Решение произвольных судоку с помощью SAT

Хритова Екатерина Андреевна 510 группа

Задание 3. Судоку

Решите «самую сложную головоломку судоку» (по мнению The Telegraph):

8								
		3	6					
	7			9		2		
	7 5				7			
				4	5	7		
			1				3	
		1					3 6	8
		8	5				1	
	9					4		

Напишите программу, решающую произвольные судоку с помощью SAT или LP.

Постановка задачи

Головоломка судоку представлена сеткой 9×9 , которая состоит из девяти подсеток 3×3 (также называемых коробками). Некоторые элементы сетки заполнены числами от 1 до 9, тогда как другие элементы оставлены пустыми. Головоломка судоку решается путем присвоения пустым элементам чисел от 1 до 9 таким образом, чтобы каждая строка, каждый столбец и каждая подсетка 3×3 содержали каждое из девяти возможных чисел.

Задачу судоку можно обобщить на случай квадрата $n \times n$, заполненного числами от 1 до n.

Кодировка SAT для задачи судоку

Задача SAT представлена с помощью n переменных $x_1, x_2, ..., x_n$, которым можно присвоить значения истинности 0 (ложь) или 1 (истина). Литерал l_i — это либо переменная x_i (т. е. положительный литерал), либо ее дополнение \bar{x}_i (т. е. отрицательный литерал). Дизъюнкт (предложение, клоз) C_j является дизъюнктом литералов, а формула КНФ φ является конъюнкцией дизъюнктов.

$$\varphi = C_1 \wedge C_2 \wedge \ldots \wedge C_r, \quad C_m = l_{i_1} \vee l_{i_2} \vee \ldots l_{i_m}$$

Литерал l_i дизъюнкта C_j , которому присвоено истинностное значение 1, удовлетворяет предложению, и говорят, что предложение выполнено. Формула выполняется, если выполняются все ее условия. Проблема SAT состоит в том, чтобы решить, существует ли истинное назначение переменных, при котором формула удовлетворяется. Введем переменные $x_{i,j,v}$. Переменная $x_{i,j,v}$ принимает истинное значение тогда и только тогда, когда в строке i и столбце j стоит число v. Тогда для кодирования задачи судоку потребуется $9 \cdot 9 \cdot 9 = 729$ переменных.

Необходимо, чтобы каждая строка, каждый столбец и каждая клетка 3×3 (назовем их объектами) содержали каждое из девяти возможных чисел. Каждый из этих объектов состоит из 9 клеточек и может быть однозначно описан координатами этих клеток $p_k = (i_k, j_k)$. Тогда:

1. В каждой клетке p_i должна стоять одна из 9 цифр:

$$\bigvee_{v=1}^9 x_{p_i,v}$$

2. В каждой клетке одновременно может стоять только одно число:

$$\bigwedge_{v=1}^{8} \bigwedge_{u=v+1}^{9} (\bar{x}_{p_i,v} \vee \bar{x}_{p_i,u})$$

Для каждого объекта условие того, что 9 клеток содержат различные значения, можно записать в виде формулы:

$$F(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9) = \bigwedge_{i=1}^{8} \bigwedge_{j=i+1}^{9} \bigwedge_{v=1}^{9} (\bar{x}_{p_i, v} \vee \bar{x}_{p_j, v})$$

Таким образом, необходимо, чтобы были выполнены следующие условия:

1. Каждое число встречается хотя бы один раз:

$$C_1 = \bigwedge_{i=1}^9 \bigwedge_{j=1}^9 \bigvee_{v=1}^9 x_{i,j,v}$$

2. Каждое число появляется не более одного раза в каждой строке:

$$C_2 = \bigwedge_{i=1}^{9} (\bigwedge_{v=1}^{9} \bigwedge_{i=1}^{8} \bigwedge_{k=i+1}^{9} (\bar{x}_{i,j,v} \vee \bar{x}_{k,j,v}))$$

3. Каждое число появляется не более одного раза в каждом столбце:

$$C_3 = \bigwedge_{i=1}^{9} (\bigwedge_{v=1}^{9} \bigwedge_{j=1}^{8} \bigwedge_{k=j+1}^{9} (\bar{x}_{i,j,v} \vee \bar{x}_{i,k,v}))$$

4. Каждое число появляется не более одного раза в каждой подсетке 3 imes 3:

$$C_{4} = \wedge_{v=1}^{9} (\wedge_{p=0}^{2} \wedge_{q=0}^{2} \wedge_{i=1}^{3} \wedge_{j=1}^{3} \wedge_{k=j+1}^{3} (\bar{x}_{(3p+i),(3q+j),v} \vee \bar{x}_{(3p+i),(3q+k),v}))$$

$$C_{5} = \wedge_{v=1}^{9} (\wedge_{p=0}^{2} \wedge_{q=0}^{2} \wedge_{i=1}^{3} \wedge_{i=1}^{3} \wedge_{k=i+1}^{3} \wedge_{k=i+1}^{3} (\bar{x}_{(3p+i),(3q+j),v} \vee \bar{x}_{(3p+k),(3q+l),v}))$$

И итоговая формула:

$$\varphi = C_1 \wedge C_2 \wedge C_3 \wedge C_4 \wedge C_5$$

```
# преодразование тройного индекса (i,j,v) в одинарный
def ijv_to_id(i,j,v):
    return i*81 + j*9 + v + 1
# преодразование одинарного индекса в тройной (i,j,v)
def id_to_ijv(ind):
    ind = ind - 1
     i = ind // 81
    ind = ind - 81*i
     j = ind // 9
     v = ind - 9*i
    return i,j,v
from itertools import product
# получаем клоз С1 (каждое число встречается х.б. один раз)
def get_C1():
     C1 = \lceil \rceil
    for i,j in product(range(9), repeat=2):
        C1.append([ijv_to_id(i,j,v) for v in range(9)])
    return C1
# получаем клоз С2 (каждое число появляется не более одного раза в каждой строке)
def get_C2():
     C2 = []
     for j,v in product(range(9), repeat=2):
        for i in range(8):
            for k in range(i+1,9):
                C2.append([-ijv_to_id(i,j,v), -ijv_to_id(k,j,v)])
    return C2
# получаем клоз СЗ (каждое число появляется не более одного раза в каждом столбце)
def get_C3():
    C3 = \Gamma
    for i,v in product(range(9), repeat=2):
        for j in range(8):
            for k in range(j+1,9):
                C3.append([-ijv\_to\_id(i,j,v), -ijv\_to\_id(i,k,v)])
    return C3
```

```
# получаем клоз С4 (каждое число появляется не более одного раза в каждой подсетке)
def get_C4():
    C4 = []
    for v in range(9):
        for p,q,i,j in product(range(3), repeat=4):
            for k in range(j+1,3):
                C4.append([-ijv\_to\_id(3*p + i,3*q + j,v),\
                            -ijv_{to_id}(3*p + i, 3*q + k, v)])
    return C4
# получаем клоз С5 (каждое число появляется не более одного раза в каждой подсетке)
def get_C5():
    C5 = []
    for v in range(9):
        for p,q,i,j,l in product(range(3), repeat=5):
            for k in range(i+1,3):
                C5.append([-ijv_to_id(3*p + i,3*q + j,v),\
                            -ijv_{to_id}(3*p + k, 3*q + 1, v)])
    return C5
Решение судоку.
import pycosat
def solve_sudoku(data):
    C1 = get_C1()
    C2 = get_C2()
    C3 = get_C3()
    C4 = get_C4()
    C5 = get_C5()
    solution = pycosat.solve(C1 + C2 + C3 + C4 + C5 + data)
```

Примеры.

PROBLEM:			SOLUTION:	
8 3 . 7 .	 6 . 9 .	 	+++- 8 1 2 7 5 3 9 4 3 6 8 2 6 7 5 4 9 1	6 4 9 1 7 5 2 8 3
. 5 .	7 . 4 5 1	 7 . 3 .	1 5 4 2 3 7 3 6 9 8 4 5 2 8 7 1 6 9	8 9 6 7 2 1 5 3 4
1 8 . 9 .	 5 	. 6 8 . 1 . 4	5 2 1 9 7 4 4 3 8 5 2 6 7 9 6 3 1 8	3 6 8 9 1 7 4 5 2
•	•		TT-	
PROBLEM:			SOLUTION:	
+	. 6 . 8	 . 8 . 5 9 2	+++	3 6 1 7 8 4 5 9 2
+	7 5 . . 6 . 8 9 . 7	 . 8 . 5 9 2 . 5 .	++- 8 4 2 7 5 9 5 9 1 3 6 2	3 6 1 7 8 4 5 9 2 + 4 5 7 6 3 8 2 1 9

PROBLEM:

SOLUTION:

+	++	+
3	. 6 .	3 2 9 8 1 4 7 6 5 5 7 4 2 6 9 1 8 3
	. 5 . . 4 . ++	1 8 6 3 5 7 9 4 2
 1 . 5 3	. 7 1 3 . 9 4 . 6 5 6	4 6 8 5 7 1 3 2 9 2 9 1 4 3 6 5 7 8 7 5 3 9 2 8 6 1 4
 . 4 . 9	. 8 . 4 . 7 1 7 4 .	6 3 5 1 8 2 4 9 7 8 4 7 6 9 5 2 3 1 9 1 2 7 4 3 8 5 6