Universidade Federal de Ouro Preto PCC104 - Projeto e Análise de Algoritmos Prova 2

Prof. Rodrigo Silva

- 1. Assuma um problema X NP-completo e um problema Y do qual não sabemos a classe. Como podemos demonstrar que Y é NP-completo?
- 2. Qual dos diagramas abaixo não contradiz o estado corrente do nosso conhecimento sobre as classes de problemas $P,\,NP$ e NP-Completo.

- 3. Em ciência da computação, o que é um problema tratável? E o que é um problema intratável?
- 4. Considere a sequência de fibonacci definida pela recorrência abaixo.

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$

- (a) Implemente um algoritmo recursivo para calcular o n-ésimo termo da sequência?
- (b) Implemente um algoritmo baseado em **programação dinâmica** para calcular o *n*-ésimo termo da sequência?

- (c) Apresente uma análise assintótica do custo do **algoritmo recursivo**. Qual a classe deste algoritmo? (Defina a operação básica)
- (d) Apresente uma análise assintótica do custo do **algoritmo baseado em programação dinâmica**. Qual a classe deste algoritmo? (Defina a operação básica)

5. Considere o problema abaixo:

Dado um conjunto $X = [x_0, x_1, ..., x_n]$ de variáveis, determinar valores de 3 à 3n para cada uma das variáveis de forma a satisfazer a seguinte restrição:

- x_i deve ser divisível por x_j $(x_i\%x_j = 0)$ para todo j < i
- (a) Implemente um algoritmo baseado em backtracking para resolver este problema.
- (b) Apresente a árvore de execução das chamadas do seu algoritmo para n=3.