Principios Físicos de la Informática

Primer examen parcial. Grupos 84 y 85

12/03/2019

Ejercicio 1

En el circuito de la figura, donde R_1 = 7Ω , R_2 = 3Ω , R_3 = 4Ω , R_4 = R_5 = 9Ω , R_6 = R_7 = 7Ω , se pide:

- a) Calcular la resistencia equivalente entre los puntos Ay B. (2 puntos)
- b) Si se aplica un voltaje de 100 V entre A y B, calcular la caída de potencial entre los puntos A y C y entre los puntos C y E. (1 puntos)
- c) Si se introduce una resistencia de R = $10~\Omega$ en el tramo EB, calcular la diferencia de potencial que deberíamos aplicar entre los puntos C y D para que la potencia disipada entre esos puntos sea de 1250 W. (2 puntos)

Ejercicio 2

Dado el siguiente circuito, en el que el valor de las diferentes resistencias está medido en ohmios, obtener:

- a) Equivalente Thevenin entre A y B, y dibújalo. (1.5 puntos)
- b) Equivalente Norton entre A y B, y dibújalo. (1.5 puntos)
- c) Si ahora añadimos una resistencia $R_L = 6 \Omega$ entre los puntos A y B, ¿qué intensidad de corriente la atravesará? (1 puntos)
- d) ¿Cuál será en esas condiciones la caída de potencial en la resistencia R₁? (1 puntos)

SOLUCIONES

Ejercicio 1

Ejercicio 2

uc3m Universidad Carlos III de Madrid

$$C) \qquad \boxed{I = \frac{V_{Th}}{n_{Th} + n_{I}} = \frac{zr}{zc} = 0.96 A}$$