

전남과학고 구술고사예시문제

【 (수학)과 구술고사 예시 문제 】

문 제1

원에 내접하는 사각형 BCDE에서 P, Q, R, S는 각 변의 중점이다. \overline{CB} , \overline{DE} 의 연장 선의 교점을 A라 하고, $\overline{AB}=4$, $\overline{BC}=2$, $\overline{AE}=3$ 이라 한다. 다음 물음에 답하시오.

- (1) 선분 \overline{AD} 의 길이를 구하고, 그 이유를 설명하시오,
- (2) \overline{BP} : \overline{BC} 를 구하고, 그 이유를 설명하시오.
- (3) $\triangle BPS = a$, $\triangle DQR = b$ 라 할 때, 사각형 PCES, 사각형 CQRE의 넓이를 구하시오.
- (4) △*ABE*의 넓이를 구하시오.
- (5) $\triangle ACD$ 의 면적은 $\triangle BPS$ 와 $\triangle QDR$ 의 면적의 합의 몇 배인지를 구하시오.

문 제 2

두 집합 $P=\{1,2\}$, $Q=\{x,x+1,(x+2)^2\}$ (단 x>0) 에 대하여 $P@Q=\{z\,|\,z=x+y\,,\,x\in z,\,y\in Q\}$ 로 정의 할 때, P@Q의 원소의 합이 47이다. 다음 물음에 답하여라.

- (1) $P \bigcirc Q$ 의 원소의 개수는?
- (2) x의 값은?
- (3) 집합 $P \bigcirc Q$ 의 한 원소를 택할 때, 원소가 홀수가 나올 확률은?
- (4) 집합 P○Q의 부분집합 중 적어도 하나의 짝수를 원소로 가진 부분집합의 개수는?

【 (과학)과 구술고사 예시 문제 】

물리영역

※ 빙상요트는 얼음 위에서 바람에 의해서 이루어지는 경기이다. 빙상요트와 선수의 질량은 100kg이다. 바람에 의한 힘 F와 100N의 마찰력이 빙상요트에 일정하게 작용하고 있다. 빙상요트가 정지한 상태에서 출발하여 2초 후에 빙상요트의 속력이 2m/s가 되었다.

(1) 빙상요트의 가속도는 몇 m/s ² 인가? <풀이>	
	답)
(2) 4초 뒤에 빙상요트의 속력은 몇 m/s 인가? <풀이>	
	답)
(3) 4초 뒤에 빙상요트가 이동한 거리는 몇 m인가? <풀이>	
	답)
(4) 빙상요트가 정지한 상태에서 출발하여 2초 후에 빙상요트는 바람에 의한 힘 F는 몇 N이어야 할까? <풀이>	 E의 속력이 2m/s가 되기 위해서
\e 1/	답)

화학영역

※ 다음은 철수가 철이 녹스는 영향을 알아보기 위하여 실험을 수행하고 그 결과를 나타낸 것입니다.

① 질험조건

2~실험결과

	시험관 1	시험관 2	시험관 3	시험관 4
녹의 양	많이 생성	조금 생성	거의 생기지 않음	조금 생성

- (1) 실험 조건에서 철이 녹스는 데 영향을 줄 것이라고 가정한 요인들은 무엇입니까?
- (2) 실험 결과로 미루어 철이 녹스는 것을 막을 수 있는 방법을 한 가지만 제시하시오.
- (3) 철이 녹스는 반응은 전자의 이동이 일어나는 산화·환원반응입니다. 금속이 녹스는 반응 이외에 산화·환원반응의 예를 한 가지만 들어보시오.

생물 영역

※ 다음 그림은 어떤 동물의 생식 세포 형성 과정을 나타낸 것이다.

- (2) 이 동물의 암컷의 체세포의 염색체 수가 46개라면, ⓒ의 염색체 수와 세포 이름은?
- (3) 난자 형성 시 난자는 극체보다 훨씬 큰 세포가 된다. 그 이유는?

지구과학영역

※ 다음 그림은 적위가 +20。인 오리온자리의 고도 변화를 나타낸 것이다

(1) 관측 지점의 위도는 얼마인가 ?

(2) 오리온 별자리가 2월 15일 오후 8시에 남중하였다. 1개월 전인 1월 15일에는 몇 시에 남중하였겠는가 ?

[정답]

【 (수학)과 구술고사 예시 문제 】

문 제1

원에 내접하는 사각형 BCDE에서 P, Q, R, S는 각 변의 중점이다. \overline{CB} , \overline{DE} 의 연장 선의 교점을 A라 하고, $\overline{AB}=4$, $\overline{BC}=2$, $\overline{AE}=3$ 이라 한다. 다음 물음에 답하시오.

(1) 선분 \overline{AD} 의 길이를 구하고, 그 이

유를 설명하시오,

[풀이] $\overline{AB} \times \overline{AC} = \overline{AE} \times \overline{AD}$ 에서 $\overline{AD} = 8$

(2) \overline{BP} : \overline{BC} 를 구하고, 그 이유를 설명하시오.

[풀이] 삼각형 BCE 에서 중점 연결의 정리에 의하여 $\overline{PS}//\overline{CE}$, $\overline{QR}//\overline{CE}$ 이고, $\overline{BP}: \overline{BC}=1:2$ ($\overline{DQ}: \overline{DC}=1:2$)

(3) $\triangle BPS = a$, $\triangle DQR = b$ 라 할 때, 사각형 PCES, 사각형 CQRE의 넓이를 구하시오.

[풀이] $\triangle BCE \propto \triangle BPS$ 이고 닮음비는 1:2 이므로 넓이의 비는 1:4 이다. 그러므로 $\square PCES = 3a$, 마찬가지로 $\square CQRE = 3b$ 이다.

(4) △*ABE*의 넓이를 구하시오.

[풀이] \overline{AB} : $\overline{AC} = 2:1$ 이고 $\triangle BCE = 4a$ 이므로 $\triangle ABE = 8a$ 이다.

(5) $\triangle ACD$ 의 면적은 $\triangle BPS$ 와 $\triangle QDR$ 의 면적의 합의 몇 배인지를 구하시오.

[풀이] \overline{AB} : $\overline{AD} = 4$: 8 = 1: 2이므로 $\triangle ABE = \frac{1}{3}$ (사각형BCDE) $= \frac{4}{3}(a+b)$

$$\therefore \triangle ACD = 4a + 4b + \frac{4}{3}(a+b) = \frac{16}{3}(a+b) \therefore \frac{16}{3}$$

문 제 2

두 집합 $P=\{1,2\}$, $Q=\{x,x+1,(x+2)^2\}$ (단 x>0) 에 대하여 $P@Q=\{z\,|\,z=x+y\,,\,x\in P,\,y\in Q\}$ 로 정의 할 때, P@Q의 원소의 합이 47이다. 다음 물음에 답하여라.

(1) *P*◎*Q*의 원소의 개수는?

[풀이] $P \bigcirc Q$ 의 원소는 정의에 의하여 x+1, x+2, x+3, $(x+2)^2+1$, $(x+2)^2+2$ 이

될 수 있다. x>0이므로 위의 수들은 모두 다르다. P@Q의 원소의 개수는 5개이다. 답) 5

(2) χ 의 값은?

[풀이] 원소의 합이 47 이므로 x+1, x+2, x+3, $(x+2)^2+1$, $(x+2)^2+2$ 의 합은 $2x^2+11x+17$ 이다. $2x^2+11x+17=47$, $2x^2+11x-30=0$ (x-2)(2x+15)=0 x>0이므로 x=2이다. 답) x=2

(3) 집합 $P \bigcirc Q$ 의 한 원소를 택할 때, 원소가 홀수가 나올 확률은?

[풀이] P◎Q={3, 4, 5, 17, 18}이므로 P◎Q의 한 원소를 택할 때, 홀수가 나올 확률은 $\frac{3}{5}$ 이다. 답) $\frac{3}{5}$

(4) 집합 $P \bigcirc Q$ 의 부분집합 중 적어도 하나의 짝수를 원소로 가진 부분집합의 개수는? [풀이] 적어도 하나의 짝수를 가진 부분집합의 개수는 모두 홀수원소만을 가진 수의 여사건이므로 홀수 $\{3,5,17\}$ 의 부분집합의 원소의 개수는 $2^3=8$ 이므로 구하는 부분집합의 개수는 $2^5-2^3=24$ 이다. 답) 24