Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Bivariate Frequency Distribution and Chi Square Statistic Ex 4.1

Question 1.

The following table gives income (X) and expenditure (Y) of 25 families:

X	200-300	300-400	400-500
200- 300	JHT I	ЖI	I
300- 400	-] M I
400- 500	-	-	

Find

- (i) Marginal frequency distributions of income and expenditure.
- (ii) Conditional frequency distribution of X when Y is between 300 400.
- (iii) Conditional frequency distribution of Y when X is between 200 300.
- (iv) How many families have their income ₹ 300 and more and expenses ₹ 400 and less?

Solution:

The bivariate frequency distribution table for Income (X) and Expenditure (Y) is as follows:

`` x			Andreas E.	
v		300 - 400	400 – 500	Total (fy)
200 - 300	6	6	1	13
300 - 400	0	4	6	10
400 - 500	0	0	2	2
Total (fx)	6	10	9	25

(i) Marginal frequency distribution of income (X):

X	200 - 300	300 – 400	400 – 500	Total
Frequency	6	10	9	25

Marginal frequency distribution of expenditure (Y):

Y	200 - 300	300 - 400	400 - 500	Total
Frequency	13	10	2	25

(ii) Conditional frequency distribution of X when Y is between 300 – 400:

X	200 – 300	300 – 400	400 - 500	Total
Frequency	0	4	6	10

(iii) Conditional frequency distribution of Y when X is between 200 – 300:

Y	200 - 300	300 - 400	400 - 500	Total
Frequency	6	0	, 0	6

(iv) The cells 300 - 400 and 400 - 500 are having income $\stackrel{?}{_{\sim}} 300$ and more and the cells 200 - 300 and 300 - 400 are having expenditure $\stackrel{?}{_{\sim}} 400$ and less.

Now, the following table indicates the number of families satisfying the above condition.

$\setminus \mathbf{x}$			
Ÿ	300 – 400	400 - 500	Total
200 - 300	6	1	7
300 – 400	4	6	10
Total	10	7	17

∴ There are 17 families with income ₹ 300 and more and expenditure ₹ 400 and less.

Question 2.

Two dice are thrown simultaneously 25 times. The following pairs of observations are obtained.

(2, 3) (2, 5) (5, 5) (4, 5) (6, 4) (3, 2) (5, 2) (4, 1) (2, 5) (6, 1) (3, 1) (3, 3) (4, 3) (4, 5) (2, 5) (3, 4) (2, 5) (3, 4) (2, 5) (4, 3) (5, 2) (4, 5) (4, 3) (2, 3) (4, 1)

Prepare a bivariate frequency distribution table for the above data. Also, obtain the marginal distributions.

Solution:

Let X = Observation on 1st die

Y = Observation on 2nd die

Now, the minimum value of X is 1 and the maximum value is 6.

Also, the minimum value of Y is 1 and the maximum value is 6.

A bivariate frequency distribution can be prepared by taking X as row and Y as a column.

Bivariate frequency distribution is as follows:

` v								
$\hat{\mathbf{y}}$	1	2	3	4	5		Total (f _y)	
1	_	_	1(1)	II (2)	_	1(1)	4	
2 .	-	_	1(1)	_	11 (2)	_	. 3	
3	_	11 (2)	1(1)	III (3)	-		6	
4	_	_	11 (2)	_	_	1(1)	3	
5	_	NN (5)	_	III (3)	1, (1)	_	9	
6	_	_		_	_	_	0	
Total (f _x)	0	7	5	8	3	2	25	

Marginal frequency distribution of X:

X	1	2	3	4	5	6	Total
Frequency	0	1 7	5	8	3	2	25

Marginal frequency distribution of Y:

Y	1	2	3	4	5	6	Total
Frequency	4	3	. 6	3	9	0	25

Question 3.

Following data gives the age of husbands (X) and age of wives (Y) in years. Construct a bivariate frequency distribution table and find the marginal distributions.

X	27	25	28	26	29	27	28	26	25	25	27
Y	21	20	20	21	23	22	20	20	19	19	23
X	26	29	25	27	26	25	28	25	27		
Y	19	23	23	22	21	20	22	23	22		

Find conditional frequency distribution of age of husbands when the age of wife is 23 years.

Solution:

Given, X = Age of Husbands (in years)

Y = Age of Wives (in years)

Now, the minimum value of X is 25 and the maximum value is 29.

Also, the minimum value of Y is 19 and the maximum value is 23.

Bivariate frequency distribution is as follows:

X	25	26	27	28	29	Total (fy)
19	II (2)	1.(1)	_	_	_	3
20	II (2)	1(1)	_	11(2)	_	5
21	_	III(3)	1(1)	. –	_	4
22	_	_	III(3)	1(1)	1	4
23	II (2)	_	1(1)	<u>-</u>	11(2)	5
Total (fx)	6	5	5	3	2	21

Marginal frequency distribution of X:

X	25	26	27	28	29	Total
Frequency	6	5	5	3	2	21

Marginal frequency distribution of Y:

Y	19	20	21	22	23	Total
Frequency	3	5	4	4	5	21

Conditional frequency distribution of X when Y is 23:

X	25	26	27	28	29	Total
Frequency	2	0	1	0	2	5

Question 4.

Construct a bivariate frequency distribution table of the marks obtained by students in Statistics (X) and English (Y).

Marks in Statistics (X)		20	46	28	35	26	41	48	32	23	20	39	47	33	27	26
Marks in English (Y)	30	32	41	33	29	43	30	21	44	38	47	24	32	31	20	21

Construct a bivariate frequency distribution table for the above data by taking class intervals 20 - 30, 30 - 40, etc. for both X and Y. Also find the marginal distributions and conditional frequency distribution of Y when X lies between 30 - 40.

Solution:

Given, X = Marks in Statistics

Y = Marks in English

A bivariate frequency table can be prepared by taking class intervals 20 -

30, 30 - 40, ..., etc for both X and Y.

Bivariate frequency distribution is as follows:

Marks in				The section
Statistics (X) Marks in English (Y)	20 – 30	30 – 40	40 – 50	Total (f _y)
20 – 30	II (2)	II (2)	1 (1)	5
30 – 40	III (3)	II (2)	II (2)	7
40 – 50	ll (2)	1 (1)	1 (1)	4
Total (f _x)	7	5	4	16

Marginal frequency distribution of X:

X	20 – 30	30 – 40	40 – 50	Total
Frequency	7	5	4	16

Marginal frequency distribution of Y:

Y	20 – 30	30 – 40	40 – 50	Total
Frequency	- 5	7	4	16

Conditional trequency distribution of Y when X lies between 30 - 40:

Y	20 - 30	30 – 40	40 – 50	Total
Frequency	2	2	1	5

Question 5.

Following data gives height in cms (X) and weight in kgs (Y) of 20 boys. Prepare a bivariate frequency table taking class intervals 150 - 154, 155 - 159,...etc. for X and 35 - 39, 40 - 44,..., etc for Y. Also, find

- (i) Marginal frequency distributions.
- (ii) Conditional frequency distribution of Y when $155 \le X \le 159$. (152,40) (160,54) (163,52) (150,35) (154,36) (160,49) (166,54) (157,38) (159,43) (153,48) (152,41) (158,51) (155,44) (156,47) (156,43) (166,53) (160,50) (151,39) (153,50) (158,46)

Solution:

Given X = Height in cms.

Y = Weight in kgs.

Bivariate frequency table can be prepared by taking class intervals 150 -

154, 155 – 159, ..., etc for X and 35 – 39, 40 – 44,...etc for Y.

The bivariate frequency distribution table is as follows:

Height in				
Weight in kgs (Y)	150 – 154	155 – 159	160 – 164 165 – 169	
35 – 39	III (3)	1 (1)		4
40 – 44	ll (2)	III (3)		5
45 – 49	1 (1)	II (2)	1 (1) . –	4
50 – 54	1 (1)	1 (1)	III (3) II (2)	7
Total (f _x)	7	7	4 2	20

Marginal frequency distribution of X:

X	150 – 154	155 – 159	160 – 164	165 – 169	Total
Frequency	7	7	4	2	20

Marginal frequency distribution of Y:

Y	35 – 39	40 – 44	45 – 49	50 – 54	Total
Frequency	4	5	4	7	20

Conditional frequency distribution of Y when $155 \le X \le 159$:

Y	35 – 39	40 – 44	45 – 49	50 - 54	Total
Frequency	1	3	2	1	7

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Bivariate Frequency Distribution and Chi Square Statistic Ex 4.2

Question 1.

The following table shows the classification of applications for secretarial and for sales positions according to gender. Calculate the value of \varkappa^2 statistic.

	Offered	Denied
Male	75	150
Female	25	50

Solution:

Table of observed frequencies.

	Offered	Denied	Row total (Ri)
Male	75	150	225
Female	25	50	75
Column total (Ci)	100	200	300

Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 225 \times 100300 = 75$

 $E_{12} = 225 \times 200300 = 150$

 $E_{21} = 75 \times 100300 = 25$

 $E_{22} = 75 \times 200300 = 50$

Table of expected frequencies.

	Offered	Denied	Total
Male	75	150	225
Female	25	50	75
Total	100	200	300

Now.

$$\chi^{2} = \sum \left[\frac{\left(O_{ij} - E_{ij} \right)^{2}}{E_{ij}} \right]$$

$$= \frac{\left(75 - 75 \right)^{2}}{75} + \frac{\left(150 - 150 \right)^{2}}{150} + \frac{\left(25 - 25 \right)^{2}}{25} + \frac{\left(50 - 50 \right)^{2}}{50}$$

$$= 0$$

Question 2.

200 teenagers were asked which takeaway food do they prefer – French fries, burgers, or pizza. The results were-

	French	Burger	Pizza
	Fries		
Boys	6	20	24
Girls	18	40	92

Compute \varkappa^2 statistic.

Solution:

Table of observed frequencies.

	French fries	Burger	Pizza	Row total (Ri)
Boys	6	20	24	50
Girls	18	40	92	150
Column total (C _j)	24	60	116	200

Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 50 \times 24200 = 6$

 $E_{12} = 50 \times 60200 = 15$

 $E_{13} = 50 \times 116200 = 29$

 $E_{21} = 150 \times 24200 = 18$

 $E_{22} = 150 \times 60200 = 45$

 $E_{23} = 150 \times 116200 = 87$

Table of expected frequencies.

B-13-07-07	French fries	Burger	Pizza	Total
Boys	. 6	15	29	50
Girls	18	45	87	150
Total	24	60	116	200

Now.

$$\begin{split} \chi^2 &= \sum \Biggl[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \Biggr] \\ &= \frac{\left(6 - 6 \right)^2}{6} + \frac{\left(20 - 15 \right)^2}{15} + \frac{\left(24 - 29 \right)^2}{29} + \frac{\left(18 - 18 \right)^2}{18} + \frac{\left(40 - 45 \right)^2}{45} + \frac{\left(92 - 87 \right)^2}{87} \\ &= 0 + \frac{25}{15} + \frac{25}{29} + 0 + \frac{25}{45} + \frac{25}{87} \\ &= 1.67 + 0.86 + 0.56 + 0.29 \\ &= 3.38 \end{split}$$

Question 3.

A sample of men and women who had passed their driving test either in 1st attempt or in 2nd attempt

were surveyed. Compute \varkappa^2 statistic.

Passed in →	First attempt	Second attempt
Men	32	28
Women	8	12

Solution:

Table of observed frequencies.

Passed in →	First attempt	Second attempt	Row total (Ri)
Men	32	28	60
Women	8	12	20
Column total (C _j)	40	40	80

Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 60 \times 4080 = 30$

 $E_{12} = 60 \times 4080 = 30$

 $E_{21} = 20 \times 4080 = 10$

 $E_{22} = 20 \times 4080 = 10$

Table of expected frequencies.

Passed in →	First attempt	Second attempt	Total
Men	30	30	60
Women	10	10	20
Total	40.	40	80

Now

$$\chi^{2} = \sum \left[\frac{\left(O_{ij} - E_{ij} \right)^{2}}{E_{ij}} \right]$$

$$= \frac{\left(32 - 30 \right)^{2}}{30} + \frac{\left(28 - 30 \right)^{2}}{30} + \frac{\left(8 - 10 \right)^{2}}{10} + \frac{\left(12 - 10 \right)^{2}}{10}$$

$$= \frac{4}{30} + \frac{4}{30} + \frac{4}{10} + \frac{4}{10}$$

$$= \frac{8}{30} + \frac{8}{10}$$

$$= 0.27 + 0.8$$

$$= 1.07$$

Question 4.

800 people were asked whether they wear glasses for reading with the following results.

Age	Wear glasses	Do not wear glasses
≤ 30	310	90
> 30	290	110

Compute the κ^2 square statistic.

Solution:

Table of observed frequencies.

Age	Wear glasses	Do not wear glasses	Row total (Ri)
≤30	310	90	60
> 30	290	110	400
Column total (Ci)	600	200	800

Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 400 \times 600800 = 300$

 $E_{12} = 400 \times 200800 = 100$

 $E_{21} = 400 \times 600800 = 300$

 $E_{22} = 400 \times 200800 = 100$

Table of expected frequencies.

Age	Wear glasses	Do not wear glasses	Total
≤ 30	300	100	400
> 30	300	100	400
Total	600	200	800

Now

$$\begin{split} \chi^2 &= \sum \Biggl[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \Biggr] \\ &= \frac{\left(310 - 300 \right)^2}{300} + \frac{\left(90 - 100 \right)^2}{100} + \frac{\left(290 - 300 \right)^2}{300} + \frac{\left(110 - 100 \right)^2}{100} \\ &= \frac{100}{300} + \frac{100}{100} + \frac{100}{300} + \frac{100}{100} \\ &= \frac{200}{300} + 1 + 1 \\ &= 0.67 + 2 \\ &= 2.67 \end{split}$$

Question 5.

Out of a sample of 120 persons in a village, 80 were administered a new drug for preventing influenza, and out of the 18 were attacked by influenza. Out of those who are not administered the new drug, 10 persons were not attacked by influenza:

- (i) Prepare a two-way table showing frequencies.
- (ii) Compute the \varkappa^2 square statistic.

Solution:

(i) The given data can be arranged in the following table.

ordinate the least of	Drug administered	Drug not administered	Total
Attacked	18		
Not Attacked		10	
Total	80		120

The observed frequency table can be prepared as follows:

	Drug administered	Drug not administered	Row total (Ri)
Attacked	18	30	48
Not Attacked	62	10	72
Column total (C _j)	80	40	120

(ii) Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 48 \times 80120 = 32$

 $E_{12} = 48 \times 40120 = 16$

 $E_{21} = 72 \times 80120 = 48$

 $E_{22} = 72 \times 40120 = 24$

Table of expected frequencies.

	Drug administered	Drug not administered	Total
Attacked	32	16	48
Not Attacked	48	- 24	72
Total	80	40	120

$$\chi^{2} = \sum \left[\frac{\left(O_{ij} - E_{ij} \right)^{2}}{E_{ij}} \right]$$

$$= \frac{\left(18 - 32 \right)^{2}}{32} + \frac{\left(30 - 16 \right)^{2}}{16} + \frac{\left(62 - 48 \right)^{2}}{48} + \frac{\left(10 - 24 \right)^{2}}{24}$$

$$= \frac{196}{32} + \frac{196}{16} + \frac{196}{48} + \frac{196}{24}$$

$$= 6.125 + 12.25 + 4.083 + 8.167$$

$$= 30.625$$

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Bivariate Frequency Distribution and Chi Square Statistic Miscellaneous Exercise 4

Question 1.

Following data gives the coded price (X) and demand (Y) of a commodity.

Price	5	7	9	8	10	7	9	8	5	11	11	10	2	3	9
De- mand	9	15	13	15	14	10	11	14	10	14	6	14	15	11	12
Price	2	4	3	14	6	10	7	15	8	6	5	6	11	14	15
De- mand	6	11	8	11	10	15	9	15	13	9	14	10	7	5	6

Classify the data by taking classes 0 - 4, 5 - 9, etc. for X and 5 - 8, 9 - 12, etc. for Y.

Also find

- (i) marginal frequency distribution of X and Y.
- (ii) conditional frequency distribution of Y when X is less than 10.

Solution:

Given, X = coded price

Y = demand

Bivariate frequency table can be prepared by taking class intervals 0-4, 5-9,... etc for X and 5-8, 9-12,... etc for Y.

Bivariate frequency distribution is as follows.

Coded price (X) Demand (Y)	0 -	-4		5 – 9		0 – 14	1		Total (f _y)
5 – 8	II (2	2)			III	(3)	1	(1)	6
9 – 12	11 (2	?)	MII	11(9)	1	(1)	-	_	12
13 – 16	1 (1)	IMI	(6)	IIII	(4)	1	(1)	12
Total (fx)	5	;		15		8		2	30

(i) Marginal frequency distribution of X:

X	0 – 4	5 – 9	10 – 14	15 – 19	Total
Frequency	5	15.	8	2	30

Marginal frequency distribution of Y:

Y	5 – 8	9 – 12	13 – 16	Total
Frequency	6	12	12	30

(ii) Conditional frequency distribution of Y when X < 10:

X	5 – 8	9 – 12	13 – 16	Total
Frequency	2	11	7	20

Question 2.

Following data gives the age in years and marks obtained by 30 students in an intelligence test.

Age	16	17	22	19	21	16
Marks	16	19	39	50	48	41
Age	21	20	20	23	22	19
Marks	59	44	42	62	37	67

Age	23	20	22	22	23	22
Marks	45	57	35	37	38	56
Age	17	18	16	21	19	20
Marks	54	61	47	67	49	56
Age	17	18	23	21	20	16
Marks	51	42	65	56	52	48

Prepare a bivariate frequency distribution by taking class intervals 16 - 18, 18 - 20,..., etc. for age and 10 - 20, 20 - 30,..., etc. for marks.

- (i) marginal frequency distributions.
- (ii) conditional frequency distribution of marks obtained when age of students is between 20 22.

Solution:

Let X = Age in years

Y = Marks

Bivariate frequency table can be prepared by taking class intervals 16 - 18, 18 - 20,..., etc for X and 10 - 20, 20 - 30,..., etc for Y.

Bivariate frequency distribution is as follows:

Age in years (X) Marks (Y)	16 – 18	18 – 20	20 – 22	22 – 24	Total (f _y)
10 – 20	(2)	_	_	_	2
20 – 30	_	_	_	_	0
30 – 40	_	_		NN (5)	5
40 – 50	III (3)	II (2)	III (3)	(1)	9
50 - 60	ll (2)	(1)	N (5)	1 (1)	9
60 – 70	_	(2)	(1)	II (2)	5
Total (f _x)	7	5	9	9	30

(i) Marginal frequency distribution of X:

X	16 - 18	18 - 20	20 – 22	22 – 24	Total
Frequency	7	5	9	9	30
	M				

Marginal frequency distribution of Y:

Y	10 - 20	20 – 30	30 - 40	40 – 50	50 - 60	60 – 70	Total
Frequency	2	0	5	9	9	5	30

(ii) Conditional frequency distribution of Y when X is between 20 – 22:

Y	10 - 20	20 – 30	30 – 40	40 – 50	50 – 60	60 – 70	Total
Frequency	0	0	0	3	5	1	. 9

Question 3.

Following data gives Sales (in Lakh?) and Advertisement Expenditure (in Thousand ₹) of 20 firms.

(115, 61) (120, 60) (128, 61) (121, 63) (137, 62) (139, 62) (143, 63) (117, 65)

(126, 64) (141, 65) (140, 65) (153, 64) (129, 67) (130, 66) (150, 67) (148, 66)

(130, 69) (138, 68) (155, 69) (172, 68)

- (i) Construct a bivariate frequency distribution table for the above data by taking classes 115 125, 125 135,etc. for sales and 60 62, 62 64, ...etc. for advertisement expenditure.
- (ii) Find marginal frequency distributions
- (iii) Conditional frequency distribution of Sales when the advertisement expenditure is between 64 66 (Thousand ₹)
- (iv) Conditional frequency distribution of advertisement expenditure when the sales are between 125 135 (lakh ₹) Solution:
- (i) Let X = Sales (in lakh ₹)

Y = Advertisement Expenditure (in Thousand ₹)

Bivariate frequency table can be prepared by taking class intervals 115 - 125, 125 - 135, etc for X and 60 - 62, 62 - 64,etc for Y.

Bivariate frequency distribution is as follows:

\X Y\	115 – 125	125 – 135	135 – 145	145 – 155			
60 - 62	II (2)	1 (1)				-	3
62 - 64	1 (1)	_	III (3)	_	_	_	4
64 – 66	1 (1)	1 (1)	II (2)	1 (1)	_	_	5
66 – 68	_	ll (2)	_	II . (2)	_	_	4
68 - 70	-	1 (1)	1 (1)	· —	1 (1)	1 (1)	4
Total (f _x)	4	5	6	3	1	1	20

(ii) Marginal frequency distribution of X:

X	115 – 125	125 – 135	135 – 145	145 – 155	155 – 165	165 – 175	Total
Frequency	4	5	6	3	1	1	20

Marginal frequency distribution of Y:

Y	60 - 62	62 – 64	64 – 66	66 – 68	68 - 70	Total
Frequency	3	4	5 .	4	4	20

(ii) Conditional frequency distribution of X when Y is between 64 – 66:

X	115 – 125	125 – 135	135 – 145	145 – 155	155 – 165	165 – 175	Total
Frequency	1	1	. 2	11	0	0	5

(iii) Conditional frequency distribution of Y when X is between 125 – 135:

Y	60 – 62	62 - 64	64 – 66	66 – 68	68 – 70	Total
Frequency	1	0	1	2	1	- 5

Question 4.

Prepare a bivariate frequency distribution for the following data, taking class intervals for X as 35 - 45, 45 - 55, etc and for Y as 115 - 130, 130 - 145, ... etc where, X denotes the age in years and Y denotes blood pressure for a group of 24 persons.

(55, 151) (36, 140) (72, 160) (38, 124) (65, 148) (46, 130) (58, 152) (50, 149) (38, 115) (42, 145) (41, 163) (47, 161) (69, 159) (60, 161) (58, 131) (57, 136) (43, 141) (52, 164) (59, 161) (44, 128) (35, 118) (62, 142) (67, 157) (70, 162) Also find

- (i) Marginal frequency distribution of X.
- (ii) Conditional frequency distribution of Y when X < 45.

Solution:

Given X = Age in years

Y = Blood pressure

Bivariate frequency table can be prepared by taking class intervals 35 - 45, 45 - 55, ..., etc for X and 115 - 130, 130 - 145,, etc for Y.

Bivariate frequency distribution is as follows:

Age in years (X) Blood Pressure	35 – 45	45 – 55	55 – 65		Total (f _y)
115 – 130	III (4)	-	-		4
130 – 145	11 (2)	1 (1)	III (3)	_	6
145 – 160	(1)	1 (1)	11 (2)	III (3)	7
160 – 175	1 (1)	II (2)	(2)	II (2)	7
Total (f _x)	8	4	7	5	24

(i) Marginal frequency distribution of X:

X	35 – 45	45 – 55	55 – 65	65 – 75	Total
Frequency	8	4	7	5	24

(ii) Conditional frequency distribution of Y when X < 45:

Y	***	130 – 145	145 – 160	160 – 175	Total
Frequency	4	2	1	1	8

Question 5.

Thirty pairs of values of two variables X and Y are given below. Form a bivariate frequency table. Also find marginal frequency distributions of X and Y.

X	110	88	91	115	97	85	85	91	120	95
Y	500	800	870	599	625	650	905	700	850	824
X	82	105	99	90	108	124	90	90	111	89
Y	970	609	990	735	600	735	729	840	999	780
X	112	100	87	92	91	82	96	120	121	122
Y	638	850	630	720	695	923	555	810	805	526

Solution:

Bivariate frequency table can be prepared by taking class intervals 80 - 90, 90 - 100, etc for X and 500 - 600, 600 - 700, ..., etc for Y.

Bivariate frequency distribution is as follows:

X	80 - 90	90 – 100	100 – 110	110 - 120	120 - 130	Total (f,)
500 - 600	_	1 (1)		II (2)	I (1)	4
600 - 700	11 (2)	II (2)	11 (2)	1 (1)	_	7
700 - 800	1 (1)	III (4)	_	_	1 (1)	6
800 - 900	1 (1)	III (3)	1 (1)	_	III (3)	8
900 - 1000	III (3)	1 (1)	_	1 (1)		5,
Total (f _x)	7	11	3	4	5	30

Marginal frequency distribution of X:

\mathbf{x}	80 - 90	90 - 100	100 - 110	110 - 120	120 - 130	Total
Frequency	7	11	2	Δ	5	30

Marginal frequency distribution of Y

Y	500 - 600	600 - 700	700 - 800	800 – 900	900 - 1000	Total
Frequency	4	7	6	8	5	30

Question 6.

The following table shows how the samples of Mathematics and Economics scores of 25 students are distributed:

Marks in	Marks in M	lathematics
Economics	40-70	70-100
40-70	20	15
70-100	5	10

Find the value of \varkappa^2 statistic.

Solution:

Table of observed frequencies.

· · · · · · · · · · · · · · · · · · ·	Marks in M	Iathematics	D
Marks in Economics	40 - 70	70 - 100	Row total (Ri)
40 – 70	20	15	35
70 – 100	5	10	15
Column total (C _j)	25	25	50

Expected frequencies are given by

 $\mathsf{E}_{ij} = \, R_i {\times} C_j N$

 $E_{11} = 35 \times 2550 = 17.5$

 $E_{12} = 35 \times 2550 = 17.5$

 $E_{21} = 15 \times 2550 = 7.5$

 $E_{22} = 15 \times 2550 = 7.5$

Table of expected frequencies.

** * * * *	Marks in M	Marks in Mathematics		
Marks in Economics	40 - 70	70 - 100	Total	
40 – 70	17.5	17.5	35	
70 – 100	7.5	7.5	15	
Total	25	25	50	

Now,

$$\begin{split} \chi^2 &= \sum \Biggl[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \Biggr] \\ &= \frac{\left(20 - 17.5 \right)^2}{17.5} + \frac{\left(15 - 17.5 \right)^2}{17.5} + \frac{\left(5 - 7.5 \right)^2}{7.5} + \frac{\left(10 - 7.5 \right)^2}{7.5} \\ &= \frac{6.25}{17.5} + \frac{6.25}{17.5} + \frac{6.25}{7.5} + \frac{6.25}{7.5} \\ &= \frac{12.5}{17.5} + \frac{12.5}{7.5} \\ &= 0.71 + 1.67 \\ &= 2.38 \end{split}$$

Question 7.

Compute x² statistic from the following data:

	Graduates	Post-Graduates
Male	28	22
Female	32	18

Solution:

Table of observed frequencies.

	Graduates	Post-Graduates	Row total (Ri)
Male	28	22	50
Female	32	18	50
Column total (C _j)	60	40	100

Expected frequencies are given by

$$E_{ij} = R_i \times C_j N$$

$$E_{11} = 50 \times 60100 = 30$$

$$E_{12} = 50 \times 40100 = 20$$

 $E_{21} = 50 \times 60100 = 30$

 $E_{22} = 50 \times 40100 = 20$

Table of expected frequencies.

		Post-Graduates	Total
Male	30	20	50
Female	30	20	50
Total	60	40	100

Now,

$$\begin{split} \chi^2 &= \sum \Biggl[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \Biggr] \\ &= \frac{\left(28 - 30 \right)^2}{30} + \frac{\left(22 - 20 \right)^2}{20} + \frac{\left(32 - 30 \right)^2}{30} + \frac{\left(18 - 20 \right)^2}{20} \\ &= \frac{4}{30} + \frac{4}{20} + \frac{4}{30} + \frac{4}{20} \\ &= \frac{8}{30} + \frac{8}{20} \\ &= 0.267 + 0.4 \\ &= 0.667 \end{split}$$

Question 8.

The attitude of 250 employees towards a proposed policy of the company is as observed in the following table. Calculate \varkappa^2 statistic.

	Favor	Indiffer-	Oppose
		ent	
Male	68	46	36
Female	27	49	24

Solution:

Table of observed frequencies

44444	Favour	Indifferent	Oppose	Row total (Ri)
Male	68	46	36	150
Female	27	49	24	100
Column total (Ci)	95	95	60	250

Expected frequencies are given by

 $E_{ij} = R_i \times C_j N$

 $E_{11} = 150 \times 95250 = 57$

 $E_{12} = 150 \times 95250 = 57$

 $E_{13} = 150 \times 60250 = 36$

 $E_{21} = 100 \times 95250 = 38$

 $E_{22} = 100 \times 95250 = 38$

 $E_{23} = 100 \times 60250 = 24$

Table of observed frequencies.

	Favour	Indifferent	Oppose	Row Total (Ri)
Male	57	57	36	150
Female	38	38	24	100
Column Total (Ci)	95	95	60	250

Now,
$$\chi^2 = \sum \left[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \right]$$

$$= \frac{\left(68 - 57 \right)^2}{57} + \frac{\left(46 - 57 \right)^2}{57} + \frac{\left(36 - 36 \right)^2}{36} + \frac{\left(27 - 38 \right)^2}{38} + \frac{\left(49 - 38 \right)^2}{38} + \frac{\left(24 - 24 \right)^2}{24}$$

$$= \frac{121}{57} + \frac{121}{57} + 0 + \frac{121}{38} + \frac{121}{38} + 0$$

$$= \frac{242}{57} + \frac{242}{38}$$

$$= 4.246 + 6.368$$

$$= 10.614$$

Question 9.

In a certain sample of 1000 families, 450 families are consumers of tea. Out of 600 Hindu families, 286 families consume tea. Calculate \varkappa^2 statistic. Solution:

The given data can be arranged in the following table.

	Consume Tea	Do not consume Tea	Total
Hindu family	286		600
Non Hindu family			
Total	450	,	1000

Table of observed frequencies.

	Consume Tea	Do not consume Tea	Row total (Ri)
Hindu family	286	314	600
Non Hindu family	164	236	400
Column total (C _i)	450	550	1000

Expected frequencies are given by

 $E_{ij} \, = \, R_i {\times} C_j N$

 $E_{11} = 600 \times 4501000 = 270$

 $E_{12} = 600 \times 5501000 = 330$

 $E_{21} = 400 \times 4501000 = 180$

 $E_{22} = 400 \times 5501000 = 220$

Table of expected frequencies.

	Consume Tea	Do not consume Tea	Total	
Hindu family	270	330	600	
Non Hindu family	180	220	400	
Total	450	550	1000	

Now,

$$\begin{split} \chi^2 &= \sum \Biggl[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \Biggr] \\ &= \frac{\left(286 - 270 \right)^2}{270} + \frac{\left(314 - 330 \right)^2}{330} + \frac{\left(164 - 180 \right)^2}{180} + \frac{\left(236 - 220 \right)^2}{220} \\ &= \frac{256}{270} + \frac{256}{330} + \frac{256}{180} + \frac{256}{220} \\ &= 0.948 + 0.776 + 1.422 + 1.164 \\ &= 4.31 \end{split}$$

Question 10.

A sample of boys and girls were asked to choose their favourite sport, with the following results. Find the value of \varkappa^2 statistic.

	Foot-	Crick-	Hock-	Bas-
	ball	et	ey	ketball
Boys	86	60	44	10
Girls	40	30	25	5

Solution:

Table of observed frequencies.

	Football	Cricket	Hockey		Row total (R _i)
Boys	86	60	44	10	200
Girls	40	30	25	5	100
Column total (C _i)	126	90	69	15	300

Expected frequencies are given by

$$E_{ij} = R_i \times C_j N$$

$$E_{11} = 200 \times 126300 = 84$$

$$E_{12} = 200 \times 90300 = 60$$

$$E_{13} = 200 \times 69300 = 46$$

$$E_{14} = 200 \times 15300 = 10$$

$$E_{21} = 100 \times 126300 = 42$$

$$E_{22} = 100 \times 90300 = 30$$

$$E_{23} = 100 \times 69300 = 23$$

$$E_{24} = 100 \times 15300 = 5$$

Table of expected frequencies.

	Football	Cricket	Hockey	Basketball	Total
Boys	84	60	46	10	200
Girls	42	30	23	5	100
Total	126	90	69	15	300

Now.

$$\begin{split} \chi^2 &= \sum \!\! \left[\frac{\left(O_{ij} - E_{ij} \right)^2}{E_{ij}} \right] \\ &= \frac{\left(86 - 84 \right)^2}{84} + \! \frac{\left(60 - 60 \right)^2}{60} + \! \frac{\left(44 - 46 \right)^2}{46} + \! \frac{\left(10 - 10 \right)^2}{10} + \! \frac{\left(40 - 42 \right)^2}{42} + \! \frac{\left(30 - 30 \right)^2}{30} + \! \frac{\left(25 - 23 \right)^2}{23} + \! \frac{\left(5 - 5 \right)^2}{5} \\ &= \frac{4}{84} + 0 + \frac{4}{46} + 0 + \frac{4}{42} + 0 + \frac{4}{23} + 0 \\ &= 0.048 + 0.087 + 0.095 + 0.174 \\ &= 0.404 \end{split}$$