Algoritmo Genético para Max Clique

Vinícius Victor Lelis - 14.2.8249

Introdução

- Um clique é um subgrafo completo de outro grafo
- Um clique máximo é o clique que contém o maior número possível de vértices
- Um grafo completo é igual ao seu clique máximo

Aplicações

- Subgrafos completos s\(\tilde{a}\) o utilizados para modelar cliques sociais, ou seja, grupos de pessoas que conhecem umas \(\tilde{a}\)s outras
- Utilizados na química para encontrar substâncias que correspondam a certas estruturas.
- Na bioinformática para inferir árvores evolucionárias e predizer estruturas protéicas

Trabalhos correlatos

- An Evolutionary Algorithm With Guided Mutation for the Maximum Clique Problem
 - Introduz um algoritmo evolucionário híbrido com mutação guiada.
 - Mutação guiada gera descendentes através da combinação de informações globais dos indivíduos e das soluções encontradas até o momento
- A genetic algorithm for the maximal clique problem
 - Introduz uma função objetivo inspirada por resultado teórico
 - Algoritmo genético simples com representação binária

Representação

- Algoritmo Genético com representação binária
- Array de cromossomos em que cada cromossomo (bit 1 ou 0) corresponde a um vértice do grafo
- Um bit 1 significa que o vértice faz parte do clique representado pelo indivíduo

Solução					
A	В	С	D		
1	1	1	0		

Max Clique = 3

Representação

- Grafos inseridos por arquivos no formato DIMACS
- Crossover de um ponto
- Mutação por bit
- nGer = (nVer + nVer/2)*5
- tamPop = nVer * 5
- repTol = nGer/3
- pCross = 0.7
- pMut = 0.4

Representação

Função objetivo

$$f(x) = \sum x[i] * x[j] - n * \sum x[i] * x[j]$$

$$(i, j) \in E \qquad (i, j) \notin E$$

Penalidade n por aresta n\u00e3o existente definido atrav\u00e9s de testes como 100

Resultados

	V	E	W(G)	S(G)	Tempo de execução
Grafo 1	6	11	4	4	53 ms
Grafo 2	4	3	3	3	38 ms

• Para grafos com muitas arestas o tempo de execução é muito grande

Referências

- BAZGAN, Cristina; LUCHIAN, Henri. A Genetic Algorithm for the Maximal Clique Problem. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna, 1995. p. 499-502.
- ZHANG, Qingfu; SUN, Jianyong; TSANG, Edward. An evolutionary algorithm with guided mutation for the maximum clique problem. **IEEE Transactions on Evolutionary Computation**, v. 9, n. 2, p. 192-200, 2005.