AGH, WIET	ELEMENTY ELEKTRONICZNE – LABORATORIUM	Kierunek: EiT
Nr ćwiczenia:	Temat:	Ocena:
7	Tranzystor unipolarny MOS	
Data wykonania:	Imię i nazwisko:	
16.06.2022	Miłosz Mynarczuk	
16.06.2023		

Tranzystor n-MOS

1.

Vt = 1.8V

Wnioski:

Zakres pomiaru Ugs jest za mały żeby dobrze przedstawić charakterystykę tego tranzystora, ponieważ dla różnych napięć Uds końcówki wykresów się pokrywają. Przybliżając jednak z tego wykresu, Uds=5V wyznacza zakres nasycenia tranzystora. Odcięte końcówki przez wykres Uds=5V przedstawiają pracę tranzystora w obszarze liniowym. Napięcie Vt jak można zauważyć na wykresach wynosi 1,8V. Widać to także w danych liczbowych gdzie widać skok natężenia prądu.

λ =0,005797

Ugs [V]	prąd nasycenia [A]
2	0,000199
3	0,001266
4	0,002891
5	0,004863

Wnioski:

Dokładnie widać zakres pracy liniowej i nasycenia na powyższym wykresie, z drugiego wykresu nie widać dokładnie $1/\lambda$, dlatego wartość ta jest wyliczona z średniej. Długość kanału zmniejsza się przy drenie pod wpływem Uds, przez co wraz z Uds rośnie Id. Wartość λ jest liczbową reprezentacją tej zależności i można ją wyznaczyć z przedłużeń obszarów nasycenia.

3.

Wnioski:

Zwiększanie napięcia na podłożu, zwiększa napięcie progowe. Jest to efektem zwężenia kanału.

Tranzystor p-MOS

1.

Vt = 1.8V

Wnioski:

Tranzystor p-MOS działa tak samo jak n-MOS z jedyną różnicą w napięciach, a są one przeciwne do tych z tranzystora z kanałem n, co widać na wykresach. Jak widać z wykresów napięcie progowe wynosi 1,8V. Zakres Uds jest dla tych pomiarów większy niż zrobiony w tym samym podpunkcie dla n-MOS i bardzo dobrze tu widać obszar liniowy jak i nasycenia.

$\lambda = \text{0,037037}$

Ugs [V]	prąd nasycenia [A]
-2	-0,00017
-3	-0,00088
-4	-0,00207
-5	-0,00357

Wnioski:

Dla tranzystorów p-MOS charakterystyki wyjściowe również wyglądają podobnie z różnicą przeciwnych napięć.

Wnioski:

Zwiększanie napięcia na podłożu w przeciwieństwie do n-MOS zmniejsza Vt, a to wskazuje na to, że dodatnie napięcie na podłożu p-MOS poszerza kanał. Jest to przeciwne działanie do n-MOS.