Post Correspondence Problem

Simon Schrodi

DHBW Karlsruhe

12.04.2019

Motivation

Given two context-free grammars G_1 , G_2 , the following decision problems are undecidable:

- $L(G_1) \cap L(G_2) = \emptyset$? (cutting problem)
- $|L(G_1) \cap L(G_2)| = \infty$? (finiteness problem)
- $L(G_1) \subseteq L(G_2)$? (inclusion problem)
- $L(G_1) = L(G_2)$? (equivalence problem)
- Is G_1 ambiguous? (ambiguity problem)
- ...

Repitition: Reduction theorem

Be $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ languages. $A \leq B$ iff there is a total, calculable function $f: \Sigma^* \to \Gamma^*$, so that $\forall x \in \Sigma^*$ the following is valid:

$$x \in A \Leftrightarrow f(x) \in B.$$
 (0)

If $A \leq B$ and A is undecidable, then B is also undecidable.

Definition: Post Correspondence Problem (PCP)

An instance of PCP consists of a **finite sequence**

$$K = [(x_1, y_1), ..., (x_k, y_k)], \tag{1.1}$$

where $x_i, y_i \neq \epsilon$ is preceded by a finite alphabet Σ . It is to be decided whether there is a **corresponding index sequence**

$$i_1, ..., i_n \in [1, ..., k], n \ge 1,$$
 (1.2)

also called **solution**, so that the following holds

$$x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}. (1.3)$$

Image source::

https://www.researchgate.net/profile/Klaus_Jantke/public ation/297212574/figure/fig2/AS:337034053996545@1457 366588223/Abbildung-23-Unloesbare-Problemstellung-Dass-es-fuer-den-Pool-von-Wortpaaren-in-der-Abb_Q320.jpg

Definition: Modified PCP (MPCP)

• Same as PCP with the additional condition $oldsymbol{i_1}=\mathbf{1}$

Example PCP 1

Given: K = [(10111, 10), (1, 111), (10, 0)]

Searching for: corresponding index sequence

Solution: The index sequence is (1, 2, 2, 3):

$$\underbrace{10111}_{x_1} \underbrace{1}_{x_2} \underbrace{1}_{x_2} \underbrace{10}_{x_3} = 101111110 = \underbrace{10}_{y_1} \underbrace{111}_{y_2} \underbrace{111}_{y_2} \underbrace{0}_{y_3}$$

Example PCP 2

Given: K = [(10, 101), (011, 11), (101, 011)]

Solution: There is not matching index sequence (**argument of compulsion to move**)

- Every potential solution must start with $i_1 = 1$
- Whenever the y-sequence has a 1 lead, the only possible continuation of the sequence is:

$$x - sequence : \dots \underbrace{101}_{x_3}$$

 $y - sequence : \dots 1\underbrace{011}_{y_3}$

The y-sequence has always a 1 lead over the x-sequence

Beispiel PKP 3

Given: K = [(001, 0), (01, 011), (01, 101), (10, 001)]

Solution: (2,4,3,4,4,2,1,2,4,3,4,3,...) with 66 indices

Theorem: MPCP is semi-decidable

- Combinatorial decision tree
- Depth search or breadth search?

Auxiliary theorem: MPCP is undecidable

Show the following:

$$H \le MPKP, \tag{2.1}$$

by giving a reduction function f that maps the input from the general halting problem $H = \{(p, w) | \text{programm p halts when run on input w} \}$ to inputs from MPCP such that:

$$(p, w) \in H(M_p) \Leftrightarrow f(p, w) \in MPKP$$
 (2.2)

Configuration of a Turing machine M_w

- Configuration of a Turing machine is a word $k = \alpha z b \beta \in \Gamma^* Z \Gamma^*$
- Snapshot of a Turing machine:

Idea of proof

- \bullet Present x- and y-sequence as configuration sequences of a TM
- The y-sequence has always a one configuration lead
- The x-sequence catches up after halting of the Turing machine

Exemplary Simulation

Be given a Turing machine M with input word w = 01:

$$M = (\underbrace{\{z_1, z_2, z_f\}}_{Z}, \underbrace{\{0, 1\}}_{\Sigma}, \underbrace{\{0, 1, \square\}}_{\Gamma}, \delta, \underbrace{z_1}_{z_1 \in Z}, \square, \underbrace{\{z_f\}}_{E})$$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
z_2	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

• Rule sequence: **S(tarting rule)**

x- und y-sequence as configuration sequence

• x-sequence: #

• y- sequence: #**z**₁**01**#

y-sequence has always a one configuration lead

• M_w : $z_1 0 1$

δ	0	1	
$\boxed{z_1}$	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2, 1, L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2,0,R)$
$ z_f $	_	_	_

• Rule sequence: S,(R)ight-transfer rule

• x-sequence: #z₁0

• y-sequence: $\#z_101\#1_{Z_2}$

y-sequence has always a one configuration lead

• M_w : $z_1 01 \vdash 1z_2 1$

δ	0	1	
$\boxed{z_1}$	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2, 1, L)$
z_2	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2, 0, R)$
$ z_f $	_	_	_

• Rule sequence: S, R, (C)opy rule

• x-sequence: $\#z_101$

• y-sequence: $\#z_101\#1z_2$

y-sequence has always a one configuration lead

• M_w : $z_101 \vdash 1z_21$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

• Rule sequence: S, R, C, C

• x-sequence: $\#z_101\#$

• y-sequence: $\#z_101\#1z_21\#$

y-sequence has always a one configuration lead

17

• M_w : $z_101 \vdash 1z_21$

δ	0	1	
$oxed{z_1}$	•	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f, 0, L)$	$(z_1,0,R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

• Rule sequence: S, R, C, C, C

• x-sequence: $\#z_101\#1$

• y-sequence: $\#z_101\#1z_21\#1$

y-sequence has always a one configuration lead

• M_w : $z_101 \vdash 1z_21 \vdash 10z_1$

δ	0	1	
$ z_1 $	$(z_2,1,R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2, 0, R)$
$\mid z_f \mid$	_	_	_

• Rule Sequence: S, R, C, C, C, R

• x-Sequenz: $\#z_101\#1z_21$

• y-Sequenz: $\#z_101\#1z_21\#10z_1$

y-sequence has always a one configuration lead

• M_w : $z_101 \vdash 1z_21 \vdash \mathbf{10z_1}$

δ	0	1	
$ z_1 $	$(z_2,1,R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2, 0, R)$
$\mid z_f \mid$	_	_	_

• Rule sequence: S, R, C, C, C, C, C, C, (S1)-special rule

- x-sequence: $\#z_101\#1z_21\#10z_1\#1$
- y-sequence: $\#z_101\#1z_21\#10z_1\#1z_201\#1$

y-sequence has always a one configuration lead

• M_w : $z_101 \vdash \cdots \vdash 10z_1 \vdash 1z_201$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2,0,L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2, 0, R)$
$\mid z_f \mid$	_	_	_

• Rule sequence: S, R, C, C, C, R, C, C, S1, (L)eft-transfer rule, C, C

- x-sequence: $\#z_101\#1z_21\#10z_1\#1z_201\#1z_1$
- y-sequence: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_3||^2 ||z_4||^2 ||z_4||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4$

• M_w : $z_101 \vdash \cdots \vdash 1z_201 \vdash z_f101$

-	δ	0	1	
	z_1	$(z_2, 1, R)$	$(z_2,0,L)$	$(z_2,1,L)$
	z_2	$(z_f, 0, L)$	$(z_2, 0, L) \ (z_1, 0, R)$	$(z_2, 0, R)$
	z_f	_		_

• Rule sequence: S, R, C, C, C, R, C, C, S1, L, C, C, (D)eletion rule

- x-sequence: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_4||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4$
- y-sequence: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_3||^2 ||z_4||^2 ||z_4||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4||^2 ||z_4$

x-sequence catches up after halting of Turing machine

- Rule sequence: S, R, C, C, C, R, C, C, S1, L, C, C, L, C, C, D, C, D, C,
 (C)losing rule
- x-sequence: $\#z_101\#1z_21\#10z_1\#1z_201\#z_f101\#z_f01\#z_f1\#z_f\#\#$
- y-sequence: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_5||^2 ||z_6||^2 ||z_6||^2$

Mapping rules

- (i) Starting rule: $(\#, \#z_1w\#)$
- (ii) Copy rule: $\forall a \in \Gamma \cup \{\#\} : (a, a)$
- (iii) Transfer rule: $\forall z \in Z \backslash E; \forall z' \in Z; \forall a, c \in \Gamma \backslash \{\Box\}$:

$$(za, cz'), \ falls \ \delta(z, a) = (z', c, R)$$

 $(bza, z'bc), \ falls \ \delta(z, a) = (z', c, L), \ \forall b \in \Gamma$
 $(z\#, cz'\#), \ falls \ \delta(z, \Box) = (z', c, R)$
 $(bz\#, z'bc\#), \ falls \ \delta(z, \Box) = (z', c, L), \ \forall b \in \Gamma \setminus \{\Box\}$

- (iv) **Deletion rule:** $\forall z_f \in E; \forall a \in \Gamma \setminus \{\Box\}: (az_f, z_f), (z_f a, z_f)$
- (v) Closing rule: $\forall z_f \in E : (z_f \# \#, \#)$

Proof of reduction theorem: "=>"

- $(p, w) \in H \Rightarrow f(p, w) \in MPKP$
 - If $(p, w) \in H$, we will eventually receive a solution of the form $(k, k\alpha z_f \beta \#)$ where $z_f \in E, \alpha, \beta \in \Gamma^*$
 - By means of the copy rule and deletion rule the lead $\alpha z_f \beta \#$ can be reduced,
 - until the closing rule is applied, so that $(k'z_f\#\#, k'z_f\#\#)$

Proof of reduction theorem: "<="

- $f(p, w) \in MPKP \Rightarrow (p, w) \in H$
 - It is assumed: $(p, w) \notin H \Rightarrow f(p, w) \notin MPKP$
 - Since no finale state $z_f \in E$ is reached, no deletion rules are applied, and
 - therefore the y-sequence always has a one configuration lead

Theorem: Is G ambiguous is undecidable

- Given an instance of the MPCP with $K=[(x_1, y_1), ..., (x_k, y_k)]$ over a finite alphabet Σ and $I = \{i_1, ..., i_k\} \notin \Sigma$
- Construct a context-free grammar $G_x = (V_x, T, P_x, S_x)$ where
 - $-T = \Sigma \cup I$
 - $-P_x = \{S_x \to i_1 S_x x_1 | ... | i_k S_x x_k | i_1 x_1 \}$

and a similar context-free grammar G_y where y_i replace x_i

• Be $L(G_z) = L(G_x) \cup L(G_y)$ where $P_z = \{S \to S_x | S_y\} \cup P_x \cup P_y$

Theorem: Is G ambiguous is undecidable

- K has a solution \Rightarrow G is ambiguous
 - MPCP of example 1: K = [(10111, 10), (1, 111), (10, 0)] has solution (1, 2, 2, 3)

Theorem: Is G ambiguous is undecidable

- G is ambiguous \Rightarrow K has a solution
 - $-G_z$ has two **different** syntax trees with the **same** word w
 - Case 1: $S \to S_x \to w$ for both syntax trees
 - It follows S_x has to be ambiguous
 - But G_x is LL(2) ?
 - Case 2: $S \to S_x \to w$ respectively $S \to S_y \to w$
 - First part of the words are the same (index sequence)
 - Second part of the words are the same \rightarrow Solution for K

Theorem: $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$ is undecidable

- Given an instance of the MPCP with $K=[(x_1,y_1),...,(x_k,y_k)]$ over a finite alphabet Σ and $I=\{i_1,...,i_k\} \notin \Sigma$
- Construct context-free grammar $G_x = (V_x, T, P_x, S_x)$ and a similar contexfree grammar G_y where y_i replace x_i
- $L(G_x) \cap L(G_y) \neq \emptyset \iff \exists w \in \Sigma : w \in L(G_x) \land w \in L(G_y)$

Satz: $|L(G_1) \cap L(G_2)| \stackrel{?}{=} \infty$ ist unentscheidbar

- Map two context-free grammars G_x und G_y to MPCP
- Solutions of K correspond to $w \in (L(G_x) \cap L(G_y))$
- If MPCP has at least one solution, then MPCP has infinite many solution by repeating the solution sequence arbitrary times
 - MPCP of example 1: K = [(10111, 10), (1, 111), (10, 0)] hat Lösun (1, 2, 2, 3)
 - Then (1,2,2,3,1,2,2,3) is also a solution
- Therefore: K has a solution $\iff |L(G_x) \cap L(G_y)| = \infty$

Appendix

Theorem: PCP is undecidable

Show the following:

$$MPKP \le PKP.$$
 (2.0)

- Be $K = [(x_1, y_1), ..., (x_k, y_k)]$ an instance of MPCP over finite alphabet Σ
- Be #, $\$ \notin \Sigma$ two new symbols, so that:

$$f(K) = [(x'_0, y'_0), (x'_1, y'_1), ..., (x'_k, y'_k), (x'_{k+1}, y'_{k+1})]$$

where

$$-x'_0 = \#x'_1, x_{k+1} = \$, y'_0 = y'_1, y'_{k+1} = \#\$$$
$$-\forall i \in \{1, ..., k\} \text{ gilt } x'_i = x_i \# bzw. \ y'_i = \#y_i$$

• From the reduction function f(K) it is easy to see, that $MPKP \leq PKP$

$MPKP \leq PKP$

Index sequence (1, 2, 2, 3) for MPCP:

$$\underbrace{10111}_{x_1} \underbrace{1}_{x_2} \underbrace{1}_{x_2} \underbrace{10}_{x_3} = 101111110 = \underbrace{10}_{y_1} \underbrace{111}_{y_2} \underbrace{111}_{y_2} \underbrace{0}_{y_3}$$

Index sequence (0, 2, 2, 3, 4) for PCP:

$$\underbrace{\#1\#0\#1\#1\#1\#}_{x'_0}\underbrace{1\#}_{x'_2}\underbrace{1\#}_{x'_2}\underbrace{1\#0\#}_{x'_3}\underbrace{\$}_{x'_4} = \underbrace{\#1\#0}_{y'_0}\underbrace{\#1\#1\#1}_{y'_2}\underbrace{\#1\#1\#1}_{y'_2}\underbrace{\#0}_{y'_2}\underbrace{\#\$}_{y'_3}\underbrace{\#\$}_{y'_4}$$

$MPKP \leq PKP$

Given:
$$K = [\underbrace{(10111, 10)}_{x_1}, \underbrace{(1, 111)}_{y_1}, \underbrace{(1, 111)}_{x_2}, \underbrace{(1, 111)}_{y_2}, \underbrace{(1, 111)}_{x_3}, \underbrace{(1, 111)}_{y_3}, \underbrace{(1, 111)}_{y_$$

Therefore

$$f(K) = [\underbrace{(1\#0\#1\#1\#1\#\#\#1\#0)}_{x'_1}, \underbrace{(1\#, \#1\#1)}_{x'_2}, \underbrace{\#1\#1}_{y'_2}, \underbrace{\#1\#0}_{y'_2}, \underbrace{(1\#0\#, \#0)}_{x'_3}]$$

$$\cup [\underbrace{(\#1\#0\#1\#1\#1\#, \#1\#0)}_{x'_0}, \underbrace{(\#, \#1\#1)}_{y'_0}, \underbrace{(\#, \#1\#0)}_{y'_4}, \underbrace{\#, \#1}_{y'_4}]$$

Exemplary Simulation: Construction 2

Rule tpye	Rule.Index	x-sequence	y-sequence	misc
Starting rule	(i).0	#	$\#z_001\#$	
	(ii).O	0	0	
Copy rule	(ii).1	1	1	
	(ii).2	#	#	
	(iii).O	z_10	$1z_2$	$\delta(z_1,0) = (z_2,1,R)$
	(iii).1	$0z_{1}1$	$z_{2}00$	$\delta(z_1,1)=(z_2,0,L)$
	(iii).2	$1z_{1}1$	$z_{2}10$	$\delta(z_1,1)=(z_2,0,L)$
	(iii).3	$0z_1$ #	$z_{2}01#$	$\delta(z_1, \square) = (z_2, 1, L)$
Transfer rule	(iii).4	$1z_1$ #	z ₂ 11#	$\delta(z_1, \square) = (z_2, 1, L)$
	(iii).5	$0z_{2}0$	$z_f 00$	$\delta(z_2,0)=(z_f,0,L)$
	(iii).6	$1z_{2}0$	$z_f 10$	$\delta(z_2,0) = (z_f,0,L)$
	(iii).7	z_21	$0z_1$	$\delta(z_2, 1) = (z_1, 0, R)$
	(iii).8	z_2 #	$0z_2$ #	$\delta(z_2, \square) = (z_2, 0, R)$

Exemplary Simulation: Construction 2

Rule type	Rule.Index	x-sequence	y-sequence	misc
	(iv).0	$0z_f0$	Z_f	
	(iv).1	$0z_f1$	Z_f	
	(iv).2	$1z_f0$	z_f	
Dalatian mula	(iv).3	$1z_f1$	Z_f	
Deletion rule	(iv).4	$0z_f$	Z_f	
	(iv).5	$1z_f$	Z_f	
	(iv).6	$z_f 0$	Z_f	
	(iv).7	$z_f 1$	Z_f	
Closing rule	(v).0	z_f ##	#	

Theorem: $L(G_1) \subseteq L(G_2)$ und $L(G_1) = L(G_2)$, are undecideable

- Map two context-free grammars G_x und G_y to MPCP
- L_x and L_y are deterministic context-free
- There exists \bar{G}_x as well as \bar{L}_x and the following holds $L(G_{\bar{x}y}) = L(\bar{G}_x) \cup L(G_y)$
- Assertion: $L(G_x) \cup L(G_y) \stackrel{?}{=} \emptyset \mapsto L(G_{\bar{x}y}) = L(\bar{G}_x)$

$$L(G_x) \cap L(G_y) = \emptyset \Leftrightarrow L(G_y) \subseteq L(\bar{G}_x)$$
$$\Leftrightarrow L(G_y) \cup L(\bar{G}_x) = L(\bar{G}_x)$$
$$\Leftrightarrow L(G_{\bar{x}y}) = L_{\bar{G}_x}$$

- Therefore the inclusion problem as well as equivalence problem are undecideable
- But: Equivalence problem is decideable for deterministic context-free grammars!