Percentage Composition: Chap. 7, Sec. 3

- **132.** Determine the percentage composition of each of the following compounds.
 - a. sodium oxalate, Na₂C₂O₄
 - **b.** ethanol, C₂H₅OH
 - c. aluminum oxide, Al₂O₃
 - **d.** potassium sulfate, K₂SO₄
- 133. Suppose that a laboratory analysis of white powder showed 42.59% Na, 12.02% C, and 44.99% oxygen. Would you report that the compound is sodium oxalate or sodium carbonate? (Use 43.38% Na, 11.33% C, and 45.29% O for sodium carbonate, and 34.31% Na, 17.93% C, and 47.76% O for sodium oxalate.)
- **134.** Calculate the mass of the given element in each of the following compounds.
 - **a.** bromine in 50.0 g potassium bromide, KBr
 - **b.** chromium in 1.00 kg sodium dichromate, Na₂Cr₂O₇
 - **c.** nitrogen in 85.0 mg of the amino acid lysine, $C_6H_{14}N_2O_2$
 - **d.** cobalt in 2.84 g cobalt(II) acetate, $Co(C_2H_3O_2)_2$

Hydrates

- 135. Calculate the percentage of water in each of the following hydrates.
 - a. sodium carbonate decahydrate, Na₂CO₃•10H₂O
 - **b.** nickel(II) iodide hexahydrate, NiI₂•6H₂O
 - c. ammonium hexacyanoferrate(III) trihydrate (commonly called ammonium ferricyanide), (NH₄)₂Fe(CN)₆*3H₂O
 - **d.** aluminum bromide hexahydrate

Mixed Review

- **136.** Write formulas for the following compounds and determine the percentage composition of each.
 - a. nitric acid
 - b. ammonia
 - **c.** mercury(II) sulfate
 - **d.** antimony(V) fluoride
- 137. Calculate the percentage composition of the following compounds.
 - a. lithium bromide, LiBr
 - **b.** anthracene, $C_{14}H_{10}$
 - c. ammonium nitrate, NH₄NO₃
 - **d.** nitrous acid, HNO₂
 - e. silver sulfide, Ag₂S
 - **f.** iron(II) thiocyanate, Fe(SCN)₂
 - g. lithium acetate
 - **h.** nickel(II) formate
- **138.** Calculate the percentage of the given element in each of the following compounds.
 - a. nitrogen in urea, NH₂CONH₂
 - **b.** sulfur in sulfuryl chloride, SO₂Cl₂
 - c. thallium in thallium(III) oxide, Tl₂O₃
 - **d.** oxygen in potassium chlorate, KClO₃
 - e. bromine in calcium bromide, CaBr₂
 - **f.** tin in tin(IV) oxide, SnO_2
- **139.** Calculate the mass of the given element in each of the following quantities.

- a. oxygen in 4.00 g of manganese dioxide, MnO₂
- **b.** aluminum in 50.0 metric tons of aluminum oxide, Al₂O₃
- c. silver in 325 g silver cyanide, AgCN
- **d.** gold in 0.780 g of gold(III) selenide, Au₂Se₃
- e. selenium in 683 g sodium selenite, Na₂SeO₃
- **f.** chlorine in 5.0×10^4 g of 1,1-dichloropropane, CHCl₂CH₂CH₃
- **140.** Calculate the percentage of water in each of the following hydrates.
 - a. strontium chloride hexahydrate, SrCl₂•6H₂O
 - **b.** zinc sulfate heptahydrate, ZnSO₄•7H₂O
 - c. calcium fluorophosphate dihydrate, CaFPO₃•2H₂O
 - **d.** beryllium nitrate trihydrate, Be(NO₃)₂•3H₂O
- **141.** Calculate the percentage of the given element in each of the following hydrates. You must first determine the formulas of the hydrates.
 - a. nickel in nickel(II) acetate tetrahydrate
 - b. chromium in sodium chromate tetrahydrate
 - **c.** cerium in cerium(IV) sulfate tetrahydrate
- **142.** Cinnabar is a mineral that is mined in order to produce mercury. Cinnabar is mercury(II) sulfide, HgS. What mass of mercury can be obtained from 50.0 kg of cinnabar?
- 143. The minerals malachite, Cu₂(OH)₂CO₃, and chalcopyrite, CuFeS₂, can be mined to obtain copper metal. How much copper could be obtained from 1.00 × 10³ kg of each? Which of the two has the greater copper content?
- **144.** Calculate the percentage of the given element in each of the following hydrates.
 - a. vanadium in vanadium oxysulfate dihydrate, VOSO₄*2H₂O
 - **b.** tin in potassium stannate trihydrate, K₂SnO₃•3H₂O
 - c. chlorine in calcium chlorate dihydrate, CaClO₃•2H₂O
- **145.** Heating copper sulfate pentahydrate will evaporate the water from the crystals, leaving anhydrous copper sulfate, a white powder. *Anhydrous* means "without water." What mass of anhydrous CuSO₄ would be produced by heating 500.0 g of CuSO₄•5H₂O?
- 146. Silver metal may be precipitated from a solution of silver nitrate by placing a copper strip into the solution. What mass of AgNO₃ would you dissolve in water in order to get 1.00 g of silver?
- **147.** A sample of Ag₂S has a mass of 62.4 g. What mass of each element could be obtained by decomposing this sample?
- **148.** A quantity of epsom salts, magnesium sulfate heptahydrate, MgSO₄•7H₂O, is heated until all the water is driven off. The sample loses 11.8 g in the process. What was the mass of the original sample?
- **149.** The process of manufacturing sulfuric acid begins with the burning of sulfur. What mass of sulfur would have to be burned in order to produce 1.00 kg of H₂SO₄? Assume that all of the sulfur ends up in the sulfuric acid.