Graph Theory and Applications Problem Solving: Solution

Solution of Exercise 1. \bullet "The complexity of a graph G is the number of its spanning trees."

• The complexity of the graph G_1 is

$$\chi(G) = 3 \tag{1}$$

which is the number of its spanning trees listed as follows: $\{e_1, e_2\}, \{e_1, e_3\}, \{e_2, e_3\}.$

Figure 1: The graph G_1 .

Solution of Exercise 2. 1) The Tutte polynomial T_{G_2} of the graph G_2 can be calculated using a contraction/deletion procedure. We have:

$$Z_{G_{2}} = A + Z_{\bullet \bullet \bullet} + Z_{\bullet \bullet} + Z_{\bullet} + Z_{\bullet \bullet} + Z_{\bullet} + Z_{\bullet$$

2) The complexity of G_2 is given by

$$\chi(G_2) = T_{G_2}(1,1) = 1 + 1 + 1 + 2 = 5.$$
(3)

3) Two spanning trees of G_2 in red.

Figure 2: Two spanning trees (in red) of the graph G_2 .

Solution of Exercise 3. 1) We evaluate the partition function Z_{G_3} of the Potts model on the graph G_3 by contraction/deletion:

$$Z_{G_{3}} = (q + y_{4}) Z_{\frac{1}{3}} = (q + y_{4}) \left(Z_{\frac{3}{3}} + y_{1} Z_{\frac{2}{3}} \right)$$

$$= (q + y_{4}) \left((q + y_{2}) Z_{\frac{3}{3}} + y_{1} \left(Z_{\frac{3}{3}} + y_{2} Z_{\frac{3}{3}} \right) \right)$$

$$= (q + y_{4}) \left(q(q + y_{2}) (q + y_{3}) + y_{1} (q(q + y_{3}) + qy_{2}(1 + y_{3})) \right). \tag{4}$$

2) Consider $\beta = \frac{1}{kT}$, J < 0, $y_e = e^{-\beta J} - 1$.

[2a] The probability $P_{=}$ that all vertices have the same color is

$$P_{=} = \frac{qe^{-\beta J \times 4}}{Z_{G_3}} \tag{5}$$

At the 0-temperature limit, the dominant term in

$$Z_{G_3} = (q+y)\Big(q(q+y) + y(q(q+y) + qy(1+y))\Big)$$
(6)

is $qy^4 = qe^{-4\beta J}$ and so we have

$$\lim_{T \to 0} P_{=} = \frac{qe^{-4\beta J}}{qe^{-4\beta J}} = 1.$$
 (7)

[2b] At the infinite-temperature limit, $\beta \to 0$, then $e^{-\beta J} \to 1$, and all $y_e \to 0$. Thus, we obtain $\lim_{T\to\infty} Z_{G_3} = q^4$, such that

$$\lim_{T \to \infty} P_{=} \frac{q}{q^4} = q^{-3} \,. \tag{8}$$

3) Consider $\beta = \frac{1}{kT}$, $J_e = J < 0$, $y_e = e^{-\beta J} - 1$. The 0-temperature limit of the probability that 3 vertices have the same color and the remaining vertex has a different color is 0. This is because, at the limit $T \to 0$, the event "all vertices have the same color" is of probability $\lim_{T\to 0} P_= 1$ as shown in (7). This implies that this is only event which exists for this system at 0-temperature. Therefore any over event (or possibility) must be of vanishing probability.

Solution of Exercise 4 (Bonus). Consider the same graph G_3 with all $J_e = J > 0$.

At 0-temperature, $y_e = -1$, and thus

$$\lim_{T \to 0} Z_{G_3} = q(q-1)^2 (q-2) \tag{9}$$

An event on the graph with non zero probability P_{\neq} at 0-temperature limit is "all vertices have a different color"

$$P_{\neq} = \frac{q(q-1)^2(q-2)}{Z_{G_3}}$$

$$\lim_{T \to 0} P_{\neq} = \frac{q(q-1)^2(q-2)}{q(q-1)^2(q-2)} = 1.$$
(10)

This event is unique because it is the entire universe of events. However, there exist other events which have non zero probability at 0-temperature.