

How to think like a computer?

By: Babak Zolghadr-Asli

A computer program is a sequential set of instructions written in a computer language that is used to direct the computer to perform a specific task of computation.

A problem is something the result of which is not readily available. A set of steps involving arithmetic computation and/or logical manipulation is required to obtain the desired result.

There is a law called the *law of* equifinality that states that the same goal can be achieved through different courses of action and a variety of paths.

The different ways of solving a problem are called solution strategies. & This most effective way is called the optimum way.

A set of steps that generates a finite sequence of elementary computational operations leading to the solution of a given problem is called an algorithm.

A flowchart is a diagrammatic representation of the steps of an algorithm.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

The following five rules should be followed while creating program flowcharts.

- Only the standard symbols should be used in program flowcharts.
- The program logic should depict the flow from top to bottom and from left to right.
- 3. Each symbol used in a program flowchart should contain only one entry point and

one exit point, with the exception of the decision symbol. This is known as the single rule.

- 4. The operations shown within a symbol of a program flowchart should be expressed independently of any particular programming language.
- 5. All decision branches should be well-labeled.

Symbol	Description
	Terminal used to show the beginning and end of a set of computer-related processes
	Input/Output used to show any input/output operation
	Computer processing used to show any processing performed by a computer system
	Predefined processing used to indicate any process not specially defined in the flowchart
	Comment used to write any explanatory statement required to clarify something

Step 1. Take the rice to be cooked.

Step 2. Procure the container.

Step 3. Procure the water.

Step 4. Wash the rice in the water.

Step 5. Put the rice into the container.

Step 6. Pour water into the container.

Step 7. IF WATER LEVEL = 1 INCH ABOVE THE RICE

THEN GOTO STEP 8

ELSE GOTO STEP 6

ENDIF

Step 8. Light the burner on the stove.

Step 9. IF THE RICE IS BOILED

THEN GOTO STEP 12

ELSE GOTO STEP 10

ENDIF

Step 10. Heat the container.

Step 11. Go to step 9.

Step 12. Turn off the flame.

Step 13. Move the container off the stove.

Step 14. Distribute the cooked rice.

Step 15. STOP

The algorithm for cooking rice can be seen here; Draw a standard flowchart for it.

The algorithm for cooking rice can be seen here; Draw a standard flowchart for it.

Pg. 9

Construct a flowchart to show the procedure to obtain the **sum** of **two** given numbers.

Step 1. INPUT TO B, H

(B is for the base and H is for the height of the triangle)

Step 2. COMPUTE AREA \leftarrow *B*H

Step 3. PRINT AREA

Step 4. STOP

Construct a flowchart to

show how to obtain the

area of a triangle on the

basis of the base and

heigh.

COLLEGE

AVE

START

B is the value for the base of the triangle. H is the value for the height of the triangle.

Pg. 13

A *predicate*, also called a *condition*, is tested to see if it is true or false. If it is true, a course of action is specified for it; if it is found to be false, alternative course of action is expressed.

Step 1. INPUT TO A

Step 2. COMPUTE $R \leftarrow Remainder of (A/2)$

Step 3. IF R = 0

THEN PRINT "It is an even number."

ELSE

PRINT "It is an odd number."

END-IF

Step 4. STOP

Construct a flowchart to determine whether a given number is even or odd.

Construct a flowchart to determine whether a given number is even or odd.

The following rules are used to calculate the bonus for the employees of an organization.

- (i) If the pay is more than \$3,000, the bonus amount is fixed, and it is equal to \$300.
- (ii) If the pay is more than \$1,600, but less than or equal to \$3,000, the bonus will be 10% of the pay subject to a maximum of \$240.
- (iii) If the pay is less than or equal to \$1,600, the bonus is 15% of pay, subject to a minimum of \$100

Looping or iteration means repeating a set of operations to obtain a result repeatedly.

An iteration may be implemented in two ways: a pre-test iteration and post-test iteration.

THE UNIVERSITY

Step 2. REPEAT STEPS 3 THROUGH 9 WHILE FINISH = "N"

Step 3. INPUT TO FSAL, SAMT

THEN COMPUTE COM ← (SAMT – 5000) * .12 Step 4. IF SAMT > 5000

ELSE

 $COM \leftarrow 0$

Step 5. COMPUTE REMU ← FSAL + COM Step 6. PRINT "REMUNERATION IS", REMU

Step 7. PRINT "FINISH (Y/N)?"

Step 8. INPUT TO FINISH

Step 9. IF FINISH = "Y"

THEN EXIT

END-IF Step 10. STOP A sales organization offers a fixed salary and a percentage of sales as a commission to determine the monthly remuneration of an employee under the following conditions.

If the sales amount of an employee exceeds \$5,000, then the commission is 12% of the sales that exceed \$5,000; otherwise, it is nil. Draw a flowchart to show how the remuneration of an employee is decided.

A sales organization offers a fixed salary and a percentage of sales as a commission to determine the monthly remuneration of an employee under the following conditions.

If the sales amount of an employee exceeds \$5,000, then the commission is 12% of the sales that exceed \$5,000; otherwise, it is nil. Draw a flowchart to show how the remuneration of an employee is decided.

Yes R

Pg. 22

Step 1. PRODUCT \leftarrow 1, NUM \leftarrow 1, CNT \leftarrow 0

(Initialize the variables required)

Step 2. REPEAT STEPS 3 THROUGH 5 WHILE CNT <= 10

Step 3. COMPUTE PRODUCT ← PRODUCT*NUM

Step 4. COMPUTE CNT \leftarrow CNT + 1

(Increment the Counter)

Step 5. COMPUTE NUM ← NUM + 1 (The next number is generated)

Step 6. PRINT "THE PRODUCT IS", PRODUCT

Step 7. STOP

Draw a flowchart to show how to find the product of first 10 natural numbers.

Draw a flowchart to show how to find the product of first 10 natural numbers.

Pg. 24

iz time!

Step 1. INPUT TO N

[ACCEPT THE DESIRED INTEGER AND STORE IT]

Step 2. [INITIALIZE THE DIVISOR LOCATION I & THE LOCATION S TO CONTAIN THE SUM OF THE DIVISORS]

Step 3. WHILE I <= Integer part of (N/2) DO

(i) COMPUTE R \leftarrow REMAINDER OF (N/I)

(ii) IF R = 0

THEN COMPUTE $S \leftarrow S + I$

[ACCUMULATE THE DIVISOR OBTAINED]

END-IF

(iii) COMPUTE $I \leftarrow I + 1$

[INCREMENT I TO SEE WHETHER IT IS THE

NEXT DIVISOR]

Step 4. If S = N

THEN PRINT N, "IS A PERFECT NUMBER."

ELSE

PRINT N, "IS NOT A PERFECT NUMBER."

END-IF

Step 5. STOP

Construct a flowchart to show how to determine whether a given number is a perfect number.

Coming out soon ... HOPEFULLY!!!

COMPUTATIONAL INTELLIGENCE-BASED **ALGORITHMS**

FROM THEORY TO PRACTICE

BABAK ZOLGHADR-ASLI

Chapter 9: Harmony Search Algorithm

Summary

- 9.1. Introduction
- 9.2. Algorithmic structure of the harmony search algorithm
 - 9.2.1. Initiation stage
 - 9.2.2. Composing stage

9.2.2.1. Memory strategy

9.2.2.2. Randomization strategy

9.2.2.3. Pitch adjustment strategy

9.2.3. Termination stage

- 9.3. Parameter selection and fine-tuning the harmony search algorithm
- 9.4. Python codes
- 9.5. Concluding remarks

References

Q | F X INSTITUTE

INTERNATIONAL SYMPOSIUM

Stay in touch

@babak_zolqhadr

babakzolghadrasli.wordpress.com

@babakzolghadrasli

b.zolghadrasli@uq.net.au bz267@exeter.ac.uk

Q J F X INSTITUTE

CONTACT

@babak_zolghadr

babakzolghadrasli.wordpress.co

@babakzolghadrasli

EMAILS

b.zolghadrasli@uq.net.au

BABAK ZOLGHADR-ASLI QUEX-JOINT PH.D. CANDIDATE

RESEARCH AREA

- o Water resources planning and management
- o Climate change
- o Sustainable development
- o Decision-Making paradigms
- o Deep Uncertainty
- o Optimization
- o Machine Learning
- o Data Mining

AWARDS & HONORS

Outstanding researcher award in "the 26th Research Festival", University of Tehran (2017); Outstanding student award in "the 8th International Festival and Exhibition", University of Tehran (2018); Outstanding M.Sc. thesis award in "the 5th National Festival of Environment", Tehran Iran (2018); Winner of the "Prof. Alireaz Sepaskhah" 1st Scientific Award in water engineering [Shiraz University] (2019); Excellent Reviewer, Journal of Hydro Science & Marine Engineering (2020).

SELECTED PUBLICATION

- 1. Zolghadr-Asli, B., Naghdyzadegan Jahromi, M., Wan, X., Enayati, M., Naghdizadegan Jahromi, M., Tahmasebi Nasab, M., Pourghasemi, H.R., & Tiefenbacher, J.P. (2023). "Uncovering the Depletion Patterns of Inland Water Bodies via Remote Sensing, Data Mining, and Statistical Analysis." Water, 15(8), 1508.
- 2. Zolghadr-Asli, B. (2023). "No-free-lunch-theorem: A page taken from the computational intelligence for water resources planning and management." Environmental Science and Pollution Research, DOI: 10.1007/s11356-023-26300-1.
- 3. Zolghadr-Asli, B. (2023). "Computational intelligence-based optimization algorithms: From theory to practice," CRC Press, (Typesetting and finalizing the publisher requirements).

FOR A FULL LIST VISIT: HERE

COMPUTATIONAL INTELLIGENCE-BASED ALGORITHMS

FROM THEORY TO PRACTICE

BABAK ZOLGHADR-ASLI

Coming out soon ... HOPEFULLY!!!

Chapter 9: Harmony Search Algorithm

Summar

- 9.1. Introduction
- 9.2. Algorithmic structure of the harmony search algorithm
 - 9.2.1. Initiation stage
 - 9.2.2. Composing stage

9.2.2.1. Memory strategy

9.2.2.2. Randomization strategy

9.2.2.3. Pitch adjustment strategy

- 9.2.3. Termination stage
- 9.3. Parameter selection and fine-tuning the harmony search algorithm
- 9.4. Python codes
- 9.5. Concluding remarks

References

QUEXINSTITUTE

INTERNATIONAL SYMPOSIUM

Stay in touch

@babak_zolqhadr

babakzolghadrasli.wordpress.com

@babakzolghadrasli

b.zolghadrasli@uq.net.au bz267@exeter.ac.uk

INSTITUTE

INTERNATIONAL SYMPOSIUM

