Fakulta riadenia a informatiky Informatika

Semestrálna práca 2 Diskrétna simulácia

Rok: 2020/2021

Emanuel Zaymus, 5ZIS12

Úvod

Navrhol a implementoval som simulačnú aplikáciu s udalostným simulačným jadrom podľa zadania – Simulácia vakcinačného centra. Použil som objektovo-orientovaný programovací jazyk Kotlin. Pre vytvorenie grafického prostredia som použil framework TornadoFX.

Diagram udalostí

Popis jednotlivých udalostí:

Príchod pacienta – Pacienti chodia v pravidelných intervaloch, každú minútu, s tým, že každý deň niekoľko pacientov nepríde. Po príchode ide pacient priamo na registráciu alebo, sa postaví do radu na čakanie.

Začiatok registrácie – Začiatok registrácie pacienta administratívnym pracovníkom, pacient si náhodne vyberie z voľných pracovníkov. Registrácia trvá náhodnú dobu z náhodného rozdelenia pravdepodobnosti *Unif(140, 220)* sekúnd.

Koniec registrácie – Po zaregistrovaní nastane koniec registrácie a pacient pokračuje vyšetrením alebo sa postaví do radu pred vyšetrovacou miestnosťou. Ďalší čakajúci pacient sa vyberie z radu na registráciu a nastane začiatok jeho registrácie.

Začiatok vyšetrenia – Pacient si náhodne vyberie z voľných doktorov a začne jeho vyšetrenie. Vyšetrenie trvá náhodný čas z náhodného rozdelenia pravdepodobnosti *Exp(1/260)* sekúnd.

Koniec vyšetrenia – Pacientovo vyšetrenie sa ukončí a pacient pokračuje na samotné očkovanie ak je nejaká zdravotná sestra voľná alebo sa postaví do radu pred vakcinačnou miestnosťou.

Začiatok očkovania – Pacient si náhodne vyberie z voľných sestier a nastane začiatok jeho očkovania, ktoré trvá náhodnú dobu z rozdelenia pravdepodobnosti *Tria*(20,75,100) sekúnd.

Koniec očkovania – Po úspešnom očkovaní sa pacient presúva do čakárne.

Začiatok čakania – Pacientovi je určený čas, ktorý má stráviť v čakárni. 95% pacientov čaká 15 minúť, 5% pacientov 30 minút.

Koniec čakania – Po uplynutí doby čakania pacient odchádza zo systému.

Návrh simulačného jadra

Na UML diagrame vyššie môžeme vidieť základný návrh udalostného simulačného jadra, ktoré vychádza zo simulácie *Monte Carlo*. Abstraktná trieda *EventBasedSimulation* je všeobecné udalostne orientované simulačné jadro s

funkcionalitou spomalenia a zrýchlenia simulácie, zastavenia a opätovného spustenia simulácie či volania abstraktnej metódy pre animáciu. Trieda VaccinationCentreSimulation je jeho konkrétnou implementáciou.

Spomalenie/zrýchlenie simulácie

Spomalenie a zrýchlenie simulačného behu riešim plánovaním udalosti DelaySystemEvent, ktorá na krátky čas uspí vlákno v ktorom sa simulácia vykonáva. Používateľ si môže nastaviť frekvenciu plánovania tejto udalosti ako aj dĺžku čakania (spania) priamo z užívateľ ského prostredia.

Animácia

Všeobecné simulačné jadro má abstraktnú metódu animate(), ktorá sa volá po každom vykonaní udalosti ak je animácia zapnutá.

Pozastavenie simulácie

Simulačné jadro poskytuje pozastavenie simulácie, kedy program vojde do slučky, kde čaká, až kým nebude simulácia opätovne spustená alebo ukončená.

Štatistiky

Zber všetkých štatistík je úplne oddelený od samotného simulačného jadra. Štatistické triedy si počítajú všetky štatistiky samé. Sú napojené na udalosti pomocou ActionListener-ov, ktoré sa registrujú v danej triede.

Prepojenie s GUI

Prepojenie s grafickým užívateľským prostredím je riešené, taktiež, pomocou ActionListener-ov. Medzi samotnou simuláciu a GUI je ešte rozhranie/trieda Experiment, ktorá oddeľuje spúšťanie samotnej simulácie alebo viacerých behov simulácie od UI.

Simulačná štúdia a experimenty

V semestrálnej práci som, podľa zadania, vykonal viaceré experimenty.

1. Priemerné vyťaženie pracovníkov v súčasnom stave

V súčasnosti vo vakcinačnom centre pracuje 5 administratívnych pracovníkov, 6 lekárov a 3 zdravotné sestry. Denne je objednaných 450 pacientov.

Počet replikácií: 10 000

Pracovníci	Počet pracovníkov	Priemerné vyťaženie
Admin. pracovníci	5	0.5515
Doktori	6	0.6644
Sestričky	3	0.3319
Počet pacientov	450	

Rada	Priemerná dĺžka radu	Priemerná doba čakania (s)			
Registrácia	0.0000	0.0000			
Vyšetrenie	0.2045	13.3500			
Vakcinácia	0.0200	1.3088			

Priemerný počet pacientov čakárni vyšiel na **14,4680** s intervalom spoľahlivosti <**14,4635**; **14,4726**>.

Vývoj dĺžky radu pred vyšetrovacou miestnosťou v čase pre jeden náhodný beh simulácie.

2. Úprava modelu pre 2500 pacientov pri zachovaní vyťažeností

Pre tento experiment som postupoval analyticky.

Navýšil som dennú kapacitu na 2500 pacientov denne.

- Pri tejto kapacite som našiel najmenší počet admin. pracovníkov, pre ktorých sa nezvýši vyťaženosť nad 55.15% (23 pracovníkov).
- Pri tomto počte admin. pracovníkov som našiel najmenší počet doktorov, pre ktorých sa nezvýši vyťaženosť nad 66,44% (28 doktorov).
- Pri tomto počte admin. pracovníkov a doktorov som našiel najmenší počet zdravotných sestier, pre ktoré sa nezvýši vyťaženosť nad 33,19% (14 sestier).

Počet replikácií: 10 000

Pracovníci	Počet pracovníkov	Priemerné vyťaženie	Počet pracovníkov	Priemerné vyťaženie	
Admin. pracovníci	5	0.5515	23	0.5500	
Doktori	6	0.6644	28	0.6526	
Sestričky	3	0.3319	14	0.3263	
Počet pacientov	450		2500		

Rada	Priemerná dĺžka radu	Priemerná doba čakania (s)			
Registrácia	0.0000	0.0000			
Vyšetrenie	0.0092	0.1310			
Vakcinácia	0.0001	0.0009			

Vývoj dĺžky radu pred vyšetrovacou miestnosťou v čase pre jeden náhodný beh simulácie.

3. Zníženie počtu pracovníkov

Ďalšou úlohou bolo určiť najmenší počet pracovníkov (doktorov), kedy by pri počte 2500 pacientov denne priemerná dĺžka radu pred vyšetrovacou miestnosťou neprekročila 12 ľudí a priemerný čas čakania na vyšetrenie neprekročil 15 minúť (pričom systém musí byť stabilný).

Sériou pokusov som zistil, že minimálny počet doktorov pri ktorom sú splnené všetky podmienky je **21**.

Počet replikácií pre čiastkový experiment: 200

Počet zamestnancov		Registrácia		Lekárska prehliadka		Očkovanie		Vyťaženie			
Admin. pracovníci	Doktori	Sestričky	Dĺžka radu	Čakanie (s)	Dĺžka radu	Čakanie (s)	Dĺžka radu	Čakanie (s)	Admin. pracovníci	Doktori	Sestričky
13	20	5	46.3582	687.1996	4.1868	62.1292	3.8254	56.7095	0.9340	0.8788	0.8770
13	20	6	46.3060	685.9667	4.1851	61.9848	0.7271	10.7703	0.9349	0.8796	0.7317
13	20	7	46.9760	696.1942	4.1486	61.4713	0.2346	3.4749	0.9346	0.8772	0.6267
13	21	5	46.0982	682.2991	1.4663	21.6969	3.2213	47.6740	0.9356	0.8356	0.8783
13	21	6	46.1330	683.4230	1.4642	21.6901	0.6645	9.8420	0.9348	0.8358	0.7314
13	21	7	46.9852	695.1967	1.5472	22.8980	0.2172	3.2136	0.9355	0.8385	0.6272
13	22	5	46.0317	680.8342	0.6615	9.7825	2.9275	43.2969	0.9362	0.7999	0.8790
13	22	6	48.3159	714.4945	0.6171	9.1179	0.6231	9.2120	0.9366	0.7988	0.7326
13	22	7	47.8849	707.4038	0.6362	9.4016	0.2101	3.1041	0.9370	0.8008	0.6283
14	20	5	0.5169	7.4048	10.9174	156.7651	8.5491	122.5024	0.8958	0.9057	0.9056
14	20	6	0.5290	7.5622	11.0026	157.8150	1.0496	15.0239	0.8978	0.9065	0.7564
14	20	7	0.5313	7.5899	11.9395	171.1868	0.3227	4.6160	0.8980	0.9076	0.6486
14	21	5	0.5400	7.6837	3.3180	47.2725	8.1883	116.5440	0.9015	0.8653	0.9120
14	21	6	0.5561	7.8985	3.5853	50.9344	0.9935	14.1386	0.9029	0.8692	0.7608
14	21	7	0.5504	7.8212	3.4720	49.3864	0.3134	4.4587	0.9029	0.8673	0.6519
14	22	5	0.5360	7.6277	1.3747	19.5632	6.6463	94.5562	0.9019	0.8291	0.9122
14	22	6	0.5456	7.7439	1.4247	20.2140	0.8996	12.7879	0.9036	0.8315	0.7614
14	22	7	0.5525	7.8458	1.3461	19.1410	0.2895	4.1206	0.9026	0.8294	0.6519
15	20	5	0.0430	0.6171	11.9101	171.6557	8.9885	128.7641	0.8355	0.9060	0.9058
15	20	6	0.0452	0.6463	12.0370	172.6986	1.0252	14.6737	0.8377	0.9082	0.7560
15	20	7	0.0438	0.6278	12.1334	174.1348	0.3318	4.7548	0.8370	0.9071	0.6477
15	21	5	0.0440	0.6270	3.5563	50.7367	7.6466	108.8801	0.8408	0.8671	0.9107
15	21	6	0.0454	0.6461	3.9315	55.8738	1.0080	14.3430	0.8425	0.8706	0.7603
15	21	7	0.0441	0.6289	3.5350	50.3760	0.3121	4.4531	0.8408	0.8687	0.6503
15	22	5	0.0452	0.6434	1.2992	18.4800	6.6499	94.5199	0.8428	0.8297	0.9128
15	22	6	0.0450	0.6384	1.4668	20.8279	0.8997	12.7818	0.8438	0.8318	0.7619
15	22	7	0.0437	0.6225	1.3406	19.0859	0.2854	4.0684	0.8411	0.8291	0.6508

Pri počte zamestnancov: 14 administratívnych pracovníkov, 21 doktorov a 6 sestier je systém ideálny pre zvládnutie 2500 pacientov denne s minimalizáciou doktorov.

Vývoj dĺžky radu pred vyšetrovacou miestnosťou v čase pre jeden náhodný beh simulácie.

Ako môžeme vidieť systém je pri tomto počte zamestnancov stále stabilný – dĺžka radu konštantne nerastie počas dňa.

4. Závislosť počtu osôb čakajúcich na vyšetrenie na počte lekárov

Aplikácia ponúka experiment - simulačný beh, kedy aplikácia vykreslí graf zobrazujúci závislosť priemernej dĺžky radu pred lekárskym vyšetrením na počte lekárov. Užívateľ si zvolí minimálny počet lekárov, maximálny počet lekárov a koľko replikácií sa má vykonať na zadanie jedného bodu do grafu.

A. Experiment pre súčasný stav: 450 pacientov, 5 admin. pracovníkov a 3 zdravotné sestry

Na grafe nižšie môžeme sledovať vývin dĺžky radu pred vyšetrením pri počte lekárov 1 až 7. Počet replikácií na jeden bod bolo 1000.

B. Experiment pre stav: 2500 pacientov, 23 admin. pracovníkov, 14 sestier

Na grafe nižšie môžeme sledovať vývin dĺžky radu pred vyšetrením pri počte lekárov 2 až 30. Počet replikácií na jeden bod bolo 100.

Overenie vlastných generátorov náhodných čísel

Pre generovanie náhodných čísel som vytvoril vlastné generátory náhodných čísel z exponenciálneho a trojuholníkového rozdelenia. Generátory som overil nástrojom Input Analyzer.

Overenie generátora s exponenciálnym rozdelením pravdepodobnosti

Overenie generátora s trojuholníkovým rozdelením pravdepodobnosti

