

Erkennung fehlerhafter Bezahlvorgänge an Selbstbedienungskassen im Einzelhandel

Abschlusspräsentation

Dominik Lewin, Mario Teßmann, Johannes Winkler

04.07.2024

Agenda

- Projektauftrag
- Datenbereitstellung
 - Datenvorverarbeitung
 - explorative Datenanalyse
- Analyse
 - Vorgehensweise
 - Details zum endgültigen Modell
 - Mehrwert des Klassifikators
- Nutzbarmachung
- Zusammenfassung

Funktionen & Vorteile von SB-Kassen

Funktionen:

- Kunden können Artikel selbst scannen und stornieren
- Anzahl der Artikel kann ausgewählt werden
- Obst / Gemüse / Backware auswählen und ggf. wiegen
- Bezahlung mit Karte oder Bargeld

Vorteile:

- Einsparung von Personalkosten
- Arbeitserleichterung der Angestellten
- Steigerung der Kundenzufriedenheit (Vermeidung von Warteschlangen)

Fehlerursachen & Problemstellung

Fehlerursachen:

- Technische Probleme: Artikel nicht gefunden; Barcode nicht lesbar
- Versehen: Artikel übersehen; falsche Anzahl oder falsches Produkt gewählt
- Absicht: Artikel bewusst nicht gescannt; falsche Anzahl oder falsches Produkt gewählt; nachträgliche Stornierung; Abbruch des Zahlungsvorgangs

Problemstellung:

- Einführung von SB-Kassen im Jahr 2016
- Anzahl fehlerhafter Bezahlvorgänge seit Inbetriebnahme angestiegen
- Fehlerhafter Bezahlvorgang: Nicht alle Artikel eines Einkaufs gescannt
- Empirische Untersuchungen zeigten: ca. 5% der Einkäufe sind fehlerhaft

Projektziel & Anforderungen

• Ziel:

- Fehlerhafte Einkäufe an SB-Kassen erkennen
- Gewinnsteigerung
- Zielgerichtete Nachkontrollen
- Dadurch Verringerung fehlerhafter Einkäufe

Anforderungen:

- Möglichst viele fehlerhafte Einkäufe erkennen
- Möglichst wenig Falschverdächtigungen "unschuldiger" Kunden
- Maximierung der Gewinnfunktion: 5€ * TP 25€ * FP 5€ * FN

Projektauftrag & Ausgestaltung

Auftrag:

- Entwicklung eines Klassifikationsalgorithmus zur Erkennung verdächtiger Scanvorgänge (Hinweis an Mitarbeiter zur Nachkontrolle)
- Entscheidung für Mitarbeiter möglichst nachvollziehbar

Ausgestaltung:

Strukturiertes Vorgehen nach DASC-PM

o Beginn: 08.04.2024

o Fertigstellung: 04.07.2024

Agenda

- Projektauftrag
- Datenbereitstellung
 - Datenvorverarbeitung
 - explorative Datenanalyse
- Analyse
 - Vorgehensweise
 - Details zum endgültigen Modell
 - Mehrwert des Klassifikators
- Nutzbarmachung
- Zusammenfassung

Ursprungsdatenquelle

- 104.646 Einträge (100.105 Einträge normal, 4541 fraud)
- 12 Attribute, darunter auch das Label (Klassifikation)

GUID	granu totai	n_it ems	total_check out_time	line_voids	most_freq_ product	products	timestamp	payment_m edium	label	customer_fe edback	cash_desk_i d
8cc21dee- 9922-4a41- 0 a9dc- 467810ca3d b5	63.31	24	324.426177	1	dry	['alcohol', 'fruit and vegetables', 'snack', '	1483345009 517544427	card	normal	NaN	2
d80034dc- 0087-4546- 1 b5bc- 44bd7060c0 d5	29.59	11	92.845052	0	dry	['dry', 'fruit and vegetables', 'dry', 'snack'	1483345752 494372926	card	normal	NaN	1

Produktkategorien:

dry, alcohol, fruit & vegetables, snack, energy_drink, bakery, household und convenience

Datenqualität

- Repräsentativität für die Filialen und die Umgebung gegeben, nicht jedoch für Deutschland
- Aktualität für Testdaten aus 2019 gegeben (Training auf aktuellen Daten für den realen Einsatz empfohlen)
- Fehlerfreiheit ist gegeben (keine Duplikate; Ausreißer plausibel)
- **Vollständigkeit** ist für alle Attribute bis auf *customer feedback* gegeben (letzteres nur 8.348 Einträge)
- Konsistenz teilweise nicht gegeben:
 - o grand_total teilweise mit 2 bzw. 3 Nachkommastellen gespeichert
 - o payment_medium enthält 3 Ausprägungen, obwohl nur zwei Bezahlarten möglich ist
 - o customer_feedback sollte ganzzahlig zwischen 1 und 10 liegen, aber es gibt Nachkommastellen

Datenaufbereitung

- Entfernung von GUID, da irrelevant
- Entfernung von customer feedback, da nur in 8% enthalten und keine sinnvolle Ersetzungsstrategie
- Merkmalserzeugung aus timestamp: weekday und hour (Rest verworfen)
- Merkmalserzeugung aus products: Neue Spalte für jede Produktkategorie mit Angabe der Anzahl
- total checkout time: Rundung als Ganzzahl, da Milisekunden zu detailliert sind
- grand total: Einträge mit 3 Nachkommastellen auf 2 Nachkommastellen gekürzt
- payment medium: Kartenzahlungen einheitlich als card bezeichnet
- Datentransformationen:
 - One-Hot-Codierung von payment medium und most freg product
 - Binärcodierung von *label*
 - Codierung von weekday mit 0 bis 5 für Ausprägungen Montag bis Samstag

Ziele der explorativen Datenanalyse

- Datenvisualisierung
- Statistische Analysen
- Identifikation von Ausreißern

Korrelationen (Pearson)

	label		label		label
grand_total	<mark>0.144469</mark>	year	0.002246	bakery	-0.071877
n_items	-0.000345	month	-0.001709	convenience	0.095816
total_checkout_time	0.050646	day	0.000231	dry	-0.035326
line_voids	0.002112	hour	0.062477	energy_drink	<mark>0.184902</mark>
payment_medium	<mark>0.159123</mark>	minute	-0.002158	fruit and vegetables	-0.036250
label	1.000000	weekday	0.000352	<mark>household</mark>	<mark>0.236313</mark>
cash_desk_id	0.002991	alcohol	0.014530	snack	-0.071853

- Nur wenige Attribute zeigen eine Korrelation mit label
- Höchste Korrelation: energy_drink und household
- Korrelationen spiegeln sich auch im Modell wider

Einkaufswert – grand_total

- Die Hälfte der Einkäufe liegt unter einem Warenwert von 20 EUR
- 50%-Perzentil = 17.06 (Median)
- Ausreißer: 60 Einkäufe > 500 EUR
- Maximum 1091 EUR
- Korrelation zum Attribut label
- Ausreißer oberhalb von ca. EUR 544 sind fraud

Meistgekauftes Produkt – most_frequent_product

- Kategorische Variable
- Das Attribut most_frequent_product weist einen Zusammenhang zu label auf
- Bei normalen Transaktionen ist der Anteil von dry am größten, bei fehlerhaften Transaktionen household
- Relative Häufigkeit von household und energy drink bei fehlerhaften Transaktionen höher als bei normalen

Zahlungsmittel – payment_medium

- Kategorische Variable, Ausprägungen: card, cash und credit
- Bis zum 12.08.2017 nur card
- Danach zusätzlich cash und credit

Zeitlicher Zusammenhang – *timestamp*

- Korrelation zwischen Stunde und label
- Korrelation zwischen Wochentag und label
- Auffällig:
 - Häufung von fraud freitags und samstags
 - Zwischen 16 und 19 Uhr deutlicher Anstieg von fraud

Anzahl fehlerhafter Bezahlvorgänge nach Stunde und Wochentag

Nicht-technische Umsetzungsmöglichkeiten

Begrenzung des Gesamtpreises bei 500 EUR

In dem Fall würden im Datensatz 58 Betrugsfälle wegfallen (aber auch 2 normale Einkäufe)

Überwachung der SB-Kassen an Freitagen und Samstagen zwischen 16 und 19 Uhr

Agenda

- Projektauftrag
- Datenbereitstellung
 - Datenvorverarbeitung
 - explorative Datenanalyse
- Analyse
 - Vorgehensweise
 - Details zum endgültigen Modell
 - Mehrwert des Klassifikators
- Nutzbarmachung
- Zusammenfassung

Vorgehensweise

- Alle Modelle aus dem "scikit-learn-Universum" wurden getestet
- Vorläufiger Sieger: Random Forest (RF)
- Fokus auf Algorithmen, die auf Entscheidungsbäumen basieren
- Weitere Tests mit Boosting Algorithmen
- Boosting Algorithmen lieferten noch bessere Ergebnisse als RF
- CatBoost war unter den Boosting Algorithmen der beste Algorithmus

Vorgehensweise

- Feature Selection anhand von CatBoost:
 - Zusätzliche Attribute wie Kundendichte, Feiertage usw. getestet und verworfen
 - Zusätzliche Attribute, die wertvolle Informationen enthalten (z.B. cash_epoch und item_per_time), identifiziert
 - Vielzahl von Ratios von Attributen ausprobiert und verworfen
 - Korrektur unausgeglichener Daten ausprobiert und verworfen
- Hyperparameter-Tuning mit CatBoost
- Trainieren des besten Modells auf kompletten Datensatz
- Vorhersage auf Testdaten aus 2019

Details zum endgültigen Modell

- Möglichkeit, sogenannte Feature Importances anzeigen zu lassen
- Werte sind normiert und können als Prozent-Za interpretiert werden
- Addition aller Feature Importances ergibt 100%
- Niedriger Wert: Änderung der Attributausprägu (Feature Value) beeinflusst die vorhergesagte Wahrscheinlichkeit für die positive Klasse im Durchschnitt weniger stark.
- Hoher Wert: Änderung der Attributausprägung beeinflusst die vorhergesagte Wahrscheinlichkeit für die positive Klasse im Durchschnitt stark.

Wichtigkeiten der Attribute nach Optimierung

Das Modell lernt das Zusammenspiel mehrerer Attribute

SHAP Values

- Nach Lloyd Shapley (1953) aus der kooperativen Spieltheorie
- Misst den durchschnittlichen zusätzlichen Beitrag einer Variablen
- Beispiel: Wohnung wird auf 310k EUR geschätzt anhand von 3 Attributen:
 - 50qm
 - "Nähe Park"
 - o 2. Stock
- Was ist der Beitrag von "Nähe Park" zum Kaufpreis?
- Schätze den Wert der Wohnung mit der Kombination aller Attribute einmal mit und einmal ohne "Nähe Park", bestimme jeweils die Differenz und bilde den Durchschnitt der Differenzen

Erklärung einer Klassifikation mittels SHAP Values

Ergebnisse auf Trainings- und Testdaten

Gewinn ohne Modell: - 4540 €

Gewinn mit Modell: - 1235 €

Mehrwert: 3305 €

Gewinn ohne Modell: - 22705 € Gewinn mit Modell: - 3930 €

Mehrwert: 18775 €

Mehrwert

Vergleich zwischen:

- Zufallskontrollen (5% der Einkäufe)
- Zufallskontrollen an Freitagen und Samstagen zwischen 16 und 19 Uhr (davon 10% der Einkäufe)
- Keine Kontrollen
- Kontrolle aller Einkäufe > 500 Euro
- Unser Vorhersagemodell

Verwendung der Gewinnfunktion

Agenda

- Projektauftrag
- Datenbereitstellung
 - Datenvorverarbeitung
 - explorative Datenanalyse
- Analyse
 - Vorgehensweise
 - Details zum endgültigen Modell
 - Mehrwert des Klassifikators
- Nutzbarmachung
- Zusammenfassung

Nutzbarmachung

Nutzbarmachung

- Code wird auf GitHub entwickelt, Rest-API hosted auf Azure
- Qualitätskontrolle:
 - Trennung von Produktion und Entwicklung
 - Tests auf Master-Branch: Nur bei Erfolg ist Code-push möglich
- Ausfallsicherheit:
 - Web-App hat mehrere Instanzen mit automatischem load-balancing
 - Hot-start der Produktionsinstanz (keine downtime)
 - Kontinuierliche health-checks der laufenden Instanzen
- Skalierbarkeit der Anwendung ist gegeben
- Email Benachrichtigung bei unbekannten Produkten und Zahlungsmethoden, um schnell auf Änderungen reagieren zu können (optional)

Agenda

- Projektauftrag
- Datenbereitstellung
 - Datenvorverarbeitung
 - explorative Datenanalyse
- Analyse
 - Vorgehensweise
 - Details zum endgültigen Modell
 - Mehrwert des Klassifikators
- Nutzbarmachung
- Zusammenfassung

Zusammenfassung

- Auftrag: Erstellung eines Klassifikationsalgorithmus, der mit möglichst hoher Präzision anzeigt, welche Einkäufe an den SB-Kassen nachkontrolliert werden sollen
- Transaktionsdaten enthalten genug Informationen, um einen solchen Algorithmus zu erstellen
- Ein Boosting-Algorithmus konnte auf Trainingsdaten nachweisen, dass sein Einsatz ökonomisch sinnvoll ist und verschiedene Heuristiken wie Zufallskontrollen oder Kontrollen zu bestimmten Uhrzeiten schlägt
- Erklärungen für die jeweilige Entscheidung des Algorithmus (SHAP Values) werden zusätzlich geliefert, um Transparenz bei Nachkontrollen zu schaffen
- Implementierung mittels REST-API erlaubt eine relativ effiziente und wartungsarme Umsetzung, der Algorithmus kann zukünftig selbstständig mit neuen Daten trainiert werden

Vielen Dank für die Aufmerksamkeit!