A non-exhaustive list of pitfalls in planning, executing, and implementing machine learning projects. Abbreviations: **SOTA** state of the art

CATEGORY	PITFALL		CONSEQUENCES	MITIGATION
	Asking the wrong question		Useless model, low trust	Consult user/customer, ask more questions
Design	Identifying the wrong task		Poor performance, low trust	Challenge assumptions
	No baseline/SOTA performance	•	Poor performance, low trust	Measure SOTA performance
	No success criterion	•	Poor performance, low trust	Ask user/customer what success means
Data	Poor quality features	•	Poor performance	Find better data
	Poor quality labels	•	Poor performance	Find or make better labels
	Unrecognized non-independent records	•	Leads to leakage via improper splitting	Careful splitting, exploit correlation
	Unrecognized class imbalance	•	Poor performance on minority classes	Balance classes, better evaluation metrics
	Hidden stratification	•	Poor performance on important examples	Ask user/customer, monitor performance
	Data not representative	•	Leads to out-of-distribution application	Find representative data
	Spurious/noncausal correlations	•	Leads to leakage	Pay attention to causality
	Missing explanatory variables	•	Poor performance	Pay attention to causality
Leakage	Using features not available in application		Overoptimism	Examine real application data
	Improper splitting: scaling	•	Overoptimism	Code review
	Improper splitting: correlations	•	Overoptimism	Code review
	Improper splitting: augmentation	•	Overoptimism	Code review
	Poor choice of algorithm		Poor performance, poor explainability	Develop understanding, code review
Modeling	Lack of understanding of algorithm		Poor performance, poor explainability	Develop understanding
	Poor choice of hyperparameters		Poor performance, poor explainability	Develop understanding, code review
	No or inappropriate feature scaling		Poor performance, no convergence	Develop understanding, code review
	Inappropriate feature encoding		Poor performance	Develop understanding, code review
	Poor preprocessing: imputation		Poor performance	Develop understanding, code review
	Poor preprocessing: outlier elimination		Overoptimism, poor explainability	Develop understanding, code review
	Poor hyperparameter tuning		Poor performance, slow or no convergence	Develop understanding, code review
	No or inappropriate basis expansion		Poor performance	Develop understanding, code review
Underfitting	No data augmentation		Poor performance	Develop understanding, code review
Overfitting	Too many parameters		Overoptimism, poor explainability	Choose simpler algorithms
	Too many features	_	Overoptimism, poor explainability	Dimensionality reduction
	No regularization	V	Overoptimism, poor explanability Overoptimism, poor performance	Use regularization, or equivalent
	Insufficient data		Overoptimism, poor performance	Get more data
		T T		
Evaluation	Over-using test set	•	Leads to overfitting	Use more splits
	Wrong metric	•	Overoptimism, overlooking minority classes	Choose better metric
	Not looking at variance	•	Poor understanding of performance	Use folded cross-validation
	Not evaluating residuals (in regression)	•	Spurious model	Examine residuals
	Not comparing train and test scores		Poor understanding of performance	Compute training scores
Application	Unscaled input		Wildly spurious predictions	Integrate scaler into modeling pipeline
	Covariate (feature) shift: new P(X)	A	Poor performance	Monitor incoming feature distribution
	Label shift: new P(y)	_	Poor performance	Test future model performance
	Concept drift (posterior shift): new P(y X)		Poor performance	Monitor model performance
Deployment	Nonstationary input (in time or space)	•	Poor performance, drift over time or space	Test future or local model performance
	No consideration of complex system		Unintended consequences, low trust	Talk to users/customers
	No contingency	•	Low trust	Plan ahead with users/customers
	No training of users		Low impact, low trust	Train users/customers
	No documentation	•	Inappropriate application, low trust	Document the modeling process & produc
Engineering	No code or version control		Technical debt, high chance of error	Use version control
	No data versioning		High chance of error	Use version control
	No tests of critical code		High chance of error	Write tests
Governance	No quality control		High chance of error	Integrate QC into development process
	Using protected features		Potential unfair bias	Removed protected features
	Violates regulations or ethics		Legal risk	Consult professional services