Nama: Pawitro Purbsngkoro

NIM : L200170045

Kelas: C

MODUL08

1. Persiapkan file Cuaca.arff:

```
@relation Cuaca
    @attribute Cuaca {Cerah, Mendung, Hujan}
 4 @attribute Suhu real
 5 @attribute Kelembaban Udara real
 6 @attribute Berangin {YA, TIDAK}
    @attribute Bermain Tenis {YA, TIDAK}
9 @data
10 Cerah, 85, 85, TIDAK, TIDAK
11 Cerah, 80, 90, YA, TIDAK
12 Mendung, 83, 86, TIDAK, YA
13 Hujan, 70, 96, TIDAK, YA
14 Hujan, 68, 80, TIDAK, YA
15 Hujan, 65, 70, YA, TIDAK
16 Mendung, 64, 65, YA, YA
17 Cerah, 72, 95, TIDAK, TIDAK
18 Cerah, 69, 70, TIDAK, YA
19 Hujan, 75, 80, TIDAK, YA
20 Cerah, 75, 70, YA, YA
21 Mendung, 72, 90, YA, YA
22 Mendung, 81, 75, TIDAK, YA
23 Hujan, 71, 91, YA, TIDAK
```

2. Buatlah seperti pada gambar dan save dengan nama CuacaTesting.arff:

```
CuacaTesting.arff - Notepad

File Edit Format View Help
@relation Cuaca

@attribute Cuaca {Cerah, Mendung, Hujan}
@attribute Suhu real
@attribute Kelembaban_Udara real
@attribute Berangin {YA, TIDAK}
@attribute Bermain_Tenis {YA, TIDAK}

@data
Cerah,75,65,TIDAK,?
Cerah,80,68,YA,?
Cerah,83,87,YA,?
Mendung,70,96,TIDAK,?
Mendung,70,96,TIDAK,?
Hujan,65,75,YA,?
Hujan,64,85,YA,?
```

3. Buka kembali file Cuaca.arff dengan menggunakkan Weka Explorer. Buka Weka Explorer – Klik Open File – Pilih Cuaca.arff

- 4. Masih pada Weka Explorer, pilih tab **Classify**
- 5. Sehingga akan muncul jendela Weka Explorer pada tab Classify, pada kotak **Classifer** klik tombol **Choose** untuk memilih metode/algoritma **Naïve Bayes**
- 6. Klik tombol Set untuk menentukan file ARFF sebagai data uji
- 7. Sehingga akan muncul jendela Test Instance, klik **Open file**

- 8. Pilih file CuacaTesting.arff
- 9. Kemudian klik Close
- 10. Klik Start untuk memulai proses naïve bayes
- 11. Klik kanan pada hasil proses dalam kotak **result list**. Pilih **Visual classifier errors**

12. Klik Save. Simpan dengan nama file HasilPrediksi.arff

13. Tutup semua jendela termasuk Weka Explorer dan kembali ke Weka GUI Chooser. Pilih menu **Tools-ArffViewer**

14. Buka menu File-Open. Tunjukkan pada file HasilPrediksi.arff yang telah Anda simpan

Implementasi Naïve Bayes dengan RapidMiner

- 1. Persiapkan file **Tabel_Cuaca.xls** yang terdiri dari 2 sheet.
- 2. Tabel data training pada Sheet1

	Α	В	С	D	E
1	Cuaca	Suhu	Kelembapan Udara	Berangin	Bermain_Tenis
2	Cerah	85	85	TIDAK	TIDAK
3	Cerah	80	90	YA	TIDAK
4	Mendung	83	86	TIDAK	YA
5	Hujan	70	96	TIDAK	YA
6	Hujan	68	80	TIDAK	YA
7	Hujan	65	70	YA	TIDAK
8	Mendung	64	65	YA	YA
9	Cerah	72	95	TIDAK	TIDAK
10	Cerah	69	70	TIDAK	YA
11	Hujan	75	80	TIDAK	YA
12	Cerah	75	70	YA	YA
13	Mendung	72	90	YA	YA
14	Mendung	81	75	TIDAK	YA
15	Hujan	71	91	YA	TIDAK
1.0	→ T I	raining	Testing +		

3. Tabel data uji pada Sheet2 tanpa ada variabel **Bermain_Tenis**

	Α	В	С		D
1	Cuaca	Suhu	Kelembapan_udara		Berangin
2	Cerah	75	65		TIDAK
3	Cerah	80		68	YA
4	Cerah	83	87		YA
5	Mendung	70		96	
6	Mendung	68	81		TIDAK
7	Hujan	65	75		YA
8	Hujan 64		85		YA
4	→	Training	Testing	+	

- 4. Buka aplikasi Rapid Miner
- 5. Klik **Import Data**. Arahkan direktori tempat penyimpanan file pada langkah **Select data location**,kemudian pilih file yang akan digunakan dan klik **Next**.
- 6. Pastikan sel Excel sesuai di langkah Select the cells to import.

7. Pada langkah **Format your colums** ubah kolom **Bermain_Tenis** dengan tipe data **binomial** karena hanya ada dua keputusan (YA dan TIDAK)

8. Ubah pula sebagai label pada Change Role

- 9. Simpan dengan nama DataCuaca_Training dilanjutkan klik tombol Finish
- 10. Hasil import file **Tabel_Cuaca.xls** pada Sheet1 akan di tampilkan.

11. Kembali ke jendela Design Perspective dengan shortcut tombol **F8**

12. Lakukan hal yang sama untuk data testing yang diambil dari **Tabel_Cuaca.xls** pada Sheet2(Testing) dengan mengulang dari langkah 5

	Select the cells to import.							
Sh	Sheet Testing ▼ Cell range: A:D Select All ✓ Define header row: 1 ‡							
	A B C D							
1	Cuaca	Suhu	Kelembaban_Udara	Berangin				
2	Cerah	75.000	65.000	TIDAK				
3	Cerah	80.000	68.000	YA				
4	Cerah	83.000	87.000	YA				
5	Mendung	70.000	96.000	TIDAK				
6	Mendung	68.000	81.000	TIDAK				
7	Hujan	65.000	75.000	YA				
8	Hujan	64.000	85.000	YA				

13. Simpan dengan nama DataCuaca_Testing.

14. Drag DataCuaca_Training dan DataCuaca_Testing kedalam jendela Process View

15. Masukkan juga operator **Naive Bayes** dan **Apply Model** ke dalam Proces View. Hubungkan konektor masing-masing data terhadap operator seperti gambar :

- 16. Jalankan proses naive bayes dengan menekan tombol **Run** (atau menekan tombol F11).
- 17. Perhatikan hasil proses klasifikasi naive bayes. Pada tab **Data**, dapat dilihat hail prediksi serta tingkat confidence nilai kelas pada masing-masing data.

Row No.	prediction(B	confidence(confidence(Cuaca	Suhu	Kelembaban	Berangin
1	YA	0.154	0.846	Cerah	75	65	TIDAK
2	YA	0.498	0.502	Cerah	80	68	YA
3	TIDAK	0.856	0.144	Cerah	83	87	YA
4	YA	0.019	0.981	Mendung	70	96	TIDAK
5	YA	0.007	0.993	Mendung	68	81	TIDAK
6	YA	0.371	0.629	Hujan	65	75	YA
7	TIDAK	0.568	0.432	Hujan	64	85	YA

Pada tab **Statistics**, dapat dilihat bahwa distribusi nilai kelas pada variabel Y (Bermain_Tenis) rerata nilai confidence sebesar 0,353 untuk nilai TIDAK, dan 0,647 untuk nilai YA

Tugas

1. Berdasarkan tabel berikut, buatlah file dalam format Excel (.xls) dan format ARFF (.arff) ! Data ini akan digunakan seagai **Data Testing.**

1	Jurusan_SMA	Gender	Asal_Sekolah	Rerata_SKS	Asisten
2	LAIN	WANITA	SURAKARTA	18	TIDAK
3	IPA	PRIA	SURAKARTA	19	YA
4	LAIN	PRIA	SURAKARTA	19	TIDAK
5	IPS	PRIA	LUAR	17	TIDAK
6	LAIN	WANITA	SURAKARTA	17	TIDAK
7	IPA	WANITA	LUAR	18	YA
8	IPA	PRIA	SURAKARTA	18	TIDAK
9	IPA	PRIA	SURAKARTA	19	TIDAK
10	IPS	PRIA	LUAR	18	TIDAK
11	LAIN	WANITA	SURAKARTA	18	TIDAK

2. Gunakan file ARFF yang dikerjakan pada Tugas nomor 1 dalam Modul 7 sebagai data training. Lakukan prediksi terhadap data testing (ARFF) di atas menggunakan WEKA!

a. Membuka file Training

b. Memilih metode Naive Bayes

c. Membuka file Testing lalu klik kanan pilih Visualize classifier errors

d. Menyimpan file hasil

e. Hasil Prediksi

3. Gunakan file Excel yang dikerjakan pada Tugas nomor 1 dalam Modul 6 sebagai data training. Laukan prediksi terharap data testing (Excel) di atas menggunakan RapidMiner! a. Data Training

b. Data Testing

c. Implementasi Naive Bayes

d. Hasil

4. Dari hasil percobaan Tugas nomor 3 di atas, berapakah nilai rerata confidence untuk atribut Lama_Studi dengan nilai TEPAT? Berapakah nilai rerata confidence untuk atribut Lama_Studi dengan nilai TERLAMBAT?

Jadi nilai rerata confidence untuk atribut Lama_Studi dengan nilai TEPAT adalah **0,524** dan nilai rerata confidence untuk atribut Lama_Studi dengan nilai TERLAMBAT adalah **0,476**

5. Dari hasil percobaan Tugas nomor 3 di atas, berapa orang yang akan lulus TEPAT, dan berapa orang yang yang akan lulus TERLAMBAT?

Jadi yang lulus dengan tepat sebanyak **3** orang sedangkan yang lulus terlambat sebanyak **7** orang

- 6. Prekdisikan ketepatan lama studi si Dewi, jika Dewi adalah seorang WANITA yang berasal dari jurusan IPA pada saat SMA, asal sekolah dari LUAR SURAKARTA, mengambil SKS dengan rata-rata sebanyak 18 SKS tiap semester, dan tidak pernah menjadi Asisten selama kuliah.
 - a. Mengimport data Dewi

b. Mengimplementasikan Naive Bayes

c. Hasil

Berdasarkan hasil di atas maka prediksi untuk Dewi dia akan lulus dengan tepat

7. Prekdisikan ketepatan lama studi si Jono, jika Jono adalah seorang PRIA yang berasal dari jurusan IPA pada saat SMA, asal sekolah dari SURAKARTA, mengambil SKS dengan rata-rata sebanyak 17 SKS tiap semester, dan pernah menjadi Asisten selama kuliah.

a. Mengimport Data Jono

c. Hasil

Berdasarkan hasil di atas maka prediksi untuk Jono dia akan lulus dengan tepat