### Maker Space Session



Bluefruit Intro & Pre-Requisites

### Session Goals:

MCU Fundamentals
Install Pre-Requisites
Make a blinky thing

## Assumptions:

You have software development experience.

You may not have much hardware or microcontroller experience.

### Maker Space Session



Fundamentals
& Intro
To Microcontrollers

## Introduction



## What is this thing?

## Demonstration

## A very full featured device.

A great intro to micro controllers and programming.

### **Key Features**

Blinky Lights (Neopixels)

Jiggle Detection (LIS3DH)

Light, Sound, Temp Sensors

Beepy Thing (Speaker)

Pushy Things (button, Switches)

Shiny Metal (GPIO /Interface Pins)

## What is a Micro Controller (MCU)?

A compact circuit designed for a specific single purpose, in an embedded system.

## Similarities to a Computer

Has a CPU, Ram, and I/O\*

\* but a lot less (Bluefruit has 2MB of Flash storage, and 32K ram- enough for a few hundred lines program. Flash can also store libraries and data structures referenced from code.)

## MCU vs. Computer

Doesn't run an OS Typically, only has basic interfaces (I2C, SPI, UART) Lower Power Requirements

## MCU's Commonly Used: Robotics 3d Printing, Drones, Automobiles, Cell Phones, IoT Devices



## How do you Program it?

## Circuit Python or Arduino/C++

# Circuit Python: Higher Level Language (like Java or .NET)

Arduino:

Lower Level Language (C++)

## Circuit Python: "Easier" to code White Space Language

Arduino/C++
Lower Level, more control,
Best performance, \*more familiar

## What is the Development Process?



#### The CircuitPython Boot Sequence



## What about Debugging?

Serial.Print("Here!");

It's a bit more challenging on Micro Controllers w/o specialized hardware.

## Circuit Python recommended Debugger (for SWD or JDAG Interface): J-Link





(\$20 – Non Commercial)

(\$400 – Commercial)

## Circuit Python: the REPL

#### The REPL



**△** Subscribe

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular program and can't figure out why. It's interactive so it's great for testing new ideas.

#### Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll see <a href="Press">Press</a> any key to enter the REPL. Use CTRL-D to reload. Follow those instructions, and press any key on your keyboard.

## Arduino: Serial Monitor



<sup>\*\*</sup> There is a relatively new "Arduino Extension for VS Code" Available (In Preview), allows more robust debugging of Arduino without specialized hardware.



Prepping BlueFruit & Installing Mu

#### Bluefruit Device Pre-Requisites

- Install latest stable release of CircuitPython Runtime
- https://circuitpython.org/board/circuitplayground\_bluefruit/

#### • Steps:

- Connect Bluefruit with a USB cable you know works with Data
- Double click middle button of Bluefruit to enter DFU mode (Device Firmware Update mode)
- Browse to the USB drive (CPLAYBTBOOT)
- Copy the .UF2 file you just downloaded to the CPLAYBTBOOT root directory (Wait for light sequence to change)
- After updating, your drive will be renamed to CIRCUITPY and you will have a few files in there (code.py, which is a "Hello World" sketch).

#### Circuit Python Libraries (V7)

Optional- Windows Only (Driver):
 https://github.com/adafruit/Adafruit
 Windows Drivers/releases/tag/2.5.0.0

- Download Circuit Python Libraries (v7): <a href="https://circuitpython.org/libraries">https://circuitpython.org/libraries</a>
- Copy over these to a folder called "lib" on your Bluefruit:

```
lib
adafruit_ble
adafruit_bluefruit_connect
adafruit_bus_device
adafruit_circuitplayground
adafruit_gizmo
adafruit_hid
adafruit_lis3dh.mpy
adafruit_thermistor.mpy
neopixel.mpy
```

## Download & Install Mu

https://codewith.mu

#### Open Mu, and select "CircuitPython"



#### Creating your first program

```
code.py
     import time
     from adafruit_circuitplayground import cp
     cp.pixels.brightness = 0.3
     while True:
          cp.pixels[0] = (255, 0, 0)
          time.sleep(0.5)
          cp.pixels[0] = (0,0,0)
          time.sleep(0.5)
```

Save as "code.py" into root folder of CIRCUITPY USB Drive and watch the magic happen.

#### Got it working?

Exercise 2: Modify the code to make **all** of the neopixels blink. Bonus points for efficient code (12 lines or less).

(Difficulty Level: Easy)

#### Exercise #2

```
code.py • 🗶
     import time
     from adafruit_circuitplayground import cp
     cp.pixels.brightness = 0.3
     while True:
          for x in range(0, 10, 1):
              cp.pixels[x] = (255,0,0)
          time.sleep(0.5)
          for x in range(0, 10, 1):
  11
              cp.pixels[x] = (0,0,0)
          time.sleep(0.5)
```

Save as "code.py" into root folder of CIRCUITPY USB Drive and watch the magic happen.

#### Got it working?

Exercise 3: Use the switch to toggle the LED's from blinking on and off (hint: check the status of cp.switch, which is a boolean)

(Difficulty Level: Super Easy)

#### Exercise #3

```
code.py
     import time
     from adafruit_circuitplayground import cp
     cp.pixels.brightness = 0.3
     while True:
          if cp.switch == True:
              for x in range(0, 10, 1):
                  cp.pixels[x] = (255,0,0)
              time.sleep(0.5)
  10
              for x in range(0, 10, 1):
                  cp.pixels[x] = (0,0,0)
              time.sleep(0.5)
  14
```

Save as "code.py" into root folder of CIRCUITPY USB Drive and watch the magic happen.

#### Got it working?

Exercise 4: Press the a button to cycle colors forward (red, yellow, green, cyan, purple, white) for all Neopixels, and the b button to cycle back to the previous set of color.

Hint: Buttons are referenced by cp.button\_a and cp.button\_b and have a boolean value)

Hint: Utilize an Array to define and iterate colors

Hint: Don't forget to use REPL for helpful debugging!

(Difficulty Level: Medium)

```
code.py
     import time
    from adafruit_circuitplayground import cp
     cp.pixels.brightness = 0.3
     colors = [[255,0,0], # red]
              [255,150,0], #yellow
              [0,255,0], #green
              [0,255,255], #cyan
              [0,0,255], #blue
              [180,0,255], # purple
              [255,255,255]] #white
     numcolors = 7
    x = 1
 15
    while True:
         for y in range(0, 10, 1):
             cp.pixels[y] = colors[x-1]
 20
         if cp.button_a is True:
             print(x)
             if x < numcolors:</pre>
                 x = x + 1
 24
             time.sleep(0.5)
 25
 26
 27
         if cp.button b is True:
 28
             print(x)
 29
             if x > 1:
                 x = x - 1
             time.sleep(0.5)
```

#### Exercise #4

Save as "code.py" into root folder of CIRCUITPY USB Drive and watch the magic happen.

#### So now what?

- Like the Hardware? Purchase a BlueFruit Ticket on Eventbrite (supplies limited) to buy a kit (\$38). Otherwise, please return hardware to a volunteer.
- Want to do more? Hang out in the Maker Space, and visit the self paced examples on the Adafruit Web Site.
- https://learn.adafruit.com/adafruit-circuit-playgroundbluefruit/circuitpython-neopixel

#### Bluefruit Challenge

- Got some spare time? Work in the Maker Space to make something awesome. Consider incorporating 3d printing and other electronics into your design.
- Provide a demonstration by 1pm Friday in the Maker Space.
- Awards will be given for the following (original designs only):
  - Most Impressive (individual)
  - Most Creative (individual)
  - Most Collaborative / Best Teamwork (up to 3 people)

#### Advanced Projects

 Get a buddy and play Quick Draw- with 2 Bluefruits! <a href="https://learn.adafruit.com/circuit-playground-quick-draw/circuitpython">https://learn.adafruit.com/circuit-playground-quick-draw/circuitpython</a>

 Pick a color with an app on your phone, and change the color of the Bluefruit (Arduino): <a href="https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/ble-uart-controller">https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/ble-uart-controller</a>