EE559 Code HW1

February 2, 2022

1 Homework 1

Problem 1 (a-b)

```
# Author: Sarthak Kumar Maharana
     # Email: maharana@usc.edu
     # Date: 01/29/2022
     # Course: EE 559
     # Project: Homework 1
     # Instructor: Prof. B Keith Jenkins
     import os
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     import matplotlib.gridspec as gridspec
     from data.plotDecBoundaries import plotDecBoundaries
     ROOTDIR = '~/Desktop/spring_22/EE_559/hw1/codes_2/data/'
     train_file = 'synthetic1_train.csv'
     test_file = 'synthetic1_test.csv'
     class Homework1_ab:
        Nearest Means Classifier
        11 11 11
        def __init__(self,
                  train_file,
                  test_file,
                  mode
                  ):
```

```
self.train_file = train_file
       self.test_file = test_file
       self.mode = mode
   def _read_csv_get_features(self,
                             filename
                             ):
       """ Read csv files and return features, labels, and dataframe. """
       df = pd.read_csv(os.path.join(ROOTDIR, filename),
                       header = None
       x, y = df.iloc[:, :-1].values, df.iloc[:, -1].values
       return x, y, df
   def _load(self):
       """ Utility function to load data. """
       self.train_x, self.train_y, _ = self._read_csv_get_features(self.
→train_file)
       self.test_x, self.test_y, _ = self._read_csv_get_features(self.
→test file)
       return self.train_x, self.train_y, self.test_x, self.test_y
   def _plot_data(self):
       """ Plot for visualization. """
       plt.scatter(self.train_x[:, 0],
                   self.train_x[:, 1],
                   c = self.train_y,
                   s = 50,
                   cmap = 'viridis'
       plt.show()
   Ostaticmethod
   def L2distance(x, y):
       """ Compute L2 (Euclidean) distance between two vectors. """
       return np.sqrt(np.sum((x - y)**2))
   def _sample_mean(self,
                   data_x,
                   data_y
       """ Compute the sample mean for the data. """
```

```
c_1_mean = np.mean(data_x[data_y == 1], axis = 0) # mean of class 1
              c_2_mean = np.mean(data_x[data_y == 2], axis = 0) # mean of class 2
              if len(np.unique(data_y)) >= 3:
                  c_3_mean = np.mean(data_x[data_y == 3], axis = 0) # mean of class_
       \hookrightarrow 3, if it exists
                  self.sample mean = np.vstack((c 1 mean, c 2 mean, c 3 mean))
                  return self.sample mean
              self.sample_mean = np.vstack((c_1_mean, c_2_mean))
              return self.sample_mean
          def _error_rate(self,
                          data_x,
                          data_y,
                          mean
                          ):
              """ Compute error rate, based on the data and sample mean that are
       ⇔passed. """
              self.error = 0.0
              for idx in range(len(data_x)):
                  e_feat_1 = self.L2distance(data_x[idx],
                                             mean[0]
                                             ) # label 1 error
                  e_feat_2 = self.L2distance(data_x[idx],
                                             mean[1]
                                             ) # label 2 error
                  if e feat 1 > e feat 2 and data y[idx] == 1:
                      self.error += 1
                  if e_feat_1 < e_feat_2 and data_y[idx] == 2:</pre>
                      self.error += 1
              return round(self.error / len(data_x), 3) # total error rate
          def solver(self):
              """ Solver for the problem. """
              self.train_x, self.train_y, self.test_x, self.test_y = self._load() #__
       \rightarrow load data
              means = self. sample mean(self.train x, self.train y) # train the
       → "classifier" by computing the sample mean.
              return self._error_rate(self.test_x, self.test_y, means) if self.mode_
       →== 'test' \
              else self._error_rate(self.train_x, self.train_y, means) # return error_
       →rate on training data or test data based on user config.
[28]: if __name__ == '__main__':
```

```
Available "mode" options: train, test.
```

```
Configure train_file and test_file accordingly.

"""

print(f"{train_file.split('_')[0]} is being used...")

for mode_type in ['train', 'test']:

   hw1 = Homework1_ab(train_file, test_file, mode = mode_type)

   train_x, train_y, test_x, test_y = hw1._load()

   means = hw1._sample_mean(train_x, train_y)

   print(f'Error rate on the {hw1.mode} set:\
        {hw1._solver()}'

   )

   print("Plots of data points, class means, decision boundaries and regions_u

   ofor train and test sets respectively:")

   plotDecBoundaries(train_x, train_y, means) # plot decision boundaries and_u

   oregions of the training data

   plotDecBoundaries(test_x, test_y, means) # plot decision boundaries and_u

   oregions of the test data
```

synthetic1 is being used...

Error rate on the train set: 0.21
Error rate on the test set: 0.24

Plots of data points, class means, decision boundaries and regions for train and test sets respectively:

Problem 1 (c-e)

```
# Author: Sarthak Kumar Maharana
    # Email: maharana@usc.edu
    # Date:
             02/01/2022
    # Course: EE 559
    # Project: Homework 1
    # Instructor: Prof. B Keith Jenkins
    import argparse
    import itertools
    import seaborn as sns
    import matplotlib.gridspec as gridspec
    import matplotlib.pyplot as plt
    from data.plotDecBoundaries import plotDecBoundaries
    from runner_synthetic import *
    ROOTDIR = '~/Desktop/spring_22/EE_559/hw1/codes_2/data/'
    train_file = 'wine_train.csv'
    test_file = 'wine_test.csv'
```

```
class Homework1_ce(Homework1_ab):
    Nearest Means Classifier
    def __init__(self,
                train_file,
                test_file,
                q_no,
                mode
                ):
        self.train_file = train_file
        self.test_file = test_file
        self.q_no = q_no
        self.mode = mode
    def _3class_error_rate(self,
                             data_x,
                             data_y,
                             means
        """ Utility function to calculate the error rate of the classifier, \Box
\hookrightarrow based on the data and the means.
        self.error = 0.0
        for idx in range(len(data_x)):
            e_feat_1 = self.L2distance(data_x[idx],
                                       means[0]
                                        ) # label 1 error
            e_feat_2 = self.L2distance(data_x[idx],
                                       means[1]
                                        ) # label 2 error
            e_feat_3 = self.L2distance(data_x[idx],
                                       means[2]
                                       ) # label 3 error
            if e_feat_1 < e_feat_2 and \
                e_feat_1 < e_feat_3 and \
                data_y[idx] != 1:
                     self.error += 1 # misclassified as 1
            elif e_feat_2 < e_feat_1 and \</pre>
                e_feat_2 < e_feat_3 and \
                data_y[idx] != 2:
                     self.error += 1 # misclassified as 2
            elif e_feat_3 < e_feat_1 and \
                e_feat_3 < e_feat_2 and \
                data_y[idx] != 3:
```

```
self.error += 1 # misclassified as 3
       return round(self.error / len(data_x), 3) # total_error rate
   def _eda(self):
       """ Perform exploratory data analysis. """
       x, y, df = self._read_csv_get_features(self.train_file)
       df.describe()
       return self._plot_utils(df)
   def _plot_utils(self, df):
       """ Plot the distribution of the data, for analysis. """
       for idx in df.columns:
           gs1 = gridspec.GridSpec(3,1)
           ax1 = plt.subplot(gs1[:-1])
           gs1.update(right = 0.60)
           sns.kdeplot(df.iloc[:,idx][df.iloc[:,-1] == 1], ax = ax1, label =_{\cup}
sns.kdeplot(df.iloc[:,idx][df.iloc[:,-1] == 2], ax = ax1, label =_{\sqcup}
sns.kdeplot(df.iloc[:,idx][df.iloc[:,-1] == 3], ax = ax1, label =_{\sqcup}

→ '3')
           ax1.xaxis.set_visible(False)
           ax1.title.set_text(f"x_{idx}")
           plt.legend()
           plt.show()
       return None
   def _best_features(self, means):
       """ Return a combination of features that minimizes the error rate. """
       print("Finding best features w/ their errors....")
       feats_combos = list(itertools.combinations(range(13), 2)) # generate_u
\rightarrow all possible combos of features
       best feats = {}
       for idx in feats_combos:
           x1, x2 = idx[0], idx[1] # current features
           self.error_best = 0.0
           for count, jdx in enumerate(self.train_x[:,[x1,x2]]):
               e_feat_1 = self.L2distance(jdx,
                                    means[0][[x1, x2]]
                                      ) # label 1 error
               e_feat_2 = self.L2distance(jdx,
                                     means[1][[x1, x2]]
                                      ) # label 2 error
               e_feat_3 = self.L2distance(jdx,
```

```
means[2][[x1, x2]]
                                      ) # label 3 erro
               if e_feat_1 < e_feat_2 and \
               e_feat_1 < e_feat_3 and \
               self.train_y[count] != 1:
                   self.error_best += 1
               elif e_feat_2 < e_feat_1 and \
               e_feat_2 < e_feat_3 and \
               self.train_y[count] != 2:
                   self.error_best += 1
               elif e_feat_3 < e_feat_1 and \
               e_feat_3 < e_feat_2 and \
               self.train_y[count] != 3:
                   self.error_best += 1
           best_feats[idx] = self.error_best / len(self.train_x) # store error_
→ rate for each combo of features
           print(f" For features \{x1 + 1\} and \{x2 + 1\}, the error rate on the
→train set \
                   is {round(best_feats[idx], 3)}"
       return best_feats
   def _test_error_diff_feats(self, means):
       """ Test the error rate of the classifier with different features. """
       print("Obtaining error rates on the test set w/ the trained classifier...
\hookrightarrow . . ")
       feats_combos = list(itertools.combinations(range(13), 2)) # pairs of_
→ combinations of features
       for idx in feats combos:
           x1, x2 = idx[0], idx[1]
           self.error test = 0.0
           for count, jdx in enumerate(self.test_x[:,[x1,x2]]):
               e_feat_1 = self.L2distance(jdx,
                                    means[0][[x1, x2]]
                                      ) # label 1 error
               e_feat_2 = self.L2distance(jdx,
                                     means[1][[x1, x2]]
                                      ) # label 2 error
               e_feat_3 = self.L2distance(jdx,
                                    means[2][[x1, x2]]
                                      ) # label 3 erro
               if e_feat_1 < e_feat_2 and \
               e_feat_1 < e_feat_3 and \
```

```
self.test_y[count] != 1:
                   self.error_test += 1
               elif e_feat_2 < e_feat_1 and \</pre>
               e_feat_2 < e_feat_3 and \
               self.test_y[count] != 2:
                   self.error_test += 1
               elif e feat 3 < e feat 1 and \
               e_feat_3 < e_feat_2 and \
               self.test y[count] != 3:
                   self.error_test += 1
           print(f" For features \{x1 + 1\} and \{x2 + 1\}, the error rate on test
→set is \
           {round(self.error_test / len(self.test_x), 3)}"
   def _main(self):
       """ Main function that attends each test case. """
       self.train_x, self.train_y, self.test_x, self.test_y = self._load() #__
\rightarrow load train and test data
       # to solve 1(c) for the wine dataset.
       if self.q_no == 'c':
           print("You've chosen option (c)")
           x_train, x_test = self.train_x[:, :2], self.test_x[:, :2] # choose_
→ only the first two features
           means = self._sample_mean(x_train, self.train_y) # compute sample_
→means for each class
           print("Plot of training data is....")
           plotDecBoundaries(x_train, self.train_y, means) # plot decision_
\rightarrow boundaries on train set
           print("Plot of test data is....")
           plotDecBoundaries(x_train, self.train_y, means) # plot decision_
\rightarrowboundaries on test set
           error = self._3class_error_rate(x_test, self.test_y, means) if self.
→mode == 'test' \
           else self._3class_error_rate(x_train, self.train_y, means) #_
→ compute error rate
           print(f"The error on the {self.mode} set is {error}.")
       # to solve 1(d) and 1(e) for the wine dataset.
       elif self.q_no == 'd':
           print("You've chosen option (d)")
```

```
means = self._sample_mean(self.train_x, self.train_y) # compute_\( \)
 ⇒sample means for each class
            feats_errors = self._best_features(means) # return the features and_
 \rightarrow their errors
            min_error_feats = min(feats_errors.items(), key = lambda x: x[1]) #__
→ choose the feature with the minimum error
            x1_best, x2_best = min_error_feats[0][0], \
                                min_error_feats[0][1] # features with min error
            x_train, x_test = self.train_x[:, [x1_best, x2_best]], \
                                         self.test_x[:, [x1_best, x2_best]] #__
→ choose only the data of the best features
            best_mean = self._sample_mean(x_train, self.train_y) # compute mean_
→of the best features
            print("Plot of training data (best two features) is....")
            plotDecBoundaries(x_train, self.test_y, best_mean) # plot decision_
→boundaries on the best features
            print("Plot of test data (best two features) is....")
            plotDecBoundaries(x_test, self.test_y, best_mean) # plot decision_
 →boundaries on the best features
            error = self._3class_error_rate(x_test, self.test_y, best_mean) if_u
 →self.mode == 'test' \
            else self._3class_error_rate(x_train, self.train_y, best_mean) #__
→compute error rate on train/test based on the best features.
            print(f"The least error on the {self.mode} set is {error}, \
            computed on the best features {x1_best + 1} and {x2_best + 1}.")
            print(self._test_error_diff_feats(means))
            # print error rates on the test set w the trained classifier (for
\rightarrow diff pair of features)
        else:
            raise ValueError('Invalid question number.\
                Please choose either (c) or (d)'
                )
if __name__ == '__main__':
    Configure the object hw2 of Homework1_ce accordingly.
    Available "q no" options: c, d [c (Performs 1(c)) and d performs 1(d) and \Box
\hookrightarrow 1(e)
    Available "mode" options: train, test [default: train]
    If q_no = c and mode = 'train', use features x1 and x2 and report the error
 \rightarrow on the training data.
```

```
If q_no = c and mode = 'test', use features x1 and x2 and report the error_
→on the test data.

If q_no = d and mode = 'train', compute the best features and report the_
→error on the training data.

If q_no = d and mode = 'test', compute the best features and report the_
→error on the test data.

"""

hw2 = Homework1_ce(train_file, test_file, q_no = 'd', mode = 'train')
hw2._main()
```

You've chosen option (d)

Finding best features w/ their errors...

Finding best features w/ their errors	
For features 1 and 2, the error rate on the train set	is
0.202	
For features 1 and 3, the error rate on the train set	is
0.315	
For features 1 and 4, the error rate on the train set	is
0.449	
For features 1 and 5, the error rate on the train set	is
0.562	
For features 1 and 6, the error rate on the train set	is
0.146	
For features 1 and 7, the error rate on the train set	is
0.09	
For features 1 and 8, the error rate on the train set	is
0.337	
For features 1 and 9, the error rate on the train set	is
0.169	
For features 1 and 10, the error rate on the train set	is
0.258	
For features 1 and 11, the error rate on the train set	is
0.258	
For features 1 and 12, the error rate on the train set	is
0.079	
For features 1 and 13, the error rate on the train set	is
0.247	
For features 2 and 3, the error rate on the train set	is
0.393	• _
For features 2 and 4, the error rate on the train set	is
0.393	• _
For features 2 and 5, the error rate on the train set	is
0.573	• _
For features 2 and 6, the error rate on the train set	is
0.292 For footures 2 and 7, the error rate on the train set	÷ ~
For features 2 and 7, the error rate on the train set	is

0.202	
For features 2 and 8, the error rate on the train set	is
0.326	
For features 2 and 9, the error rate on the train set	is
0.404 For features 2 and 10, the error rate on the train get	ia
For features 2 and 10, the error rate on the train set 0.247	is
For features 2 and 11, the error rate on the train set	is
0.382	
For features 2 and 12, the error rate on the train set	is
0.427	
For features 2 and 13, the error rate on the train set	is
0.247	
For features 3 and 4, the error rate on the train set	is
0.472	
For features 3 and 5, the error rate on the train set	is
0.573 For footures 3 and 6, the error rate on the train set	ic
For features 3 and 6, the error rate on the train set 0.326	is
For features 3 and 7, the error rate on the train set	is
0.146	
For features 3 and 8, the error rate on the train set	is
0.517	
For features 3 and 9, the error rate on the train set	is
0.382	
For features 3 and 10, the error rate on the train set	is
	• -
For features 3 and 11, the error rate on the train set 0.303	is
For features 3 and 12, the error rate on the train set	is
0.292	
For features 3 and 13, the error rate on the train set	is
0.247	
For features 4 and 5, the error rate on the train set	is
0.427	
For features 4 and 6, the error rate on the train set	is
0.472 For features 4 and 7, the error rate on the train set	ic
0.427	is
For features 4 and 8, the error rate on the train set	is
0.472	
For features 4 and 9, the error rate on the train set	is
0.449	
For features 4 and 10, the error rate on the train set	is
0.213	
For features 4 and 11, the error rate on the train set	is
0.472 For features 4 and 12, the error rate on the train set	i
For features 4 and 12, the error rate on the train set	is

_	120				
(0.438	1	and	13 the error rate on the train get	is
(0.247	+	anu	13, the error rate on the train set	12
		5	and	6, the error rate on the train set	is
C	.562	Ü	ana	o, the error rate on the train bet	
		5	and	7, the error rate on the train set	is
C	.562				
	For features	5	and	8, the error rate on the train set	is
C	.573				
	For features	5	and	9, the error rate on the train set	is
C	.562				
	For features	5	and	10, the error rate on the train set	is
C	.494				
	For features	5	and	11, the error rate on the train set	is
	0.573	_	_		
		5	and	12, the error rate on the train set	is
(0.562	_	3	42 - 41	• _
_		5	and	13, the error rate on the train set	is
(.247	6	and	7, the error rate on the train set	is
(0.225	O	anu	7, the error rate on the train set	12
		6	and	8, the error rate on the train set	is
C	.348	Ü	ana	o, the error rate on the train bet	
		6	and	9, the error rate on the train set	is
	.404			•	
	For features	6	and	10, the error rate on the train set	is
C	.281				
	For features	6	and	11, the error rate on the train set	is
C	.326				
		6	and	12, the error rate on the train set	is
	. 247				
		6	and	13, the error rate on the train set	is
(0.247	7			
_		1	and	8, the error rate on the train set	18
(0.169	7	and	Q the error rate on the train get	ic
(0.169	'	anu	9, the error rate on the train set	is
		7	and	10, the error rate on the train set	is
C	.213	•	unu	10, one offer face on one of the bound	
		7	and	11, the error rate on the train set	is
C	.157				
	For features	7	and	12, the error rate on the train set	is
C	.135				
	For features	7	and	13, the error rate on the train set	is
C	.247				
		8	and	9, the error rate on the train set	is
(.427				
	For features	8	and	10, the error rate on the train set	is

Λ		3	Λ	2
v	٠	J	v	U

For f	eatures	8	and	11,	the	error	rate	on	the	train	set	is
0.337												
For f	eatures	8	and	12,	the	error	rate	on	the	train	set	is
0.404												
For f	eatures	8	and	13,	the	error	rate	on	the	train	set	is
0.247												
For f	eatures	9	and	10,	the	error	rate	on	the	train	set	is
0.303												
For f	eatures	9	and	11,	the	error	rate	on	the	train	set	is
0.371												
For f	eatures	9	and	12,	the	error	rate	on	the	train	set	is
0.348												
For f	eatures	9	and	13,	the	error	rate	on	the	train	set	is
0.247												
For f	eatures	10	and	11,	the	error	rate	on	the	trair	n set	is
0.303												
For f	eatures	10	and	12,	the	error	rate	on	the	trair	n set	is
0.27												
For f	eatures	10	and	13,	the	error	rate	on	the	trair	n set	is
0.247												
For f	eatures	11	and	12,	the	error	rate	on	the	trair	n set	is
0.404												
For f	eatures	11	and	13,	the	error	rate	on	the	trair	n set	is
0.247												
For f	eatures	12	and	13,	the	error	rate	on	the	trair	n set	is
0.247												

Plot of training data (best two features) is... $\,$

Plot of test data (best two features) is...

The least error on the train set is 0.079, computed on the best features 1 and 12.

Obtaining error rates on the test set $\ensuremath{\text{w}/}$ the trained classifier...

7									,				
	For	features	1	and	2,	the	error	rate	on	test	set	is	0.225
	${\tt For}$	${\tt features}$	1	and	3,	the	error	rate	on	test	set	is	0.281
	${\tt For}$	${\tt features}$	1	and	4,	the	error	rate	on	test	set	is	0.404
	For	${\tt features}$	1	and	5,	the	error	rate	on	test	set	is	0.449
	For	${\tt features}$	1	and	6,	the	error	rate	on	test	set	is	0.157
	${\tt For}$	${\tt features}$	1	and	7,	the	error	rate	on	test	set	is	0.112
	${\tt For}$	${\tt features}$	1	and	8,	the	error	rate	on	test	set	is	0.281
	For	${\tt features}$	1	and	9,	the	error	rate	on	test	set	is	0.247
	For	${\tt features}$	1	and	10	, the	e erro	r rate	e or	n test	t set	tis	0.225
	For	${\tt features}$	1	and	11	, the	e erro	r rate	e or	n test	t set	tis	0.27
	For	${\tt features}$	1	and	12	, the	e erro	r rate	e or	n test	t set	tis	0.124
	For	${\tt features}$	1	and	13	, the	e erroi	r rate	e or	ı test	t set	t is	0.303
	For	${\tt features}$	2	and	3,	the	error	rate	on	test	set	is	0.382
	For	${\tt features}$	2	and	4,	the	error	rate	on	test	set	is	0.427
	For	${\tt features}$	2	and	5,	the	error	rate	on	test	set	is	0.438
	For	${\tt features}$	2	and	6,	the	error	rate	on	test	set	is	0.292
	For	${\tt features}$	2	and	7,	the	error	rate	on	test	set	is	0.236
	For	${\tt features}$	2	and	8,	the	error	rate	on	test	set	is	0.393
	For	features	2	and	9,	the	error	rate	on	test	set	is	0.371

```
For features 2 and 10, the error rate on test set is
                                                                  0.225
For features 2 and 11, the error rate on test set is
                                                                  0.449
For features 2 and 12, the error rate on test set is
                                                                  0.371
For features 2 and 13, the error rate on test set is
                                                                  0.303
For features 3 and 4, the error rate on test set is
                                                                 0.506
For features 3 and 5, the error rate on test set is
                                                                 0.461
For features 3 and 6, the error rate on test set is
                                                                 0.281
For features 3 and 7, the error rate on test set is
                                                                 0.225
For features 3 and 8, the error rate on test set is
                                                                 0.326
For features 3 and 9, the error rate on test set is
                                                                 0.404
For features 3 and 10, the error rate on test set is
                                                                  0.236
For features 3 and 11, the error rate on test set is
                                                                  0.27
For features 3 and 12, the error rate on test set is
                                                                  0.281
For features 3 and 13, the error rate on test set is
                                                                  0.303
For features 4 and 5, the error rate on test set is
                                                                 0.382
For features 4 and 6, the error rate on test set is
                                                                 0.472
For features 4 and 7, the error rate on test set is
                                                                 0.416
For features 4 and 8, the error rate on test set is
                                                                 0.506
For features 4 and 9, the error rate on test set is
                                                                 0.483
For features 4 and 10, the error rate on test set is
                                                                  0.292
For features 4 and 11, the error rate on test set is
                                                                  0.506
For features 4 and 12, the error rate on test set is
                                                                  0.449
For features 4 and 13, the error rate on test set is
                                                                  0.303
For features 5 and 6, the error rate on test set is
                                                                 0.449
For features 5 and 7, the error rate on test set is
                                                                 0.416
For features 5 and 8, the error rate on test set is
                                                                 0.461
For features 5 and 9, the error rate on test set is
                                                                 0.449
For features 5 and 10, the error rate on test set is
                                                                  0.438
For features 5 and 11, the error rate on test set is
                                                                  0.461
For features 5 and 12, the error rate on test set is
                                                                  0.438
For features 5 and 13, the error rate on test set is
                                                                  0.303
For features 6 and 7, the error rate on test set is
                                                                 0.247
For features 6 and 8, the error rate on test set is
                                                                 0.36
For features 6 and 9, the error rate on test set is
                                                                 0.326
For features 6 and 10, the error rate on test set is
                                                                  0.225
For features 6 and 11, the error rate on test set is
                                                                  0.281
For features 6 and 12, the error rate on test set is
                                                                  0.258
For features 6 and 13, the error rate on test set is
                                                                  0.303
For features 7 and 8, the error rate on test set is
                                                                 0.247
For features 7 and 9, the error rate on test set is
                                                                 0.27
For features 7 and 10, the error rate on test set is
                                                                  0.157
For features 7 and 11, the error rate on test set is
                                                                  0.247
For features 7 and 12, the error rate on test set is
                                                                  0.18
For features 7 and 13, the error rate on test set is
                                                                  0.303
For features 8 and 9, the error rate on test set is
                                                                 0.472
For features 8 and 10, the error rate on test set is
                                                                  0.236
For features 8 and 11, the error rate on test set is
                                                                  0.348
For features 8 and 12, the error rate on test set is
                                                                  0.326
```

For features	8 and 13, the error rate on test set is	0.303
For features	9 and 10, the error rate on test set is	0.247
For features	9 and 11, the error rate on test set is	0.393
For features	9 and 12, the error rate on test set is	0.315
For features	9 and 13, the error rate on test set is	0.303
For features	10 and 11, the error rate on test set is	0.236
For features	10 and 12, the error rate on test set is	0.225
For features	10 and 13, the error rate on test set is	0.303
For features	11 and 12, the error rate on test set is	0.326
For features	11 and 13, the error rate on test set is	0.303
For features	12 and 13, the error rate on test set is	0.303
None		

[]:

[]:[