Tutorial 7

Recap

We encountered the 1D conservation law in the differential form last tutorial,

$$\partial_t \rho(t, x) + \partial_x \phi(t, x) = 0, \tag{1}$$

with the flux function $\phi(t,x) = \rho v$. Today, we choose a function of v such that the we can model a traffic flow problem. The Burgers' equation is similar to the traffic flow problem, so we are going to use it to help us develop an intuition of the model.

Burgers' equation

For the traffic flow problem, we model the velocity as

$$v(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right), \tag{2}$$

where if there are no other vehicles along a particular stretch of the road, i.e. $\rho = 0$, then vehicles tend to drive at the speed-limit $v = v_{\text{max}}$. On the other hand, if there is a traffic jam and the road is congested, i.e. $\rho = \rho_{\text{max}}$, then the vehicles will come to a stop and v = 0. In between these two extreme situations, the velocity of a vehicle decreases linearly with increasing number of vehicles in a given road segment.

Substituting (2) into the differential form of our conservation law (1) and using the flux function we defined above,

$$\partial_t \rho(t, x) + \partial_x \left[\rho(t, x) v_{\text{max}} \left(1 - \frac{\rho(t, x)}{\rho_{\text{max}}} \right) \right] = 0.$$
 (3)

Non-dimensionalisation

In (3), we have a couple of dimensions of interests, and as we have seen briefly above, we have three fundamental units in our problem, [length], [time], and [number of cars]. All quantities depend in one way or another on these fundamental units. Now we can write our reference length as L and reference time as T, chosen such that $v_{\text{max}} = L/T$. We also non-dimensionalise our density by dividing it with a reference ρ_{max} . Then the non-dimensionalised quantities, denoted by asterisks, can be written as

$$x^* = \frac{x}{L}, \qquad t^* = \frac{t}{T}, \qquad u^* = \left(1 - 2\frac{\rho}{\rho_{\text{max}}}\right).$$
 (4)

Substituting our non-dimensionalised quantities in (4) into (3), the first term in a non-dimensionalised form is

$$\partial_t \rho(t, x) = \frac{1}{T} \partial_{t^*} \frac{\rho_{\text{max}}}{2} \left(1 - u^* \right) = -\frac{\rho_{\text{max}}}{2T} \partial_{t^*} u^*, \tag{5}$$

and the second term is

$$\partial_{x} \left[\rho(t, x) v_{\text{max}} \left(1 - \frac{\rho(t, x)}{\rho_{\text{max}}} \right) \right] = \frac{1}{L} \partial_{x^{*}} \frac{\rho_{\text{max}}}{2} \left(1 - u^{*} \right) \frac{L}{T} \left(1 - \frac{1}{2} \left(1 - u^{*} \right) \right)$$

$$= \frac{\rho_{\text{max}}}{2T} \partial_{x^{*}} (1 - u^{*}) \frac{1}{2} (1 + u^{*}) = -\frac{\rho_{\text{max}}}{2T} \partial_{x^{*}} \frac{(u^{*})^{2}}{2}. \tag{6}$$

Governing equation

Dropping the asterisks, writing (5) and (6) together, and cancelling off the common factor,

$$\partial_t u + \partial_x \left(\frac{u^2}{2}\right) = 0, (7a)$$

$$u(0,x) = u^0(x), \tag{7b}$$

which, along with the initial conditions in (7b), gives us the Burgers' equation.

References

- A. Jüngel. Modeling and numerical approximation of traffic flow problems. Lecture Notes (preliminary version), 2002.
- D. I. Ketcheson, R. J. LeVeque, and M. J. del Razo, 2020. URL https://www.clawpack.org/riemann_book/html/Burgers.html.