Pivotality, twisted centres, and the anti-double of a Hopf monad

A tale of string diagrams, categories, and monads.

Based on arXiv:2201.05361

12.05.2022

Sebastian Halbig sebastian.halbig@tu-dresden.de

Tony Zorman tony.zorman@tu-dresden.de

Motivation: Cyclic actions on

rigid monoidal categories

Our starting point

Categories

We fix a category \mathcal{C} ...

Categories

We fix a category \mathcal{C} ...

Examples: Set, Vect_k, $[\mathcal{D}, \mathcal{D}]$.

Monoidal categories

We fix a category $\mathcal C$ and equip it with the *monoidal structure* $(\otimes,1)$...

Examples: (Set, \times , {*}), (Vect_k, \otimes_k , k), ([\mathcal{D} , \mathcal{D}], \circ , Id).

Rigid categories

We fix a category C and equip it with the monoidal structure $(\otimes, 1)$, such that duals exist.

Examples: $\mathbb{1} \leq (\mathsf{Set}, \times, \{*\})$, $\mathsf{vect}_k \leq (\mathsf{Vect}_k, \otimes_k, k)$, $\mathsf{Ad}^\infty(\mathcal{C}) \leq ([\mathcal{D}, \mathcal{D}], \circ, \mathrm{Id})$.

Module categories

We consider a second category $\ensuremath{\mathcal{M}}$...

Bimodule categories

We consider a second category ${\mathcal M}$ over ${\mathcal C}$ with a left and right action ...

Braided bimodule categories

We consider a second category $\mathcal M$ over $\mathcal C$ with a left and right action and pass to the *centre* $\mathsf Z(\mathcal M)$.

lacksquare $\mathcal{M}:=\mathcal{C}$

• $\mathcal{M} := \mathcal{C}$, with left and right action

$$C \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

• $\mathcal{M} := \mathcal{C}$, with left and right action

$$C \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

 $\mathsf{Z}(\mathcal{C}) := \mathsf{Z}(\mathcal{M})$ is called the *Drinfeld centre*.

• $\mathcal{M} := \mathcal{C}$, with left and right action

$$C \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

 $\mathsf{Z}(\mathcal{C}) \coloneqq \mathsf{Z}(\mathcal{M})$ is called the *Drinfeld centre*.

• For a strict monoidal endofunctor $T: \mathcal{C} \longrightarrow \mathcal{C}$,

$$TC \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

• $\mathcal{M} := \mathcal{C}$, with left and right action

$$C \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

 $\mathsf{Z}(\mathcal{C}) \coloneqq \mathsf{Z}(\mathcal{M})$ is called the *Drinfeld centre*.

• For a strict monoidal endofunctor $T: \mathcal{C} \longrightarrow \mathcal{C}$,

$$TC \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

For T the bidualising functor, Q(C) := Z(M) is the anti-Drinfeld centre.

• $\mathcal{M} := \mathcal{C}$, with left and right action

$$C \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

 $\mathsf{Z}(\mathcal{C}) \coloneqq \mathsf{Z}(\mathcal{M})$ is called the *Drinfeld centre*.

• For a strict monoidal endofunctor $T: \mathcal{C} \longrightarrow \mathcal{C}$,

$$TC \triangleright M := C \otimes M$$
 and $M \triangleleft C := M \otimes C$, for $C \in \mathcal{C}$ and $M \in \mathcal{M}$.

For T the bidualising functor, Q(C) := Z(M) is the anti-Drinfeld centre.

A cyclic action

A cyclic action

The Hajac–Sommerhäuser theorem

In case of modules over Hopf algebras such trivial objects in $\mathsf{Q}(\mathcal{C})$ are well understood.

The Hajac-Sommerhäuser theorem

In case of modules over Hopf algebras such trivial objects in $Q(\mathcal{C})$ are well understood.

Theorem (Hajac-Sommerhäuser (unpublished))

For a finite-dimensional Hopf algebra H the following are equivalent:

- 1. H is quasi-pivotal,
- 2. The ground field k can be turned into an object of Q(H-Mod),
- 3. The Hopf and comodule algebras D(H) and Q(H), which parametrise $Z(H\operatorname{\mathsf{-Mod}})$ and $Q(H\operatorname{\mathsf{-Mod}})$, are isomorphic as algebras.

A proof is given in [Hal21, Theorem 3.4].

Twisted centres and the

Hajac-Sommerhäuser theorem

for rigid monoidal categories

Quasi-pivotality

Definition

A *quasi-pivotal structure* on a rigid category \mathcal{C} is a pair (β, ρ_{β}) comprising an invertible object $\beta \in \mathcal{C}$ and a monoidal natural isomorphism

$$\rho_{\beta} \colon \mathrm{Id}_{\mathcal{C}} \longrightarrow \beta \otimes (-)^{\vee \vee} \otimes \beta^{\vee}.$$

Quasi-pivotality

Definition

A *quasi-pivotal structure* on a rigid category $\mathcal C$ is a pair (β, ρ_β) comprising an invertible object $\beta \in \mathcal C$ and a monoidal natural isomorphism

$$\rho_{\beta} \colon \mathrm{Id}_{\mathcal{C}} \longrightarrow \beta \otimes (-)^{\vee \vee} \otimes \beta^{\vee}.$$

We refer to ${\mathcal C}$ as a *quasi-pivotal* category if it admits a quasi-pivotal structure.

The graphical calculus of the anti-Drinfeld centre

We work with Z(C), Q(C), and A(C) simultaneously.

The graphical calculus of the anti-Drinfeld centre

We work with Z(C), Q(C), and A(C) simultaneously. In our string diagrams:

 $\operatorname{red} \cong A(\mathcal{C}), \quad \operatorname{black} \cong Z(\mathcal{C}) \text{ or } \mathcal{C}, \quad \operatorname{blue} \cong Q(\mathcal{C}).$

The graphical calculus of the anti-Drinfeld centre

We work with Z(C), Q(C), and A(C) simultaneously. In our string diagrams:

$$\mathsf{red} \cong \mathsf{A}(\mathcal{C}),$$

$$\mathsf{red} \cong \mathsf{A}(\mathcal{C}), \qquad \mathsf{black} \cong \mathsf{Z}(\mathcal{C}) \ \mathsf{or} \ \mathcal{C}, \qquad \mathsf{blue} \cong \mathsf{Q}(\mathcal{C}).$$

$$\mathsf{blue} \cong \mathsf{Q}(\mathcal{C}).$$

Example

The half-braidings of two objects $A \in A(\mathcal{C})$ and $Q \in Q(\mathcal{C})$.

Gluing of half-braidings

We can glue the half-braidings of objects $X \in Z(\mathcal{C})$, $A \in A(\mathcal{C})$, and $Q \in Q(\mathcal{C})$:

Gluing of half-braidings

We can glue the half-braidings of objects $X \in Z(\mathcal{C})$, $A \in A(\mathcal{C})$, and $Q \in Q(\mathcal{C})$:

Theorem ([HKRS04, Lemma 2.3], [HZ22, Theorem 4.2])

The tensor product of C extends to a left and right action of Z(C) on A(C) and Q(C), respectively.

The anti-Drinfeld double and duality

The left dual A^{\vee} of any object $(A, \sigma_{A,-}) \in A(\mathcal{C})$ is an object of $Q(\mathcal{C})$ via

The anti-Drinfeld double and duality

The left dual A^{\vee} of any object $(A, \sigma_{A,-}) \in A(\mathcal{C})$ is an object of $Q(\mathcal{C})$ via

Theorem ([HZ22, Theorem 4.4])

The left dualising functor of C lifts to an equivalence between A(C) and $Q(C)^{op}$.

Three general observations

• Every equivalence of categories can be 'bettered' into an adjoint equivalence.

Three general observations

- Every equivalence of categories can be 'bettered' into an adjoint equivalence.
- For every $X \in \mathcal{C}$ there exists an adjunction $\otimes X : \mathcal{C} \rightleftharpoons \mathcal{C} : \otimes X^{\vee}$.

Three general observations

- Every equivalence of categories can be 'bettered' into an adjoint equivalence.
- For every $X \in \mathcal{C}$ there exists an adjunction $\otimes X : \mathcal{C} \rightleftharpoons \mathcal{C} : \otimes X^{\vee}$.
- The functor $\otimes X$ is an (adjoint) equivalence if and only if X is invertible.

A characterisation of module equivalences $Z(C) \longrightarrow A(C)$

Definition

An object $(A, \sigma_{A,-}) \in A(\mathcal{C})$ is called \mathcal{C} -invertible if A is invertible in \mathcal{C} .

A characterisation of module equivalences $Z(C) \longrightarrow A(C)$

Theorem ([HZ22, Theorem 4.6])

Any functor of left $Z(\mathcal{C})$ -modules $F: Z(\mathcal{C}) \longrightarrow A(\mathcal{C})$ is naturally isomorphic to

$$-\otimes A \colon \mathsf{Z}(\mathcal{C}) \longrightarrow \mathsf{A}(\mathcal{C}), \qquad A := F(1) \in \mathsf{A}(\mathcal{C}).$$

A characterisation of module equivalences $Z(C) \longrightarrow A(C)$

Theorem ([HZ22, Theorem 4.6])

Any functor of left $Z(\mathcal{C})$ -modules $F: Z(\mathcal{C}) \longrightarrow A(\mathcal{C})$ is naturally isomorphic to

$$-\otimes A: \mathsf{Z}(\mathcal{C}) \longrightarrow \mathsf{A}(\mathcal{C}), \qquad A := F(1) \in \mathsf{A}(\mathcal{C}).$$

In particular, F is an equivalence if and only if A is C-invertible.

Quasi-pivotality and C-invertible objects of A(C)

Lemma ([HZ22, Lemma 4.11])

The C-invertible elements of A(C) correspond to quasi-pivotal structures on C.

Quasi-pivotality and C-invertible objects of A(C)

Lemma ([HZ22, Lemma 4.11])

The C-invertible elements of A(C) correspond to quasi-pivotal structures on C.

Proof sketch.

The Hajac-Sommerhäuser theorem for rigid monoidal categories

Theorem ([HZ22, Theorem 4.13])

Let $\mathcal C$ be a strict rigid category. The following are equivalent:

The Hajac-Sommerhäuser theorem for rigid monoidal categories

Theorem ([HZ22, Theorem 4.13])

Let $\mathcal C$ be a strict rigid category. The following are equivalent:

- 1. The category C is quasi-pivotal.
- 2. The class of C-invertible elements of A(C) is non-empty.
- 3. The categories Z(C) and A(C) are equivalent as Z(C)-modules.

Pivotality arising from pairs in

involution

The Picard heap and pivotal structures

Let $A := (\alpha, \sigma_{\alpha,-}) \in A(\mathcal{C})$ be \mathcal{C} -invertible.

The Picard heap and pivotal structures

Let $A := (\alpha, \sigma_{\alpha,-}) \in A(\mathcal{C})$ be \mathcal{C} -invertible. We can 'entwine' A with any object $X \in Z(\mathcal{C})$ in a non-trivial manner, resulting in a morphism from X to its bidual:

■ This leads to an assignment of isomorphism classes of C-invertible objects in A(C) with pivotal structures on Z(C).

- This leads to an assignment of isomorphism classes of C-invertible objects in A(C) with pivotal structures on Z(C).
- As shown by Shimizu in [Shi16], in good cases this is bijective.

- This leads to an assignment of isomorphism classes of C-invertible objects in A(C) with pivotal structures on Z(C).
- As shown by Shimizu in [Shi16], in good cases this is bijective.
- In fact, this map caries further algebraic information, [HZ22, Theorem 4.22].

- This leads to an assignment of isomorphism classes of C-invertible objects in A(C) with pivotal structures on Z(C).
- As shown by Shimizu in [Shi16], in good cases this is bijective.
- In fact, this map caries further algebraic information, [HZ22, Theorem 4.22].
- We prove that in general it is neither injective nor surjective, see [HZ22, Remark 4.23, Theorem 4.37].

- This leads to an assignment of isomorphism classes of C-invertible objects in A(C) with pivotal structures on Z(C).
- As shown by Shimizu in [Shi16], in good cases this is bijective.
- In fact, this map caries further algebraic information, [HZ22, Theorem 4.22].
- We prove that in general it is neither injective nor surjective, see [HZ22, Remark 4.23, Theorem 4.37].
- These findings are related to the construction of knot invariants via the category of ribbon tangles.

The Hajac-Sommerhäuser theorem recognises

A(C) and equivariant equivalences of certain

module categories.

quasi-pivotal structures as C-invertible objects in

The Hajac–Sommerhäuser theorem recognises quasi-pivotal structures as \mathcal{C} -invertible objects in $A(\mathcal{C})$ and equivariant equivalences of certain module categories.

An important application is the construction of pivotal structures on the Drinfeld centre.

Hopf monads and comodule

monads

Definition

A bimonad $B \colon \mathcal{V} \longrightarrow \mathcal{V}$...

Definition

A bimonad $B: \mathcal{V} \longrightarrow \mathcal{V}$ consists of a monad (B, μ, η) ...

Definition

A bimonad $B: \mathcal{V} \longrightarrow \mathcal{V}$ consists of a monad (B, μ, η) and, morally, a compatible comonoid structure (B, Δ, ε) .

Definition

A bimonad $B: \mathcal{V} \longrightarrow \mathcal{V}$ consists of a monad (B, μ, η) and a compatible oplax monoidal structure (B, Δ, ε) .

Diagrammatic bimonads: a closer look

• Any monad T on V gives rise to an adjunction $F_T : V \rightleftharpoons V^T : U_T$.

- Any monad T on V gives rise to an adjunction $F_T : V \rightleftharpoons V^T : U_T$.
- Any adjunction $F: \mathcal{V} \rightleftharpoons \mathcal{D}: U$ induces a monad T:=UF on \mathcal{V} .

- Any monad T on V gives rise to an adjunction $F_T : V \rightleftharpoons V^T : U_T$.
- Any adjunction $F: \mathcal{V} \rightleftharpoons \mathcal{D}: U$ induces a monad T:=UF on \mathcal{V} .
- There is a canonical functor $\Sigma \colon \mathcal{D} \longrightarrow \mathcal{V}^T$ that 'compares' \mathcal{D} and \mathcal{V}^T .

- Any monad T on V gives rise to an adjunction $F_T : V \rightleftharpoons V^T : U_T$.
- Any adjunction $F: \mathcal{V} \rightleftharpoons \mathcal{D}: U$ induces a monad T := UF on \mathcal{V} .
- There is a canonical functor $\Sigma \colon \mathcal{D} \longrightarrow \mathcal{V}^T$ that 'compares' \mathcal{D} and \mathcal{V}^T .

• Any bimonad T on $\mathcal V$ gives rise to an oplax monoidal adjunction.

- Any bimonad T on $\mathcal V$ gives rise to an oplax monoidal adjunction.
- Any oplax monoidal adjunction $F: \mathcal{V} \rightleftharpoons \mathcal{D}: U$ induces a bimonad.

- Any bimonad T on $\mathcal V$ gives rise to an oplax monoidal adjunction.
- Any oplax monoidal adjunction $F: \mathcal{V} \rightleftharpoons \mathcal{D}: U$ induces a bimonad.
- There is a canonical (strict) monoidal comparison functor from \mathcal{D} to \mathcal{V}^T .

Comodule monads

Definition

A comodule monad $K: \mathcal{V} \longrightarrow \mathcal{V}$

Comodule monads

Definition

A comodule monad $K: \mathcal{V} \longrightarrow \mathcal{V}$ over a bimonad $B: \mathcal{V} \longrightarrow \mathcal{V}$ consists of

Bimonads and comodule monads are a generalisation of bialgebras and comodule algebras, respectively.

Bimonads and comodule monads are a

respectively.

They are intimately related with adjunctions.

generalisation of bialgebras and comodule algebras,

The anti-double of a Hopf monad

Centralisable functors and universal coactions

Definition

A centraliser of a functor $T \colon \mathcal{V} \longrightarrow \mathcal{V}$ consists of a functor $Z_T \colon \mathcal{V} \longrightarrow \mathcal{V}$ and for all $X, Y \in \mathcal{V}$ a natural transformation called a *universal coaction*

Centralisable functors and universal coactions

Definition

A centraliser of a functor $T: \mathcal{V} \longrightarrow \mathcal{V}$ consists of a functor $Z_T: \mathcal{V} \longrightarrow \mathcal{V}$ and for all $X, Y \in \mathcal{V}$ a natural transformation called a *universal coaction*

such that the extended factorisation property holds.

Centralisers arise from coends.

The extended factorisation property

The extended factorisation property of a centraliser (Z_T, χ) of $T: \mathcal{V} \longrightarrow \mathcal{V}$ states:

The extended factorisation property

The extended factorisation property of a centraliser (Z_T, χ) of $T: \mathcal{V} \longrightarrow \mathcal{V}$ states:

The extended factorisation property

The extended factorisation property of a centraliser (Z_T, χ) of $T: \mathcal{V} \longrightarrow \mathcal{V}$ states:

For all functors $S, R: \mathcal{D} \longrightarrow \mathcal{V}$, natural numbers $n \in \mathbb{N}$, and natural transformations

$$\phi_{X,Y_1,\ldots,Y_n}\colon S(X)\otimes Y_1\otimes\cdots\otimes Y_n\longrightarrow T(Y_1)\otimes\cdots\otimes T(Y_n)\otimes R(X),$$

there exists a unique natural transformation $\nu \colon Z^n_T(X) \longrightarrow R(X)$ that satisfies the above equation.

Centralisers and the graphical calculus

In the following we fix

• a bimonad $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ with centraliser (Z_B, χ) ,

Centralisers and the graphical calculus

In the following we fix

- a bimonad $B: \mathcal{V} \longrightarrow \mathcal{V}$ with centraliser (Z_B, χ) ,
- an oplax monoidal functor $L \colon \mathcal{V} \longrightarrow \mathcal{V}$ with centraliser (Q_L, ξ) .

Centralisers and the graphical calculus

In the following we fix

- a bimonad $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ with centraliser (Z_B, χ) ,
- an oplax monoidal functor $L \colon \mathcal{V} \longrightarrow \mathcal{V}$ with centraliser (Q_L, ξ) .

We depict their universal coactions by

Bimonad structures on centralisers

Theorem ([BV12, Theorems 5.6 and 5.12, Corollary 5.14])

The centraliser (Z_B, χ) is a bimonad and the centraliser (Q_L, ξ) is a monad.

Bimonad structures on centralisers

Theorem ([BV12, Theorems 5.6 and 5.12, Corollary 5.14])

The centraliser (Z_B, χ) is a bimonad and the centraliser (Q_L, ξ) is a monad.

Their modules are isomorphic to $Z(_BV)$ and $Z(_LV)$ as monoidal categories and categories, respectively.

This involves a study of their corresponding comparison functors.

Bimonad structures on centralisers

Proof sketch.

Oplax monoidal actions

Definition

Suppose $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ to be a bimonad and $L \colon \mathcal{D} \longrightarrow \mathcal{V}$ an oplax monoidal functor.

Oplax monoidal actions

Definition

Suppose $B\colon \mathcal{V}\longrightarrow \mathcal{V}$ to be a bimonad and $L\colon \mathcal{D}\longrightarrow \mathcal{V}$ an oplax monoidal functor. An *oplax monoidal right action* of B on L is an oplax natural transformation $\alpha\colon LB\longrightarrow L$, such that for all $X\in \mathcal{D}$

Theorem ([HZ22, Lemma 6.10 and Theorem 6.11])

Let $\alpha \colon LB \longrightarrow L$ be an oplax monoidal action of $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ on $L \colon \mathcal{V} \longrightarrow \mathcal{V}$.

Theorem ([HZ22, Lemma 6.10 and Theorem 6.11])

Let $\alpha \colon LB \longrightarrow L$ be an oplax monoidal action of $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ on $L \colon \mathcal{V} \longrightarrow \mathcal{V}$.

The tensor product of V lifts to a right action of $Z(_BV)$ on $Z(_LV)$,

Theorem ([HZ22, Lemma 6.10 and Theorem 6.11])

Let $\alpha \colon LB \longrightarrow L$ be an oplax monoidal action of $B \colon \mathcal{V} \longrightarrow \mathcal{V}$ on $L \colon \mathcal{V} \longrightarrow \mathcal{V}$.

The tensor product of V lifts to a right action of $Z(_BV)$ on $Z(_LV)$, and Q_L parametrises $Z(_LV)$ as a module category over $Z(_BV)$.

Proof sketch.

Given a Hopf monad $H: \mathcal{V} \longrightarrow \mathcal{V}$ and suitable choices of $B, L: \mathcal{V} \longrightarrow \mathcal{V}$ we can construct:

■ A Hopf monad $D(H): \mathcal{V} \longrightarrow \mathcal{V}$, called the *Drinfeld double* of H, which implements the Drinfeld centre of a monoidal category, and

Given a Hopf monad $H: \mathcal{V} \longrightarrow \mathcal{V}$ and suitable choices of $B, L: \mathcal{V} \longrightarrow \mathcal{V}$ we can construct:

- A Hopf monad $D(H): \mathcal{V} \longrightarrow \mathcal{V}$, called the *Drinfeld double* of H, which implements the Drinfeld centre of a monoidal category, and
- a comodule monad $Q(H): \mathcal{V} \longrightarrow \mathcal{V}$, the *anti-Drinfeld dobule* of H, whose modules give rise to the anti-Drinfeld centre.

Given a Hopf monad $H: \mathcal{V} \longrightarrow \mathcal{V}$ and suitable choices of $B, L: \mathcal{V} \longrightarrow \mathcal{V}$ we can construct:

- A Hopf monad $D(H): \mathcal{V} \longrightarrow \mathcal{V}$, called the *Drinfeld double* of H, which implements the Drinfeld centre of a monoidal category, and
- a comodule monad $Q(H): \mathcal{V} \longrightarrow \mathcal{V}$, the *anti-Drinfeld dobule* of H, whose modules give rise to the anti-Drinfeld centre.

Given a Hopf monad $H: \mathcal{V} \longrightarrow \mathcal{V}$ and suitable choices of $B, L: \mathcal{V} \longrightarrow \mathcal{V}$ we can construct:

- A Hopf monad $D(H): \mathcal{V} \longrightarrow \mathcal{V}$, called the *Drinfeld double* of H, which implements the Drinfeld centre of a monoidal category, and
- a comodule monad $Q(H): \mathcal{V} \longrightarrow \mathcal{V}$, the *anti-Drinfeld dobule* of H, whose modules give rise to the anti-Drinfeld centre.

This involves studying variants of Beck's theory of distributive laws, see [Str72], [BV12, Section 6.2], and [HZ22, Theorem 6.16].

The monadic version of the Hajac–Sommerhäuser theorem

Theorem ([HZ22, Theorem 6.26])

Let $H: \mathcal{V} \longrightarrow \mathcal{V}$ be a Hopf monad on a pivotal category that admits a double D(H) and anti-double Q(H). The following statements are equivalent:

The monadic version of the Hajac–Sommerhäuser theorem

Theorem ([HZ22, Theorem 6.26])

Let $H: \mathcal{V} \longrightarrow \mathcal{V}$ be a Hopf monad on a pivotal category that admits a double D(H) and anti-double Q(H). The following statements are equivalent:

- 1. There exists a quasi-pivotal structure on the modules of H.
- 2. The monoidal unit $1 \in \mathcal{V}$ lifts to a module over Q(H).
- 3. There exists an isomorphism of monads $g: Q(H) \longrightarrow D(H)$.

The monadic version of the Hajac–Sommerhäuser theorem

Theorem ([HZ22, Theorem 6.26])

Let $H: \mathcal{V} \longrightarrow \mathcal{V}$ be a Hopf monad on a pivotal category that admits a double D(H) and anti-double Q(H). The following statements are equivalent:

- 1. There exists a quasi-pivotal structure on the modules of H.
- 2. The monoidal unit $1 \in \mathcal{V}$ lifts to a module over Q(H).
- 3. There exists an isomorphism of monads $g: Q(H) \longrightarrow D(H)$.

The Drinfeld double and anti-Drinfeld double of a Hopf monad can be used to detect pivotal structures, see [HZ22, Corollary 6.27].

By the means of centralisers, we can construct the Drinfeld and anti-Drinfeld double of a Hopf monad.

By the means of centralisers, we can construct the

Drinfeld and anti-Drinfeld double of a Hopf monad.

anti-Drinfeld centre.

They are 'coordinate systems' of the Drinfeld and

The Hajac-Sommerhäuser theorem generalises to

the monadic setting:

The Hajac–Sommerhäuser theorem generalises to the monadic setting:

Thanks!

arXiv:2201.05361

Thanks!

arXiv:2201.05361

References

- [AC12] Marcelo Aguiar and Stephen U. Chase. Generalized Hopf modules for bimonads. Theory and Applications of Categories, 27:263–326, 2012.
- [BV07] Alain Bruguières and Alexis Virelizier. Hopf monads. *Advances in Mathematics*, 215(2):679–733, 2007.
- [BV12] Alain Bruguières and Alexis Virelizier. Quantum double of Hopf monads and categorical centers. *Transactions of the American Mathematical Society*, 364(3):1225–1279, 2012.
- [FSS17] Jürgen Fuchs, Gregor Schaumann, and Christoph Schweigert. A trace for bimodule categories. *Applied Categorical Structures*, 25(2):227–268, 2017.
- [Hal21] Sebastian Halbig. Generalized Taft algebras and pairs in involution. *Communications in Algebra*, 49(12):5181–5195, 2021.

- [HKRS04] Piotr M. Hajac, Masoud Khalkhali, Bahram Rangipour, and Yorck Sommerhäuser. Stable anti-Yetter-Drinfeld modules. Comptes Rendus Mathématique. Académie des Sciences. Paris, 338(8):587-590, 2004.
 - [HZ22] Sebastian Halbig and Tony Zorman. Pivotality, twisted centres and the anti-double of a Hopf monad. *arXiv e-prints*, 2022.
 - [KS19] Ivan Kobyzev and Ilya Shapiro. A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids. *Applied Categorical Structures*, 27(1):85–109, 2019.
 - [MW11] Bachuki Mesablishvili and Robert Wisbauer. Bimonads and Hopf monads on categories. Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis & Topology, 7(2):349–388, 2011.
 - [Shi16] Kenichi Shimizu. Pivotal structures of the Drinfeld center of a finite tensor category. *arXiv e-prints*, 2016.
 - [Wil08] Simon Willerton. A diagrammatic approach to Hopf monads. *The Arabian Journal for Science and Engineering. Section C. Theme Issues*, July 2008.