Figure 1

Inquie 2

Figure 3

Edman cycle number	Amino acids recovered at each cycle			FAS	TF Aligned	Sequence				Proxess
1.	****		MGEELGSGQ	FALV						
2.	2 1 F 1	MSTFRQEDVEDBYENGEELGSQQFAIVRKCRQKGTGKEYAAKFIKKRRLPSSRRGYSREEIRREVHILREIRHDHIITLH								1
3	2024	10	20	30	40	so	50	70	80	i
4.	OKLX									į
5.	N R G Y							MILLOXX I FY	CRPIQ -	
	ISLA	i								1
-	YFGS	DIFENKTOVVLILE	LVSGGELFD	FLAEKESLTEI	DEATOFLEOI	DGVHYLESKI	RIANFOLK PE	TIMELDKNVP	PRIKL:	/12
4.	OYLX	, 90	-00	1.0	120	130	140	150	160	
9.	EXET									kınasc
10.	7 7 9 6									
11.	i Tai									:
12.	VEGA	DFGIANKIEAGNEF	CONTROTPER	VAPEIVNYSP!	GLEADHUSIC	VITYILLSGA	SPFLGETKO	ETLINISAVIN	POFDERY	1
		170	150	.90	200	210	220	230	240	1
				MTIAQNLX (X)	«1x					
									ASFERF	
		250	260	276	280	290	300	310	320	1

Trquire 4

Figure 5

Marzo

Tave 7

Putative nucleotide sequence of smooth muscle MYPT-kinase showing start site in bold.

GNTATGNATA TCGGTTTAAT CGGCCGGAGC TCGCCCNCNG GGCAGCTGGA

CTCCCTCTCA	GACCTCCTTC	TTTCTCGCCC	TCAGCACGGG	ATTAACCTCA	100
CTTGACTGTT	CTTGGGTCCC	CGGTGCCGGG	CCAGCGTCCT	CTCCCTCAAG	150
GCAATCCCCA	AGTGTCTGTC	ATGAGGCTCT	TTGGGCAGTT	CTGTTGTTGT	200
GGGAAACCTG	GGAACAGATG	CACAGAGGCT	GGGGTACAGA	GTCCTGCCTT	250
CCTCTGGGTC	TGCAGCGCTT	AGCTGTTCCT	TCCCCCACAG	CGGCCAGTTC	300
GCCATCGTGC	GCAAGTGCCA	GCAGAAGGGC	ACCGGCATGG	AGTACGCGGC	350
CAAGTTCATA	AAGAAGCGGC	GCCTGCCGTC	CAGCCGGCGC	GGTGTGAGCC	400
GTGAGGAGAT	CGAGCGCGAG	GTGAGCATCC	TGCGCGAGAT	CCGCCACCCC	450
AACATCATCA	CGCTGCACGA	TGTGTTCGAG	AACAAGACAG	ATGTGGTGCT	500
GATCTTGGAG	CTGGTGTCCG	GCGGCGAACT	TTTCGACTTT	CTGGCTGAGA	550
AGGATCACTG	ACAGAGGATG	AGGCCACGCA	GTTCCTCAAG	CAGATCCTGG	600
ACGGTGTCCA	CTACCTGCAC	TCCAAGCGCA	TCGCGCACTT	TGACCTGAAG	650
CCGGAGAACA	TCATGTTGCT	GGACAAGCAT	GCAGCCAGCC	CACGCATTAA	700
GCTCATCGAC	TTTGGCATCG	CGCACAGGAT	CGAGGCCGGT	AGCGAGTTCA	750
AGAACATCTT	TGGCACGCCA	GAGTTCGTCG	GTGAGGGGCA	GGTGTGGGCA	800
CCACCCGATA	GGGTAGATTT	TGCACGGCCT	TGGCCTGACC	TGCCTCAACA	850
ATCCTGTCTT	CCACAGCCCC	TGAGATTGTA	AACTATGAAC	CACTTGGCTT	900
GGAAGCTGAT	ATGTGGAGCA	TCGGCGTCAT	CACCTACATC	CTGTGAGTGC	950
CTGAGATGGG	CAGGGGCCTC	AGACTGTACC	TGCTAGAGGC	CCAGGGATCA	1000
GGGCTGGCAC	CTCTGCAAAC	TGCAAACACT	GGGGCTGAGA	GATGTCCCTG	1050
GGAACNCTGG	ATATGCCTGG	GCCCCACCAA	NGTAGGACCA	TNC	1093

Ingure 9

Deduced amino acid sequence of rat aorta smooth muscle MYPT-kinase (underlined shows alignment with 52kDa ZIP kinase sequence)

XMXIGLIGRS SPXGQLDSLS DLLLSRPQHG INLT*LFLGP RCRASVLSLK AIPKCLS*GS LGSSVVVGNL GTDAQRLGYR VLPSSGSAAL SCSFPHSGOF AIVRKCOOKG TGMEYAAKFI KKRRLPSSRR GVSREEIERE VSILREIRHP NIITLHDVFE NKTDVVLILE LVSGGELFDF LAEKDH*QRM RPRSSSSRSW TVSTTCTPSA SRTLT*SRRT SCCWTSMQPA HALSSSTLAS RTGSRPVASS RTSLARQSSS VRGRCGHHPI G*ILHGLGLT CLNNPVFHSP *DCKL*TTWL GS*YVEHRRH HLHPVSA*DG QGPQTVPARG PGIRAGTSAN CKHWG*EMSL GTLDMPGPHQ XRTX