EJERCICIOS II

En los casos en los que sea necesario se obtendrán 4 decimales.

Ejercicio 1. Convierte a binario.

- a) 520,13₈
- b) AB7, D₁₆ c) 875,25₁₀

<u>Ejercicio 2.</u> Convierte a hexadecimal.

- a) 1100110011100101010111_2 b) $7634,32_8$ c) $730,32_{10}$

Ejercicio 3. Convierte a octal.

- a) $101110110,1101_2$ b) $6AC3,A9_{16}$ c) $25,6_{10}$

Ejercicio 4. Convierte a decimal.

- a) 101101101,111₂ b) A8,2₁₆
- c) 25,6₈

<u>Ejercicio 5.</u> Convierte a binario utilizando ASCII Extendido (8 bits) la palabra LIBRO. Descifra la palabra que corresponde a 010011110101001101001111 en ASCII Extendido.

Ejercicio 6. Responde a las siguientes preguntas:

- a) ¿Cuántos bits son 8 KiB?
- b) ¿Cuántos bytes son 2 GB?
- c) ¿Cuántos MB son 3 TB?
- d) ¿Cuántos kB son 3 GB?

Ejercicio 7. Responde a las siguientes preguntas:

- a) ¿Cuántos bits se necesitan para representar el número 126?
- b) ¿Cuántos números podemos representar con 11 bits?

Ejercicio 8. Contesta las siguientes preguntas:

- a) ¿Para qué se utiliza el teorema fundamental de la numeración?
- b) ¿Qué es UNICODE? ¿Qué características tiene?
- c) Diferencias entre ASCII Estándar y Extendido.