

Lecture 8.1 - Supervised Learning Neural Networks

Erik Bekkers

(Bishop 5.1)

Slide credits: Patrick Forré and Rianne van den Berg

Fixed Basis Functions

Dataset: inputs
$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$$
 and targets $\mathbf{t} = (t_1, ..., t_N)^T$

$$\succeq_{\mathbf{h}} \mathcal{G}/\mathcal{R}^D$$

Previously:

- Fixed features: $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}),...,\phi_M(\mathbf{x}))^T$, $\phi_0(\mathbf{x}) = 1$
- Linear regression: $y(\mathbf{x},\mathbf{w}) = \mathbf{w}^{\mathsf{T}} \underline{\phi}(\mathbf{x})$ $t_n \in \mathbb{R}$
- Classification: $y(\mathbf{x},\mathbf{w}) = f(\mathbf{w}^T \phi(\mathbf{x}))$ $t_n \in \{0,1\}$ f: nonlinear activation function

Neural Networks: Adaptive Basis Functions

Dataset: inputs $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$ and targets $\mathbf{t} = (t_1, ..., t_N)^T$ Zn = (1, Xn, --, Xno) ERDH

Neural networks:

Create flexible non-linear features and learn them!

$$\phi_{m}(\mathbf{x}, \mathbf{w}_{m}^{(1)}) = h((\mathbf{w}_{m}^{(1)})^{T}\mathbf{x}) = h(\sum_{d=0}^{D} w_{md}^{(1)} x_{d})$$

$$hon-linear$$

$$action fn$$

$$\mathbf{Regression:}$$

$$y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)}) = \sum_{m=0}^{M} w_{m}^{(2)} h(\sum_{d=0}^{D} w_{md}^{(1)} x_{d}) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{X}} h(\underbrace{\mathbf{W}^{(1)}}_{\mathbf{X}})$$

$$\mathbf{Classification:}$$

$$y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)}) = \mathbf{f}(\underbrace{\mathbf{W}^{(2)}}_{\mathbf{X}} h(\underbrace{\mathbf{W}^{(1)}}_{\mathbf{X}} \mathbf{X}))$$

$$y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)}) = \sum_{m=0}^{M} w_m^{(2)} h(\sum_{d=0}^{D} w_{md}^{(1)} x_d) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{W}} h(\underbrace{\mathbf{X}}_{\mathbf{W}}^{(1)} \mathbf{w}_{md}^{(1)} x_d) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{W}} h(\underbrace{\mathbf{X}}_{\mathbf{W}}^{(2)} \mathbf{w}_{md}^{(1)} x_d) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{W}} h(\underbrace{\mathbf{X}}_{\mathbf{W}}^{(2)} \mathbf{w}_{md}^{(1)} x_d) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{W}} h(\underbrace{\mathbf{X}}_{\mathbf{W}}^{(2)} \mathbf{w}_{md}^{(2)} \mathbf{w}_{md}^{(2)} x_d) = \underbrace{\mathbf{W}^{(2)}}_{\mathbf{W}} h(\underbrace{\mathbf{X}}_{\mathbf{W}}^{(2)} \mathbf{w}_{md}^{(2)} \mathbf{w}_{$$

$$y(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{w}^{(2)}) = \left\{ \left(\mathbf{w}^{(2)} \right)^{\mathsf{T}} h \left(\mathbf{w}^{(2)} \right)^{\mathsf{T}} \right\}$$

Multilayer Perceptron (MLP): 2 layers

Model:

$$y_k(\mathbf{x}, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}) = h^{(2)} \left(\sum_{m=0}^{M} w_{km}^{(2)} h^{(1)} \left(\sum_{d=0}^{D} w_{md}^{(1)} x_d \right) \right)$$

$$\underbrace{\sum_{d=0}^{M} w_{km}^{(1)} x_d}_{a_m}$$
Activations
$$\underbrace{\sum_{k=0}^{M} w_{km}^{(1)} x_k}_{a_m}$$

Network diagram:

Input units

$$\mathcal{Z} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} GR^{p+1}$$

$$\underline{\alpha} = \begin{pmatrix} a_1 \\ \vdots \\ a_M \end{pmatrix} = \mathcal{N}^{(1)} \times \mathcal{ER}^{M}$$

Hidden units

Output units

$$y = \begin{pmatrix} y_1 \\ y_k \end{pmatrix} = \sqrt{2} \in \mathbb{R}^k$$

Activation functions

Activation functions

Figure: Popular activation functions.

$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

Red: Hyperbolic tan

$$h(a) = \tanh(a) = \frac{e^{-\kappa} - e^{-\kappa}}{e^{-\kappa}}$$

Blue:

$$h(a) = \text{ReLU}(a) = \max(o, a)$$

(Rectified Linear Unit)

Linear regression & classification as NN

Figure: Linear regression as 1-layer NN

Figure: Linear Classification with K classes as 1-layer NN

Feed-Forward Networks: Multiple layers

Figure: 4 layer network. Number of layers = number of layers of adaptive weights.

Feed-Forward Networks: Skip Connections

Figure: 3 layer feed-forward net with skip connections

Feed-Forward Networks: Sparse Connections

Figure: Feed-forward architecture with sparse connections. With special weight sharing --> Convolutional Neural Nets (Le Cun et al 1989)

Feed-Forward Networks: Sparse Connections

Figure: Feed-forward architecture with sparse connections. With special weight sharing --> Convolutional Neural Nets (Le Cun et al 1989)

General Feed-Forward Architectures

◆ Each unit (hidden & output) in feed-forward architectures computes a function of the form

$$z_m = h\left(\sum_j w_{mj} z_j\right)$$

◆ No closed directed cycles!

Figure: example of general feed-forward architecture