Question-1-1.5-2

EE24BTECH11035 - KOTHAPALLI AKHIL

Question:

Find the ratio in which the Y axis divides divides the line segment joining points (6, -4)and (-2, -7). Also find the point of intersection.

Solution:

Let the point on the Y-axis be $\binom{0}{v}$,

The given two points are $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ -7 \end{pmatrix}$. The above 3 points are collinear

Construct a Matrix for the above points

$$M = \begin{pmatrix} 0 & y & 1 \\ 6 & -4 & 1 \\ -2 & -7 & 1 \end{pmatrix} \tag{0.1}$$

The Determinant of the matrix is 0

$$Det = 0(-4+7) - y(6+2) + 1(-42-8) = 0$$
(0.2)

$$\implies y = -6.25 \tag{0.3}$$

$$\therefore$$
 The point on Y-Axis is $\begin{pmatrix} 0 \\ -6.25 \end{pmatrix}$

Point	Coordinates
A	(6, -4)
В	(0, -6.25)
C	(-2, -7)

TABLE 0: variables used

Assume point **B** divides the line segment **AC** in the ratio k:1. According to the section formula:

$$\mathbf{B} = \frac{k\mathbf{C} + \mathbf{A}}{k+1}$$

 $\mathbf{B} = \frac{k\mathbf{C} + \mathbf{A}}{k+1}$ Substituting the values:

$$\begin{pmatrix} 0 \\ -6.25 \end{pmatrix} = \frac{{}^{k} \begin{pmatrix} -2 \\ -7 \end{pmatrix} + \begin{pmatrix} 6 \\ -4 \end{pmatrix}}{{}^{k+1}}$$

This gives us two equations:
$$0 = \frac{-2k+6}{k+1}$$
, $-6.25 = \frac{-7k-4}{k+1}$

Solving for k from the first equation:

$$0 = -2k + 6$$

$$\Rightarrow 2k = 6$$

$$\Rightarrow k = 3$$

Therefore, the ratio in which **B** divides **AC** is 3:1.

Fig. 0.1: Line **AC**