Final Project

Interaction Techniques and Technologies (ITT), SS 2017

Session 19 (13.07.2017), Raphael Wimmer

Overview

These are slides/notes for the lecture, automatically generated from the slide set. Please extend this outline with your own notes.

Upcoming topics

- today: final project, questions, example: Jack Schaedler's GRAILS implementation
- 18.7. and 20.7.2017: Undo, Copy&Paste (lecture, experiments)
- 25.7.2017: Summary, outlook, evaluation
- 27.7.2017: Final presentations (FIL)
- 7.8.2017: submission of all files for final project.

Goals for this and next Week

Overall: Learn more about generic interaction techniques and tracking

Know

· History and implementation of Undo, Copy&Paste

Learn

• using algebra for tracking / transformations

Practice

· put all knowledge from this course to work

Final Project

09.1: Design the interactive system

Choose a task

Design an interactive system for one of the following tasks:

- · sketching / notetaking
- · previewing and organizing documents or photos
- proxemic interaction¹

¹http://grouplab.cpsc.ucalgary.ca/Projects/ProjectProxemicInteraction

- · generating music
- · modeling / manipulating 3D objects
- any other interesting task, as long as you discuss it with me beforehand

Choose sensible features

The system needs to fulfil the following requirements:

- the Wiimote is used for tracking something (itself, users, pens) in some way
- the sensor data is preprocessed using adequate filters
- you need to design/implement at least one basic interaction technique for each team member, such as:
 - pattern/gesture recognition
 - copy & paste
 - undo
 - (chording) text entry
 - spatial manipulation of objects (move, rotate, zoom)
 - proximity-dependent information display
 - any other interaction technique, as long as you discuss it with me beforehand
- · the system should be cool

Submission

Hand in the following file:

system_documentation.pdf: a short report (less than 10 pages) describing the system, its usage, and its implementation. A skilled reader should be able to re-implement the system based on your documentation. If the team has more than one member, please also document what parts each team member contributed. Please use the official thesis template.

Points

- 4 The paper describes the system well.
- 2 The paper is visually appealing
- 2 The paper has enough detail to allow replication
- 2 The paper is well written.

09.2: Implement the interactive system

Task and submission

Develop a Python application that implements the aforementioned features. The application should be robust and fast.

Hand in the following file:

system_demo.py: a Python script that starts the demo when executed. It should accept a Bluetooth address as command line parameter for specifying the Wiimote to use. Additional files (e.g., media files) may be handed in, too.

Points

- 6 The application correctly implements all features.
- 3 The application is well documented.

- 3 The application is well-structured and follows the Python style guide (PEP 8).
- 2 The application works robustly
- 2 The application is responsive/fast
- 4 The application is enjoyable and beautiful

09.3: Present the interactive system

Task and submission

Show your system in a short live demonstration (5 minutes) on Thursday, 27.7.2017. Furthermore, create a short video (1-3 minutes) about your system, with a focus on UI, features, and use cases.

Hand in the following file:

system_presentation.mp4: a short video that shows all features of your system

Points

- 4 The presentation showcases a plausible use case
- 3 The presentation is free of malfunctions/problems
- 3 The presenters are able to answer technical questions
- 3 The video shows all features of the system
- 3 The video is beautiful

Example: GRAILS reimplemented

ENDE