1 Reduced three-body problem

The problem of three point particles interacting gravitationally has a particularly simple limit: let the third body $m_3 \ll m_2$, m_1 so that its effect on the motions of m_1 and m_2 is negligible. Assume in addition that m_3 moves in the same orbital plane as m_1 and m_2 . For simplicity, consider only the case of m_1 and m_2 in circular orbit about their center of mass.

1.1 Switch into a reference frame rotating with angular velocity ω associated with the circular orbit for the two-body problem. Choose the center of mass of the two-body problem to be the origin. Choose the x axis to go through m_1 and m_2 . Show that the (now stationary) m_1 and m_2 are located at $-r_c\mu/m_1$ and $r_c\mu/m_2$.

Solution. Call the stationary coordinate system (r, θ, ϕ) . We showed in Prob. 4 of Homework 1, that the motion for m_1, m_2 is confined to a plane, which we may choose to be (r, θ) . Then m_1 and m_2 are located at $\mathbf{R}_1 = \mathbf{R}_1(t, r, \theta)$ and $\mathbf{R}_2 = \mathbf{R}_2(t, r, \theta)$. Let $\mathbf{R} = \mathbf{R}_1 - \mathbf{R}_2$ denote the separation between the masses. Using the method discussed in class, the motion of m_1 and m_2 is governed by the equation

$$\mu \ddot{\mathbf{R}} = -\frac{\partial}{\partial r} V_{\text{eff}} \tag{1}$$

where $\mu = m_1 m_2/(m_1 + m_2)$ is the reduced mass, $\mathbf{R}_{12} = \mathbf{R}_1 - \mathbf{R}_2$ is the separation between the two masses, and the effective potential

$$V_{\text{eff}}(R) = V(R) + \frac{J^2}{2\mu R^2} = -\frac{Gm_1m_2}{R} + \frac{J^2}{2\mu R^2}$$
 (2)

where $J = \mu R^2 \dot{\theta}$ is the magnitude of the total angular momentum, which is conserved.

???

Call the stationary coordinate system (X, Y, Z), and choose (X, Y) as the orbital plane. Let the locations of m_1 and m_2 be given by $\mathbf{R}_1 = \mathbf{R}_1(t, X, Y)$ and $\mathbf{R}_2 = \mathbf{R}_2(t, X, Y)$. Let r_c be the radius of the orbit about the Z axis. We know that m_1, m_2 both have circular orbits about the Z axis with frequency ω , so we can write

$$\mathbf{R}_1(t) = \tag{3}$$

Call the rotating coordinate system (x, y, z), in which the locations of m_1 and m_2 are $\mathbf{r}_1 = \mathbf{r}_1(t, x, y, z)$ and $\mathbf{r}_2 = \mathbf{r}_2(x, y, z)$.

Since we have chosen the x axis to go through m_1 and m_2 , we will choose our reference frame to be rotating about the z axis. We thus have the transformation

$$x = X\cos\omega t + Y\sin\omega t,\tag{4}$$

$$y = Y\cos\omega t - X\sin\omega t,\tag{5}$$

$$z = Z. (6)$$

1.2 Show that the Lagrangian governing the wquation of motion of m_3 at location (x(t), y(t)) is

$$L_3 = \frac{m_3}{2} \left[(\dot{x} - \omega y)^2 + (\dot{y} + \omega x)^2 \right] - U_{13} - U_{23}, \tag{7}$$

where $U_13(x,y)$ is the gravitaional interaction of m_3 with m_1 , while U_{23} is associated with m_3 and m_2 .