Lec1 Analysis of Algorithms

Analysis of algorithms: the theoretical study of computer program performance(*main) and resource usage (e.g. communication, memory).

What's more important than performance?

correctness, cost (programmer time), simplicity, robustness, maintenance, modularity, security, scalability

Why performance is important?

- line between feasible and infeasible (e.g. requirements for real time streaming)
- universal standard to quantify code
 e.g. use Java for greater functionality, but Java is slow

Sorting Problem

Input: a sequence $\langle a_1, a_2, \dots, a_n \rangle$ of numbers

Output: permutation $< {a_1}', {a_2}', \dots, {a_n}' >$ such that ${a_1}' <= {a_2}' <= \dots <= {a_n}'$

Insertion sort

- maintain an invariant of an array that part of array is sorted
- goal for the loop is to increase the length of sorted array
- how to insert? 1) move the things and copy until find the right place 2) insert

Ex.

Input	8	2	4	9	3	6	
R1	2	8	4	9	3	6	
R2	2	4	8	9	3	6	
R3	2	4	8	9	3	6	
R4	2	3	4	8	9	6	
R5	2	3	4	6	8	9	

worst-case analysis

when input in reverse order

如何对操作数目计数? counting memory references: how many times access some variables

$$T(n) = \sum_{j=2}^n heta(j)$$
 (i 从j-1 循环到0) $= heta(n^2)$ 算数级数arithmetic series

Is insertion sort fast?

- ullet moderately so, for small n
- not at all for large n

Merge sort

Merge sort $< a_1, a_2, \ldots, a_n >$

Steps: Time T(n)

- 1. If n=1, done $\theta(1)$
- 2. $rac{\mathsf{recursively\ sort}}{\mathsf{2^*T(n/2)}} < a_1, \dots, a_{[n/2]} > \mathsf{and} < a_{[n/2]+1,\dots,a_n} >$ 递归排序 前半 后半数据 2*T(n/2)
- 3. Merge 2 sublists $\theta(n)$
 - 1. Ex. sublist 1: 2, 7, 13, 20 sublist 2: 1, 9, 11, 12 where is the smallest element? always at the head
 - 2. merge过程的每一步 比较两个数 at the offset的大小
 - 3. $T(n) = \theta(n)$ on total n elements LINEAR TIME 线性时间

Recurrence 递归表达式:

$$T(n) = \left\{ egin{array}{ll} heta(1) & n=1 \ 2T(n/2) + heta(n) & n>1 \end{array}
ight.$$

Simply recurrence: recursion tree 递归树

$$T(n) = 2T(n/2) + cn$$
, const $c > 0$

height = lgn #leaves = n

Time

θ (n)

$$leaves = 1 + 2^1 + s^2 + \ldots + 2^{lgn} = \frac{1*(1-2^{lgn})}{1-2} = n$$

$$Time = lgn * cn + \theta(n) = \theta(nlgn)$$
 faster than $\theta(n^2)$

在输入规模充分大, 归并排序更快!

Runtime analysis

- depends on input (already sorted, worst case: reverse order)
- depends on input size (参数化parametrize input size)
- upper bounds = represent guarantee to the users e.g.这个程序最多需要多久

Kinds of analysis

- worst-case (most time)
 - $T(n) = \max \text{ time } n \text{ an input of size } n$
- average-case (sometimes)
 - T(n) = expected time over all inputs of size n
 - weighted average: runtime * probability of runtime
 - Need assumption of distribution e.g. uniform distribution
- best-case (bogus 假象)
 - cheat: take any slow algorithm and check for some particular input
 - not reflect majority cases how algorithm works

Runtime depends on computer

- usually compare in relative speed (on same machine)
- absolute speed (on different machines)

Asymptotic analysis 渐进分析

- 1. Ignore machine-dependent constants
- 2. look at the growth of running time T(n) instead of actual running time

Asymptotic Notations

• θ notation

- drop low order terms and ignore leading constants 弃去低阶项,忽略常数因子
- e.g. $3n^3 + 90n^2 5n = \theta(n^3)$
- $\circ \ \ ext{as} \ n o \infty, heta(n^2)$ always beat $heta(n^3)$ algorithms

- \circ at some point n_0 , $\theta(n^2)$ algorithms always cheaper than $\theta(n^3)$
- engineering view: n_0 might be too large that computers couldn't execute -> also interested in slower algorithms (asymptotically slower but still faster on reasonable size of inputs)
- balance between math and engineering sense