《空调工程》复习

第一章 湿空气的物理性质及其焓湿图

- 1、空气调节的主要任务:
- ▶ 在所处自然环境下,使被调节空间的空气保持一定的温度、湿度、流动速度 以及洁净度、新鲜度。

2、湿空气:

(1) 概念:

- ▶ 大气由一定量的干空气和一定量的水蒸气混合而成,我们称其为湿空气。
- ▶ 干空气可看作一个稳定的混合物;
- ▶ 水蒸气含量较少,但其变化对湿空气的干燥及潮湿程度产生重要影响,是空调中的重要调节对象;
- ▶ 常温常压下干空气、水蒸气均可近似看作理想气体。

(2) 状态参数:

压力	>	湿空气的压力的 <mark>等于干空气的分压力与水蒸气的分压力之和</mark> ;
	>	水蒸汽分压力大小直接反映了水蒸汽含量的多少;
密度	>	湿空气的密度等于干空气密度和水蒸气密度之和;
	>	水蒸气密度小于干空气密度→湿空气密度小于干空气密度;
	>	实际计算中,在标准条件(101325Pa,20℃)下,可近似取ρ
		=1.2 Kg/m3;
含湿量	>	在湿空气中与 1kg 干空气同时并存的水蒸汽量称为含湿量;
	>	d=0.622*Pq/(B-Pq);
	>	当大气压力 B 一定时,水汽分压力 Pq 只取决于含湿量 d;
相对湿度	>	湿空气的水蒸汽压力与同温度下饱和湿空气的水蒸气压力之比
		为相对湿度。
	>	相对湿度值表征湿空气中水蒸气含量接近饱和含量的程度,能
		够比较确切地表示空气干燥和潮湿的程度
焓	>	空气调节过程可近似为等压过程,比焓可以用来计算在定压条
		件下对湿空气加热或冷却时吸收或放出的热量。

>	干空气定压比热 <mark>: 1.01</mark> kJ/(kg.℃)
>	液态水定压比热: 4.19kJ/(kg.℃)
	水蒸气定压比热: 1.84kJ/(kg.℃)
>	水蒸气气化潜热计算: 2500+1.84t=4.19t+r

3、焓湿图:

确定湿空气的状态及其变化过程的方法:公式计算;查表;查焓湿图。

概念	▶ 为了简化工程计算而发展的湿空气参数的图解表示法被称为焓
	湿图。
优点	→ 计算简化;描述直观。
作用	▶ 确定湿空气的状态参数;表示湿空气的状态变化过程。
参数	▶ 焓湿图上的可以获取的参数: 焓、含湿量、水蒸气分压力、相
	对湿度、温度、湿球温度、露点温度、热湿比;
状态参数	▶ 独立状态参数: 在 B 一定的条件下, 在 h, d, t, φ中,已知任
	意两个参数,则湿空气状态就确定了,亦即在 h-d 图上有一确
	定的点,其余参数均可由此点查出,因此,将这些参数称为独
	立参数。
	➤ 不独立状态参数: d 与 Pq 不能确定一个空气状态点, 故 d 与
	Pq 只能有一个作为独立参数。
湿球温度	▶ 定义: 在定压绝热条件下,空气与水直线接触达到稳定热平衡
	时的绝热饱和温度称为热力学湿球温度。多数情况下不是一个
	独立参数,值为0时是非独立参数;
	➤ 在 h-d 图上的确定方法:近似认为等焓线即为等湿球温度线;
	由状态点沿等 h 线向下与 φ=100%线相交。
露点温度	▶ 定义:在含湿量不变的条件下,湿空气达到饱和时的温度。
	➤ 在 h-d 图山的确定方法: 由状态点沿等 d 线向下与 φ=100%线
	相交;
热湿比	▶ 热湿比 ε 为湿空气的焓变化与含湿量变化之比,即: ε =△h/
	△d=Q/W(kJ/kg),Q 为全热。
	▶ ε的大小及正负表示了湿空气状态变化过程的方向和特征。

	▶ 房间热湿比为余热量(全热)和余湿量之比。
应用	▶ 表示湿空气的状态变化过程:
	❖ 等湿加热:(电)空气加热器;
	❖ 等湿冷却:表面式冷却器(干工况);
	❖ 等焓加湿: 喷水室 (循环喷水);
	❖ 等焓减湿: 固体吸湿剂;
	❖ 等温加湿:喷蒸汽(实际热湿比=水蒸气的焓值,近似于等温线);
	❖ 冷却干燥:表面式冷却器(湿工况);
	▶ 表示不同状态湿空气的混合过程:
	❖ 原理: 能量守恒、质量守恒。
	❖ 混合点的确定: A、B 混合后得 C; A, C, B 在同一直线上; 参
	与混合的两种空气的质量比与 C 点分割线段 AB 的长度呈反比,
	C 点接近空气质量大的一端:
	$\frac{\overline{AC}}{\overline{BC}} = \frac{d_C - d_A}{d_B - d_C} = \frac{h_C - H_A}{h_B - H_C} = \frac{G_B}{G_A}$
	❖ 当混合点处于结雾区时,混合的最终状态是饱和空气+水,是一
	种不稳定状态,饱和空气状态可通过试算法确定。

第二章 空调负荷计算与送风量

- 1、室内空气计算参数
- (1) 空调室内温湿度指标:

温湿度基数	>	空调房间内所要保持的基准温度和基准相对湿度。	
	>	舒适性空调、工艺性空调;	
空调精度	>	空调房间内温湿度对基准温度和基准相对湿度的最大偏	
		差。	
	>	工艺性空调;	

- (2) 人体热平衡: S=M-W-E-R-C
- (3) 人体冷热感的影响因素 (6个):
- ▶ 干球温度;
- ▶ 相对湿度;
- ▶ 平均辐射温度;
- ▶ 风速:
- ▶ 衣服热阻;
- ▶ 人体活动量。
- (4) 新有效温度 ET*:干球温度、相对湿度、风速对人体冷热感影响的一个综合指标。
- (5) 舒适区: 人体感到热舒适的一个空气参数区域,不同实验条件下得到的区域可能不同。
- (6) PMV-PPD 指标:综合考虑干球温度、相对湿度、平均辐射温度、风速、衣服热阻、人体活动量等6个因素对人体冷热感影响的综合指标
- ▶ PMV (预期平均投票): 由人体热平衡原理推出,代表同一环境中绝大多数人的冷热感觉。

热	暖	微暖	适中	微凉	凉	冷
+3	+2	+1	0	-1	-2	-3

- ▶ PPD (预期不满意百分率): 表示对热环境的不满意百分数,通过概率分析方 法得到 PPD 与 PMV 的关系。
- ▶ 我国采暖和空调热舒适性指标宜为: -1≤PMV≤1, PPD=26%.
- (7)室内空气温湿度计算参数:分两个热舒适等级,参见《公共建筑节能设计标准》。

2、室外空气计算参数

- (1) 室外空气温度的变化规律:气温日变化都是以 24h 为周期的周期性波动,
- 一般凌晨 4、5 点最低,下午 2、3 点最高;气温季节性变化也是呈周期性的,一般一月最冷,7~8 月最热。
- (2)室外空气相对湿度的变化规律:就一昼夜内的大气而论,含湿量变化不大,可视为定值,则大气的相对湿度变化规律正好与干球温度的变化规律相反。
- (3) 空调室外空气计算参数

五 七.	W ===	, <u> </u>			
夏季	说明	▶ 夏季室外空气温度高、变化大,含湿量大、变化			
		大;			
		> 夏季冷却减湿费用高;			
		▶ 通过围护结构的传热量按非稳态传热方法计算。			
	干球温度	➤ 历年平均不保证 50h 的干球温度。			
	湿球温度	➤ 历年平均不保证 50h 的湿球温度。			
	日平均温度	▶ 历年平均不保证 5 天的日平均温度。			
	逐时温度	➤ 一阶简谐波近似, 气温峰值设在 15 时:			
		$t_{w.\tau} = t_{w.p} + (t_{w.\text{max}} - t_{w.p}) \cos(15\tau - 225)$			
		其中:			
		<i>t_{wτ}</i> – 逐时温度;			
		$t_{w,p}$ - 室外平均温度;			
		<i>t_{w.max}</i> - 室外干球温度;			
		τ – 计算时刻,h			
冬季	说明	▶ 冬季室外空气温度低、变化小,含湿量小、变化			
		小;			
		> 冬季加热加湿费用低;			
		▶ 通过围护结构的传热量按稳态传热方法计算。			
	干球温度	▶ 历年平均不保证 1 天的日平均温度;			
	相对湿度	▶ 累年最冷月平均相对湿度。			
	相对湿度	▶ 累年最冷月平均相对湿度。			

3、太阳辐射对建筑物的热作用

- (1) 从空气调节角度分析太阳辐射: 夏季:增加了冷负荷,不利;冬季:减少了采暖负荷,有利。
- (2) 大气对太阳辐射的作用:
- ▶ 吸收作用:其中一部分被臭氧、水蒸气、二氧化碳和尘埃等(其中大部分被水蒸汽所吸收)。
- ▶ 散射辐射:另一部分被云层中的尘埃、冰晶、微小水珠及各种气体分子等反

射或折射,形成漫无方向的散射辐射,亦称天空辐射(其中大部分返回宇宙空间中去,一部分反射到地球表面)。

- ▶ 直射辐射:其余末被吸收和散射的辐射能,则仍按原来的辐射方向,透过大气层沿直线继续前进,直达地面,故称此部分为直射辐射。
- ▶ 到达地面的太阳辐射能量=直接辐射能量+散射辐射能量;
- (3)建筑物表面接受到的太阳辐射影响因素:地球对太阳的相对位置(太阳射线对地球的高度角及其通过大气层的路程)、大气透明度;
- (4) 建筑物表面吸收的太阳辐射影响因素:表面粗糙度、表面颜色。
- (5) 室外空气综合温度:同时考虑对流和辐射作用时,得到室外空气综合温度,并非实际的室外空气温度。而是相当于在室外气温的基础上增加了一个太阳辐射的等效温度 ρ I/ α w.

4、热量与负荷

得热量	>	某一时刻由室外和室内热源散入房间的总热量。
	>	包括由于太阳辐射经外窗进入的热量;由于室内外空气温差经
		围护结构传入的热量; 人体、照明、设备等散入房间的热量。
失热量	>	某一时刻由房间损失的总热量,又称耗热量。
得湿量	>	某一时刻由室外和室内湿源散入房间的总湿量。
	>	包括人体散湿量; 其他散湿量。
冷负荷	>	某一时刻为了维持室温恒定,必须从室内除去的热量(即必须
		向室内供应的冷量)。
	>	包括外墙和屋面瞬变传热引起的冷负荷; 外玻璃窗瞬变传热引
		起的冷负荷;透过玻璃窗的日射得热引起的冷负荷;(内墙和楼
		板等室内传热围护结构传热形成的瞬时冷负荷);设备散热形成
		的冷负荷; 照明散热形成的冷负荷; 人体散热形成的冷负荷;
热负荷	>	某一时刻为了维持室温恒定,必须向室内供应的热量。
湿负荷	>	某一时刻为了维持室内相对湿度恒定,必须由房间除去或增加
		的湿量。
	>	包括人体散湿量、其他湿源散湿量。
		已16八件权业里、共他业/8权业里。

得热量的组成及其与冷负荷的关系					
得热量	显热	对流	直接放散到空气中, 形成瞬时		
			冷负荷。		
		辐射	被室内各表面吸收和贮存, 经	冷负荷是由得热量引	
			延迟和衰减后进入空气中形	起的,但冷负荷与得热	
			成冷负荷。	量并不时时相等。	
	潜热		直接放散到空气中, 形成瞬时		
			冷负荷。		
	得湿量与湿负荷的关系				
得湿量=湿负荷					

- 5、夏季空调冷负荷的计算方法<mark>:谐波反应法</mark>(谐波反应法的工程简化方法)、冷负荷系数法。
- 6、空调房间送风量的确定
- (1) 确定送风状态:
- ▶ 在 h-d 图上确定室内状态点 N;
- ▶ 过 N 点作等热湿比线;
- ▶ 根据送风温差 \triangle to 确定送风温度 to:
- ▶ to 的等温线与等热湿比线的交点即为送风状态 O.
- (2) 计算送风量

•
$$\mathbf{MP}$$
 $\mathbf{G} \mathbf{h}_{o} + \mathbf{Q} = \mathbf{G} \mathbf{h}_{N}$

•
$$\frac{d_O}{1000} + W = G \frac{d_N}{1000}$$

• 送风量:
$$G = \frac{Q}{h_N - h_O} = 1000 \frac{W}{d_N - d_O}$$

• 热湿比:
$$\varepsilon = \frac{h_N - h_O}{\frac{d_N - d_O}{1000}} = \frac{Q}{W}$$

- (3) 送风温差的选取:
- ➤ 送风温差越大:送风温度越低、送风量越小,投资和运行费用越少;送风温度过低时,冷气流会让人体感觉不适,且送风量过小时,室内温湿度的均匀性和稳定性也会受到影响。

- ▶ 送风温差根据空调精度选取,见表 2-20。
- (4) 换气次数:
- ▶ 概念:房间送风量与房间体积之比。
- ▶ 送风温差越大,送风量越小,换气次数越小。
- ▶ 所选取的送风温差应保证换气次数大于表 2-20 中的值。如果换气次数小于所要求的值,则应减小送风温差。

第三章 空气的热湿处理

第四章 空气调节系统

1、空气调节系统的分类

按空气处理设备的集中程度				
集中式	所有空气处理设备都设在一个集中的空调机房内。			
半集中式	除集中的空调机房外,还设有分散在空调房间内的二次设备			
	(末端装置)。			
全分散式(局部机	把冷热源和空气处理、输送设备集中设置在一个箱体内,形			
组)	成一个紧凑的空调系统。			
	按负担室内热湿负荷的所用介质不同			
全空气	空气负担室内热湿负荷			
全水	水负担室内热湿负荷			
空气-水	空气-水负担室内热湿负荷			
冷剂	冷剂负担室内热湿负荷			
	按集中式空调系统处理的空气来源分类			
封闭式	无人或少人场合			
直流式	洁净要求高的场合			
混合式	定风量:一次回风式、二次回风式;			
	变风量。			

2、新风量的确定

最小新风量I	满足补偿局部排风的最小新风量
最小新风量I	满足保持室内正压要求的最小新风量

最小新风量 II	满足卫生要求的最小新风量			
最小新风量 III	系统总风量的 10%			
确定最小新风量	MAX{最小新风量 I,最小新风量 II,最小新风量 III}			

3、空气平衡

平衡点	平衡方程
空调箱	Lw+Lh=L
空调房间	L=Lx+Ls
排风点	Lx=Lp+Lh

房间正压: Lw>Ls, Lx>Lh

4、普通集中式空调系统

计算	最小新风百分比m% $\frac{G w}{G} = m \%$
	室内冷负荷 $Q_1 = G(i_N - i_O)$
	新风冷负荷 $Q_2 = G_W(i_W - i_N)$
	再热量 $Q_3 = G (i_O - i_L)$
	$Q_0 = G(i_N - i_O) + G_W(i_W - i_N) + G(i_O - i_L)$
	$= G(i_N - i_O) + G(i_C - i_N) + G(i_O - i_L) = G(i_C - i_L)$
	二次回风
定义	回风使用两次,回风与新风在喷水室(或表冷器)前混合并经热湿
	处理后,在冷却减湿设备后再次与回风混合。
系统图示	N E
	G2
	G1 N N
	C L
	集中空调系统划分和分区处理
划分原则	(1)室内参数(温湿度基数和精度)相近以及室内热湿比相近的房间可采用同一系统;
	(2) 朝向、层次等位置相近的房间宜采用同一系统;
	(3) 工作班次和运行时间相同的房间采用同一系统;
	(4) 对室内洁净度等级或噪声级别不同的房间,宜按各自的级别设
	计;
	(5) 产生有害物的房间不宜和一般房间合用一个系统;
₩	(6) 空调系统的分区应与建筑防火分区相对应。
分区处理 	(1) 室内 N 点相同, 热湿比 ε 不同: 采用定露点, 分室加热系统。
	(2)室内 tN 相同,ΦN 允许有偏差,热湿比 ε 也各不同:采用
	定露点,相同的△to,但需根据房间的重要性选择露点。

- (3) 室内 N 相同, Δ to 也要求相同,热湿比 ϵ 不同: 集中处理新
- 风,分散回风,分室加热。即分区空调方式/分层空调方式。
- (4<mark>) 室内 N 相同,热湿比 ε 不同: 双风道系统</mark>。

5、变风量系统

定义	简单地说,通过改变送入房间的	风量来满足室内变化的负荷。	
特点	▶ 全年变风量运行,无冷热抵消,大量节约能耗;		
	▶ 室内相对湿度控制质量稍差;		
	▶ 新风比不变时,新风量改变,调小时影响室内空气品质;		
	> 风量调小时,室内气流受影响;		
	➤ 末端设备(VAV 风口)造价高,控制系统亦较复杂;		
	▶ 系统的灵活性较好,易于改、扩建,或格局多变的建筑;		
	> 变风量系统属于全空气系统	,它具有全空气系统的一些优点,	
	可以利用新风消除室内负荷	,没有风机盘管凝水问题和霉变	
	问题。		
主要形式	单风道:	单冷型	
	变频风机(定静压法、变静压法) +节流型末端(压力有关型、压	单冷再热型	
	力无关型)	冷热型	
	风机动力型:	串联式	
	在单风道基础上在末端装置处	并联式	
	加装一台驱动风机。	71 100	
	其他变风量系统	旁通型	
		诱导型	

6、半集中式空调系统

分类	末端换热介质	末端装置形式
空气-水	水	风机+水盘管
		(FHU-fan-coil unit)
		诱导器
		(IU-induction unit)
		辐射板 (平面盘管)

空气-冷剂	冷剂	风机+冷剂盘管(供冷时
		为蒸发器, 供热时为冷凝
		器)

(1) 风机盘管系统

构造	风机+盘管+箱体
类型	立式、卧式、壁挂式;暗装、明装;普通、高静压。
优点	(1) 布置灵活;各房间可以独立调节室温,使用者可以直接调节;
	(2) 节省运行费用;
缺点	(1) 机组制作有较高质量要求;
	(2) 维修 要求较高;
	(3) 不能用于全年室内 湿度 有要求的地方;
	(4) 噪声限制风机转速,气流分布受限,适用于进深小于 6 米的
	房间。
新风供给	1).由排风形成自然渗入新风
方式	2).墙洞引入新风
	3).独立新风系统:新风不入盘管,新风入盘管
新风处理	具有独立新风系统的风机盘管机组夏季处理过程有两种:
方案	(1) 新风处理到室内焓值,不承担室内冷负荷;
	(2) 新风处理后的焓值低于室内焓值,承担室内部分显热负荷和
	全部湿负荷。

7、局部空调机组

(1) 机组形式:

(2) 机组应用

单台使用		
多台独立使用		
多台联合使用	集中冷却水;	
	集中新风、排风;	
利用机组做集中式空调系统的空气处理机		

(3) 机组系统化应用

水环热泵(WLHP-water	>	原理:由许多水-空气热泵机组通过水侧管路的
loop heat pump)		网路化,以平衡同时进行制冷或供热的机组之间
		的热量需求;
	>	组成:水源热泵单元机组(水-空气热泵)+辅助
		加热装置+冷却塔+水系统。
变制冷剂流量多联分体式	>	原理:一拖多;一个室外机带多个室内机;
	>	特点:可根据负荷变化通过变制冷剂流量而改变
		压缩机制冷量。
	>	变制冷剂流量的方法:(1)变压缩机电机频率
		(VRV); (2) 利用数字控制的涡旋压缩机通过
		控制负载与卸载时间的比例实现不同的制冷剂
		流量输出(数字涡旋变流量/变容多联机)。

第五章 空调房间的气流分布