2011 - 2012 学年第一学期期末材料力学 III 试卷(A)

考试时间: 95 分钟

学院: 学号: 姓名:

	选择题		计	算	题			总
题号	1-15	1	2	3	4	5	6	分
分数								

说明:(1)考试时,考生允许携带一张 A4 纸,纸上可以是手写任何内容。(2)答选择题时, 请选择一个最适合的答案,并将相应的字母填写在题中空格处。(3)答计算题时,得数如果 有量纲,请注明,否则扣1分。(4)除题中已给出的量不需说明外,答计算题时使用的各量 必须明确说明其含义。

一、选择题(每题2分,共15题,共30分)

- 题1-1 在下列关于应变的说法中, _____ 是错误的。
 - A. 应变分正应变和切应变两种;
- B. 应变是变形的度量;
- C. 应变是位移的度量; D. 应变是无量纲的量。
- 题 1-2 关于应力的概念,下面说法不正确的是。
 - A. 同一截面上不同点的应力一般不相同; B. 同一点不同截面上的应力一般也不相同;
 - C. 应力表征了内力在截面上各点的分布情况;
 - D. 两个具有同样大小和形状的截面,如果它们的内力完全相同,则其上各点应力也相同。
- **题 1-3** 图示两单元体虚线表示其受力后的变形情况,两单元体切应变 γ 为 。
 - A, α , α ; B, 0, α ; C, 0, 2α ; D, α , 2α

题 1-4 图

题 1-3 图

- **题 1-4** 图示桁架结构,各杆的 EA 相同。在水平拉力 P 作用下,节点 A 将向 方向移动。 A、右上: B、水平: C、右下: D、左下。
- 题 1-5 低碳钢试件进入屈服阶段后,表面会沿 出现滑移线。
 - A、横截面; B、纵截面; C、 σ_{mx} 所在面; D、 τ_{mx} 所在面。
- 题 1-6 如图所示拉杆用四个直径相同的铆钉固定在连接板上,拉杆和铆钉的材料相同.设拉 力为P, 拉杆厚度为t, 铆钉直径d, 材料挤压许用应力为[σ _c]. 则铆钉的挤压强度条件 为。

A,
$$\frac{P}{4td} \le [\sigma_{c}]$$
; B, $\frac{P}{2td} \le [\sigma_{c}]$; C, $\frac{3P}{4td} \le [\sigma_{c}]$; D, $\frac{P}{td} \le [\sigma_{c}]$.

题 1-7 下列图形对各自形心轴 y、z 的惯性矩之间的关系为

A,
$$(I_y)_a = (I_y)_b, (I_z)_a = (I_z)_b;$$
 B, $(I_y)_a > (I_y)_b, (I_z)_a = (I_z)_b;$

C,
$$(I_y)_a < (I_y)_b, (I_z)_a < (I_z)_b;$$
 D, $(I_y)_a > (I_y)_b, (I_z)_a < (I_z)_b$.

题 1-8 设钢、铝两根等直圆轴具有相等的最大扭矩和最大单位长度扭转角,则钢、铝轴的最 大切应力 τ_{sl} 和 τ_{sl} 的大小关系是____。

- A. $\tau_{\rm st} < \tau_{\rm al}$.
- B. $\tau_{st} = \tau_{al}$: C. $\tau_{st} > \tau_{al}$:
- D. 不确定。

题 1-9 如图所示的两铸铁梁,材料相同,承受相同的载荷 F。则当 F 增大时,破坏的情况 是_____。

- A、同时破坏; B、(a) 梁先坏; C、(b) 梁先坏。

题 1-10 关于一点的应力状态,下列论述正确的是

- A. 正应力为零的截面上,切应力一定是最大值或最小值;
- B. 切应力为零的截面上,正应力一定是最大值或最小值;
- C. 切应力为最大和最小的截面上, 其正应力总是大小相等、正负号相反;
- D. 切应力为最大和最小的截面上,正应力必为零。

题 1-11 受力构件危险点处的应力状态如图。材料为 Q235 钢, 许用应力[σ] 和[τ]。对该点 进行强度校核时,下列强度条件表达式中正确的为

A,
$$\sigma \le [\sigma]$$
; B, $\tau \le [\tau]$; C, $\sqrt{\sigma^2 + 4\tau^2} \le [\sigma]$ 或 $\sqrt{\sigma^2 + 3\tau^2} \le [\sigma]$; D, $\sigma \le [\sigma]$, $\tau \le [\tau]$.

题 1-12 图示结构的变形协调条件为: ______

A,
$$f_A = f_B$$
; B, $f_A + \Delta l = f_B$; C, $f_A + f_B = \Delta l$; D, $f_A - f_B = \Delta l$.

题 1-13 若构件内危险点的应力状态为二向等拉,则除 _____ 强度理论以外,利用其它三 个强度理论得到的等效应力是相等的。

A. 第一:

- B. 第二:
- C. 第三:
- D. 第四。

题 1-14 梁的横截面如图,C 为截面形心。外力作用面在纵向平面 a-a 内。其中图______所 示截面梁发生斜弯曲变形。

题 1-15 图

题 1-15 图示交变应力的循环特征 r= _

A₂ -1 B₂ -0.5 C₂ 0 D₂ 0.5

二、计算题(共6题,70分)

题 2–1 支架如图所示,载荷 F,三杆的材料相同弹性模量为 E,AB、AD 长度为 a,各杆的 横截面面积均为 A。 试画出受力图和变形图,并求各杆的内力。(15分)

题 2-2 如图示铸铁外伸梁,截面为槽形,其 y_1 =140mm, y_2 =80mm, I_Z =4.8×10⁷mm⁴。已知 q=10kN/m,P=20kN,D 点的支反力为 35kN,方向竖直向上,B 点的支反力为 5kN,方向竖直向上。材料的许用拉应力[σ_t]=40MPa,许用压应力[σ_c]=140MPa。试(1)画出梁的剪力图 和弯矩图;(2)校核梁的正应力强度;(3)若用积分法求其挠度和转角时,其边界条件和连续光滑性条件是什么(20 分)

题 2-3 图示薄壁圆筒,其内径 D=100~mm,内压 p=5~MPa,同时承受扭力矩 $M=3~\text{kN}\cdot\text{m}$ 。 材料的许用应力 $\sigma=100~\text{MPa}$, 试根据第三强度理论确定壁厚 δ 。(10 分)

题 2-4 如图所示,千斤顶丝杠的内径 d=52mm,最大伸出长度 L=70cm,材料为 Q235 钢,E=200GPa, λ_p =100, λ_o =60,规定的稳定安全系数 n_{st} =3,若简化为 B 端固定、A 端自由的压杆时,试求压杆的许可载荷。(10 分)

题 2-4 图

题 2-5 直径为 d=20mm 的等圆截面直杆承受 xoy 平面外力偶矩 M 和转矩 T 作用,如图所示。在杆表面 A 点沿着轴向、B 点沿与轴线成 45° 方向贴应变片,测得线应变 $\varepsilon_A=200\times10^{-6}$ 和 $\varepsilon_{B45^{\circ}}=150\times10^{-6}$,材料弹性模量 E=200GPa,泊松比 v=0.25,[σ]=100MPa,试求外力偶矩 M 和转矩 T,并按第四强度理论校核其强度。(15 分)

