CS557: Cryptography

Cryptographic Hash Function III

S. Tripathy IIT Patna

Cryptographic Hash Function

- Cryptographic hash functions:
 - An efficiently computable function
 - $-H: M \rightarrow T$
 - -where $|M| \gg |T|$

32 bytes

hash value

Hash Functions

Effort Required for length = n-bit

One Way / Pre-image	2 ⁿ
Weak Collision/ 2 nd Pre-image Resistance	2 ⁿ
(Strong) Collision Resistance	2 n/2

 Finding collisions is easier than solving pre- image or second preimage

Block Ciphers as one-way Function (OWF)

- block ciphers can be used as hash functions
 - using H_0 = initial value
 - compute: $H_i = E_{M_i} [H_{i-1}]$
 - and use final block as the hash value
 - similar to CBC but without a key
- resulting hash may be too small (64-bit) if DES like block ciphers used
 - Due to direct birthday attack
- other variants also susceptible to attack

Single length MDCs

Matyas-Meyer-Oseas

Davis-Meyer

Miyaguchi-Preneel

Iterated hash functions

Detailed view of Hash Function

MD4

- precursor to MD5
- also produces a 128-bit hash of message
- has 3 rounds of 16 steps vs 4 in MD5
- design goals:
 - collision resistant (hard to find collisions)
 - direct security (no dependence on "hard" problems)
 - fast, simple, compact
 - favours little-endian systems (eg PCs)

MD5

- designed by Ronald Rivest
- latest in a series of MD2, MD4,
- we have MD6 also
- produces a 128-bit hash value
- widely used hash algorithm
 - in recent times have both brute-force & cryptanalytic concerns
- specified as Internet standard RFC1321

MD5 Overview

each round has 16 steps of the form: B = B+((A+g(B,C,D)+X[k]+T[i])<<<s)T[i] is a constant value (ith 32-bit word in matrix T) derived from sin

X[k] is $M[q \times 16 + k]$, the k^{th} 32-bit word in the q^{th} 512-bit block of the message

<<s is circular left shift of the 32-bit</p> argument by s bits

IV: h1 = 0x67452301, h2 = 0xefcdab89, h3= 0x98badcfe, h4 = 0x10325476

 $CV_0 = IV$

 $MD = CV_{1-1}$

Strength of MD5

- Rivest claims security is good as can be
 - MD5 hash is dependent on all message bits
- known attacks are:
 - Berson 92 attacked any 1 round using differential cryptanalysis (but can't extend)
 - Boer & Bosselaers 93 found a pseudo collision (again unable to extend)
 - Dobbertin 96 created collisions on MD compression function (but initial constants prevent exploit)
- conclusion is that MD5 looks vulnerable
- Reading ass: Anton A. Kuznetsov. "An algorithm for MD5 singleblock collision attack using highperformance computing cluster

Thanks