タイトルタイトルタイトルタイトルタイトル

Title Title Title Title Title

竹内 一真 / Kazuma Takeuchi

1 はじめに

近年,多方面でのドローンを活用した事業が進出しており,屋内での小型ドローンの利用も期待されている.しかし,狭小空間でのドローンの飛行は,障害物が多く,操縦者から見えない場所であったりと,遮られた視点からの操縦を必要とし,操縦は困難が懸念される.

そこで,拡張現実を用いることで,操縦者の死角領域内 を可視化し,狭小空間での操縦性の向上を図る手法を提案 した. また、操縦者視点の操縦を実現する上で、障害物ま での距離感が掴めないことが懸念されている. そこで、ド ローン近傍の障害物を検知するデザイン案を提案すること で、操縦者にとってどのような情報が障害物までの距離感 を掴むのに適しているかを検討した結果、AR を用いた手 法では AR なしの手法と比較して、操縦時間と衝突回数が 低いことがわかった. しかし, 実験に費やした時間が平均 的に短いことから実際の場面で使用することを考えると, 操縦者目線のみでのドローン操縦ではドローン周辺の環境 を完全に認識できるわけではないので、ドローン操縦にお ける安全性の不足が考えられる. 本研究では, AR により 表示されたドローン及びその周辺の環境を、複数人でリア ルタイムに確認できる手法を提案する.これにより、操縦 者一人のみの場合と異なり、よりドローンの安全性を向上 させることを目指す.

2 関連研究

2.1

Anhong らの研究では [?], 未だ AR は, エンドユーザーが消費するコンテンツを作ることができないため, 永続的な AR 構造を共同で作成することができるモバイルアプリケーションを提案し, 実験協力者が同一空間, 異なる空間, 異なる空間の上, 異なる時間の3つの環境の上で, どの環境における共同作業が最も好まれるかを評価した. 結果として, 同一空間で共同作業を行う環境が最も好まれたため, 本研究においても同一空間での共同作業を行うものとする.

図1 悩む男の子

3 提案手法

3.1 死角領域内の AR 可視化

本研究では、操縦者とドローンの間に障害物があり、ドローンを視認できない環境を想定する。障害物が存在すると判断した際、その障害物を透過することで、操縦者への死角領域の空間認識を提供する。また、死角領域内をドローンが飛行している際に、近傍の障害物までの距離が掴めない問題点を解決するために、2つのARインタフェースデザインを提案した。

3.2 Stereo

Stereo のデザインは、ステレオビジョンを参考にして、 ドローンから障害物までの距離に応じて、障害物の色を分けている。Stereo は、全体的な環境の理解を提供しており、 ドローン周辺の障害物全ての衝突の危険性を示す。

3.3 Marker

Marker のデザインは、ドローンから見て最も近い障害物に対して、目印を付けている。Stereo では障害物全てが色分けされているため、操縦者を混乱させる可能性がある。Marker では、最も危険な障害物だけを知覚させるため、Stereo に比べ簡易的なアプローチとなっている。

3.4 複数人での AR 共有

本研究では、死角領域内の AR 可視化を行った上で、可 視化した環境地図、ドローンを複数人でリアルタイムに視

図2 ドライブする家族

認できる仕組みを構築する.システム構成を に示す.図 のように各端末が単一の AR マーカーを参照することで、AR マーカーを三次元のワールド座標 (X,Y,Z) と想定し、マーカーとの相対位置関係により、それぞれの端末の位置情報を導き出す.この際、端末で映し出した AR マーカーまでの距離を、HoloLens 搭載の 1-MP ToF (Time of Flight) 深度センサーにより取得する.取得した各端末の位置情報、角度をクラウドに送信し、3次元環境地図内における各ユーザの位置合わせを行う.

3.5 動作手順

- 1. 書かれた論文は書いた人の研究者としての人格を表す
- 2. データのみ出して論文を書かない者は、テクニシャン である
- 3. データも出さず、論文(原著論文)を書かない者は、評論家である
- 4. 研究者は論文を書くことによって成長する. また,成 長の糧にしなければならない
- 5. 論文は研究者の飯のタネである

4 評価

4.1 実装

5 まとめと今後の課題

小型ドローンでの遮られた視点からの狭小空間での操縦は死角の多さや、ドローンと障害物までの距離感が測れないことが懸念され、本研究では操縦者の死角領域内に存在するドローンと周辺を可視化し、ドローン周辺の障害物を知覚するためのARデザインを提案し、実験を行うことで遮られた視点からの狭小空間でのドローン操縦性を評価した。結果として、ARを利用した手法では実験環境での操縦時間が短く、衝突回数も少なかったことから操縦性の向上が確認された。また、障害物を知覚するためのARデザインでは、ドローン周辺の障害物に危険度を振り分けてい

る手法が、操縦者への操縦への安心を与え、操縦性を向上 させたことが確認できた.

参考文献

- [1] Latex Wiki (https://texwiki.texjp.org/).
- [2] 渡辺 豊, "角皆静男先生のご逝去を悼む", 地球化学, vol.50, no.1, pp.1-3, 2016.