

CLAIMS:

1. An electronic device provided with an active element having a first and a second electrode, which are separated from each other by an active layer containing a semiconductive or electroluminescent organic material, characterized in that the organic material of an active layer is a polymer comprising conjugated conjugation units which are separated from each other by non-conjugated intermediate units B in such a manner that the conjugation of the first and the second conjugation unit A₁, A₂ is interrupted in an intermediate unit B₁.
5
2. An electronic device as claimed in claim 1, characterized in that the polymer is a polymer network comprising a first and a second main chain which are interconnected via side chains, a side chain containing a B₁-A₁-B₂ structure, with B₁, B₂ being intermediate units and A₁ being a conjugation unit.
10
3. An electronic device as claimed in claim 1, characterized in that the polymer is a copolymer comprising a main chain, the intermediate units B and the conjugation units A being present in the main chain as alternating units ...-A₁-B₁-A₂-B₂-....
15
4. An electronic device as claimed in claim 1, characterized in that the polymer comprises a main chain with side chains, a side chain containing a B₁-A₁-B₂- structure, wherein B₁, B₂ are intermediate units and A₁ is a conjugation unit.
20
5. An electronic device as claimed in claim 1, characterized in that the intermediate unit B₁ comprises a mesogenic group.
- 25 6. An electronic device as claimed in any one of the preceding claims, characterized in that the conjugation unit is a unit of formula Y_n, wherein 2 ≤ n ≤ 8 and Y is selected from the group composed of

X =, NH, S, O

5

wherein

Ar is an aromatic ring system with 4 to 6 carbon atoms that may be substituted with a

10 substituent selected from the group composed of an unbranched C₁-C₂₀-alkyl-, C₃-C₂₀-alkoxy-, C₁-C₂₀-alkylsulphate-, a branched C₃-C₂₀-alkyl-, phenyl or benzyl group, and that may comprise up to 4 heteroatoms selected from the group composed of oxygen, sulfur and nitrogen in the aromatic ring system, and

R₂ and R''₂ are selected from the group composed of a hydrogen atom and a C₁-C₂₀-alkyl- and

15 a C₄-C₂₀-aryl group, which groups may comprise substituents.

7. An electronic device as claimed in claim 1, characterized in that a second active element is present, which contains a first and a second electrode which are mutually separated by the active layer, and in that the active layer has a relief structure, so that the 20 active layer between the first and the second active element is removed.

8. An electronic device as claimed in claim 1 or 7, characterized in that the active element is a transistor wherein a third electrode is present which is separated from the active layer by a dielectric, and wherein the active layer comprises an intrinsic, undoped 25 semiconductive material.

9. A method of preparing a polymer comprising conjugated conjugation units A and non-conjugated intermediate units B, an intermediate unit B₁ mutually separating a first and a second conjugation unit A₁, A₂ in such a manner that the conjugation of the first and 30 the second conjugation unit A₁, A₂ is interrupted in the intermediate unit B₁, characterized in

that the polymer is prepared from a monomer having a B₁-A₁-B₂ structure, wherein at least one of the groups B₁, B₂ comprises a reactive end group.

10. A monomer having a B₁-A₁-B₂ structure, wherein A₁ is a conjugated unit
 5 of formula Y_n, wherein 2 ≤ n ≤ 8 and Y is selected from the group composed of

X =, NH, S, O

10

wherein

- Ar is an aromatic ring system with 4 to 6 carbon atoms that may be substituted with a
 15 substituent selected from the group composed of an unbranched C₁-C₂₀-alkyl-, C₃-C₂₀-alkoxy-, C₁-C₂₀-alkyl sulphate-, a branched C₃-C₂₀-alkyl-, phenyl- or benzyl group, and that
 may contain up to 4 heteroatoms selected from the group composed of oxygen, sulfur and
 nitrogen in the aromatic ring system, and
 R₂ and R''₂ are selected from the group composed of a hydrogen atom and a C₁-C₂₀-alkyl- and
 20 a C₄-C₂₀-aryl group, which groups may comprise substituents,
 and wherein B₁, B₂ are non-conjugated groups.

11. A method as claimed in claim 9, characterized in that the monomer used is the
 monomer as claimed in claim 10.

25

12. A polymer that can be obtained by means of the method as claimed in claim 9.