Secondo Assignment di Compilatori

D'Alterio Dario Matricola 176689 Patrini Andrea Matricola 176907 Shaukat Arslan Matricola 176687

April 14, 2025

Contents

1	Very Busy Expression	2
	1.1 DFA Framework	2
	1.2 Iterazioni dell'Algoritmo Iterativo	2
2	Dominator Analysis	4
	2.1 DFA Framework	4
	2.2 Iterazioni dell'Algoritmo Iterativo	
3	Constant Propagation	6
	3.1 DFA Framework	(
	3.2 Iterazioni dell'Algoritmo Iterativo	6

1 Very Busy Expression

1.1 DFA Framework

- Un'espressione è **very busy** in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- Un'espressione a + b è very busy in un punto p se a + b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi

Domain	Sets of Expressions
Direction	Backward • $in[b] = f_b(out[b])$ • $out[b] = \land in[succ(b)]$
Transfer function	$f_b = Gen_b \cup (x \setminus Kill_b)$
Meet operation (\land)	(∩)
Boundary condition	$in[exit] = \emptyset$
Initial interior	$in[b] = \mathbb{U}$ per tutti i blocchi tranne EXIT

1.2 Iterazioni dell'Algoritmo Iterativo

	Iterazione 1		Iterazione 2	
Blocco	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$
BB2	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$
BB3	$\{a-b, b-a\}$	$\{a-b\}$	$\{a-b, b-a\}$	$\{a-b\}$
BB4	${a-b}$	Ø	${a-b}$	Ø
BB5	$\{b-a\}$	Ø	$\{b-a\}$	Ø
BB6	Ø	$\{a-b\}$	Ø	$\{a-b\}$
BB7	$\{a-b\}$	Ø	$\{a-b\}$	Ø
BB8	Ø	Ø	Ø	Ø

L'unica espressione very busy è b-a che possiamo precalcolare

2 Dominator Analysis

In un \mathbf{CFG} diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y.

Annotiamo ogni ${\bf basic}\ {\bf block}\ B_i$ con un insieme $DOM[B_i]:$

- $\bullet \ B_i \in DOM[B_j]$ se e solo se B_i domina B_j
- Per definizione, un nodo domina se stesso: $B_i \in DOM[B_i]$

2.1 DFA Framework

Domain	Insieme dei Basick Blocks
Direction	Forward: $out[b] = f_b(in[b])$ $in[b] = \land out[pred(b)]$
Transfer function	$f_b(x) = \{b\} \cup x$
Meet operation (\land)	n
Boundary condition	$out[entry] = \{entry\}$
Initial interior	$out[b] = \mathbb{U}$

2.2 Iterazioni dell'Algoritmo Iterativo

	Iterazione 1		Iterazione 2	
	IN[B]	OUT[B]	IN[B]	OUT[B]
A	Ø	{A}	Ø	{A}
В	{A}	{A, B}	{A}	{A, B}
С	{A}	{A, C}	{A}	{A, C}
D	{A, C}	{A, C, D}	{A, C}	{A, C, D}
Е	{A, C}	{A, C, E}	{A, C}	{A, C, E}
F	{A, C}	{A, C, F}	{A, C}	{A, C, F}
G	{A}	{A, G}	{A}	{A, G}

Notiamo che la soluzione converge alla seconda iterazione poichè gli insiemi out non hanno subito variazioni.

3 Constant Propagation

L'obiettivo della **constant propagation** è quello di determinare in quali punti del programma le variabili hanno un valore costante.

L'informazione da calcolare per ogni nodo ndel **CFG** è un insieme di coppie del tipo **<variabile**, **valore costante**>.

Se abbiamo la coppia $\langle \mathbf{x}, \mathbf{c} \rangle$ al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

3.1 DFA Framework

Domain	Insieme di coppie $(var, const)$	
Direction	Forward: $out[b] = f_b(in[b])$ $in[b] = \bigwedge out[pred(b)]$	
Transfer function	$f_b(x) = Gen(b) \cup (\mathbf{x} - Kill_b)$	
Meet operation	Intersezione (\cap)	
Boundary condition	$out[entry] = \emptyset$	
Initial interior	$out[b] = \mathbb{U}$	

3.2 Iterazioni dell'Algoritmo Iterativo

	Iterazione 1		Iterazione 2	
	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	Ø	Ø	Ø	Ø
BB2	Ø	{(k,2)}	Ø	{(k,2)}
BB3	{(k,2)}	{(k,2)}	{(k,2)}	{(k,2)}
BB4	{(k,2)}	{(k,2),(a,4)}	{(k,2)}	{(k,2),(a,4)}
BB5	{(k,2),(a,4)}	$\{(k,2),(a,4),(x,5)\}$	{(k,2),(a,4)}	$\{(k,2),(a,4),(x,5)\}$
BB6	{(k,2)}	{(k,2),(a,4)}	{(k,2)}	{(k,2),(a,4)}
BB7	{(k,2),(a,4)}	{(k,2),(a,4),(x,8)}	{(k,2),(a,4)}	$\{(k,2),(a,4),(x,8)\}$
BB8	{(k,2),(a,4)}	{(k,4),(a,4)}	{(k,2),(a,4)}	{(k,4),(a,4)}
BB9	{(k,4),(a,4)}	{(k,4),(a,4)}	{(a,4)}	{(a,4)}
BB10	{(k,4),(a,4)}	$\{(k,4),(a,4),(b,2)\}$	{(a,4)}	$\{(a,4),(b,2)\}$
BB11	$\{(k,4),(a,4),(b,2)\}$	$\{(k,4),(a,4),(b,2),(x,8)\}$	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$
BB12	$\{(k,4),(a,4),(b,2),(x,8)\}$	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$
BB13	$\{(k,4),(a,4),(b,2),(x,8),(y,8)\}$	$\{(k,5),(a,4),(b,2),(x,8),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB14	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	{(a,4)}	{(a,4)}
BB15	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	{(a,4)}	{(a,4)}

	Iterazione 3		
	IN[B]	OUT[B]	
BB1	Ø	Ø	
BB2	Ø	{(k,2)}	
BB3	{(k,2)}	{(k,2)}	
BB4	{(k,2)}	{(k,2),(a,4)}	
BB5	{(k,2),(a,4)}	$\{(k,2),(a,4),(x,5)\}$	
BB6	{(k,2)}	{(k,2),(a,4)}	
BB7	{(k,2),(a,4)}	{(k,2),(a,4),(x,8)}	
BB8	{(k,2),(a,4)}	{(k,4),(a,4)}	
BB9	{(a,4)}	{(a,4)}	
BB10	{(a,4)}	{(a,4),(b,2)}	
BB11	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$	
BB12	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$	
BB13	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$	
BB14	$\{(a,4)\}$	$\{(a,4)\}$	
BB15	$\{(a,4)\}$	$\{(a,4)\}$	