Age and Gender Classification using CNN

Narita Pandhe

Problem Statement

- Goal: Classify the age and gender of the faces in an image.
- Possible Applications:
 - Automated translation or Speech Generation
 - Social media websites -> use this information -> better infer the context of the image
 - Image Captioning
- Challenges: Nature of the data
 Datasets with age and/or gender labels -> smaller in size

Related Work

- Y. H. Kwon et al., Age classification from facial images [1994]
 - Early attempt for age estimation
 - Based on calculating ratios between different measurements of facial features
- S. E. Choi et al., Age estimation using a hierarchical classifier based on global and local facial features [2011]
 - Gabor and local binary patterns (LBP) + hierarchical age classifier composed of Support Vector Machines (SVM)
- B. Moghaddam et al., Learning gender with support faces [2002]
 - Applied SVM directly to image intensities.

• Most of the papers: Tackle either age **or** gender classification on constrained images.

- Gil Levi et al., Age and Gender Classification using Convolutional Neural Networks
 [2015]
 - Developed one methodology and architecture for both
 - Addresses undeniable reality: Images taken in real-world settings -> not perfectly aligned, lit, or centered

Data Set

A	В	C	D	E	F	G	Н	- 1	J	K	L
user_id	original_image	face_id	age	gender	x y		dx	dy	tilt_ang	fiducial_yaw_angle	fiducial_score
30601258@N03	10399646885_67c7d20df9_o.jpg		1 (25, 32)	f	0	414	1086	1383	-115	30	17
30601258@N03	10424815813_e94629b1ec_o.jpg		2 (25, 32)	m	301	105	640	641	0	0	94
30601258@N03	10437979845_5985be4b26_o.jpg		1 (25, 32)	f	2395	876	771	771	175	-30	74
30601258@N03	10437979845_5985be4b26_o.jpg		3 (25, 32)	m	752	1255	484	485	180	0	47
30601258@N03	11816644924_075c3d8d59_o.jpg		2 (25, 32)	m	175	80	769	768	-75	0	34
30601258@N03	11562582716_dbc2eb8002_o.jpg		1 (25, 32)	f	0	422	1332	1498	-100	15	54
30601258@N03	10424595844_1009c687e4_o.jpg		4 (38, 43)	f	1912	905	1224	1224	155	0	64
30601258@N03	9506931745_796300ca4a_o.jpg		5 (25, 32)	f	1069	581	1575	1575	0	30	131
30601258@N03	10190308156_5c748ab2da_o.jpg		5 (25, 32)	f	474	1893	485	484	-115	30	55
30601258@N03	10190308156_5c748ab2da_o.jpg		2 (25, 32)	m	1013	1039	453	452	-75	0	59
30601258@N03	11624488765_9db0b93c94_o.jpg		2 (25, 32)	m	101	56	740	740	-90	0	75
30601258@N03	10204739113_0e2ae11708_o.jpg		6 (25, 32)	m	336	640	841	842	-85	0	94
30601258@N03	10204739113_0e2ae11708_o.jpg		1 (25, 32)	f	693	247	720	720	-85	30	132
30601258@N03	11518638385_cac7193c86_o.jpg		2 (25, 32)	m	87	20	728	728	-95	0	79
30601258@N03	11341941104_2bcd4b99e0_o.jpg		1 (25, 32)	f	1039	1432	624	625	185	30	120
30601258@N03	11431644464_5510e0b7e9_o.jpg		2 (25, 32)	m	223	58	780	781	-85	0	40
30601258@N03	11562657036_5fe2235bed_o.jpg		5 (25, 32)	f	518	234	444	444	-15	0	78
30601258@N03	11438175534_c13ee0375c_o.jpg		2 (25, 32)	m	890	229	746	746	-105	30	132

Specifications:

Adience Data Set: Benchmark of face photos from flickr

Total #photos: 26,580 Total #subjects: 2,284

#Gender groups/labels: 2 #Age groups/labels: 8

(0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+)

- 5 subject-exclusive folds
- Regular Folds or Frontal Faces (fiducial_yaw_angle ~= 0)

Network

Reference: Ari Ekmekji, Convolutional Neural Networks for Age and Gender Classification. http://cs231n.stanford.edu/reports2016/003_Report.pdf

- Implemented a relatively shallow architecture
- Real-world social images + Genders + Age: Limited data size Overfitting!
- Deeper Networks = More expressive, Better performance
 But problems can worsen due to huge numbers of model parameters

Data Set Issues:

- Non-Uniform Labelling:
 - Not all the images have labels for both gender and age
 - Some images have just a single number eg. 23, 14, 57
 - Some images have vague age ranges eg. (8, 23)

- Blurred Images
- Age distribution is skewed towards younger users
- Inconsistent intervals in the age ranges (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+)

Reference: http://www.openu.ac.il/home/hassner/proje cts/cnn_agegender/

Approach

- Primary goal: Improve performance!
- Separate the tasks of classifying men's and women's age
- Frees from having to learn a gender-neutral concept of age
- Train a chained gender-age network
- Gender Classification easier than Age Classification:
 - fewer number of classes
 - more marked differences exists between genders than between many age groups

- Improving the existing architecture:
 - Tested various hyperparameters for Adam Optimizer
 - Replaced the fully connected layers
 - Attempted 5 different combinations of these modified architectures.

But no clear benefit:(

Made the system perform the same or, sometimes, worse.

Coupling the architectures for gender and age classification

Step #1: classify gender

Step #2: based on the results feed the image into an age classifier trained solely on men or solely on women.

Observations:

- Training a classifier only on male images = Increases accuracy when predicting the age of men
- Accuracy of classifying female ages decreased over the average (which may or may not be taken as a social commentary on how women are more effective at hiding their age :p)

Data Preprocessing

- Extracted images: Total# 17523
- Mostly frontal images: -45 <= fiducial_yaw_angle <= 45.
- Resized images: 227 x 227
- Center cropped
- Randomly flipped

Observations of existing model

Reference: Ari Ekmekji, Convolutional Neural Networks for Age and Gender Classification. http://cs231n.stanford.edu/reports2016/003 Report.pdf

- Reproduce the results of [1]
 - SGD + learning rate of 1e-3, decays by a factor of 10 every 10000 iterations
 - Batch size: 50 images

	Gender	Age
Benchmark [1]	85.9	45.9
Observed results	85.89	43.5

Gender Classification

Step #1

- Used the same network to classify gender
- 4 fold cross validation
- Train + Validation: Folds #0 #3
- Test: Fold #4

Accuracy: 85.89%

Fold	#Males	#Females	Total
0	2047	1949	3996
1	1611	1999	3610
2	1363	1764	3127
3	1502	1820	3322
4	1597	1871	3373
	8120	9403	17523

Age Classification

Step #2

- Used the same network to train a gender-neutral age classifier
- Tested the network based on predicted genders from Step #1
- Train + Validation: Folds #0 #3
- Test: Data set based on predicted genders

Embarrassing...

Model #1: Same Model as it is trained for age classification	Exact Match		One - Off		
Males Total: 1343	440	32.76%	721	53.68%	
Females Total: 1636	562	34.35%	955	58.37%	
2979	1002	33.63%	1676	56.26%	

Modifications to Age Classifier

- Trained a new network solely on males and females respectively
- Weighted Losses
- Modified Dropouts

Model #2	Exact Match		One - Off	
Males Total: 1343	679	50.55%	1106	82.35%
Females Total: 1636	651	39.79%	1140	69.68%
2979	1330	44.64%	2246	75.39%

Issues

#Males	0	1	2	3	4	5	6	7
0	287	180	60	41	929	337	144	69
1	2	93	265	387	343	520	41	128
2	364	224	74	74	229	159	41	128
3	72	35	367	203	413	306	57	49

No. of females to train on: 7532

#Females	0	1	2	3	4	5	6	7
0	254	313	156	112	743	219	83	69
1	0	387	497	318	407	240	72	78
2	236	134	401	212	499	120	88	74
3	4	203	130	314	819	221	60	69

Age distribution is skewed towards younger users: Bias towards majority labels

Balanced out the dataset, but still age group #4 had more no. of images
Added weighted loss(similar to previous model)

Results of Final Classifier

Model #3	Exact Match		One - Off		
Males Total: 1343	644	47.95%	1146	85.33%	
Females Total: 1636	651	39.79%	1292	78.97%	
2979	1295	43.47%	2438	81.83%	

Future Work

- Upsample/Augment Data
- Current network can classify images with only 1 face in it. Detect faces in an image and feed the extracted faces based on the bounding boxes.
- IMDB-WIKI 500k+ face images with age and gender labels

References

- Gil Levi et al., Age and Gender Classification using Convolutional Neural Networks
 [2015]
- Ari Ekmekji, Convolutional Neural Networks for Age and Gender Classification Stanford
- Rajeev Ranjan et al., Unconstrained Age Estimation with Deep Convolutional Neural Networks [2015]
- 4. https://gist.github.com/GilLevi/c9e99062283c719c03de
- 5. http://www.openu.ac.il/home/hassner/projects/cnn_agegender/
- 6. https://github.com/Russell91/TensorBox