

CofS

PATENT Customer No. 22,852 Attorney Docket No. 6832.0013

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Patent No.: 6,926,898	1									
Inventors:	1									
Craig A. Rosen and William A. Haseltine										
Issue Date.: August 9, 2005										
For: ALBUMIN FUSION PROTEINS)									
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450										
Sir:										

REQUEST FOR CERTIFICATE OF CORRECTION

Pursuant to 35 U.S.C. §§ 254 and 255, and 37 C.F.R. §§ 1.322 and 1.323, this is a request for a Certificate of Correction in the above-identified patent. Some of the mistakes identified in the appended Form occurred through the fault of the Patent Office, as clearly disclosed by the records of the application which matured into this patent.

For example, the priority claims to Provisional Application Nos. 60/256,931, filed December 21, 2000; 60/199,384, filed April 25, 2000; and 60/229,358, filed April 12, 2000, were deleted in an Amendment filed February 4, 2004, and a Corrected Filing Receipt reflecting the change was mailed by the PTO on February 13, 2004. However, 189,99 0P the issued patent was printed with the priority claims in the title page under item (60).

Furthermore, the omitted U.S. Patent Documents under item (56) (References Cited) in the title page, were cited by Applicants in an Information Disclosure Statement

filed April 5, 2004, and the Office returned the initialed Form PTO 1449 with the Supplemental Notice of Allowance mailed June 29, 2004.

The omitted OTHER PUBLICATIONS under item (56) (References Cited) in the title page, were also cited by Applicants in the Information Disclosure Statement filed April 5, 2004, and the Office returned the initialed Form PTO 1449 by facsimile on July 23, 2004.

The issued patent was printed without the Examiner's Amendment to the specification mailed March 3, 2005, with the Supplemental Notice of Allowance. The attached Certificate of Correction amends the specification according to the Examiner's Amendment.

Furthermore, the issued patent reflects the original Sequence Listing filed rather than the Substitute Sequence Listing submitted on August 20, 2004. The Sequence Listing in the attached Certificate of Correction is identical to the Substitute Sequence Listing filed on August 20, 2004, and is also identical to the computer readable copy of the Substitute Sequence Listing also submitted on August 20, 2004. Thus, the correction contains no new matter.

Other mistakes identified in the appended Form are of a clerical or typographical nature, or of minor character, and resulted from an error made in good faith by patentees. A check in the amount of \$100 (the fee set forth in 37 C.F.R. § 1.20(a)) is attached. Should a check not be appended or should any additional fees be needed, authorization is hereby given to charge any fees due in connection with the filing of this request to Deposit Account No. 06-0916.

U.S. Patent No. 6,926,898 Attorney Docket No. 6832.0013

Two (2) copies of PTO Form 1050 are appended. The complete Certificate of Correction involves thirty-five (35) pages. Issuance of the Certificate of Correction containing the correction is earnestly requested.

Please charge any required fees not included herewith to our deposit account 06-0916.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Charle E Van Horn

Dated: December 23, 2005

Charles E. Van Horn Reg. No. 40,266

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,926,898

Page 1 of 35

APPLICATION NO.:

09/832,929

ISSUE DATE:

August 9, 2005

INVENTOR(S):

Craig A. Rosen and William A. Haseltine

It is hereby certified that an error or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Under item (60) (Related U.S. Application Data) of the title page, delete the text beginning with "Provisional application No. 60/256,931" to and ending "provisional application No. 60/229,358, filed on Apr. 12, 2000."

Under item (56) (References Cited) of the title page and under U.S. PATENT DOCUMENTS beginning on page 1, insert:

 2003-0022308 A1	1/2003	Fleer et al.
2003-0036170 A1	2/2003	Fleer et al.
2003-0036171 A1	2/2003	Fleer et al.
2003-0036172 A1	2/2003	Fleer et al.
2003-0054554 A1	3/2003	Becquart et al.
2003-0082747 A1	5/2003	Fleer et al.
2003-0104578 A1	10/2001	Ballance
2004-0010134 A1	4/2001	Rosen et al.
09/832,501	4/2001	Ballance et al.
09/833,041	4/2001	Rosen et al.
09/833,111	4/2001	Rosen et al.
09/833,117	4/2001	Rosen et al.
09/833,118	4/2001	Rosen et al.
10/702,536	11/2003	Fleer et al.
10/702,636	11/2003	Fleer et al

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

Under item (56) (References Cited) of the title page and under OTHER PUBLICATIONS beginning on page 1, insert:

-- Larsson, M., et al., "Role of Annexins in Endocytosis of Antigens in Immature Human Dendritic Cells," *Immunology* 92:501-511 (1997).

Latta, M. et al., "Synthesis and Purification of Mature Human Serum Albumin From E. Coli," Bio/Technology 5:1309-1314 (1987).

Latta, M., et al., "Tryptophan Promoter Derivatives on Multicopy Plasmids: A Comparative Analysis of Expression Potentials in *Escherichia coli*," *DNA and Cell Biology* 9:129-137 (1990).

Lawn, R.M., et al., "The Sequence of Human Serum Albumin cDNA and its Expression in E. coli," *Nucleic Acids Research* 9:6103-6113 (1981).

Le Bras, M., et al., "Epidemiologie et Clinique des Maladies Tropicales D'importation," La Revue de Medicine Interne 13:205-210 (1992), with English translation.

Leblois, H., et al., "Stable Transduction of Actively Dividing Cells via a Novel Adenoviral/Episomal Vector," *Molecular Therapy* 1:314-322 (2000).

Lee, C-H., et al., "Sodium Pertechnetate Tc99m Antral Scan in the Diagnosis of Retained Gastric Antrum," *Arch. Surg.* 119: 309-311 (1984).

Lee, C-L., et al., "Preparation and Characterization of Polyethylene-Glycol-Modified Salmon Calcitonins," *Pharmaceutical Development and Technology*, 4(2): 269-275 (1999).

Lee, W-C., et al., "Identification and Characterization of a Nuclear Localization Sequence-Binding Protein in Yeast," *Proc. Natl. Acad. Sci. USA* 86:8808-8812 (1989).

Lee, Y-H., et al., "Comparison of Effective Renal Plasma Flow (ERPF) and Endogenous Creatinine Clearance (Ccr) in Evaluation of the Differential Kidney Function: An in Vivo Study," *Chin. Med. J. (Taipei)* 49:147-152 (1992).

Lei, H-Y., et al., "An Antigen-specific Hypersensitivity Which Does Not Fit Into Traditional Classification of Hypersensitivity," *The Journal of Immunology* 143:432-438 (1989).

Levitt, D., et al., "Toxicity of Perfluorinated Fatty-Acids for Human and Murine B Cell Lines," *Toxicology and Applied Pharmacology* 86:1-11 (1986).

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

```
Lew D.B., et al., "Mitogenic Effect of Lysosomal Hydrolases on Bovine Tracheal Myocytes in Culture," The Journal of Clinical Investigation 88:1969-1975 (1991).
```

Lewis, C., et al., "Is Sexual Dysfunctoin in Hypertensive Women Uncommon or Understudied?" *American Jour of Hypertension*," 11:733-735 (1998). --

Under item (57) (ABSTRACT) of the title page, "disordrs" should read --disorders--.

In the Specification

Col. 143, line 26, delete "As exhibited in Table 2, most", and insert -- Most--.

Col. 143, line 31, delete "Table 2".

In the Claims

Col. 340, line 40, delete "an".

Col. 340, line 47, delete "an".

In the Sequence Listing

```
Delete the Sequence Listing beginning in Col. 299, beginning with the text "<160> NUMBER OF SEQ ID NOS: 72" to and ending "<400> SEQUENCE: 72
```

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser

1 10 15

in Col. 340 and insert the following Sequence Listing:

```
<160> NUMBER OF SEQ ID NOS: 82
```

<210> 1

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<221> primer_bind

<223> primer useful to clone human growth hormone cDNA

<400> 1

cccaagaatt cccttatcca ggc

23

<210> 2

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<221> primer_bind

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

```
<223> primer useful to clone human growth hormone cDNA
<400> 2
                                                                     33
gggaagctta gaagccacag gatccctcca cag
<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 3
                                                                     16
gataaagatt cccaac
<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 4
                                                                     17
aattgttggg aatcttt
<210> 5
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 5
ttaggcttat tcccaac
                                                                     17
<210> 6
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments
with non-cohesive ends.
<400> 6
                                                                     18
aattgttggg aataagcc
```

U.S. Patent No. 6,926,898

```
<210> 7
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> 1)..(19)
<223> invertase leader sequence
<220>
<221> SITE
<222> 20)..(24)
<223> first 5 amino acids of mature human serum albumin
Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys
                                      10
Ile Ser Ala Asp Ala His Lys Ser
             20
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 8
                                                                    21
gagatgcaca cctgagtgag g
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 9
                                                                    27
gatcctgtgg cttcgatgca cacaaga
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
```

U.S. Patent No. 6,926,898

```
<400> 10
                                                                    24
ctcttgtgtg catcgaagcc acag
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 11
tgtggaagag cctcagaatt tattcccaac
                                                                    30
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 12
aattgttggg aataaattct gaggctcttc c
                                                                    31
<210> 13
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 13
                                                                    47
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac
<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 14
                                                                    48
aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc
```

U.S. Patent No. 6,926,898

```
<210> 15
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 15
ttaggcttag gcggtggtgg atctggtggc ggcggatctg gtggcggtgg atccttccca 60
<210> 16
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 16
aattgttggg aaggatccac cgccaccaga tccgccgcca ccagatccac caccgcctaa 60
<210> 17
<211> 1782
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(1755)
<400> 17
gat gca cac aag agt gag gtt gct cat cgg ttt aaa gat ttg gga gaa
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
                                      10
gaa aat ttc aaa gcc ttg gtg ttg att gcc ttt gct cag tat ctt cag
                                                                    96
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
             20
                                  25
                                                      30
                                                                    144
caq tgt cca ttt gaa gat cat gta aaa tta gtg aat gaa gta act gaa
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
         35
ttt gca aaa aca tgt gtt gct gat gag tca gct gaa aat tgt gac aaa
                                                                    192
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
```

U.S. Patent No. 6,926,898

•	ctt Leu					_			_		_	_			240
	gaa Glu														288
	aga Arg														336
	cga Arg														384
	aat Asn 130														432
_	cat His				_	_	_					_			480
	aaa Lys	_	_		_	_	_		_	_	_		-	_	528
_	ctg Leu	_		_	_	_				_		_	-		576
	gcc Ala		_	_		_	_	_							624
	gct Ala 210														672
	gct Ala														720
	cac His														768
	gcg Ala														816

U.S. Patent No. 6,926,898

											tcc Ser	864
											cct Pro	912
											tat Tyr	960
											gca Ala 335	1008
											aag Lys	1056
											cat His	1104
											gag Glu	1152
_				_					_		gga Gly	1200
											gta Val 415	1248
		Pro	Thr	Val	Glu	Val	Ser	Arg	Asn	Leu	gga Gly	1296
											ccc Pro	1344
											ttg Leu	1392
											gag Glu	1440

U.S. Patent No. 6,926,898

_				_		tgc Cys			_	_	_	_	_	_		1488
	-					aat Asn	_	_						-	-	1536
						aag Lys		_			_				_	1584
						cac His 535										1632
	_	_	_	_	_	ttc Phe	-	_		_		_	_	_	_	1680
1 -	_	_	_			tgc Cys		_							_	1728
_	_	_		-		tta Leu			taad	catct	ac a	attta	aaaag	gc at	ctcag	1782
<211 <212	0> 18 L> 58 2> PF B> Ho	35	Sapie	ens								,	-			
l .)> 18 Ala		Lys	Ser 5	Glu	Val	Ala	His	Arg 10	Phe	Lys	Asp	Leu	Gly 15	Glu	
Glu	Asn	Phe	Lys 20	Ala	Leu	Val	Leu	Ile 25	Ala	Phe	Ala	Gln	Tyr 30	Leu	Gln	
Gln	Cys	Pro 35	Phe	Glu	Asp	His	Val 40	Lys	Leu	Val	Asn	Glu 45	Val	Thr	Glu	
Phe	Ala 50	Lys	Thr	Cys	Val	Ala 55	Asp	Glu	Ser	Ala	Glu 60	Asn	Cys	Asp	Lys	
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Thr	Val	Ala	Thr	Leu 80	
Arg	Glu	Thr	Tyr	Gly 85	Glu	Met	Ala	Asp	Cys 90	Cys	Ala	Lys	Gln	Glu 95	Pro	

U.S. Patent No. 6,926,898

Glu	Arg	Asn	Glu 100	Cys	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro 110	Asn	Leu
Pro	Arg	Leu 115	Val	Arg	Pro	Glu	Val 120	Asp	Val	Met	Cys	Thr 125	Ala	Phe	His
Asp	Asn 130	Glu	Glu	Thr	Phe	Leu 135	Lys	Lys	Tyr	Leu	Tyr 140	Glu	Ile	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Phe	Phe	Ala	Lys	Arg 160
Tyr	Lys	Ala	Ala	Phe 165	Thr	Glu	Cys	Cys	Gln 170	Ala	Ala	Asp	Lys	Ala 175	Ala
Cys	Leu	Leu	Pro 180	Lys	Leu	Asp	Glu	Leu 185	Arg	Asp	Glu	Gly	Lys 190	Ala	Ser
Ser	Ala	Lys 195	Gln	Arg	Leu	Lys	Cys 200	Ala	Ser	Leu	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg	Leu	Ser 220	Gln	Arg	Phe	Pro
Lys 225	Ala	Glu	Phe	Ala	Glu 230	Val	Ser	Lys	Leu	Val 235	Thr	Asp	Leu	Thr	Lys 240
Val	His	Thr	Glu	Cys 245	Cys	His	Gly	Asp	Leu 250	Leu	Glu	Cys	Ala	Asp 255	Asp
Arg	Ala	Asp	Leu 260	Ala	Lys	Tyr	Ile	Cys 265	Glu	Asn	Gln	Asp	Ser 270	Ile	Ser
Ser	Lys	Leu 275	Lys	Glu	Cys	Cys	Glu 280	Lys	Pro	Leu	Leu	Glu 285	Lys	Ser	His
	290					Asn 295	_				300				
305					310	Glu				315					320
				325		Leu			330					335	
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Val	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Thr
Tyr	Glu	Thr 355	Thr	Leu	Glu	Lys	Cys 360	Cys	Ala	Ala	Ala	Asp 365	Pro	His	Glu

U.S. Patent No. 6,926,898

```
Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro
                        375
Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu
Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
            420
                                425
Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys
                            440
Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His
                        455
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser
                                         475
Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
                485
                                    490
Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
                                505
Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala
Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu
                        535
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys
545
Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
                565
                                    570
Ala Ala Ser Gln Ala Ala Leu Gly Leu
            580
<210> 19
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer used to generate XhoI and ClaI site in pPPC0006
<400> 19
gcctcgagaa aagagatgca cacaagagtg aggttgctca tcgatttaaa gatttggg
```

U.S. Patent No. 6,926,898

```
<210> 20
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataagc
                                                                     59
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
<400> 21
tacaaactta agagtccaat tagc
                                                                    24
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
<400> 22
cacttctcta gagtggtttc atatgtctt
                                                                    29
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007
<400> 23
aagctgcctt aggcttataa taaggcgcgc cggccggccg tttaaactaa gcttaattct 60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007
```

U.S. Patent No. 6,926,898

```
<400> 24
agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for generation of albumin fusion protein in which
the albumin moiety is N-terminal of the Therapeutic Protein
<220>
<221> misc feature
<222> (18)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (27)
<223> n equals a,t,g, or c
<220>
```

U.S. Patent No. 6,926,898

```
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<400> 25
                                                                    32
aagctgcctt aggcttannn nnnnnnnnn nn
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of albumin fusion protein in which
the albumin moiety is N-terminal of the Therapeutic Protein
<220>
<221> misc feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
```

U.S. Patent No. 6,926,898

```
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,q, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<400> 26
gcgcgcgttt aaacggccgg ccggcgccc ttattannnn nnnnnnnnn n
                                                                    51
<210> 27
<211> 33
<212> DNA
<213> Artificial Sequence
<223> forward primer useful for generation of albumin fusion protein in which
the albumin moiety is c-terminal of the Therapeutic Protein
<220>
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,q, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<400> 27
                                                                    33
aggagcgtcg acaaaagann nnnnnnnnn nnn
<210> 28
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> reverse primer useful for generation of albumin fusion protein in which
the albumin moiety is c-terminal of the Therapeutic Protein
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,q, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<400> 28
ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
                                                                    52
<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> signal peptide of natural human serum albumin protein
<400> 29
Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
                                                           15
                  5
                                      10
Tyr Ser Arg Ser Leu Asp Lys Arg
             20
<210> 30
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for generation of PC4:HSA albumin fusion VECTOR
```

U.S. Patent No. 6,926,898

```
<220>
<221> misc feature
<222> (5)..(10)
<223> BamHI retsriction site
<220>
<221> misc feature
<222> (11)..(16)
<223> Hind III retsriction site
<220>
<221> misc_feature
<222> (17)..(27)
<223> Kozak sequence
<220>
<221> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin
<220>
<221> misc feature
<222> (75)..(81)
<223> XhoI restriction site
<220>
<221> misc feature
<222> (98)..(114)
<223> cds first six amino acids of human serum albumin
<400> 30
tcagggatcc aagcttccgc caccatgaag tgggtaacct ttatttccct tcttttctc 60
tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of PC4:HSA albumin fusion VECTOR
<220>
<221> misc feature
<222> (6)..(11)
<223> Asp718 restriction site
<221> misc feature
<222> (12)..(17)
<223> EcoRI restriction site
<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon
<220>
<221> misc_feature
<222> (18)..(25)
```

U.S. Patent No. 6,926,898

```
<223> AscI restriction site
<220>
<221> misc feature
<222> (18)..(43)
<223> reverse complement of DNA sequence encoding last 9 amino acids
                                                                     43
gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for inserting Therapeutic protein into pC4:HSA
vector
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (34)
<223> n equals a,t,g, or c
<221> misc feature
<222> (35)
<223> n equals a,t,g, or c
<221> misc feature
<222> (36)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (37)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<400> 32
                                                                    46
ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnn nnnnnn
<210> 33
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> reverse primer useful for inserting Therapeutic protein into pC4:HSA
vector
<220>
<221> misc feature
<222> (38)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c.
<220>
<221> misc feature
<222> (51)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (53)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (54)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (55)
<223> n equals a,t,g, or c
<400> 33
agtcccatcq atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nnnnn
                                                                    55
<210> 34
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Stanniocalcin signal peptide
<400> 34
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser Ala
 1
                  5
<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Synthetic signal peptide
<400> 35
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Leu Ala Leu
                  5
Trp Ala Pro Ala Arg Gly
<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 36
                                                                    23
caggtgcagc tggtgcagtc tgg
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 37
                                                                    23
caggtcaact taagggagtc tgg
<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 38
                                                                    23
gaggtgcagc tggtggagtc tgg
<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 39
                                                                    23
caggtgcagc tgcaggagtc ggg
<210> 40
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 40
gaggtgcagc tgttgcagtc tgc
                                                                    23
<210> 41
<211> 23
```

U.S. Patent No. 6,926,898

```
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
                                                                    23
caggtacagc tgcagcagtc agg
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
                                                                    24
tgaggagacg gtgaccaggg tgcc
<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
                                                                    24
tgaagagacg gtgaccattg tccc
<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 44
                                                                    24
tgaggagacg gtgaccaggg ttcc
<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 45
                                                                    24
tgaggagacg gtgaccgtgg tccc
```

U.S. Patent No. 6,926,898

```
<210> 46
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
gacatccaga tgacccagtc tcc
                                                                    23
<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
                                                                    23
gatgttgtga tgactcagtc tcc
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
                                                                    23
gatattgtga tgactcagtc tcc
<210> 49
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 49
                                                                    23
gaaattgtgt tgacgcagtc tcc
<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
```

U.S. Patent No. 6,926,898

```
<400> 50
                                                                    23
gacatcgtga tgacccagtc tcc
<210> 51
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
                                                                    23
gaaacgacac tcacgcagtc tcc
<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 52
                                                                    23
gaaattgtgc tgactcagtc tcc
<210> 53
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 53
                                                                    23
cagtctgtgt tgacgcagcc gcc
<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 54
                                                                    23
cagtctgccc tgactcagcc tgc
<210> 55
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 55
tectatgtge tgacteagee ace
                                                                    23
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 56
tcttctgagc tgactcagga ccc
                                                                    23
<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 57
cacgttatac tgactcaacc gcc
                                                                    23
<210> 58
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 58
                                                                    23
caggetgtgc teactcagec gtc
<210> 59
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 59
                                                                    23
aattttatgc tgactcagcc cca
```

U.S. Patent No. 6,926,898

```
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
acgtttgatt tccaccttgg tccc
                                                                    24
<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 61
                                                                    24
acgtttgatc tccagcttgg tccc
<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 62
                                                                    24
acgtttgata tccactttgg tccc
<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 63
                                                                    24
acgtttgatc tccaccttgg tccc
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
```

U.S. Patent No. 6,926,898

```
<400> 64
                                                                    24
acqtttaatc tccagtcgtg tccc
<210> 65
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 65
                                                                    23
cagtctgtgt tgacgcagcc gcc
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 66
                                                                    23
cagtetgeec tgaeteagee tge
<210> 67
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 67
                                                                     23
tcctatgtgc tgactcagcc acc
<210> 68
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 68
                                                                     23
tcttctgagc tgactcagga ccc
<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 69
                                                                   23
cacqttatac tgactcaacc gcc
<210> 70
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 70
                                                                   23
caggetgtge teactcagee gte
<210> 71
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 71
aattttatgc tgactcagcc cca
                                                                   23
<210> 72
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<221>turn
<223>Linker peptide that may be used to join VH and VL domains in an scFv.
<400> 72
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
<210> 73
<211> 733
<212> DNA
<213> Homo sapiens
<400> 73
gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg
                                                                       60
aattcgaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga
                                                                      120
                                                                      180
teteceggae teetgaggte acatgegtgg tggtggaegt aagecaegaa gaecetgagg
```

U.S. Patent No. 6,926,898

tcaagttcaa ctggtacgtg gacggcgtgg aggt	gcataa tgccaagaca aagccgcggg 240						
aggagcagta caacagcacg taccgtgtgg tcag	regteet cacegteetg caceaggaet 300						
ggctgaatgg caaggagtac aagtgcaagg tctc	caacaa agccctccca acccccatcg 360						
agaaaaccat ctccaaagcc aaagggcagc cccg	agaacc acaggtgtac accetgeece 420						
catcccggga tgagctgacc aagaaccagg tcag	cctgac ctgcctggtc aaaggcttct 480						
atccaagcga catcgccgtg gagtgggaga gcaa	tgggca gccggagaac aactacaaga 540						
ccacgcctcc cgtgctggac tccgacggct cctt	cttcct ctacagcaag ctcaccgtgg 600						
acaagagcag gtggcagcag gggaacgtct tctc	atgctc cgtgatgcat gaggctctgc 660						
acaaccacta cacgcagaag agcctctccc tgtc	tccggg taaatgagtg cgacggccgc 720						
gactctagag gat	733						
<pre><210> 74 <211> 5 <212> PRT <213> Artificial sequence <220> <221> misc_structure <223> membrane proximal motif of clase <220> <221> misc_feature <222> (3) <223> Xaa equals any <400> 74 Trp Ser Xaa Trp Ser</pre>	s 1 cytokine receptors						
<pre><220> <221> primer_bind <223> forward primer useful for generation of a synthetic gamma activation site (GAS) containing promoter element</pre>							
<400> 75 gegeetegag attteeeega aatetagatt teee	egaaat gattteeeg aaatgattte 60						
cccgaaatat ctgccatctc aattag	86						
<210> 76 <211> 27							

U.S. Patent No. 6,926,898

```
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of a synthetic gamma activation
site (GAS) containing promoter element
<400> 76
gcggcaagct ttttgcaaag cctaggc
                                                                        27
<210> 77
<211> 271
<212> DNA
<213> Artificial Sequence
<220>
<221> misc feature
<223> Synthetic GAS-SV40 promoter sequence
<400> 77
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tccccgaaat gatttccccg
                                                                        60
aaatatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc
                                                                       120
gcccctaact ccgcccaftt ccgcccattc tccgccccat ggctgactaa tttttttat
                                                                       180
ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagtagt gaggaggctt
                                                                       240
ttttggaggc ctaggctttt gcaaaaagct t
                                                                       271
<210> 78
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer useful for generation of a EGR/SEAP reporter construct
<400> 78
                                                                        32
gcgctcgagg gatgacagcg atagaacccc gg
<210> 79
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful for generation of a EGR/SEAP reporter construct
<400> 79
                                                                       31
gcgaagette gcgactecee ggateegeet e
```

U.S. Patent No. 6,926,898

```
<210> 80
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<221> misc binding
<223> NF-KB binding site
<400> 80
                                                                     12
ggggactttc cc
<210> 81
<211> 73
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for generation of a vector containing the NF-KB
promoter element
<400> 81
gcggcctcga ggggactttc ccggggactt tccggggact ttccatcctg
                                                                     60
                                                                     73
ccatctcaat tag
<210> 82
<211> 256
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Synthetic NF-KB/SV40 promoter
<400> 82
ctcgagggga ctttccggg gactttccgg ggactttcca tctgccatct
                                                                     60
caattagtca gcaaccatag tcccgccct aactccgccc atcccgccc taactccgcc
                                                                     120
cagttccgcc cattctccgc cccatggctg actaattttt tttatttatg cagaggccga
                                                                     180
ggccgcctcg gcctctgagc tattccagaa gtagtgagga ggcttttttg gaggcctagg
                                                                     240
cttttgcaaa aagctt
                                                                     256
```

U.S. Patent No. 6,926,898

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

6,926,898

Page 1 of 35

APPLICATION NO.:

09/832,929

ISSUE DATE:

August 9, 2005

INVENTOR(S):

Craig A. Rosen and William A. Haseltine

It is hereby certified that an error or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Under item (60) (Related U.S. Application Data) of the title page, delete the text beginning with "Provisional application No. 60/256,931" to and ending "provisional application No. 60/229,358, filed on Apr. 12, 2000."

Under item (56) (References Cited) of the title page and under U.S. PATENT DOCUMENTS beginning on page 1, insert:

	2003-0022308 A1	1/2003	Fleer et al.
÷	2003-0036170 A1	2/2003	Fleer et al.
	2003-0036171 A1	2/2003	Fleer et al.
	2003-0036172 A1	2/2003	Fleer et al.
	2003-0054554 A1	3/2003	Becquart et al.
	2003-0082747 A1	5/2003	Fleer et al.
	2003-0104578 A1	10/2001	Ballance
	2004-0010134 A1	4/2001	Rosen et al.
	09/832,501	4/2001	Ballance et al.
	09/833,041	4/2001	Rosen et al.
	09/833,111	4/2001	Rosen et al.
	09/833,117	4/2001	Rosen et al.
	09/833,118	4/2001	Rosen et al.
	10/702,536	11/2003	Fleer et al.
	10/702,636	11/2003	Fleer et al

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

Under item (56) (References Cited) of the title page and under OTHER PUBLICATIONS beginning on page 1, insert:

-- Larsson, M., et al., "Role of Annexins in Endocytosis of Antigens in Immature Human Dendritic Cells," *Immunology* 92:501-511 (1997).

Latta, M. et al., "Synthesis and Purification of Mature Human Serum Albumin From E. Coli," Bio/Technology 5:1309-1314 (1987).

Latta, M., et al., "Tryptophan Promoter Derivatives on Multicopy Plasmids: A Comparative Analysis of Expression Potentials in *Escherichia coli*," *DNA and Cell Biology* 9:129-137 (1990).

Lawn, R.M., et al., "The Sequence of Human Serum Albumin cDNA and its Expression in E. coli," *Nucleic Acids Research* 9:6103-6113 (1981).

Le Bras, M., et al., "Epidemiologie et Clinique des Maladies Tropicales D'importation," La Revue de Medicine Interne 13:205-210 (1992), with English translation.

Leblois, H., et al., "Stable Transduction of Actively Dividing Cells via a Novel Adenoviral/Episomal Vector," *Molecular Therapy* 1:314-322 (2000).

Lee, C-H., et al., "Sodium Pertechnetate Tc99m Antral Scan in the Diagnosis of Retained Gastric Antrum," Arch. Surg. 119: 309-311 (1984).

Lee, C-L., et al., "Preparation and Characterization of Polyethylene-Glycol-Modified Salmon Calcitonins," *Pharmaceutical Development and Technology*, 4(2): 269-275 (1999).

Lee, W-C., et al., "Identification and Characterization of a Nuclear Localization Sequence-Binding Protein in Yeast," *Proc. Natl. Acad. Sci. USA* 86:8808-8812 (1989).

Lee, Y-H., et al., "Comparison of Effective Renal Plasma Flow (ERPF) and Endogenous Creatinine Clearance (Ccr) in Evaluation of the Differential Kidney Function: An in Vivo Study," *Chin. Med. J. (Taipei)* 49:147-152 (1992).

Lei, H-Y., et al., "An Antigen-specific Hypersensitivity Which Does Not Fit Into Traditional Classification of Hypersensitivity," *The Journal of Immunology* 143:432-438 (1989).

Levitt, D., et al., "Toxicity of Perfluorinated Fatty-Acids for Human and Murine B Cell Lines," *Toxicology and Applied Pharmacology* 86:1-11 (1986).

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

Lew D.B., et al., "Mitogenic Effect of Lysosomal Hydrolases on Bovine Tracheal Myocytes in Culture," *The Journal of Clinical Investigation* 88:1969-1975 (1991).

Lewis, C., et al., "Is Sexual Dysfunctoin in Hypertensive Women Uncommon or Understudied?" American Jour of Hypertension," 11:733-735 (1998). --

Under item (57) (ABSTRACT) of the title page, "disordrs" should read --disorders--.

In the Specification

Col. 143, line 26, delete "As exhibited in Table 2, most", and insert -- Most--.

Col. 143, line 31, delete "Table 2".

In the Claims

Col. 340, line 40, delete "an".

Col. 340, line 47, delete "an".

In the Sequence Listing

Delete the Sequence Listing beginning in Col. 299, beginning with the text "<160> NUMBER OF SEQ ID NOS: 72" to and ending "<400> SEQUENCE: 72

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser

in Col. 340 and insert the following Sequence Listing:

<160> NUMBER OF SEQ ID NOS: 82

<210> 1

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<221> primer bind

<223> primer useful to clone human growth hormone cDNA

<400> 1

cccaagaatt cccttatcca ggc

23

<210> 2

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<221> primer_bind

MAILING ADDRESS OF SENDER

U.S. Patent No. 6,926,898

```
<223> primer useful to clone human growth hormone cDNA
                                                                    33
gggaagetta gaagecacag gateeeteca cag
<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
<400> 3
                                                                    16
gataaagatt cccaac
<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 4
                                                                    17
aattgttggg aatcttt
<210> 5
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 5
                                                                    17
ttaggcttat tcccaac
<210> 6
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments
with non-cohesive ends.
<400> 6
                                                                    18
aattgttggg aataagcc
```

U.S. Patent No. 6,926,898

```
<210> 7
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> 1)..(19)
<223> invertase leader sequence
<220>
<221> SITE
<222> 20) .. (24)
<223> first 5 amino acids of mature human serum albumin
<400> 7
Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys
                                      10
Ile Ser Ala Asp Ala His Lys Ser
             20
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
<400> 8
                                                                     21
gagatgcaca cctgagtgag g
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 9
                                                                     2,7
gatcctgtgg cttcgatgca cacaaga
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
```

U.S. Patent No. 6,926,898

Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P. 901 New York Avenue, N.W. Washington, D.C. 20001-4413

JAN 04 2006

```
<400> 10
                                                                    24
ctcttgtgtg catcgaagcc acag
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
<400> 11
tgtggaagag cctcagaatt tattcccaac
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 12
                                                                    31
aattgttggg aataaattct gaggctcttc c
<210> 13
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 13
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac
<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive
ends.
<400> 14
                                                                    48
aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc
```

U.S. Patent No. 6,926,898

```
<210> 15
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 15
ttaggcttag gcggtggtgg atctggtggc ggcggatctg gtggcggtgg atccttccca 60
<210> 16
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<221> misc structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 16
aattgttggg aaggatccac cgccaccaga tccgccgcca ccagatccac caccgcctaa 60
gcc
<210> 17
<211> 1782
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(1755)
<400> 17
gat gca cac aag agt gag gtt gct cat cgg ttt aaa gat ttg gga gaa
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
gaa aat ttc aaa gcc ttg gtg ttg att gcc ttt gct cag tat ctt cag
                                                                    96
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
cag tgt cca ttt gaa gat cat gta aaa tta gtg aat gaa gta act gaa
                                                                    144
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
                             40.
ttt gca aaa aca tgt gtt gct gat gag tca gct gaa aat tgt gac aaa
                                                                   192
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
     50
```

U.S. Patent No. 6,926,898

tea ett cat acc ett tit gga gac aaa tit tige aca git gea act ett 240 Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80 288 288 288 288 288 288 288 288 288 288 288 288 288 288 289 295 296 295 296 296 296 297 298 298 298 298 298 298 298 298 298 298 298 298 298 299 290 290 291 291 292 293 294 295 296 297 298 299 2
Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 gag aga aat gaa tgc ttc ttg caa cac aaa gat gac aac cca aac ctc Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 ccc cga ttg gtg aga cca gag gtt gat gtg atg tgc act gct ttt cat 110 ccc cga ttg gtg aga cca gag gtt gat gtg atg tgc act gct ttt cat 115 115 120 gac aat gaa gag aca ttt ttg aaa aaa tac tta tat gaa att gcc aga Asp Asn Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 aga cat gat gat gac ccc ggaa ctc ctt ttc ttt gct aaa agg 480 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 tat aaa gct gct ttt aca gaa tgt tgc caa gct gct gat aaa gct gcc Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 tgc ctg ttg cca aag ctc gat gaa ctt ctg ggat gaa ggg ag gct tcg Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Cly Lys Ala Ser 180 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 210 aaa gct gag ttt gca gaa gtt cc aag tta gtg aga gat gct gct gat aaa gct gcc G72 Arg Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg gat gac G768 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp
Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 110 110 ccc cga ttg gtg aga cca gag gtt gat gtg atg tgc act gct ttt cat 384 Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 120 125 gac aat gaa gag aca ttt ttg aaa aaa tac tta tat gaa att gcc aga 432 Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140 aga cat cct tac ttt tat gcc ccg gaa ctc ctt ttc ttt gct aaa agg 480 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 160 tat aaa gct gct ttt aca gaa tgt tgc caa gct gct gat aaa gct gcc Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 tgc ctg ttg cca aag ctc gat gaa ctt cgg gat gaa ggg aag gct tcg Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa gct tcg Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa Get Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 205 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 225 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa 125 Cys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 240 gcc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc cc Arg Ala Aps Leu Ala Aps Asp Leu Ala Ala Aps Cag Glu Asp Cu Leu Cu Glu Cys Ala Asp Asp 245 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc Arg Ala Aps Leu Ala Ala Aps Asp Cau Ala Ala Aps Asp Leu Ala Ala Aps Asp Cau Ala Ala Ala Che Arg Ala Aps Asp Cau Ala Ala Ala Che Arg Ala Aps Leu Ala Che Arg Ala Aps Asp Cau Ala Ala Ala Che Arg Ala Aps Asp Cau Ala Ala Ala Che A
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 gac aat gaa gag aca ttt ttg aaa aaa tac tta tat gaa att gcc aga Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 aga cat cct tac ttt tat gcc ccg gaa ctc ctt ttc ttt gct aaa agg Asg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 tat aaa gct gct ttt aca gaa tgt tgc caa gct gct gat aaa gct gcc Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 tgc ctg ttg cca aag ctc gat gaa ctt cgg gat gaa ggg aag gct tcg Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa cgt gcc cac acc gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140 140 140 140 140 135 140 140 135 140 140 135 140 140 140 140 140 140 140 140 140 140
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 150
Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 tgc ctg ttg cca aag ctc gat gaa ctt cgg gat gaa ggg aag gct tcg 576 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa 624 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 205 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc 672 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa 720 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 235 gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac 768 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc 816 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190 tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa 624 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 205 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc 672 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa 720 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240 gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac 768 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc 816 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205 aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc 672 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa 720 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240 gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac 768 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc 816 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 220 aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa 720 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240 gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac 768 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc 816 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240 gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser

U.S. Patent No. 6,926,898

			_														
_	aaa Lys	Leu	-		_	_	Glu			_		Glu				864	<i>:</i> .
_	att.	_	_		_		_		-		_	-	_			912	
Cys	Ile 290	Ala	Glu	Val	Glu	Asn 295	Asp	Glu	Met	Pro	Ala 300	Asp	Leu	Pro	Ser		
	gct Ala															960	
	gca Ala	_	_	_		_		_		_				_		1008	
	cat His															1056	
															gaa Glu	1104	
	tat Tyr 370															1152	
	aat Asn															1200	
	aaa Lys															1248	
	gtg Val															1296	
	ggc Gly															1344	
	gaa Glu 450															1392	
	aaa Lys					Āsp										1440	

U.S. Patent No. 6,926,898

				<u> </u>													_	
ttg Leu	gtg Val	aac Asn	agg Arg	cga Arg 485	cca Pro	tgc Cys	ttt Phe	tca Ser	gct Ala 490	ctg Leu	gaa Glu	gtc Val	gat Asp	gaa Glu 495	aca Thr	1488	3	
tac Tyr	gtt Val	ccc Pro	aaa Lys 500	gag Glu	ttt Phe	aat Asn	gct Ala	gaa Glu 505	aca Thr	ttc Phe	acc Thr	ttc Phe	cat His 510	gca Ala	gat Asp	1536	5 !	
ata Ile	tgc Cys	aca Thr 515	ctt Leu	tct Ser	gag Glu	aag Lys	gag Glu 520	aga Arg	caa Gln	atc Ile	aag Lys	aaa Lys 525	caa Gln	act Thr	gca Ala	1584	1 ·	•
ctt Leu	gtt Val 530	gag Glu	ctt Leu	gtg Val	aaa Lys	cac His 535	aag Lys	ccc Pro	aag Lys	gca Ala	aca Thr 540	Lys	gag Glu	caa Gln	ctg Leu	1632	2	
aaa Lys 545	Ala	gtt Val	atg Met	gat Asp	gat Asp 550	ttc Phe	gca Ala	gct Ala	ttt Phe	gta Val 555	gag Glu	aag Lys	tgc Cys	tgc Cys	aag Lys 560	1680) .	
gct Ala	gac Asp	gat Asp	aag Lys	gag Glu 565	acc Thr	tgc Cys	ttt Phe	gcc Ala	gag Glu 570	gag Glu	ggt Gly	aaa Lys	aaa Lys	ctt Leu 575	gtt Val	1728	3	
				Ala						catc	tac a	attta	aaaa	gc a	tctca	ıg 1782	2	÷
<21:	0> 18 1> 58 2> Pl 3> Ho	35 RT	Sapi	ens														
.40	0> 18	. ·												•			•	•
			Lys	Ser 5	Glu	Val	Ala	His	Arg	Phe	Lys	Asp	Leu	Gly 15	Glu			
Glu	Asn	Phe	Lys 20	Ala	Leu	Val	Leu	Ile 25	Ala	Phe	Ala	Gln	Tyr 30	Leu	Gln			
Gln	Cys	Pro 35	Phe	Glu	Asp	His	Val 40	Lys	Leu	Val	Asn	Glu 45	Val	Thr	Glu			
Phe	Ala 50	Lys	Thr	Cys	Val	Ala 55	Asp	Glu	Ser	Ala	Glu 60	Asn	Cys	Asp	Lys			
Ser 65	Leu	His	Thr	Leu	Phe 70	Gly	Asp	Lys	Leu	Cys 75	Thr	Val	Ala	Thr	Leu 80			
Arg	Glu	Thr	Tyr	Gly 85		Met	Ala	Asp	Cys 90	Cys	Ala	Lys	Gln	Glu 95	Pro			

U.S. Patent No. 6,926,898

	•													_	
Glu	Arg	Asn	Glu 100	Cys	Phe	Leu	Gln	His 105	Lys	Asp	Asp	Asn	Pro- 110	Asn	Leu
Pro	Arg	Leu 115	Val	Arg	Pro	Glu	Val 120	Asp	Val	Met	Cys	Thr 125	Ala	Phe	His
Asp	Asn 130	Glu	Glu	Thr	Phe	Leu 135	Lys	Lys	Tyr	Leu	Tyr 140	Glu	Ile	Ala	Arg
Arg 145	His	Pro	Tyr	Phe	Tyr 150	Ala	Pro	Glu	Leu	Leu 155	Phe	Phe	Ala	Lys	Arg 160
Tyr	Lys	Ala	Ala	Phe 165	Thr	Glu	Cys	Cys	Gln 170	Ala	Ala	Asp	Lys	Ala 175	Ala
Cys	Leu	Leu	Pro 180	Lys	Leu	Asp	Glu	Leu 185	Arg	Asp	Glu		Lys 190	Ala	Ser
Ser	Ala	Lys 195	Gln	Arg	Leu	Lys	Cys 200	Ala	Ser	Leu	Gln	Lys 205	Phe	Gly	Glu
Arg	Ala 210	Phe	Lys	Ala	Trp	Ala 215	Val	Ala	Arg		Ser 220	Gln	Arg	Phe	Pro
Lys 225	Ala	Glu	Phe	Ala	Glu 230	Val	Ser	Lys	Leu	Val 235		Asp	Leu	Thr	Lys 240
Val	His	Thr	Glu	Cys 245	Cys	His	Gly	Asp	Leu 250	Leu	Glu	Cys	Ala	Asp 255	Asp
Arg	Ala	Asp	Leu 260	Ala	Lys	Tyr		Cys 265	Glu	Asn	Gln	Asp	Ser 270	Ile	Ser
Ser	Lys	Leu 275	Lys	Glu	Cys	Cys	Glu 280	Lys	Pro	Leu	Leu	Glu 285	Lys	Ser	His
Cys	Ile 290	Ala	Glu	Val	Glu	Asn 295	Asp	Glu	Met	Pro	Ala 300	Asp	Leu	Pro	Ser
Leu 305	Ala	Ala	Asp	Phe	Val 310	Glu	Ser	Lys	Asp	Val 315	Cys	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325		Leu	Gly	Met	Phe 330	Leu	Tyr	Glu	Tyr	Ala 335	Arg
Arg	His	Pro	Asp 340	Tyr	Ser	Val	Val	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Thr
Tyr	Glu	Thr 355	Thr	Leu	Glu	Lys	Cys 360	Cys	Ala	Ala	Ala	Asp 365	Pro	His	Glu
						•									

U.S. Patent No. 6,926,898

```
Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro
                        375
    370
Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu
                    390
Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
                                    410
Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
                                425
            420
Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys
                            440
Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His
                        455
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser
465
                    470
Leu Val Asn Arq Arq Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
                                    490
Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
                                505
Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala
        515
                            520
Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu
                        535
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys
545
Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
                                    570
Ala Ala Ser Gln Ala Ala Leu Gly Leu
<210> 19
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer used to generate XhoI and ClaI site in pPPC0006
gcctcgagaa aagagatgca cacaagagtg aggttgctca tcgatttaaa gatttggg
                                                                    58
```

U.S. Patent No. 6,926,898

```
<210> 20
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
<400> 20
aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataagc
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
<400> 21
                                                                    24
tacaaactta agagtccaat tagc
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006
<400> 22
                                                                    29
cacttotcta gagtggtttc atatgtctt
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007
aagetgeett aggettataa taaggegege eggeeggeeg tttaaaetaa gettaattet 60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007
```

U.S. Patent No. 6,926,898

```
<400> 24
agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of albumin fusion protein in which
the albumin moiety is N-terminal of the Therapeutic Protein
<220>
<221> misc feature
<222> (18)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222>. (27)
<223> n equals a,t,g, or c
<220>
```

U.S. Patent No. 6,926,898

```
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<400> 25
                                                                    32
aagctgcctt aggcttannn nnnnnnnnn nn
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<221> primer_bind
<223> reverse primer useful for generation of albumin fusion protein in which
the albumin moiety is N-terminal of the Therapeutic Protein
<221> misc feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
```

U.S. Patent No. 6,926,898

```
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<400> 26
gegegegttt aaacggeegg ceggegegee ttattannnn nnnnnnnnn n
                                                                    ·51
<210> 27
<211> 33
<212> DNA
<213> Artificial Sequence
<223> forward primer useful for generation of albumin fusion protein in which
the albumin moiety is c-terminal of the Therapeutic Protein
<220>
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c.
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<400> 27
aggagcgtcg acaaaagann nnnnnnnnn nnn
                                                                     33
<210> 28
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of albumin fusion protein in which
the albumin moiety is c-terminal of the Therapeutic Protein
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<221> misc feature
```

U.S. Patent No. 6,926,898

```
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<400> 28
ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> signal peptide of natural human serum albumin protein
<400> 29
Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
Tyr Ser Arg Ser Leu Asp Lys Arg
             20
<210> 30
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for generation of PC4:HSA albumin fusion VECTOR
```

U.S. Patent No. 6,926,898

```
<220>
<221> misc_feature
<222> (5)..(10)
<223> BamHI retsriction site
<220>
<221> misc_feature
<222> (11)..(16)
<223> Hind III retsriction site
<220>
<221> misc feature
<222> (17)..(27)
<223> Kozak sequence
<220>
<221> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin
<221> misc feature
<222> (75)..(81)
<223> XhoI restriction site
<220>
<221> misc_feature
<222> (98)..(114)
<223> cds first six amino acids of human serum albumin
<400> 30
tcagggatcc aagcttccgc caccatgaag tgggtaacct ttatttccct tcttttctc 60
tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
                                                                    114
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> reverse primer useful for generation of PC4:HSA albumin fusion VECTOR
<220>
<221> misc feature
<222> (6)..(11)
<223> Asp718 restriction site
<220>
<221> misc_feature
<222> (12)..(17)
<223> EcoRI restriction site
<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon
<220>
<221> misc_feature
<222> (18)..(25)
```

U.S. Patent No. 6,926,898


```
<223> AscI restriction site
<220>
<221> misc_feature
<222> (18)..(43)
<223> reverse complement of DNA sequence encoding last 9 amino acids
<400> 31
gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> forward primer useful for inserting Therapeutic protein into pC4:HSA
vector
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (34)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (35)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (36)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (37)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<400> 32
ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnnn nnnnnn
                                                                     46
<210> 33
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for inserting Therapeutic protein into pC4:HSA
vector
<220>.
<221> misc feature
<222> (38)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
```

U.S. Patent No. 6,926,898

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (53)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (54)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (55)
<223> n equals a,t,g, or c
<400> 33
agteceateg atgageaace teactettgt gtgcatennn nnnnnnnnn nnnnn
                                                                     55
<210> 34
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Stanniocalcin signal peptide
<400> 34
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser Ala
<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Synthetic signal peptide
<400> 35
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Leu Ala Leu
Trp Ala Pro Ala Arg Gly
             20
<210> 36
<211> 23
<212>. DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 36
                                                                    23
caggtgcagc tggtgcagtc tgg
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 37
                                                                    23
caggicaact taagggagic tgg
<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 38
gaggtgcagc tggtggagtc tgg
<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 39
                                                                    23
caggtgcagc tgcaggagtc ggg
<210> 40
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 40
                                                                    23
gaggtgcagc tgttgcagtc tgc
<210> 41
<211> 23
```

U.S. Patent No. 6,926,898

```
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate VH forward primer useful for amplifying human VH domains
<400> 41
                                                                    23
caggtacagc tgcagcagtc agg
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 42
                                                                    24
tgaggagacg gtgaccaggg tgcc
<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 43
                                                                    24
tgaagagacg gtgaccattg tccc
<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 44
tgaggagacg gtgaccaggg ttcc
<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate JH reverse primer useful for amplifying human VH domains
<400> 45
                                                                    24
tgaggagacg gtgaccgtgg tccc
```

U.S. Patent No. 6,926,898

```
<210> 46
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 46
                                                                    23
gacatccaga tgacccagtc tcc
<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 47
                                                                    23
gatgttgtga tgactcagtc tcc
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 48
                                                                    23
gatattgtga tgactcagtc tcc
<210> 49
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 49
                                                                    23
gaaattgtgt tgacgcagtc tcc
<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
```

U.S. Patent No. 6,926,898

```
<400> 50
gacatcgtga tgacccagtc tcc
                                                                    23
<210> 51
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 51
                                                                    23
gaaacgacac tcacgcagtc tcc
<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for amplifying human VL domains
<400> 52
                                                                    23
gaaattgtgc tgactcagtc tcc
<210> 53
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 53
                                                                    23
cagtctgtgt tgacgcagcc gcc
<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 54
                                                                    23
cagtetgeee tgaeteagee tge
<210> 55
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 55
                                                                    23
tectatgtge tgactcagee acc
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 56
                                                                    23
tcttctgagc tgactcagga ccc
<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 57
                                                                    23
cacgttatac tgactcaacc gcc
<210> 58
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 58
                                                                    23
caggetgtgc teactcagec gtc
<210> 59
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Vlambda forward primer useful for amplifying human VL domains
<400> 59
                                                                    23
aattttatgc tgactcagcc cca
```

U.S. Patent No. 6,926,898

```
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 60
acgtttgatt tccaccttgg tccc
<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 61
                                                                    24
acgtttgatc tccagcttgg tccc
<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 62
                                                                    24
acgtttgata tccactttgg tccc
<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
<400> 63
                                                                    24
acgtttgatc tccaccttgg tccc
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jkappa reverse primer useful for amplifying human VL domains
```

U.S. Patent No. 6,926,898

```
acgtttaatc tccagtcgtg tccc
<210> 65
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 65
                                                                     23
cagtctgtgt tgacgcagcc gcc
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 66
                                                                     23
cagtetgeec tgaeteagee tge
<210> 67.
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 67
                                                                     23
tcctatgtgc tgactcagcc acc
<210> 68
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 68
                                                                     23
tcttctgagc tgactcagga ccc
<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

U.S. Patent No. 6,926,898

```
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 69
                                                                   23
cacgttatac tgactcaacc gcc
<210> 70
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 70
                                                                    23
caggetgtgc teactcagec gtc
<210> 71
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains
<400> 71
                                                                    23
aattttatgc tgactcagcc cca
<210> .72
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<221>turn
<223>Linker peptide that may be used to join VH and VL domains in an scFv.
<400> 72
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser
<210> 73
<211> 733
<212> DNA
<213> Homo sapiens
<400> 73
gggatccgga gcccaaatct tctgacaaaa ctcacacatg cccaccgtgc ccagcacctg
                                                                        60
aattcgaggg tgcaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga
                                                                       120
tctcccggac tcctgaggtc acatgcgtgg tggtggacgt aagccacgaa gaccctgagg
                                                                       180
```

U.S. Patent No. 6,926,898

tcaagttcaa ctggtacgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcg	gg 240
aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccagga	ct 300
ggctgaatgg caaggagtac aagtgcaagg tctccaacaa agccctccca acccccat	cg 360
agaaaaccat ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcc	cc 420
catcccggga tgagctgacc aagaaccagg tcagcctgac ctgcctggtc aaaggctt	ct 480
atccaagcga catcgccgtg gagtgggaga gcaatgggca gccggagaac aactacaa	ga 540
ccacgcctcc cgtgctggac tccgacggct ccttcttcct ctacagcaag ctcaccgt	gg 600
acaagagcag gtggcagcag gggaacgtct tetcatgete egtgatgcat gaggetet	gc 660
acaaccacta cacgcagaag agcctctccc tgtctccggg taaatgagtg cgacggcc	gc 720
gactctagag gat	733
<210> 74 <211> 5 <212> PRT <213> Artificial sequence	
<pre><220> <221> misc_structure <223> membrane proximal motif of class 1 cytokine receptors <220> <221> misc_feature <222> (3) <223> Xaa equals any</pre>	
<400> 74 Trp Ser Xaa Trp Ser 1 5	
<210> 75 <211> 86 <212> DNA <213> Artificial Sequence <220>	
<pre><221> primer_bind <223> forward primer useful for generation of a synthetic gamma site (GAS) containing promoter element</pre>	activation
<400> 75 gcgcctcgag atttccccga aatctagatt tccccgaaat gatttccccg aaatgatt	tc 60
cccgaaatat ctgccatctc aattag	86
<210> 76 <211> 27	

U.S. Patent No. 6,926,898

```
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> reverse primer useful for generation of a synthetic gamma activation
site (GAS) containing promoter element
<400> 76
gcggcaagct ttttgcaaag cctaggc
                                                                        27
<210> 77
<211> 271
<212> DNA
<213> Artificial Sequence
<220>
<221> misc feature
<223> Synthetic GAS-SV40 promoter sequence
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tccccgaaat gatttccccg
                                                                        60
aaatatetge cateteaatt agteageaac catagteeeg cecetaacte egeceateee
                                                                       120
gcccctaact ccgcccagtt ccgcccattc tccgccccat ggctgactaa ttttttttat
                                                                       180
ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagtagt gaggaggctt
                                                                       240
                                                                       271
ttttggaggc ctaggctttt gcaaaaagct t
<210> 78
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer bind
<223> primer useful for generation of a EGR/SEAP reporter construct
<400> 78
gcgctcgagg gatgacagcg atagaacccc gg
                                                                        32
<210> 79
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful for generation of a EGR/SEAP reporter construct
<400> 79
                                                                       31
gcgaagcttc gcgactcccc ggatccgcct c
```

U.S. Patent No. 6,926,898

```
<210> 80
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_binding
<223> NF-KB binding site
<400> 80
ggggactttc cc
<210> 81
<211> 73
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind ·
<223> forward primer useful for generation of a vector containing the NF-KB
promoter element
<400> 81
gcggcctcga ggggactttc ccggggactt tccggggact ttccatcctg
                                                                      60 .
ccatctcaat tag -
                                                                      73
<210> 82
<211> 256
<212> DNA
<213> Artificial Sequence
<221> misc feature
<223> Synthetic NF-KB/SV40 promoter
ctcgagggga ctttccggg gactttccg ggactttcca tctgccatct
                                                                     60
caattagtca gcaaccatag tcccgccct aactccgccc atcccgcccc taactccgcc
                                                                     120
cagttccgcc cattctccgc cccatggctg actaattttt tttatttatg cagaggccga
                                                                     180
ggccgcctcg gcctctgagc tattccagaa gtagtgagga ggcttttttg gaggcctagg
                                                                     240
cttttgcaaa aagctt
                                                                     256
```

U.S. Patent No. 6,926,898