PREDICT WHETHER INCOME EXCEEDS \$50K/YR BASED ON CENSUS DATA

Binary classification using 5 different machine learning algorithms.

Full codes in:

https://github.com/Thaleia18/Data-incomeclassificationproblem

The prediction task is to determine whether a person makes over \$50K a year.

I used five different classification algorithms:

- Decision Tree Classifier
- Random Forest Classifier
- Logistic classifier
- SVM classifier
- K Neighbors Classifier

I evaluated my predictions using different metrics:

- Accuracy
- Precision
- Recall
- F1
- Area under precision recall

THE DATA:

This data was extracted from the <u>1994 Census bureau</u> <u>database</u>.

Attributes:

- >50K, <=50K
- age: continuous
- work class: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, ...
- education: Bachelors, Some-college, Masters, Doctorate, 5th-6th, Preschool...
- education-num: continuous
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse
- o occupation: Tech-support, Craft-repair, Machine-op-inspct, ...
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, ...
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
- sex: Female, Male
- capital-gain: continuous
- capital-loss: continuous
- hours-per-week: continuous
- o native-country: United-States, Cambodia, England, ...

• Sample of numerical data:

	age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

• After cleaning the data, remove null or repeated rows, and transform categorical attributes to numeric.

	age	sex	education_num	hours_per_week	born_usa	white	black	single	married	separated	divorced	widowed	highdegree	capital_gain
0	90	0	9	40	1	1	0	0	0	0	0	1	0	0
1	82	0	9	18	1	1	0	0	0	0	0	1	0	0
2	66	0	10	40	1	0	1	0	0	0	0	1	0	0
3	54	0	4	40	1	1	0	0	0	0	1	0	0	0
4	41	0	10	40	1	1	0	0	0	1	0	0	0	0

SOME DATA VISUALIZATIONS:

I removed attributes that contain just minor categories. I kept attributes that have larrge categories, for example for race white and black are large categories and for native-country United States is the main caegory.

So my final attributes are: income, age, education-num, marital-status, sex, capital-gain, capital-loss, hours per week, native country.

MACHINE LEARNING MODELS:

DECISION TREE:

First I looked for the depth that gives the best accuracy:

Max Depth	Average	Accuracy	
1		0.759205	
2		0.819361	
3		0.818102	
4		0.818194	
5		0.821081	
6		0.803427	
7		0.826823	
8		0.812485	
9		0.820805	
10		0.813958	
11		0.816721	
12		0.815216	

• The best depth was 7. The full metrics results for this depth is:

Accuracy: 0.8529664660361135

Precision: 0.7872991583779648

Recall: 0.5282340862422998

F1: 0.632258064516129

Area under precision Recall: 0.5287636464397456

• We can visualize our decision tree:

RANDOM FOREST:

Accuracy: 0.8349097162510748

Precision: 0.6928480204342273

Recall: 0.5569815195071869

F1: 0.6175298804780875

Area under precision Recall: 0.49191017630076017

LOGISTIC REGRESSION:

Accuracy: 0.8399459525856774

Precision: 0.7207392197125256

Recall: 0.5405544147843943

F1: 0.6177764740393077

Area under precision Recall: 0.4995361212572641

SVM CLASSIFIER:

Accuracy: 0.8416656430413954

Precision: 0.7716405605935697

Recall: 0.4804928131416838

F1: 0.5922176526415691

Area under precision Recall: 0.49507679663572923

K NEIGBORS CLASSIFIER:

Accuracy: 0.8451050239528314

Precision: 0.708308065494239

Recall: 0.5995893223819302

F1: 0.6494300806227412

Area under precision Recall: 0.5205052784173478

METRICS:

- Accuracy Fraction of predictions our model got right

 The best was the classification tree.
- **Precision** Proportion of those predicted positive, how many of them are actual positive.

The best was the classification tree.

• **Recall** Proportion of the actual positive that were predicted correctly

The best was the Kneighbors.

• **F1** Conveys the balance between the precision and the recall

The best was the Kneighbors

• Area under precision recall The precision-recall curve shows the tradeoff between precision and recall for different threshold.

The best was the classification tree.