МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине « Информатика »

Тема: Машина Тьюринга.

Студентка гр. 2384	 Валеева А. А.
Преподаватель	 Шевская Н. В

Санкт-Петербург 2022

Цель работы.

Целью данной лабораторной работы является изучение работы Машины Тьюринга и разработка программы для неё.

Задание.

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a,b,c\}.$

	а	C	C	а	h	C	h	9	h
	"			_ a				ا	

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' — последний в строке, то удалить его. Если первый встретившийся символ 'b' — предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

		a	c	c	a	b	a	b	a	a

Алфавит:

- a
- b
- c
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчете предоставьте таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'b'.

Выполнение работы.

Начальное сосятоние: q start.

Далее в q0 проверяется наличие символа b, если его нет — тогда переходим в состояния q_find_1 и q_del_1 для удаления первого символа слова.

Частные случаи (символ b) последний или предпоследний рассмотрены в состоянии q_special. После символа b следующие два символа (которые следует удалить) зануляем и смотрим следующие символы. Если находим символ b, то зануляем и переходим в состояние qbb, от которого в q_replace_b, где меняем первый ноль на b. То же самое проделываем, если встречен символ а или c (qaa + q_replace_a или qcc+q_replace_c). С помощью состония q5 переносим символы вправо на место нулей. В конце меняем нули на пробелы с помощью состояния q_replace_0, Конечное состояние q_end.

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные	Выходны	Комментарии
	данные	е данные	
1.	aaa	aa	Отсутствие буквы b.
2.	aabbbcacacacac	aabaaaaaaa	Удаление из середины
	c	aabcacacacac	предложения.
3.	aab	aa	Буква b в конце слова.
4.	aaba	1	Буква в
		aab	предпоследняя.

Выводы.

На практическом примере была изучена Машина Тьюринга, а также написана программа для неё.

приложение а

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Valeeva_Alina_lb3.py

```
R, N, L = 1, 0, -1
     table = {
         # начальное состояние
          'q start': {
             ' ': [' ', R, 'q_start'],
             'a': ['a', N, 'q\overline{0}'],
              'c': ['c', N, 'q0'],
              'b': ['b', N, 'q0']
         # проверяется, есть ли символ b
         'q0':{
             ' ': [' ', L, 'q find 1' ], # прописать удаление первого
символа
              'a': ['a', R, 'q0'],
              'c': ['c', R, 'q0'],
              'b': ['b', R, 'q1']
         },
         # поиск первого символа (если нет b)
         'q find 1': {
             'a': ['a', L, 'q find 1'],
              'b': ['b', L, 'q_find_1'],
              'c': ['c', L, 'q find 1'],
              ' ': [' ', R, 'q del 1']
         },
         # удаление первого символа (если нет b)
         'q_del 1': {
             'a': [' ', N, 'q end'],
             'b': [' ', N, 'q_end'],
              'c': [' ', N, 'q end']
         # что делать, когда встретили символ b
         'q1': {
             'a': ['0', R, 'q2'],
              'b': ['0', R, 'q2'],
              'c': ['0', R, 'q2'],
              ' ': [' ', L, 'q special']
         # второй символ после b
          'q2': {
              'a': ['0', R, 'q3'],
             'b': ['0', R, 'q3'],
             'c': ['0', R, 'q3'],
              ' ': [' ', L, 'q special']
         },
         # частные случаи расположения b
         'q special': {
             '0': [' ', N, 'q_end'], # если символ b предпоследний
              'b': [' ', N, 'q end'], # если символ b последний
         # нашли символ после двух удаляемых
         'q3': {
             'b': ['0', L, 'qbb'],
             'a': ['0', L, 'qaa'],
```

```
'c': ['0', L, 'qcc'],
              ' ': [' ', L, 'q replace_0']
          },
          # поиск символов после двух удаляемых
          'q5': {
              '0': ['0', R, 'q5'],
              'b': ['0', L, 'qbb'],
              'a': ['0', L, 'qaa'],
              'c': ['0', L, 'qcc'],
              ' ': [' ', L, 'q replace 0']
          },
          # символы, замененные на 0 удаляем, пока не дойдем до конца
слова
          'q replace 0': {
              '0': [' ', L, 'q_replace_0'],
              'a': ['a', N, 'q end'],
              'b': ['b', N, 'q_end'],
              'c': ['c', N, 'q end']
         },
          # если нашли b
          'abb':{
              '0': ['0', L, 'qbb'],
              'b': ['b', R, 'q_replace_b'],
              'a': ['a', R, 'q replace b'],
              'c': ['c', R, 'q replace b']
         },
          # замена на b
          'q_replace b': {
             '0': ['b', R, 'q5']
         },
          # если нашли с
          'qcc': {
              '0': ['0', L, 'qcc'],
              'a': ['a', R, 'q replace c'],
              'b': ['b', R, 'q_replace_c'],
'c': ['c', R, 'q_replace_c']
         },
          # замена на с
          'q replace c':{
             '0': ['c', R, 'q5']
         },
          # если нашли а
          'qaa': {
              '0': ['0', L, 'qaa'],
              'a': ['a', R, 'q_replace_a'],
              'b': ['b', R, 'q replace a'],
              'c': ['c', R, 'q replace a']
         },
         # замена на а
          'q replace a': {
             '0': ['a', R, 'q5']
         }
     }
     word = list(input())
     state = 'q_start'
     index = 0
     while state != 'q_end':
         symbol, i, state = table[state][word[index]]
         word[index] = symbol
```

```
index += i
print(*word, sep = '')
```

Пример и состояния:

До: aabcabc После: aabbc

Состояния: q_start q0 q0 q0 q1 q2 q3 qbb qbb qbb q_replace_b q5 q5 q5 qcc qcc qcc qceqceqt q5 q5 q5 q_replace_0 q_replace_0 q_replace_0 q_end