Homework 1.

- The file name of your homework (in PDF) should be in the format: "學號-作業編號.pdf". For example: 00967999-hw1.pdf
- Please submit your homework to Tronclass before 23:59, October 18 (Friday),
 2024.

(可以用 word 檔寫完後轉成 pdf 檔上傳,或是手寫後拍照後存成 pdf 檔上傳)

- 1. (5%) Which of these sentences are propositions? What are the truth values of those that are propositions?
 - (a) The moon is made of green cheese.

```
(Sol.) Yes, F
```

(b) $2^n \ge 100$.

(Sol.) No

(c) 2+3=5.

(Sol.) Yes, T

(d) x+2=11.

(Sol.) No

(e) Answer this question.

(Sol.) No

- 2. (5%) Determine whether each of these conditional statements is true or false.
 - (a) If 1+1=2, then dogs can fly.

(Sol.) F

(b) If 1+1=2, then 2+2=5.

(Sol.) F

(c) If 1+1=3, then 2+2=5.

(Sol.) T

(d) If 2+2=4, then 1+2=3.

(Sol.) T

(e) If 1+1=3, then 2+2=4.

(Sol.) T

3. (10%) (1) Let p and q be the propositions

p: You drive over 65 miles per hour.

q: You get a speeding ticket.

Write these propositions using p and q and logical connectives (including negations).

(a) You will get a speeding ticket if you drive over 65 miles per hour.

(Sol.)
$$p \rightarrow q$$

(b) Driving over 65 miles per hour is sufficient for getting a speeding ticket.

(Sol.)
$$p \rightarrow q$$

(c) Whenever you get a speeding ticket, you are driving over 65 miles per hour.

(Sol.)
$$q \rightarrow p$$

(d) You do not drive over 65 miles per hour.

(Sol.)
$$\neg p$$

(e) You drive over 65 miles per hour, but you do not get a speeding tick.

(Sol.)
$$p \land \neg q$$

(2) Let p, q, and r be the propositions

p: You get an A on the final exam.

q: You do every exercise in this book.

r: You get an A in this class.

Write these propositions using p, q, and r and logical connectives (including negations).

(a) You get an A on the final, you do every exercise in this book, and you get an A in this class.

(Sol.)
$$p \wedge q \wedge r$$

(b) To get an A in this class, it is necessary for you to get an A on the final.

(Sol.)
$$r \rightarrow p$$

(c) You get an A in this class, but you do not do every exercise in this book.

(Sol.)
$$r \land \neg q$$

(d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.

(Sol.)
$$p \land \neg q \land r$$

(e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.

(Sol.)
$$(p \land q) \rightarrow r$$

4. (10%) Show that each of these conditional statements is a tautology by <u>using truth</u> <u>tables</u>.

(a)
$$(p \land q) \rightarrow p$$

(Sol.)

p	q	$p \wedge q$	$(p \land q) \rightarrow p$
T	T	T	T

T	F	F	T
F	T	F	Т
F	F	F	Т

(b)
$$\neg p \rightarrow (p \rightarrow q)$$

(Sol.)

p	q	$\neg p$	$p \rightarrow q$	$\neg p \rightarrow (p \rightarrow q)$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	Т

(c)
$$(p \land q) \rightarrow (p \rightarrow q)$$

(Sol.)

p	q	$p \wedge q$	$p \rightarrow q$	$(p \land q) \to (p \to q)$
T	T	T	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	Т

(d)
$$[\neg p \land (p \lor q)] \rightarrow q$$

(Sol.)

p)	q	$\neg p$	$p \lor q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \to q$
Т	Γ	T	F	T	F	T
Т	Γ	F	F	T	F	T
F	7	T	T	T	Т	T
F	7	F	T	F	F	Т

$$(e) \quad [(p \to q) \land (q \to r)] \to (p \to r)$$

(Sol.)

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	Т	Т	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	Т	T	T
F	F	F	T	T	T	Т	T

5. (10%) Show that each conditional statement is a tautology by **applying a chain of logical identities**. (Do not use truth tables.)

(a)
$$(p \land q) \rightarrow p$$

$$(\operatorname{Sol.})\ (p \land q) \rightarrow p \equiv \neg (p \land q) \lor p \equiv \ \neg p \lor \ \neg q \lor p \equiv (p \lor \ \neg p) \lor \ \neg q \equiv \mathbf{T} \lor$$

$$\neg q \equiv \mathbf{T}$$

(b)
$$\neg p \rightarrow (p \rightarrow q)$$

(Sol.)
$$\neg p \rightarrow (p \rightarrow q) \equiv p \lor (p \rightarrow q) \equiv p \lor (\neg p \lor q) \equiv (p \lor \neg p) \lor q \equiv \mathbf{T} \lor q \equiv \mathbf{T}$$

(c)
$$(p \land q) \rightarrow (p \rightarrow q)$$

$$(Sol.) (p \land q) \rightarrow (p \rightarrow q) \equiv \neg (p \land q) \lor (\neg p \lor q) \equiv \neg p \lor \neg q \lor \neg p \lor q \equiv (\neg p) \lor \neg q \lor \neg$$

$$\vee \neg p) \vee (\neg q \vee q) \equiv \neg p \vee \mathbf{T} \equiv \mathbf{T}$$

- (d) $[\neg p \land (p \lor q)] \rightarrow q$ (Sol.) $[\neg p \land (p \lor q)] \rightarrow q \equiv \neg [\neg p \land (p \lor q)] \lor q \equiv p \lor \neg (p \lor q)] \lor q \equiv (p \lor q)$ $\lor \neg (p \lor q) \equiv \mathbf{T}$
- (e) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ $(\text{Sol.}) [(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r) \equiv \neg [(p \rightarrow q) \land (q \rightarrow r)] \lor (p \rightarrow r) \equiv \neg (p \rightarrow q) \lor \neg (q \rightarrow r) \lor (p \rightarrow r) \equiv \neg (\neg p \lor q) \lor \neg (\neg q \lor r) \lor (\neg p \lor r) \equiv (p \land \neg q) \lor (q \land \neg r) \lor (\neg p \lor r) \equiv [\neg p \lor (p \land \neg q)] \lor [r \lor (q \land \neg r)] \equiv [(\neg p \lor p) \land (\neg p \lor \neg q)] \lor [(r \lor q) \land (r \lor \neg r)] \equiv [\mathbf{T} \land (\neg p \lor \neg q)] \lor [(r \lor q) \land \mathbf{T}] \equiv (\neg p \lor \neg q) \lor (r \lor q) \equiv (\neg p \lor r) \lor (\neg q \lor q) \equiv (\neg p \lor r) \lor \mathbf{T} \equiv \mathbf{T}$
- 6. (10%) (1) Let P(x) be the statement " $x = x^2$." If the domain consists of the integers, what are these truth values?
 - (a) P(-1)

(Sol.) F

(b) $\exists x P(x)$

(Sol.) T

(c) $\forall x P(x)$

(Sol.) F

- (2) Let C(x) be the statement "x has a cat," let D(x) be the statement "x has a dog," and let F(x) be the statement "x has a ferret." Express each of these statements in terms of C(x), D(x), F(x), quantifiers, and logical connectives. Let the domain consist of all students in your class.
 - (a) Some student in your class has a cat and a ferret, but not a dog. (Sol.) $\exists x (C(x) \land F(x) \land \neg D(x))$
- (b) No student in your class has a cat, a dog, and a ferret.

(Sol.)
$$\neg \exists x (C(x) \land D(x) \land F(x))$$

7. (10%) (1) Use rules of inference to show that if $\forall x \ (P(x) \lor Q(x)), \ \forall x \ (\neg Q(x) \lor S(x)), \ \forall x \ (R(x) \rightarrow \neg S(x)), \ \text{and} \ \exists x \ \neg P(x) \ \text{are true, then} \ \exists x \ \neg R(x) \ \text{is true.}$ (Sol.)

Step	Reason
1. $\exists x \neg P(x)$	Premise
\ \ /	
$2. \neg P(c)$	Existential instantiation from (1)
3. $\forall x (P(x) \lor Q(x))$	Premise
$4. P(c) \lor Q(c)$	Universal instantiation from (3)
5. <i>Q</i> (<i>c</i>)	Disjunctive syllogism from (4) and (2)
6. $\forall x (\neg Q(x) \lor S(x))$	Premise
7. $\neg Q(c) \lor S(c)$	Universal instantiation from (6)
8. <i>S</i> (<i>c</i>)	Disjunctive syllogism from (5) and (7)
9. $\forall x (R(x) \rightarrow \neg S(x))$	Premise
10. $R(c) \rightarrow \neg S(c)$	Universal instantiation from (9)
11. $\neg R(c)$	Modus tollens from (8) and (10)
12. $\exists x \neg R(x)$	Existential generalization from
	(11)

(2) Use resolution to show the hypotheses "Allen is a bad boy or Hillary is a good girl" and "Allen is a good boy or David is happy" imply the conclusion "Hillary is a good girl or David is happy.

(Sol.) Let **p** be "Allen is a good boy," let **q** be "Hillary is a good girl," and let **l** be "David is happy."

Step	Reason
1. ¬ p∨ / q	Premise
2. P V d	Premise
3. a v dr	Resolution from (1) and (2)

- 8. (30%) Let P(x) be "x is perfect"; let F(x) be "x is your friend"; and let the domain be all people. Translate each of these statements into logical expressions using predicates, quantifiers, and logical connectives.
 - (a) No one is perfect.

(Sol.)
$$\forall x \neg P(x)$$

(b) Not everyone is perfect.

(Sol.)
$$\neg \forall x P(x)$$

(c) All your friends are perfect.

(Sol.)
$$\forall x (F(x) \rightarrow P(x))$$

(d) At least one of your friends is perfect.

(Sol.)
$$\exists x (F(x) \land P(x))$$

(e) Everyone is your friend and is perfect.

(Sol.)
$$\forall x (F(x) \land P(x))$$
 (or $(\forall x F(x)) \land (\forall x P(x))$)

(f) Not everybody is your friend or someone is not perfect.

(Sol.)
$$(\neg \forall x F(x)) \lor (\exists x \neg P(x))$$

- 9. (10%) Show that if n is an integer and n^3+5 is odd, then n is even using
 - (a) a proof by contraposition.
 - (Sol.) Assume that n is odd, by definition, n = 2k + 1 for some integer k. Then $n^3 + 5 = 2(4k^3 + 6k^2 + 3k + 3)$. By definition, $n^3 + 5$ is two times some integer $(4k^3 + 6k^2 + 3k + 3)$, it is even.
 - (b) a proof by contradiction.
 - (Sol.) Suppose " $n^3 + 5$ is odd then n is even" is false. Which means " $n^3 + 5$ is odd and n is odd." Because n is odd and the product of two odd numbers is odd, it follows that n^2 is odd and then n^3 is odd, too. This means that $n^3 + 5$ is even. So, the supposition that " $n^3 + 5$ is odd and n is odd." is false. Therefore, " $n^3 + 5$ is odd then n is even" is true.