Recalling a Witness

Foundations and Applications of Monotonic State

Danel Ahman @ INRIA Paris

Cătălin Hriţcu and Kenji Maillard @ INRIA Paris Cédric Fournet, Aseem Rastogi, and Nikhil Swamy @ MSR

> POPL 2018 January 12, 2018

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

• Consider a program operating on **set-valued state**

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda\, 	exttt{s} \,.\, 	exttt{v} \in 	exttt{s}\} complex_procedure() \{\lambda\, 	exttt{s} \,.\, 	exttt{v} \in 	exttt{s}\}
```

- likely that we have to carry $\lambda \, \mathbf{s} \, . \, \mathbf{v} \in \mathbf{s}$ through the proof of c_p does not guarantee that $\lambda \, \mathbf{s} \, . \, \mathbf{v} \in \mathbf{s}$ holds at every point in c_p
 - sensitive to proving that c_p maintains $\lambda s \cdot w \in s$ for some other v

 However, if c_p does not remove, then λ s . v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{ \textcolor{red}{\lambda \, \mathtt{s} \, . \, \mathtt{v} \in \mathtt{s}} \} \,\, \texttt{complex\_procedure} \big( \big) \,\, \{ \textcolor{red}{\lambda \, \mathtt{s} \, . \, \mathtt{v} \in \mathtt{s}} \}
```

- likely that we have to carry $\lambda s. v \in s$ through the proof of c_p
 does not guarantee that $\lambda s. v \in s$ holds at every point in c_p
 sensitive to proving that c_p maintains $\lambda s. w \in s$ for some other w
- However, if c_p does not remove, then λ s · v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s. v \in s$ through the proof of c_p
 - does not guarantee that $\lambda s. v \in s$ holds at every point in c_p
 - sensitive to proving that c_p maintains $\lambda s \cdot w \in s$ for some other w
- However, if c_p does not remove, then λ s · v ∈ s is stable, and we would like the program logic to give us v ∈ get() "for free"

• Consider a program operating on **set-valued state**

```
insert v; complex_procedure(); assert (v \in get())
```

To prove the assertion (say, in a Floyd-Hoare style logic),
 we could prove that the code maintains a stateful invariant

```
\{\lambda s. v \in s\} complex_procedure() \{\lambda s. v \in s\}
```

- likely that we have to carry $\lambda s.v \in s$ through the proof of c_p
 - does not guarantee that $\lambda s. v \in s$ holds at every point in c_p
 - sensitive to proving that c_p maintains $\lambda s \cdot w \in s$ for some other w
- However, if c_p does not remove, then λs.v∈s is stable, and we would like the program logic to give us v∈get() "for free"

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity,
 even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a proof of existence of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation stores an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from global state + general monotonicity

- Programming also relies on monotonicity, even if you don't realise it!
- Consider ML-style typed references r:ref a
 - r is a **proof of existence** of an a-typed value in the heap
- Correctness relies on monotonicity!
 - 1) Allocation **stores** an a-typed value in the heap
 - 2) Writes don't change type and there is no deallocation
 - 3) So, given a ref. r, it is guaranteed to point to an a-typed value
- Baked into the memory models of most languages
- We derive them from **global state** + **general monotonicity**

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- More in the paper
 - temporarily violating monotonicity via snapshots
 - two substantial case studies
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- More in the paper
 - temporarily violating monotonicity via snapshots
 - two substantial case studies
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Monotonicity is really useful!

- In this talk
 - our motivating example and monotonic counters
 - typed references (ref t) and untyped references (uref)
 - more flexibility with monotonic references (mref t rel)
- More in the paper
 - temporarily violating monotonicity via snapshots
 - two substantial case studies
 - a secure file-transfer application
 - Ariadne state continuity protocol [Strackx, Piessens 2016]
 - pointers to other works in F* relying on monotonicity for
 - sophisticated region-based memory models [fstar-lang.org]
 - crypto and TLS verification [project-everest.github.io]

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

- We focus on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\;(\mathtt{e},\mathtt{s})\rightsquigarrow^*(\mathtt{e}',\mathtt{s}')\implies\mathtt{rel}\,\mathtt{s}\,\mathtt{s}'$$

a stateful predicate p is stable (wrt. rel) when

$$orall$$
 s s $'$. p s \wedge rel s s $'$ \Longrightarrow p s $'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of p s in some state s
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - a stateful program e is **monotonic** (wrt. rel) when
 - a stateful predicate p is **stable** (wrt. rel) when

 ∀ss' ps ∧ relss' → ps
- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of n s in some state s
 - a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall\,\mathtt{s}\,\mathtt{e}'\,\mathtt{s}'.\,\,(\mathtt{e},\mathtt{s}) \leadsto^* (\mathtt{e}',\mathtt{s}') \implies \mathtt{rel}\,\,\mathtt{s}\,\,\mathtt{s}'$$

a stateful predicate p is stable (wrt. rel) when

$$orall$$
 s s $'$. p s \wedge rel s s $'$ \Longrightarrow p s $'$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of p s in some state s
 - \bullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall \, s \, e' \, s'. \, (e, s) \leadsto^* (e', s') \implies rel \, s \, s'$$

a stateful predicate p is stable (wrt. rel) when

$$\forall$$
 ss'. ps \land relss' \Longrightarrow ps'

- ullet Our solution: extend Hoare-style program logics (e.g., F^*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of p s in some state s
 - \bullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we choose a preorder rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall \, s \, e' \, s'. \, (e, s) \leadsto^* (e', s') \implies rel \, s \, s'$$

• a stateful predicate p is **stable** (wrt. rel) when

$$\forall \, s \, s'. \, p \, s \, \wedge \, {\tt rel} \, s \, s' \implies p \, s'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of p s in some state s
 - a means to recall the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we **choose a preorder rel** on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is monotonic (wrt. rel) when

$$\forall \, s \, e' \, s'. \, (e, s) \leadsto^* (e', s') \implies rel \, s \, s'$$

• a stateful predicate p is **stable** (wrt. rel) when

$$\forall ss'. ps \land rel ss' \Longrightarrow ps'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a state-independent proposition
 - a means to witness the validity of p s in some state s
 - ullet a means to **recall** the validity of $p \ s'$ in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

- We focus on monotonic programs and stable predicates
 - per verification task, we **choose** a **preorder** rel on states
 - set inclusion, heap inclusion, increasing counter values, ...
 - a stateful program e is **monotonic** (wrt. rel) when

$$\forall \, \mathbf{s} \, \mathbf{e}' \, \mathbf{s}'. \, (\mathbf{e}, \mathbf{s}) \leadsto^* (\mathbf{e}', \mathbf{s}') \implies \mathbf{rel} \, \mathbf{s} \, \mathbf{s}'$$

• a stateful predicate p is **stable** (wrt. rel) when

$$\forall ss'. ps \land rel ss' \Longrightarrow ps'$$

- Our solution: extend Hoare-style program logics (e.g., F*) with
 - a means for turning a p into a **state-independent proposition**
 - a means to witness the validity of p s in some state s
 - ullet a means to **recall** the validity of p s' in any future state s'
- Provides a unifying account of the existing ad hoc uses in F*

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

- F* is an ML-like dependently typed language, aimed at verification
- F* supports Hoare-style reasoning about state via the comp. type
 ST_{state} t (requires pre) (ensures post)
 - where

```
\texttt{pre}: \texttt{state} \to \texttt{Type} \qquad \quad \texttt{post}: \texttt{state} \to \texttt{t} \to \texttt{state} \to \texttt{Type}
```

ST is an abstract pre-postcondition refinement of

```
st t \stackrel{\text{def}}{=} state \rightarrow t * state
```

• The global state **actions** have types

```
get: unit \rightarrow ST state (requires (\lambda_-, \top)) (ensures (\lambda s_0 s s_1, s_0 = s = s_1))
put: sistate \rightarrow ST unit (requires (\lambda_-, \top)) (ensures (\lambda_-, s_1, s_2 = s))
```

Refs. and local state will be defined in F* using monotonicity

- F* is an ML-like dependently typed language, aimed at verification
- F* supports Hoare-style reasoning about state via the **comp. type**

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an abstract pre-postcondition refinement of

$$\mathtt{st} \ \mathtt{t} \stackrel{\mathtt{def}}{=} \mathtt{state} \to \mathtt{t} * \mathtt{state}$$

The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-, \top)) (ensures (\lambda s_0 s s_1, s_0 = s = s_1)
put: s:state \rightarrow ST unit (requires (\lambda_-, \top)) (ensures (\lambda_- s_1, s_1 = s))
```

Refs. and local state will be defined in F* using monotonicity

- F* is an ML-like dependently typed language, aimed at verification
- F* supports Hoare-style reasoning about state via the **comp. type**

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an abstract pre-postcondition refinement of

$$\mathtt{st}\ \mathtt{t}\ \stackrel{\mathsf{def}}{=}\ \mathtt{state} \to \mathtt{t} * \mathtt{state}$$

The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1.s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-.s_1.s_1 = s))
```

Refs. and local state will be defined in F* using monotonicity

- F* is an ML-like dependently typed language, aimed at verification
- F* supports Hoare-style reasoning about state via the **comp. type**

```
ST<sub>state</sub> t (requires pre) (ensures post)
```

where

```
\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10
```

• ST is an **abstract** pre-postcondition refinement of

```
\mathtt{st}\ \mathtt{t}\ \stackrel{\mathsf{def}}{=}\ \mathtt{state} \to \mathtt{t} \ast \mathtt{state}
```

The global state actions have types

```
get: unit \rightarrow ST state (requires (\lambda_-.\top)) (ensures (\lambda s_0 s s_1. s_0 = s = s_1))
put: s:state \rightarrow ST unit (requires (\lambda_-.\top)) (ensures (\lambda_-.s_1. s_1 = s))
```

• **Refs.** and **local state** will be defined in F* using monotonicity

We capture monotonic state with a new computation type

$$exttt{MST}_{ exttt{state}, exttt{rel}}$$
 t (requires pre) (ensures post)

where pre and post are typed as in ST

The get action is typed as in ST

```
get : unit \rightarrow MST state (requires (\lambda \_. \top))
(ensures (\lambda s_0 s s_1 . s_0 = s = s_1))
```

• To ensure **monotonicity**, the **put** action gets a precondition

```
\texttt{put}: \texttt{s:state} \rightarrow \texttt{MST} \ \texttt{unit} \ \big(\texttt{requires} \ \big(\lambda \, \texttt{s}_0 \, . \, \texttt{rel} \ \texttt{s}_0 \, \, \texttt{s}\big)\big) \\ \big(\texttt{ensures} \ \big(\lambda \, \_ \, \texttt{s}_1 \, . \, \texttt{s}_1 \, = \, \texttt{s}\big)\big)
```

```
\texttt{nst t} \ \stackrel{\mathsf{def}}{=} \ \texttt{s}_0 \text{:state} \rightarrow \texttt{t} * \texttt{s}_1 \text{:state} \{ \texttt{rel } \texttt{s}_0 \ \texttt{s}_1 \}
```

We capture monotonic state with a new computation type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

where pre and post are typed as in ST

• The **get** action is typed as in ST get: unit \rightarrow MST state (requires $(\lambda _. \top)$) $(\text{ensures } (\lambda s_0 s s_1 . s_0 = s = s_1)$

• To ensure monotonicity, the put action gets a precondition put: s:state \rightarrow MST unit (requires $(\lambda s_0.rel s_0.s)$) (ensures $(\lambda_-s_1.s_1.s_1=s)$)

We capture monotonic state with a new computation type

```
{\tt MST_{state,rel}} t (requires pre) (ensures post)
```

where pre and post are typed as in ST

The get action is typed as in ST

```
\begin{aligned} \texttt{get}: \texttt{unit} & \to \texttt{MST} \; \texttt{state} \; \big( \texttt{requires} \; \big( \lambda_-.\top \big) \big) \\ & \big( \texttt{ensures} \; \big( \lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1 \big) \big) \end{aligned}
```

To ensure monotonicity, the put action gets a precondition put: s:state → MST unit (requires (λ s₀.rel s₀ s))

```
\texttt{mst} \ \texttt{t} \ \stackrel{\texttt{def}}{=} \ \mathbf{s}_0 \text{:state} \to \texttt{t} * \mathbf{s}_1 \text{:state} \big\{ \texttt{rel} \ \mathbf{s}_0 \ \mathbf{s}_1 \big\}
```

• We capture monotonic state with a new computation type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

where pre and post are typed as in ST

The get action is typed as in ST

```
\texttt{get:unit} \rightarrow \texttt{MST state (requires } (\lambda_-.\top)) (\texttt{ensures } (\lambda \, \texttt{s}_0 \, \texttt{s} \, \texttt{s}_1 \, . \, \texttt{s}_0 = \texttt{s} = \texttt{s}_1))
```

• To ensure **monotonicity**, the **put** action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0 s))
(ensures (\lambda_{--}s_1.s_1 = s))
```

```
	ext{mst t} \stackrel{	ext{def}}{=} 	ext{s}_0 	ext{:state} 
ightarrow 	ext{t} * 	ext{s}_1 	ext{:state} \{	ext{rel s}_0 	ext{ s}_1 \}
```

We capture monotonic state with a new computation type

```
MST<sub>state,rel</sub> t (requires pre) (ensures post)
```

where pre and post are typed as in ST

• The **get** action is typed as in ST

```
\label{eq:get:mit} \begin{split} \text{get:unit} & \to \text{MST state (requires } (\lambda_-.\top)) \\ & \qquad \qquad \text{(ensures } (\lambda \, \mathbf{s}_0 \, \mathbf{s} \, \mathbf{s}_1 \, . \, \mathbf{s}_0 = \mathbf{s} = \mathbf{s}_1)) \end{split}
```

• To ensure **monotonicity**, the **put** action gets a precondition

```
put: s:state \rightarrow MST unit (requires (\lambda s_0.rel s_0 s))
(ensures (\lambda_{--}s_1.s_1 = s))
```

```
\texttt{mst t} \ \stackrel{\text{def}}{=} \ \textbf{s_0} : \texttt{state} \rightarrow \texttt{t} * \textbf{s_1} : \texttt{state} \big\{ \texttt{rel } \textbf{s_0} \ \textbf{s_1} \big\}
```

We introduce a logical capability (a modality in ongoing work)

```
witnessed : (state 
ightarrow Type) 
ightarrow Type
```

together with a weakening principle (functoriality)

```
\label{eq:wk:pq:state} \begin{split} \text{wk}: p, q: & (\texttt{state} \to \texttt{Type}) \to \texttt{Lemma} \; (\texttt{requires} \; (\forall \, \texttt{s.p} \; \texttt{s} \implies q \; \texttt{s})) \\ & (\texttt{ensures} \; (\texttt{witnessed} \; \texttt{p} \implies \texttt{witnessed} \; \texttt{q})) \end{split}
```

We add a stateful introduction rule for witnessed

```
witness: p:(state \rightarrow Type) \rightarrow MST unit (requires (\lambda s_0.p s_0 \land stable p)) (ensures (\lambda s_0 \_ s_1 . s_0 = s_1 \land witnessed p))
```

 We add a stateful elimination rule for witnessed recall: p:(state → Type) → MST unit (requires (λ . witnessed)

```
 \begin{array}{c} \text{recall : p:(state} \rightarrow \text{Type)} \rightarrow \text{MST unit (requires } (\lambda_{-}.\text{witnessed p))} \\ \\ & (\text{ensures } (\lambda \, \text{s}_{0} \, \text{-} \, \text{s}_{1} \, . \, \text{s}_{0} = \text{s}_{1} \, \land \, \text{p s}_{1}) \end{array}
```

• We introduce a logical capability (a modality in ongoing work)

```
\mathtt{witnessed} : (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\label{eq:wk:pq:state} \begin{split} \text{wk}: p, q: & (\texttt{state} \to \texttt{Type}) \to \texttt{Lemma} \ (\texttt{requires} \ (\forall \, \texttt{s.p s} \implies \texttt{q s})) \\ & (\texttt{ensures} \ (\texttt{witnessed} \ p \implies \texttt{witnessed} \ q)) \end{split}
```

• We add a **stateful introduction rule** for witnessed witness: $p:(state \rightarrow Type) \rightarrow MST$ unit $(requires (\lambda s_0.p s_0 \land stable p))$ $(ensures (\lambda s_0.s_1.s_0 = s_1 \land witnessed p))$

• We add a **stateful elimination rule** for witnessed recall: p:(state \rightarrow Type) \rightarrow MST unit (requires (λ _.witnessed p)) (ensures (λ s₀_s₁,s₀ = s₁ \wedge p s₁)

• We introduce a logical capability (a modality in ongoing work)

```
\mathtt{witnessed} : (\mathtt{state} \to \mathtt{Type}) \to \mathtt{Type}
```

together with a weakening principle (functoriality)

```
\begin{tabular}{ll} wk:p,q:(state \to Type) \to Lemma (requires (\forall \, s.\, p.\, s \implies q.\, s)) \\ & (ensures \, (witnessed \, p \implies witnessed \, q)) \end{tabular}
```

We add a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness}: p:&(\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit (requires ($\lambda$ $s_0$ . $p$ $s_0$ $\land$ stable p))} \\ & (\text{ensures ($\lambda$ $s_0$ - $s_1$ . $s_0$ = $s_1$ $\land$ \\ & \text{witnessed p))} \end{split}
```

We add a stateful elimination rule for witnessed
 recall: p:(state → Type) → MST unit (requires (λ _ . witnessed p))

• We introduce a logical capability (a modality in ongoing work)

```
witnessed: (state \rightarrow Type) \rightarrow Type
```

together with a weakening principle (functoriality)

```
\label{eq:wk:pq:(state of Type) of Lemma (requires ($\forall s.p s \Longrightarrow q s$))} \\ \qquad \qquad \text{(ensures (witnessed p \Longrightarrow witnessed q))}
```

We add a stateful introduction rule for witnessed

```
\label{eq:state} \begin{split} \text{witness}: p: & (\text{state} \rightarrow \text{Type}) \rightarrow \text{MST unit (requires } (\lambda \, s_0 \, . \, p \, \, s_0 \, \wedge \, \, \text{stable p)}) \\ & (\text{ensures } (\lambda \, s_0 \, . \, s_1 \, . \, s_0 \, = \, s_1 \, \wedge \, \\ & \text{witnessed p)}) \end{split}
```

We add a stateful elimination rule for witnessed

```
\begin{split} \text{recall}: & p: (\texttt{state} \rightarrow \texttt{Type}) \rightarrow \texttt{MST} \text{ unit } (\texttt{requires } (\lambda_{-}. \texttt{witnessed p})) \\ & (\texttt{ensures } (\lambda \texttt{s}_0 - \texttt{s}_1 . \texttt{s}_0 = \texttt{s}_1 \ \land \ \texttt{p} \ \texttt{s}_1)) \end{split}
```

Outline

- Monotonic state by example
- Key ideas behind our general framework
- Accommodating monotonic state in F*
- Some examples of monotonic state at work
- More examples of monotonic state at work (see the paper)
- Monadic reification and reflection (see the paper)
- Meta-theory and correctness results (see the paper)

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder **rel** on states
- We prove the assertion by inserting a witness and recall

```
\textbf{insert } \textbf{v}; \textbf{ witness } (\lambda \, \textbf{s} \, . \, \textbf{v} \in \textbf{s}); \textbf{ c\_p()}; \textbf{ recall } (\lambda \, \textbf{s} \, . \, \textbf{v} \in \textbf{s}); \textbf{ assert } (\textbf{v} \in \textbf{get()})
```

For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled **similarly easily** by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\text{insert } v; \text{ witness } (\lambda \, s \, . \, v \in \mathbf{s}); \text{ } c\_p(); \text{ } recall \text{ } (\lambda \, s \, . \, v \in \mathbf{s}); \text{ } assert \text{ } (v \in \text{get}() )
```

For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w; witness } (\lambda \, \texttt{s.w} \in \texttt{s}); \; [ \; ]; \; \texttt{recall } (\lambda \, \texttt{s.w} \in \texttt{s}); \; \texttt{assert } (\texttt{w} \in \texttt{get}())
```

• Monotonic counters are analogous, by picking $\mathbb N$ and \leq , e.g., create 0; incr(); witness $(\lambda \, \text{c.c} > 0)$; c-p(); recall $(\lambda \, \text{c.c} > 0)$

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

• For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled similarly easily by

```
\texttt{insert w}; \ \texttt{witness} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ [ \ ]; \ \texttt{recall} \ (\lambda \, \texttt{s.w} \in \texttt{s}); \ \texttt{assert} \ (\texttt{w} \in \texttt{get}())
```

Monotonic counters are analogous, by picking \mathbb{N} and \leq , e.g., create 0; incr(); witness (λ c.c>0); c-p(); recall (λ c.c>0)

Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick set inclusion ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall

```
\texttt{insert } \texttt{v}; \texttt{ witness } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ c\_p()}; \texttt{ recall } (\texttt{\lambda} \texttt{ s}. \texttt{v} \in \texttt{s}); \texttt{ assert } (\texttt{v} \in \texttt{get()})
```

• For any other w, wrapping

```
insert w; []; assert (w \in get())
```

around the program is handled **similarly easily** by

```
insert w; witness (\lambda s.w \in s); [ ]; recall (\lambda s.w \in s); assert (w \in get())
```

Monotonic counters are analogous, by picking N and ≤, e.g.,
 create 0; incr(); witness (λ c. c > 0); c.p(); recall (λ c. c > 0)

• Recall the program operating on the set-valued state

```
insert v; complex_procedure(); assert (v \in get())
```

- We pick **set inclusion** ⊆ as our preorder rel on states
- We prove the assertion by inserting a witness and recall
- insert v; witness $(\lambda s. v \in s)$; $c_p()$; recall $(\lambda s. v \in s)$; assert $(v \in get())$
 - For any other w, wrapping

```
insert w; [ ]; assert (w \in get())
```

around the program is handled **similarly easily** by

```
insert w; witness (\lambda s.w \in s); [ ]; recall (\lambda s.w \in s); assert (w \in get())
```

Monotonic counters are analogous, by picking N and ≤, e.g.,
 create 0; incr(); witness (λ c. c > 0); c_p(); recall (λ c. c > 0)

First, we define a type of heaps as a finite map

```
\label{eq:type-heap} \begin{split} & | \ H: h: (\mathbb{N} \to \text{cell}) \to \text{ctr}: \mathbb{N} \{ \forall \, n \, . \, \text{ctr} \leq n \implies h \, \, n = \text{Unused} \} \to \text{heap} \\ & \text{where} \\ & \text{type cell} = \\ & | \ \text{Unused}: \text{cell} \\ & | \ \text{Used}: \ a: Type \to v: a \to \text{cell} \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h_0 _) (H h_1 _) = \forall id.match h_0 id,h_1 id with | Used a _,Used b _ \rightarrow a = b | Unused,Used _ _ \rightarrow \top | Unused,Unused \rightarrow \top
```

• First, we define a type of **heaps** as a finite map

```
type heap =
      | \text{H} : \mathbf{h}: (\mathbb{N} \to \text{cell}) \to \mathbf{ctr}: \mathbb{N} \{ \forall \, \text{n.ctr} \leq \text{n} \implies \text{h n} = \text{Unused} \} \to \text{heap}
where
  type cell =
      Unused: cell
      | Used : a:Type \rightarrow v:a \rightarrow cell
```

• First, we define a type of **heaps** as a finite map

```
\label{eq:type-heap} \begin{split} & | \; \text{H} : h \text{:} (\mathbb{N} \to \text{cell}) \to \text{ctr} \text{:} \mathbb{N} \{ \forall \, n \, . \, \text{ctr} \leq n \implies h \, n = \text{Unused} \} \to \text{heap} \\ & \text{where} \\ & \text{type cell} = \\ & | \; \text{Unused} : \text{cell} \\ & | \; \text{Used} : \, \textbf{a} \text{:} \text{Type} \to \textbf{v} \text{:} \textbf{a} \to \text{cell} \end{split}
```

Next, we define a preorder on heaps (heap inclusion)

```
let heap_inclusion (H h_0 _) (H h_1 _) = \forall id.match h_0 id, h_1 id with 

| Used a _, Used b _ \rightarrow a = b 

| Unused, Used _ \rightarrow \rightarrow \rightarrow | Unused, Unused \rightarrow \rightarrow \rightarrow | Used _ \rightarrow , Unused \rightarrow \rightarrow \rightarrow
```

As a result, we can define new local state effect

```
	ext{MLST t pre post} \overset{\mathsf{def}}{=} 	ext{MST}_{\mathtt{heap,heap\_inclusion}} 	ext{ t pre post}
```

Next, we define the type of references using monotonicity

```
abstract type ref a = id: \mathbb{N}\{witnessed (\lambda h. contains h id a)\}
```

where

```
let contains (H h \_) id a = match h id with  | \text{Used b} \_ \rightarrow \text{a} = \text{b}
```

• As a result, we can define new local state effect

```
\texttt{MLST} \texttt{ t pre post} \stackrel{\text{def}}{=} \texttt{MST}_{\texttt{heap},\texttt{heap\_inclusion}} \texttt{ t pre post}
```

Next, we define the type of **references** using monotonicity abstract type ref $a = id:\mathbb{N}\{\text{witnessed }(\lambda\,h\,.\,\text{contains }h\,id\,a)\}$ where

```
let contains (H h \_) id a = match h id with  | \text{Used b } \_ \rightarrow \text{ a} = \text{b}
```

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

Next, we define the type of references using monotonicity

```
abstract\ type\ ref\ a = id: \mathbb{N}\{ witnessed\ (\lambda\,h\,.\,contains\ h\ id\ a) \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

• As a result, we can define new local state effect

```
MLST t pre post \stackrel{\text{def}}{=} MST<sub>heap,heap_inclusion</sub> t pre post
```

• Next, we define the type of references using monotonicity

```
\texttt{abstract type ref a} = \texttt{id} : \mathbb{N} \{ \texttt{witnessed ($\lambda$ h. contains h id a)} \}
```

where

```
let contains (H h \_) id a =  match h id with | Used b \_ \rightarrow a = b | Unused \rightarrow \bot
```

Finally, we define MLST's actions using MST's actions

- Finally, we define MLST's actions using MST's actions
 - let alloc (a:Type) (v:a): MLST (ref a) ... = ...
 - get the current heap
 - create a fresh ref., and add it to the heap
 - put the updated heap back
 - witness that the created ref. is in the heap
 - let read (r:ref a): MLST t ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - select the given reference from the heap
 - let write (r:ref a) (v:a): MLST unit ... = ...
 - recall that the given ref. is in the heap
 - get the current heap
 - update the heap with the given value at the given ref.
 - put the updated heap back

Adding untyped and monotonic references

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used}: a:Type \rightarrow v:a \rightarrow t:tag \rightarrow cell where type \mbox{ tag } = \mbox{ Typed}: tag \ | \mbox{ Untyped}: tag
```

- urefs can be extended to also support deallocation
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
where

type tag a = Typed: rel:preorder a → tag a | Untyped: tag a
```

mrefs provide more flexibility with ref.-wise monotonicity

Adding untyped and monotonic references

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \  \, \text{Used} : a\text{:Type} \to v\text{:}a \to \texttt{t:tag} \to \texttt{cell} where  \  \, \text{type tag} \ = \  \, \text{Typed} : \texttt{tag} \ | \  \, \text{Untyped} : \texttt{tag}
```

- urefs can be extended to also support deallocation
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \  \, \text{Used} : a: Type \rightarrow v: a \rightarrow t: tag \ a \rightarrow cell where
```

- $\texttt{type tag a} \ = \ \texttt{Typed} : \texttt{rel:preorder a} \rightarrow \texttt{tag a} \ | \ \texttt{Untyped} : \texttt{tag aa}$
- mrefs provide more flexibility with ref.-wise monotonicity

Adding untyped and monotonic references

- Untyped references (uref) with strong updates
 - Used heap cells are extended with tags

```
| \mbox{ Used: a:Type} \rightarrow \mbox{v:a} \rightarrow \mbox{t:tag} \rightarrow \mbox{cell} where \mbox{type tag} \ = \mbox{ Typed: tag} \ | \mbox{ Untyped: tag}
```

- urefs can be extended to also support deallocation
- Monotonic references (mref a rel)
 - Used heap cells are extended with typed tags

```
| \  \, \text{Used} : a\text{:Type} \rightarrow v\text{:}a \rightarrow \text{t:tag} \,\, \underset{\textbf{a}}{\textbf{a}} \rightarrow \text{cell} where
```

type tag a = Typed: rel:preorder $a \rightarrow tag a$ | Untyped: tag a

mrefs provide more flexibility with ref.-wise monotonicity

Conclusion

- In conclusion
 - making use of monotonicity is very useful in verification
 - using monotonicity can be distilled into a simple interface
 - useful for programming (refs.) and verification (Prj. Everest)
- See the paper for
 - further examples and case studies
 - meta-theory and correctness results for MST
 - based on an instrumented operational semantics

(witness
$$x.\varphi$$
, s , W) \leadsto (return (), s , $W \cup \{x.\varphi\}$)

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Conclusion

- In conclusion
 - making use of monotonicity is very useful in verification
 - using monotonicity can be distilled into a simple interface
 - useful for programming (refs.) and verification (Prj. Everest)
- See the paper for
 - further examples and case studies
 - meta-theory and correctness results for MST
 - based on an instrumented operational semantics

```
(witness x.\varphi, s, W) \rightsquigarrow (return (), s, W \cup \{x.\varphi\})
```

- and cut elimination for the witnessed-logic
- first steps towards monadic reification for MST
 - useful for extrinsic reasoning, e.g., for relational properties
 - but have to be careful when breaking abstraction

Thank you!

Questions?