Risposta in frequenza di reti a singola costante di tempo STC (Single Time Constant)

Risposta in frequenza

$$v_{\rm s}(t) = V_{\rm m} \sin W t$$

tensione di ingresso

$$v_o(t) = V_p \sin(\mathbf{w}t - \mathbf{f})$$

tensione di uscita

$$W = 2pf$$

pulsazione

$$T(j\mathbf{W}) = \frac{V_o(j\mathbf{W})}{V_s(j\mathbf{W})}$$

guadagno in tensione o funzione di trasferimento

|T(jW)|

modulo della funzione di trasferimento

 $/T(j\mathbf{W})$

fase della funzione di trasferimento

La risposta in frequenza di un circuito è la rappresentazione del diagramma del modulo in decibel $20\log_{10}|T(j\textit{W})|$ e del diagramma della fase $\underline{/T(j\textit{W})}$ della funzione di trasferimento in funzione della frequenza, con quest'ultima grandezza in scala logaritmica. Tali diagrammi sono detti diagrammi di Bode.

Diagrammi di Bode

$$T(s) = \frac{V_O(s)}{V_i(s)} = \frac{a_m s^m + a_{m-1} s^{m-1} + K + a_0}{s^n + b_{n-1} s^{n-1} + K + b_0} = a_m \frac{(s - z_1)(s - z_2) L (s - z_m)}{(s - p_1)(s - p_2) L (s - p_n)}$$

$$a_i b_i \text{ numeri reali}$$

$$n \ddagger m$$

 z_1 , z_2 , ..., z_m : zeri della funzione di trasferimento

 p_1 , p_2 , ..., p_n : poli della funzione di trasferimento

Una generica funzione di trasferimento T(s) può essere trasformata nel dominio della frequenza sostituendo j w alla variabile s.

I diagrammi di Bode permettono di rappresentare l'andamento del modulo $|T(j\mathbf{w})|$ e della fase $\mathbf{f} = \underline{/T(j\mathbf{w})}$ al variare della frequenza.

Utilizzando i diagrammi di Bode è possibile descrivere la risposta in frequenza di un amplificatore e studiare la stabilità dell'amplificatore.

Esempio di reti STC

esempio di rete STC passa-basso

esempio di rete STC passa-alto

Circuito RC passa-basso

$$V_o(s) = V_i(s) \frac{Z_C}{R + Z_C}$$

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{Z_C}{R + Z_C} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC}$$

$$T(jw) = \frac{V_o(jw)}{V_i(jw)} = \frac{1}{1 + jwRC} = \frac{1}{1 + jwt}$$

$$|T(j\mathbf{w})| = \frac{1}{\sqrt{1 + (\mathbf{w}t)^2}} = \frac{1}{\sqrt{1 + (\mathbf{w}/\mathbf{w}_0)^2}}$$

$$-T(j\mathbf{W}) = \mathbf{f} = -\arctan(\mathbf{w}\mathbf{t}) = -\arctan(\mathbf{w}/\mathbf{W}_0) \quad \text{con } \mathbf{W}_0 = 1/RC = 1/\mathbf{t}$$

$$|T(j\mathbf{w})| @ 1$$

$$20\log_{10}|T(j\mathbf{w})| = 0$$

$$f = 0$$

Per $W >> W_0$

$$|T(j\mathbf{w})| @ \mathbf{w}_0/\mathbf{w}$$

 $20\log_{10}|T(j\mathbf{w})| = 20\log_{10}|\mathbf{w}_0/\mathbf{w}|$
 $f = -\mathbf{p}/2 = -90$

$$|T(j\mathbf{W})| = 1/\sqrt{2}$$

 $20\log_{10}|T(j\mathbf{W})| = 20\log_{10}|1/\sqrt{2}| = -3dB$
 $f = -\mathbf{p}/4 = -45$

Risposta in frequenza di una rete STC di tipo passa-basso

$$T(s) = \frac{K}{1 + s/w_0}^{s = jw} T(jw) = \frac{K}{1 + jw/w_0}$$

 $\begin{array}{c|c}
20 \log \left| \frac{T(j\omega)}{K} \right| & \text{(dB)} \\
\hline
0 & -6 & \text{dB/octave} \\
\hline
-10 & -20 & \text{dB/decade} \\
\hline
-20 & -30 & 0.1 & 1 & 10 & \frac{\omega}{\omega_0} \text{ (log scale)}
\end{array}$

K: modulo della funzione di trasferimento per $\mathbf{W} = 0$ $\mathbf{W}_0 = 1/\tau$: limite superiore di banda a -3 dB τ : costante di tempo

$$\left| T(j\mathbf{W}) \right| = \frac{K}{\sqrt{1 + \left(\mathbf{W}/\mathbf{W}_0 \right)^2}}$$
$$\left| T(j\mathbf{W}_0) \right| = \frac{K}{\sqrt{2}}$$

$$|T(j\mathbf{W})|_{\mathbf{W}\square \ \mathbf{W}_0}$$
 @ $\frac{K\mathbf{W}_0}{\mathbf{W}}$

$$|T(j\mathbf{W})|_{\mathbf{W}\square \ \mathbf{W}_0}$$
 @ K

$$f = \underline{/T(jW)} = -arctg \frac{W}{W_0}$$

$$f(w_0) = -45$$

$$f(w) = 0 \text{ per } w \square w_0$$

$$f(w) = -90 \text{ per } w \square w_0$$

Circuito RC passa-alto

$$V_o(s) = V_i(s) \frac{R}{R + Z_C}$$

$$T(s) = \frac{V_o(s)}{V_i(s)} = \frac{R}{R + Z_C} = \frac{R}{R + 1/sC} = \frac{sRC}{1 + sRC}$$

$$T(j\mathbf{W}) = \frac{V_o(j\mathbf{W})}{V_i(j\mathbf{W})} = \frac{j\mathbf{W}RC}{1 + j\mathbf{W}RC} = \frac{j\mathbf{W}t}{1 + j\mathbf{W}t}$$

$$|T(jw)| = \frac{wt}{\sqrt{1 + (wt)^2}} = \frac{w/w_0}{\sqrt{1 + (w/w_0)^2}}$$

$$-T(j\mathbf{w}) = \mathbf{f} = \mathbf{p}/2 - arctg(\mathbf{w}\mathbf{t}) = \mathbf{p}/2 - arctg(\mathbf{w}/\mathbf{w}_0)$$

Per W<<
$$w_0$$
 Per W>> w_0
 $|T(jw)| @ w/w_0$
 $|T(jw)| @ 1$
 $20 \log_{10} |T(jw)| @ 20 \log_{10} (w/w_0)$
 $20 \log_{10} |T(jw)| @ 0$
 $f @ p/2$
 $f @ 0$

con
$$W_0 = 1/RC = 1/t$$

Per W=W₀

$$|T(jw)| = 1/\sqrt{2}$$

 $20\log_{10}|T(jw)| = 20\log_{10}|1/\sqrt{2}| = -3 dB$
 $f = p/4 = 45$

Risposta in frequenza di una rete STC di tipo passa-alto

$$T(s) = \frac{Ks}{s + \mathbf{W}_0} \quad {}^{s = j\mathbf{W}} T(j\mathbf{W}) = \frac{K}{1 - j\mathbf{W}_0/\mathbf{W}}$$

K: modulo della funzione di trasferimento per $\mathbf{W} = \infty$ $\mathbf{W}_0 = 1/\tau$: limite inferiore di banda a -3 dB τ : costante di tempo

$$|T(j\mathbf{W})| = \frac{K}{\sqrt{1 + (\mathbf{W}_0/\mathbf{W})^2}}$$

$$\left| T(j \mathbf{W}_0) \right| = \frac{K}{\sqrt{2}}$$

$$|T(j\mathbf{W})|_{\mathbf{W}\square \mathbf{W}_0} \otimes \frac{K\mathbf{W}}{\mathbf{W}_0}$$

$$|T(j\mathbf{W})|_{\mathbf{W}\square \ \mathbf{W}_0}$$
 @ K

$$f = \underline{/T(jW)} = -arctg \underbrace{\frac{W_0}{W}}_{1}$$

$$f(w_0) = 45$$

$$f(w) = 0 \text{ per } w \square w_0$$

$$f(w) = 90 \text{ per } w \square w_0$$

Classificazione delle reti STC

Reti STC di tipo passa-basso.

REGOLE PER TROVARE IL TIPO DI CIRCUITO STC

Verifica per	Sostituire	Il circuito è LP se	Il circuito è HP se
$\omega = 0$	C con un o.c.	L'uscita è finita	ta L'uscita è zero
	L con un s.c.	L uscita e fini	ta L uscita e zero
ω = ∞	C con un s.c.		
	L con un o.c.	L'uscita è zero	D L'uscita è finita

Reti STC di tipo passa-alto.

Elettronica Reti STC

Risposta al gradino di un circuito RC passa-basso

$$v_O(t) = V_S(1 - e^{-t/t})$$

Risposta al gradino di un circuito RC passa-alto

$$v_O(t) = V_S e^{-t/t}$$

Risposta al gradino delle reti STC

$$y(t) = Y_{y} - (Y_{y} - Y_{0+})e^{-t/t}$$

$$y(t) = S\left(1 - e^{-t/t}\right)$$

$$y(t) = Se^{-t/t}$$

Risposta impulsiva di un circuito RC passa-basso

(d) Tensione d'uscita per $\tau >> T$

Risposta impulsiva di un circuito RC passa-alto

(c) Uscita per $\tau << T$

(d) Uscita per $\tau >> T$

$$\mathbf{D}V \otimes \frac{V_S}{t}T$$

sag % "
$$\frac{DV}{V}$$
 x 100 " $\frac{T}{t}$ x 100

Risposta impulsiva delle reti STC

risposta a un impulso di una rete STC passa-basso risposta a un impulso di una rete STC passa-alto

Trasformate di Laplace di uso frequente

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$e^{-\alpha t}$	$\frac{1}{s+\alpha}$
sin αt	$\frac{\alpha}{s^2 + \alpha^2}$
$\cos \alpha t$	$\frac{s}{s^2 + \alpha^2}$
f'(t) $f''(t)$	sF(s) - F(0) $s^2F(s) - sF(s) - F'(0)$