

Lista pytań egzaminacyjnych

Dla ułatwienia czasami podawana jest sekcja w książce z większością materiału do danego pytania. Czasami jednak trzeba zajrzeć w kilka miejsc.

Pytanie 1 (2.2 i 2.4). Rozkład dwumianowy, rozkład geometryczny i ich własności. Własność bez pamięci, wartość oczekiwana, wariancja, wyższe momenty. Funkcje tworzące momentów.

Pytanie 2 (2.4.1, 2.5). Problem kolekcjonera kuponów (wartość oczekiwana). Oczekiwana liczba porównań w algorytmie sortowania QUICKSORT.

Pytanie 3 (3.1, 3.2, 3.3). Własności wariancji. Nierówność Markowa. Nierówność Czebyszewa i jej zastosowanie w problemie kolekcjonera kuponów

Pytanie 4 (4.2.1, 4.2.2, 4.2.3). Ogólny schemat nierówności Chernoffa. Nierówność Chernoffa dla sum niezależnych prób Poissona. Zastosowanie tej nierówności: niezależne rzuty sprawiedliwą monetą, oraz estymacja parametru (rozkładu dwumianowego).

Pytanie 5 (4.3 i 4.4). Lepsze nierówności Chernoffa dla szczególnych zmiennych (przyjmujących jedynie wartości w $\{-1,1\}$ albo $\{0,1\}$). Zastosowanie do problemu SET BALANCING.

Pytanie 6 (5.2.1). Kule i urny: obciążenie najcięższej urny prawie zawsze jest co najwyżej $3 \ln n / \ln \ln n$.

Pytanie 7 (5.3). Rozkład Poissona i jego własności: momenty, suma niezależnych zmiennych, tworząca momentów i ograniczenia Chernoffa.

Pytanie 8 (5.4). Aproksymacja Poissona oraz jej zastosowanie do problemu kul i urn: obciążenie najcięższej urny jest prawie zawsze co najmniej $\ln n / \ln \ln n$.

Pytanie 9 (5.4.1). Problem kolekcjonera kuponów: granica prawdopodobieństwa, że nie zbierzemy wszystkich n kuponów po $n \ln n + cn$ krokach.

Pytanie 10 (7.1). Łańcuchy Markowa na przykładzie analizy randomizowanych algorytmów dla problemów 2-SAT i 3-SAT.

Pytanie 11 (7.2). Klasyfikacja stanów łańcucha Markowa. Ruina gracza. Inne proste przykłady na łańcuchy ze stanami różnych typów.

Pytanie 12 (7.3). Stacjonarny rozkład łańcuchów Markowa. Twierdzenie o istnieniu. Sposoby obliczania stacjonarnego rozkładu. Zastosowanie do analizy prostej kolejki Markowa.

Pytanie 13 (7.4). Losowe spacery w grafie jako zastosowanie łańcuchów Markowa.

Pytanie 14 (8.2). Rozkład jednostajny: gęstość, dystrybuanta, momenty, funkcja tworząca momentów, rozkład pod warunkiem, że wylosowano wartość poniżej ustalonego progu, wartość oczekiwana k-tej statystyki n niezależnych prób zmiennych o rozkładzie jednostajnym.

Pytanie 15 (8.3). Rozkład wykładniczy. Gęstość, dystrybuanta, momenty, funkcja tworząca momentów, własność bez pamięci, rozkład minimum n niezależnych prób.

Pytanie 16 (8.3.2). Problem kul i urn ze wzmocnionym feedbackiem.

Pytanie 17 (8.4). Proces Poissona. Definicja. Prawdopodobieństwo pojawienia się n zdarzeń w ustalonym odcinku czasowym długości t (Twierdzenia 8.7 i 8.8).

Pytanie 18 (8.4.1). Proces Poissona. Rozkład czasów pomiędzy zdarzeniami (Twierdzenia 8.9, 8.10 i 8.11).

Pytanie 19 (8.4.2). Scalanie i rozdzielanie procesów Poissona (Twierdzenia 8.12 i 8.13).

Pytanie 20 (8.4.3). Warunkowe czasy pojawiania się zdarzeń w procesie Poissona (Twierdzenie 8.14).

Pytanie 21 (9.1). Rozkład normalny. Własności, przykłady.

Pytanie 22 (9.3). Centralne Twierdzenie Graniczne. Dowód. Warianty mocniejszych wypowiedzi. Przykład zastosowania.

Pytanie 23. Norma całkowitego wahania rozkładów prawdopodobieństwa, sprzęganie rozkładów prawdopodobienstwa i związek między nimi.

Pytanie 24. Lemat o sprzęganiu łańcuchów Markowa, lemat o monotoniczności, twierdzenie o geometrycznej zbieżności.

Pytanie 25 (12.2.3, 12.5). Łańcuch Markowa na zbiorach niezależnych ustalonej wielkości. Łańcuch Markowa na poprawnych kolorowaniach wierzchołkowych. Ich czasy mieszania.

Pytanie 26 (11.1,11.2). Ogólny schemat metody Monte Carlo otrzymywania FPRAS dla problemów obliczeniowych. Konstrukcja FPRAS dla zliczania wartościowań spełniających formuły DNF. Podejście naiwne i podejście lepsze.

Pytanie 27 (11.3). Konstrukcja FPRAS dla zliczania zbiorów niezależnych w grafie przy założeniu FPAUS.

Pytanie 28 (12.6). Metoda path coupling na przykładzie konstrukcji FPAUS na przestrzeni zbiorów niezależnych w grafie z $\Delta(G) \leq 4$. (Wystarczy wykazać, że $\mathbf{E}(d_{t+1} \mid d_t) \leq d_t$.)