

GUC

German University in Cairo Faculty of Engineering and Material Science Department of Mechatronics Engineering

Robust and Optimal Control

Assignment #1

Due date: Wednesday 20.2.2019

Name	
App. No.	
Group No.	

Note:

Assignments not submitted in this form will **NOT** be accepted. Assignments should be submitted in hardcopy. Cheating will not be tolerated and it is your responsibility to ensure the genuineness of your work.

Problem 1:

A system is described by the nonlinear model:

$$\left[\frac{J_b}{r^2} + m\right] \ddot{p}(t) + mg \sin \theta(t) - m p(t)\dot{\theta}(t)^2 = 0$$

$$[mp(t)^{2} + J + J_{b}]\ddot{\theta}(t) + 2 m p(t)\dot{p}(t)\dot{\theta}(t) + mg p(t)\cos\theta(t) = \tau(t)$$

Ball and beam apparatus.

System parameters	Symbol	Value
Mass moment of inertia of the beam	J	9.99e-04
Mass of the ball	m	0.11 Kg
Radius of the ball	r	0.015
Mass moment of inertia of the ball	J_b	9.99e-04
Gravitational acceleration constant	g	9.81

Requirements:

- 1) Linearize the system around an operating point of your choice.
- 2) Discretize the system for a sampling time $T_s = 0.1s$.
- 3) The system analysis: check its stability, controllability and observability.
- 4) Design a finite horizon linear quadratic regulator for the discrete-time system using the recursive approach for two different initial conditions. Choose your own weighing matrices.
- 5) Simulate your controller on the linearized system and on the nonlinear system.
- 6) Plot the optimal cost-to-go from time j to the end of the time horizon N.
- 7) Plot the response of the system outputs and control effort.
- 8) Comment on your results.

Note that you can use Matlab for your calculations. You should show all your steps clearly, submit all the codes used and the results.