Tres o más réplicas biológicas

Para llevar a casa

- Haced réplicas técnicas (¡háh!)
- Las muestras control no son más simples, así que no uses menos muestras en ese grupo
- Planifica con tiempo. Determina bien qué quieres comparar y qué necesitarás.
- Idealmente iguala el número de sujetos en cada grupo
- Cuidado al analizar grupos pequeños. No vale comparar 20000 genes si tienes 5 muestras.
- Evita que el efecto batch afecte sólo a un grupo.
- Normaliza todo, batches incluidos, si puedes
- Corrige el p-valor
- No te lances, revisa los datos, cómo se comportan
- Prueba, cambia, revisa, tunea.
- Practica Python!

	Goal	Protocol	Quality control	Normalization	Analyses
Bulk RNA-seq	Measure the average gene expression across the population of cells in a sample To identify differences between sample conditions	RNA is extracted from all cells in the sample Reverse transcription converts RNA to cDNA, facilitates ligation of sequencing adaptors Amplification	GC content, presence of adaptors, overrepresented k-mers, duplicated reads Percentage of reads that map to reference Reproducibility between replicates	Batch effect Between-sample variability: sequencing depth Quantile normalization, spike-ins Within-sample variability: feature length, library size effects RPKM, FPKM, TPM	Estimate gene and transcript expression Differential expression analysis Alternative splicing
scRNA- seq	Measure the gene expression of individual cells in a sample To identify differences between cell types/states	 RNA is extracted from isolated cells, labeled with cell specific identifier UMIs, spike-ins often included, to account for higher levels of noise Reverse transcription, amplification similar to bulk protocol 	 Reads, number of genes per cell Percentage of reads that map to spike-ins (if used), percentage of reads that map to mitochondria QC metrics used in bulk RNA-seq are also examined 	Batch effect and within-sample variability are corrected for similarly to bulk RNA-seq Between-sample variability methods must additionally account for capture efficiency and dropout sources of noise	 Dimensionality reduction Identify cell subpopulations Differential expression Pseudotime/ trajectory analysis

tissue Bladder Kidney Lung Marrow Spleen Tongue
Heart Liver Mammary Muscle Thymus Trachea

