Metric Spaces and Complex Analysis

Giannis Tyrovolas

September 18, 2020

1 Intro

Definition 1.1 (Domain). A domain usually denoted U is an open, connected subset of the complex numbers

Theorem 1.2 (Cauchy's Theorem). Let $f: U \longrightarrow \mathbb{C}$ holomorphic on a domain U. Then for all closed paths γ :

$$\int_{\gamma} f(z)dz = 0$$

Theorem 1.3 (Deformation Theorem). Let $f: U \longrightarrow \mathbb{C}$ be holomorphic on domain U. Let two closed paths γ_1, γ_2 be homotopic. Then:

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

Theorem 1.4 (Cauchy's Integral Formula). Let $f: U \longrightarrow \mathbb{C}$ holomorphic on and inside a simple, closed, positively oriented curve γ . Then for all points a on the interior of γ :

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw$$

Proof. Since the interior of γ is open there is an r > 0 such that D(a, r) is contained in the interior of γ . Then by the deformation theorem:

$$\int_{\gamma} \frac{f(w)}{w-a} \mathrm{d}w = \int_{\gamma(a,r)} \frac{f(w)}{w-a} \mathrm{d}w = I$$

Without loss of generality let g(w) = f(w - a). Then, for u = w - a

$$I = \int_{\gamma(a,r)} \frac{f(w)}{w - a} dw$$

$$= \int_{\gamma(0,r)} \frac{g(u)}{u} du$$

$$= \int_{0}^{2\pi} \frac{g(re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$

$$= i \int_{0}^{2\pi} g(re^{i\theta}) d\theta$$

Hence,

$$|I - 2\pi i g(0)| = |i \int_0^{2\pi} g(re^{i\theta}) - g(0)d\theta|$$

$$\leq 2\pi \sup_{\theta \in [0, 2\pi)} |g(re^{i\theta}) - g(0)|$$

$$\to 0$$

as r tends to 0 by the continuity of f.

Hence
$$f(a) = g(0) = \frac{1}{2\pi i}I$$
 and $I = \int_{\gamma(a,r)} \frac{f(w)}{w-a} dw$

Theorem 1.5 (Taylor's Theorem). All holomorphic functions on a domain can be expressed as a power series. For $f: U \longrightarrow \mathbb{C}$ holomorphic on domain U and for $a \in U$, $D(a,r) \subseteq U$

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

where:

$$c_n = \frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(w)}{(w-a)^{n+1}} = \frac{f^{(n)}(a)}{n!}$$

Theorem 1.6 (Liouville's Theorem). Let f holomorphic on \mathbb{C} and f bounded. Then f is constant.

Corollary 1.7. For f entire, $f(\mathbb{C})$ is dense in \mathbb{C} (i.e. $f(\overline{\mathbb{C}}) = \mathbb{C}$)

Theorem 1.8 (Picard's Little Theorem). For f non-constant entire, $f(\mathbb{C}) = \mathbb{C}$ or $\mathbb{C} \setminus \{z\}$

Theorem 1.9 (Fundamental Theorem of Algebra). Let p be a non-constant polynomial with complex coefficients. Then there exists $a \in \mathbb{C}$ such that p(a) = 0.

Theorem 1.10 (Morera's Theorem). Let f continuous on a domain U and for all closed paths γ in U

$$\int_{\gamma} f(z)dz = 0$$

Then f is holomorphic.

Proof.

Theorem 1.11 (Identity Theorem). Let f holomorphic on domain U let $S = f^{-1}(0)$. If S contains one of it's limit points then f is identically zero.

Theorem 1.12 (Counting Zeroes). Let f holomorphic inside and on a positively oriented closed path γ . Then the sum of zeroes counting their multiplicity is:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(w)}{f(w)} dw$$

Theorem 1.13 (Laurent's Theorem). Let f be a function holomorphic on $z \in \mathbb{C}|R < |z - a| < S$. Then,

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n$$

For:

$$c_n = \frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(w)}{(w-a)^{n+1}} dw$$