

Support Vector Machines (SVM)

Computational Intelligence II

Informatik - Software and Information Engineering Fachhochschule Vorarlberg

Dornbirn, am 6. März 2021

Inhaltsverzeichnis

Abkürzungsverzeichnis				3
1	Einführung			
	1.1	Intuiti	ion	
	1.2	$Math\epsilon$	ematische Herleitung	
		1.2.1	Problemdefinition	
		1.2.2	Optimierungsproblem	
		1.2.3	Lagrange Optimierung	
			Quadratic Programming Solver	

Abkürzungsverzeichnis

SVM Support Vector Machine

1 Einführung

1.1 Intuition

Ziel: möglichst breites Band zwischen den 2 verschiedenen Klassen aufziehen.

1.2 Mathematische Herleitung

TODO TEXT HERE

1.2.1 Problemdefinition

Gegeben sei ein Gewichtsvektor $w \in \mathbb{R}^D$, ein Bias $b \in \mathbb{R}$, ein beliebiger Punkt $x_k \in \mathbb{R}^D$ und ein zugehöriges Label $y_k \in \{1, +1\}$. Eine Ebene im Raum kann allgemein definiert werden durch:

$$w^T x_k + b = 0 (1.1)$$

Weiters soll für eine richtige Klassifikation gelten:

$$w^T x_k + b \ge +1$$
 für $y_k = +1$ (1.2a)
 $w^T x_k + b \le -1$ für $y_k = -1$ (1.2b)

$$w^T x_k + b \le -1 \qquad \text{für } y_k = -1 \tag{1.2b}$$

Gleichung 1.2 kann weiter verallgemeinert werden durch beidseitige Multiplikation mit y_k :

$$y_k(w^T x_k + b) \ge 1$$
 für $y_k = +1$ (1.3a)
 $y_k(w^T x_k + b) \ge 1$ für $y_k = -1$ (1.3b)

$$y_k(w^T x_k + b) \ge 1 \qquad \text{für } y_k = -1 \tag{1.3b}$$

Für den Grenzfall, dass $x_k = \hat{x}$ genau an der Grenze der Trennebene liegt, gilt somit:

$$y_k(w^T\hat{x} + b) = 1 \tag{1.4}$$

Als nächsten Schritt bestimmen wir den euklidischen Normalabstand D eines beliebigen Punkts $x_k \in \mathbb{R}^D$ zu der Ebene. Hierfür ist zuerst zu bemerken, dass w normal zur definierten Ebene steht.

Lemma 1.2.1. Eine Ebene sei definiert durch $w^Tx + b = 0$. Der Vektor w steht normal zu der definierten Ebene.

Beweis. Man wähle zwei Punkte $x_1,x_2\in\mathbb{R}^D$ die auf der Ebene liegen. Somit muss gelten:

$$w^{T}x_{1} + b = 0$$

$$w^{T}x_{2} + b = 0$$

$$w^{T}(x_{1} - x_{2}) = 0 \leftrightarrow ||w^{T}|| ||x_{1} - x_{2}|| \cos(\alpha) = 0 \leftrightarrow \alpha = 90^{\circ}$$
(1.5)

Um den Normalabstand D eines beliebigen Punkts x_k zu ermitteln wählt man einen Punkt x, der auf der Ebene liegt, und projiziert den Vektor $(x_k - x)$ auf den Einheitsvektor von w. Weil nur der tatsächliche Abstand zur Ebene relevant ist und nicht die Richtung nimmt man den Betrag.

$$D = \left| \frac{w^{T}}{\|w\|} (x_{k} - x) \right| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{k} - w^{T} x)| =$$

$$= \frac{1}{\|w\|} |(w^{T} x_{k} + b - (w^{T} x + b))|$$
(1.6)

Abbildung 1.1: Durch die Projektion von $(x_k - x)$ auf den Einheitsvektor von w kann der Normalabstand D von x_k zu der Ebene bestimmt werden.

Weil der Punkt x auf der Ebene liegt gilt $w^T x + b = 0$ (Gleichung 1.1):

$$D = \frac{1}{\|w\|} |(w^T x_k + b)| \tag{1.7}$$

Nun trifft man die Annahme, dass $x_k = \hat{x}$ der am nächsten zu der Trenngrenze liegende Punkt ist. Aus Gleichung 1.4 gilt $y_k(w^T\hat{x}+b)=1=|w^T\hat{x}+b|$ unter der Annahme, dass der Punkt richtig klassifiziert wurde. Somit ergibt sich der kleinste Abstand zur Trennebene als:

$$D = \frac{1}{\|w\|} \tag{1.8}$$

1.2.2 Optimierungsproblem

Gleichung 1.8 beschreibt den Normalabstand zu dem am nächsten an der Ebene liegenden Punkt $\hat{x_k}$. Ziel einer Support Vector Machine (SVM) ist die Maximierung dieses Abstands für alle N Eingabevektoren $\{x_1...x_N\}, x_n \in \mathbb{R}^D$. Hierbei handelt es sich um ein Optimierungsproblem mit Nebenbedingungen:

$$\max_{w} \frac{1}{\|w\|}$$
mit
$$\min_{n=1..N} |w^{T}x_{n} + b| = 1$$

$$(1.9a)$$

$$(1.9b)$$

mit
$$\min_{n=1..N} |w^T x_n + b| = 1$$
 (1.9b)

Gleichung 1.9b beschreibt hier den am nächsten zur Ebene gelegenen Punkt \hat{x} in allgemeiner Form. Der Betrag lässt sich umschreiben durch die Multiplikation mit dem zugehörigen Label y_n . Für eine korrekte Klassifizierung der SVM gilt:

$$y_n = sign(w^T x_n + b) (1.10)$$

Somit gilt für einen korrekt klassifizierten Vektor x_n :

$$|w^{T}x_{n} + b| = y_{n}(w^{T}x_{n} + b) \tag{1.11}$$

Durch Anwendung von Gleichung 1.11 in Gleichung 1.9b, Umformulierung der Maximierung in eine Minimierung und der Verallgemeinerung von \hat{x} auf beliebige Punkte x_n erhält man:

$$\min_{w} \frac{1}{2} w^{T} w \qquad (1.12a)$$

$$\min_{w} y_{n}(w^{T} x_{n} + b) \ge 1 \text{ für } n = 1..N \qquad (1.12b)$$

mit
$$y_n(w^T x_n + b) \ge 1 \text{ für } n = 1..N$$
 (1.12b)

Die Verallgemeinerung von Gleichung 1.9b auf Gleichung 1.12b auf beliebige Punkte ist so möglich, weil durch Gleichung 1.4 sichergestellt ist, dass der kleinste Wert für $(w^Tx_n + b)$ 1 ist, und somit die Werte für alle anderen Punkte größer oder gleich 1 sein müssen.

1.2.3 Lagrange Optimierung

Das beschriebene Optimierungsproblem beinhaltet eine Ungleichung in Gleichung 1.12b. Diese Optimierung kann mittels des Karush-Kuhn-Tucker Ansatzes gelöst werden. Zuerst wird die Nebenbedingung umgeformt:

$$\min_{w} \qquad \frac{1}{2}w^{T}w \tag{1.13a}$$

mit
$$y_n(w^T x_n + b) - 1 \ge 0$$
 für $n = 1..N$ (1.13b)

 $y_n(w^Tx_n+b)-1$ kann hierbei als eine Art Schlupf verstanden werden. Das Problem kann nun formuliert werden:

$$\min_{w,b} \qquad \mathcal{L}(w,b,\alpha) = \frac{1}{2}w^T w - \sum_{n=1}^{N} \alpha_n (y_n(w^T x_n + b) - 1)$$
 (1.14a)

$$\max_{\alpha_n} \quad \alpha_n \ge 0 \text{ für } n = 1..N \tag{1.14b}$$

Nun kann die uneingeschränkte Optimierung von Gleichung 1.14a nach w und b gelöst werden indem die Ableitungen bestimmt und 0 gesetzt werden.

$$\nabla_{w} \mathcal{L} = w - \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n} \stackrel{!}{=} \vec{0}$$

$$w = \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}$$

$$(1.15)$$

$$\frac{\partial}{\partial b} \mathcal{L} = -\sum_{n=1}^{N} \alpha_n y_n \stackrel{!}{=} 0$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0$$
(1.16)

Die Ergebnisse von Gleichung 1.15 und Gleichung 1.16 können in Gleichung 1.14a eingesetzt werden.

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2}w^{T}w - \sum_{n=1}^{N} \alpha_{n}(y_{n}(w^{T}x_{n}+b)-1) =$$

$$= \frac{1}{2}w^{T}w - [\sum_{n=1}^{N} \alpha_{n}y_{n}b - \sum_{n=1}^{N} \alpha_{n} + \sum_{n=1}^{N} \alpha_{n}y_{n}w^{T}x_{n}]$$
(1.17)

Weil $\sum_{n=1}^{N} \alpha_n y_n = 0$ aus Gleichung 1.16 fällt der Term $\sum_{n=1}^{N} \alpha_n y_n b$ weg:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}w^{T}w - \left[-\sum_{n=1}^{N} \alpha_{n} + \sum_{n=1}^{N} \alpha_{n}y_{n}w^{T}x_{n}\right]$$
(1.18)

Vergleicht man den Term $\sum_{n=1}^{N} \alpha_n y_n w^T x_n$ mit dem Ergebnis von Gleichung 1.15 erkennt man, dass $\sum_{n=1}^{N} \alpha_n y_n w^T x_n = w^T w$ gilt. Dies kann ausgeschrieben werden als:

$$\mathcal{L}(\alpha) = \sum_{n=1}^{N} -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$
 (1.19)

Gleichung 1.19 beschreibt das Optimierungsproblem ohne Abhängigkeit von w und b, wir haben jetzt also eine Maximierung für α mit Nebenbedingungen:

$$\max_{\alpha} \qquad \mathcal{L}(\alpha) = \sum_{n=1}^{N} -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} y_n y_m \alpha_n \alpha_m x_n^T x_m$$
 (1.20a)

$$mit \alpha_n \ge 0 für n = 1..N (1.20b)$$

$$\sum_{n=1}^{N} \alpha_n y_n = 0 \text{ für } n = 1..N$$
 (1.20c)

Das in Gleichung 1.20 beschriebene Problem kann beispielsweise mittels eines Quadratic Programming Solvers gelöst werden. Als Ergebnis erhält man einen Vektor α mit allen α_n . Durch Einsetzen in $w = \sum_{n=1}^{N} \alpha_n y_n x_n$ kann w bestimmt werden.

Betrachtet man den Ergebnisvektor α wird man feststellen, dass sehr viele Werte 0 ergeben. In Gleichung 1.14a befindet sich der Term $\alpha_n(y_n(w^Tx_n+b)-1)$ und $(y_n(w^Tx_n+b)-1)$ wurde bereits zuvor als Schlupf bezeichnet. Das Produkt von Schlupf und α_n kann nur 0 werden, wenn entweder der Schlupf 0 ist oder α_n . Umgekehrt bedeutet dies, dass alle Vektoren, die einen minimalen Abstand zu der Trennebene haben, ein $\alpha_n \neq 0$ haben. Diese Vektoren werden Stützvektoren genannt.

Mit dieser Erkenntnis kann Gleichung 1.15 erneut analysiert werden:

$$w = \sum_{n=1}^{N} \alpha_n y_n x_n \tag{1.21}$$

Weil nur Stützvektoren ein $\alpha_n \neq 0$ aufweisen und somit auch nur Stützvektoren einen Beitrag zu w leisten kann Gleichung 1.21 stark vereinfacht werden:

$$w = \sum_{n \text{ ist Stützvektor}} \alpha_n y_n x_n \tag{1.22}$$

Der Gewichtsvektor w hängt also lediglich von einigen, in der Regeln wenigen, Stützvektoren ab.

Noch offen ist die Bestimmung des Bias b. Weil für Stützvektoren $y_n(w^Tx_n + b) = 1$ gilt (Gleichung 1.4) kann der Bias b aus jedem beliebigen Stützvektor bestimmt werden:

$$b = \frac{1}{y_n} - w^T x_n \tag{1.23}$$

1.2.4 Quadratic Programming Solver

TODO