Shashank Aital 19114076 Batch-04 Tutorial 2 10/9/2020

Computer Architecture & Microprocessors

Final Answers-

Q.1 >B

Q.23A

0-3-50

Q-4>B

Q.53D

0-63256

Q.7> C

0.8 -> 1023

Q.95 C

Tutorial 2 - Computer Architecture & Microprocessors § 1. The ASCII code for letter A is,

$$6.2.$$
 $(A+B)+C = (A+B)C - [Option:(A)]$

Q.3. A negative number can be represented by any of the forms shown in (A), (B) or (C) but 2's complement is used in computers. \Rightarrow All of the above.

Q.4. No. of RAM chips =
$$\frac{2048\times8}{128\times8} = 16$$

$$A \oplus B \oplus C = (A \overline{B} + \overline{A} B) \oplus C$$

$$= (A \overline{B} + \overline{A} B) \overline{C} + (A \overline{B} + \overline{A} B) C$$

$$= A \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} C + A \overline{B} C$$

$$AOBOC = (AB+\overline{A}\overline{B})OC$$

$$= (AB+\overline{A}\overline{B})C + (AB+\overline{A}\overline{B})\overline{C}$$

$$= ABC+\overline{A}\overline{B}C + A\overline{B}\overline{C}+\overline{A}\overline{B}C$$

Q.6. 11 bit computer => 2" encodings.

Address field is 4 bits long=

5 2-address instructions = $5 \times 2^4 \times 2^4 = 5 \times 2^8$ encodings. 32 1-address instructions = $32 \times 2^4 = 2^9$ encodings.

 $\Rightarrow No. \text{ of zero-address instructions}$ $= 2'' - [5x2^8 + 2^9]$ $= 8x2^8 - 5x2^8 - 2x2^8$ $= 2^8$ $= 2^6$

S.7 > Instruction opcode is an instruction code, not a type of memory.

Option: (c)

Q.8 ⇒ Processor has 128 different instructions

⇒ 7 bits of ainstructions.

No. of bits available for operand field = 7 (given)

⇒ Remaining bits = 24-(7+7)

= 10

 \Rightarrow The maximum value stored in a 10 bit register = $(111111111)_2 = 1023)_{10}$

9.9. Instruction size = 16 bit.

Size of address field = 7 bits.

No of total encodings = 2^{16} No of kiencodings for 2 2 - address = $2\times2^{7}\times2^{7} = 2^{15}$ No of encodings for 250 1 - address = $250\times2^{7} = 125\times2^{8}$ Remaining = $2^{16} - (2^{15} + 125\times2^{8})$ Remaining = $(28 - 125)\times2^{8} = 3\times2^{8} = 768$ Option: (c)