LIQUID CRYSTAL DISPLAY PANEL AND ITS PRODUCTION

Patent Number:

JP6160871

Publication date:

1994-06-07

Inventor(s):

YAMAMOTO YOSHINORI; others: 02

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Requested Patent:

□ JP6160871

Application Number: JP19920316824 19921126

Priority Number(s):

IPC Classification: G02F1/1339

EC Classification:

Equivalents:

Abstract

PURPOSE:To provide the constitution of the liquid crystal display panel formable with a simple process and the process for production of the panel by improving the reliability and durability of the liquid crystal display panel.

CONSTITUTION: This liquid crystal display panel has the constitution formed by joining the peripheral edges of two sheets of substrates having at least electrodes by means of >=2 kinds of sealing materials and holding a liquid crystal between these two substrates. Of these sealing materials, at least the sealing material for hermetically sealing the liquid crystal by coming into direct contact with the liquid crystal is viscous fluid 13 inert to the liquid crystal and at least one kind of adhesive sealing materials 14 are formed in order to hold the substrate 12 to the outer side of the viscous fluid 13. The viscous fluid 13 inert to the liquid crystal is disposed for the sealing material in contact with the liquid crystal 11, by which the generation of the deterioration in the liquid crystal characteristics at the time of producing the liquid crystal display panel is obviated and the reliability of the display characteristics of the liquid crystal display panel is enhanced. The margin for controlling the amt. of the liquid crystal to be dropped is widened by hermetically sealing the liquid crystal by sealing with the viscous fluid 13.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-160871

(43)公開日 平成6年(1994)6月7日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/1339

505 7348-2K

審査請求 未請求 請求項の数4(全 5 頁)

(71)出願人 000005821 特願平4-316824 (21)出願番号 松下電器産業株式会社 大阪府門真市大字門真1006番地 (22)出願日 平成4年(1992)11月26日 (72) 発明者 山本 義則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72) 発明者 分元 博文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72) 発明者 服部 勝治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 液晶表示パネルおよびその製造方法

(57)【要約】

【目的】 液晶表示パネルの信頼性および耐久性を向上 させ、簡単なプロセスで作製可能な液晶表示パネルの構 成およびそのパネルの製造方法を提供する。

【構成】 少なくとも電極を有する2枚の基板の周縁部 を2種以上のシール材にて接合し、両基板間に液晶を保 持した構成を具備した液晶表示パネルにおいて、シール 材のうち、少なくとも液晶と直接触れ、液晶を密閉する シール材が、液晶に不活性な粘性流体13であり、この 粘性流体13の外側に基板を保持するための少なくとも 1種の接着性シール材14が形成されていることを特徴 とする液晶表示パネル。

【効果】 液晶に接するシール材に液晶に不活性な粘性 流体13を配置することにより、液晶表示パネル作製時 に、従来に比べ液晶特性の劣化を生じることがなく、液 晶表示パネルの表示特性の高信頼性化が図れる。また、 液晶を粘性流体13でシールし密閉することにより、滴 下液晶量の制御マージンが広がる。

11…液晶 12…基板 13…粘柱流体 14…接着性的脂

【特許請求の範囲】

【請求項1】 電極を有する2枚の基板の周縁部を2種以上のシール材にて接合し、両基板間に液晶を保持した 液晶表示パネルにおいて、

前記シール材のうち、少なくとも液晶と直接触れ、該液晶を密閉するシール材が、前記液晶に不活性な粘性流体であり、この粘性流体の外側に前記基板を保持するための接着性シール材が形成されていることを特徴とする液晶表示パネル。

【請求項2】 粘性流体として、シリコン系樹脂、ある 10 いはフッ案系樹脂を使用した請求項1記載の液晶表示パ ネル。

【請求項3】 電極を有する2枚の基板の少なくとも一方の基板の周縁部に粘性流体を配置し、該基板上に液晶を一定量滴下し、他方の電極付き基板と真空中で貼り合わせ、その後、前記粘性流体部の外周に少なくとも1種の接着性樹脂を塗布し、硬化させることを特徴とする請求項1記載の液晶表示パネルの製造方法。

【請求項4】 液晶表示パネルのギャップを決定するスペーサーをあらかじめ混入した粘性流体を使用する請求 20項3 記載の液晶表示パネルの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はOA、映像用の表示装置の中で、
神型軽量でしかも低消費電力であることから、
ポケットテレビ、各種計器、ノートパソコン用ディスプレイ等に広く使用されている液晶表示パネルおよびその
製造方法に関する。

[0002]

【従来の技術】液晶表示パネルは、液晶を数 μ m \sim 10 μ m の 間隔を持つように 2 枚の電極基板板ではさみ、電極基板の緑内周を有機樹脂でシールした構造をしている。 このシール材には、熱硬化型樹脂または光硬化型樹脂がそれぞれ信頼性と作業性の点から使用されている。

【0003】そして、液晶表示パネルの製造法には一般的に、図3に工程を示すように、(a)工程で熱硬化型あるいは光硬化型のシール材32を一方の基板31に注入口を有するように印刷し、(b)工程で2枚の電極基板31、33を貼り合わせ、シール材32を硬化させた空パネルを形成し、(c)工程において、真空中で液晶の1、2を封口樹脂35で封じる真空注入法がある。しかし、この方法による液晶表示パネルの製造は、あらかじめ作製された空パネルの狭いギャップと液晶の粘性のため、注入に非常に時間がかかり生産性が悪い。また、この方法では液晶で満れている注入口の封じる工程が必要である。そこで、生産性の向上とプロセス簡略化のため、図4に示すように、(a)工程で一方の基板41に光硬化をは、サイクをスクルーンの別し、(は入口は粉けた50

い)、(b) 工程で一定量の液晶43を基板41上に滴下し、(c) 工程において、真空中で2枚の基板41,44を貼り合わせ、(d) 工程において、表示部に光が照射されないようにマスク45で優い、光照射によって熱硬化型シール42を硬化させる、滴下注入法が用いら

れている。 【0004】

【発明が解決しようとする課題】しかしながら滴下注入 法においては、基板貼り合わせ時に液晶へ悪影響を与え る未硬化のシール材が液晶に触れる問題がある。また、 光硬化型樹脂は、熱硬化型樹脂よりも基板を接着する力 が劣っており、ショックや長期の信頼性に問題がある。 接着力の強い光硬化型樹脂も開発されているが、接着性 の強い樹脂ほど液晶へ与える影響が大きく、以下のよう な対策が必要となる。例えば液晶と触れる内側に、液晶 への影響が少ない光硬化型樹脂を使用し、その外側に接 着力の強い光硬化型樹脂を組み合わせた2重シール構造 を形成する方法や、特開平2-228626号公報にあ るように、あらかじめ液晶への影響の少ない枠を形成し た後にその外側に、接着性樹脂を配して基板を貼り合わ せる方法が取られている。しかしいずれの場合も、シー ル材と液晶は接触しているため、光硬化型シール材の硬 化に必要な光が、シール近傍の液晶にも必ず照射され、 液晶特性の劣化が生じる。また、後者の場合には、ギャ ップ形成に必要な数μmの高さ精度で液晶に不活性な枠 を均一に形成するといった非常に髙い精度の工程が必要

[0005] また、滴下注入法においては、滴下液晶量の精密な制御も同時に必要となる。すなわち、両基板とシール材とで形成されるセル体積より多量の液晶が滴下された場合は、貼り合わせ後のパネルが所定のギャップより厚く形成されるか、過剰の液晶がシール材を突き破り外部に流出する。また、セル体積よりの小量の液晶が滴下された場合は、基板間隔がスペーサーにより保持されほとんど収縮できないために、液晶の不足分は気泡となるので、液晶滴下量を精度よく制御しなければならない。

[0006] 本発明は以上のような課題を解決するものであり、液晶表示パネルを生産性良く製造できる滴下注入法において、シール材が液晶へ影響を与えず、パネルの信頼性や耐久性が高く、滴下液晶量の制御マージンが広がり、工程が簡略化されるなどの特徴をもった新規な製造方法を提供するものであり、また、それにより全く新しい構造を備えた液晶表示パネルを提供することを目的とするものである。

[0007]

では被晶で濡れている注入口の封じる工程が必要である。そこで、生産性の向上とプロセス簡略化のため、図 4 に示すように、(a) 工程で一方の基板41に光硬化 型シール材42をスクリーン印刷し(注入口は設けな 50 具備した液晶表示パネルにおいて、シール材のうち、少

なくとも液晶と直接触れるシール材が液晶に不活性な粘 性流体であり、この粘性流体の外側に基板を保持するた めの接着性シール材が形成されている。

【0008】 また、本発明の液晶表示パネルの製造方法 は、2枚の電極付き基板の少なくとも一方の電極付き基 板の周縁部に粘性流体を配置し、少なくとも一方の電極 付き基板上に液晶を一定量滴下し、他方の電極付き基板 と真空中で貼り合わせ、液晶を密閉し、その後、粘性流 体部の全外周に少なくとも1種の接着性樹脂を塗布し、 硬化させることにより、液晶表示パネルを製造する。

[0009]

【作用】本発明の液晶表示パネルでは、液晶に触れるシ ール材に耐薬品性があり、パネル作製前後に化学変化を 起こさない粘性流体を使用することにより、パネル作製 時に生じる液晶の特性劣化を抑えることができ、液晶パ ネルの表示特性の信頼性が向上する。

【0010】そして、貼り合わせ時に滴下液晶を粘性流 体でシールするため、滴下液晶量の制御マージンが広が り、化学的に安定な粘性流体で液晶をシールし密閉する ことにより、外側を覆うシール材に接着性が強くプロセ 20 ス性のよい接着性樹脂が使用でき、シール材硬化プロセ スが簡略化できる。また、液晶への影響が強い溶剤を含 む接着剤あるいは、シランカップリング材等の接着力を 増強する添加剤の使用が可能になり、パネルの耐久性が 向上する。

[0011]

【実施例】以下、本発明の実施例の液晶表示パネルおよ びその製造方法について、図面を参照しながら説明す

【0012】本発明の一実施例を図面を用いて説明す 30 る。図1において、本発明の一実施例の液晶表示パネル の断面図が示されている。このパネルは、基本的にその 表面にIT〇(酸化インジウム)等による透明電極ある いは薄膜トランジスタ層(図示せず)が形成され、さら にその上にポリイミド等の配向膜(図示せず)が形成さ れ、表示部にスペーサー(図示せず)が分散されている ことにより、一定間隔を保つように2枚の基板12が貼 り合わされている。そしてこの基板間に、液晶11が充 填され、液晶11と接するシール材としてスペーサー (図示せず) を含んだ粘性流体13が配置され、この粘 40 性流体13の外周に、2枚の基板12からなる液晶パネ ルを保持する接着性樹脂14が塗布されたものである。

【0013】図2は、本発明の液晶表示パネルの製造工 程の一例を示す概略図である。まず、(a)工程におい て、透明電極および配向膜層(図示せず)が形成され、 配向処理がなされた基板21に液晶パネル間のギャップ を決定する径のスペーサー (図示せず) を含んだシリコ ン系樹脂 (ダウコーニング:高真空用グリース) である 粘性流体22を表示部を囲むように塗布する。このシリ コン系樹脂の粘性流体22は、各種の薬品におかされ 50 およびその製造法によると、液晶に接するシール材に液

て、塗布した粘性流体22で囲まれた領域に、液晶が封 入される空間と同体積の液晶24を、液体定量吐出装置 (ディスペンサー) 23を用いて滴下する。この時、液 晶材料にも基板間のギャップを形成するスペーサー(図 示せず) が含まれている。(c), (d) 工程におい て、0.1Torr程度の減圧槽25の中で粘性流体2 2と液晶24が塗布された基板21と対向する基板26 を貼り合わせる。そして、(e)工程において、貼り合 10 わされた基板間に接着性樹脂として、常温硬化で、硬化

ず、液晶に不活性である。そして、(b) 工程におい

時間の短いシアノアクリレート系の接着剤(東亜合成化 学:アロンアルファ)28を粘性流体22の全外周にデ ィスペンサー27で塗布した。接着性樹脂が硬化した (f) 工程において、本発明の液晶表示パネルが完成す

【0014】上記構成の本実施例のパネルにおいては、 従来の工法で作製した場合に生じる。未硬化樹脂や光照 射の影響による、液晶とシール材界面での液晶の配向乱 れが発生しなかった。また、従来工法においては、液晶 の比抵抗および転移点といった物性値がパネル作製後に 低下するが、本実施例のパネルの製造では、液晶の物性 値変化が見られず、その際シールとして使用する粘性流 体は、応力に対して流動性を示すため、貼り合わせ工程 において、ギャップ形成が容易であり、しかも、従来工 法において、セル体積に対して±5%程度の精度で制御 されるべき滴下液晶量が、本実施例のパネルでは、±1 0%の滴下量制御でも、液晶の流出や気泡が発生しなか った。また、従来工法では、シール樹脂の熱硬化あるい は紫外線照射硬化等のプロセスが必要であるが、本実施 例の製造方法では、常温硬化接着剤を使用することによ り硬化プロセスが簡略化された。

【0015】なお、粘性流体として本実施例では、シリ コン系樹脂を使用したが、化学的にも物理的にも安定な フッ素樹脂(テフロングリース等)も、液晶に悪影響を 与えず、同様な結果が得られた。

【0016】また、接着性樹脂としては、プロセス性の よいシアノアクリレート接着剤ではなく、接着力の強い エポキシ系接着剤やフェノール系接着剤、または、液晶 への影響が強い溶媒およびシランカップリング剤等の接 着力補強剤を添加した接着剤の使用も可能であり、接着 性樹脂として、光硬化型接着剤を使用し、光硬化させる 場合でも、光硬化型樹脂と液晶の間に粘性流体が存在す るために、液晶を完全にマスクすることができ、液晶に 照射光が照射されず液晶の劣化が生じない。

【0017】さらに、粘度の低い接着性樹脂の方が、基 板間の狭ギャップによる毛管現象で、粘性流体の外周を うまく覆うことができた。

[0018]

【発明の効果】以上のように、本発明の液晶表示パネル

5

晶に不活性な粘性流体を配置することにより、液晶表示 パネル作製時に、従来に比べ液晶特性の劣化を生じるこ とがなく、液晶表示パネルにおける表示特性の高信頼性 化が図れる。また、粘性流体で液晶をシールし密閉する ために、滴下液晶量のマージンが広がる。そして、接着 力が強く硬化プロセスの簡単で液晶に有害な接着剤も液 晶パネルの接着剤として使用でき、耐久性の高いパネル が簡単なプロセスで作製できる。

【図面の簡単な説明】

【図1】本発明の一実施例の液晶表示パネルを示す断面 *10* 図

【図2】本発明の液晶表示パネル作製の一実施例を示す 工程概略図

【図3】真空注入法による従来の液晶パネル作製の工程 概略図 【図4】 滴下注入法による従来の液晶パネル作製の工程 概略図

【符号の説明】

- 11 液晶
- 12 基板
- 13 粘性流体
- 14 接着性樹脂
- 21 基板
- 22 粘性流体
- 10 23 ディスペンサー
 - 24 液晶
 - 25 減圧槽
 - 26 対向基板
 - 27 ディスペンサー
 - 28 接着性樹脂

【図1】

【図3】

【図2】

[図4]

