Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 20./21. Oktober 2009

2. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Wiederholung: Mengen)

(a) Skizzieren Sie die folgenden Teilmengen von \mathbb{R} :

$$M_1 = \{ x \in \mathbb{R} : x^2 < 9 \},$$

$$M_2 = \{ x \in \mathbb{R} : |x| \le 2 \},$$

 $M_3 = \{ n \in \mathbb{N} : 2 \text{ ist Teiler von } n \}.$

- (b) Bestimmen Sie $M_1 \setminus M_2$, $M_3 \cup M_2$, und $M_1 \cap M_3$ und skizzieren Sie diese Mengen.
- (c) Bestimmen Sie für die Mengen M_1 , M_2 und M_3 jeweils Supremum und Infimum (falls diese existieren) und geben Sie an, ob diese in der jeweiligen Menge liegen (in diesem Fall spricht man von einem Maximum bzw. Minimum).
- (d) Beweisen Sie, dass $M_2 \subseteq M_1$.

Aufgabe G2 (Rechnen mit Summen und Produkten)

Bestimmen Sie die Werte der folgenden Summen und Produkte:

(i)
$$\sum_{i=0}^{5} (i+1)$$
 (ii) $\sum_{m=1}^{3} \sum_{k=0}^{2} (km-2k)$

(iii)
$$\sum_{m=1}^{2} \prod_{k=m}^{3} (k^2 - 1)$$
.

Aufgabe G3 (Vollständige Induktion)

(a) Beweisen Sie die folgende Formel mit vollständiger Induktion:

$$\sum_{k=1}^{n} k! \cdot k = (n+1)! - 1.$$

(b) Beweisen Sie durch vollständige Induktion: n Personen können sich auf n! verschieden Weisen in einer Reihe aufstellen.

Aufgabe G4 (reelle Zahlen und Körperaxiome)

(a) Gegeben seien die folgenden Aussagen:

$$\forall x \in \mathbb{R} : \exists n \in \mathbb{N}_0 : n > x,\tag{1}$$

$$\exists x \in \mathbb{R} : \forall n \in \mathbb{N}_0 : n > x,\tag{2}$$

$$\exists x \in \mathbb{R} : \forall n \in \mathbb{N}_0 : x \ge n,\tag{3}$$

$$\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : xy \le 0 \tag{4}$$

$$\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : xy \le 0 \tag{5}$$

Entscheiden Sie jeweils, ob die Aussagen wahr oder falsch sind und begründe Sie Ihre Entscheidung.

(b) Seien $a, b \in \mathbb{R}$. Benutzen Sie die Körperaxiome, um zu zeigen, dass die Gleichung a + x = b eine eindeutig bestimmte Lösung, nämlich x = b - a hat.

Hinweis: Zeigen Sie zuerst, dass x = b - a die Gleichung löst. Zeigen Sie anschließend die Eindeutigkeit der Lösung.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Vollständige Induktion)

(3+1 Punkte)

(a) Die Fibonacci-Folge $(F_1, F_2, ...)$ ist eine Folge natürlicher Zahlen. Dabei ist jedes Folgeglied die Summe seiner beiden Vorgänger. Formal bedeutet dies:

$$F_n = F_{n-1} + F_{n-2}$$
 mit $F_1 = 1$, $F_2 = 1$.

- (i) Bestimmen Sie die ersten acht Folgeglieder.
- (ii) Beweisen Sie folgende explizite Formel für $n \geq 1$:

$$F_n = \frac{r^n - s^n}{\sqrt{5}}$$
 mit $r = \frac{1 + \sqrt{5}}{2}$, $s = \frac{1 - \sqrt{5}}{2}$

(b) Finden Sie den Fehler im folgenden Beweis für die Aussage 15 = 16:

Behauptung: Für jedes $n \ge 1$ gilt $1 + 2 + 3 + \ldots + n = \frac{1}{2}n(n+1) + 1$.

Beweis durch vollständige Induktion:

Induktionsanfang: Nachrechnen zeigt, dass die Behauptung für n=1 offensichtlich gilt.

Induktionsannahme: Es sei $k \in \mathbb{N}$. Nehmen Sie an, dass die Aussage für k gilt, das heißt $1+2+\ldots k=\frac{1}{2}k(k+1)+1$.

Induktionsschritt von k auf k+1: Es gilt

$$1+2+\ldots+k+(k+1)\stackrel{IA}{=}\frac{1}{2}k(k+1)+1+(k+1)=\frac{1}{2}(k+1)(k+2)+1,$$

was zu zeigen war.

Damit ist die Behauptung bewiesen. Für n = 5 folgt daraus 15 = 16.

Aufgabe H2 (Anordnungsaxiome)

(1+2 Punkte)

Welche der folgenden Aussagen ist wahr? Beweisen Sie die Aussage mithilfe der Anordnungsaxiome oder finden Sie ein Gegenbeispiel.

- (a) Seien $a, b \in \mathbb{R}$ mit ab > 1 und a < 1. Dann folgt, dass b > 1.
- (b) Seien $x, y, a, b \in \mathbb{R}$ mit $0 \le x < y$ und $0 \le a < b$. Dann folgt, dass $a \cdot x < b \cdot y$.

Aufgabe H3 (Funktionen)

(3 Punkte)

Sei $M:=\{1,2,3,4\}$. Welche der folgenden Teilmengen von $M\times M$ kann Graph einer Funktion von M nach M sein?

Falls es eine solche Funktion gibt, untersuchen sie diese auf Injektivität, Surjektivität und Bijektivität.

