

www.sites.google.com/site/faresfergani

<u>السنة الدراسية : 2015/2014</u>

لمحتوى المفاهيمي :

سلسلة تمارين-1 (مستوى 02)

<u>التمرين (1):</u>

1- حمض كربوكسيلي A كثافة بخاره بالنسبة للهواء 2.07 . أوجد الصيغة الجزيئية المجملة لهذا الحمض .

2- نشكل مزيج متساوي المولات يتكون من 1 mol من حمض (A) و 1 من كحول B هو البروبانول-2 ، و عند توفر الشروط اللازمة لحدوث التفاعل ، ينتج أستر 1 و ماء .

أ- أكتب معادلة التفاعل الحادث . مبينا خصائصه .

ب- أوجد نسبة التقدم النهائي:

جـ أكتب عبارة ثابت التوازن الكيميائي لتفاعل الأسترة بدلالة التقدم النهائي x_f ثم أحسب قيمته .

3- نشكل مزيج آخر يتكون 1 mol من حمض A 2mol من الكحول B و mol 4 من الأستر (E) و mol 3 من الماء ثم نوفر الشروط اللازمة لحدوث التفاعل .

أ- بين في أي جهة يتطور التفاعل (أسترة أو إماهة).

ب- أوجد التركيب المولى للمزيج عند حدوث التوازن الكيميائي .

جـ أحسب مردود التفاعل .

<u>الأجوبة :</u>

1- الصيغة الجزيئية المجملة:

: الصيغة العامة للحمض الكربوكسيلي هي $C_nH_{2n+1}COOH$ و منه يكون

M(A)=d . 29=2.07 . $29\approx 60~g/mol$

و من جهة أخرى لدينا:

M(A) = 12 n + 2n + 1 = 12 + 16 + 16 + 1 = 14n + 46

ومنه:

الصفحة: 2

$$14n + 46 = 60 \rightarrow n = \frac{60 - 46}{14} = 1$$

إذن الصيغة الجزيئية المجملة للحمض (A) هي : CH3COOH

2-أ- معادلة التفاعل: البريانول-2 صبغته:

CH₃-CHOH-CH₃

ومنه المعادلة:

$$CH_3COOH + CH_3-CHOH-CH_3 = CH_3COO-CH-CH_3 + H_2OCH_3$$

هذا التفاعل هو تفاعل أسترة يتميز بالخصائص التالية:

✓ محدود (غير تام).

٧ لاحراري.

√ عكوس.

√ بطيء .

ب- نسبة التقدم النهائي : البروبانول-2 كحول ثانوي و كون أن المزيج الابتدائي متساوي المولات يكون :

$$r = 60 \% \rightarrow \tau_f = 0.60$$

جـ ثابت التوازن الكيميائي:

$$\begin{split} K = & \frac{{{{[E]}_{f}}\left[{{H_{2}O} \right]}_{f}}}{{{{[A]}_{f}}.{{[B]}_{f}}}}\\ K = & \frac{{\frac{{{n_{f}}\left(E \right)}}{V}\frac{{{n_{f}}\left({{H_{2}}O} \right)}}{V}}}{{\frac{{{n_{f}}\left(A \right)}}{V}\frac{{{n_{f}}\left(B \right)}}{V}}} = \frac{{{n_{f}}\left(E \right).{n_{f}}\left({{H_{2}}O} \right)}}{{{n_{f}}\left(A \right).{n_{f}}\left(B \right)}} \end{split}$$

نمثل جدول التقدم:

الحالة	التقدم	Α -	+ B =	= E +	- D
ابتدائية	$\mathbf{x} = 0$	2	2	0	0
انتقالية	X	2 - x	2 - x	X	X
نهائية	$\mathbf{x}_{\mathbf{f}}$	2 - x _f	2 - x _f	$\mathbf{x}_{\mathbf{f}}$	X_{f}

من جدول التقدم:

$$n_f(E) = n_f(H_2O) = x_f$$

 $n_f(A) = n_f(B) = 2 - x_f$

بالتعويض في عبارة ثابت التوازن الكيميائي:

$$K = \frac{x_f^2}{(2 - x_f)^2}$$

من جدول التقدم و باعتبار التفاعل تم يكون:

$$2 - x_{max} = 0 \rightarrow x_{max} = 2 \text{ mol}$$

$$\tau_{f} = \frac{x_{f}}{x_{max}} \rightarrow x_{f} = \tau_{f} x_{max}$$

$$x_f = 0.6.2 = 1.2 \text{ mol}$$

ومنه:

$$K = \frac{(1.2)^2}{(2-1.2)^2} = 2.25$$

$\frac{2}{6}$ جهة تطور التفاعل : نقارن بين Q_{ri} و X

$$\begin{split} Q_{ri} &= \frac{\left[E\right]_{0} \left[H_{2}O\right]_{0}}{\left[A\right]_{0} \cdot \left[B\right]_{0}} \\ Q_{ri} &= \frac{\frac{n_{0}(E)}{V} \frac{n_{0}(H_{2}O)}{V}}{\frac{n_{0}(A)}{V} \frac{n_{0}(B)}{V}} = \frac{n_{0}(E) \cdot n_{0}(H_{2}O)}{n_{0}(A) \cdot n_{0}(B)} \\ Q_{ri} &= \frac{4 \cdot 3}{1 \cdot 2} = 6 \end{split}$$

. (تفاعل إماهة) و منه التفاعل يتطور في الاتجاه المعاكس (تفاعل إماهة) $Q_{ri} > K$

ب- التركيب المولي للمزيج عند حدوث التوازن:

الحالة	التقدم	Е +	- H ₂ O =	= A +	- B
ابتدائية	$\mathbf{x} = 0$	4	3	1	2
انتقالية	X	4 - x	3 - x	1 + x	2 + x
نهائية	X_{f}	4 - x _f	3 - x _f	$1 + x_f$	$2 + x_f$

إذا اعتبرنا:

. K₁ ثابت التوازن لتفاعل الأسترة

. K2 : ثابت التوازن لتفاعل الإماهة .

یکون:

$$K_2 = \frac{1}{K_1} = \frac{1}{2.25} = 0.44$$

$$K_{2} = \frac{[A]_{f}.[B]_{f}}{[E]_{f}.[H_{2}O]_{f}} = \frac{\frac{n_{f}(A)}{V} \frac{n_{f}(B)}{V}}{\frac{n_{f}(E)}{V} \frac{n_{f}(H_{2}O)}{V}} = \frac{n_{f}(A).n_{f}(B)}{n_{f}(E)n_{f}(H_{2}O)}$$

من جدول التقدم:

$$n_f(A) = 1 + x_f$$

$$n_f(B) = 2 + x_f$$

 $n_f(E) = 4 - x_f$
 $n_f(H_2O) = 3 - x_f$

ومنه يصبح لدينا:

$$K_2 = \frac{(1+x_f)(2+x_f)}{(4-x_f)(3-x_f)} = 0.44 \longrightarrow \frac{2+3x_f + x_f^2}{12-7x_f + x_f^2} = 0.44$$

$$2 + 3x_f + x_f^2 = 5.28 - 3.08x_f + 0.44x_f^2$$

$$0.56x_f^2 + 6.08x_f - 3.28 = 0$$

$$\Delta = 44.31 \rightarrow \sqrt{\Delta} = 6.66$$

$$x_{f1} = \frac{-6.08 - 6.68}{2 \cdot 0.56} = -11.4 \text{ (ode of the order)}$$

$$x_{f2} = \frac{-6.08 + 6.68}{2 \cdot 0.56} = 0.52 \,\text{mol}\,($$

و عليه يكون التركيب المولى للمزيج عند حدوث التوازن كما يلى:

$$n_f(A) = 1 + 0.51 = 1.52 \text{ mol}$$

$$n_f(B) = 2 + 0.51 = 2.52 \text{ mol}$$

$$n_f(E) = 4 - 0.51 = 3.48 \text{ mol}$$

$$n_f(H_2O) = 3 - 0.51 = 2.48 \text{ mol}$$

جـ مردود التفاعل:

$$r = \frac{x_f}{x_{max}}.100$$

- من جدول التقدم:

إذا اختفى E كلبا :

$$4 - x = 0 \rightarrow x = 4$$

• إذا اختفى H₂O كليا:

$$3 - x = 0 \rightarrow x = 3$$

 $x_{max} = 3 \text{ mol}$ ومنه:

$$r = \frac{0.51}{3}.100 = 17.3\%$$

<u>ملاحظة :</u>

$$au_{ ext{(إماهة)}}=1- au_{ ext{(إماهة)}}$$
 $r_{ ext{(إماهة)}}=100-r_{ ext{(إماهة)}}$

التمرين (2):

. (B) ميغته الجزيئية المجملة $C_4H_8O_2$ ، حمض الميثانويك و كحول (B) ميغته الجزيئية المجملة $C_4H_8O_2$ أ- استنتج الصيغة المجملة للكحول (B).

ب- أكتب الصيغ نصف المفصلة له .

2- لمعرفة الصيغة الحقيقية للأستر (E) ، يحضر مزيج متساوي المولات يحتوي على 0.2 mol من الأستر (E) و 0.2 mol و 0.2 mol من الماء ، و يتابع تطور التفاعل الذي يجري في شروط ملائمة ، فيحصل على واحد من المنحنيات التالية التي تمثل تغيرات عدد مولات الأستر المتبقية بدلالة الزمن .

أ- ما هي من بين المنحنيات الممثلة ، المنحنى الذي يمثل تغيرات كمية مادة الأستر (E) المتبقية ؟ علما بأنه عند التوازن يلزم للتكافؤ $V_{bE}=80~\text{mL}$ عند معايرة الحمض الناتج عن إماهة الأستر بمحلول هيدروكسيد الصوديوم الذي تركيزه المولي $C_b=1~\text{mol/L}$

ب- ما هي الصيغة الحقيقية للأستر (E) و ما إسمه .

<u>الأجوبة :</u>

1- الصيغة الجزيئية المجملة للكحول:

من خلال الشكل العام لمعادلة الأسترة يتضح أن عدد ذرات الكربون في الأستر مساوي لمجموع عدد ذرات الكربون في الحمض و الكحول ومنه:

- الأستر: عدد ذرات الكربون هو 4.
- حمض الميثانويك: عدد ذرات الكربون هو 1.

إذن عدد ذرات كربون الكحول (B) ذو الصيغة العامة $C_nH_{2n+1}OH$ هو $C_nH_{2n+1}OH$ و منه الصيغة الجزيئية المجملة للكحول هي C_3H_7OH .

ب- الصيغ نصف المفصلة للكحول B:

$$CH_3 - CH_2 - CH_2OH$$
 $CH_3 - CHOH - CH_3$ $equivarrange value of the content o$

2-أ- المنحنى الممثل لتغيرات عدد مولات الأستر بدلالة الزمن:

الفرق بين المنحنيات يكمن في عدد مولات الأستر المتشكل في نهاية التفاعل (التوازن) و عليه لتحديد المنحنى الموافق نحسب عدد مولات الأستر المتشكل في نهاية التفاعل .

- عند التكافؤ:

$$n_f(A) = C_b V_{bE}$$

$$n_f(A) = 0.08 \text{ mol}$$

و هي عدد مولات الحمض المتشكل (A) في نهاية التفاعل.

- نمثل جدول التقدم لتفاعل الإماهة:

الحالة	التقدم	Е +	- H ₂ O =	= A +	- B
ابتدائية	$\mathbf{x} = 0$	0.2	0.2	0	0
انتقالية	X	0.2 - x	0.2 - x	X	X
نهائية	X_f	$0.2 - x_{\rm f}$	$0.2 - x_{\rm f}$	X_{f}	X_{f}

من جدول التقدم:

$$n_f(A) = x_f \rightarrow x_f = 0.08 \text{ mol}$$

من جدول التقدم أيضا:

$$n_f(E) = 0.2 - x_f = 0.2 - 0.08 = 0.12 \text{ mol}$$

هذه النتيجة توافق المنحنى (1) الذي يمثل تغيرات عدد مولات الأستر بدلالة الزمن .

ج- الصيغة الحقيقية للأستر:

لتحديد الصيغة الحقيقية للأستر نبحث عن صنف الكحول و ذلك بحساب مردود الإماهة .

$$r = \frac{x_f}{x_{max}}.100$$

من جدول التقدم و بفرض أن التفاعل تم يكون :

$$0.2 \text{ -} x_{max} = 0 \text{ } \rightarrow \text{ } x_{max} = 0.2 \text{ } mol$$

ومنه:

$$r = \frac{0.08}{0.2} \cdot 100 = 40\%$$

إذن صنف الكحول ثانوي و الصيغة الحقيقية للأستر هي:

$$\begin{array}{c} HCOO-CH-CH_{3} \\ \stackrel{|}{CH_{3}} \end{array}$$

إسمه : ميثانوات ميثيل إيثيل أو : ميثانوات إيزوبروبيل

<u>التمرين (3) :</u>

1- إن عملية التصبن الصودي (بواسطة الصود NaOH) لأستر عضوي (E) كثافة بخاره بالنسبة للهواء d=4 أعطت مركب (C) ، و كحول (B) يحتوي على d=4

أ- أكتب الصيغة الجزيئية المجملة للمركبات (E) ، (C) ، (E)

ب- أكتب الصيغة الجزيئية نصف المفصلة للكُحول (B) مع ذكر الإسم و الصنف في كل صيغة .

جـ أكتب معادلة التصبن .

2- نشكل مزيج متساوي المولات يتكون من المركب (B) و حمض الإيثانويك ، نضيف للمزيج قطرات من حمض الكبريت المركز ثم نضعه في حمام مائي درجة حرارته ثابتة . نلاحظ عند نهاية التفاعل تشكل g 11.6 من الاستر و تبقى g 114من حمض الإيثانويك .

أ- أكتب معادلة التفاعل الحاصل.

ب- أكتب الصيغ الجزيئية نصف المفصلة الممكنة للكحول (B) مع ذكر الإسم و الصنف في كل صيغة .

جـ مثل جدول التقدم لتفاعل الأسترة ثم أوجد التركيب المولي للمزيج الإبتدائي و التركيب المولي للمزيج عند حدوث التوازن الكيميائي .

د- احسب مردود التفاعل و استنتج صيغة الكحول الحقيقية .

هـ أكتب الصيغة الجزيئية نصف المفصلة للأستر (E).

 $M(O) = 16 \text{ g/mol/L} \cdot M(H) = 1 \text{ g/mol} \cdot M(C) = 12 \text{ g/mol}$

1- الصيغة الجزيئية المجملة لـ B ، C ، E : الأستر E :

•
$$M(E) = d \cdot 29 = 4 \cdot 29 = 116 \text{ g/mol}$$

- الصيغة العامة للأستر هي : $C_nH_{2n}O_2$ ومنه يكون :

$$M(E) = 12 n + 2n + 32 = 14n + 32$$

ومنه:

$$14n + 32 = 116 \rightarrow n = \frac{116 - 32}{14} = 6$$

. $C_6H_{12}O_2$: إذن صيعة الأستر

 $C_nH_{2n+2}O$ أو $C_nH_{2n+2}O$ لذا يكون : $C_nH_{2n+2}O$

$$\frac{M(B)}{100\%} = \frac{12n}{C\%} = \frac{2n+2}{H\%} = \frac{16}{O\%}$$

$$\frac{M(B)}{100\%} = \frac{16}{O\%}$$

$$\frac{M(B)}{100\%} = \frac{16}{21.62\%} \rightarrow M(B) = \frac{16.100}{21.62} \approx 74 \text{ g/mol}$$

و من جهة أخرى:

$$M(B) = M(C_nH_{2n+1}OH) = 12n + 2n + 1 + 16 + 1 = 14n + 18$$

ومنه:

$$14n + 18 = 74 \rightarrow n = \frac{74 - 18}{14} = 4$$

إذن الصيغة الجزيئية المجملة للكحول (B) هي : C₄H₉OH .

 $\frac{|\ln(C)|}{|\ln(C)|}$ المعادلة العامة للتصبن الصودي (مع الصود) تكون كما يلي :

$$RCOOR' + NaOH = RCOONa + R'OH$$
 (E)
 (C)
 (B)

و عليه عدد ذرات الكربون في الأستر (E) مساوية لعدد ذرات الكربون في المركب (C) مضاف إليها عدد ذرات الكربون في الكحول (B) و منه :

- عدد ذرات كربون الأستر (E) هو: 6
- عدد ذرات كربون الكحول (B) هو: 4

إذن عدد ذرات كربون (C) هو 2 و كون أن صيغة (C) العامة RCOONa أي $C_nH_{2n+1}Na$ تكون الصيغة الجزيئية للنوع الكيميائي (C) هي $C_nH_{2n+1}Na$.

جـ معادلة التفاعل:

على معادلة التصبن العامة السابقة يمكن كتابة الصيغة الجزيئية المجملة للأستر (E) كما يلي : $CH_3COOC_4H_9$ ومنه تكون معادلة التصبن كما يلى :

 $CH_3COOH + C_4H_9OH = CH_3COOC_4H_9 + H_2O$

ب- الصيغ الجزيئية نصف المفصلة للكحول (B):

جـ- جدول التقدم:

الحالة	التقدم	Α -	+ B =	= E :	$=$ H_2O
ابتدائية	$\mathbf{x} = 0$	n_0	n_0	0	0
انتقالية	X	n ₀ - x	n ₀ - x	X	X
نهائية	X_{f}	n ₀ - x _f	n ₀ - x _f	X_{f}	X_{f}

- التركيب المولى للمزيج الابتدائي و عند التوازن:

■
$$n_f(E) = \frac{m_f(E)}{M(E)}$$

 $M(E) = 116 \text{ g/mol}$
 $n_f(E) = \frac{11.6}{116} = 0.1 \text{ mol}$
■ $n_f(A) = \frac{m_f(A)}{M(A)}$
 $M(E) = 116 \text{ g/mol}$
 $n_f(E) = \frac{114}{116} = 1.9 \text{ mol}$

من جدول التقدم:

$$\mathbf{n}_f(E) = \mathbf{x}_f \rightarrow \mathbf{x}_f = 0.1 \text{ mol}$$

•
$$n_f(A) = n_0 - x_f \rightarrow n_0 = n_f(A) + x_f = 1.9 + 0.1 = 2 \text{ mol}$$

إذن التركيب المولي للمزيج الابتدائي و عند التوازن يكون على النحول التالي :

	مزيج ابتدائي	عند التوازن
n(A)	2 mol	1.9 mol
n(B)	2 mol	1.9 mol
n(C)	0	0.1 mol
n(D)	0	0.1 mol

د- مردود التفاعل و الصيغة الحقيقية للكحول :

$$r = \frac{x_f}{x_{max}}.100$$

من جدول التقدم و بفرض أن التفاعل تام:

$$n_0 - x_{max} = 0 \rightarrow x_{max} = n_0 = 2 \text{ mol}$$

 $r = \frac{0.1}{2}.100 = 5\%$

إذن الكحول المستعمل ثالثي صيغته الجزيئية نصف المفصلة كما يلي:

هـ الصيغة الجزيئية نصف المفصلة للأستر (E): بناءا على صيغة الكحول السابقة تكون صيغة الأستر الناتج عن تفاعل هذا الكحول مع حمض الإيثانويك كما يلي:

تمارين مقترحة

التمرين (4): (بكالوريا 2009 – علوم تجريبية) (الحل المفصل: تمرين مقترح 01 على الموقع)

: ننمذج التحول الكيميائي الحاصل بين حمض الإيثانويك (CH_3COOH) و الإيثانول (C_2H_5OH) بالمعادلة

$CH_3COOH + C_2H_5OH = CH_3COOC_2H_5 + H_2O$

لدراسة تطور التفاعل بدلالة الزمن ، نسكب في إناء موضوع داخل الجليد مزيجا مؤلفا من 0.2~mol من حمض الإيثانويك (C_2H_5OH) و 0.2~mol و 0.2~mol من الكحول (C_2H_5OH) ، بعد الرج و التحريك نقسم المزيج على 10 أنابيب اختبار مرقمة من 1 إلى 10 ، بحيث يحتوي كل منها على نفس الحجم V_0 من المزيج . نسد الأنابيب و توضع في حمام مائي درجة حرارته ثابتة و نشغل الميقاتية .

في اللحظة t=0 نخرج الأنبوب الأول ونعاير الحمض المتبقي فيه بواسطة محلول مائي من هيدروكسيد الصوديوم (Na $^+$ + OH) تركيزه المولي Na^+ + OH) فيلزم لبلوغ نقطة التكافؤ إضافة حجم من هيدروكسيد الصوديوم (V $_{be}$) لنستنتج (V $_{be}$) اللازم لمعايرة الحمض المبقي الكلي .

بعد مدة نكررُ العملية مع أنبوب آخر و هكذا ، انجمع القياسات في الجدول التالي :

t(h)	0	4	8	12	16	20	32	40	48	60
$V'_{be}(mL)$	200	168	148	132	118	104	74	66	66	66
تقدم التفاعل $x\left(mol ight)$										

1- أ/ ما اسم الأستر المتشكل ؟

. (C_2H_5OH) و الكحول (CH_3COOH) و التقدم التفاعل بين الحمض

جـ) اكتب معادلة التفاعل الكيميائي المنمذج لُلتحول الحاصل بين حمض الإيثانويك (CH3COOH) و محلول هيدر وكسيد الصوديوم (Na++OH) .

 (V'_{be}) و (V'_{be}) حجم الأساس اللازم للتكافؤ -2

ب- بالإستعانة بجدول التقدم السابق أحسب قيمة (x) تُقدم التفاعل ثم أكمل الجدول أعلاه

x=f(t) . x=f(t) .

د- أحسب نسبة التقدم النهائي au ، ماذا تستنتج ؟

هـ عبر عن كسر التفاعل النهائي Q_{rf} في حالة التوازن بدلالة التقدم النهائي X_f . ثم أحسب قيمته .

<u>أَجُوبِةُ مُذْتَصَرَةُ :</u>

1- أ) إيثانوات الإيثيل .

ب- جدول التقدم:

الحالة	التقدم	CH ₃ COOH -	$CH_3COOH + C_2H_5OH = CH_3COOC_2H_5 + H_2O$							
ابتدائية	x = 0	0.2	0.2	0	0					
انتقالية	X	0.2 - x	0.2 - x	X	X					
نهائية	X_{f}	$0.2 - x_f$	$0.2 - x_{\rm f}$	$\mathbf{x}_{\mathbf{f}}$	$\mathbf{X}_{\mathbf{f}}$					

 $n_a = CV'_{be} (^{\dagger} - 2 \cdot CH_3COOH + (Na^+ + HO^-) = (CH_3COO^- + Na^+) + H_2O_{-} +$

ب) جدول القياسات:

و من خلال هذه العلاقة نملأ الجدول $x_f = 0.2 - V'_{be}$

t(h)	0	4	8	12	16	20	32	40	48	66
x (mol)	0	0.03	0.05	0.07	0.08	0.10	0.12	0.13	0.13	0.13

ب) $au_{
m f}=0.65$ ، نستنتج أن التفاعل غير تام

$$Q_{rf} = \frac{n_f (CH_3COOC_2H_5) n_f (H_2O)}{n_f (CH_3COOH) n_f (C_2H_5OH)} = 3.45 \quad (= 3.45)$$

التمرين (5): (بكالوريا 2009 – رياضيات) (الحل المفصل: تمرين مقترح 02 على الموقع)

لغرض متابعة تطور التحول الكيميائي بين حمض الإيثانويك C_3H_5 -OH و الإيثانول C_2H_5 -OH نأخذ 7 أنابيب اختبار و عند اللحظة (t=0) نمزج في كل واحد منها $n_0(mol)$ من الحمض و $n_0(mol)$ من الكحول السابقين ينمذج التحول الحادث بالتفاعل ذي المعادلة:

 $CH_3COOH_{(\ell)} + C_2H_5OH_{(\ell)} = CH_3COOC_2H_{5(\ell)} + H_2O_{(\ell)}$

عايرنا عند درجة حرارة ثابتة و في لحظات زمنية متعاقبة محتوى الأنابيب الواحد تلوى الآخر من أجل معرفة كمية مادة الحمض المتبقى (n) بواسطة محلول هيدروكسيد الصوديوم $(Na^+ + OH^-)$. سمحت هذه العملية بالحصول على جدول القياسات التالي:

t(h)	0	1	2	3	4	5	6	7
n(mol)	1,00	0,61	0,45	0,39	0,35	0,34	0,33	0,33
n'(mol)								

- 1- أنجز جدو لا لتقدم التفاعل و احسب التقدم الأعظمي Xmax .
- 2- استنتج العلاقة التي تعطى كمية مادة الاستر المتشكّل (n') بدلالة كمية مادة الحمض المتبقى (n).
- 3- أكمل الجدول أعلاه ، و باختيار سلم مناسب أرسم المنكني الذي يمثل تغيرات كمية مادة الأستر المتشكل بدلالة n'=f(t) الزمن
 - 4- أحسب قيمة سرعة التفاعل عند اللحظة t=3~h ، كيف تتطور سرعة التفاعل مع الزمن ؟ علل .
 - 5- أحسب النسبة النهائية للتقدم (τ_f) و ماذا تستنتج ؟

أحوية مختصرة :

1) جدول التقدم:

الحالة	التقدم	CH ₃ COOH -	$CH_3COOH + C_2H_5OH = CH_3COOC_2H_5 + H_2O$						
ابتدائية	$\mathbf{x} = 0$	n_0	n_0	0	0				
انتقالية	X	n ₀ - x	n ₀ - x	X	X				
نهائية	X_{f}	n ₀ - x _f	n ₀ - x _f	X_{f}	\mathbf{x}_{f}				

. $x_{max} = n_0 = 1 \text{ mol}$. n' = 1 - n . n' = 1 - n

- إكمال الجدول:

t (h)	0	1	2	3	4	5	6	7
n' (mol)	0	0.39	0.55	0.61	0.65	0.66	0.67	0.67

- $t = 3 h \rightarrow v = 0.5 \text{ mol/h} \cdot v_C = \tan\alpha (4)$
- الجملة الكيميائية تؤول إلى التوازن و عليه السرعة تتناقص إلى أن تنعدم .
 - نستنتج أن التفاعل غير تام ، $au_f = 0.67 < 1$ (5

التمرين (6): (بكالوريا 2011 - علوم تجريبية) (الحل المفصل: تمرين مقترح 03 على الموقع)

لتحضير النوع الكيميائي العضوي ميثانوات الإيثيل E نمزج E نمزج E مع E مع 0.5 mol من كحول E بوجود قطرات من حمض الكبريت المركز في انبوب اختبار ثم نسده بإحكام و نضعه في حمام مائي درجة حرارته ثابتة E 100° .

- 1- أ- ما طبيعة النوع الكيميائي E ؟ و ما هي صيغته الجزيئية نصف المفصلة ؟
 - ب- اكتب الصيغة الجزيئية نصف المفصلة لكل من A و B ، سم كلا منها .
- جـ- ما تأثير كل من حمض الكبريت المركز و درجة الحرارة على التحول الحادث ؟
 - 2- اكتب المعادلة الكيميائية المعبرة عن التفاعل المنمذج لهذا التحول.
 - 3- مستعينا بجدول التقدم للتفاعل احسب ثابت التوازن الكيميائي K الموافق.
- 4- عند حدوث التوازن الكيميائي نضيف للمزيج 0.1 mol من الحمض العضوي A.
 - أ- توقع في أي اتجاه تتطور الجملة الكيميائية تلقائيا ؟ علل .
 - ب- اوجد التركيب المولي للمزيج عند بلوغ حالة التوازن الجديد للجملة الكيميائية .

<u>أجوبة مختصرة :</u>

- $H COO CH_2 CH_3$: هي الكيميائي E عبارة عن أستر صيغته الجزيئية نصف المفصلة هي E عبارة عن أستر صيغته الجزيئية نصف
 - ب) الإيثانول ، حمض الميثانويك ، ج) حمض الكبريت و درجة الحرارة يؤديان إلى تسريع التفاعل .
 - $. H-COOH + CH_3-CH_2OH = H-COO-CH_2-CH_3 + H_2O (2)$

$$K = \frac{x_f^2}{(0.5 - x_f)} \approx 4$$
 (3)

- 4- أ) تتطور الجملة في جهة عل الأسترة (الاتجاه المباشر) بفعل زيادة التراكيز الابتدائية .
- $n'_f(HCOOC_2H_5) = 0.362 \text{ mol} \cdot n'_f(C_2H_5OH) = 0.138 \text{ mol} \cdot n'_f(HCOOH) = 0.2387 \text{ mol} (-1.50 + 1.50 +$

التمرين (7): (بكالوريا 2011 - رياضيات) (الحل المفصل: تمرين مقترح 04 على الموقع)

لغرض متابعة و مراقبة تطور جملة كيميائية مكونة من حمض الإيثانويك ، نمزج في اللحظة t=0~s و في درجة حرارة ثابتة ، 1.0 mol من حمض الإيثانويك و 1.0 mol من الإيثانول . يتطور التحول الكيميائي مباشرة بعد لحظة المزج ، ينتج عنه الماء و مركب عضوي E .

- 1- أ- ما أسم هذا التحول ؟ اذكر خصائصه .
- ب- اكتب معادلة التفاعل المنمذج للتحول الحادث.
 - ج- أعط اسم المركب العضوي E.
- V من الحجم الكلي ، نبرد العينة المأخوذة آنيا ، ثم نعاير حمض الإيثانويك المتبقي في العينة بمحلول لهيدروكسيد الصوديوم تركيزه المولي معلوم .

نكرر العملية في لحظات زمنية محددة ، البيان (الشكل-1). يلخص مختلف التجريبية المتحصل عليها .

 $t=25\ h$ أ- اوجد السرعة اللحظية للتفاعل في اللحظة المردود التفاعل عند التوازن .

3- لزيادة مردود التفاعل ، هل تقوم بـ:

• زيادة حرارة المزيج التفاعلي ؟

• استخدام مزيج ابتدائي غير متساوي المولات ؟

• إضافة قطرات من حمض الكبريت المركز ؟

4- أ- احسب كسر التفاعل ، للجملة الكيميائية السابقة ، عند التوازن $Q_{r\, eq}$ ، ثم استنتج ثابت التوازن K . ب- عند التوازن نضيف إلى المزيج التفاعلي $0.2\ mol$ من حمض الإيثانويك ، حدد جهة تطور الجملة . علل .

<u>أجوبة مختصرة :</u>

1- أ) هذا التحول هو تحول استرة يتميز بالخواص التالية : محدود (غير تام) ، لاحراري ، بطيء جدا .

 $CH_3COOH + C_2H_5OH = CH_3COOC_2H_5 + H_2O$ (\hookrightarrow

 $r = \frac{0.67}{1}$. 100 = 67 % ($v = 8.1 \cdot 10^{-3} \text{ mol/h}$ (أ-2) إيثانوات الإيثيل $E = \frac{0.67}{1}$. $V = 8.1 \cdot 10^{-3}$ mol/h (أ-2) إيثانوات الإيثانوات الإيثانوات الإيثانوات الأسترة نستخدم مزيجا ابتدائيا غير متساوي المولات .

$$K = Q_{rf} = 4.12 \cdot Q_{rf} = \frac{x_f^2}{(1 - x_f)^2} = 4.12 (1-4)$$

 $Q_{ri} < K$ ، نلاحظ أن $Q_{ri} = 2.56$ ، من الجملة يصبح $Q_{ri} = 0.2$ ، نلاحظ أن $Q_{ri} < 0.2$ ، نلاحظ أن $Q_{ri} < 0.2$ ، إذن الجملة تتطور في الاتجاه المباشر أي في جهة تشكل الأستر .

التمرين (8): (بكالوريا 2013 - علوم تجريبية) (الحل المفصل: تمرين مقترح 05 على الموقع)

في حصة للأعمال المخبرية، كلف الأستاذ فوجًا من التلاميذ بوضع في كل أنبوب من أنابيب الاختبار الثمانية مزيجا يتكون من: $4,5\,\mathrm{mmol}$ من ميثانو ات الإيثيل و $10\,\mathrm{mL}$ من الماء.

توضع أنابيب الاختبار مسدودة في حمام مائي درجة حرارته ثابتة $40^{\circ}C$. كل 10~min يفرغ التلميذ

A محتوى أحد الأنابيب في بيشر، ثمّ يوضع هذا الأخير في حوض به ماء وجليد، ويعاير الحمض A المتشكل في البيشر بواسطة محلول هيدروكسيد الصوديوم A المتشكل في البيشر بواسطة محلول هيدروكسيد الصوديوم A المولي: A المولي: A المولي: A المولي بعد إضافة حجم A بوجود كاشف ملون مناسب نحصل على التكافؤ بعد إضافة حجم A من محلول هيدروكسيد الصوديوم.

يكرر التلاميذ العملية مع بقية الأنابيب وتدون النتائج في الجدول التالي:

t(min)	0	10	20	30	40	50	60	70	80
$V_{\it eq}(\it mL)$	0	2,1	3,7	5,0	6,1	7,0	7,6	7,8	7,8

1 لماذا يوضع البيشر في حوض به ماء وجليد؟ وما دور الكاشف الملوّن-1

2- اكتب الصيغة الجزيئية نصف المفصلة للإستر.

3- أ - سمّ التحول الكيميائي الحادث للجملة في الأنابيب، مع ذكر خصائصه عند حالة التوازن الكيميائي.

ب- اكتب معادلة التفاعل الحادث في أنبوب الاختبار.

 V_{eq} عن N_{eq} عن عن مادة الحمض المتشكلة في كل أنبوب بدلالة N_{eq} عن N_{eq} عن N_{eq} عن N_{eq} عن N_{eq}

استنتج قيمة X تقدم التفاعل في كل من الأزمنة التالية:

t(min)	0	10	20	30	40	50	60	70	80
x (mmol)									

أ- ارسم بيان: X = f(t) على ورقة ميليمترية.

r مر دود التحول. كيف يمكن مر اقبته r

حالة ما أجريت التجربة في درجة X = f(t) اعد رسم بيان: X = f(t) كيفيا على نفس المعلم، في حالة ما أجريت التجربة في درجة $\theta' = 60^{\circ}C$ الحرارة:

<u>أجوبة مختصرة :</u>

1) لتوقيف التفاعل ، دور الكاشف الملون معرفة التكافؤ .

2) HCOOCH₂CH₃ (2 ، فير تام ، لا حراري .

. $x = 0.5 V_{\text{\'eq}} (4 \cdot HCOOC_2H_5 + H_{21}O = HCOOH + C_2H_5OH (-$

t(min)	0	10	20	30	40	50	60	70	80
X(mmol)	0	1,05	1,85	2,50	3,05	3,50	3,80	3,90	3,90

<u>5-أ) البيان :</u>

ب) r = 87% ، مراقبة المردود : استعمال مزيج ابتدائي غير متكافئ في كمية المادة لتحسين قيمة المردود .

_ مبرد مائي

أرلينة ماير

الشكل-1

التمرين (9): (بكالوريا 2013 - علوم تجريبية) (الحل المفصل: تمرين مقترح 06 على الموقع)

الهدف: دراسة تحول الأسترة.

نضع في أرلينة ماير $1 \, mol$ من حمض الإيثانويك CH_3-COOH و $1 \, mol$ من الكحول $1 \, mol$. نضيف قطرات من حمض الكبريت المركز ونسد الأرلينة بسدادة متصلة بمبرد، ثمّ نضعها في حمام مائي درجة حرارته $100 \, ^{\circ}C$ (الشكل-1).

بعد مدة زمنية من التسخين المرتد، نسكب محتوى الأرلينة في بيشر به ماء مالح، فنلاحظ طفو مادة عضوية.

2- لماذا نستعمل الماء المالح؟

 $n_E = f(t)$ (الشكل $n_E = n_E$) إن متابعة كمية مادة الإستر المتشكل $n_E = n_E$ بدلالة الزمن مكنتا من رسم البيان

ب- هل التحول الكيميائي الحادث تام؟
 كيف تتأكد عمليا من ذلك؟

ج- جدْ سرعة التفاعل في اللحظات:

 $t_1 = 20 \text{ min}$; $t_2 = 40 \text{ min}$; $t_3 = 60 \text{ min}$.

ناقش النتائج المتحصل عليها. ماذا تستنتج؟

د- عيّن مردود التحول. هل يمكن تحسينه عند نزع الماء الناتج؟ فستر ذلك.

ه- استنتج صنف الكحول المستعمل. اكتب صيغته الجزيئية نصف المفصلة مع تسميته.

<u>أجوبة مختصرة :</u>

1) دور التسخين المرتد هو تكثيف البخار المتصاعد و منع ضياعه فيعود إلى الأرلينة ، الهدف من إضافة حمض الكبريت المركز هو تسريع التفاعل ، 2) نستعمل الماء المالح هو فصل المواد ،

 $CH_3COOH + C_4H_9OH = CH_3COOC_4H_9 + H_2O$: معادلة التفاعل (1-3

ب $au_{
m f}=0.6<1$ و منه التحول الكيميائي غير تام ، نتأكد عمليا من ذلك بإضافة قطرات من كاشف ملون .

جـ $v(t_3) = 0.0020 \text{ mol/L}$ ، $v(t_2) = 0.0035 \text{ mol/min}$ ، $v(t_1) = 0.008 \text{ mol/min}$. iلاحظ أن $v(t_3) = 0.0020 \text{ mol/L}$ ، $v(t_2) = 0.0035 \text{ mol/min}$ ، $v(t_1) = 0.008 \text{ mol/min}$. illum عة تتنافص فالتحول بطيء ، د) % $v(t_3) = 0.0035 \text{ mol/min}$ ، يمكن تحسين مردود التفاعل بنزع الماء الناتج من التحول و $v(t_3) = 0.008 \text{ mol/min}$ ، $v(t_1) = 0.008 \text{$