d और f ब्लॉक के तत्व

पाठ्यपुस्तक के अभ्यास प्रश्न

बहुचयनात्मक प्रश्न

(अ) प्रभावी नाभिकीय आवेश

(ब) परमाणु संख्या

```
प्रश्न 1. उच्चतम ऑक्सीकरण अवस्था (+7) किसके द्वारा प्रदर्शित होती है?
(अ) Co
(ब) Cr
(स) Mn
(द) ∨
प्रश्न 2. Fe2+ में अयुग्मित इलेक्ट्रॉनों की संख्या है-
(अ) 4
(ब) 5
(स) 3
(द) 6
प्रश्न 3. निम्नलिखित में किस यौगिक में Fe की ऑक्सीकरण अवस्था शून्य है?
(अ) FeSO<sub>4</sub>
(ব) [Fe(CO)<sub>5</sub>]
(स) Ki[Fe(CN)<sub>6</sub>]
(द) FeCls3
प्रश्न 4. निम्नलिखित में से किसका चुम्बकीय आघूर्ण अधिकतम होता है?
(왕) V<sup>3+</sup>
(ৰ) Cr<sup>3+</sup>
(स) Fe<sup>+3</sup>
(द) CO<sup>3+</sup>
प्रश्न 5. लैन्थेनॉइड श्रेणी में सामान्य ऑक्सीकरण अवस्था है -
(अ) + 1
(ৰ) + 4
(स) + 2
(द) + 3.
प्रश्न 6. लैन्थेनॉइड संकुचन किसमें वृद्धि के कारण होता है?
```

(स) 4f कक्षक का आकार
(द) उपर्युक्त में कोई नहीं
प्रश्न ७. लैन्थेनॉइड श्रेणी का एक सदस्य जो +४ ऑक्सीकरण अवस्था दर्शाता है, है –
(अ) Ce
(ৰ) Lu (स) Eu
(द) Pm.
प्रश्न ८. निम्न में से प्रतिचुम्बकीय है –
(अ) Cu ²⁺
(෧) Zn ²⁺
(स) Cr ²⁺ (द) Ti ⁺²
प्रश्न 9. निम्नलिखित में से किसका प्रथम आयनन विभव अधिकतम है?
(अ) Ti (ब) Min
(स) Fe
(द) Ni
प्रश्न 10. किस आयन में समस्त इलेक्ट्रॉन e(-) युग्मित अवस्था में हैं?
(अ) Cr ⁺²
(a) Cu ⁺²
(स) Cu ⁺¹ (द) Ni ⁺² .
उत्तरमाला
1. (刊)
2. (例)
3. (ब) 4. (स)
5 . (द)
6. (3)
7. (अ) 8. (ৰ)
9. (刊)
10. (स)

अति लघुतरात्मक प्रश्न

प्रश्न 1. Zn को संक्रमण तत्व नहीं माना गया है। कारण दीजिए।

उत्तर: Zn में सामान्य एवं आयनित दोनों अवस्था में पूर्णभरित (d¹⁰) विन्यास पाया जाता है इसलिए इलेक्ट्रॉन का d-d संक्रमण अनुपस्थित होता है। इस कारण Zn को संक्रमण तत्व नहीं माना जाता है।

प्रश्न 2. Ti⁺⁴ आयन रंगहीन होता है। कारण दीजिए।

उत्तर: Ti⁺⁴ अवस्था में Ti का इलेक्ट्रॉनिक विन्यास 3d⁰ 4s⁰ होता अर्थात् कोई अयुग्मित इलेक्ट्रॉन नहीं पाया जाता है। इसलिए Ti⁺⁴ रंगहीन होता है।

प्रश्न 3. परायूरेनियम तत्व किसे कहते हैं?

उत्तर: यूरेनियम के बाद आने वाले तत्वों को परायूरेनियम तत्व कहते हैं।

प्रश्न 4. कोई धातु अपनी उच्चतम ऑक्सीकरण अवस्था केवल ऑक्साइड अथवा फ्लोराइड में ही क्यों प्रदर्शित करती है?

उत्तर: धातु से इलेक्ट्रॉन निकालने के बाद क्रमिक आयनन ऊर्जाओं के मान बढ़ते जाते हैं। इसलिए उच्च ऑक्सीकरण में धातु केवल फ्लोराइड व ऑक्साइड में ही पहुँच पाते हैं। क्योंकि केवल यही तत्व आयनन के लिए आवश्यक अत्यधिक आयनन ऊर्जा उपलब्ध करा पाते हैं।

प्रश्न 5. MnO, Mn2O3, MnO2 को अम्लीयता के घटते क्रम में व्यवस्थित कीजिए।

उत्तर: धातुओं की अम्लीयता उनकी ऑक्सीकरण अवस्था में समानुपाती होती है। अर्थात् ऑक्सीकरण अवस्था बढ़ने पर अम्लीयता बढ़ती है। इसलिए अम्लीयता का क्रम निम्न होगा-MnO < Mn₂O₃ < MnO₂

प्रश्न ६. आन्तरिक संक्रमण तत्वों का सामान्य इलेक्ट्रॉनिक विन्यास लिखिए।

उत्तर: (n - 2)f¹⁻¹⁴ (n - 1)d⁰⁻¹ ns²

प्रश्न ७. संक्रमण तत्व परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते हैं। कारण दीजिए।

उत्तर: (n-1)d व ns उपकोशों की ऊर्जाओं में अन्तर नगण्य होने के कारण ns के साथ-साथ (n-1)d के इलेक्ट्रॉनों में भी बन्ध बनाने की प्रवृत्ति होती है, इसलिए संक्रमण तत्व परिवर्तनशील ऑक्सीकरण अवस्था प्रदर्शित करते हैं।

प्रश्न 8. Sc के समस्त यौगिक रंगहीन होते हैं। कारण लिखिए।

उत्तर: क्योंकि Sc केवल एक ही ऑक्सीकरण अवस्था +3 प्रदर्शित करता है जिसमें इलेक्ट्रॉनिक विन्यास 3d^o 4s^o होता है। अतः कोई अयुग्मित इलेक्ट्रॉन नहीं होने के कारण Sc के समस्त यौगिक रंगहीन होते हैं।

प्रश्न 9. Gd (Z = 64) में अयुग्मित इलेक्ट्रॉनों की संख्या लिखिए।

उत्तर: Gd (Z= 64) में 8 अयुग्मित इलेक्ट्रॉन होते हैं। (विन्यास – 4f¹ 5d¹ 6s²)

प्रश्न 10. संक्रमण तत्व के एक यौगिक के चुम्बकीय आघूर्ण का मान 3.9BM है। तत्व में अयुग्मित इलेक्ट्रॉनों की संख्या लिखिए।

उत्तर: अयुग्मित इलेक्ट्रॉनों की संख्या 3 होने पर चुम्बकीय आघूर्ण का मान 3.9 BM होता है। क्योंकि चुम्बकीय आघूर्ण के सूत्र $\mu = \sqrt{n(n+2)}$ में n का मान 3 रखने पर μ = 3.9 BM प्राप्त होता है।

लघुतरात्मक प्रश्न

प्रश्न 1. लैन्थेनॉइड संकुचन क्या है? इसे समझाइए।

उत्तर: 4d-श्रेणी से 54 श्रेणी में जाने से पूर्व 14 इलेक्ट्रॉन 4f उपकोश (लैन्थेनॉइड) में भरते हैं। इसलिए परमाणु क्रमांक बढ़ने से नाभिकीय आवेश में वृद्धि हो जाती है लेकिन 4 कक्षकों का परिरक्षण प्रभाव दुर्बल होने के कारण परिणामी रूप से भावी नाभिकीय आवेश में वृद्धि होती है।

इसलिए 4d-से 5d-श्रेणी में जाने पर आकार बढ़ता नहीं है, अपितु घट जाता है। इसे ही लैन्थेनॉइड संकुचन कहते हैं।

प्रश्न 2. मिश्र धातु क्या है? इनका एक उपयोग लिखिए।

उत्तर: किन्हीं दो या दो से अधिक धातुओं को निश्चित अनुपात में मिलाने से बनने वाले ठोस-ठोंस मिश्रण, मिश्र धातु कहलाते हैं।

उपयोग – मिश्र धातुओं के गलनांक अधिक होते हैं इस कारण इन्हें उच्च ताप सह वस्तुएँ बनाने में उपयोग लेते हैं।

प्रश्न 3. Cu+2 का इलेक्ट्रॉनिक विन्यास लिखिए। इसके चुम्बकीय आघूर्ण की गणना कीजिए।

उत्तर: $_{29}$ Cu का इलेक्ट्रॉनिक विन्यास = $3d^{10}$ $4s^{1}$ Cu^{+2} का इलेक्ट्रॉनिक विन्यास = $3d^{0}$ $4s^{0}$ इस अवस्था में इसमें 1 अयुग्मित इलेक्ट्रॉन उपस्थित होता है। अतः n=1 चुम्बकीय आधूर्ण (μ) = $\sqrt{n(n+2)}$

$$\mu = \sqrt{1(1+2)} = \sqrt{3}$$

 $\mu = 1.73 \text{ BM}$

प्रश्न 4. संक्रमण धातुएँ सामान्यतः रंगीन यौगिक बनाती है। कारण दीजिए।

उत्तर: संक्रमण धातुओं में सामान्यत: अयुग्मित इलेक्ट्रॉन पाये जाते हैं, जो d-d संक्रमण कर सकते हैं। जिससे इलेक्ट्रॉन जब उच्च से निम्न ऊर्जा अवस्था में आता है तो वह ऊर्जा का उत्सर्जन विभिन्न रंगों के प्रकाश के रूप में करता है। इसलिए संक्रमण धातुएँ रंगीन होती हैं।

प्रश्न 5. कारण दीजिए

- (अ) संक्रमण तत्वों की 3d श्रेणी में Mn अधिकतम ऑक्सीकरण अवस्था दर्शाता है। (ब) Cr⁺² तथा Mn⁺³ दोनों का d⁴ विन्यास है परन्तु Cr⁺² अपचायक और Mn⁺³ ऑक्सीकरण है।
- उत्तर: (अ) संक्रमण तत्वों की 3d श्रेणी में Mn में इलेक्ट्रॉन 3d व 4s उपकोशों में पाये जाते हैं। जिनकी ऊर्जा लगभग बराबर होती है तथा 3d⁵45² इलेक्ट्रॉन पाये जाते हैं। जिन्हें परमाणु से बाहर निकालने के लिए कम ऊर्जा की आवश्यकता होती है (युग्मन ऊर्जा के कारण)। इसलिए Mn, 34 श्रेणी में अधिकतम + 7 ऑक्सीकरण अवस्था दर्शाता है।
- (ब) Cr⁺² व Mn⁺³ दोनों का विन्यास एक समान 44 है लेकिन Mn⁺³ आकार में Cr⁺² से छोटा होता है। इस कारण Mn⁺³ की विद्युत् ऋणता ज्यादा होती है व Cr⁺² की कम इसलिए Cr⁺² अपचायक की तरह तथा Mn⁺³ ऑक्सीकारक की तरह व्यवहार करता है।

प्रश्न 6. निम्न को समझाइए –

- (अ) 54 संक्रमण तत्वों के आकार 44 संक्रमण तत्वों के आकार के लगभग वर्ग में समान है। (ब) संक्रमण तत्व उपसहसंयोजक यौगिक बनाते हैं।
- उत्तर: (अ) 5d-संक्रमण श्रेणी में 4f के आन्तरिक इलेक्ट्रॉन बाह्य इलेक्ट्रॉनों को प्रभावी रूप से परिरक्षित नहीं कर पाते, जिससे प्रभावी नाभिकीय आवेश अपेक्षाकृत बहुत अधिक बढ़ जाता है और कोशों को संख्या के कारण बढ़े परमाण्वीय आकार को कम करके सन्तुलित कर देता है। इसी कारण 44 व 5d-श्रेणी के तत्वों का आकार लगभग बराबर हो जाता है। उदाहरणार्थ 3d के Ti, 4d के Zr एवं 5d के Hf की परमाणु त्रिज्याएँ क्रमशः 132, 160, 159 पिकोमीटर हैं तथा लैन्थेनॉइड संकुचन के कारण 4d व 5d श्रेणी का आकार लगभग समान होता है।
- (ब) उपसहसंयोजक यौगिकों का निर्माण उपसहसंयोजक बन्ध बनने से होता है। उपसहसंयोजक बन्ध खाली कक्षक व एकाकी इलेक्ट्रॉन युग्म के मध्य बनता है। एकाकी इलेक्ट्रॉन युग्म दाता समूह द्वारा दिए जाते हैं। जबिक खाली कक्षक धातु द्वारा उपलब्ध कराये जाते हैं। संक्रमण धातुओं के दाता परमाणु को उपलब्ध करवाने के लिए खाली कक्षक उपलब्ध होते हैं। इसलिए संक्रमण तत्व उपसहसंयोजक यौगिक बनाते हैं।

प्रश्न 7. लैन्थेनॉइड एवं ऐक्टिनॉइड श्रेणी में चार अन्तर लिखिए।

उत्तर:

क्र.स.	लै-थेनॉइड	ऐक्टिनॉइड
1.	प्रोमिधियम को छोड़कर ये सभी नॉन-रेडियोऐक्टिव हैं।	ये सभी रेडियोऐक्टिव हैं।
2.	ये कम ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं। सामान्य	ये अपेक्षाकृत अधिक ऑक्सोकरण अवस्थाएँ प्रदर्शित करते हैं। सामान्य
	ऑक्सीकरण अवस्था +3 के अतिरिक्त कुछ लैम्थेनॉइड +2 व	ऑक्सीकरण अवस्था +3 के साध-साथ ये +2, +4, +5, +6 व +7
	+4 ऑक्सीकरण अवस्थाएँ भी प्रदर्शित करते हैं।	ऑक्सीकरण अवस्थाएँ भी प्रदर्शित करते हैं।
3.	लैन्थेनॉइडों में 4/-इलेक्ट्रॉनों का परिरक्षण प्रभाव (Shielding	ऐक्टिनॉइर्डों में 5/-इलेक्ट्रॉनों का परिरक्षण प्रभाव कम होता है। इनके
	Effect) अधिक होता है। इनके आयनिक आकार में कमी	आयनिक आकार में कमी अधिक होती है।
	कम होती है।	5/-इलेक्ट्रॉनों की बन्धन ऊर्जा अपेक्षाकृत कम होती है।
4.	4/-इलेक्ट्रॉनों की बन्धन कर्जा अधिक होती है।	इनकी जटिल यौगिक बनाने की प्रवृत्ति अपेक्षाकृत अधिक होती है।
5.	इनकी जटिल याँगिक बनाने की प्रवृत्ति कम होती है।	
6.	इनके यौगिक कम क्षारीय होते हैं।	इनके याँगिक अधिक क्षारीय होते हैं।
7.	ये ऑक्सो आयन नहीं बनाते।	ये ऑक्सो आयन; जैसेUO22+, PuO2+ इत्पादि बनाते हैं।

प्रश्न 8. Zr(57), Hf(72) की परमाणवीय त्रिज्याएँ लगभग समान हैं। कारण दीजिए।

उत्तर: Zr 4d श्रेणी का व Hf 5d श्रेणी का तत्व है इसलिए Hf का आकार Zr से बड़ा होना चाहिए लेकिन Hf से पहले 14 तत्व 4{श्रेणी में लैन्थेनॉइड आते हैं। जिनके आने से आकार में कमी आती है। जिसे लैन्थेनॉइड संकुचन कहते हैं। इसलिए Zr का आकार rif के लगभग बराबर होता है।

प्रश्न 9. Au(79), Ag(47) के आयनन विभव लगभग समान होते हैं। कारण दीजिए।

उत्तर: आयनन विभव परमाणुओं के आकार पर निर्भर करते हैं। आकार समान होने पर आयनन विभव भी लगभग समान होते हैं। लैन्थेनॉइड संकुचन के कारण Au व Ag को आकार लगभग समान होता है इसलिए दोनों के आयनन विभव लगभग समान होते हैं।

प्रश्न 10. KMnO4 का चुम्बकीय आघूर्ण ज्ञात कीजिए।

उत्तर: KMnO₄ में Mn की ऑक्सीकरण अवस्था + 7 है। + 7 ऑक्सीकरण अवस्था में Mn का इलेक्ट्रॉनिक विन्यास 3d⁰ 4s⁰ होता है।

अतः कोई अयुग्मित इलेक्ट्रॉन उपस्थित नहीं है।

n = 0

 $\therefore \mu = 0$

KMnO4 में Mn का चुम्बकीय आघूर्ण शून्य होता है।