Systemy liczbowe

Systemy liczbowe

```
Dziesiętny: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Binarny: {0, 1}
Ósemkowy: {0, 1, 2, 3, 4, 5, 6, 7}
Szesnastkowy: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
```

Systemy liczbowe - przykład

$$418_{10} = 1\ 1010\ 0010_2 = 642_8 = 1A2_{16}$$

Konwersja z dziesiętnego

1. Dzielimy przez podstawę systemu

2. Resztę zapisujemy do wyniku

3. Wynik czytamy od końca

Przykład – konwersja na system binarny

Dzielimy	Reszta z dzielenia
24	0
12	0
6	0
3	1
1	1
0	

Przykład – konwersja na system binarny

Przykład – konwersja na system binarny

Dzielimy	Reszta z dziele	enia
24	0	
12	0	
6	0	
3	1	
1	1	Vierupek czytapia
0		Kierunek czytania

$$24_{10} = 11000_2$$

Ćwiczenia

Przelicz na system binarny, ósemkowy i szesnastkowy:

- 16
- 120
- 2016
- 156
- 333

Ćwiczenia - rozwiązania

- $16 10000_2$, 20_8 , 10_{16}
- $120 1111000_2$, 170_8 , 78_{16}
- $2016 11111100000_2$, 3740_8 , $7E0_{16}$
- $156 10011100_2$, 234_8 , $9C_{16}$
- 333 101001101_2 , 515_8 , $14D_{16}$

Konwersja do dziesiętnego

1. Każdej cyfrze przyporządkowujemy potęgę

2. Zaczynamy od potęgi 0 z prawej strony

3. Potęgi mnożymy przez cyfry

4. Wyniki sumujemy

$$11001_2 = 1 * 2^0 + 0 * 2^1 + 0 * 2^2 + 1 * 2^3 + 1 * 2^4$$
$$153_8 = 3 * 8^0 + 5 * 8^1 + 1 * 8^2$$

Ćwiczenia

Przelicz na system dziesiętny

- 10₂
- 13₈
- A2₁₆
- 110101₂
- 163₈

- 15DE₁₆
- 101010₂
- 2701₈
- EFDC₁₆

Ćwiczenia - rozwiązania

- 10₂ 2₁₀
- 13₈ 11₁₀
- A2₁₆ 12₁₀
- 110101₂ 53₁₀
- 163₈ 115₁₀

- 15DE₁₆ 5598₁₀
- 101010₂ 42₁₀
- 2701₈ 1473₁₀
- EFDC₁₆ 61404₁₀

Kod U2

Kod uzupełnień do dwóch

Pozwala na zapis liczb ujemnych w systemie binarnym

Pierwszy bit jest bitem znaku

Konwersja do U2

- 1. Określamy, na ilu bitach ma zostać zapisana liczba
- 2. Obliczamy postać binarną wartości bezwzględnej
- 3. Uzupełniamy zerami do porządanej liczby bitów
- 4. Zamieniamy cyfry na przeciwne
- 5. Dodajemy binarną jedynkę

Przykład – zapis na 8 bitach

Konwertujemy wartość bezwzględną:

$$|-25_{10}| = 11001_2$$

Uzupełniamy do 8 bitów:

00011001

Zamieniamy bity na przeciwne:

11100110

Dodajemy binarną jedynkę:

11100111

$$-25_{10} = 11100111_{U2}$$

Ćwiczenia

Przelicz z dziesiętnego na U2 i zapisz na 8 bitach

- -1
- -126
- -12
- -101
- -56
- -92

Ćwiczenia - odpowiedzi

Przelicz z dziesiętnego na U2 i zapisz na 8 bitach

- $-1 = 111111111_{U2}$
- \bullet -126 = 10000010_{1/2}
- -12 = 11110100_{U2}
- $-101 = 10011011_{U2}$
- -56 = 11001000_{II2}
- $-92 = 10100100_{U2}$

Konwersja z U2

Pierwszy bit (najbardziej znaczący) mnożymy przez -1

• Dalsza konwersja jak w standardowym przypadku

$$10011001_{U2} = -2^7 + 2^4 + 2^3 + 2^0 = -103$$
$$00011001_{U2} = 2^4 + 2^3 + 2^0 = 25$$

Ćwiczenia

Przelicz z U2 na dziesiętny

- 1001_{U2}
- 10011001_{U2}
- 1111111_{U2}
- 11100101_{U2}
- 10101010_{U2}

Ćwiczenia - odpowiedzi

Przelicz z U2 na dziesiętny

- $1001_{U2} = -7$
- $10011001_{U2} = -123$
- $11111111_{U2} = -1$
- $11100101_{112} = -27$
- $10101010_{U2} = -86$

Liczby rzeczywiste w systemie binarnym

Zapis stałopozycyjny

• "Przecinek" znajduje się w określonym miejscu

Wyraźnie oddzielona część całkowita od ułamkowej

Osobna konwersja części całkowitej i części ułamkowej

Konwersja do binarnego

- 1. Część całkowitą konwertujemy standardowo
- 2. Część ułamkową zamiast dzielić, mnożymy przez 2
- 3. Część całkowitą zapisujemy do wyniku
- 4. Odczytujemy "od góry do dołu"
- 5. Uważamy na ułamki okresowe

Mnożymy	Część całkowita
0,75	
0,5	1
0,0	1

Mnożymy	Część całkowita	
0,75		
0,5	1 Kierunek czytania	
0,0	1 Kierunek czytania	

Mnożymy	Część całkowita	
0,75		
0,5	1 Kierunek czytania	
0,0	1	

$$0,75_{10} = 0,11_2$$

Ćwiczenia

Zamień na liczbę binarną, z dokładnością do 10 cyfr po przecinku

- 0,8125
- 0,16
- 0,3
- 0,125
- 0,7

Ćwiczenia - odpowiedzi

Zamień na liczbę binarną, z dokładnością do 10 cyfr po przecinku

- \bullet 0,8125 = 0,1101₂
- \bullet 0,16 = 0,0010100011₂
- $0,3 = 0,0(1001)_2$
- $0,125 = 0,001_2$
- \bullet 0,7 = 0,1(0110)₂

Konwersja na dziesiętny

- Część całkowitą konwertujemy standardowo
- Część ułamkową zapisujemy z potęgami ujemnymi, zaczynając od -1
- Cyfry mnożymy przez potęgi
- Wynik sumujemy

Ćwiczenia

Zamień na liczbę dziesiętną

- 0,011₂
- 0,11₂
- 0,0101₂
- 0,1101₂
- 0,1111₂

Ćwiczenia - odpowiedzi

Zamień na liczbę dziesiętną

• 0,011₂ =
$$\frac{1}{4} + \frac{1}{8}$$

• 0,11₂ =
$$\frac{1}{2} + \frac{1}{4}$$

• 0,0101₂ =
$$\frac{1}{4} + \frac{1}{16}$$

• 0,1101₂ =
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{16}$$

•
$$0,1111_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$

Zapis zmiennopozycyjny

- Składa się z trzech liczb:
 - Mantysy
 - Podstawy systemu
 - Cechy

$$L = m * 2^c$$

Konwersja do dziesiętnego

- Pierwsza część liczby to cecha, druga to mantysa
- Przyjmijmy następujący format FP:
 - Cecha jest 4-bitową liczbą całkowitą zapisaną w kodzie U2
 - Mantysa jest 4-bitową liczbą stałoprzecinkową zapisaną
 w kodzie U2, z przecinkiem pomiędzy drugim a trzecim bitem
- Konwertujemy cechę i mantysę, a następnie podstawiamy do wzoru

$$10001010_{FP}$$

$$c = 1000_{U2} = -8$$

$$m = 10, 10_{U2} = -1\frac{1}{2}$$

$$L = -1\frac{1}{2} * 2^{-8}$$

Ćwiczenia

Zamień na dziesiętny

- 10111101_{FP}
- 00010100_{FP}
- 11010111_{FP}
- 11111001_{FP}

Ćwiczenia – odpowiedzi

Zamień na dziesiętny

• 10111101_{FP} =
$$-\frac{3}{4} * 2^{-5}$$

- $00010100_{FP} = 1 * 2^1$
- 11010111_{FP} = $1\frac{3}{4} * 2^{-3}$
- 11111001_{FP} = $-1\frac{3}{4} * 2^{-1}$