Question 1

(a) (5 points) Show that $f(x) = x^2 + 4x$ is $O(x^2)$.

$$0 x^2 + 4x \le c |x^2|$$

$$0 x^2 + 4x \le x^2 + 4x^2 \forall x > 1$$

$$0 x^2 + 4x \le 5x^2 \forall x > 1$$

o
$$x_0 = 1 \text{ and } c = 5$$

Therefore, $f(x)=O(x^2)$.

(b) (5 points) Show that $f(x) = x^2$ is NOT $O(\sqrt{x})$.

If
$$x^2 \le c\sqrt{x}$$
;

$$x^{3/2} \le c$$
;

As $x \to \infty$, $x^{3/2} \to \infty$, but c is a constant.

Therefore, $f(x) = x^2$ is NOT $O(\sqrt{x})$.

Note:

$$x^2 \le x^2 \quad \forall x > 1$$

$$x^2 \le x^2 \quad \forall x > 1$$

$$x_0 = 1$$
 and $c = 1$

(c) (5 points) Show that f(x) = x is $\Omega(\log x)$.

$$x => c \log x$$

$$2^{x} => cx$$

$$x_0 = 1, c = 2$$

Therefore, f(x) = x is $\Omega(\log x)$.

(d) (10 points) Show that $f(x) = (2x^2 - 3)/((3x^4 + x^3 - 2x^2 - 1))$ is $\Theta(x^{-2})$.

$$f(x) = (2x^2 - 3)/((3x^4 + x^3 - 2x^2 - 1)$$

 $2x^2 - 3$ is nearly equal to $2x^2$;

 $3x^4 + x^3 - 2x^2 - 1$ is nearly equal to $3x^4$;

 $f(x)\approx 2/3x^2$;

Big-O:

$$f(x) \le cg(x), x > x_0$$

$$2/3x^2 \le c x^{-2}$$

Therefore, c = 1 and $x_0 = 1$, $O(x^{-2})$;

Big-Ω:

$$f(x) => cg(x), x > x_0$$

$$2/3x^2 => c x^{-2}$$

Therefore, c = 1/3 and x_0 = 1, $\Omega(x^{-2})$;

Thus, that $f(x) = (2x^2 - 3)/((3x^4 + x^3 - 2x^2 - 1))$ is $\Theta(x^{-2})$.

Question 2 (15 points). Please rank the following functions based on their $O(\cdot)$ complexity of running time. The function that has the least complexity should be ranked 1. Please explain your answer to get full credit.

$$f_1(x) = x \log_2 x$$

$$f_2(x) = 3^x$$

$$f_3(x) = \sqrt{x}$$

$$f_4(x) = x!$$

$$f_5(x) = 2^x$$

Rank:

$$f_3(x) \rightarrow f_1(x) \rightarrow f_2(x) \rightarrow f_4(x)$$

Explain my answer(Big-O):

$$f_3(x) = \sqrt{x} <= c\sqrt{x} \quad \forall x > 1 \Rightarrow c = 2; x_0 = 1$$

Big-O Complexity is $O(\sqrt{x})$, so it is slower than x.

$$f_1(x) = x \log_2 x \le cx^2 \ \forall x > 1 \Rightarrow c = 1; x_0 = 1$$

Big-O Complexity is $O(xlog_2x)$, so it is faster than x.

 $f_5(x)$ and $f_2(x)$ belong to n^x type.

$$f_5(x) = 2^x = c x^2 \forall x > 4 \Rightarrow c = 1; x_0 = 4$$

Therefore, Big- Ω for 2^x is x^2 .

Big-O Complexity is $O(n^x)$, so 3^x is faster than 2^x

$$f_4(x) = x! => c3^x \forall x > 4 \Rightarrow c = 1; x_0 = 7$$

Therefore, Big- Ω for x! is 3^x .

And then,

Big-O

$$f_4(x) = x! \le cx! \ \forall x > 1 \Rightarrow c = 2; x_0 = 1$$

Result of Rank:

$$f_3(x) \rightarrow f_1(x) \rightarrow f_5(x) \rightarrow f_2(x) \rightarrow f_4(x)$$