Introduction to grammars: outline

- Introduction to grammars
- Phrase Structure Grammar and language
 - Derivation

Introduction to grammars

- A formal language is a collection of strings over ∑ with some rules known as grammars.
- Grammar rules can be represented using a syntax diagram.
- Alternatively BNF (Backus-Naur Form) notation can be used.
- BNF uses the following:
 - Nonterminals represented enclosed by <>. Terminals are represented as they are.
 - { } represent repetition of nonterminals, terminals zero or more times
 - ::= stands for "is defined as"
 - | stands for OR
 - () used to group symbols

```
Ex. <identifier> ::= <letter>|<letter>{<letter>|<digit>} <letter> ::= a|b|c|... <digit> ::= 0|1|2|...|9
```

- Phrase Structure Grammar (PSG)
 - Definition: A PSG is a 4-tuple (N, T, P, S) where:
 - N is a finite set of nonterminals
 - T is a final set of terminals
 - c. P is a finite set of productions /rules/ of the form $α \rightarrow β$, where α and β are strings on N U T and α should contain at least one symbol from N.
 - d. S E N is the start symbol of the grammar.

Note: The right hand side production, β , can be an empty string. Such a production is called a λ -production.

```
Ex. G = (N, T, P, S) = ({S, B, C}, {a, b, c}, P, S)
where P is given by:
S \rightarrow aSBC | aBC
BC \rightarrow CB
aB \rightarrow ab
C \rightarrow Cc | \lambda
```

Derivation

- If α generates β , then we write $\alpha => \beta$
- If $\alpha_1 => \alpha_2$, $\alpha_2 => \alpha_3$, ..., $\alpha_{n-1} => \alpha_n$, then we write $\alpha_1 => \alpha_2 => \alpha_3 => \dots => \alpha_n$ or $\alpha_1 \stackrel{+}{=}> \alpha_n$
- Let G = (N, T, P, S) be a grammar, if S => α in zero or more steps, α € (N U T)*, then α is called a sentential form.
- A sentence (in G) is a sentential form in T*.
- The language generated from the grammar G is denoted by L(G). L(G) = {x ∈ T* | S => x} i.e. L(G) is the set of all terminal strings derived from the start symbol S.

```
Ex1.
  G = (N, T, P, S) where:
  N = {<sentence>, <noun>, <verb>, <adverb>}
  T = {Sam, Dan, ate, sang, well}
  S = <sentence>
  P consists of:
     <sentence> → <noun><verb> |
  <noun><verb><adverb>
     <noun> → Sam | Dan
     <verb> → ate | sang
     <adverb> → well
```

- Ex2.
 - $S \rightarrow A|B$
 - $A \rightarrow aA|bB|a|b$
 - $B \rightarrow bB|b$
- Ex3.
 - $S \rightarrow a|bS$
- Ex4.
 - $S \rightarrow aA|bB|a|b$
 - $A \rightarrow aA|a$
 - $B \rightarrow bB|b$

- Note: that reverse derivation is not permitted. For instance, if S
 → AB is a production, then we can replace S by AB, but we cannot replace AB by S.
- Notations:
 - If A is any set, then A* denotes the set of all strings over A and $A^+ = A^* \{\lambda\}$
 - ii. A, B, C, A1, A2, ... denote nonterminals
 - iii. a, b, c, ... denote terminals
 - iv. x, y, z, w, ... denote strings of terminals
 - v. α, β, ... denote strings from (N U T)*
 - vi. If A \rightarrow α is a production where A \in N, the production is called an A-production
 - VII. If $A \rightarrow \alpha_1$, $A \rightarrow \alpha_2$, $A \rightarrow \alpha_3$, $A \rightarrow \alpha_4$... $A \rightarrow \alpha_n$ are all A-productions, these can be written as $A \rightarrow \alpha_1 | \alpha_2 | \alpha_3 | \alpha_4 | ... \alpha_n$
 - viii. $X^0 = \lambda$ for any symbol $X \in N \cup T$

- <u>Definition</u>: Let G1 and G2 be two grammars, then G1 and G2 are equivalent if L(G1) = L(G2).
- Ex5. G = ($\{S\}$, $\{a\}$, $\{S \rightarrow SS \mid a\}$, S). Find L(G)
- Ex6. G = ({S, C}, {a, b}, P, S) where P is given by:

 $S \rightarrow aCa$

 $C \rightarrow aCa \mid b$

Find L(G)

- Ex7. G = ({S}, {a}, {S → aS|a}, S). Find L(G)
- Ex8. Let L be the set of all palindromes over {a, b, 1}. Construct a grammar G that generates L.

Hint: Use the following recursive definition

- i. λ is a palindrome
- ii. a, b are palindromes
- If x is a palindrome, axa and bxb are palindromes