Полиноми с комплексни и с реални коефициенти. Алгебрическа затвореност на полето на комплексните числа.

Казваме, че полето F е алгебрически затворено, ако всеки полином $f(x) \in F[x]$ с deg $f \ge 1$ има поне един корен в F. Ако $\alpha_1, \alpha_2, \ldots, \alpha_n$ са корените на полинома $f(x) = a_0 x^n + \cdots + a_n, a_0 \ne 0, n \ge 1$, то от разлагането

$$f(x) = (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

следва, че когато F е алгебрически затворено, то $\alpha_1, \alpha_2, \dots, \alpha_n \in F$.

Знаем, че полетата $\mathbb Q$ и $\mathbb R$ не са алгебрически затворени. Например полиномът с рационални коефициенти $f(x)=x^2-2$ няма рационален корен, а полиномът с реални коефициенти $g(x)=x^2+1$ няма реален корен. Произволно поле от остатъци $\mathbb Z_p$, където p е просто число, също не е алгебрически затворено. Например за неконстантният полином $h(x)=x^p-x+\overline{1}\in\mathbb Z_p[x]$ е в сила, че $F(\overline{k})=\overline{1}\neq\overline{0}$ за $\forall \overline{k}\in\mathbb Z_p$, т.к. теоремата на Ойлер-Ферма гласи, че $\overline{k}^p=\overline{k}$ за $\forall \overline{k}\in\mathbb Z_p$. Полето $\mathbb C$ обаче притежава това важно свойство, както твърди

Основна теорема на алгебрата. *Полето* \mathbb{C} *е алгебрически затворено.*

Доказателство. Нека

$$f(x) = a_0 x^n + \dots + a_n \in \mathbb{C}[x], a_0 \neq 0, n \geq 1$$

е полиномът, който ще разглеждаме. Ще разделим доказателството на няколко стъпки.

<u>Стъпка 1:</u> Ако $f(x) \in \mathbb{R}[x]$ и n е нечетно число, то f(x) има дори реален корен.

Наистина, като полином с реални коефициенти f(x) определя непрекъснатата функция

$$f: \mathbb{R} \longrightarrow \mathbb{R},$$

за която е в сила, че $\lim_{x\to\infty} f(x) = a_0(+\infty)$ и $\lim_{x\to-\infty} f(x) = a_0(-\infty)$. Тогава $\exists a,b \in \mathbb{R}$, такива че f(a) < 0 и f(b) > 0. Нека за определеност a < b. Според теоремата на Болцано от Диференциалното и интегрално смятане трябва да съществува число $c \in (a,b)$, такова че f(c) = 0. И така, f(x) има реален корен c.

Стъпка 2: Ако $f(x) \in \mathbb{R}[x]$, то f има комплексен корен.

Нека $\alpha_1, \alpha_2, \ldots, \alpha_n$ са корените на f(x) и P е неговото поле на разлагане над \mathbb{C} (т.е. P съдържа \mathbb{C} и $\alpha_1, \alpha_2, \ldots, \alpha_n$). Степента на f е deg f=n и е ясно, че имаме представянето $n=2^km$ за цели числа $k\geq 0, m\geq 0$ и $2\nmid m$. Ще проведем индукция по k. Основа на индукцията – ако k=0, то $2\nmid n$ и според Стъпка 1 f(x) има дори реален корен. Индукционно предположение – нека твърдението е вярно за всички естествни числа по-малки от k. Индукционна стъпка – ще докажем, че е вярно за k. Фиксираме число $r\in\mathbb{R}$. Разглеждаме елементите $\beta_{ij}=\alpha_i\alpha_j+r(\alpha_i+\alpha_j)$ за $1\leq i< j\leq n$. Ясно е, че $\beta_{ij}\in P$ и броят им е $n=\binom{n}{2}=\frac{n(n-1)}{2}=2^{k-1}m(2^km-1)$.

Числото $m'=m(2^km-1)$ е нечетно, т.к. $k\geq 1$. И така, $n'=2^{k-1}m', 2\nmid m'$. Разглеждаме полинома

$$g(x) = \prod_{1 \le i \le j \le n} (x - \beta_{ij}) \in P[x].$$

Старшият му коефициент е 1, а степента му е n', като $2^{k-1} \mid n'$, но $2^k \nmid n'$. Ще покажем, че $g(x) \in \mathbb{R}[x]$. Наистина, нека

$$g(x) = x^{n'} + b_1 x^{n'-1} + \dots + b_{n'} \in P[x]$$

за коефициенти $b_i \in P, i = 1, 2, \dots, n'$. От формулите на Виет е ясно, че коефициентите зависят от елементите β_{ij} и по-точно са техни симетрични полиноми

$$b_t = (-1)^t \sigma_t(\dots, \beta_{ij}, \dots), \quad t = 1, 2, \dots, n'.$$

Произволна пермутация $\alpha_{p_1}, \alpha_{p_2}, \ldots, \alpha_{p_n}$ на $\alpha_1, \alpha_2, \ldots, \alpha_n$ пермутира и елементите β_{ij} до $\beta_{p_ip_j}$. Т.к. при пермутация на елементите β_{ij} полиномите σ_t не се променят, то можем да заключим, че произволна пермутация на $\alpha_1, \alpha_2, \ldots, \alpha_n$ не променя коефициентите b_t и всъщност b_t са

симетрични полиноми и на $\alpha_1,\alpha_2,\ldots,\alpha_n$ с коефициенти от $\mathbb R$. Това означава, че елементите $b_t\in\mathbb R$ за $\forall t=1,2,\ldots n'$ и всъщност $g(x)\in\mathbb R$. Сега $g(x)\in\mathbb R[x]$ и $2^k\nmid\deg g=n'$. Според индукционното предположение g(x) има поне един комплексен корен, т.е. $\beta_{ij}\in\mathbb C$ за поне една двойка $(i,j),1\leq i< j\leq n$. И така, за $\forall r\in\mathbb R$ съществуват числа $i,j,1\leq i< j\leq n$, зависещи от r, такива че $\beta_{ij}=\alpha_i\alpha_j+r(\alpha_i+\alpha_j)\in\mathbb C$. При това числата $r\in\mathbb R$ са безбройно много, а двойките (i,j) са краен брой и следователно съществуват числа $r_1,r_2\in\mathbb C, r_1\neq r_2$, такива че за едни и същи i,j е изпълнено $c=\alpha_i\alpha_j+r_1(\alpha_i+\alpha_j)\in\mathbb C$ и $d=\alpha_i\alpha_j+r_2(\alpha_i+\alpha_j)\in\mathbb C$. Тогава

$$c - d = (\alpha_i + \alpha_j)(r_1 - r_2)$$

като $r_1 - r_2 \neq 0$ и можем да изразим

$$\alpha_i + \alpha_j = \frac{c - d}{r_1 - r_2} = p \in \mathbb{C}.$$

От друга страна

$$\alpha_i \alpha_j = c - r_1(\alpha_i + \alpha_j) = c - r_1 p = q \in \mathbb{C}.$$

Така получихме $\alpha_i + \alpha_j = p \in \mathbb{C}$ и $\alpha_i \alpha_j = q \in \mathbb{C}$ и според формулите на Виет това са корените на уравнението

$$x^2 - px + q = 0.$$

Според формулите за корените на квадратно уравнение намираме

$$\alpha_i, \alpha_j = \frac{p \pm \sqrt{p^2 - 4q}}{2}$$

и т.к. $p^2-4q\in\mathbb{C}$, то по формулата на Моавър и $\sqrt{p^2-4q}\in\mathbb{C}$ и така $\alpha_i,\alpha_j\in\mathbb{C}$. Така f(x) има дори два комплексни корена. Принципа на математическата индукция доказава текущата стъпка.

Стъпка 3: Ако $f(x) \in \mathbb{C}[x]$, то f(x) има комплексен корен.

 $\overline{\text{Нека }f(x)}=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\in\mathbb{C}[x], n\geq 1.$ Да разгледаме полинома

$$\overline{f}(x) = \overline{a_0}x^n + \overline{a_1}x^{n-1} + \dots + \overline{a_{n-1}}x + \overline{a_n} \in \mathbb{C}[x],$$

чиито коефициенти са комплексните спрегнати на коефициентите на f(x). От свойствата на комплексното спрягане за произволно число $\alpha \in \mathbb{C}$ имаме, че

$$\overline{f}(\overline{\alpha}) = \overline{a_0}.\overline{\alpha}^n + \overline{a_1}.\overline{\alpha}^{n-1} + \dots + \overline{a_{n-1}}.\overline{\alpha} + \overline{a_n}$$
$$= \overline{a_0\alpha^n + a_1\alpha^{n-1} + \dots + a_{n-1}\alpha + a_n} = \overline{f(\alpha)}.$$

Разглеждаме полинома $h(x) = f(x)\overline{f}(x)$. Ако $h(x) = c_0x^{2n} + c_1x^{2n-1} + \cdots + c_{2n}$ за $c_k \in \mathbb{C}, k = 1, 2, \ldots, 2n$, то имаме, че $c_k = \sum_{i+j=k} a_i \overline{a_j}$. Сега

$$\overline{c_k} = \overline{\sum_{i+j=k} a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i} a_j = \sum_{i+j=k} a_j \overline{a_i} = c_k,$$

което доказва, че $c_k \in \mathbb{R}$ за $\forall k=1,2,\ldots,2n$ и всъщност $h(x) \in \mathbb{R}[x]$. От Стъпка 2 следва, че съществува комплексно число $\alpha \in \mathbb{C}$, такова че $h(\alpha)=0$, т.е. $f(\alpha)\overline{f}(\alpha)=0$. Последното означава, че $f(\alpha)=0$ и/или $\overline{f}(\alpha)=0$. Ако $f(\alpha)=0$, то f има комплексен корен и твърдението е доказано. Нека сега $\overline{f}(\alpha)=0$. Тогава $\overline{f}(\alpha)=\overline{f(\overline{\alpha})}$ и $\overline{f(\overline{\alpha})}=0$. Т.к. $\overline{0}=0$, последното всъщност означава, че $f(\overline{\alpha})=0$ и $\overline{\alpha}$ е корен на f(x). Така окончателно получихме, че всеки полином $f(x) \in \mathbb{C}[x]$ с deg $f \geq 1$ има корен в \mathbb{C} . С това приключва и доказателството на теоремата.

По този начин доказахме, че за всеки полином $f(x) \in \mathbb{C}[x], \deg f \geq 1$ със старши коефициент a_0 е в сила представянето

$$f(x) = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$$

за $\alpha_i \in \mathbb{C}, i = 1, 2, \dots, n$. С други думи неразложимите полиноми в $\mathbb{C}[x]$ са само тези от степен 1.

Твърдение. Нека $f(x) \in \mathbb{R}[x]$. Ако $\alpha \in \mathbb{C}$ е корен на f, то $\overline{\alpha}$ също е корен на f, като при това α и $\overline{\alpha}$ имат еднаква кратност.

 $\ensuremath{\mathcal{A}}$ оказателство. Ако $\alpha \in \mathbb{R}$, то $\alpha = \overline{\alpha}$ и няма какво да доказваме.

Нека $\alpha \notin \mathbb{R}$. Тогава $\alpha \neq \overline{\alpha}$. От $f(\alpha) = 0$ имаме, че $0 = \overline{f(\alpha)} = \overline{f(\overline{\alpha})} = f(\overline{\alpha})$, защото $f \in \mathbb{R}[x]$. С други думи $\overline{\alpha}$ също е корен на f. И така, $(x-\alpha) \mid f$ и $(x-\overline{\alpha}) \mid f$, но $\alpha \neq \overline{\alpha}$ и следователно $(x-\alpha)(x-\overline{\alpha}) \mid f$. Нека означим

$$\varphi(x) = (x - \alpha)(x - \overline{\alpha}) = x^2 - (\alpha + \overline{\alpha})x + \alpha\overline{\alpha}.$$

Нека още $p=-(\alpha+\overline{\alpha})\in\mathbb{R}$ и $q=\alpha\overline{\alpha}\in\mathbb{R}$. По този начин получихме, че $\varphi(x)=x^2+px+q\in\mathbb{R}[x]$ и $\varphi(x)\mid f(x)$. При това $D(\varphi)<0$, защото φ няма реални корени. Нека $k\in\mathbb{N}$ е най-голямото число, за което $(\varphi(x))^k\mid f(x)$. Тогава $f(x)=(\varphi(x))^kg(x)$ за $g(x)\in\mathbb{R}[x]$ и очевидно $g(\alpha)\neq 0$ (в противен случай също $g(\overline{\alpha})=0$ и това влече $(\varphi(x))^{k+1}\mid f(x)$, което е противоречие). Също така $g(\overline{\alpha})\neq 0$. Така $(x-\alpha)\nmid g$ и $(x-\overline{\alpha})\nmid g$, което значи че $\varphi(x)\nmid g(x)$. Така накрая получихме, че $f(x)=(x-\alpha)^k(x-\overline{\alpha})^kg(x)$ и α и $\overline{\alpha}$ имат еднаква кратност.

От последното твърдение можем да си извадим извод, че ако $\alpha \in \mathbb{R}$, то $(x-\alpha) \mid f(x)$, а ако $\alpha \notin \mathbb{R}$, то $(x^2+px+q) \mid f(x)$. И така за всеки полином $f(x) \in \mathbb{R}[x]$ с deg $f \geq 1$ е в сила

$$f(x) = a_0(x - \alpha_1)^{k_1} \dots (x - \alpha_s)^{k_s} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_t x + q_t)^{l_t}$$

за $s,t\geq 0; k_i,l_j\geq 1; \alpha_i\in\mathbb{R}; p_j,q_j\in\mathbb{R}$ и $D_j=p_j^2-4q_j<0.$ Оттук следва, че наразложимите над \mathbb{R} полиноми са само тези от степен 1 и тези от степен 2 с отрицателна дискриминанта.