-7.404.	Determinants by Cofactor Expansion.
	· A = [a], A-1=[a]I:, a=0, det(A)=a
	A = [ab], $A' = ad-bc[$], $det(A) = ad-bc$.
*Def 1.	A=[\aif]. Mint Nimer of entry aif. Neavore column i. row f.
	•
	Ranaras: Detaurement of subanaturx.
	Cas: Cofactor of cuting dig.
	-(-1) 2+3 M 25.
×Than 2.1.1.	Cofactor Expansion.
	$+ - C_{11} = M_{11} = Q_{22}$ $C_{12} = -M_{12} = -Q_{21}$
	$\begin{bmatrix} - + \end{bmatrix} = C_{21} = -M_{21} = -\alpha_{12}$ $C_{22} = M_{22} = \alpha_{11}$
*Ex 8.	$A = \begin{bmatrix} 2 & 3 \\ -2 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 4 & 2 \\ 5 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 4 & 2 \\ 5 & 4 \end{bmatrix}$ $A = \begin{bmatrix} 4 & 2 \\ 5 & 4 \end{bmatrix}$
	[5 4-2] +1 (-1) 2 3 5 -2
	(+0)
	o dobd = -12+11
	Determinant = -1.
	一个对方是

ASIGH ASIGN		NO. 20.04.09.
* Ex5).	$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 9 & 1 & 2 & 2 \end{bmatrix} = 1.(-1)^{2+2}.$ $1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$ $1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$ $= (-2)(-1)^{2+2}.$	
	= -6 (\$0, invalo	hle)
x € × 6).	Lower triangular autrix - Triangular	Martinix
Than 2.1.2.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 033 0 043 0aq
	= Q Q 22 (-1) 2 · 2	ass and
	= an as as as as	
	0 0 0 Q4g ,	agg) (Subsat of thingular)
	: det (A)= (T) azi.	

00117	
#Useful -	Tachrique for 2x2, 3x3 Determinants.
	an a
	⇒I(Y)-I(∠)
# Ch 2.2 Eu	aluation Determinants by fow Reduction.
	* Desterminants & ool stood stood.
	⇒ 라스보 ool 및는 발전로 Madrice Determinants는?
	> Elementary Pour Operationes 2 2/21 "0 1/41.
*Thun 2.2.1.	702 77
	=> Det(A) = 0.
x Thm 2.2.2.	· det(A)=det(AT)'transpose 313 + \$1\$ 23 of 27/27/21."
× Than 2.2.3.	(from ERO). (a). k.det(A). = det(B)
	(b) interchanged => det(A) = -det(B).
	(c) adding \Rightarrow det(A) = det(B).
	· Page 127, Book.
	×
	ka, kas
	as as = [ca, C, + has C, + has C18.
	ag, ag, ag
	$= k \left(\alpha_{11} C_{11} + \alpha_{12} C_{12} + \alpha_{13} C_{13} \right)$ $= k \left(\alpha_{11} C_{11} + \alpha_{12} C_{12} + \alpha_{13} C_{13} \right)$
	= k (a, C, +a, C, +a, C, 3)

NO. 24.04. 69.

	00 11 1.	
)		
k	* Thus 2 2.4.	Pet E: nxn elementant auxtrà.
		· I ERO E.
		(a) det (E)=k. }
		(b) det (F)=-1.
		(c) det(e) = 1.
	XEKI)	3 2 1 1 7
		3, = 3 / = -1 / = 1.
		* Determinant = 22 33 223 Flementary Colour Operation +5
	XEX 3).	01570151
		$A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$, $det(A) = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$
		100
		(b) 3 -6 9 Gaussian Elianiv
		=-015
		2 6 1
		(a).(c) / -2 3
		=-3 0 / 5
		0 10 -5
		(c)(a) / -2 3
		=-3 0 1 5 ×(-55).
		0 0 -55
		= (-3)(-55)(1)
		= 165

	* EX a).	Using Calum Opaxions.
		$A = \begin{bmatrix} 7 & 0 & 0 & 3 \\ 2 & 7 & 0 & 6 \\ 0 & 6 & 8 & 0 \end{bmatrix} $ det (A) = det $\begin{bmatrix} 7 & 0 & 0 & 0 \\ 2 & 7 & 0 & 0 \\ 0 & 6 & 8 & 0 \\ 7 & 8 & 7 & -26 \end{bmatrix}$
		[7 3 1-26]
	*Ex5)	Using Low Operations.
		[35-26]
		$A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \end{bmatrix}, det(A) = \begin{bmatrix} 0 & -1 & 1 & 3 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & 3 & 8 \end{bmatrix}$
		L3753
		* Use EDO and = 0 3 3
		Cofactor Expansion / 80 Appropriately.
0		· Thomase