

planetmath.org

Math for the people, by the people.

permutation pattern

 $\begin{array}{lll} {\rm Canonical\ name} & {\rm PermutationPattern} \\ {\rm Date\ of\ creation} & 2013\text{-}03\text{-}22\ 16\text{:}24\text{:}41} \\ {\rm Last\ modified\ on} & 2013\text{-}03\text{-}22\ 16\text{:}24\text{:}41} \end{array}$

Owner mps (409) Last modified by mps (409)

Numerical id 4

Author mps (409) Entry type Definition Classification msc 05A05 Classification msc 05A15

Defines pattern avoidance

A permutation pattern is simply a permutation viewed as its representation in one-line notation. Let $\pi = \pi_1 \pi_2 \dots \pi_k$ be a permutation pattern on k symbols. Then for any permutation $\sigma = \sigma_1 \sigma_2 \dots \sigma_n \in \mathfrak{S}_n$, we say that σ contains π if there is a (not necessarily contiguous) subword of σ of length k that is order-isomorphic to π . More formally, for any subset $J = \{j_1, \dots, j_k\} \subset \{1, \dots, n\}$ of cardinality k, write

$$\sigma_J = \sigma_{j_1} \sigma_{j_2} \dots \sigma_{j_k}$$
.

There is a http://planetmath.org/GroupHomomorphismisomorphism $\mathfrak{S}_J \to \mathfrak{S}_k$. We say that σ contains π if there is some $J \subset \{1, \ldots, n\}$ of cardinality k such that $\sigma_J \mapsto \pi$ under the isomorphism.

If a permutation σ does not contain π , then we say that σ avoids the pattern π .

For example, let $\pi=132$. Then the permutation $\sigma=1234$ avoids π , since σ is strictly increasing but π has a descent. On the other hand, $\tau=1423$ contains π twice, once as the subword 142 and once as the subword 143.

Knuth showed that a permutation is stack-sortable if and only if it avoids the permutation pattern 231.