

E

SUBSTITUTE SHEET (RULE 26)

Figure 2

SUBSTITUTE SHEET (RULE 26)

Figure 3

SUBSTITUTE SHEET (RULE 26)

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

--- Sham immunized
--- Immunized with KLH-glycan

Figure 9

Figure 10

Anti-glycan mAbs prevent murine cerebral malaria

Figure 11

Figure 12

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

14/24

Figure 14a

Figure 14b

Figure 14

Figure 15b SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 15 d

Figure 15 e

Figure 16

NH₂+C1- + Glycan-NH₂

KLH_Glycan Conjugate

Figure 17

Figure 18

Protein	MW	Maleimide groups	Conjugation Ratio Glycan (ng / ug)	Glycan (ng / ug)
OVA	45 000	8 moles per mole OVA	3 : 1 (molar)	84
KLH	8 000 000	479 moles per mole KLH	191 : 1 (molar)	28
BSA	000 29	17 moles per mole BSA	NA	1

SUBSTITUTE SHEET (RULE 26)

Figure 19

SUBSTITUTE SHEET (RULE 26)

Molar Excess Synthetic Glycan	Percentage reduction
0	0
. 25	76
50	89
100	95

Figure 21 SUBSTITUTE SHEET (RULE 26)

 NH_2 - CH_2 - PO_4 -(Man α 1-2) $6Man\alpha$ 1-2 $Man\alpha$ 1-6 $Man\alpha$ 1-4 $GlcNH_2$ -6mvo-inositol-1,2 cyclic-phosphate

or derivative or equivalent thereof.

- 43. An antibody directed to a synthetic GPI inositolglycan domain but which antibody is substantially incapable of interacting with the lipidic domain of a GPI.
- 44. The antibody according to claim 43 wherein said GPI inositolglycan domain comprises the structure

EtN-P-(Man α 1,2)-6M α 1, 2M α 1, 6Man α 1, 4GlcNH $_2\alpha$ 1-myo-inositol-1,2 cyclic-phosphate

or derivative or equivalent thereof wherein EtN is ethanolamine, P is phosphate and M is mannose.

45. The antibody accorfding to claim 43 wherein said GPI inositolglycan domain comprises the structure

NH₂-CH₂-PO₄-(Manα1-2) 6Manα1-2 Manα1-6Manα1-4GlcNH₂-6myo-inositol-1,2 cyclic-phosphate

or derivative or equivalent thereof.

- 46. A pharmaceutical composition comprising the antibody of any one of claims 43-45.
- 47. A method of inhibiting, halting or delaying the onset or progression of a mammalian disease condition characterised by a parasite infection said method comprising administering to said mammal an effective amount of an antibody as claimed in any one of claims 43-45.

- 48. Use of an antibody according to any one of claims 42-45 in the manufacture of a medicament for inhibiting, halting or delaying the onset or progression of a disease condition characterised by the infection of a manimal by a parasite.
- 49. A method for detecting, in a biological sample, an immunointeractive molecule directed to a microorganism said method comprising contacting said biological sample with amolecule comprising said microorganism GPI inositolglycan domain or a derivative or equivalent thereof and qualitatively and/or quantitatively screening for said GPI inositolglycan domain-immunointeractive molecule complex formation.
- A method for detecting, monitoring or otherwise assessing an immune response directed to a microorganism in a subject said method comprising contacting a biological sample, from said subject, with a molecule comprising said microorganism GPI inositolglycan domain-immunointeractive molecule complex formation.
- 51. The method according to claim 49 or 50 wherein said molecule is a modified GPI molecule or derivative or equivalent thereof and which modified GPI molecule comprises insufficient lipidic domain to induce or elicit an immune response directed to a GPI lipidic domain.
- 52. The method according to claim 51 wherein said modified GPI molecule is the inositolglycan domain portion of GPI or derivative or equivalent thereof.
- 53. The method according to claim 51 or 52 wherein said modified GPI molecule is a modified parasite GPI molecule or derivative or equivalent thereof.
- 54. The method according to claim 53 wherein said parasite is Plasmodium.

- 55. The method according to claim 54 wherein said *Plasmodium* is *Plasmodium* falciparum.
- 56. The method according to claim 55 wherein said modified *Plasmodium falciparum*GPI molecule is a *Plasmodium falciparum* GPI inositolglycan domain.
- 57. The method according to claim 56 wherein said GPI inositol glycan domain comprises the structure

ethanolamine-phosphate-(Man α 1,2)-Man α 1,2Man α 1,6Man α 1,4GlcN-myo-mositol phosphoglycerol

or derivative or equivalent thereof.

58 The method according to claim 56 wherein said GPI inositol glycan domain comprises the structure

X1 - X2 - X3 - X4 - ethanolamine-phosphate-(Manα1,2)-Manα1,2Manα1,6Manα1,4GlcN-myo-inositol phosphoglycerol

wherein X1, X2, X3 and X4 are any 4 amino acids, or derivative or equivalent of said GPI inositolglycan domain.

59. The method according to claim 56 wherein said GPI inositolglycan domain comprises a structure selected from:

EtN-P-[Mo2]Mo2 Mo6 Mo4Go6Ino

EtN-P-[Mo2][G]Mo2 Ma6 Ma4Ga6Ino

EtN-P-[Mo2][X]Mo2 Mo6 Mo4Go6Ino

EtN-P-[Mo2][EtN-P]Mo2 Mo6 Mo4Go6Ino

ΕιΝ-Ρ-Μο2 Μα6 Μα4G

Mo2 Mo6 Mo4G

EtN-P-Mo2 Mo6 M

EtN-P-[$M\alpha2$][G] $M\alpha2$ $M\alpha6$ $M\alpha4$ G

EtN-P-[$M\alpha 2$][X] $M\alpha 2$ $M\alpha 6$ $M\alpha 4$ G

EtN-P-[Ma2][EtN-P]Ma2 Ma6 Ma4G

Mo2 [Mo2][G]Mo2 Mo6 Mo4G

Ma2 [Ma2][X]Ma2 Ma6 Ma4G

Mo2 [Mo2][EtN-P]Mo6 Mo4G

Ma6 Ma4Ga6Ino

Mo2 Mo6 Mo4Go6Ino

Μο2 [Μο2]Μοδ Μο4Gα6Ιηο

 $M\alpha 2 [M\alpha 2][G]M\alpha 6 M\alpha 4 G\alpha 6 Ino$

Mo2 [Mo2][X]Mo6 Mo4Go6Ino

E1N-P-[Mα2][G]Mα2 Mα6 M

EtN-P-[Mo2][X]Mo2 Ma6 M

EtN-P-[Ma2][EtN-P]Ma2 Ma6 M

 $M\infty$ [$M\infty$][G] $M\infty$ $M\alpha$ 6 M

Mo2 [Mo2][X]Mo2 Mo6 M

 $M\infty$ [M ∞][EtN-P]M ∞ 6 M

Mo2 Mo6 M

Μα6 Μα4G

EtN-P-[Mo2][G]Mo2 M

EtN-P-[Mo2][X]Mo2 M

EtN-P-[Mo2][EtN-P]Mo2 M

or derivative or equivalent thereof wherein EtN is ethanolamine, P is phosphate, M is mannose, G is non-N-acetylated glucosamine, [G] is any non-N-acetylated hexosamine, Ino is inositol or inositol-phosphoglycerol, [X] is any other substituent, α represents α -linkages which may be substituted with β -linkages wherever required, and numeric values represent positional linkages which may be substituted with any other positional linkages as required.

- 60. The method according to claim 56 wherein said GPI inositolglycan domain is synthetically generated.
- 61. The method according to claim 60 wherein said synthetic GPI inositolglycan domain comprises the structure

EtN-P-(Man α 1,2)-6M α 1, 2M α 1, 6Man α 1, 4GlcNH₂ α 1-myo-inositol-1,2 cyclic-phosphate

or derivative or equivalent thereof wherein EtN is ethanolamine, P is phosphate and M is mannose.

The method according to claim 61 wherein said synthetic GPI inositolglycan domain comprises the structure

NH₂-CH₂-PO₄-(Manα1-2) 6Manα1-2 Manα1-6Manα1-4GlcNH₂-6myo-inositol-1,2 cyclic-phosphate

or derivative or equivalent thereof.

- A modular kit comprising one or members wherein at least one member is a solid support comprising a GPI molecule as defined in any one of claims 48-61.
- 64. A method for analysing, designing and/or modifying an agent capable of interacting with an anti-GPI glycan immunointeractive molecule binding site, which immunointeractive molecule is identifiable utilising the diagnostic methodology defined in accordance with any one of claims 48-61 said method comprising contacting said immunointeractive molecule or derivative thereof with a putative agents and assessing the degree of interactive complementarity of said agent with said binding site.

65. The use of the agent developed in accordance with the method of claim 64 in the method of any one of claims 1-22 or 47-62, the composition of any one of claims 28-42 or the use of any one of claims 23-27.