Towards a statistical physics analysis of multilayer ReLU neural networks

Michiel Straat, Michael Biehl

September 12th, 2019

Content

- On-line learning in a student-teacher scenario
- Differential equations in the thermodynamic limit
- 3 Adaptive second layer weights
- 4 Future work

Learning from a teacher network

At timestep μ , the input $\boldsymbol{\xi}^{\mu} \in \mathbb{R}^{N}$ is presented.

Figure: Teacher with weights $\boldsymbol{B} \in \mathbb{R}^N$

Figure: Student with weights $J \in \mathbb{R}^N$

 $y^{\mu} = \mathbf{B} \cdot \boldsymbol{\xi}^{\mu}$ and $x^{\mu} = \mathbf{J} \cdot \boldsymbol{\xi}^{\mu}$ are pre-activations and $g(\cdot)$ the activation function.

Macroscopics: Order parameters

Order parameters aggregate the microscopics into a few descriptive parameters.

Overlap
$$R = \mathbf{J} \cdot \mathbf{B}$$

Student magnitude $Q = \boldsymbol{J} \cdot \boldsymbol{J}$

Teacher magnitude $T = \mathbf{B} \cdot \mathbf{B} = 1$

$$R = \sqrt{Q}\sqrt{T}\cos\phi$$

On-line learning from a teacher network

Here we assume i.i.d. $\xi_i \sim \mathcal{N}(0,1)$ such that $\langle \xi_i \xi_j \rangle = 0$, $i \neq j$ Learn Learn $oldsymbol{J}^{\mu+2}$ ${m J}^{\mu+1}$ $\sigma^{\mu+2}$ $\sigma^{\mu+1}$ σ^{μ} $oldsymbol(oldsymbol{\xi}^{\mu+2}, au^{\mu+2})$ $(\boldsymbol{\xi}^{\mu}, au^{\mu})$ В **Teacher** $\boldsymbol{\xi}^{\mu+1}$

On-line gradient descent

- **1** Error for the μ th example: $\epsilon^{\mu} = \frac{1}{2}(\tau^{\mu} \sigma^{\mu})^2$
- 2 Update weights ${m J}$ to reduce ϵ^μ : ${m J}^{\mu+1}={m J}^\mu+\Delta{m J}$, where $\Delta{m J}=-\frac{\eta}{N}\nabla_{m J}\epsilon^\mu$

Weight update

$$oldsymbol{J}^{\mu+1} = oldsymbol{J}^{\mu} + rac{\eta}{N} \delta^{\mu} oldsymbol{\xi}^{\mu}, \quad \delta^{\mu} = (au^{\mu} - \sigma^{\mu}) g'(x^{\mu})$$

By a simple substitution of $J^{\mu+1}$, one obtains the recurrences in $R = \mathbf{J} \cdot \mathbf{B}$ and $Q = \mathbf{J} \cdot \mathbf{J}$:

$$R^{\mu+1} = R^{\mu} + \frac{\eta}{N} \delta^{\mu} y^{\mu}$$

$$Q^{\mu+1} = Q^{\mu} + 2 \frac{\eta}{N} \delta^{\mu} x^{\mu} + \frac{\eta^{2}}{N} (\delta^{\mu})^{2}$$

Learning behavior on the level of order parameters

$$oldsymbol{\xi} \in \mathbb{R}^3$$
 i.i.d $\xi_i \sim \mathcal{N}(0,1)$ and $R(0) = 0, Q(0) = 0.2$

Time $\alpha = \mu/N$

Learning a rule in higher dimensions

$$oldsymbol{\xi} \in \mathbb{R}^{oldsymbol{N}}$$
 i.i.d $\xi_i \sim \mathcal{N}(0,1)$ and $R(0) = 0, Q(0) = 0.2$

0.8 0.8 0.6 0.2 0.2 0 20 40 60 alpha

Figure: Learning in \mathbb{R}^{60}

Figure: Learning in \mathbb{R}^{1000}

Time $\alpha = \mu/N$

(ロ) (部) (注) (注) 注 り(0)

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N \to \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N \to \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Pre-activations $x = \sum_{i=1}^{N} J_i \xi_i$ and $y = \sum_{i=1}^{N} B_i \xi_i$ are Gaussians for large N (CLT). Joint density P(x, y) with:

$$\langle x \rangle = \langle y \rangle = 0$$
 and $C = \begin{pmatrix} Q & R \\ R & T \end{pmatrix}$.

Order parameters are self-averaging \to Deterministic equations in the thermodynamic limit $N \to \infty$ with continuous time $\alpha = \mu/N$.

Differential equations $N \to \infty$

$$\frac{dR}{d\alpha} = \eta \langle \delta y \rangle_{\xi}$$

$$\frac{dQ}{d\alpha} = 2\eta \langle \delta x \rangle_{\xi} + \eta^2 \langle \delta^2 \rangle_{\xi}$$

Pre-activations $x = \sum_{i=1}^{N} J_i \xi_i$ and $y = \sum_{i=1}^{N} B_i \xi_i$ are Gaussians for large N (CLT). Joint density P(x, y) with:

$$\langle x \rangle = \langle y \rangle = 0$$
 and $C = \begin{pmatrix} Q & R \\ R & T \end{pmatrix}$.

Averages $\langle \cdot \rangle_{\xi}$ taken over P(x,y) for $g(x) = x\Theta(x)$.

Soft committee machine

Two-layer network with adaptive first-layer weights.

Order parameters of the SCM

M=3 teacher hidden units and K=3 student hidden units.

 $R_{in} = \boldsymbol{J}_i \cdot \boldsymbol{B}_n$

Teacher hidden layer

$$T_{nm} = \boldsymbol{B}_n \cdot \boldsymbol{B}_m = \delta_{nm}$$

Student hidden layer

$$Q_{ik} = \mathbf{J}_i \cdot \mathbf{J}_k$$

SCM: Solving the ODE system

M=2 teacher units and K=2 student.

Initial state:
$$R(0) = \begin{pmatrix} 10^{-3} & 0 \\ 0 & 10^{-3} \end{pmatrix}$$
, $Q(0) = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.2 \end{pmatrix}$

Figure: K = M = 2 and $\eta = 0.1$. Symbols show simulation results for $N = 10^4$.

4 □ → 4 ₱ → 4 ₱ → ■ 90 0

Extension of model with hidden-to-output weights

Introduce adaptive second layer weights:

Student output Teacher output
$$\sigma^{\mu} = \sum_{i=1}^{K} g(\mathbf{J}_{i} \cdot \boldsymbol{\xi}^{\mu}) \mathbf{w}_{i} \qquad \tau^{\mu} = \sum_{n=1}^{M} g(\mathbf{B}_{n} \cdot \boldsymbol{\xi}^{\mu}) \mathbf{v}_{n}$$

Where we update w_i with gradient descent: $w_i^{\mu+1} = w_i^{\mu} - \eta \frac{\partial \epsilon}{\partial w_i}$. From previous research:

- Second layer weights are self-averaging.
- Put second layer weights on a faster timescale.

Two-layer architecture with adaptive second layer weights

K=M=2, teacher second layer weights $v_1=1.2, v_2=3$ and non-adaptive student weights w_1,w_2 . Learning rate $\eta=0.1$ and initial specialization $R_{11}=R_{22}=10^{-3}$.

 Q_{11} and Q_{22} compensate for the rule's second layer weights.

K=M=2, teacher second layer weights $v_1=1.2, v_2=3$ and non-adaptive student weights w_1, w_2 . Learning rate $\eta=0.1$ and initial specialization $R_{11}=R_{22}=10^{-3}$.

 $\epsilon_g(\alpha o \infty) = 0 o ext{ This rule is indeed learnable.}$

For a teacher with general weights $v_1, v_2 \in \mathbb{R}$, we need to consider adaptive w_1, w_2 . Results for simulations with K = M = 2 and N = 1000:

$$v1 = -1.2, v2 = -3$$

For a teacher with general weights $v_1, v_2 \in \mathbb{R}$, we need to consider adaptive w_1, w_2 . Results for simulations with K = M = 2 and N = 1000:

Multiple ways of realizing the rule: In this case, lower $|w_1|$ and $|w_2|$ gets compensated by higher Q_{11} and Q_{22} , which realizes $\epsilon_g(\alpha \to \infty) = 0$.

Future work

- Add second layer updates to the differential equations (straightforward)
- Introduce biases:

$$\begin{array}{ll} \textbf{Student output} & \textbf{Teacher output} \\ \sigma^{\mu} = \sum_{i=1}^{K} g(\textbf{\textit{J}}_{i} \cdot \boldsymbol{\xi}^{\mu} + \boldsymbol{\theta_{i}}) w_{i} & \tau^{\mu} = \sum_{n=1}^{M} g(\textbf{\textit{B}}_{n} \cdot \boldsymbol{\xi}^{\mu} + \boldsymbol{\phi_{n}}) v_{n} \end{array}$$

The model is now a universal approximator, also for ReLU activation.

- Analyses of the ODE system $(N \to \infty)$ for the above scenario, including
 - Optimal learning rates and learning rate adaptation.
 - Different activation function in student and teacher.
 - Complex students (large K) learning a simple rule (Small M). Regularization techniques.

Tree architectures

- Each hidden unit gets a part $\tilde{\xi}_i$ of the input.
- Local potentials x_i are mutually independent in this case.
- Matrices R,Q and T are diagonal.