Ingeniørhøjskolen Aarhus

DSB

E, IKT og EP

Miniprojekt Lektion 6

*Udarbejdet af:*Simon Thrane Hansen
Lars Hjerrild
Kasper Lauge Madsen

201500150 201409555 201409873

Underviser: Lars G. Johansen

16. marts 2016

Indhold

1	Ind	ledning	2
2	Ana	llysebeskrivelse	3
3 Analyse		ılyse	4
	3.1	Motor	4
	3.2	Klaver	5
	3.3	Symfoni	5
	3.4	Bass	5
	3.5	Vinglas	5
	3.6	Vindmølle	5
	3.7	Musikbox	5
	3.8	ECG-signal	5
4	4 Resultat og Diskussion		
5	Kor	ıklusion	24

1. Indledning

Denne opgave ophandler et design af et analysesystem i Matlab, der baserer sig på Diskret Fourier Transformation (DFT). Analysesystemet skal kunne vise størrelsen af DFT'en på de korrekte frekvensakser.

I opgaven er der arbejdet med følgende typer af signer:

- Vibrations- eller lydsignal fra bilmotor
- Vindmøllestøj
- Fysiologisk signal, eksempelvis EKG
- Vinglas, der knipses på
- Fire forskellige stykker musik

De overstående signaler er fundet på nettet og er blevet lagt i repository'et.

2. Analysebeskrivelse

3. Analyse

3.1 Motor

Figur 3.1: DFT Det originale signal fra en Motor

Figur 3.2: DFT Analyse af et signal fra en Motor

Figur 3.3: DFT Analyse af et signal fra en Motor med et hanningvindue

Gruppe: 5

Figur 3.4: Det udglattede DFT signal fra en Motor

- 3.2 Klaver
- 3.3 Symfoni
- 3.4 Bass
- 3.5 Vinglas
- 3.6 Vindmølle
- 3.7 Musikbox
- 3.8 ECG-signal

Figur 3.5: DFT Det originale signal fra et klaver

Figur 3.6: DFT Analyse af et signal fra et Klaver

Figur 3.7: DFT Analyse af et signal fra et klaver med et hanningvindue

Figur 3.8: Det udglattede DFT signal fra et Klaver

Figur 3.9: DFT Det originale signal fra en Symfoni

Figur 3.10: DFT Analyse af et signal fra en Symfoni

Figur 3.11: DFT Analyse af et signal fra en Symfoni med et hanningvindue

Figur 3.12: Det udglattede DFT signal fra en Symfoni

Figur 3.13: DFT Det originale signal fra en Bas

Figur 3.14: DFT Analyse af et signal fra en Bas

Figur 3.15: DFT Analyse af et signal fra en Bas med et hanningvindue

Figur 3.16: Det udglattede DFT signal fra en Bas

Figur 3.17: DFT Det originale signal fra et Vinglas

Figur 3.18: DFT Analyse af et signal fra et Vinglas

Figur 3.19: DFT Analyse af et signal fra et Vinglas med et hanningvindue

4. Resultat og Diskussion

En objektiv beskrivelse af resultater af projektet og diskussion af disse resultater.

5. Konklusion

Konklusion