CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGAGGCACAGGTGGCCCCCACCACCCGGAGG ${\tt AGCAGCTCCTGTCCGGGGGG} \underline{\textbf{ATG}} {\tt ACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA}$ AGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGATGTGGCT ${\tt TCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGTGCT}$ GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGGCTGCCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAG GACCAGCGGGCTTCCTGGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCATCAACACCGC CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG TGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC $\tt CTGGAGGAGCAGCTGGGGTCCTGCTGCAAGAAAGACTCG{\color{red}{\textbf{TGA}}}CTGCCCAGCGCCCCAGG{\color{red}{\textbf{CGCCCCAGG}}}$ CTGGACTGAGCCCCTCACGCCCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGGGCCTCAGTGGGGGGCTGCTGCCTGACCCCCAGCACAATAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site.

amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

 $\tt GTCAGCCCACGGGGGGACT{\color{red} \underline{ATG}} GTGAAATTCCCGGCGCTCACGCACTACTGGCCCCTGATC$ $\overline{\text{CGGTTCTTGGTGCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA}$ CCGGGGCATTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ${\tt ACCATGTGGACGAGTCGGTGGGGGGGCCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTT}$ CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT ${\tt CCTGGTGGGATGTGCCTCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGC}$ TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGGCAACACACAGTCACGGCAGCCCACATC ${\tt AAGAAGTTCACCTTCGTCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC}$ ACCCAACGTGTCTGAGAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC ${\tt TCTGTGTTGTTCCTTTTCCCAGTCAGTGAGGGCGCAT}$ $\tt CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG$ TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA CTCTGCCATGACAGACATGCCTCCGACAGAGGGGGGGGCACAGACATCGTGGAAATGAGAGAGG GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTCC TCCTCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGGTGCACCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA ${ t CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT}$ TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA ${\tt TATTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT}$ AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATATGTTATTTTATTTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCGGCCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTTGCAGAAC
TCTGTGTTTGTTCCTTTGCGGATCTTCTCCCTTCTTCCCAGTCACAGTGAGGGCGCCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTC

TGACGGAATCCCGGGCTGGGTATCCTGGTTTNGACAAGATAAACCCCCAGCAANAAATTGGG
GAGCAGGCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTTNGTTTGNATGGNTC
TGTCAACTCACGCTNTGTTTCGTGATGTTTTGGACACCCCAAAGTGTTTGAGAAAATTTTGAT
AGACATNATCGGAGTGGANTTTGCCTTTGCAGAANTTTGNGNTGTTCCTTTGCGGATTTTCT
CCTTTTTCCCAGTTCCAGTCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAG
AAAACCTTTGTCCTTGCCCCCCAGCTNTTTGGTGCGGATCATTGTCCTNATNGCCAGCCTTGT
GGTCCTACCCTGGGGGGTGCACGGTGCGACCCTGGGCGTTCCCTCCTGGCGGGCA

 ${\tt TATTCCCAGTTCCGGTCACGGGGGGGGGGGGCGCATNTCACCGGGTGGCTGANGACACTGAAGAAA}$ ${\tt ACCTTNGTCCTTGCCCCCAGNTTTGTGNTGCGGATNATCGTCCTCATCGCCAGCCTNGTGGT}$ ${\tt CCTACCCTACCTGGGGGTGCACGGTGAGAC}$

GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCCTCTGCGGCTCTGCCCCCTGCATCCTGTGCAG ${\tt CTGCTGCCCGCCAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCC}$ TGGGGGTGCTGGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG CCCTGGTGTGTGAGGAGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG CTCCCTGCTTGGCTACCGCGCTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCT TCTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAG AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT TCCTCATCCAGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGC CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT GCCACGAGGCCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT GCTGTCCTGCCCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCAT CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT CATCAGTCTGCGCTCCTCAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC ${\tt CACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGCTGTGAGGGCCGGGCC}$ TTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCGGAAGA TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC TACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGCTGAGGCAGCCT CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCACAGCCAACCT GCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGCTCCAGGACCTG CCCCTGAGCCGGCCTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCCTGCA TGCCCATACTCAGCATCTCGGATGAAAGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGG CTGCTGGAGAGCGGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT CCTGGTCACGTCCCCAGGGGACCCTGCCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGCACGTCCGCGAGGACTTGA ${\tt AGTCCTGAGCGCTCAAGTTTGTCCGTAGGTCGAGAGAGGCC} \underline{{\tt ATG}} {\tt GAGGTGCCGCCACCGGC}$ ${\tt ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG}$ ${\tt TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCC}$ TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT CATTCGTTATGGCTGGCGCTGGGGTTGGAGAACTGCAGTGTTTGTGACTATATTCAACACAG TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA ${\tt GCTGTCACGGGAAGTCTTTTTAGGATAAACGTAGGCCTGCGTGGCCTGGTGGCAT}$ AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG $\tt GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTTCCTAGAAACC$ $\tt CTTCAGTAATAGATAAACAAGACAAGGAC\underline{TGA} AAGTGCTCTGAACTTGAAACTCACTGGAGA$ GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATCAT
AACCGGTTTGATGCTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGGCACCGCGGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT ${\tt GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG}$ $\tt CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT$ GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTGTTAAAAGTGACCAC TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG ${\tt TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTGGCTGACCTACAGATACA}$ ${\tt GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT}{\tt TGA}{\tt TGAGAAAACAAGGAAGAT}$ TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTAATTTTCTGTTAAGCTCCATTTGCCAGT ${\tt TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATTTTTACT}$ CTATGTTTCTCTACATGTTTTTTTTTCTTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC ${\tt TGAAGCTCGGTGGCACTGGAATTTACTGTATTCATTGTCGGGCACTGTCCACTGTGGCCTT}$ TCTTAGCATTTTTACCTGCAGAAAAACTTTGTATGGTACCACTGTGTTGGTTATATGGTGAA TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTGTAGATAGTTCCTAC TGGAAAAAGTGGAAATTTATTAAAATCAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA ${\tt TCCAAATTCCCAATTTTTTTGGTCTTTTTAGGAAAGATTGTTGTGGTAAAAAGTGTTAGTA}$ TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA AAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979</pre>

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNQKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

TGATTGGAGCTGTAAAAAANTCTTCAGGTGTTGTNATTTTTTTATATGATTATTCTGTAANT
TGTATTTATTGTTCAGTTTTNTGTATCTTGCGCTTGTTTAGCCNTGAACCAGGAGCAACAGG
GTCAGNTTNTGGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAAT
NTAAACTGCTGTGGGTTCCGAAGTGTTAACCCCAAATGACACCTGTNTGGCTAGCTGTGTTAA
AAGTGACCACTNGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGA
GATTTGTTGGTGGCATTGGCCTGTTNTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACC
TACAGATACAGGAACCAG

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTTAATTTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTTATATATTTGAAG
TCTAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

CAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG CTCTGGGTGGCCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT CTGCACTGAGGAGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCT TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTCCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCCTGGGCCTCCGCCGCCACCCCATCTTCTGAGGATCCAGGCTTTTCTT $\tt CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG$ CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAGTAAACAGTTCATCCATGATCTCACT TAACCACCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCAATTTTGCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGGTTGGGGGATGGTGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG GTCTGTTCTTTAGTTCTAGTTTGTATCCCCTCAAAAGCCATTATGTTGAAATCCTAATCCCC AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

 $\tt CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGGGCCACCAGAAGTT$ ${\tt TGAGCCTCTTTGGTAGCAGGAGGCTGGAAGAAAGGACAGAAGTAGCTCTGGCTGTG} \underline{\textbf{ATG}} \underline{\textbf{GGG}}$ ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT GGAAGTGCCAGAGAGTGTAACAGGACCTTGGAAAGGGGATGTGAATCTTCCCTGCACCTATG ACCCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCGTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC ${\tt TGGCAGCGGTTATGGCTTCACGGTGCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTC}$ GGGGTTCTCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCATCT CCTTGTGCTGTATGGTGGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA ${\tt CAAGAGCATGTCTACGAAGCAGCCAGG} \underline{{\tt TAA}}{\tt GAAAGTCTCTCTCTTTCCATTTTTGACCCCGT}$ AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCTCAGGCACCTT CTGAGGTTGTTTTGGCCCTCTGAACACAAAGGATAATTTAGATCCATCTGCCTTCTGCTTCC AGAATCCCTGGGTGGTAGGATCCTGATAATTAATTGGCAAGAATTGAGGCAGAAGGGTGGGA AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCCTCTTGGGCCATAGGGCACA TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTTCGCAAGTGGCTGCT CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA TCTGGATTATGAGTTTCTGGCCACTGAGGGCAAAAGTGTCTGTTAAAAATGCCCCATTAGGC ${\tt CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTTGCATGGCCTTCTTCCCTGCT}$ ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT ${\tt GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG}$ GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTAAATACCAGAGGGAAGATG CCCATAGCACTAGGACTTGGTCATCATGCCTACAGACACTATTCAACTTTGGCATCTTGCCA CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT TTCTCTTTCTTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416</pre>

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GCGCCGGGAGCCCATCTGCCCCCAGGGGCACGGGCGCGGGGGCCGGCTCCCGGCCCGGCACAT GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC \mathtt{GGGATG} TCCCTCCTCCTCCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA CACTGAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGGGGGGAGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG ATTTTCCTCTTGGTGTGGCTGCTAATCCGAAGGAAAGAAGAAGAAGATATGAGGAAGAAGA GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ${\tt ACGGTC}{\color{blue}{\bf TGA}}{\tt ATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC}$ TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACAACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

 $\tt GTCGTTCCTTTGCTCTCGCGCCCCAGTCCTCCTCCTGGTTCTCCTCAGCCGCTGTCGGAGGAGAGCACCCGGA$ AGCCTCCCTTGCCGCCTCCTCTGCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCCGGGCG ${\tt CCCCTGCGAGTCCCCGGTTCAGCC}_{\hbox{\scriptsize ATC}}{\tt GGGACCTCTCCGAGCAGCAGCACCGCCCTCGCCTCCTGCAGCCGCATC}$ ${\tt GCCCGCCGAGCCACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACAGCTCAG}$ ${\tt CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT}$ GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACAAGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ${ t ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT$ ACCTGTGCCCCCCATACGGTGTGTCCTGTGGGTTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG ${\tt TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT}$ ${\tt TCCAGCTCCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT}$ TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG GCCACTGGGGGCGAGAAGTCCAGCACGCCCATCAAGGGCCCCAAGAGGGGACATCCTAGACAGAACCTACACAAG CATTTTGACATCAATGAGCATTTGCCCTGGATGATTGTGCTTTTCCTGCTGCTGCTGCTGCTGTGTGATTGTGGTG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT ${f AGGGAGGTTGCTGCTTTCTCCAATGGGTACACAGCCGACCACGAGCGGGCCTACGCAGCTCTGCAGCACTGGACC}$ ATCCGGGGCCCCGAGGCCAGCCTCGCCCAGCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CTTAGCCCGAGCCCCATCCCCAGCCCCAACGCGAAACTTGAGAATTCCGCTCTCCTGACGGTGGAGCCTTCCCCA ${\tt CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC}$ ${ t TCCGCGCTGAGCAGCAACGGTTCCTTTATTACCAAAGAAAAGAAGGACACAGTGTTGCGGCAGGTACGCCTGGAC$ CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG $\tt CTCCTGGACTCTGTTATAGCCATCTTCCTGACCTGCTG{\color{blue}{\textbf{TAG}}} ACATAGGGATACTGCATTCTGGAAATTACTCA$ $\textbf{ATTTAGTGGCAGGGTGTTTTTAATTTTCTTCTGTTTCT} \overline{\textbf{CTGATTTTTGTTGTTGTTTGGGGGTGTGTGTGTTTGT}}$ ${\tt GTGTGTGTGTGTGTGTGTGTGTTTAACAGAGAATATGGCCAGTGCTTGAGTTCTTCTCCTTCTC}$ ${\tt TCTCTCTTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA}$ ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTGCCTTCTTATGTATTTTCAAGATTATTCTG ${\tt TGCACTTAAATTTACTTAACTTACCATAAATGCAGTGTGACTTTTCCCACACACTGGATTGTGAGGCTCTTAAC}$ ${\tt TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT}$ AAAAACAAATATTATTACTATTTTTATTATTGTTTGTCCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA ${\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG}$ $\tt CTGAAACTTGACCACACTATTGCTGATTGTATGGTTTTCACCTGGACACCGTGTAGAATGCTTGATTACTTGTAC$ TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT GACAACTGGGCCACCAAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG ${\tt TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT}$ ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT GAGTACCGCTGTGTCCGGGTGGTCGGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTC $\tt CGGGAGGAGTTTGTGTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA$ $\tt CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT$ TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCAC GCCCCTGTGGATCATCACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT GGCCGGGCCACTCACGTTCAATGAAATGATCCAGCCTGTGTGCCCTGCCCAACTCTGAAGAGA ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCCACAGAGGATGGAGGTGAC GCCTCCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG $\hbox{\tt GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT}$ GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTGTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA GTAGCTGGGACCACAGGTGCCCGCCACCACCCAACTAATTTTTGTATTTTAGTAGAGAC ${\tt AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT}$ TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCCGCCTTTCCCACTGGTCCAT $\tt CTGGTTTTCTCCAGGGTCTTGCAAAATTCCTGACGAGATAAGCAGTTATGTGACCTCACG$ TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC ${\tt TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT}$ ${\tt CATTGTCTGGCGTGCGTGGACTGGACGTGAATCAAAATCATCCACTGAAA}$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234

><subunit 1 of 1, 453 aa, 1 stop

><MW: 49334, pI: 6.32, NX(S/T): 1

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS
WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR
DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

GCTCAGCGGCGCGCGGGGCGCTGCGGAGGGCTCCGGAGCTGACTCGCCGAGGCAGGAAATCCCTCCGGTCGCGA GCCGGCGACG<u>ATG</u>GCAGCGCGCCGCTGCCCGTGTCCCCGCCCGCGCCCTCCTGCTCGCCCTGGCCGGTGCTCT ${\tt GCTCGCGCCCTGCGAGGCCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCAGTGCCTCTGT}$ ${\tt TCGGAGTGGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAATATTCGACT}$ $\tt CCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCTCGAAATTACACGGGTCACTGTTACTACCATGGACATGT$ ${\tt ACGGGGGATATTCTGATTCAGCAGTCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA}$ AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT ${\tt CCGGGGATCATGTGGATCACATCACAACACACCAAACCTCGCTGCAAAGAATGTGTTTCCACCACCCTCTCAGAC}$ ATGGGCAAGAAGGCATAAAAGAGAGACCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCCA GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGAGGAGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTG $\tt CTGCAATGCCACCACCTGTACCCTGAAGCCGGACGCTGTGTGCCACATGGGCTGTGCTGTGAAGACTGCCAGCT$ GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC ${\tt TCACTGCCCAGCCAATGTGTACCTGCACGATGGGCACTCATGTCAGGATGTGGACGGCTACTGCTACAATGGCAT}$ GAGAGTCAATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGAGTTCCTTTGCCAAATGCGAGAT GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC CATAGAAACAACATCCCTCTGCAGCAAGGAGGCCGGATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGA CATGCCGGACCCAGGGCTTGTGCTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTCA AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGGCAGAGGGGTGTGCAACAACAGGAAGAA CATCCGGCAAGCAGAAGCAAGGCAGGAAGCTGCAGAGTCCAACAGGGAGCGCGGCCAGGGCCAGGAGCCCGTGGG ${\tt ATCGCAGGAGCATGCGTCTACTGACACTCATC} \underline{{\tt TGA}} {\tt GCCCTCCCATGACATGGAGACCGTGACCAGTG}$ $\overline{\text{CTGCTGCAGAGGGTCACGCGTCCCAAGGCCTCCTGTGACTGGCAGTTGACTCTGTGGCCTTTGCCATCGTT}$ ${\tt TCCATGACAACACACACACAGTTCTCGGGGGCTCAGGGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA}$ A GAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGGAGGAGGAGGAGGAGGACTCAAAAGTCTGGCCTTTC ${\tt TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATTATATGAAAAT}$ ${\tt TGAAACAAACTGGAGAAGGGTAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGC}$ AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCAACCCTTCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT GAAAT

: []

íű

Ē

. selle

1.2

in

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624

><subunit 1 of 1, 735 aa, 1 stop

><MW: 80177, pI: 7.08, NX(S/T): 5

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTTAATTTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTTATTTTTGGTAGAGATGGGA TTTCACCGTGTTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCCTCGGCCTCCC AAAGTGCTGGGATTACAGGCGAGTGCAACCACCCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAAGATTCGAAATCTGCCT TTTTATAGATTTGTAATTAATAAGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGATGTCACTGCCATTATGATGCCCC ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCCAAATGGGTAAGGGGATGGTGGCGA TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTACCCGTGCAGGTTTCTTCATTTGTT CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT ACAGCCTACAGCCGGTCTCCTTGTGGTCTTGCTTGCCCCTTCTACATCTCTACCATTAAGAGG CAGGTCAAGAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCATCTGTACTAAAAATACA AATATTGACTGGGCGTGGTGGTGACTGCCTGTGATCCCAGCTACTCAGGTGGCTGAAGCAGG ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA CACGCCTGTAATCCCGGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGGAGATCA AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAAATACAAAAAATTAGCCGGG GATGGTGGCAGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309

><subunit 1 of 1, 67 aa, 1 stop

><MW: 6981, pI: 7.47, NX(S/T): 0

 ${\tt MGKGMVAMLILGLLLLALLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLALLLLYH}$

Signal peptide:

amino acids 15-27

CGGCGCCCTGACTGCTGCTGCTGCTGCTGCTGCGCCATGGCGCGCGGCGCGCCCTGGGGCGCCCGGGCCCAGG AGGCGCGGCGGCGGCGGCCGGCCCCCCCGCGCAGACGGCGAGGACGGACAGGACCCGCACAGCAAGCACC TGTACACGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC CGTGGTGTGGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCTTGAACATTCCGAAACTG ${\tt TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC}$ TTCTCTGGTTCCGAGATGGGAAAAAGGTGGATCAGTACAAGGGAAAGCGGGATTTGGAGTCACTGAGGGAGTACG TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG TAACCTTCATCAAGTTTTATGCTCCATGGTGTGGTCATTGTAAGACTCTGGCTCCTACTTGGGAGGAACTCTCTA AAAAGGAATTCCCTGGTCTGGCGGGGGTCAAGATCGCCGAAGTAGACTGCACTGCTGAACGGAATATCTGCAGCA AGTATTCGGTACGAGGCTACCCCACGTTATTGCTTTTCCGAGGAGGAAGAAAGTCAGTGAGCACAGTGGAGGCA GAGACCTTGACTCGTTACACCGCTTTGTCCTGAGCCAAGCGAAAGACGAACTTTAGGAACACAGTTGGAGGTCAC CTCTCCTGCCCAGCTCCCGCACCCTGCGTTTAGGAGTTCAGTCCCACAGAGGCCACTGGGTTCCCAGTGGTGGCT ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA $\tt CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC$ TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGCAAAAACCCACACCTCTGGAAGATACCTTCACGGCCGCTGC TGGAGCTTCTGTTGCTGTGAATACTTCTCTCAGTGTGAGAGGTTAGCCGTGATGAAAGCAGCGTTACTTCTGACC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGAT CCTTCTGTTTCTCACGGGGTGAAACATGTCTTTAGTTCCTCATGTTAACACGAAGCCAGAGCCCACATGAACTGT TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA AAGATTCCAGTTGTATTTGTCACCTGGGGTGACAAGACCAGACAGGCTTTCCCAGGCCTGGGTATCCAGGGAGGC CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC CAAAGACAGATGTCAGTGGGCTGTGGCCCTGGTGTGCACGGCTGTGGCAGCTGTTGATGCCAGTGTCCTCTA ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA CTGTCTGTCTGAGGCAGAAGATAACAGCAGCATCTCGACCAGCCTCTGCCTTAAAGGAAATCTTTATTAATCACG TATGGTTCACAGATAATTCTTTTTTAAAAAAACCCAACCTCCTAGAGAAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

CTTTTCTGAGGAACCACAGCAATGAATGGCTTTGCATCCTTGCTTCGAAGAAACCAATTTAT CCTCCTGGTACTATTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA CCGCTGAAGTCTGTGCCACACACACACTTTCACCAGGACCCAAAGGAGATGATGGTGAAAAA GGAGATCCAGGAGAAGGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA AGGAGAACTGGGTGATATGGGAGATCAGGGCAATATTGGCAAGACTGGGCCCATTGGGAAGA AGGGTGACAAAGGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT CAAGACATCTATGAAGTTTGTCAAGAATGTGATAGCAGGGATTAGGGAAACTGAAGAGAAAT TCTACTACATCGTGCAGGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACTCATCGCTGACTATGTTGC TGTCCACAGACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGGAACCCAGCGAC CCCTATGGTCATGAGGACTGTGTGGAGATGCTGAGCTCTGGCAGATGGAATGACACAGAGTG CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAAGTAACTTCCCTCATCCT ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT CCATCATCAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980</pre>

><subunit 1 of 1, 277 aa, 1 stop

><MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGAATTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCCCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT CGGAAGGGAGGATCAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGC GGGCTCCATGCTGCCCCTGCTGCTGCTGCTGCTGTTGCTACCGCTGCTGCTGA AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGCGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGCGCGAGAGTAAC AGGGCTGCACGCCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGGCGACAG CGGCGAGGGGAGCGCTGGAGAAGGCGAGCGGGGGCGCGGGAGCCGGAGATGCAGCGGCCG GAAGCGGCGCGGAGTTTGCCGGAGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCGCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCGGGGCC CCCTGCTGCACTGCCTCCGCAGCTGCGCGCGCGCGCTGGTGCTGGCGCCCAGAGTTTCTG GAGTCCCTGGAGCCGGACCTGCCCGCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGCCTCCCCAAGGCTGCTCGGATCATCTGAAGATCCTGCAATG CCAGGGCTTCTATCAGCTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCCAC TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCGCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT GGCCACCATCAACTACACAGGACAGCGGGGCGCTGTGGGGCGTGCTTCCTGGCTTTACAAGC ATATCTTCCCCTTCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA GCAGTCCCCATTCCTGGGCTATGCTGGCGGGCCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCCC CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACGTTCTGGAC CAGGCTGTAGGTGCCTACCTGCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAA CCTTCGAATC<u>TGA</u>GAACTTCCACACCTGAGGCACCTGAGAGAGGAACTCTGTGGGGTGGGG CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTT AAAAAAAAGGGCGGCGCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913</pre>

><subunit 1 of 1, 730 aa, 1 stop

><MW: 78644, pI: 7.65, NX(S/T): 2

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLLPLLLLLPL
LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA
EVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK
QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI

Type II transmembrane domain:

amino acids 45-65

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif

amino acids 254-261

putative AMP-binding domain siganture

amino acids 332-343

N-glycosylation sites

amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA GCTTGTCCATCTCCCTCCCGGGGGAGCCGGCGCGCGCTCCCACCTTTGCCGCACACTCCGGC GAGCCGAGCCCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC CCATGGTGGTTTTTTAAACACTTCTTTTCCTTCTTCTTCCTCGTTTTGATTGCACCGTTTCCA TCTGGGGGCTAGAGGAGCAGCAGCCTTCCCAGCCAGCCCTTGTTGGCTTGCCATCGT CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTCGTCCCCTCGG CTGGCAGAAGGGGGTGACGCTGGGCAGCGCGAGGAGCGCGCCGCTGCCTCTGGCGGGCTTT CGGCTTGAGGGGCAAGGTGAAGAGCGCACCGGCCGTGGGGTTTACCGAGCTGGATTTGTATG TCCCCGCCGGGGCGGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TCACAGAGCTGAAAAGGTACTACACTGGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA AGACTACCTGGAATGTGTGAGCAAATACACTGACCAGCTCAAGCCATTTGGAGACGTGCCCC GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGCCCTCATGAAGATGCTGTACTGCCCATACTGTCGGGGGCTTCCCACTGTGAGGCCCTGCA ACAACTACTGTCTCAACGTCATGAAGGGCTGCTTGGCAAATCAGGCTGACCTCGACACAGAG TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGAGC GTGACAGCGGGCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG CTCAGGGAGTGGCAGTGGGTGCATGGATGACGTGTCCCACGGAGTTTGAGTTTGTCACCA ${\tt CAGAGGCCCCGCAGTGGATCCCGACCGGAGAGAGGTGGACTCTTCTGCAGCCCAGCGTGGC}$ CACTCCCTGCTCTCCTGGTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGCAGATA **A**TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG CAGTAATGCAATCTGCCTCCTTTTTGTTTTCCCAAAGAGTACCGGGTGCCAGACTGAACTG CTTCCTCTTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTTCTCATTTAAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914</pre>

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKVSPTPGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVLALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGGCGACGCGTGGGCAAAAGAACTCGGAGTGCCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG CAGTTTGCAGCGCCTGCGCCGGGTGCGCCAACTACGCAAAGACCAAGCGGGCTCCGCGGGACCGGCGGGGGC TAGGGACCCGGCTTTGGCCTTCAGGCTCCCTAGCAGCGGGAAAAGGAATTGCTGCCCGGAGTTTCTGCGGAGGT GGAGGGAGATCAGGAAACGCCTTCTCCTCACTTCGCCGCCTGGTGAGTGTCGGGGGAGATTGGCAAACGCCTAGG AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG TCTGATCAGAGCCAGACGCGTCCACTTCGCAGTTCTTTCCAGGTGTGGGGACCGCAGGACAGACGGCCGA TCCCGCCGCCCTCCGTACCAGCACTCCCAGGAGAGTCAGCCTCGCTCCCCAACGTCGAGGGCGCTCTGGCCACGA AAAGTTCCTGTCCACTGTGATTCTCAATTCCTTGCTTTGTTTTTTTCTCCAGAGAACTTTTTGGGTGGAGATATTA ACTTTTTTTTTTTTTTCCTTGGTGGAAGCTGCTCTAGGGAGGAGGAGGAGGAGGAGAAAGTGAAATGTGC CGGACATGGTGACAGCTGAGAGGAGGAGGAGTTTCTTGCCAGGTGGAGAGTCTTCACCGTCTGTTGGGTGCATG TGTGCGCCCGCAGCGGCGCGCGCGCGTGGTTCTCCGCGTGGAGTCTCACCTGGGACCTGAGTGAATGGCTCCCA CGCTGGCAGGATTCTGGATCCTCTGCCTCCTCACTTATGGTTACCTGTCCTGGGGCCAGGCCTTAGAAGAGGAGG AAGAAGGGCCTTACTAGCTCAAGCTGGAGAGAAACTAGAGCCCAGCACAACTTCCACCTCCCAGCCCCATCTCA TTTTCATCCTAGCGGATGATCAGGGATTTAGAGATGTGGGTTACCACGGATCTGAGATTAAAACACCTACTCTTG ACAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT TTATTACTGGAAAGTATCAGATACACCCGGACTTCAACATTCTATCATAAGACCTACCCAACCCAACTGTTTAC CTCTGGACAATGCCACCCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT TGGGTTTTAACAGAAAAGAATGCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTGGGAAGTG GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGTTG CCTGGGACTATGACAATGGCATATACTCCACACAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTTCCTGCTTAGATGAAGCAA TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG GTGGCCAGCCTACGGCAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGGATCC GGGCTGTAGGCTTTGTGCATAGCCCACTTCTGAAAAACAAGGGAACAGTGTGTAAGGAACTTGTGCACATCACTG ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT GGGAGACCATAAGTGAGGGTCTTCGCTCACCCCGAGTAGATATTTTGCATAACATTGACCCCTATACACCAAGGC AAAAAATGGCTCCTGGGCAGCAGGCTATGGGATCTGGAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG GAAATTGCTTACAGGAAATCCTGGCTACAGCGACTGGGTCCCCCCTCAGTCTTTCAGCAACCTGGGACCGAACCG GTGGCACAATGAACGGATCACCTTGTCAACTGGCAAAAGTGTATGGCTTTTCAACATCACAGCCGACCCATATGA GAGGGTGGACCTATCTAACAGGTATCCAGGAATCGTGAAGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC TGCAGTGCCGGTCAGGTATCCCCCCAAAGACCCCAGAAGTAACCCTAGGCTCAATGGAGGGGTCTGGGGACCATG GAAGAAGAACAGCAGAAAGCAGTCTCAGGTAAACCAGCAAATTTGGCTCGATAATATCGCTGGCCTAAGCGTCA GGCTTGTTTTCATGCTGTGCCACTCCAGAGACTTCTGCCACCTGGCCGCCACACTGAAAACTGTCCTGCTCAGTG CCAAGGTGCTACTCTTGCAAGCCACACTTAGAGAGAGTGGAGATGTTTATTTCTCTCGCTCCTTTAGAAAACGTG GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

 ${\tt CACTTGGGTTTTTTAATTAATTCTATTTTTATATATATAATATATGTTTCTTTTCCTGTGAAAAGCTGTTTTTCT}$ ${\tt CACATGTGAACAGCTTGCACCTCATTTTACCATGCGTGAGGGAATGGCAAATAAGAATGTTTGAGCACACTGCCCC}$ ATTTTATTTCATTTCTTCAAATTATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA ${\tt ATTACTTGGAAATTCAATGTTTGTGCAGAGTTGAGACAACTTTATTGTTTCTATCATAAACTATTTATGTATCTT}$ AATTATTAAAATGATTTACTTTATGGCACTAGAAAATTTACTGTGGCTTTTCTGATCTAACTTCTAGCTAAAATT GTATCATTGGTCCTAAAAAATAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAATAACTAA TATTTATATTAGGTTGGTGCAAAACTAGTTGCGGTTTTTCCCATTAAAAGTAATAACCTTACTCTTATACAAAGT ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATACCATTAAATACATTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT ${ t CTAGTACTGAAATTACTAAATTGGGTAAGATGATTTAAATGATTTTAATTTTTAACATTTTATTTCTAGAATATAT$ GGCTCCATTTTATTTTATAGTGTAAAGTTGTATTTCCTAAAGTTTGTGTTTTTGTCGACAGTATCTTTTAAATGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

TTAGCTGCTACGGGGTCCGGCCGCGCCCCTCCCGAGGGGGGGCTCAGGAGGAGGAGGAGGAC ${\tt CCGTGCGAGA}$ GTGGTTTCGGGAACGCGGCCAGTGCAAGGCATCACGGGTTGTTAGCATCGGCACGTCAGCCT GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAACAGCAAGGG GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGTGAACTCTAGGACATGTGCCATGATAA ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGGCCACAGTGCCTGTGTCCATCCTCAGGA CTCCGCCTGGCCCCAAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC ${ t TACCCCTAAGGTGAACTTGCAGCCCTTCAACTATGAAGAGATAGTTTCCAGAGGCGGGAACT$ CTCATGGAGGTAAAAAAGGGAATGAAGAGAAAA<mark>TGA</mark>AAGAGGGGCTTGAGGATGAGAAAAGAG AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCCGAAGCCTGCGAGGAGATGTGTTTTTCCCT AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTTGATTACCGGCTGGCCGGAG ACAAAGTCGGGAAACTTCGAGTGTTTGTGAAAAACAGTAACAATGCCCTGGCATGGGAGAAG ACCACGAGTGAGGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC ATGGCGTCTTGCTTGTTTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG TTACTATCTTTATATTTGACTTTGTATGTCAGTTCCCTGGTTTTTTTGATATTGCATCATAG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT TCTCAGTCATTTCTGAATCTTTCCNCATTATATATAAAATNTGGAAANGTCAGTTTATCTC CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA GAAAATAGAAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA AACTATGACATCAAAGATAGACTTTTGCCTAAGTGGCTTAGCTGGGTCTTTCATAGCCAAAC TTGTATATTTAATTCTTTGTAATAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFPGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGTGGCTGCTGGTGCTGCGCGCTGCTCCTGCTCTTGGTGCAGCTGCTG CGCTTCCTGAGGGCTGACGCGACGTACTATGGGCCGAGTGGCAGGGACGACGCCC AGAATGGGAGCTGACTGAT**ATG**GTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT GAGCTGGAAAGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCAGCGTTCTCTGTGC ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG GGAAGAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ACTTTTTAATAGATATGACTTTGCTTCCAACATGGAATGAAATAAAAAATAATAATAAAG ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343</pre>

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL
TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL
PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP
VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW
QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGCCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC $\mathtt{TG}\underline{\mathtt{ATG}}\mathtt{CTGCTGAGCTCCCTGGTGTCTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC$ TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT CAGTGGTCCTGGGTTCTCTGCAGCGTGAGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT CCTTTGGAGCCTCCTGCTGGGCCACTGGCTGGGATCAGGACACCAGTGATGCTCCTGGGACC CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGA CACTGGGTTCAGGCTGGCATCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT GCTGCTGACCAACACAGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCAGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCTGATGGGGAGCGTGGCTGGGTTCTGGGACGG GCCCGCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGCACCACTGGTG CATGAGGTGAGGGCACATGGTTCCTGGCCGGGCTGCACAGCTTCGGAGATGCTTGCCAAGG CCCCGCCAGGCCGGCGTCTTCACCGCGCTCCCTATGAGGACTGGGTCAGCAGTTTGG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AACATAAGCCAACCAACCAGCTGC<u>TGA</u>CAGGGGACCTGGCCATTCTCAGGACAAGAGAATGC AGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGTGATTCCAGGCAC CTCCCCACCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

CGGGCCGCCCCGGCCCCATTCGGGCCGGGCCTCGCTGCGGCGGCGACTGAGCCAGGCTGG GCCGCGTCCCTGAGTCCCAGAGTCGGCGCGCGCGCGCAGGGGCAGCCTTCCACCACGGGGAG CCCAGCTGTCAGCCGCCTCACAGGAAGATGCTGCGTCGGCGGGGCCAGCCCTGGCATGGGTGT GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG TCCCTGAAGACCCAGTGGTGGCACTGGTGGGCACCGATGCCACCCTGTGCTGCTCCTTCTCC CCTGAGCCTGGCTTCAGCCTGGCACAGCTCAACCTCATCTGGCAGCTGACAGATACCAAACA GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGGCAGCTTCACCTGCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC CAGGGGACACGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC TGGCAGGATGGCCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGGTGCTGGGTGCGAATGGCACCTACA GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG TGCACTGCTGGCCCCTGCCTTTCGTGTGCTGGAGAAGATCAAACAGAGCTGTGAGGAGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGGAGAAGGCTCCAAGACAGCCCTGCAGCCT CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCCTGACCATGAGGACCAGG GAGCTGCTACCCCTACAGCTCCTACCCTCTGGCTGCAATGGGGCTGCACTGTGAGCCC TGCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATACATTTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGCGTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA CTGACTGACCCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC AGGGGACTGCCCCCACCCCACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTTTCCTGGC TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG GATGTCATCTCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386</pre>

><subunit 1 of 1, 316 aa, 1 stop, 1 unknown

><MW: -1, pI: 4.62, NX(S/T): 4

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC

amino acids 217-234

TTCGTGACCCTTGAGAAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGAGTC CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAAC**ATG**AGGCTTTTCT TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCATCCTGGAGGCTCTCAAAGGT TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA ACATGGTGCGGTGAATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAG AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA **TAG**AGATACATCTACCCTTTTAATATAGCACTCATCTTTCAAGAGAGGGCAGTCATCTTTAA GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ACCCAGGAAGGCTGAGGCGGCAGAATCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAG ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCATTTCTGTCTCATCAAAAAC TGAAGTTAGCTGGGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGGGCCCAAGGAGGG TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA CTAACATCTCAGTCTCTGAAAATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT CACGGGGCTCAGTCTCTTTTCTCTTTTGGTGCCACCAGGACGGAGCATGGAGGTCACAGTAC CTGCCACCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCCTGCACCTTCAACTCCTGC TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTCTCGGTGATGCTGAGAAACGTG CAGCCGGAGGATGAGGGGATTTACAACTGCTACATCATGAACCCCCCTGACCGCCACCGTGG CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG CCGTGATTGTGGGTGCCTCCGTCGGGGGCTTCCTGGCTGTCGTCATCTTGGTGCTGATGGTG GTCAAGTGTGTGAGGAGAAAAAAGGGCAGAAGCTGAGCACAGATGACCTGAAGACCGAGGA GGAGGCAAGACGGACGGTGAAGGCAACCCGGATGATGGCGCCAAG<u>TAG</u>TGGGTGGCCGGCC CTCTTGGTGTGCTTCCCGTGACCTAGGACCCCAGGGCCCACCTGGGGCCTCCTGAACCCCCG ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA TGCTCTGGGACGTGTGGGCCCTGGGGAGAGAGAGAAAGGGCTCCCACCTGCCAGTCCCTGG GGAGGGCCGCTGTCACCTGCCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG GGAGGGAGGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG TGCTCCTCCCTGCTCCCAGCCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTTCCTGA AACTTGGAGGGCATGTTAAAGGGATGACTGTGCATTCCAGGGCACTGACGGAAAGCCAGGG CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAG ACTGGAAGAGCAGCTCCAGGTAGGGGGCCATGTTTCCCAGCGGGGACCCAACAACAGAGGCC AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGCCAAGGCTGGGAAAT GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCCTTCAGTGAGAACTCTCCCAGTT GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGAAAGGCAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG CTACTCGCTCCTCCCAACAACTCCCTTCGTGGGGACAAAAGTGACAATTGTAGGCCAGGC ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAATACAAGAATTAGCTGGGCGTG GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG GGAAGCAGAGGTTGCAGTGAACTGAGATAGTGCCACTGCAATTCAGCCTGGGTGAC ATAGAGAGACTCCATCTCAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415
<subunit 1 of 1, 215 aa, 1 stop
<MW: 24326, pI: 6.32, NX(S/T): 4
MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ
FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI</pre>

FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

TGCGGCGACCGTCGTACACCATGGGCCTCCACCTCCGCCCCTACCGTGTGGGGCTGCTCCCGGATGGCCTCCTGT CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA $\tt CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCTGCTGTCATCATTGACTGCTGGATTGACAATA$ TCAGGCTGGTTTACAACAAAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA GCCTTGTGGGCTGGGGCTACACACGGGGTGAGGATGTCCGAGGGGCTCCCTATGACTGGCGCCCGAGCCCCAAATG AAAACGGCCCTACTTCCTGGCCCTCCGCGAGATGATCGAGGAGATGTACCAGCTGTATGGGGGCCCCGTGGTGC TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCGGCAGCCGCAGGCCTGGAAGGACAAGT ACAACAACCGGATCCCAGTCATCGGGCCCCTGAAGATCCGGGAGCAGCAGCGGTCAGCTGTCTCCACCAGCTGGC TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCAGCTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT TGCAGTGCCAGGCCTGGCAGAGCCGCCAGGAGCACCAAGTGTTGCTGCAGGAGCTGCCAGGCAGCAGCACATCG AGATGCTGGCCAACGCCACCCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCCTGACTCCTGTGCCACAGGA CTCCTGTGGCTCGGCCGTGGACCTGCTGTTGGCCTCTGGGGCTGTCATGGCCCACGCGTTTTGCAAAGTTTGTGA GTGGCAGTGAAGAAGGAAGAATGAGAGTCTAGACTCAAGGGACACTGGATGGCAAGAATGCTGCTGATGGTGGA TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCCGCAGCCTTCCTATGAGGGATGTT ACTGGGCTGTGGTCCTGTACCCAGAGGTCCCAGGGATCGGCTCCTGGCCCCTCGGGTGACCCTTCCCACACACCA GCCACAGATAGGCCTGCCACTGGTCATGGGTAGCTAGAGCTGCTTGCCTTGTGGCTTAGCTGGTCGCCAGCC CCTGGGACATCTCACTCCTACCTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG CCCCAGTCCCGCAGGCTGTTTCCAGGGGCCCTGATTTCCTCGGATGTGCTATTGGCCCCAGGACTGAAGCTGC CTCCCTTCACCCTGGGACTGTGCTTCCAAGGATGAGAGCAGGGGTTGGAGCCATGGCCTTCTGGGAACCTATGGA GAAAGGGAATCCAAGGAAGCAGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA $\tt CCTGGCCAGCACCCAGCTTAGTGCTGGGACTAGCCCAGAAACTTGAATGGGACCCTGAGAGAGCCAGGGGTCCCC$ TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCCACAGGGTTTCTGTGCAGCTGGATTTTCTCTG TTGCATACATGCCTGGCATCTGTCTCCCCTTGTTCCTGAGTGGCCCCACATGGGGCTCTGAGCAGGCTGTATCTG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189</pre>

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

GCCTACGGCGCGGCCAAGGCGGCGGCTCCTTCGACCTGCGGCGCTTCCTGACGCAGCCGCA GGTGGTGGCGCGCCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCCTGGCCTCGGCCTTCTTCTTGGT GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC CAGTGGGCAGTCACCAACCCGAAGGACGTGCTGGTGGGGGCCGACTCTGTGAGGGCAGCCAT CACCTTCAGCTTCTTTTCCATCTTCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA CGCGGAGACCACCGAGGGCTACCAGCCGCCCCTGTGTACTGAGTGGCGGTTAGCGTGGGAA GGGGGACAGAGAGGGCCCTCCCCTCTGCCCTGGACTTTCCCATCAGCCTCCTGGAACTGCCA GCCCCTCTCTTTCACCTGTTCCATCCTGTGCAGCTGACACACAGCTAAGGAGCCTCATAGCC CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTCCTCGCTTTTAATGA CCTCAGCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT CAGCTTCCCCCCGGCCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA CTCAGGTTTGCTTCCCCTGTGCCCACTGCTGTATGATCTGGGGGCCACCACCCTGTGCCGGT GGCCTCTGGGCTGCCTCCGTGGTGTGAGGGCGGGGCTGGTGCTCATGGCACTTCCTCCTTG CTCCCACCCTGGCAGCAGGGAAGGGCTTTGCCTGACAACACCCAGCTTTATGTAAATATTC TGCAGTTGTTACTTAGGAAGCCTGGGGAGGGCAGGGGTGCCCCATGGCTCCCAGACTCTGTC TGTGCCGAGTGTATTATAAAATCGTGGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304
<subunit 1 of 1, 224 aa, 1 stop
<MW: 24810, pI: 4.75, NX(S/T): 1
MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSI</pre>

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

GAGCCACCTACCCTGCTCCGAGGCCAGGCCTGCAGGGCCTCATCGGCCAGAGGGTGATCAGTGAGCAGAAGGATG CCCGTGGCCGAGGCCCCCAGGTGGCTGGCGGCCAGGGGGACGGAGGTGATGGCGAGGAAGCGGAGCCAGAGGGG ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG GCCCTGCTCGTGCTGGCTGGCGGGGGGTGCTACTCTGGTATTTCCTAGGGTACAAGGCGGAGGTGATGGTCAGC CAGGTGTACTCAGGCAGTCTGCGTGTACTCAATCGCCACTTCTCCCAGGATCTTACCCGCCGGGAATCTAGTGCC TTCCGCAGTGAAACCGCCAAAGCCCAGAAGATGCTCAAGGAGCTCATCACCAGCACCCGCCTGGGAACTTACTAC CACCGCCGGCTGATGCTGAGCCCCGAGGTGCTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC ${\tt TCGGCTGCCGTCCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA}$ GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGG GTCTGGAAGAGGGCCTGCACAGCTACTACGACCCCTTCGTGCTCTCCGTGCAGCCGGTGGTCTTCCAGGCCTGT GAAGTGAACCTGACGCTGGACAACAGGCTCGACTCCCAGGGCGTCCTCAGCACCCCGTACTTCCCCAGCTACTAC TCGCCCCAAACCCACTGCTCCTGGCACCTCACGGTGCCCTCTCTGGACTACGGCTTGGCCCTCTGGTTTGATGCC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT GGCTTGCGCATCCTGCAGCCCTACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACC TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA GAGTTCCTCTGTTGTGAATGGACTCTGTGTCCCTGCCTGTGATGGGGTCAAGGACTGCCCCAACGGCCTGGAT GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT GATGGCCAGCCTGATTGTCTCAACGGCAGCGATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACC TTCCAGTGTGAGGACCGGAGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGC GGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGGGGGGCCCTCATCGCTGACCGC TGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCATGGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGC AAGGTGTGGCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCAC GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCGTGCGC $\tt CCCGTCTGCCCGCGCGCCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG$ CGCGAGGCCGCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTGATCCCACAGGACCTGTGCAGCGAG GCCTATCGCTACCAGGTGACGCACGCATGCTGTGTGCCGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGT GACTCAGGTGGTCCGCTGGTGCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG GGCTGTGGCCGGCCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGTG ACCTGAGGAACTGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCAACTGCCAAGCAGG CTGATGTCTGCTCCAGTGATGGCAGGAGGATGGAGAAGTGCCAGCAGCTGGGGGTCAAGACGTCCCCTGAGGACC GCAGTGGCTCAGCAGCAAGAATGCTGGTTCTACATCCCGAGGAGTGTCTGAGGTGCGCCCCACTCTGTACAGAGG CTGTTTGGGCAGCCTTGCCTCCAGAGAGCAGATTCCAGCTTCGGAAGCCCCTGGTCTAACTTGGGATCTGGGAAT GGAAGGTGCTCCCATCGGAGGGGACCCTCAGAGCCCTGGAGACTGCCAGGTGGGCCTGCTGCCACTGTAAGCCAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGEEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSFKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT CTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCC TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA CAGCACATGCATCTCACTGCCCAAGGTCTGTGATGGGCAGCCTGATTGTCTCAACGGCAGCG ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGG GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCACGAAGAGGACAGCCAT GACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGCCC CGTCTGCCTGCCCGCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCT GGGGCGCCTTGCGCGAGGGCGGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGC $\tt CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA$ AGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTGGGCCTGGCCCGG CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT GACCTGAGGAACTGCCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGC AACTGCCAAGCAGGGGGACAAGTAT

GGACGAGGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG CTCCGTGCCGCCAAGTTTTCATTTTCCACCTTCTCTGCCTCCAGTCCCCAGCCCCTGGCCG AGAGAAGGGTCTTACCGGCCGGGATTGCTGGAAACACCAAGAGGTGGTTTTTTGTTTTTAAA TTTCTGGAGCCTCTGCTATTGCTTTGCTGCGGGGAGCCCCGTACCTTTTGGTCCAGAGGGAC GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATTCACGGAT GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACAAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA TGCGGTCAATAATACCAGGGTGGTGGGACACAGCATTGCCAGGATGCTCGACTGGCTGCAGG AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG TGGATGTCCTCCACACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGT'ITTGCCTTCCAGTGCACT GACTCCAATCGCTTCAAAAAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT TGGCTACAATGCCAAGAAAATGAGGAACAAGAGGAACAGCAAAATGTACCTAAAAACCCCGGG ${\tt CAGGCATGCCTTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCC} {\color{red}{\bf TGA}{\bf GGAAGGCCCTTAATA}}$ CCTCCTTCTTAATACCATGCTGCAGAGCAGGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646

><subunit 1 of 1, 354 aa, 1 stop

><MW: 39362, pI: 8.35, NX(S/T): 2

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE
GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL
PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV
GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF
QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS
CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

CGGACGCGTGGGCGGACGCGTGGGCCTGGGCAAGGGCCGGGGCGCGGGCCGAGCCACCTCTTCCCCTCCCCGC AGAAGAGTGCGGCGGCGGACGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCTACTCCCGGGCTGCCG CACCAGGGAGCCTGGGCGCCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG GCACCTCTGGACAGCCCAGG<u>ATG</u>CTGTTGGCCACCCTCCTCCTCCTCCTTGGAGGCGCTCTGGCCCATCCAG ${\tt ACCGGATTATTTTTCCAAAT\overline{CAT}GCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA}$ GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT GAGATGCAGTGCATGTGTATGACGGCCCTGGGCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCA GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT $\tt CTGGTGCCACAGCCTGCTGCCTGCCTGACCGCTGCAACTACCAGACTTCTGTGCTGATGGAGCAGATGAGA$ GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG ${\tt ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG}$ CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG AGGCTCCCCTCCCATCTGCTAGCACGTCTCCAGCCCCCACTACTGTCCCTGAAGCCCCAGGGCCACTGCCCTCAC TGCCCCTAGAGCCATCACTATTGTCTGGAGTGGTGCAGGCCCTGCGAGGCCGCCTGTTGCCCAGCCTGGGGCCCC CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ACCACTTCCTTCCCTGTCCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCATTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA ${\tt GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA}$ $\tt CCCTCCAGCCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG$ CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA GGAATCATACATCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631
<subunit 1 of 1, 713 aa, 1 stop</pre>

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL
GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP
MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP
VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH
VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP
WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT
ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS
YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY
GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRQRGRLMRRLVR
RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKA
PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAV
LALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD GALIYRKLLFNPSGPYQKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

GGGCGAGAAGTAGGGGAGGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTTGTGTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTGTTTGCACTTGTTGACAGCAGTATTTTGCCGAC

CAGCCCGCGCGCCGGGCCGAGTCGCTGAGCCGCGGCTGCCGGACGGGACGGGACCGGCTAGG $\tt CTGGGCGCCCCCGGGCCCCGCCGTGGGC\underline{ATG}GGCGCACTGGCCCGGGCGCTGCTGCTGC$ CTCTGCTGGCCCAGTGGCTCCTGCGCGCCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG CCCCTCCGGGTGGCCGCGCCACGAACCGCGTAGTTGCGCCCACCCCGGGACCCCGGGACCCCC TGCCGAGCGCCACGCCGACGGCTTGGCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGG GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATAC TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC CTGGTGACACAAGCAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCC ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGGCACCACGCTGCTGCGCCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCCATCCACAAAT GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT CCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCTCAGTCTTTGAGCGAG CCCATTTTGTGGATTGTGTCCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCCTTGTCTT AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCCGTGACCCTGAGGTCGTCA ATGATGAGTCCTCTCTGGTCAGACATCGCTGGAAA<u>TGA</u>ATAGCCAGGCCTGACCTCAAGCAA CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC TGTCTTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493</pre>

><subunit 1 of 1, 518 aa, 1 stop

><MW: 56180, pI: 5.08, NX(S/T): 2

MGALARALLLPLLAQWLLRAAPELAPAPFTLPLRVAAATNRVVAPTPGPGTPAERHADGLAL
ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF
FLPGIKWNGILGLAYATLAKPSSSLETFFDSLVTQANIPNVFSMQMCGAGLPVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYIQPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLLPFRC
QRRPRDPEVVNDESSLVRHRWK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

CGCCTCCGCCTTCGGAGGCTGACGCGCCCGGGCGCCCGTTCCAGGCCTGTGCAGGGCGGATCG GCAGCCGCCTGGCGCGATCCAGGGCGGTGCGGGGCCTGGGCGGGAGCCGGAGGCGCGCCC $\tt GGC{\bf ATG}GAGGCGCTGCTGGGCGCGGGGGTTGCTGCTGGGCGCTTACGTGCTTGTCTACTA$ CAACCTGCTGAAGGCCCCGCCGTGCGGCGCATGGGCAACCTGCGGGGCCGCACGGCCGTGG TCACGGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCGCGGGGAGCG CGCGTGGTGCTGCCGCAGCCAGGAGCGCGGGGAGGCGGCTGCCTTCGACCTCCGCCA GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCGTGGCGCAGGAGCTGCGGGCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTTGGCTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGCCAGCCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGCTTGGGCCTGGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG $\tt CCTGAGATCCAGCTCTCC\underline{TAA}CCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTT$ GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTC CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTG ATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA $\tt GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG$ ATGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA AAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227</pre>

<subunit 1 of 1, 377 aa, 1 stop

<MW: 40849, pI: 7.98, NX(S/T): 0

MEALLLGAGLLLGAYVLVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR
VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG
ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP
VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR
PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL
AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP
EIQLS

Important features:

Signal peptide:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family

amino acids 37-49 and 114-124

 $\tt GGAGGAGACAGCCTCCTGGGGGGCAGGGGTTCCCTGCCTCTGCTCCTGCTCATC \underline{\textbf{ATG}} \texttt{GGAGGCATGGCTCAG}$ GACTCCCGCCCCAGATCCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGCCCGGCCAGGATGAGCTGC CAAGCCTCAGGCCAGCCCCCCCACCATCCGCTGGTTGCTGAATGGGCAGCCCCTGAGCATGGTGCCCCCAGAC CCACACCACCTCCTGCCTGATGGGACCCTTCTGCTGCTACAGCCCCCTGCCCGGGGACATGCCCACGATGGCCAG GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACCGGCTTGGCACGGCAGTCAGCAGAGGCGCT TTTACTCTGGAATGTGGGCCGCCCTGGGGCCACCCAGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG CAGGACTACACGGAGCCTGTGGAGCTTCTGGCTGTGCGAATTCAGCTGGAAAATGTGACACTGCTGAACCCGGAT $\tt CCTGCAGAGGCCCCAAGCCTAGACCGGCGGTGTGGCTCAGCTGGAAGGTCAGTGGCCCTGCTGCGCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCCCCAAGCCTGCAAGCCTGCAAGCCTGCAAGCCTGCCCCAAGCCTGCAAGCCTGCAAGCCTGCAAGCTCAAGCCTGCAAGCTCAAGCCTGCAAGCCTGCCCCAAGCCTGCAAGCTCAAGC$ TCTTACACGGCCTTGTTCAGGACCCAGACTGCCCCGGGAGGCCAGGGAGCTCCGTGGGCAGAGGAGCTGCTGGCC GGCTGGCAGAGCGCAGAGCTTGGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC CGGGCTCGAGGCCCTGACAGCAACGTGCTGCTCCTGAGGCTGCCGGAAAAAGTGCCCAGTGCCCCACCTCAGGAA GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT GGTCCCTGGACCCTGGAGCACCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC TGGCTGCTGCTTCTGGGCACCGCCGTGTGTATCCACCGCCGGCGCCCAGCTAGGGTGCACCTGGGCCCAGGTCTG GTCAGGCGCCTCCCACCCCAGCTGGCCCAGCTCTCCAGCCCCTGTTCCAGCTCAGACAGCCTCTGCAGCCGCAGG AAGAACCTTTCCCAAAGCCCAGGAGCTGTGCCCCAAGCTCTGGTTGCCTGGCGGGCCCTGGGACCGAAACTCCTC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG CTTAGCCCCTGCAGTCCCCCTAGCCCCCAGGCCTCTTCCCTCTCTGGCCCCAGCCCAGCTTCCAGTCGCCTGTCC AGCTCCTCACTGTCATCCCTGGGGGAGGATCAAGACAGCGTGCTGACCCCTGAGGAGGTAGCCCTGTGCTTGGAA CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT GGGTACATCAGCGTCCCAACAGCCTCAGAGTTCACGGACATGGGCAGGACTGGAGGAGGGGTGGGGCCCCAAGGGG GGAGTCTTGCTGTGCCCACCTCGGCCCTGCCTCACCCCCAGCGAGGGCTCCTTAGCCAATGGTTGGGGC GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCCTG TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT ACCTGGGCTGTGTGTGGGCTCTTGGCCTGTTTTCTCTGCAGCTGGGGTCCACCTTCCCAAGCCTCCAGAGAG TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAATTAGAGCAAAGCTGACCTGGAGCCCTCAGGGAGCAAA ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACTCCCACCACCACGGTTGTTTTGGC CTGAGGAGCAGCCCTGCCTGCTCTTCCCCCACCATTTGGATCACAGGAAGTGGAGGAGCCAGAGGTGCCTTT TATGAGACCGTAGGTCAAAAGCACCATCCTCGTACTGTTGTCACTATGAGCTTAAGAAATTTGATACCATAAAAT

</usr/seqdb2/sst/DNA/Dnasegs.min/ss.DNA41404

<subunit 1 of 1, 985 aa, 1 stop</pre>

<MW: 105336, pI: 6.55, NX(S/T): 7

MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFQIQPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGQDYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYQVWSLGNTSLPP ANWTVVGEQTQLE1ATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPW TLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMD HSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTOSOOTOPPVAPOAPSSILLPAAPIPILSPCSPPSPOASS LSGPSPASSRLSSSSLSSLGEDODSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

CTCCCACGGTGTCCAGCGCCCAGA**ATG**CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT CCCAGGTTATGAAGCCCTGGAGGGCCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG ${ t TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCCCTCCCCTTCTCCCAC$ CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCGGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA GCTGGGCTTCTCGAAGTTTGTCTCAGCG**TAG**GGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT GAAGCAGTATGGCTGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCCTGGAGAAGGGGTCGGGGGTGGTGAAAGTA GCACAACTACTATTTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop</pre>

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

 ${\tt TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGA}$ GCCGCAGAGCCAGAGCAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT $\tt GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA$ ${\tt GCCCTGTTTCTCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA}$ ${\tt CAGGGCTCTCAGAAGGCGGTGGTGCCCAGCTGGGATC} \underline{{\tt ATG}} {\tt TGTTGGCCCTGGTCTGTCTGC}$ TCAGCTGCCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG $\tt CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC$ TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC $\tt GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC$ ${\tt CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC}$ ${\tt AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTC} \underline{{\tt TAG}}{\tt GATGGACGGAACCATGCA}$ ${\tt CAGCAGGCTGGGAAATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA}$ AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187
<subunit 1 of 1, 146 aa, 1 stop
<MW: 16430, pI: 5.05, NX(S/T): 1
MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD
YEADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGY
WEAWRHHCQGKDLTEWVDGCDF</pre>

Important features:
Signal peptide:
amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins. amino acids 34-58 (catalytic domain), 111-132 and 66-107

AGCCGCTGCCCCGGGCCGCCCGCGCGCGCACCATGAGTCCCCGCTCGTGCCTGCGTTC GCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGCGAGCAACTGGCTGTACCTGGCCA CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCCGCGGTGC CCAGCTGGCCATTGAGGAGTGCCAGTACCAGTTCCGGAACCGGCGCTGGAACTGCTCCACAC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTCTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCTGCCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAAGGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGAGCGGCGTGCTGGGCACGAGGGGCCGCACATGCAACAAG ACGTCCAAGGCCATCGACGGCTGTGAGCTGTGCTGTGCCGCGGCTTCCACACGGCGCA GGTGGAGCTGCAACGCTGCAACTTCCACTGGTGCTGCTCAAGTGCCGGC AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ${\tt ACCAGGCAGCCAACCCAAGGGCACCAACCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT}$ GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGGCTGCCCGCATGTGGCTGCCACTGACCA ${\tt CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT}$ TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GGTTCGATATCTGTGGGTCCTTCCAGGCAAGAAGAGGGGAGATGAGAGCAAGAGACGACTGAA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT GAGAGGGAGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop</pre>

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNLE VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC CGRGFHTAQVELAERCSCKFHWCCFVKCRQCQRLVELHTCR

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

 $\tt CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGTGCCTGCAT$ $\tt CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTC$ $\tt GGCGCTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGGCGCTGG$ $\tt GTGCCCTGAAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGGCGCAGCTG$ CAGACCACGCGCGCGGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCCCT GCGGGAACTGCGTGAGCGCTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG ${\tt TGCCCCACGTCGTGGCTGTCCTTCGAGGGCTCCTGCTACTTTTTCTCTGTGCCAAAGACGAC}$ CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGCGCGAGAACTGTGTCATGATGC TGCACACGGGGCTGTGGAACGACGCACCGTGTGACAGCGAGAAGGACGGCTGGATCTGTGAG ${\tt AAAAGGCACAACTGC} \underline{{\tt TGA}} {\tt CCCCGCCCAGTGCCCTGGAGCCGCCCCATTGCAGCATGTCGTA}$ ${\tt TCCTGGGGGCTGCTCACCTCCCTGGCTCCTGGAGCTGATTGCCAAAGAGTTTTTTTCTTCCT}$ TGGGCTCTGGGACCTCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA ${\tt CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGA}$ AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352</pre>

<subunit 1 of 1, 293 aa, 1 stop</pre>

<MW: 32562, pI: 6.53, NX(S/T): 2

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

 ${\tt GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG}$ GCAGCCCCGCCGCCCCCCCCCCTTCTCCCCTCTTTCTCCCACGTCCTATCTGCCTCTCG ${\tt CGCGCTCCCGCTGCTGCCGGGTG}$ ${\tt GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGCCGGCCAGCCTCTTGGGGGAGAGTC}$ CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG $\tt CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACG$ TCGGCGGAGCTGGAGGTGCAGCGCAGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCC ${\tt AACAGGCGGCTGGACCTGTACCCCTACGACGCCGGGACGGCTTCACCTTCTCCC}$ TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCCTCCCCAG $\tt CCACCCGGCCAACTCCTTCTACTACCCGCGGGTGAAGGCCCTGCCTCCCATCGCCAGGGTGA$ AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CTCGCTACGTCCGGGTCCAGCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAG ${\tt GCTGAGTGCGTCCTGATAACTGCGTC}$ GAGCCATGGGGGTGTCGGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGGCCGAGGGCACAGGG $\tt GGTTTCGCGCTGCTCTGACCGCGGTGAGGCCGCCGACCATCTCTGCACTGAAGGGCCCT$ $\tt CTGGTGGCCGGCACGGGCATTGGGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGG$ CCCCCGTGTCCCGTCTCCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTCTAGGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGGCCACTTGAGAAGTGAATAAATGGGGCGG ${\tt TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT}$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA NNGSPCPELEEEAECVPDNCV

Important features: Signal peptide: amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA CAGCTTTAGTGGCCGGCCGCCGCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAATCCACACAAAATAAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGAGGAAGCTGAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAAGGTGATGCACCAGATTTAGTTGATGATGGAGAAGATGAAAGTGCAG TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGGAGAAGTGGAGAAGAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAAGAAGTGAAGAGGAAGAA GCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGAGAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT TCCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919</pre>

><subunit 1 of 1, 472 aa, 1 stop

><MW: 53847, pI: 5.75, NX(S/T): 2

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEEAEEEEEEVNRVSQSMKGKSKSSHDLLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWMSHVLQFEDKSRKVK
DASMQDSDTFEIYDPRNPVNKRRREESKKLMREKKERR

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature. amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

CCCGCCTCGGCTTTGAGGCGAGAGAGTGTCCCAGACCCATTTCGCCTTGCTGACGGCGTCG AGCCCTGGCCAGACATGTCCACAGGGTTCTCCTTCGGGTCCGGGACTCTGGGCTCCACCACC GTGGCCGCCGGCGGACCAGCACGCGCGCTTTTCTCCTTCGGAACGGGAACGTCTAGCAA CCCTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCAACTACATCTG CTCCTTCAAGTGGTTTTGGAACCGGGCTCTTTGGATCTAAACCTGCCACTGGGTTCACTCTA GGAGGAACAATACAGGTGCCTTGCACACCAAGAGGCCTCAAGTGGTCACCAAATATGGAAC CCTGCAAGGAAAACAGATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCT TCTCCAGACCTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA GGAATCAGAGATGCTACCACCTACCCGCCTGGATGGAGTCTCGCTCTGTCGCCAGGCTGGAG TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCAAGCGAGTCTCCTGC CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCG GAACGTGTACGCGCGCGCGCGCGCCCGGGGATCCCCAGCTGCCAGTGATGGTCTGGTTCC GAGAAAGTGGTGCTGGTGTTTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGA CGACAGCCACGCGCGCGGAACTGGGGGCTGCTGGACCAGATGGCGGCTCTGCGCTGGGTGC AGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCCTGTTCGGCCAGTCGGCG GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTCGGGTCTCTTCCATCGGGC CATTTCCCAGAGTGGCACCGCGTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGG CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTCCCAACAAGATGAGATTCCTCCAACT GAACTTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTG TGATCCCAGATGACCCTTTGGTGCTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTT CTAGGTGTCAACAACCTGGAATTCAATTGGCTCTTGCCTTATAATATCACCAAGGAGCAGGT ACCACTTGTGGTGGAGGAGTACCTGGACAATGTCAATGAGCATGACTGGAAGATGCTACGAA ACCGTATGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACTGCTCAC TACCACCGAGAAACCCCAATGATGGGGAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA AAGTACCTGCAGCTGGATTTTACCACAAGAGTGGGCATGAAGCTCAAGGAGAAGAAGATGGC TTTTTGGATGAGTCTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC TATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCA TGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGTTTAGAACTGCAGGAGCTCCCTGCT GCCTCCAGGCCAAAGCTAGAGCTTTTGCCTGTTGTGTGGGACCTGCACTGCCCTTTCCAGCC TGACATCCCATGATGCCCCTCTACTTCACTGTTGACATCCAGTTAGGCCAGGCCCTGTCAAC ACCACACTGTGCTCAGCTCTCCAGCCTCAGGACAACCTCTTTTTTTCCCTTCTTCAAATCCT CCCACCCTTCAATGTCTCCTTGTGACTCCTTCTTATGGGAGGTCGACCCAGACTGCCACTGC TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACTTTTGGTAGTTTGGGA TCTTCTCCCACCCACACTTATCTCCCCCAGGGCCACTCCAAAGTCTATACACAGGGGTGG TCTCTTCAATAAAGAAGTGTTGATTAGAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44179
<subunit 1 of 1, 545 aa, 1 stop</pre>

<MW: 58934, pI: 9.45, NX(S/T): 4

MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATTSAPSSG
FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPFSRPP
LGILRFAPPEPPEPWKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS
VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF
IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA
AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA
HLAGCNHNSTQILVNCLRALSGTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVIPDD
PLVLLTQGKVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEEYLDNVNEHDWKMLRNRMMD
IVQDATFVYATLQTAHYHRETPMMGICPAGHATTRMKSTCSWILPQEWA

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

 ${ t GAGAACAGGCCTGTCTCAGGCAGGCCCTGCGCCTCCTATGCGGAG{ t ATG}{ t CTACTGCCACTGCT}$ GCTGTCCTCGCTGCTGGGCGGGTCCCAGGCTATGGATGGGAGATTCTGGATACGAGTGCAGG AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTTCTCCTACCCCCGA CAAGACTGGACAGGGTCTACCCCAGCTTATGGCTACTGGTTCAAAGCAGTGACTGAGACAAC CAAGGGTGCTCCTGTGGCCACAAACCACCAGAGTCGAGAGGTGGAAATGAGCACCCGGGGCC GATTCCAGCTCACTGGGGATCCCGCCAAGGGGAACTGCTCCTTGGTGATCAGAGACGCGCAG ATGCAGGATGAGTCACAGTACTTCTTTCGGGTGGAGAGGGAAGCTATGTGACATATAATTT CATGAACGATGGGTTCTTTCTAAAAGTAACAGTGCTCAGCTTCACGCCCAGACCCCAGGACC ACAACACCGACCTCACCTGCCATGTGGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC GTCCGACTCCGTGTGGCCTATGCCCCCAGAGACCTTGTTATCAGCATTTCACGTGACAACAC GCCAGCCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACCTGGAAGCCCAAAAAGGCCAGT TCCTGCGGCTCCTCTGTGCTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGGTCCTGCAG AACAGAGTCCTCTCCTCGTCCCATCCCTGGGGCCCTAGACCCCTGGGGCTGGAGCTGCCCGG GGTGAAGGCTGGGGATTCAGGGCGCTACACCTGCCGAGCGGAGAACAGGCTTGGCTCCCAGC AGCGAGCCCTGGACCTCTCTGTGCAGTATCCTCCAGAGAACCTGAGAGTGATGGTTTCCCAA GCAAACAGGACAGTCCTGGAAAACCTTGGGAACGGCACGTCTCTCCCAGTACTGGAGGGCCA GGGGACAGGTTCTGAGCCCCTCCCAGCCCTCAGACCCCGGGGTCCTGGAGCTGCCTCGGGTT CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTCGGCACCCACTGGGCTCCCAGCACGT CTCTCTCAGCCTCTCCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG CGTTTCTGGGAATCGGCATCACGGCTCTTCTTTTCCTCTGCCTGGCCCTGATCATCATGAAG ATTCTACCGAAGAGACGGACTCAGACAGAAACCCCGAGGCCCAGGTTCTCCCGGCACAGCAC GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCCTGGCTCAGAAGCGGAATCAGA AAGAACCAGAAAAAGCAGTATCAGTTGCCCAGTTTCCCAGAACCCAAATCATCCACTCAAGC CCCAGAATCCCAGGAGAGCCAAGAGGAGCTCCATTATGCCACGCTCAACTTCCCAGGCGTCA ${\tt GACCCAGGCCTGAGGCCCGGATGCCCAAGGGCACCCAGGCGGATTATGCAGAAGTCAAGTTCCAGAGGCCCCAGGCGGATTATGCAGAAGTCAAGTTCCAGAGGCAGCCCAGGCGGATTATGCAGAAGTCAAGTTCCAGAGGCAGAGTCAAGTTCCAGAGGCAGAGGCAGAGGCAGAGGCAGAGGCAGAGGTCAAGGTC$ ${ t CAA}{ t TGA}{ t GGGTCTCTTAGGCTTTAGGACTGGGACTTCGGCTAGGGAAGGTAGAGTAAGAG}$ $\tt CTCTCTTTTCTCTCTTTTAAAAAAACATCTGGCCAGGGCACAGTGGCTCACGCCTGTAATC$ $\tt CCAGCACTTTGGGAGGTTGAGGTGGGCAGATCGCCTGAGGTCGGGAGTTCGAGACCAGCCTG$ GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGG CGCCTGTAATCCTACCTACGTGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGACGG AGGTTGCAGTGAGCCAAGATCACACCATTGCACGCCAGCCTGGGCAACAAGCGAGACTCCA TCTCAAAAAAAAATCCTCCAAATGGGTTGGGTGTCTGTAATCCCAGCACTTTGGGAGGCTA AGGTGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCC ATCTCTACAAAAATACAAAACATAGCTGGGCTTGGTGGTGTGTGCCTGTAGTCCCAGCTGT CAGACATTTAAACCAGAGCAACTCCATCTGGAATAGGAGCTGAATAAAATGAGGCTGAGACC TACTGGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG ATCCCACCAAAACCAAGTTGGCCACGAGAGTGACCTCTGGTCGTCCTCACTGCTACACTCCT GACAGCACCATGACAGTTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA AAAGGGGGAGGAATGAATAATCCACCCCTTGTTTAGCAAATAAGCAAGAAATAACCATAAAA $\tt GTGGGCAACCAGCAGCTCTAGGCGCTGCTCTTGTCTATGGAGTAGCCATTCTTTTGTTCCTT$ TACTTTCTTAATAAACTTGCTTTCACCTTAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002

><subunit 1 of 1, 544 aa, 1 stop

><MW: 60268, pI: 9.53, NX(S/T): 3

MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWTGSTPAYGYWFK
AVTETTKGAPVATNHQSREVEMSTRGRFQLTGDPAKGNCSLVIRDAQMQDESQYFFRVERGS
YVTYNFMNDGFFLKVTVLSFTPRPQDHNTDLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLLCAADSQPPATLSWVLQNRVLSSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPPENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATPNSPRTPPPPPGAPSPESKKNQKKQYQLPSFPEP
KSSTQAPESQESQEELHYATLNFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

TGAAGAGTAATAGTTGGAATCAAAAGAGTCAACGCAATGAACTGTTATTTACTGCTGCGTTT TATGTTGGGAATTCCTCTCTATGGCCTTGTCTTGGAGCAACAGAAACTCTCAAACAAGA AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAAGCTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGGGGGGTCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCTTACTTCAAGGCCAGCC ATATTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGGTGTCTGCCACAGACCCAGACAATAGGAAAT CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCAATGATAATGGTACAATC ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAACACCCTTAC CATCCATGTCTGTGACTGTGGTGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTG TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGATGAAGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG $\tt CCCCTCCTTTTGATTCCCTCCAGACCTACGCTTTTGAGGGGAACAGGGTCATTAGCTGGATCC$ CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAAT**TAG**G GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVQSNN

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

ATTTCAAGGCCAGCCATATTTTTNTGTTGAACCAACAACAGGAGTCATAAGAATATTTTNTA
AAATGGATAGAGAACTGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTTATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTAC
AGCATTGAAGAGGATGATTCGCAAACATTTGACATTATT

GCAACCTCAGCTTCTAGTATCCAGACTCCAGCGCCGCCCCGGGCGCGGACCCCAACCCCGAC CCAGAGCTTCTCCAGCGGCGCGCGCGAGCAGGGCTCCCCGCCTTAACTTCCTCCGCGGGG CCCAGCCACCTTCGGGAGTCCGGGTTGCCCACCTGCAAACTCTCCGCCTTCTGCACCTGCCA CCCCTGAGCCAGCGGGCCCCCGAGCGAGTC<u>ATG</u>GCCAACGCGGGGCTGCAGCTGTTGGGC TTCATTCTCGCCTTCCTGGGATGGATCGCCCCATCGTCAGCACTGCCCTGCCCCAGTGGAG GATTTACTCCTATGCCGGCGACAACATCGTGACCGCCCAGGCCATGTACGAGGGGCTGTGGA TGTCCTGCGTGTCGCAGAGCACCGGGCAGATCCAGTGCAAAGTCTTTGACTCCTTGCTGAAT CTGAGCAGCACATTGCAAGCAACCCGTGCCTTGATGGTGGTTGGCATCCTCCTGGGAGTGAT AGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGC AGAAGATGAGGATGGCTGTCATTGGGGGTGCGATATTTCTTCTTGCAGGTCTGGCTATTTTA GTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCCCAGT TTCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCGAAAAACAACCTCTTACCCAACACCA AGGCCCTATCCAAAACCTGCACCTTCCAGCGGGAAAGACTACGTGTGACACAGAGGCAAAAG GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAACATTAGGAC ACCCATGTGTTAAAATACTCAGTGCTAAACATGGCTTAATCTTATTTTATCTTCCTCA ATATAGGAGGGAAGATTTTTCCATTTGTATTACTGCTTCCCATTGAGTAATCATACTCAAAT ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAAATATCTCTAAAAT AGGTAAATGTATTTAATTCCATATTGATGAAGATGTTTATTGGTATATTTTCTTTTTCGTCC TTATATACATATGTAACAGTCAAATATCATTTACTCTTCTTCATTAGCTTTGGGTGCCTTTG CCACAGACCTAGCCTAATTTACCAAGGATGAATTCTTTCAATTCTTCATGCGTGCCCTTTT CATATACTTATTTTTTTTTTTCCATAATCTTATAGCACTTGCATCGTTATTAAGCCCCTTAT TTGTTTTGTGTTTCATTGGTCTCTATCTCCTGAATCTAACACATTTCATAGCCTACATTTTA GTTTCTAAAGCCAAGAAGAATTTATTACAAATCAGAACTTTGGAGGCAAATCTTTCTGCATG ACCAAAGTGATAAATTCCTGTTGACCTTCCCACACAATCCCTGTACTCTGACCCATAGCACT CTTGTTTGCTTTGAAAATATTTGTCCAATTGAGTAGCTGCATGCTGTTCCCCCAGGTGTTGT AACACAACTTTATTGATTGAATTTTTAAGCTACTTATTCATAGTTTTTATATCCCCCTAAACT ACCTTTTTGTTCCCCATTCCTTAATTGTATTGTTTTCCCAAGTGTAATTATCATGCGTTTTA TATCTTCCTAATAAGGTGTGGTCTGTTTGTCTGAACAAAGTGCTAGACTTTCTGGAGTGATA ATCTGGTGACAAATATTCTCTCTGTAGCTGTAAGCAAGTCACTTAATCTTTCTACCTCTTTT TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA TTAGTTTATATTACTCTTATTCTTTGAACATGAACTATGCCTATGTAGTGTCTTTATTTGCT CAGCTGGCTGAGACACTGAAGAAGTCACTGAACAAAACCTACACGCTACCTTCATGTGATT CACTGCCTTCCTCTCTCCCAGTCTATTTCCACTGAACAAAACCTACACACATACCTTCAT GTGGTTCAGTGCCTTCCTCTCTCACCAGTCTATTTCCACTGAACAAACCTACGCACATAC CTTCATGTGGCTCAGTGCCTTCCTCTCTACCAGTCTATTTCCATTCTTTCAGCTGTGTCT GACATGTTTGTGCTCTGTTCCATTTTAACAACTGCTCTTACTTTTCCAGTCTGTACAGAATG CTATTCACTTGAGCAAGATGATGTAATGGAAAGGGTGTTGGCACTGGTGTCTGGAGACCTG GATTTGAGTCTTGGTGCTATCAATCACCGTCTGTGTTTGAGCAAGGCATTTGGCTGCTGTAA GCTTATTGCTTCATCTGTAAGCGGTGGTTTGTAATTCCTGATCTTCCCACCTCACAGTGATG TTGTGGGGATCCAGTGAGATAGAATACATGTAAGTGTGGTTTTGTAATTTAAAAAGTGCTAT ACTAAGGGAAAGAATTGAGGAATTAACTGCATACGTTTTGGTGTTTTCAAATGTTTGA AAATAAAAAAAATGTTAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185

><subunit 1 of 1, 211 aa, 1 stop

><MW: 22744, pI: 8.51, NX(S/T): 1

MANAGLQLLGFILAFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI QCKVFDSLLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDDEVQKMRMAVIGGA IFLLAGLAILVATAWYGNRIVQEFYDPMTPVNARYEFGQALFTGWAAASLCLLGGALLCCSC PRKTTSYPTPRPYPKPAPSSGKDYV

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins

amino acids 70-111

ABC-2 type transport system integral membrane protein amino acids 119-133

GGGCCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCGCGC
CATCNTCAGACTCCCTGCCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTTGAACGTCNGCGTGTCGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTTGACTCCTTGCTGAATCTGNGCAGCACATTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATCCTCCTGGGAGTGATAGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGGCGCGATATTTCTT
CTTGCAGGTCTGGCTATTTNNNGTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAAT
TCTATGACCCTATGACCCCAGTCAATGCCAGGTACGAATTTGGTCAGGCTCTCTTCACTGGC
TGGGCTGCTGCTTCTCTCTCTGCGGAGGTGCCCTACTTTGCTGTTCCTGCGA

TCATAGGGGGGCGCGATATTTTTTCTTGCAGGTNTGGTTATTTTAGTTGCCACAGCATGGTA
TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCCAGTCAATGCCAGGTACGAAT
TTGGTCAGGCTCTNTTCACTGGNTGGGCTGCTTCTNTNNGCCTTNTGGGAGGTGCCCTA
CTTTGCTGTTCCTG

GCGTGCCGTCAGCTCGCCGGGCACCGCGCCCTCGCCCTCCGCCCCTGCGCCCTGCAC ACCGGTCCCCGCCTTTTTGTAAAACTTAAAGCGGGCGCAGCATTAACGCTTCCCGCCCCGGT GACCTCTCAGGGGTCTCCCCGCCAAAGGTGCTCCGCCGCTAAGGAACATGGCGAAGGTGGAG CAGGTCCTGAGCCTCGAGCCGCAGCACGAGCTCAAATTCCGAGGTCCCTTCACCGATGTTGT CACCACCAACCTAAAGCTTGGCAACCCGACAGACCGAAATGTGTGTTTTAAGGTGAAGACTA CAGCACCACGTAGGTACTGTGAGGCCCAACAGCGGAATCATCGATGCAGGGGCCTCAATT AATGTATCTGTGATGTTACAGCCTTTCGATTATGATCCCAATGAGAAAAGTAAACACAAGTT TATGGTTCAGTCTATGTTTGCTCCAACTGACACTTCAGATATGGAAGCAGTATGGAAGGAGG CAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGTTTGAATTGCCAGCAGAGAAT GATAAACCACATGATGTAGAAATAAATAAATTATATCCACAACTGCATCAAAGACAGAAAC ACCAATAGTGTCTAAGTCTCTGAGTTCTTCTTTGGATGACACCGAAGTTAAGAAGGTTATGG AAGAATGTAAGAGGCTGCAAGGTGAAGTTCAGAGGCTACGGGAGGAGCAACAAGCAGTTCAAG GAAGAAGATGGACTGCGGATGAGGAAGACAGTGCAGAGCAACAGCCCCATTTCAGCATTAGC TCGTTGGTGTAATTATTGGGAAGATTGCCTTGTAGAGGTAGCATGCACAGGATGGTAAATTG GATTGGTGGATCCACCATATCATGGGATTTAAATTTATCATAACCATGTGTAAAAAGAAATT AGATACACACACAAATATAATGTAACGATCTTTTAGAAAGTTAAAAATGTATAGTAACTG ATTGAGGGGGAAAAAGAATGATCTTTATTAATGACAAGGGAAACCATGAGTAATGCCACAAT GGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGCTGGATTACCTC TCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCTGGCCCTTGGGGAGCTGGAGCCCAGCAT GCTGGGGAGTGCGGTCAGCTCCACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTG CTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGA AGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTGT TGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAA GCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGCATA TTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGC TGCGTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTGTGGGCTCCTCT GTCTCTGGAGAGTCTGGTCATGTGGAGGTGGGGTTTATTGGGATGCTGGAGAAGAGCTGCCA CCACCTCTCAACCATTACTCACACTTCCAGCGCCCAGGTCCAAGTCTGAGCCTGACCTCCCC TTGGGGACCTAGCCTGGAGTCAGGACAAATGGATCGGGCTGCAGAGGGTTAGAAGCGAGGGC ACCAGCAGTTGTGGGTGGGGAGCAAGGGAAGAGAAACTCTTCAGCGAATCCTTCTAGTAC TAGTTGAGAGTTTGACTGTGAATTAATTTTATGCCATAAAAGACCAACCCAGTTCTGTTTGA CTATGTAGCATCTTGAAAAGAAAAATTATAATAAAGCCCCAAAATTAAGAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977</pre>

<subunit 1 of 1, 243 aa, 1 stop</pre>

<MW: 27228, pI: 7.43, NX(S/T): 2

MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGIID AGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE LPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREE NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL

Important features:

Transmembrane domain:

amino acids 224-239

N-glycosylation site.

amino acids 68-71

N-myristoylation site.

amino acids 59-64, 64-69 and 235-240

TATTGTAAAGGCCATTTTAAACCATTGGTAGGCCTTGGTACATGATGCTGGATTACCTCCTT

AAATGACACCNTTCCTCGCCTGTTGGTGCTGGCCNTTGGGGAGCTGGAGCCCCAGCATGCTG

GGGAGTGCGGTCAGCTCCACACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTGCTTT

CCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGAAGCC

CAAAGGAATTGCCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTTTGA

CTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAAGCT

AAATTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTAATGCATATTTA

ACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGCTGCG

TGCTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTG

CCCTGGTGGTTTTGTTCTTTAATTCGTTGGTGTAATTNTTGGGAAGATTGCTTGTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTTAAATTTAT
CATAACCATGTGTAAAAAAGAAATTAATGTATGATGACATNTCACAGGTATTGCCTTTAAATT
ACCCATCCCTGNANACACATACACAGATACACANANACAAATNTAATGTAACGATNTTTTAG
AAAGTTAAAAATGTATAGTAAC

TGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTG
TGTTGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGAC
CAAGCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGC
ATATTTAACTTATTTAATGTATTTCATCTCATGTTTTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

AAACCTTTAAAAGTTGAGGGGAAAAGAATGATCCTTTATTAATGACAAGGGAAACCNTGNGT
AATGCCACAATGGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGC
TGGATTACCTCTCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCCCCTTGGGGAGCTN
GAGCCCAGCATGCTGGGGAGTGCGGTCTGCTCCACACAGTAGTCCCCANGTCGCCCANTCCC
GGCCCAGGCTGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGANTGATGA
ACAGAGTCAGAAGCCCAAAGGAATTGCANTGTGGCAGCATCAGANGTANTNGTCATAAGTGA
GAGGCGTGTGTTGANTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCANTT
AAAGGGNCCAAGNTAAATTTGTATTGGTTCATGTAGTGAAGTCAAANTGTTATTCAGAGATG
TTTAATGCATATTTAANTTATTTAATGTATTTCATNTCATGTTTTCTTATTGTCACAAGGGT
ACAGTTAATGCTGCTGCTGCAANTCTGTTGGGTGAANTGGTATTGCTG

GCGAGCTCCGGGTGCTGTGGCCGGCCTTGGCGGGGCGGCCTCCGGCTCAGGCTGAGA GGCTCCCAGCTGCAGCGTCCCCGCCCGCCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC ${\tt CTCGGGGACCAAACAAGCCTGGCAGGGTCTCACTTTGTTGCCCAGGCTGGAGTTCAGTGCCA}$ TGATCATGGTTTACTGCAGCCTTGACCTCCTGGGTTCAAGCGATCCTGCTGAGTAGCTGGGA CTACAGGACAAAATTAGAAGATCAAA**ATG**GAAAATATGCTGCTTTGGTTGATATTTTTCACC GGTACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATG ${ t CTTTCTGAATTGGAGGATTATCTTTCCTATGAGACTGTCTTTGAGAATGGCACCCGAACCTT$ AACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCAAAATATCACCACAAAGGGAG TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTTGGACAAA AGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCAT TCTCATTTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATG TCAAAGGGAGTAAAAAGCTAAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAG AAACGTCGAGGTTCTAAGAGGAGCAGGAGAGAGCTAGTGGTGGTGACCAAAGAGAGGGGTAC CAGAGAGCATCTGCAGGAGAGAGCGAAGGGTGGGAGAAGAAAAAAATCTGGCCGGGGTC AGAGGATTGCCGAAGGGAGGCCTTCCTTTCAGTGGACCCGGGTCAAGAATACCCACATTCCG AAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGA GCTGAAGCGTGCTCACAAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAAA TGCCTGGTGGAATGATCCACTTCTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTAT CGGTTTTGCAGTGTCCGACGAATCCAATGATCTCCTTTACCAATACTGCGATGCTGAGTC GGGCTCCACCGGTTCGGGGGTCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGGTTCAGAAGGAC TACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGG ${\tt GAACGATGCCAATTGTGCTTACGGC}{{\tt TAA}}{\tt CAGAGACCTGAAACAGGGCGGTGTATCATCTAAA}$ TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT GAACTCTGTCAATAGCATTTCAACATTTTTCAAAATCAGGAGATTTTCGTCCATTTAAAAAA TGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATATACTCTTCTTTA CATGGTGATGAGTTTCATTTGTAGAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTT AAACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAA GGTAGATGGTAAAGCAATTAGTATCAGAATAGAGACAGAAAGTTACAACACAGTTTGTACTA CTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTATATTGTGTTATCTGTTTGGGTCT CAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTTAAAAA TGGGAGAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTT TAAGATCTCAAGTTTTTATTTAACTAATACTCAAAATATGGACTTTTCATGTATGCATAGGG AAGACACTTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTTATGCTATACAT CTTTTTCTCCTTGACAAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG TAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253</pre>

<subunit 1 of 1, 413 aa, 1 stop

<MW: 47070, pI: 9.92, NX(S/T): 3

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC
GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV
YGTDSRFSILDKRFLTNFPFSTAVKLSTGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRV
GLLKMRNKSGGKKRRGSKRSRREASGGDQREGTREHLQERAKGGRRRKKSGRGQRIAEGRPS
FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS
GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSG
HQWVDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site. amino acids 165-170

AATGTGAGAGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGAT GTGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGG ${\tt ATCCAAGC} {\tt ATG} {\tt GAATGCTGCCGTCGGCCAACTCCTGGCACACTGCTCTTTCTGGCTTTC}$ CTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTG GCCTGAGCAGCAAGAGCTGTGAAGGAAGAAATATCCGATACAGAACATGCAGTAATGTGGAC TGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA CCATGGCCAGTTTTATGAATGGCTTCCTGTGTCTAATGACCCTGACAACCCATGTTCACTCA AGTGCCAAGCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACG CGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGTTGGCTGCGA TCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACT GTGGTTGCACTTCCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTT ATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAA CTTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGA ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAG CTTGCTCAGCAACCTGTGGAGGAGGTTATCAGCTGACATCGGCTGAGTGCTACGATCTGAGG AGCAACCGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACC CAAGCTTCAGGAGTGCAACTTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGC CTTATGACCTCTACCATCCCCTTCCTCGGTGGGAGGCCACCCCATGGACCGCGTGCTCCTCC TCGTGTGGGGGGGCATCCAGAGCCGGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCA TGTCACTTCAGTGGAAGAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCT ${\tt GCAACATTTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT}$ GGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG CTGTAGCCCAAAAACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA AACCCAAAGAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTA ${\tt GAAGAAGGAGCTGCTGTGTCAGAGGAGCCCTCG}$ TTTGAAACTGTTTTGTTTAAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847</pre>

<subunit 1 of 1, 525 aa, 1 stop

<MW: 58416, pI: 6.62, NX(S/T): 1

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKQAQELEEGAAVSEEPS

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins amino acids 385-399, 445-459 and 42-56

 $\tt CGGACGCGTGGGCGGCTGCGGAACTCCCGTGGAGGGCCCGGTGGGCCCTCGGGCCTGAC$ GCCCGCCGGTTCGTGGGGCCCAGGGTCCAGCGGCTGCGCAGAGGCGGGGACCCCGGCCTCAT GCACGGGAAGACTGTGCTGATCACCGGGGCGAACAGCGGCCTGGGCCGCCGCCGCCGCCG GCGGCGGTCAGCTCCGCCGAGCTCCGCCAGGCCGCGAGTGCGGCCCAGAGCCTGGCGT CAGCGGGGTGGGCGAGCTCATAGTCCGGGAGCTGGACCTCGCCTCGCTGCGCTCGGTGCGCG CCTTCTGCCAGGAAATGCTCCAGGAAGAGCCTAGGCTGGATGTCTTGATCAATAACGCAGGG ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGGTTTGAGATGCAGTTCGGAGTGAACCA TCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCTCAAAAGTTCAGCTCCCAGCA GGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGACTTGAAC AGTGAACAAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTT TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG GTATTGTACGGACAAATCTGGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC GGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGGGGATTGTAAAGAGGAAG AACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAACTCTGGGATATCAGTGAAGTG ATGGTTGGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAG TTATATCTGTGATCAGGAATGGTGTGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTG ATATTGGAATAGCCTGCTAAGAGGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTT GTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCATGGATGACATATTA ATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGTT TCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTGTGGGAAATTATCTGC CTGGTGTGCACACAAGTCTTACTTGGAATAAATTTACTGGTAC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre>

<subunit 1 of 1, 336 aa, 1 stop

<MW: 36865, pI: 9.15, NX(S/T): 2

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRA FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR IVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANILFTRELARRLEGTNVTVNVLHPG IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE LLPKAMDESVARKLWDISEVMVGLLK

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCC $\texttt{CCCAGCGTTACC} \underline{\textbf{ATG}} \texttt{CATCCTGCCGTCTTCCTATCCTTACCCGACCTCAGATGCTCCCTTCT}$ GCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGA ATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGT $\hbox{\tt CGTTTCAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATT}$ TCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC AGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAG TGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAA ATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCG AATATTTTGCATGATGACTGTGCCTTTCTTTCTGCATTTTGGGGATGTTTCAAAACCGGAAAG ATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT TGGGAGCTATGACAAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTCCTCTT GTCCGAGAAATAACATTTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTTTCTCAT ACTCTTTCACATGAAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGC AATTAATAAGTGAAAAAGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACAT $\tt CCTCTTCTGCACATACAGAAAACTCCAGCAGATTGTCCTGTAATCGCTATTGACAGCTTTAG$ ${\tt GCATATGTATGTGTTTGGAGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCG}$ TATTTGACTTACATTCTGGAAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGAT ACAGCCCCAGGAGAGCCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAA ${\tt ACTAGCACCCAGTGAATATAGGTATACTCTATTGAGGGATCGAGATGAGCTT} {\tt TAA} {\tt AAACTTG}$ AAAAACAGTTTGTAAGCCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689
<subunit 1 of 1, 406 aa, 1 stop
<MW: 46927, pI: 5.21, NX(S/T): 0</pre>

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILH
DDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

ATTAAGGAAGAATTTCCAAATGAAAATCAAGTAGTNTTTGCCAGAGTNGATTGTGATCAGCA CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATG GGATGATGATGAAGAGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA

 $\tt GCCCACGCGTCCG{\color{blue} \underline{ATG}} GCGTTCACGTTCGCGGCCCTTCTGCTACATGCTGGCGCTGCTCA$ CTGCCGCGCTCATCTTCGCCATTTGGCACATTATAGCATTTGATGAGCTGAAGACTGAT TACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTACCTCAT CCACGCTTTCTTCTGTGTCATGTTTCTTTGTGCAGCAGAGTGGCTTACACTGGGTCTCAATA TGCCCCTCTTGGCATATCATATTTGGAGGTATATGAGTAGACCAGTGATGAGTGGCCCAGGA CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT TACTTTAAAAAATGACTCCTTATTTTTTAAATGTTTCCACATTTTTGCTTGTGGAAAGACTG TTTTCATATGTTATACTCAGATAAAGATTTTAAATGGTATTACGTATAAAATTAATATAAAAT GATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG AATGATGCATTAATTACTGACTGTCCTAGTACATTGGAAGCTTTTGTTTATAGGAACTTGTA GGGCTCATTTTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC TTCTGATGAAGTGAAAATGTATATCTGACTAGTGGGAAACTTCATGGGTTTCCTCATCTGTC ATGTCGATGATTATATGGATACATTTACAAAAATAAAAGCGGGAATTTTCCCTTCGCTT GAATATTATCCCTGTATATTGCATGAATGAGAGATTTCCCATATTTCCATCAGAGTAATAAA TATACTTGCTTTAATTCTTAAGCATAAGTAAACATGATATAAAAATATATGCTGAATTACTT AAATTGGTTATTATGCTTACTGTTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTTGCAGG TACTACAGATTTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGT GCAATACAATAAAACTCTGAAATTAAGACTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330
<subunit 1 of 1, 144 aa, 1 stop
<MW: 16699, pI: 5.60, NX(S/T): 0
MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHAFF
CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA</pre>

Important features:
Signal peptide:

FYLLAFFYYLYGMIYVLVSS

amino acids 1-20

Type II transmembrane domain:

amino acids 11-31

Other transmembrane domain:

amino acids 57-77 and 123-143

ATTATAGCATTTGATGAGCTGAAGACTGATTACAAGATCCTATAGACCAGTGTAATACCCTG
AATCCCCTTGTACTCCCAGAGTACCTCATCCACGCTTTCTTCTTGTGTCATGTTTCTTTGTGC
AGCAGAGTGGCTTACACTGGGTCTCAATATGCCCCTCTTGGCATATCATATTTGGAGGTATA
TGAGTAGACCAGTGATGAGTGGCCCAGGACTCTATGACCCTACAACCATCATGAATGCAGAT
ATTCTAGCATATTGTCAGAAGGAAGGATGGTGCAAATTAGCTTTTTATCTTCTAGCATTTTT
TTACTACCTATATGGCATGATCTATGTTTTGGTGAGCTCTTAGAACAACACACAGAAGAATT
GGTCCAGTTAAGTGCATGCAAAAAAGCCACCAAATGAAGGGATTCTATCCAGCAAGATCCTGT
CCAAGAGTAGCCTGTGGAATCTGATCAGTTACTTTAAAAAATG

CGGACGCGTGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGTGACAGAGGG GAACAAGATGCCGCCGCAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGC TGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCATTTGAC ${\tt TCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACAC}$ CTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTC AGTTTGTGGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA GAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCC ATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTC CTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC TCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCC AGAAATCCAGTACGCACCACATTTGGAGCAGGAGCCTACAAATTTGAGAGAATCATCTCTAA GCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGA GAAAGTGATGGCTTTTTAAGATGCCTCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCT TGTCCTCTCGGTGATGGTATTGCTTTGGATTTGTTGTGCAACTGTTGCTACAGCTGTGGAGC CTAAACAGATATCCAGCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGA AGCAGGGCCTCTACCTACAAAAGTGAATCTTGCTCATTCTGAAATTTAAGCATTTTTCTTTT AAAAGACAAGTGTAATAGACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCA TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847</pre>

<subunit 1 of 1, 323 aa, 1 stop</pre>

<MW: 36223, pI: 5.06, NX(S/T): 1

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site.

amino acids 90-93

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCC
TAAGGAAGAGGGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTTTCAATTTGTCAGTTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA
TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGC
TGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAA
CTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

 ${\tt GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCCGGGCCCGGAGGT}$ GTGCGGACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCAATGGGCCGCGGCTG GGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTCAGCTCGGGCCACGGAGAGGAGC AGCCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATTGT ACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTTTCCCCAAGACTACAAAA ACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCT GGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGTCAAACCATGTCAATCTGATGAA GTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGA AGGCTGTTCTTCAGTGGACCAAGCATGATGATTCTTCAGATAACTTCTGTGAAGCTGATGAC ATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCTTAATCCTGAGCGCTACACTGGTTA CAAGGGACCAGATGCTTGGAAAATATGGAATGTCATCTACGAAGAAAACTGTTTTAAGCCAC AGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACT TTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGG CCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAG AAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATGGAATTTTGACTGAA GGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTT ATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTC AGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTG CATTTTGATGAGAATTCATTTTTTGCTGGGGATAAAAAAGAAGCACACAAACTAAAGGAGGA GTCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAG AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGA AATAGTATCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACT ${\tt TCAGGAACTTGTTACAGAATATTCAT} {\tt TAA} {\tt AGAAAACAAGCTGATATGTGCCTGTTTCTGGAC}$ AATGGAGGCGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA ACATTTTATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTT AAAAATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLF
PRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEA
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPE
RYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLI
ELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

GCTGGAAATATGGATGTCATCTACGAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTT
TAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGNACACTTTTTACAGTTGGCTAGAA
GGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGGCCTACATGCAAGCATTAA
TGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAGAAAAGAAATGGGGACACA
ACATTACAGAATTTNAACAGCGATTTGATGGAATTTTGACTGAAGGAGAAGGTCCAAGAAGG
CTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTTATCCAAAGTGTTACCATT
CTTNGAGCGCCCAGATTTTCAACTNTTTACTGGAAATAAAATTCAGGATGAGGNAAACAAAA
TGTTACTTTTGGAAATACTTCATGAAATCAAGTCATTTCCTTTGCATTTTGATGAGAATTCA
TTTTTTTGCTG

AGTGAAGAAACAGAAAAGGAGAGGGACAGAGGCCAGAGGACTTCTCATACTGGACAGAAAC $\tt CGATCAGGC \underline{\textbf{ATG}} \textbf{GAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGG$ TCTCTGCTCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAG GCCCCTGGGATGGGCCTTCAGGCGACCGGAGGGGGGGACGTTTATCGCTGCCCTGTAGGGGG GGCCCACATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTC ATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGGATTC GTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGGTCAAGGAGTTAAAAACCCTAGAAAGCAAA AGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT GCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCT CGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCA GCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT CCCAGAAGGAGATACTGGGTGGGAAAAAGATGGGGCAAAGCGGTATGATGCCTGGCAAAGGG CCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCTCCATGTTTCCTAACAGA TTCAGACTCCTGGCCAGGTGTGGTGGCCCACACCTGTAATTCTAGCACTTTGGGAGGCCAAG GTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCAT $\tt CTCTACTAAAAAAAAAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC$ ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG AGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAA AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA CTCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPW DGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA ${f AATGCAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCT}$ TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGGAGTACGAGGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGGGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCATAGGTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA ΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033</pre>

<subunit 1 of 1, 311 aa, 1 stop

<MW: 35076, pI: 5.04, NX(S/T): 2

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

GAGGAGATGCGGGATGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAAC GGAGAGGAGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGA GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGG AAAGACACAGAGAGACGGGAGAGAAGAAGAGTGGGTTTGAAGGGCGGATCTCAGTCCCTG GCTGCTTTGGCATTTGGGGAACTGGGACTCCCTGTGGGGAGGAGAGGAAAGCTGGAAGTCCT GGAGGGACAGGGTCCCAGAAGGAGGGGGACAGAGGAGCTGAGAGAGGGGGGCAGGGCGTTGGG ${\tt CAGGGGTCCCTCGGAGGCCTCCTGGGGATGGGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGC}$ GCTGGTACTCTGGGCTGCACTGGGGGCAGCACCTCACATCGGACCAGCACCTGACCCCGAGG ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGC CTGGTGAATGCAGCGTGGAGTCTGTGTGTGTGTGGGGAAGCGGCAGAGCCCCGTGGATGTGGA GCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAGA GTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCT GTTTGGAGCTCGCACGGACCGGCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTG AGGTGCAGCTCATTCACCTCAACCAGGAACTCTACGGGAATTTCAGCGCTGCCTCCCGCGGC ${\tt CCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCT}$ CAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTC TTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGGGC TCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA TATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT TCCAGAGCCTCAGCGGTAACAGCCGGCCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGGC AACAGGACCCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGA CCCACAAGGCGAGGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL LYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL FVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE TVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER RCRGPNYRLHVDGVPHGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGTCGCCGCCAGCCTCCGCCGAGCCTC GTTCGTGTCCCCGCCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCCACCCTGGCAGACTAACGAA $\tt CGCAGAGGCGGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTC$ CACCTCTCCCAGGAAACTTCACACTGGAGAGCCAAAAGGAGTGGAAGAGCCTGTCTTGGAGATTTTCCTGGGGAA ATCCTGAGGTCATTCATT<u>ATG</u>AAGTGTACCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGA GCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTTGGAAAAATACATGGATGAGGATGGT GAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCAT AATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGA ${\tt TTGGGAGCACACTGGGGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTT}$ ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCAAAGGGAAACTGGTGGGGCCATGCCCCTTACAAA CATGGGCGGCCCTGTTCTGCTTGCCCACCTAGTTTTGGAGGGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG TCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATAGAACGACAGCAGTCACAAGTCCATGACACC CATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCCAAATTGTTTCT AGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGAGCTGCAATTCATTATGGT ATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAAGCATTATTTCATCAAGTCCAATAGA AATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACAGTTCAGGCTGTG ACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTATACTGTCCT $\tt CGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCCAGTATC$ TGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAAAGA AAGACCTACATTGCTTCTTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC $\textbf{AGAGTGTTTGCTGTG} \underline{\textbf{TGA}} \textbf{AACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGA}$ TAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGG TTTTAGAAATCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATT GTTCTACGTTTCATATATTATATGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG TGTTAATTTAGGCATATAGAATATTAAATTCTGATATTGCACTTCTTATTTTATATAAAATAATCCTTTAATATC ATGAAAACATTCCTAGTGATCATGTAGTAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTA AAATTGAGGTCACATATTTTCTTTTGTATCCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTT ATATTGCCATATCATGGTACCTATAATGGTGATATATTTGTTTCTATGAAAAATGTATTGTGCTTTGATACTAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop
<MW: 56888, pI: 8.53, NX(S/T): 2</pre>

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM
QSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHW
GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC
HNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY
YPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR
YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI
QTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG
TRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRV
FAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site

amino acids 28-31

GCGGAGACAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGGCG CAGCCGGAGCCAGAGCCGGAAGGCGCCCCCGGGCAGAGAAAGCCGAGCAGAGCTGGGT GGCGTCTCCGGGCCGCTCCGACGGCCAGCGCCCTCCCCATGTCCCTGCTCCCACGCCG CGCCCTCCGGTCAGCATGAGGCTCCTGGCGCCGCCGCTGCTCCTGCTGCTGCTGCGCGCTGT ACACCGCGCGTGTGGACGGTCCAAATGCAAGTGCTCCCGGAAGGGACCCAAGATCCGCTAC AGCGACGTGAAGAAGCTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTAT AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAA GAATAGGTGAAAAACCTCAGAAGGGAAAACTCCAAACCAGTTGGGAGACTTGTGCAAAGGA TTTCTCACAGGCATAAGACACAAATTATATATTGTTATGAAGCACTTTTTACCAACGGTCAG TTTTTACATTTTATAGCTGCGTGCGAAAGGCTTCCAGATGGGAAGACCCATCTCTTGTGCT CCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGGGGAAAACTCATGCCTTTCCTTTTAA AAAATGCTTTTTTGTATTTGTCCATACGTCACTATACATCTGAGCTTTATAAGCGCCCGGGA GGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCTCCATTCCTAGCTTGGGAAGC TTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTCTCCTGGGCTTATGGCCG GTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGCAGGAGCAGGTCTCT CTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTTCATTCCCCCCT GGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGACAAATGATC CTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA TTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAACT TAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACATTCTGTTGACAAGGGAA AACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATAT TTGTGATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGAT GACCATGCGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCC CAGTATATGCCGCATTGTACTGCTGTTTATATGCTATGTACATGTCAGAAACCATTAGCAT TGCATGCAGGTTTCATATTCTTTCTAAGATGGAAAGTAATAAAATATATTTGAAATGTAAAA AAAAAAAAA

 ${\tt MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPH}$ ${\tt CEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE}$

Signal sequence:

amino acids 1-34

 ${\tt GCCCCAGGGACTGCTATGGCTTCCTTTGTTGTTCACCCCGGTCTGCGTC} {\tt ATG}{\tt TAAACTCCAATGTCCTCTGTG}$ GTTAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACAGTATCCAGTTGTCAACACAAATTATGG CAAAATCCGGGGCCTAAGAACACCGTTACCCAATGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTA TGCCTCACCCCCACTGGAGAGAGGCGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATAC TACTCAGTTTGCTGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTT TACCGCCAATTTGGATACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGT GCCCACGGAAGATGGAGCCAACACAAAGAAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGA TATTCATGATCAGAACAGTAAGAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAA CATGATTGACGGCAGCATTTTGGCAAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACT AGGGTTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTG GATTGAGGAGAATGTGGGAGCCTTTGGCGGGGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTC CTGTGTCAGCCTGTTGACCCTGTCCCACTACTCAGAAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACCGC CCTGTCCAGCTGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT GCTGGACACCGCGCACATGGTAGAATGCCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCC GGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGACGTCATCCCAGACGACCCCCAGATCCTGATGGA GCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGGAAGGCCTGAAGTTCGTGGACGGCAT CGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGTGTCCAACTTCGTGGACAACCTTTACGG CTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTCATGTACACAGACTGGGCCGATAAGGAAAACCC GCACGCGCAGTACGGCTCCCCCACCTACTTCTATGCCTTCTATCACTGCCAAAGCGAAATGAAGCCCAGCTG GGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACCGAGCTCTTCAG TTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTTCGCCAAAACTGG GTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTACCGGGC AACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAAC AACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGA GGACACACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTC GCTCCTCTTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAG GCGCCCAGTCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAGAGATCATGTCTCTGCAGAT GAAGCAGCTGGAACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACACTGAGGCTCACCTGCCCGCCAGA CTACACCCTCACGCTGCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAA CACACTGACGGGGATGCAGCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCA AAGATCAACTTCTGACCCTGTGAAATGTGAGAAGTACACATTTCTGTTAAAATAACTGCTTTAAGATCTCTACCA CTCCAATCAATGTTTAGTGTGATAGGACATCACCATTTCAAGGCCCCGGGTGTTTCCAACGTCATGGAAGCAGCT CACACAATGGATGGCTCTCCTTAAGTGAAGAAAGAGTCAATGAGATTTTGCCCAGCACATGGAGCTGTAATCCAG AGAGAAGGAAACGTAGAAATTTATTATTAAAAGAATGGACTGTGCAGCGAAATCTGTACGGTTCTGTGCAAAGAG GTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQNSTN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

GGGAAAG**ATG**GCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGT CGGCTCGGGATGGGTCCAGGATGTTACTCCTTCTTCTTTTGTTGGGGTCTGGGCAGGGGCCA CAGCAAGTCGGGGCGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCC CTACCAGGGTGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGCCAATGCCATGGTGA TGACCCAGTATATCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGG GTGCCATGTTTCCTGAGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAA GAAGAATCTGCATGGGGATGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC CTGTGTTTGGAAACATGGACAAATTTGTGGGGCTGGGAGTATTTGTAGACACCTACCCCAAT GAGGAGAAGCAGCAAGAGCGGGTATTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCT CAGCTATGATCATGAGCGGGATGGGCGGCCTACAGAGCTGGGGAGGCTGCACAGCCATTGTCC GCAATCTTCATTACGACACCTTCCTGGTGATTCGCTACGTCAAGAGGCATTTGACGATAATG ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCCGGAGTCCGCCTGCC CCGCGGCTACTACTTCGGCACCTCCTCCATCACTGGGGATCTCTCAGATAATCATGATGTCA TTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGAACCCCAGAAGAGGAAAAGCTCCATCGA GATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAGATGACAGCTCCACTGCCGCC CCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGTGTTTTTCTGTATTTGCCA TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAAAGCGCTTCTAC<u>TGA</u> GCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG GCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGACTATATTCTG TCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATCTAACT CTGGTCTGGGAAGCCACCCACCCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGTCC TTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAAC AGAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTG TCTTCCCTGCCTTACCTTCCTTTCACTCCATTCATTGTCCTCTCTGTGTGCAACCTGAGCTG GGAAAGGCATTTGGATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACACCTGCGTTTCAC TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCAT GGGTCTTGGGTCTATTGGCATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTG AAGTTTGGCTAAAGGTTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG GATTAGCTGTGCAACTGACCAGCTCCAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTG GTCTGACCATGTGGAGATGTTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGT TACGATTTTTGGAATCCCACTTTGAGTGCTGAAAGTGTAAGGAAGCTTTCTTCTTACACCTT TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCTCATCATCTGTGCCTGGAAGAGTT CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCTTATTCCACTGCCTTA TTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGATTAAATCAGTTACAGGCCAG AGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCTGTAGCCTAAATGAAAT TCTTAAAATCACCGATGGAACCAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCG ACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911</pre>

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ GVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN LHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY DHERDGRPTELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRG YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLS GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

 $\tt CCGAGCCGGCGCGCGCGGGCCGGGCCTGGGACCATGGGCGTGAGTGCAATCTACGGATCAGTCT$ GACATGTTCCCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATGCTTTTCCGCAACCGCTTCT TGCTGCTGCTGGCCTGCCTGCCTGCCTGCCTTTGTGAGCCTCAGCCTGCAGTTCTTCCACCTGATCCCGGTGT CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCCTGTGA CAGACCCCGTTTATGAAGCTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCC AAACAAGCGACCAGAAATTGACTGCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCA TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACC CATTGTGTGAGATGGGAGAGCTCACACAGACAGGAGTTGTGCAGCATTTGCAGAACGGTCAGCTGCTGAGGGATA TCTATCTAAAGAAACACAAACTCCTGCCCAATGATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAA GGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCTATTGCCCGGTAAGAAACCAGTATCTGGAAAAGGAGC AGCGTCGTCAGTACCTCCTACGTTTGAAAAACAGCCAGCTGGAGAAGACCTACGGGGAGATGGCCAAGATCGTGG ATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT TTCCCTGTACCAGAAATGGCTGTGTTGACATGGAGCACTTCAAGGTAATTAAGACCCATCAGATCGAGGATGAAA GGGAAAGACGGGAGAAGAATTGTACTTCGGGTATTCTCTCTGGGTGCCCACCCCATCCTGAACCAAACCATCG GCCGGATGCAGCGTGCCACCGAGGGCAGGAAGAAGAGCTCTTTGCCCTCTACTCTGCTCATGATGTCACTCTGT CACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCAGGTTGATCTTTGAGCTTT $\tt GGCAAGACAGAGAAAAGCCCAGTGAACATTCCGTCCGGATTCTTTACAATGGCGTCGATGTCACATTCCACACCT$ CTTTCTGCCAAGACCACCACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCCGCTTTGTGAAAA GGGACATGTTTGTAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCATGTCACAGGGAAGGATTC<u>TAA</u>AAGG TATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTCTGTTAC AAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCAC TCTTCTGGCCTGCCCCATGTTACTATGTGATGGAACCAGCACACCTCAACCAAAATTTTTTTAATCTTAGACATT TTTACCTTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGG GCCAGATTGTAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGT TTCTGAAGCAGGAAAGCCACCACAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACA GATGGTGACCAGACTTGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGC ACTTCCAGCACTTTGAGAACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACA ${\tt AACTGATTAGAAGAATACTTGATGTTTATGATGATTGTTGTAGATAGTTTTAAGTATGTTCTAAATATTTGT}$ CTGCTGTAGTCTATTTGCTGTATATGCTGAAATTTTTGTATGCCATTTAGTATTTTTATAGTTTAGGAAAATATT TTCTAAGACCAGTTTTAGATGACTCTTATTCCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAG GAGGCTAGAAGATGAATTCAGGCACTTTCTTCCAATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGA TGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGTGAAAGTGAGATTCTCTGTTGTCATCGGCATTCC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329</pre>

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLLPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC
TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF
ALYSAHDVTLSPVLSALGLSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSF
CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGA $\texttt{GCTATTTAAGAGATAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGCAGCCTCTGAGCCTCTCTGAGCCTCTGAGCCTCTGAGCCTC$ GCCGCTGTTCACCAATCGGGGAGAAAAGCGGAGATCCTGCTCGCCTTGCACGCGCCTGAAGCACAAAGCAGAT AGCTAGGAATGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTAT GGGCGAAGGAACTGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGA<u>ATG</u>AT TCCTGCGCGACTGCACCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGGACTCTGTGGGAGACCGG ATGCACCCAGATACGCTATTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCT GGGGCTGGAGCCCCGGGAGCTCGCGGAGCGCGGAGTCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCT GAATCCGCGCAGCGGCAGCTTGGTCACGGCGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCATCAAGTG TCAATTAAATCTAGACATTCTGATGGAGGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAA CGACAATGCGCCTTACTTTCGTGAAAGTGAATTAGAAATTAAAAATTAGTGAAAATGCAGCCACTGAGATGCGGTT CCCTCTACCCCACGCCTGGGATCCGGATATCGGGAAGAACTCTCTGCAGAGCTACGAGCTCAGCCCGAACACTCA CGAAGAAAAGGCTGCTCACCACCTGGTCCTTACGGCCTCCGACGGGGGCGACCCGGTGCGCACAGGCACCGCGCG CATCCGCGTGATGGTTCTGGATGCGAACGACAACGCACCAGCGTTTGCTCAGCCCGAGTACCGCGCGAGCGTTCC GGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTACCGACCCTGACGAAGGAGTCAATGCGGAAGT GAGGTATTCCTTCCGGTATGTGGACGACAAGGCCGCCCAAGTTTTCAAACTAGATTGTAATTCAGGGACAATATC TTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAACGACAATGCCCCAGAAGTGGTCCTCACCTCTCT $\tt CGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGTAAATGACCAAGATTCTGA$ GGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATCTTACGGAAATTACTA TAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGACCGCCACTGACCG GGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCAACGACAACCCGCCGGTCTT GTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGCTTCCGAGA $\tt CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCCTCAGCAGCAACGTGTCGTTGAGCCTGTTCGT$ GGCTCCCGGTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGC CTGGCTGTCCTACCGTCTGCTCAAGGCCAGCGAGCCGGGACTCTTCTCGGTGGGTCTGCACACGGGCGAGGTGCG CACGGCGCGAGCCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCCGTCCAGGACCACGGCCAGCC CCCTCTCTCCGCCACTGTCACGCTCACCGTGGCCGTGGCCGACAGCATCCCCCAAGTCCTGGCGGACCTCGGCAG CCTCGAGTCTCCAGCTAACTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTG CGTCTTCCTGGCCTTCGTCATCTTGCTGCTGGCGCTCAGGCTGCGGCGCTGGCAAGTCACGCCTGCTGCAGGC TTCAGGAGGCGGCTTGACAGGAGCGCCGCGTCGCACTTTGTGGGCGTGGACGGGTGCAGGCTTTCCTGCAGAC CTATTCCCACGAGGTTTCCCTCACCACGGACTCGCGGAAGAGTCACCTGATCTTCCCCCAGCCCAACTATGCAGA CATGCTCGTCAGCCAGGAGAGCTTTGAAAAAAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTTCTAAAGA ${\tt TGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCCTCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCT}$ CTATCTATCTATCTATTACTTTCTTGTACAGACGGGAGTCTCACGCCTGTAATCCCAGTACTTTGGGAGGC $\tt CGAGGCGGGTGGATCACCTGAGGTTGGGAGTTTGAGACCAGCC\underline{TGA}CCAACATGGAGAAACCCCGTCTATACTAA$ AAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAGCTACTTGGGAGGCTGAGTCAGGAGAAT TGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACAAGAGTG AAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306</pre>

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLST
ETHISLNVADTNDNPPVFPQASYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLYALSSFDYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDN
APEILYPALPTDGSTGVELAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
LHTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAAVSCVFLAFVILLLALRLRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLVSQESFEKSEPLLLSGDSVFSKDSHGL
IEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLKQLSHLCLRCNRDYRCKPPTVCLS
IYLSIYLSIYLSIYLLISCTDGSLTPVIPVLWEAEAGGSPEVGSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

CCCAGGCTCTAGTGCAGGAGGAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAAAG GCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA TCAGTAGGTGACCCCGCCCCTGGATTCTGGAAGACCTCACC<u>ATG</u>GGACGCCCCCGACCTCGT GCGCCAAGACGTGGATGTTCCTGCTCTTGCTGGGGGGGACCCTGGGCAGGACACTCCAGGGC ACAGGAGGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTT ACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAA TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACA GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCC CTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTG CACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACT GTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACA GATGGCATGGTCTGTGCAGGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTGGAGG CCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGA GGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATC ${\tt ATAGGCAGCAAGGGC} \underline{{\tt TGA}} {\tt TTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT}$ CTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVL VGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLL QLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED AYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY LDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GGCGCCGGTGCACCGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCGCCCCGGCCCGC CCCCGGCCGGCGGGAACCGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAAC TGCGGACCCGGCGGGGGGACGCGCCCCCGAAACGACTTTCAGTCCCCGACGCGC CTGTGGCTGCAGGCCTGGCAGGTGGCAGCCCCATGCCCAGGTGCCTGCGTATGCTACAATGA GCCCAAGGTGACGACAAGCTGCCCCCAGCAGGGCCTGCAGGCTGTGCCCGTGGGCATCCCTG CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGC GGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGACCTCAGCGATAATGCACAGCTCC GGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGC TGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCTGCCCTGCAGTACCTCTA CCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCA CACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTG CACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTT CCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCA CTGAGGCCCTGCGTGCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTG TGTGACTGCCGGGCACGCCCACTCTGGGCCTGCCTGCAGAAGTTCCGCGGCTCCTCCTCCGA GGTGCCTGCAGCCTCCGCAACGCCTGGCTGACCTCAAACGCCTAGCTGCCAATG ACCTGCAGGGCTGCGCTGTGGCCACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACC ACTGGAGCCTGGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCCGGTG ACAGCCCGCCGGCAACGCTCTGGCCCACGCACATCAATGACTCACCCTTTGGGACTCTG CCTGGCTCTGCTGAGCCCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTTCCCCACCTCGGGCCCTCGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCCGCAGCCACT GCCGTCTGGGCCAGGCAGCCGGGGGTGGCGGGACTGGTGACTCAGAAGGCTCAGGTGCC CTACCCAGCCTCACCTCACCCCCCTGGGCCTGGCGCTGGTGCTGTGGACAGTGCT TGGGCCCTGC<u>TGA</u>CCCCCAGCGGACACAAGAGCGTGCTCAGCAGCCAGGTGTGTACATAC GGGGTCTCTCCCACGCCGCCAAGCCAGCCGGCCGACCCGTGGGGCAGGCCAGGCCAG GTCCTCCCTGATGGACGCCTGCCGCCGCCACCCCCATCTCCACCCCATCATGTTTACAGGG GCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGGAATAAAGAGCTCTTTTCTTAAA AAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRI FLHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPA TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLH GNRISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAP LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN GSGPRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRPGCSRKNRTRSHCRLGQA GSGGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTAC TCACTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTAC AGTCCCACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACAATGGAGGCCAGCGGGA AGCTCATTTGCAGACAAAGGCAAGTCCTTTTTTCCTTTTCTCCTTTTTGGGCTTATCTCTGGCG GGCGCGGCGAACCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTTGTCAC CAATTTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGTTAGGGTTG TTTCCAGAGGGAACAACTACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAAT GAGAAATTGGACCGTGAGGATCTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGT GTTGCTAGAGAGTCCCTTCGAGTTTTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC ACTCTCCAGTATTTCTGGACAAACAAATGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGG ACTACGTTTCCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA TATAATCAGCCCCAACTCCTATTTTCGGGTCCTCACCCGCAAACGCAGTGATGGCAGGAAAT ACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAACA CTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGCACTGCTCAGGTCTACATCGAAGT CCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTTCTATAGAGTGCAGATCTCTG AGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGGATGTAGACACAGGAGTC AACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGCAAAACCTTTAAGAT CAATCCCTTGACAGGAGAAATTGAACTAAAAAAAACAACTCGATTTCGAAAAAACTTCAGTCCT ATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCGTTCTGATT CAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGCCCAAT ACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTCAGATCTTGATTCAGGAG AAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAA AACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACAT CACTATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC TGATCGCCGATGTCAATGACAACGCTCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTC CACCAACGCCCAGGTCACCTACTCGCTGCTGCCGCCCCAGGACCCGCACCTGCCCCTCACAT CCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAG GCCCTGCAGGGGTTCCAGTTCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAG CGAGGCGCTGGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACC CTGGTGACCAAGGTGGTGGCGGTGGACGCCGACTCGGGCCAGAACGCCTGGCTGTCGTACCA GCTGCTCAAGGCCACGGAGCTCGGTCTGTTCGGCGTGTGGGCGCACAATGGCGAGGTGCGCA CCGCCAGGCTGCTGAGCGAGCGCGACGCGGCCAAGCACAGGCTGGTGGTGCTGGTCAAGGAC AATGGCGAGCCTCCGCGCTCGGCCACGCCACGCTGCTGCTCCTGGTGGACGGCTTCTC CCAGCCTACCTGCCTCCCGGAGGCGGCCCGACCCAGGCCGAGCCGACTTGCTCACCG TCTACCTGGTGGCGTTGGCCTCGGTGTCTTCGCTCTTTCCTCTTTTCGGTGCTCCTGTTC GTGGCGGTGCGGCTGTGTAGGAGGAGCAGGGCGGCCTCGGTGGGTCGCTGCTTGGTGCCCGA GGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTATCCCAGAGCTACC AGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCTGAAGCCGATT ATCCCCAACTTCCCTCCCCAGTGCCCTGGGAAAGAAATACAAGGAAATTCTACCTTCCCCAA TAACTTTGGGTTCAATATTCAGTGACCATAGTTGACTTTTACATTCCATAGGTATTTTATTT TTACTCTTGATTTTTCTCATGTTCTTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATT CCTGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR
RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQV
IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR
SDGRKYPELVLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY
RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDF
EKLQSYEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVS
DLDSGENGKISCSIQEDLPFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQ
LNMTVLIADVNDNAPAFTQTSYTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDP
HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS
PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAH
NGEVRTARLLSERDAAKHRLVVLVKDNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ
ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMSGTRT
LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPGKEIQGNSTFPNNFGFNIQ

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

GCCGATTGCCTCTCGGCCTGGGCAATGGTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCAT GCGGCTCCTCGGCTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGG AGGTTGCAGAGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTG GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGCCAGC AGAAGAGGCCAATGCGGTGCTGGGGCTGGACACCCAAGGCGATCACATGGTGATGCTGTCTG TGATTCCTGGGGAAGCTGAGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCT GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGG AGCACACTTCCCTGACAGAGAGAGAGGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG CAGCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCAAAGGTGAACTGTGAG GAGAGAAACATTACAGGATTAGAAAATTTCACTCTGAAAATTTTAAATATGTCACAGGACCT TATGGATTTTCTGAACCCAAACGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGT GCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACTCTCTGCCCCGGGCATTTCCAGCTCTT CACTTTTTGGCACTGGATGCATCTCAGCACAGCAGCCTTTCTACCAGGTTTGGCACCGTAGC TGTTCCTAATATTTTATTATTTCAAGGAGCTAAACCAATGGCCAGATTTAATCATACAGATC GAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTATAGAAGCCAAGAAGAAT GTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTGATAAAAAGTGTGGA CTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAGTAGTGATGGTCT GAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTTTCATA CATTTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTGAA CAACTGAATGTATAAAAAATTATAAACTGGTGTTTTAACTAGTATTGCAATAAGCAAATGC AAAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEE ELLHDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRC NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLE NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDAS QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

 $\texttt{CCCGGCTCCGCTCTGCCCCTCGGGGTCGCGCCCCACG} \underline{\textbf{ATG}} \texttt{CTGCAGGGCCCTGGCT}$ TTTGGCCAGCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCA GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCA TGAAGGAGGTGCTGGAGCAGGCCGGCGTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG GACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCG CCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTT TGCATCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATG TGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATG ATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC CTGGAGACCAAGACCATTTACAAGCTGAACGGTGTGTCCGAAAGGGACCTGAAGAA ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG CGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGG TGGCAGAAGGGGCAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAGTGCTA **G**TCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTTCTGCTCC GGGATCTCAGCTCCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCT TCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTG GATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATA AAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPN LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIM ETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCE EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCCGACGATGCCGGGGCCGACGGAGGCCCGAGACGGGGTTGGCCGAGCCCCGGG AGCCTGCTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCAT TGCTGAGGACTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG TATCCACCCATTTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCG ACCATCCTGGGTGCGTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGT TGTTGGGACCCAAAACCCATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCTTGCCC AGAGCCTGGTCATCTTCTCCCAGCCAAGCTGGCTGCCTTGTGGTTCCCAGAGCACCAGCGA GCCACGGCCAACATGCTCGCCACCATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCT GTCCCCTGTGCTGGTCAAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC CTGCTGGCGTCGTCTGCCTGTCCACCATCTGCCTGTGGGAGAGTGTGCCCCCCACCCCG CCCTCTGCCGGGGCTGCCAGCTCCACCTCAGAGAAGTTCCTGGATGGGCTCAAGCTGCAGCT CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTGCTTGGGGGGAATGATCGGGATCTCTG CCAGCTTCTCAGCCCTCCTGGAGCAGATCCTCTGTGCAAGCGGCCACTCCAGTGGGTTTTCC GGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGGGCACTGGCTCTCGGCCCCTA TGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCTGTGCCTGTTCTCTCTGG CCTGCGTGCCCTTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTGCCCTGGCTGCCACC TGCTCGCTGCTCGGGCTGTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAGTTGGCGGTCGA GTGTTCCTTCCCCGTGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGGGCAGGCCG AGGGAATACTCATCATGCTGGCAATGACGGCACTGACTGTGCGACGCTCGGAGCCGTCCTTG TCCACCTGCCAGCAGGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCCGG CCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGC ${\tt AGGCCGAGTCTGGGGAGCCCCCTCCACCCGTAACGCCGTGGGCGCGCAGACTCAGGGCCG}$ GGTGTGGACCGAGGGGGGGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGCGACTCCGGA GCCACCGAGCGACTCCCCGTGCGCAAGGCCCAGCAGCCACCGACGCCCCTCCCGCCCCGGC AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTT CTCCTCCCGTGGGTGATCACG<u>TAG</u>CTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGA CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA50988

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKA
YVILAVCLGGMIGISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTK
HFTEATKIGLCLFSLACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQGPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAAC TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTGGACATCTCAGATCGCTTCCAATGAAGA TGGCCTTGCCTTGGGTCCTGCTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGG AAGGAGCACGGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTT TCTGAATCTAGCCCACTTGGCGGTAAGCATGATGCAACTTCTGCAACTTCTGCTGGGGCTTTTGGGGCCAGGTGG ATCTGGTACAGTGATCGGGAAGCTGTCCCAGGAACTGGGCCGGGAGGAGGAGGCGGAGGCAAGCTGGGGCCGCCTT GGCTCTGATCCATGTGGAGATCCAAGTGCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGA GCTGGAAATCTCTGAGAGCGCCTCTCTGCGAACCCGGATCCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCC TAACACCCTGCACACCTACACTCTGTCTCCCAGTGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGAC CTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTTGGTCAAGGTCAACGTCTTGGACTCCAATGACAATAG CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT ${\tt GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT}$ GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG CACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACTCCAGCCCTTATC AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTCACCCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCAATGATAATGCCCCAGAGGTGGT CCAGCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCC CCTTTTGACAACCATTGTGGCAAGAGATGCAGACTCGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGG AAATGAAGCCCACCTCTTCATCCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT ${\tt CATTGGGAGTGAGAGCTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCGAGCCCTGTT}$ GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGAT GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG GACAGAAAAGAAGGACAACAGGGCCTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCCAAGAGGCC CCACCTCACCCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGGAGCACCGGCGGAGAGCCGAGAGGT GCTGCAAGACACGGTCAACCTCCTTTTCAACCATCCCAGGCAGAGGAATGCCTCCCGGGAGAACCTGAACCTTCC ${\tt TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT}$ TGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCCTCCTGTTCAGCAAATCTCCCAGCTGCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC $\tt CAGCACAGGTCTGGCCCTGGACCGGCTGAGCGCCCTGACCCGGCCTGGATGGCGAGACTCTCTTTGCCCCTCAC$ CACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTTCCAGACGTTCGG ${\tt CAAGGCAGAGCTGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGATGAGCTCACT}$ CTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGGTGG AAAGACGGGGACTGAGGGCAAGAGCAGCAGCAGCAGCAGCAGCTGCCTG<u>TGA</u>ACATACCTCAGACGCCT CGGCGGCCTGAGAACTTTAGGGTGACTGATGCTACCCCCACAGAGGGGCAAGAGCCCCAGGACTAACAGCTGAC TGACCAAAGCAGCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGCTGTACCCTGGGGGTGCCAGGAAATGCTCTCTGACCTAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQA GAAFOVLOLPOALPIOVDSEEGLLSTGRRLDREOLCROWDPCLVSFDVLATGDLALIHVEIQ VLDINDHOPRFPKGEOELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESS LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSF IALVMADDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD QGLQPLSAKKOLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVS YRIQDSPVAHLVAIDSNTGEVTAQRSLNYEEMAGFEFQVIAEDSGQPMLASSVSVWVSLLDA NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTT IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDQGS PPLQTRALLRVMFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEK KDNRAYNCREAESTYROOPKRPOKHIOKADIHLVPVLRGQAGEPCEVGQSHKDVDKEAMMEA GWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEP QPATGQPRS:RPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRQ ILRSLVRLSVAAFAERNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGS RSAIPDTDGPSARAGGQTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPD PAWMARLSLPLTTNYRDNVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL LEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSS SSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860 Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGGACGCGTGGGGGAGACCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGG CAGACCGTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAG GCAGGAGCCTTCCTTACACTTCGCC<u>ATG</u>AGTTTCCTCATCGACTCCAGCATCATGATTACCT CCCAGATACTATTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCCAATTGTTTAAAGACTAT GAGATACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCAT GTTTGAGCTCATCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACT GGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGC TATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTT ATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAA AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGTGATTGGAGTGACTCTC ATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCT CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATA TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAA GTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGG TTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAATAGAATACTCCAAAACCTTC AAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTTGGAAAATTTT CATGGCTACCATCAATATTGTTTTTGA'ICGAGTTGGGAAAACGGATCCTGTCACAAGAGGCA TTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATT TCCTTCATTCTTGTTGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTAC CAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGCAC AGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAA TACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTT TGATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAAC AGGCACCAGAGAAGCAAATGGCACCT<u>TGA</u>ACTTAAGCCTACTACAGACTGTTAGAGGCCAGT GGTTTCAAAATTTAGATATAAGAGGGGGGAAAAATGGAACCAGGGCCTGACATTTTATAAAC AAACAAAATGCTATGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATA GCAGAGAGCATCCCGTGTGGATATGAGGCTGGTGTAGAGGCGGAGAGGGCCCAAGAAACTAA AGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGT AGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTGCCTTGAGATTGACTCATT ACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFF
WKLGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDI
LALERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVGKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCA
TCATGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTT
TAAAGACTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTT
CTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGT
TATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTT
TTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTT
CCTGTCTCTTATGGCTGACCTTTATGTATTTCCAG

 $\tt CTCGCGCAGGGATCGTCCCATGGCCGGGGCTCGGAGCCGCGACCCTTGGGGGGGCCTCCGGGATTTGCTACCTTTT$ TGGCTCCTGCTCGAACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAA GGAGGCCAGCCAGCCCTCTTCGGCTTCTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTG GCTGCTGGTGGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGCGGAATCGCACTGGAGGCCTCTTCGCTTG CCCGTTGAGCCTGGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAA GGAGAACCAGTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATA TGAGGCAAGGCAGCGAGTGGACCAGATCCTGGAGACGCGGGATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGA CCTGGCCATCCGGGATGAGTTGGATGGTGGGGAATGGAAGTTCTGTGAGGGGACGCCCCCAAGGCCATGAACAATT TGGGTTCTGCCAGCAGGGCACAGCTGCCGCCTTCTCCCCTGATAGCCACTACCTCCTCTTTGGGGCCCCAGGAAC CTATAATTGGAAGGGCACGGCCAGGGTGGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACCTGGACGACGG TCCCTACGAGGCGGGGGAGAAGGAGCAGGACCCCCGCCTCATCCCGGTCCCTGCCAACAGCTACTTTGGCTT CTCTATTGACTCGGGGAAAGGTCTGGTGCGTGCAGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCGCGCCAACCA CAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGCCAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCG TGCCCCCTACTTCTTTGAGCGCCAAGAAGAGCTGGGGGGGTGCTGTGTATGTGTACTTGAACCAGGGGGGTCACTG GGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCATGTTCGGGATCAGCCTGGCTGTCCTGGGGGGA CCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGATGGTGATGGGAAAGTCTTCATCTACCA TGGGAGCAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGAGGCTGTGGGCATCAAGAGCTTCGG CTACTCCCTGTCAGGCAGCTTGGATATGGATGGGAACCAATACCCTGACCTGCTGGTGGGCTCCCTGGCTGACAC CGCAGTGCTCTTCAGGGCCAGACCCATCCTCCATGTCTCCCATGAGGTCTCTATTGCTCCACGAAGCATCGACCT GGAGCAGCCCAACTGTGCTGGCGGCCACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAGCTACATTGCAGTCCC CAGCAGCTATAGCCCTACTGTGGCCCTGGACTATGTGTTAGATGCGGACACAGACCGGAGGCTCCGGGGCCAGGT TCCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTGGCTGAAGCA CCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGCCATTGT AGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGTGGC CCCCATCCTCAATGCCCACCAGCCCAGCCCCAGCGGGCAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACC TCTGCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGAT GGTCACCAACCTGCCATCGGACCCAGCCCAGCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGT CATGCTTCCTGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAA TGAGAATGCCTCCCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCAT CCTTAGCACCTCCGGGATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCCACGATCAGTGAGCA GGAGCTGCATCCAGTCTCTGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCC $\tt CCAGCAACTCTTCTTCTGGTGTGGTGAGGGGGGGAGAGAGGCCATGCAGTCTGAGCGGGATGTGGGCAGCAAGGT$ CAAGTATGAGGTCACGGTTTCCAACCAAGGCCAGTCGCTCAGAACCCTGGGCTCTGCCTTCCTCAACATCATGTG GCAGAAAGGGCTTTGCTCTCCCAGGCCCAACATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGA ${\tt GCTGGAGCCACCTGAGCAGCAGGAGCCTGGTGAGCGGCAGGAGCCCAGCATGTCCTGGTGGCCAGTGTCCTCTGC}$ ${\tt TGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGA}$ TGCCTCCACAGTGATCCCAGTGATGGTATACTTGGACCCCATGGCTGTGGTGGCAGAAGGAGTGCCCTGGTGGGT CATCCTCCTGGCTGTACTGGCTGGCTGCTGGTGCTAGCACTGCTGCTGCTGCTGCAAGATGGGATTCTT CAAACGGGCGAAGCACCCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAAGATTCCTCGGGAAGACCGACAGCA GTTCAAGGAGGAGAAGACGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCGGCGGAGGGCCCCGGATGCACA $\tt CCCCATCCTGGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCCAGGCACCGCC\underline{TAG}GTTCC$ CATGTCCCAGCCTGGCCTGTGGCTGCCCTCCATCCCTTCCCCAGAGATGGCTCCTTGGGATGAAGAGGGTAGAGT TCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGGCCATGGGGTAGGG TGAGAAGGGCAGGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCACCCTGT GTAACAGGACCCCAAGGACCTGCCTCCCCGGAAGTGCCTTAACCTAGAGGGTCGGGGAGGAGGTTGTGTCACTGA $\tt CTCAGGCTGCTCCTTGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737</pre>

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL QPRPQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWL GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEG RPQGHEQFGFCQQGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAQGSADLAHLDDGPYEA GGEKEQDPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGI SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSQVLE GEAVGIKSFGYSLSGSLDMDGNOYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEQ PNCAGGHSVCVDLRVCFSYIAVPSSYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPK HQASGTVWLKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAP ILNAHQPSTQRAEIHFLKQGCGEDKICQSNLQLVHARFCTRVSDTEFQPLPMDVDGTTALFA LSGQPVIGLELMVTNLPSDPAQPQADGDDAHEAQLLVMLPDSLHYSGVRALDPAEKPLCLSN ENASHVECELGNPMKRGAOVTFYLILSTSGISIETTELEVELLLATISEQELHPVSARARVF IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVKYEVTVSNQGQSLRTLGSAFLNIM WPHEIANGKWLLYPMOVELEGGOGPGOKGLCSPRPNILHLDVDSRDRRRRELEPPEQQEPGE RQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAAVLHVWGRLWNSTFLEEY SAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVPWWVILLAVLAGLL VLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGP DAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT TGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC AAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGA TCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTAT GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG AAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATTATCCACCTGCAAGCAGTG CCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCATACCTACTCTTTTCAGTGCA AACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC CCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT GGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAA GTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGAGAAGCAGATTCGATACCAGCATC TTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGACTTGATACAAACTATGACCT GCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAATGAACAGTGTACCAAGG CATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTGCTAC TGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCA AGGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC CAACACAATGTCATGGCAGTGTTGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTC ATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGATTT TGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGATGATGAAGACGATATTATGAATG CATGATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTTA CAAAAATGATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCA CATATATTTTGTATAATTATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAAT AAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTA GTCAGACAAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGT AAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAG ATAATTCTAAGTGAAATTAAAATAAATAAATTTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEA
GVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCP
SDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPI
CKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGAGTCCAGAGAGGAAACGCGGAGCGAGACAACAGTACCTGACGC GCTCTGCCTCCGGTGCTGCCTGGCGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAA TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACTTAAAACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATA AAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG AGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT TCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGAATAAATCTTTAGACTACAAAAGCCCAA $\tt CTTTTCTCTATTTACATATGCATCTCCTATAATGTAAATAGAATAAGCTTTGAAATACAATTAGGTTTTTG$ AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTAGGACATGTTTTCTCTTTG AAATGAAGAATATAGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA $\tt TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA$ TAATCATGTTATGTTAATTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATGAAGGAAATA TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA AAACTTTGGCTGTAGGTTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTGTAAGCAGGTACATTTTATA TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAA CACCTAAATGTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGTCTTAC TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT GACTACATTGTGAGTTAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT CTTGATGAGCAATAATGATAACCAGAGGTGATTTCATTTACACTCATAGTAGTATAAAAAGAGATACATTTCCC TCTTAGGCCCCTGGGAGAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAA AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA CCTCTCCTGTATGGCTGTTACTGTACTGTACTCTCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCT ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG CATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT CATATGCTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT AACAGCTCATTTTGTCTTTTTCAATATACAAATTTTAAAAATACTACAATATTTAACTAAGGCCCAACCGATTTC CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT GTTATGCTGTTCTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTATGGTAAAATTAATCCTTCTTA CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA AAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196
><subunit 1 of 1, 229 aa, 1 stop
><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEY QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFEL ILDNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN IQESNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405
<subunit 1 of 1, 125 aa, 1 stop
<MW: 13115, pI: 5.90, NX(S/T): 1
MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYP
FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL</pre>

Important features: Signal peptide: amino acids 1-17

N-glycosylation site. amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGC GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGG TAGCGGCGGCTCTCGGCGGCCACCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTC AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGGCGCTGCGGGGCACCCAGGCTC TGCAGTCAGCGCCGCGCGGGAATCCTGTACCCGGGCGGAATAAGTACCAGACCATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGT CCCACCCGCGGAGGGGACGCAGGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACG CTGCATGCGTCACGCTATGTGCTGCCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTT CTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGAT CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAA AGGACAAGAAGGTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC TTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGA GACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAATAGATGCTATGAAAACC TTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCAT TCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTG TGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGA ${\tt AACTTTTAATTATTTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTAAATTT}$ TTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATT TCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCA AGGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATT TTCTGAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGA AATAAAATTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop</pre>

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA APGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH AMCCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQ KDHHQASNSSRLHTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain amino acids 110-126

GAGGAACCTACCGGTACCGCCGCGCGCTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGCG CTGGGCCGTCGGAGAGTGCGTGTGCTTCTCTCCTGCACGCGGTGCTTGGGCTCGGCCAGGCGGGGTCCGCCGCCA GGGTTTGAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTTGTGGAATGAAAAGGA AGTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA TCTACGGAAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA CTATTATCGTTATGATTTTGGTATTTATGATGATCATCAAATCATAACATTGGAAAGAAGAAGATTTGATGC TGCTGTTAATTCTGGAGAACTGTGGTTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATTTTGGAAGTAATACATAATCTTCCAGATTTTTGAACTACTTTCGGCAAACACACTAGAGGATCGTTT GGCTCATCATCGGTGGCTGTTATTTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACCAAAGAACAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT ${\tt TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT$ CTGGGGTCTAGGATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAA AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAA GAGGAATAAGGATGAACTT<u>TGA</u>TAATGTTGAAGATGAAGAAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTGGCTGACCTGAAAAGAGGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAACACCCAT AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAAACCTGAGGGAAAAAAATTA TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TTTTTCACTCCTGTCCAGTCTATTTATTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA ACTGAAGTTATTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTTAGA CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop</pre>

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL
HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI
YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNC
GDDRMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS
IQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN
TLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQP
SLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWC
PPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHS
AEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMART
LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLG
FLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVKAGKVDC
QAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

GCCATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGA GTCGTTGGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCA TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGC ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAA ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT CTCTAAATCAGGTGAAGAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACA GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA CATCCTAGGACATTTTTGGATCACAAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATG GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCCTTACCTCATCCCATAT TGTTCCAGCAAATTTGCCGCTGTTGGCTTTCACAGAGGTCTGACATCAGAACTTCAGGCCTT GGGAAAAACTGGTATCAAAACCTCATGTCTCTGCCCAGTTTTTGTGAATACTGGGTTCACCA AAAATCCAAGCACAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGTAAGAAGTCTGATA GATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCATCGTATATCAATATCTTTCTGAG ACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAATCGTATGCAGAATATTCAAT TATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTTTATTTCACATTTTT TCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAACGAACAAGATTA ATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGTTTTTCCTT TCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTTTTCTTTAAGATAT TTTATTTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAACT TATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG ATCTCAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTT TCATTAGCCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTAT AACTCTGAAGTCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGA TACATTATGAAAGGTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGA TAACCTTTTTCTTTGTAATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAAT TTTAGGCTCAAAAATTAAAGCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAA CAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop</pre>

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI LVLWDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTV YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYC SSKFAAVGFHRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID GILTNKKMIFVPSYINIFLRLQKFLPERASAILNRMONIOFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

 ${f AGGATG}$ ACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGGGGTCGGTGTTCATGATCCT GCTGATCATCGTGTACTGGGACAGCGCAGGCGCGCGCGCACTTCTACTTGCACACGTCCTTCT CTAGGCCGCACACGGGGCCGCCGCCCCACGCCCGGGCCGGACAGGGACAGGGAGCTCACG GCCGACTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGA CCTTCCCAGAAAGGAGACGGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAG GCTACGACTGGTCCCCGCGCGACGCCCGGCGCAGCCCAGACCAGGCCGGCAGCCAGGCGGAG CGGAGGAGCGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCG CGCATTCGACGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGG CCATCTACTGCTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTG AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCA CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCGCCGCTACGGGAAGCTCT $\tt CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCC$ TTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTGGAGAACGAGGAGTTCTACCG GCGAGGCCTTCCGCGCTGGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGAC CCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCA CCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGACGCCGCGC AGCTGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCGAGCTACCGGAACAGG ACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT GTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCC AGTTTTTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCC ATTGAGTACTGTATCGATATTGTTTTTTAAGATTAATATATTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTA DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRT ASSWEEDWFAKIPLAWRQQLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGCACGAGGGCGACGCCTCACGGGGCTTTGGAGGTGA AAGAGGCCCAGAGTAGAGAGAGAGAGACCGACGTACACGGGATGGCTACGGGAACGCGCT GCCTTCGTGAACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGC CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATG TGAAGACCCTGGTTTCTGAGACCATCCGCCGATTTGGCCGCCTGGATTGTGTTGTCAACAAC GCTGGCCACCACCCCCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCT GCTGGAGCTGAACCTACTGGGGACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGA AGAGTCAAGGGAATGTCATCAACATCTCCAGCCTGGTGGGGGCCAATCGGCCAGGCCCAGGCA GTTCCCTATGTGGCCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTTGGCCCTGGATGA AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCCGCTGTGGG AGGAGCTGGCAGCCTTAATGCCAGACCCTAGGGCCACAATCCGAGAGGGCATGCTGGCCCAG CCACTGGGCCGCATGGGCCGCTGAGGTCGGGGCTGCGGCAGTGTTCCTGGCCTCCGA AGCCAACTTCTGCACGGGCATTGAACTGCTCGTGACGGGGGGTGCAGAGCTGGGGTACGGGT GCAAGGCCAGTCGGAGCACCCCGTGGACGCCCCCGATATCCCTTCCTGATTT CTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAACCTGTATCAGATGCAGC CCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACCCTGCAGGTTCCCAT AAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045</pre>

<subunit 1 of 1, 270 aa, 1 stop

<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCD VTQEDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKL ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN IWTPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG AELGYGCKASRSTPVDAPDIPS

Important features:

N-glycosylation site.

amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

AGGCGGCAGCAGCTGCAGCTGACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTG
CTGTTTCTTCTTACCATTTCCATCTTCCTGGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAA
GAGGAAGGGCGAAGGGCGGCCTGGGCCCTGGCCCTCACCAGGTGCCACTGGACC
TGGTGTCACGGATGAAACCGTATGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATG
GTGGCCCAGCTGAGGAACAGCTCAGAGCTGGCCCAGAGAAAGTGTGAGGTCAACTTGCAGCT
GTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGGCTACAGCATCAACCACGACCCCAGCC
GTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTGTCTGGGCTGTGTGAACCCCTTCACC
ATGCAGGAGGACCGCCAGCATGGTGAGCGTGCCTGTTCAGCCAGGTTCCTGTGCGCCGCCC
CCTCTGCCCGCCACCGCCCCGCACAGGGCCTTGCCGCCAGCGCCAGCCCAGCCCCAGCA
CCTCTGCCCGCCACCGCCCCGCACAGGGCCTTGCCGCCAGAAGCCAGGCCAGCACCCCGAGA
CCATCCTCCTTGCACCTTTTTGTAAAAAGGCCTATGAAAAGTAAACACTGACTTTTGAAA
GCAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEY ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCL GCVNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17 amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGGTGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGGG GCGCCCAACATGGCGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGAT CGCGGCTGTGGCGCGACGCACGCCCCGAGGAGGCCGCGCTGCCGCCGGAGCAGAGCCGGG TCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTT TACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAA TGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTG GCCGCTTCTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGT TATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTC TTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATT CCTGCTTGGTGTTCTTATGTGTTTTTCGTCATAGCCACCTTGGTTTTTTGGCCTTTTTATGGG TCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGC GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAG GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGA GAAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAAGAAGAGGAGGAGGACAACTTGGCTG CTGGTGTGGATGAGGAGAGAGTGAGGCCAATGATCAGGGGCCCCCAGGAGAGGACGGTGTG ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGC TGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGAC TG**TAG**ATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCCTTTGG CCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCT CTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT GACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAA CAAGTTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGGGGCCATTCCCAGTCCTAATC AGCACCTTCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCT CCTGAGCATCCCCAAAGTGTAACGTAGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTAT TTTTGTCAAATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAA ATTGAAAGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTG TGCTATGTTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCT CCACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCATAACCCCTGAAGCTGT GACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAGGATT AAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTACAAGGTAGT CTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTTCCCTGGGTCTTGAAC TACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTGCTTTTGGTGAAA GAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTTGTTTCCATCTTCTGTAATC TTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACTGTAAGTACCCAGGGAG GCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop</pre>

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAP WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRG PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAW CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEK DDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTRE EVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase)
amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT ${\tt CAAATGCTATATCTATTCAGGGGGCTCTCAAGAACA} {\color{blue} {\bf ATG}} {\color{blue} {\bf GAATATCATCCTGATTTAGAAAAT} \\$ TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGT TGTTTCAGAGAAAGGATCGTGTGCTGCATCTCCTTCGTTGGCGCCTCATTGCTGTAATTTTGG ${\tt GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTTGGGTACCATGGGGGTTCTTTCC}$ AGCCCTTGTCCTCCTAATTGGATTATATGTGAGAAGAGCTGTTATCTATTCAGCATGTCACT AAATTCCTGGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG ACAGCTCAAATGAATTGGGATTTATAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTT CTCTTCTAACTTATTTCAGATCAGAACCACAGCTACCCAAGAAAACCCATCTCCAAATTGTG TATGGATTCACGTGTCAGTCATTTATGACCAACTGTGTAGTGTGCCCTCATATAGTATTTGT GAGAAGAAGTTTTCAATG<u>TAA</u>GAGGAAGGGTGGAGAAGGAGAGAAATATGTGAGGTAGTA AGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGAGGTCAAGATAAATGCAGAAAATG TTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGAAGGGAGAGGCTGTGATTTCT CACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAGCTATCTCTCGC CTCAGCCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACGATGCCAGGCTAATTTTTGGTG TTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGCTTAAG TGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACACCTGGC CCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGA ATCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGT GTGTTGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAAT ATATTTCTGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCACAGTCAGAGCAATTTT ATTATTTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTA CTTTTTCTTTATCAATTAAATAGCTCAGAGAGTACATCTGCCATATCTCTAATAGAATCTTT ${\tt TTTTTTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGG}$ CACGATCTCGGCTCACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCT AGAGACAGGGTTTCTCCATGTCGGTCAGGGTAGTCCCGAACTCCTGACCTCAAGTGATCTGC CTGCCTCGGCCTCCCAAGTGCTGGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT TGTATAATATGTAATTGTAGGGAAACTGCTCTCATAGGAAAGTTTTCTGCTTTTTAAATACA ACAAGTATTAACATTTTGGAATATGTTTTATTAGTTTTTGTGATGTACTGTTTTTACAATTTTT ACCATTTTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTTCCTCATG TGCTGATTTGTCTTATTTTTTTCATACTTTCCCACTGGTGCTATTTTTATTTCCAATGGATA TTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT TGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTTATGTGGATTTCAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV VLGTMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQ VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL CSVPSYSICEKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGAGCAGCCACACAGGCAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCA ${\tt CACAGGCTGGAGTGCAGTGTGATCTTGGCTCATCGTAACCTCCACCTCCCGGGTTCAAGTGATTCTCATGCC}$ ${\tt TCAGCCTCCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAA\underline{{\tt ATG}}{\tt ACTCCCCAG}$ ${\tt TCGCTGCTGCAGACGACACTGTTCCTGGTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGGGGCCACAGG}$ GAAGACTTTCGCTTCTGCAGCCAGCCGGAACCAGACACACAGGAGCAGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC GCTCAGGGCCCCCCGCTGTTAGCCACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCC GCCAGCTTCACCTTCTCCTTCCACAGTCCTCCCCACACGGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTC AAAAGGGACCTCCAGCTGCTCAGCCAGTTCCTGAAGCATCCCCAGAAGGCCTCAAGGAGGCCCTCGGCTGCCCCC GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCCGCCTCCAGGACCTGCACATCCACTCCCGG CAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTGCTGCTGCCTCGAACACTCTTCCAGAGGACGAAAGGC CGGAGCGGGGAGGCTGAGAAGAGACTCCTCCTGGTGGACTTCAGCAGCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCCGTCAGGAGAAAACCCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC $\tt CTCCTCTCCTACGTGGGCTGTCTCTGCCCTGGCCTTGTCACCATTGCCGCCTACCTCTGCTCCAGG$ $\tt GTGCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC$ ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGTACAACCTCTACCGACTCGTG $\tt GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT$ $\tt CTGGTGACGCTGGTGGATGTGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCAGAG$ GGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC AAGTGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGGGCCTTGATCTTCTTCTCC ${\tt TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTCCAAGGCTTCCTCATC}$ TTCATCTGGTACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCC AGGCTCCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATC<u>TAG</u>GCCTCCAGCCCACCTGCCCATGTGATGAAG CAGAGATGCGGCCTCGTCGCACACTGCCTGTGGCCCCCGAGCCAGGCCCAGGCCCAGGCCAGACCT GGCCAGGCCTTGGATCTTGAGGGTCTGGCACATCCTTAATCCTGTGCCCTGGCCTGGGACAGAAATGTGGCTCCA GTTGCTCTGTCTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGG CGAATGGGGCCCAGGGCAGACCTTCAGGGCCAGAGCCCTGGCGGAGGAGAGGCCCTTTGCCAGGAGCACAGCAGC ${\tt AGCTCGCCTACCTCTGAGCCCAGGCCCCCTCCCTCAGCCCCCAGTCCTCCATCTTCCCTGGGGTTC}$ ${\tt TCCTCCTCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAGCTGGGGGTCCCCGATTCCAATGCTGTTTTTTGGGGA$ GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA GGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATCTGGGCCCTTTGTATGAGCTGCATTGCCCTTG $\tt CTCACCCTGACCAAGCACACGCCTCAGAGGGGCCCTCAGCCTCTCAGAGCCCTCTTGTGGCAAGAACTGTGGA$ $\tt CCATGCCAGTCCGGTTTCCATCCCACCACTCCAAGGACTGAGACTGACCTCCTCTGGTGACACTGGCCTA$ GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCATTGTAGAGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE
EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQH
QEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLL
SQFLKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD
LHIHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGE
KVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRE
TQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC
RRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLE
GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIY
PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLG
LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP
ISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

TGCCTGGCCTGCCTTGTCAACAATGCCGCTTACTCTGCTTCCAGGTTGCCCTGCCTTGCAGA
GGAAANCNTCGGGACTACACCNTCAAGTGCACATGAACCTGCTGCTGGCCGTCTTCCTGCTG
GACACGAGCTTCCTGCTCAGCGNAGCCGGTGGCCCTGACAGGCTCTGAAGGCTGGCTGCCGA
GCCAGTGCCATCTTCCTGCACTTCTCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGG
TACAACCTCTACCGACTCGTGGTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTCAA
GCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTTCTGGTGACGCTTGGTGGCCCTGGTGGATG
TGGACAACTATGGCCCCATCATCTTGGCTGCATAGGACTCCAGAGGGCGTCATCTACCCT
TCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGCCT
GGTGTTTCTGTTCAACATGG

 ${\tt CGGACGCGTGGGCGGACGCGTGGCGGACGCGTGGGCTGGTTCAGGTCCAGGTTTTGCTTTGA}$ ${ t TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT$ GCGATTCTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGTGAAAGAGAC ${ t TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC}$ AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATG GAAGTATTCACAGCCCAAGGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAG ATGATTTTGTAGAAGTTGAGGAACCCAGTGATGGAACTATATTAGGGCGCTGGTGGTTCTGGTACTGTACCAG GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT ${ t TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG$ ${f AGAGATGGCAGTTGGACTTAGAAGATCTATATAGGCCAACTTGGCAACTTCTTGGCAAGGCTTTTGTTTTTGGAA}$ GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCT CAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTG ${\tt GAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT}$ TCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAACAGAATTAGGAGTTGTGCA TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTC GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT GTCATGCTGATAGGACAGACTGGATTTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAGAACTACA ${\tt TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG}$ TTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT ATTTTTACCAAAGGTATTTAATATTCTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCT AAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA ${\tt TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAA}$ GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT AAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGTGCAGTAGGAACACATCCTATTTA ${ t TTGTGATGTTGTGGTTTTATTTTTATGTACACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACA$ ${\tt GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT}$ AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPR FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWC GSGTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLL NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLY SCTPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQ LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTGCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGA ${f A}{f G}{f A}{f C}{f T}{f A}{f T}{f G}{f G}{f G}{f C}{f A}{f C}{f T}{f G}{f A}{f G}{f A}{f G}{f A}{f C}{f A}{f A}{f T}{f T}{f C}{f T}{f T}{f T}{f T}{f C}{f C}{f T}{f A}{f T}{f T}{f T}{f C}{f C}$ AAACTCCTTGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC $\tt CCTAGCTTACAGCTTCTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCC$ AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAAGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTTTAACAGAACTATATCTCTACAACAACATGATTGCAAAAATCCAAGAAGATGATTTTAATAAC CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCG TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA ${\tt CACAGTAACTCTCTTCAGCATGTGCCCCCAAGATGGTTTAAGAACATCAACAAACTCCAGGAACTGGATCTGTCC}$ ${\tt CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG}$ TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTTTCTTCACTGAAAAGCCTG AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAACAATTTAAAAGA $\tt CTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT$ ${\tt GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA}$ AGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTACAAGTATGGGCAGACC AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG ${\tt GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT}$ ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGGAACCTAAAGGTT ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAGGTGATAACAGATACTTACAATTATTCAAG AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGT ATGCCTCCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGT ${f AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC}$ ${\tt CAGTTGCGATATCTGGATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTC}$ AACAATCTGAAGATGTTGCTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGGTTTGTCTGGTGG GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACAAGGGC ${\tt CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA}$ ${\tt TCTGTATCTCTCTTTCTCATGGTGATGATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCAT$ ${ t TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT$ GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAA CATTTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA $\tt CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC$ TTGTCCCATCAGAGGCTCATGGATGAAAAGTTGATGTGATTATCTTGATATTTCTTGAGAAGCCCTTTCAGAAG ${ t TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC$ CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA ${ t ACGGTC} { t TAG} { t CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC$

MVFPMWTLKROILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGG IPTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFS GLTYLKSLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYR NPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNL NQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWF KNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQAFSSLKSL KILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKIS PSGDSSEVGFCSNARTSVESYEPOVLEOLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQ TLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLH STAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESES LRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNLSL AKNGLKSFSWKKLOCLKNLETLDLSHNQLTTVPERLSNCSRSLKNLILKNNQIRSLTKYFLQ DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIP YLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVW YIYHFCKAKIKGYQRLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEE RDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDVIILIFLE ${\tt KPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV}$

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAAAC<u>ATG</u>GAAAACATGTTCCTTC AGTCGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCCGAAGAAAATTTTTCTA GAAGCTATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAG CATTTCAAGGGCTGCAAAATCTCACTAAAATAAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATC CCGGTATACAATCAAATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGC TTGAAGACAACCAGTTACCCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACA ATATATACAACATAACTAAAGAGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCT ATTTTAACAAAGTTTGCGAGAAAACTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTAT CACTATCTTTCAATTCTCTTTCACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACA CCCAGATCAAATACATTAGTGAAGAAGATTTCAAGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACT GTCCGAGGTGCTTCAATGCCCCATTTCCATGCGTGCCTTGTGATGGTGCTTCAATTAATATAGATCGTTTTG CTTTTCAAAACTTGACCCAACTTCGATACCTAAACCTCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGT TTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAATTCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCAT TTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTTTTAACTATAAAGGGGAGTTATCCACAGCATA TTAATATTTCCAGAAACTTCTCTAAACTTTTGTCTCTACGGGCATTGCATTTAAGAGGTTATGTGTTCCAGGAAC ${\tt TCAGAGAAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGACTATCAACTTGGGTATTAATTTTATTA}$ AGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTTACTTGTCAGAAAACAGAATATCAC CGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTCATATCCGGAAACGACGCTCAA CAGATTTTGAGTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAAAGCCACAATGTGCTGCTT ATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTGAAAATCTTCCTGACA TTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAGCCATTCCTCATG TCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGTCCGACTTGG AAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTATTCAAA ATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGGAAA GCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATG AAGCATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGA TATCTGACTTTACATCTTCCCTTCGGACACTGCTGCTGAGTCATAACAGGATTTCCCACCTACCCTCTGGCTTTC TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTG AAACTAAGACCACCACCAAATTATCTATGTTGGAACTACACGGAAACCCCTTTGAATGCACCTGTGACATTGGAG ATTTCCGAAGATGGATGGATGAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTG GGGATCAAAGAGGGAAGAGTATTGTGAGTCTGGAGCTAACAACTTGTGTTTTCAGATGTCACTGCAGTGATATTAT TTTTCTTCACGTTCTTTATCACCACCATGGTTATGTTGGCTGCCCTGGCTCACCATTTGTTTTACTGGGATGTTT GGTTTATATATATGTGTGTTTTAGCTAAGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATG AGAGCCGAGACAAAAACGTTCTCCTTTGTCTAGAGGAGAGGGATTGGGACCCGGGATTGGCCATCATCGACAACC TCATGCAGAGCATCAACCAAAGCAAGAAAAACAGTATTTGTTTTAACCAAAAAATATGCAAAAAAGCTGGAACTTTA AAACAGCTTTTTACTTGGCTTTGCAGAGGCTAATGGATGAGAACATGGATGTGATTATATTTATCCTGCTGGAGC CAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGATCTGTAAGAGCTCCATCCTCCAGTGGCCTGACA ACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGGTCTTGACTGAAAATGATTCACGGTATAACA ATATGTATGTCGATTCCATTAAGCAATAC<u>TAA</u>CTGACGTTAAGTCATGATTTCGCGCCCATAATAAAGATGCAAAG GAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAAAACTTAGTGGTTTAAAACAACACA TTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGTCCTCTGCTCAGGGTGTCTCAG AGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGTGGTTGTTTTTCTGGATTCA ATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAATCAAAAAAGTGAT ATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGAGTGACCACC TCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATTTTCCCT TGACTGCTGTCCTGGGATGGCCTGCTATCTTGATGATAGATTGTGAATATCAGGAGGCAGGGATCACTGTGGACC ATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA ${\tt TTAAGCTGTTGTTTATATTTATCATATATCTATGGCTACATGGTTATATTATGCTGTGGTTGCGTTCGGTTTTAT}$ TTACAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGG ATAGCTTTTAAAGCATCTTTTACTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTTGGTCTATA

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVG KYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNL KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKV CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNM PHLKVLDLEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL HLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLV KDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFI GPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEV LDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRL DILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWT LLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS SNLLKTINKSALETKTTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP GDQRGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVK GYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID NLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRL RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGCACAGGTGGCCCCCACCACCCCGGAGGA GCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA GGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTT $\tt CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCA$ CCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGC CGCAGCCCTGGGCTGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGAC CAGCGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGA GCTGTGTCCAGCCTGCCGCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA GATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCCCAGCGCTGCATCAACACCCGCCGG CAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGC CCAAGGAGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAA GAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGC CCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCC GAGGAGCAGCTGGGGTCCTGCTCCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTG GACTGAGCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAG AAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCCTCCTCCCCC TTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCAC CCCTGGCTACCCCACCCTGGCTACCCCAACGCCAAGGCCAGGTGGGCCCTCAGCTG AGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAG GCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGA CGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAG GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCCACCATGGCCACGCCTGGGCTCC AGCAGCATCAGAGCAGCCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGA GGGGCTTCGCGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC AGTGGATGAGCAACCCAACGGGGGCCCGGGGAGGGAACTGGCCCCGAGGGAAGAGAACCCC AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGGAGG CACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTC TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGC TCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTTGGCAGTGGGCGGCACAGAGCACGCCTA CCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCG TGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGCCTGGCCCTGCCAGGCCTCGCTA CGCGTGCTGCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCA GGATGCCGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTG TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCC TGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCG ACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCT GGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGC ATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGAC CTCGTGACTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATG CCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGC AGGGCCTTCCTCCTCCTCCTCCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGAT GGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCA ${ t TCCCAAGGCCAGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGAC$ CCATGGCACAGGCCAGGCAGCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGAC CCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

CCCACGCGTCCGAAGCTGGCCCTGCACGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA GGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGG TCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCCAGCAGCAT CAGCAGCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGC ${\tt CCCTGTCCGGGGGGTGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGC}$ AGTGGGCGCACAGAGCACGCCTACCGGCCCGCCGTAGGGTGTGTGCTGTCCGGGCTCACG GGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGAC GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGG GCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTC CCTGGCCGCTGCCGTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA ATGCAGTGCTAGGAGGGGGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT GCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACA GCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCC GGGGTCCTGCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCC TCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTCCAGAAGCCACCTCG GGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCTCCTCCCCCTTCCTCGGGAG GCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACC CCCACCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTAC CCTCAGTGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGAGACAGCCTCCCGGCCCGGGGAG AGTTGGGTCTCCGTGTTTCAGGCCGGCTCCCCCTTCCTGGTCTCCCCGCTGGGCCGGTTTATCGGGAGG AGATTGTCTTCCAGGGCTAGCAATTGGACTTTTGATGATGTTTTGACCCAGCGGCAGGAATAGCAGGCAACGTGAT ${\tt TTCAAAGCTGGGCTCAGCCTCTGTTTCTTCTCTCTGTGTAATCGCAAAACCCATTTTGGAGCAGGAATTCCAATC} \underline{{\tt A}}$ ATGGCCGCGTCATGATGGCCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACAC TCTTCTTCGCCTTTGAGTGCCGCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCT TCCTTTTCTCCATGGCTACACTGTTGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATG AAGCAGCTTTCATAGAAATGGAGATAGAAGCTACCAATGGTGCGGTGCCCCAGGGCCCAGCGACCACCGCCTCGTA TCAAGAATTTCCAGATAAACAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCC CTCTCAACCAGACAACCAATGAAGACATCAAAGGATCATGGACAGGGAAGAATCGCGTCCAGAATCCCTACAGCC ATGCCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCTTGCCCCCCAGTGTGCTGGATCGAAGGGGTA TTTTGCCACTGGAGGAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCAGTAGCAGCCTCTTGCCACAGAGCC CAGCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCACTCCCGAAGAGATGCCACCTCCAG AGCCCCCAGAGCCACCACAGGAGGCAGCTGAAGCTGAGAAG<u>TAG</u>CCTATCTATGGAAGAGACTTTTGTTTTGTGTTT TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAGCTGTCCCTTTTAACT GTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTTAAATTTCTGAACT CAAGGCAGTGGCAGAAGATGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGCACTGGTTCT CCATGGCCTCAGCCACAGGGTCCCCTTGGACCCCTCTCTTCCCTCCAGATCCCAGCCCTCCTGCTTGGGGTCAC TGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCT TCCACTTGTTGTANNNNNNNNNNNNNNNNNNNNNNNNTTGTTTTTCCTTTTGACTCCTGCTCCCATTAGGAG CAGGAATGCCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAAC ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAG CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCT ATGGTAACCACACTGGGGGCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTT CACCCTGGGGGTGGGCTGTGGCCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGT ATTATATGTGGCTATATTTCCTAGAGCACCTGTGTTTTCCTCTTTCTAGGCCAGGGTCCTGTCTGGATGACTTAT GCGGTGGGGAGTGTAAACCGGAACTTTTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV QLSPAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPP RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYL FILSLSLLTIYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTF LVALNQTTNEDIKGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPPEPPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA TCTATCAGGAAAGAAAGAAAAAAAACCGAACCTGACAAAAAAGAAGAAAAAGAAGAAGAAGAAGA AAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCAC GGGGCTGGCTGTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCGCCCGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTTCAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACACCAATGCCAGC ATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGG CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGC ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAAA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

GAAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTC
ACGGGGCTGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTT
CCCCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTA
TTGACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAAT
GACAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCAT
CGAGATCCAGAACGTGGATGTGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACACA
ACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATT
TCTTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAG
ACCAGAG

ATGGCTGGTGACGGCGGGCCGGGCAGGGGACCGGGCCGCGCCCGGGAGCGGCCAGCTGCCGGGAGCCCTGA AAGGGGACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTACTGCTGGCT GCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAG CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCAGCCACTGAGA GACCTCATTGAGAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAGCTGGCCAACATCACAGTGCCCCAGGACCAGCGGCGCGAC GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCGCCCCCCATGGACTGGCTTGAGTTC CTGTCTTTCTTGCTGTCACCATTGGAGTTGAGTGACTCTGAGCCTGTGGTGGTGTATGGGATGGTTATTTTGCAG CAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAACAATTACCTGATCTGGAACCTGGTGCAAAAG ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAGCCTGCTGGAGACCCTCTATGGCACTAAGAAG TCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTTGGCTTTGCTTTGGGGTCACTCTTC GTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGCGAAATCCGGACCGCATTTGAG GAGGCCCTGGGACAGCTGGTTTGGATGGATGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT GAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGGTCCGCAAG GTCTTCCCCGCTGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTG CGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACGGCCTGCATGGAGGAACAGTACAATCAA TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGGAGAACATTACTGACAACGGGGGGCTGAAG GCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGCCAGCCGTGGGGCTCACC AACCACCAGCTCTTCGTGGGATTTGCCCAGGTGTGGTGCTCGGTCCGCACACCAGAGAGCTCTCACGAGGGG $\tt CTGGTGACCGCACAGCCCTGCCGGCTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGG$ CACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACCTGGATCAGGGGA GAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAA ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDN
FMEVLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAY
LDYMEELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain:

amino acids 32-57

 ${\tt AGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCCGGCTGGACCGCCCTACCAGGATCCGCTT}$ CTCAGACTCCAATGGCAGTGTCCTGTTTGAGCACCCTGCAGCCCCAACATGGCCTGGTCTGTGGGGTGTG ${\tt TCTAGAAGGCCCCCACCAGCAGGGCGTAGGGGGCATCACCCTGCTCACTCTCAGTGACACAGAGGACTCCTTGCA}$ GCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTTTGCTGAGGTGCTGCCCAACCTGACAGT CAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTGTGGGGCTAATGCCCTGATCCC AGTCCAAACGGGTGCTGCCGGCTCAGCCAGCCTCACTCTGCTAGGAAATGGCNCCCTGATCCTCCAGGTGCAATT GGTAGGGACAACCAGTGAGGTGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGATCAGCCCACTGTCCT GTGCCACATGGCTGGCCTATCCTCCCCTGCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGGGTGCCCGAGGGGC TCATATGCTGCTGCAGAATGAGCTCTTCCTGAACGTGGGCACCAAGGACTTCCCAGACGGAGAGCTTCGGGGGCA $\tt CCCTGTGAAGAGCCAAGCAGGACGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGTGCT$ GCTGGCTGGGCTTGGTGGCTCAGAACAAGGCACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCC TCGGCGGCTGCTGAAGGGATTCTATGGCTCAGAGGCCCAGGGTGTGGTGAAGGACCTGGAGCCGGAACTGCTGCG GCACCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCT $\tt CTCCTCCCAGGTGCACATAGCCAACCAATGTGAGGTTGGCGGACTGCGCCTGGAGGCGGCCCGGGGCCGAGGGGGT$ CAAACCTGGTGGTCCTGGGCGGCCCCGAGACCCCAACATGCTTCTTCGAGGGGCAGCAGCGCCCCCACGGGGC TCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCACCTGCCAGAGACGAACGGTGATCTGTGACCCGGT GTGTGCTGTCTGCACCTGCAAGCAGGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGC CTGTGCCCAGCCTGTGCGTGTCAACCCCACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGG ${\tt GGACCCCATGCAGGCTGATGGGCCCCGGGGCTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCA}$ ${\tt CCCCTCAGTGCCCCCGTTTGGAGAGATGAGCTGTATCACCTGCAGATGTGGGGGTAAGTGGGGAGCAGAGGCTTGT}$ GTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGGAGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCA GGGATGACTGTTCACTGCCACTGTCCTGTGGCTCGGGGAAGGAGAGTCGATGCTGTTCCCGCTGCACGGCCCACC ACCTGGTGGAATTGTTATTTATGACCTTTTCTTTACAAATGAGATTTCTGAAGCTCAGAGAAATTAAGCAACGAG ${\tt ATGAAGGTCACCCAGCTGTGTGCACTGTTTAGAAAATACTGGCCTTTCTGGGACCAAGGCAGGGATGCTT}$ AAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTCTCCTGTGGGAAG $\tt CCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTCCACAAGGGG$ GAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCCTGCCACCCTCGGCCTCTGTCCTGGAA GCCCCACCCTTTCTTCCTGTACATAATGTCACTGGCTTGTTGGGATTTTTAATTTTATCTTCACTCAGCACCAAG $\hbox{$\tt ATTTCTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGG}$ GCNGAGAGTAGGAGGGGGAGAGAGGAGGCTCTGACACTTGGGGAGCTGAAAGAGACCTGGAGAGGAGAGGATAG CGTGGCNNTTGGCTGGCATNCCTGGGTTCCGCAGAGGGGCTGGGGATGGTTCTTGAGATGGTCTAGAGACTCAAG AATTTAGGGAAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATG ${\tt TTTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGTCACCAGCCCCTCTCTCCCTTCCCTTCCCTTTCT}$ TTCCCTCCCCTCCCCTCCCCTCC

GGCCGAGCGGGGTGCTGCGCGGCGGCCGTGATGGCTGACGGCGGGGCCGGGCAGGGGA CCGGGGCCGGGCCGGGGCCAGCTGCCGGGAGCCCTGAATCACCGCCTGGCCCGAC TCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAACGTGGGATTCCAGAAGGG GACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTAC TGCTGGCTGCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCA TCCCACAGCACCTGCCTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCT GGACCGAGGGGTGAGCCCCTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGA GGAACCCCCTGCCGGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAAC CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCA GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCC AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAG GACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCAC CGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG GGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTGATCCCTGTTGACTTTTCCCT TTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTAGTGAACAAACTGCCCCT TCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGGAATTCG GAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTCATGGACCT AGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATGGAGCC AGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCC TTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCCATCGGTGTGGTCATGGGCCA TGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGC CCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAG TACAATCAATACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACAT TGCTGACAACGGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG ${\tt GGGAGGAGCAGCTGCCAGCCGTGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTT}$ CCACAGCCCTGCCGCTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGC ACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACC TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGT GGTGACATGAGTACAGACCCTCCTCAATCACCACATTGTGCCTCTGCTTTGGGGGGTGCCCCT GTCTGGGTGGGAGGCCAGTTCCCATAGGAAGGAGTCTGCCTCTTCTGTCCCCAGGCTCACT CAGCCTGGCGGCCATGGGGCCTGCCGTGCCCCACTGTGACCCACAGGCCTGGGTGGTG TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCGCACTTAGGGGTGGACTCAGCTCTGTC TGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCACTGCTCCCAGTG CTGCTGCTGACCTTCACTGACAGCTCCTAGTGGAAGCCCAAGGGCCTCTGAAAGCCTCCTGC TGCCCACTGTTTCCCTGGGCTGAGAGGGGAAGTGCATATGTGTAGCGGGTACTGGTTCCTGT GTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA GAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCT TGGCCCTTATAGGACC

CCCACGCGTCCGAGCCCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGA AAAAAAAAAATCCTGTGGCGCGCCGCCTGGTTCCCGGGAAGACTCGCCAGCACCAGGGGG TGGGGGAGTGCGAGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGACATGATG CTGTTGGTGCAGGGTGCTTGTTGCTCGAACCAGTGGCTGCCGCGGCGGTGCTCCTCAGCCTGTG ${f ACAACATGATGGTCAGAAAAGGGGGACACGGCGGTGCTTAGGTGTTATTTGGAAGATGGAGCT}$ TCAAAGGGTGCCTGGCTGAACCGGTCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGT GGATCCTCGAGTTTCAATTTCAACATTGAATAAAAGGGACTACAGCCTCCAGATACAGAATG ATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAAGATATATGACATCTCAAATGATATGAC ${\tt CGTCAATGAAGGAACCAACGTCACTCTTACTTGTTTGGCCACTGGGAAACCAGAGCCTTCCA}$ ${ t TTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTGAAAATGGACAATATTTGGACATT$ TATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGTGCGGAAAATGCTGTGTCATT CCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTACTATTCAGGAAATTAAAT CTGGCACCGTGACCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT CCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAAGGAATTATTAT TCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTTCGGCA CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTACCT ${\tt TGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAA\underline{{\tt TAA}}{\tt A}}$ ${\tt TTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATCT}$ GGTACAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCC TTCTGTAGAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTGATTAGCTACATTA CCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAG AGGATATTAATTGTGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGT CTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAA GGCTGCAATACAAGCATTCAGTTCCCTGTTTCAATAAGAGTCAATCCACATTTACAAAGATG CATTTTTTTTTTTTTTGATAAAAAAGCAAATAATATTGCCTTCAGATTATTTCTTCAAAATA TAACACATATCTAGATTTTTCTGCTTGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAAT ATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGTAAGTTCAGCATGGGTGTGCCTTCATAC AATAATATTTTTCTCTTTGTCTCCAACTAATATAAAATGTTTTGCTAAATCTTACAATTTGA AAGTAAAAATAAACCAGAGTGATCAAGTTAAACCATACACTATCTCTAAGTAACGAAGGAGC TATTGGACTGTAAAAATCTCTTCCTGCACTGACAATGGGGTTTGAGAATTTTGCCCCACACT AACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTATAGTAAATATACCATATGATTTC TTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTCCCTTTAAAATGACAGCACA GTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCACTAGTCCAAGCCAAAAA TTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCCTATCACCTAATATTACAAGAGTTGGTA AGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGGAGGGTATGGA TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC AGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGATACA CAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTTGG AGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCA

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLED GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP RTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYL DIYGITRDQAGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV PPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPL NPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGG CTCCAGGACTTTGGCCATCTATAAAGCTTGGCA**ATG**AGAAATTAAGAAAATTCTCAAGGAGGA CGAGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAA TCAATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATC TACCTGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC GCGGCTCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGT CCTTCTCCTTGCTGCAGTCAGCACCCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG CAAGTCCTGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGT AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTC TTCAAGGTCACAAGGGGGCCATGGGCATGCCTGGTGCCCTGGCCCGCCGGGACCACCTGCT GAGAAGGGAGCCAAGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGG CCCACCGGGAGTCAAGGGAGAGCGGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAG GAGCCACTGGCACCCCAGGACCCCAAGGAGAGAGGGCAGCAAAGGCGATGGGGGTCTCATT GGCCCAAAAGGGGAAACTGGAACTAAGGGAGAGAAAGGAGACCTGGGTCTCCCAGGAAGCAA AGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCCTCCTGGAGCCCAGGGGAGTA AAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGAT CAAGGACAACCTGGACTGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTGGGACACCCAGGTGC CAAGGGTGAGCCTGGCAGTGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGA GTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGA AGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGCCCAGG GCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAAAG GATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAAGAGGTGAAAACTCAGTGTCC GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGG GACAATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTT GTTCAGTGTCGGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCA TGACTGCAGCCACGAGGAGGACGCAGGCGTGGAGTGCAGCGTCTGACCCGGAAACCCTTTCA CTTCTCTGCTCCCGAGGTGTCCTCGGGCTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGT TCCCTGGGGACAACTGAGCAGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL LVVQVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVR VSHEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRD GATGPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGE KGDLGLPGSKGDRGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPG PPGAVGHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA GVKGEQGSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGR AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW SCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758</pre>

<subunit 1 of 1, 98 aa, 1 stop

<MW: 11081, pI: 6.68, NX(S/T): 1

 ${\tt MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDG}\\ {\tt KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ}$

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

CCCACGCGTCCGCGGACGCGTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGG CTGATAAGCGAGGCATTAGTGAGATTGAGAGAGACTTTACCCCGCCGTGGTGGTTGGAGGGC GCGCAGTAGAGCAGCACAGGCGCGGGTCCCGGGAGGCCGGCTCTGCTCGCGCCGAGATG TAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGAT GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGC AGGAACAGAACATTCAGCTTGCAAAGCAAATTCAATCCCAGTGGAAAGAATTTGGCC TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC AACTACATCTCAATAATTAATGAAGATGGAAATGAGATTTTCAACACATCATTATTTGAACC ACCTCCTCCAGGATATGAAAATGTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTC AAGGAATGCCAGAGGGCGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAA TTGGAACGGGACATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGT TTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT $\tt CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGACGGTTGGAATCTTCCT$ GGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACC AGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGCTGTTGGTCTTCCAA GTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAAAAATGGGTGGC TCAGCACCACCAGATAGCAGCTGGAGAGGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGTGA CTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGT CAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCA GAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTAT AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACC TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGG ACTAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGG AAATGATTTTGAGGTGTTCTTCCAACGACTTGGAATTGCTTCAGGCAGAGCACGGTATACTA AAAATTGGGAAACAAATTCAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATAT GAGTTGGTGGAAAAGTTTTATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCG AGGAGGGATGGTGTTTGAGCTAGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATG CTGTAGTTTTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAA ATGAAGACATACAGTGTATCATTTGATTCACTTTTTTTCTGCAGTAAAGAATTTTACAGAAAT TGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTATTAAGAA TGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTAGGGTTACCAGAC AGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGGAGTC ATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTGGACCCTTCCAAGGCCT ${\tt TTGAGTGAAGTAGCC} \underline{{\tt TAA}} {\tt GAGGATTTTTTAGAGAATCCGTATTGAATTTGTGTGTGTATGTCA}$ CTCAGAAAGAATCGTAATGGGTATATTGATAAATTTTAAAATTGGTATATTTGAAATAAAGT TGAATATTATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756</pre>

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFL
DELKAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEW
AEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYET
YELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQ
EMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAE
TLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713