UGBA 141 Discussion 10

Agenda: - Amazon Experience

- Little's Law
- Poisson and Exponential
- Supply Chain Recap

April 1, 2022 Hansheng Jiang

Reminder

- HW5 is out (only need to one of HW4 and HW5, can also do both: see grading policy on bCourses)
- Schedule the second team meeting with sponsors
- Project Brief Update due Sun 4/3
- Read Case "Rent the Runway" for Monday's class
- Read about Littlefield simulation in bCourses/Files
- Sheet04_SupplyChain is available on bcourses
 - https://bcourses.berkeley.edu/courses/1510160/files/folder/Discussion%20Materials/Cheatsheets? preview=83022468

Amazon Supply Chain Optimization Technologies

Tech in Amazon

- Most customers think of Amazon as a retailing/logistics company
- What is the **Tech** behind the current practice of retailing/ logistics that help Amazon generate more revenue while providing better service to customers?
- An important theme: Data -> Decisions
- Some examples
 - Personalized recommendations
 - Demand forecasting
 - Optimizing costs in logistics
- Check out https://www.amazon.science/ for more cool projects

Little's Law

Little's Law Practice Problem I

- Average flow rate R = 5/12 callers/min
- Average flow time T = (2+5+4+1+2)/5 = 14/5 min
- Average inventory *I* = R * T = 5/12 * 2.8 = 7/6 callers

Little's Law Practice Problem II

SF-based O'Neill buys wetsuits from a supplier in Thailand:

- Each month they order 15,000 wetsuits on average, R = 15,000
- On average, there are / = 30,000 wetsuits in transit from Thailand to SF

- Question: What is the annual inventory turns of wetsuits?
 - Hint: connect inventory turn with flow time
 - -R = 15000 * 12 month/year = 180,000
 - -T = I/R = 30,000/180,000 = 1/6 year = 2 month

Preview: Poisson Distribution and Exponential Distribution

 Two useful random distributions that can model a number of objects in practice

Poisson Distribution		Exponential Distribution
Number of cars passing in a drive-thru in a hour	CHENTE THERE	Number of minutes between car arrivals in drive-thru
Number of phone calls received in a call center in an hour		The time it takes for a call center executive respond to a caller
Number of machines breakdown in a month		Time between machine breakdown

Exponential Distribution

- A random distribution with parameter λ
 - Model the random time between two consecutive arrival of customers
 - Model the random service time
- Key properties

_ Mean = Std =
$$\frac{1}{\lambda}$$
 = expected time

- Valued as nonnegative number
- Example in practice:
 - -The time between two arrivals of passengers at the bus stop
 - -The time between two phone calls to service center

Poisson Distribution

- A random distribution with parameter λ
 - Model the number of occurrences per unit of time or space
- Key properties
 - Mean = λ = **expected number**
 - Std = $\sqrt{\lambda}$
 - Valued as non-negative integer
- Example in practice
 - -How many passengers arrive at a but stop during 20min
 - How many phone calls does the service center receive in one hour

Relation of Poisson and Exponential

If the Poisson Distribution captures a random number of occurrences per unit of time

Then, the related Exponential
Distribution captures the random time duration BETWEEN each occurrence.

This relationship is not so easy to show when the Poisson Distribution is used per unit of space, since space is 2-D. In this course, we will only focus on applying these distributions to time (i.e. customer arrival times, service processing times, etc.).

For Example:

"The number of customers arriving at the post-office each lunch-hour on weekdays is Poisson distributed with rate 20 per hour."

"The interarrival time (time elapsed between subsequent customer arrivals) during weekday lunch-hours at the postoffice is exponentially distributed with a mean of 3 minutes."

Poisson =
$$\frac{20 \text{ customers}}{1 \text{ hour}}$$
 \Rightarrow Flip it to get \Rightarrow Exponential = $\frac{1 \text{ hour}}{20 \text{ customers}} * \frac{60 \text{ minutes}}{1 \text{ hour}} = \frac{3 \text{ minutes}}{1 \text{ customer}}$