084213 – תרמודינמיקה

ש<u>ם</u>

מעודת זהות 313580805

07 **מספר תרגיל**

05/01/2021 <u>תאריך הגשה</u>

<u>תשובה 1</u>

נתון:

$$T_H = 563 \, [^{\circ}\mathrm{K}]$$
 , $T_L = 313 \, [^{\circ}\mathrm{K}]$, $x_i = 0$, $x_e = 1$

נסיק מן הנתונים שבכניסה לדוד החימום, הזורם במצב נוזל טהור ($x_i=0$, כלומר אין אדים כלל). באותו אופן ניתן לומר שביציאה מדוד החימום, הזורם כולו במצב אד טהור.

:T-s א. נשרטט דיאגרמת

 T_H ל- T_L ל מ-תהליך אדיאבטי בו הטמפרטורה עולה מ- 4 o ל $\Delta q_{\rm rev} = 0 \Longrightarrow \Delta s = 0$

 T_L ל T_H תהליך אדיאבטי בו הטמפרטורה יורדת מ-2 o 3

כל התהליכים במערכת הפיכים

$$\Delta q_{
m rev}=0\Rightarrow \Delta s=0$$
 T_H - תהליך אדיאבטי בו הטמפרטורה עולה מ T_L - תהליך איזותרמי בו חום עובר ממאגר החום אל הזורם $-\frac{4 o 1}{1 o 2}$ $\Delta q_{
m rev}>0\Rightarrow \Delta s>0$ ב T_L - תהליך איזותרמי בו הטמפרטורה יורדת מ T_L - תהליך אדיאבטי בו הטמפרטורה יורדת מ T_L - דער מאגר הקר בי חום עובר מהזורם אל המאגר הקר בי חום עובר מחזורם אל המאגר הקר

עלינו לחשב את איכות המים לפני ואחרי שלב פליטת החום, כלומר בנקודה 3 (לפני פליטת החום) s_1, s_2 את מחום). נשים לב שמתקיימים הקשרים $s_2 = s_3$, $s_1 = s_4$ נחלץ את נשים לב שמתקיימים הקשרים אחרי

$$s_1 \stackrel{x=0}{=} s_f = 3.1593 \left[\frac{\text{kJ}}{\text{kg} \cdot \text{K}} \right] = s_4$$

$$s_2 \stackrel{x=1}{=} s_g = 5.7821 \left[\frac{\text{kJ}}{\text{kg} \cdot \text{K}} \right] = s_3$$

(B.1.1) נשים לב שנתוני האנטרופיה שמצאנו תואמים מים ב- $[^{
m CK}]$ הנמצאים באזור הרוויה (טבלה מה שמחזק את האופן בו שרטטנו את קווי התהליך ביחס לאזור הרוויה בדיאגרמה. בעזרת נתוני אנטרופיה נוספים מטבלה B.1.1 נחשב את האיכות:

$$x_3 = \frac{s_3 - s_{f_3}}{s_{fg_3}} = \frac{5.7821 - 0.5724}{7.6845} = 0.678$$

$$x_4 = \frac{s_4 - s_{f_4}}{s_{fg_4}} = \frac{3.1593 - 0.5724}{7.6845} = 0.337$$

$$\Rightarrow \boxed{x_3 = 0.678 , x_4 = 0.337}$$

 $\eta = 1 - rac{T_L}{T_H}$ ג. נחשב את יעילות המחזור מהקשר הקיים במחזור קרנו $\eta = 1 - \frac{313}{563} \Longrightarrow \boxed{\eta = 0.444}$

יי הארב
$$0.944$$
 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944

ד. כיוון שמדובר במחזור קרנו, ידוע שכל התהליכים הם תהליכים הפיכים ולכן נוכל לחשב את החום מתוך $:ds=rac{\delta q}{T}$ הקשר

$$\Delta s = s_2 - s_1 = \int_1^2 \frac{\delta q}{T_H} \xrightarrow{T_H = Const} T_H(s_2 - s_1) = \int_1^2 \delta q = q_{12}$$

$$\Rightarrow q_{12} = 563(5.7821 - 3.1593)$$

$$\Rightarrow \boxed{q_{12} = 1.477 \ [^{\text{MJ}}/_{\text{kg}}]}$$

______ ה. נעזר בקשר בין יעילות המחזור, החום והעבודה:

$$\eta = \frac{W_{\text{net}}}{q_H} \Longrightarrow W_{\text{net}} = \eta \cdot q_H = 0.444 \cdot 1.477$$

$$\Longrightarrow W_{\text{net}} = 655.626 \left[\frac{\text{kJ}}{\text{kg}} \right]$$

תשובה 2

נתונה בוכנה מלאה באמוניה תחת התנאים הבאים:

 $T_1=80\,[^{\circ}\mathrm{C}]$, $P_1=2\,[\mathrm{MPa}]$, $V_1=0.12\,[\mathrm{m}^3]$, $F_{\mathrm{spring}}=kx$, $x_2=0.1$ (לחץ החיצוני) בשאלה את אפקט את הבוכנה נמצאת ב- $T_{
m amb} = 20~[^{\circ}{
m C}]$. בשאלה את הבוכנה מקיפה את הבוכנה נמצאת ב-

א. תחילה נחשב את מסת האמוניה בבוכנה. נשים לב שתנאי ההתחלה תואמים זורם במצב אד שחון, אז מטבלה *B.2.2* נחלץ:

$$v_1 = 0.07595 \, \left[\frac{\text{m}^3}{\text{kg}} \right]$$
 $m = \frac{V_1}{v_1} = \frac{0.12}{0.07595} \Rightarrow m = 1.58 \, \text{[kg]}$

נתונה האיכות בסוף התהליך $x_2=0.1$ ומכך נסיק שבשלב זה הזורם נמצא באזור הרווויה. נחשב את הלחץ והנפח בסוף התהליך בעזרת טבלה B.2:

$$T_2 = T_{\text{amb}} = 20 \, [^{\circ}\text{C}] \Rightarrow P_2 = 857.5 \, [\text{kPa}]$$
 $x_2 = 0.1 = \frac{v_2 - v_f}{v_{fg}} \Rightarrow v_2 = 0.016396 \, \left[\frac{\text{m}^3}{\text{kg}}\right] \Rightarrow V_2 = v_2 \cdot m = 0.016396 \cdot 1.58$

$$\Rightarrow V_2 = 0.026 \, [\text{m}^3]$$

נניח ש-A שטח $P=F/_A$ נניח ש-A שטח. נתון שהכוח שמפעיל הקפיץ על הבוכנה משתנה באופן לינארי וכן, ידוע ש החתך קבוע ומכאן ש-P גם כן **משתנה באופן לינארי**. כמו כן, ניתן להתייחס לעבודה P כאל השטח שמתחת לגרף העקומה בדיאגרמת $P \cdot v$, כיוון שהשטח הוא למעשה סכום התרומות ללחץ של השינויים האינפיניטסימליים בנפח הסגולי. כיוון שהראנו ש-P משתנה לינארית, נוכל לחשב את השטח שמתחת לגרף בעזרת נוסחאת שטח טרפז:

$$\begin{split} W_{12} &= \frac{1}{2}\underbrace{(P_1 + P_2)}_{\text{kigh}} \cdot \underbrace{(v_2 - v_1)}_{\text{kigh}} \cdot m = \frac{1}{2}(2 \cdot 10^6 + 857.5 \cdot 10^3)(0.016396 - 0.07595) \cdot 1.58 \\ &\Rightarrow \underbrace{W_{12} = -134.46 \, [\text{k}]]}_{\text{kigh}} \\ &= 0.1 \cdot 1059.3 + 272.89 = 378.82 \, \text{kg} \end{split}$$

$$u_1 = 1421.6 \, \left[\frac{\text{kJ}}{\text{kg}} \right]$$
, $u_2 = x \cdot u_{fg_2} + u_{f_2} = 0.1 \cdot 1059.3 + 272.89 = 378.82 \, \left[\frac{\text{kJ}}{\text{kg}} \right]$

נשתמש בחוק הראשון של התרמודינמיקה ונחשב את החום שעבר:

$$\Delta U = U_2 - U_1 = Q - W$$
 $Q = m(u_2 - u_1) + W = 1.58(378.82 - 1421.6) + (-134.46)$ $\Rightarrow \boxed{Q = -1782.052 \ [kJ]}$ נחלץ מטבלאות $B.2$ את ערכי האנטרופיה בנקודות ההתחלה והסוף:

$$s_1 = 5.0707 \, {\text{kJ}/\text{kg} \cdot \text{K}}$$
, $s_2 = x \cdot s_{fg_2} + s_{f_2} = 0.1 \cdot 4.0452 + 1.0408 = 1.44532 \, {\text{kJ}/\text{kg}}$

בנוסף, נרצה להעריך את התנהגות העקום שמחבר בין שתי הנקודות בדיאגרמת ה-T-S-. לצורך כך נבחר נקודה שרירותית בתחום- $T^{\star}=40~[^{\circ}\mathrm{C}]$ ונבדוק את ערך האנטרופיה בה. הראנו שבמערכת הנידונה מתקיים קשר לינארי בין P ו-v, נעזר במשוואת ישר ונרשום את הקשר:

$$P(v) - 2 = \frac{2 - 0.8575}{0.016396 - 0.07595} (v - 0.07595)$$
$$\Rightarrow P(v) = (3.457 - 19.184 \cdot v)$$

P נשים לב שמצאנו את P כפונקציה של v. אבל, כיוון שהפונקציה חח"ע ועל, היא הפיכה ומכאן שבהינתן. $:\!B.2$ ניתן לחשב את v. נניח שהזורם נמצא באזור הרוויה ואז מטבלאות

$$T^\star = 40 \ [^\circ \mathrm{C}] \Longrightarrow P^\star = 1.5549 \ [\mathrm{MPa}] \stackrel{v(P)}{\Longrightarrow} v^\star = 0.09915 \ \left[\mathrm{m}^3 / \mathrm{kg} \right] \stackrel{v^\star > v_g}{\Longrightarrow}$$
אד שחון χ

הגענו לסתירה, אז נניח שהזורם במצב אד שחון וננסה למצוא את התנאים באופן איטרטיבי:

$$P^{\star} = 1.4 \text{ [MPa]} \overset{v(P)}{\Longrightarrow} v^{\star} = 0.107 \neq 0.092 = v_{\text{Table}}$$

$$P^{\star} = 1.2 \text{ [MPa]} \overset{v(P)}{\Longrightarrow} v^{\star} = 0.117 \approx 0.113 = v_{\text{Table}}$$

$$P^{\star} = 1 \text{ [MPa]} \overset{v(P)}{\Longrightarrow} v^{\star} = 0.128 \neq 0.139 = v_{\text{Table}}$$

והאנטרופיה $P^\star=1.2~\mathrm{[MPa]}$, $v^\star=0.11287~\mathrm{[m^3/_{kg}]}$ והאנטרופיה ביותר מתקבל עבור

$$s^* = 5.0564 \left[{^{kJ}}/_{kg \cdot K} \right]$$

נשרטט את התרשימים המבוקשים:

- התרשימים מציגים תמונה כללית ולא מדוייקת.
- ד. נניח שטמפרטורת הסביבה קבועה $T_{
 m amb} = 293 \ [^{
 m e}{
 m K}] = {\it Const}$ ובסעיף קודם מצאנו שכמות החום שנפלטה מהמאגר היא |Q| = 1562.5, לכן השינוי באנטרופיה של המאגר יהיה

$$S_{amb} = \frac{|Q|}{T_{amb}} = \frac{1782.052}{293} = 6.082 [kJ/K]$$

 $S_{
m CV} = S_{
m in} - S_{
m out} + S_{
m gen}$ כעת נחשב את האנטרופיה שנוצרה מתוך הקשר

$$S_{12\text{gen}} = m(s_2 - s_1) + S_{\text{out}} = 1.58(1.44532 - 5.0707) + 6.082$$

$$\Rightarrow \boxed{S_{12\text{gen}} = 0.354}$$

תשובה 3 נתון:

$$\begin{split} T_{\rm amb} &= 20 \, [^{\circ}\text{C}] \quad , \quad V = 0.3 \, [\text{m}^3] \\ T_A &= 200 \, [^{\circ}\text{C}] \quad , \quad P_A = 2 \, [\text{MPa}] \\ T_B &= 100 \, [^{\circ}\text{C}] \quad , \quad P_B = 0.3 \, [\text{MPa}] \\ \end{split}$$

$$T_f = 70 \, [^{\circ}\text{C}] \quad , \quad C_{p0} = 1.042 \, \left[\frac{\text{kJ}}{\text{kg} \cdot \text{K}}\right] \end{split}$$

א. נשרטט תרשים של המערכת ונגדיר נפח בקרה:

נשים לב שלא מזוהה שום עבודה בתוך המערכת או עבודה דרך גבולות נפח הבקרה. כמו כן, נתון שהנפח קבוע, אז נסיק שהעבודה שווה ל-0.

$$\Rightarrow W = 0$$

ב. נניח שהחנקן מתנהג כגז אידיאלי, אז נעזר במשוואת המצב לגזים אידיאליים ונחשב את המסה הכוללת כאשר הקבוע R_{s} ילקח מטבלה R_{s}

$$PV = mR_s T \Rightarrow m = \frac{PV}{R_s T}$$
 , $R_s = 0.2968 \, \left[\frac{\text{kJ}}{\text{kg} \cdot \text{K}} \right]$
 $\Rightarrow m_A = \frac{P_A V_A}{R_s T_A} = \frac{2 \cdot 10^6 \cdot 0.15}{0.2968 \cdot 10^3 \cdot 473} \Rightarrow m_A = 2.137 \, [\text{kg}]$
 $\Rightarrow m_B = \frac{P_B V_B}{R_s T_B} = \frac{0.3 \cdot 10^6 \cdot 0.15}{0.2968 \cdot 10^3 \cdot 373} \Rightarrow m_B = 0.406 \, [\text{kg}]$
 $\Rightarrow m_{\text{tot}} = m_A + m_B = 2.137 + 0.406 = 2.543 \, [\text{kg}]$
 באופן דומה נחשב את הלחץ הסופי במערכת:

 $P_f = \frac{mR_sT_f}{V} = \frac{2.543 \cdot 0.2968 \cdot 10^3 \cdot 343}{0.3} \Longrightarrow P_f = 863.1 \text{ [kPa]}$

A ונתח A ונתח A נחשב את השינוי באנתרופיה עבור כל אחד מ"נתחי" המערכת (נתח

$$\Delta S_{A} = m_{\text{tot}} \left(C_{p0} \ln \left(\frac{T_{f}}{T_{A}} \right) - R_{s} \ln \left(\frac{P_{f}}{P_{A}} \right) \right) = 2.137 \left(1.042 \cdot \ln \left(\frac{343}{473} \right) - 0.2968 \cdot \ln \left(\frac{0.8631}{2} \right) \right)$$

$$\Rightarrow \Delta S_{A} = -0.183 \left[\frac{kJ}{K} \right]$$

$$\Delta S_{B} = m_{\text{tot}} \left(C_{p0} \ln \left(\frac{T_{f}}{T_{B}} \right) - R_{s} \ln \left(\frac{P_{f}}{P_{B}} \right) \right) = 0.406 \left(1.042 \cdot \ln \left(\frac{343}{373} \right) - 0.2968 \cdot \ln \left(\frac{0.8631}{0.3} \right) \right)$$

$$\Rightarrow \Delta S_{B} = -0.163 \left[\frac{kJ}{K} \right]$$

$$\Rightarrow \Delta S_{sys} = \Delta S_{A} + \Delta S_{B} = -0.183 - 0.163 = -0.346 \left[\frac{kJ}{K} \right]$$

נחשב את השינוי באנרגיה הפנימית מהקשר המתקיים עבור גז אידיאלי $\Delta u = C_{v0} \Delta T$ וכן הקשר בין הקבועים נחשב את השינוי באנרגיה הפנימית מהקשר המתקיים עבור אידיאלי $mC_{v0} - mC_{v0} = mR_{s}$

$$mC_{p0} - mC_{v0} = mR_s \implies C_{v0} = C_{p0} - R_s = 1.042 - 0.2968 \implies C_{v0} = 0.7452$$

$$\Delta u_A = C_{v0}\Delta T = 0.7452 \cdot (-130) = -96.846 \left[{}^{kJ}/_{kg} \right]$$

$$\Delta u_B = C_{v0}\Delta T = 0.7452 \cdot (-30) = -22.356 \left[{}^{kJ}/_{kg} \right]$$

$$\Rightarrow \Delta U = m_A \Delta u_A + m_B \Delta u_B = 2.137 \cdot (-96.846) + 0.406 \cdot (-22.356) = -216.036 \text{ [kJ]}$$

מהחוק הראשון של התרמודינמיקה נחשב את החום שעבר בין המערכת לסביבה:

$$\Delta U = Q - W \Rightarrow -302.17 = Q - 0 \Rightarrow Q = -216.036$$
 [kJ]

נניח שטמפרטורת הסביבה קבועה $T_{\rm amb}=293~[^{\circ}{
m K}]={\it Const}$ ולכן השינוי באנטרופיה של הסביבה יהיה: $\Delta S_{\rm amb}=-\frac{Q}{T_{\rm amb}}=\frac{216.036}{293}={\bf 0.737}~{
m kJ/K}$

$$\Delta S_{\text{amb}} = -\frac{Q}{T_{\text{amb}}} = \frac{216.036}{293} = \mathbf{0.737} \left[\frac{\text{kJ}}{\text{K}} \right]$$

$$\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{amb}} = -0.346 + 0.737$$

$$\Rightarrow \Delta S_{\text{tot}} = 0.391 \left[\frac{\text{kJ}}{\text{K}} \right]$$

<u>תשובה 4</u>

נתון:

$$\dot{Q}_H=1~\mathrm{[MW]}$$
 , $\dot{Q}_L=0.58~\mathrm{[MW]}$ $T_H=1003~\mathrm{[^\circ K]}$, $T_L=317~\mathrm{[^\circ K]}$

נניח שהטרובינה והמשאבה אידאבטים, כלומר:

$$\dot{Q}_{\rm tot} = \dot{Q}_H - \dot{Q}_L$$

נבחן האם מתקיים אי-שיוויון קלאוזיוס:

$$\oint \frac{\delta \dot{Q}}{T} = \frac{1000}{1003} - \frac{580}{317} = -0.833 < 0 \quad \checkmark$$

כעת נבחן האם התהליך מתקיים גם כאשר המערכת עובדת כמקרר. לצורך כך נהפוך את הסימנים של מעברי החום ונבדוק:

$$\oint \frac{\delta \dot{Q}}{T} = \frac{580}{317} - \frac{1000}{1003} = 0.833 > 0 \quad \times$$

בסך הכל מצאנו, שעבור התהליך הסדור, אי-שיוויון קלאוזציוס מתקיים ועבור התהליך ההפוך (המערכת עובדת כמקרר) אי השיוויון אינו מתקיים.