FREQUENTLY-USED MACLAURIN SERIES

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-x)^n + \dots = \sum_{n=0}^{\infty} (-1)^n x^n, \quad |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad |x| < \infty$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad |x| < \infty$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad |x| < \infty$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, \quad -1 < x \le 1$$

$$\ln \frac{1+x}{1-x} = 2 \tanh^{-1} x = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots\right) = 2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, \quad |x| < 1$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1}, \quad |x| \le 1$$

BINOMIAL SERIES

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)x^{2}}{2!} + \frac{m(m-1)(m-2)x^{3}}{3!} + \cdots$$

$$+ \frac{m(m-1)(m-2)\cdots(m-k+1)x^{k}}{k!} + \cdots$$

$$= 1 + \sum_{k=1}^{\infty} {m \choose k} x^{k}, \quad |x| < 1$$

where

$${m \choose 1} = m,$$

$${m \choose 2} = \frac{m(m-1)}{2!},$$

$${m \choose k} = \frac{m(m-1)\cdots(m-k+1)}{k!} \quad \text{for } k \ge 3.$$

NOTE. It is customary to define $\binom{m}{0}$ to be 1 and to take $x^0 = 1$ (even in the usually excluded case where x = 0) in order to write the binomial series compactly as

$$(1+x)^m = \sum_{k=0}^{\infty} {m \choose k} x^k, \quad |x| < 1.$$

If m is a positive integer, the series terminates at x^m and the result converges for all x.