Aprenda Estatística

Giseldo da Silva Neo

Contents

1	Prefácil	5
2	Introdução	7
	2.1 Dado e Informação	7
	2.2 Classificação do Dado	7
	2.3 Estimativas de localização	12
3	Análise exploratória dos dados	15
	3.1 Introdução	15
##	Attaching core tidyverse packages	- tidyverse 2.0.0
##	v dplyr 1.1.4 v readr 2.1.5	
	v forcats 1.0.0 v stringr 1.5.1	
	v ggplot2 3.5.0 v tibble 3.2.1	
##	v lubridate 1.9.3 v tidyr 1.3.1	
	v purrr 1.0.2	
##	Conflicts tidy	verse_conflicts()
##	<pre>x dplyr::filter() masks stats::filter()</pre>	_
	x dplyr::lag() masks stats::lag()	
##	i Use the conflicted package (http://conflicted.r-lib.org/) to force all conflicts to become

4 CONTENTS

Chapter 1

Prefácil

A Harvard Business Review, revista conceituada em administração e negócios, em uma matéria de opinião, afirmou no título que este é um dos empregos mais sexy deste século 21 e exemplificou o conceito do que é um ser um cientista de dados [Review, 2012]. Porém, acredito que outras pessoas podem ter visões diferentes do que é um emprego sexy, como por exemplo Joel Grus (2016) [Grus, 2016], que acredita que a matéria da Harvard Business foi escrito por alguém que nunca visitou um quartel do corpo de bombeiros. Particularmente, a escolha do que é ser sexy foge do escopo desse **livro** e me parece uma questão pessoal. Porém, o consenso é que o campo está em alta e em evidência.

A quantidade de dados disponível vem crescendo exponencialmente e analisálos tem sido útil para diversas organizações e para a sociedade como um todo. Muitas pesquisas estão sendo escritas sobre esse tema, com a descrição de experimentos e com achados importantes. Logo, a habilidade em lidar com esses dados e reportá-los é crucial para o profissional que deseja extrair informação útil e construir conhecimento. Este livro visa preencher esta lacuna e dar ao leitor uma visão prática e teórica com exemplos de programação em R e em Python.

Chapter 2

Introdução

Vamos começar pelos conceitos básicos e criar um vocabulário consistente para permitir uma comunicação mais clara nas seções futuras.

2.1 Dado e Informação

Dado e informação nesse contexto são coisas diferentes. Nas análises preditivas, que será explicado mais adiante, as informações são extradas a partir dos dados. Neste contexto os dados são os fatos brutos. Por exemplo, o nome de um estudante e o número do CPF são exemplos de dados.

Informação é quando utilizamos os dados aplicados em um contexto. Por exemplo, os dados do nome e do CPF de um estudante podem fazer parte de uma lista de alunos matriculados em um curso técnico de informática de um Instituto Federal.

2.2 Classificação do Dado

Vamos classificar o dado em algumas categorias que nos permitirão uma comunicação, mais consistente, com menos redundância. Essas classificações facilitarão a nossa comunicação em assuntos mais avaçados.

2.2.1 Quanto ao tipo do dado

É necessário classificar o dado quanto ao seu tipo pois os algoritmos de aprendizagem de máquina, ou os modelos estatísticos de inferência (termos que serão

explicados mais a frente), irão funcionar com determinados tipos de determinadas formas. Logo, com o conhecimento da classificação do tipo do dado poderemos realizar, ou não, as conversões ou tratamentos adicionais que forem necessários.

O tipo do dado pode ser: **numérico** (também chamado de quantitativo), **categórico** (também chamado de qualitativo). Ou se enquadram na categoria **Especial** (entre eles dados do tipo **texto** e dados do tipo **data**) Vide figura abaixo.

Figure 2.1: Tipo do dado

Um dado do tipo **numérico** é expresso geralmente como um número real. Porém, existem casos em que números inteiros também expressam dados do tipo **categóricos**, portanto não é só ter número que já podemos classificá-lo como numérico. Já o dado do tipo **categórico** está relacionado a um valor dentro de um lista (geralmente finita - porém nem sempre) de valores. A formação acadêmica de uma determinada pessoa (Ensino Fundamental, Médio ou Superior), por exemplo, é um dado do tipo **categórico**. Já o salário, é um dado to tipo **númerico**.

Dados do tipo **numérico** e **categórico** são comumente utilizados em estatística inferencial e aprendizagem de máquina e serão detalhados nas seções seguintes.

2.2.1.1 Dado do tipo numérico (ou quantitativo)

O tipo do dado **numérico**, também chamado de quantitativo, ainda pode ser sub classificado como **numério contínuo** ou **númerico discreto**.

Um dado **numérico contínuo** é quando o dado pode ser qualquer número em um intervalo de números reais - lembrando que o conjunto de número reais

engloba os números inteiros -. Geralmente é o resultado de uma medida, por exemplo, a altura de um estudante (por exemplo 1,80 metros) é um dado do tipo **numérico contínuo**.

O dado **numérico discreto** geralmente é resultado de uma contagem - um número inteiro -, por exemplo, a idade de um estudante (42 anos) é uma contagem, é um dado **numérico discreto**.

2.2.1.2 Dado do tipo categórico (ou qualitativo)

Um dado é do tipo **categórico** quando representa um valor dentro de um conjunto ou de uma categoria.

O dado categórico pode ser categótico binário ou categórito ordinal, ou nenhuma das duas subcategorias, ou seja categórico somente.

Um exemplo de **dado categórico somente**, é a cor preferida por uma pessoa (por exemplo eu prefiro a cor azul), ou o estado civil de uma pessoa (no meu caso casado).

O dado do tipo **categórico binário** é quando ele somente pode assumir dois valores no universo de valores possíveis. Por exemplo, 0 ou 1, existente ou ausente, true ou false, sim e não, aprovado ou reprovado.

O dado do tipo **categórico ordinal** é quando o valor é um elemento de um conjunto que pode ser ordenado, por exemplo, imagine a classificação dos seres humanos entre criança, jovem e adulto. Nesse exemplo, existe uma ordem temporal, o jovem já foi uma criança, o adulto já foi um jovem.

2.2.1.3 Exemplos de tipo do dado

Variável	Tipo do dado
Idade (14, 17, 23) Doença (Ausente, Presente) Story Points (1, 3, 5, 7) Ano (2021, 2022,) Altura (1,79 - 2,05) Estado Civil (Casado, Solteiro) Cores preferidas (Azul, verde, vermelho)	numérico discreto categório binário categorico ordinal numérico discreto numérico contínuo categórico binário categórico somente (nem binário, nem ordinal)

2.2.1.4 Tabelas

Os dados geralmente são organizados em formato de tabelas. Onde as linhas representam as obseravações (ou instâncias) e as colunas representam as variáveis.

Vamos utilizar o exemplo de uma empresa que desenvolve software e registra os dados relacionados a seus projetos. Essa empresa mantem o registro de determinada funcionalidade e do tamanho dessa funcionalidade. Cada linha da tabela representa uma funcionalidade (chamada de User Story em projetos que utilizam SCRUM). Cada coluna representa uma informação dessa User Story. As informações que a empresa mantém registro são as variáveis, as colunas da tabela. Uma dessas variáveis é a descriçao, outra é uma estimativa que o desenvolvedor atribui do tamanho funional, chamado Story Point. Essas informações estão dispostas em um arquivo no formato CSV. O código abaixo, carrega esse arquivo e exibe parte de seu conteúdo. Iremos então classificar cada uma das colunas de acordo com o tipo do dado.

Código R

```
## Rows: 355 Columns: 5
## -- Column specification --
## Delimiter: ","
## chr (2): title, description
## dbl (2): issuekey, storypoints
## dttm (1): created
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 6 x 5
##
                                                             description storypoints
     issuekey created
                                  title
##
        <dbl> <dttm>
                                  <chr>>
                                                             <chr>
                                                                               <dbl>
## 1 29688087 2020-01-17 00:50:48 Update templates for web~ "Relates t~
                                                                                   1
## 2 29682716 2020-01-16 19:21:38 Make sure that we Captur~ "This was ~
                                                                                   1
## 3 29644971 2020-01-15 21:17:03 Propose new IA for Brand~ "## Goals\~
                                                                                   1
## 4 29494181 2020-01-10 19:20:50 Cache `node modules` for~ "# UPDATE ~
                                                                                   1
## 5 29437529 2020-01-09 10:26:51 Disable all remaining un~ "Similar t~
                                                                                   1
## 6 29358963 2020-01-07 08:35:44 Disable unnecessary jobs~ "As discus~
```

Código Python

```
import pandas as pd
#pd.set_option('max_columns', None)
df = pd.read_csv('data/neodataset/7764.csv')
df.head()
```

```
## issuekey ... storypoints
## 0 29688087 ... 1
## 1 29682716 ... 1
## 2 29644971 ... 1
```

```
## 3 29494181 ... 1
## 4 29437529 ... 1
##
##
## [5 rows x 5 columns]
```

A tabela abaixo não é um exemplo dos dados é a classificação, note que o que era antes coluna virou linha.

Nome da Coluna	Tipo do dado	Observação
Issuekey	categorico somente	Apesar de ser um número, não são realizadas operações no número, ele é um identificador único da User Story
storypoints	numérico discreto	É um número geralmente de 1 á 100
created title description	data texto texto	Data em que a User Story Foi criada Título da User Story Desrição da User Story

A tabela acima apresenta a caracterização dos dados do conjunto de dados neodataset (esse conjunto de dados pode ser baixado em ...). Nessa tabela foram tipificados os dados. É interessante apresentar essa tipificação em estudos cientificos e trabalhos de conclusão de curso, quando estamos lidando com conjuntos de dados. Cabe ressaltar que essa tipificação independe da linguagem. Internamente cada linguagem de programação tem seus tipos especificos e que podem ter pequenas diferenças entre as linguagens.

2.2.1.5 Tipo do dado / atributo (Preditor, Alvo)

Nos modelos de aprendizagem de máquina (quando lidamos com algoritmos classificados como supervisionados) e de inferência estatistica o dado também pode ser classificado entre atributo preditor ou atributo alvo. Atributo preditor, são os atributos que serão utilizados para realizar a previsão, geralmente um ou mais atributos. Atributo alvo é o atributo que queremos 'advinhar (ou dar o melhor chute técnico)' com os modelos preditivos. Atributo preditor muitas vezes é chamado de vairável independente, e atributo alvo de variável dependente.

Col1	Tipo do dado (numerico ou categorico)	Tipo do atributo (preditor ou alvo)
IssueKey	categorigo somente	-
StoryPoint	numerico discreto	alvo
Created	data	-

Col1	Tipo do dado (numerico ou categorico)	Tipo do atributo (preditor ou alvo)
Title Description	texto texto	preditor preditor

Ou seja, no modelo proposto, o título e a descrição serão os atributos preditores do atributo alvo, espera-se que os dados do título e da descrição contenham as informações necessárias para a estimativa em Story Points.

2.3 Estimativas de localização

Muitas vezes é conveniente representar um conjunto de números de uma forma mais simples. Nem sempre temos a possibilidade de lidar com vários números, por limitação ou por falta de praticidade. Por exemplo, imagine uma sala de aula com 5 estudantes, vamos montar uma lista da idade de todos os estudantes nessa sala no R e no Python, duas linguagens de programação comumente utilizadas em análise de dados.

Código R

```
idades <-c(14,15,16,14,17) idades
```

```
## [1] 14 15 16 14 17
```

Código Python

```
idades = [14, 15, 16, 14, 17]
print(idades)
```

```
## [14, 15, 16, 14, 17]
```

Podemos representar essa lista com um número mais simples, que pode resumir ou representar aquela lista original. Para isso, utilizamos as estimativas de localização [Bruce et al., 2020]. As mais comuns são média e mediana.

2.3.1 Média

A média é calculada dividindo a soma de todos os números da lista pela quantidade de itens. Sua fórmula matemática é apresentada em FIGURA XXX. Onde

i é a quantidade de itens da lista e x_i é o enésimo item da lista. O termo média também pode ser representado pelo símbolo X

No nosso exemplo se fossemos calcular manualmente a média da lista **idade**, o cálculo seria:

Código R

```
( 14 + 15 + 16 + 14 + 17 ) / 5
```

[1] 15.2

Código Python

```
print(( 14 + 15 + 16 + 14 + 17 ) / 5)
```

15.2

Porém, podemos utilizar algumas funções que já disponibilizam esse recurso de calular a média. O código para criar uma lista e verificar a média dessa lista, utilizando as funções, no R e no Python, seria o seguinte:

Código R

```
idades <- c(14, 15, 16, 14, 17)
mean(idades)
```

[1] 15.2

Código Python

```
from statistics import mean
idades = [14, 15, 16, 14, 17]
print(mean(idades))
```

15.2

A função **mean**, no R, recebe como parâmetro uma lista de itens e retorna a média dessa lista, no python utilizei a função mesmo nome, porém disponível na biblioteca statistics do python.

Chapter 3

Análise exploratória dos dados

3.1 Introdução

 \mathbf{R}

##

yday, year

Um dos pioneiros na definição da área de análise exploratória de dados (em inglês Estatistical Data Analisys, ou EDA) foi Tukey (1997) [Tukey et al., 1977]. Tukey (1997) argumenta que seu foco, até aquele momento, estava em desenvolver novas técnicas para inferência. Porém, depois de reflexão, ele chega a conclusão de que o foco dele, e de outros estatísticos, seria melhor aplicado no desenvolvimento de técnicas para a etapa de preparação desses dados. Era nos procedimentos de estruturar os dados que estava o verdadeiro desafio. Problemas, tais como, lidar com dados faltantes ou *outliers*, traziam impactos negativos na inferência e novas técnicas nessa etapa precisavam ser estudadas. Sua recomendação era uma mudança de paradigma e novos estudos, voltando mais para a preparação dos dados. Sua visão é de que isso iria trazer enorme avanços como um todo. O que de fato aconteceu.

Podemos considerar essa necessidade de estudos anterior ao processo de inferência analisando o exemplo criado por Ancobe.

```
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
```

```
## The following objects are masked from 'package:dplyr':
##
## between, first, last

## The following object is masked from 'package:purrr':
##
## transpose

x <- c(10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5)
y <- c(8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68)
DT = data.table(x, y)
ggplot(DT, mapping = aes(x = x, y =y)) +
    geom_point() +
    labs(title = "Amostra 1")</pre>
```

Amostra 1

Python

```
import matplotlib.pyplot as plt x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68] plt.scatter(x, y) plt.show()
```


Veja a imagem "Amostra 1" acima. Nela visualmente percebemos uma relação linear direta entre as duas variáveis, podemos confirmar isso analisando o gráfico de pontos e o valor da correlação, abaixo.

 \mathbf{R}

```
cor(x, y)
```

[1] 0.8164205

Python

```
from statistics import correlation
print(correlation(x, y))
```

0.81642051634484

Para os dados da Amostra 1, acima temos uma correlação de 0.81.

 \mathbf{R}

```
x \leftarrow c(10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5)

y \leftarrow c(9.14, 8.14, 8.74, 8.77, 9.26, 8.1, 6.13, 3.1, 9.11, 7.26, 4.74)

DT = data.table(x, y)
```

```
ggplot(DT, mapping = aes(x = x, y =y)) +
geom_point() +
labs(title = "Amostra 2")
```


Python

```
import matplotlib.pyplot as plt
plt.plot([0, 1, 2, 3])
plt.show()
```


Na amostra 2 percebemos uma relação em forma de curva, quando verificamos a correlação verificamos o mesmo valor de 0.81 dos dados da amostra 1.

Bibliography

Peter Bruce, Andrew Bruce, and Peter Gedeck. Practical statistics for data scientists: 50+ essential concepts using R and Python. O'Reilly Media, 2020.

Joel Grus. Data science do zero. Alta books, 2016.

 $Harvard\ Business\ Review,\ 2012.\ https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.$

John W Tukey et al. Exploratory data analysis, volume 2. Reading, MA, 1977.