risksquared biasvariance

S&DS 365 / 665 Intermediate Machine Learning

Random Features and Double Descent

September 20

Reminders

- Assignment 1 is out, due a week from today
- Quiz 2 available at 2:30 pm today on Canvas; 48 hours / 20 mins
- Any material covered in class (up to and including Monday)
- OH schedule posted to Canvas/EdD
- Questions or concerns?

Last time: Basics of neural nets

- Basic architecture of feedforward neural nets
- 2 Backpropagation
- 3 Examples: TensorFlow

Today:

NTK and double descent

Next up: Convolutional neural nets

- Mechanics of convolutional networks
- Filters and pooling and flattening (oh my!)
- Example: Classifying Ca2+ brain scans
- Other examples

Two-layer dense network (multi-layer perceptron)

Equivalent to linear model

With just the weights, this is just another linear model

$$f(x) = \widetilde{\beta}^T x + \widetilde{\beta}_0$$

We get a reparameterization of a linear model; nothing new.

Need to add *nonlinearities*

6

Nonlinearities

Add nonlinearity

$$h(x) = \varphi(Wx + b)$$

applied component-wise.

For regression, the last layer is just linear:

$$f(x) = \beta^T h(x) + \beta_0$$

7

Nonlinearities

Commonly used nonlinearities:

$$\varphi(u) = \tanh(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$
$$\varphi(u) = \operatorname{sigmoid}(u) = \frac{e^u}{1 + e^u}$$
$$\varphi(u) = \operatorname{relu}(u) = \max(u, 0)$$

8

Nonlinearities

So, a neural network is nothing more than a parametric regression model with a restricted type of nonlinearity

Training

- The parameters are trained by stochastic gradient descent.
- To calculate derivatives we just use the chain rule, working our way backwards from the last layer to the first.

High level idea

Start at last layer, send error information back to previous layers

Random features

Today, we'll consider fixing the weights W at their random initializations, and just train the parameters β

This is called the *random features model*. It's a linear model with random covariates obtained from the hidden neurons.

Random features model

Demo

https://playground.tensorflow.org/

What's going on?

- These models are curiously robust to overfitting
- Why is this?
- Some insight: Kernels and double descent

Fruit flies

Drosophila melanogaster

- Model scientific organism
- Eight Nobel prizes for research using Drosophila

The statistical fruit fly

http://www.argmin.net/2017/12/05/kitchen-sinks/

Random Features for Large-Scale Kernel Machines

Ali Rahimi
Intel Research Seattle
Seattle, WA 98105
ali.rahimi@intel.com

Benjamin Recht Caltech IST Pasadena, CA 91125 brecht@ist.caltech.edu

Abstract

To accelerate the training of kernel machines, we propose to map the input data to a randomized low-dimensional feature space and then apply existing fast linear methods. The features are designed so that the inner products of the transformed data are approximately equal to those in the feature space of a user specified shift-invariant kernel. We explore two sets of random features, provide convergence

http://www.argmin.net/2017/12/05/kitchen-sinks/

http://www.argmin.net/2017/12/05/kitchen-sinks/

Reflections on Random Kitchen Sinks

Ali Rahimi and Ben Recht . Dec 5, 2017

Ed. Note: All Rahimi and I won the test of time award at NIPS 2017 for our paper "Random Features for Large-scale Kernel Machines". This post is the text of the acceptance speech we wrote. An addendum with some reflections on this talk appears in the following post.

Video of the talk can be found here.

It feels great to get an award. Thank you. But I have to say, nothing makes you feel old like an award called a "test of time". It's forcing me to accept my age. Ben and I are both old now, and we've decided to name this talk accordingly.

Back When We Were Kids

We're getting this award for this paper. But this paper was the beginning of a trilogy of sorts. And like all stories worth telling, the good stuff happens in the middle, not at the beginning. If you'll put up with my old man ways, I'd like to tell you the story of these papers, and take you way back to NIPS 2006, when Ben and I were young spyr men and dinosaurs roamed the earth.

Double descent

We'll go over notes on the double descent phenomenon on the board, which will allow you to complete Problem 4 on the first assignment.

```
https://github.com/YData123/sds365-fa23/raw/main/notes/double-descent.pdf
```

OLS and minimal norm solution

OLS: p < n

$$\widehat{\beta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$$

Minimal norm solution: p > n:

$$\widehat{\beta}_{mn} = \mathbb{X}^T (\mathbb{X} \mathbb{X}^T)^{-1} \mathbf{Y}$$

"Ridgeless regression"

As λ decreases to zero, the ridge regression estimate:

- Converges to OLS in the "classical regime" $\gamma <$ 1
- Converges to $\widehat{\beta}_{mn}$ in "overparameterized regime" $\gamma > 1$

Double descent

Double descent

Neural tangent kernel

There is a kernel view of neural networks that has been useful in understanding the dynamics of stochastic gradient descent for neural networks.

This is based on the *neural tangent kernel (NTK)*

Parameterized functions

Suppose we have a parameterized function $f_{\theta}(x) \equiv f(x; \theta)$

Almost all machine learning takes this form — for classification and regression, these give us estimates of the regression function

For neural nets, the parameters θ are all of the weight matrices and bias (intercept) vectors across the layers.

Feature maps

Suppose we have a parameterized function $f_{\theta}(x) \equiv f(x; \theta)$

We then define a feature map

$$x \mapsto \varphi(x) = \nabla_{\theta} f(x; \theta) = \begin{pmatrix} \frac{\partial f(x; \theta)}{\partial \theta_{1}} \\ \frac{\partial f(x; \theta)}{\partial \theta_{2}} \\ \vdots \\ \frac{\partial f(x; \theta)}{\partial \theta_{p}} \end{pmatrix}$$

This defines a Mercer kernel

$$K(x, x') = \varphi(x)^T \varphi(x') = \nabla_{\theta} f(x; \theta)^T \nabla_{\theta} f(x'; \theta)$$

Feature maps

This defines a Mercer kernel

$$K(x, x') = \varphi(x)^T \varphi(x') = \nabla_{\theta} f(x; \theta)^T \nabla_{\theta} f(x'; \theta)$$

What is the NTK for the random features model?

NTK and SGD

- The NTK has been used to study the dynamics of stochastic gradient descent
- Upshot: As the number of neurons in the layers grows, the parameters in the network barely change during training, even though the training error quickly decreases to zero

Summary

- Neural nets are layered linear models with nonlinearities added
- Trained using stochastic gradient descent with backprop
- Key to understanding risk properties: Double descent
- Kernel connection: NTK