MAD 6607: CODING THEORY

Edoardo Persichetti

Test 3 Solutions

Exercise 1 See Chapter 5, Theorem 1.

Exercise 2 Let $q = 8 = 2^3$ and n = 9. Consider \mathbb{F}_q as defined usually by $x^3 + x + 1$ and primitive element α . Below is the index table for \mathbb{F}_q .

$\alpha^3 + \alpha + 1 = 0$	
element	exponent
000	_
100	0
010	1
001	2
110	3
011	4
111	5
101	6

- a) We have $C_0 = \{0\}$, $C_1 = \{1, 8\}$, $C_2 = \{2, 7\}$, $C_3 = \{3, 6\}$ and $C_4 = \{4, 5\}$.
- b) Therefore the multiplicative order of $q \mod n$ is 2.
- c) So m=2 as determined in part b), and call β an element of \mathbb{F}_{q^m} of order n. Therefore the conjugates of β are β itself and β^8 .
- d) Indeed $p(x) = x^2 + \alpha x + \alpha$ is irreducible over \mathbb{F}_q as it has no roots in the field. Thus we can use this to define the field in terms of a primitive root, say γ . Then for instance $\beta = \gamma^7$ is an element of order n since clearly $\beta^9 = \gamma^{63} = 1$. Below we write the index table for \mathbb{F}_{q^m} up to γ^8 .

$\gamma^2 + \alpha \gamma + \alpha = 0$	
element	exponent
00	_
10	0
01	1
$\alpha\alpha$	2
$\alpha^2 \alpha^4$	3
$\alpha^5 \alpha^3$	4
$\alpha^4 1$	5
$\alpha \alpha^2$	6
$\alpha^3 1$	7
$\alpha 1$	8

Now, we have $\beta = \gamma^7 = \alpha^3 + \gamma$ and $\beta^8 = (\gamma^7)^8 = (\alpha^3 + \gamma)^8 = \alpha^{24} + \gamma^8 = \alpha^3 + (\alpha + \gamma)$, and therefore $Tr_{\mathbb{F}_q}(\beta) = \beta + \beta^8 = (\alpha^3 + \gamma) + (\alpha^3 + \alpha + \gamma) = \alpha$.

e) This is given by $H = (1 \beta \beta^2 \dots \beta^8)$ as this code has length exactly $(q^m - 1)/(q - 1) = 9 = n$.

f) Using the table described above and remembering $\beta = \gamma^7$ we can compute the remaining powers of β and we get

$$\bar{H} = \left(\begin{array}{ccc} 1 & \alpha^3 & \alpha^5 \dots & 1 \\ 0 & 1 & \alpha \dots & 1 \end{array}\right)$$

This parity-check matrix has 2 linearly independent rows thus we have dimension k = 9 - 2 = 7.

- g) The minimal polynomial of β is $M^{(1)}(x) = (x+\beta)(x+\beta^8) = x^2 + (\beta+\beta^8)x + \beta^9 = x^2 + \alpha + 1$.
- h) This is also the generator polynomial of the code in question, so a generator matrix is given by its cyclic shifts i.e.

Exercise 3 Let q = 3 and n = 8.

- a) We have $C_0 = \{0\}$, $C_1 = \{1, 3\}$, $C_2 = \{2, 6\}$, $C_4 = \{4\}$ and $C_5 = \{5, 7\}$.
- b) Therefore the multiplicative order of $q \mod n$ is 2.
- c) The polynomial $x^n 1$ splits entirely as $(x 1)(x + 1)(x^2 + 1)(x^2 + x + 2)(x^2 + 2x + 2)$ over \mathbb{F}_q . We've seen in class that $x^2 + 1$ is not a good polynomial to use since we don't get a primitive root, while $x^2 + x + 2$ is good. So we define $\mathbb{F}_{q^m} = \mathbb{F}_9 = \{0, 1, \alpha, \dots, \alpha^7\}$ as seen in class.
- d) We have $M^{(1)}(x)=(x-\alpha)(x-\alpha^3)=x^2-(\alpha+\alpha^3)+\alpha^4=x^2-x+2$ which is exactly our irreducible polynomial used to define the field (which makes sense since we're in the primitive case because $8=3^2-1$). Next is $M^{(2)}(x)=(x-\alpha^2)(x-\alpha^6)=x^2-(\alpha^2+\alpha^6)+\alpha^8=x^2+1$. Then $M^{(4)}(x)=x-\alpha^4=x-2=x+1$. Finally (also, by exclusion) $M^{(5)}(x)=(x-\alpha^5)(x-\alpha^7)=x^2-(\alpha^5+\alpha^7)+\alpha^{12}=x^2+x+2$.
- e) So we have $\theta_0=1+x\cdots+x^7$ by definition. Also "trivial" is θ_4 for which we have coefficients $\epsilon_i=\alpha^{-4i}=2^i$ so we have $\theta_4=1+2x+x^2+2x^3+x^4\cdots+2x^7$. The remaining ones are $\theta_1=2+2+2x^3+x^4+x^5+x^7, \ \theta_2=2+x^2+2x^4+x^6$ and $\theta_5=2+x+x^3+x^4+2x^5+2x^7$.

Exercise 4 Let g(x) be the generator polynomial of a binary cyclic code of length n.

- a) Since $(x+1) \mid g(x)$, any codeword is also a multiple of x+1, and consequently has 1 as a root. Therefore, it must have an even number of non-zero coefficients. Thus, the code contains only codewords of even weight.
- b) Remember that $g(x) \mid x^n + 1$. But $x^n + 1 = (x+1)(1+x+x^2+\cdots+x^{n-1})$. Since x+1 is **not** a factor of g(x), it must divide $1+x+x^2+\cdots+x^{n-1}$, which means that the corresponding vector is a codeword. This is exactly the all-1s codeword 111...1.

¹You should verify that in this case "idempotent" means $E(x) = E^3(x)$.