Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 4 Ejercicios entregables

Integrantes:

Risaro Daniela Belén LU: 666/09 Sturmer Eva Sylvia Juliet LU: 606/19

Ejercicio 1 Calcular las siguientes expresiones, donde a, b son variables reales, i una variable entera y A es una secuencia de reales::

- $\operatorname{def}(\sqrt{a/b})$.
- $\operatorname{def}(A[i+2])$.

Respuesta:

•
$$\operatorname{def}(\sqrt{a/b}) \equiv \operatorname{def}(a) \wedge \operatorname{def}(b) \wedge L \ ((a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0))$$

 $\equiv \operatorname{True} \wedge \operatorname{True} \wedge L \ ((a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0))$
 $\equiv (a \ge 0 \wedge L \ b > 0) \vee L \ (a \le 0 \wedge L \ b < 0)$

•
$$def(A[i+2]) \equiv def(A) \wedge def(i+2) \wedge L \ 0 \le i+2 < |A|$$

 $\equiv True \wedge True \wedge L \ -2 \le i < |A| \ -2$
 $\equiv -2 \le i < |A| \ -2$

Ejercicio 6.e Escribir programas para los siguientes problemas y demostrar formalmente su corrección usando la precondición más débil.

• proc problema5(in a: seq $\langle \mathbb{Z} \rangle$, in i: \mathbb{Z} , out result: \mathbb{Z}) { Pre $\{0 \le i \land i+1 < |a| \}$ Post $\{\text{result} = a[i] + a[i+1] \}$

Respuesta:

S1: result:= a[i] + a[i+1]

• Primero calculamos su wp por medio del Axioma 1:

```
\begin{split} E &\equiv wp(S1, Post) \equiv wp(result:= a[i] + a [i+1], result:= a[i] + a [i+1]) \\ /^* & \text{Siendo result de Post reemplazado por su valor de } S1.^* / \\ &\equiv def(a[i] + a [i+1]) \land L ((a[i] + a [i+1]) = (a[i] + a [i+1])) \\ &\equiv def(a[i]) \land def(a[i+1]) \land L \text{ True} \\ &\equiv def(a) \land def(i) \land def(a) \land def(i) \land L \ 0 \leq i < |a| \land L \ 0 \leq i+1 < |a| \\ &\equiv \text{True} \land \text{True} \land \text{True} \land \text{True} \land L \ 0 \leq i < |a| \land L \ 0 \leq i+1 < |a| \\ &\equiv 0 \leq i < |a| \land L \ 0 \leq i+1 < |a| \\ &\equiv 0 \leq i \land i+1 < |a| \end{split}
```

. Ahora checkeamos que $Pre \rightarrow E$:

Pre
$$\rightarrow$$
 E \equiv 0 \leq i \wedge i+1 $<$ |a| \rightarrow 0 \leq i \wedge i+1 $<$ |a| \equiv True

Ejercicio 8.d Escribir programas para los siguientes problemas y demostrar formalmente su corrección usando la precondición más débil.

• proc problema4(in s: seq $\langle \mathbb{Z} \rangle$, in i: \mathbb{Z} , in out a: \mathbb{Z}) { Pre $\{0 \le i < |s| \land L \ a = \sum_{j=o}^{i-1} (\ if \ s[j] \ne 0 \ \text{then 1 else 0 Fi} \) \}$ Post $\{a = \sum_{j=o}^{i} (\ if \ s[j] \ne 0 \ \text{then 1 else 0 Fi} \) \}$ }

Respuesta:

$$if (s[i] \neq 0)$$

$$a:= a + 1$$

$$else$$

$$skip$$

$$endif$$

• Primero calculamos su wp por medio del Axioma 4:

Si S=if B then S1 else S2 endif, entonces:

$$\begin{split} E &= wp(S, Post) \equiv def(B) \land L \ ((B \land wp(S1, Post)) \lor (\neg B \land wp(S2, Post))) \\ &\equiv def(s[i] \neq 0) \land L \ ((s[i] \neq 0 \land wp(S1, Post)) \lor (\neg (s[i] \neq 0) \land wp(S2, Post))) \\ &\equiv 0 \leq i < |s| \land L \ ((s[i] \neq 0 \land wp(S1, Post)) \lor (\neg (s[i] \neq 0) \land wp(S2, Post))) \end{split}$$

Lo dividimos en 3 partes para que sea mas legible:

1.
$$0 \le i < |s|$$

2.
$$s[i] \neq 0 \land wp(S1, Post)$$

3.
$$\neg(s[i] \neq 0) \land wp(S2, Post)$$

Comenzemos con el 2:

$$s[i] \neq 0 \land wp(S1, Post)$$

$$\equiv$$
 s[i] \neq 0 \wedge wp(a:= a + 1, a = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi})$

$$\equiv$$
s[i] \neq 0 \wedge def(a + 1) \wedge L a + 1 = $\sum\limits_{j=o}^{i}($ if s[j] \neq 0 then 1 else 0 Fi)

$$\equiv$$
 s[i] \neq 0 \wedge def(a) \wedge L a + 1 = $\sum_{i=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi})$

$$\equiv$$
 s[i] \neq 0 \wedge True \wedge L a + 1 = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi})$

$$\equiv$$
s[i] \neq 0 \land L a + 1 = $\sum\limits_{j=o}^{i}(~if~s[j]\neq0$ then 1 else 0 Fi)

Continuamos con el 3:

$$\neg(s[i] \neq 0) \land wp(S2, Post)$$

$$\equiv s[i] = 0 \land wp(skip, Post)$$

$$\equiv$$
 s[i] = 0 \land wp(skip, a = $\sum_{j=0}^{i} (if \ s[j] \neq 0 \text{ then } 1 \text{ else } 0 \text{ Fi }))$

$$\equiv$$
s[i] = 0 \wedge a = $\sum_{j=o}^{i} (\ if\ s[j] \neq 0$ then 1 else 0 Fi)

Por lo que juntando las 3 partes obtenemos:

Finalmente debemos probar que $Pre \rightarrow E$:

$$0 \le i < |s| \land L \ a = \sum_{j=0}^{i-1} (if \ s[j] \ne 0 \ then \ 1 \ else \ 0 \ Fi) \rightarrow E$$

•
$$\mathbf{a} = \sum_{j=0}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi) \rightarrow (\mathbf{s}[\mathbf{i}] \neq 0 \land \mathbf{L} \ \mathbf{a} + 1 = \sum_{j=0}^{i} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi))$$

$$\equiv (\mathbf{s}[\mathbf{i}] \neq 0 \land \mathbf{L} \ \mathbf{a} = \sum_{j=0}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi) - 1)$$

$$\equiv \mathbf{a} = \sum_{j=0}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi)$$

Por lo que:

 $\mathbf{a} = \sum_{j=o}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi) \rightarrow \mathbf{a} = \sum_{j=o}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi)$: Y esto se cumple siempre (True).

•
$$\mathbf{a} = \sum_{j=0}^{i-1} (\ if\ s[j] \neq 0\ then\ 1\ else\ 0\ Fi\) \to (\mathbf{s}[\mathbf{i}] = 0 \land \mathbf{a} = \sum_{j=0}^{i} (\ if\ s[j] \neq 0\ then\ 1\ else\ 0\ Fi\))$$

$$\equiv \mathbf{a} = \sum_{j=0}^{i-1} (\ if\ s[j] \neq 0\ then\ 1\ else\ 0\ Fi\) - \mathbf{s}[\mathbf{i}]$$

$$\equiv \mathbf{a} = \sum_{j=0}^{i-1} (\ if\ s[j] \neq 0\ then\ 1\ else\ 0\ Fi\) - 0$$

$$\equiv \mathbf{a} = \sum_{j=0}^{i-1} (\ if\ s[j] \neq 0\ then\ 1\ else\ 0\ Fi\)$$

Por lo que:

 $\mathbf{a} = \sum_{j=o}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi) \rightarrow \mathbf{a} = \sum_{j=o}^{i-1} (if \ s[j] \neq 0 \ then \ 1 \ else \ 0 \ Fi)$: Y esto se cumple siempre (True).