COL106 Data Structures and Algorithms

Subodh Sharma and Rahul Garg

Announcements

Exam Syllabus

- The syllabus is all that has been covered in the class
- The major and lab tests may not have questions from all the topics
- But you are expected to study all the topics covered in the classes

Exam Syllabus

- The syllabus is all that has been covered in the class
- The major and lab tests may not have questions from all the topics
- But you are expected to study all the topics covered in the classes
- Some of the topics introduced will be covered in more depth in subsequent courses
- Use this as a learning opportunity

Union-Find

Based on slides by: Goodrich and Tamasia, CSE 373 University of Washington, Kong Lwang, Xzou, Purdue University Indianapolis,

Applications

- Finding connected components in a Graph
- Example: A social network
- Given a set, S, of n people.
- A social network for S comprises a set E, of edges or ties between pairs of people (such as in a friendship network, like Facebook, or tagging network by twitter)
- A connected component in a network is a subset, T of S such that:
 - Every two people in T are connected through a sequence of friendship relationships
 - No one in T is friends with anyone outside of T.

Union-Find Operations

- A partition or union-find structure is a data structure supporting a collection of disjoint sets subject to the following operations:
- makeSet(e): Create a singleton set containing the element e and return the position storing e in this set
- union(A,B): Return the set A U B, naming the result "A" or "B"
- find(e): Return the set containing the element e

Connected Components Algorithm

Algorithm UFConnectedComponents(S, E):

```
Input: A set, S, of n people and a set, E, of m pairs of people from S defining pairwise relationships
```

Output: An identification, for each x in S, of the connected component containing x

```
for each x in S do makeSet(x)
for each (x,y) in E do
if find(x) \neq \text{find}(y) then
union(find(x), find(y))
for each x in S do
Output "Person x belongs to connected component" find(x)
```

• The running time of this algorithm is O(t(n,n+m)), where t(j,k) is the time for k union-find operations starting from j singleton sets.

Maze Construction

 Problem: Construct a good maze that connects entry point to the exit point

Union-Find 10

Hint: Model it as a connectivity problem in a Graph

- Hint: Model it as a connectivity problem in a Graph
- What are the vertices?
- What are the edges?

1	2	3	4	5	8	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	28	27	28	29	30
31	32	33	34	35	38	37	38	39	40
41	42	43	44	45	48	47	48	49	50
51	52	53	54	55	58	57	58	59	80
61	62	63	64	65	88	67	60	89	70
71	72	73	74	75	78	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	98	97	98	99	100

- Vertices are cells
- Two vertices are connected by an edge if:
 - They are adjacent
 - The adjoining wall is not there
- Keep on adding the edges till vertex 1 (entry point) is connected to vertex 100 (exit point)
- Do not add edges within the same connected components
- Construct a spanning tree

1	2	3	4	5	8	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	28	27	28	29	30
31	32	33	34	35	38	37	38	39	40
41	42	43	44	45	48	47	48	49	50
51	52	53	54	55	58	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	78	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	98	97	98	99	100

A Maze Generator

Algorithm MazeGenerator(G, E):

Input: A grid, G, consisting of n cells and a set, E, of m "walls," each of which divides two cells, x and y, such that the walls in E initially separate and isolate all the cells in G

Output: A subset, R of E, such that removing the edges in R from E creates a maze defined on G by the remaining walls

```
while R has fewer than n-1 edges do
Choose an edge, (x,y), in E uniformly at random from among those previously unchosen
if \operatorname{find}(x) \neq \operatorname{find}(y) then
union(\operatorname{find}(x), \operatorname{find}(y))
Add the edge (x,y) to R
```

return R

Data Structures for Union Find

- Linked lists?
- Trees?
- Others?

- Approach 1: Create a linked list for each set.
 - last/first element is representative
 - cost of union? find?

- Approach 2: Create linked list for each set. Every element has a reference to its representative.
 - last/first element is representative
 - cost of union? find?

- Approach 1: Create a linked list for each set.
 - last/first element is representative
 - cost of union? find?
- Union:

- Approach 1: Create a linked list for each set.
 - last/first element is representative
 - cost of union? find?
- Find:

- Approach 2: Create linked list for each set. Every element has a reference to its representative.
 - Last/first element is representative
 - Cost of union? find?

Linked-lists for two sets

UNION Implementation

- A simple implementation: UNION(x,y) just appends x to the end of y, updates all back-to-representative pointers in x to the head of y.
- Each UNION takes time linear in the x's length.
- Suppose n MAKE-SET(x_i) operations (O(1) each) followed by n-1 UNION
 - UNION (x_1, x_2) , O(1),
 - UNION (x_2, x_3) , O(2),
 - •
 - UNION (x_{n-1}, x_n) , O(n-1)
- The UNIONs cost $1+2+...+n-1=\Theta(n^2)$
- So 2n-1 operations cost $\Theta(n^2)$, average $\Theta(n)$ each.
- Not good!! How to solve it ???

Linked-lists: Approach 2b

- For union, keep the identity of larger set
- Modify the elements of the smaller set to point to the larger set's ID

Analysis of Approach 2b

- When doing a union, always move elements from the smaller set to the larger set
 - ■Each time an element is moved it goes to a set of size at least double its old set
 - ■Thus, an element can be moved at most O(log n) times
- Total time needed to do n unions and m finds ??

Analysis of Approach 2b

- When doing a union, always move elements from the smaller set to the larger set
 - ■Each time an element is moved it goes to a set of size at least double its old set
 - ■Thus, an element can be moved at most O(log n) times
- ◆Total time needed to do n unions and m finds is O(n log n + m).

Tree-based Implementation

- Each element is stored in a node, which contains a pointer to parent
- A node v whose parent pointer points back to v is also a set name
- Each set is a tree, rooted at a node with a selfreferencing set pointer
- For example: The sets "1", "2", and "5":

Union-Find Operations

 To do a union, simply make the root of one tree point to the root of the other

 To do a find, follow setname pointers from the starting node until reaching a node whose parent pointer refers back to itself

Union-Find Heuristic 1a

Union by size:

- Maintain a variable size at every node
- When performing a union, make the root of smaller tree point to the root of the larger
- Update the size of the root
- Implies O(n log n) time for performing n union-find operations:
 - Each time we follow a pointer, we are going to a subtree of size at least double the size of the previous subtree
 - Thus, we will follow at most O(log n) pointers for any find.

Union-Find Heuristic 1b

Union by rank:

- Maintain a rank at every node initialized to zero
- When performing a union, make the root of smaller-rank tree point to the root of the larger rank three
- If rank of both the trees are the same, add one to the rank of the root
- Implies O(n log n) time for performing n union-find operations:
 - Why?

Union-Find Heuristic 2

Path compression:

 After performing a find, compress all the pointers on the path just traversed so that they all point to the root

Implies a fast "almost linear" time for n union-find operations.

Path Compression

Algorithm for Disjoint-Set Forest

MAKE-SET(x)

- 1. $p[x] \leftarrow x$
- $2. \quad rank[x] \leftarrow 0$

UNION(x,y)

1. LINK(FIND-SET(x),FIND-SET(y))

LINK(x,y)

- 1. if rank[x] > rank[y]
- 2. then $p[y] \leftarrow x$
- 3. else $p[x] \leftarrow y$
- 4. **if** rank[x]=rank[y]
- 5. **then** rank[y]++

FIND-SET(x)

- 1. if $x \neq p[x]$
- 2. **then** $p[x] \leftarrow \text{FIND-SET}(p[x])$
- 3. return p[x]

Worst case running time for m MAKE-SET, UNION, FIND-SET operations is: $O(m\alpha(n))$ where $\alpha(n) \le 4$. So nearly linear in m.

Analysis of Union by Rank with Path Compression (by amortized analysis)

- Discuss the following:
 - A very quickly growing function and its very slowly growing inverse
 - Properties of Ranks
 - Proving time bound of $O(m\alpha(n))$ where $\alpha(n)$ is a very slowly growing function.

A Fun Exercise

A Fun Exercise

What is the largest number you can imagine represented using less than 100 characters?

A Fun Exercise

What is the largest number you can imagine represented using less than 100 characters?

Start thinking algorithmically

A Fun Exercise

What is the largest number you can imagine represented using less than 100 characters?

Start thinking algorithmically and non-linearly

Largest number you can imagine

Let
$$A_0(x) = x + 1$$

$$A_{i+1}(x) = A_i^{(x)}(x)$$
17

where, f(k) denotes k applications of the function f to x

$$f^{(1)}(x) = f(x)$$

$$f^{(k)}(x) = f(f^{(k-1)}(x))$$

$$A_{9}(99)$$
21
7

4 + 10+17+13+21+7

Total: 72 characters

The version of the Ackermann function we use is based on an indexed function, A_i , which is defined as follows, for integers $x \ge 0$ and i > 0:

$$A_0(x) = x+1$$

 $A_{i+1}(x) = A_i^{(x)}(x),$

where $f^{(k)}$ denotes the k-fold composition of the function f with itself. That is,

$$f^{(0)}(x) = x$$

 $f^{(k)}(x) = f(f^{(k-1)}(x)).$

So, in other words, $A_{i+1}(x)$ involves making x applications of the A_i function on itself, starting with x. This indexed function actually defines a progression of functions, with each function growing much faster than the previous one:

- $A_0(x) = x + 1$, which is the increment-by-one function
- $A_1(x) = 2x$, which is the multiply-by-two function
- $A_2(x) = x2^x \ge 2^x$, which is the power-of-two function
- $A_3(x) \ge 2^{2^{\cdot \cdot \cdot ^2}}$ (with x number of 2's), which is the tower-of-twos function
- $A_4(x)$ is greater than or equal to the tower-of-tower-of-twos function
- and so on.

$$A_0(x) = x + 1$$
 $A_{i+1}(x) = A_i^{(x)}(x)$
 $A_1(x) = A_0^{(x)}(x)$
 $=$

$$A_0(x) = x + 1$$

$$A_{i+1}(x) = A_i^{(x)}(x)$$

$$A_1(x) = A_0^{(x)}(x)$$

$$= 2x$$

$$A_0(x) = x + 1$$

$$A_{i+1}(x) = A_i^{(x)}(x)$$

$$A_2(x) = A_1^{(x)}(x)$$

$$= A_1^{(x-1)}(A_1(x))$$

$$= A_1^{(x-1)}(2x)$$

$$= A_1^{(x-2)}(2^2x)$$

$$= x2^x$$

$$A_{0}(x) = x + 1$$

$$A_{i+1}(x) = A_{i}^{(x)}(x)$$

$$A_{2}(x) = A_{1}^{(x)}(x)$$

$$= A_{1}^{(x-1)}(A_{1}(x))$$

$$= A_{1}^{(x-1)}(2x)$$

$$= A_{1}^{(x-2)}(2^{2}x)$$

$$= x2^{x}$$

$$> 2^{x}$$

$$A_{0}(x) = x + 1$$

$$A_{i+1}(x) = A_{i}^{(x)}(x)$$

$$A_{3}(x) = A_{2}^{(x)}(x)$$

$$= A_{2}^{(x-1)}(A_{2}(x))$$

$$\geq A_{2}^{(x-1)}(2^{x})$$

$$\geq$$
>

The version of the Ackermann function we use is based on an indexed function, A_i , which is defined as follows, for integers $x \ge 0$ and i > 0:

$$A_0(x) = x+1$$

 $A_{i+1}(x) = A_i^{(x)}(x),$

where $f^{(k)}$ denotes the k-fold composition of the function f with itself. That is,

$$f^{(0)}(x) = x$$

 $f^{(k)}(x) = f(f^{(k-1)}(x)).$

So, in other words, $A_{i+1}(x)$ involves making x applications of the A_i function on itself, starting with x. This indexed function actually defines a progression of functions, with each function growing much faster than the previous one:

- $A_0(x) = x + 1$, which is the increment-by-one function
- $A_1(x) = 2x$, which is the multiply-by-two function
- $A_2(x) = x2^x \ge 2^x$, which is the power-of-two function
- $A_3(x) \ge 2^{2^{\cdot \cdot \cdot ^2}}$ (with x number of 2's), which is the tower-of-twos function
- $A_4(x)$ is greater than or equal to the tower-of-tower-of-twos function
- and so on.

We then define the **Ackermann function** as

$$A(x) = A_x(2),$$

which is an incredibly fast-growing function.

• To get some perspective, note that A(3) = 2048 and A(4) is greater than or equal to a tower of 2048 twos, which is much larger than the number of subatomic particles in the universe.

Likewise, its inverse, which is pronounced "alpha of n",

$$\alpha(n) = \min\{x: A(x) \ge n\},\$$

is an incredibly slow-growing function. Even though $\alpha(n)$ is indeed growing as n goes to infinity, for all practical purposes, $\alpha(n) \le 4$.

Thank You