to the domain of the generator. Moreover, D(A) 0 D(B) is dense in E $\tilde{0}_{\alpha}$ F and invariant under (S(t)0T(t))_{t≥0}, hence it is a core of A 0 Id + Id 0 B by Prop.1.9.ii .

3.8. The Product of Commuting Semigroups

Let $(S(t))_{t\geq 0}$ and $(T(t))_{t\geq 0}$ be semigroups with generators A and B, respectively on some Banach space E. It is not difficult to see that the following assertions are equivalent.

- (i) S(t)T(t) = S(t)T(t) for all $t \ge 0$.
- (ii) $R(\mu,A)R(\mu,B) = R(\mu,B)R(\mu,A)$ for some $\mu \in \rho(A) \cap \rho(B)$.
- (iii) $R(\mu,A)R(\mu,B) = R(\mu,B)R(\mu,A)$ for all $\mu \in \rho(A) \cap \rho(B)$.

In that case U(t) = S(t)T(t) ($t \ge 0$) defines a semigroup (U(t))_{$t \ge 0$}. Using Prop.1.9(ii) one easily shows that $D_0 := D(A) \cap D(B)$ is a core for its generator C and Cf = Af + Bf for all $f \in D_0$.

NOTES.

For a more complete information on semigroup theory we refer the reader to Hille-Phillips (1957), to the recent monographs by Davies (1980), Goldstein (1985a) and Pazy (1983), to the survey article by Krein-Khazan (1985) and to the bibliography by Goldstein (1985b).