HW-07

Task 1.

$$\begin{split} y_i &= x_i'\beta + \nu_i - u_i, \\ \text{where} \\ \nu_i &\sim N(0, \sigma_\nu^2), \\ u_i &\sim N^+(0, \sigma^2(z)), \\ \sigma_i^2 &= \sigma^2(z_i) = \exp(\delta + \gamma z_i) \end{split}$$

Analytical expression for inefficiency measures:

(i)

Let
$$b_1=\delta, b_2=\gamma$$
 Then $\ln\sigma^2=\delta+\gamma z_i=b'z$ and $\sigma=\exp(1/2*b'z)$ Therefore
$$E(u|z)=\int_0^\infty u\frac{2}{\sqrt{2\pi}\sigma}\exp(-\frac{u^2}{2\sigma^2})du=\sqrt{\frac{2}{\pi}}*\sigma=\sqrt{\frac{2}{\pi}}*\exp(1/2*b'z)$$

(ii)

$$E(\exp(-u)|z) = \int_0^\infty \exp(-u) \frac{2}{\sqrt{2\pi}\sigma} \exp(-\frac{u^2}{2\sigma^2}) du = 2 \exp(\frac{\sigma^2(b'z)}{2}) (1 - \Phi(\sigma(b'z)))$$

(iii)

Marginal effects:

$$\begin{split} &\frac{\partial}{\partial z_i}E(u_i|z_i) = \frac{\partial}{\partial z_i}\sqrt{\frac{2}{\pi}}*\sigma(z'b) = \sqrt{\frac{2}{\pi}}\frac{\partial}{\partial z_i}\exp(1/2*b'z) = \sqrt{\frac{2}{\pi}}\exp(1/2*b'z)*1/2b_2 = \\ &= \frac{b_2}{\sqrt{2\pi}}\exp(1/2*b'z) = \frac{\gamma\sigma(b'z)}{\sqrt{2\pi}}\\ &\text{(b)}\\ &\frac{\partial}{\partial z_i}\exp(-E(u_i|z_i)) = \frac{\partial}{\partial z_i}\exp(-\sqrt{\frac{2}{\pi}}*\sigma(z'b)) = \\ &= \exp(-\sqrt{\frac{2}{\pi}}*\sigma(z'b))*(-\sqrt{\frac{2}{\pi}}\exp(1/2*b'z)*1/2*b_2) = \end{split}$$

$$= -\frac{\gamma\sigma(b'z)}{\sqrt{2\pi}}\exp(-\sqrt{\frac{2}{\pi}}*\sigma(z'b))$$

$$\frac{\partial}{\partial z_i}E(u_i|z_i) \text{ and } \frac{\partial}{\partial z_i}\exp(-E(u_i|z_i)) \text{ has opposite signs.}$$
 (c)
$$\frac{\partial}{\partial z_i}(E(\exp(-u_i)|z_i)) = \frac{\partial}{\partial z_i}2\exp(\frac{\sigma^2(b'z)}{2})(1-\Phi(\sigma(b'z))) = 2*\exp(\frac{\sigma^2(b'z)}{2})*\sigma(b'z)*$$

$$\exp(1/2*b'z)*1/2*b_2*(1-\Phi(\sigma(b'z))) + 2*\exp(\frac{\sigma^2(b'z)}{2})*(-\phi(\sigma(b'z))*\exp(1/2*b'z)*$$

$$1/2*b_2) = \gamma\sigma(b'z)\exp(\frac{\sigma^2(b'z)}{2})(\sigma(b'z)*(1-\Phi(\sigma(b'z))) - \phi(\sigma(b'z)))$$

$$\frac{\partial}{\partial z_i}(E(\exp(-u_i)|z_i)) \text{ and } \frac{\partial}{\partial z_i}\exp(-E(u_i|z_i)) \text{ has same signs,}$$
 because
$$\frac{\phi(\sigma(x))}{1-\Phi(\sigma(x))} > \sigma(x) \Rightarrow \frac{\phi(\sigma(b'z))}{1-\Phi(\sigma(b'z))} > \sigma(b'z) \Rightarrow$$

$$(\sigma(b'z)*(1-\Phi(\sigma(b'z))) - \phi(\sigma(b'z))) < 0.$$

Task 2.

First, we estimate quadratic regression:

$$lwage_i = const + exp_i + exp_i^2 + e_i$$

ource SS	df	MS	Number of ok		3,010
Model 8.6767246 idual 583.96499		4.33836241 .194201836	R-squared	= = = = b-	22.34 0.0000 0.0146 0.0140
Total 592.6416	46 3,009	.196956346	- Adj R-square i Root MSE	=a =	.44068
age76 Coef	. Std. Err.	t	P> t [95%	Conf.	Interval]
exp76 .0504443 cp762002483 cons 6.052603	5 .0003738	-6.65	0.000 .035 0.0000032 0.000 5.983		.0654176 0017522 6.121679

Second, we run locally weighted scatterplot smoothing (LOWESS) with bandwidth 0.8.

Plotting both predicted values on a same plot, where red line represents polynomial fit estimated with OLS and a green line represents the smoothed curve by non-parametric method, we can see, that the predictions differ insignificantly. That means that second-order polynomial is a reasonable model, as the shape of a curve is exactly the same as a non-parametric model would suggest. However, LOWESS fit shows, that a linear fit would not be a suitable model here.

STATA code:

```
reg lwage76 exp76 exp762
predict preg
lowess lwage76 exp76, generate (pnonp)
twoway (scatter lwage76 exp76) (line preg exp76, sort)
(line pnonp exp76, sort lcolor(green))
```