

삼정 KPMG

어떤 곳에 살고싶은가?

색깔이 의미하는 것은?

∞ 색의 분포가 왜 다를까?

∞ 단순한 불균형인가?

불균형의 해소방법은?

목차

1. 프로젝트 기안

1-1. 주제 선정 배경

1-2. 마스터 플랜

2. 프로젝트 개발환경

2-1. 작업

라이브러리

2-2. 플랫폼

아키택처

3. 프로젝트 추진체계

3-1. 팀 소개

3-2 일정 계획

4. 프로젝트 데이터 셋

4-1. 원본 데이터

4-2.데이터 전처리

5. 프로젝트 진행 과정

5-1. 상관관계

히트맵

5-2. 유사도

클러스터

6. 프로젝트 결과 보고

6-1. 활용 방안

6-2. 개선점

1. 프로젝트 기안

1-1. 주제 선정 배경

지방 분리 시대 (1995 ~ 2025)

- 자치 제도를 통한 지역 경제 발전 도모
- 지방 광역시·도별 발달 불균형 심화
- 서울특별시 자치구별 불균형 심화
- 지역 경제 활성화 방안의 필요성 부상

지방 통합 시대 (2025~)

- 지방 광역시 오 메가시티 권고안 제기
- 서울특별시 지역균형발전계획 수립
- 자치구별 도시 구성 요인 비교분석
- 도시 발전 구조 예측 및 개발 전략 수립

1. 프로젝트 기안

1-1. 주제 선정 배경

TIHE # 31 11 (400E 202E)

TIHL 트라 니미 /202E

서울특별시도동남권(강남3구)에 집중된 불균형을 해소하기 위해 지역균형발전계획을수립합

어떤 자치구끼리 역할을 통합해야 할지 결정하기 위해서는 도시를 구성하는 요인들이 무엇인지 분석이 선행되어야 함

수립

1.프로젝트 기안서 2 프루젝트 개발환경 3. 프로젝트 추진체계

4. 프로젝트 데이터셋

5. 프로젝트 진행 과정

6. 프로젝트 결과 보고

1. 프로젝트 기안

1.1 마스터 플랜: 팀 Urban Vision은 다음과 같은 기획으로 프로젝트를진행함

2. 프로젝트 개발환경

2-1. 작업 라이브러리

클라우드 개발환경: Google Colaboratory

- 데이터 전처리 (Data Preprocessing)
 - o Excel, Pandas(Python), Numpy
- 데이터 시각화 (Data Visualization)
 - o Matplotlib, Seaborn, Plotly, Folium, Geopandas
- 지리공간적 분석 (Geospatial Analysis)
 - Geopandas, Shapely, PySAL, Rasterio
- 머신러닝 분석 및 예측 (Machine Learning & Prediction)
 - o XGBoost, LightGBM, Scikit-learn, statsmodel, PySAL

2. 프로젝트 개발환경

2-2. 플랫폼 아키텍처

운영체제 (OS) : Windows 10 Pro (64bit)

- 데이터 분석 (Data Analysis)
 - Python 3.11.11, Pandas(Python)(2.2.2), Numpy(1.26.4)
- 데이터 시각화 (Data Visualization)
 - Matplotlib(3.10.0), Seaborn(0.13.2), Plotly(5.24.1), Folium(0.19.4), Geopandas(1.0.1)
- 머신러닝 (Machine Learning)
 - XGBoost(2.1.3), LightGBM(4.5.0), Scikit-learn(1.6.0), statsmodel(0.14.4), PySAL(24.7)

3. 프로젝트 추진체계

3-1. 팀 소개

TEAM Urban Vision

- 김다은 (Daeun, Kim) : Team Leader
 - 교통 및 인프라 데이터 분석
 - PCA(주성분 분석) Clustering
- 김민지 (Minji, Kim)
 - 상권 및 부동산 데이터 분석
 - PCA(주성분 분석) Clustering

- 박서형 (Seohyung, Park) : Vice Team Leader
 - 인구 데이터 분석
 - Heat-map & Bar-plot
- 지준희 (Joonhee, Ji)
 - 직장 데이터 분석
 - Heat-map & Bar-plot

3. 프로젝트 추진체계

3-2. 일정 계획

프로젝트 기간 : 2025.01.17(금) - 2025.01.24(금)

Task	Time Schedule										
Task	1/17(Fri)	1/19(Sun)	1/20(Mon)	1/21(Tue)	1/22(Wed)	1/23(Thu)	1/24(Fri)				
Data Preprocessing											
Data cleaning											
Data Analysis							Due Date				
Data Visualization											
Machine Learning							Presentation				
Final Adjustments											

4. 프로젝트 데이터 셋

4-1. 원본 데이터

인구

등록인구

교통

지하철 역, 버스 정류장

직장

직장인구, 유동인구

상권

외식, 소매, 전문직, 기타

인프라

학교, 학원, 병원

부동산

가격, 거래량

4. 프로젝트 데이터 셋

4-2. 데이터 전처리

자치구명으로 분류된 통합 csv 데이터 파일 생성

자치구명	등록인구	직장인구	유동인구	부동산거래량	부동산가격	지하철역	버스정류장	학교	학원	병원 오	식	전문직
강남구	564280	1121201	503302811	4961	2337.322965	4:	3 424	85	4624	3451	13967	3026
강동구	469464	75000	123064048	5277	1290.043635	10	302	64	1879	981	5317	170
강북구	289678	28246	86536158	2571	683.6846052	1:	2 195	38	687	523	3839	118
강서구	563515	149719	177323432	6058	876.2260366	19	335	82	2120	1033	7284	412
관악구	496469	72879	136579127	3220	828.5015155	1	259	59	1406	784	5867	217
광진구	349307	81443	126469385	3273	1236.278512	1	1 174	46	1147	642	5343	210
구로구	412441	139820	159862041	3597	814.0908479	1:	2 254	60	1191	640	4968	402
금천구	239577	126426	64103637	2340	826.6017607		1 168	35	592	404	3803	405
노원구	498358	56701	159311071	4620	917.5642511	10	390	100	2152	837	4586	120
도봉구	306926	36388	69991699	2771	649.0097005		3 232	46	943	410	2998	192
동대문구	359219	80350	119079063	3887	1092.453337	1	1 258	50	1077	684	5042	189
동작구	387792	78066	193600630	3963	1299.738743	2	141	51	1386	668	4284	149
마포구	373874	142802	288018206	4833	1414.107629	2	252	52	1859	860	10020	531
서대문구	319749	66165	77063767	3486	1112.833098		211	43	1143	495	4536	82
서초구	412611	576938	212438876	4199	2304.641884	2:	325	57	2726	1700	7420	4444
성동구	282385	80690	150399028	3570	1744.107387	1	7 187	39	996	540	4789	359
성북구	435492	110756	98814397	4209	980.0545308	1:	3 282	62	1482	614	4842	83
송파구	657991	399728	260133120	6277	1651.265657	33	2 439	96	2814	1426	8743	993
양천구	435867	139602	54510743	4257	1165.708525		257	64	2634	730	4024	345
영등포구	397514	397723	260703845	4233	1317.820248	2	5 291	47	1342	903	8018	865
용산구	218370	176381	120116395	2215	1991.513481	14	4 231	38	624	365	5470	183
은평구	466809	48907	103631922	4859	840.3519531	1:	323	68	1529	772	4779	122
종로구	150011	234085	230827930	1274	1062.744647	1	7 189	47	636	559	7015	447
중구	131589	334297	355879391	1246	1300.94439	3	3 164	36	416	665	6756	754
중랑구	386131	39323	81478637	3295	863.4355569	14	4 357	48	911	633	4392	83

5. 프로젝트 진행 과정

5-1. 상관관계 히트맵

1차 상관관계 분석 결과

- 상관관계가 높을수록 도시 발달에 필수적인 요소
- 다중 공선성 발생
 - 1에 가까운 상관관계로 변수 간 영향 중복
 - 상위 개념에 해당하는 변수 채택
- 스케일 에러 발생
 - 명수, 가격, 개수 등 여러 가지 단위 혼재
 - o 표준화 및 정규화 작업 진행

5. 프로젝트 진행 과정

5-1. 상관관계 히트맵

도시 발달 기준을 Work vs. Life로 구분

Work

유동인구 직장인구 지하철 역 부동산 가격 소매_편의 소매_상품 소매_외식 기타 숙박업

Life

등록인구 버스 정류장 부동산 거래량 기타_수리업 기타_유흥업 기타_서비스업 학교

5. 프로젝트 진행과정

5-1. 상관관계 히트맵

유동인구 중심 상관관계 (Correlation) 히트맵 (Heat-map)

- 유동인구가 많은 자치구는 업무 단지로 발달됨
- 유동인구와 지하철 역의 상관관계 (0.95)
- 유동인구와 외식의 상관관계 (0.90)

5. 프로젝트 진행과정

5-1. 상관관계 히트맵

등록인구 중심 <u>상관관</u>계 (Correlation) 히트맵 (Heat-map)

- 등록인구가 많은 자치구는 거주 단지로 발달됨
- 등록인구와 부동산거래량의 상관관계 (0.91)
- 등록인구와 학교의 상관관계 (0.86)

클러스터링이란?

K-means 알고리즘은 데이터를 미리 정한 K개의 군집(Cluster)으로 묶는(Clustering) 알고리즘이며, 이와 같은 알고리즘으로 인프라 데이터 기준으로 자치구를 군집화 했음

°°0

클러스터링으로도시 구성 인프라기준으로가장 비슷한 자치구끼리군집화를 진행

클러스터링 - 전처리

클러스터링 결과의 정확도를 높이기 위해 Min Max Scaler를 사용한 정규화를 진행하였으며, 서울지 자치구의 경계 정보와 데이터를 병합함

표준화: Standard Scaler

서울시 자치구 경계 정보 데이터와 병합

code	name	name_eng	base_year	geometry	자치구명	cluster	Cluster	등록인구	거래된부동산	버스정류장	수리업	유흥업	서비스업	학교
11250	강동구	Gangdong-gu	2013	POLYGON ((127.1152 37.55753, 127.1188 37.55722	강동구		0	0.641857	0.801232	0.540268	0.619687	0.480994	0.240458	0.446154
11240	송파구	Songpa-gu	2013	POLYGON ((127.06907 37.52228, 127.07496 37.520	송파구	2	0	1.000000	1.000000	1.000000	0.948546	1.000000	0.507888	0.938462
11230	강남구	Gangnam-gu	2013	POLYGON ((127.05867 37.5263, 127.06907 37.5222	강남구	2	0	0.821978	0.738422	0.949664	1.000000	0.808480	1.000000	0.769231
11220	서초구	Seocho-gu	2013	POLYGON ((127.01397 37.52504, 127.01918 37.520	서초구	1	0	0.533854	0.586961	0.617450	0.798658	0.483918	0.355725	0.338462
11210	관악구	Gwanak-gu	2013	POLYGON ((126.98368 37.47386, 126.98464 37.469	관악구			0.693158	0.392367	0.395973	0.503356	0.535088	0.224173	0.369231

- 특성들을 표준화하여 변수 간 스케일을 조정
- K-Means 알고리즘의 성능 향상을 통해 정확한 클러스터 파악

- 서울시 자치구 경계 정보가 담긴 데이터를 geopandas를 사용해 로드
- 정규화된 데이터프레임과 병합하여 지도를 만들기 위한 준비 진행

클러스터링 - K-mean

Elbow method를 통해 최적의 클러스터 개수를 파악하고, 정규화된 데이터를 기반으로 K-Means 클러스터링 진행

Elbow Method으로 k 값 지정

- 급격하게 꺽이는 지점에서 최적 k 값 파악 → K-Means 알고리즘 클러스터링 에 적용
- K = 3으로 설정

K=3 기반으로 자치구 군집화

거래된 부동산 수, 버스정류장 수, 수리업 소매 상권 수, 유흥업소 수, 서비스업소 수, 그리고 학교 수의 기반되어 자치구를 3가지 클러스터로 군집화 했음

클러스터링 - 지도 시각화

Geopandas의 plot, centroid와 matplotlib의 scatter과 annotate를 사용하여 자치구별 지도를 시각화함

Geopandas의 plot()

클러스터별 색상을 구분하여 지도 생성

Geopandas의 centroid

각 자치구의 중심점을 계산하여 지도에 표기할 마커의 좌표를 형성

Matplotlib의 scatter

자치구 중심점에 인구 규모에 비례하는원형 마커를 표시

도출 인사이트

군집화된 자치구들의 인프라 구성 비슷함은 그 자치구들의 거주 인구 수와 비례하지 않음

하지만 1번 클러스터 에 해당하는 자치구 (중구, 용산구, 동작구, 등등)들은 서울 자치구 중 하위 순위에 해당함으로 거주 인구를 늘려줄 인프라를 구축해야함

3번 2번 클러스터에 해당하는 자치구와 비슷한 인프라 구조를 벤치마킹 할 필요가 있음

클러스터 자치구별 인프라 비교: 막대 그래프

프로젝트의 도출 데이터 분석 결과의 토대로,인프라 구성을 비교하여,어떤 인프라를 향상해야하는지 효율적으로 분석 할 수 있음

자치구 클러스터별 평균 인프라 보유 비율

계산법:(자치구의 해당 인프라 수/ 서울시에 있는 해당 인프라 수)*100

인사이트:

- 평균적으로클러스터 3, 2, 1 순서로 인프라 비율이 나뉜다
- 그러므로 **3번 클러스터의 비율과 유사해지는 것을 도시 구조 벤치마킹** 사례로설정할 수 있다

삼정 🖟

삼정

클러스터링 - 랜덤 포레스트 시도

