SSE5107 Optimization Theory and Algorithms Homework 2

Due: Nov. 23, 2021, in class

Problem 1

Formulate the following problems as LPs, where $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$ are given.

- 1. Minimize $||Ax b||_{\infty}$.
- 2. Minimize $||Ax b||_1$.
- 3. Minimize $||Ax b||_1$ subject to $||x||_{\infty} \le 1$.
- 4. Minimize $||x||_1$ subject to $||Ax b||_{\infty} \le 1$.
- 5. Minimize $||Ax b||_1 + ||x||_{\infty}$.

Problem 2

Suppose $A: \mathbf{R}^n \to \mathbf{S}^m$ is affine, i.e.,

$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$

where $A_i \in \mathbf{S}^m$. Let $\lambda_1(x) \geq \lambda_2(x) \geq \cdots \geq \lambda_m(x)$ denote the eigenvalues of A(x). Show how to formulate the following problems as SDPs.

- 1. Minimize the maximum eigenvalue $\lambda_1(x)$.
- 2. Minimize $\lambda_1(x) \lambda_m(x)$.