PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/62, 15/90, C12Q 1/68,

A2

(11) International Publication Number:

WO 99/61604

(43) International Publication Date:

PT, SE).

2 December 1999 (02.12.99)

(21) International Application Number:

PCT/JP99/02683

(22) International Filing Date:

21 May 1999 (21.05.99)

(30) Priority Data:

10/141952

C07K 14/435

22 May 1998 (22.05.98)

Published JP

(71) Applicant (for all designated States except US): JAPAN SCIENCE AND TECHNOLOGY CORPORATION [JP/JP]; 1-8, Hon-cho 4-chome, Kawaguchi-shi, Saitama 332-0012

(JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUKACSOVICH, Tamas [HU/JP]; 2-30-13, Narusedai, Machida-shi, Tokyo 194-0043 (JP). ASZTALOS, Zoltan [HU/JP]; 3-16-21, Narusedai, Machida-shi, Tokyo 194-0043 (JP). YAMAMOTO, Daisuke [JP/JP]; 4-18-8, Narusedai, Machida-shi, Tokyo 194-0043 (JP). AWANO, Wakae [JP/JP]; Famiyu-102, 3-10-12, Minamidai, Sagamihara-shi, Kanagawa 228-0814 (JP).

(74) Agent: NISHIZAWA, Toshio; 6F, Mani-Building, 37-10, Udagawa-cho, Shibuya-ku, Tokyo 150-0042 (JP).

Without international search report and to be republished upon receipt of that report.

CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(81) Designated States: CA, US, European patent (AT, BE, CH,

(54) Title: A VECTOR FOR GENE TRAP, AND A METHOD FOR GENE TRAPPING BY USING THE VECTOR

(57) Abstract

The present application provides a vector for trapping an unknown gene of Drosophila melanogaster, which is a recombinant plasmid comprising the following nucleotide sequences in this order: an artificial consensus splicing acceptor site; a synthetic "stop/start" sequence; a reporter gene; a drug resistance gene; a gene responsible for a detectable phenotype of the Drosophila melanogaster; and a synthetic splicing donor site. The present application also provides a method for trapping an unknown gene of Drosophila melanogaster by using the vector.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fì	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	ĮΤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwc
Ct	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Description

A Vector for Gene Trap, and A Method for Gene Trapping
by Using The Vector

5

20

25

Technical Field

The present invention relates to a new vector system to facilitate the cloning and functional analysis of new genes of a fly, Drosophila melanogaster, and a method for gene trapping with the vector system.

Background Art

There are numerous examples for application of gene trapping methods in wide range of living organisms including maize and mouse (Gossler et al., Science, 244:463-465, 1989).

With respect to tools for gene trapping, the application of different types of enhancer trap P-element vectors (Wilson et al., Genes & Development, 3:1301-1313, 1989) for cloning and analyzing trapped genes, as well their use for mosaic analysis with the help of the Gal4/UAS transcription activator system has proven fruitful. However, sometimes the expression pattern of the Gal4 or other reporter gene of the vector construct is affected by enhancers belonging to more than one gene. Similarly, in some cases it is difficult to determine whether the enhancer trap insertion effects the function of one or more of the neighboring genes.

These circumstances altogether with the fact that in 30 some cases the mutant phenotype could be attributed to the

changed expression of a gene with its nearest exon located more than 30 kB apart from the insertion site, can lead in unfortunate cases to an ordeal when it's time to clone and analyze the affected gene.

One object of this application is to provide a vector that includes specifically designed artificial regulatory sequences as well as selection methods for easy screening of positive recombinant lines. More especially, this application intends to provide a vector system of this invention offering much easier and faster cloning opportunities of the affected gene, compared to the widely used enhancer trap P-element vectors. Another object of this application is to provide easier detection possibilities of the successful trapping events and much higher chance to get more characteristic ("functional") expression patterns of the reporter gene because in the contrary with much of the cases with enhancer trap lines, when using the vector system of this invention, the reporter gene expression is influenced only by a single endogenous transcription unit and effects only the expression of the very same gene.

Disclosure of Invention

The first invention of this application is a vector for trapping an unknown gene of *Drosophila melanogaster*, which is a recombinant plasmid comprising the following nucleotide sequences in this order:

- an artificial consensus splicing acceptor site;
- a synthetic "stop/start" sequence;
- 30 a reporter gene;

5

10

20

- a drug resistance gene;
- a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
 - a synthetic splicing donor site.
- 5 One embodiment of the first invention is that the recombinant plasmid is derived from pCasper3.

Other embodiments of the first invention are that the reporter gene is the Gal4 gene, Gal4 DNA binding domain-P53 fusion gene or the Gal4-firefly luciferase fusion gene.

10 Further embodiment of this first invention is that the gene responsible for a detectable phenotype of the *Drosophila* melanogaster is mini-white gene.

More further embodiment of the first invention is that the drug resistance gene is neomycin-phosphotranspherase gene and its promoter is a heatshock promoter.

The second invention of this application is a method for trapping an unknown gene of *Drosophila melanogaster* by using a vector which is a recombinant plasmid comprising the following nucleotide sequences in this order:

- an artificial consensus splicing acceptor site;
- a synthetic "stop/start" sequence;
- a reporter gene;

15

20

- a drug resistance gene;
- 25 a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
 - a synthetic splicing donor site,

which method comprises the steps of:

(a) introducing the vector into the genome of a white minus30 fly;

- (b) selecting primary transformants resistant to a drug;
- (c) crossing the primary transformants with a transposase source strain to force the vector to jump into other locations;
- 5 (d) selecting secondary transformants by picking up the flies having strong eye color,
 - (e) crossing the secondary transformants with UAS (Upstream Activator Sequence)-luciferase harboring strain and measuring the reporter gene expression of the resultant flies; and
- 10 (f) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.

The third invention of this application is a method for trapping an unknown gene of *Drosophila melanogaster* by using a vector A which is a recombinant plasmid comprising the following nucleotide sequences in this order:

an artificial consensus splicing acceptor site;

- a synthetic "stop/start" sequence;
- 20 Gal4 DNA binding domain-P53 fusion gene as a reporter gene; a drug resistance gene;
 - a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
 - a synthetic splicing donor site,
- and a vector B derived from pCasperhs, which has the heatshock promoter directed Gal4 activator domain-large T antigen fusion gene within polycloning site of the pCasperhs,

which method comprises the steps of:

(a) introducing each of the vectors A and B into the30 genomes of separate white minus flies;

- (b) selecting primary transformants for the vector A which are resistant to the drug, and selecting primary transformants for the vector B which have an eye color;
- (c) crossing the primary transformants for the vector A with a transposase source strain to force the vector to jump into other locations;
 - (d) selecting secondary transformants for the vector A by picking up the flies having strong eye color;
- (e) crossing the secondary transformants with the primary 10 transformants for the vector B to obtain flies harboring both the vectors A and B;
 - (f) crossing the flies obtained in the step (e) with an UAS-luciferase harboring fly strain and measuring the reporter gene expression of the resultant flies after a heatshock treatment; and
 - (g) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.
- 20 Embodiments of the second and third inventions are corresponded to the embodiments of the first invention, and they will be more precisely described in the following description.

25 Brief Description of Drawings

15

Figure 1 shows the schematic map of the vector of this invention, pTrap-hsneo.

Figure 2 shows the schematic map of the vector of this invention, pTrap-G4-p53.

Figure 3 shows the schematic map of the vector of this

invention, pCasperhs-G4-LT.

5

25

30

Figure 4 shows the schematic map of the vector of this invention, pTrap-G4-luc.

Figure 5 shows the shematic drawing of a fly genome to which the vector of this invention is inserted for cloning.

Figure 6 shows the results of sequencing RT-PCR products of aop-Gal4 and m-white-aop fusion mRNAs.

Figure 7 presents pictures of characteristic betagalactosidase staining patterns in different parts of the fly 10 brain resulted from crossing positive gene trap lines with flies harboring a UAS-lacZ construct.

Best Mode for Carrying Out the Invention

A vector construct of the first invention, for example,

can be based on the commonly used, P-element transformation

vector, pCasper3 (Pirotta, Vectors: A survey of molecular

cloning vectors and their uses, eds. Rodriguez, R.L. &

Denhardt, D.T., Butterworths, Boston. 437-456, 1998) and the

convenient Gal4-UAS expression system (Brand and Perrimon,

20 Development, 118:401-415, 1993).

A promoterless Gal4 gene preceded by an artificial consensus splicing acceptor site and a synthetic "stop/start" sequence to govern the read through translation coming from upstream exon(s) of the trapped gene into the proper reading frame of Gal4 was inserted into the polycloning site of pCasper3.

The removal of the whole 3' UTR (untranslated region) sequence of the mini-white gene and replacement by an artificial splicing donor site resulted in a truncated gene without its own poly-adenylation site.

Without a successful gene trapping event this truncated mini-white gene was not expected to confer any eye color, therefore in this invention a heatshock promoter directed neomycin-phosphotransferase (hs-neo) gene selection of primary transformants by antibiotic feeding has been inserted.

Figure 1 shows the schematic map of the gene trap construct (pTrap-hsneo), and SEQ ID No.1 is the complete nucleotide sequence of the vector pTrap-hsneo.

Another gene trap construct, pTrap-G4-p53 (Figure 2) is 10 created by replacing the Gal4 coding sequence of plasmid pTrap-hsneo with a Gal4 DNA binding domain-P53 fusion gene (Clontech, Matchmaker Two Hybrid System, #K1605-1). When this construct coexists in the genome of the same fly with another vector, pCasperhs-G4-LT (Figure 3) containing a heatshock 15 promoter directed Gal4 activator domain-large T antigen (Clontech, Matchmaker Two Hybrid System, #K1605-1) fusion gene, the assembly of a functional Gal4 molecule, through p53-large T antigen interaction, can be regulated by external heatshock.

On this way, the possibility of an intentional temporary control of Gal4 activity became available. In other words the Gal4 expression in a pattern as already determined spatially by the promoter of the trapped gene now can be induced at any desired stage of development by external heatshock.

20

25

30

In order to make the detection of Gal4 expression easier, the Gal4 gene in another construct is replaced with a Gal4-firefly luciferase fusion gene to get pTrap-G4-luc This artificial gene is coding for a fusion (Figure 4).

polypeptide which has preserved both enzymatic activities.

The easy measuring of luciferase activity by luminoassay (Brandes et al., Neuron, 16:687-694, 1996) makes the detection of Gal4 activity comfortable in every single living fly.

Then, one of the best mode of the second or third invention, a method for gene trapping using the vector system, is described in detail.

10 (1) Screening:

5

15

20

The gene trap vector constructs can be introduced into the genome of a white minus fly by microinjection. The selection of primary transformants is possible by using G418, an analog of neomycin, resistance conferred by hs-neo gene. (When performing transformation experiments with these constructs it's turned out that the truncated mini-white gene generally provides a very slight yellow eye color which could be distinguished from w-minus phenotype in most of the cases, therefore G418 selection apparently is not necessary.)

After a line with the gene trap construct is being established, the secondary transformants can be generated on the usual way by crossing the original line with a so-called jumpstarter containing the transposase expressing delta 2-3 genetic element.

Usually a certain percentage, between 4 and 8, of the secondary transformants have much stronger eye color (deep orange or reddish) than the ancestor fly indicating that the construct was being inserted downstream of a promoter and now the mini-white gene is using the transcriptional "facilities" of that gene (e.g.: poly-adenylation site and transcriptional

terminator) instead of its removed ones. They are the most likely candidates for successful gene trap events. In case of these lines the vector probably has been inserted either into an intron of a gene or upstream from the first intron into the 5' UTR in proper orientation (that is the direction of transcription is same for the "trapped gene" and the mini-white (and Gal4) genes as well). The mini-white gene has its own promoter therefore its expression pattern is supposed to be largely independent from that of the trapped gene.

These positive lines are to be checked in the next step for Gal4 expression by crossing them with a "marker" line harboring a UAS-luciferase reporter gene construct. (When using pTrap-G4-luc vector, this step is obviously not necessary.) Usually very strong correlation was found between eye color and Gal4 expression: more than 90% of the lines having strong eye color proved to be expressing Gal4 by means of luciferase assay using luminometer (Brandes et al., Neuron, 16:687-692, 1996).

20 **(2)** Cloning:

10

15

25

30

When the gene trap construct is being inserted into an intron of an endogenous gene, the marker genes of the construct are supposed to be spliced on mRNA level to the exons of the trapped gene by using the artificial splicing acceptor and donor sites. More exactly while the Gal4 mRNA should be joint to the exon(s) located upstream of the insertion site, at the same time the mini-white mRNA is fused to the following exon(s) accomplishing the dual tagging of the trapped gene (Figure 5).

This feature can be used for quickly and easily

identifying the trapped gene by means of 3' and 5' RACE (Rapid Amplification of cDNA Ends) experiments. Even cloning and sequencing only a part of the caught mRNA still provides reasonable chance to find homologous mRNAs in the BDGP (Berkeley Drosophila Genome Project) EST (Expressed Sequence Tag) library.

With these approaches, the identification of an already cloned gene can take less then a week compared to the usually more than one year period in average when analyzing a mutant created by some enhancer trap construct.

It's well-known from the literature and the present inventors also have experienced that P-element vectors tend to integrate into or near the 5' UTR of active genes. (The present inventors found that in these cases if the insertion occurred upstream from the first intron, and therefore the artificial splicing acceptor site could not be utilized, the Gal4 gene was expressed by read-through transcription from the nearby promoter.)

The advantage of this tendency can be taken by cloning
and sequencing the flanking genomic sequences of the
insertion site by inverse or vectorette PCR or by plasmid
rescue using suitable restriction digestion to recover the
neomycin resistance gene of the construct. Then again the
BDGP library can be searched to find any significant matching.

25

30

5

10

15

(3) Rescue:

The only reliable way to confirm that any observed mutant phenotype is really the consequence of the P-element insertion is to rescue that particular phenotype. Expectedly the phenotype (some alteration from wild type fly) is caused

WO 99/61604 PCT/JP99/02683

by changed expression of gene(s) disturbed by insertion of the P-element. The rescue can be made by expressing the cDNA of the suspected gene most preferable with identical spatial and temporary pattern than that of the gene itself.

As it was expected, the vector constructs of the first invention usually cause strong phenotypes. It's not surprising at all because the trapped genes are supposed to be split into two parts on mRNA level resulting in null mutants in majority of the cases. Accordingly mutants obtained by this method frequently show homozygous lethality or sterility. Hypomorphic mutants can be obtained by forcing imprecise excision of the gene trap P-element construct.

As mentioned above, the Gal4 expression is obliged to reflect precisely to that of the trapped gene simply because the Gal4 gene has no its own promoter and they share a common, fused mRNA.

This identical expression provides unique opportunity to rescue the mutant phenotype by crossing this fly with another one harboring the UAS directed, cloned cDNA of the trapped gene.

On this way either the original, homozygous null mutant gene trap fly or any transheterozygous derivative of that with some hypomorphic allele over the null mutant allele can be rescued.

25

30

5

10

15

20

(4) Determination of spatial and developmental expression pattern of the trapped gene:

Histochemical determination of the spatially and temporarily controlled expression of any trapped gene is also easy following introduction of a UAS-lacZ construct into the 5

10

15

30

genome of the same fly and performing either X-gal or antibody staining for beta-galactosidase.

(5) Mosaic analysis:

Possession of a large collection of fly lines with different, characteristic and, in the case of the pTrap-G4-p53/pCasperhs-G4-TL vector system, inducible Gal4 expression pattern makes feasible carrying out mosaic analysis of virtually any gene of interest by directing the expression of their UAS-constructs on a mutant background with different Gal4 expression patterns.

This approach can answer the question of where and when that particular gene is required to be expressed to rescue the mutant phenotype.

Similarly, any gene can be expressed in different ectopic patterns to generate new dominant mutant phenotypes. This approach might help to conclude the role of that particular gene and to identify the pathway, in which it's involved.

20 Example

The following example illustrates a specific embodiment of the various aspects of the invention. This example is not intended to limit the invention in any manner.

Figure 6 shows the results of sequencing RT-PCR 25 products of aop-Gal4 and m-white-aop fusion mRNAs.

The template was total RNA prepared from a positive gene trap line which has the vector pTrap-hsneo being integrated into the first intron of the well-known app (anterior open/pokkuri/yan) developmental gene. The sequences confirm that both splicing occurred precisely at that

particular nucleotides of the artificial regulatory sequences where it was expected.

On Figure 7, there are pictures of characteristic betagalactosidase staining patterns in different parts of the fly brain resulted from crossing positive gene trap lines with flies harboring a UAS-lacZ construct.

Industrial Applicability

The vector system of this invention offers an exceptional opportunity for easy and fast cloning of the gene responsible for the observed phenotype. Furthermore, by using the UAS-driven coding sequence of any gene of interest, that particular gene can be expressed in identical patterns than those of the trapped genes and these expressions can be regulated temporarily at any desired developmental stage.

Sequence Listing

<110> Japan Science and Technology Corporation

<120> A Vector for Gene Trap, and A Method for Gene Trapping by Using The Vector

<150> Japan, Application No. 10-141952

<151> 22 May 1998

<160> 1

<170> PatentIn Ver. 2.0

25 <210> 1

20

<211> 11206

<212> DNA

<213> Artificial sequence

<220>

30 <221> 3'P sequence

```
<222> (1)..(237)
     <220>
     <221> synthetic splicing acceptor site
                                                  and stop/start
           sequence
     <222> (238)..(274)
     <220>
     <221> Gal4 gene (coding region and 3'UTR)
     <222> (275)..(3164)
     <220>
10 <221> hsp70 terminator
     <222> (3165)..(3426)
     <220>
     <221> synthetic junction sequence
     <222> 3427-3457
15 <220>
    <221> heat shock promoter directed neomycine resistance gene
           on complementer strand
     <222> (3458)..(4907)
    <220>
20 <221> mini-white gene
    <222> (4908)..(8275)
    <220>
    <221> synthetic splicing donor site
    <222> (8276)..(8299)
25
   <220>
    <221> 5'P sequence
    <222> (8300)..(8446)
    <220>
    <221> bacterial part of pCasper3 shuttle vector including
30
         complete pUC8 sequence
```

(8276) . . (8299)

<400> 1

5

10

15

20

25

30

catgatgaaa taacataagg tggtcccgtc ggcaagagac atccacttaa cgtatgcttg 60 caataagtgc gagtgaaagg aatagtattc tgagtgtcgt attgagtctg agtgagacag 120 cgatatgatt gttgattaac ccttagcatg tccgtggggt ttgaattaac tcataatatt 180 aattagacga aattattttt aaagttttat ttttaataat ttgcgagtac gcaaagctct 240 ttctcttaca ggtcgaattg atgtgatgga tccaatgaag ctactgtctt ctatcgaaca 300 agcatgcgat atttgccgac ttaaaaagct caagtgctcc aaagaaaaac cgaagtgcgc 360 caagtgtctg aagaacaact gggagtgtcg ctactctccc aaaaccaaaa ggtctccgct 420 gactagggca catctgacag aagtggaatc aaggctagaa agactggaac agctatttct 480 actgatttt cctcgagaag accttgacat gattttgaaa atggattctt tacaggatat 540 aaaagcattg ttaacaggat tatttgtaca agataatgtg aataaagatg ccgtcacaga 600 tagattggct tcagtggaga ctgatatgcc tctaacattg agacagcata gaataagtgc 660 gacatcatca toggaagaga gtagtaacaa aggtoaaaga cagttgacig tatogattga 720 ctcggcagct catcatgata actccacaat tccgttggat tttatgccca gggatgctct 780 tcatggattt gattggtctg aagaggatga catgtcggat ggcttgccct tcctgaaaac 840 ggaccccaac aataatgggt totttggcga cggttctctc ttatgtattc ttcgatctat 900 tggctttaaa ccggaaaatt acacgaactc taacgttaac aggctcccga ccatgattac 960 ggatagatac acgttggctt ctagatccac aacatcccgt ttacttcaaa gttatctcaa 1020 taattttcac ccctactgcc ctatcgtgca ctcaccgacg ctaatgatgt tgtataataa 1080 ccagattgaa atcgcgtcga aggatcaatg gcaaatcctt tttaactgca tattagccat 1140 tggagcctgg tgtatagagg gggaatctac tgatatagat gttttttact atcaaaatgc 1200 taaatctcat ttgacgagca aggtcttcga gtcaggttcc ataattttgg tgacagccct 1260 acatettetg tegegatata cacagtggag geagaaaaca aatactaget ataattttea 1320

cagettttcc ataagaatgg ccatatcatt gggcttgaat agggacctcc cctcgtcctt 1380 cagtgatagc agcattctgg aacaaagacg ccgaatttgg tggtctgtct actcttggga 1440 gatccaattg teectgettt atggtegate catecagett teteagaata caateteett 1500 cccttcttct gtcgacgatg tgcagcgtac cacaacaggt cccaccatat atcatggcat 1560 5 cattgaaaca gcaaggctct tacaagtttt cacaaaaatc tatgaactag acaaaacagt 1620 aactgcagaa aaaagtccta tatgtgcaaa aaaatgcttg atgatttgta atgagattga 1680 ggaggtttcg agacaggcac caaagttttt acaaatggat atttccacca ccgctctaac 1740 caatttgttg aaggaacacc cttggctatc ctttacaaga ttcgaactga agtggaaaca 1800 gttgtctctt atcatttatg tattaagaga ttttttcact aattttaccc agaaaaagtc 1860 10 acaactagaa caggatcaaa atgatcatca aagttatgaa gttaaacgat gctccatcat 1920 gttaagcgat gcagcacaaa gaactgttat gtctgtaagt agctatatgg acaatcataa 1980 tgtcacccca tattttgcct ggaattgttc ttattacttg ttcaatgcag tcctagtacc 2040 cataaagact ctactctcaa actcaaaatc gaatgctgag aataacgaga ccgcacaatt 2100 attacaacaa attaacactg ttctgatgct attaaaaaaa ctggccactt ttaaaatcca 2160 gacttgtgaa aaatacattc aagtactgga agaggtatgt gcgccgtttc tgttatcaca 15 2220 gtgtgcaatc ccattaccgc atatcagtta taacaatagt aatggtagcg ccattaaaaa 2280 tattgtcggt tctgcaacta tcgcccaata ccctactctt ccggaggaaa atgtcaacaa 2340 tatcagtgtt aaatatgttt ctcctggctc agtagggcct tcacctgtgc cattgaaatc 2400 aggagcaagt ttcagtgatc tagtcaagct gttatctaac cgtccaccct ctcgtaactc 2460 20 tccagtgaca ataccaagaa gcacaccttc gcatcgctca gtcacgcctt ttctagggca 2520 acagcaacag ctgcaatcat tagtgccact gaccccgtct gctttgtttg gtggcgccaa 2580 ttttaatcaa agtgggaata ttgctgatag ctcattgtcc ttcactttca ctaacagtag 2640 caacggtccg aacctcataa caactcaaac aaattctcaa gcgctttcac aaccaattgc 2700 ctcctctaac gttcatgata acttcatgaa taatgaaatc acggctagta aaattgatga 2760 25 tggtaataat tcaaaaccac tgtcacctgg ttggacggac caaactgcgt ataacgcgtt 2820 tggaatcact acagggatgt ttaataccac tacaatggat gatgtatata actatctatt 2880 cgatgatgaa gataccccac caaacccaaa aaaagagtaa aatgaatcgt agatactgaa 2940 aaaccccgca agttcacttc aactgtgcat cgtgcaccat ctcaatttct ttcatttata 3000 catcgttttg ccttctttta tgtaactata ctcctctaag tttcaatctt ggccatgtaa 3060 30 cctctgatct atagaatttt ttaaatgact agaattaatg cccatctttt ttttggacct 3120

PCT/JP99/02683 WO 99/61604

	aaattcttca	tgaaaatata	ttacgagggc	ttattcagaa	gcttatcgat	accgtcgact	3180
	aaagccaaat	agaaattatt	cagttctggc	ttaagttttt	aaaagtgata	ttatttattt	3240
	ggttgtaacc	aaccaaaaga	atgtaaataa	ctaatacata	attatgttag	ttttaagtta	3300
	gcaacaaatt	gattttagct	atattagcta	cttggttaat	aaatagaata	tatttattta	3360
5	aagataattc	gtttttattg	tcagggagtg	agtttgctta	aaaactcgtt	tagatccact	3420
	agaaggaccg	cggctcctcg	accggatcga	aaggagggcg	aagaactcca	gcatgagatc	3480
	cccgcgctgg	aggatcatcc	agccggcgtc	ccggaaaacg	attccgaagc	ccaacctttc	3540
	atagaaggcg	gcggtggaat	cgaaatctcg	tgatggcagg	ttgggcgtcg	cttggtcggt	3600
	catttcgaac	cccagagtcc	cgctcagaag	aactcgtcaa	gaaggcgata	gaaggcgatg	3660
10	cgctgcgaat	cgggagcggc	gataccgtaa	agcacgagga	agcggtcagc	ccattcgccg	3720
	ccaagctctt	cagcaatatc	acgggtagcc	aacgctatgt	cctgatagcg	gtccgccaca	3780
	cccagccggc	cacagtcgat	gaatccagaa	aagcggccat	tttccaccat	gatattcggc	3840
	aagcaggcat	cgccatgggt	cacgacgaga	tcctcgccgt	cgggcatgcg	cgccttgagc	3900
	ctggcgaaca	gttcggctgg	cgcgagcccc	tgatgctctt	cgtccagatc	atcctgatcg	3960
15	acaagaccgg	cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	4020
	aatgggcagg	tagccggatc	aagcgtatgc	agccgccgca	ttgcatcagc	catgatggat	4080
	actttctcgg	caggagcaag	gtgagatgac	aggagatcct	gccccggcac	ttcgcccaat	4140
	agcagccagt	cccttcccgc	ttcagtgaca	acgtcgagca	cagctgcgca	aggaacgccc	4200
	gtcgtggcca	gccacgatag	ccgcgctgcc	tcgtcctgca	gttcattcag	ggcaccggac	4260
20	aggtcggtct	tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	4320
	tcagagcagc	cgattgtctg	ttgtgcccag	tcatagccga	atagoototo	cacccaageg	4380
	gccggagaac	ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	tcatcctgtc	4440
	tcttgatcag	atcccctatt	cagagttctc	ttcttgtatt	caataattac	ttcttggcag	4500
	atttcagtag	ttgcagttga	tttacttggt	tgctggttac	ttttaattga	ttcactttaa	4560
25	cttgcacttt	actgcagatt	gtttagcttg	ttcagctgcg	cttgtttatt	tgcttagctt	4620
	tcgcttagcg	acgtgttcac	tttgcttgtt	tgaattgaat	tgtcgctccg	tagacgaagc	4680
	gcctctattt	atactccggc	gctcttttcg	cgaacattcg	aggcgcgctc	tctcgaacca	4740
	acgagagcag	tatgccgttt	actgtgtgac	agagtgagag	agcattagtg	cagagaggga	4800
	gagacccaaa	aagaaaagag	agaataacga	ataacggcca	gagaaatttc	tcgagttttc	4860
30	tttctgccaa	acaaatgacc	taccacaata	accagtttgt	tttgggatct	agtccctaat	4920

totagtatgt atgtaagtta ata	aaaaccct tttttggaga	atgtagattt aaaaaaacat	4980
atttttttt tatttttac tg	cactggac atcattgaac	ttatctgatc agttttaaat	5040
ttacttcgat ccaagggtat tt	gaagtacc aggttctttc	gattacctct cactcaaaat	5100
gacattccac tcaaagtcag cgo	ctgtttgc ctccttctct	gtccacagaa atatcgccgt	5160
ctctttcgcc gctgcgtccg cta	atctcttt cgccaccgtt	tgtagcgtta cctagcgtca	5220
atgtccgcct tcagttgcac ttt	tgtcagcg gtttcgtgac	gaagctccaa gcggtttacg	5280
ccatcaatta aacacaaagt gc	tgtgccaa aactcctctc	gcttcttatt tttgtttgtt	5340
ttttgagtga ttggggtggt gat	ttggtttt gggtgggtaa	gcaggggaaa gtgtgaaaaa	5400
tcccggcaat gggccaagag gat	tcaggagc tattaattcg	cggaggcagc aaacacccat	5460
ctgccgagca tctgaacaat gtg	gagtagta catgtgcata	catcttaagt tcacttgatc	5520
tataggaact gcgattgcaa cat	tcaaattg tctgcggcgt	gagaactgcg acccacaaaa	5580
atcccaaacc gcaatcgcac aaa	acaaatag tgacacgaaa	cagattattc tggtagctgt	5640
gctcgctata taagacaatt tti	taagatca tatcatgatc	aagacatcta aaggcattca	5700
ttttcgacta cattctttt tac	caaaaaat ataacaacca	gatattttaa gctgatccta	5760
gatgcacaaa aaataaataa aag	gtataaac ctacttcgta	ggatacttcg ttttgttcgg	5820
ggttagatga gcataacgct tgt	tagttgat atttgagatc	ccctatcatt gcagggtgac	5880
ageggaeget tegeagaget gea	attaacca gggcttcggg	caggocaaaa actacggoac	5940
geteetgeea eccagteege egg	gaggactc cggttcaggg	agcggccaac tagccgagaa	6000
cctcacctat gcctggcaca ata	atggacat ctttggggcg	gtcaatcagc cgggctccgg	6060
atggcggcag ctggtcaacc gga	acacgcgg actattctgc	aacgagcgac acataccggc	6120
gcccaggaaa catttgctca aga	acggtga gtttctattc	gcagtcggct gatctgtgtg	6180
aaatcttaat aaagggtcca att	accaatt tgaaactcag	tttgcggcgt ggcctatccg	6240
ggcgaacttt tggccgtgat ggg	gcagttcc ggtgccggaa	agacgaccct gctgaatgcc	6300
cttgcctttc gatcgccgca ggg	catccaa gtatcgccat	ccgggatgcg actgctcaat	6360
ggccaacctg tggacgccaa gga	gatgcag gccaggtgcg	cctatgtcca gcaggatgac	6420
ctctttatcg gctccctaac ggc	cagggaa cacctgattt	tccaggccat ggtgcggatg	6480
ccacgacatc tgacctatcg gca	gcgagtg gcccgcgtgg	atcaggtgat ccaggagctt	6540
togotoagoa aatgtoagoa cao	gatcatc ggtgtgcccg	gcagggtgaa aggtctgtcc	6600
ggcggagaaa ggaagcgtct ggc	attegee teegaggeac	taaccgatcc gccgcttctg	6660
atotgogatg agoccaccto ogg	actggac tcatttaccg	cccacagcgt cgtccaggtg	6720
	attititit tattititac tgi ttacticgat ccaagggtat tit gacattccac tcaaagtcag cgi ctetticgcc getgegteeg etc atgicegeet teagtigeac tit ccateaatta aacacaaagt ge tittgagtga tiggggtggt ga teeeggaat gggecaagag ga ctgeeggaat gegatigeaa ca ateceaaace geaategeae aaa getegetata taagacaatt tit tittegaeta cattettit tae gatgeacaaa aaataaataa aaa ggitagatga geataaeget tgi ageggaeget tegeagaget gea geteetgeea eccagteege ega geteetgeea cecagteege ega geteetgea cattettea aga aatettaat aaagggteaae gga geceaggaaa cattigetea aga aaatettaat aaagggteaa att ggegaactti tggeegtgat gga cttgeette gategeegaa gga cttgeette gategeegaa gga ctettiateg geteectaae gga ccaeggaaaa ggaagegtet gga geeggagaaa ggaagegtet gga geeggagaaa ggaagegtet gga	ttacttegat ecaaggtat ttgaagtace aggttettte gacattecae teaaagteag egetgtttge etectteet etetttegee getgegteeg etatetettt egecaeegtt atgeegea teagttegee etatetett egecaeegtt atgeegeat taggtgee aacteetete etagttgeae tttgteageg gtttegtgae ecateaatta aacacaaagt getgtgeeaa aacteetete ttttgagtga ttggggtggt gattggtttt gggtgggt	totagtatgt atgtaagtta ataaaaccct tttttggaga atgtagattt aaaaaacat attttttttt tatttttac tgcactggac atcattgaac ttatctgatc agttttaaat ttacttgat ccaagggat ttgaagtacc aggttctttc gattacctct cactcaaaat gacattccac tcaaagtcag cgctgtttgc ctccttctct gtccacagaa atatcgccgt ctctttcgcc gctgcgtccg ctatctcttt cgccaccgtt tgtagcgtta cctagcgtca atgtccgcct tcagttgcac tttgtcagcg gtttcgtgac gaagctccaa gcggtttacg ccatcaatta aacacaaagt gctgtgccaa aactcctctc gcttcttatt tttgtttgtt ttttgagtga ttggggtgg gattggtttt gggtgggt

	ctgaagaagc tgtcgcagaa gggcaagacc gtcatcctga ccattcatca gccgtcttcc	6780
	gagctgtttg agctctttga caagatcctt ctgatggccg agggcagggt agctttcttg	6840
	ggcactccca gcgaagccgt cgacttcttt tcctagtgag ttcgatgtgt ttattaaggg	6900
	tatctagcat tacattacat ctcaactcct atccagcgtg ggtgcccagt gtcctaccaa	6960
5	ctacaatccg gcggactttt acgtacaggt gttggccgtt gtgcccggac gggagatcga	7020
	gtcccgtgat cggatcgcca agatatgcga caattttgct attagcaaag tagcccggga	7080
	tatggagcag ttgttggcca ccaaaaattt ggagaagcca ctggagcagc cggagaatgg	7140
	gtacacctac aaggccacct ggttcatgca gttccgggcg gtcctgtggc gatcctggct	7200
	gtcggtgctc aaggaaccac tcctcgtaaa agtgcgactt attcagacaa cggtgagtgg	7260
10	ttccagtgga aacaaatgat ataacgctta caattcttgg aaacaaattc gctagatttt	7320
	agttagaatt gcctgattcc acacccttct tagtttttt caatgagatg tatagtttat	7380
	agttttgcag aaaataaata aatttcattt aactcgcgaa catgttgaag atatgaatat	7440
	taatgagatg cgagtaacat titaatitgc agatggtigc catcitgati ggcctcatci	7500
	ttttgggcca acaactcacg caagtgggcg tgatgaatat caacggagcc atcttcctct	7560
15	tcctgaccaa catgaccttt caaaacgtct ttgccacgat aaatgtaagt cttgtttaga	7620
	atacatttgc atattaataa tttactaact ttctaatgaa tcgattcgat	7680
	acctcagage tgccagtttt tatgagggag gcccgaagte gactttateg etgtgacaca	7740
	tactttctgg gcaaaacgat tgccgaatta ccgctttttc tcacagtgcc actggtcttc	7800
	acggcgattg cctatccgat gatcggactg cgggccggag tgctgcactt cttcaactgc	7860
20	ctggcgctgg tcactctggt ggccaatgtg tcaacgtcct tcggatatct aatatcctgc	7920
	gccagctcct cgacctcgat ggcgctgtct gtgggtccgc cggttatcat accattcctg	7980
	ctctttggcg gcttcttctt gaactcgggc tcggtgccag tatacctcaa atggttgtcg	8040
	tacctctcat ggttccgtta cgccaacgag ggtctgctga ttaaccaatg ggcggacgtg	81 0 0
	gagccgggcg aaattagctg cacatcgtcg aacaccacgt gccccagttc gggcaaggtc	8160
25	atcctggaga cgcttaactt ctccgccgcc gatctgccgc tggactacgt gggtctggcc	8220
	atteteateg tgagetteeg ggtgetegea tatetggete taagaetteg ggeeegaege	8280
	aaggagtaga aggtaagtag cggccgcacg taagggttaa tgtttcaaa aaaaaattcg	8340
	tccgcacaca acctttcctc tcaacaagca aacgtgcact gaatttaagt gtatacttcg	8400
	gtaagetteg getategaeg ggaceacett atgttattte atcatgggee agaceeaegt	8460
30	agtccagcgg cagatcggcg gcggagaagt taagcgtctc caggatgacc ttgcccgaac	8520

PCT/JP99/02683

tggggcacgt ggtgttcgac gatgtgcagc taatttcgcc cggctccacg tccgcccatt 8580 ggttaatcag cagaccctcg ttggcgtaac ggaaccatga gaggtacgac aaccatttga 8640 ggtatactgg caccgagccc gagttcaaga agaaggcgtt tttccatagg ctccgcccc 8700 ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat 8760 aaagatacca ggogtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgacctgc 8820 5 cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcaatgct 8880 cacgctgtag gtatctcagt toggtgtagg togttcgctc caagctgggc tgtgtgcacg 8940 aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc 9000 cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga 9060 10 ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa 9120 ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta 9180 gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc 9240 agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatctttct acggggtctg 9300 acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga 9360 tottoaccta gatootttta aattaaaaat gaagttttaa atcaatotaa agtatatatg 9420 15 agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct 9480 9540 gtotatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggettace atetggeece agtgetgeaa tgatacegeg agacecaege teaceggete 9600 cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa 9660 20 ctttatccgc ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc 9720 9780 cagttaatag tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc 9840 ccatgttgtg caaaaaagcg gttagctcct toggtcctcc gatcgttgtc agaagtaagt 9900 tggccgcagt gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc 9960 10020 25 catccgtaag atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaacacg ggataatacc gcgccacata 10080 gcagaacttt aaaagtgctc atcattggaa aacgttcttc gggggcgaaaa ctctcaagga 10140 tettaceget gttgagatee agttegatgt aacceaeteg tgeaeceaae tgatetteag 10200 catcttttac tttcaccagc gtttctgggt gagcaaaaac aggaaggcaa aatgccgcaa 10260 30 aaaagggaat aagggcgaca cggaaatgtt gaatactcat actcttcctt tttcaatatt 10320

	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	catatttgaa	tgtatttaga	10380
	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	gacgtctaag	10440
	aaaccattat	tatcatgaca	ttaacctata	aaaataggcg	tatcacgagg	ccctttcgtc	10500
	tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	10560
5	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	10620
	ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	10680
	accatatgcg	gtgtgaaata	ccgcaccgaa	tcgcgcggaa	ctaacgacag	tcgctccaag	10740
	gtcgtcgaac	aaaaggtgaa	tgtgttgcgg	agagcgggtg	ggagacagcg	aaagagcaac	10800
	tacgaaacgt	ggtgtggtgg	aggtgaatta	tgaagagggc	gcgcgatttg	aaaagtatgt	10860
10	atataaaaaa	tatatcccgg	tgttttatgt	agcgataaac	gagtttttga	tgtaaggtat	10920
	gcaggtgtgt	aagtcttttg	gttagaagac	aaatccaaag	tctacttgtg	gggatgttcg	10980
	aaggggaaat	acttgtattc	tataggtcat	atcttgtttt	tattggcaca	aatataatta	11040
	cattagcttt	ttgagggggc	aataaacagt	aaacacgatg	gtaataatgg	taaaaaaaaa	11100
	aacaagcagt	tatttcggat	atatgtcggc	tactccttgc	gtcgggcccg	aagtcttaga	11160
15	gccagatatg	cgagcacccg	gaagctcacg	atgagaatgg	ccagac		11206

CLAIMS

- 1. A vector for trapping an unknown gene of *Drosophila* melanogaster, which is a recombinant plasmid comprising the following nucleotide sequences in this order:
 - an artificial consensus splicing acceptor site;
 - a synthetic "stop/start" sequence;
 - a reporter gene;
 - a drug resistance gene;
- 10 a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
 - a synthetic splicing donor site.
- 2. The vector of claim 1, wherein the recombinant plasmid 15 is derived from pCasper3.
 - 3. The vector of claim 1 or 2, wherein the reporter gene is the Gal4 gene.
- 20 4. The vector of claim 3, which has the nucleotide sequence of SEQ ID No. 1.
 - 5. The vector of claim 1 or 2, wherein the reporter gene is Gal4 DNA binding domain-P53 fusion gene.
- 25 6. The vector of claim 1 or 2, wherein the reporter gene is the Gal4-firefly luciferase fusion gene.
- 7. The vector of any one of claims 1-6, wherein the gene responsible for a detectable phenotype of the *Drosophila*30 melanogaster is mini-white gene.

8. The vector of any one of claims 1-7, wherein the drug resistance gene is neomycin-phosphotranspherase gene and its promoter is a heatshock promoter.

5

25

- 9 A vector derived from pCasperhs, which has the heatshock promoter directed Gal4 activator domain-large T antigen fusion gene within polycloning site of the pCasperhs.
- 10 10. A method for trapping an unknown gene of *Drosophila* melanogaster by using a vector which is a recombinant plasmid comprising the following nucleotide sequences in this order:
 - an artificial consensus splicing acceptor site;
 - a synthetic "stop/start" sequence;
- 15 a reporter gene;

locations;

- a drug resistance gene;
- a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
 - a synthetic splicing donor site,
- 20 which method comprises the steps of:
 - (a) introducing the vector into the genome of a white minus fly;
 - (b) selecting primary transformants resistant to a drug;
 - (c) crossing the primary transformants with a transposase source strain to force the vector to jump into other
 - (d) selecting secondary transformants by picking up the flies having strong eye color,
- (e) crossing the secondary transformants with UAS (Upstream30 Activator Sequence)-luciferase harboring strain and measuring

WO 99/61604 PCT/JP99/02683

the reporter gene expression of the resultant flies; and

(f) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.

5

- 11. The method according to claim 10, wherein the recombinant plasmid is derived from pCasper3.
- The method according to claim 10 or 11, wherein the 12. reporter gene in the vector is the Gal4 gene, and in the step 10 (e) the Gal4 expression is measured.
- 13. The method according to claim 10 or 11, wherein the reporter gene of the vector is the Gal4-firefly luciferase 15 fusion gene, and in the step (e) expression of said fusion gene is measured without crossing the secondary transformants with UAS-luciferase harboring strain.
- 14. The method according to any one of claims 10 to 14, 20 wherein the gene responsible for a detectable phenotype of the Drosophila melanogaster is mini-white gene, and in the step (f) the cDNAs fused to the reporter gene and the miniwhite gene are cloned and sequenced.
- 15. The method according to any one of claims 10 to 15, 25 wherein the drug resistance gene is neomycinphosphotranspherase gene and its promoter is a heatshock promoter, and in the step (b) the transformants resistant to G418 is selected.
- 30 A method for trapping an unknown gene of Drosophila 16.

melanogaster by using a vector A which is a recombinant plasmid comprising the following nucleotide sequences in this order:

an artificial consensus splicing acceptor site;

- 5 a synthetic "stop/start" sequence;
 - Gal4 DNA binding domain-P53 fusion gene as a reporter gene;
 - a drug resistance gene;
 - a gene responsible for a detectable phenotype of the Drosophila melanogaster; and
- 10 a synthetic splicing donor site,

30

and a vector B derived from pCasperhs, which has the heatshock promoter directed Gal4 activator domain-large T antigen fusion gene within polycloning site of the pCasperhs,

which method comprises the steps of:

- 15 (a) introducing each of the vectors A and B into the genomes of separate white minus flies;
 - (b) selecting primary transformants for the vector A which are resistant to a drug, and selecting primary transformants for the vector B which have an eye color;
- 20 (c) crossing the primary transformants for the vector A with a transposase source strain to force the vector to jump into other locations;
 - (d) selecting secondary transformants for the vector A by picking up the flies having strong eye color;
- 25 (e) crossing the secondary transformants with the primary transformants for the vector B to obtain flies harboring both the vectors A and B;
 - (f) crossing the flies obtained in the step (e) with an UAS-luciferase harboring fly strain and measuring the reporter gene expression of the resultant flies after a

heatshock treatment; and

(g) identifying the trapped gene by cloning and sequencing the cDNAs fused to the reporter gene and the gene responsible for a detectable phenotype of the fly.

5

- 17. The method according to claim 16, wherein the vector A is derived from pCasper3.
- 18. The method according to claim 16 or 17, wherein the

 10 gene responsible for a detectable phenotype of the *Drosophila*melanogaster is mini-white gene, and in the step (g) the

 cDNAs fused to the reporter gene and the mini-white gene are

 cloned and sequenced.
- 19. The method according to any one of claims 16 to 18, wherein the drug resistance gene is neomycin-phosphotranspherase gene and its promoter is a heatshock promoter, and in the step (b) the transformant resistant to G418 is selected.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

magnetages/ataacaccgcttaaaagcaattccagtggcttccac

6/7

Fig.

Precise splicing of Gal4 and mini-white genes from Gene Trap vector

into anterior open gene

Gal4 expression patterns revealed by UAS-lacZ reporter construct

SUBSTITUTE SHEET (RULE 26)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/62, 15/85, 15/90, C12Q 1/68, C07K 14/435

(11) International Publication Number:

WO 99/61604

(43) International Publication Date:

2 December 1999 (02.12.99)

(21) International Application Number:

PCT/JP99/02683

A3

(22) International Filing Date:

21 May 1999 (21.05.99)

(81) Designated States: CA, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

10/141952

22 May 1998 (22.05.98)

Published JP

With international search report.

(71) Applicant (for all designated States except US): JAPAN SCIENCE AND TECHNOLOGY CORPORATION [JP/JP]; 1-8, Hon-cho 4-chome, Kawaguchi-shi, Saitama 332-0012

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUKACSOVICH. Tamas [HU/JP]; 2-30-13, Narusedai, Machida-shi, Tokyo 194-0043 (JP). ASZTALOS, Zoltan [HU/JP]; 3-16-21, Narusedai, Machida-shi, Tokyo 194-0043 (JP). YAMAMOTO, Daisuke [JP/JP]; 4-18-8, Narusedai, Machida-shi, Tokyo 194-0043 (JP). AWANO, Wakae [JP/JP]; Famiyu-102, 3-10-12, Minamidai, Sagami-

hara-shi, Kanagawa 228-0814 (JP).

(74) Agent: NISHIZAWA, Toshio; 6F, Mani-Building, 37-10, Udagawa-cho, Shibuya-ku, Tokyo 150-0042 (JP).

(88) Date of publication of the international search report:

2 March 2000 (02.03.00)

(54) Title: A VECTOR FOR GENE TRAP, AND A METHOD FOR GENE TRAPPING BY USING THE VECTOR

(57) Abstract

The present application provides a vector for trapping an unknown gene of Drosophila melanogaster, which is a recombinant plasmid comprising the following nucleotide sequences in this order: an artificial consensus splicing acceptor site; a synthetic "stop/start" sequence; a reporter gene; a drug resistance gene; a gene responsible for a detectable phenotype of the Drosophila melanogaster; and a synthetic splicing donor site. The present application also provides a method for trapping an unknown gene of Drosophila melanogaster by using the vector.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	. ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NĹ	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Inte Jonal Application No PCT/JP 99/02683

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/10 C12N C12N15/85 C12N15/62 C12N15/90 C12Q1/68 C07K14/435 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C12Q C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 3 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α WO 98 20031 A (JARVIK JONATHAN W) 1-19 14 May 1998 (1998-05-14) the whole document Α A.H. BRAND AND N. PERRIMON: "Targeted 1-19 gene expression as a means of altering cell fates and generating dominant phenotypes" DEVELOPMENT, vol. 118, 1993, pages 401-415, XP000857179 THE COMPANY OF BIOLOGISTS, LIMITED, CAMBRIDGE, GREAT BRITAIN cited in the application the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. ' Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 3 December 1999 22/12/1999 Name and mailing address of the ISA Authorized officer European Patent Office. P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

Inte onal Application No PCT/JP 99/02683

		PCT/JP 99/02683		
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category ·	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	W. WURST ET AL.: "A large-scale gene trap screen for insertional mutations in developmentally regulated genes in mice" GENETICS, vol. 139, no. 2, February 1995 (1995-02), pages 889-899, XPO00857167 GENETIC SOCIETY OF AMERICA, BALTIMORE, MD, US	1-19		
	the whole document			
Α	C. WILSON ET AL.: "P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila" GENES & DEVELOPMENT, vol. 3, no. 9, September 1989 (1989-09), pages 1301-1313, XP000857178 CSH LABORATORY PRESS, NEW YORK, US cited in the application the whole document	1-19		
Α	P. BARTHMAIER AND E. FYRBERG: "Monitoring development and pathology of Drosophila indirect flight muscles usinf green fluorescent protein" DEVELOPMENTAL BIOLOGY, vol. 169, no. 2, June 1995 (1995-06), pages 770-774, XP002124662 ACADEMIC PRESS, INC., US the whole document	1-19		
A	C.S. THUMMEL ET AL.: "Vectors for Drosophila P-element-mediated transformation and tissue culture transfection" GENE, vol. 74, 1988, pages 445-456, XPO02124663 ELSEVIER SCIENCE PUBLISHERS,B.V.,AMSTERDAM,NL; the whole document	÷		
Α	V. PIRROTTA: "Vectors for P-mediated transformation in Drosophila" BIOTECHNOLOGY, VECTORS A SURVEY OF MOLECULAR CLONING VECTORS AND THEIR USES; R. L. RODRIGUEZ AND D.T. DENHARDT, vol. 1, 1988, pages 437-456, XP000857168 Butterworths, Boston, US cited in the application the whole document			
	-/			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1

Inte ional Application No PCT/JP 99/02683

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category:	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
1	C.S. THUMMEL AND V. PIRROTTA: "New pCasPeR P element vectors" EMBL SEQUENCE DATABASE, 23 July 1996 (1996-07-23), XP002124664 Cambridge, UK Accession no. EMSYN.PEU59055; U59055; & DROS. INFO. SERVICE, vol. 71, 1992, page 150		
	A. GOSSLER ET AL.: "Mouse enbryonic stem cells and reporter constructs to detect developmentally regulated genes" SCIENCE, vol. 244, 1989, pages 463-465, XP002124665 AAAS, WASHINGTON, DC, US cited in the application the whole document		
	*.		
		•	
			*
	•		
			÷

Information on patent family members

Inte Ional Application No PCT/JP 99/02683

Pa cited	tent document in search repor	rt T	Publication Patent tam date member(s		atent family nember(s)		Publication date)
	9820031	Α	14-05-1998	AU	5168598	A	29-05-1	.998
~~~								***************************************
								•
		•						
		•				·		٠
			•					