FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO		Jméno	Matyá	š Peroutík	Kód 256371
		Ročník	Obor AMT	Skupina	Lab. skup. B
Spolupracoval		Měřeno dne		Odevzdáno	dne
	Štěpán Pavlica		13.3.2024		27.3.2024
Příprava	Opravy	Učitel		Hodnocení	
Název úlohy	Tíhové Z	rychlení			Č. úlohy 10

Úkol měření

Stanovte lokální tíhové zrychlení pomocí měření reverzním kyvadlem.

Teoretický rozbor

Základní pojmy

Tíhové zrychlení g

Je zrychlení volného pádu ve vakuu. Jednotkou je ms^{-2} . Toto zrychlení je důsledkem hlavně gravitační síly země (Newtonův gravitační zákon) a odstředivé síly země (rotace). Dále na její velikost může působit např. poloha měsíce. Tudíž tíhové zrychlení není konstantní. V Brně je tabulková hodnota tíhového zrychlení $g=9.813\ ms^{-2}$.

Těžiště

Je bod tuhého tělěsa, v němž se v homogenním tíhovém poli protínají těžnice. V tomto bodě leží vektor tíhy tělesa.

Hmotný střed

Je bod, který vychází ze tvaru tělesa a rozložení jeho hmoty. Tento bod je možné zapsat matematickými vztahy. V homogenním tíhovém poli splývá s těžištěm.

Kyvadlo

Je libovolné těleso, které se může otáčet kolem pevné vodorovné osy, ktera neprochází těžištěm. Při vychýlení z jeho rovnovážné polohy se těleso začne kývat.

Fyzické kyvadlo

Je kyvadlo, které je pomocí tří podmínek zjednodušeno. Při práci s fyzickým kyvadlem uvažujeme, že je těleso kyvadla tuhé, že se otáčí kolem osy bez tření a při kývaní není zpomalováno vlivem okolí. Doba kmitu (periody) fyzického kyvadla pro rozkyv zhruba do 5° je dána tímto vztahem:

$$T = 2\pi \sqrt{\frac{J}{mgl}} \tag{1}$$

Matematické kyvadlo

Je maximálně zjednodušené kyvadlo. Zkoumá pouze pohyb hmotného bodu na tenkém nedeformovatelném vlákně s hmotností, kterou při výpočtu můžeme zanedbat. Doba kmitu (periody) matematického kyvadla pro rozkyv zhruba do 5^{o} je dána tímto vztahem:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{2}$$

Doba kmitu zde nezávisí na hmotnosti hmotného bodu. Pokud budeme těleso tedy uvažovat za pouhý bod, tak délka l matematického kyvadla je zároveň vzdálenost osy kyvu od těžiště.

Teorie měření reverzním kyvadlem

Reverzní kyvadlo je dvouosé fyzické kyvadlo, jehož závaží má nastavitelnou pevnou polohu. Protože se jedná o kyvadlo fyzické, tak je jeho doba kyvu určena vztahem (1). Tento vztah ale není příliž vhodný pro výpočet tíhového zrychlení, protože většinou neznáme setrvačnost kyvadla J a přesnou vzdálenost osy kyvu od těžiště l. Proto se snažíme vytvořit podmínky takové, abychom mohli použít vztah pro kyvadlo matematické (2). Pro to alevšak musíme znát redukovanou délku kyvadla l_r . Při této délce má kyvadlo v obou polohách stejnou dobu kmitu. Pokud ze vztahu (2) vyjádříme tíhové zrychlení, dostaneme pro tíhové zrychlení následující vztah:

$$g = \frac{4\pi^2 l_r}{T^2} \tag{3}$$

Redukovanou délku reverzního kyvadla hledáme tím způsobem, že posouváním závaží měníme dobu periody osy 1 (T_1) a osy 2 (T_2) . Jakmile nalezneme takovou polohu závaží, že se tyto periody rovnají, tak můžeme uvažovat vzdálenost os jako redukovanou délku.

Naměřené hodnoty

číslo měření	1	2	3	4	5	6	7	8	9	10
$\frac{l_r}{cm}$	96,45	96,50	96,55	96,50	96,40	96,50	96,45	96,55	96,50	96,50

Měřené hodnoty délky l_r mezi osami ${\cal O}_1$ a ${\cal O}_2$

			I	počet kmitů	T_1 [s]	T_2 [s]
				0	0	0
				10	19,79	19,74
a [mm]	20T [a]	$20T_2 [s]$		20	39,58	39,49
a [mm]	$20T_1$ [s]			30	59,37	59,23
17,2	43,66	40,35		40	79,16	78,97
66,1	40,02	39,60		50	98,95	98,72
118,4	37,64	39,79		60	118,73	118,46
				70	138,52	138,2
				80	158,3	157,95
				90	178,07	177,69

Zpracování hodnot

Nejprve je zpracována hodnota redukované délky. Následně je zpracovány hodnoty tíhového zrychlení pro každou osu zvlášť použítím postupné metody.

Redukovaná délka l_r

číslo měření	1	2	3	4	5	6	7	8	9	10
$\frac{l_r}{cm}$	96,45	96,50	96,55	96,50	96,40	96,50	96,45	96,55	96,50	96,50
$(l_i - \overline{l_r})^2$	$1.6 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3.6 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$8.1 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$	$3.6 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$

Zpracování redukované délky l_r

$$\overline{l_r} = \frac{1}{n} \sum_{l_i} l_i = 96.49cm$$

$$s^2 = \frac{\sum_{l_i} (l_i - \overline{l_r})^2}{n - 1} \doteq 2.111 \cdot 10^{-3} cm^2$$

$$s = \sqrt{\frac{\sum_{l_i} (l_i - \overline{l_r})^2}{n - 1}} \doteq 0.04595cm$$

$$= t_{10;0,95} \cdot \frac{s}{\sqrt{n}} \doteq 0.03371cm$$

$$\delta_r(l_r) = \frac{\delta(l_r)}{\overline{l_r}} \doteq 3.494 \cdot 10^{-4} cm$$

$$l_r = (96.49 \pm 0.03)cm$$

Legenda k výpočtům:

$\overline{l_r}$	průměrná hodnota změřené redukované délky kyvadla
s ²	rozptyl změřených hodnot redukované délky
	směrodatná odchylka změřených hodnot redukované délky
$t_{10;0,95}$	koeficient studentova rozdělení dle tabulky $(t_{10:0.95} = 2.32)$
$\delta(l_r)$	absolutní chyba výsledku
$\delta_r(l_r)$	relativní chyba výsledku

Výpočty pro osu O1

počet	A	počet	В	rozdíly sloupců B-A
kmitů	čas (s)	kmitů	čas (s)	50T (s)
θT	0	50T	98.95	98.95
10T	19.79	60T	118.73	98.94
20T	39.58	70 T	138.52	98.94
30T	59.37	80T	158.30	98.93
40T	79.16	90T	178.07	98.91

Výpočtová tabulka dob kmitů pomocí postupné metody

$$\overline{50T_1} = \frac{1}{n} \sum 50T_i = 98.934s$$

$$s^{2} = \frac{\sum (50T_{i} - \overline{50T_{1}})^{2}}{n - 1} \doteq 2.3 \cdot 10^{-4} s^{2}$$

$$s = \sqrt{\frac{\sum (50T_{i} - \overline{50T_{1}})^{2}}{n - 1}} \doteq 0.01517s$$

$$\delta(50T_{1}) = t_{5;0.95} \cdot \frac{s}{\sqrt{n}} \doteq 2.035 \cdot 10^{-4}$$

$$\delta(50T_{1}) = \frac{\delta(50T_{1})}{\overline{50T_{1}}} = 2.034 \cdot 10^{-4}$$

$$50T_{1} = (98.93 \pm 0.02)s$$

$$T1 = (1.9798 \pm 0.0004)s$$

Legenda k výpočtům:

Z těchto hodnot můžeme vypočítat průměrnou hodnotu tíhového zrychlení určené osou 1

$$\overline{g} = \frac{4\pi^2 \overline{l_r}}{\overline{T_1}^2} \doteq 9.7265 ms^{-2}$$

a následně určit chybu tíhového zrychlení pomocí derivace vztahu (3).

$$\delta(g_1) = \sqrt{\left(\frac{\partial g}{\partial l_r}\delta(l_r)\right)^2 + \left(\frac{\partial g}{\partial T}\delta(T_1)\right)^2} = \overline{g}\sqrt{\left(\frac{\delta(l)}{\overline{l}}\right)^2 + \left(-2\frac{\delta(T_1)}{T_1}\right)^2} \doteq 5.217\mu s^{-2}$$

$$\delta_r(g_1) = \frac{\delta(g_1)}{\overline{g_1}} \doteq 5.364 \cdot 10^{-4}$$

$$g_1 = (9.727 \pm 0.005)ms^{-2}$$

Legenda k výpočtům:

δ	(g_1) absolutní chyba tíhového zrychlení c	osv	1
	$r(g_1)$ relativní chyba tíhového zrychlení c		
q	tíhové zrychlení c	osy	1

Výpočty pro osu O2

počet	A	počet	В	rozdíly sloupců B-A
kmitů	čas (s)	kmitů	čas (s)	50T (s)
θT	0	50T	98.72	98.72
10T	19.74	60T	118.46	97.72
20T	39.49	70 T	138.2	98.71
30T	59.23	80T	157.95	97.72
40T	78.97	90T	177.69	97.72

Výpočtová tabulka dob kmitů pomocí postupné metody

$$\overline{50T_2} = \frac{1}{n} \sum 50T_i = 98.718s$$

$$s^2 = \frac{\sum (50T_i - \overline{50T_2})^2}{n-1} \doteq 2 \cdot 10^{-5}s^2$$

$$s = \sqrt{\frac{\sum (50T_i - \overline{50T_2})^2}{n-1}} \doteq 4.472 \cdot 10^{-3}s$$

$$\delta(50T_2) = t_{5;0.95} \cdot \frac{s}{\sqrt{n}} \doteq 5.896 \cdot 10^{-3}$$

$$\delta(50T_2) = \frac{\delta(50T_1)}{\overline{50T_1}} = 5.973 \cdot 10^{-5}$$

$$50T_1 = (98.718 \pm 0.006)s$$

$$T1 = (1.97436 \pm 0.00012)s$$

Legenda k výpočtům:

$\overline{50T_2}$	průměrná hodnota délky 50-ti kmitů osy 2
s^2	rozptyl hodnot délky 50-ti kmitů osy 2
s	směrodatná odchylka hodnot délky 50-ti kmitů osy 2
$t_{10;0,95}$	koeficient studentova rozdělení dle tabulky ($t_{5;0,95} = 2.968$)
$\delta(l_r)$	absolutní chyba výsledku
$\delta_r(l_r)$	relativní chyba výsledku
$50T_2$	delka 50-ti kmitů osy 2
<i>T2</i>	delka jednoho kmitu osy 2

Z těchto hodnot můžeme vypočítat průměrnou hodnotu tíhového zrychlení určené osou 1

$$\overline{g} = \frac{4\pi^2 \overline{l_r}}{\overline{T_r}^2} \doteq 9.7721 ms^{-2}$$

a následně určit chybu tíhového zrychlení pomocí derivace vztahu (3).

$$\delta(g_2) = \sqrt{\left(\frac{\partial g}{\partial l_r}\delta(l_r)\right)^2 + \left(\frac{\partial g}{\partial T}\delta(T_2)\right)^2} = \overline{g}\sqrt{\left(\frac{\delta(l)}{\overline{l}}\right)^2 + \left(-2\frac{\delta(T_2)}{T_2}\right)^2} \doteq 3.608\mu s^{-2}$$

$$\delta_r(g_2) = \frac{\delta(g_2)}{\overline{g_2}} \doteq 3.692 \cdot 10^{-4}$$

$$g_2 = (9.772 \pm 0.004) ms^{-2}$$

Legenda k výpočtům:

$\delta(g)$	(q_2) absolutní chyba tíhového	zrychlení	osy 2
δ_r	g_2)relativní chyba tíhového	zrychlení	osy 2
g_2	tíhov ϵ	zrychlení	osy 2

Závěr

Porovnáním hodnot tíhových zrychlení v jednotlivých osách, které jsme pomocí studentova rozdělení pomocí postupné metody vypočetly z hodnot naměřených, vidíme, že se liší od očekávané tabulkové hodnoty $g=9.813ms^{-2}$, která byla změřena velice přesně, a proto ji budu uvažovat jako skutečnou hodnotu. U osy 1 jsme zjistili tíhové zrychlení $(9.727\pm0.005)ms^{-2}$, což je rozdíl $(0.086\pm0.005)ms^{-2}$ od očekávané hodnoty. Když spočteme chybu naměřené hodnoty vůči očekávané, dostaneme chybu $(0.84\pm0.05)\%$. U osy 2 jsme zjistili tíhové zrychlení $(9.772\pm0.004)ms^{-2}$, což je rozdíl $(0.041\pm0.004)ms^{-2}$ od očekávané hodnoty. Když spočteme chybu naměřené hodnoty vůči očekávané, dostaneme chybu $(0.42\pm0.04)\%$. Z těchto hodnot můžeme vidět, že tíhové zrychlení na ose 2 se blíží dvakrát více hodnotě očekávané.

Chyba měření mohla být způsobena tím, že jsme nepracovali ve vakuu, a tudíž se mohl projevit odpor vzduchu. Také mohl mít na výsledky vliv třecí odpor v ložiscích otáčení. Dalším vlivem mohlo být nepřesné umístění závaží. Dále mohla být chyba způsobena chybou měřících přístrojů nebo nepřesným odečtem hodnot.