# THE SIMULATION OF POWER-FREQUENCY TRANSIENTS

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By VINNAKOTA BAPI RAJU

to the DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

DECEMBER, 1978



- 9 FEB 1979

## CERTIFICATE

It is certified that the work entitled "Simulation of Power-Frequency Transients" by Mr. Vinnakota Bapi Raju has been carried out under my supervision and has not been submitted elsewhere for the award of degree.

December 1978.

R.P. Aggarwal
Professor

M. Meme

Professor
Department of Electrical Engineering
Indian Institute of Technology
Kanpur

### AC KNOWLEDGEMENTS

I take this opportunity to express my indebtedness and deep sense of gratitude to Dr. R.P. Aggarwal who initiated me to this problem and provided excellent guidance throughout the course of this work.

I express my indebtedness to Dr. K.R.Padiyar for many useful discussions and suggestions.

I wish to acknowledge my indebtedness to my teachers C. Radhakrishna and Dr. J. Laxminarayana for their interest shown during the progress of this thesis.

I am grateful to Ers. A.K. Mitra, A.K. Rastogi, V.P. Tiwari and S.K. Garg for providing the UPSEB system data and for useful discussions.

Thanks are due to fellow research scholars

K.S. Sarma, R.P.Adgaonkar, Mrs. K.Gomathi, N. Arumugam,

R.P.Suri, V.V. Rao and T.V. Prabhakar for useful

discussions.

The help rendered by my friends P.D. Porey and Kultar Singh is appreciated. I would like to thank Mr. K.N. Tewari for the care and interest taken in typing the manuscript.

Vinnakota Bapi Raju

## TABLE OF CONTENTS

|           |            |                                                              | Page |
|-----------|------------|--------------------------------------------------------------|------|
| LIST OF   | FIGUI      | RES                                                          |      |
| LIST OF   | TABLI      | ES                                                           |      |
| NOMENC La | TURE       |                                                              |      |
| ABSTRAJI  | 1          |                                                              |      |
| CHAPTER   | 1:         | INTRODUCTION                                                 | 1    |
|           | 1.1        | General discussion                                           | 1    |
|           | 1.2        | Previous work                                                | 3    |
|           | 1.3        | Details of problem under consideration                       | 6    |
| CHAPTER   | 2:         | TURBINE AND SPEED GOVERNOR MODELS                            | 9    |
|           | 2.1        | General discussion                                           | 9    |
|           | 2.2        | Speed governor and thermal turbine model                     | 9    |
|           | 2.3        | Speed governor and hydro turbine model                       | 14   |
| CHAPTER   | 3 <b>:</b> | IMPLEMENTATION TREATING ELECTRICAL LOADING CONSTANT          | 19   |
|           | 3.1        | General discussion                                           | 19   |
|           | 3.2        | Implementation                                               | 20   |
|           | 3.3        | Discussion and Conclusions                                   | 24   |
| CHAPTER   | 4:         | GENERATOR AND EXCITATION SYSTEM MODELS                       | 29   |
|           | 4.1        | Generator representation                                     | 29   |
|           | 4.2        | Expitation system model                                      | 31   |
| CHAPTER   | 5:         | IMPLEMENTATION INCLUDING ELECTRICAL LOADING                  | 37   |
|           | 5.1        | General Discussion                                           | 37   |
|           | 5.2        | Calculation of total electrical power output $P_{\mbox{eT}}$ | 38   |

|          | 5.3        | Digital simulation                                            | 42 |
|----------|------------|---------------------------------------------------------------|----|
|          | 5.4        | Step by Step algorithm for implementation on digital computer | 42 |
|          | 5.5        | Computer results for IEEE-14 bus system                       | 45 |
|          | 5.6        | Computer results for UPSEB planning model network             | 47 |
| CHAPTER  | 6 <b>:</b> | OVERALL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK           | 54 |
|          | 6.1        | Overall conclusions                                           | 54 |
|          | 6.2        | Suggestions for future work                                   | 58 |
| LIST OF  | REFER      | RENC ES                                                       | 59 |
| APPENDIX | : I        | UPSEB PLANNING MODEL NETWORK DATA                             | 60 |
| APPENDIX | II:        | IEEE-14 BUS SYSTEM DATA                                       | 77 |
|          |            |                                                               |    |

•

## LIST OF FIGURES

| Fig.No. | Caption                                                                                                                                              | Page |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1     | Single line diagram of UPSEB planning model network                                                                                                  | 7    |
| 2.1     | Thermal turbine and speed governor model                                                                                                             | 12   |
| 2.2     | Analog diagram of speed governor and thermal turbine                                                                                                 | 13   |
| 2.3     | Hydro turbine and speed governor                                                                                                                     | 16   |
| 2.4     | Analog diagram of hydro turbine and speed governor                                                                                                   | 17   |
| 3.4     | Frequency for equivalent thermal model                                                                                                               | 26   |
| 3.2     | Frequency for equivalent hydro model                                                                                                                 | 27   |
| 3.3     | Frequency for both thermal and hydro representation & frequency for UPSEB system                                                                     | 28   |
| 4.1     | Equivalent circuit of generator & phasor diagrams for steady state conditions                                                                        | 32   |
| 4.2     | diagra<br>Vector diagram of synchronous generator in<br>the transient state                                                                          | 33   |
| 4.3     | Analog diagram of IEEE-1 rotating exciter & IEEE Type-1 rotating excitation system model                                                             | 36   |
| 5.1     | Relationships of subroutines for initial conditions & relationships between subroutines during step by step simulation                               | 51   |
| 5.2     | Single line diagram of IEEE-14 bus system                                                                                                            | 52   |
| 5.3     | Frequency for the IEEE_14 bus system                                                                                                                 | 53   |
| 6.1     | A rotor frequency by transient stability study of the UPSEB system, frequency for both thermal and hydro representation & frequency for UPSEB system | 57   |

## LIST OF TABLES

| Table No. | Title                                     | Page |
|-----------|-------------------------------------------|------|
| 2.1       | Thermal turbine and speed governor data   | 18a  |
| 2.2       | Hydro turbine and speed governor data     | 181  |
| 5.1       | Simulation results for loss of generation |      |
|           | on IEEE-14 bus system                     | 50   |

## NOMENC LATURE

| $\mathbf{E}_{\mathbf{F}}$  | Term representing the field voltage                               |
|----------------------------|-------------------------------------------------------------------|
| Ė <sub>F</sub>             | Time derivative of $\mathbf{E}_{\mathbf{F}}$                      |
| E <sub>I</sub>             | Voltage proportional to field current                             |
| $\mathbf{E}_{\mathbf{q}}$  | Voltage behind quadrature axis synchronous                        |
| -                          | reastance                                                         |
| E'q                        | Voltage proportional to field flux linkages due                   |
|                            | to field and armature currents                                    |
| Ei<br>q                    | Time derivative of $\mathbf{E}_{\mathbf{q}}^{t}$                  |
| f                          | Frequency in Hz                                                   |
| fo                         | Nominal operating frequency in Hz                                 |
| ${	t F}_{	ext{HP}}$        | High pressure turbine power constant                              |
| $\mathtt{F}_{\mathtt{IP}}$ | Intermediate pressure turbine power constant.                     |
| $\mathtt{F}_{\mathtt{LP}}$ | Low pressure turbine power constant                               |
| g                          | Power at gate or valve out-let                                    |
| g <sub>min</sub>           | Minimum power limit at valve out-let                              |
| g <sub>ma.x</sub>          | Maximum power limit at valve out-let                              |
| § <sub>min</sub>           | Lower limit on rate of change of power imposed by                 |
|                            | gate travel                                                       |
| ė <sub>max</sub>           | Upper limit on rate of chang of power imposed by                  |
|                            | gate travel                                                       |
| $\mathtt{I}_{\mathtt{T}}$  | Terminal current                                                  |
| Id                         | Component of $I_{\mathrm{T}}$ referred to machine direct axis     |
| $\mathtt{I}_{\mathtt{q}}$  | Somponent of $I_{\mathrm{T}}$ referred to machine quadrature axis |
| $\mathbf{K}_{\mathrm{A}}$  | Regulator gain                                                    |

K<sub>E</sub> Exciter constant related to self-excited field

 ${f K}_{f F}$  Regulator stabilizing circuit gain

M<sub>j</sub> Moment of inertia of jth machine

 $M_{\pi}$  Total moment of inertia

P<sub>hase</sub> Base capacity of power of turbine

P<sub>m</sub> Mechanical power output

 $P_{mi}$  Mechanical power output of jth machine

 $P_{mT}$  Total mechanical power

 $P_{mT(H)}$  Total mechanical power due to hydel power

 $P_{mT(Th)}$  Total mechanical power due to thermal power

 $\dot{P}_{mT}$  Time derivative of  $P_{mT}$ 

Pes Slack machine power

P<sub>slack</sub> Slack bus power (real)

 $P_{ei}$  Real power output of jth machine

 $P_{eT}$  Total electrical power output

 $P_{eT(H)}$  Total electrical power output of hydro generators

 $P_{eT(Th)}$  Total electrical power output of turbo-generators.

r<sub>a</sub> Armature resistance

R Governor speed regulation constant

 $S_{
m E}$  Saturation constant

 $S_{\mathrm{base}}$  System base MVA chosen

 $\mathbf{T}_{\mathrm{HP}}$  Time constant of turbine high pressure section

 ${f T}_{\hbox{\scriptsize IP}}$  Time constant of turbine intermediate pressure

section

 ${f T}_{{f T},{f P}}$  Time constant of turbine low pressure section.

 $T_R$  Dash Pot time constant

Speed governor time constant  $\mathtt{T}_{\mathtt{S}}$  ${}^{\mathrm{T}}\mathrm{D\!R}$ Dash Pot time constant Water starting time  $T_{W}$ Regulator amplifier time constant  $\mathbf{T}_{\mathsf{A}}$ Exciter time constant  $T_{\mathrm{E}}$ Regulator stabilizing circuit time constant  $_{\mathbf{T}}^{\mathbf{T}}$ Direct axis transient open circuit time constant D'T Terminal voltage of generator  $\Lambda^{\omega}$  $\textbf{v}_{\texttt{Ref}}$ Reference voltage setting of exciter regulator control Regulator output voltage  $\mathbb{V}_{\mathbb{R}}$  $v_{\tt Rmin}$ Minimum value of  $V_R$ Maximum value of  $V_{\rm R}$ V<sub>Rmax</sub> Angular velocity in Rad/sec. ω Angular velocity of system centre of inertia Rad/sec.  $\omega_{\cap}$ Normal operating speed of the system in Rad/sec.  $\omega_{_{\mathbf{S}}}$ Time derivative of  $\omega_{o}$ ۺؙ Direct axis synchronous reactance  $\mathbb{X}^{q}$ Transient reactance Y. Quadrature axis synchronous reactance Rotor angle of jth machine with respect to synchronous Θj reference frame System centre angle with respect to synchronous Θ<sub>0</sub>

rcference frame

Time derivative of  $\Theta_{\alpha}$ 

90

Derivative of  $\dot{\theta}_0 = \dot{\psi}_0$ Angle measured with respect to system centre of inertia

Permanent speed droop constant

Transient speed droop constant.

#### ABSTRAC T

A severe mismatch between generation and demand caused by a sudden change of generation or load can cause the power system frequency to deviate appreciably from its normal value. The system frequency, could fall or increase, dependent upon whether the generation or the load is lost. Of course, the most critical case is the loss of one of the larger This will lead to under generating units of the system. frequency conditions which cannot be tolerated for a long time even if the drop is about 3% from the normal value. If the spinning reserve is also available, the frequency may recover within an acceptable time, otherwise load shedding may have to be done. Obviously, in order to evolve a proper operating strategy, we need to obtain the powerfrequency transient upon loss of generation. A common method is by extended transient stability studies. However, such simulation can be computationally very expensive because of small time step involved. In 1971, Stanton proposed 'dynamic energy balance concept' for simulation of powerfrequency transients. In this method by avoiding synchronizing oscillations and other small time constants involved with subtransient phenomenon, he claimed a ten to one speed advantage over the conventional transient stability method.

The aim of this thesis is to review the Stanton's scheme in the context of a practical problem faced by a typical electricity board of our country and to develop a model of our own. The test problem chosen is taken from U.P.State Electricity Board planning model network of year 1984-85.

#### CHAPTER 1

### INTRODUCTION

## 1.1 General Discussion

In power system analysis, the study of 'Powerfrequency transients' has gained importance in order to analyse behaviour of various power system components and also the system's behaviour on the whole under abnormal conditions of frequency excursions in the system. a well known fact that the frequency of the system is very much dependent on the power balance between generation and demand. Loss of a large block of generation or load will cause a severe mismatch between generation and demand leading to dangerously low or high frequency conditions in the system in few seconds after the occurrence of the disturbance. Under these abnormal frequency conditions, some of the electrical components like synchronous generators, large capacity synchronous motors etc. which are sensitive to frequency changes may loose synchronism causing disastrous conditions in the system. Mechanical vibrations of considerable amplitudes will be induced in the turbine shafts and blades due to the coincidence of their natural frequency modes with the system low frequencies following a loss of large block of generation causing permanent mechanical deformations in the shafts and blades. The modern turbines must be run at speeds which are very close to synchronous to avoid permanent damage. For example, specifications of 220 MW machines which are being installed in our country now state that the turbines may be damaged permanently even if the speed corresponds to 48 Hz for few minutes.

Following a loss of large block of generation, the redistribution of powers in the network may overload some of the lines already operating at their normal capacity causing line trip out conditions posing a threat to the stability of the system. To avoid such unpleasant situations, the system frequency should be brought back to its normal operating value in minimum amount of time. Large frequency dips can be minimized by fast acting speed-governor mechanisms, by providing spinning reserve in the system and by shedding off the loads using fast acting frequency sensitive relays. The most common practice of restoring system's frequency under these transient conditions is by load shedding. Knowledge about capability of spinning reserve, behaviour of loads at abnormal frequency and voltage conditions will help in developing the most effective load shedding strategies.

Since the disturbance location is most random in nature, exhaustive off-line power-frequency transient studies need to be carried out to develop efficient and

effective load shedding strategies so that minimum number of power consumers are affected. This can involve large amounts of computation effort resulting in excessive costs. So it is highly desirable to have methods which simulate power-frequency transients in an economical way.

## 1.2 Previous Work

The power-frequency transients resulting from severe mismatches between generation and demand can be simulated by extended transient stability methods. inclusion of generator subtransient phenomenon, damper bar windings, small excitation time constants set a very low upper limit on time step of integration. However, this can be increased by appropriate choice of dynamic models. Hence the ultimate limit on step size in transient stability studies is the 'frequency of synchronizing oscillations'. However, the duration of these oscillations is also very small, a very low step size for integration cannot be avoided. Obviously this results in excessive computation costs for studying power-frequency transients. Even though extended transient stability studies do simulate powerfrequency transients, it is primarily meant for simulation of power angle transients which is not our aim.

Recently a new technique of simulation of powerfrequency transients has been developed by Stanton [1] using 'Dynamic Energy Balance' concepts. The development of dynamic energy balance studies is motivated by the need for more economical dynamic simulation of power-frequency transients. The key steps involved in simulation procedure are elimination of synchronizing oscillations, small time constants used in representation of subsystems like excitation, speed governor, turbine and generator models.

During transient conditions, the entire system is assumed to have an equivalent speed ' $\omega_0$ ' which will be equal to the inertia weighted average of individual generator rotor speeds. This equivalent speed of the system is defined as the velocity of 'system centre of inertia'. The centre of inertia is the rotational analog of centre of mass and is referred as centre of angle ' $\theta_0$ '. The centre of angle  $\theta_0$  is defined as

$$\Theta_{o} = \frac{1}{M_{T}} \sum_{j=1}^{n} M_{j} \Theta_{j}$$
 (1.1)

where  $M_j$  = moment of inertia of jth machine,

 $\theta_j$  = angle of the jth rotor measured with respect to a synchronously rotating frame of reference

and  $M_T = \sum_{j=1}^{n} M_j$  is the total moment of inertia of the

system.

n = number of mashines present in the system.

The dynamic equations of motion of system centre of inertia are described by the following equations.

$$\frac{d^2\theta_o}{dt^2} = \frac{d \omega_o}{dt} = \frac{1}{M_T} (P_{mT} - P_{eT})$$
 (1.2)

and

$$\frac{d \Theta_{o}}{dt} = (\omega_{o} - \omega_{s}) \tag{1.3}$$

where  $P_{mT}$  = Total mechanical power input to the system,  $P_{eT}$  = Total electrical power output of the system and  $\omega_s$  = Synchronous speed of the system.

The frequency 'f' obtained by the solution of equation (1.2) will be the inertia weighted average of frequencies of individual rotors present in the system. The above equations form the basis of simulation of power-frequency transients by dynamic energy balance concepts.

The synchronizing oscillations are eliminated from the simulation method by assuming that the oscillatory power transfers from one rotor to another during these oscillations are zero. These oscillatory power transfers do not significantly effect the total electrical power output  $P_{eT}$  of the system. However, they may increase losses slightly. Assumption of  $P_{eT}$  constant during these oscillations gives a scope for elimination of synchronizing oscillations from the model. Elimination of these oscillations allows us to choose large time steps for integration and this fabilitates to study the slower dynamics of the power system. It has been claimed by Stanton that the simulation of



FIG.1 SINGLE LINE DIAGRAM OF UPSEB PLANNING MODEL NETWORK

power-frequency transients by this method requires one tenth the computational effort of a transient stability study yet giving similar results within the practical limits.

### 1.3 Details. of Problem under Consideration

It appears from the literature that only Stanton has made a serious effort to develop a method for the study of power-frequency transients. The aim of this thesis is to review this method in the context of a practical problem faced by a typical electricity board of our country and develop a suitable model of our own.

The problem chosen is taken from U.P.State

Electricity Board planning model notwork for the year

1984-85. A single line diagram of the planned network is given in Fig. 1.1.\* It consists of 20 generators, 96 buses and 136 lines. The number of buses is not too large as only high voltage network is considered. Out of these 20 generating stations, there are 11 thermal and 9 hydro stations. The total MVA capacity of the system is 7576 out of which 1790 MVA is hydro and the rest, i.e. 5786 MVA is thermal. The objective is to study the power-frequency transient if 528 MVA thermal generator at Anpara is tripped. This particular generator, prior to the trip out is assumed to be delivering 400 MW power. The total spinning reserve available at the time of the trip out is assumed to be 560 MVA.

<sup>\*</sup>The bus data prior to disturbance, line, transformer, shunt load and voltage controlled bus data is given in Appendix I.

The chapterwise description of the thesis is given below.

The second chapter deals with the speed governor and turbine models.

The third chapter covers the simulation of power-frequency transients treating electrical loading as constant.

The fourth chapter deals with the generator and excitation models.

The fifth chapter deals with the simulation of power-frequency transients considering the electrical loading.

Overall conclusions and suggestions for future work are projected in the last chapter.

#### CHAPTER 2

#### TURBINE AND SPEED GOVERNOR MODELS

### 2.1 General Discussion

Before we can study the power-frequency transient problem of the system described in Sec. 1.3, we need to get acquainted with the models for hydro and steam turbines and speed governing mechanisms. Therefore, they are discussed first as given below from Ref. [2].

## 2.2 Speed Governor and Thermal Turbine Model

The block diagram model representation of speed governor and thermal turbing are given in Fig.2.1. In the speed governor block, the meaning of various quantities is as follows:

 $\mathbf{w}_{ref}$  = Reference speed, rad/sec.

 $\omega$  = Actual speed, rad/sec.

R = Speed regulation constant of speed governor

f = Normal operating frequency, Hertz

 $T_s$  = Speed governor time constant, seconds

ġ<sub>min</sub> = Lower limit on rate of change of power imposed by
control valve rate limits

•gmax = Upper limit on rate of change of power imposed by control valve rate limits

g<sub>min</sub> = Lower limit imposed by valve travel

 $g_{\text{max}}$  = Upper limit imposed by valve travel

g = Valve position, p.u.

Similarly the meaning of various symbols used for the turbine block are

 $\mathbf{T}_{\mathrm{HP}}, \mathbf{T}_{\mathrm{IP}}, \mathbf{T}_{\mathrm{LP}}$  = Time constants of high pressure, intermediate pressure, low pressure stages respectively in seconds

 ${
m F}_{
m HP}, {
m F}_{
m LP} = {
m F}_{
m Tactional}$  power coefficients of high pressure, intermediate pressure and low pressure stages respectively

 $F_{HP} + F_{IP} + F_{LP} = 1$ 

P<sub>hase</sub> = Turbine MVA rating

 $S_{\text{base}}$  = System base MVA

P<sub>m</sub> = Mechanical power, p.u.

The analog diagram representation of Fig.2.1 is shown in Fig.2.2. The analog representation helps in writing the appropriate dynamic equations for digital computer solution as given below. For calculation of initial conditions, the following equations are used.

$$g = (P_{m}.S_{base})/P_{base}(F_{HP}+F_{IP}+F_{LP})$$
 (2.1)

$$\omega_{\text{ref}} = \omega_{\text{o}} + (\text{g.R.2}\pi\text{f}_{\text{o}}) \tag{2.2}$$

$$X_4 = g \tag{2.3}$$

$$X_5 = g \tag{2.4}$$

$$X_6 = g \tag{2.5}$$

$$X_7 = g \tag{2.6}$$

During step by step integration procedure, the following equations are used

$$g = X_4$$
,  $g_{min} \leq X_4 \leq g_{max}$  (2.7)

$$X_1 = (\omega_{ref} - \omega) / (R.2\pi f_0)$$
 (2.8)

$$X_2 = (X_1 - g)/T_g \tag{2.9}$$

$$X_3 = X_2$$
,  $\dot{g}_{min} \le X_2 \le \dot{g}_{max}$  (2.10)

$$\mathbf{X}_{4} = \mathbf{X}_{3} \tag{2.11}$$

Equations (2.7) to (2.11) discribe the performance of the speed governor.

The solution of differential equation (2.11) gives the position of the effective controlled governor valve symbolised as g. This becomes the input to the turbine.

The turbine equations are

$$X_5 = (g - X_5)/T_{HP}$$
 (2.12)

$$\dot{X}_{6} = (X_{5} - X_{6})/T_{TP} \tag{2.13}$$

$$X_7 = (X_6 - X_7)/T_{LP}$$
 (2.14)

and 
$$P_m = (F_{HP}.X_5 + F_{IP}.X_6 + F_{LP}.X_7) \frac{P_{base}}{S_{base}}$$
 (2.15)

In the above equations, the differential equations are represented as  $\dot{X}=dX/dt$ . The differential equations (2.11) to (2.14) are solved at each integration time step by making use of equations (2.7) to (2.10) to get the mechanical power output of the turbine  $P_m$ .



SPEED GOVERNOR



TURBINE

FIG. 24 THERMA TURBING AND SPEED GOVERNOL MODEL





FIG 2.2 ANALOG DIAGRAM OF SPEED GOVERNOR AND THERMAL TURBINE

## 2.3 Speed Governor and Hydro Turbine Model

The block diagram representation of the hydro speed governor and turbine are given in Fig. 2.3. In the speed governor block, the various symbols have the following meaning.

 $\omega_{\text{ref}}$ ,  $\omega$ ,  $T_{\text{s}}$ ,  $\dot{s}_{\text{min}}$ ,  $\dot{s}_{\text{max}}$ ,  $s_{\text{min}}$ ,  $s_{\text{max}}$ , g have similar meaning as given in Sec. 2.2.

 $T_p$  = Dash pot time constant, seconds

σ = Permanent speed droop coefficient

δ = Transient speed droop coefficient

Similarly the meaning of various symbols used in the turbine block are

 $T_W$  = Water starting time, seconds

Phase Turbine MVA rating

S<sub>base</sub> = System base MVA chosen.

The analog diagram representation of Fig. 2.3 is shown in Fig. 2.4 from which the following equations are written. The initial conditions are calculated by the following equations.

$$X_4 = P_m \frac{S_{base}}{P_{base}}$$
 (2.16)

$$x_5 = x_4. \delta \tag{2.17}$$

$$X_7 - = 1.5 X_4$$
 (2.18)

$$\omega_{\text{ref}} = \omega_0 + (X_4 \cdot \sigma \cdot 2\pi f_0) \tag{2.19}$$

During step by step integration, the following equations are used

$$g = X_4$$
,  $g_{min} \leq X_4 \leq g_{max}$  (2.20)

$$X_1 = (\omega_{ref} - \omega)/2\pi f_0 \qquad (2.21)$$

$$X_6 = g. \delta - X_5 \tag{2.22}$$

$$X_2 = (X_1 - X_6 - g \cdot \sigma)/T_s$$
 (2.23)

$$X_3 = X_2$$
,  $\dot{g}_{min} \leq X_2 \leq \dot{g}_{max}$  (2.24)

$$X_8 = 2.0(X_7 - g)$$
 (2.25)

$$\dot{X}_4 = X_3 \tag{2.26}$$

$$X_5 = X_6/T_R \tag{2.27}$$

$$X_7 = (g - X_8)/T_W$$
 (2.28)

and 
$$P_m = X_8 \frac{P_{base}}{S_{base}}$$
 (2.29)

In the above equations the differential equations (2.26) to (2.28) are solved at each integration time step by making use of equations (2.20) to (2.25) to get the mechanical power output of the turbine,  $P_{\rm m}$ .

## 2.4 Turbine and Speed Governor Data for the UPSEB System

The system has 20 machines out of which the turbine data is available for only 16 machines. The remaining 4 are treated as constant mechanical power output turbines throughout the simulation period.



SPEED GOVERNOR



HYDRAULIC TURBINE

FIG. 23 HYDRO TURBINE AND SPEED GOVERNOR





FIG. 2-4 ANALOG DIAGRAM OF HYDRO TURBINE AND SPEED GOVERNOR

The data for thermal turbines and speed governors is given in Table 2.1 and the data for hydro turbines and speed governors is given in Table 2.2.

Table 2.1: Thermal Turbine and Speed Governor Data,

|            |                   |      |            |        | -                |                  |                   |      |                  |                       |                                         |              |      |
|------------|-------------------|------|------------|--------|------------------|------------------|-------------------|------|------------------|-----------------------|-----------------------------------------|--------------|------|
| No.        | P <sub>base</sub> | TH   | TIP        | 'TLP   | ${ m F}_{ m HP}$ | ${ m F}_{ m IP}$ | $^{ m F}_{ m LP}$ | 柘    | E₁<br>Ω          | <sup>g</sup> min      | e<br>emax                               | $g_{ m nin}$ | gmax |
| ~          | 940               | 0.2  | 4.0        | 1000.0 | 0.62             | 0.38             | 0.0               | 0.04 | 0.04 0.425       | -1.18                 | 0.59                                    | 0.0          | 0.80 |
| 2          | 422               | 0.2  | 4.0        | 1000.0 | 0.61             | 0.39             | 0.0               | 0.04 | 0.04 0.425       | -1.18                 | 0.59                                    | 0.0          | 0.77 |
| #3         | 940               |      |            |        |                  |                  |                   |      |                  |                       |                                         | •            |      |
| 4          | 275               | 0.2  | 10.0       | 1000.0 | 0.26             | 0.74             | 0.0               | 0.04 | 0.04 0.425       | -1.18                 | 0.59                                    | 0.0          | 0.74 |
| 5          | 139               | 0.2  | 10.0       | 1000.0 | 0.26             | 0.74             | 0.0               | 0.04 | 0.425            | -1.18                 | 0.59                                    | 0.0          | 0.78 |
| 9          | 217               | 0.2  | 10.0       | 1000.0 | 0.26             | 0.74             | 0.0               | 0.04 | 0.04 0.425       | -1.18                 | 0.59                                    | 0.0          | 0.74 |
| <b>\</b> * | 528               |      |            |        |                  |                  |                   |      |                  |                       |                                         |              |      |
| ω          | 340               | 0.2  | 4.0        | 1000.0 | 0.62             | 0.38             | 0.0               | 0.04 | 0.04 0.425 -1.18 | -1.18                 | 0.59                                    | 0.0          | 0.84 |
| 6          | 75                | 0.2  | 4.0        | 1000.0 | 0.62             | 0.38             | 0.0               | 0.04 | 0.425            | 1.18                  | 0.59                                    | 0.0          | 0.74 |
| 10         | 1420              | 0.15 | 0.15 0.74  | 0.6    | 0.24             | 0.0              | 92.0              | 0.05 | 0.03 -           | 0.76 0.05 0.03 -100.0 | 100.0                                   | 0.0          | 0.83 |
| 7          | 490               | 0.2  | 0.2 4.0 10 | 1000.0 | 0.62             | 0.38             | 0.0               | 0.04 | 0.04 0.425 -1.18 | 1.18                  | 0.59                                    | 0.0          | 0.78 |
|            |                   |      |            |        |                  |                  |                   |      |                  |                       | *************************************** |              |      |

This machine is tripped out.

Constant power output turbine.

Table 2.2: Hydro Turbine and Speed Governor Data.

| *************************************** |       |         | -     |      |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|-------|---------|-------|------|-----------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.                                     | Pbase | $T_{W}$ | ПЗ    | TR   |           |      | Smin | §<br>gmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gmin        | gmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ~                                       | 110   | 1.63    | 0.015 | 12.0 | 0.04      | 95.0 | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         | 06.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                       | 335   | 1.0     | 0.015 | 5.0  | 0.04      | 0.30 | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         | 06*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8                                       | 51    | 0.      | 0.015 | 5.0  | 0.04      | 0.30 | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         | 08*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                                       | 220   | 1.0     | 0.015 | 5.0  | 0.04      | 0.30 | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                       | 211   | 1.0     | 0.015 | 5.0  | 0.04      | 0.30 | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0         | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9                                       | 376   | <u></u> | 0.02  | 12.0 | 0.04      | 0.36 | -0.1 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0         | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L*                                      | 103   |         |       |      |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ۵<br>*                                  | 160   |         |       |      |           |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                       | 223   | 1.      | 0.02  | 10.0 | 10.0 0.04 | 0.3  | -0.2 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6.</b> 0 | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |       |         |       |      |           |      |      | The state of the s | -           | The second secon |

\* Constant power output turbine.

#### CHAPTER 3

### IMPLEMENTATION TREATING ELECTRICAL LOADING AS CONSTANT

## 3.1 General Discussion

To get a 'feel' of the problem posed in Sec. 1.3, it was decided that at first we would not get involved with the electrical network and generator characteristics. Thus for the time being we shall assume that after the disturbance, the electrical loading is not changed and therefore the total load requirement plus the network losses stay constant. The moment the disturbance occurs, obviously the total output of the generation is less than the load requirement. This will result in lower speed than the synchronous value. This would inturn activate the speed governor mechanism to increase the mechanical power output of the turbines whenever spinning reserve is available. Since in the problem under consideration, adequate spinning reserve of 560 MVA compared to the generation drop of 400 MW is available, eventually the system generation will match the system load plus the network losses. This problem was analysed in four parts as follows.

<u>Part -(a)</u>: It was assumed that the entire generation is thermal and it would be represented by one equivalent thermal turbine.

<u>Part - (b)</u>: It was assumed that the entire generation is hydro and it could be represented by one equivalent hydro turbine.

<u>Part-(c)</u>: The system is represented by both the equivalent thermal and hydro turbines. All the hydro stations are represented by a single equivalent hydro turbine and all the thermal stations by a single equivalent thermal turbine.

<u>Part - (d)</u>: In this part of study, each power station is represented by an equivalent hydro or thermal turbine as the case may be. Identity of all the power stations in the system is retained.

## 3.2 Implementation

### Part - (a):

The MVA rating of the equivalent thermal turbine is assumed to be equal to the sum of MVA ratings of individual power stations and is equal to 7576.25. It was observed from the data given in Table 2.1 that all the speed governers of the machines have similar characteristics, and also for the most of the turbines, the characteristics of high pressure, intermediate pressure and low pressure stages are similar. From these observations, the following data has been chosen for the equivalent thermal turbine.

 $P_{\text{base}} = 7565.25 \text{ MVA}$   $T_{\text{HP}} = 0.2 \text{ seconds}$ 

 $T_{TD}$  = 4.0 seconds  $T_{TD}$  = 1000.0 seconds

$$F_{HP} = 0.62$$
  $F_{IP} = 0.38$   $F_{LP} = 0.00$   $F_{LP} = 0.04$   $F_{min} = -1.18$   $F_{max} = 0.59$   $F_{min} = 0.0$   $F_{min} = 0.0$   $F_{max} = 0.8$ 

From the initial load flow conditions prior to the disturbance, the total electrical power output of the system is calculated by

$$P_{eT} = \sum_{j=1}^{n} P_{ej}$$
 (3.1)

and is equal to 5556.87 MW

P<sub>ej</sub> = Electrical power output of the jth machine
n = Number of machines = 20

Similarly the total mechanical power input to the system is computed by

$$P_{mT} = \sum_{j=1}^{n} P_{mj}$$
 (3.2)

where  $P_{m,j} = P_{e,j}$ 

The system equations of motion are given by

$$\frac{d \omega_{o}}{dt} = \frac{1}{M_{m}} (P_{mT} - P_{eT})$$
 (3.3)

where  $\mathbf{M}_{\mathrm{T}}$  and  $\mathbf{w}_{\mathrm{O}}$  are defined in Sec.1.2 and

$$\dot{P}_{mT} = F(P_{mT}, \omega_{O}) \tag{3.4}$$

The equivalent thermal turbine dynamical equations described in Sec. 2.2 are written symbolically in the form of equation (3.4). During each time step, the equations (3.3) and (3.4) are solved together by using Runge-Kutta Fourth Order method to obtain the frequency of the system given by the equation

$$f = \omega_0 / 2\pi \tag{3.5}$$

The frequency is plotted against time and is shown in Fig. 3.1.

#### Part - (b):

The following test data has been chosen for the equivalent hydro turbine on the basis of the similar observations discussed in part (a).

$$P_{base} = 7576.25 \text{ MVA}$$
  $T_{W} = 1.63 \text{ seconds}$   $T_{S} = 0.015 \text{ seconds}$   $T_{R} = 12.0 \text{ seconds}$   $\sigma = 0.04$   $\delta = 0.36$   $g_{min} = -0.2$   $g_{max} = 0.1$ 

The simulation procedure is similar as given in Sec. 3.2, Part (b). The dynamical equations of hydro turbine and speed governor are described in Sec. 2.3.

The frequency versus time graph is shown in Fig. 3.2.

## <u>Part - (c)</u>:

The MVA rating of the equivalent thermal turbine is assumed to be equal to the sum of MVA ratings of the individual thermal power stations and is equal to 5786.0. Similarly the MVA rating of the equivalent hydro turbine is equal to the sum of MVA ratings of the individual hydro power stations.\* The total load on the system is 5556.87 MW. The same data given in Part-(a) and Part-(b) is used for the equivalent thermal and hydro turbines respectively. From the initial load flow data prior to the disturbance, total electrical power outputs of thermal and hydrogenerators are computed and are symbolised as  $P_{eP(Th)}$  and  $P_{eT(H)}$ . Now the total electrical power output of the system is

$$P_{eT} = P_{eT(Th)} + P_{eT(H)}$$
 (3.6)

Similarly the total mechanical power input to the system is given by

$$P_{mT} = P_{mT(Th)} + P_{mT(H)}$$
 (3.7)

The equations of motion of the system are

$$\frac{d\mathbf{\omega}_{o}}{dt} = \frac{1}{M_{T}} (P_{mT} - P_{eT})$$
 (3.8)

$$\dot{P}_{mT(Th)} = F(P_{mT(Th)}, \omega_{o})$$
 (3.9)

and 
$$P_{mT(H)} = F(P_{mT(H)}, \omega_{o})$$
 (3.10)

where equations (3.9) and (3.10) are symbolic representations of the dynamic equations of thermal and hydro turbines given \* and is equal to 1790 MVA.

in Sec. 2.2 and Sec. 2.3 respectively. At each time step of integration, equations (3.8) to (3.10) are solved together using Runge-Kutta Fourth Order integration method. The graph of frequency versus time is shown in Fig. 3.3.

### Part - (d):

For this case study, the turbine data used is given in Tables 2.1 and 2.2. Since all the turbines are represented by their respective speed governor controls, the dynamic equations of speed governor and turbines are written in the form

$$P_{mj} = F(P_{mj}, \omega_0)$$
 where  $j = 1, 2, ..., n$  (3.11)

equations of motion of the system are solved at each time step by using Runge-Kutta Fourth order integration method. The frequency is plotted against time and is also shown in Fig. 3.3.

### 3.3 Discussion and Conclusions

It should be apparent that the **results obtained** in Part-(a) and Part-(b) cannot be close to the actual results. Representation of the system by one equivalent thermal or hydro machine was carried out in order to examine the relative performances of a purely thermal and a purely hydro system. It is observed from Figs. 3.1 and 3.2 that a thermal system can pick up the load much faster compared to the hydro system. As seen from Fig.3.1, for a

thermal system, the frequency dropped only by about 0.62 Hz. The minimum frequency condition occurred in less than 4 seconds and reached the steady state value in about 16 seconds. On the other hand, for the hydro system, the frequency had gone down to as low as 47 Hz in less than 4 seconds and the oscillatory conditions continued to prevail as long as the duration of the study which is 40 seconds. This is because of high moment of inertia of the hydro turbines and also large time constants involved in the system dynamics.

If we examine Fig. 3.3, it is seen that the behaviour of frequency of the system is in between Figs. 3.1 and 3.2 with no oscillatory behaviour. It was also observed that the representation of the entire system by one equivalent thermal and one equivalent hydro machine gave results very close to the one where the identity of all the power stations were retained (Part - d). This is due to the fact that most of the thermal as well as hydro machines have similar characteristics.







#### CHAPTER 4

#### GENERATOR AND EXCITATION SYSTEM MODELS

# 4.1 Generator Representation

A simplified generator representation is used by eliminating damper bar windings and other subtransient effects [3]. Because of elimination of synchronising oscillations, which is discribed in Sec. 1.2, relative movement between the rotor and airgap flux wave is not rapid enough nor of sufficient magnitude to induce currents in the damper bar windings. Hence the damper bar winding is not represented in the model. The changes in field flux linkages are taken into account. With conventional d-q representation of the mashine, only field winding is assumed to be on the d-axis. The quadrature axis is chosen to lead the direct axis by 90 electrical degrees. position of the quadrature axis is determined by calculating a fictitious voltage located on this axis. a voltage back of quadrature axis synchronous reactance  $X_q$  and is determined by the equation (4.1)

$$\mathbf{E}_{\mathbf{q}} = \mathbf{V}_{\mathbf{T}} + (\mathbf{r}_{\mathbf{a}} + \mathbf{j} \mathbf{X}_{\mathbf{q}}) \mathbf{I}_{\mathbf{T}}$$
 (4.1)

where  $E_q$  = Voltage behind quadrature axis synchronous reactance.

 $V_{\eta}$  = Terminal voltage of the generator.

 $I_{T}$  = Terminal current of the generator.

r<sub>a</sub> = Stator resistance

and Xq = Quadrature-axis synchronous reactance.

The equivalent circuit of the generator and the phasor diagrams for steady state conditions are shown in Fig. 4.1.

The voltage induced by the field flux will be in phase with the quadrature axis and this voltage can be determined by the equation

$$E_{I} = V_{T} + r_{a}I_{T} + jX_{d}I_{d} + jX_{q}I_{q}$$
 (4.2)

where  $I_d$  and  $I_q$  are direct and quadrature axis components of terminal current  $I_T$  respectively. The quadrature axis component of voltage back of transient reactance  $X_d^i$  is given by

$$\mathbf{E}_{\mathbf{q}}^{\prime} = \mathbf{E}_{\mathbf{q}} - \mathbf{j}(\mathbf{X}_{\mathbf{q}} - \mathbf{X}_{\mathbf{d}}^{\prime})\mathbf{I}_{\mathbf{d}}$$
 (4.3)

where  $\mathbf{E}_{\mathbf{q}}^{t}$  = Voltage proportional to field flux linkages resulting from the combined effect of field and arms ture currents.

X' a = Direct axis transient reactance and

 $I_d$  = Direct axis component of terminal current  $I_T$ .

Since field flux linkages do not change instantaneously,  $E_q^i$  also does not change instantaneously. The rate of change of  $E_q^i$  along the quadrature axis is dependent on the field voltage controlled by the regulator and exciter, the voltage proportional to field current and direct axis

transient open circuit time constant and is given by the expression

$$\frac{\mathrm{d} \ \mathbf{E}_{\mathbf{q}}^{\prime}}{\mathrm{d} \mathbf{t}} = \frac{1}{\mathbf{T}_{\mathbf{d} \mathbf{Q}}^{\prime}} (\mathbf{E}_{\mathbf{F}} - \mathbf{E}_{\mathbf{I}}) \tag{4.4}$$

where  $E_{\mathbf{F}}$  = Field voltage acting along the quadrature axis

 $E_T$  = Voltage proportional to field current and

T<sub>do</sub> = Direct-axis transient open circuit time constant, seconds.

The detailed phasor diagram describing  $\mathbb{F}_q$  ,  $\mathbb{F}_T$  and  $\mathbb{E}_q^*$  is given in Fig. 4.1.

$$E_{I} = E_{d}^{\dagger} + (X_{d} - X_{d}^{\dagger})I_{d}$$
 (4.5)

and 
$$E_q = E_q^{\dagger} + (X_q - X_d^{\dagger})I_d$$
 (4.6)

The above equations (4.4) to (4.6) represent the generator behaviour under transient state. The transient state vector diagram is shown in Fig.4.2.

## 4.2 Expitation System Model

The excitation system is represented by IEEE type-1 rotating exciter model [4]. The block diagram is shown in Fig. 4.3. Various symbols used in the block diagram carry the following meanings.

V<sub>Ref</sub> = Regulator reference voltage setting, p.u.

 $V_m$  = Generator terminal voltage, p.u.



EQ. CIRCUIT OF GENERATOR





PHASOR DIAGRAMS FOR STEADY STATE CONDITIONS
FIG. 41



FIG. 4.2 VECTOR DIAGRAM OF SYNCHRONOUS GENERATOR IN THE TRANSIENT STATE

 $K_A$  = Regulator gain

 $T_A$  = Regulator amplifier time constant, seconds

 $V_{R \text{ max}}$  = Maximum value of regulator output voltage

V<sub>R min</sub> = Minimum value of regulator output voltage

 $K_{\mathbf{R}}$  = Exciter constant related to self excited field

 $T_{E}$  = Exciter time constant, seconds

 $K_{\mathbb{P}}$  = Regulator stabilizing circuit gain

 $\mathbf{T}_{\mathbf{F}}$  = Regulator stabilizing circuit time constant, seconds

 $S_{\mathbb{R}} = Expiter$  saturation function

A,B = Exciter saturation constants.

The analog representation of excitation system is also shown in Fig.4.3, from which the dynamic equations for digital computer solution are written. For calculating initial conditions, the following equations are used.

$$X_5 = E_F(K_E + S_E) \tag{4.7}$$

$$X_3 = E_F \frac{K_F}{T_F} \tag{4.8}$$

$$V_{Ref} = V_{T} + (K_{E} + S_{E})E_{F}/K_{A}$$
 (4.9)

The initial field voltage,  $E_F$ , is set equal to  $E_I$  calculated from equation (4.2). During step by step integration the following equations are used,

$$X_1 = V_{\text{Ref}} - V_{\text{T}} \tag{4.10}$$

$$X_2 = \frac{K_F}{T_F} E_F - X_3 \tag{4.11}$$

$$X_4 = X_1 - X_2 \tag{4.12}$$

$$X_6 = X_5$$
,  $V_{R \min} \leq X_5 \leq V_{R \max}$  (4.13)

$$X_7 = E_F S_E \tag{4.14}$$

$$x_8 = x_6 - x_7$$
 (4.15)

$$\dot{\mathbf{E}}_{\mathbf{F}} = \frac{\mathbf{X}_{8}}{\mathbf{T}_{\mathbf{E}}} - \frac{\mathbf{X}_{\mathbf{E}}}{\mathbf{T}_{\mathbf{E}}} \,\mathbf{E}_{\mathbf{F}} \tag{4.16}$$

$$\dot{x}_5 = \frac{\kappa_A}{T_A} x_4 - \frac{x_5}{T_A} \tag{4.17}$$

$$\dot{X}_3 = \frac{X_2}{T_{\mathbf{R}}} \tag{4.18}$$

The dot notations,  $\dot{X}$  used, represents time derivatives of the state variables. The differential equations (4.16) to (4.18) are solved at each time step to give effectively by controlled field voltage,  $E_F$ .



IEEE TYPE 1 ROTATING EXCITATION SYSTEM MODEL



ANALOG DIAGRAM OF IEEE TYPE-1 ROTATING EXCITER
FIG. 4-3

#### CHAPTER 5

## IMPLEMENTATION INCLUDING ELECTRICAL LOADING

### 5.1 General Discussion

In Chapter 3, we assumed that the total electrical demand of the loads plus network losses does not change even after the disturbance (generator trip-out). We wish to study this assumption in greater detail. Following generation trip-out, there will be changes in network losses due to redistribution of powers. Similarly there will be changes in voltages and frequency and this could also change load demand. Therefore, the total electrical power  $P_{\rm eT}$  may change.

We shall now include representations of network, generator electrical parameters, excitation system and nature of loads. If loads were represented as constant P,Q type, obviously  $P_{eT}$  would also be a constant except for losses in the network. We shall represent loads by constant admittance which is given by

$$Y_{p} = \frac{P_{p} - jQ_{p}}{E_{p}^{2}}$$

where  $P_p$  and  $Q_p$  are the specified real and reactive powers for the pth load and  $E_p$  is the load bus voltage magnitude prior to the distirbance.

# 5.2 Calculation of Total Electrical Power Output Per

Let  $\emptyset_j$  be the jth rotor angle measured with respect to system centre of inertia. Then the rotor angle  $\theta_j$  measured with respect to synchronous reference frame can be expressed as

$$\Theta_{j} = \emptyset_{j} + \Theta_{0} \tag{5.1}$$

where  $\theta_0$  = system centre of inertia or system centre of angle

 $\phi_{j}$  = rotor angle of jth machine measured with respect to system centre of inertia

and  $\theta_j$  = rotor angle of jth machine measured with respect to symphonous reference frame.

Now jth rotor equation of motion

$$M_{j} \dot{\omega}_{j} = (P_{mj} - P_{ej}) \tag{5.2}$$

can be rewritten as

$$M_{j}(\ddot{\phi}_{j} + \ddot{\Theta}_{o}) = (P_{mj} - P_{ej})$$
 (5.3)

where  $\dot{\vartheta}_{j} + \ddot{\theta}_{o} = \ddot{\theta}_{j} - \dot{\omega}_{j}$ 

and 
$$\hat{\Theta}_{O} = \hat{\omega}_{O} = \frac{1}{M_{m}} - (P_{mT} - P_{eT})$$
 (5.4)

Substituting equation (5.4) in (5.3), it becomes

$$P_{ej} = P_{mj} - \frac{M_{j}}{M_{m}}(P_{mT} - P_{eT}) - M_{j} \phi_{j}$$
 (5.5)

Neglecting oscillatory power transfers from one rotor to another resulting from synchronizing oscillations leads

to the assumption that no generator rotor can be accelerating or decelerating relative to another during the time step of integration. It follows, therefore, that during this time, no rotor can be accelerating or decelerating relative to the system centre of inertia. This means that any change that takes place in  $\beta_j$  during the time step of integration is assumed to occur at constant velocity. Hence  $\beta_j$  in equation (5.5) can be set equal to zero. Therefore, generator j must be producing electrical power as given by the equation (5.6).

$$P_{ej} = P_{mj} - \frac{M_j}{M_m} (P_{mT} - P_{eT})$$
 (5.6)

The system equations of motion are given below.

$$\frac{d \omega_0}{dt} = \frac{1}{M_T} (P_{mT} - P_{eT})$$
 (5.7)

and 
$$P_{mj} = F(P_{mj}, \omega_o)$$
 where  $j = 1, 2, ..., n$  (5.9)

At any instant of time, knownig  $P_{eT}$ , equations (5.7) to (5.9) can be integrated forward by one time step  $\Delta t$ . From this the new values of  $\mathbf{w}_{o}$ ,  $\theta_{o}$  and  $P_{mj}$  are known at  $(t+\Delta t)$ . Only  $P_{eT}$  need to be calculated at  $(t+\Delta t)$  so as to take care of changes in network losses and load powers. At this stage an iterative procedure is adopted by using a power flow solution method to calculate new  $P_{eT}$  as described below.

From the initial load flow conditions obtained prior to disturbance,  $E_q$ ,  $E_I$  and  $E_q^t$  are calculated using equations (4.1) to (4.3) respectively. The initial field voltage  $E_F$  is set equal to  $E_I$ . The excitation system equations are written symbolically as

$$\dot{\mathbf{E}}_{\mathbf{F}} = \mathbf{F}(\mathbf{E}_{\mathbf{F}}, | \mathbf{V}_{\mathbf{T}}|) \tag{5.10}$$

The equations (4.4) and (5.10) are integrated forward one time step for each generator and the new values of  $E_{\rm I}$  calculated from equation (4.5) set up the necessary constraint over the magnitude of generator internal voltage  $E_{\rm q}$  via equation (4.6) and this together with the generator power calculated from equation (5.6) are specified at all generator internal buses which are added to the network, except at the slack bus where angle and  $E_{\rm q}$  are specified. These buses are treated as the voltage controlled buses.

The generator admittance,  $1/(r_a+j~X_q)$ , becomes a branch of the network. The generator terminal buses are treated as load buses with P and Q specified as zero. The loads are represented as constant admittances by using the relation

$$Y_{p} = \frac{P_{p} - J Q_{p}}{E_{p}^{2}}$$
 (5.11)

The diagonal elements of Y-matrix are modified accordingly by  $Y_p$ . All the necessary information is available to carry

out a power flow solution. Gauss-Seidel power flow solution method was used to compute  $P_{eT}$  in the power-frequency transient simulation program.

Let the slack generator bus power obtained from power flow solution be'P<sub>slack</sub>'which provides the power needed to balance total network input against loads plus losses and let the slack generator power calculated from equation (5.6) be 'P<sub>es</sub>'. If P<sub>slack</sub> differs from P<sub>es</sub>, it indicates that the slack generator is not having the same acceleration as the other generators which is contrary to the dynamic energy balance simulation procedure. However, the power flow solution provides a new value of P<sub>eT</sub> and this can be expressed as

$$P_{eT(new)} = \sum_{\substack{j=1\\j\neq s}}^{n} P_{ej(old)} + P_{slack}$$
(5.12)

where s = Slack machine number.

The above equation can also be written as

$$P_{eT(new)} = P_{eT(old)} + (P_{slack} - P_{es})$$
 (5.13)

From equations (5.6) and (5.13), it can be shown that

$$P_{ej(new)} = P_{ej(old)} + \frac{M_{j}}{M_{T}}(P_{slack} - P_{es})$$
 (5.14)

where j = 1, 2, ..., n.

The equations (5.14) provide new generatorpowers which form the input to a new power flow solution. The iterative

procedure between equations (5.14) and power flow solution is continued until  $(P_{\text{slack}} - P_{\text{es}}) \leq \varepsilon$  where  $\varepsilon$  is a specified tolerance. At this stage, the  $P_{\text{eT}}$  at  $(t + \Delta t)$  is correctly computed. Since all the conditions at  $(t + \Delta t)$  are known, the equations of motion of system centre of inertia can be integrated forward one time step.

### 5.3 Digital Simulation

Representation of network, generators and exciters complicates the problem. Initially the power-frequency transients were simulated on IEEE-14 bus problem. A single line diagram of the network is given in Fig. 5.2. The bus conditions prior to disturbance, line data, transformer data, voltage controlled bus data, generators, exciters, speed governors and turbines data are given in appendix II. Later on the study is carried out on UPSEB planning network model for which the required data is given in Appendix I. The data for speed governors and turbines is given in Tables 2.1 and 2.2.

# 5.4 Step by Step Algorithm for Implementation on Digital Computer

Step - 1: Read bus data corresponding to predisturbance conditions and also data for lines, transformers, shunt loads, generators, speed governors and turbines, excitation systems. The generator inertia constant H, ra, Xd, Ad and Xq are converted to the common base chosen (200 MVA).

<u>Step - 2</u>: From the line, transformer and shunt load data, Y-matrix is constructed.

Step - 3: Generator internal buses are added to the network through the generator admittance  $1/(r_a + j X_q)$  which becomes a branch to the network. These buses are treated as voltage controlled buses where voltage magnitude  $|E_q|$  is specified by equation (4.1) and P is specified from initial bus power conditions.

Step -4: Initial conditions of state variables of generators,  $X_G$ , exciters,  $X_e$  and speed governors and turbines,  $X_T$ , are calculated from equations (4.1) to (4.3), (4.7) to (4.9), and (2.1) to (2.6) (for thermal), (2.16) to (2.18) (for hydro) respectively.

Step = 5: From initial conditions  $P_{eT}$ ,  $P_{mT}$  and  $\theta_o$  are calculated by making use of equations (3.1), (3.2) and (1.1) respectively. Total moment of inertia of the system  $M_T$  is calculated by

$$\sum_{j=1}^{n} M_{j}$$

Initially,  $P_{mj} = P_{ej}$ , j = 1,2,...,n.

Step -6: Generator trip-out condition is simulated and this is done as shown below.

where j=Trip-out generator number.

Step - 7: Load flow is carried out to obtain voltages and  $P_{\text{eT}}$  immediately after the disturbance.

Step - 8: Time derivatives of state variables of excitation systems,  $\dot{X}_{e}$ , speed governors and turbines,  $\dot{X}_{T}$  and generators,  $\dot{X}_{G}$  are calculated by equations (4.10) to (4.18),(2.7) to (2.15) (for thermal), (2.20) to (2.29) (for hydro) and (4.4) respectively and also

$$\frac{d \omega_{o}}{dt} = \frac{1}{M_{T}} (P_{mT} - P_{eT}) \quad \text{and} \quad \frac{d \Theta_{o}}{dt} = (\omega_{o} - \omega_{s})$$

are formed.

Step - 9: The differential equations obtained from Step-8 are solved by Modified Euler's method of integration. At this stage, state variables at  $(t + \Delta t)$  are obtained. Time T is advanced by one time step  $\Delta T$ . Frequency  $f = \omega_0/2\pi$  is calculated.

Step - 10: New values of  $|\mathbf{F}_{\mathbf{q}}|$  are specified at all generator internal buses by the equation (4.6). The generator powers, P, calculated from equation (5.6), are also specified at these buses, except at the slack bus. The slack bus angle is specified.

Step - 11: Load flow is performed to obtain new voltages and slack bus power. Let it be called as 'P<sub>slack</sub>'. Compute slack machine power 'P<sub>es</sub>' from equation (5.6).

Step - 12: If  $(P_{slack} - P_{es}) \le \varepsilon$ , where  $\varepsilon$  is the specified tolerance.  $P_{eT}$  is computed and enter at Step-9. Otherwise go to Step-13.

Step - 13: At the generator internal buses, power  $P_j$  is modified by

$$P_{ej(new)} = P_{ej(old)} + \frac{M_j}{M_T} (P_{slack} - P_{es}).$$

Step - 14: Steps 11 to 14 are repeated until  $(P_{\rm slack}-P_{\rm es}) \leq \varepsilon$ . At this stage all  $P_{\rm ej}s$  at  $(t+\Delta t)$  are calculated correctly and  $P_{\rm eT}$  is computed.

Step - 15: Steps 8 to 15 are repeated until the simulation period is finished.

Step - 16: The frequency is plotted against time. Interrelation-ships between various subsolutines is shown in Fig. 5.1.

# 5.5 Somputer Results for IEEE-14 Bus System:

#### General Information:

Number of buses = 14

Number of lines = 20

Number of voltage controlled buses = 4

Number of shunt loads = 1

Number of generators = 2

Normal operating frequency = 50.0 Hz

System base MVA chosen = 100.0 MVA

Total moment of inertia  $M_{\eta \eta}$  on 100MVA base = 0.102.

Initial velocity of system centre of

inertia =  $_0 = 314.0$  rad/sec.

Initial system centre of angle  $\theta_0 = 0.3063$  radians

Integration time step used = 0.1 sec.

Generator at bus No.2 meeting a load demand of 40.0 MW out of 272.4 MW is tripped-out, i.e. about 15% generation is dropped.

The total spinning reserve available at the time of disturbance which is sufficient to overcome the generation loss = 52.35 MVA.

The total electrical power generated prior to disturbance = 2.724 p.u. +

The total mechanical power output prior to disturbance = 2.732 \*\*\*. P. U.

The simulation results for loss of generation on IEEE-14 bus system are given in Table 5.1.

It is observed from the results given in Table 5.1, that the pre-disturbance (t = 0 $^{-}$ ) electrical power P $_{\rm eT}$  is 2.724 p.u.  $^{\rm HH}$  and immediately after the disturbance (t = 0 $^{+}$ ) is 2.733 p.u.  $^{\rm HH}$ . The change in P $_{\rm eT}$  is therefore 0.34% compared to a 15% loss of generation. In 1972 Berg[6] reported astual field tests on a Norweign system. The total installed generating capabity of the system exceeded 2000 MW and amounts of generation loss ranged from 3% to 27% of the system load. The spinning reserve was adequate to compensate for generation loss. The very interesting some clusions were that a loss of generation of only a few percent had very little effect on the system voltage and frequency. For as great a loss as 27%, the voltage drop was less than 2 percent for the HV network, indicating that the total drop in electrical load is very small. This

is confirmed in the above IEEE-14 bus study carried out in time steps of 0.1 seconds upto 5.6 seconds. The reason for carrying out the study upto 5.6 seconds only was that in simulation program a not very efficient Gauss-Seidel load flow computer program had to be used repeatedly. It took 26 minutes of computer time in IBM 7044 to simulate only 5.6 seconds of transient. The graph is shown in Fig. 5.3. Such a large amount of computing time may be attributed to possible inefficient program besides the Gauss-Seidel load flow program. At this stage we wish to observe that it may be adequate to treat the electrical loading as constant at the pre-disturbance level. This observation is further substantiated when we take up the UP State planning model next.

# 5.6 Computer Results for UPSEB Planning Model Network

General Information:

Number of buses 96 Number of lines = 136Number of voltage controlled buses 27 44 Number of shunt loads 20 Number of generators = 50.0 Hz Normal operating frequency = 200.0System base MVA chosen Total moment of inertia on 200 MVA base = 0.602

Initial velocity of system centre of inertia = 314.0 rad/sec.

Initial angle of system centre of inertia =  $\theta_0$  = 0.2102 rad. Integration time step used = 0.1 Slack bus number = 94.

Generator at Anpara power station having a capacity of 528 MVA meeting a load demand of 400 MW out of 5556.87 MW was tripped-out, i.e. about 7.2% generation was dropped.

The total spinning reserve available at the time of disturbance = 560 MVA which is sufficient to overcome the loss of generation.

The total electrical power generated prior to disturbance = 27.784 p.u. \*\*\*.

The total electrical power output immediately after the disturbance = 27.912 p.u. MW.

The change in  $P_{eT}$  after the disturbance = 0.1287 p.u. MW . Change in  $P_{eT}$  after the disturbance = 0.463%

Total mechanical power PmT prior to

disturbance = 27.841 p.u. HW

Total mechanical power  $P_{mT}$  after the

disturbance = 25.84 p.u. \text{HW}

At 0.1 seconds after the disturbance, the system conditions are:

Angle of system centre of inertia  $\theta_0$  = 0.2102 rad.

Velocity of system centre of inertia,  $\omega_0 = 313.808 \text{ rad/sec.}$ 

The frequency, f of the system = 49.99 Hz

Total mechanical power output,  $P_{mT} = 25.839 \text{ p.u.} \text{MW}$ 

Total electrical power output,  $P_{eff} = 27.912 \text{ p.u.} \text{MW}$ 

The simulation was carried out for only two time steps because of large computing time. However, it demonstrates our contention that electrical loading can be treated as constant. In that case the results obtained in Jhapter 3 (Part - d) are adequate.

Table 5.1: Simulation Result for Loss of Generation on IEEE-14 Bus System.

| S.<br>No. | Time in sec. | θ <sub>0</sub> (rad.) | ω <sub>ο</sub><br>(rad./sec) | Í<br>(H <b>z</b> ) | P <sub>mT</sub><br>(p.u. <del>MW</del> ) | P <sub>eT</sub><br>(p.U. <del>™</del> ) |
|-----------|--------------|-----------------------|------------------------------|--------------------|------------------------------------------|-----------------------------------------|
| •         | 0            | 0.3063                | 314.000                      | 50.00              | 2.7332                                   | 2.724                                   |
|           | 0+           | 0.3063                | 314.000                      | 50.00              | 2.3332                                   | 2.733                                   |
| 1         | 0.1          | 0.3063                | 313,687                      | 49.99              | 2.331                                    | 2.733                                   |
| 2         | 0.2          | 0.2591                | 313.214                      | 49.92              | 2.331                                    | 2.733                                   |
| 3         | 0.3          | 0.1646                | 312,663                      | 49.85              | 2.264                                    | 2.733                                   |
| 4         | 0.4          | 0.0149                | 312.156                      | 49.76              | 2.302                                    | 2.733                                   |
| 5         | 0.5          | -0.1854               | 311.583                      | 49.68              | 2.245                                    | 2.733                                   |
| 6         | 0.6          | -0.4430               | 311.014                      | 49.59              | 2.249                                    | 2.733                                   |
| 7         | 0.7          | -0.7576               | 310.417                      | 49.59              | 2.226                                    | 2.733                                   |
| 8         | 0.8          | -i.1318               | 309.847                      | 49.40              | 2.248                                    | 2.733                                   |
| 9         | 0.9          | -1.5630               | 309.243                      | 49.31              | 2,220                                    | 2.733                                   |
| 10        | 1.0          | -2.0546               | 308,690                      | 49.22              | 2.263                                    | 2.733                                   |
| 11        | 2.0          | -9.9095               | 303.765                      | 48.41              | 2.409                                    | 2.733                                   |
| 12        | 3.0          | -21.6670              | 301.244                      | 47.96              | 2.650                                    | 2.733                                   |
| 13        | 4.0          | -34.6996              | 301.439                      | 47.96              | 2.818                                    | 2.733                                   |
| 14        | 5.0          | -46.8816              | 302.659                      | 48.15              | 2.844                                    | 2.733                                   |
| 15        | 5.6          | -53.5840              | 303.453                      | 48.27              | 2.847                                    | 2.733                                   |



RELATIONSHIPS OF SUBROUTINES FOR UNTIAL CONDITIONS



RELATIONSHIPS BETWEEN SUBROUTINES DURING STEP BY STEP SIMULATION

FIG. 5.1



FIG. 5-2 SINGLE LINE DIAGRAM OF IEEE 14 BUS SYSTEM



#### CHAPTER 6

#### OVERALL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

#### 6.1 Overall Conclusions

The basic aim of this thesis was to simulate power-frequency transients following a loss of large block of generation and also to review Stanton's power-frequency transients simulation procedure using dynamic energy balance concepts. A realistic test problem had been chosen from one of the U.P. State electricity board planning model networks for the year 1984-85 to carry out the above studies.

At first to get the 'feel' for the problem, the frequency transients were simulated on the above system treating the entire system to have only thermal power generation and was represented by one equivalent machine of capacity equal to the total capacity of the system and by one equivalent hydro machine of capacity equal to the total capacity of the system respectively and also assuming that the total electrical loading to be same for the pre and post disturbance conditions. The spinning reserves were adequate to overcome the loss of generation. From the above studies, it was concluded that the system which is predominantly thermal can pick up the load much faster than an hydro system and also it was observed that the maximum frequency deviation from the normal value is much

less and settles to a steady state value faster than for an hydro system. This fact is because of smaller time constants involved in the thermal system and also due to the smaller moment of inertia compared to that of hydro systems.

In the next study the entire U.P.S.E.B. system was represented by one equivalent thermal machine with a capacity equal to all the thermal generation and one equivalent hydro machine equal to all the hydro generation. Since most of the thermal machines had similar time constants and the same was true for most of the hydro machines, it could be done without too much difficulty. Again the electrical loading was treated as constant. As expected, the results were in between those for a purely thermal and for a purely hydro system studied earlier. Later on the identity of all thermal and hydro stations was retained but the electrical loading was treated as constant. The results were not too different than the case of one equivalent thermal and one equivalent hydro machine. because of the similar time constants of various machines as already mentioned.

Finally, the simulation was performed taking into account the change in electrical loading. This required the representation of electrical network, generators, excitation systems and loads (by constant admittance).

Because of the complexity of the problem, first IEEF 14 bus system was studied. It was found that the electrical loading immediately after the disturbance was only about 0.5% different than the pre-fault electrical loading, and further the electrical loading stayed constant at the immediate post disturbance level through out the simulation period. Similar results were also obtained on UISEB planning model. Field studies carried out by Berg on the actual Norwegian system also show similar results.

Thus it can be concluded that if the loads are treated either by constant P,Q or constant admittance representation, then the power-frequency transients can be simulated in a most economical way by considering only speed governor and turbine actions and treating the electrical loading constant. Fig. 6.1 shows the system frequency for three cases \*iz., 1) Treating entire UPSEB system by one equivalent thermal and one equivalent hydro machine, 2) Retaining the identity of all thermal and hydro stations and 3) The rotor angle of a generator close to the disturbance obtained from a transient stability program. Jurves 1 and 2 are close together for reasons already given earlier. The trend of these two curves is similar to that obtained by transient stability study.



#### 6.2 Suggestions for Future Work

In this thesis, the loads have been represented by constant admittances. It would be desirable to consider other possible models like constant current, constant MVA and frequency dependence etc. More detailed models for large induction and synchronous motors which can take into account voltage and frequency changes should also be examined.

In the simulation method for power-frequency transients, the whole system was treated to have one equivalent velocity of system centre of inertia which may not be true. It may be necessary for large systems to divide into two or three equivalent areas. Unless this subdivision into different areas is performed, the power-frequency transients which we obtain may be quite different from the realistic values.

#### REFERENCES

- 1. K.Neil Stanton, "Dynamic Energy Balance Studies for Simulation of Power-Frequency Transients," Proc. Power Industry Computer Applications Conference, Boston, Mass, May 1971.
- 2. R. Podmore, "Power System Dynamic Simulation Program", Users Manual.
- 3. E.W. Kimbark, Synchronous Machines, Power System Stability, Vol.3, New York, Dover Publications Inc., 1968.
- 4. IEEE Committee Report, "Computer Representation of Excitation Systems", IEEE Trans. PAS, Vol. 87, pp. 1460-1464, June, 1968.
- 5. Glenn W. Stagg and Ahmed, H. El-Abiad, Computer Methods in Power System Analysis, Tokyo, McGraw-Hill Kogakusha Ltd., 1968.
- 6. G.J.Berg, "System and Load Behaviour Following Loss of Generation, Experimental Results and Evaluation", Proc. IEE, Vol. 119, No. 10, October 1972.
- 7. V. Venikov, Transient Processes in Electrical Power Systems, Moscow, Mir Publishers, 1977.
- 8. A. Barzam, Automation in Electrical Power Systems, Moscow, Mir Publishers, 1977.
- 9. IEEE Press Press Publication, Stability of Large Electric Power Systems, New York, IEEE Press, 1974.
- 10. Ollei. Elgerd, Electric Energy Systems, Theory, An Introduction, New Delhi, Tata McGraw-Hill Publishing Company Ltd., 1971.
- 11. IEEE Committee report, "Dynamic Models for Steam and Hydro Turbines in Power System Studies", IEEE Trans, ,PAS, Nov/Des., 1973.
- 12. H.E. Lokay and V. Burtnyk, "Application of Underfrequency Relays for Automatic Load Shedding", IEEE Trans., PAS, January 1970.

APPENDIX I
UPSEB PLANNING MODEL NETWORK DATA

a) Bus Conditions Prior to Disturbance

| Bus        | GENERATI | ON (MW) | LOAD   | POWER(MW) | Voltage           | Phase                    |
|------------|----------|---------|--------|-----------|-------------------|--------------------------|
| No.        | P -      | Q       | P      | Q         | Magnitude in p.u. | e angle<br>in deg.       |
| 1          | 2        | 3       | 4      | 5         | 6                 | 7                        |
| 1          | 700.00   | 155.45  | 0.00   | 0.00      | 1.03              | -1.528                   |
| 2          | 0.00     | 0.00    | 0.00   | 0.00      | 1.06              | <b>-</b> 5.687           |
| 3          | 300.00   | 180.07  | 0.00   | 0.00      | 1.02              | -8.443                   |
| 4          | 0.00     | 0.00    | 0.00   | 0.00      | 1.10              | -10.946                  |
| 5          | 736.00   | 460.00  | 0.00   | 0.00      | 1.04              | 2.934                    |
| 6          | 0.00     | 0.00    | 0.00   | 0.00      | 1.07              | <b>-</b> 5.157           |
| 7          | 68.00    | 34.00   | 0.00   | 0.00      | 1.04              | <b>-</b> 9.123           |
| 8          | 0.00     | 0.00    | 40.00  | 25.00     | 1.09              | -12.644                  |
| 9          | 197.00   | 98.00   | 0.00   | 0.00      | 1.03              | -10.117                  |
| 10         | 0.00     | 0.00    | 230.00 | 128.30    | 1.09              | <b>-</b> 12.785          |
| 11         | 0.00     | 0.00    | 81.00  | 58.00     | 1.07              | -14.358                  |
| 12         | 0.00     | 0.00    | 0.00   | 0.00      | 1.03              | <b>-14.399</b>           |
| 13         | 0.00     | 0.00    | 170.00 | 126.00    | 1.06              | -17.431                  |
| 14         | 0.00     | 0.00    | 0.00   | 0.00      | 0.97              | <b>-</b> 11 <b>.</b> 168 |
| 15         | 0.00     | 0.00    | 0.00   | 0.00      | 1.02              | -15.573                  |
| 16         | 0.00     | 0.00    | 154.00 | 134.00    | 1.02.             | -20.630                  |
| 17         | 0.00     | 0.00    | 91.00  | 67.00     | 1.00              | <b>-21.</b> 606          |
| 18         | 0.00     | 101.42  | 0.00   | 0.00      | 1.00              | -20.285                  |
| <b>1</b> 9 | 0.00     | 0.00    | 207.00 | 154.00    | 0.99              | -23.731                  |
| 20         | 0.00     | 0.00    | 0.00   | 0.00      | 0.97              | -21.693                  |
|            |          |         |        | Contd     | • •               |                          |

| 1  | 2      | 3      | 4      | 5      | 6    | . 7                      |
|----|--------|--------|--------|--------|------|--------------------------|
| 21 | 0.00   | 0.00   | 72.00  | 52.00  | 1,00 | <b>-</b> 24 <b>.</b> 595 |
| 22 | 0.00   | 0.00   | 52.00  | 42.00  | 0.96 | -20.441                  |
| 23 | 0.00   | 0.00   | 86.00  | 63.00  | 1.01 | -23.530                  |
| 24 | 0.00   | 0.00   | 0.00   | 0.00   | 1.10 | <b>-11.</b> 592          |
| 25 | 0.00   | 0.00   | 87.00  | 64.00  | 1.06 | <b>-</b> 36.738          |
| 26 | 0.00   | 0.00   | 0.00   | 0.00   | 1.02 | <b>-11.</b> 546          |
| 27 | 0.00   | 0.00   | 142.20 | 100.00 | 1.02 | -17.664                  |
| 28 | 0.00   | 0.00   | 77.00  | 56.00  | 1.05 | -20.671                  |
| 29 | 190.00 | 120.00 | 0.00   | 0.00   | 0.95 | -15.826                  |
| 30 | 0.00   | 0.00   | 49.00  | 35.00  | 1.03 | <b>-17.</b> 824          |
| 31 | 0.00   | 0.00   | 0.00   | 0.00   | 1.02 | -17.591                  |
| 32 | 0.00   | 0.00   | 235.00 | 175.00 | 1.06 | -20.503                  |
| 33 | 95.00  | 39.89  | 0.00   | 0.00   | 1.05 | <b>-</b> 25 <b>.</b> 967 |
| 34 | 0.00   | 0.00   | 27.00  | 18.00  | 1.09 | <b>-</b> 27 <b>.</b> 757 |
| 35 | 0.00   | 0.00   | 0.00   | 0.00   | 1.01 | -16.470                  |
| 36 | 150.00 | 90.00  | 0.00   | 0.00   | 0.97 | -14.050                  |
| 37 | 0.00   | 0.00   | 77.00  | 57.00  | 1.02 | -20.235                  |
| 38 | 0.00   | 0.00   | 0.00   | 0.00   | 0.92 | -24.184                  |
| 39 | 0.00   | 0.00   | 227.00 | 170.00 | 1.02 | -24.186                  |
| 40 | 0.00   | 0.00   | 0.00   | 0.00   | 1.03 | -13.219                  |
| 41 | 0.00   | 0.00   | 0.00   | 0.00   | 1.04 | -18.023                  |
| 42 | 0.00   | 0.00   | 212.00 | 159.00 | 1.12 | -22.058                  |
| 43 | 0.00   | 0.00   | 0.00   | 0.00   | 1.00 | -25.320                  |
| 44 | 0.00   | 0.00   | 74.00  | 55.00  | 1.08 | -28.925                  |
|    |        |        |        | Contd  | •    |                          |

| 1  | 2      | 3              | 4      | 5      | 6    | 7                        |
|----|--------|----------------|--------|--------|------|--------------------------|
| 45 | 0.00   | 84.06          | 0.00   | 0.00   | 1.00 | -30.522                  |
| 46 | 0.00   | 0.00           | 78.00  | 65.00  | 1.03 | <b>-</b> 36.694          |
| 47 | 0.00   | 0.00           | 0.00   | 0.00   | 0.91 | -41.889                  |
| 48 | 0.00   | 0.00           | 153.00 | 135.00 | 0.98 | -41.893                  |
| 49 | 35.00  | 26.00          | 0.00   | 0.00   | 1.05 | <del>-</del> 37.435      |
| 50 | 0.00   | 0.00           | 13.00  | 11.40  | 1.00 | -41.053                  |
| 51 | 176.00 | 50.26          | 0.00   | 0.00   | 1.08 | -31.856                  |
| 52 | 0.00   | 0.00           | 8.00   | 5.00   | 1.05 | <b>-</b> 36.948          |
| 53 | 0.00   | 0.00           | 25.00  | 22.00  | 1.02 | <b>-</b> 39 <b>.</b> 506 |
| 54 | 0.00 \ | 28.43          | 45.00  | 39.00  | 1.00 | -42.424                  |
| 55 | 0.00   | 0.00           | 0.00   | 0.00   | 1.03 | -33.411                  |
| 56 | 0.00   | 0.00           | 0.00   | 0.00   | 0.98 | -37.353                  |
| 57 | 0.00   | 0.00           | 216.00 | 190.00 | 1.02 | -40.825                  |
| 58 | 0.00   | 0.00           | 139.00 | 104.00 | 1.03 | <b>-</b> 39 <b>.</b> 399 |
| 59 | 0.00   | 0.00           | 241.00 | 241.00 | 1.02 | -30.842                  |
| 60 | 400.00 | 248.00         | 0.00   | 0.00   | 0.99 | -27.560                  |
| 61 | 0.00   | 0.00           | 0.00   | 0.00   | 1.04 | <b>-</b> 33 <b>.</b> 236 |
| 62 | 191.00 | 114.00         | 0.00   | 0.00   | 0.96 | -30.937                  |
| 63 | 0.00   | 0.00           | 0.00   | 0.00   | 1.03 | -34.291                  |
| 64 | 50.00  | 39.31          | 0.00   | 0.00   | 1.05 | <b>-</b> 35.448          |
| 65 | 0.00   | 0.00           | 151.00 | 151.00 | 1.07 | -37.811                  |
| 66 | 0.00   | 5 <b>3.</b> 35 | 0.00   | 0.00   | 1.00 | -40.337                  |
| 67 | 0.00   | 0.00           | 191.00 | 169.00 | 1.00 | -44.161                  |
|    |        |                |        | Contd  |      |                          |

| 1  | 2      | 3      | 4      | 5      | 6     | 7                        |
|----|--------|--------|--------|--------|-------|--------------------------|
| 68 | 0.00   | 0.00   | 0.00   | 0.00   | 1.02  | -34.749                  |
| 69 | 0.00   | 0.00   | 175.00 | 153.00 | 1.05  | -38.901                  |
| 70 | 0.00   | 0.00   | 720.00 | 520.00 | 0.91  | -30.837                  |
| 71 | 0.00   | 335.94 | 32.00  | 34.00  | 1.00  | -35.638                  |
| 72 | 0.00   | 0.00   | 132.00 | 132.00 | 1.01  | -39.787                  |
| 73 | 0.00   | 0.00   | 0.00   | 0.00   | 0.97  | <b>-</b> 38 <b>.</b> 304 |
| 74 | 0.00   | 0.00   | 172.00 | 172.00 | 1.00  | -40.865                  |
| 75 | 0.00   | 0.00   | 69.00  | 69.00  | 1.02  | -35.611                  |
| 76 | 0.00   | 0.00   | 0.00   | 0.00   | 1.04  | <b>-</b> 33.422          |
| 77 | . 0.00 | 0.00   | 102.00 | 102.00 | 1.07  | <b>-</b> 36.882          |
| 78 | 48.00  | 24.00  | 0.00   | 0.00   | 0.98  | <b>-</b> 33.657          |
| 79 | 0.00   | 0.00   | 0.00   | 0.00   | 1.06  | <b>-</b> 36.954          |
| 80 | 0.00   | 0.00   | 0.00   | 0.00   | 0.99  | _36.398                  |
| 81 | 0.00   | 0.00   | 75.00  | 58.00  | 1 .06 | <b>-</b> 37 <b>.</b> 395 |
| 82 | 0.00   | 0.00   | 115.00 | 115.00 | 0.97  | -39.655                  |
| 83 | 152.00 | 40.09  | 0,00   | 0.00   | 1.05  | -27.958                  |
| 84 | 0.00   | 0.00   | 8.00   | 6.00   | 1.09  | -31.759                  |
| 85 | 272.00 | 80.00  | 0.00   | 0.00   | 0.98  | -25.924                  |
| 86 | 0.00   | 0.00   | 0.00   | 0.00   | 1.07  | -30.318                  |
| 87 | 89.00  | 45.00  | 0.00   | 0.00   | 0.99  | <b>-</b> 26 <b>.</b> 834 |
| 88 | 0.00   | 0.00   | 0.00   | 0.00   | 1.06  | -31.652                  |
| 89 | 191.00 | 95.00  | 0.00   | 0.00   | 1.00  | <b>-</b> 26 <b>.</b> 386 |
| 90 | 0.00   | 0.00   | 0.00   | 0.00   | 1.08  | -30.449                  |
| 91 | 0.00   | 0.00   | 0.00   | 0.00   | 0.96  | -33.729                  |
|    |        |        |        |        |       |                          |

Jontd..

| 1  | 2       | 3      | 4     | 5     | 6    | 7              |
|----|---------|--------|-------|-------|------|----------------|
| 92 | 0.00    | 0.00   | 53.00 | 53.00 | 1.07 | -33.734        |
| 93 | 0.00    | 0.00   | 62.00 | 46.00 | 1.07 | -35.580        |
| 94 | 1151.87 | 239.88 | 0.00  | 0.00  | 1.03 | 0.00           |
| 95 | 0.00    | 0.00   | 0.00  | 0.00  | 1.07 | <b>-</b> 5.394 |
| 96 | 365.00  | 156.19 | 0.00  | 0.00  | 1.03 | -12.725        |

(b) Line Data (MVA Base = 200.0).

| Line<br>No. | From<br>Bus | To<br>Bus | Line Imp |         | Half Charg. | Admit.  | Off Nom.<br>Tr.Turns<br>Ratio |
|-------------|-------------|-----------|----------|---------|-------------|---------|-------------------------------|
| 1           | 2           | 3         | 4        | 5       | 6           | 7       | 8                             |
| 1           | 1           | 2         | 0.00000  | 0.02380 | 0.0         | 0.00000 | 0.950                         |
| 2           | 2           | 4         | 0.00000  | 0.06250 | 0.0         | 0.00000 | 0.925                         |
| 3           | 2           | 6         | 0.00123  | 0.01248 | 0.0         | 0.04077 | 1.000                         |
| 4           | 95          | 14        | 0.00817  | 0.08320 | 0.0         | 0.27180 | 1.000                         |
| 5           | 2           | 26        | 0.00972  | 0.09900 | 0.0         | 0.32344 | 1.000                         |
| 6           | 3           | 4         | 0.00000  | 0.03640 | 0.0         | 0.00000 | 0.900                         |
| 7           | 4           | 8         | 0.00940  | 0.08303 | 0.0         | 0.00026 | 1.000                         |
| 8           | 4           | 10        | 0.06552  | 0.35417 | 0.0         | 0.00425 | 1.000                         |
| 9           | 4           | 12        | 0.01637  | 0.07823 | 0.0         | 0.06669 | 1.000                         |
| 10          | 4           | 31        | 0.01976  | 0.09608 | 0.0         | 0.18158 | 1.000                         |
| 11          | 4           | 24        | 0.01171  | 0.05943 | 0.0         | 0.01180 | 1.000                         |
| 12          | 5           | 6         | 0.00000  | 0.04760 | 0.0         | 0.00000 | 0.900                         |
| 13          | 6           | 35        | 0.01735  | 0.10506 | 0.0         | 0.57010 | 1.000                         |
| 14          | 7           | 8         | 0.00000  | 0.22200 | 0.0         | 0.00000 | 0.925                         |
| 15          | 8           | 10        | 0.03184  | 0.07578 | 0.0         | 0.00872 | 1.000                         |
| 16          | 8           | 11        | 0.03184  | 0.07578 | 0.0         | 0.00872 | 1.000                         |
| 17          | 9           | 10        | 0.00000  | 0.05700 | 0.0         | 0.00000 | 0.925                         |
| 18          | 24          | 10        | 0.00000  | 0.10000 | 0.0         | 0.00000 | 1.000                         |
| 19          | 10          | 11        | 0.05282  | 0.12571 | 0.0         | 0.01447 | 1.000                         |
| 20          | 11          | 13        | 0.06706  | 0.15959 | 0.0         | 0.01837 | 1.000                         |
| 21          | 12          | 13        | 0.00000  | 0.06860 | 0.0         | 0.00000 | 0.925                         |
|             |             |           |          | Q       | ontd        |         |                               |
|             |             |           |          |         |             |         |                               |

| 1  | 2  | 3  | 4       | 5       | 6   | 7       | 8     |
|----|----|----|---------|---------|-----|---------|-------|
| 22 | 12 | 15 | 0.03514 | 0.17829 | 0.0 | 0.03540 | 1.000 |
| 23 | 13 | 17 | 0.09150 | 0.21777 | 0.0 | 0.02507 | 1.000 |
| 24 | 14 | 15 | 0.00000 | 0.06250 | 0.0 | 0.00000 | 0.900 |
| 25 | 15 | 16 | 0.00000 | 0.10000 | 0.0 | 0.00000 | 0.925 |
| 26 | 15 | 18 | 0.03514 | 0.17828 | 0.0 | 0.03540 | 1.000 |
| 27 | 16 | 17 | 0.04158 | 0.09896 | 0.0 | 0.01139 | 1.000 |
| 28 | 17 | 19 | 0.09946 | 0.23671 | 0.0 | 0.02725 | 1.000 |
| 29 | 18 | 19 | 0.0000  | 0.06000 | 0.0 | 0.00000 | 0.975 |
| 30 | 18 | 20 | 0.02175 | 0.11037 | 0.0 | 0.02192 | 1.000 |
| 31 | 18 | 30 | 0.01332 | 0.06708 | 0.0 | 0.05448 | 1.000 |
| 32 | 19 | 21 | 0.12036 | 0.30234 | 0.0 | 0.00781 | 1.000 |
| 33 | 20 | 21 | 0.00000 | 0.20000 | 0.0 | 0.00000 | 0.925 |
| 34 | 21 | 23 | 0.12448 | 0.31345 | 0.0 | 0.00806 | 1.000 |
| 35 | 22 | 23 | 0.00000 | 0.20000 | 0.0 | 0.00000 | 0.925 |
| 36 | 22 | 27 | 0.02008 | 0.10189 | 0.0 | 0.02023 | 1.000 |
| 37 | 23 | 28 | 0.11190 | 0.27929 | 0.0 | 0.00722 | 1.000 |
| 38 | 26 | 40 | 0.00597 | 0.06019 | 0.0 | 0.19665 | 1.000 |
| 39 | 26 | 27 | 0.00000 | 0.06250 | 0.0 | 0.00000 | 0.950 |
| 40 | 27 | 28 | 0.00000 | 0.10000 | 0.0 | 0.00000 | 0.950 |
| 41 | 27 | 30 | 0.01165 | 0.05869 | 0.0 | 0.04766 | 1.000 |
| 42 | 28 | 32 | 0.20779 | 0.52192 | 0.0 | 0.01349 | 1.000 |
| 43 | 29 | 30 | 0.00000 | 0.03960 | 0.0 | 0.00000 | 0.900 |
| 44 | 31 | 32 | 0.00000 | 0.04980 | 0.0 | 0.00000 | 0.925 |
| 45 | 31 | 37 | 0.03459 | 0.16537 | 0.0 | 0.14097 | 1.000 |
| 46 | 33 | 34 | 0.00000 | 0.07920 | 0.0 | 0.00000 | 0.950 |
|    |    |    |         | Cont    | d   |         |       |

| 1  | 2  | 3  | 4       | 5       | 6   | 7               | 8     |
|----|----|----|---------|---------|-----|-----------------|-------|
| 47 | 34 | 59 | 0.04184 | 0.21225 | 0.0 | 0.16860         | 1.000 |
| 48 | 35 | 37 | 0.00000 | 0.06250 | 0.0 | 0.00000         | 0.975 |
| 49 | 35 | 70 | 0.00796 | 0.04865 | 0.0 | <b>1.</b> 05948 | 1.000 |
| 50 | 35 | 2  | 0.01592 | 0.09734 | 0.0 | 0.53001         | 1.000 |
| 51 | 36 | 37 | 0.00000 | 0.15840 | 0.0 | 0.00000         | 0.900 |
| 52 | 37 | 39 | 0.00000 | 0.06660 | 0.0 | 0.00000         | 0.950 |
| 53 | 37 | 59 | 0.02594 | 0.12398 | 0.0 | 0.10569         | 1.000 |
| 54 | 38 | 39 | 0.00000 | 0.27500 | 0.0 | 0.00000         | 0.900 |
| 55 | 40 | 41 | 0.00000 | 0.06250 | 0.0 | 0.00000         | 0.950 |
| 56 | 41 | 37 | 0.01016 | 0.04854 | 0.0 | 0.04138         | 1.000 |
| 57 | 41 | 42 | 0.00000 | 0.06440 | 0.0 | 0.00000         | 0.900 |
| 58 | 41 | 43 | 0.02677 | 0.13584 | 0.0 | 0.02698         | 1.000 |
| 59 | 42 | 44 | 0.16080 | 0.40390 | 0.0 | 0.01044         | 1.000 |
| 60 | 43 | 44 | 0.00000 | 0.20000 | 0.0 | 0.00000         | 0.900 |
| 61 | 43 | 45 | 0.02845 | 0.14433 | 0.0 | 0.02866         | 1.000 |
| 62 | 44 | 46 | 0.17241 | 0.43305 | 0.0 | 0.01119         | 1.000 |
| 63 | 45 | 46 | 0.00000 | 0.20000 | 0.0 | 0.00000         | 0.925 |
| 64 | 46 | 48 | 0.07643 | 0.18188 | 0.0 | 0.02094         | 1.000 |
| 65 | 47 | 48 | 0.00000 | 0.20000 | 0.0 | 0.00000         | 0.925 |
| 66 | 48 | 50 | 0.07886 | 0.18768 | 0.0 | 0.02160         | 1.000 |
| 67 | 48 | 54 | 0.16848 | 0.42417 | 0.0 | 0.01091         | 1.000 |
| 68 | 48 | 57 | 0.08317 | 0.19793 | 0.0 | 0.02278         | 1.000 |
| 69 | 49 | 50 | 0.00000 | 0.38000 | 0.0 | 0.00000         | 1.000 |
| 70 | 51 | 52 | 0.00000 | 0.11400 | 0.0 | 0.00000         | 1.000 |

Contd...

| 1  | 2  | 3          | 4         | 5       | 6   | 7       | 8      |
|----|----|------------|-----------|---------|-----|---------|--------|
| 71 | 52 | 53         | 0.04680   | 0.11760 | 0.0 | 0.01215 | 1.000  |
| 72 | 52 | 58         | 0.05339 . | 0.12705 | 0.0 | 0.01462 | 1.000  |
| 73 | 53 | 54         | 0.09360   | 0.23510 | 0.0 | 0.00607 | 1.000  |
| 74 | 53 | 57         | 0.09921   | 0.24921 | 0.0 | 0.00604 | 1.000  |
| 75 | 56 | 55         | 0.02295   | 0.23410 | 0.0 | 0.06965 | 1.000  |
| 76 | 56 | 61         | 0.02577   | 0.12964 | 0.0 | 0.02641 | 1.000  |
| 77 | 57 | 58         | 0.06359   | 0.15135 | 0.0 | 0.01742 | 1.000  |
| 78 | 57 | 72         | 0.23980   | 0.60373 | 0.0 | 0.01553 | 1.000  |
| 79 | 58 | 79         | 0.08143   | 0.20497 | 0.0 | 0.02108 | 1.000  |
| 80 | 58 | 81         | 0.08148   | 0.19392 | 0.0 | 0.02232 | 1.000  |
| 81 | 59 | 63         | 0.02133   | 0.10194 | 0.0 | 0.08690 | 1.000  |
| 82 | 60 | 61         | 0.00000   | 0.05690 | 0.0 | 0.00000 | 0.900  |
| 83 | 61 | 63         | 0.01165   | 0.05863 | 0.0 | 0.01194 | 1.000  |
| 84 | 61 | 68         | 0.00666   | 0.03183 | 0.0 | 0.02714 | 1.000  |
| 85 | 62 | 63         | 0.00000   | 0.06740 | 0.0 | 0.00000 | 0.900  |
| 86 | 63 | 65         | 0.00000   | 0.07760 | 0.0 | 0.00000 | 0.950  |
| 87 | 63 | 66         | 0.03179   | 0.16131 | 0.0 | 0.03203 | 1.000  |
| 88 | 63 | 68         | 0.00749   | 0.03581 | 0.0 | 0.03053 | 1.000  |
| 89 | 64 | 65         | 0.00000   | 0.19500 | 0.0 | 0.00000 | 0.950  |
| 90 | 65 | 67         | 0.18210   | 0.45750 | 0.0 | 0.01182 | 1,.000 |
| 91 | 65 | <b>6</b> 9 | 0.08424   | 0.21159 | 0.0 | 0.00547 | 1.000  |
| 92 | 66 | 67         | 0.00700   | 0.10000 | 0.0 | 0.00000 | 0.975  |
| 93 | 68 | 69         | 0.00000   | 0.09700 | 0.0 | 0.00000 | 0.950  |
| 94 | 68 | 71         | 0.00999   | 0.04775 | 0.0 | 0.04070 | 1.000  |
|    |    |            |           | 5+~ D   |     |         |        |

Contd..

| 1   | 2    | 3          | 4       | 5       | 6   | 7       | 8     |
|-----|------|------------|---------|---------|-----|---------|-------|
| 95  | 69   | 72         | 0.11232 | 0.28212 | 0.0 | 0.00729 | 1.000 |
| 96  | 70   | 71         | 0.00000 | 0.06250 | 0.0 | 0.00000 | 1.050 |
| 97  | 71   | 55         | 0.02436 | 0.24760 | 0.0 | 0.07380 | 1.000 |
| 98  | 71   | 73         | 0.01466 | 0.07437 | 0.0 | 0.01477 | 1.000 |
| 99  | 71   | 72         | 0.00000 | 0.07800 | 0.0 | 0,00000 | 0.975 |
| 100 | 71   | 75         | 0.02884 | 0.14557 | 0.0 | 0.02942 | 1.000 |
| 101 | 72   | 74         | 0.02274 | 0.05713 | 0.0 | 0.00590 | 1.000 |
| 102 | 73   | 74         | 0.00000 | 0.09320 | 0.0 | 0.00000 | 0.950 |
| 103 | 75   | 76         | 0.02314 | 0.11642 | 0.0 | 0.02371 | 1.000 |
| 104 | 76   | 77         | 0.00000 | 0.10180 | 0.0 | 0.00000 | 0.950 |
| 105 | 76   | 86         | 0.01669 | 0.08432 | 0.0 | 0.06784 | 1.000 |
| 106 | 76   | 90         | 0.04016 | 0.20376 | 0.0 | 0.04046 | 1.000 |
| 107 | 77   | 81         | 0.02875 | 0.06843 | 0.0 | 0.00787 | 1.000 |
| 108 | 78   | 79         | 0.00000 | 0.27500 | 0.0 | 0.00000 | 0.900 |
| 109 | 79   | 81         | 0.06552 | 0.16495 | 0.0 | 0.00424 | 1.000 |
| 110 | 79   | . 25       | 0.01892 | 0.04612 | 0.0 | 0.00121 | 1.000 |
| 111 | 80   | 81         | 0.00000 | 0.10000 | 0.0 | 0.00000 | 0.925 |
| 112 | 80   | <b>5</b> 5 | 0.01864 | 0.09380 | 0.0 | 0.01910 | 1.000 |
| 113 | 80   | 82         | 0.02677 | 0.13584 | 0.0 | 0.02697 | 1.000 |
| 114 | . 81 | 25         | 0.02434 | 0.06113 | 0.0 | 0.00632 | 1.000 |
| 115 | 82   | 73         | 0.02677 | 0.13584 | 0.0 | 0.02697 | 1.000 |
| 116 | 83   | 84         | 0.00000 | 0.10480 | 0.0 | 0.00000 | 0.950 |
| 117 | 7 84 | 86         | 0.02434 | 0.26126 | 0.0 | 0.00157 | 1.000 |
| 118 | 3 84 | 92         | 0.01965 | 0.04997 | 0.0 | 0.02036 | 1.000 |
|     |      |            |         | ~       | •   |         |       |

Contd..

| 1    | 2    | 3  | 4       | 5       | 6   | 7       | 8     |
|------|------|----|---------|---------|-----|---------|-------|
| 119  | 85   | 86 | 0.00000 | 0.06580 | 0.0 | 0.00000 | 0.900 |
| 120  | 86   | 55 | 0.02664 | 0.13410 | 0.0 | 0.02727 | 1.000 |
| 121  | 87   | 88 | 0.00000 | 0.21930 | 0.0 | 0.00000 | 0900  |
| 122  | 88   | 55 | 0.01673 | 0.08490 | 0.0 | 0.06744 | 1.000 |
| 123  | 89   | 90 | 0.00000 | 0.08900 | 0.0 | 0.00000 | 0.900 |
| 124  | 90   | 55 | 0.02008 | 0.10188 | 0.0 | 0.08092 | 1.000 |
| 1 25 | 91   | 92 | 0.00000 | 0.20000 | 0.0 | 0.00000 | 0.900 |
| 126  | 92   | 93 | 0.02465 | 0.05960 | 0.0 | 0.01382 | 1.000 |
| 127  | 55   | 93 | 0.00000 | 0.10160 | 0.0 | 0.00000 | 0.925 |
| 128  | 93   | 25 | 0.01435 | 0.03613 | 00  | 0.00836 | 1.000 |
| 129  | 56   | 57 | 0.00000 | 0.06850 | 0.0 | 0.00000 | 0.925 |
| 130  | 96   | 41 | 0.00000 | 0.05690 | 0.0 | 0.0000  | 0.950 |
| 131  | 94   | 95 | 0.00000 | 0.01890 | 0.0 | 0.00000 | 0.950 |
| 132  | 95   | 6  | 0.00081 | 0.00832 | 0.0 | 0.02700 | 1.000 |
| 133  | 95   | 2  | 0.00081 | 0.00832 | 0.0 | 0.02700 | 1.000 |
| 134  | 95   | 26 | 0.00972 | 0.09900 | 0.0 | 0.32344 | 1.000 |
| 135  | . 95 | 35 | 0.01726 | 0.10500 | 0.0 | 0.57010 | 1.000 |
| 136  | 95   | 40 | 0.01365 | 0.14890 | 0.0 | 0.49000 | 1.000 |

## c) Voltage Controlled Bus Data

| S.No. | Bus No. | Q-Minimum<br>MVAR | Q-Maximum<br>MVAR | Scheduled bus voltage(p.u.) |
|-------|---------|-------------------|-------------------|-----------------------------|
| 1     | 2       | 3                 | 4                 | 5                           |
| 1     | 3       | 0.0               | 214.0             | 1.02                        |
| 2     | 5       | 0.0               | 460.0             | 1.05                        |
| 3     | 7       | 0.0               | 34.0              | 1.05                        |
| 4     | 9       | 0.0               | 98.0              | 1.05                        |
| 5     | 29      | 0.0               | 120.0             | 1.05                        |
| 6     | 33      | 0.0               | 57.0              | 1.05                        |
| 7     | 36      | 0.0               | 90.0              | 1.05                        |
| 8     | 38      | 0.0               | 100.0             | 1.05                        |
| 3     | 49      | 0.0               | 26.0              | 1.075                       |
| 10    | 51      | 0.0               | 88.0              | 1.075                       |
| 11    | 60      | 0.0               | 248.0             | 1.05                        |
| 12    | .62     | 0.0               | 114.0             | 1.05                        |
| 13    | 64      | 0.0               | 40.0              | 1.05                        |
| 14    | 78      | 0.0               | 24.0              | . 1.05                      |
| 15    | 83      | 0.0               | 76.0              | 1.05                        |
| 16    | 85      | 0.0               | 80.0              | 1.05                        |
| 17    | 87      | 0.0               | 45.0              | 1.05                        |
| 18    | 89      | 0,0               | 95.0              | 1.05                        |
| 19    | 18      | 0,0               | 500.0             | 1.0                         |
| 20    | 45      | / Ö.O             | 500.0             | 1.0                         |
|       |         |                   |                   |                             |

Contd.,

| 1    | 2  | 3   | 4     | 5     |
|------|----|-----|-------|-------|
| 21   | 54 | 0,0 | 500.0 | 1.0   |
| 22 . | 66 | 0.0 | 500.0 | 1.0   |
| 23   | 71 | 0.0 | 500.0 | 1.0   |
| 24   | 1  | 0.0 | 445.0 | 1,025 |
| 25   | 96 | 0.0 | 200.0 | 1,025 |
| 26   | 59 | 0.0 | 500.0 | 1.0   |
| 27   | 81 | 0.0 | 500.0 | 1.0   |

d) Shunt Load Data

| S.No. | Bus No. | Shunt Load | Admittance(p.u.) |
|-------|---------|------------|------------------|
| 1     | 11      | 0.0        | 0.065            |
| 2     | 13      | 0.0        | 0.020            |
| 3     | 16      | 0.0        | 0.010            |
| 4 .   | 17      | 0.0        | 0.085            |
| 5     | 19      | 0.0        | 0.160            |
| 6     | 21      | 0.0        | 0.035            |
| 7     | 23      | 0.0        | . 0.080          |
| 8     | 27      | 0.0        | 0.120            |
| 9     | 28      | 0.0        | 0.070            |
| 10    | 32      | 0.0        | 0.030            |
| 11    | 39      | 0.0        | 0.070            |
| 12    | 42      | 0.0        | 0.125            |
| 13    | 44      | 0.0        | 0.100            |
| 14    | 46      | . 0.0      | 0.180            |
| 15    | 48      | 0.0        | 0.350            |
| 16    | 54      | 0.0        | 0.080            |
| 17    | 57      | 0.0        | 0.500            |
| 18 .  | 58      | 0.0        | 0.230            |
| 19    | 59      | 0.0        | 0.800            |
| 20    | 65      | 0.0        | 0.450            |
| 21    | 67      | 0.0        | Q.520            |
| 22    | 69 .    | 0.0        | 0.450            |
|       |         | C on ta    |                  |

Contd..

| 1          | 2  | 3   | 4              |
|------------|----|-----|----------------|
| 23         | 71 | 0.0 | 0.250          |
| 24         | 72 | 0.0 | 0.500          |
| 25         | 74 | 0.0 | 0.520          |
| 26         | 75 | 0.0 | 0.280          |
| 27         | 77 | 0.0 | 0.270          |
| 28         | 81 | 0.0 | 0.120          |
| 29         | 82 | 0.0 | 0.520          |
| 30         | 92 | 0.0 | 0.030          |
| 31         | 93 | 0.0 | 0.020          |
| 3 <b>2</b> | 25 | 0.0 | 0.050          |
| 33         | 2  | 0.0 | -0.750         |
| 34         | 6  | 0.0 | <b>-</b> 0.250 |
| 35         | 14 | 0.0 | -0.250         |
| 36         | 26 | 0.0 | -0.500         |
| 37         | 35 | 0.0 | -1.000         |
| 38         | 40 | 0.0 | 0.000          |
| 39         | 70 | 0.0 | -0.500         |
| 40         | 95 | 0.0 | -0.500         |
| 41         | 18 | 0.0 | 0.500          |
| 42         | 45 | 0.0 | 0.420          |
| 43         | 66 | 0.0 | 0.265          |
| 44         | 70 | 0.0 | 1.670          |

## e) Generator Parameters

| S.No.           | Base<br>MVA | H<br>(seconds) | r <sub>a</sub> | Х <sub>d</sub> | X,    | X <sub>q</sub> |
|-----------------|-------------|----------------|----------------|----------------|-------|----------------|
| 1               | 940.0       | 2.20           | 0.00179        | 2.117          | 0.287 | 2.117          |
| 2               | 422.5       | 2.71           | 0.00138        | 1.840          | 0.242 | 1.780          |
| *3              | 940.0       | 2.20           | 0.00179        | 0.287          | 0.287 | 0.287          |
| 4               | 110.0       | 3.50           | 0.00600        | 0.901          | 0.290 | 0.559          |
| 5               | 335.0       | 3.99           | 0.00500        | 0.950          | 0.335 | 0.600          |
| 6               | 275.0       | 2.00           | 0.00100        | 2.170          | 0.300 | 2.050          |
| 7               | 139.0       | 2.00           | 0.00100        | 2.170          | 0.300 | 2.050          |
| 8               | 217.5       | 2.20           | 0.00270        | 1.700          | 0.290 | 1.650          |
| <b>*</b> 9      | 51.75       | 4.00           | 0.00500        | 0.280          | 0.280 | 0.280          |
| *10             | 220.0       | 4.94           | 0.00670        | 0.250          | 0.250 | 0.250          |
| *11             | 528.0       | 1.91           | 0.00100        | 0.280          | 0.280 | 0.280          |
| *12             | 340.0       | 2.53           | 0.00270        | 0.212          | 0.212 | 0.212          |
| <del>*</del> 13 | 75.0        | 3.50           | 0.00500        | 0.250          | 0.250 | 0.250          |
| 14              | 160.0       | 4.55           | 0.00300        | 0.950          | 0.300 | 0.600          |
| 15              | 211.0       | 3.40           | 0.00500        | 0.950          | 0.310 | 0.600          |
| 16              | 376.0       | 3.79           | 0.00314        | 0.950          | 0.280 | 0.600          |
| 17              | 103.5       | 2.85           | 0.00279        | 0.958          | 0.268 | 0.600          |
| 18              | 223.0       | 3.00           | 0.00300        | 0.950          | 0.300 | 0.600          |
| <sub>‡</sub> 19 | 1420.0      | 2.10           | 0.00230        | <b>a.</b> 350  | 0.280 | 2.150          |
| 20              | 490.0       | 2,20           | 0.00230        | 2.120          | 0.287 | 2.120          |

<sup>\*</sup>These are treated as constant excitation machines.

<sup>#</sup>Slack Generator.

## f) Excitation System Data

| S.    | Gen.<br>No. | $\mathtt{A}^{\lambda}$ | $^{\mathrm{K}}\mathbf{E}$ | $^{\mathrm{K}}_{\mathrm{F}}$ | $^{\mathrm{T}}\mathtt{A}$ | $^{\mathrm{T}}\mathrm{E}$ | $^{\mathrm{T}}\mathrm{F}$ | V <sub>Rmin</sub> | V<br>Rmax |
|-------|-------------|------------------------|---------------------------|------------------------------|---------------------------|---------------------------|---------------------------|-------------------|-----------|
| No. 1 | 1           | 250                    | 1.0                       | 0.12                         | 0.04                      | 0.20                      | ₹.5                       | <b>-</b> 5        | 5         |
| 2     | 2           | 200                    | 1.0                       | 0.175                        | 0.04                      | 1.0                       | 3.5                       | <del>-</del> 5    | 5         |
| 3     | 4           | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.7                       | 2.0                       | <b>-</b> 4        | 4         |
| 4     | 5           | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.7                       | 2.0                       | <b>-</b> 4        | 4         |
| 5     | 6           | 200                    | 1.0                       | 0.10                         | 0.02                      | 1.38                      | 3.0                       | <b>-</b> 5        | 5         |
| 6     | 7           | 200                    | 1.0                       | 0.10                         | 0.02                      | 1.38                      | 3.0                       | <del>-</del> 5    | 5         |
| 7     | 8           | 200                    | 1.0                       | 0.10                         | 0.02                      | 1.38                      | 3.0                       | <b>-</b> 5        | 5         |
| 3     | 14          | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.70                      | 2.0                       | <b>-</b> 4        | 4         |
| 9     | 15          | 200                    | 1.0                       | 0.12                         | 0.50                      | 0 70                      | 2.0                       | <b>-</b> 4        | 4         |
| 10    | 16          | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.70                      | 2.0                       | <b>-</b> 4        | 4         |
| 11    | 17          | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.70                      | 2.0                       | <b>-</b> 4        | 4         |
| 12    | 18          | 200                    | 1.0                       | 0.12                         | 0.50                      | 0.70                      | 2.0                       | <b>-</b> 4        | 4         |
| 13    | 19          | 600                    | 1.0                       | 0.00                         | 10.72                     | 0.47                      | 100.0                     | 2.1               | 11.5      |
| 14    | 20          | 250                    | 1.0                       | 0.12                         | 0.04                      | 0.20                      | 3.5                       | <b>-</b> 5        | 5         |

APPENDIX II IEEE-14 BUS SYSTEM DATA

## a) Bus Conditions Prior to Disturbance

| Bus<br>No. | Genera<br>P | tion(MW)<br>Q | Load<br>P | Power (MW)   | Voltage<br>Magnitude<br>in p.u. | Phase<br>angle in<br>degrees |
|------------|-------------|---------------|-----------|--------------|---------------------------------|------------------------------|
| 1          | 232.4       | -16.9         | 0.0       | 0.0          | 1.06                            | 0.0                          |
| 2          | 40.0        | 42.4          | 21.7      | 12.7         | 1.05                            | <b>-</b> 4.98                |
| 3          | 0.0         | 23.4          | 94.2      | 19.0         | 1.01                            | -12.72                       |
| 4          | 0.0         | 0.0           | 47.8      | <b>-</b> 3.9 | 1.02                            | -10.33                       |
| 5          | 0.0         | 0.0           | 7.6       | 1.6          | 1.02                            | -8.78                        |
| 6          | 0.0         | 12.2          | 11.2      | 7.5          | 1.07                            | -14.22                       |
| 7          | 0.0         | 0.0           | 0.0       | 0.0          | 1.06                            | -13.37                       |
| 8          | 0.0         | 17.8          | 0.0       | 0.0          | 1.09                            | <b>-</b> 13.36               |
| 9          | 0.0         | 0.0           | 29.5      | 16.6         | 1.06                            | -14.94                       |
| 10         | 0.0         | 0.0           | 9.0       | 5.8          | 1.05                            | -15.14                       |
| 11         | 0.0         | 0.0           | 3.5       | 1.8          | 1.06                            | -14.79                       |
| 12         | 0.0         | 0.0           | 6.1       | 1.6          | 1.06                            | -15.07                       |
| 13         | 0.0         | 0.0           | 13.5      | 5.8          | 1.05                            | -15.16                       |
| 14         | 0.0         | 0.0           | 14.9      | 5.0          | 1.04                            | -16.04                       |

b) Line Data (Base MVA = 100.0)

| Line<br>No. | From<br>Bus | To<br>Bus |         | e Impedance Half Line (p.u.) Charg.Admit. (p.u.) |       | Admit. | Off Nom.<br>Tr.Turns<br>Ratio |  |
|-------------|-------------|-----------|---------|--------------------------------------------------|-------|--------|-------------------------------|--|
| 1           | 1           | 2         | 0.01938 | 0.05917                                          | 0.0   | 0.0264 | 1.000                         |  |
| 2           | 1           | 5         | 0.05403 | 0.22304                                          | 0.0   | 0.0264 | 1.000                         |  |
| 3           | 2           | 3         | 0.04699 | 0.19797                                          | 0.0   | 0.0219 | 1.000                         |  |
| 4           | 2           | 4         | 0.05811 | 0.17632                                          | 0.0   | 0.1879 | 1.000                         |  |
| 5           | 2           | 5         | 0.05695 | 0.17388                                          | 0.0   | 0.0170 | 1.000                         |  |
| 6           | 3           | 4         | 0.06701 | 0.17103                                          | 0.0   | 0.1730 | 1.000                         |  |
| 7           | 4           | 5         | 0.01335 | 0.04211                                          | 0.0   | 0.0064 | 1.000                         |  |
| 8           | 4           | 7         | 0.00000 | 0.02091                                          | 0.0   | 0.0000 | 0.978                         |  |
| 9           | 4           | . ·       | 0.0000  | 0.55618                                          | 0.0   | 0.0000 | 0.969                         |  |
| 10          | 5           | 6         | 0.00000 | 0.25202                                          | 0.0   | 0.0000 | 0.932                         |  |
| 11          | 6           | 11        | 0.09480 | 0.19892                                          | 0.0   | 0.0000 | 1.000                         |  |
| 12          | 6           | 12        | 0.12291 | 0.25581                                          | 0.0   | 0.0000 | 1.000                         |  |
| 13          | 6           | 13        | 0.06615 | 0.13027                                          | 0.0   | 0.0000 | 1.000                         |  |
| 14          | 7           | 8         | 0.00000 | 0.17615                                          | 0.0   | 0.0000 | 1.000                         |  |
| 15          | '<br>7      | 9         | 0.00000 | 0.11001                                          | 0.0   | 0.0000 | 1.00                          |  |
| 16          | 9           | 10        | 0.03181 | 0.08450                                          | 0.0   | 0.0000 | 1.00                          |  |
| 17          | 9           | 14        | 0.12711 | 0.27038                                          | 0.0   | 0.0000 | 1.00                          |  |
|             | 10          | 11        | 0.08205 | 0.19207                                          | . 0.0 | 0.0000 | 1.00                          |  |
| 18          | 12          | 13        | 0.22092 | 0.19988                                          | 0.0   | 0.0000 | 1.00                          |  |
| 19<br>20    | 13          | 14        | 0.17093 | 0.34802                                          | 0.0   | 0.000  | 1.00                          |  |

### c) Voltage Controlled Bus Data

| S.No. | Bus. No. | Q-Minimum<br>MVAR      | Q-Maximum<br>MVAR | Scheduled bus voltage (p.u.) |
|-------|----------|------------------------|-------------------|------------------------------|
| 1     | 2        | <b>-</b> 40 <b>+</b> 0 | 50.0              | 1.045                        |
| 2     | 3        | 0.0                    | 40.0              | 1.010                        |
| 3     | 6        | -6.0                   | 24.0              | 1.070                        |
| 4     | 8        | -6.0                   | 24.0              | 1.090                        |
|       |          |                        |                   |                              |

## d) Shunt Load Data

| 1 9                                 |        |
|-------------------------------------|--------|
| 0.0 0.19                            |        |
| S.No. Bus No. Shunt Load Admittance | (p.u.) |

## e) Generator Parameters

| S.No. | Base<br>MVA | H<br>(seconds) | r <sub>a</sub> | $^{\mathrm{XX}}$ d | Χί    | ZX <sub>q</sub> |
|-------|-------------|----------------|----------------|--------------------|-------|-----------------|
| 1     | 335.0       | 3.99           | 0.005          | 0.95               | 0.335 | 0.60            |
| 2     | 75.0        | 3.50           | 0.005          | 0.25               | 0.250 | 0.25            |

# f) Excitation System Data

| S. | Gen.<br>No. | KA  | K <sub>E</sub> | $^{\mathrm{K}}_{\mathrm{F}}$ | $^{\mathrm{T}}{}_{\mathrm{A}}$ | $^{\mathrm{T}}\mathrm{_{E}}$ | $\mathtt{T}_{\mathbf{F}}$ | $v_{ m Rmin}$ | V <sub>Rmax</sub> |
|----|-------------|-----|----------------|------------------------------|--------------------------------|------------------------------|---------------------------|---------------|-------------------|
|    |             |     |                |                              |                                |                              |                           | <b>-</b> 4    |                   |
| 2  | 2           | 200 | 1.0            | 0.12                         | 0.5                            | 0.7                          | 2.0                       | <b>-</b> 4    | 4                 |
|    |             |     |                |                              |                                |                              |                           |               |                   |

## g) Turbine Parameters

#### Machine No.1:

$$P_{base} = 335.0$$
 $T_{W} = 1.0$ 
 $T_{S} = 0.015$ 
 $T_{R} = 5.0$ 
 $= 0.04$ 
 $= 0.30$ 
 $\dot{g}_{min} = -0.2$ 
 $\dot{g}_{max} = 0.1$ 
 $g_{min} = 0.0$ 

= 0.85

#### Machine No.2:

 $g_{max}$ 

$$P_{base} = 75.0$$
 $T_{HP} = 0.2$ 
 $T_{IP} = 4.0$ 
 $T_{LP} = 1000.0$ 
 $F_{HP} = 0.62$ 
 $F_{IP} = 0.38$ 
 $F_{IP} = 0.0$ 
 $R = 0.04$ 
 $T_{S} = 0.425$ 
 $s_{min} = 0.59$ 
 $s_{max} = 0.59$ 
 $s_{max} = 0.0$ 
 $s_{max} = 0.74$