K-Nearest Neighbor

POR: JOSE CARLOS MURILLO

KNN

Como **pros** tiene sobre todo que es sencillo de aprender e implementar. Tiene como **contras** que *utiliza todo el dataset* para entrenar «cada punto» y por eso requiere de uso de mucha memoria y recursos de procesamiento (CPU). Por estas razones kNN tiende a funcionar mejor en datasets pequeños y sin una cantidad enorme de features (las columnas).

Normalization

Normalization rescales the values into a range of [0,1]. This might be useful in some cases where all parameters need to have the same positive scale. However, the outliers from the data set are lost.

$$X_{changed} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Standardization

Standardization rescales data to have a mean (μ) of 0 and standard deviation (σ) of 1 (unit variance).

$$X_{changed} = \frac{X - \mu}{\sigma}$$

When Should You Use Normalization And Standardization:

Normalization is a good technique to use when you do not know the distribution of your data or when you know the distribution is not Gaussian (a bell curve). Normalization is useful when your data has varying scales and the algorithm you are using does not make assumptions about the distribution of your data, such as k-nearest neighbors and artificial neural networks.

Standardization assumes that your data has a Gaussian (bell curve) distribution. This does not strictly have to be true, but the technique is more effective if your attribute distribution is Gaussian. Standardization is useful when your data has varying scales and the algorithm you are using does make assumptions about your data having a Gaussian distribution, such as linear regression, logistic regression, and linear discriminant analysis.