Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko bigarren zatia Bilboko IITUE 1,3 puntu Ebazpena 2015-12-09

1 ε -AFED bati dagokion AFED-a kalkulatu (0,300 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako ε -AFED honen baliokidea den AFED-a kalkulatu klasean aurkeztutako era jarraituz:

E ε -AFED-ari dagokion AFED-ak egoera-kopuru bera izango du eta gainera E ε -AFED-an bi zirkulu dituzten egoerak AFED-an ere bi zirkuludunak izango dira:

Jarraian q_0 egoerak bi zirkulu izango al dituen erabaki behar izaten da. Baina hori horrela da hasieran bi zirkulu ez baditu. Kasu honetan hasieratik ditu bi zirkulu, beraz ez da ezer erabaki behar.

Orain egoera bakoitzetik sinbolo bakoitzarekin zein egoeretara iritsi gaitezkeen kalkulatu beharko da. Hasteko q_0 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_0 -tik bi gezi aterako dira. Gezi horiek q_2 -ra eta q_5 -era joango dira (q_2, ε) eta (q_5, ε) konfigurazioak lortu direlako. Gezi horiek a sinboloa izango dute:

N

Orain q_1 egoera aztertuko dugu:

$$(q_1, a)$$
 (q_1, b) (q_1, c)
 (q_2, ε)

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_1 -etik gezi bakarra aterako da. Gezi hori q_2 -ra joango da (q_2, ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

N

Orain q_2 egoera aztertuko dugu:

$$(q_{2}, a) \qquad (q_{2}, b) \qquad (q_{2}, c)$$

$$| \qquad \qquad | \qquad \qquad |$$

$$(q_{3}, \varepsilon)$$

$$| \qquad \qquad \qquad |$$

$$(q_{0}, \varepsilon)$$

$$(q_{1}, \varepsilon) \qquad (q_{4}, \varepsilon)$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_2 -tik lau gezi aterako dira. Gezi horiek q_3, q_0, q_1 eta q_4 -ra joango dira, $(q_3, \varepsilon), (q_0, \varepsilon), (q_1, \varepsilon)$ eta (q_4, ε) konfigurazioak lortu baitira. Gezi horiek b sinboloa izango dute:

N

Orain q_3 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_3 -tik bi gezi aterako dira. Gezi horiek q_2 -ra eta q_5 -era joango dira (q_2, ε) eta (q_5, ε) konfigurazioak lortu direlako. Gezi horiek a sinboloa izango dute:

N

Orain q_4 egoera aztertuko dugu:

$$(q_4, a)$$
 (q_4, b) (q_4, c)
 (q_5, ε)

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_4 -tik gezi bakarra aterako da. Gezi hori q_5 -era joango da (q_5,ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

N

Orain q_5 egoera aztertuko dugu:

$$(q_{5},a) \quad (q_{5},b) \qquad (q_{5},c)$$

$$| \qquad \qquad | \qquad \qquad |$$

$$(q_{6},\varepsilon)$$

$$| \qquad \qquad \qquad |$$

$$(q_{0},\varepsilon)$$

$$(q_{1},\varepsilon) \quad (q_{4},\varepsilon)$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_5 -etik lau gezi aterako dira. Gezi horiek q_6, q_0, q_1 eta q_4 egoeretara joango dira $(q_6, \varepsilon), (q_0, \varepsilon), (q_1, \varepsilon)$ eta (q_4, ε) konfigurazioak lortu baitira. Gezi horiek c sinboloa izango dute:

N

Orain q_6 egoera aztertuko dugu:

N

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_6 -tik bi gezi aterako dira. Gezi horiek q_2 eta q_5 egoeretara joango dira (q_2, ε) eta (q_5, ε) konfigurazioak lortu baitira. Gezi horiek a sinboloa izango dute:

Eta hori da lortu nahi genuen AFED-a.

2 AFED bati dagokion AFD-a kalkulatu (0,300 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako AFED honen baliokidea den AFD-a kalkulatu klasean aurkeztutako era jarraituz:

Jarraian AFED horri dagokion AFD-a kalkulatuko da. Urratsez urrats egingo da, urrats bakoitzean sortzen diren egoerak azalduz. Bukaeran egoerak berrizendatu egingo dira:

ullet Beti bezala, hasierako egoera $\{q_0\}$ izango da.

• $\{q_0\}$ egoeratik aterako diren trantsizioak kalkulatuko dira orain: $\nu^*(\{q_0\},a)=\{q_1,q_2\}, \nu^*(\{q_0\},b)=\{q_3,q_4\}$ eta $\nu^*(\{q_0\},c)=\{q_3,q_4\}$

• Lehenengo $\{q_1,q_2\}$ egoera aztertuko dugu eta hor alde batetik $\nu^*(\{q_1,q_2\},a) = \nu(q_1,a) \cup \nu(q_2,a) = \{q_1\} \cup \{q_3\}$, hau da, $\{q_1,q_3\}$ da. Beste aldetik, $\nu^*(\{q_1,q_2\},b) = \nu(q_1,b) \cup \nu(q_2,b) = \varnothing \cup \{q_2\}$, hau da, $\{q_2\}$. Azkenik, $\nu^*(\{q_1,q_2\},c) = \nu(q_1,c) \cup \nu(q_2,c) = \varnothing \cup \{q_2\}$, hau da, $\{q_2\}$.

 $\begin{array}{l} \bullet \ \ \text{Orain} \ \{q_1,q_3\} \ \text{egoera hartuz}, \ \nu^*(\{q_1,q_3\},a) = \nu(q_1,a) \cup \ \nu(q_3,a) = \{q_1\} \cup \ \{q_2\}, \ \text{hau da}, \ \{q_1,q_2\}. \\ \text{Bestalde}, \ \nu^*(\{q_1,q_3\},b) = \nu(q_1,b) \cup \nu(q_3,b) = \varnothing \cup \{q_3\}, \ \text{hau da}, \ \{q_3\}. \ \text{Eta} \ c\text{-ren kasuan}, \ \nu^*(\{q_1,q_3\},c) = \nu(q_1,c) \cup \nu(q_3,c) = \varnothing \cup \ \{q_3\}, \ \text{hau da}, \ \{q_3\}. \end{array}$

• Jarraian $\{q_3,q_4\}$ egoera hartuz, alde batetik $\nu^*(\{q_3,q_4\},a) = \nu(q_3,a) \cup \nu(q_4,a) = \{q_2\} \cup \varnothing$, beraz, $\{q_2\}$. Bestalde, $\nu^*(\{q_3,q_4\},b) = \nu(q_3,b) \cup \nu(q_4,b) = \{q_3\} \cup \{q_4\}$, hau da, $\{q_3,q_4\}$. Gainera, $\nu^*(\{q_3,q_4\},c) = \nu(q_3,c) \cup \nu(q_4,c) = \{q_3\} \cup \{q_4\}$, hau da, $\{q_3,q_4\}$.

• Jarraian $\{q_2\}$ egoera hartuz, alde batetik $\nu^*(\{q_2\},a) = \nu(q_2,a) = \{q_3\}$. Bestalde, $\nu^*(\{q_2\},b) = \nu(q_2,b) = \{q_2\}$. Gainera, $\nu^*(\{q_2\},c) = \nu(q_2,c) = \{q_2\}$.

• Orain $\{q_3\}$ osatu behar da. Hor $\nu^*(\{q_3\},a)=\nu(q_3,a)=\{q_2\}=\{q_2\}$ betetzen da. Bestalde, $\nu^*(\{q_3\},b)=\nu(q_3,b)=\{q_3\}$ eta $\nu^*(\{q_3\},c)=\{q_3,c\}=\{q_3\}$.

• Trantsizio denak ipini ditugunez, bi zirkulu izango dituzten egoerak zein izango diren zehaztea geratzen da. Hain zuzen ere, hasierako AFED-an bi zirkulu dituen egoeraren bat duten egoerak izango dira bi zirkuludunak AFD honetan. Beraz, $\{q_3\}$ egoerak ez eta beste denek bi zirkulu izango dituzte.

• Bukatzeko, egoerak berrizendatuko ditugu: $r_0 = \{q_0\}$, $r_1 = \{q_1, q_2\}$, $r_2 = \{q_3, q_4\}$, $r_3 = \{q_1, q_3\}$, $r_4 = \{q_2\}$ eta $r_5 = \{q_3\}$

3 Automata finitu bati dagokion lengoaia erregularra kalkulatu (0,300 puntu)

 $A=\{a,b,c\}$ alfabetoaren gainean definitutako honako AF honi dagokion lengoaia erregularra kalkulatu klasean aurkeztutako metodoa jarraituz:

Lehenengo urrats bezala q_{hasi} eta q_{bai} egoerak ipiniko ditugu.

E'

Orain q_4 ezabatuko dugu:

E'

 $Bi\ egoeren\ artean\ bi\ gezi\ edo\ gehiago\ ditugunean,\ gezi\ bakarra\ ipini\ ohi\ dugu,\ sinboloak\ komaz\ bereiziz:$

Jarraian q_2 ezabatuko dugu:

Jarraian q_5 kenduko dugu:

Orain q_3 ezabatuko da. q_3 egoeratik hiru bide igarotzen dira: q_1 -etik q_1 -era doan bide bat eta q_1 -etik q_{bai} -ra doazen bi bide.

Bi egoeren artean gezi bat baino gehiago daudenean, gezi bakarra ipini ohi dugu espresioak komaz bereiziz. q_1 eta q_{bai} -ren artean bi gezi daudenez aldaketa hori egingo dugu.

Orain q_1 kenduko dugu. q_1 -etik bide bakarra igarotzen da:

 q_0 eta q_{bai} -ren artean dauden bi gezien ordez, gezi horietako espresioak komaz bereizita dituen gezi bakarra ipiniko dugu:

Azkenik q_0 ezabatuko da:

Beraz, $\varepsilon(\varepsilon(b+c+a(b+c)^*a)^*\varepsilon+a(bc\varepsilon)^*(b\varepsilon+\varepsilon))$ lengoaia lortu da. Espresio hori $\varepsilon\beta$ edo $\beta\varepsilon$ erako espresioak β espresioaz ordezkatuz sinplifika daiteke. Izan ere, $\varepsilon\beta$ edo $\beta\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori β espresioaren baliokidea izango da. Bestalde, $\varepsilon+\beta$ edo $\beta+\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori orokorrean ez da izango β espresioaren baliokidea. Beraz honako hau geldituko zaigu:

$$(b+c+a(b+c)^*a)^* + a(bc)^*(b+\varepsilon)$$

 $\beta(\alpha+\gamma)$ erako espresioa $\beta\alpha+\beta\gamma$ espresioaren baliokidea denez, beste era honetara ere adieraz daiteke lengoaia hori:

$$(b+c+a(b+c)^*a)^* + a(bc)^*b + a(bc)^*$$

4 Lengoaia erregularra dela frogatu (0,100 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako lengoaia hau erregularra dela frogatu klasean aurkeztutako bidea jarraituz:

$$\{w|w\in A^* \land \exists u, v, x(u\in A^* \land v\in A^* \land x\in A^* \land |v| \ge 1 \land |v|_a = 0 \land w = uavax)\}$$

Adibidez, cabac, aaba, aaabbbaabb, baaacaac, caaacbbcba, aaabbbbaaaccc eta aaaccbbaab hitzak lengoaia horretakoak dira baina ε , aa, ccc, bcc, bbbaaacc, aaaaaabbbccb eta baaaaa hitzak ez dira lengoaia horretakoak.

Lengoaia hori erregularra da bilkura (+), kateaketa eta itxidura (*) erabiliz adierazi daitekeelako:

$$(a+b+c)^*a(b+c)(b+c)^*a(a+b+c)^*$$

5 Lengoaia erregular bati dagokion automata finitua kalkulatu (0,300 puntu)

 $A = \{a, b, c, d, e\}$ alfabetoaren gainean definitutako honako lengoaia erregular honi dagokion automata finitua kalkulatu klasean aurkeztutako prozedura jarraituz:

$$c(ab^*a)^*(d+e)^*$$

Hasteko, q_{hasi} eta q_{bai} egoerak sortu eta bien arteko gezian espresio osoa ipini:

Orain espresio horretan kateatuta dauden bi zati bereiziko ditugu: c eta $(ab^*a)^*(d+e)^*$

Orain $(ab^*a)^*(d+e)^*$ espresioan kateatuta dauden zati biak bereiziko ditugu: $(ab^*a)^*$ eta $(d+e)^*$

Orain $(ab^*a)^*$ espresioa garatuko dugu:

Orain (ab^*a) espresioa garatuko dugu. Hasteko a eta b^*a bereiziko ditugu:

Orain b^*a espresioa garatuko dugu b^* eta a bereiziz:

Orain b^* espresioa garatuko dugu:

Jarraian $(d+e)^*$ espresioa garatuko dugu:

Jarraian (d+e) espresioa garatuko dugu:

 q_6 -tik q_6 -rako bi gezi daudenez, espresio biak komaz bereizita dituen gezi bakarra ipiniko dugu:

Eta hor daukagu emaitza.