Simulation Report 1

Jinxi Liu

November 8, 2017

Introduction

Suppose we have $z_i \sim N(0,1)$, i=1,2 under the null. Their correlation is ρ . We perform a one-sided test with rejection region $\Gamma = \{z \geq 1.645\}$.

We then estimate $FDR(\Gamma)$ by

$$F\hat{D}R(\Gamma) = \frac{\hat{\pi}_0 E[R^0(\Gamma)]}{R(\Gamma) \vee 1} \tag{1}$$

Empirical FDR vs Correlation

Figure 1: Empirical FDR vs. correlation when m=3

Variance of Empirical FDR vs Correlation

Figure 2: Variance Empirical FDR vs. correlation when m=3

Number of Rejections vs Correlation

Figure 3: Number of Rejections vs. correlation when m=3

Variance of Number of Rejections vs Correlation

Figure 4: Variance of Number of Rejections vs. correlation when m=3

Compare E(V/R) with E(v)/E(R)

Figure 5: E(v)/E(R) vs. correlation when m=3, $\mu_1=0.5$

Compare E(V/R) with E(v)/E(R)

Figure 6: E(v)/E(R) vs. correlation when m=3, $\mu_1=0.1$

Figure 7: Empirical FDR vs. Correlation when $\emph{m}=100$, $\mu_1=0.5$

Extend to m=100

Figure 8: E(v)/E(R) vs. Correlation when m=100, $\mu_1=0.5$

Figure 9: Empirical FDR vs. Correlation when m=100, $\mu_1=0.1$

Extend to m=100

Figure 10: E(v)/E(R) vs. Correlation when m=100, $\mu_1=0.1$