

AD ET MOTAL COLLEGE PARKS (IR IN 1840 MG 03 M

en) <u>alli no vii (dol tiilksk pikusenis shalu (come</u> :

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

December 03, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/513,474

FILING DATE: October 22, 2003 RELATED PCT APPLICATION NUMBER: PCT/US04/35200

Certified by

Jon W Dudas

Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office

PTO/SB/16 (10-01)
Approved for use through10/31/2002. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c). EV310451745US Express Mail Label No.

		INVENTOR(S)						
Chan Nama (first and middle fi	if anyl) Family	y Name or Sur	name	Residence (City and either State or Foreign Country)					
Given Name (first and middle [il	Scherzer	y Name of Sur	idilie	Midland, Texas					
i dui L.	Concizor			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			H		
							ď		
Additional inventors are bei	ing named on the	separately nu	nbered sheets	attached hereto					
	TITLE OF THE IN	IVENTION (50	0 characters r	nax))5R		
A METHOD AND SYSTEM FOR	R GENERATING ELEC	TRICITY UTI	LIZING NATU	JRALLY OCCL	IRRING	GAS	. 6		
Direct all correspondence to:	CORRESP	ONDENCE A	DDRESS						
Customer Number	20000				Place Customer Number				
OR T	Time Customer Number hore			Barc	Bar Code Label here				
Firm or Individual Name									
Address		······································			•				
Address									
City		State		ZIP					
Country		Telephone		Fax		 			
	ENCLOSED APPLIC	ATION PARTS	check all th	at apply)	<u></u> .	····			
Specification Number of P	Pages 12	· [CD(s), Nur	mber					
Drawing(s) Number of She	eets 2			Cre	dit Ca	rd Payment	١. ا		
Application Data Sheet. See	e 37 CFR 1.76	٢	Other (spe			ress Mail			
METHOD OF PAYMENT OF FILI	ING FEES FOR THIS PRO	VISIONAL AP	PLICATION FO	R PATENT		·	_		
	tity status. See 37 CFR 1.2					NG FEE UNT (\$)			
	s enclosed to cover the filir eby authorized to charge fil	_		•					
fees or credit any overpay	yment to Deposit Account I Form PTO-2038 is attached	Number:	50-0902		\$8	0.00			
The invention was made by an ag United States Government.			r under a contr	act with an agen	cy of the		·		
No.	amout accept and the Cours	ment contract au	mbos om:						
Yes, the name of the U.S. Govern	ninent agency and the Govern	illent contract no							
Respectfully submitted,	1/		Date	10/22/2003]				
SIGNATURE		 .	RE	GISTRATION N	o. [31830			
TYPED OF PRINTED NAME JOHN	x. Garred	_	•	appropriate) cket Number:	ĺ	10058/0000)2		

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C. 20231.

Signature

PTO/SB/17 (10-03)
Approved for use through 07/31/2006. OMB 0551-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

FFF TRANSMITTA		Complete if Known							
F FEE TRANSMITTA	L	Application Number							
for EV 2004		Filing Date Here			Herewith	ewith			
for FY 2004		First Named Inventor Paul L.			Paul L.	SCHERZER			
Effective 10/01/2003. Patent fees are subject to annual revision.		Examiner Name					•		
Applicant claims small entity status. See 37 CFR 1.27		Art Unit							
TOTAL AMOUNT OF PAYMENT (\$)					10058/0	00002			
METHOD OF PAYMENT (check all that apply)		FEE CALCULATION (continued)							
	3. ADDITIONAL FEES								
Check Credit card Money Other None	Large Entity Small Entity								
Deposit Account:		Fee		Fee		Feé D	Description	n ·	
Deposit Account 50-0902 (10058/00002)		e (\$) I 130	Code 2051	• •	Sumha	me - late	filing fee or	òath	Fee Paid
Number Deposit Turker Filip R Mach LL D		2 50	2052			-	provisional f		
Account Name Tucker Ellis & West LLP		•	1053		COVER S				
The Director is authorized to: (check all that apply)	1053 1812		1812 2			English specification ling a request for ex parte reexamination			
Charge fee(s) indicated below Credit any overpayments Charge any additional fee(s) or any underpayment of fee(s)	1804	920	1804			esting publication of SIR prior to			
Charge fee(s) indicated below, except for the filing fee		5 1,840°	1805 1	,840*	Reque	niner action vesting publication of SIR after			
to the above-identified deposit account.	1251	110	2251	55		ner action	oly within firs	et month	
FEE CALCULATION			2252	210			ply within se		
1. BASIC FILING FEE Large Entity Small Entity	1252 1253		2253				ply within thi		
Fee Fee Fee Fee Description Fee Paid	1254	1,480	2254	740	Extens	sion for re	ply within for	urth month	
Code (\$) Code (\$) 1001 770 2001 385 Utility filling fee	1255	5 2,010	2255	1,005	Exten	sion for re	ply within fift	th month	
1002 340 2002 170 Design filing fee	1401	1 330	2401	165	Notice	of Appea	ai .		
1003 530 2003 265 Plant filing fee	1402	2 330	2402		_	ng a brief in support of an appeal			
1004 770 2004 385 Reissue filing fee	1403		2403		•	st for oral			
1005 160 2005 80 Provisional filing fee 80.00		1 1,510 2 110	1451 2452		1		ute a public u e - unavoidal	use proceeding	
SUBTOTAL (1) (\$) 80.00		3 1,330	2453				e - unintentic	•	
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE		1 1,330	2501				(or reissue)		
Extra Claims Total Claims -20** =		2 480	2502	. 240	Desig	n issue fe	e		
		640	2503			issue fee			
		130	1460			lons to the Commissioner			
Large Entity Small Entity		50	1807			essing fee under 37 CFR 1.17(q) nission of Information Disclosure Stmt			
Fee Fee Fee Fee Description		180	1806				ntormation D patent assig	•	
Code (\$) Code (\$) 1202 18 2202 9 Claims in excess of 20		40	8021	40	proper	ty (times	number of pi	roperties)	
1201 86 2201 43 Independent claims in excess of 3		9. 770	2809	385	Filing (37 CF	a submiss R 1.129(sion after fina a))	an Lelection	
1203 290 2203 145 Multiple dependent claim, if not paid		0,770							
1204 86 2204 43 ** Reissue independent claims over original patent		1 770	2801	38Ŝ		•) minatión (RCE)	
1205 18 2205 9 "Relssue claims in excess of 20		2 900	1802		Requ	est for ex	pedited exar		
and over original patent	Othe	ri fee (sp	ecify)		or a d	esign app	nicauon		
SUBTOTAL (2) (\$) **or number previously peid, if greater, For Reissues, see above		duced by		iling F	ee Paid	S	UBTOTAL	(3) (\$)	
SUBMITTED BY	_		_	÷				7 epplicable))	
Name (Print/Type) John X. Garred		Registra		31.	830	1		216-696-3340	
Signature		(Attornay)	Apenti				Date	October 22, 2	

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

MAIL CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that the attached U.S. Provisional Patent Application (along with any other paper referred to as being attached or enclosed) is being deposited with the United States Postal Service on this date <u>October 22, 2003</u> in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number <u>EV310451745US</u> addressed to the: Mail Stop Provisional Patent Application, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450.

Valerie A. Salvino

(Typed or Printed Name of Person Mailing Paper)

(Signature of Person Mailing Paper)

5

10

15

20

25

U.S. Provisional Patent Application for

A METHOD AND SYSTEM FOR GENERATING ELECTRICITY UTILIZING NATURALLY OCCURRING GAS

Background of the Invention

The present invention pertains generally to the generation of electricity using naturally occurring gas and, more particularly, to a method and system of generating electricity by gas turbines using carbon dioxide, nitrogen, or other natural gases.

Electricity represents a vital and necessary component of the economy, as well as every day life. A constant flow of electricity sufficient to meet the ever-increasing demands of the consuming public is a necessity. As the population has increased, the use of electricity driven machines has also increased, thereby increasing the demand across the grid. Greater demand has caused severe problems, including blackouts, power outages, brownouts and the like.

The most common source of electricity is a steam driven turbine, which supplies rotational power to a generator. The operation of a generator is well known in the art, and as such does not require further explanation herein. Burning a fuel in a furnace converts water into steam, which is then used to turn the turbine blades at a power generation plant. The fuel is derived primarily from flammable natural gas, petroleum, e.g., oil, or coal. However, all of the aforementioned fuels, when burned, produce some varying level of pollutants resulting from the combustion of the fuel in the furnace. In the case of coal driven power plants, scrubbers must be inserted into smokestacks to effectively remove the most harmful of pollutants. An additional concern revolves around the ever-increasing prices of oil and natural gas by producing countries.

A previous attempt to combat these costs and pollution problems was made by using controlled nuclear reactions. Fission nuclear power plants generate electricity by using a steam

turbine. One of the by-products of nuclear fission is high temperatures. Another by-product, however, is radiation. In operation, radioactive water is pumped through the reaction chamber, in essence flashing to steam. This superheated steam is transported through insulated pipes to draw near clean water. This clean water is flashed to steam and subsequently directed to large turbine blades, which are coupled to generators, thereby producing electricity. However, the existing nuclear power plants were very expensive to build and opposition from environmentalists was and continues to be problematic.

Several types of renewable energy sources are currently implemented for power generation. Hydroelectric power plants use water, either naturally flowing or forced through a dam, to turn large generators. The application of these plants, which account for 9% of the United States energy production, is limited to those areas with naturally occurring bodies of water. Geothermal power plants use steam created by water and magna to generate electricity. However, locating and securing a constant source of steam thus generated is difficult and not widely available. Solar power, on the other hand, is becoming more prevalent as an alternative means of generating electricity. Photovoltaic cells create electricity directly from sunlight. However, even the most advanced photovoltaic cells do not exceed 15-20% efficiency, and as generating means, the cells are only good for half of the day.

Another source of renewable energy is wind power. Massive propellers, powered by the wind, rotate in large wind farms, turning generators to create electricity. The use of windmills to generate electricity is becoming more prevalent, however similar to solar power, weather conditions can effect output and blackouts may occur with very slow winds. Still another source of renewable energy that has not seen great production of electricity is the use of biomass to fire boilers, thereby generating steam. Biomass relates to wood, agriculture, biological wastes and

10

15

garbage that may be burned in large furnaces to generate the heat necessary to create steam for the turbine generators.

The accepted definition of a natural gas is a gas formed and trapped underground by nature. Understandably, when the words "natural gas" are mentioned, one thinks of the natural gas that cooks meals or supplies heat to keep one warm, i.e., methane, propane or the like. These represent naturally occurring flammable gases in the minds of the general public. However, large underground reservoirs of other natural gases exist, such gases being nonflammable. Carbon dioxide reservoirs and nitrogen reservoirs have been discovered with large reserves and under high pressures. Currently, the primary use of carbon dioxide of these reservoirs is as a flooding agent, injected into oil reservoirs for the secondary recovery of petroleum. This represents a minute quantity of the total carbon dioxide present in these naturally occurring reservoirs. Thus, while these gases are nonflammable, little to no demand exists for these naturally occurring gases.

Thus, there exists a need for a method and system for generating electricity by turbine using nonflammable naturally occurring gas.

Summary of the Present Invention

The present invention provides for a system and method for the generation of electricity by using inexpensive and naturally occurring nonflammable gases

In accordance with the present invention, there is provided a system and method for generating electricity without the generation of pollutants.

Further in accordance with the present invention, there is provided a system and method for the use of naturally occurring and renewable gases as a source of energy to power turbine generators to produce electricity. A production well and an injection well are located above a

10

15

naturally occurring reservoir of high-pressure gas. The producing well, equipped with a cutoff valve, allows for high-pressure gas to be carried from the well to a turbine or turbines. The turbine or turbines are connected to generators for the production of electricity. A small portion of the generated electricity is used to operate a compressor, enabling the recovery of used gas. The used gas is then transported, via a pipeline, from the compressor to the injection well, enabling the reintroduction of used gas into the reservoir.

In one embodiment, the present invention produces the carbon dioxide or nitrogen to utilize the powerful flow of the gas to turn the blades of a turbine or a series of turbines. To produce the carbon dioxide or nitrogen, a well will be drilled into the reservoir. The produced gas will be flowed through a pipeline into the nearby turbine or series of turbines, which are encased in a sealed container to prevent leakage into the atmosphere. The flow of gas will turn the turbine blades, which then turn the shaft. The turbine shaft is connected to the generator and turns the rotors to create electricity.

The turbine has an outlet to release the used gas into a pipeline to flow to a nearby compressor. The compressor is connected by a pipeline to a nearby well that has been drilled into the gas-producing reservoir. The compressor injects the gas back into the reservoir for pressure maintenance. Those skilled in the art will appreciate that other methods and materials may be used to maintain the pressure of the reservoir, e.g., water or the like. Such methods and materials, currently utilized in the production of petroleum and flammable natural gasses are examples one skilled in the art would find readily apparent.

In another embodiment, a check valve may be installed in the pipeline between the producing well and the turbines to control the flow of gas. A cutoff valve may also be installed at the producing wellhead for safety and prevention of pressure loss.

5

10

15

In yet another embodiment, the compressor of the present invention may be powered by electricity generated onsite. As a result of the ease of operation envisioned by the present invention, a smaller area will be utilized as compared to a comparable flammable natural gas production facility.

Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by various structures and methods as covered by the patent claims.

Brief Description of the Drawings

The accompanying figures incorporated in and forming a part of the specification, illustrates several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the figures:

FIG 1 is a diagram illustrative of the system of the present invention utilizing a single turbine; and

FIG 2 is a diagram illustrative of the system of the present invention utilizing a series of turbines.

Detailed Description of Preferred and Alternate Embodiments

The present invention is directed to a system and method for using a renewable energy source to power a turbine to operate a generator to produce electricity. The operation of a generator is well known in the art and one of ordinary skill will appreciate that the type of generator used will be of a type typically used for power generation. Furthermore, the operations of a turbine, particularly those turbines driven by steam are also well known in the art. The

5

10

15

present invention uses both generators and turbines, in accordance with the standard operations thereof. As will become apparent to those skilled in the art from the accompanying drawings, the present invention may be applied to a single turbine to generator combination, or may act to a series of turbines operating to produce electricity.

Turning first to FIG 1, there is shown a system diagram of the present invention as implemented in a single turbine to generator configuration. One of skill in the art will appreciate that the following description utilizes the naturally occurring pockets of carbon dioxide or nitrogen to turn the turbine, any naturally occurring gas under pressure may be used. A large reservoir of naturally occurring gas (not shown) is located below the producing well 102. A wellhead (not shown) is fitted with a cutoff valve 104 to prevent the loss of pressure of the reservoir, as well as implemented for safety considerations. Coupled to the wellhead, there is a pipe 106 to transport the gas from the producing well 102 to the turbine 108. The pipe 106 is suitably adapted to contain the high pressures associated with the reservoir and may be composed of any material capable of handling the high pressures and low temperatures inherent with such high pressure gases, such as steel. It will be appreciated by those skilled in the art that the diameter of the pipe 106 is to be suitably adapted to allow for pressure enough to spin the turbine 108, while prevent rupture of the pipe 106 itself.

As shown at the turbine 108, there is a shaft 110 that is suitably coupled to a generator 112. The shaft 110 turns the rotor 113 of the generator 112 to generate electricity. The electricity generated by the generator 112 is transmitted via line 118a to a step up transformer 114. The operations of a transformer are well known in the art. The transformer 114 steps up the voltage received from the generator 112 via line 118a to a voltage capable of transmission on the high voltage lines 116. It will be appreciated by those skilled in the art that the methods for

5

10

15

transmission of electricity are well known. The electricity thus generated is transmitted over the high voltage transmission lines 116 to substations (not shown) and finally to the user.

As contemplated by the present invention, in order to facilitate the recovery of the gas used to drive the turbine 108, the system thus described allows for the transmission of the used gas through a pipe 124 to a compressor 126. It will be understood by those of ordinary skill in the art that the pipe 124 will be composed of a suitably adapted material capable of carrying gas without leaking such gas into the outside environment. Furthermore, the person of ordinary skill in the art will appreciate that the composition of the pipe 124 will be of similar size and manufacture to that of pipe 106. The compressor 126 allows for the recompression of the gas recovered from the reservoir to a pressure capable of being reintroduced into the reservoir. The inclusion of the compressor 126 enables the system to maintain the high pressure of the reservoir for future operation of the turbine 108.

The compressor 126 is suitably adapted to compress returning gas using an electric motor (not shown). Power to operate the compressor 126 is drawing directly from the generator 112 prior to the stepping up of voltage by the step up transformer 114. This electricity is transmitted from the generator 112 to the compressor 126 by means of transmission line 118b. It will be appreciated by those skilled in the art that the composition of the transmission lines 118a and 118b will be suitably adapted to carry the electricity. To facilitate ease of operation, the transmission line 118b is operatively connected to a transformer 120. The transformer 120 is suitably adapted to either step up or step down the voltage generated by generator 112, as required by the electrical motor running the compressor 126. The voltage output from the transformer 120 is then transmitted via transmission line 122 to the electrical motor of the compressor 126.

10

15

As gas is compressed in the compressor 126, it is shunted via pipe 128 to the injection well 130. The pipe 128 is suitably adapted to carry such high-pressure gas without loss to the outside environment. It will be appreciated that the compressor 126 is suitably adapted to generate the pressures required to maintain the internal pressure of the reservoir and thus keep the system operational. In one particular embodiment, a check valve (not shown) is incorporated into the wellhead (not shown) located at the injection well 130. As used herein, a check valve is intended to describe any valve known in the art that allows for the one-way transmission of a fluid or gas, thereby preventing a back-flow through the system. To put in other words, the check valve allows the reintroduced gas back into the reservoir, but does not allow gas to exit the reservoir.

Turning now to FIG 2, there is shown a system embodying the concept of the present invention utilizing a plurality of turbines and generators. It will be appreciated that the number of turbines and respective generators shown is for exemplification and should not be construed to limit application of the present invention solely to the number shown in FIG 2. The producing well 202 is located above a reservoir containing a naturally occurring gas under high pressure. To prevent the loss of such high pressure, a cutoff valve 204 is incorporated into the wellhead (not shown) of the producing well 202. As high-pressure gas is released by the producing well 202 through the wellhead and incorporated cutoff valve 204, it is carried by a pipe 206 to a junction for further delineation. The pipe 206 is suitably adapted to carry gas under high pressures and envisioned to maintain such high pressures without loss of the gas to the outside environment.

The junction of the pipe 206 is suitably located relative to turbines 212a, 212b, 212c and 212d, so as to enable the use of equal length pipes 210a, 210b, 210c and 210d. It will be understood by those skilled in the art that the use of equal length pipes 210a, 210b, 210c and

5

10

15

210d is not required, but eases the transmission of high pressure from the main pipe 206 to the turbines 212a, 212b, 212c and 212d, respectively. It will further be appreciated by those skilled in the art that the composition of the pipes 210a, 210b, 210c and 210d may be of any suitable type typically used for the transmission of high-pressure gas. Shown in FIG 2, there are cutoff valves 208a, 208b, 208c, and 208d located on the pipes 210a, 210b, 210c and 210d. The use of such cutoff valves 208a, 208b, 208c and 208d serves multiple purposes.

In the event of failure of one or more turbines 212a, 212b, 212c and 212d, one or more respective cutoff valves 208a, 208b, 208c and 208d may be activated, thereby preventing the loss of gas to the outside environment, or damage to the remaining operating turbines. Similarly, the activation of one or more cutoff valves 208a, 208b, 208c, or 208d will enable maintenance of the respective turbine, while enabling the system to continue the production of electricity with the remaining functional turbines.

Each of the turbines 212a, 212b, 212c and 212d is operatively connected to a respective shaft 214a, 214b, 214c, and 214d for transmission of power to generators 216a, 216b, 216c and 216d, respectively. The shafts 214a, 214b, 214c, and 214d are suitably connected to the rotors 215a, 215b, 215c and 215d of the generators 216a, 216b, 216c and 216d. The generators 216a, 216b, 216c and 216d operate to produce electricity, which is subsequently transmitted to a step up transformer 220 for transmission via transmission lines 222 to the end consumer. The transmission lines 218a, 218b, 218c, and 218d are suitably adapted to carry the electricity produced by the generators 216a, 216b, 216c and 216d to the step up transformer 220. It will be understood by those skilled in the art that the transmission lines 218a, 218b, 218c and 218d are constructed of materials typical of electrical transmission lines.

15

In the preferred embodiment using multiple generators 216a, 216b, 216c and 216d, an electrical transmission line 224 is coupled to one of the generators 216a, 216b, 216c and 216d, as shown in FIG 2 as the first generator 216a. The transmission line 224 coupled to generator 216a is connected to a transformer 226. The transformer 226 is suitably adapted to either step up or step down the voltage received over the transmission line 224 for supplying power to a compressor 232. The compressor 232 is suitably adapted to receiving used gas from the turbines 212a, 212b, 212c and 212d and compressing the gas for reintroduction into the reservoir. The compressor 232 is operated by an electrical motor (not shown) receiving power from the transformer 226 via a transmission line 228. The transmission line 228 is suitably adapted to carry the requisite voltage enabling operation of the compressor 232. Once skilled in the art will appreciate that in the event of downtime on the first generator 216a, an alternate transmission line 238 may be suitably coupled to a second generator 216b to provide power to the compressor 232. Such downtime may be the result of maintenance or the like on the first generator 216a, however the transmission line 238 may be utilized in other circumstances where the first generator 216a is unable to generate electricity.

During operation of the system depicted in FIG 2, used gas is expelled from the turbines 212a, 212b, 212c and 212d into a pipe 230. The pipe 230 may be any suitable pipe for carrying gas without loss into the outside environment that is known in the art. The pipe 230 is connected to the compressor 232, enabling the recompression of used gas prior to reintroduction into the reservoir. As gas is compressed by the compressor 232, it is shunted through a pipe 234 to an injection well 236. The pipe 234 may be any pipe suitable for carrying high-pressure gas without loss to the outside environment that is known in the art. Upon reaching the injection well 236, the gas is forced back into the reservoir through a wellhead (not shown), thereby maintaining the

5

10

15

high pressure of the naturally occurring gas reservoir. It will be appreciated by those skilled in the art that further safety and efficiency of the multiple turbine configuration of the present invention may be achieved by the incorporation of a check valve into the wellhead of the injection well 236.

In either of the foregoing embodiments, it will be understood by those skilled in the art that the operation of the system and method of operation envisioned by the present invention may be implemented using electronic controls. Such electronic controls may, for example, include the incorporation of computer monitoring facilities and databases. The computer facilities enable the power production facility to track, monitor and maintain the integrity of the system. In the event of leak in one of the pipes, the computer facilities will enable the quick assessment of the location of the leak and the activation of the numerous safety and efficiency devices, as described above.

The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiment was chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of the ordinary skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance to the breadth to which they are fairly, legally and equitably entitled.

5

10

15

ABSTRACT

The present invention is directed to a system and method for the use of naturally occurring and renewable gases as a source of energy to power turbine generators to produce electricity. A production well and an injection well are located above a naturally occurring reservoir of high-pressure gas, such as nitrogen or carbon dioxide. The producing well, equipped with a cutoff valve, allows for high-pressure gas to be carried from the well to a turbine or turbines. The turbine or turbines are connected to generators for the production of electricity. A small portion of the generated electricity is used to operate a compressor, enabling the recovery of used gas. The used gas is then transported, via a pipeline, from the compressor to the injection well, enabling the reintroduction of used gas into the reservoir.

FIG. 1

F16.

:

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/035200

International filing date: 22 October 2004 (22.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/513,474

Filing date: 22 October 2003 (22.10.2003)

Date of receipt at the International Bureau: 13 December 2004 (13.12.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.