Universitatea Babeş-Bolyai

Facultatea de Matematică-Informatică

June, 04, 2016

GEOMETRY, FIRST YEAR, ROW 2

Nume						Group/Signature				
Barem	of. (1 p)	1 (1p)	2 (1p)	3 (1p)	4 (1p)	5 (1p)	6 (1,5p)	7 (1p)	8 (1,5p)	Total
Punctaj obţinut										

- (1) Fill in the blanks in the following definitions and statements:
 - (a) The is the locus of points of a plane whose sum of distances to two fixed points, called,, is constant.
 - (b) The surface generated by a variable line passing through a fixed point, called vertex, which intersects a given curve, called, is called surface.
- (2) Determine whether the given statement is TRUE or FALSE and circle the correct alternative.
 - (a) The coordinate planes are planes of symmetry for $\mathcal{H}_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$. (True/False).
 - (b) xOz is a plane of symmetry for $\mathcal{P}_h: \frac{x^2}{p} \frac{y^2}{q} = 2z, (p, q > 0).$ (True/False).
 - (c) O(0,0,0) is a center of symetry for $\mathcal{P}_e: \frac{x^2}{p} + \frac{y^2}{q} = 2z, (p,q>0)$ (True/False).
 - (d) The hyperboloid of one sheet is a bounded surface. (True/False).
- (3) (a) Determine the coordinates of the foci of the hyperbola $\mathcal{H}: \frac{x^2}{9} \frac{y^2}{4} 1 = 0.$
 - (b) Determine the focus and the director line of the parabola \mathcal{P} : $y^2 = 16x$.
- (4) Consider the ellipse \mathcal{E} : $x^2 + 4y^2 20 = 0$.
 - (a) Find the equations of the tangent lines to the ellipse \mathcal{E} having a given angular coefficient $m \in \mathbb{R}$.
 - (b) Find the equations of the tangent lines to \mathcal{E} which are orthogonal to the line d: 2x-2y-13=0.
- (5) State and prove the optical property of the hyperbola.
- (6) Find the locus of points on the hyperbolic paraboloid (\mathcal{P}_h) $y^2 z^2 = 2x$ through which the rectilinear generatrices are perpendicular.
- (7) Define the torus and write its equation.
- (8) Write the homogeneous transformation matrix of the concatenation (product) of the rotations $R_{\frac{\pi}{4}}(M_0)$ and $R_{\frac{7\pi}{4}}(M_1)$, where $M_0(1,2)$ and $M_1(2,-1)$.
- (9) **(bonus 1.5p)** Write the homogeneous transformation matrices of the spatial reflections r_{α} , r_{β} and r_{d} with respect to the planes $\alpha: x y + z = 0$, $\beta: 2x + y z = 0$ and the line

$$d = \alpha \cap \beta : \begin{cases} x - y + z = 0 \\ 2x + y - z = 0 \end{cases}$$

respectively.