## **MECHATRONIC DESIGN**

#### Lab 1: Introduction to Finite Difference (FD) method

The goal of the first laboratory is to approximate solutions to differential equations, i.e., to find a function (or some discrete approximation to this function) that satisfies a given relationship between various of its derivatives on some given region of space and/or time, along with some boundary conditions along the edges of this domain. In general, this is a difficult problem, and only rarely can an analytic formula be found for the solution. A finite difference method proceeds by replacing the derivatives in the differential equations with finite difference approximations. This gives a large but finite algebraic system of equations to be solved in place of the differential equation, something that can be done on a computer.

Before tackling this problem, we first consider the more basic question of how we can approximate the derivatives of a known function by finite difference formulas based only on values of the function itself at discrete points. Besides providing a basis for the later development of finite difference methods for solving differential equations, this allows us to investigate several key concepts such as the *order of accuracy* of an approximation in the simplest possible setting.

Let u(x) represent a function of one variable that, unless otherwise stated, will always be assumed to be smooth, meaning that we can differentiate the function several times and each derivative is a well-defined bounded function over an interval containing a particular point of interest  $\bar{x}$ .

Suppose we want to approximate  $\frac{\partial u(\bar{x})}{\partial \bar{x}}$  by a finite difference approximation based only on values of u at a finite number of points near  $\bar{x}$ . One obvious choice would be to use

$$\frac{\partial u(\overline{x})}{\partial \overline{x}}_{+} \approx \frac{u(\overline{x} + \Delta x) - u(\overline{x})}{\Delta x} \tag{1}$$

for some small value of  $\Delta x$ . Note that  $\frac{\partial u(\bar{x})}{\partial \bar{x}_+}$  is the slope of the line interpolating u at the points  $\bar{x}$  and  $\bar{x} + \Delta x$  (see Figure 1.)



Figure. 1. Various approximations to  $\frac{\partial u(\vec{x})}{\partial \vec{x}}$  interpreted as the slope of secant lines.

Equation (1) is a **one-sided approximation** to  $\frac{\partial u(\bar{x})}{\partial \bar{x}}$  since u(x) is evaluated only at values of  $x \geq \bar{x}$ . Another one-sided approximation would be

$$\frac{\partial u(\overline{x})}{\partial \overline{x}} = \approx \frac{u(\overline{x}) - u(\overline{x} - \Delta x)}{\Delta x}.$$
 (2)

Each of these formulas gives a *first order accurate* approximation to  $u'(\bar{x})$ , meaning that the size of the error is roughly proportional to  $\Delta x$  itself.

Another possibility is to use the centered approximation

$$\frac{\partial u(\overline{x})}{\partial \overline{x}} \approx \frac{u(\overline{x} + \Delta x) - u(\overline{x} - \Delta x)}{2\Delta x} \tag{3}$$

Equation (3) is the slope of the line interpolating u at  $\bar{x}-\Delta x$  and  $\bar{x}+\Delta x$  and is simply the average of the two one-sided approximations defined above using Eqs. (1) and (2). From Figure 1 it should be clear that we would expect  $\frac{\partial u(\bar{x})}{\partial \bar{x}}$  to give a better approximation than either of the one-sided approximations. In fact, this gives a second order accurate approximation - the error is proportional to  $\Delta x^2$  and hence is much smaller than the error in a first order approximation when  $\Delta x$  is small ( $\Delta x < 1$ ).

How are the above finite difference approximations and truncation errors analyzed? The standard approach is to expand each of the function values of u in a Taylor series about the point  $\bar{x}$ , e.g.,

$$u(\bar{x} + \Delta x) = u(\bar{x}) + \Delta x \cdot \frac{\partial u(\bar{x})}{\partial \bar{x}} + \frac{1}{2} \Delta x^2 \cdot \frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2} + \frac{1}{6} \Delta x^3 \cdot \frac{\partial^3 u(\bar{x})}{\partial \bar{x}^3} + O(\Delta x^4)$$
(4)

$$u(\bar{x} - \Delta x) = u(\bar{x}) - \Delta x \cdot \frac{\partial u(\bar{x})}{\partial \bar{x}} + \frac{1}{2} \Delta x^2 \cdot \frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2} - \frac{1}{6} \Delta x^3 \cdot \frac{\partial^3 u(\bar{x})}{\partial \bar{x}^3} + O(\Delta x^4)$$
 (5)

Using Equation (4) allows us to compute that

$$\frac{\partial u(\overline{x})}{\partial \overline{x}}_{+} \approx \frac{u(\overline{x} + \Delta x) - u(\overline{x})}{\Delta x} \approx \frac{\partial u(\overline{x})}{\partial \overline{x}} + \frac{1}{2} \Delta x \cdot \frac{\partial^{2} u(\overline{x})}{\partial \overline{x}^{2}} + \frac{1}{6} \Delta x^{2} \cdot \frac{\partial^{3} u(\overline{x})}{\partial \overline{x}^{3}} + O(\Delta x^{3})$$
 (6)

Recall that  $\bar{x}$  is a fixed point so that  $\frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2}$ ,  $\frac{\partial^3 u(\bar{x})}{\partial \bar{x}^3}$ , etc., are fixed constants independent of  $\Delta x$ . They depend on u of course, but the function is also fixed as we vary  $\Delta x$ .

For  $\Delta x$  sufficiently small, the error will be dominated by the first term  $\frac{1}{2}\Delta x \cdot \frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2}$  and all the other terms will be negligible compared to this term, so we expect the error to behave roughly like a constant times  $\Delta x$ , where the constant has the value  $\frac{1}{2}\frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2}$ .

Similarly, from Equation (5) we can compute that the error in  $D_-u(\bar{x})$  is

$$\frac{\partial u(\overline{x})}{\partial \overline{x}} = \frac{u(\overline{x}) - u(\overline{x} - \Delta x)}{\Delta x} \approx \frac{\partial u(\overline{x})}{\partial \overline{x}} + \frac{1}{2} \Delta x \cdot \frac{\partial^2 u(\overline{x})}{\partial \overline{x}^2} - \frac{1}{6} \Delta x^2 \cdot \frac{\partial^3 u(\overline{x})}{\partial \overline{x}^3} + O\left(\Delta x^3\right). \tag{7}$$

Subtracting Equation (5) from (4) gives

$$u(\bar{x} + \Delta x) - u(\bar{x} - \Delta x) = 2\Delta x \cdot \frac{\partial u(\bar{x})}{\partial \bar{x}} + \frac{1}{3}\Delta x^3 \cdot \frac{\partial^3 u(\bar{x})}{\partial \bar{x}^3}(\bar{x}) + O(\Delta x^5)$$
 (8)

so the central difference approximation is

$$\frac{\partial u(\overline{x})}{\partial \overline{x}} \approx \frac{u(\overline{x} + \Delta x) - u(\overline{x} - \Delta x)}{2\Delta x} \approx \frac{\partial u(\overline{x})}{\partial \overline{x}} + \frac{1}{6} \Delta x^2 \cdot \frac{\partial^3 u(\overline{x})}{\partial \overline{x}^3} + O(\Delta x^4)$$
(9)

This confirms the second order accuracy of this approximation. Note that all the odd order terms drop out of the Taylor series expansion (9) for  $\frac{\partial u(\vec{x})}{\partial \vec{x}}$ . This is typical with centered approximations and typically leads to a higher order approximation.

Approximations to the second order derivative  $\frac{\partial^2 u(\bar{x})}{\partial^2 \bar{x}}$  can be obtained in an analogous manner (using Taylor series) leading to

$$\frac{\partial^2 u(\bar{x})}{\partial \bar{x}^2} \approx \frac{u(\bar{x} + \Delta x) - 2u(\bar{x}) + u(\bar{x} - \Delta x)}{\Delta x^2} + O(\Delta x^2)$$
(10)

The second order mixed derivative  $\frac{\partial^2 u(\bar{x},\bar{y})}{\partial \bar{x}\partial \bar{y}}$  is:

$$\frac{\partial^2 u(\bar{x},\bar{y})}{\partial \bar{x}\partial \bar{y}} \approx \frac{u(\bar{x}+\Delta x,\bar{y}+\Delta y) - u(\bar{x}-\Delta x,\bar{y}+\Delta y) - u(\bar{x}+\Delta x,\bar{y}-\Delta y) + u(\bar{x}-\Delta x,\bar{y}-\Delta y)}{4\Delta x \Delta y} + O(\Delta x^2,\Delta y^2)$$

# Tasks to do:

#### Task 1:

Solve a one-dimensional acoustic wave equation using finite difference method for an **aluminum/copper/steel** rod. Implement a source code in MATLAB to obtain wave displacement in time and space domains. The one-dimensional wave equation is:

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2},$$

$$c = \sqrt{\frac{E}{\rho}}, \qquad 0 \le x \le L, \qquad t \ge 0$$
(11)

where E is Young's modulus,  $\rho$  is mass density, L is the length of the rod.

Use the following constant parameters for your calculations:  $\Delta x = 1$  mm,  $\Delta t = 0.12$   $\mu s$ . The excitation signal is a 200 kHz two cycle sine wave modulated by a Hanning window:



Calculate the wave speed of the simulated wave motion.

# **Exemplary results:**

A spatio-temporal acoustic wave motion data with an excitation located at 150 mm:



Temporal acoustic wave motion data measured at 50 and 300 mm:



# Task 2:

Solve a two-dimensional acoustic wave equation using finite difference method for an **aluminum** plate. Implement a source code in MATLAB to obtain wave displacement in time and space domains. The two-dimensional acoustic wave equation is:

$$\frac{\partial^{2} u(x,y,t)}{\partial t^{2}} = c^{2} \left( \frac{\partial^{2} u(x,y,t)}{\partial x^{2}} + \frac{\partial^{2} u(x,y,t)}{\partial y^{2}} \right),$$

$$c = \sqrt{\frac{E}{\rho}}, \qquad 0 \le x \le L_{1}, \qquad 0 \le y \le L_{2}, \qquad t \ge 0$$
(12)

where *E* is Young's modulus,  $\rho$  mass density, *L* is the length of the rod. Use the following constant parameters for your calculations:  $\Delta x = \Delta y = 1$  mm,  $\Delta t = 0.12$   $\mu s$ .

The excitation signal is a 200 Hz two cycle sine wave modulated by a Hanning window:



# **Exemplary results:**

Wave motion data for the excitation located in the middle of the plate:





Wave motion data for the excitation located in at the location x = 200 mm, y = 100 mm:





Task 3:

Repeat the simulations from Task 2 with the addition of discontinuity in your model, for example, as:



# **Exemplary results:**





## Task 4:

Solve two-dimensional elastodynamic wave equations for an isotropic, linear material using finite difference method for an aluminum plate. Implement a source code in MATLAB to obtain wave displacement in time and space domains.

$$\begin{cases} \rho \frac{\partial^2 u_x}{\partial t^2} = \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} + F_x \\ \rho \frac{\partial^2 u_z}{\partial t^2} = \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z} + F_z \end{cases}$$

whereas stress-strain relations are as follow

$$\tau_{xx} = (\lambda + 2\mu) \frac{\partial u_x}{\partial x} + \lambda \frac{\partial u_z}{\partial z}$$

$$\tau_{zz} = (\lambda + 2\mu) \frac{\partial u_z}{\partial z} + \lambda \frac{\partial u_x}{\partial x}$$

$$\tau_{xz} = \mu \left( \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right)$$

where  $\rho$  density,  $\mu$  shear modulus,  $\lambda$  first Lamé constant u displacement vector  $\lambda$  force vector

## **Exemplary results:**



