Models/Results

Standard Scalar, Train-Test Split Logistic Regression on Numerical Columns

	Gender	Age	EstimatedSalary	Purchased
395	0	46	41000	1
396	1	51	23000	1
397	0	50	20000	1
398	1	36	33000	0
399	0	49	36000	1

Standard Scalar, Train-Test Split Logistic Regression on WoE Encoded Columns

80

	ted avg	0.89	0.89	0.8
				- 50
0 -	56		2	- 40
				- 30 - 20
er -			15	20

	Purchased	age_WoE_ENC	sal_WoE_ENC	gender_WoE_ENC
380	0	0.010783	0.000799	0.912426
381	1	0.233636	0.017191	0.912426
382	1	0.017972	0.377413	1.089643
383	1	0.071888	0.017191	0.912426
384	1	0.000000	0.017191	1.089643
385	1	0.000000	0.000799	0.912426
386	1	0.071888	0.017191	1.089643

DataFrame mapping technique used in 2nd model:

Note: WoE labels for each age (not grouped)

	Total Count	Purchased	Not Purchased	%P	%NP	WOE	IV
41	16	1.0	15.0	0.70%	5.84%	0.001198	-0.006155
42	16	6.0	10.0	4.20%	3.89%	0.010783	0.003286
43	3	2.0	1.0	1.40%	0.39%	0.035944	0.036285
44	2	1.0	1.0	0.70%	0.39%	0.017972	0.005575
45	7	6.0	1.0	4.20%	0.39%	0.107832	0.410485
46	12	7.0	5.0	4.90%	1.95%	0.025161	0.074214
47	14	12.0	2.0	8.39%	0.78%	0.107832	0.820969
48	14	13.0	1.0	9.09%	0.39%	0.233636	2.033058
49	10	8.0	2.0	5.59%	0.78%	0.071888	0.346227
50	4	3.0	1.0	2.10%	0.39%	0.053916	0.092132

Target Salary Groupings used for WoE tier-marked labels (grouped): ["15k-26k","26k-40k","40k-55k","55k-67k","67k-81k","81k-100k", "100k-120k","120k-135k","135k-150k"]

	Total Count	Purchased	Not Purchased	%P	%NP	WOE	IV
100k-120k	32	24	8	16.78%	3.11%	0.053916	0.737053
120k-135k	19	17	2	11.89%	0.78%	0.152762	1.697173
135k-150k	22	21	1	14.69%	0.39%	0.377413	5.395569
15k-26k	42	13	29	9.09%	11.28%	0.008056	-0.017669
26k-40k	45	22	23	15.38%	8.95%	0.017191	0.110625
40k-55k	61	10	51	6.99%	19.84%	0.003524	-0.045287
55k-67k	47	2	45	1.40%	17.51%	0.000799	-0.012869
67k-81k	79	13	66	9.09%	25.68%	0.003540	-0.058728
81k-100k	53	21	32	14.69%	12.45%	0.011794	0.026348

Final map before DataFrame reduction:

	Gender	Age	EstimatedSalary	Purchased	Salary_Group	age_WoE_ENC	sal_WoE_ENC	gender_WoE_ENC
380	1	42	64000	0	55k-67k	0.010783	0.000799	0.912426
381	1	48	33000	1	26k-40k	0.233636	0.017191	0.912426
382	0	44	139000	1	135k-150k	0.017972	0.377413	1.089643
383	1	49	28000	1	26k-40k	0.071888	0.017191	0.912426
384	0	57	33000	1	26k-40k	0.000000	0.017191	1.089643
385	1	56	60000	1	55k-67k	0.000000	0.000799	0.912426
386	0	49	39000	1	26k-40k	0.071888	0.017191	1.089643
387	1	39	71000	0	67k-81k	0.011981	0.003540	0.912426
388	1	47	34000	1	26k-40k	0.107832	0.017191	0.912426
389	0	48	35000	1	26k-40k	0.233636	0.017191	1.089643
390	1	48	33000	1	26k-40k	0.233636	0.017191	0.912426
391	1	47	23000	1	15k-26k	0.107832	0.008056	0.912426
392	0	45	45000	1	40k-55k	0.107832	0.003524	1.089643
393	1	60	42000	1	40k-55k	0.000000	0.003524	0.912426
394	0	39	59000	0	55k-67k	0.011981	0.000799	1.089643
395	0	46	41000	1	40k-55k	0.025161	0.003524	1.089643
396	1	51	23000	1	15k-26k	0.035944	0.008056	0.912426
397	0	50	20000	1	15k-26k	0.053916	0.008056	1.089643
398	1	36	33000	0	26k-40k	0.012837	0.017191	0.912426
399	0	49	36000	1	26k-40k	0.071888	0.017191	1.089643

Logistic Regression on one-hot encoded variables, K-fold split

```
1  X = features.iloc[:,1:]
2  y = features.iloc[:,0]
  kfold = KFold(n splits=5, random state=0, shuffle=True)
model = LogisticRegression(solver='liblinear')
results = cross_val score(model, X, y, cv=kfold)
y_pred = cross_val predict(model, X, y, cv=kfold)
conf_matrix = confusion_matrix(y, y_pred)
  fe report = classification report(y, y pred)
7  # Output the accuracy. Calculate the mean and std across all folds.
8  print("Accuracy: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))
9 print(conf_matrix)
10 print(report)
Accuracy: 87.250% (6.490%)
[[240 17]
[ 34 109]]
                          precision recall fl-score support
                                                                   0.90
                                                0.76
                                   0.87
                                                                       0.87
                                                                                            400
       accuracy
                                               0.85
0.87
                                                                  0.80
                             0.87
weighted avg
                                                                                              400
```

Logistic Regression on one-hot encoded variables, Train-Test split

Dataframe used for both models:

	Purchased	Gender_Female	Gender_Male	Age Group_18- 25	Age Group_26- 35	Age Group_36- 45	Age Group_46- 55	Age Group_55+	Salary Group_100k- 120k	Salary Group_120k- 135k	Salary Group_135k- 150k	Salary Group_15k- 26k	Gr
0	0	0	1	1	0	0	0	0	0	0	0	1	
1	0	0	1	0	1	0	0	0	0	0	0	1	
2	0	1	0	0	1	0	0	0	0	0	0	0	
3	0	1	0	0	1	0	0	0	0	0	0	0	
4	0	0	1	1	0	0	0	0	0	0	0	0	

Note: One-Hot Encoding for age (grouped):

["18-25","26-35","36-45","46-55","55+"]

Target Salary Groupings used for one-hot encoding (grouped):

["15k-26k","26k-40k","40k-55k","55k-67k","67k-81k","81k-100k", "100k-120k","120k-135k","135k-150k"]

Note: models not scaled, one-hot normalized distribution

Dataframe Mapping technique used for IV/WoE mapping in following models:

1	Total Count	Purchase	d N	ot Purchased		%P	%NF	, v	/OE	IV	,
Female	204	7	7	127	53	.85%	49.42%	1.089	643	4.826911	Ī
Male	196	6	6	130	46	.15%	50.58%	0.912	426	-4.041875	
To	tal Count	Purchased	No.	t Purchased		%Р	%NP	w	DE	IV	
18-25	49	C)	49	0.0	00%	19.07%	0.0000	00 -0	0.000000	
26-35	129	17		112	11.8	89%	43.58%	0.0027	28 -0	.086452	
36-45	119	38	1	81	26.5	57%	31.52%	0.0084	31 -0	0.041685	
46-55	75	62		13	43.3	36%	5.06%	0.0857	13 3	.282651	
55+	28	2€	i	2	18.1	18%	0.78%	0.2336	36 4	.066116	
	Total Cou	ınt Purch	ased	Not Purchas	ed	9	6P %	NP	WOE		
100k-120k		32	24		8	16.78	3% 3.1	1% 0.0	053916	0.7370)5
120k-135k		19	17		2	11.89	9% 0.7	8% 0.	152762	1.6971	ľ
135k-150k		22	21		1	14.69	9% 0.3	9% 0.3	377413	5.3955	ół
15k-26k		42	13		29	9.09	9% 11.2	8% 0.0	008056	-0.017€	ši
26k-40k		45	22		23	15.38	8.9	5% 0.0	017191	0.1106	š
40k-55k		61	10		51	6.99	9% 19.8	4% 0.0	003524	-0.0452	28
55k-67k		47	2		45	1.40	0% 17.5	1% 0.0	000799	-0.0128	36
67k-81k		79	13		66	9.09	9% 25.6	8% 0.0	003540	-0.0587	7
81k-100k		53	21		32	14.69	9% 12.4	5% 0.0	011794	0.0263	34

Final Map before DataFrame reduction:

	Gender	Purchased	Age_Group	Salary_Group	age_WoE_ENC	sal_WoE_ENC	gender_WoE_ENC
380	Male	0	36-45	55k-67k	0.008431	0.000799	0.912426
381	Male	1	46-55	26k-40k	0.085713	0.017191	0.912426
382	Female	1	36-45	135k-150k	0.008431	0.377413	1.089643
383	Male	1	46-55	26k-40k	0.085713	0.017191	0.912426
384	Female	1	55+	26k-40k	0.233636	0.017191	1.089643
385	Male	1	55+	55k-67k	0.233636	0.000799	0.912426
386	Female	1	46-55	26k-40k	0.085713	0.017191	1.089643
387	Male	0	36-45	67k-81k	0.008431	0.003540	0.912426
388	Male	1	46-55	26k-40k	0.085713	0.017191	0.912426
389	Female	1	46-55	26k-40k	0.085713	0.017191	1.089643
390	Male	1	46-55	26k-40k	0.085713	0.017191	0.912426
391	Male	1	46-55	15k-26k	0.085713	0.008056	0.912426
392	Female	1	36-45	40k-55k	0.008431	0.003524	1.089643
393	Male	1	55+	40k-55k	0.233636	0.003524	0.912426
394	Female	0	36-45	55k-67k	0.008431	0.000799	1.089643
395	Female	1	46-55	40k-55k	0.085713	0.003524	1.089643
396	Male	1	46-55	15k-26k	0.085713	0.008056	0.912426
397	Female	1	46-55	15k-26k	0.085713	0.008056	1.089643
398	Male	0	36-45	26k-40k	0.008431	0.017191	0.912426
399	Female	1	46-55	26k-40k	0.085713	0.017191	1.089643

Results of WoE encoding log regression without standard scaling, K-fold split

Note: columns

```
kfold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True)
model = LogisticRegression(solver='liblinear')
     results = cross_val_score(model, X, y, cv=kfold)
y_pred = cross_val_predict(model, X, y, cv=kfold)
# Output the accuracy. Calculate the mean and std across all folds.
print("Accuracy, STD: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))
  7 print(results)
     conf_matrix = confusion_matrix(y, y_pred)
report = classification_report(y, y_pred)
10 ks = cohen_kappa_score(y, y_pred)
11 log_loss_score = log_loss(y, y_pred)
 12 print(conf_matrix)
 13 print(report)
14 print(ks)
15 print(log_loss_score)
Accuracy, STD: 74.500% (3.758%)
[0.8 0.6875 0.725 0.75 0.7625]
[[253 4]
 [ 98 45]]
                     precision
                                        recall f1-score support
                 1
                              0.92
                                             0.31
                                                              0.47
                                                                               143
                                                              0.74
                                                                                400
      accuracy
weighted avg
                              0.79
                                             0.74
                                                              0.70
                                                                                400
0.35017360558086197
8.807395976676526
```

Results of WoE encoding log regression with standard scaling, K-fold split

```
X = woe_ad_clicks.iloc[:,1:]
  2 y = woe_ad_clicks.iloc[:,0]
       #note: using SStandard Scalar on WoE
      ss = StandardScaler()
  3 X = ss.fit_transform(X)
 kfold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True)
model = LogisticRegression(solver='liblinear')
results = cross_val_score(model, X, y, cv=kfold)
y_pred = cross_val_predict(model, X, y, cv=kfold)
# Output the accuracy. Calculate the mean and std across all folds.
print("Accuracy, STD: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))
     print(results)
  8 conf_matrix = confusion_matrix(y, y_pred)
9 report = classification_report(y, y_pred)
 10 ks = cohen_kappa_score(y, y_pred)
11 log_loss_score = log_loss(y, y_pred)
 12 print(conf matrix)
 13 print(report)
 14 print(ks)
 15 print(log_loss_score)
Accuracy, STD: 87.750% (4.138%)
[0.8375 0.8375 0.875 0.95 0.8
[[241 16]
 [ 33 110]]
                       precision
                                        recall f1-score support
                               0.87
                                             0.77
                                                             0.82
                                                                                 143
      accuracy
                                                                0.88
                                                                                 400
                                              0.85
                                            0.88
                                                            0.88
weighted avg
                                                                                 400
                              0.88
0.7261192778491979
4.231032092273767
```

DataFrame used on both WoE models:

	Purchased	age_WoE_ENC	sal_WoE_ENC	gender_WoE_ENC
0	0	0.000000	0.008056	0.912426
1	0	0.002728	0.008056	0.912426
2	0	0.002728	0.003524	1.089643
3	0	0.002728	0.000799	1.089643
4	0	0.000000	0.003540	0.912426

Results of IV Encoding without standard scaling

```
kfold2 = KFold(n_splits=5, random_state=0, shuffle=True)
model2 = LogisticRegression(solver='liblinear')
results2 = cross_val_score(model, X2, y2, cv=kfold)
y_pred2 = cross_val_predict(model, X2, y2, cv=kfold)
# Output the accuracy. Calculate the mean and std across all folds.
print("Accuracy, STD: %.3f%% (%.3f%%)" % (results2.mean()*100.0, results2.std()*100.0))
In [109]:
                       print(accuracy, std: *.5te* (*.5te*) * (re
print(results2)

conf_matrix2 = confusion_matrix(y2, y_pred2)
preport2 = classification_report(y2, y_pred2)
log_loss_score2 = log_loss(y2, y_pred2)
print(conf_matrix2)
                        12 print(report2)
                        13 print(log_loss_score2)
                       Accuracy, STD: 87.750% (4.138%)
[0.8375 0.8375 0.875 0.95 0.8875]
[[241 16]
                          [ 33 110]]
                                                                                   recall f1-score
                                                                   0.87
                                                                                         0.77
                                                                                                                0.82
                                                                                                                                          143
                                                                                                                 0.88
                                                                                                                                          400
                                accuracy
                                                                   0.88
                                                                                         0.85
                                                                                                                 0.86
                                                                                                                                          400
                       weighted avg
                                                                                                                                          400
                                                                                         0.88
                                                                                                                0.88
                                                                   0.88
                       4.231032092273767
```

Results of IV encoding with standard scaling

```
Log Regression using IV encoded categorical variables, k-fold split
              1  X2 = iv_ad_clicks.iloc[:,1:]
2  y2 = iv_ad_clicks.iloc[:,0]
             1 ss = StandardScaler()
2 X = ss.fit_transform(X2)
In [221]:
print(results2)
conf_matrix2 = confusion_matrix(y2, y_pred2)
report2 = classification_report(y2, y_pred2)
log_loss_score2 = log_loss(y2, y_pred2)
             11 print(conf_matrix2)
12 print(report2)
             print(log_loss_score2)
            Accuracy, STD: 87.750% (4.138%)
[0.8375 0.8375 0.875 0.95 0.8875]
            [[241 16]
[ 33 110]]
                                            recall fl-score
                                                                    support
                                    0.87
                                                0.77
                                                            0.82
                                                                          143
                 accuracy
                                                            0.88
                                                                          400
                                    0.88
                                                0.85
                                                                           400
            weighted avg
                                                0.88
                                                            0.88
            4.231032092273767
```

Reduced DataFrame used in both IV models:

	Purchased	age_IV_ENC	sal_IV_ENC	gender_IV_ENC
0	0	-0.000000	-0.017669	-4.041875
1	0	-0.086452	-0.017669	-4.041875
2	0	-0.086452	-0.045287	4.826911
3	0	-0.086452	-0.012869	4.826911
4	0	-0.000000	-0.058728	-4.041875