Math 416: Abstract Linear Algebra

Date: Oct. 6, 2025

Lecture: 15

Announcements

□ HW5 is due Fri, Oct. 10 @ 2pm

a office hours:

- Tuesdays 5-5:50 Daveport 336
 Wednesdays 2-2:50 Daveport 132

Last time

A Invertibility

This time

□ Invertibility (cont) & isomorphic vector spaces

Reading

§ 3D of Axier

Prop. 3.63 invertibility => injective & surjective

Proof. (=>) Suppose T is invertible.

To see injectivity, let U, VEV & TU=TV.

Then,
$$U = I V O$$

$$= (T^{-1}T)O$$

$$= T^{-1}(TO)$$

$$= T^{-1}(TV)$$

$$= (T^{-1}T)V$$

$$= V$$

For sorjectivity, let wew. Then

w= T(T'w), so we range T. But w

was arbitrary, so W = range T & we

are done.

J. cont.

- Y wew, let S(w) be the unique elem. of V s.t. T (S(w)) = w (existence & uniqueness follows from inj. & surjectivity)
- ToS (ω) = ω ∀ ωεW ⇒ ToS = IIw
- · next, let VEV. Then

T is inject. \Longrightarrow (SoT) v = V : SoT = II_{V}

Finally, we must show 5 is linear

 \(\omega_1, \omega_2 \in \omega_1 \in \omega_2 \in \omega_2 \in \omega_2 \in \omega_2 \in \omega_1 \in \omega_2 \in \omega_1 \in \omega_2 \in

口

· some for nonogeneity.

Questions

Determine if the following maps are injective and/or surjective.

- 1. $T_1: \mathbb{R}^2 \to \mathbb{R}^3$, $T_1(x,y) = (x,y,0)$ Ly injective, not surjective
- 2. $T_2: \mathbb{R}^3 \to \mathbb{R}^2$, $T_2(x_1, y_1, z_2) = (x_1 + y_2, y_1 + z_2)$ C_2 not injective, but surjective
- 3. $T_3: \mathcal{P}(IR) \to \mathcal{P}(IR)$, $T_3 \mathcal{P}(x) = x^2 \mathcal{P}(x)$
 - (>) injective: $\chi^2 p(x) = 0$ => p(x) = 0
 - Sit. $X^2 p(x) = 1$, for ex.

Fortunatery, in finite-dim, when dim V = dim W, things are much Simpler...

```
Prop 3.65 (injectivity => surjectivity when)

dim v = dim w < 00
 Suppose dim V = dim W < 00 and
 T \in \mathcal{L}(V,W). Then,
 Tis invertible 😂 Tis inject. 😂 Tis Surj.
Proof. Fund. thm. of linear maps:
     dim V = dim no 11 T + dim range T (1)
 If T is inject., dim null 7 = 0. Then, (1)
 via Axier 2.39

T surjective

assumption
 If T is surjective, dimrangeT = dimW
    (1) => dimnull T = dim V - dimrange T
```

= dimV - dimW =0 .. T is injective. Thus, if T is either inj. or surj., it is both. If it is both, it is invertible by (Axier 3.63).

Isomorphic vector spaces

- · An isomorphism is an invertible linear map
- Two vec. spaces VIW we isomorphic if I an isomorphism between them. We denote this V=W

Remarks

• These results imply every finite-dim vec. space V is isomorphic to IPh w/ n=dimV.

· $L(v_1w) \cong F^{m_1n}$ (prop. 3.71)