Questions	Working	Answer	Mark	Notes
1		14	3	M1 for 5 × 4 (= 20) or 3 × 2 or attempt to divide diagram into rectangles M1 "20" – "6" or addition of parts A1 cao
2 (a)	$3 \times 4 + 4 \times -5 = 12 - 20$	-8	2	M1 substitution eg. 3×4 and 4×-5 or 12 and -20 A1 cao
(b)	$3 \times 2^2 - 5$ $3 \times 4 - 5$	7	3	M1 substitution eg $3 \times 2^2 - 5$; do not accept $32^2 - 5$ M1 $3 \times 4 - 5$ or $3 \times 2 \times 2 - 5$ or $12 - 5$ A1 cao
3 (a)	679 or 28 28 5432 5432 252 13580 19012 16800 19012	190.12	3	M1 for an attempt to multiply the units and tens, or correct partitioning M1 for completely correct method (condone one computational error) A1 cao
(b)	570 ÷ 50	12	2	M1 570 ÷ 50 or 11.4 or 11 seen A1 cao
(c)	$570 \times \frac{110}{100}$	627	3	M1 for $\frac{110}{100} \times 570$ or $570 \div 10$ or 57 seen M1 (dep) $570 + "57"$ (or M2 for 570×1.10) A1 cao

(Questions	Working	Answer	Mark	Notes
4	(a)		Correct drawing	2	B2 Condone hidden detail shown with solid lines, or missing lines on front face (B1 for correct plan and side elevation, cross-section correct with depth > 1 cube, or one added cube)
	(b)		Correct drawing	2	B2 Ignore relative proportion, do not accept a rectangle when one side $> 1.5x$ other side (B1 one shape only)
5	(a)		Points plotted	1	B1 ± 1 full mark (2 mm square)
	(b)		Positive	1	B1 cao
	(c)		35 <answer<40< td=""><td>2</td><td>B2 ft from a single line segment with positive gradient ± 1 full (2 mm) square B1 lobf must pass through (5, 5) (5, 15) and (55, 35) and (55, 45)</td></answer<40<>	2	B2 ft from a single line segment with positive gradient ± 1 full (2 mm) square B1 lobf must pass through (5, 5) (5, 15) and (55, 35) and (55, 45)
6			C = 1000(n+3)	3	B3 for $C=1000(n + 3)$ oe such as
					$(n+3) \times 1000$
					(B2 for correct RHS or $C = n + 3 \times 1000$,
					C = 1000n + 3 etc) (B1 for $C =$ some other linear expression in n
					or $n + 3 \times 1000$, $1000n + 3$ etc)
					NB $C = n$ scores no marks

	Questions	Working	Answer	Mark	Notes
7	(a)		$p^{3}-3p^{2}$	2	B2 cao
					(B1 for $p^3 or 3p^2$ seen in working, ignore
					signs)
	(b)		y(y+5)	2	B2 for $y(y + 5)$ or $y \times (y + 5)$,
					(B1 for $y(ay + b)$ where $a, b, b \neq 0$ are
					numbers or $y + 5$ seen on its own, or part of
	()		2 (, 2)	2	an expression)
	(c)		2x(x+3y)	2	B2 cao
		2		_	(B1 for $2(x^2 + 3xy)$ or $x(2x + 6y)$ or $2x()$
	(d)	$x^{2} - 2x - 15 = (x - 5)(x + 3)$	5, - 3	2	B2 cao
					(B1 for $x - 5$) or $(x + 3)$ seen in working)
8			question +	2	1 st aspect: one question with time period (eg
			response boxes oe		each day); ignore other questions
					2 nd aspect: response list (at least two), no
					overlapping 3 rd aspect: some mention of units (eg hours or
					number of pieces) in either question or
					responses
					Award B2 for all these aspects, or B1 for just
					two aspects

Questions	Working	Answer	Mark	Notes
9	$(4 \times 3) \times 11 \div 2$	66cm ³	4	M2 for $4\times3\times11\div2$
				(M1 for any three of these)
				A1 cao numerical answer of 66
				B1 (indep) cm ³ with or without any numerical answer
10 (a)		Correct reflection	2	B2 cao
				(B1 for reflection in a line other than $y = 2$)
(b)		Reflection in	2	B2 cao
		y = x		(B1 for "reflection" or $y = x$)
				NB: inclusion with other transformations get B0
11 (a)	0 2 2 6	2	2	_
11 (a)	9 - 2x = 3x + 6	$\frac{3}{5}$	3	B1 for $3x + 6$ seen OR $3 - \frac{2}{3}x = x + 2$
	9-6=3x+2x			M1 for correct rearrangement of 4 terms or
	3=5x			3 = 5x
				A1 for $\frac{3}{5}$ oe
(b)		-3,-2,-1,0,1	2	B2 (B1 for 4 correct integers and not more
				than one incorrect integers or omissions)

Questions	Working	Answer	Mark	Notes
12 (a)	$1+2+\frac{14}{35}+\frac{15}{35}$	$3\frac{29}{35}$	3	M1 for attempt to convert to fractions with common denominator eg two fractions, denominator of 35 A1 for correct conversion: $\frac{14}{35}$ and $\frac{15}{35}$ seen (oe) A1 cao OR Attempt to convert decimals: must use at least 2dp M1 0.4+0.42 (or 1.4 + 2.42) or 0.4 + 0.43 etc
(b)	$\frac{2}{5} \times \frac{3}{7} = \frac{6}{35}$	$\frac{6}{35}$	2	A1 3.82, 3.83, etc A1 3.82857 (ie at least 5 dp) M1 For 6 or multiplication of top or bottom eg $\frac{6}{35}$, $\frac{840}{4900}$ A1 cao
13	$\frac{10}{6} \times 4.8$	8	2	M1 for 4.8 ÷ 6 × 10 A1 cao
14		1 ^{st,} 3 rd , 4 th	3	B3 (B1 for each, -1 each extra)
15	$x + 0.35 + 0.15 + x = 1$ 0.25×400	100	4	M1 for $x+0.35+0.15+x=1$ oe, or $0.5 \div 2$ M1 0.25 seen M1 0.25 × 400 A1 cao accept 100 out of 400 (in words) SC B1 for $\frac{100}{400}$

	Questic	ons	Working	Answer	Mark	Notes
16	(a)	(i) (ii)		40 Identifies angle between radius and tangent as 90°	2	B1 cao B1 reason in words, linking radius and tangent (edge insufficient)
	(b)	(i) (ii)	$2 \times 50^{\circ} \div 2 =$	50° Angle at the centre is twice the angle at the circumference.	3	May be in working or on diagram M1 2×50°÷2 A1 50° B1 reason in words
17	(a)			$\frac{1}{4}$ on LH branch $\frac{2}{3}$, $\frac{1}{3}$, $\frac{2}{3}$ on RH	2	B1 B1
	(b)		$\frac{3}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{6}{12} + \frac{1}{12}$	branches $\frac{7}{12}$	3	M1 for $\frac{3}{4} \times \frac{2}{3}$ or $\frac{1}{4} \times \frac{1}{3}$ from their tree diagram
	(c)			14	3	M1(dep) for sum of two correct products A1 for $\frac{7}{12}$ oe M1 for $\frac{3}{4} \times \frac{1}{3} \left(= \frac{3}{12} \right)$ or $1 - \frac{9}{12}$ M1 for $21 \times \frac{"12"}{3} \times {}^{1}\!\!/_{4} \times 2/3$; ft from their tree
						diagram; must be from a product A1 cao

C	uestions	Working	Answer	Mark	Notes
18	(a)		0.8333	1	B1 for 0.8333 oe or 0.83
	(b)	eg $x = 0.3636$ so $100x = 36.3636$ 99x = 36 $x = \frac{36}{99} = \frac{4}{11}$		3	M1 for $100x = 36.36$ M1 dep for subtraction of both sides A1 for $\frac{4}{11}$ from correct proof [SC: B1 for $\frac{36}{11}$ or $4 \div = 0.3636$ showing
19	(a)		28	4	remainders in divisions] B1 ft from (a) using "k", dep on at least M1
	(b)	$24 = \frac{84}{r}$	3.5	2	M1 ft from (a) dep on at least M1 for putting $p = 24$ into their equation A1 oe eg $\frac{84}{24}$
20	(a) (i)		1	1	B1 cao
	(ii)		9	1	B1 cao

	Working	Answer	Mark	Notes
(a)		5	2	M1 for $\frac{76}{800} \times 50$
				A1 for 4.75 or 5
(b)		Correct response	2	M1 for Yr 7 boys = Year 11 girls \times 2
		and correct reason		A1 for 6.875 and 3.43745
	$\frac{4}{3}\pi(3x)^3$ 4 3 ³	9 <i>x</i>	2	M1 for substitution in a correct formula,
	$\frac{3}{\pi(4x)^2} = \frac{3}{3} \times \frac{3}{4^2} x$	4	3	condone missing brackets
				M1 for a correct equation to find the depth
				including h and brackets
				A1 for $\frac{9x}{4}$ oe
				4
(a)	$PR = -2\mathbf{a} + 2\mathbf{b}$	-a+b	2	B1 $PR = -2a + 2b$ or $a + b$ oe
				B1 oe
(b)	$OQ = 2\mathbf{a} + 2\mathbf{b}$		2	B1 $OX = OP + PX$
	$OX = OP + PX = 2\mathbf{a} - \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} = \frac{1}{2}OQ$			B1 equates $OX = \mathbf{a} + \mathbf{b}$ with $\frac{1}{2}OQ$
	(b) (a)	(b) $\frac{\frac{4}{3}\pi(3x)^3}{\pi(4x)^2} = \frac{4}{3} \times \frac{3^3}{4^2}x$ (a) $PR = -2\mathbf{a} + 2\mathbf{b}$ (b) $OQ = 2\mathbf{a} + 2\mathbf{b}$	(b) Correct response and correct reason $ \frac{\frac{4}{3}\pi(3x)^{3}}{\pi(4x)^{2}} = \frac{4}{3} \times \frac{3^{3}}{4^{2}}x $ (a) $PR = -2\mathbf{a} + 2\mathbf{b}$ $-\mathbf{a} + \mathbf{b}$ (b) $OQ = 2\mathbf{a} + 2\mathbf{b}$	(b) Correct response and correct reason $ \frac{\frac{4}{3}\pi(3x)^{3}}{\pi(4x)^{2}} = \frac{4}{3} \times \frac{3^{3}}{4^{2}}x $ (a) $PR = -2\mathbf{a} + 2\mathbf{b}$