

### Statistical Inference and Science

- Previously: descriptive statistics. "Here are data; what do they say?".
- May need to take some action based on information in data.
- Or want to generalize beyond data (sample) to larger world (population).
- Science: first guess about how world works.
- Then collect data, by sampling.
- Is guess correct (based on data) for whole world, or not?

# Sample data are imperfect

- Sample data never entirely represent what you're observing.
- There is always random error present.
- Thus you can never be entirely certain about your conclusions.
- The Toronto Blue Jays' average home attendance in part of 2015 season was 25,070 (up to May 27 2015, from baseball-reference.com).
- Does that mean the attendance at every game was exactly 25,070?
   Certainly not. Actual attendance depends on many things, eg.:
  - how well the Jays are playing
  - the opposition
  - day of week
  - weather
  - random chance

### Packages for this section

```
library(tidyverse)
library(smmr)
# library(PMCMRplus)
```

## Reading the attendances

```
...as a ..csv file:
jays = read_csv("jays15-home.csv")
## Parsed with column specification:
## cols(
##
     .default = col character(),
     row = col double(),
##
##
     game = col double(),
##
     venue = col logical(),
##
     runs = col double(),
##
     Oppruns = col_double(),
##
     innings = col double(),
##
     position = col_double(),
     `game time` = col time(format = ""),
##
##
     attendance = col double()
## )
```

# Taking a look (tiny)

jays

| row | game | date              | box      | team | venue | opp | result | runs | Oppruns | innings | wl   |
|-----|------|-------------------|----------|------|-------|-----|--------|------|---------|---------|------|
| 82  | 7    | Monday, Apr 13    | boxscore | TOR  | NA    | TBR | L      | 1    | 2       | NA      | 4-3  |
| 83  | 8    | Tuesday, Apr 14   | boxscore | TOR  | NA    | TBR | L      | 2    | 3       | NA      | 4-4  |
| 84  | 9    | Wednesday, Apr 15 | boxscore | TOR  | NA    | TBR | W      | 12   | 7       | NA      | 5-4  |
| 85  | 10   | Thursday, Apr 16  | boxscore | TOR  | NA    | TBR | L      | 2    | 4       | NA      | 5-5  |
| 86  | 11   | Friday, Apr 17    | boxscore | TOR  | NA    | ATL | L      | 7    | 8       | NA      | 5-6  |
| 87  | 12   | Saturday, Apr 18  | boxscore | TOR  | NA    | ATL | W-wo   | 6    | 5       | 10      | 6-6  |
| 88  | 13   | Sunday, Apr 19    | boxscore | TOR  | NA    | ATL | L      | 2    | 5       | NA      | 6-7  |
| 89  | 14   | Tuesday, Apr 21   | boxscore | TOR  | NA    | BAL | W      | 13   | 6       | NA      | 7-7  |
| 90  | 15   | Wednesday, Apr 22 | boxscore | TOR  | NA    | BAL | W      | 4    | 2       | NA      | 8-7  |
| 91  | 16   | Thursday, Apr 23  | boxscore | TOR  | NA    | BAL | W      | 7    | 6       | NA      | 9-7  |
| 92  | 27   | Monday, May 4     | boxscore | TOR  | NA    | NYY | W      | 3    | 1       | NA      | 13-1 |
| 93  | 28   | Tuesday, May 5    | boxscore | TOR  | NA    | NYY | L      | 3    | 6       | NA      | 13-1 |
| 94  | 29   | Wednesday, May 6  | boxscore | TOR  | NA    | NYY | W      | 5    | 1       | NA      | 14-1 |
| 95  | 30   | Friday, May 8     | boxscore | TOR  | NA    | BOS | W      | 7    | 0       | NA      | 15-1 |
| 96  | 31   | Saturday, May 9   | boxscore | TOR  | NA    | BOS | W      | 7    | 1       | NA      | 16-1 |
| 97  | 32   | Sunday, May 10    | boxscore | TOR  | NA    | BOS | L      | 3    | 6       | NA      | 16-1 |
| 98  | 40   | Monday, May 18    | boxscore | TOR  | NA    | LAA | W      | 10   | 6       | NA      | 18-2 |
| 99  | 41   | Tuesday, May 19   | boxscore | TOR  | NA    | LAA | L      | 2    | 3       | NA      | 18-2 |
| 100 | 42   | Wednesday, May 20 | boxscore | TOR  | NA    | LAA | L      | 3    | 4       | NA      | 18-2 |
| 101 | 43   | Thursday, May 21  | boxscore | TOR  | NA    | LAA | W      | 8    | 4       | NA      | 19-2 |
| 102 | 44   | Friday, May 22    | boxscore | TOR  | NA    | SEA | L      | 3    | 4       | NA      | 19-2 |
| 103 | 45   | Saturday, May 23  | boxscore | TOR  | NA    | SEA | L      | 2    | 3       | NA      | 19-2 |
| 104 | 46   | Sunday, May 24    | boxscore | TOR  | NA    | SEA | W      | 8    | 2       | NA      | 20-2 |
| 105 | 47   | Monday, May 25    | boxscore | TOR  | NA    | CHW | W      | 6    | 0       | NA      | 21-2 |
| 106 | 48   | Tuesday, May 26   | boxscore | TOR  | NA    | CHW | W-wo   | 10   | 9       | NA      | 22-2 |

### Another way

#### glimpse(jays)

```
## Rows: 25
## Columns: 21
## $ row
                                              <dbl> 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100...
## $ game
                                              <dbl> 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 27, 28, 29, 30, 31, 32, 40, 41, 42, 43...
                                              <chr> "Monday, Apr 13", "Tuesday, Apr 14", "Wednesday, Apr 15", "Thursday, Apr 16...
## $ date
                                              <chr> "boxscore", 
## $ box
                                              <chr> "TOR", "TO
## $ team
## $ venue
                                              ## $ opp
                                              <chr> "TBR", "TBR", "TBR", "TBR", "ATL", "ATL", "ATL", "BAL", "BAL", "BAL", "NYY"...
                                              ## $ result
## $ runs
                                              <dbl> 1, 2, 12, 2, 7, 6, 2, 13, 4, 7, 3, 3, 5, 7, 7, 3, 10, 2, 3, 8, 3, 2, 8, 6, 10
## $ Oppruns
                                              <dbl> 2, 3, 7, 4, 8, 5, 5, 6, 2, 6, 1, 6, 1, 0, 1, 6, 6, 3, 4, 4, 4, 3, 2, 0, 9
## $ innings
                                              ## $ wl
                                              <chr> "4-3", "4-4", "5-4", "5-5", "5-6", "6-6", "6-7", "7-7", "8-7", "9-7", "13-1...
## $ position
                                              <dbl> 2, 3, 2, 4, 4, 3, 4, 2, 2, 1, 4, 5, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5
## $ gb
                                              <chr> "1", "2", "1", "1.5", "2.5", "1.5", "1.5", "2", "1", "Tied", "3.5", "4.5", ...
                                              <chr> "Odorizzi", "Geltz", "Buehrle", "Archer", "Martin", "Cecil", "Miller", "Bue...
## $ winner
                                              <chr> "Dickev", "Castro", "Ramirez", "Sanchez", "Cecil", "Marimon", "Norris", "No...
## $ loser
                                              <chr> "Boxberger", "Jepsen", NA, "Boxberger", "Grilli", NA, "Grilli", NA, "Castro...
## $ save
## $ `game time` <time> 02:30:00, 03:06:00, 03:02:00, 03:00:00, 03:09:00, 02:41:00, 02:41:00, 02:5...
                                              ## $ Davnight
## $ attendance <dbl> 48414, 17264, 15086, 14433, 21397, 34743, 44794, 14184, 15606, 18581, 19217...
## $ streak
```

### Attendance histogram



### Comments

- Attendances have substantial variability, ranging from just over 10,000 to around 50,000.
- Distribution somewhat skewed to right (but no outliers).
- These are a sample of "all possible games" (or maybe "all possible games played in April and May"). What can we say about mean attendance in all possible games based on this evidence?
- Think about:
  - Confidence interval
  - Hypothesis test.

### Getting CI for mean attendance

• t.test function does CI and test. Look at CI first:

```
t.test(jays$attendance)
```

```
##
##
    One Sample t-test
##
## data: jays$attendance
## t = 11.389, df = 24, p-value = 3.661e-11
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
  20526.82 29613.50
## sample estimates:
## mean of x
## 25070.16
```

From 20,500 to 29,600.

### Or, 90% CI

## mean of x ## 25070.16

• by including a value for conf.level:

t.test(jays\$attendance, conf.level = 0.90)

```
##
## One Sample t-test
##
## data: jays$attendance
## t = 11.389, df = 24, p-value = 3.661e-11
## alternative hypothesis: true mean is not equal to 0
## 90 percent confidence interval:
## 21303.93 28836.39
## sample estimates:
```

From 21,300 to 28,800. (Shorter, as it should be.)

#### Comments

- Need to say "column attendance within data frame jays" using \$.
- 95% CI from about 20,000 to about 30,000.
- Not estimating mean attendance well at all!
- Generally want confidence interval to be shorter, which happens if:
  - SD smaller
  - sample size bigger
  - confidence level smaller
- Last one is a cheat, really, since reducing confidence level increases chance that interval won't contain pop. mean at all!

### Another way to access data frame columns

```
with(jays, t.test(attendance))
##
##
    One Sample t-test
##
## data: attendance
## t = 11.389, df = 24, p-value = 3.661e-11
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 20526.82 29613.50
## sample estimates:
## mean of x
## 25070.16
```

# Hypothesis test

- CI answers question "what is the mean?"
- Might have a value  $\mu$  in mind for the mean, and question "Is the mean equal to  $\mu$ , or not?"
- For example, 2014 average attendance was 29,327.
- "Is the mean this?" answered by hypothesis test.
- Value being assessed goes in **null hypothesis**: here,  $H_0: \mu = 29327.$
- Alternative hypothesis says how null might be wrong, eg.  $H_a: \mu \neq 29327$ .
- Assess evidence against null. If that evidence strong enough, reject null hypothesis; if not, fail to reject null hypothesis (sometimes retain null).
- Note asymmetry between null and alternative, and utter absence of word "accept".

### $\alpha$ and errors

- Hypothesis test ends with decision:
  - reject null hypothesis
  - do not reject null hypothesis.
- but decision may be wrong:

|            | Decision      |              |  |  |  |
|------------|---------------|--------------|--|--|--|
| Truth      | Do not reject | Reject null  |  |  |  |
| Null true  | Correct       | Type I error |  |  |  |
| Null false | Type II error | Correct      |  |  |  |

- Either type of error is bad, but for now focus on controlling Type I error: write  $\alpha = P(\text{type I error})$ , and devise test so that  $\alpha$  small, typically 0.05.
- That is, if null hypothesis true, have only small chance to reject it (which would be a mistake).
- Worry about type II errors later (when we consider power of test).

# Why 0.05? This man.



#### Responsible for:

- analysis of variance
- Fisher information
- Linear discriminant analysis
- Fisher's z-transformation
- Fisher-Yates shuffle
- Behrens-Fisher problem

Sir Ronald A. Fisher, 1890-1962.

# Why 0.05? (2)

• From The Arrangement of Field Experiments (1926):

the line at about the level at which we can say: "Either there is something in the treatment, or a coincidence has occurred such as does not occur more than once in twenty trials." This level, which we may call the 5 per cent. point, would be indicated, though very roughly, by the greatest chance deviation observed in twenty successive trials. To

#### and

If one in twenty does not seem high enough odds, we may, if we prefer it, draw the line at one in fifty (the 2 per cent. point), or one in a hundred (the 1 per cent. point). Personally, the writer prefers to set a low standard of significance at the 5 per cent. point, and ignore entirely all results which fail to reach this level. A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance. The very high

### Three steps:

- from data to test statistic
  - how far are data from null hypothesis
- from test statistic to P-value
  - how likely are you to see "data like this" if the null hypothesis is true
- from P-value to decision
  - reject null hypothesis if P-value small enough, fail to reject it otherwise

### Using t.test:

```
t.test(jays$attendance, mu=29327)
```

```
##
##
    One Sample t-test
##
## data: jays$attendance
## t = -1.9338, df = 24, p-value = 0.06502
## alternative hypothesis: true mean is not equal to 29327
## 95 percent confidence interval:
  20526.82 29613.50
##
## sample estimates:
## mean of x
## 25070.16
```

- See test statistic -1.93, P-value 0.065.
- $\bullet$  Do not reject null at  $\alpha=0.05$ : no evidence that mean attendance has changed.

## **Assumptions**

- Theory for *t*-test: assumes normally-distributed data.
- ullet What actually matters is sampling distribution of sample mean: if this is approximately normal, t-test is OK, even if data distribution is not normal.
- Central limit theorem: if sample size large, sampling distribution approx. normal even if data distribution somewhat non-normal.
- So look at shape of data distribution, and make a call about whether it is normal enough, given the sample size.

### Blue Jays attendances again:

ullet You might say that this is not normal enough for a sample size of n=25, in which case you don't trust the t-test result:



## Another example: learning to read

- You devised new method for teaching children to read.
- Guess it will be more effective than current methods.
- To support this guess, collect data.
- Want to generalize to "all children in Canada".
- So take random sample of all children in Canada.
- Or, argue that sample you actually have is "typical" of all children in Canada.
- Randomization (1): whether or not a child in sample or not has nothing to do with anything else about that child.
- Randomization (2): randomly choose whether each child gets new reading method (t) or standard one (c).

### Reading in data

- File at http://www.utsc.utoronto.ca/~butler/c32/drp.txt.
- Proper reading-in function is read\_delim (check file to see)
- Read in thus:

group = col\_character(),
score = col double()

##

## ## )

```
my_url <- "http://www.utsc.utoronto.ca/~butler/c32/drp.txt"
kids <- read_delim(my_url," ")
## Parsed with column specification:
## cols(</pre>
```

```
Statistical Inference: one- and two-sample inf
```

# The data (some)

### kids

| group | score |
|-------|-------|
| t     | 24    |
| t     | 61    |
| t     | 59    |
| t     | 46    |
| t     | 43    |
| t     | 44    |
| t     | 52    |
| t     | 43    |
| t     | 58    |
| t     | 67    |
| t     | 62    |
| t     | 57    |
| t     | 71    |
|       |       |

### **Boxplots**



### Two kinds of two-sample t-test

- Do the two groups have same spread (SD, variance)?
  - If yes (shaky assumption here), can use pooled t-test.
  - If not, use Welch-Satterthwaite t-test (safe).
- Pooled test derived in STAB57 (easier to derive).
- Welch-Satterthwaite is test used in STAB22 and is generally safe.
- Assess (approx) equality of spreads using boxplot.

# The (Welch-Satterthwaite) t-test

- c (control) before t (treatment) alphabetically, so proper alternative is "less".
- R does Welch-Satterthwaite test by default
- Answer to "does the new reading program really help?"
- (in a moment) how to get R to do pooled test?

### Welch-Satterthwaite

```
t.test(score ~ group, data = kids, alternative = "less")
##
##
   Welch Two Sample t-test
##
## data: score by group
## t = -2.3109, df = 37.855, p-value = 0.01319
## alternative hypothesis: true difference in means is less tl
## 95 percent confidence interval:
        -Inf -2.691293
##
## sample estimates:
## mean in group c mean in group t
         41.52174 51.47619
##
```

### The pooled t-test

```
t.test(score ~ group, data = kids,
      alternative = "less", var.equal = T)
##
##
   Two Sample t-test
##
## data: score by group
## t = -2.2666, df = 42, p-value = 0.01431
## alternative hypothesis: true difference in means is less tl
## 95 percent confidence interval:
       -Inf -2.567497
##
## sample estimates:
## mean in group c mean in group t
       41.52174 51.47619
##
```

### Two-sided test; CI

##

• To do 2-sided test, leave out alternative:

41.52174 51.47619

```
t.test(score ~ group, data = kids)
##
   Welch Two Sample t-test
##
##
## data: score by group
## t = -2.3109, df = 37.855, p-value = 0.02638
## alternative hypothesis: true difference in means is not equ
## 95 percent confidence interval:
## -18.67588 -1.23302
## sample estimates:
## mean in group c mean in group t
```

#### Comments:

- P-values for pooled and Welch-Satterthwaite tests very similar (even though the pooled test seemed inferior): 0.013 vs. 0.014.
- Two-sided test also gives CI: new reading program increases average scores by somewhere between about 1 and 19 points.
- Confidence intervals inherently two-sided, so do 2-sided test to get them.

# Jargon for testing

- Alternative hypothesis: what we are trying to prove (new reading program is effective).
- Null hypothesis: "there is no difference" (new reading program no better than current program). Must contain "equals".
- One-sided alternative: trying to prove better (as with reading program).
- Two-sided alternative: trying to prove different.
- Test statistic: something expressing difference between data and null (eg. difference in sample means, t statistic).
- P-value: probability of observing test statistic value as extreme or more extreme, if null is true.
- Decision: either reject null hypothesis or do not reject null hypothesis.
   Never "accept".

### Logic of testing

- Work out what would happen if null hypothesis were true.
- Compare to what actually did happen.
- If these are too far apart, conclude that null hypothesis is not true after all. (Be guided by P-value.)
- As applied to our reading programs:
  - If reading programs equally good, expect to see a difference in means close to 0.
  - Mean reading score was 10 higher for new program.
  - Difference of 10 was unusually big (P-value small from t-test). So conclude that new reading program is effective.
- Nothing here about what happens if null hypothesis is false. This is power and type II error probability.

## Extra on bootstrapping?