积

第三章 复变函数的积分

- § 3.1 复变函数积分的概念
- § 3.2 柯西积分定理
- § 3.3 柯西积分公式

3.1.1 积分的定义

如图设C为从a到b的简单光 滑的有向曲线,函数f(z)在C上有定义,

(1) 将曲线 C 任意划分:

$$z_0 = a, z_1, z_2, \dots, z_n = b,$$

$$\Leftrightarrow \Delta z_k = z_k - z_{k-1}, \quad \lambda = \max_{1 \le k \le n} |\Delta z_k|,$$

(2) 在每个弧段 $\widehat{z_{k-1}} \widehat{z_k}$ 上任取一点 $\zeta_k \in \widehat{z_{k-1}} \widehat{z_k}$,

若 $\lim_{\lambda \to 0} \sum_{k=1}^{\infty} f(\zeta_k) \Delta z_k$ 存在(不依赖 C 的划分和 ζ_k 的选取),

则称之为f(z)沿曲线C的<u>积分</u>,记为 $\int_C f(z) dz$.

复

3.1.2 积分的性质

(1)
$$\int_C f(z) dz = -\int_{C^-} f(z) dz$$
.

(2)
$$\int_{C} f(z) dz = \int_{C_{1}} f(z) dz + \int_{C_{2}} f(z) dz$$
,
其中, $C = C_{1} + C_{2}$.

(3)
$$\int_C [\alpha f(z) + \beta g(z)] dz = \alpha \int_C f(z) dz + \beta \int_C g(z) dz.$$

(4)
$$\left| \int_{C} f(z) dz \right| \leq \int_{C} |f(z)| |dz| \leq \int_{C} |f(z)| ds \leq ML$$
,
其中, $M = \max_{z \in C} |f(z)|$,
第一类曲线积分

L为曲线C的弧长。

3.1.3 积分的存在性条件与计算

由二元实函数的第二型曲线积分存在的条件得:

定理: 若函数 f(z) 在光滑(或按段光滑)的曲线C上连续,则f(z)在C上可积;且得到计算积分的方法:

方法一 化为第二类曲线积分

$$\underline{\int_C} f(z) dz = \underline{\int_C} (u + iv) (dx + i dy)$$

$$= \underline{\int_C} u dx - v dy + i \underline{\int_C} v dx + u dy.$$

进一步可化为定积分或者二重积分。

3.1.3 积分的存在性条件与计算

方法二 线积分直接化为定积分

设曲线 $C: z = z(t) = x(t) + i y(t), t: a \rightarrow b,$ 则

$$\int_C f(z) dz = \int_a^b f[z(t)]z'(t) dt,$$

其中, z'(t) = x'(t) + i y'(t).

附 其它方法(后面的章节介绍)

- 利用原函数计算,即 $\int_C f(z) dz = F(z)\Big|_{z_0}^{z_1}$.
- 利用柯西积分公式、高阶导公式计算。
- 利用留数计算。

例 计算 $I = \int_C z \, dz$,其中 C 为(如图):

(1)
$$C = C_1 + C_2$$
; (2) $C = C_3$; (3) $C = C_4$.

 \mathbf{f} (1) 曲线 C_1 的方程为 $x = t, y = 0, 0 \le t \le 1$ 曲线 C_2 的方程为 $x = 1, y = t, 0 \le t \le 1$

注: 过两点
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$ 的直线
$$z = z_1 + t(z_2 - z_1)$$
 或参数形式
$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \end{cases}$$

$$I = \int_{C} z dz = \int_{C_{1}} z dz + \int_{C_{2}} z dz,$$

$$= \int_{0}^{1} t dt + \int_{0}^{1} (1 + ti)i dt$$

$$= \frac{1}{2} t^{2} \Big|_{0}^{1} + it - \frac{1}{2} t^{2} \Big|_{0}^{1} = i$$

例 计算 $I = \int_C z \, dz$,其中 C 为(如图):

(1)
$$C = C_1 + C_2$$
; (2) $C = C_3$; (3) $C = C_4$.

解

(2) 曲线 C_3 的方程为 z = t + it, $t: 0 \rightarrow 1$,

$$I = \int_{C_3} z \, dz = \int_0^1 (t + it) \, d(t + it)$$
$$= (1+i)(1+i) \int_0^1 t \, dt = i.$$

(3) 曲线
$$C_4$$
 的方程为 $z = t^2 + it$, $t: 0 \to 1$,
$$I = \int_{C_4} z \, dz$$

$$= \int_0^1 (t^2 + it) \, d(t^2 + it)$$

$$= \frac{1}{2} (t^2 + it)^2 \Big|_0^1 = \frac{1}{2} (1 + i)^2 = i.$$

例 3.1.2 计算积分 $\int_c Rez dz$,其中曲线C是:(1)连接0到1+i的直线段;

(2)从0到1的直线段 C_1 与从1到1+i的直线段 C_2 所连接成的折线;

解:(1)C的参数方程可以写作

$$x = t$$
, $y = t (0 \le t \le 1)$

表达成复数形式则为

$$z = (1+i)t$$
, $z'(t) = 1+i$

这样便有

$$\int_{C} Rez dz = \int_{0}^{1} Re[(1+i)t](1+i)dt$$

$$= (1+i) \int_{0}^{1} t dt = \frac{(1+i)t^{2}}{2} \Big|_{0}^{1} = \frac{1+i}{2}$$

 $(2)C_1$ 的参数方程可以写作

$$x = t$$
, $y = 0 (0 \le t \le 1)$

C_2 的参数方程为

$$x=1$$
, $y=t (0 \le t \le 1)$

于是由复积分的性质可得

$$\int_{C} Rezdz = \int_{C_{1}} Rezdz + \int_{C_{2}} Rezdz$$
$$= \int_{0}^{1} tdt + \int_{0}^{1} idt = \frac{1}{2} + i$$

由此两例可以看出:有时积分与路径无关,有时又相关

其实这与函数f(z)的性质有关。

 $^{\bullet}$ 例 计算 $I = \oint_C \frac{\mathrm{d}z}{(z-z_0)^n}$,其中,C为 $|z-z_0|=r$,n 为整数。 圆周C取逆时针方向。

解 曲线 C 的参数方程为 $z=z_0+re^{i\theta}$, $\theta:0\to 2\pi$,

$$I = \int_0^{2\pi} \frac{r e^{i\theta} i}{(r e^{i\theta})^n} d\theta$$

$$= \frac{i}{r^{n-1}} \int_0^{2\pi} e^{i(1-n)\theta} d\theta,$$

$$\stackrel{\text{iff}}{=} n = 1$$

$$\text{时}, \quad I = 2\pi i;$$

$$\stackrel{\text{iff}}{=} n \neq 1$$

$$\text{form}, \quad I = \frac{i}{i(1-n)r^{n-1}} e^{i(1-n)\theta} \Big|_0^{2\pi} = 0.$$

注: 结果与r无关。此例的结果很重要!

的

积

第三章 复变函数的积分

- § 3.1 复变函数积分的概念
- § 3.2 柯西积分定理
- § 3.3 柯西积分公式

3.2.1 柯西积分定理

定理 设函数 f(z) 在单连通域 D 内解析, 3.2.2

 Γ 为 D 内的任意一条简单闭曲线,则有 $\int_{\Gamma} f(z) dz = 0$.

●上述定理又称为<u>柯西-古萨(Cauchy-Goursat)基本定理</u>。

3.2.3 复合闭路定理

• 将柯西积分定理推广到二连域

定理 设二连域D的边界为 $C = C_1 + C_2^-$ (如图),

函数 f(z) 在边界C 上以及D 内解析,则

$$\oint_C f(z) dz = 0 \quad \text{if} \quad \oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz.$$

证明 如图,作线段 \overline{ab} ,则二连域D变为单连域,从而有 $\int_{C} f(z) dz + \int_{\overline{ba}} f(z) dz + \int_{C_{\overline{a}}} f(z) dz + \int_{a\overline{b}} f(z) dz = 0,$

$$\Rightarrow \oint_C f(z) dz = 0 \quad \text{if} \quad \oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz.$$

3.2.3 复合闭路定理

• 闭路变形原理

如图,设f(z)在D内解析, 在边界 $C = C_1 + C_2$ 上也解析, Γ 为D内的一条"闭曲线",

则
$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz = \oint_{\Gamma} f(z) dz$$
.

在区域内的一个解析函数沿闭曲线的积分,不因闭曲线在 区域内作连续变形而改变它的值, 称此为闭路变形原理。

例 计算 $I = \oint_{\Gamma} \frac{\mathrm{d}z}{(z-z_0)^n}$, 其中, Γ 为包含 z_0 的一条闭曲线。

解 如图以zo为圆心r为半径作圆,

则函数
$$f(z) = \frac{1}{(z-z_0)^n}$$
 在

$$\overline{D} = D + \Gamma + C^-$$
上解析,

因此有
$$I = \oint_{\Gamma} \frac{\mathrm{d}z}{(z-z_0)^n}$$

$$= \oint_C \frac{\mathrm{d}z}{(z-z_0)^n} = \begin{cases} 2\pi i, & \text{if } n=1 \text{ if }, \\ 0, & \text{if } n \neq 1 \text{ if }. \end{cases}$$

3.2.3 复合闭路定理

• 将柯西积分定理推广到多连域

定理 设多连域D的边界为 $C = C_0 + C_1 + C_2 + \cdots + C_n$ (如图),

3.2.6 函数 f(z) 在 D 内及 C 上解析,

则

$$\oint_C f(z) \, \mathrm{d}z = 0$$

或
$$\oint_{C_0} f(z) dz = \oint_{C_1} f(z) dz + \oint_{C_2} f(z) dz + \dots + \oint_{C_n} f(z) dz$$
.

例 计算 $I = \oint_C \frac{2z-1}{z^2-z} dz$, 其中 C 为:

(1)
$$|z-3| = \frac{1}{2}$$
; (2) $\frac{x^2}{2^2} + \frac{y^2}{1} = 1$.

解 令 $f(z) = \frac{2z-1}{z^2-z}$, 则 $f(z) = \frac{1}{z} + \frac{1}{z-1}$, 奇点为 z = 0, 1.

(1) 当
$$C$$
为 $|z-3|=\frac{1}{2}$ 时, $f(z)$ 在 $|z-3| \le \frac{1}{2}$ 内处处解析 由柯西-古萨定理: $I = \oint_C \frac{2z-1}{z^2-z} dz = 0$.

例 计算
$$I = \oint_C \frac{2z-1}{z^2-z} dz$$
,其中 C 为:

(1)
$$|z-3| = \frac{1}{2}$$
; (2) $\frac{x^2}{2^2} + \frac{y^2}{1} = 1$.

$$\begin{array}{c|c}
C \\
C_1 \\
C_2 \\
\hline
0 & 1
\end{array}$$

解 令
$$f(z) = \frac{2z-1}{z^2-z}$$
, 则 $f(z) = \frac{1}{z} + \frac{1}{z-1}$, 奇点为 $z = 0, 1$.

(2) 当 C 为
$$\frac{x^2}{2^2} + \frac{y^2}{1} = 1$$
 时, 令 C_1 : $|z| = \frac{1}{3}$, C_2 : $|z-1| = \frac{1}{3}$,

$$\iint I = \oint_{C_1} \frac{1}{z} dz + \oint_{C_1} \frac{1}{z - 1} dz + \oint_{C_2} \frac{1}{z} dz + \oint_{C_2} \frac{1}{z - 1} dz$$

$$= 2\pi i + 0 + 0 + 2\pi i = 4\pi i.$$

3.2.2 不定积分

1. 路径无关性

定理 设函数f(z)在单连通域D内解析,3.2.2

 C_1 , C_2 为D内的任意两条从 z_0 到 z_1 的简单曲线,则有

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.$$

$$\Rightarrow \int_{C_1} f(z) dz = -\int_{C_2^-} f(z) dz = \int_{C_2} f(z) dz.$$

• 可见,解析函数在单连域内的积分只与起点和终点有关,

例 计算 $I = \int_C \sin z \, dz$, 其中 C 为如图所示的一个半圆。

 \mathbf{m} 设 Γ 如图所示,由于 $\sin z$ 在复平面上

$$I = \int_C \sin z \, dz = \int_\Gamma \sin z \, dz$$
$$= \int_0^2 \sin x \, dx = -\cos x \Big|_0^2 = 1 - \cos 2.$$

问 是否可以直接计算?

处处解析,因此有

$$\mathbb{E} I = \int_C \sin z \, dz = \int_0^2 \sin z \, dz = -\cos z \Big|_0^2 = 1 - \cos 2.$$

复

3.2.2 不定积分

2. 原函数

定理 若 f(z) 在单连域 D 内解析,则 $F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$, 3.2.4 $z, z_0 \in D$,在 D 内解析,且 F'(z) = f(z).

Newton-Leibniz公式

定理 若 f(z) 在单连域 D 内解析, G(z) 为 f(z) 的一个原函数, 3.2.5

则
$$\int_{z_0}^{z_1} f(z) dz = G(z_1) - G(z_0)$$
, 其中 $z, z_0 \in D$.

注:
$$G(Z) = F(Z) + C$$

例 求
$$\int_0^{1+i} z^2 dz$$
.

例 求
$$\int_a^b \cos z \, dz$$
.

$$\operatorname{\mathbf{M}} \int_{a}^{b} \cos z \, \mathrm{d}z = \sin z \Big|_{a}^{b} = \sin b - \sin a.$$

例 求
$$\int_0^i z \cos z \, dz$$
.

积

第三章 复变函数的积分

- § 3.1 复变函数积分的概念
- § 3.2 柯西积分定理
- § 3.3 柯西积分公式

函数g(z)在单连通区域D中处处解析,

则g(z)在D内任意的闭路上积分为0,即 $\oint_{\mathcal{C}} g(z) dz = 0$

但被积函数不总解析,如 z_0 为D内的一点为g(z)的奇点,

则可将
$$g(z)$$
表示为 $g(z) = \frac{f(z)}{z-z_0}$,那么 $\oint_{\mathcal{C}} g(z) dz = \oint_{\mathcal{C}} \frac{f(z)}{z-z_0} dz = ?$

复

3.3.1 柯西积分公式

定理 如果函数 f(z) 在闭路 C 上及其围 3.3.1

成的区域 D 内解析, $z_0 \in D$,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$

证明 如图,以 z_0 为圆心, δ 为半径作圆 Γ ,则

(思路)

左边 =
$$f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z_0)}{z - z_0} dz$$
,

右边=
$$\frac{1}{2\pi i}$$
 $\oint_C \frac{f(z)}{z-z_0} dz = \frac{1}{2\pi i}$ $\oint_{\Gamma} \frac{f(z)}{z-z_0} dz$,

|右边-左边|
$$\leq \frac{1}{2\pi} \oint_{\Gamma} \frac{|f(z)-f(z_0)|}{|z-z_0|} ds$$
,

3.3.1 柯西积分公式

证明 | 右边-左边|
$$\leq \frac{1}{2\pi} \int_{\Gamma} \frac{|f(z)-f(z_0)|}{|z-z_0|} ds$$
,

$$\leq \frac{1}{2\pi} \cdot \frac{\varepsilon}{\delta} \cdot 2\pi\delta = \varepsilon$$
, (当 δ 充分小时)

即只要 δ 足够小,所证等式两边的差的模可以任意小,由于左边与右边均为常数,与 δ 无关,故等式成立。

例 计算 $I = \oint_C \frac{\cos z}{z} dz$, 其中 C为:

(1)
$$C_1: |z|=1;$$
 (2) $C_2: |z-2|=1.$

在 |z|≤1上解析

$$\frac{(柯西积分公式)}{2\pi i \cdot \cos z}\Big|_{z=0} = 2\pi i.$$

(2)
$$I = \oint_{C_2} \frac{\cos z}{z} dz$$
 (函数 $\frac{\cos z}{z}$ 在 $|z-2| \le 1$ 上解析)
$$\frac{(柯西积分定理)}{z} 0.$$

例3.3.3 计算积分 $I = \oint_C \frac{e^{2z}}{z^2+z} dz$,其中C为圆周,如图

$$(1) |z| = \frac{1}{5}$$

$$(2)\left|z-\frac{1}{2}\right|=\frac{1}{5}$$

$$(3) |z+1| = \frac{1}{5}$$

$$(4) |z| = 2$$

3.3.1 柯西积分公式

定理 如果函数f(z)在闭路C上及其围

3.3.1 成的区域 D 内解析, $z_0 \in D$,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} \mathrm{d}z.$$

意义 将 z_0 换成 z,积分变量 z 换成 ξ ,则上式变为

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi, \quad (z \in D).$$

- 解析函数在其解析区域内的值完全由边界上的值确定。
- 换句话说,解析函数可用其解析区域边界上的值以一种 特定的积分形式表达出来。

例3.3.2 设函数 $f(z) = \oint_C \frac{3\xi^2 + 7\xi + 1}{\xi - z} d\xi$, 其中C为圆周: $|\xi| = 3$, 求

$$f'(1+i).$$

3.3.1 柯西积分公式

注意 柯西积分公式中的区域 D 可以

是多连域。比如对于二连域D,

其边界为 $C = C_1 + C_2^-$,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

$$\frac{1}{z} \oint_C \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z)}{z - z_0} dz, \ (z_0 \in D).$$

应用 • 反过来计算积分 $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$.

• 推出一些理论结果,从而进一步认识解析函数。

例 计算 $I = \oint_C \frac{2z-1}{\tau^2-\tau} dz$, 其中 C 如图所示。

解 令
$$f(z) = \frac{2z-1}{z^2-z}$$
, 则 $f(z) = \frac{2z-1}{z(z-1)}$,

则
$$f(z) = \frac{2z-1}{z(z-1)}$$

$$\Leftrightarrow C_1: |z| = \frac{1}{3}, C_2: |z-1| = \frac{1}{3},$$

则
$$I = \oint_{C_1} f(z) dz + \oint_{C_2} f(z) dz$$
 (复合闭路定理)

$$= \oint_{C_1} \frac{\left(\frac{2z-1}{z-1}\right)}{z} dz + \oint_{C_2} \frac{\left(\frac{2z-1}{z}\right)}{z-1} dz$$

$$\frac{(柯西积分公式)}{z-1} 2\pi i \cdot \frac{2z-1}{z-1} \bigg|_{z=0} + 2\pi i \cdot \frac{2z-1}{z} \bigg|_{z=1} = 4\pi i.$$

复

3.3.2 高阶导数定理

如函数f(z)在闭路C上及其围成的单连通区域D内解析, 3.3.2

则 f(z)的各阶导数均在 D 上解析, 且对任一点 $z_0 \in D$

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

解析函数的导数仍解析。

- 应用 反过来计算积分 $\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \left(\frac{2\pi i}{n!}\right) f^{(n)}(z_0).$
 - 对应有函数f(z)的高阶导数公式

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

高阶导数公式对多连域也适用。

例 计算
$$\oint_{|z|=1} \frac{\mathbf{e}^z}{z^{100}} dz$$
.

$$\oint_{|z|=1} \frac{e^z}{z^{100}} dz = \frac{2\pi i}{99!} (e^z)^{99} \Big|_{z=0} = \frac{2\pi i}{99!}.$$

例 计算 $I = \oint_{|z|=2} \frac{e^z}{(z^2+1)^2} dz$.

M (1)
$$\Leftrightarrow f(z) = \frac{e^z}{(z^2+1)^2} = \frac{e^z}{(z-i)^2(z+i)^2}$$
.

 C_1 C_2 C_2 C_2

如图,作 C_1 , C_2 两个小圆,

则
$$I = \oint_{C_1} f(z) dz + \oint_{C_2} f(z) dz$$
 (复合闭路定理)

$$= \oint_{C_1} \frac{\mathbf{e}^z}{(z+i)^2} \cdot \frac{dz}{(z-i)^2} + \oint_{C_2} \frac{\mathbf{e}^z}{(z-i)^2} \cdot \frac{dz}{(z+i)^2}$$

$$\frac{\ddot{\upsilon}}{=} I_1 + I_2$$
.

例 计算 $I = \oint_{|z|=2} \frac{e^z}{(z^2+1)^2} dz$.

解 (2)
$$I_1 = \oint_{C_1} \frac{\mathbf{e}^z}{(z+i)^2} \cdot \frac{\mathrm{d}z}{(z-i)^2}$$

$$\frac{(高阶导数公式)}{1!} \cdot \left[\frac{e^z}{(z+i)^2} \right]' \bigg|_{z=0}$$

$$= \frac{\pi}{2} (1-i)e^i.$$

同样可求得
$$I_2 = -\frac{\pi}{2}(1+i)e^{-i}$$
.

(3)
$$I = I_1 + I_2 = \frac{\pi}{2} [(1-i)e^i - (1+i)e^{-i}] = \sqrt{2}\pi i \sin(1-\frac{\pi}{4}).$$

例 3.3.7(2) 计算积分 $\oint_C \frac{\cos \pi z}{z^3(z-1)^2} dz$, C为圆周|z|=2

例 如果在|z| < 1内f(z)解析并且 $|f(z)| \leq \frac{1}{1-|z|}$,证明:

$$|f^{(n)}(0)| \le (n+1)! \left(1+\frac{1}{n}\right)^n < e(n+1)! (n=1,2,...)$$

证: 由柯西积分公式

$$f^{(n)}(0) = \frac{n!}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz$$
, $\sharp \div 0 < r < 1$.

于是利用积分不等式

$$|f^{(n)}(0)| \le \frac{n!}{2\pi i} \int_{|z|=r} \frac{|f(z)|}{|z|^{n+1}} |dz|$$

$$\leq \frac{n!}{2\pi} \int_{|z|=r} \frac{|dz|}{(1-|z|)|z|^{n+1}} = \frac{n!}{(1-r)r^n},$$

与要证明的结论做比较,我们可取 $r = \frac{n}{n+1}$,这样便有

$$|f^{(n)}(0)| \le (n+1)! \left(1 + \frac{1}{n}\right)^n < e(n+1)! \quad (n = 1, 2, ...)$$

复

3.3.3 几个重要的推论

1. 平均值公式

定理 (平均值公式) 如果函数 f(z)在 $|z-z_0| \le R$ 解析,

则有
$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$
.

证明 由柯西积分公式有

$$f(z_0) = \frac{1}{2\pi i} \oint_{|z-z_0|=R} \frac{f(z)}{z-z_0} dz$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\theta})}{Re^{i\theta}} Re^{i\theta} i d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta.$$

复

3.3.3 几个重要的推论

2. 柯西不等式

定理 设函数f(z)在 $|z-z_0| < R$ 内解析,且 |f(z)| < M,则

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n}, \ (n=1,2,\cdots). \quad (\overline{\text{阿西不等式}})$$

证明* $\forall R_1: 0 < R_1 < R$, 函数f(z)在 $|z-z_0| \le R_1$ 上解析,

(思路)

$$\Rightarrow f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{|z-z_0|=R_1} \frac{f(z)}{(z-z_0)^{n+1}} dz, (n=1,2,\cdots).$$

$$\Rightarrow |f^{(n)}(z_0)| \leq \frac{n!}{2\pi} \oint_{|z-z_0|=R_1} \frac{|f(z)|}{|z-z_0|^{n+1}} ds \leq \frac{n!M}{R_1^n},$$

$$\Leftrightarrow R_1 \to R$$
, 即得 $|f^{(n)}(z_0)| \le \frac{n!M}{R^n}$, $(n=1,2,\cdots)$.

3.3.3 几个重要的推论

3. 刘维尔定理

定理 设函数f(z)在全平面上解析且有界,则f(z)为一常数。

证明*设 20为平面上任意一点,

(思路)

 $\forall R > 0$, 函数f(z) 在 $|z - z_0| < R$ 上解析,且 |f(z)| < M,

根据<u>柯西不等式</u>有 $|f'(z_0)| \leq \frac{M}{R}$,

由 z_0 的任意性,知在全平面上有 $f'(z) \equiv 0$,

则 f(z) 为一常数。

3.3.3 几个重要的推论

4. 代数基本定理

设函数
$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
, 其中 $a_n \neq 0$,
 n 为正整数, 证明方程 $f(z) = 0$ 在全平面上至少有一个根。

证 (反证法) 假设 f(z)=0 在全平面上无根,即 $f(z)\neq 0$ ($\forall z$),则函数 $\varphi(z)=\frac{1}{f(z)}$ 在全平面上解析,

$$\sum_{z\to\infty} \phi(z) = \lim_{z\to\infty} \frac{1}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} = 0,$$

故 $\varphi(z)$ 在全平面上有界,根据<u>刘维尔定理</u>有

$$\varphi(z) = C$$
 (常数), $\Rightarrow f(z) = C_1$ (常数), 与题设矛盾。

注: n次多项式函数 f(z)在复数域中有n个根.

3.3.3 几个重要的推论

5. 莫累拉(Morrera)定理 注: 看作是柯西积分定理的逆定理

回顾: 定理 设函数 f(z) 在单连通域 D 内解析, 3.2.2

 Γ 为D内的任意一条简单闭曲线,

则有 $\int_{\Gamma} f(z) dz = 0$.

定理

3.3.4 设f(z)是区域D内的连续函数,并且对于D内任一条 其内部属于D的简单光滑闭曲线 Γ 都有 $\int_{\Gamma} f(z) dz = 0$. 则f(z)是D内的解析函数。

三、最大模原理

定理 ($\frac{最大模原理}{}$)如果函数 f(z) 在 D 内解析且不为常数,

则在D内 |f(z)| 没有最大值。

证明 (略)

理解 如图,函数 f(z) 在解析区域 D 内任意一点 z_0 的函数值是 以该点为圆心的圆周上所有

点的函数值的平均值, 因此, $|f(z_0)|$ 不可能达到最大,除非 f(z) 为常数。

三、最大模原理

推论 1 在区域 D 内解析的函数,如果其模在 D 内达到最大值,则此函数必恒为常数。

推论 2 若 f(z) 在有界区域 D 内解析,在 \overline{D} 上连续,则 |f(z)| 在 D 的边界上必能达到最大值。

例 设函数 f(z)在 |z| < 2 内解析,且 $|f(z)-z| \le \frac{1}{|2-z|}$,证明 $|f'(0)| \le 2$.

证 (1) 任取正数 r < 2, (注意 f(z)在 |z| = 2 上的性态不知道)

则函数f(z)在 $|z| \le r$ 内解析,由<u>高阶导数公式</u>有

$$f'(0) = \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^2} dz,$$

$$\Rightarrow |f'(0)| = \left| \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z) - z + z}{z^2} dz \right|,$$

$$\Rightarrow |f'(0)| \leq \frac{1}{2\pi} \oint_{|z|=r} \frac{|f(z)-z|+|z|}{|z|^2} \,\mathrm{d}s,$$

例 设函数 f(z)在 |z| < 2 内解析,且 $|f(z)-z| \le \frac{1}{|2-z|}$, 证明 $|f'(0)| \leq 2$.

if
$$|f'(0)| \le \frac{1}{2\pi} \oint_{|z|=r} \frac{|f(z)-z|+|z|}{|z|^2} ds$$
,

由
$$|f(z)-z| \le \frac{1}{|2-z|}$$
,有

$$|f'(0)| \le \frac{1}{2\pi} \oint_{|z|=r} \frac{1}{|z|^2 \cdot |2-z|} ds + \frac{1}{2\pi} \oint_{|z|=r} \frac{1}{|z|} ds$$

$$\leq \frac{1}{2\pi} \oint_{|z|=r} \frac{1}{|z|^2 \cdot (2-|z|)} ds + \frac{1}{2\pi r} \cdot 2\pi r,$$

$$\Rightarrow |f'(0)| \leq \frac{1}{2\pi r^2(2-r)} \cdot 2\pi r + 1,$$

例 设函数 f(z)在 |z| < 2 内解析,且 $|f(z)-z| \le \frac{1}{|2-z|}$,证明 $|f'(0)| \le 2$.

证

$$|f'(0)| \le \frac{1}{2\pi r^2(2-r)} \cdot 2\pi r + 1 = \frac{1}{r(2-r)} + 1,$$

令
$$r=1$$
 得 $|f'(0)| \le 2$.