Теорема Чевы, Менелая, Фалеса

Теорема Фалеса: Пусть даны две прямые a и b. Их пересекают три параллельные прямые — первая в точках A_1 и A_2 , вторая в точках B_1 и B_2 , третья в точках C_1 и C_2 . Тогда высекаемые отрезки пропорциональны, то есть выполнено

$$\frac{A_1 A_2}{B_1 B_2} = \frac{A_2 A_3}{B_2 B_3}.$$

- Прямая l пересекает стороны AB, AD и диагональ AC параллелограмма ABCD в точках X, Y, Z соответственно. Докажите, что $\frac{AB}{AX} + \frac{AD}{AY} = \frac{AC}{AZ}$.
- $\boxed{2}$ В треугольнике ABC проведены медианы BB_1 и CC_1 и на стороне BC отмечена точка X. На сторонах AB, AC отмечены точки M и N соответственно так, что $MX \parallel CC_1$, $NX \parallel BB_1$. Докажите, что отрезок MN медианами BB_1 и CC_1 разбивается на три равные части.
- $\boxed{3}$ На продолжении стороны AB квадрата ABCD за вершину B отложен отрезок BP=2AB. Точка M середина стороны CD, а отрезки BM и AC пересекаются в точке Q. В каком отношении прямая PQ делит сторону BC?

Теорема Чевы: На сторонах AB,BC и CA треугольника ABC отмечены точки C_1,A_1,B_1 соответственно. Тогда прямые AA_1,BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда $\frac{AB_1}{B_1C}\cdot\frac{CA_1}{A_1B}\cdot\frac{BC_1}{C_1A}=1$

Определение: Отрезок, соединяющий вершину треугольника с произвольной точкой на противоположной стороне (или её продолжении), называется *чевианой*.

Теорема Менелая: На сторонах AB,BC и продолжении CA треугольника ABC отмечены точки C_1,A_1,B_1 соответственно. Точки A_1,B_1 и C_1 лежат на одной прямой тогда и только тогда, когда $\frac{AB_1}{B_1C}\cdot\frac{CA_1}{A_1B}\cdot\frac{BC_1}{C_1A}=1$

- [4] Докажите обратное следствие в теореме (a) Чевы и (b) Менелая.
- [5] Чевианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в одной точке. Точку A_1 отразили симметрично относительно середины отрезка BC и получили точку A_2 . Точки B_2 и C_2 определяются аналогично. Докажите, что прямые AA_2 , BB_2 и CC_2 тоже пересекаются в одной точке.
- [6] Дан треугольник ABC. На стороне AB отмечена точка D, а на стороне AC точка E так, что $BC \parallel DE$. Докажите, что точка пересечения отрезков CD и BE лежит на медиане, проведенной из вершины A.
- Точка K лежит на стороне AB, а точка M на стороне AC треугольника ABC, причем AK: KB = 3: 2, AM: MC = 4: 5. Прямая, проходящая через точку K параллельно BC, пересекает отрезок BM в точке P. Найдите отношение BP: PM.

- 8 На чевиане AA_1 треугольника ABC выбирается переменная точка X. Лучи BX и CX пересекают стороны AC и AB в точках Y и Z соответственно. Докажите, что все построенные таким образом прямые YZ пересекают прямую BC в одной и той же точке, либо все этой прямой параллельны.
- 9 Из вершины C прямого угла прямоугольного треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает прямую CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.
- 10 В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF прямой. Докажите, что DE биссектриса угла ADF.
- 11 Через вершину A и середину медианы BM треугольника ABC провели прямую. В каком отношении она делит сторону BC?
- 12 Пусть AL биссектриса треугольника ABC, точка D ее середина, E проекция D на AB. Известно, что AC=3AE. Докажите, что треугольник CEL равнобедренный.
- 13 Точки M и K делят стороны AB и BC треугольника ABC в отношении 2:3 и 4:1, считая от их общей вершины. В каком отношении делится отрезок MK медианой треугольника, проведенной к стороне AC?
- 14 Дан треугольник ABC, в котором BM медиана. Точка P лежит на стороне AB, точка Q на стороне BC, причем AP:PB=2:5,BQ:QC=6. Отрезок PQ пересекает медиану BM в точке R. Найдите BR:RM.
- 15 В треугольнике ABC проведены биссектрисы AA_1 и CC_1 . Прямые A_1C_1 и AC пересекаются в точке D. Докажите, что BD внешняя биссектриса угла AB