11-10-2023

Instalación y Configuración Servidor DHCP

Servicios de Red e Internet

Andres Catalina Blázquez

Contenido De La Memoria

1.	Instalar DHCP	2
2.	Configuración IP del servidor	2
3.	Configuración de interfaces	3
4.	Configuración de rangos	4
5.	Comprobar escritura del archivo dhcpd.conf	4
6.	Comprobar estado del servicio DHCP	5
7.	Comprobar asignación de IP a clientes	5
â	a) Cliente Host reservado	5
k	o) Cliente Host aleatorio	6
8.	Comprobar conexión entre clientes	6
9.	Ver concesiones del servidor	7

1. Instalar DHCP

Con el comando " sudo apt install isc-dhcp-server " instalamos el servidor DHCP

```
andres@serverandres:~$ sudo apt install isc-dhcp-server
```

2. Configuración IP del servidor

En el archivo "00-installer.config.yaml" (/etc/netplan/00-installer.config.yaml) es donde vamos a configurar la IP de forma estática para el servidor

```
andres@serverandres:~$ sudo nano /etc/netplan/00–installer–config.yaml
```

Modificamos el parámetro "dhcp4" y lo ponemos en "false"

Añadimos un parámetro nuevo llamado "addresses" con la IP que queremos que tenga el servidor **(VA ENTRE CORCHETES Y PONIENDO LA MASCARA CON BARRA** ej.192.168.1.1/24)

```
/etc/netplan/00-installer-config.yaml
 GNU nano 6.2
This is the network config written by 'subiquity'
network:
 ethernets:
   enp0s3:
     dhcp4: true
 version: 2
```

ARCHIVO ANTES DE EDITAR

```
GNU nano 6.2
                                    /etc/netplan/00-installer-config.yaml *
# This is the network config written by 'subiquity'
network:
 ethernets:
    enpOs3:
     <u>dhcp4: false</u>
      addresses: [192.168.1.1/24] 🚤
  version: 2
```

ARCHIVO DESPUES DE EDITAR

Podemos añadir en el archivo tantas interfaces como queramos añadiendo desde el nombre de la red hasta la dirección y dejando la versión abajo del todo.

```
GNU nano 6.2
                                    /etc/netplan/00-installer-config.yaml
 This is the network config written by 'subiquity'
network:
 ethernets:
   enp0s3:
     dhcp4: false
     addresses: [160.160.160.100/24] IP Primera Interfaz de Red
   enp0s8:
     dhcp4: false
     addresses: [170.170.200.100/24] IP Segunda Interfaz de Red
 version: 2
```

Página 2 | 7

Aplicamos la configuración con el comando " sudo netplan apply " y comprobamos la IP del servidor con el comando " ip add " o " ip a "

andres@serverandres:~\$ sudo netplan apply

```
andres@serverandres:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 100
0
    link/ether 08:00:27:89:e0:bb brd ff:ff:ff:ff:
    inet 192.168.1.1/24 brd 192.168.1.255 scope global enp0s3
        valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe89:e0bb/64 scope link
        valid_lft forever preferred_lft forever
andres@serverandres:~$ _
```

3. Configuración de interfaces

En el archivo "isc-dhcp-server" (/etc/default/isc-dhcp-server) en la línea "INTERFACESv4" se añade la nueva interfaz que va a escuchar las peticiones (Se añaden todas las interfaces que queramos que escuchen dejando un espacio entre cada nombre de interfaz)

```
# Defaults for isc-dhcp-server (sourced by /etc/init.d/isc-dhcp-server)

# Path to dhcpd's config file (default: /etc/dhcp/dhcpd.conf).

#DHCPDv4_CONF=/etc/dhcp/dhcpd.conf

#DHCPDv6_CONF=/etc/dhcp/dhcpd6.conf

# Path to dhcpd's PID file (default: /var/run/dhcpd.pid).

#DHCPDv4_PID=/var/run/dhcpd.pid

#DHCPDv6_PID=/var/run/dhcpd6.pid

# Additional options to start dhcpd with.

# Don't use options -cf or -pf here; use DHCPD_CONF/ DHCPD_PID instead

#OPTIONS=""

# On what interfaces should the DHCP server (dhcpd) serve DHCP requests?

# Separate multiple interfaces with spaces, e.g. "eth0 eth1".

INTERFACESv4="enp0s3"

INTERFACESv6=""
```

4. Configuración de rangos

En el archivo "dhcpd.conf" (/etc/dhcp/dhcpd.conf) configuramos los distintos rangos de IP que queremos que el servidor asigne

```
GNU nano 6.2
                                            /etc/dhcp/dhcpd.conf
# option definitions common to all supported networks...
option domain—name "example.org";
option domain-name-servers ns1.example.org, ns2.example.org;
default-lease-time 600;
max-lease-time 7200;
# The ddns–updates–style parameter controls whether or not the se
 attempt to do a DNS update when a lease is confirmed. We defaul
# behavior of the version 2 packages ('none', since DHCP v2 didn'
# have support for DDNS.)
ddns-update-style none;
subnet 192.168.1.0 netmask 255.255.255.0 {
        range 192.168.1.2 192.168.1.254;
        option routers 192.168.1.1;
        option subnet-mask 255.255.255.0;
        option domain-name-servers 8.8.8.8,8.8.4.4;
        option broadcast-address 192.168.1.255;
        default–lease–time 600;
        max-lease-time 800;
        host reservado{
                hardware ethernet 08:00:27:8C:2A:45;
                 fixed-address 192.168.1.11;
```

5. Comprobar escritura del archivo dhcpd.conf

Con el comando " dhcpd -t " comprobamos los errores de escritura que podemos tener.

Realizando esta comprobación nos aseguramos que el servidor funcione correctamente

```
andres@serverandres:~$ dhcpd −t
Internet Systems Consortium DHCP Server 4.4.1
Copyright 2004–2018 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
WARNING: Host declarations are global. They are not limited to the scope you declared them in.
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
 andres@serverandres:~$
```

6. Comprobar estado del servicio DHCP

Con el comando " sudo systemctl restart isc-dhcp-server " reiniciamos el servicio para que aplique los cambios que realicemos en el archivo dhcpd.conf

Con el comando " sudo systemctl status isc-dhcp-server " comprobamos si el servicio está activo o inactivo (SI AL REALIZAR LA COMPROBACION DA SERVICIO INACTIVO REVISAMOS EL ARCHIVO DHCPD.CONF Y REINICIAMOS DE NUEVO)

Con el comando " sudo systemctl start isc-dhcp-server" arrancamos el servicio DHCP

```
andres@serverandres:~$ sudo systemctl restart isc-dhcp-server
andres@serverandres:~$ sudo systemctl status isc-dhcp-server
Loaded: loaded (/lib/systemd/system/isc-dhcp-server.service; enabled; vendor preset: enabled)
Active: active (running) since Fri 2023-10-13 07:17:07 UTC; 6s ago
Docs: man:dhcpd(8)
Main PID: 1305 (dhcpd)
Tasks: 4 (limit: 3429)
Memory: 4.9M
CPU: 14ms
CGroup: /system.slice/isc-dhcp-server.service
—1305 dhcpd —user dhcpd —group dhcpd —f —4 —pf /run/dhcp-server/dhcpd.pid —cf /etc/dh

oct 13 07:17:07 serverandres sh[1305]: Wrote 0 new dynamic host decls to leases file.
oct 13 07:17:07 serverandres dhcpd[1305]: Wrote 0 leases to leases file.
oct 13 07:17:07 serverandres sh[1305]: Listening on LPF/enp0s3/08:00:27:89:e0:bb/192.168.1.0/24
oct 13 07:17:07 serverandres sh[1305]: Sending on LPF/enp0s3/08:00:27:89:e0:bb/192.168.1.0/24
oct 13 07:17:07 serverandres sh[1305]: Sending on LPF/enp0s3/08:00:27:89:e0:bb/192.168.1.0/24
oct 13 07:17:07 serverandres dhcpd[1305]: Sending on LPF/enp0s3/08:00:27:89:e0:bb/192.168.1.0/24
oct 13 07:17:07 serverandres sh[1305]: Sending on Socket/fallback/fallback-net
oct 13 07:17:07 serverandres dhcpd[1305]: Sending on Socket/fallback/fallback-net
```

7. Comprobar asignación de IP a clientes

Teniendo todas las maquinas en la misma red con el comando " **ifconfig** " comprobamos la IP que le ha asignado el servidor al cliente, con el comando " **ip route** " vemos la puerta de enlace que tiene el cliente

a) Cliente Host reservado

Este cliente es el que hemos añadido como reserva en el archivo dhcpd.conf y vemos como le ha asignado la IP que le hemos solicitado

```
andres@ubuntu:~$ ifconfig
enp0s3: flags=4163cUP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.1.11    netmask 255.255.255.0 broadcast 192.168.1.255
    inet6 fe80::6d46:be9:180:50e1 prefixlen 64 scopeid 0x20ether 08:00:27:8c:2a:45 txqueuelen 1000 (Ethernet)
    RX packets 249 bytes 227936 (227.9 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 614 bytes 60237 (60.2 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    inet6 ::1 prefixlen 128 scopeid 0x10<host>
    loop txqueuelen 1000 (Bucle local)
    RX packets 619 bytes 51473 (51.4 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 619 bytes 51473 (51.4 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

andres@ubuntu:~$ ip route
default via 192.168.1.1 dev enp0s3 proto dhcp metric 20100
192.168.1.0/24 dev enp0s3 scope link metric 1000
192.168.1.0/24 dev enp0s3 proto kernel scope link src 192.168.1.11 metric 100
andres@ubuntu:~$
```

Página 5 | 7

b) Cliente Host aleatorio

Este cliente ha solicitado al servidor DHCP una dirección IP y le ha asignado la primera disponible además de asignarle todos los parámetros que hemos configurado como los servidores DNS, tiempo de concesión, puerta de enlace etc...

8. Comprobar conexión entre clientes

Comprobamos mediante PING que tengas conexión entre las maquinas (Windows hay que activar el permiso de PING ya que por defecto tiene la regla desactivada)

```
Archivos e impresoras compartidos (petición eco: ICMPv4 de entrada)
```

Ping de Windows a Linux

```
C:\Windows\system32\cmd.exe

Microsoft Windows [Versión 6.3.9600]
(c) 2013 Microsoft Corporation. Todos los derechos reservados.

C:\Users\windows\ping 192.168.1.11

Haciendo ping a 192.168.1.11 con 32 bytes de datos:
Respuesta desde 192.168.1.11: bytes=32 tiempo=1ms TTL=64
Respuesta desde 192.168.1.11: bytes=32 tiempo=1ms TTL=64
Respuesta desde 192.168.1.11: bytes=32 tiempo<1m TTL=64
Respuesta desde 192.168.1.11: bytes=32 tiempo<1m TTL=64
Respuesta desde 192.168.1.11: bytes=32 tiempo<1m TTL=64

Estadísticas de ping para 192.168.1.11:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0z perdidos),
Tiempos aproximados de ida y vuelta en milisegundos:
    Mínimo = Oms, Máximo = 1ms, Media = Oms

C:\Users\windows>
```

Página 6 | 7

Ping de Linux a Windows

```
andres@ubuntu:~$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=128 time=1.78 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=128 time=1.61 ms
64 bytes from 192.168.1.2: icmp seq=3 ttl=128 time=1.41 ms
64 bytes from 192.168.1.2: icmp seq=4 ttl=128 time=1.56 ms
^C
--- 192.168.1.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3016ms
rtt min/avg/max/mdev = 1.412/1.590/1.783/0.132 ms
andres@ubuntu:~S
```

9. Ver concesiones del servidor

Con el comando "sudo nano /var/lib/dhcp/dhcp.leases" comprobamos las direcciones IP que el servidor a asignado

```
GNU nano 6.2
                                          /var/lib/dhcp/dhcpd.leases
 The format of this file is documented in the uncpd.reases(5) manual page.
# This lease file was written by isc-dhcp-4.4.1
# authoring-byte-order entry is generated, DO NOT DELETE
authoring–byte–order little–endian;
lease 192.168.1.2 {
 starts 5 2023/10/13 07:59:45;
  ends 5 2023/10/13 08:09:45;
 tstp 5 2023/10/13 08:09:45;
  cltt 5 2023/10/13 07:59:45;
 binding state active;
 next binding state free;
  rewind binding state free;
 hardware ethernet 08:00:27:f5:a1:2d;
uid "\001\010\000'\365\241-";
 set vendor-class-identifier = "MSFT 5.0";
client-hostname "windows8";
server-duid "\000\001\000\001,\273\252\272\010\000'\211\340\273";
```