Non-parametric Density Estimation

Tobias Kuhlmann, Rui Zhang

UMass Amherst

December 12, 2018

Outline

Introduction

Kernel density estimation

Logspline density estimation

Simulation study

Research aim

Compare asymptotic MISE behaviour for kernel and logspline density estimators as $n \to \infty$ in a Monte Carlo experiment.

Data

For our study, we use simulated univariate data

$$\{y_i\}_{i=1}^n, i\in\{1,...,n\},$$

where $y_i \sim iid$ and a known smooth density f(x), i.e., $y_i \sim_{iid} f(x)$, where $x \in R$.

Kernel density estimation

We use a univariate kernel density function following Wand and Jones (1995). A density function can be estimated by

$$\hat{f}(x;h) = (nh)^{-1} \sum_{i=1}^{n} K\{(x-X_i)/h\},$$

where K is a kernel function satisfying $\int K(x)dx = 1$ and h is the bandwidth.

Asymptotic MISE approximations

$$MISE\{\hat{f}(\cdot;h)\} = E \int \{\hat{f}(x;h) - f(x)\}^2 dx$$

 h_{MISE} is the minimiser of $MISE\{\hat{f}(\cdot;h)\}$ then

$$h_{MISE} \sim \left[\frac{R(K)}{\mu(K)^2 R(f'')n}\right]^{\frac{1}{5}} = C_1 n^{-\frac{1}{5}}$$

inf MISE_{h>0}{
$$\hat{f}(;h)$$
} $\sim \frac{5}{4} \{\mu_2(K)^2 R(K)^4 R(f'')\}^{\frac{1}{5}} n^{-\frac{4}{5}} = C_2 n^{-\frac{4}{5}}$

These expressions give the rate of convergence of the MISE-optimal bandwidth and the minimum MISE to zero as $n \to \infty$. The best obtainable rate of convergence of the MISE of the kernel estimator is of $O(n^{-4/5})$.

Asymptotic MISE approximations

Asymptotic MISE approximations can also be used to make comparisons of the kernel estimator to the histogram. Let b be the binwidth of the histogram $\hat{f}_H(\cdot; b)$:

$$b_{MISE} \sim \{6/R(f')\}^{\frac{1}{3}} n^{-\frac{1}{3}}$$

inf MISE $_{b>0}\{\hat{f}(\cdot;b)\} \sim \frac{1}{4} \{36R(f')\}^{\frac{1}{3}} n^{-\frac{2}{3}}$
MISE $= C_3 n^{-\frac{2}{3}}$
 $\log(MISE) = -\frac{2}{3} \log(C_3 n)$

Thus, the MISE of the histogram is asymptotically inferior to the kernel density estimator since its convergence rate is $O(n^{-2/3})$ compared to the kernel estimator's $O(n^{-4/5})$ rate.

Logspline density estimation

Let B be a set of basis functions. β be a collection of feasible column vectors . A column vector β is said to be feasible if $\int_L^U \exp(\beta_1 B_1(x) + \dots + \beta_J B_J(x)) dx < \infty.$ Given $\beta \in B$, set

$$f(x;\beta) = \exp(\beta_1 B_1(x) + \cdots + \beta_J B_J(x) - C(\beta)), L < x < U$$

where

$$C(\beta) = log(\int_{L}^{U} exp(\beta_1 B_1(x) + \cdots + \beta_J B_J(x)) dx).$$

Then $f(y; \beta)$ is a positive density function on (L,U), and $\int_R f(x; \beta) dx = 1$.

Logspline's advantages

- As one of the penalized approaches, logspline uses a maximum likelihood approach.
- Adds knots in those parts of the density where they are most needed.
- ▶ Has a natural way to estimate densities with bounded support.
- Avoids spurious bumps and gives smooth estimates in the tail of the distribution.
- Can estimate the density even when some observations are censored.

Simulation study

.

Density estimation in R

Kernel density estimation

Matt Wand (2013). KernSmooth: Functions for kernel smoothing for Wand & Jones (1995)

```
# Univariate kernel density estimator from KernSmooth package (Wand (1995)) h \leftarrow dpik(y) # select optimal bandwidth fit \leftarrow bkde(x=y, bandwidth=h, gridsize = 401) # kde
```

Logspline density estimation

Charles Kooperberg (2005). Logspline: Logspline Density estimation routines

```
# Logspline density estimator
fit <- logspline(y) # fit logspline
dens <- dlogspline(q=x, fit=fit) # get density values</pre>
```

Monte Carlo experiment

Same approach as in September 12th class:

- ► For 20 sample sizes from 100 to 100000
 - ▶ For 10 different random samples
 - Kernel density estimation
 - Logspline density estimation

Normal distribution

N(0,1) with density estimations

Normal distribution

MISE Convergence rates

Normal distribution

Table 1: Log MISE convergence regression results

Туре	Slope estimate	95% CI
Kernel	-0.80	(-0.84,-0.76)
Logspline	-1.22	(-1.29,-1.15)

Weibull distribution

Weibull (0, 1.5, 0.5) with density estimations

Weibull distribution

MISE Convergence rates

Weibull distribution

Table 2: Log MISE convergence regression results

Туре	Slope estimate	95% CI
Kernel	-0.62	(-0.64,-0.61)
Logspline	-0.87	(-0.92,-0.82)

Chi squared distribution

Chisquared(3) with density estimations

Chi squared distribution

MISE Convergence rates

Chi squared distribution

Table 3: Log MISE convergence regression results

Туре	Slope estimate	95% CI
Kernel	-0.65	(-0.66,-0.63)
Logspline	-0.91	(-0.96,-0.87)

Conclusions

- Low sample density estimates are highly inaccurate.
- Logspline MISE converges faster to zero than kernel density estimation in all three experiments.
- ▶ Be careful with bounds, ensuring density is smooth.

Open Questions

- Theoretical derivation of asymptotic logspline MISE.
- Does logspline log mise asymptotic behavior linear?
- Why are convergence rates different?
- Think about and try distribution bounds.

References

- Stone, Hansen, Kooperberg, and Truong, Polynomial Splines and their Tensor Products in Extended Linear Modeling, Annals of Statistics, Volume 25,Issue 4(Aug., 1997), 1371-1425.
- ▶ MP. Wand and M.C.Jones, Kernel Smoothing, Chapman& Hall, 1995.