

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT Departamento de Engenharia Elétrica

Implementação do Projeto do Display de 7 Segmentos

ELE2715.1 - Laboratório 02

Isaac de Lyra Junior

SUMÁRIO

1	DESENVOLVIMENTO	3
1.1	Projeto	3
1.2	Implementação	4
2	RESULTADOS	7
3	CONCLUSÃO.	8
	REFERÊNCIAS.	9
	ANEXOS	10

1 DESENVOLVIMENTO

1.1 Projeto

Para começar o desenvolvimento do projeto de display de 7 segmentos primeiramente foi necessário estudar o datasheet do display para entender como funcionam as suas conexões e características. Na Fig. 1 está demonstrado a ideia de implementação para o projeto.

Figura 1 - Ideia de implementação do projeto do display de 7 segmentos

Fonte: Samaherni Morais Dias (2021).

Entendendo como o display funciona foi feito uma tabela verdade para definir quais dos 7 segmentos iriam estar em high para formar o caractere selecionado através do vetor de 4 bits na entrada. A tabela verdade do projeto está na Fig. 2.

Figura 2 - Tabela verdade para o display de 7 segmentos.

	sw				HEX						
char	3	2	1	0	6	5	4	3	2	1	0
A	0	0	0	0	1	1	1	0	1	1	1
0	0	0	0	1	1	1	1	1	1	1	0
6	0	0	1	0	0	0	1	1	1	1	1
1	0	0	1	1	0	1	1	0	0	0	0
C	0	1	0	0	1	0	0	1	1	1	0
2	0	1	0	1	1	1	0	1	1	0	1
d	0	1	1	0	0	1	1	1	1	0	1
3	0	1	1	1	1	1	1	1	0	0	1
6	1	0	0	0	1	0	1	1	1	1	1
E	1	0	0	1	1	0	0	1	1	1	1
4	1	0	1	0	0	1	1	0	0	1	1
F	1	0	1	1	1	0	0	0	1	1	1
5	1	1	0	0	1	0	1	1	0	1	1
7	1	1	0	1	1	1	1	0	0	0	0
8	1	1	1	0	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	0	0	1	1

Fonte: Isaac de Lyra Junior (2021).

Com a tabela verdade feita, foi montada as equações booleanas utilizando o conceito de mapa de Karnaugh para cada um dos 7 leds. As equações booleanas resultantes estão dispostas na Fig. 3.

Figura 3 - Equações booleanas para o projeto do display de 7 segmentos.

	Equações Booleanas
HEX[6]	SW[1]' + SW[2]SW[0] + SW[3]SW[0] + SW[3]SW[2]
HEX[5]	SW[3]'SW[2]'SW[1]' + SW[3]'SW[0] + SW[2]SW[0] + SW[2]SW[1] + SW[3]SW[1]SW[0]' + SW[2]SW[1]SW[0]' + SW[2]SW[1]SW[0]' + SW[2]SW[1]SW[1]SW[1]SW[1]SW[1]SW[1]SW[1]SW[1
HEX[4]	SW[3]'SW[2]' + SW[2]'SW[0]' + SW[3]'SW[1] + SW[3]SW[2]
HEX[3]	SW[3]'SW[1]'SW[0] + SW[3]'SW[1]SW[0]' + SW[3]'SW[2] + SW[2]SW[0]' + SW[3]SW[2]'SW[1]' + SW[3]SW[2]'SW[1]' + SW[3]'SW[2]'SW[1]' + SW[3]'SW[2]'SW[2]'SW[2]' + SW[3]'SW[2]'SW[2]' + SW[3]'SW[2]' + SW[3]'SW[3]' + SW[3]' + SW[3]'SW[3]' + SW[3]' + SW[3]' + SW[3]' + SW[3]' + SW[3]' + S
HEX[2]	SW[3]'SW[1]' + SW[3]'SW[0]' + SW[2]'SW[1]' + SW[2]SW[1]SW[0]' + SW[3]SW[2]'SW[0] + SW[3]SW[2]'SW[0]' + SW[3]SW[2]'SW[0]' + SW[3]'SW[2]'SW[0]' + SW[3]'SW[2]'SW[0]' + SW[3]'SW[2]'S
HEX[1]	SW[2]'SW[1]' + SW[2]'SW[0]' + SW[1]'SW[0]' + SW[3]SW[1]
HEX[0]	SW[2]'SW[0]' + SW[3]'SW[2]SW[0] + SW[2]SW[1] + SW[3]SW[2]' + SW[3]SW[0]'

Fonte: Isaac de Lyra Junior (2021).

Com a lógica do projeto toda definida foi possível iniciar a montagem do nosso circuito lógico, mas antes foi definido quais os componentes que seriam utilizados, tomando o cuidado de utilizar CI's utilizados na indústria para as portas lógicas. A relação de tipos de portas lógicas e componentes utilizados no projeto está na tabela da Fig. 4.

Figura 4 - Modelos de portas lógicas utilizadas

CI's para Portas Lógicas				
	Componente			
AND[2]	MM74HC08			
AND[3]	MM74HC11			
OR[2]	MM74HC32			
NOT	MM74HC04			

Fonte: Isaac de Lyra Junior (2021).

1.2 Implementação

Para a implementação foi utilizado o software Proteus, primeiramente foram feitas as conexões do display de 7 segmentos, pela Fig. 5 é possível ver que para cada entrada do display foi utilizado um resistor de 560Ω de resistência.

Figura 5 - Entradas do circuito e do display de 7 segmentos

Fonte: Isaac de Lyra Junior (2021).

Com a tabela da Fig. 3 foi implementado os circuitos lógicos para cada entrada do display de 7 segmentos utilizando como entrada o switch que determina os valores de entrada desses circuitos lógicos. As quatro entradas para os circuitos lógicos dos leds do display foram nomeadas de SW3 a SW0, e as saídas desses sete circuitos foram nomeadas de HEX6 a HEX0, sendo as duas ordenadas(entradas e saídas) em ordem decrescente. Na Fig. 6 é mostrado o circuito lógico para o led 0(superior) do display, as demais implementações dos circuitos lógicos estão nos anexos.

Figura 6 - Circuito lógico para o led 0 do display de 7 segmentos

Fonte: Isaac de Lyra Junior (2021).

A saída do circuito lógico acima é referente ao led destacado em amarelo da Fig. 7, onde dependendo dos quatro valores de entrada este segmento irá acender ou não.

Figura 7 - Destaque do led 0 do display de 7 segmentos e sua entrada

Fonte: Isaac de Lyra Junior (2021).

2 RESULTADOS

Após implementar o circuito lógico para cada um dos segmentos do display, foi feito os testes para verificar se as saídas estão de acordo com o esperado, abaixo é possível visualizar o resultado obtido para as diferentes entradas.

Figura 8 - Display de 7 segmentos para as diferentes entradas

Fonte: Isaac de Lyra Junior (2021).

3 CONCLUSÃO

De acordo com os testes realizados e os resultados obtidos é correto afirmar que o projeto obteve sucesso em mostrar todos os caracteres da tabela hexadecimal para as 16 entradas diferentes do circuito.

REFERÊNCIAS

VAHID, F. Sistemas digitais: projeto, otimização e HDLs. Porto Alegre: Artmed, 2008. 560p.

TOCCI, R.; WIDMER, N.; MOSS, G. Digital Systems: Principles and Applications. [S.l.]: Pearson Education Limited, 2011. ISBN 9780130387936.

ANEXO A - CIRCUITOS LÓGICOS DOS SEGMENTOS

Figura 9: Circuito lógico para o segmento 5 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

Figura 10: Circuito lógico para o segmento 6 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

SW2 0
SW3 0

Figura 11: Circuito lógico para o segmento 4 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

SW1' O-

Figura 12: Circuito lógico para o segmento 3 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

SW3' O
SW2' O
SW0' O
SW1 O
SW1 O
SW2 O
SW2 O

Figura 13: Circuito lógico para o segmento 2 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

Figura 14: Circuito lógico para o segmento 1 do display de 7 segmentos.

Fonte: Isaac de Lyra Junior (2021)

