Rationality and Dominated Strategies

Rational players do not play dominated strategies

To obtain radional ont comes of a game-eliminate dominated streetegies

For strictly dominated strategies, The order of elimination does NOT matter

It matters for the weakly dominated strategies - some reasonable out comes are also eliminated

		\subset	R
T	1,2	2, 3	0,3
М	2,2	2,1	3,2
В	2,1	0,0	1,0

Order: T, R, B, C → (M,L): 2,2

Orden: B, L, C, T → (M, R): 3, 2

Existence of dominant strategies (and DSE)

	L	R	
L	1,1	0,0	•
R	0,0	١١١	

Coordination game Not guaranteed! Football on Cricket?

		C
F	2,1	0,0
C	0,0	1,2

If dominance cannot explain reasonable ont come - Refine the equilibrium concept

Nash Equilibrium (Nash 1957)

"No player gains by a unilateral deviation"

A strategy profile (s_i^*, s_i^*) is a pure strategy Nash equilibrium (PSNE) if $\forall i \in \mathbb{N}$ and $\forall s_i \in S_i$

 $\mathcal{U}_{i}(\Delta_{i}^{*}, \underline{\Delta}_{i}^{*}) \geq \mathcal{U}_{i}(\Delta_{i}, \underline{\Delta}_{i}^{*}).$

Football on Cricket?

		C
F	2,1	0,0
C	0,0	1,2

A best response view:

A best response of player i against the strategy profile s; of the other players is a strategy that gives the maximum utility, i.e.,

$$B_{i}(\Delta_{i}) = \{A_{i} \in S_{i} : u_{i}(A_{i}, \underline{A}_{i}) > u_{i}(\underline{A}_{i}', \underline{A}_{i}), \forall \underline{A}_{i}' \in S_{i}\}$$

PSNE is a strategy profile (S_i^*, S_i^*) s.t. $S_i^* \in B_i(\underline{s}_i^*)$, $\forall i \in \mathbb{N}$.

PSNE gives stability - once there, no national player unilaterally deviates Question: Relationship between SDSE, WDSE and PSNE?