

CUP: Cluster Pruning for Compressing Deep Neural Networks

Rahul Duggal
Georgia Tech

Cao Xiao
Amplitude

Richard Vuduc Georgia Tech

Polo Chau Georgia Tech

Jimeng Sun

Goal

Reduce the storage and computation cost of a DNN

$$F(x; W) \approx F(x; W_{compressed})$$

Such that
$$|W_{compressed}| \ll |W|$$

Filter Pruning

Filter Pruning

Filter Pruning

Which filters to prune?

Our method CUP: Cluster Pruning

Our Idea: Prune similar filters

Our method CUP: Cluster Pruning

Our Idea: Prune similar filters

CUP: Cluster Pruning

Fully Connected Layer

Convolutional Layer

CUP: Cluster Pruning

Fully Connected Layer

9

Convolutional Layer

CUP: Cluster Pruning

Fully Connected Layer

Convolutional Layer

$$\widetilde{F}_{i,:}^{(l)} = [g(\widetilde{W}_{:,i,:,:}^{(l)}), \overline{B}_{i}^{(l)} , g(\widetilde{W}_{i,:,:,:}^{(l+1)})]$$
Input features Output features

CUP: Cluster Pruning

CUP: Cluster Pruning

CUP: Cluster Pruning

CUP: Cluster Pruning

CUP: Cluster Pruning

CUP: Cluster Pruning

How many clusters?

t parameterizes the number of clusters

CUP: Cluster Pruning

CUP: Cluster Pruning

#clusters = # remaining filters

t parameterizes pruning amount

Benefit 1: Single hyper parameter control over pruning amount

Benefit 2: Non uniform pruning with a single hyper-parameter t

Benefit 3: Training time reduction through train time pruning.

Method	Retrain?	Top-1 (%)	FR (×)	Training Time (GPU Hours)
Resnet-50	-	75.86	1.00	66.0
SFP [14]	X	74.01	1.73	61.8
GM [15]	×	74.13	2.15	62.2
CUP-RF (ours)	X	74.34	2.21	51.6
				<u> </u>

~15 hours saving with 2x compression

Benefit 4: State-of-the-art compression

Model	Method	Retrain?	FR (×)	Acc. (Δ%)	
				Top-1	Top-5
ResNet-1	GM [15]	√	1.71	-1.87	-1.15
	COP [29]	✓	1.75	-2.48	-
	CUP (Our)	✓ -	1.75	-1.00	-0.79
	SFP [14]	X	1.71	-3.18	-1.85
	GM [15]	X	1.71	-2.47	-1.52
	CUP-RF (ours)	X -	1.75	-2.37	-1.40
ResNet-34	L1 [2]	√	1.31	-1.06	-
	GM [15]	✓	1.69	-1.29	-0.54
	CUP (ours)	✓ -	1.78	-0.86	-0.53
	SFP [14]	X	1.69	-2.09	-1.29
	GM [15]	X	1.69	-2.13	-0.92
	CUP-RF (ours)	X -	1.7 1	-1.61	-0.89
sNet-5	SFP [14]	√	2.15	-14.0	-8.20
	MP [30]	✓	2.05	-1.20	-
	CUP (ours)	✓ -	2.47	-1.17	-0.81
	SFP [14]	X	1.71	-1.54	-0.81
	GM [15]	X	2.15	-2.02	-0.93
1	CUP-RF (ours)	X -	2.20	-1.47	-0.88

CUP: Cluster pruning framework

Prunes a DNN by clustering similar filters.

Benefits of CUP

- Single hyper-parameter control over pruning amount.
- Enables non uniform pruning across layers.
- Train time savings.

Extensive evaluation on large DNNs & datasets