Bevezetés a méréstechnikába és jelfeldolgozásba

Tihanyi Attila 2007 március 27

Ellenállások

Ellenállások mint gyártmány

Rétegellenállás Kivezetési hibák Szén v Fém Sapka nélküli ellenállás Hőmérséklet együttható Negatív vagy pozitív Sapka nélküli ellenállás SMD technológia

Ellenállás értéksorok

Minden elektronikus alkatrészre általánosítva

Ellenállás értéksorok

- E 6 (±20%-os tűréshatár),
- E 12 (±10%-os tűréshatár),
- E 24 (±5%-os tűréshatár),
- E 48 (±2,5%-os tűréshatár),
- E 96 (±1,0%-os tűréshatár),
- E192 (±0,5%-os tűréshatár).

$$P = U \cdot I$$

$$P = I^2 R$$

Teljesítmény adatok

0,1W 0,2W 0,5W 1W 2W 5W 10W 20W 50W

Rétegellenállások megjelölése ötsávos színjellel

100	147	215	316	464	681
101	149	218	320	470	690
102	150	221	324	475	698
104	152	223	328	481	706
105	154	226	332	487	715
106	156	229	336	493	723
107	158	232	340	499	732
109	160	234	344	505	741
110	162	237	348	511	750
111	164	240	352	517	759
113	165	243	357	523	768
114	167	246	361	530	777
115	169	249	365	536	787
117	172	252	370	542	796
118	174	255	374	549	806
120	176	258	379	556	816
121	178	261	383	562	825
123	180	264	388	569	835
124	182	267	392	576	845
126	184	271	397	583	856
127	187	274	402	590	866
129	189	277	407	597	876
130	191	280	412	604	887
132	193	284	417	612	898
133	196	287	422	422 619	
135	198	291	427 626		920
137	200	294	432	634	931
138	203	298	437	643	942
140	205	301	442	649	953
142	208	305	448	657	965
143	210	309	453	665	976
145	213	312	459	673	988

E48		_
E96		
E192		

pl.: Vörös-Ibolya-Sárga-Vörös-Barna

274 e2 1 = 27400 = 27,4Kohm +/- 1%

Ellenállások alkalmazása

- Méréshatár kiterjesztés feszültségosztóval
- Műszerhiba követelmény
- Szokásos méréshatárok

- Hiba meghatározás
 - Vegyes hiba
 - Hibaszámítási módszerek

- U_2 azonos U_1 -el azaz $20*log(U_2/U_1) -> 0dB$
- U₂ 10 dB-el alacsonyabb U₁-nél
 -10dB=20*log(U₂/U₁) -> U₂/U₁ = 31,6%
- U₂ 20 dB-el alacsonyabb U₁-nél
 -20dB=20*log(U₂/U₁) -> U₂/U₁ = 10,0%
- Méréshatárok:

100mV; 316mV; 1000mV

 A műszer hibája a használt tartományon 1%! -> 3db ellenállás kell

Méréshatár kiterjesztés

- 100mV -tól 1V-ig
- Rbe >= 1Kohm
- Herr = Hműszer + Hosztó
- Herr <=2%

A feladat

A mérőeszköz hibája

A megoldás

 0 dB-en feszültség osztás nincs, megkötés csak Rbe >= 1Kohm tehát

$$\frac{1}{Rbe} = \frac{1}{R1 + R2 + R3} + \frac{1}{Rb}$$

R1+R2+R3 >= 2Kohm

• -10dB-en feszült osztás 31.6% tehát az ((R2+R3) x Rb) ellenálláson eső feszültség R1 ellenálláson 68,4% a feszültség esés

A megoldás

$$I = \frac{0.216V}{R1}$$
 $I = \frac{0.1V}{Re}$ $I = \frac{U1}{Rbe} = \frac{0.316V}{2000ohm}$

$$I = \frac{0.1V}{\text{Re}}$$

$$I = \frac{U1}{Rbe} = \frac{0,316V}{2000ohm}$$

$$R1 = \frac{2000*0,216}{0,316} = 1,368Kohm$$

$$Re = \frac{2000*0,1}{0,316} = 632ohm$$

$$\frac{1}{\text{Re}} = \frac{1}{R2 + R3} + \frac{1}{Rb}$$

$$R2+R3 = 924ohm$$

Az R3-al párhuzamosan van a műszer és ezen az ellenálláson esik a bemenő feszültség 10%-a. (-20dB)

Az R1 sorba van kötve az R2-vel és rajtuk esik a bemenő feszültség 90%-a.

A körben folyó áram

$$I = \frac{0.9V}{R1 + R2}$$

$$I' = \frac{0.1V}{Rb}$$

$$I' = \frac{0.1V}{R3}$$

$$I = I' + \operatorname{Im}$$

$$\frac{0.9V}{R1+R2} = \frac{0.1V}{Rb} + \frac{0.1V}{R3}$$

A megoldás

Figyelem!
A feszültség ezen a ponton
az átkapcsolás miatt
megváltozott!

Számítási eredmények

$$\frac{0.9V}{R1 + R2} = \frac{0.1V}{Rb} + \frac{0.1V}{R3}$$

$$R2+R3 = 9240hm$$

$$\frac{0.9V}{1.368K + R2} = \frac{0.1V}{2000} + \frac{0.1V}{924 - R2}$$

R1 = 1,368 kohm

R2 = 668,75 ohm

R3 = 255,25 ohm

Rétegellenállások megjelölése ötsávos színjellel

100	147	215	316	464	681
101	149	218	320	470	690
102	150	221	324	475	698
104	152	223	328	481	706
105	154	226	332	487	715
106	156	229	336	493	723
107	158	232	340	499	732
109	160	234	344	505	741
110	162	237	348	511	750
111	164	240	352	517	759
113	165	243	357	523	768
114	167	246	361	530	777
115	169	249	365	536	787
117	172	252	370	542	796
118	174	255	374	549	806
120	176	258	379	556	816
121	178	261	383	562	825
123	180	264	388	569	835
124	182	267	392	576	845
126	184	271	397	583	856
127	187	274	402	590	866
129	189	277	407	597	876
130	191	280	412	604	887
132	193	284	417	612	898
133	196	287	422	619	909
135	198	291	427	626	920
137	200	294	432	634	931
138	203	298	437	643	942
140	205	301	442	649	953
142	208	305	448	657	965
143	210	309	453	665	976
145	213	312	459	673	988

		Értéksáv		áν	Szorzó	Tűrés
		1	2	3	4	5
	Ezüst				x10e-2	
	Arany				x10e-1	
	Fekete		0	0	x10e0	
	Barna	1	1	1	x10e1	1%
	Vörös	2	2	2	x10e2	2%
	Narancs	3	3	3	x10e3	
	Sárga	4	4	4	x10e4	
	Zöld	5	5	5	x10e5	0,50%
	Kék	6	6	6	x10e6	0,25%
	Ibolya	7	7	7	x10e7	0,10%
	Szürke	8	8	8	x10e8	
	Fehér	9	9	9	x10e9	

R1 = 1,368 kohm

R2 = 668,75 ohm

R3 = 255,25 ohm

274 e2 1 = 27400 = 27,4Kohm +/- 1%

Változtatható ellenállások

Az ellenállás-pálya és -érték kapcsolat

Feszültségosztó

Híd kapcsolás

Nem lineáris ellenállások

$$r = \frac{\Delta U}{\Delta I}$$

r = differenciális ellenállás

NTK PTK VDR

NTK

Melegen nem vezető ellenállások

-2%/°C -7%/°C

PTK

Hidegen vezető ellenállások

PTK feszültség áram karakterisztikája

VDR

Feszültségfüggő ellenállások

VDR feszültség áram karakterisztikája

1A-hoz tartozó feszültség

$$U = C \cdot I^{\beta}$$

Szabályozási tényező A jelleggörbe meredeksége

$$I = \left(\frac{U}{C}\right)^{\frac{1}{\beta}}$$

VDR számítások

$$C = 100; \beta = 0,2; U = 10V$$

$$I = \left(\frac{U}{C}\right)^{\frac{1}{\beta}} = \left(\frac{10}{100}\right)^{\frac{1}{0.2}} = 0,1^5 = 10uA$$

$$R_{VDR} = \frac{10V}{10\mu A} = 1M\Omega$$

Munkapont

Számítási példák

Számítási példák

Számítási példák

Kapacitás

$$C = \frac{\mathcal{E}_0 \mathcal{E}_r A}{d} = \frac{8,85 \cdot 10^{-12} As \cdot 0,02m^2}{Vm \cdot 0,002m} = 8,85 \cdot 10^{-12} \frac{As}{V} = 8,85 pF$$

Kapacitás feszültsége

```
Színskála azonos az
ellenállásokkal
1-2 gyűrű érték
3 gyűrű nagyságrend
4 gyűrű tűrés
5 gyűrű feszültség
Arany = 1000V
Ezüst = 2000V
Színtelen = 5000V
```

$$C = \frac{Q}{U}$$

Kapacitások kapcsolásai

 Kapacitások soros kapcsolása

$$C_e = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots}$$

 Kapacitások párhuzamos kapcsolása

$$C_e = C_1 + C_2 + \dots$$

Induktivitás

$$R_{m} = \frac{l_{m}}{\mu_{0}\mu_{r}A} \qquad \mu_{0} = 1,257 \cdot 10^{-6} \frac{Vs}{Am}$$

$$\Theta = \Phi \cdot R_m$$

Induktivitások kapcsolásai

 Induktivitások soros kapcsolása

$$L_e = L_1 + L_2 + \dots$$

 Induktivitások párhuzamos kapcsolása

$$L_e = \frac{1}{1/L_1 + 1/L_2 + \dots}$$

Alkalmazás példa

Meggondolások

$$U_{ki} = U_{be} \frac{R_2}{R_1 + R_2} \qquad U_{ki} = U_{be} \frac{C_1}{C_1 + C_2}$$

$$U_{ki} = U_{be} \frac{Z_2}{Z_1 + Z_2}$$

!!! Frekvenciafüggetlen !!!

$$R_1 \cdot C_2 = R_2 \cdot C_1$$

Egyszerű RLC tagok

$$R_e; L_e; C_e; \omega_e$$

Összefüggések

$$R_e = \omega_e \cdot L_e$$

$$R_e = \frac{1}{\omega_e \cdot C_e}$$

Két egység szabadon választható Legyen

$$R_e = 1K\Omega$$

$$L_e = 1mH$$

$$\omega_e = \frac{R_e}{L_e} = 1Mrad/s$$

$$C_e = \frac{1}{\omega_e R_e} = 1nF$$

Választott egységekben

$$R_e = 2K\Omega$$
 $L_e = 0.5mH$
 $\omega_e = 1Mrad/s$

Logaritmikus egységek

$$a = 10 \cdot \lg \frac{P_1}{P_0}$$

Decibel

$$a = 10 \cdot \lg \frac{P_1}{P_0} = 10 \cdot \lg \frac{U_1^2}{U_0^2} \cdot \frac{R_0}{R_1} = 20 \cdot \lg \frac{U_1}{U_0} + 10 \cdot \lg \frac{R_0}{R_1}$$

$$a = 20 \cdot \lg \frac{U_1}{U_0}$$

Ha R1= Re

Gyakorlati értékek

$$s=10\cdot \lg P_1$$
 dBW Abszolut teljesítmény szint dBm

$$a = 20 \cdot \lg \frac{U_1}{775mV} \longleftarrow_{600\Omega}$$

Logaritmikus frekvencia egységek

$$v = \lg \frac{\omega_1}{\omega_0}$$

Dekád

$$v = \log_2 \frac{\omega_1}{\omega_0}$$

Oktáv

RC tag

$$\tau = RC$$
.

RC tag

$$\tau = RC$$
.

Négypólusok

Passzív és aktív négypólusok

U2

Négypólusok

Passzív és aktív négypólusok

Bemeneti impedancia Xb=U1/I1 Kiemeneti impedancia Xk=U2/I2 Meredekség m=U2/U1 Áramerősítési tényező β=I2/I1

Impedancia jellemzés

- U1=Z11*I1 + Z12*I2
- U2=Z21*I1 + Z22*I2

Figyelem!

H paraméterek

Feszültség erősítés m

- U1 = H11*I1 + H12*U2
- $I2 = -H_21*I1 + H_22*U2$

Áramerősítési tényező β

RC tag mint négypólus

Bemeneti áram abszolút értéke

$$\left|\mathbf{I}_{1}\right| = \frac{\mathbf{U}_{1}}{\sqrt{\mathbf{R}^{2} + \mathbf{X}_{c}^{2}}} \qquad \left|\mathbf{I}_{1}\right| = \frac{\mathbf{U}_{1}}{\sqrt{\mathbf{R}^{2} + \mathbf{X}_{c}^{2}}}$$

RC tag mint négypólus

Kimeneti feszültség abszolút értéke

$$|\mathbf{U_2}| = \frac{\mathbf{U_1} \mathbf{X_c}}{\sqrt{\mathbf{R^2 + X_c^2}}}$$

$$|\mathbf{U}_2| = \sqrt{\frac{\mathbf{R}^2 + \mathbf{X}_c^2}{\mathbf{R}^2 + \mathbf{X}_c^2}}$$

RC tag mint négypólus

Feszültségerősítés abszolút értéke

$$|Au| = \frac{U_2}{U_1} = \frac{Xc}{|R_2| + X_c^2}$$
, $|Au| = \frac{U_2}{U_1} = \frac{R}{|R^2| + X_c^2}$

Időfüggvény

Boode 1. fokú

Statikus mérőpanel

Dióda mérés

Karakterisztika

Karakterisztika

Földelt emitteres paraméterek

Tranzisztor mérés

Tranzisztor mérés

Tranzisztor mérés

