Description Logic

丁如江 2020.2.20

Overview

- trade off: expressibility vs. reasoning complexity, defined by allowing or disallowing different constructs (e.g. conjunction, disjunction, negation, quantiers, etc.) in their language.
- Elements:
 - o individuals/ constants(e.g. julia, john)
 - o concepts/ unary prediction(e.g. Parents, Male)
 - o roles/ binary relations(e.g. ParentOf, SonOf)
- Knowledge Base $\mathcal{K}=<\mathcal{A},\mathcal{T}>:$
 - \circ \mathcal{A} , 也叫ABox(Axioms): is a set of assertions about named individuals (e.g. Person(james), isFatherOf (james,peter))
 - o \mathcal{T} ,也叫TBox(Axioms): is a set of terminology denitions (i.e. complex descriptions of concepts or roles), called the TBox (e.g. $Human \sqsubseteq Mammal$, $Mother \equiv Parent \sqcap Woman$)
 - 。 \mathcal{R} ,也叫RBox(Axioms):一般不于 \mathcal{T} 区分,是所有复杂role的集合, (e.g. $parentOf \sqsubseteq ancestorOf$, $brotherOf ∘ parentOf \sqsubseteq uncleOf$)

Syntax and Semantics

• Constructors: 构建更加复杂的Concept 和 Role

构造算子	语法	语义	例子		
原子概念	A	$A^I \subseteq \triangle^I$	Human		
原子关系	R	$R^I \subseteq \triangle^I \times \triangle^I$	has-child		
对概念C,D和关系(role)R					
合取	$C\sqcap D$	$C^I \cap D^I$	Human ⊓ Male		
析取	$C \sqcup D$	$C^{I} \cup D^{I}$	Doctor ⊔ Lawyer		
非	¬ C	$\triangle^I \setminus C$	¬ Male		
存在量词	∃ <i>R.C</i>	$\{x \ \exists\ y.\ \langle x,y\rangle\in R^l\land y\in C^l\}$	∃ has-child.Male		
全称量词	$\forall R.C$	$\{x \mid \forall y. < x, y > \in R^I \Rightarrow y \in C^I\}$	∀ has-child.Doctor blog. csdn. net/tao_sun		

构造算子	语法	语义	例子
数量约束	$\geq nR.C$	$\{x \mid \{y \mid \langle x, y \rangle \in R^{I}, y \in C^{I}\} \mid \geq n\}$	≥3 has-child .Male
	$\leq n R \cdot C$	$\{x \mid \{y \mid \langle x, y \rangle \in R^I, y \in C^I\} \mid \leq n\}$	≤3 has-child .Male
逆	R -	$\{\langle y, x \rangle \langle x, y \rangle \in R^I \}$	has-child-
传递闭包	R*	$(R^I)^*$	has-child*

另外,有两个类似于FOL中的全集(true)和空集(false)的算子

top	Т	\triangle^I	Male ⊔ ¬ Male
Bottom	T	Ø http://	blog. Man ⊓et/ Man sun

- o e.g.:
 - $\exists SonOf$. $\top \sqsubseteq Male$, 限制了SonOf的domain必须是Male的实例
 - 丁 🗆 ∀sonOf. Parent,限制了SonOf的Range必须是Parent的实例
- Description Logic Profile: 描述逻辑语言有很多分支,它们的主要区别就在于支持的构造子不同,导致表达能力和推理复杂度各不相同
 - ALC:

ALC: Syntax

The description logic \mathcal{ALC} (Attribute Language with general Complement) allows the following concepts:

$$C, D o A$$
 | (atomic concept)
 T | (universal concept)
 \bot | (bottom concept)
 $\neg C$ | (negation)
 $C \sqcup D$ | (union)
 $C \sqcap D$ | (intersection)
 $\exists R.C$ | (existential restriction)
 $\forall R.C$ | (universal restriction)

where A is an atomic concept, C and D are concepts, and R is a role. We allow

- ABox assertions: C(a) and R(a,b) for individuals a,b, concepts C and roles R;
- TBox axioms: $C \sqsubseteq D$ for concepts C and D.

Naming conventions

- As we have seen \mathcal{ALC} is the Attribute Language with general Complement.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL} .
- In a similar way, we have the following possible extensions of our logic:
 - \mathcal{H} : Role hierarchies:
 - \mathcal{R} : Complex role hierarchies;
 - \mathcal{N} : Cardinality restrictions;
 - Q: Qualified cardinality restrictions;
 - − O: Closed classes:
 - Inverse roles;
 - $-\mathcal{D}$: Datatypes;
 - ...
- We name the languages by adding the letters of the features to \mathcal{ALC} . So e.g. \mathcal{ALCN} is \mathcal{ALC} extended with cardinality restrictions and \mathcal{ALCHI} is \mathcal{ALC} extended with role hierarchies and inverse roles.
- It is common to shorten \mathcal{ALC} (extended with transitive roles) to just \mathcal{S} for more advanced languages, so e.g. \mathcal{SHOIN} is $\mathcal{ALC} + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N}$.

16/35

Normal extensions

– \mathcal{H} – Role Hierarchies: We allow TBox axioms on the form $R \sqsubseteq P$ for atomic roles. Semantics:

$$\mathcal{M} \vDash R \sqsubset P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. hasFather □ hasParent;

 $-\mathcal{R}$ – Complex role hierarchies: We allow roles on the form $R \circ P$ and TBox axioms on the form $R \circ P \sqsubseteq P$ and $R \circ P \sqsubseteq R$ for any two roles. Semantics:

$$(R \circ P)^{\mathcal{M}} := \{ \langle a, b \rangle \in \Delta^{\mathcal{M}} \times \Delta^{\mathcal{M}} \mid \exists c \in \Delta^{\mathcal{M}} \left(\langle a, c \rangle \in R^{\mathcal{M}} \wedge \langle c, b \rangle \in P^{\mathcal{M}} \right) \}$$

and

$$\mathcal{M} \vDash R \sqsubseteq P \Leftrightarrow R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$$

e.g. $friendOf \circ enemyOf \sqsubseteq enemyOf$.

17/35

Normal extensions

- \mathcal{N} - Cardinality restrictions: We allow concepts on the form $\leq nR$ and $\geq nR$ for any natural number n. Semantics¹:

$$(\leq nR)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \leq n \}$$
$$(\geq nR)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \#\{b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \} \geq n \}$$

e.g. $Mammal \subseteq \leq 2 hasParent$;

 $-\mathcal{Q}$ – Qualified cardinality restrictions: We allow concepts on the form $\leq nR.C$ and $\geq nR.C$ for any natural number n. Semantics:

$$(\leq n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} \leq n \}$$
$$(> n R.C)^{\mathcal{M}} := \{ a \in \Delta^{\mathcal{M}} \mid \# \{ b \in \Delta^{\mathcal{M}} \mid \langle a, b \rangle \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \} > n \}$$

e.g. $RichPeople \sqsubseteq \geq 2 \ owns.House.$

18/35

Normal extensions

- \mathcal{O} - Closed classes: We allow concepts on the form $\{a_1,a_2,\ldots,a_n\}$ where a_i are individuals. Semantics

$$(\{a_1, a_2, \dots, a_n\})^{\mathcal{M}} := \{a_1^{\mathcal{M}}, a_2^{\mathcal{M}}, \dots, a_n^{\mathcal{M}}\}$$

e.g. $Days \sqsubseteq \{monday, tuesday, wednesday, thursday, friday, saturday, sunday\};$

 $-\mathcal{I}$ – Inverse roles: We allow roles on the form R^- . Semantics:

$$(R^{-})^{\mathcal{M}} := \{ \langle a, b \rangle \in \Delta^{\mathcal{M}} \times \Delta^{\mathcal{M}} \mid \langle b, a \rangle \in R^{\mathcal{M}} \}$$

e.g. $hasParent^- \sqsubseteq isChildOf$;

 $-\mathcal{D}$ - Datatypes: We introduce a set of datatypes: *int,string,float,boolean,* and so on. They all have a fixed interpretation, that is, the same for all models.

19/35

• Examples:

 $^{{}^{1}}$ We let #S be the cardinality of the set S

Examples

```
\begin{array}{ccc} \textit{OnlyChild} & \sqsubseteq \\ \textit{Animal} & \sqsubseteq \end{array}
                                         Person \sqcap \neg \exists hasSibling. \top
                                         \leq 2 hasParent.Animal \sqcap \geq 2 hasParent.Animal
              Pet □ Person □
                  Person \sqsubseteq Norwegian \sqsubseteq \{adam\} \sqsubseteq
                                         \exists loves.\{mary\}
                                          ∃comesFrom.{norway}
                                          \neg \{eve\}
                                          hasUncle
hasFather ∘ hasBrother
                        \exists R. \top
                                         C
                                                                           Domain
                        Range
                                                                            Transitivity
                                                                            Functionality
                                                                            Symmetry
                                                                            Asymmetry
```

20/35