COURSE CODE: CSC1036 L-T-P: 4-1-1

COURSE NAME: OPERATING SYSTEM CONTACT HOURS/WEEK: 7

COURSE TYPE: CORE TOTAL MARKS: 100 (INTERNAL: 60, EXTERNAL: 40)

NUMBER OF CREDITS: 6 NATURE: GRADED

COURSE OBJECTIVES:

1. To provide students the basic concepts of operating system such as process states, I/O organization and instruction sets

- 2. To familiarize the students with the concepts of deadlock handling in Operating system
- 3. To provide students the knowledge of scheduling, multiprogramming and memory management
- 4. The give students the knowledge of multiprogramming system

COURSE PREREQUISITE:

• Basic concepts of computer fundamentals

COURSE OUTCOMES:

At the end of the course, students will be able to:

- Recognize the design approaches of advanced operating systems such as memory architectures, scheduling, deadlock handling etc.
- Analyze the design issues of distributed operating systems.
- Evaluate design issues of multi processor operating systems.
- Identify the requirements of database operating systems and formulate the solutions to schedule the real time applications.

COURSE CONTENT:

Unit No & Name	Components of the Unit	No of contact hours	Marks
UNIT-I: Review of computer organization	Major subsystems, instruction setsI/O organization.	8	10
UNIT-II: Memory architecture	 Address protection, segmentation, virtual memory, paging, page replacement algorithms, cache memory Hierarchy of memory types, associative memory. 	12	15
UNIT-III: Support for concurrent process	 Mutual exclusion, shared data, critical sections, busy form of waiting 	8	10

	Lock and unlock primitives, synchronization		
	block and wakeup.		
UNIT-IV: Scheduling	 Process states, process scheduling queue, schedulers, virtual processors, interrupt mechanism Scheduling algorithms: First-Come, First-Served (FCFS) Scheduling, Shortest-Job-Next (SJN) Scheduling, Priority Scheduling, Shortest Remaining Time, Round Robin(RR) Scheduling, Multiple-Level Queues Scheduling, Implementation of concurrency primitive. 	32	30
UNIT-V: System deadlock	 Deadlock characterization, Resource Allocation Graph, Prevention, detection and avoidance of deadlock Banker's algorithm, detection algorithm 	10	10
UNIT-VI:Multiprogramming System UNIT-VII: Advanced Topics	 Queue management, I/O supervisors, memory management, File system, disk and drum scheduling. Case Study: Some real operating system—semaphores, messages, shared memory. Secondary storage management, Security, 	12	15
	Distributed operating system		
	Total:	90	100

TEXTBOOKS/ RECOMMENDED READINGS:

- Tanenbaum, A. S. and Woodhull, A. S. Operating Systems Design and Implementation, PHI
- Stallings, W., UNIX Network programming, PHI.
- Kerninghan and Pike, *The UNIX programming Environment*, PHI.
- Peterson , J. L. and Silberschatz , A., Operating System concepts', Addison Wesley
- Stallings, W., Operating Systems, PHI
- Silberschatz, A., and Galvin, P., Operating System Concepts, Addison-Wesley

COURSE ASSESSMENT DETAILS:

Internal assessment: Class tests, Assignments, Laboratory tests, Seminar

External assessment: End Semester Examination