Module HAT004 Projet calcul / Projet personnel avance

Accompagnement python: Les bases du langage Python

Session 04: Examen blanc

Ronan Dupont

1 Courbe mystère

Soit la courbe paramétrée donnée par le paramétrage suivant :

Pour tout
$$t \in [0, 4\pi]$$
, $\Gamma(t) = \begin{cases} x(t) = \cos(t) + \sqrt{8}\cos(\frac{t}{2}) \\ y(t) = \sin(t) \end{cases}$ (1)

Question 1 – Vous ferez dans un premier temps un vecteur t de 1000 points.

Question 2 – Sans utiliser de boucle, calculer directement les x et y de Γ .

Question 3 – Tracer la courbe paramétrée de Γ avec la fonction plot. Pour un meilleur rendu, utilisez l'argument axis ('equal').

Question 4 – Bonus : Devinez à quoi correspond cette courbe et essayez de rendre celle-ci plus réaliste avec des couleurs, des points supplémentaires, des traits... Envoyez-moi vos meilleurs dessins!

Question 5 – Bonus : Calculer numériquement la longueur de $\Gamma(t)$ pour $t \in [0, 12.57]$.

Question 6 – Dans un fichier, enregistrer les x et y.

2 Suite de Fibonacci

En mathématiques, la suite de Fibonacci est une suite très classique du fait qu'elle soit liée au nombre d'or φ . Celle-ci est définie par l'équation suivante :

$$F_n = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ F_{n-1} + F_{n-2} & \text{sinon} \end{cases}$$
 (2)

Question 7 – Créer une fonction fib (n) renvoyant les valeurs calculées par la suite de Fibonacci. Vérifiez que fib (10) vous renvoie bien 55.

Astuce: Dans une liste, quand vous voulez ajouter les dernier termes de la liste, vous pouvez faire par exemple: L.append(L[-1]) pour le dernier terme ou bien L.append(L[-2]) pour l'avant dernier.

Question 8 – Créer une liste d'entier N avec des valeurs allant de 0 à 30.

Question 9 – Créer encore une liste qui va parcourir les valeurs de N et calculer les F_n associés.

Question 10 – Tracer F_n en fonction de N. Que remarquez vous?

Question 11 - Bonus : Il a été montré que la série :

$$S = \sum_{n=1}^{\infty} \frac{1}{F_n} \tag{3}$$

est convergente. Quelle est la valeur S de cette série? Bien-sûr, vous ne pourrez pas faire une boucle à l'infini donc choisissez un grand nombre comme 1000.