Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

# Artificial Intelligence (01CE1702) Lab Manual 24-25

Name: Dalsaniya Jay

ER No.: 92100103336

Calss: 7TC4

92100103336 Batch – 7TC4 B



Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

| Lab | Program                                                                      | Signature | Marks |
|-----|------------------------------------------------------------------------------|-----------|-------|
| 1.  | Write a prolog Program to understand the concept of facts and queries.       |           |       |
| 2.  | Write a prolog program to implement the following:                           |           |       |
|     | a. Factorial of a given number                                               |           |       |
|     | b. Fibonacci of a given number                                               |           |       |
| 3   | Write a Prolog program to perform the following operations of the            |           |       |
|     | list, i) To display the element of the given list, ii) To check given        |           |       |
|     | element is in the list or not, iii) To print the last element of the list,   |           |       |
|     | Iv) To print the sum of the elements of the given list.                      |           |       |
| 4.  | Implement a Family Tree and define the following predicates:                 |           |       |
|     | 1)parent(X,Y)                                                                |           |       |
|     | 2) Father(X,Y)                                                               |           |       |
|     | 3) Mother(X,Y)                                                               |           |       |
|     | 4) Sister(X,Y)                                                               |           |       |
|     | 5)Brother(X,Y)                                                               |           |       |
|     | 6)Grandfather(X,Y)                                                           |           |       |
|     | 7)Grandmother(X,Y)                                                           |           |       |
| 5.  | Assume given a set of facts of the form father(name1,name2) (name1 is the    |           |       |
|     | father of name2)                                                             |           |       |
|     | Define a predicate cousin(X,Y) which holds iff X and Y are cousins.          |           |       |
|     | Define a predicate grandson(X,Y) which holds iff X is a grandson of Y.       |           |       |
|     | Define a predicate descendent(X,Y) which holds iff X is a descendent of Y.   |           |       |
|     | Define a predicate grandparent(X,Y) which holds iff X is a grandparent of Y. |           |       |
|     |                                                                              |           |       |
|     | Consider the following genealogical tree:                                    |           |       |
|     | father(a,b).                                                                 |           |       |
|     | father(a,c).                                                                 |           |       |
|     | father(b,d).                                                                 |           |       |
|     | father(b,e).                                                                 |           |       |
|     | father(c,f).                                                                 |           |       |
|     | Say which answers, and in which order, are generated by your definitions for |           |       |
|     | the following queries in Prolog:                                             |           |       |
|     | ?- cousin(X,Y).                                                              |           |       |
|     | ?- grandson(X,Y).                                                            |           |       |
|     | ?- descendent(X,Y).                                                          |           |       |
|     | ?-grandparent(X,Y).                                                          |           |       |
| 6.  | Write a program to solve Tower of Hanoi problem                              |           |       |
|     |                                                                              |           |       |
| 7.  | Write a program to implement BFS for Water Jug problem/ 8 Puzzle problem     |           |       |
|     | or any Al search problem                                                     |           |       |
| 8.  | Write a program to implement DFS for Water Jug problem/ 8 Puzzle problem     |           |       |
| L   | or any Al search problem                                                     |           |       |
| 9.  | Write a program to implement Single Player Game (Using Heuristic Function)   |           |       |
| 10  | Write a program to Implement A* Algorithm.                                   |           |       |
| 11. | Implement the Mini Max algorithm for game playing                            |           |       |
| 12. | Write a program to solve N-Queens problem                                    |           |       |
| 13  | Develop an NLP application                                                   |           |       |
| 14  | Implement Library for visual representations of text data                    |           |       |
| '   | implement Diolary for Floran representations of tort data                    | 1         | I     |

92100103336 Batch - 7TC4 B



Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

# **Practical 1**: Write a prolog Program to understand the concept of facts and queries.

## **Program:**

parent(john, mary).
parent(john, mike).
parent(susan, mary).
parent(susan, mike).
parent(mary, sophia).
parent(mary, james).
parent(paul, sophia).
parent(paul, james).

male(john).
male(mike).
male(paul).
male(james).

female(susan).
female(mary).

# **Output:**

female(sophia).



92100103336 Batch - 7TC4 B

Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

# **Practical 2 :** Write a prolog program to implement the following: a.Factorial of a given number b.Fibonacci of a given number

# program:

# a) Factorial of a given number

factorial(0, 1). factorial(N, F):-N > 0, N1 is N - 1, factorial(N1, F1), F is N \* F1.

# output:



# b) Fibonacci of a given number

```
fibonacci(0, 0).
fibonacci(1, 1).
fibonacci(N, F):-
N > 1,
N1 is N - 1,
N2 is N - 2,
fibonacci(N1, F1),
fibonacci(N2, F2),
F is F1 + F2.
```

#### output:





Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

- **Practical 3:** Write a Prolog program to perform the following operations of the list,
  - i) To display the element of the given list,
  - ii) To check given element is in the list or not,
  - iii) To print the last element of the list,
  - Iv) To print the sum of the elements of the given list.

# **Program:**

i) To display the element of the given list

```
display_list([]).
display_list([H|T]) :-
    write(H), nl,
    display_list(T).
```

#### output:

```
display_list([1, 2, 3, 4]).

1
2
3
4
true

?- display_list([1, 2, 3, 4]).
```

ii) To check given element is in the list or not

```
element_in_list(X, [X|_]).
element_in_list(X, [\_|T]) :-
element_in_list(X, T).
```

## output:



Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

iii) To print the last element of the list

```
last_element([X], X).
last_element([_|T], X):-
last_element(T, X).
```

## output:



iv) To print the sum of the elements of the given list.

```
sum_list([], 0).
sum_list([H|T], Sum) :-
sum_list(T, TempSum),
Sum is H + TempSum.
```

#### Output:



92100103336 Batch – 7TC4 B



Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

# **Practical 4:** Implement a Family Tree and define the following predicates:

- 1)parent(X,Y)
- 2)Father(X,Y)
- 3)Mother(X,Y)
- 4)Sister(X,Y)
- 5)Brother(X,Y)
- 6)Grandfather(X,Y)
- 7) Grandmother (X, Y)

#### **Program:**

```
parent(john, mary).
parent(john, mike).
parent(susan, mary).
parent(susan, mike).
parent(mary, sophia).
parent(mary, james).
parent(paul, sophia).
parent(paul, james).
male(john).
male(mike).
male(paul).
male(james).
female(susan).
female(mary).
female(sophia).
father(X, Y) := parent(X, Y), male(X).
mother(X, Y) := parent(X, Y), female(X).
sister(X, Y) := parent(Z, X), parent(Z, Y), female(X), X = Y.
brother(X, Y) :- parent(Z, X), parent(Z, Y), male(X), X = Y.
grandfather(X, Y) := parent(X, Z), parent(Z, Y), male(X).
grandmother(X, Y) :- parent(X, Z), parent(Z, Y), female(X).
```

92100103336 Batch - 7TC4 B



Department of Computer Engineering Artificial Intelligence Lab (01CE1702)





Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

**Practical 5:** Assume given a set of facts of the form father(name1,name2) (name1 is the father of name2)

Define a predicate cousin(X,Y) which holds iff X and Y are cousins. Define a predicate grandson(X,Y) which holds iff X is a grandson of Y.

Define a predicate descendent(X,Y) which holds iff X is a descendent of Y. Define a predicate grandparent(X,Y) which holds iff X is a grandparent of Y.

```
Consider the following genealogical tree:
father(a,b).
father(b,d).
father(b,e).
father(c,f).
Say which answers, and in which order, are generated by your definitions for the following queries in Prolog:
?- cousin(X,Y).
?- grandson(X,Y).
?- descendent(X,Y).
?-grandparent(X,Y).
```

#### **Program:**

```
father(a, b).
father(a, c).

father(b, d).
father(b, e).

father(c, f).

cousin(X, Y):-
father(P1, X),
father(P2, Y),

father(GP, P1),
father(GP, P2),
P1 \= P2.

grandson(X, Y):-
father(Y, P),
father(P, X).

descendent(X, Y):-
```

father(Y, X).

92100103336 Batch – 7TC4 B

Department of Computer Engineering Artificial Intelligence Lab (01CE1702)

```
descendent(X, Y) :-
  father(Y, Z),
  descendent(X, Z).

grandparent(X, Y) :-
  father(X, P),
  father(P, Y).
```

#### **Outout:**

