Homework04: GPIO, Serial interface

Tae-Hyun Oh
Associate Professor
Dept. Electrical Engineering
POSTECH, Korea

Slides by Youngjoo Lee

GPIO(General-Purpose Input/Output)

- ✓ 입력이나 출력을 포함한 동작이 런타임 시에 사용자에 의해 제어될 수 있는, 집적 회로나 전기 회로 기판의 디지털 신호 핀
- ✓ Raspberry Pi 3에는 아래 그림처럼 GPIO가 구성

wiringPi library

- ✓ GPIO의 쉬운 접근을 위한 library
 - Delay, pinmode, digitalread/write 등의 함수 제공
 - 각 GPIO에 wiringPi library를 이용한 pin 접근을 위한 number 부여

@raspl	berryp:		iringPi		pio re			+	+	+	+
BCM	wPi	Name		V	Physical		٧	Mode	Name	wPi	BCM
		3.3v			1	2			5v		
2	8	SDA.1	IN	1	3	4	į	i	5V	İ	İ
3	9	SCL.1	IN	1	5	6	İ		0v		İ
4	7	GPIO. 7	IN	0	7	8	1	ALT0	TxD	15	14
	İ	0v			9	10	1	ALT0	RxD	16	15
17	0	GPIO. 0	IN	0	11	12	0	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	0	13	14			0v		
22	3	GPIO. 3	IN	0	15	16	0	IN	GPIO. 4	4	23
	I	3.3v			17	18	0	IN	GPIO. 5	5	24
10	12	MOSI	IN	0	19	20			0v		
9	13	MISO	IN	0	21	22	0	IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	0	IN	CE0	10	8
		0v			25	26	0	IN	CE1	11	7
0	30	SDA.0	IN	0	27	28	0	IN	SCL.0	31	1
5	21	GPI0.21	IN	0	29	30			0v		
6	22	GPI0.22	IN	0	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34			0v		
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		0v			39	40	0	IN	GPI0.29	29	21
всм	wPi	Name	Mode	V	Physical		V	Mode	Name	wPi	BCM

wiringPi library

- ✓ wiringPi library 설치 방법
 - 인터넷이 연결된 상태에서
 - \$ sudo apt-get update
 - \$ sudo apt-get install fonts-unfonts-core ibus-hangul git-core —y
 - \$ sudo git clone https://github.com/WiringPi/WiringPi
 - \$ cd wiringPi
 - \$ sudo ./build
 - \$ gpio readall
- ✓ Vim 설치 방법
 - \$ sudo apt-get install vim

wiringPi library

- ✓ Code example
 - gcc를 이용한 Compile시에 wiringPi library를 링크해줘야 함
 - gcc –o test GPIO.c -lwiringPi

```
include <wiringPi.h>
Mdefine SW 0 //wiringPi의 0번pin 접근
#define LED 1 //wiringPi의 1번pin 접근
int main(void){
  if (wiringPiSetup()==-1) //library include 실패시 종료
      return 1;
   pinMode(SW,INPUT); //switch pin을 input mode로 설정
   pinMode(LED,OUTPUT); //LED pin을 output mode로 설정
                       //프로그램 종료를 방지하기 위한 무한100p
   while(1){
  if(digitalRead(SW)==1){ //switch가 눌러지면 1이 됨
  digitalWrite(LED,1); //LED pin으로 1신호를 내보냄
              //1초 delay
   delay(1000);
   digitalWrite(LED,0); //LED pin으로 0신호를 내보냄
eturn 0;
```

7-segment 를 이용한 수 표현

- ✓ 7-segment의 각 LED에 1,0 신호를 보내서 수 표현
- ✓ Common anode, common cathode 두 type 존재
 - 수업에선 <u>common cathode</u>사용
- ✓ 각 pin과 LED는 아래 그림처럼 연결되어 있음
- ✓ 각 LED pin에 연결 시 220Ω 저항 연결

7-segment 를 이용한 수 표현

√ 7-segment의 각 LED에 1,0 신호를 보내서 수 표현

2 – pin switch 연결 방법

Equipment

Equipment

Rasberry Pi

Bread board

Pack

Mini cable

- ✓ 키보드 설정
 - \$ sudo raspi-config
 - 5 Localisation Options
 - L3 Change Keyboard Layout
 - Generic 101-key PC
 - Other
 - Korean
 - Korean Korean (101/104 key compatible)
 - 처음의 option 창이 뜰 때까지 엔터 연타

- ✓ 시리얼 통신 enable
 - \$ sudo raspi-config
 - 3 Interface Options -> Serial -> Yes
 - 다음 키를 차례로 눌러 설정 창에서 나가면 자동으로 재부팅된다.
 - \rightarrow \rightarrow <Finish> <Yes>
 - 재부팅이 안된다면 콘솔 창에 다음을 입력
 - \$ sudo reboot

- ✓ UART 사용을 위한 라즈베리파이 설정 (Raspberry pi 3 기준)
 - \$ sudo nano /boot/cmdline.txt
 - 열린 파일에서 다음 내용을 삭제 후 저장
 - Console=serial0,115200
 - Ctrl+O / Enter / Ctrl+X 를 차례로 입력해서 콘솔창으로 복귀.
 - \$ sudo systemctl stop serial-getty@ttyS0.service
 \$ sudo systemctl disable serial-getty@ttyS0.service
 - RPi3 에서는 bluetooth 설정을 해제해야 함. 다음의 명령어로 config.txt 접속
 - \$ sudo nano /boot/config.txt
 - 맨 아래에 다음 명령어 삽입
 - #disable bluetooth dtoverlay=pi3-disable-bt
 - Ctrl+O / Enter / Ctrl+X 로 콘솔 창으로 복귀. 다음 커맨드 입력.
 - \$ sudo systemctl disable hciuart

- ✓ UART 사용을 위한 라즈베리 파이 설정
 - \$ sudo nano /boot/config.txt
 - 맨 아래 다음 명령어가 올바르게 되어 있는 지 확인 or 설정
 - Enable_uart=1
 - Ctrl+O / Enter / Ctrl+X 로 콘솔 창으로 복귀.
- ✓ UART 사용을 위한 C 파일(~ polling.c & interrupt.c) (Raspberry pi 3 기준)
 - fd = open(" /dev/serial0 " , O_RDWR|O_NOCTTY); 로 되어있는지 확인하기
- ❖ 본인의 라즈베리 파이 버전을 꼭 확인할 것!!
 - 위의 설정은 모두 Raspberry pi 3 기준

PC-Board connection

PC와 raspberry Pi 연결

✓ USB to TTL 변환기 (FT232)로 연결

RPi - FT232를 아래처럼 연결 Ground – GND (FT232) GPIO14 (TXD) – RXD(FT232) GPIO15 (RXD) – TXD(FT232)

스위치를 3V3쪽으로

Terminal program

PC terminal program

- ✓ Hterm 다운로드 (*Mac 사용 시 유사 프로그램으로 대체)
 - http://www.der-hammer.info/terminal/
- ✓ Hterm 실행 후 port를 FT232 모듈의 COM 번호로 설정
- ✓ Connect 누른 후 Baud에 1000000 입력 후 엔터
- ✓ Newline at LF 설정
- ✓ Connect 버튼 클릭하여 연결

Test codes

Polling test

- ✓ 라즈베리파이에서 Echo_polling.c 를 실행
 - 컴파일된 파일은 권한 문제가 있으므로 sudo로 실행
 - \$ gcc echo_polling.c -lwiringPi
 - \$ sudo ./a.out
 - Type에 data를 입력해서 PC에서 라즈베리파이로 data 전송
 - 라즈베리파이에서 일정 주기마다 들어온 data를 확인해서 PC로 return

Test codes

Interrupt test

- ✓ 라즈베리파이에서 Echo_interrupt.c 를 실행
 - 컴파일된 파일은 권한 문제가 있으므로 sudo로 실행
 - \$ gcc echo_interrupt.c -lwiringPi
 - \$ sudo ./a.out
 - PC에서 라즈베리파이로 data 전송
 - Data가 들어오면 interrupt를 발생시켜 들어온 data를 PC로 바로 return

Problem Definition

Problem Definition

1. GPIO를 이용한 7-segment 제어

- 1-1. GPIO pin을 사용하여 1개의 입력 스위치, 1개의 출력 7-segment 제어
- 1-2. 스위치 누른 횟수를 7-segment에 1자리 16진수 숫자로 출력 (7-segment 상에 0 ~ F 까지 증가할 것, F 이후에는 다시 0으로)
- 1-3. 파일명: 학번_gpio.c

Problem Definition

2. Serial interface를 이용한 7-segment 제어

- 2-1. PC에서 라즈베리파이로 전송한 data를 1개의 7segment에 출력
- 2-2. 다음 문자가 들어올 때 까지 이전의 문자 계속 출력 하며, 한번에 여러 문자가 들어오면 가장 앞 글자를 출력
- 2-3. 0~9, A,B,C,D,E,F는 아래 그림처럼 출력하고, 다른 문자가 들어올 경우, 아래 우측 처럼 X를 출력
- 2-4. 제공받은 echo_polling.c와 echo_interrupt.c 파일을 7-segment에 문자를 출력하도록 수정해서 과제 수행
- 2-5. C 파일 내의 task 함수 수정 금지

Submission & Evaluation

Submission

조교가 검사할 수 있는 source code와 결과보고서 PDF를 제출

- ✓ Due date: 5/7(화) 23:59
- ✓ 제출 방식: 학번_이름.zip 파일의 형식으로 plms에 제출
 - 첫번째 과제 source code: 학번_gpio.c
 - 두번째 과제 source code: 학번_echo_polling.c, 학번_echo_interrupt.c
 - 결과 보고서: 학번_이름.pdf
- ✓ 실험에 관한 질문은 Q&A 게시판 활용
- ✓ 담당조교 신동연 (shindy@postech.ac.kr)

다음 내용을 포함하여 결과보고서 작성

- 1. 어떤 pin을 스위치와 7-segment에 할당하였는지 설명
- 2. UART 통신 방식에 대한 조사 후 Serial interface를 통한 7-segment 제어 방식 설명
- 3. 어떤 방법으로 serial interface 내부의 함수를 구현하였는지 설명

Evaluation

Demo

- ✓ 5/7(화) 정규 수업시간 (15:30~16:45)
- ✓ 7-segment 제어 구현에 대한 과제 모두 LG동 전산실에서 Demo로 평가

100점 만점으로 채점하며 다음 사안을 고려

- 1. 스위치 입력 구현 (10)
- 2. 스위치 입력에 대한 7-segment 출력 구현 (30)
- 3. Serial interface에서 7-segment에 문자 출력 구현 (40)
- 4. 보고서 (20)

부정행위 적발 시 -100점 적용