Universidad del Valle de Guatemala Digital 2 Kurt Kellner Pablo Rene Arellano Estrada 151379

MINI-PROYECTO 1 -SPI-

ARCHIVOS Y LIBRERIAS .C Y .H:

MAESTRO	PIC 1	PIC 2	PIC 3
MAESTRO_SPI.C	SLAVE_POT_SPI.C	SLAVE_PUSH_SPI.C	SLAVE_SEMAFORO_SPI.C
SPI_SPI.C SPI_SPI.H	SPI_SPI.C SPI_SPI.H	SPI_SPI.C SPI_SPI.H	SPI_SPI.C SPI_SPI.H
LCD_SPI.C LCD_SPI.H	ADC_ADC.C ADC_ADC.H		ADC_ADC.C ADC_ADC.H
USART_SPI.C USART_SPI.H			

PSEUDOCODIGO-MAESTRO:

- 1. Se llama a las librerias correspondeintes:
 - xc.h
 - Variables de ancho definido stdint.h
 - Tipos de variables, macros, entradas y salidas stdio.h
 - Libreria de comunicacion SPI
 - Libreria de comunicacion USART
 - Libreria de pantalla LCD
- 2. Puerto PORTCbits.RC0 = 0 para SS de potenciometro;
 - Se envia dato por SPI_Enviar ()
 - Se recibe dato enviado de esclavo SPI_Recibir()
 - Puerto PORTCbits.RC0 = 1 para deseleccionar potenciometero;
- 3. Puerto PORTCbits.RC1 = 0 para SS de botones;
 - Se envia dato por SPI Enviar ()
 - Se recibe dato enviado de esclavo SPI_Recibir()
 - Puerto PORTCbits.RC1 = 1 para deseleccionar botones
- 4. Puerto PORTCbits.RC2 = 0 para SS de semaforo;
 - Se envia dato por SPI_Enviar ()
 - Se recibe dato enviado de esclavo SPI_Recibir()
 - Puerto PORTCbits.RC2 = 1 para deseleccionar semaforo
- 5. En Lcd se coloca el cursor en (0,1)
 - Se escribe ("ADC: BTN: TEMP:")
- 6. En Lcd se coloca el cursor en (2,1)
 - Dato pot de PIC1
 - pot = voltaje * 4 para conversion

- unidad = pot / 100 para unidad
- x1 = pot % 100 y x2 = x1 / 10 para milésima
- y1 = x1 % 10
 y y2 = y1 / 1
 para centesima
- Escribir en LCD (unidad)
- Escribir en LCD (punto)
- Escribir en LCD (milesima)
- Escribir en LCD (centesima)
- 7. En Terminal Virtual escribir:
 - Escribir en Terminal (ADC:)
 - Escribir en Terminal (unidad)
 - Escribir en Terminal (punto)
 - Escribir en Terminal (milesima)
 - Escribir en Terminal (centesima)
- 8. En Lcd se coloca el cursor en (2,7)
 - Dato botones de PIC2
 - Si dato es < 10:
 - Escribir en LCD (cero)
 - Escribir en LCD (dato botones)
 - Si dato > 10:
 - o w1 = dato botones/10
 - o w2 = dato botones%10
 - Escribir en LCD (w1)
 - Escribir en LCD (w2)
- 9. En Terminal Virtual escribir:
 - Escribir en Terminal (CONT:)
 - Si dato es < 10:
 - o Escribir en Terminal (cero)
 - Escribir en Terminal (dato botones)
 - Si dato es > 10:
 - o Escribir en Terminal (w1)
 - Escribir en Terminal (w2)
- 10. En Lcd se coloca el cursor en (2,12)
 - Dato_semaforo de PIC3
 - decena = dato_botones/10
 - unidad = dato_botones%10
 - Escribir en LCD (decena)
 - Escribir en LCD (unidad)
 - Escribir en LCD (grados C)
- 11. En Terminal Virtual escribir:
 - Escribir en Terminal (TEMP:)
 - Escribir en Terminal (decena)
 - Escribir en Terminal (unidad)
 - Escribir en Terminal (grados Centigrados)
- 12. Mandar datos a terminar virtual:
 - Escribir valor sobre TXREG
 - Dar tiempo a que termine de escribir el valor en TXREG

SLAVE POT:

- 1. Se llama a las librerias correspondeintes:
 - xc.h
 - Variables de ancho definido stdint.h
 - Tipos de variables, macros, entradas y salidas stdio.h
 - Libreria de comunicacion SPI
 - Libreria de conversion ADC
- 2. Congifura interrupcion:

- Si la bandera se levanta (TMROIF == 1):
 - o Llamar a la funcion de conversion
 - Colocar TMR0 = 100 para reiniciar
- 3. Si se levanta bandera interrupcion de SPI (SSPIF == 1)
 - Se recibe dato de maestro = SPI Recibir()
 - Se envia conversion de potensiometro SPI_Enviar (ADRESH)
- 4. Se configura puertos;
 - TRISAbits.TRISA0 = 1 como entrada
 - ANSELbits.ANSO = 1 como Analogico para potenciometero
 - TRISAbits.TRISA5 = 1 como entrada
 - ANSELbits.ANS5 = 0 como Digital
 - PORTAbits.RA5 = 1 para apagar comunicacion al inicio (SS)
 - TRISCbits.TRISC3 = 1 como entrada de reloj Maestro
 - TRISCbits.TRISC4 = 1 como entrada de dato Maestro
 - TRISCbits.TRISC5 = 0 como salida de dato Esclavo a Maestro
- 5. Otras configuraciones:
 - Se habilitan interrupciones globales con GIE = 1.
 - Se habilita interrupciones de Timer 0 con TOIE = 1.
 - Se configura oscilador a 4MHz con IRCF.
 - Se coloca el Timer0 con temporizador como TOCS = 0.
 - El Timer0 se coloca con Prescaler con PSA = 0.
 - Se coloca el Prescaler en 8
 - Se inicia el Timer0 en 100.
- 6. Configuracion de librerias
 - Se inicia en Canal 0
 - Se inicia en modo Esclavo con CKP = 0 y CKE = 1
- 7. Se llama a Funcion de conversion
 - Se coloca el GO DONE = 1 para iniciar conversion
 - Se da un Delay de 10ms
 - Si ya se hizo la conversion y GO_DONE = 0:
 - Se coloca el GO_DONE = 1 para seguir conversion
 - o Se envia el registro ADRESH a PORD para mostrar con leds

SLAVE_PUSH:

- 1. Se llama a las librerias correspondeintes:
 - xc.h
 - Variables de ancho definido stdint.h
 - Tipos de variables, macros, entradas y salidas stdio.h
 - Libreria de comunicacion SPI
 - Libreria de conversion ADC
- 2. Congifura interrupcion:
 - Si la bandera se levanta (RBIF == 1):
 - o Para evitar Mismatch se escribe en Puerto B
 - o Se llama a funcion incrementar
 - o Se llama a funcion decrementar
 - La bandera RBIF se apaga.
- 3. Si se levanta bandera interrupcion de SPI (SSPIF == 1)
 - Se recibe dato de maestro = SPI_Recibir()
 - Se envia valor del puerto (PORTD)
 - Se apaga SSPIF.
- 4. Se configura puertos;
 - TRISAbits.TRISA5 = 1 como entrada
 - ANSELbits.ANS5 = 0 como Digital
 - PORTAbits.RA5 = 1 para apagar comunicacion al inicio (SS)
 - TRISCbits.TRISC3 = 1 como entrada de reloj Maestro

- TRISCbits.TRISC4 = 1 como entrada de dato Maestro
- TRISCbits.TRISC5 = 0 como salida de dato Esclavo a Maestro
- TRISBbits.TRISB2 = 1 como salida para boton 1 y se apagan
- TRISBbits.TRISB3 = 1 como salida para boton 2 y se apagan
- 5. Otras configuraciones:
 - Se habilitan interrupciones globales con GIE = 1.
 - Se habilita interrupciones del Puerto B con PEIE = 1.
 - Se configura oscilador a 4MHz con IRCF.
 - Se coloca el Timer0 con temporizador como TOCS = 0.
 - El Timer0 se coloca con Prescaler con PSA = 0.
 - Se coloca el Prescaler en 8
 - Se inicia el Timer0 en 100.
- 6. Configuracion de librerias
 - Se inicia en Canal 0
 - Se inicia en modo Esclavo con CKP = 0 y CKE = 1
- 7. Se llama a Funcion Incremenar con Antirebote (Igual para Decrementar pero con PORTD -)
 - Se verifica si hay un cambio en RB2:
 - Se hace un delay con un ciclo For de conteo i = 6
 - Se indica que el boton ha dejado de ser presionado
 - o Si el delay ha terminado y se indica que el boton se presiono exitosamente
 - Se incrementa PORTD
 - Se inidica que boton ya no ha sido presionado nuevamente
 - o El delay creado y usado anteriormente de boton presionado se reinicia a 0.
 - Se realiza un nuevo conteo de seguridad para ver si esta suelto
 - Se indica que el boton esta suelto
 - Presionado = 0 para que pueda ser presionado otra vez
 - o El delay creado y usado anteriormente de boton suelto se reinicia a 0.

SLAVE_SEMAFORO:

- 1. Se llama a las librerias correspondeintes:
 - xc.h
 - Variables de ancho definido stdint.h
 - Tipos de variables, macros, entradas y salidas stdio.h
 - Libreria de comunicacion SPI
 - Libreria de conversion ADC
 - Se definen los colores del semaforo
 - i. LED rojo
 - ii. LED_amarillo
 - iii. LED verde
- 2. Congifura interrupcion:
 - Si la bandera se levanta (TMR0IF == 1)
 - o Llamar a la funcion de conversion
 - Se apaga la bandera TMR0IF = 0
 - Colocar TMR0 = 100 para reiniciar
- 3. Si se levanta bandera interrupcion de SPI (SSPIF == 1)
 - Se recibe dato de maestro = SPI_Recibir()
 - Se envia conversion de potensiometro SPI Enviar (ADRESH)
 - Se apaga SSPIF.
- 4. Se configura puertos;
 - TRISAbits.TRISA0 = 1 como entrada
 - ANSELbits.ANS0 = 1 como Analogico para LM31
 - TRISAbits.TRISA5 = 1 como entrada
 - ANSELbits.ANS5 = 0 como Digital
 - PORTAbits.RA5 = 1 para apagar comunicacion al inicio (SS)

- TRISCbits.TRISC3 = 1 como entrada de reloj Maestro
- TRISCbits.TRISC4 = 1 como entrada de dato Maestro
- TRISCbits.TRISC5 = 0 como salida de dato Esclavo a Maestro
- 5. Otras configuraciones:
 - Se habilitan interrupciones globales con GIE = 1.
 - Se habilita interrupciones de Timer 0 con TOIE = 1.
 - Se configura oscilador a 4MHz con IRCF.
 - Se coloca el Timer0 con temporizador como TOCS = 0.
 - El TimerO se coloca con Prescaler con PSA = 0.
 - Se coloca el Prescaler en 8
 - Se inicia el Timer0 en 100.
- 6. Configuracion de librerias
 - Se inicia en Canal 0
 - Se inicia en modo Esclavo con CKP = 0 y CKE = 1
- 7. Se llama a Funcion de conversion
 - Se coloca el GO DONE = 1 para iniciar conversion
 - Se da un Delay de 10ms
 - Si ya se hizo la conversion y GO DONE = 0:
 - Se coloca el GO_DONE = 1 para seguir conversion
 - o Se envia el registro ADRESH y se llama a funcion Semaforo
- 8. Funcion Semaforo:
 - Si es a menor a 25 grados centrigrados en LM31:
 - o LED verde = 1
 - Si es a entre 25 y 36 grados centigrados en LM31:
 - o LED_amarillo = 1
 - Si es a mayor a 37 grados centrigrados en LM31:
 - o LED rojo = 1

LIBRERIA SPI:

- 1. Para PIC Maestro:
 - Establecer SS en bits para POT, BOTONES Y SEMAFORO
 - Establecer bits de entrada y salida
 - Establecer bit de CLK
 - Con bit de registro SSPCON se elige:
 - SPI Master Mode Fosc/4
 - SPI Master Mode Fosc/16
 - SPI Master Mode Fosc/64
 - SPI Master Mode TMR2
 - Elegir forma de transmission con CKP y CKE
 - o Low Level en en borde de subida
 - o High Level en borde de caida
 - o Low Level en borde de caida
 - o High Level en borde de subida
 - Se muestra a la mitad del dato con SMP
 - Se habilita puertos para comunicacion serial con SSPEN
- Para PIC Esclavo:
 - Establecer SS para comunicar con maestro
 - Establecer bits de entrada y salida
 - Establecer bit de CLK
 - Con bit de registro SSPCON se elige:
 - o Slave Mode SS enable
 - Slave Mode SS disable
 - Elegir forma de transmission con CKP y CKE igual que el maestro

- o Low Level en en borde de subida
- o High Level en borde de caida
- Low Level en borde de caida
- o High Level en borde de subida
- Se muestra el dato a la mitad con SMP
- Se habilita puertos para comunicación serial con SSPEN
- 3. Se establece funcion para envair datos:
 - Se escribe en el buffer SSPBUF dato de SSPSR
- 4. Se establece funcion para recibir datos:
 - Se envia dato al buffer que recibe de SSPSR.

LIBRERIA LCD:

- 1. Escribir sobre el Puerto de 8 bits;
 - Escribir sobre Puerto en Pic
- 2. Enviar a LCD;
 - Elegir commando a LCD
 - Se mueve dato a Puerto
 - Cambiar E de 1 a 0 para indicar trasmision.
- 3. Inicializar LCD
 - Inicializar Puerto de 8 bits
 - Inicializar RS = 0 y RW=0.
 - Enviar a LCD 00111000 para dos lineas de codigo y 5x11 caracteres
 - Enviar a LCD 00001100 como activado y encendido
 - Enviar a LCD 00000001 para borrar la visualizacion anterior
 - Enviar a LCD 00000110 para incremento y desplazamiento desactivado
- 4. Limpiar LCD;
 - Enviar a LCD 00000001 para limpiar pantalla
- 5. Colocar posicion de cursor:
 - Si se escribe en fila 1:
 - o Se establece variable de columna 0x80
 - Se manda posicion a LCD
 - Si se escribe en fila 2:
 - Se establece variable de columna 0XC0
 - o Se manda posicion a LCD
- 6. Escribir cadena de caracteres o String:
 - Escribir una lista a[i]
 - Hasta que este vacio escribir cadena de caracteres
- 7. Mover a la izquierda:
 - Mandar 0001 1000 como comando a la LCD
- 8. Mover a la derecha:
 - Mandar 0001 1100 como comando a la LCD
- 9. Escribir un solo caracter:
 - Se coloca RS como dato
 - Se escribe un byte al Puerto de 8 bits
 - Se mueve E de 1 a 0 para que se transmitan los datos

LIBRERIA USART:

- 1. Seleccionar el Baud Rate en 9600:
 - SPBRG = (4MHz/(16*9600))-1 = 25
- 2. Configurar Registro TXSTA;
 - TX9 = 0 ya que es solo para 8 bits

- TXEN = 1 para permitir transmision
- SYNC = 0 para comunicación Asincrona
- BRGH = 1 para alta velocidad
- 3. Configurar Registro RCSTA:
 - SPEN = 1 para permitir comunicacion serial
 - RX9 = 0 para 8 bits
 - CREN = 1 para permitir recibir
- 4. RCIF = 0 para iniciar bandera en cero
- 5. TXIF = 0 para iniciar transmision apagada

LIBRERIA ADC:

- 1. Seleccionar canal con ADCONO
 - Canal 0
 - Canal 1
 - Canal 2
 - --
 - Canal 13
- 2. Configurar ADCONO;
 - ADCS1 = 1 para frecuencia de oscilación / 32
 - GO_DONE = 0 para iniciar con la conversion apagada
 - ADON = 1 para habilitar conversion
- 3. Configurar ADCON1
 - ADFM = 0 para justificar a la izquierda
 - Colocar VCFG1 = 0 para colocar tierra iguala a cero
 - Colocar voltaje de referencia:
 - O VCFG0 = 0 para Vref+ en 5V
 - O VCFG0 = 1 para Vref- en 0Vo en voltaje externo.

DIAGRAMA DE FLUJO:

