BIOMETRICS 0, 1-3 DOI: 0000-0000-0000

January 2019

Longitudinal surrogate marker analysis

Denis Agniel

RAND Corporation

*email: dagniel@rand.org

and

Layla Parast

RAND Corporation

*email: parast@rand.org

 $\mbox{\sc Summary}.$ The text of your summary. Should not exceed 225 words.

KEY WORDS: longitudinal data; surrogate markers; nonparametric analysis.

1. Introduction

2. Method

Let the data for analysis consist of n independent observations of the form $(Y_i, \mathbf{X}_i, A_i)_{i=1,\dots,n}$, A_i represents an indicator for treatment or intervention, $\mathbf{X}_i = (X_{ij})_{j=1,\dots n_i}$ is a longitudinally collected surrogate marker, and Y_i is a primary outcome of interest, all for subject i. We assume for simplicity of presentation that patients are randomly assigned at baseline to treatment or control and that Y is fully observed. We further assume that there exists $X(\cdot)$ an underlying surrogate marker trajectory, which we only observe n_i times, possibly at only a few, irregularly spaced times and with error.

Furthermore, let $Y_i^{(1)}$ and $Y_i^{(0)}$ denote the primary outcome one would observe if, possibly contrary to fact, subject i received treatment and control, respectively. We assume the stable unit treatment value assumption (SUTVA, Rosenbaum and Rubin (1983)). Similarly, let $X_i^{(1)}$ and $X_i^{(0)}$ denote the summary markers under treatment and control. We assume that the joint distribution of Y_i and X_i is given by $f_j(y, \mathbf{x}) = f_j(y|\mathbf{x})g_j(\mathbf{x})$ in treatment group j where $f_j(y|\mathbf{x})$ is the density of Y conditional on $\mathbf{X} = \mathbf{x}$ and $g_j(\mathbf{x})$ is the density function for \mathbf{X}_i in group D = j.

We are interested in estimating the proportion of treatment effect on the primary outcome that is explained by the longitudinal surrogate marker. We define the overall treatment effect, Δ , as the expected difference in Y under treatment and control,

$$\Delta = E(Y^{(1)} - Y^{(0)}).$$

Because of randomization, we can use the observed data to estimate Δ

$$E[Y|A=1] - E[Y|A=0] = \int y f_0(y|\mathbf{x}) g_0(\mathbf{x}) dy d\mathbf{x} - \int y f_1(y|\mathbf{x}) g_1(\mathbf{x}) dy d\mathbf{x}.$$

We aim to measure the surrogate value of \mathbf{X} comparing Δ to the residual treatment effect that would be observed if the \mathbf{X} was distributed the same in both groups. In the context of a scalar X, the residual treatment effect can be defined as

- 3. Simulation studies
- 4. Analysis of longitudinal CD4 count surrogacy
- 5. Discussion
- 6. Figures and tables
- 6.1 Figures coming from R

Normal figure embedded in text.

```
## Warning in plot.formula(runif(25) ~ runif(25)): the formula 'runif(25) ~
## runif(25)' is treated as 'runif(25) ~ 1'
```

[Figure 1 about here.]

6.2 Tables coming from R

```
print(xtable::xtable(head(mtcars)[,1:4],
caption = "Caption centered under table", label = "tab1"),
comment = FALSE, timestamp = FALSE, caption.placement = "top")
```

[Table 1 about here.]

Table 1 shows these numbers. Some of those numbers are plotted in Figure ??.

head(mtcars[,1:4])

##		mpg	cyl	disp	hp
##	Mazda RX4	21.0	6	160	110
##	Mazda RX4 Wag	21.0	6	160	110
##	Datsun 710	22.8	4	108	93
##	Hornet 4 Drive	21.4	6	258	110
##	Hornet Sportabout	18.7	8	360	175
##	Valiant	18.1	6	225	105

References

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika* **70**, 41–55.

 $Received\ Mar\ 2019$

Figure 1. Output from pdf()

Table 1
Caption centered under table

	mpg	cyl	disp	hp
Mazda RX4	21.00	6.00	160.00	110.00
Mazda RX4 Wag	21.00	6.00	160.00	110.00
Datsun 710	22.80	4.00	108.00	93.00
Hornet 4 Drive	21.40	6.00	258.00	110.00
Hornet Sportabout	18.70	8.00	360.00	175.00
Valiant	18.10	6.00	225.00	105.00