Лабораторная работа 4.1

Оптимальность плана транспортной задачи

Цель работы: Составить опорный план (любым из методов опорного плана), проверить его на оптимальность и множественность.

Задача 1

Постановка задачи

A_i	B 1	B ₂	B 3	B 4	ai
A_I	2	3	2	4	30
A_2	3	2	5	1	40
A_3	4	3	2	6	20
b_j	20	30	30	10	90

Решение

A _i B _j	B ₁	B ₂	В3	B4	ai
A 1	20	3	10	-	30
A ₂	-	30	5	10	40
A 3	-	0	20	-	20
bj	20	30	30	10	90

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 6, а должно быть m+n-1=6. Следовательно, опорный план является невырожденным.

$$u_1 + v_1 = 2 \qquad v_1 = 2$$

$$u_1 + v_3 = 2 \qquad v_3 = 2$$

$$u_2 + v_2 = 2$$
 $u_2 = -1$

$$u_2 + v_4 = 1$$
 $v_4 = 2$

$$u_3 + v_2 = 3$$
 $v_2 = 3$
 $u_3 + v_3 = 2$ $u_3 = 0$

$$\Delta_{ij} = c_{ij} - (u_i + v_j)$$

A _i B _j]	B ₁		B ₂		В3			B 4	ai	u
A 1	20	2	0 -	3	10		2	2	4	30	0
A ₂	2 -	3	30	2	4		5	10	1	40	-1
A 3	2 -	4	0	3	20		2	4	6	20	0
bj	,	20		30		30			10	90	
v		2		3		2			2		

Так как $\Delta_{ij}\!\ge\!0=>$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$Z = 20*2+10*2+30*2+10*1+0*3+20*2 = 170$$

Задача 2

Постановка задачи

A_i	B 1	B ₂	B 3	B 4	B ₅	ai
A_I	2	7	3	6	2	30
A_2	9	4	5	7	3	70
A_3	5	7	6	2	4	50
b_j	10	40	20	60	20	150

Решение

A _i B _j	B ₁	\mathbf{B}_2	В3	B4	B 5	ai
A 1	10	7	0	6	20	30
A 2	9	40	5 20	7 10	3	70
A 3	5	7	6	50	4	50
bj	10	40	20	60	20	150

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z = 10*2+0*3+20*2+40*4+20*5+10*7+50*2 = 490$$

$$u_1 + v_1 = 2$$
 $v_1 = 2$

$$u_1 + v_3 = 3$$
 $v_3 = 3$

$$u_1 + v_5 = 2$$
 $v_5 = 2$

$$u_2 + v_2 = 4$$
 $v_2 = 2$

$$u_2 + v_3 = 5$$
 $u_2 = 2$

$$u_2 + v_4 = 7$$
 $v_4 = 5$

$$u_3 + v_4 = 2$$
 $u_3 = -3$

A _i B _j	B ₁		B ₂	B ₃		B ₄		B 5	$\mathbf{a_{i}}$	u
A 1	10	2	5 -	3 0 [+]	1 -	6	20	2 [-]	30	0
\mathbf{A}_2	5 -	9	40	5 [-]	10	7	-1 -	3 [+]	70	2
A 3	6 -	5	8 7	6 6	50	2	5 -	4	50	-3
bj	10		40	20		60		20	150	
v	2		2	3		5		2		

Опорный план не является оптимальным, так как c_{ij} = -1.

Сделаем пересчет:

A _i	\mathbf{B}_1			B ₂		B ₃		B ₄		В	5	āi	u
$\mathbf{A_1}$	10	2	5	7	0	3 [+]	1 -		6	20	2 [-]	30	0
A ₂	5	9	40	4	20	5 [-]	10		7	-1 -	3 [+]	70	2
A ₃	6	5	8 -	7	6	6	50	,	2	5	4	50	-3
b _i	10			40		20		60		2	0	150	
v	2			2		3		5		2	2		

Из грузов c_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. min (1,5)=20. Прибавляем 20 к объемам грузов, стоящих в плюсовых клетках и вычитаем 20 из c_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

A _i B _j	B ₁	\mathbf{B}_2	B ₃	B ₄	B ₅	$\mathbf{a_i}$
A 1	10	7 -	20	6	- 2	30
A ₂	-	40 40	0 5	7 10	20	70
A 3	-	7 -	6	50	- 4	50
bj	10	40	20	60	20	150

Пусть $u_1 = 0$

$$u_1 + v_1 = 2$$
 $v_1 = 2$

$$u_1 + v_3 = 3$$
 $v_3 = 3$

$$u_2 + v_2 = 4$$
 $v_2 = 2$

$$u_2 + v_3 = 5$$
 $v_5 = 1$

$$u_2 + v_4 = 7$$
 $u_2 = 2$

$$u_2 + v_5 = 3$$
 $v_4 = 5$

$$u_3 + v_4 = 2$$
 $u_3 = -3$

A_i	B ₁		В	3 2	В3			B 4		B 5	ai	u
A 1	10	2	5 -	7	20	3	1 -	6	1 -	2	30	0
\mathbf{A}_2	5 -	9	40	4	0	5	10	7	20	3	70	2
A ₃	6 -	5	8 -	7	6	6	50	2	6 -	4	50	-3
bj	10		40	0	20			60		20	150	
v	2		2	2	3			5		1		

Так как $\Delta_{ij} \ge 0 =>$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$Z = 10*2+20*3+40*4+0*5+10*7+20*3+50*2 = 470$$

Задача 3

Постановка задачи

A_i	B 1	B ₂	B 3	B 4	B 5	ai
A_I	4	2	5	7	6	20
A_2	7	8	3	4	5	110
A_3	2	1	4	3	2	120
b_j	70	40	30	60	50	250

Решение

A _i B _j	B ₁	B ₂	В3	B4	B 5	ai
A 1	- 4	20	5	7	6	20
A ₂	7	8	30	60	5 20	110
A 3	70	20	- 4	3	30	120
bj	70	40	30	60	50	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, а должно быть m+n-1=7. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z = 20*2+30*3+60*4+20*5+70*2+20*1+30*2 = 690$$

$$u_1 + v_2 = 2$$
 $v_2 = 2$

$$u_2 + v_3 = 3$$
 $u_2 = 2$

$$u_2 + v_4 = 4$$
 $v_3 = 1$

$$u_2 + v_5 = 5$$
 $v_4 = 2$

$$u_3 + v_1 = 2$$
 $v_1 = 3$

$$u_3 + v_2 = 1$$
 $u_3 = -1$

$$u_3 + v_5 = 2$$
 $v_5 = 3$

A _i B _j	B ₁	B ₂	В3	B4	B 5	ai	u
A 1	1 4	20	4 5	5 7	3 6	20	0
\mathbf{A}_2	2 7	4 8	30	60	5 20	110	2
A ₃	70	20	4 -	2 3	30	120	-1
bj	70	40	30	60	50	250	
v	3	2	1	2	3		

Так как $\Delta_{ij} \geq 0 = >$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$Z = 20*2+30*3+60*4+20*5+70*2+20*1+30*2 = 690$$

Задача 4

Постановка задачи

A_i	B_1	B_2	B 3	B 4	B 5	ai
A_I	2	8	4	6	3	120
A_2	3	2	5	2	6	30
A_3	6	5	8	7	4	40
A_4	3	4	4	2	1	60
b_j	30	90	80	20	30	250

Решение

A _i B _j	B ₁	\mathbf{B}_2	В3	B4	B 5	ai
A 1	30	8 10	80	6	3	120
A ₂	-	30	5	- 2	6	30
A 3	-	5 40	- 8	7	-	40
A 4	- 3	10	-	20	30	60
bj	30	90	80	20	30	250

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 8, а должно быть m+n-1=8. Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$Z = 30*2+10*8+80*4+30*2+40*5+10*4+20*2+30*1 = 830$$

$$u_1 + v_1 = 2$$
 $u_2 = -6$

$$u_1 + v_2 = 8$$
 $u_3 = -3$

$$u_1 + v_3 = 4$$
 $u_4 = -4$

$$u_2 + v_2 = 2$$
 $v_1 = 2$

$$u_3 + v_2 = 5$$
 $v_2 = 8$

$$u_4 + v_2 = 4 \qquad v_3 = 4$$

$$u_4 + v_4 = 2$$
 $v_4 = 6$

$$u_4 + v_5 = 1$$
 $v_5 = 5$

A _i B _j	B ₁		F	B 2		В3		B 4		B 5		ai	u
A 1	30	2	10	8 [-]	80	4	0 -	(6	-2 -	3 [+]	120	0
A 2	7 -	3	30	2	7	5	2 -	,	2	7	6	30	-6
A 3	7 -	6	40	5	7	8	4 -	,	7	2 -	4	40	-3
A 4	5 -	3	10	4 [+]	4 -	4	20		2	30	1 [-]	60	-4
bj	30		9	00		80		20		3	80	250	
v	2			8		4		6			5		

Опорный план не является оптимальным, так как $c_{ij} = -1$.

Сделаем пересчет:

A _i B _i	B	L]	\mathbf{B}_2		B ₃		B ₄		B ₅	ai	u
$\mathbf{A_1}$	30	2	10	8 [-]	80	4	0	6	-2 -	(+)	120	0
\mathbf{A}_2	7	3	30	2	7	5	2	2	7	6	30	-6
A ₃	7	6	40	5	7	8	4	7	2	4	40	-3
A4	5	3	10	4 [+]	4	4	20	2	30	1 [-]	60	-4
b _i	30)	90			80		20	3	30	250	
v	2			8		4		6 5		5		-

Из грузов c_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. min (1,2)=10. Прибавляем 10 к объемам грузов, стоящих в плюсовых клетках и вычитаем 10 из c_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

A _i B _j	B ₁	\mathbf{B}_2	В3	B ₄	B 5	$\mathbf{a_i}$
A 1	30	8	80	6	10	120
\mathbf{A}_2	- 3	30	5	- 2	6	30
A 3	-	5 40	- 8	7	- 4	40
A 4	- 3	20	4	20	20	60
bj	30	90	80	20	30	250

$$u_1 + v_1 = 2$$
 $u_2 = -4$

$$u_1 + v_3 = 4$$
 $u_3 = -1$

$$u_1 + v_5 = 3$$
 $u_4 = -2$

$$u_2 + v_2 = 2$$
 $v_1 = 2$

$$u_3 + v_2 = 5$$
 $v_2 = 6$

$$u_4 + v_2 = 4$$
 $v_3 = 4$

$$u_4 + v_4 = 2$$
 $v_4 = 4$

$$u_4 + v_5 = 1$$
 $v_5 = 3$

A _i B _j	B ₁		Ba	2		B ₃		B ₄	В	55	$\mathbf{a_{i}}$	u
A ₁	30	2	2 -	8	80	4	2 -	6	10	3	120	0
\mathbf{A}_2	5 -	3	30	2	5	5	2 -	2	7	6	30	-4
A 3	5 -	6	40	5	5 -	8	4	7	2 -	4	40	-1
A 4	3 -	3	20	4	2 -	4	20	2	20	1	60	-2
bj	30		90)		80		20	3	0	250	
V	2		6			4		4	3	3		-

Так как $\Delta ij \ge 0 \Longrightarrow$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$Z = 30*2+80*4+10*3+30*2+40*5+20*4+20*2+20*1 = 810$$

Вывод: В ходе лабораторной работы были составлены опорные планы из прошлой лабораторной работы, также они были проверены на оптимальность при помощи метода потенциалов.