

Uma Heurística Híbrida para o Problema de Roteamento de Viaturas Policiais em Grandes Centros Urbanos

Raphael Leardini, Eduardo Canellas, Bruno Sá, Wagner Santos, Yuri Frota, <u>Daniel de Oliveira</u>, Isabel Rosseti

danielcmo@ic.uff.br

3 de agosto de 2022

Sumário

1 Motivação

- 2 Heurística Proposta
- 3 Resultados

4 Conclusões

Sumário

- 1 Motivação
- 2 Heurística Proposta
- 3 Resultados

4 Conclusões

Problema de Roteamento de Viaturas Policiais em Grandes Centros Urbanos

- Crise econômica tem assolado o Brasil nos últimos anos
- ► Alta na taxa de desemprego
- Deslocamento de parte da população para grandes centros urbanos
- Aumento da população morando em áreas de risco (e.g., favelas e bairros mais perigosos)
- Aumento da violência nas grandes cidades

Mesmo com quarentena, Brasil tem alta de 6% no número de assassinatos no 1º semestre

Após dois anos seguidos de recordes na queda de mortes, país volta a registrar aumento de violência nos primeiros seis meses de 2020. Aug 21, 2020

- A autoridade policial tem feito uso de ferramentas para criação de políticas públicas eficazes
- ► Policiamento ostensivo é uma delas!
 - Policiais e viaturas são posicionados em pontos estratégicos da cidade
 - A presença da força policial evita a ocorrência de certos tipos de crime
- Problema! Os recursos disponíveis (e.g., policiais e viaturas) não são suficientes para cobrir todas as áreas com maior ocorrência de crimes em uma cidade.
- ▶ Parte de um projeto acadêmico de colaboração entre a Polícia Militar do Estado do Rio de Janeiro e o IC/UFF
- ► Abordagem heurística para otimização do patrulhamento
- Baseado no histórico das ocorrências de crimes na cidade

Figura: (a) Grafo direcionado (b) Exemplo de solução (c) Arestas cobertas no grafo

Função Objetivo:

$$\max \sum_{\{i,j\}\in E} f_{ij} \cdot c_{ij} \tag{1}$$

- A função maximiza o fator de crime das arestas cobertas pelas unidades móveis e fixas.
- ▶ O fator de crime é calculado a partir da definição de pesos para cada tipo de crime

Sumário

- 1 Motivação
- 2 Heurística Proposta
- 3 Resultados

4 Conclusões

Heurística híbrida: combinação de duas metaheurísticas

Iterated Local Search (ILS) e Variable Neighborhood Descent (VND)

Algorithm 1: $ILS_{Urb}(G, maxIterILS)$

```
1 s \leftarrow Construction(G)
 s \leftarrow LocalSearchVND(G, s)
 3.5* \leftarrow 5
 _{4} iterII S ← 0
 5 while iterILS < maxIterILS do
         s \leftarrow Perturb(G, s, iterILS)
         s \leftarrow LocalSearchVND(G, s)
        iterILS \leftarrow iterILS + 1
 8
         if f(s^*) > f(s) then
               s^* \leftarrow s
10
               iterILS \leftarrow 0
11
         end
12
13 end
14 return s*
```

Heurística proposta: *ILS*_{Urb}

- ► Construction: geração de solução viável
- LocalSearchVND: exploração da vizinhança melhorando a solução atual
- Perturb: função para escapar de ótimos locais

Construction

- Três conjuntos de rotas e um conjunto de vértices: ROUTES (INTER_{E_k}, INTRA e INTER_θ) e STATIC
- Quatro métodos de inserção distintos: FindINTER_{Ek} Route, FindINTRARoute, FindINTER_®Route e FindSTATICVertices
- Gerar rotas para cada conjunto de acordo com as unidades de polícia disponíveis
- ▶ Ordem de construção: do mais restrito para o menos restrito

Rotas INTER $_{E_k}$

- ► Limites: distância máxima a ser coberta e um grupo de arestas prioritárias diferente de vazio
- **► Construção:** FindINTER_{Ek} Route
- Ideia do algoritmo: para cada aresta prioritária que ainda precisa ser coberta pela rota, tenta-se encontrar o menor caminho, do último vértice adicionado a rota até a aresta prioritária, usando Dijkstra.
- Se, pelo menos, uma aresta prioritária não estiver coberta, a solução é considerada inviável
- Um dos gargalos do algoritmo é o tempo de execução

Rotas INTRA

- Limites: distância máxima intrazona, com todos os vértices sendo da mesma zona
- ► Construção: FindINTRARoute
- Ideia do algoritmo: guloso, insere arestas com maiores fatores de crime
- Uso de memória para caminhos descartados: se esta memória estiver cheia, ela e a atual rota em construção são descartadas, e um novo vértice inicial é escolhido

Rotas INTER_∅

- Limites: distância máxima e grupo de arestas prioritárias igual a vazio
- **Construção:** FindINTER_∅Route
- ▶ Ideia do algoritmo: idêntico ao FindINTRARoute, sem a restrição de vértices na mesma zona

Conjunto STATIC

- ► Construção: FindSTATICVertices
- ▶ Ideia do algoritmo: guloso, insere unidades fixas em vértices com maiores fatores de crime ainda não cobertos

LocalSearchVND

- Busca exaustiva em um conjunto pré-definido de movimentos
- Primeiro movimento que melhora a solução
- ► Três tipos de movimento:
 - ▶ SP-1 e SP-2 para INTER_{E_k}, INTRA e INTER_Ø
 - ▶ MOV_v para STATIC
- ► Aplicação dos movimentos: mais restrito para menos restrito
- Ordem de aplicação:
 - 1. SP-1 para INTER_{E_k}, INTRA e INTER_{\emptyset}
 - 2. MOV_v
 - 3. SP-2 para INTER_{E_k}, INTRA e INTER_{\emptyset}

Movimento SP-1

- Remoção de uma aresta aleatória, exceto aresta prioritária em INTER_{Ek}
- Uso de Dijkstra ou busca em largura com fila de prioridade para reconstrução

Figura: Aresta selecionada em vermelho

Figura: Trecho que substitui a aresta selecionada, melhorando o fator de crime

Figura: Nova rota com a inserção do trecho

Movimento SP-2

- Remoção de duas arestas aleatórias (essas duas arestas estão em sequência), exceto aresta(s) prioritária(s) em INTER_{E_k}
- Uso de Dijkstra ou busca em largura com fila de prioridade para reconstrução

Figura: Arestas selecionadas em vermelho

Figura: Trecho que substitui as arestas selecionadas, melhorando o fator de crime

Figura: Nova rota com a inserção do trecho

Movimento MOV_v

- ► Melhor melhoria encontrada
- ▶ Pode alterar a posição de todas as unidades fixas.

Perturb

- ► Impedir que o algoritmo de busca local retorne com facilidade ao ótimo local
- ► Movimentos parecidos com SP-1 e SP-2:
 - São definidos os números de rotas (de qualquer um dos conjuntos) que serão modificadas e o número de modificações que serão realizadas para cada rota. Ambos baseados na iteração atual do ILS
 - Rotas e arestas escolhidas aleatoriamente
 - Movimentos não são de melhoria, apenas de substituição

Sumário

1 Motivação

- 2 Heurística Proposta
- 3 Resultados
- 4 Conclusões

Geração de Instâncias e Ambiente Computacional

- Geração de instâncias: dados extraídos da página da Secretaria de Segurança Pública do Estado de São Paulo
 - OpenStreetMap
 - QuickOSM
 - ► QGIS
 - ▶ Nomenclatura: "local-"número de vértices"
- Ambiente computacional: Notebook Lenovo ideapad 320-15IKB Windows 10 Pro 64 bits CPU Intel(R) Core(TM) i5-7200U CPU 2.50 GHz e C++ (8.1.0)
- ▶ 10 execuções com 10 sementes distintas

Geração de Instâncias e Ambiente Computacional

IRACE: instâncias usadas

Tabela: Resultado do ajuste de parâmetros

Instâncias	Parâmetro	Intervalo	elite config
cjn2-41 parque-peruche-710 jardim-centenario-1117 santo-amaro-2627 parque-santa-madalena-3578	maxlterILS	[100, 400]	330

Execuções do modelo e da heurística ILS_{Urb}

Instância	Ótimo	$Melhor_{\mathit{ILS}_{\mathit{Urb}}}$	Média _{ILS_{Urb}}	$T_{\mathtt{Modelo(s)}}$	$T_{ILS_{Urb}}(s)$
cjn1-18	126.74	123.85	123.85	0.037	0.042
cjn1-24	169.47	169.47	165.70	0.081	0.059
cjn1-33	270.96	269.96	264.72	0.190	0.271
cjn1-40	335.52	278.43	275.94	0.243	0.124
cjn1-46	398.25	385.20	382.23	0.740	0.296
cjn2-18	120.77	120.77	120.77	0.008	0.033
cjn2-25	211.84	211.84	208.64	0.146	0.085
cjn2-35	305.36	305.36	304.16	0.057	0.155
cjn2-50	408.41	408.41	399.41	0.284	0.219
mini1-64	390.97	357.23	357.23	13.390	0.260
mini2-75	399.94	399.94	388.97	5.680	0.193
mini3-20	108.48	108.48	100.71	0.029	0.048

Execuções do modelo e da heurística ILS_{Urb}

- Experimento considerou instâncias de tamanho menor (pequenas áreas dentro de bairros, e.g., quatro quarteirões em torno do MASP)
- Heurística encontra bons resultados, encontrando 7 das 12 soluções ótimas geradas
- Para a maioria das instâncias o tempo da heurística se manteve próximo ao do modelo
- Modelo foi capaz de encontrar soluções ótimas em instâncias com até 75 vértices

Visualização: QGIS

Figura: Instância cjn2-50: (a) Modelo e (b) Heurística ILS_{Urb}

Execuções da heurística ILS_{Urb} para as instâncias maiores

Tabela: Resultados para instâncias de bairros

Instância	Melhor _{ILS} _{Urb}	Média _{ILS Urb}	T _{ILS_{Urb}(s)}
bosque-da-saude-405	645.40	631.57	0.087
favela-dos-anjos-922	2010.82	1922.07	2.703
fazenda-itaim-864	886.14	886.14	0.361
jardim-japao-879	2529.98	2485.23	2.215
jardim-primavera-682	1106.28	1074.27	0.424
mirandopolis-509	598.16	586.74	0.142
planalto-paulista-567	994.23	962.60	0.612
vila-guarani-625	1189.16	1159.60	0.324
vila-renato-645	663.66	662.65	0.263
alto-de-santana-1152	1253.94	1232.54	1.002
belenzinho-1548	2201.91	2067.07	4.209
bom-retiro-1542	1498.33	1388.70	4.668
bras-1674	2241.53	2078.45	9.189
cidade-ipava-1608	2937.02	2764.01	6.495
jardim-aricanduva-1430	3440.90	3246.16	3.065
jardim-maristela-1372	3668.07	3549.50	7.558
pompeia-1617	2865.16	2699.09	9.611
rio-pequeno-1779	3421.86	3301.80	9.403
vila-amelia-1112	1740.10	1606.32	3.334
vila-antonio-1912	5538.27	5249.20	12.244
vila-leonor-1130	1861.08	1756.68	1.230
vila-leopoldina-1258	2743.53	2596.59	2.499
vila-progresso-1988	4961.00	4841.09	23.221
americanopolis-2897	8336.42	8119.13	38.019

Execuções da heurística ILS_{Urb} para as instâncias maiores

Tabela: Resultados para instâncias de bairros (cont.)

Instância	Melhor _{ILS} _{Urb}	Média _{ILS Urb}	T _{ILSUrb} (s)
baixa-grande-2223	5223.87	5075.37	15.109
campo-belo-2515	8114.80	7774.61	38.897
campo-limpo-2488	7352.29	6996.18	26.582
interlagos-2318	4220.88	4070.60	23.487
jardim-botucatu-2244	5002.92	4809.81	20.668
jardim-campinas-2485	5320.40	5087.91	24.564
jardim-paulista-2408	1747.67	1663.55	9.142
jardim-tupi-2745	3927.32	3747.76	17.033
mooca-2572	7137.80	6599.82	36.846
morumbi-2942	4627.24	4279.62	29.515
parque-cisper-2006	2537.41	2438.27	5.601
sossego-2463	4238.18	4060.44	25.312
sumare-2250	3377.24	3141.53	17.192
cidade-tiradentes-3562	6456.89	6263.75	34.814
itaim-paulista-3209	9545.04	8833.24	64.788
jardim-tres-marias-3282	12805.70	12079.60	61.397
limoeiro-3472	9639.66	9176.26	60.360
sacoma-3745	12745.90	12264.10	103.881
vila-formosa-3460	7029.78	6581.77	60.500
vila-matilde-3454	9708.57	9318.87	75.710
vila-santa-teresa-3222	11127.80	10558.70	74.798
vila-solange-3372	11319.30	10952.60	54.207
aeroporto1-1301	6193.76	5958.76	30.183
perdizes1-1793	5712.98	5554.95	33.755

Execuções da heurística ILS_{Urb} para as instâncias maiores

- ► Instâncias de maior escala que não possuem resultado ótimo conhecido, i.e., instâncias em que o modelo não é capaz de gerar resultados viáveis
- As instâncias utilizadas nesse experimento englobam bairros inteiros, e.g., Brás, Campo Belo, Morumbi, Itaim Paulista, etc.
- ► Tempo de execução cresce devido ao aumento do tamanho das instâncias (i.e., número de vértices)

Sumário

- 1 Motivação
- 2 Heurística Proposta
- 3 Resultados
- 4 Conclusões

Conclusões

- ► ILS_{Urb} alcançou resultados ótimos em diversas instâncias
- ► ILS_{Urb} encontrou soluções para instância que o modelo não conseguiu em um tempo de execução aceitável
- Os resultados obtidos se encontram em análise por parte dos especialistas em segurança pública
- Aplicação com dados do Estado do Rio de Janeiro

Agradecimentos

- ► Os autores gostariam de agradecer ao CNPq e a FAPERJ pelo apoio financeiro
- Os autores gostariam de agradecer aos oficiais da PMERJ que apoiam o desenvolvimento desse trabalho
- ► OBRIGADO!