

IBM PROFESSIONAL CERTIFICATE: Unsupervised Learning - Clustering

Ibrahim Mohamed

August 2022

MAIN OBJECTIVE

- This analysis' primary goal is to cluster bank customers into groups and validate if they are potential customer for term deposit.
- So clustering is the main target analysis for unsupervised learning
- Show the correlation between the features & the most features with impact.
- Validate the clusters with binary classification.

ABOUT THE DATA

- This dataset is downloaded from The University of California Irvine Machine Learning Repositor.
- The data is related with direct marketing campaigns of a Portuguese banking institution.
- The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be (or not) subscribed.
- This data set has 4521 records and 17 features.

Features:

age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome 🔻	у
33	services	married	secondary	no	4789	yes	yes	cellular	11	may	220	1	339	4	failure	no
35	management	single	tertiary	no	1350	yes	no	cellular	16	apr	185	1	330	1	failure	no
30	unemployed	married	primary	no	1787	no	no	cellular	19	oct	79	1	-1	Θ	unknown	no
30	management	married	tertiary	no	1476	yes	yes	unknown	3	jun	199	4	-1	Θ	unknown	no
59	blue-collar	married	secondary	no	0	yes	no	unknown	5	may	226	1	-1	0	unknown	no

age: customer age in years

Job: customer job

marital: customer martial status

• education: customer education

default: has credit in default?

balance: average yearly balance, in euros

Features:

- Housing: has housing loan?
- loan: has personal loan?
- contact: contact communication type
- day: last contact day of the month
- month: last contact month of year
- duration: last contact duration

- campaign: number of contacts performed during this campaign and for this client
- pdays: number of days that passed by after the client was last contacted from a previous campaign
- previous: number of contacts performed before this campaign and for this client
- poutcome: outcome of the previous marketing campaign
- y: has the client subscribed a term deposit? TARGET

Description:

	Λε		
- 10	$n \sim$	\sim	
- 1	/ -		
	464		

age:41 duration: 263

job: NaN campaign: 3

marital: NaN pdays: 39

education: NaN previous: 0.5

default: NaN poutcome: NaN

balance: 1422 y: NaN

housing: NaN

Ioan: NaN

day: 15

month: NaN

Std

age: 10 duration: 259

job: NaN campaign: 3

marital: NaN pdays: 100

education: NaN previous: 1.6

default: NaN poutcome: NaN

balance: 3009 y: NaN

housing: NaN

Ioan: NaN

day: 8

month: NaN

Max

age:87 duration: 3025

job: NaN campaign: 50

marital: NaN pdays: 871

education: NaN previous: 25

default: NaN poutcome: NaN

balance: 71188 y: NaN

housing: NaN

Ioan: NaN

day: 31

month: NaN

Min

duration: 4

campaign: 1

pdays: -1

y: NaN

previous: 0

poutcome: NaN

age:19

job: NaN

marital: NaN

education: NaN

default: NaN

balance: -3313

housing: NaN

Ioan: NaN

day: 1

month: NaN

Description:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
age	4521.0	NaN	NaN	NaN	41.170095	10.576211	19.0	33.0	39.0	49.0	87.0
job	4521	12	management	969	NaN	NaN	NaN	NaN	NaN	NaN	NaN
marital	4521	3	married	2797	NaN	NaN	NaN	NaN	NaN	NaN	NaN
education	4521	4	secondary	2306	NaN	NaN	NaN	NaN	NaN	NaN	NaN
default	4521	2	no	4445	NaN	NaN	NaN	NaN	NaN	NaN	NaN
balance	4521.0	NaN	NaN	NaN	1422.657819	3009.638142	-3313.0	69.0	444.0	1480.0	71188.0
housing	4521	2	yes	2559	NaN	NaN	NaN	NaN	NaN	NaN	NaN
loan	4521	2	no	3830	NaN	NaN	NaN	NaN	NaN	NaN	NaN
contact	4521	3	cellular	2896	NaN	NaN	NaN	NaN	NaN	NaN	NaN
day	4521.0	NaN	NaN	NaN	15.915284	8.247667	1.0	9.0	16.0	21.0	31.0
month	4521	12	may	1398	NaN	NaN	NaN	NaN	NaN	NaN	NaN
duration	4521.0	NaN	NaN	NaN	263.961292	259.856633	4.0	104.0	185.0	329.0	3025.0
campaign	4521.0	NaN	NaN	NaN	2.79363	3.109807	1.0	1.0	2.0	3.0	50.0
pdays	4521.0	NaN	NaN	NaN	39.766645	100.121124	-1.0	-1.0	-1.0	-1.0	871.0
previous	4521.0	NaN	NaN	NaN	0.542579	1.693562	0.0	0.0	0.0	0.0	25.0
poutcome	4521	4	unknown	3705	NaN	NaN	NaN	NaN	NaN	NaN	NaN
У	4521	2	no	4000	NaN	NaN	NaN	NaN	NaN	NaN	NaN

- Data Types & Null Values
- Our Data Types are the following
- Our data doesn't have any missing values except for balance column which has 361 null value

<class 'pandas.core.frame.dataframe'=""></class>							
RangeIndex: 4521 entries, 0 to 4520							
Data	columns (to	tal 17 columns)	:				
# (Column	Non-Null Count	Dtype				
0 6	age	4521 non-null	int64				
1	job	4521 non-null	object				
2 1	marital	4521 non-null	object				
3 6	education	4521 non-null	object				
4 (default	4521 non-null	object				
5 I	balance	4521 non-null	int64				
6 1	housing	4521 non-null	object				
7	loan	4521 non-null	object				
8 (contact	4521 non-null	object				
9 (day	4521 non-null	int64				
10 r	month	4521 non-null	object				
11 (duration	4521 non-null	int64				
12 (campaign	4521 non-null	int64				
13	pdays	4521 non-null	int64				
14	previous	4521 non-null	int64				
15	poutcome	4521 non-null	object				
16 y	у	4521 non-null	object				
dtypes: int64(7), object(10)							
memory	memory usage: 600.6+ KB						

	data
age	9
default	9
balance	361
housing	9
loan	0
duration	0
campaign	0
pdays	0
previous	0
У	0
contact_telephone	0
contact_unknown	0
marital_married	0
marital_single	0
job_blue-collar	0
job_entrepreneur	0
job_housemaid	0
job_management	0
job_retired	0
job_self-employed	0
job_services	0
job_student	0
job_technician	0

- Categorical features & Numerical features
- Our data contain both categorical features and numerical features
- We need to change the categorical data into numerical data.
- This is done by splitting categorise into separate columns.
- Binary variables: ['default', 'housing', 'loan', 'y']
- Categorical variables: ['job', 'marital', 'education', 'contact', 'poutcome']
- Numerical variables: ['duration', 'previous', 'pdays', 'campaign', 'balance', 'age']

Identify outliers in the data

Correlation between features

- Correlation between features
- These features are most correlated to each other
- Age balance
- Duration campaign
- Campagin pday
- Pday previous
- Previous pday

- Feature Engineering
- We dropped the un needed columns like day, month.
- Get the number of unique values

Variable	Unique	Values
age		67
job		12
marital		3
education		4
default		2
balance		2353
housing		2
loan		2
contact		3
duration		875
campaign		32
pdays		292
previous		24
poutcome		4
у		2

- Feature Engineering
- Plot of the numerical values

- Feature Engineering
- Remove Skew with boxcox1p transformation

K-Means Clustering

Model Features and Parameters:

- Model = KMeans()
- N_clusters = 2
- Init = 'k-means++'
- N_init = 10
- Max_iter = 300
- Random_state = 0

```
# Lets take the optimal number of clusters as 6
km = KMeans(n_clusters=num_clusters, init='k-means++', n_init=10, max_iter=300, random_state=0)
km.fit(X_train)
# predict kmeanns labels
y_pred_kmeans = km.predict(X_test)
```


Mean Shift Clustering

Model Features and Parameters:

- Model = MeanShift()
- Min_bin_freq = 10
- Max_iter = 1000

```
clustering = MeanShift(min_bin_freq=10,max_iter=1000).fit(X_train)
y_pred_meanshift = clustering.predict(X_test)
```


Validation with classification model

Model Features and Parameters:

- Model = DecisionTreeClassifer()
- Random_state = 42

```
# Lets fit a simple Decision Tree for the classification
dt = DecisionTreeClassifier(random_state=42)
dt = dt.fit(X_train, y_train)
y_test_pred = dt.predict(X_test)
```


Comparing Models

Actual	DecisionTree	Kmeans	Meanshift	number
Θ	0	Θ	0	774
		1	0	318
	1	Θ	Θ	62
		1	Θ	51
1	9	Θ	Θ	62
		1	Θ	26
	1	Θ	9	33
		1	Θ	31

Comparing Models

- Models Comparison
- With the above analysis for Unsupervised Learning, K-Means Clustering perform better than MeanShift Clustering.
- MeanShift clustering predicted all the customers into single cluster
- Compared to Supervised "Decision Tree" model, K-Means
 Clustering model performs with the accuracy.
- We will conclude, K-Means Clustering model is a good model for unsupervised learning for this dataset.

	RMSE	R2	RMSE-SGD	R2-SGD
Linear	4496.560111	0.862103	4531.504262	0.859951
Lasso	4496.577652	0.862102	4570.227510	0.857548
Ridge	4494.682980	0.862218	4512.691171	0.861112
ElasticNet	4494.417701	0.862234	4528.496874	0.860137

ANALYSIS NEXT STEPS

- Models Flaws and Strength and further suggestions
- We have used only small dataset for this assignment. To proceed further, we will use large dataset.
- Apart from K-Means clustering model, we can explore other clustering models like DBSCAN, Agglomerative Clustering, etc.
- We can use Decision Tree model for classification and run in parallel to K-Means Clustering model in the long run to get better results.

