# **Wycieczki**

Letni obóz treningowy OIJ, dzień 3.

20 sierpnia 2020





Bajtosia prowadzi biuro podróży. Nie jest to łatwy biznes, szczególnie w dzisiejszych czasach, dlatego trzeba wprowadzać nowe akcje i promocje. Bajtosia zdecydowała się zorganizować serię N jednodniowych wycieczek, po jednej na każdy z Ndni wakacji. Przygotowana wycieczka na i-ty dzień ma koszt  $A_i$  (dla i = 1, 2, ..., N).

Bajtosia zauważyła, że wszyscy klienci mają bardzo podobne potrzeby. Wszyscy klienci decydują się na kupno dokładnie jednej wycieczki. Każdy klient ma pewien przedział czasu, kiedy jest na urlopie i chciałby kupić wycieczkę pomiędzy pewnymi dniami  $L_i$  a  $R_i$  (włącznie). Każdy klient ma także bon turystyczny o pewnym koszcie  $V_i$ , który pozwala mu pokryć koszt tej wycieczki. Aby bon można było wykorzystać w całości (i nic się nie zmarnowało), klient chciałby kupić wycieczkę która jest warta **więcej** niż  $V_i$ .

Bajtosia także podzieliła swoich klientów na dwie kategorie:

- Klientów, którzy chcą wybrać się na wakacje jak najszybciej. Oznacza to, że wykupią oni pierwszą wycieczkę, która będzie dostępna podczas ich urlopu i kosztowała więcej niż wartość ich bonu.
- Klientów, którzy chcą wyjechać na wakacje jak najtaniej. Oznacza to, że wykupią oni najtańszą wycieczkę, która jest dostępna podczas ich urlopu, o ile będzie kosztowała więcej niż wartość ich bonu. W przypadku kilku wycieczek spełniających to kryterium, klienci zawsze wybierają tą wycieczkę, która będzie najszybciej.

Bajtosia teraz chciałaby przyśpieszyć obsługę klientów i stworzyć system, którzy pomoże obsługiwać zapytania. Dodatkowo, czasami koszty wycieczek się zmieniają (z przyczyn niezależnych od Bajtosi) i jej system musi obsługiwać także zmiany kosztów wycieczek.

Napisz program, który wczyta początkowe ceny wycieczek, zapytania klientów oraz zmiany cen, obliczy najlepszy dzień na wycieczkę dla każdego klienta i wypisze wyniki na standardowe wyjście.

## Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby naturalne N oraz Q ( $1 \le N, Q \le 200\,000$ ), określające kolejno: liczbę wycieczek będącą jednocześnie liczbą dni wakacji oraz liczbę zapytań klientów wraz ze zmianami cen. W drugim wierszu wejścia znajduje się ciąg N liczb naturalnych  $A_i$  ( $0 \le A_i \le 10^9$ ), gdzie  $A_i$  oznacza początkową ceny wycieczki zaplanowanej na i-ty dzień.

W kolejnych Q wierszach znajdują się kolejne zdarzenia.

- Jeżeli chcemy obsłużyć klienta, który chce wybrać się na wakacje jak najszybciej, na początku wiersza znajdzie się słowo najszybciej, a po nim trzy liczby całkowite  $L_i$ ,  $R_i$  oraz  $V_i$   $(1 \le L \le R_i \le N, 0 \le V_i \le 10^9)$  oznaczające kolejno pierwszy i ostatni dzień urlopu danego klienta oraz wartość jego bonu.
- Jeżeli chcemy obsłużyć klienta, który chce wybrać się na wakacje jak najtaniej, na początku wiersza znajdzie się słowo najtaniej, a po nim trzy liczby całkowite  $L_i$ ,  $R_i$  oraz  $V_i$  ze znaczeniem oraz ograniczeniami jak wyżej.
- Jeżeli cenę którejś wycieczki należy zmodyfikować, na początku wiersza znajdzie się słowo zmiana, a po nim dwie liczby całkowite  $D_j$  oraz  $C_j$   $(1 \le D_j \le N, 0 \le C_j \le 10^9)$ , które oznaczają, że cenę wycieczki dnia  $D_j$  należy zmienić na  $C_i$ .

# Wyjście

Twój program powinien wypisać odpowiedzi dla zdarzeń typu najszybciej oraz najtaniej zgodnie z kolejnością ich występowania na wejściu w osobnym wierszach.

Jeżeli nie istnieje żadna wycieczka spełniająca warunki klienta, należy zamiast tego wypisać NIE.



### **Ocenianie**

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

| Dodatkowe ograniczenia                                             | Liczba punktów |
|--------------------------------------------------------------------|----------------|
| nie ma żadnych zmian                                               | 30             |
| nie ma klientów, którzy chcą się wybrać na wakacje jak najszybciej | 35             |
| nie ma klientów, którzy chcą się wybrać na wakacje jak najtaniej   | 35             |
| $N, Q \le 40000$                                                   | 67             |

## **Przykłady**

#### Wejście dla testu wyc0a:

```
6 5
3 2 4 2 9 1
najtaniej 2 5 3
najszybciej 3 4 3
najtaniej 1 6 9
zmiana 4 10
najtaniej 1 6 9
```

### Wyjście dla testu wyc0a:

| vvyjsele dia testa wyeoa. |
|---------------------------|
| 3                         |
| 3                         |
| NIE                       |
| 4                         |
|                           |

Wyjaśnienie do przykładu: Początkowo ceny wycieczek w kolejnych dniach to [3, 2, 4, 2, 9, 1], mamy Q = 6 zdarzeń.

- Szukamy najtańszej wycieczki o koszcie większym niż 3 wśród wycieczek między drugim a piątym dniem. Najtańszą taką wycieczką jest wycieczka w trzecim dniu o koszcie 4. Wypisujemy numer dnia 3.
- Szukamy pierwszej wycieczki o koszcie większym niż 3 pomiędzy drugim a czwartym dniem. Jest to ponownie wycieczka w trzecim dniu.
- Pomiędzy pierwszym a szóstym dniem nie mamy żadnej wycieczki droższej niż 9, więc należy wypisać NIE.
- Zmieniamy cene wycieczki czwartego dnia na 10. Teraz ceny wycieczek w kolejnych dniach to [3, 2, 4, 10, 9, 1].
- Pomiędzy pierwszym a szóstym dniem mamy już wycieczkę droższą niż 9 (jest to wycieczka zmodyfikowana w poprzednim zdarzeniu). Wypisujemy zatem 4.

#### Weiście dla testu wyc0b:

| ejeele ala teeta ilj eezi |     |
|---------------------------|-----|
| 4 6                       |     |
| 7 3 1 2                   |     |
| najtaniej 12              | 0   |
| najtaniej 2 3             | 0   |
| najtaniej 34              | 0   |
| najszybciej 1             | 2 0 |
| najszybciej 2             | 3 0 |
| najszybciej 3             | 4 0 |

#### Wviście dla testu wvc0b:

| Trype or and recease in justice. |
|----------------------------------|
| 2                                |
| 2 3                              |
| 3                                |
| 1                                |
| 2                                |
| 3                                |
|                                  |

#### Pozostałe testy przykładowe

- test wycoc: N=20, Q=100, nie ma klientów szukających wycieczki jak najszybciej.
- test wycod: N = 20, Q = 100, nie ma klientów szukających wycieczki jak najtaniej.
- test wyc0e: N = Q = 40000, test losowy.