Lecture 6: Sard's Theorem

Tianpei Xie

Oct. 17th., 2022

Contents

1	Sard's Theorem			
	1.1	Sets of Measure Zero	2	
	1.2	Proof of Sard's Theorem	2	
	1.3	Corollaries	3	
2	The	e Whitney Embedding Theorem	3	
3 T	The	The Whitney Approximation Theorems		
	3.1	Whitney Approximation Theorem for Functions	3	
	3.2	Tubular Neighborhoods	4	
	3.3	Smooth Approximation of Maps Between Manifolds	4	
4	Tra	nsversality	4	

1 Sard's Theorem

1.1 Sets of Measure Zero

- **Definition** A set $A \subseteq \mathbb{R}^n$ to have *measure zero* if for any $\delta > 0$, A can be *covered* by a *countable collection of open rectangles*, the *sum* of whose *volumes* is less than δ (Fig.).
- Lemma 1.1 Suppose $A \subseteq \mathbb{R}^n$ is a **compact** subset whose intersection with $\{c\} \times \mathbb{R}^{n-1}$ has (n-1)-dimensional measure zero for **every** $c \in \mathbb{R}$. Then A has n-dimensional measure zero.
- Proposition 1.2 Suppose A is an open or closed subset of \mathbb{R}^{n-1} or \mathbb{H}^{n-1} , and $f: A \to \mathbb{R}$ is a continuous function. Then the graph of f has measure zero in \mathbb{R}^n .
- Corollary 1.3 Every proper affine subspace of \mathbb{R}^n has measure zero in \mathbb{R}^n .
- Proposition 1.4 Suppose $A \subseteq \mathbb{R}^n$ has measure zero and $F : A \to \mathbb{R}^n$ is a smooth map. Then F(A) has measure zero.
- **Definition** Let M be a smooth n-manifold with or without boundary. A subset $A \subseteq M$ has **measure zero** in M if for **every smooth chart** (U, φ) for M, the subset $\varphi(A \cap U) \subseteq \mathbb{R}^n$ has n-dimensional measure zero.
- The following lemma shows that we need only check this condition for a single collection of smooth charts whose domains cover A.
 - **Lemma 1.5** Let M be a smooth n-manifold with or without boundary and $A \subseteq M$. Suppose that for **some collection** $\{(U_{\alpha}, \varphi_{\alpha})\}$ of smooth charts whose domains **cover** A, $\varphi_{\alpha}(A \cap U_{\alpha})$ has **measure zero** in \mathbb{R}^n for each α . Then A has measure zero in M.
- Proposition 1.6 Suppose M is a smooth manifold with or without boundary and $A \subseteq M$ has measure zero in M. Then $M \setminus A$ is dense in M.
- Theorem 1.7 Suppose M and N are smooth n-manifolds with or without boundary, $F: M \to N$ is a **smooth** map, and $A \subseteq M$ is a subset of **measure zero**. Then F(A) has measure zero in N.

1.2 Proof of Sard's Theorem

- The Sard's theorem underlies all of our results about embedding, approximation, and transversality.
- Theorem 1.8 (Sard's Theorem).
 Suppose M and N are smooth manifolds with or without boundary and F: M → N is a smooth map. Then the set of critical values of F has measure zero in N.

Proof:

1.3 Corollaries

- Corollary 1.9 Suppose M and N are smooth manifolds with or without boundary, and $F: M \to N$ is a **smooth map**. If $\dim M < \dim N$, then F(M) has measure zero in N.
- **Remark** It is important to be aware tha Corollary above is false if F is merely assumed to be **continuous**. For example, there is a continuous map $F : [0,1] \to \mathbb{R}^2$ whose image is the entire unit square $[0,1] \times [0,1]$. (Such a map is called *a space-filling curve*).
- Corollary 1.10 Suppose M is a smooth manifold with or without boundary, and $S \subseteq M$ is an immersed submanifold with or without boundary. If $\dim S < \dim M$, then S has measure zero in M.

2 The Whitney Embedding Theorem

- Our first application of *Sard's theorem* is to show that *every smooth manifold can be embedded into a Euclidean space*. In fact, we will show that every smooth n-manifold with or without boundary is *diffeomorphic* to a *properly embedded submanifold* (with or without boundary) of \mathbb{R}^{2n+1} .
- Theorem 2.1 (Whitney Embedding Theorem). Every smooth n-manifold with or without boundary admits a proper smooth embedding into \mathbb{R}^{2n+1} .
- Theorem 2.2 (Whitney Immersion Theorem). Every smooth n-manifold with or without boundary admits a smooth immersion into \mathbb{R}^{2n} .
- Theorem 2.3 (Strong Whitney Embedding Theorem). If n > 0, every smooth n-manifold admits a smooth embedding into \mathbb{R}^{2n} .
- Theorem 2.4 (Strong Whitney Immersion Theorem). If n > 1, every smooth n-manifold admits a **smooth immersion** into \mathbb{R}^{2n-1} .

Because of these results, the first two theorems are sometimes called the *easy* or *weak Whitney embedding and immersion theorems*.

3 The Whitney Approximation Theorems

3.1 Whitney Approximation Theorem for Functions

- We begin with a theorem about **smoothly approximating functions** into Euclidean spaces. Our first theorem shows, in particular, that any continuous function from a smooth manifold M into \mathbb{R}^k can be uniformly approximated by a smooth function.
- Theorem 3.1 (Whitney Approximation Theorem for Functions). Suppose M is a smooth manifold with or without boundary, and $F: M \to \mathbb{R}^k$ is a continuous function. Given any positive continuous function $\delta: M \to \mathbb{R}$, there exists a smooth function $\widetilde{F}: M \to \mathbb{R}^k$ that is δ -close to F. If F is smooth on a closed subset $A \subseteq M$, then \widetilde{F}

3.2 Tubular Neighborhoods

3.3 Smooth Approximation of Maps Between Manifolds

- Now we can extend the Whitney approximation theorem to maps between manifolds. This extension will have important applications to line integrals.
- Theorem 3.2 (Whitney Approximation Theorem). Suppose N is a smooth manifold with or without boundary, M is a smooth manifold (without boundary), and $F: N \to M$ is a continuous map. Then F is homotopic to a smooth map. If F is already smooth on a closed subset $A \subseteq N$, then the homotopy can be taken to be relative to A.

4 Transversality

- As our final application of *Sard's theorem*, we show how *submanifolds* can be *perturbed* so that *they intersect "nicely."* To explain what this means, we introduce the concept of *transversality*.
- **Definition** Suppose M is a smooth manifold. Two embedded submanifolds $S, S' \subseteq M$ are said to <u>intersect transversely</u> if for each $p \in S \cap S'$, the tangent spaces $\underline{T_pS}$ and $\underline{T_pS'}$ together $\underline{span} \ T_pM$ (where we consider T_pS and T_pS' as subspaces of T_pM).
- **Definition** If $F: N \to M$ is a smooth map and $S \subseteq M$ is an *embedded submanifold*, we say that \underline{F} is transverse to \underline{S} if for every $x \in F^{-1}(S)$, the spaces $\underline{T_{F(x)}S}$ and $\underline{dF_x(T_xN)}$ together span $T_{F(x)}M$.