

Übungsblatt 6: Wärmeleitung in 2D

Aufgabe 1: Lineare Elementfunktionen auf dem Dreieck

Wir betrachten das links dargestellte Element Ω_e mit

$$\mathbf{x}_1^e = \begin{pmatrix} x_{11}^e \\ x_{12}^e \end{pmatrix}, \quad \mathbf{x}_2^e = \begin{pmatrix} x_{21}^e \\ x_{22}^e \end{pmatrix}, \quad \mathbf{x}_3^e = \begin{pmatrix} x_{31}^e \\ x_{32}^e \end{pmatrix}$$

sowie den dargestellten Verbindungsvektoren $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

1.1 Kreuzprodukt für Vektoren aus dem \mathbb{R}^2 .

Für zwei Vektoren $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ erklären wir das Kreuzprodukt durch

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1 v_2 - u_2 v_1.$$

Anders als im \mathbb{R}^3 wird zwei Vektoren hier eine Zahl zugeordnet. Es gelten jedoch genau dieselben Rechenregeln.

Warum macht diese Definition Sinn?

Tipp: Interpretieren Sie Vektoren aus dem \mathbb{R}^2 als Vektoren aus dem \mathbb{R}^3 deren dritte Komponenten gleich null ist.

1.2 Zeigen Sie, dass folgende Beziehungen gelten:

$$A_e = \frac{1}{2}\mathbf{u} \times \mathbf{v}$$
 und $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{u}$.

Dabei ist A_e der Flächeninhalt von Ω_e .

Tipp: Schauen Sie nochmal im Skript von Mathematik 1 nach.

1.3 Leiten Sie mithilfe der Bezeichnungen oben die Gleichungen der Elementfunktionen N_1^e, N_2^e sowie N_3^e her und geben Sie die Gradienten an.

Tipp für die Funktion N_1^e : Stellen Sie die Normalenform der Geraden durch \mathbf{x}_2^e und \mathbf{x}_3^e auf. Skalieren Sie die Gleichung so, dass Sie den Wert 1 erhalten, wenn Sie \mathbf{x}_1^e in die Gleichung einsetzen.

Aufgabe 2: Element-Wärmeleitfähigkeitsmatrix und Quellvektor

2.1 Zeigen Sie, dass Sie die Elementmatrix

$$\mathbf{K}^e = \lambda \cdot A_e \cdot \begin{pmatrix} \nabla N_1^e \cdot \nabla N_1^e & \nabla N_1^e \cdot \nabla N_2^e & \nabla N_1^e \cdot \nabla N_3^e \\ \nabla N_1^e \cdot \nabla N_2^e & \nabla N_2^e \cdot \nabla N_2^e & \nabla N_2^e \cdot \nabla N_3^e \\ \nabla N_1^e \cdot \nabla N_3^e & \nabla N_2^e \cdot \nabla N_3^e & \nabla N_3^e \cdot \nabla N_3^e \end{pmatrix}$$

mithilfe der B-Matrix

$$\mathbf{B}^e = (\nabla N_1^e \quad \nabla N_2^e \quad \nabla N_3^e)$$

in der Form

$$\mathbf{K}^e = \lambda \cdot A_e \cdot \mathbf{B}^{e\top} \mathbf{B}^e$$

berechnen können.

Tipp: Verwenden Sie die Schreibweise

$$\nabla N_i^e = \begin{pmatrix} N_{i,1}^e \\ N_{i,2}^e \end{pmatrix}.$$

Um Schreibarbeit zu sparen können Sie den hochgestellten Index e weglassen.

- 2.2 Implementieren Sie die Funktion heatKe zur Bereitstellung einer Funktion, mit der die Element-Wärmeleitfähigkeitsmatrix berechnet wird (vergleiche pileKe). Einen entsprechenden Test finden Sie auf Moodle.
- 2.3 Leiten Sie den Quellvektor \mathbf{r}^e her.

Tipp: Sie können die Formel zur Berechnung des Volumens einer Pyramide verwenden. Die Aufgabe lässt sich dann auf einer Viertelseite lösen.

2.4 Implementieren Sie die Funktion heatRe analog zur Vorgehensweise beim Bohrpfahl.