Содержание

1	Сбор художетсвенной литературы для корпуса. Китайский	2
2	Сбор художественной литературы для корпуса. Бенгальский	2
3	Получение очищенного текстового корпуса. Общая задача	2
4	Особенности предобработки художественных текстов на китайском языке.	2
5	Особенности предобработки художественных текстов на бенгальском языке. 5.0.1 TF-IDF матрица 5.0.2 SVD разложение	3 4
6	Приложения	4
A	Расшифровка POS-тэгов, выделяемых используемыми языковыми моделями.А.1 Бенгальский язык. POS классификатор pos-msri-bn для Spark NLPА.2 Китайский язык. POS классификатор zh-core-web-lg	4 4 5

1 Сбор художетсвенной литературы для корпуса. Китайский

Так как в открытом доступе отсутствуют корпуса художественных текстов на китайском языке, то на данном этапе пришлось самому строить такой корпус. Текста были взяты с сайта libgen раздела художественной литературы на китайском языке, с помощью написанного специально для этой задачи парсера, который обходит дерево HTML страницы и получает ссылки на скачивания файлов в формате file.epub, file.mobi, file.txt. На выходе получается файл в формате txt, содержащий ссылки на все обнаруженные парсером текстовые файлы. Далее файл напрямую скачивается по ссылке. По итогу корпус представляет из себя файл "zh-corpus.txt"размером 6.5GB, содержащий в себе 8358 текстов на китайском языке (каждая строка это отдельный документ). Парсер был написан на языке программирования Руthon 3, с использованием библиотеки Selenium, позволяющий автоматизировать действия веб-браузера.

2 Сбор художественной литературы для корпуса. Бенгальский

Аналогично, в открытом доступе отсутствуют корпуса художественных текстов на бенгальском языке и поэтому пришлось строить корпус самостоятельно. Текста были взяты с сайта ebanglalibrary. Также как и в случае с libgen, парсер обходит дерево HTML страницы и получает ссылку на страницу на которой находится текст, на выходе получается файл со страницами с текстом. Далее отдельно по получаенным ссылкам, обходятся страницы и из них вычленяется содержимое в тегах р>. По итогу получился корпус состоящий из приблизительно 30000 текстов суммарно размером 1GB.

3 Получение очищенного текстового корпуса. Общая задача

Основной задачей на данном этапе является очистка документов от:

- Служебных слов предлоги, союзы, служебные частицы и т.д.
- Шумовых символов пунктуация, перенос строки, не относящиеся к языку символы.
- Имен собственных и местоимений однако чтобы не нарушалась смысловая структура предложения, слова из этой группы замещаются на абстрактное слово "объект".
- Имен числительных ананлогично именам собственным и местоимениям заменяются на слово "число".
- Слова остальных частей речи, относящиеся к группе знаменательных необходимо лемматизировать.

Пример предобработки текста на русском языке:

Был текст: Он распахнул окно и увидел 3 птицы на дереве Стал текст: Объект распахнуть окно увидеть число птица дерево

4 Особенности предобработки художественных текстов на китайском языке.

В китайском языке отсутствует необходимость в лемматизации, так как все слова существуют в единтвенной грамматической форме, грамматическую особенность слову придают особые служебные иероглифычастицы. Поэтому из 3 необходимо выполнять только действия 1-4. Однако в китайском языке между словами отсутствуют разделители, поэтому необходимо уметь разбивать предложение на слова-токены. С этими задачами справляется библиотека spacy.io, использующая предобученную на блогах, новостях, комментариях модель.

Данная языковая модель разбивает текст на токены, где для каждого токена определен его класс POS, в приложении A.2 указаны все классы POS и отмечены (×) классы, токены которых нужно удалять из текста, (⋄) классы, токены которых заменять на слово " 物体"(перевод: объект) и (♠) классы, токены которых нужны замнять на слово 数字 "(перевод: число).

5 Особенности предобработки художественных текстов на бенгальском языке.

Так как в бенгальском языке присутствуют различные формы слова, то для предобработки текста необходимо выполнять все этапы из 3. Для выполнения этой задачи использовалась библиотека Spark NLP с предобученной моделью lemma-bn и pos-msri-bn для лемматизации и POS классификатора соответственно. Токенайзер разбивает текст на токены, где для каждого токена определен его класс POS, и лемма, в приложении A.1 указаны все классы POS и отмечены (×) классы, токены которых нужно удалять из текста, (⋄) классы, токены которых заменять на слово "(перевод: объект), (♠) классы, токены которых нужно лемматизировать.

Ниже получен пример работы алгоритмы предобработки текста, вывод вида "токен -> лемма POS":

_______Puc. 1: Визуализация работы обработчика текста на бенгальском языке

In: তিনি জানালা খোলা এবং দেখেছি একটি গাছ পাখি.
তিনি --> জিনিস PRP
জানালা --> জনল NN
খোলা --> খল VM
এবং --> [deleted] CC
দেখেছি --> সংখ্যা QC
একটি --> গছ NN
পাখি --> গছ NN
পাখি --> প্ৰ NN

--> [deleted] SYM

Out: জিনিস জনল খল সংখ্যা সংখ্যা গছ পখ

5.0.1 TF-IDF матрица

Пусть D - некоторая коллекция из m текстов (корпус), $d \in D$ - некоторый текст из этого корпуса, всего уникальных слов-токенов (далее просто "слово") в корпусе $n, w \in d$ - слово, содержащееся в тексте d, n_w - число вхождений слова w в тексте, тогда TFIDF(w,d) term frequency — inverse document frequency- статистическая мера, отражающая релевантность слова w в тексте d относительно корпуса D, которому текст d принадлежит. Вычисляется по следующим образом:

$$TFIDF(w,d) = TF(w,d) \times IDF(w,D)$$
 (1)

Где

$$TF(w,d) = \frac{n_w}{\sum_{w' \in d} n_{w'}} \tag{2}$$

$$IDF(w,d) = \log \frac{|D|}{|\{d_i \in D \mid w \in d_i\}|}$$
 (3)

где |D| размер корпуса, $|\{d_i \in D \mid w \in d_i\}|$ число текстов, содержащих слово w. Получаем матрицу A, где:

$$a_{ij} = TFIDF(w_i, d_i) \tag{4}$$

5.0.2 SVD разложение

К полученной матрице A применяется SVD разложение ранга r [1]:

$$A \approx \hat{A} = U\Sigma V^T \tag{5}$$

где $U \in Mat(\mathbb{R})_{m \times r}$ и $V \in Mat(\mathbb{R})_{n \times r}$ ортогональные матрицы, $\Sigma \in Mat(\mathbb{R})_{r \times r}$ со значениями на диагонали $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. Получаем итоговое представление слова в словаре, в котором:

$$w_i \mapsto v_i \cdot \Sigma$$
 (6)

где v_i і-й столбец матрцицы V.

Список литературы

[1] Jerome R. Bellegarda. Latent Semantic Mapping: Principles and Applications. SYNTHESIS LECTURES ON SPEECH AND AUDIO PROCESSING. Morgan and Claypool.

6 Приложения

- А Расшифровка POS-тэгов, выделяемых используемыми языковыми моделями.
- A.1 Бенгальский язык. POS классификатор pos-msri-bn для Spark NLP
 - NN noun (♣)
 - SYM symbol (\times)
 - NNP propper noun (\$)
 - VM modal verb (♣)
 - INTF intesifier (\times)
 - JJ Adjective (♣)
 - QF Quantifiers (\times)
 - CC coordinating conjunction (×)
 - NST noun (♣)
 - PSP adposition (\times)
 - DEM pronoun (\$)
 - PRP posessive pronoun (\$)
 - NEG negative (\times)
 - WQ wh-qual (\times)
 - RB adverb (\clubsuit)
 - VAUX Verb Auxiliary (×)
 - UT (×)
 - XC (×)
 - RP particle (×)

- Q0 ordinal number (\spadesuit)
- QC cardinal number (\spadesuit)
- BM (×)
- NNC compound noun (♣)
- PPR postposition (\times)
- INJ (×)
- CL (×)
- UNK (×)

А.2 Китайский язык. POS классификатор zh-core-web-lg

- $\bullet~\mathrm{ADJ}$ adjective (\clubsuit)
- ADP adposition (\times)
- ADV adverb (\times)
- AUX auxiliary (×)
- CONJ conjunction (×)
- CCONJ coordinating conjunction (×)
- DET determiner (\times)
- INTJ interjection (\times)
- NOUN noun (♣)
- $\bullet\,$ NUM numeral (\spadesuit)
- PART particle (\times)
- PRON pronoun (\$)
- PROPN proper noun (\$)
- PUNCT punctuation (×)
- SCONJ suboridnating conjunction (\times)
- SYM symbol (\times)
- VERB verb (\clubsuit)
- X other (\times)
- SPACE space (\times)