# Homework 3 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday September 12

#### Problem 1

## A geometric application of Turán's Theorem.

Let  $S \subseteq \mathbb{R}^2$  with d the usual Euclidean distance. The *diameter* of S is given by

$$d(S) = \sup\{d(x, y) \colon x, y \in S\}.$$

Assume now  $S = \{x_1, x_2, ..., x_n\}$  and  $d(S) \le 1$ . Show that the maximum number of pairs of points x, y in S with  $d(x, y) > 1/\sqrt{2}$  is  $\lfloor n^2/3 \rfloor$ .

Show further that this bound is sharp by exhibiting, for each n, a set of diameter 1 with exactly  $\lfloor n^2/3 \rfloor$  pairs of points at distance  $> 1/\sqrt{2}$ .

*Solution.* Define a graph on  $\{x_1, \ldots, x_n\}$  by putting

$$\{x_i, x_j\} \in E \iff d(x_i, x_j) > 1/\sqrt{2}.$$

We show that this graph does not contain a 4-clique, which implies by Turán's Theorem that  $|E| \le n^2/3$ , and hence that at most  $\lfloor n^2/3 \rfloor$  pairs of points have distance  $> 1/\sqrt{2}$ .

Assume for a contradiction  $x_i, x_j, x_k, x_l \in S$  form a 4-clique. It is not hard to see that three of the points, say  $x_i, x_j, x_k$  must form an angle of at least 90°. This implies

$$d(x_i,x_k) \geq \sqrt{d(x_i,x_j)^2 + d(x_j,x_k)^2} > \sqrt{(1/\sqrt{2})^2 + (1/\sqrt{2})^2} = 1,$$

which contradicts the assumption  $d(S) \leq 1$ .

From Bonday and Murty, Graph Theory, 2008:

One can construct a set  $\{x_1, x_2, ..., x_n\}$  of diameter 1 in which exactly  $\lfloor n^2/3 \rfloor$  pairs of points at distance  $> 1/\sqrt{2}$  as follows:

Choose r such that  $0 < r < (1-1/\sqrt{2})/4$  and draw three circles of radius r whose centres are at distance 1-2r from another. Set  $p=\lfloor n/3\rfloor$ . Place points  $x_1,\ldots,x_p$  in one circle, points  $x_{p+1},\ldots,x_{2p}$  in another, and  $x_{2p+1},\ldots,x_n$  in the third.



### Problem 2

## An Anti-Ramsey Theorem.

The infinite Ramsey Theorem says that, for any  $p, r \ge 1$ , if we color the set  $[\mathbb{N}]^p$  with r colors, then there exists an infinite  $H \subseteq \mathbb{N}$  so that the coloring is monochromatic on  $[H]^p$ .

Perhaps a bit ironically, one can use Ramsey's Theorem to prove the following "Anti"-Ramsey-Theorem:

Let  $p \ge 1$ ,  $f : [\mathbb{N}]^p \to \mathbb{N}$ . Further assume there is a number  $M \in \mathbb{N}$  so that for each  $i \in \mathbb{N}$ ,  $|\{x \in [\mathbb{N}]^p : f(x) = i\}| \le M$ . Show that there exists an infinite  $H \subseteq \mathbb{N}$  such that f is one-one on  $[H]^p$ .

(*Hint*: Enumerate all elements of  $[\mathbb{N}]^p$ . (This is a countable set!) Define a coloring on  $[\mathbb{N}]^p$  that measures how many predecessors of  $\{x_1, \ldots, x_p\} \in [\mathbb{N}]^p$  have the same color as  $\{x_1, \ldots, x_p\}$ . Use Ramsey's Theorem for this coloring.)

*Solution.* Let  $z_1, z_2, z_3, ...$  be an enumeration of  $[\mathbb{N}]^p$ . Define a coloring on  $[\mathbb{N}]^p$  by

$$c(z_i) = |\{j < i : f(z_i) = f(z_i)\}|.$$

By the assumption on f, this is an M-coloring of  $[\mathbb{N}]^p$ . The infinite Ramsey Theorem applied to c gives us an infinite homogeneous subset H of  $\mathbb{N}$ . For this homogeneous set H, no two distinct elements  $z_i, z_j \in [H]^p$  can have the same f-value: either j < i, in which case  $c(z_i) < c(z_i)$ , or i < j, in which case  $c(z_i) < c(z_j)$ .