

معماری کامپیوتر

جلسه هشتم: حافظه نهان-۲

حافظه نهان (Cache)

- درنظر گرفتن فضایی بین پردازنده و حافظه اصلی (مشابه جعبه کوچک کتابدار)
 - باهدف ذخیرهسازی بخشی از حافظه اصلی جهت دسترسی سریعتر

حافظه نهان (Cache)

- خاصیت هم جواری (Locality):
- هم جواری مکانی (Spatial Locality)
- هم جواری زمانی (Temporal Locality)
- لحاظ کردن این خاصیت در طراحی حافظه نهان

حافظه نهان (Cache)

• سوالهای مهم:

- دادهها را چگونه از حافظه اصلی به حافظه نهان ببریم؟
- دادههای جدید را چگونه در حافظه نهان جایگزین کنیم؟
- برای پاسخ به این دو سوال، دو بحث اساسی مطرح می شود:
 - سیاست جای دهی (Placement Policy)
 - سیاست جای گزینی (Replacement Policy)

سیاستهای جای دهی (Placement Policy)

• تعیین آدرس داده در حافظه نهان براساس آدرس آن در حافظه اصلی (همجواری زمانی)

(Placement Policy) سیاستهای جای دهی

• پیادهسازی همجواری مکانی

• سیاست جایدهی

• قالب آدرس حافظه اصلى:

حافظه نهان نگاشت مستقیم (مثال)

- فرضیات: آدرس حافظه ۳۲ بیتی، حافظه نهان با ۱۶ بلوک ۴ کلمهای
- سوال: داده آدرس ۱۸۱ حافظه اصلی (XYZ) در کدام خانه حافظه نهان ذخیره می شود؟

حافظه نهان

مثال

• درخواست خواندن از حافظه به آدرس 000B3A4F آمده است و مشخصات روبرو را داریم (نوع

طراحى: نگاشت مستقيم):

• حجم حافظه اصلی، حافظه نهان و محل استقرار داده در حافظه نهان؟

حجم حافظه اصلى: 232 بايت

000000000000010110011001001001111 آدرس:

محل استقرار داده: کلمه ۱۵ از بلوک ۳۶ ام حافظه نهان

• مدیریت درخواست خواندن از حافظه:

• ارسال درخواست به حافظه اصلی و بروزرسانی حافظه نهان • ارسال درخواست به حافظه نهان النان درخواست به حافظه نهان النان درخواست

• مدیریت درخواست نوشتن در حافظه:

- ارسال درخواست به حافظه نهان
- Miss: ارسال درخواست به حافظه اصلی و بروزرسانی حافظه نهان
- Hit: بروزرسانی داده در حافظه نهان و انتقال تاثیر به حافظه اصلی
 - Write Back •
 - Write Through •

- نگاشت هر بلوک از حافظه اصلی به نقطه مشخص در حافظه نهان
 - امکان نگاشت دو بلوک به یک فضا از حافظه نهان
 - جایگزین شدن متوالی این دو بلوک براثر درخواستهای متوالی
- مراجعات متعدد به حافظه اصلی، افزایش زمان دسترسی و پدیده thrashing
- مثال: درخواستهای متوالی به خانههای ۰ و ۸ حافظه اصلی با فرض داشتن حافظه نهان هشت خطی
 - هفت خانه حافظه نهان خالی و یک خانه دائما جایگزین شده و miss رخ می دهد

• مزیت:

- سادگی پیادهسازی
- كارايي بالا بهدليل سرعت پيدا كردن داده

و عیب:

- مكانيزم همجوارى زمانى ضعيف
- نگاشت مستقیم هر بلوک از حافظه اصلی به نقطه مشخص در حافظه نهان (پدیده thrashing)
 - راهحل: تغییر شیوه طراحی

- برای حل مشکل Thrashing
- نگاشت مستقیم و محدودیت آدرس را برمی داریم
- مجاز بودن نگاشت هر بلوک حافظه به هر آدرسی در حافظه نهان
- برای جستجوی داده خاص، مقایسه همزمان تمامی خانههای حافظه نهان با داده موردنظر
 - این طراحی از حافظه نهان: Fully Associative cache

- Fully Associative cache •
- هر خانه حافظه اصلی می تواند با هر خانهای از حافظه نهان همبسته شود
 - کاربردی بودن برای حافظههای نهان کوچک
 - نیاز به حافظه CAM برای مقایسه محتوا
 - بسیار پرهزینه
 - توان مصرفي بالا
 - مساحت زیاد

- راه حل میانی DM و Set Associative Cache :FA
 - مشابه نگاشت مستقیم ولی
- طول حافظه نهان را 1/k کرده و عرض آن را k برابر می کنیم
- در شکل روبرو، بهجای ۸ خط یک بایتی، ۴ خط دو بایتی خواهیم داشت
 - این طراحی: way set associative
- بدین ترتیب توانایی ذخیره حافظه نهان در هر خط k برابر می شود
 - هریک از این دوبخش tag خاص خود را دارد

• راه حل مياني DM و DM و Set Associative Cache

- مشابه نگاشت تمام انجمنی
- ذخیره داده در هریک از خانههای یک خط
- جستجوی خانههای هر خط بهصورت موازی
 - افزایش کارایی دراثر افزایش k
- سیم میرسیم k برابر با سایز حافظه نهان که به طراحی تمام انجمنی میرسیم \cdot

Set in Cache = (Memory Address) mod (Number of sets(C/k))

Tag in Cache = (Memory Address) div (Number of sets(C/k))

سیاستهای جایدهی حافظه نهان

سیاستهای جایدهی حافظه نهان

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														
								ì							

- جلسه استاد با دانشجویان در کلاسی با ۳۰ صندلی
- نوبت هر دانشجو که باشد، نامش صدا زده می شود
- اگر نباشد جستجو شده و به کلاس میآید که زمانبر است
- ممكن است هر دانشجو چندين بار صدا زده شود يا اصلا صدا زده نشود

• سناریو ۱) صندلیها از ۰ تا ۲۹ ردیف شماره گذاری شوند با ورود هر دانشجو باقی مانده سه رقم

آخر شماره دانشجویی به ۳۰ محاسبه شده و روی آن صندلی مینشیند

• در صورت پر بودن، دانشجوی قبلی به بیرون میرود

• مشابه حافظه نهان دسترسی مستقیم

- سناریو ۲) صندلیها را بهصورت زوج در هر ردیف از ۰ تا ۱۴ شماره گذاری شوند و با ورود هر دانشجو باقی مانده سه رقم آخر شماره دانشجویی به ۱۵ محاسبه شده و روی آن صندلی مینشیند
 - در صورت پر بودن هر دو صندلی این ردیف، دانشجوی قبلی به بیرون میرود
 - مشابه حافظه نهان two way set associative

• **سناریو ۳**) هر دانشجویی که وارد شد روی هر صندلی که خالی بود مینشیند اگر خالی نبود با

یکی از دانشجویانی که قبلا آمده جایگزین میشود

• مشابه حافظه نهان تمام انجمنی

جایدهی در حافظه نهان

قالب آدرس در حافظه نهان

