

卷之三

108-1064SA000

FIG. 1A

2 / 206

FIG. 1B1

卷之三

TO STATE = DETERMINED

卷之三

FIG. 1C

FIG. 1E1

FIG. 1.E2

FIGURE 10 DETAIL

FIG. 10F

6/206

FIG 1G1

098834361 • 112601

09883101110152560

7/206

FIG. 1G2

FIG. 164.

10/206

* Fixed Field of Field

FIG. 1G5

09883430 - 112601

11/206

12 / 206

FIG. 1G 8

FIG. 1G.9

FIG. 1G10

13/206

FIG. 1G11

FIG. 1G12

TOEGLITZ 354-3360

FIG. 1G 13

FIG. 1G 14

15/206

09833130 - 1125014

FIG. 1G15A

FIG. 1G15B
furthest object/working distance

098343-112501

16/206

FIG. 1H1

FIG. 1H2

17/206

FIG. 1H3

FIG. 1H4

FIG. 1H5

IMAGE-DETECTOR

$$E_{\text{CCD}} = \text{CCD irradiance} \quad (\text{in Watts / meter squared})$$

f = Lens Focal Length

F = Lens f-stop

i_0 = Image distance

r_0 = Working distance

m = Lens Magnification

Assumptions:

- 1) Objects are Lambertian Scatterers
- 2) Object Reflectance = 100%
- 3) Optical Transmittance = 100%
- 4) Square CCD pixels

$$E_{\text{obj}} = \text{Evenly distributed irradiance} \quad (\text{in Watts / meter squared})$$

CCD-Based Scanner

18/206

FIG. 1H6

卷之三

FIG. 111

FIG. 11:2A
Run to object illumination

The First Generalized Speckle-Noise Pattern Reduction Method
Of The Present Invention

Prior to illumination of the target with the planar laser illumination beam (PLIB), modulate the spatial phase of the transmitted PLIB along the planar extent thereof according to a spatial phase modulation function (SPMF) so as to modulate the phase along the wavefront of the transmitted PLIB and produce numerous substantially different time-varying speckle-noise patterns at the image detection array of the IFD Subsystem during the photo-integration time period thereof.

A

Temporally average the numerous substantially different time-varying speckle-noise patterns produced at the image detection array in the IFD Subsystem during the photo-integration time period thereof, so as to thereby reduce the power of the speckle-noise pattern observed at the image detection array.

B

FIG. 1I2B

00003434-112501

FIG. 1I3A

FIG. 1I3B

FIG. 1I3C

FIG. 1I3D

23/206

FIG. 113E

24/ 206

00833136-1106211

FIG. 1I3F

FIG 1I3G

TOP SECRET//SI

FIG. 1I5A

FIG. 1I5B

FIG. 1I5C

FIG. 1I5D

27/206

FIG. II6A

FIG. II6A

099831361412601

28/206

FIG. II7A

FIG. II7B

FIG. II7C

29/206

FIG. 1I8A

FIG. 1I8B

FIG. 1I8C

FIG 118E

FIG 118D

31/206

FIG.1I8F

FIG.1I9G

TO92441 DEPOSED

32/206

FIG. II A

FIGURE - ELEVEN

34/204

TOP SECRET - DEFENSE EDITION

FIG. 1110A

35 / 206

36/206

FIG. 111A

卷之三

37 / 206

FIG 1T11B

FIG. I.IIC

FIGURE I1/2

Second Generalized Method of
Reducing Spectre-Mouse Patterns
of Range Detection Theory
of the FFD Subsystem (3)

39/206

(TMF)

FIG.II/2

40/206

FIG. 1 I 13A

46/206

The Second Generalized Speckle-Noise Pattern Reduction Method Of The Present Invention

Prior to illumination of the target with the planar laser illumination beam (PLIB), modulate the temporal intensity of the transmitted PLIB along the planar extent thereof according to a temporal intensity modulation function (TIMF) so as to modulate the phase along the wavefront of the transmitted PLIB and produce numerous substantially different time-varying speckle-noise patterns at the image detection array of the IFD Subsystem during the photo-integration time period thereof.

Temporally average the numerous substantially different time-varying speckle-noise patterns produced at the image detection array in the IFD Subsystem during the photo-integration time period thereof, so as to thereby reduce power of the speckle-noise pattern observed at the image detection array.

A

18

FIG. 1I13B

42/206

05883136 • 112501

FIG. 1I14A

FIG. 1I14B

43/206

FIG. 1I15A.

FIG. 1I15B

44/206

FIG. 1I15C

FIG. 1I15D

09883430 • 112601

FIG. II16A

FIG. II16B

Third Generalized Method
of Reducing Speckle-Noise
Means At Range
Achromatic of a
FDP System (3)

46/206

FIGURE 17

47/206

Line to object illumination

FIG. II 18A

40/206

The Third Generalized Speckle-Noise Pattern Reduction Method
Of The Present Invention

Prior to illumination of the target with the planar laser illumination beam (PLIB), modulate the spatial intensity of the transmitted PLIB along the planar extent thereof according to a spatial intensity modulation function (SIMF) so as to modulate the phase along the wavefront of the transmitted PLIB and produce numerous substantially different time-varying speckle-noise patterns at the image detection array of the IFD Subsystem during the photo-integration time period thereof.

Temporally average the numerous substantially different time-varying speckle-noise patterns produced at the image detection array in the IFD Subsystem during the photo-integration time period thereof, so as to thereby reduce power of the speckle-noise pattern observed at the image detection array.

A

B

FIG. III 18B

49/206

FIG. II 19A

FIG. II 19B

FIG. II 19C

FIG. II 19D

Fourth Generalized Method of
Reducing Speckle-Noise Patterns
at Large Deflection Angles
of the IFOV Subsystem
(SIMF)

50/206

FIG. 1120

51/206

FIG. II 21A

卷之三

The Fourth Generalized Speckle-Noise Pattern Reduction Method
Of The Present Invention

After illumination of the target with the planar laser illumination beam (PLIB), modulate the spatial intensity of the reflected/scattered (i.e. received) PLIB along the planar extent thereof according to a spatial intensity modulation function (SIMF) so as to modulate the phase along the wavefront of the received PLIB and produce numerous substantially different time-varying speckle-noise patterns at the image detection array of the IFD Subsystem during the photo-integration time period thereof.

A

Temporally average the many substantially different time-varying speckle-noise patterns produced at the image detection array in the IFD Subsystem during the photo-integration time period thereof, so as to thereby reduce the speckle-noise pattern observed at the image detection array.

B

FIG. 1I21B

53/204

FIG. 1 IZZA

FIG. 1IZZB

TO92TT-DETE3850

Fourth Generalized Method of
Reducing Smoke-Noise Attenuation
at Range Detection Array
of the TTD System

54/256

FIG.II23

55 / 206

FIG. II 24A

69883430.112501

56/206

The Fifth Generalized Speckle-Noise Pattern Reduction Method
Of The Present Invention

After illumination of the target with the planar laser illumination beam (PLIB), modulate the temporal intensity of the reflected/scattered (i.e. received) PLIB along the planar extent thereof according to a temporal intensity modulation function (TIMF) so as to modulate the phase along the wavefront of the received PLIB and produce many substantially different time-varying speckle-noise patterns at the image detection array of the IFD Subsystem during the photo-integration time period thereof.

↓
Temporally average the many substantially different time-varying speckle-noise patterns produced at the image detection array in the IFD Subsystem during the photo-integration time period thereof, so as to thereby reduce the speckle-noise pattern observed at the image detection array.

A

B

FIG. 1I 24B

PROJECT "DETESSO"

57 / 206

Fig. 1125

58/206

59/206

FIG. 1L1

FIG. 1L2

60 / 200

FIG - [M]

61/206

FIG. 1M2

TOGETHER DETERMINED

62/204

FIG. IM3

63/206

FIG/M4

64/206

FIG. IN

65 / 206

FIG. 10

66 / 206

FIG. 1P1

FIG. 1P2

67/206

FIG. 1Q1

09833430-1125614

09883136 - 112601

F16.1Q2

69/206

09883130-112601

卷之三

7/206

FIG. 1S1

09883130-112601

卷之三

73/206

3938330 - 112604

FIG. 1T

FIG 14

FIG. 14/

76/206

105211 09883130

FIG. IV2

098833334112604

○

1

79/206

09883130 • 142604

(Presentation-type scanner)

FIG. 1V5

卷之三

?

FIG. 2A

40

81/206

FIG. 2B1

FIG 2B2

卷之三

83/206

DISSECTED EYESHEET

84/206

FIG. 2C2

85/206

FIG. 2D1

卷之三

卷之三

DISSETT SYSTEMS

(C)

(C)

DISSETT SYSTEMS

87/206

FIG. 2D3

88/206

09883136 - 1125650

FIG. 2E1

TO92774 DETE38860

Fig. 2E2

09032009-A12960

1)

2)

3)

90/206

FIG. 2E3

3/1/2006

FIG. 2F1

09883130 • 110521

FIG. 2F2

93/206

Fig. ZF3

94/206

1052571 0313388869

FIG. 2G

FIG. 2H

FIG. 21.

97/206

卷之三

019883130 - 112604

FIG 213

卷之三

一

三

三

99 / 206

FIG. 2T4

TO92777" DETERMINED

100/206

FIG. 215

101/200

09883130 * 112601

FIG. 216

102 / 206

FIG. 3A

103/206

FIG. 3B1

TOSETT - UTESSB60

F16, 3B2

000000000000000000000000

AG 3C1

)

FIG. 3C2

3ⁱⁱ

09883130 - 112601

FIG. 3D1

108/206

09883136 • 112604

FIG 3E1

FIGURE SEVEN

FIG. 3E2

09883136-11250

110/206

FIG. 3E3

III/206

112/206

0051833130-A112560

FIG. 3E5

113 / 206

09883430 * 112601

FIG. 3E6

09893130 112504

FIG. 3E7

115/206

variable FOV

FIG. 3E8

116/200

FIG. 3F1

三九三三五三三一

117/206

卷之三

118/206

FIG. 3E3

119/206

FIG. 3G1

09883136 • 112501

FIGURE 14758860

Fig. 362

FIGURE 3Q3

FIG. 3Q3

121/200

122 / 206

098811-33143860

0 FIG. 3H

1092TT-1078860

卷之三

124 / 206

FIG. 3J

FIG 3J2

605211-111660

FIG. 3J3

127/206

FIG. 354

3" →

TUGGETT - DECEMBER 60

OC

FIG. 375

129 / 206

038833130 - 038833131

FIG-3J6

TOGETHER DETERMINED

FIG 4A

FIG. 4B1

103277-078860

FIG. 4B2

FIG. 4B3

134/206

FIG: 461

09883430-112601

0333130 - 五三七六四五

136/206

09983133 - 412501

FIG. 4D

TO 93211-0000000

05923430 00002503

11

5

३८

09883130-112661

FIG 5B1

卷之三

FIG. 5B3

142/206

F/G. 5B4

143/206

FIG. 5C1

TO92TT-DTE8860

FIG. 5C2

03833
11260

FIG. 5C4

147/206

09883136 • 412601

FIG. 5D

卷之三

1

5

2

FIG. 6B1

09883136 • 412604

TOSETTI - DETERMINATION

FIG. 6B2

TO92TT "DETESS60

TOGETHER DETERMINED

C

C

1

152 / 206

1

FIG. 6B4

153/206

FIG. 6C1

YOSSETT DETERMINO

TOEPLITZ DETERMINANT

FIG. 6C3

FIG. 6C4

09883130 - 112601

195211-023660

157 / 206

FIG. 6C5

002883130-A12501

FIG. 6D1

FIG. 6D2

160 / 206

09883100 - 00000000

FIG. 6D3

161 / 206

099823130 - 112611

FIG. 6D4

162 / 200

FIG. 6 D5

163 / 206

FIG 6E1

卷之三

四

१०

卷之三

165 / 206

Fig. 663

-- FIG. 6E4

09883130-112601

FIG. 7A

FIG. 7B

160/206

FIG. 8A

FIG. 8B

TOGETHER DETERMINED

1-D CCD SCANNER EMBODIMENT

FIG. 9

TODAY'S DETECTION

F/G, 10

120

SYSTEM DESIGN

Fig. 11

172/206

FIG. 12A

09883130 • 112601

193/206

059833130 • 11126011

FIG. 12B

174 / 206

09883130 * 112501

FIG. 12C

FIG. 12D

(main optics)
(lens groups)

FIG. 12E

197 / 200

FIG. 13A

009883130 * 012601

178 / 204

FIG. 13B

FIG. 13C

PLLIM-BASED PACKAGE IDENTIFICATION AND
DIMENSIONING (PID) SYSTEM

FIG. 14

LDIP REAL-TIME PACKAGE HEIGHT PROFILE AND EDGE DETECTION METHOD

OBSTACLES
WALLS
CEILINGS
FLOOR

Fig. 15

LDIP Real Time Package Edge Detection

X_a = location of belt left edge; X_b = location of belt right edge
 i_a = belt edge edge pixel; i_b = belt right edge pixel
 LPE = Left package edge; RPE = Right package edge
 $H[]$ = Pixel height array; $X[]$ = Pixel location array
 win = package detection window

FIG. 16

182 / 206

Fig. 17

103 /

INFORMATION MEASURED AT SCAN ANGLES BEFORE
COORDINATE TRANSFORMS

Fig. 17A

RANGE AND POLAR ANGLE MEASURES TAKEN AT SCAN
ANGLE α BEFORE COORDINATE TRANSFORMS

Fig. 17B

MEASURED PACKAGE HEIGHT AND POSITION VALUES
AFTER COORDINATE TRANSFORMS

Fig. 17C

CAMERA CONTROL PROCESS CARRIED OUT WITHIN THE
CAMERA CONTROL SUBSYSTEM OF EACH OBJECT ATTRIBUTE ACQUISITION
AND ANALYSIS SYSTEM

560

Fig. 18A

FIG. 18B

FIG. 18B

DETECTOR = 00000000

186 / 200

x coordinate subrange where maximum range "intensity" variations have been detected

Left Package Edge (LDE)	Right Package Edge (RPE)	Package Velocity	Time-stamp (nT)
			Row 1
			Row 2
			Row 3
			Row 4
			Row 5
			Row M

Package Data Buffer (FIFO)

Fig. 19

Camera Pixel Data Buffer
pixel indices (i, j)

Fig. 20

PROJECT - DEVERSE

Zoom and focus lens group position
lens-focusing Table

Distance from Camera H (mm)	Zoom group distance (mm) Y (Zoom)	Focus group distance (mm) Y (Focus)
1000	21.5748228	2.47E-05
1100	19.3908956	10.900079783
1200	17.1067434	20.65763177
1300	14.77137314	28.10917002
1400	12.3915365	36.47312595
1500	9.979114358	42.67645436
1600	7.540639114	48.44003358
1700	5.076794775	53.25495831
1800	2.565089366	57.40084303
1900	0.099572739	60.98883616
		(use interpolation technique for working distances between listed points in Table)

Fig. 21

187 / 206

卷之三

Note: On final listening & Exam (After final class) -
canada has a
canadian accent.
canada has a
canadian accent.

Focus \oplus Zoom lens movement vs. working distances

109 / 206

FIG. 23
Photo-interpretation
from which the
earlier square image pixels
are assigned ratios

FIGURE FORTY-EIGHT

)

FIG 24

Fig. 25

TO 9277-1155550

FIG. 26

140

19.4 / 200

FIG. 29

TESTING DETERMINED

TARGET DETERMINATION

Package coordinates over $\parallel_{R_{global}}$ $\xrightarrow{H_G}$ Package coordinates over $\parallel_{R_{local}}$

FIG. 31

197 / 206

TOSEND - DETER860

FIG. 32A

FIG. 32B

09883130-112601

199 / 200

FIGURE 331 DELETED

FIG. 33C

201/206

09883130 • 112601

FIG. 34A

FIG. 34B

TRAILER" DETERMINED

FIG. 34C

203/206

098833130 - 11126014

卷之三

204 / 206

205 / 206

卷之三

FIG. 37

206 / 206

FIG. 38A

FIG. 38B