	5.90	60000	Petrol	Dealer	ľ
298	city	2009	3.35	11.00	87934	Petrol	Dealer	N
299	city	2017	11.50	12.50	9000	Diesel	Dealer	ľ
300	brio	2016	5.30	5.90	5464	Petrol	Dealer	ľ

301 rows × 9 columns

print columns name

print top 5 rows

```
In [6]: dataset.head()
```

Out[6]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmiss
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Maı
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Maı
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Maı
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Маі
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Maı
4		_						

display last 5 rows of the dataset

```
In [7]: dataset.tail()
```

Out[7]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transm
296	city	2016	9.50	11.6	33988	Diesel	Dealer	
297	brio	2015	4.00	5.9	60000	Petrol	Dealer	٨
298	city	2009	3.35	11.0	87934	Petrol	Dealer	٨
299	city	2017	11.50	12.5	9000	Diesel	Dealer	٨
300	brio	2016	5.30	5.9	5464	Petrol	Dealer	٨
4 (

find shape of our dataset(number of rows and number of columns)

```
In [8]: dataset.shape
```

Out[8]: (301, 9)

```
In [9]: print("Number of rows" ,dataset.shape[0])
print("Number of columns" , dataset.shape[1])

Number of rows 301
Number of columns 9
```

get information about our dataset like the total number of rows ,total number of columns ,datatypes of each columns and memory requirement

```
In [10]: dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 301 entries, 0 to 300
        Data columns (total 9 columns):
            Column
                           Non-Null Count Dtype
        --- -----
                           -----
            Car Name
         0
                           301 non-null
                                          object
            Year
                           301 non-null
                                          int64
         1
            Selling_Price 301 non-null
                                          float64
         2
         3
             Present_Price 301 non-null
                                          float64
            Kms Driven
                           301 non-null int64
                           301 non-null
301 non-null
             Fuel_Type
         5
                                          object
             Seller Type
                                          object
         7
             Transmission 301 non-null
                                          object
         8
             Owner
                           301 non-null
                                          int64
        dtypes: float64(2), int64(3), object(4)
        memory usage: 21.3+ KB
```

check null values in the dataset

In [11]: dataset.isnull()

Out[11]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transm
0	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	
296	False	False	False	False	False	False	False	
297	False	False	False	False	False	False	False	
298	False	False	False	False	False	False	False	
299	False	False	False	False	False	False	False	
300	False	False	False	False	False	False	False	
301 r	owe x 0 col	umne						

301 rows × 9 columns

In [12]: dataset.isnull().sum()

Out[12]: Car_Name 0 Year 0 Selling_Price 0 Present_Price 0 Kms_Driven 0 Fuel_Type 0 Seller_Type 0 Transmission 0 Owner 0 dtype: int64

get overall statistics about the dataset

In [13]: dataset.describe()

Out[13]:

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

data preprocessing

In [14]: dataset.head(1)

Out[14]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmiss
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Maı
4								

In [15]: import datetime
 date_time=datetime.datetime.now()

dataset['Age']=date_time.year - dataset['Year']

In [16]: dataset.head()

Out[16]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmiss
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Maı
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Маі
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Маі
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Маі
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Maı
4								

In [17]: dataset.drop('Year',axis=1,inplace=True)

In [18]: dataset

Out[18]:

	Car_Name	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission
0	ritz	3.35	5.59	27000	Petrol	Dealer	Manual
1	sx4	4.75	9.54	43000	Diesel	Dealer	Manual
2	ciaz	7.25	9.85	6900	Petrol	Dealer	Manual
3	wagon r	2.85	4.15	5200	Petrol	Dealer	Manual
4	swift	4.60	6.87	42450	Diesel	Dealer	Manual
•••	•••		•••	•••			
296	city	9.50	11.60	33988	Diesel	Dealer	Manual
297	brio	4.00	5.90	60000	Petrol	Dealer	Manual
298	city	3.35	11.00	87934	Petrol	Dealer	Manual
299	city	11.50	12.50	9000	Diesel	Dealer	Manual
300	brio	5.30	5.90	5464	Petrol	Dealer	Manual

301 rows × 9 columns

outlier removal

```
In [19]: sns.boxplot(dataset['Selling_Price'])
Out[19]: <Axes: >
```


two datapoints are very far away from other datapoints so it will be consider as outlier

```
In [20]: |sorted(dataset['Selling_Price'] ,reverse=True)
Out[20]: [35.0,
            33.0,
            23.5,
            23.0,
           23.0,
            23.0,
            20.75,
           19.99,
           19.75,
           18.75,
           18.0,
           17.0,
           16.0,
           14.9,
           14.73,
           14.5,
           14.25,
           12.9,
           12.5,
         (dataset['Selling_Price']>=33.0) & (dataset['Selling_Price']<=35.0)</pre>
In [21]:
Out[21]: 0
                  False
          1
                  False
          2
                  False
          3
                  False
          4
                  False
                  . . .
          296
                  False
          297
                  False
          298
                  False
          299
                  False
          300
                  False
          Name: Selling_Price, Length: 301, dtype: bool
          dataset[(dataset['Selling_Price']>=33.0) & (dataset['Selling_Price']<=35.0)]</pre>
In [22]:
Out[22]:
               Car_Name Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type
                                                                                     Transmission
                  fortuner
                                 33.0
                                              36.23
                                                          6000
                                                                    Diesel
                                                                                         Automatic
           64
                                                                               Dealer
                    land
                                 35.0
                                              92.60
                                                         78000
                                                                    Diesel
                                                                               Dealer
           86
                                                                                            Manual
                  cruiser
```

this two are outlier

]: 	Car_Name	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission
0	ritz	3.35	5.59	27000	Petrol	Dealer	Manual
1	sx4	4.75	9.54	43000	Diesel	Dealer	Manual
2	ciaz	7.25	9.85	6900	Petrol	Dealer	Manual
3	wagon r	2.85	4.15	5200	Petrol	Dealer	Manual
4	swift	4.60	6.87	42450	Diesel	Dealer	Manual
	•••						
296	city	9.50	11.60	33988	Diesel	Dealer	Manual
297	brio	4.00	5.90	60000	Petrol	Dealer	Manual
298	city	3.35	11.00	87934	Petrol	Dealer	Manual
299	city	11.50	12.50	9000	Diesel	Dealer	Manual
300	brio	5.30	5.90	5464	Petrol	Dealer	Manual
	shape 9)						ng_Price']<=
(299	, 9)	e categori	cal column				
(299 Enc	, 9)						
(299	oding th	1)		S	uel_Type S		
(299) Enc	oding th	1)	cal column	S	uel_Type S		
(299 Enc	oding theset.head(: ar_Name S	L) elling_Price P	cal column	S (ms_Driven F		Seller_Type T	ransmission C
(299) Enc datas	oding the set.head(: ar_Name S	L) elling_Price P	cal column Present_Price K	S (ms_Driven F		Seller_Type T	ransmission C
(299) Enc datas	oding the set.head(: ar_Name S ritz set['Fuel_	elling_Price P 3.35 _Type'].uniq	cal column Present_Price K	S (ms_Driven F 27000	Petrol	Seller_Type T	ransmission C
(299 Enc datas c datas arras	oding the set.head(: ar_Name S ritz set['Fuel_ /(['Petro.	elling_Price P 3.35 Type'].uniq	cal column Present_Price K 5.59	S (ms_Driven F 27000	Petrol	Seller_Type T Dealer	Transmission Community Manual
(299) Enc datas	oding the set.head(: ar_Name S ritz set['Fuel_ /(['Petro: set['Fuel_	elling_Price P 3.35 Type'].uniq	cal column Present_Price K 5.59 [ue() , 'CNG'], dt	S (ms_Driven F 27000	Petrol	Seller_Type T Dealer	Transmission Community Manual

```
In [30]: dataset['Seller_Type'].unique()
Out[30]: array(['Dealer', 'Individual'], dtype=object)
In [31]: dataset['Seller Type']=dataset['Seller Type'].map({'Dealer':0,'Individual':1})
In [32]: dataset['Seller Type'].unique()
Out[32]: array([0, 1], dtype=int64)
          dataset['Transmission'].unique()
In [33]:
Out[33]: array(['Manual', 'Automatic'], dtype=object)
          dataset['Transmission']=dataset['Transmission'].map({'Manual':0,'Automatic':1}
In [34]:
In [35]: dataset['Transmission'].unique()
Out[35]: array([0, 1], dtype=int64)
In [36]: dataset.head()
Out[36]:
                        Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission C
              Car Name
           0
                    ritz
                                3.35
                                             5.59
                                                        27000
                                                                     0
                                                                                              0
                                                        43000
           1
                    sx4
                                4.75
                                             9.54
                                                                                 0
                                                                                              0
                                                        6900
           2
                                7.25
                                             9.85
                                                                     0
                                                                                 0
                                                                                              0
                   ciaz
                                                                                              0
           3
                                2.85
                                             4.15
                                                        5200
                                                                     0
                                                                                 0
                wagon r
                                4.60
                                             6.87
                                                        42450
                                                                                 0
                                                                                              0
                   swift
In [37]:
          dataset.tail()
Out[37]:
                Car_Name
                          Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type Transmission
           296
                                               11.6
                                                         33988
                                                                                   0
                                                                                                0
                      city
                                  9.50
                                                                       1
                                  4.00
           297
                     brio
                                                5.9
                                                         60000
                                                                       0
                                                                                   0
                                                                                                0
           298
                                               11.0
                                                          87934
                                                                       0
                                                                                   0
                                                                                                0
                      city
                                  3.35
           299
                      city
                                 11.50
                                               12.5
                                                          9000
                                                                        1
                                                                                   0
                                                                                                0
           300
                                  5.30
                                                5.9
                                                          5464
                                                                       0
                                                                                   0
                                                                                                0
                     brio
```

```
In [38]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 301 entries, 0 to 300
         Data columns (total 9 columns):
             Column
                            Non-Null Count Dtype
          0
              Car_Name
                                            object
                            301 non-null
             Selling Price 301 non-null
                                            float64
          2
             Present_Price 301 non-null
                                            float64
          3
             Kms_Driven
                                            int64
                            301 non-null
             Fuel_Type
          4
                            301 non-null
                                            int64
          5
              Seller_Type
                            301 non-null
                                            int64
             Transmission
                            301 non-null
                                            int64
          7
              Owner
                            301 non-null
                                            int64
          8
              Age
                            301 non-null
                                            int64
         dtypes: float64(2), int64(6), object(1)
         memory usage: 21.3+ KB
```

store feature matrix in X and response (target) variable in Y

```
In [39]: x=dataset.drop(['Car_Name' , 'Selling_Price'], axis=1)
y=dataset['Selling_Price']
In [40]: # x is our independent variable
In [41]: x
```

Out[41]:

	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner	Age
0	5.59	27000	0	0	0	0	10
1	9.54	43000	1	0	0	0	11
2	9.85	6900	0	0	0	0	7
3	4.15	5200	0	0	0	0	13
4	6.87	42450	1	0	0	0	10
296	11.60	33988	1	0	0	0	8
297	5.90	60000	0	0	0	0	9
298	11.00	87934	0	0	0	0	15
299	12.50	9000	1	0	0	0	7
300	5.90	5464	0	0	0	0	8

301 rows × 7 columns

```
In [42]: # y is our target variable
In [43]: y
Out[43]: 0
                  3.35
         1
                  4.75
         2
                  7.25
         3
                  2.85
         4
                  4.60
         296
                  9.50
         297
                  4.00
         298
                  3.35
         299
                 11.50
         300
                  5.30
         Name: Selling_Price, Length: 301, dtype: float64
```

splitting the datset into tarining set and testing set

```
In [44]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state
```

import the models

```
In [45]: dataset.head()
```

Out[45]:

	Car_Name	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	C
0	ritz	3.35	5.59	27000	0	0	0	
1	sx4	4.75	9.54	43000	1	0	0	
2	ciaz	7.25	9.85	6900	0	0	0	
3	wagon r	2.85	4.15	5200	0	0	0	
4	swift	4.60	6.87	42450	1	0	0	
4								

In [46]: pip install xgboost

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: xgboost in c:\users\achal raghorte\appdata\roa ming\python\python311\site-packages (2.0.3)

Requirement already satisfied: numpy in c:\programdata\anaconda3\lib\site-pac kages (from xgboost) (1.24.3)

Requirement already satisfied: scipy in c:\programdata\anaconda3\lib\site-packages (from xgboost) (1.11.1)

Note: you may need to restart the kernel to use updated packages.

```
In [47]: from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.ensemble import GradientBoostingRegressor
    from xgboost import XGBRegressor
```

model training

```
In [48]:
         lr=LinearRegression()
         lr.fit(x_train,y_train)
         rf=RandomForestRegressor()
         rf.fit(x_train,y_train)
         xgb=GradientBoostingRegressor()
         xgb.fit(x_train,y_train)
         xg=XGBRegressor()
         xg.fit(x_train,y_train)
Out[48]:
                                           XGBRegressor
          XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, cblsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=No
          ne,
                       enable_categorical=False, eval_metric=None, feature_types=No
          ne,
                       gamma=None, grow policy=None, importance type=None,
                       interaction constraints=None, learning_rate=None, max_bin=No
          ne,
                       max_cat_threshold=None, max_cat_to_onehot=None,
```

prediction of the test data

```
In [49]: y_pred1=lr.predict(x_test)
    y_pred2=rf.predict(x_test)
    y_pred3=xgb.predict(x_test)
    y_pred4=xg.predict(x_test)
```

evaluating the algorithm

```
In [50]: from sklearn import metrics
```

```
In [51]: score1=metrics.r2_score(y_test,y_pred1)
    score2=metrics.r2_score(y_test,y_pred2)
    score3=metrics.r2_score(y_test,y_pred3)
    score4=metrics.r2_score(y_test,y_pred4)
```

In [52]: print(score1,score2,score3,score4)

 $0.8468053957657442\ 0.9608961457488217\ 0.9722866094451921\ 0.9550781240593306$

In [54]: final_data

Out[54]:

	Models	R2_SCORE
0	LR	0.846805
1	RF	0.960896
2	GBR	0.972287
3	XG	0.955078

In [55]: sns.barplot(x=final_data['Models'], y=final_data['R2_SCORE'])

Out[55]: <Axes: xlabel='Models', ylabel='R2_SCORE'>

save the model

```
In [56]: xg=XGBRegressor()
         xg_final= xg.fit(x,y)
In [57]: import joblib
In [58]: |joblib.dump(xg_final, 'car_price_predictor')
Out[58]: ['car_price_predictor']
In [59]: | model=joblib.load('car_price_predictor')
In [60]: | model
Out[60]:
                                            XGBRegressor
          XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=No
          ne,
                       enable_categorical=False, eval_metric=None, feature_types=No
          ne,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=None, max_bin=No
          ne,
                       max_cat_threshold=None, max_cat_to_onehot=None,
```

prediction on new data

```
In [*]: | from tkinter import *
        import joblib
        import pandas as pd
        def show entry fields():
            p1 = float(e1.get())
            p2 = float(e2.get())
            p3 = float(e3.get())
            p4 = float(e4.get())
            p5 = float(e5.get())
            p6 = float(e6.get())
            p7 = float(e7.get())
            model = joblib.load('car price predictor')
            data new = pd.DataFrame({
                 'Present_Price': p1,
                'Kms_Driven': p2,
                 'Fuel_Type': p3,
                 'Seller_Type': p4,
                 'Transmission': p5,
                 'Owner': p6,
                 'Age': p7
            }, index=[0])
            result = model.predict(data_new)
            Label(master, text="Car Purchase amount").grid(row=8)
            Label(master, text=result).grid(row=10)
            print("Car Purchase amount", result[0])
        master = Tk()
        master.title("car price prediction using ml")
        label = Label(master, text="car price prediction using ml", bg="black", fg="wh
        Label(master, text="Present Price").grid(row=1)
        Label(master, text="Kms_Driven").grid(row=2)
        Label(master, text="Fuel_Type").grid(row=3)
        Label(master, text="Seller_Type").grid(row=4)
        Label(master, text="Transmission").grid(row=5)
        Label(master, text="Owner").grid(row=6)
        Label(master, text="Age").grid(row=7)
        e1 = Entry(master)
        e2 = Entry(master)
        e3 = Entry(master)
        e4 = Entry(master)
        e5 = Entry(master)
        e6 = Entry(master)
        e7 = Entry(master)
        e1.grid(row=1, column=1)
        e2.grid(row=2, column=1)
        e3.grid(row=3, column=1)
        e4.grid(row=4, column=1)
        e5.grid(row=5, column=1)
        e6.grid(row=6, column=1)
        e7.grid(row=7, column=1)
```

```
Button(master, text='Predict', command=show_entry_fields).grid()
mainloop()

Car Purchase amount 3.352563
```

In []: