

Εύρηκα

利用運動傳感器 MPU6050 操控機械手臂

李耀宇 指導老師 賴奕帆 指導教授 李尉彰

李尉彰教授

- Ph.D., Electrical Engineering & Computer Sciences, University of California, Berkeley, 2015
- M.S., Graduate Institute of Electronics Engineering, National Taiwan University, 2005
- B.S., Electrical Engineering, National Taiwan University, 2003

李尉彰教授

- Integrated
 Micro/Nanoelectromechanical
 Resonators & Resonant Switches
- Zero Quiescent Power Radio
- Ultra-Low Power Sensing Technologies
- Advanced Materials & Micro/Nanofabrication Technologies for High-Q MEMS
- Sensing System for Smart Manufacturing

研究動機

- •機械手臂代勞
- •操作方式
 - •往往以按鍵操控
- 與手臂同步運轉

研究目的

- Εύρηκα
- ●利用MPU6050求出手之姿態
- ●令機械手臂Tinkerkit Braccio與手同步運動
- ●自製一臺六軸機械手臂
- ●進一步設計一款特殊用途的機械手臂

研究設備及器材

- •六軸傳感器MPU6050
- ●機械手臂Tinkerkit Braccio
- Arduino UNO 開發板、杜邦線、漆包線
- ●電腦
 - (Python · VPython · Arduino)

(一)旋轉角度大小

由角速度 ω ,以及間隔時間 Δt ,即可推算其旋轉的角度大小:

 $\Delta\theta = \omega \times \Delta t$

(二)旋轉方向與座標轉換

透過旋轉矩陣M,推知各時刻運動傳感器回傳的地球座標下的加速度和角速度

$$\begin{cases} R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos\phi & -sin\phi \\ 0 & sin\phi & cos\phi \end{bmatrix} \\ P = \begin{bmatrix} cos\theta & 0 & sin\theta \\ 0 & 1 & 0 \\ -sin\theta & 0 & cos\theta \end{bmatrix} \\ Y = \begin{bmatrix} cos\psi & -sin\psi & 0 \\ sin\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(一)旋轉角度大小

由角速度 ω ,以及間隔時間 Δt ,即可推算其旋轉的角度大小:

 $\Delta\theta = \omega \times \Delta t$

(三) Arduino程式控制

以[4] MPU6050_raw.ino為基礎,在部分輸出方面稍加修改,作為Arduino UNO控制MPU6050的程式

(二)旋轉方向與座標轉換

透過旋轉矩陣M,推知各時刻運動傳感器回傳的地球座標下的加速度和角速度

(四) Python處理數據

引入Vpython視覺化繪圖模組,在螢幕 上畫出大小適當的模型,依照回傳的資 訊,同步繪出物體在空間中的姿態

研究方法:以MPU6050操控Braccio

- ·連接Braccio
- •M1 · M4 · M5
 - ●依序對應z、x、y方向

研究方法:以MPU6050操控Braccio

```
void Bracciomove() {
       M1 = 90 + rz;
3.
       M4 = rx;
       M5 = 90 + ry;
4.
5.
             //(step delay M1, M2, M3, M4, M5, M6);
       Braccio.ServoMovement(0, M1, 90, 90, M4, M5, 73);
6.
7. };
```


研究方法:以MPU6050操控Braccio

- •完全操控六軸
 - •M6 (夾子)

- •完全操控六軸
 - •M2、M3的操控
 - ●多使用二組MPU6050

- Εύρηκα
- ●以MPU6050操控之便利程度
 - ✓利用MPU6050
 - ✓利用按鈕/搖桿
 - ●比較操作時間

- ●自製六軸機械手臂
- ●為特殊用途設計一款不同的機械手臂

結論

Εύρηκα

本研究已具備以下能力:

- ●透過MPU6050求得物體姿態
- 令機械手臂與手部同步運動

結論

Εύρηκα

本研究今後的目標:

- •完全操控六軸
 - ●壓力、彎曲感測器
 - •增加二組MPU6050
- ●自製一臺六軸機械手臂。
- ●為特殊用途設計一款不同的機械手臂。

參考資料

- [1] Industrial Robots and Robot System Safety. United States Department of Labor. from https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
- [2] MPU-6050 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™ Devices. (2019, October, 18). TDK - InvenSense. Retrieved October 18th, 2019 from https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
- [3] Li W. C. (2014). Introduction to Arduino. Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, ROC.
- [4] Jeff Rowberg (2011, October, 07). MPU6050_raw.ino. Retrieved October 07th, 2011 from https://github.com/jrowberg/i2cdevlib

參考資料

- [5] Getting Started with the TinkerKit Braccio Robot. (2019, March, 22). ARDUINO. Retrieved March 22nd, 2019, from https://www.arduino.cc/en/Guide/Braccio
- [6] Bo-Chun Chiu. (2012). Golf Swing Analysis Using Body Sensor Networks.

 Department (Institute) of Network Engineering National Chiao Tung University.
- [7] G. D. Lee et al. (2012). Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC.

感謝

- 感謝 賴奕帆老師 指導
- 感謝 李尉彰教授 指導
- 感謝 高君陶導師&姚志鴻導師的鼓勵
- 感謝 家人的支持與鼓勵
- 感謝各位同學和物專好夥伴們的陪伴

Thanks For Listening

報告到此結束

