An Overview of Compilation

Uday Khedker

(www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

January 2014

Compilation Overview: Outline

Introduction

cs306

- compilation sequence
- compilation models

IIT Bombay

Part 1

Introduction to Compilation

Binding

Time =

cs306

Binding

cs306

IIT Bombay

Implementation Mechanisms

Implementation Mechanisms

Compilation Overview: Introduction to Compilation

4/18

• "Gap" between the "levels" of program specification and execution

Program Specification

cs306

Machine

• "Gap" between the "levels" of program specification and execution

IIT Bombay

cs306

• "Gap" between the "levels" of program specification and execution

IIT Bombay

Implementation Mechanisms as "Bridges"

• "Gap" between the "levels" of program specification and execution

State : Variables
Operations: Expressions,
Control Flow

State : Memory, Registers

Operations: Machine

Instructions

```
Input C statement
  a = b<10?b:c;
```

cs306

Spim Assembly Equivalent

```
$t0, 4($fp); t0 <- b
                                     # Is b smaller
   slti $t0, $t0, 10; t0 <- t0 < 10 # than 10?
       $t0, $t0 ; t0 <- !t0
   not
   bgtz $t0, L0: ; if t0>0 goto L0
       $t0, 4($fp); t0 <- b
   lw
                                     # YES
   b
      L1:
                       goto L1
LO: lw $t0, 8($fp); LO: t0 <- c
                                     # NO
L1: sw 0(\$fp), \$t0; L1: a <- t0
```

High and Low Level Abstractions

Spim Assembly Equivalent

Input C statement a = b<10?b:c;

```
$t0, 4($fp) ; t0 <- b
                                      # Is b smaller
   slti $t0, $t0, 10; t0 <- t0 < 10 # than 10?
       $t0, $t0 ; t0 <- !t0
   not
   bgtz $t0, L0: ; if t0>0 goto L0
        $t0, 4($fp); t0 <- b
   lw
                                      # YES
   b
       L1:
                       goto L1
LO: lw $t0, 8($fp) ;L0: t0 <- c
                                      # NO
L1: sw 0(\$fp), \$t0; L1: a <- t0
```

High and Low Level Abstractions

NOT Condition

True Part

```
Input C statement
a = b<10?b:c;</pre>
```

False Part

Spim Assembly Equivalent

```
lw $t0, 4($fp); t0 <- b  # Is b smaller
slti $t0, $t0, 10; t0 <- t0 < 10  # than 10?
not $t0, $t0  ; t0 <- !t0
bgtz $t0, L0: ; if t0>0 goto L0
lw $t0, 4($fp); t0 <- b  # YES
b L1: ; goto L1
L0: lw $t0, 8($fp); L0: t0 <- c  # N0
L1: sw 0($fp), $t0; L1: a <- t0</pre>
```

High and Low Level Abstractions

Spim Assembly Equivalent

Input C statement
a = b<10?b:c;</pre>

```
lw $t0, 4($fp) ; t0 <- b  # Is b smaller
slti $t0, $t0, 10 ; t0 <- t0 < 10  # than 10?
not $t0, $t0  ; t0 <- !t0
bgtz $t0, L0: ; if t0>0 goto L0
lw $t0, 4($fp) ; t0 <- b  # YES
b L1: ; goto L1
L0: lw $t0, 8($fp) ;L0: t0 <- c  # N0
L1: sw 0($fp), $t0 ;L1: a <- t0</pre>
```

Compilation Overview: Introduction to Compilation

Implementation Mechanisms

 ${\sf Translation} \qquad = \quad {\sf Analysis} + {\sf Synthesis}$

 ${\sf Interpretation} \quad = \quad {\sf Analysis} \, + \, {\sf Execution}$

cs306

T Bombay

6/18

cs306

Compilation Overview: Introduction to Compilation

• Translation = Analysis + Synthesis Interpretation = Analysis + Execution

• Translation Instructions \Longrightarrow Equivalent Instructions

IIT Bombay

6/18

Uday Khedker

Translation

Interpretation

Compilation Overview: Introduction to Compilation

Translation Analysis + Synthesis Interpretation Analysis + Execution

Instructions

Instructions

Actions Implied by Instructions

Equivalent

Instructions

IIT Bombay

Part 2

An Overview of Compilation Phases

IIT Bombay

Uday Khedker

The Structure of a Simple Compiler

a=b<10?b:c;

10/18

Input

Translation Sequence in Our Compiler: Parsing

Issues:

- Grammar rules, terminals, non-terminals
- Order of application of grammar rules
 eg. is it (a = b<10?) followed by (b:c)?
- Values of terminal symbols

eg. string "10" vs. integer number 10.

Translation Sequence in Our Compiler: Semantic Analysis

11/18

Translation Sequence in Our Compiler: Semantic Analysis

Issues:

- Symbol tables
 Have variables been declared? What are their types?
 - What is their scope?
- Type consistency of operators and operands
 The result of computing b<10? is bool and not int

Uday Khedker IIT Bombay

Translation Sequence in Our Compiler: IR Generation

Translation Sequence in Our Compiler: IR Generation

- Convert to maximal trees which can be implemented without altering control flow
 Simplifies instruction selection and scheduling, register allocation etc.
- Linearise control flow by flattening nested control constructs

Uday Khedker

L0:

L1:

L1:

Translation Sequence in Our Compiler: Instruction Selection

Uday Khedker

IIT Bombay

13/18

Translation Sequence in Our Compiler: Instruction Selection

Uday Khedker

Translation Sequence in Our Compiler: Instruction Selection

Uday Khedker

Translation Sequence in Our Compiler: Emitting Instructions

L1: a $\leftarrow T_1$

Uday Khedker

а

Translation Sequence in Our Compiler: Emitting Instructions AsgnStmnt

Uday Khedker

Part 3

Compilation Models

Compilation Overview: Compilation Models

15/18

Input Source Program

Compilation Overview: Compilation Models

Model

15/18

IIT Bombay

Uday Khedker

Davidson Fraser

Model

15/18

AST

Optimizer

Target Indep. IR

IIT Bombay

Davidson Fraser

Model

15/18

Input Source Program

IIT Bombay

Target Program

cs306

Uday Khedker

IIT Bombay

15/18

cs306

15/18

Davidson Fraser

Davidson Fraser

Model

Front End

AST

Expander

Register Transfers

Optimizer

15/18

Register Transfers

Model Front End **AST** Optimizer Target Indep. IR Code Generator

Aho Ullman

Input Source Program —

Uday Khedker

Target Program

AST Optimizer Target Indep. IR Code Generator Target Program

Optimizer

Register Transfers

Recognizer

Target Program

AST

Expander

Register Transfers

15/18

Uday Khedker

Davidson Fraser

Model

Compilation Models

Aho Ullman Model

Front End AST Optimizer Target Indep. IR Code Generator Target Program

Aho Ullman: Instruction selection

- over optimized IR using
- cost based tree tiling matching

Davidson Fraser: Instruction selection

. . . .

- over AST using
- simple full tree matching based algorithms that generate
- naive code which is
 - target dependent, and is
 - target dependent, and itoptimized subsequently

Target Program

Recognizer

16/18

Parser

IIT Bombay

16/18

Typical Front Ends

Typical Front Ends

17/18

Typical Back Ends in Aho Ullman Model

- Compile time
- evaluations

 Eliminating redundant computations

Typical Back Ends in Aho Ullman Model

- Compile time
 - evaluations
- Eliminating redundant computations
- Instruction SelectionLocal Reg Allocation
- Choice of Order of Evaluation

17/18

Typical Back Ends in Aho Ullman Model

Uday Khedker IIT Bombay

Typical Back Ends in Aho Ullman Model

Evaluation

Uday Khedker

computations

IIT Bombay

Assembly Code

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	Machine instructions a	R is expressed in the form of trees re described in the form of trees overed" using the instruction trees
Optimization		

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	Machine independent IR is expressed in the form of trees Machine instructions are described in the form of trees Trees in the IR are "covered" using the instruction trees Cost based tree pattern matching	
Optimization		

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	 Machine independent IR is expressed in the form of trees Machine instructions are described in the form of trees Trees in the IR are "covered" using the instruction trees Cost based tree pattern matching 	
Optimization		

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	Machine instructions a	R is expressed in the form of trees re described in the form of trees overed" using the instruction trees Structural tree pattern matching
Optimization	Machine independent	

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	 Machine independent IR is expressed in the form of trees Machine instructions are described in the form of trees Trees in the IR are "covered" using the instruction trees Cost based tree pattern 	
	matching	Structural tree pattern matching
		Machine dependent
Optimization	Machine independent	

	Aho Ullman Model	Davidson Fraser Model
Instruction Selection	 Machine independent IR is expressed in the form of trees Machine instructions are described in the form of trees Trees in the IR are "covered" using the instruction trees 	
	Cost based tree pattern matching	Structural tree pattern matching
Optimization	Machine independent	Machine dependent
		Key Insight: Register transfers are target specific but their form is target independent

Uday Khedker IIT Bombay