Task 2

Starting with the following function expressed in maxterms:

$$f(d, c, b, a) = \prod (M_0, M_1, M_5, M_7, M_8, M_{10}, M_{14}, M_{15})$$

Taking d, c, b, a as input variables. For simplify, the same function is expressed in minterms to operate later:

$$f(d,c,b,a) = \sum (m_2, m_3, m_4, m_6, m_9, m_{11}, m_{12}, m_{13})$$

Starting with it, we build the function without simplifying:

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot b \cdot a) + (\overline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\overline{d} \cdot \overline{c} \cdot b \cdot a) + (\overline{d} \cdot \overline{c} \cdot \overline{b} \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot$$

We grouped by common factor in a convenient way:

$$f(d,c,b,a) = \underbrace{(\overline{d} \cdot \overline{c} \cdot b \cdot \overline{a}) + (\overline{d} \cdot \overline{c} \cdot b \cdot a)}_{(\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\underline{d} \cdot c \cdot \overline{b} \cdot \overline{a}) + (\underline{d} \cdot \overline{c} \cdot \overline{b} \cdot a) + (\underline{d} \cdot \overline{c} \cdot a) + (\underline{d} \cdot \overline{c} \cdot a) + (\underline{d} \cdot \overline{c} \cdot a) + ($$

$$f(d,c,b,a) = [\overline{d} \cdot \overline{c} \cdot b \cdot \underbrace{(\overline{a} + a)}_{1}] + [\overline{d} \cdot c \cdot \overline{a} \cdot \underbrace{\overline{b} + b}_{1}] + [d \cdot \overline{c} \cdot a \cdot \underbrace{(\overline{b} + b)}_{1}] + [d \cdot c \cdot \overline{b} \cdot \underbrace{(\overline{a} + a)}_{1}]$$

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b) + (\overline{d} \cdot c \cdot \overline{a}) + (d \cdot c \cdot \overline{b}) + (d \cdot \overline{c} \cdot a)$$

Analogously, starting with the expresssion in minterms we reduce the function through a map of Karnaugh:

dc b	a 00	01	11	10
00	0	0	1	1
01	1	0	0	1
11	1	1	0	0
10	0	1	1	0

From the first group (first row) we have that d, c and b are constantes, thus the first factor stays the way $\overline{dc}b$.

From the second group (second row) we have d, c and a as constants, thus this factor stays as $\overline{d} c \overline{a}$.

From the third group (third row) remain constant d, c and b, thus this factor stays as dcb. Finally, from the last row, in the group d, c and a stay constant, thus this factor stays the way $d\overline{c}a$.

Adding the partial termns we get the simplified function:

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b) + (\overline{d} \cdot c \cdot \overline{a}) + (d \cdot c \cdot \overline{b}) + (d \cdot \overline{c} \cdot a)$$

Wich is the same obtained by simplification by boolean algebra.

Taking this function, it was implemented in a logical circuit by AND, OR and NOT gates, as shown below.

Figure 1: Logical circuit that implements f(d, c, b, a) - Made in Proteus 7.8

For implementation using only NOR gates, first we have to work with the obtained function applyin boolean algebra properties. Taking the function:

$$f(d,c,b,a) = (\overline{d} \cdot \overline{c} \cdot b) + (\overline{d} \cdot c \cdot \overline{a}) + (d \cdot c \cdot \overline{b}) + (d \cdot \overline{c} \cdot a)$$

We twice denied the terms separated by sums, for keeping the equal:

$$f(d,c,b,a) = \overline{(\overline{d} \cdot \overline{c} \cdot b)} + \overline{(\overline{d} \cdot c \cdot \overline{a})} + \overline{(d \cdot c \cdot \overline{b})} + \overline{(\overline{d} \cdot \overline{c} \cdot a)}$$

Next we deny the factors only once, for turning the products into sums (property of De Moivre):

$$f(d,c,b,a) = \overline{(d+c+\overline{b})} + \overline{(d+\overline{c}+a)} + \overline{(\overline{d}+\overline{c}+b)} + \overline{(\overline{d}+c+\overline{a})}$$

Having the expression in terms of sums, it is possible to implement the circuit using only NOR gates, as shown below.

Figure 2: Logical circuit that implements f(d,c,b,a) with NOR gates - Made in Proteus 7.8