

ECONOMICS OF MODERN POWER SYSTEMS

M3 – Distributed Generation

Learning Goals

- More on DG
 - History
 - Common technologies
 - Interconnection
- □ PV study case
 - Show how to use SAM

So far...

Power System Components

Generation

Transmission

Distribution

Load

Old Grids and Smart Grid

How Distribution will change

How Generation will change

Distributed Energy Resources

Distributed Generation

History of DG

- Started with Public Utility Regulatory Policies Act (PURPA) of 1978
 - Creation of new technologies
 - Spurred research on environmentally preferable technologies that used water, wind, or solar power to produce electricity
 - Challenged the control held by power company managers
 - Began the process of deregulation of electricity sector (generation, transmission, distribution and marketing)

Map of Deregulated Energy Markets

Motivation for DG

- Economically viable
 - Less time to build
 - Put less capital at risk
 - Match the growth rate of consumption (~3%)

- Improve efficiency of providing electric power
 - Electricity transmission from power plant to user wastes from 4-9% of electricity

DG can provide customers affordable power at a higher level of quality

Types of DG technologies

- Distributed generators come in three types
 - Induction (or asynchronous) generators

Ex: wind turbines and Combined Heat and Power (CHP)

Synchronous generators

Ex: thermal power

Inverters

Ex: solar PV

Table 1. Typical available size per module for DG

Typical available size
per power module
35 - 400 MW
5 kW - 10 MW
1 - 250 MW
35 kW - 1 MW
200 kW - 2 MW
250 kW - 2 MW
1 - 250 kW
250 kW - 5 MW
500 kW - 5 MW
1 - 100 MW
25 kW - 1 MW
200 W - 3 MW
20 W - 100 kW
1 - 10 MW
10 - 80 MW
100 kW - 20 MW
5 - 100 MW
100 kW - 5 MW

Source: Dulau et al, "Distributed generation technologies and optimization"

Cogeneration Technologies

- Distributed generation resource simultaneous production of heat and electricity
- Permit business to reuse thermal energy that would normally be wasted

E.g. Iron and steel, chemical processing, refining, paper

manufacturing

Islanded x Interconnected DG

Islanded DG

- Small generator connected directly to the load and serving that load only
- Reduce load placed on distribution grid at the discretion of the owner
- May increase volatility of the load

Interconnected DG

- Connected to distribution grid in addition to a particular load
- Can cause power to flow in opposite direction
 - Safety and reliability concerns

Why install a grid-connected system?

- Assurance of receiving power from the utility when your system is not producing as much power as you need
- Essential for renewable technologies like solar and wind
- Potential benefit: ability to sell power back to the utility
- Net metering (might have a cap)
- Larger generators may stablish power purchase agreements (PPA)
- Off-grid systems make sense for sites far from existing utilities lines

"Intentional" Islanding

- Purposeful sectionalization of the utility system during widespread disturbances to create power "islands"
- The islands can maintain continuous supply of power during disturbances of the main grid

Interconnection Process

- DG system owner *must* obtain written approval from the local utility in the form of an Interconnection Service Agreement and subsequent Authorization to Connect
 - Note: emergency generators are not required to follow this process
- Utility should review your project to make sure there
 are no negative impacts on the grid
- You may need to incorporate new equipment to protect the reliability and safety of the grid
 - Usually not necessary for small renewable generators

Interconnection Studies

- Power Flow Analysis
- Voltage Analysis
- Short Circuit Analysis
 - determine the magnitude of the currents that flow during an electrical fault
 - Compare values with equipment ratings

Analysis should consider different scenarios for generation and load to account for intermittency and load variability

Rooftop PV Investment Analysis

Study Case

Background

- Solar PVs is the dominant type of distributed renewable energy system
- What's the viability of such an investment for a residential consumer?
- □ Two components drive the return from PV system
 - Total amount of electricity produced
 - Net value of that production
- Value of PVs is given by number of kWh produced and how much they are worth

Decision process

A PV investment analysis is divided in five steps:

- Estimating System Production
- 2. Assessing System Cost
- 3. Forecasting the Value of Electricity
- 4. Understanding Incentives
- Conducting a Financial Analysis

1 - Estimating System Production

- Site specific solar factors are critical
 - Shading
 - has the most visible negative impact of production
 - vary by season as the sun angle becomes lower in winter
 - 2. Position
 - Panels facing east or west will produce less than same installation facing south
 - 3. Tilt or roof slope
 - Flatter angles increase production in summer but decrease in winter

1 - Estimating System Production

- 4. Temperature
 - Increased temperature increase electrical resistance and consequently reduces efficiency
- Side note: PV panels come with 25 years warranty,
 but sun degrade PV
 - Production will decline around 0.5% a year
 - i.e., after 25-years, you only have 87,5% of original installed capacity

2- Assessing System Cost

- Direct Capital Costs
 - Panel modules, inverter, hardware
- Indirect Capital Costs or soft cost
 - Installation (most of it), grid interconnection, engineering, permitting, environmental studies and sales tax
- Operation and Maintenance
 - Annual expenses to maintain, service and replace components
 - Usually around \$19 per kW/year for midsize

3- Forecasting the Value of Electricity

- No standardized electricity rate structure
- Typical charges
 - Fixed monthly charge
 - Associated with infrastructure cost
 - PV system will not reduce that!
 - Energy charge
 - Covers the cost of producing energy (kWh)
 - PV install will reduce that
 - Demand charge
 - Covering peak demand requires power plant to provide energy for relatively short durations
 - PV may reduce this fee but often PV does not align with peak demand charges

3- Forecasting the Value of Electricity

- The higher the electricity rate, the greater will be the value of PVs
- Important to consider electricity price increase
 - □ Usually escalation rates range from 0.5 to 3%
 - Use your beliefs, e.g, if you think environmental concerns might increase prices, use a higher value

4- Understanding Incentives

- Four primary sources of incentive: federal, state,
 local governments and utility
- Why the incentive?
 - Renewable energy and energy efficiency merit financial support
 - Other reasons
 - Federal: Growth of energy independence and environmental responsibility
 - State & utility: reducing energy costs and demand
- Incentives target specific sectors

4- Understanding Incentives

- Key residential incentives
 - Residential Renewable Energy Tax Credit (RRETC) (30%)
 - Net metering policies
 - Credit for excess generation
 - Usually one year cycle
 - Different compensation rates for net excess generation
- Sale of Solar Renewable Energy Credit can generate income for PVs system owners
 - Offset installation cost
 - How do you negotiate it?
 - Owner may entry into an SREC agreement with a broker, or
 - Sell the SRECs to the system developers (some investors simplify by calling it a discount, rebate or refund

5- Conducting Financial Analysis

- □ Financial Return
- Payback: number of years for the energy savings
 from PV to offset initial cost

$$Payback[yr] = \frac{InitialCost(\$)}{AnnualProduction\left(\frac{kWh}{yr}\right)x\,Value\left(\frac{\$}{kWh}\right) - 0\&M\left(\frac{\$}{yr}\right)}$$

- Check if payback is smaller than lifetime of the project
- Problem: too simple for this type of analysis
- Ignores energy price escalation, variable rate electricity pricing, time value of the money, etc

5- Conducting Financial Analysis

- Levelized cost of electricity (LCOE) expresses the cost of electricity produced from a PV system
- LCOE closely related to Net Present Value
 - Includes construction and operation cost
- LCOE can be use to compare different electricity sources

Final Remarks

- PV system owners should revise their homeowner policy to include cost of replacement of a PV system in the event of a natural disaster
- When making your decision don't look at the cost alone, think about
 - How much do you value energy independence?
 - How much do you value clean energy?

Let's take a look at SAM

System Advisor Model (SAM) from NREL

Overview of the Model

- □ SAM is an open source project !!
- SAM simulates the performance of
 - photovoltaic with optional storage
 - concentrating solar power
 - solar water heating
 - wind
 - geothermal, and
 - biomass power systems
- Also includes a basic generic model for comparisons with conventional or other types of systems

Overview of the Model

- Does not model off-grid power system with more than one power generator
 - Hybrid Optimization of Multiple Energy Resources (HOMER) could be an option for that
- Desktop application comes with a set of libraries
 - Module parameter
 - Inverter parameters
 - Solar hot water collector
 - Wind turbine power curves, etc.

Overview of the Model - Inputs

- SAM can automatically download data from
 - OpenEU utility rate database
 - NREL National Solar Radiation Database
 - NREL Wind Integration Datasets
 - NREL Biofuels Atkas and DOE Billion-Ton Update (biomass supply)
- Examples of input variable
 - Installation cost, labor, land, O&M
 - Number of modules and inverter
 - Analysis period, discount rate, inflation, tax, power purchase price (utility financing models)
 - Tax and cash incentive

SAM comes with default values for most of these parameters

Overview of the Model

- Performance Models for
 - PVs, CSP, Wind, Solar Water Heating, Biomass Power
- Financial Models
 - Residential and commercial
 - Power generation (PPAs)
 - LCOE calculator
- E.g. for residential projects, SAM report will be
 - LCOE
 - Electricity cost with and without the renewable system
 - Electricity saving
 - After-tax net present value
 - Payback period

THANK YOU!

luana.marangon.lima@duke.edu