B. Wróblewski

Równania liniowe skalarne wyższych rzędów

Zadanie 1. Znajdź rozwiązania ogólne równań:

a)
$$y'' + y' - 2y = 0$$
,

a)
$$y'' + y' - 2y = 0$$
, c) $y^{(5)} - 6y^{(4)} + 9y^{(3)} = 0$, e) $y'' - 2y' + y = 6te^t$,

e)
$$y'' - 2y' + y = 6te^t$$

b)
$$y^{(4)} + 4y = 0$$
,

d)
$$y'' + y = 4 \sin t$$
,

d)
$$y'' + y = 4\sin t$$
, f) $y'' - 5y' = 3t^2 + \sin 5t$.

Zadanie 2. Znajdź rozwiązania szczególne równań

a)
$$y'' - 2y' + 2y = e^t + t \cos t$$
, b) $y'' - y = 4 \sinh t$,

b)
$$y'' - y = 4 \text{ sh } t$$
.

c)
$$y'' + 3y = t^3 - 1$$
,

nie korzystając z metody uzmienniania parametrów.

Zadanie 3. Znajdź rozwiązania ogólne równań

a)
$$y'' - 2y' + y = \frac{e^t}{t}$$
, b) $y'' + 4y = 2 \operatorname{tg} t$,

b)
$$y'' + 4y = 2 \operatorname{tg} t$$

c)
$$y'' - 4y' + 4y = te^{2t}$$
,

używając metody uzmienniania parametrów.

Zadanie 4. Rozwiąż zagadnienia początkowe

a)
$$y^{(3)} - y' = 0$$
,
 $y(0) = 3$, $y'(0) = -1$, $y''(0) = 1$,

b)
$$y^{(3)} - 3y' - 2y = 9e^{2x}$$
,
 $y(0) = 0$, $y'(0) = -3$, $y''(0) = 3$.

Zadanie 5. Skonstruuj równanie różniczkowe liniowe jednorodne trzeciego rzędu, które spełniają funkcje t, t^2, e^t .

Zadanie 6. Załóżmy, że równanie y'' + p(t)y' + q(t)y = g(t) ma trzy rozwiązania:

$$t^2$$
, $t^2 + e^{2t}$, $1 + t^2 + 2e^{2t}$.

Znajdź rozwiązanie ogólne.

Zadanie 7. Załóżmy, że a>0, b>0 i c>0. Udowodnij, że każde rozwiązanie równania ay'' + by' + cy = 0 daży do 0 gdy $t \to \infty$.

Zadanie 8. Znajdź postać ogólną rozwiązania równania y'' + y = f(t). Znajdź warunki jakie powinna spełniać funkcja f na to, aby wszystkie rozwiązania tego równania były ograniczone dla $t \to +\infty$.

Zadanie 9. Pokaż, że rozwiązanie równania y'' + p(x)y' + q(x)y = 0 albo ma na każdym skończonym przedziale [a, b] tylko skończenie wiele zer, albo jest tożsamościowo równe zeru. Jak uogólnić ten wynik na równania liniowe wyższego rzędu?

Zadanie 10. Udowodnij, że rozwiązania równania y'' + p(x)y' + q(x)y = 0 z q(x) < 0 nie mogą mieć dodatnich maksimów (lokalnych).

Zadanie 11. Niech $y_1(t)$ i $y_2(t)$ będą rozwiązaniami równania y'' + p(t)y' + q(t)y = 0, gdzie p(t) i q(t) są ciągłe w pewnym przedziale $[\alpha, \beta]$. Oznaczmy

$$W(t) = W[y_1(t), y_2(t)] = y_1(t)y_2'(t) - y_1'(t)y_2(t).$$

Pokaż, że dla każdych $t, t_0 \in [\alpha, \beta]$ jest prawdziwa równość

$$W[y_1(t), y_2(t)] = W[y_1(t_0), y_2(t_0)] \exp\left(-\int_{t_0}^t p(s) ds\right).$$

Wyjaśnij związek z twierdzeniem Liouville'a dla układów równań. Wywnioskuj, że wyznacznik Wrońskiego $W[y_1(t),y_2(t)]$ jest albo tożsamościowo równy 0 lub nigdy nie zeruje się na przedziale $[\alpha,\beta]$ oraz że jeżeli jest stały to jest tożsamościowo równy zero.

Zadanie 12. Pokaż, że jeżeli wszystkie rozwiązania y i ich pochodne y' równania y'' + p(t)y' + q(t)y = 0 dążą do 0 gdy $t \to \infty$, to $\int_{t_0}^t p(s) \ ds \to +\infty$ dla $t \to +\infty$.

Zadanie 13. Udowodnij, że $y(t) = t^2$ nigdy nie może być rozwiązaniem równania y'' + p(t)y' + q(t)y = 0 dla ciągłych p(t) i q(t).

Zadanie 14. Funkcja $y_1(t)=e^{-t^2/2}$ jest rozwiązaniem równania y''+ty'+y=0. Znajdź drugie rozwiązanie liniowo niezależne.

Zadanie 15. Funkcja $y_1(t) = t$ jest rozwiązaniem równania y'' + ty' - y = 0. Znajdź drugie rozwiązanie liniowo niezależne.

Zadanie 16. Rozważamy równanie y'' + p(x)y' + q(x)y = 0.

- a) Używając podstawienia $y(x)=z(x)\exp\left(-\frac{1}{2}\int p(s)\;ds\right)$ sprowadź powyższe równanie do postaci z''+b(x)z=0.
- b) Spróbuj znaleźć podstawienie redukujące wyjściowe równanie do w'' + c(x)w' = 0.
- c) Zakładając, że y_1 jest rozwiązaniem, znajdź rozwiązanie y_2 (w postaci $y_2=y_1z$) niezależne od y_1 .

Zadanie 17. Znajdź rozwiązanie (w postaci szergu potęgowego) następującego zagadnienia:

$$t(2-t)y'' - 6(t-1)y' - 4y = 0, \quad y(1) = 1, \quad y'(1) = 0.$$

Zadanie 18. Znajdź rozwiązanie ogólne równania Czebyszewa

$$(1 - t^2)y'' - ty' + 9y = 0,$$

jeżeli wiadomo, że ma ono rozwiązanie szczególne będące wielomianem stopnia 3. UWAGA: *Równanie Czebyszewa* $(1-t^2)y''-ty'+n^2y=0$ zawsze ma rozwiązanie szczególne będące wielomianem stopnia n.

Zadanie 19. Równanie postaci $y'' - 2ty' + \lambda y = 0$, gdzie $\lambda \in \mathbb{R}$ nazywa się *równaniem Hermite'a*.

- a) Znajdź dwa niezależne rozwiązania równania Hermite'a.
- b) Udowodnij, że dla $\lambda = 2n$ (n liczba naturalna) równanie Hermite'a ma rozwiązanie w postaci wielomianu stopnia n.