Computer Vision and VFSS Clinical sharing for continuous education, the for details ST Benjamin Chow Contract Sample Presentation. Data Science for Speech Therapy

Content

Data Science

- Recap
- Computer Vision
 - Image vs video
 - · Reading images
 - Reading videos (image task)
 - Reading videos (action task)
 - Learning images (CNN)

Clinical Application • Current practi

- Use cases
 - 1. hyoid bone detection
 - 2. pharyngeal phase
 - 3. PAS
 - 4. abnormal swallow
 - Strategies to use CV

Computer Vision

- cet details cet me for details - Data types: more than just spreadsheet
- Visual Data Source
 - Images
 - Videos/ gifs

3

Image vs Videos

Sample Presentation. Contact me for Video Spatial information (where?) Temporal information (when?) Yes

Image Video Spatial information (where?) Yes Common Tasks Image tasks Image Classification Image Detection Image Generation Temporal information (when?) N.A. Ves Unique Tasks Nil Action tasks Action recognition

5

Importing Videos for image tasks Video Image Temporal information (when?) N.A. Unique Tasks Spatial information (where?) Yes Image tasks **Image Classification Image Detection Image Generation** Yes Action tasks · Action recognition

7

- Multiple image frames in sequence.
 Extract images frames from videos at fixed time intervals.

Importing Videos for ACTION tasks Video Image Yes Image tasks Image Classification Image Detection Image Generation Yes **Action tasks** Action recognition

9

The image goes through multiple layers of mathematic transformation.

At each layer, the model learns new features of the image.

13

Ethical Al

• How does CNN learn? What is CNN learning?

Sample Presentation.

- Output of a layer is not a single image
- Volume of images representing all the different slices in that layer.

Feature visualization

- Generate a image of what a specific slice in a specific layer is detecting.
- Creating "semantic dictionary"

Current clinical practice

 Subjectivity (e.g. extend of hyoio displacement)
 Time consuming Sample Presentation.

Current research practice

- Reduced inter and intra-rater reliability

 Some research in using

 Still need. • Still need to annotate inputs on a calibration frame.
- Lack of scalability to operationalize for front end clinical use.

19

How modern CV/CNN can help

- Automaticity
- Better accuracy
- Scalability

Sample Presentation. Contact me for details

Automatic hyoid bone detection in fluoroscopic images Contact me for details using deep learning (2018)

- 265 patients
- 1434 swallows

• 48,000 image frames. (70% train: 30%test)

21

Potential application

- automatic segmentation of hyoid bone areas
 determine hyoid displacement
- Is reduced airway protection or reduced UES 2' hyo-laryngeal excursion?

Sample Presentation.

ML findings

- Radiation dosage
 Model's ability to detect small objects. Vs computational time
- Unexpected detections

Colour boxes are detected hyoid bones
 Sample Presented.

27

Automatic Detection of the Pharyngeal Phase in VFSS Using Efficient Data Collection and 3D Convolutional Networks identifies +1-(2019)

- Pharyngeal phase <1s
- without the need for spatial or temporal annotations.

29

3 stage process Data collection: Generate pharyngeal Videofluoroscopic Calculate 1,674 positive and phase candidates images (raw, RGB) optical flow 1,680 negative short clips of pharyngeal Phase classification: Sample Prese train 3D convolutional network with short Phase detection: Extract pharyngeal apply a sliding window Classification technique on the scores at all phases classification results from frames (Algorithm 2) 3D convolutional network

Phase 1

- Models used can be computational taxing ails
- Screen VFSS video for pharyngeal frames
- Optical flow to detect vertical placement of pixels

31

- Detection Score (F1)
 - 45.73 to 84.25%
- Detection Time Error
 - 1.42s to 3.82s

Jr. Contact me for details

Sample Presentation.

35

Others

- Deep learning based application for videoff woroscopic swallowing
 study (VESS): A pilot study (2010) study (VFSS): A pilot study (2019)
 PAS
 A deep learning approach to VFSS exam classification (2020)

Abnormal swallow

The future of radiology augmented with Artificial Intelligence: A strategy for success (2018)

- Current state and the need for a strategy
 General use cases note 2. General use cases, potential impact and implementation strategy
- 3. Impact upon cost leadership, differentiation and focus
- 4. Defining roles, technical considerations and requirements for implementation (5)
- 5. Organizational aspects of implementation
- 6. Special considerations, job displacement and risk mitigation
- 7. Safety, privacy, moral and ethical concerns