# Analyse numérique

Cornou Jean-Louis

Correction des exercices

# 1 Vitesse de convergence

### 1.1 Vitesse de convergence

Exercice 1 On suppose que la suite  $\left(\left|\frac{u_{n+1}-l}{u_n-l}\right|\right)_{n\in\mathbb{N}}$  est convergente. Montrer que sa limite appartient à l'intervalle [0,1].

**Correction 1** Supposons un instant que cette limite, notons-la  $\lambda$ , vérifie  $\lambda > 1$ . On note alors  $\mu = (1 + \lambda)/2$ , comme  $|\mu - \lambda| = (\lambda - 1)/2 > 0$ , donc il existe un rang N à partir duquel

$$\forall n \ge N, \left| \frac{u_{n+1} - l}{u_n - l} \right| \ge \mu$$

On en déduit que la suite  $(|u_n-l|)_{n\geq N}$  est minorée par la suite géométrique  $(|u_N-l|\mu^{n-N})_{n\geq N}$ . Or on a choisi  $\mu$  de telle sorte que  $\mu>1$ . Par conséquent, cette dernière suite géométrique tend vers  $+\infty$ , cela entraîne par minoration que la suite  $(|u_n-l|)_{n\geq N}$  tend vers  $+\infty$ , ce qui contredit sa convergence vers 0. Par conséquent,  $\lambda\in[0,1]$ .

Exercice 2 1. On suppose que la suite  $(u_n)_{n\in\mathbb{N}}$  possède un coefficient de convergence  $\lambda$  dans ] – 1,1[\{0} et que  $\forall$   $n\in\mathbb{N}^*$ ,  $u_n\neq u_{n-1}$ . Montrer qu'alors la suite  $\left(\frac{u_{n+1}-u_n}{u_n-u_{n-1}}\right)$  converge vers  $\lambda$ .

2. Montrer que le résultat précédent est faux avec des valeurs absolues en considérant la suite u définie par  $\forall n \in \mathbb{N}$ ,  $u_{2n} = (-1)^n \lambda^{2n}$ ,  $u_{2n+1} = (-1)^n \lambda^{2n+1}$  avec  $\lambda$  un réel dans ]0,1[.

Correction 2 1. Soit n un entier naturel non nul. Alors, on a

$$\frac{u_{n+1} - u_n}{u_n - u_{n-1}} = \frac{(u_{n+1} - l) - (u_n - l)}{(u_n - l) - (u_{n-1} - l)} = \frac{u_n - l}{u_{n-1} - l} \frac{\frac{u_{n+1} - l}{u_n - l} - 1}{\frac{u_n - l}{u_{n-1} - l} - 1}$$

Comme le coefficient de convergence est différent de 1, on déduit des opérations sur les limites que cette expression tend, quand n tend vers  $+\infty$ , vers  $\lambda \frac{\lambda-1}{\lambda-1} = \lambda$ .

2. Pour tout entier n,  $|u_n| = \lambda^n$  de sorte que  $u_n \xrightarrow[n \to +\infty]{} 0$ . Pourtant, pour tout entier n non nul,

$$\frac{u_{2n+1}-u_{2n}}{u_{2n}-u_{2n-1}} = \frac{(-1)^n \lambda^{2n+1} - (-1)^n \lambda^{2n}}{(-1)^n \lambda^{2n} - (-1)^{n-1} \lambda^{2n-1}} = -\frac{\lambda(1-\lambda)}{\lambda+1}$$

$$\frac{u_{2n+2}-u_{2n+1}}{u_{2n+1}-u_{2n}} = \frac{(-1)^{n+1}\lambda^{2n+2}-(-1)^n\lambda^{2n+1}}{(-1)^n\lambda^{2n+1}-(-1)^{n-1}\lambda^{2n}} = \frac{\lambda(1+\lambda)}{1-\lambda}$$

Ces deux valeurs sont distinctes, puisque  $\lambda$  appartient à ]0,1[. Par conséquent, la suite  $\left(\left|\frac{u_{n+1}-u_n}{u_n-u_{n-1}}\right|\right)_{n\in\mathbb{N}^*}$  est divergente.

#### Remarque

Ce dernier résultat permet d'estimer le coefficient  $\lambda$  sans pour autant connaître la limite l.

Exercice 3 Étudier la vitesse de convergence des suites suivantes :

- 1.  $b \in \mathbb{R}^{+*}, \forall n \in \mathbb{N}^*, a_n = 1/n^b$ .
- 2.  $\forall n \ge 2, b_n = 1/\ln(n)$ .
- 3.  $0 < |a| < 1, \forall n \in \mathbb{N}, c_n = a^n$ .
- 4.  $\forall n \in \mathbb{N}, d_n = 1/n!$ .
- 5.  $\forall n \in \mathbb{N}, e_n = n!/n^n$ .

**Correction 3** Toutes ces suites tendent vers 0. Soit n un entier naturel suffisamment grand, alors 1.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left( \frac{n}{n+1} \right)^b$$

La quantité n/(n+1) tend vers 1 quand n tend vers  $+\infty$ . On en déduit par continuité de la fonction puissance b que le coefficient de convergence vaut 1. La convergente est donc lente.

2.

$$\left|\frac{b_{n+1}}{b_n}\right| = \frac{\ln(n)}{\ln(n+1)} = \ln\left(\frac{n}{n+1}\right) \frac{1}{\ln(n+1)} + 1$$

Le logarithme de la partenthèse tend vers  $\ln(1)$  par continuité du logarithme en 1. Par conséquent, la première fraction vers 0, et le taux  $|b_{n+1}/b_n|$  tend vers 1. La convergence est donc lente.

- 3. Le rapport est constant égal à |a|. La convergence est donc géométrique de rapport |a|.
- 4.

$$\left| \frac{d_{n+1}}{d_n} \right| = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

La convergence est donc rapide.

5.

$$\left| \frac{e_{n+1}}{e_n} \right| = \left( \frac{n}{n+1} \right)^n \xrightarrow[n \to +\infty]{} 1/e$$

La convergence est donc géométrique de rapport 1/e.

**Exercice 4** Soit v la suite définie par  $\forall n \in \mathbb{N}^*$ ,  $v_{2n} = 1/n$ ,  $v_{2n+1} = 2/(n+1)$ . Montrer que v converge mais n'a pas de vitesse de convergence.

Correction 4 Les sous-suites  $(v_{2n})_{n\in\mathbb{N}}$  et  $(v_{2n+1})_{n\in\mathbb{N}}$  tendent tous deux vers 0, ce qui assure que v est convergente de limite nulle. Toutefois,

$$\left| \frac{v_{2n+1}}{v_{2n}} \right| = \frac{2n}{n+1} \xrightarrow[n \to +\infty]{} 2$$

$$\left|\frac{v_{2n+2}}{v_{2n+1}}\right| = \frac{n}{2(n+1)} \xrightarrow[n \to +\infty]{} \frac{1}{2}$$

Comme 2  $\neq$  1/2, la suite  $\left(\left|\frac{v_{n+1}}{v_n}\right|\right)_{n\in\mathbb{N}}$  est divergente.

Exercice 5 On définit la suite u via

$$\forall n \in \mathbb{N}^*, u_n = \left(1 + \frac{1}{n}\right)^n$$

- 1. Expliciter la formule de Taylor-Lagrange du logarithme entre 1 et 1+1/n à l'ordre 1. En déduire que  $n(u_n-e) \xrightarrow[n \to +\infty]{} e/2$ .
- 2. Montrer que la convergence de u est lente, et que la convergence de la suite  $(v_n)_{n\in\mathbb{N}}=(u_{2^n})_{n\in\mathbb{N}}$  est géométrique.

Correction 5 1. Le logarithme népérien est de classe  $C^{\infty}$  sur  $\mathbb{R}^{+*}$ , donc tout va bien. Soit n un entier naturel non nul, il existe un réel  $c_n$  dans ]1,1+1/n[ tel que

$$\ln\left(1+\frac{1}{n}\right) = \ln(1) + \left(1+\frac{1}{n}-1\right)\ln'(1) + \frac{\left(1+\frac{1}{n}-1\right)^2}{2}\ln''(c_n)$$

soit encore

$$\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2c_n^2}$$

On en déduit que  $u_n = \exp(n\ln(1+1/n)) = e\exp(-1/(2nc_n^2))$ , donc que

$$n(u_n - e) = \frac{e}{2} 2n(\exp(-1/(2nc_n^2)) - 1)$$

Comme  $c_n$  tend vers 1 par encadrement, on reconnaît le taux d'accroissement de l'exponentielle en 0, qui tend vers  $\exp'(0) = 1$ , de sorte que  $n(u_n - e)$  tend vers e/2.

2. D'après ce qui précède,

$$\left| \frac{u_{n+1} - e}{u_n - e} \right| = \frac{n}{n+1} \left| \frac{(n+1)(u_{n+1} - e)}{n(u_n - e)} \right| \to 1 \times \frac{e/2}{e/2} = 1$$

La convergence de u est donc lente. D'autre part,

$$\left| \frac{v_{n+1} - e}{v_n - e} \right| = \frac{2^n}{2^{n+1}} \left| \frac{(2^n + 1)(v_{n+1} - e)}{2^n (v_n - e)} \right| \to \frac{1}{2} \times \frac{e/2}{e/2} = \frac{1}{2}$$

Ainsi, la convergence de v est géométrique de rapport 1/2.

Exercice 6 1. Expliciter la formule de Taylor-Lagrange de l'exponentielle entre 0 et 1 à l'ordre n.

2. Montrer que la convergence de la suite  $(u_n)_{n\in\mathbb{N}}$  définie par

$$\forall n \in \mathbb{N}, u_n = \sum_{k=0}^n \frac{1}{k!}$$

est rapide.

Correction 6 1. L'exponentielle est de classe  $C^{\infty}$  sur  $\mathbb{R}$ . Soit n un entier naturel. Alors il existe un réel  $c_n$  dans ]0,1[ tel que

$$\exp(1) = \sum_{k=0}^{n} \frac{(1-0)^k}{k!} \exp^{(k)}(0) + \frac{(1-0)^{n+1}}{(n+1)!} \exp^{(n+1)}(c_n)$$

soit encore

$$e = u_n + \frac{e^{c_n}}{(n+1)!}$$

2. D'après ce qui précède, on a

$$0 < \frac{e - u_{n+1}}{e - u_n} = \frac{1}{(n+2)} \frac{e^{c_{n+1}}}{e^{c_n}} < \frac{e}{n+2} \to 0$$

Par conséquent, ce rapport tend vers 0 et la convergence est rapide.

Exercice 7 Soit I = [a, b] un segment réel non réduit à un point,  $f : I \to I$  une fonction de classe  $C^1$  telle que  $\forall x \in I, 0 < |f'(x)| < 1$ .

- 1. Montrer que f admet un unique point fixe  $l \in I$ .
- 2. Soit  $u_0 \in I \setminus \{l\}$ . On définit la suite u via  $\forall n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$ . Montrer que cette suite converge vers l et que la convergence est géométrique de rapport |f'(l)|.

- Correction 7 1. Introduisons  $g:[a,b] \to \mathbb{R}, x \mapsto f(x)-x$ . Un point  $\alpha$  est point de fixe de f si et seulement si il est zéro de g. La fonction g est continue sur le segment [a,b]. De plus,  $g(a) \ge 0$  et  $g(b) \le 0$ , donc d'après le TVI, il existe un réel l tel que g(l) = 0. De plus, g est dérivable et g' = f' 1 < 0, donc g est strictement décroissante, donc ce zéro de g est unique. En conséquence, f possède un unique point fixe.
  - 2. Établissons tout d'abord par récurrence que  $\forall n \in \mathbb{N}$ ,  $u_n \neq l$ . L'initialisation est validée d'après l'hypothèse sur  $u_0$ . Soit n un entier naturel tel que  $u_n \neq l$ , alors l'égalité des accroissement finis entre  $u_n$  et l assure l'existence d'un réel  $c_n$  entre  $u_n$  et l tel que  $f(u_n) f(l) = (u_n l)f'(c_n)$ , soit encore  $u_{n+1} l = (u_n l)f'(c_n)$ . Comme  $f'(c_n)$  est non nul, on en déduit que  $u_{n+1}$  est différent de l. De plus, |f'| est continue sur le segment [a,b] donc atteint ses bornes. Notons M le maximum de |f'|. Il existe un réel d dans [a,b] tel que M = |f'(d)|. Donc M < 1. D'après ce qu'on écrit précédemment, il en découle que

$$\forall n \in \mathbb{N}, \left| \frac{u_{n+1} - l}{u_n - l} \right| \leq M$$

On en déduit par récurrence que

$$\forall n \in \mathbb{N}, |u_{n+1} - l| \leq M^n |u_0 - l|$$

Ainsi, la suite u tend vers l. Par conséquent, la suite  $(c_n)$  tend également vers l par encadrement. Comme f' est continue en l, on a le résultat plus précis

$$\left|\frac{u_{n+1}-l}{u_n-l}\right| \to f'(l) \in ]-1,1[\setminus\{0\}]$$

On en déduit que la convergence est géométrique de rapport |f'(l)|.

## 1.2 Ordre de convergence

Exercice 8 Montrer que sous réserve d'existence, l'ordre de convergence est unique.

Correction 8 Notons r et s des réels plus grands que  $1, \lambda, \mu$  des réels non nuls tels que

$$\lim_{n\to +\infty}\frac{|u_{n+1}-l|}{|u_n-l|^r}=\lambda\quad \text{et}\quad \lim_{n\to +\infty}\frac{|u_{n+1}-l|}{|u_n-l|^s}=\mu$$

Comme toutes les quantités non nulles, on peut écrire

$$\lim_{n \to +\infty} |u_n - l|^{s-r} = \frac{\lambda}{\mu}$$

Supposons un instant que  $s \neq r$ . Quitte à les réordonner, on peut supposer que s > r. Or la limite précédente est non nulle, puisque  $\lambda$  et  $\mu$  sont non nuls. Cela contredit la continuité de la fonction puissance  $x \mapsto x^{s-r}$  en 0, puisque s-r>0 et  $\lim_{n\to +\infty} (u_n-l)=0$ . Ainsi s=r et l'ordre de convergence est unique.

Exercice 9 Soit I = [a, b] un segment non réduit à un point,  $r \ge 2$  et  $f : I \to I$  de classe  $C^r$  telle que  $\forall x \in I, |f'(x)| < 1$ .

- 1. Montrer que f admet un unique point fixe l appartenant à l.
- 2. On suppose que

$$\forall k \in [[1, r-1]], f^{(k)}(l) = 0 \text{ et } \forall x \in I, f^{(r)}(x) \neq 0.$$

Soit u la suite définie par  $u_0 \in I \setminus \{l\}$ ,  $\forall n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$ . Montrer que cette suite converge vers l et que la convergence est d'ordre r. Dans cette situation, on dit que l est un point fixe super-attractif de f.

Correction 9 1. cf supra.

2. Comme dans un exercice précédent, on prouve par récurrence la suite u ne vaut jamais l. Le choix de  $u_0$  valide l'hérédité. Soit n un entier naturel tel que  $u_n \neq l$ . On applique la formule de Taylor-Lagrange à l'ordre r entre  $u_n$  et l, ce qui entraı̂ne qu'il existe un réel  $c_n$  compris strictement entre  $u_n$  et l tel que

$$u_{n+1} - l = f(u_n) - f(l) = \frac{(u_n - l)^r}{r!} f^{(r)}(c_n)$$

Comme on a supposé que  $f^{(r)}$  ne s'annule jamais, on a bien  $u_{n+1} \neq l$ , ce qui assure l'hérédité. On est encore dans les hypothèses de l'exercice 7, donc la suite u tend vers l. Ainsi,  $c_n$  tend vers l. Comme  $f^{(r)}$  est continue en l, on en déduit que

$$\lim_{n \to +\infty} \frac{|u_{n+1} - l|}{|u_n - l|^r} = \frac{f^{(r)}(l)}{r!} \neq 0$$

Ainsi, la convergence est d'ordre r.

**Exercice 10** Soit a, b deux réels tels que  $a < b, g \in C^3([a, b], \mathbb{R})$  telle que  $g(a)g(b) < 0, \forall x \in I, g'(x) \neq 0$  et  $g''(x) \neq 0$ .

- 1. Montrer qu'il existe un unique réel l dans a, b tel que g(l) = 0.
- 2. On note f la fonction définie par  $\forall x \in [a,b], f(x) = x \frac{g(x)}{g'(x)}$ . Montrer que f'(l) = 0 et  $f''(l) \neq 0$ .
- 3. On note  $J = [l \eta, l + \eta]$  un voisnage de l tel que  $\forall x \in J$ ,  $f''(x) \neq 0$ ; Montrer que la suite définie par  $u_0 \in J \setminus \{l\}$ ,  $\forall n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$  converge vers l et que la convergence est d'ordre 2.

Correction 10 1. Le théorème des valeurs intermédiaires est applicable à g puisqu'elle est continue. Donc il existe un réel l dans a, b [ tel que g(l) = 0. D'autre part, g' est également continue, donc g' est de signe constant puisqu'elle ne s'annule pas. Ainsi, g est strictement monotone, donc ce zéro est unique.

2. Le réel l'est l'unique point fixe de f. De plus, f est de classe  $C^2$  et

$$\forall x \in I, f'(x) = 1 - \frac{g'(x)}{g'(x)} + \frac{g(x)g''(x)}{(g'(x))^2} = \frac{g(x)g''(x)}{(g'(x))^2}$$

On en déduit que f'(l) = 0. De plus,

$$f''(l) = \lim_{x \to l} \frac{f'(x)}{x - l} = \lim_{x \to l} \frac{g(x)}{x - l} \frac{g''(x)}{(g'(x))^2} = \frac{g''(l)}{g'(l)} \neq 0$$

3. Par continuité de f'' et de f', on peut trouver un voiinage de J de l tel que  $\forall x \in J, f''(x) \neq 0$  et  $\forall x \in J \setminus \{l\}, 0 < |f'(x)| < 1$ . On peut alors appliquer l'exercice précédent à la fonction  $f_{\mid J}$ , ce qui entraîne le résultat pour r = 2.

## 1.3 Qui va plus vite?

**Exercice 11** On considère les suites u et v de l'exercice 5. Montrer que v converge plus vite que u vers e.

Correction 11 On a vu dans cette exercice que  $n(u_n-e) \rightarrow e/2$  et que  $2^n(v_n-e) \rightarrow e/2$ . On en déduit que

$$\frac{v_n - e}{u_n - e} = \frac{n}{2^n} \frac{2^n (v_n - e)}{n(u_n - e)} \to 0$$

Ainsi, v tend vers e plus vite que u.

Exercice 12 On définit les suites u et v via

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!}, \quad v_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{nn!}$$

Montrer que v converge vers e, plus vite que u. Quel sont les différents coûts de calcul pour obtenir une valeur de e approchée à  $10^{-16}$  près?

Correction 12 On a vu dans l'exercice 6 qu'on disposait des inégalités

$$\forall n \in \mathbb{N}, \frac{1}{(n+1)!} < e - u_n$$

On en déduit que

$$\forall n \in \mathbb{N}, \frac{1}{(n+1)!} < e - v_n + \frac{1}{nn!}$$

Ainsi,

$$\forall n \in \mathbb{N}, v_n - e < \frac{1}{nn!} - \frac{1}{(n+1)!} = \frac{1}{n(n+1)!}$$

D'autre part, on sait que la suite v est strictement décroissante, donc que  $\forall\,n\in\mathbb{N},0< v_n$  – e. On en déduit que

$$\forall n \in \mathbb{N}, 0 < \frac{v_n - e}{u_n - e} < \frac{1}{n(n+1)!}(n+1)! = \frac{1}{n}$$

Comme la suite majorante tend vers 0, on en déduit que v tend vers e plus vite que u.

On a également vu la majoration  $\forall n \in \mathbb{N}, e-u_n < e/(n+1)!$ . Il suffit donc que  $e/(n+1)! < 10^{-16}$  pour que  $u_n$  fournisse une valeur approchée de e à  $10^{-16}$  près. On peut brutalement estimer ces quantités, ou plus astucieusement passer au logarithme, puisqu'il est strictement croissant. Il suffit donc que  $1-\sum_{k=2}^{n+1}\ln(k)=1-\ln((n+1)!)<-16\ln(10)$  pour obtenir une valeur satisfaisante. On constate que n=19 convient et on obtient  $e \simeq 2.71828182845904553$ . Si on utilise la suite e0, il suffit que e1/e1/e1/e1/e1/e1/e2 pour disposer d'une approximation suffisante. Avec la même astuce que précédemment, on constate que e1/e1/e2 convient.

# 2 Résolution d'équations numériques

#### 2.1 La méthode de dichotomie

**Exercice 13** En appliquant la méthode de dichotomie de la preuve du TVI, écrire en Python une fonction qui prend en entrée, une fonction continue de  $\mathbb R$  dans  $\mathbb R$ , deux réels a < b, une précision  $\varepsilon$  > 0, un nombre maximal d'itérations N et renvoie un réel c dans ]a, b[ proche à  $\varepsilon$  près d'une solution de f(x) = 0. Quelle est la vitesse de convergence de la suite construite?

Correction 13 Voici une proposition de solution itérative :

Les suites  $(a_n)_{n\in\mathbb{N}}$  et  $(b_n)_{n\in\mathbb{N}}$  classiquement construites vérifient que la suite b-a est géométrique de raison 1/2. Par conséquent, l'ordre de convergence vaut 1 et la vitesse de convergence est géométrique de raison 1/2.

- Exercice 14 1. Montrer qu'il existe un unique réel x tel que  $e^x + x = 2$ . Chercher une approximation à  $10^{-8}$  près de cette solution à l'aide de l'algorithme précédent. Combien d'itérations vous a-t-il fallu pour obtenir une telle valeur?
  - 2. Montrer qu'il existe un réel unique réel  $\alpha$  dans [0,1] tel que  $2\cos(1+\alpha^2)-\alpha=1$ . En donner une approximation à  $10^{-8}$  près? Combien cela vous a-t-il coûté?
- Correction 14 1. On étudie classiquement  $x \mapsto e^x + x$ . Cette fonction dérivable sur  $\mathbb{R}$  de dérivée  $x \mapsto e^x + 1$  qui est strictement positive. Par conséquent,  $x \mapsto e^x + x$  est strictement croissante. De plus,  $e^0 + 0 = 1 < 2$  et  $e^1 + 1 = e + 1 > 2$ . Comme cette fonction est continue, le TVI assure qu'il existe un réel x tel que  $e^x + x = 2$ . La stricte monotonie assure que ce réel est unique.

```
>>> from math import exp
>>> def f(x):
... return exp(x)+x-2
...
...
>>> f(0)
-1.0
>>> f(1)
1.718281828459045
>>> dicho(0,1,f,10**(-8),1000)
(0.4428544007241726, 27)
```

2. Notons  $g:[0,1] \to \mathbb{R}$ ,  $x \mapsto 2\cos(1+x^2)-x-1$ . Elle est de classe  $C^1$  et  $\forall x \in [0,1]$ ,  $g'(x) = -4x\sin(1+x^2)-1$ . Or  $\forall x \in [0,1]$ ,  $0 < 1+x^2 \le 2 < \pi$ ,  $\sin(1+x^2) > 0$ . D'autre par  $1 > \pi/3$ , donc  $\cos(1) < \cos(\pi/3) = 1/2$ . Ainsi g(1) < 0 et g(0) > 0. Ainsi, il existe un unique réel  $\alpha$  tel que  $2\cos(1+\alpha^2)-\alpha=1$ .

```
>>> from math import cos

>>> def g(x):
... return 2*cos(1+x**2)-x-1
...
...
>>> g(0)
0.08060461173627953

>>> g(1)
-2.8322936730942847

>>> dicho(0,1,g,10**(-8),1000)
(0.07189199700951576, 27)
```

- Exercice 15 1. Implémenter la méthode de dichotomie pour trouver la racine du polynôme L :  $x \mapsto x(63x^4 70x^2 + 15)/8$  sur l'intervalle [0.6,1] avec une précision de  $10^{-10}$ .
  - 2. Représenter graphiquement l'évolution de la suite  $(|L(x_k)|)_{k\in\mathbb{N}}$  et estimer un ordre de convergence de la méthode de dichotomie.
- Correction 15 1. On vérifie rapidement que L(6/10) = -0.15264 < 0 et L(1) = 1 > 0. Une valeur approchée de cette racine vaut 0.9061798459388. En python, on a

```
>>> def L(x):
... return x* ( 63*x**4 - 70*x**2 + 15 )/8
```

2. On modifier légèrement la fonction Python qu'on utilisait auparavant pour stocker les valeurs successives de  $|L(x_k)|$ .

```
def dicholiste(xa,xb,f,precision,N):
    compteur=0
    c, fc=[],[]
    while abs(xb-xa) > precision and compteur < N:</pre>
        xm = (xa + xb)/2
        c.append(xm)
        fxm=abs(f(xm))
        fc.append(fxm)
        compteur += 1
        if f(xa)*f(xm) < 0:
             xb=xm
        else :
             xa = xm
    x=np.linspace(1,compteur,compteur)
    plt.semilogy(x,fc)
    plt.show()
    return (c,(xa+xb)/2,compteur)
```

Comme toutes les méthodes de dichotomie, l'ordre de convergence est 1 et la convergence est géométrique de rapport 1/2.



## 2.2 Approximations successives, points fixes

Exercice 16 Soit  $g:[0,1] \to \mathbb{R}, x \mapsto 1-x^2$ .

- 1. Montrer que l'est stable par f et que g a un unique point fixe  $\alpha$  dans l.
- 2. Vérifier que  $g \circ g$  a trois points fixes  $\gamma < \alpha < \delta$  dans l.
- 3. Soit  $x_0 \neq \alpha$  et  $\forall n \in \mathbb{N}$ ,  $x_{n+1} = f(x_n)$ .
  - (a) Montrer que  $\forall n \in \mathbb{N}$ ,  $x_n \neq \alpha$  et que la suite  $(x_n)_{n \in \mathbb{N}}$  diverge.
  - (b) On suppose que  $x_0 < \alpha$ . Montrer que  $\lim_{n \to +\infty} x_{2n} = \gamma$  et  $\lim_{n \to +\infty} x_{2n+1} = \delta$ .
- Correction 16 1. Pour tout réel x,  $g(x) = x \iff x^2 + x 1 = 0$ . Ce dernier polynôme a pour racines  $(\sqrt{5} 1)/2$  et  $-(\sqrt{5} + 1)/2$ . Par conséquent, l'unique point fixe de g dans  $| est \alpha = (\sqrt{5} + 1)/2$ . De plus, la fonction g est strictement décroissante sur | elle |, elle vérifie g(0) = 1 et g(1) = 0, donc elle stabilise | elle |.
  - 2. Pour tout réel x,

$$g \circ g(x) - x = 1 - (1 - x^2)^2 - x = 2x^2 - x^4 - x = (g(x) - x)(x^2 - x)$$

Par conséquent, g o g possède trois points fixes

$$\gamma = 0 < \alpha = \frac{\sqrt{5} - 1}{2} < \delta = 1$$

- 3. Si  $x_0 = \alpha$ , la suite  $(x_n)_{n \in \mathbb{N}}$  est stationnaire en  $\alpha$ .
  - (a) Soit n un entier naturel. On a

$$x_{n+1} - \alpha = g(x_n) - g(\alpha) = (\alpha^2 - x_n^2) = (\alpha - x_n)(\alpha + x_n)$$

Pour n = 0,  $x_0 \neq \alpha$ . Si un entier naturel n vérifie  $x_n \neq \alpha$ , alors

$$|x_{n+1} - \alpha| = |\alpha - x_n|(\alpha + x_n) \ge \alpha |\alpha - x_n| > 0$$

On en conclut par récurrence que  $\forall n \in \mathbb{N}, x_n \neq \alpha$ . Si la suite  $(x_n)_{n \in \mathbb{N}}$  converve, c'est nécessairement vers un point fixe de g, donc  $\alpha$ . Cependant,

$$\forall n \in \mathbb{N}, \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|} = |\alpha + x_n|$$

S'il y avait convergence de  $(x_n)_{n\in\mathbb{N}}$  de  $\alpha$ , la suite précédente tendrait vers  $2\alpha = \sqrt{5} - 1 > 1$ , et on a vu en exercice 1 que ce n'est pas le cas. Par conséquent, la suite  $(x_n)_{n\in\mathbb{N}}$  diverge.

- (b) Comme g est strictement décroissante,  $h=g\circ g$  est strictement croissante. Comme  $\alpha$  est point fixe de h, on en déduit par récurrence (puisque  $x_0<\alpha$ ) que  $\forall\,n\in\mathbb{N},0\leq x_{2n}<\alpha$ . Cette suite étant monotone bornée, elle converge. Sa limite est nécessairement un point fixe de h, donc 0 ou  $\alpha$ . Si c'était  $\alpha$ , alors la suite  $(x_{2n+1})_{n\in\mathbb{N}}=(g(x_{2n}))_{n\in\mathbb{N}}$  convergerait vers  $\alpha$ , ce qui invaliderait la divergence de  $(x_n)_{n\in\mathbb{N}}$ . Par conséquent,  $(x_{2n})_{n\in\mathbb{N}}$  converge vers 0. De manière similaire,  $(x_{2n+1})_{n\in\mathbb{N}}$  converge vers 1.
- Exercice 17 1. Soit a un réel. Étudier la nature et le comportement de la suite définie par  $x_0 = a, \forall n \in \mathbb{N}, x_{n+1} = \cos(x_n)$ 
  - 2. Donner une estimation à  $10^{-8}$  près de sa limite à l'aide d'un algorithme en Python.
- Correction 17 1. On connaît les variations du cosinus :  $\cos(\mathbb{R}) = [-1,1]$  et  $\cos([-1,1]) \subset [0,1]$ . Ainsi, le réel  $x_2$  appartient au segment [0,1]. On limite donc l'étude du cosinus au segment de [0,1].

$$\sup_{x \in [0,1]} |\cos'(x)| = \sup_{x \in [0,1]} |\sin(x)| = \sin(1) < 1$$

On en déduit que la fonction cosinus est contractante sur [0,1] et que la suite  $(x_n)_{n\in\mathbb{N}}$  converge vers l'unique point fixe  $\alpha$  de cette fonction sur [0,1]. On dispose alors de l'erreur de majoration

$$\forall n \in \mathbb{N}, |\alpha - x_n| \le \frac{\sin(1)^n}{1 - \sin(1)} |\cos(a) - a|$$

De plus, comme la fonction cosinus est décroissante sur [0,1], les suites  $(x_{2n})_{n\in\mathbb{N}}$  et  $(x_{2n+1})_{n\in\mathbb{N}}$  sont adjacentes.

2. from math import cos
 a=1
 N=100
 prec=10\*\*(-8)
 x=[]
 for i in range(N):
 x.append(a)
 a=cos(a)

import numpy as np
import matplotlib.pyplot as plt
plt.plot(np.linspace(1,N,N), x)
plt.show()

y=[abs(ele-x[-1]) for ele in x]
plt.semilogy(np.linspace(1,N,N), y)
plt.show()

On trouve l'estimation 0.7390851332151607 de sa limite.





Exercice 18 Soit  $f \in C^1(I)$  telle que l'équation f(x) = 0 d'inconnue  $x \in I$  admet une unique racine  $\alpha$  dans  $\mathring{I}$ . On suppose que  $f'(\alpha) > 0$ .

- 1. Montrer qu'il existe un réel  $\eta > 0$  tel que l'intervalle  $J = [\alpha \eta, \alpha + \eta]$  est contenu dans I et  $\forall x \in J, f'(x) > 0$ .
- 2. On note  $m_1 = \inf_{x \in J} f'(x)$  et  $M_1 = \sup_{x \in J} f'(x)$ . Pour tout  $\lambda$ , on pose  $f_{\lambda} : x \mapsto x \lambda f(x)$ . Montrer qu'il existe un unique réel  $\mu > 0$  tel que

$$\forall x \in J, |f'_{\mu}(x)| \le \frac{M_1 - m_1}{M_1 + m_1}$$

- 3. Montrer que pour tout réel  $x_0$  dans J, on peut définir la suite  $(x_n)_{n\in\mathbb{N}}$  de points de J par  $\forall n\in\mathbb{N}, x_{n+1}=f_\mu(x_n)$ . Démontrer que cette suite converge vers  $\alpha$  et donner une majoration de l'erreur d'approximation.
- 4. On désigne par  $f: ]3\pi/2, 5\pi/2[ \rightarrow \mathbb{R}, x \mapsto \tan(x) x.$ 
  - (a) Montrer que f possède un unique zéro  $\alpha$  dans l'intervalle J = [a, b] = [7.65, 7.75].
  - (b) Déterminer le coefficient μ de la question 2.
  - (c) Donner une valeur approchée de  $\alpha$  à  $10^{-6}$  près.

Correction 18 1. La continuité de f' assure qu'il existe un voisinage V de  $\alpha$  tel que  $\forall x \in V$ , f'(x) > 0. De plus, comme  $\alpha$  est intérieur à I, il existe un réel  $\eta$  strictement positif tel que  $J = [\alpha - \eta, \alpha + \eta] \subset I$  et  $\forall x \in J$ , f'(x) > 0.

2. La fonction f' est continue sur le segment J, donc atteint ses bornes sur ce segment. Il existe un réel u dans J tel que  $m_1 = f'(u)$ et un réel v dans J tel que  $M_1 = f'(v)$ . Comme u appartient à J, on en déduit que f'(u) > 0, donc que  $m_1 > 0$ . En outre,  $m_1 \le M_1$ . Soit  $\lambda$  un réel strictement positif. Pour tout réel x dans J,  $f'_{\lambda}(x) = 1 - \lambda f(x)$ . Si  $\lambda$  vérifie la condition, alors

$$\frac{2m_1}{\mathsf{M}_1+m_1} \le \lambda f'(u) = \lambda m_1 \quad \text{et} \quad \lambda \mathsf{M}_1 = f'(v) \le \frac{2\mathsf{M}_1}{\mathsf{M}_1+m_1}$$

Ainsi,  $\lambda = 2/(M_1 + m_1)$  et c'est la seule possibilité. On vérifie que cette valeur convient.

3. D'après le théprème des accroissements finis, l'application  $f_{\mu}$  est strictement contractante sur J. Ainsi, toute suite itérée  $f_{\mu}$  converge vers l'unique point fixe de  $f_{\mu}$ , i.e  $\alpha$ . De plus, on a l'erreur d'approximation

$$\forall n \in \mathbb{N}, |x_n - \alpha| \le \left(\frac{\mathsf{M}_1 - m_1}{\mathsf{M}_1 + m_1}\right)^n |x_0 - \alpha| \le \left(\frac{\mathsf{M}_1 - m_1}{\mathsf{M}_1 + m_1}\right)^n \eta$$

- 4. (a) La fonction f est continue strictement croissante sur J, car dérivable sur J de dérivée strictement positive. Elle vérifie f(a)f(b) < 0, donc possède un unique point fixe  $\alpha$  dans [a,b].
  - (b) On évalue  $m_1 = \tan^2(a) \simeq 23.36$  et  $M_1 = \tan^2(b) \simeq 91.82$ . On obtient alors  $\mu \simeq 1.73 \times 10^{-2}$ .
  - (c) import numpy as np
    import matplotlib.pyplot as plt
    from math import tan

```
a=7.65
b=7.75
m=tan(a)**2
M=tan(b)**2
mu=2/(m+M)

x0=7.7
N=1000
precision=10**(-6)
x=[x0,x0-mu*(tan(x0)-x0)]
compteur=1
while abs(x[compteur]-x[compteur-1])>precision and compteur <N :
    y=x[compteur]
    x.append(y-mu*(tan(y)-y))
    compteur+=1

z=[abs(ele-x[-1]) for ele in x]</pre>
```

plt.semilogy(np.linspace(1,compteur+1,compteur+1), z)
plt.show()

On obtient  $\alpha \simeq 7.7252518354653805$ .



**Exercice 19** On note  $f: x \mapsto (x-1)e^x$  qui possède pour unique zéro 1, puis  $g_0: x \mapsto \ln(xe^x)$ ,  $g_1: x \mapsto (e^x + x)/(e^x + 1)$ , et  $g_2: x \mapsto (x^2 - x + 1)/x$ .

- 1. Étudier numériquement le comportement des orbites  $x_0^i = 2, \forall n \in \mathbb{N}, x_{n+1}^i = g_i(x_n^i)$ .
- 2. Estimer l'ordre de convergence dans chaque cas et comparer à  $g'_i(1)$ .

```
Correction 19
             1. import numpy as np
    import matplotlib.pyplot as plt
    from math import log
    from math import exp
    a = 1.5
    N=40
    precision=10**(-12)
    compteur0=1
    x0=[a,log(a*exp(a))]
    while abs(x0[compteur0]-1)>precision and compteur0 <N :</pre>
        y=x0[compteur0]
        x0.append(log(y*exp(y)))
        compteur0+=1
    z0=[abs(ele-1) for ele in x0]
    compteur1=1
    x1 = [a, (exp(a)+a)/(exp(a)+1)]
    while abs(x1[compteur1]-1)>precision and compteur1 <N :</pre>
        y=x1[compteur1]
        x1.append((exp(y)+y)/(exp(y)+1))
        compteur1+=1
    z1=[abs(ele-1) for ele in x1]
    compteur2=1
    x2 = [a, (a**2-a+1)/a]
    while abs(x2[compteur2]-1)>precision and compteur2 <N :</pre>
        y=x2[compteur2]
        x2.append((y**2-y+1)/y)
        compteur2+=1
```

```
z2=[abs(ele-1) for ele in x2]
t0=np.linspace(1,compteur0+1,compteur0+1)
t1=np.linspace(1,compteur1+1,compteur1+1)
t2=np.linspace(1,compteur2+1,compteur2+1)
plt.semilogy(t0,z0,'r',t1,z1,'b',t2,z2,'g')
plt.show()
```



2. On constate qu'il y a non convergence pour i=0, convergence d'ordre 1 pour  $g_1$  et convergence d'ordre 2 pour  $g_2$ . Cela est cohérent avec  $|g_0'(1)|=2>1$ ,  $|g_1'(1)|=1/(e+1)<1$  et  $g_2'(1)=0$ ,  $g_2''(1)=2$ .

## 2.3 La méthode de Newton-Raphson

**Exercice 20** Soit p un entier naturel supérieur ou égal à 2 et a un réel strictement positif. Implémenter la méthode de Newton-Raphson pour calculer la racine p-ième de a. Donner une marjotation de l'erreur d'approximation.

**Correction 20** On note  $f: \mathbb{R}^+ \to \mathbb{R}$ ,  $x \mapsto x^p - a$ . Le réel  $\alpha = \sqrt[q]{a}$  est son unique zéro positif. La fonction f est deux fois dérivable sur  $\mathbb{R}^+$ . De plus,

$$\forall x \in \mathbb{R}^+, f'(x) = px^{p-1}, \quad f''(x) = p(p-1)x^{p-2}$$

Par conséquent, f' et f'' ne s'annulent pas sur  $\mathbb{R}^{+*}$ . Comme f'' > 0 sur  $\mathbb{R}^{+*}$ , la méthode de Newton indique qu'il suffit de choisir  $x_0$  tel que  $f(x_0) > 0$ , soit  $x_0^p > a$ . On itère alors

$$\forall n \in \mathbb{N}, x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^p - a}{px_n^{p-1}} = \frac{1}{p} \left[ (p-1)x_n + \frac{a}{x_n^{p-1}} \right]$$

```
import numpy as np
import matplotlib.pyplot as plt
p=5
a=6.293876

def f(x):
```

```
return(x**p-a)
def df(x):
    return(p*x**(p-1))
x0=7
precision = 10 **(-8)
Nmax = 100
x1=x0-f(x0)/df(x0)
x = [x0, x1]
compteur=1
while abs(x[compteur-1]-x[compteur])>precision and compteur<Nmax :</pre>
    y=x[compteur]
    z=y-f(y)/df(y)
    x.append(z)
    compteur+=1
    print(z, compteur, f(z))
err=[abs(ele-x[-1]) for ele in x]
plt.semilogy(np.linspace(1,compteur+1,compteur+1), err)
plt.show()
```

