Caitao Zhan

Personal Website Google Scholar GitHub Profile LinkedIn Profile Email Me

ABOUT ME

I now work in quantum networking/computing/sensing. Previously I work in classical networking/computing/sensing.

EDUCATION

Aug. 2017 \sim Jan. 2024	Stony Brook University GPA: 3.9/4.0	Ph.D. Candidate in Computer Science Advisor: Himanshu Gupta, Thesis: PDF
Sept. $2013 \sim \text{Jun. } 2017$	China University of Geosciences GPA: 92/100	B.S. in Computer Science and Technology Rank: 1/122

EMPLOYMENT

Feb. $2024 \sim \text{Present}$	Postdoc @ Argonne National Lab (Data Science and Learning Division) Quantum networks, SeQUeNCe, Quantum Internet architecture
May $2021 \sim \text{Aug. } 2021$	Software Engineering Intern @ Microsoft (Azure)
Jun. 2018 \sim Jan. 2024	Research assistant @ Stony Brook University Wireless sensor networks, data center networks, quantum networks, and quantum sensor networks
Sep. $2017 \sim \text{May } 2018$	Teaching assistant @ Stony Brook University

RESEARCH EXPERIENCE

Feb. $2024 \sim \text{Present}$	Quantum Network, SeQUeNCe and Quantum Network Simulation [13, 14, 16]
Jan. 2021 \sim Jan. 2024	Efficient Quantum Communication Networks. [8, 15] Design/implement routing algorithms/protocols for quantum networks. Bell states, GHZ, Graph states.
Sep. $2021 \sim \text{Jan. } 2024$	Discrete Outcome Quantum Sensor Networks. [9, 12] Quantum state/channel discrimination, initial state optimization, semidefinite programming, theory.
Aug. $2022 \sim \text{Sep. } 2023$	Quantum Sensor Network Algorithms for Transmitter Localization. [10] Quantum sensing, quantum state discrimination, quantum machine learning
Nov. $2019 \sim \text{Mar. } 2022$	Intelligent Radio with Deep Learning. [5, 7, 11] Design/implement CNNs to solve wireless network problems: wireless localization & spectrum allocation. Reframe wireless problems to computer vision problems: image-to-image translation & object detection.
Mar. 2019 \sim Oct. 2019	Efficient Localization of Multiple Intruders in Shared Spectrum System. [3] Design/implement. Bayesian approach. Testbed(Odroid,Raspberry Pi,USRP,HackRF).
Dec 2018 \sim Sep. 2020	Datacenter Networks. [4] Multi-hop circuit switch scheduling. Greedy, approximation proof. Participate in implementation.
July 2018 \sim July 2019	Selection of Sensors for Efficient Transmitter Localization. [2, 6] Implement. Greedy, approximation proof. Bayesian approach. GPU acceleration.
Oct. $2015 \sim \text{Sept. } 2016$	Optimization using Evolutionary Algorithms. [1] Design/implement. Shortest path-finding using ant colony optimization algorithms. Proposed a probability-based evolutionary algorithm solving shape formation problems.

Skills & Tools

Python and C++ are my most frequently used languages. I also have experience in C#, Java, C, and Matlab. Machine learning: PyTorch, scikit-learn, and ML.NET. Quantum: quantum network simulator NetSquid, quantum development SDK Qiskit, and quantum machine learning library TorchQuantum. GPU programming: CUDA and Numba. Software-defined radio: GNU Radio. Database: MySQL and SQLite. Convex optimization: OR-Tools and CVXPY.

Selected Awards and Honors

China National Scholarship Travel Grant for ACM IMC

Best Poster Award (Participants Choice) in Graduate Research Day Outstanding Poster Presentation Award in Postdoctoral Symposium

2014, Chinese Ministry of Education, Top 1%2018, ACM Internet Measurement Conference2022, Department of CS, Stony Brook University2024, Argonne National Lab

ACADEMIC SERVICES

Co-chair of Argonne National Lab Postdoctoral Research and Career Symposium 2025 Program Committee of QCE 2024, QNSim 2024, QCNC 2025, HAIQ 2025, QNSim 2025, QCE 2025 Artifact Evaluation Committee of ACM MobiCom 2023

Reviewer of journals: Elsevier The Journal of Networks and Computer Applications, Elsevier Pervasive and Mobile Computing, IEEE/ACM Transactions on Networking, IEEE Internet of Things Journal, IEEE Open Journal of the Communications Society, IEEE Transactions on Communications, ACM Transactions on Quantum Computing. Reviewer of conferences: ISIT 2025, Euro-Par 2025.

Publication

- [16] Laura d'Avossa, **Caitao Zhan**, Joaquin Chung, Rajkumar Kettimuthu, Angela Sara Cacciapuoti, Marcello Caleffi, "Simulation of Quantum Transduction Strategies for Quantum Networks", IEEE QCE 2025, PDF.
- [15] X. Fan, C. Zhan, H. Gupta, C.R. Ramakrishnan, "Optimized Distribution of Entanglement Graph States in Quantum Networks", IEEE Transactions on Quantum Engineering, 2025, PDF.
- [14] Caitao Zhan, Joaquin Chung, Rajkumar Kettimuthu, Allen Zang, Alexander Kolar, "Design and Simulation of the Adaptive Continuous Entanglement Generation Protocol", QCNC 2025, arXiv.
- [13] Francesco Mazza, Caitao Zhan, Joaquin Chung, Rajkumar Kettimuthu, Marcello Caleffi, Angela Sara Caccia-puoti, "Simulation of Entanglement-Enabled Connectivity in QLANs using SeQUeNCe", IEEE ICC 2025, arXiv.
- [12] C. Zhan, H. Gupta, M. Hillery, "Optimizing Initial State of Detector Sensors in Quantum Sensor Networks", ACM Transactions on Quantum Computing, 2024. PDF.
- [11] M. Ghaderibaneh, C. Zhan, H. Gupta, "DeepAlloc: CNN-Based Approach to Efficient Spectrum Allocation in Shared Spectrum Systems", IEEE Access 2024, PDF.
- [10] C. Zhan, H. Gupta, "Quantum Sensor Network Algorithms for Transmitter Localization", IEEE QCE 2023, PDF.
- [9] M. Hillery, H. Gupta, C. Zhan, "Discrete Outcome Quantum Sensor Networks", Physical Review A, 2023, PDF.
- [8] M. Ghaderibaneh, C. Zhan, C.R. Ramakrishnan, H. Gupta, "Efficient Quantum Network Communication using Optimized Entanglement-Swapping Trees", IEEE Transactions on Quantum Engineering, 2022. PDF.
- [7] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL Pro: Deep Learning Based Multiple Transmitter Localization and Power Estimation", Elsevier Pervasive and Mobile Computing, 2022, PDF.
- [6] A. Bhattacharya, C. Zhan, A. Maji, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE/ACM Transactions on Networking 2021, PDF.
- [5] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL: Deep Learning Based Multiple Transmitter Localization", IEEE WoWMoM 2021, PDF.
- [4] H. Gupta, M. Curran, C. Zhan, "Near-Optimal Multihop Scheduling in General Circuit-Switched Networks", ACM CoNEXT 2020, PDF.
- [3] C. Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, "Efficient Localization of Multiple Intruders in Shared Spectrum System", ACM/IEEE IPSN 2020, PDF.
- [2] A. Bhattacharya, C. Zhan, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE INFOCOM 2020, PDF.
- [1] C. Zhan and C. Li, "Shape Formation in Games: a Probability-based Evolutionary Approach", 2016 International Conference on Computational Intelligence and Security, PDF.