Patterns that break

Peter Rowlett

Sheffield Hallam University

p.rowlett@shu.ac.uk

- A number's prime factorisation is when we write the number as a product of its prime factors.
- ► For example,
 - ▶ $6 = 2 \times 3$:
 - ▶ $18 = 2 \times 3 \times 3$.
- ▶ Notice 6 has an even number of factors and 18 has an odd number of factors.
- ▶ Let E(n) be the size of the set

$$\{k \in \mathbb{Z}^+ \mid 2 < k \le n \land k \text{ has an even number of factors}\}$$

 \blacktriangleright Let O(n) be the size of the set

$$\{k \in \mathbb{Z}^+ \mid 2 < k \le n \land k \text{ has an odd number of factors}\}$$

n	No. factors	E(n)	O(n)
1	0	1	0
2	1	1	1
2	1	1	2
4	2	2	2
5	1	2	3
5 6	2	3	3
7	1	3	4
8	3	3	5
9	2	4	5
10	2	5	5

n	No. factors	E(n)	O(n)
1	0	1	0
2	1	1	1
3	1	1	2
4	2	2	2
5	1	2	3
6	2	3	3
7	1	3	4
8	3	3	5
9	2	4	5
10	2	5	5

- In 1919, Pólya conjectured $O(n) \ge E(n)$ for all n < 2.
- Pólya checked this up to n = 1500.

Peter Rowlett SHU Patterns that break 3 / 5

n	No. factors	E(n)	O(n)
1	0	1	0
2	1	1	1
3	1	1	2
4	2	2	2
5	1	2	3
6	2	3	3
7	1	3	4
8	3	3	5
9	2	4	5
10	2	5	5

- In 1919, Pólya conjectured $O(n) \ge E(n)$ for all n < 2.
- Pólya checked this up to n = 1500.
- ► In 1962, a counterexample was found.
- The smallest counterexample is n = 906, 150, 257.

- ▶ There are lots of these. Here are just a few.
 - ► Fermat conjectured $2^{2^n} + 1$ is prime for all n, but Euler showed $2^{2^5} + 1 = 4294967297 = 641 \times 6700417$.

- ▶ There are lots of these. Here are just a few.
 - ► Fermat conjectured $2^{2^n} + 1$ is prime for all n, but Euler showed $2^{2^5} + 1 = 4294967297 = 641 \times 6700417$.
 - ▶ 12 is not prime. 121 is not prime. 1211 is not prime. 12111 is not prime. This continues until you have 136 1s following the 12.

- ▶ There are lots of these. Here are just a few.
 - ► Fermat conjectured $2^{2^n} + 1$ is prime for all n, but Euler showed $2^{2^5} + 1 = 4294967297 = 641 \times 6700417$.
 - ▶ 12 is not prime. 121 is not prime. 1211 is not prime. 12111 is not prime. This continues until you have 136 1s following the 12.
 - Consider the first n primes. There are more primes that are one less than a multiple of 3 than primes that are one more than a multiple of 3. Until n = 23338590792.

- ▶ There are lots of these. Here are just a few.
 - Fermat conjectured $2^{2^n} + 1$ is prime for all n, but Euler showed $2^{2^5} + 1 = 4294967297 = 641 \times 6700417$.
 - ▶ 12 is not prime. 121 is not prime. 1211 is not prime. 12111 is not prime. This continues until you have 136 1s following the 12.
 - Consider the first n primes. There are more primes that are one less than a multiple of 3 than primes that are one more than a multiple of 3. Until n = 23338590792.
 - ▶ There are no $a, b, c \in \mathbb{Z}^+$ which satisfy

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 4$$

until

a=154476802108746166441951315019919837485664325669565431700026634898253202035277999

b=36875131794129999827197811565225474825492979968971970996283137471637224634055579

c = 4373612677928697257861252602371390152816537558161613618621437993378423467772036

▶ What pattern starts 1, 1, 2, 3, 5, 8, 13...?