Chapter ML:VI

VI. Decision Trees

- □ Decision Trees Basics
- □ Impurity Functions
- □ Decision Tree Algorithms
- Decision Tree Pruning

ML:VI-107 Decision Trees © STEIN/LETTMANN 2022

Overfitting

[Mitchell 1997]

Recall overfitting from section Overfitting in part Linear Models.

ML:VI-108 Decision Trees ©STEIN/LETTMANN 2022

Overfitting (continued)

[Mitchell 1997]

Recall overfitting from section Overfitting in part Linear Models.

ML:VI-109 Decision Trees © STEIN/LETTMANN 2022

Overfitting (continued)

[Mitchell 1997]

Recall overfitting from section Overfitting in part Linear Models. The hypothesis $h \in H$ is considered to overfit D if an $h' \in H$ with the following property exists:

- \Box Err(h, D) < Err(h', D) and $Err^*(h) > Err^*(h')$ or, similarly:
- \neg Acc(h, D) > Acc(h', D) and $Acc^*(h) < Acc^*(h')$

ML:VI-110 Decision Trees © STEIN/LETTMANN 2022

Remarks:

- \Box The accuracy, *Acc*, is the percentage of correctly classified examples, i.e., Acc = 1 Err.
- \Box The holdout error of a hypothesis h, $Err(h, D_{test})$, is used as a proxy for the true error $Err^*(h)$.
- The training error $Err_{tr}(T)$ of a decision tree T is a monotonically decreasing function in the size of T. See the following Lemma.

ML:VI-111 Decision Trees © STEIN/LETTMANN 2022

Overfitting (continued)

Lemma 10

Let t be a node in a decision tree T. Then, for each induced splitting $D(t_1), \ldots, D(t_m)$ of a set of examples D(t) holds:

$$\operatorname{\mathit{Err}}(t,D(t)) \geq \sum_{i \in \{1,\ldots,m\}} \operatorname{\mathit{Err}}(t_i,D(t_i))$$

The equality is given in the case that all nodes t, t_1, \ldots, t_m represent the same class.

ML:VI-112 Decision Trees © STEIN/LETTMANN 2022

Overfitting (continued)

Proof (sketch)

$$\begin{aligned} \textit{Err}(t,D(t)) &= \min_{c' \in C} \sum_{c \in C} p(c \mid t) \cdot p(t) \cdot I_{\neq}(c',c) \\ &= \sum_{c \in C} p(c,t) \cdot I_{\neq}(\textit{label}(t),c) \\ &= \sum_{c \in C} (p(c,t_1) + \ldots + p(c,t_{k_m})) \cdot I_{\neq}(\textit{label}(t),c) \\ &= \sum_{i \in I_1 \ldots k_m} \sum_{c \in C} (p(c,t_i) \cdot I_{\neq}(\textit{label}(t),c)) \end{aligned}$$

$$\textit{Err}(t,D(t)) - \sum_{i \in \{1,\ldots,k_m\}} \textit{Err}(t_i,D(t_i)) =$$

$$\sum_{i \in \{1, \dots, k_m\}} \left(\sum_{c \in C} p(c, t_i) \cdot I_{\neq}(\textit{label}(t), c) \right. \\ \left. - \min_{c' \in C} \sum_{c \in C} p(c, t_i) \cdot I_{\neq}(c', c) \right)$$

Observe that the summands on the right equation side are greater than or equal to zero.

Remarks:

- ☐ The lemma does also hold if a function for misclassification cost is used to assess effectiveness.
- □ The algorithm template for the construction of decision trees, *DT-construct*, prefers larger trees, entailing a more fine-grained splitting of *D*. A consequence of this behavior is a tendency to overfitting.
- \Box I_{\neq} is an indicator function that returns 1 if its arguments are *unequal* (and 0 if its arguments are equal).

ML:VI-114 Decision Trees © STEIN/LETTMANN 2022

Overfitting (continued)

Approaches to counter overfitting:

- (a) Stopping of the decision tree construction process during training.
- (b) Pruning of a decision tree after training:
 - □ Splitting of *D* into three sets for training, validation, and test:
 - reduced error pruning
 - minimal cost complexity pruning
 - rule post pruning
 - \Box statistical tests such as χ^2 to assess generalization capability
 - heuristic pruning

ML:VI-115 Decision Trees © STEIN/LETTMANN 2022

(a) Stopping

Possible criteria for stopping [splitting criteria]:

- 1. Size of D(t). D(t) is not split if |D(t)| is below a threshold.
- 2. Purity of D(t). D(t) is not split if all examples in D(t) are members of the same class.
- 3. Impurity reduction of D(t). D(t) is not split if the resulting impurity reduction, $\Delta \iota$, is below a threshold.

Problems:

- ad 1) A threshold that is too small results in oversized decision trees.
- ad 1) A threshold that is too large omits useful splittings.
- ad 2) Perfect purity cannot be expected with noisy data.
- ad 3) $\Delta \iota$ cannot be extrapolated with regard to the tree height.

(b) Pruning

The pruning principle:

- 1. Construct a sufficiently large decision tree T_{max} .
- 2. Prune T_{max} , starting from the leaf nodes upwards to the tree root.

Each leaf node t of T_{max} fulfills one or more of the following conditions:

- \Box D(t) is sufficiently small. Typically, $|D(t)| \leq 5$.
- \Box D(t) is pure.
- \Box D(t) is comprised of examples with identical feature vectors.

(b) Pruning (continued)

Definition 11 (Decision Tree Pruning)

Given a decision tree T and an inner (non-root, non-leaf) node t. Then pruning of T with regard to t is the deletion of all successor nodes of t in T. The pruned tree is denoted as $T \setminus T_t$. The node t becomes a leaf node in $T \setminus T_t$.

Illustration:

ML:VI-118 Decision Trees © STEIN/LETTMANN 2022

(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \leq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \leq forms a partial ordering on the set of all trees.

ML:VI-119 Decision Trees © STEIN/LETTMANN 2022

(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \leq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \leq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- \Box Pruned decision trees may not stand in the \preceq -relation.
- Locally optimum pruning decisions may not result in the best candidates.
- \Box Its monotonicity disqualifies $Err_{tr}(T)$ as an estimator for $Err^*(T)$. [Lemma]

ML:VI-120 Decision Trees © STEIN/LETTMANN 2022

(b) Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T' and T be two decision trees. Then $T' \leq T$ denotes the fact that T' is the result of a (possibly repeated) pruning applied to T. The relation \leq forms a partial ordering on the set of all trees.

Problems when assessing pruning candidates:

- \Box Pruned decision trees may not stand in the \preceq -relation.
- □ Locally optimum pruning decisions may not result in the best candidates.
- \Box Its monotonicity disqualifies $Err_{tr}(T)$ as an estimator for $Err^*(T)$. [Lemma]

Control pruning with a validation set D_{val} :

- 1. $D_{test} \subset D$, test set for decision tree assessment after pruning.
- 2. $D_{val} \subset (D \setminus D_{test})$, validation set for overfitting analysis during pruning.
- 3. $D_{tr} = D \setminus (D_{test} \cup D_{val})$, training set for decision tree construction.

(b) Pruning: Reduced Error Pruning

Steps of reduced error pruning:

- 1. $T = T_{\text{max}}$
- 2. Choose an inner node t in T.
- 3. Perform a tentative pruning of T with regard to t: $T' = T \setminus T_t$. Based on D(t) assign class to t. [DT-construct]
- 4. If $Err(T', D_{val}) \leq Err(T, D_{val})$ then accept pruning: T = T'.
- 5. Continue with Step 2 until all inner nodes of T are tested.

ML:VI-122 Decision Trees © STEIN/LETTMANN 2022

(b) Pruning: Reduced Error Pruning (continued)

Steps of reduced error pruning:

- 1. $T = T_{\text{max}}$
- 2. Choose an inner node t in T.
- 3. Perform a tentative pruning of T with regard to t: $T' = T \setminus T_t$. Based on D(t) assign class to t. [DT-construct]
- 4. If $Err(T', D_{val}) \leq Err(T, D_{val})$ then accept pruning: T = T'.
- 5. Continue with Step 2 until all inner nodes of T are tested.

Problem:

If D is small, its partitioning into three sets for training, validation, and test will discard valuable information for decision tree construction.

Improvement: rule post pruning

(b) Pruning: Reduced Error Pruning (continued)

[Mitchell 1997]

ML:VI-124 Decision Trees © STEIN/LETTMANN 2022

Remarks (pruning extensions):	
	pruning considering misclassification cost
	weakest link pruning
Remarks (splitting extensions):	
	splitting considering misclassification cost
	"surrogate splittings" for insufficiently covered feature domains
	splittings based on (linear) combinations of features
Remarks (generic extensions):	
	discrete features with many values
	features of different importance
	features with missing values
	regression trees

ML:VI-125 Decision Trees © STEIN/LETTMANN 2022