VARIABEL ACAK DAN DISTRIBUSI PELUANG

Politeknik Negeri Cilacap

Pendahuluan

- Ambil contoh peristiwa tentang seorang ibu yang melahirkan.
- Kita tahu hanya ada dua kemungkinan jenis kelamin dari peristiwa tersebut yaitu Laki-laki (L) atau Perempuan (P).
- Sehingga peluangnya masing-masing untuk melahirkan L dan P adalah ½.
- Kita dapat menyusun ruang sampel dari peristiwa ini sebagai berikut :

$$S = \{L, P\}$$

Pendahuluan

Untuk dua orang anak :

$$S = \{LL, LP, PL, PP\}$$

Untuk tiga orang anak:

Untuk 4 orang anak :

```
S = {PPPP, LPPP, PLPP, PPLP, PPPL, LLPP,LPPL, PLLP, PLPL, PLPL, PLLL, LLLL}
```

Tabel 1 Peluang anak laki-laki lahir (L) untuk 4 anak

Jumlah L	Susunan	Banyak Titik Sampel	Peluang L
0	PPPP	1	1/16 = 0,0625
1	LPPP, PLPP, PPLP, PPPL	4	4/16 = 0,25
2	LLPP,LPLP,LPPL, PLLP,	6	6/16 = 0,375
	PLPL, PPLL		
3	LLLP, LLPL, LPLL, PLLL	4	4/16 = 0,25
4	LLLL	1	1/16 = 0,0625
Jumlah	16		1

Pendahuluan

- Misalkan jumlah anak laki-laki yang lahir disebut sebagai variable X.
- Dari tabel 1. di atas dapat dilihat bahwa setiap nilai X mempunyai hubungan dengan sebuah nilai peluang
- Maka variabel X yang demikian disebut sebagai variabel acak.

Definisi Variabel Acak

- Variabel acak adalah suatu fungsi yang nilainya berupa bilangan riil yang ditentukan oleh setiap unsur dalam ruang sampel.
- Variabel acak biasanya dinotasikan dengan huruf kapital.
- Pada tabel 1, nilai X=0, 1, 2, 3, 4

Jumlah L	Susunan	Banyak Titik Sampel	Peluang L
0	PPPP	1	1/16 = 0,0625
1	LPPP, PLPP, PPLP, PPPL	4	4/16 = 0,25
2	LLPP,LPLP,LPPL, PLLP,	6	6/16 = 0,375
1	PLPL, PPLL		
3	LLLP, LLPL, LPLL, PLLL	4	4/16 = 0,25
4	LLLL	1	1/16 = 0,0625
Jumlah	16		1

Contoh

• Pengukuran tinggi badan mahasiswa merupakan variabel acak X, maka hasil pengukuran dinyatakan sebagai $x_1, x_2, ..., x_n$ dimana indeks 1, 2, ..., n menyatakan orang ke-i yang diukur tingginya.

 Jika Tabel 1 di depan disusun kembali dalam notasi variabel acak, maka akan diperoleh tabel yang memperlihatkan distribusi peluang variabel X seperti berikut.

Jumlah L	Susunan	Banyak Titik Sampel	Peluang L
0 1 2	PPPP LPPP, PLPP, PPLP, PPPL LLPP,LPLP,LPPL, PLLP,	1 4 6	1/16 = 0,0625 4/16 = 0,25 6/16 = 0,375
3 4	PLPL, PPLL LLLP, LLPL, LPLL, PLLL LLLL	4 1	4/16 = 0,25 1/16 = 0,0625
Jumlah	16		1

X	P(X=x)	
0	0,0625	
1	0,25	
2	0,375	
3	0,25	
4	0,0625	
	1	

X = 0 menyatakan banyaknya anak laki laki yang lahir =0,
X = 1 menyatakan banyaknya anak laki laki yang lahir =1,
X = 2 menyatakan banyaknya anak laki laki yang lahir =2,
X = 3 menyatakan banyaknya anak laki laki yang lahir =3,
X = 4 menyatakan banyaknya anak laki laki yang lahir =4,

Definisi Distribusi Peluang

- Setiap nilai yang mungkin diambil oleh variabel acak ini memilki peluang tertentu untuk muncul yang dapat diringkas dalam suatu fungsi yang disebut FUNGSI PELUANG atau DISTRIBUSI PELUANG.
- Sebuah distribusi peluang dikatakan sudah terbentuk, jika semua peluang dari setiap variabel acak berjumlah satu.
- Dengan terbentuknya distribusi peluang seperti tabel di atas, maka notasi baru untuk penulisan peluang kini dapat dituliskan menjadi P(X=0) = 0,0625; P(X=1) = 0,25 dan seterusnya.

Variabel Acak dibedakan menjadi

- 1. Variabel acak Diskrit
- 2. Variabel acak kontinu

Variabel Acak Diskrit

- Adalah variabel acak yang berhubungan dengan hasil sebuah peristiwa yang ruang sampelnya terhingga dan terhitung.
- Distribusi peluangnya disebut distribusi peluang variabel acak diskrit.
- Umumnya variabel diskrit berhubungan dengan pencacahan terhadap suatu objek atau indvidu.
- \odot Contoh lihat tabel 1 di atas. Kita tidak mungkin mengatakan jumlah laki-laki = ½. atau ¼ .

Beberapa contoh variabel diskrit:

- 1. Jumlah kesalahan pengetikan
- 2. Jumlah kendaraan yang melewati persimpangan jalan
- 3. Jumlah kecelakaan per minggu

Variabel Acak Kontinu

- Didefinisikan sebagai suatu variabel yang nilai-nilainya berada dalam ruang sampel tak terhingga.
- Variabel ini bisa mempunyai sebuah harga dimana harga-harga x dibatasi oleh $-\infty < X < \infty$.
- Variabel acak kontinu dapat diilustrasikan sebagai titiktitik dalam sebuah garis.
- Contoh: pengukuran fisik seperti waktu atau panjang.
- setiap nilai X akan berhubungan dengan titik-titik yang jumlahnya sangat banyak atau takterhingga.

Contoh

Misalkan didefinisikan suatu peubah X di mana X adalah banyaknya sisi Angka yang muncul pada ketiga lemparan,

Tentukan

- a. Peubah acak X
- b. Fungsi peluang/sebaran peluang/sebaran peubah acak Y

Contoh

X = Peubah Acak

Ruang Sampel	Peluang	Х	Fungsi peluang
AAA	1/8	3	1/8
AAG	1/8	2	3/8
AGA	1/8		
GAA	1/8		
AGG	1/8	1	3/8
GAG	1/8		
GGA	1/8		
GGG	1/8	0	1/8

Contoh:

Tentukan sebaran peluang bagi jumlah bilangan jika dua buah dadu dilemparkan. Jika X adalah peubah acak yang menyatakan jumlah bilangan yang diambil dari pelemparan kedua dadu tersebut

Contoh:

Percobaan pelemparan sebuah dadu bersisi enam.

Jika X = munculnya sisi dadu yang bermata genap.

Tentukan sebaran peubah acak X

Contoh:

Percobaan pelemparan dua buah dadu bersisi enam.

Y adalah peubah acak yang melambangkan nilai maksimum dari kedua sisi dadu.

Tentukan sebaran peubah acak Y