Математическая статистика

Матвеев Сергей М3338

5 семестр

1 Введение

Пусть у нас есть генеральная совокупность, но мы хотим ее как-то изучать, тогда мы можем взять ее часть - выборку.

Мы хотим по выборке сделать содержательные вероятностные выводы о генеральной совокупности.

Примеры задач, которые могут быть решены таким способом:

- 1. Бросок монеты (оценить вероятность орла, честно нечестно)
- 2. Замеры показателя: какие типичные значения для показателя
- 3. Как учатся мальчики и девочки (одинаково или по разному)
- 4. Цена на недвижимость, расстояние до метро (оценка зависимости)

Репрезентативность: на основе выборки можно сделать выводы о генеративной совокупности.

2 Простейшая модель выборки. Эмпирическая функция распределения.

Простейшая модель выборки - X_1, X_2, \dots, X_n - i.d.d., F - функция распределения (теоретическая функция).

 $X_1,\ldots,X_n \sim F$ (F мы не знаем априори)

 x_1,\ldots,x_n - реализация выборки

Цель: оценить из реализации x_1, \ldots, x_n теор F.

Эмпирическая фукнция распределения:

$$\mu_n(t) = \sum_{i=1}^n \mathbb{1}(X_i \le t)$$

$$F_n(t) = \frac{\mu_n(t)}{n}$$
 - эмпирическая функция распределения.

Замечение: Описывает эмпирическое распределениею.

$$x_1, \dots, x_n; P(U = x_i = \frac{\#\{X_j : X_j = x_i\}}{n} = F_n(x_i + 0) - F_n(x_i)$$

$$\mathbb{1}(\mathbb{X}_{\hat{\mathbf{l}}} \leq \mathbb{t}) \sim Bern(F(t))$$

 $\mathbb{E}(F_n(t)) = F(t)$ (это называется несмещенность)

$$Var(F_n(t)) = \frac{F(t)(1 - F(t))}{n}$$

ЗБЧ: $F_n(t) \xrightarrow{P} F(t)$ - это называется состоятельность

ЗБЧ:
$$F_n(t) \to F(t)$$
 - это называется состоятельность
ЦПТ: $\frac{\mu_n(t) - nF(t)}{\sqrt{F(t)(1 - F(t))}n} \stackrel{d}{\to} U \sim N(0, 1) =$

$$= \sqrt{n} \frac{F_n(t) - F(t)}{\sqrt{F(t)(1 - F(t))}} \text{ (ассимптотическая нормальность)}$$
Теорема Гливенко-Кантелли
$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \stackrel{a.s.}{\xrightarrow{n \to \infty}} 0$$

$$\sup_{t \in \mathbb{P}} |F_n(t) - F(t)| \xrightarrow[n \to \infty]{a.s.} 0$$

Теорема Колмогорова

$$D_n = \sup_{x} |F_n(x) - F(x)| \Rightarrow P(\sqrt{n}D_n \le t) \xrightarrow[n \to \infty]{} K(t) = \sum_{j = -\infty}^{+\infty} (-1)^j e^{-2j^2 t^2}$$

$$F \in C(\mathbb{R})$$

Такая функция называется функцией Колмогорова

Теорема Смирнова

 $X_1,\dots,X_n,\,Y_1,\dots,Y_n$ - независимы Обе распределены по $F\in C(\mathbb{R})$

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)| \Rightarrow P(\sqrt{\frac{mn}{m+n}} D_{n,m} \le t) \xrightarrow[n \to \infty, m \to \infty]{} K(t)$$

Стоит отметить, что обе теоремы имеют смысл при t > 0

Выборочные моменты

 $lpha_k = EX_1^k$ - к-ый теоретический момент. $eta_k = E(X_1 - EX_1)^k$ - к-ый центральный момент.

$$\overline{g(X)} = \frac{1}{n} \sum_{k=1}^{n} g(X_k), g : \mathbb{R} \to \mathbb{R}$$

$$\widehat{lpha_k} = \overline{X^k} = \frac{1}{n} \sum_{j=1}^n X_j^k$$
 - к-ый выборочный момент.

 $E\widehat{\alpha_k}=\alpha_k$ (несмещенность, мы просто воспользовались линейностью математического ожидания)

матического ожидания)
$$\operatorname{Var}\widehat{\alpha_k} = \frac{1}{n}\operatorname{Var}(X_1^k) = \frac{1}{n}(EX_1^{2k} - (EX_1^k)^2)$$
 По ЦПТ получаем:

$$\sqrt{n} \frac{\widehat{\alpha_k} - \alpha_k}{\alpha_{2k} - \alpha_k^2} \approx N(0, 1)$$

$$\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\sqrt{\widehat{\alpha_{2k}}-\widehat{\alpha_k}^2}}=\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\sqrt{\alpha_{2k}-\alpha_k^2}}\cdot\frac{\sqrt{\alpha_{2k}-\alpha_k^2}}{\widehat{\alpha_{2k}}-\widehat{\alpha_k}}\text{ - первый множитель по ЦПТ}$$

Давайте посмотрим что будет со вторым множителем. Он будет сходиться к 1 по вероятности.

Таким обрбазом:

$$\sqrt{n}\frac{\widehat{\alpha_k}-\alpha_k}{\sqrt{\alpha_{2k}-\alpha_k^2}}\cdot\frac{\alpha_{2k}-\alpha_k^2}{\sqrt{\widehat{\alpha_{2k}}-\widehat{\alpha_k}}}\xrightarrow{d}N(0,1)$$
 А почему вторая дробь сходится к единице?

 $\widehat{\alpha_k} \xrightarrow{P} \alpha_k$ (по ЗБЦ, это называется состоятельность)

$$\widehat{\alpha_{2k}} - \widehat{\alpha_k}^2 \xrightarrow{P} \alpha_{2k} - \alpha_k^2$$
 \overline{X} - выборочное среднее.

$$\widehat{eta_k} = \overline{(X-\overline{X})^k} = \frac{1}{n} \sum_{j=1}^n (X_j - \overline{X})^k$$
 - к-ый выборочный момент.

 $\widehat{eta_2}=S_*^2$ - выборочная дисперсия. S_* - выборочное стандартное отклонение (выборочное среднеквадратичное отклонение).

Note: выборочные моменты есть ничто иное как моменты посчитанные относительно эмпирического распределения.

$$S_* = \overline{X^2} - (\overline{X}^2)$$

$$\widehat{\beta_k} = Poly(\widehat{\alpha_k}, \dots, \widehat{\alpha_1})$$

 $\widehat{\alpha_1},\ldots,\widehat{\alpha_k}$ - состоятельные оценки (имеет место сходимость по вероятности)

Так как полином это непрерывная функция, то $\widehat{\beta_k} \xrightarrow{P} \beta_k$

Небольшое отступление

Пусть χ_n - последовательность случайных векторов.

$$\sqrt{n}(\chi_n - \mu) \xrightarrow{P} N(0, \Sigma)$$

 $\chi_n \xrightarrow{P} \mu$??? Давайте убедимся в этом $(\chi_n - \mu)\sqrt{n} \cdot \frac{1}{\sqrt{n}} \xrightarrow{d} 0 \text{ (Первое сходится к нормальному многомерному зако-}$

ну, а второе к нулю)

Мы знаем, что для вырожденных величин сходимость по распределению и вероятности равносильны.

Тогда мы можем написать
$$(\chi_n - \mu)\sqrt{n} \cdot \frac{1}{\sqrt{n}} \xrightarrow{P} 0$$

$$\begin{array}{l} \sqrt{n}(\varphi(\chi_n) - \varphi(\mu)) \to ?? \\ \varphi \in C^1(\mathbb{R}^m), \ \varphi : \mathbb{R}^m \to \mathbb{R} \end{array}$$

$$\varphi \in C^1(\mathbb{R}^m), \ \varphi : \mathbb{R}^m \to \mathbb{R}^m$$

 $\varphi(\chi_n) \approx \varphi(\mu) + \nabla \varphi(\widetilde{\mu})(\chi_n - \mu)$ (Остаток в форме Лагранжа) $\nabla \varphi(\widetilde{\mu}) \xrightarrow[n \to \infty]{} \nabla \varphi(\mu)$ $\varphi(\chi_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\chi_n - \mu)$

$$\nabla \varphi(\widetilde{\mu}) \longrightarrow \nabla \varphi(\mu)$$

$$\varphi(\chi_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\chi_n - \mu)$$

$$\operatorname{Var}(\dots) \approx \operatorname{Var}(\nabla \varphi(\mu)(\chi_n - \mu)) = \operatorname{Var}(\nabla \varphi(\mu)\chi_n) = \nabla \varphi \operatorname{Var}(\chi_n(\nabla \chi_n)^T)$$
 Вернемся к следующему равентву:

$$\varphi(\chi_n) - \varphi(\mu) \approx \nabla \varphi(\mu)(\chi_n - \mu)$$

$$\sqrt{n}(\varphi(\chi_n) - \varphi(\mu)) \approx \sqrt{n}\nabla\varphi(\mu)(\chi_n - \mu)$$

 $\sqrt{n}(\chi_n - \mu) \to N(0, \Sigma)$ (Как мы и говорили выше)

А мы домножаем вектор на градиент, поэтому:

$$\sqrt{n}\nabla\varphi(\mu)(\chi_n-\mu)\to N(0,\nabla\varphi(\mu)\Sigma(\nabla\varphi(\mu))^T)$$

Это называется дельта метод.

Теорема

Пусть
$$\chi_n = (\overline{X}, \dots, \overline{X^k})$$

Многомерная версия ЦПТ

$$\sqrt{n}(\chi_n - \alpha) \xrightarrow{d} N(0, \Sigma)$$

$$\alpha = (\alpha_1, \dots, \alpha_k)$$

$$\Sigma = \operatorname{Var}(X_1, \dots, X_1^k)$$

$$\varphi: \mathbb{R}^k \to \mathbb{R}$$

$$\varphi \in C^1(\mathbb{R}^k)$$

$$\varphi \in C^{1}(\mathbb{R}^{k})$$

$$\sigma^{2} = \nabla \varphi(\alpha)(\nabla \varphi(\alpha))^{T} > 0$$

Тогда (продолжение теоремы):

$$\sqrt{n} \frac{\varphi(\chi_n) - \varphi(\alpha)}{\sigma} \xrightarrow{d} N(0,1)$$

Кроме того:

$$\sigma = \sigma(\alpha) \in C^1(\mathbb{R}^k) \Rightarrow \sqrt{n} \frac{\varphi(\chi_n) - \varphi(\alpha)}{\sigma(\chi_n)} \xrightarrow{d} N(0, 1)$$

Коэффициент аассиметрии:
$$\frac{E(X^n)}{\sigma^3} = \gamma$$

$$\frac{\widehat{\beta_3}}{S^3} = \widehat{\gamma}$$

Коэффициент эксцесса:
$$\frac{E(X-EX)^4}{\sigma^4}-3$$

$$\frac{\widehat{\beta_4}}{S_*^4} - 3$$

Пусть у нас есть две выборки:

$$X_1,\ldots,X_n$$

$$Y_1, \ldots, Y_n$$

$$Cov(X,Y) = EXY - EX \cdot EY = E(X - EX)(Y - EY)$$

$$Y_1, \dots, Y_n$$

$$Cov(X, Y) = EXY - EX \cdot EY = E(X - EX)(Y - EY)$$

$$S_{*XY} = \frac{1}{n} \sum_{j} (X_j - \overline{X})(Y_j - \overline{Y}) = \frac{1}{n} \sum_{j} X_j Y_j - \overline{XY}$$

$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{VarX \cdot VarY}}$$

$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sqrt{VarX\cdot VarY}}$$

$$\rho = \frac{S_{*XY}}{S_{*X}\cdot S_{*Y}}$$
 - Выборочный коэффициент корреляции (коэффициент корреляции Пирсона)

5 Порядковые статистики

Определение. Вариационный ряд

 $X_{(1)} \le X_{(3)} \le \cdots \le X_{(n)}$ - вариационный ряд

Определение. Порядковая статистика

 $X_{(k)}$ - к-я порядковая статистика.

Квантиль порядка α

$$P(X \ge q_{\alpha}) \ge 1 - \alpha$$

$$P(X \le \alpha) \ge \alpha$$

Это общее определение

Если F строго возрастает:

$$F(q_{\alpha}) = \alpha \Leftrightarrow q_{\alpha} = F^{-1}(\alpha)$$

$$F^{-1}(\alpha) : \sup\{x : F(x) \le \alpha\}, \inf\{x : F(x) \ge \alpha\}$$

Определение. Выборочный квантиль порядка α

 $\alpha \in (0,1)$

$$\exists 0 \leq k \leq n-1: \frac{k}{n} \leq \alpha < \frac{k+1}{n}$$
 $X_{(k+1)}$ - выборочный квантиль порядка α $\alpha=0$ $\min(X)$ - нулевой квартиль

$$F^{-1} = \sum \{x \in \mathbb{R}F_n(x) \le \alpha\}$$

$$\alpha = \frac{1}{4}$$
 - первый вартиль (нижний квартиль)

$$\alpha=rac{1}{2}$$
 - второй квартиль (выборочная медиана)

$$\alpha = \frac{\overline{3}}{4}$$
 - третий квартиль (верхний квартиль)

$$lpha=1$$
 - $\max(X)$ (четвертый квартиль)
$$n=2m\Rightarrow=med(X)=\frac{X_(m)+X_(m+1)}{2}$$
 $n=2m+1\Rightarrow med(X)=X_(m+1)$

$$n = 2m + 1 \Rightarrow med(X) = X_{\ell}m + 1$$

 $IQR = \Delta$ между верхним и нижним квартилем.

$$P(X_{(k)} \le t) = P(\mu_n(t) \ge k) = \sum_{i=k}^n C_n^j F^j(t) (1 - F(t))^{n-j}$$

$$B(z,a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^z t^{a-1} (1-t)^{b-1} dt = B(F(t),k,n-k+1)$$

0 < z < 1

Пусть p() - теоретическая плотность, то есть p=F'

$$(P(X_(k) \le t))_t' = \frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} \cdot F^{k-1}(t)(1-F(t))^{n-k} \cdot p(t)$$
 - плотность

к-й порядковой статистики

Рассуждая аналогично можно получить плотность для двухмерного случая:

$$g(x_1,x_2)=\frac{n!}{(k-1)!(r-k-1)!(n-k)!}\cdot F^{k-1}(x_1)(F(x_2)-F(x_1))^{r-k-1}(1-F(x_2))^{n=r}p(x_1)p(x_2)$$
 - плотность для $(X_{(k)},X_{(r)}),\ l< r$ $g(x_1,\ldots,x_n)=n!p(x_1)\cdot\cdots\cdot p(x_n)$ - плотность для $(X_{(1)},\ldots,X_{(n)})$

Средний член вариационного ряда: $\frac{K(n)}{n} \to const \in (0,1)$

Крайний член вариационного ряда:

 $X_{(r)}, r$ - orp.

 $X_{(n+1-s)}, s$ - огр.

Теорема об ассимптотике среднего члена вариационного ряда

 $0<\alpha<1$ - теоретическая плотность.

 q_{α} - теоретический квантиль порядка α

 $p \in C^1$ (окр-сть q_α)

 $p(q_{\alpha}) > 0$

Тогда:

$$\sqrt{n} \cdot f(q_{\alpha}) \frac{X_{(\lfloor n\alpha \rfloor)} - q_{\alpha}}{\sqrt{\alpha(1-\alpha)}} \xrightarrow{d} N(0,1)$$

Пусть $|n\alpha| = k$

Мы умеем писать плотность для $X_{(k)}$

Затем у нас идет преобразование:

$$g(x) = \sqrt{n}p(q_{\alpha}) \frac{x - q_{\alpha}}{\sqrt{\alpha(1 - \alpha)}} \leadsto p_{g(X_{(k)})}(t) = p_{X_{(k)}}(g^{-1}(t))|g^{-1}(t)'_t|$$
 (теорема из

Там вылезут факториалы, от них мы умеем избавляться по Стирлингу Затем надо будет воспользоваться непрерывной дифференцируемостью:

 $p \in C^1$ (окр-сть q_α)

 $p(q_{\alpha}) > 0$

Тогда в пределе наша новая плотность будет стремиться к плотности нормального стандартного закона.

Пример. Распределение Коши.

$$Couchy(\mu, 1) \ \alpha = \frac{1}{2}$$

$$2f(\mu)\sqrt{n}(X_{(\lfloor \frac{n}{2} \rfloor)}) = \frac{1}{\pi} \cdot \frac{1}{1 + (\mu - \mu)^2} \cdot 2\sqrt{n}(X_{(\lfloor \frac{n}{2} \rfloor)} - \mu)$$

Теорема об ассимптотике крайних членов вариационного ряда

r, s, F, x, p() - плотность

Тогда:

$$nF(X_{(r)}) \xrightarrow{d} \Gamma(r,1)$$

$$nF(X_{(n+1-s)}) \xrightarrow{d} \Gamma(s,1)$$

И оба распределения независимы.

Идея доказательства

У нас есть совместная плотность и какое-то преобразование, тогда мы можем написать плотность после преобразования

Затем берем предел и мы получим плотность равная произведению двух этих двух законов.

6 Постановка задачи точечного оценивания параметров

 $X_1, \ldots, X_n \sim F_\theta \in \Theta \subset \mathbb{R}^d$

 θ - некий фиксированный неизвестный вектор.

Наша цель оценит θ в виде $\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_n)$

Замечание:

- 1. $\widehat{\theta}(X_1,\ldots,X_n)$ статистика (измеримая функция от выборки)
- 2. Байесовская постановка: θ случайная величина из известного апреорного распределения

Определение. Состоятельность

 $\widehat{\theta}$ - состоятельная оценка $\theta \Leftrightarrow \widehat{\theta} \xrightarrow{P} \theta$

Определение. Несмещенность

 $b.as(\widehat{\theta}) \stackrel{def}{=} E\widehat{\theta} - \theta$ - смещение

 $b.as(\widehat{\theta}) = 0 \Leftrightarrow$ несмещенная

Определение. Ассимптотическая нормальность

$$\sqrt{n}(\widehat{\theta} - \theta) \to N(0, \Sigma_{\theta})$$

Пример

1.
$$X_1, \dots, X_n \sim Bern(p)$$

 $\widehat{\theta} = \overline{X}$
 $3B \dashv \overline{X} \rightarrow p$
 $E\widehat{\theta} = E\overline{X} = p \text{ (HeCM)}$

$$E\widehat{\theta} = E\overline{X} = p \text{ (несм)}$$
 ЦПТ $\sqrt{n} \frac{\overline{X} - p}{\sqrt{p(1-p)}} \to N(0,1)$

2.
$$N(\mu,\sigma^2),\,\mu$$
 - известна
$$\theta=S_*^2 \ S_*^2 \to \sigma^2$$

$$\theta = S_*^2$$

$$S^2_* \to \sigma^2$$

$$ES_*^2 = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$
 (несмещенность)

$$\sqrt{n} \frac{S_*^2 - \sigma^2}{\sqrt{\beta_4 - \sigma^4}} \xrightarrow{d} N(0, 1)$$

Определение. Эффективность (оптимальность)

$$\widehat{ heta}_1$$
 эффективнее $\widehat{ heta}_2 \Leftrightarrow MSE\widehat{ heta}_1 < MSE\widehat{ heta}_2$ $MSE\widehat{ heta} = E \left\| \widehat{ heta} - heta
ight\|^2 = E(\widehat{ heta} - heta)^T (\widehat{ heta} - heta)$ Утверждение

$$MSE\widehat{\theta} = tr(\operatorname{Var}\widehat{\theta}) + \left\|b.as\widehat{\theta}\right\|^2$$

Доказательство
$$MSE = E(\widehat{\theta} - \theta)^{T}(\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta)^{T}(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta)^{T}(\widehat{\theta} - E\widehat{\theta} + E\widehat{\theta} - \theta) = E(\widehat{\theta} - E\widehat{\theta})^{T}(\widehat{\theta} - E\widehat{\theta}) = \sum_{i} \operatorname{Var} \widehat{\theta}_{i} + \|b.as\widehat{\theta}\|^{2}$$

1. Ассимптотическая нормальность ⇒ состоятельность

$$\widehat{\theta} - \theta = \frac{1}{\sqrt{n}} (\widehat{\theta} - \theta) \xrightarrow{P} 0$$

2. Ассимптотическая нормальность $\Rightarrow b.as \hat{\theta} \to 0$

Пусть d=1

$$P(|\theta - E\widehat{\theta}| > \varepsilon) = P(\frac{\sqrt{n}|\theta - E\widehat{\theta}|}{\sigma} > \frac{\varepsilon\sqrt{n}}{\sigma}) = 1 - P(\dots < \frac{\varepsilon\sqrt{n}}{\sigma}) \approx 1 - (2\Phi(\frac{\varepsilon\sqrt{n}}{\sigma}) - 1) = 2(1 - \Phi(\frac{\varepsilon\sqrt{n}}{\sigma})) \to 0$$

3. Состоятельность $\Rightarrow b.as \hat{\theta} \rightarrow 0$

Следует из усиленного закона больших чисел $\overline{X} \xrightarrow{a.s} \mu \Rightarrow E\overline{X} \to \mu$ (По теореме Лебега о мажорируемой сходимости)

4. $\prod \text{VCTL} \ d = 1, \ b. as \widehat{\theta} \to 0, \text{Var} \ \widehat{\theta} \to 0 \Rightarrow \widehat{\theta} - \text{coct.}$

7 Метод моментов

Рассмотрим g_1, \ldots, g_d

$$\exists E g_1(X_1) = m_1(\theta_1, \dots, \theta_d)$$

$$\exists Eg_2(X_2) = m_2(\theta_1, \dots, \theta_d)$$

$$\exists E g_d(X_d) = m_d(\theta_1, \dots, \theta_d)$$
$$\int_{g_1(X)} g_1(\widehat{\theta}_1, \dots, \widehat{\theta}_d)$$

$$\frac{1}{g_d(X)} = m_d(\widehat{\theta_1}, \dots, \widehat{\theta_d})$$

$$\begin{cases} \exists E g_d(X_d) = m_d(\theta_1, \dots, \theta_d) \\ \overline{g_1(X)} = m_1(\widehat{\theta}_1, \dots, \widehat{\theta}_d) \\ \vdots \\ \overline{g_d(X)} = m_d(\widehat{\theta}_1, \dots, \widehat{\theta}_d) \end{cases}$$

$$\text{Пусть } \exists ! \text{ решение:}$$

$$\begin{cases} \widehat{\theta}_1 = \alpha_1(\overline{g_1(X)}, \dots, \overline{g_d(X)}) \\ \vdots \\ \widehat{\theta}_d = \alpha_d(\overline{g_1(X)}, \dots, \overline{g_d(X)}) \end{cases}$$

Тогда это будет оценка методов моментов.

По умолчанию $g_i(x) = x^j$

Пример

$$U[\theta_1, \theta_2], \, \theta_1 < \theta_2$$

$$g_1(x) = x, g_2(x) = x^2$$

$$Eg_1(X_1) = EX_1 = \frac{\theta_1 + \theta_2}{2}$$

$$Eg_2(X_1) = EX_1 = \frac{(\theta_2 - \theta_1)^2}{12} + \frac{(\theta_1 + \theta_2)^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_2^2 - 2\theta_1\theta_2 + \theta_1^2}{12} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 + 2\theta_1\theta_2 + \theta_2^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_2 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} + \frac{\theta_1^2 - 2\theta_1\theta_1 + \theta_1^2}{4} = \frac{\theta_1^2 - 2\theta_1\theta$$

$$\frac{\theta_1^2 + \theta_1\theta_2 + \theta_2^2}{3}$$

Далее составим уравнения:

$$\begin{cases} \overline{X} = \frac{\widehat{\theta_1} + \widehat{\theta_2}}{2} \\ \overline{X^2} = \frac{\widehat{\theta_1^2} + -\widehat{\theta_1}\widehat{\theta_2} + \widehat{\theta_2^2}}{3} \end{cases} \Leftrightarrow \begin{cases} \widehat{\theta_2} = 2\overline{X} - \widehat{\theta_1} \\ 3\overline{X^2} = \widehat{\theta_1^2} + -\widehat{\theta_1}\widehat{\theta_2} + \widehat{\theta_2^2} \end{cases}$$

$$3\overline{X^2} = \widehat{\theta_1^2} + \widehat{\theta_1}(2\overline{X} - \widehat{\theta_1}) + (2\overline{X} - \widehat{\theta_1})^2$$

$$\widehat{\theta_1^2} - 2\overline{X}\widehat{\theta_1} + 4(\overline{X}^2 - 3\overline{X^2}) = 0$$
 Считаем дискриминант деленный на четыре:
$$D = (\overline{X})^2 - 4(\overline{X})^2 + 3\overline{X^2} = 3(\overline{X^2} - (\overline{X})^2) = 3S_*^2$$
 У нас будет два случая:

1.
$$\begin{cases} \widehat{\theta}_1 = \overline{X} + \sqrt{3}S_* \\ \widehat{\theta}_2 = \overline{X} - \sqrt{3}S_* \end{cases}$$

2.
$$\begin{cases} \widehat{\theta}_1 = \overline{X} - \sqrt{3}S_* \\ \widehat{\theta}_2 = \overline{X} + \sqrt{3}S_* \end{cases}$$

Первый не возможен, потому что $\theta_1 < \theta_2$

- 1. если $(\overline{g_1(X)},\ldots,\overline{g_d(X)})$ состоятельаня оценка
- 2. если $(\overline{g_1(X)},\dots,\overline{g_d(X)})$ ассимптотически нормальные и g_1,\dots,g_d гладкие, то каждая из оценок ассимтотичесик нормальные.

8 Метод максимального правдоподобия

рговаbility must function: $p(x,\theta)=p(x|\theta)$ рговаbility identity function: $p(x,\theta)=p(x|\theta)$ Будем называть оба случая плотностью. Пусть у нас есть выборка $X_1,\ldots,X_n\sim p(x|\theta)$ $L(x|\theta)=\prod_{\widehat{\theta}}p(x_i|\theta)$ - функция правдоподобия $\theta^*=argmax(L(x,\theta))$ - оценка максимума правдоподобия $\theta\in\Theta$ - открыто $\theta_1\neq\theta_2\Rightarrow L(x,\theta_1)\neq L(x,\theta_2)$ Доказательство

- 1. Посмотреть и подумать
- 2. Рассмотреть $\ln L(x|\theta); \frac{\partial \ln L(x,\theta)}{\partial \theta}$

3.
$$\frac{\partial \ln L(x,\theta)}{\partial \theta} = 0$$

4. Проверить достаточные условия максимума

Пример

1.
$$N(\theta_1, \theta_2)$$

$$L(x, \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\theta_2}} \exp\left(-\frac{(x_i - \theta_1)^2}{2\theta_2}\right)$$

$$\ln L(x, \theta) = \sum_{i=1}^{n} \left[-\frac{1}{2} \ln 2\pi - \frac{1}{2}\theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}\right]$$

$$\frac{\partial \ln L(x, \theta_1)}{\theta_1} = \sum_{i=1}^{n} \frac{2(x_i - \theta_1)}{2\theta_2} = \sum_{i=1}^{n} \frac{x_i - \theta_1}{\theta_2}$$

$$\frac{\partial \ln L(x, \theta)}{\partial \theta_2} = \sum_{i=1}^{n} \left[-\frac{1}{2\theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2}\right]$$

$$\sum_{i=1}^{n} \frac{(x_i - \hat{\theta}_1)}{\hat{\theta}_2} = 0 \Rightarrow \hat{\theta}_1 = \overline{X}$$

$$\sum_{i=1}^{n} \left[-\frac{1}{2\hat{\theta}_2} + \frac{(x_i - \hat{\theta}_1)^2}{2\hat{\theta}_2^2}\right] = 0 \Rightarrow \hat{\theta}_2 = S_*^2$$
2. $U[0, \theta] : L(X, \theta) = \frac{1}{\theta^n} \mathbb{1}(X_i \in [0, \theta], \forall 1 \leq i \leq n)$

$$X_1, \dots, X_n : p(X_i, \theta)$$

$$L(X_1, \dots, X_n, \theta) = \prod_{i=1}^{n} p(x_i, \theta)$$

$$L(X, \theta) = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}$$
Bephemcia k haimemy indimed by:
Ecjin $\hat{\theta} < \max(X)$, to $L(x, \theta) = 0$

Чем меньше θ , тем больше $\frac{1}{\theta}$

$$\Rightarrow \hat{\theta} = \max(X)$$

$$Poly(1, p) : p = (p_1, \dots, p_m)$$
Рассмотрим частоты:
 ν_1 - кол-во наблюдений типа n

Суммируем и смотрим на функцию правдоподобия n

$$L(X, p) = p_1 \dots p_m$$

$$\ln L(X, p) = \sum_{j=1}^{m-1} \nu_j \ln p_j + \nu_m \ln (1 - P_1 - \dots - p_{m-1})$$

$$\frac{\partial \ln L \dots}{\partial p_j} = \frac{\nu_j}{p_j} - \frac{\nu_m}{1 - p_1 - \dots - p_{m-1}} = 0$$

$$\sum_{j=1}^{m} \text{уравнения: } \nu_j (1 - \hat{p}_1 - \dots - \hat{p}_{m-1}) = \hat{p}_j \cdot \nu_m$$

$$\hat{p}_m n - \hat{p}_m \nu_m = \nu_m$$

$$\widehat{p_m} = \frac{\nu_m}{n}$$

$$\widehat{p_j} = \frac{\nu_j \widehat{p_m}}{\nu_m} = \frac{\nu_j}{n}$$

Информация Фишера

$$d=1:L(X,\theta)=\prod p(X_j,\theta)$$

$$\ln L(X,\theta)=\sum \ln p(x_j,\theta)$$

$$V(X,\theta)=\frac{\partial \ln L\dots}{\partial \theta}=\sum \frac{\partial \ln p\dots}{\partial \theta}$$
 - вклад выборки $\theta\in\Theta$ - открыто
$$\theta_1\neq\theta_2\Rightarrow p(X,\theta_1)\neq p(X,\theta_2)$$
 Регулярность:

2.
$$EV^2(X,\theta) < \infty$$

$$\begin{split} \int_X L(X,\theta) dX &= 1 \xrightarrow{\frac{\partial}{\partial \theta}} \int_X \frac{\partial L(.)}{\partial \theta} dX = \int_X \frac{\frac{\partial L(...)}{\partial \theta}}{L(...)} \cdot L(...) dX = \int_X V(X,\theta) L(X,\theta) dX = \\ EV(X,\theta) &= 0 \\ I(\theta) &= \mathrm{Var}(V(X_i,\theta)) = E(V^2(X_i,\theta)) \text{ - информация Фишера для всей выбор-} \\ \mathrm{Ku} \\ V(X,\theta) &= \sum_i \frac{\partial \ln p(x,\theta)}{\partial \theta} \Rightarrow \mathrm{Var}(V(X,\theta)) = n \cdot \mathrm{Var} \, \frac{\partial \ln p(x,\theta)}{\partial \theta} \end{split}$$

$$i(\theta) = E(\frac{\partial \ln p(x_j, \theta)}{\partial \theta})^2$$

$$\frac{\partial}{\partial t} \int \frac{\partial \ln P(x, \theta)}{\partial t} dt dt$$

$$i(\theta)$$
 - информация Фишера для 1 наблюдения
$$i(\theta) = E(\frac{\partial \ln p(x_j,\theta)}{\partial \theta})^2 \\ \frac{\partial}{\partial \theta} \int_{\mathbb{R}} \frac{\partial \ln P(x,\theta)}{\partial \theta} \cdot p(x,\theta) dx = \int_{\mathbb{R}} \frac{\partial^2 \ln p(x,\theta)}{\theta} dx + \int_{\mathbb{R}} \frac{\partial \ln \dots}{\partial \theta} \frac{\partial p \dots}{\partial \theta} dx = E \frac{\partial^2 \ln p(x,\theta)}{\partial \theta^2} + E(\frac{\partial \ln o(x,\theta)}{\partial \theta})^2 = 0$$

$$i(\theta) = E(\frac{\partial \ln p(x_j, \theta)}{\partial \theta})^2 = -E\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2}$$

$$i(\theta) = -\left(E\frac{\partial^2 \ln p(X,\theta)}{\partial \theta_i \partial \theta_j}\right)_{1 \le i,j \le d}$$

$$I(\theta) = ni(\theta)$$
$$N(\theta_1, \theta_2)$$

$$p(x, \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} \cdot \exp\left(-\frac{(x - \theta_1)^2}{2\theta_2}\right)$$

$$\ln p(x, \theta_1, \theta_2) = -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \theta_2 - \frac{(x - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial \ln p(x, \theta_1, \theta_2)}{\partial \theta_1} = \frac{x - \theta_1}{\theta_2}$$

$$\frac{\partial \dots}{\partial \theta_2} = -\frac{1}{2\theta_2} + \frac{(x - \theta)}{2\theta_2} \text{ TODO:}$$

Теорема. Йеравенство Рао-Крамера

Модель регулярная, d = 1

au(heta) - оцениваемая функция

$$\tau \in C^1$$
 (как правило $\tau(\theta) = \theta$)

$$\widehat{\tau(\theta)} = \theta \Rightarrow \operatorname{Var}\widehat{\tau(\theta)} \ge \frac{[\tau'(\theta)]^2}{ni(\theta)}$$

$$\tau'(\theta) = \int \widehat{\tau(\theta)} \frac{\partial L(X, \theta)}{\partial \theta} dX = \int \widehat{\tau(\theta)} V(X, \theta) dX - EV(X, \theta) \cdot \widehat{E\tau(\theta)} = \operatorname{Cov}(V(X, \theta), \widehat{\tau(\theta)})$$

 $\operatorname{Cov}^2(V(X,\theta),\widehat{\tau(\theta)}) \le \operatorname{Var}(V(X,\theta)) \cdot \operatorname{Var}(\widehat{\tau(\theta)})$

Замечания

1.
$$\widehat{E\tau(t)} - \tau(\theta) = bias(\theta) \neq 0$$

$$\widehat{E\tau(\theta)} = \tau(\theta) + bias(\theta)$$

$$\widehat{Var \tau(\theta)} \geq \frac{[\tau'(\theta) + bias'(\theta)]^2}{ni(\theta)}$$

2.

Многомерный случай

$$\tau(\theta): \mathbb{R}^d \to \mathbb{R}$$

$$\tau \in C^1$$

$$\widehat{E\tau\theta} = \tau\theta \Rightarrow \operatorname{Var}\widehat{\tau(\theta)} \ge \frac{\nabla \tau(\theta)i^{-1}(\theta)\nabla^T \tau(\theta)}{n}$$

Пример

$$N(\theta_1, \theta_2)$$

$$\tau(\theta_1, \theta_2) = \theta_1$$

$$E\widehat{\theta_1} = \theta_1 \Rightarrow \operatorname{Var}\widehat{\theta_1} \ge \frac{(1,0)\begin{pmatrix} \theta_2 & 0\\ 0 & 2\theta_2^2 \end{pmatrix} \cdot (1,0)^T}{n} = \frac{\theta_2}{n}$$

Свойства оценки

1. Если \exists несмещенная оптимальная оценка в регулярном случае то она совподает с оценкой максимальног правдоподобия (ОМП)

$$\tau(\theta) = \theta$$

$$V(X,\theta) = \frac{1}{a(\theta)}(\widehat{\theta} - \theta)$$

10 Состоятельность ОМП

Пусть
$$\theta_0$$
 - реальный параметр $\Rightarrow p_{\theta_0}(L(X,\theta_0) > L(X,\theta)) \to 1$ $\frac{L(X,\theta)}{L(X,\theta_0)} < 1$ $\frac{1}{n} \sum \ln \frac{p(X_j,\theta)}{p(X_j,\theta)} < 0$ По ЗБЧ $\Rightarrow E_{\theta_0} \ln \frac{p(x_j,\theta)}{p(x_j,\theta_0)} \le E_{\theta_0} [\frac{p(X_j,\theta)}{p(X_j,\theta_0)} - 1] = \int_X p(X,\theta) dX - \int p(X,\theta_0) dX = 0$ Давайте введем события: $S_n = \{X : \ln L(X,\theta_0) > \ln L(X,\theta_0 - a)\} \cap \{X : \ln L(X,\theta_0) > \ln L(X_i\theta_0 + a)\}$ $P_{\theta_0}(S_n) \to 1$ $A_n = \{X : |\widehat{\theta} - \theta_0| < a\}$ $B_n = \{X : \frac{\partial \ln L(X,\theta)}{\partial \theta}|_{\theta = \widehat{\theta}} = 0\}$ $S_n \subset A_n B_n \subset A_n \Rightarrow P(A_n) \to 1$

Давайте поговорим про свойства метода максимального правдоподобия

1. Принцип инвариантности

$$\theta \in \Theta \xrightarrow{biection} \gamma \in \Gamma$$

$$\theta = \varphi^{-1}(\theta) \Leftrightarrow \gamma = \varphi(\theta)$$

$$\sup_{\theta} L(X, \varphi(\gamma)) = \sup_{\gamma} L(x, \gamma)$$

$$\gamma * = \varphi(\theta *)$$

Пример

Пусть у нас есть $Exp(\lambda)$ и есть две параметризации

•
$$\lambda e^{-\lambda x} \to \frac{1}{\overline{X}}$$

• $\frac{1}{\lambda} \exp(-\frac{x}{\lambda}) \to \overline{X}$

Теорема Ассимптотическая нормальность ОМП

Пусть наша модель регулярная, так же пусть:

$$|rac{\mathring{\partial}^3 \ln f(x, heta)}{\partial heta_i \partial heta_j \partial heta_k}| \leq M$$
 $heta_*$ - ОПМ для $heta$

Уравнение $\nabla \ln L(X,\theta) = 0$ имеет еддинственное решение. Тогда:

1.
$$\sqrt{n}(\theta_* - \theta) \to N(0, i^{-1}(\theta))$$

2.
$$\tau(\theta)$$
 - оцениваемая функция от θ $\tau \in C^1$
$$\sqrt{n}(\tau(\theta_*) - \tau(\theta)) \to N(0, \sigma^2)$$
 $\sigma^2 = \nabla \tau(\theta) i^{-1}(\theta) \nabla^T \tau(\theta)$

3.
$$\sigma^2$$
 - непрерывная функция от $\theta \Rightarrow \sqrt{\frac{\tau(\theta_*) - \tau(\theta)}{\sigma(\theta_*)}} \to N(0,1)$

В прошлый раз мы ввели функцию

$$V(X, \theta) = rac{\partial \ln L(X, \theta)}{\partial heta}$$
 $heta_0$ - реальный параметр

Давайте напишемя ряд Тейлора

$$V(X,\theta)=V(X,\theta_0)+V_{\theta}'(X,\theta)(\theta-\theta_0)+V_{\theta}''(X,\tilde{\theta})\frac{(\theta-\theta_0)^2}{2},\,\tilde{\theta}$$
 между θ_0 и θ

Выполним подстановку $\theta=\theta_*$

$$0 = V(X, \theta_0) + V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) + V''_{\theta}(X, \tilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$V'_{\theta}(X, \theta_0)(\theta_* - \theta_0) = -V(X, \theta_0) - V'(X, \tilde{\theta}) \frac{(\theta_* - \theta_0)^2}{2}$$

$$\sqrt{n}V_{\theta}'(X,\theta_0)(\theta_* - \theta_0) = -\sqrt{n}V(X,\theta_0) - \sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_* - \theta_0)^2}{2}$$

$$A_n := -\sqrt{n}V(X, \theta_0)$$

По ЦПТ:

$$A_n \to N(0, i(\theta_0))$$

$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_* - \theta_0)^2}{2} = n^{\frac{3}{2}} - \frac{V_{\theta}''(X,\tilde{\theta})}{n}\frac{(\theta_* - \theta_0)^2}{2}$$

$$\frac{V_{\theta}''(X,\tilde{\theta})}{\pi}$$
 - огр по ЗБЧ

$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_*-\theta_0)^2}{2} \to N(0,i(\theta_0))$$

- огр по ЗВЧ
$$\sqrt{n}V_{\theta}''(X,\tilde{\theta})\frac{(\theta_*-\theta_0)^2}{2} \to N(0,i(\theta_0))$$

$$V'(X,\theta_0) = n\frac{V'(X,\theta_0)}{n} \xrightarrow{\text{ЗВЧ}} -i(\theta)$$

$$\text{Var } \widehat{\theta} \geq \frac{[\tau'(\theta)]^2}{ni(\theta)}$$
 Рассмотрим показатель:

$$\operatorname{Var} \widehat{\theta} \ge \frac{[\tau'(\theta)]^2}{ni(\theta)}$$

Рассмотрим показатель:
$$\frac{[\tau'(\theta)]^2}{ni(\theta)\cdot \mathrm{Var}\,\widehat{\tau(\theta)}} - \Im \varphi \varphi$$
ективность

Ассимптотическая Эффективность: Пусть $\sqrt{n}(\widehat{\theta}-\theta_0) \to N(0,\frac{\sigma^2}{n})$

 $\frac{1}{i(\theta)\sigma^2}$ - показатель состоятельной эффективности

11Экспоненциальное семество распределений

Пусть наше распределение относится к экспоненциальному семейству распределений если:

$$p(x,\theta) = \exp(A(\theta)B(x) + C(\theta) + D(x))$$

K таким распределениям относятся: $N(), \Gamma(), Pois(), Bin, NB$

$$\ln p(x,\theta) = A(\theta)B(x) + C(\theta) + D(x)$$

$$\begin{split} \frac{\partial \ln p(x,\theta)}{\partial \theta} &= A'(\theta)B(x) + C'(\theta) \\ V(X,\theta) &= A'(\theta) \sum B(X_i) + nC'(\theta) \\ V(X,\theta) &= n(A'(\theta)\overline{B(X)} + C''(\theta)) \\ \frac{V(X,\theta)}{n} &- C'(\theta) = A'(\theta)\overline{B(X)} \\ \overline{B(X)} &= \frac{V(X,\theta)}{nA'(\theta)} - \frac{C'(\theta)}{A'(\theta)} \\ \overline{B(X)} &- \text{ оптимальная оценка для } \left(-\frac{C'(\theta)}{A'(\theta)}\right) \end{split}$$

12 Байесовская постановка

$$X_1,\dots,X_n\sim F_\theta$$
 $\theta\sim\pi(\theta)$ - prior
$$l(\widehat{\theta},\theta)-\text{функция потерь}$$
 $l(\widehat{\theta},\theta)=(\widehat{\theta}-\theta)^2$ (default)
$$R(\widehat{\theta},\theta)=El(\widehat{\theta},\theta)-\text{риск}$$
 $r(\widehat{\theta})=E_{\pi(\theta)}R(\widehat{\theta},\theta)$ - байесовский риск
$$\widehat{\theta}_B=\underset{\theta}{argminr}(\widehat{\theta})$$
 $r(\widehat{\theta})=El(\widehat{\theta},\theta)$ Давайте вспомним теорему Байеса:
$$P(A|B)=\frac{P(B|A)P(A)}{P(B)}$$

$$P(\theta|X)=\frac{L(X|\theta)\pi(\theta)}{\int L(X|\theta)\pi(\theta)d\theta}$$
 pisterior = likelihoox × prior
$$\widehat{\theta}_B=\underset{\theta}{argminE}[l(\widehat{\theta})|X]$$
 $r(\theta_*)\leq r(\widehat{\theta})$ TODO: как будет не лень я допишу пример 1:05 лекция 6 $l(\widehat{\theta},\theta)$ - loss function $R(\widehat{\theta},\theta)=E_{\theta}l(\widehat{\theta},\theta)$ $r(\widehat{\theta})=E_{\pi(\theta)}R(\widehat{\theta},\theta)$ $\widehat{\theta}_B=\underset{\theta}{argminE}(l(\widehat{\theta},\theta)|X)$ $l(\widehat{\theta},\theta)=(\widehat{\theta}-\theta)^2$ $\widehat{\theta}_B=E(\theta|X)$

13 Минимаксные оценки

$$\begin{split} \widehat{m(\theta)} &= \sup_{\theta} R(\widehat{\theta}, \theta) \\ \widehat{\Theta_{WC}} &= \operatorname{argminm}(\widehat{\theta}) \text{ - минимаксная оценка} \\ \widehat{r(\theta)} &\leq m(\widehat{\theta}) \\ \mathbf{Утверждениe} \\ \exists \pi(\theta) \text{ - prior : } R(\widehat{\theta_B}, \theta) = \operatorname{const} \Rightarrow \widehat{\theta}_{WC} = \widehat{\theta_B} \\ \operatorname{Pассмотрим пример:} \\ Bern(p) \text{ : prior: } B(a, b) \\ \widehat{p}_B &= \frac{a+X}{a+b+n}, X = \sum_{k=1}^n X_k \\ R(\widehat{p}_B, p) &= MSE\widehat{p}_B = E(\widehat{p}_B - p)^2 = \operatorname{Var}\widehat{p}_B + \operatorname{bias}^2\widehat{p}_B \\ \operatorname{bias}\widehat{p}_B &= E\frac{a+X}{a+b+n} - p = \frac{a=np}{a+b+n} - p = \frac{a-ap-bp}{a+b+n} \\ \operatorname{Var}\widehat{p}_B &= \frac{1}{(a+b+n)^2} \operatorname{Var} X = \frac{npq}{(a+b+n)^2} \\ R(\widehat{p}_B, p) &= \frac{(a-ap-bp)^2 + npq}{(a+b+n)^2} = \frac{(a-p(a+b))^2 + bp(1-p)}{(a+b+n)^2} = \frac{p^2((a+b)^2 - n) + p(-2a(a+b) + n) + a^2}{(a+b+n)^2} \\ \left\{ (a+b)^2 &= n \\ 2a(a+b) &= n \\ \end{array} \right. \\ \left. \begin{cases} a+b &= \sqrt{n} \\ a &= \frac{\sqrt{n}}{2} \end{cases} \Rightarrow b = \frac{\sqrt{n}}{2} \end{split}$$

- Достаточность и полные статистики
- Робастность (устойчивость относительно выборосов, устойчивость относительно изменения параметров распределения)

14 Интервальное оценивание

Определение. Доверительный интервал

 $p(-\ln U \le t) = p(U > e^{-t}) = 1 - e^{-t}$

Х1,...,
$$X_n \sim F_\theta, \theta \in \Theta \subset \mathbb{R}$$
 $1-\alpha=\gamma \in (0,1)$ - уровень доверия default: $0.9,\,0.95,\,0.99$ $(T_l(X),T_r(X))$ - доверительный интервал уровня $\gamma=1-\alpha$ если $p(\theta\in (T_l(X),T_r(X))\geq \gamma)$ Пусть $T(X,\theta)\sim G$ - не зависит от θ Рассмторим $p(q_1< T(X,\theta)< q_2)=1-\alpha$ $q_1=q_{\frac{\alpha}{2}}$ Универсальный рецепт (нет) a) $F_\theta(X_k)$ $P(F_\theta(X_k)\leq t)=P(X_k\leq F_\theta^{-1}(t))=F_\theta(F_\theta^{-1}(t))=t$ $6)-\ln F_\theta(X_k)\sim Exp(1)$

$$_{\mathrm{B}})-\sum \ln F_{\theta}(X_{k})\sim \Gamma(n,1)$$

в) — $\sum \ln F_{\theta}(X_k) \sim \Gamma(n,1)$ Доверительные интервалы нормального закона. Теорема Фишера

Лемма о независимотси линейной и квадратичной статистик

$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

$$T = AX, X = (X_1, \dots, X_n)^T A \in M_{m \times n}(\mathbb{R})$$
$$Q = X^T BX, B \in M_n(\mathbb{R}), B = B^T$$

$$Q = X^T B X, B \in M_n(\mathbb{R}), B = B^T$$

Тогда Т, Q - независимы

$$AB = 0$$

Доказательство

$$\Lambda = U^T B U$$

$$\Lambda = diag(\lambda_1, \dots, \lambda_m, 0, 0)$$

 λ_k - собственное число не 0

 $U=(u_1,\ldots,u_n)$ - собственные векторы ортонормированного базиса $\Leftrightarrow B=$

$$U\Lambda U^T = \sum_{j=1}^m \lambda_j u_j u j^T \Rightarrow Q = \sum_{j=1}^M \lambda_j (X^T U_j) (U_j^T X) = \sum_j \lambda_j (U_j^T X)^2$$

$$A(\sum_{j=1}^{m} \lambda_j u_j u_j^T) = 0$$

$$\sum_{i=1}^{m} \lambda_j A U_j u_j^T = 0$$

Зафиксируем $1 \le k \le m$ домножим справа на u_k

$$Au_k = 0 \Rightarrow \forall i A[i, *] u_k = 0$$

Нам надо доказать, что
$$\forall i, kA[i,*]X$$
 и u_k^TX - нез $\mathrm{Cov}(A[i,*]X,u_k^TX) = \mathrm{Cov}(A[0,*]X,X^Tu_k) = A[i,*]\,\mathrm{Var}\,Xu_k = \sigma^2A[i,*]u_k = 0$

Лемма о независимости двух квадратичных статистик

$$Q_1 = X^T B_1 x$$

$$Q_2 = X^T B_2 X$$

Тогда
$$Q_1, Q_2$$
 - нез

$$B_1 B_2 = B_2 B_1 = 0$$

Определение X_n - квадратичная

$$X_1,\ldots,X_n \sim N(0,1)$$

$$\sum_{k=1}^{n} X_k^2 \sim \chi^2(n) \text{ (распределение)}$$

хи-кквадрат с n степенями свободы

Лемма о распределении квадратичной статистики

$$X_1,\ldots,X_n \sim N(0,1)$$

$$Q = X^T B X$$

$$R - R^2$$

Тогда
$$Q \sim \chi^2(r), r = rank(B = tr(B))$$

Тогда
$$Q \sim \chi^2(r), r = rank(B = tr(B))$$

$$Q = \sum_{k=1}^n (u_k^T X)^2 \sim \chi^2(r)$$

$$u_k^T \sim N(u_k^T E X, u_k^T I_n u_k) = N(0, 1)$$

$$egin{aligned} \operatorname{Cov}(u_k^TX,u_j^TX) &= 0 \ B &= U\Lambda U^T \ rank B &= rank \Lambda = tr \Lambda \ tr B &= tr (U\Lambda U^T) \$$
Заметим что $B_{j,j} = \lambda_j u_j u_j^T = \lambda_j \$ Теорема Фишера $X_1, \dots, X_n \sim N(\mu, \sigma^2) \Rightarrow \end{array}$

1.
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

2.
$$\frac{nS_*^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim X^2(n-1)$$

3.
$$S^2, \overline{X}$$
 - нез

$$Y_{j} = \frac{X_{j} - M}{\sigma}$$

$$\overline{X} \frac{1}{\sigma} (\overline{X} - M)$$

$$S_{*}^{2}(Y) = \frac{1}{n} \sum_{j=1}^{n} (Y_{j} - \overline{Y})^{2} = \frac{S_{*}^{2}(X)}{\sigma^{2}}$$

$$\overline{Y} = \frac{\sum Y_{j}}{n} = \frac{(\frac{1}{n}, \dots, \frac{1}{n})}{b} (Y_{1}, \dots, Y_{n})^{T} = bY$$

$$nS_{*}^{2}(Y) = (Y - BY)^{T} (Y - BY) = Y^{T} (I - B)^{T} (I - B)Y \sum \chi^{2} (tr(I - B))$$

Для того чтобы доказать третье утверждение

$$b(I - B) = b - b = 0$$

Тогда мы пользуемся первой леммой

Таким образом теорема Фишера доказана.

Мы доказали теорему Фишера давайте теперь с помощью теоремы мы рассмотрим задачу построения доверительных интервалов нормального закона

•
$$\sigma^2$$
 - известно, $\mu=?$ Рассмотрим два варианта: $\frac{X_1-\mu}{\sigma}\sim N(0,1)$
$$\sqrt{n}\frac{\overline{X}-\mu}{\sigma}\sim N(0,1)$$
 Доверительный интервал уровня $1-\alpha$ $[\overline{X}-\frac{q_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}},\overline{X}+\frac{q_{1-\frac{\alpha}{2}\sigma}}{\sqrt{n}}]$

•
$$\mu$$
 - известно, $\sigma^2 = ?$

$$-q \le \sqrt{n} \frac{(\overline{X} - \mu)}{\sigma} \le q$$

$$-q\sigma \le \sqrt{n} (\overline{X} - \mu) \le q\sigma$$

$$\frac{\sqrt{n}(\overline{X} - \mu)}{q} \le \sigma$$

$$-\frac{\sqrt{n}(\overline{X} - \mu)}{q} \le \sigma$$

Рассмотрим следующую статистику:

Рассмотрим следующую статистику:
$$\sum \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$$

$$P(q_{\frac{\alpha}{2}} \leq \sum \frac{(X_i - \mu)^2}{\sigma^2} \leq q_{1 - \frac{\alpha}{2}}) = 1 - \alpha$$
 Доверительный интервал:
$$\frac{\sum (X_i - \mu)^2}{q_{1 - \frac{\alpha}{2}}} \leq \sigma^2 \leq \frac{\sum (X_i - \mu)^2}{q_{\frac{\alpha}{2}}}$$
 Давайте теперь рассмотрим задачу построения доверительного интревала $\mu = ?, \sigma^2 = ?$

$$\frac{\sum (X_i - \mu)^2}{q_{1 - \frac{\alpha}{2}}} \le \sigma^2 \le \frac{\sum (X_i - \mu)^2}{q_{\frac{\alpha}{2}}}$$

Воспользуемся теоремой Фишера:

$$\frac{nS_*^2}{\sigma^2} \sim \chi^2(n-1)$$

Доверительный интервал: $\frac{nS_*^2}{q_{1-\frac{\alpha}{2}}} \le \sigma^2 \le \frac{nS_*^2}{q_{\frac{\alpha}{2}}}$

Определение. Распреление Стьюдента

$$X_0,X_1,\ldots,X_n$$
 - нез, $N(0,1)$

$$X_0, X_1, \dots, X_n$$
 - нез, $N(0,1)$ $\frac{X_0}{\sqrt{\frac{1}{n} \sum_{k=1}^n X_k^2}} \sim T(n)$

n - степени свободы (deg of freedom)

Давайте выведем статистику:

$$\frac{\sqrt{n}\frac{\overline{X}-\mu}{\sigma}}{\sqrt{\frac{1}{n-1}\frac{ns_*^2}{\sigma^2}}} = \sqrt{n-1}\frac{\overline{X}-\mu}{S_*} \sim T(n-1)$$

$$\frac{\sqrt{n}\frac{\overline{X}-\mu}{\sigma}}{\sqrt{\frac{1}{n-1}\frac{(n-1)S^2}{\sigma^2}}} = \sqrt{n}\frac{\overline{X}-\mu}{S}$$
 Доверительный интервал:
$$\overline{X} - \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}, \overline{X} + \frac{q_{1-\frac{\alpha}{2}S}}{\sqrt{n}}$$
 Определение Распределение Фи

$$\overline{X} - \frac{\overline{q_{1-\frac{\alpha}{2}}S}}{\sqrt{n}}, \overline{X} + \frac{q_{1-\frac{\alpha}{2}}S}{\sqrt{n}}$$

Определение. Распределение Фишера
$$\chi_n^2 \sim \chi^2(n)$$
 $\chi_n^2 \sim \chi^2(m)$ Они независимы $\frac{\chi_n^2(n)}{\chi_m^2(m)} \sim F(n,m)$

15 Ассимптотические доверительные интерва-ЛЫ

Раньше мы говорили $P(\theta \in (l_n, r_n)) \ge 1 - \alpha$ Таперь же мы будем говорить $\lim_{n\to\infty} P(\theta\in(l_n,r_n))\geq 1-\alpha$ $T(X,\theta) \xrightarrow{d} G$ не зависит от θ

1. ЦПТ и ее следствия

$$\sqrt{n} \frac{\overline{X} - \mu}{\sigma} \to N(0, 1)$$

$$\sqrt{n} \frac{\overline{X} - \mu}{S} \to N(0, 1)$$

Доверительный интервал: $\overline{X} \pm \frac{q_{1-\frac{\alpha}{2}}S}{\sqrt{n}}$

$$\sqrt{n}\frac{S_*^2-\sigma^2}{\sqrt{\widehat{\beta_4}-S_*^4}}\to N(0,1)$$

Доверительный интервал: $S_*^2 \pm \frac{q_{1-\frac{\alpha}{2}}\sqrt{\widehat{\beta_4}-S_*^4}}{\sqrt{n}}$

2. Теорема об ассимтотике среднего члена вариационного ряда

$$\sqrt{n} \frac{X_{(\lfloor np \rfloor)} - q_p}{\sqrt{p(1-p)}} f(q_p) \to N(0,1)$$

Доверительный интервал для медианы: $p = \frac{1}{2}$

$$\sqrt{n}f(q_p) \frac{X_{(\lfloor \frac{n}{2} \rfloor)} - q_p}{\frac{1}{2}}$$
 (зачастую f это константа)

Доверительный интервал: $X_{(\lfloor \frac{n}{2}) \rfloor} \pm \frac{q_{1-\frac{\alpha}{2}}}{\sqrt{n} \cdot const}$

- 3. Доверительный интервалы из ассимтотической нормальности оценок максимального правдоподобия
- 4. Теорема об ассимтотике крайнего члена вариационного ряда $n(1-F(X_{m+1-s})) \to \Gamma(s,1)$

Пример:

$$F(x) = \begin{cases} 0, x < 0 \\ \frac{x}{\theta}, 0 \le x \le \theta \\ 1, x > \theta \end{cases}$$

$$\frac{nX_{(r)}}{\theta} \to \Gamma(r, 1)$$

$$q_{\frac{\alpha}{2}} \le \frac{nX_{(r)}}{\theta} \le q_{1-\frac{\alpha}{2}} \Rightarrow \frac{nX_{(r)}}{q_{1-\frac{\alpha}{2}}} \le \theta \le \frac{nX_{(r)}}{q_{\frac{\alpha}{2}}}$$

16 Проверка статистических гипотез

Нам надо будет выделить основное предположение (по умолчанию) и альтернативное предположение (наше подозрение или то, что мы хотим дока-

зать)

Давайте рассуждать:

рациональное, с точки зрения инопланетянина (не опираться на жизненный опыт)

В стране Н с континентальное системой права и есть уголовный суд. Какое будет основное предположение для судьи? Не виновен. А альтернативное? Виновен.

Давайте посмотрим на другой пример

В паспорте у некоторых написана буква М, а у других Ж, посмотрим связаны ли буквы и успеваемость? По умолчанию не связаны, а альтернативное: М и Ж учатся по разному. Пусть мы сидим на филфаке, тогда есть мнение, что девочки учатся лучше, или же мы сидим на программировании и тогда мальчики учатся лучше. Альтернатива не всегда является отрицанием первого.

Еще один пример:

Пусть робот кидает монетку. По умолчанию робот кидает честно, альтернативно робот жулик или он жулик в определенную сторону.

Замеры показателя (температуры человека). По умолчанию 36.6, альтернативно мы можем подозревать, что температура $\neq 36.6$ или же можем рассмотреть перепад в одну из сторон (в зависимости от болезни)

Пусть есть фактор цена на недвижимость и есть фактор расстояние до центра города. Основное предположение: они не зависят, Альтернатива: ближе к центру - больше цена.

Мы можем изготовить некое вещество и посмотрим как оно влияет на здоровье. Основное: не влияет, альтернатива: it depends.

 X_1, \ldots, X_n - выборка в широком смысле.

$$(X_1,\ldots,X_n)\sim F$$

 H_0 - нулевая гипотеза.

 H_1 - альтернатива.

Так же пусть нам дали уровень значимости

 $\alpha \in (0,1)$ (по умолчанию 0.1, 0.05, 0.01, 0.001)

Статистический тест (критерий)

$$\delta(X, \alpha, H_0, H_1) = \begin{cases} accept H_0 \\ reject H_0(w.\ respect\ {
m to}\ H_1) \end{cases}$$
 То есть в первом случае

данные противоречат H_0 , а втором противоречат.

Но это не значит, что мы доказали утверждение.

Пусть у нас есть функция T(X) - статистика критерия

T(X) либо в точности, либо в пределе стремится к G при условии $H_0(\sim$ or $\rightarrow)$

 $P(T(X) \in T_0(\alpha)|H_0) = 1 - \alpha$

if $T(x) \in T_1(\alpha)$: reject H_0

else: $accept H_0$

 $T_0(\alpha)$ - область принятия

 $T_1(\alpha)$ - область опровержения

Далее на лекции идет пример с левосторонним, правосторонним и двойным

тестом

```
1. left: T_0(\alpha) = [q_\alpha, +\infty)

2. right: T_1(\alpha) = (-\infty, q_\alpha)

3. two: T_0(\alpha) = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}], T_1(\alpha) = \overline{T_0(\alpha)}

p_l = P(U \le T(x)|H_0)

p_r = P(U > T(x)|H_0)

p = 2min(p_l, p_r)

if p < \alpha: reject H_0

else: accept H_1
```

17 Статистические критерии и доверительные интервалы

Когда мы строили доверительные интервалы то мы зажимали статистику между квантилями. Это похоже на двухсторонний тест.

$$X_1,\dots,X_n\sim F_\theta$$
 $T(X,\theta)\to U\sim G$ $P(q_{\frac{\alpha}{2}}\leq T(X,\theta)\leq q_{1-\frac{\alpha}{2}})=1-\alpha$ $H_0:\theta=\theta_0$ $P(T(X,\theta_0)\in T_0(\alpha)|\theta=\theta_0)=1-\alpha$ $H_1=\theta\neq\theta_0,\theta>\theta_0,\theta<\theta_0$ Пример: 1) $X_1,\dots,X_n\sim F,\mu=EX_1,\exists\,\mathrm{Var}\,X$ $H_0:\mu=\mu_0$ $T(X)=\sqrt{n}\frac{\overline{X}-\mu_0}{S}\to N(0,1)$ если $\mu=\mu_0$ При $H_1:\mu\neq\mu_0$ у нас двухсторонняя критическая область При $H_1:\mu<\mu_0$ у нас правосторонняя критическая область При $H_1:\mu<\mu_0$ у нас левосторонняя критическая область Дальше для этого приводится пример с больницей (нам либо надо просто проверить, что температура не стандартная, либо нам важно знать, что она больше нормы, либо нам важно знать, что она ниже нормы)

$$P(\sqrt{n}\frac{\overline{X}-\mu_0}{S}\in T_0(\alpha)|\mu\neq\mu_0)=P(\sqrt{n}\frac{\overline{X}-\mu}{S}+\frac{\mu-\mu_0}{S}\sqrt{n}|\mu\neq\mu_0)$$
 Это будет стремиться либо к $\Phi(-\infty)$ либо $1-\Phi(+\infty)$

18 Критерий Колмогорова

$$X_1, \dots, X_n \sim F$$

 $H_0: F = F_0 \ (F_0$ - непр)

$$H_1: F \neq F_0$$

Идея основана на теореме Колмогорова (было в начале семестра)

 $D_n = \sqrt{n} \underset{x \in \mathbb{R}}{sum} |F_n(x) - F_0(x)|, \ F_n$ - эмпирическая функция распределения

if $D_n > q_{1-\alpha}$ then reject H_0 else accept H_0

- 1) $n \geq 20$ работает хорошо, при маленьких

 есть спец таблицы
- 2) Так же есть приблеженные формулы для D_n
- 3) $H_0: F = F(\theta), H_1: \neg H_0 \Rightarrow D_n = \sqrt{n} \sup |F_n(x) F_0(x, \theta)|$

$$\theta \to \hat{\ell}$$

В пределе будет более сложная формула

19 Критерий Смирнова

$$X_1,\ldots,X_n$$

$$Y_1, \ldots, Y_m$$

Они независимы

$$H_0: F_X = F_Y (= F_0)$$

$$H_1 :\neq H_0$$

Тут идея основана на формуле Смирнова

$$D_{n,m} = \sqrt{\frac{nm}{n+m}} \sup_{x} |F_n(x) - F_m(x)|$$

$$T_1(\alpha) = (q_{1-\alpha}, +\infty)$$

$$T_1(\alpha) = (q_{1-\alpha}, +\infty)$$

20 Критерий типа хи-квадрат

Критерий согласия Пирсона 20.1

 $X_1, \ldots, X_n \sim F(x)$ - непрерывная

Давайте ддискритезируем данные

 $\Delta_1: \nu_1$ - количесво элементов выборки попадающих Δ_1

$$\Delta_{N}$$

$$p_{\Delta_k} = \int_{\delta_k} p(x)dx, \, p(x) = F'(x)$$

Рассмотрим $\{1,2,\ldots,N\},\, p=(p_1,\ldots,p_N)$ - настоящий вектор вероятностей

 $p_0 = (p_{01}, \dots, p_{0N})$ - ожидаемый фиксированный вектор вероятностей

 ν_k - количество элементов в выборке типа k

$$H_0: p = p_0$$

$$H_1: p \neq p_0$$

$$n = \sum_{k=1}^{N} \nu_k$$

$$H_0: p = p_0 H_1: p \neq p_0 n = \sum_{k=1}^{N} \nu_k \chi_N^2 = \sum_{k=1}^{N} \frac{(\nu_k - np_{0k})^2}{np_{0k}}$$

Теорема
$$\chi_N^2 \xrightarrow[n \to \infty]{} \chi^2(N-1)$$
 при условии H_0

Доказательство

$$\begin{split} \frac{N=2:}{(\nu_1-np_{01})^2} + \frac{(\nu_2-np_{02})^2}{np_{02}} &= \frac{(\nu_1-np_{01})^2}{np_{01}} + \frac{(n-\nu_1-n(1-p_{01}))^2}{n(1-p_{01})} = \frac{(\nu_1-np_{01})^2}{n} (\frac{1}{p_{01}} + \frac{1}{1-p_{01}}) \\ &= \frac{(\nu_1-np_{01})^2}{np_{01}(1-p_{01})} \end{split}$$
 Без квадрата по ЦПТ это стремится к N(0, 1), но мы можем навесить непре-

рывную функцию возведения в квадрат и получим то, что нам нужно Для классического притерий хи-квадрат у нас правосторонняя критическая область (потому что в сумме при H_0 будет маленькая разность в квадртае и тд и тп очев крч)

Замечание

Критерий состоятельный

Пусть у нас есть некоторые типы семян (круглые и желтые, морщинистые и желтые, круглые и зеленые, морщинистые и зеленые)

$$\begin{aligned}
\nu &= (315, 101, 108, 32) \\
p_0 &= (\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}) \\
\chi_4^2 &= 0.47 \\
df &= 3 \\
p_value &= 1 - (df(0.47)) = 0.97
\end{aligned}$$

Замечание

$$n \ge 50, \nu_j \ge 5$$
 Замечание

Оптимальные способы дискритизации сущестуют

Замечание

Для проверки согласованности с нормальным законом следует использовать спец тесты (Шапиро, коэффициент эксцесса)

$$H_0: p = p_0(\theta), \theta \in \Theta \subset \mathbb{R}^d, d < N-1$$
 $\chi_N^2 = \sum_{k=1}^N \frac{(\nu_k - np_{0k}(\theta))^2}{np_{0k}(\theta)}|_{\theta = \widehat{\theta}}$ Теорема

$$p_0(\theta)>0 \forall \theta$$

$$\frac{\partial p_0}{\partial \theta}, \frac{\partial^2 p_0}{(\partial \theta)^2} \text{ - непрерывная}$$
 Тогда $\chi^2_N \to X^2(N-1-d)$ $rk(\frac{\partial p_{0k}}{\partial \theta_j})_{1 \leq k \leq N, 1 \leq j \leq d} = d$

Критерий однородности

Пусть у нас K независимых выборок все они из $\{1, 2, ..., N\}$ Пусть $p^{(j)}$ - истинный вектор вероятностей для соответствующей выборки $H_0: p^{(1)} = \dots = p^{(k)}$

$$H_1:
eq H_0$$
 u_{ij} - количество элементов типа ј в і-ой выборке $n_i=\sum_j \nu_{ij}=\nu_{i*}$ - объем і-ой выборки $n=n_1+\cdots+n_k$ Пусть $p^{(1)},\ldots,p^{(k)}$ - известны $\chi^2_{n_1}=\sum_j j=1^N \frac{(\nu_{ij}-n_ip_j^{(i)})^2}{n_ip_j^{(i)}}, df=N-1$ $\chi^2_{n_1,n_2,\ldots,n_k}=\sum_{i=1}^K \chi^2_{n_i}, df=k(N-1)$ Рассмотрим $p^{(1)},\ldots,p^{(k)}$ - не известны $df=k(N-1)-(N-1)=(N-1)(k-1)$ $\widehat{p_j}=\frac{\nu_{1j}+\cdots+\nu_{kj}}{n}=\frac{\nu_{*j}}{n}$ $L(\ldots)=p_1^{(\nu_{*1})}\ldots p_k^{(\nu_{*k})}, n=\sum_j \nu_{*j}$ ТОВО пример 2х2 10 лекция 55:40

20.3 Критерий независимости

$$X_1,\dots,X_n:\{1,2,\dots,N\}$$
 $Y_1,\dots,Y_n:\{1,2,\dots,M\}$ V_{ij} - количество пар, в которых первая компонента равна і, а вторая ј Это можно представить в виде таблицы сопряженности Проссумируем по каждому столбцу и по каждой строчке Пусть $p_{ij}=P(X=i,Y=j)$ $p_{xi}=P(X=i)$ $p_{yj}=P(Y=j)$ $H_0:p_{ij}=p_{xi}p_{yj} \forall i,j$ $H_1:\neg H_0$
$$\chi^2=\sum_{1\leq i\leq N,1\leq j\leq M}\frac{(\nu_{ij}-p_{ij}n)^2}{np_{ij}},df=MN-1$$
 $df=MN-1-(N-1)-(M-1)=MN-N-M+1=N(M-1)-(M-1)=(M-1)(N-1)$ $\widehat{p_{Xi}}=\frac{\nu_{i*}}{n}$ $\widehat{p_{Yj}}=\frac{\nu_{j*}}{n}$ ТОДО пример в коэффициентом Пирсона

21 Критерий квантилей

$$H_0$$
:
 $F(q_1) = \alpha_1$

$$F(q_2)=\alpha_2$$
 ...
$$F(q_N)=\alpha_N$$
 где $\alpha_0=0<\alpha_1<\dots<\alpha_N<1=\alpha_{N+1}$ $H_1:\neg H_0$ $q_0=\inf \operatorname{supp} P< q_1<\dots< q_N<\operatorname{sup} \operatorname{supp} P=q_{N+1}$ $\Delta_1=[q_0,q_1)$...
$$\Delta_{N+1}=[q_N,q_{N+1})$$
 $P(\Delta_1)=\alpha_1-\alpha_0$...
$$P(\Delta_N)=\alpha_{N+1}-\alpha_N$$
 Рассмотрим особый случай $H_0:F(q)=\frac{1}{2}$

22 Критерий знаков

$$(X_1,Y_1)^T,\ldots,(X_n,Y_n)^T$$

Мы хотим проверить что:

а) выборки независимы

б) распределения одинаковы

$$F(x,y) = F_1(x) \cdot F_1(y)$$

$$U=X-Y\Rightarrow \operatorname{med} U=0$$

 u_1 - количество элементов новой выборки $> \operatorname{med}$

$$Z_n = \frac{2}{\sqrt{n}}(\nu_1 - \frac{n}{2}) \to N(0, 1)$$

На предыдущей лекции мы обсудили:

 $Z_n = \sqrt{n}\rho_n, \rho_n$ - коэффициент корреляции Пирсона

Теорема

$$(X_1, Y_1)^T, \dots, (X_n, Y_n)^T \sim N(\dots, \dots) \Rightarrow \frac{\sqrt{n-2}\rho_n}{\sqrt{1-\rho_n^2}} \sim T(n-2)$$

$$H_0: \rho = 0$$

$$H_1: (\rho \neq 0, \rho > 0, \rho < 0)$$

23 Ранговые критерии

Определение. Ранг

 X_1,\ldots,X_n - выборка

 $r(X_k)$ - номер X_k в вариационном ряде

 X_1,\ldots,X_n

 Y_1, \ldots, Y_m

Это две независиммых выборки, давайте объединим их в одну

Рассмотрим $(X_1,\ldots,X_n,Y_1,\ldots,Y_m)$

 R_i - ранг X_i , в объединенной выборке

$$T = R_1 + \dots, R_n$$
 - Статистика Вилкоксона $Z_{rs} = \mathbb{1}(X_r < Y_s)$

$$Z_{rs} = \mathbb{1}(X_r < Y_s)$$

$$Z_{rs} = \mathbb{1}(X_r < Y_s)$$
 $U = \sum_{r=1}^n \sum_{s=1}^m Z_{rs}$ - Мант-Уитни

$$T + U = mn + \frac{n(n+1)}{2}$$

 $T+U=mn+rac{n(n+1)}{2}$ Хотим проверить, что распределение X совпадает с Y

$$EU = mnE\mathbb{1}(X < Y) = mnP(X < Y) = rac{1}{2}$$
 - при условии H_0

$$H_0: P(X < Y) = \frac{1}{2}$$

$$H_0: P(X < Y) = \frac{1}{2}$$

$$U \sim N(\frac{mn}{2}, \frac{nm(m+n+1)}{12})$$

$$(X_1, Y_1)^T, \dots, (X_n, Y_n)^T$$

$$(X_1, Y_1)^T, \dots, (X_n, Y_n)^T$$

Хотим проверить независимость

 R_i - ранг X_i (в своей выборке)

 S_i - ранг Y_i (в своей выборке)

ho - выборочный коэффициент корреляции между R_i и S_i - коэффициент корреляции Спирмена

$$\rho = \frac{12}{n(n^2 - 1)} \sum_{i=1}^{n} (R_i - \frac{n+1}{2})(S_i - \frac{n+1}{2})$$

$$H_0: \rho = 0, \sqrt{n}\rho \to N(0,1)$$

$$H_1: \rho \neq 0, \rho > 0, \rho < 0$$

Коэффициент корреляции Кенделла

$$\tau = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \prod_{j=i+1}^{n} \operatorname{sign}(T_j - T_i)$$

$$H_0$$
 верно $\Rightarrow E\tau = 0, \text{Var } \tau = \frac{2(2n+5)}{9n(n-1)}$

$$\tau \approx N(0, \frac{4}{9n})$$
$$H_0: \tau = 0$$

$$H_0: \tau = 0^{97}$$

$$H_1^0 :> 0, < 0, \neq 0$$

Критерий инверсии

 $X_{(1)} \le \cdots \le X_{(n)}$ Крайние ситуации: выборка отсортированна, то есть трудно поверить, что у нас все случайно

 ν_i - количество инверсий для элемента X_i

$$T = \nu_1 + \dots + \nu_n$$

$$ET = \frac{n(n-1)}{4}$$

$$u_1 = v_1 + \cdots + v_n$$
 $ET = \frac{n(n-1)}{4}$
 $Var T = \frac{n(n-1)(2n+5)}{72}$
Статистика T - ассимптотически нормальная

25 Линейные статистические модели

$$Y = Xb + \varepsilon$$

 $X \in M_{n \times m}(\mathbb{R})$ - матрица переменных

 x_{ij} - количественная переменная

 $Y \in \mathbb{R}^n$ - наблюдения зависимой переменной

 $b \in \mathbb{R}^m$ - неизвестный вектор коэффициентов

 $varepsilon \in \mathbb{R}^n$ - случайная ошибка

- 1) $E\varepsilon = 0$
- 2) $\operatorname{Var} \varepsilon_i = \sigma^2$ гомоскедотичность
- 3) $Cov(\varepsilon_i, \varepsilon_j) = 0$

Наша цель оценить b и σ^2

Определение. Ошибка наименьших квадратов

$$\hat{b} = \operatorname{argmin} S^2(b)$$

$$S^{2}(b) = (Xb - Y)^{T}(Xb - Y)$$

$$A = X^T X \in M(m \times n)$$

$$\frac{1}{n}X^TX$$

$$rank(A) = m$$

Теорема

$$\widehat{b} = A^{-1}X^TY$$

Доказательство

$$S^{2}(\widehat{b} + \delta) = S^{2}(\widehat{b}) + \delta^{T} A \delta$$

$$t = Tb, T \in M_{k \times m}, k \le m, rankT = k$$

$$\hat{t} = T\hat{b}$$

Теорема. Гаусс-Марков

- 1) \hat{t} несмещенная оценка t
- 2) \hat{t} оптимальная оценка в классе линейных несмещенных оценок

Доказательство

$$\widehat{Et} = ET\widehat{b} = ETA^{-1}X^{T}Y = TA^{-1}X^{T}EY = TA^{-1}X^{T}Xb = Tb = t$$

$$Var(\hat{t}) = Var T A^{-1} X^{T} Y = T A^{-1} X^{T} Var Y X A^{-1} T^{T} = \sigma^{2} T A^{-1} T^{T}$$

$$\operatorname{Var} \widehat{t} = \sigma^2 T A^{-1} T^T$$

$$\operatorname{Var} \widehat{b} = \sigma^2 A^{-1}$$

Пусть LY - несмещенная оценка для t, т.е.

$$ELY = t = Tb \Rightarrow Var LY = \sigma^2 LL^T$$

Заметим, что
$$LL^T = (TA^{-1}X^T)(TA^{-1}X^T)^T + (L-TA^{-1}X^T)(L-TA^{-1}X^T)^T$$

$$MSE\widehat{t} = tr \operatorname{Var} \widehat{t}$$

Тогда
$$L = TA^{-1}X^T$$

$$\begin{split} ES^2(b) &= E(Xb-Y)^T(Xb-Y) = E\varepsilon^T\varepsilon = n\sigma^2 \\ &E(\widehat{b}-b)A(\widehat{b}-b) = \sum_{i,j} a_{ij}E(\widehat{b_i}-b_i)(\widehat{b_j}-b_j) = \sum_{i,j} a_{ij}\operatorname{Cov}(\widehat{b_i},\widehat{b_j}) = \sigma^2\sum_{i,j} a_{ij}a_{ij}^{-1} = \\ &\sigma^2\sum_i a_{ij}a_{ji}^{-1} = \sigma^2m \\ \end{split}$$

$$S^2(b)=S^2(\widehat{b})+(\widehat{b}-b)^TA(\widehat{b}-b)\Rightarrow n\sigma^2=ES^2(\widehat{b})+m\sigma^2\Rightarrow \widehat{\sigma}^2=\frac{S^2(\widehat{b})}{n-m}$$
 - несмещенная оценка для σ^2

26 Условные оценки наименьших квадратов

Определение

$$Tb=t_0, T\in M_{k imes m}, rankT=k$$
 $\widehat{b}_{T,t_0}=\mathop{\mathrm{argmin}}_{Tb=t_0}S^2(b)$ - условная оценка наименьших квадратов $Teopema$ \widehat{k} $A^{-1}T^TD^{-1}(T\widehat{k}-t)$ $D=TA^{-1}T^T$

Реорема
$$\widehat{b}_{T,t_0} = \widehat{b} - A^{-1}T^TD^{-1}(T\widehat{b} - t_0), D = TA^{-1}T^T$$
 Можно показать: $S^2(b) = S^2(\widehat{b}_{T,t_0}) + (\widehat{b}_{T,t_0} - b)^TA(\widehat{b}_{T,t_0} - b)$ Замечание: $S^2(b) = S^2(\widehat{b}) + (\widehat{b} - b)^TA(\widehat{b} - b)$ $b = \widehat{b}_{T,t_0}: S^2(\widehat{b}_{T,t_0}) = S^2(\widehat{b}) + (\widehat{b} - \widehat{b}_{T,t_0})^TA(\widehat{b} - \widehat{b}_{T,t_0})$ $(T\widehat{b} - t_0)^TD^{-1}(T\widehat{b} - t_0) = S^2(\widehat{b}_{T,t_0}) - S^2(\widehat{b})$ "Обычное предположение": $\varepsilon \sim N(0, \sigma^2 E_n)$ $Y = Xb + \varepsilon \sim N(Xb, \sigma^2 E_n)$ $L(b, \sigma^2, Y) = \frac{1}{(\sqrt{2\pi}\sigma^2)^n} \exp(-\frac{1}{2\sigma^2}(Xb - Y)^T(Xb - Y))$

 $\sup_{\widehat{b}} L(b, \sigma^2, Y) \Leftrightarrow \inf_{\widehat{b}} S^2(b)$ \widehat{b} - эффективна в классе несмещенных оценок $\Leftarrow \widehat{b}$ - о.м.п

Теорема. Основная теорема о нормальной регрессии $1)\ S^2(\widehat{b}), \widehat{b}$ - нез.

27 Последовательный анализ Вальда

$$H_0: F = F_0$$
 $H_1: F = F_1 \ f_0, f_1$ - соответствующие плотности $A_0 < 1 < A_1$ $n=1$ while true $\{$ if $\frac{L_{0n}}{L_{1n}} \leq A_0$ then return reject H_0 if $\frac{L_{0n}}{L_{1n}} \geq A_1$ then return accept H_0 $+ + n$ $\}$ $\alpha, \beta, a_0 = \ln A_0, a_1 = \ln A_1$ $Z_i = \ln \frac{f_1(X_i)}{f_0(X_i)}$ $\sum_{i=1}^n Z_i = \ln \frac{L_{1n}}{L_{0n}}$

Теорема

Пусть ν - количество итераций $\Rightarrow P(\nu \geq n|H_0) \to 0, P(\nu \geq n|H_1 \to 0), n \to \infty$

Доказательство

$$\begin{aligned} & r - fixed \\ & \eta_1 = Z_1 + \dots + Z_r \\ & \eta_1 = Z_{r+1} + \dots + Z_{2r} \\ & \dots \quad \{ \nu \geq rk \} \iff \{ a_0 < \eta_1 + \dots + @n_j < a_1 \}_{i \leq j \leq k} = \{ a_0 < \eta_1 < a_1, a_0 < \eta_1 + \eta_2 < a_1, \dots, a_0 < \eta_1 + \dots + \eta_k < a_1 \} \subset \{ |\eta_j| < b = a_i - a_0 \}_{1 \leq j \leq k} \Rightarrow P(\nu \geq rk|H_s) \leq P_{1 \leq j \leq k} (|\eta_j| < b|H_s) = P_{1 \leq j \leq k} (\nu_j^2 < b^2|H_s) = P^k (\eta_1^2 < b^2|H_s) = p_s^k \\ & E_s \eta_1^2 \geq \operatorname{Var}_s \eta^1 = r \operatorname{Var}_s Z_1 > b^2, r > \max \left(\frac{b^2}{\operatorname{Var}(Z_1|H_0)}, \frac{b^2}{\operatorname{Var}Z_1|H_1} \right)^{E_s(\dots) = E(\dots|H_s)}_{\operatorname{Var}_s(\dots) = \operatorname{Var}(\dots|H_s)} \Rightarrow \\ & p + s < 1 \\ & P(\nu > n|H_s) \leq P(\nu \geq rk|H_s) \leq p_s^k \to 0, k = k(n), n \to \infty \end{aligned}$$

Теорема

Пусть
$$(\alpha, \beta)$$
 - вероятности $\Rightarrow A_0 \ge A_0' = \frac{\beta}{1-\alpha}$ и $A_1 \le A_1' = \frac{1-\beta}{\alpha}$ іf A_0' и $A_1 = A_1'$ then α', β' - вероятности ошибок $\alpha' \le \frac{\alpha}{1-\beta}, \beta' \le \frac{\beta}{1-\alpha}$

$$\alpha' + \beta' \le \alpha + \beta \ 1 = \sum_{n=0}^{\infty} P(\nu = n|H_0) = \sum_{n=0}^{\infty} P(\text{accept at the step n} \mid H_0) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}$$

$$\sum_{n=1}^{\infty} P(\text{reject at the step n} \mid H_0) = \alpha = \sum_{n=1}^{\infty} P(\text{reject at the step n} \mid H_0) \leq \alpha$$

$$\frac{1}{A_1} \sum_{n=1}^{\infty} P(\text{reject at the step n} \mid H_1)$$

$$L_{n1} \stackrel{n=1}{\geq} L_{n0} \cdot A_1$$

$$L_{n1>L_{n0}\cdot A_1}$$

Аналогичным образом мы можем получить неравенство:

$$\beta \le A_0(1-\alpha)$$

$$\alpha \le \frac{1}{A_1}(1-\beta)$$

Пусть
$$A_0' = \frac{\beta}{1-\alpha}$$
 и $A_1' = \frac{1-\beta}{\alpha}$ и ошибки $(\alpha', \beta') \Rightarrow \frac{\beta}{1-\alpha} \ge \frac{\beta'}{1-\alpha'}$ $\frac{1-\beta}{\alpha} \le \frac{1-\beta'}{\alpha'} \Rightarrow \alpha' \le \frac{\alpha(1-\beta')}{1-\beta} \le \frac{\alpha}{1-\beta}$ $\beta(1-\alpha) \le \beta(1-\alpha')$

$$(1-\beta)\alpha' \le (1-\beta')\alpha$$

Сложим последние два неравества и получим требуемое

Давайте вспомним тождество Вальда:

 (X_i) - независимые случайные величины с математическим ожиданием а u - целочисленная случайная величина не зависящая от X_i

 $E\nu = b$

$$S_{\nu} = X_1 + \cdots + X_{\nu}$$

$$\Rightarrow ES_{\nu} = ab = E(ES_{\nu}|\nu) = E\nu a = aE\nu = ab$$

$$a_0 = \ln\frac{\beta}{1-\alpha}, a_1 = \ln\frac{1-\beta}{\alpha}$$

$$E_s\nu \cdot E_sZ_i = E_sS_{\nu} \approx a_0(1-\alpha) + a_1(1-\beta)$$

$$E_1\nu \cdot E_1Z_i \approx \beta a_0 + a_1(1-\alpha)$$

28 Bootstrap примеры

- 1. $X_1, \ldots, X_n \sim F_{\theta}; \widehat{\theta}; \operatorname{Var} \widehat{\theta} ?$ Можно ли ее оценить численно?
- 2. $X_1,\dots,X_n;\overline{X};$ Var $\overline{X}=\frac{\sigma}{\eta}$ можно ли оценить численно?
- 3. X_1, \ldots, X_n ; med X; Var med (X) -?

$$X-1,\ldots,X_n;\widehat{\theta}$$
 - оценка чего-то; F_n - Э.Ф.П for (int i = 0; i <= B - 1; ++i) { $X_1^*,\ldots,X_n^*\sim F_n$ $\theta_i^*=g(X_1^*,\ldots,X_n^*)$ $\theta^*.append(\theta^*)$ }
$$\mathrm{Var}^*=\frac{1}{B}\sum_{i=0}^{B-1}(\theta_I^*-\overline{\theta_i^*})^2$$
 $\frac{\mathrm{Var}^*}{\mathrm{Var}\widehat{\theta}}\xrightarrow{P} 1$

28.1 CI

$$\begin{split} \widehat{F(t)} &= \frac{1}{B} \sum_{j=1}^{B} \mathbb{1}(\sqrt{n}(\overline{\theta_i^*} - \widehat{\theta}) \leq t) \\ \widehat{\theta} &\pm \frac{q_1 - \frac{\alpha}{2}}{\sqrt{n}}; q_{1 - \frac{\alpha}{2}} \text{- квантиль } \widehat{F} \\ \widehat{\theta} &- \frac{q_{\frac{\theta}{2}}}{\sqrt{n}}; \widehat{\theta} + \frac{q_{1 - \frac{\alpha}{2}}}{\sqrt{n}} \end{split}$$

28.2 The permutation test

$$X_1, \dots, X_n \sim F$$

$$Y_1, \dots, Y_m \sim G$$
Both in dependent
$$H_0: F = G$$

$$H_1: F \neq G$$

$$W = (X_1, \dots, X_n, Y_1, \dots, Y_m)$$

$$X_1 \dots X_n Y_1 \dots, Y_m$$

$$W_1 \dots W_{n+m}$$
 Пусть $T = T(X,Y)$ - некая статистика $T = |\overline{X} - \overline{Y}|$ $T(W,Z) = |(Z,W) - \overline{Y(Z,W)}|$ $X(Z,W) = \{W_i : Z_i = 1\}$ $Y(Z,W) = \{W_i : Z_i = 2\}$ Пусть Z^* - перестановка Z for i in range(B): Z^* - перестановка $T^* = T(Z^*,W)$ $T_{all}.append(T^*)$ $p = \frac{1}{B} \sum_{j=1}^{B} \mathbb{1}(T_{all}[j] > t), t = T(W,Z)$ $p = p_{value}$

29 Credible interval

$$P(a_l < \theta < a_r | X) = 1 - \alpha$$

$$\theta \sim \Gamma(\theta)$$

$$p(\theta | X) = \frac{p(X | \theta) \cdot \pi(\theta)}{\int p(X | \theta) \pi(\theta) d\theta}$$

29.1 Hypothesis. Bayesian

$$\begin{split} H_0: \theta &= \theta_0 - p_0 - prior \\ H_1: \theta &= \theta_1 - p_1 - prior \\ L(\theta_0|X) &= \frac{L(X|\theta_0) \cdot p_0}{const} \\ const &= P(X) = L(X|\theta_0) \cdot p_0 + L(X|\theta_1) \cdot p_1 \\ L(\theta_1|X) &\approx L(X|\theta_1) \cdot p_1 \\ Y &= Xc + \varepsilon, C \sim N(.,.) \\ \varepsilon &\sim N(0, \sigma^2 I) \\ (c, \varepsilon) &\sim (.,.) \\ (Y|C) &\sim N(Xc, \sigma^2 I) \Rightarrow L(c|Y) \sim N(.,.) \\ \widehat{c} &= E(c|Y) \end{split}$$