Revision Notes on Organic Compounds Containing Halogens

Organic Compounds Containing Halogens can be devided into two groups:

- Alkyl Halides: Aliphatic carbon chain with halogen arom(s) as substitution. Example: Chlorobutane.
- Aryl Halides: Aromatic carbon ring with halogen arom(s) as substitution on ring. Example: Chlorobenzene.

Methods of Preparation of Alkyl Halides:

Grove's process: Replacement of "OH" group in primary and secondary alcohols with an "X" atom in presence of Zinc chloride.

The reaction follows $S_N 2$ mechanism when the concentration of zinc chloride is low.

(b) Darzen Process: Reaction of thionyl chloride with straight-chain primary alcohols without presence or absence of pyridine.

In presence of pyridine:

$$ROH + SOCl_2 \rightarrow HCl + ROSOCl$$

$$HCHC_5H_5N \rightarrow C5H5NH^++C1$$

$$ROSOC1 + Cl \rightarrow RC1 + SO_2$$
 (S_N2)

- Action of a phosphorus halide on the alcohol: ROH + PCl₅ → RCl + HCl + POCl₃.
- By addition of Halogen to an alefins: R-CH=CH₂+Br₂+CCl₄ \rightarrow R-CH(Br)CH₂Br
- Photohalogenation: $CH_4 + Cl_2 + hv \rightarrow CH_3Cl + HCl$
- Displacement of one halogen atom by another:RCl+NaI →RI+NaCl
- Bonodine Hünsdiecker Reaction: RCO₂Ag + Br₂→RBr + CO₂ + AgBr
- Hydrohalogenation of unsaturated hydrocarbons:
 - In absence of peroxide: RCH=CH2 +HBr→RCH(Br)CH3
 - In presence of peroxide: RCH=CH2 +HBr + Peroxide \rightarrow RCH₂CH_{2Br}

Methods of Preparation of aryl halides

- Halogenation: Ar-H + X2 +Lewis Base → Ar-x + HX
- From diazonium salts:

- \circ C₆H₅N₂Cl + HBF₄ \rightarrow C₆H₅F (Schiemann Reaction)
- $\circ \qquad C_6H_5N_2Cl + CuCl \rightarrow C_6H_5Cl \qquad \qquad \text{(Sandmeyer Reaction)}$
- $\circ \qquad C_6H_5N_2Cl + Cu \ powder \rightarrow C_6H_5Cl \qquad (Gatterman \ Reaction)$

$S_N \mathbf{1}$ and $S_N \mathbf{2}$ mechanism:

	S _N 1	S _N 2	
Steps	Two: (1) R:XI \rightarrow R ⁺ + X ⁻ (2) R ⁺ + Nu ⁻ I \rightarrow RNu	One: $R:X + Nu^-1 \rightarrow RNu + X^-$	
Rate	=K [RX] (1st order)	=K[RX] [:Nu ⁻] (2nd order)	
TS of slow step			
Stereochemistry	Inversion and racemization	Inversion (backside attack)	
Molecularity	Unimolecular	Bimolecular	
Reactivity structure of R Determining Factor Nature of X Solvent effect on rate	3°> 2°> 1°> CH ₃ Stability of R ⁺ RI> RBr> RCI> RF Rate increases in polar solvent	CH ₃ > 1°> 2°> 3° Steric hindrance in R group RI> RBr> RCI> RF with Nu ⁻ there is a large rate increase in polar aprotic solvents.	
Effect of nucleophile	No effect as it does not appear in the rate expression.	Rate depends on nucleophilicity $I^- > Br^- > Cl^-; \ RS^- > RO^-$	
Catalysis	Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂	None	
Competitive reaction	Elimination, rearrangement	Elimination	

Reactions of Alkyl Halides:

- **Hydrolysis:** : $RX + OH^- \rightarrow ROH + X^-$
- Williamson Synthasis: R-ONa $+R'X \rightarrow R-R' + NaX$
- Reaction with dry silver oxide: $2R-X+Ag_2O \rightarrow R-O-R$
- Reaction with sodio-Alkynides: $R-C=C-Na+X-R\rightarrow R-C=C-R+NaX$
- Reaction with potassium-cyanide: KCN+X-R→RCN+KX
- Reaction with silver-cyanide: $AgCN+X-R \rightarrow RNC + AgX$
- Reaction with silver-nitrite: $AgNO_2+X-R \rightarrow RNO_2+AgX$
- Reaction with potassium-nitrite: $KNO_2+X-R \rightarrow R-O-N=O+KX$

- Fridal Craft Reaction: R-X + C₆H₆ + AlCl₃→C₆H₅-R
- Malonic Ester Synthasis: $R-X+^{-}CH(CO_2C_2H_5)_2 \rightarrow R-CH(CO_2C_2H_5)_2 +HX$
- Acetoacetic Ester Synthasis: R-X + ⁻CH(CO₂CH₃)₂ →R-CH(CO₂CH₃)₂ +HX
- Reaction with Ammonia: R-X+NH₃→ R-NH₂+HX
- Wurtz Reaction: $2R-I+2Na \rightarrow R-R+2NaI$
- Dehydrohalogenation: CH₃.CH₂.CH₂Br + alco.KOH → CH₃-CH = CH₂ + KBr + H₂O
- Reaction with alcoholic AgNO₃: R-X+AgNO₃ \rightarrow R+ AgX\\ +HNO₃

Substitution Versus Elimination:

CH ₃ X	RCH ₂ X	R ₂ CHX	R ₃ CX
Methyl	1°	2°	3°
Bimolecular reactions only			$S_N 1/E1$ or E_2
Gives S _N 2 reactions	Gives mainly S _N 2 except with a hindered strong base [e.g., (CH ₃) ₃ CO ⁻] and then gives mainly E2.	Gives mainly S_N^2 with weak bases (e.g., I^- , CN^- , RCO_2^-) and mainly E^2 with strong bases (e.g., RO^-)	No S _N 2 reaction. In solvolysis gir S _N 1/E1, and at lower temperature N1 is favoured. When a strong bat (e.g., RO ⁻) is used. E2 predominates.

Haloform(Tri halide):

- **Preparation:** It can be prepared from any alcohol having –CH(OH)CH₃ group or from the aldehydes and ketones formed from above type of alcohols i.e, from a carbonyl compound having three a hydrogen atoms by the action of X₂ and an alkali or Na₂CO₃.
- Laboratory Preparation of CHCl3:

• Physical properties of CHCl₃: colourless liquid with sweet smell and test. It is heavier than water and insoluble in it but soluble in alcohol and ether.

Chemical Reactions of CHCl₃:

- Oxidation: $CHCl_3 + 1/2 O_2 \rightarrow HCl + COCl_2$ (phosgene)
- Hydrolysis: $CHCl_3 + 4NaOH \rightarrow HCOONa + 3NaCl + 2H_2O$
- Carbyl amine reactions: $CHCl_3 + CH_3NH_2 + 3NaOH \rightarrow CH_3N \equiv C + 3NaCl + 3H_2O$