Hamilton Cycles

Definition 8.1

► A spanning subgraph that is a cycle or a path is called a Hamilton cycle or a Hamilton path.

Hamilton Cycles

Definition 8.1

- A spanning subgraph that is a cycle or a path is called a Hamilton cycle or a Hamilton path.
- A graph is Hamiltonian if it has a Hamilton cycle.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let ${\cal G}$ be a graph as described.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let ${\cal G}$ be a graph as described. Note that ${\cal G}$ is connected;

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P = x_0 x_1 \dots x_k$ be a longest path in G.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P = x_0 x_1 \dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\ldots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices $x_0, x_1, \ldots, x_{k-1}$ are adjacent to x_k ,

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices x_0, x_1, \dots, x_{k-1} are adjacent to x_k , and at least n/2 of the same k < n vertices x_i are such that $x_0x_{i+1} \in E(G)$.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices $x_0,\,x_1,\,\ldots,\,x_{k-1}$ are adjacent to x_k , and at least n/2 of the same k< n vertices x_i are such that $x_0x_{i+1}\in E(G)$. By the Pigeon-Hole Principle, there is a vertex x_i that has both properties,

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices x_0, x_1, \dots, x_{k-1} are adjacent to x_k , and at least n/2 of the same k < n vertices x_i are such that $x_0x_{i+1} \in E(G)$. By the Pigeon-Hole Principle, there is a vertex x_i that has both properties, that is, $x_0x_{i+1} \in E(G)$ and $x_ix_k \in E(G)$.

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices x_0, x_1, \dots, x_{k-1} are adjacent to x_k , and at least n/2 of the same k < n vertices x_i are such that $x_0x_{i+1} \in E(G)$. By the Pigeon-Hole Principle, there is a vertex x_i that has both properties, that is, $x_0x_{i+1} \in E(G)$ and $x_ix_k \in E(G)$. Let C be the cycle obtained from P by deleting the edge x_ix_{i+1} and adding edges x_0x_{i+1} and x_ix_k .

Theorem 8.2 (Dirac 1952)

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2.

Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices x_0, x_1, \dots, x_{k-1} are adjacent to x_k , and at least n/2 of the same k < n vertices x_i are such that $x_0x_{i+1} \in E(G)$. By the Pigeon-Hole Principle, there is a vertex x_i that has both properties, that is, $x_0x_{i+1} \in E(G)$ and $x_ix_k \in E(G)$. Let C be the cycle obtained from P by deleting the edge x_ix_{i+1} and adding edges x_0x_{i+1} and x_ix_k . If C is not Hamilton, then, since G is connected, C would have a neighbor in G - C,

Theorem 8.2 (Dirac 1952)

than P: a contradiction.

Every graph of order $n \geq 3$ and $\delta \geq n/2$ is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in a smallest component would have degree less than n/2. Let $P=x_0x_1\dots x_k$ be a longest path in G. By the maximality of P, all neighbors of x_0 and all neighbors of x_k lie on P. Hence at least n/2 of the vertices x_0, x_1, \dots, x_{k-1} are adjacent to x_k , and at least n/2 of the same k < n vertices x_i are such that $x_0x_{i+1} \in E(G)$. By the Pigeon-Hole Principle, there is a vertex x_i that has both properties, that is, $x_0x_{i+1} \in E(G)$ and $x_ix_k \in E(G)$. Let G be the cycle obtained from G by deleting the edge x_ix_{i+1} and adding edges x_0x_{i+1} and x_ix_k . If G is not Hamilton, then, since G is connected, G would have a neighbor in G - G, which would yield a path longer

Note on Dirac's Theorem

Note 8.3

Note that n/2 in Dirac's Theorem 8.2 is the best possible.

Note on Dirac's Theorem

Note 8.3

Note that n/2 in Dirac's Theorem 8.2 is the best possible. We cannot replace it with $\lfloor n/2 \rfloor$ if n is odd, since then G which is a 1-sum of two copies of $K^{\lceil n/2 \rceil}$

Note on Dirac's Theorem

Note 8.3

Note that n/2 in Dirac's Theorem 8.2 is the best possible. We cannot replace it with $\lfloor n/2 \rfloor$ if n is odd, since then G which is a 1-sum of two copies of $K^{\lceil n/2 \rceil}$ would have $\delta = \lfloor n/2 \rfloor$, but no Hamilton cycle.

Another Sufficient Condition

Theorem 8.4

Every graph G with $|G| \ge 3$ and $\kappa(G) \ge \alpha(G)$ is Hamiltonian.

A Necessary Condition

Theorem 8.5

If G is a Hamiltonian graph, then for every set $\emptyset \neq S \subseteq V(G)$, the graph G-S has at most S components.

A Necessary Condition

Theorem 8.5

If G is a Hamiltonian graph, then for every set $\emptyset \neq S \subseteq V(G)$, the graph G-S has at most S components.

Proof.

When leaving a component of G-S, a Hamilton cycle can go only to S and the arrivals in S must occur at different vertices of S.

A Necessary Condition

Theorem 8.5

If G is a Hamiltonian graph, then for every set $\emptyset \neq S \subseteq V(G)$, the graph G-S has at most S components.

Proof.

When leaving a component of G-S, a Hamilton cycle can go only to S and the arrivals in S must occur at different vertices of S. Hence S must have at least as many vertices as G-S has components.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n. If there are no edges inside C, then the sum is n-2.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n. If there are no edges inside C, then the sum is n-2. Suppose $\sum_i (i-2)f_i' = n-2$ for any graph with k edges inside C.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n. If there are no edges inside C, then the sum is n-2. Suppose $\sum_i (i-2)f_i' = n-2$ for any graph with k edges inside C. We can obtain any graph with k+1 edges inside C by adding an edge to such graph.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n. If there are no edges inside C, then the sum is n-2. Suppose $\sum_i (i-2)f_i' = n-2$ for any graph with k edges inside C. We can obtain any graph with k+1 edges inside C by adding an edge to such graph. The edge addition cuts a face of length r into faces of lengths s and t.

Theorem 8.6 (Grinberg 1968)

If G is a loopless plane graph with a Hamilton cycle C, and G has f_i' faces of length i inside C and f_i'' faces of length i outside C, then $\sum_i (i-2)(f_i'-f_i'')=0.$

Proof.

Want to show that $\sum_i (i-2)f_i' = \sum_i (i-2)f_i''$. It suffices to show that $\sum_i (i-2)f_i'$ remains invariant as we add edges inside a cycle C of length n. If there are no edges inside C, then the sum is n-2. Suppose $\sum_i (i-2)f_i' = n-2$ for any graph with k edges inside C. We can obtain any graph with k+1 edges inside C by adding an edge to such graph. The edge addition cuts a face of length r into faces of lengths s and t. We have s+t=r+2, and so (s-2)+(t-2)=r-2 and so the total contribution remains the same.

Corollary 8.7

The Tutte graph is not Hamiltonian.

Corollary 8.7

The Tutte graph is not Hamiltonian.

Theorem 8.8 (Tutte 1956)

Every 4-connected planar graph is Hamiltonian.

Corollary 8.7

The Tutte graph is not Hamiltonian.

Theorem 8.8 (Tutte 1956)

Every 4-connected planar graph is Hamiltonian.

Theorem 8.9 (Thomas, Yu 1994)

Every 4-connected projective graph is Hamiltonian.

Theorem 8.10 (Thomas, Yu 1997)

Every 5-connected toroidal graph is Hamiltonian.