# Deep Learning

#### Petit récap Machine Learning

#### Supervisé ou Non supervisé

| Régression                                                                      | Classification                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Linéaire</li><li>Polynomiale</li><li>Simple</li><li>Multiple</li></ul>  | <ul> <li>Régression logistique</li> <li>Arbre à décision</li> <li>SVM</li> <li>Naïve Bayes</li> <li>kNN</li> <li>K-Means</li> <li>Random Forest</li> <li>Réduction de dimensions</li> <li>Gradient Boosting</li> </ul> |
| <ul><li>Mean Absolute Error.</li><li>Mean Squared Error.</li><li>R^2.</li></ul> | <ul> <li>Précision (accuracy)</li> <li>Courbe ROC</li> <li>Matrice de confusion</li> <li>precision, recall, f1-score et support</li> </ul>                                                                             |

## La petite histoire!

50s: machine Learning

43: Mcculloch / Pitts

57: Perceptron de Rosenblatt

86: Multicouche MLP Rumelhart

2010s : Réseaux profonds Big data, Cloud, GPU...

2015 : Deepmind alphago





https://www.quantmetry.com/une-petite-histoire-dumachine-learning/









# 1. Régression logistique

Un petit rappel

Hatem & Driss by NEEDEMAND

#### Classifieur binaire







#### 1. Pré-activation

#### 2. Activation

Combinaison linéaire

Fonction sigmoïde

$$X \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow z = Z(X) = w_1 x_1 + w_2 x_2 + b \longrightarrow a = A(z)$$

## Sigmoïde

La plus célèbre : Fonction logistique

$$\frac{1}{1+e^{-x}}$$





## Et d'autres









#### Training supervisé

#### **Dataset**

$$\{(X,Y)\}$$

Les données sont labellisées

$$\left(X_{k}\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}, 1\right) \xrightarrow{\text{Forward}} \sum_{w_{i} x_{i}} w_{i} x_{i}$$

Exemple:

w<sub>i</sub> aléatoires

**Forward** 

 $\sum_{i} w_i x_i = 0.3 \rightarrow a = 0 \qquad E = 0.7$ 

**Backward** 

Modification des Paramètres w<sub>i</sub>

$$\sum_{i} w_i x_i = 0.2 \rightarrow a = 0 \qquad E = 0.2$$

**Backward** 



#### Code Forward

```
def init_weights():
    weights = np.random.normal(size=2)
    b = 0
    return weights, b
```

def pre\_activation(features, weights, b):
 return np.dot(features, weights) + b

def activation(z):
 return 1 / (1 + np.exp(-z))

#### Frontière de décision



Backward

#### Erreur

Data :  $\{(X, Y)\}$ 

Erreur

$$X \rightarrow Z \rightarrow A$$

$$E=\frac{1}{2}(A-Y)^2$$

E > 0 Maximise les grandes erreurs

#### Minimiser l'erreur : Descente de gradient





$$x = -2 \rightarrow \nabla = -4$$

correction

$$x = x - \nabla = 2$$

Learning Rate

$$x = x - \eta \nabla$$

$$\eta = 0.1 
x = -2 + 0.4 = -1.6$$

$$-1.6 \rightarrow -1.28$$

$$-1.28 \rightarrow -1.02$$

$$-1.02 \rightarrow -0.82$$

••

$$0 \rightarrow 0$$

$$f(x,y) = 5x^2 + 2xy + 6y^2$$

$$f(x,y) = 5x^2 + 2xy + 6y^2$$

$$\frac{\partial f}{\partial x}$$

et 
$$\frac{\partial f}{\partial y}$$

$$f(x,y) = 5x^2 + 2xy + 6y^2$$

$$\frac{\partial f}{\partial x} = 10x + 2y \qquad et \qquad \frac{\partial f}{\partial y}$$

$$f(x,y) = 5x^2 + 2xy + 6y^2$$

$$\frac{\partial f}{\partial x} = 10x + 2y$$
 et  $\frac{\partial f}{\partial y} = 2x + 12y$ 

Exemple:

$$f(x,y) = 5x^2 + 2xy + 6y^2$$

$$\frac{\partial f}{\partial x} = 10x + 2y \qquad et \qquad \frac{\partial f}{\partial y} = 2x + 12y$$

Descente de Gradient pour un couple  $(x_i, y_i)$  choisi aléatoirement.

$$x_i \leftarrow x_i - \eta \nabla_x(x_i)$$
 et  $y_i \leftarrow y_i - \eta \nabla_y(y_i)$ 

```
# Fonction
def f(x,y) :
return (5 * x**2) + (2*x * y) + (6 * y**2)
```





#### Application à la minimisation de l'erreur

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \xrightarrow{w_1} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \xrightarrow{b} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\bigcirc E = \frac{1}{2}(a - y)^2$$

$$a = A(z) = \frac{1}{1 - e^{-z}}$$

$$\bigcirc z = Z(X) = w_1x_1 + w_2x_2 + b$$

#### Calcul des dérivées partielles de l'erreur

Règle de dérivation des fonctions composées :

$$\frac{dE}{dw} = \frac{dE}{da} \times \frac{da}{dz} \times \frac{dz}{dw}$$

$$\frac{dE}{da} = a$$

$$\frac{da}{dz} = a(1 - a)$$

 $\frac{dz}{dw}$ : dérivées partielles



## Thanks!

### Any questions?

Hatem & Driss
By Needemand

