

Nguyễn Công Phương

Engineering Electromagnetics

Dielectrics & Capacitance

Contents

- I. Introduction
- II. Vector Analysis
- III. Coulomb's Law & Electric Field Intensity
- IV. Electric Flux Density, Gauss' Law & Divergence
- V. Energy & Potential
- VI. Current & Conductors

VII. Dielectrics & Capacitance

- VIII. Poisson's & Laplace's Equations
- IX. The Steady Magnetic Field
- X. Magnetic Forces & Inductance
- XI. Time Varying Fields & Maxwell's Equations
- XII. Transmission Lines
- XIII. The Uniform Plane Wave
- XIV. Plane Wave Reflection & Dispersion
- XV. Guided Waves & Radiation

Dielectrics & Capacitance

- 1. Dielectric Materials
- 2. Boundary Conditions for Perfect Dielectric Materials
- 3. Capacitance
- 4. Using Field Sketches to Estimate Capacitance
- 5. Current Density & Flux Density

Dielectric Materials (1)

- Dipole moment: $\mathbf{p} = Q\mathbf{d}$
- Q: the positive one of the 2 bound charges
- d: the vector from the negative to the positive charge

Dielectric Materials (2)

- Dipole moment: $\mathbf{p} = Q\mathbf{d}$
- If there are n dipoles per unit volume, then the total dipole moment in Δv :

$$\mathbf{p}_{total} = \sum_{i=1}^{n\Delta v} \mathbf{p}_i$$

• The polarization:

$$\mathbf{P} = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta v} \mathbf{p}_i$$

• Unit: C/m²

Density: *n* molecules/m³

$$\Delta v = d \cos \theta \Delta S$$

$$\Delta Q_b = nQ\Delta v$$

$$\rightarrow \Delta Q_b = nQd\cos\theta\Delta S$$
$$-nQd\Delta S$$

$$= nQ\mathbf{d}.\Delta\mathbf{S}$$

$$= nQ\mathbf{d}.\Delta\mathbf{S}$$

$$\mathbf{p} = Q\mathbf{d} \rightarrow \mathbf{P} = nQ\mathbf{d}$$

$$\rightarrow Q_b = -\oint_S \mathbf{P}.d\mathbf{S}$$

$$Q_T = Q_b + Q$$

$$\Rightarrow Q_b = -\oint_S \mathbf{P}.d\mathbf{S}$$

$$Q_T = \oint_{S} \varepsilon_0 \mathbf{E} . d\mathbf{S}$$

$$Q_T = Q_b + Q \longrightarrow Q = Q_T - Q_b$$

Gauss's law:
$$Q_T = \oint_S \varepsilon_0 \mathbf{E} . d\mathbf{S}$$
 $\Rightarrow Q = \oint_S (\varepsilon_0 \mathbf{E} + \mathbf{P}) . d\mathbf{S}$

(Q: the total free charge)

TRƯ^ƠNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Dielectric Materials (4)

$$Q = \oint_{S} (\varepsilon_{0}\mathbf{E} + \mathbf{P}).d\mathbf{S}$$
Gauss's law: $Q = \oint_{S} \mathbf{D}.d\mathbf{S}$ $\rightarrow \boxed{\mathbf{D} = \varepsilon_{0}\mathbf{E} + \mathbf{P}}$

Dielectric Materials (5)

- $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$
- In an isotropic material, **E** & **P** are always parallel, regardless of the orientation of the field
- $\mathbf{P} = \chi_e \varepsilon_0 \mathbf{E}$
- χ_e : the electric susceptibility
- \rightarrow **D** = ε_0 **E** + **P** = ε_0 **E** + $\chi_e \varepsilon_0$ **E** = $(\chi_e + 1)\varepsilon_0$ **E**
- $\varepsilon_r = \chi_e + 1$: the relative permittivity
- $\rightarrow \mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} = \varepsilon \mathbf{E}$
- $\varepsilon = \varepsilon_0 \varepsilon_r$: the permittivity

Dielectric Materials (6)

Material	ε_r	Material	ε_r	Material	ε_r
Quartz	3.8-5	Paper	3.0	Silica	3.8
GaAs*	13	Bakelite	5.0	Quartz	3.8
Nylon	3.1	Glass	6.0 (4–7)	Snow	3.8
Paraffin	3.2	Mica	6.0	Soil (dry)	2.8
Perspex	2.6	Water (distilled)	81	Wood (dry)	1.5-4
Polystyrene foam	1.05	Polyethylene	2.2	Silicon	11.8
Teflon	2.0	Polyvinyl chloride	6.1	Ethyl alcohol	25
BaTiO ₃ **	10,000	Germanium	16	Amber	2.7
Air	1.0006	Glycerin	50	Plexiglas	3.4
Rubber	3.0	Nylon	3.5	Aluminum oxide	8.8

N. Ida. Engineering Electromagnetics. Springer, 2015, pp. 175

Dielectrics & Capacitance

- 1. Dielectric Materials
- 2. Boundary Conditions for Perfect Dielectric Materials
- 3. Capacitance
- 4. Using Field Sketches to Estimate Capacitance
- 5. Current Density & Flux Density

TRUONG BAI HOC

BÁCH KHOA HÀ NỘI

Boundary Conditions for Perfect Dielectric Materials (1)

$$\oint \mathbf{E}.d\mathbf{L} = 0$$

$$\Rightarrow E_{tan1}\Delta w - E_{tan2}\Delta w = 0$$
Region $1, \varepsilon_1$

$$\Rightarrow \frac{D_{tan1}}{\varepsilon_1} = E_{tan2}$$

$$\Rightarrow \frac{D_{tan1}}{\varepsilon_1} = E_{tan2} = E_{tan2} = \frac{D_{tan2}}{\varepsilon_2} \Rightarrow \frac{D_{tan1}}{D_{tan2}} = \frac{\varepsilon_1}{\varepsilon_2}$$

$$\Delta Q = \rho_S \Delta S$$

$$\Delta Q = D_{N1}\Delta S - D_{N2}\Delta S$$
No free charge on the interface $\Rightarrow \rho_S = 0$

$$\Rightarrow \varepsilon_1 E_{N1} = \varepsilon_2 E_{N2} \Rightarrow \frac{E_{N1}}{E_{N2}} = \frac{\varepsilon_2}{\varepsilon_1}$$

Boundary Conditions for Perfect Dielectric Materials (2)

$$E_{tan1} = E_{tan2}$$

$$\frac{D_{tan1}}{D_{tan2}} = \frac{\mathcal{E}_1}{\mathcal{E}_2}$$

$$D_{N1} = D_{N2}$$

$$\frac{E_{N1}}{E_{N1}} = \frac{\mathcal{E}_2}{E_{N2}}$$

If we know the field on one side (e.g \mathbf{E}_1 or \mathbf{D}_1) of a boundary, we cand find quickly the field on the other side ($\mathbf{E}_2 \& \mathbf{D}_2$)

Boundary Conditions for Perfect Dielectric Materials (3)

Boundary Conditions for Perfect Dielectric Materials (4)

$$\theta_2 = \operatorname{atan}\left(\frac{\mathcal{E}_2}{\mathcal{E}_1} \tan \theta_1\right)$$

$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + \left(\frac{\mathcal{E}_2}{\mathcal{E}_1}\right)^2 \sin^2 \theta_1}$$

$$E_2 = E_1 \sqrt{\sin^2 \theta_1 + \left(\frac{\mathcal{E}_1}{\mathcal{E}_2}\right)^2 \cos^2 \theta_1}$$

TRUONG BẠI HỌC BÁCH KHOA HÀ NỘI

Boundary Conditions for Perfect Dielectric Materials (6)

Ex.

Given the region z < 0 with $\varepsilon_{r1} = 3.2$ & $\mathbf{D}_1 = -30\mathbf{a}_x + 50\mathbf{a}_y + 70\mathbf{a}_z$ nC/m². The region z > 0 possesses $\varepsilon_{r2} = 2$. Find D_{N1} , \mathbf{D}_{tan1} , D_{tan1} , θ_1 , \mathbf{D}_{N2} , \mathbf{D}_{tan2} , \mathbf{D}_2 , θ_2 ?

$$D_{N1} = D_{1z} = 70 \text{ nC/m}^2$$

$$\mathbf{D}_{tan1} = -30\mathbf{a}_x + 50\mathbf{a}_y \text{ nC/m}^2$$

$$D_{tan1} = |\mathbf{D}_{tan1}| = \sqrt{(-30)^2 + 50^2} = 58.3 \text{ nC/m}^2$$

$$D_1 = |\mathbf{D}_1| = \sqrt{(-30)^2 + 50^2 + 70^2} = 91.1 \text{ nC/m}^2$$

$$\theta_1 = \operatorname{atan} \frac{D_{tan1}}{D_{N1}} = \operatorname{atan} \frac{58.3}{70} = 39.8^{\circ}$$

Boundary Conditions for Perfect Dielectric Materials (7)

Ex.

Given the region z < 0 with $\varepsilon_{r1} = 3.2$ & $\mathbf{D}_1 = -30\mathbf{a}_x + 50\mathbf{a}_y + 70\mathbf{a}_z$ nC/m². The region z > 0 possesses $\varepsilon_{r2} = 2$. Find D_{N1} , \mathbf{D}_{tan1} , D_{tan1} , θ_1 , \mathbf{D}_{N2} , \mathbf{D}_{tan2} , \mathbf{D}_2 , θ_2 ?

$$D_{N2} = D_{N1} = 70 \text{ nC/m}^2 \rightarrow \mathbf{D}_{N2} = 70\mathbf{a}_z \text{ nC/m}^2$$

$$\frac{D_{tan1}}{D_{tan2}} = \frac{\mathcal{E}_1}{\mathcal{E}_2} \rightarrow \frac{\mathbf{D}_{tan1}}{\mathbf{D}_{tan2}} = \frac{\mathcal{E}_1}{\mathcal{E}_2} \rightarrow \mathbf{D}_{tan2} = \frac{\mathcal{E}_2}{\mathcal{E}_1} \mathbf{D}_{tan1} = \frac{2}{3.2} (-30\mathbf{a}_x + 50\mathbf{a}_y)$$
$$= -18.75\mathbf{a}_x + 31.25\mathbf{a}_y \text{ nC/m}^2$$

$$\mathbf{D}_2 = \mathbf{D}_{tan 2} + \mathbf{D}_{N2} = -18.75\mathbf{a}_x + 31.25\mathbf{a}_y + 70\mathbf{a}_z \text{ nC/m}^2$$

$$\theta_2 = \operatorname{atan}\left(\frac{\varepsilon_2}{\varepsilon_1} \tan \theta_1\right) = \operatorname{atan}\left(\frac{2}{3.2} \tan 39.8^{\circ}\right) = 27.5^{\circ}$$

Dielectrics & Capacitance

- 1. Dielectric Materials
- 2. Boundary Conditions for Perfect Dielectric Materials
- 3. Capacitance
- 4. Using Field Sketches to Estimate Capacitance
- 5. Current Density & Flux Density

Capacitance (1)

Capacitance:
$$C = \frac{Q}{V_0}$$

$$Q = \oint_S \varepsilon \mathbf{E} \cdot d\mathbf{S}$$

$$V_0 = -\int_{-}^{+} \mathbf{E} \cdot d\mathbf{L}$$
Capacitance: $C = \frac{Q}{V_0}$

$$V = \oint_S \varepsilon \mathbf{E} \cdot d\mathbf{S}$$

$$V = \frac{1}{V_0} \cdot \mathbf{E} \cdot d\mathbf{L}$$

- V_0 : work to carry a unit positive charge from the surface 1 to the surface 2
- C depends on the physical dimensions (of the system of conductors) & on the permittivity
- Unit: F (farad), C/V, practically μ F, nF, pF

Capacitance (2)

$$\mathbf{E} = \frac{\rho_S}{\varepsilon} \mathbf{a}_z$$

$$\mathbf{D} = \rho_S \mathbf{a}_z$$

Conductor surface,
$$-\rho_S$$

$$E$$
Conductor surface, $+\rho_S$

$$z = d$$

$$z = 0$$

$$V_{0} = -\int_{top}^{bottom} E.dL = -\int_{d}^{0} \frac{\rho_{S}}{\varepsilon} dz = \frac{\rho_{S}}{\varepsilon} d$$

$$Q = \rho_{S} S$$

$$C = \frac{Q}{V_{0}}$$

Capacitance (3)

$$W_{E} = \frac{1}{2} \int_{V} \varepsilon E^{2} dv$$

$$E = \frac{\rho_{S}}{\varepsilon}$$

$$1 \int_{V} \int_{C} d\varepsilon \rho_{S}^{2} ds$$

$$\rightarrow W_E = \frac{1}{2} \int_0^S \int_0^d \frac{\varepsilon \rho_S^2}{\varepsilon^2} dz dS$$

$$1 \quad \rho^2 \qquad 1 \quad \varepsilon S \quad \rho^2 d$$

$$= \frac{1}{2} \frac{\rho_S^2}{\varepsilon} S d = \frac{1}{2} \frac{\varepsilon S}{d} \frac{\rho_S^2 d^2}{\varepsilon^2}$$

$$C = \frac{\varepsilon S}{d}$$

$$V_0 = \frac{\rho_S}{\varepsilon} d$$

Conductor surface,
$$-\rho_S$$

$$E$$
Conductor surface, $+\rho_S$

$$C = \frac{\varepsilon S}{d}$$

$$\Rightarrow W_E = \frac{1}{2}CV_0^2 = \frac{1}{2}QV_0 = \frac{1}{2}\frac{Q^2}{C}$$

TRƯỜNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Capacitance (4)

$$V_{ab} = \frac{\rho_L}{2\pi\varepsilon} \ln\frac{b}{a}$$

$$Q = \rho_L L$$

$$C = \frac{Q}{V}$$

$$C = \frac{2\pi\varepsilon L}{\ln\frac{b}{a}}$$

$$V_{ab} = \frac{Q}{4\pi\varepsilon} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$C = \frac{Q}{V_{ab}}$$

$$C = \frac{4\pi\varepsilon}{\frac{1}{a} - \frac{1}{b}}$$

Capacitance (5)

$$C_{immerse} = \frac{2\pi\varepsilon h}{\ln(b/a)}$$

$$C_{above} = \frac{2\pi\varepsilon_0(d-h)}{\ln(b/a)}$$

$$C_{total} = C_{immerse} + C_{above}$$

$$= \frac{2\pi\varepsilon h}{\ln(b/a)} + \frac{2\pi\varepsilon_0(d-h)}{\ln(b/a)}$$

$$\to C(h) = \frac{2\pi\varepsilon_0}{\ln(b/a)}(h\varepsilon_r + d - b)$$

N. Ida. *Engineering Electromagnetics*. Springer, 2015, pp. 195

$$V_0 = E_1 d_1 + E_2 d_2$$

$$D_{N1} = D_{N2} \rightarrow \varepsilon_1 E_1 = \varepsilon_2 E_2$$

$$\rightarrow E_1 = \frac{V_0}{d_1 + d_2 \frac{\mathcal{E}_1}{\mathcal{E}_2}}$$

Conducting plates

Area, S

$$\Rightarrow E_{1} = \frac{V_{0}}{d_{1} + d_{2} \frac{\varepsilon_{1}}{\varepsilon_{2}}}$$

$$\Rightarrow \rho_{S1} = D_{1} = \varepsilon_{1} E_{1} = \frac{V_{0}}{\frac{d_{1}}{\varepsilon_{1}} + \frac{d_{2}}{\varepsilon_{2}}}$$

$$Q = \rho_{S} S = \rho_{S1} S$$

$$\Rightarrow Condigitates$$

$$\frac{d_{1} + d_{2} \frac{\varepsilon_{1}}{\varepsilon_{2}}}{\frac{d_{1} + d_{2}}{\varepsilon_{1}} \varepsilon_{2}}$$

$$Q = \rho_S S = \rho_{S1} S$$

$$C = \frac{Q}{V_0}$$

$$C = \frac{1}{\frac{d_1}{\varepsilon_1 S} + \frac{d_2}{\varepsilon_2 S}}$$

$$= \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

Capacitance (7)

$$C = \frac{1}{\frac{d_1}{\varepsilon_1 S} + \frac{d_2}{\varepsilon_2 S}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

Conducting plates \

$$C = \frac{\varepsilon_1 S_1 + \varepsilon_2 S_2}{d} = C_1 + C_2$$
 plates

Capacitance (8)

$$Q = \oint_{S} \mathbf{D}(r) \cdot d\mathbf{S} = D(r) \cdot 4\pi r^{2}$$

$$\to D(r) = \frac{Q}{4\pi r^2}$$

$$V = \int_{r=a}^{b} \mathbf{E}_1.d\mathbf{L} + \int_{r=b}^{c} \mathbf{E}_2.d\mathbf{L}$$

$$= \int_{a}^{b} \frac{Q}{4\pi\varepsilon_{1}r^{2}} dr + \int_{b}^{c} \frac{Q}{4\pi\varepsilon_{2}r^{2}} dr$$

$$= \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{\varepsilon_{r1}a} - \frac{1}{\varepsilon_{r1}b} + \frac{1}{\varepsilon_{r2}b} - \frac{1}{\varepsilon_{r2}c} \right)$$

$$\rightarrow C = \frac{Q}{V} = \boxed{ \frac{4\pi\varepsilon_0}{\frac{1}{\varepsilon_{r1}a} - \frac{1}{\varepsilon_{r1}b} + \frac{1}{\varepsilon_{r2}b} - \frac{1}{\varepsilon_{r2}c}} }$$

TRƯỜNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

Capacitance (9)

$$Q = \oint_{S} \mathbf{D}(r) \cdot d\mathbf{S}$$

$$= \int_{S_{1}} \mathbf{D}_{1}(r) \cdot d\mathbf{S} + \int_{S_{2}} \mathbf{D}_{2}(r) \cdot d\mathbf{S}$$

$$= \int_{S_{1}} \varepsilon_{r1} \varepsilon_{0} \mathbf{E}_{1}(r) \cdot d\mathbf{S} + \int_{S_{2}} \varepsilon_{r2} \varepsilon_{0} \mathbf{E}_{2}(r) \cdot d\mathbf{S}$$

$$= \int_{S_{1}} \varepsilon_{r1} \varepsilon_{0} \mathbf{E}(r) \cdot d\mathbf{S} + \int_{S_{2}} \varepsilon_{r2} \varepsilon_{0} \mathbf{E}(r) \cdot d\mathbf{S}$$

$$= \varepsilon_0 E(r) \left(\varepsilon_{r1} \frac{4\pi r^2}{2} + \varepsilon_{r2} \frac{4\pi r^2}{2} \right) \rightarrow E(r) = \frac{Q}{2\varepsilon_0 (\varepsilon_{r1} + \varepsilon_{r2})\pi r^2}$$

$$V = \int_{r=a}^{b} \mathbf{E} . d\mathbf{L} = \int_{a}^{b} \frac{Q}{2\varepsilon_{0}(\varepsilon_{r1} + \varepsilon_{r2})\pi r^{2}} dr = \frac{Q}{2\varepsilon_{0}(\varepsilon_{r1} + \varepsilon_{r2})\pi} \left(\frac{1}{a} - \frac{1}{b}\right)$$

$$\to C = \frac{Q}{V} = \boxed{\frac{2\pi\varepsilon_0(\varepsilon_{r1} + \varepsilon_{r2})ab}{b - a}}$$

Capacitance (10)

$$C = \frac{2\pi\varepsilon L}{\ln(b/a)}$$

$$= C_1 + C_2 = C = \frac{\pi\varepsilon_{r1}\varepsilon_0 L}{\ln(b/a)} + \frac{\pi\varepsilon_{r2}\varepsilon_0 L}{\ln(b/a)}$$

$$= \frac{2\pi\varepsilon_{r,tb}\varepsilon_0 L}{\ln(b/a)}, \quad \varepsilon_{r,tb} = \frac{\varepsilon_{r1} + \varepsilon_{r2}}{2}$$

TRƯỜNG ĐẠI HỌC

BÁCH KHOA HÀ NỘI

$$V_{1} = \frac{\rho_{L}}{2\pi\varepsilon} \ln \frac{R_{01}}{R_{1}}$$

$$V_{2} = \frac{-\rho_{L}}{2\pi\varepsilon} \ln \frac{R_{02}}{R_{2}}$$

$$\rightarrow V = V_1 + V_2 = \frac{\rho_L}{2\pi\varepsilon} \left(\ln \frac{R_{01}}{R_1} - \ln \frac{R_{02}}{R_2} \right)$$

$$\frac{(-a, 0, 0)}{-\rho_L} + \frac{(a, 0, 0)}{z} + \frac{\rho_L}{z}$$

$$= \frac{\rho_L}{2\pi\varepsilon} \ln \frac{R_{01}R_2}{R_{02}R_1}$$

$$R_{01} = R_{02}$$

$$R_{1} = \sqrt{(x-a)^{2} + y^{2}}$$

$$R_{2} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{2} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{3} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{4} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{5} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{7} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{8} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{9} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{1} = \sqrt{(x+a)^{2} + y^{2}}$$

$$R_{2} = \sqrt{(x+a)^{2} + y^{2}}$$

TRƯ**ƠNG BẠI HỌC** BÁCH KHOA HÀ NỐI

Capacitance (12)

$$V = \frac{\rho_L}{4\pi\varepsilon} \ln \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$$

Choosing an equipotential surface V_1 , we define:

$$K_1 = e^{4\pi \varepsilon V_1/\rho_L}$$

$$\Rightarrow \left(x - a\frac{K_1 + 1}{K_1 - 1}\right)^2 + y^2 = \left(\frac{2a\sqrt{K_1}}{K_1 - 1}\right)^2$$

Capacitance (13)

$$K_1 = e^{4\pi \varepsilon V_1/\rho_L}$$

$$\Rightarrow \left(x - a\frac{K_1 + 1}{K_1 - 1}\right)^2 + y^2 = \left(\frac{2a\sqrt{K_1}}{K_1 - 1}\right)^2 - \frac{(-a, 0, 0)}{(-a, 0, 0)}$$

- The $V = V_1$ surface is independent of $z \rightarrow$ it is a cylinder
- It intersects the xy plane in a circle of radius:

$$b = \frac{2a\sqrt{K_1}}{K_1 - 1}$$

& this circle is centered at (x = h, y = 0) where $h = a \frac{K_1 + 1}{K_1 - 1}$

The V_1 surface intersects the xy plane in a circle of radius

$$b = \frac{2a\sqrt{K_1}}{K_1 - 1}$$
 & centered at $(x = h, y = 0)$ where $h = a\frac{K_1 + 1}{K_1 - 1}$

$$\Rightarrow \begin{cases} a = \sqrt{h^2 - b^2} \\ \sqrt{K_1} = \frac{h + \sqrt{h^2 - b^2}}{b} \end{cases} \Rightarrow \rho_L = \frac{4\pi \varepsilon V_1}{\ln K_1}$$

$$\Rightarrow \begin{cases}
a = \sqrt{h^2 - b^2} \\
\sqrt{K_1} = \frac{h + \sqrt{h^2 - b^2}}{b}
\end{cases}
\Rightarrow \rho_L = \frac{4\pi\varepsilon V_1}{\ln K_1} \quad \text{If } h, b \& V_1 \text{ are given then } a, \rho_L \& K_1 \text{ can be found}$$

$$K_1 = e^{4\pi\varepsilon V_1/\rho_L}$$

$$\Rightarrow C_{plane, cylinder} = \frac{\rho_L L}{V_1} = \frac{4\pi\varepsilon L}{\ln K_1} = \frac{2\pi\varepsilon L}{\ln[(h + \sqrt{h^2 - b^2})/b]} = \frac{2\pi\varepsilon L}{\cosh^{-1}(h/b)}$$
Picketting & Conscience, given greatly completely and blokks.

 $V_1 = 100 \text{ V}$

The equivalent

line charge

b' = 5 m

h = 13 m

Ex.

Capacitance (15)

Given the system, find the location & the magnitude of the equivalent line charge, & the location of the 50V equipotential surface.

$$a = \sqrt{h^2 - b^2} = \sqrt{13^2 - 5^2} = 12 \text{ m}$$

$$\sqrt{K_1} = \frac{h + \sqrt{h^2 - b^2}}{b} = \frac{13 + 12}{5} = 5$$

$$C_{plane, cylinder} = \frac{2\pi\varepsilon}{\cosh^{-1}(h/b)} = \frac{2\pi \times 8.854 \times 10^{-12}}{\cosh^{-1}(13/5)} = 34.6 \text{ pF/m}$$

Ex.

Capacitance (16),

Given the system, find the location & the magnitude of the equivalent line charge, & the location of the 50V equipotential surface.

$$K_2 = e^{4\pi\varepsilon V_2/\rho_L}$$

= $e^{4\pi\times 8.854\times 10^{-12}\times 50/3.46\times 10^{-9}} = 5.00$
 $\rightarrow b_2 = \frac{2a\sqrt{K_2}}{K_2 - 1} = \frac{2\times 12\sqrt{5}}{5 - 1} = 13.42 \text{ m}$

$$h_2 = a \frac{K_2 + 1}{K_2 - 1} = 12 \frac{5 + 1}{5 - 1} = 18 \text{ m}$$

$$V_3 = 25 \text{ V} \rightarrow b_3 = 29.06 \text{ m}, h_3 = 31.44 \text{ m}$$

Capacitance (17)

$$C_{plane, cylinder} = \frac{2\pi \varepsilon L}{\ln[(h + \sqrt{h^2 - b^2})/b]}$$

$$b \ll h$$

$$\rightarrow C_{plane, \ cylinder} = C_{plane, \ wire} = \frac{2\pi\varepsilon L}{\ln\frac{2h}{b}}$$

$$\rightarrow C_{wire, wire} = \frac{\pi \varepsilon L}{\ln \frac{2h}{b}}$$

Dielectrics & Capacitance

- 1. Dielectric Materials
- 2. Boundary Conditions for Perfect Dielectric Materials
- 3. Capacitance
- 4. Using Field Sketches to Estimate Capacitance
- 5. Current Density & Flux Density

Using Field Sketches to Estimate Capacitance (1)

- A conductor boundary is an equipotential surface
- The electric field intensity **E** & the electric flux **D** are both perpendicular to the equipotential surfaces
- **E** & **D** are perpendicular to the conductor boundaries & posses zero tangential values
- The lines of electric flux, or streamlines, begin & terminate on charge & therefore, in a charge-free, homogeneous dielectric, begin & terminate only on the conductor boundaries

Using Field Sketches to Estimate Capacitance (2)

E & D are both perpendicular to the equipotential surfaces

$$E = \frac{1}{\varepsilon} \frac{\Delta \psi}{\Delta L_{tan}}$$

$$E = \frac{1}{\varepsilon} \frac{\Delta \psi}{\Delta L_{tan}} \Rightarrow \frac{1}{\varepsilon} \frac{\Delta \psi}{\Delta L_{tan}} = \frac{\Delta V}{\Delta L_{N}}$$

$$\rightarrow \frac{\Delta L_{tan}}{\Delta L_N} = \text{const} = \frac{1}{\varepsilon} \frac{\Delta \psi}{\Delta V}$$

Using Field Sketches to Estimate Capacitance (3)

$$C = \frac{Q}{V_0}$$

$$Q = N_Q \Delta Q = N_Q \Delta \psi$$

$$V_0 = N_V \Delta V$$

$$\rightarrow C = \frac{N_Q \Delta \psi}{N_V \Delta V}$$

$$\frac{\Delta L_{tan}}{\Delta L_N} = \text{const} = \frac{1}{\varepsilon} \frac{\Delta \psi}{\Delta V} = 1$$

$$\rightarrow C = \frac{N_Q}{N_V} \varepsilon \frac{\Delta L_{tan}}{\Delta L_N} = \varepsilon \frac{N_Q}{N_V}$$

Using Field Sketches to Estimate Capacitance (4)

Dielectrics & Capacitance

- 1. Dielectric Materials
- 2. Boundary Conditions for Perfect Dielectric Materials
- 3. Capacitance
- 4. Using Field Sketches to Estimate Capacitance
- 5. Current Density & Flux Density

Current Density & Flux Density

$$\mathbf{J} = \sigma \mathbf{E}_{\sigma} \qquad \mathbf{D} = \varepsilon \mathbf{E}_{\varepsilon}$$

$$E_{\sigma} = -\nabla V_{\sigma} \qquad E_{\varepsilon} = -\nabla V_{\varepsilon}$$

$$I = \oint_{S} \mathbf{J}.d\mathbf{S} = \sigma \oint_{S} \mathbf{E}_{\sigma}.d\mathbf{S}$$

$$V_{\sigma 0} = -\int \mathbf{E}_{\sigma}.d\mathbf{L}$$

$$Q = \varepsilon \oint_{S} \mathbf{E}_{\varepsilon}.d\mathbf{S}$$

$$V_{\varepsilon 0} = -\int \mathbf{E}_{\varepsilon}.d\mathbf{L}$$

$$\rightarrow RC = \frac{\mathcal{E}}{\sigma}$$