Email training, N4 October 2-8

Problem 4.1. Let a, b, c are solutions of equation $x^3 + x^2 - 3x - 1 = 0$. Construct an equatile which roots are a + 1, b + 1 and c + 1.

Problem 4.2. Let a, b and c are pairwise different numbers. Solve the system of equations

$$\begin{cases} z + ay + a^2x + a^3 = 0 \\ z + by + b^2x + b^3 = 0 \\ z + cy + c^2x + c^3 = 0. \end{cases}$$

Problem 4.3. Solve equation in integers

$$x! + 13 = y^2$$
.

Problem 4.4. Let numbers x_1, x_2, \ldots, x_n are given and each of them is equal either +1 or -1. Prove that if

$$x_1x_2 + x_2x_3 + \ldots + x_nx_1 = 0$$

then n is divisible by 4.

Problem 4.5. In the cells of infinite grid are written positive integers such, that each number is equal to the arithmetical mean of the 4 neighbor numbers. Prove that all numbers are equal.

Problem 4.6. Let 10 pairwise different numbers are written on the board. Ali writes on his paper the square of difference $((a-b)^2)$ for all possible pairs, and Bob writes on his paper the absolute value of difference of squares $(|a^2-b^2|)$ for all possible pairs. May it happen that Ali and Bob have the same collection of numbers?

Problem 4.7. In triangle ABC, $\angle A = 96^{\circ}$. Extend BC to an arbitrary point D. The angle bisectors of angle ABC and ACD intersect at A_1 , and the angle bisectors of A_1BC and A_1CD intersect at A_2 , and so on. The angle bisectors of A_4BC and A_4CD intersect at A_5 . Find the size of $\angle A_5$ in degrees.

Problem 4.8. Let ABCD is a parallelogram. A point M is found on the side AB or its extension such that $\angle MAD = \angle AMO$ where O is the point of intersection of the diagonals of the parallelogram. Prove that MD = MC.

Solution submission deadline October 8, 2022