

Dina El-Manakhly, Ph. D.

dina\_almnakhly@science.suez.edu.eg

# **Spanning Trees**

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.





# Minimum Spanning Tree

- Formally, we are given a connected undirected graph G=(V,E)
- Each edge(u,v) has some numeric weight or cost w(u,v)
- We define the cost of spanning tree T to be the sum of the costs of edges in the spanning tree

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

A MST is minimum of w(T)

# Prim's Algorithm

- ☐ Prim's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which:
  - ✓ Form a tree that includes every vertex
  - ✓ Has the minimum sum of weights among all the trees that can be formed from the graph

# Prim's MST algorithm

Input

Connected, undirected, weighted graph, G.

Output

Minimum - weight spanning tree, T

Main Idea

(1) Start by creating two sets of vertices:

 $X=\{1\}$  and  $Y=\{2,3,...,n\}$  Not Visited

**Visited** 

(2) Grows a spanning tree, one edge at a time. On each iteration,

(2-1) Find an edge (x,y) of minimum weight, where  $x \in X$  and  $y \in Y$ 

(2-2) Move y from Y to X.

(2-3) Add the edge (x,y) to the current minimum spanning tree edges in T.

(3) Repeat Step 2 until Y becomes empty.



(1) Start by creating two sets of vertices:  $X=\{a\}$  and  $Y=\{b, c, d\}$ 



- 2.1 Find an edge (x,y) of minimum weight, where  $x \in X$  and  $y \in Y$ 
  - $\Box$  (a,b) of weight 2
  - $\Box$  (a,c) of weight 4

select (a,b)



(2.2) Move y from Y to X.

$$X=\{a,b\}$$
  $Y=\{c,d\}$ 

(2.3) Add the edge (x,y) to the current minimum spanning tree edges in T.





(2.1) Find an edge (x,y) of minimum weight, where  $x \in X$  and  $y \in Y$ .

W(a,c)=4  
W(b,c)=6  
W(b,d)=3  
$$\rightarrow$$
 Select (b,d)

(2.2) Move y from Y to X.

$$X=\{a,b,d\}$$
  $Y=\{c\}$ 

(2.3) Add the edge (x,y) to the current minimum spanning tree edges in T.





(2.1) Find an edge (x,y) of minimum weight, where  $x \in X$  and  $y \in Y$ .

W(a,c)=4  
W(b,c)=6  
W(d,c)=1  
$$\rightarrow$$
 Select (d,c)

(2.2) Move y from Y to X.

$$X=\{a,b,c,d\} Y=\{\}$$

(2.3) Add the edge (x,y) to the current minimum spanning tree edges in T.



Total cost = 6



## Algorithm

Algorithm: Prim

Input: A weighted connected undirected graph G=(V,E) with n vertices.

Output: The set of edges T of a minimum cost spanning tree for G.

#### Begin

2. While  $Y \neq \{\}$  do

Let (x,y) be of minimum weight such that  $x \in X$  and  $y \in Y$ .

$$X = X \cup \{y\}$$

$$Y = Y - \{y\}$$

$$T = T U \{(x,y)\}\$$

End.

Running time: O(n²), why?

For every vertex in the set X, we have to find the all adjacent vertices, The time complexity is  $O(n^*(n-1))=O(n^2)$ 

# Apply Prim's algorithm on this graph (Assignment)



# Dijkstra's algorithm

#### <u>Single Source Shortest Paths Problem</u>:

- Dijkstra's algorithm allows us to find the shortest path between any two vertices of a graph.
- ☐ It differs from the minimum spanning tree because the shortest distance between two vertices might not include all the vertices of the graph.

# Dijkstra's algorithm

Dijkstra's Algorithm works on the basis that any sub path B -> D of the shortest path A -> D between vertices A and D is also the shortest path between vertices B and D.



- the shortest path between the source and destination
- a subpath which is also the shortest path between its source and destination

#### Trace of Dijkstra's algorithm



We need to calculate the shortest path between the vertex "1" and all other vertices.

1<sup>st</sup> step: calculate the direct distance between the vertex "1" and all other vertices,  $D_v$ . If no direct edge between the vertex "1" and any vertex,v, then the distance equals  $\infty$ ,  $D_v = \infty$ .

| Iteration | Х   | Υ           | $D_2$ | $D_3$ | $D_4$ | $D_5$    | $D_6$     |
|-----------|-----|-------------|-------|-------|-------|----------|-----------|
| Initial   | {1} | {2,3,4,5,6} | 3     | 2     | 5     | $\infty$ | $\propto$ |

#### Design and Analysis of Algorithms



 $2^{nd}$  step: (i)select the vertex  $y \in Y$  such that  $D_y$  is minimum. y=3

2<sup>nd</sup> step: (ii) Update the distance from the vertex "1" to every veterx via the vertex y (selected)

| Iteration | X     | Υ           | $D_2$ | $D_3$ | D <sub>4</sub> | $D_5$     | $D_6$     |
|-----------|-------|-------------|-------|-------|----------------|-----------|-----------|
| Initial   | {1}   | {2,3,4,5,6} | 3     | 2     | 5              | $\infty$  | $\propto$ |
| 1         | {1,3} | {2,4,5,6}   | 3     | 2     | 4              | $\propto$ | 3         |





 $2^{nd}$  step: (i)select the vertex  $y \in Y$  such that  $D_y$  is minimum. y=2

2<sup>nd</sup> step: (ii) Update the distance from the vertex "1" to every veterx via the vertex y (selected)

| Iteration | Х       | Υ           | $D_2$ | $D_3$ | $D_4$ | $D_5$    | $D_6$    |
|-----------|---------|-------------|-------|-------|-------|----------|----------|
| Initial   | {1}     | {2,3,4,5,6} | 3     | 2     | 5     | 8        | $\infty$ |
| 1         | {1,3}   | {2,4,5,6}   | 3     | 2     | 4     | $\infty$ | 3        |
| 2         | {1,2,3} | {4,5,6}     | 3     | 2     | 4     | 7        | 3        |





 $2^{nd}$  step: (i)select the vertex  $y \in Y$  such that  $D_v$  is minimum. y=6

2<sup>nd</sup> step: (ii) Update the distance from the vertex "1" to every veterx via the vertex y (selected)

| Iteration | Х         | Υ           | $D_2$ | $D_3$ | D <sub>4</sub> | $D_5$    | $D_6$    |
|-----------|-----------|-------------|-------|-------|----------------|----------|----------|
| Initial   | {1}       | {2,3,4,5,6} | 3     | 2     | 5              | $\infty$ | $\infty$ |
| 1         | {1,3}     | {2,4,5,6}   | 3     | 2     | 4              | $\infty$ | 3        |
| 2         | {1,2,3}   | {4,5,6}     | 3     | 2     | 4              | 7        | 3        |
| 3         | {1,2,3,6} | {4,5}       | 3     | 2     | 4              | 5        | 3        |





 $2^{nd}$  step: (i)select the vertex  $y \in Y$  such that  $D_v$  is minimum. y=4

2<sup>nd</sup> step: (ii) Update the distance from the vertex "1" to every veterx via the vertex y (selected)

| Iteration | X           | Υ           | $D_2$ | $D_3$ | D <sub>4</sub> | $D_5$    | $D_6$    |
|-----------|-------------|-------------|-------|-------|----------------|----------|----------|
| Initial   | {1}         | {2,3,4,5,6} | 3     | 2     | 5              | $\infty$ | $\infty$ |
| 1         | {1,3}       | {2,4,5,6}   | 3     | 2     | 4              | $\infty$ | 3        |
| 2         | {1,2,3}     | {4,5,6}     | 3     | 2     | 4              | 7        | 3        |
| 3         | {1,2,3,6}   | {4,5}       | 3     | 2     | 4              | 5        | 3        |
| 4         | {1,2,3,4,6} | {5}         | 3     | 2     | 4              | 5        | 3        |





The algorithm uses a greedy approach in the sense that we find the next best solution hoping that the end result is the best solution for the whole problem.

### Algorithm

Algorithm: Dijkstra

Input: A weighted connected graph G=(V,E) with n vertices.

Output: The distance from vertex 1 to every other vertex in G.

#### Begin

- 1. X={1}; Y=V-X; D[1]=0
- 2. For each vertex  $v \in V$  if there is an edge from 1 to v then let D[v]=w(1,v).

Otherwise,  $D[v]=\infty$ 

2. While Y ≠ { } do

Let  $y \in Y$  such that D[y] is minimum

Running time: O(n<sup>2</sup>), why?

$$X = X \cup \{y\}$$

$$Y = Y - \{y\}$$

Update the distance (labels) of those vertices in Y that are adjacent to y.

// for each edge (y,w): if w  $\in$  Y and D[y] + w(y,w) < D[w] then

$$D[w]=D[y]+w(y,w) //$$

End.