Table 11.1 Metal loads from selected adits in the Upper Animas Basin

-	Pounds per day													
	High Flow Low Flow										Tlow			
•		Phase 1 % Removal	Cost \$ 1000's	Al	Cd	Cu	Fe	Mn	Zn Al	Cd	Cu	Fe	Mn	Zn
*	Cement Creek	COMOVAX	1000 3	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1			ryyng Middidd Hannainn		
A 2	Gold King 7 level			98.7	.186	17.6	360	73.9	71.3 60.1	.162	15.4	224	86.1	60.
/% # A	American Tunnel			8.6	.004	.011	215	74.8	29.2 7.0	.003	.008	192	66.0	26.5
	Red and Bonita			13.3	.130	.081	318	118	56.6 13.5	.136	.02I	356	129	61.9
	Mogul (2009)			3.1	.050	040	32	27.2	29.1 2.0	.034	.017	21	19.1	21.1
	Mogul	80%	1000	1	0.04	1.7	14	4	2 1	0.02	0.7	5	1	3
so g/m BLh	Silver Ledge	50%	300	25	0.09	0.6	222	33	15 4	0.03	0.0	56	1.1	3
	Grand Mogul	0%	60.	15	0.15	5.3	33	10	27 1	0.01	0.2	0	0	1
	Mammoth	30%	60	1	0.00	0.0	14	2	8 1	0.00	0.0	16	2	0
	Anglo-Saxon	30%	60	0	0.00	0.0	15	10	2 0	0.01	0.0	15	5.	1
	Joe & Johns	30%	300	0	0.00	0.2	1	1	1 / 0	0.00	0.0	1	0	0
	Big Colorado	50%	300	1	0.00	0.0	3	3	0 1	0.00	0.0	6	0.	0
	Porcupine	30%	60	0	0.00	0.0	14	5	1 1 0	0.00	0.0	10	5	i
J. M. annua	Evelyn	50%	1000	1	0.00	0.0	2	0	0 2	0.00	0.0	3	0:	0
	Mineral Creek	3070	1000	ž.	0.00	0.0	disi	v	1	0.00	0.0	₩.	Ÿ	~
	Koehler (2005)			13.4	.I	5.8	63	14.6	37.9 7.1	.I	2.5	51	4.2	15.4
	, ,,	50%	60	33	0.36	30.7	321	10.	91 / 28	0.25	28.3	264	8	78
	Koehler					0.1				0.23	0.2	6	11	3
	North Star	50%	300	0	0.02		6	16						
	Junction Mine	50%	300	13.	0.07	2.2	126	3.	14 0	0.00	0.1	3	0	0
	Bandora Mine	30%	60	0	0.04	0.1	5	4:	10 0	0.02	0.0	2	2:	4
FS	Upper Bonner	50%	300	1	0.00	0.0	1	1	1 , 2	0.01	0.0	2	1	1
	Ferrocrete Mine Jos F. No.	¥ .	300	2	0.00	0.0	31	5	1 3	0.01	0.0	32	7	1.
	Paradise**	0%	60	28	0.00	0.1	246	20	2 28	0.00	0.1	246	20	2
and the second	Brooklyn Mine*	30%	300	1.	0.01	0.2	8	2.	2 1	0.01	0.2	8	2	2
F 5	Bonner Mine	50%	300	1.	0.01	0.0	1	1	1 2	0.00	0.0	2	1	0
£\$	Lower Bonner	30%	300	1	0.00	0.0	1	0	0 2	0.00	0.0	2	1	1.
	Little Dora	50%	300	1	0.33	0.9	5	653	48 0	0.00	0.0	0	2	0
	Animas above Eureka								-Á					
	Vermillion Mine	50%	300	0	0.04	0.2	2	1	9 0	0.01	0.1	Ĭ.	0	3:
	Columbus	50%	300	1	0.01	0.3	3.	0	9 0	0.02	0.1	1	0	4
Home	Lower Comet	0%	10	2	0.00	0.1	2:	2	1 2	0.00	0.0	1	1	1.
3LM	N side of Calif. Mtn.**	30%	60	4	0.01	0.0	1.	5	2 4	0.01	0.0	1	5.	2
	Sound Democrate	50%	60	0.	0.00	0.1	0	4	1 0	0.00	0.0	0	2	0
	Mountain Queen	50%	300	0	0.00	0.2	1	0	1 0	0.00	0.1	0	0	0
	Silver Wing	30%	0	0	0.00	0.1	0	0	0 0	0.00	0.3	1	1	1
	Bagley	30%	300	0	0.01	0.0	0	13	7 0	0.01	0.0	0	6	3
7	Senator	30%	300	0	0.00	0.0	21	7	0 1	0.00	0.0	23	14	2
	Animas below Eureka													
	Royal Tiger	50%	300	5	0.04	0.8	.0	3	7 .0	0.00	0.1	0	0.	0
	Pride of the West	30%	60	0	0.01	0.0	0	0-	3 0	0.01	0.0	0	0:	2
	Little Nation	30%	300	0	0.00	0.0	9	2	1 / 0	0.00	0.0	4	1	0
	Pre-2005 Totals	* 24.5		138	1.29	44.5	1110	822	271 83	0.45	31.0	712	109	
	2009 total CC increases			123	.330	4.4	911	290	184 (81.6		14.8	788	299	
				الباستدد		10.0	~ * * .	A 200 M	101.01.0			4.3,74.7	//	2.53.7

Italics = new flows since 2005

^{*} No low flow data. Low flow loads are extrapolated from high flow data

^{**} No high flow data. High flow loads are extrapolated from low flow data