Statistika - test

Novi Sad, 22. VI 2018.

Prezime: _____ lme: ____ br.ind.: ____

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak =, \leq , \geq u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

$$P(A) \square P(A \cap (A \cup B)), \qquad P(A \cap B) \square P(A) - P(B), \qquad P(A B) \square P(A|B) P(B).$$

2. Nezavisne slučajne promenljive X i Y imaju istu raspodelu $\mathcal{N}(0,1)$.

Kolika je verovatnoća $P(X^2 + Y^2) < 2$?

3. Za uzorak obeležja sa Poasonovom raspodelom $X: \mathcal{P}(1)$, koliko je $E(\bar{S}_{10}^2)$?

4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 5 mogućih vrednosti i Y uzima 3 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$, gde se suma uzima po svih $5\cdot 3=15$ ćelija?

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_5)$ čija je empirijska funkcija raspodele data levo:

Naći Modus uzorka Mo =

Teorija

Napisati i dokazati nejednakost Čebiševa

Definisati Slabi zakon velikih brojeva za niz slučajnih promenljivih X_1, X_2, \dots

Napisati i dozazati slabi zakon velikih brojeva Čebiševa