Machine Learning

Lecture 2
Math Recap - Vectors, Matrices, Functions

Felix Bießmann

Beuth University & Einstein Center for Digital Future

April 10, 2019

Machine Learning - The Big Picture

Given data $x \in \mathcal{X}$ (neural signals, internet user data, ...) \rightarrow predict variable $y \in \mathcal{Y}$ (thoughts, user intentions, ...)

ML algorithms learn a function f(.) from examples (x,y)

$$f(x) = y \tag{1}$$

Most of ML is about:

- Find the right function class for f(.)
- Fitting f(.) correctly

Machine Learning In Practice

After importing and cleaning a data set we have:

• *D*-dimensional data points $\mathbf{x}_i \in \mathbb{R}^D$, $i \in \{1, 2, ..., N\}$ Often the data is stored in matrix form

$$X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N] \in \mathbb{R}^{D \times N}$$
 (2)

ullet Corresponding labels $\mathbf{y}_i \in \mathbb{R}^L$

The data points and labels are **vectors**.

ightarrow Today we recap some basics about vector spaces and matrices

Vectors

- What is a vector, a scalar product, a norm?
- What is orthogonality?
- What are the rules for vector operations?

Matrices

- What is a linear mapping?
- What are the rules for matrix multiplication?

Derivatives

- How to compute the gradient of a univariate function?
- How to compute the gradient of a vector-valued function?

Vectors

- What is a vector, a scalar product, a norm?
- What is orthogonality?
- What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

- Vectors
 - What is a vector, a scalar product, a norm?
 - What is orthogonality?
 - What are the rules for vector operations?
- Matrices
 - What is a linear mapping?
 - What are the rules for matrix multiplication?
- Derivatives
 - How to compute the gradient of a univariate function?
 - How to compute the gradient of a vector-valued function?

What is a Vector?

A vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_D \end{bmatrix}$$

can be understood as a point in a *D*-dimensional space

For comprehensibility we will restrict examples to $\mathbf{v} \in \mathbb{R}^2$.

What is a transposed Vector?

 $\boldsymbol{v}^\top \text{ denotes } \boldsymbol{v}\text{--} \boldsymbol{transposed}$

Vectors can be scaled

$$a\mathbf{v} = \begin{bmatrix} av_1 \\ av_2 \\ \vdots \\ av_D \end{bmatrix} \tag{3}$$

Vectors from the same space can be added to each other

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_D + w_D \end{bmatrix} \tag{4}$$

Scaling and addition can be combined

$$a\mathbf{v} + b\mathbf{w} = \begin{bmatrix} av_1 + bw_1 \\ av_2 + bw_2 \\ \vdots \\ av_D + bw_D \end{bmatrix}$$
 (5)

The **scalar product** computes the *similarity* between two vectors **v** and **w**

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\top} \mathbf{w} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$= \sum_{i}^{D} v_i w_i \qquad (6)$$

 $\mathbf{v}^{\top}\mathbf{w}$ is often called projecting \mathbf{w} onto \mathbf{v}

Length of a Vector

Sometimes we are not interested in the direction of a vector, but only in its length.

How can we measure the **length of a vector**?

Norm of a Vector

The p-norm $\|\mathbf{v}\|_p$ of a D-dimensional vector \mathbf{v} is defined as

$$\|\mathbf{v}\|_{p} = \left(\sum_{i}^{D} |v_{i}|^{p}\right)^{1/p} \tag{7}$$

Usually (and in the following) $\|.\|$ denotes the **euklidean norm** (p=2)

$$\|\mathbf{v}\|_{2} = \left(\sum_{i}^{D} |v_{i}|^{2}\right)^{1/2} = \sqrt{\sum_{i}^{D} v_{i}^{2}} = \sqrt{\mathbf{v}^{\top}\mathbf{v}}$$
 (8)

The Euklidean (2-Norm)

$$\|\mathbf{v}\|_2 = \left(\sum_i^D |v_i|^2\right)^{1/2} = \sqrt{\mathbf{v}^\top \mathbf{v}}$$
 (9)

The 1-Norm

$$\|\mathbf{v}\|_1 = \left(\sum_{i}^{D} |v_i|\right) = \sum_{i}^{D} |v_i|$$
 (10)

Unit vectors

Every vector \mathbf{v} can be scaled to length 1 by

$$\mathbf{v} \leftarrow \mathbf{v}/\|\mathbf{v}\| \tag{11}$$

This is useful. Why?

Because after normalizing each vector to unit length, our vector similarity measure $\mathbf{v}^{\top}\mathbf{w}$ has a standardized meaning.

Angle between two vectors

The scalar product of unit vectors is the cosine of the angle between the vectors

$$\frac{\mathbf{v}^{\top}\mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|} = \cos(\alpha) \tag{12}$$

So the angle α between ${\bf v}$ and ${\bf w}$ is

$$\alpha = a\cos\left(\frac{\mathbf{v}^{\mathsf{T}}\mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right). \tag{13}$$

Note that
$$-1 \leq cos(\alpha) \leq 1$$
.

Does that remind you of something?

Angles between vectors and correlation coefficients

Consider T zero-mean¹ samples from two univariate time series $x_i \in \mathbb{R}^1, y_i \in \mathbb{R}^1, i \in \{1, \dots, T\}$ stored in vectors \mathbf{x} , \mathbf{y}

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_T \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix} \tag{14}$$

The **correlation coefficient** between **x** and **y** is defined as

$$\frac{\sum_{i}^{T} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}} = \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
(15)

 \Rightarrow The cosine of the angle between **x** and **y** is their correlation!

Summary Vector Operations

Vector Scaling

Vector Addition

Scalar Product

$$\mathbf{av} = \begin{bmatrix} \mathbf{a}v_1 \\ \mathbf{a}v_2 \\ \vdots \\ \mathbf{a}v_D \end{bmatrix}$$

$$a\mathbf{v} + b\mathbf{w} = egin{bmatrix} av_1 + bw_1 \ av_2 + bw_2 \ dots \ av_D + bw_D \end{bmatrix}$$

$$\mathbf{v}^{\top}\mathbf{w} = \sum_{i}^{D} v_{i}w_{i}$$

Axioms of Vector Operations

1. Associativity of addition

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \tag{16}$$

2. Commutativity of addition

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \tag{17}$$

3. Distributivity of scaling

$$a(\mathbf{v} + \mathbf{w}) = a\mathbf{w} + a\mathbf{v} \tag{18}$$

Matrices

This is an example of a matrix $A \in \mathbb{R}^{U \times V}$

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1V} \\ A_{21} & A_{22} & \dots & A_{2V} \\ \vdots & \vdots & \ddots & \vdots \\ A_{U1} & A_{U2} & \dots & A_{UV} \end{bmatrix}$$

Matrix Multiplication

Matrix $A \in \mathbb{R}^{U \times D}$ can be multiplied with a vector $\mathbf{v} \in \mathbb{R}^D$ by

$$A\mathbf{v} = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1D} \\ A_{21} & A_{22} & \dots & A_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ A_{U1} & A_{U2} & \dots & A_{UD} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_D \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}v_1 & + & A_{12}v_2 & \dots & + & A_{1D}v_D \\ A_{21}v_1 & + & A_{22}v_2 & \dots & + & A_{2D}v_D \\ \vdots & & \vdots & & \ddots & \vdots \\ A_{U1}v_1 & + & A_{U2}v_2 & \dots & + & A_{UD}v_D \end{bmatrix}$$

$$(19)$$

Matrix Multiplication

Matrix multiplication as pictorial illustration

Matrices as Linear Mappings

A matrix $A \in \mathbb{R}^{U \times V}$ can be understood as a **linear map** from a *U*-dimensional space to a *V*-dimensional space

Consider the scalar product $\mathbf{v}^{\top}\mathbf{w}$ \mathbf{w} is mapped from $\mathbb{R}^2 \to \mathbb{R}^1$

But the mapping $\mathbf{v}^{\top} \in \mathbb{R}^{1 \times 2}$ is a very simple case

Matrices as Linear Mappings

Permutation of dimensions:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Mirroring:

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Scaling:

$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

• Rotation by an angle of α in radians:

$$A = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

Matrices as Linear Mappings: Permutation

$$X = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$AX = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 3 & 4 \end{bmatrix}$$

Matrices as Linear Mappings: Mirroring

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Matrices as Linear Mappings: Scaling

$$A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

Matrices as Linear Mappings: Rotation

$$A = \begin{bmatrix} \cos(\pi \cdot 45/180) & -\sin(\pi \cdot 45/180) \\ \sin(\pi \cdot 45/180) & \cos(\pi \cdot 45/180) \end{bmatrix}$$

Axioms of Matrix Operations

1. Associativity

$$A(BC) = (AB)C \tag{21}$$

2. Distributivity

$$A(B+C) = AB + AC, \qquad (A+B)C = AC + BC \qquad (22)$$

3. No Commutativity!

$$AB \neq BA$$
 (23)

Matrix Multiplication – Some Examples

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 15 & -17 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -2 & 7 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 & 8 \\ 7 & 5 & 1 \end{bmatrix}$$

Matrix Multiplication – Some Examples

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 15 & -17 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 15 & -17 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} -2 & 7 \\ 3 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 & 8 \\ 7 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 27 & 19 & 19 \\ 32 & 23 & -3 \end{bmatrix}$$

Minimizing Functions

Remember:

- ML algorithms are functions f that need to be fitted to data
- Training ML algorithms is finding minima/maxima of functions
- Function minimization/maximization is often done by Gradient Descent

Taking Derivatives of Univariate Functions

Function	Derivative
$f(x) = x^n$	$f'(x) = nx^{n-1}$
cf(x)	cf'(x)
f(x) + g(x)	f'(x)+g'(x)
f(x)g(x)	f'(x)g(x)+f(x)g'(x)
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$
f(g(x))	f'(g(x)) g'(x)

Taking Derivatives of Vector-Valued Functions

Consider a vector-valued function $f(\mathbf{x}): \mathbb{R}^D \to \mathbb{R}^U, \mathbf{x} \in \mathbb{R}^D$

The gradient $\nabla f(\mathbf{x})$ at position \mathbf{x} is

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_D} \right]$$
 (24)

Taking Derivatives of Vector-Valued Functions

Function	Derivative
$f(\mathbf{x}) = \mathbf{u}^{\top}\mathbf{x}$	
$f(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{x}$	
$f(\mathbf{x}) = A\mathbf{x}$	
$f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$	

More complicated examples: The Matrix Cookbook

Taking Derivatives of Vector-Valued Functions

Function	Derivative
$f(\mathbf{x}) = \mathbf{u}^{\top}\mathbf{x}$	$f'(\mathbf{x}) = \mathbf{u}$
$f(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{x}$	$f'(\mathbf{x}) = 2\mathbf{x}$
$f(\mathbf{x}) = A\mathbf{x}$	$f'(\mathbf{x}) = A$
$f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$	$f'(\mathbf{x}) = \mathbf{x}^{\top}(A + A^{\top})$

More complicated examples: The Matrix Cookbook

