4. Aproksymacja metodą najmniejszych kwadratów służy do znalezienia zależności funkcyjnej między danymi na płaszczyźnie (x, y) punktami, najczęściej pochodzącymi z pomiarów (do znalezienia wzoru empirycznego opisującego układ danych punktów). Szukanie tej zależności odbywa się dwuetapowo. Najpierw na podstawie układu punktów na płaszczyźnie wybiera się rodzaj funkcji, a następnie wyznacza się parametry tej funkcji tak, aby suma kwadratów odchyleń rozważanych punktów od wykresu funkcji aproksymującej była najmniejsza.

Przykładem zastosowania aproksymacji jest znalezienie zależności funkcyjnej między napełnieniem koryta w wybranym przekroju cieku, a natężeniem przepływu w tym przekroju. Wybraną funkcją będzie funkcja potęgowa, której parametry wyznacza się metodą najmniejszych kwadratów po sprowadzeniu zadania (przez logarytmowanie) do aproksymacji funkcją liniowa.

Aproksymacja liniowa.

Jeżeli naniesione na płaszczyźnie (x,y) punkty (x_1,y_1) ,..., (x_n,y_n) układają się wzdłuż linii prostej, poszukiwana zależność funkcyjna między tymi punktami ma postać funkcji liniowej $y=a_1+a_2x$. Dla obliczenia współczynników a_1 i a_2 tej prostej, gwarantującej najlepsze, w sensie metody najmniejszych kwadratów, wpisanie się jej wykresu w dany układ punktów stawia się warunek, by funkcja:

$$S(a_1, a_2) = \sum_{i=1}^{n} (a_1 + a_2 x_i - y_i)^2 = min$$

osiągnęła wartość minimalną. Funkcja $S(a_1, a_2)$ jest sumą kwadratów odchyleń (nie odległości) danych punktów od prostej.

Wzory służące do obliczenia współczynników najlepszej prostej są następujące:

$$a_1 = \frac{n(\sum_{i=1}^n x_i y_i) - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n(\sum_{i=1}^n x_i^2) - (\sum_{i=1}^n x_i)^2}$$

$$a_2 = \frac{(\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i) - (\sum_{i=1}^n x_i)(\sum_{i=1}^n x_i y_i)}{n(\sum_{i=1}^n x_i^2) - (\sum_{i=1}^n x_i)^2}$$

Wyprowadzenie wzorów na a_1 i a_2 :

Funkcja $S(a_1, a_2)$ osiąga minimum, wtedy i tylko wtedy, gdy jej pochodne cząstkowe względem niewiadomych przyjmą wartość 0, co prowadzi do następującego układu równań:

$$\begin{cases} \frac{\partial S}{\partial a_1} = 0\\ \frac{\partial S}{\partial a_2} = 0 \end{cases}$$

Po obliczeniu pochodnych i podzieleniu obu równań przez -2, układ przyjmuje postać:

$$\begin{cases} \sum_{i=1}^{n} (a_1 + a_2 x_i - y_i) = 0\\ \sum_{i=1}^{n} (a_1 + a_2 x_i - y_i) x_i = 0 \end{cases}$$

Wykonanie mnożenia w drugim równaniu i zastąpienie pojedynczych sum w każdym z równań trzema sumami prowadzi do układu:

$$\begin{cases} \sum_{i=1}^{n} a_1 + \sum_{i=1}^{n} a_2 x_i - \sum_{i=1}^{n} y_i = 0\\ \sum_{i=1}^{n} a_1 x_i + \sum_{i=1}^{n} a_2 x_i^2 - \sum_{i=1}^{n} y_i x_i = 0 \end{cases}$$

Po zastąpieniu $\sum_{i=1}^{n} a_1 = a_1 + \dots + a_1 = na_1$, wyciągnięciu za nawias pozostałych współczynników a_1 i a_2 oraz przeniesieniu na prawą stronę każdego z równań składników nie zawierających niewiadomych otrzymuje się ostateczną postać układu:

$$\begin{cases} na_1 + \left(\sum_{i=1}^n x_i\right) a_2 = \sum_{i=1}^n y_i \\ \left(\sum_{i=1}^n x_i\right) a_1 + \left(\sum_{i=1}^n x_i^2\right) a_2 = \sum_{i=1}^n y_i x_i \end{cases}$$

Rozwiązanie powyższego układu metodą wyznaczników prowadzi do wzorów na współczynniki a_1 i a_2 prostej aproksymującej układ danych punktów.

Aproksymacja potęgowa.

Jeżeli naniesione na płaszczyźnie (x, y) punkty $(x_1, y_1), ..., (x_n, y_n)$ układają się wzdłuż linii, której kształt stanowi wykres funkcji potęgowej, poszukiwana zależność funkcyjna między tymi punktami ma postać funkcji $y = bx^c$.

W celu wyznaczenia współczynników *b i c* funkcji potęgowej logarytmuje się obustronnie wzór tej funkcji:

$$lny = lnb + clnx$$

Po przyjęciu oznaczeń: lny=z, $lnb=a_1$, $c=a_2$, lnx=u powyższy wzór przyjmuje postać:

$$z = a_1 + a_2 u ,$$

co oznacza, że na płaszczyźnie (u,z) zależność potęgowa zmienia się w zależność liniową. Współczynniki a_1 i a_2 wyznacza się przy użyciu podanych dla funkcji liniowej wzorów, zastępując w nich zmienne x_i zmiennymi $u_i = lnx_i$ oraz zmienne y_i zmiennymi $z_i = lny_i$. Po obliczeniu współczynników a_1 i a_2 współczynniki b i c funkcji potęgowej oblicza się z wynikających z przyjętych oznaczeń wzorów $b = e^{a_1}$ i $c = a_2$.

Aproksymacja wykładnicza.

Jeżeli naniesione na płaszczyźnie (x, y) punkty $(x_1, y_1), ..., (x_n, y_n)$ układają się wzdłuż linii, której kształt stanowi wykres funkcji wykładniczej, poszukiwana zależność funkcyjna między tymi punktami ma postać funkcji $y = be^{cx}$.

W celu wyznaczenia współczynników *b i c* funkcji wykładniczej, podobnie jak w przypadku funkcji potęgowej logarytmuje się obustronnie wzór tej funkcji:

$$lny = lnb + cxlne$$

Po przyjęciu oznaczeń: lny=z, $lnb=a_1$, $c=a_2$ oraz wstawieniu za lne=1 powyższy wzór przyjmuje postać:

$$z=a_1+a_2x\;,$$

co oznacza, że na płaszczyźnie (x, z) zależność wykładnicza zmienia się w zależność liniową. Współczynniki a_1 i a_2 wyznacza się przy użyciu podanych dla funkcji liniowej wzorów, zastępując w nich zmienne y_i zmiennymi $z_i = lny_i$. Po obliczeniu współczynników a_1 i a_2 współczynniki b i c funkcji wykładniczej oblicza się z wzorów $b = e^{a_1}$ i $c = a_2$.

Aproksymacja wielomianowa.

Jeżeli naniesione na płaszczyźnie (x,y) punkty (x_1,y_1) , ..., (x_n,y_n) układają się wzdłuż linii, której kształt stanowi wykres funkcji kwadratowej, poszukiwana zależność funkcyjna między tymi punktami ma postać funkcji $y=a_1+a_2x+a_3x^2$. W tym przypadku suma kwadratów odchyleń danych punktów od wykresu funkcji jest funkcją trzech zmiennych: $S(a_1,a_2,a_3)=\sum_{i=1}^n(a_1+a_2x_i+a_3x_i^2-y_i)^2$. Współczynniki a_1,a_2,a_3 wyznacza się z układu trzech równań powstałego po przyrównaniu do zera pochodnych funkcji $S(a_1,a_2,a_3)$ względem każdej ze zmiennych.

W przypadku aproksymacji wielomianami wyższych stopni tok postępowania jest podobny, zwiększa się tylko liczba równań układu, z którego wyznacza się współczynniki funkcji.