Education

Ph.D. candidate, Mechanical Engineering, University of California, Berkeley

Aug. 2016 - present

- Major: Control Systems, Minors: Optimization and Learning
- Advisors: Andrew Packard, Murat Arcak
- Courses: Convex Optimization & Algorithm, Deep Reinforcement Learning, Machine Learning, Nonlinear Control, System Theory, Learning & Optimization, Linear Systems, State Estimation, Dynamic Programming

B.Sc., Mechanical Engineering, Harbin Institute of Technology

July 2016

Research

Robustness analysis of dynamical systems with Neural Network Controllers [1]

• Integral quadratic constraints (IQC), a mathematical tool from the field of Robust Control, are used to characterize the properties of activation functions in the NNs. A framework that merges IQCs and Lyapunov theory is proposed to analyze the robust performance of systems with NN controllers.

Safe learning of Regions of Attraction for Uncertain Nonlinear Systems [2]

• A framework that merges Gaussian process (GP) and sum-of-squares programming is proposed to compute the regions of attraction for uncertain systems. GP with polynomial kernels is utilized to model the uncertainties in the systems. A safe exploration controller is designed to safely gather data points for the GP model.

Safe-by-Design Approach to Path Planning-Tracking for Robotics Systems [5–7]

- Developed a framework to achieve the most permissive planner while guaranteeing safety of the system.
- Parametrized the constraint sets used for MPC planner and derived the corresponding parametrized tracking control law and error bounds. Chose the best parameter to allow for the largest constraint sets.

Reachability Analysis and Control Synthesis for Nonlinear Dynamical Systems [4, 8–10]

- Developed a method of computing forward/backward reachable sets for uncertain nonlinear systems.
- Proposed a method of synthesizing controllers for a system to reach the target set while avoiding obstacles.
- The reachable set and controller are computed simultaneously using sum-of-squares (SOS) programming.

Publications

- [1] He Yin*, Peter Seiler, Murat Arcak, "Stability Analysis using Quadratic Constraints for Systems with Neural Network Controllers", *submitted to IEEE Transactions on Automatic Control, arXiv: 2006.07579.*
- [2] Alex Devonport, He Yin, Murat Arcak, "Bayesian Safe Learning and Control with Sum-of-Squares Analysis and Polynomial Kernels", *submitted to the 59th IEEE Conference on Decision and Control*, 2020, *arXiv*: 2004.00662.
- [3] Emmanuel Sin*, He Yin*, Murat Arcak, "Passivity-based distributed acquisition and station-keeping control of a satellite constellation in areostationary orbit", to appear in Dynamic Systems & Control Conference 2020.
- [4] He Yin*, Peter Seiler, Murat Arcak, "Backward Reachability using Integral Quadratic Constraints for Uncertain Nonlinear Systems", *accepted by IEEE Control Systems Letters (L-CSS)*, *arXiv*: 2003.05617.
- [5] Pierre-Jean Meyer*, He Yin, Astrid H Brodtkorb, Murat Arcak, Asgeir J Sørensen, "Continuous and discrete abstractions for planning, applied to ship docking", *to appear in IFAC 2020, Berlin, Germany.*
- [6] H. Yin*, M. Bujarbaruah, M. Arcak, A. Packard, "Optimization Based Planner–Tracker Design for Safety Guarantees," to appear in 2020 American Control Conference, Denver, USA.
- [7] S. Smith*, H. Yin*, and M. Arcak, "Continuous abstraction of nonlinear systems using sum-of-squares programming," in *Proceedings of the 58th IEEE Conference on Decision and Control*, 2019, pp. 8093-8098.
- [8] H. Yin*, A. Packard, M. Arcak, and P. Seiler, "Finite horizon backward reachability analysis and control synthesis for uncertain nonlinear systems," in *Proceedings of the 2019 American Control Conference*, 2019, pp. 5020-5026.
- [9] H. Yin*, M. Arcak, A. Packard, and P. Seiler, "Backward reachability for polynomial systems on a finite horizon," *submitted to IEEE Transactions on Automatic Control, preprint arXiv:1907.03225, 2019.*
- [10] H. Yin*, M. Arcak, A. Packard, and P. Seiler, "Reachability analysis using dissipation inequality for uncertain nonlinear systems," *Systems & Control Letters, vol. 142, 2020.*

Invited talks

CITRIS/CPAR Control Theory and Automation Symposium, April 26th, 2019

Professional activities

Conference reviewer: American Control Conference, International Federation of Automatic Control, Conference on Decision and Control, Symposium on Mathematical Theory of Networks and Systems, Joint Mechatronics 2019 & NolCoS 2019

Journal reviewer: IEEE Control Systems Letters

Experiences

TuSimple, Inc San Diego, CA

Research Engineer Intern

June 2020 - Aug. 2020

• System identification and robust control design for autonomous-driving trucks.

TuSimple, Inc Vehicle Control Intern San Diego, CA May 2017 - Aug. 2017

• Designed and implemented Model Predictive Control based Adaptive Cruise Control algorithm to provide speed profile and waypoint reference for the low-level controller to track.

- Designed the low-level controller using MPC and implemented it in ROS using Python and Julia.
- Tested the autonomous vehicle on various kinds of road conditions, including local roads, highways.

Graduate Student Instructor for ME 231A (graduate course at Berkeley)

Aug. 2016 - Dec. 2016

Taught LQR, Dynamic Programming, Model Predictive Control, and Loop Shaping

Technical skills

Interests: Robust Control, Model Predictive Control (MPC), Nonlinear Control, Sum-of-Squares and Semidefinite Programming, Multi-agent Systems, LQR, Kalman Filter, System Identification

Languages: MATLAB/Simulink, Python, Julia, ROS

Honors

Berkeley Graduate Division Block Grant Award