Linear Predictors Econ 211C – Unit 2, Section 1

Eric M. Aldrich UC Santa Cruz

Forecasting

Suppose we are interested in forecasting a random variable Y_{t+1} based on a set of variables X_t .

- ▶ X_t might be comprised of m lags of Y_{t+1} : $Y_t, Y_{t-1}, \dots, Y_{t-m+1}$.
- ▶ We can denote $Y_{t+1|t}^*$ as the forecast of Y_{t+1} based on X_t .
- ▶ We can choose $Y_{t+1|t}^*$ to minimize some loss function, $L\left(Y_{t+1|t}^*\right)$, which evaluates the quality of $Y_{t+1|t}^*$.
- ► A common choice is the quadratic loss function:

$$L(Y_{t+1|t}^*) = E[(Y_{t+1} - Y_{t+1|t}^*)^2].$$

Mean Squared Error Loss

Quadratic loss is also known as mean squared error.

$$MSE(Y_{t+1|t}^*) = E[(Y_{t+1} - Y_{t+1|t}^*)^2].$$

▶ The conditional expectation, E $[Y_{t+1}|\boldsymbol{X}_t]$ minimizes $MSE\left(Y_{t+1|t}^*\right)$.

MSE Minimizer

Let
$$Y_{t+1|t}^* = g(\boldsymbol{X}_t)$$
. Then

$$E \left[(Y_{t+1} - g(\boldsymbol{X}_t))^2 \right] = E \left[(Y_{t+1} - E[Y_{t+1} | \boldsymbol{X}_t] + E[Y_{t+1} | \boldsymbol{X}_t] - g(\boldsymbol{X}_t))^2 \right]$$

$$= E \left[(Y_{t+1} - E[Y_{t+1} | \boldsymbol{X}_t] - g(\boldsymbol{X}_t))^2 \right]$$

$$+ 2E \left[(Y_{t+1} - E[Y_{t+1} | \boldsymbol{X}_t])^2 \right]$$

$$\times \left(E[Y_{t+1} | \boldsymbol{X}_t] - g(\boldsymbol{X}_t) \right) \right]$$

$$+ E \left[\left(E[Y_{t+1} | \boldsymbol{X}_t] - g(\boldsymbol{X}_t) \right)^2 \right]$$

MSE Minimizer

By the law of iterated expectations

$$E\left[\left(Y_{t+1} - E\left[Y_{t+1}|\boldsymbol{X}_{t}\right]\right)\left(E\left[Y_{t+1}|\boldsymbol{X}_{t}\right] - g(\boldsymbol{X}_{t})\right)\right]$$

$$= E\left[E\left[\left(Y_{t+1} - E\left[Y_{t+1}|\boldsymbol{X}_{t}\right]\right)|\boldsymbol{X}_{t}\right]\left(E\left[Y_{t+1}|\boldsymbol{X}_{t}\right] - g(\boldsymbol{X}_{t})\right)\right]$$

$$= E\left[\left(E\left[Y_{t+1}|\boldsymbol{X}_{t}\right] - E\left[Y_{t+1}|\boldsymbol{X}_{t}\right]\right)\left(E\left[Y_{t+1}|\boldsymbol{X}_{t}\right] - g(\boldsymbol{X}_{t})\right)\right]$$

$$= 0.$$

► This means that the second term of the equation on the previous slide is zero.

MSE Minimizer

Substituting the previous result:

$$E\left[\left(Y_{t+1} - g(\boldsymbol{X}_t)\right)^2\right] = E\left[\left(Y_{t+1} - E\left[Y_{t+1}|\boldsymbol{X}_t\right]\right)^2\right] + E\left[\left(E\left[Y_{t+1}|\boldsymbol{X}_t\right] - g(\boldsymbol{X}_t)\right)^2\right]$$

ightharpoonup Clearly the the MSE is minimized when

$$\mathbb{E}\left[\left(\mathbb{E}\left[Y_{t+1}|\boldsymbol{X}_{t}\right]-g(\boldsymbol{X}_{t})\right)^{2}\right]=0.$$

► This occurs when $E[Y_{t+1}|X_t] = g(X_t)$.

Linear Projection

We can restrict our forecast to be a linear function of X_t :

$$Y_{t+1|t}^* = \boldsymbol{X}_t' \boldsymbol{\beta}.$$

▶ Let β^* be the value of β so that the forecast error is orthogonal to or uncorrelated X_t :

$$\mathrm{E}\left[X_{t}\underbrace{\left(Y_{t+1}-X_{t}'eta^{*}\right)}_{\mathrm{forecast\ error}}\right]=\mathbf{0}.$$

- ightharpoonup This is a *system* of equations.
- $\triangleright \beta^*$ minimizes the MSE.

Linear Projection

We can use the same steps as before to show that β^* minimizes MSE.

▶ Begin with an arbitrary linear forecasting rule,

$$Y_{t+1|t}^* = \boldsymbol{X}_t' \boldsymbol{\gamma}.$$

▶ Show that

$$MSE\left(Y_{t+1|t}^*\right) = E\left[\left(Y_{t+1} - \boldsymbol{X}_t'\boldsymbol{\gamma}\right)^2\right]$$

$$= E\left[\left(Y_{t+1} - \boldsymbol{X}_t'\boldsymbol{\beta}^* + \boldsymbol{X}_t'\boldsymbol{\beta}^* - \boldsymbol{X}_t'\boldsymbol{\gamma}\right)^2\right]$$

$$= E\left[\left(Y_{t+1} - \boldsymbol{X}_t'\boldsymbol{\beta}^*\right)^2\right] + E\left[\left(\boldsymbol{X}_t'\boldsymbol{\beta}^* - \boldsymbol{X}_t'\boldsymbol{\gamma}\right)^2\right].$$

▶ Hence, MSE is minimized when $\gamma = \beta^*$.

Linear Projection

$$Y_{t+1|t}^* = X_t' \beta^*$$
 is referred to as the linear projection of Y_{t+1} on X_t .

▶ We will denote the linear projection as

$$\hat{P}(Y_{t+1}|\boldsymbol{X}_t) = \boldsymbol{X}_t'\boldsymbol{\beta}^*$$
 or $\hat{Y}_{t+1|t} = \boldsymbol{X}_t'\boldsymbol{\beta}^*$.

► Clearly

$$MSE\left(\hat{P}(Y_{t+1}|\boldsymbol{X}_t)\right) \geq MSE\left(\mathrm{E}\left[Y_{t+1}|\boldsymbol{X}_t\right]\right).$$

Linear Projection Solution

Using the orthogonality condition:

$$\boldsymbol{\beta}^* = \mathrm{E} \left[\boldsymbol{X}_t \boldsymbol{X}_t' \right]^{-1} \mathrm{E} \left[\boldsymbol{X}_t Y_{t+1} \right]. \tag{1}$$

► Least squares projection is the sample analogue of Equation (1).

Linear Projection MSE

Using our solutions for β^* , we can solve for the MSE of the linear projection:

$$\begin{split} MSE(Y_{t+1|t}^*) &= \mathbb{E}\left[\left(Y_{t+1} - \boldsymbol{X}_t'\boldsymbol{\beta}^*\right)^2\right] \\ &= \mathbb{E}\left[Y_{t+1}^2\right] - 2\mathbb{E}\left[Y_{t+1}\boldsymbol{X}_t'\boldsymbol{\beta}^*\right] + \mathbb{E}\left[\boldsymbol{\beta}^{*'}\boldsymbol{X}_t\boldsymbol{X}_t'\boldsymbol{\beta}^*\right] \\ &= \mathbb{E}\left[Y_{t+1}^2\right] - 2\mathbb{E}\left[Y_{t+1}\boldsymbol{X}_t'\right]\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{X}_t'\right]^{-1}\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{Y}_{t+1}\right] \\ &+ \mathbb{E}\left[Y_{t+1}\boldsymbol{X}_t'\right]\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{X}_t'\right]^{-1}\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{X}_t'\right] \\ &\times \mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{X}_t'\right]^{-1}\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{Y}_{t+1}\right] \\ &= \mathbb{E}\left[Y_{t+1}^2\right] - \mathbb{E}\left[Y_{t+1}\boldsymbol{X}_t'\right]\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{X}_t'\right]^{-1}\mathbb{E}\left[\boldsymbol{X}_t\boldsymbol{Y}_{t+1}\right]. \end{split}$$

Vector Linear Projection

Let Y_{t+1} be an $(n \times 1)$ vector and X_t an $(m \times 1)$ vector.

▶ The linear projection of Y_{t+1} on X_t is

$$\hat{P}(\boldsymbol{Y}_{t+1}'|\boldsymbol{X}_t) = \hat{\boldsymbol{Y}}_{t+1|t}' = \boldsymbol{X}_t'\boldsymbol{\beta}^*.$$

where β^* is the $(m \times n)$ matrix such that

$$\mathrm{E}\left[\boldsymbol{X}_{t}\left(\boldsymbol{Y}_{t+1}^{\prime}-\boldsymbol{X}_{t}^{\prime}\boldsymbol{\beta}^{*}\right)\right]=\boldsymbol{0}.$$

► As in the univariate case

$$\boldsymbol{\beta}^* = \mathrm{E} \left[\boldsymbol{X}_t \boldsymbol{X}_t' \right]^{-1} \mathrm{E} \left[\boldsymbol{X}_t \boldsymbol{Y}_{t+1}' \right].$$