

What Is Claimed Is:

	Sub 0 8.	
1	$\frac{1}{2}$	An intelligent service network, comprising:
2		a programmable switch; and
3		a switch controller coupled to said programmable switch.
1	2.	The intelligent service network of claim 1, further comprising:
2		an intelligent service network component coupled to said switch
3	controller.	
1	Sub Q/0 (3.	The intelligent service network of claim 2, wherein said switch
2	controller con	
3		a programmable switch support means for providing an interface
4	to said progra	mmable switch;
5		a call control means for establishing a connection between two
6	ports on said	programmable switch; and
7		a service control means for interfacing with said intelligent service
8	network comp	ponent.
1	4.	The intelligent service network of claim 3, wherein said switch
2	controller furt	her comprises:
3		a resource control means for allocating resources.
1	5.	The intelligent service network of claim 3, wherein said switch
2		her comprises:
3		a management interface means for providing an interface to
4	external mana	agement systems.
1	546 Q" 6.	The intelligent service network of claim 1, wherein said
2	programmable	e switch is one of:

· 3	a programmable switch; or
4	a digital exchange.
1	7. The intelligent service network of claim 2, wherein said intelligent
2	service network component is one of:
3	a manual operator console;
4	an automated response unit;
5	a service switching control point; or
6	a protocol converter.
1	8. The intelligent service network of claim 2, wherein said intelligent
2	service network component is one of:
3	a means for access data; or
4	a means for interfacing with a caller.
1	9. The intelligent service network of claim 2, wherein said intelligent
2	service network component is one of:
3	a network information distribution system database coupled to said
4	switch controller via a network information distribution system server;
5	an applications database;
6	a data distribution system database; or
7	a mainframe database.
1	10. The intelligent service network of claim 2, further comprising:
2	a system management system coupled to said switch controller.
1	11. The intelligent service network of claim 1, further comprising:
2	a force management system coupled to said switch controller.

1	12.	The intelligent service network of claim 1, further comprising:
2		a configuration and provisioning system coupled to said switch
3	controller.	
	0/ 12	•
1	506 a/2 13.	An intelligent service network, comprising:
2		a plurality of programmable switches; and
3		a switch controller coupled to said plurality of programmable
4	switches.	
1	14.	The intelligent service network of claim 13, further comprising:
2		a plurality of intelligent service network components coupled to
3	said switch co	ontroller.
1	15.	The intelligent service network of claim 13, further comprising
2	one of:	
3		a system management system coupled to said switch controller;
4		a force management system coupled to said switch controller; or
5		a configuration and provisioning system coupled to said switch
6	controller.	
	onb a13	
1	$\frac{333}{2}$ 16.	An intelligent service network, comprising:
2		one or more switch controllers; and
3		one or more intelligent service network components coupled to at
4	least one of sa	id one or more switch controllers.
1	17.	A network, comprising:
2	/	a plurality of programmable switches; and

3		a plurality of switch controllers, wherein each of said plurality of
4	switch contro	llers is coupled to at least one of said plurality of said programmable
5	switches.	
1	18.	An intelligent service network environment, comprising:
2		one or more programmable switches coupled to a public switch
3 .	telephone net	work, wherein said public switch telephone network is coupled to
4	a calling devi	ice;
5		one or more switch controllers, wherein each of said one or more
6	switch contro	ollers is coupled to at least one of said one or more programmable
7	switches;	
8		one or more intelligent service network components, wherein each
9	of said one or	more intelligent service network components is coupled to at least
10	one of said or	ne or more switch controllers.
1	19.	The intelligent service network énvironment of claim 18, further
2	comprising:/	
3		one or more external networks and resources, wherein each one of
4	said one or mo	ore external networks and resources is coupled to at least one of said
5	one or more i	ntelligent service network components.
1	20.	A messaging interface, comprising:
2		a means for communicating with a programmable switch using
3	programmable	e switch interface messages; and
4		a means for communicating with an intelligent service network
5	component us	sing transmission control messages.
1	21.	The messaging interface of claim 20, further comprising:
2		a means for communicating with a system management system
3	using system	management messages.

The messaging interface of claim 20, further comprising:

1

22.

2	a means for communicating with a force management system
3	using force management messages.
1	23. A method for setting up a call to an intelligent service network
2	component comprising the steps of:
3	(a) receiving by a switch controller from a programmable
4	switch a first programmable switch application programmer interface message to
5	request service indicating an initial address message was received from a public
6	switched telephone network;
7	(b) sending a second programmable switch application
8	programmer interface message to command a programmable switch to send an
9	address complete message to said public switched telephone network;
10	(c) sending a transmission control message to the intelligent
11	service network component;
12	(d) receiving a transmission control response message from the
13	intelligent service network component;
14	(e) sending a third programmable switch application
15	programmer interface message to said programmable switch requesting sending
16	of an answer message to said public switched telephone network; and
17	(f) sending a fourth programmable switch application
18	programmer interface message to said programmable switch requesting
19	connection of a circuit.
1	24. The method of claim 23, further comprising the following steps
2	performed before step (a):
3	receiving by an originating switch controller from an originating
4	programmable switch a first originating programmable switch application

5	programmer interface message to request service indicating an initial address	
6	message was received from a public switched telephone network;	
7	determining that said originating switch controller cannot select	
8	the intelligent service network component; and	
9	obtaining an intermachine trunk facility between said originating	
10	programmable switch and said programmable switch.	
1	25. A method for setting up a call originated via a public switched	
2	telephone network to an intelligent service network component, comprising the	
3	steps of:	
4	receiving a request for facilities to provide service for the call;	
5	selecting by a switch controller the intelligent service network	
6	component;	
7	commanding by said switch controller a programmable switch to	
8	provide connections and signal to a public switched telephone network to connect	
9	the call to the intelligent service network component; and	
10	sending by said switch controller a call offered signal to the	
11	intelligent service network component.	
1	26. A method for connecting a call from an intelligent service network	
2	component to a terminating party via a public switched telephone network,	
3	comprising the steps of:	
4	receiving by a switch controller from the intelligent service	
5	network component a request to connect the call to the terminating party	
6	indicating a type of the call;	
7	commanding a programmable switch to attain facilities via the	
8	public switched telephone network to the terminating party; and	
9 .	receiving from said programmable switch a message indicating	
10	that said facilities have been obtained	

7 8

1

1	27. A method for disconnecting a call established between a public
2	switched telephone network and an intelligent service network component,
3	comprising the steps of:
4	receiving by a switch controller a termination signal obtained from
5	a calling device interconnected to the public switched telephone network
6	indicating that the call is being terminated;
7	notifying the intelligent service network component that the
8	established call is being terminated; and
9	commanding by a switch controller a programmable switch to
10	release the call.
1	28. The method of claim 27, further comprising the steps of:
2	commanding said programmable switch to park channels
3	associated with an originating party and the intelligent service network
4	component;
5	sending the intelligent service network component a call offered
6	message indicating a reorigination request was received from the public switched
7	telephone network; and
8	commanding said programmable switch to connect the originating
9	party and the intelligent service network component;
10	wherein said termination signal is a reorigination signal.
1	29. A method for transferring a call connected between a public
2	switched telephone network and a first intelligent service network component
3	from the first intelligent service network component to a second intelligent
4	service network component, comprising the steps of:
5	receiving from the first intelligent service network component a
6	request to transfer the call;

call while the call is being transferred;

commanding a programmable switch to park the channel of the

