

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2554

วิชา STA 212 Statistics for Scientists สอบวันพุชที่ 27 กรกฎาคม 2554

คณะวิทยาศาสตร์ เวลา 13:00—16:00 น.

<u>คำชี้แจง</u>

- 1 ข้อสอบรายวิชานี้มี 6 ข้อ จำนวน 8 หน้า (รวมใบปะหน้าและสูตร) รวม 45 คะแนน
- 2 ให้นักศึกษาทำข้อสอบทุกข้อลงในตัวข้อสอบ
- 3 ห้ามนำเอกสารทุกชนิคเข้าห้องสอบ
- 4 อนุญาตให้นำเครื่องคำนวณตามระเบียบของมหาวิทยาลัยเข้าห้องสอบได้
- 5 ข้อสอบรายวิชานี้มีสูตร 2 แผ่น
- 6 ในกรณีที่ต้องการเนื้อที่ในการทำข้อสอบ ให้ทำข้อสอบต่อในกระคาษด้านหลังของแต่ละข้อ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการกุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

,		
ชื่อ	รหัส	ภาควิชา

 อ. คาว สงวนรังศิริกุล ผู้ออกข้อสอบ

ข้อสอบรายวิชานี้ ได้ผ่านการพิจารณาจากคณะกรรมการประจำภาควิชาคณิตศาสตร์แล้ว

คร. คุษฎี ศูขวัฒน์

หัวหน้าภาควิชาคณิตศาสตร์

- 1 ในการซื้อเสื้อลดรากากรั้งหนึ่งซึ่งเหลือเพียง 10 ตัว ในจำนวนนี้เป็นเสื้อมีตำหนิเล็กน้อย 3 ตัว ไม่มีตำหนิ 7 ตัว ใน การหยิบเสื้อขึ้นมาสองตัวจงหากวามน่าจะเป็นที่
 - ก) ได้เสื้อที่มีตำหนิเล็กน้อยทั้งสองตัว (4 คะแนน)

ข) หยิบครั้งแรกได้เสื้อที่มีตำหนิเล็กน้อยและหยิบครั้งที่สองได้เสื้อไม่มีตำหนิ (4 คะแนน)

2 บริษัทแห่งหนึ่งได้ว่าจ้างพนักงานสามคนจากสำนักจัดหางานได้มีตัวเลขจากหน่วยงานที่เกี่ยวข้องรายงานว่า ความ น่าจะเป็นที่พนักงานคนใดคนหนึ่งจะมีเชื้อHIVเป็น 0.15 การว่าจ้างพนักงานสามคนเป็นไปอย่างอิสระกันจงหาความ น่าจะเป็นที่

ก) มีเพียงคนเดียวที่มีเชื้อHIV (4คะแนน)

ข) มีอย่างน้อยหนึ่งคนที่มีเชื้อHIV (4 คะแนน)

3 สายการบิน 1,2และ3 บริการเที่ยวบินรอบคึกจากเมือง ก ไปยังเมือง ขจากข้อมูลในอดีสพนว่าถ้าเป็นสายการบิน 1 ละมี เที่ยวบินออกช้ากว่ากำหนค 40% ถ้าเป็นสายการบิน2 จะมีเที่ยวบินออกช้ากว่ากำหนค50% ถ้าเป็นสายการบิน3 จะมี เที่ยวบินออกช้ากว่ากำหนค 70% ในการขึ้นเครื่องบินรอบคึกของวันหนึ่ง คนๆหนึ่งเลือกสายการบินอย่างสุ่ม

ก) จงหาความน่าจะเป็นที่คนๆนั้นเลือกสายการบินที่ 1 และขึ้นเที่ยวบินที่ออกช้ากว่ากำหนด (3 คะแนน)

ข)จงหาความน่าจะเป็นที่คนๆนั้นจะขึ้นเที่ยวบินที่ออกช้ากว่ากำหนด (3 คะแนน)

ก) ถ้ากนๆนั้นขึ้นเที่ยวบินที่ออกช้ากว่ากำหนดจงหาความน่าจะเป็นที่กนๆนั้นจะเลือกสายการบินที่1(3กะแนน)

5

4 กำหนดให้สินค้าที่ผลิตได้ในบริษัทแห่งหนึ่งจะชำรุดเชิ้นใน1,000ชิ้นจงหาความน่าจะเป็นที่สินค้าจะชำรุด 5 ชิ้นจาก การสุ่มสินค้ามาตรวจสอบ 3,000ชิ้น (6 คะแนน)

5 โรงงานผลิตยางรถยนต์แห่งหนึ่งในแต่ละครั้งของการผลิตจะผลิตยางรถยนต์ 5,000 เส้นจากการตรวจสอบกุณภาพพบว่า จะมียาง1,000 เส้นที่มีคอกยางชำรุคเล็กน้อย ถ้าซื้อยางจากบริษัทนี้มา 10 เส้นจงหาความน่าจะเป็นที่จะได้ยางที่มีคอกยาง ชำรุค 3 เส้น (6 กะแนน)

«พาวิทยาลัฒทค ใน ใกยีพระจากแกล้าขากภ

6) ณ .สี่แยกแห่งหนึ่ง รถที่มาถึงสี่แยกจะเลี้ยวซ้าย เลี้ยวขวา หรือตรงไปข้างหน้าด้วยความน่าจะเป็นเท่าๆกัน ในจำนวน รถ 500 คันที่มาถึงสี่แยกแห่งนี้ จงหาความน่าจะเป็นที่

ก) อย่างมาก 150 คันเลี้ยวขวา (4 คะแนน)

ข) อย่างน้อย 350 กันจะไม่ตรงไปข้างหน้า (4 กะแนน)

amrine age

สาวัทยาลัยเทค ใน โลยีพระจอบเกล้ามะ

Formula

Law of Total Probability

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} P(B_i) \cdot P(A \mid B_i)$$

Bayes' Rule

$$P(B_r \mid A) = \frac{P(B_r \cap A)}{\sum_{i=1}^{k} P(B_i \cap A)} = \frac{P(B_r)P(A \mid B_r)}{\sum_{i=1}^{k} P(B_i)P(A \mid B_i)}$$

Discrete Uniform Distribution

$$f(x;k) = \frac{1}{k}$$
; $x = x_1, x_2, ..., x_k$.

$$\mu = \sum_{i=1}^k \frac{x_i}{k}, \quad \sigma^2 = \sum_{i=1}^k \frac{(x_i - \mu)^2}{k}.$$

Binomial Distribution

$$b(x; n, p) = \binom{n}{x} p^{x} q^{n-x} ; \qquad x = 0, 1, 2, ..., n$$

$$\mu = np, \qquad \sigma^{2} = npq$$

Hypergeometric Distribution

$$h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}; \qquad x = 0, 1, 2, \dots, \min(k, n)$$

$$\mu = \frac{nk}{N}, \qquad \sigma^2 = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \left(1 - \frac{k}{N}\right)$$

Negative Binomial Distribution

$$b^{\bullet}(x;k,p) = {x-1 \choose k-1} p^k q^{x-k}; \qquad x = k, k+1, k+2, \dots$$

$$\mu = \frac{k}{p}, \qquad \sigma^2 = \frac{kq}{p^2}$$

Geometric Distribution

จะสารากอาณีเนทคโนโกยีพระจะกะกล้างนา/

$$g(x; p) = pq^{x-1}$$
; $x = 1, 2, 3, ...$

$$\mu = \frac{1}{p}, \qquad \sigma^2 = \frac{q}{p^2}$$

Poisson Distribution

$$p(x;\lambda) = \frac{e^{-\lambda}(\lambda)^x}{x!}; \qquad x = 0,1,2,...$$

$$\mu = \lambda$$
, $\sigma^2 = \lambda$

Normal Distribution

$$n(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}; \quad -\infty < x < \infty$$

Gamma Distribution

$$f(x) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, & x > 0 \\ 0, & elsewhere \end{cases}$$

where $\alpha > 0$ and $\beta > 0$

$$\mu = \alpha \beta$$
, $\sigma^2 = \alpha \beta^2$

Exponential Distribution

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta}, & x > 0 \\ 0, & elsewhere \end{cases}$$

where $\beta > 0$

$$\mu = \beta$$
, $\sigma^2 = \beta^2$

Chi-Squared Distribution

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2}, & x > 0\\ 0, & elsewhere \end{cases}$$

$$\mu = \nu, \qquad \sigma^2 = 2\nu.$$