Лабораторная работа 8

Целочисленная арифметика многократной точности

Баранов Иван

Содержание

1	Цел	Цели и задачи														
	1.1	Цель лабораторной работы														
2	Выг	олнение лабораторной работы														
	2.1	Длинная арифметика														
	2.2	Сложение неотрицательных целых чисел														
	2.3	Вычитание неотрицательных целых чисел														
	2.4	Умножение неотрицательных целых чисел столбиком														
	2.5	Быстрый столбик														
	2.6	Деление многоразрядных целых чисел														
	2.7	Пример работы алгоритма														
7	D	волы														

List of Figures

2.1	Работа алгоритма																												8
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Цели и задачи

1.1 Цель лабораторной работы

Ознакомление с алгоритмами целочисленной арифметики многократной точности, а также их последующая программная реализация.

2 Выполнение лабораторной работы

2.1 Длинная арифметика

Высокоточная (длинная) арифметика — это операции (базовые арифметические действия, элементарные математические функции и пр.) над числами большой разрядности (многоразрядными числами), т.е. числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит).

2.2 Сложение неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$; разрядность чисел n; основание системы счисления b.
- Выход. Сумма $w=w_0w_1\dots w_n$, где w_0 цифра переноса, всегда равная 0 либо 1.
- 1. Присвоить j=n, k=0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j=(u_j+v_j+k)\pmod{b}$, где $k=\left[\frac{u_j+v_j+k}{b}\right]$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0=k$ и результат: w.

2.3 Вычитание неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$, u>v; разрядность чисел n; основание системы счисления b.
- Выход. Разность $w = w_0 w_1 \dots w_n = u v$.
- 1. Присвоить j = n, k = 0 (k заём из старшего разряда).
- 2. Присвоить $w_j=(u_j-v_j+k)\pmod b; k=\left\lceil \frac{u_j-v_j+k}{b} \right\rceil.$
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то результат: w.

2.4 Умножение неотрицательных целых чисел столбиком

- Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b .
- Выход. Произведение $w = uv = w_1w_2\dots w_{m+n}$.
- 1. Выполнить присвоения: $w_{m+1}=0, w_{m+2}=0, \dots, w_{m+n}=0, j=m$ (j перемещается по номерам разрядов числа v от младших к старшим).
- 2. Если $v_{j}=0$, то присвоить $w_{j}=0$ и перейти на шаг 6.
- 3. Присвоить i=n, k=0 (значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t = u_i \cdot v_j + w_{i+j} + k, w_{i+j} = t \pmod{b}, k = \left[\frac{t}{b}\right].$
- 5. Присвоить i=i-1. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_{j}=k$.
- 6. Присвоить j=j-1. Если j>0, то вернуться на шаг 2. Если j=0, то результат: w.

2.5 Быстрый столбик

- Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.
- Выход. Произведение $w = uv = w_1w_2\dots w_{m+n}$.
- 1. Присвоить t = 0.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t = t + u_{n-i} \cdot v_{m-s+i}$.
- 4. Присвоить $w_{m+n-s} = t \pmod{b}, t = \left[\frac{t}{h}\right]$. Результат: w.

2.6 Деление многоразрядных целых чисел

- Вход. Числа $u=u_n\dots u_1u_0$, $v=v_t\dots v_1v_0$, $n\geq t\geq 1, v_t\neq 0$.
- Выход. Частное $q=q_{n-t}\dots q_0$, остаток $r=r_t\dots r_0.$
- 1. Для j от 0 до n-t присвоить $q_j=0$.
- 2. Пока $u \geq vb^{n-t}$, выполнять: $q_{n-t} = q_{n-t} + 1, u = u vb^{n-t}.$
- 3. Для $i=n,n-1,\ldots,t+1$ выполнять пункты 3.1 3.4: 3.1. если $u_i\geq v_t$, то присвоить $q_{i-t-1}=b-1$, иначе присвоить $q_{i-t-1}=\frac{u_ib+u_{i-1}}{v_t}$. 3.2. пока $q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2}$ выполнять $q_{i-t-1}=q_{i-t-1}-1$. 3.3. присвоить $u=u-q_{i-t-1}b^{i-t-1}v$. 3.4. если u<0, то присвоить $u=u+vb^{i-t-1}$, $q_{i-t-1}=q_{i-t-1}-1$.
- 4. r=u. Результат: q и r.

2.7 Пример работы алгоритма

```
[6, 9, 1, 3, 4]
[4, 4, 4, 4, 4]
[0, 0, 0, 0, 0, 0.39999999999986, 4, 0, 0]
[4, 7, 8, 3, 1, 0, 2, 0, 5, 0, 0]
([0, 2, 9], -39899091)
```

Figure 2.1: Работа алгоритма

3 Выводы

Ознакомились с алгоритмами целочисленной арифметики многократной точности.

Произвели их программную реализацию.