

name: <unnamed>

log: C:\data\AsianBaro\logofSimulationforEntropy.smcl

log type: smcl opened on: 10 Sep 2024, 22:02:19

2 . \*do file for Simulation of Education's Entropy

3 . \*filename entropySimulEduc.do

4 . \* Wendy Olsen

5 . \* grateful thanks to Mr Ziyang Zhou - Univ. of Manchester

6 . \* Univ of Manchester 2024

8 . \* Stata 18

9 . \*This file is part 4 of the entropy project.

10. \*This file has two aims. 4a) First, calculate Entropy for 2 variables, one datafram > e, using Stata.

11.

12. \*Second, do an aggregate exercise in \*\*simulating\*\* EDUC and calculate Entropy manua > 1ly using that S=1000 repeated samples bloc of vectors.

13. ssc install estout

checking **estout** consistency and verifying not already installed... all files already exist and are up to date.

15. \*\*\*Data already exist but results go in \results folder \*\*\*

16. cd "C:\data\AsianBaro"

#### C:\data\AsianBaro

18. \*\* Part 4a Calculate Entropy in Stata for a single variable, then 2 variables. One > needs to recognise the number of cells in 2-var exercise depends on the unique valu > es of each one, k\*j. Whilst N is still the sum of all cell values.

19. cd "C:\data\AsianBaro"

# C:\data\AsianBaro

20. use "C:/data/AsianBaro/data/AsianBaro2019revForEntropy.dta", clear

## 21. tab income inc2 2

| Household<br>Income<br>Decile                                 | inc2_2<br>0                                   | 1                                                                | Total                                                                |
|---------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| Worst-Off<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>Best-Off | 1,293<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>124<br>985<br>126<br>2,125<br>125<br>353<br>131<br>20<br>36 | 1,293<br>124<br>985<br>126<br>2,125<br>125<br>353<br>131<br>20<br>36 |
| Total                                                         | 1,293                                         | 4,025                                                            | 5,318                                                                |

22. summ( edu2 1 edu2 2 edu2 3 edu2 4 edu2 5 ) if edu1 4==1

| Variable            | Obs            | Mean | Std. dev. | Min | Max    |
|---------------------|----------------|------|-----------|-----|--------|
| edu2_1<br>edu2_2    | 1,381<br>1,381 | 1    | 0         | 1   | 1      |
| edu2 3              | 1,381          | 1    | 0         | 1   | _<br>1 |
| edu2 <sup>-</sup> 4 | 1,381          | 1    | 0         | 1   | 1      |
| edu2 <sup>-</sup> 5 | 1,381          | 0    | 0         | 0   | 0      |

- 23. egen sumedul 1 = sum(edul 1)
- 24. egen sumedul 2 = sum(edul 2)
- 25. egen  $sumedu1_3 = sum(edu1_3)$
- 26. egen  $sumedu1_4 = sum(edu1_4)$
- 27. egen sumedul 5 = sum(edul 5)
- 28. egen countedul 1 = sum(edul 1)
- 29. egen countedu1\_2 = sum(edu1\_2)
- 30. egen countedu1 3 = sum(edu1 3)
- 31. egen countedu1\_4 = sum(edu1\_4)
- 32. egen countedu1\_5 = sum(edu1\_5)
- 33. gen Nedu=countedu1\_1+countedu1\_2+countedu1\_3+countedu1\_4+countedu1\_5
- 34. gen entropyofEduc1 = -((sumedu1\_1/5318)\*ln(sumedu1\_1/5318)+(sumedu1\_2/5318)\*ln(sumed > u1\_2/5318)+(sumedu1\_3/5318)\*ln(sumedu1\_3/5318)+(sumedu1\_4/5318)\*ln(sumedu1\_4/5318)+( > sumedu1\_5/5318)\*ln(sumedu1\_5/5318))
- 35. summ(entropyofEduc1)

| entropyofE~1 | 5.318 | 1.529034 | 0         | 1.529034 | 1.529034 |
|--------------|-------|----------|-----------|----------|----------|
| Variable     | Obs   | Mean     | Std. dev. | Min      | Max      |

36.

38.  $summ( edu2_1 edu2_2 edu2_3 edu2_4 edu2_5 ) if <math>edu1_4==1$ 

| Variable                   | Obs                     | Mean | Std. dev. | Min | Max |
|----------------------------|-------------------------|------|-----------|-----|-----|
| edu2_1<br>edu2_2           | 1,381<br>1,381          | 1    | 0         | 1   | 1   |
| edu2_2<br>edu2_3<br>edu2_4 | 1,381<br>1,381<br>1,381 | 1    | 0         | 1   | 1   |
| edu2_4<br>edu2_5           | 1,381                   | 0    | 0         | 0   | 0   |

- 39. egen sumedu2 1 = sum(edu2 1)
- 40. egen sumedu2 2 = sum(edu2 2)
- 41. egen  $sumedu2_3 = sum(edu2_3)$
- 42. egen  $sumedu2_4 = sum(edu2_4)$
- 43. egen sumedu2 5 = sum(edu2 5)
- 44. egen countedu2 1 = sum(edu2 1)
- 45. egen countedu2\_2 = sum(edu2\_2)
- 46. egen countedu2\_3 = sum(edu2\_3)

- 47. egen countedu2 4 = sum(edu2 4)
- 48. egen countedu2 5 = sum(edu2 5)
- 49. gen Nedu2=countedu2\_1+countedu2\_2+countedu2\_3+countedu2\_4+countedu2\_5
- 50. summ (Nedu2)

| Variable | Obs | Mean | Std. dev. | Min | Max |
|----------|-----|------|-----------|-----|-----|

51. #This cumulative amount depends upon Nedu and the actual data. **Unknown #command** 

52. gen entropyofEduc2 = -((sumedu2\_1/5318)\*ln(sumedu2\_1/5318)+(sumedu2\_2/5318)\*ln(sumedu2\_2/5318)+(sumedu2\_3/5318)\*ln(sumedu2\_3/5318)+(sumedu2\_4/5318)\*ln(sumedu2\_4/5318)+(sumedu2\_5/5318)\*ln(sumedu2\_5/5318))

53. \*Suppose the N is still 5318, the raw number of respondents:

54. summ(entropyofEduc2)

| Variable     | Obs   | Mean     | Std. dev. | Min      | Max      |
|--------------|-------|----------|-----------|----------|----------|
| entropyofE~2 | 5,318 | 1.245304 | 0         | 1.245304 | 1.245304 |

- 55. \*Suppose the N is the number of responses, which are in columns 1 to 5. First colum > na has 5318 but the others are data, empirical, unknown.
  56.
- 57. gen entropyofEduc2withN2 = -((sumedu2\_1/Nedu2)\*ln(sumedu2\_1/Nedu2)+(sumedu2\_2/Nedu2) > \*ln(sumedu2\_2/Nedu2)+(sumedu2\_3/Nedu2)\*ln(sumedu2\_3/Nedu2)+(sumedu2\_4/Nedu2)\*ln(sumedu2\_5/Nedu2)\*ln(sumedu2\_5/Nedu2))
- 58. summ (entropyofEduc2withN2)

| entropyof~N2 | 5,318 | 1.511146 | 0         | 1.511146 | 1.511146 |
|--------------|-------|----------|-----------|----------|----------|
| Variable     | Obs   | Mean     | Std. dev. | Min      | Max      |

59. summ (Nedu2)

| Nedu2    | 5 310 | 1500/ | 0         | 1500/ | 1500/ |
|----------|-------|-------|-----------|-------|-------|
| Variable | Obs   | Mean  | Std. dev. | Min   | Max   |

- 60. \*\* Part 4b Aggregate Exercise see separate do file.
- 61. \* Hypothesis. Using simulation, the MSE of H is higher for ordinal education than f > or cumulative education when it is multinomial in 5 categories.
- 62. \* We emulated education in five levels from the Asian Barometers, unweighted.
- 63. \*this dataset has nothing in common with the rest of the data.
- 65. use "data\edtmp.dta", clear
- 66. \*Note the edtmp file has the standard, distinct encodings.
- 67. de

## Contains data from data\edtmp.dta

Observations: 1,000

Variables: 5

| 10 | Sep | 2024 | 15:23 |
|----|-----|------|-------|
| 10 | seb | 2024 | 13.23 |

| Variable name              | Storage<br>type              | Display<br>format                              | Value<br>label | Variable label |
|----------------------------|------------------------------|------------------------------------------------|----------------|----------------|
| X1<br>X2<br>X3<br>X4<br>X5 | long<br>long<br>long<br>long | %12.0g<br>%12.0g<br>%12.0g<br>%12.0g<br>%12.0g |                |                |

Sorted by:

### 68. summ(X1)

| X1       | 1 000 | 1594.078 | 33 56514  | 1464 | 1701 |
|----------|-------|----------|-----------|------|------|
| Variable | Obs   | Mean     | Std. dev. | Min  | Max  |

- 69. \*drop N 70. \*drop p1 p2 p3 p4 p5 71. \*drop hsim
- 72. gen N=5318
- 73. gen p1 = X1/N
- 74. gen p2 = X2/N
- 75. gen p3 = X3/N
- 76. gen p4 = X4/N
- 77. gen p5 = X5/N
- 78. gen hsim =- [(p1\*ln(p1))+(p2\*ln(p2))+(p3\*ln(p3))+(p4\*ln(p4))+(p5\*ln(p5))]
- 79. summ(hsim)

| hsim     | 1,000 | 1.528825 | .0054934  | 1.508636 | 1.545974 |
|----------|-------|----------|-----------|----------|----------|
| Variable | Obs   | Mean     | Std. dev. | Min      | Max      |

- 80. \*Helpful notes egen [type] newvar = fcn(arguments) [if] [in] [, options]
  81. \* & pctile(exp) [, p(#) autotype]
- 82. egen hsimUL = pctile(hsim), p(97.5)
- 83. egen hsimLL = pctile(hsim), p(2.5)
- 84. summ hsimUL hsim hsimLL

| Variable | Obs   | Mean     | Std. dev.        | Min      | Max      |
|----------|-------|----------|------------------|----------|----------|
| hsimUL   | 1,000 | 1.539725 | 0                | 1.539725 | 1.539725 |
| hsim     | 1,000 | 1.528825 | .005 <b>4934</b> | 1.508636 | 1.545974 |
| hsimLL   | 1,000 | 1.517561 | 0                | 1.517561 | 1.517561 |

- 85. egen hsimmode=pctile(hsim), p(50)
- 86. egen hsimmean=mean(hsim)
- 87. summ (hsimmean hsimmode)

| Variable | Obs   | Mean     | Std. dev. | Min      | Max      |
|----------|-------|----------|-----------|----------|----------|
| hsimmean | 1,000 | 1.528825 | 0         | 1.528825 | 1.528825 |
| hsimmode | 1,000 | 1.529082 |           | 1.529082 | 1.529082 |

- 88. \*the MSE is defined as the sum of squared deviations, divided by N.
- 89. \*there is one squared deviation per Sample drawn. The SquDev's are the value (Hi H > mean )^2 for all 1000 sample replicates, i.
- 90. gen hsimMSEsubs=(hsim- hsimmean)^2
- 91. egen tempsum=total(hsimMSEsubs)

- 92. gen hsimMSEaggreg =tempsum/1000
- 93. summarize(hsimMSEaggreg)

| hsimMSEagg~g | 1,000 | .0000301 | 0         | .0000301 | .0000301 |
|--------------|-------|----------|-----------|----------|----------|
| Variable     | Obs   | Mean     | Std. dev. | Min      | Max      |

- 95. \* generate relative entropy for distinct encoding.
- 96. gen RSIsim =- [(p1\*ln(p1))+(p2\*ln(p2))+(p3\*ln(p3))+(p4\*ln(p4))+(p5\*ln(p5))] / ln(5)
- 97. summ(RSIsim)

| Variable | Obs   | Mean     | Std. dev. | Min      | Max      |
|----------|-------|----------|-----------|----------|----------|
| RSIsim   | 1,000 | .9499122 | .0034132  | .9373684 | .9605677 |

- 98. \*Helpful notes egen [type] newvar = fcn(arguments) [if] [in] [, options] 99. \* & pctile(exp) [, p(#) autotype]
- 99. \* & pctile(exp) [, p(#) autotype] 100 egen RSIsimUL = pctile(RSIsim), p(97.5)
- 101 egen RSIsimLL = pctile(RSIsim), p(2.5)
- 102 summarize RSIsimUL RSIsim RSIsimLL

| Variable                       | Obs                     | Mean                             | Std. dev.     | Min                              | Max                              |
|--------------------------------|-------------------------|----------------------------------|---------------|----------------------------------|----------------------------------|
| RSIsimUL<br>RSIsim<br>RSIsimLL | 1,000<br>1,000<br>1,000 | .9566852<br>.9499122<br>.9429135 | .0034132<br>0 | .9566852<br>.9373684<br>.9429135 | .9566852<br>.9605677<br>.9429135 |

- 103
- 104 \*the MSE is defined as the sum of squared deviations, divided by N.
- 105 egen RSIsimmean=pctile(RSIsim), p(50)
- 106 gen RSIsimMSEsubs=(RSIsim- RSIsimmean)^2
- 107 egen tempsum2 = total(RSIsimMSEsubs)
- 108 gen RSIsimMSEaggreg = tempsum2/1000
- 109 summarize(RSIsimMSEaggreg)

| RSIsimMSEa~q | 1,000 | .0000117 | 0         | .0000117 | .0000117 |
|--------------|-------|----------|-----------|----------|----------|
| Variable     | Obs   | Mean     | Std. dev. | Min      | Max      |

- 111 \*Step 2. Create a block of data, EdCumtmp.dta"
- 112 \*This is cumulative encodings of the previous dataset.
- 113
- 114 gen X1cum = (X1 + X2 + X3 + X4 + X5)
- 115 gen X2cum = (X2+X3+X4+X5)
- 116 gen X3cum=(X3+X4+X5)
- 117 gen X4cum=(X4+X5)

```
118 gen X5cum=(X5)
```

- 119 gen newN = (X1+2\*X2+3\*X3+4\*X4+5\*X5)
- 120 gen plcum = Xlcum/newN
- 121 gen p2cum = X2cum/newN
- 122 gen p3cum = X3cum/newN
- 123 gen p4cum = X4cum/newN
- 124 gen p5cum = X5cum/newN
- 125 gen hsimcum =- [(p1cum\*ln(p1cum))+(p2cum\*ln(p2cum))+(p3cum\*ln(p3cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum\*ln(p4cum))+(p4cum)+(p4cum))+(p4cum\*ln(p4cum))+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cum)+(p4cu> m))+(p5cum\*ln(p5cum))]
- 126 summ (hsimcum)

- 127 \*Helpful notes egen [type] newvar = fcn(arguments) [if] [in] [, options]
  128 \* & pctile(exp) [, p(#) autotype]
- 129 egen hsimcumUL = pctile(hsimcum), p(97.5)
- 130 egen hsimcumLL = pctile(hsimcum), p(2.5)
- 131 summarize hsimcumUL hsimcum hsimcumLL

| Variable             | Obs                     | Mean                             | Std. dev.     | Min                              | Max                              |
|----------------------|-------------------------|----------------------------------|---------------|----------------------------------|----------------------------------|
| hsimcumUL<br>hsimcum | 1,000<br>1,000<br>1,000 | 1.517264<br>1.512514<br>1.507122 | 0<br>.0025669 | 1.517264<br>1.503691<br>1.507122 | 1.517264<br>1.520409<br>1.507122 |

- 132
- 133 \*the MSE is defined as the sum of squared deviations, divided by  ${\tt N.}$
- 134 egen hsimcummean=pctile(hsimcum), p(50)
- 135 gen hsimcumMSEsubs=(hsimcum- hsimcummean)^2
- 136 egen tempsum3 = total(hsimcumMSEsubs)
- 137 gen hsimcumMSEaggreg = tempsum3/1000
- 138 summarize(hsimcumMSEaggreg)

| hsimcumMSE~a | 1,000 | 6.59e-06 | 0        | 6.59e-06 | 6.59e-06 |
|--------------|-------|----------|----------|----------|----------|
| Variable     | Obs   | Mean     | Std. dev | . Min    | Max      |

- 139
- 140  $\star$  generate relative entropy for cumulative encoding.
- 141 gen RSIsimcum =- [(p1cum\*ln(p1cum))+(p2cum\*ln(p2cum))+(p3cum\*ln(p3cum))+(p4cum\*ln(p4 > cum))+(p5cum\*ln(p5cum))] / ln(5)
- 142 summ (RSIsimcum)

| RSIsimcum | 1.000 | . 9397781 | .0015949  | .934296 | . 9446833 |
|-----------|-------|-----------|-----------|---------|-----------|
| Variable  | Obs   | Mean      | Std. dev. | Min     | Max       |

```
143 *Helpful notes egen [type] newvar = fcn(arguments) [if] [in] [, options] 144 * & pctile(exp) [, p(\#) autotype] 145 egen RSIsimcumUL = pctile(RSIsimcum ), p(97.5)
```

- 146 egen RSIsimcumLL = pctile(RSIsimcum), p(2.5)

147 summarize RSIsimcumUL RSIsimcum RSIsimcumLL

| Variable    | Obs   | Mean     | Std. dev. | Min      | Max      |
|-------------|-------|----------|-----------|----------|----------|
| RSIsimcumUL | 1,000 | .9427294 | 0         | .9427294 | .9427294 |
| RSIsimcum   | 1,000 | .9397781 | .0015949  | .934296  | .9446833 |
| RSIsimcumLL | 1,000 | .9364276 | 0         | .9364276 | .9364276 |

148

- 149 \*the MSE is defined as the sum of squared deviations, divided by N.
- 150 egen RSIsimcummean=pctile(RSIsimcum), p(50)
- 151 gen RSIsimcumMSEsubs=(RSIsimcum- RSIsimcummean)^2
- 152 egen tempsum4= total(RSIsimcumMSEsubs)
- 153 gen RSIsimcumMSEaggreg = tempsum4/1000
- 154 summarize(RSIsimcumMSEaggreg)

| Variable     | Obs   | Mean     | Std. | dev. | Min      | Max      |
|--------------|-------|----------|------|------|----------|----------|
| RSIsimcumM~g | 1,000 | 2.54e-06 |      | 0    | 2.54e-06 | 2.54e-06 |

155

156

157 log close

<unnamed>

name: log: C:\data\AsianBaro\logofSimulationforEntropy.smcl

log type: smcl

closed on: 10 Sep 2024, 22:02:24