Upgraded D0 Central Fiber Tracker

Dmitri Smirnov University of Notre Dame

for the D0 Collaboration

March 1, 2008

The Fermilab Tevatron Collider

- Tevatron is a superconducting synchrotron 2 km in diameter.
- High energy physics:
 - ullet Precision measurements of W, Z bosons and top quark
 - Searches for Higgs boson, supersymmetry, extra dimensions
 - B physics and QCD studies

 \sqrt{s} Num Run II 1.96 TeV

Num. of Bunches 36×36

Spacing 396 ns

Inst. Luminosity $\lesssim 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Interactions

 ~ 5

• Tracking system submerged in uniform 2 Tesla magnetic field created by superconducting solenoidal magnet with mean radius of 60 cm

Central Fiber Tracker (CFT), Central and Forward Preshower (CPS, FPS) detectors utilize a similar readout:

Particles crossing scintillating fibers or triangle scintillators generate light which propagates to solid state diodes, **Visible Light Photon Counters** (VLPCs)

Layers

CFT 8 axial and 8 stereo

CPS 1 axial and 2 stereo

FPS 2 MIP and 2 shower

Coverage

$$|\eta| < 2.0$$
, $0 < \phi < 2\pi$

$$|\eta| < 1.25$$
, $0 < \phi < 2\pi$

$$1.4 < |\eta| < 2.5, \ 0 < \phi < 2\pi$$

Num. of Channels

$$\approx 77,000$$

$$\approx 7,700$$

$$\approx 15,000$$

Central Fiber Tracker & Preshower Readout

Visible Light Photon Counters (VLPC)

• VLPC is a solid state photo-detector with 8 input pixels 1 mm in diameter each

Pulse height distributions from an LED run

- \bullet VLPC is operated at 9 ± 0.05 K with bias voltages 6–8 V
- VLPC provides high gain of 25,000 60,000 electrons per detected photon
- Quantum Efficiency (QE) $\sim 80\%$
- Optimal bias voltages, gain, and relative QE vary among VLPC chips
- VLPCs with similar properties grouped together to optimize performance

The Central Fiber Tracker Detector

- Multiclad CFT scintillating fibers arranged into precisely positioned ribbons of interlocked fiber doublets
- Fiber diameter is 0.835 mm
- Fiber doublet radiation length is $\sim 0.28~\%$
- CFT has 8 coaxial carbon cylinders, each supporting 2 doublet layers on their outside surface
- 8 axial layers are formed by fibers oriented along the cylinder axis
- ullet 4 stereo layers are formed by fibers oriented at $+3^{\circ}$ and 4 stereo layers at -3° angle
- Position resolution of fiber doublet is $\approx 100~\mu \mathrm{m}$

VLPC Cassette and Cryostat

- Initial fraction of unresponsive channels was ≈ 0.3 %; Today it is ≈ 1.6 %
- VLPC cassettes provide mechanical support, optical alignment, and appropriate operating services for proper operation and readout of the VLPCs
- Lower portion of VLPC cassets is immersed in gas Helium, while the upper portion supports a pair of AFE boards
- During the lifetime cryostat was never warmed up above 60 K

- 1992: Compact D0 scintillating fiber tracker proposed
- **2000:** CFT installed
- **2001**: Data taking begins
- 2008: Stable operation continues

Analog Front End (AFE) Boards

 Two plots below show pulse height distributions from a LED run for the same channel readout with AFEI and AFEII-t

- Each AFE has 8 modules that readout 64 channels each (512 channels/AFE)
- ullet ~ 8 photoelectrons per MIP (signal charge of ~ 50 fC)
- AFE controls VLPC bias voltage and temperature with precision of ± 30 mV and ± 0.05 K respectively
- Measurements of VLPC temperature, bias voltage, and heater currents fluctuate within allowed limits (below)

- AFE amplifies VLPC signal, digitize it to 8 bits, suppress pedestal, and discriminate output for trigger
- AFEII-t's are stable and require less frequent calibrations
- CFT, CPS, and FPS are fully instrumented with AFEII-t (April 2007)
- AFEII-t provides new information about time of hit arrival
- More details on AFEII-t in the talk on March 5

Central Track Tigger (CTT)

- Counts track candidates identified in axial view of CFT by looking for hits in all 8 axial layers within predetermined roads above four Pt thresholds (1.5, 3, 5, and 10 GeV/c)
- Combines tracking and preshower information to identify electron and photon candidates
- Generates track lists allowing other trigger systems to perform track matching

araw16

Central Preshower Performance

 The PS detectors are made of extruded scintillator with wavelength shifting fibers running through the center

AFEII u-Ir ch -1264

 MIP peak measured with AFEII-t is more pronounced in CPS channels → more uniform and reliable fits

 Using AFEII-t capabilities increased CPS dynamic range from 13 to 54 MIP

Central Fiber Tracker Performance

- Average **light yield** depends upon path length through scintillator. It is shown as a function of pseudo-rapidity $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right] \text{ (right)}$
- On average 8 photons produced per
- hit. Using good 15 hit CFT tracks, the average probability of a cluster in excluded layer is 98~%

Distribution of number of hits on track agrees with naive model given by binomial probability function $f=C_k^{16}p^k(1-p)^{16-k}$ where $p\approx 0.98$

Tracking Performance and Physics Results

- Many physics analysis depend on tracker performance
- Global track DCA:

- With beam $\sigma \approx 30~\mu m$ and DCA width $\approx 36~\mu m$ the impact parameter resolution $\approx 20~\mu m$
- The impact parameter is P_t dependant:

- b-tagging very crucial for the analysis to reject contribution from light quarks
- Efficiency and fake rate is determined by the impact parameter resolution

First direct observation of the strange b baryon Ξ_b^-

Measuring Time with AFEII-t

- Schematics shows different segments traveled by the signal before it reaches VLPC:
 - t_c time when collision occured
 - t_s time of flight ($v_s \approx c \approx 30 \text{ cm/ns}$)
 - t_f time of travel in the fiber $(v_f pprox rac{2}{3} imes c pprox 20 ext{ cm/ns})$
 - ullet t_w time of travel in the waveguide. Variation in waveguide length is pprox 3 m

Measuring Time with AFEII-t

- Time of signal arrival depends on hit's z coordinate
- Waveguides for axial and stereo layers located on opposite sides of the detector
- Average slope is consistent with the nominal speed of light in the fiber $(\approx 18 \text{ cm/ns})$
- Average time resolution is ~ 4 ns or ~ 60 cm

Using Time (Preliminary)

- Occupancy of the innermost layer can be upto $\approx 35~\%$ at high luminosities
- Track reconstruction algorithm suffers from increased number of fake hits

- Before track reconstruction we can try to reject fake hits with fibers having large difference in time
- ullet Using reconstructed tracks can create a PDF that matches z to t
- Confidence level bands: 50%,
 68%, 95%, and 98%
- Resolution at 68% C.L. is $\approx 53~\mathrm{cm}$

Conclusions

- The Central Fiber Tracking system is a key component of the D0 experiment
- Currently all VLPC detectors read out by AFEII-t boards
- Readout system is generally stable and well behaved
- The detector is performing well
- $\bullet > 98~\%$ of the CFT channels are currently readout
- Many interesting recent physics results would not be possible without the CFT
- New timing information as well as its online and offline calibrations is available. Can be used to improve efficiency of track reconstruction algorithms