

Nombre: Bryan Steve Montepeque Santos_____

Registro Estudiantil: 201700375_____

Curso: Matemática para Computación 2_____

Sección: N_____

Punteo:

Tipo de Trabajo: Tarea______ No: 6_____

Ya que ambos tienen 6 Vértices, y 12 Aristas, y todos los vértices son de grado 4 entonces ambos son Grafos Isomorfos, debido a la simplicidad, tomaremos el recorrido b \rightarrow d \rightarrow e \rightarrow c \rightarrow b como base para el grafo isomorfo:

• Ahora hacemos todas las conexiones:

B tiene conexión con f, c, d y a

C tiene conexión con f, b, a y e

D tiene conexión con b, a, e y f

E tiene conexión con c, f, d y a

F tiene conexión con b, c, d y e

A tiene conexión con b, c, d, e

• Las Funciones son:

1.
$$f(v) = a$$

2.
$$f(x) = b$$

3.
$$f(y) = c$$

4.
$$f(z) = d$$

5.
$$f(u) = e$$

6.
$$f(w) = f$$

7.
$$f(v) = a$$

• Los Nuevos Caminos son:

1.
$$\{x, z\} = \{f(x), f(z)\} = \{b, d\}$$

2.
$$\{z, u\} = \{f(z), f(u)\} = \{d, e\}$$

3.
$$\{u, y\} = \{f(u), f(y)\} = \{e, c\}$$

4.
$$\{y, x\} = \{f(y), f(x)\} = \{c, b\}$$

5.
$$\{y, w\} = \{f(y), f(w)\} = \{c, f\}$$

6.
$$\{y, v\} = \{f(y), f(v)\} = \{c, a\}$$

7.
$$\{z, v\} = \{f(z), f(v)\} = \{d, a\}$$

8.
$$\{x, w\} = \{f(x), f(w)\} = \{b, f\}$$

9.
$$\{x, v\} = \{f(x), f(v)\} = \{b, a\}$$

$$10.\{v,u\} = \{f(v), \ f(u)\} = \{a,e\}$$

$$11.\{w,z\} = \{f(w), \ f(z)\} = \{f,d\}$$

$$12.\{u,w\} = \{f(u), \ f(w)\} = \{e,f\}$$

_	
 2	

Determine si existe un circuito Euleriano

Un circuito Euleriano es recorrer todas las aristas del grafo una sola vez para esto el grado de todos los vértices debe de ser par y para este caso el grado de todos es de 4 por lo tanto sí cumple con la condición

Sí existe un Circuito Euleriano y es este:

Determine si existe un Recorrido Euleriano

Por definición, si existe un Recorrido Euleriano para el grafo no puede existir un Recorrido Euleriano al mismo tiempo.

Por lo tanto, no existe un Recorrido Euleriano para el Grafo