第一章 绪论

统计学习

总目标:考虑学习什么样的模型和如何学习模型,使得模型能对数据进行准确的预测与分析,同时尽可能提高学习效率。

统计学习的步骤

- 1. 得到一个有限的训练数据集合
- 2. 确定包含所有可能的模型的假设空间, 即学习模型的集合
- 3. 确定模型选择的准则, 即学习的策略
- 4. 确定模型选择的准则,即学习的策略
- 5. 通过学习方法选择最优的模型
- 6. 利用学习的最优模型对新数据进行预测或分析

分类

基本分类

监督学习,样本表示(x, y)对,在无监督学习里面,样本就是x。

- 监督学习
- 无监督学习
- 强化学习

按模型分类

- 概率模型
- 非概率模型

在监督学习中,概率模型是生成模型,非概率模型是判别模型。

按算法分类

- 在线学习
- 批量学习

在线学习通常比批量学习更难。

按技巧分类

- 贝叶斯学习
- 核方法

基本概念

- 1. 输入空间、特征空间、输出空间
- 2. 联合概率分布: 监督学习假设输入输出X和Y遵循联合概率分布P(X,Y), 这是基本假设。
- 3. 假设空间

统计学习方法三要素

1. 模型

	假设空间厂	输入空间 $\mathcal X$	输出空间少	参数空间
决策函数	$\mathcal{F}=\left\{ f_{ heta} Y=f_{ heta}(x), heta\in\mathbf{R}^{n} ight\}$	变量	变量	\mathbf{R}^n
条件概率分布	$\mathcal{F}=\left\{ P P_{ heta}\left(Y X ight) , heta\in\mathbf{R}^{n} ight\}$	随机变量	随机变量	\mathbf{R}^n

2. 策略(Loss)

损失函数(loss function)

Loss function – A loss function is a function $L: (z,y) \in R \times Y - 7 \rightarrow L(z,y) \in R$ that takes as inputs the **predicted value z** corresponding to the **real data value y** and outputs how different they are. The common loss functions are summed up in the table below:

Loss Function	公式	图例	应用
Least squared	$L(Y,f(X))=rac{1}{2}(Y-f(X))^2$	$y \in \mathbb{R}$	Linear regression

代价函数 (cost function)

3. 算法(优化算法)

4.

生成模型与判别模型

	Discriminative model	Generative model	
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to deduce $P(y x)$	
What's learned	Decision boundary	Probability distributions of the data	
Illustration			
Examples	Regressions, SVMs	GDA, Naive Bayes	