

Bias-Variance Tradeoff

Data Mining 06 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Log-linear models on posets
 - A generalized formulation of Boltzmann machines
- Bias-variance tradeoff
- Fisher information & Cramér-Rao inequality

Partially Ordered Set (Poset)

- Partially ordered set (poset) (S, ≤)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\bot \in S$

Partially Ordered Set

- Partially ordered set (poset) (S, ≤)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\bot \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $-x \le y \iff y \text{ is reachable from } x$

Log-Linear Model on Poset

Each $x \in S$ has a triple: $(p(x), \theta(x), \eta(x))$

- A probability distribution $p:S \to (0,1)$ s.t. $\sum_{x \in S} p(x) = 1$
- We introduce $\theta:S \to \mathbb{R}$ and $\eta:S \to \mathbb{R}$ as $\log p(x) = \sum_{s \le x} \theta(s)$ $\eta(x) = \sum_{s \le x} p(s)$
 - Parameter set $B \subseteq S$
 - $-\theta(s)=0 \text{ if } s \notin B$

Log-Linear Model on Powerset

- Probability distribution over the power set 2^V with $V = \{1, 2, ..., n\}$
 - $-x \le y \iff x \subseteq y, S = 2^V$
- Probability p(x) for each $x \in 2^V$ is given as $\log p(x) = \sum_{s \in X} \theta(s)$
 - Parameter set $B \subseteq 2^V$
 - $-\theta(s)=0 \text{ if } s \notin B$
- MLE: Find $\theta(s)$ from a dataset $D \subseteq 2^V$ for all $s \in B$ s.t. $\eta(s) = \hat{\eta}(s)$

$$\eta(s) = \sum_{x \ge s} p(x), \quad \hat{\eta}(s) = \frac{1}{|D|} \sum_{x \in D} \mathbf{1}[x \ge s] = |\{x \in D \mid x \ge s\}| / |D|$$

Boltzmann Machines

Restricted Boltzmann Machines (RBMs)

Deep Boltzmann Machines (DBMs)

8/16

Bias-Variance Tradeoff

- Bias = $D_{KL}(P^*, \overline{P}_B)$
- Variance = $\mathbf{E}[D_{KL}(\overline{P}_B, \hat{P}_B)]$
- If we include more parameters in B:
 - → Bias will decrease
 - → Variance will increase
- Two extreme cases:
 - If $B = 2^V$, then $\hat{P}_B = \hat{P}$, thus bias = 0 but variance will be large
 - If $B = \emptyset$, \hat{P}_B is always the uniform distribution U, thus bias = $D_{KI}(U, P^*)$ and variance = 0

Bias-Variance Decomposition

Decomposition of MSE (Mean Squared Error)

$$\mathbf{E}[(\hat{\theta} - \theta^*)^2] = (\bar{\theta} - \theta^*)^2 + \mathbf{E}[(\hat{\theta} - \bar{\theta})^2]$$

$$= bias^2(\hat{\theta}) + var[\hat{\theta}]$$

$$MSE = bias^2 + variance$$

- $-\theta^*$: the true parameter
- $-\hat{\theta}$: the estimate
- $\bar{\theta}$: the expected value of the estimate, $\bar{\theta} = \mathbf{E}[\hat{\theta}]$ (the estimate obtained from infinitely many data points)
- The expectation **E** is about the true distribution $p(D; \theta^*)$

Example: Gaussian Mean Estimation

- Estimate the mean from N data points $x_1, x_2, ..., x_N$ sampled from a Gaussian distribution $N(\theta^* = 1, \sigma^2)$
- Strategy 1: MLE

bias =
$$\mathbf{E}[\hat{\theta}] - \theta^* = \mathbf{E}\left[\frac{1}{N}\sum_{i=1}^N x_i\right] - \theta^* = N\theta^*/N - \theta^* = 0$$

variance = σ^2/N

• Strategy 2: MAP estimate with a prior $N(\theta_0, \sigma^2/\kappa_0)$ bias = $(w\mathbf{E}[\hat{\theta}] + (1-w)\theta_0) - \theta^* = (1-w)(\theta_0 - \theta^*), \quad w = N/(N+\kappa_0),$ variance = $w^2\sigma^2/N$

Practical Solution: Cross-Validation

- CV (Cross Validation) is the most convenient way to find the best parameter from data without seeing the true parameter
- K-fold cross-validation is typically used

Fisher Information

- Let $p(x; \xi)$ be a distribution with a parameter ξ
- The Fisher information $g(\xi)$ of ξ is

$$g(\xi) = \mathbf{E} \left[\left(\frac{\partial}{\partial \xi} \log p(x; \xi) \right)^2 \right] = \sum_{x \in S} p(x; \xi) \left(\frac{\partial}{\partial \xi} \log p(x; \xi) \right)^2$$

• If there are multiple parameters $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_m)$, the Fisher information matrix is a $m \times m$ matrix $G(\xi)$ given as

$$g(\boldsymbol{\xi})_{ij} = \mathbf{E} \left[\frac{\partial}{\partial \xi_i} \log p(x; \xi) \frac{\partial}{\partial \xi_j} \log p(x; \xi) \right]$$

Cramér-Rao Lower Bound

- Let $\boldsymbol{\xi}$ be unbiased: $\mathbf{E}[\hat{\boldsymbol{\xi}}] = \boldsymbol{\xi}^*$
- Cramér-Rao inequality:

$$E \geq \frac{1}{N}G(\boldsymbol{\xi})^{-1}$$

where
$$E = (e_{ij})$$
, each $e_{ij} = \mathbf{E} \left[\left(\hat{\xi}_i - \xi_i^* \right) \left(\hat{\xi}_j - \xi_j^* \right) \right]$

- E coincides with the covariance matrix, $e_{ii} = \mathbf{E}[(\hat{\xi}_i \xi_i^*)^2] = \text{var}(\hat{\xi}_i)$
- A > B if A B is positive definite
 - C is positive definite if $\mathbf{x}^T C \mathbf{x} > 0$ for any non-zero $\mathbf{x} \in \mathbb{R}^n$
- In MLE, $E \to (1/N)G(\xi)^{-1}$ when $N \to \infty$

Example in Gaussian Mean Estimation

- Estimate the mean from N data points $x_1, x_2, ..., x_N$ sampled from a Gaussian distribution $N(\theta^*, \sigma^2)$
- Fisher information:

$$g(\theta) = \frac{1}{\sigma^2}$$

Cramér-Rao bound:

$$\operatorname{var}[\hat{\theta}] \ge \frac{\sigma^2}{N}$$

- In this case, $var[\hat{\theta}] = \sigma^2/N$ always holds

Model Selection by AIC

 The AIC (Akaike information criterion) is one of the most famous measure of the quality of statistical models

$$AIC = -2I(D) + 2k$$

- -I(D) is the maximized log-likelihood
- *k* is the number of parameters
- This cannot be directly used for log-linear models on posets as it is a hierarchical model with including higher-order associations
 - It is still under development...