EP. 22990 (2)

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

: 61134828

PUBLICATION DATE

21-06-86

APPLICATION DATE

: 06-12-84

APPLICATION NUMBER

59256402

APPLICANT: CANON INC:

INVENTOR: TSUNODA TAKASHI;

INT.CL.

: G06F 3/023 G06F 3/02

TITLE

: KEY INPUT DEVICE

ABSTRACT:

PURPOSE: To attain easily many functions with the same key by changing the function of the same key according to the push time duration of the key.

CONSTITUTION: A key input device contains a keyboard 1 and a microprocessor MPU2, and the MPU2 has a primary memory 3 consisting of an RAM and an ROM. the ROM stores a control program and the RAM stores temporarily the processing data. Furthermore the RAM is used as a counter area CE where the push time width of a eky is shown. Then the key data are sent to a host computer via a circuit interface 4, and the key input is confirmed via a display device 5. The push of an optional key on the keyboard 1 is discriminated by the MPU2. Then the key data is read again when a fixed period of time passed for decision whether the same key is pushed or not. Thus the key data is decided. In such a way, the key function can e changed according to the push time width of a key. This attains many functions with the same key.

COPYRIGHT: (C)1986,JPO&Japio

BEST AVAILABLE COPY

® 日本国特許庁(JP) ⑩特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭**61** - 134828

@Int Cl.4

識別記号

庁内整理番号

❸公開 昭和61年(1986)6月21日

3/023 G 06 F

3/02

J - 7218-5B M-7218-5B

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称 キー入力装置

②特 願 昭59-256402

29出 願 昭59(1984)12月6日

孝 72)発 明 者 角 \blacksquare

東京都大田区下丸子3丁目30番2号 キャノン株式会社内

⑪出 願 人 キャノン株式会社

⑩代 理 人 弁理士 大塚 康徳

明

1. 発明の名称

キー入力装置

2.特許請求の範囲

キーの押し下げ時間を判別する判別手段と、こ の判別手段が判別する時間によりキーの機能を決 定する手段を備えるキー入力装置。

3 . 発明の詳細な説明

[技術分野]

東京都大田区下丸子3丁目30番2号

本発明は入力装置に係り、さらに詳細にはキー の押し下げ時間によりキーの機能が変化するキー 入力装置に関する。

[従来技術]

近年、半導体技術の進歩に伴い、小型で多機能 を備える電子機器の開発が増加するにつれて、 キーボードなどの入力装置も小型化の傾向にあ

しかし、多機能を備える電子機器のキー入力装 置では、キーの数はむしろ増える傾向にあるため キーの形状を小さくするなどして小型化を図つて いる。しかし、キーの形状は人間の指の大きさを 考え合わせれば必然的に最小の大きさが決定され るため、キーの数を増やさないように他のキーと

併用して1つのキーに複数の機能をもたすように 工夫されている。

しかし、このような方法では操作回数が増えたり、シフトロック式のキーボードなどでは現在のモードを確認しなければならないなど操作しにくい点が多くあつた。

[目的]

本発明は上述の欠点に鑑みなされたもので、 キーの押し下げ時間によりキーの機能が変化する キー入力装置を提供することにある。

[実施例]

第1図は本発明のキー入力装置のプロック図で

3

タを読み込み、同一キーがまだ押し下げられた状態にあるかどうかを判断してキーデータを決定した後、回線インタフエース 4 を通してホストコンピュータにキーデータを送信する。

さらに詳細な動作をマイクロコンピュータ MP Uの実行する制御フローを示す第2図のフローチャートを用いて説明する。

第2図のステップ1において、MPU2はキーボード1からの情報をバスを通して定期的に読み取る。ここでキー入力有りと判断されると、ステップ2においてどのキーかを判別する。そしてRAMのカウンタエリアCEにカウント値として特定値Mをセットする(ステップ3)。ステップ6では同一キーが引き続き押され

ある。図において、1はキーボード、2はマイクロプロセツサ(以下MPUと称す)である。マイクロプロセツサ2は主メモリ3を備える。主メモリ3はRAM。ROMの2種のメモリから成り、ROMには第2図に示す制御プログラムが格納されている。一方、RAMは処理データの一時保存に使用される他、キーの押下げ時間長を示すカウンタエリアCEとして使用される。4はホストコンピュータにキーデータを送信するための表示器である。

今、キーボード 1 上のある任意のキーが押されると、MPU 2 とキーボードを按続するバスを通してMPU 2 にキー信号があつたことが知らされる。MPU 2 はどのキーが押されているかを判別すると、一定時間後に再びバスを通してキーデー

4

続けているかをバスを通して読み取りチェックする。もし押され続けていなければ第1のキー(例えばアルフアベットの大文字)が入力されたと解釈し、表示器 5 にキーデータを表示し(ステップ
7)、ホストコンピュータに回線インタフェース
4 を通して対応するキーデータが送信される(ステップ8)。

しかし、ステップ 6 において同一キーがいまだに押され続けられていると判断されるとステップ 4 に戻り、前記カウンタエリア C E の内容を再び 1 だけ被算して、前記と同様のループを繰り返す。

ステップ 5 でメモリの内容が零となった時点で 第 2 のキーとして扱われ、ステップ 9 に移り、第 2 のキー(例えばアルフアベットの小文字)が入 力されたと解釈し表示器 5 に表示して、ステップ

6

7において、ホストコンピュータに対応するキー データが送信される。·

第3 図はキー入力時のタイミングチャートを示し、キーの押下されている時間長によりキー機能を決定する概念を示す。図に示す例はアルファベット "A"と小文字の"a"について注目し、時間の関係をいまT1≦T2とした場合である。T1程度の時間幅であれば、アルファベットの大文字"A"、T1を越えT2程度以上の時間幅であればアルファベット小文字"a"として処理する。

一方、押下げ時間に従うキー機能の決定は、第4図、第5図に示すように回路的にも実現できる。構成を概説すれば、第4図はキーボード1とMPU2の間にキー判別回路6を加えた構成図であり、第5図はキー判別回路6の詳細な構成例を

7

の出力はデコーダ 1 5 によつてデコードされ、 その出力はラッチ回路 1 6 に接続されている。 ラッチ回路はスイッチ 1 0 の O F F 信号、即ち、立ち下がり信号により入力データをラッチする。

第6図にタイミングチャートの1例を示す。この例ではカウンタ14の値が5になつた時にあったのは16になっため、ラッチ回路16には5の信号がラッチされる。MPU2はこの信号を読み込み、例えばデコーダの出力が5よりの間、10より大きい、などを35にとしてキー機能を判定しキーデータを表示にとしてキー機能を判定しキーデータを表示にしてキー機能を判定しキーデータを表示にしてキー機能を判定しキーデータを表示によるとともに、回線インタフェース4を通してホストコンピュータに送信する。

なお、実施例では文字キーのキー機能の変更に ついて言及したが、本発明を適用できるキーの種 類には何等限定がなく、ファンクションキーにも 示したものである。 図において、10はキーポー ド上の1個のキースイッチに対応するものであ り、11はインパータ回路、12はANDゲート 回路、13はクロック発生器、14は4ビットの カウンタ、15は4ピットのデコーダ、18は立 ち下がりクロックでラッチするラッチ回路で、こ の出力はMPU2の入力ポートに接続されてい る。動作を説明すれば、スイツチ10が押し下げ られると、インバータ回路 1 1 の出力は H I G H となり、ANDゲート12が開かれ、発振器13 の出力がカウンタ14のクロツク端子に入力され る。一方、インバータ回路11の出力はカウンタ 14のクリア端子に接続されているため、スイツ チ10が押し下げられていないときはカウンタ1 4 はクリアされ、スイツチ10が押下されるとカ ウンタ14はカウントを開始する。カウンタ14

8

本発明を適用できることは勿論である。

[効 果]

以上の説明から明らかなように本発明によれば、同一キーでキーの押し下げ時間幅によつてキーの機能を変化させるので、同一キーに多機能を与えることができる。しかもこの機能は他のキーと共働させて実現する必要もないので、1つ当りのキースペースを大きくとることができる。

4. 図面の簡単な説明

第 1 図は本発明のキー入力装置の一実施例を示すプロック図、

第2図はキー機能判断の制御を示すフローチ セート、

第·3 図はキー入力時における押し下げ時間と キー機能の変化を示すタイミングチャート 第4図は判別回路で本発明を実現する場合の実 施例を示すブロック図、

第5図は判別回路の詳細を示す回路図、

第 6 図はキー入力時のタイミングチャートである。

. 11

第 4 図

第 5 図

第 6 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.