

Chapitre 3: Protection contre les erreurs

DE

2

Protocoles & Réseaux

Chapitre 3: Protection contre les erreurs

- Introduction
- Les codes de protection contre les erreur
- Codes simples
- Codes linéaires
- Codes polynomiaux

Chapitre 3: Protection contre les erreurs

Indépendamment des supports de communication et des techniques de transmission utilisés, des perturbations vont se produire entraînant des erreurs.

Dans ces conditions, la suite binaire reçue ne sera pas identique à la suite émise

Stratégies de protection contre les erreurs de transmission :

Protocoles & Réseaux

Chapitre 3: Protection contre les erreurs

Principe général pour la détection des erreurs de transmission

- Un émetteur veut transmettre un message à un récepteur.
- L'émetteur transforme le message initial à l'aide d'un procédé de calcul spécifique qui génère une certaine redondance des informations au sein du message codé.
- Le récepteur vérifie à l'aide du même procédé de calcul que le message reçu est bien le message envoyé grâce à ces redondances.

Principe général pour l'auto-correction des erreurs de transmission

- Après détection d'une erreur, la redondance dans le message transmis est suffisante pour permettre de retrouver le message initial.
- Exemple : Technique de détection par répétition
- Le message codé est <u>un double exemplaire</u> du message initial, le récepteur sait qu'il y a eu erreur si les exemplaires ne sont pas identiques.
- ⇒ certaines erreurs
 - □ sont indétectables! (même erreur sur les 2 exemplaires simultanément)
- Le message codé est <u>un triple exemplaire</u> du message initial, le récepteur suppose que le message initial correspond aux deux exemplaires qui sont identiques.
- détectées ne sont pas corrigibles! (1 erreur différente sur 2 exemplaires)

 Control détectées ne sont pas corrigibles! (1 erreur différente sur 2 exemplaires)

 (1 même erreur sur deux exemplaires simultation apique le la corrigie de la corrigio de la corrigio de la corrigie de la corrigie de la corrigie de la corrigie d

Chapitre 3: Protection contre les erreurs

Principe général pour la correction par retransmission des erreurs de transmission

Après détection d'une erreur, le récepteur demande à l'émetteur, implicitement (temporisateur) ou explicitement (nack), de retransmettre une nouvelle fois le message (codé).

Exemple: Nombreux protocoles de télécommunication dont HDLC, X25, TCP.

La correction par retransmission est préférée dans les réseaux où le taux de perte est faible et le délai de retransmission tolérable, car son surcoût est généralement plus faible que celui induit par les codes auto-correcteurs.

DE

6

Protocoles & Réseaux

Chapitre 3: Protection contre les erreurs

Les codes de protection contre les erreurs

□ Par bloc

d'un bloc dépend uniquement des informations de ce bloc.

□ Convolutionels (ou récurrents)

Codage/décodage d'un bloc dépend des informations des blocs précédemment transmis.

Par la suite, on présentera les codes (par bloc) :

- Simples
- Linéaires, de Hamming
- Polynomiaux

Exemples simples de codes par bloc - contrôle de parité

Parité paire (impaire) :

le poids de Hamming des mots du code est paire (impaire).

Code systématique (k, k+1) dans lequel un bit (le bit de parité) est ajouté au mot initial pour assurer la parité. Son rendement est faible lorsque k est petit.

Transmission de caractères utilisant un code de représentation (le code ASCII sur 7 bits).

Lettre	Code ASCII	Mot codé (parité paire)	Mode codé (parité impaire)
Е	1010001	1010001 1	1010001 <mark>0</mark>
V	0110101	0110101 <mark>0</mark>	0110101 <mark>1</mark>
Α	1000001	1000001 <mark>0</mark>	1000001 <mark>1</mark>

⇒ Détection de toutes les erreurs en nombre impair!

DE

8

Protocoles & Réseaux

Parité longitudinale et transversale (LRC : Longitudinal Redundancy Check)

Le bloc de données est disposé sous une forme matricielle (k=a.b). On applique la parité (uniquement paire) sur chaque ligne et chaque colonne. On obtient une matrice (a+1, b+1).

Utilisé sur supports magnétiques

VRC (parité paire)

1010001 1

0110101 0

1000001 0

LRC = 0100101 1

Rendement très faible : a.b/ (a+1).(b+1).

Capacité de détection et d'autocorrection

Principe: Une erreur simple modifie simultanément la parité d'une ligne et d'une colonne.

Correction : inverser le bit situé à l'intersection de la ligne et de la colonne ayant une parité incorrecte.

> 1010001 1 0110101 0 1000*01 0 *=1 résultat correct 0 0100101 1

Confusion si erreur simple ou triple! la correction sera inadaptée!

10100011	correct	10100011
01101010		01000010
10001010		10101010

01001011

Les codes polynomiaux

Tout vecteur peut être présenté sous une forme polynomiale.

Les opérations sont binaires (construits sur le corps Z/2Z): 1.x + 1.x = 0.x!

Définition:

Un code polynomial est un code linéaire systématique dont chacun des mots du code est un multiple du polynôme générateur (noté g(x)).

les lignes de la matrice génératrice sont engendrées par le polynôme générateur.

Le degré du polynôme définit la longueur du champ de contrôle d'erreur.

Exemples de codes polynomiaux :

- (i) L'avis V41 du CCITT conseille l'utilisation de codes polynomiaux de longueurs n = 260, 500, 980 ou 3860 bits avec $G(x) = X^{16} + X^{12} + X^{5} + 1$.
- (ii) Le polynôme CRC-16 est utilisé par HDLC : $G(x) = X^{16} + X^{15} + X^2 + 1$.
- (iii) Ethernet:

$$G(x) = X^{32+} + X^{26} + X^{23+} + X^{22} + X^{16} + X^{12+} + X^{11+} + X^{10+} + X^{8+} + X^{7} + X^{5} + X^{4} + X^{2} + 1$$

Capacité de détection

Capacité de détection des erreurs

- □ Un code polynomial (k, n) dont le polynôme générateur a plus d'un coefficient non-nul (donc il ne divise pas Xi, i<n) permet de détecter toutes les erreurs simples.
- □ Si le polynôme générateur d'un code polynomial (k, n) a un facteur irréductible de trois termes (il ne divise ni Xi ni 1 + Xj -i, i<j<n), le code permet de détecter les **erreurs doubles**.
- □ Pour qu'un code polynomial détecte toutes les erreurs d'ordre impair, il suffit que son polynôme générateur ait (x+1) comme facteur.

Ex: le code de polynôme générateur (x+1) est équivalent à la parité.

Capacité de détection des paquets d'erreurs

Un code polynomial (k, n) permet de détecter toutes les erreurs d'ordre $L \le n-k$ (inférieur au degré du polynôme générateur).

DE

12

Protocoles & Réseaux

Principe du codage

Le mot de code m(X) d'un code polynomial (k, n) de polynôme générateur g(X) associé au mot initial i(X) est défini par :

$$m(X) = i(X). X^{n-k} + r(X)$$

r(X) est le reste de la division de i(X). X n-k par le polynôme générateur g(X).

- Les r = n-k bits de r(x) (de degré = n-k-1) forment les bits du champ de contrôle.
- Les bits de poids fort (de degré > n-k-1) forment le mot initial.
- L'opération de codage effectuée à l'émission est une division polynomiale.

Principe du décodage

A la réception, chaque mot reçu m'(X) est divisé par le générateur g(X). Un reste non-nul indique une erreur lors de la transmission.

Protocoles & Réseaux

Exemple CRC

$$M(x) = 1101011011$$

$$G(x) = x^{4} + x + 1 \rightarrow 10011$$

$$x^{4} M(x) = 11010110110000$$
Division
$$11010110110000 : 10011$$

$$10011$$

$$10011$$

$$010100$$

$$10011$$

$$010110 \rightarrow R(x) = 1110$$

T(x) = 11010110111110

Autre exemple Codage de Hamming

DE