Rho 2 10.967. Sen toron to the charged nucleus - 6 - Certain orbits are although of integer values of n - stope, to the construction of the charged nucleus - 6 - Certain orbits are although of integer values of n - stope, to the construction of the charged nucleus - 6 - Certain orbits are although of integer values of n - stope, to the construction of the const		Phys Chem Term 2 Rev sheet # argular momentum & First V=-RH (1,-1,) [(n-1)] Symmetry conservation
Rhor 3 506 15: - e/c move in circular orbit around the changed unders - 60 - certain white are allowed by integer values of n - stope 15 th moves from one orbit to another and 1/2 the photon in evital aborded when an e/ - the the photon moves from one orbit to another and 1/2 the photon of the experience of all of another and 1/2 the photon of the experience of all of another and 1/2 the photon of the experience of all of another and 1/2 the photon of the experience of all of another and 1/2 the photon of all of another another and 1/2 the photon of all of another a)——	
Bohr 2 180 16: - et's move in circular orbit around two changed nucleus - 6 - certar orbits are allused of integer values of n - stage, 1944 - single photon in emitted (abended when an et' - 1 the 1944 moves from one orbit to another emitted of the the total orbits to another emitted of the total orbits to another emitted of the total orbits to another emitted of the total orbits to another emitted orbits orbit		KH: 10 7611.0cm Lx100
- e/s more in circular orbit around two charged nucleus - 6 - certain orbits are allowed x/ integer values of - stops, to the stops in		- NCV = 10.70/ 18 x 10 m
- e/s more in circular orbit around two charged nucleus - 6 - certain orbits are allowed x/ integer values of - stops, to the stops in		Roh ~ 海 省(16:
- Certain orbits are allused of integer values of n - Steps, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Single photon is emitted (abached vibra an et - 1 % to the moves from one orbit to another L=Iw Robbits I to have multiples of \$\frac{1}{2} = \frac{1}{2} \text{KET PE} =\(\sum_{\text{PC}} \		
moves from one orbit to enother L=Iw Rothlo L to have multiples of 500. It = KET PE = \(\sum_{\text{n}} \sum_{\text{v}}^2 \) if one particle: L:Iw \(\sum_{\text{mor}} \sum_{\text{nor}}^2 \) if one particle: L:Iw \(\sum_{\text{mor}} \sum_{\text{mor}}^2 \) = mrv \(\sum_{\text{mor}} \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \) = mrv \(\sum_{\text{mor}} \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \) = mrv \(\sum_{\text{mor}} \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \) = mrv \(\sum_{\text{mor}} \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \sum_{\text{mor}}^2 \) = mrv \(\sum_{\text{mor}} \sum_{\t		
L=Iw Rotable Lohave multiples of \$50. E=KET PE = \(\) = \(\) = \(\) meV \(\) = \(\) mh I one particle: L=Iw \(\) \(\) = \(\) meV = \(\) meV = \(\) meV = \(\) \(\) \(\) \(\) = \(\) meV = \(\) \(
if one particle: L: Iw V = nh Nov: - hh N	6 _	L= Iw Postulutes L to have multiples of 1/2 = th E= KE+ PE
it one particle: L: In -mri -mri		$= \sum_{n \in \mathbb{Z}} mev = \frac{1}{2} mv^2 - \frac{e^2}{(656.02)}$
mov e = 1 there to the form of the section of mass: the section of		$\sim 10^{-1}$
For poly electronic atoms: Fin 12		= 2 (20)
# For poly electronic atomo: Find Hard Hard Hard The poly electronic atomo: Find Hard Hard The poly electronic atomo: Find Hard The poly electronic atomo: The p		= - 6. - 6.
# For poly electronic atomo: Find Hard Hard Hard The poly electronic atomo: Find Hard Hard The poly electronic atomo: Find Hard The poly electronic atomo: The p		$= mrv \qquad mn^2h = e^2 \qquad me^2$
For poly electronic atomo: Find HARE The poly electronic atomo: Find HARE The poly electronic atomo: The po		Mel 6/12/ 8/20 12/20
For poly electronic atoms: Fine poly electronic atoms: Fine poly electronic atoms: Fine poly electronic atoms: For poly electronic atoms: Fine poly electron		1 h = em (12)
A refiner. e/ll proton both [TIME2] -hck rotate a a common about a common center of mass: At M= Me Mn M= Me + M		1 1 20 -
Cotale & a common about a common centre of mass: pt M = Me + Mn M: Me ma Re Reale = 86 h'C For poly electronic atoms: E: hcz² Rx [-2] Absorption: 1s -> np => 01 = ±1 Talmic number To: 2 dien energy: A 01: ±1	1	A ch 1/1 / / TIMP2 1 -hel
M= Me + Mn M: Me ma Lines in atomic spectra of allcali protate We have the explained For poly electronic atoms: E: hcz² Rx [n²] Absorption: Is -> np => 01 = ± Ratomic number Tonization energy: April 2 Me mission: 2 Me mission April 2 Me missio		cotate a a comme about a commencente il mass il
Me + Mn Re Reale = 850 h C - lines in atomic spectra it alled metals 1800 me = Mn Li doublet const be explained For poly electronic atoms: F: hcz² Rx [n²] Ratomic number Emission: 28 3/20 15: 'th 3 tomicour Ton: 2 atron energy: 4 01: ± 1		ma
Reale = 86 h c - lines in atomic spectra it alleali metals 1800 me = Mn Undoubted count be explained For poly electronic atoms: Undoubted count be explained F: hcz² Rx [] Absorption: Is -> np => 01 = ± Falmic number Emission : 76 71 to 15 . Hf 23 travetous To ization energy: 401:±		M= me + ma ma = Me boh model doesn't work :
For poly electronic atoms: For poly electronic atoms: F: hcz² Rx [-2] Absorption: ls -> np => 01 = ± Falmic number Tonization energy: Absorption: Ps => np => 01 = ± Tonization energy: Absorption: Ps => np => 01 = ± Tonization energy:		Real = e/m - lines in atomic spectra of allcali metals & go
For poly electronic atoms: F: hcz² Rx [-2] Absorption: Is -> np => 01 = ± Falmic number Emission: \$\frac{2}{3}\frac{2}{2}\tag{12}1		\$ 1800 me: Ma
E: hcz² Rx [n²] Absorption: ls -onp => 01=±1 Talmil number Emission: 養養種のないはのはいけるのは Ton: zation energy:		
Tonization energy:		E: hcz2 Rx [12] Absorption: lc > np = 01=±1
Tonization energy:		Tatomic number Emission 72 3/20 15 1/4 30 tanstons
$n \in \mathbb{N}$		Tonization enous:
Calco aga ve -KH o 3 2		Calc energy y=-Ru(1,2-1,2)
IE:-R (DE - A) = No Spin: + 2 MS #1 5 01		IE: - R (02 - 1) = 1 Sein: 1 Matt 1 con
orbital w Spin L		

Fine Structure: -termsymb. 1 j = 175, 2+5-1 ... 12.51 01=11 - Il klatin rules: 0j =0,11 -數線 M; = 0, ±1 少早有 field: i has a quantized orientation: M; Constant depending size of B-field => Stark effect

B-field => Stark effect

B-field => Stark effect

B-field => Zeeman eff Lande g- Factor A for sidium 6 identical to Haton 421 - It effective nuclear charge et experiences for given as energies : sepedef. theray level expressions: predicting energies of transitions 4 penetration of arbitals M as 2 de I for He : exciting one of the ZeTs wanty consider Is'n' as excited states is quantum defect Na: - depends strangly on1 1 combine 25 L=1,+12 1,+12-1 ... [L1-L2] quartifies degree of ponetralion 5,252 :. 5= 3+321 of an et in agiven orbital Sad~ 2(0.05) can assume for d-orbitals. J= 45 , 6-15-1 ... [L-5] as hardly penetrate the core & Singlet & triplet Gi # · Ssd 20 D's multiplicity