

Netzwerke

Technische Grundlagen der Informatik

Automation Systems Group E183-1

Institute of Computer Aided Automation Vienna University of Technology

email: tgi@auto.tuwien.ac.at

Übersicht

Netzwerke

- Das OSI 7-Schicht Modell
- MAC
- Netzwerkelemente
- IP (v4) und Networking
 - Subnetting
 - Klassensysteme
- TCP / UDP
- IP (v6)

Andrew S. Tanenbaum, Computer Networks, 4th ed., Prentice Hall, 2002. http://www.rfc-editor.org, Request for Comments (RFC)

2-3 Stunden um Folgendes zu verstehen:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

Das OSI Modell - Idee

Das OSI Modell

7	Application Layer		Anwendungen		FTP SMTP NFS			
6	Presentation Layer				Talast Name			
5	Session Layer				Telnet Server			
4	Transport Layer		Höhere Protokolle		TCP	UDP		
3	Network Layer		Netzwerk		Internet Protocol			
2	Data Link Layer		Dotonübertragung		Internet Control Message Protocol (ICMP)			
1	Physical Layer		Datenübertragung		Ethernet Token Bus/R		DDI	

Layer 1: Physical Layer (Bitübertragungsschicht)

- Tatsächliche Übertragung einzelner Bits
- Übertragungsstrecke variiert
 - Twisted Pair (bis 10 Gbit/s)
 - Koaxialkabel (bis 10 Mbit/s)
 - Lichtleiter (bis 40 Gbit/s)
 - Luft (bis 1,3 Gbit/s)
- Übertragungstechnik:
 - Modulationsarten
 - Kodierungstechniken
 - Bittaktgenerierung
 - Wortsynchronisierung

Modulationsarten

Kodierung

Übertragungsmedien

- Koaxialkabel
 - Cheapernet (10Base2)
 - Thicknet (10Base5)

BNC (Bayonet Neill Concelman)

Übertragungsmedien

- Verdrilltes Adernpaar (Twisted Pair)
 - 2 x 1 mm dicke Kupferdrähte, schneckenförmig gewunden
 - Verdrillte Form wirkt elektromagnetischen
 Störungen entgegen
 - Unshielded/Shielded Twisted Pair
 - CAT5 (1000Base-T)

UTP

Layer 2: Data Link Layer (Sicherungsschicht)

- Um Daten auszutauschen, müssen mehrere Stationen auf demselben Übertragungsmedium operieren
 - Koaxialkabel / Twisted Pair Kabel (Ethernet)
 - Glasfaser (FDDI)
 - Stromleitung
 - Luft (WLAN)
- Je nach Medium kann es zu Fehlern kommen
 - Gleichzeitiges Senden von zwei Stationen
 - Reichweite überschritten
 - Korrupte Daten
- Layer 2 kümmert sich um diese Probleme
 - MAC = Medium Access Control

MAC auf Kabelmedien

- **IEEE 802.3**
 - Carrier Sense Multiple Access with Collision
 Detection (CSMA/CD)
- Halbduplex Variante
 - Entweder Senden oder Empfangen
 - Bei gleichzeitigem Senden: Kollision
 - Jam-Signal senden, Übertragung wiederholen
- Vollduplex Variante
 - Kein CSMA/CD mehr notwendig
- Eingesetzt bis 1 Gigabit (1000Base-T)
- Ab 10GBase-T nur noch Vollduplex, kein CSMA/CD mehr

Beispiel:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

MAC auf geteilten Medien

- CSMA/CA
 - Carrier Sense Multiple Access with Collision Avoidance
 - Auch heute noch im Einsatz (WiFi)
- Wird verwendet, wenn das Medium während des Sendens nicht überwacht werden kann (z.B. WLAN)
- "First listen then talk"
- ACK vom Receiver statt Jam-Signal
- Nur für Halbduplex

Medium Access Control

- Netzwerkgeräte brauchen eine Adresse um auf Schicht 2 des OSI Modells operieren zu können
 - Unabhängig von der verwendeten Übertragungsmethode
- MAC-Adressen sind 6 x 8 Bit Tupel in HEX dargestellt
 - z.B. 02-00-54-55-4E-01
- Eindeutige Zuordnung für Netzwerkelemente
 - Verschiedene Prefixe pro Hersteller (z.B. 70-1A-04-XX-XX für Liteon)
- Sicherheitsaspekte:
 - MAC Spoofing (Schicht 2 Attacke)
 - Abhören
 - DOS

Beispiel:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

Schicht 3: Network Layer (Vermittlungsschicht)

- Pakete vom Ursprung zum Ziel zu bringen (End-to-End Connection)
- Wegwahl (Routing) innerhalb von Netzwerken sowie über Netzwerkgrenzen hinweg
 - Virtuelle Verbindungen
 - Kann entweder von einem dezidierten Gerät (Router) oder Softwareservices erledigt werden
- Nicht adaptive/adaptive Routing-Algorithmen
 - Shortest Path/Flooding vs. Distance Vector/Link-State Routing
- Traffic Shaping und Reservierung von Bandbreite

E. W. Dijkstra: A note on two problems in connexion with graphs. In: Numerische Mathematik 1 (1959), S. 269-271

→ Gefundener Pfad: A – B – E – F – H – D mit Distanz 10

Layer 4: Transport Layer (Transportschicht)

- Logische Kanäle (Multiplexen und Demultiplexen)
 - z.B. Einrichten eines Sockets
- Zerlegung von Nachrichten in kleinere Einzelpakete
- Einhaltung der richtigen Reihenfolge
- Wiederholungsanforderungen
 - Handshake Implementierung
- Fehlerkontrolle von Endsystem zu Endsystem
 - Checksummen

Layer 5: Session Layer (Sitzungsschicht)

- Aufbau/Abbau von Sitzungen
- Überwachung eines Betriebs während einer Sitzung
 - Dialogsteuerung
 - "Token Management"
- Synchronisation
 - Atomic Actions
 - Check Points

Layer 6: Presentation Layer (Darstellungsschicht)

- Festlegung der Syntax und Semantik der zu übertragenden Daten
 - "Codierung" der Daten
 - Implementierung von Protokollen (SMTP, HTTP, usw.)
- Schutz der Daten vor Zugriff unberechtigter Benutzer
 - Authentifizierung
 - Verfahren zur Verschlüsselung

Layer 7: Application Layer (Anwendungsschicht)

- Anbieten von Diensten für die eigentlichen Applikationen
 - Email-Service
 - Übertragung von Dateien
 - Remote Job Entry
 - Verzeichnisabfragen
 - virtuelle Netzterminals

Netzwerkelemente

- Repeater (Schicht 1)
 - Keine Paket-Inspektion
 - Wird verwendet um entfernte Netze zu verbinden (Signalverstärkung)
- Bridge
 - Inspiziert eingehende Pakete (Schicht 2)
 - Stellt die Pakete nur zu, wenn die Empfänger-MAC sich auch wirklich auf der Gegenseite befindet
- Hub
 - Multi-Port Repeater
- Switch
 - Multi-Port Bridge
- Router
 - Arbeitet auf Schicht 3
 - Kann Routing-Tabellen verarbeiten um Pakete entsprechend zuzustellen (versteht das IP Protokoll)

Internetprotokoll Familie

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Kapselung

- Nutzdaten werden durch Protokolle übertragen
- Jede Schicht verpackt ihre Daten in das darunterliegende Protokoll

Beispiel:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

Internet Protocol (IP, RFC 793)

20 Bytes

Internet Protocol (IP)

IP-Adressen

- 32-Bit numerisches 4-Tupel (z.B. 128.130.2.3)
 - 2³² mögliche IP-Adressen (4 GiBi)
- Spezielle Adressen
 - Limited (Local) Broadcast: 255.255.255.255
 - Callback (Localhost): 127.0.0.1 127.255.255.254
- "Private" oder lokale IP-Adressen
 - **1**0.0.0.0 **-** 10.255.255.255
 - **172.16.0.0 172.31.255.255**
 - **1**92.168.0.0 192.168.255.255

IP-Header revisited (Ping Request)

Subnetting

- Warum?
 - Um Netzbereiche zu gruppieren / zu unterteilen
 - Um Routing zu ermöglichen
- Wie?
 - Definiert im Internet Standard Subnetting (RFC 950)
 - NIC (Network Information Center) verwaltet die Zuteilung
- Nicht zu verwechseln mit NAT (Network Address Translation)
 - Dient dazu, Subnetze mit NICHT öffentlichen IP-Adressen zu versorgen
 - Ermöglicht mehreren Clients den Zugriff über nur eine öffentliche IP-Adresse

Subnetting – Aufbau

- NIC vergibt eine Netzwerknummer + Größe und verwaltet diese
 - Bei Änderungen muss NIC kontaktiert werden
- Subnetze werden durch Nummer und Subnetzmaske identifiziert
 - z.B. 192.168.1.0 Subnetzmaske 255.255.255.0
 - Oder: 192.168.1.0/24 (CIDR-Notation)
- IP-Adressen (von einem Host) ebenfalls
 - z.B. 192.168.1.16 Subnetzmaske 255.255.255.0

Subnetting – Komponenten im Detail

Beispiel: 192.168.1.16 Subnetzmaske 255.255.255.0

	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
&	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
=	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Erste IP: Netzwerkname: 192.168.1.0 (IP AND Subnetzmaske)

Subnetting – Komponenten im Detail

Beispiel: 192.168.1.16 Subnetzmaske 255.255.255.0

	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
&	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
=	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Erste IP: Netzwerkname: 192.168.1.0 (IP AND Subnetzmaske)

Letzter Teil heißt **Hostnummer:** 16 (IP AND NOT Subnetzmaske)

Subnetting – Komponenten im Detail

Beispiel: 192.168.1.16 Subnetzmaske 255.255.255.0

	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
=	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1

Erste IP: Netzwerkname: 192.168.1.0 (IP AND Subnetzmaske)

Letzter Teil heißt Hostnummer: 16 (IP AND NOT Subnetzmaske)

Letzte IP ist **Broadcast**: 192.168.1.255 (IP OR NOT Subnetzmaske)

Aufteilung von Subnetzen

- Nicht alle verfügbaren Adressen müssen demselben Subnetz zugeteilt werden
 - Aufteilung erfolgt nach denselben Regeln
 - Ein Router ist notwendig um die Subnetze zu verbinden
- Bsp: 192.168.1.0/24 in zwei gleich große Netze aufteilen

Zustellung eines IP-Pakets

- Schritte bei der Zustellung eines beliebigen IP-Pakets:
- 1) Ethernet Frame erstellen (Layer 2 Container)
 - MAC der Quelle eigene MAC-Adresse
 - MAC des Ziels wird durch ein eigenes Protokoll (ARP) ausgetauscht
- 2) IP-Frame erstellen (Layer 3 Container)
 - IP-Adresse der Quelle eigene Adresse
 - IP-Adresse des Ziels
- 3) Paket abschicken. Aber wohin?
 - a. Wenn Ziel-IP im eigenen Subnetz: Direkte Zustellung
 - b. Wenn Ziel-IP in anderem Subnetz: Zustellung an das Gateway

Subnetztest: (Quell-IP AND Subnetzmaske) == (Ziel-IP AND Subnetzmaske)

Beispiel:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

Überlegungen

- Was passiert, wenn die Subnetzmaske 255.255.255.254 ist?
- Darf die Broadcast-Adresse frei vergeben werden?
- Darf der Netzwerkname vergeben werden?
- Gibt es "schräge" Subnetzmasken?
 - Z.B. 255.255.255.12
- Kann man ein Netzwerk in ungleiche Teile aufteilen
 - Z.B. dritteln?

Angewandte Informatik ©

http://www.geocaching.com/seek/cache_details.aspx?guid=02950517-4351-403e-a814-97d26e0e0357

Transmission Control Protocol (TCP, RFC 793)

- Verbindungsorientiertes Protokoll
- Sockets: IP-Adresse und 16 Bit Nummer (Port)

User Datagram Protocol (UDP, RFC 768)

- Verbindungsloses Protokoll
- Sockets: IP-Adresse und 16 Bit Nummer (Port)

NAT (Network Address Translation)

Ziel: Eine externe IP für viele LAN-Teilnehmer.

IPv4 vs IPv6

- IP-Adressbereich umfasst ca. 4 Milliarden Adressen
 - 1. Februar 2011: Die letzten beiden frei verfügbaren Netze wurden an APNIC vergeben (Asien, Pazifikraum)
 - **39.0.0.0/8 und 106.0.0.0/8**
 - Adressen stark fragmentiert
 - Führt zu langen Routing-Tabellen
 - Benötigt starke Router
 - Prüfsummenfeld im IP-Header muss von JEDEM Router neu berechnet werden
 - Reger Handel mit IPv4 Adressen

Abhilfe: IPv6

IP Version 6

IP Version 6

- 16 Byte Adressen als 8x 2-Byte Hex Tupel (128 Bit)
 - Z.B. A687:0815:FEED:0000:0000:00AB:7F00:0001
 - Führende Nullen dürfen ausgelassen werden
 - A687:815:FEED:0:0:AB:7F00:1
 - Mehrere 0-Blöcke durch Doppelpunkt dargestellt (nur einmal!)
 - A687:815:FEED::AB:7F00:1
 - Letzten 4 Byte in Dezimalnotation zulässig
 - A687:815:FEED::AB:127.0.0.1
 - In URLs in eckigen Klammern
 - http://[A687:815:FEED::AB:127.0.0.1]:80/
- Subnetze wie in IPv4 (allerdings nur in CIDR-Notation)
 - A687:815:FEED::AB:0:0 / 96

(A687:815:FEED::AB:0:0 bis A687:815:FEED::AB:FFFF:FFF)

IP Version 6 – Unterschiede zu IPv4

- Broadcast-Adresse (Multicast)
 - Nicht mehr die letzte Adresse im Subnetz sondern:
 - ff02::1
- Localhost
 - **:**:1 (127.0.0.1)
- Lokale Adressen
 - Ähnlich wie z.B. 169.254.0.0/16
 - fe80:: /64
 - Wird aus der Interface MAC Adresse errechnet
 - → Mehrere Adressen pro Interface sind in IPv6 üblich

Beispiel:

user@meinRechner:~\$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:1e:c9:2d:20:45

inet addr:128.130.60.13 Bcast:128.130.60.127 Mask:255.255.255.128

inet6 addr: fe80::21e:c9ff:fe2d:2045/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:4206193 errors:0 dropped:0 overruns:0 frame:0

TX packets:6694449 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:766746719 (766.7 MB) TX bytes:8334752712 (8.3 GB)

Interrupt:17

IPv6 – Probleme

- Autokonfiguration und DNS
 - Ursprünglich von DHCP erledigt
- Hardware Infrastruktur fehlt
 - Firewalls
 - DOS Schutzmaßnahmen
 - Paketfilter
- Privacy
 - Besucher von Seiten sind auch Jahre später noch eruierbar
 - Direktes Mapping von IPs auf Menschen möglich
- Sicherheit

IPv6 – generelle Überlegungen

- Grundgedanke: Adressen für alles und jeden
 - Internet of Things
- Subnetting?
- IP sharing?
- Legacy...