Definitions for Abstract Algebra

Riley Weber

February 19, 2020

Taken from Abstract Algebra: An Introduction by Thomas W. Hungerford (ISBN 978-1111569624). Created to study while taking MATH 3163: Modern Algebra at UNC Charlotte. Definitions are ordered as they are in the book and sectioned by chapter.

1 Arithmetic in \mathbb{Z} Revisited

1.1

Definition 1.1.1 (Well-Ordering Axiom)

every non-empty subset of the set of non-negative integers has a least element

1.2

Definition 1.2.1 (Divisibility)

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. We say that b divides a and write $b \mid a$ if a = bc for some $c \in \mathbb{Z}$.

Definition 1.2.2 (Greatest Common Divisor)

Let $a, b \in \mathbb{Z}$, not both zero. The greatest common divisor (gcd) is the greatest integer that divides both a and b. This means that if d is the gcd of a and b, then

- 1. $d \mid a \text{ and } d \mid b$
- 2. if $c \mid a$ and $c \mid b$, then $c \leq d$

The greatest common divisor is often written d = gcd(a, b) or simply (a, b). it is also frequently called the greatest common denominator.

1.3

Definition 1.3.1 (Primality)

An integer p is said to be **prime** if $p \neq 0, \pm 1$ and the only divisors of p are ± 1 and $\pm p$.

2 Congruence in $\mathbb Z$ and Modular Arithmetic

2.1

Definition 2.1.1 (Congruence Modulo n)

Let $a, b, n \in \mathbb{Z}$ and n > 0. We say a is congruent to b modulo n and write $a \equiv b \pmod{n}$ if $n \mid a - b$.

Definition 2.1.2 (Congruence Class)

Let $a, n \in \mathbb{Z}$ and n > 0. The congruence class of a modulo n (written $[a]_n$ or [a]) is the set of all integers that are congruent to to a modulo n. That is, $[a] = \{b|b \in \mathbb{Z} \text{ and } b \equiv a \pmod{n}\}$

Definition 2.1.3 (The Set of All Congruence Classes)

 \mathbb{Z}_n , read " \mathbb{Z} mod n" is the set of all congruence classes modulo n. Note that for every n where $n \in \mathbb{Z}$ and n > 1, \mathbb{Z}_n is a finite set, but each congruence class in that set is an infinite set.

2.2

Definition 2.2.1 (Addition and Multiplication in \mathbb{Z}_n)

 $[a] \oplus [b] = [a+b]$ $[a] \odot [b] = [a \cdot b]$

2.3

Definition 2.3.1 (Unit)

Let $n \in \mathbb{N}$. A member of \mathbb{Z}_n is a **unit** of \mathbb{Z}_n if the equation $a \odot x = [1]$ has a solution in \mathbb{Z}_n .

3 Rings

3.1

Definition 3.1.1 (Ring)

A ring is a nonempty set R equipped with two operations (usually written as addition and multiplication) that satisfy the following axioms.

For all $a, b, c \in R$:

1. If $a \in R$ and $b \in R$, then $a + b \in R$ [Closur	e for addition
--	----------------

2.
$$a + (b + c) = (a + b) + c$$
 [Associative addition]

3.
$$a+b=b+a$$
 [Commutative addition]

4. There is an element
$$0_R \in R$$
 such that [Additive identity or zero $a+0_R=a=0_R+a$ for every $a\in R$ element]

5. For each
$$a \in R$$
, the equation $a+x=0_R$ [Additive inverse] has a solution in R

6. If
$$a \in R$$
 and $b \in R$, then $ab \in R$ [Closure for multiplication]

7.
$$a(bc) = (ab)c$$
 [Associative multiplication]

8.
$$a(b+c) = ab + ac$$
 and $(a+b)c = ac + bc$ [Distributive laws]

Definition 3.1.2 (Commutative Ring)

A commutative ring is a ring R in which ab = ba for all $a, b \in R$ (commutative multiplication).

Definition 3.1.3 (Ring with Identity)

A ring with identity is a ring R that contains a special element 1_R such that $a \cdot 1_R = a = 1_R \cdot a$ for all $a \in R$ (multiplicative identity).

Definition 3.1.4 (Integral Domains)

An integral domain is a commutative ring R with identity such that if $a, b \in R$ and $ab = 0_R$ then either $a = 0_R$ or $b = 0_R$.

Definition 3.1.5 (Field)

A field is a commutative ring R with identity 1_R such that if $a \in R \setminus \{0_R\}$ then a is a unit (i.e. the equation $ax = 1_R$ has a solution in R)

Following is a diagram which illustrates what common sets are also rings, fields, and the like.

