Example 16

In figure shown, ABC is a triangle with squares ABEF and ACGH drawn on sides AB and AC, respectively. AD is the altitude of triangle ABC. Prove that the extension of DA bisects FH.

Proof: Draw $FP \perp DA$ at $P, HQ \perp BC$ at Q.

Since $\angle FAP + \angle BAD = 90^{\circ}$, and $\angle FAP + \angle AFP = 90^{\circ}$, $\angle BAD = \angle AFP$. We also know that HAF = AB, $\angle APF = \angle ADB = 90^{\circ}$. Thus Rt $\triangle APF \cong \operatorname{Rt}\triangle BDA$. Similarly, we can show that Rt $\triangle AHQ \cong \operatorname{Rt}\triangle CAD$.

So we have FP=AD=HQ. We also know that $\angle FPM=\angle HQM=90^\circ, \angle MFP=\angle MHQ$. Therefore $\triangle FPM\cong\triangle HMQ$ and FM=MH.