概统第三次作业参考题解

2023.03.18

Q2. 利用概率的连续性

(1) $\Leftrightarrow A_n = \{X \leq -n\}, \lim_{x \to -\infty} F(x) = \lim_{n \to \infty} P(A_n) = P(\bigcap_{n \geq 1} A_n) = 0.$ $\lim_{x \to \infty} F(x) = 1 \text{ 同理}.$

(2) $\mathbb{R} A_n = \{X \leq x + 1/n\}, \ F(x+) = \lim_{n \to \infty} F(x + \frac{1}{n}) = \lim_{n \to \infty} P(A_n) = \frac{1}{n}$ $P(X \le x) = F(x)$.

注: 左连续不能依据此过程 $\Diamond B_n = \{X \leq x - 1/n\}$ 推出,因为此时 $P(\bigcup_{n>1} B_n) = p(\{X < x\}) \neq F(x)$

(3) $P(a \le X \le b) = F(b) - F(a-)$. 证明同 (2).

Q3. (2) P(X + Y = 3) = P(X + Y = 4) = P(X + Y = 5) = 1/3; P(Y - X = 4) = 1/31) = 2/3, P(Y - X = -2) = 1/3.

注: 出现错误答案 $P(X + Y = 2) = P(X = 1) \times P(Y = 1) = \frac{1}{6}$,实际上X和Y不 独立。

Q4. 展开, 利用期望的线性性.

Q5. (1) $P(X = k) = \frac{ba!(a+b-k)!}{(a-k+1)!(a+b)!}$, $k = 1, 2, \dots, a+1$. (2) X 服从参数为 p = b/(a+b) 的几何分布 Ge(p), E(X) = (a+b)/b.

Q6. 存在.

Q7. (1) 服从参数为 p 的几何分布 Ge(p).

(2) 利用幂级数性质 E(X) = 1/p, $Var(X) = (1-p)/p^2$.

Q8. $X \sim B(25, 0.6)$.

(1) $P(X \ge 15) \approx 0.5858$. (2) $P(X > 20) \approx 0.0095$. (3) $P(X < 10) \approx 0.0132$.

Q9. 利用二项式定理, 分别计算 E(X) = np 与 $E(X^2) = np(n-1)p + np$, 进一步可得 Var(X) = np(1-p).

Q10. (1) X 服从超几何分布 $X \sim H(n, M, N)$.

- (2) 直觉上估计值 \hat{N} 满足 $\frac{M}{\hat{N}} = \frac{m}{n}$, 故可取 $\hat{N} = \left[\frac{nM}{m}\right]$.
- (3) 对不同的 N, 记概率 P(X = m) 为 f(N), 作商

$$\frac{f(N)}{f(N-1)} = \frac{(N-M)(N-n)}{N(N-n-M+m)},$$

从而知当 N<(nM)/m 时 f(N) 递增,当 N>(nM)/m 时 f(N) 递减. 因此 f(N) 最大时应取 $N=\lfloor \frac{nM}{m} \rfloor$ 和 $N=\lfloor \frac{nM}{m} \rfloor+1$ 中的一个。经比较,前者使 P(X=m) 达到最大值,此即极大似然估计.

Q11. (1)(2)(3) $x = 15 = \mu, \sigma^2 = 6$.

(4) $P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9362$.

作业总结:

- 1. 分布函数的性质可用 P 的连续性证明.
- 2. 离散随机变量的期望方差计算, 利用不同级数求和技巧.
- 3. Q13 中极大似然估计(MLE)思想.