

Programming for AI

Sampling Techniques: Rejection Sampling (Accept-Reject Sampling),

Pseudo-Random Number Generators (PRNGs)

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

17 April 2025

Inverse Transform Technique

Objective

Given a cumulative distribution function (CDF) $F:\mathbb{R} \to [0,1]$, generate a sample $X \sim F$.

- Sample $U \sim \mathrm{Unif}(0,1)$
- Define the function F^{-1} as

$$F^{-1}(u) := \min\{x \in \mathbb{R} : F(x) \ge u\}$$

- F^{-1} is called the quantile function
- Set $X = F^{-1}(U)$
- Claim: The CDF of X is exactly equal to F, i.e., $F_X = F$

Example

• Let X be a discrete random variable with the following PMF:

$$p_X(x) = egin{cases} 0.1, & x = 10, \ 0.2, & x = 20, \ 0.3, & x = 30, \ 0.4, & x = 40, \ 0, & ext{otherwise.} \end{cases}$$

Use the inverse transform method to generate a sample from the above distribution.

Example

• [Generating a Sample from Rayleigh Distribution]

The PDF of the Rayleigh distribution is given by

$$f(r) = r e^{-r^2/2}, \quad r > 0.$$

Use the inverse transform method to generate a sample from the above distribution.

Gaussian Samples on Python via ITT

• Python's built-in module

generates n independent samples from $\mathcal{N}(\mu, \sigma^2)$, where

$$n=$$
 size, $\mu=$ loc, $\sigma=$ scale.

• In principle, the above module uses the inverse transform technique

$$\mathcal{N}(\mu, \sigma^2)$$
 Samples on Python via ITT

- 1. Let $U_1, U_2 \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(0, 1)$
- 2. Let R and Θ be two random variables defined via

$$R = F_1^{-1}(U_1), \qquad \Theta = 2\pi U_2,$$

where F_1 is the CDF of the Rayleigh distribution

3. Let Y_1 and Y_2 be defined as

$$Y_1 = R \cos(\Theta),$$
 $Y_2 = R \sin(\Theta).$

- 4. Then, $Y_1, Y_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$
- 5. To get $X \sim \mathcal{N}(\mu, \sigma^2)$, simply discard Y_2 , and

$$X = \sigma Y_1 + \mu$$
.

6. Repeat steps 1-5 a total of *n* times to get $X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$

• Many a times, computing F^{-1} is tedious

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

• Computation of F^{-1} is non-trivial; need to use numerical techniques

- Many a times, computing F^{-1} is tedious
- For instance, consider the PDF

$$f(x) = 6x(1-x), \qquad x \in [0,1]$$

The CDF corresponding to the above PDF is given by

$$F(x) = \begin{cases} 0, & x < 0, \\ 3x^2 - 2x^3, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

- Computation of F^{-1} is non-trivial; need to use numerical techniques
- Alternative solution: Rejection sampling!

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

• Let U, Z be a pair of continuous random variables satisfying the following properties:

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

• Let U, Z be a pair of continuous random variables satisfying the following properties: 1. $U \sim \text{Unif}(0, 1)$.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_{\mathbb{Z}}(x) \qquad \forall x \in \mathbb{R},$$

where f_Z is the PDF of Z

• Generate (U, Z) satisfying 1-3 above

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_{\mathbb{Z}}(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \le f(Z)$, accept (U, Z), and set X = Z.

Objective

Given a PDF f with CDF F for which computing F^{-1} is tedious, generate a sample $X \sim f$.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \leq f(Z)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \le f(Z)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

- Let U, Z be a pair of continuous random variables satisfying the following properties:
 - 1. $U \sim \text{Unif}(0, 1)$.
 - 2. U is independent of Z.
 - 3. There exists a real number $a \ge 1$ such that

$$f(x) \leq a f_Z(x) \qquad \forall x \in \mathbb{R},$$

where f_Z is the PDF of Z

- Generate (U, Z) satisfying 1-3 above
 - (i) If $a U f_Z(Z) \le f(Z)$, accept (U, Z), and set X = Z.
 - (ii) If not, reject current (U, Z) and generate new (U, Z). Repeat till (i) holds.

Theorem (Rejection Sampling)

Let
$$E = \{a U f_Z(Z) \le f(Z)\}$$
. Then,

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(Z \le x \mid E).$$

Example

• Design an algorithm to generate a sample $X \sim f$, where

$$f(x) = 6x(1-x), \qquad x \in [0,1].$$

Example

• For fixed constants $\lambda, t > 0$, the Gamma (λ, t) PDF is given by

$$f(x) = e^{-\lambda x} \frac{\lambda^t x^{t-1}}{\Gamma(t)}, \qquad x > 0.$$

- 1. When $t \in \mathbb{N}$, suggest a technique to generate a sample $X \sim f$ via ITT.
- 2. When $t \notin \mathbb{N}$, design an algorithm to sample $X \sim f$ via rejection sampling. Hint: Take $Z \sim \text{Exponential}(1/t)$.

Pseudo-Random Number Generators (PRNGs)

$S_0S_1S_2S_3$	Output
1111	1
	_

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0111	1

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
	'

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
	1

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1001	1
1100	0
0110	0
1011	1
0101	1
1010	0
1101	1
1110	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1001	1
1100	0
0110	0
1011	1
0101	1
1010	0
1101	1
1110	0

Output (one period): 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

Properties of the Binary PRNG

Output (one period):

1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

 Number of zeros in one period ≈ number of ones in one period (desirable of uniform binary random number generator)

Properties of the Binary PRNG

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Properties of the Binary PRNG

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Properties of the Binary PRNG

Output (one period):
$$1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0$$

- Number of zeros in one period \approx number of ones in one period (desirable of uniform binary random number generator)
- Period = 15 (not desirable of uniform binary random number generator)

Possible Workaround for Periodicity in Output

Increase the number of stages *N*.

Figure: N-Stage, binary linear feedback shift register.

Figure: *N*-Stage, binary linear feedback shift register.

•
$$g_0 = g_N = 1$$

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)
- E.g., for N=4, set

$$(g_0, g_1, g_2, g_3, g_4) = (1, 0, 0, 1, 1) = (23)_8.$$

Figure: N-Stage, binary linear feedback shift register.

- $g_0 = g_N = 1$
- Adjust the tap gains $\{g_1,\ldots,g_{N-1}\}$ to achieve highest possible period (= 2^N-1)
- E.g., for N=4, set

$$(g_0, g_1, g_2, g_3, g_4) = (1, 0, 0, 1, 1) = (23)_8.$$

• Maximal period sequences are called *m*-sequences

Commonly Used Feedback Connections

SR Length, N	Feedback Connections (in Octal Format)
2	7
3	13
4	23
5	45, 67, 75
6	103, 147, 155
7	203, 211, 217, 235, 277, 313, 325, 345, 367
8	435, 453, 537, 543, 545, 551, 703, 747

Figure: Non-exhaustive list of feedback connections to obtain m-sequences.

Properties of *m***-Sequences**

• Are periodic with period = $2^N - 1$

Properties of *m***-Sequences**

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period

Properties of *m***-Sequences**

- Are periodic with period = $2^N 1$
- Contain approximately equal number of ones and zeros in any one period
- Autocorrelation function is nearly identical to that of IID Ber(0.5) process

• How do we generate non-binary *m*-sequences?

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} - 1 = 2147483647$)

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor
- Due to $(\operatorname{mod} p)$ operation, $x_n \in \{1, \dots, p-1\}$ for all n

- How do we generate non-binary *m*-sequences?
- One technique is the power residue method
- Given numbers (a, x_0, p) , let

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

- p is typically a large prime (e.g., $p = 2^{31} 1 = 2147483647$)
- $-x_0 \neq 0$ is called the seed value (e.g., $x_0 = 12345$)
- $-a \neq 1$ is the multiplicative factor
- Due to $(\operatorname{mod} p)$ operation, $x_n \in \{1, \dots, p-1\}$ for all n
- The choice of (a, p) is crucial to obtain an m-sequence

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

$$(1,4,2,1,4,2,\cdots)$$

• If (a, p) = (3, 7), then output sequence (with $x_0 = 1$) is

Recursion

$$x_n = ax_{n-1} \bmod p, \qquad n \in \mathbb{N}.$$

• If (a, p) = (4, 7), then output sequence (with $x_0 = 1$) is

$$(1,4,2,1,4,2,\cdots)$$

• If (a, p) = (3, 7), then output sequence (with $x_0 = 1$) is

$$(1,3,2,6,4,5,1,3,2,6,4,5,\cdots)$$

• In most programming languages:

$$-a=7^5, p=2^{31}-1.$$

— Output normalised to take values in $\left\{\frac{1}{p}, \frac{2}{p}, \dots, \frac{p-1}{p}\right\}$