Lecture 013

Svadrut Kukunooru

October 4, 2021

Recall that last timed we showed that if A is a 2×2 matrix w/ row vectors $\vec{r_1}, \vec{r_2}, \ldots$, or

$$A = \begin{bmatrix} r_1 \\ r_2 \\ \dots \end{bmatrix}$$

then the determinant of A is the signed area of $P(r_1, r_2)$ (the parallelogram formed by the two vectors).

DEFINITION: for an $n \times n$ matrix A, det(A) is defined to be the signed volume of $P(r_1, r_2, \dots r_n)$ (the parallelotope; basically a 3-D version of a parallelogram defined by the row vectors $r_1, r_2, \dots r_n$).

NOT TESTED ON EXAM, BUT GOOD TO KNOW: The sign of det(A) reflects whether the matrix function $f_A : \mathbb{R}^n \implies \mathbb{R}^n$ preserves the orientation of \mathbb{R}^n orientation.

For R_1 , the orientation is defined as either positive or negative. For R_2 , the orientation is defined as either counterclockwise or clockwise. In R_3 , the orientation is defined as either right-handed or left-handed.

We can conclude that whenever E is an elementary matrix,

$$det(EA) = det(E) \cdot det(A)$$

This rule continues to hold for higher dimensional parallel otopes. METHOD: perform elementary row operations to simplify A to one of the base cases, keep track of the determinants of the elementary matrices.

Recall for an $n \times n$ matrix A,

$$RREF(A) = \begin{cases} I_n \Rightarrow (A \text{ is invertible}) \\ \text{has a row of zeroes} \Rightarrow (A \text{ is not invertible}) \end{cases}$$

EXAMPLE: Compute the determinant of A if

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & -1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow I_3$$

Therefore, the determinant is 1, since the determinant of an identity matrix must always be 1.