STAT 88: Lecture 15

Contents

Section 5.4: Unbiased Estimators

Section 5.5: Conditional Expectation

Section 5.6: Expectation by Conditioning

Last time

Unbiased estimators

Probability distributions often have parameters that we wish to estimate. An estimator is a random variable and there is uncertainty what you will get. With an unbiased estimator, on average the estimator will be correct.

Ex Suppose the population has population mean μ , i.e. any sample X from the population has mean $E(X) = \mu$. Let X_1, \ldots, X_n be a SRS from the population. We use the sample mean \bar{X} as an estimator of the population mean μ . Sample mean is always unbiased since

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \mu.$$

<u>Ex</u> Suppose the population consists of zeros and ones. Then the population mean p is the population proportion of ones. If X_1, \ldots, X_n are i.i.d. samples from the population, the sample mean \bar{X} is the sample proportion of ones in your sample. By unbiasedness of the sample mean, we have

$$E(\bar{X}) = p.$$

The sampling distribution of sample proportions from the 20,000 repeated experiments:

Warm up: (Exercise 5.7.11) Let X be the number of cars owned by a Cal student. Here is the distribution of X.

number of cars	0	1	2	
probability	2θ	θ	$1-3\theta$	

- (a) Find E(X) (as a function of θ).
- (b) Let X_1, \ldots, X_n be the number of cars owned by n randomly picked students. Use \bar{X} to find an unbiased estimator of θ .

5.4. Unbiased Estimators (Continued)

Estimating the largest possible value

Parameter

Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Uniform $\{1, 2, \ldots, N\}$ for some fixed but unknown N. To estimate N, there are two possible estimators we can come up with:

- 1. $M = \max\{X_1, \dots, X_n\}$. Note that this is a biased estimator.
- 2. We know that the population mean is $\mu = (N+1)/2$ and thus $E(\bar{X}) = (N+1)/2$ since it is unbiased. Then what is an estimator T such that

$$E(T) = N$$
?

Lets look at sampling distribution of (1) $M = \max(X_1, \dots, X_n)$ and (2) $T = 2\bar{X} - 1$.

N = 300 n = 30 5000 repetitions

The histograms show that both estimators have pros and cons.

M - Pros: small spread of values; Cons: biased.

T - Pros: unbiased; Cons: big spread of values.

Unbiasedness is a good property, but so is low variability. Bias-variance tradeoff

5.5. Conditional Expectation

Let's first review how to find expectation of a joint distribution. A joint distribution for two random variables X and S is given below:

	X = 1	X = 2	X = 3
S = 2	0.0625	0	0
S = 3	0.125	0.125	0
<i>S</i> = 4	0.0625	0.25	0.0625
<i>S</i> = 5	0	0.125	0.125
<i>S</i> = 6	0	0	0.0625

The marginal distribution of S is given by summing along the rows:

S	2	3	4	5	6
P(S=s)	0.0625	0.25	0.375	0.25	0.0625

Conditional Distribution Suppose someone runs the experiment and tells you that S = 3. Given this information, what is the distribution of X?

$$P(X = 1|S = 3) = \frac{P(X = 1, S = 3)}{P(S = 3)} = \frac{0.125}{0.25} = 0.5.$$

Similarly we can get P(X = 2|S = 3) = 0.5 and P(X = 3|S = 3) = 0.

If X and S are two random variables on the same outcome space, then for a fixed value s of S, the conditional distribution of X given S = s is

- the set of all possible values of X under the condition that S = s, and
- all the corresponding conditional probabilities P(X = x | S = s).

The distribution of X changes depending on the given value of S:

	X=1	X=2	X=3		X=1	X=2	X=3
Conditional Dist'n of X given S= 3	0.5	0.5	0	Conditional DistrofX given S=4	0-1667	0.6667	0.1667

Conditional Expectation The expectation of X, also called the unconditional expectation of X, is easy to see from the distribution table:

x	1	2	3
P(X = x)	0.25	0.5	0.25

$$E(X) =$$

Given that S has the value s, the conditional distribution of X is just an ordinary distribution and thus has an expectation. This is called the conditional expectation of X given S = s and is denoted E(X|S = s).

$$E(X|S=3) =$$

Generally,
$$E(X \mid S=S) = \sum_{\alpha \mid i \mid x} P(X \mid S=S)$$
 Unconditional Expectation
$$E(X) = \sum_{\alpha \mid i \mid x} x P(X=x)$$

What is relationship between expectation and conditional expectation?

$$E(X) = \sum_{\text{all } x} x P(X = x) = \sum_{\text{all } x} \sum_{\text{all } s} x P(X = x, S = s).$$

By multiplication rule,

$$P(X = x, S = s) = P(X = x | S = s)P(S = s).$$

So

$$E(X) = \sum_{\text{all } s} \sum_{\text{all } x} x P(X = x, S = s) = \sum_{\text{all } s} \underbrace{\sum_{\text{all } x} x P(X = x | S = s)}_{=E(X|S = s)} P(S = s).$$

Therefore

$$E(X) = \sum_{\text{all } s} E(X|S=s)P(S=s).$$

Important: E(X|S=s) is a function of s. For example,

S	2	3	4	5	6
$E(X \mid S = s)$	1	1.5	2	2.5	3

5.6. Expectation by Conditioning

To find expectation of one random variable, it sometimes helps to condition on another random variable.

Time to Reach Campus A student has two routes to campus. Each route has a random duration. The student prefers Route A because its expected duration is 15 minutes compared to 20 minutes for Route B. However, on 10% of her trips she is forced to take Route B because of road work on Route A. On the remaining 90% of the days she takes Route A.

What is the expected duration of her trip on a random day?

Example: (Exercise 5.7.13) A survey organization in a town is studying families with children. Among the families that have children, the distribution of the number of children is as follows.

Number of Children n	1	2	3	4	5
Proportion with n Children	0.2	0.4	0.2	0.15	0.05

Suppose each child has chance 0.51 of being male, independently of all other children. What is the expected number of male children in a family picked at random from those that have children?

Example: You flip a fair coin N times where N is a random variable $N \sim \text{Poisson}(5)$. What is the expected number of heads you will get?