Homework 2

NAME/S: SO	CORE:	
------------	-------	--

Subject: Quantum Mechanics I

Deadline: Monday 20 June 2022 (until 4pm)

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework consists of problems related to units 1 and 2 of the course. Problem 1 involves classical waves, and problems 2-5 quantum mechanical systems.
- You may submit this assignment either individually or in pairs. Submitted assignments should have maximum two authors.
- Unless stated otherwise, write your answers in SI units, and consider all bolded quantities as vector quantities. Please highlight the answers.

1. (4 points) Classical transverse mechanical waves

The equation describing a certain transverse mechanical wave is:

$$y(x,t) = 4 \,\text{mm cos} \left[\pi \left(\frac{x}{36 \,\text{cm}} - \frac{t}{0.45 \,\text{s}} \right) \right] \tag{1}$$

Calculate:

- a) The amplitud.
- b) The wavelength.
- c) The frequency.
- d) The speed and direction of wave propagation.
- e) Using your favourite programming language, make a single plot illustrating how the shape of this wave changes through time. You can choose e.g. three different times.

2. (4 points) Probability densities

Consider the log-normal distribution:

$$\rho(x) = \frac{A}{x} e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}},$$

where A, μ , and σ are positive real constants.

- (a) Determine A.
- (b) Find $\langle x \rangle$, $\langle x^2 \rangle$, and σ .
- (c) What do A, μ , and σ represent?
- (d) Plug some fiducial numbers for these constants, and sketch the graph of $\rho(x)$ using your favourite programming language.

3. (4 points) Probability current

As we reviewed in class, the wave function of a particle is a complex-valued probability amplitude that depends on position, x, and time, t. As time progresses, the wave function changes and the probability of finding a particle in certain position also changes with it. Since the sum of all probabilities should always be 1, this means that the probability 'flows' from one region to another one, akin to a fluid or a current. This 'flow' can be described mathematically by the so-called probability current j, which for the wave function Ψ of a non-relativistic particle of mass m in 1D is defined as:

$$j(x,t) = \frac{\hbar}{2\,m\,i} \left(\Psi^* \, \frac{\partial \Psi}{\partial x} - \Psi \, \frac{\partial \Psi^*}{\partial x} \right)$$

Find the probability current, j, of a superposition of 2 currents of particles of mass m, momentum p, and energy $\frac{p^2}{2m}$, moving in opposite directions. The amplitudes of the particle currents are α and β , respectively. Hint: Write the wave function for the superposition first.

4. (4 points) Wave functions, normalisation, and expectation values

The wave function of a particle at time t = 0 is given by the following piecewise function:

$$\Psi(x, t = 0) = \begin{cases} C\frac{x}{\alpha}, & 0 \le x \le \alpha \\ C\frac{\beta - x}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0, & \text{everywhere else,} \end{cases}$$

where C, α , and β are positive constants.

- (a) Find an expression for C.
- (b) Sketch $\Psi(x, t = 0)$ as a function of x.
- (c) Where is the particle most likely to be found at t = 0?
- (d) What is the probability of finding the particle to the left of α ? Check your result in the limiting cases $\beta = \alpha$ and $\beta = 2 \alpha$.
- (e) What is the expectation value of x?

5. (4 points) Wave functions, normalisation, and expectation values

Consider the wave function:

$$\Psi(x,t) = A e^{-\lambda |x|} e^{-i\omega t}$$

where A, λ , and ω are positive real constants.

- (a) Normalise Ψ .
- (b) Determine the expectation values: $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, and $\langle p^2 \rangle$, where x is position and p is momentum.
- (c) Find the standard deviations of x and p. Is their product consistent with the uncertainty principle?
- (d) Plug some fiducial numbers for the constants A, λ , and ω , and use programming tools to sketch the graph of $|\Psi|^2$ as a function of x. Does Ψ represent a stationary state?
- (e) What is the probability that the particle would be found outside the range between $(\langle x \rangle \sigma)$ and $(\langle x \rangle + \sigma)$?