CS 7.603

Reinforcement Learning

Tejas Bodas

Assistant Professor, IIIT Hyderabad

RECAP

- ightharpoonup Markov chains, $P, \bar{\mu}$
- Finite dimensional distributions
- Chapman-Kolmogorov equations
- ► Irreducible chains, Transient/Recurrent states
- Limiting and stationary distribution distribution

Markov Chain as recursions

Theorem

Consider the recursion $X_{n+1} = f(X_n, U_n)$, $n \ge 0$ where $f: \mathcal{S} \times [0,1] \to \mathcal{S}$ and $\{U_n, n \ge 0\}$ is an i.i.d sequence of random variables. Then the process $\{X_n, n \ge 0\}$ defines a Markov chain with tpm $P_{ij} = P(f(i, U) = j)$. Conversely, every Markov chain can be represented by such a recursion for some f and $\{U_n, n \ge 0\}$.

- Proof: The forward part is trivial.
- Converse follows from inverse transform method (simulation).
- ▶ Given a Markov chain with TPM P, we want to identify f(.,.).
- ▶ Given $X_n = i$, how would you sample X_{n+1} ?
- Let $F_i(x)$ denote the CDF of the i^{th} row of P.
- $ightharpoonup X_{n+1}$ can be seen as a sample from $F_i(\cdot)$ when $X_n=i$.

Markov Chain as recursions

Theorem

Consider the recursion $X_{n+1} = f(X_n, U_n), n \ge 0$ where $f: \mathcal{S} \times [0,1] \to \mathcal{S}$ and $\{U_n, n \ge 0\}$ is an i.i.d sequence of random variables. Then the process $\{X_n, n \ge 0\}$ defines a Markov chain with tpm $P_{ij} = P(f(i, U) = j)$. Conversely, every Markov chain can be represented by such a recursion for some f and $\{U_n, n \ge 0\}$.

- To generate X_{n+1} , draw U_n from U[0,1] and set $X_{n+1} = F_i^{-1}(U_n)$.
- ▶ When F_i is discrete we have $F_i^{-1}(y) := min\{x : F_i(x) \ge y\}$
- ► Clearly, $f(i, U_n) := F_i^{-1}(U_n)$
- $X_{n+1} = f(X_n, U_n) = F_{X_n}^{-1}(U_n).$
- ▶ Here U_n is U[0,1]. Can $U_n \sim G$ where G is arbitrary? (HW)

Markov Reward Process

- ▶ Consider a Markov Chain $\{X_n, n \geq 0\}$ on \mathcal{X} with $|\mathcal{X}| = M$.
- ▶ Suppose reward $r(X_t)$ is obtained when in state X_t at time t.
- Let $\beta \in (0,1)$ be the discount factor for the rewards.
- We want to characterize the cumulative expected discounted reward V(x) conditioned on starting in state x.

$$V(x) = \mathbb{E}_{x} \left[\sum_{t=0}^{\infty} \beta^{t} r(X_{t}) \right]$$

- ▶ Here \mathbb{E}_{x} denotes conditional expectation on starting in x.
- ▶ Note that $V: \mathcal{X} \to \mathbb{R}$. Since $|\mathcal{X}| = M$, we have $V \in \mathcal{R}^{M \times 1}$

Markov Reward Process

Lemma

V(x) is a unique solution to $V(x) = \beta(PV)(x) + r(x)$ for $x \in \mathcal{X}$ where (PV)(x) denotes the x^{th} row in the $P \times V$ vector.

Proof¹
$$V(x) = \mathbb{E}_{x} \left[\sum_{t=0}^{\infty} \beta^{t} r(X_{t}) \right]$$

$$= r(x) + \beta \mathbb{E}_{x} \left[\sum_{t=1}^{\infty} \beta^{t-1} r(X_{t}) \right]$$

$$= r(x) + \beta \mathbb{E}_{x} \mathbb{E} \left[\sum_{t=1}^{\infty} \beta^{t-1} r(X_{t}) \middle| X_{1} \right] \text{ Tower rule}$$

$$= r(x) + \beta \mathbb{E}_{x} \mathbb{E}_{X_{1}} \left[\sum_{t=1}^{\infty} \beta^{t-1} r(X_{t}) \middle| \right]$$

$$= r(x) + \beta \mathbb{E}_{x} V(X_{1}) \text{ (Def of } V(.))$$

$$= r(x) + \beta \sum_{x_{1}} P_{xx_{1}} V(x_{1})$$

$$= r(x) + \beta (PV)(x). \quad \Box$$

¹Refer Neil Walton's notes for proof of uniqueness

Markov Reward Process

Lemma

V(x) is a unique solution to $V(x) = \beta(PV)(x) + r(x)$ for $x \in \mathcal{X}$ where (PV)(x) denotes the x^{th} row in the $P \times V$ vector.

- ▶ In vector notation this is written as $V = r + \beta PV$.
- ► This implies $V = [I \beta P]^{-1} r$
- ▶ This is $O(M^3)$ operation.
- What if the state space is discrete but infinite dimensional?
- What if the state space is continuous? HW

Deterministic Dynamic Programming

Basic Idea

- In a deterministic dynamic program, the environment is governed by what is called a deterministic plant equation.
- You can interact with the environment by taking actions.
- Actions lead to rewards.
- We want to find the sequence of actions that maximize the sum of rewards collected.
- Lets formalize this with an example.

A shortest path example

- \triangleright We want to find the least costly path from R to any leaf. ²
- Naive way is to enumerate all paths and then choose.
- We want to take advantage of the recursive structure and possibly breakdown to smaller and smaller problems.

²Example from Neil Walton's notes on Stochastic Control

- ► The original problem can be broken down into sequence of simpler problems (shaded boxes)
- ▶ At any (non-leaf) node, we have two actions. $A = \{lhs, rhs\}$
- \triangleright Let $\mathcal S$ denote the state space, in this case the set of 15 nodes.

- For any node $s \in S$, let V(s) denote the least cost path to any leaf, starting from node s.
- Let f(s, a) denote the next state reached from node $s \in S$ after taking action $a \in A$.
- $ightharpoonup f: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ (plant equation)
- Let c(s, a) denote the edge cost incurred by taking action a from node s.
- ▶ Objective: Determine V(R) and also the strategy/policy to follow, that will help you realize it.

- Can you write an expression for V(R) in terms of V(s') where s' = f(R, a) for $a \in A$?
- $V(R) = \min_{a \in \{lhs, rhs\}} \{c(R, a) + V(s')\}$ where s' = f(R, a).
- Bellman-type Equation: Solve recursively backwards
- But how do you get the policy/route with the least cost?
- Let $\pi: \mathcal{S} \to \mathcal{A}$ denote a policy that maps states to actions.

- Let $\pi: \mathcal{S} \to \mathcal{A}$ denote a policy that maps states to actions.
- There are many policies. How do we find the best policy π^* corresponding to V(R)?
- ► Recall $V(R) = \min_{a \in \{lhs, rhs\}} \{c(R, a) + V(s')\}$ where s' = f(R, a).
- Infact, $\pi^*(R) = \underset{a \in \{lhs, rhs\}}{argmin} \{c(R, a) + V(s')\}.$
- Doing this at every node will give you the optimal policy for that node.

Dynamic programming: State, Action, Reward, State

- Lets consider discrete set of times t = 0, 1, ..., T
- ightharpoonup Let $\mathcal S$ denote the state space and $\mathcal A$ denote the action space.
- In most cases, these will be countable spaces unless specified.
- $ightharpoonup s_t \in \mathcal{S}$ denotes state of the system at time t.
- \triangleright s_0 denotes starting state.
- $ightharpoonup r(s_t, a_t)$ for reward at time t when in state s_t and action a_t .
- $ightharpoonup r_T(s_T)$ denotes the reward for terminating in s_T at time T.
- ightharpoonup c(s, a) for cost formulation
- $ightharpoonup s_{t+1} = f(s_t, a_t)$ is the deterministic plant equation.
- These transitions are Markovian in an MDP.

DP: policy, cumulative reward, value function

- A policy $\pi = (\pi_t : t = 0, 1, ..., T 1)$ specifies action $\pi_t \in A$ to be taken at time t.
- ▶ Sequence of states following this policy: $s_{t+1} = f(s_t, \pi_t)$.
- How good is this policy? Measured using cumulative reward
- $V^{\pi}(s_0) := r(s_0, \pi_0) + r(s_1, \pi_1) + \ldots + r_T(s_T).$
- ▶ How do we get the best policy π^* from the set of policies Π ?
- Optimization problem: $\max_{\pi \in \Pi} V^{\pi}(s_0)$.

Definition of a Dynamic Program

Given initial state s_0 , a dynamic program is the following optimization problem:

$$V(s_0):=\max_{\pi\in\Pi}V^\pi(s_0)$$
 such that $s_{t+1}=f(s_t,\pi_t)$ for $t=0,\ldots,T-1.$

- ightharpoonup How do we obtain an expression for $V(s_0)$
- Except for toy problems, it is hard to get an explicit expression for $V(s_0)$ in terms of the parameters of the problem.
- At best, we can expect an implicit or recursive equation for $V(s_0)$ in terms of smaller and smaller sub-problems.
- ► These are known as Bellman equations.