Score de pago y Perfilacion de clientes cooperativa financiera

PROYECTO INTEGRADOR 2

Juan David Correa Restrepo

Jose Ignacio Escobar Bedoya

Camilo Rivera Bedoya

Daniel Romero Cardona

AGENDA

- 01. Entendimiento del negocio
- 02. Objetivos
- 03. Entendimiento de los datos
- 04. Preparacion de los datos
- 05. Modelado
- 06. Resultados

Entendimiento del negocio

COOPERATIVA

Entidades organizadas para ejercer actividades financieras a través de operaciones activas de crédito

AHORRO

CRÉDITO

ASEGURAMIENTO

Entendimiento del negocio

Entendimiento del asociado

- Riesgo de cartera
- Venta Cruzada
- Productos a la medida
- Dimensionamiento de productos

17.324
Créditos aprobados

71.256
Número de asociados

\$249.849
Millones de pesos en Créditos

Objetivo general

Creación de una calificación crediticia basada en la probabilidad de pago de los asociados respecto a sus responsabilidades financieras con la cooperativa y que a su vez, sirva como insumo para la caracterización y perfilación de los diferentes clientes que se tienen en la entidad.

Objetivos Especificos

- Utilizar técnicas de machine learning para la clasificación y generación de probabilidad de pago de los asociados.
- Realizar ingeniera de caracteristicas para la elección y transformación de los datos relevantes para el entendimiento del pago de los asociados.
- Utilización de modelos de aprendizaje no supervisado para entender los diferentes segmentos de clientes que se tienen en la entidad

Entendimiento de los datos

- Elección de variables
- Extracción

Preparacion de los datos

- Transformación
- Normalización
- Análisis descriptivo

Modelación

- Cluster puntos atipicos
- Modelos estadisticos
- Validacion cruzada
- Métricas de ajuste

Entendimiento de los datos

Caracterización cliente

- Ingresos
- Estrato
- Estado civil
- Personas a cargo
- Nivel de escolaridad
- Genero
- Departamento
- Municipio
- Actividad Economica

Relacionamiento con la cooperativa

- Monto del crédito
- Cuota
- Saldo
- Meses de antigüedad
- Calificación de central de riesgo
- Meses en mora
- Fecha de pago / Fecha pago real
- Valor pagado
- Línea de crédito

Preparación de los datos

Unificación y filtro de variables

Analisis descriptivo

Normalización de variables

Variable objetivo:

- Crédito sin mora
- Pago completo
- Sin atraso en fecha de pago

Análisis Descriptivo

Variables Numéricas

Tendencia central		Posición		
	Resultado		Resultado	
Medida		Medida		
Moda	0.00	Mínimo	0.00	
Media	1.28	Percentil 1	0.00	
Media Armónica	nan	Percentil 5	0.00	
Media Geométrica	0.00	Percentil 10	0.00	
Media Cuadrática	1.83	Percentil 25	0.00	
Media Trunc.(5%)	1.15	Percentil 50	1.00	
Media IQ	1.07	Percentil 75	2.00	
Media Wins.(5%)	1.24	Percentil 90	3.00	
Trimedia	1.00	Percentil 95	4.00	
Mediana	1.00	Percentil 99	5.00	
Mid Range	5.50	Máximo	11.00	
Mid Hinge	1.00			

Dispersión		Forma	
	Resultado		Resultado
Medida		Medida	
Desv. Est.	1.31	Asimetría	1.34
Rango	11.00	Exc.Curtos	is 3.31
Rango IQ	2.00		
Dif. Abs. Media	1.05		
Dif. Abs. Mediana	1.00		
Coef. Var.	1.03		
QCD	1.00		

Análisis Descriptivo

Variables Categoricas

Conteo de frecuencias Frec.Abs. Frec.Rel. Frec.Rel.Acum. Categorías 13,495 64.71% 84.71% Tres 4,322 20.73% 85,44% Dos Cuatro 1.672 8.02% 93.48% 3.63% 97.09% Cinco Uno 459 2.20% 99.29% 148 0.71% 100,00% Seis.

Selección

- Estrato social
- Género
- Estado civil
- Nivel educativo
- Ind_Personas_ACargo
- Meses antiguedad
- Ingresos
- Monto crédito

DBSCAN

Aprendizaje no supervisado

Identificación de outliers basados en la clusterización de datos multivariados, segmento aquellos comportamientos atípicos que tiene similaridad con el resto de los datos presentes.

[1] Ghallab, FahMy & Nasr (2020). Detection outliers on internet of things using big data technology. ScienceDirect Vol. 21 Pg. 131-138

[2] Akbari & Unland (2016). Automated Determination of the input Parameters of DBSCAN Based on Outliers detection. Artificial Intelligence Applications and Innovations Vol. 475 Pg. 280-291

DBSCAN

Aprendizaje no supervisado

Estrato	Nivel Educativo	Ingreso	Monto
Dos	Primaria	8'878.600	30'000.000
Dos	Primaria	20'300.000	15'000.000
Cinco	Profesional	0	15'500.000

Entrenamiento

Cross Validation: 10 Kfolds

Prueba

Modelo	Accuracy	Recall	F1_Score	Accuracy	Recall	F1_Score
Regresión logística	0.75	0.99	0.82	0.77	0.99	0.83
Naive Bayes	0.76	1.0	0.82	0.78	1.0	0.84
D. Tree	0.71	0.73	0.74	0.71	0.75	0.75
SGD	0.74	0.95	0.80	0.74	0.87	0.79
KNN	0.62	0.72	0.68	0.63	0.72	0.69
SVM	0.68	0.99	0.77	0.70	0.99	0.79

ROC- AUC Naive Bayes

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}}$$

SCORE DE PAGO: [0-1]

Segmentacion clientes

- K-MEANS (Distancias)
- Cluster Espectral (Matriz afinidad)
- Ward (Jerarquico)

Selección

- Estrato social
- Género
- Estado civil
- Nivel educativo
- Ind_Personas_ACargo
- Meses antiguedad
- Ingresos
- Monto crédito

Las variables socio-demograficas que se recolectan de los afiliados no son suficientes para hacer un analisis **concluyente** discriminante de los perfiles de los afiliados en cuanto a su comportamiento de pago. **Clases dominante homogeneas en todos los cluster**

Perfilación clientes

Estado Civil

P(Pago)	Casado	Separado	Soltero	U. Libre	Viudo	N.A.
< 0.5	4477	830	4331	1528	558	0
> 0.5	3243	705	3493	1311	375	2

Estrato Socioeconomico

P(Pago)	Uno	Dos	Tres	Cuatro	Cinco	Seis
< 0.5	256	2321	7766	901	406	74
> 0.5	203	2001	5729	771	351	74

Resultados

Método robusto de clientes con comportamienot atipico. (A. No supervisado)

Score - Calificacion comportamiento de pago. (A. Supervisado)

Analisis descriptivo ** de perfil de cliente respecto a su comportamiento de pago

GRACIAS!

