数值分析上机习题报告(8)

张宏毅 1500017736

April 9, 2017

1 Problem A

1.1 Description

已知积分

$$\int_{-\infty}^{+\infty} \exp(-x^2) \cos x dx = \sqrt{\pi} \exp\left(\frac{-1}{4}\right).$$

利用 Gauss-Hermite 求积公式在不同阶对应的积分节点和权数计算该积分。

1.2 Solution

带权数值积分公式

$$\int_{a}^{b} \rho(x)f(x)dx \approx \sum_{k=1}^{n} A_{k}f(x_{k})$$
(*)

的代数精度不超过 2n-1 阶,而 Gauss 求积公式通过适当选取 A_k 和 x_k ,使得公式 (*) 的代数精度恰为 2n-1 阶。具体选取方法为,积分节点 x_k $(1 \le k \le n)$ 为 n 阶正交多项式的零点,求积系数

$$A_k = \int_a^b \rho(x) l_k(x) \mathrm{d}x,$$

其中 $l_k(x)$ 为关于 x_k 的 Lagrange 插值基函数。利用相关公式计算的积分结果如表 1 所示(各阶公式具体的积分节点及权值见程序)。

表 1: Gauss-Hermite 求积结果

	精确积分 $\sqrt{\pi} \exp(-1/4)$	近似值 1.38038844704314289658
n	数值积分	绝对误差
3	1.38203307138804776244	0.00164462434490486586
6	1.38038841005073376067	0.00000003699240913591
9	1.38038844704331697955	0.00000000000017408297
12	1.38038844704314289658	0.00000000000000000000000000000000000

2 Problem B

2.1 Description

求解积分方程

$$\int_0^1 (s^2 + t^2)^{1/2} u(t) dt = \frac{(s^2 + 1)^{3/2} - s^3}{3}.$$
 (E)

- (1) 分别用 $n=3,\cdots,15$ 个等距积分节点 t_j ,使用复合 Simpson 公式离散积分, s_i 也取同样的点,使用列主元 Gauss 消去法求解离散所得的线性代数方程组 $\mathbf{A}\mathbf{x}=\mathbf{y}$ 。与已知的唯一解析解 u(t)=t 相比较,n 为多大时求得的结果最好?解释原因。
 - (2) 对上面的每个n, 计算线性代数方程组的系数矩阵A 的条件数, 考察条件数与n 的关系。

2.2 Solution

取等距积分节点 $t_j=j/n$ $(0 \le j \le n)$,步长 h=1/n,则利用复合 Simpson 公式可得方程左端近似的 离散积分为

$$\begin{split} S(h) &= \frac{h}{6} \sum_{j=0}^{n-1} \left[(s^2 + t_j^2)^{\frac{1}{2}} u(t_j) + 4(s^2 + t_{j+\frac{1}{2}}^2)^{\frac{1}{2}} u(t_{j+\frac{1}{2}}) + (s^2 + t_{j+1}^2)^{\frac{1}{2}} u(t_{j+1}) \right] \\ &= \frac{h}{6} \left[(s^2 + t_0^2)^{\frac{1}{2}} u(t_0) + 2 \sum_{j=0}^{n-1} (s^2 + t_j^2)^{\frac{1}{2}} u(t_j) + (s^2 + t_n^2)^{\frac{1}{2}} u(t_n) + 4 \sum_{j=0}^{n-1} (s^2 + t_{j+\frac{1}{2}}^2)^{\frac{1}{2}} u(t_{j+\frac{1}{2}}) \right]. \end{split}$$

如果对 s 也取同样的节点 $s_i=i/n\;(0\leq i\leq n)$,则可将原方程近似为一个含 2n+1 个变元的线性方程组

$$\frac{h}{6} \left[r_{i,0}u(t_0) + 2\sum_{j=0}^{n-1} r_{i,j}u(t_j) + r_{i,n}u(t_n) + 4\sum_{j=0}^{n-1} r_{i,j+\frac{1}{2}}u(t_{j+\frac{1}{2}}) \right] = \frac{(s_i^2+1)^{3/2} - s_i^3}{3}, \quad (i = 0, \frac{1}{2}, \dots, n).$$

其中 $r_{i,j} = (s_i^2 + t_j^2)^{\frac{1}{2}} = \sqrt{i^2 + j^2}/n$ 。限于篇幅,我们仅列出当 $3 \le n \le 8$ 时,得到的积分方程数值解及其系数矩阵的条件数,如表 2 所示。尽管列出的 n 很少,但是可以发现,病态趋势已经非常明显。

方程数值解的误差一是来自截断误差,二是来自舍入误差。设离散得到的方程组为 Ax=b,则截断误差向量 ϵ_1 满足 $A\epsilon_1=r$,其中 r 为 Simpson 公式的截断误差组成的向量,因而

$$||\epsilon_1||_{\infty} \le ||A^{-1}||_{\infty}||r||_{\infty}.$$

若要分析截断误差趋势,则需考察 $||A^{-1}||_{\infty}$ 关于 n 增长的阶与 $O(1/n^4)$ 进行比较,此处略去。这里更重要的是,若设系数矩阵有误差 δA ,向量 b 有误差 δb ,则最后解向量的相对误差

$$\frac{||\delta x||}{||x||} \le \frac{\kappa(A)}{1 - \kappa(A) \frac{||\delta A||}{||A||}} \left(\frac{||\delta A||}{||A||} + \frac{||\delta b||}{||b||} \right).$$

注意到系数矩阵 A 的条件数 $\kappa(A)$ 随着 n 急剧增长,这表明这样计算的数值稳定性非常差,因而导致了最终非常不可靠的数值结果。

表 2: 积分方程 (E) 的数值解

(a) n = 3, 4, 5, 6

(b) n = 7, 8

	`	n = 0, 4, 0, 0				n = 1, 0	
n	节点近似值	节点精确值	矩阵的条件数	n	节点近似值	节点精确值	矩阵的条件数
3	0.02947104	0.00000000	3.3103e+06		0.01200447	0.00000000	1.7628e+15
	0.14343473	0.16666667			0.06493453	0.07142857	
	0.37129260	0.33333333					
	0.52911019	0.50000000			0.07584615	0.14285714	
	0.50408882	0.66666667			0.55665106	0.21428571	
	0.90471096 0.91080645	0.83333333 1.00000000			-3.54485300	0.28571429	
	0.91080043	0.00000000			8.53639534	0.35714286	
4	0.10973848	0.12500000	5.3249e+08		-54.62696094	0.42857143	
	0.23683382	0.25000000		7	72.96144561	0.50000000	
	0.50929659	0.37500000			-293.45388298	0.57142857	
	-0.33482852	0.50000000					
	1.34609433	0.62500000			226.35939764	0.64285714	
	-0.72525246	0.75000000			-511.13813763	0.71428571	
	1.28821373	0.87500000			207.46890313	0.78571429	
	0.61149231	1.00000000			-223.21265570	0.85714286	
	0.01709422	0.00000000			37.35693800	0.92857143	
5	0.08914571	0.10000000	8.1512e+10		-20.42936970	1.00000000	
	0.15709376 0.52737648	0.20000000 0.30000000			0.01036403	0.00000000	
	-1.41181996	0.40000000					1.3292e+17
	2.85908118	0.50000000			0.05773717	0.06250000	
	-7.85230592	0.60000000			0.03568449	0.12500000	
	5.81671691	0.70000000			0.67513805	0.18750000	
	-7.14964829	0.80000000			-6.59181751	0.25000000	
	2.67916241	0.90000000			19.85340121	0.31250000	
	-0.38964164	1.00000000			-182.89359182	0.37500000	
	0.01410560	0.00000000	1.2156e+13		347.55786688	0.43750000	
	0.07512479	0.08333333					
	0.10780559	0.16666667		8	-2091.12390972	0.50000000	
	0.54580189	0.25000000			2472.33948669	0.56250000	
	-2.52485782	0.33333333			-9037.20185615	0.62500000	
	5.36793437 -25.11034174	0.41666667 0.50000000			6282.64824943	0.68750000	
	25.08817677	0.58333333			-12969.74333371	0.75000000	
	-67.18715498	0.66666667			4798.00355113	0.81250000	
	33.56352378	0.75000000					
	-41.00927752	0.83333333			-4791.41995287	0.87500000	
	8.78715231	0.91666667			723.05622336	0.93750000	
	-4.27729545	1.00000000			-394.89938666	1.00000000	