Isanorphisms

prove or disprove the following:

(i)
$$U(9) \stackrel{\checkmark}{=} U(7)$$

Sol: $U(9) = \S1,2,4,5,7,8\S$

is cyclic Size $2^1 = 2$
 $2^3 = 8$
 $2^4 = 16 = 7$
 $2^5 = 14 = 5$
 $2^6 = 10 = 1$

Have, $\langle 2 \rangle = U(9)$

Since $|U(9)| = 6$ and $U(9)$ is cyclic, we know

 $U(9) \stackrel{\checkmark}{=} Z/6$

by our classification of final cyclic groups.

Similarly $U(7) = \S1,2,3,4,5,6,7\S$

is cyclic. Size $2^1 = 2$
 $2^3 = 8 = 1$

Cox. this document gaussing $3^2 = 9 = 2$
 $3^3 = 6$
 $3^2 = 9 = 2$
 $3^3 = 6$

34 = 18 = 4

35 = 12 = 5

36 = 15= 1

Hure, u(7) = <37 and also |u(7)|=6 ->

U(7) = Z6. u(9) = Z6 = u(7), which means indeed Hence u(9) \(u(7). (ii) \ u(9) = D3 D3 is a nonabelian group AND U(9) is abelian. This means they cannot be isomorphic (even though |u(9)| = 6 = |D3|.). Thus, U(9) \$ D3. (iii) [u(9) = u(5)] $U(9) = \langle 2 \rangle$ = cyclic and order |U(9)| = 6. u(5) = 31,2,3,43 = <2> < cyclic and arder IU(5) = 4. since the orders of these groups are not the same, they cannot be isomaphic. Thus, u(9) \$ u(5) (iv) $|u(9) \cong \mathbb{Z}_3 \times \mathbb{Z}_2$ qcd (n,m) = 1 Recally Zn × Zn = Znm

Thus, $\mathbb{Z}_3 \times \mathbb{Z}_2 \cong \mathbb{Z}_6$ so indeed from (i) ne see U(9) = Z6 $U(9) \cong \mathbb{Z}_3 \times \mathbb{Z}_2$

SOLL:

57 = 2...-10, -5, 0, 5, 10, ... ? = <5?

Continuous is cyclic and infinite. By our classification of cyclic groups.
$$72 \cong 57$$
.

SOLZ: you can verify $4(n) = 5n$ is included an isomorphism for a $4: 72 \Rightarrow 57$.

(VI) $72 \cong n7$

Similarly $117 = (n)$

Continuous is cyclic and finite. Here $117 \cong 77$.

(V) $117 \cong 117$

Recally $117 \cong 117$

Recally $117 \cong 117$
 117

Many reasons why this is false but two quick ones: IR is uncountably infinite while I is countably motivate hence IR # IZ.

also Risnot cyclic. hence R#Z

2 Define
$$\Psi: (R^+, \cdot) \rightarrow (R^+, \cdot)$$
 by $\forall x \in R^+, \ \Psi(x) = \sqrt{x}$.

Prove that 4 is an automarphism.

SUL .

(i) It is well defined since
$$\sqrt{x} > 0$$
, so $\sqrt{x} \in \mathbb{R}^+$ if $x \in \mathbb{R}^+$.

s one-to-one:
Let
$$x,y \in \mathbb{R}^+$$
. (the domain here)
Suppose $\varphi(x) = \varphi(y)$ (Show: $x = y$)
 $\sqrt{x} = \sqrt{y}$
 $(\sqrt{x})^2 = (\sqrt{y})^2$
 $x = y$. So y is one-to-one

is onto:

Let
$$y \in \mathbb{R}^+$$
 (the codomain here).

(Show: $\exists x \in \mathbb{R}^+$ (the domain) such that $\Psi(x) = y$).

Let $x = y^2$.

Then $\Psi(x) = \sqrt{x} = \sqrt{y^2} = |y| = y$.

So Ψ is onto.

Let
$$x,y \in \mathbb{R}^+$$
 (the domain here.).

(Show: $\Psi(xy) = \Psi(x)\Psi(y)$

operation
operation
operation
is domain
is codomain is.

 $\Psi(xy) = \sqrt{xy} = \sqrt{x} \sqrt{y} = \Psi(x) \Psi(y)$

Let G be a group. The Let 4:6 - 6 be defined Hg∈G, 4(g) = g-1 Prove: that Pois an automorphism iff Gis abelian. | proof | (->) suppose 4 is an automorphism (Show: 6 is abelian). Soll: Since q is an automorphism $\exists x, y \in G$ sit. $a = \varphi(x), b = \varphi(y)$. ab = $\varphi(x)\varphi(y) = \varphi(xy)$ since φ is operation preservey. = (XY) -1 = y-1 ×-1 = 4(y) 4(x) SOLZ: ab = 4 ((ab)-1) by definition of 4 = 4 (b-1 a-1) by socks-and-shoes. = 4 (b-1) 4(a-1) since 4 is an automorphism. = (b-1)-1 (a-1)-1 by definition of 4 Jba. (E) suppose Gis abelian. (Show Gis an automorphism.). Chack properties (i) - (iii) (quick). (iv) Let a,b ∈ G.

(iv) Let a,b ∈ G.

(ab) = b'a' = a'b' = 4(a)4(b).

```
Let 4 be an automorphism of G.
   prove that H= {x ∈ G | Y(x) = x } ≤ G.
  Tproof 3-step subgroup test.
       (i) (Show that the identity e& G is also in H.)
             since this an automorphism and 4:6-56.
                    4(e) = e
            Thus, eEH (by definition.)
Closure (ii) Let a, b E H. (Show ab E H).
          Since a \in H \rightarrow \varphi(a) = a

Since b \in H \rightarrow \varphi(b) = b.

Since b \in H \rightarrow \varphi(b) = b.

(If we unit ab \in H we need to show \varphi(ab) = ab)
              4(ab) = 4(a) 4(b) since 4 is an automorphism.
                        = ab since a lb EH:
           Horse, ab EH.
        (iii) Let a EH (Show a' EH).
            (If we want a - EH we need to show 4(a^{-1}) = a^{-1}
              Since aEH -> 4(a)=a.
                y(a^{-1}) = (y(a))^{-1} (property of isomorphism.)
                         = (a) = sine at H.
             Thuse, a-IEH.
```

Hence, H & G.