Het toetsen van hypothesen

Sandra Van Aert

10 november 2011

Tweezijdige hypothesetoets

algemeen:

$$H_0: \mu = \mu_0$$
 $H_a: \mu \neq \mu_0$

voorbeeld:

$$H_0: \mu = 34 \text{ cl}$$
 $H_a: \mu \neq 34 \text{ cl}$

- ► H_0 verwerpen bij $\overline{x} \gg 34$ cl of $\overline{x} \ll 34$ cl
- kritieke waarden:

$$c_L = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$c_U = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Beslissingsregels

- benadering 1: H_0 verwerpen als $\overline{x} < c_L$ of $\overline{x} > c_U$ H_0 aanvaarden als $c_L \le \overline{x} \le c_U$
- benadering 2:

toetsingsgrootheid
$$z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$$
 H_0 verwerpen als $z<-z_{\alpha/2}$ of $z>z_{\alpha/2}$
 H_0 aanvaarden als $-z_{\alpha/2}\leq z\leq z_{\alpha/2}$

Voorbeeld

► gegeven:
$$n = 64$$

 $\overline{x} = 33.89 \text{ cl}$
 $\sigma = 0.5 \text{ cl}$

•
$$H_0: \mu = 34 \text{ cl}$$

 $H_a: \mu \neq 34 \text{ cl}$

• significantieniveau $\alpha = 5\%$

Voorbeeld: benadering 1

Voorbeeld: benadering 2

p-waarde bij tweezijdige toets

$$\overline{x} < \mu_0 : p = 2P(\overline{X} < \overline{x} \mid \mu = \mu_0)$$

$$\overline{x} > \mu_0 : p = 2P(\overline{X} > \overline{x} \mid \mu = \mu_0)$$

- ► komt op hetzelfde neer als $p = 2P(Z > |z| \mid \mu = \mu_0)$
- ► beslissingsregel (benadering 3): H_0 verwerpen als $p < \alpha$ H_0 aanvaarden als $p \ge \alpha$

Kans op type II fout bij rechtseenzijdige toets

$$\beta = P(H_0 \text{ aanvaarden} \mid H_0 \text{ is onjuist})$$

$$= P(\overline{X} < c \mid H_0 \text{ is onjuist})$$

$$= P(\overline{X} < c \mid \mu = \mu_1) \quad \text{waarbij } \mu_1 > \mu_0$$

$$= P(\frac{\overline{X} - \mu_1}{\sigma / \sqrt{n}} < \frac{c - \mu_1}{\sigma / \sqrt{n}} \mid \mu = \mu_1)$$

$$= P(Z < \frac{c - \mu_1}{\sigma / \sqrt{n}})$$

Type II fout: grafisch

Voorbeeld

► stel H_0 is fout meer bepaald: $\mu = -0.535$

$$\beta = P(\overline{X} < -0.5391 \mid \mu = -0.535)$$

$$= P(Z < \frac{-0.5391 - (-0.535)}{0.008 / \sqrt{5}})$$

$$= P(Z < -1.146)$$

$$= 0.1259$$

⇒ onderscheidingsvermogen van deze toets

$$1 - \beta = 1 - 0.1259 = 0.8741$$

Type II fout: grafisch

Beinvloedende factoren

- α daalt $\Rightarrow \beta$ stijgt
- $n \text{ stijgt} \Rightarrow \beta \text{ daalt}$
- σ^2 daalt $\Rightarrow \beta$ daalt
- μ_1 stijgt $\Rightarrow \beta$ daalt

Hypothesetoetsen voor één populatie

Sandra Van Aert

10 november 2011

Populatiegemiddelde μ - Normaal verdeelde populatie

• σ niet gekend:

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \to \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

t-verdeeld met n-1 vrijheidsgraden

gevolg:

$$t_{\alpha,n-1}$$
 in plaats van z_{α}
 $t_{\alpha/2,n-1}$ in plaats van $z_{\alpha/2}$

Linkseenzijdige t-toets

beslissingsregel volgens benadering 1:

$$\frac{c - \mu_0}{s / \sqrt{n}} = -t_{\alpha; n-1} \Leftrightarrow c = \mu_0 - t_{\alpha; n-1} \frac{s}{\sqrt{n}}$$

$$H_0 \text{ verwerpen als } \overline{x} < \mu_0 - t_{\alpha; n-1} \frac{s}{\sqrt{n}}$$

$$H_0 \text{ aanvaarden als } \overline{x} \ge \mu_0 - t_{\alpha; n-1} \frac{s}{\sqrt{n}}$$

Linkseenzijdige t-toets (vervolg)

▶ beslissingsregel volgens benadering 2:

toetsingsgrootheid
$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

 H_0 verwerpen als $t < -t_{\alpha;n-1}$

 H_0 aanvaarden als $t \ge -t_{\alpha;n-1}$

Linkseenzijdige t-toets (vervolg)

beslissingsregel volgens benadering 3: $p = P(t_{n-1} < t)$ met t = toetsingsgrootheid als $p < \alpha$, verwerp nulhypothese als $p \ge \alpha$, aanvaard nulhypothese

Populatiegemiddelde μ - Niet normaal verdeelde populatie

- ▶ kleine steekproeven (n < 30)
 - \rightarrow geen hypothesetoets voor μ
 - → niet-parametrische toets voor de ∫ mediaan centrale locatie/ligging (zie § 14.4)
- grote steekproeven $(n \ge 30)$
 - $\rightarrow \sigma^2$ bekend: gebruik N(0,1)-verdeling
 - $\rightarrow \sigma^2$ onbekend: gebruik *t*-verdeling met n-1 vrijheidsgraden

Voorbeeld

- wet 1 januari 1980:
 - $\rightarrow n = 50$
 - → beschuldig leverancier indien

$$\overline{x}$$
 < Q_n – 0.379 s

 Q_n = nettogewicht vermeld op verpakking s = steekproefstandaarddeviatie

getoetste hypothesen:

$$H_0: \mu = Q_n$$

$$H_a: \mu < Q_n$$

Vervolg voorbeeld

nulhypothese verwerpen indien

$$\overline{x} < \mu_0 - t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

$$\overline{x} < Q_n - t_{\alpha,49} \frac{s}{\sqrt{50}}$$

► is identiek aan wet als

$$0.379 = \frac{t_{\alpha,49}}{\sqrt{50}} \Leftrightarrow t_{\alpha,49} = 0.379\sqrt{50} = 2.6799$$

- $\alpha = 0.005$
 - → kleine kans op type I fout
 - → overheid wil niet al te veel risico nemen om iemand valselijk te beschuldigen

Populatievariantie σ^2 (rechtseenzijdig)

$$\begin{cases}
H_0: \sigma^2 = \sigma_0^2 \\
H_a: \sigma^2 > \sigma_0^2
\end{cases}$$

beslissingsregel:

verwerp
$$H_0$$
 indien $s^2 > \frac{\sigma_0^2}{n-1} \chi_{\alpha;n-1}^2$

aanvaard
$$H_0$$
 indien $s^2 \le \frac{\sigma_0^2}{n-1} \chi_{\alpha;n-1}^2$

of

verwerp H_0 indien $p < \alpha$

met
$$p = P(\chi_{n-1}^2 > \frac{(n-1)s^2}{\sigma_0^2})$$

aanvaard H_0 indien $p \ge \alpha$

Populatievariantie σ^2 (tweezijdig)

$$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_a: \sigma^2 \neq \sigma_0^2 \end{cases}$$

beslissingsregel: verwerp H₀ indien

$$s^2 < \frac{\sigma_0^2}{n-1} \chi_{1-\alpha/2;n-1}^2$$
 of $s^2 > \frac{\sigma_0^2}{n-1} \chi_{\alpha/2;n-1}^2$

aanvaard H_0 indien

$$\frac{\sigma_0^2}{n-1}\chi_{1-\alpha/2;n-1}^2 \le s^2 \le \frac{\sigma_0^2}{n-1}\chi_{\alpha/2;n-1}^2$$

p-waarde bij tweezijdige toets σ^2

- χ^2 -verdeling is niet symmetrisch dus onderscheid tussen $s^2 > \sigma_0^2$ en $s^2 < \sigma_0^2$
- $s^2 > \sigma_0^2$:

$$p = 2P(\chi_{n-1}^2 > \frac{(n-1)s^2}{\sigma_0^2})$$

• $s^2 < \sigma_0^2$:

$$p = 2P(\chi_{n-1}^2 < \frac{(n-1)s^2}{\sigma_0^2})$$

Voorbeeld

$$n = 20$$

 $s = 0.4294$
 $α = 0.05$

getoetste hypothesen:

$$H_0: \sigma^2 = 0.1$$

 $H_a: \sigma^2 \neq 0.1$

berekende toetsingsgrootheid:

$$\frac{(n-1)s^2}{\sigma_0^2} = \frac{(20-1)(0.4294)^2}{0.1} = 35.033$$

Vervolg voorbeeld

- berekende toetsingsgrootheid x = 35.033
- kritieke waarden:

$$\chi^2_{1-\alpha/2;n-1} = \chi^2_{0.975;19} = 8.9065 (= qchisq(0.025, 19))$$

 $\chi^2_{\alpha/2;n-1} = \chi^2_{0.025;19} = 32.8523 (= qchisq(0.975, 19))$

- besluit:
 berekende toetsingsgrootheid ligt niet in aanvaardingsgebied
 - $\Rightarrow H_0$ verwerpen
 - $\Rightarrow \sigma^2$ is significant verschillend van 0.1

Populatieproportie

- \rightarrow X = # successen in steekproef van grootte n
- ▶ $X \sim \text{binomiaal}(n, \pi)$
- voor grote n: $X \sim N(n\pi, n\pi(1-\pi))$
- $\hat{P} = \frac{X}{n} = \text{proportie successen}$

$$\hat{P} \sim N(\pi, \frac{\pi(1-\pi)}{n})$$

voorwaarde in de praktijk:

$$n\hat{p} > 5$$
 en $n(1 - \hat{p}) > 5$

Rechtseenzijdige toets voor π

$$\begin{cases}
H_0: \pi = \pi_0 \\
H_a: \pi > \pi_0
\end{cases}$$

benadering 1:

verwerp
$$H_0$$
 indien $\hat{p} > \pi_0 + z_\alpha \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$
aanvaard H_0 indien $\hat{p} \le \pi_0 + z_\alpha \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

► *p*-waarde = $P(Z > \frac{\hat{p} - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}})$ verwerp H_0 indien $p < \alpha$ aanvaard H_0 indien $p \ge \alpha$

Tekentoets voor populatiemediaan

- niet-parametrische of verdelingsvrije hypothesetoets
 - → hangen niet af van veronderstellingen omtrent kansverdeling/kansdichtheid populatie
 - → werken altijd
 - → klassieke toetsen zijn beter als veronderstellingen juist zijn

►
$$H_0$$
: Me = Me₀ versus
$$\begin{cases} H_a$$
: Me > Me₀
$$H_a$$
: Me < Me₀
$$H_a$$
: Me ≠ Me₀

Werking tekentoets

betekenis populatiemediaan:

```
50% van populatie > populatiemediaan
50% van populatie < populatiemediaan
```

▶ als *H*₀ juist:

```
50\% populatie > Me_0 en 50\% populatie < Me_0
```

• als H_0 juist:

```
ongeveer 50% steekproef > Me_0
ongeveer 50% steekproef < Me_0
```

Werking tekentoets

- tellen hoeveel waarnemingen groter of kleiner zijn dan Me₀
- vergelijken met $\frac{n}{2}$
- hoe?aantal waarnemingen > of < Me₀= binomiaal verdeeld met parameters

$$\begin{cases} n \\ \pi = 0.5 \quad \text{(als } H_0 \text{ waar is)} \end{cases}$$

Rechtseenzijdige tekentoets

- $H_a: Me > Me_0$
- ▶ stel s = aantal waarnemingen > Me₀
- ▶ *p*-waarde:

$$p = P(X \ge s) \text{ met } X \sim \text{ binomiaal}(n, \frac{1}{2})$$

► beslissingsregel: verwerp H_0 als $p < \alpha$ aanvaard H_0 als $p \ge \alpha$

- $P(X \ge s)$
 - \rightarrow R: "=1-pbinom(s-1, n, 0.5)"
 - \rightarrow Matlab: "=1-binocdf (s-1, n, 0.5)"

Linkseenzijdige tekentoets

- H_a : Me < Me₀
- ▶ stel s = aantal waarnemingen < Me₀
- ▶ *p*-waarde:

$$p = P(X \ge s) \text{ met } X \sim \text{ binomiaal}(n, \frac{1}{2})$$

► beslissingsregel: verwerp H_0 als $p < \alpha$ aanvaard H_0 als $p \ge \alpha$

Tweezijdige tekentoets

- ► H_a : Me \neq Me₀
- ▶ stel

$$s = \text{grootste van} \begin{cases} # \text{ waarnemingen } > \text{Me}_0 \\ # \text{ waarnemingen } < \text{Me}_0 \end{cases}$$

► *p*-waarde:

$$p = 2P(X \ge s) \text{ met } X \sim \text{ binomiaal}(n, \frac{1}{2})$$

► beslissingsregel: verwerp H_0 als $p < \alpha$ aanvaard H_0 als $p \ge \alpha$

Voorbeeld

- ► fabrikant CD-spelers: mediaan = 5250 uur
- ► test 20 spelers van concurrent: 14 spelers hebben levensduur > 5250 uur
- H_0 : Me = 5250 versus H_a : Me > 5250 (α = 0.05)
- oplossing:

$$\rightarrow s = 14$$

$$\rightarrow p = P(X \ge s)$$

$$= P(X \ge 14) \text{ met } X \sim \text{binomiaal } (20, \frac{1}{2})$$

$$= 0.0577$$

 $0.0577 > \alpha$ dus aanvaard H_0 (randgeval)

Tekentoets

- vereist ordinale gegevens
- wordt vaak gebruikt voor kwantitatieve, niet-normaal verdeelde gegevens
- beslissingsboom voor hypothesetoets centrale ligging

