Dissecting a Complex-Risk Management Framework

Ben Luther

Content is the opinion of the author and not necessarily the position of any organisation

The Research

Qualitative

- Observation
- Survey
- Interview

Ethnographic Study – case study

Ontological Framework

- Cynefin

Empirically Grounded Analysis

Validated

Test pilots

- survey, n=49
- interview, n=9

https://data.mendeley.com/datasets/5n2s4fkhz6/2

De-identified data

Cynefin Framework

Test Pilot Risk Management

Different - Uniquely across 3 domains Unknowable: n=1, configuration change

- Complex

Inside the system Catastrophic:

- no resilience
- no redundancy
- no averages (central tendency)

Capt Charles Yeager, Bell X-1, Muroc Air Force Base, May 1948

https://unwritten-record.blogs.archives.gov/2022/10/13/captain-chuck-yeager-breaking-the-sound-barrier/

Test Pilot Risk Management

Need for different tools

- infers different types of risk

Parallel approaches

- all the tools to all the risks

Systems Dynamics

Determinism

COMPLEX

Enabling constraints Loosely coupled

probe-sense-respond

EMERGENT PRACTICE

COMPLICATED

Governing constraints
Tightly coupled

sense-analyze-respond

GOOD PRACTICE

Latenc

eous

Lacking constraint De-coupled

act-sense-respond

NOVEL PRACTICE

CLEAR

Tightly constrained No degrees of freedom

sense-categorize-respond

BEST PRACTICE

Crisis leadership

State changes

Outcomes

As per ASSC 2023

Socio-technical system Risk:

Non-deterministic

Identifying the underlying system intricacy domain

- Variable latency
- Emergent system behaviour
- Not currently regulated

Operational Risk:

- Deterministic
- Significant latency
- Regulated practices

3 types of systems

different attributes

Workplace Risk:

- Deterministic
- Little to no latency
- Industrial legislation

Determinism

Outcomes

One size does not fit all

3 types of systems

- different tools

Risk Theory

No grand theory

Established

Probability Theory

Calculated or

Subjective

Economic Utility
Theory

		Consequence					
		Negligible 1	Minor 2	Moderate 3	Major 4	Catastrophic 5	
Likelihood	5 Almost certain	Moderate 5	High 10		Extreme 20	Extreme 25	
	4 Likely	Moderate 4	High 8	High 12	Extreme 16	Extreme 20	
	3 Possible	Low 3	Moderate 6	High 9	High 12	Extreme 15	
	2 Unlikely	Low 2	Moderate 4	Moderate 6	High 8	High 10	
	1 Rare	Low 1	Low 2	Low 3	Moderate 4	Moderate 5	

Extant Risk theory

Economic Theory

Morgenstern

Safety Science

Friedman

von Neumann

System Safety $\frac{1}{reliabilty} = failure \ rate$

Utility Theory
Probability Theory

		Consequence					
		Negligible 1	Minor 2	Moderate 3	Major 4	Catastrophic 5	
Likelihood	5 Almost certain	Moderate 5	High 10	Extreme 15	Extreme 20	Extreme 25	
	4 Likely	Moderate 4	High 8	High 12	Extreme 16	Extreme 20	
	3 Possible	Low 3	Moderate 6	High 9	High 12	Extreme 15	
	2 Unlikely	Low 2	Moderate 4	Moderate 6	High 8	High 10	
	1 Rare	Low 1	Low 2	Low 3	Moderate 4	Moderate 5	

Probability

Evolved Risk theory

Economic Theory

Knight

Keynes

Utility Theory Probability Theory

Uncertainty

Cynefin framework

Images: en.Wikipedia.org

Risk theory

Toward a Grand Theory of Risk

Rasmussen

Drift

Dynamic

Rasmussen, J 1997, 'Risk management in a dynamic society: a modelling problem', Safety science

Sterman

Time

Dependency

Latency

Incubation Period

Dekker

Complicated
Complicated
vs Dynamic complexity

Test & EvaluationCentre of Excellence

Risk theory

Toward a Grand Theory of Risk

Functions of time?

Sterman's time dependency?

Dekker's incubation period?

Rasmussen's drift?

Not yet resolved

What to do with this?

Continue to abide by the rules

Critical thinking

- right tool for the job
- do you <u>really</u> know the probability?

Understanding

- risk acceptance
- empathy

RISK ASSESSMENT MATRIX						
SEVERITY PROBABILITY	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)		
Frequent (A)	High	High	Serious	Medium		
Probable (B)	High	High	Serious	Medium		
Occasional (C)	High	Serious	Medium	Low		
Remote (D)	Serious	Medium	Medium	Low		
Improbable (E)	Medium	Medium	Medium	Low		
Eliminated (F)	Eliminated					

Risk Management Framework for Complex Systems

Test & EvaluationCentre of Excellence

Right Tool for the Job

Precautionary, &

STPA

SMS

/ 4653126481462874698798797979

961238746873547368742564872

PPE

