МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ №6

«Периферийные устройства. Компьютерная мышь» по дисциплине «Архитектура аппаратных средств»

Ввеление

Время выполнения лабораторной работы (аудиторные часы) — 2 часа Время самостоятельной работы студента (дополнительные часы) — 2 часа

Минимальная оценка — 3 балла. **Максимальная оценка** — 4 балла.

<u>Цель работы</u>: знакомство студентов устройством компьютерной мыши, принципами ее работы.

<u>Оборудование и программное обеспечение</u>: системный блок, клавиатура, мышь, монитор, доступ к сети Интернет.

1 Теоретические сведения

1.1 Основные понятия

Компьютерная мышь — одно из указательных устройств ввода, в основном применяется в графических средах. Устройством ввода мыши являются находящиеся на ней кнопки. Их количество варьируется в зависимости от типа мыши и с кнопками связано выполнение какихлибо действий (подтверждение ввода, вызов меню, «скроллинг» и т. п.).

По принципу действия мыши можно разделить на оптико-механические, оптические и лазерные.

1.1.1 Оптико-механическая мышь. Принцип работы такой мыши приведен на рисунке 1.

Рис. 1 – Принцип действия оптико-механической мыши

Одной из основных частей оптико-механической мыши является шарик. Он контактирует с тремя валиками. Один валик отвечает за фиксацию перемещения «вперед – назад», другой валик – «влево – вправо». При перемещении по поверхности шарик приводит в движение валики. На осях каждого из валиков установлены диски с прорезями, которые вращаются между двух блоков, один из которых является источником света, другой – фотоэлементом, фиксирующим попадание света при вращении диска с прорезями. Порядок освещения фотоэлементов однозначно определяет

направление движения мыши, а частота возникающих на выходах светодиодов импульсов — скорость. Импульсы при помощи контроллера преобразуются в совместимые с PC данные и передаются процессору.

В настоящее время данный тип компьютерных мышек не используется.

1.1.2 Оптическая мышь. В первых оптических мышах использовался сфокусированный луч света, отражаемый от специального «коврика», на котором нанесена решетка темных линий. При перемещении на темных участкам интенсивность отражения падает и сенсор фиксирует это и отправляет данные компьютеру.

Технология современных оптических мышей была разработана компанией Agilent Technologies в конце 1999 г., однако первой воплотила ее в жизнь фирма Microsoft, создав мышь под названием IntelliMouse. Для сканирования поверхности используется миниатюрная видеокамера (СМОS-датчик), которая работает со скоростью 1500 снимков в секунду. Для «подсветки» рабочей поверхности используется светодиод красного свечения.

С помощью светодиода и системы фокусирующих его свет линз под мышью подсвечивается участок поверхности (рис. 2). Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы (оптический сенсор) – процессора обработки изображений. Этот чип делает снимки поверхности под мышью с высокой частотой, измеряемой в кГц.

Рис. 2 – Принцип работы оптической мыши

Оптический сенсор состоит из 2-х блоков: 1-й отвечает за получение снимка и называется системой получения изображения Image Acquisition System (IAS), 2-й блок – это интегрированный DSP-процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости) (рис. 3), интегрированный DSP-процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей X и Y, и передает результаты своей работы вовне по последовательному порту.

Рис. 3 – Получаемое изображение с оптического сенсора

Блок-схема одного из оптических сенсоров (ADNS-2610) изображена на рис. 11.

Рис. 4 – Структура оптического сенсора ADNS-2610

Микросхема состоит из нескольких блоков, а именно:

- 1) **Image Processor** процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
- 2) **Voltage Regulator And Power Control** блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
- 3) **Oscillator** на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
- 4) **Led Control** это блок управления светодиодом, с помощью которого подсвечивается поверхность под мышью;
- 5) **Serial Port** блок, передающий данные о направлении перемещения мыши вовне микросхемы.

Всю информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port в еще одну микросхему-контроллер, установленную в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т. д. Данный чип уже непосредственно передает в персональный компьютер информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в сигналы, передаваемые затем по интерфейсам связи в компьютер. На основании поступившей по этим интерфейсам информации через драйвер мыши компьютер перемещает курсор-указатель по экрану монитора.

1.1.3 Лазерные мыши. Принцип работы лазерных мышей аналогичен оптическим, однако вместо светодиода используется лазер, излучающий когерентный направленный луч, который отражается от рабочей поверхности без искажений (рис. 5 и 6). Тем самым сенсор получает более детальное изображение.

Рис. 5 – Оптическая система традиционной мыши

Рис. 6 – Оптическая система мыши с лазером

Из недостатков можно отметить плохую работу таких мышей на зеркальных и стеклянных поверхностях, так же, как и у оптических мышей.

По способу подключения мыши подразделяются на подключаемые:

- 1) к СОМ-порту;
- 2) к порту PS/2;
- 3) к шине USB.

Отдельно можно отметить, что существуют беспроводные мыши, в которых в качестве среды передачи данных используется радиочастота, однако для соединения с компьютером требуется какой-либо из вышеперечисленных интерфейсов.

Основной характеристикой мыши является **разрешение**, которое принято измерять в **dpi** (dot per inch – количество точек на дюйм). Если мышь имеет разрешение 1000 dpi и ее передвинуть на 1 дюйм вправо, то привод мыши получает через микроконтроллер информацию о смещении на 1000 единиц вправо. Драйвер мыши рассчитывает эту информацию и усредняет ее в зависимости от графического разрешения монитора для позиционирования курсора на экране. При этом не имеет значения, двигалась мышь быстро или медленно. В современных мышках разрешение может изменяться с помощью отдельной кнопки на корпусе мыши, позволяя «подстроить» перемещение при работе

1.1.4. Трекбол. **Трекбол** (рис. 7) представляет собой "перевернутую" оптико-механическую мышь, в которой перемещение курсора осуществляется с помощью вращения шара. Это позволяет значительно повысить точность управления курсором и, кроме того, экономить место.

Рис. 7 – Трекбол

Интерфейсы подключения используются те же, что и для компьютерных мышей.

В настоящее время трекбол может быть частью конструкции профессионального оборудования. Например, микшеров или студий видеообработки.

2. Задание на проведение лабораторной работы

Ознакомиться с конструкцией компьютерной оптической мыши. Проверить ее работу на практике. В настройках операционной системы (Панель управления — Мышь — Свойства) задать различную скорость передвижения указателя. Сделать выводы о скорости перемещения. Если мышь поддерживает аппаратное изменение разрешения DPI, то изменить его (минимальный DPI, средний DPI, максимальный DPI), оценить скорость перемещения.

3. Отчет по лабораторной работе

Отчет по выполненной работе производится в виде показа выполненных заданий и устного ответа на контрольные вопросы.

4. Контрольные вопросы к лабораторной работе

- 1) Что такое компьютерная мышь?
- 2) Какие виды компьютерных мышей бывают?
- 3) Опишите принцип работы оптико-механической мыши.
- 4) Опишите принцип работы оптической мыши.
- 5) Опишите принцип работы лазерной мыши.
- 6) В чем отличие оптической и лазерной мыши?
- 7) Для чего нужен оптический сенсор?
- 8) Что такое DPI?
- 9) Что такое трекбол и для чего используется?