

Embedded Systems Kapitel 1: Grundlagen

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Sommersemester 2020

Eingebettetes System: Definition

- "An embedded system can be broadly defined as a device that contains tightly coupled hardware and software components to perform a single function, forms part of a larger system, is not intended to be independently programmable by the user, and is expected to work with minimal or no human interaction. [1]
- "An embedded system is a computer that does not look like a computer" (D. Gajski, University of California)

Komplexe eingebettete Systeme

Quelle: [8]

2

In Autos arbeiten eine Vielzahl an Mikrocontroller zusammen!

Eingebettete Systeme: Anforderungen

- Schnittstellen
 - SPI, USB, Ethernet, I2C, ...
- Mechanisch
 - Größe
 - Robustheit gegen mechanische Belastungen,
 - Hitze, Kälte
- Elektrisch
 - Geringer Energieverbrauch
- Zuverlässigkeit
 - Geringe Ausfallwahrscheinlichkeit
 - Notbetrieb
- Echtzeit
 - Ausführen von Aktionen innerhalb einer vorgegebenen Zeit

Der SW-Entwickler muss all diese Anforderungen beachten!

Aufbau eines eingebetteten Systems

Hardware

- CPU, Speicher, Ein-/Ausgabe Ports, Timer, usw.
- In der Praxis meist Mikrocontroller!

Software

- Steuerungslogik bzw. Programm auf Hardware
- Code in der Regel durch "Anwender" nicht veränderbar → Firmware!

(Programmierbare) Hardware

Mikrocontroller

- Allgemeine, steuerungsorientierte Aufgaben
- o Integrierter Speicher, integrierte Schnittstellen zur Kommunikation mit Außenwelt
- Geringe Performanz (ca. 1 μs/Instruktion)

Digitale Signalprozessoren (DSP), anwendungsspezifische Prozessoren

- Spezialisierter Instruktionssatz, spezielle Funktionseinheiten.
- Dominanz von Datenfluss (Sprachverarbeitung)
- Komplexe, regelmäßige arithmetische Operationen (z.B. FFT)
- Festkomma- und Gleitkommaarithmetik

Programmierbare Hardware (FPGA / CPLD)

- <u>Field Programmable Gate Array</u>
- Programmierbare Schaltungen
- Look-Up Tables (LUTS) realisieren beliebige n-stellige Binärfunktionen

Anwendungsspezifische integrierte Schaltung (ASIC)

- Kundenspezifischer Entwurf von integrierten Schaltungen
- Interessant f
 ür hohe St
 ückzahlen

Übung

- Ordnen Sie die Komponenten bzgl. der Flexibilität bei der Realisierung eines eingebetteten Systems!
 - DSP
 - ASIC
 - Mikrocontroller
 - FPGA

Mikrocontroller vs. Mikroprozessor

Definition: Mikrocontroller

 "Small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals." (Wikipedia)

Mikrocontroller = Mikroprozessor + Peripherie

- Peripherie (Speicher, Schnittstellen, Timer, usw.) auf gleichem Chip wie CPU.
- μController benötigt weniger Signalleitungen nach außen als Mikroprozessor.

Aufbau eines typischen Mikrocontrollers

Mikrocontroller enthält CPU + zahlreiche Peripheriekomponenten (Quelle [2]).

Speicher

- Programme und Daten
- ROM and RAM
- Flüchtig vs. nicht-flüchtig

Zähler (Timer)

 Messen bzw. Abwarten von festen Zeiten

Unterbrechungen (Interrupts)

Asynchrone Ereignisse

Schnittstellen

- Ein- und Ausgabe Pins
- Serielle, parallele Kommunikation mit anderen Komponenten

Watchdog

- Überwachung der korrekten Funktionsweise andere Komponenten
- <u>.</u>

Mikrocontroller ATmega2560 von Microchip/Atmel

- 8-Bit Architektur
- Programmspeicher: 256K
- CPU Geschwindigkeit: 16 MIPS
- Flash, EEPROM, RAM
- JTAG
- Timer/Counter
- PWM
- UART, SPI, I2C
- Watchdog
- Interrupts
- Keine Memory Management Unit (MMU)
- Kein Direct Memory Access (DMA)

Datenblatt: siehe Learning Campus oder [7]

Entwicklerboard: Arduino Mega

- Entwicklerboard Arduino Mega
 - https://www.arduino.cc/en/Main/Arduino BoardMega2560
- Nicht verwechseln!
 - **Entwicklerboard:** Arduino Mega
 - *Mikroprozessor*: ATmega2560
- Warum Entwicklerboard?
 - Einfaches Laden ("Flashen") von Programmcode
 - Stromversorgung durch USB des Computers
 - Einfacher Zugriff auf Pins des Mikrocontrollers über Buchsenleisten
 - Verfügbarkeit von Erweiterungsboards ("Shields")

Mikrocontrollerprogramm: Aufbau

Sketch

- == Mikrocontrollerprogramm für Arduino
- Code steht in einer *.ino Datei.
- Automatische Einbettung in C++-Programm, ohne dass es Nutzer merkt.
- Vorteil: Einfaches Programmieren und einfacher HW-Zugriff.

setup(.)

- Einmalige Ausführung nachdem Mikrocontroller durch Strom versorgt wird.
- Roter Knopf startet Mikrocontroller ebenfalls neu.

loop(.)

 Wird danach immer wieder (=Endlosschleife) ausgeführt.

```
void setup() {
   // put your setup code here, to
run once:
}

void loop() {
   // put your main code here, to
run repeatedly:
}
```

11

Aufbau eines Sketch

Was ist ein Sketch?

- Sketch == Arduino Programm
 - Vereinfacht Programmierung
 - C++-Bibliotheken, die HW-Programmierung leichter machen.
- Normalerweise sieht ein Programm wie rechts abgebildet aus:
 - Endlosschleife
 - Main-Methode.
 - *.cpp-Datei
- Die Arduino IDE verwendet unsichtbar eine main-Methode, in der setup und loop aufgerufen wird.
- Weiterführende Info:
 - https://github.com/arduino/Arduino/wiki/Build-Process

```
#include <avr/io.h>
int main(void)
{
    /* Replace with your
application code */
    while (1)
    {
    }
}
```

So sieht ein Mikrocontrollerprogramm normalerweise aus (kein Sketch, *.cpp-Datei)!

Toolchain

Programmieren

- Programmiersprache C/C++, selten direkt Assembler
- Häufig in Entwicklungsumgebung, z.B. Arduino IDE, Eclipse, CLion

Kompilieren, Cross-Compiling

- Programm wird auf anderer Plattform gebaut, nicht auf Zielplattform (= Mikrocontroller)
 Compiler: avr-gcc, häufig in Entwicklungsumgebung integriert.
- Ergebnis: Bytecode, hex-Datei.

SW Download / "Flashen"

- Sende hex-Datei von PC zu Mikrocontroller
- Meist automatisch von Entwicklungsumgebung erledigt.
- Kommandozeile: avrdude

Bibliotheken

- Bibliotheken erlauben den Zugriff auf Hardwarekomponenten des Mikrocontrollers.
- Er gibt beim Arduino Mega 2 Möglichkeiten.
- avr-libc: Standard C-Library des avr-gcc
 - Direkter Zugriff auf Hardware, Register, Timer etc. des Mikrocontrollers.
 - Beispiel: delay ms verwendet im Hintegrund einen Timer.
 - Komplexer und mächtiger als Arduino Library.
 - https://www.nongnu.org/avr-libc/

Arduino Library / Sketch

- Vereinfacht Zugriff auf Hardware des Mikrocontrollers.
- Kapselt avr-libc.
- Beispiel: digitalWrite(.)
- https://www.arduino.cc/reference/en/

Integrated Development Environments

- Arduino IDE (im Labor vorhanden, Standardtool)
 - Genügt für Großteil der Übungen
 - Leider kein Syntax Highlighting
 - Enthält AVR-Libc
- Atmel Studio (im Labor vorhanden, Profitool)
 - Sketchprogrammierung nicht nativ unterstützt.
 - Erlaubt zusätzlich Simulation, JTAG Debugging, In-System Programming (siehe spätere Übung)
- Visual Studio
 - Für Visual Studio Fans
- Eclipse mit AVR Eclipse Plugin
 - "Schöner Editor"
 - https://www.eclipse.org/community/eclipse_newsletter/2017/april/article4.php

15

Empfehlenswert, siehe Aufgabe 1, Ubung 4

Anschluss einer externen LED

- <u>Light Emitting Diode</u>
- Halbleiterdiode, die <u>nur(!)</u>in
 Durchlassrichtung Licht erzeugt
 - Langer Pin == Anode ("+")

 Vorwiderstand R_F zur Begrenzung des Stroms notwendig.

$$R_V = \frac{U_{ges} - U_F}{I_F}$$

Quelle: [9]

Steckbrett (engl. "Breadboard")

- Einfaches Testen von Schaltungen durch Einstecken von Bauteilen.
- Festes, genormtesRaster mit Lochabstand2,45 mm.
- Manche Löcher sind leitend miteinander verbunden.
 - Fall 1 und 5 in rechter
 Grafiken zeigen, wie man
 Bauteile nicht einsteckt!

17

Quelle: [10]

Serieller Monitor

Wie kann laufendes µC-Programm Textdaten an PC senden und empfangen?

Datenfluss

- µC sendet empfängt Daten über serielle Schnittstelle (UART)
- Serial-to-USB Adapter (ebenfalls μC) auf dem Arduino Board
- PC empfängt sendet Daten über USB Schnittstelle
- PC emuliert über USB Schnittstelle einen COM Port

Stromlaufplan/Schaltplan des Arduino Boards

- https://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-schematic.pdf
- Arduino-Bibliothek Serial für Zugriff auf serielle Schnittstelle.
 - https://www.arduino.cc/en/Reference/Serial

Quellenverzeichnis

- [1] G. Gridling und B. Weiss. *Introduction to Microcontrollers*, Version 1.4, 26. Februar 2007, verfügbar online: https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf (abgerufen am 08.03.2017)
- [2] M. Jiménez, R. Palomero und I. Couvertier. Introduction to Embedded Systems Using Microcontrollers and the MSP430, Springer, 2014 (eBook in Bibliothek)
- [3] U. Brinkschulte und T. Ungerer. *Mikrocontroller und Mikroprozessoren*, 3. Auflage, Springer, 2010 (eBook in Bibliothek).
- [4] http://webuser.hs-furtwangen.de/~spale/forall/PES/Vorlesung/ppt/embedded-einf.pdf (abgerufen am 10.03.2020)
- [5] https://de.wikipedia.org/wiki/Embedded Software Engineering#/media/File:ESE Referenzarchitektur.png (abgerufen am 08.03.2017)
- [6] L. Thiele und J. Teich. Eingebettete Systeme Materialien zum Kapitel "Architekturentwurf".
- [7] Datenblatt ATmega2560, https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561 datasheet.pdf
- [8] https://www.chipsetc.com/computer-chips-inside-the-car.html (abgerufen am 10.03.2020)
- [9] https://www.elektronik-kompendium.de/sites/bau/0201111.htm (abgerufen am 10.03.2020)
- [10] https://www.kollino.de/elektronik/breadboard-steckplatine/ (abgerufen am 10.03.2020)