

Implementing High Performance Zero-Knowledge ML Provers

Lilia Tang, Alluri Siddhartha Varma, Siheng Pan, Daniel Kang UIUC

Implementing High Performance Zero-Knowledge ML Provers

Lilia Tang, Alluri Siddhartha Varma, Siheng Pan, Daniel Kang UIUC

Increasing calls for ML transparency

A necessary step: verify that ML model outputs are honestly computed

Increasing calls for ML transparency

A necessary step: verify that ML model outputs are honestly computed

Increasing calls for ML transparency

A necessary step: verify that ML model outputs are honestly computed

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (ZK-SNARK)

A ZK-SNARK is a cryptographic tool enabling a prover to prove **a statement true** to a verifier without disclosing additional information.

E.g., prove that a model is executed correctly without revealing weights and inputs

A ZK-SNARK is a cryptographic tool enabling a prover to prove a statement true to a verifier without disclosing additional information.

E.g., prove that a model is executed correctly without revealing weights and inputs

Powered by Zoom

Many ZK-SNARK frameworks

How do we pick which framework to use? And how do we use the framework effectively?

Powered by Zoom

ZKPerf: a ZK-SNARK proving benchmark

- ML circuits
 - MNIST Convolutional Neural Network: convolutions
 - Deep Learning Recommendation Model: multilayer perceptrons
- Cryptographic circuits
 - Merkle Tree Membership Verification: hashing
 - ECDSA: signatures over elliptic curves
- Frameworks: circom (rapidsnark), Halo2, gnark, Plonky2

Proving time for all tasks and frameworks

- Gnark-Groth16 fastest on crypto circuits but slower on ML
- Plonky2 fastest on ML circuits

Lookups are key to scalable ML circuits

- Lookups can store input-output mappings for non-linearities
 - Use when expensive to compute with arithmetic constraints
- E.g., ReLU can be proven with bit-decomposition or lookups

$$ReLU(b) = max(0, b)$$

ReLU(b) bit decomposition each operation:

1. Prove
$$b = \sum_i b_i \, 2^{l-i} \quad b_i (1-b_i) = 0$$

2. Output based on selector on sign bit

ReLU(b) lookup: commit table and add lookup constraints

b	ReLU(b)
-1	0
0	0
1	1
2	2

Lookup costs

- Gnark's lookups are slow enough that bit-decomposition wins out
- Plonky2's lookups are most scalable

Lookup costs

- Gnark's lookups are slow enough that bit-decomposition wins out
- Plonky2's lookups are most scalable

Optimizations with circuit structure

- Halo2 and Plonky2 have rows and columns
- Rows affect sizes of operations: FFTs and MSMs
 - Padded to a power of 2
- Columns affect number of operations

Dot product gate configurations in DLRM

Row and column microbenchmarks

Proving time drops when increasing columns decreases rows

Conclusion

- ZKPerf: a ZK-SNARK proving benchmark with crypto and ML tasks
- Most costly parts of ML circuits are nonlinearities (e.g., ReLU)
 - Need efficient lookups to prove larger models
- Circuit structure matters
 - · One way: optimize row and column dimensions

Conclusion

- ZKPerf: a ZK-SNARK proving benchmark with crypto and ML tasks
- Most costly parts of ML circuits are nonlinearities (e.g., ReLU)
 - Need efficient lookups to prove larger models
- Circuit structure matters
 - · One way: optimize row and column dimensions

- · ZKRPEF: 92XKSMARK proving benchmark with crypto and ML tasks
- Most costwyparts of ML circuits are nonlinearities (e.g., ReLU)
 - Niedæffirtænt tookups to prove larger models
- Oticaitistuoturemattes
 - Otherway coppitimizzer cow amd column dimensions

uiuc-kang-lab/zkperf

liliat2@illinois.edu

Conclusion

- ZKPerf: a ZK-SNARK proving benchmark with crypto and ML tasks
- Most costly parts of ML circuits are nonlinearities (e.g., ReLU)
 - Need efficient lookups to prove larger models
- Circuit structure matters
 - One way: optimize row and column dimensions

uiuc-kang-lab/zkperf

liliat2@illinois.edu

