MEDIÇÃO TRIFÁSICA USANDO WATTÍMETRO ANALÓGICO

Conteúdo

1	Mét	odo dos dois Wattímetros	2
	1.1	Demonstração da formula	2
	1.2	Como proceder	3
	1.3	Como descobrir qual wattímetro é W_1 ou W_2	4
	1.4	Medições	6
		1.4.1 Potência Ativa	6
		1.4.2 Potência Reativa	6
		1.4.3 Fator de potencia	6
		1.4.4 Relação gráfica W_1 e W_2	6
2	Med	lição de potencia reativa usando 1 wattímetro	7
	2.1	Ligação	7
	2.2	Deducão da Equação	8

1 Método dos dois Wattímetros

1.1 Demonstração da formula

Considerando a sequencia ABC temos:

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = V_L \angle \theta \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = \frac{V_L}{\sqrt{3}} \angle (\theta - 30^\circ) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = I_L \angle ((\theta - 30^\circ) - \theta_z) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$W_1 = \Re\{V_{AC} * I_A^*\}$$

$$W_1 = \Re\{-\alpha * V_L \measuredangle \theta * I_L \measuredangle (-\theta + 30^\circ + \theta_z)\}$$

$$W_1 = \Re\{V_L * I_L \angle (\theta - \theta + 30^\circ + \theta_z - 60^\circ)\}$$

$$W_1 = \Re\{V_L * I_L \measuredangle(\theta_z - 30^\circ)\}$$

$$W_1 = V_L * I_L * \cos(\theta_z - 30^\circ)$$

$$W_2 = \Re\{V_{BC} * I_B^*\}$$

$$W_2 = \Re\{(\alpha^2 * V_L \measuredangle \theta) * (\alpha^2 * I_L \measuredangle (\theta - 30^\circ - \theta_z))\}^*$$

$$W_2 = \Re\{(V_L \angle \{\theta - 120^\circ\}) * (*I_L \angle (-\theta + 30^\circ + \theta_z + 120^\circ)\})$$

$$W_2 = \Re\{V_L * I_L \angle (\theta - \theta + 30^\circ + \theta_z - 120^\circ + 120^\circ)\}$$

$$W_2 = \Re\{V_L * I_L \angle (\theta_z + 30^\circ)\}$$

$$W_2 = V_L * I_L * \cos(\theta_z + 30^\circ)$$

1.2 Como proceder

- Escolher duas fases.
- Medir a corrente que passa na fase escolhida e a tensão entre a mesma e a fase não escolhida.
- Fazer o mesmo com a segunda Fase escolhida.

Exemplo:

Figura 1: montagem usando 2 wattímetros

1.3 Como descobrir qual wattímetro é W_1 ou W_2

• Desenhar a sequencia de fase

Figura 2: Desenho para sequencia ABC

• Destacar fase que não possui Wattímetro

Figura 3: Fase C destacada

 $\bullet\,$ Girar no sentido Horário, o primeiro encontrado é o W_1 e o segundo é o W_2

Figura 4: W_A foi encontrado primeiro, logo $W_A = W_1$ e $W_B = W_2$

- 1.4 Medições
- 1.4.1 Potência Ativa

$$P_T = W_1 + W_2$$

1.4.2 Potência Reativa

$$Q_T = \sqrt{3} * (W_1 - W_2)$$

1.4.3 Fator de potencia

$$tg(\theta) = \frac{Q_T}{P_T}$$

$$\theta = tg^{-1}(\frac{Q_T}{P_T})$$

$$\theta = tg^{-1}\left(\frac{\sqrt{3}*(W_1 - W_2)}{W_1 + W_2}\right)$$

1.4.4 Relação gráfica W_1 e W_2

2 Medição de potencia reativa usando 1 wattímetro

Conforme a teoria clássica:

$$Q_T = \sqrt{3} * V_L * I_L * \sin(\theta_z)$$

ou

$$Q_T = \sqrt{3} * V_L * I_L * \cos(\theta_z - 90^\circ)$$

Portanto precisamos determinar um esquema de ligação para o wattímetro para que sua leitura seja :

$$W = \frac{Q_T}{\sqrt{3}} = V_L * I_L * \cos(\theta_z - 90^\circ)$$

2.1 Ligação

Observe a liação a seguir:

Figura 5: Montagem para 1 wattímetro

Leitura do wattímetro: $W = \Re\{V_L * I_L^*\}.$

2.2 Dedução da Equação

Considerando a sequencia ABC temos:

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = V_L \angle \theta \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = \frac{V_L}{\sqrt{3}} \angle (\theta - 30^\circ) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = I_L \angle ((\theta - 30^\circ) - \theta_z) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

medições do wattímetro:

$$I = I_A = I_L$$

$$V = V_{BC}$$

temos que:

$$W = \Re\{V_L * I_L^*\}$$

$$W = \Re\{V_{BC} * I_L^*\}$$

$$W = \Re\{(\alpha^2 V_L \angle \theta) * [I_L \angle (-\theta + 30^\circ + \theta_z)]\}$$

$$W = \Re\{V_L * I_L \angle (-120^\circ + \theta - \theta + 30^\circ + \theta_z)\}$$

$$W = \Re\{V_L * I_L \angle (\theta_z - 90^\circ)\}$$

$$W = V_L * I_L * \cos(\theta_z - 90^\circ)$$

Assim
$$Q_T = \sqrt{3} * W$$