Билет 7

Понятие функции (отображения). Числовая последовательность, определение числовой последовательности.

Определение функции

Пусть заданы непустые множества X и Y

Соответствие, по которому каждому элементу $x \in X$ соответстует единственный элемент $y \in Y$, называется функцией, заданной (определённой) на множестве X со значениями в множестве Y или отображением множества X в множество Y

Функция (отображение) f из X в Y обозначается $f: X \to Y$ и любому $x \in X$ ставится в соответствие $y = f(x) \in Y$

Элемент $x \in X$ называется независимым переменным или аргументом, а соответствующий элемент $y \in Y$ — зависимым переменным

Множество X называется множеством задания (определения) функции f, а множестов тех $y \in Y$, для которых $\exists x \in X : y = f(x)$ — множеством значений функции f

Виды задания фунций:

- 1. Явный: x и f(x) известны, y = f(x)
- 2. Неявный: существует какая-то формула связывающая x и f(x)
- 3. Табличный
- 4. Графический

Определение естественного расширения функции

Естественное расширение отображения $f: X \to Y$, это отображение \widetilde{f} , заданное на множестве подмножеств множества X формулой

$$\widetilde{f}(\alpha) := \{ y \in Y \mid \exists x \in \alpha : y = f(x) \}, \ \alpha \subset X$$

Обозначение: $\widetilde{f}:2^X\to 2^Y,$ где $2^A:=\{\alpha\mid \alpha\subset A\}$

Если $z \in 2^X,$ то $\widetilde{f}(z)$ — образ множества z, а z — прообраз множества $\widetilde{f}(z)$

Обычно тильду опускают и \widetilde{f} тоже обозначают через f

Определение числовой последовательности

Пусть существует отображение $f: \mathbb{N} \to \mathbb{R}$ и $a_n = f(n)$

Тогда получим числовую последовательность $\{a_n\}_{n=1}^{\infty}$, где элементы a_n расположены в пордяке возрастания n

Виды задания последовательности:

- 1. Явный (в виде формулы): $a_n = f(n)$
- 2. Неявный или рекурентный: $a_n = f(a_{n-1}, a_{n-2}, ...)$
- 3. Существуют последовательности, которые нельзя задать какой-либо формулой. (например, последовательность простых чисел)

1

Классификация числовых последовательностей

Пусть $\{a_n\}_{n=1}^{\infty}$ — последовательрность вещественных чисел.

- 1. Если $(\forall n \in \mathbb{N})$ $a_{n+1} > a_n$, то $\{a_n\}_{n=1}^\infty$ строго возрастающая.
- 2. Если $(\forall n \in \mathbb{N})$ $a_{n+1} \ge a_n$, то $\{a_n\}_{n=1}^\infty$ возрастающая (неубывающая).
- 3. Если $(\forall n \in \mathbb{N})$ $a_{n+1} \leq a_n$, то $\{a_n\}_{n=1}^\infty$ убывающая (невозрастающая).
- 4. Если ($\forall n \in \mathbb{N}$) $a_{n+1} < a_n$, то $\{a_n\}_{n=1}^\infty$ строго убывающая.
- 5. Если последовательность строго возрастающая или строго убывающая, то она строго монотонна
- 6. Если последовательность возрастающая или убывающая, то она монотонна