Efficient Constraint Generation for Stochastic Shortest Path Problems

Johannes Schmalz, Felipe Trevizan

Australian National University

February 24, 2024

Intro

Deterministic Shortest Path Problem

Intro

Stochastic Shortest Path Problem (SSP)

Intro

Windy zones have 50% chance to push ship in direction of arrow.

Stochastic Shortest Path Problem (SSP)

Intro

Windy zones have 50% chance to push ship in direction of arrow.

Constrained SSP (**not in this talk**, only for context!)

Probabilistic PDDL

(:action move-ship

:parameters(...) :precondition(...)

:effect(probabilistic 0.9 (...)

0.1 (...)))

Tuple

 $\mathsf{SSP}\ \mathbb{S} = \langle \mathsf{S}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, \mathsf{P}, \mathsf{C} \rangle$

Probability Transition Matrix

Assumptions about the SSP

- can reach the goal from any state (reachability)
- policy that reaches goal with prob.(improper) has infinite cost

Properties of Optimal Policy

- defined for all states reachable under policy (closed)
- reaches the goal with prob. 1 (proper)
- can have cycles

$V(g) = 0 \qquad \forall \text{ goals } g \in \mathsf{G}$ $V(s) = \min_{\mathsf{actions } a} C(a) + \sum_{\mathsf{states } s'} P(s'|s,a) \cdot V(s') \qquad \forall \text{ states } s \not\in \mathsf{G}$

Q(s,a)

Bellman backup

$$V_{i+1}(s) \leftarrow \min_{\text{actions } a} \underbrace{C(a) + \sum_{\text{states } s'} P(s'|s,a) \cdot V_i(s')}_{Q_i(s,a)} \quad \forall \text{ states } s \notin G$$

Value Iteration (VI) Bellman (1957)

- Start with some V_0
- Loop: apply Bellman backups
- Stop when changes are small

Top: V_0 , Bottom: V_1

Top: V_1 , Bottom: V_2

Top: V_2 , Bottom: V_3

Top: V_3 , Bottom: V_4

Biggest change: 2.5 - 2.25 = 0.25 — we'll stop here.

Top: V_4 , Bottom: V_5

VI LP

$$\begin{split} \max_{\vec{\mathcal{V}}} \mathcal{V}_{s_0} \text{ s.t.} \\ \mathcal{V}_g &= 0 & \forall g \in \mathsf{G} \\ \mathcal{V}_s &\leq \mathit{C}(a) + \sum_{\mathsf{states}} {}_{s'} \mathit{P}(s'|s,a) \cdot \mathcal{V}_{s'} & \forall s \not\in \mathsf{G}, a \in \mathsf{A}(s) \end{split}$$

Reminder: Bellman Equations

$$V(g) = 0$$
 $\forall \text{ goals } g \in G$ $V(s) = \min_{\text{actions } a} C(a) + \sum_{\text{total } s'} P(s'|s,a) \cdot V(s')$ $\forall \text{ states } s \notin G$

LP for our example

$$egin{aligned} \max_{ec{\mathcal{V}}} \mathcal{V}_{s_0} \; ext{s.t.} \ \mathcal{V}_{g} &= 0 \ \mathcal{V}_{s_0} &\leq 1 + rac{9}{10} \mathcal{V}_{s_1} + rac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \ \mathcal{V}_{s_1} &\leq 2 + \mathcal{V}_{g} \ \mathcal{V}_{s_2} &\leq 1 + rac{1}{2} \mathcal{V}_{s_0} + rac{1}{2} \mathcal{V}_{g} \ \mathcal{V}_{s_3} &\leq 10 + \mathcal{V}_{g} \end{aligned}$$

Definition: Heuristic

- Estimate of cost-go-to
- $H: S \to \mathbb{R}_{\geq 0}$
- Admissible when $H(s) \leq V^*(s) \quad \forall s \in S$

Terminology Warning: heuristic is just the name of the function; the algorithms are optimal

Blind vs Heuristic Search

- VI is a blind search algorithm considers all states
- can use heuristics to guide search and focus on interesting states

Let's use heuristics to prune states: iLAO* Hansen and Zilberstein (2001)

Key Idea 1: Solve partial SSPs

do not enumerate and solve whole reachable state space

- look at partial SSP
- find best policy in partial SSP
- expand fringes using heuristic
- solve policy envelope
- repeat

Key Idea 2: Don't solve fully

approximate V^* for intermediate partial SSPs with single pass of Bellman backups

h is all-outcomes determinisation

Inactive Actions

- s_3 is pruned by h
- Q-value for a₀" is computed in each backup on s₀
- doing useless computation in each iteration of iLAO*!

iLAO* as Linear Program

- each partial SSP is a small linear program
- add states to partial SSP ® add variables to the LP
- add actions to partial SSP ® add constraints to the LP

LP for our example

$$egin{aligned} \max \mathcal{V}_{s_0} \; ext{s.t.} \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_2} &= h(s_2) = 1 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + \frac{9}{10} \mathcal{V}_{s_1} + \frac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \end{aligned}$$

LP for our example

$$\begin{array}{l} \max \mathcal{V}_{s_0} \text{ s.t.} \\ \mathcal{V}_g = 0 \\ \mathcal{V}_{s_1} = h(s_1) = 2 \\ \underline{\mathcal{V}_{s_2} = h(s_2)} = 1 \\ \mathcal{V}_{s_3} = h(s_3) = 10 \\ \mathcal{V}_{s_0} \leq 1 + \frac{9}{10} \mathcal{V}_{s_1} + \frac{1}{10} \mathcal{V}_{s_2} \\ \mathcal{V}_{s_0} \leq 1 + \mathcal{V}_{s_2} \\ \mathcal{V}_{s_0} \leq 1 + \mathcal{V}_{s_3} \\ \mathcal{V}_{s_2} \leq 1 + \frac{1}{2} \mathcal{V}_{s_0} + \frac{1}{2} \mathcal{V}_g \end{array}$$

Variable Generation Desrosiers and Lübbecke (2005)

- solve LP with subset of variables (RMP)
- find variables to add with pricing problem
- 3 repeat until no variables to add

Constraint Generation

- solve LP with subset of constraints (relaxed LP)
- find constraints that are violated in original LP with separation oracle
- 3 repeat until no violated constraints

Separation Oracle

- INPUT: solution \vec{x} to relaxed LP
- OUTPUT: if \vec{x} violates constraint from original LP, return such constraint. Otherwise return nothing.
- iLAO*'s separation oracle: state expanded \longrightarrow constraints for applicable actions may be violated, so return all of them

Inactive Actions

- a_0'' is inactive
- constraint for (s_0, a_0'') is loose

LP for Final Partial SSP

$$egin{aligned} \max \mathcal{V}_{s_0} & ext{s.t.} \ \mathcal{V}_g &= 0 \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + rac{9}{10} \mathcal{V}_{s_1} + rac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \end{aligned}$$

Choosy Oracle

- avoid loose constraints (which correspond to inactive actions)!
- only add constraints if actually violated
 ensures that the constraint will be active

LP
$$\max_{\mathcal{V}_{s_0}} \mathsf{s.t.}$$
 $\mathcal{V}_{s_0} = \mathit{h}(s_0) = 2$

h is all-outcomes determinisation

$$egin{aligned} \max \mathcal{V}_{s_0} & ext{s.t.} \ \mathcal{V}_{s_0} & = h(s_0) = 2 \ \mathcal{V}_{s_1} & = h(s_1) = 2 \ \mathcal{V}_{s_2} & = h(s_2) = 1 \ \mathcal{V}_{s_3} & = h(s_3) = 10 \ \mathcal{V}_{s_0} & \leq 1 + \frac{9}{10} \mathcal{V}_{s_1} + \frac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} & \leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} & \leq 1 + \mathcal{V}_{s_3} \end{aligned}$$

$$egin{aligned} \max \mathcal{V}_{s_0} & ext{ s.t.} \ \mathcal{V}_{m{g}} &= 0 \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_2} &= h(s_2) = 1 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + \frac{9}{10} \mathcal{V}_{s_1} + \frac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \ \mathcal{V}_{s_2} &\leq 1 + \frac{1}{2} \mathcal{V}_{s_0} + \frac{1}{2} \mathcal{V}_{m{g}} \end{aligned}$$

$$egin{aligned} \max \mathcal{V}_{s_0} & ext{s.t.} \ \mathcal{V}_g &= 0 \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + rac{9}{10} \mathcal{V}_{s_1} + rac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \ \mathcal{V}_{s_2} &\leq 1 + rac{1}{2} \mathcal{V}_{s_0} + rac{1}{2} \mathcal{V}_g \end{aligned}$$

$$egin{aligned} \max \mathcal{V}_{s_0} & ext{s.t.} \ \mathcal{V}_g &= 0 \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + rac{9}{10} \mathcal{V}_{s_1} + rac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \ \mathcal{V}_{s_2} &\leq 1 + rac{1}{2} \mathcal{V}_{s_0} + rac{1}{2} \mathcal{V}_g \end{aligned}$$

$$egin{aligned} \max \mathcal{V}_{s_0} \; ext{s.t.} \ \mathcal{V}_g &= 0 \ \mathcal{V}_{s_1} &= h(s_1) = 2 \ \mathcal{V}_{s_3} &= h(s_3) = 10 \ \mathcal{V}_{s_0} &\leq 1 + rac{9}{10} \mathcal{V}_{s_1} + rac{1}{10} \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_2} \ \mathcal{V}_{s_0} &\leq 1 + \mathcal{V}_{s_3} \ \mathcal{V}_{s_2} &\leq 1 + rac{1}{2} \mathcal{V}_{s_0} + rac{1}{2} \mathcal{V}_g \end{aligned}$$

Note: (1) constraint violation on "old" action (2) $V(s_0) \not \leq V^*(s_0)$

Naive Separation Oracle

for all states s in partial SSP:

for all actions $a \in A(s)$ outside partial SSP: check for violation on (s, a), i.e., whether Q(s, a) < V(s)

Efficient Separation Oracle

if V(s) increases: check (s, a) for $a \in A(s)$

(don't need to check actions with constraints already added)

$$11 \leq 1 + 10$$

$$11 \le 1 + 20$$

$$101 \leq 1+100$$

$$101 \le 1 + 20$$

$$(\widehat{a})\times$$

if V(s) decreases: check (s',a') that lead to s

$$101 < 1 + 100$$

$$20 \le 1 + 100$$

$$101 \leq 1 + \textcolor{red}{10}$$

$$(a)\times$$

$$20 < 1 + 10$$

$$(\widehat{a})\times$$

Fixing Violations

if
$$V(s) \not\leq Q(s, a)$$
:
set $V(s) \leftarrow Q(s, a)$

careful: may trigger another violation!

CG-iLAO*

 $\mathsf{CG}\text{-}\mathsf{i}\mathsf{LAO}^*$ is the dynamic programming implementation of LP $\mathsf{i}\mathsf{LAO}^*$ with choosy oracle!

$$iLAO^* \longleftrightarrow LP iLAO^*$$

 $CG-iLAO^* \longleftrightarrow LP iLAO^*$ with choosy oracle

Coverage per Domain

				•			
Num.	. of instances	BW 300	ExBW 250	PARC-N 300	PARC-R 250	TWH 200	Total 1300
h ^{roc}	CG-iLAO*	300	250	300	250	200	1300
	iLAO*	300	200	300	250	150	1200
	LRTDP	257	250	300	200	195	1202
h ^{lmc}	CG-iLAO*	150	250	300	200	150	1030
	iLAO*	150	200	300	200	140	990
	LRTDP	0	200	300	50	149	699
h ^{max}	CG-iLAO*	150	200	150	0	161	661
	iLAO*	150	150	150	0	150	600
	LRTDP	150	200	150	0	150	650

CG-iLAO* added 43-65% of iLAO*'s actions.

Using artificial heuristic $h_w^{\text{pert}}(s) \coloneqq V^*(s) \cdot \text{ uniform random value from } (w, 1]$

Termination Condition: VI

- ullet in the presence of cycles, VI only converges to V^* in the limit
- \bullet stop when Bellman error $\leq \epsilon$
- Bellman error is $\max_{s} |V_{i+1}(s) V_i(s)|$

Termination Condition: iLAO*

- stop when ϵ -consistent AND no fringes
- ϵ -consistent when $\max_{s \in S^{\pi}} |V_{i+1}(s) V_i(s)| \leq \epsilon$
- fringe states are artificial goals in the partial SSP that are not goals in the original

Termination Condition: CG-iLAO*

- stop when ϵ -consistent AND no fringes AND no constraint violations
- note: constraint violations are tracked with residual in our pseudocode

Intuition for iLAO*'s correctness

- invariant: $V \leq V^*$
- eventually no fringes remain
- ullet eventually Bellman residual on greedy policy is $\leq \epsilon$

Intuition for CG-iLAO*'s correctness

Hand Waving: ϵ -consistency is straightforward, can think of variable generation and constraint generation.

Tricky bit: $V \not \leq V^*$ so how can we make sure CG-iLAO* doesn't ignore states or actions we need?

if V(s) could decrease, it is tracked may be updated, then residual is tracked

Ps VI iLAO* iLAO* LP CG-iLAO* Results Technicalities **Summary** References

Summary

- iLAO* can be formulated in terms of linear programming
- iLAO* uses heuristic to prune states, but can't prune actions wastes time on inactive actions!
- we refine iLAO*'s separation oracle
 - gives us CG-iLAO*
 - able to ignore inactive actions!
- CG-iLAO* beats the state-of-the-art!

Related Work

Action elimination Bertsekas (1995) can detect and prune useless actions, but requires upper bound; our approach (1) does not need an upper bound (2) adds actions as needed instead of pruning unecessary actions

More information available at schmlz.github.io/cgilao

- Bellman, R. 1957. *Dynamic programming*. Princeton University Press.
- Bertsekas, D. 1995. *Dynamic Programming and Optimal Control*, volume 2. Athena Scientific.
- Desrosiers, J.; and Lübbecke, M. 2005. *A Primer in Column Generation*, 1–32. Springer US.
- Geisser, F.; Poveda, G.; Trevizan, F.; Bondouy, M.; Teichteil-Königsbuch, F.; and Thiébaux, S. 2020. Optimal and Heuristic Approaches for Constrained Flight Planning under Weather Uncertainty. In *Proc. of 30th Int. Conf. on Automated Planning and Scheduling (ICAPS)*.
- Hansen, E.; and Zilberstein, S. 2001. LAO*: A heuristic search algorithm that finds solutions with loops. *Artificial Intelligence*.