구매감소고객예측을 통한마게팅 전략 제시

K-digital Al solution developer based on Bigdata

팀원소개

- 총괄
- EDA 및 데이터 분석
- Presentation
- https://github.com/SeunghyeChae
- lloves2743@gmail.com

팀원 권준기

- EDA 및 데이터 분석
- 데이터 전처리
- 데이터 정제 및 생성
- https://github.com/pkwon35
- pkwon0307@naver.com

팀원 김광훈

- EDA 및 데이터 분석
- Research
- 평가지표 개발 및 성능개선
- https://github.com/Kikiru328 kikiru328@gmail.com

팀원 진유훈

- EDA 및 데이터 분석
- Machine Learning
- 시각화
- https://github.com/JINYUHOON
- jyhoon77@nate.com

Contents

11 THS

목적

- L사의 데이터를 활용하여 고객의 구매 패턴을 파악
- 구매감소고객 예측 모델을 통해 특정 패턴을 보이는 각 고객 유형별로 니즈를 해결할 수 있는 마케팅을 제언

사용 데이터 (내부)

고객DEMO 고객번호 / 성별 / 연령대 / 거주지역 구매상품TR 고객번호 / 영수증번호/ 대, 중, 소분류코드 / 구매일자 / 구매시간/ 구매금액 멤버십여부 고객번호 / 멤버십명 / 가입년월 상품분류 제휴사 / 대, 중, 소분류코드 / 중, 소분류명

개요

사용 데이터 (외부)

OpenAPI

한국천문연구원_천문우주정보_특일_정보제공_서비스: 공휴일 날짜 추출

사용 Module

Google Colaboratory

Oracle SQL Developer

사용 Model

- Logistic-Regression
- SVC
- DecisionTree-Classifier

- RandomForest-Classifier
- XGB-Classifier
- LGBM-Classifier

2 EDA/주제선정

기존고객 - 모든 구매이력 간격이 180일 이하인 고객 (각반기에 구매이력이 1개 이상 있는 고객)

기존고객 정의

이탈고객 - 구매이력 간격이 180일 이상이 된고객

신규고객 - 다시구매이력이생긴이탈고객

기존고객 Total 고객수(19383명) - 신규/이탈고객(298명) = 19085명

각 반기의 실제 구매금액이 매출증감율을 고려한 기준금액보다 낮은 고객

구매 감소고객 정의

L사반기별총매출액

매출이 증가하면 고객들의 구매감소는 줄어드는가?

구매감소고객의비율

구매감소고객의 구매감소액 비율

10~30% 감소한 사람의 비율 약 2배 증가

30%이상감소한사람의비율약 3배증가

매출증감율 고려한 구매감소고객 비율

매출증감율을 고려한 2015년 1-2분기의 구매감소 고객은 전체 고객의 70% 이상

분석의 과제

- 구매 감소 패턴을 보이는 고객의 니즈를 해결
- 다른 특성을 갖는 각 고객군들의 패턴 파악 및 마케팅 제언

주제 선정

구매 감소 고객 예측 모델 생성 및 마케팅 제언

3

데이터 분석

고객DEMO 고객번호 / 성별 / 연령대 / 거주지역

구매상품TR 고객번호 / 영수증번호/ 대, 중, 소분류코드 / 구매일자 / 구매시간/ 구매금액

멤버십여부 고객번호 / 멤버십명 / 가입년월

상품분류 제휴사 / 대, 중, 소분류코드 / 중, 소분류명

고객 패턴 파악을 위해 고객중심 데이터로 가공 및 통합

종속변수 (target) 학습-검증 Dataset

- (2014년 1분기 대비) 2015년 1분기 구매감소유무

Test Dataset

- (2014년 1분기 대비) 2015년 2분기 구매감소유무

독립변수

학습-검증 Dataset

- 2014년 1분기 ~ 2014년 2분기 데이터 사용

Test Dataset

- 2014년 1분기 ~ 2015년 1분기 데이터 사용

성별

총 구매금액 (누적)

연령대

앵겔지수 (Engel Coefficient)

거주지역 (랭크)

R / F / M 의 추세선 기울기

Recency 증감/변동 방문별 거래횟수 증감/변동 객단가 증감/변동 Monetary 증감/변동 평일 구매 비중 증감/변동 오전 구매 비중 증감/변동 독립변수 엥갤지수 증감/변동 패션 구매금액 증감/변동 A/B/C/D 제휴사별 고관여 제품 / 저관여 제품 / 사치품 구매금액 증감/변동 구매금액 증감/변동

증감 (NET) - 첫 반기와 마지막 반기의 증감

변동 (Coefficient of Variation)

- 상대표준 편차
- 표준편차 / 산술평균
- 상대적인 차이를 동일한 평균기준으로 값의 비교가 가능

고객속성

성별

- One hot encoding 을 통해 두 개의 컬럼 생성

연령대

- 연령대 범위를 넓혀서 재 범주화 (10대, 20대 … 60대이상)

거주지역 (랭크)

- 거주지역별 고객의 평균 이용금액을 랭크화함으로써 label encoding의 단점을 보완

누적 총 구매금액

- 각 고객의 누적 총 구매금액

고객속성

R/F/M의 추세선 기울기 -고객의 데이터(월별) 를 산점도로 나타냈을 경우 데이터 산점도의 선형회귀선 기울기

$$m = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

고객패턴

방문별 거래횟수 변동 / 증감 - 방문할 때마다 머무는 시간을 고려하기 위해 방문별 거래횟수의 변동과 증감을 통해 패턴 측정

Recency (고객의최근성) 변동 / 증감

- 값이 클수록 더 최근에 구매했음을 의미하는 Recency의 패턴

Monetary 변동 / 증감

- 고객이 돈을 얼마나 썼는가를 쓰는지를 의미하는 구매금액의 패턴

고객패턴

객단가 변동/증감

- 한 번 구매할 때마다 얼마를 쓰는지를 의미하는 객단가의 패턴

평일 구매 횟수 변동 / 증감 공휴일을 제외한 평일에 구매한 횟수의 패턴
 (외부데이터를 활용하여 공휴일 날짜 제외)

오전 구매 횟수 변동 / 증감 오전에 구매한 횟수의 패턴(오전/오후 시간 0~12시 / 12~24시)

고객패턴

Engel index (엥겔지수) 변동 / 증감

- 식품 구매금액 / 총 구매금액 (앵겔지수) 패턴

엥겔법칙이란,

소득의 증가에 따라 지출중 음식비 지출의 비중이 점차 감소한다는 법칙이다.

엥겔지수가 낮을수록 고소득층으로 취급하는게 보통이다.

고객패턴

패션 구매금액 변동 / 증감

- 11개의 대분류중 패션 관련 구매금액 패턴

대분류 재범주화

- 대분류 코드를 국가기준에 맞추어 11개의 대분류명으로 재범주화
- 대분류 속성에 맞추어 각 대분류별로 중분류 재조합

가공식품/ 신선식품/ 가구,인테리어/ 교육 문화용품/ 디지털,가전 / 의류/ 패션잡화/ 일상용품/ 전문스포츠,레저/ 명품/ 기타

고객패턴

제휴사별 구매금액 변동/증감

- A,B,C,D 제휴사별 구매금액 패턴

고관여,저관여제품 .사치품변동/증감

- 구매품목을 제품의 특성별로 분류한 구매금액 패턴 (중분류 기준)

고관여 제품

- 고객이 상품을 구매할 때 많은 고민을 거치는 성격의 상품

저관여 제품

- 습관적으로 구매하거나 크게 비교가 필요하지 않은 상품

사치품 - 명품, 보석 등

Model Selection

- 121개의 feature 에서 Model selection을 통해 42개의 feature로 축소

HeatMap

Modeling Accuracy

([accuracy] [precision] [recall] [f1_score] [roc_auc])

학습-검증 Dataset Accuracy

Test Dataset Accuracy

Logistic-0.7129 / 0.7129 / 0.7219 / 0.7093 / 0.7857 Regression Decision-0.6306 / 0.6306 / 0.6306 / 0.6234 / 0.6306 Tree Random 0.7123 / 0.7034 / 0.7034 / 0.7875 Forest XGB 0.7079 / 0.7079 / 0.7111 / 0.7026 / 0.7913 LGBM 0.7084 / 0.7084 / 0.7025 / 0.7093 / 0.7820

Logistic-0.6791 / 0.6791 / 0.6826 / 0.6887 / 0.7464 Regression Decision-0.7120 / 0.7120 / 0.6925 / 0.7143 / 0.7128 Tree Random 0.7255 / 0.7255 / 0.7033 / 0.7272 / 0.7886 Forest XGB 0.6997 / 0.6997 / 0.6930 / 0.7059 / 0.7752 LGBM 0.7227 / 0.7227 / 0.7035 / 0.7251 / 0.7925

Feature Importance

Clustering

- 중요변수 12개를 추출하여 군집화

	방문별거래횟수_cv	객단가_cv	Frequency_cv	고관여제품_cv	저관여제품_cv	구매횟수_cv	연령대	패션_cv	식품_cv	사치품_cv	A_amt_cv	0	1	2 3
0	0.274695	-0.159943	-0.126403	0.874033	0.564284	0.537080	10	-0.951844	0.303052	-0.631570	-0.350468	0	1	0 0
1	0.098278	-0.764186	-0.273601	1.828496	2.223994	-0.497089	10	1.908615	-0.387719	-0.631570	1.747667	0	1	0 0
2	0.076567	-0.650952	0.584470	0.185151	1.626760	0.706902	10	-0.223993	0.906996	-0.631570	-0.766105	0	0	1 0
3	2.762970	-0.317480	2.867088	-0.656965	1.954265	2.661321	10	0.160968	1.478878	1.838729	0.108540	0	0	1 0
4	-0.541970	0.145126	-0.822011	-0.915137	-1.095517	-0.753061	10	1.586765	-0.883889	1.838729	-0.190156	0	0	1 0
9271	-0.070963	-0.610104	-0.388516	-0.773742	-0.616698	-0.250596	6	1.908615	-0.917900	-0.631570	1.747667	0	1	0 0
9272	0.899060	-0.602059	-0.637450	-1.296455	-0.525439	-0.241063	5	-1.223279	1.138404	-0.631570	-1.076555	1	0	0 0
9273	0.879869	-0.644054	-0.122789	1.828496	3.117756	0.368327	3	1.908615	-0.027766	-0.631570	-0.415071	1	0	0 0
9274	1.165992	-0.436630	1.197963	0.117756	-0.356103	0.174645	5	0.375669	0.267088	-0.631570	-1.076555	1	0	0 0
9275	-0.130945	-0.369737	0.212049	-1.296455	1.696743	0.486185	8	1.908615	0.430582	-0.631570	1.747667	0	1	0 0
9276 rc	ows × 15 columns													

Elbow-Method

Silhouette Coefficient

Clustering특성

구매감소고객총 9924명

A 군집

특성

- 패션_NET 즉, 패션에 쓰이는 매출액이 감소된 고객들로 구성
- 그 중 사치품에 관한 구매가 감소된 고객의 비율 높음
- (패션잡화 및 의류에 대한 소비가 감소)

마케팅 제언

- 고객 맞춤 패션 의류 및 패션잡화 추천 서비스 시스템 도입

B 군집

특성

- 구매 횟수의 감소폭이 큼
- 구매 횟수가 크게 감소한 곳은 A 제휴사로 보임

마케팅 제언

- A 제휴사는 가장 높은 매출액을 보이는 제휴사로, A 제휴사에 맞는 마케팅을 진행.
- A 제휴사의 상품은 대부분 B,C,D 에는 없는 사치품과 고관여 상품이 주로 이름. 따라서 A 제휴사의 이용과 소비를 늘리기 위해서는 A 사의 방문을 우선시하는 마케팅을 제공
- A 제휴사에서 다양한 문화행사와 이벤트 판매를 진행
 (A 제휴사의 방문을 늘림과 더불어 구매횟수를 늘릴 수 있도록 함)

C 군집

특성

- 사치품에 대한 소비 감소폭이 큼

마케팅 제언

- 사치품은 고관여상품과는 달리 과시소비중 하나라고 볼 수 있음 (보석, 명품 등) 사치품에 대한 소비가 줄어들었다는 것은 개인을 과시하려는 상품이 부족 or 사치품 필요성 감소로 추론
- 사치품에 대한 마케팅을 진행.
 - ex. 사치품의 물량을 줄여 희소성을 높이거나, 가장 최신의 사치품을 보유하여

과시소비의 심리를 자극

D 군집

특성

- 식품의 소비 감소폭이 큼

마케팅 제언

- 식품: 가격의 변동이 크지 않고, 수요의 탄력성이 크지 않은 상품군 엥겔지수의 설명과 같이 식품은 소비가 항상 일어나는 상품
- 식품의 소비가 줄었다는 것은 해당 제휴사들 안에서 식품을 소비하지 않고,
 경쟁사에서 소비하고 있다고 추론 가능
- 식품의 소비를 올리기 위해서 매번 다른 할인 상품 이벤트or 경쟁사와의 차별성 만들기

THANK YOU

감사합니다