Quasi Monte-Carlo Exemples en C++

Vincent Lemaire vincent.lemaire@upmc.fr

Par fonctions membres
Par fonctions amies

QMC - Discrépance

Koksma-Hlawka Dimension 1 - Van der Corput

Classe p_adic

Dimension supérieure

Halton

Kakutani

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, gsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Par fonctions membres
Par fonctions amies

QMC - Discrépance

Koksma-Hlawka

Dimension 1 - Van der Corput

Classe p_adio

Dimension supérieure

Halton

Kakutani

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, qsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Permet de redéfinir les opérateurs usuels pour une nouvelle classe.

- ▶ opérateurs unaires : ++, --
- ▶ opérateurs d'affectation : =, +=, -=, *=, /=, %=
- opérateurs arithmétiques (binaires) : +, -, *, /, %
- ▶ opérateurs de comparaison : ==, !=, <, >, <=, >=
- ▶ opérateurs « informatiques » : (), [], *, &, ->, new[], delete[]
- opérateurs de flux : <<, >>
- opérateurs de conversion : double, int, char, ...

En général, la surcharge des opérateurs unaires, d'affectation, de conversion et « informatiques », se fait par des fonctions membres et la surcharge des opérateurs binaires (arithmétiques et comparaisons) se fait par des fonctions amies.

Obligatoirement, la surchage des opérateurs de flux se fait par des fonctions amies.

Surcharge par fonctions membres

Surcharge par une fonction membre de l'opérateur • : la fonction doit se nommer **operator**• et

```
obj \bullet et \bullet obj \iff obj.operator \bullet (...)
obj1 \bullet obj2 \iff obj1.operator \bullet (obj2)
```

Surcharge par fonctions membres

Surcharge par une fonction membre de l'opérateur • : la fonction doit se nommer **operator**• et

```
obj \bullet et \bullet obj \iff obj.operator \bullet (...)
obj1 \bullet obj2 \iff obj1.operator \bullet (obj2)
```

Syntaxe pour l'opérateur d'affectation [] (unaire)

- Lecture : elt operator[](int) const;
- Ecriture : elt& operator[](int);

Surcharge par fonctions membres

Surcharge par une fonction membre de l'opérateur ● : la fonction doit se nommer **operator**● et

```
obj \bullet et \bullet obj \iff obj.operator \bullet (...)
obj1 \bullet obj2 \iff obj1.operator \bullet (obj2)
```

Syntaxe pour l'opérateur d'affectation [] (unaire)

- Lecture : elt operator[](int) const;
- Ecriture : elt& operator[](int);

Syntaxe pour opérateurs ++ et -- qui peuvent être préfixe (++n) ou suffixe (n++): on utilise 2 fonctions différentes :

- Opérateur préfixe : obj& operator++();
- Opérateur suffixe : obj operator++(int);

Surcharge par fonctions amies

Surcharge par une fonction globale (souvent amie de la calsse) de l'opérateur

• : la fonction doit se nommer **operator**• et

```
obj \bullet et \bullet obj \iff operator \bullet (obj)
obj1 \bullet obj2 \iff operator \bullet (obj1, obj2)
```

Surcharge par fonctions amies

Surcharge par une fonction globale (souvent amie de la calsse) de l'opérateur

• : la fonction doit se nommer **operator**• et

```
obj \bullet et \bullet obj \iff operator \bullet (obj)
obj1 \bullet obj2 \iff operator \bullet (obj1, obj2)
```

Syntaxe pour les opérateurs de flux << et >>

- ▶ Injection : std::ostream& operator<<(std::ostream &o, const Obj &x)</p>
- Extraction :
 std::istream& operator>>(std::istream &i, Obj &x)

Par fonctions membres
Par fonctions amies

QMC - Discrépance

Koksma-Hlawka Dimension 1 - Van der Corput

Classe p_adio

Dimension supérieure

Halton

Kakutani

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, gsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Koksma-Hlawka

Theorem (Koksma-Hlawka)

Soit $(\xi_n)_{n\geqslant 1}$ une suite sur $[0,1]^d$ et f à variation V(f) finie. Alors

$$\left| \frac{1}{n} \sum_{k=1}^{n} f(\xi_k) - \int_{[0,1]^d} f(u) du \right| \leqslant V(f) D_n^*(\xi),$$

où $D_n^*(\xi)$ est la discrépance de la suite $(\xi_n)_{n\geqslant 1}$ i.e.

$$D_n^*(\xi) = \sup_{x \in [0,1]^d} \left| \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{[0,x]}(\xi_k) - \prod_{i=1}^d x^i \right|$$

Koksma-Hlawka

Theorem (Koksma-Hlawka)

Soit $(\xi_n)_{n\geqslant 1}$ une suite sur $[0,1]^d$ et f à variation V(f) finie. Alors

$$\left| \frac{1}{n} \sum_{k=1}^{n} f(\xi_k) - \int_{[0,1]^d} f(u) du \right| \leqslant V(f) D_n^*(\xi),$$

où $D_n^*(\xi)$ est la discrépance de la suite $(\xi_n)_{n\geqslant 1}$ i.e.

$$D_n^*(\xi) = \sup_{x \in [0,1]^d} \left| \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{[0,x]}(\xi_k) - \prod_{i=1}^d x^i \right|$$

Remark : Si $(U_n)_{n\geqslant 1}$ est une suite *i.i.d.* uniformément distribuée sur $[0,1]^d$, alors (par la LLI)

$$\limsup_{n} \sqrt{\frac{2n}{\log(\log n)}} D_n^*(U) = 1 \quad p.s.$$

Dimension 1 - Van der Corput

La plupart des suites à discrépance faible repose sur la manipulation des coefficients de la décomposition p-adique de n.

Voici la construction de Van der Corput (dimension 1) :

- ▶ Soit p un nombre premier qui sert de base à la décomposition p-adique
- ightharpoonup Décomposition de n:

$$n = a_0 + a_1 p + \dots a_r p^r, \quad 0 \leqslant a_i \leqslant p - 1, a_r \neq 0,$$

▶ Construction de ξ_n :

$$\xi_n^{(p)} = \frac{a_0}{p} + \frac{a_1}{p^2} + \dots + \frac{a_r}{p^{r+1}} \in [0, 1].$$

Dimension 1 - Van der Corput

La plupart des suites à discrépance faible repose sur la manipulation des coefficients de la décomposition p-adique de n.

Voici la construction de Van der Corput (dimension 1) :

- \blacktriangleright Soit p un nombre premier qui sert de base à la décomposition p-adique
- ightharpoonup Décomposition de n:

$$n = a_0 + a_1 p + \dots a_r p^r$$
, $0 \le a_i \le p - 1, a_r \ne 0$,

▶ Construction de ξ_n :

$$\xi_n^{(p)} = \frac{a_0}{p} + \frac{a_1}{p^2} + \dots + \frac{a_r}{p^{r+1}} \in [0, 1].$$

Discrépance :

$$D_n^*(\xi^{(p)}) \leqslant \frac{1}{n} \left(1 + (p-1) \frac{\log(pn)}{\log(p)} \right)$$

Par fonctions membres

QMC - Discrépance

Koksma-Hlawka Dimension 1 - Van der Corput

Classe p_adic

Dimension supérieure

Halton Kakutani

Makutan

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL. qsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Classe **p_adic**

But : Ecrire une classe p_adic qui permet de manipuler facilement la décomposition p-adique de n et de calculer $\xi_n^{(p)}$.

- 3 constructeurs :
 - à partir des coefficients a_k , k = 0, ..., r (et de p...)
 - ightharpoonup à partir d'un entier n (et de la base p)
 - à partir d'un réel $x \in [0,1]$ (et de la base p)
- 2 opérateurs de conversions :
 - vers double
 - vers int
- surcharge des opérateurs : +, ++ (préfixe et suffixe)

Classe p_adic

But : Ecrire une classe p_adic qui permet de manipuler facilement la décomposition p-adique de n et de calculer $\xi_n^{(p)}$.

- ▶ 3 constructeurs :
 - ightharpoonup à partir des coefficients a_k , $k=0,\ldots,r$ (et de $p\ldots$)
 - ightharpoonup à partir d'un entier n (et de la base p)
 - à partir d'un réel $x \in [0,1]$ (et de la base p)
- 2 opérateurs de conversions :
 - vers double
 - vers int
- surcharge des opérateurs : +, ++ (préfixe et suffixe)

```
int main() {
    ofstream file;
    file.open("vdc.dat");
    p_adic n(0,2);
    for (int k = 1; k <= 20; ++k) {
        file << k << "\t" << (double) ++n << endl;
    }
    file.close();
}</pre>
```

20 premiers points de $\xi^{(2)}$

Implémentation

10

12

14

16

18

Déclaration dans le fichier p_adic.hpp (sans les opérateurs arithmétiques) : class p_adic { public: typedef std::list<int> coeff; $p_{adic}(coeff ak, coeff pk) : ak(ak), pk(pk), p(*(++pk.begin())){};$ $p_adic(int n, int p = 2);$ $p_adic(double x, int p = 2);$ operator int() { return std::inner_product(ak.begin(), ak.end(), pk.begin(), 0); operator double() { return std::inner_product(ak.begin(), ak.end(), ++pk.begin(), 0.0, std::plus<double>(), std::divides<double>()); friend struct halton; friend struct kakutani; friend struct faure: private: int p; coeff ak, pk;

Implémentation -2-

Définition d'un constructeur dans le fichier p_adic.cpp :

```
p_adic::p_adic(int n, int p) : p(p) {
    int puiss = 1;
    while (n > 0) {
        ak.push_back(n % p);
        pk.push_back(puiss);
        puiss *= p;
        n -= ak.back();
        n /= p;
    }
    pk.push_back(puiss);
};
```

Exercice : écrire le constructeur qui prend un double en argument.

Implémentation -3- (opérateurs ++)

Définition d'une fonction increment() (private) qui fait le travail :

```
void p_adic::increment() {
   coeff::iterator i = ak.begin();
   while ((i != ak.end()) && ((*i)+1 == p)) { (*i) = 0; i++; }
   if (i == ak.end()) {
       ak.push_back(1);
       pk.push_back(pk.back()*p);
   }
   else (*i) += 1;
};
```

```
Implémentation -3- (opérateurs ++)
```

```
Définition d'une fonction increment() (private) qui fait le travail :
```

```
void p_adic::increment() {
    coeff::iterator i = ak.begin();
    while ((i != ak.end()) && ((*i)+1 == p)) { (*i) = 0; i++; }
    if (i == ak.end()) {
        ak.push_back(1);
        pk.push_back(pk.back()*p);
    }
    else (*i) += 1;
};
Ecriture des opérateurs dans la classe (fichier p_adic.hpp)

| p_adic operator++(int) {
```

```
p_adic operator++(int) {
    p_adic copie = *this;
    increment();
    return copie;
};
p_adic& operator++() {
    increment();
    return (*this);
}.
```

Par fonctions membres

QMC - Discrépance

Koksma-Hlawka Dimension 1 - Van der Corput

Classe p_adio

Dimension supérieure

Halton

Kakutani

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, gsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Halton

Soit d la dimension, et p_1,\dots,p_d les d premiers nombres premiers. La suite d'Halton est définie par

$$\Xi_n^{(d)} = (\xi_n^{(p_1)}, \dots, \xi_n^{(p_d)})$$

Discrépance :

$$D_n^*(\xi^{(p)}) \le \frac{1}{n} \left(1 + \prod_{i=1}^d (p_i - 1) \frac{\log(p_i n)}{\log(p_i)} \right)$$

Implémentation

```
struct halton {
       typedef std::vector<double> result_type;
2
       typedef std::vector<p_adic> list_p_adic;
       halton(list_p_adic const & x) : nk(x), result(x.size()) {};
       halton(int dimension) : result(dimension) {
           for (int k = 0; k < dimension; k++)
                nk.push_back(p_adic((int) 1, primes[k]));
       };
       result_type operator()() {
           result_type::iterator ir = result.begin();
10
           list_p_adic::iterator ink = nk.begin();
           while (ink != nk.end()) {
12
                *ir++ = (double) (*ink++)++;
14
           return result;
16
   private:
       list_p_adic nk;
18
       result_type result;
```

Halton, dimensions 1-2 (bases 2-3)

Halton, dimensions 1-2 (bases 2-3)

Halton, dimensions 1-2 (bases 2-3)

Halton, dimensions 5-6 (bases 11-13)

Halton, dimensions 5-6 (bases 11-13)

Halton, dimensions 5-6 (bases 11-13)

Halton, dimensions 18-19 (base 61-67)

Halton, dimensions 18-19 (base 61-67)

Halton, dimensions 18-19 (base 61-67)

Kakutani - Généralisation d'Halton

Définition : cf. cours Gilles Pagès.

Kakutani, dimensions 1-2 (bases 2-3)

Kakutani, dimensions 1-2 (bases 2-3)

Kakutani, dimensions 1-2 (bases 2-3)

Kakutani, dimensions 5-6 (bases 11-13)

Kakutani, dimensions 5-6 (bases 11-13)

Kakutani, dimensions 5-6 (bases 11-13)

Kakutani, dimensions 18-19 (base 61-67)

Kakutani, dimensions 18-19 (base 61-67)

Kakutani, dimensions 18-19 (base 61-67)

Suite de Faure

Soit p le plus petit nombre premier plus grand que d. La suite de Faure est définie par

$$\xi_n = \left(\xi_n^{(p)}, C_p(\xi_n^{(p)}), \dots, C_p^{d-1}(\xi_n^{(p)})\right),$$

où pour tout $u \in [0,1]$, $u = \sum_k a_k p^{-(k+1)}$

$$C_p(u) = \sum_k b_k p^{-(k+1)}, \quad \text{avec} \quad b_k = \sum_{j \geqslant k} C_k^j a_j \mod p.$$

Remarque : Dans les exemples suivants, la suite de Faure est construite sur p=19.

Faire le graphique de la dimension 1-2 lorsque p=3.

Faure, dimensions 1-2

Faure, dimensions 1-2

Faure, dimensions 1-2

Faure, dimensions 5-6

Faure, dimensions 5-6

Faure, dimensions 5-6

Faure, dimensions 18-19

Faure, dimensions 18-19

Faure, dimensions 18-19

Suite de Sobol, utilisation de la GSL -1-

Implémentation depuis le code de la GSL (Gnu Scientific Library) disponible sur https://www.gnu.org/software/gsl/ Version utilisée: 1.16

Descriptions des fonctions de la GSL en C

- gsl_qrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned d) This function returns a pointer to a newly-created instance of a quasi-random sequence generator of type T and dimension d.
- ▶ void gsl_qrng_free (gsl_qrng * q) This function frees all the memory associated with the generator q.
- void gsl_qrng_init (gsl_qrng * q) This function reinitializes the generator q to its starting point. Note that quasi-random sequences do not use a seed and always produce the same set of values.
- gsl_qrng_sobol générateur de type gsl_qrng_type * This generator uses the Sobol sequence described in Antonov, Saleev, USSR Comput. Maths. Math. Phys. 19, 252 (1980). It is valid up to 40 dimensions.

Suite de Sobol, utilisation de la GSL -2-

- ▶ int gsl_qrng_get (const gsl_qrng * q, double x[])
 This function stores the next point from the sequence generator q in the array x. The space available for x must match the dimension of the generator. The point x will lie in the range 0 < x_i < 1 for each x_i.</p>
- ▶ int gsl_qrng_memcpy (gsl_qrng * dest, const gsl_qrng * src) This function copies the quasi-random sequence generator src into the pre-existing generator dest, making dest into an exact copy of src. The two generators must be of the same type.
- gsl_qrng * gsl_qrng_clone (const gsl_qrng * q) This function returns a pointer to a newly created generator which is an exact copy of the generator q.

Suite de Sobol, exemple en GSL

```
#include <stdio.h>
   #include <qsl/qsl_qrnq.h>
   int main (void) {
       int i;
       qsl_qrnq * q = qsl_qrnq_alloc (qsl_qrnq_sobol, 2);
       for (i = 0; i < 1024; i++) {
           double v[2];
           gsl_qrng_get (q, v);
10
           printf (\%.5f \%.5f\n", v[0], v[1]);
12
       qsl_qrnq_free (q);
14
       return 0;
```

Exercice : écrire une classe sobol en C++ qui encapsule ces fontions de la GSL

Sobol, dimensions 1-2

Sobol, dimensions 1-2

Sobol, dimensions 1-2

Sobol, dimensions 5-6

Sobol, dimensions 5-6

Sobol, dimensions 5-6

Sobol, dimensions 18-19

Sobol, dimensions 18-19

Sobol, dimensions 18-19

Dimension supérieure

Halton Kakutani

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, qsl_function et Lambda function en C++11

Type gsl_function

Le type gsl_function est une structure qui contient 2 champs :

- function un pointeur de type
 double (*function)(double x, void * params)
- params de type void *

Par exemple pour coder la fonction paramétrique

$$f(x) = ax^2 + bx + c$$

```
avec a = 3, b = 2 et c = 1 on peut définir une gsl_function F :

struct my_f_params { double a; double b; double c; };

double my_f (double x, void * p) {
    struct my_f_params * pa = (struct my_f_params *)p;
    return (pa->a * x + pa->b) * x + pa->c;
}

gsl_function F;
struct my_f_params params = { 3.0, 2.0, 1.0 };
F.function = &my_f;
F.params = &params;
```

Exemple d'intégration numérique en GSL

```
#include <qsl/qsl_integration.h>
   double f(double x, void * params) {
     double alpha = *(double *) params;
     return log(alpha*x) / sqrt(x);
   int main(void) {
     qsl_integration_workspace * w = qsl_integration_workspace_alloc(1000)
     double result, error;
10
     double alpha = 1.0;
     gsl_function F;
12
     F.function = &f;
     F.params = α
14
     gsl_integration_qags(&F, 0, 1, 0, 1e-7, 1000,
                          w, &result, &error);
16
     printf("result
                             = % .18f\n". result):
     printf("estimated error = % .18f\n", error);
18
     gsl_integration_workspace_free(w);
     return 0:
```

4□ → 4周 → 4 = → 4 = → 9 Q P

Lambda function

On peut voir une Lambda fonction comme un objet fonctionnel dont l'écriture syntaxique est plus épurée. Prenons l'exemple suivant :

```
struct compare {
    bool operator()(int a, int b) const { return abs(a) < abs(b); }
}
vector<int> v = {50, -10, 20, -30};
std::sort(v.begin(), v.end()); // the default sort
std::sort(v.begin(), v.end(), compare());
```

On peut remplacer l'objet compare par une lambda function dont la syntaxe est la suivante :

```
\big|\, \mathsf{std} \colon : \mathsf{sort}(\mathsf{v}.\mathsf{begin}(), \,\, \mathsf{v}.\mathsf{end}(), \,\, [\,](\mathsf{int} \,\, \mathsf{a}, \,\, \mathsf{int} \,\, \mathsf{b}) \,\, \{\mathsf{return} \,\, \mathsf{abs}(\mathsf{a}) \!<\! \mathsf{abs}(\mathsf{b})\,; \})
```

On peut stocker une lambda function dans un objet std::function.

```
std::function<bool(int, int)> f2 =
   [](int a, int b) {return abs(a) < abs(b);};
auto f = [](int a, int b) { return abs(a) < abs(b); };</pre>
```

Capture and paramètres

Les crochets [] sont obligatoires et définissent une liste de capture indiquant si des variables locales doivent être des paramètres de la lambda function. Voici les options

- ▶ [] liste vide, aucun paramètre capturé
- ▶ [=] toutes les variables locales utilisées dans le code de la lambda sont capturées *par copie*
- ▶ [&] toutes les variables locales utilisées dans le code de la lambda sont capturées *par référence*
- ▶ [x] uniquement la variable x capturée par copie
- [x, &y] la variable x capturée par copie et la variable y capturée par référence

Exemple:

```
void print_modulo(const vector<int>& v, ostream& os, int m) {
   for_each(v.begin(), v.end(),
      [&os,m](int x) { if (x%m==0) os << x << '\n'; });}</pre>
```

Functor équivalent à la lambda function précédente

```
class Modulo_print {
    ostream& os; // members to hold the capture list
    int m;
public:
    Modulo_print(ostream& s, int mm) : os(s), m(mm) {}
    void operator()(int x) const { if (x%m==0) os << x << '\n'; }
};

void print_modulo(const vector<int>& v, ostream& os, int m) {
    for_each(v.begin(), v.end(), Modulo_print(os,m));
}
```

Functor équivalent à la lambda function précédente

```
class Modulo_print {
    ostream& os; // members to hold the capture list
    int m;
public:
    Modulo_print(ostream& s, int mm) : os(s), m(mm) {}
    void operator()(int x) const { if (x%m==0) os << x << '\n'; }
};

void print_modulo(const vector<int>& v, ostream& os, int m) {
    for_each(v.begin(), v.end(), Modulo_print(os,m));
}
```

Une lambda function par défaut est **const** (cf. exemple précédent) et ne modifie pas les paramètres capturés. On peut changer ce comportement en déclarant la lambda **mutable**. Par exemple

Lambda function et pointeur de fonction

<u>Important</u>: Une lambda function sans paramètre (qui ne capture rien) peut être assigné à un pointeur de fonction. Par exemple

```
double (*p1)(double) = [](double a) { return sqrt(a); }
```

Mais attention, il faut vraiment une liste de capture vide et que les types correspondent :

```
double (*p2)(double) = [&](double a) { return sqrt(a); } // Erreur
double (*p3)(int) = [](double a) { return sqrt(a); } // Erreur
```

Si le type de retour d'une lambda ne peut pas être inféré par le compilateur il y a une erreur (à la compilation) et il faut indiquer le type avec la syntaxe suivante :

```
double y;
auto z = [y]() -> int { if (y) return 1; else return 2; };
double (*p)(int) = z;
```

Attention, on ne peut pas assigner un objet std::function à un pointeur de fonction...

Appel du code intégration numérique de la GSL avec un objet fonctionnel

Au tableau!

Surcharge d'opérateurs

Par fonctions membres

QMC - Discrépance

Koksma-Hlawka Dimension 1 - Van der Corput

Classe p_adio

Dimension supérieure

Halton

Kakutan

Faure

Suite de Sobol, intégration de la GSL

Un peu plus sur la GSL, gsl_function et Lambda function en C++11

Pour compléter la classe sobol en C++11

Référence sur rvalue

Constructeur de déplacement

std::move et std::forward

Retour à sobol

Référence sur rvalue

- Ivalue : expression qui a un nom, une adresse, c'est donc une variable qui peut se positionner à gauche du signe d'affectation left value Référence sur une lvalue : symbole &
- rvalue : expression anonyme, qui n'est pas une lvalue Référence sur une rvalue : symbole &

Exemples:

```
int && r = 4;

struct X {
    // définition d'une classe
    };
4    X && r = X();
```

L'intérêt de ces références sur rvalue est principalement la mise en place de

- Constructeur de déplacement (move constructor et move operator)
- ► Transfert parfait (perfect forwarding) d'arguments

Constructeur de déplacement

Au tableau, classe vecteur

Fonction std::move

```
template< class T >
typename std::remove_reference<T>::type&& move( T&& t );
```

La fonction générique std::move renvoie une *rvalue* référence sur son argument (conversion vers une *rvalue* reference).

<u>Attention</u>: on dit explicitement que l'objet passé en argument ne sera plus jamais utilisé : son contenu est détruit.

Exemple d'utilisation :

```
template < class T>
void swap(T & a, T & b) {
    T tmp = std::move(a);
    a = std::move(b);
    b = std::move(tmp);
}
```

Le code précédent fonctionne si la classe T possède un opérateur d'affectation de déplacement...

Fonction std::forward

```
template< class T >
T&& forward( typename std::remove_reference<T>::type& t );
template< class T >
T&& forward( typename std::remove_reference<T>::type&& t );
```

La fonction générique std::forward produit une référence sur *rvalue* uniquement si l'argument est de type rvalue.

Si l'argument est une variable, celle-ci n'est pas modifiée par l'appel de std::forward contrairement à std::move.

Exemple pour distinguer std::move et std::forward

```
#include <iostream>
    void overloaded(int const & arg) { std::cout << "by lvalue\n"; }</pre>
    void overloaded(int && arg) { std::cout << "by rvalue\n": }</pre>
    template<typename T>
6
    void forwarding(T && arg) {
        std::cout << "via std::forward: ":
8
        overloaded( std::forward<T>(arg) );
        std::cout << "via std::move: ":
10
        overloaded( std::move(arg) );
        std::cout << "by simple passing: ":
12
        overloaded( arg ):
        std::cout << std::endl;
14
16
    int main() {
        std::cout << "initial caller passes rvalue:\n":
18
        forwarding(5);
        std::cout << "initial caller passes lvalue:\n";</pre>
20
        int x = 5:
        forwarding(x);
22
        return 0:
```

Exercice : écrire le constructeur et l'opérateur move pour la classe sobol