Problema della Coda con priorità

```
tipo CodaPriorita
dati:
        Un insieme S di n elementi di tipo elem a cui sono associate chiavi
di tipo
        chiave prese da un universo totalmente ordinato.
operazioni:
        findMin() -> elem:
                Restituisce l'elemento in S con la chiave minima
        insert(elem e, chiave k):
                Aggiunge a S un nuovo elemento e con chiave k
        delete(elem e):
                Cancella da S l'elemento e
        deleteMin():
                Cancella da S l'elemento con chiave minima
        increaseKey(elem e, chiave d):
                Incrementa della quantità d la chiave dell'elemento e in S
        decreaseKey(elem e, chiave d):
                decrementa della quantità d la chiave dell'elemento e in S
        merge(CodaPriorita c1, CodaPriorita c1) -> CodaPriorita:
                Restituisce una nuova coda con priorità c3 = c1 U c2
```

Applicazioni:

- Gestione code in risorse condivise
- Gestione priorità in processi concorrenti
- Progettazione di algoritmi efficienti per diversi problemi (calcolo cammini minimi).

Tabella delle implementazioni elementari

	FindMin	Insert	Delete	DeleteMin
Array non ordinato	$\Theta(n)$	O(1)	O(1)	$\Theta(n)$
Array ordinato	O(1)	O(n)	O(n)	O(1)
Lista non ordinata	$\Theta(n)$	O(1)	O(1)	$\Theta(n)$
Lista ordinata	O(1)	O(n)	O(1)	O(1)

Come si può notare abbiamo con ogni implementazione almeno una delle operazioni che ci costa in tempo lineare.

Implementazioni evolute

- d-heap
- Heap binomiali
- Heap di Fibonacci

d-heap

Un d-heap è un albero radicato d-ario con le seguenti proprietà:

- 1. Struttura: Completo almeno fino al penultimo livello, e tutte le foglie sull'ultimo livello sono compattate verso sinistra.
- 2. Contenuto informativo: Ogni nodo v contiene un elemento elem(v) ed una chiave chiave(v) presa da un dominio totalmente ordinato.
- 3. Ordinamento parziale (inverso) dell'heap (min-heap): $chiave(v) \ge chiave(parent(v))$ per ogni nodo v diverso dalla radice.

Proprietà:

- 1. Un d-heap ha altezza $\Theta(log_d(n))$
- 2. La radice conetiene l'elemento con chiave minima
- 3. Può essere rappresentato tramite vettore posizionale.

Procedure ausiliarie

Procedure che torneranno utili per implementare le altre operazioni:

```
procedura muoviAlto(v):  T(n) = O(\log_d(n))  while(v != radice(T) and chiave(v) < chiave(padre(v))) do
```

```
Osservazioni:
```

MuoviBasso è semplicemente fixHeap

findMin()

```
findMin() -> elem:
    restituisci l'elemento nella radice di T
```

Complessità costante.

insert(elem e, chiave k)

Creaimo un nodo v con elemento e e chiave k in modo che sia l'ultimo elemento dell'albero T. Rispristiniamo l'ordinamento dell'heap spingendo il nodo verso l'alto e scambiando nodi.

```
\triangle Complessità -> O(log_d(n)) per l'esecuzione di muoviAlto.
```

delete(elem e) e deleteMin

Scambia il nodo v contenente l'elemento e con una qualunque foglia u sull'ultimo livello di T, poi elimina v. Ripristina l'ordinamento spostando u verso la posizione corretta con le procedure ausiliarie.

 \triangle Complessità -> $O(log_d(n))$ per l'esecuzione di muovi $oldsymbol{\mathsf{Alto}}$ () o muovi $oldsymbol{\mathsf{Basso}}$ ()

decreaseKey(elem e, chiave d)

Decrementa il valore della chiave nel nodo v contenente l'elemento e della quantità richiesta d. Ripristina l'ordinamento spingendo il nodo v verso l'alto e scambiando i nodi.

increaseKey(elem e, chiave d)

Aumenta il valore della chiave nel nodo v contenente l'elemento e della quantità richiesta d. RIpristina l'ordinamento spingendo il nodo v verso il basso e scambiando i nodi.

Complessità -> $O(log_d(n))$ per l'esecuzione di muoviBasso()

merge(CodaPriorità c_1 , CodaPriorità c_2)

Abbiamo due metodi diversi:

1. Costruire da zero una nuova coda: Distruggendo le due iniziali.

Come:

- Generalizzazione della procedura heapify
- Rendo i sottoalberi della radice heap ricorsivamente e chiamo muoviBasso sulla radice.

Complessità ->
$$T(n)=dT(n/d)+O(dlog_d(n))$$
 dove: $n=|c_1|+|c_2|$ Teorema Master -> $T(n)=\Theta(n)$

2. Inserendo ripetutamente: Gli elementi della coda più piccola in quella più grande.

Come:

Inseriamo ad uno ad uno tutti gli elemento della coda più piccola nella coda più grande.

Sia
$$k = min[|c_1|, |c_2|]$$
 e $n = |c_1| + |c_2|$

Eseguiamo quindi k inserimenti nella coda più grande.

Complessità ->
$$O(klog(n))$$
 con $n=|c_1|+|c_2|$

L'approccio conviene quindi per $klog(n) = o(n) ext{ -> } k = o(n/log(n))$

Osservazione

Nel caso peggiore entrambe le operazioni hanno un costo di $\Omega(n)$

Riepilogo

Per il momento non siamo ancora riusciti a creare una struttura in grado di eseguire tutte le operazioni in tempo minore di lineare.

Per riuscire a risolvere il problema dobbiamo introdurre nuovi tipi di heap:

Alberi Binomiali

Alberi binomiali:

Un albero binomiale B_i è definito ricorsivamente come segue:

- 1. B_0 consiste in un unico nodo.
- 2. Per $i > 0, B_{i+1}$ è ottenuto fondendo due alberi binomiali B_i ponendo la radice dell'uno come figlia della radice dell'altro.

Proprietà:

- 1. Numero di nodo $(|B_h|): n=2^h$
- 2. Grado della radice: $D(n) = log_2(n)$
- 3. Altezza: $H(n) = h = log_2(n)$
- 4. Figli della radice: I sottoalberi radicati nei filgi della radice di B_h sono $B_0, B_1, \ldots, B_{h-1}$.

Heap Binomiali

Un heap binomiale è una foresta di alberi binomiali che gode delle seguenti proprietà:

- Unicità: Per ogni intero $i \geq 0$, esiste al più un B_i nella foresta.
- Contenuto informativo: Ogni nodo v contiene un lemento elem(v) ed una chiave chiave(v) presa da un dominio totalmente ordinato.
- Ordinamento a heap: $chiave(v) \ge chiave(parente(v))$ per ogni nodo v diversi da una delle radici.

Un esempio di Heap Binomiale con *n*=13 nodi

// Nota

Ci sta una correlazione tra gli alberi e il numero dei nodi presenti, infatti:

$$13 = 2^0 + 2^2 + 2^3$$

13 in binario è 1101, quindi il nosto albero è composto da B_0, B_2, B_3 .

Proprietà topologiche:

Dalla proprietà di unicità degli alberi binomiali che lo costituiscono, ne deriva che un heap binomiale di n elementi è formato dagli alberi binomiali $Bi0, Bi1, \ldots, Bih$, dove $i0, i1, \ldots, ih$ corrispondono alle posizioni degli 1. nella rappresentazione in base 2 di n.

Ne consegue che in un heap binomiale con n nodi, vi sono al più $\lfloor log \rfloor$ alberi binomiali, ciascuno con grado ed altezza $O(\log n)$.

Proprità ausiliaria

Utile per mantenere la struttura del heap binomiale:

```
Procedura ristruttura(): T(n): lineare nel numero di alberi binomiali in input i = 0 while(esistono ancora due B_i) do
```

```
Si fondono i due B_i per formare un albero B_i+1 ponendo la radice con la chiave più piccola come genitore della radice con chiave più grande i = i + 1
```

Realizzazione

```
Classe HeapBinomiale implementa CodaPriorita:
dati:
        Una foresta H con n nodi, ciascuno contenente un lementeo di tipo
elem e e
        una chiave di tipo chiave presa da un universo totalmente ordinato.
operazioni:
        findMin() -> elem:
                Scorre le radici di H e restituisce le'lemento con chiave
minima
        insert(elem e , chiave k):
                Aggiunge ad H un nuovo B O con dati e e k. Ripristina poi la
proprietà
                di unicità in H mediante fusioni successive dei doppioni B_i
        delemteMin():
                Trova l'albero T h con radice a chiave minima. Togliendo la
radice a T_h
                esso si spezza in h alberi binomiali, che vengono aggiunti
ad H.
                Ripristina poi la proprietà di unicità di H mediante fusioni
succesive
                dei doppioni B i
        decreaseKey(elem e, chiave d):
                Decrementa di d la chiave nel nodo contenente l'elemento e.
Ripristina
                poi la proprietà dell'ordinamento a heap spiengendo verso
l'alto
                ripetutamente tramite ripetuti scambi di nodi.
```

Costo delle operazioni

Tutte le operazioni richiedono tempo T(n) = O(log(n))

Heap di Fibonacci (Fredman, Tarjan, 1987)

O Definizione di Heap binomiale rilassato:

Si ottiente da un heap binomiale $\frac{1}{2}$ rilassando la proprietà di unicità dei B_i e usando un atteggiamento "pigro" nell'insert().

Gli heap di Fibonacci si ottendono da heap binomiali rilassati indebolendo la struttura dei B_i che non sono più necessariamente alberi binomiali.

	FindMin	Insert	Delete	DeleteMin	IncKey	DecKey	merge
d-heap	O(1)	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Heap Binomiali	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))
Heap di Fibonacci	O(1)	O(1)	O(log(n))	$O(log(n))^*$	O(log(n))	O(1)*	O(1)

L'analisi del tempo svolta sul Heap di Fibonacci è ammortizzata.

Analisi ammortizzata

Il costo ammortizzato di un'operazione è il costo "medio" rispetto a una sequenza qualsiasi di operazioni.

E' diverso dal costo medio perché non ci sta nessuna distribuzione di probabilità.