Equivalence Relations, Equivalence Classes, Partitions, and Quotient Sets

July 20, 2024

Cartesian Products / Set Products

Example. If $A = \{1, 2\}$ and $B = \{x, y\}$, then:

$$A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$$

Definition. Let *A* and *B* are sets.

$$A \times B := \{(a, b) \mid a \in A \text{ and } b \in B\}$$

Relations

Set A Set B Green arrows: Equality (=)

Red arrows: Less than (<)
Blue arrows: Divisibility (|)

Definition. Let *A* and *B* are sets. A **relation** \mathcal{R} from *A* to *B* is a *subset* of the Cartesian Product $A \times B$:

$$\mathcal{R} \subseteq A \times B$$

Notation.

$$(a,b) \in \mathcal{R} \subseteq A \times B \iff a \mathcal{R} b.$$

For example, $a = b \iff (a, b) \in =$

Equivalence Relations

Red arrows: Reflexivity

(each element is related to itself).

Blue arrows: Symmetry

(if a is related to b, then b is related to a).

Green arrows: Transitivity

(if a is related to b and b is related to c, then a is related to c).

Example. Equality on \mathbb{Z} :

- $a \in \mathbb{Z} \implies a = a$;
- $a = b \implies b = a$;
- a = b and $b = c \implies a = c$.

Definition. Given a set A, a relation $\mathcal{R} \subseteq A \times A$ is called an **equivalence relation** if it satisfies following properties:

- (Reflexivity) $a \in A \implies (a, a) \in \mathcal{R}$;
- (Symmetry) $(a,b) \in \mathcal{R} \implies (b,a) \in \mathcal{R}$;
- (Transitivity) $(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R} \implies (a, c) \in \mathcal{R}$.

Equivalence Classes

Quotient Sets

 $\mathbb{Z}/{\sim}=\left\{[0],[1],[2]\right\} \text{ with } a \sim b \iff a \equiv b \pmod{3}$

Groups

Subgroups

Cyclic Subgroups

Normal Subgroups

Operation: + Identity: 0

Inverses: $\forall a \in \mathbb{Z}, -a \in \mathbb{Z}$

Addition: + Multiplication: ·
Additive Identity: 0 Multiplicative Identity: 1

Additive Inverses: $\forall a \in \mathbb{Z}, -a \in \mathbb{Z}$

Normal Subgroup

Ideal

Quotient Group $\mathbb{Z}/2\mathbb{Z}$

Cosets: {0,1} modulo 2

Quotient Ring $\mathbb{Z}/2\mathbb{Z}$

Elements: {0,1} modulo 2

Cyclic Subgroup $\langle 3 \rangle = 3\mathbb{Z}$

Principal Ideal (3) = $3\mathbb{Z}$