

Análisis de marcadores de bienestar en ortiguilla de mar (*Anemonia sulcata*) ante variaciones de su entorno de cultivo

Alberto Coll Fernández
Trabajo de Fin de Máster
Curso 2022-2023

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

Desarrollo sostenible en acuicultura

Sistemas de producción integrada:

Acuicultura Multi-Trófica Integrada (IMTA)

AQUACULTURE

Objective: Sustainable aquaculture intensification and expansion satisfies global demand for aquatic food and distributes benefits equitably.

Anemonia sulcata

(Cnidaria: Anthozoa)

¿Por qué Anemonia sulcata?

- Interés gastronómico
- Interés biotecnológico
- Interés científico
- Interés de conservación
- Potencial en IMTA

Anemonia sulcata

Anatomía y estructura de la pared corporal

Bienestar animal y estrés oxidativo

"Estado de un animal en relación a su capacidad para adaptarse a su entorno"

APROMAR, Guía del bienestar de los peces en la acuicultura española (2022)

Aproximación funcional

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

2. Objetivos

Objetivo general

Evaluar condiciones del entorno que favorezcan la optimización del cultivo de la ortiguilla de mar (Anemonia sulcata), a través de la mejora del crecimiento y estado de bienestar de la especie.

2. Objetivos

Objetivos específicos

- Analizar el crecimiento y reproducción de Anemonia sulcata bajo diferentes condiciones de cultivo.
- Evaluar la influencia de las condiciones de cultivo sobre el estado oxidativo de ejemplares de Anemonia sulcata.
- Caracterizar la organización tisular de Anemonia sulcata, evaluando posibles alteraciones de la misma asociada al efecto de las condiciones de cultivo sobre su estado de bienestar.
- IV Identificar qué parámetros pueden resultar de interés como marcadores de bienestar en Anemonia sulcata bajo condiciones de cultivo.

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

3. Materiales y métodos

Diseño experimental

4 semanas, n = 5

Control

Oscuridad

(Cubierto con malla densa)

Agua salobre

(27-30 g/L)

IMTA

(Holoturias, erizos de mar, macroalgas, mejillones)

¿Qué se midió?

- Conteo y datos de peso
- Estado oxidativo y determinación de clorofila
- Evaluación histológica
- Análisis de Componentes Principales (PCA)

3. Materiales y métodos

Estado oxidativo y clorofila

Separación de pie y tentáculo

Medidas de estado oxidativo

Determinación de clorofila total Jeffrey y Humphrey (1975)

- Superóxido dismutasa (SOD) McCord y Fridovich (1969)
- Catalasa (CAT) Aebi (1984)
- Glutatión-S-transferasa (GST) Frasco y Guilhermino (2002)
- DT-diaforasa (DTD) Lemaire et al. (1996)
- Capacidad antioxidante total (TEAC) Erel (2004)
- Peroxidación lipídica (MDA) Buege y Aust (1978)

3. Materiales y métodos

Tratamiento histológico

Separación de pie y tentáculo

Fijación (Paraformaldehído 4 %) Inclusión en parafina

Secciones de 7 µm

Tinción diferencial

- PAS-hematoxilina
- Tricrómica de Masson-Goldner

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

Crecimiento y reproducción

Reproducción asexual en Control Maduración sexual en Oscuro

Estado oxidativo

Actividad SOD

a, b: diferencias entre puntos de muestreo dentro de un mismo grupo experimental

Estado oxidativo

Actividad CAT

Actividad GST

No hay diferencias significativas asociadas al grupo experimental

Estado oxidativo

Actividad DTD

 ${\bf a},{\bf b}$: diferencias entre puntos de muestreo dentro de un mismo grupo experimental

Estado oxidativo

Capacidad antioxidante total (TEAC)

 ${\bf a},{\bf b}$: diferencias entre puntos de muestreo dentro de un mismo grupo experimental

Estado oxidativo

Peroxidación lipídica (MDA)

Clorofila total

No hay diferencias significativas asociadas al grupo experimental

Análisis de Componentes Principales (PCA)

Analisis de componentes principales

	PC1	PC2	PC3	PC4
Valor propio	3,907	1,873	1,608	0,873
% varianza explicada	39,1%	18,7%	16,1%	8,7%
% cumulativo	39,1%	57,8%	73,9%	82,6%
SOD.pie	0,003	0,497	0,497	0,072
SOD.tent	0,454*	-0,169	-0,061	-0,116
CAT.pie	0,389	-0,040	0,281	-0,074
CAT.tent	-0,210	0,551*	0,248	-0,233
GST.pie	0,436	0,115	0,004	0,011
DTD.pie	0,405	0,161	-0,166	0,131
MDA.pie	-0,265	-0,302	0,401	-0,369
MDA.tent	-0,275	0,048	-0,511*	-0,426
TEAC.pie	0,290	0,273	-0,152	-0,696*
TEAC.tent	-0,120	0,460	-0,369	0,319
	••		·	

^{*:} Variable más contribuyente a cada componente principal.

Variables más influyentes:

- SOD tentacular
- CAT tentacular
- MDA tentacular
- TEAC pedio

Evaluación histológica

Tentáculo

Tricrómica PAS

Ep: epidermis, M: mesoglea, Ga: gastrodermis, cn: cnidocitos, zx: zooxantelas, fm: fibras musculares

Evaluación histológica

Tentáculo (100 x)

Evaluación histológica

Pie

Me: mesenterios

Comparación entre tratamientos

Oscuridad

Salobre

IMTA

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

5. Discusión

Mejor estado de bienestar

Control

Oscuridad

- Reproducción asexual (Control)
- Mayor crecimiento (Oscuridad)
- Indicios de maduración sexual (Oscuridad)
- Estado oxidativo favorable

Peor estado de bienestar

IMTA

Salobre

- Crecimiento moderado
- No hay evidencias de reproducción
- Peor estado oxidativo
- Deterioro histológico (Salobre)

¿Relación entre intensidad lumínica y estrategia de reproducción?

- 1. Introducción
- 2. Objetivos
- 3. Materiales y métodos
- 4. Resultados
- 5. Discusión
- 6. Conclusiones

6. Conclusiones

- La intensidad lumínica en el cultivo parecer ser un factor clave en el crecimiento y estrategia reproductora de Anemonia sulcata, sin que esto implique una pérdida de bienestar
- Il El descenso de la salinidad persistente afecta negativamente a la capacidad antioxidante de *Anemonia sulcata*, así como a su citoarquitectura, posiblemente asociado a un desequilibrio osmótico.
- III El sistema de acuicultura multitrófica integrada (IMTA) no resultó en una mejora notable de las condiciones de cultivo de *Anemonia sulcata*, posiblemente por la necesidad de un periodo de tiempo mayor para el establecimiento del equilibrio ecológico
- IV El tentáculo de Anemonia sulcata mostró una mayor sensibilidad a las variaciones del estado oxidativo y a alteraciones tisulares, lo que lo propone como un marcador de bienestar de interés.

Análisis de marcadores de bienestar en ortiguilla de mar (*Anemonia sulcata*) ante variaciones de su entorno de cultivo

Alberto Coll Fernández
Trabajo de Fin de Máster
Curso 2022-2023