

Classifying Mobile Phones

Amogh Pradeep

The Problem Statement

In this report we will try to use the <u>Mobile Price Classification</u> dataset to create a model which can predict the price range of a mobile phone.

We will test different algorithms like ID3, Naive Bayesian, and K-Means and compare their performance.

The Dataset

Dataset has 2000 rows and 21 columns.

Columns

Column Name	Description					
battery_power	Total energy a battery can store in one charge measured in mAh.					
blue	Has Bluetooth or not					
clock_speed	speed at which microprocessor executes instructions					
dual_sim	Has dual sim support or not					
fc	Front Camera megapixels					
рс	Primary Camera megapixels					
four_g	Has 4G or not					
int_memory	Internal Memory in Gigabytes					
m_dep	Mobile Depth in cm					
mobile_wt	Weight of mobile phone					
n_cores	Number of cores of processor					
px_height	Pixel Resolution Height					
px_width	Pixel Resolution Width					
ram	Random Access Memory in Megabytes					
sc_h	Screen Height of mobile in cm					

SC_W	Screen Width of mobile in cm
talk_time	longest time that a single battery charge will last when you are
three_g	Has 3G or not
touch_screen	Has touch screen or not
wifi	Has wifi or not

There are no categorical values in the dataset. Every column is numeric.

_	battery_power [‡]	blue [‡]	clock_speed [‡]	dual_sim [‡]	fc [‡]	four_g [‡]	int_memory [‡]	m_dep [‡]	mobile_wt [‡]	n_cores [‡]	pc [‡]
1	842	0	2.2	0	1	0	7	0.6	188	2	2
2	1021	1	0.5	1	0	1	53	0.7	136	3	6
3	563	1	0.5	1	2	1	41	0.9	145	5	6
4	615	1	2.5	0	0	0	10	0.8	131	6	9
5	1821	1	1.2	0	13	1	44	0.6	141	2	14
6	1859	0	0.5	1	3	0	22	0.7	164	1	7

px_height [‡]	px_width [‡]	ram [‡]	sc_h [‡]	sc_w [‡]	talk_time	three_g [‡]	touch_screen	wifi [‡]	price_range [‡]
20	756	2549	9	7	19	0	0	1	1
905	1988	2631	17	3	7	1	1	0	2
1263	1716	2603	11	2	9	1	1	0	2
1216	1786	2769	16	8	11	1	0	0	2
1208	1212	1411	8	2	15	1	1	0	1
1004	1654	1067	17	1	10	1	0	0	1

Overview of the Dataset

Data Visualization

Let's start by plotting the correlation matrix for our dataset (or the heat map)

Note: I have added perf and resolution columns which are (n_cores * clock_speed) and (px_height * px_width) respectively

Strong correlations exist between the following variables:

- price_range and ram have strong positive correlation of 0.92
- fc and pc have strong positive correlation of 0.64

Let's observe the relationship between ram and price_range

Relationship between front camera and primary camera

Network capabilities of smartphones

Let's see how talk time changes with price range

Let's see how battery power changes with price range

Let's see how screen resolution changes with the price range.

Case Study

Hypothesis: Battery capacity should show a positive correlation with screen resolution. In modern smartphones, the screen is the major source of power draw accounting for almost 50% of total power use. To counter this smartphone makers should equip larger screens with bigger batteries.

Let's first draw a scatterplot between battery_power and px_count

No relation can be seen.

This can be due to outliers in data. Let's check for outliers in px_count and battery_power

Battery Power variable is distributed normally, and has no outliers. Let's check px_count

Large Number of outliers present in px_count

Let's remove outliers, by eliminating rows which are not in the interquartile range (IQR).

Code

```
per 25 = train["px count"].quantile(0.25)
per_75 = train["px_count"].quantile(0.75)
iqr = per 75 - per 25
lower fence = per 25
upper fence = per 75
print("lower boundary {lower} and upper boundary {upper}\nIQR =
{iqr}".format(lower = lower fence, upper = upper fence, iqr = iqr))
pixels = []
battery_cap = []
# removing rows which are not in the interguartile range.
for i in range (len(train)):
    if (train.iloc[i]["px_count"] > lower_fence and
train.iloc[i]["px_count"] < upper_fence):</pre>
        pixels.append(train.iloc[i]["px_count"])
        battery_cap.append(train.iloc[i]["battery_power"])
# creating new dataframe with IQR values
pixels_vs_battery = pd.DataFrame()
pixels_vs_battery["px_count"] = pixels
pixels_vs_battery["battery_power"] = battery_cap
```

Output

```
lower boundary 263200.5 and upper boundary 1359027.25 IQR = 1095826.75
```

Let's draw the scatter plot again.

Still no pattern visible.

Finally let's try to plot the median px_count per battery_power group.

Code

```
pixels_vs_battery['battery_power_category'] =
pd.cut(pixels_vs_battery['battery_power'], bins = 10, labels = [var
for var in range (10)])
# calculating median per battery_power_category
median_res =
pixels_vs_battery.groupby("battery_power_category")["px_count"].media
n()
```

Barplot

A slight increasing pattern can be observed, but many exceptions such as battery group 2 and group 9 are present.

Data doesn't support the hypothesis.

Hypothesis rejected.

Data Preprocessing

Missing Values

The dataset is complete. No missing values present.

```
> print(nrow(df) - sum(complete.cases(df)))
[1] 0
```

• Encoding Categorical Data

Not needed as no categorical data is present in the dataset.

Splitting dataset into Train and Test

We have opted for a 80-20 split between train and test.

```
train_idx <- sample(1 : nrow(df), size = floor(0.8 * nrow(df)), replace = FALSE)
train <- df[train_idx, ]
test <- df[-train_idx, ]</pre>
```

Number of rows in train: 1600

Number of rows in test: 400

• Feature Scaling

Although feature scaling can be applied in our dataset, we are not planning to use models which require feature scaling like KNN (K-Nearest Neighbours), Neural Networks, Linear Regression, and Logistic Regression.

Model Training

K-Means Clustering

Creating Model

K-means doesn't require the dataset to be split into test and train. So we'll work with a complete dataset df.

```
km < -kmeans(df, 4)
```

Predicting model and checking accuracy

```
df$price_range<-as.factor(km$cluster)
confusionMatrix(table(price_range,df$price_range))</pre>
```

Output

Confusion Matrix and Statistics

```
price_range 1 2 3 4
1 478 9 0 13
2 113 175 0 212
3 0 116 127 257
4 0 23 459 18
```

Overall Statistics

Accuracy: 0.399

95% CI: (0.3775, 0.4208)

No Information Rate : 0.2955 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.1987

Mcnemar's Test P-Value : NA

Visualizing Clusters

Observation

K-means Clustering has an accuracy of only ~40%. We'll try to improve this by testing out new models based on ID3 and Naive Bayesian classifier.

Decision Tree

Creating Model

Creating a decision tree through rpart function.

Predicting model and checking accuracy

Code

p<-predict(object = tree,test,type="class")</pre> confusionMatrix(table(p,test\$price_range))

Output

Confusion Matrix and Statistics

0 102 13 0 7 72 19 0 2 0 12 64 16 0 0 20 75

Overall Statistics

Accuracy: 0.7825

95% CI: (0.7388, 0.822) No Information Rate: 0.2725 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7096

Mcnemar's Test P-Value : NA

Observation

Decision Tree gives us an accuracy of ~79%. This is a lot better than K-means clustering.

Naive Bayesian

Creating Model

```
library(e1071)
model<-naiveBayes(price_range~., train)</pre>
```

Predicting model and checking accuracy

Code

```
p<-predict(model,test)
confusionMatrix(table(p,test$price_range))</pre>
```

Output

Confusion Matrix and Statistics

```
p 0 1 2 3
0 98 8 0 0
1 11 74 17 0
2 0 15 78 7
3 0 0 8 84
```

Overall Statistics

Accuracy: 0.835 95% CI: (0.7949, 0.87)

No Information Rate : 0.2725 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7798

Mcnemar's Test P-Value : NA

Observation

Naive Bayesian gives us the best accuracy of 83.5%.

Conclusion

Using independent variables such as ram, camera quality, screen resolution, battery life, and network capabilities we successfully predicted the price range of a smartphone.

We also visualized trends between variables such as ram, battery capacity, network, talk time, screen resolution, and camera quality.

We used classification techniques such as Naive Bayesian and Decision Tree algorithm, and clustering techniques such as K-Means to build an accurate model.

Out of all these techniques we conclude that Naive Bayesian is the most accurate on this dataset with an accuracy of 83.5%

Acknowledgement

We would like to thank our professor **Mr. Suraj Patil** for providing this golden opportunity to showcase our skills and for his guidance and support in completing this project.