7장 3| MIXED EFFECT MODEL

SAS를 이용한 실험 계획과 분산 분석 (자유아카데미)

MIXED EFFECT MODEL

• 혼합모형(Mixed Models) = 고정효과(fixed effect)와 임의효과(random effect)가 공존하는 모형

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk},$$

$$\alpha_i \sim \text{i.i.d. } N(0, \sigma_{\alpha}^2)$$
 A 효과=random effect

$$\sum_{j=1}^{b} \beta_j = 0$$

B 효과=fixed effect

$$(\alpha\beta)_{ij}$$
 ~ i.i.d. $N(0,\sigma_{\alpha\beta}^2)$ AB京과=random effect

$$\epsilon_{ijk} \sim \text{i.i.d. } N(0, \sigma^2)$$

$$\alpha_i$$
, $(\alpha\beta)_{ij}$, ϵ_{ijk} are independent

```
proc glm data=a;

class A B;

model y=A B A*B;

random A A*B / test;
run;
```

혼합모형에서 E(MS) 의한 검정

proc glm data=a; ... random A A*B /test;

$$\alpha_i \sim \text{i.i.d. } N(0, \sigma_{\alpha}^2)$$

$$\sum_{j=1}^{b} \beta_j = 0$$

$$(\alpha\beta)_{ij} \sim \text{i.i.d. } N(0,\sigma_{\alpha\beta}^2)$$

$$\epsilon_{ijk} \sim \text{i.i.d. } N(0, \sigma^2)$$

$$i = 1, 2,$$

$$j = 1, 2,$$

$$k = 1.2.$$

The GLM Procedure

Source Type III Expected Mean Square

A
$$Var(Error)+2 Var(A*B)+4 Var(A)$$

B
$$Var(Error)+2 Var(A*B)+ Q(b)$$

(공장에서 생산되는 라인에 불량품 수를 측정할 때, 기계의 종류(AI,A2,A3)간에 차이가 있는지,혹은 기능공 간에 차이(BI,B2)가 있는지를 검정하고자 하여 공장내 작업하는 기계중 임의로 3개를 선택하고, 기능공 중에 2명을 임의로 선택하여 실험을 실시하였고, 각 처리조합당 3회의 반복실험을 하였다.

Possible Design??

proc glm data=a; class A B;

model y=A B A*B;

random A B A*B / test;

run;

	AI	A2	A3	
	20	14	13	
ВІ	18	18	16	
	14	14	13	
B2	19	12	9	
	20	12	4	
	20	9	4	

			Sum of			
***Source		DF	Squares	Mean Square	F Value	Pr > F
Mode 1		5	369.8333333	73.9666667	15.13	< .0001
Error		12	58.6666667	4.8888889		
Corrected Total		17	428.5000000			
	R-Square	Coe	eff Var Roo	t MSE y M	lean	
	0.863088	1	5.98373 2.2	11083 13.83	333	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
A		2	229.3333333	114.6666667	23.45	<.0001
B A*B		1 2	53.3888889 87.111111	53.3888889 43.555556	10.92 8.91	0.0063 0.0042
Source		DF	Type III SS	Mean Square	F Value	Pr > F
A		2	229.3333333	114.6666667	23.45	<.0001
B A*B		1 2	53.3888889 87.111111	53.3888889 43.5555556	10.92 8.91	0.0063 0.0042

The GLM Procedure

Source	Type III Expected Mean Square
Á	Var(Error) + 3 Var(A*B) + 6 Var(A)
В	Var(Error) + 3 Var(A*B) + 9 Var(B)
A*B	Var(Error) + 3 Var(A*B)

The GLM Procedure Tests of Hypotheses for Random Model Analysis of Variance Dependent Variable: y Type III SS F Value $Pr \rightarrow F$ Source DF Mean Square 229.333333 114.666667 2.63 0.2753 Ĥ В 1.23 53.388889 53.388889 0.3836 2 87.111111 Error: MS(A*B) 43.555556 F Value Source DF Type III SS Mean Square Pr > F2 87.111111 43.555556 8.91 A*B 0.0042 Error: MS(Error) 58.666667 12 4.888889

- A요인 효과(기계효과) : 유의하지 않음
- B요인 효과(기능공 효과) :유의하지 않음
- AB 상호작용효과 : 유의함

상호작용 효과 그래프

주효과 그래프

```
proc glm data=a;

class A;

model y=A;

random A;

run;

Fit for y

With 95% Confidence Limits
```



```
proc glm data=a;
  class B ;
    model y=B ;
    random B ;
  run;
```


Interaction Plot for y 15 10 5 -A1 A2 A3

☑ 상호작용 존재

```
☑주효과 의미없음
```

☑조건부 주효과 해석 필요

✓ slice option (SAS)

```
□ proc glm data=a;
class A B;
model y=A B A*B;
random A B A*B;
lsmeans run;
```

The GLM Procedure Least Squares Means							
A*B Effect Sliced by A for y							
Sum of A DF Squares Mean Square F Value Pr > F							
1 2 3	1 1 1	8.166667 28.166667 104.166667	8.166667 28.166667 104.166667	1.67 5.76 21.31	0.2205 0.0335 0.0006		

Interaction Plot for y

이원배치법 다중비교

• AB 효과 유의하지 않을 때

✓A효과 유의하면: Ismeans A / pdiff=all;

✓B효과 유의하면: Ismeans B / pdiff=all;

• AB 효과 유의할 때

✓ Ismeans A*B / pdiff=all;

```
proc glm data=a;
class A B;
model y=A B A*B;
random A B A*B;
lsmeans A*B /pdiff=all adjust=tukey slice=A;
run;
```

The GLM Procedure Least Squares Means

Adjustment	for	Multip	le	Comparisons:	Tukey
------------	-----	--------	----	--------------	-------

A	В	y LSMEAN	LSMEAN Number
1	1	17.3333333	1
1	2	19.6666667	2
2	1	15.3333333	3
2	2	11.0000000	4
3	1	14.0000000	5
3	2	5.6666667	6

Least Squares Means for effect A*B Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i∕j	1	2	3	4	5	6
1		0.7838	0.8691	0.0389	0.4748	0.0003
2	0.7838		0.2299	0.0045	0.0721	< .0001
3	0.8691	0.2299		0.2299	0.9728	0.0018
4	0.0389	0.0045	0.2299		0.5780	0.0975
5	0.4748	0.0721	0.9728	0.5780		0.0061
6	0.0003	<.0001	0.0018	0.0975	0.0061	

6	4	5	3		2
(A3,B2)	(A2,B2)	(A3,B1)	(A2,B1)	(AI,BI)	(AI,B2)
5.7	11	14	15.3	17.3	19.7