5 最佳接收和错误概率估计

目录

- 最佳接收准则
- •错误概率的估计(界)

• 最小错误概率译码准则:

如果收到y, 判断发送的是某个 \hat{x} , 使得出错概率 $P_E(y)$ 最小, 则满足**最小错误概率译码准则**.

因为 $P_E(y)=P_r[\hat{x} \neq x/y]=1-P_r[\hat{x} = x/y].$ 则应使 $P_r[\hat{x} = x/y]$ 最大, 即使p(x/y)最大.

• 最小错误概率译码准则 (续):

因为
$$p(\mathbf{x}/\mathbf{y}) = \frac{p(\mathbf{y}/\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y}/\mathbf{x})p(\mathbf{x})}{\sum_{\mathbf{x}} p(\mathbf{y}/\mathbf{x})p(\mathbf{x})}$$
则应使p(y/x)p(x)最大.

如果未知p(x), 或p(x)等概,

应使p(y/x)最大.

例: (7, 4)Hamming Code 收0010000 → 判为0000000 收1111011 → 判为1111111

• 最大后验概率译码准则:

收到 \mathbf{y} ,若判作 \mathbf{x}_{m} ,则需满足: $p(\mathbf{y}/\mathbf{x}_{m}) p(\mathbf{x}_{m}) \geq p(\mathbf{y}/\mathbf{x}_{m}) p(\mathbf{x}_{m}) \forall m' \neq m$ 或 log $p(\mathbf{y}/\mathbf{x}_{m}) + \log p(\mathbf{x}_{m})$ $\geq \log p(\mathbf{y}/\mathbf{x}_{m}) + \log p(\mathbf{x}_{m})$ $\forall m' \neq m$

• 最大似然概率译码准则:

收到y,若判作 x_m ,则需满足:

$$p(\mathbf{y}/\mathbf{x}_{m}) \ge p(\mathbf{y}/\mathbf{x}_{m})$$
 $\forall m' \ne m$

或 $\log p(\mathbf{y}/\mathbf{x}_{m}) \ge \log p(\mathbf{y}/\mathbf{x}_{m'})$ $\forall m' \ne m$

• 最大似然概率译码准则(cont.):

对于离散无记忆信道,

有
$$p(\mathbf{y}/\mathbf{x}_m) = \prod_{n=1}^N p(y_n/x_{mn})$$

最大似然概率译码准则可写作

$$\sum_{n} \log p(y_n / x_{mn}) \ge \sum_{n} \log p(y_n / x_{m'n}) \quad \forall m' \ne m$$

• 例5.1: 加性高斯白噪声信道(AWGN):

发送信号
$$\mathbf{x}_{m}$$
=(\mathbf{x}_{m1} , \mathbf{x}_{m2} , ..., \mathbf{x}_{mN}) $\mathbf{x}_{mn} \in \{+1,-1\}$ 接收信号 \mathbf{y} =(\mathbf{y}_{1} , \mathbf{y}_{2} , ..., \mathbf{y}_{N}). $\mathbf{y}_{n} \in \mathbf{R}$

信道转移概率
$$p(\mathbf{y}/\mathbf{x}_m) = \prod_{n=1}^{N} p(y_n/x_{mn})$$

其中 $p(y_n/x_{mn}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_n-x_{mn})^2}{2\sigma^2}}$

例5.1(续): 根据最大后验概率译码准则, 收到y后,译为 x_m,需满足 p(y/x_m)p(x_m)≥p(y/x_m,)p(x_m,) ∀m'≠ m 或 logp(y/x_m)+logp(x_m) ≥ logp(y/x_m,)+ logp(x_m,) ∀m'≠ m

$$\mathbb{E} \sum_{n=1}^{N} \log p(y_n / x_{mn}) + \log p(\mathbf{x}_m) \ge \sum_{n=1}^{N} \log p(y_n / x_{m'n}) + \log p(\mathbf{x}_{m'})$$

$$\forall \mathbf{m'} \ne \mathbf{m}$$

• 例5.1(续):

$$\overrightarrow{f} - \sum_{n=1}^{N} \frac{(y_n - x_{mn})^2}{2\sigma^2} + \log \frac{p(\mathbf{x}_m)}{p(\mathbf{x}_{m'})} \ge - \sum_{n=1}^{N} \frac{(y_n - x_{m'n})^2}{2\sigma^2} \qquad \forall m' \ne m$$

$$- \frac{1}{2\sigma^2} \sum_{n=1}^{N} \left[-2y_n x_{mn} + 2y_n x_{m'n} + x_{mn}^2 - x_{m'n}^2 \right] + \log \frac{p(\mathbf{x}_m)}{p(\mathbf{x}_{m'})} \ge 0 \qquad \forall m' \ne m$$

$$\sum_{n=1}^{N} (y_n x_{mn} - y_n x_{m'n}) - \frac{1}{2} \sum_{n=1}^{N} (x_{mn}^2 - x_{m'n}^2) + \sigma^2 \log \frac{p(\mathbf{x}_m)}{p(\mathbf{x}_{m'})} \ge 0 \qquad \forall m' \ne m$$

$$\langle \mathbf{y} \cdot \mathbf{x}_m \rangle - \langle \mathbf{y} \cdot \mathbf{x}_{m'} \rangle - \frac{1}{2} \left(\varepsilon_m - \varepsilon_{m'} \right) + \sigma^2 \log \frac{p(\mathbf{x}_m)}{p(\mathbf{x}_{m'})} \ge 0 \qquad \forall m' \ne m$$

• 例5.1(续): 如果采用最大似然概率译码准则,

上式不包括
$$\sigma^2 \log \frac{p(\mathbf{X}_m)}{p(\mathbf{X}_{m'})}$$

若信号是等能量、等概的,

则
$$\langle \mathbf{y} \cdot \mathbf{x}_{m} \rangle \geq \langle \mathbf{y} \cdot \mathbf{x}_{m} \rangle$$
 $\forall m' \neq m$

— 最大相关接收准则

当信号连续时,最大相关接收准则写作:

$$\int_0^T y(t)x_m(t)dt \ge \int_0^T y(t)x_{m'}(t)dt \qquad \forall m' \ne m$$

• 相关接收机:

$$U_m(T) = \int_0^T y(t) x_m(t) dt$$

• 匹配滤波器:

$$U_m(t) = y(t) * h_m(t) = \int_0^T y(t)h_m(T-t)dt$$
$$h_m(t) = x_m(T-t)$$

目录

- 最佳接收准则
- 错误概率的估计(界)

• 并合界

设信道输入为 $\mathbf{x}_m(m=1,2,...,M)$, 共M种. 定义 $\mathbf{Y}_m = \{\mathbf{y}: (\log)p(\mathbf{y}/\mathbf{x}_m) \geq (\log)p(\mathbf{y}/\mathbf{x}_{m'}), \forall m' \neq m \}$. 则将 \mathbf{Y}^N 空间划分为M个区间 \mathbf{Y}_m (m=1,2,...,M). 满足 $\mathbf{Y}_i \cap \mathbf{Y}_k = \emptyset$,对于所有 $\mathbf{j} \neq \mathbf{k}$.

(7,4) 汉明码

2018/6/1

0000000	1000000	0100000	0010000	0001000	0000100	0000010	0000001
1010001	0010001	1110001	1000001	1011001	1010101	1010011	1010000
1110010	0110010	1010010	1100010	1111010	1110110	1110000	1110011
0100011	1100011	0000011	0110011	0101011	0100111	0100001	0100010
0110100	1110100	0010100	0100100	0111100	0110000	0110110	0110101
1100101	0100101	1000101	1110101	1101101	1100001	1100111	1100100
1000110	0000110	1100110	1010110	1001110	1000010	1000100	1000111
0010111	1010111	0110111	0000111	0011111	0010011	0010101	0010110
1101000	0101000	1001000	1111000	1100000	1101100	1101010	1101001
0111001	1111001	0011001	0101001	0110001	0111101	0111011	0111000
001 1010	1011010	0111010	0001010	0010010	0011110	0011000	0011011
1001011	0001011	1101011	1011011	1000011	1001111	1001001	1001010
101 1100	0011100	1111100	1001100	1010100	1011000	1011110	1011101
000 1101	1001101	0101101	0011101	0000101	0001001	0001111	0001100
0101110	1101110	0001110	0111110	0100110	0101010	0101100	0101111
1111111	0111111	1011111	1101111	1110111	1111011	1111101	1111110

(7,4) 汉明码

• 并合界(Cont.)

若 Y_m c是 Y_m 的补集,

则接收译码错误概率

$$P_{e,m} = \sum_{\mathbf{y} \in Y_m^C} p(\mathbf{y} / \mathbf{x}_m)$$

• 并合界(Cont.)

```
例题5.2:设M=2,且两个消息等概
                                 选\mathbf{x}_1=(0000), \mathbf{x}_2=(1111)
                                 通过BSC,令信道转移概率p<1/2
 选择:
 0011, 0101, 0110}
 Y_2 = Y_1^c = \{ 1111, 1110, 1101, 1011, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 0111, 
                                                                                         1100, 1010, 1001}
P_{e} = P_{e1} = P_{e2} = p^4 + 4p^3(1-p) + 3p^2(1-p)^2
```

• 并合界(Cont.)

```
例题5.2 (续):
若接收到0011, 1100, 0110, 1001, 1010, 0101
判为x<sub>1</sub>和x<sub>2</sub>是等价的;
可将其中任意三个划入Y<sub>1</sub>,其余三个划入Y<sub>2</sub>,
而不影响P。的值. 也可单独作为一个集合Y。
此时Y<sub>1</sub>={ 0000, 0001, 0010, 0100, 1000}
    Y_2 = \{ 1111, 1110, 1101, 1011, 0111 \}
\overline{\mathbb{H}}P_{e} = P_{e1} = P_{e2} = p^4 + 4p^3(1-p)
发现有错而不能判决的概率为: P_d=6p^2(1-p)^2
```

• 并合界(Cont.)

定义 $Y_{mm'} = \{y : (\log)p(y/x_m) \ge (\log)p(y/x_{m'}) \}.$ 则将 Y^N 空间化分为2个区间 $Y_{mm'}$, 和 $Y_{m'm}$.

例如: M=3

· 并合界(Cont.)

$$Y_{m}^{c} = \bigcup_{\substack{m' \\ m' \neq m}} Y_{m'm}$$
此时
$$P_{e,m} = P_{r} \left\{ \mathbf{y} \in Y_{m}^{c} / \mathbf{x}_{m} \right\} = P_{r} \left\{ \mathbf{y} \in \bigcup_{\substack{m' \\ m' \neq m}} Y_{m'm} / \mathbf{x}_{m} \right\}$$

$$\leq \sum_{\substack{m' \\ m' \neq m}} P_{r} \left\{ \mathbf{y} \in Y_{m'm} / \mathbf{x}_{m} \right\} = \sum_{\substack{m' \\ m' \neq m}} P_{e} (m \to m')$$

• Bhattacharyya界

 $\leq \sum_{\mathbf{y} \in \mathbf{V}^{N}} \sqrt{\frac{p(\mathbf{y}/\mathbf{x}_{m'})}{p(\mathbf{y}/\mathbf{x}_{m})}} p(\mathbf{y}/\mathbf{x}_{m}) = \sum_{\mathbf{y} \in \mathbf{V}^{N}} \sqrt{p(\mathbf{y}/\mathbf{x}_{m'})} p(\mathbf{y}/\mathbf{x}_{m})$

因此
$$P_{e.m} \leq \sum_{\substack{m' \\ m' \neq m}} \sum_{\mathbf{y} \in Y^N} \sqrt{p(\mathbf{y}/\mathbf{x}_{m'})p(\mathbf{y}/\mathbf{x}_{m})}$$

$$= \sum_{\mathbf{y} \in Y^N} \sum_{\substack{m' \\ m' \neq m}} \sqrt{p(\mathbf{y}/\mathbf{x}_{m'})p(\mathbf{y}/\mathbf{x}_{m})}$$

$$\begin{array}{c|c} & \mathbf{x}_1 = (00...0) \\ \hline & \mathbf{x}_2 = (11...1) \end{array} \qquad \begin{array}{c} & \mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N) \\ \hline & \mathbf{y}_i \in \{0, 1\} \end{array}$$

• Chernoff 界

• Chernoff 界

因此
$$P_{e.m} \leq \sum_{\substack{m' \ m' \neq m}} \sum_{\mathbf{y} \in Y^N} p(\mathbf{y}/\mathbf{x}_{m'})^s p(\mathbf{y}/\mathbf{x}_m)^{1-s}$$

$$= \sum_{\mathbf{y} \in Y^N} \sum_{\substack{m' \ m' \neq m}} p(\mathbf{y}/\mathbf{x}_{m'})^s p(\mathbf{y}/\mathbf{x}_m)^{1-s}$$

当s→1/2时, Chernoff界→Bhattacharyya界

• Gallager 界

因为
$$Y_m^c \subseteq \left\{ \mathbf{y} : \sum_{\substack{m' \\ m' \neq m}} \left[\frac{p(\mathbf{y}/\mathbf{x}_{m'})}{p(\mathbf{y}/\mathbf{x}_{m})} \right] \ge 1 \right\}$$
定义 $\widetilde{Y}_m^c = \left\{ \mathbf{y} : \sum_{\substack{m' \\ m' \neq m}} \left[\frac{p(\mathbf{y}/\mathbf{x}_{m'})}{p(\mathbf{y}/\mathbf{x}_{m})} \right]^{\lambda} \ge 1 \right\} \quad \lambda \ge 0$
则 $Y_m^c \subseteq \widetilde{Y}_m^c$

• Gallager 界

定义
$$f(\mathbf{y}) = \begin{cases} 1 & \mathbf{y} \in \widetilde{Y}_m^c \\ 0 & \mathbf{y} \notin \widetilde{Y}_m^c \end{cases}$$

则
$$f(\mathbf{y}) \le \left\{ \sum_{\substack{m' \\ m' \ne m}} \left[\frac{p(\mathbf{y}/\mathbf{x}_{m'})}{p(\mathbf{y}/\mathbf{x}_{m})} \right]^{\lambda} \right\}^{\rho}$$
, $\rho \ge 0$

• Gallager 界

有

$$P_{e,m} = \sum_{\mathbf{y} \in Y_m^c} p(\mathbf{y}/\mathbf{x}_m) \le \sum_{\mathbf{y} \in \widetilde{Y}_m^c} p(\mathbf{y}/\mathbf{x}_m)$$
$$= \sum_{\mathbf{y} \in Y_m^N} f(\mathbf{y}) p(\mathbf{y}/\mathbf{x}_m)$$

$$\leq \sum_{\mathbf{y} \in Y^N} p(\mathbf{y}/\mathbf{x}_m)^{1-\lambda \rho} \left[\sum_{\substack{m' \\ m' \neq m}} p(\mathbf{y}/\mathbf{x}_{m'})^{\lambda} \right]^{\rho}$$

• Gallager 界

$$\mathbb{R} \lambda = \frac{1}{1+\rho}$$

$$P_{e,m} \leq \sum_{\mathbf{y} \in Y^N} p(\mathbf{y}/\mathbf{x}_m)^{\frac{1}{1+\rho}} \left[\sum_{\substack{m' \\ m' \neq m}} p(\mathbf{y}/\mathbf{x}_{m'})^{\frac{1}{1+\rho}} \right]^{\rho}$$

当ρ=1时,Gallager界→Bhattacharyya界

作业

- 习题5.1, 5.2, 5.3 (选作)
- 5.2 考虑下列码长为4的二进制码字:
 X1=0000, X2=0011, X3=1100, X4=1111.
 假设这些码字以不同的概率送往BSC(传输错误概率为p)中传输,p(x1)=1/2,p(x2)=p(x3)=1/8,p(x4)=1/4.寻找一个译码规则,使得

$$P_E = \frac{1}{2}P_E^{(1)} + \frac{1}{8}P_E^{(2)} + \frac{1}{8}P_E^{(3)} + \frac{1}{4}P_E^{(4)} \oplus .$$

	0000(1/2)	0011(1/8)	1100(1/8)	1111(1/4)
0000	0	2	2	4
0001	1	1	3	3
0010	1	1	3	3
0011	2	0	4	2
0100	1	3	1	3
0101	2	2	2	2
0110	2	2	2	2
0111	3	1	3	1
1000	1	3	1	3
1001	2	2	2	2
1010	2	2	2	2
1011	3	1	3	1
1100	2	4	0	2
1101	3	3	1	1
1110	3	3	1	1
1111	4	2	2	0