

Using Decoder-Based Distillation for Enhancing Multilingual Clinical Case Report Summarization

Nicolay Rusnachenko¹ Xiaoxiao Liu¹ Jian Chang¹ Jian Jun Zhang¹

¹ Centre for Applied Creative Technologies (CFACT+), Faculty of Media and Communications, Bournemouth, United Kingdom

Key Takeaway

- 1 Distillation framework with role-based dialogue modeling notation for **Student Models** with **Clinical Key Info** derived from reports via **Teacher Model**
 - Exploit of **System**, **User**, and Assistant roles which are commonly supported by instruction-tuned models
- We experiment with technique adaptation in clinical case report summarization task for **Qwen-2.5** models family
 - extracting clinical key information from teacher model (72B params) and using this information in tuning of small-scaled student model (0.5B params) results in 2.4%-4% on MultiClinSum^{small} while at evaluation stage.

Related Works

- [1] Xiaoxiao Liu and et. al. Enhancing medical dialogue summarization: A mediextract distillation framework. pages 6466–6473, 2024.
- [2] M Rodríguez-Ortega and et. al. Overview of multiclinsum task at bioasq 2025: evaluation of clinical case summarization strategies for multiple languages: data, evaluation, resources and results.

Implementation

Two-stage distillation for role-based input systems

Definitions:

- Clinical Case Report from Reports Collection
- T Clinical Case Report Summary (from Reports Collection)
- Clinical Key information from Clinical Key Information collection • extracted from on Stage 1
- \mathbf{P}_{ext} ext. prompt: «Extract the key information from clinical text:
- ullet \mathbf{P}_{sum} summarization prompt: «Summarize clinical text:
- (S, U, A) role-based dialogue modelling notation.

Stage 1

Given: $[\mathbf{P}_{ext}, \text{ Dataset of }]$

For each :

Result: dataset of

• **x** – Input Sequence

Given:

• Infer result from Teacher Model:

 $(\mathbf{S}; \mathbf{P}_{ext}, \mathbf{U}; \mathbf{N}, \mathbf{A}; \emptyset)$

Loss Definition

 $\mathbf{y} = (y_1, \dots, y_T) - \operatorname{GT} \operatorname{Summary}$

 $\mathbf{\hat{y}} = (\hat{y}_1, \dots, \hat{y}_{\hat{T}})$ – Inferred Text

for \mathbf{y} and $\hat{\mathbf{y}}$ respectively

• T and \hat{T} – total number of tokens

Strict position-wise loss calculation:

 $l(\mathbf{y}, \mathbf{\hat{y}}, t, \mathbf{x}) = -\log P_{\theta}(\hat{y}_t = y_t \mid \hat{y}_{< t}, \mathbf{x})$

Given:

- \bullet \mathbf{P}_{ext} extraction prompt;
- $\bullet \mathbf{P}_{sum}$ summarization prompt;

Stage 2

• Dataset of (, , ,)

For each (, ,):

1 Extraction Supervision (L_{ext}) :

$$(\mathbf{S:P}_{ext}, \mathbf{U:D, A:D})$$
 $L_{ext} = \sum_{t=i_{ ext{start}}}^{T_e} l(\mathbf{y}_e, \mathbf{\hat{y}}_e, t, \mathbf{x}_e)$

2 Summarization Supervision (L_{sum}) :

$$(\mathbf{S:P}_{sum}, \mathbf{U:D}, \mathbf{A:D})$$
 $L_{sum} = \sum_{t=i_{otant}}^{T_s} l(\mathbf{y}_s, \mathbf{\hat{y}}_s, t, \mathbf{x}_s)$

3 Combined loss (L) with
$$\gamma = 0.8$$
:

$$L = \gamma L_{sum} + (1 - \gamma) L_{ext}$$

Result: Fine-tuned Student Model

Dataset I

Dataset II

• MultiClinSum^{small} – 592 reports • ClinKeyInfo^{small} – augm. of of each language from original MultiClinSum:

Lng	#	# Chars in			# Chars in			
		Avg	Min	Max	Avg	Min	Max	
EN	592	3785.4	719	34071	725.3	90	3883	
\mathbf{ES}	592	4056.1	825	17602	792.6	125	4161	
\mathbf{FR}	592	4783.2	827	37138	832.1	121	4542	
PT	592	4096.0	793	37351	809.5	116	28227	

reports of MultiClinSum^{small} with obtained from Stage 1

Lng	#	# Chars in			
Liig		Avg	Min	Max	
$\overline{\mathbf{EN}}$	592	2971.4	1088	6597	
\mathbf{ES}	592	2929.5	392	6040	
\mathbf{FR}	592	2873.3	879	5472	
PT	592	2871.9	911	7961	

• We use Qwen-2.5-72B-instruct.

Experimential Setup

Our setup based on content from MultiClinSum^{small} and ClinKeyInfo^{small} () for subsets:

Subset	#	# Chars			
Dubset	//-	Avg	Range		
	1892	2435.6	719-2560		
train	1892	490.6	90-512		
	1892	511.9	392-512		
	20	2560.0	2560-2560		
valid	20	510.2	486-512		
	20	512.2	512-512		

We use Qwen2.5-0.5B as a student model for Stage 2 to prepare:

Non-official Results

Models

- - baseline Qwen2.5-0.5B
- † finetuned Qwen2.5-0.5B_{standard}
- ‡ distil-tuned Qwen2.5-0.5Bdistil

Test Set

The 456 of original reports were used (19% of MultiClinSum^{small})

\mathbf{L}	$\mathbf{B}\mathbf{F}$	RTSc	ore	ROUGE			
	P	${f R}$	$\mathbf{F}1$	R-1	R-2	R-L	
\mathbf{E} •	78.59	82.91	80.62	32.49	11.88	20.97	
$N \dagger$	80.94	82.13	81.47	37.49	15.26	25.48	
+	81.80	81.67	81.69	38.30	15.57	25.71	
\mathbf{E} •	80.26	84.64	82.35	33.66	13.33	20.69	
S †	84.07	83.62	83.80	40.50	17.14	26.74	
+	84.10	83.48	83.76	40.26	16.72	26.38	
$\overline{\mathbf{F}}$ •	81.16	84.36	82.69	34.45	13.80	20.23	
R †	84.05	83.80	83.88	39.67	17.00	24.94	
+	84.34	83.10	83.68	38.95	16.25	24.39	
P •	80.65	83.53	82.02	30.81	11.44	19.53	
$T \dagger$	83.21	83.29	83.19	37.51	15.02	24.30	
‡	83.42	83.10	83.22	37.66	14.92	24.19	

Official Results

Model: Qwen2.5-0.5Bdistil

Lng BERTScore ROUGE $f{R}$ $f{F1}$ $f{P}$ $f{R}$ $f{F1}$ **EN** |85.54 85.70 85.59 | 27.53 27.53 25.87 **ES** | 72.42 73.47 72.88 | 26.06 29.03 25.87 **FR** | 72.48 | 73.96 | 73.15 | 24.15 | 28.90 | 24.66

PT | 72.39 | 73.20 | 72.73 | 24.95 | 27.05 | 24.40