CONTENTS COMP 4901W

COMP4901W - Introduction to Blockchain, Cryptocurrencies and Smart Contract Spring 2023

Taught by Amir Gohashady Notes by Marcus Chan

May 23, 2023

Contents

1	1.1	Properties of hasing:	2 2
2	Lec	ture3	3
	2.1	Merkle tree	3
3	Lec	ture4 - Symmetric Encrpytion	4
	3.1	Definition	4
	3.2	Onetime pad	
		Security analysis	
		Key exchange	
	3.5	Algorithm: Diffie-Hellman Exchange	
4	Lec	ture 5 - Basic Number Theory and ElGamal Encryption	5
	4.1	Fermat's little theorem	5
	4.2	Computing Primitive Roots	5
		Fast modular exponential	

CONTENTS	COMP	4901W

4.4	Modular Multiplicative Inverse	7
4.5	El-Gamal Encryption	7
4.6	Public Key Crpytography	7

Lecture2 COMP 4901W

1 Lecture2

1.1 Properties of hasing:

- 1. collision-resistant: $h(x) \neq h(y)$ for $x \neq y$
- 2. hiding: can't find x s.t. h(x) = y

1.2 Applications:

- 1. finding files
- 2. ledger with pointers
- 3. commitment scheme

bidding protocol: for security reasons

- (a) highest bid can be found
- (b) no player can change the bid after seeing others' bid
- (c) auditability (i.e. auditor won't change the deals)

steps:

- (a) compute $h(b_i + n_i)$ for each player and choose a random number n_i from large domain
- (b) player publishes the hash (commit)
- (c) player publish the bid and n_i for others to hash and verify (reveal)

Lecture3 COMP 4901W

2 Lecture3

2.1 Merkle tree

Protocol:

- 1. reclaim once
- 2. message is short(const)
- 3. deposit can be taken back
- 4. message doesnt leak
- 5. proof p_i is provided and can be decoded

3 Lecture4 - Symmetric Encryytion

3.1 Definition

let a key $k \subseteq \sum^*$ which is known by both players. A knows

$$ENC_k k \subseteq \sum^*$$

and B knows

$$DEC_k: k \subseteq \sum^*$$

$$\forall m \in \sum^* DEC_k(ENC_k(m))$$

3.2 Onetime pad

let encoded message e; let original message m;

$$e = m \oplus k$$
.

3.3 Security analysis

Combination = $e^{|n|}$ where n = length of key. Problem with multiuse: suppose we have m_0 and m_1 , then eavsdropper can do:

$$m_0 \oplus m_1 = k \oplus k \oplus e_0 \oplus e_1 = e_0 \oplus e_1.$$

which in turn some information is leaked \implies not so secured

3.4 Key exchange

Let players p_0 and p_1 . Both have their own message m_0 and m_1 . Both players then compute $f(m_i)$. Our task is to compute secret k such that it is easy to compute and impossible to compute using individual secrets m_i

3.5 Algorithm: Diffie-Hellman Exchange

1. find a large prime p and $g \in \{0, \dots, p-1\}$ such that $\{g^0, g^1, g^2, \dots, g^{p-1}\} = \{0, 1, 2, \dots, p-1\}$

- 2. p_1 chooses a secret a from $\{0,1,2,\ldots,p-1\}$. similarly for p_2
- 3. p_1 computes $g^a\%p$ and send to p_2 . Similarly for p_2
- 4. p_1 computes $g^b * a = g^{ab}$

4 Lecture 5 - Basic Number Theory and El-Gamal Encryption

4.1 Fermat's little theorem

Theorem 1 If p is a prime number, then for any integer a, the number $a^p - a$ is an integer multiple of p

Theorem 2 If a is not divisible by p, then

$$a^{p-1} \equiv 1 (a \mod p)$$
.

Definition 1 (Primitive root) A primitive root mod n is an integer g such that every integer relatively prime to n is congruent to a power of g mod n

Example 2.1 (Non-primitive root) let p = 5, a = 4.

$$a^{0} = 1$$

$$a^{1} = 4$$

$$a^{2} = 16 = 1$$

$$a^{3} = 4$$

$$a^{4} = 1$$

Example 2.2 (Primitive root) let p = 5, a = 3. There exists a cycle of length i|(p-1).

$$a^{0} = 1$$

$$a^{1} = 3$$

$$a^{2} = 9 = 4$$

$$a^{3} = 12 = 2$$

$$a^{4} = 6 = 1$$

4.2 Computing Primitive Roots

Task 1 *P* is a prime such that $\log p \ge 1024$. Find g such that $\{g^0, g^1, \dots, g^{p-2}\} = \{1, 2, \dots, p-1\}$.

We cannot simply compute g^0, g^1, g^2, \ldots until a cycle is found due to large P. Hence, consider O(g) = length of the cycle of the powers of g = smallest positive i such that $g^i = i \pmod{p}$ (recall from above examples). This implies that O(g)|p-1 (note: O(g) is divisible by p-1). Find all the prime factors of p-1:

$$p-1=q_1^{\alpha_1}, q_2^{\alpha_2}, \dots, q_r^{\alpha_r}.$$

(note: idk why use an equal sign)

Then, we need to prove that p-1 is indeed the minimum prime such that O(g) = p-1. If there is a smaller prime that satisfies the above requirement, then p-1 is not a primitive root, leading to contradiction. To do so, we need to consider the cases below:

$$O(g) = p - 1 \tag{1}$$

$$O(g)|\frac{p-1}{q_1} \tag{2}$$

:

$$O(g)|\frac{p-1}{q_r} \tag{r}$$

To rule out cases (2) to (r), we can simply compute $g^{\frac{p-1}{q_i}} = 1 \pmod{p}$.

4.3 Fast modular exponential

Task 2 Compute $a^b \mod c$

```
exp(a,b,c): // a^b mod c
  ans = exp(a,b/2);
  ans *= ans;
  ans %= c
  if(b%2 == 1){
     ans *= b;
     ans %=c;
}
  return ans;
```

(note: a mod c mod c ...mod c = a mod c?) Analysis: O(lgb) multiplications

Theorem 3 There is at least one primitive root g for each prime

Example 3.1 Choose g randomly and check if g is a primitive root

 g_i is our random choice within the cycle. Using Example 2.2, the cycle is $1 \to 3 \to 4 \to 2 \to 1$. For instance, take i = 2, then we start at $g^2 = 4$, and take 2 steps at a time. The cycle will be $4 \to 1 \to 4 \to 1 \dots$

Theorem 4 If gcd(i, p - 1) = 1, where i is power, and p-1 is the length of cycle, then we can see everything in the cycle. (note: proof is below)

4.4 Modular Multiplicative Inverse

Recall $a^{p-1} = 1 \pmod{p}$. Then,

$$a * a^{p-2} = 1 \pmod{p} \implies a^{p-2} = \frac{1}{a} \pmod{p}.$$

So whenever we want to divide by a, we can simply multiply by the **multiplicative inverse** $a^{(p-2)}$. If $gcd(a,n) \neq 1$, then a has no inverse. For example, a = 2, n = 4, there is no b such that $2b = 1 \pmod{4}$ as $2b \pmod{4}$ will only result 0 and 2. Let d = gcd(a,b). If d|a and d|b, then d|(a-b) (note: not sure why this is mentioned)

If gcd(a,b) = 1, then $\exists c, d \in \zeta$ such that c * a + d * b = 1

$$ca + db = 1$$
$$ca = 1(modb)$$
$$c = a^{-1}(modb)$$

Hence, we have found our multiplicative inverse.

4.5 El-Gamal Encryytion

Example 4.1 El-gamal encryytion implementation

- 1. A generates p, g, $a(secret\ key)$, g^a
- 2. B generates p, g, b(secret key), g^b
- 3. B wants to send a message m. He sends p,g,g^b and $m + g^b$ to a.

4.6 Public Key Crpytography

Encrypt with public key, and decrpyt with secret key. (note: more will be covered next lecture)