Analysis of Tetris Ballistic Deposition and the Robustness of the KPZ Universality Class

Le Chen Auburn University

Acknwolegement

NSF 2246850, NSF 2443823, & Simons Foundation Travel Grant (2022-2027)

Emerging Synergies between Stochastic Analysis and Statistical Mechanics
Banff, Alberta, Canada
October 28, 2025

Outreach

Autom Summer Science Institute
(ALSS) 2020, 2024
Subcool Institute Ingrescript automatement
(Alss) 2020, 2020
Automation STEM 2022, 2020
Automation Success Seminary
(Automatics) Automatics

Teaching

Stochastic Processes Course project 2023/24

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

Stochastic Processes Course protect, 2023/24

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

Situation the Processing Course period 202223

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

Moth 7820/7630: Applied Stochastic Processes Colves project 2022/20

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

Math 7820/7830: Applied Stochastic Processes Course project 2023/24

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

► Math 7820/7830: Applied Stochastic Processes Course project, 2023/24

Outreach

- Auburn Summer Science Institute (AU-SSI): 2024, 2025
 Selected talented high school students
- Destination STEM: 2023, 2024 Junior middle school students
- Graduate Student Seminars (Mathematics), Auburn: 2022–2025

Teaching

► Math 7820/7830: Applied Stochastic Processes Course project, 2023/24

Math 7820/30: Applied Stochastic Processes (2023/24):

Mauricio Montes and Ian Ruau

Plan

Introduction to growth model and SPDE

Tetromino Pieces

Plan

Introduction to growth model and SPDE

Tetromino Pieces

Substrate

Substrate

5

Substrate

2

4

Substrate

Substrate

Average height and fluctuation

Average height and fluctuation

Average height and fluctuation

Random Deposition (independent columns, nonsticky)

Model. L independent columns. At each integer time $t=1,2,\ldots$, drop *one* particle on a uniformly random column. Heights h(t,x), mean $\overline{h}(t)=\frac{1}{L}\sum_{x=1}^{L}h(t,x)=\frac{t}{L}$, width

$$W^{2}(L,t) = \frac{1}{L} \sum_{x=1}^{L} (h(t,x) - \overline{h}(t))^{2}.$$

Single-column law: After t drops total.

$$h(t,x) \sim \text{Binomial}\left(t,\frac{1}{L}\right), \qquad \mathbb{E}[h(t,x)] = \frac{t}{L}, \quad \text{Var}(h(t,x)) = t\frac{1}{L}\left(1-\frac{1}{L}\right)$$

Fluctuation: By i.i.d. columns.

$$\mathbb{E}\left[W^2(L,t)\right] = \frac{1}{L} \sum_{x=1}^{L} \mathbb{E}\left[h(t,x)^2\right] - \mathbb{E}\left[\overline{h}^2(t)\right] = \mathbb{E}\left[h(t,1)^2\right] - \left(\frac{t}{L}\right)^2 = \left(1 - \frac{1}{L}\right) \operatorname{Var}(h(t,1)).$$

Hence

$$\mathbb{E}\left[W^2(L,t)\right] = \left(1 - \frac{1}{L}\right)t\frac{1}{L}\left(1 - \frac{1}{L}\right) = \frac{t}{L}\left(1 - \frac{1}{L}\right)^2$$

and

$$W(L,t) \simeq \left(1 - \frac{1}{L}\right) \left(\frac{t}{L}\right)^{1/2}$$

Scaling. Growth exponent $eta=rac{1}{2}$

Random Deposition (independent columns, nonsticky)

Model. L independent columns. At each integer time $t=1,2,\ldots$, drop *one* particle on a uniformly random column. Heights h(t,x), mean $\overline{h}(t)=\frac{1}{L}\sum_{x=1}^{L}h(t,x)=\frac{t}{L}$, width

$$W^{2}(L,t) = \frac{1}{L} \sum_{x=1}^{L} (h(t,x) - \overline{h}(t))^{2}.$$

Single-column law: After t drops total,

$$h(t,x) \sim \operatorname{Binomial}\left(t,\frac{1}{L}\right), \qquad \mathbb{E}[h(t,x)] = \frac{t}{L}, \quad \operatorname{Var}(h(t,x)) = t \frac{1}{L}\left(1 - \frac{1}{L}\right).$$

Fluctuation: By i.i.d. columns.

$$\mathbb{E}\left[W^2(L,t)\right] = \frac{1}{L} \sum_{x=1}^{L} \mathbb{E}\left[h(t,x)^2\right] - \mathbb{E}\left[\overline{h}^2(t)\right] = \mathbb{E}\left[h(t,1)^2\right] - \left(\frac{t}{L}\right)^2 = \left(1 - \frac{1}{L}\right) \operatorname{Var}(h(t,1)).$$

Hence

$$\mathbb{E}\left[W^{2}(L,t)\right] = \left(1 - \frac{1}{L}\right)t\frac{1}{L}\left(1 - \frac{1}{L}\right) = \frac{t}{L}\left(1 - \frac{1}{L}\right)^{2}$$

and

$$W(L,t) \simeq \left(1 - \frac{1}{L}\right) \left(\frac{t}{L}\right)^{1/2}$$

Scaling. Growth exponent $eta=rac{1}{2}$

Random Deposition (independent columns, nonsticky)

Model. L independent columns. At each integer time $t=1,2,\ldots$, drop *one* particle on a uniformly random column. Heights h(t,x), mean $\overline{h}(t)=\frac{1}{L}\sum_{x=1}^{L}h(t,x)=\frac{t}{L}$, width

$$W^{2}(L,t) = \frac{1}{L} \sum_{x=1}^{L} (h(t,x) - \overline{h}(t))^{2}.$$

Single-column law: After t drops total,

$$h(t,x) \sim \operatorname{Binomial}\left(t,\frac{1}{L}\right), \qquad \mathbb{E}[h(t,x)] = \frac{t}{L}, \quad \operatorname{Var}(h(t,x)) = t \frac{1}{L}\left(1 - \frac{1}{L}\right).$$

Fluctuation: By i.i.d. columns,

$$\mathbb{E}\left[W^2(L,t)\right] = \frac{1}{L} \sum_{k=1}^{L} \mathbb{E}\left[h(t,x)^2\right] - \mathbb{E}\left[\overline{h}^2(t)\right] = \mathbb{E}\left[h(t,1)^2\right] - \left(\frac{t}{L}\right)^2 = \left(1 - \frac{1}{L}\right) \operatorname{Var}(h(t,1)).$$

Hence

$$\boxed{\mathbb{E}\left[W^2(L,t)\right] = \left(1 - \frac{1}{L}\right)t\,\frac{1}{L}\left(1 - \frac{1}{L}\right) = \frac{t}{L}\left(1 - \frac{1}{L}\right)^2}$$

and

$$W(L,t) \simeq \left(1-\frac{1}{L}\right) \left(\frac{t}{L}\right)^{1/2}$$

Scaling. Growth exponent $\beta = \frac{1}{2}$.

Simulations on

Random deposition vs. Ballistic decomposition

More models? Even more simpler?

Paper – a random environment

Zhang, J., Zhang, Y.-C., Alstrøm, P., Levinsen, M., Phys. A: Stat. Mech. Appl., 1992

Paper wetting experiment

Barabási, A.-L., Stanley, H. E., 1995

Paper wetting experiment

Barabási, A.-L., Stanley, H. E., 1995

Paper burning experiment

Zhang, J., Zhang, Y.-C., Alstrøm, P., Levinsen, M., Phys. A: Stat. Mech. Appl., 1992

Paper rupture experiment

Kertész, J., Horváth, V. k., Weber, F., Fractals, 1993

Study of growing interfaces in a thin film

— Convection of nematic liquid crystal*

Show movies!

Takeuchi, K. A., Sano, M., Sasamoto, T., Spohn, H., Sci. Rep., 2011

Study of growing interfaces in a thin film

- Convection of nematic liquid crystal*

Prediction from KPZ equation:

$$h \simeq v_{\infty}t + (\Gamma t)^{1/3}\xi$$

Takeuchi, K. A., Sano, M., Sasamoto, T., Spohn, H., Sci. Rep., 2011

Study of growing interfaces in a thin film

- Convection of nematic liquid crystal*

Takeuchi, K. A., Sano, M., Sasamoto, T., Spohn, H., Sci. Rep., 2011

KPZ Equation '86

$$\frac{\partial}{\partial t}h(t,x) = \frac{1}{2}\Delta h(t,x) + \frac{\lambda}{2}\left(\nabla h\right)^2 + \dot{W}(t,x) \tag{KPZ}$$

Mehran Kardar (1957 –) Giorgio Parisi (1948 –)

Yicheng Zhang

Kardar, M., Parisi, G., Zhang, Y.-C., Phys. Rev. Lett., 1986

Plan

Introduction to growth model and SPDE

Tetromino Pieces

Tetrominoes

- ► "1x1": Single (extra single-site particle)
- "I": Horizontal, Vertical
- ► "J, L, T": Up, Right, Down, Left
- "S, Z": Horizontal, Vertical
- "O": Single (2x2 square)

- Sticky
- Nonstikcy

 $(1 + 1 \times 2 + 3 \times 4 + 2 \times 2 + 1) \times 2 = 20 \times 2 = 40$ types of pieces

Tetrominoes

- ► "1x1": Single (extra single-site particle)
- "I": Horizontal, Vertical
- ► "J, L, T": Up, Right, Down, Left
- "S, Z": Horizontal, Vertical
- "O": Single (2x2 square)

- Sticky
- Nonstikcy

 $(1 + 1 \times 2 + 3 \times 4 + 2 \times 2 + 1) \times 2 = 20 \times 2 = 40$ types of pieces

Tetrominoes

- "1x1": Single (extra single-site particle)
- "I": Horizontal, Vertical
- "J, L, T": Up, Right, Down, Left
- "S, Z": Horizontal, Vertical
- "O": Single (2x2 square)

 $(1 + 1 \times 2 + 3 \times 4 + 2 \times 2 + 1) \times 2 = 20 \times 2 = 40$ types of pieces

Configure files

			steps: 12000		
steps: 12000		steps: 12000)	width: 10	
width: 100		width: 100		height: 30	
height: 300		height: 300		seed: 12	
seed: 12		seed: 12		Piece-00:	
Piece-00: [20,	0]	Piece-00: [0	, 20]	Piece-01:	
Piece-01: [20,	01	Piece-01: [0	, 201		
Piece-02: [20,	01	Piece-02: [0	201	Piece-02:	
Piece-03: [20,	-	Piece-03: [0		Piece-03:	
Piece-04: [20,	-	Piece-04: [0		Piece-04:	
Piece-05: [20,		Piece-05: [0		Piece-05:	
Piece-06: [20,		Piece-06: [0		Piece-06:	
Piece-07: [20,	-	Piece-07: [0		Piece-07:	
Piece-08: [20,	-	Piece-08: [0		Piece-08:	
	-			Piece-09:	[0, 0]
Piece-09: [20,	-	Piece-09: [0		Piece-10:	[0, 0]
Piece-10: [20,	-	Piece-10: [0		Piece-11:	[0, 0]
Piece-11: [20,	-	Piece-11: [0		Piece-12:	[0, 0]
Piece-12: [20,		Piece-12: [0		Piece-13:	[0, 0]
Piece-13: [20,		Piece-13: [0		Piece-14:	[0, 0]
Piece-14: [20,	-	Piece-14: [0		Piece-15:	[0, 0]
Piece-15: [20,	0]	Piece-15: [0), 20]	Piece-16:	
Piece-16: [20,	0]	Piece-16: [0), 20]	Piece-17:	
Piece-17: [20,	0]	Piece-17: [0), 20]	Piece-18:	
Piece-18: [20,	0]	Piece-18: [0), 20]	Piece-19:	
Piece-19: [20,	0]	Piece-19: [0	, 20]	11000 17.	120, 00

All nonsticky pieces with equal prob.

All sticky pieces with equal prob.

20% nonsticky + 80% sticky of 1x1 piece

Main References:

- Barabási, A.-L., & Stanley, H. E. (1995). *Fractal concepts in surface growth*. Cambridge University Press, Cambridge.
- Family, F., & Vicsek, T. (1985). Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model. *Journal of Physics A: Mathematical and General*, 18(2), L75.
- Kardar, M., Parisi, G., & Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56(9), 889.
- Kertész, J., Horváth, V. k., & Weber, F. (1993). Self-affine rupture lines in paper sheets. Fractals, 01(01), 67–74.
- Takeuchi, K. A., Sano, M., Sasamoto, T., & Spohn, H. (2011). Growing interfaces uncover universal fluctuations behind scale invariance. *Sci. Rep.*, 1(1), 1–5.
- Zhang, J., Zhang, Y.-C., Alstrøm, P., & Levinsen, M. (1992). Modeling forest fire by a paper-burning experiment, a realization of the interface growth mechanism. *Phys. A: Stat. Mech. Appl.*, 189(3), 383–389.

Thank you!

Questions?