TD6-Intégration

Exercice 1

Calculer les intégrales suivantes :

$$1. \int_0^2 t e^{2t} dt$$

$$3. \int_{2}^{4} \frac{1}{1 - x^2} dx,$$

1.
$$\int_0^2 te^{2t} dt$$
, 3. $\int_2^4 \frac{1}{1-x^2} dx$, 5. $\int_0^1 \frac{r}{\sqrt{2r+1}} dr$,

$$2. \int_{1}^{e} \ln(x) dx$$

2.
$$\int_{1}^{e} \ln(x) dx$$
, 4. $\int_{1}^{5} \sqrt{y} \ln(y) dy$, 6. $\int_{0}^{2} x \sqrt{3x + 1} dx$.

6.
$$\int_{0}^{2} x \sqrt{3x + 1} dx$$

Exercice 2

Pour tout $n \in \mathbb{N}$, soit f_n la fonction définie sur $[0, +\infty[$ par

$$\forall x \in [0, +\infty[, \quad f_n(x) = \frac{x^n}{1+x^2}.$$

On note $I_n = \int_0^1 f_n(x) dx$.

- 1. Montrer que pour tout entier naturel n, I_n est bien définie et calculer I_1 .
- 2. Montrer que $\lim_{n \to +\infty} I_n = 0$.

Exercice 3

On considère la fonction f définie sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, \quad f(x) = \int_{\frac{1}{x}}^{x} \frac{\ln(t)}{1+t^2} dt.$$

- 1. Justifier que f est bien définie et est dérivable sur $]0, +\infty[$. Calculer sa fonction dérivée.
- 2. En déduire f(x) pour tout x > 0.
- 3. Retrouver ce résultat à l'aide d'un changement de variable.

Exercice 4

Étudier la nature des intégrales suivantes et le cas échéant, calculer leur valeur :

$$1. \int_2^{+\infty} \frac{1}{\sqrt{t-1}} dt,$$

$$3. \int_{-\infty}^{0} \frac{t}{(1+t^2)^2} dt,$$

$$2. \int_0^{+\infty} xe^{-x^2} dx,$$

4.
$$\int_0^{+\infty} \frac{1}{1 + e^t} dt$$
.

Exercice 5

Étudier la nature des intégrales suivantes et le cas échéant, calculer leur valeur :

1.
$$\int_{-\infty}^{+\infty} \frac{1}{2(1+|x|)^2} dx$$
, 2. $\int_{-\infty}^{+\infty} x e^{-x^2} dx$.

$$2. \int_{-\infty}^{+\infty} x e^{-x^2} dx$$

Exercice 6

On définit sur \mathbb{R}_+^* la fonction h par : $\forall x \in \mathbb{R}_+^*$, $h(x) = \frac{\ln(x)}{x^2 + 1}$.

- 1. Étudier le signe de h.
- 2. À l'aide d'une intégration par parties, montrer que $\int_{1}^{+\infty} \frac{\ln(x)}{x^2} dx$ est convergente et déterminer sa valeur.
- 3. (a) Justifier que $H: A \mapsto \int_1^A h(x)dx$ est croissante sur $[1, +\infty[$.
 - (b) Montrer que H est majorée par $\int_{1}^{+\infty} \frac{\ln(x)}{x^2} dx \, sur [1, +\infty[$.
 - (c) Montrer que $\int_{1}^{+\infty} h(x)dx$ est convergente.

Exercice 7

- 1. Montrer que si f est une fonction continue paire et que $\int_0^{+\infty} f(x)dx$ converge alors $\int_{0}^{+\infty} f(x)dx$ converge et vaut $2\int_{0}^{+\infty} f(x)dx$.
- 2. Montrer que si f est une fonction continue impaire et que $\int_{0}^{+\infty} f(x)dx$ converge alors $\int_{-\infty}^{+\infty} f(x)dx$ converge et vaut 0.