Dot product of vectors

TOTAL POINTS 6

1.Question 1

As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will complete some exercises involving the dot product.

We have seen that the size of a vector with two components is calculated using Pythagoras' theorem, for example the following diagram shows how we calculate the size of the orange vector $r=[r1\ r2]$:

In fact, this definition can be extended to any number of dimensions; the size of a vector is the square root of the sum of the squares of its components. Using this information, what is the size of the vector

s=[[[[1342]]]]?

- (10) |s|=sqrt(10)
- |s|=30
- [©] |s|=10
- |**s**|=sqrt(30)

1 / 1 point

2.Question 2

1 / 1 point

3.Question 3

The lectures introduced the idea of projecting one vector onto another. The following diagram shows the projection of s onto r when the vectors are in two dimensions:

Remember that the scalar projection is the *size* of the green vector. If the angle betweens and r is greater than $\pi/2$, the projection will also have a minus sign.

We can do projection in any number of dimensions. Consider two vectors with three components, r=13-40 and s=105-6.

What is the scalar projection of s onto r?

2

° -1/2

· -2

° 1/2

1 / 1 point

4.Question 4 Remember that in the projection diagram, the vector projection *is* the green vector:

Let $r = \|[3-40]\|$ and let $s = \|[105-6]\|$.

What is the vector projection of s onto r?

- ||[6/5 -8/5 0]||
- [[₃₀ -₂₀ ₀]]]
- [[[₆-80]]]
- [[[640]]]

1 / 1 point

5.Question 5 Let a=\[304\] and b=\[0512\].

Which is larger, |a+b| or |a|+|b|?

- |a+b|<|a|+|b|
- |a+b|=|a|+|b|
- |a+b|>|a|+|b|

1 / 1 point

6.Question 6

Which of the following statements about dot products are correct?

V	We can find the angle between two vectors using the dot product.
	The size of a vector is equal to the square root of the dot product of the
	ctor with itself.
V	The vector projection of s onto r is equal to the scalar projection
of	${f s}$ onto ${f r}$ multiplied by a vector of unit length that points in the same
dir	ection as r .
	The scalar projection of $\bf s$ onto $\bf r$ is always the same as the scalar projection
of	r onto s .
	The order of vectors in the dot product is important, so that $\mathbf{s} \cdot \mathbf{r} \neq \mathbf{r} \cdot \mathbf{s}$