MULTI-INDEX AND MULTI-LEVEL MONTE CARLO EVALUATION OF HJM MODELS

JUHO HÄPPÖLÄ

ABSTRACT. Notes of MIMC and MLMC evaluation of HJM models.

1. HJM model in Fourier space

Let us focus on the following HJM type SDE:

(1)
$$df(t,\tau) = \alpha(t,\tau) dt + \beta(t,\tau) d\overline{W}(t)$$

$$(2) f(0,\tau) = f_0(\tau),$$

with the diffusion term given as the infinite-dimensional expansion of eq. (1.1) in Björk et al. (2013):

(3)
$$\beta(t,\tau) d\overline{W}(t) = \sum_{n=0}^{\infty} c_n \left(\sin\left(\frac{n\pi\tau}{L}\right) + \cos\left(\frac{n\pi\tau}{L}\right) \right) dW_n(t),$$

with W_n independent Brownian motions and L >> 1. This gives the following Fourier decomposition for the covariance of interests:

(4)
$$\mathrm{E}\left(\beta\left(t,\tau_{1}\right)d\overline{W}\left(t\right)\beta\left(t,\tau_{2}\right)d\overline{W}\left(t\right)\right)$$

(5)
$$= \sum_{n=0}^{\infty} c_n^2 \left(\cos \left(\frac{n\pi (\tau_1 - \tau_2)}{L} \right) \right)$$

To keep the exponential HJM model risk neutral, we fix the drift of the equation as

$$\begin{split} \alpha\left(t,\tau\right) = & c_0^2\left(\tau - t\right) \\ &+ \sum_{n=1}^{\infty} \frac{c_n^2}{n} \sin\left(\frac{n\pi\tau}{L}\right) \left(\cos\left(\frac{n\pi t}{L}\right) - \sin\left(\frac{n\pi t}{L}\right)\right) \\ &+ \sum_{n=1}^{\infty} \frac{c_n^2}{n} \cos\left(\frac{n\pi\tau}{L}\right) \left(\cos\left(\frac{n\pi t}{L}\right) - \sin\left(\frac{n\pi t}{L}\right)\right) \\ &+ \sum_{n=1}^{\infty} \frac{c_n^2}{n} \cos\left(\frac{2n\pi\tau}{L}\right). \end{split}$$

The solution to the SDE can be written as

$$f(t,\tau) - f_0(\tau) = \tilde{f}(t,\tau) + \sum_{n=1}^{N} b_n(t) \cos\left(\frac{n\pi\tau}{L}\right) + a_n(t) \sin\left(\frac{n\pi\tau}{L}\right),$$

Date: May 3, 2016.

with

(6)
$$\tilde{f}(t,\tau) = c_0^2 t \left(\tau - \frac{t}{2}\right),$$

(7)
$$a_n(t) = \frac{c_n^2 L^2}{\pi^2 n^2} \left(\cos \left(\frac{n\pi t}{L} \right) + \sin \left(\frac{n\pi t}{L} \right) - 1 \right) + c_n W_n(t)$$

(8)
$$b_n(t) = a_n(t) - \frac{\mathbf{1}_{\frac{n}{2}} \in \mathbb{Z}_+}{\pi n} c_n^2 Lt.$$

The solution above lends itself to approximate solutions to the quantity of interest. First, the discount factor can be approximated as:

$$\int_{0}^{t_{max}} f(s, s) ds$$

$$\approx \Delta t \sum_{n=1}^{N_{t}} \left(f_{0}(t_{n}) + \tilde{f}(t_{n}, t_{n}) + \sum_{k=1}^{N_{f}} b_{k}(t_{n}) \cos\left(\frac{k\pi t_{n}}{L}\right) + a_{k}(t_{n}) \sin\left(\frac{k\pi t_{n}}{L}\right) \right)$$

$$= F_{N_{t}, N_{f}},$$

with $t_n = \frac{nT}{N_t}$. This approximation gives the following approximation error in N_f :

$$\int_{0}^{T} f(s,s) ds - \lim_{N_{t} \to \infty} F_{N_{t},N_{f}}$$

$$= \int_{0}^{T} \sum_{k=1}^{N_{f}} \frac{c_{k}^{2} L^{2}}{k^{2} \pi^{2}} \left(1 + \sin \left(\frac{2k\pi s}{L} \right) \right) ds$$

$$+ \int_{0}^{T} \sum_{k=1}^{N_{f}} c_{k} W_{k}(s) \left(\sin \left(\frac{k\pi s}{L} \right) + \cos \left(\frac{k\pi s}{L} \right) \right) ds$$

$$- \int_{0}^{T} \sum_{k=1}^{N_{f}} \frac{c_{k}^{2} L}{\pi k} \cos \left(\frac{k\pi s}{L} \right), ds,$$

Similarly, one may the underlying part of the payoff functional

$$\begin{split} &\int_{\tau_1}^{\tau_2} f\left(T,\tau\right) d\tau \\ &\approx \int_{\tau_1}^{\tau_2} f_0\left(\tau\right) + \tilde{f}\left(t_n,t_n\right) + \sum_{k=1}^{N_f} b_k\left(T\right) \cos\left(\frac{k\pi\tau}{L}\right) + a_k\left(T\right) \sin\left(\frac{k\pi\tau}{L}\right) d\tau. \\ &= + \int_{\tau_1}^{\tau_2} f_0\left(\tau\right) d\tau + \frac{c_0 T}{2} \left(\tau_2^2 - \tau_2 + \tau_1 - \tau_1^2\right) \\ &+ \sum_{k=1}^{N_f} \frac{b_k\left(T\right) L}{k\pi} \left(\sin\left(\frac{k\pi\tau_2}{L}\right) - \sin\left(\frac{k\pi\tau_1}{L}\right)\right) \\ &- \sum_{k=1}^{N_f} \frac{a_k\left(T\right) L}{k\pi} \left(\cos\left(\frac{k\pi\tau_2}{L}\right) - \cos\left(\frac{k\pi\tau_1}{L}\right)\right) \\ &= \Psi_{N_f}. \end{split}$$

The corresponding empirical rates for the approximations of the quantity of interest

$$\mathcal{G}\left(f\right) = \operatorname{E}\left(\exp\left(-\int_{0}^{t_{T}} f\left(s,s\right) ds\right) \exp\left(-\int_{\tau_{1}}^{\tau_{2}} f\left(T,\tau\right) d\tau\right)\right) \approx \operatorname{E}\left(F_{N_{t},N_{f}} \Psi_{N_{f}}\right)$$

are presented in fig. 1

Setting $\ell = (\ell_1, \ell_2)$, we may define a Monte Carlo estimator using m independent realisations of Ψ_{N_f} and F_{N_t,N_f} :

(9)
$$\mathcal{A}_{\ell_1,\ell_2} \equiv \sum_{m=1}^{M} \frac{F_{C_1 2^{\ell_1} + 1, C_2 2^{\ell_2}} \Psi_{C_2 2^{\ell_2}}(m)}{M}.$$

Similarly, we may extend the above to a MLMC estimator as

$$\begin{split} \mathcal{A}_{ML} &= \sum_{m=0}^{M_0} \frac{F_{2C_1,C_2} \Psi_{C_2} \left(m \right)}{M_0} \\ &+ \sum_{\ell_1=1}^{L} \sum_{m=0}^{M_{\ell_1}} \frac{\left(F_{C_1 2^{\ell_1} + 1,C_2 2^{\ell_1}} \Psi_{C_2 2^{\ell_1}} - F_{C_1 2^{\ell_1 - 1} + 1,C_2 2^{\ell_1}} \Psi_{C_2 2^{\ell_1}} \right) \left(m \right)}{M_{\ell_1}}, \\ &\equiv \sum_{\ell_1=0}^{L} \sum_{m=0}^{M_{\ell_1}} \frac{\Delta_{\ell_1} \left(m \right)}{M_{\ell_1}} \end{split}$$

and, into a MIMC estimator through defining the appropriate two-dimensional difference operators Δ_{ℓ_1,ℓ_2} and a downward-closed index-set $L_K = \{(\ell_1,\ell_2) \in \mathbb{Z}_+^2 : I(\ell_1,\ell_2) < K\}$:

$$\begin{split} \mathcal{A}_{MI} &= \sum_{\ell \in L_K} \sum_{m=1}^{M_\ell} \frac{\Delta_{\ell_1,\ell_2}\left(m\right)}{M_\ell} \\ \Delta_{\ell_1,\ell_2} &\equiv & F_{C_12^{\ell_1}+1,C_22^{\ell_2}} \Psi_{C_22^{\ell_2}} - \mathbf{1}_{\ell_1>1} F_{C_12^{\ell_1-1}+1,C_22^{\ell_2-1}} \Psi_{C_22^{\ell_2-1}} \\ &\quad - \mathbf{1}_{\ell_2>1} F_{C_12^{\ell_1-1}+1,C_22^{\ell_2}} \Psi_{C_22^{\ell_2}} + \mathbf{1}_{\ell_1,\ell_2>1} F_{C_12^{\ell_1-1}+1,C_22^{\ell_2-1}} \Psi_{C_22^{\ell_2-1}}. \end{split}$$

FIGURE 1. Empirical strong and weak convergence rate for the N_t and N_f .

References

Björk, T., Szepessy, A., Tempone, R. & Zouraris, G. E. (2013), 'Monte carlo euler approximations of hjm term structure financial models', *BIT Numerical Mathematics* **53**(2), 341–383.

King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia E-mail address: juho.happola@iki.fi