| Adrian Lentz - Matrikelnummer: 258882  Robert Schönewald - Matrikelnummer: 188252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \newline \newline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>[1]: import numpy as np from kompasssuche_test import kompasssuche_test import timeit import mathlotlib nyplot as nlt</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${f Aufgabe~3.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>import matplotlib.pyplot as plt import scipy import statsmodels.api as sm import statsmodels.distributions.empirical_distribution as edf  [2]: 'Funktion definieren' def f_a(x):</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>return x[0]**2 + x[1]**2  [3]: np.random.seed(1)     stichprobe= random_points = np.random.uniform(-10, 10, (500, 2)) #Pul  [4]: 'Parametereinstellungen'</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nkte generieren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>parameter = [     (1.0, 0.5),     (2.0, 0.5),     (1.5, 0.8),     (0.5, 0.2) ]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>[5]: 'Zeitmessung - Definition' def zeitmessung(f_a, x0, s0, theta):     zeit= lambda:kompasssuche_test(f_a, x0, s0, theta) #Lambda Funktion     return timeit.timeit(zeit, number=1)  [6]: 'Zeitmessung - Ausführung'     zeiten=[]     for i, (s0, theta) in enumerate(parameter): #einmal alle Parameter</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #timeit.timeit gibt Messung der Laufzeit wieder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>para_zeiten=[]  #Zeiten für die jeweil:     for x0 in stichprobe:         curr_times=[]  #Zeiten für die aktuelle         for j in range(100):  #Messung 100mal wiederhe             curr_times.append(zeitmessung(f_a, x0, s0, theta))         para_zeiten.append(np.median(curr_times)) zeiten.append(para_zeiten)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | igen Parameter werden hier gespeichert<br>en zufälligen Startwerte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <pre>print(len(zeiten[0])) #Test der Länge, sollte 500 lang sein  500  [7]: fig, ax = plt.subplots()     ax.boxplot(zeiten)     ax.set_xticklabels(['(1, 0.5)','(2, 0.5)','(1.5, 0.8)','(0.5, 0.2)'])     ax.set(xlabel='Parameter', ylabel='mediane Zeiten')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0008 O.0007 - O.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0006 -<br>0.0005 -<br>0.0004 -<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0002 - 0.0001 - 0.0001 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1, 0.5) (2, 0.5) (1.5, 0.8) (0.5, 0.2)  Parameter  Die erste Sache die bei Betrachtung der Boxplots auffällt, ist dass die Parameterkombir  Die Parameter (0.5, 0.2) erzeugen einen Boxplot mit sehr hoher Varianz, ihre schnellste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nation (1.5, 0.8) deutlich höhere Zeiten erreicht als die anderen Parameter. Die Schrittweite wird hier am langsamsten verrringert, was dazu führt, dass viele unnötige Iterationen durchgeführt werden, da die Schrittweite immer noch zu lang ist. Dazu kommt noch, dass die initiale Schrittweite mit 1.5 relativ hoch ist. e und langsamste Zeit scheint mit der von allen Parameterpaaren übereinzustimmen. Dies lässt sich durch eine Sehr kleine initiale Schrittweite erklären. Zusätzlich wird diese auch nur sehr langsam verändert. Der Erfolg dieser Parameter hängt stark von der Startposition ab, da bei großer Entfernung zum Optimum                                                                                 |
| Schrittweite meistens schneller ist, jedoch ermöglicht eine kürzere Schrittweite das Find  [8]: 'Aufstellen der Hypothesen'  print('Hypothese (i):')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erkennen, dass B deutlich weniger schwankt. Insgesamt scheint B die bessere Wahl zu sein, da der Median und die beiden Quartile unter denen von A liegen. Jedoch ist das Minimum von beiden in A. Da sich beide Paare nur in der initialen Schrittweite unterscheiden, lässt sich daraus schließen, dass eine größer den des Optimums in minimaler Zeit.                                                                                                                                                                                                                                                                                                                                                                              |
| 'H0: Parameterpaar (1,0.5) ist im Mittel langsamer oder gleich schnell 'H1: Parameterpaar (1,0.5) ist im Mittel schneller als (1.5,0.8)'  print('Welch-Test:') tstat1, p1 = scipy.stats.ttest_ind(zeiten[0], zeiten[2], equal_var=False, print("t-statistic:", tstat1) print("p-value:", p1, end="\n"+"\n")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>print('Wilcoxon-Test:') tstat1, p1 = scipy.stats.ranksums(zeiten[0], zeiten[2], alternative='less print("t-statistic:", tstat1) print("p-value:", p1, end="\n"+"\n")  Hypothese (i): Welch-Test: t-statistic: -63.876506413638296</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| p-value: 0.0  Wilcoxon-Test: t-statistic: -27.09587388755472 p-value: 5.506431433436697e-162  Hier wurde der optionale Parameter alternative der Tests auf less verändert. Damit wird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d die alternative Hypothese verändert, sodass nun nicht mehr auf Ungleichheit getestet wird, sondern ob Verteilung des ersten Parameters kleiner ist als die des zweiten, so wie in der Aufgabe erwünscht. Dieser Test hat sehr kleine p-Werte, weswegen es sehr wahrscheinlich ist, dass die erste Hypothese zutrifft.                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>[9]: print('Hypothese (ii):') 'H0: Parameterpaar (1.5,0.8) ist im Mittel langsamer oder gleich schnel 'H1: Parameterpaar (1.5,0.8) ist im Mittel schneller als (0.5,0.2)'  print('Welch-Test:') tstat2, p2 = scipy.stats.ttest_ind(zeiten[2], zeiten[3], equal_var=False, print("t-statistic:", tstat2)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>print("p-value:",p2,end="\n"+"\n")  print('Wilcoxon-Test:')  tstat2, p2 = scipy.stats.ranksums(zeiten[2], zeiten[3], alternative='less print("t-statistic:",tstat2) print("p-value:",p2,end="\n"+"\n")</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hypothese (ii): Welch-Test: t-statistic: 36.691007952904805 p-value: 1.0  Wilcoxon-Test: t-statistic: 24.254833068582748 p-value: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Die Testergebnisse liefern p-Werte von 1, weswegen keine Aussage über die zweite Hy  [10]: print('Hypothese (iii):')  'H0: Parameterpaar (2,0.5) ist im Mittel langsamer oder gleich schnell 'H1: Parameterpaar (2,0.5) ist im Mittel schneller als (1.5,0.8)'  print('Welch-Test:')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>print('Welch-Test:') tstat3, p3 = scipy.stats.ttest_ind(zeiten[1], zeiten[2], equal_var=False, print("t-statistic:", tstat3) print("p-value:", p3, end="\n"+"\n")  print('Wilcoxon-Test:') tstat3, p3 = scipy.stats.ranksums(zeiten[1], zeiten[2], alternative='greaterint("t-statistic:", tstat3) print("by value:", p3, end="\n"+"\n")</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>print("p-value:",p3,end="\n"+"\n")  Hypothese (iii): Welch-Test: t-statistic: -76.41210058211469 p-value: 1.0  Wilcoxon-Test:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| t-statistic: -27.174268570242553 p-value: 1.0  Ähnlich wie in der ersten Hypothese erhalten wir sehr niedrige p-Werte, die dritte Hypot  [11]: print('Hypothese (iv):')     'HO: Parameterpaar (1,0.5) ist im Mittel langsamer oder gleich schnell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 'H1: Parameterpaar (1,0.5) ist im Mittel schneller als (0.5,0.2)'  print('Welch-Test:')  tstat4, p4 = scipy.stats.ttest_ind(zeiten[0], zeiten[3], equal_var=False, print("t-statistic:", tstat4)  print("p-value:", p4, end="\n"+"\n")  print('Wilcoxon-Test:')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e,alternative=' <mark>less'</mark> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tstat4, p4 = scipy.stats.ranksums(zeiten[0], zeiten[3], alternative='less print("t-statistic:", tstat4) print("p-value:", p4, end="\n"+"\n")  Hypothese (iv): Welch-Test: t-statistic: -12.662163934102148 p-value: 6.867091120177482e-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wilcoxon-Test: t-statistic: -11.352009910275669 p-value: 3.623861415130875e-30  Wie bereits vorher gesehen, scheint es so als ob wir die vierte Hypothese wahrscheinlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ich wahr ist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Die vorher gesehenen Boxplots scheinen mit diesen Ergebnissen übereinzustimmen:  (i) 1 ist schneller als 3  (ii) 3 ist nicht schneller als 4  (iii) 2 ist schneller als 3  (iv) 1 ist schneller als 3  Für den Welch-Test nehmen wir an, dass die Verteilungen normalverteilt sind und die V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /arianzen gleich sind. Letzteres haben wir durch den Parameter equal_var umgangen. Überprüfen wir nun also ob unsere Ergebnisse normalverteilt sind:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Für den Welch-Test nehmen wir an, dass die Verteilungen normalverteilt sind und die V  [12]: sm.qqplot(np.array(zeiten[0]),line="s") plt.show()  0.00040 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.00035 -<br>solution of the second of the sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00020 -<br>0.00015 -<br>0.00010 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.000052 -1 0 1 2  Theoretical Quantiles  [13]: sm.qqplot(np.array(zeiten[1]),line="s")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00035 - 0.00030 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00025 - Onutiles 0.00020 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00015 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Theoretical Quantiles  [14]: sm.qqplot(np.array(zeiten[2]),line="s") plt.show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0008 -<br>0.0007 -<br>0.0006 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O.0005 - 0.0004 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0003 - 0.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0002 -<br>0.0001 -<br>-2 -1 0 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Theoretical Quantiles  [15]: sm.qqplot(np.array(zeiten[3]),line="s") plt.show()  0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0005 -<br>0.0004 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0001 - 0.0001 - 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00002 -1 0 1 2 Theoretical Quantiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Die Diagramme lassen darauf schließen, dass die Verteilungen wahrscheinlich normalvon ecdf = edf.ECDF(zeiten[0])  x = np.linspace(min(zeiten[0]), max(zeiten[0]))  y = ecdf(x) plt.step(x, y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [16]: [ <matplotlib.lines.line2d 0x1fb509762d0="" at="">]  1.0 -  0.8 -</matplotlib.lines.line2d>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040  [17]: ecdf = edf.ECDF(zeiten[1])  x = np.linspace(min(zeiten[1]), max(zeiten[1]))  y = ecdf(x) plt.step(x, y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [17]: [ <matplotlib.lines.line2d 0x1fb500fa6d0="" at="">]  1.0 -  0.8 -</matplotlib.lines.line2d>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00010  0.00015  0.00020  0.00025  0.00030  0.00035  [18]: ecdf = edf.ECDF(zeiten[2])  x = np.linspace(min(zeiten[2]), max(zeiten[2])) y = ecdf(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| plt.step(x, y)  [18]: [ <matplotlib.lines.line2d 0x1fb50a2a2d0="" at="">]  1.0 -</matplotlib.lines.line2d>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0   0.0001  0.0002  0.0003  0.0004  0.0005  0.0006  0.0007  0.0008  [19]: ecdf = edf.ECDF(zeiten[3])  x = np.linspace(min(zeiten[0]), max(zeiten[3])) y = ecdf(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>y = ecdf(x) plt.step(x, y)  [19]: [<matplotlib.lines.line2d 0x1fb50a97a50="" at="">]  1.0 -</matplotlib.lines.line2d></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | usätzlich lässt sich vermuten, dass die Verteilungsfunktion stetig ist, wie im Wilcoxon-Test gefordert.  ch verteilt), unabhängig und stetig sind. Somit sind alle Vorraussetzungen für die Welch- und Wilcoxon-Tests erfüllt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Insgesamt lässt sich vermuten, dass die Verteilungen alle normalverteilt (somit identisch $H0:\Theta eq\Theta_0$ vs. $H1:\Theta=\Theta_0$ Nicht relevant für Aufgabe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ch verteilt), unabhängig und stetig sind. Somit sind alle Vorraussetzungen für die Welch- und Wilcoxon-Tests erfüllt.  Aufgabe 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Erklärung der Begriffe: Signifikanzniveau $\alpha$ gibt Wahrscheinlichkeit an,dass wahre Nullhypothese (H0) fälschlic Gütefunktion gibt für alle Parameterwerte die Wahrscheinlichkeit an, die Nullhypothese Für $\theta$ aus $\Theta_0$ : Gütefunktion misst Wahrscheinlichkeit H0 abzulehnen, obwohl richtig> Für $\theta$ aus $\Theta_1$ : Gütefunktion misst Wahrscheinlichkeit H0 abzulehnen, wenn falsch ist>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | abzulehnen.  Deswegen hier möglichst kleinen Wert für einen guten Test .  Deswegen hier möglichst großen Wert für guten Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| > Fehler 1.Art : Wahrscheinlichkeit Nullhypothese ablehnen, obwohl sie richig ist. Durc> Fehler 2.Art : Wahrscheinlichkeit Nullhypothese nicht abzulehnen, obwohl falsch ist Kritische Bereich festgelegt, sodass Wahrscheinlichkeit in diesem Bereich gleich dem S Beispiel für einen zweiseitigen Test mit dem Parameter $\mu$ : Hier ist die Nullhypothese wahr für $\mu=\mu_0$ . Das heißt eine Ablehnung der wahren Nullhypothese (Fehler 1.Art) führt zu einer Wahrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signifikanzniveau $lpha$ entspricht, wenn Nullhypothese wahr ist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Somit ist dort (für $\mu=\mu_0$ .) ein Minimum in der Gütefunktion (da Gütefunktion für eine v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wahre Nullhypothese möglichst klein ist) abgelehnt. Dort ist dann die Gütefunktion größer (da eigentlich Nullhypothese richtig wäre), d.h. Gütefunktion wächst mit zunehmenden Abstand des Wertes $μ$ von $μ_0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Quelle: https://wikis.hu-berlin.de/mmstat/Gütefunktion_des_Gauß-Tests  Anwendung auf die Aufgabe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t der Fehler 2.Art $(eta)$ kleiner als für einen Parameter $\mu_2$ mit einer kleinen Abweichung zu $\mu_0$ . Für $\mu_2$ ist der Fehler 2.Art groß.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gütefunktion (der Nullhypothese) ist stetig, sodass diese sich kontinuierlich für $	heta$ veränd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | icherweise abgelehnt wird, obwohl diese richtig ist. Dass heißt, α ist Wahrscheinlichkeit $	heta  eq 	heta_0$ , obwohl eigentlich $	heta = 	heta_0$ richtig wäre. Hier sollte die Gütefunktion möglichst klein sein, da eigentlich H0 richtig ist.  dert. Wenn $	heta$ sich $	heta_0$ nähert folgt, dass die Güte sich auch dem Wert der Güte von $	heta_0$ nähert.  Der gleichzeitig die Gütefunktion stetig ist. Somit wird die Gütefunktion, um $	heta_0$ nicht plötzlich auf null springen, sondern einen Wert größer als null haben. Das bedeutet, dass um den Punkt $	heta_0$ , es eine Wahrscheinlich gibt die Nullhypothese zu verwerfen, obwohl diese richtig wäre. Somit ist der Test nicht sinnvoll                        |
| Alternative: Für den Fall, dass eine Nullhypothese H0, welche falsch ist, auch verworfen wird, ist die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ies ein korrektes Ergebnis. Somit gibt es keinen Fehler 1.Art (Signifikanzniveau $lpha$ ) und die Gütefunktion muss an dieser Stelle null sein (absolutes Minimum). sweise der Test mit dem Hypothesenpaar $H0:\Theta \neq \Theta_0$ $\mathbf{vs.}$ $H1:\Theta = \Theta_0$ ) eine schlechtere Güte ergibt.\ $\mathbf{Aufgabe~3.3}$                                                                                                                                                                                                                                                                                                                                                                                                    |
| Begr $$ unden Sie Ihre Antworten.  (c) Eine Person erh $$ alt ein signifikantes Testergebnis. Kann sie sich sicher sein, dass s $Antworten$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s ein sinnvolles Vorgehen? Begr¨unden Sie Ihre Antwort.  It normalverteilt zum Niveau α = 0.05 getestet. Dabei ergibt sich ein p-Wert von 0.08. Die Nullhypothese kann also nicht abgelehnt werden. Die Person, die den Test durchgef¨uhrt hat, ist sich nun sicher, dass ihre Stichprobe normalverteilt ist. Ist dies sinnvoll? Wie f¨allt Ihre Antwort bei einem p-Wert von 0.75 aus?  sie damit etwas wissenschaftlich relevantes herausgefunden hat? Begr¨unden Sie Ihre Antwort.                                                                                                                                                                                                                                                 |
| (a): Nein, es wird die zu nachweisende Hypothese als Alternativhypothese H1 formulier müssten. Beispiele sind hierfür, unteranderm das Signifikanzniveau $\alpha$ , welches auf der Es wäre somit unteranderem auch nicht wissenschaflich Vergleichbar und somit ein welche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rt und die Nullhypothese H0 gibt die Gegenannahme. Dies liegt daran, da der Test darauf ausgelegt ist, die Nullhypothese zu widerlegen. Alle vorliegenden Test sind mit dieser Konvention erstellt, sodass es einen grundlegenden Unterschied gäbe und alle Test, um die Hypothese zu prüfen ebenfalls geändert werde Wahrscheinlichkeit der Nullhypothese abzulehnen basiert und damit ein Entscheidungskritierum ermöglicht.  enig sinnlos.  nehmen, dass diese richtig ist. Für einen p-Wert von 0.75 zeigt, dass wahrscheinlich die Nullhypothese annehmbar ist, jedoch könnte sie immernoch falsch sein (es gibt keinen 100% p-Wert). Deswegen ist keine Aussage möglich, ob es sich um eine normalverteilte Stichprobe handelt. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | als eine zufällige ist. Somit kann die Nullhypothese abgelehnt werden, wodurch es sich um ein wissenschaftliches Ergebnis handelt, jedoch sollte aufjedenfall das entsprechnende Signifikanzniveau mit angegeben werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Blatt 03 - Praktische Optimierung - Adrian Lentz, Robert

Lösungen und Erklärungen für Blatt 03.



Index der Kommentare

0,5 Punkte Abzug

1.1 gut wäre es noch zu schreiben, ob H\_0 abgelehnt wird oder nicht

1.4 Fehler 2. Art is unbekannt, wenn H1 die Gegenannahme ist.

1.2 "less"

Halber Punkt Abzug
 Der Vergleichbarkeit halber wäre es super gewesen die Kurven direkt miteinander zu vergleichen in einer Abbildung.

0,5 Punkte Abzug
 1.5 wissenschaftliche Signifikanz != statistische Signifikanz
 Wichtig ist, dass alle Algorithmen betrachtet weerdeen. Siehe Beispiel aus Vorlessung mit Algo A, B und C.

Zusätzlich bedeutet ein signifikantes Ergebnis nicht, dass \$H\_1\$ sicher wahr ist, sondern nur, dass es unwahrscheinlich ist, dass \$H\_0\$ stimmt.

0,5 Punkte Abzug