Short Read Workshop Day 6 Introduction to R and RStudio

Rutendo Sigauke 2024

Day 6 Overview

- 1. Running R in the terminal
- 2. Running R in RStudio
- 3. Submitting R script as an sbatch job

Goal of the day

Learn how to run R code!

Practice installing packages, tidying data, saving files and plotting.

What is R?

- R is a free statistical computing and graphing software
- Can be installed from their website https://www.r-project.org/
- R can be run in a few environments:
 - RStudio
 - Jupyter

There are different ways to interact with R

R console

(base) cu-biot-14-10:~ rutendo\$ R

Type 'q()' to quit R.

[Previously saved workspace restored]

Platform: x86_64-apple-darwin15.6.0 (64-bit)

R version 3.6.3 (2020-02-29) -- "Holding the Windsock" Copyright (C) 2020 The R Foundation for Statistical Computing R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.

Enter **R** code here

Interactive

R Studio

Submit an R script as a job

Enter R code and visualize plots

More interactive

Run R script here

Least interactive

For more compute intensive scripts

Summary of RStudio

R scripts, R markdown, R notebooks

Summary of all the data loaded in Rstudio

R console, Terminal

Directories, Plots, Packages...

Brief introduction to R syntax

Using Libraries install.packages('dplyr') Download and install a package from CRAN. library(dplyr) Load the package into the session, making all its functions available to use. dplyr::select Use a particular function from a package. data(iris) Load a built-in dataset into the environment.

Vectors				
Creating Vectors				
c(2, 4, 6)	2 4 6	Join elements into a vector		
2:6	2 3 4 5 6	An integer sequence		
seq(2, 3, by=0.5)	2.0 2.5 3.0	A complex sequence		
rep(1:2, times=3)	121212	Repeat a vector		
rep(1:2, each=3)	1 1 1 2 2 2	Repeat elements of a vector		

Reading and Writing Data			
Input	Ouput	Description	
<pre>df <- read.table('file.txt')</pre>	<pre>write.table(df, 'file.txt')</pre>	Read and write a delimited text file.	
<pre>df <- read.csv('file.csv')</pre>	write.csv(df, 'file.csv')	Read and write a comma separated value file. This is a special case of read.table/ write.table.	
load('file.RData')	<pre>save(df, file = 'file.Rdata')</pre>	Read and write an R data file, a file type special for R.	

R you ready to learn some R?

- Let's go over the Day6_worksheet1_Introduction_to_R.md worksheet:
 - Introduction to R in the terminal
 - Learn basic R commands

R console

Learning R in RStudio

- In Day6_worksheet2_R_in_Rstudio.md (Section A):
- We will go over the Learning R.R worksheet in R Studio:
 - Introduction to R and R Markdown
 - Introduction to the iris dataset
 - Installing and loading libraries
 - tidyverse
 - Generating summary statistic in R
 - Making plots with ggplot2
 - Manipulating data.frames

R Studio

Challenge Question

- How would you perform a computationally intensive R job?
 - o i.e. Requires more memory than on your personal computer.

Writing an R script to submit on a supercomputer

- Follow Day6_worksheet2_R_in_Rstudio.md (Section B):
- Edit Learning_R_submit_aws.R
 - Save plots and tables to a working directory in the script
- Run the R script as a job on AWS
 - Use the RScript command to call your script

More resources for R

- ggplot2 website https://ggplot2.tidyverse.org/
- R-bloggers https://www.r-bloggers.com/
- Quick-R https://www.statmethods.net/

Homework

Complete the Learning_R_Additional_Practice.R

This homework will go over most of the topics covered today, but on a different dataset. There will be more advanced questions that build on what was in the inclass session.

2. For Project A (single-cell RNA-seq)

- Install Seurat and CellChat (Instructions are on GitHub in the Project A folder)

Install this on your local machine.

3. For Project B (bulk RNA-seq)

- Install rsubread
 Install this in R on AWS.
- install DESeq2
 Install this on your local machine.

This takes a long time, so get this installed before Day7.