Rectangle Cipher

KS KeySentinels

Department of CSE & DSAI Indian Institute of Technology Bhilai

December 7, 2024

- Introduction
- 2 Cipher Specifications
- 3 Cryptanalysis
- 4 Software Implementation
- 6 Application
- 6 Brownie Point Nominations
- Conclusion

Introduction

- Lightweight Block Cipher
- Based on SP-Network
- 16 4x4 S-boxes in parallel in S-layer
- 3 rotations composed in the P-layer
- Low-cost implementation in hardware
- Competitive speed in software

- Introduction
- 2 Cipher Specifications
- 3 Cryptanalysis
- 4 Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Cipher Specifications

- Bit-Slice Style
- Cipher operates over 25 rounds
- Each round consisting of three core operations: AddRoundKey (ARK), SubColumn (SC), and ShiftRow (SR)

AddRoundkey (AR)

It is simple XOR operation between the round subkey and the state.

Figure: Above diagram shows add round-key operation

SubColumn (SC)

SubColumn parallels SubBytes, applying S-boxes to the 4 bits in each column of the state matrix.

- Input to the S-box: $Col(j) = a_{3,j} ||a_{2,j}|| a_{1,j} ||a_{0,j}|$ for $0 \le j \le 15$
- Output to the S-box: $S(Col(j)) = b_{3,j}||b_{2,j}||b_{1,j}||b_{0,j}|$

$$\begin{pmatrix} a_{0,15} \\ a_{1,15} \\ a_{2,215} \\ a_{3,15} \end{pmatrix} \cdots \begin{pmatrix} a_{0,2} \\ a_{1,2} \\ a_{2,2} \\ a_{3,2} \end{pmatrix} \begin{pmatrix} a_{0,1} \\ a_{1,1} \\ a_{2,1} \\ a_{3,1} \end{pmatrix} \begin{pmatrix} a_{0,0} \\ a_{1,0} \\ a_{2,0} \\ a_{3,0} \end{pmatrix}$$

$$\downarrow S \qquad \qquad \downarrow S \qquad \qquad \downarrow S \qquad \qquad \downarrow S$$

$$\begin{pmatrix} b_{0,15} \\ b_{1,15} \\ b_{2,15} \\ b_{3,15} \end{pmatrix} \cdots \begin{pmatrix} b_{0,2} \\ b_{1,2} \\ b_{2,2} \\ b_{3,2} \end{pmatrix} \begin{pmatrix} b_{0,1} \\ b_{1,1} \\ b_{2,1} \\ b_{3,1} \end{pmatrix} \begin{pmatrix} b_{0,0} \\ b_{1,0} \\ b_{2,0} \\ b_{3,0} \end{pmatrix}$$

Figure: Above diagram shows SubColumn operation

S-box of Rectangle Cipher-

ShiftRow (SR)

It is left rotations on the rows of a state matrix, with varying offsets for each row.

Figure: Above diagram shows shift row operation

Pseudo Code

```
GenerateRoundKeys(state):

for i = 0 to 24 do:

ARK(state, K_i)

SC(state)

SR(state)

ARK(state, K_{25})
```

Differential Distribution Table (DDT)

```
from sage.crypto.sbox import SBox
S=SBox(6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2)
S.difference_distribution_table()
                                                          2]
                                                          2]
                                                          0]
                                                          0]
                                                          2]
                                                          2]
                                                          2]
                                                          0]
                                                          2]
                                                          0]
                                                          0]
```

Linear Approximation Table (LAT)

from sage.crypto.sbox import SBox

```
S=SBox(6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2)
S.linear approximation table()
                                                          0]
                                                          2]
                                                          0]
```

Key Schedule

For 80-bit key

- SC to the bits at the 4 uppermost rows and the 4 rightmost columns
- ② Using a 1-round generalized Feistel transformation

 $Row_0' := (Row_0 \ll 8) \oplus Row_1$

 $Row_1' := Row_2$

 $Row_2' := Row_3$

 $Row_3' := (Row_3 \ (12) \oplus Row_4)$

 $Row'_{4} := Row_{0}$

3 A 5-bit round constant RC[i] is XORed with the 5-bit key state for $i \in (1,2,...,24)$.

Key Schedule

For 128-bit key

- SC to the bits at the 8 rightmost columns.
- Using a 1-round generalized Feistel transformation

$$\textit{Row}_0' := (\textit{Row}_0 \ \text{ iny 8}) \oplus \textit{Row}_1$$

$$Row_1' := Row_2$$

$$Row_2' := (Row_2 \ll 16) \oplus Row_3 Row_3' := Row_0$$

3 A 5-bit round constant is XORed with the 5-bit key state

- Introduction
- 2 Cipher Specifications
- Cryptanalysis
- 4 Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Differential Attack

- Differential Cryptanalysis is one of the strongest techniques for the cryptanalysis of block ciphers.
- Using the algorithm based on the branch and bound method, the best differential trails from round-1 to round-15 were found.

♯R	Prob.	#R	Prob.	#R	Prob.
1	2-2	6	2^{-18}	11	2-46
2	2-4	7	2^{-25}	12	2^{-51}
3	2-7	8	2^{-31}	13	2^{-56}
4	2^{-10}	9	2^{-36}	14	2^{-61}
5	2-14	10	2-41	15	2-66

- Using the 14-round differential propagation, we can mount an attack on the 18-round Rectangle cipher.
- A 25-round Rectangle cipher is sufficient to withstand this differential cryptanalysis attack.

Integral Attack

- Implemented Square Attack, which uses a 4-round integral distinguisher.
- After 4 rounds, the XOR sum in any 4-bit positions equals 0, i.e., the balanced property:

$$\oplus S_{(0,0)} = \oplus S_{(1,1)} = \oplus S_{(2,13)} = \oplus S_{(3,13)} = 0$$

• Visual Representation:

(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	(0,8)	(0,9)	(0,10)	(0,11)	(0,12)	(0,13)	(0,14)	(0,15)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(1,9)	(1,10)	(1,11)	(1,12)	(1,13)	(1,14)	(1,15)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)	(2,9)	(2,10)	(2,11)	(2,12)	(2,13)	(2,14)	(2,15)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)	(3,10)	(3,11)	(3,12)	(3,13)	(3,14)	(3,15)

- Decryption: We choose 248 plaintexts such that:
 - Columns 0, 13, 14, 15 maintain the CONSTANT property.
 - Other 12 columns maintain the **ALL** property.
- 2^{48} Intermediate values $\implies 2^{47}$ subsets $\implies 2$ values.

- Introduction
- 2 Cipher Specifications
- Cryptanalysis
- Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Software Implementation

encryptor.py

- Uses a 25-round encryption process with operations: AddRoundKey, SubColumn, and ShiftRows.
- Accepts a 16-character hexadecimal input, padding it if needed.
- Generates a 20-character random key for encryption.

decryptor.py

- Reverses encryption steps using precomputed round keys.
- Computes all 25 round keys beforehand for accurate decryption.
- Outputs the decrypted plaintext as a hexadecimal string.

- Introduction
- 2 Cipher Specifications
- Cryptanalysis
- 4 Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Application

Encrypt message in QR codes using RECTANGLE

- encryptor.py contains the encryption of RECTANGLE cipher
- decryptor.py contains the decryption of RECTANGLE cipher
- generate_qr.py encrypts the message and embeds it in QR code
- decrypt_qr.py scans and retrieves the plaintext from the QR-code

Generated QR Code

Figure: Above QR Codes contain encrypted messages

- Introduction
- 2 Cipher Specifications
- Cryptanalysis
- 4 Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Brownie Point Nominations

- Rectangle is based on SP-Network.
- It is slightly similar to AES.
- Out of 25, the maximum of 18-rounds can be attacked.
- The remaining 7-rounds are for security purposes.
- It attains a very fast software as well as hardware performance.

- Introduction
- 2 Cipher Specifications
- Cryptanalysis
- 4 Software Implementation
- 5 Application
- 6 Brownie Point Nominations
- Conclusion

Conclusion

- It is lightweight bit-slice block cipher.
- It provides applications enough flexibility.
- It has the ability to trigger various new cryptographic problems.
- Its security is encouraged.

Thanks

Team Members

- Siddhi Agarwal (12141570)
- Kriti Gupta (12140940)

Implementation Info

Github Link: https://github.com/agaSiddhi/RECTANGLE-cipher