SPATIALLY VARIABLE DECONVOLUTION FOR LIGHTSHEET MICROSCOPY

Bogdan Toader¹, Stéphane Chrétien², Andrew Thompson³

¹University of Cambridge, ²University of Lyon 2, ³National Physical Laboratory

LIGHTSHEET MICROSCOPY

Consider the problem of localising k non-negative point sources on the interval [0,1], namely finding their locations t_1, \ldots, t_k and magnitudes $a_1, \ldots, a_k \geq 0$ from m noisy samples y_1, \ldots, y_m which consist of the convolution of the input signal with a known kernel ϕ (e.g. Gaussian $\phi(t) = e^{-t^2/\sigma^2}$) and additive noise **w** bounded by δ .

INPUT SIGNAL

x is the discrete measure we want to reconstruct.

 t_i and a_i (i = 1, ..., k) are the locations and magnitudes of the point sources.

MEASURED SIGNAL

 y_i are the samples we use to reconstruct x.

$$y_j = \int_{[0,1]} \phi(t - s_j) x(dt) + w_j,$$

where s_j (j = 1, ..., m) are sampling locations and $\mathbf{w} = [w_1, \dots, w_m]^T$ with $\|\mathbf{w}\|_2 \le \delta$ is the noise.

MODEL

The measure x can be recovered exactly by solving the TV norm minimisation problem over non-negative measures z on [0,1]:

$$\min_{z \ge 0} ||z||_{TV} \quad \text{subject to} \quad y_j = \int_{[0,1]} \phi(t - s_j) x(\mathrm{d}t), \quad \forall j = 1, \dots, m, \tag{1}$$

or its dual:

$$\max_{\lambda \in \mathbb{R}^m} y^T \lambda \quad \text{subject to} \quad \sum_{j=1}^m \lambda_j \phi(t - s_j) \le 1, \quad \forall t \in [0, 1]. \tag{2}$$

Having the solution λ to the dual problem (2), the locations $\{t_i\}_{i=1}^k$ in the input signal are given by the global maximisers of the dual certificate:

$$q(t) = \sum_{j=1}^{m} \lambda_j \phi(t - s_j).$$

Results – Simulated Data

FITTING THE PSF

ALGORITHM

We solve

 $\min_{\lambda \in \mathbb{R}^m} f(\lambda)$

for the exact penalty f:

$$f(\lambda) = -y^T \lambda + \Pi \cdot \max \{ \sup_{s} \sum_{j=1}^m \lambda_j \phi(s - s_j) - 1, 0 \}$$

in the set $Q = \{\lambda \in \mathbb{R}^m \mid ||\lambda||_{\infty} \leq B\}$. As described in [1], at every iteration p:

1. Compute the piece-wise linear model:

$$\hat{f}_p(\lambda) = \max_{0 \le l \le p} \left[f(\lambda_l) + \langle g(\lambda_l), \lambda - \lambda_l \rangle \right],$$

where $g(\lambda_l)$ are some subgradients of f at λ_l .

- 2. Find the optimal value \hat{f}_{p}^{*} of the current model \hat{f}_{p} and the smallest value f_{p}^{*} of the objective f so far.
- 3. Calculate the next iterate λ_{p+1} as the projection of λ_p on the level set $\mathcal{L}_p(\alpha) = \{\lambda \in$ $Q \mid \hat{f}_p(\lambda) \leq \ell_p(\alpha)$ where $\ell_p(\alpha) = (1 - \alpha)\hat{f}_p^* + \alpha f_p^*$ for some $\alpha \in (0, 1)$.

Results – Real Data

• Exact measurements: level method finds the correct locations of the point sources with high accuracy – see the localisation error for two sources as the distance between them goes to zero in the bottom left figure.

• Noisy measurements: As the distance between two sources decreases, they are replaced with one source with higher intensity in the reconstructed signal.

Localisation error for two point sources as the distance Δ between them increases from 0.004 to 0.2 in the noise-free case (left) and noisy case for Gaussian noise with standard deviation 0.01, 0.02, 0.05, 0.1, 0.2 (right). The convolution kernel is Gaussian with $\sigma = 0.05$, intensities are 1 and m = 21 equispaced samples.

MARCHANTIA

Examples of k=25 sources in an image with 67×67 pixels (giving m=4489 measurements), Gaussian kernel with $\sigma = 0.05$ and level method parameters $\Pi = 100$ and B=100. Red crosses * are true sources and black circles • are estimated sources.

Gaussian noise with standard deviation 0.2.

REFERENCES

[1] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing Company, 2014.

ACKNOWLEDGMENTS

This poster is based on work supported by the EPSRC Centre For Doctoral Training in Industrially Focused Mathematical Modelling (EP/L015803/1) in collaboration with the National Physical Laboratory and by the Alan Turing Institute under the EPSRC grant EP/N510129/1. B.T is currently funded by Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grants Scheme, RG89305.