DECEMBER 1979-REVISED MAY 1982

- Organization . . . 4096 X 8
- Single + 5 V Power Supply
- Pin Compatible with Existing ROMs and EPROMs (8K, 16K, 32K, and 64K)
- JEDEC Standard Pinout
- All Inputs/Outputs Fully TTL Compatible
- Static Operation (No Clocks, No Refresh)
- Max Access/Min Cycle Time:

TMS 2532-30	300 ns
TMS 2532-35	350 ns
TMS 2532-45	450 ns
TMS 25L32-45	450 ns

- 8-Bit Output for Use in Microprocessor-Based Systems
- N-Channel Silicon-Gate Technology
- 3-State Output Buffers
- 40% Lower Power
 TMS 25L32 . . . 500 mW Max Active
 TMS 2532 . . . 840 mW Max Active
- Guaranteed DC Noise Immunity with Standard TTL Loads
- No Pull-Up Resistors Required

24-PIN CERAMIC DUAL-IN-LINE PACKAGE (TOP VIEW)

PIN NOMENCLATURE					
A(N)	Address inputs				
PD/PGM	Power Down/Program				
Q(N)	Input/Output				
vcc	+5 V Power Supply				
V _{PP}	+25 V Power Supply				
V _{SS}	0 V Ground				

description

The TMS 2532 series (TMS 2532-30 JL, TMS 2532-35 JL, TMS 2532-45 JL, and TMS 25L32-45 JL) are 32,768-bit, ultraviolet-light-erasable, electrically programmable read-only memories. These devices are fabricated using N-channel silicon-gate technology for high speed and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL circuits without the use of external pull-up resistors, and each output can drive one Series 74 TTL circuit without external resistors. The data outputs are three-state for connecting multiple devices to a common bus. The TMS 2532 series are plug-in compatible with the TMS 4732 32K ROM. The devices are offered in a dual-in-line ceramic package (JL suffix) rated for operation from 0°C to 70°C.

Since these EPROMs operate from a single +5 V supply (in the read mode), they are ideal for use in microprocessor systems. One other (+25 V) supply is needed for programming but all programming signals are TTL level, requiring a single 50 ms pulse. For programming outside of the system, existing EPROM programmers can be used. Locations may be programmed singly, in blocks, or at random. Total programming time for all bits is 200 seconds.

operation

FUNCTION	MODE						
(PINS)	Read	Output Disable	Power Down	Start Programming	Inhibit Programming		
PD/PGM (20)	VIL	ViH	VIH	Pulsed VIH	VIH		
Vpp (21)	+5 V	+5 V	+5 V	+25 V	+25 V		
V _{CC} (24)	+5 V	+5 V	+5 V	+5 V	+5 V		
Q (9 to 11, 13 to 17)	Q	HI-Z	HI-Z	D	HI-Z		

read/output disable

When the outputs of two or more TMS 2532's are connected on the same bus, the output of any particular device in the circuit can be read with no interference from the competing outputs of the other devices. The device whose output is to be read should have a low-level TTL signal applied to the PD/ \overline{PGM} Pin. All other devices in the circuit should have their outputs disabled by applying a high-level signal to this pin. Output data is accessed at pins Q1 through Q8. Data can be accessed in 450 ns = $t_{n(\Delta)}$.

power down

Active power dissipation can be cut by over 70% by applying a high TTL signal to the PD/PGM pin. In this mode all outputs are in a high-impedance state.

erasure

Before programming, the TMS 2532 is erased by exposing the chip through the transparent lid to high-intensity ultraviolet light having a wavelength of 253.7 nm (2537 angstroms). The recommended minimum exposure dose (UV intensity times exposure time) is fifteen watt-seconds per square centimeter. Thus, a typical 12 milliwatt per square centimeter, filterless UV lamp will erase the device in a minimum of 21 minutes. The lamp should be located about 2.5 centimeters above the chip during erasure. After erasure, all bits are in the "1" state (assuming high-level output corresponds to logic "1").

start programming

After erasure (all bits in logic "1" state), logic "0's" are programmed into the desired locations. A "0" can be erased only by ultraviolet light. The programming mode is achieved when Vpp is 25 V. Data is presented in parallel (8 bits) on pins Q1 through Q8. Once addresses and data are stable, a 50-millisecond TTL low-level pulse should be applied to the PGM pin at each address location to be programmed. Maximum pulse width is 55-milliseconds. Locations can be programmed in any order. Several TMS 2532's can be programmed simultaneously when the devices are connected in parallel.

inhibit programming

When two or more devices are connected in parallel, data can be programmed into all devices or only chosen devices. Any TMS 2532's not intended to be programmed should have a high level applied to PD/PGM.

program verification

The TMS 2532 program verification is simply the read operation, which can be performed as soon as Vpp returns to +5 V ending the program cycle.

5

TMS 2532-30 JL, TMS 2532-35 JL, TMS 2532-45 JL, TMS 25L32-45 JL 32,768-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

logic symbol[†]

582

[†] This symbol is in accordance with IEEE Std 91/ANSI Y32.14 and recent decisions by IEEE and IEC. See explanation on page 289.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

Supply voltage, VCC (see Note 1)	-0.3 to 6 V
Supply voltage, Vpp (see Note 1)	0.3 to 28 V
All input voltages (see Note 1)	0.310207
Output voltage (operating with respect to VSS)	-0.3 to 6 V
Operating free-air temperature range	-0.3 to 6 V
Operating free-air temperature range	°C to 70°C
Storage temperature range	C to 125 °C

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most negative supply voltage, VSS (substrate).

^{*}Stresses beyond those (listed under Absolute Maximum Ratings'' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

	TN	TMS 2532-35 TMS 2532-45 TMS 2532-45 TMS 25132-4		2-35	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC} (see Note 2)	4.75	5	5.25	4.75	5	5.25	V
Supply voltage, Vpp (see Note 3)		Vcc			VCC		V
Supply voltage, VSS		0			0		V
High-level input voltage, VIH	2.2		V _{CC} +1	2		V _{CC} +1	V
Low-level input voltage, V _{IL}	-0.1		0.65	-0.1		0.8	V
Read cycle time, t _{c(rd)}	450			450			ns
Operating free-air temperature, TA	0		70	0		70	°C

NOTES 2. V_{CC} must be applied before or at the same time as Vpp and removed after or at the same time as Vpp. The device must not be inserted into or removed from the board when Vpp is applied.

3. Vpp can be connected to VCC directly (except in the program mode). VCC supply current in this case would be ICC + Ipp. During programming, Vpp must be maintained at 25 V (± 1 V).

electrical characteristics over full ranges of recommended operating conditions

	PARAMETER	TEST CONDITIONS		TMS 2532-30 TMS 2532-35 TMS 2532-45		TMS 25L32-45			UNIT
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
Vон	High-level output voltage*	I _{OH} = -400 μA	2.4			2.4			V
VOL	Low-level output voltage*	I _{OL} = 2.1 mA			0.45			0.45	V
Ξ	Input current (leakage)	V _I =0 V or 5.25 V			±10			±10	μА
Ю	Output current (leakage)	V _O =0.4 V or 5.25 V			±10			±10	μА
IPP1	Vpp supply current	$V_{PP} = 5.25 \text{ V}, PD/\overline{PGM} = V_{IL}$			12			12	mA
IPP2	Vpp supply current (during program pulse)	PD/ PGM = V _{IL}			30			30	mA
lCC1	VCC supply current	PD/ PGM = V _{IH}		10	25		10	25	mA
lCC2	V _{CC} supply current	PD/ PGM = V _{IL}		80	160		65	95	mA

^{*}AC and DC measurements are made at 10% and 90% points using a 50% pattern.

capacitance over recommended supply voltage and operating free-air temperature ranges, f = 1 MHz‡

	PARAMETER	TEST CONDITIONS	TYP [†]	MAX	UNIT
Ci	Input capacitance	V _I = 0 V, f = 1 MHz	4	6	pF
Co	Output capacitance	V _O = 0 V, f = 1 MHz	8	12	pF

 $^{^{\}dagger}$ Typical values are $T_{A} = 25 \, ^{\circ}\text{C}$ and nominal voltages.

[‡]Capacitance measurements are made on a sample basis only.

switching characteristics over full ranges of recommended operating conditions (see note 4)

	PARAMETER	TEST CONDITIONS (See Notes 4 & 5)			TMS 2532-35	TMS 25L32-45 TMS 2532-45	UNIT
			(See Notes 4 & 5) MIN TYP [†] MA	MIN TYP† MAX	MIN TYP [†] MAX	MIN TYP† MAX	
t _{a(A)}	Access time from address	C _L = 100 pF,	300	350	280 450	ns	
t _a (PR)	Access time from PD/PGM	1 Series 74 TTL load,	300	350	280 450	ns	
t _{v(A)}	Output data valid after address change	^t r ≤20 ns, ^t f≤20 ns,			0	ns	
^t dis	Output disable time from PD/PGM [‡]	See Figure 1	100	100	0 100	ns	

[†]All typical values are at T_A = 25 °C and nominal voltages.

recommended timing requirements for programming $T_A = 25 \, ^{\circ}\text{C}$ (see note 4)

	PARAMETER	MIN	TYP [†]	MAX	UNIT
tw(PR)	Pulse width, program pulse	45	50	55	ms
t _{r(PR)}	Rise time, program pulse	5			ns
t _{f(PR)}	Fall time, program pulse	5			ns
t _{su(A)}	Address setup time	2	_		
t _{su(D)}	Data setup time	2			μs
t _{su(VPP)}	Setup time from Vpp	0			μs
th(A)	Address hold time	2			ns
th(D)	Data hold time	2			μs
th(PR)	Program pulse hold time	0			μs
th(VPP)	Vpp hold time	0		-	ns ns

[†]Typical values are at nominal voltages.

582

NOTES: 4. For all switching characteristics and timing measurements, input pulse levels are 0.65 V to 2.2 V and Vpp = 25 V ± 1 V during programming. All AC and DC measurements are made at 10% and 90% points with a 50% pattern.

5. Common test conditions apply for t_{dis} except during programming. For $t_{a(A)}$ and t_{dis} , PD/ $\overline{PGM} = V_{IL}$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TYPICAL OUTPUT LOAD CIRCUIT

Value calculated from 0.5 volt delta to measured output level.

read cycle timing

NOTE: There is no chip select pin on the TMS 2532.
The chip-select function is incorporated in the power-down mode.

standby mode

150

 $^{{}^{\}dagger}t_{a}(PR)$ referenced to PD/ \overline{PGM} or the address, whichever occurs last.

All timing reference points in this data sheet (inputs and outputs) are 90% points.

program cycle timing

^{*}Program verify equivalent to read mode.

582