Systèmes Embarqués 1 & 2

Classes T-2/I-2 // 2018-2019

a.14 - Traitement des nombres

Solutions

1 Exercices sur les nombres entiers non-signés

Exercice 1

Convertir en binaire les nombres suivants

- a. 125_{10} b. 377_8
- c. $ADE1_{16}$

Solution:

a.	125_{10}	\rightarrow	0111'1101
b.	377_{8}	\rightarrow	1111'1111
C.	$ADE1_{16}$	\rightarrow	1010'1101'1110'0001

Exercice 2

Convertir en décimal les nombres suivants

a. 10011000_2 b. 177_8 c. $25E1_{16}$

Solution:

a.	10011000_2	\rightarrow	152
b.	177_{8}	\rightarrow	127
C.	$25E1_{16}$	→	9697

Exercice 3

Additionner les nombres binaires suivants et donner l'état des flags C & Z

```
\begin{array}{lll} \text{a.} & 10011000_2 + 10011000_2 \\ \text{b.} & 11111101_2 + 00000011_2 \\ \text{c.} & 00011000_2 + 10011100_2 \end{array}
```

```
a. 10011000_2 + 10011000_2 \rightarrow 0011'0000_2 C = 1, Z = 0
b. 11111101_2 + 00000011_2 \rightarrow 0000'0000_2 C = 1, Z = 1
c. 00011000_2 + 10011100_2 \rightarrow 1011'0100_2 C = 0, Z = 0
```


Soustraire les nombres binaires suivants et donner l'état des flags C & Z

```
a. 10011000_2 - 10011000_2
b. 11111101_2 - 00000011_2
c. 00011000_2 - 10011100_2
```

Solution:

```
a. 10011000_2 - 10011000_2 \rightarrow 0000'0000_2 C = 1, Z = 1
b. 11111101_2 - 00000011_2 \rightarrow 1111'1010_2 C = 1, Z = 0
c. 00011000_2 - 10011100_2 \rightarrow 0111'1100_2 C = 0, Z = 0
```

Exercice 5

Donner l'état des flags C & Z pour les comparaisons suivantes

```
a. cmp 125, 128
```

- b. cmp 77, 26c. cmp 254, 254
- d. cmp 255, 0

```
a. cmp 125, 128 \rightarrow 0111'1101_2-1000'0000_2 = 1111'1101_2 C = 0, Z = 0 b. cmp 77, 26 \rightarrow 0100'1101_2-0001'1010_2 = 0011'0011_2 C = 1, Z = 0 c. cmp 254, 254 \rightarrow 1111'1110_2-1111'1110_2 = 0000'0000_2 C = 1, Z = 1 d. cmp 255, 0 \rightarrow 1111'1111_2-0000'0000_2 = 1111'1111_2 C = 1, Z = 0
```


2 Exercices sur les nombres entiers signés

Exercice 1

Convertir en binaire les nombres suivants et indiquer l'état du flag N

a. -125_{10} b. 271_8 c. $50F1_{16}$

Solution:

```
a. -125_{10} \rightarrow 1000'0011 \quad N=1
b. 271_8 \rightarrow 1011'1001 \quad N=1
c. 50F1_{16} \rightarrow 0101'0000'1111'0001 \quad N=0
```

Exercice 2

Convertir en décimal les nombres suivants

a. 10011000_2 b. 177_8 c. $85E1_{16}$

Solution:

```
a. 10011000_2 \rightarrow -104 (152)
b. 177_8 \rightarrow 127 (127)
c. 85E1_{16} \rightarrow -31263 (34273)
```

Exercice 3

Additionner les nombres binaires suivants et donner l'état des flags V & N & Z

a. $10011000_2 + 10011000_2$ b. $11111101_2 + 00000011_2$ c. $00011000_2 + 10011100_2$

Solution:

```
a. 10011000_2 + 10011000_2 \rightarrow 0011'0000_2 V = 1, N = 0, Z = 0
b. 11111101_2 + 00000011_2 \rightarrow 0000'0000_2 V = 0, N = 0, Z = 1
c. 00011000_2 + 10011100_2 \rightarrow 1011'0100_2 V = 0, N = 1, Z = 0
```

Exercice 4

Soustraire les nombres binaires suivants et donner l'état des flags V & N & Z

 $\begin{array}{lll} \text{a.} & 10011000_2 - 10011000_2 \\ \text{b.} & 11111101_2 - 00000011_2 \\ \text{c.} & 00011000_2 - 10011100_2 \end{array}$

```
a. 10011000_2 - 10011000_2 \rightarrow 0000'0000_2 V = 0, N = 0, Z = 1
b. 11111101_2 - 00000011_2 \rightarrow 1111'1010_2 V = 0, N = 1, Z = 0
c. 00011000_2 - 10011100_2 \rightarrow 0111'1100_2 V = 0, N = 0, Z = 0
```


Donner l'état des flags V & N & Z pour les comparaisons suivantes

- a. cmp 127, -125
- b. cmp 77, -26
- c. cmp -30, -34
- d. cmp 55, 66

3 Evaluation de petits codes en assembleur

Prévoir l'état des fanions Z, C, N et V ainsi que le résultat contenu dans le registre R2 suite à l'exécution des instructions assembleur ci-dessous

Remarque : on considère que le μ P est capable de traiter des mots de 8bits !

Exercice 1

```
ldr r2, =128
ldr r1, =-128
cmp r2, r1
```

Solution:

Exercice 2

```
ldr r0, =64
ldr r1, =-128
adds r2, r0, r1
```

Solution:

Exercice 3

```
ldr r0, =228
ldr r1, =128
subs r2, r0, r1
```

Solution:

Exercice 4

```
ldr r0, =240
ldr r1, =-16
subs r2, r0, r1
```


ldr	r2, =0
ldr	r1, =0
стр	r2, r1

Solution:

 $\begin{array}{l} \rightarrow 0000'0000_2 - 0000'0000_2 \\ \rightarrow 0000'0000_2 + 0000'0000_2 = 0000'0000_2 \end{array}$

R2 (signé)=0 R2(non signé)=0 N=0 Z=1 C=1 V=0

4 Interprétation de petits codes en assembleur

Considérer les 5 codes assembleurs ci-dessous. Pour chacun d'eux définir l'état des fanions Z, C, N et V ainsi que l'interprétation du résultat en valeur signée et non-signée.

Remarque : on considère que le μ P est capable de traiter des mots de 8bits !

Exercice 1

```
ldr r0, =-7
ldr r1, =249
adds r2, r0, r1
```

Solution:

```
N=1 Z=0 C=1 V=0 R2 (signé)=-14 R2(non signé)=242
```

Exercice 2

```
ldr r0, =248
ldr r1, =-128
adds r2, r0, r1
```

Solution:

```
\begin{array}{l} \rightarrow 1111'1000_2 + 1000'0000_2 \\ \rightarrow 1111'1000_2 + 1000'0000_2 = 0111'1000_2 \\ \end{array} N=0 Z=0 C=1 V=1 R2 (signé)=120 R2(non signé)=120
```

Exercice 3

```
ldr r0, =128
ldr r1, =0
adds r2, r0, r1
```

Solution:

```
N=1 Z=0 C=0 V=0 R2 (signé)=-128 R2(non signé)=128
```

Exercice 4

```
ldr r0, =62
ldr r1, =200
subs r2, r0, r1
```

```
Solution:
```

```
\begin{array}{l} \rightarrow 0011'1110_2 - 1100'1000_2 \\ \rightarrow 0011'1110_2 + 0011'1000_2 = 0111'0110_2 \\ \\ \text{N=0} \quad \text{Z=0} \quad \text{C=0} \quad \text{V=0} \quad \text{R2 (sign\'e)=118} \\ \end{array} R2(non sign\'e)=118
```



```
ldr r0, =-8
ldr r1, =-96
subs r2, r0, r1
```

Solution:

```
\begin{array}{l} \rightarrow 1111'1000_2 - 1010'0000_2 \\ \rightarrow 1111'1000_2 + 0110'0000_2 = 0101'1000_2 \end{array}
```

N=0 Z=0 C=1 V=0 R2 (signé)=88 R2(non signé)=88

5 Conversion de nombres à virgules flottantes

Exercice 1

Représenter en hexadécimal sur 32 bits (simple précision) les valeurs réelles suivantes

(a) 1'048'576

Solution:

(b) 2048

Solution:

```
\begin{array}{l} \rightarrow 2048_{10} = 800_{16} = 1*2^{11} \\ \rightarrow S = 0, E = 11+127 = 138 = 1000'1010_2, T = 0...0_2 \\ \rightarrow 2048_{10} = 0x4500'0000 \end{array}
```

(c) 55.75

Solution:

```
\begin{array}{l} \rightarrow 55.75_{10} = 11'0111.11_2*2^0 = 1.1011'1110_2*2^5 \\ \rightarrow S = 0, E = 5 + 127 = 132 = 1001'0100_2, T = 1011'1110_2 \\ \rightarrow 55.75_{10} = 0x425f'0000 \end{array}
```

(d) 5/4096

Solution:

(e) -25/2