Cade basso (sciroppo)

Limite di tempo: 2 secondi Limite di memoria: 256 MiB

Il capitano Sen_ è alle prese con la creazione di una cura definitiva per il COVID-2019, meglio conosciuto come Coronavirus. Puoi trovarlo il lunedì, il martedì, il mercoledì, il giovedì, il venerdì: è sempre in piedi, solo facendo cure senza più pensieri.

Dopo tanto lavoro, pare sia riuscito a sviluppare uno **Sciroppo** ® speciale, che se iniettato nei polmoni è in grado di eliminare completamente il virus.

Tuttavia, per funzionare, lo sciroppo deve *cadere basso*, fino a raggiungere e coprire tutti gli alveoli in fondo ai polmoni.

I polmoni sono composti da una griglia di alveoli di N righe e M colonne, numerate da 0 a N-1 e M-1 rispettivamente.

L'alveolo che si trova in riga i e colonna j è di dimensione $D_{i,j}$, pari al numero di secondi che lo sciroppo impiegherà per attraversarlo.

Lo sciroppo cade basso: viene iniettato inizialmente nell'alveolo in posizione $\{R, C\}$ e inizia a propagarsi fin da subito verso le celle sottostanti, da cui poi continuerà a propagarsi una volta trascorso il tempo necessario $D_{i,j} = 0$.

Dall'alveolo in posizione $\{i, j\}$ raggiunge:

- l'alveolo sottostante $\{i+1,j\}$, dopo un tempo $D_{i+1,j}$
- l'alveolo sotto a sinistra $\{i+1, j-1\}$, dopo un tempo $D_{i+1, j-1}$
- l'alveolo sotto a destra $\{i+1,j+1\}$, dopo un tempo $D_{i+1,j+1}$

Quando lo sciroppo raggiunge il fondo dei polmoni (i = N - 1), inizia a spostarsi anche nelle caselle laterali, dato che non può più cadere:

- l'alveolo a sinistra $\{i, j-1\}$, dopo un tempo $D_{i,j-1}$
- l'alveolo a destra $\{i, j+1\}$, dopo un tempo $D_{i,j+1}$

sciroppo Pagina 1 di 3

(celle
$$\{i, j-1\}$$
 e $\{i, j+1\}$.

Inoltre, lo sciroppo non si muove nè verso sinistra nè verso destra quando raggiunge i bordi laterali dei polmoni (rispettivamente j = 0 e j = M - 1).

Aiuta il capitano a capire dopo quanti secondi lo sciroppo avrà raggiunto tutti gli alveoli che si trovano sul fondo dei polmoni (i = N - 1).

Dati di input

L' input è composto da M+1 righe

La prima riga contiene gli interi N, M, R e C, rispettivamente il numero di righe, il numero di colonne e la riga e colonna de cella in cui viene iniettato lo sciroppo.

Le successive N righe contengono ciascuna M interi $D_{i,j}$, le densità delle celle della riga i.

Dati di output

L'output è composto da 1 riga contenente un intero: il tempo che impiega lo sciroppo per cadere sul fondo di tutto il polmone.

Assunzioni

- $D_{R,C} = 0$, lo sciroppo impiega 0 secondi per entrare nella cella di partenza
- $2 \le N \le 500$.
- $1 \le M \le 500$.
- $0 \le R < N 1$.
- $0 \le C < M$.
- $D_{i,j} \leq 100$, for all i, j.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case e otterrà un punteggio proporzionale al numero di testcase risolti.

Esempi di input/output

input.txt / stdin	output.txt / stdout	
2 5 0 2	4	
4 3 0 7 6		
1 3 4 1 1		

input.txt / stdin	output.txt / stdout		
3 5 0 2	7		
1 2 0 1 2			
3 2 1 3 4			
2 4 3 1 5			

sciroppo Pagina 2 di 3

Spiegazione

1	2	0	1	2
3	2	1	3	4
2	4	3	4	5

L'immagine mostra il percorso di caduta dello sciroppo nel secondo test case.

sciroppo Pagina 3 di 3