

Reg.No	19BEC0358		
Student Name	ARPIT PATAWAT		
Course Code	ECE3002	Slot & Semester	L43+L44
			WINTER 2021-22
Course Name	VLSI system design		
Program Title	Lab Assignment 2		
Faculty	Dr. Ragunath G		

School of Electronics Engineering ,VIT, Vellore

- 1. Design a 2 input MUX using Pass Transistor Logic (using NMOS)
- 2. Design a 2 input MUX using Transmission Gate Logic.

1).
Aim → to design MUX using pass transistor logic
Circuit Diagram → Width = length = 180 nm

Simulation \rightarrow

Result →

Here we can see 5 waves, which are Select line, compliment of select line, Input A, Input B and finally the Output B respectively. When Select line is 0 then output is A and when select line is 1 then output is B. since we are using pass transistor logic so we can expect degraded 1 output which can be seen as input is 1.358V(VDD) but output is 0.872V which is near to VDD-Vth or (1.358-0.45) V

2.
Aim → to design MUX using Transistor gate logic
Circuit Diagram →

Simulation \rightarrow

Result →

Here we can see 5 waves, which are Select line, compliment of select line, Input A, Input B and finally the Output B respectively. When Select line is 0 then output is A and when select line is 1 then output is B. since we are using transistor gate logic so we can expect correct output VDD (1.358V).

-----XXXXX------