# **TITLE:** BREAST CANCER PREDICTION USING MACHINE LEARNING

NAME: KELLIE NJOKI NDARU

**DATE**: 30/08/2024

## INTRODUCTION

Project Objective: To develop a model to predict whether a breast tumor is benign or malignant.

> Dataset Used: Breast Cancer Wisconsin (Diagnostic) Dataset

> Stakeholder: Healthcare providers, patients

#### PROBLEM STATEMENT

> **Problem**: Early and accurate diagnosis of breast cancer is crucial for effective treatment and patient survival.

➤ **Goal**: To build a reliable model that can assist in early detection of malignant tumors.

## DATA OVERVIEW

- Dataset description:
- o 569 samples, 31 features

> Target Variable:

Diagnosis (B=Benign, M=Malignant)

## DATA PREPROCESSING

#### Steps taken:

- Dropped irrelevant columns (ID column)
- Handled missing columns (dropped unamed32 column)
- Feature scaling
- > Split the data into training and testing sets

## MODEL SELECTION

> Models Evaluated: Logistic Regression, Decision Tree, Random Forest, Gradient Boosting.

**Evaluation Metrics**: Accuracy, Precision, Recall, F1-Score.

## MODEL PERFORMANCE

> Logistic Regression:

Accuracy: 98%

Precision and Recall: High performance in both classes.

F1-Scores: This indicates a better balance between precision and recall.

#### VISUALIZATIONS

#### DISTRIBUTION OF FEATURE VALUES FOR EACH DIAGNOSIS



#### **CORRELATION HEATMAP**



## PAIR PLOT OF SELECTED FEATURES



#### BOX PLOT OF FEATURE VALUES BY DIAGNOSIS



## RECOMMENDATIONS

> Deploy the Logistic Regression Model for real world use.

## THANKYOU