CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE I

Q1 Informatique.

```
def estPremier(n):
if n==1
    return False
else
    d = 2
    while d**2 <= n :
        if n%d == 0
            return False
    d+=1
    return True</pre>
```

 ${\bf Q2}\ {\it Informatique}.$

```
def liste_premiers(n) :
L = []
for p in range(2,n+1) :
    if estPremier(p) :
        L.append(p)
return L
```

Q3 Informatique.

```
def valuation_p_adique(n,p) :
v = 0
m = n
while m%p == 0 :
    m = m//p
    v = v+1
return v
```

 ${\bf Q4}\ Informatique.$

```
def val(n,p) :
if n%p != 0 :
    return 0
else :
    return 1+val(n//p,p)
```

Q5 Informatique.

```
def decomposition_facteurs_premiers(n):
D = []
for p in liste_premiers(n) :
    if n%p == 0 :
        D.append([p,val(n,p)])
return D
```

EXERCICE II

Q6 On se place dans $E = \mathbb{R}^2$, muni de son produit scalaire canonique et de son orientation canonique. On considère r la rotation d'angle $\frac{\pi}{2}$. r est un endomorphisme de E tel que, pour tout vecteur x de E, on a $\langle r(x), x \rangle = 0$, mais r n'est pas l'endomorphisme nul.

Donc, si u est un endomorphisme d'un espace euclidien vérifiant : pour tout x de E, $\langle u(x), x \rangle = 0$, u n'est pas nécessairement l'endomorphisme nul.

Q7 • Montrons que $i \Rightarrow ii$. Supposons $u \circ v = v \circ u$. Pour tout $(x,y) \in E^2$,

$$\langle \mathfrak{u}(x),\mathfrak{u}(y)\rangle = \langle x,\mathfrak{v}(\mathfrak{u}(y))\rangle = \langle x,\mathfrak{u}(\mathfrak{v}(y))\rangle = \langle \mathfrak{u}(\mathfrak{v}(y)),x\rangle = \langle \mathfrak{v}(y),\mathfrak{v}(x)\rangle = \langle \mathfrak{v}(x),\mathfrak{v}(y)\rangle.$$

On a montré que pour tout $(x,y) \in E^2$, $\langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle$.

• Montrons que ii \Rightarrow iii. Supposons que : $\forall (x,y) \in E^2$, $\langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle$. Pour tout $x \in E$,

$$\|\mathbf{u}(\mathbf{x})\| = \sqrt{\langle \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x}) \rangle} = \sqrt{\langle \mathbf{v}(\mathbf{x}), \mathbf{v}(\mathbf{x}) \rangle} = \|\mathbf{v}(\mathbf{x})\|.$$

On a montré que pour tout $x \in E$, ||u(x)|| = ||v(x)||.

• Montrons que iii \Rightarrow ii. Supposons que : $\forall x \in E$, $\|u(x)\| = \|v(x)\|$. Soit $(x,y) \in E^2$. D'après une identité de polarisation,

$$\begin{split} \langle u(x), u(y) \rangle &= \frac{1}{2} \left(\| u(x) + u(y) \|^2 - \| u(x) \|^2 - \| u(y) \|^2 \right) = \frac{1}{2} \left(\| u(x+y) \|^2 - \| u(x) \|^2 - \| u(y) \|^2 \right) \\ &= \frac{1}{2} \left(\| v(x+y) \|^2 - \| v(x) \|^2 - \| v(y) \|^2 \right) = \frac{1}{2} \left(\| v(x) + v(y) \|^2 - \| v(x) \|^2 - \| v(y) \|^2 \right) \\ &= \langle v(x), v(y) \rangle. \end{split}$$

On a montré que pour tout $(x, y) \in E^2$, $\langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle$.

• Montrons que $ii \Rightarrow i$. Supposons que : $\forall (x,y) \in E^2$, $\langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle$. Pour tout $(x,y) \in E^2$,

$$\langle x, v \circ u(y) \rangle = \langle u(x), u(y) \rangle = \langle v(x), v(y) \rangle = \langle v(y), v(x) \rangle = \langle u \circ v(y), x \rangle = \langle x, u \circ v(y) \rangle.$$

Soit $y \in E$. Pour tout x de E, on a $\langle x, v \circ u(y) \rangle = \langle x, u \circ v(y) \rangle$ et donc, pour tout x de E, on a $\langle x, (u \circ v - v \circ u)(y) \rangle = 0$. Donc, $(u \circ v - v \circ u)(y) \in E^{\perp} = \{0\}$ puis $u \circ v(y) = v \circ u(y)$. On a montré que, pour tout $y \in E$, $u \circ v(y) = v \circ u(y)$ et donc $u \circ v = v \circ u$.

PROBLÈME

Partie I - Etude de quelques exemples

Q8 Soit $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$. On suppose A et B semblables. Donc, il existe $P \in GL_n(\mathbb{C})$ telle que $B = P^{-1}AP$.

• Pour tout $\lambda \in \mathbb{C}$,

$$\begin{split} \chi_B(\lambda) &= \det \left(\lambda I_n - B \right) = \det \left(\lambda I_n - P^{-1} A P \right) = \det \left(P^{-1} \left(\lambda I_n - A \right) P \right) = \det \left(P^{-1} \right) \det \left(\lambda I_n - A \right) \det (P) \\ &= \frac{1}{\det \left(P \right)} \det \left(\lambda I_n - A \right) \det (P) = \det \left(\lambda I_n - A \right) = \chi_A(\lambda). \end{split}$$

Donc, A et B ont même polynôme caractéristique.

- En particulier, le coefficient de X^{n-1} dans χ_A et χ_B est le même ce qui fournit -Tr(A) = -Tr(B) puis Tr(A) = Tr(B). D'autre part, $\det(A) = (-1)^n \chi_A(0) = (-1)^n \chi_B(0) = \det(B)$. Donc, A et B ont même trace et même déterminant.
- $$\begin{split} \bullet \ \operatorname{Soient} \ A \in \mathscr{M}_n(\mathbb{R}) \ \operatorname{et} \ P \in GL_n(\mathbb{R}). \ \operatorname{V\'{e}rifions} \ \operatorname{tout} \ \operatorname{d'abord} \ \operatorname{que} \ \operatorname{rg}(AP) = \operatorname{rg}(A). \ \operatorname{On} \ \operatorname{sait} \ \operatorname{que} \ \operatorname{rg}(AP) \leqslant \operatorname{Min}\{\operatorname{rg}(A),\operatorname{rg}(P)\} \leqslant \operatorname{rg}(A). \ \operatorname{D'autre} \ \operatorname{part}, \ \operatorname{rg}(A) = \operatorname{rg}\left(APP^{-1}\right) \leqslant \operatorname{Min}\left\{\operatorname{rg}(AP),\operatorname{rg}\left(P^{-1}\right)\right\} \leqslant \operatorname{rg}(AP). \ \operatorname{On} \ \operatorname{a} \ \operatorname{montr\'{e}} \ \operatorname{que} \ \forall A \in \mathscr{M}_n(\mathbb{R}), \ \forall P \in GL_n(\mathbb{R}), \ \operatorname{rg}\left(P^{-1}A\right) = \operatorname{rg}(A) \ \operatorname{et} \ \operatorname{finalement} \end{split}$$

$$\operatorname{rg}(P^{-1}AP) = \operatorname{rg}(AP) = \operatorname{rg}(A).$$

On a montré que deux matrices semblables ont le même rang.

- **Q9** $\det(A) = \det(B) = 4$ et $\operatorname{Tr}(A) = \operatorname{Tr}(B) = 5$. Ensuite, $\chi_A = \chi_B = (X 1)(X 2)^2$. A et B sont inversibles car de déterminant non nul et donc rg(A) = rg(B) = 3. A et B ont donc même trace, même rang, même déterminant et même polynôme caractéristique.
- Soit $M \in \mathcal{M}_n(\mathbb{R})$. On sait que M est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ si et seulement si χ_M est scindé sur \mathbb{R} et l'ordre de multiplicité de chaque valeur propre de M est égale à la dimension du sous-espace propre correspondant. D'autre part, on sait que le sous-espace propre associé à une valeur propre simple est toujours une droite vectorielle, que M soit diagonalisable ou pas.

Ici, A et B ont le même polynôme caractéristique à savoir $\chi_A = \chi_B = (X-1)(X-2)^2$. D'après ce qui précède, A (resp. B) est diagonalisable si et seulement si dim $(\text{Ker}(A-2I_2))=2$ ce qui équivaut à $\text{rg}(A-2I_3)=1$ d'après le théorème du rang (resp. $rg(B - 2I_3) = 1$).

Or,
$$\operatorname{rg}(A - 2I_3) = \operatorname{rg}\begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1$$
 et $\operatorname{rg}(B - 2I_3) = \operatorname{rg}\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = 2$. Donc, A est diagonalisable dans

Ainsi, A est semblable à une matrice diagonale et B ne l'est pas. Puisque la relation de similitude est transitive, A et B ne sont pas semblables.

• μ_A et μ_B sont chacun un diviseur unitaire du polynôme caractéristique $(X-1)(X-2)^2$ (d'après le théorème de CAYLEY-HAMILTON), admettant 1 et 2 pour racines. Donc, μ_A et μ_B sont chacun l'un des deux polynômes (X-1)(X-2) ou $(X-1)(X-2)^2$. On sait qu'une matrice réelle est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ si et seulement si son polynôme minimal est scindé sur \mathbb{R} , à racines simples. Donc, le polynôme minimal de A (resp. B) est (X-1)(X-2) si et seulement si A (resp. B) est diagonalisable.

D'après ce qui précède, A est diagonalisable puis $\mu_A = (X-1)(X-2)$ et B n'est pas diagonalisable puis $\mu_B = (X-1)(X-2)^2$. Finalement, les matrices A et B n'ont pas le même polynôme minimal.

Q10 Première méthode. Soit u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A. Si on note $\mathscr{B} =$ (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 , alors $\mathfrak{u}(e_1) = e_2 + 2e_3$, $\mathfrak{u}(e_2) = e_1 + e_3$ et $\mathfrak{u}(e_3) = e_1$.

Posons $e'_1 = e_2$, $e'_2 = e_1$ et $e'_3 = e_3$. $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une autre base de \mathbb{R}^3 .

 $\mathfrak{u}\left(e_{1}^{\prime}\right)=\mathfrak{u}\left(e_{2}\right)=e_{1}+e_{3}=e_{2}^{\prime}+e_{3}^{\prime},\ \mathfrak{u}\left(e_{2}^{\prime}\right)=\mathfrak{u}\left(e_{1}\right)=e_{2}+2e_{3}=e_{1}^{\prime}+2e_{3}^{\prime}$ et $\mathfrak{u}\left(e_{3}^{\prime}\right)=\mathfrak{u}\left(e_{3}\right)=e_{1}=e_{2}^{\prime}.$ Donc, $\operatorname{Mat}_{\mathscr{B}^{\prime}}\mathfrak{u}=B$. Puisque A et B sont les matrices d'un même endomorphisme \mathfrak{u} relativement à des bases différentes,

Donc,
$$\operatorname{Mat}_{\mathscr{B}'}\mathfrak{u}=B$$
. Puisque A et B sont les matrices d'un même endomorphisme \mathfrak{u} relativement. A et B sont semblables. Plus explicitement, si $P=\operatorname{Mat}_{\mathscr{B}}\mathscr{B}'=\begin{pmatrix}0&1&0\\1&0&0\\0&0&1\end{pmatrix}$, alors $B=P^{-1}AP$.

Deuxième méthode. En développant suivant la première colonne, on obtient

$$\chi_{A} = \begin{vmatrix} X & -1 & -1 \\ -1 & X & 0 \\ -2 & -1 & X \end{vmatrix} = X(X^{2}) + (-X - 1) - 2(X)$$
$$= X^{3} - 3X - 1,$$

et de même,

$$\chi_{\rm B} = \begin{vmatrix} X & -1 & 0 \\ -1 & X & -1 \\ -1 & -2 & X \end{vmatrix} = X(X^2 - 2) + (-X) - (1)$$
$$= X^3 - 3X - 1.$$

Pour tout réel x, posons $P(x) = x^3 - 3x - 1$. Pour tout réel x, $P'(x) = 3(x^2 - 1)$. La fonction P est continue sur $]-\infty, -1]$ et vérifie $\lim_{x\to\infty} P(x) = -\infty < 0$ et P(-1) = 1 > 0. Donc, la fonction P(x) s'annule au moins une fois dans $P(x) = -\infty$, $P(x) = -\infty$, P(x) = le théorème des valeurs intermédiaires. Ensuite, P(1) = -3 < 0 et donc P s'annule au moins une fois dans]-1,1[puis une fois dans]1, $+\infty$ [car $\lim_{x\to +\infty} P(x) = +\infty > 0$. Ainsi, P a au moins trois racines réelles deux à deux distinctes. Puisque P est de degré 3, P a exactement trois racines réelles deux à deux distinctes α , β et γ , toutes simples.

Ainsi, χ_A et χ_B sont scindés sur \mathbb{R} , à racines simples. Donc, A et B sont diagonalisables dans \mathbb{R} . Plus précisément, A et B sont toutes deux semblables à la matrice $D = \operatorname{diag}(\alpha, \beta, \gamma)$. Mais alors, par transitivité, A et B sont semblables.

Q11 Soit u l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique $\mathscr{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n est A. u est de rang 1. D'après le théorème du rang, $\operatorname{Ker}(\mathfrak{u})$ est de dimension $\mathfrak{n}-1$. Soit $(e'_1,\ldots,e'_{\mathfrak{n}-1})$ une base de $\operatorname{Ker}(\mathfrak{u})$. $(e'_1,\ldots,e'_{\mathfrak{n}-1})$ est une famille libre de \mathbb{R}^n . On peut compléter cette famille en une base $\mathscr{B}'=(e_1',\ldots,e_n')$. Dans cette base, la matrice

$$\mathrm{de}\;U\;\mathrm{est}\;\mathrm{de}\;\mathrm{la}\;\mathrm{forme}\;U=\left(\begin{array}{cccc}0&\ldots&0&\alpha_1\\ \vdots&&\vdots&\vdots\\ \vdots&&\vdots&\vdots\\0&\ldots&0&\alpha_n\end{array}\right).$$

Soit P la matrice de passage de \mathscr{B} à \mathscr{B}' . Les formules de changement de base fournissent $U = P^{-1}AP$. A est donc semblable à U.

Q12D'après la question précédente, il existe une base \mathscr{B} de E telle que $\mathrm{Mat}_{\mathscr{B}}(\mathsf{u}) = \mathsf{U}$. On en déduit que :

$$\operatorname{Mat}_{\mathscr{B}}\left(u^{2}\right)=U^{2}=\left(\begin{array}{cccc}0&\ldots&0&\alpha_{1}\\ \vdots&&\vdots&\alpha_{2}\\ \vdots&&\vdots&\vdots\\0&\ldots&0&\alpha_{n}\end{array}\right)\left(\begin{array}{cccc}0&\ldots&0&\alpha_{1}\\ \vdots&&\vdots&\alpha_{2}\\ \vdots&&\vdots&\vdots\\0&\ldots&0&\alpha_{n}\end{array}\right)=\left(\begin{array}{cccc}0&\ldots&0&\alpha_{1}\alpha_{n}\\ \vdots&&\vdots&\alpha_{2}\alpha_{n}\\ \vdots&&\vdots&\vdots\\0&\ldots&0&\alpha_{n}^{2}\end{array}\right).$$

Si $a_n=0$, alors $U^2=0$ puis $u^2=0$ ce qui n'est pas. Donc, $a_n\neq 0$.

Le polynôme caractéristique de $\mathfrak u$ est $\chi_{\mathfrak u}=\chi_{\mathfrak U}=X^{n-1}\,(X-\mathfrak a_n).$ Déjà, $\chi_{\mathfrak u}$ est scindé sur $\mathbb R$. Puisque $\mathfrak a_n\neq 0$, $\mathfrak u$ admet $\mathfrak 0$ pour valeur propre d'ordre n-1 et a_n pour valeur propre simple. La dimension de $E_{a_n}(u)$ est 1. D'autre part, d'après le théorème du rang, la dimension de $E_0(u)$ est n-1 qui est aussi l'ordre de multiplicité de 0. Finalement, χ_u est scindé sur R et la dimension de chaque sous-espace propre est égale à l'ordre de multiplicité de la valeur propre correspondante. On en déduit que u est diagonalisable.

 $\label{eq:Q13} \mathbf{Q13} \quad \mathrm{Soit} \ A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 2i \end{array} \right) \! . \ A \ \mathrm{est} \ \mathrm{une} \ \mathrm{matrice} \ \mathrm{sym\acute{e}trique} \ \mathrm{complexe}. \ \mathrm{Ensuite},$ $\chi_A = X^2 - \left(\mathrm{Tr}(A) \right) X + \det(A) = X^2 - 2iX - 1 = (X-i)^2.$

$$\chi_A = X^2 - (\text{Tr}(A)) X + \det(A) = X^2 - 2iX - 1 = (X - i)^2.$$

Donc, $\operatorname{Sp}(A)=(\mathfrak{i},\mathfrak{i})$. Si A est diagonalisable dans $\mathscr{M}_2(\mathbb{C})$, A est semblable à diag $(\mathfrak{i},\mathfrak{i})=\mathfrak{i} I_2$ et donc égale à $\mathfrak{i} I_2$. Ceci est faux et donc A n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ bien que symétrique.

Une matrice symétrique complexe n'est pas nécessairement diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

Q14 En notant C_1 , C_2 , C_3 et C_4 les quatre colonnes de A, on a $C_3 = C_1$ et $C_4 = C_2$. Donc, $\operatorname{rg}(A) = \operatorname{rg}(C_1, C_2, C_3, C_4) = \operatorname{rg}(C_1, C_2, C_3, C_4)$ $\operatorname{rg}(C_1, C_2)$ puis $\operatorname{rg}(A) \leq 2$.

D'autre part, la matrice extraite de format 2 obtenue en supprimant les deux dernières lignes et les deux dernières colonnes de A a un déterminant égal à $\begin{vmatrix} \alpha & \beta \\ \beta & \alpha \end{vmatrix} = \alpha^2 - \beta^2$. Ce déterminant n'est pas nul car $\beta \neq \pm \alpha$ et donc $\operatorname{rg}(A) \geqslant 2$. Finalement rg(A) = 2.

En particulier, rg(A) < 4 et donc A n'est pas inversible puis 0 est valeur propre de A. Plus précisément, d'après le théorème du rang, $E_0(A) = \text{Ker}(A)$ est de dimension 4-2=2 et donc 0 est valeur propre d'ordre de multiplicité au moins 2.

$$A-2(\alpha+\beta)I_4=\left(\begin{array}{cccc} -\alpha-2\beta & \beta & \alpha & \beta\\ \beta & -\alpha-2\beta & \beta & \alpha\\ \alpha & \beta & -\alpha-2\beta & \beta\\ \beta & \alpha & \beta & -\alpha-2\beta \end{array}\right). \text{ La somme des colonnes de la matrice } A-2(\alpha+\beta)I_4$$

est nulle et donc $\operatorname{rg}(A-2(\alpha+\beta)I_4)<4$ puis $A-2(\alpha+\beta)I_4\notin\operatorname{GL}_4(\mathbb{C})$. On en déduit que $2(\alpha+\beta)$ est valeur propre de A. On note que $2(\alpha + \beta) \neq 0$ et donc $2(\alpha + \beta)$ est une nouvelle valeur propre de A en plus de 0 et 0.

La dernière valeur propre λ de A est fournie par la trace de A:

$$4\alpha = \text{Tr}(A) = 0 + 0 + 2(\alpha + \beta) + \lambda$$

et donc $\lambda = 2(\alpha - \beta)$. Finalement, $\operatorname{Sp}(A) = (0, 0, 2(\alpha + \beta), 2(\alpha - \beta))$. On note que $2(\alpha - \beta) \neq 0$ car $\alpha \neq \beta$ et $2(\alpha + \beta) \neq 0$ $2(\alpha - \beta)$ car $\beta \neq 0$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{C}).$$

$$X \in \operatorname{Ker}(A) \Leftrightarrow \left\{ \begin{array}{l} \alpha x + \beta y + \alpha z + \beta t = 0 \\ \beta x + \alpha y + \beta z + \alpha t = 0 \end{array} \right..$$

Les vecteurs $u_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ et $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$ sont deux vecteurs non colinéaires de $E_0(A)$. Puisque $E_0(A)$ est de dimension

Puisque la somme des colonnes de $A - 2(\alpha + \beta)I_4$ est nulle, le vecteur $u_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur non nul de $E_{2(\alpha + \beta)}(A)$.

Puisque $E_{2(\alpha+\beta)}(A)$ est de dimension 1 (car $2(\alpha+\beta)$ est valeur propre simple de A), (u_3) est une base de $E_{2(\alpha+\beta)}(A)$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{C}).$$

$$X \in \mathrm{Ker}\,(A-2(\alpha-\beta)I_4) \Leftrightarrow \left\{ \begin{array}{l} (-\alpha+2\beta)x+\beta y+\alpha z+\beta t=0 \\ \beta x+(-\alpha+2\beta)y+\beta z+\alpha t=0 \\ \alpha x+\beta y+(-\alpha+2\beta)z+\beta t=0 \\ \beta x+\alpha y+\beta z+(-\alpha+2\beta)t=0 \end{array} \right..$$

Le vecteur $u_4=\left(\begin{array}{c} -1\\ 1\\ -1\end{array}\right)$ est un vecteur non nul de $E_{2(\alpha-\beta)}(A)$. Puisque $E_{2(\alpha-\beta)}(A)$ est de dimension 1 (car $2(\alpha-\beta)$

 $\text{Puisque la somme } E_0(A) + E_{2(\alpha + \beta)} + E_{2(\alpha - \beta)} \text{ est directe, la famille } (u_1, u_2, u_3, u_4) \text{ est une famille libre de } \mathcal{M}_{4,1}(\mathbb{C}).$ Etant de cardinal 4, la famille (u_1, u_2, u_3, u_4) est une base de $\mathcal{M}_{4,1}(\mathbb{C})$ constituée de vecteurs propres de A. A est donc diagonalisable.

Q15 Soit $\mathfrak u$ l'endomorphisme de $\mathbb R^2$ de matrice A dans la base canonique $\mathscr B=(e_1,e_2)$ de $\mathbb R^2$. Donc, $\mathfrak u(e_1)=\lambda e_1$ et

Soient $e_1' = \frac{a}{b}e_1$ et $e_2' = e_2$. e_1' et e_2' sont bien définis car $b \neq 0$ et $\mathcal{B}' = (e_1', e_2')$ est une base de \mathbb{R}^2 car $a \neq 0$. Puisque e_1' est colinéaire au vecteur propre e_1 , on a encore $\mathfrak{u}(e_1') = \lambda e_1'$. D'autre part,

$$u(e'_2) = u(e_2) = ae_1 + \lambda e_2 = a\frac{b}{a}e'_1 + \lambda e'_2 = be'_1 + \lambda e'_2.$$

Donc, $\operatorname{Mat}_{\mathscr{B}'}(\mathfrak{u})=B$. Ceci montre que les matrices A et B sont semblables $\operatorname{car} A=\operatorname{Mat}_{\mathscr{B}}(\mathfrak{u})$ et $B=\operatorname{Mat}_{\mathscr{B}'}(\mathfrak{u})$.

Partie II - Démonstration d'un résultat

Q16 L'égalité $B = P^{-1}AP$ fournit l'égalité PB = AP puis RB + iSB = AR + iAS. Puisque A et B sont réelles, par identification des parties réelles et des parties imaginaires, on obtient RB = AR et SB = AS.

Q17 En développant le déterminant, on voit que la fonction $f: x \mapsto \det(R + xS)$, définie sur \mathbb{C} , est polynomiale en x. De plus, $f(i) = \det(R + iS) = \det(P) \neq 0$ et donc f n'est pas le polynôme nul.

Donc, le polynôme f admet un nombre fini, éventuellement nul, de racines dans \mathbb{C} . Puisque \mathbb{R} est infini, il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) \neq 0$ ou encore tel que det $(R + x_0 S) \neq 0$.

Q18 Soit $P_0 = R + x_0 S$. La matrice P_0 est réelle et inversible. De plus,

$$P_0B = (R + x_0S)B = RB + x_0SB = AR + x_0AS = A(R + x_0S) = AP_0.$$

Puisque P_0 est inversible, on en déduit encore que $B = P_0^{-1}AP_0$. Les matrices A et B sont donc semblables dans $\mathcal{M}_n(\mathbb{R})$.

$$\mathbf{Q19} \quad \chi_{B} = \left| \begin{array}{ccc} X & 0 & 0 \\ 0 & X & -1 \\ 0 & 1 & X \end{array} \right| = X \left(X^2 + 1 \right) = X^3 + X = X(X - \mathbf{i})(X + \mathbf{i}). \text{ B est à valeurs propres simples dans } \mathbb{C}. \text{ Donc, B est diagonalisable dans } \mathbb{C} \text{ puis B est semblable dans } \mathbb{C} \text{ à la matrice } D = \operatorname{diag}(\mathbf{0}, \mathbf{i}, -\mathbf{i}).$$

Le même raisonnement s'applique à la matrice A dont le polynôme caractéristique est $X^3 + X : A$ est semblable dans $\mathcal{M}_3(\mathbb{C})$ à la matrice $D = \operatorname{diag}(0, i, -i)$. Mais alors, par transitivité, A et B sont semblables dans $\mathcal{M}_3(\mathbb{C})$. Puisque A et B sont réelles, A et B sont semblables dans $\mathcal{M}_3(\mathbb{R})$.

Partie III

Q20 Soient A et B deux éléments de $\mathcal{M}_2(\mathbb{R})$ telles que $\chi_A = \chi_B$ et $\mu_A = \mu_B$.

1er cas. Supposons que χ_A a deux racines réelles distinctes x_0 et x_1 . Dans ce cas, $\chi_A = \chi_B = \mu_A = \mu_B = (X - x_0) (X - x_1)$. A et B sont diagonalisables dans \mathbb{R} , toutes deux semblables dans \mathbb{R} à $D = \operatorname{diag}(x_0, x_1)$. Puis A et B sont semblables dans \mathbb{R} par transitivité.

2ème cas. Supposons que χ_A a deux racines non réelles conjuguées z_0 et $\overline{z_0}$ (χ_A étant à coefficients réels). Dans ce cas, $\chi_A = \chi_B = \mu_A = \mu_B = (X - z_0) (X - \overline{z_0})$. A et B sont diagonalisables dans $\mathbb C$, toutes deux semblables dans $\mathbb C$ à $D = \operatorname{diag}(z_0,\overline{z_0})$. Puis A et B sont semblables dans $\mathbb C$ par transitivité. A et B étant à coefficients réels, A et B sont semblables dans $\mathbb R$.

3ème cas. Supposons que χ_A a une racine double réelle x_0 . Dans ce cas, $\chi_A = \chi_B = (X - x_0)^2$. On a alors deux cas possibles pour le polynôme minimal : $\mu_A = \mu_B = X - x_0$ ou $\mu_A = \mu_B = (X - x_0)^2$.

Le premier sous-cas, $\mu_A = \mu_B = X - x_0$ est le cas où $A = x_0 I_2 = B$. Dans ce cas, A et B sont semblables dans $\mathbb R$ car égales.

Le deuxième sous-cas est le cas où $\chi_A = \chi_B = (X-x_0)^2 = \mu_A = \mu_B$. Dans ce cas, A et B ne sont pas diagonalisables car leur polynôme minimal n'est pas à racines simples. Le sous-espace propre $E_{x_0}(A)$ est donc de dimension 1 puis A est semblable dans $\mathbb R$ à une matrice de la forme $\begin{pmatrix} x_0 & \times \\ 0 & \times \end{pmatrix}$ puis, plus précisément, à une matrice de la forme $\begin{pmatrix} x_0 & \alpha \\ 0 & x_0 \end{pmatrix}$ où x_0 et α sont deux réels (car $\chi_A = (X-x_0)^2$), α étant non nul car sinon, on se retrouve dans le sous-cas précédent. De même, B est semblable dans $\mathbb R$ à une matrice de la forme $\begin{pmatrix} x_0 & b \\ 0 & x_0 \end{pmatrix}$ où b est réel un réel non nul. D'après la question Q15 et par transitivité, A et B sont semblables dans $\mathbb R$.

Dans tous les cas, les matrices A et B sont semblables.

Q21 Soit $N = E_{1,2} \neq 0$. On a $N^2 = 0$ puis $\chi_N = X^4$ (car toute valeur propre de N dans $\mathbb C$ est racine du polynôme annulateur X^2 et est donc nulle) et $\mu_N = X^2$ (car X^2 est unitaire et annulateur de N et X ne l'est pas). Soit $N' = E_{1,3} + E_{2,4}$. On a de même, $N'^2 = 0$ $\chi_{N'} = X^4$ et $\mu_{N'} = X^2$. N et N' sont deux éléments de $\mathcal{M}_{4,1}(\mathbb{R})$ ayant même polynôme caractéristique et même polynôme minimal.

Mais rg(N) = 1 et rg(N') = 2. Donc, N et N' n'ont pas le même rang et en particulier, N et N' ne sont pas semblables.