

Correlações usando Pandas, Numpy e...

ME v

Próximo

▶

(

Anterior **Desafio**

Conteúdo do Livro

-Ö-

Ê

No Infográfico a seguir, são apresentadas definições sucintas de correlações com dicas de código usando Pandas, Numpy e Seaborn.

Anterior

Desafio

Próximo

Conteúdo do Livro

Essa medida pode ser aplicada na Medicina: você pode, por exemplo, correlacionar a idade de uma pessoa com seus níveis de açúcar no sangue. Aqui, as unidades são completamente diferentes; a idade é medida em anos e o nível de açúcar no sangue é medido em mmol/L (uma medida de concentração).

Na vida pessoal: medir seu salario pessoal com gastos pessoais. Na medida que seu salário aumenta em seu emprego, seus gastos pessoais também aumentam.

Em institutos educacionais: o tempo de estudo dos alunos com o desempenho em testes avaliativos ou o tempo de prova que o aluno fez o teste, com sua respectiva nota.

Esse documento apresenta o conceito de correlação de Pearson e funções usando Pandas, Numpy e Seaborn, Inicialmente na correlação de Pearson, para variáveis numéricas. Após, é explicada a correlação para variáveis categóricas utilizando tabelas cruzadas. Por fim, é apresentado o conceito de multicolinearidade, cujo conceito é aplicado em situações onde duas ou mais variáveis independentes apresentam uma forte correlação entre si.

CORRELAÇÃO DE PEARSON

Cálculo da correlação de Pearson (para variáveis numéricas).

Anterior Desafio

Próximo Conteúdo do Livro

- Um coeficiente de correlação de -1 significa que, para cada aumento positivo em uma variável, há uma decrescimento negativa de uma proporção fixa na outra. Por exemplo, quanto maior a velocidade do automóvel, diminui-se em (quase) perfeita correlação o tempo de chegada ao destino.
- Um coeficiente de correlação zero significa que, para cada aumento, não há um aumento positivo ou negativo da correlação. As variáveis x e y não estão relacionadas.

CORRELAÇÃO PARA VARIÁVEIS CATEGÓRICAS E TABULAÇÃO CRUZADA

Para esse cenário, é necessária a manipulação de dataframes Pandas com a função crosstab. Essa função permite o relacionamento entra variáveis categóricas utilizando alguma métrica matemática (soma, media, etc.). Além disso, outra técnica muito comum para esse cenário é a medida de V de Cramer. Essa medida é de correlação simétrica entre variáveis categóricas. Sua fórmula é:

$$\phi_c = \sqrt{\frac{\chi^2}{N(k-1)}}$$

φc representa V de Cramer*.

 $\Phi_c = \sqrt{\frac{\chi^2}{N(k-1)}}$ \quad \text{x2 \in a estatística de teste independente qui-quadrado.} \text{N \in o tamanho da amostra envolvida no teste.} k é o menor número de categorias de cada variável.

Anterior

Desafio

Próximo Conteúdo do Livro

1	₹	1
l	1	٠)
1	_	

•

	Base	Age					
		Under 18	18-24	25-34	35-44	45-54	55+
	204	59 29%	43 21%	38 19%	36 18%	20 10%	8 4%
Frequency of visit							
Daily	18 9%	9 4%	5 2%	4 2%	-	#7 #3	
Twice a week	35 17%	11 5%	8 4%	8 4%	7 3%	-2 25 77	1 0%
Weekly	64 31%	16 8%	8 4%	16 8%	16 8%	4 2%	4 2%
Monthly	87 43%	23 11%	22 11%	10 5%	13 6%	16 8%	3 1%

MULTICOLINEARIDADE

Resume-se como alta correlação de duas ou mais variáveis independentes. O fator de inflação da variância (VIF) é a principal métrica para a identificação dessas variáveis.

$$VIF = \frac{1}{1 - R^2}$$

 $VIF = \frac{1}{1-R^2} \qquad \begin{array}{l} \text{VIF} \leq 1-\text{ as variáveis não são correlacionadas.} \\ \text{1< VIF} \leq 5-\text{ as variáveis são moderadamente correlacionadas.} \\ \text{VIF} > 5-\text{ as variáveis são altamente correlacionadas.} \end{array}$

Correlações usando Pandas, Numpy e...

Próximo

Anterior Desafio

Implementar tabelas cruzadas em Python

Identificação de multicolinearidade em Python

statsmodels.stats.outliers_influence.variance_inflation_factor.

pd.crosstab(df.coluna1,df.coluna2, margins=True, margins_name="Total").

Conteúdo do Livro

