ACE Examination Paper 1 Year 12 Mathematics Advanced Yearly Examination Worked solutions and Marking guidelines

Sectio	Section I		
	Solution	Criteria	
1.	$2\cos^2 x - 1 = 0$	1 Mark: D	
	$\cos^2 x = \frac{1}{2} \text{ or } \cos x = \pm \frac{1}{\sqrt{2}}$		
	$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$		
2.	f'(x) > 0 (increasing)	1 Mark: A	
	f''(x) < 0 (concave down)		
3.	$z = \frac{x - \bar{x}}{s}$	1 Mark: B	
	$=\frac{1000-900}{50}$		
	= 2 95% of scores have a <i>z</i> -score between –2 and 2		
	∴ 2.5% have a z-score greater than 2.		
4.		1 Mark: D	
	$\int_0^1 (e^{3x} + 1)dx = \left[\frac{1}{3}e^{3x} + x\right]_0^1$		
	$=\left(\frac{1}{3}e^3+1\right)-\frac{1}{3}$		
	$=\frac{1}{3}(e^3+2)$		
5.	$y = (x - a)(x^2 - 1)$	1 Mark: C	
	$= x^3 - ax^2 - x + a$		
	$\frac{dy}{dx} = 3x^2 - 2ax - 1$		
	Gradient at the point when $x = -2$		
	$m = 3 \times (-2)^2 - 2a \times (-2) - 1$ = 4a + 11		
6.	Correlation between 0.5 and 0.74.	1 Mark: D	
	∴ Moderate positive.		
7.	$Period = \frac{\pi}{n} = \frac{\pi}{2}$	1 Mark: B	
	$n 2$ $\therefore n = 2$		
	Also a translation of $\frac{\pi}{4}$ in the positive x-direction.		
	$f(x) = \tan\left(2\left(x - \frac{\pi}{4}\right)\right)$		
	1.)		
8.	Increasing function $f'(x) > 0$ $\{x: -3 < x < 2\}$	1 Mark: C	
9.	Intersection value is 5.4172 (3% and 6 years)	1 Mark: C	
	$PV = 5.4172 \times 12000$		
4.5	= \$65 006.40		
10.	Fundamental property of a probability density is that for any	1 Mark: A	
	value of x , the value of $f(x)$ is non-negative.		
	∴ Graph (A) has $f(x) < 0$		

Section	II	
11(a)	$f(x) = (\sin x + x^2)$	1 Mark: Correct
	$f'(x) = \cos x + 2x$	answer.
11(b)	$f(x) = \ln(x^{2} + 1)$ $f'(x) = \frac{2x}{x^{2} + 1}$	1 Mark: Correct answer.
	$\int (x) - \frac{1}{x^2 + 1}$	
12(a)	a = 4 and $d = 5$ for 4, 9, 14, 19, $T_n = a + (n - 1)d$ $= 4 + (n - 1) \times 5$	1 Mark: Correct answer.
	=5n-1	
12(b)	$T_{25} = 5 \times 25 - 1$ = 124	1 Mark: Correct answer.
12(c)	$S_n = \frac{n}{2} [2a + (n-1)d]$ $= \frac{100}{2} [2 \times 4 + (100 - 1) \times 5]$	1 Mark: Correct answer.
	2 = 25 150	
13(a)	y = 3 - x	2 Marks: Correct answer. 1 Mark: Shows
	0.5	some understanding.
	$P(2 \le X \le 3.5) = \frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times 0.5 \times 0.5$	
	= 0.625	
13(b)	$P(2 \le X \le 2.5) = \frac{1}{2} \times 0.5 \times (1 + 0.5)$ $= 0.375$	2 Marks: Correct answer. 1 Mark: Shows
14(a)	d	understanding. 2 Marks: Correct
	$\frac{d}{dx}(2e^x \cos x) = 2e^x(-\sin x) + \cos x \ 2e^x$ $= 2e^x(\cos x - \sin x)$	answer. 1 Mark: Applies the product rule.
14(b)	$\frac{d}{dx}\left(\frac{\tan x}{x}\right) = \frac{x \times \sec^2 x - \tan x \times 1}{x^2}$	2 Marks: Correct answer. 1 Mark: Applies
	$=\frac{x\sec^2x-\tan x}{x^2}$	the quotient rule.
15	$\int (2x+3)^{10} dx = \frac{(2x+3)^{11}}{11 \times 2} + C$	1 Mark: Correct answer.
	$=\frac{(2x+3)^{11}}{22}+C$	

16(a)	$x-\bar{x}$	1 Mark: Correct
	$z = \frac{x - \bar{x}}{s}$	answer.
	$-1 = \frac{x - 12.5}{0.5}$	
	$x = (-1 \times 0.5) + 12.5$	
	= 12	
	∴ Minimum weight to be accepted is 12 kg.	
16(b)	$z = \frac{x - \bar{x}}{s}$ $2 = \frac{x - 12.5}{0.5}$	1 Mark: Correct
	S 12.5	answer.
	$2 = \frac{x - 12.5}{0.5}$	
	$x = (2 \times 0.5) + 12.5$	
	= 13.5	
	∴ Maximum weight to be accepted is 13.5 kg.	
17	Solving the two equations simultaneously.	2 Marks: Correct
17	$x^2 + 1 = 3x + 1$	answer.
	$x^2 - 3x = 0$	
	x(x-3) = 0	1 Mark: Finds the
	\therefore Point of intersection occurs when $x = 0$ and $x = 3$.	points of
	$A = \int_0^3 (3x+1) - (x^2+1)dx$	intersection or shows some
	2	understanding of
	$= \int_0^3 (3x - x^2) dx = \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_0^3$	the problem.
	10	
	$= \left[\left(\frac{3 \times 3^2}{2} - \frac{3^3}{3} \right) - \left(\frac{3 \times 0^2}{2} - \frac{0^3}{2} \right) \right]$	
	$=\frac{9}{2}$ square units	
18	$y = e^{kx} \sin x$	3 Marks: Correct
		answer.
	$\frac{dy}{dx} = e^{kx} \times \cos x + \sin x \times ke^{kx}$	
	$=e^{kx}(\cos x + k\sin x)$	2 Marks: Makes
	$\frac{dy}{dx} - 3y = e^{kx} \cos x$	significant progress towards
		the solution.
	$e^{kx}(\cos x + k\sin x) - 3e^{kx}\sin x = e^{kx}\cos x$	
	$ke^{kx}\sin x - 3e^{kx}\sin x = 0$	1 Mark: Finds the
	$e^{kx}\sin x(k-3) = 0$	derivative.
1063	k = 3	
19(a)	$A = \frac{n}{2} [y_0 + y_4 + 2(y_1 + y_2 + y_3)]$	2 Marks: Correct
		answer.
	$= \frac{1.5}{2} [2 + 0 + 2(4.5 + 5.1 + 3.6)]$	1 Mark: Uses
	$= 21.3 \text{ m}^2$	trapezoidal rule.
	∴ Area of the native garden is approximately 21.3 m².	
19(b)	Now 25 mm = 0.025 m	1 Mark: Correct
	V = Ah	answer.
	$= 21.3 \times 0.025$ = 0.5325 m ³ = 532.5 L	
	∴532.5 L of water fell in the native garden.	

20(a)	$y = x^2 - 3x + 2 = (x - 1)(x - 2)$	2 Marks: Correct answer.
	$y = x^{2}$ $y = x^{2} - 3x + 2$	1 Mark: One graph drawn correctly.
20(b)	Solve simultaneously to find the point of intersection $x^2 = x^2 - 3x + 2$	1 Mark: Correct answer.
	$3x = 2$ $x = \frac{2}{3}$ Therefore $x^2 > x^2 - 3x + 2$ when $x > \frac{2}{3}$	
21	Amplitude = 3	2 Marks: Correct
	$Period = \frac{2\pi}{\frac{\pi}{2}} = 4$	answer. 1 Mark: Finds either amplitude or the period.
22(a)	Students with a z-score of -2 is two standard deviations below the mean $(60 - (2 \times 10) = 40)$. \therefore A score of 40 has a z-score of -2 .	1 Mark: Correct answer.
22(b)	z-score for 65	1 Mark: Correct
	$z = \frac{x - \bar{x}}{\frac{s}{s}}$ $= \frac{65 - 60}{10}$ $= 0.5$ $\therefore z\text{-score is } 0.5$	answer.
23	$\int_0^{\frac{\pi}{8}} (\sec^2 2x) dx = \left[\frac{1}{2} \tan 2x \right]_0^{\frac{\pi}{8}}$	2 Marks: Correct answer.
	$= \frac{1}{2} \left(\tan \frac{\pi}{4} - \tan 0 \right)$ $= \frac{1}{2}$	1 Mark: Finds the primitive function or shows some understanding.
24	Draw the graphs: $y = \cos(2x) $ and $y = 1$	2 Marks: Correct
	$y = 1$ π $y = \cos(2x) $	answer. 1 Mark: Shows some understanding.
	∴There are 5 solutions.	

25(a)	$f(x) = x^{2}(3 - x) = 3x^{2} - x^{3}$ Stationary points $f'(x) = 0$	2 Marks: Correct answer.
	$f'(x) = 6x - 3x^2$ 3x(2-x) = 0 x = 0, x = 2 \therefore Stationary points are $(0, 0)$ and $(2, 4)$ f''(x) = 6 - 6x At $(0, 0), f''(0) = 6 > 0$ Minima At $(2, 4), f''^{(2)} = -6 < 0$ Maxima	1 Mark: Finds one of the stationary points or recognises $6x - 3x^2 = 0$.
25(b)	x-intercepts ($y = 0$)	2 Marks: Correct answer.
	$x^{2}(3-x) = 0$ $x = 0, x = 3$ y $y = x^{2}(3-x)$ 4 3 2 1 $(0,0) \text{Minima}$ -2 -1 1 2 3 4	1 Mark: Makes some progress towards sketching the curve.
25(c)	$f'(x) = 6x - 3x^2$	1 Mark: Correct answer.
	Gradient of the tangent at the point $P(1,2)$ $m = 6 \times 1 - 3 \times 1^2 = 3$ $y - y_1 = m(x - x_1)$ y - 2 = 3(x - 1) y = 3x - 1 or $3x - y - 1 = 0$	
26	$r = \frac{0.06}{12} = 0.005$	2 Marks: Correct answer.
	$D=810$ and $V_0=58000$ Recurrence relation $V_{n+1}=V_n\times(1+r)-D$ $=V_n\times1.005-810$	1 Mark: Substitutes one correct value into the recurrence relation.
27(a)	$A = 10e^{-kt}$ $3.6 = 10e^{-k \times 5}$ $e^{-5k} = 0.36$	2 Marks: Correct answer.
	$e^{-5k} = 0.36$ $-5k \ln e = \ln 0.36$ $k = \frac{\ln 0.36}{-5}$ $= 0.2043$ ≈ 0.204	1 Mark: Makes some progress towards the solution

27(b)	$A = 10e^{-kt} $ $1 = 10e^{-0.204\times t}$	2 Marks: Correct answer.
	$e^{-0.204\times t} = 0.1$	unswer.
	$-0.204 \times t \times \ln e = \ln 0.1$	
		1 Mark: Makes
	$t = \frac{\ln 0.1}{-0.204}$	some progress towards the
	= 11.2689	solution
	≈ 11.3 hours	
	∴ One kilogram of chlorine dissolves after 11.3 hours.	
28	$T_n = ar^{n-1}$	2 Marks: Correct
	$T_3 = ar^2 = 1.25$ (1)	answer.
	$T_7 = ar^6 = 20$ ②	1 Mark: Finds two
	Dividing the two equations	equations using
	$\frac{ar^6}{ar^6} = \frac{20}{ar^6}$	the <i>n</i> th term of a
	$\frac{ar^2}{ar^2} = \frac{1.25}{1.25}$ $r^4 = 16$	GP or shows some
	r = 16 $r = +2$	understanding.
	$T = \pm 2$ $T_7 = a \times (\pm 2)^6 = 20$	
	$a = \frac{20}{64} = \frac{5}{16}$	
	\therefore First term is $\frac{5}{16}$	
29(a)	<u> </u>	1 Mark: Correct
		answer.
	20	
	2	
	Hand (in cm)	
	ਦੂ 19+	
	H	
	†	
	18	
	17 5	
	·	
	25 26 27 28 29 30 Forearm (in cm)	
29(b)	`	1 Mark: Correct
27(0)	See line of best fit on the above scatterplot.	answer.
29(c)	When forearm length = 27.8 then hand length = 19.4 cm	1 Mark: Correct
	(from the scatterplot)	answer.
	∴ Charlotte's hand length should be 19.4 cm.	
29(d)	Use the calculator to find Pearson's correlation coefficient.	2 Marks: Correct
	$r = 0.990691 \dots$	answer.
	≈ 0.9907	1 Mark: Finds a value of <i>r</i> close to
		0.99.
L		1 01771

30(a)	$FV = PV(1+r)^n$ = 1000(1 + 0.05) ¹⁰⁰ = 131 501.257	1 Mark: Correct answer.
	= 131 301.237 ≈ \$131 501	
	∴ World vision will receive \$131 501	
30(b)	$A_{100} = 1000(1.05)^{100} + 1000(1.05)^{99} + \dots + 1000(1.05)^{1}$	2 Marks: Correct answer.
	GP with $a = 1000(1.05)$, $r = 1.05$ and $n = 100$	
	$A_{100} = \frac{1000(1.05)[1.05^{100} - 1]}{1.05 - 1}$	1 Mark: Identifies a G.P. with 100
	= 2740526.41	terms.
	≈ \$2 740 526	
	∴ World vision will receive \$2 740 526 after 100 years.	
31(a)	$\int_{-1}^{2} x^2 + 1 dx = \left[\frac{x^3}{3} + x \right]_{-1}^{2}$	1 Mark: Correct answer.
	$= \left[\left(\frac{2^3}{3} + 2 \right) - \left(\frac{-1^3}{3} + (-1) \right) \right]$ $= 6$	
	– 0	
31(b)	$\int_{-1}^{4} \sqrt{3x+4} dx = \left[\frac{2}{9} (3x+4)^{\frac{3}{2}} \right]_{-1}^{4}$	2 Marks: Correct answer.
	$= \frac{2}{9} \times \left[\left((3 \times 4 + 4)^{\frac{3}{2}} \right) - \left((3 \times (-1) + 4)^{\frac{3}{2}} \right) \right]$	1 Mark: Finds the primitive function.
	= 14	
32(a)	Intersection value is 4.51 (8% and 4 years)	1 Mark: Correct
	$FV = 4.51 \times 32000$	answer.
	= \$144 320	
32(b)	Intersection value is 4.25 (4% and 4 years)	1 Mark: Correct
	$FV = 4.25 \times 6300$ = \$26 775	answer.
33(a)	$f(x) = \frac{1}{1+x^2} = (1+x^2)^{-1}$	2 Marks: Correct
	$f'(x) = -(1+x^2)^{-2} \times 2x$	answer.
		1 Mark: Shows some
	$=\frac{-2x}{(1+x^2)^2}$	understanding.

33(b)	The tangent has the same gradient as the x-axis (parallel) The x-axis has a gradient of 0 (horizontal line)	2 Marks: Correct answer.
	$f'(x) = \frac{-2x}{(1+x^2)^2} = 0$ $-2x = 0$ $x = 0$	1 Mark: Finds the gradient of the tangent or makes
	When $x = 0$ then $y = \frac{1}{1 + 0^2} = 1$ $y = 1$	some progress.
	$y = \frac{1}{1+x^2}$ $4 + \frac{1}{-4} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac$	
	∴ Point is (0, 1)	
34(a)	$x = \int (1 - 2\sin 2t) dt$	2 Marks: Correct answer.
	$= t + \cos 2t + C$ Initially $t = 0$ and $x = 0$	1 Mark: Integrates
	$0 = 0 + \cos(2 \times 0) + C$	the velocity function.
	$C = -1$ $\therefore x = t + \cos 2t - 1$	
34(b)	When $t = \frac{\pi}{3}$ then	1 Mark: Correct answer.
	$x = \frac{\pi}{3} + \cos\left(2 \times \frac{\pi}{3}\right) - 1$ $= \frac{\pi}{3} - \frac{1}{2} - 1 = \frac{\pi}{3} - \frac{3}{2}$	unswer.
34(c)	$a = \frac{d}{dt}(1 - 2\sin 2t)$ $= -4\cos 2t$	1 Mark: Correct answer.
34(d)	$a = -4\cos 2t \text{ for } 0 \le t \le \pi.$	2 Marks: Correct answer.
	$\begin{vmatrix} 4 & 4 \\ 3 & -4 \\ 2 & -4 \end{vmatrix}$ $a = -4\cos 2t$	1 Mark: Draws the general shape of the curve.
	$\begin{array}{c c} 1 - & & \\ \hline & & \\ \hline & \pi & \\ \hline \end{array}$	
	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ $\begin{bmatrix} \frac{\pi}{2} \end{bmatrix}$	
	-3 -4	
34(e)	$-1 \le \cos 2t \le 1$	1 Mark: Correct answer.
	$-4 \le -4\cos 2t \le 4$ (or from the graph) ∴ Maximum acceleration is 4 ms ⁻²	aliswei.
L		

35	y 4↑	3 Marks: Correct answer.
	$y = \sqrt{x}$ $y = \sqrt{x-1}$	2 Marks: Draws two of the graphs correctly
	$y = \sqrt{x} - 1$ $-4 -3 -2 -1$ $1 2 3 4$	1 Mark: Shows some understanding.
	-2 -3 -	
	-4 \downarrow	
36	Class A total number of marks $75.5 \times 24 = 1812$. Class B total number of marks $80.5 \times 28 = 2254$	2 Marks: Correct answer.
	$Mean = \frac{1812 + 2254}{24 + 28}$	1 Mark: Makes so
	= 78.1923 % ≈ 78.2%	
	∴ Mean mark for both classes is 78.2%	
37(a)	$P = 2x + \frac{1}{2} \times \pi \times y + \frac{1}{2} \times \pi \times 2y$	2 Marks: Correct answer.
	$4.8 = 2x + \frac{1}{2}\pi \times 3y$	1 Mark: Finds an expression for the
	$9.6 = 4x + 3\pi y$	perimeter.
	$y = \frac{9.6 - 4x}{3\pi}$	
37(b)	Express the speed in terms of x $\begin{pmatrix} x^3 & \pi \end{pmatrix}$	3 Marks: Correct answer.
	$S = 200 - \left(\frac{x^3}{27} + \frac{\pi}{6}y\right)$ $= 200 - \left(\frac{x^3}{27} + \frac{\pi}{6} \times \frac{9.6 - 4x}{3\pi}\right)$ $= 200 - \frac{x^3}{27} - \frac{9.6 - 4x}{18}$ $\frac{dS}{dx} = -\frac{3x^2}{27} + \frac{4}{18}$	2 Marks: Finds the length of the straight for maximum speed.
	$\frac{dS}{dx} = -\frac{3x^2}{27} + \frac{4}{18}$ Maximum length of the straight occurs when $\frac{dS}{dx} = 0$	1 Mark: Differentiates the S formula with
	$-\frac{3x^2}{27} + \frac{4}{18} = 0$ $3x^2 = 6$	respect to <i>x</i> .
	$3x^{2} = 6$ $x = \sqrt{2} \text{ km}$ Check	
	When $x = \sqrt{2} \text{ km then } \frac{d^2S}{dx^2} = -\frac{6x}{27} = -\frac{6 \times \sqrt{2}}{27} < 0 \text{ (Maxima)}$	

38(a)	y	2 Marks: Correct
	6 1	answer.
	y = 2x - 4	1 Mark: Draws the general shape or shows some understanding.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	-1 †	
38(b)	m = -2 y $m = 2$	2 Marks: Correct answer.
	5	1 Mark: Finds one of the solutions.
	y = 2x - 4	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	From the graph	
	$m < -2 \text{ or } m \ge 2 \text{ or } m = -\frac{1}{2}$	
39	Assessment results increase as height increases.	2 Marks: Correct
	Low positive correlation. Not a strong relationship.	answer. 1 Mark: Shows
40		understanding
	$z = \frac{x - \bar{x}}{\frac{S}{S}} = \frac{179 - 167}{12}$	2 Marks: Correct answer.
	$=\frac{12}{12}$ $=1$	1 Mark: Finds the
	68% of scores have a <i>z</i> -score between –1 and 1.	z-score.
	∴ 32% ÷ 2 = 16% have a z-score greater than 1.	