Lecture 17 (sections 3.2,3.3)

Section 3.2 continue — the dot product

In \mathbb{R}^2 or \mathbb{R}^3 , consider two vectors \vec{u} and \vec{v} :

$$\underbrace{\vec{u} \cdot \vec{v}}_{\text{dot product}} \ = \ ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \theta$$

If both $\vec{v} \neq 0$ and $\vec{u} \neq 0$ then

$$||\vec{u}|| \neq 0$$
 & $||\vec{v}|| \neq 0$

thus

$$\vec{u} \cdot \vec{v} = 0 \implies \cos \theta = 0 \implies \theta = \{90^{\circ} \text{ or } 270^{\circ}\}$$

In this case we say that \vec{u} and \vec{v} are mutually orthogonal,

$$\vec{u} \perp \vec{v}$$

Compatible with above, in \mathbb{R}^n , for any two vectors

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 , $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

$$\vec{u} \cdot \vec{v} \stackrel{def}{\equiv} u_1 \cdot v_1 + u_2 \cdot v_2 + \dots + u_n \cdot v_n$$

Properties:

• associativity:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

• commutativity:

$$\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}$$

 \implies Problem. Find an angle between

$$\vec{u} = (3, 0, 1)$$
 and $\vec{v} = (-1, 2, 1)$

Solution:

$$||\vec{u}|| = \sqrt{3^2 + 0^2 + 1^2} = \sqrt{10}, \qquad ||\vec{v}|| = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{6}$$

$$\vec{u} \cdot \vec{v} = 3 \cdot (-1) + 0 \cdot 2 + 1 \cdot 1 = -2 = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \theta = \sqrt{10} \cdot \sqrt{6} \cdot \cos \theta$$

$$\Rightarrow \qquad \cos \theta = \frac{-2}{\sqrt{10}\sqrt{6}} = -\frac{1}{\sqrt{15}} \qquad \Rightarrow \qquad \theta = \arccos\left(-\frac{1}{\sqrt{15}}\right)$$

 \implies In general, for two vectors in \mathbb{R}^n :

$$\vec{u} \cdot \vec{v} = \boxed{u_1 \cdot v_1 + \dots + v_n} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \theta = \boxed{\sqrt{u_1^2 + \dots + u_n^2} \cdot \sqrt{v_1^2 + \dots + v_n^2} \cdot \cos \theta}$$

SO

$$\cos \theta = \frac{u_1 \cdot v_1 + \dots + u_n \cdot v_n}{\sqrt{u_1^2 + \dots + u_n^2} \cdot \sqrt{v_1^2 + \dots + v_n^2}}$$

Theorem:

Triangular inequality

for any two vectors \vec{u} and \vec{v} ,

$$||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$$

Indeed:

 \implies Recall that the two vectors \vec{u} and \vec{v} are parallel if there exist a number a such that

$$\vec{v} = a \cdot \vec{u}$$

Section 3.3 — orthogonality

If $\vec{u}, \vec{v} \neq 0$ and $\vec{u} \cdot \vec{v} = 0 \Longrightarrow$

 $\vec{u} \perp \vec{v}$ orthogonal

Example:

$$\begin{split} \hat{i}\cdot\hat{j} &= \hat{i}\cdot\hat{h} = \hat{j}\cdot\hat{h} = 0 \\ \{\hat{i},\hat{j},\hat{h}\} & \text{are mutually orthogonal} \end{split}$$

 \implies A standard basis in \mathbb{R}^n is made of n mutually orthogonal vectors:

$$\hat{e}_i \cdot \hat{e}_j = \begin{cases} 1, & i = j \\ 0, & \text{otherwise} \end{cases}$$

Why do we care about orthogonality?

 \implies Because it helps define complicated objects in space (like a *plane*) (other objects: *points*, *lines*)

 \implies Equations of a plane in 3d:

$$\vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
, $\vec{v} = a \cdot \hat{i} + b \cdot \hat{j} + c \cdot \hat{h}$

$$P_0=(x_0,y_0,z_0)$$
 ____ initial point of \vec{v} ; a point on a plane
$$P=(x,y,z)$$
 ____ any point on a plane

Definition:

Let $\vec{v}\perp \ {\rm plane} \qquad \Longleftrightarrow \qquad \vec{v}\perp \overrightarrow{P_0P}\,, \qquad {\rm for\ any}\ P\in {\rm plane}$

 \Rightarrow

$$\vec{v} \cdot \overrightarrow{P_0 P} = 0$$

$$a \cdot (x - x_0) + b \cdot (y - y_0) + c \cdot (z - z_0) = 0$$
 equation for a plane

Alternatively:

$$a \cdot x + b \cdot y + c \cdot z = d$$
, $d \equiv a \cdot x_0 + b \cdot y_0 + c \cdot z_0$

The projection theorem

- \implies We are in \mathbb{R}^n ; $\vec{u} \neq 0$ and \vec{w} is any vector.
- \implies We want:

$$\vec{w} = \vec{w_1} + \vec{w_2}$$
 (in a unique way)

such that

$$\vec{w}_1 \mid\mid \vec{u}$$
 and $\vec{w}_2 \perp \vec{u}$
$$\vec{w}_1 \stackrel{def}{\equiv} \underbrace{\operatorname{proj}_{\vec{u}} \vec{w}}_{\text{projection of } \vec{w} \text{ onto } \vec{u}}$$

Let θ be the angle between the vectors:

Note

$$\cos \theta = \frac{\vec{u} \cdot \vec{w}}{||\vec{u}|| \cdot ||\vec{w}||}$$

thus

$$||\vec{w}_1|| = ||\vec{w}|| \cdot \cos \theta = \frac{\vec{u} \cdot \vec{w}}{||\vec{u}||}$$

Because $\vec{w}_1 \mid\mid \vec{u}$, the corresponding normalized vectors must be identical:

$$\hat{w}_1 = \hat{u} \qquad \Longleftrightarrow \qquad \frac{\vec{w}_1}{||\vec{w}_1||} = \frac{\vec{u}}{||\vec{u}||}$$

 \implies uniquely,

$$\vec{w_1} = \frac{||\vec{w}_1||}{||\vec{u}||} \cdot \vec{u} = \frac{\vec{u} \cdot \vec{w}}{||\vec{u}||} \cdot \frac{1}{||\vec{u}||} \cdot \vec{u} = \boxed{\frac{\vec{u} \cdot \vec{w}}{||\vec{u}||^2} \cdot \vec{u} = \text{proj}_{\vec{u}}\vec{w}}$$

Note:

$$\vec{w} = \vec{w}_1 + \vec{w}_2 = \underbrace{\text{proj}_{\vec{u}}\vec{w}}_{\vec{w}_1} + \vec{w}_2$$

Thus

$$\vec{w}_2 = \vec{w} - \text{proj}_{\vec{u}}\vec{w} = \boxed{\vec{w} - \frac{\vec{u} \cdot \vec{w}}{||\vec{u}||^2} \cdot \vec{u}}$$

 \implies Check at home that

$$\vec{w}_2 \cdot \vec{u} = 0$$

for any \vec{w} and \vec{u} .