$$V = \frac{d}{d}$$

$$V = \frac{d}{d}$$

$$V = \frac{10\%}{s}$$

$$V = \frac{30\%}{3s}$$

$$V = \frac{30\%}{3s} = \frac{10\%}{s}$$

$$V = \frac{30\%}{3s} = \frac{10\%}{s}$$

$$V = \frac{30\%}{3s} = \frac{10\%}{s}$$

For solid it travel?

How far did it travel?

La.
$$V = 1000 \text{ m/s}$$
 $t = 15s$

Lb. $d = ?$

2. $V = \frac{d}{t}$
 $t = \frac{d}{t}$

3. $d = \frac{(5s)(1000 \text{ m/s})}{(1000 \text{ m/s})}$

4. $d = \frac{(5s)(1000 \text{ m/s})}{(155)} = \frac{(5s)(1000 \text{ m/s})}{(155)}$

5. $V = \frac{1500000}{155} = 1000 \text{ m/s}$

ACCELERATION

- A CHANGE IN SOMETHING'S VELOCITY
 - OPTIONS:
 - 1) SPEED UP
 - 2) SLOWING DOWN
 3) CHANGING DIRECTION

Rocket C			
INITIAL	EITY	FINAL VELOCITY	ACCELERATING
3500 %	N	3501 % N	YES (SPED UP)
2608 m/3 14,225 m/3 410 m/3 cm 3500 m/3	5 J Teach	2008 % W 3500 % W	YES (SLOWING) YES (SLOWING) YES (DIRECTION) 15 CHANGING) YES (DIRECTION) 15 CHANCING)

FORMULA FOR FINDING THE ACCELERATION OF AN OBJECT:

ACCELERATION = (FINAL VELOCITY - INITIAL VELOCITY)
TIME

$$a = \frac{v_f - v_o}{t}$$