ALGORÍTMICA PRÁCTICA 4: PROGRAMACIÓN DINÁMICA

UNIVERSIDAD DE GRANADA

Grupo MT™

Mario Soriano Morón Miguel Torres Alonso José Teodosio Lorente Vallecillos

Índice

- 1. Ejercicio 1
 - 1.1 Diseño de resolución por etapas y ecuación recurrente
 - 1.2 Diseño de la memoria
 - 1.3 Verificación del P.O.B.
 - 1.4 Diseño del algoritmo de cálculo de coste óptimo.
 - 1.5 Diseño del algoritmo de recuperación de la solución.
- 2. Ejercicio 2
 - 2.1 Diseño de resolución por etapas y ecuación recurrente
 - 2.2 Diseño de la memoria
 - 2.3 Verificación del P.O.B.
 - 2.4 Diseño del algoritmo de cálculo de coste óptimo.
 - 2.5 Diseño del algoritmo de recuperación de la solución.
- 3. Ejercicio 3
 - 3.1 Diseño de resolución por etapas y ecuación recurrente
 - 3.2 Diseño de la memoria
 - 3.3 Verificación del P.O.B.
 - 3.4 Diseño del algoritmo de cálculo de coste óptimo.
 - 3.5 Diseño del algoritmo de recuperación de la solución.

1. Ejercicio 1

1.1 Diseño de resolución por etapas y ecuación recurrente

- Resolución del problema por etapas:

El problema se puede resolver por etapas. En cada etapa se considera pasar por una arista (diccionario) intermedio 'k' para cada par de nodos (idiomas) de origen y destino.

- Ecuación recurrente:

Para este problema podemos interpretar cada idioma como un nodo de un grafo (no dirigido) y los diccionarios como aristas que unen nodos (idiomas). Consideramos que todas las aristas tienen el mismo peso. Asumimos también que 'D' es la matriz de adyacencia del grafo, y D[i][j] es la distancia para ir directos desde el nodo 'i' al nodo 'j'. D[i][j] = $+\infty$ si no hay arco entre 'i' y 'j'. Llamaremos $D_k[i][j]$ al coste del camino mínimo entre 'i' y 'j', con nodos intermedios en el conjunto $\{1...k\}$. Si 'k' = 0, no hay nodos intermedios.

El caso base de nuestra ecuación recurrente sería $D_0[i][j] = D[i][j]$, es decir, no hay ningún nodo intermedio entre 'i' y 'j'.

El caso general tiene en cuenta dos posibilidades pudiendo pasar por los nodos 1 a 'k':

- Que el camino de 'i' a 'j' no pase por 'k', D_{k-1}[i][j].
- Que el camino de 'i' a 'j' pase por 'k', $D_{k-1}[i][k] + D_{k-1}[k][j]$.

Por tanto, nos quedaría:

$$D_{k}[i][j] = min\{ D_{k-1}[i][j], D_{k-1}[i][k] + D_{k-1}[k][j] \}$$

- Función objetivo:

La función objetivo es minimizar $D_n[i][j]$, con 'n' el número de nodos del grafo, para todo 'i' y todo 'j'.

1.2 Diseño de la memoria

La solución al problema se puede representar con dos tablas:

- D(i,j), que contendrá la distancia mínima entre 'i' y 'j'.
- P(i,j) = 'k', que representa que 'k' es un nodo intermedio en el camino entre 'i' y 'j'. Por tanto, para recuperar el camino tendremos que calcular también P(i,k) y P(k,j).

Como ejemplo vamos a realizar el proporcionado en la guía de esta práctica:

 Traducir del latín al arameo disponiendo de los siguientes diccionarios: latín-griego, griego-etrusco, etrusco-demótico, griego-demótico, demótico-arameo (Solución: sí es posible la traducción: latín-griego-demótico-arameo, realizando tres traducciones).

Lista de idiomas y enumeración para representación en grafo:

- Latín, 1.
- Griego, 2.
- Etrusco, 3.
- Demótico, 4.
- Arameo, 5.

D_0	1	2	3	4	5
1	0	1	8	8	∞
2	1	0	1	1	∞
3	8	1	0	1	8
4	8	1	1	0	1
5	8	8	8	1	0

D ₁	1	2	3	4	5
1	0	1	8	8	∞
2	1	0	1	1	∞
3	8	1	0	1	∞

4	∞	1	1	0	1
5	∞	8	8	1	0

D_2	1	2	3	4	5
1	0	1	2	2	8
2	1	0	1	1	∞
3	2	1	0	1	∞
4	2	1	1	0	1
5	∞	8	8	1	0

D_3	1	2	3	4	5
1	0	1	2	2	8
2	1	0	1	1	8
3	2	1	0	1	∞
4	2	1	1	0	1
5	8	8	8	1	0

_

D ₄	1	2	3	4	5
1	0	1	2	2	3
2	1	0	1	1	2
3	2	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

D ₅ (Solución)	1	2	3	4	5
1	0	1	2	2	3 (traducciones)
2	1	0	1	1	2
3	2	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

La tabla P(i,j) = 'k', siendo 'k' el nodo intermedio entre 'i' y 'j', quedaría así:

P (Solución)	1	2	3	4	5
1	0	0	2	2	4
2	0	0	0	0	4
3	2	0	0	0	4
4	2	0	0	0	0
5	2	4	4	0	0

Nos piden traducir de latín (1) a arameo (5).

La solución proporcionada en la guía es: latín - griego - demótico - arameo.

1.3 Verificación del P.O.B.

 $D_0[i][j]$ es óptimo, porque el mejor camino de 'i' a 'j' sin pasar por ningún nodo es D[i][j]. $D_k[i][j]$ es óptimo: en caso contrario, habría otros nodos en el camino de 'i' a 'j' pasando por $\{1...k-1\}$ tal que su coste sea menor que el considerado. Esto es imposible, dado que la ecuación recurrente siempre selecciona el menor coste.

1.4 Diseño del algoritmo de cálculo de coste óptimo.

 $ALGORITMO\ D\ (V = MatrAdy[1...N][1...N])$

D← matriz de N filas y columnas indexadas {1...N}

P← matriz de N filas y columnas indexadas {1...N}

Para cada fila i en {1...N}, hacer:

Para cada columna j en {1...N}, hacer:

D[i][j] = MatrAdy[i][j] // Distancia directa desde 'i' a 'j'.

P[i][j] = 0 // De 'i' a 'j' no se pasa por ningún nodo inicialmente.

Para cada k en {1...N}, hacer:

```
Para cada fila i en \{1...N\}, hacer:

Para cada columna j en \{1...N\}, hacer:

Si i es igual a j, hacer:

T(i,j) = 0

Fin-Si

Si D[i][j] > D[i][k] + D[k][j], entonces:

D[i][j] = D[i][k] + D[k][j]

P[i][j] = k

Fin-Si

Fin-Para

Fin-Para

Fin-Para

Devolver D, P
```

1.5 Diseño del algoritmo de recuperación de la solución.

ALGORITMO S = RecuperaSolucion (i, j, P(1...N, 1...N) : Tabla P resultante del algoritmo MatrAdy)

```
S \leftarrow \emptyset

k \leftarrow N

Mientras\ k <> 0,\ hacer:

k \leftarrow P(i,j)

j \leftarrow k

A \tilde{n} a dir\ 'k' a\ S

Fin-Mientras

Devolver\ S
```

2. Ejercicio 2

2.1 Diseño de resolución por etapas y ecuación recurrente

Resolución del problema por etapas:

El problema se puede resolver por etapas. En cada etapa se considera pasar por una arista (salto) intermedio 'k' para cada par de nodos (casillas) de origen y destino.

- Ecuación recurrente:

Para este problema podemos interpretar cada casilla como un nodo de un grafo (dirigido) y los caminos como aristas que unen nodos (casillas). Consideramos que todas las aristas tienen peso nulo (0). Asumimos también que 'C' es la matriz de adyacencia del grafo, a su vez qué la matriz es numerada en cada nodo, empezando por el nodo de inicio, y numerando por columnas hasta el nodo fin y C[i][j] es la suma de todo el oro por la mejor ruta para ir desde el nodo 'i" hasta 'j'. $C[i][j] = -\infty$ si no hay camino entre 'i' y 'j'. Llamaremos $C_k[i][j]$ a la suma del oro del camino que hace máxima la suma entre 'i' y 'j', con nodos intermedios en el conjunto $\{1...k\}$. Si 'k' = 0, no hay nodos intermedios.

El caso base de nuestra ecuación recurrente sería $C_0[i][j] = C[i][j]$, es decir, no hay ningún nodo intermedio entre 'i' y 'j'.

El caso general tiene en cuenta dos posibilidades pudiendo pasar por los nodos 1 a 'k':

- Que el camino de 'i' a 'j' no pase por 'k', C_{k-1}[i][j].
- Que el camino de 'i' a 'j' pase por 'k', $C_{k-1}[i][k] + C_{k-1}[k][j]$.

- k como maximo puede valer $|\sqrt{(N^2+M^2)}|$ //redondeado hacia abajo.
- Teniendo en cuenta que L∈[V_i, V_{i-1}]
- Siendo V_i los vértices, nodos o posiciones en 'i'.
- L en cada caso solo puede optar a tres valores como máximo y a uno como mínimo, siendo L=i+m ó L=i+1 (siendo m el número de filas de la matriz rectangular bidimensional), las opciones mínimas; y L=i+m+1 el caso al que opta en su máximo de valores.

Por tanto, nos quedaría:

$$C_{k}[i][j] = max\{ C_{k-1}[i][j], c[i][L] + C_{k-1}[L][j] \}$$

- Función objetivo:

La función objetivo es maximizar $C_n[i][j]$, con 'n' el número de nodos del grafo, para todo 'i' y todo 'j'.

2.2 Diseño de la memoria

La solución al problema se puede representar con dos tablas:

- C(i,j), que contendrá la cantidad de oro máxima por el mejor camino entre 'i' y 'j'.
- P(i,j) = 'L', que representa que 'L' es un nodo intermedio en el camino entre 'i' y 'j'.
 Por tanto, para recuperar el camino tendremos que calcular también P(i,L) y P(L,j).

Como ejemplo vamos a realizar el proporcionado en la guía de esta práctica:

- Llegar a la salida pudiendo recoger tanto oro como sea posible con el siguiente mapa

Matriz de Adyacencia

С	1	2	3	4	5
1	1	0	-∞	0	Ι
2	0	1	1	0	0
3	0	0	1	0	0
4	s	0	1	0	0

- Numeración de los nodos:

El triángulo inferior de la tabla no se va a rellenar en ningún caso 'k' ya que el grafo es dirigido.

C ₀	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	-8	-8	0	0	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞
2	-8	0	0	-8	-8	0	0	8	-8	-8	-8	8	-8	-8	8	8	-8	-8	8	-∞
3	-8	-8	0	0	8	-8	0	0	8	8	-8	-8	8	8	-8	-8	8	-8	-8	_∞
4	-8	-8	-8	0	-8	-8	-8	0	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	_∞
5	-8	-8	-8	-8	0	0	-8	-8	-8	1	-8	-8	-8	-8	-8	-8	8	-8	-8	-∞
6	-8	8	-8	-8	-8	0	0	8	-8	1	1	8	-8	-8	8	8	-8	-8	8	-∞
7	-8	-8	-8	-8	-8	-8	0	0	-8	-8	1	1	-8	-8	-8	-8	-8	-8	-8	-∞
8	-8	-8	-8	-8	-8	-8	-8	0	-8	-8	-8	1	-8	-8	-8	-8	-8	-8	-8	_∞

9	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
10	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	2	-8	-8	2	1	-8	-8	-8	-8	-8
11	8	8	-8	8	-8	8	8	-8	8	8	1	2	-8	8	1	1	8	-8	-8	-8
12	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	-8	1	-8	8	-8	1	8	-8	-8	-8
13	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	1	-8	-8	1	0	-8	-8
14	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	1	-8	8	1	1	-∞
15	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	-8	-8	0	0
16	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	-8	-8	-8	0
17	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	-8	-8	1	1	-8	-∞
18	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	-80
19	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	-8	-8	-8	8	-8	-8	8	8	0	0
20	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	8	8	8	0

C ₁	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-8	0	0	0	-8	-∞	1	1	-∞	-8	-8	-8	-8	-∞	-∞	-8	-∞
2	-8	0	0	0	-8	0	0	0	-∞	1	1	1	-8	-8	-8	-8	-8	-∞	-8	-8
3	-8	-8	0	0	-8	-8	0	0	-8	-8	1	1	-8	-8	-8	-8	-∞	-8	-8	-∞
4	-8	-8	-8	0	-8	-8	-8	0	-8	-8	-8	1	-8	-8	-8	-8	-80	-∞	-8	-∞
5	-8	-8	-8	-8	0	0	0	-8	-8	1	2	-∞	-8	2	1	-8	-8	-∞	-8	-∞
6	-8	8	-8	-8	8	0	0	0	-8	1	2	2	8	2	1	1	-8	-8	8	-∞
7	-8	-8	-8	8	-8	-8	0	0	-8	-8	1	2	-8	-8	1	1	-8	-8	-8	-∞
8	-8	-8	-8	-8	-8	-8	-8	0	-8	-8	-8	1	-8	-8	-8	1	-8	-8	8	-∞
9	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-∞	-8	-8	-8	8	-8	-∞	8	_∞
10	-8	-8	-8	-8	-8	-8	-8	-8	-∞	1	2	3	-8	2	2	2	-8	2	2	1
11	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	1	2	-8	-8	1	2	-∞	-∞	1	1
12	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	-8	-8	-8	1	-8	-8	-8	1
13	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-∞	0	1	1	-8	1	1	1	-∞
14	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	1	1	1	-∞	1	1	1

15	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	-8	-8	0	0
16	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	-8	-8	-8	0
17	-8	-8	-8	8	8	8	8	-8	8	-8	-8	8	8	8	8	8	1	1	1	-80
18	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	0
19	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0
20	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	-8	-8	0

	1	2	3	1	-	6	7	8	٥	10	11	10	12	14	15	16	17	10	10	20
C ₂	1	2	3	4	5	б	1	ð	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-∞	0	0	0	-8	-∞	1	2	2	-∞	2	1	1	_∞	_∞	_∞	-∞
2	_∞	0	0	0	-∞	0	0	0	_∞	1	2	2	_∞	2	1	1	_∞	_∞	_∞	_∞
3	-∞	-&	0	0	-8	-8	0	0	-8	-8	1	1	-∞	-∞	1	1	-∞	_∞	-∞	-∞
4	-8	-8	-8	0	-8	-8	8	0	-8	-8	-∞	1	-∞	-∞	-8	1	-∞	-∞	-∞	-∞
5	8	8	8	8	0	0	0	0	-∞	1	2	-∞	-∞	2	2	2	-∞	2	2	1
6	-8	-8	-8	-8	-8	0	0	0	-8	1	2	3	-∞	2	2	1	-∞	2	2	1
7	-8	-8	-8	-8	-8	-8	0	0	-∞	-∞	1	2	-∞	-∞	1	2	-∞	_∞	1	1
8	-∞	-∞	-∞	-∞	-8	-8	-8	0	-∞	-∞	-∞	1	-∞	-∞	-8	1	-∞	_∞	-∞	1
9	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-∞	-∞	-8	-∞	_∞	_∞	-∞	_∞
10	8	8	8	8	8	8	-8	-8	-∞	1	2	3	-∞	2	2	2	-∞	2	2	2
11	8	8	8	8	8	8	-8	-8	-8	-8	1	2	-∞	-∞	1	2	-∞	_∞	1	2
12	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	1	-∞	-∞	-8	1	-∞	_∞	-∞	1
13	8	8	8	8	8	8	-8	-8	-∞	-∞	-∞	-8	0	1	1	1	1	1	1	1
14	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-∞	1	1	1	-∞	1	1	1
15	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-∞	-∞	-∞	0	0	-∞	-∞	0	0
16	-∞	-∞	-∞	-∞	-8	-8	-∞	-8	-∞	-∞	-∞	-∞	-∞	-∞	-8	0	-∞	_∞	-∞	0
17	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-∞	-∞	-∞	-8	-∞	1	1	1	1
18	-∞	-∞	-∞	-∞	-8	-8	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	0	0	0
19	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-∞	-∞	-∞	-∞	-∞	-8	-∞	_∞	_∞	0	0
20	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-∞	-∞	-8	-∞	-∞	_∞	-∞	0

C ₃	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-8	0	0	0	0	-8	1	2	3	-8	2	2	2	-8	2	2	1
2	8	0	0	0	8	0	0	0	-8	1	2	3	-8	2	2	2	-8	2	2	1
3	-&	-8	0	0	-8	-8	0	0	-8	-8	1	1	-8	-8	1	2	-∞	-∞	1	1
4	-∞	-8	-∞	0	-8	-8	-8	0	-8	-8	-8	1	-8	-8	-8	1	-8	-∞	-∞	1
5	-&	-∞	-∞	-8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	2
6	-∞	-∞	-∞	-∞	-∞	0	0	0	-∞	1	2	3	-∞	2	2	3	-∞	2	2	2
7	-8	-8	-8	-8	-8	-8	0	0	-8	-8	1	2	-8	-8	1	2	-8	-∞	1	2
8	-8	-8	-8	-8	-8	-8	-8	0	-8	-8	-8	1	-8	-8	-8	1	-8	-∞	-∞	1
9	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	_∞
10	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	2	3	-8	2	2	2	-8	2	2	3
11	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	2	-8	8	1	2	-8	-8	1	2
12	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-8	-8	-8	1	-8	-8	-8	1	-8	-∞	-∞	1
13	-∞	-8	-∞	-8	-8	-8	-8	-8	-∞	-8	-8	-8	0	1	1	1	1	1	1	1
14	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-∞	-8	1	1	1	-∞	1	1	1
15	-∞	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	0	-8	-8	0	0
16	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	-8	_∞	_∞	0
17	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	1	1	1
18	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-∞	-8	-8	-∞	-8	-8	0	0	0
19	-&	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	8	-8	8	-8	-∞	0	0
20	-8	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-∞	-8	-8	-∞	-8	_∞	_∞	_∞	0

C ₄	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	2
2	-8	0	0	0	-8	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	2
3	-8	-∞	0	0	-8	-8	0	0	_∞	_∞	1	1	-∞	-8	1	2	-∞	-8	1	2
4	-8	-8	-8	0	-8	-8	-8	0	-∞	-∞	-8	1	-8	8	8	1	-8	8	-∞	1
5	-8	-8	-8	-8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
6	-8	-∞	-8	-8	-8	0	0	0	-∞	1	2	3	-∞	2	2	3	-8	2	2	3
7	-8	-∞	-∞	-8	-∞	-∞	0	0	-∞	-∞	1	2	-∞	-8	1	2	-∞	-8	1	2
8	-8	-∞	-8	-8	-∞	-∞	-8	0	-∞	-∞	-∞	1	-∞	-8	-8	1	-8	-8	_∞	1
9	-8	-∞	-8	-8	-8	-8	-8	-8	-∞	-∞	-8	-8	-∞	-8	-8	-8	-8	-8	-∞	_∞
10	-∞	_∞	-∞	-∞	_∞	_∞	-∞	_∞	_∞	1	2	3	_∞	2	2	2	_∞	2	2	3
11	-8	-∞	-∞	-8	-8	-8	-8	-∞	_∞	_∞	1	2	-8	-8	1	2	-8	-8	1	2
12	-8	_∞	-∞	-8	-∞	-∞	-8	-∞	_∞	_∞	_∞	1	_∞	-8	-8	1	-∞	-8	_∞	1
13	-∞	_∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	_∞	_∞	-∞	0	1	1	1	1	1	1	1
14	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	1	1	1	-∞	1	1	1
15	-8	-∞	-∞	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-∞	-∞	-8	0	0	-∞	-8	0	0
16	-8	-∞	-∞	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-8	-8	0	-∞	-8	-∞	0
17	-8	_∞	-8	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-8	-8	-8	1	1	1	1
18	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	0	0	0
19	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	0	0
20	-∞	_∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	0

C ₅	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
2	-8	0	0	0	-8	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
3	-8	-∞	0	0	-8	-8	0	0	_∞	-∞	1	1	-∞	-8	1	2	-∞	-8	1	2
4	-8	-∞	-8	0	-8	-8	-8	0	_∞	-∞	-∞	1	-∞	-8	-8	1	-∞	-8	_∞	1
5	8	-8	-8	8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
6	-8	-∞	-8	-8	-8	0	0	0	-∞	1	2	3	-∞	2	2	3	-8	2	2	3
7	-8	-∞	-∞	-8	-∞	-∞	0	0	-∞	-∞	1	2	-∞	-8	1	2	-∞	-8	1	2
8	-8	-∞	-8	-8	-8	-∞	-8	0	-∞	-∞	-∞	1	-∞	-8	-8	1	-8	-8	_∞	1
9	-8	-∞	-8	-8	-8	-8	-8	-8	-∞	-∞	-8	-8	-∞	-8	-8	-8	-8	-8	-∞	_∞
10	-∞	_∞	-∞	-∞	_∞	_∞	-∞	_∞	_∞	1	2	3	_∞	2	2	2	_∞	2	2	3
11	-8	-∞	-∞	-8	-8	-8	-8	-∞	_∞	-∞	1	2	-8	-8	1	2	-8	-8	1	2
12	-8	_∞	-∞	-8	-∞	-∞	-8	-∞	_∞	-∞	_∞	1	_∞	-8	-8	1	-∞	-8	_∞	1
13	-8	-∞	-8	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	0	1	1	1	1	1	1	1
14	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	1	1	1	-∞	1	1	1
15	-8	-∞	-∞	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-8	0	0	-∞	-8	0	0
16	-8	-∞	-∞	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-8	-8	0	-∞	-8	-∞	0
17	-8	-∞	-∞	-8	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-8	-8	-8	1	1	1	1
18	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-∞	0	0	0
19	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-∞	-∞	0	0
20	-∞	_∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	0

C ₆	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	-8	0	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
2	-8	0	0	0	-8	0	0	0	-∞	1	2	3	-8	2	2	3	-∞	2	2	3
3	-8	-8	0	0	-8	-8	0	0	-∞	-8	1	1	-8	-8	1	2	-8	-8	1	2
4	-8	-8	-8	0	-8	-8	-8	0	-∞	-8	-8	1	-8	8	-8	1	-8	8	-∞	1
5	8	-8	-8	8	0	0	0	0	-∞	1	2	3	8	2	2	3	-8	2	2	3
6	-8	-∞	-8	-8	-8	0	0	0	-∞	1	2	3	-8	2	2	3	-8	2	2	3
7	-8	-8	-∞	-8	-8	-∞	0	0	-∞	-∞	1	2	-8	-8	1	2	-∞	-8	1	2
8	-8	-∞	-8	-8	-8	-∞	-8	0	-∞	-∞	-∞	1	-8	-8	-8	1	-8	-8	_∞	1
9	-8	-∞	-8	-8	-8	-8	-8	-8	-∞	-∞	-8	-8	-8	-8	-8	-8	-8	-8	-∞	_∞
10	-∞	_∞	-∞	-∞	-∞	_∞	-∞	_∞	_∞	1	2	3	-∞	2	2	2	_∞	2	2	3
11	-8	-∞	-∞	-8	-8	-8	-8	-∞	_∞	-∞	1	2	-8	-8	1	2	-8	-8	1	2
12	-8	_∞	-∞	-8	-8	-∞	-8	-∞	_∞	-∞	_∞	1	-8	-8	-8	1	-∞	-8	_∞	1
13	-∞	_∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	_∞	_∞	-∞	0	1	1	1	1	1	1	1
14	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	1	1	1	-∞	1	1	1
15	-8	-∞	-∞	-8	-8	-∞	-8	-∞	-∞	-∞	-∞	-∞	-∞	-8	0	0	-∞	-8	0	0
16	-8	-∞	-∞	-8	-8	-∞	-8	-∞	-∞	-∞	-∞	-8	-8	-8	-8	0	-∞	-8	-∞	0
17	-8	_∞	-8	-8	-8	-∞	-8	-∞	-∞	-∞	-∞	-8	-8	-8	-8	-8	1	1	1	1
18	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-∞	0	0	0
19	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-8	-8	-∞	-∞	0	0
20	-∞	_∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	0

La tabla P(i,j) = 'L', siendo 'L' el nodo intermedio entre 'i' y 'j', quedaría así:

P(Sol)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	1	2	-8	1	1	6	7	-8	6	10	11	-8	10	11	12	-8	14	14	16
2	-8	0	2	-8	1	1	6	7	-8	6	10	11	-8	10	11	12	-8	14	14	16
3	-8	-8	0	3	-8	-8	3	3	-8	-8	7	11	-8	-8	11	12	-8	-8	15	16
4	-8	-8	-8	0	-8	-8	-8	4	-8	-8	-8	8	-8	-8	-8	12	-8	-8	-8	16
5	-8	-∞	-∞	-∞	0	5	6	7	-∞	5	10	11	_∞	10	11	12	-∞	14	15	16
6	-8	_∞	_∞	_∞	_∞	0	6	7	_∞	6	10	11	_∞	10	11	12	-∞	14	15	16
7	-8	-8	-8	-8	-∞	-8	0	7	-8	-8	7	11	-∞	-8	11	12	-8	-8	15	16
8	-8	-8	-8	-8	-∞	-8	-∞	0	-∞	-∞	-8	8	-∞	-8	-8	12	-8	-8	-8	16
9	-8	-8	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-∞
10	-∞	-8	-8	-8	-∞	-∞	-8	-8	-8	0	10	11	-∞	10	11	12	-8	14	14	16
11	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	0	11	-∞	-8	11	12	-8	-8	15	16
12	-8	-8	-8	-8	-∞	-8	-8	-8	-8	-8	-8	0	-∞	-8	-∞	12	-8	-8	-8	16
13	-8	-8	-8	-8	_∞	-8	-8	-∞	-8	-8	-8	-8	0	13	14	15	13	14	14	15
14	-8	-8	-8	-8	-∞	-∞	-8	-8	-8	-8	-8	-8	-∞	0	14	15	-8	14	14	15
15	-8	-8	-8	-8	-∞	-8	-8	-8	-8	-8	-8	-8	-∞	-8	0	15	-8	-8	15	15
16	-8	-∞	-∞	-∞	-∞	-8	-∞	-∞	-∞	-∞	-∞	-∞	_∞	-8	-∞	0	-∞	-8	-8	16
17	-8	-∞	-∞	-∞	_∞	-8	-∞	-∞	-∞	-∞	-8	-∞	_∞	-8	-∞	-8	0	17	18	19
18	-8	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	0	18	19
19	-∞	-∞	-∞	-∞	-∞	-8	-∞	-∞	-∞	-∞	-8	-∞	-∞	-8	-8	-∞	-∞	-8	0	19
20	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	-∞	_∞	-∞	_∞	_∞	-∞	-∞	-∞	-∞	-∞	0

Nos piden llegar a la salida recogiendo tanto oro como sea posible. La solución del ejemplo proporcionado en la guía es: 1-6-10-11-12-16-20.

2.3 Verificación del P.O.B.

 $C_0[i][j]$ es óptimo, porque el mejor camino de 'i' a 'j' sin pasar por ningún nodo es C[i][j]. $C_k[i][j]$ es óptimo: en caso contrario, habría otros nodos en el camino de 'i' a 'j' pasando por $\{1...k-1\}$ tal que su cantidad de oro sea mayor que el considerado. Esto es imposible, dado que la ecuación recurrente siempre selecciona la mayor cantidad.

2.4 Diseño del algoritmo de cálculo de coste óptimo.

```
Procedimiento Floyd(MatrizAdy[1..n][1..m])
Para i=1 hasta n, hacer:
       Para j=1 hasta m, hacer:
              C[i][j]= MatrizAdy[i][i]
              P[i][i]= 0
       Fin-Para
Fin-Para
Para i=1 hasta n, hacer:
       Para j=1 hasta m, hacer:
              L1=i+1
              L2=i+m
              L3=i+m+1
              CM \leftarrow max(C[i][L1]+C[L1][j], C[i][L2]+C[L2][j], C[i][L3]+C[L3][j])
              Si C[i][j] < CM, entonces:
                      Si C[i][L1]+C[L1][j] = CM, entonces:
                             C[i][j] = C[i][L1] + C[L1][j]
                             P[i][j]= L1
                      En Otro Caso Si C[i][L2]+C[L2][j] = CM, entonces:
                             C[i][j] = C[i][L2] + C[L2][j]
                             P[i][j]= L2
                      En Otro Caso, entonces:
                             C[i][j] = C[i][L3] + C[L3][j]
                              P[i][i]= L3
                      Fin-Si
              Fin-Si
       Fin-Para
Fin-Para
Devolver C,P
       2.5 Diseño del algoritmo de recuperación de la solución.
ALGORITMO S = RecuperaSolucion (i, j, P(1...N, 1...M)): Tabla P resultante del algoritmo
MatrAdy)
       S←∅
       k← N*M
       Mientras k <> 0, hacer:
              k←P(i,j)
              j←k
              Añadir 'k' a S
       Fin-Mientras
       Devolver S
```

3. Ejercicio 3

3.1 Diseño de resolución por etapas y ecuación recurrente

- Resolución del problema por etapas:

El problema se puede resolver por etapas. En cada etapa se considera pasar por una arista (salto) intermedio 'k' para cada par de nodos (casillas) de origen y destino.

- Ecuación recurrente:

Para este problema podemos interpretar cada casilla como un nodo de un grafo (dirigido) y los caminos como aristas que unen nodos (casillas). Consideramos que todas las aristas tienen peso nulo (0). Asumimos también que 'S' es la matriz de adyacencia del grafo, a su vez qué la matriz es numerada en cada nodo, empezando por el nodo de inicio, y numerando por columnas hasta el nodo fin y S[i][j] es la suma de la batería gastada por la mejor ruta para ir desde el nodo 'i' hasta 'j'. S[i][j] = - ∞ si no hay camino entre 'i' y 'j'. Llamaremos $S_k[i][j]$ a la suma de la batería del camino que hace mínima el gasto de energía entre 'i' y 'j', con nodos intermedios en el conjunto $\{1...k\}$. Si 'k' = 0, no hay nodos intermedios.

El caso base de nuestra ecuación recurrente sería $S_0[i][j] = S[i][j]$, es decir, no hay ningún nodo intermedio entre 'i' y 'j'.

El caso general tiene en cuenta dos posibilidades pudiendo pasar por los nodos 1 a 'k':

- Que el camino de 'i' a 'j' no pase por 'k', S_{k-1}[i][j].
- Que el camino de 'i' a 'j' pase por 'k', $S_{k-1}[i][j] + S_{k-1}[i][j]$.
- k como maximo puede valer |√(N²+M²)| //redondeado hacia abajo.
- Teniendo en cuenta que L∈[V_i , V_{i-1}]
- Siendo V_i los vértices, nodos o posiciones en 'i'.
- L en cada caso solo puede optar a tres valores como mínimo y a uno como máximo, siendo L=i+m ó L=i+1 (siendo m el número de filas de la matriz rectangular bidimensional), las opciones mínimas; y L=i+m+1 el caso al que opta en su máximo de valores.

Por tanto, nos quedaría:

$$S_{k}[i][j] = min\{ S_{k-1}[i][j], S[i][L] + S_{k-1}[L][j] \}$$

- Función objetivo:

La función objetivo es minimizar $S_n[i][j]$, con 'n' el número de nodos del grafo, para todo 'i' y todo 'j'.

3.2 Diseño de la memoria

La solución al problema se puede representar con dos tablas:

- S(f,c), que contendrá la cantidad de batería mínima por el mejor camino entre 'i' y 'j'.
- P(i,j) = 'L', que representa que 'L' es un nodo intermedio en el camino entre 'i' y 'j'.
- Por tanto, para recuperar el camino tendremos que calcular también P(i,L) y P(L,j).

Como ejemplo vamos a realizar el proporcionado en la guía de esta práctica:

- Llegar a la base gastando la mínima batería posible con el siguiente mapa:

- Matriz de adyacencia

S	1	2	3	4	5
1	1	2	1	1	S
2	+∞	2	1	1	+∞
3	0	0	1	2	2
4	I	0	2	+∞	1

- Numeración de los nodos:

- He aquí un ejemplo de las posibles soluciones más eficientes para los valores siguientes:

- Suelo rojo: gasto = +∞

Suelo Amarillo: gasto = 1

- Suelo azul: gasto = 0

- Suelo Gris: gasto = 2

						o. gac														_
S ₀	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	0	0	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞
2	+∞	0	+ 8	+∞	+∞	0	2	+ 8	+∞	+ 8	+8	+ 8	+8	+∞	+ 8	+8	+∞	+∞	+∞	+∞
3	+∞	+∞	0	1	+∞	+∞	2	2	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
4	+∞	+∞	+∞	0	+∞	+∞	+∞	2	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
5	+8	+8	+∞	+8	0	0	+8	+∞	2	1	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
6	+∞	+8	+∞	+8	+∞	0	2	+∞	+∞	1	1	+∞	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞
7	+∞	+∞	+∞	+8	+∞	+∞	0	2	+∞	+∞	1	1	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞
8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
9	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	+∞	2	+∞	+∞	+∞	+∞	+∞	+∞
10	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞		2	1	+∞	+∞	+∞	+∞	+∞
11	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	0	1	+∞	+∞	1	1	+∞	+∞	+∞	+∞
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	+∞
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞	1	2	+∞	+∞
14	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	2	+∞	+∞
15	+8	+8	+∞	+8	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	+∞	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+8	+8	+∞	+8	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞
18	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞
19	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	0
20	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+8	+∞	+∞	0

S ₁	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	0	0	2	+8	2	1	1	+8	+∞	+8	+8	+8	+8	+8	+∞	+∞
2	+∞	0	+8	*	+8	0	2	4	+∞	1	1	2	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞
3	+8	*	0	1	*8	*	2	2	+∞	+8	3	3	+∞	+8	+8	+8	+∞	+∞	+∞	+∞
4	+∞	+∞	+∞	0	+∞	+8	+8	2	+8	+8	+8	3	+∞	+8	+8	+8	+8	+8	+∞	+∞
5	+∞	+8	+8	+8	0	0	2	+ 8	2	1	2	+ 8	+∞	3	2	+ 8	+8	+∞	+∞	+∞
6	+∞	+∞	+∞	+∞	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	+∞	+∞	+∞
7	+∞	+8	+8	+8	+8	+8	0	2	+∞	+8	1	1	+∞	+8	2	2	+8	+∞	+∞	+∞
8	+∞	+8	+8	+8	+8	+8	+8	0	+∞	+8	+8	1	+∞	+8	+8	2	+∞	+∞	+∞	+∞
9	+∞	+8	+∞	+8	+8	+8	+8	+8	0	1	2	+8	+∞	2	2	+8	+∞	4	+∞	+∞
10	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	0	1	2	+∞	2	1	2	+∞	4	+∞	2
11	+∞	+8	+8	+8	+8	+8	+8	+8	+∞	+8	0	1	+∞	+8	1	1	+8	+∞	+∞	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+8	+∞	0	+∞	+8	+8	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	+8	1	2	+∞	+∞
14	+8	+8	+8	+8	+8	+8	+8	+8	+8	+8	+8	+8	+∞	0	1	2	+8	2	+∞	2
15	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+8	+∞	+8	+∞	+8	0	1	+8	+∞	+∞	0
16	+∞	+∞	+∞	+8	+∞	+∞	+∞	+8	+∞	+8	+∞	+8	+∞	+8	+8	0	+∞	+∞	+∞	0
17	+∞	+8	+∞	+8	+8	+8	+8	+8	+∞	+8	+∞	+8	+∞	+8	+8	+8	0	2	+∞	+∞
18	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+8	+∞	+8	+∞	+8	+8	+8	+∞	0	+∞	+∞
19	+8	+8	+∞	+8	+8	+8	+8	+8	+8	+8	+8	+8	+∞	+8	+8	+8	+8	+8	0	0
20	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+8	+∞	+8	+∞	+8	+8	+8	+∞	+8	+∞	0

S ₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+8	+8	0	0	2	4	2	1	1	2	+∞	3	2	2	+∞	+∞	+∞	+∞
2	+∞	0	+∞	+8	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	+∞	+∞	+∞
3	+8	+∞	0	1	+8	+∞	2	2	+∞	+∞	3	3	+∞	+∞	4	4	+∞	+∞	+∞	+∞
4	+8	+8	+8	0	+8	+8	+8	2	+∞	+∞	+∞	3	+∞	+8	+8	4	+8	+∞	+∞	+∞
5	+8	+8	+8	+ 8	0	0	2	4	2	1	2	2	+∞	3	2	2	+∞	5	+∞	2
6	+8	+∞	+8	+8	+8	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
7	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞	1	1	+∞	+∞	2	2	+∞	+∞	+∞	2
8	+∞	+∞	+∞	+8	+8	+∞	+8	0	+∞	+∞	+∞	1	+∞	+8	+8	2	+∞	+∞	+∞	2
9	+8	+∞	+8	+8	+8	+8	+8	+∞	0	1	2	3	+∞	2	2	3	+∞	4	+∞	2
10	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	1	2	+∞	4	+∞	2
11	+∞	+∞	+8	+∞	+∞	+∞	+8	+∞	+∞	+∞	0	1	+∞	+8	1	1	+∞	+∞	+∞	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	4	1	2	+∞	3
14	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	+∞	2
15	+∞	+∞	+8	+∞	+∞	+8	+8	+∞	+∞	+∞	+∞	+∞	+∞	+8	0	1	+∞	+∞	+∞	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	0	+∞	+∞	+∞	0
17	+8	+8	+8	+8	+8	+8	+8	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	+8	0	2	+∞	+∞
18	+∞	+∞	+8	+8	+8	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	+8	+∞	0	+∞	+∞
19	+∞	+∞	+8	+8	+8	+8	+8	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	+8	+∞	+∞	0	0
20	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0

S ₃	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+8	+8	0	0	2	4	2	1	1	2	+8	3	2	2	+∞	5	+∞	2
2	+8	0	+8	+8	+8	0	2	4	+8	1	1	2	+8	3	2	2	+∞	5	+∞	2
3	+8	+8	0	1	+8	+8	2	2	+8	+8	3	3	+8	+∞	4	4	+∞	+8	+∞	4
4	+∞	+∞	+∞	0	+∞	+∞	+∞	2	+∞	+8	+∞	3	+∞	+∞	+∞	4	+∞	+8	4	4
5	+8	+8	+8	+8	0	0	2	4	2	1	2	2	+8	3	2	2	+∞	5	+∞	2
6	+∞	+∞	+∞	+∞	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
7	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞	1	1	+∞	+∞	2	2	+∞	+∞	+∞	2
8	+8	+8	+8	+8	+8	+8	+8	0	+8	+8	+8	1	+8	+8	+8	2	+∞	+8	+∞	2
9	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	3	+∞	2	2	3	+∞	4	+∞	2
10	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	1	2	+∞	4	+∞	2
11	+8	+8	+8	+8	+8	+8	+8	+8	+8	+8	0	1	+8	+8	1	1	+∞	+8	+∞	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	4	1	2	+∞	3
14	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	+∞	2
15	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	+∞	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+∞	+8	+∞	+∞	+∞	+8	+8	+8	+8	+8	+8	+8	+∞	+8	+8	+8	0	2	+∞	+∞
18	+8	+∞	+8	+∞	+8	+∞	+∞	+8	+8	+8	+∞	+∞	+8	+8	+8	+8	+∞	0	+∞	+∞
19	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	0
20	+∞	+∞	+∞	+8	+∞	+8	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+8	+∞	0

S ₄	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	0	0	2	4	2	1	1	2	+∞	3	2	2	+∞	5	+∞	2
2	+∞	0	+∞	+8	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
3	+8	+8	0	1	+8	+8	2	2	+∞	+8	3	3	+8	+8	4	4	+∞	+8	+8	4
4	+8	+8	+8	0	+8	+8	+8	2	+∞	+8	+8	3	+8	+8	+8	4	+∞	+8	4	4
5	+∞	+8	+8	+8	0	0	2	4	2	1	2	2	+8	3	2	2	+∞	5	+8	2
6	+8	+8	+8	+8	+8	0	2	4	+∞	1	1	2	+8	3	2	2	+∞	5	+8	2
7	*8	+8	+8	+8	+8	+8	0	2	+∞	+8	1	1	+8	+8	2	2	+∞	+8	+8	2
8	+8	+8	+8	+8	+8	+8	+8	0	+∞	+8	+8	1	+8	+8	+8	2	+∞	+8	+8	2
9	+8	+8	+8	+8	+8	+8	+8	+8	0	1	2	3	+8	2	2	3	+∞	4	+8	2
10	+8	+8	+8	+8	+8	+8	+8	+∞	+∞	0	1	2	+8	2	1	2	+∞	4	+8	2
11	+8	+8	+8	+8	+8	+8	+8	+∞	+∞	+8	0	1	+8	+8	1	1	+∞	+8	+∞	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	4	1	2	+∞	3
14	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+8	+8	+∞	+∞	0	1	2	+∞	2	+8	2
15	+8	+8	+8	+8	+8	+8	+8	+∞	+∞	+8	+8	+∞	+8	+8	0	1	+∞	+8	+8	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	+∞	+∞	+8	+∞	+∞	0	2	+8	+∞
18	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞
19	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+8	+∞	+∞	+∞	+8	0	0
20	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	0

S ₅	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	0	0	2	4	2	1	1	2	+∞	3	2	2	+∞	5	+∞	2
2	+∞	0	+∞	+8	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
3	+8	+8	0	1	+8	+8	2	2	+∞	+8	3	3	+∞	+8	4	4	+∞	+8	+8	4
4	+8	+8	+∞	0	+8	+8	+8	2	+∞	+8	+8	3	+∞	+8	+8	4	+∞	+8	4	4
5	+∞	+∞	+∞	+8	0	0	2	4	2	1	2	2	+∞	3	2	2	+∞	5	+8	2
6	+8	+8	+8	+8	+8	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+8	2
7	+8	+8	+8	+8	+8	+8	0	2	+∞	+8	1	1	+∞	+8	2	2	+∞	+8	+8	2
8	+8	+8	+8	+8	+8	+8	+8	0	+∞	+8	+8	1	+∞	+8	+8	2	+∞	+8	+8	2
9	+8	+8	+∞	+8	+8	+8	+8	+8	0	1	2	3	+∞	2	2	3	+∞	4	+8	2
10	+8	+8	+∞	+8	+8	+8	+8	+∞	+∞	0	1	2	+∞	2	1	2	+∞	4	+8	2
11	+∞	+8	+∞	+8	+8	+8	+8	+∞	+∞	+8	0	1	+∞	+8	1	1	+∞	+8	+8	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	4	1	2	+∞	3
14	+∞	+8	+∞	+8	+∞	+∞	+8	+∞	+∞	+8	+8	+∞	+∞	0	1	2	+∞	2	+8	2
15	+8	+8	+∞	+8	+8	+8	+8	+∞	+∞	+8	+8	+∞	+∞	+8	0	1	+∞	+8	+8	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	+∞	+∞	+8	+∞	+∞	0	2	+8	+∞
18	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞
19	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+8	+∞	+∞	+∞	+8	0	0
20	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+8	0

S ₆	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	0	0	2	4	2	1	1	2	+∞	3	2	2	+∞	5	+∞	2
2	+∞	0	+∞	+8	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
3	+8	+∞	0	1	+∞	+∞	2	2	+∞	+8	3	3	+∞	+8	4	4	+∞	+8	+∞	4
4	+8	+∞	+∞	0	+∞	+∞	+8	2	+∞	+8	+∞	3	+∞	+8	+8	4	+∞	+8	4	4
5	+8	+∞	+∞	+8	0	0	2	4	2	1	2	2	+∞	3	2	2	+∞	5	+∞	2
6	+8	+∞	+8	+8	+8	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
7	+8	+∞	+∞	+8	+∞	+∞	0	2	+∞	+8	1	1	+∞	+8	2	2	+∞	+8	+∞	2
8	+8	+∞	+∞	+8	+∞	+∞	+8	0	+∞	+8	+∞	1	+∞	+8	+8	2	+∞	+8	+∞	2
9	+8	+∞	+8	+8	+8	+8	+8	+8	0	1	2	3	+∞	2	2	3	+∞	4	+∞	2
10	+8	+8	+8	+8	+∞	+∞	+8	+∞	+∞	0	1	2	+∞	2	1	2	+∞	4	+∞	2
11	+8	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+8	0	1	+∞	+8	1	1	+∞	+8	+∞	2
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2
13	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	0	2	3	4	1	2	+∞	3
14	+8	+8	+8	+8	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+∞	0	1	2	+∞	2	+∞	2
15	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+∞	0	1	+∞	+8	+∞	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+8	+8	+8	+8	+8	+8	+8	+8	+8	+8	+∞	+∞	+∞	+8	+∞	+∞	0	2	+∞	+∞
18	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞
19	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+8	0	0
20	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+8	+∞	+∞	+∞	+∞	+8	+∞	+∞	+8	+∞	0

La tabla P(i,j) = 'L', siendo 'L' el nodo intermedio entre 'i' y 'j', quedaría así:

P(Sol)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	+∞	+∞	1	0	2	4	2	5	1	2	+∞	3	10	2	+∞	5	+∞	15
2	+∞	0	+∞	+∞	+∞	1	2	4	+8	1	1	2	+8	3	2	2	+8	5	+8	2
3	+∞	+8	0	1	+∞	+∞	2	2	+8	+8	3	3	+∞	+8	4	3	+8	+8	+8	4
4	+∞	+∞	+∞	0	+∞	+∞	+∞	2	+∞	+∞	+∞	3	+∞	+∞	+∞	4	+∞	+∞	+∞	4
5	+∞	+∞	+∞	+∞	0	0	2	4	2	1	1	2	+∞	3	2	2	+∞	5	+∞	2
6	+∞	+∞	+∞	+∞	+∞	0	2	4	+∞	1	1	2	+∞	3	2	2	+∞	5	+∞	2
7	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞	1	1	+∞	+∞	2	2	+∞	+∞	+∞	2
8	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	2	+∞	+∞	+∞	2
9	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	3	+∞	2	2	3	+∞	4	+∞	2
10	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	1	2	+∞	4	+∞	1
11	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	1	1	+∞	+∞	+∞	1
12	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	1	+∞	+∞	+∞	1
13	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	3	4	+∞	2	+∞	3
14	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	2	+∞	2	+∞	1
15	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	1	+∞	+∞	+∞	0
16	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞	+∞	0
17	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	2	+∞	+∞
18	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	+∞	+∞
19	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0	0
20	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	+∞	0

Nos piden llegar a la salida gastando la mínima cantidad de batería posible. La solución del ejemplo proporcionado en la guía es: 1-5-10-15-20.

3.3 Verificación del P.O.B.

 $S_0[i][j]$ es óptimo, porque el mejor camino de 'i' a 'j' sin pasar por ningún nodo es S[i][j]. $S_k[i][j]$ es óptimo: en caso contrario, habría otros nodos en el camino de 'i' a 'j' pasando por $\{1...k-1\}$ tal que su cantidad de energía sea menor que la considerada. Esto es imposible, dado que la ecuación recurrente siempre selecciona la mayor cantidad.

```
3.4 Diseño del algoritmo de cálculo de coste óptimo.
Procedimiento Floyd(MatrizAdy[1..n][1..m])
Para i=1 hasta n, hacer:
       Para j=1 hasta m, hacer:
               S[i][j]= MatrizAdy[i][i]
               P[i][i] = 0
       Fin-Para
Fin-Para
Para i=1 hasta n, hacer:
       Para j=1 hasta m, hacer:
               L1=i+1
               L2=i+m
               L3=i+m+1
               SM \leftarrow min(S[i][L1]+S[L1][j], S[i][L2]+S[L2][j], S[i][L3]+S[L3][j])
               Si S[i][i] < SM, entonces:
                      Si S[i][L1]+S[L1][j] = SM, entonces:
                              S[i][j] = S[i][L1] + S[L1][j]
                              P[i][j]= L1
                      En Otro Caso Si S[i][L2]+S[L2][j] = SM, entonces:
                              S[i][j] = S[i][L2] + S[L2][j]
                              P[i][i]= L2
                      En Otro Caso, entonces:
                              S[i][j] = S[i][L3] + S[L3][j]
                              P[i][i]= L3
                      Fin-Si
               Fin-Si
       Fin-Para
Fin-Para
Devolver S.P.
       3.5 Diseño del algoritmo de recuperación de la solución.
ALGORITMO S = RecuperaSolucion (i, j, P(1...N, 1...M)): Tabla P resultante del algoritmo
MatrAdy)
       S←Ø
       k← N*M
       Mientras k <> 0, hacer:
               k←P(i,i)
              j←k
               Añadir 'k' a S
```

Fin-Mientras Devolver S