Основы VerilogHDL/SystemVerilog (синтез и моделирование)

alexander.antonov.ru@yandex.ru

Введение

Зачем нужны языки описания аппаратуры?

 □ Кризис производительности инженеров при использовании традиционных подходов к проектированию

Как борются с кризисом производительности?

- □ Переход к высокоуровневым средствам и методам проектирования:
 - ✓ Использование языков VHDL, Verilog/SystemVerilog
 - ✓ Использование высокоуровневого синтеза (HLS)
 - Синтез описания на Си/С++ и на Си подобных языках (SystemC, CatapultC)
 - ✓ Использование библиотек параметризированных модулей
 - ✓ Использование библиотек готовых решений для алгоритмически сложных устройств IP (Intellectual Property) модулей
- □ Совершенствование элементной базы:
 - ✓ Аппаратная реализация на кристаллах параметризуемых функционально сложных модулей (умножители, встроенные модули памяти, контроллеры внешней памяти, контроллеры Ethernet, контроллеры PCIe, интерфейсные модули…)

Что за язык VerilogHDL/System Verilog?

- □ Язык Verilog HDL / SystemVerilog стандартизированный IEEE язык описания аппаратуры
 - ✓ Конкурент язык VHDL
- □ Позволяет создавать:
 - ✓ Синтезируемые описания на основе которых порождаются аппаратные средства.
 - ✓ Описание тестов для проверки правильности работы синтезируемых описаний
 - В дополнениях SystemVerilog много конструкций расширяющих возможности тестирования
- □ Похож на Си

История языка Verilog HDL / SystemVerilog

- □ Представлен в 1984 компанией Gateway Design Automation
- □ 1989 компания Cadence приобрела Gateway (Verilog-XL simulator)
- □ 1990 компания Cadence сделала язык Verilog общедоступным
- □ 1995 выпущен стандарт Verilog IEEE-1364-1995 (стандарт 95 года)
- □ 2001 выпущен стандарт Verilog IEEE-1364-2001 (стандарт 2001 года)
- **2005**
 - ✓ Выпущен стандарт Verilog IEEE1364-2005 (стандарт Verilog2005)
 - ✓ SystemVerilog IEEE-1800-2005 Standard надстройка над Verilog2005
- □ 2009 выпущен стандарт SystemVerilog IEEE-1800-2009
 - ✓ Объединение Verilog 2005 & System Verilog 2005
- □ 2012 выпущен стандарт SystemVerilog IEEE-1800-2012

Конструкции стандарта SystemVerilog IEEE-1800-2012

□ Расширен	ние н	абора	языков	ых кон	нструкц	ций 🦵	SystemVe	erilog IEEI	E 1800
•	Literals time string pattern Types logic bit byte shortint int longint shortreal void	Arrays packed unpacked dynamic associative queue Declarations const alias type var	Classes new static this/super extends protected cast local Operators assignment wild equality tagged overloading	Statements unique priority do while foreach return break continue final iff	Processes always_comb always_latch always_ff join_any join_none wait fork Subroutines static automatic const ref void		Clocking ##delay Assertions assert assume cover property sequence intersect first_match throughout within bind	cross wildcard sequence bins illegal_bins	virtual modport export import DPI export import context pure Program
	ANSI C style ports generate localparam constant functions		standard file I/O \$value\$plusargs "ifndef "elsif "line @*		variable part select		multi dimension signed types automatic Verilog-1		nal arrays
	module parame functio always assign	eters n/tasks	\$finish \$fopen \$display \$writ \$monitor define ifdef include times	e else	initial disable events wait#@ fork-join	wire reg integer real time packed array: 2D memory	funct	meters tion/tasks ys @ yn	+= ' / % >> <<

Назначение конструкций SystemVerilog IEEE-1800-2012

Почему начинаем изучать Verilog'95 и Verilog 2001

- □ Verilog IEEE-1364-1995 (Verilog'95) и Verilog IEEE-1364-2001 (Verilog 2001) часть стандарта SystemVerilog IEEE-1800-2012
- □ Необходимо понимать базовые конструкции так как:
 - ✓ На Verilog'95/2001 написано огромное количество модулей
 - ✓ При описании IP чаще всего используются конструкции Verilog 2001
 - ✓ Создаваемые (средствами проектирования) списки соединений (netlist) используют конструкции Verilog'95/2001
- □ Verilog'95/2001 позволяет создавать достаточно сложные тесты
 - ✓ Поддерживается ModelSim ASE
- □ <u>С другой стороны</u> набор дополнительных конструкций стандарта SystemVerilog IEEE-1800-2012 (часто называемый SystemVerilog 1800) позволяет увеличить эффективность описания <u>синтезируемых модулей</u> и реализовать весьма эффективные <u>новые подходы к моделированию</u>.

Термины (поведенческое описание)

- □ Поведенческое описание описание алгоритма работы устройства
 - ✓ Описывается алгоритм работы, но не структура.
 - ✓ Используется для синтеза и моделирования

Термины (структурное описание)

- □ Структурное описание описание проектируемого модуля в виде взаимосвязанных компонентов более низкого уровня в иерархии описания.
 - ✓ Описывается структура, а не алгоритм работы
 - ✓ Используется для синтеза и моделирования

Термины (параметризируемое описание)

- □ Параметризироанное описание описание, которое позволяет изменять (настраивать) структуру и характеристики описанных модулей
 - ✓ Может быть структурным и поведенческим
 - ✓ Используется для синтеза и моделирования

```
module param_mult
#(parameter WIDTH=64, TYPE="Power")
( input [WIDTH-1:0] da,
   input [WIDTH-1:0] db,
   output [2*WIDTH-1:0] dout);

assign dout=(TYPE=="MULT")?(da*db):(da*da);
endmodule
da[31.0] A[31.0] X OUT[63.0]

da[63.0] X OUT[63.0]

da[63.0] A[63.0] X OUT[127.0]

dout[127.0]

dout[127.0]
```

Терминология (уровни описания проекта)

Терминология (синтез)

□ **Синтез:** Преобразование описания проекта в схему на заданном элементном базисе (выбранной СБИС ПЛ).

Термины (моделирование)

- □ Функциональное (поведенческое, RTL) моделирование моделирование алгоритма работы:
 - ✓ с 0-ми задержками блоков и соединений блоков
- □ Временное моделирование моделирование с учетом временных задержек (
 - ✓ моделируется работа на основе полученного списка соединений и SDF файла с временными задержками
 - После синтеза (Post Synthesis Simulation)
 - учитываются особенности синтеза, задержки соединений блоков либо не учитываются, либо используются усредненные.
 - После трассировки (Post Place and Route Simulation)
 - учитываются все задержки
- □ Тестовое воздействие, обычно, одно и тоже.

Процедура проектирования в Quartus Prime (1)

площади СБИС

Трассировка СБИС

Разводка и размещение внутренних ресурсов СБИС с учетом наложенных ограничений на быстродействие и занимаемые логические ресурсы

Процедура проектирования в Quartus Prime (2)

Временной анализ

- проверка соответствия созданной СБИС требованиям к быстродействию

Временное моделирование: ОПЦИОНАЛЬНО

- Средствами пакета Quartus Чаще всего
- Пакет ModelSim AE (ASE) пропускается

Программирование СБИС. Тестирование и отладка СБИС в составе системы (ISP, SignalTap II)

Этапы проектирования

Процедура при использовании пакета ModelSim

Основные концепции языка

- □ Может использоваться:
 - ✓ для описания проектируемого модуля (для синтеза)
 - ✓ для описания тестов (для моделирования).
- □ Поддерживает способы описания:
 - ✓ поведенческое, структурное, смешанное
- □ Операторы выполняются параллельно (есть исключения)
- □ Позволяет создавать
 - ✓ Конфигурируемые описания
 - ✓ Иерархические описания

Вводные замечания

- □ Язык «похож» на язык Си
- □ Чувствителен к «регистру»: все ключевые слова нижний регистр.
- □ Комментарии:
 - ✓ Одной строки все от символов // до конца строки
 - ✓ Нескольких строк начало /* окончание */
- □ Содержит зарезервированные ключевые слова:
 - ✓ input // a Verilog Keyword
 - ✓ wire // a Verilog Keyword
 - ✓ WIRE // a unique name (not a keyword)
 - ✓ Wire // a unique name (not a keyword)

Не следует использовать ключевые слова как имена, даже если они отличаются регистром

Вводные замечания

- □ Имена:
 - ✓ Должны начинаться с буквенного символа или подчеркивания (a-z A-Z _)
 - ✓ Могут содержать буквенные символы, числовые символы, подчеркивание, символ доллара (a-z A-Z _ 0-9 \$)
 - ✓ Могут содержать до 1024 символов
- □ Язык допускает свободное использование пробелов, табуляции и переносов строк для улучшения читаемости текста.
- □ Операторы заканчиваются точкой с запятой (;)

Числа

Числа

- □ В языке определены
 - ✓ вещественные числа
 - ✓ целые числа
- □ Вещественные (не поддерживаются системой синтеза Quartus)
 - ✓ числа задаются по стандарту IEEE Std 754-1985 для чисел с плавающей запятой двойной точности
 - ✓ могут быть преобразованы в целые
 - ✓ могут быть представлены в:
 - Десятичном виде: < value >.< value >
 - Экспоненциальном виде: < mantissa >E< exponent >
 - ✓ округляются до ближайшего целого (когда присваиваются целому)

Целые числа

- □ Целые числа могут задаваться двумя способами, как:
 - ✓ Simple decimal integer 32 битные знаковые числа. (Пример: 5)
 - ✓ Based literal
 - Формат <Size>' <Sign> <Base> <value>
 - Size значение определяет разрядность числа в битах
 - Если не задано число 32 бита.
 - Sign s (S), если задано, то число знаковое в дополнительном коде.
 - Base формат числа (не чувствителен к регистру)
 - Decimal ('d or 'D) десятичное
 - Hexadecimal ('h or 'H) шестнадцатеричное
 - Binary ('b or 'B) двоичное
 - Octal ('o or 'O) восьмеричное

Целые числа (примеры)

Целое	Хранимое значение	
1	000000000000000000000000000000000000000	
8'hAA	10101010	
6'b100011	100011	
'hF	000000000000000000000000000001111	

Дополнительные символы

- □ Дополнительные символы при задании чисел
 - ✓ '_' (подчеркивание): используется для улучшения читаемости
 - пример: 32'h21_65_bc_fe = 32-х битовое число в 16-ричном формате
 - √ 'х' или 'Х' (неизвестное значение)
 - Пример: 12'h12x = 12-х разрядное 16-ричное число; значение четырех младших разрядов – неизвестно
 - ✓ 'z' или 'Z' (high impedance)
 - Пример: 1'bz = 1-разрядное число с high impedance
 - √ '?' аналог 'z'
 - Пример: 1'bz = 1-разрядное число с high impedance

Отбрасывание старших разрядов

- □ Если количества бит недостаточно для представления числа, то старшие разряды числа отбрасываются:
 - ✓ 3'd8 отброшен старший разряд (1000 =>000) = 0
 - ✓ 4'sh86 отброшены 4 старших разряда (1000 0110 =>0110) =6
 - ✓ -4'h86 отброшены 4 старших разряда (1000 0110 =>0110) и получен дополнительный код числа 6 (1010) =-6
 - ✓ -4'sh86 отброшены 4 старших разряда (1000 0110 =>0110) и получен дополнительный код числа 6 (1010) =-6
 - ✓ -4'h1a = -4'ha = 0110 доп.код числа а
 - ✓ -4'sh1a = -(4'ha) = -(1010 доп.код числа 6 = -6)=6

Заполнение старших разрядов

- □ Если старший разряд числа 0, x, z, то число заполняется 0, x, z, соответственно:
 - \checkmark 3'b01 = 3'b001
 - \checkmark 3'bx1 = 3'bxx1
 - \checkmark 3'bz = 3'bzzz
- □ Если старший разряд числа 1, то число заполняется 0:
 - \checkmark 3'b1 = 3'b001

Целые числа (примеры)

number	stored value	comment
5'b11010	11010	
5'b11_010	11010	_ ignored
5'032	11010	
5'h1a	11010	
5'd26	11010	
5'b0	00000	0 extended
5'b1	00001	0 extended
5'bz	ZZZZZ	z extended
5'bx	xxxxx	x extended
5'bx01	xxx01	x extended

Знаковые и отрицательные числа

- □ Числа с признаком s(S) знаковые числа, представленные в дополнительном коде
- □ Старший разряд знаковый разряд:
 - ✓ 4'sb1111 будет представлено как 1111 и = -1
 - ✓ 4'sb0111 будет представлено как 0111 и = 7
- □ Отрицательные числа задаются знаком минус перед разделом <size>
 - ✓ -4' b0001 = 4-х разрядное число, соответствующее дополнительному коду числа 0001 = -1
 - ✓ -4' b1111 = 4-х разрядное число, соответствующее дополнительному коду числа 1111 = -15

Целые числа (примеры)

Целое	Хранимое значение	Значение
4'h4	0100	4
4'sh4	0100	4
4'ha	1010	10
4'sha	1010	-6
5'h9	01001	9
-5'h9	10111 (доп. код числа 9)	-9
5'sh9	01001	7
4'sh9	1001	-7
-4'sh9	0111 (-(4'sh9)=-(-7) =7)	7

Вопрос

□ Равны ли числа -4'sb1111 и 4'b1111?

Ответ

□ Равны ли числа -4'sb1111 и 4'b1111?

$$-4$$
'sb1111 = $-(-1)$ = 1
4' b1111 = 15

Вопрос

□ Равны ли числа 4'sb1111 и -4'b0001?

Ответ

□ Равны ли числа 4'sb1111 и -4'b0001?

```
4'sb1111 = -1 (представлено как 1111)
```

-4'b0001 = -1 (представлено как 1111)

Вопрос

□ Как будет храниться число 4'd17(код в двоичной системе счисления) ?

Ответ

□ Как будет храниться число 4'd17(код в двоичной системе счисления) ?

MSB отброшен (10001 => 0001)

Основы языка

Что предстоит изучить

Модуль

- □ Модуль основной элемент описания на языке Verilog\SystemVerilog
- □ Структура модуля:

Verilog 95

module module_name (port_list);

port declarations

signal declarations

circuit functionality

endmodule

Verilog 2001

module module_name (port declarations);

signal declarations

circuit functionality

endmodule

Группы типов данных

- Net типы данных группы представляют физическое соединение между структурными элементами
 - ✓ Используется для моделирования (описания) соединений в проекте
 - ✓ Тип wire— тип данных по умолчанию для всех input и output
 - ✓ Назначение сигналу с таким типом данных может быть реализовано только непрерывным назначением (continuous assignment)
- □ Variable типы данных группы представляют элементы для временного хранения данных
 - ✓ Хранят значение при моделировании
 - ✓ Подобны переменным в обычных языках программирования
 - ✓ Не обязательно представляют триггеры (flip-flop; latch)
 - ✓ Назначение сигналу с таким типом данных может быть реализовано только в процедурном назначении procedural assignment

Набор значений

- □ В языке определено 4 значения:
 - ✓ 0 логический ноль (false ложь)
 - ✓ 1 логическая единица (true истина)
 - ✓ X неизвестное значение
 - ✓ z z состояние (плавающий уровень)

Уровни сигнала (используются для разрешения конфликтов):

Название	Уровень силы
supply	высший
strong	
pull	
large	
weak	
medium	
small	
highz	низший

Типы данных класса Net

Тип данных	Для чего используется	Поддержка синтеза
wire	Manage average and accompanies were average.	Y
tri	Используется для соединения модулей	Υ
supply0		Y
supply1	Представляют константные данные (питание и землю)	Y
wand		Y
triand	December to the transfer of th	Y
wor	Реализуют монтажную логику	Υ
trior		Υ
triO	Цепь с z состоянием и резисторами	Υ
tri1	pull-up/pull-down	Υ
trireg	Цепь, хранящая свое предыдущее значение	N

Объявление выводов (Port Declaration)

- □ Задается:
 - ✓ mode
 - **input** \Rightarrow input port
 - output ⇒ output port
 - inout ⇒ bidirectional port
 - ✓ data_type тип данных.
 - Опиционально.
 - По умолчанию wire.
 - ✓ port_name имя вывода
 - Одно или несколько имен через запятую
 - Если несколько, то все имеют одинаковый тип.

```
module [module_name]
  (
    [mode] [data_type] [port_names],
    [mode] [data_type] [port_names],
    . . .
    [mode] [data_type] [port_names]
    );
```

Примеры

□ Стиль Verilog 2001

- □ Стиль Verilog 2001
 - ✓ Тип данных wire задан по умолчанию

□ Стиль Verilog 95

```
module eq1

// I/O ports
(
input wire i0, i1,
output wire eq
);
```

```
module eq1
// I/O ports
(
    input i0, i1,
    output eq
);
```

```
module eq1 (i0, i1, eq);
   // declare mode
   input i0, i1;
   output eq;
```

Объявление сигнала (Signal declaration)

□ Формат объявления внутреннего сигнала модуля

```
data_type <signed> <[range]> { signal_name <[array]>, ...}
```

- data_type тип данных (из группы Net или Variable)
- signed <опционально> признак знаковый
 - старший разряд знак: 1-отрицательное число; 0-положительное
- range <опционально> количество элементов вектора
 - если не задан, то сигнал одноразрядная цепь
- signal_name имя цепи
- array <опционально> количество элементов в массиве
 - массивы могут быть многомерными.

```
// signal declaration
wire p0, p1;
```

Побитовые логические операции (bitwise)

- □ В языке определено много типов операторов (будут изучаться позже).
 - ✓ один из них bitwise определяет логические операции, применяемые к каждому биту побитовые логические операторы:

Символ оператора	Функция (применяется к каждому биту)
~	Инверсия
&	AND
	OR
٨	XOR
^~ or ~^	XNOR

Непрерывное назначение (continuous assignment)

□ Синтаксис

assign [signal_name] = [expression];

- ✓ assign ключевое слово
- ✓ signal_name имя сигнала
 - Тип сигнала любой тип данных из группы Net
- ✓ expression присваиваемое выражение
 - Может имить любой тип данных (из групп данных Net и Variable)
- □ Описывает поведение комбинационных схем
- □ Может быть сделано при объявлении сигнала (implicit continuous assignment)

```
wire tmp;
assign tmp = d_in;
```


wire $tmp = d_in$;

□ Все непрерывные назначения выполняются параллельно

Особенности непрерывного назначения

- □ Левая часть оператора Left-Hand Side (LHS) должна иметь тип данных из группы Net
- □ При изменении любого операнда в правой части оператора Right-Hand Side (RHS) оценивается значение выражения RHS и значение сигнала (LHS) обновляется
- □ RHS может быть выражением, содержащим тип net, тип variable, вызов функции (или их комбинации)
- □ В оператор может быть добавлена задержка (будет обсуждено позже)

Пример описания модуля


```
module or4_gate
( input a, b, c, d,
   output x);
assign x=a | b | c | d;
endmodule
```


Явное объявление и использование сигнала

```
A INPUT OR2 tmp OUTPUT tmp_out

B INPUT OR3

OR3

OUTPUT X

INST
```

```
module or4_gate_s
( input a, b, c, d,
   output x, tmp_out);

wire tmp;
assign tmp = a|b;
assign tmp_out = tmp;
assign x = tmp | c | d;
endmodule
```


Неявное объявление и использование сигнала

```
tmp
                                      tmp out
                               OUTPUT X
module or4_gate_si
  input a, b, c, d,
   output x, tmp_out);
//wire tmp;
assign tmp = a|b;
assign tmp_out = tmp;
assign x = tmp | c | d;
                                                                      tmp out
```

endmodule

Type ID Message

10236 Verilog HDL Implicit Net warning at or4_gate_si.v(9): created implicit net for "tmp"

Результаты синтеза одинаковые или нет?

```
module or4_gate_s
                                          module or4_gate_s
( input a, b, c, d,
                                          ( input a, b, c, d,
   output x, tmp_out);
                                             output x, tmp_out);
wire tmp;
                                          wire tmp;
assign tmp = a|b;
                                          assign x = tmp \mid c \mid d;
                                          assign tmp_out = tmp;
assign tmp_out = tmp;
assign x = tmp \mid c \mid d:
                                          assign tmp = a | b;
endmodule
                                          endmodule
```


Задание константных значений

```
module or4_gate(
input a, b, c, d,
output x, cnst_0, cnst_1);
assign x=a | b | c | d;
assign cnst_1 = 1;
assign cnst_0 = 1'b0;
endmodule
```


Примеры объявления цепи

- □ Примеры:
 - ✓ wire clr_n;
 - ✓ wor temp;
 - ✓ supply0 cnst_0;
 - √ supply1 cnst_1;
- □ *Выводы* модуля по умолчанию имеют тип данных **wire**, но для *выходов* тип данных можно изменить:
 - ✓ output wor x;

Пример использования типа данных supply1, supply0:

- □ *Выводы* модуля по умолчанию имеют тип данных **wire**, но для *выходов* тип данных можно изменить:
 - ✓ output wor x;
 - ✓ output supply1 y;

```
module ex2( q1, q0);
output q1;
output supply0 q0;
supply1 tmp;
assign q1 = tmp;
endmodule
```


Пример использования типов данных wire и wor

```
module ex2(a, b, x);
input a, b;
output x;

wire temp;
assign temp = a | b;
assign x = temp;
endmodule
```



```
module ex2(a, b, x);
input a, b;
output wor x;
assign x = a;
assign x = b;
endmodule
```



```
module ex2(a, b, x);
input a, b;
output x;

wor temp;
assign temp = a;
assign temp = b;
assign x = temp;
endmodule
```


Пример неправильного назначения.

```
module ex2(a, b, x);
input a, b;
output x;
wire temp;
assign temp = a;
assign temp = b;
assign x = temp;
endmodule
```

② 10031 Net "temp" at ex2.v(8) is already driven by input port "a", and cannot be driven by another signal

Вектор

Вектор

□ Сигнал может быть объявлен как вектор (шина)

```
data_type <signed> <[range]> { signal_name, ...}
```

- □ Две способа объявление вектора диапазона индексов **range** :
 - ✓ [high: low] убывающая последовательность индексов;
 - ✓ [low : high] возрастающая последовательность индексов;
- □ Самый левый бит вектора всегда старший
 - ✓ Не зависимо от последовательности задания индексов
- □ Максимальный размер вектора 2**32 разрядов
- □ Примеры:
 - ✓ wire [15:0] mult_out; // шина 16 бит; ; индекс старшего разряда 15
 - ✓ wire [0:7] busA, busB; // две шина 8 бит; индекс старшего разряда 0

Обращение к элементам вектора

□ При одновременном обращении ко всем элементам вектора можно упустить квадратные скобки с индексами

wire [3:0] a, b; assign a=b;

 □ При обращении к нескольким элементам вектора (Constant Part select) диапазон значений индексов указывают в квадратных скобках

wire [3:0] a, b; assign a[2:0]=b[3:1];

□ При обращении к одному элементу вектора (**Bit select**) значение индекса указывают в квадратных скобках

wire [3:0] a, b; assign a[3]=b[2];

Пример

```
module ex3(a, d);
input [3:0] a;
output [4:0] d;
assign d[3:0] = a;
assign d[4] =a[3];
endmodule
```


Пример не правильного обращения к элементам вектора

□ Нельзя менять порядок перечисления индексов вектора

```
module ex3(a, b);
input [3:0] a;
output [3:0] b;
assign b[0:3] = a;
endmodule
```

10198 Verilog HDL error at ex3.v(15): part-select direction is opposite from prefix index direction

Обращение к элементам вектора (Verilog2001)

□ B Verilog2001 добавлен новый способ обращения к элементам вектора (Variable Part Select):

```
vector_name [ starting_bit number + : width]
vector_name [ starting_bit number - : width]
```

- ✓ starting_bit number номер первого индекса
- ✓ +/- увеличение/уменьшение индекса
- ✓ width число элементов (включая элемент starting_bit number)

Пример

```
module ex3(a, d);
input [3:0] a;
output [4:0] d;
assign d[3-:4] = a;
assign d[4-:1] =a[3+:1];
endmodule
```

```
module ex3(a, d);
input [3:0] a;
output [4:0] d;
assign d[3:0] = a;
assign d[4] =a[3];
endmodule
```


Вопросы:

□ Вопрос 1: Код правильный?

Да. Мы можем использовать любое направление счета индексов для Variable Part Select.

□ Вопрос 2: Что будет подано на b[3] ?

На b[3] будет подано a[3]; независимо от направления счета индексы будут использоваться в порядке объявления.

```
module ex3(a, b);
input [3:0] a;
output [3:0] b;
assign b[0+:4] = a;
endmodule
```


Обращение к элементам вектора (3)

- Если число разрядов в левой части выражения больше чем в правой, то недостающие разряды правой части дополняются нулями (старшие разряды).
- □ Если число разрядов в левой части выражения меньше чем в правой, то лишние разряды (старшие разряды) правой части отбрасываются

```
1  module ex4(a, b, c, d);
2  input [3:0] a, b;
3  output [2:0] c;
4  output [5:0] d;
5  6  assign c = a;
7  assign d = b;
8  9  endmodule
```


Операторы языка

Операторы

- □ Группы операторов:
 - ✓ Арифметические Arithmetic
 - ✓ Побитовые Bit-wise
 - ✓ Свертки Reduction
 - ✓ Отношения Relational
 - ✓ Равенства Equality
 - ✓ Логические Logical
 - ✓ Сдвига Shift

- □ Отдельные операторы:
 - ✓ Сцепления Concatenation
 - ✓ Повторения Replication
 - ✓ Условного выбора Conditional

Операторы условного выбора - Conditional

Символ	Функция	Формат и примеры
?:	Conditional	(condition) ? true_value : false_value

- □ Если условие (condition):
 - ✓ Истинно, то результат true_value
 - ✓ Ложно, то результат false_value
- □ Примеры (при sel=1 => q=a; при sel=0 => q=b):
 - \checkmark assign q = (sel == 1'b1) ? a : b;
 - \checkmark assign q = (sel) ? a : b;
 - √ assign q = (sel != 1'b0) ? a : b;

Пример

endmodule

□ Сравните с приведенным ниже описанием

```
module mux_
( input [3:0] sw [1:0],
  input sel,
  output [3:0] qd);

wire [3:0] sel_v;

assign sel_v[0] = sel;
assign sel_v[1] = sel;
assign sel_v[2] = sel;
assign sel_v[3] = sel;
assign qd = (sw[1] & sel_v) | (sw[0] & ~sel_v);
endmodule
```


Побитовые операторы - Bitwise Operators

Символ	Функция	ain = 3'b101 ; bin = 3'b110 ; cin = 3'b01x	
~	Инверсия	~ain ⇒ 3b'010	~cin ⇒ 3'b10x
&	AND	ain & bin ⇒ 3'b100	bin & $cin \Rightarrow 3'b010$
I	OR	ain bin ⇒ 3'b111	bin cin ⇒ 3'b11x
۸	XOR	ain ^ bin ⇒ 3'b011	bin ^ cin ⇒ 3'b10x
^~ or ~^	XNOR	ain ^~ bin ⇒ 3'b100	bin ~^ cin ⇒ 3'b01x

- □ Функция применяется побитно (между соответствующими битами векторов)
- □ Если один из операндов имеет меньший размер, то он дополняется слева необходимым числом нулей.
- □ Значения X и Z рассматриваются как неизвестные результат X
 - результат может иметь другое значение:
 - 0 в случае 0 & x = 0
 - 1 в случае 1 | x = 1

Пример выполнения побитовых операций

```
module ex_bw
( input [7:0] a_in,b_in,
   output[7:0] d_out);
assign d_out = (~a_in ~^ ~b_in );
endmodule
```


Приложение 1

Массивы

Массив

□ В стандарте 2001 определен массив для класса Net.

```
data_type <signed> <[range]> { signal_name <[array]>, ...}
```

- □ Размерность массива может быть любая
 - Через запятую указывается несколько наборов диапазонов индексов
- □ Диапазон индексов массива (для каждого измерения) может указываться в возрастающей и убывающей последовательности.
- □ Максимальный размер массива по каждому измерению
 - ✓ 2**24 элементов
- □ Если range (диапазон индексов вектора)
 - ✓ не задан массив цепей (каждый элемент массива сигнал),
 - ✓ задан массив векторов (каждый элемент массива вектор)

Пример объявления и использования массива векторов

```
module ex5(a, b, c, d);
     input [1:0] a, b;
     output [1:0] c;
 4
     output [1:0] d;
 5
 6
     wire [1:0] mem [3:0];
 8
     assign mem[3] = a;
 9
10
     assign mem[2] = b;
11
12
     assign d[1] = mem [3][1];
13
14
     assign d[0] = mem [2][0];
15
16
     assign c = mem[3];
17
18
     endmodule
```


Пример многомерного массива векторов

```
module ex6(a, b, c, d);
     input [1:0] a, b;
     output [1:0] c;
     output [1:0] d;
 5
 6
     wire [1:0] mem [3:0] [5 :0];
 8
     assign mem[3] [5] = a;
 9
10
     assign mem[2] [4] = b;
11
12
     assign d[1] = mem [3][5] [1];
13
14
     assign d[0] = mem [2][4] [0];
15
16
     assign c = mem[3] [5];
17
18
     endmodule
```


Пример описания мультиплексора 2(4)=>1(4)

```
module mux_
( input [3:0] sw [1:0],
   input sel,
   output [3:0] qd);
wire [3:0] sel_v;
assign sel_v[0] = sel;
assign sel_v[1] = sel;
assign sel_v[2] = sel;
assign sel_v[3] = sel;
assign qd = (sw[1] \& sel_v) | (sw[0] \& ~sel_v);
endmodule
```


Приложение 2

Встроенная система моделирования

Верификация проекта

- Значительная часть периода разработки тратится на верификацию проекта
- □ Верификация включает
 - ✓ Моделирование
 - Поведенческое
 - Временное
 - После синтеза
 - После трассировки СБИС
 - ✓ Временной анализ
 - ✓ Анализ энергопотребления
 - ✓ Анализ целостности сигналов
 - ✓ Тестирование в системе

Приложения для верификации проекта в пакете Quartus

- □ Пакет Quartus® включает следующие приложения для верификации проектов:
 - ✓ Встроенная система моделирования
 - ✓ Modelsim система моделирования Mentor Graphics
 - ✓ TimeQuest временной анализатор
 - ✓ PowerPlay анализатор энергопотребления
 - ✓ SignalTapII Средство отладки в составе системы
- □ Дополнительные средства анализа энергопотребления
 - ✓ Таблицы xls: PowerPlay Early Power Estimator

Создание файла с заготовкой тестовых воздействий

□ Команда File>=New => University Program VWF

□ Открывается окно редактора ввода тестовых воздействий

Задание входов для ввода тестовых воздействий

□ Команда Edit=>Insert=> Insert Node or Bus

Далее запустить Node Finder

Задание входов для ввода тестовых воздействий

- □ B окне Node Finder нажать кнопку List
 - ✓ В разделе Nodes Found выделить интересующие сигналы и шины
 - ✓ Нажать символ перенести выбранные сигналы в окно Selected Nodes
 - ✓ Нажать кнопку ОК, затем нажать ОК еще раз.

Окно редактора тестовых воздействий

□ В окне редактора тестовых воздействий появятся выбранные входы (in) и выходы (out) (цепи и шины)

Перемещение выводов

- Выводы можно переместить в удобном для анализа порядке
 - ✓ выделить, нажав левую кнопку мыши, и не отпуская кнопку переместить вывод в нужное положение

Группировка выводов

- □ Для того, чтобы сгруппировать выводы в шину следует:
 - ✓ выделить сигналы
 - ✓ выполнить команду Edit=>Grouping=>Group
 - ✓ Задать имя группы,
 - ✓ выбрать систему счисления для представления данных в группе
 - ✓ нажать ОК
- Чтобы посмотреть содержимое группы следует нажать на символ группы

Разбиение группы выводов

- □ Для того, чтобы разбить группу выводов следует:
 - ✓ выделить группу
 - ✓ выполнить команду Edit=>Grouping=>UnGroup

- □ По умолчанию, при создании группы старшинство разрядов устанавливается сверху вниз: вывод лежащий выше всех будет MSB (в примере, приведенном выше: sw[0] MSB в группе).
- □ Для изменения весов разрядов используется команда: Edit=>Reverse Group or Bus bit Order

Задание длины теста

- □ Для задание длины теста следует выполнить команду:
 - ✓ Edit=>Set End Time
- В появившемся окне:
 - ✓ выбрать масштаб времени (мкс или нс)
 - ✓ установить длину теста

Чем длиннее тест, тем больше будет время моделирования

Задание тактового сигнала

- □ Для задания тактового сигнала следует: выделить тактовый вход; выполнить команду Edit=>Value=>Overwrite Clock
- □ В появившемся окне задать период, сдвиг фазы фронта тактового сигнала, скважность

Задание значения одноразрядному входу

- □ Для задания значения одноразрядному входу на всю длину теста следует: выделить одноразрядный вход а затем выполнить команду Edit=>Value=>:
 - ✓ Forcing Low (0) задание 0
 - ✓ Forcing High (1) задание 1
 - ✓ Forcing High Impedance (Z) задание Z состояния
- □ Для инвертирования значения сигнала следует Выполнить команду Edit=>Value=>Invert
- □ Для изменения/задания значения сигнала на определенном промежутке времени следует: выделить промежуток времени и выполнить одну из указанных выше команд

Задание значения группе выводов

- □ Для задания значения группе выводов следует:
 - ✓ выделить группу выводов;
 - ✓ выполнить команду Edit=>Value=>:
 - Count Value
 - Arbitrary Value X2
 - Random Value XB

□ Если выделена не группа а набор выводов, то команда Count value недоступна.

Задание Edit=>Value=>Count Value

- □ В окне Count Value следует задать:
 - ✓ Систему счисления для отображения данных (Radix)
 - ✓ Начальное значение (Start Value)
 - ✓ Приращение (Increment)
 - ✓ Тип счетчика (binary двоичный; Gray code код Грея)
 - ✓ Период изменения данных и единицу измерения времени

Задание Edit=>Value=>Arbitrary Value

- □ В окне Arbitrary Value следует задать:
 - ✓ Систему счисления для отображения данных (Radix)
 - ✓ Произвольное число (разрядность определяется разрядностью шины)

Задание Edit=>Value=>Random Value

- □ В окне Random Value следует задать:
 - ✓ Систему счисления для отображения данных (Radix)
 - ✓ Частоту формирования случайного значения:
 - На каждом временном интервале
 - На половине каждого временного интервала
 - Произвольный интервал формирования
 - Фиксированный интервал (следует задать этот интервал)

Команды настройки

□ Edit=>Grid Size – позволяет задать временной интервал

- Edit=>Snap To Grid включает/выключает привязку редактирования к границам временных интервалов
- Edit=>Snap To transition включает/выключает привязку редактирования к моментам изменения сигнала

Процедура функционального моделирования

- □ Создать схему и выполнить команду Processing=> Start => Start Analysis and Synthesis
- Создать и настроить файл UWF:
 - ✓ подключить выводы и сигналы,
 - ✓ ввести временные диаграммы входных сигналов
- □ Выполнить команду Simulation=>Simulation Settings=>Restore defaults
 - ✓ Один раз перед первым запуском функционального моделирования
- Сохранить файл с тестами (файл UWF)
- □ Запустить функциональное моделирование
 - ✓ выполнить команду Simulation => Run Functional Simulation

Анализ результатов функционального моделирования

 □ По окончанию моделирования откроется отдельное окно с временными диаграммами результатов моделирования

Приложение 3

Архивирование проекта Создание копии проекта Очистка проекта

Архивирование проекта

- □ Создается 2 файла
 - ✓ Файл архива (.QAR)
 - Включает логические файлы, QPF, QSF файлы
 - Позволяет добавить базу данных (папку db из папки проекта)
 - Если база данных не включена, то после восстановления потребуется перекомпиляция проекта
 - Включает созданный QDF для архива
 - ✓ Отчет о архивации (.QARLOG)
- □ Примеры использования
 - Хранение (например для контроля версий)
 - ✓ Передача проекта (Project handoff)
 - Например в Altera support
- □ Файлы из пользовательских библиотек, использованные в проекте, копируются в архив

Запуск архивации проекта

- □ Команда:
- Project=> Archive Project
- Открывает окно архивации проекта, в котором можно задать:
 - ✓ Задать имя архива
 - Задать папку для хранения архива
 - Запустить процедуру архивации
 - Открыть окно дополнительных настроек

Окно дополнительных настроек

- Окно дополнительных настроек позволяет задать предустановленные опции указав назначение архива
 - ✓ Контроль версий (Source Control)
 - ✓ Контроль версий при разрешенной поэтапной компиляции
 - ✓ Запрос поддержки (service request)
 - ✓ Запрос поддержки при разрешенной поэтапной компиляции
 - ✓ Создать собственный набор настроек (Custom)

Окно дополнительных настроек (Набор настроек)

- □ Позволяет включить в архив:
 - Исходные файлы и файлы с установками
 - Автоматически найденные исходные файл
 - Результаты поэтапной компиляции
 - ✓ Файлы для программирования СБИС
 - ✓ Файлы с отчетами
 - Базу данных в формате, совместимом с другими версиями пакета
 - Библиотечные файлы мегафункций и IP модулей

Окно дополнительных настроек (Набор настроек)

- □ Включаемые в архив файлы отображаются в колонке Name
- □ Строка Files to be archived показывает сколько файлов попадет в архив и их общий объем (до архивирования)
- Кнопка ADD позволяет добавить к архиву любые файлы (папки)

Восстановление проекта из архива

- Команда: Project=> Restore
 Archived Project открывает
 окно восстановления проекта
 из архива
- В окне можно выбрать архив и папку восстановления архива:
 - ✓ По умолчанию папка будет иметь имя xxx_restored

Копия проекта

- □ При создании копии проекта создается дубликат проекта в новой папке
 - ✓ Project file (.QPF)
 - Design files
 - Settings files
- □ Пример использования
 - ✓ Создание дубликата проекта до редактирования логических файлов (схем и\или HDL файлов)
- □ Пользовательские библиотеки не копируются
- □ Новый QDF не создается; если QDF уже существует, то он копируется

Создание копии проекта

- □ Команда: Project =>Copy Project открывает окно настроек копирования проекта
- □ В окне настроек задается:
 - Папка, в которой будет создана копия проекта
 - ✓ Имя копии проекта
 - ✓ Опция:
 - Открыть новую копию проекта

Очистка проекта (Clean Project)

- □ Команда Project=>Clean Project:
 - ✓ Удаляет отчеты, файл для программирования, базу данных, и другие созданные компилятором файлы
 - ✓ Позволяет очистить все версии проекта или только выбранную версию (создание версий проекта будет рассмотрено позже)

