Ref- er- ence	Title	Dataset Description	Cate- gories	Applied Models	Result	Pros	Cons
	Automatic Fish Species Classification Using Deep Convolutional Neural Networks	Training Dataset: QUT Fish Dataset (3960 images across 3 en- vironments: controlled, out-of-water, in-situ). Testing Da- taset: LifeClef2015 Fish dataset (20,000 im- ages across 15 species).	06	1.Alexnet 2. VGG-Net	AlexNet: 90.48%	□ Lower computational complexity than VGG-Net □ Efficient with fewer layers and training images □ Outperformed original AlexNet on test accuracy	☐ Underperformed compared to VGGNet on validation ☐ Limited to only 6 species
[2]	Fish Species Recognition Based on CNN Using	☐ Total Data: 1000 images ☐ 50 species, 20 samples each	50	1.Alexnet 2. CIFAR- 10 CNN	Top-5 accu- racy: 91.4%	☐ Obtained higher recognition accuracy than the original RGB	☐ Only 20 images per class (limited training data) ☐ Performance still relatively low for

Anno-			color	top-1 accu-
tated			image.	racy com-
Image			υ	pared to
			□ Top-	larger da-
			5 accu-	tasets/mod-
			racy ap-	els
			proach	
			suitable	
			for	
			practical	
			applica-	
			tions	

References:

[1] M. A. Iqbal, Z. Wang, Z. A. Ali, and S. Riaz, "Automatic fish species classification using deep convolutional neural networks," *Wireless Personal Communications*, vol. 107, no. 4, pp. 1425–1443, Dec. 2019, doi: 10.1007/s11277-019-06634-1.

[2] T. Miyazono and T. Saitoh, "Fish species recognition based on CNN using annotated image," in *IT Convergence and Security 2017*, K. J. Kim, et al., Eds. Singapore: Springer, 2018, vol. 449, *Lecture Notes in Electrical Engineering*, pp. 155–163, doi: 10.1007/978-981-10-6451-7_19.