中国科学技术大学

2019-2020 第一学期期末考试题

考试科目: <u>随机过程(B</u>)	<u>) </u>	得分:
学生所在系:	姓名:	_ 学号:
(2020年1月6日, 半开卷)		
一、(30分,每空2分)判断是非与填空:		
(1) 设 $X_0 = 0, X_n = \sum_{i=1}^n \xi_i, (n \ge 1),$ 其中 $\{\xi_i, i \ge 1\}$ 为i.i.d.,且 $P\{\xi_i = -1\} = 1$		
$=P\{\xi_i=1\}=0.5$,则 $\{X_n,n\geq 0\}$ 为:		
a. 独立增量过程 ();	b. 平稳独立增量过程 ();
c. 正常返马氏链 ();	d. 瞬过马氏链 ();	$e. \lim_{n\to\infty} P\{X_n=0\}=0 \ .$
(2)下列函数是否为平稳过程的谱密度函数:		
$a. S_1(\omega) = \frac{\omega^2 - 16}{\omega^4 + 11\omega^2 + 18}$ (); $b. S_2(\omega) = \frac{\omega^2 + 1}{\omega^4 + 5\omega^2 + 6}$ ();
$c. S_3(\omega) = \frac{\omega^2 \cos \omega}{\omega^4 + 1} ();$	$d.S_4(\omega) = rac{e^{-i \omega }}{\omega^2 + a^2}, (i =$	$\sqrt{-1}$) ()
(3) 到达某邮箱的正常电子邮件和垃圾邮件数分别是强度为9和3的泊松过程,且相互独立。则第一封邮件的平均到达时间为(),第一封垃圾邮件到达之前恰好到达了k 封正常邮件的概率为()。		
(4) 设 $\{X(t),t\geq 0\}$ 是强度为 λ 的泊松过程,命 $X_T=\frac{1}{T}\int_0^T\!\!X(t)dt$,则:		
$E(X_T) = ($), $Var(X_T) =$	=().	
(5) 到达某商店的顾客数 $N(t)$ 是一强度为 $\lambda(t)=2+t/2$ 的非齐次泊松过程,若该商		
店早上 8:00 开门,则午时段(11:6的平均人数为()。	00-13:00)没有顾客到达的概率	为(),午时段到达商店
二、(15分)设某种健康险技	及保者中的出险人数 N(t) 为一	强度为5的泊松过程,若以
Y_i 表示第 i 个出险者应获赔偿,并	假定 $Y_i \sim U(1,3)$ (均匀分布,	单位:万元),且 $\{Y, i \ge 1\}$
为 i.i.d.,试求到时刻 t 为止保险公司应付全部赔偿 $X(t) = \sum_{i=1}^{N(t)} Y_i$ 的期望 $EX(t)$ 、方差		
$Var[X(t)]$ 及矩母函数 $g_{X(t)}(s)$ 。	(均匀分布矩母函数: $g(s) = \frac{1}{2}$	$\left(\frac{e^{bs}-e^{as}}{(b-a)s}\right)$

三、(18分) 圆周上有 1,2,3,4 四个位置按顺时针方向排列,一个粒子在这四个位置上(沿圆周)作随机游动。它从任何一个位置各以概率 0.5 顺时针方向或逆时针方向游动至其相邻位置,若以 $X_n=j$ 表示时刻 n 粒子处于位置 j (j=1,2,3,4),则 $\{X_n,n\geq 0\}$ 为一马氏链,

- (1) 求该马氏链的转移概率矩阵 P 及 $P^{(2)}$,并求 $P\{X_{n+3}=3,X_{n+1}=1\,|\,X_n=2\}=?$
- (2) 讨论该马氏链状态分类并求其平稳分布 $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)$;
- (3) 极限 $\lim_{n\to\infty} P^{(n)}$ 是否存在? 为什么?

四、 (12分) 设 $\{X_n, n \ge 0\}$ 为区间 [0,3]上的随机游动,其转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 2 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

试求粒子由k 出发而被0吸收的概率 p_k 及它被吸收的平均步数 v_k , (k=1,2,3)。

五、(15 分)设 A 与 Θ 独立, $A \sim Exp(1/3)$ (指数分布), $\Theta \sim U(0,2\pi)$ (均匀分布),定义随机过程:

$$X(t) = A\cos(t + \Theta), \quad (t \in R)$$

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(10分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 3}{\omega^4 + 11\omega^2 + 28}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 间 X 的均值是否有遍历性? 为什么?