

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Matemáticas Discretas - IIC1253 Guía de teoría de conjuntos

1. Recuerde que el axioma del conjunto potencia dice que:

Para todo conjunto A, existe un conjunto $\mathcal{P}(A)$ cuyos elementos son exactamente todos los subconjuntos de A.

Escriba este axioma en lógica de predicados (recuerde que sólo puede usar los predicados \in e =).

2. El axioma de regularidad (o también conocido como el axioma de fundación) dice lo siguiente:

Todo conjunto A no vacío tiene un elemento $c \in A$ tal que $c \cap A = \emptyset$. (es decir, tal que c y A no tienen elementos en común.)

Escriba este axioma en lógica de predicados (recuerde que sólo puede usar los predicados \in e =).

- 3. Demuestre que no existe un conjunto A tal que $A \in A$. (*Hint:* Razone por contradicción, y aplique el axioma de regularidad a algún conjunto que le convenga.)
- 4. Demuestre que no puede existir un conjunto universo. Es decir, demuestre que no existe un conjunto que contenga a todos los conjuntos.
- 5. Demuestre que no existe un conjunto que contenga a todos los singletons (recuerde que un singleton es un conjunto de la forma $\{A\}$). (*Hint:* recuerde el axioma de la unión.)
- 6. Sean A, B y U conjuntos tal que $A \subseteq U$ y $B \subseteq U$. Demuestre que $A \subseteq B$ si y sólo si $U \setminus B \subseteq U \setminus A$.
- 7. Sean A, B y X conjuntos. Demuestre que si $X \subseteq A y X \subseteq B$, entonces $X \subseteq A \cap B$.
- 8. Sean A, B y C conjuntos. Demuestre las siguientes propiedades:
 - $a) A \cup (B \setminus A) = A \cup B.$
 - b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.
 - c) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.
 - $d) \ C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B).$
 - e) $(A \setminus B) \setminus C \subseteq A \setminus C$.
- 9. Definimos la diferencia simétrica entre dos conjuntos A y B como:

$$A\,\Delta\,B\ =\ A\,\backslash\,B\ \cup\ B\,\backslash\,A$$

Demuestre que para todo conjunto A, B y C se cumple lo siguiente:

- $a) \ A \Delta B = (A \cup B) \setminus (A \cap B)$
- b) $A \Delta B = B \Delta A$
- 10. Sean A y B conjuntos. Demuestre las siguientes afirmaciones:
 - a) $A \subseteq B$ si y sólo si $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
 - b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - c) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
 - d) $A \cap B = \emptyset$ si y sólo si $\mathcal{P}(A) \cap \mathcal{P}(B) = {\emptyset}.$
 - e) Si $\mathcal{P}(A) = \mathcal{P}(B)$, entonces A = B.
- 11. Sea A un conjunto. Decimos que $\mathcal{M}\subseteq\mathcal{P}(A)$ es un álgebra si:
 - (i) $A \in \mathcal{M}$.
 - (ii) Para todo $X, Y \in \mathcal{M}$, se cumple que $X \cup Y \in \mathcal{M}$.
 - (iii) Para todo $X \in \mathcal{M}$, se cumple que $A \setminus X \in \mathcal{M}$.

Sea A un conjunto y \mathcal{M} un álgebra. Demuestre lo siguiente:

- $a) \emptyset \in \mathcal{M}.$
- b) Para todo $X, Y \in \mathcal{M}$, se cumple que $X \cap Y \in \mathcal{M}$.
- c) Para todo $X, Y \in \mathcal{M}$, se cumple que $X \Delta Y \in \mathcal{M}$.