Logistics

- Project milestone 1
 - Due Oct 15 (Next Friday)
 - Initial literature survey (know what other works are out there)
 - A plan on what you want to do for the remaining of the semester
 - Formalize your research question and approaches, e.g.,
 - Theory/simulation project: formalize your models
 - Data-analysis project: figure out where and how to get data and what you plan to do with it
 - Experiment/application project: have a prototype design and an evaluation plan
 - Include a timeline (weekly or biweekly) on what you plan to do
 - Nov 2: Midterm project pitch and discussion
 - Nov 5: Milestone 2 report

Logistics

- Assignment 3:
 - Due: Oct 13 (Wednesday)
 - Extended to Oct 18 (Monday) in observance of fall break
- Office hours
 - I have blocked time till 6pm after each lecture
 - Will stay for questions and then go back to my office (McKelvey 2010A)

Logistics: Peer Reviews

- For each of the student presentations, please fill in the peer review form.
 - The link to the form will be posted on the course website before the lecture

- Please try to submit the form by 6pm.
- Please be polite. List positives and points to improve. Be constructive.
- The feedback will be anonymous to the presenters but not anonymous to CJ.

Switch Over to Presenters

Lecture 11
Additional Discussion for DARPA Network Challenge:
Incentives and Learning in Networks

Instructor: Chien-Ju (CJ) Ho

The Small-World Experiment [Stanley Milgram, 1967]

 How many hops does it take to deliver a mail from a person in Nebraska/Kansas to a person in Massachusetts?

 A person can only pass the mail to someone she/he knows in a first-name basis.

- Average: Around 5.5~6 hops
 - Six degrees of separation

There are criticisms on the methodology, but the results are still very impressive

Small-World Networks [Watts and Strogatz, Nature 1998]

- Two characteristics
 - People form "cliques" (my friends are usually my friends' friends)
 - There are some random links

• "One of the models" that explain the small world phenomenon

Another Social Network Model

- Preferential Attachments (Barabási-Albert Model)
 - People join the network on by one
 - Attach (form edges) to existing members
 - Attach probability proportional to edges

• Explains the rich-gets-richer effect

Friendship Paradox [Scott L. Feld. 1991]

- On average, do your friends have more friends than you have?
 - Yes, if we take the average over everyone in the network.

Average # friends:
$$\frac{7*1+7}{8} = 1.75$$

Average # friends a person's friends have:
$$\frac{7*7+1}{8} = 6.25$$

- Local observations could be distorted by the network structure
 - One's friends are happier, wealthier, more popular...

Utilizing the Power of Networks

• Given we can reach most people in a small number of hops, can we utilize the people in networks to help with tasks.

- Not that trivial
 - A replication of the small world experiment using emails has faced a high-level of drop-out rate since people are not motivated in attending.
- Need proper incentives:
 - See more in the seminal paper of query incentive networks

Query Incentive Networks [Kleinberg and Raghavan, 2005]

Formalize the theoretical discussion on incentives in networks

• Successful example: DARPA network challenge

Generalize the Results from DARPA Network Challenge

- DARPA shredder challenge, 2011
 - Goal: Piece together the information in shredded paper

- First team to complete 5 puzzles win \$50,000
- Duration: October 27, 2011 to December 4, 2011

Generalize the Results from DARPA Network Challenge

• UCSD team tried the same method as MIT team did in network challenge

"However, the crowd was hopeless against a determined attacker. Before the first attack, our progress on the fourth puzzle had combined 39,299 moves by 342 users over more than 38 hours. Destroying all this progress required just 416 moves by one attacker in about an hour."

"creation took 100 times as many moves and about 40 times longer than destruction."

- Solved 3 puzzles in 5 days
- No progress after that
 - Too many sabotage attempts to ruin their results
 - Designing mechanisms robust to adversarial attacks is important but non-trivial

Utilizing the Power of Networks

- Influence maximization [Who should we start to ask questions?]
 - You can send products to K people to try on
 - Assume people who try the product will tell their neighbors with some probability
 - Who should you choose to send the products maximize the expected number of people knowing your product?

Generally a NP-hard question.

There exists efficient approximation algorithms, if you know the network structure.

What if you don't know the network structure?

Learning and sampling

Utilizing the Power of Networks

• Al for social good: Taking interventions to prevent HIV for homelessness youth [Wilder et al. 2021]

- Procedure
 - Recruit "peer leaders" in drop-in centers
 - Train the leaders and have them help disseminate the information
 - Adapt techniques from influence maximization to maximize the information spread

Help reduce 31% chance of risk behavior

Other Challenges/Opportunities of Networks

• Network could create biases in data collection [Saveski et al. 2017]

Neighbors might have similar opinions
Break the common "independence" assumption

Opinion formation: Human opinions might be influenced by networks

High School Dating (Bearman, Moody, and Stovel, 2004) (Image by Mark Newman)

Corporate E-Mail Communication (Adamic and Adar, 2005)

Trails of Flickr Users in Manhattan (Crandall et al. 2009)

Prediction Market for the 2008 U.S. Presidential Election (Iowa Electonic Markets, 2008)

Networks, Crowds, and Markets: Reasoning About a Highly Connected World

By David Easley and Jon Kleinberg

https://www.cs.cornell.edu/home/kleinber/networks-book/