

М+ДЕСЕТ ЗАДАЧИ ЗА...

КВАДРАТНИ ПАРАМЕТРИЧНИ НЕРАВЕНСТВА І ЧАСТ

Христо Лесов, гр. Казанлък

(продължение от миналия брой)

Отговори, упътвания и кратки решения

6. а) В зависимост от стойностите на параметъра n са възможни случаите:

<u>Случай I.</u> n = 1. Даденото неравенство става 4y + 1 > 0 и $y > -\frac{1}{4}$. Следователно всяко y > 0 е решение на неравенството.

<u>Случай II.</u> n > 1. Решенията на неравенството зависят от дискриминантата $D_1 = 4 - (n-1)(3n-2) = -3n^2 + 5n + 2 = -(n-2)(3n+1)$, като:

1.) при $D_1=0$, т.е. при n=2 неравенството има вида $y^2+4y+4>0$, т.е. $(y+2)^2>0$, което е изпълнено за всяко $y\neq -2$, а следователно и за всяко y>0;

- 2.) при $D_{\rm I}>0$, т.е. при 1< n<2 решенията са $y>y_{\rm I}$ или $y< y_2$, където $y_{\rm I,2}=\frac{-2\pm\sqrt{D_{\rm I}}}{n-1}$ и е ясно, че $y_2< y_{\rm I}<0$ предвид формулите на Виет. Всяко положително число $y>y_{\rm I}$ е решение на неравенството;
 - 3.) при $D_1 < 0$, т.е. при n > 2 даденото неравенство е изпълнено за всяко y . <u>Случай III</u>. n < 1. Тогава

1.)
$$D_1 = 0$$
 за $n = -\frac{1}{3}$. Имаме $-\frac{4}{3}y^2 + 4y - 3 = -\frac{1}{3}(2y - 3)^2 \le 0$ за всяко y ;

- 2.) $D_1 > 0$ 3a $-\frac{1}{3} < n < 1$ и решенията са $y_2 < y < y_1 < 0$;
- 3.) $D_1 < 0$ за $n < -\frac{1}{3}$ и даденото неравенство няма решение.

Отговор на задачата $n \ge 1$.

- б) Както при решаването на а) получаваме $n \le -1$.
- 7. За дискриминантата $D = (2p+1)^2 4\left(p^2 \frac{1}{4}\right) = 2(2p+1)$ има следните възможности:
- 1.) D=0, т.е. $p=-\frac{1}{2}$ и неравенството е $x^2>0$, което е изпълнено за всяко $x\neq 0$, а значи и за x<0.
- 2.) D < 0, т.е. $p < -\frac{1}{2}$ и неравенството се удовлетворява за всяко x, включително и за x < 0.
- 3.) D>0 , т.е. $p>-\frac{1}{2}$ и решенията на даденото неравенство са $x< x_2$ или $x>x_1$, където $x_{1,2}=\frac{1}{2}\Big(2p+1\pm\sqrt{2(2p+1)}\Big)$. Ясно е, че $x_1>x_2$, $x_1>0$ и трябва $x_2\geq 0$, т.е. $2p+1\geq \sqrt{2(2p+1)}$ или $(2p+1)^2\geq 2(2p+1)$. Тъй като 2p+1>0 , то $2p+1\geq 2$, т.е. $p\geq \frac{1}{2}$. Така, че търсените стойности са $p\leq -\frac{1}{2}$ или $p\geq \frac{1}{2}$.
- **8.** Полагаме $y=x^2+2x+1=(x+1)^2\geq 0$ и даденото неравенството приема вида $(y+1)^2+4(y-1)+q^2+2q>0$ или $y^2+6y+q^2+2q-3>0$, което трябва да е изпълнено за всяко $y\geq 0$. Съответната дискриминанта е $D=12-q^2-2q$. Ако $D\leq 0$, то неравенството е в сила за всяко y, а значи и за $y\geq 0$. Така, че условието на задачата се удовлетворява за тези стойности на q, за които $12-q^2-2q\leq 0$, т.е. $q^2+2q-12\geq 0$. Оттук определяме $q\geq \sqrt{13}-1$ или $q\leq -\left(\sqrt{13}+1\right)$. Нека D>0, т.е. $q^2+2q-12<0$ и $-\left(\sqrt{13}+1\right)< q<\sqrt{13}-1$. Квадратното неравенство относно y има решения $y<-\left(3+\sqrt{D}\right)$ или $y>\sqrt{D}-3$. За да бъдат решения

всички $y \ge 0$, трябва $\sqrt{D} - 3 \ge 0$, т.е. $D \ge 9$ или $12 - q^2 - 2q \ge 9$, т.е. $q^2 + 2q - 3 \le 0$, откъдето $-3 \le q \le 1$.

9. a) <u>Случай I</u>. a=0. Даденото неравенство става $x-2 \ge 0$ и всяко негово решение е решение и на неравенството $x-1 \ge 0$.

<u>Случай II</u>. a > 0. Дискриминантата е $(2a-1)^2 + 8a = (2a+1)^2 > 0$ и решенията на даденото неравенство са обединение на два безкрайни интервала. Значи те съдържат числа, които не са решения на $x-1 \ge 0$.

<u>Случай III.</u> a < 0. Тогава решенията на квадратното неравенство образуват интервала $[x_2; x_1]$, където $x_2 < x_1$ са корените на уравнението $ax^2 - (2a - 1)x - 2 = 0$. Те са 2 и $-\frac{1}{a}$. Имаме, че всяко решение на неравенството е решение и на $x - 1 \ge 0$ тогава и само тогава, когато $x_2 \ge 1$. Ако $x_2 = 2 \le -\frac{1}{a} = x_1$, решенията са $\left[2; -\frac{1}{a}\right]$ и понеже a < 0, то $a \ge -\frac{1}{2}$. Но 1 < 2 и значи всяко $a \in \left[-\frac{1}{2}; 0\right]$ изпълнява изискванията на задачата. Ако $x_2 = -\frac{1}{a} < 2 = x_1$, т.е. $a < -\frac{1}{2}$, решенията са $\left(-\frac{1}{a}; 2\right)$ и от $-\frac{1}{a} \ge 1$ намираме $a \ge -1$ така, че $a \in \left[-1; -\frac{1}{2}\right]$. Окончателно решение на задачата е всяко $a \in [-1; 0]$.

- б) След разглеждане на случаите за параметъра a както в a), се получава, че решение на задачата е всяко $a \in \left[-\frac{1}{2}; 0\right]$.
- **10.** a) <u>Случай I</u>. b=1. Даденото неравенство става -x-2>0, т.е. x<-2 и изискването на задачата е изпълнено.

<u>Случай II.</u> b > 1. Дискриминантата е $D = (2b-3)^2 - 4(b-1)(b-3) = 4b-3 > 0$, а решенията на квадратното неравенство са $x \in (-\infty; x_2) \cup (x_1; \infty)$, където $x_1 > x_2$ са корените на уравнението $(b-1)x^2 + (2b-3)x + b-3 = 0$. Ясно е, че даденото неравенство има за решения числата x < 1.

<u>Случай III.</u> b < 1. Ако $D \le 0$, т.е. $b \le \frac{3}{4}$, то за всяко x е изпълнено $(b-1)x^2 + (2b-3)x + b - 3 \le 0$. Ако D > 0, т.е. $\frac{3}{4} < b < 1$, то решенията на даденото неравенство са $x \in (x_2; x_1)$ и този интервал съдържа поне едно x < 1 тогава и само тогава, когато $x_1 < 1$ или $\frac{3-2b+\sqrt{4b-3}}{2(b-1)} < 1$, което при b < 1 е равносилно на $\sqrt{4b-3} > 4b-5$. Но това е в сила при $\frac{3}{4} < b < 1$, защото 4b-5 < -1. Окончателно намираме $b \in \left(\frac{3}{4}; \infty\right)$.

б) Полагаме y = -x > -1, т.е. x < 1, а $(1-b)x^2 - (2b-3)x - b - 3 < 0$ и след умножаване с -1 даденото неравенство приема вида от а).