

JWST NIRCam Time Series Observations

ETEO w/JWST
July 10, 2017
NIRCam TSOs

Tom Greene (NASA Ames)
E. Schlawin (UA)
& UA / STScI NIRCam team:
D. Kelly, J. Stansberry,
J. Leisenring, J. Fraine, et al.

NIRCam Intro (from STScl Jdox)

Introduction

The JWST Near Infrared Camera (NIRCam) observes from 0.6 to 5.0 μm and offers imaging, coronagraphy, and grism slitless spectroscopy. NIRCam has 2 modules pointing to adjacent fields of view. Each module uses a dichroic to observe simultaneously in a short-wavelength channel (0.6–2.3 μm) and a long-wavelength channel (2.4–5.0 μm).

NIRCam has 5 observing modes for science:

- Imaging of two $2.2' \times 2.2'$ fields separated by 44" covering 9.7 arcmin² in total
- Coronagraphic imaging at multiple wavelengths
- Wide field slitless spectroscopy (2.4–5.0 μm) using grisms with resolving power $R = \lambda/\Delta\lambda \sim 1500$
- Time series imaging (photometric monitoring)
- Grism time series (spectroscopic monitoring)

Focus of this talk

NIRCam will also obtain wavefront sensing measurements used to align and phase JWST's primary mirror.

From <https://jwst-docs.stsci.edu/display/JTI/>

NIRCam Fields of View (from STScI Jdox)

NIRCam modes: selectable with wheels

**2 LW grisms in each module provide $R \sim 1500$ slitless spectroscopy:
Choose dispersion orientation and filters to suit your science**

NIRCam TSOs

NIRCam LW Grism Spectra

Left: NIRCam spectral image of the OSIM super-continuum lamp point source taken with the LWA R grism and F444W filter during JWST instrument testing.

Right: Extracted spectrum. The continuum decreases toward longer wavelengths due to low fiber transmittance, and the broad feature near 4.27 μm is due to CO₂ absorption. These are artifacts of the test equipment and not NIRCam itself.

* **NIRCam FOV is 2.'2 x 2.'2 with dispersion of 10 Å per 0."/065 x 0."/065 pixel**

NIRCam Spectral Coverage & Resolution

NOTE: *Total spectroscopic throughput is the product of Grism curve and selected filter!*

Figure 3. Left: Total system throughput including all OTE and NIRCam optics and the detector quantum efficiency for several NIRCam filters. The theoretical LW grism efficiency curve (shown for the A module) must be multiplied by the filter curves to produce the system throughput at each wavelength. The Module B LW grisms are anti-reflection coated on only 1 side and therefore have throughputs approximately 25% lower than the LWA grisms. Right: Grism FWHM spectral resolving power vs. wavelength for point sources, limited by pixel sampling of the PSF at shorter wavelengths ($\lambda \lesssim 4 \mu\text{m}$) and limited by the circular beam factor⁷ and diffraction at longer wavelengths ($\lambda \gtrsim 4 \mu\text{m}$).

Module A (TSO) Spectral Saturation Values

λ (μm)	K_{sat} (A0V) ^c	K_{sat} (M2V) ^c	Filter ^d
2.5	4.3	4.2	F322W2
2.7	4.4	4.4	F322W2
2.9	4.3	4.3	F322W2
3.1	4.1	4.1	F322W2
3.3	4.1	4.3	F322W2
3.5	4.0	4.2	F322W2
3.7	3.9	4.1	F322W2
3.9	3.7	3.9	F322W2
4.1	3.4	3.7	F444W
4.3	3.1	3.4	F444W
4.5	2.9	3.0	F444W
4.7	2.5	2.7	F444W
4.9	2.1	2.4	F444W

NIRCam can observe bright stars!

c: K-band Vega magnitudes for saturation (80% full well or 65,000 electrons) for 0.68 s integration time.

See Greene+ (2017) JATIS article for more Module A & B saturations and sensitivity values

Time-series imaging is also possible

- $\lambda < 2.4 \mu\text{m}$ TSO imaging can be done simultaneously with either $\lambda > 2.4 \mu\text{m}$ imaging or spectroscopy
- SW observations can be done with weak lenses for better bright limits and potentially higher precision photometry
- Show HAT-P-18 b APT example???

Setting TSO parameters

- Determine how much dwell time for each object
- Set subarrays and exposure parameters
- Set SW filter: simultaneous $\lambda < 2.4 \mu\text{m}$ imaging
- Consider target acquisition
 - Offset acquisition required for bright targets in Cycle 1
- Visibility, position angles, and spectral overlaps
- Enter values into APT

NIRCam grism time series options (APT)

NIRCam Grism Time Series		Special Requirements	Comments		
Module	A	Module can only be set to A for this template.			
Subarray	SUBGRISM128				
No. of Outputs	4	Frame readout time is 0.67596			
No. of Exposures	1				
Short Pupil+Filter	WLP8+F210M				
Long Pupil+Filter	GRISMR+F322W2				
	Readout Pattern	No. of Groups	No. of Integrations	Photon Collect Duration	Total Photon Collect Duration
Exposure Time	RAPID	4	1000	2703.84	2703.84

- Can choose from 64, 128, 256, & 2048 x 2048 subarrays
- 1 or 4 outputs (4 for very bright stars)
- Simultaneous short wavelength imaging with weak lens to spread the light over many pixels is possible
- No dithering
- Flexible detector MULTIACCUM exposure & readout parameters

Select Subarray Size

Select Detector Readout Parameters

Set #groups from:

- host star brightness
- mode saturation limit
- subarray size
- # of outputs

Set # Ints to fill dwell time

Set SW Filter: Simultaneous $\lambda < 2.4 \mu\text{m}$ Imaging

Currently Available SW Filters:

- CLEAR + WLP4
- WLP8 + 182M
- WLP8 + 210M
- WLP8 + 187N
- WLP8 + 212N

Target Acquisition Note

- In Cycle 1, grism time series target acquisition is done with F335M filter, 32 x 32 subarray, and Ngroups ≥ 3
 - Saturation limit is K = 7.0 mag
- *Stars with K < 7.0 may require offset target acquisition*
 - Offset from nearby fainter star with known coordinates
- Using a narrow-band acquisition filter would allow acquiring on K < ~ 4.5 mag stars (likely Cycle 2 and later)

Check spectral overlap of nearby objects

We are working on an automated tool for this (NIRCam + MIRI LRS)

APT Example: WASP-80 b F322W2

Observation 3 of JWST Draft Proposal (NIRCam_GTO_transiting_planets_APT_ES_2015May25.aptx)

Number	3	Status:	UNKNOWN
Label			
Instrument	NIRCAM		
Template	NIRCam Grism Time Series		
Target	3 WASP-80		
Visit Splitting:	Splitting Distance 65.0 Arcsec	Number of Visits 1	
Duration (secs)	Science 19717	Total Charged 32495	

Data volume: 25,122 MB

NIRCam Grism Time Series Special Requirements Comments

Target Acquisition Parameters

Acq Target	Acq Subarray	Acq Filter
Target ACQ	Same Target as Observation	SUB32TATSGRISM
Acq Readout Pattern	Acq Groups/Int	Acq Integrations/Exp
Acq Exposure Time	RAPID	Acq Total Integrations 1
	5	Acq Total Exposure Time 0.087

Grism Time Series Parameters

Module can only be set to A for this template.

Subarray	SUBGRISM256				
No. of Output Channels	4	Frame readout time is 1.34668			
Exposures/Dith	1				
Short Pupil+Filter	WLP8+F210M				
Long Pupil+Filter	GRISMR+F322W2				
Readout Pattern	Groups/Int	Integrations/Exp	Total Integrations	Total Exposure Time	
Exposure Time	BRIGHT1	6	1331	1331	21509.173

NIRCam uses the JWST time-series data pipeline

- Users can download & re-run the pipeline with different options, additions, or removals

Future Possible Simultaneous 1 – 2 μm Spectra

- DHS elements disperse ~40% JWST's light onto 2 NIRCam SW detectors with a small gap in-between

- Dispersed Hartmann Sensor (DHS) elements in the SW channel of NIRCam provide 1 – 2 μm spectra using 10 sub-apertures of the JWST pupil, potentially allowing simultaneous spectra of bright stars during LW grism observations
- This is not an approved science mode for Cycle 1; it may be approved for later cycles. There may be limitations on spectra.

See Schlawin+ (2017) PASP

The End