Théorème de sélection de Helly

Leçons: 203, 229, 241, 262

Théorème 1

 $Si(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions croissantes de \mathbb{R} dans [0,1], il existe une sous-suite de (f_n) convergeant simplement vers $f:\mathbb{R}\to[0,1]$.

- **Démonstration.** Par un procédé d'extraction diagonal on obtient le résultat préliminaire suivant : si $E \subset \mathbb{R}$ est un ensemble dénombrable et $(f_n)_n$ une suite de fonctions de E dans [0,1], alors il existe une sous-suite de (f_n) convergeant simplement vers $f:E \to [0,1]$. En particulier avec $E=\mathbb{Q}$, quitte à extraire une sous-suite, on peut supposer que (f_n) converge simplement vers $f:\mathbb{Q} \to [0,1]$ sur \mathbb{Q} . Comme les f_n sont croissantes, f l'est également.
 - Soit $x \in \mathbb{R}$. La fonction croissante f admet une limite à gauche l^- et à droite l^+ en x. Supposons que $l^- = l^+ = l$, montrons que $f_n(x) \to l$. Soit $\varepsilon > 0$, fixons $\eta > 0$ tel que

$$\forall t \in \mathbb{Q} \cap [x - \eta, x + \eta], |f(t) - l| \leq \varepsilon.$$

Soit $\alpha \in [x - \eta, x] \cap \mathbb{Q}$ et $\beta \in [x, x + \eta]$. On a $f_n(\alpha) \leq f_n(x) \leq f_n(\beta)$ et à partir d'un certain rang,

$$l-2\varepsilon \leq f(\alpha)-\varepsilon \leq f_n(\alpha) \leq f_n(x) \leq f_n(\beta) \leq f(\beta)+\varepsilon \leq l+2\varepsilon.$$

Donc $l-2\varepsilon \le f_n(x) \le l+2\varepsilon$ à partir d'un certain rang, de sorte que $(f_n(x))_n$ converge vers l.

• Montrons que l'ensemble D des points où la limite à gauche et à droite de f diffèrent est dénombrable. En effet, si $x \in D$, on peut fixer $q_x \in \mathbb{Q}$ tel que $l^-(x) < q_x < l^+(x)$. De plus, $x \mapsto q_x$ est injective car f est croissante, donc l^+ et l^- aussi. Ainsi, en utilisant à nouveau le résultat préliminaire avec E = D, on peut extraire une sous-suite de (f_n) convergeant simplement sur D. Comme (f_n) converge sur $\mathbb{R} \setminus D$, on a bien trouvé une sous-suite convergente sur \mathbb{R} .

Corollaire 2

Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de mesures de probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Si $(\mu_n)_n$ est tendue, c'est-à-dire

$$\forall \varepsilon > 0, \exists M_{\varepsilon} > 0, \limsup (1 - \mu_n([-M_{\varepsilon}, M_{\varepsilon}])) \leq \varepsilon,$$

alors il existe une sous-suite de (μ_n) convergeant étroitement vers une mesure de probabilité μ .

Démonstration. Notons $(F_n)_{n\in\mathbb{N}}$ la suite de leurs fonctions de répartitions. Alors selon le théorème de Helly, il existe une fonction croissante $F:\mathbb{R}\to [-1,1]$ telle qu'une sous-suite $(F_{n_k})_{k\in\mathbb{N}}$ de (F_n) converge simplement vers G sur \mathbb{R} . Introduisons $F=\inf\{G(q),q>x\}$.

- **1** *F* est croissante.
- **2** *F* est continue à droite en tout point :

Soit $(x_n)_n$ suite décroissante convergeant vers x. Alors comme F est croissante,

$$\lim_{x_n \to x} F(x_n) = \inf_{n \in \mathbb{N}} F(x_n) = \inf \{ G(q) \mid \exists n \in \mathbb{N} : q > x_n \} \stackrel{G \text{ croissante}}{=} \inf \{ G(q) \mid q > x \} = F(x).$$

3 $(F_{n_k})_k$ converge vers F en tout point de continuité x de F:

Soit $\varepsilon > 0$, soient $r_1 < r_2 < x < s$ tels que

$$F(x) - \varepsilon < F(r_1) \le F(r_2) \le F(x) \le F(s) \le F(x) + \varepsilon$$
.

On a
$$F_{n_k}(r_2) \xrightarrow[k \to +\infty]{} G(r_2) \geqslant F(r_1)$$
 et $F_{n_k}(s) \xrightarrow[k \to +\infty]{} G(s) \leqslant F(s)$ car G est croissante.

Donc si k est assez grand, $F_{n_k}(r_2) \ge F(r_1) - \varepsilon$ et $F_{n_k}(s) \le F(s) + \varepsilon$. Ainsi, par les inégalités précédentes et la croissance de F_{n_k} , $F(x) - 2\varepsilon \le F_{n_k}(x) \le F(x) + 2\varepsilon$ à partir d'un certain rang.

4 $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$:

Soit $\varepsilon>0$ et $r<-M_{\varepsilon},s>M_{\varepsilon}$ des points de continuité de F. Alors

$$1 - F(s) + F(r) = \lim_{k \to +\infty} 1 - F_{n_k}(s) + F_{n_k}(r) \leqslant \limsup_{n \to +\infty} 1 - F_n(M_{\varepsilon}) + F_n(-M_{\varepsilon}) \leqslant \varepsilon$$

car (μ_n) est tendue. En particulier, $0 \le \limsup_{x \to +\infty} 1 - F(x) + F(-x) \le \varepsilon$ donc, ceci valant pour tout $\varepsilon > 0$, $\lim_{x \to +\infty} 1 - F(x) + F(-x) = 0$, ce qui prouve le résultat.

Par le théorème des caractérisation des fonctions de répartition (points **1,2** et **4**), la fonction F est bien la fonction de répartition d'une mesure de probabilité μ . Selon le point **3**, il y a bien convergence étroite de (μ_n) vers μ .

- **Remarque.** Le théorème de caractérisation des fonctions de répartition se trouve dans DURRETT 2010, p. 104. La clef de la preuve est de poser, F étant une fonction croissante continue à droite de limites 0 en $-\infty$, 1 en $+\infty$, $X(\omega) = \sup\{y : F(y) < \omega\}$ et de montrer que X est une variable aléatoire sur $\Omega = [0,1]$ de fonction de répartition F.
 - La réciproque du corollaire est également vraie et se prouve de la même manière, par contraposée.
 - S'il existe $\varphi \ge 0$ telle que $\varphi(x) \to +\infty$ et $\sup_n \int |\varphi(x)| d\mu_n(x) < +\infty$, alors la suite (μ_n) est tendue.

Références:

- Serge Francinou, Hervé Gianella et Serge Nicolas (2009). *Exercices de mathématiques Oraux X-ENS : Analyse 2*. Cassini, p. 166
- Rick Durrett (2010). *Probability: Theory and Examples*. 4^e éd. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, pp. 103-104