Predicție liniară

Lab 13, PSS

Table of contents

1	Obiectiv	1
2	Noțiuni teoretice	1
3	Exemple Matlab 3.1 Generarea unor semnale simple	
4	Exerciții teoretice	3
5	Exerciții practice	3
6	Întrebări finale	5

1 Obiectiv

Studiul predicției liniare a semnalelor.

2 Noțiuni teoretice

Predicția liniară reprezintă estimarea unui eșantion al semnalului x[n] ca o combinație liniară a N eșantioane precedente:

$$x[n] \approx a_1 x[n-1] + a_2 x[n-2] + ... + a_N x[n-n]$$

Semnalele care respectă (aproximativ) o astfel de relație se numesc "autoregresive" (AR). N reprezintă ordinul modelului autoregresiv.

În Matlab, funcția lpc() estimează coeficienții a_k (citiți documentația).

O metodă alternativă, mai exactă, este furnizată în funcția lpc_exact() împreună cu lucrarea de laborator.

3 Exemple Matlab

3.1 Generarea unor semnale simple

Semnal liniar crescător:

```
x = linspace(0,20,50);
plot(x)

Semnal sinusoidal:

n = 0:50;
f = 0.1;
x = sin(2*pi*f*n);
plot(x)

Semnal exponential a<sup>n</sup>u[n]:

n = 0:20;
x = (1/2).^m;
plot(x)

Semnal de tip zgomot:

x = randn(1,100); % or use rand()
plot(x)
```

3.2 Calcul coeficienți LPC

```
x = 1:1:10
order = 5;
a = lpc(x, order);
```

3.3 Predicția cu coeficienții LPC

```
x = 1:1:500
order = 5;
a = lpc(x, order);

% Predict value at n=11 and append to x:
n=501;
x(n) = sum( x(n-1:-1:n-order) .* (-a(2:end)) )
```

4 Exerciții teoretice

1. Se consideră sistemul descris de ecuația cu diferențe

$$y[n] = 0.8y[n-1] + x[n] + x[n-1],$$

unde x[n] este un proces aleator staționar cu medie 0 și autocorelație $\gamma_{xx}[m]=\left(\frac{1}{2}\right)^{|m|}$

- a. Determinați densitatea spectrală de putere a ieșirii y[n];
- b. Determinați funcția de autocorelație a ieșirii, $\gamma_{yy}[m]$;
- c. Determinați varianța σ_y^2 a ieșirii.

5 Exerciții practice

- 1. Predicție liniară pe un semnal liniar
 - Generați un semnal liniar crescător de 200 eșantioane, cu pantă constantă $\Delta=0.5$, prima valoare fiind 5.
 - Folosiți linspace() sau start:step:stop.
 - Modelăm semnalul ca un proces autoregresiv de ordin 4, AR(4). Calculați coeficienții de predicție a_k cu funcția Matlab lpc().

• Pe baza coeficienților de predicție, folosind relația de predicție, preziceți următoarele 200 eșantioane ale semnalului. Afișați întregul semnal rezultat (400 eșantioane)

Puteți folosi o relație de forma sum(x(n-1:-1:n-ordin) .* (-a(2:end)))

- Utilizați funcția lpc_exact() în locul lpc(). Ce se observă?
- Generați același semnal crescător cu lungime 400 eșantioane direct cu formula initială. Afișați pe aceeași figură semnalul acesta și semnalul precedent (2 x 400 eșantioane).

Ce calitate are porțiunea prezisă, comparativ?

- Schimbați ordinul modelului în AR(1), AR(2), AR(3), AR(10. Ce se observă? Care este cel mai mic ordin pentru care predicția reuseste?
- 2. Predicție liniară pe diverse semnale.

Repetați ex. precedent pentru un semnal de forma:

- Semnal exponențial: $x[n] = (0.9)^n u[n]$. Porniți de la un semnal de lungime 50, și estimați următoarele 50 eșantioane.
- Semnal sinusoidal: $x[n] = 3 \cdot \sin(2 * \pi * f * n)u[n], f = 0.05$. Porniți de la un semnal de lungime 50, și estimați următoarele 50 eșantioane.
- Sinusoidă exponențială: $x[n] = 0.8^n \cdot \sin(2 * \pi * f * n)u[n], f = 0.2$. Lungime 50 + 50
- Semnal sinusoidal atenuat: $x[n] = \frac{\sin(2*\pi*f*n)}{2*\pi*f*n}u[n], f = 0.05$. Porniți de la un semnal de lungime 50, și estimați următoarele 50 eșantioane.
- Semnal de tip zgomot alb gaussian (AWGN, generat cu randn()). $x[n] = 0.8^n \cdot sin(2*\pi*f*n)u[n], f = 0.2$. Lungime 500 + 100. Apoi lungime 20 + 100.
- Semnal de tip zgomot alb uniform (generat cu rand()). $x[n] = 0.8^n \cdot sin(2 * \pi * f * n)u[n], f = 0.2$. Lungime 500 + 100. Apoi lungime 20 + 100.
- Semnal sinusoidal in zgomot alb: $x[n] = 2 \cdot \sin(2 * \pi * f * n)u[n] + AWGN, f = 0.05$. Lungime 100 + 100.
- Semnalul mtlb încărcat cu load mtlb;. Estimați următoarea secundă de semnal audio
- Primele 150 de eșantioane din semnalul mtlb. Estimați următoarea secundă de semnal audio.

3. Reducerea zgomotului prin predicție.

Generați un semnal de forma:

```
x[n] = \sin(2 * \pi * f * n) + \text{zgomot alb.}
```

Calculați coeficienții de predicție, și apoi estimați fiecare eșantion din semnalul x[n] pe baza eșantioanelor precedente. Afișați semnalul astfel obținut $(x_2[n])$ cu semnalul original pe aceeași figură. Ce se observă?

- 4. Detecția vocii (Voice Activity Detector).
 - Încărcați semnalul audio data_slow.wav (cu audioread()), afișați-l grafic și redațil audio.
 - a. Utilizați funcția buffer() pentru a împărți semnalul în ferestre cu lungimea de aproximativ 25ms.
 - b. Modelați fiecare segment semnalul ca un proces aleator AR(12), și găsiți coeficienții liniari de predicție pentru fiecare segment.
 - c. Pentru fiecare segment, calculați energia coeficienților de predicție (suma coeficienților la pătrat). Afișați secvența de valori obținută.
 - d. De pe grafic, alegeți un prag convenabil pentru a diferenția segmentele de voce de cele de pauză.
 - e. Eliminați segmentele din semnal care sunt de pauză, și reuniți segmentele rămase întrun-un semnal întreg. Ascultați semnalul astfel obținut.
- 5. Repetați exercițiul anterior, dar adăugând peste semnalul inițial zgomot AWGN. Până la ce nivel de zgomot se obtin rezultate bune?
- 6. Incărcați imaginea lena512.bmp. Transformați în 0 valorile de pe liniile 20 : 30, coloanele de la 100 la 150.

Refaceți imaginea în felul următor: pentru fiecare linie separat, modelați primele 100 eșantioane cun un proces AR(10), apoi estimați cele 50 valori lipsa care urmează.

Afișați imaginea astfel obținută.

6 Întrebări finale

1. TBD