4. Геометрична вероятност.

Задача 1. Даден е кръг с радиус R. Върху диаметъра по случаен начин е избрана точка А. През точка A е прекарана хорда перпендикулярна на диаметъра. Каква е вероятността хордата да бъде по-къса от R?

Задача 2. Два парахода трябва да бъдат разтоварени на един и същи пристан през един и същи ден. Всеки от тях, независимо от другия, може да пристигне в кой да е момент от денонощието. Каква е вероятността параходите да не се засекат, ако за разтоварването на първия са необходими 6, а за втория 4 часа?

Задача 3. Автобусите от линия A се движат на интервали от пет минути, а от линия B на десет минути, независимо от автобусите от линия A. Каква е вероятността

- 1. автобус от А да дойде преди автобус от Б;
- 2. пътник, дошъл в случаен момент на спирката, да чака не повече от две минути?

Задача 4. Дадена е отсечка с дължина К. По случаен начин се избират две други отсечки с дължина по-малка от К. Каква е вероятността от трите отсечки да може да се построи триъгълник?

Задача 5. Каква е вероятността от три избрани по случаен начин отсечки с дължина по-малка от K да може да се построи триъгълник?

Задача 6. Дадена е магнетофонна лента с дължина 100м. Върху всяка от двете страни на лентата, на случайно избрано място, е записано непрекъснат съобщение с дължина 20м. Каква е вероятността между 25 и 50м, считано от началото на лентата, да няма участък несъдържащ поне едно от двете съобщения?

Задача 7. По случаен начин и независимо едно от друго се избират две числа x и y в интервала (0, 1]. Каква е вероятността на събитията

- 1. $xy \le 1/4$;
- 2. $x + y \le 1$ и $x^2 + y^2 \ge 1/2$;
- 3. $xy \ge 2/5$ и $x^2 + y^2 \le 1$?

Задача 8. Разделяме случайно отсечка с дължина 1 на 3 части. Каква е вероятността те да могат да образуват триъгълник?

Задача 9. (Bertrand Paradox) Да разгледаме равностранен триъгълник, вписан в окръжност с радиус 1. Каква е вероятността случайно избрана хорда от тази окръжност да е по-дълга от страната на триъгълника?