产业实践报告

人工智能第三组基础层

梁家伟、姜德扬、姚进

A full-HD picture 1920*1080 pixels in YUV format, Y is the luminance.

Consider Y only:

Every pixel is in 16-bit floating number

Every filter is 8*8 with stride 4 (zero padding is used)

There are 32 filters in the feature mapping layer

Q1: How many addition(A) and multiplication(M) are required to finish this layer?

Q2: If there is only one ALU, one addition takes J nano-second(ns), and one multiplication takes K ns, how long does it take to get it done? (Only computation time is considered, data fetch and store can be done in pipeline)


```
4123232 \times 64 = 263,886,848 次乘法 4123232 \times 63 = 259,763,616 次加法 t = 263,886,848 K + 259,763,616 I(ns)
```

Q3: If the 8*8 filtering process can be done in parallel, how long does it take to get it done?

$$128,851 \times 32$$
 个滤波器 = 4,123,232
$$t = 4,123,232 (J + K) (ns)$$

Q4: From Q3, you save a lot of time, but what the tradeoff is?

- 运算单元增多
- 电路变大
- 处理器面积变大
- 功耗变大

Q5: If the computation architecture is fixed as in Q3, you want to reduce more computation time, what can you do?

一次加法: J (ns)

一次乘法: K (ns)

- 减少 "J" 、 "K"
- 让工艺水平更进一代
- 晶体管越小,运算越快

Q6: What conclusion do you derive from this example?

问题二

随着我国不断推进集成电路, 半导体设备以及材料国产化的进步程度有目共睹。 调研国产设备,材料供应商。 从以下几个方面进行说明:

- (1) 该公司拳头产品
- (2) 与其配套或该产品可完成的工艺步骤
- (3) 比较该拳头产品与进口设备(材料) 技术水平

2017E Rank	Company	Headquarters	2016 Tot IC	2017E Tot IC	2017/2016 % Change	
1	Qualcomm	U.S.	15414	17078	11%	
2	Broadcom Ltd.	Singapore	13846	16065	16%	
3	Nvidia	U.S.	6389	9228	44%	
4	MediaTek	Taiwan	8809	7875	-11%	
5	Apple	U.S.	6493	6660	3%	
6	AMD	U.S.	4272	5249	23%	
7	HI Silicon	China	3910	4715	21%	
8	Xilinx	U.S.	2311	2475	7%	
9	Marvell	U.S.	2407	2390	-1%	
10	Unigroup	China	1880	2050	9%	
—— Top 10 Total ——			65731	73785	12%	
—— Other			24694	26825	9%	
— Total Fabless/System — 90425 100610 11%					11%	

芯片材料

直拉硅棒

区熔硅棒

直拉硅片

区熔硅片

- 中国硅单晶品种最齐全的厂家之一
- 区熔硅单晶国内市场占有率65%以上
- 产量和市场占有率连续5年居国内同行业首位
- 产销规模居世界第三位

芯片材料

光电子 用薄膜 材料 生物医 稀土 用材料 材料 红外光学 稀有金属 光电材料 贵金属

- 新材料研发与生产
- 我国有色金属新材料行业骨干企业

溅射靶材

- 超大规模集成电路芯片制造用超高纯金属材料
- 满足国内厂商28nm技术节点量产需求
- 批量供货16nm

晶圆代工

中芯国际 0.35µm ~ 28nm 华力微电子 28nm

台积电 7nm

国内:

华工激光

国外:

Balled Hill

大族激光

百超

通快

光刻机

a. Prepare wafer

oxide

substrate

b. Apply photoresist

oxide

substrate

c. Align photomask

glass Cr

PR

oxide

substrate

d. Expose to UV light

glass

PR oxide

substrate

e. Develop and remove photoresist f. Etch exposed oxide g. Remove remaining exposed to UV light

PR

oxide

substrate

substrate

oxide

substrate

光刻机

上海微电子

d. Expose to UV light

glass

Cr

PR

oxide

substrate

SSC600/10

SSB600/10

■ 主要技术参数

型号	SSA600/20	SSC600/10	SSB600/10
分辨率	90nm	110nm	280nm
曝光光源	ArF excimer laser	KrF excimer laser	i-line mercury lamp
镜头倍率	1:4	1:4	1:4
硅片尺寸	200mm或300mm	200mm或300mm	200mm或300mm

光刻机

阿斯麦

Advanced Semiconductor Material Lithography

13nm

刻蚀机

中微半导体

e. Develop and remove photoresist exposed to UV light

PR

oxide

substrate

Primo AD-RIE

Primo AD-RIE™是中微公司用于流程前端(FEOL)及后端(BEOL)关键刻蚀应用的第二代电介质刻蚀设备,主要用于22纳米及以下的芯片刻蚀加工。基于前一代产品Primo D-RIE刻蚀设备已被业界认可的性能和良好的运行记录,Primo AD-RIE做了进一步的改进:采用了具有自主知识产权的可切换低频的射频设计,优化了上电极气流分布及下电极温度调控的设计。

Primo AD-RIE已经成功通过了3000片晶片马拉松测试。除已证实其具备更优越的重复性及稳定性以外,该产品还可将晶片上关键尺寸均匀度控制在2纳米内。

系统特点及技术优势

- 2-13.5兆赫兹可切换射频发生器在多膜层结构的刻蚀能改善工艺水平
- 独特的射频输入和对称分布改善等离子密度的均匀分布
- 三区气体分布为刻蚀速度的均匀度提高有效的可调性
- 静电吸盘双区冷却装置提高晶片温度可调性,极大改善晶圆片刻蚀均匀度
- 如欲了解有关Primo AD-RIE的更多信息,请邮件联系: info@amecnsh.com

22nm

刻蚀机

美国应用材料有限公司 Applied Materials

CENTRIS™ SYM3™ ETCH

As semiconductor scaling has continued, increasingly rigorous requirements for precision and uniformity in chip fabrication have propelled the first comprehensive redesign of the silicon etch chamber in over a decade. The resulting Applied Centris Sym3 system delivers world-class cross-wafer uniformity with unprecedented within-chip feature control in critical etch applications for high-volume manufacturing at the 1x/10nm node and beyond.

10nm

e. Develop and remove photoresist exposed to UV light

PR

oxide

substrate

切割、焊线、塑封......

排名	企 业 名 称
1	江苏新潮科技集团有限公司
2	南通华达微电子集团有限公司
3	天水华天电子集团
4	威讯联合半导体(北京)有限公司
5	恩智浦半导体
6	英特尔产品(成都)有限公司
7	安靠封装测试(上海)有限公司
8	海太半导体(无锡)有限公司
9	上海凯虹科技有限公司
10	晟碟半导体(上海)有限公司

全球		全球	全球		大陆	全球		大陆
1.Synopsys		1.ARM	电子硅: Shin-Etsu、		有研新材、	Applied Materials		北方华创、
2.Mentor		2.Synopsys	SUMCO . Global Wafer		中环股份、 鼎龙股份、	ASML		京运通、 浙江晶盛、
3.Codence		3.lmagination	光罩: TOPPAN、		上海新阳、	Tokyo Electron		长川科技
4.Magma	EDA ID#	4.Codence	DNP	材料	江丰电子、 阿石创	Lam Research	设备	
5.Keysight	EDA IP核	5.Silicon Image	光刻胶: JSR、 TOK	17717			火田	
	芯片设计		\longrightarrow	芯片制造		\longrightarrow	芯片封装	
	高通			台积电			日月光	
	博通			格罗方德			艾克尔	
	英伟达			联电			江苏长电	
	· · · · · · · · · · · · · · · · · · ·			三星			砂晶	
	苹果			中芯			力成	
	AMD			高塔半导体			天水华天	
	海思			力晶			通富微电	
	Xilinx			世界先进			京元电	
	Marvell			华虹宏力			联测	
	紫光			东部高科			南茂	