

RTL8366/RTL8369

6/9-PORT 10/100/1000MBPS SWITCH CONTROLLER

DATASHEET

Rev. 1.1 05 September 2005 Track ID: JATR-1076-21

Realtek Semiconductor Corp.

No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan Tel: +886-3-5780211 Fax: +886-3-5776047 www.realtek.com.tw

COPYRIGHT

©2005 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek RTL8366 and RTL8369 chips.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

REVISION HISTORY

Revision	Release Date	Summary
1.0	2005/08/17	First release.
1.1	2005/09/05	Change all model numbers RTL8365 to RTL8366.
		Change Reference resistor value (see Table 7, page 15).

Table of Contents

1.	GE	NERAL DESCRIPTION	1
2.	FEA	ATURES	3
3.	A Di	PLICATIONS	
4.	BL	OCK DIAGRAM	5
	4.1.	BLOCK DIAGRAM OF RTL8366	5
	4.2.	BLOCK DIAGRAM OF RTL8369	6
5.	AP	PLICATION EXAMPLES	7
	5.1.	8-Port 1000Base-T Switch	7
	5.2.	5-Port 1000Base-T Switch	
	5.3.	9-Port (8 LAN+1 WAN) 1000Base-T Router	
	5.4.	5-Port (4 LAN+1 WAN) 1000Base-T Router	
6.	PIN	N ASSIGNMENTS	9
	6.1.	DTI 92// DDy Aggreyn (Tylffe	0
	6.2.	RTL8366 PIN ASSIGNMENTS	
	6.3.	RTL8369 PIN ASSIGNMENTS	
	6.4.	PACKAGE IDENTIFICATION	
_			
7.	PIN	N DESCRIPTIONS	11
	7.1.	PIN TYPE CONVENTIONS	11
	7.2.	RSGMII PINS	11
	7.3.	GENERAL PURPOSE INTERFACES	12
	7.3.	1. GMII Pins	12
	7.3.	2. RGMII Pins.	13
	7.3.	3. MII PHY Mode Interface Pins	14
	7.4.	LED PINS	15
	7.5.	POWER MANAGEMENT PINS	15
	7.6.	MISCELLANEOUS PINS	15
	7.7.	CONFIGURATION STRAPPING PINS	16
	7.8.	POWER AND GND PINS	17

. FU	NCTI	ON DESCRIPTION	18
8.1.	RES	SET	18
8.1.	1.	Hardware Reset	18
8.1.	.2.	Software Reset	18
8.2.	802	.3x Full Duplex Flow Control	19
8.3.	HA	LF DUPLEX FLOW CONTROL	20
8.3.	1.	BACK-PRESSURE Mode (JAM_MODE=0b0)	20
8.3.	.2.	DEFER Mode (JAM_MODE=0b1)	21
8.4.	SEA	ARCH AND LEARNING	21
8.5.	ILL	EGAL FRAME FILTERING	21
8.6.	IEE	EE 802.1D RESERVED GROUP ADDRESSES FILTERING CONTROL	22
8.7.	REA	ALTEK REMOTE CONTROL PROTOCOL	22
8.8.	Bro	DADCAST STORM CONTROL	22
8.9.	MI	B COUNTER	23
8.10.	Por	RT MIRRORING	24
8.11.	LE	Ds	24
8.1.	1.1.	Matrix LEDs	24
8.1.	1.2.	Serial LED Mode	26
8.12.	VL	AN FUNCTION	26
8.12	2.1.	VLAN Table, Configuration, and Mapping	26
8.12	2.2.	VLAN Configuration Mode 1 (Port-Based VLAN Application)	26
8.12	2.3.	VLAN Configuration Mode 2 (802.1Q 16 VLAN Entries Application)	29
8.12	2.4.	VLAN Configuration Mode 3 (802.1Q 4096 VLAN Entries Application)	30
8.12	2.5.	VLAN Ingress and Egress Rules	32
8.12	2.6.	VLAN Tagging/Un-Tagging	32
8.13.	QO	S	33
8.1.	3.1.	Port-Based Priority	33
8.1.	3.2.	IEEE 802.1p/Q-Based Priority	33
8.1.	<i>3.3</i> .	Differentiated Service Based Priority	34
8.14.	POF	RT PROPERTY CONFIGURATION	34
8.15.	SPA	NNING TREE STATUS REGISTER	35
8.16.	PH	Y MII REGISTER ACCESS	35
8.10	6.1.	PHY MII Register Read Access	35
8.10	6.2.	PHY MII Register Write Access	35
8.17.	Loc	OK-UP TABLE AND VLAN TABLE ACCESS	36

	8.17.	1. Look-Up Table Read Access Method (Unicast)	38
	8.17.	2. Look-up Table Write Access Method (Unicast)	40
	8.17.	3. Look-up Table Read Access Method (Multicast)	42
	8.17.	4. Look-up Table Write Access Method (Multicast)	44
	8.17.	5. VLAN Table Read Access Method	45
	8.17.	6. VLAN Table Write Access Method	46
9.	INT	ERFACE DESCRIPTIONS	47
9	.1.	EEPROM SMI HOST TO EEPROM	47
9	.2.	EEPROM SMI SLAVE FOR EXTERNAL CPU	48
9	.3.	SMI (MDC/MDIO) INTERFACE	49
9	.4.	MAC TO PHY INTERFACE: RSGMII (REDUCED SERIAL GIGABIT MEDIA INDEPENDENT INTERFACE)	49
9	.5.	GENERAL PURPOSE INTERFACE.	51
	9.5.1	. GMII/MII MAC Mode (Only for 100Mbps and 1000Mbps)	52
	9.5.2	. MII MAC Mode Interface (100Mbps)	53
	9.5.3	. RGMII Mode (Only for 1000Mbps Full Duplex)	54
	9.5.4	. MII PHY Mode (Only for 100Mbps Full Duplex)	55
9	.6.	Power Management Interface	55
10.	R	EGISTER AND EEPROM DESCRIPTIONS	56
1	0.1.	REGISTERS LIST PART I	56
	10.1.	1. EEPROM Mapped Registers	56
1	0.2.	REGISTERS LIST PART II	63
1	0.3.	REGISTERS DESCRIPTION PART I.	69
	10.3.	1. 0x0000: Switch Global Control Register (SGCR)	69
	10.3.	2. 0x0005 ~ 0x0006: VLAN/Trunk Control Register 0-1 (VTCR0-1)	71
	10.3.	3. 0x0007: Port Mirror Control Register (PMCR)	73
	10.3.	4. $0x0009 \sim 0x000E$: QoS Control Register 0-5 (QCR0-5)	74
	10.3.	5. 0x000F ~ 0x0010: MAC Control Packet Control Register 0-1 (MCPCR0-1)	75
	10.3.	6. 0x0011 ~ 0x0015: Port Advertising Ability Control Register 0-4 (PAACR0-4)	76
	10.3.	7. 0x0016/0018//0034: VLAN ID Configuration Register 0-15 (VIDCR0-15)	77
	10.3.	8. 0x0017/0019//0035: VLAN Member Configuration Register 0-15 (VMCR0-15)	78
	10.3.	9. 0x0036 ~ 0x0037: LED Control Register 0-1 (LCR0-1)	79
	10.3.	10. 0x0038 ~ 0x003C: MIB Counter Control Register 0-4 (MCCR0-4)	79
	10.3.	11. $0x003D \sim 0x003E$: RX Spanning Tree Status Register 0-1 (RSTSR0-1)	81
	10.3.	12. 0x003F: TX Spanning Tree Status Register (TSTSR)	81

	10.3.13.	0x0046 ~ 0x0048: Switch MAC Address Register 0-3 (SMAR0-3)	81
	10.3.14.	0x004D ~ 0x004E: Switch IP Address Register 0-1 (SIAR0-1)	82
	10.3.15.	0x0050: Port 8 GMII Control Register (P8GCR)	82
	10.3.16.	0x0058 ~ 0x5A: Port VLAN Index Control Register 0-2 (PVICR0-2)	83
10).4. REG	GISTERS DESCRIPTION PART II	84
	10.4.1.	0x0100: Reset Control Register (RCR)	84
	10.4.2.	0x0104: Chip Version Control Register (CVCR)	84
	10.4.3.	0x010F: Enable VLAN Table Control Register (EVTCR)	85
	10.4.4.	0x0118 ~ 0x011C: PHY Access Control Register 0-4 (PHYACR0-4)	85
	10.4.5.	$0x0120 \sim 0x0155$: Port n MIB Counter (PnMIB_CNTA, PnMIB_CNTB, and PnMIB_CNTC; $n=0$ - 8)	85
	10.4.6.	0x0159 ~ 0x015D: Port Status Register 0-4 (PSR0-4)	87
	10.4.7.	0x0170: EEPROM Status Register (EEPSR)	89
	10.4.8.	$0x0180 \sim 0x018A$: Lookup and VLAN Table Engine Access Control	89
11.	ELEC	TRICAL CHARACTERISTICS	90
11	.1. ABS	SOLUTE MAXIMUM RATINGS	90
11	.2. Орн	ERATING RANGE	90
11	.3. Thi	ERMAL CHARACTERISTICS.	90
11	.4. DC	Characteristics	90
11	.5. AC	Characteristics	91
	11.5.1.	EEPROM SMI (SCK/SDA) Timing Characteristics	91
	11.5.2.	SMI (MDC/MDIO) Timing Characteristics	91
	11.5.3.	GMII/MII Timing Characteristics	92
	11.5.4.	RGMII Timing Characteristics	93
12.	MECI	HANICAL DIMENSIONS	95
13.	ORDE	ERING INFORMATION	96

List of Tables

Table 1. RSGMII Pins	11
Table 2. GMII Pins	12
Table 3. RGMII Pins	13
Table 4. MII PHY Mode Interface Pins	14
Table 5. LED Pins	
Table 6. Power Management Pins	15
Table 7. Miscellaneous Pins	15
Table 8. Configuration Strapping Pins	
Table 9. Power and GND Pins	17
Table 10. Flow Control Resolution Truth Table	19
Table 11. LED Mode Configuration	24
Table 12. PVID of Each Port's Default Configuration When EN_VLAN=0b1	26
Table 13. Member Set of Each VLAN Group Default Configuration When EN_VLAN=0b1	27
TABLE 14. PVID OF EACH PORT CONFIGURATION WHEN EN_VLAN=0B1 AND EN_VLAN_TBL=0B1	30
Table 15. IPv4 Frame Format	34
Table 16. IPv6 Frame Format	34
Table 17. Port Ability Register	34
Table 18. Spanning Tree Status: Port State Behavior	
Table 19. Data Input/Output Buffer Format and Register Mapping	36
TABLE 20. SUMMARY FORMAT FOR LOOKUP AND VLAN TABLE ACCESS INPUT DATA BUFFER (WD[69:0])	37
TABLE 21. SUMMARY FORMAT FOR LOOKUP AND VLAN TABLE ACCESS OUTPUT DATA BUFFER (RD[47:0])	38
Table 22. MAC Address Format	38
Table 23. Data Input Buffer (WD[63:0]) Format for Lookup Table Read Access	39
Table 24. Data Output Buffer (RD[47:0]) Format for Lookup Table Unicast Entry Read Access	39
Table 25. Data Output Buffer (RD[47:0]) Format for Lookup Table Unicast Entry Read Access	41
Table 26. Multicast MAC Address Range and Format	42
Table 27. Data Input Buffer (WD[63:0]) Format for Lookup Table Multicast Entry Read Access	42
Table 28. Data Output Buffer (RD[47:0]) Format for Lookup Table Multicast Entry Read Access	43
Table 29. Data Input Buffer (WD[69:0]) Format for Lookup Table Multicast Entry Write Access	44
Table 30. Data Output Buffer (RD[8:0]) Format for VLAN Table Read Access	45
Table 31. Data Output Buffer (WD[24:0]) Format for VLAN Table Write Access	46
Table 32. SMI Frame Format	49

TABLE 33. GMII/RGMII/MII PHY MODE PINS	51
Table 34. EEPROM Mapped Registers	56
Table 35. Registers List Part II	63
Table 36. 0x0000: Switch Global Control Register (SGCR)	69
TABLE 37. 0x0005 ~ 0x0006: VLAN/Trunk Control Register 0-1 (VTCR0-1)	71
TABLE 38. 0x0007: PORT MIRROR CONTROL REGISTER (PMCR)	73
TABLE 39. 0x0009 ~ 0x000E: QoS Control Register 0-5 (QCR0-5)	74
TABLE 40. 0x000F ~ 0x0010: MAC CONTROL PACKET CONTROL REGISTER 0-1 (MCPCR0-1)	75
Table 41. 0 x 0 011 \sim 0 x 0 015: Port Advertising Ability Control Register 0-4 (PAACR0-4)	76
Table 42. 0x0016/0018//0034: VLAN ID Configuration Register 0-15 (VIDCR0-15)	77
Table 43. 0x0017/0019//0035: VLAN Member Configuration Register 0-15 (VMCR0-15)	78
Table 44. 0x0036 ~ 0x0037: LED Control Register 0-1 (LCR0-1)	
Table 45. $0x0038 \sim 0x003C$: MIB Counter Control Register 0-4 (MCCR0-4)	79
TABLE 46. 0x003D ~ 0x003E: RX Spanning Tree Status Register 0-1 (RSTSR0-1)	81
TABLE 47. 0x003F: TX SPANNING TREE STATUS REGISTER (TSTSR)	81
TABLE 48. 0x0046 ~ 0x0048: SWITCH MAC ADDRESS REGISTER 0-3 (SMAR0-3)	81
TABLE 49. 0x004D ~ 0x004E: SWITCH IP ADDRESS REGISTER 0-1 (SIAR0-1)	82
Table 50. 0x0050: Port 8 GMII Control Register (P8GCR)	82
TABLE 51. 0x0058 ~ 0x005A: PORT VLAN INDEX CONTROL REGISTER 0-2 (PVICR0-2)	83
TABLE 52. 0x0100: RESET CONTROL REGISTER (RCR)	84
TABLE 53. 0x0104: CHIP VERSION CONTROL REGISTER (CVCR)	84
TABLE 54. 0x010F: ENABLE VLAN TABLE CONTROL REGISTER (EVTCR)	85
TABLE 55. 0x0118 ~ 0x011C: PHY ACCESS CONTROL REGISTER 0-4 (PHYACR0-4)	85
TABLE 56. $0 \times 0120 \sim 0 \times 0155$: PORT N MIB COUNTER (PNMIB_CNTA, PNMIB_CNTB, AND PNMIB_CNTC; N=0 - 8)	
TABLE 57. 0x0159 ~ 0x015D: PORT STATUS REGISTER 0-4 (PSR0-4)	87
Table 58. 0x0170: EEPROM Status Register (EEPSR)	
TABLE 59. 0x0180 ~ 0x018A: Lookup and VLAN TABLE Engine Access Control	89
Table 60. Absolute Maximum Ratings	90
Table 61. Operating Range	
Table 62. DC Characteristics	90
Table 63. GMII/MII Timing Characteristics	92
Table 64. RGMII Timing Characteristics	94
Table 65. Ordering Information	96

List of Figures

FIGURE 1. BLOCK DIAGRAM OF RTL8366	5
FIGURE 2. BLOCK DIAGRAM OF RTL8369	6
FIGURE 3. 8-PORT 1000BASE-T SWITCH	7
Figure 4. 5-Port 1000Base-T Switch	7
Figure 5. 9-Port (8 LAN+1 WAN) 1000Base-T Router	8
Figure 6. 5-Port (4 LAN+1 WAN) 1000Base-T Router	8
FIGURE 7. RTL8366 PIN ASSIGNMENTS	9
FIGURE 8. RTL8369 PIN ASSIGNMENTS	10
FIGURE 9. MATRIX LED INTERCONNECTIONS	25
Figure 10. Bi-Color LEDs	25
FIGURE 11. PORT-BASED VLAN APPLICATION EXAMPLE	28
FIGURE 12. TAGGED/UNTAGGED PACKET FORWARDING WHEN VLAN_TAG_AWARE IS ENABLED	29
Figure 13. 4096 VLAN Table Format	30
FIGURE 14. TAGGED/UNTAGGED PACKET FORWARDING WHEN VLAN_TAG_AWARE AND EN_VLAN_TBL ARE ENABLE	D31
FIGURE 15. EEPROM SMI HOST TO EEPROM	47
FIGURE 16. HOST MODE EEPROM SMI FRAME	47
Figure 17. EEPROM SMI Sequential Read	48
FIGURE 18. EEPROM SMI WRITE COMMAND FOR SLAVE MODE	48
FIGURE 19. EEPROM SMI READ COMMAND FOR SLAVE MODE	48
FIGURE 20. RSGMII INTERCONNECTION DIAGRAM	50
FIGURE 21. SIGNAL DIAGRAM OF GMII MODE INTERFACE (1000MBPS)	52
FIGURE 22. SIGNAL DIAGRAM OF MII MAC MODE INTERFACE (100MBPS)	53
FIGURE 23. SIGNAL DIAGRAM OF RGMII MODE INTERFACE	54
FIGURE 24. SIGNAL DIAGRAM OF MII PHY MODE INTERFACE (100MBPS FULL)	55
FIGURE 25. GMII/MII TIMING CHARACTERISTICS	92
FIGURE 26. RGMII TIMING CHARACTERISTICS	93

1. General Description

The RTL8366 and RTL8369 are 128-pin, ultra-low-power, high-performance 5/8-port Gigabit Ethernet switches, with one extra GMII/MII/RGMII port for specific applications. They integrate all the functions of a high speed switch system; including SRAM for packet buffering, non-blocking switch fabric, and internal register management into a single 0.15µm CMOS device. Only a 25MHz crystal is required; an optional EEPROM is offered for internal register configuration.

The embedded packet storage SRAM in the RTL8366/8369 features superior memory management technology to efficiently utilize memory space. An integrated 4K-entry look-up table stores MAC addresses and associated information in a 12-bit direct mapping scheme. The table provides read/write access from the EEPROM Serial Management Interface (SMI), and each of the entries can be configured as a static entry. The entry aging time is between 200 and 400 seconds.

The RTL8369 implements a 4 channel Reduced Serial Gigabit Media Independent Interface (RSGMII) 2.5GHz serial differential interface that connects with 4 RTL8212's. Each channel carries 2Gbps of data to and from the RTL8212. The RSGMII interfaces help reduce PCB size and layout complexity.

The 6/9th port of the RTL8366/8369 implements a GMII/MII/RGMII interface for connecting with an external PHY or MAC in specific applications. This interface could be connected to an external CPU or RISC in 1 WAN + 4 LAN or 1 WAN + 8 LAN Router applications. In router applications, the RTL8366/8369 supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on egress. When using this function, VID information carried in the VLAN tag will be changed to PVID.

The RTL8366/8369 supports standard 802.3x flow control frames for full duplex, and optional backpressure for half duplex. It determines when to invoke the flow control mechanism by checking the availability of system resources, including packet buffers and transmitting queues. If one of the forwarding ports are blocked, or system resources are unavailable, broadcast frames will be dropped according to the system configuration. The RTL8366/8369 supports two dropping methods:

- The input dropping method will not forward broadcast packets to any output ports and will drop these packets directly.
- The output dropping method will forward broadcast packets to non-blocked ports only.

To improve real-time and multimedia networking applications, the RTL8366/8369 supports three types of QoS (Quality of Service). These are based on (1) Port-based priority, (2) 802.1p/Q VLAN priority tag, (3) TOS field in the IPv4 header. Each output port supports a weighted ratio of high-priority and low-priority queues to fit bandwidth requirements in various applications.

The RTL8366/8369 provides a 4K-entry VLAN table for 802.1Q port-based and tag-based VLAN operation to separate logical connectivity from physical connectivity. Each port may be set to any topology via EEPROM upon reset, or EEPROM SMI after reset. The RTL8366/8369 also provides options to meet special application requirements. The first option is the ARP VLAN function, which is used to select to broadcast ARP frames to all VLANs, or only forward ARP frames to the originating VLAN. The second option is the Leaky VLAN function, which sends unicast frames to other VLANs, or only forwards unicast frames to the originating VLAN. The VLAN tags can be inserted or removed on a per-port basis.

2. Features

- 6/9-port gigabit non-blocking switch architecture
- Each port supports full duplex 10/100/1000M connectivity (half duplex only supported in 10/100M mode)
- IEEE 802.3x flow control with asymmetric flow control ability
- 1Mbit SRAM for packet buffer
- 4K-entry SRAM MAC lookup table
- Supports 9Kbyte jumbo frame packet forwarding
- Integrates 4 pairs of 2.5GHz high-speed serial links
- Supports Spanning Tree port status behavior configuration
- Extra Interface (port 6/9) supports:
 - ◆ Media Independent Interface (MII) (supports 100Mbps only)
 - ◆ Gigabit Media Independent Interface (GMII) (supports 1000Mbps only)
 - ◆ Reduced Gigabit Media Independent Interface (RGMII) (supports 1000Mbps only)
- VLAN
 - ♦ 802.1Q VLAN support for 4096 entries
 - ◆ Supports port-based VLAN
 - Supports per-port egress VLAN tagging and un-tagging

- QoS
 - ◆ Two levels of queue priority
 - Priority determined by Port, 802.1Q
 VLAN tag, IP TOS/DS field
- Security Filtering
 - ◆ Disable learning for each port
 - ◆ Disable learning-table aging for each port
 - ◆ Drop unknown DA for each port
- Broadcast storm control protects system from attack by broadcast packets
- Supports Matrix LEDs and serial LEDs
- Port Mirroring
 - ◆ Mirror to any port
 - ◆ TX and RX separated
- Supports MIB counters with 3x32bits/per port
- Supports EEPROM SMI to access configuration register
- Supports 256 bytes EEPROM space for configuration
- 25MHz crystal or 1.8V OSC input
- Low power, 1.8/3.3V, 0.15μm CMOS process, 128-pin PQFP package

3. Applications

- 5/8-port 1000Base-T switch
- 1 WAN + 4 LAN, or 1 WAN + 8 LAN 1000Base-T Router or MIMO-Gateway application

4. Block Diagram

4.1. Block Diagram of RTL8366

Figure 1. Block Diagram of RTL8366

4.2. Block Diagram of RTL8369

Figure 2. Block Diagram of RTL8369

5. Application Examples

5.1. 8-Port 1000Base-T Switch

Figure 3. 8-Port 1000Base-T Switch

5.2. 5-Port 1000Base-T Switch

Figure 4. 5-Port 1000Base-T Switch

5.3. 9-Port (8 LAN+1 WAN) 1000Base-T Router

Figure 5. 9-Port (8 LAN+1 WAN) 1000Base-T Router

5.4. 5-Port (4 LAN+1 WAN) 1000Base-T Router

Figure 6. 5-Port (4 LAN+1 WAN) 1000Base-T Router

6. Pin Assignments

6.1. RTL8366 Pin Assignments

Figure 7. RTL8366 Pin Assignments

6.2. Package Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 7.

6.3. RTL8369 Pin Assignments

Figure 8. RTL8369 Pin Assignments

6.4. Package Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 8.

7. Pin Descriptions

7.1. Pin Type Conventions

The signal type codes below are used in the following tables:

I: Input D: Digital

O: Output PU: Internal pull-up A: Analog PD: Internal pull-down

7.2. RSGMII Pins

Table 1. RSGMII Pins

Table 1. Noomili Filis				
Pin Name	Pin No.	Type	Description	
SORXP, SORXN,	112, 111,	AI	Differential Input: 2.5GHz serial interfaces to transfer data from an RTL8212	
S1RXP, S1RXN,	121, 120,		to the RTL8366/RTL8369.	
S2RXP, S2RXN,	48, 47,		For the RTL8369:	
S3RXP, S3RXN	57, 56		'S0RXP, S0RXN' conveys the traffic of port0 and port1	
			'S1RXP, S1RXN' conveys the traffic of port2 and port3	
			'S2RXP, S2RXN' conveys the traffic of port4 and port5	
			'S3RXP, S3RXN' conveys the traffic of port6 and port7	
			For RTL8366:	
			'S0RXP, S0RXN' conveys the traffic of port0 and port1	
			'S1RXP, S1RXN' conveys the traffic of port2 and port3	
			'S2RXP, S2RXN' conveys the traffic of port4	
			'S3RXP, S3RXN' are not available	
			These pins must be pulled low with a 1K Ohm resistor when not used.	
S0TXP, S0TXN,	107, 106,	AO	Differential Output: 2.5GHz serial interfaces to transfer data from the	
S1TXP, S1TXN,	116, 115,		RTL8366/RTL8369 to an RTL8212.	
S2TXP, S2TXN,	43, 42,		For the RTL8369:	
S3TXP, S3TXN	52, 51		'S0TXP, S0TXN' conveys the traffic of port0 and port1	
			'S1TXP, S1TXN' conveys the traffic of port2 and port3	
			'S2TXP, S2TXN' conveys the traffic of port4 and port5	
			'S3TXP, S3TXN' conveys the traffic of port6 and port7	
			For RTL8366:	
			'S0TXP, S0TXN' conveys the traffic of port0 and port1	
			'S1TXP, S1TXN' conveys the traffic of port2 and port3	
			'S2TXP, S2TXN' conveys the traffic of port4	
			'S3TXP, S3TXN' are not available	

Pin Name	Pin No.	Type	Description
CLK25_OUT[3:0]	54, 45,	О	For the RTL8369:
	118, 109		CLK25_OUT[3:0] are 25MHz reference clock outputs for the RSGMII
			interface. 1.8V DC signal.
			For the RTL8366:
			CLK25_OUT[2:0] are 25MHz reference clock outputs for the RSGMII
			interface. 1.8V DC signal.
			CLK25_OUT[3] is not available.

7.3. General Purpose Interfaces

General Purpose Interfaces include GMII MAC, MII MAC, RGMII, and MII PHY interfaces. The interfaces are selected by the pulling up or down of GPIF_MODE[4:0] pins upon power on. Interface selection may also be configured by register access after power on.

7.3.1. GMII Pins

When port8 is linked at 1000Mbps, the interface will be GMII. When port8 is linked at 100Mbps, the interface will be MII. 1000Mbps Half Duplex and 10Mbps mode are not supported in this configuration.

Pin Name	Pin No.	Type	Description	
P8TXD[7:0]	126, 128, 1, 2,	О	Transmit Data Output (GMII/MII mode).	
	3, 4, 5, 6		Transmits data synchronously to the rising edge of P8GTXC.	
			In 100Mbps MII MAC mode, only P8TXD[3:0] are available.	
P8TXEN	7	О	Transmit Data Enable (GMII/MII mode).	
			Transmit enable that is sent synchronously at the rising edge of P8GTXC in GMII mode.	
			Transmit enable that is sent synchronously at the rising edge of P8TXC in 100Mbps MII MAC mode.	
P8GTXC	9	О	GMII Transmit Clock (GMII mode).	
			125MHz transmit clock output when GMII is operating at 1000Mbps. Used for P8TXD[7:0] and P8TXEN synchronization.	
P8TXER	11	0	Transmit Data Error (GMII/MII mode).	
P8TXC	12	I	MII Transmit Clock (MII mode).	
			25MHz clock driven by PHY when operating in 100Mbps MII MAC mode.	
			P8TXD[3:0], P8TXEN and P8TXER will be synchronized with P8TXC in this	
			mode.	
			This pin must be pulled low with a 1K Ohm resistor in GMII mode	
			configuration.	
P8CRS	14	I	Carrier Sense Input (MII mode).	
			P8CRS is only valid in 100Mbps MII MAC half duplex mode. It is asserted	
			high when a valid carrier is detected on the media.	
			This pin must be pulled low with a 1K Ohm resistor when not used.	

Table 2. GMII Pins

Pin Name	Pin No.	Type	Description
P8COL	16	I	Collision Detect Input (MII mode).
			P8COL is only valid in 100Mbps MII MAC half duplex mode. It is asserted
			high when a collision is detected on the media.
			This pin must be pulled low with a 1K Ohm resistor when not used.
P8RXER	17	I	Receive Data Error. (GMII/MII mode)
			Indicates that the receiving Data is error. The switch filters the receiving packet
			once the P8RXER is asserted at the rising edge of P8RXC. Valid both in GMII
			mode and 100Mbps MII MAC mode.
DODAG	10	-	This pin must be pulled low when not used.
P8RXC	18	I	GMII/MII Receive Clock Input (GMII/MII mode).
			In GMII mode: 125MHz receive clock. Used to synchronize P8RXD[7:0],
			P8RXER, and P8RXDV. In MII 100Mbps mode. P8RXC is 25MHz. Used to synchronize P8RXD[3:0],
			P8RXER, P8RXDV, P8CRS, and P8COL.
			This pin must be pulled low with a 1K Ohm resistor when not used.
			This pin must be pulled low with a 1K Ohm resistor in GMII and RGMII mode
			configuration.
P8RXDV	19	I	Receive Data Valid Input (GMII/MII mode).
			Receive data valid that is received synchronously at the rising edge of P8RXC
			in both GMII and 100Mbps MII MAC mode.
			This pin must be pulled low with a 1K Ohm resistor when not used.
P8RXD[7:0]	29, 28, 27, 26,	I	Receive Data Input (GMII/MII mode).
	24, 22, 21, 20		Receive data that is received synchronously at the rising edge of P8RXC.
			In 100Mbps MII MAC mode, only P8RXD[3:0] are available.
			These pins must be pulled low with a 1K Ohm resistor when not used.
			P8RXD[7:4] pins must be pulled low with a 1K Ohm resistor in RGMII and
			MII mode configuration.

7.3.2. RGMII Pins

The RGMII interface only supports 1000Mbps Full Duplex mode. 10/100Mbps are not supported by this interface.

Table 3. RGMII Pins

Pin Name	Pin No.	Type	Description	
P8TXD[3:0]	3, 4, 5, 6	О	RGMII Transmit Data.	
			Transmits data bus synchronously to P8GTXC.	
P8TXCTRL	11	О	RGMII Transmit Control signal.	
			The P8TXCTRL indicates P8TXEN at the rising edge of P8TXC and P8TXER;	
			at the falling edge of P8TXC. At P8GXTC falling edge, P8TXCTRL=P8TXEN	
			(XOR) P8TXER.	
P8TXC	9	О	RGMII Transmit Clock.	
			When port 8 is linked at 1000Mbps:	
			P8TXC is 125MHz. Used for P8TXD[3:0] and P8TXCTRL synchronization at	
			P8TXC on both rising and falling edges.	

Pin Name	Pin No.	Type	Description	
P8RXC	18	I	RGMII Receive Clock.	
			When port 8 is linked at 1000Mbps:	
			P8RXC is 125MHz. Used for P8RXD[3:0] and P8RXCTRL synchronization at	
			both P8RXC rising and falling edge.	
			This pin must be pulled low with a 1K Ohm resistor when not used.	
P8RXCTRL	17	I	RGMII Transmit Control signal.	
			The P8RXCTRL indicates P8RXDV at the rising of P8RXC and P8RXER at the	
			falling edge of P8RXC. At P8RXC falling edge, P8RXCTRL=P8RXDV (XOR)	
			P8RXER.	
			This pin must be pulled low with a 1K Ohm resistor when not used.	
P8RXD[3:0]	24, 22, 21, 20	I	RGMII Receive Data.	
			Transmits data bus synchronously to P8RXC.	
			These pins must be pulled low with a 1K Ohm resistor when not used.	

7.3.3. MII PHY Mode Interface Pins

Table 4. MII PHY Mode Interface Pins

Pin Name	Pin No.	Type	Description		
P8PRXD[3:0]	3, 4, 5, 6	О	MII PHY Mode Receive Data.		
			Output data bus to MAC, synchronous to the rising edge of P8PRXC.		
P8PRXDV	7	О	MII PHY Mode Receive Data Valid.		
			Output data valid signal to MAC, synchronous to the rising edge of P8PRXC.		
P8PRXC	9	О	MII PHY Mode Receive Clock.		
			In MII 100Mbps PHY mode, P8PRXC is 25MHz clock output.		
			In MII 10Mbps PHY mode, P8PRXC is 2.5MHz clock output.		
			Used to synchronize P8PRXD[3:0] and P8PRXDV.		
P8PTXER	17	I	MII PHY Mode Transmit Error.		
			This pin must be pulled low with a 1K Ohm resistor when not used.		
P8PTXC	18	I	MII PHY Mode Transmit Clock.		
			Transmit clock input from MII MAC is used for P8PTXD[3:0] and P8PTXEN synchronization.		
			In MII 100Mbps PHY mode, P8PTXC is 25MHz clock input.		
			In MII 10Mbps PHY mode, P8PTXC is 2.5MHz clock input.		
			This pin must be pulled low with a 1K Ohm resistor when not used.		
P8PTXEN	19	I	MII PHY Mode Transmit Data Enable.		
			Transmit enable input from MII MAC is synchronous at the rising edge of P8PTXC.		
			This pin must be pulled low with a 1K Ohm resistor when not used.		
P8PTXD[3:0]	24, 22, 21, 20	I	MII PHY Mode Transmit Data.		
			Transmit data input bus from MII MAC are synchronous to the rising edge of P8PTXC.		
			These pins must be pulled low with a 1K Ohm resistor when not used.		

7.4. LED Pins

Table 5. LED Pins

Pin Name	Pin No.	Type	Description	
LEDA[8:0]	72, 73,74, 77,	O_{PU}	When configuration register LED_MODE[1:0]=0b00 or 0b01, LEDA[8:0] is	
	78, 79, 81, 83,		driven low to enable port status in matrix LED applications.	
	84		When configuration register LED_MODE[1:0]=0b10, LEDA[8:0] associates the LEDB0 for bi-color LED application.	
LEDB[3:0]	71, 70, 69, 68	I/O _{PU}	When configuration register LED_MODE=0b00 or 0b01, the LEDB[3:0]	
		I/O_{PD}	indicates the status bit 0 of matrix LED application.	
		I/O_{PD}	When configuration register LED_MODE=0b10, the LEDB0 is used for bi-	
		I/O_{PD}	color LED.	
			When configuration register LED_MODE=0b11, LEDB0 drives the clock for	
			serial LED applications, and LEDB1 drives data for serial LED applications.	

7.5. Power Management Pins

Table 6. Power Management Pins

Pin Name	Pin No.	Type	Description	
REG18_GH	95	AO	TBD (Floating when not used)	
REG18_GL	96	AO	TBD (Floating when not used)	
REG18_PHASE	97	AI	TBD (Pull down with a 1K Ohm resistor when not used)	
REG12_GH	99	AO	TBD (Floating when not used)	
REG12_GL	100	AO	TBD (Floating when not used)	
REG12_PHASE	98	AI	TBD (Pull down with a 1K Ohm resistor when not used)	
VDD18_FB	93	AI	TBD (Pull down with a 1K Ohm resistor when not used)	
VDD12_FB	102	AI	TBD (Pull down with a 1K Ohm resistor when not used)	

7.6. Miscellaneous Pins

Table 7. Miscellaneous Pins

Pin Name	Pin No.	Type	Description	
MDC	67	I/O _{PD}	MII management interface clock pin.	
MDIO	66	I/O	MII management interface data pin.	
SCK	85	I/O _{PD}	Clock of EEPROM SMI. EEPROM interface when GPIF_MODE[4:0] != 0b01000.	
SDA	86	I/O	Data of EEPROM SMI. EEPROM interface when GPIF_MODE[4:0] != 0b01000.	
X1, X2	61, 60	Α	1.8V 25MHz crystal clock input and feedback pins.	
RREF	103	Α	Reference resistor.	
			A 2.49K Ohm (1%) resistor should be connected between RREF and GND.	
RESET#	64	DI	System pin reset input. Low active use to reset RTL8366/RTL8369.	

7.7. Configuration Strapping Pins

Table 8. Configuration Strapping Pins

Pin Name	Pin No.	Default	Description
P8RXC_DELAY	3	0b1	0b1: Adds a 1.5ns delay at P8RXC (RGMII Only)
			Internal pull high with a 75K Ohm resistor.
P8TXC_DELAY	9	0b1	0b1: Adds a 1.5ns delay at P8RXC (RGMII Only)
			Internal pull high with a 75K Ohm resistor.
RESERVED	37, 35	0b00	N/A
			Internal pull down with a 75K Ohm resistor.
GPIF_MODE[4:0]	69, 68, 4,	0b11000	0b11000: GMII/MII MAC Mode.
	5, 6		0b11001: RGMII.
			0b11100: MII PHY Mode.
			Others: Reserved
			If the General Purpose Interface is in MII PHY Mode, then it is full duplex. Flow control setting is from EEPROM.
			GPIF_MODE[2:0] are internal pull down with a 75K Ohm resistor. GPIF MODE[4:3] are internal pull high with a 75K Ohm resistor.
			Note 1: GMII/MII MAC mode does not support 10Mbps.
			Note 2: MII PHY mode only supports 100Mbps Full duplex.
RESERVED	31, 34,	0b000	N/A
KESEKVED	67	00000	Internal pull down with a 75K Ohm resistor.
INTERNAL USE	70	0b0	N/A
INTERNAL USE	70	000	Internal pull down with a 75K Ohm resistor.
INTERNAL USE	71	0b0	N/A
II VIEIGVIE OSE	/ 1	000	Internal pull down with a 75K Ohm resistor.
DIS_FC	7	0b0	0b0: Enable all ports 802.3x flow control ability.
515_1 6	,	000	0b1: Disable all ports 802.3x flow control ability.
			Internal pull down with a 75K Ohm resistor.
LED_MODE[1:0]	126, 128	0b00	0b00: Matrix Mode Type 1
_ ' '	ĺ		LEDB[3:0]=100M, 1000M, LINK/ACT, DUPLEX/COL
			0b01: matrix mode type 2
			LEDB[3:0]=10M LINK/ACT, 100M LINK/ACT, 1000M LINK/ACT,
			DUPLEX/COL
			0b10: Bi-color matrix mode
			LEDB[3:0]=N/A, N/A, N/A, (1000M+Link/Act, 100M/10M+Link/ACT)
			0b11: serial LED mode
			LEDB0 is LED_CLK and LEDB1 is LED_DATA.
			Internal pull down with a 75K Ohm resistor.
			For a detailed description, see section 8.11 LED, page 24.

Pin Name	Pin No.	Default	Description	
EN_MLT_FWD	32	0b1	0b0: Discard 802.1D reserve control frame (01-80-C2-00-00-04 ~ 01-80-	
			C2-00-00-FF)	
			0b1: Forward 802.1D reserve control frame (01-80-C2-00-00-04 ~ 01-80-	
			C2-00-00-FF)	
			01-80-C2-00-00-01 and 01-80-C2-00-00-02: Drop (default)	
			01-80-C2-00-00 and 01-80-C2-00-00-03: Forward (default)	
			Internal pull high with a 75K Ohm resistor.	
P8_PHY_LINK	11	0b0	To configure Port 8 PHY mode link status when	
			GPIF_MOD[4:0]=0b11100.	
			0b0: PHY Mode LINK down	
			0b1: PHY Mode LINK up	
			Internal pull down with a 75K Ohm resistor.	
RESERVED	2	0b0	N/A	
			Internal pull down with a 75K Ohm resistor.	

7.8. Power and GND Pins

Table 9. Power and GND Pins

Pin Name	Pin No.	Description
VDD_CORE	15, 82, 89	Power for digital circuit.
		1.5V DC input when internal linear regulator is disabled.
		When internal linear regulator is enabled, these pins must connect to Ground via
		bypass capacitors.
VSS_CORE	13, 80, 90	Ground for digital circuit.
VDDIO	8, 23, 38, 65, 76,	Power for I/O pads. 3.3V DC input.
	87,125	
VSSIO	10, 25, 36, 63, 75, 88, 127	Ground for I/O pads.
TABB 4	<i>'</i>	D. C. DOCHH 1 OVDC
VDDA	41, 49, 50, 58, 105, 113, 114, 122	Power for RSGMII. 1.8V DC input.
VSSA	44, 46, 53, 55, 108,	Ground for RSGMII.
	110, 117, 119	
VDDA_CLK	40, 123	Power for RSGMII 25MHz output clock. 1.8V DC input.
VSSA_CLK	39, 124	Ground for RSGMII 25MHz output clock.
VDDA_REG	101	Power for power management. 3.3V DC input.
		Connect to system ground when not use.
VSSA_REG	94	Ground for power management.
VDDA_PLL	59	Power for PLL. 1.8V DC input.
VSSA_PLL	62	Ground for PLL.
VDDA_RREF	104	Power for Reference resister. 3.3V DC input.
VDD18_IN	91, 92	Power for linear regulator circuit. DC 1.8V input.
		If these pins are left floating, the internal 1.5V linear regulator is disabled.
VDD18_FB	93	TBD. Pull down with 1K Ohm resistor.
VDD12_FB	102	TBD. Pull down with 1K Ohm resistor.

8. Function Description

8.1. Reset

8.1.1. Hardware Reset

In a power-on reset, an internal power-on reset pulse will be generated and the RTL8366/RTL8369 will start the reset initialization procedures. These are:

- Determine various default settings via the hardware strap pins at the end of the RESET# signal.
- Auto load the configuration from EEPROM if EEPROM is detected (approx. 8ms).
- Complete the embedded SRAM BIST process.
- Initialize the packet buffer descriptor allocation.
- Initialize the internal registers and prepare them to be accessed by the external CPU.
- Start MDC/MDIO configuration and polling.

Note 1: To guarantee register access is valid and correct, the RTL8366/RTL8369 registers should not be accessed before the reset initialization process is finished.

Note 2: The connected PHY should have completed the reset process before the RTL8366/RTL8369 starts the MDC/MDIO configuration and polling process.

8.1.2. Software Reset

The RTL8366/RTL8369 supports two software resets; a chip reset and a soft reset.

CHIP RESET

When CHIP_RESET in Register RCR (0x0100) is set to 0b1 (write and self clear), the chip will make the following steps:

- 1. Download configuration from strap pin and EEPROM.
- 2. Start embedded SRAM BIST (Built-In Self Test).
- 3. Clear all the Lookup and VLAN tables.
- 4. Reset all registers to default values.
- 5. Restart auto-negotiation process.

SOFT RESET

When set SOFT_RESET in Register RCR (0x0100) is set to 0b1 (write and self clear), the chip will complete the following steps:

- 1. Restart the auto-negotiation process.
- 2. Clear the FIFO and re-start packet buffer link list.

8.2. 802.3x Full Duplex Flow Control

The RTL8366/8369 supports IEEE 802.3x flow control in 10/100/1000M modes. Flow control can be decided in two ways:

- When Auto-Negotiation is enabled, depends on the result of NWay.
- When Auto-Negotiation is disabled, depends on the register PAACR0-4 ($0x0011 \sim 0x0015$), PORT ABILITYn[7:6] (n: 0 8).

The RTL8366/8369 supports asymmetrical flow control in 1000Mbps mode. The Auto-Negotiation module checks the flow control ability of the PHY MII register 4, 9 and those of its link partner to resolve the flow control mode. The following shows the flow control resolution truth table.

Local Device		Link Partner		Local Device Resolution	Local Partner Resolution
PAUSE	ASM_DIR	PAUSE	ASM_DIR		
0	0	Irrelevant	Irrelevant	Disable PAUSE	Disable PAUSE
				Transmit and Receive	Transmit and Receive
0	1	0	Irrelevant	Disable PAUSE	Disable PAUSE
				Transmit and Receive	Transmit and Receive
0	1	1	0	Disable PAUSE	Disable PAUSE
				Transmit and Receive	Transmit and Receive
0	1	1	1	Enable PAUSE Transmit	Enable PAUSE Receive
				Disable PAUSE Receive	Disable PAUSE Transmit
1	0	0	Irrelevant	Disable PAUSE	Disable PAUSE
				Transmit and Receive	Transmit and Receive
1	Irrelevant	1	Irrelevant	Enable PAUSE	Enable PAUSE
				Transmit and Receive	Transmit and Receive
1	1	0	0	Disable PAUSE	Disable PAUSE
				Transmit and Receive	Transmit and Receive
1	1	0	1	Enable PAUSE Receive	Enable PAUSE Transmit
1				Disable PAUSE Transmit	Disable PAUSE Receive

Table 10. Flow Control Resolution Truth Table

The results of flow control negotiation are shown in registers PSR0-4 (0x0159 \sim 0x015D), PORT_STATUSn[5], and PORT_STATUSn[4] (n: 0: 8).

8.3. Half Duplex Flow Control

In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again.

When a transmission attempt has terminated due to a collision, it is retried until it is successful. The scheduling of the retransmissions is determined by a controlled randomization process called "truncated binary exponential backoff". At the end of enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple of slotTime (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer 'r' in the range:

 $0 \le r < 2^k$

where:

k =min (n, backoffLimit). The backoffLimit for the RLT8366/RTL8369 is 9.

The half duplex back-off algorithm in the RTL8366/RTL8369 does not have the maximum retry count limitation of 16 (as defined in IEEE 802.3). This means packets in the switch will not be dropped if the back-off retry count is over 16.

Two types of half duplex flow control are supported: BACK-PRESSURE and DEFER mode. Register SGCR (0x0000), bit 9 JAM_MODE=0b0 is used Enables BACK-PRESSURE mode. Set JAM MODE=0b1 Enables DEFER mode (default).

8.3.1. BACK-PRESSURE Mode (JAM_MODE=0b0)

In BACK-PRESSURE mode, the RTL8366/8369 sends a 4-byte jam pattern (data=0xAA) to collide with incoming packets when congestion control is activated. The Jam pattern collides at the fourth byte counted from the preamble. Set Register SGCR (0x0000), bit 10, EN_48PASS1=0b1 to receive one packet after 48 consecutive jam collisions (data collisions are not included in the 48). Enable this function to prevent port partition after 63 consecutive collisions (data collisions + consecutive jam collisions).

8.3.2. DEFER Mode (JAM MODE=0b1)

DEFER is to assert the TXEN signal for 2K bytes in order to make the link partner back-off. The IPG between two asserted TXEN is 56 bits. When congestion control is activated on the ingress port, the RTL8366/RTL8369 will send a 4-byte jam pattern at the first incoming packet. The link partner will back-off and wait to re-try. The RTL8366/RTL8369 will start the DEFER signal 56 bits after the link partner starts to back-off.

8.4. Search and Learning

When a packet is received, the RTL8366/RTL8369 uses the least 12 bits of the destination MAC address to search the 4K-entry look-up table. This is the "Address Search". If the destination MAC address is not found, the switch will broadcast the packet.

The RTL8366/RTL8369 then extracts the least 12 bits of the source MAC address to index the 4K-entry look-up table. If the entry is not already in the table it will record the source MAC address and add switching information. If this is an occupied entry, it will update the entry with new information. This is called "Learning".

Address aging is used to keep the contents of the address table correct in a dynamic network topology. The look-up engine will update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be invalid (aged out) if it's time stamp information is not refreshed by the address learning process during the aging time period. The aging time of the RTL8366/RTL8369 is between 200 and 400 seconds (typical is 300 seconds).

The 4K-entry look-up table could be read/write via indirect register access by external CPU. The detailed look-up table access method is described in section 8.17 Look-up Table and VLAN Table Access, page 36.

8.5. Illegal Frame Filtering

Illegal frames such as CRC error packets, runt packets (length < 64 bytes) and oversize packets (length > maximum length) will be discarded by the RTL8366/RTL8369. The maximum packet length may be 1522, 1536, 1552, or 9216 bytes. This function is controlled by MAX_LENGTH[1:0] in Register SGCR (0x0000).

8.6. IEEE 802.1D Reserved Group Addresses Filtering Control

The RTL8366/RTL8369 supports the ability to drop/forward 802.1D specified reserved group MAC addresses: 01-80-C2-00-00-04 to 01-80-C2-00-00-0F. The default setting enables forwarding of these reserved group MAC address control frames. Frames with group MAC address 01-80-C2-00-00-01 (802.3x Pause) and 01-80-c2-00-00-02 (802.3ad LACP) will always be filtered. MAC address 01-80-C2-00-00-03 is always forwarded. This function is controlled by pin strapping of EN_MLT_FWD (pin 32) upon power on reset. After power on, the configuration may be changed via MLTID_ST[15:0][1:0] in Register MCPCR0-1 (0x000F – 0x0010).

8.7. Realtek Remote Control Protocol

TBD

8.8. Broadcast Storm Control

The RTL8366/RTL8369 enables or disables broadcast storm control by setting EN_BC_STORM_CTRL in Register SGCR (0x0000). The default is enabled. After 64 consecutive broadcast packets (DA=FF-FF-FF-FF-FF) are received by a particular port, the following incoming broadcast packets will be discarded by this port for approximately 800ms. Any non-broadcast packet can reset the time window and broadcast counter such that the scheme restarts.

Note: Trigger condition: consecutive DA=FF-FF-FF-FF-FF packets. Release condition: receive non-broadcast packet on or after 800ms.

8.9. MIB counter

The RTL8366/RLT8369 implement three 32-bit statistic counters for each port.

- MIBn_SELA[1:0] in Register MCCR0-4 (0x0038~ 0x003C), n=0-8: Counter select for Port n in counter set A.
 - 0b00: TX byte count
 - 0b01: TX packet count (Default)
- MIBn_SELB[1:0] in Register MCCR0-4 (0x0038 \sim 0x003C), n=0-8: Counter select for Port n in counter set B.
 - 0b00: RX byte count
 - 0b01: RX packet count (Default)
- MIBn_SELC[1:0] in Register MCCR0-4 (0x0038 \sim 0x003C), n=0-8: Counter select for Port n in counter set C.
 - 0b00: RX error packet count (Default)
 - 0b01: RX drop packet count
 - 0b10: Collision count
- MIBn_CNTA[31:0] in Register PnMIB_CNTA, n=0-8: Counter set A.
- MIBn CNTB[31:0] in Register PnMIB CNTB, n=0-8: Counter set B.
- MIBn CNTC[31:0] in Register PnMIB CNTC, n=0-8: Counter set C.

The TX/RX packet/byte counter only counts forwarded packets. A read access of the MIB counter will *NOT* reset the counter to 0. The 32-bit counter is a continuous repeat counter that is set to zero only when powered-on, MIB_RESET in Register RCR (0x0100) is asserted, an overflow occurs, or a change is made to MIBn_SELA[1:0], MIBn_SELB[1:0], MIBn_SELC[1:0] registers.

8.10. Port Mirroring

The RTL8366/RTL8369 supports one set of port mirroring functions for all 6/9 ports. User could monitor both the TX and RX packets of the source port from a mirror port. The source port to be mirrored can be selected in SOURCE_PORT[3:0] in Register PMCR (0x0007). The monitor port can be selected in MONITOR_PORT[3:0] in Register PMCR (0x0007).

MIRROR_TX and MIRROR_RX in Register PMCR (0x0007) are used to select the TX or RX packets of the source port to be mirrored. If MIRROR_ISO in Register PMCR (0x0007) is enabled, the monitor port only forwards the TX or RX packets of the source port. Any other packets destined for the monitor port will be dropped. When MIRROR_SPC in Register PMCR (0x0007) is enabled, Pause packets received by the source port will be forwarded to the monitor port.

8.11. LEDs

There are two types of LED mode supported in the RTL8366/RTL8369, matrix LED and serial LED. Configuration can be made by pins pulled high/low in LED_MODE[1:0] upon power on strapping, or by setting LED_MODE[1:0] in Register LCR0 (0x0036). Blinking enable is configured by setting LED_RESET_BLINK in Register LCR0 (0x0036). LED_BLINK_TIME in Register LCR0 (0x0036) controls the blink duration for LED on/off (43 ms or 120 ms).

8.11.1. Matrix LEDs

For Matrix LEDs, each port provides 4 LED indicators, LEDB[3:0]. The meaning of LEDB[3:0] is shown in Table 11.

LED_MODE[1:0]	Mode	Output LEDB[3:0] (LEDB[3], LEDB[2], LEDB[1], LEDB[0])
0000	4-bit for matrix stream	100M/10M, 1000M, LINK/ACT, DUPLEX/COL
0b01	4-bit for matrix stream	10M LINK/ACT, 100M LINK/ACT, 1000M LINK/ACT, DUPLEX/COL
0b10	Bi-color LED	NC, NC, NC, (1000M+Link/Act, 100M/10M+Link/ACT)
0b11	4-bit for serial stream	Serial LED Mode

Table 11. LED Mode Configuration

Figure 9. Matrix LED Interconnections

Figure 10. Bi-Color LEDs

8.11.2. Serial LED Mode

TBD

8.12. VLAN Function

8.12.1. VLAN Table, Configuration, and Mapping

The RTL8369 supports 802.1Q Port-Based and Tag-Based VLAN. It supports a total of 4096 VLAN tables for smart switch applications. 16 entries of the VLAN tables can be read/written directly via register access and EEPROM configuration upon power on strapping. All 4096 VLAN tables can be read/written indirectly via register access. VLAN table access is described in more detail in section 8.17 Look-up Table and VLAN Table Access, page 36.

Registers VTCR0 and VTCR1 (0x0005 and 0x0006) are used Enables VLAN function and optional ingress and egress filtering functions. Registers VIDCR0-15 and VMCR0-15 (0x0016 - 0x0035) are used to configure the VID and Member set of the first 16 VLAN entries. Registers PVICR0-2 (0x0058 - 0x005A) are used to configure the port VLAN index of ports 0-8. Register EVTCR (0x010F) is used Enables all 4096 VLAN tables.

8.12.2. VLAN Configuration Mode 1 (Port-Based VLAN Application)

VLAN Configuration Mode 1 configures EN_VLAN in Register VTCR0 (0x0005) as 0b1. The default VLAN membership configuration by internal register is port 7 overlapped with port 0-6, to form 8 individual VLANs. Using an attached serial EEPROM, or via EEPROM SMI, the default configuration may be modified to permit ports to join one of the 16 VLAN groups: VLAN 0-15.

Port Num	Register PVICR0-2	Default Value	Notes
0	P0PVID[3:0]	0x0	Index to VLAN group 0
1	P1PVID[3:0]	0x1	Index to VLAN group 1
2	P2PVID[3:0]	0x2	Index to VLAN group 2
3	P3PVID[3:0]	0x3	Index to VLAN group 3
4	P4PVID[3:0]	0x4	Index to VLAN group 4
5	P5PVID[3:0]	0x5	Index to VLAN group 5
6	P6PVID[3:0]	0x6	Index to VLAN group 6
7	P7PVID[3:0]	0x7	Index to VLAN group 7
8	P8PVID[3:0]	0x8	Index to VLAN group 8

Table 12. PVID of Each Port's Default Configuration When EN_VLAN=0b1

Table 13. Member Set of Each VLAN Group Default Configuration When EN_VLAN=0b1

VLAN	Register VMCR0-15	Default	Register VIDCR0-15	Default	Notes
Group					
0	Member0[3:0]	0x81	VID0[11:0]	0x100	Member={Port 0, 7}, VID=0x100
1	Member1[3:0]	0x82	VID1[11:0]	0x101	Member={Port 1, 7}, VID=0x100
2	Member2[3:0]	0x84	VID2[11:0]	0x102	Member={Port 2, 7}, VID=0x100
3	Member3[3:0]	0x88	VID3[11:0]	0x103	Member={Port 3, 7}, VID=0x100
4	Member4[3:0]	0x90	VID4[11:0]	0x104	Member={Port 4, 7}, VID=0x100
5	Member5[3:0]	0xA0	VID5[11:0]	0x105	Member={Port 5, 7}, VID=0x100
6	Member6[3:0]	0xC0	VID6[11:0]	0x106	Member={Port 6, 7}, VID=0x100
7	Member7[3:0]	0xFF	VID7[11:0]	0x107	Member={All Ports}, VID=0x100
8	Member8[3:0]	0x00	VID8[11:0]	0x000	Member={None}, VID=0x000
9	Member9[3:0]	0x00	VID9[11:0]	0x000	Member={None}, VID=0x000
10	Member10[3:0]	0x00	VID10[11:0]	0x000	Member={None}, VID=0x000
11	Member11[3:0]	0x00	VID11[11:0]	0x000	Member={None}, VID=0x000
12	Member12[3:0]	0x00	VID12[11:0]	0x000	Member={None}, VID=0x000
13	Member13[3:0]	0x00	VID13[11:0]	0x000	Member={None}, VID=0x000
14	Member14[3:0]	0x00	VID14[11:0]	0x000	Member={None}, VID=0x000
15	Member15[3:0]	0x00	VID15[11:0]	0x000	Member={None}, VID=0x000

Taking Figure 11 as an example, P0PVID~P2PVID are 0x0, P3PVID and P4PVID are 0x1, and P5PVID~P8PVID are 0x2. This means Port 0 to 2 belong to VLAN 0, Port 3 and Port 4 belong to VLAN 1, and Ports 5 to 8 belong to VLAN 2.

Member0=000000111 means Ports 0 to 2 are members of VLAN 0 and packet ingress from any of these ports could only be forwarded to these ports. Member1=000011000 means Port 3 and Port 4 are members of VLAN 1 and packet ingress from any of these ports can only be forwarded to these ports. Member2=111100000 means Ports 5 to 8 are members of VLAN 2 and packet ingress from any of these ports can only be forwarded to these ports. If packets ingress from Port 0 and the destination port is Port 3 (searched according to the DA of the packet), the switch will drop the packets.

Figure 11. Port-Based VLAN Application Example

8.12.3. VLAN Configuration Mode 2 (802.1Q 16 VLAN Entries Application)

802.1Q tagged-VID based VLAN mapping uses a 12-bit explicit identifier in the VLAN tag to associate received packets with a VLAN. Sixteen groups of VLAN membership registers, *Member0[8:0]* ~ *Member15[8:0]* (0x0017/0x0019/.../0x0035), consist of ports that are in the same VLAN corresponding to the registers defined in *VID0[11:0]* ~ *VID15[11:0]* (0x0016/0x0018/.../0x0034). If the VID of a VLAN-tagged frame does not hit *VID0[11:0]* ~ *VID15[11:0]*, then the frame will be dropped by the RTL8366/RTL8369. Otherwise, the RTL8366/RTL8369 compares the explicit identifier in the VLAN tag with the 16 VLAN registers to determine the VLAN association of this frame, then forwards it to the member set of this VLAN. Two VIDs are reserved for special purposes. One of them is all ones and is reserved and currently unused. The other is all zeros and indicates a priority tag, which is treated as an untagged frame. When VLAN_TAG_AWARE in Register VTCR0 (0x0005) is enabled, the RTL8366/RTL8369 performs 802.1Q tag based VLAN mapping for tagged frames, but performs port-based VLAN mapping for untagged frames. If VLAN_TAG_AWARE is disabled, the RTL8366/RTL8369 performs only port-based VLAN mapping both for non-tagged and tagged frames. Figure 12 illustrates the processing flow when VLAN_TAG_AWARE is enabled.

Figure 12. Tagged/Untagged Packet Forwarding When VLAN_TAG_AWARE is Enabled

8.12.4. VLAN Configuration Mode 3 (802.1Q 4096 VLAN Entries Application)

The RTL8366/RTL8369 supports 4096 VLAN entries by setting EN_VLAN_TBL in Register EVTCR (0x010F) as 0b1. VID[11:0] of each VLAN is the same as the index of each entry in the table. For example, the VID[11:0]=0x100 is the 256th entry in the VLAN table. The VLAN table format is shown in Figure 13.

	Entry	VID[11:0]	Member[8:0]
(- 0	0x000	Reserved
	1	0x001	000000000
	2	0x002	000000000
4096	• • •	• • •	• • •
/LAN {	• • •	• • •	• • •
	• • •	• • •	• • •
Entry	• • •	• • •	• • •
	4093	0xFFD	000000000
	4094	0xFFE	000000000
(- 4095	0xFFF	Reserved

Figure 13. 4096 VLAN Table Format

When 4096 VLAN tables are enabled, for Port-Based VLAN forwarding, VIDn[11:0] of VLAN group n (n=0-8) are used to point to the entry of the 4096 VLAN tables.

PnPVID[3:0] are fixed as 0xn (n=0-8), and should not be changed when $EN_VLAN_TBL=0b1$. For example, PoPVID[3:0]=0x0 and VID0[11:0]=0x100 means the PVID of P0 is 0x100. The member set configuration depends on the setting at entry 256 in the VLAN table. The Member0[8:0] in Register VMCR0 (0x0017) is not used when $EN_VLAN_TBL=0b1$.

Port Num	Register PVICR0-2	Default Value	Note
0	P0PVID[3:0]	0x0	Index to the VID entry of VLAN group 0
1	P1PVID[3:0]	0x1	Index to the VID entry of VLAN group 1
2	P2PVID[3:0]	0x2	Index to the VID entry of VLAN group 2
3	P3PVID[3:0]	0x3	Index to the VID entry of VLAN group 3
4	P4PVID[3:0]	0x4	Index to the VID entry of VLAN group 4
5	P5PVID[3:0]	0x5	Index to the VID entry of VLAN group 5
			Not supported in the RTL8366.
6	P6PVID[3:0]	0x6	Index to the VID entry of VLAN group 6
			Not supported in the RTL8366.

Table 14. PVID of Each Port Configuration When EN_VLAN=0b1 and EN_VLAN_TBL=0b1

Port Num	Register PVICR0-2	Default Value	Note
7	P7PVID[3:0]	0x7	Index to the VID entry of VLAN group 7
			Not supported in the RTL8366.
8	P8PVID[3:0]	0x8	Index to the VID entry of VLAN group 8

When 4096 VLAN tables are enabled, for 802.1Q Tag-Based VLAN forwarding, the RTL8366/RTL8369 use the VID in the tagged packet to search the VIDn[11:0] of each VLAN table.

No Match

If the VID of the tagged packet does not match any VIDn[11:0] of all the valid VLAN tables, the packet is dropped by the switch.

Match

If the VID of the tagged packet matches the VIDn[11:0] of a valid VLAN entry, the packet is forwarded according to the DA Search result and member set of the VLAN entry.

Figure 14. Tagged/Untagged Packet Forwarding When VLAN_TAG_AWARE and EN_VLAN_TBL are Enabled

8.12.5. VLAN Ingress and Egress Rules

The RTL8366/RTL8369 support three VLAN ingress-filtering controls. These filtering functions can be enabled or disabled by register access or EEPROM configuration. All of these functions are disabled by default.

- VLAN_TAG_ADMIT (VLAN Tag Admit Control): enables receiving only VLAN-tagged frames. Untagged frames or priority tagged frames (VID=0) will be dropped by the RTL8366/RTL8369.
- EN_INGRESS_RULE (Ingress Member Set Filtering Control): enables dropping of frames if the receiving port is not in the member set for the frame's VLAN classification VID.
- EN_TAG_DROP (VLAN Tag Drop Control): drops all VLAN-tagged frames and receives all other untagged frames or priority tagged frames (VID=0).

The RTL8366/RTL8369 supports 3 VLAN egress VLAN leaky controls. These leaky rules have higher priority than VLAN egress rules (the destination port need not be a member of the VLAN table).

- EN UC LEAKY (Unicast VLAN Leaky Control): Enables inter-VLAN unicast packet forwarding.
- EN_IPMC_LEAKY (IP Multicast Packet VLAN Leaky Control): Enables IP Multicast packets to forward to all the other ports ignoring the egress rule. EN_IGMP should be enabled (Register SGCR, 0x0000, bit 6) before enabling the EN IPMC LEAKY function.

8.12.6. VLAN Tagging/Un-Tagging

Per-Port Output tag/untag control: Four types of output VLAN tagging control are supported, controlled by Register VTCR0-1 (0x0005 and 0x0006), Pn_TAG_CONTROL[1:0], n=0: 8.

- 0b00: Keeps all packets unchanged.
- 0b01: Inserts a VLAN tag according to the PVID of the ingress port.
- 0b10: Removes VLAN-tags from frames.
- 0b11: Inserts a priority tag according to the priority of the packet.

If the VLAN tag removed frame is less than 64 bytes, the RTL8369 will add '0x20' as load padding before the CRC field.

8.13. QOS

There are two priority queues supported in the RTL8366/RTL8369, and 3 types of priority classification. The queue service rate is based on the Weighted Round Robin algorithm, the packet-based service weight ratio of the high-priority queue and low-priority queue can be set to 4:1, 8:1, 16:1, or 'Always high priority first'. The ratio can be selected by QWEIGHT[1:0] in Register QCR0 (0x0009). The 3 types of priority classification are Port-based, Differentiated Service-based, and 802.1Q VLAN tagbased.

8.13.1. Port-Based Priority

Port-based priority is enabled via EN_PORT_PRI in Register QCR0 (0x0009). Configuring PORT_PRI[8:0] as 0b1 in Register QCR1 (0x000A) forces incoming packets at the ingress port to be high priority. When port-based priority is applied, any packet received from a high priority port will be treated as a high priority packet.

8.13.2. IEEE 802.1p/Q-Based Priority

IEEE 802.1p/Q-based priority is enabled via EN_1Q_PRI in Register QCR0 (0x0009). When 802.1p tag priority is applied, the RTL8366/RTL8369 recognizes 802.1Q VLAN tagged packets and extracts the 3-bit User Priority information from the VLAN tag. The RTL8366/RTL8369 sets the User Priority threshold to 3. VLAN tagged packets with User Priority values 4~7 are treated as high priority packets, and other User Priority values (0~3) as low priority packets (follows the IEEE 802.1p standard).

8.13.3. Differentiated Service Based Priority

Differentiated Service-based priority function is enabled by EN_DS_PRI in Register QCR0 (0x0009). When TCP/IP's TOS/DiffServ (DS) based priority is applied, the RTL8366/RTL8369 recognizes TCP/IP Differentiated Services Codepoint (DSCP) priority information from the DS-field defined in RFC2474. The DS field byte for IPv4 is the Type-of-Service (TOS) octet. Recommended DiffServ Codepoints are defined in RFC2597 for classifying traffic into different service classes. The RTL8366/RTL8369 extracts the codepoint value of the DS field from IPv4 packets and identifies the priority of the incoming IP packet following the definitions by TOS[63:0] in Register QCR2-5 (0x000B – 0x000E). For example, if TOS[5] = 0b1 means TOS[5:0] = 0b000101

Table 15. IPv4 Frame Format

6 bytes	6 bytes	4 bytes	2 bytes	4 bits	4 bits	6 bits	2 bits		4 bytes
DA	SA	802.1Q Tag	08-00	Version	IHL	TOS[0:5]: DS-field		Data	CRC
		(Optional)		IPv4: 0100					

Table 16. IPv6 Frame Format

6 bytes	6 bytes	4 bytes	2 bytes	4 bits	6 bits	2 bits		4 bytes
DA	SA	802.1Q Tag	08-DD	Version	TOS[0:5]: DS-field		Data	CRC
		(Optional)		Ipv6: 0110				

8.14. Port Property Configuration

The RTL8366/RTL8369 can configure the NWay ability of the RTL8212 via EEPROM upon power on strapping. In Register PAACR0-4 (0x0011~ 0x0015), PORT_ABILITYn[7:0] are used to configure the NWay ability in the RTL8212 MII register when Auto-Negotiation is enabled. When Auto-Negotiation is disabled, the 'Forced parameter' forces the port to a particular defined status. The port ability is written to PHY register 4 and 9 upon power on reset. The register mapping of PORT_ABILITYn[7:0], n=0: 8, is shown in Table 17.

Table 17. Port Ability Register

Name	Asymmetric Flow Control	Flow Control	1000 Full	100 Full	100 Half	10 Full	10 Half	Auto- Negotiation
Bit	7	6	5	4	3	2	1	0
RTL8212 MII Register	Reg.4[11]	Reg.4[10]	Reg.9[9]	Reg.4[8]	Reg.4[7]	Reg.4[6]	Reg.4[5]	Reg.0[12]

8.15. Spanning Tree Status Register

The RTL8366 and RTL8369 support a Spanning Tree status register PnSTS[1:0]. When the system supports the spanning tree function, a CPU or RISC must be present. All ports behave according to PnSTS[1:0]. The CPU determines the state of the ports according to BPDU, then updates the SPS to control the port behavior. The CPU port should carry the ingress port number of the receiving BPDU. The port state behavior is shown in Table 18.

Transmit BPDU Receive BPDU Learn Address **Forward Data Frames PnSTS[1:0]** Blocking (0b00) V X X X V V X X Listening (0b01) Learning (0b10) V V V \mathbf{X} Forwarding (0b11) V V

Table 18. Spanning Tree Status: Port State Behavior

8.16. PHY MII Register Access

The RTL8366 and RTL8369 provide an external CPU with an indirect access interface to change the PHY MII register configuration. In Register PHYACR0-4 (0x0118 – 0x011C), the PHY address, Register address, Input data, and Read/Write commands can be configured.

8.16.1. PHY MII Register Read Access

- 1. Configure PHY ADDR[4:0] in Register PHYACR1 (0x0119).
- 2. Configure PHY REG[4:0] in Register PHYACR2 (0x011A).
- 3. Configure PHY EXEC=0b1 and PHY RW=0b0 in Register PHYACR0 (0x0118).
- 4. When PHY_EXEC=0b0 in Register PHYACR0, read the data from PHY_DATA_IN[15:0] in Register PHYACR3 (0x011B).

8.16.2. PHY MII Register Write Access

- 1. Configure PHY ADDR[4:0] in Register PHYACR1 (0x0119).
- 2. Configure PHY REG[4:0] in Register PHYACR2 (0x011A).
- 3. Configure PHY DATA OUT[15:0] in Register PHYACR4 (0x011C).
- 4. Configure PHY EXEC=0b1 and PHY RW=0b1 in Register PHYACR0 (0x0118).
- 5. When PHY_EXEC=0b0 in Register PHYACR0, the switch is finished write access to the PHY MII register.

8.17. Look-up Table and VLAN Table Access

The RTL8366/RTL8369 support indirect access to the 4K-entry lookup tables and 4K VLAN tables by external CPU or RISC. TABLE_EXEC in Register LVTACR (0x0180) is used to start the access command, and TABLE_CMD[2:0] is used to select the access method. WD[69:0] in Register LVTDIR0-4 (0x0182 – 0x0186) is the data input buffer, which is used to input specific Lookup table or VLAN table entry information. RD[47:0] in Register LVTDOR0-2 (0x0188 – 0x018A) is the data output buffer, which is the output information after access has completed.

Table 19. Data Input/Output Buffer Format and Register Mapping

LVTDOR2[15:0]	LVTDOR1[15:0]	LVTDOR0[15:0]
RD[47:32]	RD[31:16]	RD[15:0]

LVTDIR4[5:0]	LVTDIR3[15:0]	LVTDIR2[15:0]	LVTDIR1[15:0]	LVTDIR0[15:0]
WD[69:48]	WD[63:48]	WD[47:32]	WD[31:16]	WD[15:0]

Table 20 summarizes the input data buffer (WD[69:0]) format for Lookup and VLAN Table read/write access. Table 21 summarizes the output data buffer (RD[47:0]) format for Lookup and VLAN Table read/write access.

Table 20. Summary Format for Lookup and VLAN Table Access Input Data Buffer (WD[69:0])

WD[69:64]											69	68	67	66	65	64	1
Uni-cast Read													Re	servec	l		
Uni-cast Write											Reserved						
Multicast Read													Re	servec	l		
Multicast Write											P8_Agi	ing[1:0	P7_Ag	ing[1:0	P6_ <i>A</i>	aging[1	:0]
VLAN Read		` Reserved															
VLAN Write													Re	eserved			
WD[63:48]	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	3
Uni-cast Read								Re	served								
Uni-cast Write			Rese	erved			Aging	g[1:0]		SPA	[3:0]		Rese	erved	Fixed	Multi	cast
Multicast Read								Re	served								
Multicast Write	P5_Agi	ng[1:0	P4_Agi	ing[1:0	P3_Agi	ing[1:0	P2_Ag	ing[1:0	P1_Agi	ng[1:0	P0_Agi	ing[1:0	Rese	erved	Fixed	Multi	cast
VLAN Read								Re	served								
VLAN Write								Re	served								
WD[47:32]	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	2
Uni-cast Read			N	MAC_	B0[7:0)]				Rese	rved			MAC	B1[3	3:0]	
Uni-cast Write			N	MAC_	B0[7:0)]						MAC	B1[7	':0]			
Multicast Read			N	MAC_	B0[7:0)]				Rese	erved			MAC	C_B1[3	3:0]	
Multicast Write			N	MAC_	B0[7:0)]						MAC	_B1[7	':0]			
VLAN Read								Re	served								
VLAN Write								Re	served								
WD[31:16]	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	5
Uni-cast Read								Re	served								
Uni-cast Write			N	MAC_	B2[7:0)]						MAC	_B3[7	':0]			
Multicast Read								Reserved									
Multicast Write			N	MAC_	B2[7:0)]						MAC	_B3[7	':0 <u>]</u>			
VLAN Read								Re	served								
VLAN Write			R	leserve	ed						N.	Iembei	r[8:0]				
WD[15:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Uni-cast Read								Re	served								
Uni-cast Write	MAC_B4[7:0]											MAC	_B5[7	':0 <u>]</u>			
Multicast Read								Re	served								
			_									MAG	DCIT			_	
Multicast Write			N	MAC_	B4[7:0)]						MAC	_B5[7	[0:			
Multicast Write VLAN Read		Rese	erved	MAC_	B4[7:0)]				VII	D[11:0			<u>[0]</u>			

Table 21. Summary Format for Lookup and VLAN Table Access Output Data buffer (RD[47:0])

RD[47:32]	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
Uni-cast Read	R	Reserve	ed	Fail	Fixed	Multicast	Aging	Aging[1:0] SPA[3:0]					MAC_B3[7:4]			
Multicast Read	Reserved Fail Fixed Multicast P8_Aging[1:0]P7_Aging[1									ng[1:0]	P6_Aging[1:0]P5_Aging[1:0]P4_Aging[1:0]					
VLAN Read		Reserved														
RD[31:16]	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Uni-cast Read	N	MAC_B3[3:0] MAC_B4[7:0]									C_B4[7:0] MAC_B5[7:4]					.]
Multicast Read	P3_Agi	ing[1:0	P2_Agi	ing[1:0	P1_A	Aging[1:0]	P0_Agi	ing[1:0]				Rese	rved			
VLAN Read								Reser	ved							
RD[15:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Uni-cast Read	N	MAC_1	B5[3:0)]			M	AC_B	2[7:0]				MAC B1[7:4]			
Multicast Read		Rese	erved				M	AC_B	2[7:0]				I	MAC_	B1[7:4	.]
VLAN Read	Reserved Member[8:0]															

8.17.1. Look-Up Table Read Access Method (Unicast)

The standard MAC address format is shown in Table 22. For example, the DA of a Pause packet is 01-80-C2-00-00-01. That means Byte5=0x01, Byte4=0x80, Byte3=0xC2, Byte2=0x00, Byte1=0x00, and Byte0=0x01.

Table 22. MAC Address Format

	!	M.	40	C P	Pause DA				
Byte 5	7	6	5	4	3	2	1	0	01
Byte 4	7	6	5	4	3	2	1	0	80
Byte 3	7	6	5	4	3	2	1	0	C2
Byte 2	7	6	5	4	3	2	1	0	00
Byte 1	7	6	5	4	3	2	1	0	00
Byte 0	7	6	5	4	3	2	1	0	01

For Lookup Table read access, we need to input the entry number of a specific table. The WD[63:0] (LVTDIR0-3) format is shown in Table 23. After inputting the lookup table read access command (TABLE_CMD[2:0]=0b000 and TABLE_EXEC=0b1), the returned data will be shown in RD[47:0] (LVTDOR0-2) (see Table 24). Other reserved and un-defined bits in WD[63:0] (LVTDIR0-3) must=0b0.

Table 23. Data Input Buffer (WD[63:0]) Format for Lookup Table Read Access

	MAC Address								Write Da	ıta[47:0]	Example				
Byte 5	7	6	5	4	3	2	1	0							
Byte 4	7	6	5	4	3	2	1	0							
Byte 3	7	6	5	4	3	2	1	0							
Byte 2	7	6	5	4	3	2	1	0							
Byte 1	7	6	5	4	3	2	1	0		WD[35:32]		0xA			
Byte 0	7	6	5	4	3	2	1	0	WD[4	WD[47:40] 0xBC					

Table 24. Data Output Buffer (RD[47:0]) Format for Lookup Table Unicast Entry Read Access

	ľ	MAC Address						S	Read Da	ıta[47:0]	Exai	mple
Byte 5	7	6	5	4	3	2	1	0	RD[1	9:12]	0x	12
Byte 4	7	6	5	4	3	2	1	0	RD[2	7:20]	0x	34
Byte 3	7	6	5	4	3	2	1	0	RD[3	5:28]	0x	56
Byte 2	7	6	5	4	3	2	1	0	RD[]	11:4]	0x	78
Byte 1	7	6	5	4	3	2	1	0	RD[3:0]		0x9	
Byte 0	7	6	5	4	3	2	1	0				

Item
RD[47:0]
Example

Reserved	Fail	Fixed	Multicast	Aging	SPA
RD[47:45]	RD[44]	RD[43]	RD[42]	RD[41:40]	RD[39:36]
0b000	0b0	0b1	0b0	0b11	0x5

For example, if we want to read the lookup table entry 2748 (0xABC), then we have to configure:

- WD[35:32] (LVTDIR2[3:0])=0xA
- WD[47:40] (LVTDIR2[15:8])=0xBC
- Others=0

The MAC address read from this entry will be XX-XX-XX-XX-BC. The returned data will be shown in LVTDOR0-2 in the following format:

If a fixed entry in the lookup table is 12-34-56-78-9A-BC, SPA (Source Port Address) is port 5, the return data is in RD[19:12]=0x12, RD[27:20]=0x34, RD[35:28]=0x56, RD[11:4]=0x78, and RD[3:0]=0x9. SPA is in RD[39:36]=0x5, Aging is in RD[41:40]=0b11, Multicast is in RD[42]=0, Fixed is in RD[43]=1, and Fail is in RD[44]=0.

8.17.2. Look-up Table Write Access Method (Unicast)

For Lookup Table write access, we need to input the MAC address, Multicast flag, Fixed flag, SPA (Source Port Address), and Aging timer. The WD[63:0] format is shown in Table 25. After inputting the lookup table write access command (TABLE_CMD[2:0]=0b001 and TABLE_EXEC=0b1), the lookup table write access is finished.

For example, to configure a fixed entry with SPA as port 5 and MAC Address=12-34-56-78-9A-BC:

- Configure WD[7:0]=0x12, WD[15:8]=0x34, WD[23:16]=0x56, WD[31:24]=0x78, WD[39:32]=0x9A, and WD[47:40]=0xBC
- WD[48]=0b0 for Unicast entry
- WD[49]=0b1 for fixed entry, WD[51:50]=0b00
- WD[55:52]=0x5 for port 5
- WD[57:56]=0b11 for aging timer.
- Other reserved and un-defined bits in WD[63:0] must=0b0

Table 25. Data Output Buffer (RD[47:0]) Format for Lookup Table Unicast Entry Read Access

	MAC Address Write Data[47:0]	Example
Byte 5	7 6 5 4 3 2 1 0 WD[7:0]	0x12
Byte 4	7 6 5 4 3 2 1 0 WD[15:8]	0x34
Byte 3	7 6 5 4 3 2 1 0 WD[23:16]	0x56
Byte 2	7 6 5 4 3 2 1 0 WD[31:24]	0x78
Byte 1	7 6 5 4 3 2 1 0 WD[39:32]	0x9A
Byte 0	7 6 5 4 3 2 1 0 WD[47:40]	0xBC

Item
WD[63:0]
Example

Aging	SPA	Reserved	Fixed	Multicast
WD[57:56]	WD[55:52]	WD[51:50]	WD[49]	WD[48]
0b11	0x5	0600	0b1	0b0

When the entry is configured as fixed and enabled, aging must be configured as 0b01: 0b11 for normal searching and forwarding. If the aging of a fixed entry is configured as 0b00, then all packets with the DA=MAC Address will be broadcast to all active ports. Other port's ingress packets with the SA=MAC Address will not be learned into the lookup table.

For example, if the entry 2748 (0xABC) is configured as fixed and aging=0b00, with MAC Address=12-34-56-78-9A-BC, any packets with DA=MAC Address will be broadcast to all active ports, and ingress packets with SA=MAC Address will not be learned into the lookup table.

8.17.3. Look-up Table Read Access Method (Multicast)

The standard Multicast MAC address format is shown in Table 26. The DA MAC address of a Multicast packet ranges from 01-00-5E-00-00-00 to 01-00-5E-7F-FF. The MAC address table consists of 25 fixed bits, and 23 configurable bits.

Table 26. Multicast MAC Address Range and Format

	MAC Address												
Byte 5	7	6	5	4	3	2	1	0	0x01				
Byte 4	7	6	5	4	3	2	1	0	0x00				
Byte 3	7	6	5	4	3	2	1	0	0x5E				
Byte 2	7	6	5	4	3	2	1	0	0x00-0x7F				
Byte 1	7	6	5	4	3	2	1	0	0x00-0xFF				
Byte 0	7	6	5	4	3	2	1	0	0x00-0xFF				

For Lookup Table Multicast entry read access, we need to input the entry number of a specific table. The WD[63:0] format is shown in Table 27. After inputting the lookup table read access command (TABLE_CMD[2:0]=0b000 and TABLE_EXEC=0b1), the returned data will be RD[47:0] as shown in Table 28. Other reserved and un-defined bits in WD[63:0] must=0b0.

Table 27. Data Input Buffer (WD[63:0]) Format for Lookup Table Multicast Entry Read Access

	MAC Address			S	Write Da	ata[47:0]	Exar	nple				
Byte 5	7	6	5	4	3	2	1	0				
Byte 4	7	6	5	4	3	2	1	0				
Byte 3	7	6	5	4	3	2	1	0				
Byte 2	7	6	5	4	3	2	1	0				
Byte 1	7	6	5	4	3	2	1	0		WD[35:32]		0xA
Byte 0	7	6	5	4	3	2	1	0	WD[4	17:40]	0x1	ВС

Table 28. Data Output Buffer (RD[47:0]) Format for Lookup Table Multicast Entry Read Access

		M.	40	C P	١d	dr	es	S	Read Da	ta[47:0]	Exai	mple
Byte 5	7	6	5	4	3	2	1	0				
Byte 4	7	6	5	4	3	2	1	0				
Byte 3	7	6	5	4	3	2	1	0				
Byte 2	7	6	5	4	3	2	1	0	RD[1	11:4]	0x	78
Byte 1	7	6	5	4	3	2	1	0	RD[3:0]		0x9	
Byte 0	7	6	5	4	3	2	1	0				

Item
RD[47:0]
Example

Reserved	Fail	Fixed	Multicast	P8 Aging	 P1 Aging	P0 Aging
RD[47:45]	RD[44]	RD[43]	RD[42]	RD[41:40]	 RD[27:26]	RD[25:24]
0b000	0ь0	0b1	0b1	0b11	 0600	0b11

For example, if we want to read the lookup table multicast entry 2748 (0xABC), then we have to configure:

- WD[35:32] (LVTDIR2[3:0])=0xA
- WD[47:40] (LVTDIR2[15:8])=0xBC
- Others=0

When a fixed multicast entry in the lookup table is 01-00-5E-78-9A-BC, member ports= $\{8, 5, 3, 1, 0\}$. The return data in RD[11:4]=0x78, RD[3:0]=0x9, RD[41:24]=Portn_Aging[1:0] (n=0-8)= $\{0b11\ 0b00\ 0b11\ 0b00\ 0b11\ 0b00\ 0b11\ 0b00\ 0b11\ 0b11\}$, Multicast is in RD[42] = 1, Fixed is in RD[43] = 1, and Fail is in RD[44]=0.

8.17.4. Look-up Table Write Access Method (Multicast)

For Lookup Table Multicast entry write access, we need to input the Multicast MAC address, Multicast flag, Fixed flag, and Aging timer of all 9 ports. The WD[69:0] format is shown in Table 29. After inputting the lookup table write access command (TABLE_CMD[2:0]=0b001 and TABLE EXEC=0b1), the lookup table write access is finished.

For example, to configure a fixed entry with member ports to be Ports {8, 5, 3, 1, 0} and the MAC Address=01-00-5E-78-9A-BC:

- Configure WD[7:0]=0x01, WD[15:8]=0x00, WD[23:16]=0x5E, WD[31:24]=0x78, WD[39:32]=0x9A, and WD[47:40]=0xBC
- WD[48]=0b1 for Multicast entry
- WD[49]=0b1 for fixed entry
- WD[69:52]={0b11 0b00 0b00 0b11 0b00 0b11 0b00 0b11 0b11} for Ports {8, 5, 3, 1, 0} aging timer
- Other reserved and un-defined bits in WD[63:0] must=0b0.

Table 29. Data Input Buffer (WD[69:0]) Format for Lookup Table Multicast Entry Write Access

	MAC Address				dr	ess	S	Write Data[47:0]	Example	
Byte 5	7	6	5	4	3	2	1	0	WD[7:0]	0x01
Byte 4	7	6	5	4	3	2	1	0	WD[15:8]	0x00
Byte 3	7	6	5	4	3	2	1	0	WD[23:16]	0x5E
Byte 2	7	6	5	4	3	2	1	0	WD[31:24]	0x78
Byte 1	7	6	5	4	3	2	1	0	WD[39:32]	0x9A
Byte 0	7	6	5	4	3	2	1	0	WD[47:40]	0xBC

Item
WD[69:0]
Example

P8 Aging	• • •	P1 Aging	P0 Aging	Reserved	Fixed	Multicast
WD[69:68]	• • •	WD[55:54]	WD[53:52]	WD[51:50]	WD[49]	WD[48]
0b11	• • •	0b00	0b11	0b00	0b1	0b1

8.17.5. VLAN Table Read Access Method

For VLAN table read access, we need to input the VLAN entry number into Entry[11:0] (WD[11:0]). After inputting the VLAN table read access command (TABLE_CMD[1:0]=0b10 and TABLE_EXEC=0b1), the returned data will be shown in Member[8:0] (Register RD[8:0]) as shown in Table 30.

Table 30. Data Output Buffer (RD[8:0]) Format for VLAN Table Read Access

Entry[11:0]	VID[11:0]	Member[8:0]
WD[11:0]		RD[8:0]
0	0x000	Reserved
1	0x001	0b010000001
2	0x002	0b010000010
	• • •	
4094	0xFFE	0ь000000000
4095	0xFFF	Reserved

For example, when input data are Entry[11:0]=0x002 (WD[11:0]) in Register LVTDIR0, TABLE_CMD[1:0]=0b10, and TABLE_EXEC=0b1, then the member set of VLAN entry 2 (VID[11:0]=0x002) will return Member[8:0]=0b010000010 (RD[8:0]) in Register LVTDOR0.

8.17.6. VLAN Table Write Access Method

For VLAN table write access, we need to input the VLAN entry number into Entry[11:0] (WD[11:0]) and member set into Member[8:0] (WD[24:16]). After inputting the VLAN table read access command (TABLE_CMD[1:0]=0b11 and TABLE_EXEC=0b1), the VLAN table write access is finished (see Table 31).

Table 31. Data Output Buffer (WD[24:0]) Format for VLAN Table Write Access

Entry[11:0]	VID[11:0]	Member[8:0]
WD[11:0]		WD[24:16]
0	0x000	Reserved
1	0x001	0b010000001
2	0x002	0b010000010
4094	0xFFE	06000000000
4095	0xFFF	Reserved

For example, when input Entry[11:0]=0x001(WD[11:0])in Register LVTDIR0, Member[8:0]=0b010000001 LVTDIR1, TABLE CMD[1:0]=0b11, in Register and TABLE EXEC=0b1, the VLAN entry, VID[11:0]=0x001, is configured as Member={ Port 0 and Port 7}.

9. Interface Descriptions

9.1. EEPROM SMI Host to EEPROM

The EEPROM interface of the RTL8366 and RTL8369 uses the serial bus EEPROM Serial Management Interface (SMI). The 2K-bit 24C02 EEPROM is read via the EEPROM SMI protocol. When the RTL8366/RTL8369 is powered up, the RTL8366/RTL8369 drives SCK and SDA to read the registers from the EEPROM.

Figure 15. EEPROM SMI Host to EEPROM

Figure 16. Host Mode EEPROM SMI Frame

Figure 17. EEPROM SMI Sequential Read

9.2. EEPROM SMI Slave for External CPU

Address: 16'h0318

When EEPROM auto-load is complete, the RTL8366/RTL8369 registers can be accessed via SCK and SDA via an external CPU. The device address of the RTL8366/RTL8369 is 0x4. Read/write timing is shown in Figure 18 and Figure 19. For the start and end of a write/read command, SCK needs one extra clock before/after the start/stop signals.

Register write through EEPROM SMI Slave interface

Figure 18. EEPROM SMI Write Command for Slave Mode

Register read through EEPROM SMI Slave interface

Figure 19. EEPROM SMI Read Command for Slave Mode

9.3. SMI (MDC/MDIO) Interface

The RLT8366/RTL8369 use Simple Management Interface (SMI) via MDC and MDIO signals to poll the MII register of the RTL8212. The polled PHY addresses are in SMI frame format.

Table 32. SMI Frame Format

	Preamble (32 bits)	Start (2 bits)	OP Code (2 bits)	PHYAD (5 bits)	REGAD (5 bits)	Turn Around (2 bits)	Data (16 bits)	Idle
Read	11	01	10	$A_4A_3A_2A_1A_0$	$R_4R_3R_2R_1R_0$	Z0	D_{15} D_{0}	Z*
Write	11	01	01	$A_4A_3A_2A_1A_0$	$R_4R_3R_2R_1R_0$	10	D_{15} D_{0}	Z*

9.4. MAC to PHY Interface: RSGMII (Reduced Serial Gigabit Media Independent Interface)

To reduce PCB complexity and IC pin count, the RTL8366/RTL8369 provides 3/4 innovative 2.5Gbps RSGMII (Reduced Serial Gigabit Media Independent Interface). Each of these serial interfaces can carry data originating from two Gigabit MAC ports simultaneously, and recover clock from the data rather than use a dedicated clock. These interfaces reduces the interconnection between the MAC and PHY to only 5 pins for each dual MAC RTL8212. Figure 20 shows the RSGMII interconnection diagram.

Figure 20. RSGMII Interconnection Diagram

The RSGMII interface runs at 2.5Gbps in 10M/100M/1000Mbps modes. Clearly, a 2.5Gbps data rate is excessive for interfaces operating at 10M/100Mbps. When operating in these conditions, the interface elongates each byte of data by 10 times for 100Mbps, and by 100 times for 10Mbps, through a rate adaptation block.

The data paths and all associated control signals are transferred across from each port and recovered at the receiver side using proprietary transmission code and Serial-De-serial translation. The same method applies to the transmit side. For a detailed description refer to the RTL8212 datasheet.

9.5. General Purpose Interface

The General Purpose Interface (GPIF) can be operated in 3 modes, strapped by GPIF_MODE[4:0] pins upon reset.

- 0b11000: GMII/MII MAC: The interface is run in GMII mode when the port is linked at 1000Mbps. As the speed changes to 100Mbps mode, the interface turns to run in MII MAC mode. 10Mbps is not supported in this configuration.
- 0b11001: RGMII: The interface is run in RGMII mode. Only supports 1000Mbps Full Duplex mode.
- 0b11100: MII PHY mode: The interface is run in MII PHY mode at 100Mbps Full duplex. 100Mbps Half duplex and 10Mbps Full/Half duplex are not supported in this configuration.

When NWay is off in GMII/RGMII mode, the speed is determined by PORT_ABILITY*n*[7:0] (Reg. 0x11-15) configuration. In MII PHY mode, the link/flow control ability is determined by strapped pin P8_PHY_LINK (pin 11) and DIS_FC (pin 7). The P8_PHY_LINK and DIS_FC have their reflected registers, which are configurable by the CPU interface.

Pin No.	GMII/MII	RGMII	MII PHY
126, 128, 1, 2	P8TXD[7:4]	N/A	N/A
3, 4, 5, 6	P8TXD[3:0]	P8TXD[3:0]	P8PRXD[3:0]
7	P8TXEN	N/A	P8PRXDV
9	P8GTXC	P8TXC	P8PRXC
11	P8TXER	P8TXCTRL	N/A
12	P8TXC	N/A	N/A
14	P8CRS	N/A	N/A
16	P8COL	N/A	N/A
17	P8RXER	P8RXCTRL	P8PTXER
18	P8RXC	P8RXC	P8PTXC
19	P8RXDV	N/A	P8PTXEN
29, 28, 27, 26	P8RXD[7:4]	N/A	N/A
24, 22, 21, 20	P8RXD[3:0]	P8RXD[3:0]	P8PTXD[3:0]

Table 33. GMII/RGMII/MII PHY Mode Pins

9.5.1. GMII/MII MAC Mode (Only for 100Mbps and 1000Mbps)

Figure 21. Signal Diagram of GMII Mode Interface (1000Mbps)

9.5.2. MII MAC Mode Interface (100Mbps)

Figure 22. Signal Diagram of MII MAC Mode Interface (100Mbps)

9.5.3. RGMII Mode (Only for 1000Mbps Full Duplex)

Figure 23. Signal Diagram of RGMII Mode Interface

9.5.4. MII PHY Mode (Only for 100Mbps Full Duplex)

Figure 24. Signal Diagram of MII PHY Mode Interface (100Mbps Full)

9.6. Power Management Interface

TBD

10. Register and EEPROM Descriptions

RTL8366/RTL8369 registers can be divided into two parts. One is from 0x0000 to 0x007F and the other is 0x0100 to 0xFFFF

The first part can be configured by EEPROM via auto-load after power on or pin reset. Both parts can be accessed by external CPU via the EEPROM SMI after power on.

Per-port configuration registers for ports 5~7 are not supported in the RTL8366. For example, DISABLE PORT[7:5] is not supported in the RTL8366.

10.1. Registers List Part I

All register values can be configured by EEPROM via auto-load after power on, or pin reset. Two bytes of EEPROM configure 1 register of the RTL8366/RTL8369. For example, data 0x01 and 0x00 configure the register 0x0000. 0x01 is MSB and 0x00 is LSB. If configuration of register 0x00000 is 0x2E04, EEPROM data of 0x01 is 0x2E and 0x00 is 0x04.

10.1.1. **EEPROM Mapped Registers**

Table 34. EEPROM Mapped Registers

EEPROM	Address	Description	Register Name	Bits	Default	Default
0x00	0x0000	Switch Global Control Register	EN_BC_STORM_CTRL	[0]	0b0	0x2E04
0x01		(SGCR)	Internal Use	[1]	0b0	
			Internal Use	[2]	0b1	
			Reserved	[3]	0b0	
			MAX_LENGTH[1:0]	[5:4]	0b0	
			EN_IGMP	[6]	0b0	
			EN_ARP	[7]	0b0	
			DIS_BP	[8]	0b0	
			JAM_MODE	[9]	0b1	
			EN_48PASS1	[10]	0b1	
			MAX_PAUSE_CNT	[11]	0b1	
			EN_MLT_BRD	[12]	0b0	
			Internal Use	[13]	0b1	
			Internal Use	[14]	0b0	
			Internal Use	[15]	0b0	
0x02	0x0001	Port Enable Control Register	DISABLE_PORT[8:0]	[8:0]	0x000	0x0000
0x03		(PECR)	Reserved	[15:9]	0x00	
0x04	0x0002	Switch Security Control	DIS_LEARN[8:0]	[8:0]	0x000	0x0000
0x05		Register 0 (SSCR0)	Reserved	[15:9]	0x00	
0x06	0x0003	Switch Security Control	DIS_AGE[8:0]	[8:0]	0x0	0x0000

EEPROM	Address	Description	Register Name	Bits	Default	Default
0x07		Register 1 (SSCR1)	Reserved	[15:9]	0x00	
0x08	0x0004	Switch Security Control	DROP_UNKNOWN_DA	[0]	0b0	0x0020
0x09		Register 2 (SSCR2)	Internal Use	[1]	0b0	
			Internal Use	[2]	0b0	
			Reserved	[3]	0b0	
			Internal Use	[4]	0b0	
			Internal Use	[5]	0b1	
			Internal Use	[6]	0b0	
			Internal Use	[7]	0b0	
			Reserved	[9:8]	0b00	
			Internal Use	[10]	0b0	
			Reserved	[15:11]	0x00	
0x0A	0x0005	VLAN/Trunk Control Register 0	EN VLAN	[0]	0b0	0x200A
0x0B		(VTCR0)	VLAN TAG AWARE	[1]	0b1	
			VLAN TAG ADMIT	[2]	0b0	
			EN INGRESS RULE	[3]	0b1	
			EN UC LEAKY	[4]	0b0	
			EN ARP LEAKY	[5]	0b0	
			EN IPMC LEAKY	[6]	0b0	
			Internal Use	[7]	0b0	
			Internal Use	[11:8]	0b0	
			EN TAG DROP	[12]	0b0	
			Internal Use	[13]	0b1	
			P8 TAG CONTROL[1:0]	[15:14]	0b0	
0x0C	0x0006	VLAN/Trunk Control Register 1	P0 TAG CONTROL[1:0]	[1:0]	0b00	0x0000
0x0D		(VTCR1)	P1_TAG_CONTROL[1:0]	[3:2]	0b00	
			P2 TAG CONTROL[1:0]	[5:4]	0b00	
			P3 TAG CONTROL[1:0]	[7:6]	0b00	-
			P4 TAG CONTROL[1:0]	[9:8]	0b00	
			P5 TAG CONTROL[1:0]	[11:10]	0b00	
			P6 TAG CONTROL[1:0]	[13:12]	0b00	
			P7 TAG CONTROL[1:0]	[15:14]	0b00	
0x0F	0x0007	Port Mirror Control Register	SOURCE PORT[3:0]	[3:0]	0x0	0x0000
		(PMCR)	MINITOR PORT[3:0]	[7:4]	0x0	
			MIRROR RX	[8]	0b0	
			MIRROR TX	[9]	0b0	
			MIRROR SPC	[10]	0b0	
			MIRROR ISO	[11]	0b0	
			Reserved	[14:12]	0b00	1
			Internal Use	[15]	0b0	<u>'</u>
0x10 0x11	0x0008	Internal Use	N/A	[15:0]	0x0800	0x0800
0x12	0x0009	QoS Control Register 0 (QCR0)	EN_QOS	[0]	0b0	0xF000
0x13			Internal Use	[1]	0b0	1

EEPROM	Address	Description	Register Name	Bits	Default	Default
			EN_PORT_PRI	[2]	0b0	
			EN_DS_PRI	[3]	0b0	
			EN_1Q_PRI	[4]	0b0	
			QWEIGHT[1:0]	[7:6]	0b00	1
			VLAN_PRI_TAB[7:0]	[15:8]	0xF0	1
0x14	0x000A	QoS Control Register 1 (QCR1)	PORT_PRI[8:0]	[8:0]	0x000	0x0000
0x15			Reserved	[15:9]	0x00	1
0x16	0x000B	QoS Control Register 2 (QCR2)	TOS[15:0]	[15:0]	0x0000	0x0000
0x17						
0x18	0x000C	QoS Control Register 3 (QCR3)	TOS[31:16]	[15:0]	0x0000	0x0000
0x19						
0x1A	0x000D	QoS Control Register 4 (QCR4)	TOS[47:32]	[15:0]	0x0000	0x0000
0x1B						
0x1C	0x000E	QoS Control Register 5 (QCR5)	TOS[63:48]	[15:0]	0x0000	0x0000
0x1D	0.000	MAGG + IP 1 + G + 1	A CONTRACTOR OF A CONTRACTOR O	F1.5.03	0.5541	0.5541
0x1E 0x1F	0x000F	MAC Control Packet Control Register 0 (MCPCR0)	MLTIDST[15:0]	[15:0]	0x5541	0x5541
0x11 0x20	0x0010	MAC Control Packet Control	MLTIDST[31:16]	[15:0]	(Strap) 0x5555	0x5555
0x20 0x21	000010	Register 1 (MCPCR1)	WILTIDS1[31.10]	[13.0]	(Strap)	0x3333
0x21	0x0011	Port Advertising Ability Control	PORT_ABILITY0[7:0]	[7:0]	0xFF	0xFFFF
0x23	OXOUTT	Register 0 (PAACR0)	PORT ABILITY1[7:0]	[15:8]	0xFF	OMITI
0x24	0x0012	Port Advertising Ability Control	PORT ABILITY2[7:0]	[7:0]	0xFF	0xFFFF
0x25	0.0012	Register 1 (PAACR1)	PORT ABILITY3[7:0]	[15:8]	0xFF	OXITI
0x26	0x0013	Port Advertising Ability Control	PORT ABILITY4[7:0]	[7:0]	0xFF	0xFFFF
0x27		Register 2 (PAACR2)	PORT ABILITY5[7:0]	[15:8]	0xFF	
0x28	0x0014	Port Advertising Ability Control	PORT_ABILITY6[7:0]	[7:0]	0xFF	0xFFFF
0x29		Register 3 (PAACR3)	PORT ABILITY7[7:0]	[15:8]	0xFF	
0x2A	0x0015	Port Advertising Ability Control	PORT ABILITY8[7:0]	[7:0]	0xFF	0x00FF
0x2B		Register 4 (PAACR4)	Reserved	[15:8]	0x00	
0x2C	0x0016	VLAN ID Configuration	VID0[11:0]	[11:0]	0x100	0x0100
0x2D		Register 0 (VIDCR0)	Reserved	[15:12]	0x0	
0x2E	0x0017	VLAN Member Configuration	MEMBER0[8:0]	[8:0]	0x081	0x0081
0x2F		Register 0 (VMCR0)	Reserved	[15:9]	0x00	
0x30	0x0018	VLAN ID Configuration	VID1[11:0]	[11:0]	0x101	0x0101
0x31		Register 1 (VIDCR1)	Reserved	[15:12]	0x0	
0x32	0x0019	VLAN Member Configuration	MEMBER1[8:0]	[8:0]	0x082	0x0082
0x33		Register 1 (VMCR1)	Reserved	[15:9]	0x00	
0x34	0x001A	VLAN ID Configuration	VID2[11:0]	[11:0]	0x102	0x0102
0x35		Register 2 (VIDCR2)	Reserved	[15:12]	0x0	1
0x36	0x001B	VLAN Member Configuration	MEMBER2[8:0]	[8:0]	0x084	0x0084
0x37		Register 2 (VMCR2)	Reserved	[15:9]	0x00	1
0x38	0x001C	VLAN ID Configuration	VID3[11:0]	[11:0]	0x103	0x0103
0x39		Register 3 (VIDCR3)	Reserved	[15:12]	0x0	1
0x3A	0x001D	VLAN Member Configuration	MEMBER3[8:0]	[8:0]	0x088	0x0088

EEPROM	Address	Description	Register Name	Bits	Default	Default
0x3B		Register 3 (VMCR3)	Reserved	[15:9]	0x00	
0x3C	0x001E	VLAN ID Configuration	VID4[11:0]	[11:0]	0x104	0x0104
0x3D		Register 4 (VIDCR4)	Reserved	[15:12]	0x0	
0x3E	0x001F	VLAN Member Configuration	MEMBER4[8:0]	[8:0]	0x090	0x0090
0x3F		Register 4 (VMCR4)	Reserved	[15:9]	0x00	
0x40	0x0020	VLAN ID Configuration	VID5[11:0]	[11:0]	0x105	0x0105
0x41		Register 5 (VIDCR5)	Reserved	[15:12]	0x0	
0x42	0x0021	VLAN Member Configuration	MEMBER5[8:0]	[8:0]	0x0A0	0x00A0
0x43		Register 5 (VMCR5)	Reserved	[15:9]	0x00	
0x44	0x0022	VLAN ID Configuration	VID6[11:0]	[11:0]	0x106	0x0106
0x45		Register 6 (VIDCR6)	Reserved	[15:12]	0x0	
0x46	0x0023	VLAN Member Configuration	MEMBER6[8:0]	[8:0]	0xC0	0x00C0
0x47		Register 6 (VMCR6)	Reserved	[15:9]	0x00	
0x48	0x0024	VLAN ID Configuration	VID7[11:0]	[11:0]	0x107	0x0107
0x49		Register 7 (VIDCR7)	Reserved	[15:12]	0x0	
0x4A	0x0025	VLAN Member Configuration	MEMBER7[8:0]	[8:0]	0x0FF	0x00FF
0x4B		Register 7 (VMCR7)	Reserved	[15:9]	0x00	
0x4C	0x0026	VLAN ID Configuration	VID8[11:0]	[11:0]	0x000	0x0000
0x4D		Register 8 (VIDCR8)	Reserved	[15:12]	0x0	
0x4E	0x0027	VLAN Member Configuration	MEMBER8[8:0]	[8:0]	0x000	0x0000
0x4F		Register 8 (VMCR8)	Reserved	[15:9]	0x00	
0x50	0x0028	VLAN ID Configuration	VID9[11:0]	[11:0]	0x000	0x0000
0x51		Register 9 (VIDCR9)	Reserved	[15:12]	0x0	
0x52	0x0029	VLAN Member Configuration	MEMBER9[8:0]	[8:0]	0x000	0x0000
0x53		Register 9 (VMCR9)	Reserved	[15:9]	0x00	
0x54	0x002A	VLAN ID Configuration	VID10[11:0]	[11:0]	0x000	0x0000
0x55		Register 10 (VIDCR10)	Reserved	[15:12]	0x0	
0x56	0x002B	VLAN Member Configuration	MEMBER10[8:0]	[8:0]	0x000	0x0000
0x57		Register 10 (VMCR10)	Reserved	[15:9]	0x00	
0x58	0x002C	VLAN ID Configuration	VID11[11:0]	[11:0]	0x000	0x0000
0x59		Register 11 (VIDCR11)	Reserved	[15:12]	0x0	
0x5A	0x002D	VLAN Member Configuration	MEMBER11[8:0]	[8:0]	0x000	0x0000
0x5B		Register 11 (VMCR11)	Reserved	[15:9]	0x00	
0x5C	0x002E	VLAN ID Configuration	VID12[11:0]	[11:0]	0x000	0x0000
0x5D		Register 12 (VIDCR12)	Reserved	[15:12]	0x0	
0x5E	0x002F	VLAN Member Configuration	MEMBER12[8:0]	[8:0]	0x000	0x0000
0x5F		Register 12 (VMCR12)	Reserved	[15:9]	0x00	
0x60	0x0030	VLAN ID Configuration	VID13[11:0]	[11:0]	0x000	0x0000
0x61		Register 13 (VIDCR13)	Reserved	[15:12]	0x0	
0x62	0x0031	VLAN Member Configuration	MEMBER13[8:0]	[8:0]	0x000	0x0000
0x63		Register 13 (VMCR13)	Reserved	[15:9]	0x00	
0x64	0x0032	VLAN ID Configuration	VID14[11:0]	[11:0]	0x000	0x0000
0x65		Register 14 (VIDCR14)	Reserved	[15:12]	0x0	

EEPROM	Address	Description	Register Name	Bits	Default	Default
0x66	0x0033	VLAN Member Configuration	MEMBER14[8:0]	[8:0]	0x000	0x0000
0x67		Register 14 (VMCR14)	Reserved	[15:9]	0x00	
0x68	0x0034	VLAN ID Configuration	VID15[11:0]	[11:0]	0x000	0x0000
0x69		Register 15 (VIDCR15)	Reserved	[15:12]	0x0	
0x6A	0x0035	VLAN Member Configuration	MEMBER15[8:0]	[8:0]	0x000	0x0000
0x6B		Register 15 (VMCR15)	Reserved	[15:9]	0x00	
0x6C	0x0036	LED Control Register 0 (LCR0)	ol Register 0 (LCR0) LED_MODE[1:0] [1:0] 0b00	0b00	0x0000	
0x6D			LED_BLINK_TIME	[2]	0b0	
			LED_RESET_BLINK	[3]	0b0	
			Internal Use	[5:4]	0b00	
			Internal Use	[7:6]	0b00	
			Internal Use	[9:8]	0b00	
			Internal Use	[11:10]	0b00	
			Internal Use	[12]	0b0]
			Reserved	[15:13]	0b000	1
0x6E 0x6F	0x0037	Internal Use	N/A	[15:0]	0x4305	0x4305
0x70	0x0038	MIB Counter Control Register 0	MIB0_SELA[1:0]	[1:0]	0b01	0x0505
0x71		(MCCR0)	MIB0_SELB[1:0]	[3:2]	0b01	1
			MIB0_SELC[1:0]	[5:4]	0b00	
			Reserved	[7:6]	0b00	
			MIB1_SELA[1:0]	[9:8]	0b01]
			MIB1_SELB[1:0]	[11:10]	0b01	
			MIB1_SELC[1:0]	[13:12]	0b00]
			Reserved	[15:14]	0b00	
0x72	0x0039	MIB Counter Control Register 1	MIB2_SELA[1:0]	[1:0]	0b01	0x0505
0x73		(MCCR1)	MIB2_SELB[1:0]	[3:2]	0b01	
			MIB2_SELC[1:0]	[5:4]	0b00	- - -
			Reserved	[7:6]	0b00	
			MIB3_SELA[1:0]	[9:8]	0b01	
			MIB3_SELB[1:0]	[11:10]	0b01	1
			MIB3_SELC[1:0]	[13:12]	0b00	1
			Reserved	[15:14]	0b00	1
0x74	0x003A	MIB Counter Control Register 2	MIB4_SELA[1:0]	[1:0]	0b01	0x0505
0x75		(MCCR2)	MIB4_SELB[1:0]	[3:2]	0b01	1
			MIB4_SELC[1:0]	[5:4]	0b00	1
			Reserved	[7:6]	0b00	- - - -
			MIB5_SELA[1:0]	[9:8]	0b01	
			MIB5_SELB[1:0]	[11:10]	0b01	
			MIB5_SELC[1:0]	[13:12]	0b00	
			Reserved	[15:14]	0b00	
0x76	0x003B	MIB Counter Control Register 3	MIB6_SELA[1:0]	[1:0]	0b01	0x0505
0x77		(MCCR3)	MIB6_SELB[1:0]	[3:2]	0b01	1
			MIB6 SELC[1:0]	[5:4]	0b00	1

EEPROM	Address	Description	Register Name	Bits	Default	Default
			Reserved	[7:6]	0b00	
			MIB7_SELA[1:0]	[9:8]	0b01	
			MIB7_SELB[1:0]	[11:10]	0b01	
			MIB7_SELC[1:0]	[13:12]	0b00	
			Reserved	[15:14]	0b00	
0x78	0x003C	MIB Counter Control Register 4	MIB8_SELA[1:0]	[1:0]	0b01	0x0005
0x79		(MCCR4)	MIB8_SELB[1:0]	[3:2]	0b01	
			MIB8_SELC[1:0]	[5:4]	0b00	
			Reserved	[15:6]	0b00	
0x7A	0x003D	0x003D RX Spanning Tree Statistic	P0RXSTS[1:0]	[1:0]	0b11	0xFFFF
0x7B		Register 0 (RSTSR0)	P1RXSTS[1:0]	[3:2]	0b11	
			P2RXSTS[1:0]	[5:4]	0b11	
			P3RXSTS[1:0]	[7:6]	0b11	
			P4RXSTS[1:0]	[9:8]	0b11	
			P5RXSTS[1:0]	[11:10]	0b11	
			P6RXSTS[1:0]	[13:12]	0b11	
			P7RXSTS[1:0]	[15:14]	0b11	
0x7C	0x003E	RX Spanning Tree Statistic	P8RXSTS[1:0]	[1:0]	0b11	0x0003
0x7D		Register 1 (RSTSR1)	Reserved	[15:3]	0x0000	
0x7E	0x003F	TX Spanning Tree Statistic	TXSTS[8:0]	[8:0]	0x1FF	0x01FF
0x7F		Register (TSTSR)	Reserved	[15:9]	0x00	
0x80 0x81	0x0040	Internal Use	N/A	[15:0]	0x0C18	0x0C18
0x82 0x83	0x0041	Internal Use	N/A	[15:0]	0x1120	0x1120
0x84 0x85	0x0042	Internal Use	N/A	[15:0]	0x000D	0x000D
0x86 0x87	0x0043	Internal Use	N/A	[15:0]	0x000D	0x000D
0x88 0x89	0x0044	Reserved	N/A	[15:0]	0x0000	0x0000
0x8A 0x8B	0x0045	Internal Use	N/A	[15:0]	0x0000	0x0000
0x8C 0x8D	0x0046	Switch MAC Address Register 0 (SMAR0)	SWITCH_MAC[15:0]	[15:0]	0x0000	0x0000
0x8E 0x8F	0x0047	Switch MAC Address Register 1 (SMAR1)	SWITCH_MAC[31:16]	[15:0]	0x0000	0x0000
0x90 0x91	0x0048	Switch MAC Address Register 2 (SMAR2)	SWITCH_MAC[47:32]	[15:0]	0x0000	0x0000
0x92 0x93	0x0049	Internal Use	Internal Use	[15:0]	0x8899	0x8899
0x94	0x004A	Internal Use	N/A	[1:0]	0b00	0x0000
0x95			Reserved	[15:2]	0x0000	
0x96	0x004B	Internal Use	N/A	[7:0]	0xFF	0x01FF
0x97			Reserved	[15:8]	0x01	

0x99 0x9A 0x9B 0x9C 0x9D 0x9E	0x004C 0x004D 0x004E	Description Internal Use Switch IP Address Register 0	N/A	[15:0]	0x8369	0x8369
0x9A 0x9B 0x9C 0x9D 0x9E						1
0x9B 0x9C 0x9D 0x9E						
0x9D 0x9E	0x004E	(SIAR0)	SW_IP[15:0]	[15:0]	0x0101	0x0101
0x9E		Switch IP Address Register 1 (SIAR1)	SW_IP[31:16]	[15:0]	0xC0A 8	0xC0A8
	0x004F	Internal Use	N/A	[7:0]	0x00	0x0000
0x9F			Reserved	[15:8]	0x00	
0xA0	0x0050	P8 GMII Control Register	GPIF MODE[2:0]	[2:0]	0b000	0xF300
0xA1		(P8GCR)	Internal Use	[3]	0b0	
			Internal Use	[4]	0b0	
			Internal Use	[5]	0b0	
			Internal Use	[6]	0b0	
			P8 PHY LINK	[7]	0b0	
			P8 PHY XFC[1:0]	[9:8]	0b11	
			P8 PHY SPD	[10]	0b0	
			Internal Use	[11]	0b0	
			P8RXC DELAY	[12]	0b1	
			P8TXC DELAY	[13]	0b1	
			GPIF MODE[4:3]	[15:14]	0b11	
0xA2	0x0051	System Vendor ID Register 0	VENDOR ID[15:0]	[15:0]	0x0000	0x0000
0xA3	0.10021	(SVIDR0)	VENDOR_ID[15.0]	[13.0]	onooo	ONOGO
0xA4 0xA5	0x0052	System Vendor ID Register 1 (SVIDR1)	VENDOR_ID[31:16]	[15:0]	0x0000	0x0000
	0x0053	Internal Use	N/A	[15:0]	0x7D1 B	0x7D1B
	0x0054	Internal Use	N/A	[15:0]	0x0000	0x0000
	0x0055	Internal Use	N/A	[15:0]	0x0000	0x0000
0xAC 0xAD	0x0056	Internal Use	N/A	[15:0]	0x0000	0x0000
0xAE 0xAF	0x0057	Internal Use	N/A	[15:0]	0x0000	0x0000
0xB0	0x0058	Port VLAN Index Control	P0PVID[3:0]	[3:0]	0x0	0x3210
0xB1	0.0000	Register 0 (PVICR0)	P1PVID[3:0]	[7:4]	0x1	0.0.5210
			P2PVID[3:0]	[11:8]	0x2	
			P3PVID[3:0]	[15:12]	0x2	-
0xB2	0x0059	Port VLAN Index Control	P4PVID[3:0]	[3:0]	0x4	0x7654
0xB2	UNUUU	Register 2 (PVICR1)	P5PVID[3:0]	[7:4]	0x5	JA 7 0 5 T
			P6PVID[3:0]	[11:8]	0x6	_
			P7PVID[3:0]	[15:12]	0x7	
0xB4	0x005A	Port VLAN Index Control	P8PVID[3:0]	[3:0]	0x7	0x0008
0xB4 0xB5	UAUUJA	Register 2 (PVICR2)	Reserved	[15:4]	0x000	0.0000
	0x005B	Internal Use	N/A	[8:0]	0x000	0x0000

EEPROM	Address	Description	Register Name	Bits	Default	Default
0xB7			Reserved	[15:9]	0x00	
0xB8~ 0xCF	0x005C~ 0x0067	Reserved	N/A	[15:0]	0x0000	0x0000
0xD0~ 0xFD	0x0068~ 0x007E	Internal Use	N/A	[15:0]	0x0000	0x0000
0xFE 0xFF	0x007F	Internal Use	N/A	[15:0]	0x0000	0x0000

10.2. Registers List Part II

Table 35. Registers List Part II

Address	Description	Register Name	Bits	Default	Default
0x0100	Reset Control Register (RCR)	CHIP_RESET	[0]	0b0	0x0000
		SOFT_RESET	[1]	0b0	
		MIB_RESET	[2]	0b0	
		Reserved	[15:3]	0x0000	
0x0101	Internal Use	N/A	[8:0]	0x000	0x0000
		Reserved	[15:9]	0x00	
0x0102	Internal Use	N/A		0x0008	0x0008
0x0103	Internal Use	N/A	[8:0]	0x000	0x3000
		Reserved	[11:9]	0b000	
		N/A	[12]	0b1	
		N/A	[13]	0b1	
		Reserved	[15:14]	0b00	
0x0104	Chip Version Control Register (CVCR)	CHIP_VER[3:0]	[3:0]	0x1	0x0001
		Reserved	[15:4]	0x000	
0x0105	Internal Use	N/A	[15:0]	0x8369	0x8369
0x0106~ 0x010B	Reserved	N/A	[15:0]	0x0000	0x0000
0x010C	Internal Use	N/A	[15:0]	N/A	N/A
0x010D	Internal Use	N/A	[15:0]	N/A	N/A
0x010E	Internal Use	N/A	[15:0]	N/A	N/A
0x010F	Enable VLAN Table Control Register	EN_VLAN_TBL	[0]	0b0	0x0000
	(EVTCR)	Reserved	[15:1]	0x0000	
0x0110	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0111	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0112	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0113	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0118	PHY Access Control Register 0	PHY_EXEC	[0]	0b0	0x0000
	(PHYACR0)	PHY_RW	[1]	0b0	
		Reserved	[15:2]	0x0000	
0x0119	PHY Access Control Register 1	PHY_ADD[4:0]	[4:0]	0x00	0x0000
	(PHYACR1)	Reserved	[15:5]	0x000	
	1	1		1	

Address	Description	Register Name	Bits	Default	Default
0x011A	PHY Access Control Register 2	PHY_REG[4:0]	[4:0]	0x00	0x0000
	(PHYACR2)	Reserved	[15:5]	0x000	
0x011B	PHY Access Control Register 3 (PHYACR3)	PHY_DATA_IN[15:0]	[15:0]	0x0000	0x0000
0x011C	PHY Access Control Register 4 (PHYACR4)	PHY_DATA_OUT[15:0]	[15:0]	0x0000	0x0000
0x011D~ 0x011F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0120	Port 0 MIB Counter A 0 (P0MIB_CNTA0)	MIB0_CNTA[15:0]	[15:0]	0x0000	0x0000
0x0121	Port 0 MIB Counter A 1 (P0MIB_CNTA1)	MIB0_CNTA[31:16]	[15:0]	0x0000	0x0000
0x0122	Port 0 MIB Counter B 0 (P0MIB_CNTA0)	MIB0_CNTB[15:0]	[15:0]	0x0000	0x0000
0x0123	Port 0 MIB Counter B 1 (P0MIB_CNTA1)	MIB0_CNTB[31:16]	[15:0]	0x0000	0x0000
0x0124	Port 0 MIB Counter C 0 (P0MIB_CNTA0)	MIB0_CNTC[15:0]	[15:0]	0x0000	0x0000
0x0125	Port 0 MIB Counter C 1 (P0MIB_CNTA1)	MIB0_CNTC[31:16]	[15:0]	0x0000	0x0000
0x0126	Port 1 MIB Counter A 0 (P1MIB_CNTA0)	MIB1_CNTA[15:0]	[15:0]	0x0000	0x0000
0x0127	Port 1 MIB Counter A 1 (P1MIB_CNTA1)	MIB1_CNTA[31:16]	[15:0]	0x0000	0x0000
0x0128	Port 1 MIB Counter B 0 (P1MIB CNTA0)	MIB1 CNTB[15:0]	[15:0]	0x0000	0x0000
0x0129	Port 1 MIB Counter B 1 (P1MIB CNTA1)	MIB1 CNTB[31:16]	[15:0]	0x0000	0x0000
0x012A	Port 1 MIB Counter C 0 (P1MIB CNTA0)	MIB1 CNTC[15:0]	[15:0]	0x0000	0x0000
0x012B	Port 1 MIB Counter C 1 (P1MIB CNTA1)	MIB1 CNTC[31:16]	[15:0]	0x0000	0x0000
0x012C	Port 2 MIB Counter A 0 (P2MIB CNTA0)	MIB2 CNTA[15:0]	[15:0]	0x0000	0x0000
0x012D	Port 2 MIB Counter A 1 (P2MIB CNTA1)	MIB2_CNTA[31:16]	[15:0]	0x0000	0x0000
0x012E	Port 2 MIB Counter B 0 (P2MIB CNTA0)	MIB2 CNTB[15:0]	[15:0]	0x0000	0x0000
0x012F	Port 2 MIB Counter B 1 (P2MIB CNTA1)	MIB2 CNTB[31:16]	[15:0]	0x0000	0x0000
0x0130	Port 2 MIB Counter C 0 (P2MIB CNTA0)	MIB2_CNTC[15:0]	[15:0]	0x0000	0x0000
0x0131	Port 2 MIB Counter C 1 (P2MIB CNTA1)	MIB2 CNTC[31:16]	[15:0]	0x0000	0x0000
0x0132	Port 3 MIB Counter A 0 (P3MIB CNTA0)	MIB3 CNTA[15:0]	[15:0]	0x0000	0x0000
0x0133	Port 3 MIB Counter A 1 (P3MIB CNTA1)	MIB3 CNTA[31:16]	[15:0]	0x0000	0x0000
0x0134	Port 3 MIB Counter B 0 (P3MIB CNTA0)	MIB3 CNTB[15:0]	[15:0]	0x0000	0x0000
0x0135	Port 3 MIB Counter B 1 (P3MIB CNTA1)	MIB3 CNTB[31:16]	[15:0]	0x0000	0x0000
0x0136	Port 3 MIB Counter C 0 (P3MIB CNTA0)	MIB3 CNTC[15:0]	[15:0]	0x0000	0x0000
0x0137	Port 3 MIB Counter C 1 (P3MIB CNTA1)	MIB3 CNTC[31:16]	[15:0]	0x0000	0x0000
0x0138	Port 4 MIB Counter A 0 (P4MIB CNTA0)	MIB4 CNTA[15:0]	[15:0]	0x0000	0x0000
0x0139	Port 4 MIB Counter A 1 (P4MIB CNTA1)	MIB4 CNTA[31:16]	[15:0]	0x0000	0x0000
0x013A	Port 4 MIB Counter B 0 (P4MIB CNTA0)	MIB4 CNTB[15:0]	[15:0]	0x0000	0x0000
0x013B	Port 4 MIB Counter B 1 (P4MIB CNTA1)	MIB4 CNTB[31:16]	[15:0]	0x0000	0x0000
0x013C	Port 4 MIB Counter C 0 (P4MIB CNTA0)	MIB4 CNTC[15:0]	[15:0]	0x0000	0x0000
0x013D	Port 4 MIB Counter C 1 (P4MIB_CNTA1)	MIB4_CNTC[31:16]	[15:0]	0x0000	0x0000
0x013E	Port 5 MIB Counter A 0 (P5MIB CNTA0)	MIB5 CNTA[15:0]	[15:0]	0x0000	0x0000
0x013F	Port 5 MIB Counter A 1 (P5MIB CNTA1)	MIB5 CNTA[31:16]	[15:0]	0x0000	0x0000
0x0140	Port 5 MIB Counter B 0 (P5MIB CNTA0)	MIB5 CNTB[15:0]	[15:0]	0x0000	0x0000
0x0141	Port 5 MIB Counter B 1 (P5MIB CNTA1)	MIB5 CNTB[31:16]	[15:0]	0x0000	0x0000
0x0142	Port 5 MIB Counter C 0 (P5MIB CNTA0)	MIB5 CNTC[15:0]	[15:0]	0x0000	0x0000
0x0143	Port 5 MIB Counter C 1 (P5MIB CNTA1)	MIB5 CNTC[31:16]	[15:0]	0x0000	0x0000

Address	Description	Register Name	Bits	Default	Default
0x0144	Port 6 MIB Counter A 0 (P6MIB_CNTA0)	MIB6_CNTA[15:0]	[15:0]	0x0000	0x0000
0x0145	Port 6 MIB Counter A 1 (P6MIB_CNTA1)	MIB6_CNTA[31:16]	[15:0]	0x0000	0x0000
0x0146	Port 6 MIB Counter B 0 (P6MIB_CNTA0)	MIB6_CNTB[15:0]	[15:0]	0x0000	0x0000
0x0147	Port 6 MIB Counter B 1 (P6MIB_CNTA1)	MIB6_CNTB[31:16]	[15:0]	0x0000	0x0000
0x0148	Port 6 MIB Counter C 0 (P6MIB_CNTA0)	MIB6_CNTC[15:0]	[15:0]	0x0000	0x0000
0x0149	Port 6 MIB Counter C 1 (P6MIB_CNTA1)	MIB6_CNTC[31:16]	[15:0]	0x0000	0x0000
0x014A	Port 7 MIB Counter A 0 (P7MIB_CNTA0)	MIB7_CNTA[15:0]	[15:0]	0x0000	0x0000
0x014B	Port 7 MIB Counter A 1 (P7MIB_CNTA1)	MIB7_CNTA[31:16]	[15:0]	0x0000	0x0000
0x014C	Port 7 MIB Counter B 0 (P7MIB_CNTA0)	MIB7_CNTB[15:0]	[15:0]	0x0000	0x0000
0x014D	Port 7 MIB Counter B 1 (P7MIB_CNTA1)	MIB7_CNTB[31:16]	[15:0]	0x0000	0x0000
0x014E	Port 7 MIB Counter C 0 (P7MIB_CNTA0)	MIB7_CNTC[15:0]	[15:0]	0x0000	0x0000
0x014F	Port 7 MIB Counter C 1 (P7MIB_CNTA1)	MIB7_CNTC[31:16]	[15:0]	0x0000	0x0000
0x0150	Port 8 MIB Counter A 0 (P8MIB CNTA0)	MIB8 CNTA[15:0]	[15:0]	0x0000	0x0000
0x0151	Port 8 MIB Counter A 1 (P8MIB CNTA1)	MIB8 CNTA[31:16]	[15:0]	0x0000	0x0000
0x0152	Port 8 MIB Counter B 0 (P8MIB CNTA0)	MIB8 CNTB[15:0]	[15:0]	0x0000	0x0000
0x0153	Port 8 MIB Counter B 1 (P8MIB CNTA1)	MIB8 CNTB[31:16]	[15:0]	0x0000	0x0000
0x0154	Port 8 MIB Counter C 0 (P6MIB CNTA0)	MIB8 CNTC[15:0]	[15:0]	0x0000	0x0000
0x0155	Port 8 MIB Counter C 1 (P8MIB CNTA1)	MIB8 CNTC[31:16]	[15:0]	0x0000	0x0000
0x0156	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0157	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0158	Flow Control Status Register (FCSR)	FLOWCTRL[8:0]	[8:0]	0x000	0x0000
		Reserved	[15:9]	0x00	
0x0159	Port Status Register 0 (PSR0)	PORT_STATUS0[7:0]	[7:0]	0xE0	0xE0E0
		PORT_STATUS1[7:0]	[15:8]	0xE0	
0x015A	Port Status Register 1 (PSR1)	PORT_STATUS2[7:0]	[7:0]	0xE0	0xE0E0
		PORT_STATUS3[7:0]	[15:8]	0xE0	
0x015B	Port Status Register 2 (PSR2)	PORT_STATUS4[7:0]	[7:0]	0xE0	0xE0E0
		PORT_STATUS5[7:0]	[15:8]	0xE0	
0x015C	Port Status Register 3 (PSR3)	PORT_STATUS6[7:0]	[7:0]	0xE0	0xE0E0
		PORT_STATUS7[7:0]	[15:8]	0xE0	
0x015D	Port Status Register 4 (PSR4)	PORT_STATUS8[7:0]	[7:0]	0xEE	0x00EE
		Reserved	[15:8]	0x00	
0x015E	Internal Use	N/A	[15:0]	N/A	N/A
0x015F	Internal Use	N/A	[15:0]	N/A	N/A
0x0160	Internal Use	N/A	[15:0]	N/A	N/A
0x0161	Internal Use	N/A	[15:0]	N/A	N/A
0x0162	Internal Use	N/A	[15:0]	N/A	N/A
0x0163	Internal Use	N/A	[15:0]	N/A	N/A
0x0164	Internal Use	N/A	[15:0]	N/A	N/A
0x0165	Internal Use	N/A	[15:0]	N/A	N/A
0x0166	Internal Use	N/A	[15:0]	N/A	N/A
0x0167	Internal Use	N/A	[15:0]	N/A	N/A
0x0168	Internal Use	N/A	[15:0]	N/A	N/A

Address	Description	Register Name	Bits	Default	Default
0x0169	Internal Use	N/A	[15:0]	N/A	N/A
0x016A	Internal Use	N/A	[15:0]	N/A	N/A
0x016B	Internal Use	N/A	[15:0]	N/A	N/A
0x016C	Internal Use	N/A	[15:0]	N/A	N/A
0x016D	Internal Use	N/A	[15:0]	N/A	N/A
0x016E	Internal Use	N/A	[15:0]	N/A	N/A
0x016F	Internal Use	N/A	[15:0]	N/A	N/A
0x0170	EEPROM Status Register (EEPSR)	EEPROM_EXISTENCE	[0]	0b0	0x0004
		Internal Use	[1]	0b0	
		EERPOM_RDY	[2]	0b1	
		Reserved	[15:3]	0x0000	
0x0171	Internal Use	N/A	[3:0]	0x0	0x0000
		Reserved	[15:4]	0x000	
0x0172	Internal Use	N/A	[15:0]	N/A	N/A
0x0173	Internal Use	N/A	[15:0]	N/A	N/A
0x0174	Internal Use	N/A	[15:0]	N/A	N/A
0x0175	Internal Use	N/A	[15:0]	N/A	N/A
0x0176	Internal Use	N/A	[15:0]	N/A	N/A
0x0177	Internal Use	N/A	[15:0]	N/A	N/A
0x0178	Internal Use	N/A	[15:0]	N/A	N/A
0x0179	Internal Use	N/A	[15:0]	N/A	N/A
0x017A	Internal Use	N/A	[15:0]	N/A	N/A
0x0180	Lookup & VLAN Table Access Control	TABLE_EXEC	[0]	0b0	0x0000
	Register (LVTACR)	Reserved	[7:1]	0x00	
		TABLE_CMD[2:0]	[10:8]	0b000	
		Reserved	[15:11]	0x00	
0x0182	Lookup & VLAN Table Data Input Register 0 (LVTDIR0)	WD[15:0]	[15:0]	0x0000	0x0000
0x0183	Lookup & VLAN Table Data Input Register 1 (LVTDIR1)	WD[31:16]	[15:0]	0x0000	0x0000
0x0184	Lookup & VLAN Table Data Input Register 2 (LVTDIR2)	WD[47:32]	[15:0]	0x0000	0x0000
0x0185	Lookup & VLAN Table Data Input Register 3 (LVTDIR3)	WD[63:48]	[15:0]	0x0000	0x0000
0x0186	Lookup & VLAN Table Data Input	WD[69:64]	[5:0]	0x00	0x00
	Register 4 (LVTDIR4)	Reserved	[15:6]	0x000	0x000
0x0188	Lookup & VLAN Table Data Output Register 0 (LVTDOR0)	RD[15:0]	[15:0]	0x0000	0x0000
0x0189	Lookup & VLAN Table Data Output Register 1 (LVTDOR1)	RD[31:16]	[15:0]	0x0000	0x0000
0x018A	Lookup & VLAN Table Data Output Register 2 (LVTDOR2)	RD[47:32]	[15:0]	0x0000	0x0000
0x018B - 0x018F	Reserved	N/A	[15:0]	0x0000 0	0x0000
0x0190	Internal Use	N/A	[15:0]	0x0000	0x0000

Address	Description	Register Name	Bits	Default	Default
0x0191	Reserved	N/A	[15:0]	0x0000	0x0000
0x0192	Internal Use	N/A	[15:0]	N/A	N/A
0x0193	Internal Use	N/A	[15:0]	N/A	N/A
0x0194	Internal Use	N/A	[15:0]	0x01FF	0x01FF
0x0195	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0196	Internal Use	N/A	[15:0]	0x0001	0x0001
0x0197	Internal Use	N/A	[15:0]	0x0001	0x0001
0x0198	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0199	Internal Use	N/A	[15:0]	0x0040	0x0040
0x019A	Internal Use	N/A	[15:0]	0xFFFF	0xFFFF
0x019B	Internal Use	N/A	[15:0]	0xFFFF	0xFFFF
0x019C	Internal Use	N/A	[15:0]	0xFFFF	0xFFFF
0x019D	Internal Use	N/A	[15:0]	0x0009	0x0009
0x019E	Internal Use	N/A	[15:0]	0x4C00	0x4C00
0x019F	Internal Use	N/A	[15:0]	0x5452	0x5452
0x01A0~ 0x01DF	Internal Use	N/A	[15:0]	N/A	N/A
0x01E0~ 0x01FF	Reserved	N/A	[15:0]	0x0000	0x0000
0x0200	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0201	Internal Use	N/A	[15:0]	0x0003	0x0003
0x0202	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0203	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0204	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0205	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0206	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0207	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0208	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0209	Internal Use	N/A	[15:0]	0x0000	0x0000
0x020A	Internal Use	N/A	[15:0]	0x0000	0x0000
0x020B~ 0x020F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0210~ 0x021A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x021B~ 0x021F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0220~ 0x022A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x022B~ 0x022F	Reserved	N/A	[15:0]	0x0000	0x0000

Address	Description	Register Name	Bits	Default	Default
0x0230~ 0x023A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x023B~ 0x023F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0240~ 0x024A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x024B~ 0x024F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0250~ 0x025A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x025B~ 0x025F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0260~ 0x026A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x026B~ 0x026F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0270~ 0x027A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x027B~ 0x027F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0280~ 0x028A	Internal Use	N/A	[15:0]		Same as 0x0200: 0x021A
0x028B~ 0x028F	Reserved	N/A	[15:0]	0x0000	0x0000
0x0290	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0291	Internal Use	N/A	[15:0]	0xFFFF	0xFFFF
0x0292	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0293	Internal Use	N/A	[15:0]	0x0000	0x0000
0x0294~ 0xFFFF	Reserved	N/A	[15:0]	0x0000	0x0000

10.3. Registers Description Part I

10.3.1. 0x0000: Switch Global Control Register (SGCR)

Table 36. 0x0000: Switch Global Control Register (SGCR)

Reg.	Bits	Name	Description	R/W	Default
0x000	0	EN_BC_STORM_CTRL	Enable Broadcast Storm Filtering Control. Set Enables the broadcast storm filtering control function. 0b1: Enable Broadcast storm filtering control 0b0: Disable Broadcast storm filtering control	R/W	0b0
	1	Internal Use	N/A	R/W	0b0
	2	Internal Use	N/A	R/W	0b1
	3	Reserved			0b0
	5:4	MAX_LENGTH[1:0]	Configures the maximum length of valid packets. 0b00: 1522 bytes 0b01: 1536 bytes 0b10: 1552 bytes 0b11: 9216 bytes	R/W	0b00
	6	EN_IGMP	Enables IGMP (DA=01-00-5E-00-00-00 to 01-00-5E-7F-FF) snooping. 0b0: Disabled 0b1: Enabled	R/W	0b0
	7	EN_ARP	Enables the awareness of ARP packet (EtherType=0x0806). 0b0: Disable awareness of ARP packets 0b1: Enable awareness of ARP packets	R/W	0b0
	8	DIS_BP	Disables half duplex flow control features. 0b0: Enable half duplex flow control features 0b1: Disable half duplex flow control features	R/W	0b0
	9	JAM_MODE	There are two half duplex flow control modes. One is BACK-PRESSURE mode, the other is defer mode. 0b0: BACK-PRESSURE mode 0b1: DEFER mode	R/W	0b1
	10	EN_48PASS1	Enables receiving a packet after 48 consecutive BACK-PRESSURE packets. 0b0: No 48 pass 1 0b1: Enabled.	R/W	0b1
	11	MAX_PAUSE_CNT	Limits the maximum consecutive pause frame number when congestion occurs. 0b0: Limit to maximum of 128 consecutive pause frames. 0b1: Un-limit the max consecutive pause frame number.	R/W	0b1

Reg.	Bits	Name	Description	R/W	Default
	12	EN_MLT_BRD	Configures the multicast and broadcast packet Egress drop policy. When any of the destination ports of the packet is in a congestion state, this bit controls whether the packet should be dropped at ingress or egress. 0b0: Drops the packet at ingress 0b1: Drops the packet at egress	R/W	060
	13	Internal Use	N/A	R/W	0b1
	14	Internal Use	N/A	R/W	0b0
	15	Internal Use	N/A	R/W	0b0
0x0002	8:0	DIS_LEARN[8:0]	0b0: Enables learning of packets received from the port0b1: Disables learning of packets received from the port	R/W	0x000
	15:9	Reserved			0x00
0x0003	8:0	DIS_AGE[8:0]	0b0: Enables auto aging of packets received from the port 0b1: Disables auto aging of packets received from the port	R/W	0x000
	15:9	Reserved			0x00
0x0004	0	DROP_UNKNOW_DA	0b0: Do not drop packets whose DA has not been learned 0b1: Drop packets whose DA has not been learned Note: Even if the learning function is enabled, the switch will not learn the SA of dropped packets.	R/W	0b0
	1	Internal Use	N/A	R/W	0b0
	2	Internal Use	N/A	R/W	0b0
	3	Reserved			0b0
	4	Internal Use	N/A	R/W	0b0
	5	Internal Use	N/A	R/W	0b1
	6	Internal Use	N/A	R/W	0b0
	7	Internal Use	N/A	R/W	0b0
	9:8	Reserved			0b00
	10	Internal Use	N/A	R/W	0b0
	15:11	Reserved			0x00

10.3.2. 0x0005 ~ 0x0006: VLAN/Trunk Control Register 0-1 (VTCR0-1)

Table 37. 0x0005 ~ 0x0006: VLAN/Trunk Control Register 0-1 (VTCR0-1)

Reg.	Bits	Name	Description	R/W	Default
0x0005	0	EN_VLAN	Enable VLAN function. When the VLAN function is enabled, the power- on default VLAN topology is 8 Home VLANs for non-EEPROM environments. 0b0: Disables the VLAN function 0b1: Enables the VLAN function	R/W	060
	1	VLAN_TAG_AWARE	IEEE 802.1Q VLAN tag aware. If 802.1Q VLAN aware is enabled, the switch will identify the VLAN by the VID of the VLAN tag for tagged frames, and by the PVID of each ingress port for un-tagged frames. If 802.1Q VLAN aware is disabled, the switch will identify the VLAN by the PVID of each ingress port for all frames. 0b0: Disable 802.1Q VLAN aware 0b1: Enable 802.1Q VLAN aware	R/W	0b1
	2	VLAN_TAG_ADMIT	Ingress rule for acceptable frame types control. If this parameter is set to 'Admit only VLAN- Tagged Frames', any frames received on that port that carry no VID (i.e., Untagged Frames or Priority-Tagged Frames) are discarded. If this parameter is set to 'Admit all Frames', all incoming Priority-Tagged and Untagged Frames are associated with a VLAN by the ingress rule on the receiving port. 0b0: Admit all Frames 0b1: Admit only VLAN-Tagged Frames	R/W	0ь0
	3	EN_INGRESS_RULE	Ingress rule for ingress member filtering control. If the EN_INGRESS_RULE is set, then all frames received on a port whose VLAN classification does not include that port in its member set shall be discarded. 0b0: Disable ingress member set filtering 0b1: Enable ingress member set filtering	R/W	0b1
	4	EN_UC_LEAKY	Unicast Packet Inter-VLAN Leaky Control. Enables inter-VLAN communication for unicast forwarding packets. Normally, inter-VLAN packet switching is not valid. The RTL8369 supports a control bit that enables inter-VLAN communication in the switch without an external router. 0b0: Disable 0b1: Enable	R/W	0ь0

Reg.	Bits	Name	Description	R/W	Default
	5	EN_ARP_LEAKY	ARP broadcast Packet Inter-VLAN Leaky Control. Enables inter-VLAN communication for ARP broadcast packets (DA=FF-FF-FF-FF-FF-FF and EtherType=0x0806) forwarding. 0b0: Disable 0b1: Enable Note: Before enabling this function, EN_ARP in the SGCR register (0x0000) must be enabled.	R/W	0b0
	6	EN_IPMC_LEAKY	IP Multicast Packet Inter-VLAN Leaky Control. Enables inter-VLAN communication for IP Multicast packet (DA=01-00-5E-00-00-00 to 01- 00-5E-7F-FF-FF) forwarding. 0b0: Disable 0b1: Enable Note: Before enabling this function, EN_IGMP in the SGCR register (0x0000) must be enabled.	R/W	060
	7	Internal Use	N/A	R/W	0b0
	11:8	Internal Use	N/A	R/W	0x0
	12	EN_TG_DROP	Enables dropping of VLAN tagged packets. 0b0: Normal operation 0b1: Drop VLAN tagged packets	R/W	0b0
	13	Internal Use	N/A	R/W	0b1
	15:14	P8_TAG_CONTROL[1:0]	VLAN tagging un-tagging control. 0b00: Keep all packets unchanged 0b01: Insert VLAN tag according to the PVID of the Ingress port 0b10: Remove VLAN-tagged for tagged frame 0b11: Insert priority tag according to the priority of the packet	R/W	0ь00
0x0006	1:0	P0_TAG_CONTROL[1:0]	VLAN tagging/un-tagging control. 0b00: Keep all packets unchanged 0b01: Insert VLAN tag according to the PVID of the Ingress port 0b10: Remove VLAN-tagged for tagged frame 0b11: Insert priority tag according to the priority of the packet	R/W	0b00
	3:2	P1_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	5:4	P2_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	7:6	P3_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	9:8	P4_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	11:10	P5_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	13:12	P6_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00
	15:14	P7_TAG_CONTROL[1:0]	Same as P0_TAG_CONTROL[1:0]	R/W	0b00

10.3.3. 0x0007: Port Mirror Control Register (PMCR)

Table 38. 0x0007: Port Mirror Control Register (PMCR)

Reg.	Bits	Name	Description	R/W	Default
0x0007	3:0	SOURCE_PORT[3:0]	Select the source port to be mirrored.	R/W	0x0
	7:4	MONITOR_PORT[3:0]	Select the monitor port.	R/W	0x0
	8	MIRROR_RX	Enable the mirror function on RX of the source port. 0b0: Disable 0b1: Enable	R/W	0b0
	9	MIRROR_TX	Enable the mirror function on TX of the source port. 0b0: Disable 0b1: Enable	R/W	0b0
	10	MIRROR_SPC	Enable forwarding of RX pause frames to mirror port. 0b0: Disable 0b1: Enable	R/W	0b0
	11	MIRROR_ISO	Enable isolation of TX traffic on the monitor port. 0b0: Normal operation 0b1: The monitor port will accept only packets from the source port. Other packets destined to the monitor port will be dropped.	R/W	0b0
	14:12	Reserved			0b000
	15	Internal Use	N/A	R/W	0b0

10.3.4. $0x0009 \sim 0x000E$: QoS Control Register 0-5 (QCR0-5)

Table 39. 0x0009 ~ 0x000E: QoS Control Register 0-5 (QCR0-5)

Reg.	Bits	Name	Description	R/W	Default
0x0009	0	EN_QOS	Enable the QOS function. 0b0: Disable all QOS functions 0b1: Enable QOS functions	R/W	0b0
	1	Internal Use	N/A	R/W	0b0
	2	EN_PORT_PRI	Enable port priority QOS. When the bit is set, the PORT_PRI register will be used to classify the priority of the packets. 0b0: Disable 0b1: Enable Note: EN_QOS in Register QCR0 (0x0009) must be enabled first.	R/W	0b0
	3	EN_DS_PRI	Enable IP Differential Service based priority classification. When this bit is set, the TOS[63:0] field of IP packets will be used to classify the priority of the packets. 0b0: Disable 0b1: Enable Note: EN_QOS in Register QCR0 (0x0009) must be enabled first.	R/W	0b0
	4	EN_1Q_PRI	Enable 802.1Q VLAN tag base priority classification. When the bit is set, the VLAN tag is compared with PRI_THRESHOLD[2:0]. If the priority field in the VLAN tag > PRI_THRESHOLD then the packet is a high priority packet. Other cases are classified as low priority packets. 0b0: Disable 0b1: Enable Note: EN_QOS in Register QCR0 (0x0009) must be enabled first.	R/W	0b0
	7:6	QWEIGHT[1:0]	The ratio of high priority packet and low priority packet to send when QOS is enabled. 0b00: 4:1 0b01: 8:1 0b10: 16:1 0b11: Unlimited	R/W	0600
	15:8	VLAN_PRI_TAB[7:0]	Sets the VLAN tag user priority field to high/low priority. For example, if VLAN_PRI_TAB[7:0]=0b10101010, that means that packets with VLAN tag USER_PRIORITY[2:0]=0x1, 0x3, 0x5, 0x7 are high priority packets. 0b0: Low priority 0b1: High priority	R/W	0xF0

Reg.	Bits	Name	Description	R/W	Default
0x000A	8:0	PORT_PRI[8:0]	The priority of the ports when EN_PORT_PRI is set. 0b0: Low priority 0b1: High priority	R/W	0x000
	15:9	Reserved			0x00
0x000B	15:0	TOS[15:0]	The IP Differential Service table. TOS[0] indicates the priority of Differential Service code 000000	R/W	0x0000
0x000C	15:0	TOS[31:16]	TOS[1] indicates the priority of Differential Service code 000001	R/W	0x0000
0x000D	15:0	TOS[47:32]	TOS[32] indicates the priority of Differential Service code 100000 TOS[63] indicates the priority of Differential	R/W	0x0000
0x000E	15:0	TOS[63:48]	Service code 111111 Etc 0b0: Low priority 0b1: High priority	R/W	0x0000

10.3.5. 0x000F ~ 0x0010: MAC Control Packet Control Register 0-1 (MCPCR0-1)

Table 40. 0x000F ~ 0x0010: MAC Control Packet Control Register 0-1 (MCPCR0-1)

Reg.	Bits	Name	Description	R/W	Default
0x000F	15:0	MLTID_ST[7:0][1:0]	The forwarding control for well-known multicast addresses (0180C2000000~0180C200000F). {MLTID_ST[n][1:0]} indicates forwarding of 0180C200000n addressed packets.	R/W	0x5541 (strap)
0x0010	15:0	MLTID_ST[15:8][1:0]	For n=1, 0180C2000001, MCPCR0[3:2]=MLTID_ST[1][1:0], Pause frames are always filtered when configured as 0b01 (Forward). For n =2, 0180C2000002, MCPCR0[5:4]=MLTID_ST[1][1:0], packets are always filtered when configured as 0b01 (Forward). MLTD_ST[n][1:0]=0b00: Drop MLTD_ST[n][1:0]=0b01: Forward MLTD_ST[n][1:0]=Others: Reserved	R/W	0x5555 (strap)

10.3.6. $0x0011 \sim 0x0015$: Port Advertising Ability Control Register 0-4 (PAACR0-4)

Table 41. 0x0011 ~ 0x0015: Port Advertising Ability Control Register 0-4 (PAACR0-4)

Reg.	Bits	Name	Description	R/W	Default
0x0011	0	Port0_Ability[0] (Port0_AN)	Enables auto negotiation. This bit will be reflected in PHY register 0.12. 0b0: Disable Auto negotiation 0b1: Enable Auto negotiation	R/W	0b1
	1	Port0_Ability[1] (Port0_10H)	Enables 10M half duplex mode ability. This bit will be reflected in PHY register 4.5 0b0: Disable 10M half duplex mode ability 0b1: Enable 10M half duplex mode ability	R/W	0b1
	2	Port0_Ability[2] (Port0_10F)	Enables 10M full duplex mode ability. This bit will be reflected in PHY register 4.6 0b0: Disable 10M full duplex mode ability 0b1: Enable 10M full duplex mode ability	R/W	0b1
	3	Port0_Ability[3] (Port0_100H)	Enables 100M half duplex mode ability. This bit will be reflected in PHY register 4.7 0b0: Disable 100M half duplex mode ability 0b1: Enable 100M half duplex mode ability	R/W	0b1
	4	Port0_Ability[4] (Port0_100F)	Enables 100M full duplex mode ability This bit will be reflected in PHY register 4.8 0b0: Disable 100M full duplex mode ability 0b1: Enable 100M full duplex mode ability	R/W	0b1
	5	Port0_Ability[5] (Port0_1000F)	Enables 1000M full duplex mode ability. This bit will be reflected in PHY register 9.9 0b0: Disable 1000M full duplex mode ability 0b1: Enable 1000M full duplex mode ability	R/W	0b1
	6	Port0_Ability[6] (Port0_FC)	Enables flow control ability. This bit will be reflected in PHY register 4.10	R/W	0b1
	7	Port0_Ability[7] (Port0_ASYFC)	Enables flow control ability. This bit will be reflected in PHY register 4.11	R/W	0b1
	15:8	Port1_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
0x0012	7:0	Port2_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
	15:8	Port3_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
0x0013	7:0	Port4_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
	15:8	Port5_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
0x0014	7:0	Port6_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
	15:8	Port7_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
0x0015	7:0	Port8_Ability[7:0]	Same as Port0_Ability[7:0]	R/W	0xFF
	15:8	Reserved			0x00

10.3.7. 0x0016/0018/.../0034: VLAN ID Configuration Register 0-15 (VIDCR0-15)

Table 42. 0x0016/0018/.../0034: VLAN ID Configuration Register 0-15 (VIDCR0-15)

Reg.	Bits	Name	Description	R/W	Default
0x0016	11:0	VID0[11:0]	The VID of VLAN group 0.	R/W	0x100
	15:12	Reserved			0x0
0x0018	11:0	VID1[11:0]	The VID of VLAN group 1.	R/W	0x101
	15:12	Reserved			0x0
0x001A	11:0	VID2[11:0]	The VID of VLAN group 2.	R/W	0x102
	15:12	Reserved			0x0
0x001C	11:0	VID3[11:0]	The VID of VLAN group 3.	R/W	0x103
	15:12	Reserved			0x0
0x001E	11:0	VID4[11:0]	The VID of VLAN group 4.	R/W	0x104
	15:12	Reserved			0x0
0x0020	11:0	VID5[11:0]	The VID of VLAN group 5.	R/W	0x105
	15:12	Reserved			0x0
0x0022	11:0	VID6[11:0]	The VID of VLAN group 6.	R/W	0x106
	15:12	Reserved			0x0
0x0024	11:0	VID7[11:0]	The VID of VLAN group 7.	R/W	0x107
	15:12	Reserved			0x0
0x0026	11:0	VID8[11:0]	The VID of VLAN group 8.	R/W	0x000
	15:12	Reserved			0x0
0x0028	11:0	VID9[11:0]	The VID of VLAN group 9.	R/W	0x000
	15:12	Reserved			0x0
0x002A	11:0	VID10[11:0]	The VID of VLAN group 10.	R/W	0x000
	15:12	Reserved			0x0
0x002C	11:0	VID11[11:0]	The VID of VLAN group 11.	R/W	0x000
	15:12	Reserved			0x0
0x002E	11:0	VID12[11:0]	The VID of VLAN group 12.	R/W	0x000
	15:12	Reserved			0x0
0x0030	11:0	VID13[11:0]	The VID of VLAN group 13.	R/W	0x000
	15:12	Reserved			0x0
0x0032	11:0	VID14[11:0]	The VID of VLAN group 14.	R/W	0x000
	15:12	Reserved			0x0
0x0034	11:0	VID15[11:0]	The VID of VLAN group 15.	R/W	0x000
	15:12	Reserved			0x0

10.3.8. 0x0017/0019/.../0035: VLAN Member Configuration Register 0-15 (VMCR0-15)

Table 43. 0x0017/0019/.../0035: VLAN Member Configuration Register 0-15 (VMCR0-15)

Reg.	Bits	Name	Description	R/W	Default
0x0017	8:0	Member0[8:0]	The VLAN member set of VLAN group 0.	R/W	0x081
	15:9	Reserved			0x00
0x0019	8:0	Member1[8:0]	The VLAN member set of VLAN group 1.	R/W	0x082
	15:9	Reserved			0x00
0x001B	8:0	Member2[8:0]	The VLAN member set of VLAN group 2.	R/W	0x084
	15:9	Reserved			0x00
0x001D	8:0	Member3[8:0]	The VLAN member set of VLAN group 3.	R/W	0x088
	15:9	Reserved			0x00
0x001F	8:0	Member4[8:0]	The VLAN member set of VLAN group 4.	R/W	0x090
	15:9	Reserved			0x00
0x0021	8:0	Member5[8:0]	The VLAN member set of VLAN group 5.	R/W	0x0A0
	15:9	Reserved			0x00
0x0023	8:0	Member6[8:0]	The VLAN member set of VLAN group 6.	R/W	0x0C0
	15:9	Reserved			0x00
0x0025	8:0	Member7[8:0]	The VLAN member set of VLAN group 7.	R/W	0x0FF
	15:9	Reserved			0x00
0x0027	8:0	Member8[8:0]	The VLAN member set of VLAN group 8.	R/W	0x000
	15:9	Reserved			0x00
0x0029	8:0	Member9[8:0]	The VLAN member set of VLAN group 9.	R/W	0x000
	15:9	Reserved			0x00
0x002B	8:0	Member10[8:0]	The VLAN member set of VLAN group 10.	R/W	0x000
	15:9	Reserved			0x00
0x002D	8:0	Member11[8:0]	The VLAN member set of VLAN group 11.	R/W	0x000
	15:9	Reserved			0x00
0x002F	8:0	Member12[8:0]	The VLAN member set of VLAN group 12.	R/W	0x000
	15:9	Reserved			0x00
0x0031	8:0	Member13[8:0]	The VLAN member set of VLAN group 13.	R/W	0x000
	15:9	Reserved			0x00
0x0033	8:0	Member14[8:0]	The VLAN member set of VLAN group 14.	R/W	0x000
	15:9	Reserved			0x00
0x0035	8:0	Member15[8:0]	The VLAN member set of VLAN group 15.	R/W	0x000
	15:9	Reserved			0x00

10.3.9. $0x0036 \sim 0x0037$: LED Control Register 0-1 (LCR0-1)

Table 44. 0x0036 ~ 0x0037: LED Control Register 0-1 (LCR0-1)

Reg.	Bits	Name	Description	R/W	Default
0x0036	1:0	LED_MODE[1:0]	LED mode configuration. 0b00: DUPLEX/COL, LINK/ACT, 1000M, 100M/10M 0b01: DUPLEX/COL, 1000M LINK/ACT, 100M LINK/ACT, 10M LINK/ACT. 0b10: Bicolor LED (1000M+Link/Act, 100M/10M+Link/ACT), NC, NC, NC. 0b11: Serial LED mode.	R/W	0600
	2	LED_BLINK_TIME	LED blink time configuration. 0b0: 43 msec. 0b1: 120 msec.	R/W	0b0
	3	LED_RESET_BLINK	LED behavior at power on reset. 0b0: LED does not blink during power on reset 0b1: LED blinks during power on reset	R/W	0b1
	5:4	GPLED0[1:0]	General purpose LED behavior configuration.	R/W	0b00
	7:5	GPLED1[1:0]	These registers are only valid when	R/W	0b00
	9:8	GPLED2[1:0]	LED_MODE=0b11.	R/W	0b00
	11:10	GPLED3[1:0]		R/W	0b00
	12	Internal Use	N/A	R/W	0b0
	15:13	Reserved			0b000
0x0037	3:0	Internal Use	N/A	R/W	0x5
	7:4	Internal Use		R/W	0x0
	11:8	Internal Use		R/W	0x3
	15:12	Internal Use		R/W	0x4

10.3.10. $0x0038 \sim 0x003C$: MIB Counter Control Register 0-4 (MCCR0-4)

Table 45. 0x0038 ~ 0x003C: MIB Counter Control Register 0-4 (MCCR0-4)

Reg.	Bits	Name	Description	R/W	Default
0x0038	1:0	MIB0_SELA[1:0]	Defines the MIB counter CNTA of port 0.	R/W	0b01
			0b00: TX byte count		
			0b01: TX packet count		
			Others: Reserved		
	3:2	MIB0_SELB[1:0]	Defines the MIB counter CNTB of port 0.	R/W	0b01
			0b00: RX byte count		
			0b01: RX packet count		
			Others: Reserved		

Reg.	Bits	Name	Description	R/W	Default
	5:4	MIB0_SELC[1:0]	Defines the MIB counter CNTC of port 0.	R/W	0b00
			0b00: RX error packet count		
			0b01: RX drop packet count		
			0b10: Collision count		
	7.6	D 1	0b11: Reserved		01-00
	7:6	Reserved	Comp of MIDO CEL ALLOI	D/W	0b00
	9:8	MIB1_SELA[1:0]	Same as MIBO_SELA[1:0].	R/W	0b01
	11:10 13:12	MIB1_SELB[1:0]	Same as MIB0_SELB[1:0]. Same as MIB0_SELC[1:0].	R/W R/W	0b01 0b00
	15:14	MIB1_SELC[1:0] Reserved	Same as WIBU_SELC[1.0].	IX/ W	0b00 0b00
0x0039	1:0	MIB2 SELA[1:0]	Same as MIB0 SELA[1:0].	R/W	0b00 0b01
000039	3:2	MIB2_SELA[1:0] MIB2 SELB[1:0]	Same as MIBO_SELB[1:0].	R/W	0b01 0b01
	5:4	MIB2_SELD[1:0] MIB2 SELC[1:0]	Same as MIBO_SELC[1:0].	R/W	0b01 0b00
	7:6	Reserved	Same as WIDO_SELC[1.0].	IX/ VV	0b00
	9:8	MIB3 SELA[1:0]	Same as MIB0 SELA[1:0].	R/W	0b01
	11:10	MIB3_SELB[1:0]	Same as MIBO_SELB[1:0].	R/W	0b01
	13:12	MIB3_SELC[1:0]	Same as MIB0_SELC[1:0].	R/W	0b00
	15:14	Reserved	Sume as MIDO_SEDE[1.0].	10, 11	0b00
0x003A	1:0	MIB4 SELA[1:0]	Same as MIB0 SELA[1:0].	R/W	0b01
0.10 0.51 1	3:2	MIB4 SELB[1:0]	Same as MIB0 SELB[1:0].	R/W	0b01
	5:4	MIB4_SELC[1:0]	Same as MIB0 SELC[1:0].	R/W	0b00
	7:6	Reserved	_ ' '		0b00
	9:8	MIB5_SELA[1:0]	Same as MIB0 SELA[1:0].	R/W	0b01
	11:10	MIB5_SELB[1:0]	Same as MIB0 SELB[1:0].	R/W	0b01
	13:12	MIB5 SELC[1:0]	Same as MIB0 SELC[1:0].	R/W	0b00
	15:14	Reserved			0b00
0x003B	1:0	MIB6_SELA[1:0]	Same as MIB0_SELA[1:0].	R/W	0b01
	3:2	MIB6_SELB[1:0]	Same as MIB0_SELB[1:0].	R/W	0b01
	5:4	MIB6_SELC[1:0]	Same as MIB0_SELC[1:0].	R/W	0b00
	7:6	Reserved			0b00
	9:8	MIB7_SELA[1:0]	Same as MIB0_SELA[1:0].	R/W	0b01
	11:10	MIB7_SELB[1:0]	Same as MIB0_SELB[1:0].	R/W	0b01
	13:12	MIB7_SELC[1:0]	Same as MIB0_SELC[1:0].	R/W	0b00
	15:14	Reserved			0b00
0x003C	1:0	MIB8_SELA[1:0]	Same as MIB0_SELA[1:0].	R/W	0b01
	3:2	MIB8_SELB[1:0]	Same as MIB0_SELB[1:0].	R/W	0b01
	5:4	MIB8_SELC[1:0]	Same as MIB0_SELC[1:0].	R/W	0b00
	15:6	Reserved			0b00

10.3.11. 0x003D ~ 0x003E: RX Spanning Tree Status Register 0-1 (RSTSR0-1)

Table 46. 0x003D ~ 0x003E: RX Spanning Tree Status Register 0-1 (RSTSR0-1)

Reg.	Bits	Name	Description	R/W	Default
0x003D	1:0	P0RXSTS[1:0]	0b00: Disable	R/W	0b11
			0b01: Blocking/Listening		
			0b10: Learning		
			0b11: Normal receiving.		
	3:2	P1RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	5:4	P2RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	7:6	P3RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	9:8	P4RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	11:10	P5RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	13:12	P6RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	15:14	P7RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
0x003E	1:0	P8RXSTS[1:0]	Same as P0RXSTS[1:0]	R/W	0b11
	15:2	Reserved			0x0000

10.3.12. 0x003F: TX Spanning Tree Status Register (TSTSR)

Table 47. 0x003F: TX Spanning Tree Status Register (TSTSR)

Reg.	Bits	Name	Description	R/W	Default
0x003F	8:0	TXSTS[8:0]	0b0: Stop forwarding for port n	R/W	0x1FF
			0b1: Normal forwarding for port n		
	15:9	Reserved			0x00

10.3.13. $0x0046 \sim 0x0048$: Switch MAC Address Register 0-3 (SMAR0-3)

Table 48. 0x0046 ~ 0x0048: Switch MAC Address Register 0-3 (SMAR0-3)

Reg.	Bits	Name	Description	R/W	Default
0x0046	15:0	SWITCH_MAC[15:0]	Switch MAC address configuration.	R/W	0x0000
0x0047	15:0	SWITCH_MAC[31:16]	For example, if the Switch MAC Address=12-34-	R/W	0x0000
0x0048	15:0	SWITCH_MAC[47:32]	56-78-9A-BC. SWITCH_MAC[15:0]=0x3412 SWITCH_MAC[31:16]=0x7856 SWITCH_MAC[47:32]=0xBC9A	R/W	0x0000

10.3.14. $0x004D \sim 0x004E$: Switch IP Address Register 0-1 (SIAR0-1)

Table 49. 0x004D ~ 0x004E: Switch IP Address Register 0-1 (SIAR0-1)

Reg.	Bits	Name	Description	R/W	Default
0x004D	15:0	SW_IP[15:0]	The IP address of the switch. The default IP is	R/W	0x0101
0x004E	15:0	SW IP[31:16]	192.168.1.1	R/W	0xC0A8
		_ ;	For example, if the Switch IP		
			Address=192.168.1.2=C0.A8.01.02.		
			SWITCH_IP[31:16]=0xC0A8.		
			SWITCH_IP[15:0]=0x0101.		

10.3.15. 0x0050: Port 8 GMII Control Register (P8GCR)

Table 50. 0x0050: Port 8 GMII Control Register (P8GCR)

Reg.	Bits	Name	Description	R/W	Default
0x0050	2:0	GPIF_MODE[2:0]	General Purpose Interface mode configuration bit 2-0: Configures the General Purpose interface as GMII/RGMII/MII PHY when GPIF_MODE[4:3]=0b11. Note that MII PHY mode only supports 100Mbps mode. 0b000: GMII/MII MAC Mode 0b001: RGMII 0b100: MII PHY Mode Others: Reserved	R/W	0ь000
	3	Internal Use		R/W	0b0
	4	Internal Use		R/W	0b0
	5	Internal Use		R/W	0b0
	6	Internal Use		R/W	0b0
	7	P8_PHY_LINK	Configures the link status of port8 when GPIF_MODE[2:0]=0b100. 0b0: Link down 0b1: Link up	R/W	060
	9:8	P8_PHY_XFC[1:0]	Enables flow control of port8 when GPIF_MODE[2:0]=0b100. 0b00 – TX/RX 802.3x flow control are disabled. 0b01 – TX 802.3x flow control is disabled and RX 802.3x flow control is enabled. 0b10 –TX 802.3x flow control is enabled and RX 802.3x flow control is disabled. 0b10: TX 802.3x flow control is enabled and RX 802.3x flow control is disabled. 0b10: TX 802.3x flow control is enabled and RX 802.3x flow control is disabled. 0b11 – TX/RX 802.3x flow control are enabled.	R/W	0b11
	10	P8_PHY_SPD	Configures the speed of port8 when GPIF_MODE[2:0]=0b100. 0b00: 10M 0b01: 100M	R/W	0b0 (strapping)
	11	Internal Use		R/W	0b0

Reg.	Bits	Name	Description	R/W	Default
	12	P8RXC_DELAY	RGMII timing compensation. The compensation is only valid when GMII_MODE= 0b001. 0b0: Disable 0b1: To add a 1.5ns delay on P8RXC	R/W	0b1 (strapping)
	13	P8TXC_DELAY	RGMII timing compensation. The compensation is only valid when GMII_MODE= 0b001. 0b0: Disable 0b1: To add a 1.5ns delay on P8TXC	R/W	0b1 (strapping)
	15:14	GPIF_MODE[4:3]	0b11: MII/GMII/RGMII mode Others: reserved.	R/W	0b11 (strapping)

10.3.16. 0x0058 ~ 0x5A: Port VLAN Index Control Register 0-2 (PVICR0-2)

Table 51. 0x0058 ~ 0x005A: Port VLAN Index Control Register 0-2 (PVICR0-2)

Reg.	Bits	Name	Description	R/W	Default
0x0058	3:0	P0PVID[3:0]	When EN_VLAN_TBL=0, P0PVID[3:0] can be configured from 0x0 to 0xF. When EN_VLAN_TBL=1, P0PVID[3:0] is fixed as 0x0 (used to point to the VID of register VIDCR0 (0x0016)). The switch uses this VID as an index to find the member set in the 4096 VLAN tables.	R/W	0x0
	7:4	P1PVID[3:0]	When EN_VLAN_TBL=0, P1PVID[3:0] can be configured from 0x0 to 0xF. When EN_VLAN_TBL=1, P1PVID[3:0] is fixed as 0x1 (used to point to the VID of register VIDCR1 (0x0018)). The switch uses this VID as an index to find the member set in the 4096 VLAN tables.	R/W	0x1
	11:8	P2PVID[3:0]	When EN_VLAN_TBL=0, P2PVID[3:0] can be configured from 0x0 to 0xF. When EN_VLAN_TBL=1, P2PVID[3:0] is fixed as 0x2 (used to point to the VID of register VIDCR2 (0x001A)). The switch uses this VID as an index to find the member set in the 4096 VLAN tables.	R/W	0x2
	15:12	P3PVID[3:0]	When EN_VLAN_TBL=0, P3PVID[3:0] could be configured from 0x0 to 0xF. When EN_VLAN_TBL=1, P3PVID[3:0] is fixed as 0x3. Which is used to point to the VID of register VIDCR3 (0x001C). The switch uses this VID as an index to find the member set in the 4096 VLAN tables.	R/W	0x3
0x0059	3:0	P4PVID[3:0]	Same as P0PVID[3:0]	R/W	0x4
	7:4	P5PVID[3:0]	Same as P0PVID[3:0]	R/W	0x5
	11:8	P6PVID[3:0]	Same as P0PVID[3:0]	R/W	0x6
	15:12	P7PVID[3:0]	Same as P0PVID[3:0]	R/W	0x7

Reg.	Bits	Name	Description	R/W	Default
0x005A	3:0	P8PVID[3:0]	Same as P0PVID[3:0]	R/W	0x8
	15:4	Reserved		R/W	0x000

10.4. Registers Description Part II

10.4.1. 0x0100: Reset Control Register (RCR)

Table 52. 0x0100: Reset Control Register (RCR)

Reg.	Bits	Name	Description	R/W	Default
0x0100	0	CHIP_RESET	Reset the system to the power-on initial state. - Download configuration from strap pin and EEPROM - Start embedded SRAM BIST (Build In Self Test) - Clear all the Lookup and VLAN tables - Reset all registers to default values - Restart auto-negotiation process 0b0: Normal 0b1: Start chip reset	W/SC	0ь0
	1	SOFT_RESET	Soft Reset. A soft reset will reset the system similar to a power-on reset except that the user configuration will not be cleared: - Restart the auto-negotiation process - Clear FIFO and re-start packet buffer link list 0b0: Normal 0b1: Start soft reset	W/SC	0ь0
	2	MIB_RESET	Reset the MIB counter. 0b0: Normal 0b1: Reset the MIB counter	W/SC	0b0
	15:3	Reserved			0x0000

10.4.2. 0x0104: Chip Version Control Register (CVCR)

Table 53. 0x0104: Chip Version Control Register (CVCR)

Reg.	Bits	Name	Description	R/W	Default
0x0104	3:0	CHIP_VER[3:0]	Chip version indication.	RO	0x1
			This register shows the version number of this chip.		
	15:4	Reserved	•		0x000

10.4.3. 0x010F: Enable VLAN Table Control Register (EVTCR)

Table 54. 0x010F: Enable VLAN Table Control Register (EVTCR)

Reg.	Bits	Name	Description	R/W	Default
0x010F	0	EN_VLAN_TBL	Enables 4096 VLAN tables. 0b0: Disable 0b1: Enable	R/W	0b0
	15:1	Reserved			0x0000

10.4.4. 0x0118 ~ 0x011C: PHY Access Control Register 0-4 (PHYACR0-4)

Table 55. 0x0118 ~ 0x011C: PHY Access Control Register 0-4 (PHYACR0-4)

	Table 33. 0x0110 * 0x0110.1111 Access control Register 0-4 (1111Acres-4)						
Reg.	Bits	Name	Description	R/W	Default		
0x0118	0	PHY_EXEC	Command to access the PHY register according to PHY_RW, PHY_ADD, PHY_REG, or PHY_DATA_OUT. This bit is self-cleared once the access is complete. 0b0: Access complete 0b1: Start to access PHY register	R/W	0b0		
	1	PHY_RW	PHY register read/write command. 0b1: The access is a write access. 0b0: The access is a read access.	R/W	060		
	15:2	Reserved			0x0000		
0x0119	4:0	PHY_ADDR[4:0]	PHY address to be accessed.	R/W	0x00		
	15:5	Reserved			0x000		
0x011A	4:0	PHY_REG[4:0]	PHY register to be accessed.	R/W	0x00		
	15:5	Reserved			0x000		
0x011B	15:0	PHY_DATA_IN[15:0]	Data read from the PHY register. This register is only valid when the access is a write access.	R/W	0x0000		
0x011C	15:0	PHY_DATA_OUT[15:0]	Data to write to the PHY register. This register is only valid when the access is a write access.	RO	0x0000		

10.4.5. $0x0120 \sim 0x0155$: Port *n* MIB Counter (P*n*MIB_CNTA, P*n*MIB_CNTB, and P*n*MIB_CNTC; n=0-8)

Table 56. 0x0120 ~ 0x0155: Port n MIB Counter (PnMIB_CNTA, PnMIB_CNTB, and PnMIB_CNTC; n=0 - 8)

Reg.	Bits	Name	Description	R/W	Default			
Port 0 MIB Counter A 0-1 (P0MIB_CNTA0-1)								
0x0120	15:0	MIB0_CNTA[15:0]	LSB of Port 0 MIB counter group A.	RO	0x0000			
0x0121	15:0	MIB0_CNTA[31:16]	MSB of Port 0 MIB counter group A.	RO	0x0000			
	Port 0 MIB Counter B 0-1 (P0MIB_CNTB0-1)							
0x0122	15:0	MIB0_CNTB[15:0]	LSB of Port 0 MIB counter group B.	RO	0x0000			

Reg.	Bits	Name	Description	R/W	Default
0x0123	15:0	MIB0_CNTB[31:16]	MSB of Port 0 MIB counter group B.	RO	0x0000
		Port 0 M	IB Counter C 0-1 (P0MIB_CNTC0-1)		
0x0124	15:0	MIB0_CNTC[15:0]	LSB of Port 0 MIB counter group C.	RO	0x0000
0x0125	15:0	MIB0_CNTC[31:16]	MSB of Port 0 MIB counter group C.	RO	0x0000
		Port 1 M	IB Counter A 0-1 (P1MIB_CNTA0-1)	<u>.</u>	
0x0126	15:0	MIB1_CNTA[15:0]	LSB of Port 1 MIB counter group A.	RO	0x0000
0x0127	15:0	MIB1_CNTA[31:16]	MSB of Port 1 MIB counter group A.	RO	0x0000
		Port 1 M	IB Counter B 0-1 (P1MIB_CNTB0-1)	<u>.</u>	
0x0128	15:0	MIB1_CNTB[15:0]	LSB of Port 1 MIB counter group B.	RO	0x0000
0x0129	15:0	MIB1_CNTB[31:16]	MSB of Port 1 MIB counter group B.	RO	0x0000
		Port 1 M	IB Counter C 0-1 (P1MIB_CNTC0-1)		
0x012A	15:0	MIB0_CNTC[15:0]	LSB of Port 1 MIB counter group C.	RO	0x0000
0x012B	15:0	MIB0_CNTC[31:16]	MSB of Port 1 MIB counter group C.	RO	0x0000
		Port 2 M	IB Counter A 0-1 (P2MIB_CNTA0-1)		
0x012C	15:0	MIB2_CNTA[15:0]	LSB of Port 2 MIB counter group A.	RO	0x0000
0x012D	15:0	MIB2_CNTA[31:16]	MSB of Port 2 MIB counter group A.	RO	0x0000
		Port 2 M	IB Counter B 0-1 (P2MIB_CNTB0-1)		
0x012E	15:0	MIB2_CNTB[15:0]	LSB of Port 2 MIB counter group B.	RO	0x0000
0x012F	15:0	MIB2_CNTB[31:16]	MSB of Port 2 MIB counter group B.	RO	0x0000
		Port 2 M	IB Counter C 0-1 (P2MIB_CNTC0-1)		
0x0130	15:0	MIB2_CNTC[15:0]	LSB of Port 2 MIB counter group C.	RO	0x0000
0x0131	15:0	MIB2_CNTC[31:16]	MSB of Port 2 MIB counter group C.	RO	0x0000
		Port 3 M	IB Counter A 0-1 (P3MIB_CNTA0-1)		
0x0132	15:0	MIB3_CNTA[15:0]	LSB of Port 3 MIB counter group A.	RO	0x0000
0x0133	15:0	MIB3_CNTA[31:16]	MSB of Port 3 MIB counter group A.	RO	0x0000
		Port 3 M	IB Counter B 0-1 (P3MIB_CNTB0-1)		
0x0134	15:0	MIB3_CNTB[15:0]	LSB of Port 3 MIB counter group B.	RO	0x0000
0x0135	15:0	MIB3_CNTB[31:16]	MSB of Port 3 MIB counter group B.	RO	0x0000
		Port 3 M	IB Counter C 0-1 (P3MIB_CNTC0-1)		
0x0136	15:0	MIB3_CNTC[15:0]	LSB of Port 3 MIB counter group C.	RO	0x0000
0x0137	15:0	MIB3_CNTC[31:16]	MSB of Port 3 MIB counter group C.	RO	0x0000
		Port 4 M	IB Counter A 0-1 (P4MIB_CNTA0-1)		
0x0138	15:0	MIB4_CNTA[15:0]	LSB of Port 4 MIB counter group A.	RO	0x0000
0x0139	15:0	MIB4_CNTA[31:16]	MSB of Port 4 MIB counter group A.	RO	0x0000
		Port 4 M	IB Counter B 0-1 (P4MIB_CNTB0-1)		
0x013A	15:0	MIB4_CNTB[15:0]	LSB of Port 4 MIB counter group B.	RO	0x0000
0x013B	15:0	MIB4_CNTB[31:16]	MSB of Port 4 MIB counter group B.	RO	0x0000
		Port 4 M	IB Counter C 0-1 (P4MIB_CNTC0-1)		
0x013C	15:0	MIB4_CNTC[15:0]	LSB of Port 4 MIB counter group C.	RO	0x0000
0x013D	15:0	MIB4_CNTC[31:16]	MSB of Port 4 MIB counter group C.	RO	0x0000
		Port 5 M	IB Counter A 0-1 (P5MIB_CNTA0-1)		
0x013E	15:0	MIB5_CNTA[15:0]	LSB of Port 5 MIB counter group A.	RO	0x0000
0x013F	15:0	MIB5_CNTA[31:16]	MSB of Port 5 MIB counter group A.	RO	0x0000

Reg.	Bits	Name	Description	R/W	Default
		Port 5 MII	B Counter B 0-1 (P5MIB_CNTB0-1)		
0x0140	15:0	MIB5_CNTB[15:0]	LSB of Port 5 MIB counter group B.	RO	0x0000
0x0141	15:0	MIB5_CNTB[31:16]	MSB of Port 5 MIB counter group B.	RO	0x0000
		Port 5 MII	B Counter C 0-1 (P5MIB_CNTC0-1)		
0x0142	15:0	MIB5_CNTC[15:0]	LSB of Port 5 MIB counter group C.	RO	0x0000
0x0143	15:0	MIB5_CNTC[31:16]	MSB of Port 5 MIB counter group C.	RO	0x0000
		Port 6 MII	3 Counter A 0-1 (P6MIB_CNTA0-1)		
0x0144	15:0	MIB6_CNTA[15:0]	LSB of Port 6 MIB counter group A.	RO	0x0000
0x0145	15:0	MIB6_CNTA[31:16]	MSB of Port 6 MIB counter group A.	RO	0x0000
		Port 6 MII	B Counter B 0-1 (P6MIB_CNTB0-1)		
0x0146	15:0	MIB6_CNTB[15:0]	LSB of Port 6 MIB counter group B.	RO	0x0000
0x0147	15:0	MIB6_CNTB[31:16]	MSB of Port 6 MIB counter group B.	RO	0x0000
		Port 6 MII	B Counter C 0-1 (P6MIB_CNTC0-1)		
0x0148	15:0	MIB6_CNTC[15:0]	LSB of Port 6 MIB counter group C.	RO	0x0000
0x0149	15:0	MIB6_CNTC[31:16]	MSB of Port 6 MIB counter group C.	RO	0x0000
		Port 7 MII	B Counter A 0-1 (P7MIB_CNTA0-1)		
0x014A	15:0	MIB7_CNTA[15:0]	LSB of Port 7 MIB counter group A.	RO	0x0000
0x014B	15:0	MIB7_CNTA[31:16]	MSB of Port 7 MIB counter group A.	RO	0x0000
		Port 7 MII	B Counter B 0-1 (P7MIB_CNTB0-1)		
0x014C	15:0	MIB7_CNTB[15:0]	LSB of Port 7 MIB counter group B.	RO	0x0000
0x014D	15:0	MIB7_CNTB[31:16]	MSB of Port 7 MIB counter group B.	RO	0x0000
		Port 0 MII	B Counter C 0-1 (P7MIB_CNTC0-1)		
0x014E	15:0	MIB7_CNTC[15:0]	LSB of Port 7 MIB counter group C.	RO	0x0000
0x014F	15:0	MIB7_CNTC[31:16]	MSB of Port 7 MIB counter group C.	RO	0x0000
		Port 8 MII	3 Counter A 0-1 (P8MIB_CNTA0-1)		
0x0150	15:0	MIB8_CNTA[15:0]	LSB of Port 8 MIB counter group A.	RO	0x0000
0x0151	15:0	MIB8_CNTA[31:16]	MSB of Port 8 MIB counter group A.	RO	0x0000
		Port 8 MII	B Counter B 0-1 (P8MIB_CNTB0-1)		
0x0152	15:0	MIB8_CNTB[15:0]	LSB of Port 8 MIB counter group B.	RO	0x0000
0x0153	15:0	MIB8_CNTB[31:16]	MSB of Port 8 MIB counter group B.	RO	0x0000
		Port 8 MII	3 Counter C 0-1 (P8MIB_CNTC0-1)		
0x0154	15:0	MIB8_CNTC[15:0]	LSB of Port 8 MIB counter group C.	RO	0x0000
0x0155	15:0	MIB8_CNTC[31:16]	MSB of Port 8 MIB counter group C.	RO	0x0000

10.4.6. $0x0159 \sim 0x015D$: Port Status Register 0-4 (PSR0-4)

Table 57. 0x0159 ~ 0x015D: Port Status Register 0-4 (PSR0-4)

Reg.	Bits	Name	Description	R/W	Default
0x0159	1:0	P0SPD[1:0]	Indicates the current speed of the port.	RO	0b00
			0b00: 10M		
			0b01: 100M		
			0b10: 1000M		
			0b11: Reserved		

Reg.	Bits	Name	Description	R/W	Default
	2	PODUP	Indicates the current duplex status of the port. 0b0: Half duplex 0b1: Full duplex	RO	060
	3	Reserved			0b0
	4	POLINK	Indicates the current link status. 0b0: Link down 0b1: Link up	RO	0b0
	5	POTXPAUSE	Indicates the pause frame transmit ability of the port. 0b0: Inactive 0b1: Active	RO	0b1
	6	PORXPAUSE	Indicates the pause frame response ability of the port. 0b0: Inactive 0b1: Active	RO	0b1
	7	PONWAY	Indicates auto-negotiation enabled or disabled. 0b0: Disable 0b1: Enable	RO	0b1
	9:8	P1SPD[1:0]	Same as P0SPD[1:0]	RO	0b00
	10	P1DUP	Same as P0DUP	RO	0b0
	11	Reserved			0b0
	12	P1LINK	Same as P0LINK	RO	0b1
	13	P1TXPAUSE	Same as P0TXPAUSE	RO	0b1
	14	P1RXPAUSE	Same as PORXPAUSE	RO	0b1
	15	P1NWAY	Same as P0NWAY	RO	0b0
0x015A	7:0	Port 2 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
	15:8	Port 3 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
0x015B	7:0	Port 4 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
	15:8	Port 5 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
0x015C	7:0	Port 6 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
	15:8	Port 7 Property Status Register	Same as Port 0 Property Status Register	RO	0xE0
0x015D	7:0	Port 8 Property Status Register	Same as Port 0 Property Status Register	RO	0xEE
	15:8	Reserved			0x00

10.4.7. 0x0170: EEPROM Status Register (EEPSR)

Table 58. 0x0170: EEPROM Status Register (EEPSR)

Reg.	Bits	Name	Description	R/W	Default
0x0170	0	EEPROM_EXISTENCE	Indicates the existence of EEPROM.	RO	0b0
			0b0: EEPROM does not exist		
			0b1: EEPROM exists		
	1	Internal Use	N/A	RO	0b0
	2	EEPROM_RDY	Indicates the EEPROM SMI access is ready.	RO	0b1
	15:3	Reserved			0x0000

10.4.8. 0x0180 ~ 0x018A: Lookup and VLAN Table Engine Access Control

Table 59. 0x0180 ~ 0x018A: Lookup and VLAN Table Engine Access Control

Reg.	Bits	Name	Description	R/W	Default						
	Lookup & VLAN Table Access Control Register (LVTACR)										
0x0180	0	TABLE_EXEC	0b0: No operation	R/W	0b0						
			0b1: Start to access. Self-cleared when the access is done								
	7:1	Reserved			0x00						
	9:8	TABLE_CMD[1:0]	0b00: Look-up Table Read 0b01: Look-up Table Write 0b10: VLAN Table Read 0b11: VLAN Table Write	R/W	0b00						
	15:10	Reserved			0x00						
0x0181	15:0	Reserved			0x0000						
		Lookup & VLA	N Table Data Input Register 0-3 (LVTDIR0-3)								
0x0182	15:0	WD[15:0]	Write Data Buffer [69:0]	R/W	0x0000						
0x0183	15:0	WD[31:16]		R/W	0x0000						
0x0184	15:0	WD[47:32]		R/W	0x0000						
0x0185	15:0	WD[63:48]		R/W	0x0000						
0x0186	5:0	WD[69:64]		R/W	0x00						
	15:6	Reserved			0x000						
0x0187	15:0	Reserved			0x0000						
		Lookup & VLAN	N Table Data Output Register 0-2 (LVTDOR0-2)								
0x0188	15:0	RD[15:0]		R/W	0x0000						
0x0189	15:0	RD[31:16]		R/W	0x0000						
0x018A	15:0	RD[47:32]		R/W	0x0000						

11. Electrical Characteristics

11.1. Absolute Maximum Ratings

WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified.

Table 60. Absolute Maximum Ratings

Parameter	Min	Max	Units
Storage Temperature	-55	150	°C
Vcc Supply Referenced to GND	-0.5	4.0	V
Digital Input Voltage	-0.5	VDD	V
DC Output Voltage	-0.5	VDD	V

11.2. Operating Range

Table 61. Operating Range

Parameter	Min	Typical	Max	Units
Ambient Operating Temperature (Ta)	0	N/A	70	°C
3.3V Vcc Supply Voltage Range	3.15	3.3	3.45	V
1.8V Vcc Supply Voltage Range	1.71	1.8	1.89	V
1.5V Vcc Supply Voltage Range	1.43	1.5	1.57	V

11.3. Thermal Characteristics

TBD

11.4. DC Characteristics

Table 62. DC Characteristics

Parameter	SYM	Condition	Min	Typical	Max	Units					
System Idle											
Power Supply Current for 3.3V	I_{CC33}			20		mA					
Power Supply Current for 1.8V	I_{CC18}			240		mA					
Power Supply Current for 1.5V	I_{CC15}			170		mA					
Total Power Consumption for all Ports	PS			753		mW					
1000M Active											
Power Supply Current for 3.3V	I_{CC33}			50		mA					

Parameter	SYM	Condition	Min	Typical	Max	Units
Power Supply Current for 1.8V	I _{CC18}			240		mA
Power Supply Current for 1.5V	I _{CC15}			280		mA
Total Power Consumption for all Ports	PS			1017		mW
		100M Active				
Power Supply Current for 3.3V	I_{CC33}			50		mA
Power Supply Current for 1.8V	I_{CC18}			240		mA
Power Supply Current for 1.5V	I_{CC15}			170		mA
Total Power Consumption for all Ports	PS			852		mW
		10M Active	•	•	•	•
Power Supply Current for 3.3V	I_{CC33}			50		mA
Power Supply Current for 1.8V	I _{CC18}			240		mA
Power Supply Current for 1.5V	I_{CC15}			170		mA
Total Power Consumption for all Ports	PS			852		mW
		VDDIO = 3.3V				
TTL Input High Voltage	V _{ih}		2.0			V
TTL Input Low Voltage	V _{il}				0.8	V
Output High Voltage	V _{oh}		2.4			V
Output Low Voltage	V _{ol}				0.4	V
		VDDIO = 2.5V				
TTL Input High Voltage	V_{ih}			TBD		V
TTL Input Low Voltage	V _{il}			TBD		V
Output High Voltage	V _{oh}			TBD		V
Output Low Voltage	V _{ol}			TBD		V

11.5. AC Characteristics

11.5.1. EEPROM SMI (SCK/SDA) Timing Characteristics

TBD

11.5.2. SMI (MDC/MDIO) Timing Characteristics

TBD

11.5.3. GMII/MII Timing Characteristics

Figure 25. GMII/MII Timing Characteristics

Table 63. GMII/MII Timing Characteristics

Parameter	SYM	Description/Condition	I/O	Min	Typical	Max	Units
1000Base-T P8GTXC Output Cycle Time	T _{TX_CYC}	P8GTXC 125MHz clock output.	О		TBD		ns
1000Base-T P8RXC Input Cycle Time	T_{RX_CYC}	P8RXC 125MHz clock input.	Ι		TBD		ns
1000Base-T P8TXD[7:0] and P8TXEN Output Setup Time	T_{TX_SU}		О		TBD		ns
1000Base-T P8TXD[7:0] and GTXCLT Output Hold Time	T_{TX_HO}		О		TBD		ns
1000Base-T P8RXD[7:0] and P8RXCLT Input Setup Time	T_{RX_SU}		I		TBD		ns
1000Base-T P8RXD[7:0] and P8RXCLT Input Hold Time	T _{RX_HO}		I		TBD		ns
100Base-T P8TXC and P8RXC Input Cycle Time	T _{TX&RX_CYC}	P8TXC and P8RXC 25MHz clock input.	I		TBD		ns

Parameter	SYM	Description/Condition	I/O	Min	Typical	Max	Units
100Base-T P8TXD[3:0] and P8TXEN Output Setup Time	T_{TX_SU}		О		TBD		ns
100Base-T P8TXD[3:0] and GTXCLT Output Hold Time	T_{TX_HO}		О		TBD		ns
100Base-T P8RXD[3:0] and P8RXCLT Input Setup Time	T_{RX_SU}		I		TBD		ns
100Base-T P8RXD[3:0] and P8RXCLT Input Hold Time	T _{RX_HO}		I		TBD		ns
10Base-T P8TXC and P8RXC Input Cycle Time	T _{TX&RX_CYC}	P8TXC and P8RXC 2.5MHz clock input.	I		TBD		ns
10Base-T P8TXD[3:0] and P8TXEN Output Setup Time	T_{TX_SU}		О		TBD		ns
10Base-T P8TXD[3:0] and GTXCLT Output Hold Time	T_{TX_HO}		О		TBD		ns
10Base-T P8RXD[3:0] and P8RXCLT Input Setup Time	T_{RX_SU}		I		TBD		ns
10Base-T P8RXD[3:0] and P8RXCLT Input Hold Time	T_{RX_HO}		I		TBD		ns

11.5.4. RGMII Timing Characteristics

Figure 26. RGMII Timing Characteristics

Table 64. RGMII Timing Characteristics

Parameter	SYM	Description/Condition	I/O	Min	Typical	Max	Units
1000Base-T P8TXC Output Cycle Time	T _{TX_CYC}	P8TXC 125MHz clock output.	О		TBD		ns
1000Base-T P8RXC Input Cycle Time	T_{RX_CYC}	P8RXC 125MHz clock input.	I		TBD		ns
1000Base-T P8TXD[3:0] and P8TXCLT Output Setup Time	T_{TX_SU}	Disable P8TXC delay (P8TXC_DELAY=0b0).	О		TBD		ns
1000Base-T P8TXD[3:0] and P8TXCLT Output Hold Time	T_{TX_HO}	Disable P8TXC delay (P8TXC_DELAY=0b0).	О		TBD		ns
1000Base-T P8TXD[3:0] and P8TXCLT Output Setup Time with P8TXC Delay	$T_{TX_SU_D}$	Enable P8TXC delay (P8TXC_DELAY=0b1).	О		TBD		ns
1000Base-T P8TXD[3:0], P8TXCLT Output Hold Time with P8TXC Delay	$T_{TX_HO_D}$	Enable P8TXC delay (P8TXC_DELAY=0b1).	О		TBD		ns
1000Base-T P8RXD[3:0] and P8RXCLT Input Setup Time	T_{RX_SU}	Disable P8RXC delay (P8RXC_DELAY=0b0).	I		TBD		ns
1000Base-T P8RXD[3:0] and RXCLT Input Hold Time	T _{RX_HO}	Disable P8RXC delay (P8RXC_DELAY=0b0).	I		TBD		ns
1000Base-T P8RXD[3:0] and P8RXCLT Input Setup Time with P8RXC Delay	T _{RX_SU_D}	Enable P8RXC delay (P8RXC_DELAY=0b1).	I		TBD		ns
1000Base-T P8RXD[3:0] and P8RXCLT Input Hold Time with P8RXC Delay	T _{RX_HO_D}	Enable P8RXC delay (P8RXC_DELAY=0b1).	I		TBD		ns

12. Mechanical Dimensions

Symbol	Dime	nsions in i	inches	Dim	ensions in	mm
	Min	Typical	Max	Min	Typical	Max
A	-	-	0.134	-	-	3.40
A1	0.004	0.010	0.036	0.10	0.25	0.91
A2	0.102	0.112	0.122	2.60	2.85	3.10
b	0.005	0.009	0.013	0.12	0.22	0.32
С	0.002	0.006	0.010	0.05	0.15	0.25
D	0.541	0.551	0.561	13.75	14.00	14.25
Е	0.778	0.787	0.797	19.75	20.00	20.25
е	0.010	0.020	0.030	0.25	0.5	0.75
HD	0.665	0.677	0.689	16.90	17.20	17.50
HE	0.902	0.913	0.925	22.90	23.20	23.50
L	0.027	0.035	0.043	0.68	0.88	1.08
L1	0.053	0.063	0.073	1.35	1.60	1.85
у		-	0.004		-	0.10
θ	0°	-	12°	0°	-	12°

- 1. Dimensions D & E do not include interlead flash.
- 2. Dimension b does not include dambar rotrusion/intrusion.
- 3. Controlling dimension: Millimeter
- 4. General appearance spec. Should be based on final visual inspection.

TITLE:								
-CU L/F, FOOTPRINT 3.2 mm								
LEADFRAME MATERIAL:								
APPROVE	APPROVE DOC. NO.							
		VERSION	1.1					
		PAGE						
CHECK		DWG NO.	Q128 - 1					
	DATE 12 February 2003							
REALTEK SEMICONDUCTOR CORP.								

13. Ordering Information

Table 65. Ordering Information

Part Number	Part Number Package				
RTL8366-GR	128-Pin PQFP in 'Green' Package				
RTL8369-GR	128-Pin PQFP in 'Green' Package				

Note: See page 9 and 10 for package identification information.

Realtek Semiconductor Corp.

Headquarters

No. 2, Industry East Road IX, Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C.

Tel: 886-3-5780211 Fax: 886-3-5776047

www.realtek.com.tw