2017 Fall: COMP-SCI 5590/490 - Special Topics

Deep Learning

Lab Assignment

I. Introduction

This lab assignment has the following three parts:

- Implement a text classification code using the CNN model
- Illustrate the graph in TensorBoard
- Change the hyperparameter or learning rate and compare the results of the run

For this exercise, two text files rt-polarity.neg and rt-polarity.pos were used.

II. Objectives

The Objectives of this lab exercise were to write a program to classify text using the CNN model, determine the effect of changing the learning rate and then illustrating the results in TensorBoard.

III. Approaches/Methods

In order to complete this exercise, the Python programing was broken into three programs that manages the data files, trained the data, converted the text file into a useable format and then completes the CNN model.

IV. Workflow

The following code was used for each of the three files.

Training

```
#Don Baker
#Comp-Sci 5590
#Deep Learning Lab 2
import tensorflow
import numpy
import os
import time
import datetime
import FileFunction
import TextConvNet
from tensorflow.contrib import learn
#%%Parameters%%#
# Data loading parameters
#Percent of data being split for validation set
dev percent = 0.1
#Data file for positive examples
pos dat file = 'rt-polarity.pos'
#Data file for negative examples
neg dat file = 'rt-polarity.neg'
#-->Hyperparameters
#Embedding size
embed size = 128
\#String for filter size of 3, 4, and 5
temp = "3, 4, 5"
#Filter size
```

Don Baker Class ID 6 Page 2

```
fil sz = list(map(int, temp.split(",")))
#Number of filters
fil num = 128
#Original dropout keep probability
drop keep = 0.5
#Initialize 12 lambda reg as 0.0
12 = 0.0
#Learning Rate
learning rate = 1e-2
#-->Training parameters
#Size of each batch
batch_sz = 64
#Total number of epochs
epoch num = 200
#Validation evaluations
eval_on dev = 100
#Checkpoint evaluations
ckpt = 100
#Total number of checkpoints
ckpt_num = 5
#-->Misc Parameters
soft pl = True
log pl = False
#%%Prep Data for Text Classification%%#
#-->Load data
print("\nLoad data from input files...")
x text, y = FileFunction.import data(pos dat file, neg dat file)
#-->Build vocabulary
print("\nBuilding Vocabulary...")
#Determine the maximum length of the document from the combined data of positive and negative samples
max document length = max([len(x.split(" ")) for x in x text])
#Process the vocabulary using VocabularyProcessory from tensorflow.contrib learn
process_voc = learn.preprocessing.VocabularyProcessor(max_document_length)
#Convert data into numpy array and use fit transform from the vocabulary above
x = numpy.array(list(process voc.fit transform(x text)))
#-->Randomly shuffle data
#Random number generator through numpy
numpy.random.seed(10)
#Create index for start and end for randomly shuffled data
shuffle indices = numpy.random.permutation(numpy.arange(len(y)))
#Shuffled value of x
x \text{ shuffled} = x[\text{shuffle indices}]
#Shuffled value of y
y shuffled = y[shuffle indices]
#-->Split data into training and testing data.
#Testing/Validation data is dev_percent of data. In this case it is 10% of the data
index dev = -1 * int(dev percent * float(len(y)))
x_train, x_dev = x_shuffled[:index_dev], x_shuffled[index_dev:]
y_train, y_dev = y_shuffled[:index_dev], y_shuffled[index_dev:]
#-->Training
#Create the tensorflow graph and session
with tensorflow.Graph().as default():
    #Define session configuration
    configuration = tensorflow.ConfigProto(allow soft placement=soft pl,log device placement=log pl)
    #Create the session using the configuration created above
    sess = tensorflow.Session(config=configuration)
    with sess.as default():
        #Classify text using TextCNN from file TextConvNet. This is the convolution neural network for text
        #classification
        conv neural net = TextConvNet.TextCNN(len seq=x train.shape[1],class num=y train.shape[1],
                                               vocab=len(process voc.vocabulary),sz emb=embed size,
                                               sz fil=fil sz,fil num=fil num,12 reg lambda=12)
        # Define Training procedure
        #Define the global step and create variable tensor
```

```
stp glo = tensorflow.Variable(0, name="stp glo", trainable=False)
#Create optimizer with a learning rate of learning rate
opt = tensorflow.train.AdamOptimizer(learning rate)
#Determine gradients and variables
gradient = opt.compute gradients(conv neural net.loss)
#Create training optimizer
train op = opt.apply gradients(gradient, global step=stp glo)
#Determine the values of gradient values and sparsity
grad summaries = []
for g, v in gradient:
    if q is not None:
        #Write gradient history summary
        grad hist summary = tensorflow.summary.histogram("{}/grad/hist".format(v.name), g)
        #Write sparsity summary
        sparsity summary = tensorflow.summary.scalar("{}/grad/sparsity".format(v.name),
                                                     tensorflow.nn.zero fraction(g))
        #Add to grad Summaries from gradient history and sparsity history
        grad summaries.append(grad hist summary)
        grad summaries.append(sparsity_summary)
#Merge summary for grad summaries
grad_summaries_merged = tensorflow.summary.merge(grad_summaries)
#Determine directory for output of the models and summary
#timestamp
timestamp = str(int(time.time()))
#Output directory
out dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
#-->Loss Summary
loss summary = tensorflow.summary.scalar("loss", conv neural net.loss)
#-->Accuracy Summary
acc summary = tensorflow.summary.scalar("accuracy", conv neural net.accuracy)
#-->Train Summaries
#Train summary optimizer
train summary op = tensorflow.summary.merge([loss summary, acc summary, grad summaries merged])
#Train summary directory
train summary dir = os.path.join(out dir, "summaries", "train")
#Train summary writer
train summary writer = tensorflow.summary.FileWriter(train summary dir, sess.graph)
#-->Validation Set Summaries
#Validation summary optimizer
dev_summary_op = tensorflow.summary.merge([loss_summary, acc_summary])
#Validation summary directory
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
#Validation summary writer
dev summary writer = tensorflow.summary.FileWriter(dev summary dir, sess.graph)
#Checkpoint directory within current directory
#Directory for created checkpoints
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
#Check if directory exists. If yes, create a new one
if not os.path.exists(checkpoint dir):
   os.makedirs(checkpoint dir)
#Save to tensorboard
saver = tensorflow.train.Saver(tensorflow.global_variables(), max_to_keep=ckpt_num)
#-->Write vocabulary
process voc.save(os.path.join(out dir, "vocab"))
#-->Initialize variables
sess.run(tensorflow.global variables initializer())
#-->Generate batches inside FileFuntion
batches = FileFunction.iteration bat(
   list(zip(x_train, y_train)), batch_sz, epoch_num)
#-->Training loop.
for batch in batches:
    \#Separate batch into x_batch and y_batch
    x_batch, y_batch = zip(*batch)
    #Define the feed dict to load into tensorflow placeholders for conv neural net for training
```

```
feed dict = {
    conv neural net.input x: x batch,
    conv_neural_net.input_y: y_batch,
    conv neural net.drop keep: drop keep
#Run the training iteration inside each batch. Returns the step, summaries, loss, and accuracy
_, step, summaries, loss, accuracy = sess.run(
    [train_op, stp_glo, train_summary_op, conv_neural_net.loss, conv_neural_net.accuracy],
    feed dict)
#Create a timestamp for each training iteration
time str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time str, step, loss, accuracy))
train summary writer.add summary(summaries, step)
current step = tensorflow.train.global step(sess, stp glo)
#Validation part of training
if current step % eval on dev == 0:
    print("\nEvaluation:")
    # Define the feed dict to load into tensorflow placeholders for conv neural net for validation
    feed dict = {
        conv neural net.input x: x batch,
        conv neural net.input y: y batch,
        conv_neural_net.drop_keep: 1.0
    #Run the validation iteration inside each batch. Returns the step, summaries, loss, and accuracy
    step, summaries, loss, accuracy = sess.run(
        [stp_glo, dev_summary_op, conv_neural_net.loss, conv_neural_net.accuracy],
        feed dict)
    # Create a timestamp for each training iteration
    time str = datetime.datetime.now().isoformat()
    print("{}: step {}, loss {:g}, acc {:g}".format(time str, step, loss, accuracy))
    #Write validation summary
    if dev summary writer:
       dev summary writer.add summary(summaries, step)
    print("")
#Save model after each checkpoint
if current_step % ckpt == 0:
    path = saver.save(sess, checkpoint prefix, global step=current step)
    print("Saved model checkpoint to {}\n".format(path))
```

This code completes functions with the data file.

The following is the code for the text conversion and CNN model.

```
import tensorflow
tensorflow.reset_default_graph()
class TextCNN (object):
    # len seq = length of the sentences, classes = number of classes in output layer, vocab = size of vocabulary
(needed
    # to define size of embedding layer), embed sz = dimensionality of embeddings, fil sz = number of words
    # convolutional filters cover, filters = number of filters per filter size
         init__(
     self, len seq, class num, vocab, sz emb, sz fil, fil num, 12 reg lambda=0.0):
        # Placeholders for input, output and dropout
        x = tensorflow.placeholder(tensorflow.int32, [None, len seq], name="input x")
        self.input_y = tensorflow.placeholder(tensorflow.float32, [None, class_num], name="input_y")
        self.drop keep = tensorflow.placeholder(tensorflow.float32, name="drop keep")
        # Keeping track of 12 regularization loss
        12 loss = tensorflow.constant(0.0)
        \# Define embedding layer that maps vocabulary word indices into low-dim vectors
        # This is a lookup table learned from the data
```

```
# Forces an operation to be executed on CPU instead of the default GPU if available
        # Embeddings does not support GPU execution so CPU is needed to execute
        with tensorflow.device('/cpu:0'), tensorflow.name_scope("embedding"):
            # Embedding matrix learned at training. tensorflow.embedding lookup creates the embedding operation
            # Result will be a 3-D tensor with shape[None, len seq, sz emb]
            self.W = tensorflow.Variable(tensorflow.random uniform([vocab, sz emb], -1.0, 1.0), name="W")
            self.emb ch = tensorflow.nn.embedding lookup(self.W, self.input x)
            self.emb ch exp = tensorflow.expand dims(self.emb ch, -1)
        # Build convolutional layers followed by max-pooling
        # Each convolution produces tensors with different shapes. Layers will be created for each of them
        # then combined into a feature vector
        outs = []
        for i, filter size in enumerate(sz fil):
            with tensorflow.name scope ("conv-maxpool-%s" % filter size):
                # Layer for Convolution
                shape fil = [filter size, sz emb, 1, fil num]
                W = tensorflow.Variable(tensorflow.truncated normal(shape fil, stddev=0.1), name="W")
                b = tensorflow.Variable(tensorflow.constant(0.1, shape=[fil num]), name="b")
                convolution = tensorflow.nn.conv2d(self.emb_ch_exp,W,strides=[1, 1, 1, 1],padding="VALID",
                                            name="conv")
                # Nonlinearity Application
                h = tensorflow.nn.relu(tensorflow.nn.bias add(convolution, b), name="relu")
                # Maxpooling over the outputs
                pd = tensorflow.nn.max pool(h,ksize=[1, len seq - filter size + 1, 1, 1],strides=[1, 1, 1, 1],
                                                padding='VALID', name="pool")
                outs.append(pd)
        #Combine into feature vector
        num_filters_total = fil_num * len(sz fil)
        self.h pool = tensorflow.concat(outs, 3)
        self.h pool flat = tensorflow.reshape(self.h pool, [-1, num filters total])
        # Dropout Layer
        # Dropout later desables a fraction of its neurons. This prevents neurons from co-adapting
        # and forces them to learn individually useful features
        # Add the dropout layer
        with tensorflow.name_scope("dropout"):
            self.h drop = tensorflow.nn.dropout(self.h pool flat, self.drop keep)
        # Determine prediction and score from feature vector from max pooling with the dropout applied
        # Complete matrix multiplication and pick the class with highest score
        with tensorflow.name scope("output"):
            W = tensorflow.get variable("W", shape=[num filters total, class num],
                                        initializer=tensorflow.contrib.layers.xavier initializer())
           b = tensorflow.Variable(tensorflow.constant(0.1, shape=[class num]), name="b")
            12 loss += tensorflow.nn.12_loss(W)
               loss += tensorflow.nn.12 loss(b)
            self.scores = tensorflow.nn.xw plus b(self.h drop, W, b, name="scores")
            self.predictions = tensorflow.argmax(self.scores, 1, name="predictions")
        # Calculate the loss
        with tensorflow.name scope("loss"):
            {\tt losses = tensorflow.nn.softmax\_cross\_entropy\_with\_logits\_v2 (logits=self.scores, \ labels=self.input \ y)}
            self.loss = tensorflow.reduce mean(losses) + 12 reg lambda * 12 loss
        # Calculate the accuracy
        with tensorflow.name scope("accuracy"):
            correct predictions = tensorflow.equal(self.predictions, tensorflow.argmax(self.input y, 1))
           self.accuracy = tensorflow.reduce mean(tensorflow.cast(correct predictions, "float"),
name="accuracy")
import numpy
import re
#This function takes the input text (string) and then line by line, cleans up the data by removing the special
#characters shown below. It will a return a string that is completely stripped of special characters and
#characters, as well as all lowercase characters
```

Don Baker Class ID 6 Page 6

```
def data cleanup(string):
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", "", string)
    string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
   string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
    string = re.sub(r"\'ll", "\'ll", string)
   string = re.sub(r",", ", ", string)
string = re.sub(r"!", " ! ", string)
    string = re.sub(r"\(", "\ (", string)
    string = re.sub(r"\)", "\) ", string)
    string = re.sub(r"\?", " \? ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip().lower()
#This function pulls data from a positive data file and negative data file. It will pull in the data (x) and
#clean the data by sending it to the function data cleanup(sent) sentence by sentence. This function will return
x text
#which is the clean data set, and it will also return y, which is a collection of the positive and negative
labels
#in the dataset. Y will be returned as a numpy array
def import data (positive data file, negative data file):
    # Load data from files pos and neg datasets
    #Open pos dataset and read it line by line
    positive examples = list(open(positive data file, "r").readlines())
    #Strip the data contained in the pos dataset
    positive examples = [s.strip() for s in positive examples]
    #Open neg dataset adn read it line by line
    negative_examples = list(open(negative_data_file, "r").readlines())
    #Strip the dadta contained in the pos dataset
    negative examples = [s.strip() for s in negative examples]
    #Split data contained in x text by words (tokenization)
    #Compbine the positive and negative samples and store result in x text
    x text = positive examples + negative examples
    \#Clean the data in x text by sending it to data cleanup() sentence by sentence in the data of x text
    x \text{ text} = [\text{data cleanup(sent) for sent in } x \text{ text}]
    # Generate labels
    #Create positive labels from the positive dataset
    positive labels = [[0, 1] for     in positive examples]
    #Create negative labels from the negative dataset
    negative labels = [[1, 0] for    in negative examples]
    \# Concat results in a numpy array stored in y. This is a collection of both positive and negative labels
    y = numpy.concatenate([positive labels, negative labels], 0)
    \#Returns both x_text and y
    return [x_text, y]
#This function returns batches for the training procedure to traverse through. It will date the data collection
#both x and y, the size of each batch, the number of epochs, and shuffle which by default True.
def iteration_bat(data, sz_bat, num_epochs, shuffle=True):
    #Convert the received data into a numpy array
    data = numpy.array(data)
    #Determine the size of the received data
    data_size = len(data)
    #Determine the number of batches per epoch from the length of data divided by the size of each batch, then
add 1
    epoch bat = int((len(data)-1)/sz bat) + 1
    #Travers through each epoch a total of num epochs times
    for epoch in range (num epochs):
        #This if/else statement shuffles the data if the value of shuffle is True. By default, it is true
        if shuffle:
            #Determine the index for the shuffled data
            index = numpy.random.permutation(numpy.arange(data_size))
            dat shuf = data[index]
        #If value of shuffle is false, the data will not be shuffled
        else:
            dat shuf = data
        #for each batch in the range number of epochs per batch, determine the start and end index for the
shuffled
        #data
        for z in range(epoch bat):
```

```
start = z * sz_bat
end = min((z + 1) * sz_bat, data_size)
yield dat shuf[start:end]
```

V. Datasets

The datasets used were rt-polarity.neg and rt-polarity.pos.

VI. Parameters

The main parameters explored in this lab were the learning rate or hyperparameter and the number of iteration. The two learning rates used were 1e-2 and 9e-5. The number of iterations was 30,000 for each run.

VII. Evaluation and Discussion

The evaluation of the data was completed using the above referenced models. The following screenshot illustrates the model.

The results for the run with a learning rate of 1e-2 resulted in a loss of 0 and an accuracy of 1. The run with a learning rate of 9e-5 resulted in a loss of 0.000197424 and an accuracy of 1.

VIII. Conclusion

Both learning rates used resulted in an accuracy of 1. However the faster learning rate resulted in a great loss.

The following graphs were obtained from TensorBoard.

Main Graph

Auxiliary Nodes

