THE INTERNATIONAL UNIVERSITY (IU) – VIETNAM NATIONAL UNIVERSITY - HCMC FINAL EXAMINATION – CLASS

Student ID:

Date: JANUARY 2021	
Duration: 90 minutes	
SUBJECT: PHYSICS 4	
Head of Department of Physics:	Lecturer:
Signature:	Signature:
Jone .	
Full name: Phan Bao Ngoc	Full name: Do Xuan Hoi

INSTRUCTIONS: This is a closed book examination. Use of cell phones, laptops, dictionaries is not allowed.

 $h = 6.63 \times 10^{-34} \, \text{J.s} \; ; \; \; c = 3 \times 10^8 \, \text{m/s} \; ; \; \; e = 1.6 \times 10^{-19} \, \text{C} \; ; \; \text{rest mass of electron:} \; \; 9.1 \times 10^{-31} \, \text{kg}$

Question 1 (20 pts) The objective lens of a telescope has a focal length of 171 cm. The distance between objective and eyepiece is 180 cm. This telescope is used to observe a star and the final image is at infinity.

Determine the position of the first image of the star and compute the focal length of the eyepiece.

Question 2 (20 pts) Suppose that the momentum of a certain particle can be measured to an accuracy of 0.1%. Determine the minimum uncertainty in the position of the particle if the particle is

(a) a 5×10^{-3} kg mass moving with a speed of 2 m/s,

Student Name:

- (b) an electron moving with a speed of 1.8×10^8 m/s.
- (c) Explain the physical meaning of your answers in (a) and (b).

Question 3 (20 pts) Knowing that the energy of hydrogen atom is given by: $E_n = -\frac{13.6}{n^2} eV$.

- (a) What are the shortest and the largest wavelengths of light emitted in the Lyman series of the hydrogen atom spectrum lines?
- (b) From the result in (a), deduce the range of the Lyman series in the electromagnetic spectrum.

Question 4 (20 pts) A μ -meson with an average lifetime of 2×10^{-6} s is created in the atmosphere of the Earth at an elevation of 6000 m. When it is created it has a velocity of 0.998c in a direction toward the Earth.

- (a) Will this particle reach the surface of the Earth before decaying according to classical mechanics?
- (b) What is its lifetime because of time dilation and what is the average distance that it will travel before decaying, as determined relativistically by an observer on the earth?
- (c) Compare two results in (a) and (b) and give your observation.

Question 5 (20 pts) A nucleus ${}_{Z}^{A}X$ undergoes β^{-} decays and has ${}_{2}^{3}He$ as product after a nuclear reaction.

- (a) Write the reaction and determine the mass number A of the nucleus X. How many neutrons are there in a X nucleus?
- (b) Knowing that the halflife of X is 12.3 years. Suppose some quantity of gas of X nucleus is released into the atmosphere in a nuclear power plant accident. What is the time needed for 90.0% of X to become nonradioactive?

END OF QUESTION PAPER