Math 425: Abstract Algebra 1

Section 1.2: Divisors and Prime Factorization

Mckenzie West

Last Updated: September 12, 2022

Last Time.

- Induction

Today.

- Division Algorithm
- GCD
- Bézout's Identity
- Euclidean Algorithm
- Prime Factorization Theorem

The Division Algorithm (Thm 1.2.1).

Let $n\in\mathbb{Z}$ and $d\geq 1$ be an integer. Then there exists uniquely determined $q,r\in\mathbb{Z}$ such that

$$n = qd + r$$
 and $0 \le r < d$.

Note.

I prove this in the video for today.

Definition.

For $a, b, d \in \mathbb{Z}$:

 We write a | b to mean a divides b, which is defined formally as

$$a \mid b \Leftrightarrow b = ak$$
 for some $k \in \mathbb{Z}$.

- We say d is a common divisor of a and b if d | a and d | b.
- The greatest common divisor of a and b is the largest integer that is a common divisor of a and b. Denote this value by gcd(a, b).

Bézout's Identity (Thm 1.2.2).

Let a and b be integers, not both zero. Then there exist $r, s \in \mathbb{Z}$ such that gcd(a, b) = ra + sb.

Idea.

Run the Euclidean algorithm in reverse. - See the next slides.

Exercise 1.

The Euclidean Algorithm (via an example) Compute gcd(36,60):

$$GO = \begin{bmatrix} -36 + \end{bmatrix}$$
 by the division aborithm
$$36 = \begin{bmatrix} -1 & + \end{bmatrix}$$

Stop when the remainder is zero. The previous remainder is the gcd.

Exercise 2.

Now we know that gcd(36,60) = 12 and we want to write

$$12 = 36r + 60s$$
.

Start with the second to last row of the Euclidean Algorithm:

$$12 = 36 - 1 \cdot 24$$
.

Use the line above that to replace 24:

$$12 = 36 - 1 \cdot ($$
_____).

Simplify

$$12 = 36 \cdot (\underline{\hspace{1cm}}) + 60 \cdot (\underline{\hspace{1cm}}).$$

Definition.

We say that $m, n \in \mathbb{Z}$ are relatively prime if gcd(m, n) = 1.

Theorem 1.2.4.

Let $m, n \in \mathbb{Z}$ not both zero. Then

m,n relatively prime $\Leftrightarrow \exists r,s \in \mathbb{Z}$ such that 1=rm+sn

Theorem 1.2.4.

Let $m, n \in Z$ not both zero. Then

m, n relatively prime $\Leftrightarrow \exists r, s \in \mathbb{Z}$ such that 1 = rm + sn

Proof idea.

- (⇒) Bézout
- (\Leftarrow) Assume 1 = rm + sn for some $r, s \in \mathbb{Z}$. Let c be a common divisor of m and n.

$$\Rightarrow c \mid (rm + sn)$$
 why

$$\Rightarrow c \mid 1$$
 why

$$\Rightarrow \gcd(m,n) = 1$$
 why

Brain Break.

Which superpower would you like to have?

- 1. Mind reading
- 2. Invisibility
- **3.** Teleportation
- 4. Flying
- 5. _____
- 6. I already have a superpower

Euclid's Lemma.

Let p be a prime number.

- **1.** If $p \mid mn$ where $m, n \in \mathbb{Z}$, then $p \mid m$ or $p \mid n$.
- **2.** If $p \mid m_1 m_2 \cdots m_r$ where $m_i \in \mathbb{Z}$ for all i, then $p \mid m_i \exists i$.

Note.

Proof is in the book. I'll write some examples quick. Think of your own too.

Prime Factorization Theorem (Theorem 1.2.7).

- **1.** Every integer $n \ge 2$ is a product of (one or more) primes.
- **2.** This factorization is unique (up to order of the factors). That is, if

$$n = p_1 p_2 \cdots p_r$$
 and $n = q_1 q_2 \cdots q_2$,

then r = s and the q_j can be relabeled so that $p_i = q_i$ for i = 1, 2, ..., r.

Note.

I'll walk through the proof of (2) - we'll see similar proofs later in the semester when we talk about UFDs (Unique Factorization Domains).

"Proof" (1).

Strong induction. (See page 26 Example 7.)

Proof (2)

Assume toward contradiction that (2) fails. Then by $\lfloor WOP \rfloor$ there is a smallest integer m such that

$$m = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$$

are two distinct prime factorizations of m.

Thus m is not prime. why? So $r, s \ge 2$.

Notice that

$$\overline{\mathsf{why?}}$$
 $p_1 \mid q_1 q_2 \cdots q_s \text{ so } p_1 \mid q_j \text{ for some } 1 \leq j \leq s.$

Proof (2) Continued.

By relabeling we can assume $p_1 \mid q_1$. Observe that $p_1 = q_1$. why? Since

$$m = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$$
 and $p_1 = q_1$,

we see that

$$\frac{m}{p_1}=p_2p_3\cdots p_r=q_2q_3\cdots q_s$$

are two distinct factorizations of the integer $\frac{m}{p_1}$.

This is a contradiction. why?

Corollary.

Two integers are relatively prime if there exists no prime that divides them both.

Corollary.

Every $n \in \mathbb{Z}_{\geq 2}$ can be written uniquely as

$$n=p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$$

where the p_i are distinct primes and $n_i \ge 1$ for all i.

Theorem 1.2.8.

Let $n \ge 2$ be an integer with prime factorization

$$n=p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r},$$

where the p_i are all distinct primes and $n_i \ge 1$ for all i. Then

$$d \mid n \Rightarrow d = p_1^{d_1} p_2^{d_2} \cdots p_r^{d_r}$$
 where $0 \le d_i \le n_i \ \forall i$.

Exercise 3.

- (a) Write 60 as $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$
- (b) Use Theorem 1.2.8 to find all divisors of 60.

Question 4.

How many divisors does $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$ have?

Theorem 1.2.9.

Let $\{a, b, c, \dots\}$ be a finite set of positive integers and write

$$a = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

$$b = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$$

$$c = p_1^{c_1} p_2^{c_2} \cdots p_r^{c_r}$$

where there is an exponent of zero if the prime is not a factor. Then

$$\gcd(a,b,c,\dots)=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r},$$

where $k_i = \min(a_i, b_i, c_i, ...)$ for each i, and

$$\operatorname{lcm}(a,b,c,\dots)=p_1^{m_1}p_2^{m_2}\cdots p_r^{m_r},$$

where $m_i = \max(a_i, b_i, c_i, ...)$ for each i.

Exercise 5.

$$28665 = 3^2 \cdot 5 \cdot 7 \cdot 13 \text{ and } 22869 = 3^3 \cdot 7 \cdot 11^2$$

Compute

- (a) gcd(28665, 22869)
- (b) lcm(28665, 22869)