Week 4: Logistic Regression and Classification MATH-516 Applied Statistics

Linda Mhalla

2024-03-13

Section 1

Logistic Regression for Bernoulli and Binomial Data

Generalized Linear Model for Binary Variables

• In the case of a binary response variable, assume Y_n follows a Bernoulli distribution with parameter π_n , $Y_n \sim \text{Bin}(\pi_n)$, where

$$\pi_n = \Pr(Y_n = 1 \mid \mathbf{X}_n) = \mathbb{E}(Y_n \mid \mathbf{X}_n)$$

• An appropriate link function for binary responses is the **logit** function

$$g(z) := \mathsf{logit}(z) = \log\left(\frac{z}{1-z}\right)$$

• The logistic regression model is

$$g(\pi_n) = \log\left(\frac{\pi_n}{1 - \pi_n}\right) = \eta_n := \beta_0 + \beta_1 \mathbf{X}_{n1} + \dots + \beta_p \mathbf{X}_{np}$$

• The logit function g is the quantile function of the logistic distribution and links $\mathbb{E}(Y_n \mid \mathbf{X}_n) = \pi_n(\mathbf{X}_n)$ and η_n

Logistic Regression: Logit Function

The logistic model is

$$\eta_n = \log\left(\frac{\pi_n}{1 - \pi_n}\right) = \beta_0 + \beta_1 \mathbf{X}_{n1} + \dots + \beta_p \mathbf{X}_{np}$$

 This model can also be written on the mean scale by using the inverse-logit function,

$$\mathbb{E}(Y_n \mid \mathbf{X}_n) = \pi_n = \frac{\exp(\beta_0 + \beta_1 \mathbf{X}_{n1} + \dots + \beta_p \mathbf{X}_{np})}{1 + \exp(\beta_0 + \beta_1 \mathbf{X}_{n1} + \dots + \beta_p \mathbf{X}_{np})}$$

- We have an expression for the mean $\pi_n = \mathbb{E}(Y_n \mid \mathbf{X}_n)$ as a function of the explanatory variables \mathbf{X}_n , but ...
- what does this function look like?
- what does this tell us about the relationship between π_n and η_n (and thus \mathbf{X}_n)?

Logistic Distribution Function

- \bullet Notice that π is an increasing function of $\eta = \beta_0 + \sum_{j=1}^p \beta_j \mathbf{X}_j$
 - \bullet If β_{j} is positive and \mathbf{X}_{j} increases, $\Pr(Y=1)$ also increases
 - If $eta_j^{"}$ is negative and $reve{\mathbf{X}}_j$ increases, $\Pr(Y=1)$ decreases
- \bullet We also see that the relationship between $\Pr(Y=1)$ and η (and thus each $\mathbf{X}_i)$ is non-linear

Parameter interpretations in terms of odds

- Quantifying the effect sizes in logistic regression is not easy because it's a nonlinear model
- The coefficients can be interpreted in terms of odds and odds ratios
- \bullet Let $\pi=\Pr(Y=1\mid \mathbf{X}_1,\ldots,\mathbf{X}_p)$, the logistic regression model is

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p$$

• By exponentiating both sides, we obtain

$$\mathrm{odds}(Y\mid \mathbf{X}) = \frac{\pi(\mathbf{X})}{1-\pi(\mathbf{X})} = \exp(\beta_0 + \beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p),$$

where $\pi(\mathbf{X})/\{1-\pi(\mathbf{X})\}$ are the odds of $\Pr(Y=1\mid \mathbf{X})$ relative to $\Pr(Y=0\mid \mathbf{X})$

Odds

- The logit function corresponds to modelling the log-odds
- ullet The odds for binary Y are the quotient

$$odds(\pi) = \frac{\pi}{1 - \pi} = \frac{\Pr(Y = 1)}{\Pr(Y = 0)}$$

- \bullet For example, an odds of 4 means that the probability that Y=1 is four times higher than the probability that Y=0
- An odds of 0.25 means the probability that Y=1 is only a quarter times the probability that Y=0, or equivalently, the probability that Y=0 is four times higher than the probability that Y=1

Pr(Y=1)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Odds	0.11	0.25	0.43	0.67	1	1.5	2.33	4	9
Odds (frac.)	$\frac{1}{9}$	$\frac{1}{4}$	$\frac{3}{7}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{7}{3}$	4	9

Interpretation of the intercept in terms of the odds

 \bullet When $\mathbf{X}_1=\cdots=\mathbf{X}_p=\mathbf{0},$ it is clear that

$$\mathrm{odds}(Y\mid \mathbf{X}=\mathbf{0}_p)=\exp(\beta_0)$$

and

$$\Pr(Y=1\mid \mathbf{X}_1=0,\dots \mathbf{X}_p=0) = \frac{\exp(\beta_0)}{1+\exp(\beta_0)}$$

which represents the probability that Y=1 when $\mathbf{X}=\mathbf{0}_p$

• As for linear regression, $X_1=\cdots=X_p=0$ might not be physically possible, in which case there is no sensible interpretation for β_0

Parameter interpretation in terms of the odds ratio

Consider for simplicity a logistic model of the form $\text{logit}(\pi) = \beta_0 + \beta_1 x$ The factor $\exp(\beta_1)$ is the change in odds when X increases by one unit,

$$\mathrm{odds}(Y\mid \mathbf{X}=x+1)=\exp(\beta_1)\times\mathrm{odds}(Y\mid \mathbf{X}=x)$$

- If $\beta_1 = 0$ then the odds ratio is unity
 - ullet meaning that the variable X is not associated with the odds of Y
- ullet If eta_1 is positive, then the odds ratio $\exp(eta_1)$ is larger than one,
 - ullet meaning that, as X increases, the odds of Y increases
- If β_1 is negative, the odds ratio $\exp(\beta_1)$ is smaller than one,
 - ullet meaning that, as X increases, the odds of Y decreases

Interpretation of β_k in terms of odds ratio

For the logistic model, the odds ratio when $\mathbf{X}_k=x_k+1$ versus $\mathbf{X}_k=x_k$ when $\mathbf{X}_j=x_j\ (j=1,\dots,p,j\neq k)$ is

$$\frac{\operatorname{odds}(Y \mid \mathbf{X}_k = x_k + 1, \mathbf{X}_j = x_j, j \neq k)}{\operatorname{odds}(Y \mid \mathbf{X}_k = x_k, \mathbf{X}_j = x_j, j \neq k)} = \frac{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j + \beta_k\right)}{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right)}$$
$$= \exp(\beta_k)$$

When X_k increases by one unit and all the other covariates are held constant, the odds of Y changes by a factor $\exp(\beta_k)$

- The odds increase if $\exp(\beta_k) > 1$, i.e., if $\beta_k > 0$
- The odds decrease if $\exp(\beta_k) < 1$, i.e., if $\beta_k < 0$

Assessing Quality of Fit

The quality of fit of $\hat{\pi}_n$ to y_n (either 0 or 1) is measured by the **deviance**¹

$$\begin{array}{lll} \mathrm{Dev}\left(\hat{\pi}_{i},y_{i}\right) & = & \begin{cases} -2\log\hat{\pi}_{i} & \text{if } y_{i}=1\\ -2\log\left(1-\hat{\pi}_{i}\right) & \text{if } y_{i}=0 \end{cases} \\ & = & y_{i}\left(-2\log\hat{\pi}_{i}\right)+\left(1-y_{i}\right)\left\{-2\log\left(1-\hat{\pi}_{i}\right)\right\} \end{array}$$

The Residual Deviance

$$D = \sum_{n=1}^{N} \mathrm{Dev}\left(\hat{\pi}_{n}, y_{n}\right)$$

should behave like χ^2_{N-p-1} if the model is correct and n_i 's (sample sizes per combination of covariates) are large. ΔD (equiv. LRT) can otherwise be used for model comparison (but not with saturated model)

• The deviance residuals $\epsilon_n^d = sign(y_n - \hat{\pi}_n) \sqrt{\mathrm{Dev}\left(\hat{\pi}_n, y_n\right)}$ have the same interpretation as for the ordinary linear model

11/25

¹the likelihood of the saturated model is 1

Understand how drinking coffee, spending on fast food, and annual income are related to the likelihood of heart disease


```
Call:
glm(formula = factor(heart disease) ~ factor(coffee drinker) +
   fast food spend + income, family = binomial(link = "logit").
   data = heart data)
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
factor(coffee drinker)1 -6.468e-01 2.363e-01 -2.738 0.00619 **
fast food spend
                2.295e-03 9.276e-05 24.738 < 2e-16 ***
                        3.033e-06 8.203e-06 0.370 0.71152
income
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
ATC: 1579.5
Number of Fisher Scoring iterations: 8
```

- All covariates except income are significant
 - coffee drinking is associated with a decrease in the odds of having a heart disease: a decrease of $\exp(-0.65) \approx 0.52$, ceteris paribus
 - spending in fast food is associated with an increase in the odds of having a heart disease: an increase of $\exp(2.3*10^{-3})\approx 1$, ceteris paribus
- What about predictions?

```
head(predict(log_reg, type="link")) #linear combination of covariates

1 2 3 4 5 6

-6.549544 -6.791338 -4.614261 -7.724689 -6.245449 -6.217871

head(predict(log_reg, type="response")) #predicted probabilities
```

1 2 3 4 5 6 0.0014287239 0.0011222039 0.0098122716 0.0004415893 0.0019355062 0.0019895182

What about binary classification?

Once you have predicted probabilities, how large should a predicted probability be to predict a heart disease?

- a cutoff of 0.5 seems a fair choice, but why?
 - it estimates the Bayes Classifier

$$\mathcal{C}_{Bayes}(\mathbf{x}) = \mathop{\arg\max}_{0 \leq k \leq J-1} \Pr(Y = k | \mathbf{X} = \mathbf{x})$$

• would a cutoff of 0.55 be better?

Section 2

Model Evaluation

Confusion Matrix

Given any chosen cutoff c, we can form binary predictions for each observation by applying the cutoff to the fitted probabilities

$$\hat{y}_i = \begin{cases} 1 & \text{if } \hat{\pi}_i > c \\ 0 & \text{if } \hat{\pi}_i \leq c \end{cases}$$

The confusion matrix

	$\hat{y} = 0$	$\hat{y} = 1$	
y = 0	# true negative (TN)	# false positive (FP)	N_0
y = 1	# false negative (FN)	# true positive (TP)	N_1

• the diagonal gives the count of the correctly predicted instances

$$accuracy = (\#TP + \#TN)/(N_0 + N_1)$$

 \Rightarrow an optimal cutoff can be chosen to minimize #FP+#FN or (equivalently) maximize accuracy of the classifier. But not always …

Heart Disease Data: Confusion Matrix

Table 2: cutoff 0.5 - accuracy=0.9732 Table 3: cutoff 0.35 - accuracy=0.9724

	0	1			0	1
0	9627 228	40 105		0	9571 180	96 153
	000). 008 009 00# N3#+d3#					

The smallest value corresponds to the cutoff 0.55. Remember to check accuracy on a test set (out of sample)

0.6

0.4

0.2

0.8

ROC curves ²

Let's define two measures of performance

- $\bullet \ \ {\rm Sensitivity} = {\rm true} \ {\rm positive} \ {\rm rate} = \#TP/N_1$
 - sensitivity decreases as the cutoff increases
- Specificity = true negative rate = $\#TN/N_0 = 1$ -FPR
 - specificity increases as the cutoff increases

Accuracy can be misleading if one class appears much more frequently than another, as in the Heart Disease dataset

- a model that just blindly predicts all patients to not develop heart disease would achieve an accuracy of 96.67%
- the accuracy would be even higher under more extreme imbalance (very rare disease)
- \Rightarrow To compare classifiers across all cutoffs, we look at the ROC (Receiver Operating Characteristics) curve

²Wojtek J. Krzanowski and David J. Hand, ROC Curves for Continuous Data (2009)

ROC curve

If the purpose of the logistic regression is to construct a predictive model, then a ROC curve is a useful graphical assessment of fit

- ullet ROC curve plots the specificity against 1-sensitivity for a range of cutoffs o takes the trade-off between FP and TP into account
- ullet a coin-toss classifier \equiv ROC curve is identity
- the area under the curve (AUC) is viewed as a measure of prediction accuracy
 - the larger the AUC, and hence the farther away the ROC curve is from the diagonal, the better the model performance
- computing AUC allows to quantitatively evaluate model performance
 - this could serve as a useful tool for model comparison as well
 - AUC=1 \Rightarrow model able to perfectly distinguish between positive and negative
 - AUC= $0.5 \Rightarrow$ model is no better than a random classifier

Heart Disease: ROC curve

A good model has a high AUC, i.e., as often as possible a high sensitivity and specificity!

Note: AUC should be estimated out-of-sample or cross-validated (AUC= 0.9497 with 5 folds)

Heart Disease: Classification Tree ³

```
library(rpart)
library(rattle)

tree <- rpart(heart_disease ~., data=heart_data, method="class")
fancyRpartPlot(tree,palettes=c("Reds", "Greens"))
VI <- tree$variable.importance
barplot(VI, xlab="Variable", ylab="Importance", names.arg=names(VI),cex.names=0.8,</pre>
```


³See the MATH-517 lecture notes

Heart Disease: Classification Tree

What about prediction and accuracy?

ConfusionMatrix <- predict(tree, heart_data, type="class")</pre>

Heart Disease: Classification Tree

Since classification is binary with decision trees, one can use predicted class probabilities to construct a ROC curve

Classification: Final Remarks

- ullet A classifier assumes a model for the joint distribution of (Y,\mathbf{X}) and estimates it
 - Naive Bayes estimates a likelihood and a prior $(\Pr(\mathbf{X} \mid Y) \Pr(Y))$ based on assumptions of conditional independencies
 - ullet Logistic regression estimates $\Pr(Y \mid \mathbf{X})$ parametrically
 - ullet Classification trees estimate $\Pr(Y \mid \mathbf{X})$ non-parametrically
- Criteria for a good classifier
 - Accuracy (report AUC as it works under imbalance)
 - Runtime
 - Interpretability
 - Flexibility