이진 트리 분할

이진 트리 T에 있는 임의의 한 에지 e를 제거하면 T는 두 개의 부분트리(subtree)로 나누어진다. 사실 이런 성질은 이진 트리뿐만 아니라 모든 트리에서 성립한다. 그래서 트리의 모든 에지는 절단 에지(cut edge)가 된다. (또한모든 에지가 절단 에지이고, 연결된 그래프라면 그 그래프는 반드시 트리다.)

예를 들어 위 그림에 보인 이진 트리에서 노드 2와 6을 잇는 에지 (2,6)을 제거하면 아래와 같이 두 이진 트리로 분할된다.

이진 트리 T에 있는 에지 하나를 제거하고 나서 생기는 부분트리를 T_1 , T_2 라고 부르자. T의 정점 개수를 n이라고 하면 T_1 , T_2 의 정점 개수 합은 항상 n이겠지만, T_1 , T_2 의 정점 개수의 차이는 어떤 에지를 제거하느냐에 따라다양하게 나타날 수 있다. 여러분이 할 일은이진 트리가 입력으로 주어질 때, 제거하였을때 생기는 두 부분트리의 정점 개수 차이가 가장 작은 에지를 찾는 프로그램을 작성하는 것이다. 프로그램 이름은 divide.cpp(c)로 하고,

프로그램의 실행시간은 1초를 초과할 수 없다.

입력 형식

표준 입력을 통하여 입력한다. 첫째 줄에 이진 트리의 노드 개수를 나타내는 정수 n이 주어 진다. $2 \le n \le 100,000$ 이다. 트리 노드는 1부터 n까지 번호가 붙어있다고 가정한다. 둘째 줄부터 n개의 줄에는 한 줄에 하나씩 트리의 각 노드와 그것의 왼쪽, 오른쪽 자식이 순서대로 빈칸을 사이에 두고 입력된다. 왼쪽이나 오른쪽 자식이 없으면 자식 번호 대신에 0이 주어진다.

출력 형식

표준 출력을 통하여 출력한다. 입력으로 주어진 이진 트리에서 에지 하나를 제거하였을 때생기는 두 부분트리의 노드 개수의 최소 차이를 나타내는 정수를 한 줄에 출력한다.

입출력 예 (1)	입출력의 예 (2)
입력	입력
8	7
2 1 6	2 1 0
1 7 3	1 3 4
6 0 8	3 0 7
8 0 0	4 6 5
7 0 0	7 0 0
3 0 0	6 0 0
5 4 2	5 0 0
4 0 0	
출력	출력
2	1

* 앞에서 언급한 이진 트리의 예가 입출력 예 (1)에 있다. 노드 6의 왼쪽 자식이 없고 오른쪽 자식이 8이므로 한 줄에 "6 0 8"과 같이 주어진다. 노드와 그의 자식 노드들은 특별한 순서없이 임의의 순서로 입력될 수 있다. 이 이진 트리사례에서 에지 (2,6)을 제거하면 노드가 6+2 개로 분할되지만, 에지 (2,1)을 제거하면 5+3 개로 분할된다.