

Amendment to the Specification:

Please replace the following paragraph starting with “The display” on page 10, lines 1-18 with the following amended paragraph:

The display controller 19 has the following operations depending upon a type of the data or superimposition of the data. In summary, the processing by the display controller 19 is categorized into groups of A. characters or graphics without animation or still images, B. animation, C. still images and D. characters or graphics to be superimposed or animation or still images. For the group A characters or graphics without animation or still images, the processing flow includes from the PCI bus 32 via the graphics controller 40, the graphics video memory 41, the graphics data conversion unit 42, the display data generation unit 43, the DAC 44 to the color display 2. For the group B. the animation data, the processing flow includes from the MPEG decoder 20, via the video decoder 45, the animation/still video memory 46, the video data conversion unit 47, the video data superimposing unit 48, the DAC 44, to the color display 2. For the group C. the still image data, the processing flow includes from the PCI bus 32, via the video decoder 45, the animation/still video memory 46, the video data superimposing unit 48, the DAC 44, to the color display 2. For the group D. of the characters or graphics to be superimposed on animation or still image, the processing flow includes from the PCI bus 32, the graphics controller 40, the graphics video memory 41, the graphics data conversion unit 42, the display data generation unit 43, the video data superimposing unit 48, the DAC 44 to the color display 2.

Please replace the following paragraph starting with “When there is no” on page 11, lines 20-29 with the following amended paragraphs:

When there is no keyboard input in the step S4 but the background color is changed in a step S6 by selecting the background color icon 46b, similarly to the above described steps, the CPU 10 determines a character color based upon the point A for the altered background color in the Munsell color-order system in accordance with the predetermined calculation as described with respect to the step S3. The CPU 10 outputs a

command specifying the selected font color to the graphics controller 40 and displays via the displays via the display controller 19 the characters in an easily perceived color with respect to the background color on the display screen 2a as in the step S5. As described above, even if the background color is charged, the characters are always seen in an easily perceived color.

Please replace the following paragraph starting with "Referring to FIGURES 6 and 7" on page 11, lines 31-32 and ending on page 12, lines 1-9 with the following amended paragraphs:

Referring to FIGURES 6 and 7, a preferred embodiment or process of determining an easily perceived character color as described in the step S3 according to the current invention uses the Munsell color-order system. FIGURE 6 shows lightness, saturation and hue in a three dimension as described in "From Beginners to Professional Color Encyclopedia" (1993). A vertical axis represents lightness or intensity of colors, and the lightness is represented to be higher or brighter in a positive direction. The centrally located vertical axis represents an achromatic axis or a zero saturation point in the three dimensional representation. Saturation of colors is thus represented by a horizon axis that is perpendicular to the lightness axis. As being away from the achromatic axis, the saturation of a give color becomes higher. Lastly, with respect to a given point on the circumference of the three dimensional body, color or hue of colors is represented.

Please replace the following paragraph starting with "FIGURE 8" on page 20, lines 19-32 and ending on page 21, lines 1-4 with the following amended paragraphs:

FIGURE 8 is a diagram illustrating a method of selecting an optimal pen color that corresponds to the background color, using the Munsell color-order system. The Munsell color-order system is represented by a simplified sphere where a mid point N represents zero saturation and intensity 5 on an achromatic axis 50. Based upon the expert experience, when a point A is arbitrarily selected as a background color in the

Munsell color-order system, a point B is determined at a such position so that the ratio of distance $a : b$ is over 4 : 1. A first distance “a” represents a distance between the point N and the point A while a second distance “b” represents a distance between the point N and the point B. An optimal color is selected from a predetermined range E within the point B for a background color. In other words, supposing the distance “b” is 1, the point B is selected so that the distance “a” is equal to or larger than 4. Furthermore, an optimal color is selected from the range E, which is a plane that is limited by an angle $\omega = 15^\circ$ and signifies a scope of perceptibly single color including the color itself and two adjacent colors. Based upon the expert experience, when a point A is arbitrarily selected as a background color in the Munsell color-order system, by selecting a point B at a such position so that the ratio of distance $a : b$ is equal to or over 4 : 1 and using an optimal color within a range E from the selected point B, the visual identification of a superimposed image by the pen 64 is automatically optimized over the use of a simple supplemental color.

Please replace the following paragraph starting with “Now referring to” on page 21, lines 24-32 and ending on page 22, lines 1-14 with the following amended paragraphs:

Now referring to FIGURES 12 and 13, diagrams illustrate an eighth preferred embodiment of the image color display selection according to the current invention. Based upon the expert experience, when a point A is arbitrarily selected as a background color in the Munsell color-order system, a point B is determined at a such position so that a line AB is parallel to the achromatic axis 50 and the point B and the point A have a difference of at least four in lightness. An optimal color is selected from a predetermined range E within the point B for a background color. Furthermore, an optimal color is selected from the range E, which is a plane that is limited by an angle $\omega = 15^\circ$ and signifies a scope of perceptibly single colors including the color itself and two adjacent colors. Based upon the expert experience, when a point A is arbitrarily selected as a background color in the Munsell color-order system, by selecting a point B at the above described position and using an optimal color within a range E from the selected point B,

the visual identification of a superimposed image by the pen 64 is automatically optimized over the use of a simple complementary color. Although the point B may not exist for the sixth or seventh preferred embodiment for certain positions of the point A in the Munsell color-order system, the point B is determined for an optimal pen color at a such position so that a line AB is parallel to the achromatic axis 50 and the point B and the point A have a difference of at least four in lightness as described above. Due to the sufficient difference in lightness, enough visual distinction for a pen color is automatically optimized. That is, as described with respect to FIGURE 13, the lightness is shown in ten stages from the lightness 10 being completely white to the lightness 0 being completely black. When an image color and a background color have a difference of four in lightness, they appear to have sufficient visual distinction even if they have the same saturation and hue.

Please replace the following paragraph starting with "Now referring to" on page 22, lines 16-32 with the following amended paragraphs:

Now referring to FIGURES 14 and 15, diagrams illustrate a ninth preferred embodiment of the image color display selection according to the current invention. Based upon the expert experience, when a point A is arbitrarily selected as a background color on the achromatic axis in Munsell color-order system, a point B is determined at a such position so that a line AB is perpendicular to the achromatic axis 50 and the point B and the point A have the same lightness but a saturation difference of four. An optimal color is selected from a predetermined range E within the point B for a background color. Furthermore, an optimal color is selected from the range E, which is a plane that is limited by an angle $\omega = 15^\circ$ and signifies a scope of perceptibly single colors including the color itself and two adjacent colors. Although the point B may not exist for the sixth or seventh preferred embodiment for certain positions of the point A in the Munsell color-order system, the point B is determined for an optimal pen color at a such position so that a line AB is parallel to the achromatic axis 50 and the point B and the point A have a difference of at least four in saturation as described above. Due to the sufficient

difference in saturation, enough visual distinction for a pen color is automatically optimized. As shown in FIGURE 15, for a certain point A, the point B exists on the achromatic axis 50, and the above described optimal pen color selection is also applicable to this situation.