1. Дайте определение:

- а) ЛНЗ система: _____
- b) ЛЗ система: _____
- d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

не лежащие на одной прямой, являются последовательными вершинами параллелограмма. Найти координаты четвертой вершины.

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ \iff $\forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

не лежащие на одной прямой, являются последовательными вершинами параллелограмма. Найти координаты четвертой вершины.

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ \iff $\forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ \iff $\forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

не лежащие на одной прямой, являются последовательными вершинами параллелограмма. Найти координаты четвертой вершины.

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

не лежащие на одной прямой, являются последовательными вершинами параллелограмма. Найти координаты четвертой вершины.

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

1. Дайте определение:

а) ЛНЗ	в система:		
,			

2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a},\vec{b},\vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ \iff $\forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

не лежащие на одной прямой, являются последовательными вершинами параллелограмма. Найти координаты четвертой вершины.

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a},\vec{b},\vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x, y), B(x_2, y_2)$$
 и $C(x_3, y_3),$

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

1. Дайте определение:

- а) ЛНЗ система: _____
- b) ЛЗ система: _____
- d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: _____

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a}, \vec{b}, \vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- 8. Докажите:
 - а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
 - b) Система векторов, содержащая два равных вектора, ЛЗ.
 - c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y), B(x_2,y_2)$$
 и $C(x_3,y_3),$

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \dots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Три точки

$$A(x,y)$$
, $B(x_2,y_2)$ и $C(x_3,y_3)$,

- 4. Даны две точки A(3,-2) и B(1,4). Точка M лежит на прямой AB, причем |AM|=3|AB|. Найдите координаты точки M, если
 - (a) точка M лежит по одну сторону от A вместе с B;
 - (b) точки M и B лежат по разные стороны от A.

- 1. Дайте определение:
 - а) ЛНЗ система: _____
 - b) ЛЗ система: ______

 - d) система координат: _____
- 2. Запишите условия компланарности и коллинеарности векторов $\vec{a} = (a_1 \ a_2 \ a_3)^T$ и $\vec{b} = (b_1 \ b_2 \ b_3)^T$ (с помощью детерминанта):

(a)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- 4. Известно, что система векторов $\{\vec{a}, \vec{b}, \vec{c}\}$ состоит из трех попарно неколлинеарных компланарных векторов. Выберите верные утверждения:
 - а) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно зависима;
 - b) система $\{\vec{a},\vec{b},\vec{c}\}$ линейно независима;
 - с) система $\{\vec{a}, \vec{b}, \vec{c}\}$ образует базис в пространстве;
 - d) система $\{\vec{a},\vec{b},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} ;
 - е) система $\{\vec{a},\vec{c}\}$ образует базис на плоскости, образованной векторами \vec{a} и \vec{b} .
- 5. Определите, являются ли компланарными векторы

$$\begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Базовые обязательные задания

1. Даны векторы:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix}.$$

Найдите:

a)
$$\vec{d} = 3\vec{a} - 2\vec{b} + \vec{c}$$

b)
$$\vec{e} = 2\vec{a} + \vec{b} - \vec{c}$$

- 2. Докажите, что система векторов $(1\ 2\ 3)^T,\ (3\ 2\ 1)^T,\ (1\ 0\ 1)^T$ является базисом в пространстве, и найдите координаты векторов $(5\ 4\ 2)^T,\ (5\ 2\ 3)^T$ в этом базисе.
- 3. Известно, что \vec{a} , \vec{b} и \vec{c} некомпланарные векторы. Определите, компланарны ли векторы \vec{l} , \vec{m} и \vec{n} , если:

a)
$$\vec{l} = \vec{a} + \vec{b}$$

 $\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$
 $\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$

$$\vec{l} = \vec{a} + \vec{b}$$
 b) $\vec{l} = 3\vec{a} + \vec{b} - \vec{c}$
$$\vec{m} = 2\vec{a} + \vec{b} - \vec{c}$$

$$\vec{m} = \vec{a} + \vec{b} + \vec{c}$$

$$\vec{n} = 3\vec{a} - 4\vec{b} + \vec{c}$$

$$\vec{n} = 5\vec{a} + 3\vec{b} + \vec{c}$$

4. Даны векторы

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Найти α и β такие, что

$$\alpha \vec{a} + \beta \vec{b} + \vec{c} = \vec{0}.$$

- 5. В $\triangle ABC$ проведена биссектриса AD. Найти координаты вектора AD в базисе, образованном векторами \overrightarrow{AB} и \overrightarrow{AC} .
- 6. Даны векторы:

$$\vec{a} = \begin{pmatrix} \alpha^2 + \alpha \\ 1 - \alpha \end{pmatrix}, \quad \begin{pmatrix} 1 + \alpha \\ 1 \end{pmatrix}.$$

Найти α , при которых векторы \vec{a} и \vec{b} коллинеарны.

7. Доказать, что $\forall \ \vec{a}, \vec{b}, \vec{c}$ и $\forall \ \alpha, \beta, \gamma \in \mathbb{R}$ векторы

$$\alpha \vec{a} - \beta \vec{b}, \quad \gamma \vec{b} - \alpha \vec{c}, \quad \beta \vec{c} - \gamma \vec{a}$$

- а) Система векторов, содержащая нулевой вектор $\vec{0}$, ЛЗ.
- b) Система векторов, содержащая два равных вектора, ЛЗ.
- c) Система векторов $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$ ЛНЗ $\iff \forall \vec{x}$ разложение

$$\vec{x} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n$$

единственно.

d) Система из K>1 векторов ЛЗ \iff один из векторов системы раскладывается по остальным.

Дополнительные индивидуальные задания

1. Пусть даны N точек A_1, A_2, \ldots, A_n . Найти **все** точки O такие, что

$$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}.$$

- 2. Докажите, что отрезок, соединяющий середины диагонали трапеции, параллелен основаниям и равен их полусумме.
- 3. Даны три точки:

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2)$$
 и $C(x_3, y_3, z_3),$

не лежащие на одной прямой. Найдите координаты точки пересечения медиан $\triangle ABC$.

4. Доказать, что если диагонали четырехугольника в точке пересечения делятся пополам, то этот четырехугольник — параллелограмм.