

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2012

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 23 pages. *Hierdie memorandum bestaan uit 23 bladsye*.

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out question.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, merk slegs die eerste poging.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, merk die deurgehaalde antwoord.
- Volgehoue akkuraatheid is DEURGAANS in ALLE aspekte van die memorandum van toepassing.
- Aanvaarding van waardes/antwoorde om 'n problem op te los, is onaanvaarbaar.

1.1	Interquartile range/ $Interkwartielvariasiewydte = 53 - 42 = 11$	✓ critical value (42; 53)	es
	Answer only: Full marks No CA	√11	(2)
1.2	25% of trees have a height in excess of 53 cm. 25% van bome het 'n hoogte van meer as 53 cm.	√√25%	(2)
1.3	Between $Q_2(50)$ and $Q_3(53)/Tussen Q_2$ en Q_3	✓ Q ₂ and Q ₃ ✓ reason	(2)
	REASON / REDE The distance between these two quartiles is the smallest/Die afstand tussen hierdie twee kwartiele is die kleinste. OR The third quarter has smallest length / Die derde kwart het die kortste lengte		(2)
	nortste tengte		[6]

3.1	more than 15 minutes: 140 104 - 26 nearle	./ 104
3.1	more than 15 minutes: $140 - 104 = 36$ people	✓ 104
	Approximately 36 people Answer only: Full marks	√ 36
	(Accept 34 – 37)	(2)
3.2	At 8 minutes approximately 27 people and at 12 minutes	
	approximately 62 people left the auditorium/By 8 minute het	
	ongeveer 27 mense en by 12 minute ongeveer 62 mense die	✓ 27 and 62
	ouditorium verlaat.	✓ 35
	$\therefore 62 - 27 = 35$	
	Approximately 35 people left the auditorium between 8 and 12 minutes/ <i>Ongeveer 35 mense het tussen 8 en 12 minute die</i>	(Accept 33 – 36)
	ouditorium verlaat.	
	ouditorium vortaat.	(2)
3.3	Modal class/modale klas: $11 < x \le 16$	$\checkmark 11 < x \le 16$
	OR Male Control of the Control of th	
	$11 \le x < 16$ Mark for critical values	$\checkmark 11 \le x < 16$
		(1)
		[5]

	SCHOOL A	SCHOOL B	SCHOOL C
Mean	9,8	9,8	14,8
Standard deviation	2,3	3,1	2,3

4.1	School B, because the standard deviation of B is the largest.	✓ School B
	Skool B, want die standaardafwyking is die grootste.	✓ reason
		(2)
4.2	There is no difference in the spread of the marks.	✓ no difference /
	Daar is geen verskil in die verspreiding van punte nie.	the same
		(1)
4.3	Add/increase each score in School A by 5 marks.	✓ increase each
	Vermeerder(tel by) elke punt in Skool A met 5 punte.	mark
		vermeerder
		elke punt
		✓ 5 marks
		(2)
4.4	The mean will decrease (by 10%)	✓ mean decreased
	Die gemiddelde sal verminder (met 10%).	/gemiddeld
		verminder
	The standard deviation will also decrease (by 10%)	
	Die standaardafwyking sal verminder (ook met 10%).	✓ SD decreased/
		SD verminder
		(2)
		[7]

Explanation why values decrease by 10%:

$$mean = \frac{\sum 0.9x_i}{n} = 0.9 \frac{\sum x_i}{n} = 0.9\bar{x}$$

$$mean = \frac{\sum 0.9x_i}{n} = 0.9 \frac{\sum x_i}{n} = 0.9\overline{x}$$

$$SD = \sqrt{\frac{\sum (x_i - \overline{x})^2}{2}} = \sqrt{\frac{\sum (0.9x_i - 0.9\overline{x})^2}{n}} = \sqrt{\frac{0.9^2 \sum (x_i - \overline{x})^2}{n}} = 0.9\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

5.1.1	$m_{PT} = \tan 63,43^{\circ}$	✓ tan 63,43°
	= 2	✓ 2
	_	(2)
		Answer only: full
7.1.0		marks
5.1.2	Coordinates of P(-5; 0)	
	$y - y_1 = m(x - x_1)$	✓ substitution of
	y - 0 = 2(x + 5)	P(-5; 0) and $m = 2$ into equation
	y = 2x + 10	$\sqrt{\text{equation}}$
	OR	(2)
	y = mx + c	(-)
	0 = (2)(-5) + c	✓ substitution of
	c = 10	P(-5; 0) and
		m = 2 into equation
	y = 2x + 10	✓ equation
	OR	(2)
	$m_{PT} = 2 = \tan 63,43^{\circ}$	
	$\tan 63,43^\circ = \frac{OS}{OP} = \frac{OS}{5} = 2$	$\sqrt{\frac{OS}{5}} = 2$
	\therefore OS = 10	J
	y = 2x + 10	✓ equation
		(2)

5 1 2	OS=10 units	✓ OS = 10
5.1.3		\checkmark OS = 10 \checkmark substitution of
	$PS^2 = (5)^2 + (10)^2$	correct distances
	=125	into Pythagoras
	$PS = \sqrt{125} = 5\sqrt{5}$ Accept $PS = 11,18$	$\sqrt{125}$
	Accept 13 – 11,18	(3)
	OR	
	P(-5; 0); OS = 10 units	\checkmark OS = 10
	$PS^2 = (-5-0)^2 + (0-10)^2$	✓ substitution of
	= 25 + 100	correct distances
	=125	into Pythagoras
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$PS = \sqrt{125} = 5\sqrt{5}$ Accept $PS = 11,18$	$\sqrt{125}$
	OR	(3)
	$\frac{PS}{5} = \frac{1}{\cos 63,43^{\circ}}$	✓ ratio
	$\therefore PS = \frac{5}{\cos 63,43^{\circ}}$	$\checkmark PS = \frac{5}{\cos 63,43^{\circ}}$
	cos 63,43°	
	PS = 11,18	$\checkmark 11,18$ (3)
	OB	
	OR	
	$\frac{PS}{10} = \frac{1}{\sin 63,43^{\circ}}$	
		✓ ratio
	$\therefore PS = \frac{10}{\sin 63{,}43^{\circ}}$	
		$\checkmark PS = \frac{10}{\sin 63,43^{\circ}}$
	PS = 11,18	
		√11,18 (3)
5.1.4	Let T be $(x; y)$. Then	
	$\frac{-5+x}{2} = 0$ and $\frac{0+y}{2} = 10$	1.5
		√ 5 √ 20
	x = 5 y = 20	(2)
	T(5; 20)	
	OR	√ 5
	by inspection: T(5; 20)	✓ 20
5.0		(2)
5.2	$OR = \left(\frac{3}{2}\right)(5) = \frac{15}{2} = 7,5$	$\sqrt{x} = 7.5 / \frac{15}{2}$ $\sqrt{y} = 0$
		$\frac{1}{2}$
	$R\left(\frac{15}{2}; 0\right)$ If only x-coordinate : 2 marks	$\mathbf{v} y = 0$
	$R\left(\frac{1}{2}; 0\right)$ If only x-coordinate: 2 marks	(2)
	1	(2)

5.3	Area $\Delta PTR = \frac{1}{2} (base PR) \times (height)$ = $\frac{1}{2} (5 + \frac{15}{2}) \times 20$ = 125 square units	✓ area formula $ \checkmark 5 + \frac{15}{2} = 12,5 $ $ \checkmark 20 $ $ \checkmark 125 $	(4)
	OR Area $\triangle PTR = \frac{1}{2}PT.PR.\sin TPR$ $= \frac{1}{2}(10\sqrt{5})(\frac{25}{2})\sin 63,43^{\circ}$ $= 124,99 \text{ square units}$	✓ area formula $ √ 10√5 $ $ √ \frac{25}{2} $ $ √ 124,99 $	(4) [15]

6.1
$$x^{2} + y^{2} - 6x + 2y - 8 = 0$$

$$x^{2} - 6x + 9 + y^{2} + 2y + 1 = 8 + 9 + 1$$

$$(x - 3)^{2} + (y + 1)^{2} = 18$$

$$\therefore M(3; -1)$$

$$If only$$

$$(x - 3)^{2} + (y + 1)^{2} = r^{2} (r^{2} \neq 18),$$

$$then 2 marks$$

$$OR$$

$$x_{M} = -\frac{1}{2} (coefficient of x)$$

$$x_{M} = -\frac{1}{2} (-6)$$

$$x_{M} = 3$$

$$y_{M} = -\frac{1}{2} (coefficient of y)$$

$$y_{M} = -\frac{1}{2} (2)$$

$$y_{M} = -1$$

$$\therefore M(3; -1)$$

$$(4)$$

6.2	1 (4)	/ grade = ±: ±==±: - : - ; - ;
6.2	$m_{RM} = \frac{-1 - (-4)}{3 - 0}$	✓ substitution into gradient formula
		$\sqrt{m_{\rm RM}} = 1$
	= 1 y -intercept is -4	
	y = x - 4	✓ equation
		(3)
6.3	$MR \perp RP$ (radius \perp tangent/raaklyn)	/ / m - 1
	$m_{MN} = m_{PR} = -1$	$\checkmark \checkmark m_{MN} = -1$
	$\frac{q - (-1)}{p - 3} = -1$	✓ substitution into
	1	gradient formula
	-p+3=q+1	$\checkmark - p + 3 = q + 1$
	q = 2 - p	(4)
	OR	
	$MR \perp RP$ (radius \perp tangent/raaklyn)	
	$m_{MN} = m_{PR} = -1$	
	y - (-1) = -1(x - 3)	$\checkmark \checkmark m_{MN} = -1$
	y+1=-x+3	$\sqrt{y} = -x + 2$
	y = -x + 2	\checkmark substitution into
	q = 2 - p	equation of line
		(4)
6.4	$(x-3)^2 + (y+1)^2 = 18$	(4)
	$(p-3)^2 + (q+1)^2 = 18$	
	$(2-q-3)^2 + (q+1)^2 = 18$	
	$q^2 + 2q + 1 + q^2 + 2q + 1 - 18 = 0$	
	$2q^2 + 4q - 16 = 0$	✓ method
	$q^2 + 2q - 8 = 0$	
	(q+4)(q-2) = 0	
	$q = -4 \text{ or } q \neq 2$	$ \sqrt{q} = -4 $ $ \sqrt{p} = 6 $
	$q = -4 \text{ or } q \neq 2$ $p = 6$	$\bigvee p = 6 \tag{5}$
	p = 0	
	OR	
	MRPN is a square/vierkant (rectangle with/reghoek met	
	MN = MR	/ 1
	$\therefore \hat{MPN} = 45^{\circ}$ Rut MP has a slope/gradient of 1, so PN r axis	$\checkmark \text{ method}$ $\checkmark \checkmark q = -4$
	But MR has a slope/gradient of 1, so RN x -axis $\therefore q = -4$ and $p = 2 - (-4) = 6$	$\sqrt{q-4}$ $\sqrt{p}=6$
		(5)
	OR	

		1
	$ q = 2 - p $ $ (p-3)^2 + (2-p+1)^2 = 18 $	
	$(p-3)^2=9$	✓ method
	$\therefore \qquad p-3=3 (p>0)$	
	p=6	
	$\therefore q = -4$	(5)
	OR	
	Using symmetry: $q = -4$ (since $y_M = y_R$)	√method
	$\begin{vmatrix} -4 = 2 - p \\ p = 6 \end{vmatrix}$ OR	$\begin{array}{c} \checkmark \checkmark q \\ \checkmark \checkmark p \end{array}$
	$p = 2 \times 3 \qquad \text{(since } x_M = 2x_N\text{)}$	(5)
6.5	$r^{2} = (6)^{2} + (-4)^{2}$ $= 36 + 16 = 52$	✓ substitution
	$x^2 + y^2 = 52$	✓ equation
	OR	(2)
	$p^2 + q^2 = (6)^2 + (-4)^2$ = 36+16 = 52	✓ substitution
	$x^2 + y^2 = p^2 + q^2$	✓ equation
6.6	$= 52$ area of circle $M = \pi r^2$	(2)
	$=\pi(\sqrt{18})^2$. —
	$=18\pi$ square <i>units</i>	$\checkmark r = \sqrt{18}$ \checkmark area of circle
	= 56,55square units	(2)
6.7	MRPN is a square (all angles equals 90°, adj sides equal)	(3 7 ^ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	NMP = 45° (diagonals of a square bisect the angles/hoeklyne van vierkant halveer hoeke)	\checkmark NMP = 45°
	$\frac{NP}{MP} = \sin N\hat{M}P$	$\checkmark \frac{NP}{MP} = \sin N\hat{M}P$ $\checkmark \frac{1}{\sqrt{2}}$
	$= \sin 45^{\circ}$	/ 1
	$=\frac{1}{\sqrt{2}} or \frac{\sqrt{2}}{2}$	$\sqrt{2}$
	$\sqrt{2}$ 2	(4)
	OR	
	MRPN is a square (all angles equals 90°, adj sides equal)	$(MN)^2 - 10$
	$MP^2 = 18 + 18$	$\checkmark MN^2 = 18$ $\checkmark MP^2 = 36$
	= 36	$\begin{array}{c} \checkmark \text{ Mir} = 30 \\ \checkmark 6 \\ \checkmark \frac{1}{\sqrt{2}} \end{array}$
	MP = 6	* 6 ✓ 1
	$\frac{NP}{MP} = \frac{\sqrt{18}}{6} = \frac{1}{\sqrt{2}} or \frac{\sqrt{2}}{2}$	
	1VII 0 1/2 2	(4)

OR

By inspection:
$$P(3; -7)$$

$$\frac{\text{NP}}{\text{MP}} = \frac{\sqrt{(6-3)^2 + (4-7)^2}}{\sqrt{(3-3)^2 + (-7+1)^2}}$$
$$= \frac{\sqrt{18}}{6} = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$$

$$P(3:-7)$$

$$\sqrt{NP^2} = 18$$

$$\sqrt{\frac{1}{\sqrt{2}}}$$

(4) [**24**]

7.1	$(x; y) \rightarrow (y; -x) \rightarrow (-y; -x)$	✓ (y; –x)	
		$\checkmark (-y; -x)$	(2)
7.2	$(x;y) \to (-x;y) \to (y;x)$	$\checkmark (-x ; y)$	
		$\checkmark (y; x)$	(2)
7.3	Mo's claim is correct/Mo se bewering is korrek.	✓ Mo	
	If order was unimportant then the image of P would be the same in	✓ reason	
	both cases. This is not so./As volgorde onbelangrik is, sal die beeld		(2)
	van P in beide gevalle dieselfde wees. Wat nie so is nie.		
	OR		
	Choose any point \neq (0; 0) and show that their images both cases	✓ calculation of	
	are not the same.	both images	
	For example: $(3; 4) \rightarrow (4; -3) \rightarrow (-4; -3)$	✓ Mo	
	$(3;4) \to (-3;4) \to (4;3)$		(2)
	Mo is correct		[6]

8.1	ΔABC is translated by 4 units to the left and 4 units up/ ΔABC word getransleer met 4 eenhede na links en 4 eenhede	✓ translation/ translasie✓ 4 left/links and
	opwaarts. Accept $(x; y) \rightarrow (x-4; y+4)$	4 up/opwaarts (2)
8.2	R'(3;-4)	√ 3 √ −4
0.2.1		(2)
8.3.1	Area $\Delta A'B'C' = 16 \times \text{Area of } \Delta ABC$ Scale factor/skaalfaktor = 4	✓ 4(1)
8.3.2	$AC = \sqrt{10}$	$\sqrt{4\sqrt{10}}$
	$A'C' = 4\sqrt{10}$	(1)
8.4	EF = AC	✓✓✓ recognising
	$\sqrt{(s-0)^2 + (t-1)^2} = \sqrt{10}$ F(0; 1)	that $EF = AC$
	$\sqrt{s^2 + (t-1)^2} = \sqrt{10}$ $\sqrt{10}$	1
	$s^2 + (t-1)^2 = 10$	terms of s and t
	$s^2 + t^2 - 2t + 1 - 10 = 0$	(4)
	$s^2 + t^2 - 2t - 9 = 0$	[10]

9.1 Anti-clockwise / Anti-kloksgewys:

$$-\frac{16}{\sqrt{2}}\cos(-\theta) - \frac{16}{\sqrt{2}}\sin(-\theta) = 8 \quad(1)$$

$$\frac{16}{\sqrt{2}}\cos(-\theta) - \frac{16}{\sqrt{2}}\sin(-\theta) = -8\sqrt{3} \quad(2)$$

(1) +(2):
$$-\frac{32}{\sqrt{2}}\sin(-\theta) = 8 - 8\sqrt{3}$$

$$\sin(-\theta) = \frac{-8 + 8\sqrt{3}}{\frac{32}{\sqrt{2}}}$$

$$\sin \theta = \frac{-\sqrt{6} + \sqrt{2}}{4} = -0.258819...$$

$$\theta = 180^{\circ} + 15^{\circ}$$
 or $\theta = 360^{\circ} - 15^{\circ}$
= 195°

$$-\frac{16}{\sqrt{2}}\cos(-\theta) - \frac{16}{\sqrt{2}}\sin(-\theta) = 8 \quad(1)$$

$$\frac{16}{\sqrt{2}}\cos(-\theta) - \frac{16}{\sqrt{2}}\sin(-\theta) = -8\sqrt{3} \dots(2)$$

(1) - (2):
$$-\frac{32}{\sqrt{2}}\cos(-\theta) = 8 + 8\sqrt{3}$$

$$\cos\theta = \frac{8 + 8\sqrt{3}}{-\frac{32}{\sqrt{2}}} = \frac{-\sqrt{6} - \sqrt{2}}{4} = -0.96592...$$

$$\theta = 180^{\circ} + 15^{\circ}$$
 or $\theta = 180^{\circ} - 15^{\circ}$
= 195°

OR

Clockwise /Kloksgewys:

$$-\frac{16}{\sqrt{2}}\cos(\theta) + \frac{16}{\sqrt{2}}\sin(\theta) = 8 \quad(1)$$

$$\frac{16}{\sqrt{2}}\cos(\theta) + \frac{16}{\sqrt{2}}\sin(\theta) = -8\sqrt{3}$$
(2)

(1) +(2):
$$\frac{32}{\sqrt{2}}\sin(\theta) = 8 - 8\sqrt{3}$$

$$\sin(\theta) = \frac{8 - 8\sqrt{3}}{\frac{32}{\sqrt{2}}}$$

$$\sin \theta = \frac{-\sqrt{6} + \sqrt{2}}{4} = -0.258819...$$

$$\theta = 180^{\circ} + 15^{\circ}$$
 or $\theta = 360^{\circ} - 15^{\circ}$

$$\theta = 180^{\circ} + 15^{\circ}$$
 or $\theta = 360^{\circ} - 15^{\circ}$

✓ substitution into x image of rotation

✓ substitution into y image of rotation

✓ addition of equations

✓ value of $\sin \theta$

✓ 180° + 15°

(5)

✓ substitution into x image of rotation

✓ substitution into v image of rotation

✓ subtraction of equations

✓ value of $\cos \theta$

✓ 180° + 15°

(5)

✓ substitution into x image of rotation

✓ substitution into y image of rotation

√ addition of equations

✓ value of $\sin \theta$

✓ 180° + 15°

(5)

✓ substitution into

✓ substitution into *y* image of

x image of rotation

rotation ✓ subtraction of

equations \checkmark value of $\cos \theta$

✓ 180° + 15°

(5)

(5)

OR

$$-\frac{16}{\sqrt{2}}\cos(\theta) + \frac{16}{\sqrt{2}}\sin(\theta) = 8 \qquad(1)$$

$$\frac{16}{\sqrt{2}}\cos(\theta) + \frac{16}{\sqrt{2}}\sin(\theta) = -8\sqrt{3} \quad(2)$$

(1) - (2):
$$-\frac{32}{\sqrt{2}}\cos(\theta) = 8 + 8\sqrt{3}$$

$$\cos\theta = \frac{8 + 8\sqrt{3}}{-\frac{32}{\sqrt{2}}} = \frac{-\sqrt{6} - \sqrt{2}}{4} = -0.96592...$$

$$\theta = 180^{\circ} + 15^{\circ}$$
 or $\theta = 180^{\circ} - 15^{\circ}$
= 195°

OR

$$\tan \alpha = \frac{-\frac{16}{\sqrt{2}}}{\frac{16}{\sqrt{2}}} = -1$$

$$\alpha = 135^{\circ}$$

$$\tan \beta = \frac{-8\sqrt{3}}{8} = -\sqrt{3}$$
$$\beta = -60^{\circ}$$

$$\therefore \theta = 135^{\circ} + 60^{\circ} = 195^{\circ}$$

 $\frac{T}{\alpha}$

$$\begin{array}{c|c}
\checkmark & \tan \alpha = -1 \\
\checkmark & 135^{\circ}
\end{array}$$

$$\checkmark \tan \beta = -\sqrt{3}$$

$$\checkmark -60^{\circ}$$

OR

$$\tan \alpha = 1$$
$$\alpha = 45^{\circ}$$

$$\tan \beta = \sqrt{3}$$
$$\beta = 60^{\circ}$$

$$\therefore \theta = (180^{\circ} - 45^{\circ}) + 60^{\circ} = 195^{\circ}$$

$$\checkmark \tan \alpha = 1$$

$$\checkmark 45^{\circ}$$

$$\checkmark \tan \beta = \sqrt{3}$$
 $\checkmark 60^{\circ}$

(5)

	oR speed/sec = $\frac{195^{\circ}}{1,3} = 150^{\circ}/\text{sec}$ speed/minute = $150^{\circ} \times 60 = 9000^{\circ}/\text{min}$ no of revolutions = $\frac{9000}{360} = 25 \text{ rev/min}$	$ √ \frac{195}{1,3} \text{ or } 150 $ $ √ 150 × 60 $ $ √ 9000 $ $ √ \frac{9000}{360} $ $ √ 25 \text{ rev/min} $	(5)
9.2	195° in 1,3 secs ∴ 1 revolution/omwenteling in $\frac{360}{195} \times 1,3$ secs = 2,4 secs/sek 1 minute = 60 sec: ∴ $\frac{60}{2,4} = 25$ revolutions/omwentelings ∴ 25 rev/min or 25 omw/min Answer only: 1 mark	$\sqrt{\frac{360}{195}}$ $\sqrt{\frac{360}{195}} \times 1,3$ $\sqrt{2,4} \sec s$ $\sqrt{\frac{60}{2,4}}$ $\sqrt{25} \operatorname{rev/min}$	

10.1	$OP^2 = 25 + 144 = 169$	$\checkmark OP^2 = 25 + 144$	
	OP = 13	✓ <i>OP</i> = 13	
	$\cos \alpha = -\frac{5}{13}$	✓ answer	(3)
	OR		
	$r^2 = x^2 + y^2$	$\sqrt{r^2} = 25 + 144$	
	25+144=169	$\sqrt{r}=13$	
	r = 13 Answer only: full marks	√ answer	
	$\cos \alpha = -\frac{5}{13}$	unswer	(3)
10.2	$\tan(180^{\circ} - \alpha)$		
	$=-\tan \alpha$	$\sqrt{-\tan \alpha}$	
	$=-\frac{12}{5}$	✓ answer	
	~		(2)
10.3	$\sin(30^{\circ} - \alpha)$ $= \sin 30^{\circ} \cos \alpha - \cos 30^{\circ} \sin \alpha$	✓ expansion	
	$= \left(\frac{1}{2}\right)\left(\frac{-5}{13}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{-12}{13}\right)$	$\checkmark \left(\frac{1}{2}\right)\left(\frac{-5}{13}\right)$	
	$=\frac{-5+12\sqrt{3}}{26}$	$\checkmark \left(\frac{\sqrt{3}}{2}\right)\left(\frac{-12}{13}\right)$	
			(3) [8]

11.1	$LHS = \frac{\cos^2(90^\circ + \theta)}{\cos^2(90^\circ + \theta)\cos^2(90^\circ + \theta)}$	_	
	$\cos(-\theta) + \sin(90^\circ - \theta) \cdot \cos \theta$)	
	$-(-\sin\theta)^2$		$\sqrt{\cos^2(90^\circ + \theta)} = \sin^2 \theta$
	$=\frac{\cos\theta+\cos\theta\cos\theta}{\cos\theta}$		$\sqrt{\sin(90^{\circ} - \theta)} = \cos \theta$
	$1-\cos^2\theta$		$\sqrt{\cos(-\theta)} = \cos\theta$
	$=\frac{1}{\cos\theta+\cos^2\theta}$		$\sqrt{1-\cos^2\theta}$
	$= \frac{(1-\cos\theta)(1+\cos\theta)}{(1-\cos\theta)}$		
	$=\frac{(1-\cos\theta)(1+\cos\theta)}{\cos\theta(1+\cos\theta)}$		✓ factors
	$=\frac{1-\cos\theta}{}$		$\sqrt{1-\cos\theta}$
	$-\frac{1}{\cos\theta}$		$\sqrt{\frac{\cos \theta}{\cos \theta}}$
	_ 1 1		0030
	$=\frac{1}{\cos\theta}-1$		
	=RHS		(6)
11.2	$\tan x \cdot \sin x + \cos x \cdot \tan x = 0$		
	$\tan x(\sin x + \cos x) = 0$		✓ factorising
	$\tan x = 0$ or $\sin x$	$x + \cos x = 0$	$\sqrt{\tan x} = 0$ and $\sin x + \cos x = 0$
	$\sin x$	$c = -\cos x$	$\int_{0}^{\infty} \sin x + \cos x = 0$
	tana	$\varepsilon = -1$	$\sqrt{\tan x} = -1$
	$x = 0^{\circ} + k.180^{\circ}; k \in Z \text{ or } x = 1$		$\checkmark x = 0^{\circ}$
	$x = 0$ + k .100 , $k \in \mathbb{Z}$ 07 $x = 1$	33 T N.100 , N C Z	$\sqrt{x} = 135^{\circ} \text{ or } -45^{\circ}$
	OR		✓ k.180°
			$\checkmark k \in Z \tag{7}$
	$\frac{\sin x}{\sin x} \cdot \sin x + \cos x \cdot \frac{\sin x}{\sin x} = 0$		
	$\cos x = \cos x$	2	\checkmark factorising \checkmark sin $x = 0$ and
	$\frac{\sin^2 x}{\sin^2 x} + \frac{\cos x \cdot \sin x}{\cos x} = 0$	$\left (\sin x + \cos x)^2 = 0 \right $	$\sqrt{\sin x - 0}$ and
	$\frac{-\cos x}{\cos x} + \frac{-\cos x}{\cos x} = 0$	$1 + \sin 2x = 0$	$\sqrt{\tan x} = -1$
	$\sin^2 x + \cos x \cdot \sin x = 0$	$\sin 2x = -1 \qquad \checkmark$	$\checkmark x = 0^{\circ}$
	$\sin x(\sin x + \cos x) = 0$	$x = 135^{\circ} + k.180^{\circ}$	$\checkmark x = 135^{\circ} \text{ or } -45^{\circ}$
	$\sin x + \cos x = 0$		$ \begin{array}{c} \checkmark k.180^{\circ} \\ \checkmark k \in Z \end{array} \tag{7} $
	$\sin x = 0 or \tan x = -1$ $x = 0^{\circ} + k.180^{\circ}; \ k \in Z or x = 135^{\circ} + k.180^{\circ}; \ k \in Z$ \mathbf{OR} $\tan x.\sin x + \cos x.\tan x = 0 \qquad (\cos x \neq 0)$ $\tan^{2} x + \tan x = 0$ $\tan x(\tan x + 1) = 0$ $\tan x = 0 \qquad or \qquad \tan x + 1 = 0$ $\tan x = -1$		$\checkmark k \in Z \tag{7}$
			✓ factorising
			$\sqrt{\tan x} = -1$
			$\sqrt{x} = 0^{\circ}$
			$\sqrt{x} = 135^{\circ} \text{ or } -45^{\circ}$
			$ \begin{array}{c} \checkmark k.180^{\circ} \\ \checkmark k \in Z \end{array} \tag{7} $
	$x = 0^{\circ} + k.180^{\circ}; k \in \mathbb{Z} \text{ or } x = 135^{\circ}$		$\checkmark k \in Z \tag{7}$

11.3.1	2-:-22:-2		
11.5.1	$2\sin^2 3x - \sin^2 x - \cos^2 x$	$\int -(\sin^2 x + \cos^2 x)$	
	$= 2\sin^2 3x - (\sin^2 x + \cos^2 x)$	√ 1	
	$=2\sin^2 3x - 1$	$\checkmark 2\sin^2 3x - 1$	
	$=-\cos 6x$		(3)
	OR		
	$2\sin^2(2x+x)-\sin^2x-\cos^2x$		
	$= 2(\sin 2x \cdot \cos x + \cos 2x \cdot \sin x)^{2} - (\sin^{2} x + \cos^{2} x)$	$\sqrt{-(\sin^2 x + \cos^2 x)}$	
	$= 2((2\sin x.\cos x)\cos x + (1 - 2\sin^2 x)\sin x)^2 - 1$	 √1	
	$= 2(2\sin x.\cos^2 x + \sin x - 2\sin^3 x)^2 - 1$		
	$= 2(2\sin x(1-\sin^2 x) + \sin x - 2\sin^3 x)^2 - 1$		
	$= 2(2\sin x - 2\sin^3 x + \sin x - 2\sin^3 x)^2 - 1$		
	$= 2(-4\sin^3 x + 3\sin x)^2 - 1$		
	$= 2(16\sin^6 x - 24\sin^4 x + 9\sin^2 x) - 1$		
	$= 32\sin^6 x - 48\sin^4 x + 18\sin^2 x - 1$	✓ answer	(3)
11.3.2	Max value = 1	√1	
11.4.1	$n = \cos \alpha + \sin \alpha$		(1)
(a)	$p = \cos \alpha + \sin \alpha$ $q = \cos \alpha - \sin \alpha$		
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$		
	$= (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)$	✓ expansion ✓ factorise	
	= pq	✓ answer	
			(3)
	OR	p-q	
	$\sin \alpha = \frac{p - q}{2}$	$\sqrt{\frac{p-q}{2}}$	
	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	✓ expansion	
		✓ answer	(3)
	$=1-2(\frac{p-q}{2})^2$		(0)
	OR		
	$\cos \alpha = \frac{p+q}{2}$	n+a	
	$\cos 2\alpha = 2\cos^2 \alpha - 1$	$\sqrt{\frac{p+q}{2}}$	
		✓ expansion	
	$=2(\frac{p+q}{2})^2-1$	√ answer	(3)
	OR		
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$		
	$= (\frac{p+q}{2})^2 - (\frac{p-q}{2})^2$		

	NSC/NSS – Memorandum		
		✓ expansion	
		$\sqrt{\frac{p-q}{2}}$	
		$\sqrt{\frac{p+q}{2}}$	
		$\sqrt{2}$	/=\
			(3)
11.4.1 (b)	$p+q=2\cos\alpha$: $\cos\alpha=\frac{p+q}{2}$	$\begin{array}{ c c c c }\hline \checkmark p + q \\ \checkmark p - q\end{array}$	
(0)	2	v p q	
	$p - q = 2\sin\alpha \therefore \sin\alpha = \frac{p - q}{2}$		
	$\tan \alpha = \frac{\sin \alpha}{\alpha}$	✓ identity	
	$\cos \alpha$		
	$=\frac{2\sin\alpha}{2\cos\alpha}$		
		✓ answer	
	$=\frac{p-q}{p+q}$		(4)
	OR		
	$\cos \alpha + \sin \alpha = p$		
	$\cos \alpha - \sin \alpha = q$ $\Rightarrow 2\cos \alpha = p + q$		
	2 /	$\checkmark 2\cos\alpha = p + q$	
	$\cos \alpha = \frac{p+q}{2}$	$\frac{1}{2}\cos\alpha - p + q$	
	$y^2 = 2^2 - (p+q)^2$	✓ sketch	
	$y = \sqrt{4 - (p+q)^2}$ $p + q$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(n+\alpha)^2}{(n+\alpha)^2}$	
	$\therefore \tan \alpha = \frac{\sqrt{4 - (p + q)^2}}{}$	$\checkmark y = \sqrt{4 - (p+q)^2}$	
	$\therefore \tan \alpha = \frac{1}{p+q}$	✓ answer	
	OR		(4)
	1		
	$\cos \alpha + \sin \alpha = p$		
	$\cos \alpha - \sin \alpha = q$ $p - q$		
	$\Rightarrow 2\sin\alpha = p - q$	$\checkmark 2\sin\alpha = p - q$	
	$\sin \alpha = \frac{p-q}{2}$	✓ sketch	
	$x^2 = 2^2 - (p - q)^2$		
	$x = \sqrt{4 - (p - q)^2}$	$\checkmark x = \sqrt{4 - (p - q)^2}$	-
	·		
	$\therefore \tan \alpha = \frac{p-q}{\sqrt{4-(p-q)^2}}$	✓ answer	(4)
	·		` /
	OR		

	NSC/NSS – Memorandum	
	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	
	$\sin^2 \alpha = \frac{1 - pq}{2}$	
	\mathcal{L}	$\sqrt{\sin^2\alpha} = \frac{1-pq}{2}$
	$\cos 2\alpha = 2\cos^2 \alpha - 1$	_
	$\cos^2 \alpha = \frac{pq+1}{2}$	na+1
	$(\sin \alpha)^2$	$\checkmark \cos^2 \alpha = \frac{pq+1}{2}$
	$(\tan \alpha)^2 = \left(\frac{\sin \alpha}{\cos \alpha}\right)^2$	
	$\tan^2 \alpha = \frac{1 - pq}{1 + pq}$	$\checkmark (\tan \alpha)^2 = \left(\frac{\sin \alpha}{\cos \alpha}\right)^2$
		$(\cos \alpha)$
	$\therefore \tan \alpha = \sqrt{\frac{1 - pq}{1 + pq}}$	1-pq
	$\sqrt{1+pq}$	$\checkmark \tan \alpha = \sqrt{\frac{1 - pq}{1 + pq}}$
		(4)
11.4.2	$\frac{p}{2q} - \frac{q}{2p}$	
	1 1	p^2-q^2
	$=\frac{p^2-q^2}{2pq}$	$\sqrt{\frac{p^2-q^2}{2pq}}$
	1 1	(factoriain a
	$=\frac{(p+q)(p-q)}{2pq}$	✓ factorising substituting
	$=\frac{(2\cos\alpha)(2\sin\alpha)}{}$	✓ from 11.4.1(a)
	$\frac{1}{2\cos 2\alpha}$	✓ and 11.4.1(b)
	$=\frac{4\sin\alpha\cos\alpha}{2\cos2\alpha}$	
	$_{2}\sin 2\alpha$	$\checkmark 2 \sin 2\alpha$
	$2\cos 2\alpha$	$\checkmark \tan 2\alpha$
	$=\tan 2\alpha$	(6)
	OR	
	$\frac{p}{2q} - \frac{q}{2p}$	
	$\cos \alpha + \sin \alpha \qquad \cos \alpha - \sin \alpha$	✓ substitution
	$=\frac{2(\cos\alpha-\sin\alpha)}{2(\cos\alpha-\sin\alpha)}-\frac{\cos\alpha-\sin\alpha}{2(\cos\alpha+\sin\alpha)}$	
	$=\frac{(\cos\alpha+\sin\alpha)^2-(\cos\alpha-\sin\alpha)^2}{(\cos\alpha+\sin\alpha)^2}$	✓ single fraction
	$-\frac{1}{2(\cos\alpha-\sin\alpha)(\cos\alpha+\sin\alpha)}$	
	$=\frac{\cos^2\alpha+2\sin\alpha\cos\alpha+\sin^2\alpha-(\cos^2\alpha-2\sin\alpha\cos\alpha+\sin^2\alpha)}{\cos^2\alpha+\sin^2\alpha+\cos^2\alpha+\cos^2\alpha}$	
	$2(\cos^2\alpha - \sin^2\alpha)$	$\checkmark 4 \sin\alpha \cos\alpha$
	$=\frac{4\sin\alpha\cos\alpha}{2\cos2\alpha}$	$\checkmark 2 \cos 2\alpha$
	$2 \sin 2\alpha$	✓ 2sin2a
	$=\frac{1}{2\cos 2\alpha}$	
	$=\tan 2\alpha$	$\checkmark \tan 2\alpha$ (6)
		[30]

10.1		
12.1	-180°-135° -90° 45° O 45° 90° 135° 180°	$y = \tan x + 1$ ✓ asymptotes and shape for whole domain ✓ y intercept ✓ x intercepts
		$y = \cos 2x$ $x \text{ intercepts}$ $y \text{ intercept/TP}$ $minimum$ $values$ (6)
12.2	Period of g is 180°.	✓ 180° (1)
12.3	Reflected about the x-axis and then translated by 10° to the left/ refleksie om die x-as en dan 'n translasie van 10° links. OR	✓ reflected about x –axis/refleksie om x-as $\sqrt{10^{\circ}}$ to the left 10° na links (2)
	Translated by 10° to the left and then reflected about the x-axis/ Translasie van 10° links en dan 'n refleksie om die x-as.	✓ 10° to the left 10° na links ✓ reflected about x -axis/refleksie om x-as (2)
12.4	f is always increasing	
	$\therefore f'(x) > 0$ always	
	$\therefore g(x) > 0$ $\therefore 0^{\circ} < x < 45^{\circ} \text{ or } 135^{\circ} < x \le 180^{\circ}$	✓ critical values 0° and 45° ✓ inequality ✓ critical values
	OR $\therefore x \in (0^{\circ}; 45^{\circ}) \text{ or } (135^{\circ}; 180^{\circ}]$	135° and 180° ✓ inequality (4) [13]

13.1	In ΔCEB:	
13.1	$BC^{2} = EC^{2} + EB^{2} - 2(EC)(EB)\cos C\hat{E}B$ $(232,6)^{2} = (221,2)^{2} + (221,2)^{2} - 2(221,2)(221,2)\cos C\hat{E}B$	✓ substitution into correct formula
	$\cos C\hat{E}B = \frac{2(221,2)^2 - (232,6)^2}{2(221,2)^2}$ $= 0,447$ $C\hat{E}B = 63,44^{\circ}$	✓ 0,447 ✓ 63,44° (3)
	OR $\cos \alpha = \frac{116,3}{221,2}$ $\alpha = 58,28^{\circ}$ $\theta = 180^{\circ} - 2(58,28^{\circ}) = 63,44^{\circ}$ C α	✓ substitution into correct definition ✓ α = 58,28° ✓ 63,44° (3)
	OR	
	$\sin \theta = \frac{116,3}{221,2}$ $\theta = 31,72^{\circ}$ $A\hat{E}B = 2\theta = 2(31,72^{\circ}) = 63,44^{\circ}$ C $116,3$	✓ substitution into correct formula $\forall \theta = 31,72^{\circ}$ $\forall 63,44^{\circ}$ (3)
13.2	$EF^{2} = EB^{2} - BF^{2}$ $= (221,2)^{2} - (116,3)^{2}$ $= 35403,75$ $EF = 188,16 m$ $\cos EFG = \frac{GF}{EF}$ $= \frac{116,3}{188,16}$ $= 0,618$ $EFG = 51.82^{\circ}$	✓ using Pythagoras correctly ✓ BF = 116,3 ✓ 188,16 ✓ using cos EFG ✓ 116,3 / 188,16
	$E\hat{F}G = 51,82^{\circ}$ OR	✓ 51,82°(6)

TOTAL/TOTAAL: 150