Rank-31 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 = 0$$

General information

Number of lines	3
Number of points	7
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_9 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_9 = \mathbf{Pl}(1, 1, 0, 0, 1, 1)_{29}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \mathbf{Pl}(1, 1, 1, 1, 0, 0)_8$$

Rank of lines: (12, 9, 15)

Rank of points on Klein quadric: (32, 29, 8)

Eckardt Points

The surface has 1 Eckardt points:

 $0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1). T = 11$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

0 : $P_5 = (1,1,0,0)$ lies on line ℓ_0

1 : $P_6 = (1, 0, 1, 0)$ lies on line ℓ_1

 $2: P_7 = (0, 1, 1, 0)$ lies on line ℓ_2

 $3: P_9 = (1,0,0,1)$ lies on line ℓ_2

The single points on the surface are:

4: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

5: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c|c} 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

 $\begin{array}{|c|c|c|c|c|}\hline \text{Line} & \ell_1 & \ell_2\\ \text{in point} & P_4 & P_4\\ \hline \end{array}$

Line 1 intersects

 $\begin{array}{c|cc} \text{Line} & \ell_0 & \ell_2 \\ \text{in point} & P_4 & P_4 \end{array}$

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_4	P_4

The surface has 7 points:

The points on the surface are:

$$0: P_4 = (1, 1, 1, 1)$$

$$1: P_5 = (1, 1, 0, 0)$$

$$2: P_6 = (1, 0, 1, 0)$$

$$3: P_7 = (0, 1, 1, 0)$$

$$6: P_{12} = (0, 0, 1, 1)$$

$$1: P_5 = (1, 1, 0, 0)$$

$$3: P_7 = (0, 1, 1, 0)$$

 $4: P_9 = (1, 0, 0, 1)$
 $5: P_{10} = (0, 1, 0, 1)$