Fundamentos de Computação II

2024/2

Profa. Dra. Juliana Félix jufelix16@gmail.com

Aula de hoje

- Definições básicas
- Técnicas de prova
 - o Terminologia
 - Prova direta
- Exercícios

Definições básicas

Divisibilidade

Sejam a e b inteiros, com a \neq 0. Dizemos que a **divide** b se existe um inteiro c tal que b = ac. Dizemos também que:

- b é divisível por a;
- a é um fator de b;
- a é um divisor de b;
- b é múltiplo de a.

A notação correspondente é a | b, quando a divide b, e a \dangle b, em caso contrário.

Divisibilidade

PUC GOIÁS

Observações:

- 1. Todo inteiro x divide 0 (zero).
- 2. $d \mid b \leftrightarrow (-d) \mid b$.
- 3. Todo inteiro a é divisível por 1 e por a.

Exemplos:

- 3 | 9
- 4 | 12
- 6 ∤ 16
- 3 | -15
- 5|0

Paridade

PAR

Um inteiro a é chamado **par** se existe um inteiro x tal que a = 2x, ou seja, $2 \mid a$.

ÍMPAR

Um inteiro a é chamado **ímpar** se existe um inteiro x tal que a = 2x + 1.

Observação: Um inteiro é sempre par ou ímpar, e nenhum inteiro é par e ímpar ao mesmo tempo.

Primalidade

→ Um número p é primo se p > 1 e se os únicos divisores positivos de p são 1 e p.

- → Um número positivo a é chamado de composto se existe um inteiro b tal que 1 < b < a e b | a.</p>
 - ♦ Em outras palavras, um número é composto se ele não é primo.

→ O número 1 não é primo nem composto!

Técnicas de Prova

Terminologia

- Um teorema é uma afirmação declarativa sobre matemática, para a qual existe uma prova ou demonstração.
- Uma prova ou demonstração é uma argumentação que mostra, de maneira indiscutível, que uma afirmação é verdadeira.

Provas ou demonstrações

PUC GOIÁS

Alguns exemplos de afirmações que podem ser provadas matematicamente:

- A soma de dois números inteiros pares é sempre par.
- Todo número primo maior que 2 é ímpar.
- A soma dos dígitos de qualquer múltiplo de 9 é um múltiplo de 9.
- O produto de dois números negativos é sempre positivo.
- Todo número inteiro terminado em 0 ou 5 é divisível por 5.
- Para qualquer número natural n≥1, a soma dos primeiros n números naturais é dada por (n(n+1))/2.

Reestruturação de sentenças

Antes de mais nada, é importante saber reestruturar, logicamente, as afirmações a serem provadas (demonstradas).

Exemplo: Prove que a soma de dois números inteiros pares é par.

Reformulação: Se x e y são inteiros pares, então x + y também é par.

Reestruturação de sentenças

Exercício:

Reestruture as seguintes afirmações na forma "se p, então q".

- a) O produto de um inteiro ímpar e um inteiro par é par.
- b) O quadrado de um inteiro ímpar é ímpar.
- c) A soma dos dígitos de qualquer múltiplo de 9 é um múltiplo de 9.
- d) Um número inteiro é múltiplo de 5 se termina em 0 ou 5.

Técnicas de demonstração

Técnicas mais comuns de demonstração:

- Demonstração por vacuidade;
- Demonstração por trivialização;
- Demonstração direta; —
- bernondragae aneta,
- Demonstração por contraposição;
- Demonstração por contradição ou absurdo;
- Demonstração por indução.

 $(p \rightarrow q)$

 $(\neg q \rightarrow \neg p)$

¬(p ∧ ¬q)

Demonstração por vacuidade

Demonstração por Vacuidade

A demonstração por vacuidade é utilizada para estabelecer **casos especiais de teoremas**.

Esse tipo de demonstração parte do princípio de que **quando p é falsa, a afirmação é verdadeira**.

p	q	$p \rightarrow q$
F	F	V
E	V	
٧	F	F
٧	٧	V

Exemplo

Seja a um inteiro. Se a é um quadrado (i.e. existe $b \in Z$ t.q. $a = b^2$) e a é primo, então a é negativo.

A afirmação é verdadeira ou falsa?

Neste caso, como a hipótese é falsa, a afirmação é verdadeira!

Exemplo

Seja a um inteiro. Se a é um quadrado (i.e. existe $b \in Z$ t.q. $a = b^2$) e a é primo, então a é negativo.

A afirmação é verdadeira ou falsa?

Neste caso, como a hipótese é falsa, a afirmação é verdadeira!

Nesta situação, basta justificarmos que **a afirmação é verdadeira por vacuidade**, pois a hipótese é falsa (visto que, por definição, se um número a é primo, então a não pode ser o quadrado de outro número b).

Demonstração por trivialização

Demonstração por trivialização

A demonstração por trivialização também é utilizada para estabelecer casos especiais de teoremas.

É utilizada em indução matemática.

a ser visto mais adiante

Ideia geral

Exemplo:

Se a e b são inteiros positivos com a \geq b, então aⁿ \geq bⁿ, para todos os inteiros.

Mostre que P(0) é verdadeira.

caso trivial, simples de ser verificado.

Ideia geral

Exemplo:

Se a e b são inteiros positivos com a \geq b, então aⁿ \geq bⁿ, para todos os inteiros. Mostre que P(0) é verdadeira.

Reescrita: Sejam a, b e n inteiros ≥ 0. Seja P(n) a seguinte proposição:

P(n): Se $a \ge b$, então $a^n \ge b^n$. Mostre que P(0) é verdadeira.

como queríamos demonstrar, c.g.d.

Demonstração: Queremos mostrar que P(0) é verdadeira. Mas P(0) é: "Se $a \ge b$, então $a^0 \ge b^0$ ". Como $a^0 = b^0 = 1$, temos que a conclusão da condicional "Se $a \ge b$, então $a^0 \ge b^0$ " é verdadeira. Logo, P(0) é verdadeira.

Prova direta

Prova direta $(p \rightarrow q)$

Na demonstração direta, queremos mostrar que $p \rightarrow q$ (que p implica logicamente em q).

- Para isso, precisamos apresentar uma sequência de implicações lógicas que começa em p e termina em q.
- Essa sequência de implicações/passos devem partir da hipótese
 (p) e levar à conclusão desejada (q).
- Algumas vezes requer insights particulares e podem ser bastante astuciosas.
 - Requer prática!!!

Passos importantes

- Reescreva a afirmação em notação adequada.
- Identifique a hipótese e a conclusão desejada.
- Escreva a(s) primeiras e as última(s) sentença(s) da prova (hipótese e conclusão, respectivamente).
- Desenvolva a demonstração matemática a partir do início, utilizando as definições apropriadas.
- Avalie o que já se sabe e o que necessita. Estabeleça o elo entre as duas partes.

Esquema de demonstração direta

Exemplo: Prove que a soma de dois inteiros pares é par.

Reformulação: Se x e y são inteiros pares, então x + y é um inteiro par.

- Hipótese (p): x e y são inteiros pares
- Conclusão (q): x+y é um inteiro par.

Demonstração: Sejam x e y inteiros pares. ... Portanto, x+y é um inteiro par.

como queríamos demonstrar, c.g.d.

Exercícios

Divisibilidade

- 1. Prove que 3 | 9.
- 2. Prove que 4 | 12.
- 3. Prove que 6 ∤ 16.
- 4. Sejam a, b, $c \in Z$. Mostre que se a | b e a | c, então a | (b + c).

Paridade

- 5. Se x e y são inteiros pares, então x + y é um inteiro par.
- 6. Prove que a soma de dois inteiros pares é par.

Recapitulando...

- Definições básicas
 - o Divisibilidade, Paridde, Primalidade
- Técnicas de prova
 - Prova por vacuidade
 - Prova por trivialidade
 - Prova direta
- Exercícios

Atividade

Atividade 1 para entrega dia 11/09/2024.

- Disponível em: https://github.com/jufelix/FC2
- A atividade pode ser feita em duplas.
- A atividade deve ser entregue manuscrita ou impressa até o fim da aula.