§ 6-1 热力学第一定律

重点:

1.概念:内能、功、热量;摩尔热容;泊松比

- 2.热力学第一定律及其应用于理想气体的等体、等温、等压、绝热和循环过程
- 3.卡诺循环;热机效率和制冷系数
- 4.热力学第二定律

难点:

热量,热力学概率,热力学第二定律的统计意义,熵

一. 热力学过程

1.热力学系统

大量粒子组成的宏观、有限的体系。 其比邻环境称为外界

开放系统 与外界有 $m \setminus E$ 交换

系统< 封闭系统与外界有E 交换,无m 交换

孤立系统 与外界无 E、m 交换

2.热力学过程

非静态过程: 中间状态不是平衡态

准静态过程: 过程进行得足够缓慢

(平衡过程) 中间状态是平衡态

二. 系统的内能、功和热量

1.系统的内能

广义: 系统内所有粒子各种能量总和

平动、转动、振动能量、化学能、原子能、核能...

狭义: 所有分子热运动能量和分子间相互作用势能

例:实际气体
$$E = E(T, V)$$

理想气体
$$E = \frac{M}{\mu} \frac{i}{2} RT = E(T)$$

内能是状态函数

内能变化 △ 月与初末状态有关,与所经过的过程无关,可以在初、末态间任选最简便的过程进行计算。

内能变化方式热传

2.系统的功

准静态过程的体积功

$$dA = \vec{F} \cdot d\vec{l} = pSdl = pdV$$

$$A = \int_{V_1}^{V_2} p \mathrm{d}V$$

注意: 非静态过程不适用

示功图: p-V图上过程曲线下的面积

$$A = \int_{v_1}^{v_2} p \, \mathrm{d}V$$

若
$$dV > 0$$
 $dA > 0$ $dV < 0$ $dA < 0$ $dV = 0$ $dA = 0$

是否 $V_2 > V_1$ 则由 $1 \rightarrow 2$ 的任何过程1 > 0?

注意: 功是过程量

过程不同,曲线下面积不同 (可正、可负、可零)

3.系统的热传递

通过系统内外分子无规则运动交换能量,从而改变系统的内能。

注意: 传递的热量是过程量

A与Q比较

E改变 方式	特点	能量转换	量度
做功	与宏观位移相联系 通过气体压力做功 实现	机械 → 热运动 运动	$oldsymbol{A}$
热传递	与温差相联系, 通过分子碰撞实现	热运动 — 热运动	${\it Q}$

三. 热力学第一定律

1. 数学形式:

$$Q = (E_2 - E_1) + A$$

系统从外界吸热 = 内能增量+系统对外界做功

微小过程: dQ=dE+dA

准静态: dQ=dE+pdV

理想气体: $dQ = \frac{M}{U} \frac{i}{2} R dT + p dV$

2. 物理意义:

涉及热运动和机械运动的能量转换及守恒定律。

3. 其它表述:

第一类永动机是不可能制成的

第一类永动机:系统不断经历状态变化后回到初态,不消耗内能,不从外界吸热,只对外做功

即:
$$\Delta E = 0$$

$$Q = 0$$

违反热力学第一定律