Numerical Analysis Mathematics of Scientific Computing

主讲人 朱亚菲 幻灯片制作 孙晓庆

中国海洋大学 信息科学与工程学院

2013年9月6日

目录

- Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

内容提要

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Convergent Sequences

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Convergent Sequences

- In case of real numbers, a computer program may produce a sequence of real numbers x_1 , x_2 , x_3 ,... that are approaching the correct answer.
- if there corresponds to each positive ε a real numbers r such that $|x_n-l|<\varepsilon$ whenever n>r
- For example

$$\lim_{n \to \infty} \frac{n+1}{n} = 1$$

Orders of Convergence

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Orders of Convergence

• Let $[x_n]$ be a sequence of real numbers tending to a limit x^* . We say that the rate of convergence is at least **linear** if there are a constant c < 1 and an integer N such that

$$|x_{n+1} - x^*| \le c|x_n - x^*| (n \ge N)$$

• We say that the rate of convergence is at least **superlinear** if there exists a sequence ε_n tending to 0 and an integer N such that

$$|x_{n+1} - x^*| \le \varepsilon_n |x_n - x^*| (n \ge N)$$

Orders of Convergence

• The convergence is at least **quadratic** if there are a constant C (not necessarily less than 1) and an integer N such that

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2 (n \ge N)$$

ullet In general, if there are positive constants C and lpha and an integer N such that

$$|x_{n+1} - x^*| \le C|x_n - x^*|^{\alpha} (n \ge N)$$

We say that the rate of convergence is of **order** α at least.

qiu (中国海洋大学)

Big O and Little o

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Big O and Little o Notation

- Let $[x_n]$ and $[\alpha_n]$ be two different sequences, We write $x_n = O(\alpha_n)$ if there are constants C and n_0 such that $|x_n| \leq C|\alpha_n|$ when $n \geq n_0$. x_n is "big oh" of $[\alpha_n]$
- The equation $x_n = o(\alpha_n)$. For some ε_n have $\varepsilon_n \to 0$ and $|x_n| \le \varepsilon_n |\alpha_n|$.

$$\left(\lim_{n\to\infty}\frac{x_n}{\alpha_n}=0\right)$$

Big O and Little o Notation

- In general, we write f(x) = O(g(x)) $(x \to x^*)$ when there is a constant C and a neighborhood of x^* such that $|f(x)| \le C|g(x)|$ in that neighborhood.
- Similarly, $f(x) = o(g(x)) \ (x \to x^*)$ means that

$$(\lim_{x \to x^*} \frac{f(x)}{g(x)} = 0)$$

Mean-Value Theorem for Integrals

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Theorem

• Let u and v be continuous real-valued functions on an interval [a,b], and suppose that $v \ge 0$. Then there exists a point ξ in [a,b] such that

$$\int_{a}^{b} u(x)v(x)dx = u(\xi) \int_{a}^{b} v(x)dx$$

Nested Multiplication

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Nested Multiplication

- A polynomials can be rewritten in a nested form that it requires only a few more than the minimum number of multiplications when evaluating it.
- The polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + + a_2 x^2 + a_1 x + a_0$
- can be written using standard mathematical notation involving the sum \sum and product \prod as follows:

$$p(x) = \sum_{k=0}^{n} a_k x^k$$

• To evaluate the polynomial efficiently, we can group the terms using nested multiplication:

$$p(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n))\dots))$$

16 / 20

Least Upper Bound Axiom

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Least Upper Bound Axiom

Definition of supremum

The supremum of S is v (v = supS = lubS) if and only if

- v is an upper bound for S and
- o no real number smaller than v is an upper bound for S

Definition of infilmum

The infilmum of S is u (u = supS = lubS) if and only if

- u is a lower bound for S and
- 2 no real number greater than u is a lower bound for S

Explicit and Implicit Functions

- 1 Order of convergence and Additional Basic concepts
 - Convergent Sequences
 - Orders of Convergence
 - Big O and Little o
 - Mean-Value Theorem for Integrals
 - Nested Multiplication
 - Least Upper Bound Axiom
 - Explicit and Implicit Functions

Explicit Functions

- A explicit function is usually defind via an explicit formula, from which a value of function can be computed for each argument.
- for example $f(x) = \sqrt{7x^3 2x}$
- A function y = f(x) is well defined by the following differential equation with an initial condition

$$y' = 1 + \sin y$$
$$y(0) = 0$$

Implicit Functions

• Let G be a function of two real variables defined and continuously differentiable in a neighborhood of (x_0,y_0) , if $G(x_0,y_0)=0$ and $\partial G/\partial y\neq 0$ at (x_0,y_0) , then there is a positive δ and a continuously differentiable function f defined for $|x-x_0|<\delta$ such that $f(x_0)=y_0$ and G(x,f(x))=0 for $|x-x_0|<\delta$