Instructions: Same rules as usual. Work together, write-up alone, no internet!

- (5pts) 1. We have seen that the group D_4 is isomorphic to a subgroup of S_4 (by numbering the vertices of the square). However, by Cayley's theorem, D_4 is also isomorphic to a subgroup of S_8 . Find it. For at least one non-identity element, explain carefully how you found the corresponding element of S_8 .
- (10pts) 2. Practice working with cycles.
 - (a) For $\alpha = (123456)$, find α^2 , α^3 , α^4 , etc.
 - (b) In S_5 , find a cycle square root of each of the following cycles (that is, find a cycle α such that α^2 is the given element): (132), (12345), and (13)(24) (you will find different square roots for each, of course).
 - (c) Prove that if $\alpha = (a_1 a_2 \cdots a_s)$ for s odd (i.e., α has odd length), then α is the square of some cycle of length s.
 - (d) Prove that if α is of (even) length s=2t, then α^2 is the product of two cycles of length t.
 - (e) Prove that if the length of α is prime, then every power of α is a cycle.
 - (6pts) 3. Recall that we say a permutation is *even* if it is possible to write it as the product of an even number of transpositions. On the other hand, the *length* of a cycle is the number of numbers appearing in the cycle.
 - (a) Prove that the product of two even permutations is even, the product of two odd permutations is even, and the product of an even and an odd permutation is odd.
 - (b) Prove that a cycle of length l is even if and only if l is odd. Note you must prove two directions here: if l is odd, then the cycle is even, and if l is even, then the cycle is odd.
 - (4pts) 4. Let $\alpha = (a_1 a_1 \cdots a_s)$ and $\beta = (b_1 b_2 \cdots b_r)$ be two disjoint cycles. Find a transposition γ such that $\alpha \beta \gamma$ is a cycle. Then show that $\alpha \gamma \beta$ and $\gamma \alpha \beta$ are also cycles.
- (5pts) 5. The identity can be written as $\varepsilon = (13)(24)(35)(14)(12)(15)(34)(45)$. Mimic the proof that ε must be even and show how to eliminate x = 5 from the product of transpositions and write ε as the product of 2 fewer transpositions in the process. Show all intermediate steps.
- (5bns-pts) 6. Bonus: Let $\alpha = (1372)(26374)(587)(1846)$. Write α^{2016} as a single cycle or the product of disjoint cycles. Explain how you know your answer is correct.