Unbiased Data Acquisition

Core Issue

How can we promote fair AI model training in opaque data markets with heterogeneous dataset biases?

To address **opaque and heterogeneous** biases in multi-source data from online markets, a fairness-aware data acquisition framework (FAIRDA) is proposed, utilizing explore-exploit strategies to optimize data selection, maximizing **accuracy and fairness** within **a limited budget** for Al model training

√KDA: Minimum sample size to explore dataset bias + NLKP instantiation

✓ RDA:Bernoulli bandit problem +dynamic interactions with fairness-aware reward

Statistical Inference+Combinatorial Optimization, Multi-Armed Bandit

Fairness in Collaborative Al Model Training

Core Issue

How can we mitigate the Matthew effect in federated learning arising from the heterogeneity of data resources?

To mitigate the Matthew effect that exacerbates performance disparity in data-heterogeneous scenarios, a fairness-aware Federated Learning framework, anti-MatthewFL, is proposed, achieving a high-performance global model while narrowing performance gaps among clients

Multi-Objectives Optimization

Fairness in Collaborative Al Model Training

Core Issue

Lack of quantitative analysis on the trade-off between egalitarian fairness and collaborative stability in federated learning

To clarify how egalitarian fairness affects the stability of FLs, a theoretical analyzing framework for quantifying **optimal egalitarian fairness bounds that a core-stable FL can obtain** is proposed, unveiling the impact of different **client altruistic behaviors** and their **underlying social relationships**

societal impact

Cooperative Game Theory

Fairness in Human-Al Collaboration

Core Issue

How does an AI-assisted system provide fair decision utility for experts with heterogeneous cognitive capacities?

To ensure **fair utility**, an **interpretable** fairness-aware multicalibration-based AI confidence adjustment is proposed for scenarios involving human decision-makers with heterogeneous cognitive capacities, <u>improving utility fairness</u> across human decision-maker groups **without** <u>sacrificing overall utility</u>

Inter-group-alignment → Cognition-Aware AI Confidence Multicalibration

Mitigating human decision utility disparity by reducing Al-decision disparity or by offsetting with the opposite sign

Statistical Modeling+Calibration+Utility Maximization