- 6. В то время как реакции реактивов Гриньяра с карбонильными соединениями протекают предсказуемо, их реакции с нитроаренами дают весьма неожиданные результаты. Так, если провести реакцию бутилмагнийбромида с нитробензолом в тетрагидрофуране при $-30\,^{\circ}$ C, а по окончании реакции осторожно обработать реакционную смесь соляной кислотой, то можно выделить два изомерных продукта \mathbf{X}^1 и \mathbf{X}^2 . Они представляют собой бесцветные кристаллические вещества, которые при плавлении приобретают интенсивную окраску, а при кристаллизации снова становятся бесцветными. Выход \mathbf{X}^1 составляет 42%, а $\mathbf{X}^2-22\%$. Химический анализ показал, что содержание азота в продуктах реакции составляет 8.58% (по массе). Оба продукта \mathbf{X}^1 и \mathbf{X}^2 легко реагируют с разнообразными окислителями и восстановителями. В спектре ЯМР 1 Н продукта \mathbf{X}^1 наблюдается 4 сигнала в области ароматических протонов, а для \mathbf{X}^2- только 2.
- 1) Какие продукты (X^1) и (X^2) были получены в ходе эксперимента?
- 2) Какой цвет приобретают X^1 и X^2 при плавлении? Почему это происходит?
- 3) Почему продукта X^1 в ходе реакции образуется примерно в два раза больше, чем X^2 ?
- 4) Теоретически можно было бы ожидать образования еще одного изомерного продукта X^3 , однако он не наблюдался. Каковы, по Вашему мнению, причины отсутствия X^3 среди продуктов реакции?

1. Зная массовую долю азота, можно легко вычислить молярную массу (\mathbf{X}^1) и (\mathbf{X}^2) (предполагая, что в продуктах реакции сохраняется один атом азота):

$$M(X) = \frac{M(N)}{\omega(N)} = \frac{14,01}{0,0858} = 163,3.$$

Можно предположить, что продукты реакции содержат 10 атомов углерода (6 из нитробензола и 4 из реактива Гриньяра). Тогда 10C + 1N дают молярную массу 120+14 = 134 г/моль. До 163 не хватает 29. Это комбинация 16+13 (10 + 13H). Вероятнее всего формулу продуктов можно представить как $(C_4H_9)(C_6H_4)(N)(O)$. Обратимое изменение окраски вещества при плавлении характерно для нитрозосоединений. Отсюда можно сделать вывод, что (X^1) и (X^2) имеют общую формулу $(C_4H_9)(C_6H_4)(NO)$.

Можно написать формулы трех возможных изомеров:

$$C_4H_9$$
 C_4H_9
 C_4H_9

о-Бутилнитрозобензол м-Бутилнитрозобензол п-Бутилнитрозобензол

Очевидно, $\mathbf{X^2}$ – это *пара*-изомер, так как в его спектре ЯМР 1 Н только 2 сигнала в области ароматических протонов. Орто- и мета-изомеры дают по 4 таких сигнала, однако выбор между ними можно сделать, учитывая что при ароматическом замещении обычно факторы, направляющие процесс в о- и п-положения (независимо от конкретного механизма), действуют одинаково. Тогда X^1 – это *орто*-изомер.

2. В кристаллическом виде нитрозосоединения обычно существуют в виде димеров, которые диссоциируют при плавлении:

$$Ar \xrightarrow{N} N^{+} Ar \longrightarrow Ar-N=O$$

- Димерные нитрозосоединения бесцветные, а мономерные обладают сине-зеленым цветом. 3. Соотношение количества полученных в ходе синтеза \mathbf{X}^1 и \mathbf{X}^2 примерно равно 2:1, т.е. соответствует соотношению количества орто- и пара-положений в нитробензоле. Отсюда можно сделать вывод, что нитрогруппа практически не оказывает стерического влияния на протекание реакции.
- 4. Третий изомер (X^3) должен был бы представлять собой *мета*-изомер. Однако его отсутствие среди продуктов реакции говорит о том, что сильный -М-эффект нитрогруппы активирует только орто- и пара-положения в нитробензоле. Такое влияние характерно для тех случаев, когда реакция протекает по механизму нуклеофильного присоединения. Используемая литература: G. Bartoli, Acc. Chem. Res. 1984, 17, 109-115.

Рекомендации к оцениванию:

1.	Вычисление молярной массы Х – 1 балл	1 балл
2.	Обоснование присутствия в продуктах NO-группы – 2 балла	2 балла
3.	Определение брутто-формулы изомеров $X - 1$ балл	1 балл
4.	Выбор структур X^1 и X^2 по 1 баллу	2 балла
5.	Цвет мономерных нитрозоаренов – 1 балл	1 балла
6.	За обоснование статистического соотношения X^1 и $X^2 - 1$ балл	1 балл
7.	За ориентацию в орто- и пара-положение в нуклеофильных процессах	2 балла
	– 2 балла	
	итого:	10 баллов