

Simulation and Inference in Neuroscience

Prof. Dr. Philipp Berens Prof. Dr. Pedro Gonçalves Jonas Beck

Lecture 1

What is Hertie Al?

- Institute at the Medical School of the University of Tübingen
- Research at the interface between Al and clinical neuroscience
- Funded by the Chartiable Hertie Foundation
- Two departments:
 - Data Science
 - Machine Learning

www.hertie.ai

Models in science

Making models is part of the scientific method

- Didactic models
- Idealized models

Models capture some aspect of reality

- Phenomenological models
- Computational models
- Living models

Models are testable and make predictions

https://plato.stanford.edu/entries/models-science/

Models in science

DNA double helix

Physical model

Explains previous data, e.g. X-ray diffraction images

Makes predictions about function of enzymes, consequences of mutations and ...

Climate model

- Describes physical processes: material in each cell and how energy moves around
- Based on our knowledge of physics and chemistry
- Consists of equations
- Can be simulated, i.e. computed in a computer

Simulation in science

Equations define explicit model

Ordinary differential equations

Partial differential equations

Stochastic differential equations

. .

If there is no analytic solution, use numerical integration to solve the equation

$$\frac{dS}{dt} = -aSI$$

$$\frac{dE}{dt} = aSI - \gamma E$$

$$\frac{dI}{dt} = \gamma E - bI$$

$$\frac{dR}{dt} = bI$$

Simulation vs. statistical models

ODE-based SIR model

- ODE, limited modeling repertoire
- Use rate constant for modeling kinetics
- Few interpretable parameters
- Expresses knowledge about world

Recurrent Neural Network model

- RNN, flexible approximator
- Specific architecture to fit temporal correlations in data
- Many opaque parameters
- Model hard to interpret
- Data hungry
- Unclear extrapolation

Simulation and inference?

- From parameters to measurements: simulation forward problem
- From measurements to parameters:

 parameter estimation inverse problem
 - Classical modeling (hand-tuning, experiments)
 - Point estimates via optimization
 - Parameter estimates with uncertainty

Modern ML techniques for this will be the content of week 2 and 3!

Overview of the course

• Week 1:

- Neuroscience basics
- Mechanistic models in neuroscience
- Implementing and simulating models

• Week 2:

- Bayesian parameter inference
- Simulation-based inference (SBI) basics
- Implementing examples to get experience with SBI

• Week 3:

- Advanced SBI techniques
- Mini-project

Why neuroscience?

 Understanding to organ that allows us to do science is fun

 Neurological diseases are a major burden on society (dementia, multiple sclerosis, ...)

There is amazing data!

What does neuroscience do?

- Understand brain function on different levels — from psychological to cellular or even subcellular
- Figure out mechanisms of how the healthy brain works and how it changes in disease
- Test a hypothesis
 - >Measure neuronal activity
 - >Make mathematical models of neuronal activity

Mammalian brains

Layers of neurons

Different layers, different cells

Oberlaender et al. 2012

A prototypical neuron

Neural recording techniques

Patch-clamp electrophysiology

Leica

Electrical properties of neurons

- Lipid bilayer acts as capacitor separating charges
- Ion channels with pores allow certain ions to pass often depending on voltage or ligands
- Ion pumps maintain ion gradient
- Membrane potential V_T outside is defined to be 0
- V_T is between -90 and +50 mV

Casey Henly, CC-by-NC-SA

Intracellular resistance

 Membrane potential can vary across dendrite / axons

→ ions flow inside the cell against resistance of intracellular medium

• Resistance: ~L ~1/a²

Dayan & Abbott, 2001

Membrane capacitance & resistance

- Electrotonically compact neuron:
 Single compartment
- How much current is required to change the membrane potential?

$$C_{\rm m}\frac{dV}{dt} = \frac{dQ}{dt}$$

Dayan & Abbott, 2001

Membrane capacitance & resistance

 How much current is required to keep the membrane potential at a level different than its resting value?

- Determined by membrane resistance
- Membrane time constant:

$$\tau_m = r_m c_m$$

Dayan & Abbott, 2001

Equilibrium potential

Equilibrium potential of Sodium

Casey Henley, CC-by-NC-SA

Equilibrium potentials

Nernst equation:

$$E = \frac{V_T}{z} \ln \left(\frac{\text{[outside]}}{\text{[inside]}} \right)$$

- $E_{Na} = +50 \, mV$
- $E_K = -70 \, mV$

- V > E: positive current will flow outward
- V < E: positive current will flow inward

- What is the effect of Nachannels?
- What of K-channels?

Resting potential

Membrane current

Total flow of ions across the membrane

$$i_{\rm m} = \sum_i g_i (V - E_i) \,.$$

- g_i conductance, may change over time!
- g_l "leak", summarizes ionpumps, passive channels....

Equivalent circuit model of a single compartment neuron

$$c_{\rm m}\frac{dV}{dt} = -i_{\rm m} + \frac{I_{\rm e}}{A}.$$

Passive neuron model

$$c_{\rm m}\frac{dV}{dt} = -i_{\rm m} + \frac{I_{\rm e}}{A}.$$

towards resting potential

Angus Chadwick

$$V(t) - E_m = e^{-t/\tau_m} (V(0) - E_m) + \frac{1}{g_m \tau_m} \int_0^t e^{-(t-t')/\tau_m} I_{ext}(t') dt'$$
 Decay of initial membrane potential

Low-pass filter of external current input (also called a "leaky integrator")

Angus Chadwick