Aditya Shirode, Rhythm Shah, Shrenuj Gandhi

Definition. An inversion in a permutation π over $\{1, \ldots, n\}$ is a pair of integers i and j such that i < j, but $\pi(i) > \pi(j)$. More concretely: in an array of n elements, it's a pair i, j with i < j and A[i] > A[j].

- 6. [4 points] Purpose: understanding the concept of an inversion and applying it to detailed analysis of a sorting algorithm
 - (a) Prove that the number of key comparisons during insertion sort is ≥ the number of inversions in the original array. Under what condition is the number of key comparisons equal to the number of inversions?
 - (b) What is the worst-case number of key comparisons as a function of the number of inversions. Your answer should be in the form I(A) + f(n), where I(A) is the number of inversions in A and f(n) is a function of n. Prove your answer.

3 points for (a), 1 point for (b)

Answer:

(a) To prove that number of key comparisons during insertion sort is \geq the number of inversions in the original array, we consider the edge cases.

Case 1: When array is sorted (best case for insertion sort)

In this case, the key value (from j=2 to n) is compared to previous element during the sort. Hence there are (n-1) comparisons. However, since the array is sorted, the number of inversions is 0. This satisfies the condition that number of comparisons during sort \geq number of inversions in original array.

Case 2: When array is in decreasing order (worst case for insertion sort)

In this case, every new key value (from j=2 to n) is compared with every element in the subsorted array i.e on sorted array on the left. Hence there are $\frac{n(n-1)}{2}$ comparisons. In the original array, every element is greater than the element on its right. Hence the number of inversions are $\frac{n(n-1)}{2}$. This also satisfies the condition that number of comparisons during sort \geq number of inversions in original array.

Since the condition is satisfied by the corner cases, we can say that that number of comparisons during sort \geq number of inversions in original array.

As we have seen in $Case\ 2$, number of comparisons during sort = number of inversions in original array when the array is in decreasing order (worst case scenario for insertion sort).

(b) Let C(A) be the worst-case number of key comparisons would be defined in the form

$$C(A) = I(A) + f(n)$$

Our task is to determine f(n). We have seen in 6a (case 1 and case 2) that $C(A) \geq I(A)$. More precisely, when I(A) = 0, C(A) = n - 1. And when $I(A) = \frac{n(n-1)}{2}$, C(A) = I(A). From this observation we can say that for all the cases in between, C(A) - I(A) lies between 0 and n-1. In other words, this difference grows slowly than n (size of the array). Hence we can say that f(n) = O(n).

Hence the equation becomes

$$C(A) = I(A) + O(n)$$