Логика и алгоритмы

Задачи семинаров 2

Обозначения: $0 := \emptyset$, $x+1 := x \cup \{x\}$. Множество Y называется undyктивным, если $0 \in Y$ и $\forall x \ (x \in Y \to x+1 \in Y)$. Множество натуральных чисел $\mathbb N$ определяется, как наименьшее по включению (\subset -наименьшее) множество. Элементы этого множества называются undy un

ТЕОРЕМА 1 (принцип математической индукции). Дано некоторое множество A. $E c \wedge u \ 0 \in A \ u \ \forall n \in \mathbb{N} \ (n \in A \to n+1 \in A), \ mo \ \mathbb{N} \subset A.$

Обозначение: $x < y : \Leftrightarrow x \in y$.

ТЕОРЕМА 2 (принцип порядковой индукции). Дано некоторое множество A. Если $\forall n \in \mathbb{N} \ (\forall m < n \ m \in A \to n \in A), \ mo \ \mathbb{N} \subset A.$

ТЕОРЕМА 3 (принцип минимального элемента). Пусть A – некоторое непустое подмножество \mathbb{N} . Тогда A содержит <-минимальный элемент, т.е. такой элемент $n \in A$, что $\forall m < n \ m \notin A$.

- 1. Почему существует хотя бы одно индуктивное множество? Могут ли существовать два различных наименьших по включению индуктивных множества?
- 2. Докажите, что $x+1 \neq 0$ и $x+1=y+1 \to x=y$ для любых множеств x и y.
- 3. Докажите, что $\forall n \in \mathbb{N} \ (n=0 \vee \exists m \in \mathbb{N} \ (n=m+1)).$
- 4. Докажите, что < задает на $\mathbb N$ строгий частичный порядок, т.е. что $\forall n \in \mathbb N (n \not< n)$ и $\forall n, m, k \in \mathbb N \ (n < m < k \to n < k)$.
- 5. Докажите, что для любого $n \in \mathbb{N}$ не существует инъективного отображения из n+1 в n.
- 6. Для натуральных чисел n и m докажите, что не существует инъекции из n в m, если m < n.
- 7. Докажите, что порядок, задаваемый < на №, является линейным.
- 8. Докажите, что два различных натуральных числа неравномощны.
- 9. Дана функция $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, удовлетворяющая следующим рекурсивным условиям:

$$\begin{cases}
 m + 0 = m \\
 m + (n+1) = (m+n) + 1.
\end{cases}$$

Докажите, что m + n = n + m для любых натуральных числе n и m.

Множество x называется *конечным*, если $x \sim n$ для некоторого $n \in \mathbb{N}$. В последнем случае мы также говорим, что x содержит n элементов. Множество x называется cчетным, если $x \sim \mathbb{N}$.

10. Докажите, что любое подмножество конечного множества конечно, а также, что любое подмножество счетного множества конечно или счетно.