

Course > Week 8... > Compr... > Quiz 8

Quiz 8

Problem 1

1/1 point (graded)

Clustering refers to which of the following?

Grouping similar data points together
Assigning data points to some mean value
Excluding outliers from the data set
Finding commonalities between groups of data points
✓
Submit

Problem 2

1/1 point (graded)

When does the k-means algorithm terminate?

igcup After n iterations, where n is defined by the user	
After the average distance from each point to its mean is minimized	

After no additional updates are made in grouping data points

After each point has been assigned to a mean value
✓
Submit
Problem 3
1/1 point (graded) What does the value k represent in the k -means algorithm?
The number of iterations that the algorithm will run
The number of clusters we want our solution to have
The number of data points that will be clustered
The number of data points that can be assigned to each cluster
✓
Submit
Problem 4
1/1 point (graded) Suppose we use clustering to come up with a representation for images. If there are k clusters, each image is represented by first extracting a large collection of image patches from it, and then using these to map the image to a k -dimensional vector. What is the i'th coordinate of this vector?
The number of image patches that were associated with the i'th cluster
The fraction of image patches that were associated with the i'th cluster
The i'th coordinate of the i'th cluster center

\bigcirc A cumulative sum, over all k -means iterations, of the number of image patches associated with the i'th cluster
Submit
Problem 5 1/1 point (graded) True or false: in the streaming model of computation, the dataset used for clustering is required to be small enough to fit in main memory.
True
False
Problem 6
1/1 point (graded) The EM algorithm stands for expectation maximization algorithm and it will find what kind of solution?
Local maximum
Global maximum
✓
Submit
Problem 7

1/1 point (graded)

Which of the following values are updated with each iteration of the EM algorithm?

lacksquare number of clusters, k
$ lap{igspace}$ cluster mixing weights, i.e. π_j
$lacksquare$ cluster means, i.e. μ_j
$lacksquare$ cluster covariance matrices, i.e. Σ_j
✓
Submit

Problem 8

1/1 point (graded)

True or false: Using the single linkage algorithm, the tree is built in a top down manner by first grouping all of the data points together, then dividing the data points into two or more clusters, and then further subdividing those clusters.

Problem 9

1/1 point (graded)

How does the complete linkage algorithm differ from the single linkage algorithm?

Complete linkage algorithm can only group up to two clusters together while single linkage algorithm can group multiple clusters
Complete linkage generates fewer clusters than single linkage
Complete linkage merges clusters based on maximum distance (between those clusters) while single linkage merges clusters based on minimum distance
Complete linkage builds the tree in a bottom up manner, while single linkage builds the tree in a top down manner
✓
Submit

© All Rights Reserved