

CT4031
Maths for Data Science

Week 5 – Probability Part 2

Uncertainty: Probability

Conditional Independence

- Two variables are independent if the state of one does not influence the state of the other.
- In this case: P(A|B, C) = P(A|B) or P(A|C)

Conditional Independence

 Two variables are independent if the state of one does not influence the state of the other.

For example:

					Litera	су
	Lite	eracy	Age	T-shirt	Yes	No
T-shirt	Yes	No	<5	Small	0.3	0.7
Small	0.32	0.68	<5	Large	0.3	0.7
Large	0.35	0.65	>5	Small	0.4	0.6
			>5	Large	0.4	0.6

Mutually exclusive vs Independent

- A mutually exclusive event can simply be defined as a situation when two events cannot occur at same time whereas independent event occurs when one event remains
- Mutually exclusive events are those that cannot happen simultaneously, whereas independent events are those whose probabilities do not affect one another (unaffected by the occurrence of the other event).

Mutually exclusive probability

- AKA Disjoint event
 - Probability of raining and not raining
 - Probability of having COVID and not having COVID
 - Probability of passing the module and not passing the module

- Conditional probability is the probability of an event happening, given that another event has also happened.
- Examples:
 - Probability of raining tomorrow given that it is sunny today
 - Probability of having COVID given that you have 2 out of 3 symptoms.
 - Probability of passing the module given that you have been doing all post-sessional work.

For that, we use Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Yet another example
- Suppose a new Ransomware has been developed.
- The Ransomware is 99% identifiable, that is the proportion of devices who are correctly identified by an antivirus as having the malware.
- Therefore, there is a 1% false positive rate.
- Suppose that 0.5% of devices at UoG have the Ransomware.
- What is the probability that a randomly selected device at UoG being flagged as having the Malware, actually having the Malware?

What is the probability that a randomly selected device at UoG being flagged as having the Malware, actually having the Malware?

$$P(Malware \mid AV+) = \frac{P(AV + \mid Malware)P(Malware)}{P(AV+)}$$

The probability of being positive is equals to the probability of a positive flagged by the Antivirus being a Malware PLUS the probability of a FALSE POSITIVE, hence:

$$P(Malware \mid AV+) = \frac{P(AV + \mid Malware)P(Malware)}{P(AV+)}$$

$$= \frac{P(AV + \mid Malware)P(Malware)}{P(AV + \mid Malware)P(Malware) + P(AV + \mid NotMalware)P(NotMalware)}$$

- The Ransomware is 99% identifiable, that is the proportion of devices who are correctly identified by an antivirus as having the malware.
 - Therefore, there is a 1% false positive rate.
- Suppose that 0.5% of devices at UoG have the Ransomware.
 - Therefore, there are 95% of devices not having the Ransomware

$$= \frac{P(AV + | Malware)P(Malware)}{P(AV + | Malware)P(Malware) + P(AV + | NotMalware)P(NotMalware)}$$

$$= \frac{0.99 \times 0.005}{0.99 \times 0.005 + 0.01 \times 0.995}$$

In summary

- Events can be:
 - Independent Each event is not effected by previous or future events.
 - Dependent An event is affected by other events
 - Mutually Exclusive Events can't happen at the same time

- Probability quantifies the uncertainty of the outcomes of a random variable.
- It is easy to understand the probability for a single variable.
- HOWEVER, in Data Science, Machine Learning and AI, we often have many variables that interact in complex ways.
- HENCE, Joint probability distribution!
 - Joint probability is the probability of two events occurring simultaneously.
 - Example: the probability of a X=1 and Y=2,

Joint probability distribution

 That works very well for functions and relationship between different features/attributes in a computational problem:

Joint probability distribution

 That works very well for functions and relationship between different features/attributes in a computational problem:

 A way of factoring a joint distribution into a product of conditional probabilities.

$$P(A, B, C) = P(A|B, C) \times P(B|C) \times P(C)$$

A way of factoring a joint distribution into a product of conditional probabilities.

$$P(A, B, C) = P(A|B, C) \times P(B|C) \times P(C)$$

And that can be generalised for N elements

$$P(A1, A2, ..., An) = P(A1|A2, ..., An) P(A2|A3, ..., An) P(An-1|An) P(An)$$

How can this be used in data science?

- How can this be used in data science?
- Classification!

Bayesian Classifiers

Approach: compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

Optimization: how to optimize the results? And why?

Bayesian Classifiers

Approach: compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

• Optimization: choose value that maximizes the chances for C, to improve the accuracy of the classifier.

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

For categorical data is simple:

Class: $P(C) = N_c/N$

Single:

- P(Evade=No) = 7/10
- P(Evade= Yes) = 3/10

"Given"

- P(Status=Married|Evade= No) = 4/7
- P(Refund=Yes|Evade= Yes)=0

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What about for continuous numerical data?

What is the probability of:

- P(Income=120|Evade=No)?
 - Is 1/10 correct?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What about for continuous numerical data?

What is the probability of:

- P(Income=120|Evade=No)?
 - Is 1/10 correct?
 - Are you sure?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What about for continuous numerical data?

What is the probability of:

- P(Income=120|Evade=No)?
 - Is 1/10 correct?
 - Are you sure?
 - Think again!

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

To calculate that, we need to assume a Normal distribution.

And use the following formula:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Formula:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{-(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

For (Income, Class=No):

- If Class=No
 - Mean μ = 104
 - Variance $\sigma^2 = 2975$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Formula:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

For (Income, Class=No):

- If Class=No
 - Mean μ = 104
 - Variance $\sigma^2 = 2975$

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-104)}{2(2975)}} = 0.007. = 7\%$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Bayesian Classifiers

Naïve Bayes Classifier

Bayesian Classifiers - Example

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

$$P(X|Class=No) = P(Refund=No|Class=No) \\ \times P(Married|Class=No) \\ \times P(Income=120K|Class=No) \\ = 4/7 \times 4/7 \times 0.0072 = 0.0024$$

$$P(X|Class=Yes) = P(Refund=No| Class=Yes) \\ \times P(Married| Class=Yes) \\ \times P(Income=120K| Class=Yes) \\ = 1 \times 0 \times 1.2 \times 10^{-9} = 0$$

Post-sessional work

 Write a report on what is a Bayesian Network and how it can be used in real-world problems. Make sure to add references to your report.

References

• Callan, R. (2003). Artificial Intelligence. Part-3. Palgrave Macmillan

Next Session!

Probability Part 3

