

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Necessary condition for a given functional to achieve a maximum or minimum

Maximizing a functional

Definition

A functional ν is maximal on some function x_0 if the value of the functional on any function x close to x_0 is less than or equal to that on x_0 , that is,

$$\Delta v = v(x) - v(x_0) \le 0$$

First-order necessary condition for a given functional to achieve a maximum or minimum

Theorem

If for a functional v there exists a variation and the functional reaches a maximum or a minimum on a curve x_0 , then

$$\delta \nu \left(x_{0}\right) =0$$

Proof of the first order necessary condition for a given functional to achieve a maximum or minimum

- Suppose x_0 and δx are fixed
- Then

$$v(x_0 + \alpha \delta x) = \Phi(\alpha)$$

• That is,

$$v(x_0 + \alpha \delta x)$$

is a function of α that for $\alpha=0$ achieves its maximum or minimum

Proof—contd.

We have

$$v(x_0 + \alpha \delta x)$$

is a function of α that for $\alpha=0$ achieves its maximum or minimum

• This implies that $\frac{d}{d\alpha}\Phi = 0$, or equivalently,

$$\left. \frac{d}{d\alpha} \nu \left(x_0 + \alpha \delta x \right) \right|_{\alpha = 0} = 0$$

- Hence, by the Lemma, $\delta v = 0$
- Therefore, a functional that achieves its maximum or a minimum on a function x_0 , has its variation evaluated at x_0 equal to zero.

Fundamental lemma of calculus of variations

Lemma

Suppose that a function $\phi : \mathbb{R} \to \mathbb{R}$ is continuous on the interval $[t_0, t_1]$. Then, for all δx ,

$$\int_{t_0}^{t_1} \phi(t) \delta x(t) dt = 0$$

if and only if $\phi(t) = 0$ at every point of the interval $[t_0, t_1]$.

Illustration of the Lemma

Proof of the lemma

- (\iff) Sufficiency is obvious because we can satisfy $\int_{t_0}^{t_1} \phi(t) \delta x(t) dt = 0$ by choosing ϕ that vanishes at every point of the interval $[t_0, t_1]$
- (\Longrightarrow) Necessity by contraposition
- We thus prove that if ϕ is nonzero on some subinterval of $[t_0, t_1]$, then $\int_{t_0}^{t_1} \phi(t) \delta x(t) dt \neq 0$
- Specifically, assume, without loss of generality, that ϕ is positive on the interval [a, b], where $t_0 \le a \le b \le t_1$
- Note that if ϕ were nonzero at only one point, then because it is continuous, it would have to be nonzero in some neighborhood of that point. Hence, we can assume that a < b

Proof of the lemma—contd.

Consider now a variation given by

$$\delta x = \delta x(t) = \begin{cases} k^2(t-a)^2(t-b)^2 & \text{for} \quad a \le t \le b \\ 0 & \text{elsewhere.} \end{cases}$$

- If we assumed ϕ to be negative on the interval [a, b], then we would use δx to be negative
- Because δx is positive in [a, b] and zero elsewhere in the interval $[t_0, t_1]$, the integrand of $\int_{t_0}^{t_1} \phi(t) \delta x(t) dt$ will have the same sign as ϕ in [a, b] and will be zero outside this subinterval
- Thus

$$\int_{t_0}^{t_1} \phi(t) \delta x(t) dt = \int_a^b \phi(t) \delta x(t) dt \neq 0,$$

and the proof is complete.

