Department of Computing and Information Systems COMP90038 Algorithms and Complexity Tutorial Week 4

Sample answers

The exercises

```
1. function SECRET(A[0..n-1])

// Input: An array A[0..n-1] of n real numbers

// Output: ?

minval \leftarrow A[0]; maxval \leftarrow A[0]

for i \leftarrow 0 to n-1 do

if A[i] < minval then

minval \leftarrow A[i]

if A[i] > maxval then

maxval \leftarrow A[i]

return maxval - minval
```

- (a) What does this algorithm compute?
- (b) What is its basic operation?
- (c) How many times is the basic operation executed?
- (d) What is the time complexity of the algorithm (in a Big-O sense)?

Response Answer not supplied — check your answer again!

2. One possible way of representing a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is as an array A of length n+1, with A[i] holding the coefficient a_i .

- (a) Design a brute-force algorithm for computing the value of p(x) at a given point x. Express this as a function Peval(A, n, x) where A is the array of coefficients, n is the degree of the polynomial, and x is the point for which we want the value of p.
- (b) If your algorithm is $\Theta(n^2)$, try to find a linear algorithm.
- (c) Is it possible to find an algorithm that solves the problem in sub-linear time?

Answer.

(a) Working from right-to-left, the following algorithm is the natural formulation:

```
function Peval(A, n, x)

result \leftarrow 0.0

for i \leftarrow n downto 0 do

summand \leftarrow 1.0

for j \leftarrow 1 to i do

summand \leftarrow x \times summand

result \leftarrow result + a[i] \times summand

return result
```

The complexity is $\Theta(n^2)$.

(b) Working from left-to-right allows us to avoid many redundant calculations of x^i . It gives an algorithm that is both simpler and more efficient:

```
function PEVAL(A, n, x)

result \leftarrow a[0]

summand \leftarrow 1.0

for i \leftarrow 1 to n do

summand \leftarrow x \times summand

result \leftarrow result + a[i] \times summand

return \ result
```

- (c) We cannot solve the problem in less than linear time, because we clearly need to access each of the n + 1 coefficients.
- 3. Trace the brute-force string search algorithm on the following input: The path p is 'needle', and the text t is 'there_need_not_be_any'. How many comparisons (successful and unsuccessful) are made?

Answer. 21 character comparisons are made.

- 4. Assume we have a text consisting of one million zeros. For each of these patterns, determine how many character comparisons the brute-force string matching algorithm will make:
 - (a) 010001
- (b) 000101
- (c) 011101

Answer.

- (a) 2×999995 comparisons
- (b) 4×999995 comparisons
- (c) 2×999995 comparisons
- 5. Give an example of a text of length n and a pattern, which together constitute a worst-case scenario for the brute-force string matching algorithm. How many character comparisons, as a function of n, will be made for the worst-case example.

Answer. The worst case happens when we have a text of length n consisting of the same character c repeated n times, together with a pattern of length m, consisting of m-1 occurrences of c, followed by a single character different from c. In this case, the outer loop is traversed n-m+1 times, and each time, m character comparisons are made before failure is detected. Altogether we have $(n-m+1)m=(n+1)m-m^2$ comparisons. As a function of m, this has its maximal value where n+1-2m=0, that is, when the length of the pattern is about half that of the text.

6. The assignment problem asks how to best assign n jobs to n contractors who have put in bids for each job. An instance of this problem is an $n \times n$ cost matrix C, with C[i,j] specifying what it will cost to have contractor i do job j. The aim is to minimise the total cost. More formally, we want to find a permutation $\langle j_1, j_2, \ldots j_n \rangle$ of $\langle 1, 2, \ldots, n \rangle$ such that $\sum_{i=1}^n C[i, j_i]$ is minimized.

Use brute force to solve the following instance:

	Job 1	Job 2	Job 3	Job 4
Contractor 1	9	2	7	8
Contractor 2	6	4	3	7
Contractor 3	5	8	1	8
Contractor 4	7	6	9	4

Answer.

Permutation	Cost		
1,2,3,4	9+4+1+4	=	18
1,2,4,3	9+4+8+9	=	30
1,3,2,4	9+3+8+4	=	24
1,3,4,2	9+3+8+6	=	26
1,4,2,3	9+7+8+9	=	33
1,4,3,2	9+7+1+6	=	23
2,1,3,4	2+6+1+4	=	13
2,1,4,3	2+6+8+9	=	25
:			
•			

and so on. The minimal cost is 13, for permutation (2, 1, 3, 4).

7. Give an instance of the assignment problem which does not include the smallest item C[i, j] of its cost matrix.

Answer.

	Job 1	Job 2
Contractor 1	1	2
Contractor 2	2	4

8. Outline an exhaustive-search algorithm for the Hamiltonian circuit problem.

Response

The problem of finding a Hamiltonian circuit is very similar to the traveling salesman problem. Generate permutations of n vertices that start and end with, say, the first vertex, and check whether every pair of successive vertices in a current permutation are connected by an edge. If its the case, the current permutation represents a Hamiltonian circuit, otherwise, a next permutation needs to be generated.