Complete Documentation

This application solves the problem of visualizing the ballistic movement of a projectile after firing from a cannon as a function taking into account the recoil of the cannon. Options help to determine the geometric dimensions of the cannon, its mass, as well as the geometric dimensions and masses of projectile and target. Additionally, diagrams of forces, impulses and velocities for the cannon and projectile are also constructed. The projectile hitting the target is visualized on the graph, and the size of the target is also configurable.

APP tion

Wain builtons options

Configurable

Kinetic energy of the projectile:

$$T_p = rac{m_p v_p^2}{2} = \eta \cdot Q_g = \eta \cdot q_g m_g$$

where v_p is the initial velocity of projectile, η is the efficiency of cannon and Q_g is the amount of heat released during the burning of gunpowder.

The projectile X-coordinate function of time:

$$x_p(t) = x_0 + \cos \varphi \cdot v_p \cdot t$$

where x_0 is the X-coordinate of starting point and φ is the angle of cannon firing.

Jeedulas

The projectile Y-coordinate function of time:

$$y_p(t) = y_0 + \sin \varphi \cdot v_p \cdot t - \frac{g \cdot t^2}{2}$$

where y_0 is the Y-coordinate of starting point.

The cannon X-coordinate function of time:

$$x_c(t) = x_0 - v_c \cdot t + \frac{F_f t^2}{2 \cdot m_c}$$

where v_c is the initial velocity of cannon, F_f is the rolling friction force of cannon and m_c is the mass of cannon.

Usedulas

The rolling friction force of cannon:

$$F_f = \mu \cdot \frac{N_c}{r_w}$$

where μ is the rolling friction force coefficient, N_c is the reaction force of the cannon support and r_w is the radius of cannon wheel.

Initial impulses equation:

$$J_p - J_c = m_p v_p - m_c v_c = 0$$

Also, the cannon impulse function of time is defined as

$$J_c(t) = \max\left(0, m_c v_c - \int F_f dt\right)$$

Jeedulas