Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Hints for Exercise Sheet 6

1. Integrals along real line

1.1. Let b > 0. Show the following:

$$\int_0^\infty e^{-x^2} \cos 2bx \, dx = e^{-b^2} \frac{\sqrt{\pi}}{2}$$

and

$$\int_0^\infty e^{-x^2} \sin 2bx \, dx = e^{-b^2} \int_0^b e^{t^2} \, dt.$$

You may assume that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$

Hint. For any R > 0, the integral of e^{-z^2} along the positively boundary of the rectangle with vertices 0, R, R + ib and ib is 0.

1.2. Show that

$$\int_0^\infty \cos x^2 \, dx = \int_0^\infty \sin x^2 \, dx = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

Hint. For any R > 0, consider the sector of C(0; R) made of the line segment joining 0 and R and having the central angle $\frac{\pi}{4}$ in the upper half plane. The integral of e^{iz^2} along the boundary of this sector is 0 by Cauchy's theorem. You may proceed as follows:

- (a) First, using Calculus or otherwise, show that $\frac{\sin t}{t} \ge \frac{2}{\pi}$, for all $t \in (0, \frac{\pi}{2}]$. (b) Show that, as $R \longrightarrow \infty$, the integral along the arc goes to 0.
- (c) Show that, as $R \longrightarrow \infty$, the integral along the line segment joining 0 and $Re^{i\frac{\pi}{4}}$ converges to $e^{i\frac{\pi}{4}}\cdot\frac{\sqrt{\pi}}{2}$

1.3. Evaluate $\int_{0}^{\infty} e^{-x^2} \cos x^2 dx$.

Hint. The above integral is the real part of the following:

$$\int_0^\infty e^{-(1+i)x^2} dx = \int_0^\infty e^{-\sqrt{2}e^{\frac{i\pi}{4}}x^2} dx$$
$$= \int_0^\infty e^{-\sqrt{2}\left(e^{\frac{i\pi}{8}}x\right)^2} dx.$$

Now proceed along the lines exactly similar to 1.2., but the central angle is $\frac{\pi}{8}$ in this case. The final answer is $\frac{\cos\frac{\pi}{8}}{2^{\frac{5}{4}}}\sqrt{\pi}$.

2. Liouville's theorem

1

2.1. Find all entire functions f with the property that, for all $z \in \mathbb{C}$, f(z+1) = f(z) = f(z+i).

Sketch of the solution. *It is easy to see that, for any* $m, n \in \mathbb{Z}$ *and* $z \in \mathbb{C}$ *one has* f(z+m+in) = f(z). It follows that $f(\mathbb{C}) = f(\{z \in \mathbb{C} : 0 \le \text{Re } z, \text{Im } z \le 1\})$. Since f is continuous and $\{z \in \mathbb{C} : 0 \le z \le n\}$ Re z, Im $z \le 1$ is compact, there exists M > 0 such that $|f(z)| \le M$ whenever $0 \le \text{Re } z, \text{Im } z \le 1$. This imples that f is bounded. Hence, from Liouville's theorem, f is constant.

2.2. Let f and g be two entire functions. Assume that there exists $c \in \mathbb{R}$ such that

Re
$$f(z) \le c \operatorname{Re} g(z), \forall z \in \mathbb{C}$$
.

Show that f = ag + b, for some $a, b \in \mathbb{C}$. In particular, if Re f is bounded above then f must be a constant function.

Sketch of the solution. Let $h \stackrel{def}{=} f - cg$. Then $|e^h| = |e^{Re(f-cg)}|$ which is bounded from above by 1. Hence, from Liouville's theorem, f - cg is constant.

2.3. (a) Let f be an entire function such that Re f > 0. Show that f is constant.

Hint. Consider $\frac{1}{1+f}$.

Sketch of the solution. Observe that $|1 + f| \ge |\text{Re}(1 + f)| = ||1 + \text{Re} f| = 1 + \text{Re} f \ge 1$. So $\left|\frac{1}{1+f}\right| \le 1$. This makes $\frac{1}{1+f}$ constant, due to Liouville's theorem, which implies that f is constant.

(b) Suppose that f is an entire function such that Re f or Im f has no zeros. What can you conclude about f?

Sketch of the solution. Suppose that Re f has no zero. From intermediate value theorem, it follows that either Re f > 0 or Re f < 0 (how?). If Re f > 0 then from 2.3.a, we get that f is constant. If Re f < 0 then Re(-f) > 0, so that -f is constant, due to 2.3.a. Hence in either case f is constant. If Im f does not have a zero then consider the function if and use the previous case.

(c) Prove the analogue of 2.3.a for 2×2 valued functions: If $F : \mathbb{C} \longrightarrow M_2(\mathbb{C})$ is such that F_{jk} is entire for each j, k = 1, 2, and $\forall z \in \mathbb{C}$, $F(z) + F(z)^*$ is positive definite. Then show that F is constant.

Hint. Diagonal entries of a positive definite matrix are positive, and the determinant of a positive definite matrix is positive. So from 2.3.a, it follows that f_{11} and f_{22} are constant. This implies that $f_{12} + \overline{f_{21}}$ is bounded. Thus $f_{12} + f_{21}$ is constant. Similarly, one obtains $f_{12} - f_{21}$ is constant.

Sketch of the solution. Follow the hints given above. Observe that, if $f_{12} + \overline{f_{21}}$ is bounded, then so is $Re(f_{12} + f_{21})$. From 2.2., it follows that $f_{12} + f_{21}$ is constant. Observe that $Re(f_{21} - f_{12}) = Re(i(f_{12} + \overline{f_{21}}))$. The latter is bounded as $f_{12} + \overline{f_{21}}$ is bounded. Hence again from 2.2., it follows that $f_{12} - f_{21}$ is constant. The rest is immediate.

2.4.* Let f be an entire function satisfying the following:

$$|f(z)| \le \frac{1}{\sqrt{|\operatorname{Re} z|}}, \text{ whenever } \operatorname{Re} z \ne 0.$$
 (2.1)

(a) Suppose that $|\operatorname{Re} z_0| < \frac{1}{2}$. Write $z_0 = x_0 + iy_0$. Consider the square *S* with the following vertices: $-1 + i(y_0 - 1), 1 + i(y_0 - 1), 1 + i(y_0 + 1)$ and $-1 + i(y_0 + 1)$.

Assume that S is equipped with the counterclockwise orientation. Show that

$$f(z_0) = \frac{1}{2\pi i} \int_{S} \frac{f(z)}{z - z_0} dz.$$
 (2.2)

- (b) Using (2.1), show that in the integral appearing in (2.2), the contribution from each horizontal edge of S is at most 8 in absolute value.
- (c) Show that, in the integral appearing in (2.2), the contribution from each vertical edge of S is at most 4 in absolute value.
- (d) Deduce from 2.4.b and 2.4.c that $|f(z_0)| \le \frac{12}{\pi}$.
- (e) Conclude that f must be a constant function.

3. Homology and homotopy version of Cauchy's theorem

3.1. Is the condition $\operatorname{Ind}_{\gamma}(z)=0$, for all $z\in\mathbb{C}\setminus U$, necessary in the Global Cauchy theorem?

Hint. Let $z \in \mathbb{C} \setminus U$. Then the function $w \mapsto \frac{1}{w-z}$ is holomorphic on U.

- 3.2. Let $U \subseteq \mathbb{C}$ be open, γ be a cycle in U which is homologous to 0 in U. Consider finitely many distinct points, say z_1, z_2, \dots, z_n , of U. For each $j \in \{1, \dots, n\}$, choose a closed disc $D_j \subseteq U$ centered at z_j such that $D_i \cap D_j = \emptyset$ for $i \neq j$. Denote the boundary of D_j oriented anticlockwise by γ_j and let $k_j \stackrel{\text{def}}{=} \operatorname{Ind}_{\gamma}(z_j)$ for all $j = 1, \dots, n$.
 - (a) Show that γ is homologous to $\sum_{j=1}^{n} k_j \gamma_j$ in $U \setminus \{z_1, z_2, \dots, z_n\}$.
 - (b) Show that, for every $f \in H(U \setminus \{z_1, z_2, \dots, z_n\})$,

$$\int_{\gamma} f = \sum_{j=1}^{n} k_j \int_{\gamma_j} f.$$

3.3. Let U, γ and f be as in Global Cauchy theorem. Show that, for all $n \ge 0$,

$$\operatorname{Ind}_{\gamma}(z)f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw, \ \forall z \in U \setminus \gamma^*.$$

Sketch of the solution. Let V be a connected component of $U \setminus \gamma^*$. being the connected component of an open set, clearly V is open. Note that the function $\operatorname{Ind}_{\gamma}$ is constant on V, say α . From Global Cauchy theorem, we obtain that,

$$\alpha f(z) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f(w)}{(w-z)} dw, \ \forall z \in U \cap V.$$

Now use Exercise 1.3 of Exercise Sheet 5.

3.4. Along each of the following paths, evaluate the integral of $\frac{e^z - e^{-z}}{z^4}$:

Answer. (a) $\frac{2\pi i}{3}$ (b), (c) $\frac{4\pi i}{3}$ (use Global Cauchy theorem).

3.5. Let a, b > 0. Show that $\int_0^{2\pi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} = \frac{2\pi}{ab}.$

Hint. Consider the path $\gamma:[0,2\pi] \longrightarrow \mathbb{C}$ given by $\gamma(t) \stackrel{def}{=} a \cos t + ib \sin t$. What is $\int_{\gamma} \frac{dz}{z}$? Can yo use that here?

3.6. Let $P(z) \in \mathbb{C}[z]$ whose all distinct zeros are a_1, \ldots, a_k . Suppose γ is a closed curve in \mathbb{C} such that $a_j \notin \gamma^*$, for all $j = 1, \ldots, n$. Find $\frac{1}{2\pi i} \int_{\gamma} \frac{P'}{P}$.

Answer. Let m_1, \ldots, m_k be the multiplicities of a_1, \ldots, a_k respectively. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{P'}{P} = m_1 \operatorname{Ind}_{\gamma}(a_1) + \dots + m_k \operatorname{Ind}_{\gamma}(a_k).$$

3.7. Let $U \subseteq_{open} \mathbb{C}$, $h \in H(U)$ be zero-free, $z_0 \in U$, $m \in \mathbb{N}$ and $f(z) \stackrel{\text{def}}{=} (z - z_0)^m h(z)$, for all $z \in U$. Suppose that γ is a closed path in U such that it is homologous to 0 in U. Assume that $z_0 \notin \gamma^*$. Prove that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} = m \operatorname{Ind}_{\gamma}(z_0).$$

Solution. *Observe that, for all* $z \in U$ *, one has*

$$\frac{f'(z)}{f(z)} = \frac{m}{(z - z_0)} + \frac{h'(z)}{h(z)}.$$

Since $\frac{h'}{h} \in H(U)$, it follows from Global Cauchy theorem that $\int_{\gamma} \frac{h'}{h} = 0$. The rest is obvious.

3.8. Let $U \subseteq \mathbb{C}$ be open such that every closed path in U is homologous to 0 in U. Consider finitely many distinct points, say z_1, z_2, \cdots, z_n , of U. For each $j \in \{1, \cdots, n\}$, choose a closed disc $D_j \subseteq U$ centered at z_j such that $D_i \cap D_j = \emptyset$ for $i \neq j$. Denote the boundary of D_j oriented anticlockwise by γ_j . Suppose that $f \in H(U \setminus \{z_1, \dots, z_n\})$ and $a_k \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\gamma_k} f$ for all $k = 1, \cdots, n$. Define

$$h(z) = f(z) - \sum_{k=1}^{n} \frac{a_k}{z - z_k}, \ \forall z \in U \setminus \{z_1, \dots, z_n\}.$$
 (3.1)

Show that the function h, defined as above in (3.1), has a primitive.

Sketch of the solution. Let γ be a closed path in $U \setminus \{z_1, \ldots, z_n\}$. Let $\sigma \stackrel{def}{=} \sum_{k=1}^n \operatorname{Ind}_{\gamma}(z_k)\gamma_k$. Verify that γ is homologous to σ in U. From Golbal Cauchy theorem, it follows that,

$$\int_{\gamma} f = \int_{\sigma} f$$

$$= \sum_{k=1}^{n} \operatorname{Ind}_{\gamma}(z_{k}) \int_{\gamma_{k}} f$$

$$= \sum_{k=1}^{n} 2\pi i \cdot \operatorname{Ind}_{\gamma}(z_{k}) \cdot a_{k}$$

$$= \sum_{k=1}^{n} \int_{\gamma} \frac{a_{k}}{w - z_{k}} dw$$

$$= \int_{\gamma} \left(\sum_{k=1}^{n} \frac{a_{k}}{w - z_{k}} \right) dw.$$

Thus $\int_{\mathcal{X}} h \, dw = 0$. Hence h has a primitive.

4. Analytic logarithms and n-th roots of functions

Let $U \subseteq_{open} \mathbb{C}$ and $f: U \longrightarrow \mathbb{C} \setminus \{0\}$ be an analytic function.

4.1. Show that f has an analytic logarithm if and only if its *logarithmic derivative*, i.e., $\frac{f'}{f}$ has a primitive.

Sketch of the solution. This has been done in the class.

- 4.2. Show that the following are equivalent:
 - (a) f has an analytic logarithm on U.
 - (b) For every $n \in \mathbb{N}$, f has an analytic n-th root on U, i.e., there exists an analytic $g: U \longrightarrow \mathbb{C}$ such that $g^n = f$.
 - (c)* For infinitely may $n \in \mathbb{N}$, f has an analytic n-th root on U.

Hint. Fix a closed path γ in U.

- (i) If g_n is an analytic n-th root of f, then observe that $\frac{1}{2\pi i} \int_{\gamma} \frac{g'_n}{g_n} = \frac{1}{2\pi i n} \int_{\gamma} \frac{f'}{f}$.
- (ii) Observe that $\operatorname{Ind}_{g_n \circ \gamma}(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{g'_n}{g_n}$.
- (iii) Conclude from 4.2.(c)ii and 4.2.(c)ii that $\int_{\gamma} \frac{f'}{f} = 0$.

Note: It is not enough to have an analytic n-th root for a particular n in order to conclude that f has an analytic logarithm. The next exercise provides an example.

4.3. Consider the function $f(z) \stackrel{\text{def}}{=} z^2$, for all $z \in \mathbb{D} \setminus \{0\}$. Show that f does not have an analytic logarithm despite having an analytic square root.

Sketch of the solution. *Use 4.1*.

- 4.4.* Let $U \subseteq_{open} \mathbb{C}$. Show that the following are equivalent:
 - (a) For every cycle γ in U and $z \in \mathbb{C} \setminus U$, $\operatorname{Ind}_{\gamma}(z) = 0$.
 - (b) For every cycle γ in U and $f \in H(U)$, $\int_{\gamma} f = 0$.
 - (c) Every analytic function on U has a primitive.
 - (d) Every zero-free analytic function on U has an analytic logarithm.
 - (e) Every zero-free analytic function on U has an analytic n-th root for all $n \in \mathbb{N}$.