

## The LASSO

$$\min_{\mathbf{c}} \|\mathbf{A}\mathbf{c} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{c}\|_1$$

- The LASSO is convex but not smooth
- The matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is often fat and denoted as the dictionary
- $\mathbf{c} \in \mathbb{R}^n$  is the sparse code
- Many applications

## Applications of LASSO

## Face Recognition











different people

b

# Solving the LASSO



# Solving the LASSO

The Focus of this work is on Deterministic First Order Methods

**Deterministic LASSO Solvers** 

First Order Methods



**Pros:** Inexpensive iteration cost

**Cons:** Lower convergence rate

**Examples** 

(1) Proximal point methods

(2) ADMMs

Second Order Methods



**Pros:** Quadratic convergence rates

**Cons:** Expensive Iteration cost

**Examples** 

**Primal dual interior point methods** 

#### **ADMM**

$$\min_{\mathbf{c}} \|\mathbf{A}\mathbf{c} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{c}\|_1$$

**ADMM** 

Primal Lasso (PL-ADMM)

$$(2\mathbf{A}^{\mathsf{T}}\mathbf{A} + u_k \mathbf{I}_n)\mathbf{c}_{k+1} = 2\mathbf{A}^{\mathsf{T}}\mathbf{b} - \Psi_k + u_k \mathbf{z}_k$$

Solving a PD linear system of size  $n \times n$ 

Dual Lasso (DL-ADMM)

$$(\rho_k \mathbf{A} \mathbf{A}^{\top} + \frac{1}{2} \mathbf{I}_m) \Psi_{k+1} = \mathbf{A}(\rho_k \zeta - \mathbf{c}) - \mathbf{b}$$

Solving a PD linear system of size  $m \times m$ 

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

## **DL-ADMM**

#### Pros:

- Empirically shown to be one of the fastest first order deterministic LASSO solver
- Handles Linear Constraints

#### **DL-ADMM**

#### Pros:

- Empirically shown to be one of the fastest first order deterministic LASSO solver
- Handles Linear Constraints

#### Cons:

- Requires linear system solver routine
- Not trivially parallelized over many GPUs
- Scalability issues

#### New Solver?

## The solver we seek should enjoy:

Low iteration complexity

ADMM's linear convergence rate

Trivially distributed over multiple GPUs

# Problem Lifting



# Problem Lifting



# Problem Lifting





$$\min_{\tilde{\mathbf{c}}} \|\tilde{\mathbf{A}}\tilde{\mathbf{c}} - \mathbf{b}\|_{2}^{2} + \lambda \|\tilde{\mathbf{c}}\|_{1} \quad \text{s.t.} \quad \mathbf{D}\tilde{\mathbf{c}} = \mathbf{0}$$

$$\lim_{\tilde{\mathbf{c}}} \|\sum_{i}^{n} \mathbf{a}_{i} * \tilde{\mathbf{c}}_{i} - \mathbf{b}\|_{2}^{2} + \lambda \|\tilde{\mathbf{c}}\|_{1} \quad \text{s.t.} \quad \mathbf{D}\tilde{\mathbf{c}} = \mathbf{0}$$

# The Big Picture

Ρ

**Problem lifting** 

**DL-ADMM** 

$$\min_{\mathbf{c}} \|\mathbf{A}\mathbf{c} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{c}\|_1$$

$$\min_{\Psi} \frac{1}{4} \|\Psi\|_{2}^{2} + \Psi^{\top} \mathbf{b}$$
s.t. 
$$\|\mathbf{A}^{\mathbf{H}}\Psi\|_{\infty} \leq \lambda$$

#### **FFTLasso**

$$\min_{\tilde{\mathbf{c}}} ||\tilde{\mathbf{A}}\tilde{\mathbf{c}} - \mathbf{b}||_{2}^{2} + \lambda ||\tilde{\mathbf{c}}||_{1}$$

$$\mathrm{s.t} \quad \mathbf{D}\tilde{\mathbf{c}} = \mathbf{0}$$

$$\min_{\Psi,\theta} \frac{1}{4} ||\Psi||_{2}^{2} + \Psi^{\mathbf{H}}\mathbf{b}$$

$$\mathrm{s.t} \quad ||\tilde{\mathbf{A}}^{\mathbf{H}}\Psi + \mathbf{D}^{\mathbf{H}}\theta||_{\infty} \leq \lambda$$

#### **FFTLasso**

#### **FFTLasso**

$$\min_{\Psi,\theta} \frac{1}{4} \|\Psi\|_2^2 + \Psi^{\mathbf{H}} \mathbf{b} \quad \text{s.t.} \left\| \tilde{\mathbf{A}}^{\mathbf{H}} \Psi + \mathbf{D}^{\mathbf{H}} \theta \right\|_{\infty} \le \lambda$$

#### Update $\hat{\Psi}^*$ :

where

$$\begin{split} (\rho \tilde{\mathbf{A}} \tilde{\mathbf{A}}^{\mathbf{H}} + \frac{1}{2} \mathbf{I}_m) \Psi &= \tilde{\mathbf{A}} (\rho \zeta - \rho \mathbf{D}^{\mathbf{H}} \theta - \tilde{\mathbf{c}}) - \mathbf{b} \\ \hat{\Psi}^* &= \frac{\sum_i^N \hat{\mathbf{a}}_i^* \odot \hat{\mathbf{e}}_i^* - \hat{\mathbf{b}}^*}{\rho \sum_i^N \hat{\mathbf{a}}_i \odot \hat{\mathbf{a}}_i^* + \frac{1}{2} \mathbf{1}_m} \end{split}$$
 where  $\mathbf{e} = \rho \zeta - \rho \mathbf{D}^{\mathbf{H}} \theta - \tilde{\mathbf{c}} = \begin{bmatrix} \mathbf{e}_1^{\mathbf{H}}, \dots, \mathbf{e}_n^{\mathbf{H}} \end{bmatrix}^{\mathbf{H}}$ 

#### **FFTLasso**

#### **FFTLasso**

$$\min_{\Psi,\theta} \frac{1}{4} \|\Psi\|_2^2 + \Psi^{\mathbf{H}} \mathbf{b} \quad \text{s.t.} \left\| \tilde{\mathbf{A}}^{\mathbf{H}} \Psi + \mathbf{D}^{\mathbf{H}} \theta \right\|_{\infty} \le \lambda$$

#### Update $\hat{\Psi}^*$ :

$$(\rho \tilde{\mathbf{A}} \tilde{\mathbf{A}}^{\mathbf{H}} + \frac{1}{2} \mathbf{I}_m) \Psi = \tilde{\mathbf{A}} (\rho \zeta - \rho \mathbf{D}^{\mathbf{H}} \theta - \tilde{\mathbf{c}}) - \mathbf{b}$$

$$\hat{\Psi}^* = \frac{\sum_i^N \hat{\mathbf{a}}_i^* \odot \hat{\mathbf{e}}_i^* - \hat{\mathbf{b}}^*}{\rho \sum_i^N \hat{\mathbf{a}}_i \odot \hat{\mathbf{a}}_i^* + \frac{1}{2} \mathbf{1}_m}$$

where 
$$\mathbf{e} = \rho \zeta - \rho \mathbf{D^H} \theta - \tilde{\mathbf{c}} = \left[ \mathbf{e_1^H}, \dots, \mathbf{e_n^H} \right]^\mathbf{H}$$

#### Update $\mathbf{D}^H heta$ :

$$\mathbf{D}(\mathbf{D}^{\mathbf{H}}\theta) = \mathbf{D}(\zeta - \tilde{\mathbf{c}}/\rho - \tilde{\mathbf{A}}^{\mathbf{H}}\Psi)$$

$$ilde{\mathbf{A}}^{\mathbf{H}}\Psi = egin{bmatrix} \mathbf{C}(\mathbf{a}_1)^{\mathbf{H}} \ dots \ \mathbf{C}(\mathbf{a}_n)^{\mathbf{H}} \end{bmatrix} \Psi = egin{bmatrix} \mathbf{F}(\mathbf{\hat{a}}_1 \odot \hat{\Psi}^*) \ dots \ \mathbf{F}(\mathbf{\hat{a}}_n \odot \hat{\Psi}^*) \end{bmatrix}$$

#### Update $\zeta$ :

$$\zeta = \operatorname{sign}(\mathbf{t}) \odot \min(|\mathbf{t}|, \lambda)$$

where 
$$\mathbf{t} = \mathbf{ ilde{A}^H}\Psi + \mathbf{D^H}\theta + \mathbf{ ilde{c}}/
ho$$

## **FFTLasso**

#### **FFTLasso**

$$\min_{\Psi,\theta} \frac{1}{4} \|\Psi\|_2^2 + \Psi^{\mathbf{H}} \mathbf{b} \quad \text{s.t.} \left\| \tilde{\mathbf{A}}^{\mathbf{H}} \Psi + \mathbf{D}^{\mathbf{H}} \theta \right\|_{\infty} \le \lambda$$

Update 
$$\tilde{\mathbf{c}}$$
 :

$$\tilde{\mathbf{c}} \leftarrow \tilde{\mathbf{c}} + \rho (\tilde{\mathbf{A}}^{\mathbf{H}} \Psi + \mathbf{D}^{\mathbf{H}} \theta - \zeta)$$

$$\tilde{\mathbf{c}}_{k+1} \leftarrow \tilde{\mathbf{y}}_k + \rho(\tilde{\mathbf{A}}^{\mathbf{H}}\Psi + \mathbf{D}^{\mathbf{H}}\theta - \zeta)$$
  
 $\tilde{\mathbf{y}}_{k+1} \leftarrow (1+q)\tilde{\mathbf{c}}_{k+1} - q\tilde{\mathbf{c}}_k$ 

where 
$$q = \frac{\sqrt{Q}-1}{\sqrt{Q}+1}$$

Q is the problem's condition number which is set as a hyper parameter

# Computational Analysis

**DL-ADMM** complexity

V.

FFTLasso's complexity

$$\mathcal{O}(m^3) + \mathcal{O}(mn)$$

$$\mathcal{O}(mn\log m) + \mathcal{O}(mn)$$

Dictionaries with  $m^2\gg n\log m$  are best suited for FFTLasso, where square matrices naturally satisfy the inequality

# Synthetic Experiments





Comparing DL-ADMM on multi-cores with varying frequency against FFTLasso-GPU

# Synthetic Experiments

#### Pascal Titan X:



# Synthetic Experiments

#### Quadro P6000:

Table 1: GPU time comparison

| r         |                               |
|-----------|-------------------------------|
| Dimension | $T_{DLADMM+Nes}/T_{FFTLasso}$ |
| 1024      | 0.043                         |
| 2048      | 0.241                         |
| 4096      | 1.214                         |
| 8192      | 9.792                         |
| 16384     | 6.159                         |

## GPU Distributed FFTLasso

 What if the dictionary is so large that it cannot fit in one GPU?



## GPU Distributed FFTLasso

 What if the dictionary is so large that it cannot fit in one GPU?

Easy! Break the dictionary into arbitrary number of vertical pieces. Put each piece on a GPU!



\* The necessary overhead is m ; where  ${\bf u}$  is the number of GPUs (for every vertical split).

## **GPU Distributed FFTLasso**

Can we do better?

Yes! Break it into horizontal pieces too. Break them into (even and odd pieces) to make best use of FFT properties



\* The necessary overhead is  $\frac{m}{v}$ 

$$\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 \text{ where } \mathbf{v}_1 = \begin{bmatrix} v_0 & 0 & v_2 & \dots \end{bmatrix}^{\mathbf{H}} \text{ and where } \mathbf{v}_2 = \begin{bmatrix} 0 & v_1 & 0 & v_3 & \dots \end{bmatrix}^{\mathbf{H}}.$$

$$\tilde{\mathbf{v}} = \begin{bmatrix} \tilde{\mathbf{v}}_e^{\mathbf{H}} & \tilde{\mathbf{v}}_e^{\mathbf{H}} \end{bmatrix}^{\mathbf{H}} + \begin{bmatrix} \tilde{\mathbf{v}}_o^{\mathbf{H}} & \tilde{\mathbf{v}}_o^{\mathbf{H}} \end{bmatrix}^{\mathbf{H}} \odot \mathbf{p}; \quad \mathbf{p}(i, k) = \exp \frac{-j2\pi ki}{m} \quad \forall i, k$$

# Face Recognition



# Face Recognition Experiments





## **Future Directions**

 FFTLasso is easily distributed and also memory efficient (something to talk about at the poster ©)

 FFTLasso can handle linearly constrained problems (constrained lasso?)

Other non-smooth regularizers may be used?

# Code and Special Thanks!







**Humam Alwassel** 



Modar Alfadly







# Come see us at Poster: #10



MATLAB

https://github.com/adelbibi/FFTLasso