Predicate logic (First-order logic)

- Syntax and semantics
- Natural deduction system
- Undecidability of predicate logic
- Expressiveness of predicate logic
- Second-order logic

Reference: Chap 2, Michael Huth and Mark Ryan, Logic in Computer Science: Modeling and Reasoning about Systems, Second Edition, Cambridge University Press, 2004.

Symbols of predicate logic

- Logical symbols
 - connective symbols: $\neg, \land, \lor, \rightarrow, \leftrightarrow$
 - quantifier symbols: \forall , \exists
 - variable symbols: x, y, z, \dots
 - parentheses and commas
 - the equality symbol =
- Nonlogical symbols
 - constant or individual symbols: a, b, c, \ldots
 - predicate or relation symbols: P,Q,R,\ldots , each with an arity (a 0-ary predicate symbol is a proposition)
 - function symbols: f,g,h,\ldots , each with an arity (a constant symbol can be treated as 0-ary function symbol)

Languages of predicate logic

- By a language, we mean a set of nonlogical symbols
- An important language: the language of arithmetic

$$L^* = [0, ', +, \cdot; <]$$

- 0 constant symbol
- unary function symbol
- $+, \cdot$ binary function symbols
- < binary predicate symbol

Terms

 Terms are certain strings built from variables and function symbols, and are intended to represent objects in the universe of discourse.

Definition of terms

- Variables and constants are atomic terms.
- If f is an n-ary function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- Examples of terms: 0'', x+y, f(g(a),x),f(x,y),g(f(a,g(a)))

Formulas

Definition of formulas:

- $P(t_1, \dots, t_n)$ is an *atomic* formula, where P is an n-ary predicate symbol and t_1, \dots, t_n are terms.
- $t_1 = t_2$ is an *atomic* formula
- If A and B are formulas, so are $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ and $(A \leftrightarrow B)$
- If A is an formula and x is a variable, then $\forall xA$ and $\exists xA$ are formulas.
- $\bullet \ \textit{e.g.}, \ (\neg \forall x P(x) \lor \exists x \neg P(x)), \ (\forall x \neg Q(x,y) \land \neg \forall z Q(f(y),z))$

Free and bound variables

- Definition. An occurrence of variable x in A is bound if it is in a subformula of A of the form $\forall xB$ or $\exists xB$. Otherwise the occurrence is free.
- e.g., $x < y \land \neg \exists z (x < z \land z < y), F(x) \rightarrow \forall x F(x)$
- Definition. A formula A or a term t is closed if it contains no free occurrence of variables. A closed formula is called a sentence.

Substitution

- Definition. Given a variable x, a term t, and a formula ϕ , we define $\phi[t/x]$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t.
- e.g., let $\phi = \forall x (P(x) \land Q(x)) \rightarrow (\neg P(x) \lor Q(y))$, what is $\phi[f(x,y)/x]$?
- Undesired side effects: let $\phi=S(x) \wedge \forall y(\neg P(x) \vee Q(y))$, what is $\phi[f(y,y)/x]$? y gets "caught" by $\forall y$
- Definition. Given a variable x, a term t, and a formula ϕ , we say that t is free for x in ϕ if no free x in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

Semantics

To know whether a formula $\forall x (P(x) \lor Q(x))$ is true, we have to specify

- lacktriangle A domain D over which x ranges
- $oldsymbol{2}$ An interpretation of the predicate P
- lacksquare An interpretation of the predicate Q

This gives us the concept of interpretation

Semantics

An interpretation $\mathcal M$ for a language L consists of the following:

- **1** A nonempty set $|\mathcal{M}|$ called the *domain* or *universe of discourse* of \mathcal{M} .
- **②** A denotation assigned to each nonlogical symbol of \mathcal{L} :
 - For each constant symbol c, $c^{\mathcal{M}} \in |\mathcal{M}|$;
 - For each n-ary function symbol f, $f^{\mathcal{M}}$ is an n-ary function from $|\mathcal{M}|$ to $|\mathcal{M}|$.
 - For each n-ary predicate symbol, $P^{\mathcal{M}}$ is an n-ary relation on $|\mathcal{M}|$.
- **3** for the equality symbol =, $=^{\mathcal{M}}$ is the identity relation on $|\mathcal{M}|$.

The standard interpretation of the language of arithmetic

denoted \mathcal{N}^*

- ullet domain: the set of natural numbers $\mathbb N$
- the denotation of ' is the successor function:
- $0, <, +, \cdot$ get their usual meanings

Object assignments

Given an interpretation, to know if P(x) is true, we have to know the value of \boldsymbol{x}

- Definition. An object assignment l for an interpretation \mathcal{M} is a mapping from variables to the domain $|\mathcal{M}|$.
- Notation. If x is a variable and $a \in |\mathcal{M}|$, then the object assignment $l[x \mapsto a]$ is the same as l except it maps x to a.

Denotation of terms

Given an interpretation, to know if P(t) is true, we have to know the denotation of t

Let \mathcal{M} be an interpretation for L, l an object assignment for \mathcal{M} , and t a term. The denotation of t in \mathcal{M} under l, denoted $t^{\mathcal{M}}[l]$, is defined as follows:

- a) if t is a variable x, then $t^{\mathcal{M}}[l] = l(x)$
- b) if $t = f(t_1, \dots, t_n)$, then $t^{\mathcal{M}}[l] = f^{\mathcal{M}}(t_1^{\mathcal{M}}[l], \dots, t_n^{\mathcal{M}}[l])$

e.g., let
$$l(x)=1$$
, then $(0''')^{\mathcal{N}^*}[l]=3$, $(x+0'')^{\mathcal{N}^*}[l]=3$

Truth for formulas

For A an L-formula, the notion $\mathcal{M} \models_l A$ (\mathcal{M} satisfies A under l) is defined by structural induction on formulas A as follows:

- a) $\mathcal{M} \models_{l} P(t_1, \cdots, t_n)$ iff $\langle t_1^{\mathcal{M}}[l], \dots, t_n^{\mathcal{M}}[l] \rangle \in P^{\mathcal{M}}$
- b) $\mathcal{M} \models_l (s = t) \text{ iff } s^{\mathcal{M}}[l] = t^{\mathcal{M}}[l]$
- c) $\mathcal{M} \models_l \neg A \text{ iff } \mathcal{M} \not\models_l A$, i.e., not $\mathcal{M} \models_l A$.
- d) $\mathcal{M} \models_l (A \vee B)$ iff $\mathcal{M} \models_l A$ or $\mathcal{M} \models_l B$.
- e) $\mathcal{M} \models_l (A \land B)$ iff $\mathcal{M} \models_l A$ and $\mathcal{M} \models_l B$.
- f) $\mathcal{M} \models_l \forall x A \text{ iff } \mathcal{M} \models_{l[x \mapsto a]} A \text{ for all } a \in |\mathcal{M}|$
- g) $\mathcal{M}\models_{l}\exists xA$ iff $\mathcal{M}\models_{l[x\mapsto a]}A$ for some $a\in |\mathcal{M}|$

Examples

- Let L be the language $\{R,=\}$ and let \mathcal{M} be the L-interpretation whose universe $|\mathcal{M}|=\mathbb{N}$ and such that $R^{\mathcal{M}}(m,n)$ holds iff $m\leq n$. Then $\mathcal{M}\models\exists x\forall yR(x,y)$ but $\mathcal{M}\not\models\exists y\forall xR(x,y)$
- $\mathcal{N}^* \models \forall x \forall y \exists z (x+z=y \lor y+z=x)$ but $\mathcal{N}^* \not\models \forall x \exists y (y+y=x)$

Lemma: If l and l' agree on the free variables of t, then $t^{\mathcal{M}}[l] = t^{\mathcal{M}}[l']$.

Proof: Structural induction on terms t.

Lemma: If l and l' agree on the free variables of A, then $\mathcal{M} \models_l A$ iff $\mathcal{M} \models_{l'} A$.

Proof: Structural induction on formulas A.

Corollary: If A is a sentence, then for any object assignments l, l', $\mathcal{M} \models_l A$ iff $\mathcal{M} \models_{l'} A$.

In view of the Corollary, if A is a sentence, then l is irrelevant, so we omit mention of l and simply write $\mathcal{M} \models_{l} A$.

Important definitions

- a) A is satisfiable iff there is some \mathcal{M} and l such that $\mathcal{M} \models_l A$.
- b) Φ is *satisfiable* if there is some \mathcal{M} and l such that $\mathcal{M} \models_l \phi$ for all $\phi \in \Phi$.
- c) $\Phi \models A$ (Φ entails A) iff for all \mathcal{M} and all l, if $\mathcal{M} \models_l \phi$ for all $\phi \in \Phi$ then $\mathcal{M} \models_l A$.
- d) $\models A$ (A is valid) iff $\mathcal{M} \models_l A$ for all \mathcal{M} and l.
- e) $A \iff B$ (A and B are logically equivalent) iff for all \mathcal{M} and all l, $\mathcal{M} \models_l A$ iff $\mathcal{M} \models_l B$.

Examples

- $\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x)$
- Does $\forall x P(x) \to \forall x Q(x) \models \forall x (P(x) \to Q(x))$?
- $\bullet \ (\forall xA \lor \forall xB) \models \forall x(A \lor B)$
- Does $\forall x(A \lor B) \models (\forall xA \lor \forall xB)$?
- $\bullet \neg \forall x A \Longleftrightarrow \exists x \neg A$
- $\bullet \neg \exists x A \Longleftrightarrow \forall x \neg A$
- $\bullet \ (\forall x A \land \forall x B) \Longleftrightarrow \forall x (A \land B)$
- $\bullet \ \exists x(A \lor B) \Longleftrightarrow (\exists xA \lor \exists xB)$
- $\exists x(A \land B) \models (\exists xA \land \exists xB)$
- Does $(\exists x A \land \exists x B) \models \exists x (A \land B)$?

Examples

- $\forall x \forall y A \iff \forall y \forall x A$
- $\bullet \ \exists x \exists y A \Longleftrightarrow \exists y \exists x A$
- $\exists y \forall x A \models \forall x \exists y A$
- Does $\forall x \exists y A \models \exists y \forall x A$?
- $\bullet \ \forall xA \models \exists xA$
- $\forall x \forall y (x = y \to f(x) = f(y))$ is valid.
- $\bullet \ \forall x \forall y (f(x) = f(y) \to x = y) \text{ is NOT valid}.$

Proof that $\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x)$

- Let \mathcal{M} be any interpretation and let l be any object assignment.
- Suppose that $\mathcal{M} \models_l \forall x (P(x) \to Q(x))$ and $\mathcal{M} \models_l \forall x P(x)$.
- Let a be an arbitrary element of $|\mathcal{M}|$.
- Since $\mathcal{M} \models_l \forall x P(x), a \in P^M$.
- Since $\mathcal{M} \models_l \forall x (P(x) \to Q(x)), a \in Q^M$.
- Thus for all $a \in |\mathcal{M}|$, $a \in Q^M$.
- So $\mathcal{M} \models_l \forall x Q(x)$.

Proof that $(\forall xA \lor \forall xB) \models \forall x(A \lor B)$

- Let $\mathcal M$ be any interpretation and let l be any object assignment.
- Suppose that $\mathcal{M} \models_l \forall xA \lor \forall xB$.
- Then $\mathcal{M} \models_l \forall x A$ or $\mathcal{M} \models_l \forall x B$.
- Say $\mathcal{M} \models_l \forall x A$.
- Then $\mathcal{M} \models_{l[x \mapsto a]} A$ for all $a \in |\mathcal{M}|$.
- Thus $\mathcal{M} \models_{l[x \mapsto a]} A \vee B$ for all $a \in |\mathcal{M}|$.
- Therefore, $\mathcal{M} \models_l \forall x (A \lor B)$.

Proof that $\exists y \forall x A \models \forall x \exists y A$

- Let $\mathcal M$ be any interpretation and let l be any object assignment.
- Suppose that $\mathcal{M} \models_l \exists y \forall x A$.
- Then $\mathcal{M} \models_{l[x \mapsto b]} \forall x A$ for some b in $|\mathcal{M}|$.
- Call this b b_0 . Then $\mathcal{M} \models_{l[y \mapsto b_0]} \forall x A$.
- Thus $\mathcal{M} \models_{l[y \mapsto b_0][x \mapsto a]} A$ for all a in $|\mathcal{M}|$.
- So $\mathcal{M} \models_{l[x \mapsto a]} \exists y A$ for all a in $|\mathcal{M}|$.
- Therefore, $\mathcal{M} \models_l \forall x \exists y A$.

Now we would like to prove change of bound variables preserves logical equivalence, e.g., $\forall x (P(x) \lor Q(x)) \Longleftrightarrow \forall x (P(x) \lor Q(x))$

We need to make some preparations.

Lemma For each interpretation \mathcal{M} and each object assignment l,

$$(t[s/x])^{\mathcal{M}}[l] = t^{\mathcal{M}}[l[x \mapsto s^{\mathcal{M}}[l]]].$$

Example: Consider \mathcal{N}^* . Let l(x) = 5 and l(y) = 7. Let t be the term x + y and let s be the term 0''.

Proof of the Lemma: Structural induction on t.

Question: Does the above lemma apply to formulas A? I.e. can we say $\mathcal{M}\models_l A(t/x)$ iff $\mathcal{M}\models_{l[x\mapsto a]} A$, where $a=t^{\mathcal{M}}[l]$? Something can go wrong.

Example: Suppose A is $\forall y \neg (x=y+y)$. This says "x is odd". But A(x+y/x) is $\forall y \neg (x+y=y+y)$, which does not say "x+y is odd" as desired, but instead it is always false. The problem is that y in the term x+y got "caught" by the quantifier $\forall y$.

Substitution Theorem: If t is free for x in A then for all interpretations \mathcal{M} and all object assignments l, $\mathcal{M} \models_l A(t/x)$ iff $\mathcal{M} \models_{l[x\mapsto a]} A$, where $a=t^{\mathcal{M}}[l]$.

Proof: Structural induction on A. The interesting case is when A is $\forall yB$. (The case when A is $\exists yB$ is similar). Then we are to prove

$$\mathcal{M} \models_{l} (\forall y B)(t/x) \text{ iff } \mathcal{M} \models_{l[x \mapsto a]} \forall y B$$
 (1)

where $a = t^{\mathcal{M}}[l]$.

Change of Bound Variable

If a term t is not free for x in A, it is because some variable y in t gets caught by a quantifier $\forall y$ or $\exists y$ in A. One way to fix this is simply rename the bound variable y in A to some new variable z.

Definition: $\forall z A(z/y)$ results from $\forall y A$ by change of bound variable provided z does not occur in A. Similarly for $\exists z A(z/y)$.

Lemma: If z does not occur in A, then $\forall z A(z/y)$ and $\forall y A$ are logically equivalent. Also $\exists z A(z/y)$ and $\exists y A$ are equivalent.

Proof: This follows from the Substitution Theorem.

Definition A' is a *variant* of A if A' results by a sequence of changes of bound variables to subformulas of A.

Theorem: If A' is a variant of A then A and A' are equivalent.

This follows from the preceding Lemma and the following theorem:

Replacement Theorem: If B and B' are equivalent formulas and A' results from A by replacing some occurrence of B in A by B', then A and A' are equivalent.

Proof: By structural induction on A (relative to B). The base case is when A and B coincide.

Example: B is $\neg \forall x P(x,y)$, B' is $\exists z \neg P(z,y)$, A is $\forall y (\neg \forall x P(x,y) \supset Q(y))$.

Null quantification (1)

When x does not occur as a free variable in A

•
$$\forall x P(x) \lor A \equiv \forall x (P(x) \lor A)$$

•
$$\exists x P(x) \lor A \equiv \exists x (P(x) \lor A)$$

•
$$\forall x P(x) \land A \equiv \forall x (P(x) \land A)$$

•
$$\exists x P(x) \land A \equiv \exists x (P(x) \land A)$$

Null quantification (2)

When x does not occur as a free variable in A

•
$$\forall x P(x) \to A \equiv \exists x (P(x) \to A)$$

•
$$\exists x P(x) \to A \equiv \forall x (P(x) \to A)$$

•
$$A \to \forall x P(x) \equiv \forall x (A \to P(x))$$

•
$$A \to \exists x P(x) \equiv \exists x (A \to P(x))$$

The size of models

- Let n be a positive integer. Write a sentence I_n using identity but no nonlogical symbols such that I_n is true in M iff there are $\geq n$ distinct individuals in M
- Write J_n to express "there are at most n individuals" and K_n to express "there are exactly n individuals"

Natural deduction rules for quantifiers and equality

Whenever we write $\phi[t/x]$, we assume that t is free for x in ϕ .

What does the box mean? x_0 is a new variable which does not appear anywhere outside its box.

Why the proviso for $\phi[t/x]$?

- lacktriangle Consider $\forall e$
- **2** Let ϕ be $\exists y R(x,y)$

Mathematical Logic

Examples

- $\mathbf{0}$ $t_1 = t_2 \vdash t_2 = t_1$
- $t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$

Why cannot x_0 appear outside its box?

$$\exists x P(x), \forall x (P(x) \to Q(x)) \not\models \forall y Q(y)$$

What goes wrong in the following proof?

The soundness and completeness theorem

Theorem. $\Gamma \vdash D$ iff $\Gamma \models D$.

We do not prove it in this course.

Mathematical Logic

Logical equivalences

Proof via natural deduction

- - (b) $\neg \exists x \phi \Longleftrightarrow \forall x \neg \phi$
- - (b) $\exists x \exists y \phi \iff \exists y \exists x \phi$
- - (b) $\exists x \phi \lor \exists x \psi \Longleftrightarrow \exists x (\phi \lor \psi)$
- **4** Assuming that x is not free in ψ :
 - (a) $\diamond x \phi \odot \psi \iff \diamond x (\phi \odot \psi)$, where $\diamond \in \{ \forall, \exists \}$, and $\odot \in \{ \land, \lor \}$
 - (b) $\diamond x(\phi \to \psi) \Longleftrightarrow \overline{\diamond} x\phi \to \psi$, where $\diamond \in \{ \forall, \exists \}$, $\overline{\forall} = \exists$, $\overline{\exists} = \forall$
 - (c) $\diamond x(\psi \to \phi) \Longleftrightarrow \psi \to \diamond x\phi$, where $\diamond \in \{\forall, \exists\}$

Proof that $\neg \forall x \phi \vdash \exists x \neg \phi$

1		$\neg \forall x \phi$	premise
2		$\neg \exists x \neg \phi$	assumption
3	x_0		,
4		$\neg \phi[x_0/x]$	assumption
5		$\exists x \neg \phi$	$\exists x i 4$
6		1	$\neg e 5, 2$
7		$\phi[x_0/x]$	PBC 4-6
8		$\forall x\phi$	$\forall x \mathbf{i} 3 - 7$
9		1	¬e 8, 1
10		$\exists x \neg \phi$	PBC 2-9

Undecidability of predicate logic

- Recall $\models \phi$ (ϕ is valid)
- The problem of deciding if a formula is valid is an example of a decision problem.
- A solution to a decision problem is a program that takes an instance of the problem as input and always terminates, producing a correct 'yes' or 'no' output.
- Validity in propositional logic is solvable.
- However, validity in predicate logic is unsolvable.
- We prove this by the technique of problem reduction: take a problem known to be unsolvable, and show that the solvability of our problem would entail that of this problem.

The Post correspondence problem (PCP)

- Given a finite sequence of pairs (s_1,t_1) , (s_2,t_2) , \ldots , (s_k,t_k) such that all s_i and t_i are binary strings of positive length, is there a sequence of indices i_1,i_2,\ldots,i_n with $n\geq 1$ such that the concatenation of strings $s_{i_1}s_{i_2}\ldots s_{i_n}$ equals $t_{i_1}t_{i_2}\ldots t_{i_n}$?
- Note: An index can appear multiple times in the sequence.
- \bullet An instance: (1,101), (10,00), (011,11)

The Post correspondence problem (PCP)

- Given a finite sequence of pairs (s_1,t_1) , (s_2,t_2) , \ldots , (s_k,t_k) such that all s_i and t_i are binary strings of positive length, is there a sequence of indices i_1,i_2,\ldots,i_n with $n\geq 1$ such that the concatenation of strings $s_{i_1}s_{i_2}\ldots s_{i_n}$ equals $t_{i_1}t_{i_2}\ldots t_{i_n}$?
- Note: An index can appear multiple times in the sequence.
- An instance: (1,101), (10,00), (011,11) A solution: 1,3,2,3
- Another instance: (001,0), (01,011), (01,101), (10,001) Solution?
- The Post correspondence problem is unsolvable.
- A rough explanation: the search space is infinite.

Theorem. Validity in predicate logic is undecidable: no program exists which, given any ϕ , decides whether $\models \phi$. Idea of proof:

- Reduce the Post correspondence problem to this problem.
- i.e., give a program which takes a PCP instance C as input and constructs a formula ϕ such that ϕ is valid iff C has a solution.

The language of predicate logic we use in the proof

- ullet A constant symbol e with intended meaning: the empty string
- Two unary function symbols f_0 and f_1 : $f_b(x)$ means the string xb
 - so the binary string $b_1b_2\dots b_l$ can be represented as $f_{b_l}(\dots(f_{b_2}(f_{b_1}(e))))\dots)$
 - we abbreviate $f_{b_l}(\dots(f_{b_2}(f_{b_1}(t))))\dots)$ as $f_{b_1b_2\dots b_l}(t)$
- A binary predicate symbol P
 - P(s,t) intends to mean: there is a sequence of indices i_1,i_2,\ldots,i_n such that $s=s_{i_1}s_{i_2}\ldots s_{i_n}$ and $t=t_{i_1}t_{i_2}\ldots t_{i_n}$

Given
$$C = (s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$$

Our ϕ is $\phi_1 \wedge \phi_2 \rightarrow \exists z P(z,z)$, where

$$\phi_1 = \bigwedge_{i=1}^k P(f_{s_i}(e), f_{t_i}(e)),$$

$$\phi_2 = \forall v \forall w [P(v, w) \to \bigwedge_{i=1}^k P(f_{s_i}(v), f_{t_i}(w))]$$

Two more negative results

- Satisfiability is not decidable.
- Provability is not decidable.
 - so there is no prefect theorem prover which can mechanically produce a proof of a given formula
 - machines still need human help

Expressiveness of predicate logic

- Software models are often described in terms of directed graphs.
- Such directed graphs can be treated as interpretations of a binary predicate symbol R.

 The validation of many applications requires to show that a 'bad' state cannot be reached from a 'good' state.

The reachability problem

- Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'.
- e.g., s_2 is reachable from s_0 , but s_3 is not
- Question: can we express reachability in predicate logic?
- i.e., can we find a formula $\phi(u,v)$ such that it holds in a directed graph iff there is a path in the graph from the node associated to u to the node associated to v?
- For each $k \geq 0$, we can find a formula $\phi_k(u,v)$ such that it holds in a directed graph iff there is a path of k transitions ...
- However, the answer to the question is 'no'.

Compactness theorem

Theorem. Let Γ be a set of sentences of predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ .

Löwenheim-Skolem Theorem

Theorem. Let ψ be a sentence of predicate logic such that for any natural number $n \geq 1$, there is a model of ψ with at least n elements. Then ψ has a model with infinitely many elements.

- Write a formula ϕ_n to express there are at least n elements.
- Let $\Gamma = \{\psi\} \cup \{\phi_n \mid n \ge 1\}.$

Theorem. Reachability is not expressible in predicate logic.

- Assume that there is such a formula $\phi(u, v)$.
- Let c and c' be two constants.
- Let $\phi_n(u,v)$ be the formula stating that there is a path of length n from u to v.
- Let $\Gamma = \{\phi[c/u][c'/v]\} \cup \{\neg \phi_n[c/u][c'/v] \mid n \ge 1\}.$

Symbols of predicate logic

- Logical symbols
 - connective symbols: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
 - quantifier symbols: ∀,∃
 - variable symbols: x, y, z, \dots
 - parentheses and commas
 - the equality symbol =
- Nonlogical symbols
 - constant or individual symbols: a, b, c, \ldots
 - predicate or relation symbols: P, Q, R, \ldots , each with an arity
 - function symbols: f, g, h, \ldots , each with an arity

Terms and formulas of predicate logic

Definition of terms

- Variables and constants are atomic terms.
- If f is an n-ary function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

Definition of formulas:

- $P(t_1, \dots, t_n)$ is an *atomic* formula, where P is an n-ary predicate symbol and t_1, \dots, t_n are terms.
- $t_1 = t_2$ is an *atomic* formula
- If A and B are formulas, so are $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ and $(A \leftrightarrow B)$
- If A is an formula and x is a variable, then $\forall xA$ and $\exists xA$ are formulas.

Second-order logic: syntax

- Predicate variable symbols: X, Y, Z, \ldots , each with an arity
- ullet Function variable symbols: F, G, H, ..., each with an arity
- If F is an n-ary function variable symbol and t_1, \ldots, t_n are terms, then $F(t_1, \ldots, t_n)$ is a term.
- If X is an n-ary predicate variable symbol and t_1, \dots, t_n are terms, then $X(t_1, \dots, t_n)$ is an atomic formula.
- If A is a formula, X a predicate variable and F a function variable, then $\forall XA$, $\exists XA$, $\forall FA$ and $\exists FA$ are formulas.

Interpretations for predicate logic

An interpretation $\mathcal M$ for a language L consists of the following:

- **1** A nonempty set $|\mathcal{M}|$ called the *domain* or *universe of discourse* of \mathcal{M} .
- **2** A denotation assigned to each nonlogical symbol of \mathcal{L} :
 - For each constant symbol c, $c^{\mathcal{M}} \in |\mathcal{M}|$;
 - For each n-ary function symbol f, $f^{\mathcal{M}}$ is an n-ary function from $|\mathcal{M}|$ to $|\mathcal{M}|$.
 - For each n-ary predicate symbol, $P^{\mathcal{M}}$ is an n-ary relation on $|\mathcal{M}|$.
- **3** for the equality symbol =, $=^{\mathcal{M}}$ is the identity relation on $|\mathcal{M}|$.

Object assignments

- ullet Definition. An object assignment l for an interpretation ${\mathcal M}$ is a mapping from variables such that
 - ullet For each individual variable x, l(x) is an element of $|\mathcal{M}|$
 - \bullet For each n-ary predicate variable symbol X , l(X) is an n-ary relation on $|\mathcal{M}|$
 - For each n-ary function variable symbol F, l(F) is an n-ary function from $|\mathcal{M}|$ to $|\mathcal{M}|$.
- Notation. If X is an n-ary predicate variable and R an n-ary relation on $|\mathcal{M}|$, then the object assignment $l[X\mapsto R]$ is the same as l except it maps X to R.
- Similarly, we have the notation $l[F \mapsto h]$ where F is a function variable.

Denotation of terms

Let \mathcal{M} be an interpretation for L, l an object assignment for \mathcal{M} , and t a term. The denotation of t in \mathcal{M} under l, denoted $t^{\mathcal{M}}[l]$, is defined as follows:

- a) if t is a variable x, then $t^{\mathcal{M}}[l] = l(x)$
- b) if $t = f(t_1, \dots, t_n)$, then $t^{\mathcal{M}}[l] = f^{\mathcal{M}}(t_1^{\mathcal{M}}[l], \dots, t_n^{\mathcal{M}}[l])$

We add an item:

c) if $t=F(t_1,\ldots,t_n)$ where F is a function variable, then $t^{\mathcal{M}}[l]=l(F)(t_1^{\mathcal{M}}[l],\ldots,t_n^{\mathcal{M}}[l])$

Truth for formulas

We add 5 items:

- $\mathcal{M} \models_l X(t_1, \dots, t_n)$ where X is a predicate variable iff $\langle t_1^{\mathcal{M}}[l], \dots, t_n^{\mathcal{M}}[l] \rangle \in l(X)$
- $\mathcal{M} \models_l \forall XA$ iff $\mathcal{M} \models_{l[X \mapsto R]} A$ for all n-ary relation R on $|\mathcal{M}|$
- $\mathcal{M} \models_l \exists XA$ iff $\mathcal{M} \models_{l[X \mapsto R]} A$ for some n-ary relation R on $|\mathcal{M}|$
- $\mathcal{M} \models_l \forall FA \text{ iff } \mathcal{M} \models_{l[F \mapsto h]} A \text{ for all } n\text{-ary function } h \text{ from } |\mathcal{M}| \text{ to } |\mathcal{M}|$
- $\mathcal{M} \models_l \exists FA \text{ iff } \mathcal{M} \models_{l[F \mapsto h]} A \text{ for some } n\text{-ary function } h \text{ from } |\mathcal{M}| \text{ to } |\mathcal{M}|$

Express reachability in second-order logic

Let $\phi(u,v)$ be $\forall P[\phi_1 \land \phi_2 \land \phi_3 \to P(u,v)]$, where P is a binary predicate variable, and

Theorem. Let \mathcal{M} be an interpretation for the language [R] and l an object assignment for \mathcal{M} . Then $\mathcal{M}\models_l \phi(u,v)$ iff l(v) is reachable from l(u) in \mathcal{M} .

