

Semi-Supervised Learning: Graph-based SSL

Pilsung Kang
School of Industrial Management Engineering
Korea University

Zhu (2007)

Example: Handwritten digit recognition with pixel-wise Euclidean distance

- Assumption
 - ✓ A graph is given on the labeled and unlabeled data
 - √ Instances connected by heavy edge tend to have the same label

Zhu (2007)

- Graph construction
 - \checkmark Nodes: $\mathbf{X}_l \cup \mathbf{X}_u$
 - ✓ Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance

$$w_{ij} = \exp\left(\frac{-||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2}\right)$$

- ε-radius graph
- ✓ Assumption: Instances connected by heavy edge tend to have the same label

Zhu (2007)

• Assumption: Instances connected by heavy edge tend to have the same label

Zhu (2007)

• The mincut algorithm

$$\checkmark$$
 Fix \mathbf{y}_l , find $\mathbf{y}_u \in \{0,1\}^{n-l}$ to minimize $\sum_{i,j} w_{ij} |y_i - y_j|$

✓ Equivalently, solve the optimization problem

$$\min_{\mathbf{y} \in \{0,1\}^n} \infty \sum_{i=1}^l (y_i - \mathbf{y}_{li})^2 + \sum_{i,j} w_{ij} (y_i - y_j)^2$$

✓ Combinatorial problem, but has polynomial time solution

Zhu (2007)

Harmonic function

 \checkmark Relaxing discrete labels to continuous values in $\mathbb R$, the harmonic function f satisfies

$$f(\mathbf{x}_i) = y_i \text{ for } i = 1, ..., l$$

• f minimizes the energy

$$\sum_{i \sim j} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

- the mean of a Gaussian random field
- average of neighbors

$$f(\mathbf{x}_i) = \frac{\sum_{j \sim i} w_{ij} f(\mathbf{x}_j)}{\sum_{j \sim i} w_{ij}}, \ \forall \ \mathbf{x}_i \in \mathbf{X}_u$$

Zhu (2007)

- The graph Laplaican
 - \checkmark We can also compute f in closed form using the graph Laplacian
 - lacksquare n imes n weight matrix \mathbf{W} on $\mathbf{X}_l \cup \mathbf{X}_u$
 - Symmetric, non-negative
 - $lackbox{ extbf{D}}$ Diagonal degree matrix: $\mathbf{D}: \mathbf{D}_{ii} = \sum_{j=1}^n \mathbf{W}_{ij}$
 - Graph Laplacian matrix

$$\Delta = D - W$$

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix		
	$(2 \ 0 \ 0 \ 0 \ 0 \ 0)$	$(0 \ 1 \ 0 \ 0 \ 1 \ 0)$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \end{pmatrix}$		
6	0 3 0 0 0 0	1 0 1 0 1 0	$egin{bmatrix} -1 & 3 & -1 & 0 & -1 & 0 \end{pmatrix}$		
(4)	0 0 2 0 0 0	$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		
I	0 0 0 3 0 0	$\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & -1 & 3 & -1 & -1 \end{bmatrix}$		
(3)-(2)	0 0 0 0 3 0	1 1 0 1 0 0	$\left[\begin{array}{ccccccc} -1 & -1 & 0 & -1 & 3 & 0 \end{array}\right]$		
	$(0 \ 0 \ 0 \ 0 \ 0 \ 1)$	$(0 \ 0 \ 0 \ 1 \ 0 \ 0)$	$\begin{pmatrix} 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$		

Zhu (2007)

- The graph Laplaican
 - \checkmark We can also compute f in closed form using the graph Laplacian
 - lacksquare n imes n weight matrix \mathbf{W} on $\mathbf{X}_l \cup \mathbf{X}_u$
 - Symmetric, non-negative
 - $lackbox{ extbf{D}}$ Diagonal degree matrix: $\mathbf{D}: \mathbf{D}_{ii} = \sum_{j=1}^n \mathbf{W}_{ij}$
 - ullet Graph Laplacian matrix $oldsymbol{\Delta} \equiv \mathbf{D} \mathbf{W}$
 - The energy can be rewritten as

$$\frac{1}{2} \sum_{i \sim j} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \mathbf{f}^T \mathbf{\Delta} \mathbf{f}$$

Zhu (2007)

- Harmonic solution with Laplacian
 - ✓ The harmonic solution minimizes energy subject to the given labels

$$\min_{\mathbf{f}} \infty \sum_{i=1}^{l} (f(\mathbf{x}_i) - y_i)^2 + \mathbf{f}^T \mathbf{\Delta} \mathbf{f}$$

Partition the Laplacian matrix

$$oldsymbol{\Delta} = egin{bmatrix} oldsymbol{\Delta}_{ll} & oldsymbol{\Delta}_{lu} \ oldsymbol{\Delta}_{ul} & oldsymbol{\Delta}_{uu} \end{bmatrix}$$

Harmonic solution

$$\mathbf{f}_u = -\mathbf{\Delta}_{uu}^{-1}\mathbf{\Delta}_{ul}\mathbf{y}_l$$

■ The normalized Laplacian is often used

$$\mathcal{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{\Delta} \mathbf{D}^{-\frac{1}{2}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$$

Zhu (2007)

- Problems with harmonic solution
 - \checkmark It fixes the given labels \mathbf{y}_l
 - What if some labels are wrong?
 - Want to be flexible and disagree with given labels occasionally
 - ✓ It cannot handle new test points directly
 - f is only defined on \mathbf{X}_u
 - We have to add new test points to the graph, and find a new harmonic solution
 - ightharpoonup Allow $f(\mathbf{X}_l)$ to be different from \mathbf{y}_l but penalize it
 - Introduce a balance between labeled data fit and graph energy

$$\min_{\mathbf{f}} \sum_{i=1}^{l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \mathbf{f}^T \mathbf{\Delta} \mathbf{f}$$

Solution

$$\min(\mathbf{f} - \mathbf{y})^{T}(\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^{T} \Delta \mathbf{f} \qquad \mathbf{y} = [\mathbf{y}_{l}; \underbrace{0; \dots; 0}_{N.\text{of unlabeled examples}}]$$

$$\frac{\partial E}{\partial \mathbf{f}} = (\mathbf{f} - \mathbf{y}) + \lambda \Delta \mathbf{f} = 0$$

$$(\mathbf{I} + \lambda \Delta)\mathbf{f} = \mathbf{y} \quad \Rightarrow \quad \mathbf{f} = (\mathbf{I} + \lambda \Delta)^{-1}\mathbf{y}$$

- ✓ If λ is large, then the effect of $\lambda \Delta$ increases \rightarrow more focused on the smoothness
- ✓ If λ is small, then the effect of $\lambda\Delta$ decreases \rightarrow more focused on the accuracy of labeled data

Zien (2008)

Examples: Label Propagation

Zhu (2009)

• When the graph assumption is wrong

Framework

• Framework

• Framework

• Labeled words

Positive pre-labeled words			Negative pre-labeled words		
 좋다	역시	연기력	억지	지루	때우다
훌륭하다	즐겁다	아름답다	아쉬움	약하다	부담
재밌다	기대하다	긴장감	절대	e	부끄럽다
사랑	좋아하다	매력	짜증	진부	고통
재미있다	멋지다	짱	지루함	싫다	난해
감동	대박	빠지다	밉다	별루	거슬리다
기대	웃다	멋있다	이상하다	심하다	망치다
최고	눈물	울다	킬링타임	식상하다	애매
재미	추천	코믹	필요없다	까다	거지
괜찮다	슬프다	오랜만	어이	졸리다	질질

• Label propagation based on Graph-based SSL

• Label propagation based on Graph-based SSL

• Propagated sentiment

• Propagated sentiment

Positive		Negative		
Words	Sentiment Score	Words	Sentiment Score	
슬펏	1	딸리	-0.9576	
먹먹	1	별루였어	-0.5458	
이뿌	0.8282	겉도	-0.4673	
괞찮	0.5956	드 디	-0.4140	
잼잼	0.5126	부족	-0.3713	
신나요	0.4357	심해	-0.3449	
눈시울	0.4089	어설퍼	-0.3123	
짱	0.4002	미흡	-0.3062	
왈칵	0.4001	지루	-0.2728	
존잘	0.3851	빈약	-0.2531	

References

Research Papers

- Ben-David, S., Lu, T., & Pál, D. (2008, July). Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning. In COLT (pp. 33-44).
- Bennett, K., & Demiriz, A. (1999). Semi-supervised support vector machines. Advances in Neural Information processing systems, 368-374.
- Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory (pp. 92-100).
 ACM.
- Fox-Roberts, P., & Rosten, E. (2014). Unbiased generative semi-supervised learning. The Journal of Machine Learning Research, 15(1), 367-443.
- Jia, J., Schaub, M.T., Segarra, S., & Benson, A. R. (2019, July). Graph-based semi-supervised & active learning for edge flows. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 761-771).
- Kim, D., Seo, D., Cho, S., & Kang, P. (2017+). Multi-co-training for document classification using various document representations: TF-IDF, LDA, and Doc2Vec. under review.
- Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems (pp. 3581-3589).
- Singh, A., Nowak, R., & Zhu, X. (2009). Unlabeled data: Now it helps, now it doesn't. In Advances in neural information processing systems (pp. 1513-1520).
- Yu, S., Krishnapuram, B., Rosales, R., & Rao, R. B. (2011). Bayesian co-training. The Journal of Machine Learning Research, 12, 2649-2680
- Zhou, Z. H., & Li, M. (2005, July). Semi-Supervised Regression with Co-Training. In IJCAI (Vol. 5, pp. 908-913).

References

Other materials

- Figures in the first page: 하상욱 단편시집 서울 시
- Zhu, X. (2007). Semi-Supervised Learning Tutorial. International Conference on Machine Learning (ICML 2007).
- Choi, S. (2015). Deep Learning: A Quick Overview. Deep Learning Workship. KIISE.
- Zien, A. (2008). Semi-Supervised Learning. Summer School on Neural Networks.
- Zhu, X. (2009). Tutorial on Semi-Supervised Learning. Theory and Practice of Computational Learning.

