

#13

I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage, First Class Mail, in an envelope addressed to: U.S. Patent and Trademark Office, Box Sequence Listing, P.O. Box 2327, Arlington, VA , 22202, on the date shown below.

Dated: November 12, 2002

Signature:

(Megan E. Williams)

Docket No.: GNN-014CP
(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:
Jeffrey Bluestone, et al.

Application No.: 09/835297

Group Art Unit: 1645

Filed: April 12, 2001

Examiner: Not Yet Assigned

For: SURFACE-BOUND ANTIGEN BINDING
PORTIONS OF ANTIBODIES THAT BIND TO
CTLA-4 AND CD28 AND USES THEREFOR

STATEMENT PURSUANT TO 37 CFR 1.821(F)

U.S. Patent and Trademark Office
Box Sequence Listing
P.O. Box 2327
Arlington, VA 22202

Dear Sir:

Submitted herewith for filing in connection with the above-referenced patent application is a labeled, computer readable copy of the Sequence Listing included in the application.

The content of the paper copy of the Sequence Listing contained on pages 1 to 7 of the above-referenced patent application, and the content of the computer readable form are the same, as required by 37 CFR 1.821(c) and by 37 CFR 1.821(e).

Applicant believes no fee is due with this response. However, if a fee is due, please charge our Deposit Account No. 12-0080, under Order No. GNN-014CP from which the undersigned is authorized to draw.

Dated: November 12, 2002

Respectfully submitted,

By
Megan E. Williams
Registration No.: 43,270
LAHIVE & COCKFIELD, LLP
28 State Street
Boston, Massachusetts 02109

(617) 227-7400
(617) 742-4214 (Fax)
Attorneys for Applicant

NOV 19 2002

Bluestone et al.

-1-

Attorney Docket No.: GNN-014CP

SEQUENCE LISTING

110> Bluestone, Jeffrey
Collins, Mary
Whitters, Matthew J.
Kranz, David
Griffin, Matthew D.

<120> SURFACE-BOUND ANTIGEN BINDING PORTIONS OF ANTIBODIES THAT BIND TO CTLA4 AND CD28 AND USES THEREFOR

<130> GNN-014CP

<140> US 09/835297
<141> 2001-04-12

<150> US 60/196851
<151> 2000-04-12

<160> 17

<170> PatentIn Ver. 2.0

<210> 1

<211> 672

<212> DNA

<213> Homo sapiens

<400> 1

atggcttgcc	ttggatttca	gcggcacaag	gctcagctga	acctggctgc	caggacctgg	60
ccctgcactc	tctgttttt	ttttccttc	atccctgtct	tctgcaaagc	aatgcacgtg	120
gcccgccctg	ctgtggtaact	ggccagcagc	cgaggcatcg	ccagcttgt	gtgtgagtat	180
qcatctccag	gcaaagccac	tgaggteccgg	gtgacagtgc	ttccggcaggo	tgacagccag	240
gtgactgaag	tctgtgcggc	aacctacatg	acggggaaatg	agttgacattt	cctagatgat	300
tccatctgca	cgggcacacctc	cagtggaaat	caagtgaacc	tcactatcca	aggactgagg	360
gccatggaca	cgggactctta	catctgcaag	gtggagctca	tgtaccccacc	gccatactac	420
ctgggcatacg	gcaacggAAC	ccagatttat	gtaattgatc	cagaaccgtg	cccagattct	480
gacttcctcc	tctggatcct	tgcagcagtt	agttcggggt	tgtttttta	tagcttctc	540
ctcacagctg	tttcttttag	caaaaatgcta	aagaaaaagaa	gcccttttac	aacaggggtc	600
tatgtaaaaa	tggccccaac	agagccagaa	tgtgaaaagc	aatttcagcc	ttatTTTATT	660
cccatcaatt	ga					672

<210> 2

<211> 223

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Cys Leu Gly Phe Gln Arg His Lys Ala Gln Leu Asn Leu Ala
1 5 10 15

Thr Arg Thr Trp Pro Cys Thr Leu Leu Phe Phe Leu Leu Phe Ile Pro
20 25 30

Val Phe Cys Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala
35 40 45

Ser Ser Arg Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly
50 55 60

Lys Ala Thr Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln
65 70 75 80

Val Thr Glu Val Cys Ala Ala Thr Tyr Met Met Gly Asn Glu Leu Thr
85 90 95

Phe Leu Asp Asp Ser Ile Cys Thr Gly Thr Ser Ser Gly Asn Gln Val
100 105 110

Asn Leu Thr Ile Gln Gly Leu Arg Ala Met Asp Thr Gly Leu Tyr Ile
115 120 125

Cys Lys Val Glu Leu Met Tyr Pro Pro Pro Tyr Tyr Leu Gly Ile Gly
130 135 140

Asn Gly Ala Gln Ile Tyr Val Ile Asp Pro Glu Pro Cys Pro Asp Ser
145 150 155 160

Asp Phe Leu Leu Trp Ile Leu Ala Ala Val Ser Ser Gly Leu Phe Phe
165 170 175

Tyr Ser Phe Leu Leu Thr Ala Val Ser Leu Ser Lys Met Leu Lys Lys
180 185 190

Arg Ser Pro Leu Thr Thr Gly Val Tyr Val Lys Met Pro Pro Thr Glu
195 200 205

Pro Glu Cys Glu Lys Gln Phe Gln Pro Tyr Phe Ile Pro Ile Asn
210 215 220

B3
<210> 3

<211> 3806

<212> DNA

<213> Homo sapiens

<400> 3

taaaagtcatc aaaacaacgt tataccgt gtgaaatgct gcagtcagga tgccttgtgg 60
ttttagtgcc ttgatcatgt gcccataagg gatgggtggcg gtgggtgggg ccgtggatga 120
cggagactct caggccttgg caggtgcgtc tttcagttcc cctcacactt cgggttcctc 180
ggggaggagg ggctggaaacc ctagccatc gtcaggacaa agatgctca gctgctcttg 240
gctctcaact tattcccttc aattcaagta acagggaaaca agattttggt gaagcagtcg 300
cccatgcttg tagcgtacga caatgcggc aaccttagct gcaagtattt ctacaatctc 360
ttctcaaggg agttccgggc atcccttcac aaaggactgg atagtgctgt ggaagtctgt 420
gttgatatatg gaaattactc ccagcagctt caggttact caaaaacggg gttcaactgt 480
gatggaaat tgggcaatga atcagtgaca ttctaccctcc agaatttgtt tgtaaccaa 540
acagatattt acttctgcaa aattgaagtt atgtatccctc ctcccttaccc agacaatgag 600
aagagaatg gaaccattat ccatgtgaaa gggaaacacc tttgtccaag tccccttattt 660
cccgacctt ctaagccctt ttgggtgctg gtgggtggg gtggagtcct ggcttgctat 720
agcttgctag taacagtggc ctttatttt ttctgggtga ggagtaagag gagcaggctc 780
ctgcacagtg actacatgaa catgactccc cgccgcggcc gggccacccca caagcattac 840
cagccctatg cccccaccacg cgacttcgca gcctatcgct cctgacacgg acgccttatcc 900
agaagccagc cggctggcag ccccccattcg ctcaaatatca ctgctctggg taggaaatga 960
ccgccatctc cagccggcca cctcaggccc ctgttgggcc accaatgcca attttctcg 1020
agtgactaga ccaaataatca agatcattt gagactctga aatgaagtt aagagatttc 1080
ctgtgacagg ccaagtctta cagtgccatg gcccacattc caacttacca tgtacttagt 1140
gacttgactg agaagttagg gtagaaaaaca aaaaggaggt ggattctggg agcctttcc 1200
ctttctcaact cacctgcaca tctcagtc当地 gcaaagtgtg gtatccacag acatttttagt 1260
tgcagaagaa aggcttaggaa atcattccctt ttgggttaat gggtgtttaa tctttgggtt 1320
agtgggttaa acggggtaag ttagagtagg gggagggata ggaagacata tttaaaaacc 1380
attaaaaacac tgcctccac tcatgaaatg agccacgtag ttcctattta atgctgtttt 1440

ccttagttt agaaatacat agacattgtc ttttatgaat tctgatcata tttagtcatt 1500
 ttgaccaaat gagggatttg gtcaaattgag ggattccctc aaagcaatat caggtaacc 1560
 aagttgcttt cctcaactcc tgcatacgaa ctccagttt aatgttcaca atatacttc 1620
 gaaagaataa aatagttctc ctacatgaag aaagaatatg tcagggaaa aggtacttt 1680
 atgtcaaaat tattttagta ctatggacc tggcgcaagt gctcatgctt gtaatcccag 1740
 cacttggga gcccgagggt ggcagatcac ttgagatcag gaccagectg gtcaagatgg 1800
 tgaaactccg tctgtactaa aaataaaaaa tttagcttgg cctgggtggca ggcacctgt 1860
 atcccagctg cccaggaggc tgaggcatga gaatcgctt aacctggcag gcggaggttg 1920
 cagttagccg agatagtgcc acagctctcc agcctggcg acagagttag actccatctc 1980
 aaacaacaac aacaacaaca acaacaacaa caaaccacaa aattatttga gtactgtgaa 2040
 ggattatttg tctaaccgtt cattccaatc agaccaggta ggagcttcc tgtttcatat 2100
 gtttcagggt tgcacagttt gtctctttaa tgtcgggtgt gagatccaaa gtgggttgt 2160
 gaaagagcgt ccataggaga agttagataa ctgtaaaaa gggatgttag cattcattag 2220
 agtagatggta tgtagtccaa gaaggttctt tggaaaggagg acgaatagaa tggagtaatg 2280
 aaattcttgc catgtgctga ggagatagcc agcattaggt gacaatctt cagaagtgg 2340
 caggcagaag gtgccctgtt gagagcttcc ttacagggac ttatgttgtt ttagggctca 2400
 gagctccaaa actctgggtt cagctgctcc tgcatacttgg aggtccattt acatggaaa 2460
 gtattttggta atgtgtctt tgaagagagc atcagagttc ttaaggact gggtaaggcc 2520
 tgaccctgaa atgaccatgg atattttctt acctacagtt tgagtcaact agaatatgcc 2580
 tggggacctt gaagaatggc ccttcagtgg ccctcaccat ttgttcatgc ttcaagttaat 2640
 tcagggtttt aaggagctt ggttttagag gcacgttagc ttgttcaag tctcgtagt 2700
 agttgaatag cctcaggccaa gtcactgccc acctaagatg atggttctt aactataaaa 2760
 tggagataat gtttacaaat gtctttctt atagtataat ctccataagg gcatggccca 2820
 agtctgtctt tgactctgcc tatccctgac atttagtagc atgccccaca tacaatgtta 2880
 gctattggta ttattgcat atagataat tatgtataaa aattaaactg ggcaatagcc 2940
 taagaagggg ggaatattgt aacacaaatt taaaccact acgcagggtt gaggtgctat 3000
 aatatgagga ctttttaact tccatcattt tcctgtttct taaaatagtt tatctgtaa 3060
 tggaaatataa ggcacctccc acttttatgtt atagaaagag gtcttttaat tttttttaa 3120
 tggagaaagg aaggaggagg taggaatctt gagattccag atcgaaaata ctgtactttg 3180
 gttgattttt aagtgggtt ccattccatg gatttaatca gttccaaagaa gatcaaactc 3240
 agcagttactt ggggtctgaa gaactgttgg atttaccctg gcacgtgtgc cacttgcac 3300
 cttctgggc acacaggtt cttcaatcca agttatcaga ttgttatttga aatgacaga 3360
 gctggagagt tttttgaaat ggcagtggca aataaataaa tactttttt taaatggaaa 3420
 gacttgatct atggtaataa atgattttgt ttctgtactg gaaaaatagg cctactaaag 3480
 atgaatcaca cttgagatgt ttcttactca ctctgcacag aacaaaagaa gaaatgttat 3540
 acagggaaat cctttttcac tattatgtt aaccaagaaa tggttcaaaa acagttgttag 3600
 gagcaatgtt ttcatactttt cagatatgtt agttatgtt aaaaacaaatgt catttgcctc 3660
 tattattgtt agatcttat aattaatgtt actcctataa tttttgattt tgagctcacc 3720
 tattttgggtt aagcatgcca atttaaagag accaagtgtt tgacattttt gttctacata 3780
 ttcagtataa aaattactaa actact 3806

<210> 4

<211> 220

<212> PRT

<213> Homo sapiens

<400> 4

Met	Leu	Arg	Leu	Leu	Leu	Ala	Leu	Asn	Leu	Phe	Pro	Ser	Ile	Gln	Val
1															15

Thr	Gly	Asn	Lys	Ile	Leu	Val	Lys	Gln	Ser	Pro	Met	Leu	Val	Ala	Tyr
															30

Asp	Asn	Ala	Val	Asn	Leu	Ser	Cys	Lys	Tyr	Ser	Tyr	Asn	Leu	Phe	Ser
															45

Arg	Glu	Phe	Arg	Ala	Ser	Leu	His	Lys	Gly	Leu	Asp	Ser	Ala	Val	Glu
															60

B3

Val Cys Val Val Tyr Gly Asn Tyr Ser Gln Gln Leu Gln Val Tyr Ser
65 70 75 80

Lys Thr Gly Phe Asn Cys Asp Gly Lys Leu Gly Asn Glu Ser Val Thr
85 90 95

Phe Tyr Leu Gln Asn Leu Tyr Val Asn Gln Thr Asp Ile Tyr Phe Cys
100 105 110

Lys Ile Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser
115 120 125

Asn Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro
130 135 140

Leu Phe Pro Gly Pro Ser Lys Pro Phe Trp Val Leu Val Val Val Gly
145 150 155 160

Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile
165 170 175

Phe Trp Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met
180 185 190

Asn Met Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro
195 200 205

Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser
210 215 220

B3
<210> 5

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 5

Glu Ser Gly Ser Val Ser Ser Glu Glu Leu Ala Phe Arg Ser Leu Asp
1 5 10 15

<210> 6

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for polymerase chain reaction

<221> misc_feature

<222> (15)...(15)

<223> n = c or g

<221> misc_feature

<222> (21)...(21)

<223> n = c or a

<221> misc_feature

<222> (27)...(27)

<223> n = c or g or a
<221> misc_feature
<222> (28)...(28)
<223> n = a or t

<221> misc_feature
<222> (30)...(30)
<223> n = g or c

<400> 6
cgaatgatgc atccnagggt nagctgnngn agtc 34

<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker region of fusion protein

<221> misc_feature
<222> (34)...(34)
<223> n = g or a

<400> 7
gcaaataagc ttttggcg ctgaggagac ggtnac 36

33
<210> 8
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker region of fusion protein

<400> 8
cgaatggacg tcatgatgac acagtctcc 29

<210> 9
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker region of fusion protein

<221> misc_feature
<222> (23)...(23)
<223> n = t or g

<400> 9
tatgatccgc ggaggaacgt tttnatttcca gcttggtccc 40

<210> 10
<211> 93
<212> DNA
<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 10

gagtaagctt atgaggaccc ctgctcagtt tcttggaaatc ttgttgctct ggtttccagg 60
tatcaaatgt gacgtcatga tgacacagtc tcc 93

<210> 11

<211> 89

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 11

agcttcttaa gcttccgcata ccaactagaca caggggccag tggatagacc gatggggctg 60
ttgtttggc ggctgaggag acggtgacc 89

<210> 12

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 12

gagctgctta agcaagaaca cacttgtgct c 31

B3
<210> 13

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 13

gttcgctcta gactaaagga agacggtctg ttcagc 36

<210> 14

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 14

gagctgaagc ttatgccgtg cagagctctg attctgg 37

<210> 15

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Linker region of fusion protein

<400> 15
gccccgtctca gatcataaaag gccctgggtg tctgg 35

<210> 16
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker region of fusion protein

<400> 16
gagctgaagc ttatggctct gcagatcccc agc 33

<210> 17
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Linker region of fusion protein

<400> 17
gccccgtctca gatcactgca ggagccctgc tggagg 36

B3
cont'd