Comp. Bio. I. Continuous-time Markov processes

Yeonwoo Park March 16, 2017

1. Superposition of independent Poisson processes

Let $\{N_{1,t}; t \geq 0\}$ and $\{N_{2,t}; t \geq 0\}$ be independent Poisson processes with rates λ_1 and λ_2 . We are interested in the stochastic process $\{N_t; t \geq 0\}$ defined as

$$N_t = N_{1,t} + N_{2,t}.$$

From the fact that the sum of the number of arrivals in two non-overlapping intervals of a Poisson process follows a Poisson distribution, we have a reason to believe that $\{N_t; t \geq 0\}$ is a Poisson process with rate $\lambda = \lambda_1 + \lambda_2$. This can be proven directly:

(1)
$$\Pr(N_t = k) = \sum_{l=0}^k \Pr(N_{1,t} = k - N_{2,t} \mid N_{2,t} = l) \Pr(N_{2,t} = l) = \frac{e^{-(\lambda_1 + \lambda_2)t}[(\lambda_1 + \lambda_2)t]^k}{k!} \sum_{l=0}^k \frac{k!}{l!(k-l)!} (\frac{\lambda_1}{\lambda_1 + \lambda_2})^{k-l} (\frac{\lambda_2}{\lambda_1 + \lambda_2})^l$$

The sum in the last term equals 1, which gives us the desired result. (Implicit here is the fact that if a stochastic process $\{X_t; t \geq 0\}$ is such that X_t follows a Poisson distribution with mean λt for all $t \geq 0$, then $\{X_t; t \geq 0\}$ is a Poisson process with rate λ .) By induction, the superposition of any finite number of independent Poisson processes is a Poisson process with rate equal to the sum of the rates of the individual processes.

2. Thinning of a Poisson process.

Let us now consider dividing, or "thinning," $\{N_t; t \geq 0\}$ into two subprocesses. Every time an arrival occurs, it is classified as belonging to subprocess $N_{1,t}$ with probability p_1 and $N_{2,t}$ with probability $p_2 = 1 - p_1$. This classification occurs independently for each arrival. Then $\{N_{1,t}; t \geq 0\}$ and $\{N_{2,t}; t \geq 0\}$ are independent Poisson processes with rates λp_1 and λp_2 :

(2)
$$\Pr(N_{1,t}=k) = \sum_{l=0}^{\infty} \Pr(N_t=k+l) \frac{(k+l)!}{k!l!} p_1^k p_2^l = e^{-\lambda t} \frac{(\lambda p_1 t)^k}{k!} \sum_{l=0}^{\infty} \frac{(\lambda p_2 t)^l}{l!} = e^{-\lambda p_1 t} \frac{(\lambda p_1 t)^k}{k!}.$$

(3)
$$\Pr(N_{1,t} = k, N_{2,t} = l) = \Pr(N_t = k + l) \frac{(k+l)!}{k!l!} p_1^k p_2^l = e^{-\lambda(p_1 + p_2)t} \frac{(\lambda p_1 t)^k (\lambda p_2 t)^l}{k!l!} = \Pr(N_{1,t} = k) \Pr(N_{2,t} = l).$$

The thinning of a Poisson process into more than two subprocesses can be described similarly.

3. Non-stationary Poisson processes.

Let $\{N_t; t \geq 0\}$ be a stochastic process such that $N_0 = 0$, arrivals happen at most by one unit at a time, and the number of arrivals in any two non-overlapping intervals are independent. Unlike the stationary Poisson processes we have seen above, however, $\{N_t; t \geq 0\}$ is non-stationary: the rate of arrival $\lambda = \lambda(t)$ varies with time. From the independent increment property, $E(N_t)$ can be calculated:

(4)
$$E(N_t) = E(\sum_{i=0}^n [N_{(t/n)i} - N_{(t/n)(i-1)}]) = \sum_{i=0}^n E[N_{(t/n)i} - N_{(t/n)(i-1)}] \approx \sum_{i=0}^n \lambda[(t/n)i](t/n)$$

In the limit that $n \to \infty$,

(5)
$$E(N_t) = \int_0^t \lambda(t')dt'$$

Let $a(t) = E(N_t)$ and assume that a(t) is continuous. We define the inverse of a(t):

(6)
$$\tau(t) = \inf\{s; a(s) > t\}$$

We then define a new stochastic process $\{M_t; t \geq 0\}$ in the following way:

(7)
$$M_t = N_{\tau(t)}$$
.

It can be shown that $\{M_t; t \geq 0\}$ is a stationary Poisson process with rate 1. The arrival number and waiting time distributions for $\{N_t; t \geq 0\}$ can be calculated from Eq. 7. It turns out that

(8)
$$N_t - N_s$$
 follows a Poisson distribution with rate $a(t - s) = \int_s^t \lambda(t')dt'$.

4. Non-stationary thinning of a Poission process

Let $\{N_t; t \geq 0\}$ be a Poisson process with rate $\lambda(t)$, and suppose that thinning occurs with non-stationary probabilties $p_1(t)$ and $p_2(t) = 1 - p_1(t)$. The resulting subprocesses can be described as non-stationary Poisson processes with rates $\lambda(t)p_1(t)$ and $\lambda(t)p_2(t)$.

5. $M/G/\infty$ queue

Consider a thinning scheme where arrivals are classified not at the moment they occur but later at a certain given time. Such a stochastic process is called the $M/G/\infty$ queue. Suppose that a stationary Poisson process $\{N_t; t \geq 0\}$ is being thinned into n states. Starting at time t_0 , arrival times are recorded and arrivals classified at time t_1 . If $u \in (t_0, t_1)$ is an arrival time, then this arrival has probability $p_i(t_1 - u)$ of being classified as state i. Thus, according to Sections 3 and 4, the number of state i observed at t_1 follows a Poisson distribution with mean $\lambda \int_{t_0}^{t_1} p_i(t_1 - u) du$.

6. A differential equation framework

Let us take a different approach to characterizing continuous-time stochastic processes. Let $\{N_t; t \geq 0\}$ be a stochastic process and define $P_i(t) = \Pr(N_t = i)$. From known structural features of $\{N_t; t \geq 0\}$, a set of differential equations for $P_i(t)$ can be derived and solved. Let us take a stationary Poisson process with rate λ as an example. For visibility, we write N(t) instead of N_t . The following equation can be derived from the independent increment property.

(9)
$$\Pr[N(t+h)=j] = \sum_{i \leq j} \Pr[N(t)=i] \Pr[N(t+h)-N(t)=j-i]$$

Only $i \leq j$ is considered because N(t) is non-decreasing. Notice that

(10)
$$\Pr[N(t+h) - N(t) \ge 2] = \Pr(T_2 \le h),$$

where T_2 is the sum of two interarrival times. From the independent increment and stationarity properties, it can be shown that the interarrival times of a Poisson process follows an exponential distribution with rate λ and hence that T_2 follows a $\Gamma(2,\lambda)$ distribution. Then,

(11)
$$\lim_{h\to 0} \frac{\Pr[N(t+h)-N(t)\geq 2]}{h} = \lim_{h\to 0} \frac{\Pr(T_2\leq h)}{h} = \frac{d}{dt} \Pr(T_2\leq t) \mid_{t=0} = \lambda^2 t e^{-\lambda t} \mid_{t=0} = 0.$$

Notice also that since $\Pr[N(t+h) - N(t) = 1] = \Pr(T_1 \le h)$ where T_1 follows an exponential distribution with rate λ ,

(12)
$$\lim_{h\to 0} \frac{\Pr[N(t+h)-N(t)=1]}{h} = \lim_{h\to 0} \frac{\Pr(T_1 \le h)}{h} = \frac{d}{dt} \Pr(T_1 \le t) \mid_{t=0} = \lambda e^{-\lambda t} \mid_{t=0} = \lambda$$

Let o(h) denote functions for which $\lim_{h\to 0} o(h)/h = 0$. Expanding Eq. 9,

(13)
$$\Pr[N(t+h) = j] = \Pr[N(t) = j][1 - \lambda h + o(h)] + \Pr[N(t) = j - 1][\lambda h + o(h)] + o(h)$$

Rearranging Eq. 13, the following differential equation can be obtained.

$$(14) \frac{dP_j(t)}{dt} = -\lambda P_j(t) + \lambda P_{j-1}(t).$$

$$(15) \frac{dP_0(t)}{dt} = -\lambda P_0(t)$$

By introducing the initial condition $P_0(0) = 1$, Eqs. 14 and 15 can be solved to give the Poisson distribution probabilities.

7. Birth-death processes

The differential equation framework outlined above allows a precise description of stochastic processes more complex than Poisson processes. For example, by letting λ to vary as follows,

(16)
$$\lambda_i = \lambda j$$
,

Eqs. 14 and 15 can be modified as

(17)
$$\frac{dP_j(t)}{dt} = -\lambda j P_j(t) + \lambda (j-1) P_{j-1}(t)$$

(18)
$$\frac{dP_1(t)}{dt} = -\lambda P_1(t)$$

The stochastic process described by these equations is called the pure-birth process or the Yule process. Notice that unlike Poisson processes, the state space of a pure-birth process consists of E = (1, 2, ...).

By introducing death parameter μ_i , the following general birth-death process can also be defined.

(19)
$$\frac{dP_j(t)}{dt} = -(\lambda_j + \mu_j)P_j(t) + \lambda_{j-1}P_{j-1}(t) + \mu_{j+1}P_{j+1}(t)$$

(20)
$$\frac{dP_0(t)}{dt} = -\lambda_0 P_j(t) + \mu_1 P_1(t)$$

These differential equations are complex enough that only stationary distribution has an analytic form.

8. Continuous-time Markov processes

Finally, we consider a continuous-time Markov process on bounded, finite state space $E = \{1, 2, ..., s\}$. Let $P_{ij}(t)$ denote the probability of ending at state j at time t when the system began at state i. The following differential equation, called the Kolmogorov forward equation, describes the forward evolution of the system.

(21)
$$\frac{dP_{ij}(t)}{dt} = -vP_{ij}(t) + \sum_{k \neq j} P_{ik}(t)q_{kj}$$

where q_{kj} is the instantaneous rate of the transition $k \to j$, and $v_j = \sum_{k \neq j} q_{jk}$. By constructing the rate matrix Q,

(22)
$$Q_{ij} = q_{ij}$$
 for $i \neq j$ and $Q_{ii} = -v_i$,

the following matrix-form differential equation can be derived:

$$(23) \ \frac{dP}{dt} = PQ.$$