

Mark Scheme (Results) January 2010

GCE

Mechanics M2 (6678)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA022965
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
Q1.	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 4$ $6t - 4 = 0 \Rightarrow t = \frac{2}{3}$	M1 A1
	$s = \int 3t^2 - 4t + 3 dt = t^3 - 2t^2 + 3t (+c)$	M1 A1
	$t = \frac{2}{3} \Longrightarrow s = -\frac{16}{27} + 2$ so distance is $\frac{38}{27}$ m	M1 A1
Q2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[8]
	CLM: $4mu - mu = 2mv_1 + mv_2$ i.e. $3u = 2v_1 + v_2$	M1 A1
	NIL: $3eu = -v_1 + v_2$	M1 A1
	$v_1 = u(1 - e)$	DM1 A1
	$v_2 = u(1+2e)$	A1
Q3.	$\frac{1}{2} \times 0.5 \times 20^2$; $0.5g \times 10$	[7] B1 B1
	$10R = \frac{1}{2} \times 0.5 \times 20^2 - 0.5g \times 10$	M1 A1
	$\Rightarrow R = 5.1$	DM1 A1
		[6]

Question Number	Scheme	Marks	
Q4.	(i) $I \uparrow = 0.25 \times 40 \sin 60 = 5\sqrt{3}$ (8.66) one component $I \leftarrow = 0.25(-20 + 30) = 2.5$ both $ I = \sqrt{75 + 6.25} = 9.01$ (Ns)	M1 A1	
		M1 A1	(4)
	$\frac{\sin \theta}{40} = \frac{\sin 60^{\circ}}{\sqrt{1300}}$		
	$\theta = 106^{\circ} \text{ (3 s.f.)}$	M1 A1	
	or $\tan \theta = \pm \frac{5\sqrt{3}}{2.5}$ oee $\theta = 106^{\circ}$	M1 A1	(4)
			[8]
	Alternative to $4(i)$ Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$	M1	
	$30^2 + 40^2 - 2 \times 30 \times 40\cos 60^\circ (= 1300)$	M1 A1	
	$I = 0.25\sqrt{1300} = 9.01 \text{ N s } (3 \text{ s.f.})$	A1	
	2nd Alternative to 4(i) $\mathbf{u} = 30\mathbf{i} , \mathbf{v} = 40\cos 60\mathbf{i} + 40\sin 60\mathbf{j} = 20\mathbf{i} + 20\sqrt{3}\mathbf{j}$		
	$I = \frac{1}{4}(-10\mathbf{i} + 20\sqrt{3}\mathbf{j}) = -2.5\mathbf{i} + 5\sqrt{3}\mathbf{j}$	M1	
		A1 etc	

Question Number	Scheme	Marks	
Q5.	(a) $\frac{490}{3.5} - R = 0$	B1 M1 A1	
	R = 140 N	A1	(4)
	(b) $\frac{24}{u} + 70g.\frac{1}{14} - 40u = 0$	B1	
	$40u^2 - 49u - 24 = 0$	M1 A2,1,0	
	(5u - 8)(8u + 3) = 0	DM1	
	u = 1.6	DM1 A1	(7)
		[11]
Q6.			
	$m(B): R \times 4\cos\alpha = F \times 4\sin\alpha + 20g \times 2\cos\alpha$	M1 A2	
	Use of $F = \frac{1}{2}R$	M1	
	Use of correct trig ratios	B1	
	R = 160N or 157N	DM1 A1	
			[7]

Scheme			Mark	is .	
(a) Rectangle	Semic	ircles	Template, T		
24 <i>x</i>	4.5π	4.5π	$24x + 9\pi$	B2	
x	$\frac{4 \times 3}{3\pi}$	$\frac{4 \times 3}{3\pi}$	$\frac{1}{x}$	B2	
$24x^2 - 4$	$4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4$	$.5\pi \times \left(\frac{4 \times 3}{3\pi}\right)$	$= (24x + 9\pi)x^{-}$	M1 A1	
	distance = $\left \overline{x} \right $ =	$\frac{4\left 2x^2-3\right }{(8x+3\pi)} **$		A1	(7)
(b) V				B1	
	$\tan\theta = \frac{6}{4 - \left \overline{x} \right } = \frac{6}{4}$	$\frac{6}{-\frac{20}{16+3\pi}}$		M1 A1	
	$=\frac{41}{22}$	$\frac{8+9\pi}{2+6\pi}.$		A1	(4)
					[11]
	$24x$ x $24x^{2} - 4$ (b)	(a) Rectangle Semicion $24x 4.5\pi$ $x \frac{4 \times 3}{3\pi}$ $24x^2 - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4$ $\text{distance} = \left \overline{x}\right = 4$ $\tan \theta = \frac{6}{4 - \left \overline{x}\right } = \frac{6}{4}$	(a) Rectangle Semicircles $24x 4.5\pi 4.5\pi$ $x \frac{4 \times 3}{3\pi} \frac{4 \times 3}{3\pi}$ $24x^2 - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right)$ $\text{distance} = \left \overline{x}\right = \frac{4 2x^2 - 3 }{(8x + 3\pi)} **$	(a) Rectangle Semicircles Template, T $24x 4.5\pi 4.5\pi 24x + 9\pi$ $x \frac{4 \times 3}{3\pi} \frac{4 \times 3}{3\pi} \frac{7}{3\pi}$ $24x^2 - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) = (24x + 9\pi)\overline{x}$ $\text{distance} = \overline{x} = \frac{4 2x^2 - 3 }{(8x + 3\pi)} **$ $\text{(b)} \text{When } x = 2, \overline{x} = \frac{20}{16 + 3\pi}$ $\tan \theta = \frac{6}{4 - \overline{x} } = \frac{6}{4 - \frac{20}{16 + 3\pi}}$	(a) Rectangle Semicircles Template, T $24x 4.5\pi 4.5\pi 4.5\pi 24x + 9\pi B2$ $x \frac{4 \times 3}{3\pi} \frac{4 \times 3}{3\pi} \frac{x}{3\pi} B2$ $24x^2 - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) - 4.5\pi \times \left(\frac{4 \times 3}{3\pi}\right) = (24x + 9\pi)\overline{x} M1 A1$ $\text{distance} = \overline{x} = \frac{4 2x^2 - 3 }{(8x + 3\pi)} \text{ **} A1$ $\text{(b)} When } x = 2, \overline{x} = \frac{20}{16 + 3\pi} B1$ $\tan \theta = \frac{6}{4 - \overline{x} } = \frac{6}{4 - \frac{20}{16 + 3\pi}} M1 A1$

Question Number	Scheme	Marks
Q8.	(a) $x = ut$	B1
	$y = cut - 4.9t^2$	M1 A1
	eliminating t and simplifying to give $y = cx - \frac{4.9x^2}{u^2} **$	DM1 A1 (5)
	(b)(i) $0 = cx - \frac{4.9x^2}{u^2}$	M1
	$0 = x(c - \frac{4.9x}{u^2}) \implies R = \frac{u^2c}{4.9} = 10c$	M1 A1
	(ii) When $x = 5c$, $y = H$	M1
	$=5c^2 - \frac{(5c)^2}{10} = 2.5c^2$	M1 A1 (6)
	(c) $\frac{dy}{dx} = c - \frac{9.8x}{u^2} = c - \frac{x}{5}$	M1 A1
	When $x = 0$, $\frac{dy}{dx} = c$	B1
	So, $c - \frac{x}{5} = \frac{-1}{c}$	DM1 A1
	$x = 5(c + \frac{1}{c})$	A1 (6)
		[17]
	Alternative to $8(c)$ $u \qquad u \qquad \tan \theta = \frac{u}{cu} = \frac{1}{c} = \frac{v}{u}$	B1
	$v \Rightarrow v = \frac{u}{c} = \frac{7}{c}$	M1 A1
	$v = u + at ; -\frac{7}{c} = 7c - 9.8t$	M1
	$t = \frac{7}{9.8}(c + \frac{1}{c})$	A1
	$x = ut = 7t ; \qquad x = 5(c + \frac{1}{c})$	A1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA022965 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH