AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph beginning on page 22, line 3, as follows:

With reference to FIG. 4A, the semiconductor switch according to the present embodiment comprises the two anode electrodes 7, and the cathode electrode 8 which are enclosed by an active layer 3. From two anode electrodes 7, one together with the cathode electrode 8 forms a Schottky barrier diode. In detail, referring to FIG. 4B, an i-AlGaAs layer is formed on an i-GaAs layer. An i-InGaAs layer as a channel layer is formed on the i-AlGaAs layer. A n-AlGaAs layer is formed on the i-InGaAs layer. The anode electrodes 7 are formed on the n-AlGaAs layer apart from each other. The cahorde cathode electrode 8 is formed on the n-AlGaAs layer through a n⁺-GaAs layers. The anode electrode 7 are made by aluminum, gold, molybdenum, titanium, or tungsten silicide. The eathodelectrode cathode electrode is made by an alloy including AuGe or nickel. In addition, the other anode electrode 7, likewise, together with the cathode electrode 8 may be considered to form a Schottky barrier diode, or may be considered to be an additional electrode established as an annex to the Schottky barrier diode. Anyway the two anode electrodes 7 are both connected with the earth, and are disposed in parallel to each other in a predetermined direction on the semiconductor substrate (in this example, in the right-left lateral direction on the paper surface). In addition, the cathode electrode 8 is disposed so as to be sandwiched between the two anode electrodes 7 as well as, likewise, to be in parallel to each other in a predetermined direction on the semiconductor substrate. The anode electrodes 7 have undergone Schottky junction with semiconductor crystal, and the cathode electrode 8 has undergone ohmic junction with semiconductor crystal. Both the ends of the cathode electrode 8 in the predetermined direction operate respectively as the first input-output unit and the second input-output unit, and are respectively connected with the first input-output terminal 1 and the second input-output terminal 2. Such semiconductor switches are driven by supplying the cathode electrode 8 with negative voltage as well as zero bias outside the active layer 3 by a not-shown bias line via a resistance. At this time, when required, capacitance C1, C2, and C3 for DC cutting is inserted between the cathode electrode 8 and each input-output terminal.