1991年全国硕士研究生入学统一考试 数学试题参考解答及评分标准

数 学 (试卷一)

一、填空题: (本题满分15分,每小题3分)

- (2) 由方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的函数 z = z(x, y) 在点 (1, 0, -1) 处的全微分 $dz = dx \sqrt{2}dy$.
- (3) 已知直线 L_1 和 L_2 的方程 L_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$ 和 L_2 : $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{1}$,则过 L_1 且平 行于 L_2 的平面方程是 x-3 y+z+2=0 .
- (4) 已知当 $x \to 0$ 时, $(1+a^{x^2})^{1/2} 1$ 与 $\cos x 1$ 是等阶无穷小,则常数a = -3/2.

(5)
$$\[\text{0}\] 4 \] \text{0} \text{1} \text{1} \text{1} \text{1} \text{2} \text{1} \text{2} \text{0} \text{0} \text{1} \text{1} \text{2} \text{2} \text{2} \text{0} \text{0} \text{0} \text{1} \text{2} \text{2} \text{2} \text{2} \text{0} \text{0} \text{0} \text{1} \text{2} \text{2}$$

二、选择题: (本题满分15分,每小题3分)

(1) 曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$

(A) 没有渐近线

(B) 仅有水平渐近线

(C) 仅有铅直渐近线

(D) 既有水平渐近线又有铅<u>直</u>渐近线

(2) 若连续函数
$$f(x)$$
 满足关系式 $f(x) = \int_0^{2x} f(\frac{t}{2}) dt + \ln 2$,则 $f(x)$ 等于 (B)

(A) $e^x \ln 2$ (B) $e^{2x} \ln 2$ (C) $e^x + \ln 2$ (D) $e^{2x} + \ln 2$.

(3) 已知级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = 2, \sum_{n=1}^{\infty} a_{2n-1} = 5$$
, 则级数 $\sum_{n=1}^{\infty} a_n$ 等于 (C)

(A) 3 (B) 7 (C) 8 (D) 9

(4) 设 D 是 XOY 平面上以 (1,1), (-1,1) 和 (-1,-1)为顶点的三角区域, D_1 是 D 在第一象限的部分,则 $\iint_D (xy + \cos x \sin y) dx dy$ 等于 (A)

$$(A) 2 \iint_{D_1} \cos x \sin y dx dy \quad (B) 2 \iint_{D_1} xy dx dy \quad (C) 4 \iint_{D_1} (xy + \cos x \sin y) dx dy \quad (D) 0.$$

(5) 设 n 阶方阵 A、B、C 满足关系式 ABC = E, 其中 E 是 n 阶单位阵,则必有 (D)

$$(A) ACB = E$$

$$(A) ACB = E \qquad (B) CBA = E$$

(C)
$$BAC = E$$

(D)
$$BCA = E$$

三、(本题满分15分,每小题3分)

 $(1) \ \ \ \ \ \ \ \lim_{x\to +0} (\cos\sqrt{x})^{\frac{\pi}{x}}$

解原式=
$$\lim_{x\to 0^+} e^{\frac{\pi}{x} \cdot \ln \cos \sqrt{x}} = e^{\frac{\lim_{x\to 0^+} \pi}{x} \cdot \ln \cos \sqrt{x}}$$
2 分
$$= e^{\frac{\pi \cdot \lim_{x\to 0^+} -\sin \sqrt{x}}{-\cos \sqrt{x}} \cdot \frac{1}{2\sqrt{x}}}$$
4 分
$$= e^{\frac{\pi}{2}}$$
5 分

(2) 设 \vec{n} 是曲面 $2x^2 + 3y^2 + z^2 = 6$ 在点 P(1,1,1) 处的指向外测的法向量,求函数 $u = \frac{\sqrt{6x^2 + 8y^2}}{4}$ 在点 P 处沿方向 \vec{n} 的方向导数

$$\frac{\partial u}{\partial x}\Big|_{P} = \frac{6x}{z\sqrt{6x^2 + 8y^2}}\Big|_{P} = \frac{6}{\sqrt{14}}, \quad \frac{\partial u}{\partial y}\Big|_{P} = \frac{8y}{z\sqrt{6x^2 + 8y^2}}\Big|_{P} = \frac{8}{\sqrt{14}},$$

$$\frac{\partial u}{\partial z}\Big|_{P} = -\frac{\sqrt{6x^2 + 8y^2}}{z^2}\Big|_{P} = -\sqrt{14}.$$
.....3 \(\frac{\partial}{2}{2}\)

从而
$$\frac{\partial u}{\partial \vec{n}}\Big|_{P} = \left[\frac{\partial u}{\partial x}\cos(\vec{n},\vec{i}) + \frac{\partial u}{\partial y}\cos(\vec{n},\vec{j}) + \frac{\partial u}{\partial z}\cos(\vec{n},\vec{k})\right]\Big|_{P}$$

$$= \frac{6}{\sqrt{14}} \cdot \frac{2}{\sqrt{14}} + \frac{8}{\sqrt{14}} \cdot \frac{3}{\sqrt{14}} - \sqrt{14} \cdot \frac{2}{\sqrt{14}} = \frac{11}{7}.$$
......5 分

(3) 求 $\iiint (x^2 + y^2 + z) dv$, 其中 Ω 是由曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周而成的曲面与平面 z=4 所围成的立体.

解
$$\iint_{\Omega} (x^2 + y^2 + z) dv = \int_0^{2\pi} d\theta \int_0^{\sqrt{8}} r dr \int_{\frac{r^2}{2}}^4 (r^2 + z) dz \qquad \cdots 2 \%$$

$$= 2\pi \int_0^{\sqrt{8}} (4r^3 + 8r - \frac{5}{8}r^5) dr \qquad \cdots 4 \%$$

$$= \frac{256}{3}\pi. \qquad \cdots 5 \%$$

四、(本题满分6分)

在过点 O(0,0)和 $A(\pi,0)$ 的曲线族 $y = a \sin x \ (a > 0)$ 中,求一条曲线 L,使沿该曲线从 O 到 A 的积分 $\int_{\Gamma} (1+y^3) dx + (2x+y) dy$ 的值最小.

解:
$$I(a) = \int_0^{\pi} [1 + a^3 \sin^3 x + (2x + a \sin x) a \cos x] dx$$
,2 分
$$= \pi - 4a + \frac{4}{3}a^3.$$
4 分

令 $I'(a) = 4(a^2 - 1) = 0$,得 a = 1,(a = -1舍去),且 a = 1 是 I(a) 在 $(0, +\infty)$ 内的唯一驻点 ……5 分由于 I''(1) = 8 > 0,I(a) 在 a = 1 处取到最小值. 故所求曲线是 $y = \sin x (0 \le x \le \pi)$ ……6分

五、(本题满分8分)

将函数 $f(x) = 2 + |x| (-1 \le x \le 1)$ 展开成以 2 为周期的傅里叶级数,并由此求级数 $\sum_{n=2}^{\infty} \frac{1}{n^2}$ 的和.

解: 由于
$$f(x) = 2 + |x|(-1 \le x \le 1)$$
 是偶函数,所以 $a_0 = 2 \int_0^1 (2+x) dx = 5$, …… 1 分
$$a_n = 2 \int_0^1 (2+x) \cos(n\pi x) dx = 2 \int_0^1 x \cos(n\pi x) dx = \frac{2(\cos n\pi - 1)}{n^2 \pi^2}, n = 1, 2, \dots$$
 …… 3 分 …… 4 分

因所给函数在[-1,1]满足收敛定理的条件,故

六、(本题满分6分)

设函数 f(x)在[0,1]上连续,(0,1)内可导,且 $3\int_{\frac{2}{3}}^{1} f(x)dx = f(0)$,证明在(0,1)内存在一点 c ,使 f'(c) = 0 .

解: 由积分中值定理知,在[
$$\frac{2}{3}$$
,1]上存在一点 c_1 ,使 $\int_{\frac{2}{3}}^{1} f(x)dx = \frac{1}{3}f(c_1)$, ……3 分 从而有 $f(c_1) = f(0)$, 4 分 故 $f(x)$ 在区间[$0,c_1$]上满足罗尔定理的条件,因此在 $(0,c_1)$ 内存在一点 c ,使得 $f'(c) = 0$. $c \in (0,c_1) \subset (0,1)$. ……7 分

七、(本题满分6分)

已知 $\alpha_1 = (1,0,2,3)$, $\alpha_2 = (1,1,3,5)$, $\alpha_3 = (1,-1,a+2,1)$, $\alpha_4 = (1,2,4,a+8)$, $\beta = (1,1,b+3,5)$, β :

- (1) a,b 为何值时, β 不能表示成 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合?
- (2) a,b 为何值时, β 有 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的唯一线性表示式? 并写出表示式.

解: 设
$$\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4$$
,则
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 - x_3 + 2x_4 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 + 4x_4 = b + 3 \\ 3x_1 + 5x_2 + x_3 + (a+3)x_4 = 5 \end{cases}$$
2 分

$$\boxtimes \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 1 \\
2 & 3 & a+2 & 4 & b+3 \\
3 & 5 & 1 & a+3 & 5
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 1 \\
0 & 1 & a+1 & 0 & b \\
0 & 0 & 0 & a+1 & 0
\end{pmatrix}
\dots 4$$
.....4

故当 $a = -1, b \neq 0$ 时, β 不能表示成 a_1, a_2, a_3, a_4 的线性组合.

八、(本题满分6分)

设 A 是 n 阶正定阵, E 是 n 阶单位阵, 证明 A+E 的行列式大于 1.

其中 $\lambda_i > 0$ ($i = 1, 2 \cdots, n$) 是 A 的特征值.

$$\text{th } Q^{-1}(A+E)Q = Q^{-1}AQ + Q^{-1}Q = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} + E = \begin{pmatrix} \lambda_1 + 1 & & \\ & & \lambda_2 + 1 & \\ & & & \ddots & \\ & & & & \lambda_n + 1 \end{pmatrix}.$$

在上式两端取行列式得 $\prod_{i=1}^{n} (\lambda_i + 1) = |Q^{-1}| \cdot |(A+E)| \cdot |Q| = |A+E|$,从而|A+E| > 1.······6分

九、(本题满分6分)

在上半平面求一条向上凹的曲线,其上任一点 P(x,y)处的曲率等于此曲线在该点的法线段 PQ 长度的倒数(Q 是法线与 x 轴的交点),且曲线在点(1,1)处的切线与 X 轴平行.

解: 曲线
$$y = y(x)$$
 在点 (x, y) 处的法线方程是 $Y - y = -\frac{1}{y'}(X - x), (y' \neq 0), \dots 1$ 分

它与x轴的交点是(x + yy', 0),从而该点到x轴之间的法线段 PQ 的长度是

$$\sqrt{(yy')^2 + y^2} = y(1 + y'^2)^{\frac{1}{2}} \quad (y' = 0 \text{ 也满足上式})$$
2 分

故由题意得微分方程
$$\frac{y"}{(1+y'^2)^{\frac{3}{2}}} = \frac{1}{y(1+y'^2)^{\frac{1}{2}}}$$
,即 $yy"=1+y'^2$ ……3 分

令
$$y'=p$$
 ,则 $y''=p\frac{dp}{dy}$,代入方程得 $yp\frac{dp}{dy}=1+p^2$,或 $\frac{p}{1+p^2}dp=\frac{dy}{y}$

代入
$$\frac{dy}{dx} = p$$
,得 $y' = \pm \sqrt{y^2 - 1}$, $\frac{dy}{\sqrt{y^2 - 1}} = \pm dx$

积分上式,并注意到x=1时y=1,得 $\ln(y+\sqrt{y^2-1})=\pm(x-1)$.

因此所求曲线方程为
$$y + \sqrt{y^2 - 1} = e^{\pm (x-1)}$$
 即 $y = \frac{1}{2} (e^{x-1} + e^{-(x-1)})$8 分

十、填空题 (本题满分 6 分,每小题 3 分)

- (1) 若随机变量 X 服从均值为 2,方差为 σ^2 的正态分布,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} = 0.2$
- (2) 随机地向半圆 $0 < y < \sqrt{2ax x^2}$ (a > 0) 内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与 x 轴的夹角小于 $\frac{\pi}{4}$ 的概率为 $\frac{1}{2} + \frac{1}{\pi}$

十一、(本题满分6分)

设二维随机变量(X, Y)的概率密度为 $f(x,y) = \begin{cases} 2e^{-(x+2y)} & x > 0, y > 0 \\ 0 &$ 其它,求

Z=X+2Y 的分布函数.

解:
$$F_Z(z) = P\{Z \le z\} = P\{X + 2Y \le z\} = \iint_{x+2y \le z} f(x, y) dx dy$$
 ……2 分 当 $z \le 0$ 时, $P\{Z \le 0\} = 0$.

数 学(试卷二)

四、(本题满分18分,每小题6分)

M:
$$\int_{3}^{+\infty} \frac{dx}{(x-1)^4 \sqrt{x^2 - 2x}} = \int_{3}^{+\infty} \frac{dx}{(x-1)^4 \sqrt{(x-1)^2 - 1}}$$

$$\Rightarrow x-1 = \sec \theta$$
, $\iint dx = \sec \theta \tan \theta d\theta$.

故原式=
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sec \theta \tan \theta}{\sec^4 \theta \tan \theta} d\theta$$
3 分

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 - \sin^2 \theta) \cos \theta d\theta = \frac{2}{3} - \frac{3\sqrt{3}}{8}.$$
6 \(\frac{\pi}{3}\)

(2) 计算 $\iint_s -ydzdx + (z+1)dxdy$, 其中 S 是圆柱面 $x^2 + y^2 = 4$ 被平面 x+z=2 和 z=0 所截出部分的外侧.

解一:设 S, S_1, S_2, Ω, D_1 如图所示,

ਪੋਟੀ
$$I_1 = \iint_{S_1} -ydzdx + (z+1)dxdy$$
, $I_2 = \iint_{S_2} -ydzdx + (z+1)dxdy$,

$$\overline{m} I_1 = \iint_{S_1} -y dz dx + \iint_{S_2} (z+1) dx dy$$

$$= \iint_{S} (z+1) dx dy = \iint_{D} (2-x+1) dx dy = 12\pi , \qquad \cdots 3$$

$$I_2 = \iint_{S_2} -y dz dx + \iint_{S_2} (z+1) dx dy = -\iint_{D_1} dx dy = -4\pi$$
.

又由奧高公式有
$$I_3 = \iiint_{\Omega} (-1+1)dv = 0$$
.

故
$$I = I_3 - I_1 - I_2 = -8\pi$$
.

解二:设S,D,如上图所示,则

$$= \iint_{D_2} -2\sqrt{4-x^2} \, dz dx \qquad \cdots 3 \, \mathcal{H}$$

$$= -2\int_{-2}^{2} dx \int_{0}^{2-x} \sqrt{4-x^2} dx \qquad \cdots 4$$

$$=-2\int_{-2}^{2} (2-x)\sqrt{4-x^2} dx \qquad \cdots 5 \, \%$$

$$= -4 \int_{-2}^{2} \sqrt{4 - x^2} \, dx = -8\pi \,.$$
 6 \(\frac{1}{2}\)

- (3) 【 同数学一 第四题 】
- 五、(本题满分8分)【 同数学一 第五题 】
- 六、(本题满分 7 分)【 同数学一 第六题 】
- 七、(本题满分8分)【同数学一第七题】
- 八、(本题满分6分)【 同数学一 第八题 】
- 九、(本题满分8分)【同数学一第九题】

数 学(试卷三)

一、填空题: (本题满分15分,每小题3分)

(2) 曲线
$$y = e^{-x^2}$$
 的向上凸区间是 $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$.

(3)
$$\int_{1}^{+\infty} \frac{\ln x}{x^2} dx = 1$$

(4) 质点以速度 $t\sin(t^2)$ 米 / 秒作直线运动,则从时刻 $t_1 = \sqrt{\frac{\pi}{2}}$ 到 $t_2 = \sqrt{\pi}$ 秒内质点所经过 的路程等于 1/2 米.

(5)
$$\lim_{x \to 0^{+}} \frac{1 - e^{\frac{1}{x}}}{x + e^{\frac{1}{x}}} = \underline{\qquad -1}$$

二、选择题: (本题满分15分,每小题3分)

(1)
$$\exists y = x^2 + ax + b$$
 $\exists x = -1 + xy^3 = (1, -1)$ $\exists x = -1 + xy^3 = (1, -1)$ $\exists x = -1 + xy^3 = (1, -1)$

(A)
$$a = 0, b = -2$$
 (B) $a = 1, b = -3$ (C) $a = -3, b = 1$ (D) $a = -1, b = -1$

(C)
$$a = -3, b = 1$$

(D)
$$a = -1, b = -1$$

(B)

(2) 设函数
$$f(x) = \begin{cases} x^2 & 0 \le x \le 1 \\ 2 - x & 1 < x \le 2 \end{cases}$$
, 记 $F(x) = \int_0^x f(t) dt$, 0 至 ② ,则

(A)
$$F(x) = \begin{cases} \frac{x^3}{3} & 0 \le x \le 1 \\ \frac{1}{3} + 2x - \frac{x^2}{2} & 1 < x \le 2 \end{cases}$$
 (B) $F(x) = \begin{cases} \frac{x^3}{3} & 0 \le x \le 1 \\ -\frac{7}{6} + 2x - \frac{x^2}{2} & 1 < x \le 2 \end{cases}$

(C)
$$F(x) = \begin{cases} \frac{x^3}{3} & 0 \le x \le 1 \\ \frac{x^3}{3} + 2x - \frac{x^2}{2} & 1 < x \le 2 \end{cases}$$
 (D) $F(x) = \begin{cases} \frac{x^3}{3} & 0 \le x \le 1 \\ 2x - \frac{x^2}{2} & 1 < x \le 2 \end{cases}$

(3) 设函数 f(x) 在 $(-\infty,+\infty)$ 内有定义, $x_0 \neq 0$ 是函数 f(x) 的极大点,则

(A) x_0 必是 f(x) 的驻点

(B) $-x_0$ 必是-f(-x) 的极小点

(C) $-x_0$ 必是-f(x) 的极小点

(D) 对一切x, 都有 $f(x) \leq f(x_0)$.

(4) 【 同数学一 第二、(4) 题 】

(5) 如图,x轴上有一线密度为常数 μ ,长度为l的细杆,若质量为m的质点到杆右端的 距离为a,引力系数为k,则质点和细杆之间引力的大小为 (A)

(A)
$$\int_{-1}^{0} \frac{km\mu dx}{(a-x)^2}$$

(B)
$$\int_0^1 \frac{km\mu dx}{(a-x)^2}$$

(C)
$$2\int_{-\frac{1}{2}}^{0} \frac{km\mu dx}{(a+x)^2}$$

(B)
$$\int_0^1 \frac{km\mu dx}{(a-x)^2}$$
 (C) $2\int_{-\frac{1}{2}}^0 \frac{km\mu dx}{(a+x)^2}$ (D) $2\int_0^{\frac{1}{2}} \frac{km\mu dx}{(a+x)^2}$

三、(本题满分25分,每小题5分)

(1) 设
$$\begin{cases} x = t \cos t \\ y = t \sin t \end{cases}$$
, 求
$$\frac{d^2 y}{dx^2}$$

解:
$$\frac{dy}{dx} = \frac{\sin t + t \cos t}{\cos t - t \sin t}$$
,

$$\frac{d^2y}{dx^2} = \left(\frac{\sin t + t\cos t}{\cos t - t\sin t}\right)'_t \frac{dt}{dx}$$

$$=\frac{2+t^2}{\left(\cos t-t\sin t\right)^3}.$$

(2) 计算
$$\int_{1}^{4} \frac{dx}{x(1+\sqrt{x})}$$

解: 令 $t = \sqrt{x}$,则 $x = t^2$,dx = 2tdt,于是有

原式 =
$$\int_{1}^{2} \frac{2dt}{t(1+t)}$$
2 分

$$=2\int_{1}^{2}\left(\frac{1}{t}-\frac{1}{1+t}\right)dt$$
3 \(\frac{1}{2}\)

$$=2[\ln t - \ln(1+t)]_1^2$$
4 $\%$

$$=2\ln\frac{4}{3}.$$
5 \Re

(3)
$$\[\text{\not} \text{$\lim_{x\to 0} \frac{x-\sin x}{x^2(e^x-1)}$} \]$$

解: 原式 =
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

= $\lim_{x \to 0} \frac{1 - \cos x}{3x^2}$
= $\lim_{x \to 0} \frac{\frac{1}{2}x^2}{3x^2} = \frac{1}{6}$.

(4) 求
$$\int x \sin^2 x dx$$

(5) 求微分方程 $xy^2 + y = xe^x$ 满足 y(1) = 1 的特解

四、(本题满分9分)

利用导数证明: 当x > 1时,有不等式 $\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}$

又 $f(1) = 2\ln 2 > 0$,所以在 $[1, +\infty)$ 中,有 f(x) > 0.即 $(1+x)\ln(1+x) - x\ln x > 0$,

五、(本题满分9分)

求微分方程 $y'' + y = x + \cos x$ 的通解.

因此原方程的通解为
$$y = C_1 \cos x + C_2 \sin x + x + \frac{x}{2} \sin x$$
. 9 分

六、(本题满分6分)

曲线 y=(x-1)(x-2)和 x 轴围成一平面图形,求此平面图形绕 y 轴旋转一周所成的旋转体的体积

七、(本题满分6分)

如图,A 和 D 分别是曲线 $y = e^x$ 和 $y = e^{-2x}$ 上的点,AB 和 DC 均垂直 x 轴,且|AB|:|DC| = 2:1,|AB| < 1,求点 B 和 C 的坐标,使梯形 ABCD 的面积最大.

$$\nabla BC = x - x_1 = 3x - \ln 2 (x > 0).$$

故梯形 ABCD 的面积
$$S = \frac{3}{2}(3x - \ln 2)e^{-2x}$$
,5 分

令
$$S' = \frac{3}{2}(3-6x+2\ln 2)e^{-2x} = 0$$
,得驻点 $x = \frac{1}{2} + \frac{1}{3}\ln 2$, ……7 分

由于当
$$x < \frac{1}{2} + \frac{1}{3} \ln 2$$
时, $S' > 0$;当 $x > \frac{1}{2} + \frac{1}{3} \ln 2$ 时, $S' < 0$.

所以
$$x = \frac{1}{2} + \frac{1}{3} \ln 2$$
 是极大值点,又驻点唯一. 故 $x = \frac{1}{2} + \frac{1}{3} \ln 2$ 是最大值点.8 分

即当
$$x = \frac{1}{2} + \frac{1}{3} \ln 2$$
, $x_1 = \frac{1}{3} \ln 2 - 1$ 时,梯形 ABCD 的面积最大.9 分

八、 (本题满分 6 分)

设函数 f(x) 在 $(-\infty, +\infty)$ 内满足 $f(x) = f(x-\pi) + \sin x$,且 f(x) = x, $x \in [0, \pi)$, 计算 $\int_{\pi}^{3\pi} f(x) dx$.

数 学 (试卷四)

一、填空题: (本题满分 15 分,每小题 3 分)

- (2) 设曲线 $f(x) = x^3 + ax$ 与 $g(x) = bx^2 + c$ 都通过点 (-1,0),且在点 (-1,0) 有公共切线, 则 a = -1 , b = -1 , c = 1 .
- (3) 设 $f(x) = xe^x$,则 $f^{(n)}(x)$ 在点 x = -(n+1) 处取极小值 $-e^{-(n+1)}$
- (4) 设A和B为可逆矩阵, $X = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ 为分块矩阵,则 $X^{-1} = \begin{bmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{bmatrix}$.
- (5) 设随机变量 X 的分布函数为 $F(x) = P(X \le x) =$ $\begin{cases} 0 & \text{若 } x < -1 \\ 0.4 & \text{若 } -1 \le x < 1 \\ 0.8 & \text{若 } 1 \le x < 3 \\ 1 & \text{若 } x \ge 3 \end{cases}$

则 X 的概率分布为 $\begin{pmatrix} -1 & 1 & 3 \\ 0.4 & 0.4 & 0.2 \end{pmatrix}$

二、选择题: (本题满分15分,每小题3分)

(1) 下列各式中正确的是

(A)
$$\lim_{x \to 0^+} (1 + \frac{1}{x})^x = 1$$
 (B) $\lim_{x \to 0^+} (1 + \frac{1}{x})^x = e$

(C)
$$\lim_{x \to \infty} (1 - \frac{1}{x})^x = e$$
 (D) $\lim_{x \to \infty} (1 + \frac{1}{x})^{-x} = e$

(2) 设 $0 \le a_n < 1/n$ (n=1,2,···),则下列级数中肯定收敛的是 (D)

(A)

(D)

(A)
$$\sum_{n=1}^{\infty} a_n$$
 (B) $\sum_{n=1}^{\infty} (-1)^n a_n$ (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$ (D) $\sum_{n=1}^{\infty} (-1)^n a_n^2$

(3) 设 A 为 n 阶可逆矩阵, λ 是 A 的一个特征根, 则 A 的伴随矩阵 A*的特征根之一是 (B)

(A)
$$\lambda^{-1} |A|^n$$
 (B) $\lambda^{-1} |A|$ (C) $\lambda |A|$ (D) $\lambda |A|^n$

(C) P(AB)=P(A)P(B)(D) P(A-B)=P(A)

(5) 对于任意两个随机变量
$$X$$
 和 Y ,若 $E(XY)$ = $EXEY$,则 (B)

(A)
$$D(XY)=DXDY$$

$$(B)$$
 $D(X+Y)=DX+DY$

(C) X和Y独立

(D) X和Y不独立

三、(本题满分5分)

求极限 $\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)^{\frac{1}{x}}$ 其中 n 是给定的自然数.

解: 原式=
$$\lim_{x\to 0} \exp\{\frac{1}{x}\ln(\frac{e^x+e^{2x}+\dots+e^{nx}}{n})\} = \exp\{\lim_{x\to 0} \frac{\ln(e^x+e^{2x}+\dots+e^{nx}-\ln n)}{x}\}\dots 1$$
分

其中大括号内的极限是 $\frac{0}{0}$ 型未定式,因此由罗比塔法则,有

$$\lim_{x \to 0} \frac{\ln(e^x + e^{2x} + \dots + e^{nx}) - \ln n}{x} = \lim_{x \to 0} \frac{e^x + 2e^{2x} + \dots + ne^{nx}}{e^x + e^{2x} + \dots + e^{nx}}$$

$$= \frac{1 + 2 + \dots + n}{n} = \frac{n+1}{2}.$$
.....4 \(\frac{1}{2}\)

于是原式 = $e^{\frac{n+1}{2}}$.

·····5 4

四、(本题满分5分)

计算二重积分 $I=\iint_D y dx dy$, 其中 D 是由 x 轴, y 轴与曲 $\sqrt{x/a} + \sqrt{y/b} = 1$ 所围成的 区域; a>0, b>0.

解:积分区域 D 如图中阴影部分所示.

因此
$$I = \int_0^a dx \int_0^{b(1-\sqrt{y_a})^2} y dy$$

= $\frac{b^2}{2} \int_0^a (1-\sqrt{x_a})^4 dx$.

·····2 分

 $\Rightarrow t = 1 - \sqrt{x/a}$, 有 $x = a(1-t)^2$, dx = -2a(1-t)dt.

$$\text{II} = ab^2 \int_0^1 (t^4 - t^5) dt = ab^2 \left(\frac{t^5}{5} - \frac{t^6}{6} \right) \Big|_0^1 = \frac{ab^2}{30}.$$

-----5 分

五、(本题满分5分)

求微分方程 $xy \frac{dy}{dx} = x^2 + y^2$ 满足条件 $y|_{x=e} = 2e$ 的特解

解: 原方程可以化为
$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy} = \frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{x}}$$
, 可见是齐次微分方程.1 分

设
$$y = ux$$
, 有 $\frac{dy}{dx} = u + x \frac{du}{dx}$, 将其代入上式,得 $u + x \frac{du}{dx} = \frac{1 + u^2}{u}$,2 分

即
$$x \frac{du}{dx} = \frac{1}{u}$$
, $u \frac{du}{dx} = \frac{dx}{x}$, $\frac{1}{2}u^2 = \ln|x| + C$3 分

由条件
$$y|_{x=e} = 2e$$
, 求得 $C = 1$,于是,所求特解为 $y^2 = 2x^2 (\ln |x| + 1)$5

六、(本题满分6分)

假设曲线 $L_1: y=1-x^2 (0 \le x \le 1)$ 、x 轴和 y 轴所围区域被曲线 $L_2: y=ax^2$ 分为面积相等的两部分,其 a 是大于零的常数,试确定的 a 值.

解: 由 $y=1-x^2(0 \le x \le 1)$ 与 $y=ax^2$ 联立,可解得故曲线 L_1 与 L_2 的交点 P 的坐标为 $(\frac{1}{\sqrt{1+a}},\frac{a}{\sqrt{1+a}})$1 分

于是
$$S_1 = \int_0^{\sqrt[4]{1+a}} [(1-x^2) - ax^2] dy = \left[x - \frac{1}{3}(1+a)x^3\right]_0^{\sqrt[4]{1+a}} = \frac{2}{3\sqrt{1+a}}.$$
3 分

$$2S_1 = S_1 + S_2 = \int_0^1 (1 - x^2) dx = \frac{2}{3},$$
 \therefore \text{.....4 \(\frac{1}{2}\)}

因此于是a=3.6 分

七、(本题满分8分)

某厂家生产的一种产品同时在两个市场销售,<mark>售价分别为 P_1 和 P_2 ,销量分别为 q_1 和 q_2 ,需求函数分别为 $q_1=24-0.2P_1$ 和 $q_2=10-0.05P_2$,总成本函数为 $c=35+40(q_1+q_2)$,试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润为多少?</mark>

解: 总收入函数为
$$R = p_1q_1 + p_2q_2 = 24p_1 - 0.2p_1^2 + 10p_2 - 0.05p_2^2$$
 ……2 分 总利润函数为 $L = R - C = (p_1q_1 + p_2q_2) - [35 + 40(q_1 + q_2)]$ = $32p_1 - 0.2p_1^2 + 12p_2 - 0.05p_2^2 - 1395$ ……4 分

由极值的必要条件,得方程组
$$\begin{cases} \frac{\partial L}{\partial p_1} = 32 - 0.4 p_1 = 0\\ \frac{\partial L}{\partial p_2} = 12 - 0.1 p_2 = 0 \end{cases}$$

其解为
$$p_1 = 80, p_2 = 120.$$
 ……6 分

由问题的实际意义可知,当 $p_1 = 80$, $p_2 = 120$ 时,厂家所获得的总利润最大,

其最大利润为
$$L_{p_1=80,p_2=120}=605$$
.8 分

八、(本题满分6分)

试证明函数 $f(x) = (1 + \frac{1}{x})^x$ 在区间 $(0,+\infty)$ 内单调增加.

证: 由
$$f(x) = \exp\{x \ln(1+\frac{1}{x})\}$$
,有 $f'(x) = (1+\frac{1}{x})^x [\ln(1+\frac{1}{x}) - \frac{1}{1+x}]$2 分

记
$$g(x) = \ln(1+\frac{1}{x}) - \frac{1}{1+x}$$
,对于任意 $x \in (0,+\infty)$,有 $g'(x) = -\frac{1}{x(1+x)^2} < 0$,

故函数
$$g(x)$$
 在 $(0,+\infty)$ 上单调减少.3 分

由于
$$\lim_{x \to +\infty} [\ln(1+\frac{1}{x}) - \frac{1}{1+x}] = 0$$
,4 分

九、(本题满分7分)

设
$$\alpha_1 = \begin{bmatrix} 1 + \lambda \\ 1 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 + \lambda \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 1 + \lambda \end{bmatrix}$, $\beta = \begin{bmatrix} 0 \\ \lambda \\ \lambda^2 \end{bmatrix}$, 问 λ 取何值时,

- (1) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且表达式唯一?
- (2) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表达式不唯一?
- (3) β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?

解:设
$$x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$$
,得线性方程组
$$\begin{pmatrix} 1 + \lambda & 1 & 1 \\ 1 & 1 + \lambda & 1 \\ 1 & 1 & 1 + \lambda \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \lambda \\ \lambda^2 \end{pmatrix}$$

其系数行列式
$$|\mathbf{A}| = \begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = \lambda^2(\lambda+3)$$
3 分

- (1) 若 $\lambda \neq 0$ 且 $\lambda \neq -3$,则方程组有唯一解, β 可由 a_1, a_2, a_3 唯一地线性表示. ……4分
- (2) 若 $\lambda = 0$,则方程组有无穷多个解, β 可由 a_1, a_2, a_3 线性表示,但表达式不唯一......5分
- (3) 若 $\lambda = -3$,则方程组的增广矩阵

$$\overline{\mathbf{A}} = \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & -3 \\ 1 & 1 & -2 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -3 & 18 \\ 0 & -3 & 3 & -12 \\ 1 & 1 & -2 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 & 6 \\ 0 & -3 & 3 & -12 \\ 1 & 1 & -2 & 9 \end{pmatrix}, \quad \overline{\mathbf{G}}$$
,可见方程组的系数

矩阵 \mathbf{A} 与增广矩阵 \mathbf{A} 不等秩,故方程组无解,从而 $\boldsymbol{\beta}$ 不能由 a_1, a_2, a_3 线性表示.7 分

十、(本题满分6分)

考虑二次型 $f=x_1^2+4x_2^2+4x_3^2+2\lambda x_1x_2-2x_1x_3+4x_2x_3$,问 λ 取何值时,为正定二次型?

解: 二次型
$$f$$
 的矩阵为 $\mathbf{A} = \begin{pmatrix} 1 & \lambda & -1 \\ \lambda & 4 & 2 \\ -1 & 2 & 4 \end{pmatrix}$,2 分

由于二次型 f 正定的充分必要条件是: A 的顺序主子式全为正.

而 **A** 的顺序主子式为:
$$D_1 = 1 > 0$$
, $D_2 = \begin{vmatrix} 1 & \lambda \\ \lambda & 4 \end{vmatrix} = 4 - \lambda^2$,
$$D_3 = \begin{vmatrix} 1 & \lambda & -1 \\ \lambda & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = -4\lambda^2 - 4\lambda + 8 = -4(\lambda - 1)(\lambda + 2)$$
 · ·····4 分

于是,二次型f正定的充分必要条件是: $D_2 > 0, D_3 > 0$,

十一、(本题满分6分)

试证明n维列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关的充分必要条件是

$$\mathbf{D} = \begin{vmatrix} \alpha_1^T \alpha_1 & \alpha_1^T \alpha_2 & \cdots & \alpha_1^T \alpha_n \\ \alpha_2^T \alpha_1 & \alpha_2^T \alpha_2 & \cdots & \alpha_2^T \alpha_n \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_n^T \alpha_1 & \alpha_n^T \alpha_2 & \cdots & \alpha_n^T \alpha_n \end{vmatrix} \neq \mathbf{0} \quad \mathbf{其中} \, \boldsymbol{\alpha}_i^T \, \mathbf{表示列向量} \, \boldsymbol{\alpha}_i \, \, \mathbf{的转置}, \quad i = 1, 2, \cdots, n.$$

解:记n阶矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关的充分必要条件是 $|\mathbf{A}| \neq 0$,

......2 分

故有 $|A^T A| = |A^T| \cdot |A| = |A|^2 = D$,因此, $|A| \neq 0$ 与 $D \neq 0$ 等价.

于是 $D \neq 0$ 是 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关的充分必要条件.

.....6 4

十二、(本题满)6) 【 同数学五 第十三、(1) 题 】

十三、(本题满分6分)

假设随机变量 X 和 Y 在圆域 $x^2 + y^2 \le r^2$ 上服从联合均匀分布,

- (1) 求 X 和 Y 的相关系数 ρ ;
- (2) 问 X 和 Y 是否独立?

解: (1) 因 X 和 Y 的联合密度为
$$p(x,y) = \begin{cases} \frac{1}{\pi r^2}, & \exists x^2 + y^2 \le r^2, \\ 0, & \exists x^2 + y^2 > r^2 \end{cases}$$
1 分

故 X 的密度为 $p_1(x) = \frac{1}{\pi r^2} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} dy = \frac{2}{\pi r^2} \sqrt{r^2 - x^2} \quad (|x| \le r),$

于是
$$EX = \frac{2}{\pi r^2} \int_{-r}^{r} x \sqrt{r^2 - x^2} dx = 0$$
, $EY = \frac{2}{\pi r^2} \int_{-r}^{r} y \sqrt{r^2 - x^2} dy = 0$,3 分

$$cov(X,Y) = EXY = \iint_{x^2 + y^2 \le r^2} -\frac{xy}{\pi r^2} dx dy = 0,$$
4 \(\frac{1}{2}\)

因此 X 和 Y 的相关系数 $\rho = 0$.

-----5 分

(2) 由于 $p(x, y) \neq p_1(x)p_2(y)$, 故 X 和 Y 不独立.

-----6 分

十四、(本题满分5分)

设总体 \mathbf{X} 的概率密度为 $p(x,\lambda) = \begin{cases} \lambda a x^{a-1} e^{-\lambda x^{\alpha}} & \exists x > 0 \\ 0 & \exists x \leq 0 \end{cases}$, 其中 $\lambda > 0$ 中是未知参数,

a>0 是已知常数. 试根据来自总体 X 的简单随机样本 X_1,X_2,\cdots,X_n ,求 λ 的最大似然估计量 $\hat{\lambda}$.

解: 似然函数为
$$L(x_1, x_2, \dots, x_n; \lambda) = (\lambda a)^n e^{-\lambda} \sum_{i=1}^n x_i^a \prod_{i=1}^n x_i^{a-1}$$
,2 分

由对数似然方程,有 $\frac{\partial \ln L}{\partial \lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i^a = 0$,4 分

由此可解得 λ 的最大似然估计量 $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i^a}$5 分

数 学(试卷五)

一、填空题: (本题满分15分,每小题3分)

- (1) 【 同数学四 第一、(1) 题 】
- (2) 【 同数学四 第一、(2) 题 】
- (3) 【 同数学四 第一、(3) 题 】

(4)
$$n$$
 阶行列式 $\begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ 0 & a & b & \cdots & 0 & 0 \\ 0 & 0 & a & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a & b \\ b & 0 & 0 & \cdots & 0 & a \end{vmatrix}_{n} = \underline{a^{n} + (-1)^{n+1}b^{n}}.$

- (5) [91-5] 设 A,B 为随机事件,P(A)=0.7,P(A-B)=0.3,则 $P(\overline{AB})=0.6$
 - 二、选择题: (本题满分15分,每小题3分)
- (1) 【 同数学四 第二、(1) 题 】

(A) 无穷大量

- (B) 无穷小量 (C) 有界变量
- (D) 无界变量

(C)

(D)

(3) 设A与B为n阶方阵,且AB,则必有

(A)
$$A = 0$$
 $\vec{\boxtimes} B = 0$ (B) $AB = BA$ (C) $|A| = 0$ $\vec{\boxtimes} |B| = 0$ (D) $|A| + |B| = 0$

(4) 设 $A \neq m \times n$ 矩阵, $A \times = 0$ 是非齐次线性方程组 $A \times = b$ 所对应的齐次线性方程组,

则下列结论正确的是

(A) 若
$$Ax=0$$
 仅有零解,则 $Ax = b$ 有唯一解

(B) 若
$$Ax=0$$
 有非零解,则 $Ax=b$ 有无穷多个解

(C) 若
$$Ax = b$$
 有无穷多个解,则 $Ax = 0$ 仅有零解

- (D) 若 Ax=b 有无穷多个解则 Ax=0 有非零解
- (5) 【 同数学四 第二、(4) 题 】

三、(本题满分 5 分) 求极限 $\lim_{x\to+\infty} \left(x+\sqrt{1+x^2}\right)^{\frac{1}{x}}$.

解: 原式 =
$$\lim_{x \to +\infty} (x + \sqrt{1 + x^2})^{\frac{1}{x}} = \lim_{x \to +\infty} \exp\{\frac{1}{x}\ln(x + \sqrt{1 + x^2})\} = \exp\{\lim_{x \to +\infty} \frac{\ln(x + \sqrt{1 + x^2})}{x}\}$$

因此由罗比塔法则,有
$$\lim_{x \to +\infty} \frac{\ln(x + \sqrt{1 + x^2})}{x} = \lim_{x \to +\infty} \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + x^2}} = 0$$
, ……4 分 于是 $\lim_{x \to +\infty} (x + \sqrt{1 + x^2})^{\frac{1}{x}} = e^0 = 1$ ……5 分

四、(本题满分5分)

求定积分 $I = \int_{-1}^{1} (2x + |x| + 1)^2 dx$.

五、(本题满分5分)

求不定积分
$$I = \int \frac{x^2}{1+x^2} arctgx dx$$

六、(本题满分5分)

已知 $xy = xf(z) + yg(z), xf'(z) + yg'(z) \neq 0$,其中 z = z(x, y) 是 x 和 y 的函数. 求证: $[x - g(z)] \frac{\partial z}{\partial x} = [y - f(z)] \frac{\partial z}{\partial y}$.

证:将xy = xf(z) + yg(z)两侧同时对x求偏<mark>导数,</mark>得

同样可得
$$\frac{\partial z}{\partial y} = \frac{x - g(z)}{xf'(z) + yg'(z)}$$
.4 分

七、(本题满分6分)【同数学四第六题】

八、(本题满分8分)【同数学四第七题】

九、(本题满分6分)

证明不等式 $\ln(1+\frac{1}{x}) > \frac{1}{1+x}$ (0 < x < +\infty).

证:
$$i \exists f(x) = \ln(1 + \frac{1}{x}) - \frac{1}{1+x}, 0 < x < +\infty$$
,有 $f'(x) = -\frac{1}{x(1+x)^2} < 0$, ……2 分

故函数 f(x) 在 (0,+∞) 上单独减少.

十、(本题满分5分)

设 n 矩阵 A 和 B 满足条件 A+B = AB,

(1) 证明 A - E 为可逆矩阵, 其中 E 是 n 阶单位矩阵;

(2) 已知
$$B = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, 求矩阵 **A**.

由此可见 $\mathbf{A} - \mathbf{E}$ 为可逆矩阵.

-----3分

……2分

又由上式,知**B-E**也为可逆矩阵,且**A**=**E**+(**B-E**)
$$^{-1}$$

故
$$\mathbf{A} = \mathbf{E} + (\mathbf{B} - \mathbf{E})^{-1} = \begin{pmatrix} 1 & 1/2 & 0 \\ -1/3 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
5 分

十一、(本题满分7分)【 同数学四 第九题 】

十二、(本题满分4分)

已知向量 $a = (1, k, 1)^T$ 是矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆矩阵 A^{-1} 的特征向量,求常数 k 的值.

即
$$\begin{pmatrix} 1 \\ k \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ k \\ 1 \end{pmatrix}$$
,由此得方程组 $\begin{cases} \lambda(3+k) = 1 \\ \lambda(2+2k) = k \end{cases}$,

十三、(本题满分 7 分)

一汽车沿一街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯为红或绿与 其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等.以 X 表示汽车首次遇到红 灯前已通过的路口的个数.

(1) 求 X 的概率分布; (2) 求
$$E \frac{1}{1+X}$$
.

解: (1) 由条件知, X 的可能值为 0,1,2,3.以 A_i (i=1,2,3) 表示事件"汽车在第 i 个路口首次遇到红灯",则 A_1 , A_2 , A_3 相互独立,且 $P(A_i) = P(\overline{A_i}) = \frac{1}{2}$, i=1,2,3. ……2 分

于是
$$P(X=0) = P(A_1) = \frac{1}{2}$$
, $P(X=1) = P(\overline{A_1}A_2) = \frac{1}{2^2}$,

$$P(X=2) = P(\overline{A_1} \ \overline{A_2} \ A_3) = \frac{1}{2^3}, \quad P(X=3) = P(A_1 A_2 A_3) = \frac{1}{2^3}.$$
4 \(\frac{1}{2}\)

(2)
$$E \frac{1}{1+X} = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{8} + \frac{1}{4} \cdot \frac{1}{8} = \frac{67}{96}$$
7 $\frac{1}{1}$

十四、(本题满分6分)

在电源电压不超过 200 伏、在 200-240 伏和超过 240 伏三种情形下,某种电子元件损坏的概率分别为 0.1, 0.001 和 0.2, 假设电源电压 X 服从正态分布 $N(220, 25^2)$, 试求 :

- (1) 该电子元件损坏的概率 α :
- (2) 该电子元件损坏时,电源电压在 200-240 伏的概率 β .

[附表] (表中 $\Phi(x)$ 是标准正态分布函数)

x	0.10	0.20	0.40	0.60	0.80	1.00	1.20	1.40
$\Phi(x)$	0.530	0.579	0.655	0.726	0.788	0.341	0.335	0.919

解: 引进下列事件: $A_1 = \{$ 电压不超过 200 伏 $\}$, $A_2 = \{$ 电压在 200-240 伏 $\}$, $A_3 = \{$ 电压超过 240 伏 $\}$; $B = \{$ 电子元件损坏 $\}$.

因
$$X \sim N(220, 25^2)$$
,故 $P(A_1) = P\{X \le 200\} = P\{\frac{X - 220}{25} \le \frac{200 - 220}{25}\} = \Phi(-0.8) = 0.212$,
$$P(A_2) = P\{200 \le X \le 240\} = \Phi(0.8) - \Phi(-0.8) = 0.576;$$

$$P(A_3) = P\{X > 240\} = 1 - 0.212 - 0.576 = 0.212.$$
3 /5

(1) 由题设条件知 $P(B|A_1) = 0.1$, $P(B|A_2) = 0.001$, $P(B|A_3) = 0.2$.

