- 1. Book Problems: 4.3, 4.21
 - (4.3) Consider $f = \overline{w_1}\overline{w_3} + w_2\overline{w_3} + \overline{w_1}w_2$. Use the truth table to derive a circuit for f that uses a 2-to-1 multiplexer.

Note that the truth table for the above can be found as:

w_1	w_2	w_3	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Which is equvilent to the below circuit, using w_1 as the select in a muliplexer.

(4.21) Write Verilog code for an 8-to-3 binary encoder.

module Encode (b, f);

end endmodule

- 2. Implement the following circuits using only 2-to-1 mulitplexers.
 - (a) $f = \sum m(2, 5, 6, 14)$ Note that the truth table, and circuit visually derived from it, are as shown below:

a	b	\mathbf{c}	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

(b) $f = \prod M(3, 4, 5, 6, 7)$

Note that the truth table, and circuit derived from it, are as shown below:

a	b	\mathbf{c}	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0
			'

- $3.\ \ Convert\ the\ following\ decimal\ numbers\ to\ 32-bit\ floating\ point\ format.$
 - (a) 33554430 Hey ho
 - (b) 33554431 Let's go

- $4. \ \ Convert\ the\ following\ decimal\ numbers\ to\ fixed\ point\ unsigned\ binary\ with\ at\ least\ 8-bits$ of binary\ precision
 - (a) 12.45897 What now
 - (b) 0.333333To much placeholding

5. For 32-bit Precision Floating point numbers, E=0x00 and E=0xFF are used for special numbers (like 0 and ∞). What are the decimal values of the floating point numbers (32-bit) of smallest (non-zero) and largest (non-infinity) magnitude