Folgerung - Folgerbarkeit

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [1]

Definition: Folgerung

Definition 5.1

- Eine Formel G folgt genau dann (logisch) aus einer Formelmenge M, falls für jede Belegung \mathcal{A} gilt:
 - Wenn \mathcal{A} ein Modell für **M** ist, dann ist \mathcal{A} auch ein Modell für **G**.
- Weitere Sprechweisen / Schreibweisen für "G folgt aus M"
 - G ist folgerbar aus M
 - G ist eine Folgerung der Formeln aus M
 - $M \models G$
 - Statt $\{F\} \models G$ wird $F \models G$ geschrieben. "G folgt aus der Formel F."
- → WICHTIG: ⊨ ist kein Junktor, sondern eine Relation zwischen Formelmengen und Formeln.

Beispiel: Folgerung

 $(A \wedge B) \models (A \vee B)$

	Α	В	(A ∧ B)	(A ∨ B)
\mathcal{A}_1	0	0	0	0
\mathcal{A}_2	0	1	0	1
\mathcal{A}_3	1	0	0	1
\mathcal{A}_4	1	1	1	1

Alle Belegungen, die Modell von $(A \land B)$ sind, sind Modell von $(A \lor B)$

 $\{(A \vee B), \neg B\} \models A$

	Α	В	¬В	(A ∨ B)
\mathcal{A}_1	0	0	1	0
\mathcal{A}_2	0	1	0	1
\mathcal{A}_3	1	0	1	1
\mathcal{A}_4	1	1	0	1

Alle Belegungen, die Modell von (A V B) und von ¬B sind, sind Modell von A

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [3]

Belegungen und Folgerung

Das sprachliche Inventar einer Daten-/Wissensbasis (DB/WB)

- HP7 e ≈ Harry Potter 7 ist auf englisch erschienen.
- HP7_d ≈ Harry Potter 7 ist auf deutsch erschienen.

DB/WB

• WB₃ = { HP7_d ⇒ HP7_e, HP7_d }

Belegungen über dem Inventar { HP7_e, HP7_d }

	HP7_e	HP7_d	HP7_d ⇒ HP7_e
\mathcal{A}_1	0	0	1
\mathcal{A}_2	1	0	1
\mathcal{A}_3	0	1	0
\mathcal{A}_4	1	1	1

 \mathcal{A}_4 ist ein Modell für HP7_e, d.h. alle Modelle von **WB3** sind auch Modelle von HP7_e.

→ WB₃ ⊨ HP7_e

Folgerung: indirekte Kodierung von Fakten

Modellierung mit logischen Formeln

- Sammeln von Fakten, die (in dem zu modellierendem Weltausschnitt) wahr sind.
 - Darunter können sein
 - ⇒ atomare Aussagen ("Harry Potter 7 ist auf deutsch erschienen.")
 - ⇒ komplexe Aussagen ("Wenn Harry Potter 7 auf deutsch erschienen ist, dann ist Harry Potter 7 (auch schon) auf englisch erschienen.")
 - ⇒ Tautologien (die sind aber wenig nützlich)
 - ⇒ keine Kontradiktionen
- Bestimmung eines Übersetzungsschlüssels
- Kodierung der Fakten mit dem Übersetzungsschlüssel (direkte Kodierung).

$$\Rightarrow$$
 { HP7_d, HP7_d \Rightarrow HP7_e }

- Die Faktenmenge
 - ist erfüllbar (es gibt ein Modell, das dem modellierten Weltausschnitt entspricht).
 - beschreibt den modellierten Weltausschnitt in der Regel unvollständig.
 - kodiert indirekt weitere Aussagen, die in allen Modellen der Faktenbasis wahr sind, und damit auch im modellierten Weltausschnitt (HP7 e, (HP7 e ∧ HP7 d)).
- → Folgerungen sind indirekt kodierte Aussagen.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik–Folgerung [5]

Das Symbol ⊨

hat verschiedene Verwendungen

$\mathcal{A} \vDash F$	\mathcal{A} ist Modell für F .	
⊨F	F ist allgemeingültig.	Alle Belegungen sind Modelle für F.
$\mathbf{M} \models F$	F folgt aus M.	Alle Modelle von M sind Modelle von F .
G⊨F	F folgt aus G.	Alle Modelle von G sind Modelle von F.

- Woran können Sie jeweils erkennen, welche Verwendung Sie vor sich haben?
- Überlegen Sie, welche Motive die Logiker gehabt haben könnten, gerade für diese Bedingungen das einheitliche Symbol ⊨ einzusetzen.

Anderenorts findet man auch noch folgende Verwendungen

		8 8
M ⊨	M ist unerfüllbar.	Es gibt keine Modelle für M.
G ⊨	G ist unerfüllbar.	Es gibt keine Modelle für G.

• Erkennen Sie auch die Motivation für diese Verwendung?

Folgerbarkeit - Allgemeingültigkeit

Satz 5.2: Folgerbarkeit von allgemeingültigen Formeln

Jede allgemeingültige Formel F ist aus jeder Formelmenge M folgerbar.

 $\models \mathsf{F}$ dann auch $\mathsf{M} \models \mathsf{F}$

Vor.: Def. 3.3, 3.5, 5.1

Bew.: Ist F eine Tautologie, dann macht jede Belegung F wahr, also auch die Modelle von M. D.h. F folgt aus M.

Satz 5.3: Folgerbarkeit aus allgemeingültigen Formeln

Wenn F aus einer Menge von Tautologien M folgt, dann ist F eine Tautologie.

Vor.: Def. 3.1, 3.3, 3.5, 5.1

Bew.: Es sei **M** eine Menge von Tautologien und **F** folge aus **M**.

Es sei \mathcal{A} eine beliebige Belegung.

Da alle Elemente von \mathbf{M} allgemeingültig sind, ist \mathcal{A} ein Modell von \mathbf{M} .

Da F aus M folgt, ist \mathcal{A} auch ein Modell von F .

Damit zeigt sich, dass jede Belegung ein Modell von F ist.

→ Wenn Folgerungen bestimmbar sind, dann brauchen wir Tautologien nicht in die Beschreibung eines Weltausschnittes aufzunehmen.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik–Folgerung [7]

Folgerbarkeit – Allgemeingültigkeit

Satz 5.4: Folgerbarkeit aus der leeren Menge

Wenn F aus der leeren Menge folgt, dann ist F eine Tautologie.

Vor.: Def. 3.1, 3.3, 3.5, 5.1

Bew.: Es sei F eine Formel, die aus der leeren Menge folgt.

Es sei \mathcal{A} eine beliebige Belegung.

 \mathcal{A} ist Modell der leeren Menge (kein Gegenbeispiel, nützliche Konvention).

Da F aus der leeren Menge folgt, ist A auch ein Modell von F.

Da die Wahl von \mathcal{A} beliebig war, ist F eine Tautologie.

- Satz 5.4 zeigt, dass es für die Prüfung von Allgemeingültigkeit ausreichend ist, ein Verfahren zu haben, mit dem man Folgerung von Formeln aus Formelmengen prüfen kann.
- Nach den oben vorgestellten Ergebnissen kann man dann entsprechend Unerfüllbarkeit einer Formel und Äquivalenz prüfen.
- Die Umkehrung ist nicht immer so einfach.

Zum Selbststudium: Folgerbarkeit - Unerfüllbarkeit

Satz 5.5: Folgerbarkeit aus unerfüllbaren Formelmengen

Aus jeder unerfüllbaren Formelmenge **M** ist jede beliebige Formel **F** folgerbar.

Vor.: Def. 3.1, 3.3, 3.4, 5.1

Bew.: Es sei M eine unerfüllbare Formelmenge und F eine Formel.

Keine Belegung ist Modell für M.

Also macht jede Belegung, die Modell für **M** ist, **F** wahr.

(Es ist kein Gegenbeispiel konstruierbar.)

Das heißt, dass F aus M folgt.

Satz 5.6: Folgerbarkeit von Kontradiktionen

Folgt eine Kontradiktion F aus einer Formelmenge M, dann ist M unerfüllbar.

Vor.: Def. 3.1, 3.3, 3.4, 5.1

Bew.: Es sei F eine Kontradiktion, die aus der Formelmenge M folgt.

Es sei \mathcal{A} eine beliebige Belegung.

Da F unerfüllbar ist macht \mathcal{A} F falsch

Da F aus M folgt, kann A kein Modell von M sein.

Also hat **M** kein Modell und ist unerfüllbar.

→ Folgerbarkeit ist besonders interessant für kontingente Formeln, d.h. sie ist eine *logisch* interessante Beziehung zwischen *epistemisch* interessanten Aussagen.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [9]

Logische Äquivalenz und Folgerung

```
Satz 5.7: F \equiv G GDW. F \models G und G \models F.
```

Vor.: Def. 3.1, 3.3, 4.1, 5.1

Bew.: $F \equiv G$

GDW. für jede Belegung \mathcal{A} gilt: $\mathcal{A}(\mathsf{F}) = \mathcal{A}(\mathsf{G})$

GDW. jedes Modell für F, auch Modell für G ist,

und jedes Modell für G auch Modell für F ist,

GDW. $F \models G$ und $G \models F$

 $\{A \mid A \text{ ist eine Belegung}\}\$

 $\{A \mid A \text{ ist Modell für } G\} = \{A \mid A \text{ ist Modell für } F\}$

Noch ein wichtiger Zusammenhang

Wenn F₁ und F₂ äquivalent sind, sowie G₁ und G₂ äquivalent sind, dann folgt G₁ genau dann aus F₁, wenn G₂ aus F₂ folgt.

```
(Wenn F_1 \equiv F_2 und G_1 \equiv G_2, dann F_1 \models G_1 GDW. F_2 \models G_2)
```

Folgerung und Implikation

Das Folgerungssymbol ⊨ ist kein Junktor, aber dennoch eng mit der Implikation verwandt.

Satz 5.8: ($F \Rightarrow G$) ist all gemeing GDW. G and F folgt. $(\models (F \Rightarrow G) \text{ GDW}. F \models G).$ Vor.: Def. 3.1, 3.3, 3.5, 5.1 $(F \Rightarrow G)$ ist allgemeingültig, d.h. $\models (F \Rightarrow G)$ Bew.: GDW. alle Belegungen \mathcal{A} Modelle von ($\mathsf{F} \Rightarrow \mathsf{G}$) sind, [Def. 3.5] d.h. $\mathcal{A}((F \Rightarrow G)) = 1$ [Def. 3.3] GDW. Für alle Belegungen \mathcal{A} gilt: $\mathcal{A}(F) = \mathbf{0}$ oder $\mathcal{A}(G) = \mathbf{1}$ [Def. 3.1] GDW. Für alle Belegungen \mathcal{A} gilt: Wenn \mathcal{A} Modell für F ist, dann ist \mathcal{A} auch Modell für G (d.h. Wenn $\mathcal{A}(F) = 1$, dann $\mathcal{A}(G) = 1$) [Def. 3.3] GDW. G folgt aus F, d.h. $F \models G$ [Def. 5.1]

• Satz 5.8 reduziert die Frage der Folgerung zwischen Formeln auf die Frage der Allgemeingültigkeit.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [11]

Zum Selbststudium: Folgerung und Implikation

Dieser Satz ist eine Verallgemeinerung des vorherigen.

```
Satz 5.8x: G folgt aus M \cup \{F\} GDW. (F \Rightarrow G) aus M folgt. (M \cup \{F\} \models G \text{ GDW}. M \models (F \Rightarrow G)).
```

Vor.: Def. 3.1, 3.3, 5.1

Bew.: Es sei M eine Formelmenge und F und G Formeln. $(F \Rightarrow G)$ folgt aus M, d.h. $M \models (F \Rightarrow G)$ GDW. alle Belegungen \mathcal{A} , die Modelle von M sind, Modelle von $(F \Rightarrow G)$ sind, [Def. 5.1] GDW. für alle Modelle \mathcal{A} von M gilt: $\mathcal{A}(F) = \mathbf{0}$ oder $\mathcal{A}(G) = \mathbf{1}$ [Def. 3.1, 3.3] GDW. alle Belegungen \mathcal{A} , die Modelle von $\mathbf{M} \cup \{F\}$ sind, Modelle für G sind [Def. 3.3] GDW. G folgt aus $\mathbf{M} \cup \{F\}$, d.h. $\mathbf{M} \cup \{F\} \models G$ [Def. 5.1]

Folgerung und Unerfüllbarkeit

Satz 5.9: $F \models G$ GDW. $(F \land \neg G)$ unerfüllbar ist. Vor.: Def. 3.1, 3.3, 3.4, 5.1 **Bew.1:** $F \models G GDW. \models (F \Rightarrow G)$ [Satz 5.8] GDW. $\neg (F \Rightarrow G)$ unerfüllbar ist [Satz 3.1] GDW. $\neg(\neg F \lor G)$ unerfüllbar ist [Satz 4.7 Elimination \Rightarrow , Ersetzungstheorem] GDW. $(\neg \neg F \land \neg G)$ unerfüllbar ist [Satz 4.7 de Morgan] GDW. ($F \land \neg G$) unerfüllbar ist [Satz 4.7 doppelte Negation, Ersetzungstheorem] **Bew.2:** $F \models G$ GDW. Alle Modelle \mathcal{A} von F auch Modelle von G sind (Wenn $\mathcal{A}(F) = 1$, dann $\mathcal{A}(G) = 1$) [Def. 5.1] GDW. Alle Modelle \mathcal{A} von F keine Modelle von $\mathsf{\neg G}$ sind (Wenn $\mathcal{A}(\mathsf{F}) = \mathbf{1}$, dann $\mathcal{A}(\neg \mathsf{G}) = \mathbf{0}$) [Def. 3.1, 3.3] GDW. Alle Belegungen $\mathcal{A}(\mathsf{F} \land \neg \mathsf{G})$ falsch machen $(\mathcal{A}((\mathsf{F} \land \neg \mathsf{G})) = \mathbf{0})[\mathsf{Def}. 3.1]$ GDW. (F ∧ ¬G) unerfüllbar ist [Def. 3.4]

Satz 5.10: $M \models G \text{ GDW}. M \cup \{\neg G\} \text{ unerfullbar ist.}$

Bew.: Ganz entsprechend.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [13]

Allgemeingültigkeit, Erfüllbarkeit, Unerfüllbarkeit, Äquivalenz, Folgerbarkeit

Prüfung auf Allgemeingültigkeit, Erfüllbarkeit, Unerfüllbarkeit

- Für eine Formel F mit n Aussagensymbolen kann eine komplette Wahrheitstafel mit 2ⁿ unterschiedlichen Belegungen berechnet werden.
 - F ist *erfüllbar*, falls mindestens eine Belegung den Wahrheitswert 1 für F ergibt.
 - F ist allgemeingültig, falls alle Belegungen den Wahrheitswert 1 für F ergeben.
 - F ist *unerfüllbar*, falls keine Belegung den Wahrheitswert 1 für F ergibt.

Prüfung auf Äquivalenz und Folgerbarkeit

- Für eine Formel F und eine Formel G mit insgesamt n Aussagensymbolen kann eine komplette Wahrheitstafel mit 2ⁿ unterschiedlichen Belegungen berechnet werden.
 - F und G sind äquivalent, falls F und G denselben Wahrheitswertverlauf haben.
 - G folgt aus F, falls alle Belegungen, die für F den Wahrheitswert 1 liefern, auch für G den Wahrheitswert 1 ergeben.
- → algorithmische Verfahren durch Aufstellung der kompletten Wahrheitstafel erfordern exponentieller Aufwand: im ungünstigen Fall sehr aufwendig.

Formelmengen: Erfüllbarkeit, Unerfüllbarkeit, Folgerbarkeit

Formelmenge M

- **M** ist *erfüllbar*, falls mindestens eine Belegung den Wahrheitswert **1** für alle Elemente von **M** ergibt.
- M ist *unerfüllbar*, falls jede Belegung den Wahrheitswert 0 für mindestens ein Element von M ergibt.
- eine Formel F *folgt aus* M, falls alle Belegungen, die für die Formeln aus M den Wahrheitswert 1 liefern, auch für F den Wahrheitswert 1 ergeben.
- → Was ist los, wenn **M** unendlich viele Formeln (mit unendlich vielen Aussagensymbolen) enthält?
 - Zur Erinnerung: Die Menge der Aussagensymbole, $\mathcal{A}s_{AL}$, und die Menge der wohlgeformten Formeln, \mathcal{L}_{AL} , sind abzählbar.
- → Die Wahrheitstafelmethode ist dann nicht mehr anwendbar.
- → Unendliche Formelmengen zur Weltbeschreibung können mit endlichen Mitteln erzeugt werden. (→ Prädikatenlogik)

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [15]

Folgerung aus Formelmengen – Folgerung aus Konjunktionen

Zur Erinnerung: Es sei M eine Formelmenge und G eine Formel.
 M ⊨ G GDW. jedes Modell von M auch Modell von G ist.

Satz 5.11: $\{F1, F2\} \cup M \models G \text{ GDW. } \{(F1 \land F2)\} \cup M \models G$

Vor.: Def. 3.1, 3.3, 5.1

Bew.: Entsprechend der Wahrheitstafel von ∧ sind die Modelle von (F1 ∧ F2) mit den Modellen von {F1, F2} identisch.
Damit gilt auch: die Modelle von {F1, F2} ∪ M und die Modelle von

 $\{(F1 \land F2)\} \cup \mathbf{M}$ sind dieselben.

Satz 5.12: $\{F1, F2\} \cup M$ ist unerfüllbar GDW. $\{(F1 \land F2)\} \cup M$ unerfüllbar ist.

Bew.: Analog zum vorherigen.

- → Die Bildung einer Formelmenge entspricht hier einer impliziten Konjunktion.
- → Formeln sind aber stets endlich, Formelmengen können unendlich sein.

Folgerung aus endlichen Formelmengen – Folgerung aus Formeln

Abkürzende Schreibweisen (vgl. 4-20)

Konjunktionen		Disjunktionen	
The second secon	$(((F_1\wedgeF_2)\wedge)\wedgeF_n)$		
3 (^ F _i)	$((F_1 \wedge F_2) \wedge F_3)$	3 (v F _i) i=1	$((F_1 \vee F_2) \vee F_3)$
2 (^ F _i)	(F ₁ ∧ F ₂)	2 (v F _i)	(F ₁ ∨ F ₂)
1 (^ F _i)	F ₁	1 (v F _i) i=1	F ₁

Satz 5.13:
$$\{F_1, F_2, ..., F_n\} \models G \text{ GDW. } (\bigwedge_{i=1}^n F_i) \models G$$

Bew.: Vollständige Induktion über n und Verwendung des Satzes 5.11.

WICHTIG: Dieser Satz ist nur auf endliche Formelmengen anwendbar!

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [17]

Formelmengen: Modelle, Erfüllbarkeit, Folgerung

Beobachtung 5.14

Es seien M und M' Formelmengen und $M \subseteq M'$.

- Alle Modelle von M' sind auch Modelle von M. (Def. 3.3)
- Wenn **M** unerfüllbar ist, dann ist auch **M**' unerfüllbar. (Def. 3.4)
- (Wenn M' erfüllbar ist, dann ist auch M erfüllbar.)
- Wenn eine Formel F aus M folgt, dann folgt F auch aus M' (Def. 5.1). (Monotonie der Folgerung.)
- → Die Umkehrungen müssen nicht gelten.

Beobachtung 5.15

Es sei M eine Formelmenge, G eine Formel, die aus M folgt ($M \models G$).

- Die Modelle von $M \cup \{G\}$ sind genau die Modelle von M. (Def. 3.3, 5.1)
- M ist genau dann unerfüllbar, wenn $M \cup \{G\}$ unerfüllbar ist. (Def. 3.4, 5.1)
- (M ist genau dann erfüllbar, wenn $M \cup \{G\}$ erfüllbar ist.)
- Eine Formel F folgt genau dann aus M, wenn F aus $M \cup \{G\}$ folgt. (Def. 5.1)
- → Die Umkehrungen gelten alle.
- → Die Ergänzung oder Reduktion um folgerbare Formeln verändert die semantischen Eigenschaften einer Formelmenge nicht.

Folgerung

Definition 5.16

Für jede (aussagenlogische) Formelmenge \mathbf{M} sei $\mathcal{F}ol(\mathbf{M})$ die Menge aller aus \mathbf{M} folgerbaren Formeln ($\mathcal{F}ol(\mathbf{M}) := \{ \mathsf{F} \in \mathcal{L}_{AL} \mid \mathbf{M} \models \mathsf{F} \}$).

 $\mathcal{T}aut_{AL}$ sei die Menge aller aussagenlogischen Tautologien ($\mathcal{T}aut_{AL} = \{ F \in \mathcal{L}_{AL} \mid F \}$).

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [19]

Eigenschaften der Folgerung

Beobachtungen 5.17

- Für zwei Formelmengen $\mathbf{M} \subseteq \mathbf{M}'$ gilt:
 - $\mathcal{F}ol(\mathbf{M}) \subseteq \mathcal{F}ol(\mathbf{M}')$
- $Taut_{AL} = Fol(\{\}) = Fol(Taut_{AL})$
 - Die Menge der Tautologien ist unter Folgerung abgeschlossen.
 - Die Menge der Tautologien ist die kleinste unter Folgerung abgeschlossene Formelmenge.
- Für jede Formelmenge M gilt:
 - $\mathbf{M} \subseteq \mathcal{F}ol(\mathbf{M})$
 - $Taut_{AL} \subseteq Fol(\mathbf{M})$
 - $\mathcal{F}ol(\mathbf{M}) = \mathcal{F}ol(\mathcal{F}ol(\mathbf{M}))$
 - $\mathcal{F}ol(\mathbf{M}) = \mathcal{F}ol(\mathbf{M} \cup \mathcal{T}aut_{AL})$
 - **M** ist genau dann unerfüllbar, wenn gilt: $\mathcal{F}ol(\mathbf{M}) = \mathcal{L}_{AL}$

Endlichkeitssatz

Satz 5.18 (Endlichkeitssatz, Kompaktheitstheorem):

Eine Formelmenge **M** ist genau dann erfüllbar, wenn jede endliche Teilmenge von **M** erfüllbar ist.

Bedeutung des Endlichkeitssatzes in der Informatik

- Aus Eigenschaften der endlichen Teilmengen kann auf eine unendliche Formelmenge geschlossen werden.
- → Wenn **M** unerfüllbar ist,

dann existiert auch eine endliche Teilmenge M* von M, die unerfüllbar ist.

- Von einer unendliche Gesamtmenge kann auf die Existenz einer spezifischen endlichen Teilmenge geschlossen werden.
- Der Endlichkeitssatz sagt, dass bei dem Übergang von endlichen zu unendlichen Formelmengen eigentlich nichts Neues passiert.
- → Wiedersprüche manifestieren sich im Endlichen.
- → Jeder Widerspruch hat eine endliche Basis.
- Bei Behandlung der Prädikatenlogik wird der Endlichkeitssatz eingesetzt.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [21]

Endlichkeitssatz – Beweisskizze

Beweis (5.18)

• Es sei **M** eine Formelmenge.

Teil 1: Wenn **M** erfüllbar ist, dann ist jede endliche Teilmenge von **M** erfüllbar.

• Ergibt sich aus Beobachtung 5.14

Teil 2: Wenn jede endliche Teilmenge von M erfüllbar ist, dann ist M erfüllbar.

Überblick über den Beweis

- Wir bilden eine Folge von Teilmengen M_i von M,
 so dass jede Formel aus M in unendlich vielen M_i vorkommt.
- Wir zeigen: Zu jedem M_i gibt es eine endliche Teilmenge M'_i, so dass M_i und M'_i genau dieselben Modelle haben.
- Damit finden wir eine Folge von Belegungen \mathcal{A}_i , die jeweils Modelle für die $\mathbf{M_i}$ sind, sich aber bei der Bewertung der Aussagensymbole widersprechen können.
- Wir bilden daraus eine neue Folge von Belegungen $\mathcal{A}_{\mathbf{i}}'$, die jeweils Modelle für die $\mathbf{M_i}$ sind, und bei der Bewertung der Aussagensymbole keine Unterschiede aufweisen.
- Wir definierten daraus eine Belegung \mathcal{A} und zeigen, dass \mathcal{A} ein Modell für **M** ist.

Zum Selbststudium: Endlichkeitssatz – Beweis (2)

Es sei M eine Formelmenge, so dass jede endliche Teilmenge von M erfüllbar ist.

- Es sei A₁, ... A_i, ... eine Folge aller Aussagensymbole. [Abzählbarkeit der Aussagensymbole, Def. 2.1]
- Für jedes $n \ge 1$ wird nun folgende Formelmenge $\mathbf{M_n}$ gebildet:

 $\mathbf{M_n} := \{ \mathsf{F} \in \mathsf{M} \mid \mathsf{F} \text{ enthält kein Aussagensymbol außer } \mathsf{A_1}, \dots \mathsf{A_n} \}$

- Jede Formel $F \in M$ kommt in unendlich vielen M_n vor.
- $\bullet \ \text{ Es gilt: } \mathbf{M}_1 \subseteq \mathbf{M}_2 \subseteq \ldots \subseteq \mathbf{M}_n \subseteq \ldots \subseteq \mathbf{M}$
- Zu $A_1, \dots A_n$ gibt es 2^n unterscheidbare Belegungen. Es gibt in $\mathbf{M_n}$ höchstens 2^{2^n} Formeln mit verschiedenen Wahrheitswertverläufen.
- Wir wählen eine Menge $M'_n \subseteq M_n$, so dass es für jede Formel $F \in M_n$ eine Formel $G \in M'_n$ mit $F \equiv G$ gibt und so dass keine zwei Formeln in M'_n äquivalent sind.
 - Jedes Modell für $\mathbf{M'}_{\mathbf{n}}$ ist ein Modell für $\mathbf{M}_{\mathbf{n}}$. (Def. 3.3)
 - M'_n hat höchstens 2^{2^n} Elemente (und ist endlich!).
- Nach Voraussetzung besitzt $\mathbf{M'}_{\mathbf{n}} \subseteq \mathbf{M}$ damit ein Modell, wir nennen es $\mathcal{A}_{\mathbf{n}}$.
 - \mathcal{A}_n ist auch ein Modell für $\mathbf{M_n}$ und für alle $\mathbf{M_i}$ mit i < n.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [23]

Zum Selbststudium: Endlichkeitssatz-Definition eines Modells (1)

- Wenn es nur endliche viele Aussagensymbole in M gibt –sagen wir $A_1, ..., A_m$ dann ist $M = M_m$ und wir sind mit $\mathcal{A} := \mathcal{A}_m$ als Modell von M fertig.
- ullet Wenn nicht, dann haben wir eine unendliche Folge \mathcal{A}_i von Modellen für die Mengen $\mathbf{M_i}$
 - ullet Die \mathcal{A}_i können einzelnen Aussagensymbolen verschiedene Wahrheitswerte zuordnen.
- Der nächste Schritt: Die Definition einer Folge von Modellen \mathcal{A}'_0 , \mathcal{A}'_1 , ..., \mathcal{A}'_n , ..., die in der Wahrheitswertzuordnung weitgehend übereinstimmen.
 - Die Entscheidung über die Zuordnung richtet sich nach der Mehrheit der Modelle.
 - Die Folge von Indexmengen $\mathbf{I_n}$ protokolliert, welche Belegungen der Folge \mathcal{A}_i für alle behandelten Aussagensymbolen mit der Mehrheit übereinstimmen.

$$\begin{split} \text{Stufe 0:} \qquad & \mathcal{A}'_0(A_i) = \textbf{1}, \text{ für alle i} \qquad \qquad & \textbf{I_0} := \{1,2,\ldots\} \\ \text{Stufe n > 0:} & \mathcal{A}'_n(A_k) = \mathcal{A}'_{n-1}(A_k), \text{ für k < n;} \\ & \mathcal{A}'_n(A_n) = \begin{cases} \textbf{1}, \text{ falls es unendlich viele Indizes i} \in \textbf{I_{n-1}} \text{ mit } \mathcal{A}_i(A_n) = \textbf{1} \text{ gibt} \\ \textbf{0}, \text{ sonst} \\ & \mathcal{A}'_n(A_i) = \textbf{1}, \text{ für i > n} \qquad \qquad & \textbf{I_n} := \{i \in \textbf{I_{n-1}} \mid \mathcal{A}_i(A_n) = \mathcal{A}'_n(A_n)\} \end{split}$$

- $\bullet \ \ \mathsf{Die} \ \mathcal{A}'_1, \mathcal{A}'_2, ..., \mathcal{A}'_n, ... \ \mathsf{sind} \ \mathsf{Modelle} \ \mathsf{für} \ M_1 \subseteq M_2 \subseteq ... \subseteq M_n \subseteq ... \subseteq M$
- Die I_n enthalten unendlich viele Elemente, insbesondere für jedes n noch Indizes i > n.

Zum Selbststudium: Endlichkeitssatz-Definition eines Modells (2)

• Der letzte Schritt: Definition eines Modells \mathcal{A} für \mathbf{M} aus der Folge \mathcal{A}_1^{\prime}

$$\mathcal{A}: \{A_1, ..., A_n, ...\} \rightarrow \{0, 1\}$$

 $\mathcal{A}(A_n) = \mathcal{A}'_n(A_n)$, für alle n

Behauptung: \mathcal{A} ist ein Modell für \mathbf{M} .

Wir müssen also zeigen, dass \mathcal{A} ein Modell für jede Formel F aus M ist.

- Sei F eine beliebige Formel aus M.
 - F kann nur endlich viele Aussagensymbole haben.
 Den größten Index eines Aussagensymbols von F nennen wir k.
 - $\begin{array}{l} \bullet \ \ \text{Dann ist } \mathsf{F} \in \mathsf{M}_k \subseteq \mathsf{M}_{k+1} \subseteq \dots \\ \\ \text{und } \mathcal{A}'_k, \, \mathcal{A}'_{k+1}, \dots \text{ sind Modelle für } \mathsf{M}_k \text{ und damit auch für } \mathsf{F}. \end{array}$
 - \bullet $\ \mathcal{A}$ stimmt mit \mathcal{A}'_k für alle Aussagensymbole $\mathsf{A_1},...,\mathsf{A_k}$ überein.

$$\mathcal{A}(A_1) = \mathcal{A}'_k(A_1), ..., \mathcal{A}(A_k) = \mathcal{A}'_k(A_k)$$

Damit ist \mathcal{A} auch ein Modell für F .

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [25]

Zum Selbststudium: Endlichkeitssatz: Anmerkungen

zur Definition eines Modells für M

- Der Beweis des Endlichkeitssatzes ist nicht konstruktiv.
- Die falls-Bedingung der Konstruktionsvorschrift ist nicht algorithmisch effektiv, denn es wäre eine unendliche Menge von Indizes zu prüfen, und auf der Basis dieser Prüfung eine Berechnung durchzuführen.
- Diese Berechnung kann gegebenenfalls selbst wieder eine nicht-endliche Anzahl von Berechnungsschritten beinhalten.
- → gedankliche Konstruktion
- → Existenzbeweis in mathematischer Tradition
- → nicht programmierbares Konstruktionsverfahren

Zum Selbststudium: Exkurs: Nicht-konstruktive Beweise

Theorem:

Es gibt Lösungen der Gleichung xy = z, mit z rational, und x und y irrational, d.h. $z \in \mathbb{Q}$ und x, $y \in \mathbb{R} \setminus \mathbb{Q}$.

Beweis:

 $\sqrt{2}$ ist irrational und $\sqrt{2^{\sqrt{2}}}$ ist rational oder irrational.

- Fall 1. $\sqrt{2^{1/2}}$ ist rational. Sei $x = \sqrt{2}$ und $y = \sqrt{2}$, dann ist $z = x^y = \sqrt{2^{1/2}}$ rational nach Voraussetzung (Fall 1).
- Fall 2. $\sqrt{2^{\sqrt{2}}}$ ist irrational. Sei $x = \sqrt{2^{\sqrt{2}}}$ und $y = \sqrt{2}$, dann ist $z = x^y = (\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}} = (\sqrt{2})^2 = 2 \in \mathbb{Q}$.

Beobachtungen / Anmerkungen

- 1. Der Beweis liefert die Existenz einer Lösung der Gleichung x^y = z (unter den geforderten Bedingungen), ohne dass eine Lösung angegeben (konstruiert) würde. Der Beweis zeigt, dass eine der beiden Lösungen die Bedingungen erfüllt, lässt aber offen, welche.
- Intuitionistische / Konstruktivistische Mathematik sieht konstruktive Beweisverfahren als notwendig an. [Zur Vertiefung (Master-Studiengang Informatik oder Mathematik): M. Dummett (1977). Elements of intuitionism. Oxford: Clarendon Press.]

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [27]

Eine Anwendung des Endlichkeitssatzes

Satz 5.19

• Es seien A₁, ..., A_n, ... verschiedene Aussagensymbole und

$$\begin{split} \mathbf{M} &:= \{\mathsf{A}_1 \,\vee\, \mathsf{A}_2, \, \neg \mathsf{A}_1 \,\vee\, \neg \mathsf{A}_2 \,\vee\, \neg \mathsf{A}_3, \, \mathsf{A}_2 \,\vee\, \mathsf{A}_3, \, \neg \mathsf{A}_2 \,\vee\, \neg \mathsf{A}_3 \,\vee\, \neg \mathsf{A}_4, \ldots \} \\ &= \{\mathsf{A}_i \,\vee\, \mathsf{A}_{i+1} \,|\, i \in \mathbb{N} \,\} \cup \{\neg \mathsf{A}_i \,\vee\, \neg \mathsf{A}_{i+1} \,\vee\, \neg \mathsf{A}_{i+2} \,|\, i \in \mathbb{N} \,\} \end{split}$$

Dann ist M erfüllbar.

Beweis

- Aufgrund des Endlichkeitssatzes reicht es zu zeigen, dass jede endliche Teilmenge von M erfüllbar ist.
- Der Beweis erfolgt über vollständige Induktion über den größten Index eines Aussagensymbols in der Teilmenge.
- Induktionsanfang: Ist der größte Index eines Aussagensymbols in M' ⊆ M kleiner als 3, dann ist M' erfüllbar, denn die leere Menge und {A₁ ∨ A₂}sind erfüllbar.
- *Induktionsannahme*: Alle Teilmengen von **M**, bei denen der größte Index eines Aussagensymbols < k ist, sind erfüllbar.

Induktionsschritt (5.19)

- *Induktionsschritt*: Sei **M'** eine endliche Teilmenge von **M**, so dass k der größte Index eines Aussagensymbols in **M'** ist.
 - Sei $M'' := \{F \in M' \mid A_k \text{ ist keine Teilformel von } F\}$
 - Gemäß Induktionsannahme hat M" hat ein Modell \mathcal{A} ".
 - Wir definieren die Belegung \mathcal{A}' wie folgt:

$$\begin{array}{ll} i < k-2 & \mathcal{A}'(A_j) = & \mathcal{A}''(A_j) \\ & \mathcal{A}'(A_{k-2}) = & \begin{cases} \mathcal{A}''(A_{k-2}), \text{ falls } A_{k-2} \text{ in } \mathbf{M}'' \text{ vorkommt} \\ \mathbf{0}, \text{ sonst} \end{cases} \\ & \mathcal{A}'(A_{k-1}) = & \begin{cases} \mathcal{A}''(A_{k-1}), \text{ falls } A_{k-1} \text{ in } \mathbf{M}'' \text{ vorkommt} \\ \mathbf{0}, \text{ sonst} \end{cases} \\ & \mathcal{A}'(A_k) = & \begin{cases} \mathbf{0}, \text{ falls } \mathcal{A}''(A_{k-1}) = \mathbf{1} \\ \mathbf{1}, \text{ sonst} \end{cases} \end{array}$$

i > k (dann kommt Ai nicht in M' vor) $\mathcal{A}'(A_i) = \mathbf{0}$

• Gemäß dieser Definition ist \mathcal{A}' ein Modell von \mathbf{M}'' und von $\{A_{k-1} \lor A_k, \neg A_{k-2} \lor \neg A_{k-1} \lor \neg A_k\}$. Damit ist \mathcal{A}' auch ein Modell von \mathbf{M}' .

Resümee: Also hat jede endliche Teilmenge von **M** ein Modell.

FGI-1 Habel / Eschenbach

Kap. 5 Aussagenlogik-Folgerung [29]

Wichtige Konzepte in diesem Foliensatz

- (logische) Folgerung: zwischen Formeln, zwischen Formelmengen und Formeln
- Beziehung von Folgerung zu Allgemeingültigkeit, Unerfüllbarkeit, Äquivalenz
- Endlichkeitssatz / Kompaktheit (Wiedersprüche manifestieren sich im Endlichen)