GroupRepresentation 3

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年10月13日

1 problem

ROBEM I Let φ is representation of $GL_n(K)$ over K^n . And $\varphi(A)\alpha := A\alpha$. Prove: φ is faithful and irreducible and n-dimensional.

SOUTION. Obviously it's n-dimentional. If $A \neq B$, then exists $\alpha \in K^n$ s.t. $(A - B)\alpha \neq 0$. So $\varphi(A)\alpha \neq \varphi(B)\alpha$. So $\varphi(A) \neq \varphi(B)$, so φ is faithful. To prove φ is irreducible, we only need to prove there is no invariant subspace of K^n . Obviously for $\alpha, \beta \in K^n \setminus \{0\}$, obviously there exists $A \in GL_n(K)$ such that $A\alpha = \beta$. So there is no nontrival invariant subspace of K^n . So it's irreducible.

ROBEM II For $A \in GL_n(K)$, let $\psi(A)X = AX, \forall X \in M_n(K)$. Then:

- 1. ψ is n^2 -dimentional representation of $\mathrm{GL}_n(K)$ over K.
- 2. For $j: 1 \leq j \leq n$, let $M_n^{(j)}(K) := \{(a_{ik})_{n \times n} : a_{ik} \neq 0 \to k = j\}$. Prove $M_n^{(j)}$ is invariant subspace of $GL_n(K)$. Let ψ_j is subrepresentation of ψ in $M_n^{(j)}$, prove ψ_j is irreducible and $\psi = \bigoplus_{j=1}^n \psi_j$.
- 3. Prove $\psi_j \cong \varphi$, where $\varphi = (\mathbb{R}^{OBEM} I).\varphi$
- SOUTION. 1. Obviously $M_n(K)$ is n^2 -dimentional, so ψ is n^2 -dimentional. Easily we have $\psi(AB)X = ABX = \psi(A)BX = \psi(A)\psi(B)X$, so $\psi(AB) = \psi(A)\psi(B)$. So ψ is representation.
 - 2. For $X \in M_n^{(j)}$, $A \in GL_n(K)$, we have $(AX)_{ik} = \sum_t a_{it} x_{tk}$. So for $k \neq j$ we have $(AX)_{ik} = \sum_t a_{it} \cdot 0 = 0$. So $AX \in M_n^{(j)}$. So $M_n^{(j)}$ is invariant subspace. Easily $M_n(K) = \bigoplus_{j=1}^n M_n^{(j)}$, so $\psi = \bigoplus_{j=1}^n \psi_j$. From 3 we know $\psi_j \cong \varphi$, and from ROBEM I we get phi is irreducible, so ψ_j is irreducible.
 - 3. Consider $\tau: M_n^{(j)} \to K^n, (\tau(X))_k := x_{jk}$, then τ is isomorphism. Easily get τ is isomorphism form ψ_i to (\mathbb{R}^{OBEM} I). φ . So $\psi_i \cong \varphi$.

2 APPENDIX 2

ROBEM III Let $K = \mathbb{C}$ and n = 2 in (Group representation second homework). (ROBEM III), prove the subrepresentation of φ over $M_2^0(\mathbb{C})$ is irreducible.

SOLION. Since every matrix in $M_2(\mathbb{C})$ can be diagonalized, so $\forall X \in M_2^0(\mathbb{C}), \exists A \in \mathrm{GL}_2(\mathbb{C}), \varphi(A)X = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. So for a invariant subspace V, we have $X \in V \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in V \to \forall Y \in M_2^0(\mathbb{C}), Y \in V$. So φ is irreducible.

ROBEM IV Assume $n \geq 3$ and $n \nmid \text{char } K$, prove: the n-dimentional permutate representation of S_n can be decomposed as the direct sum of a main representation and a (n-1)-dimentional irreducible subrepresentation

SOUTION. In fact, ROBEM I of second homework has given the decomposed, easily we get $\varphi|_{V_1}$ is a main representation. And since dim $V_2 = n - 1$, we get $\varphi|_{V_2}$ is (n - 1)-dimentional. So we only need to prove $\varphi|_{V_2}$ is irreducible. Assume $V \subset V_2$ is a invariant subspace and $V \neq \{0\}$, consider $x = \sum_{i=1}^n a_i x_i \in V \setminus \{0\}$. Obviously all of a's can't be equal because $nk = 0 \to k = 0$ since char $K \nmid n$. WLOG assume $a_1 \neq a_2$. Then $y = a_1 x_2 + a_2 x_1 + \sum_{i=3}^n a_i x_i = \varphi((1\ 2))x \in V$, and thus $x - y = (a_1 - a_2)(x_1 - x_2) \in V$, $x_1 - x_2 \in V$. So $x_1 - x_j = \varphi((2\ j))(x_1 - x_2) \in V$, $\forall j \geq 2$. Obviously these n - 1 vector is linearly independent, so dim $V \geq n - 1$, $V = V_2$. So $\varphi|_{V_2}$ is irreducible. \square

 $\mathbb{R}^{OB}\mathbb{E}M$ V Caculate the 1- dimentional \mathbb{C} representation:

- 1. (2,4)-type of 8-order elementary Abel group.
- 2. the addition group of \mathbb{Z}_p^n

SOUTION. 1. Assume this group is $\mathbb{Z}_2 \times \mathbb{Z}_4$. Then $\varphi(k,j) = e^{\frac{(2k+j)\pi i}{2}}$.

2.

$$\varphi(a_1, a_2, \cdots, a_n) = e^{\frac{(2\pi i \sum_{k=1}^n a_k)}{p}}$$

2 appendix

ROBEM I Group G has an action on set $\Omega = \{x_1, x_2, \dots, x_n\}$, let (φ, V) be the n- dimensional K permutation representation of G, where K is the field of vector space V, and

$$V = \left\{ \sum_{i=1}^{n} a_i x_i : a_i \in K, i = 1, 2, \dots, n \right\}.$$

Let

$$V_1 = \left\langle \sum_{i=1}^n x_i \right\rangle,$$

$$V_2 = \left\{ \sum_{i=1}^n a_i x_i : \sum_{i=1}^n a_i = 0, a_i \in K \right\}.$$

Prove:

2 APPENDIX 3

- 1. V_1 and V_2 are invariant subspaces of G;
- 2. If char $K \nmid n$, then $\varphi = \varphi_{V_1} \oplus \varphi_{V_2}$.

 $\mathbb{R}^{OBEM\ III}\ \mathcal{O}(n) := \{A \in M_n(\mathbb{R}) : AA^T = I_n\}$ is the set of all *n*-dimensional otheretic matrix over \mathbb{R} . Let:

$$\varphi: \mathcal{O}(n) \to \operatorname{GL}(M_n(\mathbb{R}))$$

$$A \mapsto \varphi(A), \tag{1}$$

Where,

$$\varphi(A)X := AXA^{-1}: \quad \forall X \in M_n(\mathbb{R})$$
 (2)

 $M_n^+(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A = A^T\}, \, M_n^-(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A^T = -A\}.$

- 1. Proof: $M_n^+(\mathbf{R})$ and $M_n^-(\mathbf{R})$ are invariant spaces of φ ;
- 2. Let the subrepresentation of φ on $\langle I \rangle, M_n^+(\mathbb{R}), M_n^-(\mathbb{R})$ be $\varphi_0, \varphi_1, \varphi_2$. Proof:

$$\varphi = \varphi_0 \oplus \varphi_1 \oplus \varphi_2$$

3. calculate a $\frac{1}{2}n(n-1)$ – dimensional \mathbb{R} representation of $\mathcal{O}(n)$.