Support vector machines (SVM)

Week 12

Middlesex University Dubai; CST4050 Winter21; Instructor: Dr. Ivan Reznikov

Plan

- SVM Concept
- 1-Dimensional Data
- Soft Margins and Support Vector Classifiers
- N-Dimensional Data
- Kernels
- SVM for Multi-Class
- Pros and Cons

SVM concept

Support vector machine (SVM) is a simple algorithm that produces **significant accuracy with relatively low computation power**. SVM can be used for regression problems, but more often used to solve classification tasks.

For the purpose of today's session, we'll slightly modify our usual dataset.

Let's include a level column, that will be 1 for Overall Rating >= 70, else 0.

target	new target	
Overall Rating	Level	Age
40	0	37
50	0	30
55	0	36
55	0	31
60	0	35
60	0	31
60	0	38
60	0	34
65	0	33
65	0	30
65	0	27
65	0	23
70	1	34
70	1	29
70	1	22
75	1	25
75	1	21
80	1	24
85	1	20
90	1	18

(a) 1Dimensional Data

(b) 1Dimensional Data

(c) 1Dimensional Data

Soft margins

margin -> max => Maximum Margin Classifier

For 1D we only need a point to set threshold.
It is considered as 0-dimensional hyperplane

Soft margins are more flexible and allow misclassification.

The thresh may be found empirically using cross-validation

2Dimensional Data

We can look for Support Vectors – border points of certain class.

After, we look for the maximum margin size

2Dimensional Data

For 2Dimensional Data we need a line to set threshold. It is considered as 1-dimensional hyperplane.

Similar situation we can imagine for higher dimensions.

SVM: Linear Kernel

What classifier would you pick?

SVM: Polynomial Kernel

We can plot our data in the following coordinates:

$$X = X$$

$$Y = x^2$$

Now we can look for a linear support vector classifier

The algorithm of transforming data and finding SVC is called **Support Vector Machines**

SVM: Polynomial Kernel

In order to classify a new data point, we'll need to classify it's x-x² position.

We could've used x³, x^d or other formula. These are called **kernel functions**

Also, rather than transforming data we can calculate pair relationships between data points.

This is known as kernel trick

SVM: Types of Kernels

SVM: Multi-Class

Besides binary classification (2 classes) SVM can handle tasks classifying more than 2 classes (multi-class).

Strategies involved:

- 1 vs all
- 1 vs 1

SVM: Multi-Class: 1 vs all

With the updated data we now calculate prob of each class. The class with highest score wins.

Creating training sets

Feature1	Feature2	Target1
1	1	1
2	10	-1
4	100	-1
•••	•••	•••

Feature1	Feature2	Target1
1	1	-1
2	10	1
4	100	-1
•••	•••	•••

1 1 -1 2 10 -1 4 100 1	Feature1	Feature2	Target1
	1	1	-1
4 100 1	2	10	-1
	4	100	1
	•••	•••	•••

SVM: Multi-Class: 1 vs 1

Compared to 1 vs all, 1 vs 1 compares whether the data point should be classified as either class. The data point is assigned to class with most "wins".

Support Vector Machines

- Works well on datasets with many features
- Provides a clear separation margin
- Effective for datasets where the number of features are greater than the number of data points
- Possible to specify different kernel functions to make a proper decision boundary

- Require high training time, so not recommended for large datasets.
- Very sensitive to outliers.