Dominik Wawszczak Student ID Number: 440014

Group Number: 3

Consider an instance G^* of the 3-Coloring Problem, with $V(G^*) = N$. Set $k = \lfloor \log_3 \log_2 N \rfloor - 1^1$. We partition the vertices of G^* into groups of size k, with the final group potentially containing fewer than k vertices.

We construct a graph G – an instance of the problem from the statement. Let n denote the number of groups. We define V(G) as $\{1, \ldots, n\} \times \{1, \ldots, n\}$. It holds that

$$n \leqslant \frac{N}{k} + 1 = \frac{N}{|\log_3 \log_2 N| - 1} + 1 \leqslant \frac{\alpha N}{\log_3 \log_2 N},$$

for some constant α , because

$$\frac{N}{\lfloor \log_3 \log_2 N \rfloor - 1} + 1 \leqslant \frac{\alpha N}{\log_3 \log_2 N} \iff \frac{\log_3 \log_2 N}{\lfloor \log_3 \log_2 N \rfloor - 1} + \frac{\log_3 \log_2 N}{N} \leqslant \alpha,$$

which is true since $\frac{x}{\lfloor x \rfloor - 1} < 3$ for $x \ge 2$, and $\frac{\log_3 \log_2 N}{N}$ is bounded by a constant, as it converges to 0. Thus, n = o(N).

Let l_i denote the number of possible 3-colorings of the *i*-th group $(1 \le i \le n)$. It follows that

$$l_i \leqslant 3^k = 3^{\lfloor \log_3 \log_2 N \rfloor - 1} \leqslant 3^{\log_3 \log_2 N - 1} = \frac{\log_2 N}{3} = \log_2 \sqrt[3]{N} < \log_2 n,$$

because

$$n \geqslant \frac{N}{k} = \frac{N}{|\log_3 \log_2 N| - 1} > \sqrt[3]{N}.$$

Consider an arbitrary ordering of all the colorings in each group, such as lexicographic order. For every $1 \le i_1, i_2 \le n$ with $i_1 \ne i_2$, and for every $1 \le j_1 \le l_{i_1}$, $1 \le j_2 \le l_{i_2}$, we create an edge between vertices (i_1, j_1) and (i_2, j_2) if and only if the colorings j_1 and j_2 are compatible. This construction satisfies both conditions stated in the problem.

We will prove the following equivalence:

$$G^*$$
 is 3-colorable \iff G contains a clique of size n . (1)

Assume G^* is 3-colorable. Then, the vertices representing the partial colorings of each group form a clique. Conversely, if G contains a clique of size n, a valid 3-coloring of G^* can be constructed by selecting the corresponding colorings for every group.

Suppose there exists a constant c such that the problem from the statement can be solved in time $\mathcal{O}(c^n) = \mathcal{O}(2^{\lambda n})$, where $\lambda = \log_2 c$. This implies that the 3-Coloring Problem could be solved in time $\mathcal{O}(2^{\lambda n}) = \mathcal{O}(2^{o(N)})$, due to the equivalence (1). However, by the Sparsification Lemma and the linear reduction from 3-SAT to 3-Coloring, this contradicts the Exponential Time Hypothesis, completing the proof.

¹We assume that $N \ge 512$, as smaller values would make k either non-positive or undefined.