

Description

The VSM290N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of other applications.

General Features

- V_{DSS} =100V, I_{D} =290A $R_{DS(ON)} < 3.2 m\Omega$ @ V_{GS} =10V (Typ: 2.7m Ω)
- Good stability and uniformity with high E_{AS}
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- DC motor drive
- High efficiency synchronous rectification in SMPS
- Uninterruptible power supply
- High speed power switching
- Hard switched and high frequency circuits

TO-247

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM290N10-T7	VSM290N10	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDSS	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	290	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	200	Α
Pulsed Drain Current	I _{DM}	1120	Α
Maximum Power Dissipation	P _D	460	W
Derating factor		3.07	W/℃
Single pulse avalanche energy (Note 3)	E _{AS}	3500	mJ
Peak Diode Recovery dv/dt (Note 4)	dv/dt	10	V/ns
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 1)	$R_{ heta JC}$	0.33	°C/W	
--	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter		Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current		I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current		I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics							
Gate Threshold Voltage		$V_{GS(th)}$	V_{DS} = V_{GS} , I_D =250 μ A	2	3	4	V
Drain-Source On-State Resistance	25 ℃	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	2.7	3.2	mΩ
Forward Transconductance		g FS	V _{DS} =25V,I _D =40A	310	-	-	S
Dynamic Characteristics				•			•
Input Capacitance	C _{lss}		\/ -50\/\/ -0\/	-	16000	-	PF
Output Capacitance		Coss	V _{DS} =50V,V _{GS} =0V, F=1.0MHz	-	1352	-	PF
Reverse Transfer Capacitance		C _{rss}		-	1061	-	PF
Switching Characteristics							
Turn-on Delay Time		t _{d(on)}	V_{DD} =50V, I_{D} =40A V_{GS} =10V, R_{GEN} =1.2 Ω	-	44.6	-	nS
Turn-on Rise Time		t _r		-	29.4	-	nS
Turn-Off Delay Time		$t_{d(off)}$		-	139.8	-	nS
Turn-Off Fall Time		t _f		-	36.4	-	nS
Total Gate Charge		Qg	V_{DS} =30 V,I_{D} =30 A	-	469	-	nC
Gate-Source Charge		Q_{gs}	V _{GS} =10V	-	99	-	nC
Gate-Drain Charge		Q_{gd}		-	148	-	nC
Drain-Source Diode Characteristic	s						
Diode Forward Voltage		V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Reverse Recovery Time		t _{rr}	TJ = 25°C, IF = 40A	-	87.9	-	nS
Reverse Recovery Charge		Qrr	$di/dt = 100A/\mu s^{(Note2)}$	-	129	-	nC
Forward Turn-On Time		t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes

- 1. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 2. Pulse Test: Pulse Width \leq 400 μ s, Duty Cycle \leq 2%.
- 3. EAS condition: Tj=25 $^{\circ}\text{C}\text{,V}_{DD}\text{=}50\text{V}\text{,V}_{G}\text{=}10\text{V}\text{,L}\text{=}1\text{mH}\text{,Rg}\text{=}25\Omega$
- 4. Isd \leqslant 125A, di/dt \leqslant 260A/ μ s, Vdd \leqslant V(BR)dss, TJ \leqslant 175°C

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance