Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

José González-Cao, Orlando García Feal, Alejandro Crespo, José Domínguez, Moncho Gómez-Gesteira

SCHEME OF PRESENTATION

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

WHAT IS A DAM?

A barrier to obstruct or control the flow of water, built across a stream or river

Three Gorges dam in China: the world's largest dam (by structure

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

PRINCIPAL COMPONENTS OF A DAM

H < Crest elevation OK

H ≈ Crest elevation Release water: SPILLWAY

H > Crest elevation **OVERFLOW**

(Picture taken from: http://water.ohiodnr.gov/safety/damsafety)

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

Cross section of a spillway

(Picture taken from: https://en.wikipedia.org/wiki/Spillway)

WHY STUDY SAFETY OF DAMS?

Notable dam failures (USA)

Year	Name of	Dece.	Damag e
1889	South Fork	2,209	17
1972	Buffalo Creek	125	400
1972	Canyon Lake	139	60
1976	Teton	11	400
1977	Taccoa Falls	39	30
1982	Lawn	3	21
(Data obta	Lake	http://wate	ohiodnr.ac

(millions of \$)

(Data obtained from: http://water.ohiodnr.gov/safety/dam-

safety)

WHY STUDY SAFETY OF DAMS?

Ribadelago dam break in January 1959

WHY STUDYSAFETY OF DAMS?

Oroville dam crisis in February 2017

Correct operation of the spillway

during the crisis

were evacuated Population of Lijiang (丽江市): 155 i540 y operation

AIM OF THIS WORK

Design components of dams

Prevent the incorrect operation of the components of dams

Predict the consequences of dam breaks

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

Mesh-based CFD:

Mesh-free CFD:

- Solves 2D Shallow Water Equations
- Robust but rigid
- Suitable to deal with large domains where 3D effects can be neglected
- Developed by the groups:
 - GEAMA (U. de Coruña)
 - Flumen (U. Pol. de Cataluña)
- Freely downloaded:
 http://iberaula.es/web/index.ph
 p

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

Mesh-free CFD:

- Flexible and adaptable
- Suited to deal with complex
 3-D fluxes
- Run in CPU and GPU → acceleration
- Developed by:
 - EPHYSLAB (U. de Vigo)
 - Uni. of Manchester
 - •
- Freely downloaded:
 http://www.dual.sphysics.o
 rg.

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

DualSPHysics

References Downloads Validation Animations SPHysics GPU Computing
GUI Visualization Developers Contact News FAQ Forums

Universida_{de}Vigo

The University of Manchester

DualSPHysics is based on the Smoothed Particle Hydrodynamics model named SPHysics (www.sphysics.org).

The code is developed to study free-surface flow phenomena where Eulerian methods can be difficult to apply, such as waves or impact of dam-breaks on off-shore structures. **DualSPHysics** is a set of C++, CUDA and Java codes designed to deal with real-life engineering problems.

Contact E-Mail: dualsphysics@gmail.com

Youtube Channel: www.youtube.com/user/DualSPHysics

Twitter Account: @DualSPHysics

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

VALIDATIONS

Wave generation and propagation

Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P. 2017 wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering, 1

Active wave absorption system

Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P. 2017 wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering,

Estimation of sea wave impact on coastal structures

Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T. 2015. Applicability Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Er

1-12.

Study of the run-up in an existing armour block sea breakwater

Altomare C, Crespo AJC, Rogers BD, Domínguez JM, Gironella X, Gómez-Gesteira M. 2014. Numerica armour block sea breakwater with Smoothed Particle Hydrodynamics. Computers and Struc

45.

Simulation of an Oscillating Water Column (OWC-WEC)

Crespo AJC, Altomare C, Domínguez JM, González-Cao J, Moncho Gómez-Gesteira M. 2017. Towarus simulating floating offshore Oscillating Water Column converters with Smoothed Particle Hydrodynamics. Coastal Engineering, 126: 11-16

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

Belesar dam

Location of Belesar Dam

(Figures taken from: http://www.ign.es/iberpix2/visor/#)

Reservoir associated to the Belesar Dam

Belesar Dam

Rigth spillway (operated with gates)

Left spillway
≈ 200 m long
(operated with gates)

Belesar dam features:

(Figure taken from: http://www.ign.es/iberpix2/visor/#)

- Built in 1962
- Main purposes:
 - Hydroelectric generation
 - Basin regulation
 - Control of floods of Miño river
- Hydrological data:

Area of the basin: 4,000

km²

Maximum expected flow: 4,000 m³/s

Maximum water depth: 330 m

Dam crest elevation: 332 m

Dam crest length: 500 m

SIMULATION PROCESS

FIRST: Simulation of the reservoir

Input to Iber.

- Real geometry of the impoundment
- Maps of land uses: Manning's coefficients
- Maximum expected flow of the Miño Output of Iber:
- = Mutapwatetheppillways (only the left spillway)
- Water depth near the spillways of the

- dam-

SECOND: Simulation of the left spillway

Input to DualSPHysics:

- Geometry of the left spillway
- Outflow obtained with Iber

Output of DualSPHysics:

- Operation conditions of the spillway

SIMULATION PROCESS

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

FIRST: Simulation of the reservoir

Water elevation

- Left spillway
- R i g h t spillway

Outflow

L e f t spillway

FIRST: Simulation of the reservoir

Siber

Step 1
Water elevation near spillways

Runtime
≈ 20 hours

N° of cells
≈ 220 000

CPU:
Intel Core i7
940 2.93GHZ

Step 2
Outflow in the left spillway

Time series of Water depth

Second: Simulation of the left spillwa pu DualSPHysics

Time series of velocity

Second: Simulation of the left spillwa public DualSPHysics

Time series of force: curve of the spillway

Runtime ≈ 1 hour

N° of particles ≈ 180 000

GPU: NVIDIA GeForce GT

-Fx -Fy -Fz1.5 Force (MN) 0.5 0 -0.5 5 10 15 20 25 30 Time (s)

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

- 1.- INTRODUCTION
- 2.- NUMERICAL CODES
 - 2.1.- Iber
 - 2.2.- DualSPHyics
- 3.- ANALYSED CASE: Maximum expected inflow in Belesar dam
- 4.- RESULTS
- 5.- CONCLUSIONS

Conclusions

- The numerical simulations of the **impoundment** carried out with **lber** show that **no overflow** is observed if gates are open up 6 hours after the inflow starts.
- The numerical simulation of the left **spillway** carried out with **DualSPHysics** shows that the **spillway works properly** with the conditions defined in this work. The water elevation inside the spillway is less than the height of the lateral walls of the spillway so **no overflow is observed in the spillway**.

This work shows the **benefits** of using **lber and DualSPHysics altogether** to analyse the **safety of dams** although some limitations were found...

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

Some limitations (only for the analysed case)...

- the actual bathymetry of the impoundment was not considered
- experimental data of the spillway obtained in laboratory tests or in real working conditions are not available: velocity, pressure, force...

Future work

Implementation of Iber using C++

•Implementation of Iber using CUDA: GPU cands

Acceleration

Hybridization of Iber with DualSPHysics

谢谢

Supported by the project "IMDROFLOOD" (Water JPI - WaterWorks 2014)

Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics

José González-Cao, Orlando García Feal, Alejandro Crespo, José Domínguez, Moncho Gómez-Gesteira

Belesar dam features:

Automatic land uses assignment: runoff

process

Manning's coefficient definition

Mesh-based CFD:

Static triangles

Shallow Water Equations

$$\begin{cases} \frac{\partial h}{\partial t} + \frac{\partial h U_x}{\partial x} + \frac{\partial \left(h U_y\right)}{\partial y} = 0 & \text{Manning} \\ \frac{\partial \left(h U_x\right)}{\partial t} + \frac{\partial}{\partial x} \left(h U_x^2 + g \frac{h^2}{2}\right) + \frac{\partial}{\partial y} \left(h U_x U_y\right) = & \text{T} \\ -gh \frac{\partial Z_b}{\partial x} - \frac{\partial \tau_{s,x}}{\rho} + \frac{\partial \tau_{b,x}}{\rho} + \frac{\partial}{\partial x} \left(h v_t \frac{\partial U_x}{\partial x}\right) + \frac{\partial}{\partial y} \left(h v_t \frac{\partial U_x}{\partial y}\right) \\ \frac{\partial \left(h U_y\right)}{\partial t} + \frac{\partial}{\partial x} \left(h U_y^2 + g \frac{h^2}{2}\right) + \frac{\partial}{\partial y} \left(h U_x U_y\right) = \\ -gh \frac{\partial Z_b}{\partial y} - \frac{\partial \tau_{s,y}}{\rho} + \frac{\partial}{\partial x} \left(h v_t \frac{\partial U_y}{\partial x}\right) + \frac{\partial}{\partial y} \left(h v_t \frac{\partial U_y}{\partial y}\right) \end{cases}$$

h, U_x and U_y in each triangle

Wave impacts onto structure

Discrete SPH Lagrangian system of equations & Tait's equation

$$\frac{d \rho_{a}}{dt} = \sum_{b} m_{b} (\mathbf{v}_{a} - \mathbf{v}_{b}) \nabla_{a} W_{ab}$$

$$\frac{d \mathbf{v}_{a}}{dt} = -\sum_{b} m_{b} \left(\frac{P_{b} + P_{a}}{\rho_{b} \cdot \rho_{a}} + \Pi_{ab} \right) \nabla_{a} W_{ab} + \mathbf{g}$$

$$\frac{d \mathbf{r}_{a}}{dt} = \mathbf{v}_{a}$$
Interaction neighbouring
$$P = B \left[\left(\frac{\rho}{\rho_{0}} \right)^{\gamma} - 1 \right]$$

$$\sum_{b} W(\mathbf{r}_{a} - \mathbf{r}_{b}, h) \approx 1$$

