

Functional Analysis

Author: Hui Sun

Date: August 31, 2023

Contents

Chapter 1 Prep work

We will start from the beginning and take baby steps. It's going to be okay.

An algebra is a vector space (with addition and scalar multiplication, usually over \mathbb{R}, \mathbb{C}), with an extra multiplication operation such that it is associative, and distributive. Then a normed algebra is an algebra with a sub-multiplicative norm, such that for all $a, b \in \mathcal{A}$, we have

$$||ab|| \le ||a|| ||b||$$

A Banach algebra is a normed algebra that is complete under the metric induced by the norm. And we can form a Banach algebra by starting with a normed algebra and form its completion and by uniform continuity of addition and multiplication extend to the completion of the algebra to form a Banach algebra.

We will begin with some important examples of Banach algebras. Let X be a compact topological space, and let C(X) be the space of continuous functions, equip it with $\|\cdot\|_{L^{\infty}}$ norm, then $(C(X), \|\cdot\|_{L^{\infty}})$ is a Banach algebra. Similarly, if X is only locally compact, then $C_b(X)$, the space of bounded continuous functions under the $\|\cdot\|_{L^{\infty}}$ norm is also a Banach algebra.

Proposition 1.1

Multiplication is continuous in Banach algebras.

Proof Multiplication $\cdot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$, hence if we have x_n, y_n such that $x_n \to x, y_n \to y$, then we have

$$||x_n y_n - xy|| \le ||x_n - x|| ||y_n|| + ||x|| ||y_n - y|| < \epsilon$$

Hence multiplication is continuous.

Definition 1.1 (Unital Banach algebra and invertibility)

A Banach algebra (let's repeat, a complete vector space with addition, scalar multiplicatin, and multiplication such that the norm is sub-multiplicative) is called unital if there exists a multiplicative inverse.

An element $a \in A$ is called invertible if there exists an element $a^{-1} \in A$ such that

$$aa^{-1} = a^{-1}a = e$$

Another important example is that let X be a Banach space, and the space of all bounded/continuous operators on X, denoted by $\mathcal{B}(X)$ is a Banach algebra with the operator norm. Any closed subalgebra of B(X) is also Banach.

If X is a Hilbert space, then we also have the operation of taking adjoints, namely $||T|| = ||T^*||$.

Definition 1.2

A C^* algebra is a closed subalgebra of the space of bounded (equivalently) functions defined on a Hilbert space, $\mathcal{B}(\mathcal{H})$.

Remark The space of continuous/bdd operators on a Hilbert space, under the operator norm, then closed under the norm topology and taking adjoints of the operators. On wikipedia, C* algebra is defined to be a Banach algebra equipped with an involution that acts like a adjoint.

One of the goals of this course is to develop the following theorem.

Theorem 1.1

Let A be a commutative C^* -algebra of $\mathcal{B}(\mathcal{H})$, then A is isometrically and * -algebraically isomorphic to some C(X), where X is some locally compact space.