1er Cuatrimestre- 2do Parcial - 03/06/2021

1. Sean $\mathbb{C}^{2\times 2}$ el espacio vectorial de las matrices complejas de tamaño 2×2 y $\langle .,.\rangle$ el siguiente producto interno definido sobre dicho espacio:

$$\langle A,B\rangle = tr(AB^H) = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij}\overline{b_{ij}}.$$

- a) Hallar la distancia entre $A = \begin{bmatrix} 1+i & 2 \\ 0 & -i \end{bmatrix}$ y $B = \begin{bmatrix} 0 & -i+1 \\ 2i & -1 \end{bmatrix}$.
- b) Describir el complemento ortogonal del espacio generado por A y B.
- 2. Dada A una matriz $n \times n$ y $b \in \mathbb{R}^n$, sea \hat{x} un vector que minimiza ||Ax b|| sobre todos los posibles vectores de \mathbb{R}^n .
 - a) Si $\hat{x} = 0$, ¿a qué espacio fundamental de A pertenece b? Justificar.
 - b) Sean $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -4 & 1 \end{bmatrix}$ y $b = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$. ¿Cuál es el mínimo posible de ||Ax b||? Describir (con el mayor detalle posible) todas las \hat{x} posibles que dan este mínimo.
- 3. Sean A y B dos matrices tales que $A^TB=0$, con factorizaciones QR, $A=Q_AR_A$ y $B=Q_BR_B$. Sea $C=[A\mid B]$. Probar que C=QR es la factorización QR de la matriz C, con $Q=[Q_A\mid Q_B]$ y $R=\begin{bmatrix}R_A&0\\0&R_B\end{bmatrix}$. (Ayuda: Probar $Q_A^TQ_B=0$.)
- 4. Sea A una matriz real con autovalores $\lambda_1 = -2$, $\lambda_2 = -2 + 5i$ y $\lambda_3 = -2 5i$ y autovectores x_1 , x_2 y x_3 , respectivamente.
 - a) Determinar la traza y el determinante de la matriz 4A.

b) Si
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 y $x_2 = \begin{bmatrix} 0 \\ i \\ 2 \end{bmatrix}$, calcular x_3 .

5. Justificar por qué tienen módulo 1 los autovalores de

$$A = \begin{bmatrix} \frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 & 4\\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 & 3\\ 0 & 0 & i & 2\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Ayuda: recordar que si una matriz M tiene una fila o columna con una única entrada no nula M_i^j , su determinante es el producto de $(-1)^{i+j}M_i^j\in\mathbb{C}$ por el determinante de la submatriz de M obtenida por borrado de su fila i y su columna j.

- 6. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando las respuestas.
 - a) Sea U una matriz unitaria entonces $U^{2021} = U^6$
 - b) Sea $\mathcal{B} = \{q^1, q^2, q^3\}$ una base ortornormal de \mathbb{R}^3 y $A = 3q^1(q^1)^T q^2(q^2)^T + \frac{1}{2}q^3(q^3)^T$. Entonces A tiene 3 autovalores differentes.
 - c) Sea A una matriz 6×6 tal que su forma de Jordan tiene 5 bloques de Jordan. Entonces A no es diagonalizable.