Joy Ming and Alisa Nguyen (15 March 2013)

1 Problem 1

- 1. The probability that all of the M dimensions of x-y are between $-\epsilon$ and ϵ is
- 2. The probability of $max_m|x_m y_m| \le \epsilon$ is at most p
- 3. If x is any point in χ , and y is a point in χ drawn randomly from a uniform distribution on χ , then the probabilty that $||x-y|| \le \epsilon$ is also at most p
- 4. Lowerbound on number N of points needed to guarantee
- 5. We can conclude that the effectiveness of the hierarchical agglomerativ clustering algorithm in high dimensional spaces

2 Problem 2

- 1. Given a prior distribution $Pr(\theta)$ and likelihood $Pr(D|\theta)$, the predictive distribution Pr(x|D) for a new datum,
 - (a) ML: $Pr(x|D) = Pr(x|\theta) = \underset{\theta}{\operatorname{arg\,max}} (\ln(Pr(D|\theta)))$
 - (b) MAP: $Pr(x|D) = Pr(x|D) = Pr(x|\theta) = \arg\max_{\theta} (\ln(P(D|\theta)P(\theta)))$
 - (c) FB: $Pr(x|D) = \int \theta P(\theta|D) d\theta$
- 2. MAP can be considered "more Bayesian" than ML because
- 3. One advantage the MAP method enjoys over the MI method
- 4. The Beta distribution ins the conjugate prior of the Bernoulli
- 5. Under the ML approach

3 Problem 3

- 1. The K -means clustering objective is to minimize the sum of squared distances between prototype and data.
- 2. PCA relates to K-means

4 Problem 4