

Data Science

8 – Classification Modeling with Decision Tree

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Lecture 8 - Topics

- Classification models
- Decision tree concept
- Entropy, information gain and tree induction
- Evaluation of classification models

Decision tree classification and regression

https://colab.research.google.com/drive/1cvP80R1XhTRYG1Jx33wosLCk23UumyOJ

Predictive Modeling as Supervised Segmentation

• How can we segment the population into groups that differ from each other with respect to some quantity of interest?

Quantity of interest

_

Things we would like to predict or estimate

Target and Attribute

Classification vs Regression

KM UII

Discrete Target (class)

Continuous Target (value)

Supervised classification Example

Induction (Training)

- The creation of models from data is known as model induction (training).
- Induction is a term from philosophy that refers to generalizing from specific cases to general rules
- Our models are general rules in a statistical sense
- Most inductive procedures have variants that induce models both for classification and regression

Which attribute should be used to segment?

• Fundamental concept: Which variable contains the most information?

• Aims: automatic selection, ranking

Decision Tree

- A tree consists of nodes: interior and terminal
- Interior node contains a test of an attribute
- Terminal node is a segment

Tree Induction

- How do we create a decision tree from data?
- Tree induction takes a divide-and-conquer approach,
 - 1. starting with the whole dataset
 - 2. applying variable selection to create subgroups
 - 3. Recursively repeating step 2 for each subgroup
- We will illustrate this using the write-off example

Example: Write-off

- Attributes
 - head-shape: square, circular
 - body-shape: rectangular, oval
 - body-color: black, white
- Target variable
 - write-off: Yes, No

Which attribute should be best to segment these people into groups, in a way to distinguish write-off from non-write-off?

Purity

- Technically, we would like the group to be as pure as possible.
- Pure means homogeneous with respect to the target variable
- If some member in the group has a different target then the group is impure
- Comparing
 - $G1 = \{Y, Y, Y, Y\}$
 - $G2 = \{Y, N, N, Y\}$

In real data, however, we rarely find pure segments.

Entropy

- Entropy is a measure of disorder that can be applied to a set, such as one of our individual segments
- Disorder corresponds to how mixed (impure) the segment is with respect to the target
- For example, a mixed up segment with lots of writeoffs and lots off non-write-offs would have high entropy

Entropy Formula

• More technically, entropy is defined as

$$entropy = -p_1 \log(p_1) - p_2 \log(p_2) - \dots$$

- This is based on Gibbs entropy in thermodynamics
- Each p_i is the probability (the relative percentage) of property i (e.g. write-offs/non-write-offs) of the target.

Entropy of a two-class set

Information Gain

- Entropy is only part of the story. We would like to measure how informative an attribute is with respect to target: how much gain in information it gives us about the target?
- Information gain (IG) measure how much attribute improves (decreases) entropy over the whole segmentation it creates.

• In our context, IG measures the change in entropy due to further splitting

Information Gain Formula

IG(parent, children)

- = entropy(parent) -
 - $[p(c_1) \times \text{entropy}(c_1) + p(c_2) \times \text{entropy}(c_2) + \dots]$
- The entropy for each child (c_i) is weighted by the proportion of instances belonging to that child, $p(c_i)$.

Example 1

entropy(parent) =
$$-[p(\bullet) \times \log_2 p(\bullet) + p(*) \times \log_2 p(*)]$$

 $\approx -[0.53 \times -0.9 + 0.47 \times -1.1]$
 ≈ 0.99 (very impure)

Entropy of the left child is

entropy(Balance < 50K) =
$$-[p(\bullet) \times \log_2 p(\bullet) + p(\Leftrightarrow) \times \log_2 p(\Leftrightarrow)]$$

 $\approx -[0.92 \times (-0.12) + 0.08 \times (-3.7)]$
 ≈ 0.39

Entropy of the right child is

entropy(Balance
$$\geq 50K$$
) = $-[p(\bullet) \times \log_2 p(\bullet) + p(\bigstar) \times \log_2 p(\bigstar)]$
 $\approx -[0.24 \times (-2.1) + 0.76 \times (-0.39)]$
 ≈ 0.79

Information gain is

IG = entropy(parent) − [p(Balance < 50K) × entropy(Balance < 50K)
+p(Balance ≥ 50K) × entropy(Balance ≥ 50K)]
≈
$$0.99 - [0.43 \times 0.39 + 0.57 \times 0.79]$$

≈ 0.37

Example 2

Calculations are omitted

entropy(parent) ≈ 0.99 entropy(Residence=OWN) ≈ 0.54 entropy(Residence=RENT) ≈ 0.97 entropy(Residence=OTHER) ≈ 0.98 $IG \approx 0.13$

Residence variable is less informative than Balance.

Splitting criteria

Regression: residual sum of squares

RSS =
$$\sum_{\text{left}} (y_i - y_L^*)^2 + \sum_{\text{right}} (y_i - y_R^*)^2$$

where $y_L^* = \text{mean y-value for left node}$

 y_R^* = mean y-value for right node

Classification: Gini criterion (Similar to Information Gain)

Gini =
$$N_L \sum_{k=1,...,K} p_{kL} (1-p_{kL}) + N_R \sum_{k=1,...,K} p_{kR} (1-p_{kR})$$

where p_{kl} = proportion of class k in left node

 p_{kR} = proportion of class k in right node

Figure 2: Comparison of Gini and Information impurity for two groups.

Example

Attributes

head-shape: square, circular

body-shape: rectangular, oval

body-color: gray, white

Target variable

write-off: Yes, No

First Partitioning: body-shape

Rectangular Bodies

Oval Bodies

body-shape has the highest IG, so it is selected as the first attribute

2nd partitioning: oval-body, head-type

Oval Bodies

Oval Body and Square Head

No

No

Oval Body and Circular Head

3rd partitioning: rectangular-body, body-color

Rectangular Bodies

Rectangular Body and White

Rectangular Body and Gray

Resulting Decision Tree

Accuracy, Precision and Recall

	Actual Positive (p)	Actual Negative (n)
The model says "Yes" = positive (y)	True positives	False positives
The model says "No" = not positive (n)	False negatives	True negatives

- Accuracy = (TP + TN)/(TP + FP + TN + FN)
- Recall (Completeness) = true positive rate = TP/(TP + FN)
- Precision (Exactness) = the accuracy over the cases predicted to be positive, TP/(TP + FP)
- F-measure = the harmonic mean of precision and recall
 - = the balance between recall and precision

$$= 2 \cdot \frac{precision * recall}{precision + recall}$$

Receiver operating characteristics Area under the ROC curve

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

$$TPR = \frac{TP}{TP + FN}$$

False Positive Rate (FPR) is defined as follows:

$$FPR = rac{FP}{FP + TN}$$

Figure 5. AUC (Area under the ROC Curve).

Figure 4. TP vs. FP rate at different classification thresholds.

AUC - ROC

False Positive

Lab

- Select your own classification problem data from Kaggle.com website
- Prepare the data for classification modeling
- Build a decision tree classifier for the problem
- Evaluate the modeling result

End of Lecture 8

