Département de génie électrique et de génie informatique Faculté des sciences et de génie Vision numérique GIF-4100 / GIF-7001

Date 10 novembre 2015 Local PLT-2548 Heure 13h30 à 16h20 Examen partiel 2 A2015

Toute documentation permise sauf Internet

Question 1. (20 points) Radiométrie

Soit la géométrie de la Figure 1 montrant une source ponctuelle d'intensité 10 000 lux éclairant un élément de surface lambertienne dA_1 d'aire 0.1 m² et de BRDF ρ =0.0155. L'élément de surface dA_2 diffuse la lumière vers un élément de surface dA_2 d'aire 0.1 m². Quelle est l'illuminance reçue par dA_2 . Détaillez bien les étapes de votre calcul.

Figure 1. Géométrie de la Question 1

Question 2. (15 points) Filtrage médian

Soit la ligne d'une image montrée à la Figure 2 (a). Les nombres représentent l'illuminance discrétisée sur une plage de 8 bits en chaque pixel de la ligne. On désire réduire les effets du bruit impulsionnel sur cette ligne en appliquant un filtre médian dont le noyau est montré à la Figure 2 (b). Sur le noyau, le symbole x représente le pixel central du filtre. Donnez le résultat du filtrage en expliquant votre résultat.

Figure 2. (a) Ligne de l'image (b) Noyau du filtre médian

Question 3. (15 points au total) Détection de discontinuités d'illuminance

- **A.** (5 points) Soit le signal d'illuminance montrant une discontinuité de type "saut" de la Figure 3 (a). Quel est le signal résultant de l'application de l'opérateur de détection de discontinuités -1 0 1 sur ce signal? Est-ce que cet opérateur est adéquat pour détecter la discontinuité? Expliquez votre réponse.
- **B.** (5 points) supposons maintenant le signal d'illuminance de type "créneau" de la Figure 3 (b). Quel est le signal résultant de l'application de l'opérateur de détection de discontinuités -1 0 1 sur ce signal?

Est-ce que cet opérateur est adéquat pour détecter la discontinuité? Expliquez votre réponse.

c. (5 points) supposons maintenant le signal d'illuminance montrant une discontinuité de type "toit" de la Figure 3 (c). Quel est le signal résultant de l'application de l'opérateur de détection de discontinuités -1 0 1 sur ce signal? Est-ce que cet opérateur est adéquat pour détecter la discontinuité? Expliquez votre réponse.

Figure 3. (a) Signal "saut", (b) Signal "créneau", (c) Signal "toit" de la Question 3.

Question 4. (15 points) Filtrage non-linéaire

Soit le signal binaire de la Figure 4. Quel élément structurant de *dilatation* en morphologie mathématique est suffisant pour boucher le trou formé de valeurs "0"? Expliquez votre réponse.

Figure 4. Signal binaire de la Question 4.

Question 5. (15 points) Descripteur SIFT

Décrivez brièvement les étapes de calcul du descripteur SIFT.

Question 6. (20 points) Reconstruction stéréoscopique

Supposons la géométrie stéréoscopique en position canonique (i.e. avec les axes optiques parallèles) de la Figure 5. La disparité est définie comme étant $d = x_d - x_g$, où x_d et x_g sont respectivement les coordonnées images du point objet situé à une distance z des deux caméras (supposez que les coordonnées en y sont nulles (i.e. dans le plan de la page)).

À partir de la définition précédente et de la géométrie du problème, dérivez l'expression de z en fonction

de la disparité d, de la focale F des sténopés et de la séparation Δ entre les deux sténopés.

Figure 5. Géométrie de la Question 6.