

Some observations:

- The weights $\mathit{w}_{1},...,\mathit{w}_{d}$ determine the slope of the decision boundary.
- w_0 determines the offset of the decision boundary (sometimes noted \emph{b}).
- Line 6 corresponds to:
 - Mistake on positive: add x to weight vector.
 - Mistake on negative: subtract x from weight vector.
 - Some other variants of the algorithm add or subtract ηx or 1.
- Convergence happen when the weights do not change anymore (difference between the last two weight vectors is 0).
- The w_i determine the contribution of x_i to the label.
- $-w_0$ is a quantity that $\sum_{j=1}^d w_j x_j$ needs to exceed for the perceptron to output 1.
- Can be used to represent many Boolean functions: AND, OR, NAND, NOR, NOT but not all of them (e.g., XOR).

Choice of the hyperplane

Lots of possible solutions!

Digression: Idea of SVM is to find the optimal solution.

From perceptron to NN

- Neural networks use the ability of the Perceptrons to represent elementary functions and combine them in a network of layers.
- However, a cascade of linear functions is still linear!
- And we want networks that represent highly non-linear functions.
- Also, perceptron used a step function, which is non-differentiable and not suitable for gradient descent in case data is not linearly separable.
- We want a function whose output is a differentiable function of the inputs. One possibility is to use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$g(z) \to 1$$
 when $z \to +\infty$
 $g(z) \to 0$ when $z \to -\infty$

Given *n* examples and *d* features.

For an example x_i (the ith line in the matrix of examples)

$$f(x_i) = \frac{1}{1 + e^{-\sum_{j=0}^{d} w_j x_{ij}}}$$

使用激活函数处理输入

较差.

Let's try to create a NN for the XOR function using elementary perceptrons.

x_1	x_2	x_1 XOR x_2	$(x_1 \text{ OR } x_2) \text{ AND } (x_1 \text{ NAND } x_2)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Let's put them together...

XOR as a combination of 3 basic perceptrons.

Backpropagation algorithm

- Note: Feedforward NN (as opposed to recurrent networks) have no connections that loop.
- Learn the weights for a multilayer network.
- Backpropagation stands for "backward propagation of errors".
- Given a network with a fixed architecture (neurons and interconnections).
- Use Gradient descent to minimize the squared error between the network output value o and the ground truth y.
- We suppose multiple output k.
- Challenge: Search in all possible weight values for all neurons in the network.

Feedforward-Backpropagation

Notations:

- x_{jj} the j^{th} input to neuron j.
- w_{jj} the weight associated with the i^{th} input to neuron j.
- $z_i = \sum w_{ij} x_{ji}$ weighted sum of inputs for neuron j.
- o_i output computed by neuron j.
- g is the sigmoid function.
- \bullet outputs. the set of neurons in the output layer.
- Succ(j): the set of neurons whose immediate inputs include the output of neuron j.

Backpropagation rules • We consider k outputs • For an example e defined by (x, y), the error on training example e, summed over all output neurons in the network is: $E_e(w) = \frac{1}{2} \sum (y_k - o_k)^2$ • Remember, gradient descent iterates through all the training examples one at a time, descending the gradient of the error w.r.t. this example. $\Delta w_{ij} = -\alpha \; \frac{\partial E_e(w)}{\partial w_{ij}}$ $\frac{\partial E_e}{\partial w_{ij}} = \frac{\partial E_e}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} = \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} x_{ij}$ $\Delta w_{ij} = -\alpha \; \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} \; x_{ij}$ We consider two cases in calculating $\frac{\partial E_e}{\partial z_i}$ (let's abandon the index • Case 1: Neuron j is an output neuron • Case 2: Neuron / is a hidden neuron $\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial o_j} \, \frac{\partial o_j}{\partial z_j}$ $\frac{\partial E}{\partial z_i} = -(y_j - o_j)o_j(1 - o_j)$ • Case 1: Neuron j is an output neuron $\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_k (y_k - o_k)^2$ $\Delta w_{ij} = \alpha (y_j - o_j) o_j (1 - o_j) x_{ij}$ We have: $o_j = g(z_j)$ $\frac{\partial E}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (y_j - o_j)^2$ We will note $\frac{\partial o_j}{\partial z_j} = \frac{\partial g(z_j)}{\partial z_j}$ $\delta_j = -\frac{\partial E}{\partial z_j}$ $\frac{\partial E}{\partial o_j} = \frac{1}{2} 2 (y_j - o_j) \frac{\partial (y_j - o_j)}{\partial o_j}$ $\frac{\partial o_j}{\partial z_i} = o_j(1 - o_j)$ $\Delta w_{ij} = \alpha \ \delta_j \ x_{ij}$ $\frac{\partial E}{\partial o_j} = -(y_j - o_j)$ • Case 2: Neuron j is a hidden neuron $\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} \frac{\partial E}{\partial z_k} \frac{\partial z_k}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \frac{\partial z_k}{\partial z_j}$ $\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \frac{\partial z_k}{\partial o_j} \frac{\partial o_j}{\partial z_j}$ $\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \ w_{jk} \ \frac{\partial o_j}{\partial z_j}$ $\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \ w_{jk} \ o_j \ (1-o_j)$ $\delta_j = -\frac{\partial E}{\partial z_j} = o_j (1 - o_j) \sum_{k \in succ\{j\}} \delta_k w_{jk}$ Backpropagation algorithm (BP) • Input: training examples (x,y), learning rate α (e.g., α = 0.1), n_n n_h and n_{σ} • Output: a neural network with one input layer, one hidden layer and one output layer with n_n n_h and n_{σ} number of neurons respectively and all its

- - 1. Create feedforward network $(n_{\hat{p}}, n_{\hat{p}}, n_{o})$ 2. Initialize all weights to a small random number (e.g., in [–0.2, 0.2]) 3. Repeat until convergence

For each training example (x, y)

- **I.** Feed forward: Propagate example x through the network and compute the output o_i from every neuron.
- Propagate backward: Propagate the errors backward. **Case 1** For each output neuron k, calculate its error $\delta_k = o_k (1 - o_k) (y_k - o_k)$

Case 2 For each hidden neuron h, calculate its error

III. Update each weight: $w_{ij} \leftarrow w_{ij} + \alpha \delta j x_{ij}$

Observations • Convergence: small changes in the weights • There are other activation functions. Hyperbolic tangent function, is practically better for NN as its outputs range from -1 to 1. $g(x) = sigmoid(x) = \frac{e^{kx}}{1 + e^{kx}}$ for k = 1, k = 2, etc. $g(x) = tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ (It is a rescaling of the logistic/sigmoid function!) Multi-class case etc. Object 1 Object 3 • Nowadays, networks with more than two layers, a.k.a. deep networks, have proven to be very effective in many domains. • Examples of deep networks: restricted Boltzman machines, convolutional NN, auto encoders, etc.