Chapter 1 Introduction to Groups

Contents

1	Basic Axioms and Examples	2
2	Dihedral Groups	3
3	Symmetric Groups	4

1 Basic Axioms and Examples

Definition. (Binary Operation)

- 1. (binary operation) \star on a set G is a function \star : $G \to G$. write $a \star b$ instead of $\star(a,b)$
- 2. (associative \star) A binary operation on G is associative if for all $a, b, c \in G$ $a \star (b \star c) = (a \star b) \star c$
- 3. (commutative \star) A binary operation on G is commutative if for all $a, b \in G$, $a \star b = b \star a$
- 4. (closed under \star) \star is a binary operation on G and $H \subset H$, if $\star|_H$ is a binary operation on H, i.e. for all $a, b \in H$, $a \star b \in H$, then H is closed under \star . Associativity/Commutativity of \star is inherited on H
- (examples)
 - 1. + on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ is a commutative binary operation
 - 2. \times on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ is a commutative binary operation
 - 3. is not commutative on \mathbb{Z} $(a-b \neq b-a \ usually)$
 - 4. is not commutative on \mathbb{Z}^+ $(1, 2 \in \mathbb{Z}^+, but \ 1 2 = -1 \notin \mathbb{Z}^+)$

Definition. (Group)

- 1. (group) A group is an ordered pair (G,\star) where G is a set and \star is a binary operation on G satisfying
 - (a) (associative) $\forall a, b, c \in G$, $(a \star b) \star c = a \star (b \star c)$
 - (b) (identity) $\exists e \in G \ \forall a \in G \ a \star e = e \star a = a$ (e is an identity of G, alternatively denoted by 1)
 - (c) (inverse) $\forall a \in G \ \exists \ a^{-1} \in G, \ a \star a^{-1} = a^{-1} \star a = e \ (a^{-1} \ is \ an \ inverse \ of \ a)$
- 2. (abelian group) A group if abelian/commutative if $a \star b = b \star a$ for all $a, b \in G$
- 3. (finite group) G is a finite group if G is a finite set
- 4. (direct product) If (A, \star) and (B, \circ) are groups, a new group $A \times B$ called direct product are defined as

$$A \times B = \{(a, b) \mid a \in A \ b \in B\}$$

with binary operation defined component-wise

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \circ b_2)$$

- (examples)
 - $-\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups under + $(e = 0, a^{-1} = -a, associativity by axioms of <math>+)$
 - $-\mathbb{Q}-\{0\},\mathbb{R}-\{0\},\mathbb{C}-\{0\},\mathbb{Q}^+,\mathbb{R}^+$ are gorups under \times $(e=1, a^{-1}=1/a, associativity by <math>\times))$
 - $-(\mathbb{Z}-\{0\},\times)$ is not a group $(2^{-1}=1/2 \notin \mathbb{Z}-\{0\})$
 - -(V,+) is an abelian group, where V is a vector space (commutativity by axioms of a vector space)
 - $-(\mathbb{Z}/n\mathbb{Z},+)$ is an abelian group $(e=\overline{1}, a^{-1}=\overline{-a})$
 - $-((\mathbb{Z}/n\mathbb{Z})^{\times},\times)$ is abelian group (e = $\overline{1}$, a^{-1} exists by definition of $(\mathbb{Z}/n\mathbb{Z})^{\times}$)
- (theorem) direct product of two groups is a group
- (proposition)
 - 1. (identity unique) identity of G is unique
 - 2. (inverse unique) inverse a^{-1} of any a in G is unique
 - 3. $(a^{-1})^{-1} = a$ for all a in G
 - 4. $(a \star b)^{-1} = b^{-1} \star a^{-1}$
 - 5. (generalized associativity law) value of $a_1 \star a_2 \star \cdots \star a_n$ independent of how its bracketed
- (notation)

- (\times) denote $x^n = xx \cdots x$ by x^n and $x^{-n} = x^{-1}x^{-1} \cdots x^{-1}$ and $x^0 = 1$ the identity
- (+) denote $na = a + a + \cdots + a$ and $-na = -a a \cdots a$ and 0a = 0 the identity
- (proposition) Let $a, b, u, v \in G$
 - 1. (left cancellation law holds) if au = av, then u = v
 - 2. (right cancellation law holds) if ub = vb, then u = v

Definition. (order for an element $x \in G$) is the smallest positive integer $n \in \mathbb{Z}^+$ such that $x^n = 1$, denoted by |x|. If no positive power of x is the identity, the order of x is defined to be infinity

- (examples)
 - -if |x| = 1, then x = 1 the identity
 - In $(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, +)$, every nonzero elements has infinite order
 - $In(\mathbb{R} \{0\}, \mathbb{Q} \{0\}, \times), |-1| = 2 \text{ and all other nonidentity elements have infinite order}$
 - In $\mathbb{Z}/9\mathbb{Z}$, $|\overline{5}| = 9$ since 9 is the smallest integer multiple of 5 that is congruent to $0 \pmod{9}$
 - $-\operatorname{In}(\mathbb{Z}/7\mathbb{Z})^{\times}, |\overline{3}| = 6 \text{ since } 3^6 \text{ is smallest positive power of } 3 \text{ that is congruent to } 1 \pmod{7}$

Definition. (multiplication/group table) Let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group where $g_1 = 1$. The multiplication or group table of G is a $n \times n$ matrix A where $A_{ij} = g_i g_j$.

• (fact) For finite groups, the group table contains all information about the group

2 Dihedral Groups

Definition. (Dihedral Groups)

- 1. (symmetry of n-gon) is any rigid motion of the n-gon. We can describe symmetry by choosing a labelling of vertices $\{1, 2, \dots, n\}$ and let the corresponding permutation σ over the set as symmetry s
- 2. (order of D_{2n}) is 2n. (lower bound: vertex 1 can be sent to any vertex i, and vertex 2 can be sent to either i-1 or i+1. Knowing position of 1, 2 determines position of all other vertices; upper bound: by reasoning that any element of D_{2n} can be written as $r^i s^j$ where $0 \le i \le n-1$ and $0 \le j \le 1$)
- 3. (dihedral group D_{2n}) Fix a regular n-gon at origin and label vertices through from 1 to n in a clockwise manner. Let r be rotation clockwise about the origin through $2\pi/n$ radian and let s be reflection about line of symmetry through vertex 1 and the origin.

$$D_{2n} = \left\{ r, s \mid r^n = s^2 = 1 , \ sr^k = r^{-k}s \right\} = \left\{ 1, r, r^2, \cdots, r^{n-1}, s, rs, r^2s, \cdots, r^{n-1}s \right\}$$

- (a) |r| = n and |s| = 2
- (b) $s \neq r^i$ for any i and $sr^i \neq sr^j$ for all $i \neq j$
- (c) $r^k s = sr^{-k}$ for all $0 \le i \le n$
- 4. (interpreting presentation for D_{2n}) $r^n = 1$ means any power of r can be reduced so that the power lie between 0 and n-1. Similarly, any power of s can be reduced so that the power is either 0 or 1. $sr^k = r^{-k}s$ means every element in the group can be written as r^is^j for some i, j

Definition. (generators and relations)

- 1. (generators of G) is the set $S \subset G$ where every element of G can be written as a (finite) product of elements of S and their inverses. Denote $G = \langle S \rangle$ and say G is generated by S and S generates G
- 2. (relations in G) any equation in a general group G that the generator satisfies
- 3. (presentation of G) If $G = \langle S \rangle$ and R_1, R_2, \dots, R_m are relations in G such that any relation among S can be deduced from these, the generators and relations are called presentations

$$G = \langle S \mid R_1, R_2, \cdots, R_m \rangle$$

- $(example) \mathbb{Z} = \langle 1 \rangle$
- (example) $D_{2n} = \langle r, s \rangle$

3 Symmetric Groups

Definition. (Symmetric Group)

- 1. (symmetric group S_{Ω} on set Ω) Let Ω be nonempty set, $S_{\Omega} = \{\sigma : \Omega \to \Omega \mid \sigma \text{ is a bijection}\}$, the set of all permutations of Ω . (S_{ω}, \circ) is the symmetric group on Ω .
- 2. (symmetric group of degree n) If $\Omega = \{1, 2, \dots, n\}$, S_n is the symmetric group of degree n
- 3. ($|S_n| = n!$) (by counting number of possible permutations using the constraint that σ is injective)
- 4. (cycle) a string of integers representing elements of S_n , which cyclically permutes them. $(a_1 \ a_2 \ \cdots \ a_m)$ is the permutation sending a_i to a_{i+1} . $1 \le i \le m-1$ and sends a_m to a_1
- 5. (length of cycle) is the number of integers which appear in it
- 6. (t-cycle) is a cycle with length t
- 7. (disjoint cycle) A cycle is disjoint if they have no numbers in common
- 8. (k cycles) Any $\sigma \in S_n$, we can represent σ with k cycles of the form

$$(a_1 \ a_2 \ \cdots \ a_{m_1})(a_{m_1+1} \ a_{m_1+2} \ \cdots \ a_{m_2}) \cdots (a_{m_{k-1}+1} \ a_{m_{k-1}+2} \ \cdots \ a_{m_k})$$

- 9. (cycle-decomposition of σ) is the product of k-cycles that representing σ
- (convention) 1-cycle not written during cycle-decomposition. This convention ensures that cycle decomposition of $\tau \in S_n$ is exactly the same as cycle decomposition of permutation in S_m where m > n, which acts as τ on $\{1, 2, \dots, n\}$ and fixes elements in $\{n + 1, n + 2, \dots, m\}$
- (computing inverse) Let $\sigma \in S_n$, cycle decomposition of σ^{-1} can be obtained by writing numbers in each cycle of the cycle decomposition of σ in reverse order
- (computing product) by following elements in successive permutations
- (proposition) S_n is non-abelian for $n \ge 3$ (counterexample: $(12) \circ (13) = (1 \ 3 \ 2)$ but $(13) \circ (12) = (1 \ 2 \ 3)$)

•