1^a Prova de F 329

Turmas U e 6	1
Primeiro Semestre de 2011	2
28/04/2011	3
Boa Prova!	4
	Nota:
Nome:	RA·

- **1)** Vários instrumentos de medidas elétricas são construídos tendo como base a utilização de um galvanômetro.
- a) Discute a semelhança entre o funcionamento de uma bússola e de um galvanômetro?
- b) Usando-se um galvanômetro de resistência $R_g = 60~\Omega$ que apresenta uma deflexão total do ponteiro para uma corrente $i_g = 0.6~\text{mA}$, projete um amperímetro usando diferentes resistores shunt R_s , e um voltímetro com resistores multiplicadores R_m , que permita a medição de correntes nas escalas 100 e 300 mA e voltagens nas escalas 1,0 e 3,0 V. Faça um diagrama esquemático desses instrumentos indicando claramente os resistores apropriados e os terminais no circuito onde serão lidas a voltagem e a corrente para cada escala.
- **2)** Um aluno de F-329 deseja determinar a resistência de um componente que acredita-se ser da ordem de $20~k\Omega$. Para isso ele dispõe de:
- um Voltímetro com fundo de escalas 0.3, 1, 3, 10 e 30 V, com respectivas resistências internas de 3 k Ω , 10 k Ω , 30 k Ω , 100 k Ω e 300 k Ω .
- um miliamperímetro com fundo de escalas 10 mA, 30mA, 100 mA e 300m A e 1000 mA e respectivas resistências internas de 4.4 Ω , 1.4 Ω , 0.4 Ω , 0.2 Ω e 0.07 Ω ;
- um microamperímetro com escalas 10 μ A, 30 μ A, 100 μ A e 300 μ A e 1000 μ A e respectivas resistências internas de 7.8 $k\Omega$, 6.5 $k\Omega$, 2.6 $k\Omega$, 850 Ω e 300 Ω ;
- uma bateria de 9.0 V
- resistores conhecidos de 10 e 75 Ω .
- a) Determina a maneira mais exata e precisa de se medir a resistência deste fio, indicando a montagem do circuito, aparelhos utilizadas e em que escalas, levando-se em consideração a precisão do instrumento, melhores condições de leitura e a resistência interna dos instrumentos.
- b) Estime o erro percentual na determinação da resistência do fio usando a configuração acima.

- **3)** Tendo disponíveis uma fonte de tensão fixa 12 V e quatro resistores de valores de nominais 4, 20, 10, e 50 Ω deseja-se construir um divisor de tensão que forneça 4 V para alimentar um Cd-player.
- a) Usando o material disponível monte este divisor de tensão que forneça 4 V sem carga, (ou seja com CD-player fora do circuito).
- b) Usando o Teorema de Thévenin, determina a Voltagem V_{th} e a resistência R_{th} para o seu divisor de tensão.

4). Um termistor, que monitora a temperatura de um forno, está conectado a uma ponte de Wheatstone. A tabela abaixo apresenta a resistência do termistor para certa faixa de T. Faça um gráfico com os dados abaixo e obtenha qual deve ser a temperatura do forno para que a ponte abaixo esteja em equilíbrio? Apresente detalhadamente os cálculos e estime o erro na determinação de T. Considere os erros nominais dos resistores da ponte de 10 %.

