

支持双向 SCP、VOOC、PD3.0 等快充协议、支持 2~5 节串联电芯 集成升降压驱动 最大输出功率 100W 的移动电源 SOC

特性

• 同时支持多个 USB 口

- ◆ 2 个 USB A 口输出
- ♦ 1 个 USB C 口输入/输出
- ◆ 1个USBB口或 Lightning 口输入或 C口输入/输出

• 快充规格

- ◆ 任意一个口都支持快充
- ◆ 集成 QC2.0/QC3.0/QC3+输出快充协议
- ◆ 集成 FCP 输入/输出快充协议
- ◆ 集成 AFC 输入/输出快充协议
- ◆ 集成 SCP 输入/输出快充协议
- ◆ 集成 VOOC 输入/输出快充协议
- ◆ 集成 DRP try.SRC 协议, PD3.0 输入/输出快充
- ◆ 兼容 BC1.2、苹果手机快充

• 集成 USB Power Delivery (PD2.0/PD3.0) 协议

- ◆ 支持 PD2.0 双向输入/输出协议
- ◆ 支持 PD3.0 双向输入/输出, PPS 输出协议
- ◆ 支持 5V, 9V, 12V, 15V, 20V 电压档位输入
- ◆ 支持 5V, 9V, 12V, 15V, 20V 电压档位输出
- ◆ 支持 PPS 20mV/step 输出电压档位
- ◆ 集成硬件的双向标记编解码(BMC)协议
- ◆ 集成物理层协议(PHY)
- ◆ 集成硬件 CRC
- ◆ 支持 Hard Reset
- ◆ 集成对 E-MARK 线缆的识别和支持

• 集成功率控制

- ◆ 集成双向 BUCK-BOOST 升降压功率 NMOS 驱动
- ◆ 集成 charge-pump 控制外置路径 NMOS

• 充电规格

- ◆ 电池端充电电流最高可达 5A
- ◆ 自适应充电电流调节
- ◆ 支持 4.1V、4.15V、 4.2V、4.3V、4.35V、4.4V 由池
- ◆ 支持 2/3/4/5 节串联电芯

• 放电规格

- ◆ 输出功率最大 100W
- ◇ 同步开关放电 5V 2A 效率达 97%以上
- ◆ 支持线补

电量显示

- ◆ 支持 4 颗 LED 电量显示
- ◆ 支持88、188等各种数码管电量显示
- ◆ 支持外部 PIN 选数码管或 LED 灯做电量显示
- ◆ 可自学习的电量计,电量显示更均匀
- ◆ 初始电池容量 PIN 选配置

• 其他功能

- ◆ 自动检测手机插入和拔出
- ◆ 快充状态指示
- ◆ 支持电池温度检测
- ♦ 智能识别负载,轻负载自动进待机

- ♦ 支持多种按键模式选择
- ◆ 内置照明灯驱动

• 多重保护、高可靠性

- ◆ 输入过压、欠压保护
- ◆ 输出过流、过压、短路保护
- ◆ 电池过充、过放、过流保护
- ◆ IC 过温保护
- ◆ 充放电电池温度 NTC 保护
- ◆ ESD 4KV,输入(含 CC/DP/DM 引脚)耐压 30V

• BOM 极简

- ◆ 内置开关功率 MOS 驱动
- ◆ 单电感实现充电、放电功能
- 封装规格: 8mm × 8mm 0.4pitch QFN64

概述

IP5389 是一款集成 QC2.0 / QC3.0 / QC3+输出快充协议,AFC/FCP/ SCP/ VOOC 输入输出快充协议、USB C PD2.0/PD3.0 输入输出协议、基容 BC1.2/苹果手机、同步双向升降压转换器、锂电池充电管理、电池电量指示等多功能的电源管理 SOC,为快充移动电源提供完整的电源解决方案。可同时支持 USB A x2, USB C, USB B(或 lightning 口,或 USBC)四个 USB 口,单独使用任何一个 USB 口都可以支持快充,同时使用两个及以上输出口时,只支持5V。

IP5389 的高集成度与丰富功能,只需一个电感实现双向降升压功能,在应用时仅需极少的外围器件,有效减小整体方案的尺寸,降低 BOM 成本。

IP5389 支持 2/3/4/5 节串联电芯,同步开关升降压系统可提供最大 100W 输出能力。空载时,自动进入休眠状态。

IP5389 的同步开关充电系统,提供高达 5.0A 充电电流。 內置 IC 温度、电池温度和输入电压控制环路,智能调节充电 电流。

IP5389 内置 14bit ADC,精确测量电池电压和电流。 IP5389 内置电量计算法,可准确获取电池电量信息。可定制 电池电量曲线,以精准显示电池电量。

IP5389 支持 4 颗 LED 电量显示,支持 88、188 等各种数码管电量显示,支持照明功能,支持按键。

应用产品

- 移动电源、充电宝
- 手机、平板电脑等便携设备

典型应用

图 1 简化应用原理图

1. IP 系列型号选择表

移动电源 IC

16	充放	电				主	要特点				封装	片
IC 型号	放电	充电	LED 灯数	照明 灯	按键	I2C	DCP	USB C	QC 认证	PD3. 0 /PPS	规格	兼容
IP5303T	1.0A	1.2A	1,2	√	√	-	-	-	-	-	ESOP8	
IP5305T	1.0A	1.2A	1,2,3,4	√	√	-	-	-	-	-	ESOP8	z
IP5306	2.4A	2.1A	1,2,3,4	√	√	√	-	-	-		ESOP8	PIN2PIN
IP5306H	2.4A	2.1A	1,2,3,4	√	√	√	-	-	-	-	ESOP8	PII
IP5407	2.4A	2.1A	1,2,4	√	√	-	-	-	-	-	ESOP8	
IP5209	2.4A	2.1A	3,4,5	√	√	√	√	-	-	-	QFN24	PIN2
IP5209U	2.4A	2.1A	3,4,5	√	√	√	√	-	-	-	QFN24	PIN
IP5189T	2.1A	2.1A	1,2,3,4	√	√	√	√	-	-	-	QFN24	PIN2
IP5189TH	2.1A	2.1A	1,2,3,4	√	√	√	√	-	-	-	QFN24	PIN
IP5310	3.1A	3.0A	1,2,3,4	√	√	√	√	√	-	-	QFN32	
IP5506	2.4A	2.1A	数码管	√	√	-	-	-	-	-	ESOP16	
IP5508	2.4A	2.1A	数码管	√	√	-	√	-	-	-	QFN32	
IP5320	3.1A	3.0A	数码管	√	√	√	√	√	-	-	QFN28	
IP5566	3.1A	3.0A	1,2,3,4	√	√	-	√	√	-	-	QFN40	
IP5322P	18W	4.0A	1,2,3,4	√	√	√	√	-	√	-	QFN32	
IP5332	18W	4.0A	1,2,3,4	√	√	√	√	√	√	√	QFN32	
IP5328P	18W	4.0A	1,2,3,4	√	√	√	√	√	√	√	QFN40	
IP5356	22.5W	5.0A	数码管	√	√	-	√	√	√	√	QFN40	
IP5358	22.5W	5.0A	数码管	√	√	-	√	√	√	√	QFN48	
IP5568	22.5W	5.0A	数码管	√	√	-	√	√	√	√	QFN64	
IP5388	30W	5.0A	数码管	√	√	-	√	√	√	√	QFN64	
IP5389	100W	5.0A	数码管	√	√	-	√	√	√	√	QFN64	

IP5389 常见定制型号说明

型号	功能说明
IP5389_BZ	标准 IP5389,支持 2-5 节电池、最大功率支持 100W,支持 AABCL 接口
IP5389_BZ_AACC	支持 2-5 节电池、最大功率支持 100W,支持 AACC 接口,2 路双向 typec

2. 引脚定义

IP5389 引脚说明

Pin Num	Pin Name	PIN 定义说明
1	LT	Lightning 解码引脚
2	CC3	USB C2 口检测和快充通信引脚 CC3
3	DPB	microUSB 口快充智能识别引脚 DP
4	DMB	microUSB 口快充智能识别引脚 DM
5	CC4	USB C2 口检测和快充通信引脚 CC4
6	GPIO9	通用 GPIO
7	GPIO10	通用 GPIO
8	BAT_S1	电池节数选择,接地或者不接地,可选择不同节数的电池
9	BAT_S2	电池节数选择,接地或者不接地,可选择不同节数的电池
10	VIN	microUSB 口 VIN 输入充电电源引脚
11	VING	microUSB 口输入路径 NMOS 控制引脚
12	VIN_I	microUSB 口路径电流检测引脚
13	VBUS	USB C 口 VBUS 输入/输出电源引脚
14	VBUSG	USB C 口输入/输出路径 NMOS 控制引脚
15	VBUS_I	USB C 口路径电流检测引脚
16	AGND	模拟地
17	VIO	移动电源输入/输出端引脚
18	CSP1	输入/输出端电流采样正端
19	CSN1	输入/输出端电流采样负端
20	PCIN	输入/输出端峰值电流采样引脚
21	HG1	H 桥功率管输入/输出端上管控制引脚
22	BST1	H 桥功率管输入/输出端自举电压引脚
23	LX1	输入/输出端电感连接引脚
24	LG1	H 桥功率管输入/输出端下管控制引脚
25	LG2	H 桥功率管电池端下管控制引脚
26	LX2	电池端电感连接引脚
27	BST2	H 桥功率管电池端自举电压引脚
28	HG2	H 桥功率管电池端上管控制引脚
29	PCON	电池端峰值电流采样引脚
30	CSN2	电池端平均电流采样负端
31	CSP2	电池端电流采样正端
32	BAT	电池端供电引脚
33	LX	系统 5V 供电 BUCK 输出电感连接点,默认悬空

34	VCC5V	系统 5V 供电电源,给 IC 内部模拟电路供电
35	AGND	模拟地
36	KEY	按键和照明灯引脚
37	VCCIO	系统 3.3V 供电电源,给 IC 内部数字电路供电
38	LED6	电量显示灯驱动 LED6
39	KEY_MODE	按键功能定义引脚,连接不同的电阻,可以选择不同的按键功能定义 在做数码管方案时,用作 IO 驱动
40	FCAP	电池容量选择,连接不同的电阻,可选择不同的电池容量
41	VSET	电池电压选择,连接不同的电阻,可以选择不同的充电电池电压
42	IGND	差分电流采样负端
43	ISENSE	差分电流采样正端
44	LED5	电量显示灯驱动 LED5
45	LED4	电量显示灯驱动 LED4
46	LED3	电量显示灯驱动 LED3
47	LED2	电量显示灯驱动 LED2
48	LED1	电量显示灯驱动 LED1
49	PMAX	系统输入输出最大功率选择,连接不同电阻设定 PMAX
50	NTC	NTC 电阻检测引脚
51	CC2	USB C 口检测和快充通信引脚 CC2
52	DPC	USB C 口快充智能识别 DP
53	DMC	USB C 口快充智能识别 DM
54	CC1	USB C 口检测和快充通信引脚 CC1
55	DPA1	USB A1 口快充智能识别 DP
56	DMA1	USB A1 口快充智能识别 DM
57	VOUT1	USB A1 口 VOUT1 输出电源引脚
58	VOUT1G	USB A1 口输出路径 NMOS 控制引脚
59	VOUT1_I	USB A1 口路径电流检测引脚
60	DPA2	USB A2 口快充智能识别 DP
61	DMA2	USB A2 口快充智能识别 DM
62	VOUT2	USB A2 口 VOUT2 输出电源引脚
63	VOUT2G	USB A2 口输出路径 NMOS 控制引脚
64	VOUT2_I	USB A2 口路径电流检测引脚
65(EPAD)	GND	系统地和散热地,需要保持与 GND 良好接触

3. 芯片内部框图

4. 极限参数

参数	符号	值	单位
端口输入电压范围	VBAT/VIN/VBUS	-0.3 ~ 35	V
协议接口电压范围	DP/DM/CC	-0.3 ~ 30	٧
数字 GPIO 电压范围	LED/FCAP	-0.3 ~ 8	V
结温范围	T _J	-40 ~ 125	°C
存储温度范围	Tstg	-60 ~ 150	°C
热阻 (结温到环境)	θ_{JA}	26	°C/W

ſ				_
	人体模型(HBM)	ESD	4	KV
	八斤以 <u>工(11011)</u>		· ·	I

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命

5. 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入电压	VBAT	5.6		25	V
输入电压	V _{IN} /V _{BUS}	4.5		25	V
输出电压	V _{OUT1} /V _{OUT2} /V _{BUS}	3		22	V
工作环境温度	T _A	-40		85	ပ

^{*}超出这些工作条件,器件工作特性不能保证。

6. 电气特性

除特别说明, TA=25℃, L=10uH

参数	符号	测试	<u> </u>	最小值	典型值	最大值	单位
充电系统			•		, , , , , , , , , , , , , , , , , , , ,		, ,
输入电压	V _{IN} /V _{BUS}			4.5	5/9/12/15/20	25	V
输入过压电压	V _{IN}					15	V
柳八 及压 电压	V_{BUS}					25	V
		电池节数为 N,	$R_{VSET} = 27K$	N*4.16	N*4.20	N*4.24	V
		电池节数为 N,	$R_{VSET} = 18K$	N*4.26	N*4.30	N*4.34	V
去山楂 压山压	V_{TRGT}	电池节数为 N,	$R_{VSET} = 13K$	N*4.31	N*4.35	N*4.39	V
充电恒压电压		电池节数为 N,	$R_{VSET} = 9.1K$	N*4.36	N*4.40	N*4.44	V
		电池节数为 N,	$R_{VSET} = 6.2K$	N*4.06	N*4.10	N*4.14	V
		电池节数为 N,	$R_{VSET} = 3.6K$	N*4.11	N*4.15	N*4.19	V
		VIN=5V,输入I	电流	1.7	2.0	2.3	Α
		VIN=9V,输入I	电流	1.7	2.0	2.3	Α
		VIN=12V,输入	电流	1.2	1.5	1.8	Α
充电电流	I _{CHRG}	VBUS=5V,输	入电流	2.7	3.0	3.3	Α
		VBUS=9V,	非 PD 快充	1.7	2.0	2.3	Α
		输入电流	PD 快充	2.7	3.0	3.3	Α
		VBUS=12V,	非 PD 快充	1.2	1.5	1.8	Α

		输入电流 PD 快充	2.7	3.0	3.3	Α
		VBUS =15V,输入电流	2.7	3.0	3.3	Α
		VBUS =20V,输入电流	2.7	3.0	3.3	Α
		VIN=5V, VBAT<2.5V	50	100	150	mA
涓流充电电流	I _{TRKL}	VIN=5V, 2.5V<=VBAT <n*3.0v< td=""><td>100</td><td>200</td><td>300</td><td>mA</td></n*3.0v<>	100	200	300	mA
涓流截止电压	V_{TRKL}	电池节数为 N	N*2.9	N*3	N*3.1	V
充电停充电流	I _{STOP}		100	0.025*FCAP		mA
再充电阈值	V_{RCH}	电池节数为 N		V _{TRGT} – N*0.1	4	V
充电截止时间	T _{END}		45	48	51	Hour
放电系统						
电池工作电压	V_{BAT}	电池节数为 N	N*2.85		N*4.5	V
开关工作电池 输入电流	I _{BAT}	VBAT=4*3.7V, VOUT=5.0V, fs=250kHz, lout=0mA	3			mA
	QC2.0	V _{OUT} =5V@1A	4.75	5.00	5.25	V
	V _{OUT}	V _{OUT} =9V@1A	8.70	9	9.30	V
	V OUT	V _{OUT} =12V@1A	11.60	12	12.40	V
DC 输出电压	QC3.0/ QC3+ V _{OUT}	@1A	3.6		20	V
	QC3.0 Step	Y		200		mV
	QC3+ Step			20		mV
		VBAT=4*3.7V, VOUT=5.0V, fs=250KHz, lout=1A		120		mV
输出电压纹波	ΔV _{OUT}	VBAT=4*3.7V, VOUT=9.0V, fs=250KHz, lout=1A		135		mV
		VBAT=4*3.7, VOUT=12V , fs=250KHz, lout=1A		370		mV
放电系统最大 输出功率	Pmax	PD 协议下,不同 PMAX 电阻 值对应不同 Pmax	20		100	W
		V_{BAT} =8V, V_{OUT} =5V, I_{OUT} =2A		94.69		%
计中区标识别		V _{BAT} =8V, V _{OUT} =9V, I _{OUT} =2A		95.36		%
放电系统效率	η _{out}	V _{BAT} =8V, V _{OUT} =12V, I _{OUT} =2A		95.86		%
		V_{BAT} =15V, V_{OUT} =5V, I_{OUT} =2A		91.55		%

						_
		V _{BAT} =15V, V _{OUT} =9V,		95.05		%
		I _{OUT} =2A				
		V_{BAT} =15V, V_{OUT} =12V, I_{OUT} =2A		95.37		%
		VBAT=N*3.7V,多口输出 5V	4.1	4.4	4.7	Α
		VBAT= N *3.7V,单口输出 5V	3.2	3.5	3.8	A
		VBAT= N *3.7V, 单口输出				
		9V,非 PD 状态	2.7	3	2.3	Α
放电系统过流		VBAT= N *3.7V, 单口输出			A	1.
关断电流	l _{shut}	12V,非 PD 状态	2	2.2	2.5	А
		VBAT= N *3.7V, 单口输出	1.25	1.5	4.7	Y _
		20V,非 PD 状态	1.35	1.5	1.7	Α
		VBAT= N *3.7V, 单口输出		PDO * 1.1%		Α
		PD 状态		PDO 1.1%		A
输出轻载关机 功率	P_out	VBAT=3.7V		350		mW
负载过流检测						
时间	T_UVD	输出电压持续低于 2.4V		30		ms
负载短路检测	Ŧ	输出电压持续低于 2.2V	1	40		0
时间	T _{OCD}	柳山电压特殊似 1 2.2 V		40		us
控制系统				<u>-</u>		
 开关频率	fs	放电开关频率		250		kHz
		充电开关频率		250		kHz
VCCIO 输出 电压	V_{CCIO}		3.15	3.3	3.45	V
电池端待机电	I _{STB}	VBAT=14.8V,按键关机后的		180		uA
流		平均电流				
LDO输出电流	I _{LDO}		25	30	35	mA
LED 照明驱动	I _{WLED}		10	15	20	mA
电流						
LED 显示驱动	I _{L1}	电压下降 10%	5	7	9	mA
电流	l _{L2}	电压下阵 1070	5	,	Э	IIIA
总负载轻载关	'L3					
机自动检测时	T1 _{load}	人 人 人 人 女 女 女 女 女 大 大 大 大 大 大 大 大 大 大 大	30	32	34	s
间	• • 1080	24-M-M 14-2/ 1 1 00011111	- 50		. .	
输出口轻载关						
断自动检测时	T2 _{load}		14	16	18	s
间						
短按键唤醒时	T		60		500	ma
间	T _{OnDebounce}		60		500	ms
打开 WLED 时	$T_{Keylight}$		1.2	2	3	S

间						
热关断温度	T_{OTP}	上升温度	110	125	140	$^{\circ}$
热关断温度迟 滞	ΔT_{OTP}			40		$^{\circ}$

7. 功能描述

低电锁定与激活

在电池低压状态,为了减小静态功耗,IP5389是没有负载插入检测功能的,也无法通过按键进行激活。 此时按键动作无法激活升降压输出,但电量灯最低位会闪4次进行提示。

在锁定状态,必须要进入充电状态才能激活芯片功能。

充电

IP5389 拥有一个支持同步开关结构的恒流、恒压锂电池充电管理系统。可以自动匹配不同的充电电压规格。

当电池电压小于N*3V时(N为电池节数),采用200mA涓流充电;当电池电压大于N*3V,进入输入恒流充电,电池端最大充电电流5.0A;当电池电压接近设定的电池电压时,进入恒压充电;当电池端充电电流小于停充电流I_{STOP}且电池电压接近恒压电压时,停止充电。充电完成后,若电池电压低于(V_{TRGT} – N*0.1)V后,重新开启电池充电。

IP5389 采用开关充电技术,开关频率 250kHz。普通 5V 输入充电时,输入功率 10W; 快充输入充电时,最大输入功率 60W。电池端最大充电电流可达 5.0A, 充电效率最高到 96%, 能缩短 3/4 的充电时间。IP5389 会自动调节充电电流大小,来适应不同负载能力的适配器。

IP5389 支持同充同放,在同充同放时,输入输出都是 5V。

放电

IP5389 集成一个支持高压输出的同步开关转换器系统,支持 3.0V~21V 宽电压范围输出,同步开关升降压系统可提供最大 100W 输出能力。内置软启动功能,防止在启动时的冲击电流过大引起故障,集成输出过流,短路,过压,过温等保护功能,确保系统稳定可靠的工作。

放电系统电流可随温度自动调节,确保IC温度在设定温度以下。

VBAT=8V, VOUT=5/9/12/15V时,放电效率曲线如下:

图 4 VBAT=8V 放电效率曲线图

VBAT=15V, VOUT=5/9/12/15V时,放电效率曲线如下:

图 5 VBAT=15V 放电效率曲线图

USB C

IP5389 集成 USB C 输入、输出识别接口,自动切换内置上下拉电阻,自动识别插入设备的充放电属性。带有 Try.SRC 功能,当连接到对方为 DRP 设备时,可优先给对方充电。

当作为 DFP 工作时,使用 CC 引脚配置对外输出 3A 电流能力信息;当作为 UFP 工作时,可识别出对方的输出电流能力。

上下拉能力

名称	值
Ip_3P0	330uA
Rd	5.1K

上拉 lp 使能时的比较器阈值

Table 4-23 CC Voltages on Source Side - 3.0 A @ 5 V

	Minimum Voltage	Maximum Voltage	Threshold
Powered cable/adapter (vRa)	0.00 V	0.75 V	0.80 V
Sink (vRd)	0.85 V	2.45 V	2.60 V
No connect (vOPEN)	2.75 V		

下拉电阻 Rd 使能时的比较器阈值

Table 4-25 Voltage on Sink CC pins (Multiple Source Current Advertisements)

Detection	Min voltage	Max voltage	Threshold	
vRa	-0.25 V	0.15 V	0.2 V	
vRd-Connect	0.25 V	2.04 V		
vRd-USB	0.25 V	0.61 V	0.66 V	
vRd-1.5	0.70 V	1.16 V	1.23 V	
vRd-3.0	1.31 V	2.04 V		

USB C 检测周期

Figure 4-36 DRP Timing

	Minimum	Maximum	Description
tDRP	50 ms	100 ms	The period a DRP shall complete a Source to Sink and back advertisement
dcSRC.DRP	30%	70%	The percent of time that a DRP shall advertise Source during tDRP
tDRPTransition	0 ms	1 ms	The time a DRP shall complete transitions between Source and Sink roles during role resolution
tDRPTry	75 ms	150 ms	Wait time associated with the Try.SRC state.
tDRPTryWait	400 ms	800 ms	Wait time associated with the Try.SNK state.
tTryTimeout	550 ms	1100 ms	Timeout for transition from <u>Try.SRC</u> to <u>TryWait.SNK</u> .
tVPDDetach	10 ms	20 ms	Time for a DRP to detect that the connected Charge-Through VCONN-Powered USB Device has been detached, after VBUS has been removed.

USB C PD

IP5389 集成 USB C Power Delivery PD2.0/PD3.0/PPS 协议,集成物理层协议(PHY)、硬件双向标记编解码(BMC)模块。

支持 PD2.0/PD3.0 双向输入/输出协议,支持 PPS 输出协议。最大支持 100W 功率输出,输入支持 5V, 9V, 12V, 15V, 20V 电压档位,输出支持 5V, 9V, 12V, 15V, 20V 电压档位。在识别到 E-MARK 线缆时输出广播能力 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A, PPS 3.3~21V/3A, 未识别到 E-MARK 线缆时输出广播能力 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3A, PPS 3.3~21V/3A。

快充功能

IP5389 支持多种规格的快充形式: QC2.0/QC3.0/QC3+、FCP、AFC、SCP、VOOC、Apple。 给移动电源充电不支持 QC2.0、QC3.0、QC3+功能,不支持外置快充协议 IC。

给移动电源充电可支持 FCP、AFC 快充输入,由于 FCP、AFC 是通过 DP/DM 进行快充握手请求的,所以当增加了其他快充协议 IC 时,无法再支持 FCP、AFC 快充。

移动电源给手机充电时:进入放电模式之后,自动检测 DP、DM 引脚上的快充时序,智能识别手机类型,可支持 QC2.0/QC3.0/QC3+、FCP、AFC、SCP、VOOC 协议的手机,以及苹果手机 2.4A 模式、BC1.2 普通 Android 手机 1A 模式。

支持苹果手机时: DP=DM=2.7V

支持 BC1.2 时: DP 与 DM 短接

在 BC1.2 模式下,当检测到 DP 电压大于 0.325V 且小于 2V 持续 1.25s 时,初判为有快充请求,这时将会断开 DP 与 DM 之间的短接通路,同时在 DM 下拉 20k 到地,如果持续 2ms 满足 DP 电压大于 0.325V 且小于 2V、DM 电压小于 0.325V,则认为快充连接成功,之后就可以按照 QC2.0/QC3.0/QC3+需求输出请求的电压。任何时候当 DP 电压小于 0.325V,则强制退出快充模式,输出电压立即回到默认 5V。

QC2.0/QC3.0/QC3+输出电压请求规则

DP	DM	Result
0.6V	GND	5V
3.3V	0.6V	9V
0.6V	0.6V	12V
0.6V	3.3V	Continuous Mode
3.3V	3.3V	保持

Continuous Mode 即是 QC3.0/QC3+特有的工作模式,在该模式下,输出电压可以按照 QC3.0 的协议要求,按照 0.2V的 step 进行精细的电压调节,也可以 QC3+握手成功后,按照 20mV的 step 进行精细的电压调节。

IP5389 各个口的支持的快充协议:

协议	VOUT1 输出口	VOUT2 输出口	Micro USB 输入	TYPEC 输出	TYPEC 输入
			口		
QC2.0	✓	✓	-	✓	-
QC3.0	✓	✓	-	✓	-
QC3+	✓	✓	-	✓	-
AFC	✓	✓	✓	✓	✓
FCP	✓	✓	✓	✓	1
SCP	√	✓	✓	✓	1
VOOC	√	✓	✓	-	
PD2.0	-	-	-	√	1
PD3.0	-	-	-	1	V
PPS	-	-	-	₩.	

支持: √

不支持: -

充放电路径管理

待机时

如果 VIN 或者 VBUS 插入充电电源,可直接启动充电。

如果 VBUS 上插入 USB C UFP 设备或者 VOUT 上插入用电设备,可自动开启放电功能。

如果有按键动作,VOUT1、VOUT2、USBC上有负载连接时,才会开启,否则会保持关闭状态。

放电时

无按键动作的情况下,只有插了用电设备的输出口的输出路径才会打开;未连接设备的输出口的输出路径是不会开启的。

VOUT1、VOUT2、USB C 任何一个口都可以支持输出快充协议,但由于该方案是单电感方案,只能支持一个电压输出,所以只能在只有一个输出口开启的情况下才能支持快充输出。同时使用两个或者三个输出口时,会自动关闭快充功能。

按照"典型应用原理图"所示连接,任何一个输出口已经进入快充输出模式时,当另一个输出口有用电设备插入,会先关闭所有输出口,关闭高压快充功能,然后再开启有设备存在的输出口,此时所有输出口仅支持 Apple、BC1.2 模式充电。当处于多口输出模式时,任一输出口的输出电流小于约 80mA(MOS Rds_ON@10mohm)时,持续 16s 后会自动关闭该口。从多个用电设备减少到只有一个用电设备时,持续约 16s 后会先关闭所有输出口,开启高压快充功能,然后再开启最后一个用电设备存在的输出口,以此方式来重新激活设备请求快充。当只有一个输出口开启的情况下,总的输出功率小于约 350mW 持续约 32s时,会关闭输出口和放电功能,进入待机状态。

充电时

VIN 口和 VBUS 口任何一个口插入电源都可以进行充电,如果都接入电源充电时,会优先使用先插入的电源进行充电。

在单充电的模式下,会自动识别电源的快充模式,自动匹配合适的充电电压和充电电流。

边充边放

当同时插着充电电源和用电设备时,会自动进入边充边放模式。在该模式下,芯片会自动关闭内部快充输入请求,在 VIO 电压只有 5V 的情况下,开启放电路径给用电设备供电;如果 VIO 电压大于 5.6V,为了安全考虑,不会开启放电路径。为保证用电设备的正常充电,IP5389 会将充电欠压环路提高到 4.925V以上,以保证优先给用电设备供电。

在边充边放过程中,如果拔掉充电电源,IP5389 会关闭充电功能,重新启动放电功能来给用电设备供电。为了安全考虑,同时也为了能够重新激活手机请求快充,转换过程中会有一段时间电压掉到 0V。

在边充边放过程中,如果拔掉用电设备,或者用电设备充满停止抽电持续约 16s 后会自动关闭对应的放电路径。当放电路径都关闭,状态回到单充电模式时,会降低充电欠压环路,自动重新激活快充,加速给移动电源充电。

手机自动检测

手机插入自动检测功能

IP5389 自动检测手机插入, 即刻从待机态唤醒, 打开升压 5V 给手机充电, 省去按键操作, 支持无按键模具方案。

手机充满自动检测功能

IP5389 通过片内 ADC 来采样每个口的输出电流,当单个口的输出电流小于约 80mA(MOS Rds_ON@10mohm)并且持续约 16s 时,会将该输出口关闭。当输出总功率小于约 350mW 持续约 32s 时,认为所有输出口手机已经充满或者拔出,会自动关闭升降压输出。

按键和按键模式选择

图 7 KEY 按键接法

按键连接方式如图7所示,可识别长按键和短按键操作。

- 按键持续时间长于 60ms, 但小于 2s, 即为短按动作
- 按键持续时间长于 2s, 即为长按动作。
- 小于 60ms 的按键动作不会有任何响应。
- 超长按 10s 可复位整个系统。

IP5389 在 KEY_MODE PIN 上放出 80uA 电流,外接不同的电阻,可以得到不同的电压,IC 内部检测 key_mode 电压可以选择不同的按键定义。注意外接电阻要用 1%精度电阻,电阻选型需要考虑到尽量把 VKEY_MODE 的电压取在判断范围的中间。当 VKEY_MODE 的电压超出所有判断电压范围,会识别为检测电路短路或者开路异常。

KEY_MODE	KEY_MODE	KEY_MODE	按键功能定义
pin 上外接电阻	理论电压(mV)	电压判断范围(mV)	
27K	2160	1750~2550	短按开机、连续两次短按关机、长按 2s
			开关手电筒
18K	1440	1220~1750	短按开机,长按 2s 开关照明、无按键关
			机功能
13K	1040	860~1220	短按开机、连续两次短按按键开关照明、
			无按键关机功能
9.1K	728	600~860	短按开机、连续两次短按按键开关照明、
			长按 2s 关机
6.2K	496	380~600	振动开关开机、无照明和关机功能

电阻 R7	开机	关机	照明灯
27K	短按	双击	长按 2s
18K	短按		长按 2s
13K	短按		双击
9.1K	短按	长按 2s	双击
6.2K	振动开关		

快充状态指示

HLED 可以指示当前快充模式,无论充电还是放电,当进入快充模式处于非 5V 状态时,指示灯会自动亮起。

可作为 6pin 数码管方案的第 6pin 驱动脚,此时无快充灯显示(需根据实际数码管规格进行定制)。

图 8 快充指示灯接法

电量计和电量显示

IP5389 内置电量计功能,可实现准确的电池电量计算。

IP5389 支持外部 LED5 来选择是 LED 模式还是数码管模式。

IP5389 支持 4 灯模式。

IP5389 支持 188 数码管显示电量。

电量计

IP5389 支持外部设置电芯的初始化容量,利用电芯端电流和时间的积分来管理电芯的剩余容量。当电池端电流检测 Pin CSP2/CSN2 采用 5 mohm 检测电阻时,可以精准的显示当前电芯的容量。当电池端电流检测 Pin CSP2/CSN2 短路连接时,可以通过估算电池电流,从而显示估算出的当前电芯容量;同时 IP5389 支持电量充电从 0%充电到 100%一次完整的充电过程自动校准当前电芯的总容量,更合理的管理电芯的实际容量。

IP5389 外部 PIN 设定电芯初始容量公式: 电池容量=R₁₇*0.8 (mAH)。最小支持 2000mAH,最大支持 25000Mah,容量为单串电芯的容量。

当 FCAP 引脚上电压小于 100mV 或者大于 2700mV 时, 会识别为 R17 电阻短路或者开路异常。

图 9 电池容量配置电路图

典型电池容量配置表:

R17 电阻值(欧姆)	对应设定的电芯容量(mAH)
6.2k	5000mAH
12.4k	10000mAH
18.7k	15000mAH
24.9k	20000mAH
30.9K	25000mAH

注: 表中电芯容量指单节电池的电芯容量。

LED 灯电量显示模式

IP5389 4 颗电量显示灯方案,连接方式如下:

4 灯的显示方式:

充电时

电量 C (%)	D1	D2	D3	D4
充满	亮	亮	亮	亮
75%≤C	亮	亮	亮	1.5Hz 闪烁
50%≤C<75%	亮	亮	1.5Hz 闪烁	灭
25%≤C<50%	亮	1.5Hz 闪烁	灭	灭
C<25%	1.5Hz 闪烁	灭	灭	灭

放电时

电量 C (%)	D1	D2	D3	D4
C≥75%	亮	亮	亮	亮
50%≤C<75%	亮	亮	亮	灭
25%≤C<50%	亮	亮	灭	灭
3%≤C<25%	亮	灭	灭	灭
0% <c<3%< td=""><td>1.0Hz 闪烁</td><td>灭</td><td>灭</td><td>灭</td></c<3%<>	1.0Hz 闪烁	灭	灭	灭
C=0%	灭	灭	灭	灭

数码管电量显示模式

IP5389 默认支持的数码管如下所示。

数码管	充电	放电

	未充满状态	充满状态	电量小于 5%	电量大于 5%
188 型	0-99% 个 位	常亮 100%	0-5%个位 1HZ 闪	5%-100% 常亮
	0.5HZ 闪烁		烁	

5pin 188 型数码管原理图如下:

(未注尺寸公差 Unspecified Tolerances is: ±0.2 发光颜色: 白色、翠绿

图 11 5pin 188 型数码管电路图

	IP5389 灯显驱动 pin	数码管 pin 脚	备注
IP5389 灯显 驱动 pin 和 数码管 pin 脚顺序映射 关系	LED1(48 pin)	1 pin	
	LED2(47 pin)	2 pin	
	LED3(46 pin)	3 pin	
	LED4(45 pin)	4 pin	
	LED5(44 pin)	5 pin	
	HLED(38pin)	6 pin	可选,6pin 数码管方案

系统输入输出最大功率设定

IP5389 通过判断 PMAX 引脚连接的阻值来设定系统输入输出的最大功率。输入输出最大功率配置表:

对应设定的最大功率 PMAX		
65W(E-MARK 线缆时输出功率为 65W)		
60W		
45W		
30W		
27W		
100W(E-MARK 线缆时输出功率为 100W)		

注: 若要 E-MARK 线缆识别,可参考 demo 应用原理图增加 E-MARK 供电电路

电池串联数量设定

IP5389 通过判断 BAT_S1 和 BAT_S2 引脚是否接 GND 来设定电池串联数量,从而改变电量显示阈值、给电池充电的恒压电压以及保护电压。

电池串联数量配置表:

BAT_S1 R18(欧姆)	BAT S2 R19(欧姆)	电池串联节数
0	0	2 串
NC	0	3 串
0	NC	4 串
NC	NC	5 串

VSET(电池类型设定)

IP5389 通过在 VSET 引脚上输出 80uA 电流,外接不同的电阻到 GND 来设定电池类型,从而改变电量显示阈值、给电池充电的恒压电压以及保护电压。VSET 外接对 GND 电阻大小和设定的电池类型如下表所示。注意外接电阻要用 1%精度电阻,电阻选型需要考虑到尽量把 VSET 的电压取在判断范围的中间。当 VSET 的电压超出所有判断电压范围,会识别为检测电阻短路或者开路异常。

VSET 端到 GND 电阻	VSET 电压(理论电压)	VSET 判断电压范围	对应电池类型
(ohm)	(mV)	(mV)	
27k	2160	1750~2550	4.2V
18k	1440	1220~1750	4.3V
13k	1040	860~1220	4.35V
9.1k	728	600~860	4.4V
6.2k	496	384~600	4.1V
3.6k	288	216~384	4.15V

NTC 功能

IP5389 集成 NTC 功能,可检测电池温度。IP5389 上电后 NTC PIN 在高温时输出 80uA 的电流,在低温时输出 20uA 电流,通过外部 NTC 电阻来产生电压,IC 内部检测 NTC PIN 脚的电压来判断当前电池的温度。

图 12 电池 NTC 比较

在充电状态下:

低温时,检测电流为 20uA。NTC PIN 检测到电压大于 0.55V(低于 0 度)时,停止充电; NTC 电压小于 0.44V 时(高于 5 度),恢复充电电流到正常值。

高温时,检测电流为 80uA。NTC PIN 检测到电压小于 0.39V(高于 45 度)时,停止充电; NTC 电压大于 0.47V时(低于 40 度),恢复充电电流到正常值。

在放电状态下:

低温时,检测电流为 20uA。NTC PIN 检测到电压大于 1.38V(低于-20 度)时,停止放电; NTC 电压小于 1.09V 时(高于-15 度),恢复放电。

高温时,检测电流为 80uA。NTC PIN 检测到电压小于 0.24V(高于 60 度)时,停止放电;NTC 电压大于 0.28V 时(低于 55 度),恢复放电。

*以上温度范围参考的 NTC 电阻参数为 10K@25℃ B=3380, 其他型号存在差异,需要调整。如果方案不需要 NTC, 需要在 NTC 引脚对地接 10k 电阻,不能浮空或者直接接地。

8. 应用原理图

Email: service@injoinic.com

9. BOM 表

序号	元件名称	型号&规格	位置	用量	备注
1	贴片 IC	QFN64 IP5389	U1	1	
2	贴片电容	0603 100nF 10% 50V	C1 C2 C7	3	
3	贴片电容	0603 1uF 10% 16V	C3 C4	2	
4	贴片电容	0603 2.2uF 10% 16V	C5 C6	2	
6	贴片电容	0805 10uF 10% 25V	CP1 CP3 CP4 CP5	4	
7	贴片电容	0805 22uF 10% 25V	CP6 CP7 CP8 CP11 CP12	5	
8	固态电容	100uF 35V 10%	CP10 CP15	2	
9	贴片电阻	1206 0.005R 1%	R4 R5	2	
10	贴片电阻	0603 10K 5%	R6	1	
11	贴片电阻	0603 27K 1%	R7 R14 R16	3	
12	贴片电阻	0603 6.2K 1%	R17	1	
13	贴片电阻	0603 OR 1%	R18	1	
14	NTC 热敏电阻	10K@25℃ B=3380	RNTC	1	
15	贴片电阻	0603 100R 1%	R10 R11 R12 R13	4	
16	贴片 LED	0603 蓝灯	D1 D2 D3 D4	4	
17	贴片 LED	0603 红灯	D5	1	可选,LED 原理图
18	贴片电阻	0603 100R 1%	R8	1	
19	贴片电阻	0603 OR 5%	R9	1	
20	贴片电阻	0603 100R 1%	R9 R10 R11 R12 R13	5	可选,数码管原理图
21	贴片数码管	YFTD1508SWPG-5D	SMG1	1	可见,数码目尽连图
22	LED 灯	5MM LED	D6	1	
23	一体成型电感	10uH 6A R _{DC} <0.01R	L1	1	
24	按键	SMT 3*6 按键	K1	1	
25	贴片 MOS 管	RU3030M2	Q1 Q2 Q3 Q4	4	
26	输出 USB	AF10 8 脚插件 USB	USB1 USB2	2	
27	USB C 座子	USB C 座子	USB3	1	
28	LIGHTING 座子	苹果头母座	USB4	1	
29	输入 USB	MICRO-7-DIP-5.9	USB5	1	
30	贴片电阻	0603 20R 1%	R23	1	
31	贴片电阻	0603 3k 1%	R24	1	
32	贴片电阻	0603 510R 1%	R25	1	
33	贴片电阻	0603 10R 1%	R26 R27	2	
34	贴片 MOS 管	RU30J30M	H 桥 NMOS	2	
35			C8 C9 R19 R20 R21 R22		NC
			1144		

10. 封装信息

芯片封装

	SYMBOL	MILLIMETER			
		MIN	NOM	MAX	
	A	0.70	0.75	0.80	
	A1	1	0.02	0.05	
	b	0.15	0.20	0.25	
	С	0.18	0.20	0.25	
	A	7.90	8.0	8.10	
	D2	6.10	6.20	6.30	
	e	0.4 BSC			
	Nd	6.00BSC			
	E	7.90	8.0	8.10	
	E2	6.10	6.20	6.30	
	Ne	6.00BSC			
	L	0.45	0.50	0.55	
	K	0.20	-	-	
	h	0.30	0.35	0.40	

焊盘设计示例

11. IC 印字说明

中文版丝印图

12. 责任及版权申明

英集芯科技有限公司有权对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与其产品及在其应用中使用英集芯产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档不作为任何明示或暗示的担保或授权。

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会 失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类虚假 陈述均不承担任何责任或义务。