PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 10, October 2010, Pages 3393–3403 S 0002-9939(2010)10133-8 Article electronically published on June 3, 2010

POINCARÉ SERIES AND THE DIVISORS OF MODULAR FORMS

D. CHOI

(Communicated by Ken Ono)

ABSTRACT. Recently, Bruinier, Kohnen and Ono obtained an explicit description of the action of the theta-operator on meromorphic modular forms f on $SL_2(\mathbb{Z})$ in terms of the values of modular functions at points in the divisor of f. Using this result, they studied the exponents in the infinite product expansion of a modular form and recurrence relations for Fourier coefficients of a modular form. In this paper, we extend these results to meromorphic modular forms on $\Gamma_0(N)$ for an arbitrary positive integer N>1.

1. Introduction

Let N be a positive integer and $q:=e^{2\pi iz}$, z=x+iy. If $f(z)=\sum_{n=h}^{\infty}a(n)q^n$ is a meromorphic modular form on $\Gamma_0(N)$, then we define the theta-operator by

$$\theta f(z) := \frac{1}{2\pi i} \frac{d}{dz} f(z) = \sum_{n=b}^{\infty} na(n) q^{n}.$$

Recently, Bruinier, Kohnen and Ono obtained in [6] an explicit description of the action of the theta-operator on meromorphic modular forms on $SL_2(\mathbb{Z})$ in terms of the values of modular functions at points in the divisor of f. Using this result, they also studied the exponents in the infinite product expansion of a modular form and recurrence relations for the Fourier coefficients of modular forms (see Theorems 3 and 5 in [6]). Ahlgren gave analogues of these results for meromorphic modular forms on $\Gamma_0(p)$ for $p \in \{2,3,5,7,13\}$ (see [2]). For general primes p, using eta-quotients, the author studied in [8] the action of the theta-operator on meromorphic modular forms on $\Gamma_0(p)$ and the exponents in their infinite product expansion. But, recurrence relations for the Fourier coefficients of the modular forms in [6] and [2] were not generalized in [8]. In this paper, we extend the results [2] to meromorphic modular forms on $\Gamma_0(N)$ for an arbitrary positive integer N > 1 and obtain recurrence relations for their Fourier coefficients.

To obtain our main theorems, we consider Poincaré series of weight 0 instead of eta-quotients. Since in general these Poincaré series are not meromorphic functions on the complex upper half plane, we cannot use the valence formula or the residue theorem as in [6], [2] and [8]. Thus, following the argument of [5], we use the regularized integral and Stokes' Theorem.

Received by the editors April 2, 2009 and, in revised form, July 27, 2009. 2010 Mathematics Subject Classification. Primary 11F12; Secondary 11F30. Key words and phrases. Borcherds exponents, Poincaré series, divisors of modular forms.

©2010 American Mathematical Society

3393

To state our results, we introduce some notation. The group $\Gamma_0(N)$ is the congruence subgroup of $SL_2(\mathbb{Z})$ defined as

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}.$$

Let \mathcal{C}_N be the set of inequivalent cusps of $\Gamma_0(N)$ and $\mathcal{C}_N^* = \mathcal{C}_N \setminus \{\infty\}$. For a cusp u of $\Gamma_0(N)$ let

$$\Gamma_0(N)_u := \{ \sigma \in \Gamma_0(N) \mid \sigma u = u \}.$$

Here, $\sigma u := \frac{au+b}{cu+d}$ for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$. We denote by \mathcal{F}_N a fundamental domain for the action of $\Gamma_0(N)$ on \mathbb{H} . The modular curve $X_0(N)$ is defined as the quotient space of orbits under $\Gamma_0(N)$, $X_0(N) = \Gamma_0(N) \setminus \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$. Suppose that f(z) is a meromorphic modular form of weight k on $\Gamma_0(N)$. We consider the following functions: a meromorphic modular form $f_{\theta}(z)$ and a Poincaré series $j_{N,m}(z)$ of weight 0 and index m. For N > 1 let

$$f_{\theta}(z) := \frac{\theta f(z)}{f(z)} + \frac{k/12 - h}{N - 1} \cdot NE_2(Nz) + \frac{h - Nk/12}{N - 1} \cdot E_2(z).$$

Here, $E_2(z)$ is the usual normalized Eisenstein series of weight 2 defined by

$$E_2(z) = 1 - 24 \sum_{n>1} \sigma_1(n) q^n,$$

where $\sigma_k(n) := \sum_{d|n} d^k$ if $n \in \mathbb{N}$ and $\sigma_k(n) = 0$ if $n \notin \mathbb{N}$.

Let $I_v(z)$ be the usual modified Bessel functions as in [1] and $e(x) := e^{2\pi ix}$. For a positive integer m we define the Poincaré series of weight 0 and index m by (1.1)

$$F_{N,m}(z,s) := \sum_{\gamma \in \Gamma_0(N)_{\infty} \backslash \Gamma_0(N)} \pi |m\operatorname{Im}(\gamma z)|^{1/2} I_{s-\frac{1}{2}}(|2\pi m\operatorname{Im}(\gamma z)|) e(-m\operatorname{Re}(\gamma z)),$$

where $z \in \mathbb{H}$ and $s \in \mathbb{C}$ with Re(s) > 1. Let $j_{N,m}(z)$ be the continuation of $F_{N,m}(z,s)$ as $s \to 1$ from the right. The function $j_{N,m}(z)$ is a weak Maass form on $\Gamma_0(N)$ (see Section 2 for details). For convenience, if t is a cusp of $\Gamma_0(N)$, then $j_{N,m}(t)$ denotes the constant term of the Fourier expansion of $F_{N,m}(z,1)$ at t. We define a differential operator ξ_0 by

(1.2)
$$\xi_0(j_{N,m})(z) := 2i \frac{\overline{\partial}}{\partial \overline{z}} j_{N,m}(z)$$

and consider the integral

(1.3)
$$\int_{\mathcal{F}_N} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy.$$

Note that in general $f_{\theta}(z)$ is not holomorphic on \mathbb{H} . Thus, we have to regularize the integral (1.3) and denote it by

$$\int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy$$

(see (3.1) in Section 3 for the exact definition). With this notation, we state our main theorem.

Theorem 1.1. Suppose that $f(z) := q^h + \sum_{n=h+1}^{\infty} a(n)q^n$ is a meromorphic modular form of weight k on $\Gamma_0(N)$ with a positive integer N, N > 1. Let $\{c(n)\}_{n=1}^{\infty}$ be the complex numbers for which

(1.4)
$$f(z) = q^h \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}.$$

Then we have

$$\sum_{d|m} d \cdot c(d) = \sum_{\tau \in \mathcal{F}_N \cup C_N^*} \nu_{\tau}^{(N)}(f(z)) j_{N,m}(\tau) - \int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy + \frac{2Nk - 24h}{N - 1} \sigma_1(m) + \frac{24h - 2k}{N - 1} N \sigma_1(m/N).$$

Here, $\nu_{\tau}^{(N)}(f(z))$ denotes the order of zero of f(z) at τ on $X_0(N)$.

Remark 1.2. Suppose that $j_{N,m}(z)$ is holomorphic on \mathbb{H} . From the definition of the differential operator (1.2) we have

$$\xi_0(j_{N,m}(z)) = 0.$$

This implies that in Theorem 1.1,

$$\int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy = 0.$$

Remark 1.3. From Remark 1.2 it may be an interesting question when $j_{N,m}(z)$ is holomorphic on \mathbb{H} . Since $\xi_0(j_{N,m}(z))$ is a cusp form, the results of [5] imply that $j_{N,m}(z)$ is holomorphic on \mathbb{H} if and only if for every cusp form $g(z) = \sum_{n=1}^{\infty} b(n)q^n$ of weight 2 on $\Gamma_0(N)$ we have

$$b(m) = 0.$$

- (1) Suppose that the genus of $\Gamma_0(N)$ is zero. Then $j_{N,m}(z)$ is holomorphic on \mathbb{H} . Thus, when $N \in \{2, 3, 5, 7, 13\}$, Theorem 1.1 recovers the result of Ahlgren [2].
- (2) Suppose that the genus of $\Gamma_0(N)$ is one and that $g(z) = \sum_{n=1}^{\infty} b(n)q^n$ is the unique normalized cusp form of weight 2 on $\Gamma_0(N)$. For a prime p let \mathbf{F}_p denote a finite field $\mathbb{Z}/p\mathbb{Z}$. There exists an elliptic curve E_g of conductor N', N'|N, defined over \mathbb{Q} such that for all $p \nmid N$,

$$1 - a(p) + p = \sharp E_a(\mathbf{F}_p).$$

Note that $|a(p)| \leq 2\sqrt{p}$ and g(z) is a Hecke eigenform. Thus, for an odd integer m, $j_{N,m}(z)$ is holomorphic on \mathbb{H} if and only if E_g is supersingular at p for some prime p, p|m. In [10] Elkies proved the existence of infinitely many supersingular primes for every elliptic curve defined over \mathbb{Q} . This implies that there are infinitely many primes p such that $j_{N,m}(z)$ is holomorphic on \mathbb{H} for every positive integer m, p|m.

Using Theorem 1.1, we obtain a description of the action of the theta-operator on meromorphic modular forms on $\Gamma_0(N)$.

Theorem 1.4. Suppose that $f(z) := q^h + \sum_{n=h+1}^{\infty} a(n)q^n$ is a meromorphic modular form of weight k on $\Gamma_0(N)$ with a positive integer N, N > 1. Then

$$\begin{split} f_{\theta}(z) + \sum_{m=1}^{\infty} \left(\int_{\mathcal{F}_{N}}^{reg} f_{\theta}(z) \cdot \xi_{0}(j_{N,m}(z)) dx dy \right) q^{m} \\ = \sum_{m=1}^{\infty} \left(\sum_{\tau \in \mathcal{F}_{N} \cup \mathcal{C}_{N}^{*}} \nu_{\tau}^{(N)}(f(z)) j_{N,m}(\tau) \right) q^{m}. \end{split}$$

From Remark 1.3(2) and Theorem 1.4 we have immediately the following corollary.

Corollary 1.5. Suppose that the genus of $\Gamma_0(N)$ is one and that $f(z) := q^h + \sum_{n=h+1}^{\infty} a(n)q^n$ is a meromorphic modular form of weight k on $\Gamma_0(N)$ with a positive integer N, N > 1. Then there are infinitely many primes p such that

$$f_{\theta}(z)|U_p = \sum_{m=1}^{\infty} \left(\sum_{\tau \in \mathcal{F}_N \cup \ \mathcal{C}_N^*} \nu_{\tau}^{(N)}(f(z)) j_{N,pm}(\tau)\right) q^m.$$

Remark 1.6. The formula in Corollary 1.5 does not contain the regularized integral. Thus, if $f_{\theta}(z)|U_p \cdot E_{\ell-1}$ is a modular form for some prime ℓ , then we can study congruence for the values of $j_{N,pm}$ by using the argument of [6]. But, it seems difficult to check whether $f_{\theta}(z)|U_p \cdot E_{\ell-1}$ is a modular form.

As another application of Theorem 1.1, we obtain universal recursion formulas for coefficients of meromorphic modular forms on $\Gamma_0(N)$. For each $n \geq 1$, we define the polynomial (1.5)

$$F_n^{(N)}(K, H, x_1, \cdots, x_n) := \sum_{\substack{m_1 + 2m_2 + \cdots + (n-1)m_{n-1} = n \\ m_1, \cdots, m_{n-1} \ge 0}} (-1)^{m_1 + \cdots + m_{n-1}} \frac{(m_1 + \cdots + m_{n-1} - 1)!}{m_1! m_2! \cdots m_{n-1}!} x_1^{m_1} \cdots x_{n-1}^{m_{n-1}} - \frac{1}{n} \left(\frac{2NK - 24H}{N - 1}\right) \sigma_1(m) - \frac{1}{n} \left(\frac{24H - 2K}{N - 1}\right) N \sigma_1(m/N).$$

Theorem 1.7. Suppose that

$$f(z) := q^h + \sum_{n=h+1}^{\infty} a(n)q^n$$

is a meromorphic modular form of weight k on $\Gamma_0(N)$ with a positive integer N, N > 1. For each $n \geq 1$, the polynomial $F_n^{(N)}(K, H, x_1, \dots, x_n)$ is defined as in (1.5). Then we have

$$a(h+n) = F_n^{(N)}(k, h, a(h+1), \cdots, a(h+n-1))$$
$$-\frac{1}{n} \sum_{\tau \in \mathcal{F}_N \cup \mathcal{C}_N^*} \nu_{\tau}^{(N)}(f(z)) j_{N,m}(\tau) + \frac{1}{n} \int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy.$$

Example 1.8. Let E be an elliptic curve of conductor N defined over \mathbb{Q} and let \mathbf{F}_p denote a finite field $\mathbb{Z}/p\mathbb{Z}$ for a prime p. It is known that there is a normalized

Hecke eigenform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ of weight 2 on $\Gamma_0(N)$ such that for all $p \nmid N$, $1 - a(p) + p = \sharp E(\mathbf{F}_n)$.

From Theorem 1.7 we have (1.6)

$$a(1+n) = F_n^{(N)}(2, 1, a(2), \dots, a(n))$$

$$-\frac{1}{n} \sum_{\tau \in \mathcal{F}_N \cup \mathcal{C}_N^*} \nu_{\tau}^{(N)}(f(z)) j_{N,m}(\tau) + \frac{1}{n} \int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy.$$

By the definition of the Hecke operator, we obtain from (1.6) recursive relations for $\sharp E(\mathbf{F}_p)$. For example, if N=11 and m=1, then

$$\int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy = 0.$$

Remark 1.9. Our results (Theorems 1.1, 1.4 and 1.7) can be immediately extended to congruence subgroups $\Gamma \subset \Gamma_0(N)$ for N > 1.

This paper is organized as follows. In section 2 we recall the definition of Poincaré series of weight zero on $\Gamma_0(N)$. In section 3 we define the regularized integral of a meromorphic modular form of weight 2. In sections 4 and 5 we give the proofs of the main theorems.

2. Poincaré series of weight 0 on $\Gamma_0(N)$

In this section we consider non-holomorphic Poincaré series of weight 0. For details we refer to [11], [13], [4], [7].

Let $I_v(z)$ and $K_v(z)$ be the usual modified Bessel functions as in [1]. We define for $s \in \mathbb{C}$ and $y \in \mathbb{R} \setminus \{0\}$:

$$\mathcal{I}_{s}(y) := \sqrt{\frac{\pi|y|}{2}} I_{s-\frac{1}{2}}(|y|),$$

$$\mathcal{K}_{s}(y) := \sqrt{\frac{\pi|y|}{2}} K_{s-\frac{1}{2}}(|y|).$$

Note that $\mathcal{I}_s(y)$ and $\mathcal{K}_s(y)$ are holomorphic in s. If s=1, then we have

$$\mathcal{I}_1(y) = \sinh(|y|),$$

$$\mathcal{K}_1(y) = e^{-|y|},$$

$$2\mathcal{I}_1(y) + \mathcal{K}_1(y) = e^{|y|}.$$

For a cusp u let σ_u denote a matrix in $SL_2(\mathbb{R})$ such that

$$\sigma_u^{-1}\infty = u$$
 and $\sigma_u\Gamma_0(N)_u\sigma_u^{-1} = \{\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$

If t_1 and t_2 are equivalent cusps of $\Gamma_0(N)$, i.e., $\gamma t_1 = t_2$ for some $\gamma \in \Gamma_0(N)$, then we write $t_1 \sim t_2$. For a positive integer m we define the Poincaré series of weight 0 and index m by

(2.1)
$$F_{N,m}(z,s) := \sum_{\gamma \in \Gamma_0(N)_{\infty} \backslash \Gamma_0(N)} \mathcal{I}_s(2\pi m \operatorname{Im}(\gamma z)) e(-m \operatorname{Re}(\gamma z)),$$

where $z \in \mathbb{H}$ and $s \in \mathbb{C}$ with Re(s) > 1. The special value $F_{N,m}(z,1)$ satisfies the following properties.

Theorem 2.1. The function $F_{N,m}(z,1)$ is a harmonic weak Maass form of weight 0 on $\Gamma_0(N)$. Moreover, $F_{N,m}(z,1)$ has the following properties at each cusp t:

(2.2)
$$F_{N,m}(z,1) = q^{-m} + \sum_{n\geq 0} b_m(n,1)q^n + \sum_{n>0} b_m(-n,1)e(n\bar{z}) \text{ if } t \sim \infty,$$

(2.3)
$$\lim_{\substack{\text{Im } z \to \infty}} F_{N,m}(\sigma_t z, 1) = j_{N,m}(t) \quad \text{if } t \nsim \infty.$$

Proof. Let

(2.4)
$$I_{\gamma}(z,s) := \sum_{\beta \in \Gamma_0(N)_{\infty}} \mathcal{I}_s(2\pi m \operatorname{Im}(\gamma \beta z)) e(-m \operatorname{Re}(\gamma \beta z)).$$

If we define

$$\delta_{t\infty} := 1 \text{ if } t \sim \infty,$$

 $\delta_{t\infty} := 0 \text{ if } t \nsim \infty,$

then

$$F_{N,m}(\sigma_t z, s) = \delta_{t\infty} \cdot \mathcal{I}_s(2\pi m \operatorname{Im}(z)) e(-m \operatorname{Re}(z)) + \sum_{\gamma \in \Gamma_0(N)_{\infty} \setminus \Gamma_0(N) \sigma_t/\Gamma_0(N)_{\infty}} \mathcal{I}_{\gamma}(z, s).$$

Considering the Fourier expansion of

$$\sum_{\gamma \in \Gamma_0(N)_{\infty} \backslash \Gamma_0(N) \sigma_t / \Gamma_0(N)_{\infty}} \mathcal{I}_{\gamma}(z,s),$$

we can obtain (2.2) and (2.3). For the details of the proof, see §1.9 in [4] or [11], [13].

3. Regularized integration

Suppose that g(z) is a meromorphic modular form of weight 2 on $\Gamma_0(N)$. Let S(g) be the set of the singular points of g(z) on \mathcal{F}_N . We define an ε -disk $B(t,\varepsilon)$ at t by

$$B(t,\varepsilon) := \left\{ \begin{array}{ll} \{z \in \mathbb{H} \mid |z - t| < \varepsilon\} & \text{if } t \in \mathcal{F}_N, \\ \{z \in \mathcal{F}_N \mid \operatorname{Im}(\sigma_t z) > \frac{1}{\varepsilon}\} & \text{if } t \in \mathcal{C}_N. \end{array} \right.$$

For sufficiently small positive ε , let $\mathcal{F}_N(g,\varepsilon)$ denote a punctured fundamental domain for $\Gamma_0(N)$ defined as

$$\mathcal{F}_N(g,\varepsilon) = \mathcal{F}_N - \bigcup_{t \in S(g) \cup \mathcal{C}_N} B(t,\varepsilon).$$

We define the regularized integral of $g(z) \cdot \xi_0(j_{N,m}(z)) dxdy$ on \mathcal{F}_N by

(3.1)
$$\int_{\mathcal{F}_N}^{reg} g(z) \cdot \xi_0(j_{N,m}(z)) dx dy := \lim_{\varepsilon \to 0} \int_{\mathcal{F}_N(g,\varepsilon)} g(z) \cdot \xi_0(j_{N,m}(z)) dx dy.$$

Note that $g(z) \cdot \overline{j_{N,m}(z)} dz$ is a $\Gamma_0(N)$ -invariant 1-form on \mathbb{H} . We define

$$\gamma(t,\varepsilon) := \left\{ \begin{array}{ll} \{z \in \mathbb{H} \mid |z-t| = \varepsilon\} & \text{if } t \in \mathbb{H}, \\ \{z \in \mathcal{F}_N \mid \operatorname{Im}(\sigma_t z) = \frac{1}{\varepsilon}\} & \text{if } t \text{ is a cusp of } \Gamma_0(N). \end{array} \right.$$

Then

$$\partial \mathcal{F}_N(g,\varepsilon) = \bigcup_{t \in S(g) \cup \mathcal{C}_N} \gamma(t,\varepsilon).$$

For $t \in \mathbb{H}$ let $\operatorname{Res}_t(g)$ be the residue of g at t on \mathbb{H} . Using the argument of Lemma 3.1 and Proposition 3.5 in [5], we prove the following lemma.

Lemma 3.1. Let $g(z) := \sum_{n=0}^{\infty} a(n)q^n$ be a meromorphic modular form of weight 2 on $\Gamma_0(N)$. Suppose that g(z) is holomorphic at each cusp and that every pole of g(z) is a simple pole. Then we have

$$\lim_{\varepsilon \to 0} \int_{\mathcal{F}_N(g,\varepsilon)} g(z) \cdot \xi_0(j_{N,m}(z)) dx dy$$

$$= b_m(1,0)a(0) + a(m) + \sum_{t \in \mathcal{C}_N^*} \alpha_t g(t) j_{N,m}(t) + \sum_{t \in S(f)} \frac{2\pi i}{l_t} \operatorname{Res}_t(g) j_{N,m}(t).$$

Proof. Note that

$$(3.2) \quad d(g \cdot \overline{j_{N,m}} dz) = \overline{\partial}(g \cdot \overline{j_{N,m}} dz) = g \cdot \frac{\overline{\partial}}{\partial \overline{z}} j_{N,m} d\overline{z} dz = g(z) \cdot \xi_0(j_{N,m})(z) dx dy.$$

Thus, by Stokes' Theorem, we have

$$\begin{split} \int_{\mathcal{F}_N(g,\varepsilon)} &g(z) \cdot \xi_0(j_{N,m}(z)) dx dy \\ &= \sum_{t \in S(g)} \frac{1}{l_\tau} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz + \sum_{t \in C_N} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz. \end{split}$$

Note that if $t \in \mathcal{C}_N$ and ε is sufficiently small, then

$$\int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz = \alpha_t \int_{-\frac{1}{2}}^{\frac{1}{2}} g\left(\sigma_t^{-1}\left(x + i\frac{1}{\varepsilon}\right)\right) j_{N,m}\left(\sigma_t^{-1}\left(x + i\frac{1}{\varepsilon}\right)\right) dx.$$

Here, α_t is a non-zero constant, and $\alpha_t = 1$ for a cusp $t \sim \infty$.

Following the argument of Proposition 3.5 in [5], for a cusp $t \sim \infty$ we have

$$\lim_{\varepsilon \to 0} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz = b_m(1,0)a(0) + a(m),$$

and for $t \nsim \infty$,

$$\lim_{\varepsilon \to 0} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz = \alpha_t g(t) j_{N,m}(t).$$

From now on, we consider

$$\lim_{\varepsilon \to 0} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz$$

for $t \in S(g)$. Suppose that g(z) has the Laurent series at t:

$$g(z) = \sum_{n=-1}^{\infty} a_n(t)(z-t)^n.$$

Then we have

$$\begin{split} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz &= \frac{1}{l_{\tau}} \int_{0}^{1} g(t + \varepsilon e^{2\pi i u}) j_{N,m}(t + \varepsilon e^{2\pi i u}) 2\pi i \varepsilon e^{2\pi i u} du \\ &= \frac{2\pi i}{l_{\tau}} \int_{0}^{1} \left(\sum_{n=0}^{\infty} a_{n-1}(t) (\varepsilon e^{2\pi i u})^{n} \right) j_{N,m}(t + \varepsilon e^{2\pi i u}) du \\ &= \frac{2\pi i}{l_{\tau}} \sum_{n=0}^{\infty} a_{n-1}(t) \varepsilon^{n} \int_{0}^{1} e^{2\pi i n u} j_{N,m}(t + \varepsilon e^{2\pi i u}) du. \end{split}$$

Thus, we get

$$\lim_{\varepsilon \to 0} \int_{\gamma(t,\varepsilon)} g(z) j_{N,m}(z) dz = \lim_{\varepsilon \to 0} \frac{2\pi i}{l_{\tau}} \sum_{n=0}^{\infty} a_{n-1}(t) \varepsilon^n \int_0^1 e^{2\pi i n u} j_{N,m}(t + \varepsilon e^{2\pi i u}) du$$

$$= \frac{2\pi i}{l_{\tau}} a_{-1}(t) \int_0^1 j_{N,m}(t) du = \frac{1}{l_{\tau}} 2\pi i a_{-1}(t) j_{N,m}(t)$$

$$= \frac{2\pi i}{l_{\tau}} \operatorname{Res}(g) j_{N,m}(t).$$

This completes the proof.

4. Proof of Theorem 1.1

Suppose that g is a meromorphic modular form of weight 2 on $\Gamma_0(N)$. For $\tau \in \mathbb{H}$, let Q_{τ} be the image of τ under the canonical map from $\mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$ to $X_0(N)$. The residue of g at Q_{τ} on $X_0(N)$, denoted by $\operatorname{Res}_{Q_{\tau}} gdz$, is well defined since we have the canonical correspondence between a meromorphic modular form of weight 2 on $\Gamma_0(N)$ and a meromorphic 1-form on $X_0(N)$. Suppose that t is a cusp of $\Gamma_0(N)$. Let σ_t^* be a matrix in $SL_2(\mathbb{Z})$ such that $\sigma_t^*\infty = t$. Then there exists α_t such that

$$\sigma_t^{*-1}\Gamma_0(N)_t\sigma_t^* = \left\{ \pm \begin{pmatrix} 1 & k\alpha_t \\ 0 & 1 \end{pmatrix} \mid k \in \mathbb{Z} \right\},\,$$

where $\Gamma_0(N)_t$ denotes the stabilizer of the cusp t in $SL_2(\mathbb{Z})$. For convenience we define g(t) by the constant term of the Fourier expansion of g(z) at t. If $\operatorname{Res}_{\tau} g$ denotes the residue of g at τ on \mathbb{H} , then we obtain

$$\operatorname{Res}_{Q_{\tau}} gdz = \frac{1}{l_{\tau}} \operatorname{Res}_{\tau} g \text{ if } \tau \in \mathbb{H},$$

 $\operatorname{Res}_{Q_{\tau}} gdz = \alpha_{t} g(t) \text{ if } t \in \mathcal{C}_{N}.$

Here, l_{τ} is the order of the isotropy group at τ . In particular, if f is a meromorphic modular form of weight k on $\Gamma_0(N)$ and $g = \frac{\theta f}{f}$, then the residue of g at each point on $X_0(N)$ is determined by the order of its zero or pole. If we denote by $\operatorname{ord}_{\tau}(f)$ the order of the zero or pole of f at τ as a complex function on \mathbb{H} , then

$$\nu_{\tau}^{(N)}(f) = \frac{1}{L} \operatorname{ord}_{\tau}(f).$$

Note that the constant term of the Fourier expansion of $\frac{\theta f}{f}$ at a cusp t is equal to the order of its zero or pole at the cusp. Thus, for each $t \in \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$ we have

(4.1)
$$2\pi i \cdot \operatorname{Res}_{Q_t} \frac{\theta f}{f} = \nu_t^{(N)}(f).$$

Proof of Theorem 1.1. We begin by stating a lemma which was proved by Eholzer and Skoruppa in [9].

Lemma 4.1 ([9]). Suppose that $f = \sum_{n=h}^{\infty} a(n)q^n$ is a meromorphic modular function in a neighborhood of q = 0 and that a(h) = 1. Then there are uniquely determined complex numbers c(n) such that

$$f = q^h \prod_{n=1}^{\infty} (1 - q^n)^{c(n)},$$

where the product converges in a small neighborhood of q=0. Moreover, the following identity is true:

$$\frac{\theta f}{f} = h - \sum_{n>1} \sum_{d|n} c(d)dq^n.$$

Recall that

$$f_{\theta}(z) = \frac{\theta f(z)}{f(z)} + \frac{k/12 - h}{N - 1} \cdot NE_2(Nz) + \frac{h - Nk/12}{N - 1} \cdot E_2(z).$$

The function $f_{\theta}(z)$ is a meromorphic modular form of weight 2 on $\Gamma_0(N)$. Note that $f_{\theta}(z)$ is holomorphic at each cusp of $\Gamma_0(N)$. Moreover, the function

$$\frac{k/12 - h}{N - 1} \cdot NE_2(Nz) + \frac{h - Nk/12}{N - 1} \cdot E_2(z)$$

is holomorphic on \mathbb{H} . Thus, we have

$$\operatorname{Res}_{\tau} f_{\theta} = \operatorname{Res}_{\tau} \frac{\theta f}{f}$$

for $\tau \in \mathbb{H}$. Using Lemma 3.1 and (4.1), we complete the proof.

5. Proofs of Theorems 1.4 and 1.7

Proof of Theorem 1.4. Note that

$$f_{\theta}(z) = \frac{\theta f(z)}{f(z)} + \frac{k/12 - h}{N - 1} \cdot NE_2(Nz) + \frac{h - Nk/12}{N - 1} \cdot E_2(z)$$

$$= \sum_{n=1}^{\infty} \left(-\sum_{d|n} c(d)d + \frac{2Nk - 24h}{N - 1} \sigma_1(n) + \frac{24h - 2k}{N - 1} N\sigma_1(n/N) \right) q^n.$$

This completes the proof by Theorem 1.1.

Proof of Theorem 1.7. We follow the argument of Theorem 3 in [6] (or Theorem 4 in [2]). Suppose that f(z) has the q-expansion of the form

$$f(z) := q^h + \sum_{n=h+1}^{\infty} a(n)q^n = q^h \prod_{n=1}^{\infty} (1 - q^n)^{c(n)}$$

as in Lemma 4.1. Let

$$b(n) := \sum_{d|n} c(d)d.$$

Lemma 4.1 implies that

$$\left(q^h + \sum_{n=h+1}^{\infty} a(n)q^n\right) \left(h - \sum_{n=1}^{\infty} b(n)q^n\right) = hq^h + \sum_{n=h+1}^{\infty} na(n)q^n.$$

Thus, for $n \geq 1$ we have

$$na(h+n) = -b(1)a(h+n-1) - b(2)a(h+n-2) - \dots - b(n).$$

From this recurrence we obtain

$$b(n) = -na(h+n)$$

$$n \cdot \sum_{\substack{m_1 + 2m_2 + \dots + (n-1)m_{n-1} = n \\ m_1, \dots, m_{n-1} \ge 0}} (-1)^{m_1 + \dots + m_{n-1}} \frac{(m_1 + \dots + m_{n-1} - 1)!}{m_1! m_2! \dots m_{n-1}!} a(h+1)^{m_1} \dots$$

$$a(h+n-1)^{m_{n-1}}$$

(see (2.11) and Example 20 in §1.2 of [12]). Note that by Theorem 1.1,

$$b(n) = \sum_{\tau \in \mathcal{F}_N \cup \mathcal{C}_N^*} \nu_{\tau}^{(p)}(f(z)) j_{N,m}(\tau) - \int_{\mathcal{F}_N}^{reg} f_{\theta}(z) \cdot \xi_0(j_{N,m}(z)) dx dy + \frac{2Nk - 24h}{N - 1} \sigma_1(m) + \frac{24h - 2k}{N - 1} N \sigma_1(m/N).$$

This completes the proof.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-331-C00005), and the author wishes to express his gratitude to KIAS for its support through the Associate Membership program. The author also thanks the referee for useful comments.

References

- M. Abramowitz, I. Stegun, Pocketbook of Mathematical Functions, Verlag Harri Deutsch, Thun, 1984. MR768931 (85i:00005b)
- [2] S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett. 10 (2003), no. 5-6, 787-798. MR2024734 (2004m:11059)
- [3] R. E. Borcherds, Automorphic forms on $\mathcal{O}_{s+2,2}(\mathbb{R})$ and infinite products, Invent. Math. 120 (1995), no. 1, 161–213. MR1323986 (96j:11067)
- [4] J. H. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors, Lect. Notes Math. 1780, Springer-Verlag, Berlin (2002). MR1903920 (2003h:11052)
- [5] J. H. Bruinier, J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90. MR2097357 (2005m:11089)
- [6] J. Bruinier, W. Kohnen, K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), no. 3, 552-566. MR2041768 (2005h:11083)
- [7] J. H. Bruinier, T. Yang, Twisted Borcherds products on Hilbert modular surfaces and their CM values, Amer. J. Math. 129 (2007), no. 3, 807–841. MR2325105 (2008f:11057)
- [8] D. Choi, On values of a modular form on $\Gamma_0(N)$, Acta Arith. 121 (2006), no. 4, 299–311. MR2224397 (2006m:11051)
- [9] W. Eholzer, N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82–89. MR1418608 (97k:81132)
- [10] D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over Q, Invent. Math. 89 (1987), no. 3, 561–567. MR903384 (88i:11034)
- [11] D. A. Hejhal, The Selberg Trace Formula for PSL(2,R), Lecture Notes in Mathematics 1001, Springer-Verlag (1983). MR711197 (86e:11040)

- [12] G. Macdonald, Symmetric functions and Hall polynomials, Second Edition, Oxford University Press, Oxford, 1995. MR1354144 (96h:05207)
- [13] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973), 133–145. MR0337788 (49:2557)

School of Liberal Arts and Sciences, Korea Aerospace University, 200-1, Hwajeondong, Goyang, Gyeonggi 412-791, Korea

 $E ext{-}mail\ address: choija@kau.ac.kr}$