Example 5.7: Torsion constant of a C shape (p. 367)

Find torsional constant J for a standard C12×30 section shown in Figure. The section dimensions are as follows.

$$h = 12 \text{ in } t_w = 0.51 \text{ in } b_f = 3.17 \text{ in } t_f = 0.501 \text{ in}$$

Taking advantage of symmetry, we model only half the cross-section. Since ϕ is assigned a zero value on all the outside boundary nodes, the mesh must have some interior nodes. Thus the simplest possible model with triangular elements is an 8 element model shown in Figure. With such a coarse mesh, we don't expect a very accurate solution. The mesh is used to show most computations explicitly.

As a result of essential boundary conditions $\phi = 0$ at nodes $\{1, 2, 5, 6, 7, 8, 9\}$. Setting $G \theta = 1$, we can obtain the finite element solution using usual steps.

Global equations at start of the element assembly process

Equations for element 1

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$\textbf{C}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

	Element node	Global node number	X	y
	1	1	0.	0.
	2	3	0.255	0.
	3	4	0.255	5.7495
$x_1 = 0$	$x_2 = 0.255$	$x_3 = 0.255$		
$y_1 = 0$	$y_2 = 0.$	$y_3 = 5.7495$		

Using these values we get

$$\begin{array}{lll} b_1 = -5.7495 & b_2 = 5.7495 & b_3 = 0. \\ \\ c_1 = 0. & c_2 = -0.255 & c_3 = 0.255 \\ \\ f_1 = 1.46612 & f_2 = 0. & f_3 = 0. \end{array}$$

Element area, A = 0.733061

Complete element equations

$$\begin{pmatrix} 11.2735 & -11.2735 & 0 \\ -11.2735 & 11.2957 & -0.0221758 \\ 0 & -0.0221758 & 0.0221758 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_3 \\ \phi_4 \end{pmatrix} = \begin{pmatrix} 0.488707 \\ 0.488707 \\ 0.488707 \end{pmatrix}$$

The element contributes to {1, 3, 4} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 2

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Elemen	it node	Global node number	X	y	
1		4	0.255	5.7495	
2	?	2	0.	6.	
3	}	1	0.	0.	
$x_1 = 0.255$	$x_2 = 0.$	$\mathbf{x}_3 = 0$.			
$y_1 = 5.7495$	$y_2 = 6$.	$v_{2} = 0.$			

Using these values we get

$$\begin{array}{lll} b_1=6. & & b_2=-5.7495 & b_3=-0.2505 \\ c_1=0. & c_2=0.255 & c_3=-0.255 \\ f_1=0. & f_2=0. & f_3=1.53 \end{array}$$

Element area, A = 0.765

Complete element equations

$$\begin{pmatrix} 11.7647 & -11.2735 & -0.491176 \\ -11.2735 & 10.8241 & 0.44942 \\ -0.491176 & 0.44942 & 0.0417566 \end{pmatrix} \begin{pmatrix} \phi_4 \\ \phi_2 \\ \phi_1 \end{pmatrix} = \begin{pmatrix} 0.51 \\ 0.51 \\ 0.51 \end{pmatrix}$$

The element contributes to {4, 2, 1} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 3

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Using these values we get

$$\begin{array}{lll} b_1 = -5.499 & b_2 = 5.499 & b_3 = 0. \\ \\ c_1 = 0. & c_2 = -0.255 & c_3 = 0.255 \\ \\ f_1 = 2.80449 & f_2 = -1.40225 & f_3 = 0. \end{array}$$

$$\begin{split} \boldsymbol{\mathit{B}}^{T} &= \begin{pmatrix} -5.499 & 5.499 & 0. \\ 0. & -0.255 & 0.255 \end{pmatrix} \\ \boldsymbol{\mathit{k}}_{k} &= \begin{pmatrix} 10.7824 & -10.7824 & 0. \\ -10.7824 & 10.8055 & -0.023186 \\ 0. & -0.023186 & 0.023186 \end{pmatrix}; \qquad \boldsymbol{\mathit{k}}_{p} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad \boldsymbol{\mathit{r}}_{q} &= \begin{pmatrix} 0.467415 \\ 0.467415 \\ 0.467415 \end{pmatrix} \end{aligned}$$

Complete element equations

$$\begin{pmatrix} 10.7824 & -10.7824 & 0 \\ -10.7824 & 10.8055 & -0.023186 \\ 0 & -0.023186 & 0.023186 \end{pmatrix} \begin{pmatrix} \phi_3 \\ \phi_5 \\ \phi_6 \end{pmatrix} = \begin{pmatrix} 0.467415 \\ 0.467415 \\ 0.467415 \end{pmatrix}$$

The element contributes to {3, 5, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \\ \phi_7 \\ \phi_8 \\ \phi_9 \end{pmatrix} = \begin{pmatrix} 0.998707 \\ 0.51 \\ 0.998707 \\ 0.467415 \\ 0.467415 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 4

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Element	node	Global node number	X	y
1		6	0.51	5.499
2		4	0.255	5.7495
3		3	0.255	0.
$x_1 = 0.51$	$x_2 = 0.255$	$x_3 = 0.255$		
$y_1 = 5.499$	$y_2 = 5.749$	$y_3 = 0.$		

Using these values we get

$$b_1 = 5.7495 \qquad \qquad b_2 = -5.499 \qquad \qquad b_3 = -0.2505$$

$$c_1 = 0. \qquad c_2 = 0.255 \qquad \qquad c_3 = -0.255$$

$$f_1 = -1.46612 \qquad \qquad f_2 = 1.40225 \qquad \qquad f_3 = 1.53$$

$$\boldsymbol{B}^{\mathrm{T}} = \begin{pmatrix} 5.7495 & -5.499 & -0.2505 \\ 0. & 0.255 & -0.255 \end{pmatrix}$$

$$\mathbf{\textit{k}}_k = \begin{pmatrix} 11.2735 & -10.7824 & -0.491176 \\ -10.7824 & 10.3348 & 0.447601 \\ -0.491176 & 0.447601 & 0.0435759 \end{pmatrix}; \qquad \qquad \mathbf{\textit{k}}_p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad \qquad \mathbf{\textit{r}}_q = \begin{pmatrix} 0.488707 \\ 0.488707 \\ 0.488707 \\ 0.488707 \end{pmatrix};$$

Complete element equations

$$\begin{pmatrix} 11.2735 & -10.7824 & -0.491176 \\ -10.7824 & 10.3348 & 0.447601 \\ -0.491176 & 0.447601 & 0.0435759 \end{pmatrix} \begin{pmatrix} \phi_6 \\ \phi_4 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} 0.488707 \\ 0.488707 \\ 0.488707 \end{pmatrix}$$

The element contributes to {6, 4, 3} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \\ \phi_7 \\ \phi_8 \\ \phi_9 \end{pmatrix} = \begin{pmatrix} 0.998707 \\ 0.51 \\ 1.44483 \\ 1.48741 \\ 0.467415 \\ 0.956122 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 5

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$\textbf{C}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Element node		Global node number	X	y	
	1	6	0.51	5.499	
	2	7	3.17	5.499	
	3	8	3.17	5.7495	
$x_1 = 0.51$	$x_2 = 3.17$	$x_3 = 3.17$			
$y_1 = 5.499$	$y_2 = 5.499$	$y_3 = 5.7495$			

Using these values we get

$$\begin{array}{lll} b_1=-0.2505 & b_2=0.2505 & b_3=0. \\ \\ c_1=0. & c_2=-2.66 & c_3=2.66 \\ \\ f_1=0.794085 & f_2=14.4996 & f_3=-14.6273 \end{array}$$

Element area, A = 0.333165

Complete element equations

$$\begin{pmatrix} 0.0470865 & -0.0470865 & 0 \\ -0.0470865 & 5.35647 & -5.30938 \\ 0 & -5.30938 & 5.30938 \end{pmatrix} \begin{pmatrix} \phi_6 \\ \phi_7 \\ \phi_8 \end{pmatrix} = \begin{pmatrix} 0.22211 \\ 0.22211 \\ 0.22211 \end{pmatrix}$$

The element contributes to {6, 7, 8} global degrees of freedom.

Adding element equations into appropriate locations we have

11.3153	0.44942	-11.2735	-0.491176	0	0	0	0	0	١
0.44942	10.8241	0	-11.2735	0	0	0	0	0	
-11.2735	0	22.1216	0.425425	-10.7824	-0.491176	0	0	0	
-0.491176	-11.2735	0.425425	22.1216	0	-10.7824	0	0	0	
0	0	-10.7824	0	10.8055	-0.023186	0	0	0	
0	0	-0.491176	-10.7824	-0.023186	11.3438	-0.0470865	0	0	
0	0	0	0	0	-0.0470865	5.35647	-5.30938	0	
0	0	0	0	0	0	-5.30938	5.30938	0	
0	0	0	0	0	0	0	0	0	

Equations for element 6

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Elemen	it node (Global node number	X	\mathbf{y}
1		8	3.17	5.7495
2	,	4	0.255	5.7495
3	;	6	0.51	5.499
$x_1 = 3.17$	$x_2 = 0.255$	$x_3 = 0.51$		
$y_1 = 5.7495$	$y_2 = 5.749$	$y_3 = 5.499$		

Using these values we get

$$\begin{array}{lll} b_1=0.2505 & b_2=-0.2505 & b_3=0. \\ \\ c_1=0.255 & c_2=2.66 & c_3=-2.915 \\ \\ f_1=-1.53 & f_2=-14.4996 & f_3=16.7598 \end{array}$$

Element area, A = 0.365104

Complete element equations

$$\begin{pmatrix} 0.0874924 & 0.42149 & -0.508982 \\ 0.42149 & 4.88789 & -5.30938 \\ -0.508982 & -5.30938 & 5.81836 \end{pmatrix} \begin{pmatrix} \phi_8 \\ \phi_4 \\ \phi_6 \end{pmatrix} = \begin{pmatrix} 0.243403 \\ 0.243403 \\ 0.243403 \end{pmatrix}$$

The element contributes to {8, 4, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

(11.3153	0.44942	-11.2735	-0.491176	0	0	0	0	0
0.44942	10.8241	0	-11.2735	0	0	0	0	0
-11.2735	0	22.1216	0.425425	-10.7824	-0.491176	0	0	0
-0.491176	-11.2735	0.425425	27.0095	0	-16.0917	0	0.42149	0
0	0	-10.7824	0	10.8055	-0.023186	0	0	0
0	0	-0.491176	-16.0917	-0.023186	17.1622	-0.0470865	-0.508982	0
0	0	0	0	0	-0.0470865	5.35647	-5.30938	0
0	0	0	0.42149	0	-0.508982	-5.30938	5.39687	0
0	0	0	0	0	0	0	0	0

Equations for element 7

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Element node		Global node number	X	\mathbf{y}
	1	4	0.255	5.7495
	2	8	3.17	5.7495
	3	9	3.17	6.
$x_1 = 0.255$	$x_2 = 3.3$	$x_3 = 3.17$		
$y_1 = 5.7495$	$y_2 = 5.$	$y_3 = 6.$		

Using these values we get

$$\begin{array}{lll} b_1=-0.2505 & b_2=0.2505 & b_3=0. \\ \\ c_1=0. & c_2=-2.915 & c_3=2.915 \\ \\ f_1=0.794085 & f_2=16.6959 & f_3=-16.7598 \end{array}$$

Element area, A = 0.365104

$$\boldsymbol{\mathit{B}}^T = \left(\begin{array}{ccc} -0.2505 & 0.2505 & 0. \\ 0. & -2.915 & 2.915 \end{array} \right)$$

Complete element equations

$$\begin{pmatrix} 0.0429674 & -0.0429674 & 0 \\ -0.0429674 & 5.86133 & -5.81836 \\ 0 & -5.81836 & 5.81836 \end{pmatrix} \begin{pmatrix} \phi_4 \\ \phi_8 \\ \phi_9 \end{pmatrix} = \begin{pmatrix} 0.243403 \\ 0.243403 \\ 0.243403 \end{pmatrix}$$

The element contributes to {4, 8, 9} global degrees of freedom.

Adding element equations into appropriate locations we have

11.3153	0.44942	-11.2735	-0.491176	0	0	0	0	
0.44942	10.8241	0	-11.2735	0	0	0	0	
-11.2735	0	22.1216	0.425425	-10.7824	-0.491176	0	0	
-0.491176	-11.2735	0.425425	27.0525	0	-16.0917	0	0.378522	
0	0	-10.7824	0	10.8055	-0.023186	0	0	
0	0	-0.491176	-16.0917	-0.023186	17.1622	-0.0470865	-0.508982	
0	0	0	0	0	-0.0470865	5.35647	-5.30938	
0	0	0	0.378522	0	-0.508982	-5.30938	11.2582	_
0	0	0	0	0	0	0	-5.81836	

Equations for element 8

$$k_x=1;$$

$$k_y=1;$$

$$p=0;$$

$$q=2$$

$$C=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nodal coordinates

Element node		Global node number	X	y
1		9	3.17	6.
2		2	0.	6.
	3	4	0.255	5.7495
$x_1 = 3.17$	$\mathbf{x}_2 = 0$.	$x_3 = 0.255$		
$y_1 = 6.$	$y_2 = 6.$	$y_3 = 5.7495$		

Using these values we get

$$b_1 = 0.2505 \qquad \qquad b_2 = -0.2505 \qquad \qquad b_3 = 0.$$

$$c_1 = 0.255 \qquad \qquad c_2 = 2.915 \qquad \qquad c_3 = -3.17$$

$$f_1 = -1.53 \qquad \qquad f_2 = -16.6959 \qquad \qquad f_3 = 19.02$$

$$\boldsymbol{\mathit{B}}^T = \left(\begin{array}{ccc} 0.2505 & -0.2505 & 0. \\ 0.255 & 2.915 & -3.17 \end{array} \right)$$

$$\mathbf{\textit{k}}_k = \begin{pmatrix} 0.0804544 & 0.428528 & -0.508982 \\ 0.428528 & 5.38984 & -5.81836 \\ -0.508982 & -5.81836 & 6.32735 \end{pmatrix}; \qquad \mathbf{\textit{k}}_p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad \mathbf{\textit{r}}_q = \begin{pmatrix} 0.264695 \\ 0.264695 \\ 0.264695 \end{pmatrix}$$

Complete element equations

$$\begin{pmatrix} 0.0804544 & 0.428528 & -0.508982 \\ 0.428528 & 5.38984 & -5.81836 \\ -0.508982 & -5.81836 & 6.32735 \end{pmatrix} \begin{pmatrix} \phi_9 \\ \phi_2 \\ \phi_4 \end{pmatrix} = \begin{pmatrix} 0.264695 \\ 0.264695 \\ 0.264695 \end{pmatrix}$$

The element contributes to {9, 2, 4} global degrees of freedom.

Adding element equations into appropriate locations we have

11.3153	0.44942	-11.2735	-0.491176	0	0	0	0	
0.44942	16.2139	0	-17.0919	0	0	0	0	
-11.2735	0	22.1216	0.425425	-10.7824	-0.491176	0	0	
-0.491176	-17.0919	0.425425	33.3798	0	-16.0917	0	0.378522	
0	0	-10.7824	0	10.8055	-0.023186	0	0	
0	0	-0.491176	-16.0917	-0.023186	17.1622	-0.0470865	-0.508982	
0	0	0	0	0	-0.0470865	5.35647	-5.30938	
0	0	0	0.378522	0	-0.508982	-5.30938	11.2582	
0	0.428528	0	-0.508982	0	0	0	-5.81836	

Essential boundary conditions

Node	dof	Value
1	ϕ_1	0
2	ϕ_2	0
5	ϕ_5	0
6	ϕ_6	0
7	ϕ_7	0
8	ϕ_8	0
9	ϕ_9	0

Remove {1, 2, 5, 6, 7, 8, 9} rows and columns.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 22.1216 & 0.425425 \\ 0.425425 & 33.3798 \end{pmatrix} \begin{pmatrix} \phi_3 \\ \phi_4 \end{pmatrix} = \begin{pmatrix} 1.44483 \\ 2.23892 \end{pmatrix}$$

Solving the final system of global equations we get

$$\{\phi_3=0.0640388,\ \phi_4=0.0662577\}$$

Complete table of nodal values

Solution for element 1

Nodal coordinates

Elem	ent node	Global	node number	X	y
	1		1	0.	0.
	2		3	0.255	0.
	3		4	0.255	5.7495
$x_1 = 0.$	$x_2 = 0.255$	$x_3 = 0$).255		
$y_1 = 0.$	$y_2 = 0.$	$y_3 = 5$	5.7495		
$b_1 = -5.7495$	$b_2 = 3$	5.7495	$b_3=0.$		
$c_1 = 0.$	$c_2 = -0.255$		$c_3 = 0.255$		
$f_1 = 1.46612$	$f_2=0.$		$f_3 = 0.$		

Element area, A = 0.733061

Substituting these into the formulas for triangle interpolation functions we get $\label{eq:normalized} Interpolation functions, \ \textbf{\textit{N}}^T = \{1.-3.92157\,x,\ 3.92157\,x-0.173928\,y,\ 0.173928\,y\}$ Nodal values, $\textbf{\textit{d}}^T = \{0,\ 0.0640388,\ 0.0662577\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0.251132 \,\mathbf{x} + 0.000385934 \,\mathbf{y}$$

$$\partial \phi / \partial \mathbf{x} = 0.251132;$$

 $\partial \phi / \partial y = 0.000385934$

Solution for element 2

Nodal coordinates

Elemei	nt node	Global node number	X	y
	1	4	0.255	5.7495
:	2	2	0.	6.
;	3	1	0.	0.
$x_1 = 0.255$	$x_2 = 0.$	$x_3 = 0.$		
$y_1 = 5.7495$	$y_2 = 6.$	$y_3 = 0.$		
$b_1 = 6.$	$b_2 = -5.749$	$b_3 = -0.2505$		
$c_1 = 0.$	$c_2=0.255$	$c_3 = -0.255$		
$f_1 = 0$.	$f_2=0.$	$f_3 = 1.53$		

Element area, A = 0.765

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions, $N^T = \{3.92157 \text{ x}, 0.166667 \text{ y} - 3.75784 \text{ x}, -0.163725 \text{ x} - 0.166667 \text{ y} + 1.\}$

Nodal values, $\mathbf{d}^{T} = \{0.0662577, 0, 0\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \boldsymbol{N}^{\mathrm{T}} \boldsymbol{d} = 0.259834 \, \mathbf{x}$$

$$\partial \phi / \partial \mathbf{x} = 0.259834;$$

 $\partial \phi/\partial \mathbf{y} = \mathbf{0}$

Solution for element 3

Nodal coordinates

Elemen	t node	Global node number	X	y
1		3	0.255	0.
2		5	0.51	0.
3		6	0.51	5.499
$x_1 = 0.255$	$x_2 = 0.51$	$x_3 = 0.51$		
$y_1 = 0.$	$y_2 = 0.$	$y_3 = 5.499$		
$b_1 = -5.499$	$b_2 = 5$	$b_3 = 0.$		
$c_1 = 0.$	$c_2 = -0.255$	$c_3 = 0.255$		
$f_1 = 2.80449$	$f_2 = -$	$f_3 = 0.$		

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions, $N^T = \{2. -3.92157 \text{ x}, 3.92157 \text{ x} - 0.181851 \text{ y} - 1., 0.181851 \text{ y}\}$

Nodal values, $\mathbf{d}^{T} = \{0.0640388, 0, 0\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0.128078 - 0.251132 \,\mathbf{x}$$

$$\partial \phi / \partial x = -0.251132;$$
 $\partial \phi / \partial y = 0$

Solution for element 4

Nodal coordinates

Elemen	t node	Global node number	x	y
1		6	0.51	5.499
2		4	0.255	5.7495
3		3	0.255	0.
$x_1 = 0.51$	$x_2 = 0.255$	$x_3 = 0.255$		
$y_1 = 5.499$	$y_2 = 5.7495$	$y_3 = 0.$		
$b_1 = 5.7495$	$b_2 = -5$	$b_3 = -0.25$	505	
$c_1 = 0.$	$c_2=0.255$	$c_3 = -0.255$		
$f_1 = -1.46612$	$f_2 = 1$	$.40225 f_3 = 1.53$	3	

Element area, A = 0.733061

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions, $N^T =$

$$\{3.92157 \text{ x} - 1., -3.75071 \text{ x} + 0.173928 \text{ y} + 0.956431, -0.170859 \text{ x} - 0.173928 \text{ y} + 1.04357\}$$

Nodal values, $\mathbf{d}^{T} = \{0, 0.0662577, 0.0640388\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = -0.259455 \,\mathbf{x} + 0.000385934 \,\mathbf{y} + 0.1302$$

$$\partial \phi / \partial x = -0.259455;$$
 $\partial \phi / \partial y = 0.000385934$

Solution for element 5

Nodal coordinates

Element node	Global node number	X	y
1	6	0.51	5.499
2	7	3.17	5.499
3	8	3.17	5.7495

$$\begin{array}{lllll} x_1=0.51 & x_2=3.17 & x_3=3.17 \\ y_1=5.499 & y_2=5.499 & y_3=5.7495 \\ \\ b_1=-0.2505 & b_2=0.2505 & b_3=0. \\ \\ c_1=0. & c_2=-2.66 & c_3=2.66 \\ \\ f_1=0.794085 & f_2=14.4996 & f_3=-14.6273 \end{array}$$

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions, $N^T = \{1.19173 - 0.37594 \text{ x}, 0.37594 \text{ x} - 3.99202 \text{ y} + 21.7604, 3.99202 \text{ y} - 21.9521\}$

Nodal values, $d^{T} = \{0, 0, 0\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0$$

$$\partial \phi / \partial \mathbf{x} = 0; \qquad \partial \phi / \partial \mathbf{y} = 0$$

Solution for element 6

Nodal coordinates

Elem	ent node	Global nod	e number	X	y
	1	8		3.17	5.7495
	2	4		0.255	5.7495
	3	6		0.51	5.499
$x_1 = 3.17$	$x_2 = 0.2$	55 x ₃ :	= 0.51		
$y_1 = 5.7495$	$y_2 = 5.7$	495 y ₃	= 5.499		
$b_1 = 0.2505$	$\mathbf{b_2} =$	-0.2505	$b_3 = 0.$		
$c_1 = 0.255$	$c_2 = 2$.66 c;	$_3 = -2.915$		
$f_1=-1.53$	$f_2 = -$	14.4996	$f_3 = 16.759$	98	

Element area, A = 0.365104

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions,
$$\textbf{\textit{N}}^T = \{0.343053\,x + 0.349216\,y - 2.09529, \, -0.343053\,x + 3.6428\,y - 19.8568, \, 22.9521 - 3.99202\,y\}$$
 Nodal values, $\textbf{\textit{d}}^T = \{0,\, 0.0662577,\, 0\}$
$$\phi(x,\,y) = \textbf{\textit{N}}^T\textbf{\textit{d}} = -0.0227299\,x + 0.241364\,y - 1.31567$$

$$\partial\phi/\partial x = -0.0227299; \qquad \partial\phi/\partial y = 0.241364$$

Solution for element 7

Nodal coordinates

Elemen	t node Globa	l node number	X	y
1		4	0.255	5.7495
2		8	3.17	5.7495
3		9	3.17	6.
$x_1 = 0.255$	$x_2 = 3.17$	$x_3 = 3.17$		
$y_1 = 5.7495$	$y_2 = 5.7495$	$y_3 = 6.$		
$b_1 = -0.2505$	$b_2 = 0.2505$	$b_3=0.$		
$c_1 = 0.$	$c_2 = -2.915$	$c_3 = 2.915$		
$f_1 = 0.794085$	$f_2 = 16.6959$	$f_3 = -16$.7598	

Element area, A = 0.365104

Substituting these into the formulas for triangle interpolation functions we get

 $Interpolation \ functions, \ \textbf{\textit{N}}^T = \{1.08748 - 0.343053 \ x, \ 0.343053 \ x - 3.99202 \ y + 22.8646, \ 3.99202 \ y - 22.9521 \}$

Nodal values, $\mathbf{d}^{T} = \{0.0662577, 0, 0\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0.0720538 - 0.0227299 \mathbf{x}$$

$$\partial \phi / \partial \mathbf{x} = -0.0227299; \qquad \partial \phi / \partial \mathbf{y} = 0$$

Solution for element 8

Nodal coordinates

Eleme	nt node	Global r	node number	X	y
	1		9	3.17	6.
	2		2	0.	6.
	3		4	0.255	5.7495
$x_1 = 3.17$	$x_2 = 0.$	$x_3 = 0.5$	255		
$y_1 = 6.$	$y_2 = 6.$	$y_3 = 5.$	7495		
$b_1 = 0.2505 \\$	$\mathbf{b}_2 = -$	-0.2505	$b_3 = 0.$		
$c_1=0.255$	$c_2 = 2.$	915	$c_3 = -3.17$		
$f_1 = -1.53$	$f_2 = -1$	16.6959	$f_3 = 19.02$		

Element area, A = 0.397043

Substituting these into the formulas for triangle interpolation functions we get

Interpolation functions,
$$\textbf{\textit{N}}^T = \{0.315457\,x + 0.321124\,y - 1.92675, -0.315457\,x + 3.67089\,y - 21.0253, 23.9521 - 3.99202\,y\}$$

Nodal values, $\textbf{\textit{d}}^T = \{0, \ 0, \ 0.0662577\}$
 $\phi(x, y) = \textbf{\textit{N}}^T\textbf{\textit{d}} = 1.58701 - 0.264502\,y$
 $\partial \phi/\partial x = 0;$ $\partial \phi/\partial y = -0.264502$

Solution summary

Nodal solution

	x-coord	y-coord	ϕ
1	0.	0.	0
2	0.	6.	0
3	0.255	0.	0.0640388
4	0.255	5.7495	0.0662577
5	0.51	0.	0
6	0.51	5.499	0
7	3.17	5.499	0
8	3.17	5.7495	0
9	3.17	6.	0

Solution at element centroids

	x-coord	y-coord	ϕ	$\partial \phi/\partial \mathbf{x}$	$\partial \phi/\partial \mathbf{y}$
1	0.17	1.9165	0.0434322	0.251132	0.000385934
2	0.085	3.9165	0.0220859	0.259834	0
3	0.425	1.833	0.0213463	-0.251132	0
4	0.34	3.7495	0.0434322	-0.259455	0.000385934
5	2.28333	5.5825	0	0	0
6	1.31167	5.666	0.0220859	-0.0227299	0.241364
7	2.19833	5.833	0.0220859	-0.0227299	0
8	1.14167	5.9165	0.0220859	0	-0.264502

Solutions over the remaining elements can be determined in exactly the same manner.

The total torque is given by

$$T = 2 \iint_A \phi \, \mathrm{d} A$$

The integral of ϕ over each element can be evaluated as described earlier. Since ϕ is a linear function over each element, using the procedure for integration over a triangle discussed earlier, it can be shown that the integral over each element is

$$\iint\limits_{A^{(e)}} \phi^{(e)} \, \mathrm{dA} = \tfrac{A^{(e)}}{3} \, (\phi_1 + \phi_2 + \phi_3)$$

where $A^{(e)}$ is the area of the element and ϕ_1 , ϕ_2 , ϕ_3 are the values at its nodes. Using this formula the integral of ϕ over each element is evaluated and the results are summarized as follows.

	ϕ	$\int\!\int\!\phi\;\mathrm{dA}$
1	0.251132 x + 0.000385934 y	0.0318384
2	0.259834 x	0.0168957
3	0.128078 - 0.251132 x	0.0149663
4	-0.259455x + 0.000385934y + 0.1302	0.0318384
5	0	0
6	-0.0227299x + 0.241364y - 1.31567	0.00806364
7	0.0720538 - 0.0227299 x	0.00806364
8	1.58701 - 0.264502 y	0.00876904

Summing $\int \int \phi \, dA$ contributions from all elements and multiplying by 2 gives the total torque. Since we are modeling half of the C shape, the torque for the entire section is twice this value. The the total torque is

$$T = 2 \times 2 \times \sum (\int \int \phi \ dA) = 0.481741$$

Since $T = J G \theta$ and we have used $G \theta = 1$, the computations show that the torsional constant J for the section is 0.48 in⁴. The J value tabulated in the steel design handbook for this section is 0.87 in⁴. As expected the computed value has a large error of almost 45%. Solution improves considerably if we use a finer mesh involving 64 triangular elements.

Using 8 element: J = 0.481741; Error = 45.%

Using 64 elements: J = 0.754029; Error = 13.%