EMSE 6765: DATA ANALYSIS

For Engineers and Scientists

Session 12: Comparing Imbedded Models, Forecasting

Version: 4/05/2021

Lecture Notes by: J. René van Dorp¹

www.seas.gwu.edu/~dorpjr

Department of Engineering Management and Systems Egineering, School of Engineering and Applied Science, The George Washington University, 800 22nd Street, N.W., Suite 2800, Washington D.C. 20052. E-mail: dorpjr@gwu.edu.

Regression Analysis: Log(Price) versus Elevation, Sewer, Date, Flood

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	4	2.2320	0.55800	21.49	0.000
Error	26	0.6753	0.02597		
Total	30	2.9072			

Model Summary

S	R-sq	R-sq(adj)
0.161156	76.77%	73.20%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value
Constant	1.4891	0.0915	16.28	0.000
Elevation	0.01411	0.00816	1.73	0.096
Sewer	-0.000044	0.000014	-3.26	0.003
Date	0.00741	0.00122	6.05	0.000
Flood	-0.3183	0.0887	-3.59	0.001

Regression Equation

Log(Price) = 1.4891 + 0.01411 Elevation - 0.000044 Sewer + 0.00741 Date - 0.3183 Flood

• Prediction of Log(Price) using the smaller model:

$$Y = \boldsymbol{x_0^T} \widehat{\boldsymbol{b}} + \epsilon, E[\epsilon] = 0, \epsilon \sim \boldsymbol{N(0, \sigma)} \Leftrightarrow E[Y|\boldsymbol{x_0}] = \boldsymbol{x_0^T} \widehat{\boldsymbol{b}}$$

 $\widehat{y} = x_0^T \widehat{b} \approx 1.48907$ is both a prediction for r.v. Y and mean $E[Y|x_0]$ (1.301, 1.677) is conf. interval for true mean $E[Y|x_0]$, no prob. interpretation (1.108, 1.870) is pred./cred. interval for r.v. Y, with prob. interpretation

Observe the Median and the Mean are of the same value! Why?

$$Y = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}} + \epsilon, \, E[\epsilon] = 0, \epsilon \sim \boldsymbol{N(0, \sigma)} \Leftrightarrow E[Y|\boldsymbol{x_0}] = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}}$$

Suggestion: Capture interaction effect using an interaction term

$$log(PRICE) = b_0 + b_1 ELEVATION + b_2 SEWER + b_3 DATE + b_4 FLOOD + b_5 COUNTY + b_6 (COUNTY \times ELEVATION)$$

When COUNTY = 0 the above equation reduces to

$$log(PRICE) = \mathbf{b_0} + \mathbf{b_1}ELEVATION + b_2SEWER + b_3DATE + b_4FLOOD.$$

When COUNTY = 1 the above equation reduces to

$$log(PRICE) = (b_0 + b_5) + (b_1 + b_6)ELEVATION + b_2SEWER + b_3DATE + b_4FLOOD$$

Thus, the interaction effect here allows for different intercepts and slopes by counties.

Model Summary

S R-sq R-sq(adj) R-sq(pred)
0.146820 82.20% 77.76% 69.05%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1.424	0.127	11.19	0.000	
Elevation	0.0483	0.0286	1.69	0.104	21.57
Sewer	-0.000048	0.000012	-3.86	0.001	1.32
Date	0.00548	0.00135	4.06	0.000	1.52
Flood	-0.394	0.102	-3.88	0.001	2.00
County	-0.113	0.110	-1.03	0.312	4.11
County*Elevation	-0.0307	0.0297	-1.03	0.312	28.12

Regression Equation

Log(Price) = 1.424 + 0.0483 Elevation - 0.000048 Sewer + 0.00548 Date - 0.394 Flood - 0.113 County - 0.0307 County*Elevation

Durbin-Watson Statistic

Durbin-Watson Statistic = 2.11482

$$R_{adj}^2 = 77.8\% \uparrow (Previously R_{adj}^2 = 73.2\%)$$
 , DW -Statistic ≈ 2.11

Normality and independence assumption of residuals seem reasonable. (although we can observe one outlier)

$$e_2^* \approx 1.72, \text{DFIT}_2 \approx 1.02 > 2\sqrt{7/31} \approx 0.95 \Rightarrow \text{Should be checked.}$$

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.146820 82.20% 77.76% 69.05%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1.424	0.127	11.19	0.000	
Elevation	0.0483	0.0286	1.69	0.104	21.57
Sewer	-0.000048	0.000012	-3.86	0.001	1.32
Date	0.00548	0.00135	4.06	0.000	1.52
Flood	-0.394	0.102	-3.88	0.001	2.00
County	-0.113	0.110	-1.03	0.312	4.11
County*Elevation	-0.0307	0.0297	-1.03	0.312	28.12

Regression Equation

Log(Price) = 1.424 + 0.0483 Elevation - 0.000048 Sewer + 0.00548 Date - 0.394 Flood - 0.113 County - 0.0307 County*Elevation

Durbin-Watson Statistic

Durbin-Watson Statistic = 2.11482

Is the improvement in the $\underline{R^2}$ -values from 76.7% to 82.2% (a jump of about 5.4%) statistically significant?

• When the simpler model description is **completely contained within** the description of the larger model, we can perform an *F*-hypothesis test:

Explanato	ory Variable	s in the fu	ıll model				
County	Elevation	Sewer	Date	Flood	County*El	evation	
Explanato	ory Variable	s in the re	estricted/s	mall mode	el		
	Elevation	Sewer	Date	Flood			
Conclusio	n: All varial	oles of sma	all/restricted	l model are	e variables i	n the full m	odel
and "the ir	ncrease in R	R ² test" an b	oe perfrome	ed			

 $H_0: ext{No model improvement}$, $H_1: ext{Model Improvement}$

 $R_{\mathbf{f}}^2: R^2$ -value of the full model, $R_{\mathbf{r}}^2: R^2$ -value of restricted model

 df_f : Degees of Freedom of Residual/Error Term in full model

 df_r : Degees of Freedom of Residual/Error Term in restricted model

$$F = \frac{(R_{\mathbf{f}}^2 - R_{\mathbf{r}}^2)/(df_{\mathbf{r}} - df_{\mathbf{f}})}{(1 - R_{\mathbf{f}}^2)/df_{\mathbf{f}}} \sim F_{(df_{\mathbf{r}} - df_{\mathbf{f}}), df_{\mathbf{f}}}$$

Full Model	
R Square	82.20%
Degrees of Freedom	24
Small Model	
R Square	76.77%
Degrees of Freedom	26

	Value	Df
Numerator	0.0272	2
Denominator	0.0074	24
F-Statistic	3.663	
α	5%	
Critical Value	3.403	
Conclusion	Model Improvement	
p-value	4.09%	
Conclusion	Model Improvement	

• $R_f^2=82.2\%, df_f=24, R_r^2=76.7\%, df_r=26\Rightarrow F$ -statistic $\approx 3.663.$ $3.663>F_{2,24,0.95}\approx 3.403\Rightarrow F$ -statistic observation in 5% tail of $F\sim F_{2,24}$

Conclusion: Reject H_0 in favor of H_1 and an improvement in the model is detected in terms of the increased \mathbb{R}^2 -value.

- This test requires acceptance of **normality assumption of residuals** for both models!
- This test is usefull when small increases in \mathbb{R}^2 are observed, but it requires that the smaller model to be nested in the larger model.

However, the improvement in \mathbb{R}^2 and reduction in the Standard Error (SE) here comes at a cost! Note the increase in VIF Factors of the coefficients:

S	R-sq	R-sq(adj)	R-sq(pred)			
0.146820 8	2.20%	77.76%	69.05%	6			
Coefficient	ts						
Term		Coef	SE Coef	T-Value	P-Value	VIF	
Constant		1.424	0.127	11.19	0.000		
Elevation		0.0483	0.0286	1.69	0.104	21.57	
Sewer		-0.000048	0.000012	-3.86	0.001	1.32	
Date		0.00548	0.00135	4.06	0.000	1.52	
Flood		-0.394	0.102	-3.88	0.001	2.00	
County		-0.113	0.110	-1.03	0.312	4.11	
County*Eleva	ation	-0.0307	0.0297	-1.03	0.312	28.12	
Regressior	n Equa	ation					
Log(Price) =			Elevation - - 0.0307 Co			.00548 [Date - 0.394 Floc
		Statistic					

Conclusion: While the standard error in the residual error term has reduced from 0.1611 to 0.1468, the uncertainty in standard errors of the coefficient estimators have increased.

• Both the standard errors in the coefficients and the residuals contribute to the standard error of the prediction, i.e. its uncertainty. For the 247 acres property at hand we have:

Prediction interval width is now: $1.68518 - 0.936284 \approx 0.748896$

• Prediction of Log(Price) using the smaller model:

Prediction interval width was: $1.86999 - 1.10816 \approx 0.76183$

Conclusion: Prediction interval width of the smaller model is larger than the prediction interval width of the full model despite the large VIF factors.

Thus continue to predict\forecast with the full\larger model!

Conclusion: Prediction interval width of the smaller model is larger than the prediction interval width of the full model despite the large VIF factors.

Thus continue to predict\forecast with the full\larger model!

Observe the Median and the Mean are of the same value! Why?

$$Y = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}} + \epsilon, \, E[\epsilon] = 0, \epsilon \sim \boldsymbol{N(0, \sigma)} \Leftrightarrow E[Y|\boldsymbol{x_0}] = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}}$$

Prediction

Fit	SE Fit	95% CI	95% PI
1.31073	0.106580	(1.09076, 1.53070)	(0.936284, 1.68518)

$$Pr(Log(Price) \le 1.31073|x_0) \approx 50\% \Leftrightarrow Pr(10^{Log(Price)} \le 10^{1.31073}|x_0) \approx 50\%$$

 $\Leftrightarrow Pr(Price \le \$20452|x_0) \approx 50\%$ (Recall $Price$ was measured in \$000's)

Hence: \$20452 is the median estimate for the Price per Acre

Thus we have here that: Med[Log(Price)] = Log(Med[Price])

95% Confidence Interval	
LB E[LOG(PRICE)]	1.09076
UB E[LOG(PRICE)]	1.53070
Approximate 95% Confidence	Interval
LB E[PRICE]	\$12,324.22
UB E[PRICE]	\$33,939.08

95% Prediction Int	erval (or Cre	dibility Interval)	
LB LOG(PRICE)	0.936284		
UB LOG(PRICE)	1.685175		
95% Prediction Int	erval (or Cre	dibility Interval)	
PRICE	\$8,635.44		
PRICE	\$48,436.78		

These are approximate Confidence Limits since we know: $E[Log(Price)] \neq Log(E[Price])$

How do we get? $\widehat{E}[Price|\boldsymbol{x_0}] \approx \$22,316$

Prediction

$$Y = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}} + \epsilon, \, E[\epsilon] = 0, \epsilon \sim N(0, SE) \Rightarrow E[Y|\boldsymbol{x_0}] = \boldsymbol{x_0^T} \, \widehat{\boldsymbol{b}}$$

$$V[Y|\boldsymbol{x_0}] = V[\boldsymbol{x_0^T} \boldsymbol{b}] + V[\epsilon] \Rightarrow V[Y] = (SE_{Fit})^2 + (SE_{Residuals})^2$$

$$= (0.106580)^2 + (0.14682)^2 = (0.181426)^2$$

Summarizing:

$$\begin{cases} E[Log(Price)|\boldsymbol{x_0}] = 1.31073 = \mu, \\ V[Log(Price)|\boldsymbol{x_0}] = (\mathbf{0.181426})^2 = \sigma^2 \end{cases} \Rightarrow E[Price] = 10^{\mu + Ln(10) \times \frac{\sigma^2}{2}}$$

$$E[Price] \approx 10^{1.311 + 2.302 \times \frac{(0.181)^2}{2}} \approx 22.316 \,(\times \$1000 \approx \$22, 316).$$

Note the following formula in the book is wrong: $E[Price] = 10^{\mu + \frac{\sigma^2}{2}}$

Conclusion: Prediction interval width of the smaller model is larger than the prediction interval width of the full model despite the large VIF factors.

Thus predict\forecast with the full\larger model!

Prediction Fit SE Fit 95% CI 95% PI 1.31073 0.106580 (1.09076, 1.53070) (0.936284, 1.68518)

- The variance of the term $x_0^T b$, where b is the estimator vector of the coefficients, is estimated by $\sqrt{SE^2 \times x_0^T (X^T X)^{-1} x_0}$ and is referred to as the sampling error. SE is the standard error of the residuals.
- A 100(1-lpha)% confidence interval for the mean $E[y|x_0]$ is :

$$\boldsymbol{x_0^T \widehat{b}} \pm t_{n-p-1,1-lpha/2} \times \boldsymbol{SE} \times \sqrt{\left[\boldsymbol{x_0^T (X^T X)^{-1} x_0}\right]}$$

$$\boldsymbol{x_0^T \, \widehat{b}} \pm t_{n-p-1,1-lpha/2} imes ext{(0.106580)} = ext{(1.09076, 1.53070)}$$

Standard Error: sample standard deviation of the residuals.

- $m{x_0}$: values of the explanatory variables for which you would to forcast the dependent variable y.
- \widehat{b} : The estimates of the regression coefficients.

Prediction Fit SE Fit 95% CI 95% PI 1.31073 0.106580 (1.09076, 1.53070) (0.936284, 1.68518)

• The variance of the residuals SE^2 is referred to as the model error. The variance of the prediction $Y = \mathbf{x_0^T} \mathbf{b} + \epsilon$ is the sum of the sampling error and the model error (there is independence between the two terms).

$$Var(Y|x_0) = (Standard Error)^2 \times [x_0^T (X^T X)^{-1} x_0] + (Standard Error)^2$$

= $(0.106580)^2 + (0.14682)^2 = (0.181426)^2$

• A 100(1-lpha)% prediction interval for the random variable $(y|x_0)$ is :

$$egin{aligned} m{x_0^T \widehat{b}} &\pm t_{n-p-1,1-lpha/2} imes \sqrt{m{Var(Y|x_0)}} = m{(0.936284,1.68518)} \ m{x_0^T \widehat{b}} &\pm t_{n-p-1,1-lpha/2} imes m{(0.181426)} = m{(0.936284,1.68518)} \end{aligned}$$

 x_0 : values of the explanatory variables to forcast the dependent variable y.

 $\widehat{\boldsymbol{b}}$: The estimates of the regression coefficient.

- Summarizing, the value $\hat{y} = x_0^T \hat{b}$ is both an estimate of the random variable $(Y|x_0)$, but also of its expected value $E[Y|x_0]$.
- When describing the uncertainty in the estimate for $E[Y|\boldsymbol{x_0}]$, one only has to account for the uncertainty in the regression coefficients, leading to a confidence interval for $E[Y|\boldsymbol{x_0}]$.
- When describing the uncertainty in the random variable $(Y|x_0)$ one has to account for both the uncertainty in the regression coefficients and in the residuals, leading to a prediction/credibility interval for $(y|x_0)$.
- The vector \boldsymbol{b} is an **estimator -vector** for the regression coefficients, where $\boldsymbol{b} \sim \boldsymbol{M}\boldsymbol{V}\boldsymbol{N}(\ \hat{\boldsymbol{b}}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1})$. For its variance-covariance matrix estimate we have $\widehat{\Sigma}(\boldsymbol{b}) = SE^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$, where SE is the residual standard error.
- From the above it follows that:

$$Va\widehat{r}(Y|\mathbf{x_0}]) = SE^2 \times \left[\mathbf{x_0^T} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x_0} + 1\right] = (\mathbf{0.181426})^2$$

• It is known for the natural logarithm $Ln(\cdot)$ that:

$$X \sim LN(\mu, \sigma) \Leftrightarrow Ln(X) \sim N(\mu_x, \sigma_x) \Rightarrow E[X|\mu_x, \sigma_x] = e^{\mu_x + \sigma_x^2/2}$$
 (1)

• It is known for the logarithm $Log(\cdot)$ with base 10 that:

$$Log(Y) = \frac{Ln(Y)}{Ln(10)} \Leftrightarrow Ln(Y) = Ln(10) \times Log(Y)$$
 (2)

• Hence from (2), Ln(Y) is linear transformation of Log(Y):

$$Log(Y) \sim N(\mu, \sigma) \Rightarrow Ln(Y) \sim N\{Ln(10) \times \mu, Ln(10) \times \sigma\}$$
 (3)

• With the expected value expression in (1) and (3) it now follows that:

$$\begin{cases} \mu_{y} = Ln(10) \times \mu \\ \sigma_{y} = Ln(10) \times \sigma \end{cases} \Rightarrow \begin{cases} E[Y|\mu, \sigma] = e^{\mu_{y} + \sigma_{y}^{2}/2} = e^{Ln(10) \times \mu + \{Ln(10) \times \sigma\}^{2}/2} \\ = \left[e^{Ln(10)}\right]^{\mu + Ln(10) \times \sigma^{2}/2} \\ = 10^{\mu + Ln(10) \times \sigma^{2}/2} \end{cases}$$
(4)