COVER PAGE

STAT 608 Homework 03, Summer 2017

Please write your name and email address clearly below, then convert to PDF and attach as the first page of your homework upload.

NAME: RAJAN KAPOOR

EMAIL: r. kapoor @ tamu cdy.

45/49

$$(1) \qquad H_6: \gamma_1 = \gamma_2$$

$$H_{\Delta}: \Upsilon, \neq \Upsilon_{2}$$

$$AS^2 = \frac{RSS}{df} = \frac{100}{30-4} = \frac{100}{26} = \frac{3846}{2}$$

(22) Possible numerical value of
$$\hat{\beta}$$
,

$$t_c = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)} \sim t - distribution with df = 26$$

For p-value of 0.02, the conticed value is given by

$$\Rightarrow c = 2.479 \text{ or } t_{c} = -2.479$$

$$\frac{\hat{\beta}_{1}}{sc(\hat{\beta}_{1})} = 2.479 \text{ or } \frac{\hat{\beta}_{1}}{se(\hat{\beta}_{1})} = -2.479$$

$$\exists \hat{\beta}_1 = 2.479 \times 0.5 \text{ or } \hat{\beta}_1 = -2479 \times 0.5$$

$$\exists \hat{\beta}_1 = 1.2395 \text{ or } \hat{\beta}_1 = -1.2395$$

(2.3) 95 / CI for
$$\beta_2 = \hat{\beta}_2 \pm t(0.05, 26) \times se(\hat{\beta}_2)$$

$$= 1 \pm 0.3385(0.25)$$

$$(0.915375, 1.084625)$$

$$(2.4) R^2 = 1 - \frac{RSS}{SST} = 0.9$$

$$\Rightarrow \frac{RSS}{SST} = 0.1 \Rightarrow SST = 1000$$

(2.5)
$$F = \frac{SSre_{0}/p}{RSS/n-p-1}$$

$$= \frac{900}{3}/100/26$$

$$= 3 \times 26 = 48 \times F_{3/26}$$

At 5/level,
$$f_c = 2.975$$

(x=0.05)
F value > $f_c \Rightarrow Reject H_p$

(3) (3.1) Cuppercase Letteric $H = X(X|X)^{-1}X'$ For idempotent matrix AA' = A $HH' = \times (\times' \times)^{1} \times' \left[\times (\times' \times)^{1} \times' \right]^{1}$ = \times $(x' \times)' \times ' \times ' (\times ' \times)' \times '$ $\mathbb{C}^{-}(X'X) = X'X$ $(X^{-1})' = (X^{-1})^{-1}$ $= \times (x'x)^{-1}X'X, (x'x)^{-1}X'$ $\begin{bmatrix} x'' = x \end{bmatrix}$ = X I (X' X) X' EX'X=I) = \times (x'x)'x'[XI = X] (3.2) Var(ê1X) = Var((I-H) 7/X) = (I-H) Var (7 1x) (I-H) F. H=f(x) e Var (Ag) = A Varg)A) = (I-H) E (I-H) = (I-H) 02 I (I-H) = (I-H)(I-H)'02 - (I-H) (I-H') 02 2 (I-HI-IH'+HH') 02 = (I-H-H+H)02 : HH'=4 = (I-H)02

(4)
$$\hat{e} = (I-H)\hat{y}$$
 $\hat{e} = (I-H)\hat{y}$

To generate given expression, premultiply \hat{e} by X'

LHS = $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{e}_1 \\ \hat{e}_2 \\ \hat{e}_3 \end{bmatrix} = \begin{bmatrix} \hat{e}_1 + \hat{e}_3 \\ \hat{e}_1 + 2\hat{e}_2 + \hat{e}_4 \end{bmatrix}$

RHS =
$$X'(I-X(X'X)'X')$$
 \vec{y}
= $(X'I-X'X(X'X)'X')$ \vec{y}
= $(X'-X')$ \vec{y} = 0
 $(X'-X')$ \vec{y} = 0
 $(X'-X')$ \vec{y} = 0
Comparing second row in LHS RRHS.
= $(X+2\hat{e}_1+\hat{e}_4=0.$ Yes.

$$\begin{array}{c}
(5) \\
\vec{\gamma} = \begin{bmatrix} 1 & 0 & | \beta_A \\
0 & | \beta_B \end{bmatrix} + \vec{\hat{E}} \\
1 & 2 & | 2 & | \\
2 & 2 & |
\end{array}$$

- (6) Yes. The OP plots of all predictor variables follows straight line, so no transformation is needed.
 - for response variable, the 9-0 fit is not a straight line but becomes grought after by transformation

The Y vs each predictor variable plots show increasing variance without transformation. Also box-cox transformation plot schouls 2-0 lies within 95%. Soffidence without of max. Wkellhood. Since $\lambda = 0$ corresponds to log transformation, the recommendation is correct.

- (b) See page-
- (c) From leverage plot, effects of high leverage points should be booked into before finalizing
- (d) Statistically insignificant predictors can be
- Removing all predictors with unsignificant product at once is not recommended because then well be compasing model with subset of predictor words with original model. p-value can only be fred to remove one predictor variable at a time. Partial of back charled at used to decide if a subset of back charled at used to decide if a subset.

•

Call: Im(formula=log(PrizeMoney) ~ DrivingAccuracy + GIR + PuttingAverage + BirdieConversion + SandSaves + Scrambling + PuttsPerRound)

Residuals:

Min 1Q Median 3Q Max -1.71949 -0.48608 -0.09172 0.44561 2.14013

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.194300 7.777129 0.025 0.980095

DrivingAccuracy -0.003530 0.011773 -0.300 0.764636

GIR 0.199311 0.043817 4.549 9.66e-06 ***

PuttingAverage -0.466304 6.905698 -0.068 0.946236

BirdieConversion 0.157341 0.040378 3.897 0.000136 ***

SandSaves 0.015174 0.009862 1.539 0.125551

Scrambling 0.051514 0.031788 1.621 0.106788

PuttsPerRound -0.343131 0.473549 -0.725 0.469601

Signif. codes: 0'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.6639 on 188 degrees of freedom
Multiple R-squared: 0.5577, Adjusted R-squared: 0.5412
F-statistic: 33.87 on 7 and 188 DF, p-value: < 2.2e-16