APPLIED KALMAN FILTERING

The State Estimation Error Covariance Matrix and Propagation of State Errors

Dr. Robert H. Bishop, P.E.

Error Covariance Matrix

► Recall that the dynamics of linear, lumped parameter systems can be represented by the first-order vector-matrix differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{w}(t)$$
(1)

where $\mathbf{x}(t) \in \Re^n$ is the <u>state vector</u>, $\mathbf{u}(t) \in \Re^p$ is a vector of known <u>external inputs</u>, $\mathbf{w}(t) \in \Re^n$ is the <u>process noise</u>, $\mathbf{F}(t) \in \Re^{n \times n}$ is a matrix of time-varying smooth functions representing the system dynamics, and $\mathbf{G}(t) \in \Re^{n \times p}$ is a matrix of time-varying smooth functions is the mapping between the known inputs and the state

- The state vector and process noise are vectors whose elements are random variables
- ► The process noise is assumed to be uncorrelated in time (a white noise process)
- ► In the discrete time equivalent the process noise is assumed uncorrelated from observation time to observation time (a white noise sequence)

$$\mathbf{x}_k = \Phi_{k-1} \mathbf{x}_{k-1} + \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$
 (2)

where $\Phi_{k-1} := \Phi(t_k, t_{k-1})$

State Estimation Error: Continuous Time

► The state estimate at any time *t* is given by

$$\hat{\mathbf{x}}(t) = E\{\mathbf{x}(t)\}\$$

It follows from the continuous-time mathematical model that

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{F}(t)\hat{\mathbf{x}}(t) + \mathbf{G}(t)\mathbf{u}(t)$$
(3)

since $E\{\mathbf{w}(t)\} = \mathbf{0}$ and $E\{\mathbf{u}(t)\} = \mathbf{u}(t)$.

► The error in the estimate of a state vector is the difference between the estimated state and the true state

$$|\mathbf{e}(t) := \mathbf{x}(t) - \hat{\mathbf{x}}(t)| \tag{4}$$

Note that $E\{\mathbf{e}(t)\} = E\{\mathbf{x}(t)\} - \hat{\mathbf{x}}(t) = \mathbf{0}$.

► Computing $\dot{\mathbf{e}}(t)$ using Eqs. 1 and 3 yields

$$\dot{\mathbf{e}}(t) = \mathbf{F}(t)\mathbf{e}(t) + \mathbf{w}(t) \tag{5}$$

Error Covariance Matrix: Continuous Time

► The covariance P(t) of e(t) given by

$$\mathbf{P}(t) = E\{\mathbf{e}(t)\mathbf{e}^{\mathsf{T}}(t)\}$$
 (6)

provides a statistical measure of the uncertainty in the state estimation error

- ▶ The covariance matrix of $\mathbf{e}(t) \in \Re^n$ is a symmetric matrix $\mathbf{P}(t) = \mathbf{P}^{\mathsf{T}}(t) \in \Re^{n \times n}$
- ▶ The trace of P(t) is the length of the mean square state estimation error

trace
$$(\mathbf{P}(t)) = E\{\mathbf{e}^{\mathsf{T}}(t)\mathbf{e}(t)\} = E\{\|\mathbf{e}(t)\|^2\}$$

▶ The off-diagonal terms of P(t) are indicators of cross-correlation between the elements of e(t).

Error Covariance Matrix: Continuous Time

Recall that the solution to Eq. 1 is given by

$$\mathbf{x}(t) = \Phi(t, t_0)\mathbf{x}_0 + \int_{t_0}^t \Phi(t, \tau)\mathbf{G}(\tau)\mathbf{u}(\tau)d\tau + \int_{t_0}^t \Phi(t, \tau)\mathbf{w}(\tau)d\tau$$
 (7)

► Then with $\hat{\mathbf{x}}(t) = E\{\mathbf{x}(t)\}$, and $\hat{\mathbf{x}}(t)$ given above, it follows that

$$\hat{\mathbf{x}}(t) = \Phi(t, t_0)\hat{\mathbf{x}}_0 + \int_{t_0}^t \Phi(t, \tau)\mathbf{G}(\tau)\mathbf{u}(\tau)d\tau$$
 (8)

where we employ the assumption that $E\{\mathbf{w}(t)\} = \mathbf{0}, \forall t \geq t_0$.

▶ Using Eqs. 7 and 8 and computing $\mathbf{e}(t)$ yields

$$\mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t) = \Phi(t, t_0)\mathbf{e}_0 + \int_{t_0}^t \Phi(t, \tau)\mathbf{w}(\tau)d\tau$$
(9)

With $\mathbf{e}(t)$ above, we can derive a relationship for $\mathbf{P}(t)$ in Eq. 6 and take the time-derivative to obtain $\dot{\mathbf{P}}(t)$ describing the rate of change of the state estimation error covariance in time.

Error Covariance Matrix: Continuous Time

► Computing $E\{\mathbf{e}(t)\mathbf{e}^{\mathsf{T}}(t)\}$ yields

$$\mathbf{P}(t) = E\{\mathbf{e}(t)\mathbf{e}^{\mathsf{T}}(t)\} = \Phi(t,t_0)E\{\mathbf{e}(t_0)\mathbf{e}^{\mathsf{T}}(t_0)\}\Phi^{\mathsf{T}}(t,t_0) + \int_{t_0}^{t} \int_{t_0}^{t} \Phi(t,\tau)E\{\mathbf{w}(\tau)\mathbf{w}^{\mathsf{T}}(\sigma)\}\Phi^{\mathsf{T}}(t,\sigma)d\sigma d\tau$$

where we employ the assumption that $\mathbf{w}(t)$ is a white noise process uncorrelated with $\mathbf{e}(t_0)$.

▶ With E $\{\mathbf{w}(t)\mathbf{w}^{\mathsf{T}}(\tau)\} = \mathbf{Q}_{s}(t)\delta(t-\tau), \forall t, \tau$, it follows that

$$\mathbf{P}(t) = \Phi(t,t_0) \mathcal{E}\{\mathbf{e}(t_0)\mathbf{e}^\mathsf{T}(t_0)\} \Phi^\mathsf{T}(t,t_0) + \int_{t_0}^t \int_{t_0}^t \Phi(t,\tau) \mathbf{Q}_s(\tau) \delta(\tau-\sigma) \Phi^\mathsf{T}(t,\sigma) d\sigma d\tau$$

▶ Let $\mathbf{P}_0 = E\{\mathbf{e}(t_0)\mathbf{e}^T(t_0)\}$ and by the property of the Dirac delta function we have

$$\mathbf{P}(t) = \Phi(t, t_0) \mathbf{P}_0 \Phi^{\mathsf{T}}(t, t_0) + \int_{t_0}^{t} \Phi(t, \tau) \mathbf{Q}_s(\tau) \Phi^{\mathsf{T}}(t, \tau) d\tau$$
(10)

Error Covariance Matrix: Continuous Time

► Recalling that $\dot{\Phi}(t,\tau) = \mathbf{F}(t)\Phi(t,\tau)$, \mathbf{P}_0 is constant and using Leibniz's Rule, we compute the time derivative of $\mathbf{P}(t)$ in Eq. 10 as

$$\dot{\mathbf{P}}(t) = \dot{\Phi}(t,t_0)\mathbf{P}_0\Phi^{\mathsf{T}}(t,t_0) + \Phi(t,t_0)\mathbf{P}_0\dot{\Phi}^{\mathsf{T}}(t,t_0) + \frac{d}{dt}\int_{t_0}^t \Phi(t,\tau)\mathbf{Q}_s(\tau)\Phi^{\mathsf{T}}(t,\tau)d\tau$$

OI

$$\begin{split} \dot{\mathbf{P}}(t) &= \mathbf{F}(t)\Phi(t,t_0)\mathbf{P}_0\Phi^\mathsf{T}(t,t_0) + \Phi(t,t_0)\mathbf{P}_0\Phi^\mathsf{T}(t,t_0)\mathbf{F}^\mathsf{T}(t) + \Phi(t,\tau)\mathbf{Q}_s(\tau)\Phi^\mathsf{T}(t,\tau)\Big|_{\tau=t} \\ &+ \int_{t_0}^t \mathbf{F}(t)\Phi(t,\tau)\mathbf{Q}_s(\tau)\Phi^\mathsf{T}(t,\tau)d\tau + \int_{t_0}^t \Phi(t,\tau)\mathbf{Q}_s(\tau)\Phi^\mathsf{T}(t,\tau)\mathbf{F}^\mathsf{T}(t)d\tau \end{split}$$

ightharpoonup SInce $\mathbf{F}(t)$ is not a function of τ , we can take it outside the integration and collect terms yielding

$$\dot{\mathbf{P}}(t) = \mathbf{F}(t) \left[\Phi(t,t_0) \mathbf{P}_0 \Phi^{\mathsf{T}}(t,t_0) + \int_{t_0}^t \Phi(t, au) \mathbf{Q}_s(au) \Phi^{\mathsf{T}}(t, au) d au
ight] + \\ \left[\Phi(t,t_0) \mathbf{P}_0 \Phi^{\mathsf{T}}(t,t_0) + \int_{t_0}^t \Phi(t, au) \mathbf{Q}_s(au) \Phi^{\mathsf{T}}(t, au) d au
ight] \mathbf{F}^{\mathsf{T}}(t) + \mathbf{Q}_s(t)$$

Error Covariance Matrix: Continuous Time

► Substituting P(t) in Eq. 10 yields

$$oxed{\dot{\mathbf{P}}(t) = \mathbf{F}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{F}^{\mathsf{T}}(t) + \mathbf{Q}_{s}(t)}$$
 $t \geq t_{0}$

with the initial condition $\mathbf{P}_0 = \mathbf{P}_0^\mathsf{T} > 0$ given at $t = t_0$ and $\mathbf{Q}_s(t) = \mathbf{Q}_s^\mathsf{T}(t) \ge 0$ given.

▶ Since
$$\mathbf{P}_0 = \mathbf{P}_0^\mathsf{T} > 0$$
 and $\mathbf{Q}_s(t) = \mathbf{Q}_s^\mathsf{T}(t) \geq 0$, it follows that $\mathbf{P}(t) = \mathbf{P}^\mathsf{T}(t) > 0$, $\forall t \geq t_0$

State Estimation Error: Discrete Time

▶ The state estimate at any time t_k is given by

$$\hat{\mathbf{x}}_k = E\{\mathbf{x}_k\}$$

▶ It follows from the discrete-time mathematical model that

$$\hat{\mathbf{x}}_{k} = \Phi_{k-1} \hat{\mathbf{x}}_{k-1} + \mathbf{u}_{k-1}$$
 (11)

since $E\{\mathbf{w}_{k-1}\} = \mathbf{0}$ and $E\{\mathbf{u}_{k-1}\} = \mathbf{u}_{k-1}$.

► The error in the estimate of a state vector is the difference between the estimated state and the true state

$$\mathbf{e}_k := \mathbf{x}_k - \hat{\mathbf{x}}_k$$

where $\mathbf{x}_k := \mathbf{x}(t_k)$ and $\hat{\mathbf{x}}_k := \hat{\mathbf{x}}(t_k)$. Note that $E\{\mathbf{e}_k\} = E\{\mathbf{x}_k\} - \hat{\mathbf{x}}_k = \mathbf{0}$.

► Computing \mathbf{e}_k using Eqs. 2 and 11 yields

$$\mathbf{e}_k = \Phi_{k-1} \mathbf{e}_{k-1} + \mathbf{w}_{k-1} \tag{12}$$

Error Covariance Matrix: Discrete Time

► The covariance P_k of e_k given by

$$\mathbf{P}_{k} = E\{\mathbf{e}_{k}\mathbf{e}_{k}^{\mathsf{T}}\}$$
 (13)

provides a statistical measure of the uncertainty in the state estimation error

- ▶ The covariance matrix of $\mathbf{e}_k \in \mathbb{R}^n$ is a symmetric matrix $\mathbf{P}_k = \mathbf{P}_k^\mathsf{T} \in \mathbb{R}^{n \times n}$
- ▶ The trace of P_k is the length of the mean square state estimation error

$$\operatorname{trace}(\mathbf{P}_k) = E\{\mathbf{e}_k^{\mathsf{T}}\mathbf{e}_k\} = E\{\|\mathbf{e}_k\|^2\}$$

▶ The off-diagonal terms of \mathbf{P}_k are indicators of cross-correlation between the elements of \mathbf{e}_k .

State Estimation Error Covariance Propagation: Discrete Time

► Computing P_k in Eq. 13 using Eq. 12 yields

$$\boldsymbol{P}_k = \boldsymbol{\Phi}_{k-1} \boldsymbol{E} \{ \boldsymbol{e}_{k-1} \boldsymbol{e}_{k-1}^\mathsf{T} \} \boldsymbol{\Phi}_{k-1}^\mathsf{T} + \boldsymbol{\Phi}_{k-1} \boldsymbol{E} \{ \boldsymbol{e}_{k-1} \boldsymbol{w}_{k-1}^\mathsf{T} \} + \boldsymbol{E} \{ \boldsymbol{w}_{k-1} \boldsymbol{e}_{k-1}^\mathsf{T} \} \boldsymbol{\Phi}_{k-1}^\mathsf{T} + \boldsymbol{E} \{ \boldsymbol{w}_{k-1} \boldsymbol{w}_{k-1}^\mathsf{T} \}$$

- ► The estimation error \mathbf{e}_{k-1} and the noise \mathbf{w}_{k-1} are uncorrelated (a consequence of the fact that \mathbf{w}_{k-1} is a white sequence), hence $E\{\mathbf{e}_{k-1}\mathbf{w}_{k-1}^{\mathsf{T}}\} = \mathbf{0}$ and $E\{\mathbf{w}_{k-1}\mathbf{e}_{k-1}^{\mathsf{T}}\} = \mathbf{0}$.
- $\blacktriangleright \ \ \text{With } \mathbf{P}_{k-1} = E\{\mathbf{e}_{k-1}\mathbf{e}_{k-1}^{\mathsf{T}}\} \text{ and } \mathbf{Q}_{k-1} = E\{\mathbf{w}_{k-1}\mathbf{w}_{k-1}^{\mathsf{T}}\}, \text{ it follows that}$

$$\mathbf{P}_{k} = \Phi_{k-1} \mathbf{P}_{k-1} \Phi_{k-1}^{\mathsf{T}} + \mathbf{Q}_{k-1}$$
 $k = 1, 2, \cdots$

with the initial condition $\mathbf{P}_0 = \mathbf{P}_0^T > 0$ given and $\mathbf{Q}_{k-1} = \mathbf{Q}_{k-1}^T \geq 0$ given

▶ Since $P_0 = P_0^T > 0$ and $Q_{k-1} = Q_{k-1}^T \ge 0$, it follows that $P_k = P_k^T > 0$, $\forall k \ge 1$

Bandom Constant: Continuous Time

► A random constant is a non-dynamic quantity with a random constant amplitude modeled via

$$\dot{x}(t)=0$$

▶ The output of an integrator with zero input and a random initial condition $x(t_0) = x_0$

Random Constant: Discrete Time

► The corresponding discrete process is described by

$$X_k = X_{k-1}$$

for $k = 1, 2, \cdots$

 \blacktriangleright Output of a feedback loop with a time delay with zero input and a random initial condition x_0

☐ Random Walk: Continuous Time

► A random walk process is the output of a integrator when the inputs are uncorrelated signals modeled via

$$\dot{x}(t) = w(t)$$

where $E\{w(t)\} = 0$, $E\{w(t)w(\tau)\} = q\delta(t-\tau)$, and q given

▶ The output of an integrator with uncorrelated inputs and zero initial conditions $x(t_0) = 0$

$$w(t) \longrightarrow \int \longrightarrow x(t)$$

Random Walk: Discrete Time

► The corresponding discrete random walk sequence is described by

$$x_k = x_{k-1} + w_{k-1}$$

where
$$E\{w_{k-1}\}=0$$
, $E\{w_{k-1}w_{j-1}\}=Q_{k-1}\delta_{kj}$ where $Q_{k-1}=q(t_k-t_{k-1})$

The output of a feedback loop with a time delay with uncorrelated inputs and zero initial conditions $x_0 = 0$

Exponentially-Correlated Random Variables: Continuous Time

 An exponentially-correlated random variable (ECRV) is the output of a feedback loop when the inputs are uncorrelated signals modeled via

$$\dot{x}(t) = -\beta x(t) + w(t)$$

where $E\{w(t)\}=0$, $E\{w(t)w(\tau)\}=q\delta(t-\tau)$, $q>0\in\Re$ and $\beta>0\in\Re$ are given

- ▶ The time constant of the individual ECRV is given by $1/\beta$
- ▶ The output of a feedback loop with uncorrelated inputs and random initial conditions $x(t_0) = x_0$

Exponentially-Correlated Random Variables: Discrete Time

► The corresponding discrete ECRV is described by

$$x_k = e^{-\beta(t_k - t_{k-1})} x_{k-1} + w_{k-1}$$

for $k = 1, 2, \cdots$ where $E\{w_{k-1}\} = 0$, $E\{w_{k-1}w_{j-1}\} = Q_{k-1}\delta_{kj}$ where

$$Q_{k-1} = \frac{q}{2\beta} \left(1 - e^{-2\beta(t_k - t_{k-1})} \right)$$

The output of a feedback loop with a time delay with uncorrelated inputs and zero initial conditions $x_0 = 0$

State Vector Augmentation

► Consider the system described by a linear, lumped parameter first-order vector-matrix differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{w}(t)$$
(14)

where $\mathbf{x}(t) \in \mathbb{R}^n$ is the <u>state vector</u>, $\mathbf{u}(t) \in \mathbb{R}^p$ is a vector of known <u>external inputs</u>, $\mathbf{w}(t) \in \mathbb{R}^n$ is the process noise

- Generally we assume that w(t) is a zero-mean uncorrelated random noise process. What if some components of the process noise are not zero-mean white noise processes?
- We can augment the state vector to account for correlated disturbances
- ▶ Suppose $\mathbf{w}(t)$ is composed of some correlated quantities $\mathbf{w}_1(t) \in \mathbb{R}^r$ where $r \leq n$ and uncorrelated quantities $\mathbf{w}_2(t) \in \mathbb{R}^n$ such that

$$\mathbf{w}(t) = \mathbf{\Gamma}\mathbf{w}_1(t) + \mathbf{w}_2(t)$$

with $\Gamma \in \Re^{n \times r}$ and where $\mathbf{w}_1(t)$ can be modeled via

$$\dot{\mathbf{w}}_1(t) = \mathbf{F}_1(t)\mathbf{w}_1(t) + \mathbf{w}_3(t)$$

where $\mathbf{w}_3(t) \in \Re^r$ is a zero-mean, white noise process and $\mathbf{F}_1(t) \in \Re^{r \times r}$ is given

State Vector Augmentation

► Let

$$\mathbf{z}(t) = \left(egin{array}{c} \mathbf{x}(t) \\ \mathbf{w}_1(t) \end{array}
ight) \in \Re^{n+r}$$

Then we can write

$$\dot{\mathbf{z}}(t) = \mathbf{ar{F}}(t)\mathbf{z}(t) + \mathbf{ar{G}}(t)\mathbf{u}(t) + \mathbf{ar{w}}(t)$$

where $\mathbf{z}(t) \in \Re^{n+r}$ is the <u>augmented state vector</u>, $\mathbf{u}(t) \in \Re^{p}$ is a vector of known external inputs, $\bar{\mathbf{w}}(t)$ is the <u>augmented process</u> noise with

$$\bar{\mathbf{F}}(t) = \left[\begin{array}{cc} \mathbf{F}(t) & \mathbf{\Gamma} \\ \mathbf{0} & \mathbf{F}_1(t) \end{array} \right] \in \Re^{(n+r)\times(n+r)}, \ \bar{\mathbf{G}}(t) = \left[\begin{array}{cc} \mathbf{G}(t) \\ \mathbf{0} \end{array} \right] \in \Re^{(n+r)\times p}, \ \bar{\mathbf{w}}(t) = \left(\begin{array}{cc} \mathbf{w}_2(t) \\ \mathbf{w}_3(t) \end{array} \right) \in \Re^{n+r}$$

▶ The augmented process noise $\bar{\mathbf{w}}(t)$ is a zero-mean white noise process, as desired

End Module

END MODULE

