Egzamin pisemny z Analizy Matematycznej I dla Informatyków - termin II, 4. III. 2009

Proszę o rozwiązania zadań na **osobnych, czytelnie oznaczonych w lewym górnym rogu** kartkach (własne imię, nazwisko, numer indeksu oraz poniżej — numer rozwiązywanego zadania).

Podczas egzaminu nie wolno korzystać z notatek, kalkulatorów, telefonów, pomocy sąsiadów, itp.

Rozwiązania, poza wszystkimi punktami (A), **powinny zawierać uzasadnienia** (tzn. dowody). **Należy się w nich powoływać** na twierdzenia z wykładu, ew. z ćwiczeń. Należy także **pamiętać o sprawdzaniu założeń** koniecznych do ich użycia!

Czas na rozwiązanie zadań: 2 godz. i 40 min.

Zadanie 1.

- (A) [4 pkt.] Sformułuj twierdzenie "o trzech ciągach".
- (B) [10 pkt.] Podaj dowód powyższego twierdzenia.
- (C) [10 pkt.] Zbadaj zbieżność ciągu $\{a_n\}_{n\geqslant 1}$ zadanego wzorem $a_n = \sqrt[n]{\sum_{k=1}^n \left(2 \frac{1}{k}\right)^k}$.

Zadanie 2.

- (A) [4 pkt.] Sformułuj kryterium d'Alemberta zbieżności szeregów liczbowych.
- (B) [6 pkt.] Wskaż przykład takiego ciągu liczbowego $\{a_n\}_{n\geqslant 1}$, że
 - a) $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \le 1$ i $\sum_{n=1}^{+\infty} a_n$ jest rozbieżny;
 - **b)** nie istnieje $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right|$ i $\sum_{n=1}^{+\infty} a_n$ jest zbieżny.
- (C) [10 pkt.] Zbadaj zbieżność szeregu $\sum_{n=1}^{+\infty} \left(\frac{2009^n}{\frac{2009}{n!}} + \frac{(-1)^n}{n + \frac{10100}{n}} \right)$.

Zadanie 3.

- (A) [4 pkt.] Podaj definicję jednostajnej ciągłości i wyjaśnij jednym niedługim zdaniem sens różnicy w definicjach pomiędzy ciągłością ("def. Cauchy'ego") a jednostajną ciągłością.
- (B) [6 pkt.] Czy istnieje funkcja $f:[0;1] \longrightarrow \mathbb{R}$, która
 - a) jest ciągła, ale nie jest jednostajnie ciągła;
 - b) jest różniczkowalna, ale nie jest jednostajnie ciągła;
 - c) jest jednostajnie ciągła i jej zbiór wartości jest dwuelementowy.
- (C) [10 pkt.] Dla każdego $\alpha > 0$ znajdź zbiór wartości funkcji $g:(0;1] \longrightarrow \mathbb{R}$ zadanej wzorem

$$g(x) = \ln(x^2 + 1) - \alpha \ln x.$$

Zadanie 4.

- (A) [4 pkt.] Sformułuj twierdzenie Peano o reszcie Taylora.
- (B) [6 pkt.] Znajdź 2-gi, 3-ci oraz 1000-czny wielomian Taylora o środku w $x_0 = 0$ funkcji $f: \mathbb{R} \longrightarrow \mathbb{R}$ zadanej wzorem $f(x) = x^3$. Zilustruj powyższe twierdzenie tymi trzema przykładami.
- (C) [10 pkt.] O funkcji $f: \mathbb{R} \longrightarrow \mathbb{R}$ wiadomo, że jest różniczkowalna 1000 krotnie w punkcie 0 oraz $f^{(k)}(0) = k!$ dla każdego $k = 0, \dots, 1000$. Oblicz (o ile istnieje) granicę

$$\lim_{x \to 0} \frac{f(x) - \sum_{k=0}^{1000} x^k + 1 - \cos(x^{500})}{\sin(x^{1000})}.$$