MCMT Homework 7

Shun Zhang

Exercise 7.1

For any state x, $\sum_{y \in \Omega} \hat{P}(x,y) = \frac{\sum_{y \in \Omega} \pi(y) P(y,x)}{\pi(x)} = \frac{\pi(x)}{\pi(x)} = 1$. We know π , P

are all non-negative. Multiplicaiton is closed for non-negative numbers, so \hat{P} is non-negative.

So \hat{P} is a stochastic matrix.

Exercise 7.2

Show $\hat{P}^n(n,\cdot) = \pi$ by induction on the number of states in the Markov Chain, which is n+1 (from 0 to n).

Base case: when n = 0, the Markov Chain has 1 state. $\hat{P}^0(0, \cdot) = \delta_0$. This is the stationary distribution.

Inductive step: assume that $\hat{P}^n(n,\cdot) = \pi$ for some $n \geq 0$. Consider a transition matrix Q on a Markov chain with n+2 states. $Q^n(n+1,\cdot) = \pi'$ by induction hypothesis, where π' is the stationary distribution for the Markov chain of the states $1, 2, \dots, n+1$.

Consider
$$Q^{n+1}(n+1,\cdot)$$
, which is $Q^n(n+1,\cdot)Q$.
$$Q^{n+1}(n+1,0) = Q^n(n+1,1)Q(1,0) = \frac{1}{2}1 = \frac{1}{2}.$$

$$Q^{n+1}(n+1,1) = Q^n(n+1,2)Q(2,1) = \frac{1}{2^2}1 = \frac{1}{2^2}.$$
 ...
$$Q^{n+1}(n+1,n) = Q^n(n+1,n+1)Q(n+1,n) = \frac{1}{2^{n+1}}1 = \frac{1}{2^{n+1}}.$$

$$Q^{n+1}(n+1,n+1) = Q^n(n+1,n+1)Q(n+1,n+1) = \frac{1}{2^{n+1}}1 = \frac{1}{2^{n+1}}.$$
 This is the stationary distribution for the Markov chain with $n+2$ states.