

Kertauskooste

10.10.2023

Mikä käyttöliittymä?

- Laitteen, ohjelmiston tai minkä tahansa tuotteen osa, jonka kautta tuotetta käytetään
- Käyttöliittymäksi kutsutaan kaikkia niitä teknisen järjestelmän piirteitä, joiden kautta ja avulla ihmisten omiin tavoitteisiinsa pyrkiessään on mahdollista käyttää järjestelmään hyväkseen

- Poikkitieteellinen ala sisältää esimerkiksi:
 - Tietojenkäsittelytiedettä
 - Kognitiivista psykologiaa
 - Graafista suunnittelua
 - Ergonomiaa

- Termejä:
 - HCI Human-Computer Interaction
 - UI User Interface
 - UX User Experience
 - GUI Graphical User Interface
 - HMI Human Machine Interface

- Käytännössä kaikista laitteista ja ohjelmistoista löytyy jonkinlainen käyttöliittymä
- Tärkeä markkinointimielessä ja merkitys kasvaa koko ajan
- Kehittämiseen käytetään yhä enemmän rahaa ja resursseja
- Kuluttajan valintaperuste tuotteelle

Haasteita

- Käyttöliittymä pitäisi tehdä loppukäyttäjän työn, tietojen ja ajatteluprosessin ehdoilla
- Erilaiset käyttäjät vaativat erityisominaisuuksia (saavutettavuus)
- Eri markkina-alueiden kulttuurierot
- Eri mitta-, numero-, aika- ja kirjainjärjestelmät
- Eri ikäryhmien suhtautuminen

Haasteita

- Koulutustaso, mielentila ja motivaatio vaikuttavat siihen miten käyttäjä suorittaa tehtävät
- Käyttöliittymästä pyritään tekemään mahdollisimman luonnollinen käyttää:
 - Analogiat reaalimaailmaan ikonit, kuvakkeet jne.

Käyttäjäkokemus (UX)

- Miten käyttäjä on vuorovaikutuksessa tuotteen järjestelmän tai palvelun kanssa ja miten hän kokee sen
- Henkilön käsitys järjestelmän hyödyllisyydestä, helppokäyttöisyydestä ja tehokkuudesta

By Peter Morville; Andrew Lehti https://oryzo.com/user-interface-design/, CC0, https://commons.wikimedia.org/w/index.php?curi d=84148478

Standardit ja tyylioppaat

- Käyttöliittymä kannattaa suunnitella noudattamaan sovittua esitys- ja toimintamallia
- Sovelluksia varten voidaan tehdä malleja, joita noudatetaan kaikkialla käyttöliittymässä
- Käyttöliittymiä varten on olemassa myös standardeja, joiden mukaan käyttöliittymä voidaan suunnitella

Standardit

- Standardi laaditaan, jotta saadaan aikaan yhdenmukaisia ratkaisuja
- Standardi on sopimusasia. Ei ole (aina) pakko noudattaa
- Hyötyä sekä valmistajalle, että tuotteen loppukäyttäjälle
- Käytetään yhteensopivuuden, laadun ja turvallisuuden takaamiseksi

ISO 7000 Graphical symbols for use on equipment

Standardit

- Loppukäyttäjälle johdonmukaisempia tuotteita
- Aiemmin opittua voidaan hyödyntää uuden käyttöliittymän käyttämisessä
- Uuden tuotteen opettelu vie vähemmän aikaa
- Virheet vähenevät, tuottavuus ja tehokkuus paranevat

Standardit

- Tuotekehityskustannukset pienemmät ainakin pidemmällä aikavälillä
- Standardikirjat maksullisia, mutta käyttö ilmaista – ei lisenssiä
- Käyttöönotto vie aikaa ja resursseja
- Helpottaa kaupankäyntiä ja tuotteen lokalisointia eri markkina-alueille

- Tyyliopas kertoo millainen käyttöliittymän tulisi olla ja miten eri elementtien tulisi toimia
- Ohjeistetaan rakentamaan käyttöliittymä hyvien suunnitteluperiaatteiden mukaisesti
- Voidaan käyttää myös käyttöliittymän verifioimiseen – onko kaikkialla sovelluksessa noudatettu määriteltyjä periaatteita?

- Sisältää käyttöliittymäsuunnittelun hyvät käytännöt (best practices)
- Lisäävää käyttöliittymän yhdenmukaisuutta ja johdonmukaisuutta
- Lyhentää suunnitteluun käytettyä aikaa
- Nostaa käyttöliittymän laatua

- Apple Human Interface Guidelines:
 - Hyvät käytännöt ja suunnitteluohjeita Applen alustoille: Ikonit, ikkunat, painikkeet, eleet jne.
 - https://developer.apple.com/design/humaninterface-guidelines
- Material Design Guidelines (Google):
 - Googlen vastaava standardi käyttäjäkokemuksen varmistamiseksi Googlen sovelluksissa
 - https://m2.material.io/design/guidelinesoverview

- Web Content Accessibility Guidelines (WCAG):
 - Suosituksia verkkosisällön saavutettavuuden parantamiseksi (erilaiset käyttäjät, päätelaitteet jne..)
 - Julkaisijoina Web Accessibility Initiative (WAI) ja W3C
 - Versio 3 tekeillä vuodesta 2021 alkaen
 - EU direktiivi 2016/2012 vaatii julkisen sektorin sivustoilta ja mobiilisovelluksilta yhdenmukaisuutta WCAG 2.1 tason AA kanssa

Yrityksen sisäiset tyylioppaat

- Tavoitteena yhtenäistää yrityksen tuottamien sovellusten käyttöliittymät:
 - Suunnittelijoiden työ helpottuu
 - Loppukäyttäjien työ helpottuu
- Voi olla myös asiakaprojektikohtainen ja koskea vain yhtä sovellusta

Käytettävyys

- Käytettävyys ei tarkoita samaa kuin käyttöliittymäsuunnittelu, vaikka käyttöliittymällä on tässä tärkeä merkitys
- Taustalla olevat käyttöprosessit ja työnkulut ja niiden tukeminen ovat yhtä oleellisia
- Hyvä käyttöliittymä mahdollistaa ihmisen keskittymisen varsinaiseen suoritettavaan tehtävään

Käytettävyys (usability)

 ISO 9241-11 –standardissa käytettävyys määritellään seuraavasti:

Käytettävyys tarkoittaa tarkoituksenmukaisuutta, tehokkuutta ja tyytyväisyyttä, jolla tuotteen määritellyt käyttäjät saavuttavat määritellyt tavoitteet tietyssä käyttöympäristössä

Käytettävyys

- Käytettävyyden mittarit:
 - Tarkoituksenmukaisuus (Effectiveness) = miten hyvin tuotteella voi saavuttaa tavoitteen
 - Tehokkuus (Efficiency) = tehokkuus, mitattuna ajankäytöllä per tehtävä tai muilla käytetyillä resursseilla
 - Tyytyväisyys (Satisfaction) = käyttäjän subjektiivinen kokemus käytön miellyttävyydestä

Käytettävyys = käyttöliittymä + toimintalogiikka

Käytettävyys

- Yleensä tavoitteena on parantaa käyttäjän nykyisiä käytäntöjä
- Käytettävyys riippuu kontekstista:
 - Sitä ei voi määritellä absoluuttisesti, vaan se riippuu aina tuotteen lisäksi käyttäjistä, käyttäjien tavoitteista ja käyttöympäristöstä
- Pitää tuntea käyttäjä ja tehtävä

- Käytettävyyssuunnittelu (usability engineering, UE)
 - Systemaattisia toimenpiteitä hyvän käytettävyyden saavuttamiseksi
 - Mittavuus ja toistettavuus tärkeää

- Käyttäjäkeskeinen suunnittelu (user centered design, UCD)
 - Prosessi, jossa käyttäjien toiveet ja tarpeet keskiössä -> hyvä tuote
 - ISO 13407:1999 määrittelee vaiheet:
 - Käyttökontekstin ymmärtäminen
 - Käyttäjävaatimusten ja organisaation vaatimusten määrittely
 - Suunnitteluratkaisujen tuottaminen
 - Evaluointi
 - Tunnetuin menetelmä Contextual Design

- Ihmiskeskeinen suunnittelu (human centered design, HCD)
 - Näkökulma, jossa pyritään ymmärtämään ihmisen käyttäytymistä ja taitoja ja hyödynnetään niitä suunnittelussa
 - Tuetaan ihmisen ja organisaation toimintaa tuotesuunnittelulla

- Ergonomia
 - Ihmisen fyysisiä ominaisuuksia korostava esineiden suunnittelun ala
- Käyttäjäkokemus (user experience, UX)
 - Kokonaisvaltainen elämys tavoitteena
 - Huomioidaan kaikki vuorovaikutukseen liittyvät asiat, tuotetuki, markkinointi, oheispalvelut, jne.

Käytettävyyden arviointi

Käytettävyys

- Käytettävyyden arvioinnilla ja testauksella tutkitaan käyttöliittymän kykyä mahdollistaa menestyksellinen toiminta
- Käytettävyyden suunnittelulla tarkoitetaan todellisten käyttötilanteiden ominaisuuksien ennakointia suunnittelussa

Suunnittelun kaksi ongelmaa

- Mitä järjestelmän tulisi tehdä?
 - Toiminnot joita käyttäjä haluaa tehdä järjestelmällä
- Miten varmistetaan, että toiminnot todella saadaan käyttöön oikeissa käyttötilanteissa?
 - Käytettävyys
- Hyvä käyttöliittymä = oikeat toiminnot
 - + hyvä käytettävyys

Suunnittelun peruskysymys

 Miten suunnittelutilanteessa ymmärretään käyttötilannetta?

Käytettävyyden ongelmia

- Käytettävyysongelman vakavuus muodostuu kolmesta eri tekijästä:
 - Esiintymistiheydestä (yleistä harvinaista)
 - Ongelman vaikeudesta (helppo vaikea toipua)
 - Pysyvyydestä (ensikertalaisen ongelma – jatkuvasti tapahtuva

Käytettävyyden ongelmia

- Ongelmille voidaan edelleen määritellä vakavuusaste:
 - Vakava virhe saattaa kokonaan estää käyttämisen tai vaikeuttaa sitä oleellisesti
 - 2. Virhe saattaa aiheuttaa vaikeuksia käytössä
 - 3. Kosmeettinen virhe saattaa aiheuttaa ärtymystä käyttäjässä

Käytettävyyden ongelmia

- Ratkaisuina käytettävyyden ongelmiin:
 - Standardien noudattaminen
 - Tyylioppaan noudattaminen
 - Yleisen käytännön mukaan toimiminen
- Toisaalta yleisin ratkaisu ei ole aina paras (qwerty?),vaan pitää etsiä myös uusia parempia tapoja

- Käyttöliittymän ja toimintalogiikan läpikäynti
- Perinteinen tapa on käydä sovellus suunnitteluvaiheessa kohta kohdalta läpi käyttäjien/asiantuntijoiden kanssa:
 - Aluksi paperiversioina tai prototyypillä
 - Myöhemmässä kehitysvaiheessa varsinaisella kehitettävällä sovelluksella

- Käytettävyystestauksessa sovellus tai prototyyppi testataan käyttäjien avulla:
 - Ohjattu ja valvottu tilanne
 - Tarkkaan määritetyt tehtävät ja testitilanne
 - Käyttötapauksia joista testaajien tulisi selvitä
 - Tulokset analysoidaan asiantuntijoiden toimesta
- Aikaa vievää ja työlästä:
 - Toisaalta jo viidellä koehenkilöllä päästään kohtuullisen kattaviin tuloksiin

- Sopii hyvin iteratiiviseen tuotekehitykseen:
 - Käytettävyystestejä järjestetään kehityksen edetessä varmistamaan lisäysten/muutosten oikeellisuus
 - Käyttäjät mukana koko kehitysprojektin ajan
- Jos testattava sovellus on laaja, kohdistetaan testaus pienempiin osiin kerralla

- Mitä mitataan (Shneiderman):
 - Oppimisnopeus kuinka nopeasti tarvittavat komennot opitaan
 - Työskentelynopeus kuinka kauan tehtäviin kuluu aikaa
 - Käyttäjän virheet kuinka paljon/miten vakavia virheitä käyttäjä tekee
 - Toimintojen muistaminen paljonko muistetaan aiemmasta kerrasta 1h, 1pv, 1vk kuluttua
 - Käyttäjän tyytyväisyys kuinka tyytyväinen käyttäjä on järjestelmän käyttöön

- Järjestelmän läpikäyntiin voidaan hyödyntää heuristiikkoja (tarkastuslistoja)
- Järjestelmä käydään läpi ja selvitetään toteutuuko heuristiikassa esitetyt näkökohdat tutkittavassa sovelluksessa
- Analysoijalta vaaditaan asiantuntemusta sekä käytettävästä heuristiikasta, että analysoitava järjestelmän sovellusalasta
- Nielsenin heuristiikka (1994)

- Pieni joukko arvioijajoukko (3-5 henkilöä)
- Käyttöliittymä käydään läpi useita kertoja
- Voidaan keskittyä ei asioihin eri arviointikerroilla esim.:
 - Vuorovaikutuksen sujuvuus ja järjestelmän yleinen rakenne
 - Käyttöliittymän elementit ja miten ne suhteutuvat kokonaisuuteen
 - •

- Arvioijat tekevät listan havaituista käytettävyysongelmista (1 löytää 25% -5 löytää 60%)
- Viittaukset mitä heuristiikan osaaluetta ongelmakohdassa rikotaan
- Arvio kunkin löydetyn ongelmakohdan vakavuudesta -> prioriteetit
- Systemaattista toimintaa käytettävyyden parantamiseksi

- Ehkä tunnetuin käytettävyysheuristiikka on Nielsenin 1990-luvulla kehittämä ohjeisto (Nielsen 1994)
- Nykyään käytössä oleva ohjeisto on 2005 julkaistu päivitys alkuperäiseen
- Sisältää 10 tarkastelukohtaa

- 1. Järjestelmän tilan näkyvyys riittävä palaute
- 2. Järjestelmän ja todellisuuden yhteensopivuus
- 3. Käyttäjän hallinta ja vapaus poistumistiet
- 4. Yhdenmukaisuus ja standardit
- 5. Virheiden estäminen
- 6. Tunnistaminen muistamisen sijaan
- 7. Joustavuus ja käytön tehokkuus
- 8. Esteettinen ja minimalistinen suunnittelu
- 9. Virheistä toipuminen
- 10. Apu ja dokumentaatio

Shneiderman

- Kahdeksan kultaista sääntöä
- 1. Noudata yhtenäisyyttä toimintaketjuissa ja toimintatavoissa
 - Terminologia
 - värit, fontit, kuvakkeet
 - samanlainen toimintatapa samassa tilanteessa
- 2. Tarjoa edistyneille käyttäjille oikoteitä
 - Näppäinoikotiet
 - Makrot
 - piilotetut komennot

Shneiderman

- 3. Tarjoa informatiivista palautetta
- 4. Suunnittele dialogit siten, että ne johtavat lopputulokseen
 - järjestä toimintoketjut siten, että niillä on alku, keskikohta ja loppu
- 5. Tarjoa yksinkertaista virheenkäsittelyä
 - estä virheet
 - auta käyttäjää toipumaan virhetilanteista

Shneiderman

- 6. Salli toimintojen helppo peruminen
- 7. Tue käyttäjän kontrollin tunnetta
 - käyttäjä käynnistää tapahtumat ja toiminnot
 - käyttäjä voi tehdä valintoja
- 8. Rajoita käyttäjän lyhytkestoisen muistin kuormitusta
 - tarvittava informaatio joka näytöllä
 - ohjeet, opasteet, syöteformaatit

Ihminen tietojenkäsittelijänä

- Käyttöliittymä on parhaimmillaan, kun sen olemassaoloa ei huomaa
- Tämä voidaan saavuttaa vain tilanteessa, jossa sovellus liittyy saumattomasti ihmisen tapaan käsitellä tietoa
 - Tiedonkäsittelyn prosessit
 - Tiedonkäsittelyn rakenteet

Ihminen tietojenkäsittelijänä

- Ihmisaivojen tietojenkäsittelyä tutkiva tieteenala on kognitiivinen psykologia
- Kognitiivisen psykologian mukaan ihmisen muisti jakaantuu
 - Sensorisiin puskurimuisteihin
 - Työmuistiin
 - Säilömuistiin

Työmuisti ja käyttöliittymät

- Työmuistissa tieto säilyy noin 20 sekuntia
- Työmuistin kooksi on määritetty 4 mieltämisyksikköä
- Muistettava määrä riippuu muistettavista kokonaisuuksista: kirjaimia, sanoja, lauseita jne.
- Helpompi muistaa useampia yksityiskohtia, kun ne liittyvät johonkin tunnettuun kohteeseen

Työmuisti ja käyttöliittymät

- Irrallisia toisiinsa liittymättömiä asioita muistetaan huonommin
- Asiantuntija pystyy muodostamaan asioista laajempia kokonaisuuksia ja sitä kautta hallitsemaan enemmän yksityiskohtia
- Teorioita työmuistin toiminnasta:
 - Fonologinen silmukka
 - · Visuospatiaalinen luonnoslehtiö
 - Episodipuskuri

Sisäiset mallit

- Syvällisessä käsittelyssä uusi tieto muokataan käsitemalliksi (kognitiivinen skeema)
- Liitetään uudet asiat aiemmin opittuun uudet asiat liitetään aiempiin skeemoihin tai muokataan niitä uuden tiedon perusteella
- Omiin skeemoihin sopimattomat asiat unohdetaan tai sovitetaan entisiin skeemoihin – ihminen tavoittelee harmonista tilaa ilman ristiriitoja skeemoissa (ei kognitiivista dissonanssia)

Sisäiset mallit ja käyttöliittymä

- Samanaikaisesti hyödynnetään useita erilaisia sisäisiä malleja
- Sovelluksen käyttäjällä voi olla aktiivinen malli:
 - Käytettävän sovelluksen ulkonäöstä ja toiminnasta
 - Malli tehtävästä jota hän on suorittamassa
 - Malli tietokoneen ja ohjelmien toiminnasta yleensä
- Päätökset käyttötilanteessa tehdään mallien ja havaintojen perusteella

Mentaalimallit

- Mentaalimallit ovat todellisuuden (esine, tuote jne.) vastineita ihmisen mielessä
- Ihminen rakentaa malleja selittämään esineiden toimintatapoja tai rakenteita
- Mallit mahdollistavat asioiden kokeilemisen mielessä – toiminnan mielensisäisiä simulaatioita
- Mallien rakentamisessa käytetään käytetään hyödyksi omia skeemoja (yleisempi taso)

- Käyttömahdollisuus (affordance)
 - Kohteen ominaisuus, joka antaa vihjeen miten sitä tulisi käyttää:
 - Tuolissa istutaan
 - Nuppia käännetään
 - Painiketta painetaan
 - Ohjauspyörää käännetään
 - Mikä on tietokoneen käyttömahdollisuus?

<u>Tämä kuva</u>, tekijä Tuntematon tekijä, käyttöoikeus: <u>CC BY-SA-</u>NC

- Näkyvä rajoitus (constraint)
 - Kohteen ulkonäkö asettaa rajoja sille mihin kohdetta kannattaa käyttää
 - Joukko mahdollisuuksia:
 - Avain lukko
 - Ovien kahvat: vetäminen, työntäminen, kääntäminen
 - •

Tämä kuva, tekijä Tuntematon tekijä, käyttöoikeus: CC BY

- Vastaavuudet (coherence)
 - Kohteiden välillä olevien mahdollisten suhteiden joukko
 - Miten asiat liittyvät toisiinsa
 - Kytkennän pitäisi olla mahdollisimman luonnollinen ts. samanlainen kuin muut vastaavat
 - Kaukosäädin jossa on säätimen oma on/off painike?

Tämä kuva, tekijä Tuntematon tekijä, käyttöoikeus: CC BY-NC

- Kausaalisuus (causality)
 - Mitä tapahtuu jonkin teon jälkeen, liitetään mielessä kyseiseen tekoon
 - Palautteen tulkinta oikea palaute auttaa oikean mallin vahvistumista
 - Virheellinen kausaalisuus:
 - Vaikutus oletetaan eri teon syyksi kuin se todellisuudessa on
 - Palaute puuttuu kokonaan

Havaitseminen

- Havaitseminen ei ole pelkkää aistimista
- Ei riitä, että asiat ovat käyttöliittymässä

 käyttäjän pitää pystyä tunnistamaan
 asiat ja mieltää ne ennen kuin hän voi
 käyttää niitä
- Näkö- ja kuulohavainnot tulkitaan ennakkokäsitysten perusteella
- Muistiin jää tulkinta ei objektiivinen todellisuus

Havaitseminen

- Käyttöliittymien suunnittelussa ihmisen havaintojärjestelmästä pitää huomioida:
 - Ihminen ei havaitse kaikkia asioita, joita käyttöliittymässä on
 - Suunnittelija ei pysty näkemään tuntemansa tuotteen käyttöliittymää, kuten aloittelija sen näkee
 - Käyttäjän koko kokemusmaailma vaikuttaa siihen miten ja millaisena hän näkemänsä ymmärtää

Havaitseminen

- Ihmisen kyky tunnistaa tuttuja hahmoja ja elementtejä on erittäin tarkka ja hyvin toimiva.
- Samoin on ihmisen kyky oppia tunnistamaan hahmoja, mikäli hänellä on näille hahmoille merkitys
- Illuusiokuvat ovat esimerkki siitä, että ihminen ei vain yksinkertaisesti "näe", mitä on nähtävissä, vaan havaitseminen on luova prosessi

Ärsykekynnys

- Aistiminen ei onnistu, jos ärsyke ei ylitä ärsykekynnystä – informaatio ei esimerkiksi erotu taustastaan
- Kun käyttäjä on motivoitunut huomaamaan tietyn ärsykkeen (kohde tai tapahtuma), se havaitaan helpommin
- Turhautunut tai epämotivoitunut järjestelmän käyttäjä havainnoi heikommin
- Liian suuri tai pieni työkuorma

Ärsykekynnys

- Ärsykekynnys ylittyy helpommin jos:
 - Käytetään parasta mahdollista aistinpiiriä, joka liittyy työhön ja on käyttöympäristöön sopiva
 - Annetaan käyttäjän valita työympäristöön sopiva aistinpiiri, jos mahdollista
 - Käytetään visuaalisia vihjeitä, jos todennäköistä että huomio on suuntautunut lähelle kohdetta
 - Äänivihjeet, jos oletettavaa että huomio on kokonaan muualla

Ärsykekynnys

- Jatkuu...:
 - Ryhmitellään tieto niin, että tärkeiden asioiden ympärillä riittävästi tilaa
 - Vältetään huomion kiinnittymistä toisarvoisiin kuviin tai tietoon
 - Esitetään äänitieto ajattelujärjestyksessä
 - Ei rakenneta tilanteita, joissa käyttäjä lukee toista viestiä ja kuuntelee toista

Tarkkaavaisuus

- Hyviä keinoja tarkkaavaisuuden ylläpitoon:
 - Annetaan käyttäjälle sopiva tietomäärä, oikeaan aikaa, oikeassa järjestyksessä
 - Jätetään pois kaikki "laitetaan tämä varmuuden vuoksi mukaan" –tiedot
 - Jaetaan tietoa eri tasoille päätasolla yhteenveto, alemmalla tasolla tarvittaessa saatava yksityiskohtaisempi tieto

Tarkkaavaisuus

- Jatkuu..:
 - Käytetään työhön sopivaa tiedon esittämistapaa
 - Varmistetaan, että ei korosteta vääriä asioita
 - Ryhmitellään tieto semanttisesti ja huolehditaan tietoon liittyvän hierarkian näkymisestä

Tarkkaavaisuus

- Huomiota kiinnittäviä asioita:
 - muutokset
 - asia, joka ei näytä kuuluvan joukkoon, yhteensopimattomuus ympäristön kanssa, erilaisuus
 - epätavalliset, mielenkiintoiset muodot
 - suorat linjat, viivat
 - silmiinpistävät, vialla olevat asiat
 - suuret kontrastit

- Läheisyys (proximity): kaksi visuaalista ärsykettä, jotka sijaitsevat lähellä toisiaan mielletään yhteen-kuuluviksi
- Samanlaisuus (similarity): kaksi samanlaista visuaalista ärsykettä mielletään yhteen tai samaan ryh-mään kuuluviksi

- Sulkeutuvuus (closure): jos visuaaliset ärsykkeet näyttävät sulkevan sisäänsä jonkin alueen, katsoja näkee sen alueena ja ärsykkeet siihen kuuluvina rajoina, toisin sanoen yhteenkuuluviksi
- Jatkuvuus (continuity): jos viivat leikkaavat toisiaan, katsoja jakaa kokonaisuuden selkeästi jatkuviin osiin. Yhtenäinen viiva koetaan kuvioksi

- Tuttuus (Familiarity): tutut ja merkitykselliset alueet nähdään kuviona
- Valiomuotoisuus (Good shape): ymmärrämme kuviot mahdollisimman yksinkertaisina, "hyvämuotoisina". Esimerkiksi käyttöliittymän kuvakkeet voivat olla pelkistettyjä ja käyttäjä pyrkii täydentämään puuttuvat osat

- Yhteinen liike (Common fate): kohteet jotka liikkuvat samaan suuntaan samalla nopeudella kuuluvat yhteen ryhmään tai kohteeseen
- Yhteenliittyminen (Connectedness, connectness): kohteet, jotka liittyvät toisiinsa eli ovat toisissaan kiinni, kuuluvat yhteen ryhmään tai kohteeseen. Tämä on yleensä vahvempi kuin muut lait

Normanin malli

- Tavoitteen asettaminen:
 - Tavoitteen muodostus Aikomus toimia
- Toiminnon tai toimenpiteen tekeminen:
 - Toimenpiteiden suunnittelu Toimenpiteen suoritus
- Vaikutuksen tarkastaminen eli toiminnan evaluointi palautetta käyttäen:
 - Palautteen katsominen Palautteen tulkinta -Palautteen ja tavoitteen vertaaminen

Visuaaliset suunnitteluperiaatteet

- Perusperiaatteiksi kannattaa ottaa:
 - Yksinkertaisuus
 - Selkeys
 - Johdonmukaisuus
 - Miellyttävä ulkonäkö
- Voidaan käyttää tarkistuslistana
- Kun periaatteet selvillä, voidaan perustellusti poiketa

Yksinkertaisuus

- Visuaalisella yksinkertaisuudella saavutettavia etuja:
 - Ymmärrettävyys Tarjotaan riittävästi visuaalisia vihjeitä, jotta toiminta voidaan ymmärtää "yhdellä vilkaisulla"
 - Tunnistettavuus Suunnitellaan ulkoasusta riittävän yksinkertainen, jotta käyttäjä voi keskittyä olennaiseen
 - Välittömyys Yksinkertaisuus nopeuttaa käyttöä, kun vähemmän ajattelutyötä
 - Käytettävyys

Selkeys

- Tavoitteena visuaalisen tiedon looginen organisointi
- Voidaan hyödyntää hahmolakeja:
 - Ihminen ryhmittelee yksittäiset ärsykkeet isommiksi kokonaisuuksiksi
 - Erillään olevat kuva-alkiot havaitaan saman kohteen osina

Johdonmukaisuus

- Keskeinen ominaisuus tuoteperheissä
- Toiminnan yhdenmukaisuus ja ennustettavuus käyttäjän näkökulmasta
- Johdonmukaisuutta voidaan noudattaa ulkoisesti ja sisäisesti
- Ulkoinen johdonmukaisuus tarkoittaa yhtenäisyyttä – muiden ohjelmien kanssa, ympäröivän maailman kanssa, eri laitemerkkien kanssa

Johdonmukaisuus

- Sisäiseen johdonmukaisuuteen vaikuttavat:
 - Komponenttien yhdenmukainen sijainti ja käyttötapa kaikkialla järjestelmässä
 - Sama värikoodaus läpi ohjelman eli tietty väri kuvaa aina samaa asiaa
 - Visuaalisten vihjeitten käyttö fontin tyyli, lihavointi, kursiivi
 - Yhtenäinen terminologia läpi järjestelmän
 - Yleisten komentojen käyttö "copypaste"

- Epätasapainosta syntyy visuaalinen jännite – voi tehdä näytöstä vaikeasti luettavan
- Työskentelyyn tarkoitetuissa sovelluksissa epätasapainoa tulisi välttää
- Liika tasapaino voi tehdä näkymästä tylsän – toisaalta se herättää luottamusta
- Epätasapaino tehokeinona

- Kultainen keskiarvo ja graafinen painotus ovat hyödyllisiä käsitteitä suunniteltaessa tasapainoista näyttöä
- Kultainen leikkaus jana jaetaan kahteen osaa siten, että lyhyt osa suhteutuu pidempään samoin kuin pidempi osa koko janaan
- Kultainen keskiarvo on janan jakopiste – noin 0,6 (tai 1/3 ja 2/3)

By Golden_ratio_line.svg: Traced by User:Stanneredderivative work: Pasixxxx - Tämä tiedosto on johdettu tiedostosta: Golden ratio line.svg:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=30 047681

- Kultaisen leikkauksen erityispiirre on suhteiden säilyminen kun viivaa jaetaan edelleen pienempiin osiin
- Suunnittelussa oleellisia ovat kultainen keskiarvo ja graafinen painotus
- Painopistekohtien avulla kuva voidaan helposti jakaa kolmeen osaan vaaka ja pystysuunnassa

- Näytöille on suositeltavaa suunnitella taittopohja, jonka perusteella elementit ryhmitellään näytölle
 - Marginaalit, tyhjät alueet
 - Noudatetaan sovittua ulkoasua tyyliopasta, standardia yms.
- Taittopohjana voi toimia kanoninen suunnittelumalli – näyttö jakaantuu enimmillään kuuteen sarakkeeseen, joilla vakiovälit

- Kanoniseen malliin perustuen voidaan näytölle sijoitella selkeästi ja symmetrisesti mikä tahansa yhdistelmä komponentteja
- Harmaat palkit kuvaavat elementtien leveyttä
- Elementtien jako 2-, 3-, 4- tai 6sarakkeseen
- Enintään yhdeksän eri aluetta (Millerin luku, 1956)

ontti	[?	2
Fontti Merkkiväli Tekstiteho	steet	
ontti:	Fonttityyli:	
Times New Roman	Normaali	
Times New Roman	Normaali 🔺	
Trebuchet MS	Kursivoitu	
Tunga	Lihavoitu	
Univers	Lihavoitu Kursivoi	
Univers Condensed	▼ <u>K</u> oko: 12	
e u sa Allacas		ī
	austyyli: 9 A	ļ.
Automaattinen 💌 (ei mit	:ään) 11 —	
	12 🔻	
ehosteet		
	piteelit 🗆 Kaikki isoilla 🗀 Piilotettu	
Kaksoisyliviivaus	Kohokuvio	
☐ Yläindeksi		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
olakus 1	OK Desire	
Oletus	OK Peruut	d

Fo <u>n</u> tti <u>M</u> erkkiväli <u>T</u> ekstitehoste ontti:	et Fon <u>t</u> tityyli: <u>K</u> oko:
Times New Roman Times New Roman Trebuchet MS Tunga Univers Univers Condensed	Lihavoitu 12 Normaali 9 10 11 Lihavoitu 11 11 Lihavoitu Kursivoi 12
Fontin väri: Alleviivausi Automaattinen (ei mitään ehosteet) _
□ Kaksoisyliviivaus □ ἔ □ Yļäindeksi □ k	/arjostus

Värien käyttö (Marcus)

1. Käytä korkeintaan 5+-2 väriä:

- Jos käyttöliittymässä käytetään enemmän värejä eri merkityksissä, voidaan kuormittaa käyttäjän muistia liikaa
- Tätä rajoitusta enemmän värejä vain kuvituskuvissa tuomaan realismia (jos sitä tarvitaan)
- ROY G BIV (red, orange, yellow, green, blue, indigo, violet):
 - Värispektrin järjestys värikoodauksessa
 - Testien mukaan ihmiset pitävät tätä järjestystä luonnollisena
 - Jos näytöllä on useita tasoja ja valitsevat etummaiseksi punaisen (ROY), keskelle vihreän (G) ja taakse sinisen/syaanin (BIV)

- 2. Käytä oikein keskeisiä- ja reunavärejä:
 - Sininen vain laajojen pintojen väriksi, sinistä ei kannata käyttää tekstin värinä - sininen on hyvä esimerkiksi taustavärinä
 - Punaista ja vihreää ei kannata käyttää reunoilla sijaitsevissa elementeissä, joihin käyttäjän huomion halutaan kiinnittyvän silmä havaitsee huonosti punaisia ja vihreitä elementtejä näytön reunoilta
 - Musta, valkoinen, keltainen ja sininen sopivat reunoille

- 3. Käytä värejä, jotka muuttuvat mahdollisimman vähän kuvan koon muuttuessa:
 - Ympäristön merkitys korostuu: huomioi värin muuttuminen taustavärin muuttuessa
 - Ohut vaalea teksti tummalla taustalla pimeään/hämärään ympäristöön
 - Ohut tumma teksti vaalealle pohjalle valoisaan
 - Varaa aina suurin kontrastiero tekstin ja taustan välille - muilla kuvioilla (painikkeet, ikonit) ja taustalla voi olla pienempi kontrastiero

4. Älä käytä useita vahvoja värejä samanaikaisesti:

• aiheuttavat värinää, varjoilluusioita ja jälkikuvia

5. Käytä tuttuja koodauksia:

- Riippuu asiayhteydestä ja kulttuurista
- Länsimaissa punainen kuvaa kuumaa, tulta ja pysähtymistä - vihreä keskeytä-painike voisi hämätä käyttäjää
- Hyödynnä myös värisävyn muutoksia kertomaan, mitä elementtejä voi kyseisessä käyttötilanteessa käyttää tai mitkä elementit ovat aktiivisia

- 6. Käyttäjä yhdistää samoin väritetyt elementit ja alueet:
 - Käytä värejä elementtien ryhmittelyyn loogisiksi kokonaisuuksiksi
 - Ryhmittelyyn voi käyttää
 - elementin itsensä väriä
 - tekstisisällön tai kuva-aiheen väriä
 - taustan väriä
- 7. Käytä värejä johdonmukaisesti:
 - Tee järjestelmälle graafinen ohjeisto ja noudata sitä
 sama värikoodaus samoille asioille
 - Muista myös dokumentointi ja opetusmateriaali

Värien käytöstä

- Käytä kirkkaita, värikylläisiä värisävyjä huomion kiinnittämiseen tilanteissa, joissa käyttäjän huomio on saatava:
 - Virheilmoitukset, varoitukset
- 9. Käytä redundantteja (toisteisia) koodauksia aina kuin mahdollista:
 - Yksi asia ilmaistaan useampaa attribuuttia käyttäen
 - Jos käyttäjä ei pysty havaitsemaan jotain koodaustapaa (esim. väriä), voi hän ymmärtää asian toisen koodaustavan avulla
 - muoto + väri, väri + teksti, väri + sijainti

<u>Tämä kuva</u>, tekijä Tuntematon tekijä, käyttöoikeus: <u>CC BY-</u> <u>NC</u>

- 10. Käytä värejä elävöittämään mustavalkoista esitystä:
 - Värillinen tieto on helpompi muistaa ja miellyttävämpää lukea
 - Mustavalkoisen ja värillisen tiedon tulkinnassa eli oppimisen määrässä ei kuitenkaan ole havaittu eroja

Flat design

- Minimalistinen suunnittelutyyli käytetään yksinkertaisia elementtejä ja tasaisia värejä
- Vaikutteita Swiss Style –tyylistä, joka kehitettiin 1950-luvulla
- Visuaalisesti miellyttävä ja lähestyttävä
- Vaatii vähän laitteistoresursseja responsiivinen käyttöliittymä
- MS Media Center 2002, Windows Phone 2010, Android 2011, iOS7 2013

Flat design

- Kritiikkiä:
 - Epäintuitiiviset käyttöliittymät
 - Heikompi käytettävyys
 - Käyttäjän vaikeampi erottaa mikä elementeistä on menu, painike, linkki jne.
 - Tutkitusti helpompi omaksua ja käyttää nuorten käyttäjien toimesta kuin ikääntyneiden
- Nielsenin tutkimuksen mukaan flat design käyttöliittymät ovat 22% hitaampia käyttää aiempiin verrattuna

Flat design

- Vastakohtana skeumorfinen tyyli, jossa elementit vastaavat mahdollisimman tarkasti tosimaailman esikuviaan:
 - Painikkeet näyttävät oikeilta painikkeilta
 - Näppäinäänet kuulostavat oikeilta näppäimiltä
 - Liukusäätimet näyttävät fyysisiltä säätimiltä
- Jakob Nielsenin ehdotus uusi tyyli flat designin ja skeumorfisen tyylin väliin "middle-ground"

Layout

- Käyttöliittymän peruselementtejä:
 - Ikkunat, painikkeet, valintalistat ja muut ohjauskontrollit
 - Linjat, laatikot, kuvakkeet, tekstit
 - Tyhjä tila ja marginaalit, joita käytetään elementtien yhdistelyyn, erotteluun ja ryhmittelyyn
- Sovelluksen jokainen näkymä kannattaa suunnitella käyttämään samaa asettelua
- Päänäkymä voi olla erilainen

Layout

- Läheisyyden periaatteen mukaan kontrollin läheisyydessä olevat tekstit kuuluvat kontrolliin
- Kultainen leikkaus tekstin ja kontrollin välillä 1/3 tila, tekstin ja toisen kontrollin välillä 2/3
- Ryhmiteltyjä kokonaisuuksia erottavat tilat vakiokokoisia – marginaali
- Linjaukset: tekstit vasemman reunan suhteen, painikkeet pysty-/vaakariveiksi

Käyttöliittymän lukeminen

Käyttöliittymää luetaan syventymällä:

• tai skannaamalla:

 Käyttäjä on tavallisesti keskittynyt tekeillä olevaan työhön – käyttöliittymää luetaan skannaamalla

Ohjeita

- Korkeintaan seitsemän ryhmää näkymässä
- Aloittavat toiminnot ylös vasemmalle tai keskelle – lopettavat toiminnot alas oikealle
- Tärkeät tekstit interaktiivisiin kontrolleihin taustatekstin sijasta
- Ei pitkiä tekstejä lisätiedot linkin kautta
- Tärkeää tietoa ei kannata sijoittaa vieritysalueiden loppuun tai alas oikealle

Ohjeita

- Jos käyttäjän huomio kiinnitetään jollain erityistehosteella, siihen pitää olla perusteltu hyvä syy
- Huomion kiinnittämiseen:
 - Sijoitetaan kohde skannausradalle
 - Huomiota kiinnittävillä kontrolleilla painikkeet, kuvakkeet
 - Isokokoisella/lihavoidulla tekstillä
 - Värityksellä tumma teksti vaalealla taustalla
 - Tilaa kohteen ympärille
 - Kohde aina havaittavissa ei esimerkiksi niin, että tulee havaittavaksi vain kursorin osoittaessa

Fokus

- Näkymän suunnittelmassa on fokus, kun siinä on yksi ilmeinen paikka johon käyttäjän huomio kiinnittyy
- Osoitetaan paikka josta toiminnon voi aloittaa
- Jotain tärkeää jota käyttäjä tarvitsee ja jonka voi ymmärtää nopeasti
- Vasen yläkulma luonteva paikka
- Näkymässä vain yksi fokus

Kiitos!

