

微型伺服电缸用户手册 (电气)

(适用于LA、LAS、LAF、LASF、LAXC 系列)

北京因时机器人科技有限公司 | 2024 年 4 月 编号 PRJ-01-TS-U-007 | 共 31 页 | 版本 V2.0.4

修订说明:

1、增加了速度模式、力控模式、电压模式、速度力控模式,通信协议格式调整;2、兼容旧版通信协议。

_ _

销售热线: 400-666-5160

1 产品概述	
1.1 产品介绍	
1.2 产品系列	
1.3 电气接口	2
2P型接□	7
ZP 空接口	3
3 D 型接口	5
3.1 UART 串行总线	5
3.2 UART 通信协议概要	7
3.2.1 通信机制	6
3.2.2 基本帧格式	7
3.2.3 指令间隔时间	8
3.3 指令类型	8
3.3.1 读电缸状态信息	8
3.3.2 读寄存器	g
3.3.3 写寄存器	10
3.4 寄存器说明	11
3.5 常用指令示例	12
3.5.1 读电缸状态信息	12
3.5.2 读过温保护值和回温启动值	13
3.5.3 定位模式	14
3.5.4 伺服模式	16
3.5.5 速度模式	19
3.5.6 力控模式	21
3.5.7 电压模式	24
3.5.8 速度力控模式	26
3.5.9 清除故障	27
3.5.10 保存参数	2 8
3.5.11 暂停运动	29
3.5.12 修改电缸 ID	29
3.5.13 修改波特率	30
3.6 异常处理机制	3

PRJ-01-TS-U-007

微型伺服电缸用户手册 (电气)

(适用于 LA、LAS、LAF、LASF、LAXC 系列)

1. 产品概述

1.1 产品介绍

微型伺服电缸(本手册后续简称为电缸)是一种微小型伺服电动推杆,内部集成了 微型电机、减速器、丝杆机构、传感器以及驱动控制系统,可以实现行程范围内任意位 置精确伺服控制。内置绝对位置传感器,断电后不会丢失位置信息,无需归零操作。

技术特点:

- > 驱控一体化设计
- > 小体积、高功率密度、高重复定位精度
- ▶ 接口丰富:

电气接口:具有 LVTTL3.3V 串口(D型)和 PWM(P型)两种接口。D型接口的电缸可以配置地址编号(ID),多个不同 ID 的电缸可以通过串口总线控制。P型接口的电缸兼容标准舵机接口,支持 50hz 和 333hz 两种频率的 PWM 控制信号。

机械接口:具有丰富的接口方式可选,方便用户安装使用。

- ➢ 宽电压: DC7V~9V 宽电压范围供电,建议供电 8V
- > 具备过热、过流保护

1.2 产品系列

LA 系列: 电机和丝杆机构旋转中心在一条直线上。特点: 整体构型呈细长形, 截面尺寸较小。

LAS 系列: 电机和丝杆机构的旋转中心不在一条直线上,通过齿轮传动平行布置。特点:整体长度更短,截面尺寸稍大。

LAXC 系列:外形与 LA 系列一致,电机和丝杆机构旋转中心在一条直线上,螺杆为行星螺杆结构。特点:整体构型呈细长形,截面尺寸较小。

LAF 系列:在 LA 系列基础上,增加了力传感器及相应的信号采集滤波算法,可以

检测电缸实际的受力情况。

LASF 系列:在 LAS 系列基础上,增加了力传感器及相应的信号采集滤波算法,可以检测电缸实际的受力情况。

(图1) 各个系列微型伺服电缸

1.3 电气接口

D 型接口采用标准的 4pin 杜邦母头,引脚间距 2.54mm,定义如下:

(图 2) D 型接口定义

P型接口采用标准的 3pin 杜邦母头,引脚间距 2.54mm,定义如下:

引脚	颜色	定义	电压范围
1	黄	PWM	0-3.3V
2	红 •	VCC	7-9V
3	黑 ■	GND	0V

(图 3) P型接口定义

注意: 电源与控制信号的需要共地,严禁带电插拔,否则可能损坏硬件电路。

P 型接口

名词释义:

PWM	脉冲宽度调制
PWM 频率	1秒钟内信号从高电平到低电平再回到高电平的次数
PWM 周期	1/PWM 频率
脉宽时间	1 个 PWM 周期内高电平的时间
占空比	脉宽时间 /PWM 周期

销售热线: 400-666-5160

P 型接口即 PWM 控制接口,采用固定的信号周期(支持 PWM 频率为 50Hz 或 333Hz),通过调节脉宽时间,达到位移控制的目的。PWM 参考波形如下:

脉宽时间和伸缩位移的线性关系如下图所示:

(图 5) PWM 信号脉宽时间与伸缩位移曲线图

333Hz: 伸缩位移 = (5/7 * 脉宽时间 - 4/7) * 行程

50Hz: 伸缩位移 = (1/2 * 脉宽时间 - 1/4) * 行程

注意:由于 PWM 信号的脉冲宽度最快 1 个周期调整 1 次,因此调整位移的最短时间间隔须大于等于 1 个 PWM 周期。

这种控制接口的微型伺服电缸的 **PWM**控制信号高电平的保持时间长短与推杆行程之间的关系如下表所示:

销售热线: 400-666-5160

	333Hz PWM 控制信号						
脉冲宽度	行程 10mm	行程 16 mm					
0.8ms	0mm	0mm					
1.52ms	5mm	8mm					
2.2ms	10mm	16mm					

50Hz PWM 控制信号							
脉冲宽度	行程 10mm	行程 16mn					
0.5ms	0mm	0mm					
1.5ms	5mm	8mm					
2.5ms	10mm	16mm					
2.5ms 10mm 16mm							

2. D型接口

3.1 UART 串行总线

D 型接口采用 LVTTL3.3V 电平的 UART 串行总线通信方式,理论上最多可同时支持 254 个电缸挂载在同一条总线上。挂载在同一总线上的电缸,需配置为不同的 ID 地址。

ID 地址: 出厂时, 默认的 ID 地址为 OxO1; OxFF 为广播地址。ID 地址配置方式见 3.5.12。

波特率: 出厂时, 默认的通信波特率为 921600, 根据需要还可以配置为 115200、57600 或 19200。波特率配置方式见 3.5.13。

UART 串行总线采用 LVTTL3.3V 电平(VCC: 3.3V; VOH≥2.4V; VOL≤0.4V; VIH≥2V; VIL≤0.8V)。

所有符合上述 **UART** 接口标准的控制器均适用;如有其他通信接口,亦可通过接口转换模块与电缸进行连接。常见控制器连接方式如下:

1、具有 USB 接口的通用计算机

通过 USB 转 LVTTL3.3V 串口转接模块,实现计算机与电缸的连接。

(图 6) PC 与电缸硬件连接

硬件连接后, 可通过上位机调试软件读取、配置电缸内部参数, 亦可对电缸进行控制。

(图7) 驱动器上位机调试软件

2、具备 LVTTL3.3V 串口的 MCU

只要符合硬件接口规范的 MCU 均可与电缸连接。

(图 8) MCU 与电缸硬件连接

3、具备 RS485 的 PLC (可编程逻辑控制器)

通过 RS485 转 LVTTL3.3V 串口转接模块,实现 PLC 与电缸的连接。

(图 9) PLC 与电缸硬件连接

4、其他接口

RS232、模拟量控制(电压、电流)、脉冲信号等其他控制接口可向客服咨询解决方案。

3.2 UART 通信协议概要

3.2.1. 通信机制

控制器与电缸之<mark>间采</mark>用问答方式通信,控制器发送指令帧,电缸收到指令帧,解析 执行后返回应答帧。

允许一个控制器同时连接控制多个电缸,因此每个电缸须配置不同的 ID 地址作为唯一标识。控制器发出的指令帧数据体中包括有 ID 地址信息,只有与之匹配的 ID 地址对应的电缸才能完整接收指令帧信息,并在执行指令后返回相应的应答帧。

每个指令帧的以字节为最小单位,单一字节由 1 位起始位、8 位数据位以及 1 位停止位组成,无奇偶校验,共 10bit 组成。

3.2.2. 基本帧格式

						数据段		
	фÆ	i头	数据长	ID 地	指令			校验和
帧类型		·大 字节)	度	址(1字	类型	寄存器地址	数据	(1 字节)
	(2 -	L l∍)	(1字节)	节)	(1字	(2 个字节)	(N 字节)	(r + r)
					节)			
指令帧	0x55	0xAA	-	ID	CMD	DogistorAddr	Data	Check
应答帧	0xAA	0x55	L	טו	CIVID	RegisterAddr	Data	Sum

帧头:指令帧帧头为 Ox55 OxAA;应答帧帧头为 OxAA Ox55。

数据长度:数据段的字节数, L=N+3。

ID 地址: 范围 0x01~0xFE,即 1~254,出厂默认为 0x01。0xFF 为广播地址。若控制器发出 ID 地址为 0xFF 的指令帧时,总线上所有的电缸都会接收到指令帧,但不返回应答帧。应答帧的 ID 地址为发送该应答帧的电缸的 ID 地址。

数据段:指令类型、寄存器地址、寄存器数量、数据等,采用小端模式,及当数据长度大于1字节时,采用低字节在前,高字节在后的方式。

校验和:除帧头外其余所有数据累加和的低八位。

3.2.3. 指令间隔时间

由于受控制任务中断影响,应答帧的应答时间为 120us~800us。建议相邻两条指令帧的发送时间间隔不少于 1ms。

3.3 指令类型

指令类型	功能描述	数值	数据段长度(单位:字节)
CMD_RD_STATUS	读电缸状态信息	0x30	196 1
CMD_RD_REGISTER	读寄存器	0x31	5 4
CMD_WR_REGISTER	写寄存器	0x32	3+n*2 其中,n 为要写的寄存器的个数

说明:每个寄存器占2个字节;采用小端模式,低字节在前,高字节在后。

3.3.1. 读电缸状态信息

指令帧格式如下所示:

thr	头	数据长度	ID 地址		数据段		松岭和	
	文 字节)	双据长度 (1字节)	(1 字节)	指令类型 (1 字节)	寄存器地址 (2 个字节)	数据 (O 字节)	校验和 (1 字节)	
0x55	ОхАА	0x03	ID	0x30	0x0000	空	Check Sum	

应答帧格式如下所示:

帧头	低字节	0xAA

	(2字	高字节	0x55												
	数据长	OxOF													
	ID	(1字节)		ID											
		指令类型(1字节)		0x30											
		保留(1字节)		0x00											
		保留(1字节)		0x00											
		目标位置	低字节	TargetPosition_L											
		(16 位有符号数)	高字节	TargetPosition_H											
		实际位置	低字节	CurrentPosition_L											
₩ ₽ ₹□ ₹□	电缸状态信息 (12 字节)	(16 位有符号数)	高字节	CurrentPosition_H											
数据段 (15 字节)		实际电流	低字节	CurrentCurrent_L											
(I 3 子 [J)			(16 位无符号数)	高字节	CurrentCurrent_H										
			(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	(12 字节)	力传感器数值	低字节	ForceSensor_L
			(16 位有符号数)	高字节	ForceSensor_H										
		力传感器原始值	低字节	ForceADC_L											
		(16 位无符号数)	高字节	ForceADC_H											
		温度(8 位有符号数	Temperature												
		故障码(8 位无符号		ErrorCode											
	校验		Check Sum												
3.3.2. 说		故障码(8 位无符号和(1 字节)													

3.3.2. 读寄存器

指令帧格式如下所示:

		数据	ID 地址		数据段			
帧	i头	长度	(1字	指令类型	寄存器地址	(2字节)	寄存器数量	校验和
(25	字节)	(1字 节)	节)	(1字节)	低字节	高字节	(1字节)	(1字节)
0x55	ОхАА	0x04	ID	0x31	Register Addr_L	Register Addr_H	n	Check Sum

应答帧格式如下所示:

帧头	低字节	0xAA
(2字节)	高字节	0x55
数据长度(1字节)		3+2*n
ID (1字节)		ID

	指令类型(1字节)			0x31
	寄存器地址(2 字节)		低字节	RegisterAddr_L
	可任命地	2年(2子口)	高字节	RegisterAddr_L RegisterAddr_H 0x** 0x** 0x** 0x**
W 1- 5-		第1个寄存器	低字节	0x**
数据段 (3+2*n 字节)	n 个寄存器数据		高字节	0x**
		1#)	低字节	0x**
	(2*n 字节)		高字节	0x**
		年 人字左四	低字节	0x**
	第 n 个寄存器		高字节	0x**
校验和(1字节)				Check Sum

3.3.3. 写寄存器

北京因时机器人科技有限公司

指令帧格式如下所示:

帧头		低字节	0x55	
	(2字节)			0xAA
	数据长	长度(1字节)	65%	3+2*n
	ID	(1字节)	200	ID
		指令类型(1字节)	907	0x32
	ch # 18 (b) (a ch #)			RegisterAddr_L
	15年 17年 1878 1878	也址(2 字节)	高字节	RegisterAddr_H
数据段		第1	低字节	0x**
(3+2*n 字		第1个寄存器	高字节	0x**
节)	n 个寄存器数据		低字节	0x**
	(2*n 字节)		高字节	0x**
		笠 5 人安方哭	低字节	0x**
		第 n 个寄存器	高字节	0x**
	校验	和(1字节)		Check Sum

应答帧格式如下所示:

帧头	低字节	OxAA
(2字节)	高字节	0x55

数据长度(1字节)				OxOF
	ID (1字节)			ID
		指令类型(1字节)		0x32
	宝左兜	파 N. / 2 🗅 # \	低字节	RegisterAddr_L
	合仔爺! 	也址(2 字节)	高字节	RegisterAddr_H
		目标位置	低字节	TargetPosition_L
		(16 位有符号数)	高字节	TargetPosition_H
		实际位置 (16 位有符号数)	低字节	CurrentPosition_L
			高字节	CurrentPosition_H
数据段 (15 字节)		实际电流	低字节	CurrentCurrent_L
(10)	电缸状态信息	(16 位无符号数)	高字节	CurrentCurrent_H
	(12 字节)	力传感器数值	低字节	ForceSensor_L
		(16 位有符号数)	高字节	ForceSensor_H
		力传感器原始值	低字节	ForceADC_L
		(16 位无符号数)	高字节	ForceADC_H
		温度(8 位有符	温度(8 位有符号数)	
		故障码(8 位无征	符号数)	ErrorCode
	校验和(1字节)			Check Sum

3.4 寄存器说明

地址	名称	用户权限
0x16	ID 地址,范围:1~254	读写
0x17	波特率 3-921600; 2-115200; 1-57600; 0-19200	读写
0x18	1-清除故障命令	读写
0x19	1-急停命令	读写
0x1A	1-暂停运动命令	读写
0x1B	1-还原参数命令	读写
0x1C	1-保存命令	读写

地址	名称	用户权限
0x1D	权限验证码	读写
0x1E	过温保护值,单位: ℃	读写
0x1F	回温启动值,单位: ℃	读写
0x20	过流保护值,单位:mA	读写
0x21	电机正向输出最大值,范围: [0,1000]	读写
0x22	电机反向输出最大值,范围: [0,1000]	读写
0x23	行程上限值,范围:[行程下限值,2000]	读写
0x24	行程下限值,范围: [O, 行程上限值]	读写
0x25	控制模式: O-定位模式,1-伺服模式,2-速度模式,3-力控模式,4-	 读写
UXZJ	电压模式,5-速度力控模式	
0x26	电机输出电压(电压模式下有效),范围: [-1000, 1000]	读写
0x27	力控目标值(力控模式下有效),单位: g	读写
0x28	目标速度(速度模式下有效),单位:步/5	读写
0x29	目标位置 (速度、定位、伺服模式下有效)	读写
UNZS	范围: [0,2000]	—————————————————————————————————————
0x2A	实际位置,范围: [0,2000]	只读
0x2B	电流值,单位:mA	只读
0x2C	实际受力值,单位:g	只读
0x2D	力传感器原始数值,范围: [0,4095]	只读
0x2E	实际温度值,单位: ℃	只读
0x2F	故障码 (bit0: 堵转, bit1: 过温, bit2: 过流, bit3: 电机异常, bit4:	只读
UXZF	Flash 参数错误或者未保存)	<i>∧</i> ∠

注意: 1步对应全行程的 1/2000, 例如 10mm 行程的电缸, 1步对应 0.05mm。

3.5 常用指令示例

3.5.1. 读电缸状态信息

指令帧		应答帧	
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x01	数据长度	0x0F	数据长度

0x01	ID	0x01	ID
0x30	CMD_RD_STATUS	0x30	CMD_RD_STATUS
0x32	校验和	0x00	保留
		0x00	保留
		0x00	目标位置 0 步
		0x00	日你位直0岁
		0x00	实际位置 0 步
		0x00	
		0x00	实际电流 0mA
		0x00	关例电流 OMA
		0x00	力,供成品数值 0 g
		0x00	力传感器数值 Og
		0x00	力供成器區投稿()
	/ _	0x00	力传感器原始值 0
		0x20	温度 32℃
		0x00	故障码 O
	CV.	0x5F	校验和

3.5.2. 读过温保护值和回温启动值

过温保护值寄存器地址 Ox1E,回温启动值寄存器地址 Ox1F,两个地址相邻,可以通过一条指令同时读取。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x04	数据长度	0x07	数据长度
0x01	ID	0x01	ID
0x31	CMD_RD_REGISTER	0x31	CMD_RD_REGISTER
Ox1E	过温保护值寄存器地址	0x1E	──────────────────────────────────────
0x00	之 海 体 扩 阻 奇 仔 奋 地 址	0x00	一
0x02	读取寄存器个数为 2	0x50	- 过温保护值 80°C(0x0050)
0x56	校验和	0x00	
		0x3C	- 回温启动值 60°C(0x3C)
		0x00	四/画/日/初旧 60°C(0X3C)

	0xE3	校验和
--	------	-----

3.5.3. 定位模式

此模式下, 电缸自动规划路径, 以最短时间运动到目标位置, 同时返回状态信息。

红:目标位置,黑:实际位置

方法一: 先设置控制模式为定位模式,修改寄存器 0x25 为 0。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	SID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	物型描光字左双地址	0x25	拉斯拉士字左思斯拉
0x00	控制模式寄存器地址	0x00	─ 控制模式寄存器地址
0x00	0	0x00	
0x00	设置控制模式为定位模式	0x00	── 目标位置 0 步
0x5D	校验和	0x00	マに位置 0 生
		0x00	─ 实际位置 0 步
		0x00	中 淬 0 m A
		0x00	─ 电流 0mA
		0x00	力/生成器粉/5.0~
		0x00	─ 力传感器数值 0g
		0x00	力传感器原始值 O

	0x00	
	0x20	温度 32℃
	0x00	故障码 O
	0x87	校验和

再设置目标位置,修改寄存器 0x29 为 1000 步。

指令帧			应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x29	目标位置寄存器地址	0x29	目标位置寄存器地址
0x00	日你但且可任命地址	0x00	日你位旦司仔品地址
0xE8	目标位置 1000 步(0x03E8)	0xE8	目标位置 1000 步(0x03E8)
0x03		0x03	日你位直 1000 岁(OXOSE6)
0x4C	校验和	0x00	实际位置 0 步
	ASDIE .	0x00	美 陸位置 0 少
		0x00	电流 0mA
		0x00	电 _{///} OHIA
		0x00	力传感器数值 0 g
		0x00	刀传恩奋致恒 Ug
		0x00	力传感器原始值 0
		0x00	川マ窓命/尿畑 但 U
		0x20	温度 32℃
		0x00	故障码 O
		0x76	校验和

方法二:同时修改寄存器 Ox25 (控制模式)和寄存器 Ox29(目标位置)。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x0D	数据长度	0x0F	数据长度

0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
0x25	物型描光字左思地址	0x25	拉到拼子宝在职业机	
0x00	控制模式寄存器地址	0x00	控制模式寄存器地址	
0x00	0	0xE8	只与位置 1000 b (0x0750)	
0x00	设置控制模式为定位模式	0x03	│目标位置 1000 步(0x03E8) │	
0x00	电机输出电压寄存器	0x00	マに位置 0 止	
0x00	在定位模式无用,设为 OxOOOO	0x00	· 实际位置 O 步	
0x00	力控目标值寄存器	0x00	中冷 0~ 4	
0x00	在定位模式无用,设为 OxOOOO	0x00	电流 0mA	
0x00	目标速度寄存器	0x00	力供成品数值 0~	
0x00	在定位模式无用,设为 OxOOOO	0x00	· 力传感器数值 0g	
0xE8	日午位至1000 生(0×0750)	0x00	力失成双原投债。	
0x03	目标位置 1000 步(0x03E8)	0x00	· 力传感器原始值 O	
0x50	校验和	0x20	温度 32℃	
		0x00	故障码 O	
	E E	0x72	校验和	

3.5.4. 伺服模式

此模式下,需要控制器以固定频率(建议不低于 50Hz)向电缸发送目标位置,电缸将进行位置插补运算,跟随目标位置曲线运动。

红:目标位置,黑:实际位置

方法一: 先设置控制模式为伺服模式, 修改寄存器 Ox25 为 1。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	拉斯拉士字左思斯拉	0x25	拉凯塔子字左思地址
0x00	控制模式寄存器地址	0x00	控制模式寄存器地址
0x01	1	0x00	口仁位置百世
0x00	设置控制模式为伺服模式	0x00	────目标位置 0 步
0x5E	校验和	0x00	中に位置され
		0x00	- 实际位置 0 步
		0x00	中文 One A
		0x00	─ 电流 0mA
7		0x00	九件成职物体 0
		0x00	一 力传感器数值 Og
	We.	0x00	力供成器區操作力
	PIR	0x00	一 力传感器原始值 0
		0x20	温度 32℃
		0x00	故障码 O
		0x86	校验和

再设置目标位置,修改寄存器 0x29 为 1000 步。

指令帧		应答帧	
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x29	目标位置寄存器地址	0x29	目标位置寄存器地址
0x00	日你过且奇仔品地址	0x00] 日你过且奇仔岙地址
0xE8	目标位置 1000 步(0x03E8)	0xE8	目标位置 1000 步(0x03E8)

0x03		0x03	
0x4C	校验和	0x00	
		0x00	实际位置 0 步
		0x00	th'
		0x00	电流 0mA
		0x00	十/4 成 织 牧/古 〇 ~~
		0x00	力传感器数值 Og
		0x00	力供成品及协作。
		0x00	力传感器原始值 O
		0x20	温度 32℃
		0x00	故障码 O
		0x74	校验和

方法二:同时修改寄存器 Ox25 (控制模式)和寄存器 Ox29(目标位置)。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头
0x0D	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTE R
0x25	拉斯格子家有职业业	0x25	控制模式寄存器地址
0x00	性	制模式寄存器地址 Ox00	
0x01	1	0xE8	目标位置 1000 步
0x00	设置控制模式为伺服模式	0x03	(0x03E8)
0x00	电机输出电压寄存器	0x00	京に位置 0 生
0x00	在定位模式无用,设为 0x0000	0x00	─ 实际位置 0 步
0x00	力控目标值寄存器	0x00	中次 O A
0x00	在定位模式无用,设为 0x0000	0x00	─ 电流 0mA
0x00	目标速度寄存器	0x00	力供成职制持 0~
0x00	在定位模式无用,设为 0x0000	0x00	─ 力传感器数值 0g
0xE8	日标位置 1000 生(0v0759)	0x00	力供成器原始信息
0x03	目标位置 1000 步(0x03E8)	0x00	一 力传感器原始值 0
0x51	校验和	0x20	温度 32℃

0x00	故障码 O
0x72	校验和

3.5.5. 速度模式

此模式下,驱动器将以设定的目标速度匀速运动到目标位置,并停止。

红:目标位置,黑:实际位置

方法一: 先设置控制模式为速度模式,修改寄存器 0x25 为 2。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25		0x25	拉加井子中大四北山
0x00	控制模式寄存器地址	0x00	· 控制模式寄存器地址
0x02	2	0x00	ロた位置のよ
0x00	设置控制模式为速度模式	0x00	- 目标位置 0 步
0x5F	校验和	0x00	南原 位黑 6 比
		0x00	- 实际位置 0 步
		0x00	th >\$ 0 A
		0x00	─ 电流 0mA
		0x00	力, 供 成 职 ** /
		0x00	一 力传感器数值 Og

0x00	力传感器原始值 0
0x00	
0x20	温度 32℃
0x00	故障码 O
0x87	校验和

再设置目标速度和目标位置,修改寄存器 0x28 为 500 步/s,寄存器 0x29 为 1000 步/s。

	指令帧		应答帧	
数值	说明	数值	说明	
0x55	帧头	0xAA	帧头	
0xAA	帧头	0x55	帧头	
0x07	数据长度	0x0F	数据长度	
0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
0x28	目标速度寄存器地址	0x28	目标速度寄存器地址	
0x00	日你还反奇仔品地址	0x00	日你还反句仔品地址	
0xF4	目标速度 500 步 <i>/</i> s(0x01F4)	0xD0	目标位置 2000 步(0x07D0)	
0x01		0x07	日你位直 2000 步(OXO7DO)	
0xD0	目标位置 2000 步(0x07D0)	0x00	实际位置 0 步	
0x07	日你位直 2000 少(OXO7DO)	0x00	天際位員 0 少	
0x2E	校验和	0x00	电流 0mA	
		0x00	电流 OMA	
		0x00	力传感器数值 0g	
		0x00	力很感奋致值 Ug	
		0x00	力华成界原始传入	
		0x00	力传感器原始值 0	
		0x20	温度 32℃	
		0x00	故障码 O	
		0x61	校验和	

方法二:同时修改寄存器 Ox25(控制模式)、寄存器 Ox28(目标速度)和寄存器 Ox29(目标位置)。

指令帧	应答帧
-----	-----

数值	说明	数值	说明
0x55	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头
0x0D	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	控制模式寄存器地址	0x25	控制模式寄存器地址
0x00	1	0x00	¹
0x02	2	0xD0	日午位署 2000 년(0::0750)
0x00	设置控制模式为速度模式	0x07	│目标位置 2000 步(0x07D0)│
0x00	电机输出电压寄存器	0x00	호드슈ႜ 호드슈포 O · L
0x00	在速度模式无用,设为 0x0000	0x00	· 实际位置 O 步
0x00	力控目标值寄存器	0x00	电流 0mA
0x00	在速度模式无用,设为 0x0000	0x00	电流 UMA
0xF4	日午注度 500 년 6(0:015()	0x00	十件成品称诗 0
0x01	目标速度 500 步/s(0x01F4)	0x00	力传感器数值 Og
0xD0	日午位置 2000 生(0,40750)	0x00	力供成界區投持。
0x07	· 目标位置 2000 步(0x07D0)	0x00	力传感器原始值 0
0x33	校验和	0x20	温度 32℃
		0x00	故障码 0
		0x5E	校验和

3.5.6. 力控模式

此模式下, 电缸将动态调节位置以保持实际受力值接近力控目标值。

黑:实际位置,绿:受力值,蓝:设置力控值

方法一: 先设置控制模式为力控模式,修改寄存器 Ox25 为 3。

指令帧		应答帧	
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	控制模式寄存器地址	0x25	控制模式寄存器地址
0x00	江州铁八司行船地址	0x00	江则保以可行命地址
0x03	3	0x00	・ 目标位置 0 步
0x00	设置控制模式为力控模式	0x00	日你位直日少
0x60	校验和	0x00	实际位置 0 步
		0x00	美 原位直 0 少
		0x00	电流 0mA
		0x00	⊕//L OTTA
		0x00	力传感器数值 0g
	VSp.	0x00	7月 包括 数 但 09
		0x00	力传感器原始值 0
		0x00	万区运输 添加且 0
		0x20	温度 32℃
		0x00	故障码 O
		0x86	校验和

再设置力控目标值,修改寄存器 0x27 为 1000g。

指令帧			应答帧
数值	说明	数值	说明
0x55	帧头	ОхАА	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x27	力控目标值寄存器地址	0x27	力控目标值寄存器地址
0x00		0x00	<u> </u>

0xE8	─ 力控目标值 1000g(0x03E8) -	0x00	日午位罢 0 华
0x03		0x00	目标位置 0 步
0x4A	校验和	0x00	实际位置 0 步
		0x00	大阪位置 U グ
		0x00	电流 0mA
		0x00	电流 OMA
		0x00	力传感器数值 0g
		0x00	プラス (水路数) 直 Ug
		0x00	力传感器原始值 0
		0x00	分限総合原始id U
		0x20	温度 32℃
		0x00	故障码 O
		0x89	校验和

方法二:同时修改寄存器 Ox25 (控制模式)和寄存器 Ox27(力控目标值)。

指令帧			应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头
0x09	数据长度	0x0F	数据长度
0x01	ID	0x01	BOX ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	Ox25	0x25	控制模式寄存器地址
0x00	控制模式寄存器地址	0x00	了
0x03	3	0x00	日左位置 0 华
0x00	设置控制模式为力控模式	0x00	- 目标位置 O 步
0x00	电机输出电压寄存器,	0x00	· 京に位置 0 止
0x00	在力控模式无用,设为 0x0000	0x00	- 实际位置 O 步
0xE8	力惊只与(A)	0x00	thick One A
0x03	│ 力控目标值 1000g(0x03E8) │	0x00	电流 0mA
0x4F	校验和	0x00	力供感哭粉店 0~
		0x00	力传感器数值 0g
		0x00	生成界區松/古 O
		0x00	卡感器原始值 O

0x20	温度 32℃
0x00	故障码 O
0x87	校验和

3.5.7. 电压模式

此模式下,用户可以通过改变电机两端电压的大小来控制电缸的运动。

方法一: 先设置控制模式为电压模式,修改寄存器 0x25 为 4。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	控制模式寄存器地址	0x25	控制模式寄存器地址
0x00	全制侯 以奇仔裔地址	0x00	在制候 以 奇仔奋地址
0x04	4	0x00	目标位置 0 步
0x00	设置控制模式为电压模式	0x00	日你位員〇少
0x61	校验和	0x00	实际位置 0 步
		0x00	关阶位且 0 沙
		0x00	电流 0mA
		0x00	电流 OMA
		0x00	力传感器数值 0g
		0x00	刀恨感奋致恒 Ug
		0x00	力供成界原始待入
		0x00	力传感器原始值 0
		0x20	温度 32℃
		0x00	故障码 O
		0x87	校验和

再设置电机输出电压,修改寄存器 Ox26 为 500。

指令帧		应答帧	
数值	说明	数值	说明

方法二:同时修改寄存器 Ox25(控制模式)和寄存器 Ox26(电机输出电压)。

	指令帧		应答帧
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x07	数据长度	0x0F	数据长度
0x01	ID	0x01	ID
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	拉制模士家有职地址	0x25	拉斯拉士家有职地址
0x00	控制模式寄存器地址	0x00	控制模式寄存器地址
0x04	4	0x00	目标位置 0 步
0x00	设置控制模式为电压模式	0x00	日你吐且Uグ
0xF4	电机输出电压 500 (0x01F4)	0x00	实际位置 0 步

0x01		0x00	
0x58	校验和	0x00	ф\ * О А
		0x00	电流 0mA
		0x00	力供咸吸物值 0.4
		0x00	力传感器数值 Og
		0x00	力传感器原始值 0
		0x00	7月488661111 U
		0x20	温度 32℃
		0x00	故障码 O
		0x87	校验和

3.5.8. 速度力控模式

此模式下,电缸将以设定的速度向目标位置运动,运动过程中如果受力值(挤压力或者拉伸力)超过力控目标值,电缸立即停止运行。

红:目标位置,黑:实际位置,绿:受力值,蓝:设置力控值

同时修改寄存器 Ox25(控制模式)、寄存器 Ox26(力控目标值)、寄存器 Ox28(目标速度值)和寄存器 Ox29(目标位置)。

指令帧		应答帧	
数值	说明	数值	说明
0x55	帧头	0xAA	帧头
0xAA	帧头	0x55	帧头
0x0D	数据长度	0x0F	数据长度
0x01	ID	0x01	ID

0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER
0x25	拉加进士史左思地机	0x25	拉斯拉士字左思斯拉
0x00	控制模式寄存器地址	0x00	控制模式寄存器地址
0x05	5	0x00	日左位置の北
0x00	设置控制模式为速度力控模式	0x00	目标位置 0 步
0x00	电机输出电压寄存器	0x00	· 京厅位署 0 华
0x00	在定位模式无用,设为 0x0000	0x00	实际位置 0 步
0xE8	力控目标值 1000 g	0x00	中
0x03	(0x03E8)	0x00	电流 0mA
0xE8	目标速度 1000 步/秒	0x00	力/生成 22 数/点 0 2
0x03	(0x03E8)	0x00	力传感器数值 0g
0xE8	目标位置 1000 步	0x00	力供成器區投持口
0x03	(0x03E8)	0x00	力传感器原始值 0
0x2B	校验和	0x20	温度 32℃
		0x00	故障码 O
		0x87	校验和

3.5.9. 清除故障

当电缸发生以下故障:堵转、过温、过流、电机异常、Flash参数错误或者未保存,可以通过发送清除故障指令,清除故障代码,让电缸恢复到上电初始状态。

指令帧		应答帧		
数值	说明	数值	说明	
0x55	帧头	0xAA	帧头	
0xAA	帧头	0x55	帧头	
0x05	数据长度	0x0F	数据长度	
0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
0x18	法必许陈宁左职业机	0x18	连险护座宝在职业机	
0x00	清除故障寄存器地址	0x00	清除故障寄存器地址	
0x01	1	0x00	日仁位置 0 止	
0x00	清除故障命令	0x00	· 目标位置 O 步	
0x51	校验和	0x00	☆に位置 O. L	
		0x00	· 实际位置 O 步	
		0x00	电流 0mA	

0x00	
0x00	力供咸吸物值 0.4
0x00	力传感器数值 0g
0x00	力,
0x00	力传感器原始值 0
0x20	温度 32℃
0x00	故障码 O
0x80	校验和

3.5.10. 保存参数

当修改寄存器中的参数,并希望在断电重启后依然有效,可以通过发送保存参数指令,将寄存器中的参数固化到 flash 中。

发送保存参数指令后,会收到两帧应答帧;第二帧的数据段首字节返回 **Ox40** 表示数据保存成功。

指令帧		应答帧 1		应答帧 2	
数值	说明	数值	说明	数值	说明
0x55	帧头	0xAA	帧头	0xAA	帧头
ОхАА	帧头	0x55	帧头	0x55	帧头
0x05	数据长度	0x0F	数据长度	0x0F	数据长度
0x01	ID	0x01	ID	0x01	ID
0x32	CMD_WR_REGISTE R	0x32	CMD_WR_REGIST ER	0x40	保存成功返回 0x40
0x1C	但有名数字有器地址	0x1C	但左条数字左职地址	0x50	校验和
0x00	保存参数寄存器地址	0x00	保存参数寄存器地址		
0x01	1	0x00	口仁位黑人山		
0x00	保存参数	0x00	目标位置 0 步		
0x55	校验和	0x00	京に位置され		
		0x00	实际位置 0 步		
		0x00	th >\$ 0 A		
		0x00	电流 0mA		
		0x00	九, 庄, 武 思 教 (古, 〇		
		0x00	力传感器数值 Og		
		0x00	力传感器原始值 0		

0x00		
0x20	温度 32℃	
0x00	故障码 O	
Ox7E	校验和	

3.5.11. 暂停运动

设置寄存器 Ox1A 为 1,可暂停电缸的当前运动。指令如下。

指令帧		应答帧		
数值	说明	数值	说明	
0x55	帧头	0xAA	帧头	
ОхАА	帧头	0x55	帧头	
0x05	数据长度	0x0F	数据长度	
0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
Ox1A	暂停运动寄存器地址	0x1A	暂停运动寄存器地址	
0x00	首伊色如奇什品地址	0x00	首伊廷切司任命地址	
0x01	1	0x00	目标位置 0 步	
0x00	暂停运动	0x00	日你吐且〇少	
0x53	校验和	0x00	实际位置 0 步	
		0x00	英原位員 0 少	
		0x00	电流 0mA	
		0x00	电测 OTTA	
		0x00	│ ─────力传感器数值 0g	
		0x00	刀 [包括	
		0x00	力传感器原始值 0	
		0x00	/ / / / / / / / / / / / / / / / / / /	
		0x20	温度 32℃	
		0x00	故障码 O	
		0x7C	校验和	

3.5.12. 修改电缸 ID

将电缸 ID 修改为 2,可设置寄存器 Ox16 为 OxO2,新 ID 立即生效。再发送保存参数指令(参见 3.5.10),将 ID 固化到 flash 中。

指令帧		应答帧		
数值	说明	数值	说明	
0x55	帧头	0xAA	帧头	
0xAA	帧头	0x55	帧头	
0x05	数据长度	0x0F	数据长度	
0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
0x16	ID 寄存器地址	0x16	ID 寄存器地址	
0x00	ID 奇仔品地址	0x00	ID 奇仔品地址	
0x02	新的 ID 为 2	0x00	目标位置 0 步	
0x00	利的リクグと	0x00	日你但且日少	
0x50	校验和	0x00	实际位置 0 步	
		0x00	美 原位直 0 少	
		0x00	电流 0mA	
		0x00	⊕///L OTTIA	
		0x00	力传感器数值 0g	
		0x00	刀 包含品数值 09	
	INS.	0x00	力传感器原始值 0	
	AIG PIE	0x00	万で谷がり日	
			温度 32℃	
		0x00	故障码 O	
		0x78	校验和	

3.5.13. 修改波特率

将电缸波特率修改为 115200,可设置寄存器 0x17 为 0x02(2 对应 115200 波特率), 然后发送保存参数指令(参见 3.5.10)。断电重启后,新的波特率生效。

指令帧		应答帧		
数值	说明	数值	说明	
0x55	帧头	0xAA	帧头	
0xAA	帧头	0x55	帧头	
0x05	数据长度	0x0F	数据长度	
0x01	ID	0x01	ID	
0x32	CMD_WR_REGISTER	0x32	CMD_WR_REGISTER	
0x17	波特率寄存器地址	0x17	波特率寄存器地址	

0.00		0.00	
0x00		0x00	
0x02	2	0x00	目标位置 0 步
0x00	波特率为 115200	0x00	日你但且日少
0x51	校验和	0x00	实际位置 0 步
		0x00	天 你位直 0 少
		0x00	电流 0mA
		0x00	电流 UTIA
		0x00	九件总织物体 0~
		0x00	力传感器数值 0g
		0x00	力供成器區投持口
		0x00	力传感器原始值 O
		0x20	温度 32℃
		0x00	故障码 O
		0x80	校验和

注意:LA、LAS 系列电机更新力闭环程序后不支持力控相关功能。

3.6 异常处理机制

通过读电缸状态信息指令,可以获取到电缸的故障信息,包括堵转、过温、过流、电机异常、Flash 参数错误以及未保存等故障信息。

当电缸发生堵转保护时,可等待 5 秒故障将被自动清除或使用清除故障指令,电缸将恢复到上电初始状态,等待新指令,若前两次故障都是通过自动清除恢复工作,则在第三次报故障时只能通过清除故障指令使电缸恢复正常运行。

当电缸发生过温保护时,电缸将停止工作,该故障不可以被清除,只能在温度回落到回温启动温度值后自动恢复到上电的初始状态,等待新指令。

当电缸发生过流故障时,可等待 5 秒故障将被自动清除或使用清除故障指令,电缸将恢复到上电初始状态,等待新指令,若前两次故障都是通过自动清除恢复工作,则在第三次报故障时只能通过清除故障命令使电缸恢复正常运行。

当电缸发生电机异常故障时,说明电缸内部输出达到最大但实际采集到的电流信息为 0, 当采集电流超过 30mA 时, 自动取消电机异常提示, 也可使用功能指令中的故障清除命令取消电机异常提示, 一般在提示电机异常时说明电缸内马达即将达到寿命。