Université A. Mira de Béjaia

Faculté des Sciences Exactes

Département d'informatique

Informatique - LMD
Année universitaire
2023/2024

EXAMEN D'ANALYSE I (DURÉE : 1H:30)

Appareils électroniques et documents sont interdits.

Il est conseillé de lire l'intégralité du sujet avant de commencer à répondre.

Exercice 1. (5 pts) Déterminer la borne supérieure, la borne inferieure, le maximum et le minimum s'ils existent de l'ensemble suivant :

$$A = \left\{1 + \sin\left(\frac{n\pi}{3}\right), \ n \in \mathbb{N}\right\}.$$

Exercice 2. (07 pts) Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par

$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n}{2} + \frac{3}{2u_n}, & n \ge 1. \end{cases}$$

- 1) Montrer que $\forall n \geq 2$, $u_n > \sqrt{3}$.
- 2) Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$.
- 3) En déduire que (un)neN. converge et calculer sa limite.
- 4) Soit $E = \{u_n, n \ge 1\}$. Déterminer $\sup E$ et inf E.

Exercice 3. (4 pts) Soient a et b deux réels. Soit $f: \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right] \longrightarrow \mathbb{R}$, la fonction définie par

$$f(x) = \begin{cases} \frac{x \cos \frac{x}{2}}{\sin x} & si \ x \in \left[-\frac{\pi}{2}, 0\right[\ \cup \]0, \pi[\ \cup \]\pi, \frac{3\pi}{2} \right], \\ a & si \ x = 0, \\ b & si \ = \pi. \end{cases}$$

Déterminer a et b pour que f soit continue sur $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

Indication $\lim_{x \to \pi} \frac{x \cos \frac{x}{2}}{\sin x} = \frac{\pi}{2}.$

Exercice 4. (4 pts) En utilisant le théorème des valeurs intermédiaires, Montrer que L'équation

$$1 + \sin x = x$$

admet une solution unique dans l'intervalle $]0,\pi[$.

Université A. Mira de Béjaia Faculté des Sciences Exactes Département d'Informatique Informatique LMD Année universitaire 2023/2024

BARÈME ET CORRIGÉ DÉTAILLÉ D'ANALYSE 1

Solution 1.

On
$$a A \neq \emptyset$$
 (car $1 \in A$).

$$\forall n \in \mathbb{N}, \ 0 \le 1 + \sin\left(\frac{n\pi}{3}\right) \le 2,$$
 0.5 pt

donc l'ensemble A est borné.

 $A \neq \emptyset$, A est borné $\Longrightarrow \sup A$ et inf A existent. $\longleftarrow 0.5$ pt

Comme $x \mapsto \sin\left(\frac{\pi}{3}x\right)$ est périodique sa période T = 6. Donc l'ensemble A est fini. $\leftarrow \boxed{0.5 \text{ pt}}$

$$A = \left\{1, 1 + \sin\left(\frac{\pi}{3}\right), 1 + \sin\left(\frac{2\pi}{3}\right), 1 + \sin\left(\pi\right), 1 + \sin\left(\frac{4\pi}{3}\right), 1 + \sin\left(\frac{5\pi}{3}\right)\right\}$$

Comme

$$\sin\left(\frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \ \sin\left(\frac{4\pi}{3}\right) = \sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}.$$

Done

$$A = \left\{1, \ 1 + \frac{\sqrt{3}}{2}, \ 1 - \frac{\sqrt{3}}{2}\right\}.$$

 $\left(1+\frac{\sqrt{3}}{2}\right)$ est le plus grand élément de A, donc max $A=\left(1+\frac{\sqrt{3}}{2}\right)$ et $\left(1-\frac{\sqrt{3}}{2}\right)$ est le plus petit élément de A, donc min $A = \left(1 - \frac{\sqrt{3}}{2}\right)$.

$$\frac{-\frac{\sqrt{3}}{2}}{\max A} = \left(1 + \frac{\sqrt{3}}{2}\right) \Longrightarrow \sup A = \max A = \left(1 + \frac{\sqrt{3}}{2}\right).$$
 0.5 pt

$$\min A = \left(1 - \frac{\sqrt{3}}{2}\right) \Longrightarrow \inf A = \min A = \left(1 - \frac{\sqrt{3}}{2}\right).$$

as the ast the ast the ast the

Solution 2.

1) On raisonne par récurrence.

Pour $n=2, u_2=2>\sqrt{3},$ on suppose que la propriété est vraie à l'ordre n $\left(u_n>\sqrt{3}\right)$ et on montre qu'elle vraie à l'ordre n+1 $(u_{n+1} > \sqrt{3})$. On a

$$u_{n+1} - \sqrt{3} = \frac{u_n}{2} + \frac{3}{2u_n} - \sqrt{3} = \frac{(u_n)^2 - 2\sqrt{3}u_n + 3}{2u_n} = \frac{\left(u_n - \sqrt{3}\right)^2}{2u_n} > 0 \text{ (Phypothèse)}.$$

Done

$$\forall n \geq 2, \ u_n > \sqrt{3}.$$

2) La monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

annotonie de la suite
$$(u_n)_{n\in\mathbb{N}}$$

$$u_{n+1} - u_n = -\frac{u_n}{2} + \frac{3}{2u_n} = \frac{3 - (u_n)^2}{2u_n} = \frac{\left(\sqrt{3} - u_n\right)\left(\sqrt{3} + u_n\right)}{2u_n} < 0, \ \forall n \ge 2.$$

D'où $((u_n)_{n\in\mathbb{N}},\ est\ décroissante\ \forall n\geqslant 2)$.

3) La suite $(u_n)_{n\geqslant 2}$ est décroissante, minorée par $\sqrt{3}$, donc elle converge. Posons $\lim_{n\longrightarrow +\infty}u_n=1$. On a

$$u_{n+1} = \frac{u_n}{2} + \frac{3}{2u_n} \Longrightarrow \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} \left(\frac{u_n}{2} + \frac{3}{2u_n}\right) \Longrightarrow l = \frac{l}{2} + \frac{3}{2l} \Longrightarrow l^2 = 3 \Longrightarrow l = \pm \sqrt{3}.$$

Comme $u_n > \sqrt{3}$, donc $\lim_{n \to +\infty} u_n \ge \sqrt{3}$. D'où $l = \sqrt{3}$.

4) $E = \{u_n, \ n \ge 1\}$. Comme $(u_n)_{n \in \mathbb{N}^*}$ est décroissante $\forall n \ge 2$ et $u_1 = 1$ et $u_2 = 2$, $\lim_{n \to +\infty} u_n = \sqrt{3}$ donc

$$\inf E = 1$$
 et $\sup E = u_2 = 2$. \bigcirc 02 pts

25 45 25 45 25 45 25 45 25 45 25 45

Solution 3.

1) La fonction f est continue sur $\left[-\frac{\pi}{2},0\right]\cup \left]0,\pi\right]\cup \left]\pi,\frac{3\pi}{2}\right]$ (car rapport de deux fonctions continues). ← 01 pt

2) La continuité de f au point x = 0. On a

$$f(0) = a \ et \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x \cos \frac{x}{2}}{\sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} \cos \frac{x}{2} = 1$$

La fonction f est continue au point x = 0 si et seulement si $\lim_{x \to 0} \frac{x \cos \frac{x}{2}}{\sin x} = a$. Donc a = 1. 3) La continuité de f au point $x = \pi$. On a

$$f(\pi) = b \ et \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{x \cos \frac{x}{2}}{\sin x} = \frac{\pi}{2}$$

La fonction f est continue au point $x = \pi$ si et seulement si $\lim_{x \to \pi} \frac{x \cos \frac{x}{2}}{\sin x} = b$. Donc $b = \frac{\pi}{2}$. Alors pour a=1 et $b=\frac{\pi}{2}$, la fonction f est continue sur $\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$.

24 45 24 45 24 45 24 45 24 45 24 45

Solution 4.

a) Montrons que l'équation

$$1 + \sin x = x, \qquad \longleftarrow 0.5 \text{ pt}$$

admet une solution unique dans l'intervalle $]0,\pi[$. Posons

$$f(x) = 1 + \sin x - x.$$

La fonction f est continue sur $[0,\pi]$ (somme de fonctions continues). \longleftarrow 0.5 pt

0.5 pt
$$f(0) = 1 > 0$$
 et $f(\pi) = 1 - \pi < 0$.

D'après le théorème des valeurs intermédiaires (0.5 pt

$$\exists c \in]0, \pi[$$
, tel que $f(c) = 0$. $\bigcirc 0.5 \text{ pt}$

Comme f est strictement décroissante sur $[0,\pi]$ (ear $f'(x)=\cos x-1\leqslant 0, \forall x\in [0,\pi]$.) D'où

$$\exists ! c \in]0, \pi[$$
, tel que $f(c) = 0$. $\longleftarrow 0.5 \text{ pt}$