23MAT102 Class Notes

Adithya Nair

Contents

	0.1	A Basic Order Of Importance
1	A F	Revision Of Sets And Functions
	1.1	Notations
	1.2	Roster Notation
	1.3	Basic Concepts Of Sets
	1.4	Logical Notation
	1.5	Functions
	1.6	Cartesian Product
	1.7	Composition Of Functions
	1.8	Types Of Functions
2	Vec	etor Spaces
	2.1	Examples Of Vector Spaces
	2.2	Some Theorems And Proofs Regarding Vector Spaces
	2.3	Fields

0.1 A Basic Order Of Importance

- \bullet \mathbf{Axiom} Statements taken as fact
- Theorem Statements that are proven using axioms
- Lemma Statements proven using theorems
- **Proposition** Statements, regardless of whether it is true or false, is assumed to be true
- Corollary A theorem that is proven using another theorem.*

Chapter 1

A Revision Of Sets And Functions

Sets are assumed to be sets on the basis of a theory known as **Naive Set Theory**. according to this theory, A set is defined as,

Definition 1.0.1: Sets

A set is a collection of objects

e.g. -

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$$

1.1 Notations

 $\begin{array}{l} A,B...Z \ will \ denote \ sets \\ a,b...z \ will \ denote \ elements \\ a \in A, \ a \ is \ an \ element \ of \ A \\ a \notin A, \ a \ is \ not \ an \ element \ of \ A \end{array}$

1.2 Roster Notation

$$\mathbb{N} = \{1, 2...\}$$

$$A = \{2, 4, 6, 8$$

$$B = \{x \in Z + | x < 10\}$$

B is written in set builder form

1.3 Basic Concepts Of Sets

Definition 1.3.1: Subsets

A and B are two sets. A is a subset of B, and we write $A \subset B$, if every element of A is also an element of B

Theorem 1.3.1. Two sets A and B are equal and we write A=B if and only if A \subset B and B \subset A

Definition 1.3.2: Unions

The union of two sets A and B, denoted by $A \cup B$, is

$$A \cup B = \{x | x \in A \text{ and } x \in B\}$$

Definition 1.3.3: Intersections

The intersection of two sets denoted by $A \cap B$, is

$$A \cap B = \{x | x \in A \text{ or } x \in B\}$$

Definition 1.3.4: Set Difference

The difference of two sets denoted by A\ B is

$$A \setminus B = x | x \in A \text{ and } x \notin B$$

Definition 1.3.5: Set Complement

The complement of a set A, denoted by A C is,

$$A^C = \{ x \in X | \ x \notin A \}$$

- $\bullet \ (B \cup C)^C = B^C \cap C^C$
- $\bullet \ (B\cap C)^C = B^C\cap C^C$
- $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

1.4 Logical Notation

 \forall - for all

 \exists - there exists

 $\exists!$ - there exists a unique

1.5 Functions

 $f: A \rightarrow B$

 $f(a) = b, a \in A, b \in B$

A is the **domain** of the function, B is the **codomain** of the function and, $\{b \in B \mid f(a) = b \}$ - Range

1.6 Cartesian Product

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

1.7 Composition Of Functions

 $(g \circ f)(x) = (g(f(x))$

A function is the same as a mapping, which is the same as a transformation

1.8 Types Of Functions

1. f is injective(one-one) if,

$$f(a) = f(a') then a = a'$$

2. f is surjective(onto) if,

$$\forall b \in B, \exists \ a \in A, \ f(a) = b$$

3. f is bijective if f is injective and surjective

Reference

Knowles - Linear Vector Spaces and Cartesian Tensors

Halmos - Finite Dimensional Linear Spaces

Gelfand - Linear Algebra

Chapter 2

Vector Spaces

A vector space over a field $F = \mathbb{R}$ or \mathbb{C} is a set V with two operations:

- 1. $+:V \times V \to V$ i.e. "+" is closed under addition.
- 2. :: F \times V \rightarrow V, i.e. " · " is closed under multiplication

having the following properties

1. Associativity

$$\forall v_1, v_2, v_3 \in V, (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

2. Existence of identity element

$$\exists !\ 0 \in V, \forall v\ inV, such that 0 + v = v$$

3. Existence of additive inverse

$$\forall v \in V \exists (-v) \in V, v + (-v) = 0$$

4. Commutativity

$$\forall u, v \in V, u + v = v + u$$

Properties 1 to 4 constitute a group known as the "abelian group" or "commutative group"

5. Existence of multiplactive identity

$$\exists ! \ 1 \in V, \ such \ that \ \forall \ v \in V, 1 \cdot v = v$$

6. Associativity

$$\mu, \lambda \in F, v \in V, \lambda(\mu \cdot v) = (\lambda \mu) \cdot v$$

7. Distribution of + over \cdot

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v, \forall \ \mu, \lambda \in F$$

8. Distribution of \cdot over +

$$\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v, \forall \lambda \in F, u, v \in V$$

2.1 Examples Of Vector Spaces

- 1. V = 0
- $2. \mathbb{R}$
- 3. All polynomials of order at $\operatorname{\mathbf{most}}$ n

Reference

- Donald Knuth
- Marvin Mirsky, MIT
- Web Of Stories, Youtube Channel
- Axler, Chapter 1
- Olver, Shakiban, Chapter 2
- Terrence Tao Notes AMS Open Math

2.2 Some Theorems And Proofs Regarding Vector Spaces

Theorem 2.2.1. Additive identity is unique

Proof. Suppose \exists additive identities 0_1 , 0_2 such that

$$\forall u \in V, 0_1 + u \& 0_2 + u = u$$
$$0_1 + 0_2 = 0_2$$
$$0_2 + 0_1 = 0_1$$
$$\therefore 0_1 = 0_2$$

Theorem 2.2.2. Additive inverse is unique

Proof. Suppose additive inverses of u are v_1, v_2

$$u + v_1 = 0, u + v_2 = 0$$

$$v_2 + (u + v_1) = v_2 + 0$$

$$(v_2 + u) + v_1 = v_2$$

$$0 + v_1 = v_2$$

$$v_1 = v_2$$

(2)

Theorem 2.2.3. $0 \cdot u = 0$

Proof. Let 0 . u = 0 Consider,

$$v + v = 0.u + 0.u = (0 + 0).u$$
$$= 0.u = v$$
$$\Rightarrow v + v = v$$
$$v + (v + (-v)) = v + -v$$
$$\Rightarrow v = 0$$

⊜

Theorem 2.2.4 (Scalars And Inverses).

$$(-\lambda)u = -(\lambda \cdot u) = \lambda \cdot (-u)$$

Proof. Let $v = (-\lambda).u$ Consider,

$$v + \lambda . u = (-\lambda) . u + \lambda u$$

(2)

2.3 Fields

- A) To every pair α and β of scalars, there corresponds a scalar $\alpha + \beta$ called the sum of α and β , in such a way that
 - 1. addition is commutative, $\alpha + \beta = \beta + \alpha$
 - 2. addition is associative, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

- 3. There exists a unique scalar 0, called zero, such that $\alpha+0=\alpha$ for every scalar $\alpha,$ and
- 4. to every scalar α , there corresponds a unique scalar $(-\alpha)$ such that $\alpha+(-\alpha)=0$