



FCTE0003

**CURSO:** Engenharia de Software

**DISCIPLINA:** Estruturas de Dados para Competições

SEMESTRE/ANO: 2025/2

CARGA HORÁRIA: 60 horas CRÉDITOS: 04

**PROFESSOR:** Edson Alves da Costa Júnior

# PLANO DE ENSINO

Cópigo:

## Objetivos da Disciplina

A disciplina Estruturas de Dados para Competições tem como objetivo preparar os alunos do curso de Engenharia de Software da FCTE para competições de programação, como a Maratona de Programação. Estes eventos ampliam o horizonte dos alunos e os estimulam a se aprofundarem nos tópicos de programação em geral. Além disso, a disciplina também constitui mais uma oportunidade para estudo e aprimoramento dos alunos em programação, tornando-os engenheiros mais preparados e capazes de atuar com competência no mercado de trabalho.

## 2 Ementa do Programa

I. Introdução

1

- i. Programação Competitiva
- ii. Maratonas de Programação
- iii. Juízes Eletrônicos
- iv. Dicas para estudo e treinamento
- v. Como começar

- II. Estrutura de Dados para Competições
  - i. Estrutura de Dados Lineares
  - ii. Estrutura de Dados Não-Lineares
  - iii. Variantes
  - iv. Tópicos Avançados

## 3 Horário das aulas e atendimento

AULAS: terças e quintas, das 18:00 às 19:50 hrs.

**ATENDIMENTO:** segundas, das 12:30 às 14:30 hrs, via plataforma Teams.

## 4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe. As comunicações do curso serão feitas exclusivamente através da plataforma SIGAA.

O curso também será focado na resolução de exercícios, envolvendo a análise e resolução de problemas oriundos de competições e de *online judges*. Ocasionalmente acontecerão contests ou na plataforma vJudge<sup>1</sup>, ou na plataforma Codeforces<sup>2</sup>, ou na plataforma AtCoder<sup>3</sup>, ou na plataforma MOJ<sup>4</sup>.

## 5 Critérios de Avaliação

A avaliação do curso se dará por meio de duas provas, individuais, cujas datas estão previstas no cronograma.

#### 5.1 Provas

Cada prova será composta por 5 problemas. Por conta de potenciais problemas relacionados ao número de máquinas operantes no laboratório, a prova será aplicada em dois dias: a turma será dividida em dois grupos A e B, por meio de um sorteio, e o estudante fará a prova no dia reservado ao grupo no qual foi sorteado.

É permitida a consulta a materiais impressos e é vedada a consulta aos colegas ou a recursos online. A prova terá inicio às 18:20 hrs, e **não serão admitidos estudantes no ambiente de provas após às 18:30 hrs**.

A solução proposta para um problema será corrigida de acordo com os seguintes critérios: após ser compilada de forma bem sucedida, uma série de testes unitários automatizados alimentarão o programa resultante com entradas válidas e comparará os resultados obtidos com as saídas corretas. Uma solução será considerada aceita se obtiver sucesso em todos os testes unitários.

Após a aplicação da prova, as soluções propostas pelos estudantes serão avaliadas por ferramentas de identificação de plágio, e caso duas ou mais soluções apresentem índices de similaridade que caracterizem cópia, todas elas serão anuladas, mesmo que tenha recebido o veredito "Aceito" durante a prova.

A prova será realizada, a menos de dificuldades técnicas ou de indisponibilidade de equipamentos, nas máquinas do laboratório e em ambiente Linux, por meio do Nutella Boot do professor Bruno Ribas. As soluções para os problemas devem ser escritas em C, C++ ou Python. Soluções em outras linguagens não serão aceitas.

A menção final do curso será dada pelo total N de problemas cujas soluções foram aceitas, e não anuladas, nas duas provas, de acordo com a tabela abaixo.

<sup>1</sup>https://vjudge.net

<sup>&</sup>lt;sup>2</sup>http://codeforces.com

<sup>&</sup>lt;sup>3</sup>atcoder.jp

<sup>4</sup>https://moj.naquadah.com.br/cgi-bin/index.sh

| $\overline{N}$ | Menção | Descrição      |
|----------------|--------|----------------|
| 0              | SR     | Sem rendimento |
| 1 ou 2         | II     | Inferior       |
| 3 ou 4         | MI     | Médio inferior |
| 5 ou 6         | MM     | Médio          |
| 7 ou 8         | MS     | Médio superior |
| 9 ou 10        | SS     | Superior       |

#### 5.2 Listas de exercícios

A cada semana poderá será proposta uma lista de exercícios, com exercícios relacionados com o conteúdo ministrado. A resolução das listas não modifica a menção, mas é fortemente encorajada para a fixação dos conceitos apresentados no curso.

#### 5.3 Atividades extras

O estudante poderá obter dois pontos extras a serem adicionados em nota N. O primeiro ponto poderá ser obtido por meio de participação presencial em um dos seguintes eventos de programação competitiva que acontecerão no segundo semestre de 2025:

- 1. Fase Subregional da Maratona de Programação da SBC
- 2. Fase Final da Maratona de Programação da SBC
- 3. XIII Maratona UnB de Programação
- 4. Maratona de Programação do IFB

O segundo ponto extra poderá ser obtido se o estudante atuar, como monitor, na aplicação de alguma das provas da disciplina. O aluno poderá se candidatar a monitor na aplicação da prova do grupo oposto ao que ele foi sorteado. Se houverem mais candidatos à monitor do que vagas, os monitores serão escolhidos mediante sorteio. Um estudante poderá ser monitor uma única vez.

## 5.4 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

**IMPORTANTE**: Atestados médicos e documentos comprobatórios de justificativas de faltas dão direito à realização de atividades avaliativas que você venha a perder, mas essas ausências justificadas também são levadas em consideração como ausências efetivas para o cômputo da frequência mínima obrigatória (*Graduação UnB – Manual para estudantes*, pág. 35).

## 6 Cronograma

| Semana | Aula | Data  | Conteúdo                                  |
|--------|------|-------|-------------------------------------------|
| 01     | 1    | 19/08 | Apresentação do curso                     |
|        | 2    | 21/08 | Introdução à programação competitiva      |
| 02     | 3    | 26/08 | Vetores                                   |
|        | 4    | 28/08 | Pilhas                                    |
| 03     | 5    | 02/09 | Pilha monótona                            |
|        | 6    | 04/09 | Fila                                      |
| 04     | 7    | 09/09 | Fila monótona                             |
|        | 8    | 11/09 | Árvores binárias                          |
| 0.5    | 9    | 16/09 | Conjuntos                                 |
| 05     | 10   | 18/09 | Venice Set                                |
| 06     | 11   | 23/09 | Dicionários                               |
| 06     | 12   | 25/09 | Heaps                                     |
| 0.7    | -    | 30/09 | Prova 1A                                  |
| 07     | -    | 02/10 | Prova 1B                                  |
| 08     | 13   | 07/10 | Hashes                                    |
| Uδ     | 14   | 09/10 | Árvores de Fenwick: definição             |
| 09     | 15   | 14/10 | Árvores de Fenwick: aplicações            |
|        | 16   | 16/10 | Árvores de Segmentos: definição           |
| 10     | 17   | 21/10 | Árvores de Segmentos: aplicações          |
|        | 18   | 23/10 | Disjoint Sets Union                       |
| 11     | 19   | 28/10 | Sparse Table                              |
| 11     | 20   | 30/10 | Link cut tree                             |
| 12     | 21   | 04/11 | Wavelet Tree                              |
| 12     | 22   | 06/11 | Permutation Tree                          |
| 13     | -    | 11/11 | Semana de Extensão Universitária          |
|        |      | 13/11 | Semana de Extensão Universitária          |
| 14     | 23   | 18/11 | Sqrt Tree                                 |
| 14     |      | 20/11 | Feriado: Dia de Zumbi e Consciência Negra |

| Semana | Aula | Data           | Conteúdo                             |
|--------|------|----------------|--------------------------------------|
| 15     |      | 25/11<br>27/11 | Treap<br>Interval Tree               |
| 16     | -    |                | Prova 2A<br>Prova 2B                 |
| 17     | -    |                | Prova Substitutiva<br>Menções Finais |

## 7 Bibliografia

#### LIVRO TEXTO

HALIM, Steven S. and HALIM, Felix. Competitive Programming, 4<sup>a</sup> ed, Lulu, 2010.

**LAARKSONEN**, A. Competitive Programmer's Handbook, Online, 2018.

**ROUGHGARDEN,** T. Algorithms Illuminated (Part 3): Greedy Algorithms and Dynamic Programming, Editora LLC, 2019.

#### LITERATURA COMPLEMENTAR

**CORMEN,** Thomas H. **LEISERSON** and Charles E. and **RIVEST**, Ronald L. and **STEIN**, Clifford. *Algoritmos: Teoria e Prática*, Editora Campus, 2ª ed, 2002.

**DROZDEK,** Adam. Estruturas de Dados e Algoritmos em C++, Thomsom, 2001.

**KERNIGHAN,** Brian and **RITCHIE**, Dennis M. *The C Programming Language*, Prentice Hall, 1988.

**JOSUTTIS,** Nicolai M. *The C++ Standard Library*, Addison-Wesley, 1999.

**SOLTYS-KULINICZ,** Michael. *Introduction to the Analysis of Algorithms*, World Scientific Publishing Co, 2012. (*eBrary*)

**STEPHENS,** Rod. Essential Algorithms: A Practical Approach to Computer Algorithms, John Wiley & Sons, 2013. (eBrary)

**BALDWIN,** Douglas; **SCRAGG,** Gregg. Algorithms and Data Structures: The Science of Computing, Charles River Media, 2004. (eBrary)