

OpenHW Group Project Execution Framework

Duncan Bees
Director, Technical Programs

© OpenHW Group June 2024

```
// Copyright 2024 OpenHW Group
// Licensed under the Solderpad Hardware Licence, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
   https://solderpad.org/licenses/
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.0
```


OpenHW Group: Open Source Objectives

Open Source Objective	OpenHW Group
Community collaboration	 Silicon + Hardware + Software + University + EDA Tools Product-ready baseline features
Enable flexibility and customization	 CORE-V building block approach Companies differentiate at value-add
Innovation velocity	 Research results flow directly to front end Collaborative project model Infrastructure/governance
Industrial quality	Open scrutiny of all contributionsFocus on Industrial quality verification
Enable freedom of action	 Open source licenses adapted to hardware Freedom to innovate OpenHW Group

OpenHW Overview

- Technical Working Group
 - Cores Task Group
 - Verification Task Group
 - Hardware Task Group
 - Software Task Group
 - Interconnect Task Group
 - Safety and Security Task Group
- Marketing Working Group
- OpenHW CEO + Staff
 - Facilitating/building project capacity
- OpenHW Board
 - Oversight of working group results

Project framework and decisions

Open-source development
 Specification development
 Driven by Engineering staff of member companies

Industry Best Practices

- Project framework supporting planning, monitoring and community collaboration
- Agile/Hybrid Project organization models adapted to project needs
- Industry standard toolsets along with mindset: industrial quality
- Transparent, open-source contribution process
- Technology Readiness Level assessment of project outputs

Project Execution Framework: Goals

Overall

Open, lightweight, and effective

<u>Processor-IP + Enabling Ecosystem</u>

- Provide the checkpoints needed for processor design and verification
- Industry quality, fully verified IP as project deliverables
- Support multiple ecosystem outputs in one framework: RTL, software, hardware, FPGA, MCU, research

Collaborative Way of Working

- Bring project concepts forward at an early stage
- Project decisions in the hands of the members
- Keep the members informed of the full range and status of projects

Stage Gate Flow

- Gate reviews are held at monthly TWG meetings
- Project Team presents review materials
- Gate decisions by TWG majority vote

© OpenHW Group June 2024

Gate Details

Gate

Criteria

Driving requirements, proposed features, work components, project supporters, high level schedule, project risks, license model

Project plan checklist: project methodology, initial agile backlog, requirements specification (1st section of the user manual)

RTL Freeze checklist or other final checklist

Cores Projects – Document Suite

- 1. Requirements (Feature) Specification
- User Manual
 - a. Chapter 1 = Requirements
- 3. Verification Architecture
- 4. Verification Plan(s)
- 5. Design Document(s) (optional for specific needs)

Plan Approved Checklist extract

Item	Completion (Y/N/In progress/NA)	Comment
Project Concept Complete		
Project Launch Complete		
SW Target platform identified		
Cores Part Number identified		
Cores TRL Target identified		
Project release plan identified		
HL Project deliverables identified		
Feature list available		
Resource plan available		
Repo setup		
License.md file in place		
Project Manager identified		
Technical Project Leader per deliverable identified		
At least 1 project committer elected		
Work Breakdown Structure available		
Baseline schedule available		
Ongoing schedule tracking identified		e.g. Github project board
Regular project meeting setup		
Project Monthly report format agreed		
Risk Register available		
Set of Project Freeze/Release Checklists identified		

RTL Freeze Checklist - Example

All IP reviews complete

- OpenHW Checklists
 - Detailed sign-off metrics
 - Established Criteria
 - Actual signoff by a project committer
- When the set of Checklists is completed and reviewed
 - The project is "frozen"
 - A Github tag is created for the release
 - Eclipse Release process initiated

© OpenHW Group June 2024 1

Project/Teams Organization

- Project organization
 - TG chairs play a significant role in project oversight
 - Technical Project Leader(s) drive project coordination
 - Regular project and TG meetings
 - Open messaging channels (Mattermost, email)
- Many projects use Github Project Boards
- Top level schedule view (Waterfall) to at least a coarse granularity often used to initially flesh out a project schedule and create the project board
- Coordination at TWG level
 - Cross-project coordination for example simulator support for s/w development
 - Project gate reviews
 - Requirements specification review

Current Projects

https://github.com/openhwgroup/programs/tree/master/Project-Descriptions-and-Plans

TRL Scale

Commercial application. Successful mission

Mass-production. Product/technology is available to all customers

OpenHW Technology **Dutputs**

TRL-9

TRL Levels as Utilized by OpenHW

TRL	OpenHW Utilization
1-Basic Principles Observed	 OpenHW research projects may target TRL-1 as project output, e.g. to develop novel approaches to core or accelerator architecture
2-Concept Formulation	 Core IP or accelerator development projects to produce open source technology are typically initiated as TRL-2 concepts, identifying principles and applications of the IP The OpenHW Project Concept Gate includes a TRL-2 description of the Core IP
3- Proof of Concept	 Core IP or accelerator development projects will pass through TRL-3 as the (RTL) design completes. Poof of concept is shown by core compilation and demonstration of basic operations (e.g. Linux booted, coremark results, hello-world)
4- Component Prototype	 Core IP or accelerator projects will pass through TRL-4 as they produce preliminary PPA results (via synthesis scripts for FPGA or ASIC) and/or run preliminary application code, such as an accelerator running machine learning code.
5- Subsystem Designed and Tested	• Core IP projects reach TRL-5 as they complete full verification . The OpenHW RTL Freeze checklist process verifies that the design is fully ready for industrial adoption.
6-Functional (Alpha) Prototype	 OpenHW designed IP that is integrated into an MCU system or other device reaches TRL-6 as prototype Silicon is fabricated and demonstrated
7-Field Demonstration Prototype	 OpenHW development boards incorporating a prototype Silicon system with OpenHW Software reach TRL-7 as they are demonstrated and deployed

© OpenHW Group June 2024 15

OpenHW and Eclipse Foundation

Processorspecific Ecosystem Requirements

OpenHW Project Framework

Open source foundation

Eclipse Development
Process

- Project Proposals and Selection
- Stage Gate Reviews
- Project Freeze Checklist
- Team Organization
- Continuous Integration
- Technology Readiness Level

- Contribution Process
- Intellectual Property Review
- Committer Responsibilities
- Committer Elections
- Release Management

© OpenHW Group June 2024 16

Committees and Contributors

- "Committer meritocracy"
- Committers are project stewards and have write access
 - Committer duties
 - maintain vendor/employer neutrality
 - operate transparently
 - enforce IP policy
 - review pull requests
 - Merit shown through a pattern of contribution
 - New Committers elected by existing committers
- Any person who has signed the contribution agreement can make a pull request
- Both Committers and contributors need to sign appropriate contribution agreements

COMMITTER TOOLS

The following commands are available to project committers:

Elections

Nominate a Committer Nominate a Project Lead

Intellectual Property

Create a Contribution Questio...
Generate IP Log
Contribution Questionnaires

Communication

PMC Mailing list Send Email to the PMC... Send Email to the Dev List...

Documentation

Legal Documentation Generat...

Releases

Create a new release

Licenses and IP Review

- Permissive project licenses
 - Solderpad 0.51/2.0
 - Apache 2.0
 - EPL 2.0
- Automated Git review of Pull Request
 - Ensure contribution agreements in place
- IP reviews on large contributions
- IP review on 3rd party content before it can be included in any release
 - Must be distributed under approved open source

Pulling it All Together

- OpenHW CORE-V Ecosystem Development
 - Full range of ecosystem projects hardware and software
 - Industrial project management methods
 - Stage Gates and Checklists
 - Industry standard verification tools
 - Agile teams
 - Comprehensive open source flow
 - Full transparency of all artifacts
 - Technology Readiness Level assessment to identify the target output
- Project dashboard at https://github.com/openhwgroup/programs/tree/master/da shboard

