Mini-batches

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Stochastic Gradient Descent

- For n epochs:
 - for $x, y \sim D$:
 - $\theta := \theta \epsilon \frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta}$

Stochastic Gradient Descent

- For n epochs:
 - for i in 0,..., |D| 1
 - $\mathbf{x}, \mathbf{y} := D_i$
 - $\theta := \theta \epsilon \frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta}$

Mini-batches

- For n epochs:
 - Split dataset D into m mini-batches $B_0, ..., B_{m-1}$ of size BS
 - ullet for each batch B_i
 - $\theta := \theta \epsilon \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim B_i} \left[\frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta} \right]$

Variance of mini-batches

Variance of SGD

•
$$\mathbb{E}_{\mathbf{x},\mathbf{y}\sim D}\left[\left(\frac{d\ell(f(\mathbf{x},\theta),\mathbf{y})}{d\theta}\right)^2\right] - \left(\frac{dL(\theta)}{d\theta}\right)^2$$

 Variance of SGD with mini-batches

•
$$\mathbb{E}_{B_i} \left[\left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim B_i} \left[\frac{d\ell(f(\mathbf{x}, \theta), \mathbf{y})}{d\theta} \right] \right)^2 \right] - \left(\frac{dL(\theta)}{d\theta} \right)^2$$

Always use mini-batches

Variance of mini-batches

Jensen's inequality

$$\left(\mathbb{E}_{\mathbf{x},\mathbf{y}\sim B_i}\left[\frac{d\mathscr{C}\left(f(\mathbf{x},\theta),\mathbf{y}\right)}{d\theta}\right]\right)^2 \leq \mathbb{E}_{\mathbf{x},\mathbf{y}\sim B_i}\left[\left(\frac{d\mathscr{C}\left(f(\mathbf{x},\theta),\mathbf{y}\right)}{d\theta}\right)^2\right]$$