Modelling the supply of a Hospital - Challenge 1

Joan González, Martin González & Neus Gual

November 12, 2023

Introduction

The team

Joan Maths & Physics

Martin

Maths & Physics

Neus *Physics*

(@ Universitat Autònoma de Barcelona)

Approaching the problem

Our initial approach:

- Oreate new variables: Time between purchases, type of product, price per unit, etc.
- Analyze the relations between variables.
- Separate the data by hospitals and product.

Approaching the problem

Our initial approach:

- Create new variables: Time between purchases, type of product, price per unit, etc.
- Analyze the relations between variables.
- Separate the data by hospitals and product.

Problems we encountered:

- No identifiable/useful correlation.
- Lack of data.

Despite these problems, our first analysis led us to make some necessary, yet reasonable assumptions that simplified the problem enough for us to solve it:

Despite these problems, our first analysis led us to make some necessary, yet reasonable assumptions that simplified the problem enough for us to solve it:

Target the whole region instead of every hospital.

Despite these problems, our first analysis led us to make some necessary, yet reasonable assumptions that simplified the problem enough for us to solve it:

- Target the whole region instead of every hospital.
- One of the second of the se

Despite these problems, our first analysis led us to make some necessary, yet reasonable assumptions that simplified the problem enough for us to solve it:

- Target the whole region instead of every hospital.
- Our Hospitals do not overstock each month, i.e., they buy what they consume.

With this in mind, we decided not to discern between hospitals and to consider a new key variable: the amount purchased each month of a given product.

Despite these problems, our first analysis led us to make some necessary, yet reasonable assumptions that simplified the problem enough for us to solve it:

- Target the whole region instead of every hospital.
- Obspitals do not overstock each month, i.e., they buy what they consume.

With this in mind, we decided not to discern between hospitals and to consider a new key variable: the amount purchased each month of a given product.

The model: ARMA(p,q)/GARCH(P,Q)

The model: ARMA(p,q)/GARCH(P,Q)

Let $\{Y_n\}_n$ be a stochastic process and $\{\epsilon_n\}_n$ a Gaussian $WN^1(0,\sigma_{\epsilon}^2)$. We say that $\{Y_n\}_n$ is an ARMA(p,q)/GARCH(P,Q) process if for some constant parameters μ , $\{\phi_i\}_{i=1}^p$, $\{\theta_j\}_{i=1}^q$, $\{\alpha_i\}_{i=1}^p \geq 0$, $\{\beta_j\}_{i=1}^Q \geq 0$ and $\omega > 0$, the following equation holds:

$$Y_t = \mu + \sum_{i=1}^p \phi_i (Y_{t-i} - \mu) + a_t + \sum_{j=1}^q \theta_j a_{t-j},$$

$$a_t = \sigma_t \epsilon_t$$

$$\sigma_t = \sqrt{\omega + \sum_{i=1}^P \alpha_i a_{t-i}^2 + \sum_{j=1}^Q \beta_j \sigma_{t-j}^2}.$$

DATATHON 2023 FME

¹a white noise

Purchase Plan for 2023

	F43580	B41691	E69682		E64544
01/2023	100	1317	308		2062
02/2023	102	1536	310		2085
03/2023	104	1380	313		2108
:	:	:	:	٠	:
10/2023	119	1572	332		2268
11/2023	121	1549	335		2290
12/2023	123	1593	337		2313

Table: Forecast of the order amount per month for every product in 2023.

Possible improvements

Some improvements we would have added to our model if we had had more time and a broader dataset:

- We would have predicted the product demand for each hospital, rather than for the whole region.
- We would have searched for an optimum purchase price for every product.
- We would have studied some products we were not able to fit with the ARMA(p,q)/GARCH(P,Q) model.
- ① We would have adjusted the value of the variance of the white noise (σ_{ϵ}^2) of each model.

Final remarks