Non-construct Item Features and Response Processes in Computer Science Assessments: Evidence From Think-Alouds and Sequence Analysis

AERA 2021 Annual Meeting

Matt J. Davidson
Min Li

Automatically Synthesizing Valid, Personalized, Formative Assessments of CS1 Concepts (NSF-1735123)

Land Acknowledgement

Land Acknowledgement

The University of Washington, and all of our lives and institutions, exists on Indigenous land. I acknowledge that I work and live on the ancestral homelands of the Coast Salish Peoples who have lived here from time immemorial. This land acknowledgement is one small act in the ongoing process of working to be in good relationship with the land and the people of the land and, ultimately, toward decolonization.

Adapted from the Banks Center for Educational Justice, https://www.education.uw.edu/cej/

> Underexplored source of validity evidence

- > Underexplored source of validity evidence
- > Research on CS assessments focused on content validity

- > Underexplored source of validity evidence
- > Research on CS assessments focused on content validity

Research Question: How does varying non-construct item features influence response processes?

Dimension

Cognitive

Demands

Openness

Evidence of thinking

Dimension		Cate	Category	
Cognitive Demands	Reading Syntax	Reading Templates	Writing Syntax	Writing Templates
Openness				
Evidence of thinking				

Dimension	Category			
Cognitive Demands	Reading Syntax	Reading Templates	Writing Syntax	Writing Templates
Openness	Closed	Semi-open		Open
Evidence of thinking				

Dimension	mension Category			
Cognitive Demands	Reading Syntax	Reading Templates	Writing Syntax	Writing Templates
Openness	Closed	Semi-open		Open
Evidence of thinking	None	Inferred		Explicit

Dimension	on Category			
Cognitive Demands	Reading Syntax			Writing Templates
Openness	Closed	Semi-open	Semi-open	
Evidence of thinking	None	Inferred	Inferred	

Dimension		Cate	Category	
Cognitive Demands	Reading Syntax	Reading Templates	Writing Syntax	Writing Templates
Openness	Closed	Semi-open		Open
Evidence of thinking	None Inferred			Explicit

Thinkalouds → **Qualitative Codes**

Thinkalouds -> Qualitative Codes

Process Category

Monitoring

Problem Solving

Reading Semantics

Reading Templates

Writing Semantics

Writing Syntax

Thinkalouds -> Qualitative Codes

Process Category	Detailed Sub-codes (e.g.)	
Monitoring	applying strategy; noticing confusion	
Problem Solving	read task requirements; eliminate answers	
Reading Semantics	multistructural reading; tracing values	
Reading Templates	relational reading; recognizing template	
Writing Semantics	global planning; revising semantics	
Writing Syntax	typing syntax; revising syntax	

Thinkalouds -> Qualitative Codes

Process Category	Detailed Sub-codes (e.g.)	
Monitoring	applying strategy; noticing confusion	
Problem Solving	read task requirements; eliminate answers	
Reading Semantics multistructural reading; tracing val		
Reading Templates	relational reading; recognizing template	
Writing Semantics global planning; revising semantics		
Writing Syntax typing syntax; revising syntax		

> Proportional frequency

> Proportional frequency

> Sequence Dissimilarity

> Proportional frequency

> Sequence Dissimilarity

> Sequential Pattern Mining

test for the frequency of each process category

Broadfeifferences in sequences, of each process category ignoring order

Broad differences in sequences, ignoring order

> yrogetac ssecorp hcae fo ycn test for the frequency of each process category

le		Monitoring	Problem Solving	Reading Semantics
	Open	.67	.75	.42
	Closed	.23	.65	.34

Broad differences in sequences, ignoring order

- > yrogetac ssecorp hcae fo ycn test for the frequency of each process category
- > p-value correction within each item feature

ıe		Monitoring	Problem Solving	Reading Semantics
	Open	.67	.75	.42
	Closed	.23	.65	.34

= +

Broad differences in sequences, taking order into account

Broad differences in sequences, taking order into account

A: Monitoring – RS – RT – Problem Solving

B: Monitoring – RS – WS – Monitoring

C: Problem Solving – RS – WS - RT

Broad differences in sequences, taking order into account

```
A: Monitoring – RS – RT – Problem Solving
```

- > BBLLCCSS LCS A, B AA, LCS A, B * C: Problem Solving RS WS RT 2 L B LL L B BB L B L A LL L A AA L A + =
 - BB distance A, B distance A, stance A, B A, B

$$= L_{\rm A} + L_{\rm B} - 2 * LCS_{\rm A,B}$$

LCS A, B

Broad differences in sequences, taking order into account

```
A: Monitoring – RS – RT – Problem Solving
```

31

Broad differences in sequences, taking order into account

>
$$BBLLCCSS$$
 LCS A , B AA , LCS A , B * C : Problem Solving – RS – WS - RT $2 - L$ B LL L B BB L B L A LL L A AA L A $+$ $=$

$$= L_{\rm A} + L_{\rm B} - 2 * LCS_{\rm A,B}$$

LCS A, B

32

Broad differences in sequences, taking order into account

A: Monitoring – RS – RT – Problem Solving

- > SS within SSSS SS within wwiitthhiinn SS weth onitoring RS WS Monitoring
- > SS between / LCS A, B

> BBLLCCSS LCS A, B AA, LCS A, B * 2 - L B LL L B BB L B L A LL L A AA L A + = A BB distance A, B distance A, stance A, B A, B A $= L_A + L_B - 2 * LCS_{A,B}$

Sequential Pattern Mining

Sequential Pattern Mining

Subsequences that are associated with an item feature

Sequential Pattern Mining

Subsequences that are associated with an item feature

> Discover frequent subsequences

Subsequences that are associated with an item feature

- > Discover frequent subsequences
 - 50% support

Subsequences that are associated with an item feature

- > Discover frequent subsequences
 - 50% support
 - Max length of 3

Subsequences that are associated with an item feature

- > Discovertest for each subsequence
 - 50% support
 - Max length of 3

> χ2 222 test for each subsequence

Subsequences that are associated with an item feature

- > Discovertest for each subsequence
 - 50% support
 - Max length of 3

Subseq 1	Present	Absent
Open	58	20
Closed	13	39

> χ2 222 test for each subsequence

Subsequences that are associated with an item feature

- > Discovertest for each subsequence
 - 50% support
 - Max length of 3

> χ 2 2 2 2 test for each subsequence

Subseq 1	Present	Absent
Open	58	20
Closed	13	39

Subseq 2	Present	Absent
Open	39	39
Closed	30	22

> **Openness**

> Openness

> Evidence of thinking

> Openness

> Evidence of thinking

> Cognitive demands

Results: Proportional Frequency

Results: Proportional Frequency

Results: Proportional Frequency

Results: Sequence Dissimilarity

Results: Sequence Dissimilarity

Summary of Pseudo-ANOVA results for sequence dissimilarity measure

	Sum of Squares	df	Mean Square	pseudo- F	p
Openness (open, closed)					
Explained	0.56	1	0.55	2.42	0.004
Residual	29.74	129	0.23		
Evidence (inferred, explicit)					
Explained	0.31	1	0.31	1.32	0.141
Residual	29.99	129	0.23		
Cognitive Demands (RS, RT, W	VS)				
Explained	5.17	2	2.59	13.18	0.001
Residual	25.13	128	0.20		

Results: Sequence Dissimilarity

Summary of Pseudo-ANOVA results for sequence dissimilarity measure

	Sum of Squares	df	Mean Square	pseudo- F	р
Openness (open, closed)					
Explained	0.56	1	0.55	2.42	0.004
Residual	29.74	129	0.23		
Evidence (inferred, explicit)					
Explained	0.31	1	0.31	1.32	0.141
Residual	29.99	129	0.23		
Cognitive Demands (RS, RT, V	WS)				
Explained	5.17	2	2.59	13.18	0.001
Residual	25.13	128	0.20		

Results: Sequential Pattern Mining

Results: Sequential Pattern Mining

Subsequences that discriminated best between open and closed writing items

Subsequence	p	Open	Closed
(typing syntax)-(planning: local)-(reread program specification)	0.23	0.75	0.19
(planning: local)-(typing syntax)-(reread program specification)	0.44	0.71	0.19
(planning: local)-(reread program specification)	0.61	0.75	0.25
(read program specification)-(planning: local)-(reread program specification)	0.61	0.75	0.25
(read task requirements)-(planning: local)-(reread program specification)	0.61	0.75	0.25
(typing syntax)-(planning: local)-(planning: local)	0.61	0.75	0.25
(planning: local)-(reread program specification)-(%)	0.87	0.71	0.25
(planning: local)-(reread program specification)-(typing syntax)	0.87	0.71	0.25
(typing syntax)-(reread program specification)-(planning: local)	0.95	0.75	0.31
(planning: local)-(typing syntax)-(typing syntax)	1.00	0.86	0.50

Results: Sequential Pattern Mining

Subsequences that discriminated best between open and closed writing items

Subsequence	p	Open	Closed
(typing syntax)-(planning: local)-(reread program specification)	0.23	0.75	0.19
(planning: local)-(typing syntax)-(reread program specification)	0.44	0.71	0.19
(planning: local)-(reread program specification)	0.61	0.75	0.25
(read program specification)-(planning: local)-(reread program specification)	0.61	0.75	0.25
(read task requirements)-(planning: local)-(reread program specification)	0.61	0.75	0.25
(typing syntax)-(planning: local)-(planning: local)	0.61	0.75	0.25
(planning: local)-(reread program specification)-(%)	0.87	0.71	0.25
(planning: local)-(reread program specification)-(typing syntax)	0.87	0.71	0.25
(typing syntax)-(reread program specification)-(planning: local)	0.95	0.75	0.31
(planning: local)-(typing syntax)-(typing syntax)	1.00	0.86	0.50

> Open items -> more planning

> Open items → more planning

> Implications for the construct

> Open items -> more planning

> Implications for the construct

> Response process validity

Non-construct Item Features and Response Processes in Computer Science Assessments: Evidence From Think-Alouds and Sequence Analysis

Matt Davidson | mattjd@uw.edu | @dontmattme | mattjohndavidson.github.io

- > Varying an item's openness influenced students planning and writing processes on code writing items.
- > Sequence analysis techniques can be used to analyze response process data.

More details about the methods in blog post at:

bit.ly/AERA21-sequences

Details on qualitative codes and results for all item features in the iPresentation:

bit.ly/AERA21-poster