Universidad Complutense de Madrid

IAAC - PRÁCTICA 4

Yaco Alejandro Santiago Pérez

$A signatura: \ \ INTELIGENCIA\ ARTIFICIAL\ APLICADA\ A\ INTERNET\ DE\ LAS$ COSAS

P4: Entrenamiento de redes neuronales ${\bf Master~IOT}$

30 de marzo de 2020

Índice general

1.	. Introducción									
2. Objetivos										
3.	Parte 1: Implementación y Testeo									
	3.1. Funciones									
	3.2. Ejecución de las pruebas									
	3.2.1. Primera versión de la función de Coste	5								
	3.2.2. Segunda versión de la función de Coste: Con regularización	5								
	3.2.3. Testeo de backprop	6								
4.	Parte 2: Entrenamiento y ejecución									
	4.1. Entrenamiento	7								
	4.2. Ejecución	7								
		8								
5.	Código	9								

Introducción

Esta práctica consiste en el **entrenamiento de una red neuronal** encargada del reconocimiento de números manuscritos.

4	3	2	4	3	2	5	7	0	6
	2	5	5	3	7	1	3	4	3
0	91	3	0	5	5	9	7	6	0
3	3	2	5	0	4	6	5	6	0
3					8				
6	5	4	8	1	8	2	2	1	7
	9				0			2	
0	4	5			7			4	9
0	5	9			5			0	
9					8				2

Figure 1.1: Ejemplo de datos de entrenamiento

Dicha red neuronal tendrá una **estructura** similar a la siguiente:

Objetivos

En esta práctica, los objetivos son los siguientes:

- Implementar la función de calculo del coste
- Modificar las funciones de manera que los resultados devueltos estén regularizados
- Comprobar los costes obtenidos
- Implementar la función de calculo del gradiente
- Implementar una función auxiliar que calcule la derivada de la función sigmoide
- Implementar el uso de las funciones para la retro-propagación
- Chequear que los valores devueltos son correctos, con la ayuda del archivo proporcionado por el profesor
- Entrenar a la red neuronal y obtener los valores para theta1 y theta2

Parte 1: Implementación y Testeo

3.1. Funciones

Las funciones empleadas, en orden de llamada, son las siguientes:

- backprop(params, num_entradas, num_ocultas, num_etiquetas, X, y, l): Es la función encargada de hacer la retro-propagación, y devolver el coste y gradiente tras llamar a sus respectivas funciones para calcularlos.
- cost(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, l): Geneera theta1 y theta2 para calcular posteriormente la h que devuelve forward_propagate(...).
 A continuación, realiza el calculo del coste con las siguientes formulas:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right]$$

Figure 3.1: Fórmula del coste sin regularización

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_{\theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \left[\sum_{j=1}^{25} \sum_{k=1}^{400} (\Theta_{j,k}^{(1)})^2 + \sum_{j=1}^{10} \sum_{k=1}^{25} (\Theta_{j,k}^{(2)})^2 \right]$$

Figure 3.2: Fórmula del coste con regularización

- gradiente(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, l): Función encargada de obtener el gradiente. Para ello, genera theta1 y theta2 y delta1 y delta2 con valores cero. A continuación llama a forward_propagate(...) para recuperar a1, z2, a2, h y realizar el cálculo.
- forward_propagate(X, theta1, theta2): Función que realiza la retro-propagación. Procesa los m ejemplos de entrenamiento, procesando cada ejemplo (x(t), y(t)) siguiendo la siguiente formula:

$$\delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)} \cdot * g'(z^{(2)}) \qquad \delta_j^{(3)} = a_j^{(3)} - y_j$$
(remove $\delta_0^{(2)}$)

Para luego calcular el gradiente dividiendo entre m los valores acumulados en el bucle. Siguiendo las siguientes formulas:

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)}$$

Figure 3.3: Fórmula sin regularización

$$\begin{array}{ll} \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)} & \text{para } j = 0 \\ \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)} + \frac{\lambda}{m} \Theta_{ij}^{(l)} & \text{para } j \geq 1 \end{array}$$

Figure 3.4: Fórmula con regularización

- sigmoid(x): Función sigmoide tal y como la que hemos usado en las demás prácticas.
- dSigmoid(z): Derivada de la función sigmoid(x):

$$g'(z) = \frac{d}{dz}g(z) = g(z)(1 - g(z))$$

- **pesosAleatorios(L_in, L_out):** Función que inicializa una matriz de pesos *theta* con valores aleatorios en el rango [-ini, ini]. Devuelve una matriz de dimensión (L_out, 1 + L_in).
- min_coste(num_entradas, num_ocultas, num_etiquetas, X, y, reg): Función encargada de calcular y devolver las *thetas* óptimas.
- evaluar(h, y): Evalúa cual es el porcentaje de acierto comparando los valores pronosticados contra los valores reales.
- mainTest(): Función desde la cual se realizan las distintas llamadas y pruebas a la función de coste.
- main(): Función desde la cual se realizan las llamadas para realizar el entrenamiento y ejecución de backprop(...).

3.2. Ejecución de las pruebas

Se evalúan los siguientes valores obtenidos en las distintas ejecuciones.

3.2.1. Primera versión de la función de Coste

Esta función es la versión de la Función **sin** regularización. Se debería devolver un valor aproximado de **0.287629**.

```
# valores iniciales
num_entradas = 400
num_ocultas = 25
num_etiquetas = 10
l = 1
X = np.hstack([np.ones((len(X), 1)), X])
encoder = OneHotEncoder(sparse=False, categories='auto')
y_cat = encoder.fit_transform(y)

theta_vec = np.concatenate((np.ravel(thetal), np.ravel(theta2)))
theta_vec = theta_vec.reshape((len(theta_vec), 1))
print("COSTE:")
print(cost(theta_vec, num_entradas, num_ocultas, num_etiquetas, X, \( \to \)
y_cat, 1))
print("---")
```

El resultado de la ejecución es correcto:

```
COSTE:
0.2876291651613187
```

3.2.2. Segunda versión de la función de Coste: Con regularización

El coste regularizado debería estar en torno a **0.383770**.

Para el calculo regularizado se anyade la regularización, traducida en la siguiente línea en la función de **Coste**:

```
coste += (float(1) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)\leftrightarrow ) + np.sum(np.power(theta2[:,1:], 2)))
```

De esta manera con la misma ejecución se obtiene el resultado correcto:

```
COSTE:
0.3837698590909234
---
```

3.2.3. Testeo de backprop

Se ha proporcionado el fichero **checkNNGradients.py** que contiene una función que aproxima el valor de la derivada por este método.donde se construye una pequeña red neuronal y se aplican dos métodos de cálculo del gradiente: El numérico y la ejecución del que he implementado en la función **backprop**.

Si el gradiente está implementado correctamente, la diferencia debería ser menor de 10^{-9} .

Esta comprobación se realiza tanto sin regularización como con regularización. Mediante la siguiente llamada:

```
a = checkNNGradients(backprop, 0)
print(a)
```

En el caso de una implementación **errónea** de la función se mostraría un mensaje similar a este indicando un 47.4% de diferencias:

```
Arrays are not almost equal to 7 decimals
Mismatch: 47.4%
Max absolute difference: 1.57334392
Max relative difference: 4.
 x: array([ 8.2208482e-02, 1.5659428e-03, 9.8839906e-03,
    9.1147431e-03,
       -8.0478877e-02, 1.9358252e-02, -3.3831887e-02, -5.5917146 \leftrightarrow
           e-02,
        -1.3878659e-01, 2.7483267e-02, -6.7818432e-02, -1.0076818 \leftrightarrow
           e-01,...
 y: array([ 0.0822085, 0.0015659, 0.009884 , 0.0091147, \leftrightarrow
    -0.0804789,
         0.0193583, -0.0338319, -0.0559171, -0.1387866, \leftrightarrow
            0.0274833,
        -0.0678184, -0.1007682, -0.0840919, 0.0065438, \leftrightarrow
           -0.0259151,...
```

Tras mejoras, con la implementación correcta de la función **backprop** se obtiene el siguiente *array* al pintar lo que devuelve la llamada a **checkNNGradients(...)**:

```
[ 5.27761168e-11 -2.55029743e-12 3.45235299e-12 6.95584909e-12 -6.52669585e-11 2.08456863e-12 -1.51965315e-11 -4.38069025e-11 -9.07785513e-11 9.26888080e-12 -3.98116679e-11 -1.22385352e-10 -2.17855040e-11 2.76547969e-12 -6.02735570e-12 -2.49761462e-11 2.15736526e-11 -4.96176017e-13 1.19978506e-11 2.73879391e-11 6.03760375e-11 1.55131741e-11 6.81166235e-12 5.26763355e-12 1.90088223e-11 1.88441207e-11 7.15513759e-11 1.56080426e-11 4.89146224e-12 1.37491546e-11 1.70987668e-11 1.79336823e-11 7.32915950e-11 1.60134683e-11 8.61832827e-12 1.33683065e-11 1.43913215e-11 2.26750840e-11]
```

Parte 2: Entrenamiento y ejecución

En esta parte de la práctica, concluida la implementación de la función backprop, usaré la función **scipy.optimize.minimize** para entrenar a la red neuronal y obtener los valores para *theta1* y *theta2*.

4.1. Entrenamiento

4.2. Ejecución

Entrenando a la red mediante min_coste(...) con 70 iteraciones y un valor de lamda=1 debería obtener una precisión en torno al 93 %.

Para obtener el porcentaje de acierto voy a utilizar la función evaluar(h, y):

Usándose minimize(...) de la siguiente manera en min_coste(...):

```
result = minimize(fun=backprop, x0=params_rn, args=( ←
   num_entradas, num_ocultas, num_etiquetas, X, y,reg), ←
   method='TNC', jac=True, options={'maxiter':70})
```

Se espera obtener un 93% (puede variar hasta un 1%) y, efectivamente, se obtiene **co-rrectamente**:

```
Acierta el 92.67999999999998
```

4.3. Ejecuciones adicionales

Probando diferentes configuraciones, obtengo distintos porcentajes de acierto:

Variando el valor de Lamnda entre 0,01 y 10, manteniendo las 70 iteraciones no he conseguido obtener cambios significativos, ya que el porcentaje de aciertos se mantenía dentro de los valores esperados, entre 92 % y 94 %.

Para un entrenamiento de **70 iteraciones** y Lambda = 100 obtengo:

```
Acierta el 82.899999999999999
```

Por lo que se interpreta que por aumentar Lambda, poco o mucho, no se consigue ninguna mejora.

Ejecutando para el entrenamiento 170 vueltas, en vez de 70, se obtiene:

```
Acierta el 97.39999999999999
```

Lo que supone un incremento importante.

Si se realiza una ejecución de 170 vueltas y una Lamnda=0.01

```
Acierta el 99.44%
```

Ese $\bf 99.44\,\%$ supone un resultado prácticamente perfecto.

Código

```
1 import numpy as np
2 import copy
3 from scipy.io import loadmat
4 import matplotlib.pyplot as plt
5 | from sklearn.preprocessing import OneHotEncoder
6 | from scipy.optimize import minimize
7 import math
9 | from checkNNGradients import checkNNGradients
10 | from displayData import displayData
11
12
13
   def backprop(params, num_entradas, num_ocultas, num_etiquetas, X, ←
       y, 1):
14
       print ("Entra_en_backprop")
15
       m = X.shape[0]
16
       X = np.hstack((np.ones((m, 1)), X))
17
       y = np.matrix(y)
18
       coste = 0
       grad= gradiente(params, num_entradas, num_ocultas, \leftarrow
19
           num_etiquetas, X, y, 1)
20
       coste= cost(params, num_entradas, num_ocultas, num_etiquetas, ←
           X, y, 1)
21
       return coste, grad
22
23
   def cost(params rn, num entradas, num ocultas, num etiquetas, X, \leftarrow
      y, 1):
24
       m = X.shape[0]
25
       theta1 = params_rn[0:(num_ocultas * (num_entradas + 1))].\leftarrow
           reshape(num_ocultas, (num_entradas + 1))
26
       theta2 = params_rn[(num_ocultas * (num_entradas + 1)):].↔
           reshape(num_etiquetas, (num_ocultas + 1))
```

```
27
28
       a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) #←
          Para calcular la h
29
       coste=0
30
       for i in range(m):
31
           coste1 = np.multiply(-y[i,:], np.log(h[i,:]))
32
           coste2 = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
33
           coste += np.sum(coste1 - coste2)
34
35
       coste = coste / m
36
       #Termino de regularizacion
37
       coste += (float(1) / (2 * m)) * (np.sum(np.power(theta1\leftarrow
          [:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2)))
38
       return coste
39
40
41
   def gradiente(params_rn, num_entradas, num_ocultas, num_etiquetas
      , X, y, 1):
42
       theta1 = np.reshape(params_rn[:num_ocultas * (num_entradas + ←)
          1)], (num_ocultas, (num_entradas + 1)))
43
       theta2 = np.reshape(params_rn[num_ocultas * (num_entradas + ←)
          1):], (num_etiquetas, (num_ocultas + 1)))
44
       delta1 = np.zeros((num_ocultas, num_entradas + 1))
45
       delta2 = np.zeros((num_etiquetas, num_ocultas + 1))
46
       m = X.shape[0]
47
       a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
48
       for t in range(m):
49
           a1t = a1[t,:]
50
           z2t = z2[t,:]
51
           a2t = a2[t,:]
52
           ht = h[t,:]
53
           yt = y[t,:]
54
55
           d3t = ht - yt
56
57
           z2t = np.insert(z2t, 0, values=np.ones(1))
58
           d2t = np.multiply((theta2.T * d3t.T).T, dSigmoid(z2t))
59
60
           delta1 = delta1 + (d2t[:,1:]).T * a1t
61
           delta2 = delta2 + d3t.T * a2t
62
63
       delta1 = delta1 / m
64
       delta2 = delta2 / m
65
66
       # anyade el termino de regularizacion
```

```
67
        delta1[:,1:] = delta1[:,1:] + (theta1[:,1:] * 1) / m
68
        delta2[:,1:] = delta2[:,1:] + (theta2[:,1:] * 1) / m
69
70
        grad = np.concatenate((np.ravel(delta1), np.ravel(delta2)))
71
        return grad
72
73
    def forward_propagate(X, theta1, theta2):
74
        m = X.shape[0]
75
        a1 = X
        z2 = a1.dot(theta1.T)
76
77
        a2 = np.insert(sigmoid(z2), 0, values = np.ones(m), axis = 1)
78
        z3 = a2.dot(theta2.T)
79
        h = sigmoid(z3) # = a3 = g(z3)
80
81
        return a1, z2, a2, z3, h
82
    def sigmoid(x):
83
        s = 1 / (1 + np.exp(-x))
84
        return s
85
86
    def dSigmoid(z):
87
        return np.multiply(sigmoid(z), (1 - sigmoid(z)))
88
89
    def pesosAleatorios(L_in, L_out):
90
      e = math.sqrt(6) / math.sqrt(L_in + L_out)
91
      pesos = 2 * e * np.random.rand(L_out, L_in + 1) - e
92
      return pesos
93
94
    def min_coste(num_entradas, num_ocultas, num_etiquetas, X, y, reg↔
       ):
        initialTheta1 = pesosAleatorios(num_entradas, num_ocultas)
95
96
        initialTheta2 = pesosAleatorios(num_ocultas, num_etiquetas)
97
        params_rn = np.concatenate((initialTheta1.ravel(), ←
           initialTheta2.ravel()))
98
        params = (np.random.random(size=num_ocultas * (num_entradas +↔
            1) + num_etiquetas * (num_ocultas + 1)) - 0.5) * 0.25
99
100
        result = minimize(fun=backprop, x0=params_rn, args=( \leftrightarrow x)
           num_entradas, num_ocultas, num_etiquetas, X, y,reg), ←
           method='TNC', jac=True, options={'maxiter':70})
101
        print (result)
102
        theta1 = np.reshape(result.x[:num_ocultas * (num_entradas + ←)
           1)], (num_ocultas, (num_entradas + 1)))
103
        theta2 = np.reshape(result.x[num_ocultas * (num_entradas + 1)\leftrightarrow
           :], (num_etiquetas, (num_ocultas + 1)))
104
        return (theta1, theta2)
```

```
105
106
    def evaluar(h, y):
        correct = [1 if a == b else 0 for (a, b) in zip(h, y)]
107
108
        accuracy = (sum(map(int, correct)) / float(len(correct)))
109
        print('Acierta_el_'+str(accuracy * 100)+'%')
110
111
112
    def main():
113
        weights = loadmat('ex4weights.mat')
114
        theta1, theta2 = weights['Theta1'], weights['Theta2'] #Theta1 ←
           dimensi n 25x401; #Theta2 dimensi n 10x26
115
        data = loadmat ('ex4data1.mat')
116
        y = data ['y']
117
        X = data ['X']
118
        # valores iniciales
119
        num entradas = 400
120
        num ocultas = 25
121
        num\_etiquetas = 10
122
        1 = 1
123
124
        encoder = OneHotEncoder(sparse=False, categories='auto')
125
        y_cat = encoder.fit_transform(y)
126
        t1, t2= min_coste(num_entradas, num_ocultas, num_etiquetas, X↔
           , y_cat, 1)
127
128
        X = np.hstack([np.ones((len(X), 1)), X])
129
        a1, z2, a2, z3, h = forward_propagate(X, <math>t1, t2)
130
        yPred = np.array(np.argmax(h, axis=1) + 1)
131
        evaluar(yPred, y)
132
133
    def mainTest():
134
135
        weights = loadmat('ex4weights.mat')
136
        theta1, theta2 = weights['Theta1'], weights['Theta2'] #Theta1 ←
           dimensi n 25x401; #Theta2 dimensi n 10x26
137
        data = loadmat ('ex4data1.mat')
138
        y = data ['y']
139
        X = data ['X']
140
        # valores iniciales
141
        num_entradas = 400
142
        num_ocultas = 25
143
        num_etiquetas = 10
        1 = 1
144
145
146
        X = np.hstack([np.ones((len(X), 1)), X])
```

```
147
        encoder = OneHotEncoder(sparse=False, categories='auto')
148
        y_cat = encoder.fit_transform(y)
149
150
        theta_vec = np.concatenate((np.ravel(theta1), np.ravel(theta2←
151
        theta_vec = theta_vec.reshape((len(theta_vec), 1))
152
        print("COSTE:")
153
        print(cost(theta_vec,num_entradas, num_ocultas, num_etiquetas←)
           , X, y_cat, 1))
154
        print("---")
155
156
157 | #mainTest()
158
    #a = checkNNGradients(backprop, 0)
159 | #print (a)
160 | main()
```

Código: p4.py