Adversarial Continual Learning for Multi-Domain Hippocampal Segmentation

Marius Memmel, Camila González, and Anirban Mukhopadhyay

Problem Setting

- Continual learning is important for deep learning in a clinical context due to temporal limited access to data
- Recent methods train on datasets subsequently but only one at a time, making the problem unnecessary hard
- However, at least two or more datasets of different domains are available simultaneously through open access, relaxed restrictions, or access to historical data!

Datasets

T1-weighted MRIs from different domains, i.e., varying acquisition modality and different disease patterns

Medical Segmentation Decathlon (A)	Scientific Data (B)	Alzheimer's Disease Neuroimaging Initiative (C)
195 subjects	25 subjects	68 subjects
90 healthy, 105 Non- affective psychotic disorder	25 healthy	Control group, mild cognitive impairment, Alzheimer's disease
Philips Achieva	Siemens TimTrio	Scanners from Siemens (23), GE (24), and Philips (21)

Continual Learning Results

Quantitative performance:

Learn disentanglement on A and C, fine-tune on B

	Dataset A		Dataset B		Dataset C		Average	
	loU	Dice	loU	Dice	loU	Dice	loU	Dice
U-Net-ft	0.273	0.425	0.567	0.723	0.419	0.584	0.419	0.577
BS-MAS	0.307	0.466	0.702	0.825	0.364	0.523	0.458	0.604
OL-KD	0.094	0.171	0.381	0.549	0.400	0.571	0.292	0.430
ACS (ours)	0.681	0.808	0.787	0.880	0.679	0.808	0.716	0.832

Qualitative performance:

Novelty

- We propose the Adversarial Continual Segmenter (ACS) which can utilize simultaneous dataset availability to learn a domain-invariant disentanglement
- ACS is flexible in the domain and availability pattern of

Methodology

Adversarial training of cross-domain disentanglement (E_d, G, D_d) and latent space regularization (D_c) :

Conclusion

- ACS leverages simultaneous data availability
 - learn domain-invariant representation
- ACS outperforms SOTA methods on hippocampal segmentation and reduces catastrophic forgetting