Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module MainModule			Fin Plate
MainModule			
		Shear Connection	
Connectivity		Column flange-Beam web	
Shear(kN)*	Shear(kN)*		400.0
	Suj	pporting Sect	ion
Supporting Se	ection		UC $356 \times 406 \times 393$
Material	*		E 250 (Fe 410 W)A
Ultimate strength,	, fu (MPa)		410
Yield Strength, f	fy (MPa)		250
α Mass 393	3.0	Iz(cm4)	1466180000.0
ZZ D Area(cm2) - 500	060.0	Iy(cm4)	553650000.0
D(mm) 419	9.0	rz(cm)	171.0
R_1 $B(mm)$ 407		ry(cm)	105.0
R_2 $t(mm)$ 30.	.6	Zz(cm3)	6998000.0
T(mm) 49.	.2	Zy(cm3)	2721000.0
FlangeSlope 90		Zpz(cm3)	8222000.0
R1(mm) 15.	.2	Zpy(cm3)	2721000.0
R2(mm) 0.0)		
	Su	pported Sect	ion
Supported Se	ection		NPB 600x220x122.4
Material	*		E 250 (Fe 410 W)A
Ultimate strength,	, fu (MPa)		410
Yield Strength , f	fy (MPa)		250
(B-t)		Iz(cm4)	920834000.0
ZZ D Area(cm2) - 156	600.0	Iy(cm4)	33828700.0
D(mm) 600	0.0	rz(cm)	243.0
R_1 $B(mm)$ 220	0.0	ry(cm)	46.6
$rac{R_2}{t(mm)}$ 12.		Zz(cm3)	3069450.0
T(mm) 19.	.0	Zy(cm3)	307530.0
FlangeSlope 90		Zpz(cm3)	3512400.0
R1(mm) 2.4	4	Zpy(cm3)	307530.0

R2(mm)

Diameter (mm)*

Grade *

Type *

Bolt hole type

Slip factor (μ_f)

Type of edges

0.0

Bolt Details

T .	1 (_
Page	Lot	.7

[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]

 $[3.6,\,4.6,\,4.8,\,5.6,\,5.8,\,6.8,\,8.8,\,9.8,\,10.9,\,12.$

Friction Grip Bolt

Standard

 $\begin{array}{c} 0.3 \\ \text{a - Sheared or hand flame cut} \end{array}$

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0	
Are the members exposed to corrosive influences	False	
	Plate Details	
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0]	
Material *	E 250 (Fe 410 W)A	
Ultimate strength, fu (MPa)	410	
Yield Strength , fy (MPa)	250	
	Weld Details	
Weld Type	Fillet	
Type of weld fabrication	Shop Weld	
Material grade overwrite (MPa) Fu	410.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		30.0	
Grade *		10.9	
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 1000.0 * 56}{1.25}$ $= 94.25$	1
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{400.0^{2} + 300.0^{2}}}{94.25}$ $= 6$	8	
No of Columns		2	
No of Rows		4	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	75	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 384.0) 75	Pass
Min. Gauge (mm)	$= 384.0$ $p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	105	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 384.0) 105	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 33.0 = 56.1 $e/e'_{max} = 12 t \varepsilon$	60	Pass
Max. End Distance (mm)	$\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 12.0 * \sqrt{\frac{250}{250}}$	60	Pass
Min. Edge Distance (mm)	$= 144.0$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ $= 1.7 * 33.0 = 56.1$	60	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *12.0 * \sqrt{\frac{250}{250}}$ $= 144.0$	60	Pass
Capacity (kN)	112.68	113.1	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 600.0 = 360.0$	435	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 600.0 - 2 * (19.0 + 2.4 + 10)	435	Pass
	= 557.2		
	$2*e_{min} + (n \ c - 1)*p_{min})$		
Min. Plate Length (mm)	= 2 * 56.1 + (2 - 1) * 75.0	205.0	Pass
16 Di	= 197.2	10.0	D
Min.Plate Thickness (mm)	$t_w = 12.0$	12.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3} * \gamma_{mo}$	
Shear yielding Capacity (V_dy) (kN)		$= \frac{435 * 12.0 * 250}{\sqrt{3} * 1.1}$	
(v_dy) (kiv)		004.05	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
		$V_{dn} \equiv \frac{1}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity (V_dn) (kN)		= 1 * (435 - (4 * 33.0)) * 12.0 * 43.0	10
(v_dii) (kiv)		= 1118.07	
Block Shear Capacity in Shear (V_db) (kN)		893.35	
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	400.0	= Min(684.95, 1118.07, 893.35)	Pass
(kN)		=684.95	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tangian Violding Consoits		γ_{mo} 435 ± 12.0 ± 250	
Tension Yielding Capacity (kN)		$=\frac{435*12.0*250}{1.1}$	
(')		= 1186.36	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{0.9 * (435 - 4 * 33.0) * 12.0 * 4}{1.25}$	10
(kN)		= 1307.15	
Block Shear Capacity in		= 1307.13 1101.75	
Tension (T_db) (kN)			
, , , , ,		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	300.0	= Min(1186.36, 1307.15, 1101.75)	Pass
		=1101.75	
Moment Capacity (kN-m)	43.0	129.02	Pass
Interaction Ratio	≤ 1	$\frac{43.0}{129.02} + \frac{300.0}{1101.75} = 0.61$	Pass
		$\frac{1}{129.02} + \frac{1}{1101.75} = 0.01$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		10	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(49.2, 12.0) = 12.0$ $t_{w_{max}} = 12.0$	10	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{43000000.0 * 207.5}{11912229.17}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{43000000.0 * 0.0}{11912229.17}$ $V_{wv} = \frac{V}{l_w} = \frac{400000.0}{830}$ $A_{wh} = \frac{A}{l_w} = \frac{300000.0}{830}$ $R_w = \sqrt{(749.02 + 361.45)^2 + (0.0 + 481.93)^2}$ $= 1282.92$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{7.0 * 410}{\sqrt{3} * 1.25}$ $= 1325.6$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View