Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Задание 2. Базовые модели

Отчёт О выполненном задании

> Выполнил: студент 523 группы Латыпов Ш. И. latypovshamil2001@gmail.com

Описание задачи

Выполняется на данных "Термодинамика". Данные разбить на обучение и контроль. Отдельные задачи МО даны как пары (предикторы, цели):

- 1. PRES TEMPC ==> PHST
- 2. PRES TEMPC ==> SLIQ
- 3. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> PHST
- 4. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> SLIQ SGAS
- 5. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DLIQ VISLIQ
- 6. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DGAS VISGAS
- 7. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> XMF\$1 XMF\$2 XMF\$3 XMF\$4
- 8. PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> YMF\$1 YMF\$2 YMF\$3 YMF\$4

Для каждой задачи:

- указать тип задачи (классификация, регрессия...)
- аргументированно предложить показатели качества (главный, дополнительные)
- из библиотеки scikit-learn аргументированно выбрать модель
- обучить модель (при этом обеспечить соответствие главному показателю качества)
- отчитаться о качестве по всем показателям на обучении и контроле

Данные из файла "ТемпИзменяется.data"

PRES TEMPC ==> PHST

Так как столбец PHST отражает количество фаз и содержит дискретные значения, то задача является задачей классификации.

Нужно проанализировать распределение классов в переменной PHST:

```
import pandas as pd

file_path = 'TeмпИзменяется.data'
data = pd.read_csv(file_path, sep='\s+', engine='python')

class_distribution = data['PHST'].value_counts(normalize=True)

class_distribution

   Bubod программы:

1   0.7884
2   0.2116
Name: PHST, dtype: float64
```

Показатели качества:

- Основным показателем качества будет точность (accuracy).
- Дополнительные показатели включают точность по классам (precision), полноту (recall) и F1-меру для каждого класса, а также общую F1-меру.

Выбор модели из scikit-learn:

• Используется 'GradientBoostingClassifier', так как он хорошо работает для табличных данных.

После разбиение всего датасета на тренировочные и тестовые наборы (8000 строк на тренировочные, 2000 строк на тестовые) с применением стратификации, обучения модели получены результаты оценки:

	accuracy	precision	recall	f1-score
На обучающем наборе данных	79.08%	83.47%	79.08%	70.17%
На тестовом наборе данных	79.15%	62.79%	79.15%	70.03%

После стратифицированного разделения данных, распределение классов в обучающей и тестовой выборках сохранило пропорцию классов исходного набора данных:

В обучающей выборке:

• Класс 1: 78.84%

• Класс 2: 21.16%

В тестовой выборке:

Класс 1: 78.85%

Класс 2: 21.15%

PRES TEMPC ==> SLIQ

Сначала посмотрим уникальные значения SLIQ, чтобы определить тип задачи:

```
unique_sliq_values = data['SLIQ'].unique()
sliq_is_discrete = pd.api.types.is_integer_dtype(data['SLIQ'])
print(unique_sliq_values)
print(sliq_is_discrete)
Busod:
```

```
[1. 0.023083 0.194197 ... 0.033277 0.172826 0.206979] False
```

Значения непрерывные, значит задача линейной регрессии.

Показатели качества:

- Средняя абсолютная ошибка (MAE) средняя абсолютная разница между предсказанными и истинными значениями. Показывает, насколько модель ошибается в среднем.
- Среднеквадратичная ошибка (MSE) среднее квадратов ошибок. Чем выше этот показатель, тем больше в среднем ошибка модели.

• Коэффициент детерминации (R^2) - Какая доля дисперсии зависимой переменной объясняется независмыми переменными в модели. Чем ближе к значению 1, тем идеальнее соответствие

Модель Ridge. После обучения и оценки модели получены результаты: $Ha\ oбучающем\ наборе\ данных:$

- MSE = 0.1079
- MAE = 0.2506
- $R^2 = 0.0026$

На тестовом наборе данных:

- MSE = 0.1092
- MAE = 0.2529
- $R^2 = 0.0031$

Также была протестирована модель TweedieRegressor, но результаты в ней оказалисб примерно такие же.

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> PHST

Задача классификации. Используется та же модель GradientBoostingClassifier. Результаты:

	accuracy	precision	recall	f1-score
На обучающем наборе данных	99.66%	99.66%	99.66%	99.66%
На тестовом наборе данных	97.70%	97.72%	97.70%	97.71%

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> SLIQ SGAS

Задача многозадачной регрессии. Необходима модель, которая поддерживает многомерный вывод. Для этого подойдет MultiOutputRegressor, которая позволяет обернуть стандартную модель для их применения в многомерной регрессии. Используя GradientBoostingRegressor как базовую модель, получены результаты по показателям MAE, MSE и \mathbb{R}^2 :

Результаты:

На обучающем наборе данных:

- 1. Для SLIQ:
 - MSE = 0.0032
 - MAE = 0.0203
 - $R^2 = 0.9704$
- 2. Для SGAS:
 - MSE = 0.0032
 - MAE = 0.0203
 - $R^2 = 0.9704$

- 1. Для SLIQ:
 - MSE = 0.0052
 - MAE = 0.0242
 - $R^2 = 0.9526$
- 2. Для SGAS:
 - MSE = 0.0052
 - MAE = 0.0242
 - $R^2 = 0.9526$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DLIQ VISLIQ

Задача многозадачной регрессии.

Так как в данных присутствуют строки, в котоорых не записаны никакие данные и имеют значение Nan, необходимо дополнитеьно изменить таблицу с данными и удалить оттуда "пустые"строки.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

- 1. Для DLIQ:
 - MSE = 83.7681
 - MAE = 6.1606
 - $R^2 = 0.9936$
- 2. Для VISLIQ:
 - MSE = 0.000087
 - MAE = 0.0067
 - $R^2 = 0.9950$

- 1. Для DLIQ:
 - MSE = 206.0809
 - MAE = 9.1956
 - $R^2 = 0.9846$
- 2. Для VISLIQ:
 - MSE = 0.000170
 - MAE = 0.0091
 - $R^2 = 0.9900$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DGAS VISGAS

Задача многозадачной регрессии.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

- 1. Для DGAS:
 - MSE = 15.1814
 - MAE = 2.5766
 - $R^2 = 0.9877$
- 2. Для VISGAS:
 - MSE = 0.000000087
 - MAE = 0.000167
 - $R^2 = 0.9814$

На тестовом наборе данных:

- 1. Для DGAS:
 - MSE = 41.0285
 - MAE = .8046
 - $R^2 = 0.9697$
- 2. Для VISGAS:
 - MSE = 0.000000282
 - MAE = 0.000261
 - $R^2 = 0.9478$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> XMF\$1 XMF\$2 XMF\$3 XMF\$4

Задача многозадачной регрессии.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

	XMF\$1	XMF\$2	XMF\$3	XMF\$4
MSE	0.000027	0.000013	0.000103	0.000224
MAE	0.0037	0.0023	0.0065	0.0107
R^2	0.9915	0.9994	0.9973	0.9957

	XMF\$1	XMF\$2	XMF\$3	XMF\$4
MSE	0.000070	0.000036	0.000258	0.000526
MAE	0.0054	0.0037	0.0097	0.0155
R^2	0.9798	0.9984	0.9929	0.9899

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> YMF\$1 YMF\$2 YMF\$3 YMF\$4

Задача многозадачной регрессии.

Показатели MAE, MSE, \mathbb{R}^2 . Модель RandomForestRegression.

Результаты:

На обучающем наборе данных:

	YMF\$1	YMF\$2	YMF\$3	YMF\$4
MSE	0.0000415	0.0000066	0.0000037	0.000000024
MAE	0.0044	0.0016	0.0012	0.000090
R^2	0.9971	0.9995	0.9971	0.9909

	YMF\$1	YMF\$2	YMF\$3	YMF\$4
MSE	0.0000991	0.0000322	0.0000096	0.000000165
MAE	0.0067	0.0028	0.0018	0.000154
R^2	0.9931	0.9977	0.9919	0.9552

Данные из файла "ТемпПостоянная.data"

PRES TEMPC ==> PHST

Выбор модели из scikit-learn:

• Используется 'GradientBoostingClassifier', так как он хорошо работает для табличных данных.

После разбиение всего датасета на тренировочные и тестовые наборы (8000 строк на тренировочные, 2000 строк на тестовые), обучения модели получены результаты оценки:

	accuracy	precision	recall	f1-score
На обучающем наборе данных	77.99%	82.85%	77.99%	68.66%
На тестовом наборе данных	78.05%	68.31%	78.05%	68.57%

PRES TEMPC ==> SLIQ

Задача линейной регрессии.

Показатели качества:

- Средняя абсолютная ошибка (МАЕ)
- Среднеквадратичная ошибка (MSE)
- Коэффициент детерминации (R²)

Модель Ridge. После обучения и оценки модели получены результаты: *На обучающем наборе данных:*

- MSE = 0.1072
- MAE = 0.2508
- $R^2 = 0.0038$

На тестовом наборе данных:

- MSE = 0.1091
- MAE = 0.2537
- $R^2 = 0.00015$

Также была протестирована модель TweedieRegressor, но результаты в ней оказались примерно такие же.

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> PHST

Задача классификации. Используется та же модель GradientBoostingClassifier. Результаты:

	accuracy	precision	recall	f1-score
На обучающем наборе данных	99.75%	99.75%	99.75%	99.75%
На тестовом наборе данных	98.55%	98.56%	98.55%	98.55%

PRES TEMPC ZMF1 ZMF2 ZMF3 ZMF4 ==> SLIQ SGAS

Задача многозадачной регрессии. Необходима модель, которая поддерживает многомерный вывод. Для этого подойдет MultiOutputRegressor, которая позволяет обернуть стандартную модель для их применения в многомерной регрессии. Используя GradientBoostingRegressor как базовую модель, получены результаты по показателям MAE, MSE и \mathbb{R}^2 :

Результаты:

На обучающем наборе данных:

- 1. Для SLIQ:
 - MSE = 0.00267
 - MAE = 0.0175
 - $R^2 = 0.97515$
- 2. Для SGAS:
 - MSE = 0.00267
 - MAE = 0.0175
 - $R^2 = 0.97515$

На тестовом наборе данных:

- 1. Для SLIQ:
 - MSE = 0.00415
 - MAE = 0.02134
 - $R^2 = 0.96196$
- 2. Для SGAS:
 - MSE = 0.00415
 - MAE = 0.02134
 - $R^2 = 0.96196$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DLIQ VISLIQ

Задача многозадачной регрессии.

Так как в данных присутствуют строки, в котоорых не записаны никакие данные и имеют значение Nan, необходимо дополнитеьно изменить таблицу с данными и удалить оттуда "пустые"строки.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

- 1. Для DLIQ:
 - MSE = 77.2226
 - MAE = 5.6298
 - $R^2 = 0.9947$

- 2. Для VISLIQ:
 - MSE = 0.0000664
 - MAE = 0.00558
 - $R^2 = 0.9962$

На тестовом наборе данных:

- 1. Для DLIQ:
 - MSE = 138.256
 - MAE = 7.946
 - $R^2 = 0.9898$
- 2. Для VISLIQ:
 - MSE = 0.0001557
 - MAE = 0.00829
 - $R^2 = 0.9909$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 SLIQ SGAS ==> DGAS VISGAS

Задача многозадачной регрессии.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

- 1. Для DGAS:
 - MSE = 11.1971
 - MAE = 2.1874
 - $R^2 = 0.9915$
- 2. Для VISGAS:
 - MSE = 0.00000007
 - MAE = 0.000152
 - $R^2 = 0.9860$

- 1. Для DGAS:
 - MSE = 32.049
 - MAE = 3.1195
 - $R^2 = 0.9754$
- 2. Для VISGAS:
 - MSE = 0.000000238
 - MAE = 0.000221
 - $R^2 = 0.9557$

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> XMF\$1 XMF\$2 XMF\$3 XMF\$4

Задача многозадачной регрессии.

Показатели MAE, MSE, \mathbb{R}^2 . Модель MultiOutputRegressor вместе с GradientBoostingRegressor как базовой.

Результаты:

На обучающем наборе данных:

	XMF\$1	XMF\$2	XMF\$3	XMF\$4
MSE	0.0000183	0.0000083	0.0000953	0.000216
MAE	0.00289	0.00174	0.0063	0.01
R^2	0.9939	0.9997	0.9976	0.996

На тестовом наборе данных:

	XMF\$1	XMF\$2	XMF\$3	XMF\$4
MSE	0.0000387	0.0000298	0.000218	0.00043
MAE	0.00412	0.0029	0.0094	0.0142
R^2	0.9878	0.9989	0.9947	0.992

PRES TEMPC ZMF\$1 ZMF\$2 ZMF\$3 ZMF\$4 ==> YMF\$1 YMF\$2 YMF\$3 YMF\$4

Задача многозадачной регрессии.

Показатели MAE, MSE, R^2 . Модель RandomForestRegression.

Результаты:

На обучающем наборе данных:

	YMF\$1	YMF\$2	YMF\$3	YMF\$4
MSE	0.0000269	0.00000447	0.00000205	0.000000019
MAE	0.00362	0.00123	0.0009	0.000071
R^2	0.9982	0.9997	0.9982	0.9931

	YMF\$1	YMF\$2	YMF\$3	YMF\$4
MSE	0.0000532	0.000015	0.00000597	0.00000015
MAE	0.0047	0.002	0.00137	0.000114
R^2	0.9962	0.9989	0.9951	0.9602