

МК110-224.8Д(ДН).4Р

Модуль дискретного ввода/вывода H/W v2.0

EAC

Руководство по эксплуатации

04.2023 версия 1.19

Содержание

Введение	4
Перечень обновлений	4
Предупреждающие сообщения	5
Используемые аббревиатуры	
1 Назначение	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики и условия эксплуатации	
2.2 Изоляция узлов прибора	
2.3 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж и демонтаж	
4.1 Установка	
4.2 Отсоединение клеммных колодок	
4.3 «Быстрая» замена	
5 Подключение	
5.1 Порядок подключения	
5.2 Рекомендации по подключению	
5.3 Назначение контактов клеммника	
5.4 Подключение питания	
5.4.1 Питание переменного тока 230 В	
5.4.2 Питание постоянного тока 24 B	
5.5 Подключение по интерфейсу RS-485	16
5.6 Подключение датчиков	17
5.6.1 Подключение выходов типа «Р»	
5.6.2 Схема подключения датчиков к МК110-224.8Д.4Р	
5.6.3 Схема подключения датчиков к МК110-224.8ДН.4Р	
5.6.4 Электрические принципиальные схемы группы входов	
6 Устройство и принцип работы	
6.1 Принцип работы	
6.2 Индикация	22
7 Настройка	
7.1 Конфигурирование	23
7.2 Конфигурационные и оперативные параметры	
7.3 Восстановление заводских настроек	
7.4 Обновление встроенного ПО	24
8 Интерфейс RS-485	
8.1 Базовый адрес прибора в сети RS-485	
8.2 Протокол ОВЕН	
8.3 Протокол Modbus	
8.4 Управление дискретными выходами по сети RS-485	
8.5 Дискретные входы	
8.6 Режим «Авария»	
9 Техническое обслуживание	
9.1 Общие указания	
10 Маркировка	30
11 Упаковка	31
12 Транспортирование и хранение	31

13 Комплектность	. 31
14 Гарантийные обязательства	. 31
ПРИЛОЖЕНИЕ А. Регистры протокола Modbus	. 32
ПРИЛОЖЕНИЕ Б. Параметры прибора для протокола ОВЕНОВЕН	. 34

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием модулей дискретного ввода/вывода МК110-224.8Д.4Р и МК110-224.8ДН.4Р (в дальнейшем по тексту именуемых «прибор», «модуль»).

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Обозначение прибора при заказе: МК110-224.8ДН.4Р и МК110-224.8Д.4Р.

Перечень обновлений

Параметр	Mx110 H/W v2.0	Mx110
ПО для настройки	OWEN Configurator	Конфигуратор М110
Поддерживаемые протоколы	Modbus RTU/ASCII, OBEH	Modbus RTU/ASCII, OBEH, DCON
Счётчики импульсов дискретных входов	Энергозависимые	Энергонезависимые
Восстановление заводских настроек	Сбрасываются на заводские при включении питания с переключателем 2 в положении Включен	Модуль работает с заводскими значениями сетевых параметров, но в его памяти сохраняются установленные ранее значения сетевых параметров при включении питания с перемычкой 2 в положении ОN
Режим «жесткой логики»	Нет	Да
Поддерживаемые функции записи по протоколу Modbus	0x06, 0x10	0x10, 0x0F
Доступ к сетевым параметрам по протоколу Modbus	Да	Нет

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о непосредственной угрозе опасной ситуации, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное Объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры

ИМ – исполнительный механизм.

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ПО – программное обеспечение.

ШИМ — широтно-импульсная модуляция.

1 Назначение

Модули дискретного ввода/вывода МК110-8ДН.4Р и МК110-8Д.4Р предназначены для сбора данных со встроенных входов с последующей передачей их в сеть RS-485 и подключения исполнительных устройств на объектах автоматизации. Модуль управляется с помощью ПЛК, панельного контроллера, ПК или другого управляющего устройства.

В приборе реализовано 8 дискретных входов и 4 дискретных выхода (реле). Модули МК110-8ДН.4Р и МК110-8Д.4Р отличаются по типу подключаемого входного сигнала:

- МК110-8ДН.4Р: контактный датчик, транзисторный ключ n-p-n типа, транзисторный ключ p-n-p типа;
- МК110-8Д.4Р: «сухой контакт», транзисторный ключ n-p-n типа.

Прибор выпускается согласно ТУ 4217-016-46526536-2009.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

V	Значение				
Характеристика	МК110-224.8Д.4Р	МК110-224.8ДН.4Р			
	Питание				
Напряжение питания (универсальное):					
• переменного тока	от 90 до 264 В (номинальное	230 В), частота от 47 до 63 Гц			
• постоянного тока	от 18 до 30 В (но	минальное 24 B)			
Потребляемая мощность, не более	6	BA			
•	Входы				
Количество дискретных входов		8			
Гальваническая развязка дискретных входов	_	Групповая			
Электрическая прочность изоляции дискретных входов	_	1500 B			
Максимальная частота сигнала, подаваемого на дискретный вход	1 :	· «Гц			
Минимальная длительность импульса, воспринимаемого дискретным входом	100 мкс				
Минимальная величина паузы между импульсами	450	МКС			
Напряжение питания дискретных входов	_	24 ± 3 B			
Максимальный входной ток дискретного входа	7 мА	8,5 мА (при напряжении питания входа 27 В)			
Ток «логической единицы», не менее	_	4,5 мА			
Ток «логического нуля», не более	<u> </u>	1,5 мА			
Сопротивление контакта (ключа) и соединительных проводов, подключаемых к дискретному входу, не более	100 Ом	_			
Тип сигнала	• «сухой контакт»; • транзисторный ключ n-p-n типа;	• контактный датчик (требуется внешнее питание 24 В постоянного тока); • транзисторный ключ n-p-n типа; • транзисторный ключ p-n-p типа			
16	Выходы				
Количество выходов	4				
Тип выхода	электромагнитное реле				
Тип контакта	нормально разомкнутый контактперекидной контакт				
Режим работы	переключение логического сигналагенерация ШИМ сигнала				
Максимальное напряжение на контакты реле	• 264 В (СКЗ) переменного напряжения • 30 В постоянного напряжения				

Продолжение таблицы 2.1

Характеристика	Значение	
Характеристика	МК110-224.8Д.4Р МК1	10-224.8ДН.4Р
Максимальный ток коммутации	• 6 А (при переменном напряжении не более 250 В (СКЗ), 50 Гц, резистивная нагрузка) • 6 А (при постоянном напряжении не более 30 В, резистивная нагрузка)	
Минимальный ток нагрузки	100 MA	
Категория применения по ГОСТ IEC 60947-5-1:2014	AC-15, B300*	
Механический ресурс реле	10 000 000 срабатывани	й
Электрический ресурс реле (перекидной контакт), не менее	• 10 000 переключений при 6 A 30 В постоянного напряжения, резистивная нагрузка • 10 000 переключений при 6 A, 250 В (СКЗ) переменного напряжения, резистивная нагрузка	
Электрический ресурс реле (нормально разомкнутый контакт), не менее	• 30 000 переключений при 6 А, 30 В посто резистивная нагрузка • 30 000 переключений при 6 А, 250 В (С напряжения, резистивная на	:КЗ) переменного
Время переключения контактов реле из состояния «лог. 0» в «лог. 1»	15 мс	
Время переключения контактов реле из состояния «лог. 1» в «лог. 0»	15 мс	
	Параметры ШИМ	
Максимальная частота	1 Гц (при коэффициенте заполне	ния 0,05)
Минимальная длительность импульса ШИМ	50 мс	
	Интерфейсы	
Тип интерфейса	RS-485	
Скорости обмена по интерфейсу RS-485	2400, 4800, 9600, 14400, 19200, 28800, 38400	, 57600, 115200 бит/с
Гальваническая изоляция между питанием и интерфейсом не менее	2300 B	
Протокол обмена данными	Modbus ASCII, Modbus RTU, C	BEH**
Допустимое число перезаписей flash-памяти***, не более	10 000	
	Общие параметры	
Габаритные размеры	(63 × 110 × 75) ± 1 мм	
Степень защиты корпуса		
• со стороны передней панели	IP20	
• со стороны клеммной колодки		
Средняя наработка на отказ	60 000 ч****	
Средний срок службы	10 лет	
Масса, не более	0,5 кг	

i

ПРИМЕЧАНИЕ

- * Управление электромагнитами переменным напряжением до 300 В (СКЗ) и полной мощностью до 360 ВА.
- ** Тип протокола определяется прибором автоматически.
- *** Во flash-памяти хранятся кофигурационные параметры.
- **** Не считая электромеханических переключателей.

2.2 Изоляция узлов прибора

Схема гальванически изолированных узлов и прочность гальванической изоляции приведена на рисунке 2.1.

Рисунок 2.1 – Изоляция узлов прибора

Таблица 2.2 – Типы изоляции

Тип	Описание
Основная (О)	Изоляция для частей оборудования, находящихся под напряжением, с целью защиты от поражения электрическим током. Электрическая прочность основной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения, величина которого различна для различных цепей прибора
Усиленная (У)	Отдельная система изоляции для частей под напряжением со степенью защиты от поражения электрическим током, эквивалентной двойной изоляции согласно ГОСТ 51841-2001. Электрическая прочность усиленной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения 3000 В (действующее значение) и контролем длины путей утечек
Дополнительная (Д)	Независимая изоляция, в дополнение к основной изоляции для гарантии защиты от поражения электрическим током в случае отказа основной изоляции. Электрическая прочность дополнительной изоляции прибора проверяется типовыми испытаниями испытательного переменного напряжения различной величины (действующее значение)

ПРЕДУПРЕЖДЕНИЕ

Значение прочности изоляции указано для испытаний при нормальных климатических условиях (время воздействия – 1 минута) согласно ГОСТ IEC 61131-2.

2.3 Условия эксплуатации

Условия эксплуатации:

- температура окружающего воздуха от -10 до +55 °C;
- относительная влажность воздуха не более 95 % (при +25 °C и более низких температурах без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N1 ГОСТ Р 52931-2008.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 ГОСТ Р 52931-2008.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 ГОСТ Р 52931-2008.

По электромагнитной совместимости модули относятся к оборудованию класса А ГОСТ 30804.6.2-2013

По устойчивости к воздействию помех прибор отвечает требованиям ГОСТ IEC 61131-2-2012, ГОСТ 30804.6.2-2013 (IEC 6100-6-26:2005), ГОСТ 30804.6.4-2013 (IEC 61000-6-4:2006).

По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным ГОСТ 30804.6.3-2013 (IEC 61000-6-3:2006).

Во время подачи импульсных помех допускается кратковременное прекращение обмена по сети RS-485. Обмен должен восстанавливаться сразу по окончании действия помехи.

3 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0-75.

Во время эксплуатации, технического обслуживания и поверки следует соблюдать требования следующих документов:

- FOCT 12.3.019-80
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора.

ПРЕДУПРЕЖДЕНИЕ

ЗАПРЕЩАЕТСЯ использование прибора при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж и демонтаж

4.1 Установка

Прибор может быть установлен на DIN-рейке 35 мм или закреплен на внутренней стенке шкафа с помощью винтов.

Для установки прибора на DIN-рейку следует:

- 1. Подготовить место на DIN-рейке для установки прибора.
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке до фиксации защелки.

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 4.1 – Габаритные и установочные размеры

4.2 Отсоединение клеммных колодок

Для отсоединения клеммных колодок следует:

- 1. Отключить питание модуля и подключенных к нему устройств.
- 2. Поднять крышку.
- 3. Выкрутить винты.
- 4. Снять колодку, как показано на рисунке 4.2.

Рисунок 4.2 - Отделение съемных частей клемм

4.3 «Быстрая» замена

Конструкция клеммника позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Открутить крепежные винты по краям обеих клеммных колодок прибора.
- 3. Отделить съемную часть каждой колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Снять прибор с DIN-рейки или вынуть прибор из щита.
- 5. На место снятого прибора установить другой с предварительно удаленными разъемными частями клеммных колодок.
- 6. Подсоединить к установленному прибору снятые части клеммных колодок с подключенными внешними линиями связи.
- 7. Закрутить крепежные винты по краям обеих клеммных колодок.

5 Подключение

5.1 Порядок подключения

Для подключения прибора следует:

- 1. Подсоединить прибор к источнику питания.
- 2. Подсоединить датчики к входам прибора.
- 3. Подсоединить линии связи интерфейса RS-485.
- 4. Подать питание на прибор.

5.2 Рекомендации по подключению

Внешние связи следует монтировать проводом сечением не более 0,75 мм². Для многожильных проводов следует использовать наконечники.

Рисунок 5.1 – Рекомендации для проводов

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей следует подключать к контакту функционального заземления (FE) со стороны источника сигнала;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

Монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии прокладывать по схеме «звезда» с обеспечением хорошего контакта к заземляемому элементу;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой «Общая» и заземляющие линии.

5.3 Назначение контактов клеммника

Общий вид прибора с указанием номеров клемм и расположения переключателей и светодиодов:

Рисунок 5.2 - Назначение контактов клеммника

Таблица 5.1 – Назначение контактов клеммной колодки прибора МК110-8Д.4Р

№ Назначение № Назначение				
	Nº	Назначение		
Питание ~90264 В или минус питания —1830 В	13	RS-485 (B)		
Питание ~90264 В или плюс питания —1830 В	14	RS-485 (A)		
Вход 1 (DI1)	15	Выход 1А (DO1А)		
Общий (СОМ)	16	Выход 1В (DO1В)		
Вход 2 (DI2)	17	Выход 1C (DO1C)		
Вход 3 (DI3)	18	Выход 2А (DO2A)		
Вход 4 (DI4)	19	Выход 2В (DO2В)		
Вход 5 (DI5)	20	Выход ЗА (DO3A)		
Вход 6 (DI6)	21	Выход 3В (DO3В)		
Вход 7 (DI7)	22	Выход 3C (DO3C)		
Общий (СОМ)	23	Выход 4А (DO4A)		
Вход 8 (DI8)	24	Выход 4В (DO4В)		
	—1830 В Питание ~90264 В или плюс питания —1830 В Вход 1 (DI1) Общий (СОМ) Вход 2 (DI2) Вход 3 (DI3) Вход 4 (DI4) Вход 5 (DI5) Вход 6 (DI6) Вход 7 (DI7) Общий (СОМ)	Питание ~90264 В или минус питания —1830 В Питание ~90264 В или плюс питания —1830 В Вход 1 (DI1) 15 Общий (СОМ) 16 Вход 2 (DI2) 17 Вход 3 (DI3) 18 Вход 4 (DI4) 19 Вход 5 (DI5) 20 Вход 6 (DI6) 21 Вход 7 (DI7) 22 Общий (СОМ) 23		

\mathbf{i}

ПРИМЕЧАНИЕ

Для выходов 1 и 3 назначение контактов (A, B, C) следующее: A – нормально замкнутый, В – перекидной, С – нормально разомкнутый.

Для выходов 2 и 4 назначение контактов (A, B) следующее: A – перекидной, B – нормально разомкнутый.

Таблица 5.2 – Назначение контактов клеммной колодки прибора МК110-8ДН.4Р

Nº	Назначение	Nº	Назначение
1	Питание ~90264 В или минус питания —1830 В	13	RS-485 (B)
2	Питание ~90264 В или плюс питания —1830 В	14	RS-485 (A)
3	Вход 1 (DI1)	15	Выход 1А (DO1A)
4	Вход 2 (DI2)	16	Выход 1В (DO1В)
5	Вход 3 (DI3)	17	Выход 1C (DO1C)
6	Вход 4 (DI4)	18	Выход 2А (DO2A)
7	Питание входов 1–4 (SS1)	19	Выход 2В (DO2В)
8	Вход 5 (DI5)	20	Выход ЗА (DO3A)
9	Вход 6 (DI6)	21	Выход 3В (DO3В)
10	Вход 7 (DI7)	22	Выход 3C (DO3C)
11	Вход 8 (DI8)	23	Выход 4А (DO4A)
12	Питание входов 5–8 (SS2)	24	Выход 4В (DO4В)

i

ПРИМЕЧАНИЕ

Для выходов 1 и 3 назначение контактов (A, B, C) следующее: A – нормально замкнутый, B – перекидной, C – нормально разомкнутый.

Для выходов 2 и 4 назначение контактов (A, B) следующее: A – перекидной, B – нормально разомкнутый.

Таблица 5.3 – Назначение переключателей

Переключатель	Назначение	
1	При нормальной работе переключатель должен быть выключен	
2	Восстановление настроек (см. раздел 7.3). Заводское положение переключателя – выключен	
3	Обновление ПО прибора по интерфейсу RS-485. Заводское положение переключателя – выключен	

5.4 Подключение питания

5.4.1 Питание переменного тока 230 В

Прибор следует питать напряжением 230 В переменного тока от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования.

Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

5.4.2 Питание постоянного тока 24 В

Прибор следует питать напряжением 24 В постоянного тока от локального источника питания подходящей мощности.

Источник питания следует устанавливать в том же шкафу электрооборудования, в котором устанавливается прибор.

5.5 Подключение по интерфейсу RS-485

Связь прибора по интерфейсу RS-485 выполняется по двухпроводной схеме.

Длина линии связи должна быть не более 1200 метров.

Обесточенный прибор следует подключать к сети RS-485 витой парой проводов, соблюдая полярность. Провод **A** подключается к выводу **A** прибора, аналогично соединяются между собой выводы **B**.

i

ПРИМЕЧАНИЕ

Для подключения к ПК рекомендуется использовать преобразователь интерфейсов RS-485 <-> USB AC4 или преобразователь интерфейсов RS-485 <-> RS-232 AC3-M.

5.6 Подключение датчиков

5.6.1 Подключение выходов типа «Р»

На клеммы прибора выведены сухие контакты реле:

- два выхода имеют нормально замкнутые и нормально разомкнутые клеммы;
- два выхода имеют только нормально разомкнутые клеммы.

Рисунок 5.3 – Схема подключения выходов типа электромагнитное реле

5.6.2 Схема подключения датчиков к МК110-224.8Д.4Р

ПРИМЕЧАНИЕ

- 1. Клеммы «COM» это общие клеммы (минусовые) дискретных входов, электрически соединены между собой внутри прибора, дискретные датчики можно подключать относительно любой из них.
- 2. Суммарное сопротивление выходного ключа датчика и соединительных проводов не должно превышать 100 Ом.

Рисунок 5.4 - Схема подключения дискретных датчиков с выходом типа «сухой контакт»

Рисунок 5.5 – Схема подключения трехпроводных дискретных датчиков, имеющих выходной транзистор n-p-n типа с открытым коллектором

5.6.3 Схема подключения датчиков к МК110-224.8ДН.4Р

ПРИМЕЧАНИЕ

- 1. Дискретные двунаправленные входы разделены на 2 группы, каждая группа входов гальванически изолирована от другой и имеет свою клемму питания входов «SS», подключать дискретные датчики к входам можно только относительно клеммы питания входов для данной группы: входы DI1–DI4 имеют клемму питания «SS1», входы DI5–DI8 имеют клемму питания «SS2».
- 2. Напряжение питания входов $U_{n1},\,U_{n2}$ должно быть в диапазоне 24 ± 3 В.

Рисунок 5.6 – Подключение контактных датчиков (внешнее питание – 24 B) – вариант 1

Рисунок 5.7 – Подключение контактных датчиков (внешнее питание – 24 B) – вариант 2

ПРИМЕЧАНИЕ

Обе схемы равнозначны, допускается использование любой. В случае применения контактных датчиков совместно с датчиками, имеющими на выходе транзисторный ключ, схема подключения должна определяться типом транзисторных датчиков, согласно рисунку 5.8 и рисунку 5.9.

Рисунок 5.8 – Схема подключения дискретных датчиков с транзисторным выходом n-p-n типа с открытым коллектором

Рисунок 5.9 – Схема подключения дискретных датчиков с транзисторным выходом p-n-p типа 5.6.4 Электрические принципиальные схемы группы входов

Рисунок 5.10 – Электрическая принципиальная схема группы дискретных входов МК110-224.8Д.4Р (схема других групп входов идентична приведенной)

Рисунок 5.11 – Электрическая принципиальная схема группы дискретных входов МК110-224.8ДН.4Р (схема других групп входов идентична приведенной)

6 Устройство и принцип работы

6.1 Принцип работы

Работой модуля управляет Мастер сети. Модуль передает в сеть RS-485 данные о состоянии входов при запросе и получает команды на управление выходами от Мастера сети.

В качестве мастера сети можно использовать:

- □K;
- ПЛК;
- Панель оператора;
- удаленный облачный сервис.

6.2 Индикация

На лицевой панели прибора расположены светодиоды:

Рисунок 6.1 - Лицевая панель прибора

Таблица 6.1 – Назначение светодиодов

Светодиод	Состояние светодиода	Назначение
Входы 18	Светится	Вход замкнут
Выходы 14	Светится	Выход включен
RS-485	Мигает	Передача данных по RS-485
Питание	Светится	Питание подано
Авария	Сротитов	Максимальный сетевой тайм-аут превышен
Авария Светится		Ожидание первого запроса от Мастера сети

7 Настройка

7.1 Конфигурирование

Прибор конфигурируется с помощью ПО OWEN Configurator. Установочный файл располагается на сайте www.owen.ru.

Для конфигурирования прибора с помощью ПО OWEN Configurator следует:

- 1. Подключить прибор к ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB.
- 2. Подать питание на прибор.
- 3. Установить и запустить ПО OWEN Configurator.
- 4. Нажать кнопку **Добавить устройства** в главном меню **Проект**. Откроется окно выбора интерфейса подключения и поиска устройств.
- 5. Задать сетевые настройки в левой части окна:
 - Номер СОМ-порта;
 - Протокол (Modbus RTU или OBEH);
 - ПРИМЕЧАНИЕ Протокол определяется прибором автоматически.
 - Модель прибора из выпадающего списка Устройства;
 - Сетевые настройки прибора (скорость обмена, биты данных, четность, стоп-биты).
- 6. Ввести адрес прибора (значение по умолчанию 16).
- 7. Нажать кнопку Найти. В правой части окна отобразится прибор с указанным адресом.
 - **ПРИМЕЧАНИЕ**В столбце **Версия** отображается версия шаблона.
- 8. Выбрать найденный прибор (отметить галочкой) и нажать Добавить устройства.

Рисунок 7.1 – Настройка сетевых параметров в ПО OWEN Configurator

Более подробная информация о подключении и работе с прибором приведена в Справке ПО OWEN Configurator. Для вызова справки в программе следует нажать клавишу F1.

7.2 Конфигурационные и оперативные параметры

Параметры в приборе разделяются на группы:

- конфигурационные;
- оперативные.

Конфигурационные параметры – это параметры, определяющие конфигурацию прибора: структуру и сетевые настройки.

Значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются при выключении питания.

Оперативные параметры – это энергозависимые данные, которые сбрасывают свои значения после перезагрузки питания. Оперативные параметры отражают текущее состояние регулируемой системы.

ПРЕДУПРЕЖДЕНИЕ

Конфигурационные параметры сохраняются во flash-памяти прибора, ресурс которой ограничен (10 000 перезаписей).

Если ресурс исчерпан, то сохранение параметров во flash-память после их изменения невозможно (то есть после перезагрузки прибора по питанию будут использованы предыдущие значения параметров), поэтому не рекомендуется производить запись параметров во flash-память с высокой частотой.

7.3 Восстановление заводских настроек

Восстановление заводских настроек прибора используется во время установки связи между ПК и прибором в случае утери информации о заданных значениях сетевых параметров прибора.

Для восстановления заводских настроек прибора следует:

- 1. Отключить питание прибора.
- 2. Открыть крышку на лицевой панели прибора.
- 3. Установить переключатель 2 в положение Включен.
- 4. Включить питание прибора. Значения сбросятся на заводские настройки.
- 5. Установить переключатель 2 в положение Выключен.
- 6. Закрыть крышку на лицевой панели прибора.
- 7. Перезагрузить питание модуля для записи новых значений параметров.

Таблица 7.1 – Заводские значения сетевых параметров прибора

Параметр	Описание	Заводская установка
bPS	Скорость обмена данными	9600 бод
LEn	Длина слова данных	8 бит
PrtY	Тип контроля четности слова данных	Отсутствует
Sbit	Количество стоп-битов в посылке 1	
A.Len	Длина сетевого адреса	8 бит
Addr Базовый адрес прибора 16		16
Rs.dl	Задержка ответа по RS-485	2 мс

ПРИМЕЧАНИЕ

Для применения новых сетевых настроек следует перезагрузить питание модуля или нажать кнопку Перезагрузить устройство в меню Проект ПО OWEN Configurator.

7.4 Обновление встроенного ПО

Встроенное ПО модуля обновляется по интерфейсу RS-485.

Для обновления встроенного ПО следует:

- 1. Отключить питание прибора.
- 2. Открыть крышку на лицевой панели прибора.
- 3. Установить переключатели 3 в положение Включен.
- 4. Подключить модуль к ПК через преобразователь интерфейсов (АС4, АС4-М или АС3-М).
- 5. Включить питание прибора.
- 6. Запустить утилиту для прошивки, которая доступна на странице прибора на сайте www.owen.ru
- 7. Следовать указаниям программы.

После завершения обновления следует выключить питание прибора и установить переключатели **3** в положение **Выключен**.

8 Интерфейс RS-485

8.1 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес. Базовый адрес прибора задается в ПО OWEN Configurator.

Таблица 8.1 - Адресация в сети RS-485

Параметр	Значение	
Протокол ОВЕН*		
Диапазон значений базового адреса при 8-битной адресации	от 16 до 240	
Диапазон значений базового адреса при 11- битной адресации	от 16 до 2032	
Широковещательный адрес при 8-битной адресации	255	
Широковещательный адрес при 11-битной адресации	2040	
Базовый адрес прибора по умолчанию	16	
Базовый адрес каждого следующего прибора	[базовый адрес предыдущего прибора]** + [число каналов прибора]	
Протокол Modbus		
Диапазон значений базового адреса	от 1 до 255	

$\lceil \mathbf{i} \rceil$

ПРИМЕЧАНИЕ

* Длина базового адреса определяется параметром **A.Len** во время задания сетевых настроек. В адресе может быть 8 или 11 бит.

8.2 Протокол ОВЕН

Для задания коэффициента заполнения ШИМ по сети RS-485 следует присвоить значения четырем оперативным параметрам **r.OE** прибора, см. Приложение.

Посылка групповой команды включения/выключения выходов по протоколу ОВЕН невозможна.

По протоколу OBEH состояния дискретных входов и счетчиков опрашиваются через оперативные параметры прибора.

В параметре **r. Сn** бит, равный 0, соответствует состоянию «Разомкнут», равный 1, соответствует состоянию «Замкнут». Старший бит соответствует входу с наибольшим номером.

№ бита	15 4	3
Значение	Всегда равны 0	Состояние выходов с 4 до 1

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Фильтр дребезга контактов» **Tin.C**, где «Фильтр дребезга контактов» – название, **Tin.C** – имя.

Конфигурационные параметры имеют также индекс – цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра.

^{**} Базовый адрес прибора должен быть кратен 8 и при 8-битной, и при 11-битной адресации.

Оперативные параметры не имеют индекса. Они индексируются через сетевой адрес. В приборе есть несколько оперативных параметров. Для непосредственного обращения к выходу есть оперативный параметр **r.oe**.

Адресация оперативных параметров протокола ОВЕН

Каждый вход прибора имеет собственный сетевой адрес. Таким образом, прибор занимает 4 адреса в адресном пространстве сети RS-485. Адреса прибора должны следовать подряд. Для удобства задания адресов задается только Базовый адрес, который соответствует адресу Входа 1. Для каждого последующего входа адрес увеличивается на 1.

Пример

Пусть Базовый адрес прибора (параметр **Addr**) равен 32. Тогда для считывания или записи состояния первого выхода надо прочитать или записать **r.oe** с сетевым адресом 32, для считывания или записи состояния второго выхода — параметр **r.oe** с сетевым адресом 33 и т. д.

Таблица 8.2 - Оперативные параметры

	Выход 1	Выход 2	Выход 3	Выход 4
Расчет сетевого адреса	Базовый адрес (Addr)	Addr + 1	Addr + 2	Addr + 3
Сетевой адрес Выхода	32	33	34	35

Полный список параметров протокола ОВЕН приведен в Приложении Б.

8.3 Протокол Modbus

Протокол Modbus поддерживает два режима передачи данных: RTU или ASCII.

Чтение осуществляется функциями 0x03 (Read Holding Registers) или 0x04 (Read Input Registers), запись – 0x06 (Preset Single Register) и 0x10 (Write Multiple Registers).

Адрес битовой маски дискретных выходов – 50 (0х32). Адрес битовой маски дискретных входов – 51 (0х33). Диапазон значений битовых масок соответствует количеству выходов и входов прибора.

Список всех регистров протокола Modbus приведен в Приложении A.

8.4 Управление дискретными выходами по сети RS-485

Дискретные выходы управляются следующими способами:

- переключение логического сигнала
- генерация ШИМ сигнала

Переключение между способами происходит по крайней записи в битовую маску или коэффициент заполнения ШИМ. В случае записи битовой маски, все выходы будут работать в режиме переключения логического сигнала. И наоборот, все выходы перейдут в режим генерации ШИМ сигнала в случае записи значения коэффициента заполнения ШИМ одного из выходов.

В режиме генерации ШИМ задается период выходного сигнала. Длительность импульса для ШИМ определяется коэффициентом заполнения.

Минимальная длительность импульса ШИМ составляет 50 мс.

ПРИМЕЧАНИЕ

В протоколе ОВЕН битовая маска дискретных выходов отсутствует.

Коэффициент заполнения ШИМ передается в диапазоне:

- от **0** до **1** для протокола ОВЕН;
- от **0** до **1000** для протокола Modbus.

Список регистров Modbus и OBEH в таблицах А.1 и Б.2

8.5 Дискретные входы

Входы работают в режиме определения логического уровня.

Для каждого дискретного входа задействован счетчик импульсов, поступающих на вход.

Параметр	Значение
Разрядность	16 бит
Максимальная частота входного сигнала	1 кГц
Подавление дребезга	Вкл. / Выкл.
	Настраивается в ПО OWEN Configurator
Частота фильтрации дребезга контактов	100 Гц (коэффициент заполнения – 0,5)

ВНИМАНИЕ

Для работы с сигналами частотой менее 100 Гц (коэффициент заполнения – 0,5) следует включать подавление дребезга контактов.

Если счетчик переполнился, то соответствующий регистр обнуляется автоматически и счет продолжается. Для принудительного обнуления счетчика следует записать 0 в регистр счетчика импульсов.

ПРИМЕЧАНИЕ

Счетчики входов являются энергозависимыми, их значения сбросятся после перезагрузки питания модуля.

8.6 Режим «Авария»

В случае отсутствия запросов от Мастера сети RS-485 по истечении времени сетевого тайм-аута включается светодиод «Авария» и все дискретные выходы переводятся в безопасное состояние.

ВНИМАНИЕ

После включения питания прибора включается светодиод «Авария», выходы переходят в безопасное состояние. Прибор ожидает первого запроса от Мастера сети.

Значение безопасного состояния следует задавать отдельно для каждого выхода в параметре «Безопасное состояние». Значения параметров задаются в диапазоне от 0 до 1000.

ВНИМАНИЕ

В случае перехода модуля в безопасное состояния в коэффициент заполнения ШИМ записывается значение безопасного состояния выхода.

Тайм-аут перехода в безопасное состояние задается пользователем в ПО OWEN Configurator. Для отключения функции перехода в безопасное состояние следует установить параметр **Максимальный** сетевой тайм-аут равным 0.

ПРИМЕЧАНИЕ

Заводская настройка параметра Максимальный сетевой тайм-аут – 30 секунд.

9 Техническое обслуживание

9.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254-2015 (IEC 60529:2013);
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0-75;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

11 Упаковка

Прибор упаковывается в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона согласно ГОСТ 7933-89.

Для почтовой пересылки прибор упаковывается в соответствии с ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Комплектность

Наименование	Количество
Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

14 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение A. Регистры протокола Modbus

Таблица A.1 – Регистры протокола Modbus

Параметр	Значение (ед. изм.)	Тип	Адрес регистра		
Параметр	эначение (ед. изм.)	ТИП	(Hex) (Dec		
Коэффициент заполнения ШИМ на выходе 1	01000 (0,1 %)	Uint16	0x0000	0000	
Коэффициент заполнения ШИМ на выходе 2	01000 (0,1 %)	Uint16	0x0001	0001	
Коэффициент заполнения ШИМ на выходе 3	01000 (0,1 %)	Uint16	0x0002	0002	
Коэффициент заполнения ШИМ на выходе 4	01000 (0,1 %)	Uint16	0x0003	0003	
Безопасное состояние выхода 1	01000 (0,1 %)	Uint16	0x0010	0016	
Безопасное состояние выхода 2	01000 (0,1 %)	Uint16	0x0011	0017	
Безопасное состояние выхода 3	01000 (0,1 %)	Uint16	0x0012	0018	
Безопасное состояние выхода 4	01000 (0,1 %)	Uint16	0x0013	0019	
Период ШИМ на выходе 1	1900 c	Uint16	0x0020	0032	
Период ШИМ на выходе 2	1900 c	Uint16	0x0021	0033	
Период ШИМ на выходе 3	1900 c	Uint16	0x0022	0034	
Период ШИМ на выходе 4	1900 c	Uint16	0x0023	0035	
Битовая маска значений выходов	015	Uint16	0x0032	0050	
Битовая маска значений входов	0255	Uint16	0x0033	0051	
Значение счетчика импульсов на входе 1	065535	Uint16	0x0040	0064	
Значение счетчика импульсов на входе 2	065535	Uint16	0x0041	0065	
Значение счетчика импульсов на входе 3	065535	Uint16	0x0042	0066	
Значение счетчика импульсов на входе 4	065535	Uint16	0x0043	0067	
Значение счетчика импульсов на входе 5	065535	Uint16	0x0044	0068	
Значение счетчика импульсов на входе 6	065535	Uint16	0x0045	0069	
Значение счетчика импульсов на входе 7	065535	Uint16	0x0046	0070	
Значение счетчика импульсов на входе 8	065535	Uint16	0x0047	0071	
Включение фильтра антидребезга на входе 1	0 — выкл. 1 — вкл.	Uint16	0x00C8	0200	
Включение фильтра антидребезга на входе 2	0 – выкл. 1 – вкл.	Uint16	0x00C9	0201	
Включение фильтра антидребезга на входе 3	0 — выкл. 1 — вкл.	Uint16	0x00CA	0202	
Включение фильтра антидребезга на входе 4	1 — выт. 0 — выкл. 1 — вкл.	Uint16	0x00CB	0203	
Включение фильтра антидребезга на входе 5	1 — выт. 0 — выкл. 1 — вкл.	Uint16	0x00CC	0204	
Включение фильтра антидребезга на входе 6	1 — вкл. 0 — выкл. 1 — вкл.	Uint16	0x00CD	0205	
Включение фильтра антидребезга на входе 7	1 — выт. 0 — выкл. 1 — вкл.	Uint16	0x00CE	0206	

Продолжение таблицы А.1

Параметр	Значение (ед. изм.)	T	Адрес р	Адрес регистра		
Параметр	значение (ед. изм.)	Тип	(Hex)	(Dec)		
Включение фильтра антидребезга	0 — выкл.	Uint16	0x00CF	0207		
на входе 8	1 — вкл.					
Скорость обмена, кбит/с	0-2,4;	Uint16	0x0209	0521		
	1 - 4.8;					
	2 - 9,6;					
	3 – 14,4;					
	4 – 19,2;					
	5 – 28,8;					
	6 - 38,4;					
	7 – 57,6;					
	8 – 115,2					
Размер данных	0 – 7;	Uint16	0x020A	0522		
	1 – 8					
Количество стоп-бит	0 – 1 стоп-бит;	Uint16	0x020B	0523		
	1 – 2 стоп-бита					
Контроль четности	0 – отсутствует (no);	Uint16	0x020C	0524		
	1 – четность (Even);					
	2 – нечетность (Odd)					
Задержка ответа	045 мс	Uint16	0x020D	0525		
Адрес прибора	1255	Uint16	0x020F	0527		
Длина сетевого адреса	0 – 8;	Uint16	0x0211	0529		
	1 – 11					
Максимальный сетевой тайм-аут	0600 c	Uint16	0x0030	0048		
Имя прибора	_	String8	0xF000	61440		
Версия прибора	_	String8	0xF010	61456		

i

ПРИМЕЧАНИЕ

- 1. Запись в регистры осуществляется командами 06 (0х06) и 16 (0х10), чтение командами 03 или 04 (прибор поддерживает обе команды).
- 2. Счетчики обнуляются записью 0 в регистры хранения результатов счета.
- 3. В регистрах битовых масок значений входов и выходов старший бит соответствует входу или выходу с наибольшим номером: (бит, равный 1, соответствует состоянию выхода «Включено» и входа «Замкнут»).
- 4. Формат данных Uint16 в таблице является сокращением от Unsigned Integer 16.

ВНИМАНИЕ

Невозможно использование в приборе следующих сочетаний сетевых параметров:

- размер данных 7 бит, 1 стоп-бит, контроль четности отсутствует;
- размер данных 7 бит, 2 стоп-бита, контроль четности отсутствует.

Приложение Б. Параметры прибора для протокола ОВЕН

Таблица Б.1 – Конфигурационные параметры

Имя параметра	Hash- свертка	Описание	Тип	Индекса- ция	Диапазон значений	Атрибуты	Заводская установка	Комментарии
	!	•		Общие	параметры			
dEv	D681	Название прибора	ASCII	без индекса	до 8 символов	нет атрибутов	MK110-84	_
vEr	2D5B	Версия прошивки	ASCII	без индекса	до 8 символов	нет атрибутов	_	_
				Сетевые	параметры			
bPs	b Ps В760 Скорость обмена данными	обмена	0: 2400 1: 4800 2: 9600	без индекса	нет ограничений	обычные атрибуты	9600	[бит/с]
			3: 14400 4: 19200					
			5: 28800					
			6: 38400					
			7: 57600					
			8: 115200					
LEn	523F	Длина слова данных	0: 7 1: 8	без индекса	нет ограничений	обычные атрибуты	8	
PrtY	E8C4	Тип контроля четности слова данных	0: отсутствует (no) 1: четность (even) 0: нечетность (odd)	без индекса	нет ограничений	обычные атрибуты	no	_
Sbit	B72E	Количество стоп-битов в посылке	0:1 стоп-бит 1: 2 стоп-бита	без индекса	нет ограничений	обычные атрибуты	1 стоп-бит	_
A.Len	1ED2	Длина сетевого адреса	0: 8 1: 11	без индекса	нет ограничений	обычные атрибуты	8	[бит]
Addr	9F62	Базовый адрес прибора	int	без индекса	16240 для A.Len = 8 162032 для A.Len = 11	обычные атрибуты	16	_

Продолжение таблицы Б.1

Имя параметра	Hash- свертка	Описание	Тип	Индекса- ция	Диапазон значений	Атрибуты	Заводская установка	Комментарии
t.out	BEC7	Максимальный сетевой тайм- аут	int	без индекса	0600	обычные атрибуты	30	[сек]
Rs.dL	CBF5	Задержка ответа по сети RS-485	int	без индекса	045	обычные атрибуты	2	[мсек]
			Г	Іараметры ди	скретных входов			
Tin.C	C5C3	Фильтр дребезга контактов	0: Выключен 1: Включен	0,17	нет ограничений	обычные атрибуты	Включено	_
			Па	араметры дис	кретных выходов			
THPD	7BFE	Период ШИМ при управлении дискретными выходами по RS-485	CLK_frm	0,13	1900	обычные атрибуты	1	[c]
O.ALr	DC64	Безопасное состояние выхода	uint16	0,13	0.01000.0	обычные атрибуты	0.0	[%]

ВНИМАНИЕ

ВНИМАНИЕ

Невозможно использование в приборе следующих сочетаний сетевых параметров:

• PrtY=0; Sbit=0; Len=0 (контроль четности отсутствует, 1 стоп-бит, 7 бит);

• PrtY=0; Sbit=1; Len=0 (контроль четности отсутствует, 2 стоп-бита, 7 бит).

Таблица Б.2 – Оперативные параметры

Имя параметра	Hash-свертка	Описание	Тип	Индексация	Диапазон значений	Атрибуты	Комментарии
r.Cn	2D26	Текущее	int16	без индекса	0255	нет	Битовая маска текущего
		состояние дискретных				атрибутов	состояния всех дискретных
		входов					входов прибора:
							0 – разомкнут;
							1 – замкнут.
							По несуществующим входам
							посылаются 0.
							Параметр только на чтение.
r.Cou	2517	Значение счетчика дискретного входа	int16	по дискретным входам, от 0 до 7	065535	нет атрибутов	Показывает количество импульсов, посчитанных дискретным входом. Обнуление счетчика делается записью 0 в данный параметр.
r.OE	E894	Состояние дискретного выхода	float24	по дискретным выходам, от 0 до 3	01.0	нет атрибутов	Считывает / записывает состояние дискретного выхода. Дробные значения задают коэффициент заполнения ШИМ дискретных выходов.

Таблица Б.3 – Форматы представления данных

Сокращенная мнемоника	Характеристика
float	Значение параметра представляет собой 32-разрядное число с плавающей точкой
float24	Значение параметра представляет собой 24-разрядное число с плавающей точкой
CLK_frm	Составной тип данных с информацией о времени
int или int16	16-разрядное знаковое число с односторонней десятичной точкой
ASCI	Параметр, отображаемый не в виде числа, а как последовательность символов (от 1 до 15 ASCII-символов)
Перечень значений	Значение представляет собой 8разрядное целочисленное число. Каждое представленное значение ассоциируется в конфигураторе с текстом

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru

рег.:1-RU-32746-1.19