CS5489 - Machine Learning

Lecture 4c - Classification Summary

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Nonlinear classifiers
- 2. Kernel trick and kernel SVM
- 3. Ensemble Methods Boosting, Random Forests
- 4. Classification Summary

Feature Pre-processing

- Some classifiers, such as SVM and LR, are sensitive to the scale of the feature values.
 - feature dimensions with larger values may dominate the objective function.
- Common practice is to standardize or normalize each feature dimension before learning the classifier.
 - Two Methods...
- Method 1: scale each feature dimension so the mean is 0 and variance is 1.
 - $\tilde{x}_d = \frac{1}{8}(x_d m)$
 - s is the standard deviation of feature values.
 - m is the mean of the feature values.
- NOTE: the parameters for scaling the features should be estimated from the training set!
 - same scaling is applied to the test set.

```
In [5]: # using the iris data
    scaler = preprocessing.StandardScaler() # make scaling object
    trainXn = scaler.fit_transform(trainX) # use training data to fit scaling parameters
    testXn = scaler.transform(testX) # apply scaling to test data
In [7]: nfig1
```


- Method 2: scale features to a fixed range, -1 to 1.
 - $\tilde{x}_d = 2*(x_d min)/(max min) 1$
 - max and min are the maximum and minimum features values.

```
In [8]:
             # using the iris data
             scaler = preprocessing.MinMaxScaler(feature range=(-1,1))
                                                                                # make scaling object
             trainXn = scaler.fit_transform(trainX) # use training data to fit scaling parameters
                                                          # apply scaling to test data
             testXn = scaler.transform(testX)
In [10]:
             nfig2
                           unnormalized features
                                                                     normalized features [-1,1]
Out[10]:
               4.5
                                                          1.00
                                                          0.75
               4.0
                                                          0.50
               3.5
            sepal width 0.8
                                                          0.25
                                                          0.00
                                                         -0.25
               2.0
                                                         -0.50
                                                         -0.75
               1.5
                                                         -1.00
                                                                -1.0
                                                                        -0.5
                                                                                0.0
                                                                                        0.5
                                 petal length
                                                                             petal length
```

Data Representation and Feature Engineering

How to represent data as a vector of numbers?

- the encoding of the data into a feature vector should make sense
- inner-products or distances calculated between feature vectors should be meaningful in terms of the data.
- Categorical variables
 - Example: x has 3 possible category labels: cat, dog, horse
 - We could encode this as: x = 0, x = 1, and x = 2.
 - Suppose we have two data points: x = cat, x' = horse.
 - What is the meaning of x * x' = 2?

One-hot encoding

- encode a categorical variable as a vector of ones and zeros
 - if there are K categories, then the vector is K dimensions.
- Example:
 - $x=cat \rightarrow x=[1 \ 0 \ 0]$
 - $x=dog \rightarrow x=[0 \ 1 \ 0]$
 - $x=horse \rightarrow x=[0\ 0\ 1]$

Binning

- encode a real value as a vector of ones and zeros
 - assign each feature value to a bin, and then use one-hot-encoding

```
In [40]: # example
    X = [[-3], [0.5], [1.5], [2.5]] # the data
    bins = [-2,-1,0,1,2] # define the bin edges

# map from value to bin number
    Xbins = digitize(X, bins=bins)
```

```
# map from bin number (0..5) to 0-1 vector
ohe = preprocessing.OneHotEncoder(categories=[arange(6)], sparse=False)
ohe.fit(Xbins)
ohe.transform(Xbins)
```

```
Out[40]: array([[1., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.]])
```

Data transformations - polynomials

- Represent interactions between features using polynomials
- Example:
 - 2nd-degree polynomial models pair-wise interactions

$$ullet \ [x_1,x_2] o [x_1^2,x_1x_2,x_2^2]$$

• Combine with other degrees:

$$\circ \ [x_1,x_2] o [1,x_1,x_2,x_1^2,x_1x_2,x_2^2]$$

```
In [41]: X = [[0,1], [1,2], [3,4]]
    pf = preprocessing.PolynomialFeatures(degree=2)
    pf.fit(X)
    pf.transform(X)
```

```
Out[41]: array([[ 1., 0., 1., 0., 0., 1.], [ 1., 1., 2., 1., 2., 4.], [ 1., 3., 4., 9., 12., 16.]])
```

Data transformations - univariate

- Apply a non-linear transformation to the feature
 - e.g., $x \rightarrow log(x)$
 - useful if the dynamic range of x is very large

Unbalanced Data

- For some classification tasks that data will be unbalanced
 - many more examples in one class than the other.
- Example: detecting credit card fraud
 - credit card fraud is rare
 - 50 examples of fraud, 5000 examples of legitimate transactions.

```
In [44]: udatafig
```

Out[44]:

- Unbalanced data can cause problems when training the classifier
 - classifier will focus more on the class with more points.
 - decision boundary is pushed away from class with more points

Out[46]: udatafig1

Out[46]: SVM decision boundary

4
2
0
-2
-4

-2

• Solution: apply weights on the classes during training.

0

• weights are inversely proportional to the class size.

2

```
In [47]: clfw = svm.SVC(kernel='linear', C=10, class_weight='balanced')
    clfw.fit(X, Y)
    print("class weights =", clfw.class_weight_)

class weights = [0.55 5.5 ]

In [49]: udatafig2
```


Classifier Imbalance

- In some tasks, errors on certain classes cannot be tolerated.
- **Example:** detecting spam vs non-spam
 - non-spam should definitely not be marked as spam
 - okay to mark some spam as non-spam

- Class weighting can be used to make the classifier focus on certain classes
 - e.g., weight non-spam class higher than spam class
 - classifier will try to correctly classify all non-spam samples, at the expense of making errors on spam samples.

```
In [53]: # dictionary (key, value) = (class name, class weight)
    cw = {0: 0.2,
```

```
1: 5} # class 1 is 25 times more important!
clfw = svm.SVC(kernel='linear', C=10, class_weight=cw)
clfw.fit(X, Y);
```

In [55]:

udatafig4

Out[55]:

...

Classification Summary

Classification task

- Observation \mathbf{x} : typically a real vector of feature values, $\mathbf{x} \in \mathbb{R}^d$.
- ullet Class y: from a set of possible classes, e.g., $\mathcal{Y}=\{0,1\}$
- Goal: given an observation x, predict its class y.

Name	Туре	Classes	Decision function	Training	Advantages	Disadvantages
Bayes' classifier	generative	multi- class	non-linear	estimate class-conditional densities $p(x y)$ by maximizing likelihood of data.	 works well with small amounts of data. multi-class. minimum probability of error if probability models are correct. 	- depends on the data correctly fitting the class-conditional.
logistic regression	discriminative	binary	linear	maximize likelihood of data in $p(y ert x)$.	well-calibratedprobabilities.efficient to learn.	 linear decision boundary. sensitive to C parameter.
support vector machine (SVM)	discriminative	binary	linear	maximize the margin (distance between decision surface and closest point).	works well in high- dimension.good generalization.	 linear decision boundary. sensitive to C parameter.
kernel SVM	discriminative	binary	non-linear (kernel function)	maximize the margin.	 non-linear decision boundary. can be applied to non-vector data using appropriate kernel. 	- sensitive to kernel function and hyperparameters. - high memory usage for large datasets
AdaBoost	discriminative	binary	non-linear (ensemble of weak learners)	train successive weak learners to focus on misclassified points.	non-linear decisionboundary. can dofeature selection.good generalization.	- sensitive to outliers.

XGBoost	discriminative	binary	non-linear (ensemble of decision trees)	train successive learners to focus on gradient of the loss.	non-linear decision boundary.good generalization.	- sensitive to outliers.
Random Forest	discriminative	multi- class	non-linear (ensemble of decision trees)	aggregate predictions over several decision trees, trained using different subsets of data.	- non-linear decision boundary. can do feature selection. - good generalization.	- sensitive to outliers.

Loss functions

- The classifiers differ in their loss functions, which influence how they work.
 - $lacksquare z_i = y_i f(\mathbf{x}_i)$

In [57]: lossfig

Out[57]:

Regularization and Overfitting

- Some models have terms to prevent overfitting the training data.
 - this can improve *generalization* to new data.
- There is a parameter to control the regularization effect.
 - select this parameter using cross-validation on the training set.

In [60]: ofig

Out[60]:

Structural Risk Minimization

- A general framework for balancing data fit and model complexity.
- Many learning problems can be written as a combination of data-fit and regularization term:

$$f^* = \operatorname*{argmin}_f \sum_i L(y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

- ullet assume f within some class of functions, e.g., linear functions $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$.
- L is the loss function, e.g., logistic loss.
- $oldsymbol{\cdot}$ Ω is the regularization function on f, e.g., $\left|\left|\mathbf{w}
 ight|\right|^2$
- λ is the tradeoff parameter, e.g., 1/C.

Other things

- Multiclass classification
 - can use binary classifiers to do multi-class using 1-vs-rest formulation.
- Feature normalization
 - normalize each feature dimension so that some feature dimensions with larger ranges do not dominate the optimization process.
- Unbalanced data
 - if more data in one class, then apply weights to each class to balance objectives.
- Class imbalance
 - mistakes on some classes are more critical.
 - reweight class to focus classifier on correctly predicting one class at the expense of others.

Applications

- Web document classification, spam classification
- Face gender recognition, face detection, digit classification

Features

- Choice of features is important!
 - using uninformative features may confuse the classifier.
 - use domain knowledge to pick the best features to extract from the data.

Which classifier is best?

• "No Free Lunch" Theorem (Wolpert and Macready)

"If an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems."

• In other words, there is no *best* classifier for all tasks. The best classifier depends on the particular problem.