Germline VariantCalling Tools

To identify clinical variants accurately and consistently, I have compared 6 germline variant calling pipelines. Each method was run according to the individual authors' best-practice recommendations. Method information used in germline variant calling pipelines are shown in Table.1.

Table.1 Methods used in variant calling pipelines.

Method	Version	Algorithm	References
DeepVariant	1.6	Deep neural network	Ryan Poplin, Pi-Chuan Chang. et al. (2018) A universal SNP and small-indel variant caller using deep neural networks. <i>Nature</i> <i>Biotechnology</i> , 36, 983–987. doi:10.1038/ nbt.4235
Genome Analysis Toolkit (GATK) HardFilter	4.1.0.0	Filter variant calls based on INFO and/or FORMAT annotations	https://software.broadinstitute.org/gatk/
Genome Analysis Toolkit (GATK) CNNScoreVariants	4.1.2.0	Convolutional Neural Network (CNN)	https://software.broadinstitute.org/gatk/
Genome Analysis Toolkit (GATK) VQSR	4.1.2.0	Machine learning	https://software.broadinstitute.org/gatk/
FreeBayes	1.1.0	Bayesian genetic variant detector	Erik Garrison, Gabor Marth. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 (http://arxiv.org/abs/1207.3907)
Streka	2.9.7	Tiered haplotype-modeling strategy	Kim, S., Scheffler, K. et al. (2018) Strelka2: fast and accurate calling of germline and somatic variants. <i>Nature Methods</i> , 15, 591-594. doi:10.1038/s41592-018-0051-x

Case study for 6 germline variant calling pipelines.

Table.2 Data sources

Data	File Name
NA24385 BAM	151002_7001448_0359_AC7F6GANXX_Sample_HG002- EEogPU_v02-KIT-Av5_AGATGTAC_L008.posiSrt.markDup.bam 151002_7001448_0359_AC7F6GANXX_Sample_HG002- EEogPU_v02-KIT-Av5_AGATGTAC_L008.posiSrt.markDup.bai

Reference Genome hs37d5.fa.gz

hs37d5.fa.gz.fai

hs37d5.fa.gz.gzi

Truth VCF HG002 GRCh37 GIAB highconf CG-IIIFB-IIIGATKHC-

Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_*

Truth BED HG002_GIAB_highconf_IIIFB-IIIGATKHC-CG-lon-

Solid_CHROM1-22_v3.2.1_highconf.bed

Capture target BED Exome-Agilent_V6.bed.gz

dbSNP database dbsnp_138.b37.vcf

Mills indel database used for BQSR hapmap_3.3.b37.vcf

Known indels 1000G 1000G_phase1.indels.b37.vcf

HapMap genotypes and sites VCFs hapmap_3.3.b37.vcf

OMNI 2.5 genotypes for 1000

Genomes samples

1000G_omni2.5.b37.vcf

1 GermlineVC_DeepVariant pipeline

Runtime

Step	Run time	CPU
make_examples	4hr48min	20
call_variants	1hr11min	20
postprocess_variants	25sec	20

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we applied Genome in a bottle truth dataset and evaluation methodology (hap.py) to GermlineVC_DeepVariant pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.969	0.992	0.980
SNP	0.99	0.997	0.993

2 VARIANTCALLING_HARDFILTER pipeline

Runtime

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we appliedGenome in a bottle truth dataset and evaluation methodology (hap.py) to VARIANTCALLING_HARDFILTER_EN pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.967	0.982	0.974
SNP	0.970	0.997	0.983

3 VARIANTCALLING_GATKCNN pipeline

Runtime

Step	Run time	CPU
BQSR	1hr12min	4
RunHC4	3hr10min	10
CNNScoreVariants	41min	10
FilterVariantTranches	1min	4

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we appliedGenome in a bottle truth dataset and evaluation methodology (hap.py) to VARIANTCALLING_GATKCNN pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.925	0.973	0.948
SNP	0.839	0.989	0.908

4 VARIANTCALLING_VQSR pipeline

Runtime

Step	Run time	CPU	
RunHC4	3hr10min	10	
VariantRecalibratorINDEL	3min	4	
ApplyRecalibrationINDEL	23sec	4	
VariantRecalibratorSNP	11min	4	
ApplyRecalibrationSNP	36sec	4	

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we appliedGenome in a bottle truth dataset and evaluation methodology (hap.py) to VARIANTCALLING_VQSR pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.958	0.974	0.966
SNP	0.990	0.990	0.990

5 VARIANTCALLING_FreeBayes pipeline

Runtime

Step	Run time	CPU
Germlinecall	1hr17min	4

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we applied Genome in a bottle truth dataset and evaluation methodology (hap.py) to VARIANTCALLING_FreeBayes pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.922	0.968	0.944
SNP	0.989	0.988	0.988

6 VARIANTCALLING_Strelka pipeline

Runtime

Step	Run time	CPU
configureStrelkaGermlineWorkflow	28min	4

Performance

To evaluate the sensitivity and precision for SNPs and InDels, we applied Genome in a bottle truth dataset and evaluation methodology (hap.py) to VARIANTCALLING_Strelka pipeline.

Туре	Recall	Precision	F1_Score
InDel	0.047	0.945	0.089
SNP	0.323	0.963	0.484

Performance Summary:

Evaluation of 6 Germline variant calling methods on NA24385 BAM data mentioned in table.2.