

Seminar IoT

MAN 1 Kota Kediri

2022

Rundown

• 08:00 - 08:30 : Materi & QnA

• 08:30 - 11:20 : Praktikum (Instalasi, Rakit, Uji Coba)

• 11:20 - 11:50 : Rancangan Ide IoT

• 11:50 - 12:00 : Penutupan

Pemateri Wahyu Firmansyah 0856-0856-9997

Asisten Riswandha Adhitia 0858-1588-8782

o riswandha_a

Internet of Things (IoT)

adalah suatu konsep teknologi yang dapat menghubungkan dan komunikasi antara perangkat hardware, software, internet, dan end user.

image: mouser.cn

Garis Besar Internet of Things (IoT)

Protokol Internet of Things (IoT)

Pada umumnya perangkat iot dalam komunikasi data menggunakan 2 protokol

HTTP (Hypertext Transfer Protocol)

Protokol ini biasa digunakan untuk mengirim data melalui web API

MQTT (Message Queuing Telemetry Transport)

Standar protokol komunikasi iot dengan karakteristik publish dan subscribe

HTTP Overview

MQTT Overview

Kesimpulan Internet of Things (IoT)

 Pada intinya konsep Internet of Things (IoT) adalah komunikasi data melalui koneksi jaringan komputer.Baik itu data sensor, ataupun status alat. Semua tentang komunikasi data!

image: gmedia.net

MQTT in Action

MQTT is used in a wide variety of industries

Contoh Project IoT

- Ruangan (Lampu Otomatis, AC Otomatis, RFID Logger)
- Perkebunan (Nutrisi Tanah, Penyiram Otomatis, Panen Terjadwal)
- Peternakan (Suhu kandang, Pembersihan Kandang Terjadwal)
- Perikanan (PH Air, Suhu Air, Nutrisi Air, Kualitas Air, Pakan Otomatis)
- Industri (Inventory Barang, Sorting barang, Manajemen Barang)
- Energi Terbarukan (KWH Meter, Volt Monitor, Battery Pack Monitor)

Microcontroller ESP32

• ESP32 merupakan salah satu contoh produk dari espressif system dengan harga murah di pasaran mulai dari 100 ribuan sudah terdapat built in WiFi, Bluetooth, dengan dual core.

ESP32 Devkit V1

ESP32 DEVKIT V1 – DOIT

version with 30 GPIOs

ESP32 Devkit V4

ESP32-DevKitC

ESP32 Specs

32-bit Xtensa® dual-core @240MHz Wi-Fi IEEE 802.11 b/g/n 2.4GHz BLuetooth 4.2 BR/EDR and BLE 520 KB SRAM (16 KB for cache) 448 KB ROM 34 GPIOs, 4x SPI, 3x UART, 2x I2C, 2x I2S, RMT, LED PWM, 1 host SD/eMMC/SDIO, 1 slave SDIO/SPI, TWAI®, 12-bit ADC, Ethernet

RTC Power Domain (VDD3P3_RTC) Ground

Power Rails (3V3 and 5V) Pin Shared with the Flash Memory Can't be used as regular GPIO

GPIO STATE

WPU: Weak Pull-up (Internal) WPD: Weak Pull-down (Internal) PU: Pull-up (External) IE: Input Enable (After Reset) ID: Input Disabled (After Reset) OE: Output Enable (After Reset) OD: Output Disabled (After Reset)

USB Driver

• Program microcontroller melalui PC/Laptop memerlukan tambahan instalasi USB Driver.Beberapa distribusi USB Driver dalam microcontroller biasanya menggunakan:

(ESP) CP210x

FTDI VCP (ESP)

(Arduino) CH340, CH341

FT232RL

SESI LANJUTAN: PRAKTIKUM INSTALASI

Requirement

- 1.Arduino IDE [https://www.arduino.cc/en/software]
 - Instalasi ESP32
 - Blynk Library
- **2.USB Driver** [https://s.id/iotblynk]

3.Blynk Android

https://play.google.com/store/apps/details?id=cloud.blynk

4.Blynk Browser

https://blynk.cloud/dashboard/login

Requirement1 – Arduino IDE

- Instalasi Software Arduino IDE
- Link: https://www.arduino.cc/en/software

Arduino IDE 1.8.19

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

Requirement1 – Arduino IDE – Board ESP

https://arduino.esp8266.com/stable/package esp8266com index.json

https://dl.espressif.com/dl/package_esp32_index.json

Link Board

File > Preferences

Requirement1 – Arduino IDE – Board ESP

Tools > Board > Boards Manager > ketik esp32 > Install

Requirement1 – Arduino IDE – Board ESP

Untuk Pengecekan Instalasi ESP Sukses

Tools > Board > ESP32 Arduino > ESP Dev Module

Requirement1 – Arduino IDE – Blynk Library

Tools > Manage Libraries

Requirement2 – USB Driver

- Download & Install USB Driver x64
- Link: s.id/iotblynk

Requirement3&4 – Blynk App

Lakukan Instalasi, Daftar, Login Blynk App

3.Blynk Android

https://play.google.com/store/apps/details?id=cloud.blynk

4.Blynk Browser

https://blynk.cloud/dashboard/login

Requirement3&4 – Blynk App

SESI LANJUTAN: FIRST TEST

First Test - Rangkaian

Rangkailah Seperti Gambar Berikut

LED	
Led + (Kaki Panjang)	Resistor + Pin 32
Led – (Kaki Pendek)	GND

First Test - Program

```
#define led pin 23
void setup() {
 pinMode(led pin,OUTPUT); //Led Output
void loop() {
  digitalWrite(led pin, HIGH); //Led ON
  delay(2000);
  digitalWrite(led pin,LOW); //Led OFF
  delay(2000);
```

Jika Sudah Selesai, Verify

Tidak Ada Error = **Done Compiling**

First Test - Upload

1.Pilih Port & Com

2. Upload

Kesimpulan:

Jika rangkaian benar, maka led akan nyala dan mati

SESI LANJUTAN: RANGKAIAN & BLYNK APP

Blynk App

Sample Project Hari Ini:

PROJECT1: Kontrol Lampu IoT

PROJECT2: Mengirim Data Sensor Cahaya LDR (Light Dependent Resistor)

Get Token Blynk App

Token berfungsi untuk menghubungkan koneksi data dari alat ke software blynk

Get Token Blynk App

Token berfungsi untuk menghubungkan koneksi data dari alat ke software blynk

Blynk App – First Setup

PROJECT1: Kontrol Lampu IoT

Blynk App – Project 1 Blynk - Widget

Blynk App – Project 1 Blynk - Rangkaian

Rangkailah Seperti Gambar Berikut

LED	
Led + (Kaki Panjang)	Resistor + Pin 32
Led – (Kaki Pendek)	GND

Blynk App – Project 1 Blynk - Program

```
#include < WiFi.h >
#include <BlynkSimpleEsp32.h>
#define BLYNK NO BUILTIN
#define BLYNK NO FLOAT
#define BLYNK PRINT Serial
#define BLYNK TEMPLATE ID "TMPL F9xpXCF"
#define BLYNK DEVICE NAME "Quickstart Template"
#define BLYNK AUTH TOKEN "dJLqdN0EJt1shUnKJnEJTbpD1irqhB79"
//Led pin 32
#define led 32
//Blynk Wifi Config
char ssid[] = "robotku";
char pass[] = "robot1234";
char auth[] = BLYNK AUTH TOKEN;
BLYNK WRITE (V1) {
 int btn = param.asInt(); //Cek Data Button
 Serial.print("BUTTON:"); Serial.println(btn);
 if (btn == 1) digitalWrite(led, HIGH); //1-ON , 0-OFF
 if (btn == 0)digitalWrite(led, LOW);
void setup() {
 Serial.begin (115200);
 pinMode(led, OUTPUT);
                                    //Led Output
 Blynk.begin (auth, ssid, pass, "blynk.cloud", 80); //Blynk Config
 Serial.println(Blynk.connected());
  Serial.println("OK");
void loop() {
  Blynk.run();
```

RAW: github.com/bywahjoe/MAN1KDR-IOT22

PROJECT2: Mengirim Data Sensor Cahaya LDR (Light Dependent Resistor)

Blynk App – Project 2 Blynk – Add Datastream

Website: https://blynk.cloud

Datastreams > Edit

Klik New Datastream

+ New Datastream

Blynk App - Project 2 Blynk - Add Datastream

Mengisi Virtual Pin Datastream

Jika sudah selesai, Save and Apply

Blynk App – Project 2 Blynk - Widget

Blynk App – Project 2 Blynk - Widget

Blynk App – Project 2 Blynk - Rangkaian

Rangkailah Seperti Gambar Berikut

fritzing

Blynk App – Project 2 Blynk - Program

```
#include < WiFi.h >
#include <BlynkSimpleEsp32.h>
#define BLYNK NO BUILTIN
#define BLYNK NO FLOAT
#define BLYNK PRINT Serial
#define BLYNK TEMPLATE ID "TMPL F9xpXCF"
#define BLYNK DEVICE NAME "Quickstart Template"
#define BLYNK AUTH TOKEN "dJLqdN0EJt1shUnKJnEJTbpD1irqhB79"
//PIN
#define led 32
#define ldr 33
//Blynk Wifi Config
char ssid[] = "robotku";
char pass[] = "robot1234";
char auth[] = BLYNK AUTH TOKEN;
BlynkTimer timer;
void sendSensorLDR() {
  int val=analogRead(ldr);
  Serial.print("Val LDR:"); Serial.println(val);
  Blynk.virtualWrite(V4, val);}
BLYNK WRITE (V1) {
  int btn = param.asInt(); //Cek Data Button
  Serial.print("BUTTON:"); Serial.println(btn);
  if (btn == 1) digitalWrite(led, HIGH); //1-ON , 0-OFF
  if (btn == 0)digitalWrite(led, LOW);}
void setup() {
  Serial.begin (115200);
  pinMode(led, OUTPUT);
                                    //Led Output
  Blynk.begin(auth, ssid, pass, "blynk.cloud", 80); //Blynk Config
  Serial.println(Blynk.connected());
  Serial.println("OK");
  timer.setInterval(1000L, sendSensorLDR); //Timer Sensor
void loop() {
  Blynk.run(); timer.run();
```

RAW: github.com/bywahjoe/MAN1KDR-IOT22

TERIMA KASIH...

Kesan & Pesan: https://s.id/iotform