

Cognitive SLAM:

Knowledge-Based Simultaneous Localization and Mapping

Davide Tateo

Relatore: Andrea Bonarini

3 Ottobre 2014

Problema:

- Localizzazione di robot autonomi in complessi ambienti indoor
- Utilizzo della conoscenza di un esperto per estrarre informazione dall'ambiente

Obiettivi:

- Estrazione di feature ad alto livello (oggetti)
- Tracking a lungo termine degli oggetti
- Localizzazione basata su oggetti come landmark

Sommario

- 1. Stato dell'Arte
- 2. Struttura logica del sistema
- 3. Architettura del sistema
- 4. Risultati
- 5. Conclusioni

Stato dell'Arte

Sensori:

- Sonar
- Laser
- Videocamere
- RGB-D
- IMU
- Magnetometro

Feature:

- Punti
- Linee

Algoritmi:

- EKF-SLAM
- FastSLAM

Struttura logica del sistema

- Sistema modulare
 - Reasoning
 - Individuazione degli oggetti
 - Riconoscimento degli oggetti
 - Tracking
 - Localizzazione
- Utilizzo di knowledge base
- Tracking a lungo termine feature
- Approccio Full-SLAM

Reasoning

- Utilizzo della logica fuzzy per affrontare incertezze
 - Incertezza sensori
 - Incertezza modello
- Classificazione degli oggetti tramite classificatore fuzzy ad albero
- Definizione di due linguaggi formali:
 - Classificatore (modello oggetti)
 - Knowledge base (symbol grounding)
- Algoritmo di reasoning
 - Classificazione gerarchica
 - Relazioni tra gli oggetti

Individuazione e riconoscimento

- Basati sulle proprietà geometriche dell'immagine
 - Linee (trasformata di Hough)
 - Cluster (DBSCAN)
 - Rettangoli
- Posa del robot per filtrare le linee orizzontali e verticali
- Euristiche per riconoscere i rettangoli dalle linee
- Classificazione delle feature tramite classificatore fuzzy ad albero

Tracking

CMT: Consensus-based Matching and Tracking of Keypoints

- Algoritmo di tracking a lungo termine
- Basato su keypoints
 - BRISK per estrarre e descrivere keypoints
 - Optical flow per trackare i keypoints estratti
- Stima di:
 - scala
 - rotazione
- Clustering e politica di consenso per determinare il centro di massa

Mapping

- Minimizzazzione dell'errore di riproiezione
- Stima dei landmark e pose simultanea (Approccio full-slam)
- Sensor fusion per integrare informazioni dagli altri sensori
- Stima di massima verosimiglianza su factor graph

Errore sulle track

$$\hat{L}' = K \cdot \left[R_W^C \middle| t_W^C \middle] \cdot L^W \right]$$
$$e = \hat{L}' - L' + \eta$$

Errore sugli oggetti

$$\hat{L}_{i}^{I} = K \cdot \left[R_{W}^{C} \middle| t_{W}^{C} \right] \cdot H_{O}^{W} \cdot L^{O}$$

$$e_{i} = \hat{L}_{i}^{I} - L_{i}^{I} + \eta$$

Architettura del sistema

- Middleware: ROS Robot Operating System
 - Publish-Subscribe
 - Client-Server
 - Interfacce sensori
- Fusione Multisensoriale: ROAMFREE Robust Odometry Applying Multisensor Fusion to Reduce Estimation Errors
 - IMU, magnetometro
 - Track
 - Oggetti
- Analisi di immagine: OpenCV 2
- Parser del classificatore: Flex e Bison

Architettura del sistema

Risultati - Individuazione

Risultati - Riconoscimento

Risultati - Tracking

Conclusioni

- Sistema di localizzazione basato sugli oggetti
- Riconoscimento degli oggetti effettuato grazie alle loro caratteristiche geometriche
- Mappe semantiche dell'ambiente
- Possibilità di fare inferenza sull'ambiente
- Utilizzo dell'informazione estraibile da più sensori a basso costo
- Costo computazionale ragionevole

Domande?

Powered by LATEX