Uniqueness and Asymptotic Stability of Equilibria in a Reversible, Non-Complex-Balanced Reaction Network

Gilles Gnacadja

AMGEN
Thousand Oaks, California, USA
http://math.GillesGnacadja.info/

Society for Industrial and Applied Mathematics Conference on the Life Sciences

Minisymposium on the Long-Term Dynamical Properties of Biochemical Reaction Networks

San Diego, California, USA 7-10 August 2012

- 1 Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- 2 The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

- 1 Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

The Two Usual Notions of Reversibility in CRNT

- Weakly reversible network: Each reaction lies in at least one cycle.
- Reversible network: Each reaction is reversible.
- Complex-balanced equilibrium: Reaction nodes are flux-neutral: at each node, \sum (rates of incoming reactions) = \sum (rates of outgoing reactions).
- Detailed-balanced equilibrium: Any two reverse reactions have same rate.

A Third Notion of Reversibility "Aren't All Networks Like That?"

Explicitly-reversibly constructive network:

- 1 Constructive: Sensible notions of species composition, elementary species, composite species, isomers, etc.
- Explicitly constructive:
 - Each composite species is produced by a binding reaction or is consumed by a dissociation reaction, and
 - Each elementary species is consumed by a binding reaction or is produced by a dissociation reaction.
- Explicitly-reversibly constructive: Replace or with and.

J Math Chem (2011) 49:2137–2157 DOI 10.1007/s10910-011-9896-2

Reachability, persistence, and constructive chemical reaction networks (part II): a formalism for species composition in chemical reaction network theory and application to persistence

Gilles Gnacadja

Where the Particular Network in this Presentation Lives

- 1 Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- 2 The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

Complex-Balanced (aka Toric) Networks

- Known Results on positive equilibria in stoichiometric compatibility classes
 - Uniqueness
 - Local asymptotic stability via entropy-like Lyapunov function
- Open Conjectures
 - Persistence
 - Global asymptotic stability
- Restrictions
 - Weakly reversible networks
 - Often, algebraic conditions on (mass action) rate constants

My Observations on Reversibility

- "Sensible" biochemical networks are explicitly-reversibly constructive.
- Those that are weakly reversible are actually reversible.
- Algebraic Constraints for Complex Balance
 - Justified or verifiable in physics or chemistry?
 - Not enforceable in finite-precision computations.
 - Are mathematical results robust w.r.t. constraints algebraic variety?
 - Can unique equilibria become multiple?
 - Can stable equilibria become unstable?
- Guiding intuition: Properties of biochemical reaction networks should not
 - Uniqueness or quantified multiplicity.
 - Asymptotic stability via quadratic Lyapunov function.

My Observations on Reversibility

- "Sensible" biochemical networks are explicitly-reversibly constructive.
- Those that are weakly reversible are actually reversible.

Algebraic Constraints for Complex Balance

- Justified or verifiable in physics or chemistry?
- Are mathematical results robust w.r.t. constraints algebraic variety?
 - Can unique equilibria become multiple?
 - Can stable equilibria become unstable?
- Guiding intuition: Properties of biochemical reaction networks should not
 - Uniqueness or quantified multiplicity.
 - Asymptotic stability via quadratic Lyapunov function.

My Observations on Reversibility

- "Sensible" biochemical networks are explicitly-reversibly constructive.
- Those that are weakly reversible are actually reversible.

Algebraic Constraints for Complex Balance

- Justified or verifiable in physics or chemistry?
- Not enforceable in finite-precision computations.
- Are mathematical results robust w.r.t. constraints algebraic variety?
 - Can unique equilibria become multiple?
 - Can stable equilibria become unstable?
- Guiding intuition: Properties of biochemical reaction networks should not
 - Uniqueness or quantified multiplicity.
 - Asymptotic stability via quadratic Lyapunov function.
 - Focus on explicitly-reversibly constructive networks.
 - Hope: Better structural conditions on networks will eliminate need

9 August 2012

- My Observations on Reversibility
 - "Sensible" biochemical networks are explicitly-reversibly constructive.
 - Those that are weakly reversible are actually reversible.
- Algebraic Constraints for Complex Balance
 - Justified or verifiable in physics or chemistry?
 - Not enforceable in finite-precision computations.
 - Are mathematical results robust w.r.t. constraints algebraic variety?
 - Can unique equilibria become multiple?
 - Can stable equilibria become unstable?
- Guiding intuition: Properties of biochemical reaction networks should not depend on conditions on rate constants that are "stiff", i.e. easy to break, e.g. complement is open and dense; codimension > 0; measure = 0; etc.
 - Uniqueness or quantified multiplicity.
 - Asymptotic stability via quadratic Lyapunov function.

9/24

My Observations on Reversibility

- "Sensible" biochemical networks are explicitly-reversibly constructive.
- Those that are weakly reversible are actually reversible.

Algebraic Constraints for Complex Balance

- Justified or verifiable in physics or chemistry?
- Not enforceable in finite-precision computations.
- Are mathematical results robust w.r.t. constraints algebraic variety?
 - Can unique equilibria become multiple?
 - Can stable equilibria become unstable?
- Guiding intuition: Properties of biochemical reaction networks should not depend on conditions on rate constants that are "stiff", i.e. easy to break, e.g. complement is open and dense; codimension > 0; measure = 0; etc.
 - Uniqueness or quantified multiplicity.
 - Asymptotic stability via quadratic Lyapunov function.
 - Focus on explicitly-reversibly constructive networks.
 - Hope: Better structural conditions on networks will eliminate need for "stiff" algebraic conditions on rate constants.

All This Well Known in Physics or Chemistry?

Uniqueness of chemical equilibria in ideal mixtures of ideal gases

Joseph M. Powers and Samuel Paolucci

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637

(Received 7 June 2007; accepted 14 April 2008)

We prove the uniqueness of chemical equilibrium for an ideal mixture of ideal gases in a closed, spatially homogeneous volume. Uniqueness, a fundamental issue of chemical physics, is incompletely justified in textbooks and much of the scientific literature. We first reproduce a little known proof by Zel'dovich and show in a more direct fashion than originally presented that a unique equilibrium exists for isothermal reactions. Zel'dovich's approach is then extended to the adiabatic case, and a more complete exposition than that of Aris is provided. The example of an isothermal, isochoric O-O₂-O₃ system provides an illustration of uniqueness. The discussion should be useful for students and instructors of graduate level thermal physics, as well as for researchers in macroscale reaction dynamics. © 2008 American Association of Physics Teachers.

[DOI: 10.1119/1.2919742]

Am. J. Phys. 76 (9), September 2008

http://aapt.org/ajp

© 2008 American Association of Physics Teachers

- Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- 2 The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

Structure

$$R + A \rightleftharpoons RA$$

$$+ \qquad +$$

$$B \qquad \qquad B$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$RB + A \rightleftharpoons RAB$$

$$R + A \rightleftharpoons RA$$
 $R + B \rightleftharpoons RB$
 $RA + B \rightleftharpoons RAB$
 $RB + A \rightleftharpoons RAB$

Mass-Action Kinetics

$$\dot{x} = f(k, x) = -S \cdot w(k, x)$$

x : Vector of species concentrationsk : Vector of mass-action rate constants

S : Stoichiometric matrix

w(k,x): Vector of reaction rates

$$x = \begin{pmatrix} x_{R} \\ x_{A} \\ x_{B} \\ x_{RA} \\ x_{RB} \\ x_{RAB} \end{pmatrix} \qquad k = \begin{pmatrix} k_{R+A \to RA} \\ k_{RA \to R+A} \\ k_{R+B \to RB} \\ k_{RB \to R+B} \\ k_{RAB \to RA+B} \\ k_{RAB \to RA+B} \\ k_{RAB \to RA+A} \end{pmatrix}$$

Stoichiometric Matrix S

$$S = \begin{pmatrix} -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix} \begin{matrix} R \\ A \\ B \\ RA \\ RB \\ RAB \end{matrix}$$

Vector w(k, x) of (Differences of) Reaction Rates

$$w(k,x) = \begin{pmatrix} k_{RA \to R+A} & x_{RA} & -k_{R+A \to RA} & x_R x_A \\ k_{RAB \to RA+B} & x_{RAB} & -k_{RA+B \to RAB} & x_{RA} x_B \\ k_{RB+A \to RAB} & x_{RB} x_A & -k_{RAB \to RB+A} & x_{RAB} \\ k_{R+B \to RB} & x_R x_B & -k_{RB \to R+B} & x_{RB} \end{pmatrix} RAB \rightleftharpoons RAB$$

$$RAB \rightleftharpoons RB + A$$

$$RB \rightleftharpoons R + B$$

- Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- 2 The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

Existence and Uniqueness of Equilibrium

Result

For the Allosteric Ternary Complex Model, regardless of (positive) rate constants, each stoichiometric compatibility class contains a unique equilibrium state.

- The unique equilibrium is detailed/complex-balanced only provided a "stiff" algebraic condition on rate constants.
- The network has deficiency one. The Deficiency-Zero Theorem is not applicable.
- The three linkage classes have deficiency zero. The Deficiency-One Theorem is not applicable.

- Kinds of Reversibility and Equilibria
 - Three Notions of Reversibility
 - Complex Balance: Why and Why Not
- 2 The Allosteric Ternary Complex Model
 - Structure and Kinetics
 - Existence and Uniqueness of Equilibrium
 - Asymptotic Stability

Two Tools to Study Spectrum of Jacobian Matrix

Theorem (Classic in Linear Algebra)

Let A and B be matrices of size $m \times n$ and $n \times m$.

- $\lambda^n p_{AB}(\lambda) = \lambda^m p_{BA}(\lambda)$
- The $m \times m$ matrix AB and the $n \times n$ matrix BA have the same nonzero eigenvalues with the same multiplicities.
- n + multiplicity(0, AB) = m + multiplicity(0, BA)

Theorem (Classic in Linear Algebra and Graph Theory)

Consider a square real nonnegative matrix M and its Laplacian matrix $\mathcal{L}(M)$. Let $\lambda \in \mathbb{C}$ be an eigenvalue of $\mathcal{L}(M)$.

Either $\lambda = 0$ or $Re(\lambda) > 0$.

A Matrix Isospectral with the Jacobian Matrix

$$f(k,x) = -S \cdot w(k,x)$$

$$J(f,k,x) = -S \cdot J(w,k,x)$$

$$L(k,x) := J(w,k,x) \cdot S$$

- The matrices J(f, k, x) and -L(k, x) have the same nonzero eigenvalues with same multiplicities.
- multiplicity(0, J(f, k, x)) = multiplicity(0, L(k, x)) + 2

Spectrum of Jacobian Matrix

$$M(k,x) := \begin{pmatrix} 0 & k_{RA \to R+A} & k_{R+A \to RA} x_R & k_{R+A \to RA} x_A \\ k_{RA+B \to RAB} x_B & 0 & k_{RAB \to RA+B} & k_{RA+B \to RAB} x_{RA} \\ k_{RB+A \to RAB} x_{RB} & k_{RAB \to RB+A} & 0 & k_{RB+A \to RAB} x_A \\ k_{R+B \to RB} x_B & k_{R+B \to RB} x_R & k_{RB \to R+B} & 0 \end{pmatrix}$$

Result

$$L(k,x) = \mathcal{L}(M(k,x))$$

Corollary

Given arbitrary nonnegative vectors k and x, if $\lambda \in \mathbb{C}$ is an eigenvalue of the Jacobian matrix J(f, k, x), then either $\lambda = 0$ or $Re(\lambda) < 0$.

Note: The vector x is not required to be an equilibrium state.

Conservation of Total Concentrations of Elementary Species

Elementary species: R, A, B. Composite species: RA, RB, RAB.

$$X_R + X_{RA} + X_{RB} + X_{RAB} = T_R$$

 $X_A + X_{RA} + X_{RAB} = T_A$
 $X_B + X_{RB} + X_{RAB} = T_B$

Composition matrix:
$$E := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(Id_3 | E) \cdot x = T$$
 $x_{Elem} = T - E \cdot x_{Comp}$

(Taking advantage of absence of isomers among elementary species.)

System reduction

First three columns of P span conservation space. Last three columns of P span stoichiometric space.

$$P^{-1} \cdot J(f, k, x) \cdot P = \begin{pmatrix} O_{3,3} & O_{3,3} \\ * & J(g, k, x_{\mathsf{Comp}}) \end{pmatrix}$$

The nonzero eigenvalues of J(f, k, x) are the nonzero eigenvalues of $J(g, k, x_{\text{comp}})$ with same multiplicities.

Stability

- Reuse result that justified uniqueness of equilibrium: The matrix $J(g, k, x_{Comp})$ is nonsingular.
- Corollary: If $\lambda \in \mathbb{C}$ is an eigenvalue of $J(g, k, x_{\text{Comp}})$, then $\text{Re}(\lambda) < 0$.

Result

For the Allosteric Ternary Complex Model, regardless of (positive) rate constants, the unique equilibrium state in each stoichiometric compatibility class is asymptotically stable via a quadratic Lyapunov function.