Approximating solution to Initial Value Problems using the Euler's Method

```
 \begin{split} & \text{mEuler} [a\theta_{-}, b\theta_{-}, y\theta_{-}, m\theta_{-}, f] := \text{Module} \big[ \{a = a\theta, b = b\theta, j, m = m\theta\}, h = \big(b - a\big) \, \big/ \, m; \\ & \text{$x = \text{Table} \big[ a + \big(j - 1\big) * h, \{j, 1, m + 1\} \big]; } \\ & \text{$y = \text{Table} [y\theta, \{j, 1, m + 1\}]; } \\ & \text{For} \big[ j = 1, j \leq m, j + +, y[[j + 1]] = \\ & y[[j]] + \frac{h}{2} \, \Big( f[x[[j]], y[[j]]] + f[x[[j]] + h, y[[j]] + h * f[x[[j]], y[[j]]] \Big); \Big]; \\ & \text{Return} \big[ \\ & \text{TableForm} \big[ \\ & \text{TableForm} \big[ \\ & \text{TableHeadings} \rightarrow \{\{\}, \{"x", "y"\}\}] \big]; \Big] \end{aligned}
```

1.
$$\frac{dy}{dx} = 1 + \frac{y}{x}$$
, $1 \le x \le 6$, $y[1] = 1$. Find $y[6]$.

```
f[x_{-}, y_{-}] := 1 + \frac{y}{x}
mEuler[1, 6, 1, 20, f]
```

x	у
1.	1.
1.25	1.525
1.5	2.10083
1.75	2.71883
2.	3.37286
2.25	4.05835
2.5	4.77178
2.75	5.51033
3.	6.27168
3.25	7.05394
3.5	7.85547
3.75	8.67491
4.	9.51105
4.25	10.3628
4.5	11.2294
4.75	12.1098
5.	13.0034
5.25	13.9095
5.5	14.8276
5.75	15.757
6.	16.6973

s = DSolve
$$[\{y'[x] = 1 + \frac{y[x]}{x}, y[1] = 1\}, y[x], x]$$

 $TableForm[Table[Transpose[\{x,y[x]\}\ /.\ s],\ \{x,\ 1,\ 6,\ 0.25\}],$ TableHeadings \rightarrow {{}, {"x", "y[x]"}}]

 $\{\;\{\,y\,[\,x\,]\;\to x\,+\,x\;\text{Log}\,[\,x\,]\;\}\;\}$

Х	y[x]
1.	1.
1.25	1.52893
1.5	2.1082
1.75	2.72933
2.	3.38629
2.25	4.07459
2.5	4.79073
2.75	5.5319
3.	6.29584
3.25	7.08063
3.5	7.88467
3.75	8.70658
4.	9.54518
4.25	10.3994
4.5	11.2683
4.75	12.1512
5.	13.0472
5.25	13.9557
5.5	14.8761
5.75	15.8079
6.	16.7506

2.
$$\frac{dy}{dx} = \sqrt{y} x$$
, $2 \le x \le 3$, $y[2] = 4$. Find $y[3]$.

 $f[x_{-}, y_{-}] := \sqrt{y} x$ mEuler[2, 3, 4, 10, f]

Х	У
2.	4.
2.1	4.42025
2.2	4.88355
2.3	5.39312
2.4	5.95234
2.5	6.56472
2.6	7.23395
2.7	7.96384
2.8	8.75836
2.9	9.62165
3.	10.558