What is claimed is:

1 1. A lifting sling, said lifting sling comprising: 2 3 a plurality of core materials; and 4 5 a coating material, said coating material is sprayed onto said plurality of core 6 materials, the thickness of said coating material is regulated in a predetermined 7 pattern to achieve the desired operational properties of said lifting sling. 8 2. The lifting sling in accordance with claim 1, wherein said coating material is selected 1 2 from the group consisting of a polyurea elastomer, a polyurethane, or a hybrid 3 polyurethane – polyurea elastomer. 4 1 3. The lifting sling in accordance with claim 2, wherein said coating material has an 2 operational temperature range of -40 to 175 degrees Celsius. 3 1 4. The lifting sling in accordance with claim 2, wherein said coating material has a tensile strength in the range of up to 6,500 pounds per square inch, an elongation range of up to 2 3 300 percent, and a tear resistance in the range of up to 600 pounds per linear inch. 4 1 5. The lifting sling in accordance with claim 1, wherein said coating material includes at 2 least one of the following additives: 3 4 i) a catalyst; 5 ii) a stabilizer; 6 iii) a pigment; 7 iv) a fire retardant;

8 v) a static electricity reducing additive; 9 vi) an ultraviolet filtering additive; or 10 vii) a thermal cycling additive. 11 6. The lifting sling in accordance with claim 1, wherein said plurality of core materials 1 2 include at least one of the following: 3 nylon; 4 i) 5 ii) polyester; a synthetic fiber; 6 iii) 7 polypropylene; iv) 8 wire rope; v) 9 vi) steel core; 10 vii) cordage rope; 11 viii) yarn; 12 ix) NOMAX; 13 x) KEVLAR; or 14 xi) chain. 15 1 7. The lifting sling in accordance with claim 1, wherein said lifting sling further 2 comprises a safety core, said safety core being bonded with said plurality of core 3 materials. 4 1 8. The lifting sling in accordance with claim 7, wherein said safety core traverses said 2 lifting sling. 3 1 9. The lifting sling in accordance with claim 7, wherein said safety core is located, with 2 respect to said plurality of core materials, in at least one of the following locations:

3 4 i) seam located; 5 ii) perimeter located; or 6 iii) centrally located. 7 10. The lifting sling in accordance with claim 7, wherein said safety core is 1 interconnected with at least one of the following: 2 3 4 i) an indicator; or 5 ii) an electronic system. 6 1 11. The lifting sling in accordance with claim 1, wherein prior to applying said coating 2 material said plurality of core materials are selectively temperature adjusted and or pre-3 tensioned. 4 1 12. The lifting sling in accordance with claim 1, wherein a multi-core lifting sling is formed by applying a seaming layer of said coating material to bond together at least one 2 3 of the following: 4 5 a plurality of said plurality of core materials to form said multi-core i) 6 lifting sling; or 7 ii) a plurality of previously coated said plurality of core materials to form 8 said multi-core lifting sling. 9 13. The lifting sling in accordance with claim 12, wherein said multi-core lifting sling 1 further comprises a safety core, said safety core utilizes at least one of the following 2 3 configurations: 4

5 a single said safety core is utilized to traverse each span of said multi-core i) 6 lifting sling; or 7 a plurality of said safety core are utilized where a unique said safety core ii) 8 traverses each span of said multi-core lifting sling. 9 14. The lifting sling in accordance with claim 12, wherein said multi-core lifting sling is 1 2 formed having multiple free moving spans by applying said seaming layer only to the end 3 portions of said multi-core lifting sling. 4 15. The lifting sling in accordance with claim 14, wherein said multi-core lifting sling has 1 2 interconnecting ribs. 3 1 16. The lifting sling in accordance with claim 1, wherein said lifting sling further 2 comprises at least one of the following: 3 4 i) an indicator attached to said lifting sling; or 5 ii) an electronic system attached to said lifting sling. 6 1 17. The lifting sling in accordance with claim 16, wherein said electronic system further 2 comprises at least one of the following: 3 4 i) a microcontroller; 5 ii) a graphical user interface; 6 iii) a keypad; 7 iv) a touch pad; 8 a plurality of general purpose inputs and outputs; v) 9 vi) a safety core interface; 10 vii) a lifting sling measurement and dynamics interface;

11	viii)	an RFID interface;			
12	ix)	an IRDA interface;			
13	x)	a transceiver;			
14	xi)	a wireless data link;			
15	xii)	a LAN interface;			
16	xiii)	a WAN interface;			
17	xiv)	a serial data link;			
18	xv)	a GPS interface;			
19	xvi)	a power supply;			
20	xvii)	a flash memory;			
21	xviii)	a read only memory;			
22	xix)	a real time clock;			
23	xx)	an EEROM; or			
24	xxi)	a NOVRAM.			
25					
1	18. The lifting sling in accordance with claim 17, wherein said safety core interface is				
2	interconnected with a safety core, said electronic system based in part on monitoring said				
3	safety core indicates operational condition, and or suitability for use of said lifting sling.				
4					
1	19. A method of manufacturing a lifting sling, said method comprising the steps of:				
2					
3		a) aligning a plurality of core materials;			
4					
5		b) preparing said plurality of core materials for coating; and			
6					
7		c) applying a coating material to said plurality of core materials, the			
8		thickness of said coating material is regulated in a predetermined			
		•			

9	pattern to achieve the desired operational properties of said lifting					
10	sling.					
11						
1	20. The method in accordance with claim 19, wherein said coating material is selected					
2	from the group consisting of a polyurea elastomer, a polyurethane, or a hybrid					
3	polyurethane - polyurea elastomer.					
4						
1	21. The method in accordance with claim 19, wherein preparing in step 'b' further					
2	comprises at least one of the following steps:					
3						
4	a) pre-tensioning selectively said plurality of core materials;					
5						
6	b) adjusting selectively the temperature of said plurality of core					
7	materials; or					
8						
9	c) pre-treating selectively said plurality of core materials.					
10						
1	22. The method in accordance with claim 19, wherein said method further comprises at					
2	least one of the following steps:					
3						
4	a) positioning a safety core in proximity to said plurality of core					
5	materials;					
6						
7	b) bonding said safety core to said plurality of core material;					
8						
9	c) interconnecting said safety core with an indicator or an electronic					
10	system;					
11						

12	d)	fastening said indicator or said electronic system to said lifting sling;
13		
14	e)	forming a multi-core lifting sling by applying a seaming coat of said
15		coating material to bond together at least one of the following:
16		
17		i) a plurality of said plurality of core materials; or
18		ii) a plurality of previously coated said plurality of core
19		materials;
20		
21	f)	forming interconnected ribs between the core members of said multi-
22		core lifting sling;
23		
24	g)	positioning a cover around said lifting sling;
25		
26	h)	molding said cover to said lifting sling;
27		
28	i)	repairing damage to said coating material by applying an additional
29		layer of said coating material to the damaged area;
30		
31	j)	fastening an identification tag to said lifting sling; or
32		
33	k)	applying an additional layer of said coating material, said additional
34		layer having a differing pigment then the previous layer of said coating
35		material.
36		
1	23. A method of o	determining the operational condition, and or suitability for use of a
2		method comprising the steps of:
3		

4		a)	placing said lifting sling in use, said lifting sling having a safety			
5			core, said safety core is bonded by a coating material to said			
6			lifting sling plurality of core materials, and said safety core is			
7			interconnected with an indicator, or an electronic system, said			
8			indicator, or said electronic system is fastened to said lifting			
9			sling;			
10						
11		b)	allowing said safety core to be subjected to similar use			
12			conditions as encountered by said lifting sling;			
13						
14		c)	monitoring by way of said indicator, or said electronic system a			
15			plurality of operational parameters related to said safety core;			
16						
17		d)	determining the operational condition, and or suitability for use			
18			of said lifting sling based in part on the monitoring in step 'c';			
19			and			
20						
21		e)	indicating said lifting sling operational condition, and or			
22			suitability for use by way of said indicator, or said electronic			
23			system.			
24						
1	24. The method in accordance with claim 22, wherein said plurality of operational					
2	parameters in	cludes at le	east one of the following:			
3						
4	i)	temperat	ure;			
5	ii)	pressure;				
6	iii)	optical tr	ansmissions;			
7	iv)	electrical	transmissions;			

8 v) chemical; 9 vi) volume; or 10 vii) conductivity.

11