路爾濱工業大學 (深圳)

嵌入式系统软件设计基础 实验报告

实验所	属课程: 电子工艺		
姓名:	李木晗		
学号:	SZ170210119		
专业:	电子信息		
		评分:	
		批阅老师:	

实验内容:

实验代码要求:关键代码要注释,整个工程打包发到指定邮箱:jingjing.yang@163.com

邮件名称要求: 专业 姓名 学号 软件基础实验报告

1.1 实验目的

设计一个灯光控制系统,该系统主要用于展览馆等需要解说员解说,且需要调节光线以达到最佳演示效果的场合。系统检测到外界声音后打开灯光,系统根据周边环境光的情况自动调整 LED 灯的亮度,以达到最佳展示效果。一定时间后,如果没有检测到声音信号,则自动关闭 LED 灯,以达到节能目的。

1.2 实验原理及用户手册查找

(文字、图表等阐述要实现的实验效果,阐述相关模块的使用方法和有关理论知识和寄存器使用方法等)

1.2.1 LED 灯


```
void light_on(void) {
                                           P60UT &= \sim 0x08;
                                                                              void initLED(void) {
    P80UT |= 0x02;
                                           P60UT &= \sim 0 \times 10;
                                                                                  P8DIR |= 0x02;
    P30UT |= 0x80;
                                           P30UT &= \sim 0x20;
                                                                                  P3DIR \mid= 0x80;
    P70UT |= 0x10;
                                                                                  P7DIR \mid= 0x10;
                                       }
    P60UT |= 0x08;
                                       void led_on(void) {
                                                                                  P6DIR = 0x08;
    P60UT |= 0x10;
                                           P10UT |= BIT5;
                                                                                  P6DIR |= 0x10;
    P30UT |= 0x20;
                                           P20UT &= ~ BIT5;
                                                                                  P3DIR \mid= 0x20;
void light_off(void) {
                                      void led_off(void) {
                                                                                  P1DIR |= BIT5;
                                           P10UT &= ~ BIT5;
    P80UT &= \sim 0x02;
                                                                                  P2DIR |= BIT2 + BIT4 + BIT5;
    P30UT &= \sim 0 \times 80;
                                           P20UT |= BIT5;
                                                                              }
    P70UT &= \sim 0 \times 10;
                                       }
```

1.2.2 看门狗定时器

利用看门狗定时器控制 LED 开关。当声音强度达到一定的值则喂狗,否则进入中断时关闭大功率 LED。

Watchdog Timer Control Register

				Figure 16-2.	WDTCTL Reg	gister			
15	14	13		12	11	10	9	8	
				WD	ΓPW				
7	6	5		4	3	2	1	0	
WDTHOLD	WD	TSSEL		WDTTMSEL	WDTCNTCL		WDTIS		
rw-0	rw-0	rw-0		rw-0	r0(w)	rw-1	rw-0	rw-0	
					hdog timer is not s hdog timer is stopp				
6-5	WDTSSEL	RW	0h	00b = SMC 01b = ACL 10b = VLC	Watchdog timer clock source select 00b = SMCLK 01b = ACLK 10b = VLOCLK 11b = X CLK; VLOCLK in devices that do not support X CLK				
4	WDTTMSEL	RW	0h	0b = Watch	Watchdog timer mode select 0b = Watchdog mode 1b = Interval timer mode				
3	WDTCNTCL	RW	0h	0000h. WE 0b = No ad	Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WDTCNTCL is automatically reset. 0b = No action 1b = WDTCNT = 0000h				
²⁻⁰ 019/3/1	WDTIS	RW	4h	Watchdog timer interval select. These bits select the watchdog timer interval to set the WDTIFG flag and/or generate a PUC. 000b = Watchdog clock source /(2^31) (18h:12m:16s at 32.768 kHz) 001b = Watchdog clock source /(2^27) (01h:08m:16s at 32.768 kHz) 010b = Watchdog clock source /(2^203) (00h:04m:16s at 32.768 kHz) 011b = Watchdog clock source /(2^19) (00h:00m:16s at 32.768 kHz) 100b = Watchdog clock source /(2^15) (1 s at 32.768 kHz) 101b = Watchdog clock source /(2^15) (250 ms at 32.768 kHz)					

利用 WDTIS 指定时间为 16s, WDTTMSEL 设置为 1, 工作在定时器模式。

1.2.3 定时器 A

利用定时器 A 产生一个占空比可调的方波,控制大功率 LED 的亮度。

1.2.3 ADC

利用 ADC12 模块进行模数转换,查阅手册,采用序列通道多次查询的方式,利用中断获得转换结果并进行相应的处理。

[3] ADC12MCTLx 通道储存控制寄存器

7	6	5	4	3	2	1	0
EOS	/N A /	SREFx	20	Oil	INC		22

[4] ADC12MEMx 通道储存寄存器

15	14	13	12	11	10	9	8
0	0	0	0	Conversion Results			
7	6	5	4	3	2	1	0

Conversion Results

该组寄存器为 12 位寄存器,用来存放 A/D 转换结果,其中只用到了低 12 位,高 4 位为 0。

[5] ADC12IFG 中断标志寄存器

15	14	13	12	11	10	9	8
ADC12							
IFG15	IFG14	IFG13	IFG12	IFG11	IFG10	IFG9	IFG8
7	6	5	4	3	2	1	0
ADC12							
IFG7	IFG6	IFG5	IFG4	IFG3	IFG2	IFG1	

ADC12IFGx: 中断标志位

对应于 ADC12MEMx, 当 A/D 转换完成后,数据被存入 ADC12MEMx,此时 ADC12IFGx 标志置位。

[6] ADC12IE 中断控制寄存器

15	14	13	12	11	10	9	8
ADC12IE15	ADC12IE14	ADC12IE13	ADC12IE12	ADC12IE11	ADC12IE10	ADC12IE9	ADC12IE8
7	6 7	A 5 #	4	3	2	A	0
ADC12IE7	ADC12IE6	ADC12IE5	ADC12IE4	ADC12IE3	ADC12IE2	ADC12IE1	ADC12IE0

ADC12IEx: 中断允许位

对应于 ADC12IFGx,如果 ADC12IEx 允许,则当 ADC12IFGx 置位时会进入 ADC12 的中断服务程序。

[7] ADC12IV 中断向量寄存器

由于 ADC12 是一个多源中断,有 18 个中断标志,但是只有一个中断向量。则 18 个中断标志按照优先级 安排对中断标志的响应。

ADC12IV 内容	中断源	中断标志	优先级
0x0000	无中断	无	无
0x0002	ADC12MEMx 溢出	ADC12OV	最高
0x0004	转换时间溢出	ADC12TOV	
0x0006	ADC12MEM0	ADC12IFG0	
0x0008	ADC12MEM1	ADC12 IFG1	
0x000a	ADC12MEM2	ADC12 IFG2	İ
ηνηηης	ADC12MEM2	ADC12 IEG2	

```
void ADC12_SCSC(void) {
    ADC12CTL0 |= ADC12SHT03 + ADC12MSC + ADC12ON;
   ADC12CTL1 |= ADC12SHP + ADC12CONSEQ_3 + ADC12CSTARTADD_0;
   ADC12MCTL0 |= ADC12INCH 0;
                                                              // 麦克风
   ADC12MCTL1 |= ADC12INCH 1 + ADC12EOS;
                                                               // 光敏电阻
    //ADC12MCTL2 |= ADC12INCH_5 + ADC12EOS;
                                                               // 拨盘
    //ADC12IE = 0x0007;
   ADC12IE = 0 \times 0003;
   ADC12CTL0 |= ADC12ENC + ADC12SC;
}
#pragma vector = ADC12_VECTOR
__interrupt void ADC12(void) {
    volatile unsigned int value_buf;
                                                 // 判断中断向量
    switch(ADC12IV) {
                                                 // 0x0006为MEM0
       case 6:
           value_buf = ADC12MEM0;
                                                  // 麦克风
           lightCtrl((value buf - 1800) /
           //ledCtrl((value_buf - 1800) / 400);
           break;
       case 8:
                                                 // 0x0008为MEM1
           value buf = ADC12MEM1;
                                                  // 光敏电阻
           //lightCtrl(value_buf / 700);
           ledCtrl(value buf / 2000);
           break;
//
       case 10:
                                                 // 0x0008为MEM2
           value buf = ADC12MEM2;
                                                  // 拨盘
//
//
           break;
       default:
           break;
}
```

1.3 单片机硬件

(原理图、接线图等,要阐明具体引脚并与程序对应)

1.3.1 LED 和定时器 A

TA2CCTL1 的输出为 P2.4, TA2CCTL2 的输出为 P2.5, 通过设定输出使能即可利用 PWM 波的占空比控制大功率 LED 的亮度。

1.3.2 ADC12

利用跳冒线和杜邦线将麦克风输出接到 P6.0,将光敏电阻接到 P6.1 端口,查阅上面的接线图可以知道,这两个端口分别对应着 ADC12INCH_0 和 ADC12INCH_1。将数据分别储存在 ADC12MCTL0 和 ADC12MCTL1 对应的 ADC12MEM0 和 ADC12MEM1 中,即可获得当前的音量和光强。

1.4 程序设计思路

(详细叙述程序设计思路和流程图)

第一,利用看门狗定时器做一个 16s 的定时,控制大功率 LED 的亮灭,当声音音量大小达到某一阈值时,喂狗,则重新计时,当大功率 LED 关闭后,只有音量大小达到阈值后,LED 才会重新开启。另外也做了两个按键开关辅助控制大功率 LED 的亮灭。

第二,使 ADC12 模块工作在序列通道多次查询模式,利用中断法获得转换结果并进行相应的处理。对光强信号,根据其大小控制 PWM 波的输出占空比,以控制大功率 LED 的亮度;对声音信号,其音量大小实时显示在六个小 LED 上,当达到 3 格响度时即喂狗,达到 4 格响度时即可尝试重新开启大功率 LED。

下面是主体的流程图(省去看门狗中断和按键中断控制 LED 开关部分):

1.5 实验结果

(实验结果文字阐述,按键、灯效果展示,示波器图形展示等,手画亦可)

安静较暗状态

看门狗关灯

响度阈值开灯

1.6 实验中遇到的问题和解决方法?

首先,根据 PPT 内的例程,利用 ADC12 模块的单通道单次转换模式完成了单个影响 因素的 LED 控制,但是将两个程序合并到一起以后发现两路信号产生了干扰,重新接线 改变输入端口无明显效果。考虑到序列通道单次转换模式下没有加时间控制,可能导致混叠,遂改用中断查询方式做 ADC12 模块的多次查询模式。查阅资料发现可以指定采样时间,于是去掉了多次采样取平均值的滤波函数。一(做)顿(到)操(心)作(态)以(爆)后(炸),把两块单通道多次转换的代码合到一起,实现了序列通道多次查询的方式,利用中断获得转换结果并进行相应的处理。

然而出现了一个新的小问题,PWM 波的占空比参数有点不对了,LED 工作在正常状态时占空比调的却很小,改了一下也没改正常。有两个可能,一是采样时间的改变同时会影响输出的值,但是 debug 模式下查看寄存器发现应该是差不多的;而是 TA2CCTL2 通道没有用,而且输出接到了 P2.5,但是去掉二者中任一 LED 灯都不亮。没(又)有(一)分(次)析(做)出(到)来(心)为(态)什(爆)么(炸)。

1.7 实验体会与建议

这次实验,我们一步一步完成了展馆灯光综合实验。首先利用 PWM 调光实现了呼吸灯的功能,然后接入光敏电阻,使灯的亮度随外界环境亮度而变化,再更改输入信号,使可以用声音大小进行控制,最后将上述模块综合起来,实现了用光强信号控制 PWM 波的输出占空比,以控制大功率 LED 的亮度,并用声音音量大小控制大功率 LED 的开关的功能,锻炼了我们自主学习查阅资料实现各个功能的综合能力。