Preliminary: Specification (I) - Log(Compensation)

CEO's Valuation

$$\beta_{y_1}^u y_1 + \beta_{xy_2}^u x y_2 + \beta_{y_2}^u y_2 + \beta_{x\eta}^u x \eta + \xi^d$$

Firm's Valuation

$$\beta_x^d x + \beta_{xy_1}^d x y_1 + \beta_{xy_2}^d x y_2 + \beta_{\varepsilon\eta}^d \varepsilon \eta$$

$$\varepsilon \sim \textit{Uniform}(0,1); \ \eta \sim \textit{Normal}(\mu = 0, \sigma_{\eta}); \ \xi^d \sim \textit{Normal}(\mu = 0, \sigma_{\xi})$$

• ξ^d is an unobserved firm specific shock to CEO's valuation. Needed to better fit the variations in prices.

Preliminary: Specification (I) - Log(Compensation)

$\beta^u_{xy_2}$	$\beta^d_{xy_1}$	$\beta^d_{xy_2}$	$\beta_{x\eta}^u$	$eta_{arepsilon\eta}^{d}$	β_x^d	$\beta^u_{y_1}$	$\beta^u_{y_2}$	σ_{η}	σ_{ξ}	κ
-0.7	1.1	1.0	1.5	-0.7	3.7	4.8	1.5	2.2	1.6	1.7

- ► CEO's Valuation: $4.8y_1 + 1.5y_2 0.7xy_2 + 1.5x\eta + \xi^d$
- Firm's Valuation: $3.7x + 1.1xy_1 + 1xy_2 0.7\varepsilon\eta$
- Let x = 1.5, $y_1 = 0.25$, $y_2 = 2$, which are approximately the median observation for each characteristic
- CEO's valuation: 2.1, Firm's valuation: 9
- An increase of 1 standard deviation(\approx 0.2) in y_1 : \uparrow CEO's valuation by 1, \uparrow Firm's valuation by 0.33
- An increase of 1 standard deviation(≈ 1.3) in y_2 : \uparrow CEO's valuation by 0.58, \uparrow Firm's valuation by 1.95
- ▶ An increase of 1 standard deviation(\approx 0.9) in x: \downarrow CEO's valuation by 1.2, \uparrow Firm's valuation by 5.30

CEO's Valuation

$$\beta_{y_1}^u y_1 + \beta_{y_2}^u y_2 + \beta_{xy_2}^u x y_2 + \beta_{x\eta}^u x \eta + \xi^d$$

Firm's Valuation

$$\beta_x^d x + \beta_{xy_1}^d x y_1 + \beta_{xy_2}^d x y_2 + \beta_{\varepsilon\eta}^d \varepsilon \eta$$

$$\varepsilon \sim \textit{Uniform}(0,1); \ \eta \sim \textit{LogNormal}(\mu = 0, \sigma_{\eta}); \ \xi^d \sim \textit{Normal}(\mu = 0, \sigma_{\varepsilon})$$

 $\blacktriangleright \xi^d$ is an unobserved firm specific shock to CEO's valuation.

$\beta^u_{xy_2}$	$\beta^d_{xy_1}$	$\beta^d_{xy_2}$	$\beta^u_{x\eta}$	$\beta^d_{arepsilon\eta}$	β_x^d	$\beta^u_{y_1}$	$\beta^u_{y_2}$	σ_{η}	σ_{ξ}	κ
-0.4	0.9	1.0	-12.4	5.0	8.3	7.1	1.9	0.5	4.9	12.8

- ► CEO's Valuation: $7.1y_1 + 1.9y_2 0.4xy_2 12.4x\eta + \xi^d$
- Firm's Valuation: $8.3x + .9xy_1 + 1xy_2 + 5\varepsilon\eta$
- Let x=1.5, $y_1=0.25$, $y_2=2$, $\eta=1$, $\varepsilon=.5$ which are approximately the median observation for each characteristic
- ► CEO's valuation: -14.2, Firm's valuation: 18.3
- An increase of 1 standard deviation(\approx 0.2) in y_1 : \uparrow CEO's valuation by 1.4, \uparrow Firm's valuation by 0.25
- An increase of 1 standard deviation(≈ 1.3) in y_2 : \uparrow CEO's valuation by 1.3, \uparrow Firm's valuation by 1.95
- ► An increase of 1 standard deviation(≈ 0.9) in x: \downarrow CEO's valuation by 11.88, \uparrow Firm's valuation by 9.02

CEO's Valuation

$$\beta_{y_1}^u y_1 + \beta_{y_2}^u y_2 + \beta_{xy_2}^u x y_2 + \beta_{x\eta}^u x \eta + \beta_{\xi}^u \xi^d$$

Firm's Valuation

$$\beta_x^d x + \beta_{xy_1}^d x y_1 + \beta_{xy_2}^d x y_2 + \beta_{\varepsilon\eta}^d \varepsilon \eta$$

$$\varepsilon \sim \textit{Uniform}(0,1); \ \eta \sim \textit{Normal}(\mu = 0, \sigma_{\eta}); \ \xi^d \sim \textit{LogNormal}(\mu = 0, \sigma = 1)$$

 $\blacktriangleright \xi^d$ is an unobserved firm specific shock to CEO's valuation.

$\beta^u_{xy_2}$	$\beta^d_{xy_1}$	$\beta^d_{xy_2}$	$\beta^u_{x\eta}$	$\beta^{d}_{\varepsilon\eta}$	β_x^d	$\beta^u_{y_1}$	$\beta^u_{y_2}$	σ_{η}	β_{ξ}^{u}	κ
-0.5	0.9	1.1	1.3	-0.5	3.6	-1	1.3	2.2	-4.7	4.4

- ► CEO's Valuation: $-1y_1 + 1.3y_2 0.5xy_2 + 1.3x\eta 4.7\xi^d$
- ► Firm's Valuation: $3.6x + 0.9xy_1 + 1.1xy_2 + 0.5\varepsilon\eta$
- Let x=1.5, $y_1=0.25$, $y_2=2$, $\eta=0$, $\varepsilon=.5$, $\xi^d=1$ which are approximately the median value for each characteristic
- ➤ CEO's valuation: -3.7, Firm's valuation: 9, Median Firm Profit = 4.4
- ▶ An increase of 1 standard deviation(\approx 0.2) in y_1 : ↓ CEO's valuation by -0.20, ↑ Firm's valuation by 0.26
- ▶ An increase of 1 standard deviation(≈ 1.3) in y_2 : ↑ CEO's valuation by 0.78, ↑ Firm's valuation by 2.17
- ► An increase of 1 standard deviation(\approx 0.9) in x: \downarrow CEO's valuation by -0.85, \uparrow Firm's valuation by 5.45