UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA RIEMANNIANA I (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: 0252

ſ	TEÓRICAS	PRÁCTICAS	CRÉDITOS
Ì	5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático I, Geometría Di-

ferencial I, Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Geometría Riemanniana II.

OBJETIVO(S): Generalizar los conceptos y resultados de la Geometría Diferencial en el espacio euclidiano, al caso de las variedades n-dimensionales.

NUM. HORAS	UNIDADES TEMÁTICAS
20	1. Variedades riemannianas
	1.1 Variedades diferenciables. Definiciones básicas. Orientabilidad.
	1.2 Transformaciones entre variedades. Inmersiones, encajes, submer-
	siones.
	1.3 Campos vectoriales. Corchete.
	1.4 Métricas riemannianas.
	1.5 Conexiones afines. Existencia y unicidad de una conexión de Levi-
	Civita.
20	2. Geodésicas y curvatura
	2.1 Definición. Ecuaciones diferenciales de las geodésicas. Flujo
	geodésico,
	2.2 Aplicación exponencial.
	2.3 Propiedad minimizante de las geodésicas.
	2.4 Vecindades normales.
	2.5 Tensor de curvatura. Curvatura seccional, de Ricci y escalar.
10	3. Subvariedades riemannianas
	3.1 Conexión inducida. Segunda forma fundamental.
	3.2 Subvariedades totalmente geodésicas y totalmente umbílicas.
	3.3 Hipersuperficies.
	3.4 Inmersiones isométricas.

10	4. Variedades completas	
	4.1 Teorema de Hopf-Rinow.	
	4.2 Teorema de Hadamard.	
10	5. Espacios con curvatura constante	
	5.1 Teorema de Cartan.	
	5.2 Formas espaciales. Definición, geodésicas, isometrías.	
	5.3 Clasificación de las formas espaciales simplemente conexas.	
10	6. Introducción a los grupos de Lie	
	6.1 Grupos de Lie. Álgebra de un grupo de Lie.	
	6.2 Los grupos clásicos.	
	6.3 Grupos de isometrías de una variedad.	
	6.4 El grupo de isometrías de una variedad como un grupo de Lie.	

BIBLIOGRAFÍA BÁSICA:

- 1. Do Carmo, M.P., Riemannian Geometry, Birkhäuser, 1992.
- 2. Helgasson, S., Differential Geometry, Lie Groups and Symmetric Spaces, Boston: Academic Press, 1978.
- 3. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vols. I y II, New York: Wiley, 1963, 1969.
- 4. O'Neill, B., Semi-Riemannian Geometry, Boston: Academic Press, 1983.
- 5. Spivak, M., A Comprehensive Introduction to Differential Geometry, Vols. I-V, Publish or Perish, 1970.
- 6. Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups, Glenville, Ill.: Scott, Foresman & Co., 1983.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Cheeger, J., Ebin, G., Comparison Theorems in Riemannian Geometry, Amsterdam: North-Holland, 1975.
- 2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vols. I, New York: Wiley, 1963.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.