An integrated and interoperable platform enabling 3D stochastic geological modelling

Introduction to null space analysis, the example of gravity and magnetics

Presented by Jeremie Giraud With contributions from: Mary Ford, Vitaliy Ogarko, Guillaume Caumon, Paul Cupillard, Lachlan Grose, Roland Martin

MAIN SPONSOR FOR THIS WORK

Jeremie Giraud has received funding from the European Union's Horizon 2020 research and innovation programme¹ under the Marie Skłodowska-Curie grant agreement No. 101032994.

¹ for more info about project: https://cordis.europa.eu/project/id/101032994

Sponsors and partners for the current project

+ maybe a major company

COLLABORATIONS

MinEx CRC sponsors

MinEx CRC sponsors

Tasmanian

Government

VESTERN AUSTRALIA

Government of South Australia Department of State Development

Australian Government Geoscience Australia

Australian Government **Australian Research Council**

Department of Industry

Resources & Energy

Government of South Australia Department of State Development

Motivation and Objectives

Exploration of alternative scenarios

Non-uniqueness: many models, same data!

Nullspace concept. examples

Additive nullspace

Discriminative nullspace

Geophysical models

e.g., geophysical data

Same classification!

Motivation and Objectives

Question: what if a given feature is added or removed?

Motivation and Objectives

Generalities

- → Transition from one model that fits the data to another
 « Null space shuttles » (Deal and Nollet 1996, de Vit et al 2012)
- → Modifying the modify the model WHILE maintaining data fit « Hamiltonian null-space shuttles » (Fichtner and Zunino, 2019) (inspired from Brownian mouvement)
- → Maintain the Hamiltonian *H* constant

Nullspace shuttles

Calculated data

(pot. fields: linear)

- Hamiltonian null-space shuttles (Fichtner and Zunino, 2019) (inspired from Brownian mouvement)
 - Misfit term // potential energy

$$\psi^d = \psi^d(\boldsymbol{d}_{obs.}^{geophy}, \boldsymbol{m}) = \left\| \boldsymbol{d}_{obs.}^{geophy} - \boldsymbol{Sm} \right\|_2^2$$

Perturbation term // kinetic energy

$$K(\boldsymbol{p}) = \frac{1}{2} \boldsymbol{p}^T \boldsymbol{M}^{-1} \boldsymbol{p}$$

Hamiltonian

$$H(m, p)$$
 = potential energy + kinetic energy $H(m, p)$ = constant $H(m, p) = \psi^d(\mathbf{d}_{obs.}^{geophy}, m) + K(p)$

Nullspace shuttles

- Hamiltonian null-space shuttles (Fichtner and Zunino, 2019) (inspired from Brownian mouvement)
 - Misfit term // potential energy

$$\psi^d = \psi^d(\boldsymbol{d}_{obs.}^{geophy}, \boldsymbol{m}) = \|\boldsymbol{d}_{obs.}^{geophy} - \boldsymbol{Sm}\|_2^2$$

Perturbation term // kinetic energy

$$K(\boldsymbol{p}) = \frac{1}{2} \boldsymbol{p}^T \boldsymbol{M}^{-1} \boldsymbol{p}$$

Hamiltonian

$$H(m, p) = constant$$

Calculated data

Nullspace shuttles

- Solving the equations
 - Useful quantities
 - Derivative of potential energy

$$\frac{\partial}{\partial \boldsymbol{m}} \left(\psi^d (\boldsymbol{d}_{obs.}^{geophy}, \boldsymbol{m}) \right) = -\boldsymbol{S}^T (\boldsymbol{d}_{obs.}^{geophy} - \boldsymbol{S}\boldsymbol{m})$$

Derivative of perturbation term

$$\frac{\partial}{\partial m}(K(p)) = \delta pert \cdot M^{-1}$$

- Constraints
 - Depth weighting same as for inversion
 - Inequality / Positivity constraints, e.g. no mag susc. < 0.
 - Prior model constraints

Parameters

- Step length (Δt)
- Data misfit tolerance ε
 - Explore far from starting point, quickly
 - Or small step by step modifications

One model per step: explore space of equivalent models

Examples that can be reproduced using the notebook

Synthetic, conceptual model

Synthetic, conceptual model

Smallness constraints – <u>increase</u> magnitude of values in the model

Smallness constraints – <u>reduce</u> magnitude of values in the model

Visual examples - mag

Synthetic, conceptual model

LOOp

Base case – no constraints

LOOp

Positivity constraints – still some flexibility in intermediate models

LOOp

Positivity constraints – almost no flexibility

References

- De Wit, R.W.L., Trampert, J. & Van Der Hilst, R.D., 2012. Toward quanti- fying uncertainty in travel time tomography using the null-space shuttle, J. geophys. Res., 117, 1–20.
- Deal, M.M. & Nolet, G., 1996. Nullspace shuttles, Geophys. J. Int., 124, 372–380.
- Fichtner, A. & Zunino, A. 2019. Hamiltonian nullspace shuttles. Geophys. Res. Lett., 46, 644–651.

Questions?