- 1. (10 pts) Consider the vectors $\mathbf{u} = (-1, 2, 3)$ and $\mathbf{v} = (2, 1, 1)$. Express \mathbf{u} as the sum $\mathbf{u} = \mathbf{p} + \mathbf{n}$, where \mathbf{p} is parallel to \mathbf{v} and \mathbf{n} is orthogonal to \mathbf{v} .
- 2. (10 pts) A particle with unit charge (q = 1) enters a constant magnetic field $\mathbf{B} = \mathbf{i} + \mathbf{j}$ with a velocity $\mathbf{v} = 20\mathbf{k}$. Find the magnitude and direction of the force on the particle.
- 3. (10 pts) Consider the plane Q: x + y = 0 and the curve $\mathbf{r}(t) = (\cos t, \sin t, t)$ for $0 \le t \le 4\pi$. Find the points at which the plane and curve intersect.
- 4. (10 pts) Evaluate the integral $\int_0^4 (\sqrt{t}\mathbf{i} + t^{-3}\mathbf{j} 2t^2\mathbf{k})dt$.
- 5. (10 pts) Assume that the acceleration vector is given by $\mathbf{a}(t) = (1, t, 4t)$. Suppose that the initial velocity is $\mathbf{v}(0) = (20, 0, 0)$ and the initial position is $\mathbf{r}(0) = (0, 0, 0)$. Find the velocity $\mathbf{v}(t)$ and position $\mathbf{r}(t)$ for all t.
- 6. (10 pts) Consider the curve $\mathbf{r}(t) = (t \sin t, 1 \cos t)$. Find the length of the curve for $0 \le t \le 2\pi$.
- 7. (10 pts) Find the curvature of the curve $\mathbf{r}(t) = (7\cos t, \sqrt{3}\sin t, 2\cos t)$.
- 8. (10 pts) Skethc a graph of the surface $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$, and specify the intercepts with the three coordinate axes on the graph.
- 9. (10 pts) Consider the function $z = \sqrt{25 x^2 y^2}$. Graph the level curves corresponding to z = 0 and z = 3 on the xy-plane.
- 10. (10 pts) Evaluate the limit $\lim_{(x,y)\to(4,5)} \frac{\sqrt{x+y}-3}{x+y-9}$.