II. kolo kategorie Z5

Z5-II-1

Zahradník pan Malina prodával jahody. V posledních devíti bedničkách měl po řadě 28, 51, 135, 67, 123, 29, 56, 38 a 79 sazenic jahod. Prodával celé bedničky, žádné sazenice z bedniček nevytahoval. Zahradník chtěl rozprodat bedničky třem zákazníkům tak, aby mu nic nezbylo a aby všichni tito zákazníci měli stejný počet sazenic.

Jak to mohl udělat? Uveďte dvě možnosti.

(L. Hozová)

Z5-II-2

Do čtverce jsou vepsány menší čtverce, a to vždy tak, že vrcholy menšího čtverce jsou ve středech stran většího čtverce, viz obrázek. Šedě vybarvený čtverec má obsah $1\,\mathrm{cm}^2$.

Určete obvod největšího čtverce.

(E. Semerádová)

Z5-II-3

Na obrázku je číselná osa s vyznačenými čísly 10 a 30 a dalšími bezejmennými body představujícími celá čísla. Janek si na této ose tečkami vyznačil svoje oblíbené číslo a další čtyři čísla, o kterých víme, že

- jedno je polovinou Jankova čísla,
- jedno je o 6 větší než Jankovo číslo,
- jedno je o 10 menší než Jankovo číslo,
- jedno je dvakrát větší než Jankovo číslo.

Zjistěte, které číslo je Jankovo oblíbené.

(S. Bednářová)

Okresní kolo kategorie Z5 se koná **29. ledna 2020** tak, aby začalo nejpozději v 10 hodin dopoledne a aby soutěžící měli na řešení úloh 90 minut čistého času. Za každou úlohu může soutěžící získat 6 bodů, úspěšným řešitelem je ten žák, který získá 9 a více bodů. Povolené pomůcky jsou psací a rýsovací potřeby, školní matematické tabulky. Kalkulátory povoleny nejsou. Mobilní telefony musí být vypnuty.

II. kolo kategorie Z5

Z5-II-1

Zahradník pan Malina prodával jahody. V posledních devíti bedničkách měl po řadě 28, 51, 135, 67, 123, 29, 56, 38 a 79 sazenic jahod. Prodával celé bedničky, žádné sazenice z bedniček nevytahoval. Zahradník chtěl rozprodat bedničky třem zákazníkům tak, aby mu nic nezbylo a aby všichni tito zákazníci měli stejný počet sazenic.

Jak to mohl udělat? Uveďte dvě možnosti.

(L. Hozová)

Možné řešení. Součet všech sazenic byl 606. Tedy každý ze tří zákazníků měl dostat 202 sazenic.

Počty sazenic v jednotlivých bedničkách lze rozdělit do tří skupin se součtem 202 několika způsoby:

\mathbf{a}	135+67,	123 + 79,	56+51+38+29+28,

b)
$$135+38+29$$
, $123+51+28$, $79+67+56$,

c)
$$135+38+29$$
, $123+79$, $67+56+51+28$,

d)
$$135+67$$
, $123+51+28$, $79+56+38+29$.

Tato rozdělení odpovídají možnostem, jak mohl zahradník rozprodat svoje bedničky.

Hodnocení. 2 body za celkový součet a zjištění, že každý měl dostat 202 sazenic; po 2 bodech za každé ze dvou správných rozdělení.

Poznámky. Při ručním zkoušení možností je vhodné začínat s většími čísly.

Uvedená čísla je možné rozdělit do tří skupin se stejným součtem, aniž by bylo nutné předem určovat celkový součet. Tento postřeh zohledněte při hodnocení.

V každém z uvedených případů je možné uvažovat šest možných přiřazení třech skupin bedniček třem zákazníkům. Řešení založené na této myšlence považujte také za správné.

Z5-II-2

Do čtverce jsou vepsány menší čtverce, a to vždy tak, že vrcholy menšího čtverce jsou ve středech stran většího čtverce, viz obrázek. Šedě vybarvený čtverec má obsah $1\,\mathrm{cm}^2$.

Určete obvod největšího čtverce.

(E. Semerádová)

Možné řešení. Pro dvojici čtverců, z nichž jeden má vrcholy ve středech stran druhého, platí, že větší čtverec má dvojnásobný obsah vzhledem k menšímu čtverci:

Menší čtverec je totiž svými úhlopříčkami rozdělen na čtyři shodné trojúhelníky a tyto trojúhelníky jsou shodné se čtyřmi trojúhelníky, které patří do většího, ale nikoli do menšího čtverce.

Čtverce v zadání mají postupně (od nejmenšího) obsahy 1, 2, 4, 8 a $16\,\mathrm{cm}^2$. Tedy strana největšího čtverce měří $4\,\mathrm{cm}$ a jeho obvod je $16\,\mathrm{cm}$.

Jiné řešení. S odkazem na tentýž poznatek jako v předchozím řešení je možné čtverce v zadání rozdělit na navzájem shodné části takto:

Odtud vyplývá, že strana největšího čtverce má čtyřnásobnou délku vzhledem k nejmenšímu, tj. $4\,\mathrm{cm}$. Tedy obvod největšího čtverce je $16\,\mathrm{cm}$.

Hodnocení. 3 body za určení vztahů mezi čtverci; 3 body za určení obvodu největšího čtverce.

Z5-II-3

Na obrázku je číselná osa s vyznačenými čísly 10 a 30 a dalšími bezejmennými body představujícími celá čísla. Janek si na této ose tečkami vyznačil svoje oblíbené číslo a další čtyři čísla, o kterých víme, že

- jedno je polovinou Jankova čísla,
- jedno je o 6 větší než Jankovo číslo,
- jedno je o 10 menší než Jankovo číslo,
- jedno je dvakrát větší než Jankovo číslo.

Zjistěte, které číslo je Jankovo oblíbené.

(S. Bednářová)

Možné řešení. Mezi čísly 10 a 30 je 10 dílků. Tedy jeden dílek má délku 2 a tečkami vyznačená čísla jsou po řadě 6, 8, 16, 22 a 32.

Ze zadání vyplývá, že mezi těmito pěti čísly jsou dvě menší a dvě větší než Jankovo oblíbené číslo. Tedy Jankovo číslo musí být 16:

- 8 je polovinou 16,
- 22 je o 6 větší než 16,
- 6 je o 10 menší než 16,
- 32 je dvakrát větší než 16.

Hodnocení. 3 body za určení čísel vyznačených tečkami; 3 body za určení Jankova oblíbeného čísla (z toho 1 bod za kontrolu všech podmínek ze zadání).