

LUSTRE File System

From Clusters to Grid with 100GB/s sustainable bandwidth

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- From superclusters to grid: issues
- conclusion

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- **From superclusters to grid: issues**
- conclusion

Network topology: NFS

Shared Disks (GPFS, CXFS...)

Page 5 © Bull 2004

Dedicated IO Servers (Lustre)

Lustre at the grid level

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- **From superclusters to grid: issues**
- conclusion

Lustre filesystem

- Lustre is a "NFS like" filesystem, comparable to IBM-GPFS
 - Parallel
 - □ Scalable
 - □ HA (Bull development)
 - **□** Opensource (GPL)

- Works in Linux Environment
 - New clients coming up in 2005 and 2006 (co-development between CFS and Bull)
- Wildly accepted by the largest compute centers
 - □ LANL / SANL / PNNL / LLNL
 - □ CEA
 - □ AWE
 - □ HLRS / TU Dresden

Lustre SW architecture

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- **From superclusters to grid: issues**
- conclusion

Lustre world record performance

2 DDN S2A8500 Couplets / 8 tiers

Lustre Layout

- OSS + MDS
- 16 OSTs (1 OST per FC link)
- 1 MDT
- ext3 journal and data on separate LUNs

Benchmark

- ES4 benchmark
- 1 MPI task / CPU; 3 client nodes x 16 CPUs = 48 tasks
- Each task
 - □ allocates and initializes 1/16 of available memory with random numbers (available RAM = 58GB. 6GB allocated to system);
 - □ writes/reads the data into 1 file of 3.625 GB;
 - □ all files are in the same directory.

Average Global Bandwidth:

Read @ 2.1 GB/s Write @ 2.6 GB/s

Server Architecture

OSS Internals and potential issues

Page 16

© Bull 2004

- Non Uniform Memory Architecture
 - higher latency when accessing memory of a remote QBB
- Independent memory controllers
- Linux kernel NUMA support
 - memory allocator
 - Ex: keep memory as close as possible to the user of the memory
 - scheduler support
 - Ex: avoid migration of processes between QBBs

Issue #1 Balancing Lustre Memory Allocation

- The OST threads are often scheduled on the 1st NUMA node
- Lustre allocates/frees memory for each data transfer
 - lustre buffers are often located on a the same node
- Memory bandwidth usage imbalance

Solution

- What: Balance memory allocations between QBBs to reduce BW requirement per QBB
- How: bind the OST kernel threads

OSS Memory Bandwidth

Memory utilization per QBB

Issue #2 Memory Shortage on one NUMA Node

- Several causes
 - □ External to Lustre (daemon, {buffer | page} cache, ...)
 - □ Lustre itself via Idiskfs journaling activity:
 - 1 kjournald thread per OST (cpu affinity = all CPUs)
 - journal threads are often scheduled on the 1st NUMA node
 - buffer cache data of journal devices are often located on the 1st NUMA node
 - 1GB journal size x 16 OSTs = 16GB = memory available on 1 QBB
- → Memory is allocated on the 2nd NUMA node, even for OST threads scheduled on the 1st node.
- Current solution
 - **□** bind the kjournald threads
- Better solution (?)
 - statically allocate pages for Lustre?

Issue #3 IO board positioning

Ldiskfs Backing Storage Activity (write phase)

Throughput per disk on DDN1

OSS CPU Idle Rate

CPU: idle rate

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- **From superclusters to grid: issues**
- conclusion

CEA TERA10 supercomputer

- TERA10 sizing
 - □ +60TFLOPS (Linpack HPC): 544x[8xMontecito]
 - □ 30TB RAM
 - □ 1PB disk space
 - □ 100GB/s sustained BW from RAM to disks
- Bull approach
 - □ Lustre file system
 - □ 2x MDS (each with 4x Intel Montecito)
 - □ 54x [server NS5160 with 8x Intel Montecito]
 - □ 27x DDN S2A9500 (FC 4Gb/s)
- Write performance per server: 2.6GB/s sustained
- Total performance: 108GB/s

TERA10 implementation

- Concept
- Architecture
- Performances optimizing Lustre
- TERA10 super computer: +100GB/s
- From superclusters to grid: issues
- conclusion

LLNL - MCR

LLNL – Multi Cluster

Lustre for Grid Architecture

- MDS
 - □ One "root" MDS
 - □ Several replications one per grid site
- OSS
 - □ Sets of OSS one set per grid site
- Gateways to other filesystems
 - □ NFS / Solaris
 - □ GPFS / CXFS
 - distributed

Issues

- Reliability
 - MDS replica
 - Transactional model
- Security
 - Access rights
 - Encryption
- HW standardization
 - □ Ideal world: same storage device on all grid sites
- Performances
 - □ Timeout

- Concept
- **Architecture**
- **Performances optimizing Lustre**
- TERA10 super computer: +100GB/s
- From superclusters to grid: issues
- conclusion

Page 31 © Bull 2004

- LUSTRE is mature for high-end superclusters
 - □ LLNL
- LUSTRE offers the most flexible architecture and the best performances
- "grid-ization" of LUSTRE is still at its beginning
- Next steps should be making the transactions securized (transactional model)
- Performance issues are the step further. They mostly depends on the grid network performances.

@ Bull 2004

