

By @kakashi_copiador

RESUMO DA AULA

CORRELAÇÃO LINEAR

A correlação é usada para indicar a força que mantém unidos dois conjuntos de valores. A correlação linear pode ser:

Definição

Direta ou positiva – quando temos dois fenômenos que variam no mesmo sentido. Se aumentarmos ou diminuirmos um deles, o outro também aumentará ou diminuirá;

Inversa ou negativa – quando temos dois fenômenos que variam em sentido contrário. Se aumentarmos ou diminuirmos um deles, acontecerá o contrário com o outro, no caso, diminuirá ou aumentará;

Inexistente ou nula – quando não existe correlação ou dependência entre os dois fenômenos. Nessa situação, o valor do coeficiente de correlação linear será zero (r=0) ou um valor aproximadamente igual a zero $(r\cong 0)$;

Perfeita – quando os fenômenos se ajustam perfeitamente a uma reta.

Coeficiente de Correlação de Pearson

COEFICIENTE DE CORRELAÇÃO LINEAR DE PEARSON

É adotado para medir o quão forte é a RELAÇÃO linear entre duas VARIÁVEIS.

FÓRMULA

$$r = \frac{\sum_{i=1}^{n} [(X_i - \overline{X}) \times (Y_i - \overline{Y})]}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \times \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

FÓRMULAS ALTERNATIVAS

$$\sum_{i=1}^{n} [(X_i - \overline{X}) \times (Y_i - \overline{Y})] = \sum_{i=1}^{n} (X_i \times Y_i) - n \times \overline{X} \times \overline{Y}$$

$$\sum_{i=1}^{n} [(X_i - \overline{X})^2] = \sum_{i=1}^{n} (X_i^2) - n \times \overline{X}^2$$

$$\sum_{i=1}^{n} [(Y_i - \overline{Y})^2] = \sum_{i=1}^{n} (Y_i^2) - n \times \overline{Y}^2$$

Sobre a Coeficiente de Correlação de Pearson, podemos afirmar que:

- I Pode assumir quaisquer valores entre 1 e -1, ou seja: $-1 \le r \le 1$.
- II Quanto mais próximo r estiver de 0, menor será a relação linear entre as duas variáveis
- III Quanto mais próximo *r* estiver de (1 ou -1), maior será a relação linear entre as duas variáveis.

Propriedades do Coeficiente de Correlação

1º Propriedade

 O coeficiente de correlação não sofre alteração quando uma constante é adicionada a (ou subtraída de) uma variável.

2º Propriedade

• O coeficiente de correlação pode não sofrer alteração ou pode ter seu sinal alterado quando uma variável é multiplicada (ou dividida) por uma constante. Caso as constantes tenham o mesmo sinal, o valor do coeficiente de correlação não será alterado. Por outro lado, se as constantes tiverem sinais contrários, o coeficiente mudará de sinal, mas o valor permanecerá inalterado.

REGRESSÃO LINEAR SIMPLES

REGRESSÃO LINEAR SIMPLES

Calcula a expressão matemática que relaciona Y (variável dependente) em função de X (variável independente). Trata-se da equação que representa uma reta:

$$y = m \cdot x + b$$

- Propriedades

Sobre a Regressão Linear Simples, podemos afirmar que:

- I O coeficiente m é conhecido como taxa de variação ou coeficiente angular da reta.
- II O coeficiente angular é expresso por: $m = \frac{\Delta y}{\Delta x} = \frac{y y_0}{x x_0}$
- III O coeficiente b é conhecido como **coeficiente linear da reta** e determina o ponto em que a reta intercepta o eixo *y*.
- IV Quando a correlação linear não é perfeita, utilizamos a expressão $Y_i = \alpha + \beta X_i + \varepsilon_i$, para determinar a reta de regressão.

Método dos Mínimos Quadrados

MÉTODO DOS MÍNIMOS QUADRADOS

A reta a ser adotada deverá ser aquela que torna mínima a soma dos quadrados das distâncias da reta aos pontos experimentais, medidas no sentido da variação aleatória.

Esse método é empregado na obtenção dos estimadores α e β de um modelo de regressão linear:

$$Y_i = \alpha + \beta X_i + \varepsilon_i.$$

Expressão usada para determinar a reta de regressão é:

$$\widehat{Y}_i = a + bX_i$$

Reta Passando pela Origem

MODELO DE REGRESSÃO QUE PASSA OBRIGATORIAMENTE PELA ORIGEM É:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

$$Y_i = \mathbf{0} + \boldsymbol{\beta} X_i + \boldsymbol{\varepsilon}_i$$

$$Y_i = \beta X_i + \varepsilon_i.$$

ANÁLISE DE VARIÂNCIA DA REGRESSÃO

ANÁLISE DE VARIÂNCIA DA REGRESSÃO

Estratégia para verificar se compensa ou não utilizar um modelo de regressão linear,

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

Observar a redução no resíduo (desvio) quando comparado com um modelo aproximadamente uniforme $Y_i = \mu + \varepsilon_i$.

Testar a hipótese:

$$\begin{cases}
H_0: \beta = 0 \\
H_1: \beta \neq 0
\end{cases}$$

O resultado da análise de variância da regressão é uma tabela que resume várias medidas usadas no teste de hipóteses anterior.

Graus de Liberdade

O número de graus de liberdade do modelo de regressão é:

$$GL_{Modelo} = 2 - 1 = 1$$

O número de graus de liberdade dos resíduos é:

$$GL_{Residuos} = n - 2$$

O número de graus de liberdade total é:

$$GL_{Total} = n - 1$$

Somas de Quadrados

A soma dos quadrados totais é calculada por meio das seguintes fórmulas:

$$SQT = SQM + SQR$$

$$SQT = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

A soma dos quadrados do modelo de regressão é calculada mediante as seguintes fórmulas:

$$SQM = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

$$SQM = b \times \sum_{i=1}^{n} [(X_i - \bar{X}) \times (Y_i - \bar{Y})]$$

$$SQM = b^2 \times \sum_{i=1}^{n} (X_i - \bar{X})^2$$

A soma dos quadrados dos resíduos é calculada pela fórmula:

$$SQR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Coeficiente de Determinação

O coeficiente de determinação é calculado pela fórmula:

$$R^2 = \frac{SQM}{SQT}$$

Em que R é o coeficiente de correlação linear, calculado pela expressão:

$$R = \sqrt{\frac{SQM}{SQT}}$$

O coeficiente de determinação também pode ser escrito da seguinte forma:

$$R^2 = \frac{SQM}{SQT} = \frac{SQT - SQR}{SQT} = 1 - \frac{SQR}{SQT}$$

Coeficiente de Determinação Ajustado

É obtida pela divisão de SQR e SQT pelos respectivos graus de liberdade:

$$\overline{R^2} = 1 - \frac{SQR}{(n-2)}$$

$$\frac{SQR}{(n-1)}$$

A relação entre o coeficiente de determinação ajustado ($\overline{R^2}$) e o coeficiente de determinação tradicional (R^2) é dada por:

$$\overline{R^2} = 1 - (1 - R^2) \times \frac{(n-1)}{(n-2)}$$

Quadrados Médios

Quadrado médio do **modelo (QMM)**: $QMM = \frac{SQM}{1}$

Quadrado médio dos **resíduos (QMR)**: $QMR = \frac{SQR}{n-2}$

Quadrado médio **total (QMT)**: $QMT = \frac{SQT}{n-1}$

Estatística F (Razão F)

Estatística F (ou razão F): $F^* = \frac{QMM}{QMR}$

Se $F^* > F_{critico}$, podemos rejeitar a hipótese nula;

Se $F^* < F_{crítico}$, não podemos rejeitar a hipótese nula.

Tabela de Análise de Variância da Regressão

Fonte de Variação	Graus de Liberdade	Soma dos Quadrados	Quadrados Médios	Estatística F (Razão F)
Modelo	1	SQM	$QMM = \frac{SQM}{1}$	$F^* = \frac{QMM}{QMR}$
Resíduos	n-2	SQR	$QMR = \frac{SQR}{n-2}$	
Total	n-1	SQT	$QMT = \frac{SQT}{n-1}$	