ЛАБОРАТОРНАЯ РАБОТА № 2.

Решение дифференциальных уравнений в Махіта

Цель работы – получить навыки решения обыкновенных дифференциальных уравнений в Maxima.

Задания:

- 1. Найти решения обыкновенных дифференциальных уравнений первого и второго порядков с использованием программы Maxima.
- 2. Найти решения системы обыкновенных дифференциальных уравнений *n*-го порядка с использованием программы Maxima.
- 3. Решить системы обыкновенных дифференциальных уравнений *n*-го порядка методом Рунге-Кутта средствами Maxima.

2.1 Варианты заданий

2.1.1. Уравнения с разделяющимися переменными

В программе Maxima найти общее решение обыкновенного дифференциального уравнения первого порядка с разделяющимися переменными в соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 1. Варианты заданий для обыкновенных дифференциальных уравнений с разделяющимися переменными

No	Дифференциальное уравнение	Начальные условия	[a, b]
1.	(xy + y) + (xy + x)y' = 0	y(1) = 1	[1, 10]
2.	$(1 + e^{2x})y^2y' = x^2$	y(0) = 1	[0,5]
3.	$(1+e^x)y'=ye^x$	$y(1) = e^2$	[1, 10]
4.	$xy' - y + \frac{1}{y} = 0$	y(1) = e	[1,5]
5.	$e^{x+3y}y'=x$	$y(0) = e^3$	[0, 10]
6.	$y' = (2x - 1) \operatorname{ctg} y$	y(1) = 1	[1, 10]
7.	$(1+e^x)yy'=e^y$	y(0) = 1	[0, 10]
8.	$y'\sin x = y\ln y$	y(0) = 1	[0, 10]
9.	$\sec x \operatorname{tg} y y' + \sec^2 y \operatorname{tg} x = 0$	y(1) = 1	[1, 10]
10.	$(y^2+3) = \frac{e^x}{x}yy'$	y(0) = -1	[0, 10]

2.1.2. Однородные дифференциальные уравнения

В программе Maxima найти общее решение однородного дифференциального уравнения в соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 2. Варианты заданий для однородных дифференциальных уравнений

No	Дифференциальное уравнение	Начальные условия	[a, b]
1.	$2x^2y' = x^2 + y^2$	y(1) = 0	[1, 10]
2.	$xy' = x\sin\frac{y}{x} + y$	$y(2) = \pi$	[2, 10]
3.	$(\sqrt{x} - \sqrt{xy})y' = y$	y(1) = 1	[1, 10]
4.	$(x - \sqrt{xy})y' = y$	y(1) = 1	[1, 10]
5.	$y - xy' = x \sec \frac{y}{x}$	y(1) = 1	[1, 10]
6.	(x-y)y' = (x+y)	y(0) = 1	[0, 10]
7.	$(3x^2 - y^2)y' = 2xy$	y(0) = 1	[0, 10]
8.	(x+2y)y'=x	y(0) = 1	[0, 10]
9.	$x y' = y - x \operatorname{tg} \frac{y}{x}$	y(0) = 1	[0, 10]
10.	$x y' = y - xe^{\frac{y}{x}}$	y(0) = 1	[0, 10]

2.1.3. Линейные дифференциальные уравнения первого порядка

В программе Maxima найти общее решение линейных дифференциального уравнения в соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 3. Варианты заданий для решения линейного дифференциального уравнения первого порядка

No	Дифференциальное уравнение	Начальные условия	[<i>a</i> , <i>b</i>]
1.	$(x^2 - x)y' + y = x^2(2x - 1)$	y(-2) = 2	[-2,2]
2.	$y'\operatorname{ctg} x + y = 2$	y(0) = 1	[0, 10]
3.	$(x^2 + 1)y' + 4xy = 3$	y(0) = 0	[0, 10]
4.	$(1-x)(y'+y) = e^{-x}$	y(0) = 0	[0, 10]
5.	$xy' + 2y = 2 x^4$	y(0) = 0	[0, 10]
6.	$xy' + y + xe^{-x^2} = 0$	y(0) = 0	[0, 10]
7.	$y' - y = e^x$	y(0) = 1	[0, 10]
8.	$x^2y' + xy + 1 = 0$	$y(1) = \frac{1}{2e}$	[1, 10]
9.	2x y' = y + 4	y(0) = 1	[0, 10]
10.	$x\left(y'-y\right)=e^{x}$	y(1) = 0	[0, 10]

2.1.4. Дифференциальные уравнения Бернулли

В программе Maxima найти общее решение дифференциального уравнения Бернулли в

соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 4. Варианты заданий для решения линейного дифференциального уравнения первого порядка

No	Дифференциальное уравнение	Начальные условия	[a, b]
1.	$y' + y = x\sqrt{y}$	y(0) = 1	[0,10]
2.	$y' + 2y = y^2 e^x$	y(0) = 1	[0, 10]
3.	$xy' + 2y + x^5y^3e^x = 0$	y(0) = 0	[0, 10]
4.	$xyy' = y^2 + x$	y(0) = 0	[0, 10]
5.	$xy' - 2x^2\sqrt{y} = 4y$	y(0) = 0	[0, 10]
6.	$xy^2y'=x^2+y^3$	y(0) = 0	[0, 10]
7.	$(x+1)(y'+y^2) + y = 0$	y(0) = 1	[0, 10]
8.	$xy' + y = 2x^{\frac{3}{2}}y$	y(0) = 1	[1, 10]
9.	$y' + xy = x^3y^3$	y(0) = 1	[0, 10]
10.	$x(x-1)y'+y^3=xy$	y(1) = 0	[0, 10]

2.1.5. Уравнения в полных дифференциалах

В программе Maxima найти общее решение уравнения в полных дифференциалах в соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 5. Варианты заданий для решения дифференциальных уравнений в полных дифференциалах

No	Дифференциальное уравнение	Начальные условия	[<i>a</i> , <i>b</i>]
1.	$(x^2 + y - 4)dx + (x + y + e^y)dy = 0$	y(0) = 0	[0, 10]
2.	$(x^2y + x)dx + (y - x^2y)dy = 0$	y(0) = 1	[0, 10]
3.	$\sec^2 x \operatorname{tg} y dx + \sec^2 y \operatorname{tg} x dy = 0$	y(0) = 0	[0, 10]
4.	(y-x)dx = (x+y)dy	y(0) = 0	[0, 10]
5.	$dy - e^{-x}dx + ydx - xdy = xydx$	$y(0) = \ln 5$	[0, 10]
6.	$(x^2 + y - 4)dx + (x + y + e^y)dy = 0$	y(0) = 0	[0, 10]
7.	$(x^2y - y)dy = (xy^2 + x)dx$	y(0) = 1	[0, 10]
8.	$\sec^2 x \operatorname{tg} y dx + \sec^2 y \operatorname{tg} x dy = 0$	y(0) = 0	[0, 10]
9.	(y+x)dx + xdy = 0	y(0) = 0	[0, 10]
10.	$dy - e^{-x}dx + ydx - xdy = xydx$	$y(0) = \ln 5$	[0, 10]

3.1.1. Обыкновенные дифференциальные уравнения второго и более высокого порядков

В программе Maxima найти общее решение обыкновенного дифференциального уравнения второго порядки и более высокого порядков с в соответствии со своим вариантом.

Представить частные решения в виде графика при заданных начальных условиях на отрезке $x \in [a, b]$.

Таблица 6. Варианты заданий для обыкновенных дифференциальных уравнений второго и более высокого порядков

№	Дифференциальное уравнение
1.	1.3 [2, стр. 301], 2.1 [2, стр. 303], 3.1 [2, стр. 305], 1.2 [2, стр. 324]
2.	1.5 [2, стр. 302], 2.2 [2, стр. 303], 3.2 [2, стр. 305], 1.3 [2, стр. 324]
3.	1.7 [2, стр. 302], 2.3 [2, стр. 303], 3.3 [2, стр. 305], 1.4 [2, стр. 325]
4.	1.10 [2, стр. 302], 2.4 [2, стр. 303], 3.4 [2, стр. 305], 1.5 [2, стр. 325]
5.	1.11 [2, стр. 302], 2.5 [2, стр. 303], 3.5 [2, стр. 305], 1.6 [2, стр. 325]
6.	1.12 [2, стр. 302], 2.6 [2, стр. 303], 3.6 [2, стр. 305], 1.7 [2, стр. 325]
7.	1.13 [2, стр. 302], 2.7 [2, стр. 303], 3.7 [2, стр. 305], 1.8 [2, стр. 325]
8.	1.14 [2, стр. 302], 2.8 [2, стр. 303], 3.8 [2, стр. 305], 1.9 [2, стр. 325]
9.	1.14 [2, стр. 302], 2.9 [2, стр. 303], 3.9 [2, стр. 305], 1.10 [2, стр. 325]
10.	1.14[2, стр. 302], 2.10 [2, стр. 303], 3.10 [2, стр. 305], 1.11 [2, стр. 325]

2.1.6. Решение обыкновенные дифференциальных уравнения п-го порядка методом Рунге-Кутта

В программе Maxima найти решение обыкновенного дифференциального уравнения n-го порядка в соответствии со своим вариантом (см. табл. 6, последнее задание). Представьте задачу в виде системы ОДУ.

Представить фазовые портреты решений при заданных начальных условиях на отрезке $x \in [a, b]$. Провести сравнение численного метода Рунге-Кутта с точным решением.

Литература

- 1. *Чичкарев Е.А.* Компьютерная математика с Maxima: руководство для школьников и студентов. М.: ALT Linux, 2012. 384 с. Режим доступа: https://www.altlinux.org/Images/0/0b/MaximaBook.pdf
- 2. Сборник индивидуальных заданий по высшей математике: учебное пособие в 3-х частях. Часть 2. / А.П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть; Под. общ ред. А.П. Рябушко. Минск: Выш. шк., 1991. 352 с.
- 3. Бугров Я.С., Никольский С.М. Сборник задач по высшей математике. М.: Физматлит, 2001. 304 с.
- 4. *Ильина В.А.* Система аналитических вычислений MAXIMA для физиков-теоретиков [Электронный ресурс] / В.А. Ильина, П.К. Силаев. М., Ижевск: Регулярная и хаотическая динамика, 2009. 140 с. Режим доступа: http://www.iprbookshop.ru/16626.html