Paper Review: Object Relational Graph with Teacher-Recommended Learning for Video Captioning

Z. Zhang et al., "Object relational graph with teacher-recommended learning for video captioning," in *Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020, pp. 13275-13285.

Putra Bahy Helmi Hartoyo Vision Language Intelligence Lab - Sejong University 18.07.2022

Contents

- Background
- Main Contribution
- Architecture
- Proposed Modules
 - Object Relational Graph
 - Teacher Recommended Learning via ELM
- Results
 - Quantitative Results
 - Qualitative Results
- Conclusion

Background

- Information from both vision and language is important in video captioning task.
- Existing models lack of adequate visual representation.
 - Neglecting the explicit interactions between objects in the spatial/temporal domain.
- In the caption corpus, it is found that the majority of words are function words and common words e.g. "the" and "man" than the real content-specific words.
 - Called as a long-tailed problem.

Figure 1: Long-tailed problem observed in corpus of MSR-VTT

Main Contribution

- Propose an object relational graph (ORG) based encoder, which captures more detailed interaction features between objects to enrich visual representation.
- Design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model.

Architecture

 Consisted of 3 main modules; Object Encoder, Teacher-recommended Learning, and Description Generator.

Figure 2: Architecture overview of ORG-TRL

- Object Relational Graph
 - A graph-based object encoder which can learn the interaction among different objects dynamically.
 - This paper proposed two kinds of object relational graph:
 - Partial object relational graph (P-ORG)
 - Complete object relational graph (C-ORG)
 - O The difference among the two is, **P-ORG** only consider relationship between objects **in the** same frame while **C-ORG** also accounts the relationship of objects across all frames.

Figure 3: ORG as an object encoder, uses the help of GCN to update its objects representations (R)

- Object Relational Graph
 - O **Partial** object relational graph will have different relation coefficient matrix (A) for each frame. It denotes the relationships between objects in each frame.

Figure 4: P-ORG, each frame will have its own relation coefficient matrix (A)

- Object Relational Graph
 - Complete object relational graph connects all objects in the video in all time frames by creating a single relational coefficient matrix (A).

Figure 4: C-ORG, will have single relation coefficient matrix (A) that stores all the objects relationships

- Teacher Recommended Learning (TRL) via ELM
 - A module that improves the common teacher-enforced learning (TEL) mechanism by exploiting external language model (ELM).
 - O ELM provides rich choices of words and can provides more options to the captioning model by providing **soft targets** of all possible words.
 - There are many ready-made models that can be used as an ELM for TRL.

Training Objectives

Results

Qualitative results

GT: a woman is mixing something in a bowl Baseline: there is a woman is making a dish

ORG-TRL: a person is mixing some food in a bowl

Effects of ORG:

- Detects more detailed objects.
- Recognize explicit interactions between objects, i.e. person -> "mixing" -> some food.

Effects of TRL:

- Supply the model with words that rarely appears in captioning dataset, i.e. "climate change".
- Give richer choice of words.

GT: narrator talks about some people not believing in climate change

[EOS] and the to [UNK] 0.531 0.031 0.026 0.021 0.0170

change effect [EOS] country weather 0.673 0.072 0.055 0.005 0.004

Results

Quantitative results

• Achieved **competitive results** in both MSVD and MSR-VTT dataset.

M- 1-1-	Year	Features			MSVD				MSR-VTT			
Models		Appearence	Motion	Object	B@4	M	R	C	B@4	M	R	C
SA-LSTM [38]	2018	Inception-V4	-	-	45.3	31.9	64.2	76.2	36.3	25.5	58.3	39.9
M3 [40]	2018	VGG	C3D	-	52.8	33.3	-	-	38.1	26.6	-	-
RecNet [38]	2018	Inception-V4	-	-	52.3	34.1	69.8	80.3	39.1	26.6	59.3	42.7
PickNet* [6]	2018	ResNet-152	-	-	52.3	33.3	69.6	76.5	41.3	27.7	59.8	44.1
MARN [27]	2019	ResNet-101	C3D	-	48.6	35.1	71.9	92.2	40.4	28.1	60.7	47.1
SibNet [21]	2019	GoogleNet	-	-	54.2	34.8	71.7	88.2	40.9	27.5	60.2	47.5
OA-BTG [53]	2019	ResNet-200	-	Mask-RCNN	56.9	36.2	-	90.6	41.4	28.2	-	46.9
GRU-EVE [1]	2019	InceptionResnetV2	C3D	YOLO	47.9	35.0	71.5	78.1	38.3	28.4	60.7	48.1
MGSA [5]	2019	InceptionResnetV2	C3D	-	53.4	35.0	-	86.7	42.4	27.6	-	47.5
POS+CG [36]	2019	InceptionResnetV2	OpticalFlow	-	52.5	34.1	71.3	88.7	42.0	28.2	61.6	48.7
POS+VCT [12]	2019	InceptionResnetV2	C3D	-	52.8	36.1	71.8	87.8	42.3	29.7	62.8	49.1
ORG-TRL	Ours	InceptionResnetV2	C3D	FasterRCNN	54.3	36.4	73.9	95.2	43.6	28.8	62.1	50.9

Results

- Quantitative results (Ablation study)
 - O The **presence of ORG or TRL** or the combination of both in the architecture **shows performance increment** compared to the Baseline, in both dataset.

Methods		MSVD				MSR-VTT					
ORG	TRL	B@4	M	R	C	B@4	M	R	C		
×	×	53.3	35.2	72.4	91.7	41.9	27.5	61.0	47.9		
\checkmark						43.3					
×	\checkmark	54.0	36.0	73.7	93.3	43.2	28.6	61.7	50.4		
✓	✓	54.3	36.4	73.9	95.2	43.6	28.8	62.1	50.9		

Conclusion

- This paper has proposed **a novel architecture** by **modeling** object interaction in video with a graph-based encoder, called **object relational graph (ORG)**.
- Another contribution of this paper is to proposed a teacher-recommended learning (TRL) which exploit a well-trained external language model (ELM) to enhance the vocabulary of the captioning model.
- The effectiveness of these two modules has successfully proven by showing competitive results in both MSVD and MSR-VTT dataset.