Problem Set 10 Math 410, Fall 2024

- 1. (Textbook 17.4) $(K(t) \text{ as an } S_3\text{-extension})$
- 2. Denote by $\overline{\mathbb{F}_p}$ an algebraic closure of \mathbb{F}_p . As discussed in class, for each $d \geq 1$, the set $\{\alpha \in \overline{\mathbb{F}_p} : \alpha^{p^d} = \alpha\}$ forms a subfield of exactly p^d elements, which we will denote \mathbb{F}_{p^d} .
 - (a) For which d, e is \mathbb{F}_{p^d} a subfield of \mathbb{F}_{p^e} ?
 - (b) Describe, as explicitly as possible, the Galois group of $\mathbb{F}_{p^e}/\mathbb{F}_{p^d}$ in the cases where $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^e}$.
- 3. Let $q = p^n$ denote a prime power, and let \mathbb{F}_q be a field of q elements. For each $d \mid n$, denote by \mathbb{F}_{p^d} the (unique) subfield of \mathbb{F}_q of degree p^d .
 - (a) Suppose that $\alpha \in \mathbb{F}_q$ has minimal polynomial $m \in \mathbb{F}_p[t]$ over \mathbb{F}_p , and let d be the degree of m. Prove that $d \mid n$ and $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$.
 - (b) In the notation of part (a), prove that m is an irreducible factor of $t^q t$.
 - (c) Prove that if m is any monic irreducible polynomial of degree d over \mathbb{F}_p , where $d \mid n$, then m splits in \mathbb{F}_q and m is an irreducible factor of $t^q t$.
 - (d) Deduce that $t^q t$ is equal to the product of all monic irreducible polynomials m over \mathbb{F}_p such that $\partial m \mid n$.
- 4. Let p be a prime number. For all $d \ge 1$, denote by a_d the number of irreducible polynomails over \mathbb{F}_p of degree d.
 - (a) Prove that for all $n \geq 1$, the following formula holds.

$$p^n = \sum_{d|n} d \ a_d$$

Hint Use the previous problem. You can assume its results are true even if you haven't solved it yet.

(b) Find a formula for a_{10} in terms of p.