Matemática Discreta Aula 8 Relações

Profa. Rosane Rossato Binotto

04/10/2023

Tópicos

- Relações:
 - Relações binárias.
 - Relações reflexivas, simétricas e transitivas.
 - Relações de equivalência.
 - Classes de equivalência.
 - Partições.

Definição 1:

Sejam A e B conjuntos. Uma **relação binária de** A **em** B é um subconjunto de $A \times B$.

Definição 1:

Sejam A e B conjuntos. Uma **relação binária de** A **em** B é um subconjunto de $A \times B$.

- Uma relação binária de A em B é um conjunto R de pares ordenados em que o primeiro elemento de cada par ordenado vem de A e o segundo vem de B.
- **Notação:** aRb indica que $(a, b) \in R$ e $a \not Rb$ para indicar que $(a, b) \notin R$.
- Quando $(a, b) \in R$ dizemos que a está relacionado a b por R.

Exemplo 1:

Sejam $A = \{0, 1, 2\}$ e $B = \{a, b\}$ conjuntos. Seja $R = \{(0, a), (0, b), (1, a), (2, b)\}$ uma relação binária de A em B. Assim,

- 0Ra, pois $(0, a) \in R$.
- 1 Rb, pois $(1, b) \notin R$.

Definição 2:

Uma relação no conjunto A é uma relação de A em A. Em outras palavras, uma relação em um conjunto A é um subconjunto de $A \times A$.

Exemplo 2:

Seja $A = \{1, 2, 3, 4\}$. Quais pares ordenados estão na relação $R = \{(a, b) \mid a \text{ divide } b\}$?

Solução:

- Lembrar que: a divide b ou a|b significa que $b = m \cdot a$, para algum m número inteiro.
- A relação R é dada por $R = \Big\{ (1,1), (1,2), (1,3), (1,4), (2,4), (2,2), \\ (3,3), (4,4) \Big\}.$

Exemplo 3:

Considere estas relações no conjunto dos números inteiros.

- $R_1 = \{(a, b) \mid a \neq b\}$
- $R_2 = \{(a, b) \mid a > b\}$
- $R_3 = \{(a, b) \mid a = b\}$
- $R_4 = \{(a, b) \mid a = b + 1\}.$

Quais destas relações contêm cada um dos pares (1,1), (1,2), (2,1), (1,-1) e (2,2)?

• Solução: Em aula.

Exemplo 4:

Quantas relações existem em um conjunto com 2 elementos?

- Solução: Seja $A = \{a, b\}$. Então, $A \times A = \{(a, a), (a, b), (b, a), (b, b)\}$ tem 4 elementos.
- Todas as relações em A são dadas por: $R_1 = \{(a, a)\},\ R_2 = \{(b, b)\},\ R_3 = \{(a, b)\},\ R_4 = \{(b, a)\},\ R_5 = \{(a, a), (a, b)\},\ R_6 = \{(a, a), (b, a)\},\ R_7 = \{(a, a), (b, b)\},\ R_8 = \{(a, b), (b, a)\},\ R_9 = \{(a, b), (b, b)\},\ R_{10} = \{(b, a), (b, b)\},\ R_{11} = \{(a, a), (a, b), (b, b)\},\ \dots$

- $R_{12} = \{(a, a), (b, a), (b, b)\},\$ $R_{13} = \{(a, b), (b, a), (b, b)\},\$ $R_{14} = \{(a, a), (a, b), (b, a)\},\$ $R_{15} = \{(a, a), (a, b), (b, a), (b, b)\}\$ e $R_{16} = \Phi.$
- Total de 16 relações.

Exemplo 5:

Generalizando, um conjunto A com n elementos possui 2^{n^2} relações.

- **Solução:** Se A tem n elementos, então $A \times A$ tem n^2 elementos.
- A quantidade de subconjuntos de $A \times A$ é 2^{n^2} elementos.

Propriedades das Relações

- Reflexiva;
- Simétrica;
- Transitiva.

Propriedades das Relações

- Reflexiva;
- Simétrica;
- Transitiva.

Relação reflexiva:

Uma relação R em um conjunto A é chamada **reflexiva** se

$$(a, a) \in R$$
 para todo elemento $a \in A$.

• Ou ainda, R é relação reflexiva em A se

$$\forall a \ ((a, a) \in R),$$

• onde A é o conjunto universo.

Relação Reflexiva

Exemplo 6:

Considere as relações em $A = \{1, 2, 3, 4\}$:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\};$
- $R_2 = \{(1,1), (1,2), (2,1)\};$
- $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\};$
- $R_4 = \{(3,4)\};$
- $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$

Quais destas relações são reflexivas?

• Solução: fazer em aula. Resposta: R₃ e R₅.

Relação Reflexiva

Exemplo 7:

A relação "divide" no conjuntos dos inteiros positivos é reflexiva?

Relação Reflexiva

Exemplo 7:

A relação "divide" no conjuntos dos inteiros positivos é reflexiva?

- Solução: Seja a um número inteiro positivo, isto é, a > 0.
- Como a|a sempre que a for um inteiro positivo, então a relação "divide" é reflexiva.

Relação Simétrica

Relação simétrica:

Uma relação R em um conjunto A é chamada **simétrica** se

$$(a,b) \in R$$
 implica $(b,a) \in R$, $\forall a,b \in A$.

• Ou ainda, R é relação simétrica se

$$\forall a \ \forall b \ \Big((a,b) \in R \ \to \ (b,a) \in R\Big),$$

• onde A é o conjunto universo.

Relação Anti-simétrica

Relação anti-simétrica:

Uma relação *R* em um conjunto *A* é chamada **anti-simétrica** se

$$(a,b) \in R$$
 e $(b,a) \in R$, implicam $a = b$, $\forall a,b \in A$.

Ou ainda, R é relação anti-simétrica se

$$\forall a \ \forall b \ \Big((a,b) \in R \ \land \ (b,a) \in R\Big) \ \rightarrow \ a=b,$$

• onde *A* é o conjunto universo.

Exemplo 8:

Considere as relações em $A = \{1, 2, 3, 4\}$:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\};$
- $R_2 = \{(1,1), (1,2), (2,1)\};$
- $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\};$
- $R_4 = \{(3,4)\};$
- $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$

Quais dessas relações são simétricas?

• Solução: fazer em aula. Resposta: R_2 e R_3 .

Exemplo 9:

A relação "divide" no conjuntos dos inteiros positivos é simétrica?

• **Solução:** Essa relação não é simétrica pois 1|2, isto é, $2=2\cdot 1$, mas $2 \not | 1$, pois não existe número inteiro m, tal que $1=m\cdot 2$.

Exemplo 10:

A relação "divide" no conjuntos dos inteiros positivos é anti-simétrica?

- **Solução:** se a|b e b|a segue que $b=m\cdot a$ e $a=n\cdot b$, respectivamente, para m e n inteiros.
- Assim,

$$b = m \cdot a = m \cdot (n \cdot b) = (m \cdot n) \cdot b,$$

- o que implica $m \cdot n = 1$.
- Como m e n são inteiros segue m = n = 1 e a = b.
- Portanto, a relação "divide" é anti-simétrica.

Relação Transitiva

Relação transitiva:

Uma relação R em um conjunto A é chamada **transitiva** se

$$(a,b) \in R \ e \ (b,c) \in R \ implicam \ (a,c) \in R, \ \forall a,b,c \in A.$$

Ou ainda, R é relação transitiva se

$$\forall a \ \forall b \ \forall c \Big(\big((a,b) \in R \ \land \ (b,c) \in R \big) \ \rightarrow \ (a,c) \in R \Big),$$

• onde A é o conjunto universo.

Exemplo 11:

Considere as relações em $A = \{1, 2, 3, 4\}$:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\};$
- $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
- $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\};$
- $R_4 = \{(3,4)\};$
- $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$

Quais dessas relações são transitivas?

• Solução: fazer em aula. Resposta: R_2 , R_4 e R_5 .

Exemplo 12:

A relação "divide" no conjuntos dos inteiros positivos é transitiva?

- **Solução:** Vamos mostrar que $a|b \in b|c$ implica que a|c.
- De fato, se a|b e b|c segue que $b=m\cdot a$ e $c=n\cdot b$, respectivamente, para m e n inteiros.
- Assim,

$$c = n \cdot b = n \cdot (m \cdot a) = (n \cdot m) \cdot a.$$

- Logo, a divide c.
- Portanto, a relação "divide" é transitiva.

Combinando Relações

Exemplo 13:

```
Seja A = \{1,2,3\} e B = \{1,2,3,4\}.
As relações R_1 = \{(1,1), (2,2), (3,3)\} e R_2 = \{(1,1), (1,2), (1,3), (1,4)\} pode ser combinadas para obter:
```

- $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\};$
- $R_1 \cap R_2 = \{(1,1)\};$
- $R_1 R_2 = \{(2,2), (3,3)\};$
- $R_2 R_1 = \{(1,2), (1,3), (1,4)\};$
- $R_1 \oplus R_2 = R_1 \cup R_2 (R_1 \cap R_2) = \{(1,2), (1,3), (1,4), (2,2), (3,3)\}.$

Combinando Relações

Exemplo 14:

Seja $R_1 = \{(x, y) \mid x < y\}$ e $R_2 = \{(x, y) \mid x > y\}$ relação no conjunto dos números reais.

Obtemos as seguintes relações:

- $R_1 \cup R_2 = \{(x, y) \mid x < y \text{ ou } x > y\} =$ = $\{(x, y) \mid x \neq y\};$
- $R_1 \cap R_2 = \Phi$;
- $R_1 R_2 = R_1$;
- $R_2 R_1 = R_2$.

Relação de Equivalência

Definição 3:

Uma relação *R* em um conjunto *A* é chamada **relação de equivalência** se for reflexiva, simétrica e transitiva.

Relação de Equivalência

Definição 3:

Uma relação *R* em um conjunto *A* é chamada **relação de equivalência** se for reflexiva, simétrica e transitiva.

Definição 4:

- Dois elementos a e b que estão relacionados por uma relação de equivalência são denominados equivalentes.
- Notação: escrevemos a ~ b para denotar que a e b estão relacionados de acordo com uma relação de equivalência.

Exemplo 15:

A relação $R = \{(a, b) \mid a - b \in \mathbb{Z}\}$ no conjunto dos números reais é uma relação de equivalência.

- Solução:
- R é reflexiva pois $a-a=0\in\mathbb{Z}$. Logo, $(a,a)\in R$.
- R é simétrica, pois se $(a,b) \in R$, então $a-b \in \mathbb{Z}$ o que implica que $b-a=-(a-b) \in \mathbb{Z}$. Logo $(b,a) \in R$.
- Sejam $(a,b),(b,c)\in R$, então $a-b=m\in\mathbb{Z}$ e $b-c=n\in\mathbb{Z}$. Assim, $a-c=a-b+b-c=(a-b)+(b-c)=m+n\in\mathbb{Z}$. Logo, $(a,c)\in R$ e R é transitiva.

Exemplo 16 - Congruência Módulo m:

Seja $m \in \mathbb{Z}$ com m > 1. Seja

$$R = \{(a, b) \mid a \equiv b \pmod{m}\}$$

a relação congruência módulo m.

Essa relação é uma relação de equivalência.

- Solução:
- Por definição,

 $a \equiv b \pmod{m}$ se e somente se m divide a-b se somente se $a-b=k\cdot m$, para algum $k\in\mathbb{Z}$.

- Alguns casos particulares:
- Seja m=2. Assim,
- $R = \{(a, b) \mid a \equiv b \pmod{2}\} = \{(a, b) \mid a b = 2k\} = \{(2, 4), (8, 2), (5, 3), (7, 13), ...\}.$
- Seja m = 3. Assim,
- $R = \{(a, b) \mid a \equiv b \pmod{3}\} = \{(a, b) \mid a b = 3k\} = \{(2, 5), (10, 4), (-4, 11), (13, 7), ...\}.$

- Seja m = 4. Assim,
- $R = \{(a, b) \mid a \equiv b \pmod{4}\} = \{(a, b) \mid a b = 4k\} = \{(10, 2), (10, 6), (-4, 12), (8, 0), ...\}.$

- Seja m = 4. Assim,
- $R = \{(a, b) \mid a \equiv b \pmod{4}\} = \{(a, b) \mid a b = 4k\} = \{(10, 2), (10, 6), (-4, 12), (8, 0), \ldots\}.$
- Já vimos que a relação a-b em $\mathbb Z$ é uma relação de equivalência. Logo,

$$R = \{(a, b) \mid a \equiv b \pmod{m}\} = \{(a, b) \mid a - b = k \cdot m\}$$

é uma relação de equivalência.

Classes de Equivalência

Exemplo 17:

A relação "divide" em $\mathbb Z$ não é uma relação de equivalência, pois não vale a propriedade simétrica.

Classes de Equivalência

Exemplo 17:

A relação "divide" em $\mathbb Z$ não é uma relação de equivalência, pois não vale a propriedade simétrica.

Outros exemplos de relações de equivalência.

Exemplo 18:

- 1) $R = \{(x, y) \mid x = y \text{ ou } x = -y\}$, sobre qualquer conjunto S;
- 2) $R = \{(x, y) \mid x + y \text{ \'e par}\}$, sobre o conjunto \mathbb{N} ;
- 3) $R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ sobre $A = \{1,2,3\}.$

Classes de Equivalência

Definição 5:

Seja *R* uma relação de equivalência em um conjunto *A*. O conjunto de todos os elementos que estão relacionados a um elementos *a* de *A* é chamado de **classe de equivalência de** *a*.

A classe de equivalência de a relativa a R é indicada por $[a]_R$.

Ou ainda, $[a]_R = \{s \mid (a, s) \in R\}.$

Exemplo 19:

Para a relação de equivalência

$$R = \{(a, b) \mid a = b \text{ ou } a = -b\}$$

no conjunto dos números inteiros \mathbb{Z} , segue que para cada $a \in \mathbb{Z}$, a classe de equivalência de a é dada por:

$$[a] = \{a, -a\}.$$

• Por exemplo, $[7] = \{7, -7\} = [-7]$, $[-2] = \{-2, 2\} = [2]$ e $[0] = \{0\}$.

Exemplo 20:

Quais são as classes de equivalência de 0, 1, 2 e 3 na congruência módulo 4?

Solução:

• A classe de equivalência de 0 na congruência módulo 4 contém todos os números a, tal que $a \equiv 0 \pmod{4}$, ou seja, a = 4k, para $k \in \mathbb{Z}$, ou ainda, são todos os números a, que divididos por 4 têm resto 0:

$$[0] = {..., -8, -4, 0, 4, 8, ...}.$$

• A classe de equivalência de 1 na congruência módulo 4 contém todos os números a, tais que, a-1=4k o que implica a=4k+1, ou seja, todos os números a que divididos por 4 têm resto 1:

$$[1] = \{..., -7, -3, 1, 5, 9, ...\}.$$

 De modo análogo obtemos que a classe de equivalência de 2 na congruência módulo 4 contém todos os números a, tais que, a - 2 = 4k o que implica a = 4k + 2, ou seja, todos os números a que divididos por 4 têm resto 2:

$$[2] = {..., -6, -2, 2, 6, 10, ...}.$$

 Por fim, a classe de equivalência de 3 na congruência módulo 4 contém todos os números a, que divididos por 4 têm resto 3:

$$[3] = {..., -5, -1, 3, 7, 11, ...}.$$

 Observamos que as demais classes de equivalência coincidem com as quatro classes listadas anteriormente.

Exemplo 21:

Seja n um número inteiro positivo e S um conjunto de sequências.

Seja R_n a relação em S tal que s R_n t (s relacionado com t) se e somente se s=t ou tanto s quanto t têm, pelo menos, n caracteres e os primeiros n caracteres de s e t são os mesmos. R é uma relação de equivalência.

- Seja n = 3 e S o conjunto de todas as sequências de bits. Seja R₃ a relação em S tal que s R₃ t (s relacionado com t) se e somente se s = t ou quando s e t forem sequências de bits de comprimento maior que ou igual a 3 que comecem com os mesmos primeiros 3 bits.
- Alguns exemplos,
 01 R₃ 01, 101 R₃ 101, 00111 R₃ 00101.
- Mas, 001 R_3 01101 e 01011 R_3 01110.

- Qual a classe de equivalência de 011 relativa à relação de equivalência R_3 ?
- Solução: As sequências equivalentes a 011 são as sequências de bits com pelo menos três bits que começam com 011.

$$[011]_{\mathcal{R}_3} = \{011, \ 0110, \ 0111, \ 01100, \\$$

$$01101, \ 01110, \ 01111, \ldots\}.$$

Partição

O que é uma partição de um conjunto?

Exemplo 22:

Seja $S = \{1, 2, 3, 4, 5, 6\}$. A coleção de conjuntos

$$A_1 = \{1, 2, 3\}, A_2 = \{4, 5\}, A_3 = \{6\}$$

forma uma partição de S, pois esses conjuntos são disjuntos (isto é, a interseção dos conjuntos é vazia) e a união é S.

- Como encontrar uma partição de um conjunto?
- Por meio de classes de equivalência.

Partição

Teorema 1:

- Seja R uma relação de equivalência em um conjuto A.
 As seguintes afirmações são equivalentes:
 - **i)** aRb;
 - **ii)** [a] = [b];
 - iii) $[a] \cap [b] \neq \Phi$.
- **Conclusão:** As classes de equivalência de uma relação de equivalência formam uma partição do conjunto.

Exemplo 23:

Quais são os conjuntos na partição dos inteiros que aparecem na congruência módulo 4?

 Solução: Relação de equivalência - congruência módulo 4. As quatro classes de equivalência da sequência formam uma partição do conjunto dos números inteiros.

•
$$[0]_4 = \{..., -8, -4, 0, 4, 8, ...\};$$

•
$$[1]_4 = \{..., -7, -3, 1, 5, 9, ...\};$$

•
$$[2]_4 = {..., -6, -2, 2, 6, 10, ...};$$

•
$$[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}.$$

Exemplo 24:

Dado S o conjunto de todas as sequências de bits e a relação de equivalência R_3 em S dada por: s R_3 t (s relacionado com t) se e somente se s=t ou quando s e t forem sequências de bits de comprimento maior que ou igual a s que comecem com os mesmos primeiros s bits.

Descreva uma partição para S.

Solução:

 Toda sequência de bits de comprimento menor do que 3 é equivalente apenas a ela própria:

$$\begin{split} [\lambda]_{R_3} &= \{\lambda\}, \ [0]_{R_3} = \{0\}, \ [1]_{R_3} = \{1\}, \ [00]_{R_3} = \{00\}, \\ [01]_{R_3} &= \{01\}, \ [10]_{R_3} = \{10\}, \ [11]_{R_3} = \{11\}. \end{split}$$

Toda sequência de bits de comprimento maior ou igual
 3 é equivalente a uma das oito sequência de bits

000, 001, 010, 011, 100, 101, 110 e 111.

```
[000]_{R_3} = \{000, 0000, 0001, 00000, 00001, 00010, 00011, \ldots\},\
[001]_{R_3} = \{001, 0010, 0011, 00100, 00101, 00110, 00111, \dots\},\
[010]_{R_3} = \{010, 0100, 0101, 01000, 01001, 01010, 01011, \ldots\},\
[011]_{R_3} = \{011, 0110, 0111, 01100, 01101, 01110, 01111, \ldots\},\
[100]_{R_3} = \{100, 1000, 1001, 10000, 10001, 10010, 10011, \ldots\},\
[101]_{R_2} = \{101, 1010, 1011, 10100, 10101, 10110, 10111, \ldots\},\
[110]_{R_3} = \{110, 1100, 1101, 11000, 11001, 11010, 11011, ...\}, e
[111]_{R_2} = \{111, 1110, 1111, 11100, 11101, 11110, 11111, \ldots\}.
```

- Essas 15 classes de equivalência são disjuntas e toda sequência de bits está exatamente em uma delas.
- Essas 15 classes de equivalência formam uma partição do conjunto de todas as sequências de bits.

Referências

- LIPSCHUTZ, S.; LIPSON, M. Teoria e Problemas de Matemática Discreta. 2. ed. Bookman, 2004.
- MENEZES, P. B. Matemática Discreta para Computação e Informática. 3. ed. Bookman, 2010.
- ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6. ed. McGraw-Hill, 2009.