TD9: Formes sesquilinéaires, groupe unitaire, quaternions

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star \star$: plus difficiles.

Exercice 1: *

Montrer que toute forme sesquilinéaire réelle est bilinéaire.

Exercice $2: \star$

Soient K un corps de caractéristique différente de 2 et $\sigma \in \operatorname{Aut}(K)$ une involution distincte de id_K . Montrer que $k = K^{\sigma} := \{x \in K : \sigma(x) = x\}$ est un sous-corps de K, qu'il existe $a \in K \setminus k$ tel que $a^2 \in k$, $\sigma(a) = -a$ et $K = k(a) := \{\lambda a + \mu : (\lambda, \mu) \in k^2\}$. Que dire si K est de caractéristique 2?

Exercice 3: **

Soient K un sous-corps de \mathbb{R} et $K' = K(i) := \{x + iy : (x, y) \in K^2\}$. On munit K' de l'involution induite par la conjugaison complexe. Soient E' un K'-espace vectoriel et E le K-espace vectoriel sous-jacent. Une forme K-bilinéaire f sur $E \times E$ est dite invariante par i si l'on a f(ix, iy) = f(x, y) pour tous $x, y \in E$.

- a) Montrer que l'application $\phi \mapsto ((x,y) \mapsto \phi(x,y) + i\phi(x,iy))$ est un isomorphisme de l'espace des formes bilinéaires sur $E \times E$ invariantes par i vers celui des formes sesquilinéaires sur $E' \times E'$.
- b) Montrer qu'elle induit un isomorphisme de l'espace des formes symétriques sur $E \times E$ invariantes par i vers l'espace des formes hermitiennes sur $E' \times E'$.
- c) Montrer que si ϕ est symétrique invariante par i, alors $(x,y) \mapsto \phi(x,iy)$ est antisymétrique.

Exercice 4:

Soient K un corps, E un espace vectoriel sur K, ϕ une forme sesquilinéaire sur $E \times E$ et u un endomorphisme de E.

- a) Montrer que les deux conditions suivantes sont équivalentes :
 - i) il existe un unique endomorphisme u^* de E vérifiant $\phi(u(x),y)=\phi(x,u^*(y))$ pour tous $x,y\in E$;
 - ii) l'application $d_{\phi}: E \to E^*$ induite par ϕ est injective et ${}^tu(d_{\phi}(E)) \subseteq d_{\phi}(E)$.
- b) Donner un exemple où E est de dimension infinie, d_{ϕ} est injective, mais où ${}^{t}u(d_{\phi}(E))$ n'est pas contenu dans $d_{\phi}(E)$.

Exercice 5:

Soient K un corps, E_0 et E_1 deux espaces vectoriels sur K et ϕ_0 , ϕ_1 des formes sesquilinéaires respectivement sur $E_0 \times E_0$ et $E_1 \times E_1$. On suppose que ϕ_1 est non dégénérée et qu'il existe un élément $\alpha \in K$ et une bijection $v: E_0 \to E_1$ tels que l'on ait $\phi_1(v(x), v(y)) = \phi_0(x, y)\alpha$ pour tous $x, y \in E_0$.

a) Montrer que ϕ_0 est non dégénérée et que v est linéaire.

Soient E_2 un espace vectoriel sur K et ϕ_2 une forme sesquilinéaire non dégénérée sur $E_2 \times E_2$. On suppose l'existence d'une application linéaire surjective $u: E_1 \to E_2$ qui vérifie

$$\phi_2(u(x), u(y)) = 0 \Rightarrow \phi_1(x, y) = 0$$
 pour tous $x, y \in E_1$.

- b) Montrer que u est un isomorphisme de E_1 sur E_2 .
- c) Montrer que pour tout $y \in E_1$, il existe un élément $m(y) \in K$ tel que l'on ait $\phi_2(u(x), u(y)) = \phi_1(x, y)m(y)$ pour tout $x \in E_1$.
- d) En déduire qu'il existe $\beta \in K^*$ tel que l'on ait $\phi_2(u(x), u(y)) = \phi_1(x, y)\beta$ pour tous $x, y \in E_1$.

Exercice 6:

Déterminer les groupes unitaires, orthogonaux et symplectiques en dimension 1 et 2.

Exercice 7: **

Soient p un nombre premier impair et $q = p^r$ une puissance d'un tel nombre premier, avec $r \ge 1$.

- a) Montrer qu'il existe une involution non triviale sur \mathbb{F}_q si et seulement si r est pair.
- b) Vérifier que $\sigma: x \mapsto x^q$ est l'unique involution non triviale de \mathbb{F}_{q^2} et que son corps des invariants est \mathbb{F}_q .
- c) On note $E_n := \mathbb{F}_{q^2}^n$. Montrer qu'il y a sur (E_n, σ) une unique classe d'équivalence de formes hermitiennes non dégénérées. Montrer qu'une telle forme admet dans une base convenable la matrice identité.
- d) Soit z_n (resp. y_n) le nombre de vecteurs non triviaux de E_n de norme 0 (resp. 1). Par récurrence, montrer que l'on a pour tout entier $n \ge 1$,

$$z_n = (q^n - (-1)^n)(q^{n-1} + (-1)^n)$$
 et $y_n = q^{n-1}(q^n - (-1)^n)$.

- e) Calculer l'ordre de $U_n(\mathbb{F}_{q^2})$.
- f) En déduire l'ordre de $SU_n(\mathbb{F}_{q^2})$ et de $PSU_n(\mathbb{F}_{q^2})$.

Exercice 8: $\star\star\star$

Soient p un nombre premier impair, $f \ge 1$ et $q = p^f$. Soit b la forme sur $(\mathbb{F}_{q^2})^3 \times (\mathbb{F}_{q^2})^3$ définie par $b(u,v) = u_1v_3^q + u_2v_2^q + u_3v_1^q$

- a) Déterminer l'ensemble Δ des droites isotropes de b. Quel est le cardinal de Δ ?
- b) Notons (e_1, e_2, e_3) la base canonique de $(\mathbb{F}_{q^2})^3$. On définit aussi les éléments $t_{\alpha,\beta}$ et $h_{\gamma,\delta}$ de $\mathrm{PU}_3(\mathbb{F}_{q^2})$ correspondant respectivement aux matrices

$$\begin{pmatrix} 1 & -\beta^{q} & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} \gamma & 0 & 0 \\ 0 & \delta & 0 \\ 0 & 0 & \gamma^{-q} \end{pmatrix}$$

avec les conditions $\delta^{1+q}=1, \ \gamma\neq 0, \ \alpha+\alpha^q+\beta^{1+q}=0$. Déterminer le stabilisateur de e_1 dans $\mathrm{PU}_3(\mathbb{F}_{q^2})$ et montrer que $T:=\{t_{\alpha,\beta}\mid \alpha+\alpha^q+\beta^{1+q}=0\}$ en est un sous-groupe distingué.

- c) Montrer que l'action de $PSU_3(\mathbb{F}_{q^2})$ sur Δ est 2-transitive.
- d) Calculer le sous-groupe dérivé T_{e_1} de T.
- e) On appelle transvection unitaire de $(\mathbb{F}_{q^2})^3$ toute transvection de $(\mathbb{F}_{q^2})^3$ préservant la forme b. Montrer que $u \in U_3(\mathbb{F}_{q^2})$ est une transvection unitaire si et seulement si il existe $\alpha \in \mathbb{F}_{q^2}$ vérifiant $\alpha + \alpha^q = 0$ et $a \in (\mathbb{F}_{q^2})^3$ isotrope tels que pour tout $x \in (\mathbb{F}_{q^2})^3$, on ait $u(x) = x + \alpha b(a, x)a$ (on dit que u est une transvection unitaire de vecteur a).
- f) Pour tout vecteur isotrope a, montrer que l'ensemble T_a des transvections unitaires de vecteur a forme un sous-groupe abélien distingué dans le stabilisateur de a sous $SU_3(\mathbb{F}_{q^2})$.
- g) Montrer que toute transvection unitaire est un commutateur dans $SU_3(\mathbb{F}_{g^2})$.
- h) Montrer que le sous-groupe de $SU_3(\mathbb{F}_{q^2})$ engendré par les transvections unitaires agit transitivement sur $\{x \in (\mathbb{F}_{q^2})^3 : b(x,x) = 1\}$.
- i) Montrer que $SU_3(\mathbb{F}_{q^2})$ est engendré par les transvections unitaires.
- j) Montrer que $PSU_3(\mathbb{F}_{q^2})$ est un groupe simple.

Exercice 9: **

Soit **H** la \mathbb{R} -algèbre des quaternions. Un élément $z \in \mathbf{H}$ est dit pur s'il s'écrit sous la forme z = bi + cj + dk avec $a, b, c \in \mathbb{R}$.

- a) Montrer que $z \in \mathbf{H}$ est pur si et seulement si $z^2 \in \mathbb{R}^-$.
- b) Montrer que tout élément de H est produit de deux quaternions purs.
- c) Montrer que tout automorphisme d'anneaux de \mathbf{H} est de la forme $x \mapsto qxq^{-1}$ pour un certain $q \in \mathbf{H}$ de norme 1.
- d) Vérifier que la transposée sur $Mat_2(\mathbf{H})$ ne conserve pas le groupe $GL_2(\mathbf{H})$.

Exercice $10: \star\star$

Soit K un corps de caractéristique différente de 2 et soient $\alpha, \beta \in K^*$. On note (1, i, j, k) la base canonique de K^4 , et on note $\mathbf{H}_{\alpha,\beta}$ l'unique structure de K-algèbre sur K^4 définie par

1 est le neutre pour la multiplication, $i^2 = \alpha$, $j^2 = \beta$, ij = -ji = k.

- a) Définir la norme réduite $N: \mathbf{H}_{\alpha,\beta} \to K$ et la conjugaison $\mathbf{H}_{\alpha,\beta} \to \mathbf{H}_{\alpha,\beta}$.
- b) Montrer que si K est algébriquement clos, alors $\mathbf{H}_{\alpha,\beta}$ est isomorphe à $\mathrm{Mat}_2(K)$.
- c) Montrer que $\mathbf{H}_{\alpha,\beta}$ est une algèbre à division (i.e. un "corps non commutatif") si et seulement si N est une forme anisotrope sur le K-espace vectoriel $\mathbf{H}_{\alpha,\beta}$.
- d) Montrer que si $K = \mathbb{F}_q$, alors $\mathbf{H}_{\alpha,\beta}$ n'est pas intègre.
- e) Soient $\alpha', \beta' \in K^*$. Montrer que les K-algèbres $\mathbf{H}_{\alpha,\beta}$ et $\mathbf{H}_{\alpha',\beta'}$ sont isomorphes si et seulement si les normes N et N' associées sont des formes quadratiques isométriques.

Exercice 11: $\star\star\star$

Soient A un anneau commutatif unitaire et $\mathbf{H}(A)$ la A-algèbre des éléments a+bi+cj+dk avec $a,b,c,d\in A$ telle que 1 est neutre pour la multiplication et avec les relations :

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

- a) Définir la norme réduite $N: \mathbf{H}(A) \to A$ et la conjugaison $\mathbf{H}(A) \to \mathbf{H}(A)$.
- b) Montrer que pour tout $x, y \in \mathbf{H}(A), N(xy) = N(x)N(y)$.
- c) On définit les quaternions d'Hurwitz par

$$\mathbf{H} := \left\{ a + bi + ck + dk \in \mathbf{H}(\mathbb{Q}) \mid (a, b, c, d) \in \mathbb{Z}^4 \cup \left(\frac{1}{2} + \mathbb{Z}^4\right) \right\}.$$

Montrer que H est un sous-anneau de $\mathbf{H}(\mathbb{Q})$ contenant $\mathbf{H}(\mathbb{Z})$ et vérifiant N(z)=1 si et seulement si z est inversible dans H.

- d) Montrer que tout idéal à droite (respectivement à gauche) de H est principal.
- e) Montrer que, pour tout nombre premier p, il existe $z \in H$ tel que N(z) = p.
- f) Montrer que tout entier naturel est somme de quatre carrés.

Exercice 12: $\star\star\star$

Soient K un corps de caractéristique $\neq 2$, $\alpha, \beta \in K^*$. On note $\mathbf{H} := \mathbf{H}_{\alpha,\beta}$ (voir l'exercice 10 pour la définition) et $\mathbf{H}^{\times} := \{x \in \mathbf{H} : N(x) \neq 0\}$.

Pour tout $q \in \mathbf{H}^{\times}$ et $x \in \mathbf{H}$, on note $S_q(x) := qxq^{-1}$. On rappelle que l'on dispose de la norme N sur \mathbf{H} qui est une forme quadratique.

- a) Montrer que pour tout $q \in \mathbf{H}^{\times}$ et tout $x \in \mathbf{H}$, $N(S_q(x)) = N(x)$.
- b) Montrer que pour tout $q \in \mathbf{H}^{\times}$, $S_{q|_{K}} = \mathrm{id}_{K}$ et $S_{q}(\mathbf{P}) = \mathbf{P}$, où $\mathbf{P} \subset \mathbf{H}$ désigne l'espace des quaternions purs.
- c) En déduire un morphisme de groupes $s: \mathbf{H}^{\times} \to \mathrm{O}(\mathbf{P}, N)$ et montrer que son noyau est K^* .

- d) Montrer que pour tout $p \in \mathbf{P}^{\times} := \mathbf{P} \cap \mathbf{H}^{\times}$, s(p) est le renversement d'axe p. En déduire que $s(\mathbf{H}^{\times}) = \mathrm{SO}(\mathbf{P}, N)$.
- e) En déduire un isomorphisme $\mathbf{H}^{\times}/K^* \cong SO(\mathbf{P}, N)$.
- f) On suppose $\alpha=\beta=1$. Montrer que N est une forme isométrique à la forme quadratique $(x,y,z)\mapsto x^2-y^2-z^2$ sur K^3 . Montrer que $\mathrm{PGL}_2(K)\cong\mathrm{SO}_3(K,N)$ et $\mathrm{PSL}_2(K)\cong\Omega_3(K,N):=D(\mathrm{O}_3(K,N))$.
- g) Montrer que pour tout $u \in SO(\mathbf{H}, N)$, il existe $a, b \in \mathbf{H}^{\times}$ tels que u(x) = axb pour tout $x \in \mathbf{H}$. Montrer en outre que N(a)N(b) = 1.
- h) Montrer que pour tout $u \in O(\mathbf{H}, N) \setminus SO(\mathbf{H}, N)$, il existe $a, b \in \mathbf{H}^{\times}$ tels que $u(x) = a\overline{x}b$ pour tout $x \in \mathbf{H}$.
- i) Notons $U := \{(a, b) \in \mathbf{H}^{\times} \times \mathbf{H}^{\times} : N(a) = N(b)\}$. Construire un morphisme de groupes surjectif $S : U \to \mathrm{SO}(\mathbf{H}, N)$ et calculer son noyau.
- j) On suppose $\alpha = \beta = 1$. Montrer que N est une forme hyperbolique sur $\operatorname{Mat}_2(K)$ et que les groupes $\operatorname{P}\Omega_4(K,N) := \operatorname{P}(\operatorname{D}(\operatorname{O}_4(K,N)))$ et $\operatorname{PSL}_2(K) \times \operatorname{PSL}_2(K)$ sont isomorphes.