

Net-Zero America - oregon state report

2021-03-15

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR I: Efficiency/Electrification - Commercial	I
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	3
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	4
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	5
14	E+ scenario - IMPACTS - Fossil fuel industries	7
15	E+ scenario - IMPACTS - Health	7
16	E+ scenario - IMPACTS - Jobs	7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	9
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation 10	J
22	E- scenario - PILLAR 6: Land sinks - Agriculture	J
23	E- scenario - PILLAR 6: Land sinks - Forests	1
24	E- scenario - IMPACTS - Health	3
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	4
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . 14	4
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview 14	4
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	4
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation 1	5
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	5
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	5
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	6
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	5
34	E+RE+ scenario - IMPACTS - Health	9
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial 19	9
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand 20	J
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	J
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	J
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation 20	J
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	1
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	1
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	1
/.2	E-DE scanario - DILLAP 6-Land sinks - Egreets	^

44	E+RE- scenario - IMPACTS - Health	25
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	25
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	25
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	27
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	27
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	27
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	29
58	E-B+ scenario - IMPACTS - Health	31
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	32
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	32
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	32
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	33
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	35
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,358	14,518				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	41.7	78.2	85.4	85.8	85.8	85.8
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	58.3	21.8	14.6	14.2	14.2	14.2
Sales of space heating units - Electric	2.5	16.7	41.2	54.8	56.6	56.7	56.7
Heat Pump (%)							
Sales of space heating units - Electric	16.7	17.5	36.3	42	42.6	42.6	42.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0
Sales of space heating units - Gas Furnace	80.8	65.8	22.5	3.25	0.79	0.695	0.695
(%)							
Sales of water heating units - Electric	1	10.3	52.2	64.9	66	66	66
Heat Pump (%)							
Sales of water heating units - Electric	3.08	6.46	25	32.5	33.3	33.3	33.3
Resistance (%)							
Sales of water heating units - Gas Furnace	95.1	82.6	22.2	1.99	0.085	0	0
(%)							
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.38	2.48	3.93	4.2	3.62	3.78
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	95	93.3	89	85.5	84.8	85.9
Final energy use - Industry (PJ)	209	215	214	219	226	230	236
Final energy use - Residential (PJ)	151	140	123	104	88.4	78.3	72.2
Final energy use - Transportation (PJ)	334	313	278	236	197	173	163

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.54	2.66				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.6	73	95.4	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	34.4	27	4.63	0.233	0	0	0
Sales of space heating units - Electric	12.4	24.5	48.3	57.6	58.8	58.8	58.7
Heat Pump (%)							
Sales of space heating units - Electric	31	37.4	34.1	31.4	31	31.2	31.3
Resistance (%)							
Sales of space heating units - Fossil (%)	8.35	13.5	10.5	9.63	9.42	9.21	9.21
Sales of space heating units - Gas (%)	48.3	24.7	7.17	1.4	0.846	0.812	0.816
Sales of water heating units - Electric	0	7.68	41.4	51	51.8	51.8	51.8
Heat Pump (%)							
Sales of water heating units - Electric	40.2	54.8	44.8	43.1	43.1	43.1	43.1
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	32.3	8.69	0.78	0.033	0	0
(%)							
Sales of water heating units - Other (%)	6.41	5.3	5.09	5.09	5.1	5.11	5.12

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		737	1,953	3,062	4,679	5,048	4,837
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.347		1.51		5.84		9.31
units)							
Public EV charging plugs - L2 (1000 units)	1.3		36.3		141		224
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.62	1.88	1.29	0.412	0.076	0.013	0
Vehicle sales - Light-duty - EV (%)	3.67	14.4	45.3	81.3	96.3	99.3	100
Vehicle sales - Light-duty - gasoline (%)	90.3	78.9	50	17	3.35	0.592	0
Vehicle sales - Light-duty - hybrid (%)	4.18	4.37	3.13	1.17	0.284	0.062	0
Vehicle sales - Light-duty - hydrogen FC	0.111	0.344	0.209	0.065	0.013	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.105	0.101	0.067	0.023	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Offshore Wind - Base (billion \$2018)		0.417	0	0	0.179	0	12.3
Capital invested - Offshore Wind - Constrained (billion \$2018)		0.46	0	0	0	0.231	14.1
Capital invested - Solar PV - Base (billion \$2018)		0	0	0	0	0	0
Capital invested - Solar PV - Constrained (billion \$2018)		1.68	0	0	0	0	0
Capital invested - Wind - Base (billion \$2018)		0	2.51	1.27	1.2	0.855	0.175
Capital invested - Wind - Constrained (billion \$2018)		0	2.32	2.86	7.4	6.28	0.499
Installed renewables - OffshoreWind - Base land use assumptions (MW)	0	109	109	109	197	197	9,476
Installed renewables - OffshoreWind - Constrained land use assumptions (MW)	0	109	109	109	197	197	9,476
Installed renewables - Rooftop PV (MW)	2,443	3,766	5,029	6,555	8,366	10,477	12,977
Installed renewables - Solar - Base land use assumptions (MW)	978	978	978	978	978	978	978
Installed renewables - Solar - Constrained land use assumptions (MW)	837	837	837	837	837	837	837
Installed renewables - Wind - Base land use assumptions (MW)	4,154	4,154	5,605	6,394	7,175	7,762	7,889
Installed renewables - Wind - Constrained land use assumptions (MW)	4,154	4,154	5,500	7,117	11,811	16,223	16,552

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
OffshoreWind - Base land use	0	522	522	522	945	945	39,327
assumptions (GWh)							
OffshoreWind - Constrained land use	0	522	522	522	945	945	39,327
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	2,011	2,011	2,011	2,011	2,011	2,011	2,011
Solar - Constrained land use assumptions	1,737	1,737	1,737	1,737	1,737	1,737	1,737
(GWh)							
Wind - Base land use assumptions (GWh)	14,129	14,129	19,419	22,163	24,777	26,676	27,057
Wind - Constrained land use assumptions	14,129	14,129	18,888	23,821	37,206	49,139	50,021
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		0	0	0	0	124	398
Conversion capital investment -		0	0	0	0	2,271	5,019
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	4	11
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	0	2.92	9.37
Annual - BECCS (MMT)		0	0	0	0	2.92	9.37
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	0	2.92	12.3
Cumulative - BECCS (MMT)		0	0	0	0	2.92	12.3
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	0	497	497	871	1,423
Cumulative investment - All (million \$2018)		0	0	1,561	1,561	1,794	2,143
Cumulative investment - Spur (million \$2018)		0	0	0	0	234	583
Cumulative investment - Trunk (million \$2018)		0	0	1,561	1,561	1,561	1,561
Spur (km)		0	0	0	0	373	926
Trunk (km)		0	0	497	497	497	497

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Table 12: E+ scenario - PILLAR 6: Lana sini			0000	0005	0016	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-1,084
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-74.1
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,158
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-558
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-37
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-595
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,788
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							126
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,914
Aggressive deployment - Total (1000							•
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							926
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							62.8
deployment - Permanent conservation							32.3
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							988
deployment - Total (1000 hectares)							700
acproyment - rotar (1000 nectal es)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-3,070
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,267
deforestation (1000 tC02e/y)							44.005
Carbon sink potential - High - Extend							-11,025
rotation length (1000 tCO2e/y)							F 7/ /
Carbon sink potential - High - Improve							-5,746
plantations (1000 tCO2e/y)							00.007
Carbon sink potential - High - Increase							-20,097
retention of HWP (1000 tC02e/y)							//0
Carbon sink potential - High - Increase							-660
trees outside forests (1000 tC02e/y) Carbon sink potential - High - Reforest							-6,564
cropland (1000 tCO2e/y)							-0,564
Carbon sink potential - High - Reforest							-3,779
pasture (1000 tC02e/y)							-3,117
Carbon sink potential - High - Restore							-8,025
productivity (1000 tC02e/y)							-0,023
Carbon sink potential - Low - Accelerate							-1,538
regeneration (1000 tCO2e/y)							-1,550
Carbon sink potential - Low - All (not							-22,111
counting overlap) (1000 tC02e/y)							-22,111
Carbon sink potential - Low - Avoid							-211
deforestation (1000 tC02e/y)							211
Carbon sink potential - Low - Extend							-4,235
rotation length (1000 tC02e/y)							1,200
Carbon sink potential - Low - Improve							-2,923
plantations (1000 tCO2e/y)							_,
Carbon sink potential - Low - Increase							-6,699
retention of HWP (1000 tCO2e/y)							-,-
Carbon sink potential - Low - Increase							-231
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-3,282
cropland (1000 tCO2e/y)							•
Carbon sink potential - Low - Reforest							-286
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-2,705
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-2,304
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-41,121
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-739
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-7,630
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-4,284
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-13,398
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-446
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-4,923
cropland (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-2,033
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-5,365
productivity (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							502
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							172
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,622
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2,117
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							62.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							434
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							107
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,660
High - Restore productivity (1000							_,
hectares)							
Land impacted for carbon sink potential -							11,677
High - Total impacted (over 30 years)							,
(1000 hectares)							
Land impacted for carbon sink potential -							251
Low - Accelerate regeneration (1000							201
hectares)							
Land impacted for carbon sink potential -		+					161
Low - Avoid deforestation (over 30 years)							101
(1000 hectares)							
Land impacted for carbon sink potential -							2,154
Low - Extend rotation length (1000							2,104
hectares)							
Land impacted for carbon sink potential -		+	-				1,058
Low - Improve plantations (1000							1,000
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -		-					33
Low - Increase trees outside forests							33
(1000 hectares)							
Land impacted for carbon sink potential -							217
							217
Low - Reforest cropland (1000 hectares)							10 /
Land impacted for carbon sink potential -							18.6
Low - Reforest pasture (1000 hectares)							1 (00
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000							
hectares)							·
Land impacted for carbon sink potential -							5,503
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							377
Mid - Accelerate regeneration (1000							
hectares)							

				_	
Table 13. Ex	ccanario -	DIII $\Lambda D A \cdot$	Land sinks -	Enracte	lcontinuedl
Table 15. LT	occiiui iu -	FILLAN U.	Luiiu siiiks -	ו טו בטנט	lcontinucui

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							166
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,888
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,593
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							47.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							325
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							3,241
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,773
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		198	167	134	101	63.4	44
Natural gas consumption - Cumulative							4,030
(tcf)							
Natural gas production - Annual (tcf)		0.609	0.576	0.502	0.424	0.336	0.261
Oil consumption - Annual (million bbls)		58.9	50.4	38	26.4	17.2	9.78
Oil consumption - Cumulative (million							1,173
bbls)							
Oil production - Annual (million bbls)		0	0	0	0	0	0

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		36.5	0.043	0.043	0.027	0.016	0
Monetary damages from air pollution - Natural Gas (million 2019\$)		38.6	22.4	18.6	17.2	14	10.5
Monetary damages from air pollution - Transportation (million 2019\$)		414	387	294	170	77.9	31.3
Premature deaths from air pollution - Coal (deaths)		4.12	0.005	0.005	0.003	0.002	0
Premature deaths from air pollution - Natural Gas (deaths)		4.36	2.52	2.1	1.94	1.57	1.18
Premature deaths from air pollution - Transportation (deaths)		46.6	43.5	33.1	19.1	8.76	3.52

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		183	298	156	105	229	501
By economic sector - Construction (jobs)		9,860	9,552	11,033	10,875	11,128	23,154
By economic sector - Manufacturing		2,689	4,018	4,949	4,552	4,061	5,967
(jobs)							
By economic sector - Mining (jobs)		1,109	788	503	297	160	80.2

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 16: E+ scenario - IMPACTS - Jobs (co	ontinueaj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		1,508	1,565	1,882	2,198	2,513	5,237
By economic sector - Pipeline (jobs)		259	218	358	124	109	129
By economic sector - Professional (jobs)		4,290	4,527	4,973	5,413	5,976	13,282
By economic sector - Trade (jobs)		2,854	2,896	3,218	3,532	3,890	8,534
By economic sector - Utilities (jobs)		4,145	4,455	6,315	6,083	6,269	15,629
By education level - All sectors -		8,494	8,962	10,765	10,703	11,062	23,425
Associates degree or some college (jobs)							
By education level - All sectors -		5,307	5,592	6,496	6,510	6,766	14,373
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		212	219	242	253	272	589
degree (jobs)							
By education level - All sectors - High		11,566	12,160	14,290	14,083	14,514	30,392
school diploma or less (jobs)							
By education level - All sectors - Masters		1,319	1,383	1,596	1,630	1,721	3,734
or professional degree (jobs)							
By resource sector - Biomass (jobs)		647	788	400	290	840	2,149
By resource sector - CO2 (jobs)		0	0	1,544	0	250	659
By resource sector - Coal (jobs)		86.9	0	0	0	0	0
By resource sector - Grid (jobs)		6,144	7,093	9,281	10,434	10,900	29,558
By resource sector - Natural Gas (jobs)		2,131	1,792	1,840	1,654	1,259	1,035
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		2,619	2,054	1,431	922	562	300
By resource sector - Solar (jobs)		11,450	11,083	13,181	14,424	15,631	27,983
By resource sector - Wind (jobs)		3,820	5,507	5,711	5,457	4,893	10,829
Median wages - Annual - All (\$2019 per		62,291	62,798	63,770	64,648	65,678	67,496
job)							
On-Site or In-Plant Training - Total jobs - 1		4,427	4,632	5,533	5,475	5,642	11,956
to 4 years (jobs)							
On-Site or In-Plant Training - Total jobs - 4		1,945	1,979	2,369	2,341	2,426	5,225
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		4,437	4,681	5,482	5,470	5,677	11,904
None (jobs)							
On-Site or In-Plant Training - Total jobs -		233	245	297	294	304	652
Over 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		15,855	16,780	19,707	19,600	20,288	42,777
Up to 1 year (jobs)							
On-the-Job Training - All sectors - 1 to 4		5,712	5,968	7,149	7,070	7,285	15,467
years (jobs)					-		
On-the-Job Training - All sectors - 4 to 10		1,939	1,970	2,369	2,346	2,436	5,258
years (jobs)		-	-		-		
On-the-Job Training - All sectors - None		1,517	1,579	1,833	1,841	1,918	4,026
(jobs)					•		
On-the-Job Training - All sectors - Over 10		279	292	343	335	339	681
years (jobs)							
On-the-Job Training - All sectors - Up to 1		17,451	18,508	21,696	21,588	22,358	47,081
year (jobs)		, -	-,	,	,	,	,
Related work experience - All sectors - 1		9,580	10,079	11,879	11,825	12,253	25,966
to 4 years (jobs)				,	•		•
Related work experience - All sectors - 4		6,236	6,539	7,757	7,696	7,947	16,851
to 10 years (jobs)		,			•	,	•
Related work experience - All sectors -		3,889	4,093	4,854	4,818	5,004	10,602
None (jobs)		5,551	.,	.,	1,210	5,55	,
Related work experience - All sectors -		1,604	1,705	2,022	2,000	2,049	4,301
Over 10 years (jobs)		.,554	.,. 00	2,022	2,000	2,047	1,001
Related work experience - All sectors - Up		5,587	5,901	6,877	6,840	7,084	14,793
to 1 year (jobs)		5,551	3,, 31	5,5	5,5 10	.,00.	,. , 0
Wage income - All (million \$2019)		1,676	1,778	2,130	2,145	2,256	4,895
Tago moomo An (minon 42017)		1,010	1,110	2,100	2,140	2,200	4,070

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,324	14,288				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	31	36.1	49.7	68.6	80.2	84.3
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	69	63.9	50.3	31.4	19.8	15.7
Sales of space heating units - Electric	2.5	12.5	15.3	23.6	37.7	49.3	54.5
Heat Pump (%)							
Sales of space heating units - Electric	16.7	13.9	16.1	22.4	32.2	39	41.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0
Sales of space heating units - Gas Furnace	80.8	73.6	68.6	54	30.1	11.7	3.87
(%)							
Sales of water heating units - Electric	1	2.5	7.27	21.1	42.9	58.1	63.8
Heat Pump (%)							
Sales of water heating units - Electric	3.08	3.16	5.27	11.4	21.5	29	32.1
Resistance (%)							
Sales of water heating units - Gas Furnace	95.1	93.7	86.8	66.8	35	12.3	3.44
(%)							
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.88	1.92	2.22	2.29	3.56	3.78
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	95.2	96.6	96.8	95.9	94.4	93.4
Final energy use - Industry (PJ)	209	215	215	222	230	234	240
Final energy use - Residential (PJ)	151	140	128	117	105	92.8	81.8
Final energy use - Transportation (PJ)	334	315	290	270	254	235	213

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.53	2.65				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.5	66.4	69.6	77.9	89.5	96.6	99.1
Resistance (%)							
Sales of cooking units - Gas (%)	34.5	33.6	30.4	22.1	10.5	3.4	0.915
Sales of space heating units - Electric	12.4	20.2	22.9	30.9	43.8	53.4	57.2
Heat Pump (%)							
Sales of space heating units - Electric	31	37.9	37.5	36.3	34.2	32.4	31.5
Resistance (%)							
Sales of space heating units - Fossil (%)	8.35	14	13.7	12.7	11	9.88	9.53
Sales of space heating units - Gas (%)	48.3	27.9	25.9	20.1	10.9	4.35	1.81
Sales of water heating units - Electric	0	1.35	5.19	16.3	33.7	45.7	50.1
Heat Pump (%)							
Sales of water heating units - Electric	40.2	56.7	55.5	52.2	47.4	44.4	43.4
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	36.6	34	26.2	13.7	4.82	1.35
(%)							
Sales of water heating units - Other (%)	6.41	5.35	5.33	5.3	5.21	5.14	5.13

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		0	130	249	865	2,649	3,885
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.347		0.57		2.25		5.96
units)							
Public EV charging plugs - L2 (1000 units)	1.3		13.7		54.1		144
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.63	2.03	2.07	1.65	1.06	0.547	0.234
Vehicle sales - Light-duty - EV (%)	1.8	4.49	11.5	25.2	47.7	71.6	87.4
Vehicle sales - Light-duty - gasoline (%)	92	87.8	80.2	67.5	47	25.3	11.2
Vehicle sales - Light-duty - hybrid (%)	4.33	5.15	5.81	5.32	4.03	2.4	1.17
Vehicle sales - Light-duty - hydrogen FC	0.113	0.382	0.33	0.254	0.181	0.101	0.047
(%)							
Vehicle sales - Light-duty - other (%)	0.106	0.11	0.1	0.087	0.063	0.035	0.016
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

-1,084
-1,084
-1,084
-1,084
-74.1
-1,158
0
-558
-37
-595
0
1,788
126

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							1,914
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							926
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							62.8
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							988
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate	2020	2025	2030	2035	2040	2045	-3,070
regeneration (1000 tCO2e/y)							-3,070
Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							-00,233
Carbon sink potential - High - Avoid							-1,267
deforestation (1000 tCO2e/y)							-1,201
							-11,025
Carbon sink potential - High - Extend							-11,025
rotation length (1000 tC02e/y)							-5,746
Carbon sink potential - High - Improve							-5,746
plantations (1000 tC02e/y)							00.007
Carbon sink potential - High - Increase							-20,097
retention of HWP (1000 tC02e/y)							
Carbon sink potential - High - Increase							-660
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							-6,564
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,779
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-8,025
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-1,538
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-22,111
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-211
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-4,235
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-2,923
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-6,699
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-231
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-3,282
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-286
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-2,705
productivity (1000 tCO2e/y)							,
Carbon sink potential - Mid - Accelerate							-2,304
regeneration (1000 tCO2e/y)							-,

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - All (not	2020	2025	2030	2035	2040	2045	2050 -41,121
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid deforestation (1000 tC02e/y)							-739
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)							-7,630
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)							-4,284
Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)							-13,398
Carbon sink potential - Mid - Increase trees outside forests (1000 tC02e/y)							-446
Carbon sink potential - Mid - Reforest							-4,923
cropland (1000 tC02e/y) Carbon sink potential - Mid - Reforest							-2,033
pasture (1000 tC02e/y) Carbon sink potential - Mid - Restore							-5,365
productivity (1000 tCO2e/y) Land impacted for carbon sink potential - High - Accelerate regeneration (1000 hectares)							502
Land impacted for carbon sink potential - High - Avoid deforestation (over 30 years) (1000 hectares)							172
Land impacted for carbon sink potential - High - Extend rotation length (1000 hectares)							5,622
Land impacted for carbon sink potential - High - Improve plantations (1000 hectares)							2,117
Land impacted for carbon sink potential - High - Increase retention of HWP (1000 hectares)							0
Land impacted for carbon sink potential - High - Increase trees outside forests (1000 hectares)							62.7
Land impacted for carbon sink potential - High - Reforest cropland (1000 hectares)							434
Land impacted for carbon sink potential - High - Reforest pasture (1000 hectares)							107
Land impacted for carbon sink potential - High - Restore productivity (1000 hectares)							2,660
Land impacted for carbon sink potential - High - Total impacted (over 30 years)							11,677
(1000 hectares) Land impacted for carbon sink potential - Low - Accelerate regeneration (1000 hectares)							251
Land impacted for carbon sink potential - Low - Avoid deforestation (over 30 years) (1000 hectares)							161
Land impacted for carbon sink potential - Low - Extend rotation length (1000 hectares)							2,154
Land impacted for carbon sink potential - Low - Improve plantations (1000 hectares)							1,058
Land impacted for carbon sink potential - Low - Increase retention of HWP (1000 hectares)							0

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							33
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							217
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							18.6
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,503
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							377
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							166
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,888
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,593
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							47.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							325
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							3,241
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,773
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

Table 24. L- Scendi lo - IMPACTO - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		36.5	0.043	0.043	0.027	0.016	0
Coal (million 2019\$)							
Monetary damages from air pollution -		40.6	21	13.7	9.96	7.56	7.55
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		421	425	414	372	296	204
Transportation (million 2019\$)							
Premature deaths from air pollution -		4.12	0.005	0.005	0.003	0.002	0
Coal (deaths)							
Premature deaths from air pollution -		4.58	2.37	1.55	1.12	0.854	0.853
Natural Gas (deaths)							
Premature deaths from air pollution -		47.3	47.8	46.5	41.9	33.3	22.9
Transportation (deaths)							

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

14210 201 21121 000114110 11 222111 11 21110	, , =						
Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,358	14,518				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	41.7	78.2	85.4	85.8	85.8	85.8
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	58.3	21.8	14.6	14.2	14.2	14.2
Sales of space heating units - Electric	2.5	16.7	41.2	54.8	56.6	56.7	56.7
Heat Pump (%)							
Sales of space heating units - Electric	16.7	17.5	36.3	42	42.6	42.6	42.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0
Sales of space heating units - Gas Furnace	80.8	65.8	22.5	3.25	0.79	0.695	0.695
(%)							
Sales of water heating units - Electric	1	10.3	52.2	64.9	66	66	66
Heat Pump (%)							
Sales of water heating units - Electric	3.08	6.46	25	32.5	33.3	33.3	33.3
Resistance (%)							
Sales of water heating units - Gas Furnace	95.1	82.6	22.2	1.99	0.085	0	0
(%)							
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.38	2.48	3.93	4.2	3.62	3.78
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	95	93.3	89	85.5	84.8	85.9
Final energy use - Industry (PJ)	209	215	214	219	226	230	236
Final energy use - Residential (PJ)	151	140	123	104	88.4	78.3	72.2
Final energy use - Transportation (PJ)	334	313	278	236	197	173	163

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.54	2.66				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.6	73	95.4	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	34.4	27	4.63	0.233	0	0	0
Sales of space heating units - Electric	12.4	24.5	48.3	57.6	58.8	58.8	58.7
Heat Pump (%)							
Sales of space heating units - Electric	31	37.4	34.1	31.4	31	31.2	31.3
Resistance (%)							
Sales of space heating units - Fossil (%)	8.35	13.5	10.5	9.63	9.42	9.21	9.21
Sales of space heating units - Gas (%)	48.3	24.7	7.17	1.4	0.846	0.812	0.816
Sales of water heating units - Electric	0	7.68	41.4	51	51.8	51.8	51.8
Heat Pump (%)							
Sales of water heating units - Electric	40.2	54.8	44.8	43.1	43.1	43.1	43.1
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	32.3	8.69	0.78	0.033	0	0
(%)							
Sales of water heating units - Other (%)	6.41	5.3	5.09	5.09	5.1	5.11	5.12

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		737	1,953	3,062	4,679	5,048	4,837
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.347		1.51		5.84		9.31
units)							
Public EV charging plugs - L2 (1000 units)	1.3		36.3		141		224
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.62	1.88	1.29	0.412	0.076	0.013	0
Vehicle sales - Light-duty - EV (%)	3.67	14.4	45.3	81.3	96.3	99.3	100
Vehicle sales - Light-duty - gasoline (%)	90.3	78.9	50	17	3.35	0.592	0
Vehicle sales - Light-duty - hybrid (%)	4.18	4.37	3.13	1.17	0.284	0.062	0
Vehicle sales - Light-duty - hydrogen FC	0.111	0.344	0.209	0.065	0.013	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.105	0.101	0.067	0.023	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base		0.417	0	0	0.179	0.218	26.6
(billion \$2018)							
Capital invested - Solar PV - Base (billion		0	0	0	0	0	16.9
\$2018)							
Capital invested - Wind - Base (billion		0	2.58	2.21	4.06	5.44	5.95
\$2018)							
Installed renewables - OffshoreWind -	0	109	109	109	197	330	20,397
Base land use assumptions (MW)							
Installed renewables - OffshoreWind -	0	240	240	240	314	3,185	40,695
Constrained land use assumptions (MW)							
Installed renewables - Solar - Base land	978	978	978	978	978	978	22,319
use assumptions (MW)							
Installed renewables - Solar -	1,955	1,955	1,955	1,955	1,955	1,955	48,148
Constrained land use assumptions (MW)							
Installed renewables - Wind - Base land	4,188	4,188	5,678	7,051	9,692	13,427	17,751
use assumptions (MW)							
Installed renewables - Wind - Constrained	8,309	8,309	11,222	21,431	45,018	64,697	113,864
land use assumptions (MW)							

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	522	522	522	945	1,574	90,985
assumptions (GWh)							
OffshoreWind - Constrained land use	0	1,136	1,136	1,136	1,446	14,844	179,881
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	2,011	2,011	2,011	2,011	2,011	2,011	38,275
Solar - Constrained land use assumptions	4,022	4,022	4,022	4,022	4,022	4,022	83,079
(GWh)							
Wind - Base land use assumptions (GWh)	14,258	14,258	19,673	24,363	32,645	43,716	56,058

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Wind - Constrained land use assumptions	28,258	28,258	38,434	68,294	130,933	179,695	279,622
(GWh)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Carbon sink potential - Aggressive deployment - Corn-ethanol to energy		I	I		
deployment - Corn-ethanol to energy					0
grasses (1000 tCO2e/y)					
Carbon sink potential - Aggressive					-1,084
deployment - Cropland measures (1000					
tCO2e/y)					
Carbon sink potential - Aggressive					-74.1
deployment - Permanent conservation					
cover (1000 tCO2e/y)					
Carbon sink potential - Aggressive					-1,158
deployment - Total (1000 tCO2e/y)					
Carbon sink potential - Moderate					0
deployment - Corn-ethanol to energy					
grasses (1000 tCO2e/y)					
Carbon sink potential - Moderate					-558
deployment - Cropland measures (1000					
tCO2e/y)					
Carbon sink potential - Moderate					-37
deployment - Permanent conservation					
cover (1000 tC02e/y)					
Carbon sink potential - Moderate					-595
deployment - Total (1000 tC02e/y)					
Land impacted for carbon sink -					0
Aggressive deployment - Corn-ethanol to					
energy grasses (1000 hectares)					
Land impacted for carbon sink -					1,788
Aggressive deployment - Cropland					•
measures (1000 hectares)					
Land impacted for carbon sink -					126
Aggressive deployment - Permanent					
conservation cover (1000 hectares)					
Land impacted for carbon sink -					1,914
Aggressive deployment - Total (1000					,
hectares)					
Land impacted for carbon sink - Moderate					0
deployment - Corn-ethanol to energy					
grasses (1000 hectares)					
Land impacted for carbon sink - Moderate		+			926
deployment - Cropland measures (1000					, _0
hectares)					
Land impacted for carbon sink - Moderate	+	+			62.8
deployment - Permanent conservation					02.0
cover (1000 hectares)					
Land impacted for carbon sink - Moderate		+			988
deployment - Total (1000 hectares)					,50

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-3,070
Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,267
deforestation (1000 tCO2e/y)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

item	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)							-11,02
Carbon sink potential - High - Improve							-5,74
blantations (1000 tCO2e/y)							-5,74
Carbon sink potential - High - Increase							-20,09
							-20,09
retention of HWP (1000 tC02e/y)							
Carbon sink potential - High - Increase							-66
rees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,56
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,77
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-8,02
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-1,53
regeneration (1000 tCO2e/y)							•
Carbon sink potential - Low - All (not							-22,1
counting overlap) (1000 tCO2e/y)							,
Carbon sink potential - Low - Avoid							-2
deforestation (1000 tCO2e/y)							-2
Carbon sink potential - Low - Extend							-4,23
							-4,23
rotation length (1000 tC02e/y)							0.00
Carbon sink potential - Low - Improve							-2,92
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-6,69
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-23
rees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-3,28
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-28
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-2,70
productivity (1000 tCO2e/y)							_,
Carbon sink potential - Mid - Accelerate							-2,30
regeneration (1000 tCO2e/y)							2,00
Carbon sink potential - Mid - All (not							-41,12
							-41,12
counting overlap) (1000 tC02e/y)							70
Carbon sink potential - Mid - Avoid							-73
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-7,63
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-4,28
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-13,39
retention of HWP (1000 tCO2e/y)							-,-
Carbon sink potential - Mid - Increase							-44
rees outside forests (1000 tC02e/y)							77
Carbon sink potential - Mid - Reforest							-4,92
·							-4,72
cropland (1000 tC02e/y)							0.00
Carbon sink potential - Mid - Reforest							-2,03
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-5,36
productivity (1000 tCO2e/y)							
and impacted for carbon sink potential -							50
ligh - Accelerate regeneration (1000							
nectares)							
and impacted for carbon sink potential -							17
High - Avoid deforestation (over 30 years)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050 5,622
High - Extend rotation length (1000							5,622
hectares)							0.447
Land impacted for carbon sink potential -							2,117
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							62.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							434
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							107
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,660
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							11,677
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							251
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							161
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,154
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,058
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							33
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							217
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							18.6
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,503
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							377
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							166
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,888
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,593

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							47.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							325
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							3,241
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,773
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		36.5	0.043	0.043	0.027	0.016	0
Coal (million 2019\$)							
Monetary damages from air pollution -		35.6	16.4	9.85	8.49	6.96	1.27
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		414	387	294	170	77.9	31.3
Transportation (million 2019\$)							
Premature deaths from air pollution -		4.12	0.005	0.005	0.003	0.002	0
Coal (deaths)							
Premature deaths from air pollution -		4.02	1.85	1.11	0.958	0.786	0.143
Natural Gas (deaths)							
Premature deaths from air pollution -		46.6	43.5	33.1	19.1	8.76	3.52
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,358	14,518				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	41.7	78.2	85.4	85.8	85.8	85.8
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	58.3	21.8	14.6	14.2	14.2	14.2
Sales of space heating units - Electric	2.5	16.7	41.2	54.8	56.6	56.7	56.7
Heat Pump (%)							
Sales of space heating units - Electric	16.7	17.5	36.3	42	42.6	42.6	42.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0
Sales of space heating units - Gas Furnace	80.8	65.8	22.5	3.25	0.79	0.695	0.695
(%)							
Sales of water heating units - Electric	1	10.3	52.2	64.9	66	66	66
Heat Pump (%)							
Sales of water heating units - Electric	3.08	6.46	25	32.5	33.3	33.3	33.3
Resistance (%)							
Sales of water heating units - Gas Furnace	95.1	82.6	22.2	1.99	0.085	0	0
(%)							
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.38	2.48	3.93	4.2	3.62	3.78
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	95	93.3	89	85.5	84.8	85.9
Final energy use - Industry (PJ)	209	215	214	219	226	230	236
Final energy use - Residential (PJ)	151	140	123	104	88.4	78.3	72.2
Final energy use - Transportation (PJ)	334	313	278	236	197	173	163

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.54	2.66				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.6	73	95.4	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	34.4	27	4.63	0.233	0	0	0
Sales of space heating units - Electric	12.4	24.5	48.3	57.6	58.8	58.8	58.7
Heat Pump (%)							
Sales of space heating units - Electric	31	37.4	34.1	31.4	31	31.2	31.3
Resistance (%)							
Sales of space heating units - Fossil (%)	8.35	13.5	10.5	9.63	9.42	9.21	9.21
Sales of space heating units - Gas (%)	48.3	24.7	7.17	1.4	0.846	0.812	0.816
Sales of water heating units - Electric	0	7.68	41.4	51	51.8	51.8	51.8
Heat Pump (%)							
Sales of water heating units - Electric	40.2	54.8	44.8	43.1	43.1	43.1	43.1
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	32.3	8.69	0.78	0.033	0	0
(%)							
Sales of water heating units - Other (%)	6.41	5.3	5.09	5.09	5.1	5.11	5.12

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -		737	1,953	3,062	4,679	5,048	4,837
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.347		1.51		5.84		9.31
units)							
Public EV charging plugs - L2 (1000 units)	1.3		36.3		141		224
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.62	1.88	1.29	0.412	0.076	0.013	0
Vehicle sales - Light-duty - EV (%)	3.67	14.4	45.3	81.3	96.3	99.3	100
Vehicle sales - Light-duty - gasoline (%)	90.3	78.9	50	17	3.35	0.592	0
Vehicle sales - Light-duty - hybrid (%)	4.18	4.37	3.13	1.17	0.284	0.062	0
Vehicle sales - Light-duty - hydrogen FC	0.111	0.344	0.209	0.065	0.013	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.105	0.101	0.067	0.023	0.005	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Medium-duty - hydrogen FC (%)	0.196	1.27	6.33	15.2	19.1	19.9	20
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base (billion \$2018)		0.417	0	0	0	0	1.04
Capital invested - Offshore Wind - Constrained (billion \$2018)		0.46	0	0	0	0	1.11
Capital invested - Solar PV - Base (billion \$2018)		2.37	0.587	0.212	0.709	2.04	1.48
Capital invested - Solar PV - Constrained (billion \$2018)		1.33	1.51	1.35	1.07	2.88	1.77
Capital invested - Wind - Base (billion \$2018)		0.067	1.42	0.908	1.46	0.52	0
Capital invested - Wind - Constrained (billion \$2018)		0.084	2.07	0.174	2.85	3.08	0
Installed renewables - OffshoreWind - Base land use assumptions (MW)	0	109	109	109	109	109	895
Installed renewables - OffshoreWind - Constrained land use assumptions (MW)	0	120	120	120	120	120	959
Installed renewables - Solar - Base land use assumptions (MW)	2,395	4,465	5,039	5,264	6,063	8,493	10,360
Installed renewables - Solar - Constrained land use assumptions (MW)	1,889	3,048	4,521	5,950	7,154	10,596	12,835
Installed renewables - Wind - Base land use assumptions (MW)	4,188	4,223	5,042	5,605	6,554	6,911	6,911
Installed renewables - Wind - Constrained land use assumptions (MW)	4,154	4,198	5,392	5,500	7,353	9,465	9,465

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	0	522	522	522	522	522	4,290
assumptions (GWh)							
OffshoreWind - Constrained land use	0	568	568	568	568	568	3,822
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	4,444	7,991	8,949	9,331	10,695	14,809	17,995
Solar - Constrained land use assumptions	3,569	5,552	8,076	10,473	12,506	18,343	22,220
(GWh)							
Wind - Base land use assumptions (GWh)	14,258	14,389	17,413	19,419	22,707	23,920	23,920
Wind - Constrained land use assumptions	14,129	14,288	18,527	18,888	24,515	30,552	30,552
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,084
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-74.1
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-1,158
deployment - Total (1000 tCO2e/y)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-558
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-37
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-595
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,788
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							126
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,914
Aggressive deployment - Total (1000							,
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							ŭ
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							926
deployment - Cropland measures (1000							720
hectares)							
Land impacted for carbon sink - Moderate							62.8
deployment - Permanent conservation							02.0
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							988
deployment - Total (1000 hectares)							700
deployment - rotal (1000 nectal es)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-3,070
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,267
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,025
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-5,746
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-20,097
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-660
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,564
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,779
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-8,025
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-1,538
regeneration (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - All (not							-22,111
counting overlap) (1000 tC02e/y)							011
Carbon sink potential - Low - Avoid							-211
deforestation (1000 tC02e/y)							/ 005
Carbon sink potential - Low - Extend							-4,235
rotation length (1000 tC02e/y)							0.000
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-2,923
Carbon sink potential - Low - Increase							-6,699
retention of HWP (1000 tCO2e/y)							-0,099
Carbon sink potential - Low - Increase							-231
trees outside forests (1000 tC02e/y)							-231
Carbon sink potential - Low - Reforest							-3,282
cropland (1000 tCO2e/y)							-3,202
Carbon sink potential - Low - Reforest							-286
							-200
pasture (1000 tC02e/y) Carbon sink potential - Low - Restore							-2,705
							-2,705
productivity (1000 tC02e/y)							0.007
Carbon sink potential - Mid - Accelerate							-2,304
regeneration (1000 tC02e/y)							/1101
Carbon sink potential - Mid - All (not							-41,121
counting overlap) (1000 tC02e/y)							700
Carbon sink potential - Mid - Avoid							-739
deforestation (1000 tC02e/y)							7/00
Carbon sink potential - Mid - Extend							-7,630
rotation length (1000 tC02e/y)							
Carbon sink potential - Mid - Improve							-4,284
plantations (1000 tC02e/y)							10.000
Carbon sink potential - Mid - Increase							-13,398
retention of HWP (1000 tC02e/y)							
Carbon sink potential - Mid - Increase							-446
trees outside forests (1000 tC02e/y)							/ 000
Carbon sink potential - Mid - Reforest							-4,923
cropland (1000 tC02e/y)							0.000
Carbon sink potential - Mid - Reforest							-2,033
pasture (1000 tC02e/y)							5.075
Carbon sink potential - Mid - Restore							-5,365
productivity (1000 tCO2e/y)							500
Land impacted for carbon sink potential -							502
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							172
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,622
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2,117
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							62.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							434
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							107
High - Reforest pasture (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - High - Restore productivity (1000							2,660
hectares)							44 (77
Land impacted for carbon sink potential - High - Total impacted (over 30 years)							11,677
(1000 hectares)							0.51
Land impacted for carbon sink potential - Low - Accelerate regeneration (1000 hectares)							251
Land impacted for carbon sink potential -							161
Low - Avoid deforestation (over 30 years) (1000 hectares)							101
Land impacted for carbon sink potential -							2,154
Low - Extend rotation length (1000 hectares)							2,104
Land impacted for carbon sink potential -							1,058
Land impacted for carbon sink potential - Low - Improve plantations (1000 hectares)							1,056
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000 hectares)							U
Land impacted for carbon sink potential -							33
Low - Increase trees outside forests (1000 hectares)							33
Land impacted for carbon sink potential -							217
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential - Low - Reforest pasture (1000 hectares)							18.6
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000 hectares)							
Land impacted for carbon sink potential -							5,503
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000							377
hectares)							1//
Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares)							166
Land impacted for carbon sink potential -							3,888
Mid - Extend rotation length (1000 hectares)							0,000
Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares)							1,593
Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000							0
hectares)							
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000							47.9
hectares)							
Land impacted for carbon sink potential - Mid - Reforest cropland (1000 hectares)							325
Land impacted for carbon sink potential - Mid - Reforest pasture (1000 hectares)							135
Land impacted for carbon sink potential - Mid - Restore productivity (1000							3,241
hectares) Land impacted for carbon sink potential -							9,773
Mid - Total impacted (over 30 years) (1000 hectares)							

Table /./	E, DE	aganania	IMPACTS -	Hoalth
Ianie 77.	F+KF-	srennrin -	IMPALIS -	непітп

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		36.5	0.043	0.043	0.027	0.016	0
Coal (million 2019\$)							
Monetary damages from air pollution -		38	17.4	20	22.8	14.5	6.62
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		414	387	294	170	77.9	31.3
Transportation (million 2019\$)							
Premature deaths from air pollution -		4.12	0.005	0.005	0.003	0.002	0
Coal (deaths)							
Premature deaths from air pollution -		4.29	1.96	2.25	2.57	1.64	0.748
Natural Gas (deaths)							
Premature deaths from air pollution -		46.6	43.5	33.1	19.1	8.76	3.52
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,324	14,288				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	31	36.1	49.7	68.6	80.2	84.3
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	69	63.9	50.3	31.4	19.8	15.7
Sales of space heating units - Electric	2.5	12.5	15.3	23.6	37.7	49.3	54.5
Heat Pump (%)							
Sales of space heating units - Electric	16.7	13.9	16.1	22.4	32.2	39	41.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0
Sales of space heating units - Gas Furnace	80.8	73.6	68.6	54	30.1	11.7	3.87
(%)							
Sales of water heating units - Electric	1	2.5	7.27	21.1	42.9	58.1	63.8
Heat Pump (%)							
Sales of water heating units - Electric	3.08	3.16	5.27	11.4	21.5	29	32.1
Resistance (%)							
Sales of water heating units - Gas Furnace	95.1	93.7	86.8	66.8	35	12.3	3.44
(%)							
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.88	1.92	2.22	2.29	3.56	3.78
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	95.2	96.6	96.8	95.9	94.4	93.4
Final energy use - Industry (PJ)	209	215	215	222	230	234	240
Final energy use - Residential (PJ)	151	140	128	117	105	92.8	81.8
Final energy use - Transportation (PJ)	334	315	290	270	254	235	213

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.53	2.65				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.5	66.4	69.6	77.9	89.5	96.6	99.1
Resistance (%)							
Sales of cooking units - Gas (%)	34.5	33.6	30.4	22.1	10.5	3.4	0.915
Sales of space heating units - Electric	12.4	20.2	22.9	30.9	43.8	53.4	57.2
Heat Pump (%)							

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric	31	37.9	37.5	36.3	34.2	32.4	31.5
Resistance (%)							
Sales of space heating units - Fossil (%)	8.35	14	13.7	12.7	11	9.88	9.53
Sales of space heating units - Gas (%)	48.3	27.9	25.9	20.1	10.9	4.35	1.81
Sales of water heating units - Electric	0	1.35	5.19	16.3	33.7	45.7	50.1
Heat Pump (%)							
Sales of water heating units - Electric	40.2	56.7	55.5	52.2	47.4	44.4	43.4
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	36.6	34	26.2	13.7	4.82	1.35
(%)							
Sales of water heating units - Other (%)	6.41	5.35	5.33	5.3	5.21	5.14	5.13

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	2020	0	130	249	865	2,649	3,885
Cumulative 5-yr (million \$2018)		o	100	247	000	2,047	0,000
Public EV charging plugs - DC Fast (1000 units)	0.347		0.57		2.25		5.96
Public EV charging plugs - L2 (1000 units)	1.3		13.7		54.1		144
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.332	0.969	2.74	7.17	15.7	26.3	34
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.63	2.03	2.07	1.65	1.06	0.547	0.234
Vehicle sales - Light-duty - EV (%)	1.8	4.49	11.5	25.2	47.7	71.6	87.4
Vehicle sales - Light-duty - gasoline (%)	92	87.8	80.2	67.5	47	25.3	11.2
Vehicle sales - Light-duty - hybrid (%)	4.33	5.15	5.81	5.32	4.03	2.4	1.17
Vehicle sales - Light-duty - hydrogen FC (%)	0.113	0.382	0.33	0.254	0.181	0.101	0.047
Vehicle sales - Light-duty - other (%)	0.106	0.11	0.1	0.087	0.063	0.035	0.016
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen FC (%)	0.166	0.485	1.37	3.58	7.86	13.2	17
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)		0	0	0	234	604	650
Conversion capital investment -		0	0	0	3,120	4,937	607
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	4	9	10
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	4.01	10.4	11.1
Annual - BECCS (MMT)		0	0	0	4.01	10.4	11.1
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	4.01	14.4	25.5
Cumulative - BECCS (MMT)		0	0	0	4.01	14.4	25.5
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	0	497	871	1,159	1,234
Cumulative investment - All (million \$2018)		0	0	1,561	1,809	2,020	2,068
Cumulative investment - Spur (million \$2018)		0	0	0	248	460	507
Cumulative investment - Trunk (million \$2018)		0	0	1,561	1,561	1,561	1,561
Spur (km)		0	0	0	373	662	737
Trunk (km)		0	0	497	497	497	497

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050		
CO2 storage (MMT)		0	0	0	0	0	0		
Injection wells (wells)		0	0	0	0	0	0		
Resource characterization, appraisal,		0	0	0	0	0	0		
permitting costs (million \$2020)									
Wells and facilities construction costs		0	0	0	0	0	0		
(million \$2020)									

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-1,084
deployment - Cropland measures (1000							
tCO2e/y) Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							U
crops (1000 tC02e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-74.1
deployment - Permanent conservation							
cover (1000 tC02e/y)							1150
Carbon sink potential - Aggressive							-1,158
deployment - Total (1000 tC02e/y) Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							U
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-558
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Moderate deployment - Pasture to energy crops							0
(1000 tC02e/y)							
Carbon sink potential - Moderate							-37
deployment - Permanent conservation							0.
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-595
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares) Land impacted for carbon sink -							1. 1.17
Aggressive deployment - Cropland							4,416
measures (1000 hectares)							
Land impacted for carbon sink -							0.006
Aggressive deployment - Cropland to							
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							4.06
Aggressive deployment - Pasture to							
energy crops (1000 hectares)							10/
Land impacted for carbon sink - Aggressive deployment - Permanent							126
conservation cover (1000 hectares)							
Land impacted for carbon sink -							4,546
Aggressive deployment - Total (1000							.,
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							007
Land impacted for carbon sink - Moderate deployment - Cropland measures (1000							926
hectares)							
Land impacted for carbon sink - Moderate							0.006
deployment - Cropland to woody energy							5.000
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							4.06
deployment - Pasture to energy crops							
(1000 hectares)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate deployment - Permanent conservation cover (1000 hectares)							62.8
Land impacted for carbon sink - Moderate deployment - Total (1000 hectares)							993

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Table 57: E-B+ scenario - PILLAR 6: Land	sinks - Fores	sts					
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-3,070
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,267
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-11,025
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-5,746
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-20,097
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-660
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-6,564
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-3,779
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-8,025
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-1,538
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-22,111
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-211
deforestation (1000 tC02e/y)							
Carbon sink potential - Low - Extend							-4,235
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-2,923
plantations (1000 tCO2e/y)							,
Carbon sink potential - Low - Increase							-6,699
retention of HWP (1000 tCO2e/y)							•
Carbon sink potential - Low - Increase							-231
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-3,282
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-286
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-2,705
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-2,304
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-41,121
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-739
deforestation (1000 tC02e/y)							
Carbon sink potential - Mid - Extend							-7,630
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-4,284
plantations (1000 tCO2e/y)							•
Carbon sink potential - Mid - Increase							-13,398
retention of HWP (1000 tCO2e/y)							•
						I	

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Copper sink potential, Mid. Increase	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Increase							-446
trees outside forests (1000 tC02e/y)							/ 000
Carbon sink potential - Mid - Reforest							-4,923
cropland (1000 tCO2e/y)							0.000
Carbon sink potential - Mid - Reforest							-2,033
pasture (1000 tC02e/y)							F 0/F
Carbon sink potential - Mid - Restore							-5,365
productivity (1000 tC02e/y)							502
Land impacted for carbon sink potential - High - Accelerate regeneration (1000							502
,							
hectares)							172
Land impacted for carbon sink potential -							172
High - Avoid deforestation (over 30 years)							
(1000 hectares)							F (00
Land impacted for carbon sink potential -							5,622
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2,117
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							62.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							434
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							107
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,660
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							11,677
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							251
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							161
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,154
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,058
Low - Improve plantations (1000							•
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							_
hectares)							
Land impacted for carbon sink potential -							33
Low - Increase trees outside forests							00
(1000 hectares)							
Land impacted for carbon sink potential -							217
Low - Reforest cropland (1000 hectares)							211
Land impacted for carbon sink potential -							18.6
Low - Reforest pasture (1000 hectares)							10.0
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000							1,009
LOVY - NESTOLE DLOUGEHALD LICED							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - Low - Total impacted (over 30 years) (1000 hectares)							5,503
Land impacted for carbon sink potential - Mid - Accelerate regeneration (1000 hectares)							377
Land impacted for carbon sink potential - Mid - Avoid deforestation (over 30 years) (1000 hectares)							166
Land impacted for carbon sink potential - Mid - Extend rotation length (1000 hectares)							3,888
Land impacted for carbon sink potential - Mid - Improve plantations (1000 hectares)							1,593
Land impacted for carbon sink potential - Mid - Increase retention of HWP (1000 hectares)							0
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000 hectares)							47.9
Land impacted for carbon sink potential - Mid - Reforest cropland (1000 hectares)							325
Land impacted for carbon sink potential - Mid - Reforest pasture (1000 hectares)							135
Land impacted for carbon sink potential - Mid - Restore productivity (1000 hectares)							3,241
Land impacted for carbon sink potential - Mid - Total impacted (over 30 years) (1000 hectares)							9,773

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		36.5	0.043	0.043	0.027	0.016	0
Monetary damages from air pollution - Natural Gas (million 2019\$)		39.2	20.1	14.5	13.3	11	8.87
Monetary damages from air pollution - Transportation (million 2019\$)		421	425	414	372	296	204
Premature deaths from air pollution - Coal (deaths)		4.12	0.005	0.005	0.003	0.002	0
Premature deaths from air pollution - Natural Gas (deaths)		4.43	2.27	1.63	1.5	1.24	1
Premature deaths from air pollution - Transportation (deaths)		47.3	47.8	46.5	41.9	33.3	22.9

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -		13,236	13,602				
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	27.5	29	29	29	29	28.9	28.9
Resistance (%)							
Sales of cooking units - Gas (%)	72.5	71	71	71	71	71.1	71.1
Sales of space heating units - Electric	2.5	22.4	55	63.9	64.6	64.7	64.7
Heat Pump (%)							
Sales of space heating units - Electric	16.7	16.3	26	31	34.1	34.6	34.6
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0	0	0	0	0	0

Table CO. DCC accompaig	DILLAD 1. Efficiency /Floorwiff continue	0
Table 59: REE Scenorio	- PTLLAR 1 [,] Efficiency/Flectrification -	Commerciai I continuea i

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Gas Furnace (%)	80.8	61.3	19	5.16	1.26	0.741	0.694
Sales of water heating units - Electric Heat Pump (%)	1	0.818	0.818	0.822	0.828	0.831	0.832
Sales of water heating units - Electric Resistance (%)	3.08	2.41	2.42	2.43	2.43	2.43	2.43
Sales of water heating units - Gas Furnace (%)	95.1	96.1	96.1	96.1	96.1	96.1	96.1
Sales of water heating units - Other (%)	0.791	0.625	0.628	0.63	0.63	0.629	0.629

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.31	2.4	2.04	2.08	2.23	2.28
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	93.8	96.3	99.1	101	104	110	118
Final energy use - Industry (PJ)	209	222	230	240	253	268	285
Final energy use - Residential (PJ)	151	140	129	121	115	111	107
Final energy use - Transportation (PJ)	334	316	295	284	286	295	308

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.		2.54	2.44				
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.2	65.2	65.2	65.2	65.2	65.2	65.2
Resistance (%)							
Sales of cooking units - Gas (%)	34.8	34.8	34.8	34.8	34.8	34.8	34.8
Sales of space heating units - Electric	10.6	29.2	30	31.3	32.8	34.9	37.8
Heat Pump (%)							
Sales of space heating units - Electric	31.7	33	32.6	31.9	30.8	28.9	25.7
Resistance (%)							
Sales of space heating units - Fossil (%)	8.51	13	11.8	11	10.8	10.7	10.8
Sales of space heating units - Gas (%)	49.2	24.7	25.6	25.8	25.6	25.6	25.6
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	40.2	57.1	57	57	56.9	56.9	56.9
Resistance (%)							
Sales of water heating units - Gas Furnace	53.4	37.5	37.6	37.6	37.6	37.7	37.7
(%)							
Sales of water heating units - Other (%)	6.41	5.36	5.36	5.41	5.42	5.43	5.44

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
_ (%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.63	2.03	2.2	2.04	1.84	1.72	1.63
Vehicle sales - Light-duty - EV (%)	3.32	5.28	6.04	7.41	9.04	10.5	11.7
Vehicle sales - Light-duty - gasoline (%)	90.6	87.1	85.1	83.4	81.3	79.4	77.8
Vehicle sales - Light-duty - hybrid (%)	4.2	5.06	6.2	6.77	7.36	7.98	8.47

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - hydrogen FC	0.111	0.379	0.35	0.312	0.31	0.311	0.322
(%)							
Vehicle sales - Light-duty - other (%)	0.105	0.109	0.106	0.106	0.106	0.105	0.108
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate	2020	2020	2000	2000	2040	2040	-3,070
regeneration (1000 tCO2e/y) Carbon sink potential - High - All (not							-60,233
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-1,267
Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)							-11,025
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)							-5,746
Carbon sink potential - High - Increase retention of HWP (1000 tC02e/y)							-20,097
Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y)							-660
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-6,564
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-3,779
Carbon sink potential - High - Restore productivity (1000 tC02e/y)							-8,025
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-1,538
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-22,111
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-211
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-4,235
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-2,923
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-6,699
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-231
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-3,282
Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)							-286
Carbon sink potential - Low - Restore productivity (1000 tC02e/y)							-2,705
Carbon sink potential - Mid - Accelerate regeneration (1000 tC02e/y)							-2,304
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)							-41,121
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-739

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Extend							-7,630
rotation length (1000 tC02e/y)							, , , , , ,
Carbon sink potential - Mid - Improve							-4,284
plantations (1000 tC02e/y)							10.000
Carbon sink potential - Mid - Increase							-13,398
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-446
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-4,923
cropland (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-2,033
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-5,365
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							502
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							172
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							5,622
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							2,117
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							62.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							434
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							107
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							2,660
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							11,677
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							251
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							161
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,154
Low - Extend rotation length (1000							, -
hectares)							
Land impacted for carbon sink potential -							1,058
Low - Improve plantations (1000							1,000
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							33
Low - Increase trees outside forests							33
FOAN - THE EGGE OF COMPUTE IN EGG							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							217
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							18.6
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,609
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							5,503
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							377
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							166
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							3,888
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							1,593
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							47.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							325
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							135
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							3,241
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							9,773
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural	-34.3		-7.18				-5.98
uptake (Mt CO2e/y)							
Business-as-usual carbon sink - Retained	-5.47		-9.18				-9.66
in Hardwood Products (Mt CO2e/y)							
Business-as-usual carbon sink - Total (Mt	-39.7		-16.4				-15.6
CO2e/y)							

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		100	63.7	18.3	13.8	12.6	11.8
Monetary damages from air pollution - Natural Gas (million 2019\$)		47.2	44.8	42	35.4	32.9	31.9
Monetary damages from air pollution - Transportation (million 2019\$)		421	431	441	453	464	476
Premature deaths from air pollution - Coal (deaths)		11.3	7.2	2.07	1.56	1.42	1.34
Premature deaths from air pollution - Natural Gas (deaths)		5.32	5.06	4.75	4	3.72	3.6

Table 66: REF scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		47.3	48.5	49.6	50.9	52.2	53.6
Transportation (deaths)							