Cubic Pell Equation

John D Mangual

On Math.StackExchange I learned we can solve Pell's Equation purely from Pigeonhole Principle. Let's try¹

$$x^2 - 17y^2 = 1$$

#1 Using Pigeonhole, there are infinely many pairs (x, y) with

$$x^2 - 17y^2 \le 2\sqrt{17}$$

This stems from attempting to use the Euclidean algorithm to find the GCD of $\sqrt{17}$ and 1:

$$\sqrt{17} = 4 \times 1 + (\sqrt{17} - 4)$$

¹Here is also

The number $\sqrt{17}-4$ is the remainder when we use the division algorithm. But this is getting ahead of ourselves.

The 18 multiples of $\sqrt{17}$ starting from 0 can be put into groups:

$$0, \sqrt{17}, 2\sqrt{17}, \dots, 10\sqrt{17}$$

How do I compute the best integer approximations, I might square these:

$$0, 17, 68, \ldots, 4913$$

In the second case $68 = 8 \times 8 + 4$ so that $2\sqrt{7} - 8 < 1$. And one more:

$$9 \times 17 = 153 = 12 \times 12 + 9 \longrightarrow 3\sqrt{17} - 12 < 1$$

I know I shouldn't generalize, but probably we can take any multiple of $\sqrt{17}$ and find a number very close to it. One more:

$$10 \times 10 \times 17 = 1700 = 41 \times 41 + 19 \longrightarrow 10\sqrt{17} - 19 < 1$$

I forgot that in this case we get very lucky $4^2 - 17 \times 1^2 = -1$

I wanted to solve $x^2 - 17y^2 = 1$ (with +1 instead of -1)

Can we find two numbers (p,q) which give a very small remainder and q<10?

$$0 < q\sqrt{17} - p < \frac{1}{10}$$

I think our initial guess still works. I hate when I get it on the first try. Not dramatic enough.

$$\sqrt{17} - 4 = \frac{(\sqrt{17} - 4)(\sqrt{17} + 4)}{\sqrt{17} + 4} = \frac{1}{\sqrt{17} + 4} < \frac{1}{8}$$

And worse of all it looks correct because like I said:

$$4^2 - 17 \times 1^2 = 1$$
 not -1

Technical point: in the words of Bill Clinton we have to meditate of the meaning of the word "is"

I just realized our example is not good enough. I asked for $\frac{1}{10}$ and not $\frac{1}{8}$. I went and looked at a calculator:

$$8\sqrt{17} = 32.984845... \longrightarrow -8\sqrt{17} + 32 < \frac{1}{10}$$

What's funny about that...even if we asked $0 \le q \le 10$ we found a q = -8 which is out of our range². This is why we can use absolute value sign:

$$\left| 8\sqrt{17} - 32 \right| < \frac{1}{10}$$

If we were really good, we'd do all the steps without a calculator. With a slide rule or something.

Lastly how bad is the error?

$$33 \times 33 - 8 \times 8 \times 17 = 1089 - 1088 = 1$$

²Acceptable just not what I originally had in mind

Solving Pell Equation with Pigeonhole

Let's try to approximate $\sqrt{19}$ as a fraction. We can list multiples of this number and see which one is nearest a whole number:

$$0, \sqrt{19}, 2\sqrt{19}, 3\sqrt{19}, \dots 10\sqrt{19}$$

This is kind of like interlacing the perfect squares $\Box = \{1, 4, 9, 16, \dots\}$ and $19 \times \Box$:

0, 1, 4, 9, 16, **19**, 25, 36, 49, 64, **76**, 81, 100, 121, 144, 169, **171**, 196, 225, 256 289, **304**, 324, 361, 400, 441, **475**, 484, 529, 576, 625, 676, **684**, 729, 784, 841, 900, **931**, 961, 1024, 1089, 1156, **1216**, 1225, 1296, 1369, 1444, 1521, **1539** Interleaving these two squences of numbers, we can see nont of them are next to a square:

$$x^2 - 19y^2 \neq 1$$

So far. How are we going to generate an answer if none of these small numbers work?

$$4^2 - 19 \times 1^2 = -3$$

$$31^2 - 19 \times 7^2 = 30$$

We have no guarantee these differences should be small, but pigeonhole-principle has found us infinitely many.

Once we see that $0 < \sqrt{19} - 4 < 1$, let's save ourselves some time by just multiplying by this number instead.

$$\sqrt{19} - 4 = \frac{(\sqrt{19} - 4)(\sqrt{19} + 4)}{\sqrt{19} + 4} = \frac{3}{\sqrt{19} + 4} > \frac{1}{3}$$

So if I multiply this number by 4 I get a new solution slightly larger than 1.

$$3(\sqrt{19} - 4) - 1 = 3\sqrt{19} - 13$$

In fact $4^2 \times 19 - 17^2 = 15$ which is rather large but still less than 19.

Also,
$$3^2 \times 19 - 13^2 = 2$$

$$1421^2 - 19 \times 326^2 = 3$$

$$4^2 - 19 \times 1^2 = 3$$

Are these enough to solve Pell's equation?

$$\frac{1421 - 326\sqrt{19}}{4 - \sqrt{19}} \times \frac{4 + \sqrt{19}}{4 + \sqrt{19}} = \frac{\text{complicated number}}{-3}$$

For some reason 3 seems to be a common remainder for $\sqrt{19}$

- (1,4)
- (14,61)
- (326, 1421)
- (4759, 20744)

This algorithm is really slow since I am tediously³ checking that

$$0 < \left| q\sqrt{19} - p \right| < \frac{1}{N}$$

 $^{^{3}}$ A more judicious use of Pigenhole uses **renormalization** but I think we have demonstrated that $p^{2} - 19q^{2} = 3$ has infinitely many solutions. Next we check for solutions which are give the same remainder upon division by 19. These will divide into each other and return a solution to the Pell equation $p^{2} - 19q^{2} = 1$.

Really slow algorithm for solving Pell equation in some cases. Solves $p^2 - 19q^2 = 3$ a lot.

```
sol = []
for N in 1 + np.arange(1000):
    q = 1
    while (q*np.sqrt(19) \% 1 > 1.0/N):
        q += 1
    p = int(q*np.sqrt(19) // 1)
    if (q,p) not in sol:
        sol += [(q,p)]
        print q, p, q*q*19 - p*p
```

Really slow algorithm for solving Pell equation in some cases. Solves $p^2 - 19q^2 = 3$ a lot.

1	4	3
3	13	2
14	61	3
53	231	10
92	401	15
131	571	18
170	741	19
209	911	18
248	1081	15
287	1251	10
326	1421	3
1017	4433	2

Algorithm gets really slow after that...Sorry!

Finding units of $\mathbb{Z}[\sqrt[3]{2}]$ vis Pigeonhole

There's no continued fraction algorithm for cube roots. Some people think $\sqrt[3]{2}$ is a sequence that never repeats⁴ – but nobody knows for sure.

Hale and Trotter print out the first 1000 digits (they fit neatly on a page), the paper is from the 1970's and the numbers are type-written. I don't know how they got a computer to do all of that... I can do it on my laptop with some effort.

There is a continued fraction algorithm due to Brun, which starts from the vector $(1, \sqrt[3]{2}, \sqrt[3]{4})$ and leads to approximate vectors in \mathbb{Z}^3 (up to a proportionate factor).

In a comuter simulation, the algorithm began repeating after 19 steps

⁴Think about that... how we know a sequence avoids not just any pattern but all patterns. That seems like a rather odd thing.

but how do we know our Euclidean algorithm finished?

- insert discussion here -

Table I

<u></u>	
2	

										,												
		1	2	3	4	5	6	7	8	9	10		1	2	3	4	5	6	7	8	9	10
0		1	3	1	5	1	1	4	1	1	8		1	14	1	10	2	1	4	12	2	3
20		2	1	3	4	1	1	2	14	3	12		1	15	3	1	4	*a	1	1	5	1
40		1	•ь	1	2	2	4	10	3	2	2		41	1	1	1	3	7	2	2	9	4
60		1	3	7	6	1	1	2	2	9	3		1	1	69	4	4	5	12	1	1	5
80		15	1	4	1	1	1	1	1	89	1		22	*c	6	2	3	1	3	2	1	1
100		5	1	3	1	8	9	1	26	1	7		1	18	6	1	•d	3	13	1	1	14
120		2	2	2	1	1	4	3	2	2	1		1	9	1	6	1	38	1	2	25	1
140		4	2	44	1	22	2	12	11	1	1		49	2	6	8	2	3	2	1	3	5
160		1	1	1	3	1	2	1	2	4	1		1	3	2	1	9	4	1	4	1	2
180		1	27	1	1	5	5	1	3	2	1		2	2	3	1	4	2	2	8	4	1
200		6	1	1	1	36	9	13	9	3	6		2	5	1	1	1	2	10	21	1	1
220		1	2	1	2	6	2	1	6	19	1		1	18	1	2	1	1	1	27	1	1
240		10	3	11	38	7	1	1	1	3	1		8	1	5	1	5	4	4	4	7	2
260		1	21	1	1	5	10	3	1	72	6		9	1	3	3	2	1	4	2	1	1
280		1	1	2	1	7	8	1	2	1	8		1	8	3	1	1	3	2	1	8	1
300		1	1	1	1	6	1	4	3	4	1		1	1	4	30	39	2	1	3	8	1
320		1	2	1	3	1	9	1	4	1	2		2	1	6	2	1	1	3	1	4	1
340		2	1	1	5	1	2	10	1	5	4		1	1	4	1	2	1	1	2	12	2
360		1	8	3	2	6	1	3	10	1	2		20	1	6	1	2	*e	2	2	1	2
380		47	1	19	2	2	1	1	1	2	1		1	3	2	8	1	18	3	5	39	1
400		2	1	1	1	1	4	1	5	2	6		3	1	1	1	4	2	1	6	1	1
420		•f	1	3	1	3	1	4	5	1	2		1	13	2	2	2	1	1	1	1	7
440		2	1	7	1	3	1	1	11	1	2		2	4	2	33	3	1	1	2	6	3
460		1	1	3	6	8	3	4	84	1	1		2	1	10	2	2	20	1	3	1	7
480		13	14	1	29	1	1	5	1	7	1		1	2	1	56	1	3	2	1	13	2
500		1	2	2	2	1	1	1	1	1	1		* g	2	4	5	1	1	1	3	1	3
520		3	1	6	1	1	6	1	71	1	9		1	2	1	11	5	1	25	1	6	67
540		2	9	6	1	5	2	15	1	2	48		2	7	1	3	1	4	21	1	1	2
560		1	27	3	26	2	1	1	2	5	7		3	*h	2	29	4	3	8	17	3	8
580		2	3	1	1	1	5	•į	1	3	4		1	4	1	1	13	1	34	1	2	7
600		1	3	3	7	1	3	1	1	4	2		69	1	3	12	34	1	2	•j	1	•k
620		4	1	1	12	3	4	2	3	1	1		1	1	1	2	1	1	6	16	1	2
640		27	2	13	4	1	1	1	3	11	1		1	3	1	53	2	15	1	1	1	1
660		1	1	2	2	1	1	3	3	1	9		1	1	10	3	1	1	2	1	2	2
680		1	10	9	.1	2	5	1	2	2	1		.1	2	4	7	1	5	1	1	1	1
700		4	2	25	16	5	4	1	3	2	3		13	1	49	6	2	5	1	1	2	7
720		3	2	1	1	1	4	1	1	1	5		1	2	1	2	1	1	1	1	2	2
740 760		.4	1	2	1	10	5	4	8	10	2		4	1	1	1	4	1	41	1	3	1 10
780		56 2	3	1	1	3 1	1 50	3 5	1	5 2	6		6 5	3	1 2	2 5	1	1	1 2	12 77	1	4
700		Z	1	1	1	1	30	•	1	2	6		•	1	Z	,	۰	•	2	"	1	4
800		2	1	1	1	1	1	4	2	1	2		1	1	1	1	1	6	2	1	1	7
820		1	5	1	1	1	1	2	2	1	1		5	2	1	5	1	1	1	4	1	2
840		17	1	20	7	4	2	1	1	1	2		1	4	7	3	4	3	3	5	31	1
860		1	2	2	6	1	1	1	1	1	1		1	1	6	1	6	1	1	23	20	1
880		22	16	4	2	1	3	2	1	1	2		5	5	1	1	15	3	1	1	2	1
900		1	1	4	2	1	2	23	6	10	3		2	3	6	2	1	1	1	1	1	.1
920		4	3	2	1	2	1	4	10	7	1		1	1	1	3	3	2	•m	1	1	11
940		2	6	1	4	1	2	2	9	3	1		1	3	22	4	1	93	1	3	1	4
960		2	1	2	3	2	1	2	11	1	1		3	.1	2	1	28	23	4	11	1	9
980		1	4	3	1	6	1	2	1	12	2		6	19	1	4	4	2	1	1	1	1
			= 53				121		c = 186					= 37				= 186		f = 220		
	g = 255			h =	7451	i == 113			j = 151					k =	= 4941	m = 108						

References

- $(1) \ \ Math. Stack Exchange \ \ What is your favorite application of the Pigeonhole Principle? \ http://math.stackexchange.com/q/62565/4997$
- (2) Serge Lang, Hale Trottr Continued fractions for some algebraic numbers. https://eudml.org/doc/151239