Simulazione degli N-corpi

Diamadis Odysseas, Sebastiani William

Il progetto

Il progetto consiste in una simulazione di N corpi per ciascuna delle seguenti modalità - Algoritmo esaustivo multithread sulla macchina host (OpenMP) - Algoritmo di Barnes-Hut multithread con OpenMP - Algoritmo esaustivo con cuda - Algoritmo di Barnes-Hut con cuda

Esaustivo con OpenMP

L'algoritmo esaustivo è molto semplice da parallelizzare. È possibile infatti scomporre la computazione in due fasi principali che non comportano alcuna concorrenza da parte dei thread: la fase di calcolo delle interazioni, in cui per ciascun corpo viene compilato il vettore delle forze risultanti applicate su di esso, e la fase di applicazione delle suddette forze.

È sufficiente spezzare queste due fasi in due costrutti

#pragma omp parallel for

per ottenere una sufficiente parallelizzazione.

Speed up

thread	tempo (s)	speedup
1	8288	1.00
2	4199	0.50
3	2864	0.34
4	2175	0.26
5	1800	0.22
6	1911	0.20
7	1651	0.19
8	1496	0.18
9	1384	0.16
10	1274	0.15
11	1190	0.14
12	1137	0.13

Barnes-Hut con OpenMP

L'algoritmo di Barnes-Hut è caratterizzato dalla suddivisione dello spazio in ottanti, i quali costituiranno un albero, detto l'**octree** alle cui foglie saranno presenti i corpi iniziali. Dei nodi interni viene tenuto conto dei centri di massa dei corpi o dei nodi sottostanti.

In questo modo, quando un corpo è sufficientemente lontano da un gruppo di corpi, questi possono essere trattati come un unico corpo che ha come valori di posizione e di massa quelli del centro di massa del gruppo. Questo riduce la complessità temporale ad un $O(\log n)$, contrariamente alla versione esaustiva che richiede $O(n^2)$.

Il calcolo della forza avviene nel seguente modo

Per ciascun corpo C:

Esegui una visita in profondità dell'albero

Per ciascun nodo interno:

se il rapporto tra la distanza tra il corpo ed il centro di massa del nodo corrente e calcola l'interazione tra il corpo ed il centro di massa del nodo

altrimenti:

continua a scendere nell'albero

Speed up

Di seguito la tabella con il tempo impiegato in una simulazione. Il tempo è calcolato come la media dei tempi impiegati in 1000 simulazioni con 5000 corpi casuali.

thread	tempo (s)	speedup
1	166.96	1.00
2	110.73	0.61
3	94.79	0.57
4	85.34	0.51
5	80.05	0.47
6	76.28	0.45
7	71.76	0.42
8	72.63	0.41
9	70.05	0.42
10	65.48	0.40
11	64.36	0.37
12	66.72	0.38