

Scientific publication content-based recommender system and co-authorship analysis

Joana Palés Marc Botet Colomer joanaph@kth.se marcbc@kth.se

1 Introduction

The idea of this project arises from the need to find relevant documents among the increasing amount of scientific papers that are published everyday. In order to keep up with the state-of-the-art of a given area of interest, we explore the possibility of offering content-based recommendations based on previous user's readings by means of TF-IDF analysis and cosine similarity.

Apart from that, is a common practice for researchers to collaborate with multiple people. Exploring the connections among co-authors can give valuable insights on the author relevance and areas of expertise as well as the general tendencies of scientific publications. In this project, a co-authorship graph - connecting collaborating authors - is constructed and exploited to obtain relevant information.

2 Method

2.1 Data acquisition and storage

ArXiv API [3] was used to obtain metadata for the papers that fall into the Computer Science category. The publications were retrieved in chronological order, starting by the most recent. A total amount of 46,463 papers were accessed and information about their identifier, title, abstract and authors were directly stored in a Cassandra table. Cassandra is a NoSQL database that allows for distributed storing of information.

Data is directly accessed from Spark by means of direct link with Cassandra. Final results of the Spark processing pipelines, such as normalized TF-IDF scores, cosine similarity between documents and authors pagerank values are also stored in Cassandra.

2.2 Recommender system

As mentioned before, the base of the implemented content-based recommender system is Term Frequency - Inverse Document Frequency (TF-IDF) [1]. This score is given for every word in a document, and reflects its importance in that specific document according to the number of times it appears in it and how common it is in all the considered corpus of documents. In this way, a word that is really frequent in a given document but rare in the corpus will generate a high TF-IDF. Documents are then compared according to their closeness in the word space, by means of cosine similarity.

Even though TF-IDF can be calculated efficiently with a package available in Spark, for educational purposes, the algorithm has been fully implemented using MapReduce. Finding the similarity scores of every pair of documents requires the multiplication of the TF-IDF scores matrix, of shape $X = |Documents| \times |Words|$ by its transpose. Although this multiplication has been computed in a distributed manner, lack of resources have required scaling down the dimensionality of the space by taking 2,500 documents for the demonstration. To further improve efficiency, pairs of papers with similarity scores under 0.10 were filtered out as they were considered non-significant. Finally, a variation of this matrix multiplication has also been implemented, with the purpose of finding the most similar documents to a given publication.

2.3 Co-authorship exploration

A co-authorship graph was created using the Spark package GraphFrames which, unlike GraphX, provides a high-level Python API for distributed graph processing [2]. In this section, the complete dataset was used for a better representation of the authors relationships. The graph was created from a vertices dataframe, which included all the authors present in the dataset, and an edges dataframe, that unites collaborating authors. As GraphFrames only allows for directed unweighted graphs, edges had to be replicated as many times as necessary in both directions to meet the requirements of the problem.

Different characteristics of the graph were obtained making the most of the algorithms included in GraphFrames package. Pagerank was calculated in order to identify the top most relevant authors. To find subgroups of authors that are more related to each other, label propagation community detection algorithm was used. Besides, working with DataFrames allowed for SQL queries on the graphs properties as the average in-degree (average number of collaborations per author) or maximum pagerank value.

3 Experiments and results

3.1 Similarity scores

Table 1 shows the titles of the most similar publications to two documents in the dataset. It can be seen that the first paper, which addresses a more generic topic, has lower similarity values. That is because the words contained in it are less specific, present in more documents, so their TF-IDF scores are lower. Contrary, the second paper shows higher similarly values, including a value above 0.85. A closer inspection of this match showed that they are actually different versions of the same paper, which is consistent with the large similarity score.

Title	Similarity
An lp Variable Projection Method for Large-Scale Separable Nonlinear Inverse Problems	0.289
Efficient learning methods for large-scale optimal inversion design	0.288
Integral Probability Metric based Regularization for Optimal Transport	0.225
Fast Parallel-in-Time Quasi-Boundary Value Methods for Backward Heat Conduction Problems	0.180
Bayesian variational regularization on the ball	0.168

(a) Most similar articles to Efficient edge-preserving methods for dynamic inverse problems

Title	Similarity
RIS-Assisted Massive MIMO with Multi-Specular Spatially Correlated Fading	0.855
Channel Eigenvalues and Effective Degrees of Freedom of Reconfigurable Intelligent Surfaces	0.415
Ergodic Rate Analysis of Reconfigurable Intelligent Surface-Aided Massive MIMO Systems with ZF	0.411
Optimization of Reconfigurable Intelligent Surfaces Through Trace Maximization	0.395
RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Trials	0.365

(b) Most similar articles to Is Channel Estimation Necessary to Select Phase-Shifts for RIS-Assisted Massive MIMO?

Table 1: Recommended publications based on Cosine similarity of normalised TF-IDF scores.

3.2 Co-authorship parameters

Some interesting insights of the relationships among co-authors can be found in Table 2. We can find the mean number of co-authors as well as the mean number of unique co-authors (only collaborated once), the mean number of times two authors collaborate and the number of isolated authors.

Unique co-authors	Total co-authors	Co-authors collaborations	Authors without co-authors
4.46	5.04	1.13	1530

Table 2: Basic statistics on co-authorship

Apart form that, a pagerank analysis showed that Yang Liu is the most relevant author (most connected) of all the authors considered, with a pagerank of 37.95, number significantly higher than the mean pagerank of 1. Figure 1 shows the community of this author extracted using the Label propagation algorithm. Further work could explore different community detection algorithms to obtain more significant communities where its member are better connected.

Figure 1: Community of the author with the highest pagerank score.

4 Conclusions

Calculating similarity scores based on TF-IDF is a computationally expensive task when a large document corpus with different words is considered as it requires the multiplication of a large matrix. A framework that allows for distributed computations, such as Spark, can improve significantly the performance and reduce the computation time. Apart from that, results support the idea that TF-IDF can be successfully used for identifying documents with similar content.

On the other hand, interesting insights on authors relationships could be easily computed in a distributed manner by exploiting the co-authorship graph. Meaningful statistics on the collaborating tendencies of researchers as well as the most influential ones.

How to run the code

The project has been developed using Python3.7, Spark 2.4 and PySkpark, Cassandra 3.11 and GraphFrames 0.8.2.

The project include a requirentments.txt with the necessary packages to run the code. First it is needed to execute the script fetch_papers.py to collect data from the API and store it to a Cassandra database.

Once all the data is available it is only needed to execute the Jupyter Notebook where all the experiments are performed and explained. At the beginning of the notebook it automatically installs the cassandra-spark connector and GraphFrames, assuming Spark and PySpark are well installed.

References

- [1] Karen Spärck Jones. "A statistical interpretation of term specificity and its application in retrieval". In: *Journal of Documentation* 28 (1972), pp. 11–21.
- [2] Apache Spark. graphframes.github.io. URL: https://graphframes.github.io/graphframes/docs/_site/index.html.
- [3] Cornell University. arXiv.org. URL: https://arxiv.org/.