

LPIC-1 TRAINING COURSE

Topic 106: User interfaces and desktops

Contents

1. Overview of X Window System

2. Accessibility

Objectives

- Install and configure X11
- Setup and customize a display manager (XDM, GDM, KDM)
- Have a knowledge and awareness of accessibility technology

1. Overview of X Window System

What is X Window System

- A window system for graphical display
- Core component of Unix/Linux GUI
- Based on client-server model
 - X Server: runs on a computer with a graphical display and keyboard
 - X Client: sends requests for graphical output on X server and receives user input (keyboard, mouse) from X server
 - X Client and X Server may run on same machine or on different ones
 - X Client: DISPLAY variable contains server information
 - X Server: xhost controlling client connection
- X does not specific a user interface
 - Window Manager provides the look and feel

Components of X Window System

History of X Window System

- ❖ 1984: X1 (X version 1) originated at MIT
- **❖ 1987**: First release of *X* version 11 (*X11*)
- * 1991: XFree86 project develop XFree86 1.1 based on X11R4
- 1992-2004: XFree86 is the dominant X window system in Linux
- 2004: XFree86 4.4 released under more restrictive and GPLincompatible license
- 4/2004: X.Org foundation release X.Org-X11R6.7 based on XFree86 4.4RC2
- ❖ Since 2004: most Linux distros have adopted X.Org-X11 in place of XFree86

Video hardware support

- Both XFree86 and X.Org support a wide range of modern video cards
- Some manufacturers do not release open source drivers for all function
 - Often the case for accelerated 3D drivers
 - You may need to integrate a driver from the manuafacturer into your X system
- Live CD distros (Knoppix, Ubuntu...) can be used to test your hardware with X

X installation

- Most distros include a version of XFree86 or X.Org already packaged for the system
- **XFree86** installation:
 - Download prebuilt packages or source files from <u>www.XFree86.org</u>
 - Should backup your /usr/X11R6, /etc/X11
 and /etc/fonts directories before installation
- **X.Org** installation:
 - Download prebuilt packages or source files from www.X.org

XFree86 configuration tools

- *XFree86 -configure
 automatically query hardware and produce
 a configuration file /root/XF86Config.new
 for later modification
- *xf86cfg help you tweak settings once X is at least partially running
- redhat-config-xfree86 available on some RedHat system using XFree86

X.Org configuration tools

- *X -configure or Xorg -configure automatically query hardware and produce a configuration file /root/xorg.conf.new for later modification
- xorgcfg similar to xf86cfg
- system-config-display included in Red Hat, CentOS and Fedora

X configuration file

- All X configuration tools gather the same type of information needed to manually configure X
- You should understand the underlying configuration file to understand these tools
- Location of X configuration file

X.Org	XFree86
/etc/xorg.conf	/etc/XF86Config ^(*)
or	or
/etc/X11/xorg.conf	/etc/X11/XF86Config ^(*)
or	or
/usr/X11R6/etc/xorg.conf	/usr/X11R6/etc/XF86Config ^(*)

^(*) can be **XF86Config-4** for XFree86 version 4

Layout of the X configuration file

Configuration file are broken down into multi-line section

Sections:

Section	Description
Files	Location of fonts
ServerFlags	Server flags
Module	Dynamic module loading
InputDevice	Input device description
Device	Graphic device description
VideoAdapter	Xvideo adapter description
Monitor	Monitor description
Modes	Video modes description
Screen	Screen configuration
ServerLayout	Overall layout

Example of X configuration file

BoardName "GeForce 6100"

VideoRam 131072

EndSection

```
Section "Screen"

Identifier "Screen0"

Device "Videocard0"

Monitor "Monitor0"

DefaultDepth 24

SubSection "Display"

Depth 24

Modes "1024x768" "1024x600" "800x600"

EndSubSection

SubSection "Display"

Depth 8

Modes "1024x768" "800x600" "640x480"

EndSubSection

EndSubSection
```

The X Configure-and-Test Cycle

- Shutdown the X session or kill the X server
 - (Red Hat, Fedora) telinit 3
 - (Debian, Ubuntu, Gentoo) /etc/init.d/xdm stop (or gdm, kdm)
 - Ctrl + Alt + Backspace
- Log in using a text-mode and tweak your X settings
 - Using text-based X configuration program
 - Modifying X configuration file
- Start the X server to see the result
 - startx
- If you get the desired results, restart the X session
 - (Red Hat, Fedora) telinit 5
 - (Debian, Ubuntu, Gentoo) /etc/init.d/xdm start (or gdm, kdm)

Obtaining and Tuning X Display

*xdpyinfo

display detailed technical information about the current display

xwininfo

display detailed technical information about a specific window

xvidtune

tune the size and position of your X display, you can test, apply and view the settings information to modify X configuration file

Display Managers

- Present a graphical login screen, handle authentication, start a graphical session
- Implemented as a network login protocol (XDMCP – X Display Manager Control Protocol)
- *X Display Manager (XDM), KDE Display Manager (KDM) and GNOME Display Manager (GDM) are common on Linux

Display Manager (cont')

- On Red Hat & SUSE, X is usually started in runlevel 5
 - Determiniation of default runlevel is made in /etc/inittab.

```
# The default runlevel is defined here
id:5:initdefault:
```

- Display Manager is started by an entry in /etc/inittab or by runlevel startup script
- Stopping a Display Manager
 - Exampe: /usr/sbin/gdm-stop
- Starting a Display Manager
 - Example: /usr/sbin/gdm start

Configuring XDM

- XDM is included in the XFree86 and X.Org packages
- Main configuration file: /etc/X11/xdm/xdm-config
- Access control file: /etc/X11/xdm/Xaccess
- * X-based program control file: /etc/X11/xdm/Xresources
- You can customize the way XDM works by updating the scripts in /etc/X11/xdm
 - Eg: Xsetup script lets you customize the greeting
- XDM uses the default resolution from XF86Config or xorg.conf file

Configuring KDM

- * KDM is the Desktop Manager for the KDE
- * KDM is based partly on XDM and so shares many of its configuration options
- Location of the KDE configuration files is unpredictable
 - \$KDEDIR/share/config/kdm or /etc/X11/kdm or /etc/kde/kdm
- Main configuration file is kdmrc
 - [Xdmcp] section provides options relating to network operation. Enable=true will enable network logins
- You can also configure KDM by using KDE control center (kcontrol)

Configuring GDM

- GDM is the Desktop Manager for GNOME
- GDM was not based on XDM but written from scratch
- Configuration file (gdm.conf) normally located in /etc/X11/gdm
 - Setting enable=yes in [xdmcp] section will enable remote login
- You can also configure GDM by using gdmsetup

X Core Fonts and Fonts server

- *X core fonts are fonts that are handled directly by X
- Fonts are listed in XF86Config (or xorg.conf) by the keyword FontPath in the Files section
 - FontPath "/usr/X11R6/lib/X11/fonts/TrueType"
 - FontPath "/usr/X11R6/lib/fonts/75dpi:unscaled"
- Font servers can also be listed but MUST be first in the list
 - FontPath "unix/:7100"
 - FontPath "tcp/myserver.fd.com:7100"

Setting-up X Core Font directory

- 1. Create a new font directory
 - Eg: mkdir/opt/fonts
- 2. Copy your new fonts to this directory
- 3. Run mkfontscale and mkfontdir to create summary files fonts.scale and fonts.dir that describes the fonts
 - Eg: mkfontscale && mkfontdir
- 4. Adding fonts to X's FontPath:
 - Temporarily add with xset:
 - Eg: xset +fp /opt/fonts xset fp rehash
 - Permanently add: Add FontPath to XF86Config (or xorg.conf) file

Setting-up X Core Font server (xfs)

- * xfs is the standard Font Server which listens on port 7100
- * xfs configuration file: /etc/X11/fs/config or /etc/X11/xfs.conf
 - Example of xfs configuration file
- Steps to setup a X Font server:
 - 1. Install the fonts on the system (see previous slide)
 - 2. Add new font directory to the **catalogue** section in the xfs configuration file
 - 3. Restart the font server: /etc/init.d/xfs restart
 - 4. Restart X or run **xfs fp rehash** on client

X core fonts vs. Xft fonts

*X core fonts have several drawbacks

- Server based (not local to applications)
- Limited support for advanced typographic features
- Don't support font smoothing (anti-aliasing)
- New Xft fonts system is client-based
 - Application access font files on the computer they're running
 - Support font smoothing and other advanced font features
- X core fonts and Xft fonts can share the same font directory
- Most modern GUI Linux programs are Xft-enabled

Configuring Xft Fonts

- Simply copying your font files to Xft default
 - /usr/X11R6/lib/X11/lib/fonts/
 - ~/.fonts/
 - /usr/local/share/fonts/
- Can edit Xft configuration file (/etc/fonts/local.conf) to add new font directory or setting advanced features.
 - run fc-cache as root for Xft to reload fonts

Exercise 1

In this exercise, you will get familiar with X server from your local system

- 1. Change your linux system to runlevel 3
 - Hint: init 3
- 2. Switch to the **tty1** (Ctlr+Alt+F1 or **chvt** 1) and login with **root** account
- 3. View your X11 configuration file
 - Hint: less /etc/X11/xorg.conf
- 4. Start X server
 - Hint: X &
- 5. Switch to the **tty2** (Ctlr+Alt+F2 or **chvt 2**), login and reate the environment variable: **DISPLAY=localhost:0**
 - Hint: export DISPLAY=localhost:0
- 6. Run **xterm** then switch to **tty7** (Ctlr+Alt+F7) where X server is running to see **xterm**
 - Hint: xterm &
- 7. Run twm (Tab Window Manager) from the xterm shell and see what happens
 - Hint: twm &

Exercise 1 (cont')

- 8. Switch to **tty1** (Ctlr+Alt+F1) and start a new X server in display 1
 - Hint: X :1 &
- 9. Switch to **tty3** (Ctlr+Alt+F3 or **chvt 3**), login and and create a environment variable: **DISPLAY=:1**
 - Hint: export DISPLAY=:1
- 10. Run **xterm** then switch to **tty8** (Ctlr+Alt+F8) where the second X server is running to see **xterm**
 - Hint: xterm &
- 11. Run gnome-session from this xterm shell and see what happens
 - Hint: gnome-session

Exercise 2

In this exercise, you will install cygwin or other X Window Server software on your MS Windows computer, then run programs from a Linux computer but displays and accepts input from the MS Windows computer. You also need putty to remotely connect to Linux computer via ssh.

- Download or install cygwin or other X Window Server software on your MS Windows system, then start X Server
 - Example with cygwin: startx
- 2. Disable X Server access control on your Windows system
 - Example with cygwin: xhost +
- 3. Open a **ssh** or **telnet** session to your Linux system with **putty**.
- 4. Whithin the ssh session, export the DISPLAY variable with the appropriate value
 - Example: export DISPLAY=<Windows_system_IPAddress>:0
- 5. Whithin the ssh session, run a GUI application (Eg: firefox, ooffice, xterm, gnome-session...) and see the result.

2. Accessibility

Keyboard Accessibility Settings

- On GNOME: Access these settings by seleting System > Preferences > Hardware > Mouse and System > Preferences > Hardware > Keyboard
 - Keyboard repeat rate
 - Sticky key
 - Slow keys
 - Bounce/debounce key
 - Mouse tracking and click options
 - Simulate mouse clicks
 - Mouse emulation/mouse navigation
 - Mouse gesture
- GNOME Onscreen keyboard: Access via Applications
 Accessibility > On-Screen Keyboard

Screen Display Settings

- Including font options, contrast settings and screen magnification tools
 - Adjusting default fonts and contrast: System
 - > Preference > Appearance
 - Magnifier Tools: Install *KMag* (part of KDE suite)

Additional Assistive Technologies

- Configuring Linux to Speak:
 - Using Orca (http://live.gnome.org/Orca)
 - Using *Emacspeak* (http://emacspeak.sourceforge.net)
- Configuring Braille displays: Using BRLTTY utilities (http://www.mielke.cc/brltty/)
 - The 2.6.26 Linux kernel adds some direct support for Braille displays

BACKUP SLIDES

Example of xfs configuration file

```
# allow a max of 10 clients to connect to this font server
client-limit = 10
# when a font server reaches its limit, start up a new one
clone-self = on
# alternate font servers for clients to use
#alternate-servers = foo:7101.bar:7102
# where to look for fonts
catalogue = /usr/X11R6/lib/X11/fonts/misc:unscaled,
        /usr/X11R6/lib/X11/fonts/75dpi:unscaled,
        /usr/X11R6/lib/X11/fonts/100dpi:unscaled,
        /usr/X11R6/lib/X11/fonts/misc,
        /usr/X11R6/lib/X11/fonts/Type1,
        /usr/X11R6/lib/X11/fonts/Speedo,
        /usr/X11R6/lib/X11/fonts/cyrillic,
        /usr/X11R6/lib/X11/fonts/TTF.
        /usr/share/fonts/default/Typel
# in 12 points, decipoints
default-point-size = 120
# 100 x 100 and 75 x 75
default-resolutions = 75,75,100,100
# how to log errors
use-syslog = on
# don't listen to TCP ports by default for security reasons
no-listen = tcp
```