

Bibliographic data: JP 11354277 (A)

ORGANIC ELECTROLUMINESCENT ELEMENT

Publication date: 1999-12-24
Inventor(s): ISHIKAWA HITOSHI; AZUMAGUCHI TATSU; MORIOKA YUKIKO; ODA ATSUSHI ±
Applicant(s): NEC CORP ±
Classification:
- **international:** C09K11/06; H01L51/50; H05B33/12; H05B33/14; H05B33/22;
- **European:**
Application number: JP19980158938 19980608
Priority number (s): JP19980158938 19980608
Also published as: JP 3102414 (B2)

Abstract of JP 11354277 (A)

PROBLEM TO BE SOLVED: To improve luminance by including a luminescent material of pentacene compound by the single body or the mixture in at least one layer of organic thin film layers of one layer or more between an anode and a cathode.

SOLUTION: This compound is shown by a formula I and is used for a luminescent layer of an organic thin film layer, a positive hole transport layer or an electron transport layer, for instance, by the single body or by being doped by other materials. The compound has a di-aryl amino group, in particular, and further, an aryl group has compound having a styryl group and luminescence of high luminance is obtained. In the formula I, one or more of R1 to R14 are di-aryl amino groups shown by -NAr1 Ar2 ; Ar1 , Ar2 : aryl groups with the number of carbon 6 to 20 and one or more aryl groups include styryl groups in a formula II.; R1 to R14 , R15 to R25 : hydrogen, halogen, a hydroxyl group or a substitution non-substitution amino group, a nitro group, a cyano group, an alkyl group, an alkenyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, an aralkyl group, an aryl oxy group and an alkoxyl carbonyl group or a carboxyl group are shown.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平11-354277

(43) 公開日 平成11年(1999)12月24日

(51) Int.Cl. ⁶	識別記号	F I	
H 05 B 33/14		H 05 B 33/14	B
C 09 K 11/06	6 1 5	C 09 K 11/06	6 1 5
	6 2 0		6 2 0
	6 2 5		6 2 5
H 05 B 33/22		H 05 B 33/22	B
	審査請求 有 請求項の数 4 O L (全 17 頁) 最終頁に続く		

(21) 出願番号 特願平10-158938

(71) 出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(22) 出願日 平成10年(1998)6月8日

(72) 発明者 石川 仁志

東京都港区芝五丁目7番1号 日本電気株
式会社内

(72) 発明者 東口 達

東京都港区芝五丁目7番1号 日本電気株
式会社内

(72) 発明者 森岡 由紀子

東京都港区芝五丁目7番1号 日本電気株
式会社内

(74) 代理人 弁理士 稲垣 清

最終頁に続く

(54) 【発明の名称】 有機エレクトロルミネッセンス素子

(57) 【要約】

【課題】 高輝度な有機EL素子を提供する。

【解決手段】 有機EL素子の構成材料として、下記一般式(A) (式中、R₁～R₁₄は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香*

* 族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキカルボニル基、又は、カルボキシル基を表す。R₁～R₁₄は、それらの内の2つで環を形成していてもよい。ただし、R₁～R₁₄の内の少なくとも一つはスチリル基を有するジアリールアミノ基である。)で表される特定のペンタセン化合物を用いる。

【化1】

【特許請求の範囲】

【請求項1】陽極と陰極間に一層又は複数層の有機薄膜層を有する有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも一層が、下記一般式^{*}

(A)

[式中、R₁～R₁₄は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基を表す。R₁～R₁₄は、それらの内の2つで環を形成していてもよい。ただし、R₁～R₁₄の内の少なくとも一つは、-NAr₁Ar₂(Ar₁、Ar₂は、それぞれ独立に置換若しくは無置換の炭素数6～20のアリール基を表し、それらの内の少なくとも一つは下記一般式(B)で表されるスチリル基を有し、また環を形成していてもよい。)で表されるジアリールアミノ基である。]

* (A) で示される材料を単独又は混合物として含むことを特徴とする有機エレクトロルミネッセンス素子。

【化1】

(B)

[式中、R₁₅～R₂₅は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基である。R₁₅～R₂₅は、それらの内の2つで環を形成していてもよい。)

【請求項2】前記有機薄膜層として少なくとも発光層を有し、この発光層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。

【請求項3】前記有機薄膜層として少なくとも正孔輸送層を有し、この正孔輸送層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。

【請求項4】前記有機薄膜層として少なくとも電子輸送層を有し、この電子輸送層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする請求

項1に記載の有機エレクトロルミネッセンス素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、発光特性に優れた有機エレクトロルミネッセンス素子に関する。

【0002】

【従来の技術】有機エレクトロルミネッセンス(EL)素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子との再結合エネルギーによって蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC. W. Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W.Tang, S.A.VanSlyke, Applied Physics Letters), 51巻, 913頁、1987年など)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8-ヒドロキシキノリノールアルミニウム)を発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、発光層内で生成した励起子を閉じこめることなどが挙げられる。この例のように、有機EL素子の素子構造として

3
は、正孔輸送（注入）層、電子輸送性発光層の2層型、又は正孔輸送（注入）層、発光層、電子輸送（注入）層の3層型等がよく知られている。こうした積層型構造素子では、注入された正孔と電子との再結合効率を高めるため、素子構造や形成方法の工夫がなされている。

【0003】正孔輸送性材料としてはスターバースト分子である4, 4', 4''-トリス（3-メチルフェニルフェニルアミノ）トリフェニルアミンやN, N'-ジフェニル-N, N'-ビス（3-メチルフェニル）-[1, 1'-ビフェニル]-4, 4'-ジアミン等のトリフェニルアミン誘導体や芳香族ジアミン誘導体がよく知られている（例えば、特開平8-20771号公報、特開平8-40995号公報、特開平8-40997号公報、特開平8-543397号公報、特開平8-87122号公報等）。電子輸送性材料としてはオキサジアゾール誘導体、トリアゾール誘導体等がよく知られている。

【0004】また、発光材料としてはトリス（8-キノリノラート）アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビスチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られ、それらの発光色も青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている（例えば、特開平8-239655号公報、特開平7-138561号公報、特開平3-200289号公報等）。

【0005】

【発明が解決しようとする課題】最近では、高輝度、長寿命の有機EL素子が開示あるいは報告されているが、未だ必ずしも充分なものとはいえない。したがって、高*

(A)

[式中、R₁～R₁₄は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリルオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基を表す。R₁～R₁₄は、そ

*性能を示す材料開発が強く求められている。本発明の目的は、高輝度の有機EL素子を提供することにある。

【0006】

【課題を解決するための手段】本発明者らは、前記課題を解決するために銳意検討した結果、特定のペンタセン化合物を発光材料として用いて作製した有機EL素子は、従来よりも高輝度で発光することを見いたした。また、前記材料は高いキャリヤ輸送性を有することがわかり、前記材料を正孔輸送材料、又は電子輸送材料として作製した有機EL素子、及び前記材料と他の正孔輸送材料あるいは電子輸送材料との混合薄膜を用いて作製した有機EL素子は、従来よりも高輝度発光を示すことを見出した。

【0007】さらに、前記ペンタセン化合物の中でも、ジアリールアミノ基を置換基に有するものを発光材料、正孔輸送材料、電子輸送材料として用いて作製した有機EL素子は、特に高い輝度の発光が得られることを見出した。また、ジアリールアミノ基を置換基に有するペンタセン化合物の中でも、アリール基がスチリル基を置換基として有するものを発光材料、正孔輸送材料、電子輸送材料として用いて作製した有機EL素子は、特に高い輝度の発光が得られることを見出し、本発明に至った。

【0008】すなわち、本発明は、陽極と陰極間に一層又は複数層の有機薄膜層を有する有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも一層が、下記一般式（A）で示される材料を単独又は混合物として含むことを特徴とする有機エレクトロルミネッセンス素子である。

【0009】

【化3】

40 R₁～R₁₄の内の少なくとも一つは、-NAr₁Ar₂（Ar₁, Ar₂は、それぞれ独立に置換若しくは無置換の炭素数6～20のアリール基を表し、それらの内の少なくとも一つは下記一般式（B）で表されるスチリル基を有し、また環を形成していてよい。）で表されるジアリールアミノ基である。]

【0010】

【化4】

(式中、R₁₅～R₂₅は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基である。)

【0011】また、本発明は、前記有機薄膜層として少なくとも発光層を有し、この発光層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする有機エレクトロルミネッセンス素子である。

【0012】また、本発明は、前記有機薄膜層として少なくとも正孔輸送層を有し、この正孔輸送層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする有機エレクトロルミネッセンス素子である。

【0013】また、本発明は、前記有機薄膜層として少なくとも電子輸送層を有し、この電子輸送層が一般式(A)で表される化合物を単独又は混合物として含むことを特徴とする有機エレクトロルミネッセンス素子である。

【0014】

【発明の実施の形態】以下、本発明を詳細に説明する。本発明に用いるペンタセン化合物は、前記一般式(A)で表される構造を有する化合物である。式(A)及び(B)において、R₁～R₁₄及びR₁₅～R₂₅は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、置換若しくは無置換のアルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルコキシカルボニル基、又は、カルボキシル基を表す。R₁～R₁₄及びR₁₅～R₂₅は、それぞれ、それらの内の2つで環を形成してもよい。

【0015】ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。

【0016】置換又は無置換のアミノ基は-NX₁X₂と

表され、X₁、X₂の例としてはそれぞれ独立に、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1, 2-ジヒドロキシエチル基、1, 3-ジヒドロキシイソプロピル基、2, 3-ジヒドロキシ-t-ブチル基、1, 2, 3-トリヒドロキシ-t-ブチル基、又は、カルボキシル基である。)

【0017】クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1, 2-ジクロロエチル基、1, 3-ジクロロイソプロピル基、2, 3-ジクロロ-t-ブチル基、1, 2, 3-トリクロロプロピル基、プロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1, 2-ジブロモエチル基、1, 3-ジブロモイソプロピル基、2, 3-ジブロモ-t-ブチル基、1, 2, 3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1, 2-ジヨードエチル基、1, 3-ジヨードイソプロピル基、2, 3-ジヨード-t-ブチル基、1, 2, 3-トリヨードプロピル基、

【0018】アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1, 2-ジアミノエチル基、1, 3-ジアミノイソプロピル基、2, 3-ジアミノ-t-ブチル基、1, 2, 3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1, 2-ジシアノエチル基、1, 3-ジシアノイソプロピル基、2, 3-ジシアノ-t-ブチル基、1, 2, 3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1, 2-ジニトロエチル基、1, 3-ジニトロイソプロピル基、2, 3-ジニトロ-t-ブチル基、1, 2, 3-トリニトロプロピル基、

【0019】フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、4-スチリルフェニル基、1-ピレン基、2-ピレン基、4-ピレン

基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4'-メチルビフェニルイル基、4''-t-ブチル-p-ターフェニル-4-イル基、

【0020】2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、

【0021】2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、1-フェナンスリジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、

【0022】1, 7-フェナンスロリン-2-イル基、1, 7-フェナンスロリン-3-イル基、1, 7-フェナンスロリン-4-イル基、1, 7-フェナンスロリン-5-イル基、1, 7-フェナンスロリン-6-イル基、1, 7-フェナンスロリン-8-イル基、1, 7-フェナンスロリン-9-イル基、1, 7-フェナンスロリン-10-イル基、1, 8-フェナンスロリン-2-イル基、1, 8-フェナンスロリン-3-イル基、1, 8-フェナンスロリン-4-イル基、1, 8-フェナンスロリン-5-イル基、1, 8-フェナンスロリン-6-

-イル基、1, 8-フェナンスロリン-7-イル基、1, 8-フェナンスロリン-9-イル基、1, 8-フェナンスロリン-10-イル基、1, 9-フェナンスロリン-2-イル基、1, 9-フェナンスロリン-3-イル基、1, 9-フェナンスロリン-4-イル基、1, 9-フェナンスロリン-5-イル基、1, 9-フェナンスロリン-6-イル基、1, 9-フェナンスロリン-7-イル基、1, 9-フェナンスロリン-8-イル基、1, 9-フェナンスロリン-10-イル基、1, 10-フェナンスロリン-2-イル基、1, 10-フェナンスロリン-3-イル基、

【0023】1, 10-フェナンスロリン-4-イル基、1, 10-フェナンスロリン-5-イル基、2, 9-フェナンスロリン-1-イル基、2, 9-フェナンスロリン-3-イル基、2, 9-フェナンスロリン-4-イル基、2, 9-フェナンスロリン-5-イル基、2, 9-フェナンスロリン-6-イル基、2, 9-フェナンスロリン-7-イル基、2, 9-フェナンスロリン-8-イル基、2, 9-フェナンスロリン-10-イル基、2, 8-フェナンスロリン-1-イル基、2, 8-フェナンスロリン-3-イル基、2, 8-フェナンスロリン-4-イル基、2, 8-フェナンスロリン-5-イル基、2, 8-フェナンスロリン-6-イル基、2, 8-フェナンスロリン-7-イル基、2, 8-フェナンスロリン-9-イル基、2, 8-フェナンスロリン-10-イル基、2, 7-フェナンスロリン-1-イル基、2, 7-フェナンスロリン-2-イル基、2, 7-フェナンスロリン-3-イル基、2, 7-フェナンスロリン-4-イル基、2, 7-フェナンスロリン-5-イル基、2, 7-フェナンスロリン-6-イル基、2, 7-フェナンスロリン-8-イル基、2, 7-フェナンスロリン-9-イル基、2, 7-フェナンスロリン-10-イル基、

【0024】1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラン基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル-1-インドリ

ル基、4-t-ブチル-1-インドリル基、2-t-ブチル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。

【0025】置換又は無置換のアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1, 2-ジヒドロキシエチル基、1, 3-ジヒドロキシイソプロピル基、2, 3-ジヒドロキシ-t-ブチル基、1, 2, 3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロイソブチル基、1, 2-ジクロロエチル基、1, 3-ジクロロイソプロピル基、2, 3-ジクロロ-t-ブチル基、1, 2, 3-トリクロロプロピル基、プロモメチル基、1-プロモエチル基、2-プロモエチル基、1, 2-ジプロモエチル基、1, 3-ジプロモイソプロピル基、2, 3-ジプロモ-t-ブチル基、1, 2, 3-トリプロモプロピル基、

【0026】ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1, 2-ジヨードエチル基、1, 3-ジヨードイソプロピル基、2, 3-ジヨード-t-ブチル基、1, 2, 3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1, 2-ジアミノエチル基、1, 3-ジアミノイソプロピル基、2, 3-ジアミノ-t-ブチル基、1, 2, 3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1, 2-ジシアノエチル基、1, 3-ジシアノイソプロピル基、2, 3-ジシアノ-t-ブチル基、1, 2, 3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1, 2-ジニトロエチル基、1, 3-ジニトロイソブチル基、2, 3-ジニトロ-t-ブチル基、1, 2, 3-トリニトロプロピル基等が挙げられる。

【0027】置換又は無置換のアルケニル基の例としては、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1, 3-ブタンジエニル基、1-メチルビニル基、スチリル基、2, 2-ジフェニルビニル基、1, 2-ジフェニルビニル基、1-メチルアリル基、1, 1-ジメチルアリル基、2-メチルアリル基、1-フェニルアリル基、2-フェニルアリル基、3-フェニルアリル基、3, 3-ジフェニルアリル基、1, 2-ジメチルアリル基、1-フェニル-1-ブテニル基、3-フェニル-1-ブテニル基等が挙げられる。

【0028】置換又は無置換のシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペ

ンチル基、シクロヘキシル基、4-メチルシクロヘキシル基等が挙げられる。

【0029】置換又は無置換のアルコキシ基は、-O-Yで表される基であり、Yの例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1, 2-ジヒドロキシエチル基、1, 3-ジヒドロキシイソプロピル基、2, 3-ジヒドロキシ-t-ブチル基、1, 2, 3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1, 2-ジクロロエチル基、1, 3-ジクロロイソプロピル基、2, 3-ジクロロ-t-ブチル基、1, 2, 3-トリクロロプロピル基、プロモメチル基、1-プロモエチル基、2-プロモエチル基、2-プロモイソブチル基、1, 2-ジプロモエチル基、1, 3-ジプロモイソプロピル基、2, 3-ジプロモ-t-ブチル基、1, 2, 3-トリプロモプロピル基、

【0030】ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1, 2-ジヨードエチル基、1, 3-ジヨードイソプロピル基、2, 3-ジヨード-t-ブチル基、1, 2, 3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1, 2-ジアミノエチル基、1, 3-ジアミノイソプロピル基、2, 3-ジアミノ-t-ブチル基、1, 2, 3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1, 2-ジシアノエチル基、1, 3-ジシアノイソプロピル基、2, 3-ジシアノ-t-ブチル基、1, 2, 3-トリシアノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1, 2-ジシアノエチル基、1, 3-ジシアノイソプロピル基、2, 3-ジシアノ-t-ブチル基、1, 2, 3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1, 2-ジニトロエチル基、1, 3-ジニトロイソブチル基、2, 3-ジニトロ-t-ブチル基、1, 2, 3-トリニトロプロピル基等が挙げられる。

【0031】置換又は無置換の芳香族炭化水素基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレン基、2-ピレン基、4-ピレン基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-タ

11

—フェニル—2—イル基、o—トリル基、m—トリル基、p—トリル基、p—t—ブチルフェニル基、p—(2—フェニルプロピル)フェニル基、3—メチル—2—ナフチル基、4—メチル—1—ナフチル基、4—メチル—1—アントリル基、4'—メチルビフェニルイル基、4"—t—ブチル—p—ターフェニル—4—イル基等が挙げられる。

【0032】置換又は無置換の芳香族複素環基の例としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、

【0033】2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナンスリジニル基、2-フェナンスリジニル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、

【0034】1, 7-フェナンスロリン-2-イル基、
1, 7-フェナンスロリン-3-イル基、1, 7-フェ
ナンスロリン-4-イル基、1, 7-フェナンスロリン
-5-イル基、1, 7-フェナンスロリン-6-イル
基、1, 7-フェナンスロリン-8-イル基、1, 7-
フェナンスロリン-9-イル基、1, 7-フェナンスロ
リン-10-イル基、1, 8-フェナンスロリン-2-
イル基、1, 8-フェナンスロリン-3-イル基、1,
8-フェナンスロリン-4-イル基、1, 8-フェナン
スロリン-5-イル基、1, 8-フェナンスロリン-6
-イル基、1, 8-フェナンスロリン-7-イル基、

10

20

30

40

50

12

1, 8-フェナンスロリン-9-イル基、1, 8-フェナンスロリン-10-イル基、1, 9-フェナンスロリン-2-イル基、1, 9-フェナンスロリン-3-イル基、1, 9-フェナンスロリン-4-イル基、1, 9-フェナンスロリン-5-イル基、1, 9-フェナンスロリン-6-イル基、1, 9-フェナンスロリン-7-イル基、1, 9-フェナンスロリン-8-イル基、1, 9-フェナンスロリン-10-イル基、

【0035】1, 10-フェナンスロリン-2-イル基、1, 10-フェナンスロリン-3-イル基、1, 10-フェナンスロリン-4-イル基、1, 10-フェナンスロリン-5-イル基、2, 9-フェナンスロリン-1-イル基、2, 9-フェナンスロリン-3-イル基、2, 9-フェナンスロリン-4-イル基、2, 9-フェナンスロリン-5-イル基、2, 9-フェナンスロリン-6-イル基、2, 9-フェナンスロリン-7-イル基、2, 9-フェナンスロリン-8-イル基、2, 9-フェナンスロリン-10-イル基、2, 8-フェナンスロリン-1-イル基、2, 8-フェナンスロリン-3-イル基、2, 8-フェナンスロリン-4-イル基、2, 8-フェナンスロリン-5-イル基、2, 8-フェナンスロリン-6-イル基、2, 8-フェナンスロリン-7-イル基、2, 8-フェナンスロリン-9-イル基、

2, 8-フェナンスロリン-10-イル基、2, 7-フェナンスロリン-1-イル基、2, 7-フェナンスロリン-3-イル基、2, 7-フェナンスロリン-4-イル基、2, 7-フェナンスロリン-5-イル基、2, 7-フェナンスロリン-6-イル基、2, 7-フェナンスロリン-8-イル基、2, 7-フェナンスロリン-9-イル基、2, 7-フェナンスロリン-10-イル基、

【0036】1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-

チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、2-t-ブチル-1-インドリル基、4-t-ブチル-1-インドリル基、2-t-ブチ

ル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。

【0037】置換又は無置換のアラルキル基の例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、 α -ナフチルメチル基、1- α -ナフチルエチル基、2- α -ナフチルエチル基、1- α -ナフチルイソプロピル基、2- α -ナフチルイソプロピル基、 β -ナフチルメチル基、1- β -ナフチルエチル基、2- β -ナフチルエチル基、1- β -ナフチルイソプロピル基、2- β -ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、

【0038】p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。

【0039】置換又は無置換のアリールオキシ基は、-OZと表され、Zの例としてはフェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、

【0040】o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4'-メチルビフェニルイル基、4''-t-ブチル-p-ターフェニル-4-イル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、3-イソインドリル基、4-イソイン

ドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、

【0041】2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、1-フェナスリジニル基、2-フェナスリジニル基、3-フェナスリジニル基、4-フェナスリジニル基、6-フェナスリジニル基、7-フェナスリジニル基、8-フェナスリジニル基、9-フェナスリジニル基、10-フェナスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、

【0042】1, 7-フェナスロリン-2-イル基、1, 7-フェナスロリン-3-イル基、1, 7-フェナスロリン-4-イル基、1, 7-フェナスロリン-5-イル基、1, 7-フェナスロリン-6-イル基、1, 7-フェナスロリン-8-イル基、1, 7-フェナスロリン-9-イル基、1, 7-フェナスロリン-10-イル基、1, 8-フェナスロリン-2-イル基、1, 8-フェナスロリン-3-イル基、1, 8-フェナスロリン-4-イル基、1, 8-フェナスロリン-5-イル基、1, 8-フェナスロリン-6-イル基、1, 8-フェナスロリン-7-イル基、1, 8-フェナスロリン-9-イル基、1, 8-フェナスロリン-10-イル基、1, 9-フェナスロリン-2-イル基、1, 9-フェナスロリン-3-イル基、1, 9-フェナスロリン-4-イル基、1, 9-フェナスロリン-5-イル基、1, 9-フェナスロリン-6-イル基、1, 9-フェナスロリン-7-イル基、1, 9-フェナスロリン-8-イル基、1, 9-フェナスロリン-10-イル基、

【0043】1, 10-フェナスロリン-2-イル基、1, 10-フェナスロリン-3-イル基、1, 10-フェナスロリン-4-イル基、1, 10-フェナスロリン-5-イル基、2, 9-フェナスロリン-1-イル基、2, 9-フェナスロリン-3-イル基、2, 9-フェナスロリン-4-イル基、2, 9-フェナスロリン-5-イル基、2, 9-フェナスロリン-6-イル基、2, 9-フェナスロリン-7-イル基、

15

基、2, 9-フェナ NSロリン-8-イル基、2, 9-フェナ NSロリン-10-イル基、2, 8-フェナ NSロリン-1-イル基、2, 8-フェナ NSロリン-3-イル基、2, 8-フェナ NSロリン-4-イル基、2, 8-フェナ NSロリン-5-イル基、2, 8-フェナ NSロリン-6-イル基、2, 8-フェナ NSロリン-7-イル基、2, 8-フェナ NSロリン-9-イル基、2, 8-フェナ NSロリン-10-イル基、2, 7-フェナ NSロリン-1-イル基、2, 7-フェナ NSロリン-3-イル基、2, 7-フェナ NSロリン-4-イル基、2, 7-フェナ NSロリン-5-イル基、2, 7-フェナ NSロリン-6-イル基、2, 7-フェナ NSロリン-8-イル基、2, 7-フェナ NSロリン-9-イル基、2, 7-フェナ NSロリン-10-イル基、

【0044】1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラーZニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル-1-インドリル基、4-t-ブチル-1-インドリル基、2-t-ブチル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。

【0045】置換又は無置換のアルコキシカルボニル基は-COOYと表され、Yの例としてはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1, 2-ジヒドロキシエチル基、1, 3-ジヒドロキシイソプロピル基、2, 3-ジヒドロキシ-t-ブチル基、1, 2, 3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1, 2-ジクロロエチル基、1, 3-ジクロロイソプロピル基、2, 3-ジクロロ-t-ブチル基、1, 2, 3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル

10

20

30

40

50

16

基、2-ブロモイソブチル基、1, 2-ジブロモエチル基、1, 3-ジブロモイソプロピル基、2, 3-ジブロモ-t-ブチル基、1, 2, 3-トリブロモプロピル基、

【0046】ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1, 2-ジヨードエチル基、1, 3-ジヨードイソプロピル基、2, 3-ジヨード-t-ブチル基、1, 2, 3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1, 2-ジアミノエチル基、1, 3-ジアミノイソプロピル基、2, 3-ジアミノ-t-ブチル基、1, 2, 3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1, 2-ジシアノエチル基、1, 3-ジシアノイソプロピル基、2, 3-ジシアノ-t-ブチル基、1, 2, 3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1, 2-ジニトロエチル基、1, 3-ジニトロイソブチル基、2, 3-ジニトロ-t-ブチル基、1, 2, 3-トリニトロプロピル基等が挙げられる。

【0047】また、環を形成する2価基の例としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2, 2'-ジイル基、ジフェニルエタン-3, 3'-ジイル基、ジフェニルプロパン-4, 4'-ジイル基等が挙げられる。

【0048】一般式(A)で表される化合物において、R₁~R₁₄の内の少なくとも一つは、-NAr₁Ar₂(Ar₁, Ar₂は、それぞれ独立に置換若しくは無置換の炭素数6~20のアリール基を表し、それらの内の少なくとも一つは前記一般式(B)で表されるスチリル基を有し、また環を形成していてもよい。)で表されるジアリールアミノ基である。

【0049】一般式(B)で表されるスチリル基において、前記炭素数6~20のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、ピレニル基等が挙げられる。また、これらアリール基の置換基の例としては、ハログン原子、ヒドロキシル基、前記の置換又は無置換のアミノ基、ニトロ基、シアノ基、前記の置換又は無置換のアルキル基、前記の置換又は無置換のアルケニル基、前記の置換又は無置換のシクロアルキル基、前記の置換又は無置換のアルコキシ基、前記の置換又は無置換の芳香族炭化水素基、前記の置換又は無置換の芳香族複素環基、前記の置換又は無置換のアラルキル基、前記の置換又は無置換のアリールオキシ基、前記の置換又は無置換のアルコキシカルボニル基、カルボキシル基が挙げられる。

【0050】また、Ar₁, Ar₂が置換基として有するスチリル基の例としては、無置換のスチリル基、2, 2-ジフェニルビニル基の他、末端のフェニル基の置換基

17

として、ハロゲン原子、ヒドロキシル基、前記の置換又は無置換のアミノ基、ニトロ基、シアノ基、前記の置換又は無置換のアルキル基、前記の置換又は無置換のシクロアルキル基、前記の置換又は無置換のアルコキシ基、前記の置換又は無置換の芳香族炭化水素基、前記の置換又は無置換の芳香族複素環基、前記の置換又は無置換のアラルキル基、前記の置換又は無置換のアリールオキシ基、前記の置換又は無置換のアルコキシカルボニル基、カルボキシル基等を有する置換スチリル基および置換2,2-ジフェニルビニル基等が挙げられる。

【0051】以下に本発明に用いるペンタセン化合物の具体例を挙げるが、該化合物はこれらに限定されるものではない。

【化5】

*

【化6】

(2)

【化7】

(3)

【化8】

(4)

【化9】

【化10】

【0052】本発明に係る有機EL素子の素子構造は、電極間に有機層を1層あるいは2層以上積層した構造であり、その例として、図1に示すような陽極2、発光層4、陰極6からなる構造、図2に示すような陽極2、正孔輸送層3、発光層4、電子輸送層5、陰極6からなる構造、図3に示すような陽極2、正孔輸送層3、発光層4、陰極6からなる構造、図4に示すような陽極2、発光層4、電子輸送層5、陰極6からなる構造等が挙げられる。なお、図1～4において1は基板を示す。前述したペンタセン化合物は上記のどの有機層に用いられてもよく、他の正孔輸送材料、発光材料、電子輸送材料にドープさせることも可能である。

* 【0053】本発明に用いられる正孔輸送材料は特に限定されず、正孔輸送材として通常使用されている化合物であれば何を使用してもよい。正孔輸送材料の具体例としては、例えば、下記のビス(ジ(p-トリル)アミノフェニル)-1,1'-シクロヘキサン[01]、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-1,1'-ビフェニル-4,4'-ジアミン[02]、N,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル-4,4'-ジアミン[03]等のトリフェニルジアミン類や、スターバースト型分子([04]～[06]等)等が挙げられる。

* 【化11】

【化12】

(12)

特開平11-354277

22

[O 2]

【化13】

[O 3]

【化14】

[O 4]

【化15】

[O 5]

【化16】

[06]

【0054】本発明に用いられる電子輸送材料は特に限定されず、電子輸送材として通常使用されている化合物であれば何を使用してもよい。電子輸送材料の具体例としては、例えば、2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール【07】、ビス{2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール}-m-フェニレン【08】等のオキサジアゾール誘導体、トリアゾール誘導体*

* ([09]、[10]等)、キノリノール系の金属錯体([11]～[14]等)が挙げられる。

【化17】

【化18】

【化19】

【化20】

【化21】

[11]

【化22】

[12]

【化23】

【化24】

【0055】有機薄膜EL素子の陽極は、正孔を正孔輸送層に注入する役割を担うものであり、4.5 eV以上仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金（ITO）、酸化錫（NESTA）、金、銀、白金、銅等が挙げられる。また、陰極としては、電子輸送層又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウムーインジウム合金、マグネシウムーアルミニウム合金、アルミニウムーリチウム合金、アルミニウムースカルジウムーリチウム合金、マグネシウムー銀合金等を使用できる。

【0056】本発明の有機EL素子の各層の形成方法は特に限定されず、例えば従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式（A）で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法（MBE法）あるいは溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法

30 による公知の方法で形成することができる。
【0057】本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。

【0058】

【実施例】以下、本発明を実施例をもとに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。

40 【0059】（合成例1）化合物（1）：6,13-ビス（4-（4-メチルスチリル）フェニル-p-トトリルアミノ）ペンタセンの合成

6,13-ジプロモペンタセン、2当量の4-メチルジフェニルアミン、2当量の炭酸カリウム、銅粉末及びニトロベンゼンを用い、6,13-ビス（4-メチルジフェニルアミノ）ペンタセンを合成した。次いで、2当量のオキシ塩化リリン、N-メチルホルムアニリドを用いたウイルスマイヤー反応により、6,13-ビス（4-メチル-4'-ホルミルアミノ）ペンタセンを合成した。次いで、2当量の水素化ナトリウム、及びp-メチルベ

ンジルホスホン酸ジエチルを用いた Wittig-Homer 反応により、6, 13-ビス(4-(4-メチルスチリル)フェニル-p-トリルアミノ)ペンタセンを合成した。

【0060】以下、本発明の化合物を発光層(実施例1～11)、正孔輸送材料との混合薄膜を発光層(実施例12～14)、電子輸送材料との混合薄膜を発光層(実施例15～16)、正孔輸送層(実施例17～21)、及び、電子輸送層(実施例22～26)として用いた例を示す。

【0061】(実施例1) 実施例1に用いた素子の断面構造を図1に示す。以下に本発明の実施例1に用いる有機薄膜EL素子の作製手順について説明する。素子は陽極2/発光層4/陰極6により構成されている。ガラス基板1上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。その上に発光層として、化合物(1)を真空蒸着法にて40nm形成した。次に、陰極としてマグネシウム-銀合金を真空蒸着法にて200nm形成して有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $20\text{cd}/\text{m}^2$ の発光が得られた。

【0062】(実施例2) 発光材料として、化合物

(2)を用いる以外は実施例1と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $100\text{cd}/\text{m}^2$ の発光が得られた。

【0063】(実施例3) 発光材料として、化合物

(3)を用いる以外は実施例1と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $110\text{cd}/\text{m}^2$ の発光が得られた。

【0064】(実施例4) 発光材料として、化合物

(4)を用いる以外は実施例1と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $400\text{cd}/\text{m}^2$ の発光が得られた。

【0065】(実施例5) 発光材料として、化合物

(5)を用いる以外は実施例1と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $600\text{cd}/\text{m}^2$ の発光が得られた。

【0066】(実施例6) ガラス基板上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。その上に化合物(1)のクロロホルム溶液を用いたスピンドル法により40nmの発光層を形成した。次に、陰極としてマグネシウム-銀合金を真空蒸着法により200nm形成して有機EL素子を作製した。この素子に直流電圧を5V印加したところ、 $120\text{cd}/\text{m}^2$ の発光が得られた。

【0067】(実施例7) 実施例7に用いた素子の断面構造を図2に示す。素子は陽極2/正孔輸送層3/発光層4/電子輸送層5/陰極6により構成されている。ガラス基板1上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。そ

の上に正孔輸送層として、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-[1,1'-ビフェニル]-4,4'-ジアミン[02]を真空蒸着法にて50nm形成した。次いで、発光層として、化合物

(1)を真空蒸着法にて40nm形成した。次に、電子輸送層として2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール

[07]を真空蒸着法にて20nm形成した。次に、陰極としてマグネシウム-銀合金を真空蒸着法によって200nm形成して有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $800\text{cd}/\text{m}^2$ の発光が得られた。

【0068】(実施例8) 発光材料として、化合物

(2)を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1800\text{cd}/\text{m}^2$ の発光が得られた。

【0069】(実施例9) 正孔輸送層としてN,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル)-4,4'-ジアミン[03]を、電子

輸送層としてビス{2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール}-m-フェニレン[08]を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1300\text{cd}/\text{m}^2$ の発光が得られた。

【0070】(実施例10) 正孔輸送層として化合物

[04]を、電子輸送層として化合物[11]を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $2000\text{cd}/\text{m}^2$ の発光が得られた。

【0071】(実施例11) 正孔輸送層として化合物

[05]を、電子輸送層として化合物[12]を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $6000\text{cd}/\text{m}^2$ の発光が得られた。

【0072】(実施例12) 実施例12に用いた素子の断面構造を図4に示す。素子は陽極2/発光層4/電子

輸送層5/陰極6により構成されている。ガラス基板1上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。その上に発光層としてN,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル)-4,4'-ジアミン[03]と化合物(1)を1:10の重量比で共蒸着して作製した薄膜を50nm形成した。次いで、電子輸送層として化合物[09]を真空蒸着法にて50nm形成した。次に、陰極としてマグネシウム-銀合金を200nm形成して有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $970\text{cd}/\text{m}^2$ の発光が得られた。

【0073】(実施例13) 化合物(1)の代わりに化合物(2)を用いる以外は実施例12と同様の操作を行

い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $2200\text{ cd}/\text{m}^2$ の発光が得られた。

【0074】(実施例14)ガラス基板上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。その上に化合物(6)とN,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル)-4,4'-ジアミン[03]をモル比で1:10の割合で含有するクロロホルム溶液を用いたスピンドロコート法により40nmの発光層を形成した。次に、化合物[10]により真空蒸着法で50nmの電子輸送層を形成し、その上に陰極としてマグネシウム-銀合金を真空蒸着法により200nm形成して有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1300\text{ cd}/\text{m}^2$ の発光が得られた。

【0075】(実施例15)実施例15に用いた素子の断面構造を図3に示す。素子は陽極2/正孔輸送層3/発光層4/陰極6により構成されている。ガラス基板1上にITOをスパッタリングによってシート抵抗が $20\Omega/\square$ になるように製膜し、陽極とした。その上に正孔輸送層としてN,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル)-4,4'-ジアミン[03]を真空蒸着法にて50nm形成した。次いで、発光層として化合物[11]と化合物(1)とを20:1の重量比で真空共蒸着した膜を50nm形成した。次に、陰極としてマグネシウム-銀合金を200nm形成して有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1150\text{ cd}/\text{m}^2$ の発光が得られた。

【0076】(実施例16)発光層として、化合物[1]と化合物(2)とを20:1の重量比で真空共蒸着した50nmの膜を用いる以外は実施例15と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $2100\text{ cd}/\text{m}^2$ の発光が得られた。

【0077】(実施例17)正孔輸送層としてN,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-[1,1'-ビフェニル]-4,4'-ジアミン[02]を、発光層として化合物[13]と化合物(1)とを20:1の重量比で真空共蒸着して作製した膜を用いる以外は実施例15と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $3000\text{ cd}/\text{m}^2$ の発光が得られた。

【0078】(実施例18)正孔輸送層として化合物(3)を、発光層として化合物[13]を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $80\text{ cd}/\text{m}^2$ の発光が得られた。

【0079】(実施例19)正孔輸送材料として、化合物(4)を用いる以外は実施例18と同様の操作を行

い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $930\text{ cd}/\text{m}^2$ の発光が得られた。

【0080】(実施例20)正孔輸送材料として、化合物(5)を用いる以外は実施例18と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1300\text{ cd}/\text{m}^2$ の発光が得られた。

【0081】(実施例21)正孔輸送材料として、化合物(6)を用いる以外は実施例18と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $1800\text{ cd}/\text{m}^2$ の発光が得られた。

【0082】(実施例22)正孔輸送層としてN,N'-ジフェニル-N-N-ビス(1-ナフチル)-1,1'-ビフェニル)-4,4'-ジアミン[03]を、発光層として化合物[13]を、電子輸送層として化合物(1)を用いる以外は実施例7と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $890\text{ cd}/\text{m}^2$ の発光が得られた。

【0083】(実施例23)電子輸送層として、化合物(2)を用いる以外は実施例22と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $700\text{ cd}/\text{m}^2$ の発光が得られた。

【0084】(実施例24)電子輸送層として、化合物(3)を用いる以外は実施例22と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $680\text{ cd}/\text{m}^2$ の発光が得られた。

【0085】(実施例25)電子輸送層として、化合物(4)を用いる以外は実施例22と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $500\text{ cd}/\text{m}^2$ の発光が得られた。

【0086】(実施例26)電子輸送層として、化合物(5)を用いる以外は実施例22と同様の操作を行い、有機EL素子を作製した。この素子に直流電圧を10V印加したところ、 $400\text{ cd}/\text{m}^2$ の発光が得られた。

【0087】

【発明の効果】以上説明したとおり、本発明の有機EL素子は、特定のペントセン化合物を構成材料とすることにより、従来に比べて高輝度な発光が得られ、本発明の効果は大である。

【図面の簡単な説明】

【図1】本発明に係る有機EL素子の一例の断面図である。

【図2】本発明に係る有機EL素子の一例の断面図である。

【図3】本発明に係る有機EL素子の一例の断面図である。

【図4】本発明に係る有機EL素子の一例の断面図である。

【符号の説明】

1 基板
2 陽極
3 正孔輸送層

* 4 発光層
5 電子輸送層
6 陰極
*

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(51) Int.C1.⁶

H 05 B 33/22

識別記号

F I

H 05 B 33/22

D

(72) 発明者 小田 敦

東京都港区芝五丁目7番1号 日本電気株
式会社内