1. Priority service contract with incremental demand function

The consumer submits an incremental demand function ϕ , where $\int_{p}^{\bar{p}} \phi(z)dz$ is the total demand he is willing pay at price p. The price range tops out at a fixed constant \bar{p} . The consumer's true demand function is θ . We define an index function $v(\theta, p, \phi)$ as

$$\int_{v(\theta,p,\phi)}^{\bar{p}} \theta(z)dz \equiv \int_{p}^{\bar{p}} \phi(z)dz, \tag{1.1}$$

which tracks the lower integrating limit when we calculate his utility from consuming electricity. The consumer's expected utility when he trufully reveals θ is

$$V(\theta, \theta) = \mathbb{E}_{p} \left[\int_{v(\theta, p, \theta)}^{\bar{p}} \theta(z) z dz \right] - \mathbb{E}_{p} \left[p \int_{p}^{\bar{p}} \theta(z) dz \right]$$
$$= \mathbb{E}_{p} \left[\int_{p}^{\bar{p}} \theta(z) (z - p) dz \right]$$
(1.2)

Now we calculate the consumer's expected utility when he is reporting ϕ ,

$$V(\theta, \phi) = \mathbb{E}_{p} \left[\int_{v(\theta, p, \phi)}^{\bar{p}} \theta(z) z dz \right] - \mathbb{E}_{p} \left[p \int_{p}^{\bar{p}} \phi(z) dz \right]$$
$$= \mathbb{E}_{p} \left[\int_{v(\theta, p, \phi)}^{\bar{p}} \theta(z) z dz - \int_{p}^{\bar{p}} p \phi(z) dz \right]$$
(1.3)

We want to show that the θ is a solution to the problem $\max_{\phi} V(\theta, \phi)$. In the subsequent analysis, we fix p; this is without loss of generality because if we can prove a property for a degenerate distribution of p, for all $p \in [0, \bar{q}]$, then the property would also hold for any distribution of p in expectation. We use the Gateaux differential notation to show that θ is an extremal point for $V(\theta, \phi)$, and also that $V(\theta, \phi)$ is a convex functional in its second variable. For any $\phi \mapsto F(x, \phi)$, we define the differential

$$\delta_2 F(x, \phi; \epsilon) \equiv \lim_{\lambda \to 0} \frac{1}{\lambda} \Big(F(x, \phi + \lambda \epsilon) - F(x, \phi) \Big).$$

We call $\delta_2 F(x, \phi; \epsilon)$ the Gateaux differential¹ of F at ϕ in the direction of ϵ . The subscritp in $\delta_2 F$ denotes the differential is taken with respect to the second variable. As a preliminary exercise, let us differentiating both sizes of (1.1) with respect to ϕ ,

$$-\theta(v(\theta, p, \phi))\delta_3v(\theta, p, \phi; \epsilon) = \lim_{\lambda \to 0} \frac{1}{\lambda} \int_p^{\bar{p}} \lambda \epsilon(z) dz;$$

that is,

$$\delta_3 v(\theta, p, \phi; \epsilon) = -\frac{\int_p^{\bar{p}} \epsilon(z) dz}{\theta(v(\theta, p, \phi))}.$$
(1.4)

Proposition 1.1. θ is an extremal point of the funtional $\phi \mapsto V(\theta, \phi)$.

Proof. We are checking that $\delta_2 V(\theta, \phi; \epsilon)|_{\phi=\theta} = 0$, for any ϵ .

$$\delta_{2}V(\theta,\phi;\epsilon) = -\theta(v(\theta,p,\phi))v(\theta,p,\phi)\delta_{3}v(\theta,p,\phi;\epsilon) - p\int_{p}^{\bar{p}}\epsilon(z)dz$$

$$= \left(v(\theta,p,\phi) - p\right)\int_{p}^{\bar{p}}\epsilon(z)dz. \tag{1.5}$$

In the last equality, we substitute (1.4) into the equation. Evaluating (1.5) at $\phi = \theta$ and recognizing $v(\theta, p, \theta) = p$, we show that truful reporting satisfies the necessary condition for the optimization problem.

Proposition 1.2. The functional $\phi \mapsto V(\theta, \phi)$ is concave.

Proof. $V(\theta, \cdot)$ is concave if and only if² for any ϵ_1 and ϵ_2 ,

$$0 \le -\delta_2 V(\theta, \epsilon_1; \epsilon_1) - \delta_2 V(\theta, \epsilon_2; \epsilon_2) + \delta_2 V(\theta, \epsilon_1; \epsilon_2) + \delta_2 V(\theta, \epsilon_1; \epsilon_2) \tag{1.6}$$

Substituting (1.5) into (1.6), we get

$$0 \leq \left(v(\theta, p, \epsilon_1) - p\right) \int_p^{\bar{p}} \left(\epsilon_2(z) - \epsilon_1(z)\right) dz + \left(v(\theta, p, \epsilon_2) - p\right) \int_p^{\bar{p}} \left(\epsilon_1(z) - \epsilon_2(z)\right) dz$$

$$\leq \left(v(\theta, p, \epsilon_1) - v(\theta, p, \epsilon_2)\right) \int_p^{\bar{p}} \left(\epsilon_2(z) - \epsilon_1(z)\right) dz$$

¹See Chapter 7 in Luenberger (1969) for details.

²For example, see Ekeland and Temam (1999); Chapter 2, Prop 5.5.

The last line is in fact greater than or equal zero. To see that, note that

$$\int_{p}^{\bar{p}} \left(\epsilon_{2}(z) - \epsilon_{1}(z) \right) dz \ge 0$$

$$\implies \int_{p}^{\bar{p}} \epsilon_{2}(z) dz \ge \int_{p}^{\bar{p}} \epsilon_{1}(z) dz$$

$$\implies \int_{v(\theta, p, \epsilon_{2})}^{\bar{p}} \theta(z) dz \ge \int_{v(\theta, p, \epsilon_{1})}^{\bar{p}} \theta(z) dz$$

$$\implies v(\theta, p, \epsilon_{1}) \ge v(\theta, p, \epsilon_{2}).$$

Also,
$$\int_{p}^{\bar{p}} \left(\epsilon_{2}(z) - \epsilon_{1}(z) \right) dz \leq 0 \implies v(\theta, p, \epsilon_{1}) \leq v(\theta, p, \epsilon_{2})$$
. The concavity condition (1.6) holds.

The two propositions show that θ is a global maximum of the mapping $\phi \mapsto V(\theta, \phi)$. The pricing scheme given that the consumer reports ϕ ,

$$\pi(\phi) = \mathbb{E}_p \left[p \int_p^{\bar{p}} \psi(z) dz \right],$$

is incentive compatible.