MEASUREMENT OF MINORITY CARRIER LIFETIME, MOBILITY AND DIFFUSION LENGTH IN HEAVILY DOPED SILICON

STANFORD UNIVERSITY

S. E. Swirhun and R. M. Swanson

Outline

Introduction

Measurement of Minority Carrier Lifetimes in p⁺ and n⁺ Si

- photoluminescence decay technique
- data reduction
- fits of lifetime vs. doping data (p⁺ and n⁺)

Measurement of Diffusion Length and Mobility in p⁺ and n⁺ Si

- lateral transistor test structure
- typical diffusion length data
- diffusion length vs. doping in p⁺ Si
- electron (minority carrier) mobility vs. doping
- hole (minority carrier) mobility vs. doping

PRECEDING PAGE BLANK NOT FILMED

Minority Carrier Lifetime in n + and p + Silicon Recombination Paths

• Shockley-Read-Hall Recombination

$$\tau_p = (N_t v \sigma)^{-1}$$

- lifetime independent of doping, dependent on N_t
- Auger Recombination: Trap Assisted

$$\tau_p = (T_n n N_t)^{-1}$$

- lifetime dependent on doping, N_t
- Auger Recombination: Band to Band

$$\tau_p = \left(C_n n^2\right)^{-1}$$

- lifetime dependent on doping only

Photoluminescence Lifetime Decay

- short (200 ps) laser pulse generates minority carriers
- monitor decay of luminescence radiation

Photoluminescence Decay Lifetime Measurement Apparatus

Photoluminescence Decay Si:Sb $4.2 \cdot 10^{18}$ $\tau = 160 \text{ ns} \pm 10\%$

Electron Lifetime in p-Type Silicon

Hole Lifetime in n-Type Silicon

Measurement of Diffusion Length and Mobility

- Diffusion Length (electrons in p⁺ Si) $L_n = \sqrt{D_n \tau_n}$
- Mobility (electrons in p⁺ Si) $\mu_n = q/kT D_n$

Lateral Transistor to Measure Ln

$$I_c = I_{c0}(e^{(qV_{be}/kT)} - 1)$$

$$I_{c0} = \frac{qAn_0D_n}{L_n}e^{-(W_b/L_n)} \qquad \text{when } W_b >> L_n$$

use similar structures v 'th varying \mathbf{W}_b to obtain \mathbf{L}_n

Gummel Plot of Lateral Bipolar Transistors

Electron Lifetimes of L_n Samples

Extracted Electron Diffusion Lengths

Electron Mobility at 300° K

Lp and au p in Heavily Doped Epitaxial Silicon

Hole Mobility in P epi Silicon

Conclusions

Lifetime in heavily doped Si

- first comprehensive measurements of τ_n , τ_p in processed heavily doped Si
- τ measurements extended into 10^{20} cm⁻³ doping range
- photoluminescence decay technique suitable and accurate
- τ_n in p^+ Si
 - 'standard' τ_n dependence with N_A^{-2} accurate in very limited range
 - lifetime modeled best by sum of inverse plus inverse square dependence on N_A
- τ_p in n^+ Si
 - previously observed τ_p dependence verified
 - use of N_D^{-2} dependence inadequate for wide doping range
 - data suggests better fit lifetime dependence of approximately $N_{\nu}^{-1.7}$

Diffusion Length and Mobility Measurement

- lateral transistor test structure used to measure L_n , L_p
- measurement of lifetimes allows extraction of μ_n , μ_p
- extraction of μ_n , μ_p ir 10^{19} range shows that minority carrier mobilities exceed majority carrier mobilities