Algorytmy optymalizacji dyskretnej 2022/23

Lista 5 ★

Jest to lista dodatkowa (nieobowiązkowa) na ostatnie zajęcia. Na zajęciach zadania można rozwiązywać w dowolnej kolejności. Zadania na tej liście zaczerpnięte są m.in. z podręcznika [AMO93].

Zadanie 1. (Modyfikacje problemu Max Flow)

- (a) Podaj transformację problemu maksymalnego przepływu w sieci z wieloma źródłami i wieloma ujściami do problemu maksymalnego przepływu w sieci z jednym źródłem i jednym ujściem.
- (b) Pokaż, że jeśli dodamy dowolną liczbę łuków wchodzących do źródła s oraz dowolną liczbę łuków wychodzących z ujścia t o dowolnych pojemnościach, to wartość maksymalnego przepływu nie zmieni się.
- (c) Załóżmy, że w sieci G=(N,A) pewne łuki mają nieskończoną pojemności, ale nie istnieje ścieżka od źródła do ujścia o nieskończonej pojemności. Niech A° oznacza zbiór łuków o skończonych pojemnościach. Pokaż, że możemy zastąpić nieskończoną pojemność każdego łuku $(i,j)\in A\setminus A^\circ$ skończoną pojemnością M taką, że $M\geqslant \sum_{(i,j)\in A^\circ}u_{ij}$ i nie będzie to miało wpływu na wartość maksymalnego przepływu.
- **Zadanie 2.** Rozważmy problem wyznaczania rozwiązania *dopuszczalnego* (jeśli istnieje) problemu najtańszego przepływu w sieci G=(N,A) bez ograniczeń dolnych na pojemność łuków, tj. $l_{ij}=0$ dla każdego $(i,j)\in A$. Sformułuj powyższy problem jako zagadnienie maksymalnego przepływu.
- **Zadanie 3.** Sformułuj problem z zadania 2. z Listy 2 (rozmieszczenie członków rodzin przy stołach pozwalające na bliższe poznanie się) jako zagadnienie maksymalnego przepływu.
- **Zadanie 4.** Grupa K osób planuje wspólne dojazdy do pracy podczas D dni (załóżmy, że mają pojazd, który pomieści wszystkie osoby). j-tego dnia, $j \in \{1, \ldots, D\}$, pewien podzbiór $P_j \subseteq \{1, \ldots, K\}$ osób chce jechać i musi wybrać spośród siebie kierowcę $d_j \in P_j$. Każda z osób $i \in \{1, \ldots, K\}$ ma określony górny limit l_i , $0 \le l_i \le D$, na liczbę dni, podczas których chce być kierowcą. Celem jest znalezienie takiego wyboru kierowców we wszystkich dniach, że żadna osoba i nie prowadzi więcej niż l_i razy, lub wykrycie, że taki wybór nie istnieje.
 - (a) Sformułuj powyższy problem wyboru kierowców jako zagadnienie maksymalnego przepływu. HINT: Najpierw spróbuj samodzielnie znaleźć rozwiązanie, a dopiero potem ewentualnie zajrzyj tutaj (Problem 5).
 - (b) Wyznacz dopuszczalny wybór kierowców dla instancji z poniższej tabeli ($K=4,\,D=5$). Symbol X oznacza, że dana osoba chce jechać danego dnia.

Osoba (i)	Sheldon (1)	Amy (2)	Penny (3)	Leonard (4)
Dzień 1		X	X	
Dzień 2	X		X	X
Dzień 3	X	X		
Dzień 4		X	X	X
Dzień 5	X		X	X
Limit l_i	0	1	3	2

Zadanie 5. Autokar mogący pomieścić p pasażerów przejeżdża kolejno przez miasta $1, \ldots, n$. Pasażerowie mogą wsiąść w dowolnym mieście $i \in \{1, \ldots, n-1\}$ i wysiąść w dowolnym mieście $j \in \{i+1, \ldots, n\}$. b_{ij} jest liczbą pasażerów w mieście i chcących pojechać do miasta j, f_{ij} oznacza natomiast opłatę za przejazd (za jednego pasażera) z miasta i do j. Wyznacz liczbę pasażerów, które autokar powinien zabrać w poszczególnych miastach (nie musi zabrać wszystkich pasażerów chcących pojechać) tak, aby zawieść ich do miast docelowych, nie przekroczyć pojemności autokaru i zmaksymalizować całkowity zysk z przewozów. Sformułuj problem jako zagadnienie najtańszego przepływu.

HINT: Najpierw spróbuj samodzielnie znaleźć rozwiązanie, a dopiero potem ewentualnie zajrzyj do rozdziału 9.2 (Application 9.4) w [AMO93].

Zadanie 6. Dowódca znajduje się w jednym z węzłów $p \in N$ nieskierowanej sieci komunikacyjnej G = (N, E). Jego podkomendni znajdują się w innych węzłach sieci – oznaczmy ten zbiór węzłów przez S (mamy więc $S \subseteq N \setminus \{p\}$). Niech u_{ij} oznacza wysiłek potrzebny do wyeliminowania krawędzi $(i, j) \in E$ z sieci G. Podaj algorytm wyznaczający minimalny wysiłek potrzebny do zablokowania komunikacji między dowódcą a jego podkomendnymi.

Patrz także: Alexander Schrijver, On the history of combinatorial optimization (till 1960), str. 22-25...

Zadanie 7. Pokaż, że jeśli używamy algorytmu Floyda-Warshalla do wyznaczenia rozwiązania dla problemu *all-pairs shortest path* w sieci zawierającej skierowany cykl o ujemnej długości, to w pewnej iteracji zajdzie $d^k[i,i] < 0$ dla pewnego $i \in N$.

HINT: Rozważny węzeł i o najmniejszym indeksie, dla którego spełniona jest następująca własność: sieć zawiera skierowany cykl o ujemnej długości złożony tylko z węzłów o indeksach od 1 do i (niekoniecznie wszystkich).

Literatura

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. *Network Flows: Theory, Algorithms, and Applications*. Prentice-Hall, Inc., USA, 1993.