TD PROGRAMMATION LINÉAIRE, RÉSOLUTION

RO 2008-2009

Exercice 1:

Formes linéaires et canoniques (J.-F. Hêche)

Question 1 - Formuler les programmes linéaires suivants sous formes canonique et standard.

1. Maximiser
$$z = 2x_1 - x_2$$

s.c. $\frac{1}{3}x_1 + x_2 = 2$
 $-2x_1 + 5x_2 \le 7$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

2. Minimiser
$$z = -3x_1 + x_3$$

s.c. $x_1 + \frac{1}{2}x_2 - 3x_3 \ge 2$
 $4x_2 + x_3 = 5$
 x_1 , $x_3 \ge 0$
 x_2 ≤ 0

3. Minimiser
$$z = 2x_1 - 3x_2$$

s.c. $x_2 \ge -3$
 $2x_1 - x_2 = 2$
 $-x_1 + 3x_2 \ge 1$
 $x_1 \ge 0$

Exercice 2:

Linéarisation (J.-F. Hêche)

Question 1 – Formuler les programmes linéaires suivants sous forme canonique.

1. Minimiser
$$z = \max (2x_1 + 3x_2, x_1 - 2x_2 + 4x_3)$$

s.c. $-2x_1 + x_3 = 12$
 $x_1 + 2x_2 \le 5$
 $x_1 , x_2 , x_3 \ge 0$

2. Minimiser
$$z = |x_1 - 2x_3| + |-x_1 + 3x_2 + x_3|$$

s.c. $x_1 - 4x_2 + x_3 = 5$
 $5x_2 - 3x_3 \le 6$
 x_1 , x_2 , $x_3 \ge 0$

3. Minimiser
$$z = |x_1 - 10| + \max(2x_2 - 4, |3x_1 - 4x_3|)$$

s.c. $|x_1| + x_2 \leq 1$
 $\max(-x_1 + x_2 + x_3, x_1 - x_2 - 2x_3) \leq 7$
 $x_1, x_2, x_3 \geq 0$

Exercice 3:

Résolution graphique (J.-F. Hêche) Soit le programme linéaire

Question 1 – Dessiner la région admissible R du problème.

Question 2 – Résoudre le problème graphiquement.

Exercice 4:

Bases (J.-F. Hêche) Soit le système d'équations linéaires Ax = b avec

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad b = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Question 1 – Déterminer toutes les bases du système Ax = b.

Question 2 – Calculer la solution de base associée à chacune des bases trouvées au point précédent et décider lesquelles sont admissibles.

Question 3 – Représenter graphiquement les projections des solutions basiques ainsi que les projections des deux équations du système dans le repère (O, x_1, x_2) .

Exercice 5:

Bases (J.-F. Hêche) On considère le programme linéaire canonique

Question 1 – Représenter son domaine admissible.

Question 2 – Pour chacune des bases qui suivent, identifier dans votre dessin le point correspondant à sa solution de base.

$$B1 = \{x_3, x_4, x_5, x_6\}$$
 $B2 = \{x_1, x_2, x_3, x_5\}$ $B3 = \{x_2, x_3, x_5, x_6\}$ $B4 = \{x_1, x_2, x_5, x_6\}$

Remarque. Les variables x_3 , x_4 , x_5 et x_6 correspondent aux variables d'écart introduites lors de la mise sous forme standard.

Question 3 – En vous aidant de votre dessin, donner le nombre de bases du P.L., son nombre de bases admissibles ainsi que le nombre de points extrêmes du domaine admissible.

Question 4 – Donner toutes les bases optimales du programme linéaire ainsi que toutes les solutions optimales (et leur valeur).

2

Exercice 6:

Simplexe (J.-F. Hêche)

Question 1 – Résoudre le programme linéaire suivant à l'aide de l'algorithme du simplexe :

Spécifier à chaque itération les variables de base et hors base ainsi que le point extrême visité.

Exercice 7:

Simplexe

La méthode du simplexe termine avec le tableau ci-dessous :

		x_1						
z	1	1	0	0	0	0	2	10
$\overline{x_4}$	0	2	0	0	1	1	-1	3
x_2	0	1	1	0	0	2	2	9
x_3	0	2 1 -1	0	1	0	2	1	7

Question 1 – Indiquer la solution optimale du tableau.

Question 2 - Trouver une deuxième solution de base optimale.

Question 3 - Déterminer une autre solution optimale qui n'est pas une solution de base.

Exercice 8:

Simplexe

Question 1 - Résoudre le programme linéaire suivant à l'aide de l'algorithme du simplexe :

Exercice 9:

Simplexe

Question 1 – Résoudre le programme linéaire suivant à l'aide de l'algorithme du simplexe :