Day 6 Programming Boolean expression

Lecturer: Msc. Minh Tan Le

What to do...

- I. From gates to functions
- II. Let's build a processor
- III. Let's build a memory

I. From gates to functions

• Question: How will you write these expressions in C++?

No.	Expression	C++	
		(a and b are Booleans)	
1	NOT a	•••	
2	a AND b	•••	
3	a OR b	•••	
4	a XOR b	•••	
5	a NAND b	•••	

Now, the gates

- Gate can be a function.
 - Have input.
 - Have output.

No.	Expression	Algebra	C++ function
1	NOT a	\bar{a}	
2	a AND b	ab	And(a, b)
3	a OR b	a + b	Or(a, b)
4	a XOR b		Xor(a, b)
5	a NAND b	\overline{ab}	Nand(a, b)

 $f(x,y,z) = xyz + x\overline{y}z$ = OR(AND(AND(x,y),z), AND(AND(x,NOT(y)),z))

DEMO

The better idea is converting function into operator.

We call it **operator overload**.

But first, we must learn about **structure** to present the variable.