Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\frac{\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\frac{\tau_{1}^{\#2\alpha} + 2 ik\sigma_{1}^{\#2\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{X} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	
Total constraints/gau	ige generators:	16

$ \sigma_{2^{+}}^{\#1} + \alpha \beta \qquad \tau_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{+} \alpha \beta}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{+} \alpha \beta \chi}^{\#1} \qquad \sigma_{2^{-} \alpha \beta \chi}^{\#$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{A}_{2}^{\#1} + \mathcal{A}_{3}^{\#1}$ $\mathcal{A}_{2}^{\#1} + \mathcal{A}_{3}^{\#1} + \mathcal{A}_{3}^{\#1}$ $\mathcal{A}_{2}^{\#1} + \mathcal{A}_{3}^{\#1} + \mathcal{A}_{3}^{\#1}$ $\mathcal{A}_{3}^{\#1} + \mathcal{A}_{3}^{\#1} + \mathcal{A}_{3}^{\#1}$		£1				
$\begin{aligned} & \frac{\theta}{l_{,}} + 6 f^{\alpha\beta} \tau_{\alpha} \\ & 8t_{3} \mathcal{A}_{\alpha}^{\ \theta} + 3 f^{\alpha} \\ & 8t_{3} \mathcal{A}_{\alpha}^{\ \theta} + 3 f^{\alpha} \\ & 4t_{3} \mathcal{A}_{f}^{\ \theta} + 3 \partial_{f} f^{\alpha} \\ & 4t_{3} \partial_{f} f^{\alpha} + 3 \partial_{f} f^{\alpha} \\ & 4t_{1} \mathcal{A}_{f\theta\alpha} \partial_{\theta} f^{\alpha} \\ & 2t_{2} \partial_{\alpha} f_{i\theta} \partial_{\theta} f^{\alpha} + 2 t_{2} \partial_{\theta} f^{\alpha} + t_{3} \partial_{f} f^{\alpha} \partial_{\theta} f^{\alpha} \\ & 2t_{2} \partial_{\theta} f_{i\theta} \partial_{\theta} f^{\alpha} + t_{3} \partial_{\theta} f^{\alpha} + t_{4} \partial_{\theta} f^{\alpha} + t_{5} \partial_{\theta} f^{\alpha$	$ \tau_{0+}^{\#1} \dagger \frac{i}{(1+2)} $ $ \tau_{0+}^{\#2} \dagger $	$ \frac{1}{k^{2})^{2} t_{3}} - \frac{i \sqrt{(1+2k^{2})^{2} t_{3}}}{(1+2k^{2})^{2} t_{3}} - \frac{2k}{(1+2k^{2})^{2} t_{3}} $ $ 0 \qquad 0 $ $ 0 \qquad 0 $ $ \mathcal{A}_{1}^{\#1} \alpha \beta $	$\frac{2}{2)^2 t_3} = 0$ 0 0)	${\mathscr R}_1^{\#1}{}_{lpha}$	$\mathscr{F}_{1^{-}\alpha}^{\#2}$	$f_{1}^{\#1}{}_{lpha}$	
$A_{I,\theta}^{\theta} - 4t_{3} \mathcal{A}^{\alpha_{I}} \mathcal{A}_{\alpha}^{\theta}$ $4t_{1} \mathcal{A}_{\alpha}^{\theta} \partial_{f} f^{\alpha_{I}} + 8$ $8t_{3} \mathcal{A}_{I,\theta}^{\theta} \partial_{f} f^{\alpha_{I}} + 8$ $2t_{1} \partial_{f} f^{\alpha_{I}} \partial_{\theta} f_{\alpha}^{\theta} + 4$ $2t_{1} \partial_{f} f^{\alpha_{I}} \partial_{\theta} f^{\alpha_{I}} + 2t_{1}$ $4t_{1} \partial_{\alpha} f_{I,\theta} \partial^{\theta} f^{\alpha_{I}} + 2t_{1}$ $4t_{1} \partial_{\theta} f_{\alpha_{I}} \partial^{\theta} f^{\alpha_{I}} + 2t_{1}$ $4t_{1} \partial_{\theta} f_{\alpha_{I}} \partial^{\theta} f^{\alpha_{I}} + 2t_{1}$ $2\mathcal{A}_{\alpha\theta_{I}} ((t_{1} - 2t_{2}) \mathcal{S}_{g} \mathcal{A}_{\alpha_{I}\theta} \partial^{\theta} \mathcal{A}^{\alpha_{I}} + 2(t_{2} \mathcal{S}_{g} \mathcal{A}_{\alpha_{I}\theta} \partial^{\theta} \mathcal{A}^{\alpha_{I}\theta} \partial^{\theta} $	$\mathscr{R}_{1}^{\sharp 1}\! +^{lphaeta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	
n $A_{i}^{\theta} - 4t_{3} \mathcal{A}^{\alpha}$ $4t_{1} \mathcal{A}_{\alpha}^{\theta} = \partial_{i}f$ $8t_{3} \mathcal{A}_{i}^{\theta} = \partial_{i}f$ $2t_{1} \partial_{i}f^{\alpha i} \partial_{\theta}f$ $8t_{3} \partial^{i}f^{\alpha} \partial_{\theta}f$ $4t_{1} \partial_{\alpha}f_{i,\theta} \partial^{\theta}f$ $4t_{1} \partial_{\theta}f_{\alpha i} \partial^{\theta}f$ $4t_{1} \partial_{\theta}f_{\alpha i} \partial^{\theta}f$ $2\mathcal{A}_{\alpha\theta i} ((t_{1} - 2\mathcal{A}_{\theta} + 2\mathcal{A}_{\alpha i})^{\theta})$ $8t_{2} \partial_{\theta}\mathcal{A}_{\alpha i} \partial^{\theta}f$ $\theta^{2}\mathcal{A}_{\alpha i} \partial^{\theta}f^{\alpha i}$ $4t_{2} \partial_{\theta}\mathcal{A}_{\alpha i} \partial^{\theta}f^{\alpha i}$ $\theta^{2}\mathcal{A}_{\alpha i} \partial^{\theta}f^{\alpha i}$	$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	<u>t₁+t₂</u> 3	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	
ction $ \begin{array}{ccc} \alpha' & \mathcal{A}_{1} \\ & 4 t_{1} \\ & 4 t_{1} \\ & 8 t_{3} \\ & 4 t_{1} \\ & 4 t_{1} \\ & 2 g \\ & 8 t_{2} \\ & 9 \\ &$	$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{i}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	
$t_1 \mathcal{A}^{\alpha_1}$	$\mathcal{A}_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	
Quadratic (free) action $S == \iiint_{0}^{\infty} \frac{1}{e} (2t_{1} \mathcal{A}^{\alpha}) \mathcal{A}$	$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$		0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	-
Quadratic ($S == \iiint \left(\frac{1}{6}\right)$	$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	
త స	$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	

 $f_{1-\alpha}^{\#2}$

0

0

0

 $\frac{1}{3}$ i k (t₁ - 2 t₃)

 $\frac{1}{3}i\sqrt{2}k(t_1+t_3)$

 $\frac{2}{3}k^2(t_1+t_3)$

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	${\mathfrak l}_1^{\#1}$	$\sigma_{1^-}^{\#1}{}_{lpha}$	$\sigma_{1^-}^{\#2}{}_{lpha}$	$\tau_{1^{-}}^{\#1}\alpha$	$ au_1^{\#2}$	
$\sigma_{1}^{\#1} + ^{\alpha eta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	
$\sigma_{1}^{\#2} + \alpha \beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	
$\tau_1^{\#1} + \alpha \beta$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	
$\sigma_1^{\#1} +^{lpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	
$\sigma_1^{\#2} + ^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0	
$\tau_{1}^{\#2} + \alpha$	0	0	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2 k^2 (t_1 + 4 t_3)}{3 (1 + 2 k^2)^2 t_1 t_3}$	

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$