808F 20 FALL ASSIGNMENT 1

1. Fourier coefficients of Poincaré series

Let $\Gamma := \operatorname{SL}_2(\mathbb{Z})$ and $\Gamma_{\infty} := \pm \begin{bmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{bmatrix} \subset \Gamma$. Let k > 2 be an even integer and $m \in \mathbb{Z}_{\geq 0}$. Recall that the Poincaré series (of weight k) on the upper half plane \mathcal{H} is defined by

$$P_m(z) := \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} j(\gamma, z)^{-k} e^{2\pi i m \gamma z}$$

As special cases, we have the (normalized) Eisenstein series

$$P_0(z) = G_k(z) = \frac{1}{2} \sum_{\substack{c,d \in \mathbb{Z}^2 \\ (c,d)=1}} (cz+d)^{-k}, \quad E_k(z) = \zeta(k)G_k(z) = \frac{1}{2} \sum_{\substack{m,n \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} (mz+n)^{-k}$$

In this problem we compute the Fourier coefficients of $P_m(z)$.

1.1. Split the sum according to the double coset $\Gamma_{\infty}\backslash\Gamma/\Gamma_{\infty}$ and show that

$$P_m(z) = e^{2\pi i m z} + \sum_{c=1}^{\infty} \sum_{d \in (\mathbb{Z}/c\mathbb{Z})^{\times}} \sum_{u \in \mathbb{Z}} (cz + d + uc)^{-k} \exp[2\pi i m (\frac{\bar{d}}{c} - \frac{1}{c(cz + d + uc)})]$$

Here the second summand is over a set of representatives of $(\mathbb{Z}/c\mathbb{Z})^{\times}$ in the interval [0,c) (only one term d=0 when c=1) and \bar{d} denotes any integer such that $\bar{d}d\equiv 1\mod c$.

1.2. Let p(m,n) be the *n*-th Fourier coefficient of $P_m(z)$ so that $P_m(z) = \sum_{n \in \mathbb{Z}} p(m,n) e^{2\pi i n z}$. Show that

$$p(m,n) = \delta_{m,n} + \sum_{c=1}^{\infty} S(m,n;c) J_c(m,n)$$

where

$$J_c(m,n) := \int_{-\infty+iy}^{\infty+iy} (cv)^{-k} \exp(\frac{-m}{c^2v} - nv) dv$$

is independent of y > 0 and

$$S(m,n;c) := \sum_{\substack{a,d \in \mathbb{Z}/c\mathbb{Z}\\ad \equiv 1 \mod c}} \exp[2\pi i (\frac{ma+nd}{c})]$$

is the Kloosterman sum.

1.3. Show that $J_c(m,n) = 0$ if $n \le 0$. If n > 0, use Taylor expansion of $e^{2\pi iz}$ to calculate certain residue and show that

$$J_c(0,n) = \left(\frac{2\pi}{ic}\right)^k \frac{n^{k-1}}{(k-1)!}$$

1.4. Check that when m > 0 and n > 0, then

$$J_c(m,n) = \frac{2\pi}{i^k c} (\frac{n}{m})^{\frac{k-1}{2}} J_{k-1} (\frac{4\pi\sqrt{mn}}{c})$$

where the Bessel function of order ν is defined by

$$J_{\nu}(x) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell! \Gamma(\ell+1+\nu)} (\frac{x}{2})^{\nu+2\ell}.$$

1.5. Conclude that when m > 0, $P_m(z)$ is a cusp form and for all n > 0, its n-th Fourier coefficient is given by

$$p(m,n) = \left(\frac{n}{m}\right)^{\frac{k-1}{2}} \left(\delta_{mn} + 2\pi i^{-k} \sum_{c=1}^{\infty} c^{-1} S(m,n;c) J_{k-1}\left(\frac{4\pi\sqrt{mn}}{c}\right)\right)$$

1.6. Show that for any integer k > 2 (not necessarily even) and n > 0,

$$\zeta(k) \sum_{c=1}^{\infty} c^{-k} S(0, n; c) = n^{1-k} \sigma_{k-1}(n)$$

where $\sigma_r(n) := \sum_{d|n} d^r$. Conclude that the Fourier expansion of the Eisenstein series $G_k(z)$ is given by

$$G_k(z) = P_0(z) = 1 + \frac{(2\pi)^k (-1)^{\frac{k}{s}}}{\zeta(k)(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i n z}.$$

1.7. Recall that for any $f \in S_k(\Gamma)$ and $g \in M_k(\Gamma)$, the Petersson inner product is defined by

$$(f,g) := \int_{\Gamma \backslash \mathcal{H}} f(z)g(z) \operatorname{Im}(z)^k \frac{dxdy}{y^2}.$$

Let $f \in S_k(\Gamma)$ be a cusp form with Fourier expansion $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$. Show that $(f, P_0) = 0$ and when m > 0,

$$(f, P_m) = \frac{\Gamma(k-1)}{(4\pi m)^{k-1}} a_m = \frac{(k-2)!}{(4\pi m)^{k-1}} a_m.$$

Conclude that $S_k(\Gamma)$ is spanned by $\{P_m\}_{m\geq 1}$.

2. Differential operators

Let $G := \mathrm{GL}_2(\mathbb{R})^+$ and $K := \mathrm{SO}(2)$. Recall that any element $g \in G$ can be written uniquely as

$$(2.1) g = \lambda \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y^{\frac{1}{2}} & 0 \\ 0 & y^{-\frac{1}{2}} \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \text{where } \lambda, y \in \mathbb{R}_{>0}, x \in \mathbb{R}, \theta \in [0, 2\pi).$$

Hence as a smooth manifold, we have $G \cong \mathbb{R}_{>0} \times \mathcal{H} \times K$ and we use λ, x, y, θ as coordinates on G. Moreover, we have the standard basis for $\mathfrak{g} = \mathfrak{gl}_2$:

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

and an alternative basis for $\mathfrak{sl}_2(\mathbb{C})$ (where $C = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}$ denotes the Caley transform):

$$W=C^{-1}HC=\begin{bmatrix}0 & -i\\ i & 0\end{bmatrix}, \quad R=C^{-1}EC=\frac{1}{2}\begin{bmatrix}1 & i\\ i & -1\end{bmatrix}, \quad L=C^{-1}FC=\frac{1}{2}\begin{bmatrix}1 & -i\\ -i & -1\end{bmatrix}$$

2.1. Identify $\mathfrak{g}_{\mathbb{C}}$ as left invariant differential operators on G, defined via right regular representation. Verify the following formulas:

$$\begin{split} W &= -i\frac{\partial}{\partial \theta}, \\ R &= e^{2i\theta} (iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + \frac{1}{2i}\frac{\partial}{\partial \theta}), \\ L &= e^{-2i\theta} (-iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} - \frac{1}{2i}\frac{\partial}{\partial \theta}) \end{split}$$

Recall that $\Delta := -\frac{1}{4}(W^2 + 2RL + 2LR)$. Check that

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + y \frac{\partial^2}{\partial x \partial \theta}.$$

2.2. Let $f \in M_k(\Gamma)$ be a holomorphic modular form of weight k. Let $\varphi_f \in C^{\infty}(G)$ be the associated automorphic form defined by $\varphi_f(g) = f(gi)j(g,i)^{-k} \det(g)^{\frac{k}{2}}$. Show that for g given as in (2.1), we have

$$\varphi_f(g) = \lambda^k f(x+iy) y^{\frac{k}{2}} e^{ik\theta}.$$

Deduce that

$$L\varphi_f = 0$$
 and $\Delta\varphi_f = \frac{k}{2}(\frac{k}{2} - 1)\varphi_f$

3. Eisenstein series of weight 0

Let
$$\Gamma := \operatorname{SL}_2(\mathbb{Z})$$
 and $\Gamma_{\infty} := \pm \begin{bmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{bmatrix} \subset \Gamma$. Let $\varphi \in C^{\infty}(\mathbb{R}_{>0})$. For all $g \in G = \operatorname{GL}_2(\mathbb{R})^+$, define
$$E_{\varphi}(g) := \sum_{\gamma \in \Gamma_{t_0} \setminus \Gamma} \varphi(\operatorname{Im}(\gamma gi))$$

provided the sum converges absolutely.

- 3.1. Show that if $|\varphi(y)|$ is bounded above by (some constant multiple of) y^{α} as $y \to 0$ for some $\alpha > 1$, then the sum defineing E_{φ} converges absolutely.
- 3.2. Take $\varphi(y) = y^s$, $s \in \mathbb{C}$. Then $E_{\varphi} = E_s$ comes from the non-holomorphic Eisenstein series on \mathcal{H} defined by:

$$E(z,s) = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \operatorname{Im}(\gamma z)^{s} = \frac{1}{2} \sum_{(c,d)=1} \frac{\operatorname{Im}(z)^{s}}{|cz+d|^{2s}}.$$

In other words, $E_s(g) = E(gi, s)$. Show that this converges absolutely when Re(s) > 1 and in this case use the invariance property of Δ to show that

$$\Delta E_s = s(1-s)E_s.$$

3.3. More generally, take $\varphi(y) = (\log y)^n y^s$ where $n \in \mathbb{Z}_{\geq 0}$ and get

$$E_{n,s}(g) = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} (\log(\operatorname{Im}(\gamma \operatorname{gi})))^n \operatorname{Im}(\gamma g i)^s$$

Show that this converges absolutely when Re(s) > 1 and in this case, we have

$$(\Delta - s(1-s))^{n+1}E_{n,s} = 0$$

and when n > 0, no smaller power of $\Delta - s(1 - s)$ annihilates $E_{n,s}$. In particular, when n > 0, the center of universal enveloping algebra $\mathcal{Z}_{\mathfrak{g}}$ does not act semi-simply on the (\mathfrak{g}, K) -module generated by $E_{n,s}$.