Calculation:

From Titration 1, we have the following relation:

∴ 1 mL of EDTA requires = 20/V₁ mg CaCO₃ for complexation

From this relation, it can be seen that

20 mL of water sample after softening through the column consumes = V_3 mL of EDTA.

= $V_3 \times 20/V_1$ mg of CaCO₃ eq.

: 1000 mL of water sample after softening through the column consumes =

 $= V_3 \times \frac{20}{V_1} \times 1000 / \frac{20}{20}$

 $= V_3/V_1 \times 1000 \text{ ppm}$

∴ Residual hardness of the water sample = "Y" ppm

S.	Volume of sample hard water (mL)	Burette reading (mL)		Volume of EDTA	
No.		Initial	Final	(V_3, mL)	
1	100 mL	OmL	0.7 mL	0.7 mL	
2	100 mL	Oml	0.7 mL	0.7 mL	
3					
		Concordant titer value		0.7mL	

Result:

1. Total hardness of the water sample="X" ppm = -842.89 ppm

2. Residual hardness in the water sample="Y" ppm = 34.91 ppm

3. Hardness removed through the column = X - Y ppm = 807.98 ppm

Evaluation of Result:

Sample number	Experimental value	Actual Value	Percentage of error	Marks awarded	1891
9					
				10000	