Álgebra Universal e Categorias Exercícios

1. Reticulados

1.1. Diga, justificando, quais dos c.p.o.s a seguir representados são reticulados:

Um c.p.o. (P, \leq) diz-se um reticulado se, para quaisquer $x, y \in P$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$.

O c.p.o. (P_1, \leq) é um reticulado, pois, para quaisquer $x, y \in P_1$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$:

- se $x,y\in\{0,a,b,c,1\}$ e $x\leq y$, tem-se $\sup\{x,y\}=y$ e $\inf\{x,y\}=x$;
- se $x, y \in \{a, b, c\}$ e $x \neq y$, tem-se $\sup\{x, y\} = 1$ e $\inf\{x, y\} = 0$.

O c.p.o. (P_2, \leq) não é um reticulado, pois existem $a, b \in P_2$ tais que não existe $\sup\{a, b\}$ (tem-se $Maj\{a,b\} = \{c,d,1\}$ e o conjunto $\{c,d,1\}$ não tem elemento mínimo).

O c.p.o. (P_3, \leq) é um reticulado, pois, para quaisquer $x, y \in P_3$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$:

- se $x, y \in \{0, a, b, c, d, e, f, g, h, 1\}$ e $x \le y$, tem-se $\sup\{x, y\} = y$ e $\inf\{x, y\} = x$;
- se $x,y\in\{a,b,c,d,e,f,g,h\}$ e x e y não são comparáveis, também existem $\sup\{x,y\}$ e $\inf\{x,y\}$, tendo-se:
- $-\sup\{a,b\} = g \text{ e inf}\{a,b\} = 0;$ $-\sup\{a,d\} = f \text{ e inf}\{a,d\} = 0;$ $-\sup\{b,c\} = e \text{ e inf}\{b,c\} = 0;$
- $-\sup\{c,f\} = 1 \text{ e } \inf\{c,f\} = a; \\ -\sup\{d,h\} = f \text{ e } \inf\{d,h\} = b; \\ -\sup\{e,f\} = 1 \text{ e } \inf\{e,f\} = h.$ $-\sup\{c,d\} = 1 \text{ e inf}\{c,d\} = 0;$
- $-\sup\{d,e\} = 1 \text{ e inf}\{d,e\} = b;$

O c.p.o. (P_4, \leq) é um reticulado, pois, para quaisquer $x, y \in P_4$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$:

- se $x, y \in \{0, a, b, c, d, 1\}$ e $x \le y$, tem-se $\sup\{x, y\} = y$ e $\inf\{x, y\} = x$;
- se $x, y \in \{a, b, c, d\}$ e $x \neq y$, tem-se $\sup\{x, y\} = 1$ e $\inf\{x, y\} = 0$.
- 1.2. Mostre que cada um dos c.p.o.s a seguir indicados é um reticulado.
 - (a) $(\mathbb{N}, |)$, onde | é a relação divide definida em \mathbb{N} .

Um c.p.o. (P, \leq) diz-se um reticulado se, para quaisquer $x, y \in P$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$.

O c.p.o. $(\mathbb{N}, |)$ é um reticulado, pois, para quaisquer $x, y \in \mathbb{N}$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$, tendo-se $\inf\{x, y\} = \text{m.d.c.}(x, y) \text{ e } \sup\{x, y\} = \text{m.m.c.}(x, y).$

É simples verificar que $\inf\{x,y\} = \text{m.d.c.}(x,y)$. De facto,

- para quaisquer $x, y \in \mathbb{N}$, m.d.c. $(x, y) \in \mathbb{N}$;
- para quaisquer $x, y \in \mathbb{N}$, m.d.c. $(x, y) \mid x \in \text{m.d.c.}(x, y) \mid y$ e, portanto, m.d.c.(x, y) é um minorante
- para todo $z \in \mathbb{N}$, se $z \mid x$ e $z \mid y$, então $z \mid \text{m.d.c.}(x,y)$, pelo que m.d.c.(x,y) é o maior minorante de $\{x,y\}$.

De modo análogo, conclui-se que $\sup\{x,y\} = \text{m.m.c.}(x,y)$, pois:

- para quaisquer $x, y \in \mathbb{N}$, m.m.c. $(x, y) \in \mathbb{N}$;
- para quaisquer $x, y \in \mathbb{N}$, $x \mid \text{m.m.c.}(x, y) \in y \mid \text{m.m.c.}(x, y)$ e, portanto, m.m.c.(x, y) é um majorante de $\{x,y\}$;
- para todo $z \in \mathbb{N}$, se $x \mid z$ e $y \mid z$, então m.m.c. $(x,y) \mid z$, pelo que m.m.c.(x,y) é o menor majorante de $\{x, y\}$.

(b) $(\mathcal{P}(A), \subseteq)$, onde $\mathcal{P}(A)$ é o conjunto das partes de um conjunto A e \subseteq é a relação de inclusão usual.

Um c.p.o. (P, \leq) diz-se um reticulado se, para quaisquer $x, y \in P$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$.

Para quaisquer $X, Y \in \mathcal{P}(A)$, existe $\sup\{X, Y\}$. Tem-se $\sup\{X, Y\} = X \cup Y$, pois:

- para quaisquer $X,Y\in\mathcal{P}(A),\ X\cup Y\in\mathcal{P}(A)$;
- para quaisquer $X,Y\in\mathcal{P}(A)$, $X\subseteq X\cup Y$ e $Y\subseteq X\cup Y$ e, portanto, $X\cup Y$ é um majorante de $\{X,Y\}$;
- para todo $Z \in \mathcal{P}(A)$, se $X \subseteq Z$ e $Y \subseteq Z$, então $X \cup Y \subseteq Z$, pelo que $X \cup Y$ é o menor dos minorantes de $\{X,Y\}$.

Para quaisquer $X, Y \in \mathcal{P}(A)$, também existe $\inf\{X, Y\}$, tendo-se $\inf\{X, Y\} = X \cap Y$. De facto,

- para quaisquer $X,Y\in\mathcal{P}(A),\ X\cap Y\in\mathcal{P}(A)$;
- para quaisquer $X,Y\in\mathcal{P}(A)$, $X\cap Y\subseteq X$ e $X\cap Y\subseteq Y$ e, portanto, $X\cap Y$ é um minorante de $\{X,Y\}$;
- para todo $Z \in \mathcal{P}(A)$, se $Z \subseteq X$ e $Z \subseteq Y$, então $Z \subseteq X \cap Y$, pelo que $X \cap Y$ é o maior dos minorantes de $\{X,Y\}$.

Portanto, $(\mathcal{P}(\mathcal{A}), \subseteq)$ é um reticulado.

(c) $(\operatorname{Subg}(G), \subseteq)$, onde $\operatorname{Subg}(G)$ representa o conjunto dos subgrupos de um grupo G e \subseteq é a relação de inclusão usual.

Um c.p.o. (P, \leq) diz-se um reticulado se, para quaisquer $x, y \in P$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$.

Para quaisquer $G_1, G_2 \in \operatorname{Subg}(G)$, existem $\sup\{G_1, G_2\}$ e $\inf\{G_1, G_2\}$. É simples verificar que $\inf\{G_1, G_2\} = G_1 \cap G_2$ e $\sup\{G_1, G_2\} = G_1 \cup G_2 >$, onde $G_1 \cup G_2 >$ representa o subgrupo de $G_1 \cup G_2 >$ gerado por $G_1 \cup G_2 >$.

É imediato que $\inf\{G_1,G_2\}=G_1\cap G_2$, pois:

- para quaisquer $G_1, G_2 \in \text{Subg}(G), G_1 \cap G_2 \in \text{Subg}(G)$;
- para quaisquer $G_1, G_2 \in \operatorname{Subg}(G)$, tem-se $G_1 \cap G_2 \subseteq G_1$ e $G_1 \cap G_2 \subseteq G_2$ e, portanto, $G_1 \cap G_2$ é um minorante de $\{G_1, G_2\}$;
- para todo $Z \in \operatorname{Subg}(G)$, se $Z \subseteq G_1$ e $Z \subseteq G_2$, tem-se $Z \subseteq G_1 \cap G_2$, pelo que $G_1 \cap G_2$ é o maior minorante de $\{G_1, G_2\}$.

Também é simples provar que $\sup\{G_1,G_2\} = < G_1 \cup G_2 >$, uma vez que

- para quaisquer $G_1, G_2 \in \operatorname{Subg}(G)$, $\langle G_1 \cup G_2 \rangle \in \operatorname{Subg}(G)$;
- para quaisquer $G_1, G_2 \in \operatorname{Subg}(G)$, temos $G_1 \subseteq < G_1 \cup G_2 >$ e $G_2 \subseteq < G_1 \cup G_2 >$ e, portanto, $< G_1 \cup G_2 >$ é um majorante de $\{G_1, G_2\}$;
- para todo $Z \in \operatorname{Subg}(G)$, se $G_1 \subseteq Z$ e $G_2 \subseteq Z$, tem-se $G_1 \cup G_2 \subseteq Z$ e, portanto, $< G_1 \cup G_2 > \subseteq Z$ (uma vez que $< G_1 \cup G_2 >$ é o menor subgrupo de G que contém $G_1 \cup G_2$). Assim, $< G_1 \cup G_2 >$ é menor dos majorantes de $G_1 \cup G_2$.

Portanto, $(\operatorname{Subg}(G), \subseteq)$ é um reticulado.

1.3. Prove que toda a cadeia é um reticulado.

Um c.p.o. (P, \leq) diz-se um reticulado se, para quaisquer $x, y \in P$, existem $\sup\{x, y\}$ e $\inf\{x, y\}$.

Seja (R, \leq) uma cadeia. Então, para quaisquer $x, y \in R$, temos $x \leq y$ ou $y \leq x$. Se $x \leq y$, tem-se $\sup\{x,y\} = y$ e $\inf\{x,y\} = x$; se $y \leq x$, temos $\sup\{x,y\} = x$ e $\inf\{x,y\} = y$. Logo, para quaisquer $x,y \in R$, existem $\sup\{x,y\}$ e $\inf\{x,y\}$ e, portanto, (R, \leq) é um reticulado.

1.4. Seja $(R; \wedge, \vee)$ o reticulado cujas operações \wedge e \vee são as descritas através das tabelas seguintes

	0						\vee	0	а	b	С	d	1
0	0	0	0	0	0	0	0	0	а	b	С	d	1
а	0	а	0	а	0	а	а	а	а	С	С	1	1
b	0	0	b	b	b	b	b	b	С	b	С	d	1
С	0	а	b	С	b	С	С	С	С	С	С	1	1
d	0	0	b	b	d	d	d	d	1	d	1	d	1
a b c d	0	а	b	С	d	1	1	0 a b c d	1	1	1	1	1

Considere o reticulado interpretado como um conjunto parcialmente ordenado e represente-o através de um diagrama de Hasse.

O reticulado $(R; \land, \lor)$, interpretado como um conjunto parcialmente ordenado, corresponde ao reticulado (R, \le) , onde \le é a relação de ordem parcial definida por

$$x \le y \Leftrightarrow x = x \land y, \ \forall_{x,y \in R}.$$

O reticulado $(R; \leq)$ pode ser representado pelo diagrama de Hasse seguinte

1.5. Seja (R, \leq) o reticulado representado ao lado.

Considere este reticulado interpretado como uma estrutura algébrica $(R;\wedge,\vee)$ e indique as tabelas das operações \wedge e \vee .

O reticulado (R, \leq) , interpretado como uma estrutura algébrica, corresponde ao reticulado $(R; \wedge, \vee)$ onde \wedge e \vee são as operações definidas por

$$x \wedge y = \inf\{x, y\}, \quad x \vee y = \sup\{x, y\}, \quad \forall_{x, y \in R}.$$

As operações do reticulado $(R;\wedge,\vee)$ podem ser descritas pelas tabelas seguintes

\wedge	0	a	b	С	d	1		V	0	a	b	С	d	1
0	0	0	0	0	0	0	•	0	0	а	b	С	d	1
a	0	a	a	a	a	a		a	a	a	b	С	d	1
b	0	a	b	a	b	b		b	b	b	b	d	d	1
С	0	a	a	С	С	С		С	С	С	d	С	d	1
d	0	a	b	С	d	d		d	d	d	d	d	d	1
1	0	a	b	С	a b c d	1		1	0 a b c d	1	1	1	1	1

1.6. Considere o reticulado (R, \leq) a seguir representado.

Para cada um dos conjuntos R' a seguir indicados, diga se $(R', \leq_{|_{R'}})$ é um sub-reticulado de (R, \leq) .

(a) $R' = \{a, b, c, d\}.$

Seja S um subconjunto não vazio de R. Um c.p.o. (S,\leq') diz-se um sub-reticulado de (R,\leq) se $\leq'=\leq_{|S|}$ e, para quaisquer $x,y\in S$, $\inf\{x,y\}\in S$ e $\sup\{x,y\}\in S$.

O c.p.o. $(R',\leq_{|_{R'}})$ é um sub-reticulado de (R,\leq) , pois:

- para quaisquer $x, y \in R'$ tais que $x \le y$, $\inf\{x, y\} = x \in R'$ e $\sup\{x, y\} = y \in R'$;
- $\inf\{b,c\} = a \in R' \text{ e } \sup\{b,c\} = d \in R'.$
- (b) $R' = \{b, c, f, g\}.$

Seja S um subconjunto não vazio de R. Um c.p.o. (S,\leq') diz-se um sub-reticulado de (R,\leq) se $\leq'=\leq_{|S|}$ e, para quaisquer $x,y\in S$, $\inf\{x,y\}\in S$ e $\sup\{x,y\}\in S$.

O c.p.o. $(R', \leq_{|R'})$ não é um sub-reticulado de (R, \leq) , pois $\sup\{b, c\} = d$ e $d \notin R'$.

(c) $R' = \{a, b, f, g, h\}.$

Seja S um subconjunto não vazio de R. Um c.p.o. (S, \leq') diz-se um sub-reticulado de (R, \leq) se $\leq' = \leq_{|S|}$ e, para quaisquer $x, y \in S$, $\inf\{x, y\} \in S$ e $\sup\{x, y\} \in S$.

O c.p.o. $(R', \leq_{|_{R'}})$ não é um sub-reticulado de (R, \leq) , pois $\inf\{f, g\} = e$ e $e \notin R'$.

- 1.7. Seja $\mathcal{R}=(R;\wedge,\vee)$ um reticulado. Um subconjunto não vazio I de R diz-se um *ideal de* \mathcal{R} se
 - 1. $(\forall x, y \in R)$ $x, y \in I \Rightarrow x \lor y \in I$;
 - 2. $(\forall x \in I)(\forall y \in R) \ y \land x = y \Rightarrow y \in I$.

Mostre que $\mathcal{I}=(I;\wedge_{\mathcal{I}},\vee_{\mathcal{I}})$, onde I é um ideal de \mathcal{R} e $\wedge_{\mathcal{I}}$ e $\vee_{\mathcal{I}}$ são as correspondências de I^2 em R definidas por

$$x \wedge_{\mathcal{I}} y = x \wedge y, \quad x \vee_{\mathcal{I}} y = x \vee y, \ \forall x, y \in I,$$

é um sub-reticulado de \mathcal{R} .

Seja R' um subconjunto de R. Um triplo $(R'; \land', \lor')$ diz-se um sub-reticulado de $(R; \land, \lor)$ se:

- i) $R' \neq \emptyset$;
- ii) para quaisquer $x, y \in R'$, $x \wedge' y = x \wedge y \in R'$ e $x \vee' y = x \vee y \in R'$;
- iii) \wedge' e \vee' são operações binárias em R',

Mostremos que $\mathcal{I} = (I; \wedge_{\mathcal{I}}, \vee_{\mathcal{I}})$ satisfaz as três condições indicadas.

- i) Uma vez que \mathcal{I} é um ideal de \mathcal{R} , tem-se $I \neq \emptyset$.
- ii) Pela definição de $\wedge_{\mathcal{I}}$ e $\vee_{\mathcal{I}}$ é imediato que, para quaisquer $x,y\in I$,

$$x \wedge_{\mathcal{I}} y = x \wedge y, \quad x \vee_{\mathcal{I}} y = x \vee y.$$

Resta provar que I é fechado para as operações \land e \lor . Por 1., é imediato que, para quaisquer $x,y \in I$, $x \lor y \in I$. Por outro lado, considerando que, para quaisquer $x,y \in I$, $x \land y \in R$ e $(x \land y) \land x = x \land y$, de 2. resulta que $x \land y \in I$.

iii) Atendendo a ii) e considerando que \land e \lor são operações binárias em R, resulta que $\land_{\mathcal{I}}$ e $\lor_{\mathcal{I}}$ são operações binárias em I.

Logo \mathcal{I} é um sub-reticulado de \mathcal{R} .

1.8. (a) Sejam (R_1, \leq_1) e (R_2, \leq_2) reticulados. Mostre que o par $(R_1 \times R_2, \leq)$, onde \leq é a relação binária em $R_1 \times R_2$ definida por

$$(a_1, a_2) < (b_1, b_2)$$
 sse $a_1 <_1 b_1$ e $a_2 <_2 b_2$,

é um reticulado.

Comecemos por mostrar que a relação < é uma relação de ordem parcial.

- i) Para qualquer $(x,y) \in R_1 \times R_2$, tem-se $x \le_1 x$ e $y \le_2 y$, pois \le_1 e \le_2 são relações reflexivas. Logo, para qualquer $(x,y) \in R_1 \times R_2$, $(x,y) \le (x,y)$. Portanto, \le é reflexiva.
- ii) Sejam $(x_1,x_2), (y_1,y_2) \in R_1 \times R_2$ tais que $(x_1,x_2) \leq (y_1,y_2)$ e $(y_1,y_2) \leq (x_1,x_2)$. Então $x_1 \leq_1 y_1, \ x_2 \leq_2 y_2, \ y_1 \leq_1 x_1$ e $y_2 \leq_2 x_2$. Considerando que \leq_1 e \leq_2 são relações antissimétricas, segue que $x_1 = y_1$ e $x_2 = y_2$. Logo $(x_1,x_2) = (y_1,y_2)$. Portanto, a relação \leq é antissimétrica.
- iii) Sejam $(x_1,x_2),(y_1,y_2),(z_1,z_2)\in R_1\times R_2$ tais que $(x_1,x_2)\leq (y_1,y_2)$ e $(y_1,y_2)\leq (z_1,z_2)$. Então $x_1\leq_1 y_1,\ x_2\leq_2 y_2,\ y_1\leq_1 z_1$ e $y_2\leq_2 z_2$. Considerando que \leq_1 e \leq_2 são relações transitivas, segue que $x_1\leq_1 z_1$ e $x_2\leq_2 z_2$. Logo $(x_1,x_2)\leq (z_1,z_2)$. Portanto, a relação \leq é transitiva. De i), ii) e iii) conclui-se que a relação \leq é uma ordem parcial.

Resta mostrar que, para quaisquer $(x_1,x_2),(y_1,y_2)\in R_1\times R_2$, existem $\sup\{(x_1,x_2),(y_1,y_2)\}$ e $\inf\{(x_1,x_2),(y_1,y_2)\}$.

Sejam $(x_1,x_2),(y_1,y_2)\in R_1\times R_2$. Uma vez que (R_1,\leq_1) é um reticulado e $x_1,y_1\in R_1$, existe $\sup\{x_1,y_1\}$. Como (R_2,\leq_2) é um reticulado e $x_2,y_2\in R_2$, também existe $\sup\{x_2,y_2\}$. Sejam $s_1=\sup\{x_1,y_1\}$ e $s_2=\sup\{x_2,y_2\}$. É simples verificar que $\sup\{(x_1,y_1),(x_2,y_2)\}=(s_1,s_2)$, pois:

- $-(s_1, s_2) \in R_1 \times R_2;$
- $x_1, y_1 \le 1$ s_1 e $x_2, y_2 \le 2$ s_2 , pelo que $(x_1, x_2) \le (s_1, s_2)$ e $(y_1, y_2) \le (s_1, s_2)$;
- para qualquer $(z_1,z_2) \in R_1 \times R_2$, se $(x_1,x_2) \le (z_1,z_2)$ e $(y_1,y_2) \le (z_1,z_2)$, tem-se $x_1,y_1 \le_1 z_1$ e $x_2,y_2 \le_2 z_2$, donde segue que $s_1 \le z_1$ e $s_2 \le z_2$. Portanto, $(s_1,s_2) \le (z_1,z_2)$.

De forma análoga prova-se que, para quaisquer $(x_1,x_2),(y_1,y_2)\in R_1\times R_2$, existe $\inf\{(x_1,x_2),(y_1,y_2)\}$. De facto, como (R_1,\leq_1) é um reticulado e $x_1,y_1\in R_1$, existe $\inf\{x_1,y_1\}$. Como (R_2,\leq_2) é um reticulado e $x_2,y_2\in R_2$, também existe $\inf\{x_2,y_2\}$. Sejam $i_1=\inf\{x_1,y_1\}$ e $i_2=\inf\{x_2,y_2\}$. Daqui segue que $\inf\{(x_1,y_1),(x_2,y_2)\}=(i_1,i_2)$, pois:

- $-(i_1,i_2) \in R_1 \times R_2;$
- $i_1 \leq_1 x_1, y_1$ e $i_2 \leq_2 x_2, y_2$, pelo que $(i_1, i_2) \leq (x_1, x_2)$ e $(i_1, i_2) \leq (y_1, y_2)$;
- para qualquer $(z_1,z_2) \in R_1 \times R_2$, se $(z_1,z_2) \le (x_1,x_2)$ e $(z_1,z_2) \le (y_1,y_2)$, tem-se $z_1 \le_1 x_1,y_1$ e $z_2 \le x_2,y_2$, donde resulta $z_1 \le_1 i_1$ e $i_2 \le_2 s_2$. Portanto, $(z_1,z_2) \le (i_1,i_2)$.

Desta forma, provámos que $(R_1 \times R_2, \leq)$ é um reticulado.

(b) Considerando que (R_1, \leq_1) e (R_2, \leq_2) representam os reticulados a seguir indicados, desenhe o diagrama de Hasse do reticulado $(R_1 \times R_2, \leq)$:

O reticulado $(R_1 imes R_2, \leq)$ é o reticulado representado pelo diagrama de Hasse seguinte

O reticulado $(R_1 \times R_2, \leq)$ é o reticulado representado pelo diagrama de Hasse seguinte

- 1.9. Considerando os reticulados $(\mathbb{N}, m.d.c, m.m.c)$ e $(\mathcal{P}(\mathbb{N}), \cap, \cup)$, diga se cada uma das aplicações a seguir definidas é um homomorfismo.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ definida por f(x) = nx, para todo $x \in \mathbb{N}$ (com $n \in \mathbb{N}$ fixo).

Sejam $\mathcal{R}_1=(R_1;\wedge_{\mathcal{R}_1},\vee_{\mathcal{R}_1})$ e $\mathcal{R}_2=(R_2;\wedge_{\mathcal{R}_2},\vee_{\mathcal{R}_2})$ reticulados e $\alpha:R_1\to R_2$ uma aplicação. Diz-se que α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $a,b\in R_1$,

$$\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} \alpha(b) \text{ e } \alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} \alpha(b).$$

Para quaisquer $a, b \in \mathbb{N}$, tem-se

- $-f(m.d.c.(a,b)) = n \times m.d.c.(a,b) = m.d.c.(na,nb) = m.d.c.(f(a),f(b)),$
- $f(m.m.c.(a,b)) = n \times m.m.c.(a,b) = m.m.c.(na,nb) = m.m.c.(f(a),f(b)).$

Logo f é um homomorfismo de $(\mathbb{N}, m.d.c, m.m.c)$ em $(\mathbb{N}, m.d.c, m.m.c)$.

(b) $g: \mathbb{N} \to \mathbb{N}$ definida por g(x) = x + 2, para todo $x \in \mathbb{N}$.

Sejam $\mathcal{R}_1 = (R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2 = (R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados e $\alpha : R_1 \to R_2$ uma aplicação. Diz-se que α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $a, b \in R_1$,

$$\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} \alpha(b) \ e \ \alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} \alpha(b).$$

A aplicação g não é um homomorfismo de $(\mathbb{N}, m.d.c, m.m.c)$ em $(\mathbb{N}, m.d.c, m.m.c)$, pois existem $2,4\in\mathbb{N}$ tais que

$$q(m.m.c.(2,4)) = m.m.c.(2,4) + 2 = 6 \neq 12 = m.m.c.(2+2,4+2) = m.m.c.(q(2),q(4)).$$

(c) $h: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definida por $h(\emptyset) = \emptyset$ e $h(A) = \mathbb{N}$, para todo $A \in \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$.

Sejam $\mathcal{R}_1=(R_1;\wedge_{\mathcal{R}_1},\vee_{\mathcal{R}_1})$ e $\mathcal{R}_2=(R_2;\wedge_{\mathcal{R}_2},\vee_{\mathcal{R}_2})$ reticulados e $\alpha:R_1\to R_2$ uma aplicação. Diz-se que α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $a,b\in R_1$,

$$\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} \alpha(b) \in \alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} \alpha(b).$$

A aplicação h não é um homomorfismo de $(\mathcal{P}(\mathbb{N}),\cap,\cup)$ em $(\mathcal{P}(\mathbb{N}),\cap,\cup)$, pois existem $A=\{1\}$ e $B=\{2\}\in\mathbb{N}$ tais que

$$h(A \cap B) = h(\emptyset) = \emptyset \neq \mathbb{N} = \mathbb{N} \cap \mathbb{N} = h(A) \cap h(B).$$

(d) $k: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definida por $k(A) = A \cap \{1, 2\}$, para todo $A \in \mathcal{P}(\mathbb{N})$.

Sejam $\mathcal{R}_1=(R_1;\wedge_{\mathcal{R}_1},\vee_{\mathcal{R}_1})$ e $\mathcal{R}_2=(R_2;\wedge_{\mathcal{R}_2},\vee_{\mathcal{R}_2})$ reticulados e $\alpha:R_1\to R_2$ uma aplicação. Diz-se que α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $a,b\in R_1$,

$$\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} \alpha(b) \in \alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} \alpha(b).$$

A aplicação k é um homomorfismo de $(\mathcal{P}(\mathbb{N}),\cap,\cup)$ em $(\mathcal{P}(\mathbb{N}),\cap,\cup)$, pois:

- para quaisquer $A, B \in \mathcal{P}(\mathbb{N})$,

$$\begin{array}{lll} h(A\cap B) &=& (A\cap B) \\ &=& (A\cap B)\cap\{1,2\} \\ &=& (A\cap\{1,2\})\cap(B\cap\{1,2\}) & \text{(associatividade, comutatividade, idempotência da }\cap) \\ &=& h(A)\cap h(B). \end{array}$$

- para quaisquer $A, B \in \mathcal{P}(\mathbb{N})$,

$$\begin{array}{lll} h(A \cup B) & = & (A \cup B) \\ & = & (A \cup B) \cap \{1,2\} \\ & = & (A \cap \{1,2\}) \cup (B \cap \{1,2\}) & \text{(distributividade)} \\ & = & h(A) \cap h(B). \end{array}$$

1.10. Considere os reticulados (R_1, \leq_1) e (R_2, \leq_2) a seguir representados

Para cada uma das aplicações h seguintes, diga se: i. h é isótona; ii. h é um isomorfismo.

(a) $h: R_1 \to R_1$, definida por h(a) = a, h(b) = c, h(c) = d, h(d) = e, h(e) = e.

Sejam (P_1, \leq_1) e (P_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: P_1 \to P_2$ uma aplicação. Diz-se que:

- a aplicação α preserva a ordem ou que α é isótona se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um mergulho de ordem se, para quaisquer $a, b \in P_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

A aplicação h é uma aplicação isótona de (R_1, \leq_1) em (R_1, \leq_1) , pois, para quaisquer $s, t \in P_1$,

$$s \leq_1 t \Rightarrow h(s) \leq_1 h(t)$$
.

A aplicação h não é um isomorfismo de (R_1, \leq_1) em (R_1, \leq_1) , uma vez que h não é sobrejetiva $(b \in R_1 \text{ e } b \neq h(s), \text{ para todo } s \in R_1).$

(b) $h: R_1 \to R_2$, definida por h(a) = x, h(b) = y, h(c) = z, h(d) = w, h(e) = v.

Sejam (P_1, \leq_1) e (P_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: P_1 \to P_2$ uma aplicação. Diz-se que:

- a aplicação α preserva a ordem ou que α é isótona se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um mergulho de ordem se, para quaisquer $a, b \in P_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

A aplicação h não é uma aplicação isótona de (R_1, \leq_1) em (R_2, \leq_2) , pois, $b, c \in R_1$, $b \leq_1 c$ e $h(b) = y \not\leq_2 z = h(c)$.

Todo o isomorfismo é uma aplicação isótona. Uma vez que h não é isótona, então h não é um isomorfismo de (R_1, \leq_1) em (R_2, \leq_2) .

(c) $h: R_2 \to R_1$, definida por h(x) = a, h(y) = b, h(z) = c, h(w) = d, h(v) = e.

Sejam (P_1, \leq_1) e (P_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: P_1 \to P_2$ uma aplicação. Diz-se que:

- a aplicação α preserva a ordem ou que α é isótona se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- lpha é um mergulho de ordem se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

A aplicação h é uma aplicação isótona de (R_2, \leq_2) em (R_1, \leq_1) , pois, para quaisquer $s, t \in R_2$,

$$s \leq_2 t \Rightarrow h(s) \leq_1 h(t)$$
.

(Note-se que:

- $y \leq_2 z \Rightarrow h(y) \leq_1 h(z)$ é verdadeiro, pois $y \leq_2 z$ é falso;

-
$$z \leq_2 y \Rightarrow h(z) \leq_1 h(y)$$
 é verdadeiro, pois $z \leq_2 y$ é falso.)

A aplicação h não é um isomorfismo de (R_2, \leq_2) em (R_1, \leq_1) , uma vez que h não é um mergulho de ordem: tem-se $y, z \in R_2$, $h(y) = b \leq_1 c = h(z)$ e $y \not\leq_2 z$.

(d) $h: R_2 \to R_2$, definida por h(x) = x, h(y) = z, h(z) = y, h(w) = w, h(v) = v.

Sejam (P_1, \leq_1) e (P_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: P_1 \to P_2$ uma aplicação. Diz-se que:

- a aplicação α preserva a ordem ou que α é isótona se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- lpha é um mergulho de ordem se, para quaisquer $a,b\in P_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

A aplicação h é uma aplicação isótona de (R_2, \leq_2) em (R_2, \leq_2) , pois, para quaisquer $s, t \in R_2$,

$$s \leq_2 t \Rightarrow h(s) \leq_2 h(t)$$
.

(Note-se que:

- $y \leq_2 z \Rightarrow h(y) \leq_2 h(z)$ é verdadeiro, pois $y \leq_2 z$ é falso;
- $z \leq_2 y \Rightarrow h(z) \leq_2 h(y)$ é verdadeiro, pois $z \leq_2 y$ é falso.)

A aplicação h é um mergulho de ordem de (R_2, \leq_2) em (R_2, \leq_2) , uma vez que, para quaisquer $s, t \in R_2$,

$$h(s) \leq_2 h(t) \Rightarrow s \leq_2 t$$
.

Além disso, a aplicação h é sobjetiva, pois, $h(R_2)=R_2$. Logo, h é um isomorfismo de (R_2,\leq_2) em (R_2,\leq_2) .

1.11. Mostre que se (P, \leq) é um c.p.o. tal que, para todo $H \subseteq P$, existe $\inf H$, então (P, \leq) é um reticulado completo.

Seja (P,\leq) um c.p.o. tal que, para todo $H\subseteq P$, existe $\inf H$. Para mostrar que (P,\leq) é um reticulado completo, resta mostrar que, para qualquer $H\subseteq P$, existe $\sup H$. Sejam $H\subseteq P$ e $M=\operatorname{Maj} H$. Por hipótese, existe $\inf M$; seja $s=\inf M$. Prova-se que $s=\sup H$. De facto, como $M=\operatorname{Maj} H$, para quaisquer $h\in H$ e $m\in M$, temos $h\leq m$. Logo, para todo $h\in H$, h é um minorante de H. Mas s é o maior dos minorantes de M, pelo que, para todo $h\in H$, $h\leq s$. Assim, s é um majorante de H. Além disso, prova-se que s é o menor dos majorantes de H. De facto, se admitirmos que s é um majorante de s0, pois s1 é minorante de s2. Portanto s3 e sups4.

Provámos que, para qualquer $H\subseteq P$, existem $\inf H$ e $\sup H$. Portanto, (P,\leq) é um reticulado completo.

- 1.12. Justifique que cada um dos reticulados a seguir indicados é um reticulado algébrico:
 - (a) $(\mathcal{P}(\mathcal{A}),\subseteq)$, onde $\mathcal{P}(\mathcal{A})$ é o conjunto das partes de um conjunto A e \subseteq é a relação de inclusão usual (os elementos compactos de $(\mathcal{P}(\mathcal{A}),\subseteq)$ são os subconjuntos finitos de A).

Seja (P, \leq) um reticulado.

Um elemento a de P diz-se compacto se sempre que existe $\bigvee S$ e $a \leq \bigvee S$, para algum $S \subseteq P$, tem-se $a \leq \bigvee S'$ para algum conjunto finito S' tal que $S' \subseteq S$.

O reticulado (P, \leq) diz-se:

- um reticulado completo sse, para qualquer $S \subseteq P$, existe $\bigvee S$.
- compactamente gerado se, para todo $a \in P$, $a = \bigvee S$, onde S é um conjunto de elementos compactos de P.
- um reticulado algébrico se é um reticulado completo e compactamente gerado.

Seja A um conjunto. O reticulado $(\mathcal{P}(A), \subseteq)$ é completo, pois, para qualquer $S \subseteq \mathcal{P}(A)$, existe $\bigvee S$. De facto, se $S = \{A_i\}_{i \in I}$ é uma família e subconjuntos de A, então:

- $\bigcup_{i\in I} A_i \in \mathcal{P}(\mathcal{A});$
- $A_j \subseteq \bigcup_{i \in I} A_i$, para todo $j \in I$;
- se Z é um subconjunto de A tal que, para todo $i \in I$, $A_i \subseteq Z$, tem-se $\bigcup_{i \in I} A_i \subseteq Z$.

Logo existe $\bigvee S \in \bigvee S = \bigcup_{i \in I} A_i$.

No sentido de mostrar que o reticulado $(\mathcal{P}(\mathcal{A}),\subseteq)$ é compactamente gerado, comecemos por mostrar que os elementos compactos de $(\mathcal{P}(\mathcal{A}),\subseteq)$ são os conjuntos finitos.

Seja X um subconjunto finito de A e admitamos que $X\subseteq\bigvee S$, para algum $S\subseteq\mathcal{P}(A)$. Então $X\subseteq\bigcup_{Y\in S}Y$. Como X é finito, existe $S'\subseteq S$ tal que S' é finito e $X\subseteq\bigcup_{Y\in S'}Y=\bigvee S'$. Portanto, X é compacto. Reciprocamente, admitamos que X é compacto e mostremos que X é finito. Uma vez que $X\subseteq\bigcup_{x\in X}\{x\}$ e X é compacto, existe $Y\subseteq X$ tal que Y é finito e $X\subseteq\bigcup_{x\in Y}\{x\}$; portanto, X é finito. Por conseguinte, os elementos compactos de $(\mathcal{P}(A),\subseteq)$ são os conjuntos finitos.

Consequentemente, $(\mathcal{P}(\mathcal{A}),\subseteq)$ é compactamente gerado, pois, para todo $X\in\mathcal{P}(A)$, tem-se $X=\bigcup_{x\in X}\{x\}=\bigvee_{x\in X}\{x\}$ e, para todo $x\in X$, $\{x\}$ é um elemento compacto.

(b) $(\operatorname{Subg}(G), \subseteq)$, onde $\operatorname{Subg}(G)$ representa o conjunto dos subgrupos de um grupo $G \in \subseteq$ é a relação de inclusão usual (os elementos compactos de $(\operatorname{Subg}(G), \subseteq)$ são os subgrupos de G finitamente gerados).

Seja (P, \leq) um reticulado.

Um elemento a de P diz-se compacto se sempre que existe $\bigvee S$ e $a \leq \bigvee S$, para algum $S \subseteq P$, tem-se $a \leq \bigvee S'$ para algum conjunto finito S' tal que $S' \subseteq S$.

O reticulado (P, \leq) diz-se:

- um reticulado completo sse, para qualquer $S \subseteq P$, existe $\bigvee S$.
- compactamente gerado se, para todo $a \in P$, $a = \bigvee S$, onde S é um conjunto de elementos compactos de P.
- um reticulado algébrico se é um reticulado completo e compactamente gerado.

Seja G um grupo. O reticulado ($\operatorname{Subg}(G),\subseteq$) é completo, pois, para qualquer $S\subseteq\operatorname{Subg}(G)$, existe $\bigvee S$. De facto, se $S = \{G_i\}_{i \in I}$ é uma família de subgrupos de G, então:

- $< \bigcup_{i \in I} G_i > \in \operatorname{Subg}(G);$
- $G_j \subseteq \langle \bigcup_{i \in I} G_i \rangle$, para todo $j \in I$;
- se Z é um elemento de $\mathrm{Subg}(G)$ tal que, para todo $i \in I$, $G_i \subseteq Z$, tem-se $<\bigcup_{i \in I} G_i > \subseteq Z$.

Logo existe $\bigvee S = \langle \bigvee_{i \in I} G_i \rangle$.

No sentido de mostrar que o reticulado ($\operatorname{Subg}(G),\subseteq$) é compactamente gerado, comecemos por mostrar que os elementos compactos de $(\operatorname{Subg}(G), \subseteq)$ são os subgrupos de G finitamente gerados. Seja H um subgrupo de G finitamente gerado e admitamos que $H \subseteq \bigvee S$, para algum $S \subseteq \operatorname{Subg}(G)$. Como $H\subseteq\bigvee S$, para algum $S\subseteq\operatorname{Subg}(G)$, temos $H\subseteq\bigvee_{i\in I}S_i=<\bigcup_{i\in I}S_i>$ para alguma família $\{S_i\}_{i\in I}$ de subgrupos de G. Como H é finitamente gerado, temos $H=< h_1,\ldots,h_n>$, para alguns $n \in \mathbb{N}$ e $h_1, \ldots, h_n \in G$. Para cada $k \in \mathbb{N}$, $h_k \in H$, pelo que $h_k \in \bigcup_{i \in I} S_i > 0$. Daqui segue que $h_k \in \langle F_k \rangle$, para algum conjunto finito F_k tal que $F_k \subseteq \bigcup_{i \in I} S_i$, ou seja, $h_k \in \langle \bigcup_{i \in I_k} S_i \rangle$, para algum conjunto finito $I_k \subseteq I$. Então $h_1, \ldots, h_n \in \langle \bigcup_{k=1}^n \bigcup_{i \in I_k} S_i \rangle$, onde, para cada $k \in \{1, \ldots, n\}$, I_k é finito. Sendo H o menor subgrupo de G que contém $\{h_1, \ldots, h_n\}$ segue que $H\subseteq \langle\bigcup_{k=1}^n\bigcup_{i\in I_k}S_i\rangle$. Logo $H\subseteq\bigvee S'$, para algum conjunto finito $S'\subseteq S$. Portanto, H é compacto.

Reciprocamente, admitamos que H é compacto e mostremos que H é finitamente gerado. Uma vez

$$H\subseteq <\bigcup_{h\in H}< h>>=\bigvee_{h\in H}< h>$$
 e H é compacto, existe $H'\subseteq H$ tal que H' é finito e

$$H \subseteq \bigvee_{h \in H'} < h > = < \bigcup_{h \in H'} < h >> .$$

Considerando que $<\bigcup_{h\in H'}< h>>=< H'>$, conclui-se que H é finitamente gerado.

Assim, os elementos compactos de $(\operatorname{Subg}(G), \subseteq)$ são os subgrupos de G finitamente gerados.

Consequentemente, $(\operatorname{Subg}(G), \subseteq)$ é compactamente gerado, pois, para todo $H \in \operatorname{Subg}(G)$, tem-se $H = \bigvee_{h \in H} < h >$ e, para todo $h \in H$, < h > é um elemento compacto.

1.13. Sejam \mathcal{R} e \mathcal{S} reticulados. Mostre que:

(a) Se \mathcal{R} é distributivo (modular), então qualquer sub-reticulado de \mathcal{R} é distributivo (modular).

Sejam $\mathcal{R} = (R; \wedge_{\mathcal{R}}, \vee_{\mathcal{R}})$ um reticulado distributivo e $\mathcal{S} = (S; \wedge_{\mathcal{S}}, \vee_{\mathcal{S}})$ um sub-reticulado de \mathcal{R} . Então $S \subseteq R$ e, para quaisquer $x, y \in S$,

$$x \wedge_{\mathcal{S}} y = x \wedge_{\mathcal{R}} y,$$
$$x \vee_{\mathcal{S}} y = x \vee_{\mathcal{R}} y.$$

Logo, para quaisquer $x, y, z \in S$, tem-se,

$$\begin{array}{rcl} x \wedge_{\mathcal{S}} (y \vee_{\mathcal{S}} z) & = & x \wedge_{\mathcal{R}} (y \vee_{\mathcal{R}} z) \\ & = & (x \wedge_{\mathcal{R}} y) \vee_{\mathcal{R}} (x \wedge_{\mathcal{R}} z) & (\mathcal{R} \text{ \'e distribuivo}) \\ & = & (x \wedge_{\mathcal{S}} y) \vee_{\mathcal{S}} (x \wedge_{\mathcal{S}} z). \end{array}$$

Logo S é distributivo.

De modo análogo prova-se que todo o sub-reticulado de um reticulado modular também é um reticulado modular.

(b) Se \mathcal{R} e \mathcal{S} são distributivos (modulares), então $\mathcal{R} \times \mathcal{S}$ é distributivo (modular).

Sejam $\mathcal{R}=(R;\wedge_{\mathcal{R}},\vee_{\mathcal{R}})$ e $\mathcal{S}=(S;\wedge_{\mathcal{S}},\vee_{\mathcal{S}})$ reticulados distributivos. Então

$$\mathcal{R} \times \mathcal{S} = (R \times S; \wedge_{\mathcal{R} \times \mathcal{S}}, \vee_{\mathcal{R} \times \mathcal{S}}),$$

onde $\land_{\mathcal{R}\times\mathcal{S}}$ e $\lor_{\mathcal{R}\times\mathcal{S}}$ são as operações binárias em $R\times S$ definidas por

$$(a_1, a_2) \wedge_{\mathcal{R} \times \mathcal{S}} (b_1, b_2) = (a_1 \wedge_{\mathcal{R}} b_1, a_2 \wedge_{\mathcal{S}} b_2),$$

 $(a_1, a_2) \vee_{\mathcal{R} \times \mathcal{S}} (b_1, b_2) = (a_1 \vee_{\mathcal{R}} b_1, a_2 \vee_{\mathcal{S}} b_2),$

é um reticulado.

Considerando, que \mathcal{R} e \mathcal{S} são distributivos, para quaisquer $(a_1,a_2),(b_1,b_2),(c_1,c_2) \in R \times S$, tem-se

$$(a_{1}, a_{2}) \wedge_{\mathcal{R} \times \mathcal{S}} ((b_{1}, b_{2}) \vee_{\mathcal{R} \times \mathcal{S}} (c_{1}, c_{2})) = (a_{1}, a_{2}) \wedge_{\mathcal{R} \times \mathcal{S}} (b_{1} \vee_{\mathcal{R}} c_{1}, b_{2} \vee_{\mathcal{S}} c_{2})$$

$$= (a_{1} \wedge_{\mathcal{R}} (b_{1} \vee_{\mathcal{R}} c_{1}), a_{2} \wedge_{\mathcal{S}} (b_{2} \vee_{\mathcal{S}} c_{2}))$$

$$= ((a_{1} \wedge_{\mathcal{R}} b_{1}) \vee_{\mathcal{R}} (a_{1} \wedge_{\mathcal{R}} c_{1}), (a_{2} \wedge_{\mathcal{S}} b_{2}) \vee_{\mathcal{S}} (a_{2} \wedge_{\mathcal{S}} c_{2}))$$

$$= (a_{1} \wedge_{\mathcal{R}} b_{1}, a_{2} \wedge_{\mathcal{S}} b_{2}) \vee_{\mathcal{R} \times \mathcal{S}} (a_{1} \wedge_{\mathcal{R}} c_{1}, a_{2} \wedge_{\mathcal{S}} c_{2})$$

$$= ((a_{1}, a_{2}) \wedge_{\mathcal{R} \times \mathcal{S}} (b_{1}, b_{2})) \vee_{\mathcal{R} \times \mathcal{S}} ((a_{1}, a_{2}) \wedge_{\mathcal{R} \times \mathcal{S}} (c_{1}, c_{2}))$$

$$(1)$$

(1) \mathcal{R} e \mathcal{S} são distributivos

Logo $\mathcal{R} \times \mathcal{S}$ é distributivo.

De modo similar prova-se que se \mathcal{R} e \mathcal{S} são modulares, então $\mathcal{R} \times \mathcal{S}$ é modular.

(c) Se \mathcal{R} é distributivo (modular) e \mathcal{S} é uma imagem homomorfa de \mathcal{R} , então \mathcal{S} é distributivo (modular).

Sejam $\mathcal{R}=(R;\wedge_{\mathcal{R}},\vee_{\mathcal{R}})$ e $\mathcal{S}=(S;\wedge_{\mathcal{S}},\vee_{\mathcal{S}})$ reticulados tais que \mathcal{S} é uma imagem homomorfa de \mathcal{R} . Então existe um homomorfismo $h:R\to S$ tal que h é sobrejetivo.

Sendo $\mathcal R$ um reticulado distributivo (modular), prova-se que $\mathcal S=h(\mathcal R)$ também é um reticulado distributivo (modular), uma vez que, para qualquer $y\in S$, existe $x\in R$ tal que y=h(x) e, para quaisquer $a,b\in R$,

$$h(a \wedge_{\mathcal{R}} b) = h(a) \wedge_{\mathcal{S}} h(b),$$

$$h(a \vee_{\mathcal{R}} b) = h(a) \vee_{\mathcal{S}} h(b).$$

Fica ao cuidado do aluno a verificação de que \mathcal{S} é um reticulado distributivo (modular).

1.14. Diga, justificando, quais dos seguintes reticulados são distributivos e quais são modulares.

Um reticulado (R, \leq) é distributivo se e só se não tem qualquer sub-reticulado isomorfo a N_5 ou a M_3 . Um reticulado (R, \leq) é modular se e só se não tem qualquer sub-reticulado isomorfo a N_5 .

• (R_1, \leq_1)

O reticulado (R_1, \leq_1) não é modular, pois tem um sub-reticulado isomorfo a N_5 . O reticulado a seguir indicado é um sub-reticulado de (R_1, \leq_1) e é isomorfo a N_5 .

Todo o reticulado distributivo é um reticulado modular. Por conseguinte, (R_1, \leq_1) não é distributivo.

• (R_2, \leq_2)

Seja ${\mathcal R}$ a cadeia com 3 elementos a seguir representada

Então o reticulado $\mathcal{R} \times \mathcal{R}$ é isomorfo ao reticulado seguinte

Todas as cadeias são reticulados distributivos. O produto de reticulados distributivos é ainda um reticulado distributivo e toda a imagem homomorfa de um reticulado distributivo é também um reticulado distributivo. Logo (R',\leq') é um reticulado distributivo. Todo o sub-reticulado de um reticulado distributivo é também um reticulado distributivo. Então o reticulado seguinte (o qual é um sub-reticulado de (R',\leq'))

é um reticulado distributivo. O reticulado (R_2,\leq_2) é uma imagem homomorfa do reticulado (R'',\leq'') . Considerando que toda a imagem homomorfa de um reticulado distributivo é um reticulado distributivo, conclui-se que (R_2,\leq_2) é um reticulado distributivo.

• (R_3, \leq_3)

O reticulado a seguir representado

é um sub-reticulado de (R_3,\leq_3) e é isomorfo a N_5 . Logo (R_3,\leq_3) não é modular. Como todo o reticulado distributivo é um reticulado modular, então (R_3,\leq_3) não é distributivo.

• (R_4, \leq_4)

O reticulado seguinte

é um subreticulado de (R_4, \leq_4) e é isomorfo a N_5 , logo (R_4, \leq_4) não é modular e, por conseguinte, também

não é distributivo.

• (R_5, \leq_5)

O reticulado $(\mathcal{R} \times \mathcal{R}) \times \mathcal{S}$, onde \mathcal{R} e \mathcal{S} são, respetivamente, as cadeias com 3 e 2 elementos a seguir representadas

é isomorfo ao reticulado seguinte

Todas as cadeias são reticulados distributivos. O produto de reticulados distributivos é ainda um reticulado distributivo e toda a imagem homomorfa de um reticulado distributivo é também um reticulado distributivo. Logo (R', \leq') é um reticulado distributivo. Todo o sub-reticulado de um reticulado distributivo é um reticulado distributivo. Então o reticulado seguinte (o qual é um sub-reticulado de (R', \leq'))

é um reticulado distributivo. O reticulado (R_5, \leq_5) é uma imagem homomorfa do reticulado (R'', \leq'') . Considerando que toda a imagem homomorfa de um reticulado distributivo é também um reticulado distributivo, conclui-se que (R_5, \leq_5) é um reticulado distributivo.