# DAG EXECUTION MODEL, WORK AND DEPTH

## Computational Complexity of (Sequential) Algorithms

Model: Each step takes a unit time

 Determine the time (/space) required by the algorithm as a function of input size

## Sequential Sorting Example

- Given an array of size n
- MergeSort takes O(n . log n) time
- BubbleSort takes O(n²) time

### Sequential Sorting Example

- Given an array of size n
- MergeSort takes O(n . log n) time
- BubbleSort takes O(n²) time
- But, a BubbleSort implementation can sometimes be faster than a MergeSort implementation
- Why?

### Sequential Sorting Example

- Given an array of size n
- MergeSort takes O(n . log n) time
- BubbleSort takes O(n²) time
- But, a BubbleSort implementation can sometimes be faster than a MergeSort implementation
- The model is still useful
  - Indicates the scalability of the algorithm for large inputs
  - Lets us prove things like a sorting algorithm requires at least O(n. log n) comparisions

# We need a similar model for parallel algorithms

## Sequential Merge Sort



## Parallel Merge Sort (as Parallel Directed Acyclic Graph)

Time

Recurse(left)

Recurse(right)

Parallel
Execution

Copy back to input array

## Parallel DAG for Merge Sort (2-core)



Time

## Parallel DAG for Merge Sort (4-core)



## Parallel DAG for Merge Sort (8-core)



## The DAG Execution Model of a Parallel Computation

- Given an input, dynamically create a DAG
- Nodes represent sequential computation
  - Weighted by the amount of work
- Edges represent dependencies:
  - Node A → Node B means that B cannot be scheduled unless
     A is finished

## Sorting 16 elements in four cores



## Sorting 16 elements in four cores (4 element arrays sorted in constant time)



#### Performance Measures

- Given a graph G, a scheduler S, and P processors
- $T_P(S)$ : time on P processors using scheduler S
- $T_P$ : time on P processors for the best scheduler
- $T_1$ : time on a single processor (sequential cost)
- $T_{\infty}$  : time assuming infinite resources

### Work and Depth

- $T_1$  = Work
  - The total number of operations executed by a computation
- $T_{\infty}$  = Depth
  - The longest chain of sequential dependencies (critical path) in the parallel DAG
  - Also called as Span

## $T_{\infty}$ (Depth): Critical Path Length (Sequential Bottleneck)



## T<sub>1</sub> (work): Time to Run Sequentially



## Sorting 16 elements in four cores (4 element arrays sorted in constant time)



#### Some Useful Theorems

#### **Work Law**

"You cannot avoid work by parallelizing"

$$\frac{T_1}{P} \le T_P$$

#### **Work Law**

"You cannot avoid work by parallelizing"

$$\frac{T_1}{P} \le T_P$$

• Speedup = 
$$\frac{T_1}{T_P} \le P$$

#### **Work Law**

"You cannot avoid work by parallelizing"

$$\frac{T_1}{P} \le T_P$$

• Speedup = 
$$\frac{T_1}{T_P} \le P$$

 Can speedup be more than 2 when we go from 1-core to 2-cores, in practice?

### **Depth Law**

- More resources should make things faster
- You are limited by the sequential bottlenec

$$T_P \geq T_{\infty}$$

#### **Amount of Parallelism**

Parallelism = 
$$\frac{T_1}{T_{\infty}}$$

#### Maximum Speedup Possible

Speedup 
$$\frac{T_1}{T_P} \le \frac{T_1}{T_\infty}$$
 Parallelism

"speedup is bounded above by available parallelism"

### **Greedy Scheduler**

- If more than P nodes can be scheduled, pick any subset of size P
- If less than P nodes can be scheduled, schedule them all

### Performance of the Greedy Scheduler

$$T_P(Greedy) \le \frac{T_1}{P} + T_{\infty}$$

## Performance of the Greedy Scheduler

$$T_P(Greedy) \le \frac{T_1}{P} + T_{\infty}$$

Note:

Work law:  $\frac{T_1}{P} \le T_P$ 

Depth law:  $T_{\infty} \leq T_P$ 

### Greedy is optimal within a factor of 2

$$T_P \leq T_P(Greedy) \leq 2.T_P$$

Note:

Work law:  $\frac{T_1}{P} \le T_P$ 

Depth law:  $T_{\infty} \leq T_{P}$ 

## Work/Depth of Merge Sort (Sequential Merge)

- Work  $T_1 : O(n \log n)$
- Depth  $T_{\infty}: O(n)$ 
  - Takes O(n) time to merge n elements
- Parallelism:
  - $\frac{T_1}{T_\infty}$ :  $O(\log n)$  really bad!

### Main Message

- Analyze the Work and Depth of your algorithm
- Parallelism is Work/Depth
- Try to decrease Depth
  - the critical path
  - a *sequential* bottleneck
- If you increase Depth
  - better increase Work by a lot more!

#### Amdahl's law

- Sorting takes 70% of the execution time of a sequential program
- You replace the sorting algorithm with one that scales perfectly on multi-core hardware
- How many cores do you need to get a 4x speed-up on the program?

## Amdahl's law, f = 70%

Speedup
$$(f,c) = \frac{1}{(1-f) + \frac{f}{c}}$$

f = the <u>parallel</u> portion of execution (1-f) = the <u>sequential</u> portion of execution c = number of cores used

## Amdahl's law, f = 70%



## Amdahl's law, f = 70%



## Amdahl's law, f = 10%



## Amdahl's law, f = 98%



#### Lesson

- Speedup is limited by <u>sequential</u> code
- Even a small percentage of <u>sequential</u> code can greatly limit potential speedup

#### Gustafson's Law

Any sufficiently large problem can be parallelized effectively

$$Speedup(f,c) = fc + (1 - f)$$

```
f = the <u>parallel</u> portion of execution

(1-f) = the <u>sequential</u> portion of execution

c = number of cores used
```

*Key assumption*: *f* increases as problem size increases