AI in Computer Games

why, where and how

Who am I?

- Lecturer at Uppsala University,Dept. of information technology
- AI, machine learning and natural computation
- Gamer since 1980

AI in Computer Games

- Goals
- History
- Common issues and methods
- Issues in various game categories

Goals

- Games are entertainment!
- Important that things behave naturally
 - not necessarily perfect
 - "things" are not always creatures
- Follow (the game's) natural laws
 - and avoid cheating
- Characters should be aware

Game A(I?)

- Academic AI is usually concerned with making rational decisions
 - Searching for the optimal solution
- Game AI is more often about
 - Artificial Life
 - Believable behaviour
 - including stupidity!
 - realistic physics
 - Game balancing
 - challenging, but not unbeatable opponents

History -1980

- 1960's
 - First computer games
 - SpaceWar! (PDP-1, for two human players) (1962)
 - Board games (e.g. chess) against the machine

PDP-1

History -1980

- 1960's
 - First computer games
 - SpaceWar! (PDP-1, for two human players) (1962)
 - Board games (e.g. chess) against the machine

■ 1970's

- Pong (early arcade game) (1972)
- Computer controlled opponents
- Space Invaders (1978)
- Predefined patterns, no awareness
- "AI" takes 1-2% of CPU

Pong

Space Invaders

1980's

- Pac-Man (1980)
 - aware opponents with personality
- A computer beats a master chess player (1983)
- First fighting games
- Adventure games
 - Dungeon, Zork, ...
- First MORPG (MUD)

The way of the exploding fist (1985)

1990's

- FPS and RTS games
- Games about/with evolution and learning (Creatures, and (in 2001) Black&White)
- Deep Blue beats Kasparov (1997)
- Graphic cards take the load off the CPU
- AI takes 10-35% of CPU

MENTAT OPTIONS Credits | ZIZIZ | Atreides Tank.

Dune 2

Black & White

2000-

- Focus shift from single- to multiplayer
- Focus shift from graphics to AI
 - and physics ...
- Large part of the code is AI code
 - often made from scratch for each game
- Less cheating
- Characters are more aware
 - * thanks to better physics engines
- Characters collaborate better

2000-

BIG industry

- In Sweden
 - * +39%/year on average (2006-2014)
 - 9 bilj SEK turnover in 2014
 - Most of the (213) companies make +
- Internationally
 - *81 bilj USD revenue in 2014
- Tough competition (10 most sold games cover 80% of the market)
- Typical game project: 2 years, 70 people, 20 milj USD (+ marketing)

Typical Game AI topics

- Strategical/tactical decisions
 - Against or with you
 - Search for best counter action
 - adaptivity
- Director level AI
- Simulation
 - of natural behaviour
 - for animation (e.g. bird flocks)
- Shortest path problems

Why is Game AI hard?

(what makes it interesting to CompSci)

- Huge state space
- Huge action space
- Multiple tasks
 - on different levels of abstraction
 - of different types
- Non-deterministic
 - post-conditions difficult to set
 - makes planning difficult
- Often real time

Some common methods

- Minimax
 - logic games, search for best counter action
- Finite State Machines (FSM)
 - Behaviour
- A*
 - For shortest path problems
- Particle methods
 - Simulation of flocks, smoke, water, grass,...
- Smart terrain

Minimax (counter actions)

Variants: " α - β -pruning" and "expectimax"

Finite State Machines

Distance from S + estimated distance to G

Reinforcement Learning

Best ≠ **shortest**

Smart terrain

Store knowledge in objects instead of in the characters

- Easier to know what is relevant
- Easier to add new objects later
- Attributed to Will Wright (Sims)

Machine Learning?

- Game characters are short lived
- Learning requires many attempts

Keep it simple!

- Probabilistic methods (a la MENACE)
 - Director level AI
- Evolutionary methods
 - genetic algorithms and PSO
- Neural networks
 - in game development, but not often in game

MENACE

 $Plate\ 1.\ The\ original\ matchbox\ version\ of\ MENACE$

Institutionen för informationsteknologi | www.it.uu.se

AI in various game types

- Board games
- Role playing games
- Strategy games
- Platform and sports games
- Racing games

Board games

Chess

- Discrete time / turn based
- Often deterministic
- AI is in the opponent
- AI goal is non-typical (for games)
 - usually strives for optimality
- Tree search
- Library
- Reinforcement learning

Role Playing and Adventure

The Elder Scrolls IV: Oblivion

- AI in enemies, bosses, party members and other NPCs, ...
- Scripting, FSMs, Messaging
- Role Playing ≠ Combat
 - combat oriented games are simpler to make
- Conversations (grammar machines)
- Quest generators
- Towns

Town behaviour

Balmora, in The Elder Scrolls III: Morrowind

Town behaviour

- Need-based system
 - Needs (e.g. hunger, business, ...)
 - Actions (e.g. eating, trading, ...)
 - "Need pathfinding"
- Problems
 - Finding people
 - Unwanted interaction between NPCs

Strategy games

Civilization III

- AI heavy (on both sides)
- Shortest path problems
- Strategical decisions
- Tactical decisions
- Town building and resource management
 - planning
- Indigenous life
- Reconnaissance (fog-of-war)
- Diplomacy
- Know thy enemy (observe and adapt)

Strategy games

Civilization III

Action games UPPSALA UNIVERSITET (FPS, TPS)

- Enemies
- Cooperative agents
- Weapons
- Attention
 - requires perception
 - requires a good physics engine
- Pathfinding
- Spatial reasoning
- Anticipation

Half Life 2

Action games UPPSALA UNIVERSITET (FPS, TPS)

Thief 3: Deadly Shadows

Platforms and sports

- Platform games
 - In 3D, since 1996 (Mario 64)
 - Camera problems
- Sports games
 - Camera problems (harder)
 - Cooperation
 - Game balance can be difficult
 - Learning

Platforms and sports

Prince of Persia

Prince of Persia: The Two Thrones

Racing games

Forza Motorsport (2005)

Racing games

- Track AI
 - Neural networks (CMR2)
- Traffic (including pedestrians)
- Physics
- Tuning NPCs and vehicle parameters
 - Genetic algorithms
 - Particle swarm optimization

Conclusion

- Making realistic games requires more than good graphics
- Computer controlled characters must behave
 - Naturally
 - Reasonably intelligent, without cheating
- Graphics has dedicated hardware
 - More processing power avilable to AI
- In the future
 - Dedicated AI cards?
 - Combined AI/Physics/Graphics cards?
 - Dedicated cores?
 - From simulated to real worlds (robotics)

Robocup (Aibo league)

Recommended reading

http://aigamedev.com