

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-074829

(43)Date of publication of application: 14.03.2000

(51)Int.CI.

GO1N 21/35 A61B 5/145 A61B 10/00

(21)Application number: 10-248732

. 10 240/32

(71)Applicant: MITSUI CHEMICALS INC

(22)Date of filing:

02 09 1998

(72)Inventor: MOCHIZUKI SHIGEKI

(54) GLUCOSE SENSOR

(57)Abstract

PROBLEM TO BE SOLVED: To measure precisely a glucose concentration in blood uncontactedly to an organism without collecting the blood.

SOLUTION: This glucose sensor is equipped with light emitting means 1, 2, 3 for irradiating, to an organism, the light having a wavelength of $\lambda \mathbf{1}$ in an absorption wavelength band of glucose, the light having a wavelength of λ2 out of the absorption wavelength band of glucose, and the light having a wavelength of $\lambda 3$ in an infrared wavelength band for measuring a blood stream quantity in a light irradiation part, detection means 20, 21, 22 for detecting intensities of the lights having three wavelengths transmitted or reflected from the organism, an operation means 8 for obtaining the ratio of light intensities between $\lambda 1$ and $\lambda 2$, a detection means 23 for measuring an organism temperature, an operation means for calculating the temperature of the light irradiation part from the detection means 23 and for executing temperature correction of the glucose quantity, an operation means for calculating the blood stream quantity in the light irradiation part from the light of $\lambda 3$, and an operation means 8 for calculating the glucose concentration in blood in the light irradiation part from the glucose concentration corrected by the temperature and the blood stream quantity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-74829 (P2000-74829A)

(43)公開日 平成12年3月14日(2000.3.14)

(51) Int.Cl. 7
G O 1 N 21/35
A 6 1 B 5/145
10/00

敞別配号

FI G01N 21/35 A61B 5/14

デーヤコート (参考) Z 2G059

5/1<u>4</u> 10/00 310 4C038

]

審査請求 未請求 請求項の数2 OL (全4頁)

(21)出願番号

特願平10-248732

(22)出願日

平成10年9月2日(1998.9.2)

(71)出願人 000005887

三井化学株式会社

東京都千代田区霞が関三丁目2番5号

(72)発明者 望月 重樹

千葉県袖ケ浦市長浦字拓二号580番32 三

井化学株式会社内

Fターム(参考) 20059 AA06 BB13 CC16 EE01 EE11

CCO1 CCO3 HHO1 HHO6 KKO1

MMO1 NNO2 NN10

4C038 KK10 KL07 KX01

(54) 【発明の名称】 グルコースセンサー

(57)【要約】

【課題】血液を採取するととなく、生体に非接触で血中 のグルコース濃度を精度よく測定する。

【解決手段】グルコースの吸収波長帯にある波長入1の光と、グルコースの吸収波長帯の外にある波長入2の光 および光照射部位の血流量を測定するために赤外波長帯にある波長入3の光とを生体に照射するための光放出手段1、2、3と、生体から透過または反射した前記3つの波長の光の強度を検出する検出手段20、21、22と、前記入1と入2の光強度の比を求る演算手段8と、生体温度を測定するための検出手段23と、この検出手段から上記光照射部位の温度を算出し上記グルコース量の温度補正をする演算手段と、前記入3の光から上記光照射部位の血流量を算出する演算手段と、前記温度補正したグルコース量と上記血流量から上記光照射部位の血流量を算出する演算手段8と、を備えるグルコースとンサである。

(2)

特開2000-74829

【特許請求の範囲】

【請求項1】グルコースの吸収波長帯にある波長入1の光と、グルコースの吸収波長帯の外にある波長入2の光、および光照射部位の血流量を測定するために赤外波長帯にある波長入3の光とを生体に照射するための光放出手段と、生体から透過または反射した前記3つの波長の光の強度を検出する検出手段と、前記入1と入2の光強度の比を求め、この比からグルコース量を求める演算手段と、生体温度を測定するための検出手段と、該生体温度から上記グルコース量の温度補正をする演算手段と、前記温度補正したグルコース量と上記血流量から上記光照射部位の血中グルコース濃度を算出する演算手段と、を備えたことを特徴とするグルコースセンサー。

【請求項 2 】前記光放出手段の波長がそれぞれ λ 1 = 1.5 \sim 1.6 μ m、 λ 2 = 1.3 \sim 1.4 μ m、 λ 3 = 0.80 \sim 0.85 μ mの範囲内に設定したことを特徴とする請求項 1 に記載のグルコースセンサー。

【発明の詳細な説明】

[0001]

* 【発明の属する技術分野】本発明は人体などの生体の血液中のグルコース濃度を検出するセンサ装置に関するものである。

[0002]

【従来の技術】血液中のグルコース濃度を測定するために、これまではグルコース測定の都度、皮膚を傷つけて血液を抽出してグルコース濃度を測定していた。すなわち、体に傷をつけることによって得られた血液をセンサーた。生和管作用によって約3~5 ルー にった。センサー中には、グルコースの酸化反応を触媒を担って、センサー中には、グルコースの酸化反応を触媒を置いて、センサー中には、グルコースの酸化反応を触媒を置いて、センサー中には、グルコースの酸化反応を触媒を置いて、センサー中には、グルコースの酸化反応を対象としてグルコースオーシダーゼによって要体としてフェリシアンイオンを電極ではよって酸化され、式1のようにグルコース量に比例したフェロシアンイオンを電極で酸化し、その酸化電流値からグルコース濃度を算出している。

20 [0003]

グルコース + フェリシアンイオン →

グルコン酸 + フェロシアンイオン

(1)

フェロシアンイオン →

フェリシアンイオン + 電子

(2)

センサー部分は1回毎の使い捨てとなるが、との種のグルコースセンサーは、広く用いられている。

【0004】一方レーザを使用したグルコース濃度測定が、文献Fresenius J. Anal. Chem. (1996) 354:306-310 に記載されている。ずなわち、2つの高出力レーザから 30 放出されるレーザ光をグルコース溶液サンブルに入射させ、この2つの透過光をそれぞれ別の光検出器で電圧に変換する。この2つの電圧の位相を変化させて足し算をした値でグルコース量を求めている。また、第3のレーザを使用しこのレーザから放出されるレーザ光を、上記グルコース溶液サンブルに入射させ、透過光を第3の光検出器で電圧に変換する。この電圧値からサンブル温度を推定すると書かれている。

[0005]

【発明が解決しようとする課題】しかしながら従来のグ 40 ルコースセンサーでは、人の血液を得るためにどうしても人体の一部分を傷つけて採取することがやむをえないこととなっていた。従って、頻繁に測定を必要としている患者には肉体的および精神的に大きな苦痛となっていた。また、傷口からの感染の危険性にも注意を払う必要があった。また、これまでもレーザを用いたグルコース濃度計は提案されているが測定精度が低く、高価であるなどの理由で血中グルコース濃度計としては一般には普及しなかった。

【0006】本発明は上記のような問題を解決し、非侵 50

傷でグルコース濃度を測定できるようにすることを目的とするものである。特に、時間の経過とともに変化するグルコース濃度を精確に測定でき、しかも、簡易でリアルタイムに繰り返し使用できるグルコースセンサーを提供することを目的としている。

[0007]

【課題を解決するための手段】本発明は、グルコースの 吸収波長帯にある波長 λ 1 の光と、グルコースの吸収波 長帯の外にある波長λ2の光および光照射部位の血流量 を測定するために赤外波長帯にある波長λ3の光とを生 体に照射するための光放出手段と、生体から透過または 反射した前記3つの波長の光の強度を検出する検出手段 と、前記λ1とλ2の光強度の比を求め、この比からグ ルコース量を求める演算手段と、生体温度を測定するた めの検出手段と、この生体温度から上記グルコース量の 温度補正をする演算手段と、前記入3の光から上記光照 射部位の血流量を算出する演算手段と、前記温度補正し たグルコース量と上記血流量から上記光照射部位の血中 グルコース濃度を算出する演算手段と、を備えるグルコ ースセンサーである。本発明によれば、血液を採取する ことなく血中グルコース濃度を測定することができるの で、被検者の負担が少なくてすみ、またリアルタイムの 測定が可能となり、時間とともに変化するグルコース濃 度を測定することが出来る。またグルコースの吸収波長 帯にある液長λ1の光と、グルコースの吸収液長帯の外

にある波長λ2の強度比からグルコース量を求め、かつ 温度補正を行うので、測定装置や環境条件の変動による 影響を受けにくくなり、正確な測定が可能となる。

【0008】また前記光放出手段の波長がそれぞれ入1 = 1. $5 \sim 1$. $6 \mu m$, $\lambda 2 = 1$. $3 \sim 1$. $4 \mu m$, λ $3=0.80\sim0.85\mu$ mの範囲内にあることが望ま しい。これらの波長を用いることにより、精度の高い測 定が可能となる。

[00.0.9]

【発明の実施の形態】図1に本発明によるグルコースセ ンサーを示す。とれは人体の耳たぶ4の微細血管中を流 れる血中グルコース濃度を測定するものである。第1半 導体レーザ 1 の出射光の波長はグルコースの吸収波長帯 にある1.55μmであり、耳たぶ4を透過して第1フ ォトディテクタ20で受光される。第2半導体レーザ2 の出射光の波長はグルコースの吸収波長帯の外にある 33μmであり、耳たぶ4を透過して第2フォトデ ィテクタ21で受光される。第3半導体レーザ22は血 流量を測定するためのもので、その出射光の波長は0. 83µmであり、耳たぶ4を透過して第3フォトディテ クタ22で受光される。血流量はドップラー効果を利用 して測定するため、ヘモグロビンから反射した光ができ るだけ減衰しないように生体組織内への透過性が良い赤 外光を利用する。

【0010】上記レーザの照射部位の生体温度は、照射 部位からの熱放射光を赤外線輻射温度計である第4フォ トディテクタ23で受光することにより測定する。IC スイッチ19により照射部位の温度測定と、照射部位の 血流量測定を切り替えて行う。本発明の実施の形態で は、それぞれの光強度を検出するフォトディテクタから のそれぞれの信号をロックインアンプ6に導く。半導体 レーザをドライブする回路5と、ロックインアンプ6 で、各半導体レーザから出射された光がフォトディテク タに到達するまでに受ける外乱によるノイズを低減して いる。ととでは、10kHzで変調をかけている。ロッ クインアンプ6で直流となったフォトディテクタアナロ グ電圧14は制御信号13に同期してA/Dコンバータ 7 に送られデジタル信号となる。デジタル信号10はA /Dコンバータ開始信号11と同期して演算制御回路8 に送られる。演算制御回路では第1フォトディテクタ2 40 0、第2フォトディテクタ21、第3フォトディテクタ 22および第4フォトディテクタ23の出力信号の絶対 値に基づいて計算を行う。

【0011】測定を開始するには、まず前記半導体レー ザから前記フォトダイオードの間に何も挿入しない状態 で、あらかじめ定められたレベルに保つ校正動作を行 う。具体的には前記フォトディテクタの出力電圧値と、 EEPROM15に書き込まれている前記フォトディテ クタの初期設定値とを比べて、差異がある場合には制御

5の半導体ドライブ電流を変えることにより前記フォト ディテクタの電圧値とEEPROM15の設定値の初期 値を常に一定の値にしてから測定を行う。

【0012】測定は前記半導体レーザ部分と前記フォト ディテクタ部分とで人体の耳たぶ4を挟むように設置。 し、その時の各フォトディテクタ出力値を演算すること により、耳たよ4のグルコース濃度を算出する。演算制 御回路8ではEEPROMにあらかじめ書き込まれたグ ルコース濃度値とフォトディテクタ出力値の関係、およ びグルコース溶液温度とフォトディテクタ出力値の関係 を用いて演算を行い、グルコース量を算出する。図2に グルコース濃度と第1フォトディテクタ20の出力の関 係をグルコース溶液を容器に入れた状態で測定した例と して示す。また図3にグルコース溶液温度と第1フォト ディテクタ20の出力の関係の例を示す。 図3ではグル コース溶液温度が高くなるほど分子の伸縮運動が盛んに なるため、光の吸収が小さくなり、グルコース溶液温度 が高くなるとフォトディテクタの出力が大きくなる。温 度補正を第4フォトディテクタ23から求めた温度で行 い、そしてとのグルコース量を第3フォトディテクタ2 2から算出した血流量で除算して、その結果をデジタル 信号16を通じて表示回路9に表示する。

【0013】演算の手順を以下に示す。人体からの熱放 射の強度を第4フォトダイオード23から電圧値として 取り込む。EEPROM15内のデータと比較し、上記 人体の測定部位の温度を算出し、温度と第1フォトダイ オード出力の補正係数 k を図3から求める。第3半導体 レーザ3の出射光は耳たぶ4を透過して第3フォトディ テクタ22で受光し、その出力値を取り込む。EEPR OM 15内のデータと前記出力値とを比較し血流量Vを 算出する。第1半導体レーザ1の出射光は耳たぶ4を透 過して第1フォトディテクタ20で受光し、その出力値 をV1とする。第2半導体レーザ2の出射光は耳たぶ4 を透過してフォトディテクタ2で受光し、その出力値を V2とする。上記半導体照射部位の温度補正を行ったグ ルコース量Xは次式で求まる。

 $[0014]X=k \cdot (1-V1/V2)$

前記照射部位のグルコース量Xを前記血流量Vで除算す ることにより血中グルコース濃度が求まる。このグルコ ース濃度値を表示回路9で表示する。本実施の形態では 生体部位を透過した光を測定しているが、反射した光を 測定することも可能である。

[0015]

【発明の効果】以上説明したように、本発明のグルコー スセンサーによれば、体内の血液を取り出すととなく、 非侵傷で血中グルコース濃度を正確に、また、比較的安 価な装置で計ることが実用化できるようになった。従っ て、これまでの測定毎に体内の血液を取り出す方法に比し べ、苦痛を軽減できるようになった。また、連続モニタ 信号18を使って半導体レーザダイオードドライブ回路 50 が可能となったため、正確な糖尿病管理が可能となる。

BEST AVAILABLE COPY

(4) 特開2000-74829 【図面の簡単な説明】 *7 ・・A/Dコンパータ 【図1】本発明に係る全体の構成図である。 8 ・・演算制御回路 【図2】グルコース濃度とフォトディテクタ出力との関 9 ・・表示回路 係の1例をを示すグラフである。 10・・デジタル信号 【図3】グルコース溶液温度とフォトディテクタ出力と 11 · · A/Dコンパータ開始信号 の関係の1例を示すグラフである。 12、13、17、18 ・・制御信号 【符号の説明】 ・・フォトディテクタアナログ出力 1、2、3・・半導体レーザ 15 ··EEPROM 4 ・・耳たぶ 16 ・・デジタル信号 5 ・・半導体レーザのドライブ回路 10 19 · · I Cスイッチ 6 ・・ロックインアンブ回路 20, 21, 22, 23 ・・フォトディテクタ

【図1】

