A QUICK SURVEY OF HODGE THEORY

JEFFREY JIANG

CONTENTS

1.	Linear Algebra	1
2.	Differential Forms	3

1. Linear Algebra

Definition 1.1. Let V be a finite dimensional \mathbb{R} -vector space. An *almost complex structure* on V is a linear map $J:V\to V$ satisfying $J^2=\mathrm{id}_V$. An *almost complex vector space* is tuple (V,J), where V is a finite dimensional \mathbb{R} -vector space equipped with an almost complex structure J.

The data of an almost complex structure J is equivalent to giving V the structure of a complex vector space, where we define $(a+bi) \cdot v = ab+bJv$. Because of this, we may call J a *complex structure*. We use the name *almost* complex structure to emphasize the differences between the analogous constructions in the nonlinear world of manifolds. Note that since an almost complex structure is equivalent to a complex structure, this immediately implies that V is even dimensional.

One way to think about an almost complex structure is through the geometric interpretation of complex multiplication. If we regard $\mathbb C$ as a 2-dimensional vector space over $\mathbb R$, multiplication by i corresponds to a rotation by $\pi/2$ in the counterclockwise direction, and multiplication by -i corresponds to a rotation by $\pi/2$ in the clockwise direction. From this we see that a choice of a square root of -1 comes with a choice of clockwise or counterclockwise. This implies that every complex vector space is canonically oriented as a real vector space. Given a $\mathbb C$ -vector space V with $\mathbb C$ -basis $\{z_1,\ldots,z_n\}$, we have that the ordered basis $\{z_1,iz_1,\ldots z_n,iz_n\}$ defines a positively oriented basis for V over $\mathbb R$.

Definition 1.2. Let V by any \mathbb{R} -vector space. The *complexification* of V is the complex vector space $V_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} V$. The complexification $V_{\mathbb{C}}$ is naturally a complex vector space, where for $\lambda \in \mathbb{C}$, the action of λ on a homogeneous element $\mu \otimes v$ is given by

$$\lambda \cdot (\mu \otimes v) = \lambda \mu \otimes v$$

The complexification is a different way of obtaining a complex vector space from a real one. The complexification $V_{\mathbb{C}}$ is a vector space of twice the dimension of V as a vector space over \mathbb{R} . In addition, there is a natural inclusion $V \hookrightarrow V_{\mathbb{C}}$ given by $v \mapsto 1 \otimes v$. Complexification is an instance of *extension of scalars* – every element of $V_{\mathbb{C}}$ is of the form av + biw where $a, b \in \mathbb{R}$, and $v, w \in V$. Therefore, we will denote the element $(a + bi) \otimes v \in V_{\mathbb{C}}$ by av + biv, and we have a direct sum decomposition $V_{\mathbb{C}} = V \oplus iV$. Given a linear map

 $T:V\to W$ of \mathbb{R} -vector spaces, we can extend T to a complexified map $T_\mathbb{C}:V_\mathbb{C}\to W_\mathbb{C}$, where $T_\mathbb{C}(av+biw)=aTv+biTv$. In other words, $T_\mathbb{C}=\mathrm{id}_\mathbb{C}\otimes T$. In this way, we see that complexification defines a covariant functor $\mathsf{Vect}_\mathbb{R}\to\mathsf{Vect}_\mathbb{C}$ from the category of \mathbb{R} -vector spaces to the category of \mathbb{C} -vector spaces.

A natural question to ask is how an almost complex structure interacts with the process of complexification. Let (V, J) be an almost complex vector space. Then the complexified map $J_{\mathbb{C}}: V_{\mathbb{C}} \to V_{\mathbb{C}}$ squares to -1, and admits eigenvalues $\pm i$. For example, consider $V = \mathbb{C}$. We then can then make the natural identification of \mathbb{C} with the almost complex vector space (\mathbb{R}^2, J) , where J is given by the matrix

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

using the ordered \mathbb{R} basis (1, i). Then $V_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}^2$, and $J_{\mathbb{C}}$ is given by the matrix

$$J_{\mathbf{C}} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

in the ordered \mathbb{R} basis (1, i, 1, i), where the first pair elements are elements of one copy of \mathbb{C}^2 , and the second pair of elements are elements of a separate copy of \mathbb{C}^2 , giving an \mathbb{R} basis for $\mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. The matrix $J_{\mathbb{C}}$ clearly has eigenvalues $\pm i$, with the i-eigenspace being spanned by the vectors

$$\begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{i}{2} \\ 0 \\ -\frac{i}{2} \\ 0 \end{pmatrix}$$

and the -i eigenspace being the span of

$$\begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{i}{2} \\ 0 \\ -\frac{i}{2} \end{pmatrix}$$

The case for general V is similar, and amounts to fixing an \mathbb{R} basis of the form $\{v_1, Jv_1, \dots v_n, Jv_n\}$ for (V, J). The decomposition of $V_{\mathbb{C}}$ into the $\pm i$ -eigenspaces of $J_{\mathbb{C}}$ gives a direct sum decomposition

$$V_{\mathbb{C}} = V^{1,0} \oplus V^{0,1}$$

where $V^{1,0}$ denotes the *i*-eigenspace, and $V^{0,1}$ denotes the -i-eigenspace. Note that in the bases we chose above for \mathbb{C}^2 , complex conjugation is given by the matrix

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

and determines an isomorphism of complex vector spaces $V^{1,0}\cong \overline{V^{0,1}}$ and vice versa.

An almost complex structure J on V induces a dual map $J^*: V^* \to V^*$. By functoriality of taking dual spaces, $(J^*)^2 = -\operatorname{id}_{V^*}$, giving V^* the structure of an almost complex vector space via J^* . Explicitly, given a linear functional $\alpha \in V^*$, we have that the action of J^* on α is given by

$$(J^*\alpha)(v) = \alpha(Jv)$$

for every $v \in V$. We then get an analogous decomposition of the complexified dual $\operatorname{space} V_{\mathbb{C}}^* = \operatorname{\mathsf{Hom}}_{\mathbb{R}}(V,\mathbb{C})$ as

$$V_{\mathbb{C}}^* = (V^*)^{1,0} \oplus (V^*)^{0,1}$$

into the $\pm i$ eigenspaces of J^* , and have very natural interpretations in terms of V. The subspace $(V^*)^{1,0}$ consists of the α such that $\alpha(Jv)=i\alpha(v)$. We have a natural pairing $(V^*)^{1,0}\otimes V^{1,0}\to \mathbb{C}$ given by

$$\langle \alpha, v \rangle = \alpha(v)$$

which is nondegenerate, establishing the two vector spaces as dual to each other (as complex vector spaces). A similar statement holds for $V^{0,1}$ and $(V^*)^{0,1}$, putting them in duality as well. Another perspective to take is that the condition that $\alpha(Jv)=i\alpha(v)$ is equivalent to α being *complex linear* with respect to the complex structure J on V and i on \mathbb{C} , giving us an isomorphism $(V^*)^{1,0}\cong \operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C})$. Similarly, we have that $(V^*)^{0,1}\cong \operatorname{Hom}_{\mathbb{C}}(V,\overline{\mathbb{C}})$

2. Differential Forms