51

Claims

1. Use of a compound of formula (I) or an agriculturally acceptable salt thereof for plant growth regulation

5

$$\begin{array}{c|c}
H & N & N & N & N \\
E & N & S & W
\end{array}$$
(I)

wherein:

E is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_3-C_6) alkynyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkoxy]carbonyl- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkyl]carbonyloxy- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, furfuryl, tetrahydrofurfuryl or isoxazolyl which last mentioned group is unsubstituted or substituted with one or two (C_1-C_6) alkyl radicals; or is a group of formula (A):

15

10

in which X, Y, Z and V are each independently C or N, with the proviso that at least two of X, Y, Z and V are C;

the linking bond of (A) is attached to a ring carbon atom;

 $(R^1)_u$ are u substituents of R^1 which may be same or different, each R^1 is linked to a ring carbon atom and is H, R^2 , (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkoxy, $[(C_3-C_8)$ cycloalkyl]carbonyl, (C_3-C_8) cycloalkyl- (C_3-C_8) cycloalkyl- (C_3-C_8) cycloalkyl- (C_3-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl where each of the last 3 mentioned radicals is unsubstituted or substituted by one or more R^2 radicals;

25

20

or aryl, heterocyclyl, aryl- (C_1-C_6) alkyl, heterocyclyl- (C_1-C_6) alkyl, aryl- (C_1-C_6) alkoxy, heterocyclyl- (C_1-C_6) alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, heterocyclyloxy, aryl- $S(O)_n$ or heterocyclyl- $S(O)_p$, where the aryl or

5

10

15

20

25

30

heterocyclyl portion of the last 12 mentioned radicals is unsubstituted or substituted by one to three radicals selected from the group consisting of R^2 , (C_1-C_6) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or (A) is fused to a 1,3-dioxolanyl or 1,4-dioxanyl ring where each of the last two mentioned rings is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) alkoxy and OH;

each R^2 independently from other R^2 radicals is hydroxy, halogen, cyano, nitro, NR^3R^4 , $CONR^3R^4$, $OCONR^3R^4$, $OCH_2CONR^3R^4$, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, CO_2R^3 , COR^3 , $NHCOR^3$, $NHCO_2R^3$, $S(O)_qR^5$, SO_2NH_2 or R^6 ; R^3 is hydrogen, (C_1-C_6) -alkyl or CH_2R^6 ;

 R^4 is hydrogen or (C₁-C₆)-alkyl; or R^3 and R^4 together with the nitrogen atom to which they are attached form a 3 to 8 membered cyclic ring optionally containing one or two further hetero atoms selected from oxygen, sulfur and nitrogen;

 R^5 is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

W is O or N-OR⁷;

 R^6 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl and (C_1-C_6) alkoxy;

 R^7 is hydrogen, (C_1-C_6) alkyl or aryl- (C_1-C_6) alkyl;

Q is (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, where the last 2 mentioned radicals are unsubstituted or substituted in the cycloalkyl by (C_1-C_4) alkyl, (C_1-C_4) alkoxy and halogen, (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or

aryl, heterocyclyl, aryl- (C_1-C_6) alkyl or heterocyclyl- (C_1-C_6) alkyl, where the aryl or heterocyclyl portion of the last 4 mentioned radicals is unsubstituted or substituted by:

i) one to three radicals selected from the group consisting of R^2 , (C₁-C₆)alkyl, (C₂-C₆)alkenyl and (C₂-C₆)alkynyl, where each of the last 3

mentioned radicals is unsubstituted or substituted by one or two R² radicals; or

- ii) (C₃-C₈)cycloalkyl, (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, (C₃-C₈)cycloalkyl-(C₁-C₆)alkoxy, [(C₃-C₈)cycloalkyl]carbonyl, (C₃-C₈)cycloalkyloxy, (C₃-C₈)cycloalkyl-S(O)_r, aryl, heterocyclyl, aryl-(C₁-C₆)alkyl, heterocyclyl-(C₁-C₆)alkyl, aryl-(C₁-C₆)alkoxy, heterocyclyl-(C₁-C₆)alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, (C₃-C₈)-heterocyclyloxy, aryl-S(O)_s or heterocyclyl-S(O)_t, which last 12 mentioned radicals is unsubstituted or substituted by one or two radicals selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl and R²; m, n, p, q, r, s and t are each independently 0, 1 or 2; u is the number of ring carbon atoms in formula (A) minus 1; and each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.
 - 2. The use of a compound as defined in claim 1, in which (A) of formula (I) is a formula (A1), (A2), (A3), (A4) or (A5):

- and wherein R¹ and u are as defined in claim 1.
 - 3. The use of a compound as defined in claim1, in which E is (C_1-C_6) alkyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkoxy]carbonyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl or a group (A):

5

10

15

5

X, Y, Z and V are each C;

each R^1 which may be the same or different is H, hydroxy, halogen, cyano, nitro, NR^3R^4 , $CONR^3R^4$, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, CO_2R^3 , COR^3 , $NHCOR^3$, $S(O)_qR^5$, SO_2NH_2 , (C_1-C_3) alkyl or (C_1-C_3) haloalkyl, wherein R^3 and R^4 are each independently hydrogen or (C_1-C_3) -alkyl, and R^5 is (C_1-C_3) alkyl or (C_1-C_3) haloalkyl; or phenyl or pyridyl, which last 2 mentioned radicals are unsubstituted or

or phenyl or pyridyl, which last 2 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C₁-C₆)alkyl and (C₁-C₃)haloalkyl; and u is 5.

4. The use of a compound as defined in claim 1, in which E is (C₁-C₃)alkyl, (C₁-C₃)alkoxy-(C₁-C₃)alkyl, [(C₁-C₃)alkoxy]carbonyl-(C₁-C₃)alkyl, (C₃-C₆)cycloalkyl-(C₁-C₃)alkyl or a group of formula (A):

$$(R^1)_u \xrightarrow{X}^Z$$
 (A)

- 20 X, Y and Z are all C; V is C or N; R¹ is H or halogen; and u is 4 or 5.
- The use of a compound as defined in claim 1, in which E is (C₁-C₃)alkyl, (C₁-C₃)alkoxy-(C₁-C₃)alkyl, [(C₁-C₃)alkoxy]carbonyl-(C₁-C₃)alkyl, (C₃-C₆)cycloalkyl (C₁-C₃)alkyl or a group (A):

WO 2005/063022 PCT/EP2004/014262

55

X, Y, Z and V are all C;

W is O:

5 R¹ is H or halogen;

10

25

30

Q is cyclopropyl, (C₁-C₃)alkyl, phenyl, naphthyl, pyridinyl, tetrahydropyridinyl, thienyl or benzo[b]thienyl, which last 6 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C₁-C₃)alkyl, OH, NO₂, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, phenyl and benzyloxy; and u is 5.

- A composition for plant growth regulation, which comprises one or more compounds of formula (I) as defined in anyone of claims 1 to 5 or an agriculturally acceptable salt thereof, carriers and/or surfactants useful for plant protection formulations.
- 7. The composition as claimed in claim 6, which comprises a further active compound selected from the group consisting of acaricides, fungicides, herbicides, insecticides, nematicides or plant growth regulating substances not identical to compounds defined by formula (I) of claim 1.
 - 8. The use of a composition as claimed in anyone of claims 6 to 7 for plant growth regulation, in which the plant is a monocotyledoneous or dicotyledoneous crop plant.
 - 9. The use as claimed in claim 8, wherein the plant is selected from the group consisting of wheat, barley, rye, triticale, rice, maize, sugar beet, cotton, or soybeans.

WO 2005/063022 PCT/EP2004/014262

56

10. A method for growth regulation in crop plants, which comprises applying an effective amount of a compound of formula (I) as defined in claims 1 to 5 to the site where the action is desired said method comprising applying to plants, to seeds from which they grow or to the locus in which they grow, a non-phytotoxic, effective plant growth regulating amount of one or more compounds of formula (I).

5

10

11. A method as claimed in claim 10 that results into a yield increase of at least 10% concerning the plants to which it is applied.