Introduction of TCAD (Technology Computer-Aided Design)

Physical modeling: definitions

Physical Modeling

Representation of the physical behavior of a system (device) by an abstract mathematical model which approximates this behavior. Such a model may either be a closed-form expression (analytical model), or, in general, a system of coupled (differential) equations to be solved numerically.

Analytical Modeling vs. Numerical Modeling

Analytical modeling basically means the representation of a physical property or law in terms of approximate closed-form expressions using "lumped" parameters. It is also called "compact" modeling.

Numerical modeling: modeling of the device behavior through the numerical solution of the differential equations describing the device physics on a given geometrical domain.

In the literature, the word "modeling" usually implies analytical/compact modeling, while "simulation" is much used for numerical modeling

Examples

- · Analytical modeling
 - I_{DS} - V_{DS} curve of a MOS transistor

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- Numerical modeling
 - Drift-Diffusion numerical model

$$\nabla \cdot \mathcal{E} = \rho / K_{S} \boldsymbol{\varepsilon}_{0}$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_{N} - r_{N} + g_{N}$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_{P} - r_{P} + g_{P}$$

$$\mathbf{J}_{N} = q \mu_{n} n \mathcal{E} + q D_{N} \nabla n$$

$$\mathbf{J}_{P} = q \mu_{p} p \mathcal{E} - q D_{P} \nabla p$$

solved at each node of a discretized domain

TCAD

Numerical simulation is much used to understand advanced device physics, for device design, scaling analyses & interaction with process manufacturing.

TCAD stands for "Technology Computer-Aided Design" is one of a numerical modelling method for semiconductor devices.

TCAD is a branch of Electronic Design Automation (EDA) that models semiconductor fabrication and semiconductor device operation. The modeling of the fabrication is termed *Process TCAD*, while the modeling of the device operation is termed *Device TCAD*. The aim of TCAD is the design of semiconductor processes and devices to fulfill some given specifications.

Process TCAD:

modeling of semiconductor-chip process-manufacturing steps like lithography, deposition, etching, ion implantation, diffusion, oxidation, silicidation, mechanical stress, etc.

It requires detailed modeling of the *physical principles of manufacturing*, and usually also the modeling of the *specific equipments* used. Calibration of models needs expensive experiments (ad-hoc wafer fabrication, physical-chemical investigations).

Device TCAD:

modeling of electrical, thermal, optical and mechanical behavior of semiconductor devices (e.g., diode, BJT, MOSFET, solar cell,...).

It focuses on the physical principles at the basis of *carrier transport* and of *optical generation* in semiconductor devices. Models are more easily generalized than for process physics. In addition, they do not need moving boundaries/moving meshes, as instead process simulations need, i.e. convergence is in general easier. Calibration of models usually needs only electrical characterization of fabricated samples.

What is TCAD? – Examples

· Process simulations

Simulate doping profiles obtained by specific processing techniques, calibrate the model with experimental data and then optimize the process to obtain the desired profile.

Device simulations

Simulate the output characteristics of a MOSFET device and calibrate the device architecture to fine-tune the device performance.

Advantageous of TCAD

- The device features can be optimized if hands-on calculations are too complicated or impose unacceptable assumptions
- It helps to make predictions (scaling, new device concepts) when hands-on calculations are not viable (e.g., complex devices, modeling of distributed statistical effects or process yield).
- To get insights. No real experiment will probably be ever able to measure some of the physical quantities calculated by TCAD tools (e.g., local distribution of carriers, local electric field, etc.).
- To quickly screen technological options and drive the industrial strategy