

Trained Born Iterative Method for Two-Dimensional Microwave Imaging

Dr. Abdulla Ali Desmal

Electrical Engineering Department, Higher Colleges of Technology, Ras-Al-Khaimah, UAE

Problem configuration

- Investigation domain S is surrounded by receivers and transmitters
- Material properties of the domain are unknown
- It is assumed that each transmitter excites S individually
- Scattered field are measured at the receivers
- $\|\mathbf{e}^{\mathrm{sc}a} f(\tau)\|_2^2$ is minimized to find $\tau(\mathbf{r})$

$$e^{\text{sca}} = f(\tau)$$

Mathematical forward model

Problem description

Challenges

- Nonlinearity:
 - The forward operator is a nonlinear function of the medium parameters
 - The strength of nonlinearity is related to multiscatering
- III-posedness:
 - The forward operator contains smoothening integrals
 - Noisy measurements
 - Measurements are valid over a finite set

Rehr, John J., and Robert C. Albers. "Theoretical approaches to x-ray absorption fine structure." *Reviews of* modern physics 72.3 (2000): 621.

Forward Model

$$e^{\text{inc}}(\mathbf{r}) = e^{\text{tot}}(\mathbf{r}) + k_0^2 \int_{S^{\text{inv}}} \tau(\mathbf{r}') e^{\text{tot}}(\mathbf{r}') g(\mathbf{r}, \mathbf{r}') ds', \quad \mathbf{r} \in S^{\text{inv}}$$
$$e^{\text{sca}}(\mathbf{r}) = -k_0^2 \int_{S^{\text{inv}}} \tau(\mathbf{r}') e^{\text{tot}}(\mathbf{r}') g(\mathbf{r}, \mathbf{r}') ds', \quad \mathbf{r} \in S^{\text{mea}}$$

Apply
Discretization

$$\mathbf{e}_{tr}^{ ext{inc}} = (\mathbf{I} + \mathbf{A}\mathcal{D}(\mathbf{t})) \, \mathbf{e}_{tr}^{ ext{tot}}$$
 $\mathbf{e}_{tr}^{ ext{sca}} = \mathbf{G}\mathcal{D}(\mathbf{e}_{tr}^{ ext{tot}}) \mathbf{t}$

$$\mathbf{G}_{n,m} = k_0 \int_{S_n} g(\mathbf{r}', \mathbf{r}_m) ds'$$

2D scaler green function

Existing methods, sparse Born iterative method (SBIM)

$$\begin{split} e^{\mathrm{inc}}(\mathbf{r}) &= e^{\mathrm{tot}}(\mathbf{r}) + k_0^2 \int_{S^{\mathrm{inv}}} \tau(\mathbf{r}') e^{\mathrm{tot}}(\mathbf{r}') g(\mathbf{r}, \mathbf{r}') ds', \quad \mathbf{r} \in S^{\mathrm{inv}} \\ e^{\mathrm{sca}}(\mathbf{r}) &= -k_0^2 \int_{S^{\mathrm{inv}}} \tau(\mathbf{r}') e^{\mathrm{tot}}(\mathbf{r}') g(\mathbf{r}, \mathbf{r}') ds', \quad \mathbf{r} \in S^{\mathrm{mea}} \end{split}$$

Apply
Discretization

$$egin{aligned} \mathbf{e}_{tr}^{ ext{inc}} &= \left(\mathbf{I} + \mathbf{A}\mathcal{D}(\mathbf{t})\right) \mathbf{e}_{tr}^{ ext{tot}} \ \mathbf{e}_{tr}^{ ext{sca}} &= \mathbf{G}\mathcal{D}(\mathbf{e}_{tr}^{ ext{tot}}) \mathbf{t} \end{aligned}$$

Algorithm 1 Sparse Born Iterative Method

Input: l_1

- 1: Initialization: $\{\mathbf{e}_{tr,1}^{\text{tot}} = \mathbf{e}_{tr}^{\text{inc}}, \forall tr\}$
- 2: for i=1 to N^{bim} do
- 3: $\mathbf{H}_i = cas(\mathbf{G}\mathcal{D}(\mathbf{e}_{1,i}^{\text{tot}}), ..., \mathbf{G}\mathcal{D}(\mathbf{e}_{N^{tra},i}^{\text{tot}}))$
- 4: $\mathbf{t}_i = min_{\mathbf{t}} ||\mathbf{H}_i \mathbf{t} \mathbf{e}^{\text{mea}}||_2^2 \text{ s.t. } |\mathbf{t}| < l_1$
- 5: **for** tr = 1 to N^{tra} **do**
- 6: $\mathbf{e}_{tr,i+1}^{\text{tot}} = (\mathbf{I} + \mathbf{A}\mathcal{D}(\mathbf{t}_i))^{-1} \mathbf{e}_{tr}^{\text{inc}}$
- 7: end for
- 8: end for
- 9: **return** $\overline{\mathbf{t}}_{N^{\mathrm{bim}}}$

$$\mathbf{t}_{i,l} = \mathcal{T}^{\delta} \left(\mathbf{t}_{i,l-1} - \gamma_i \mathbf{H}_i^{\dagger} \left(\mathbf{H}_i \mathbf{t}_{i,l-1} - \mathbf{e}^{\mathrm{mea}} \right) \right)$$

$$\{\mathcal{T}^{\delta}(\mathbf{t})\}_n = \{\mathbf{t}\}_n \frac{\max(|\{\mathbf{t}\}_n| - \delta, 0)}{\max(|\{\mathbf{t}\}_n| - \delta, 0) + \delta}$$

Proposed approach, Trained Born Iterative Method (TBIM)

Proposed solution

9: return $\mathbf{t}_{N^{\text{bim}}}$

 Trained regularization network. Trained to enhance images containing target(s) that inherit features from the training dataset

```
Algorithm 1 Sparse Born Iterative Method

Input: l_1

1: Initialization: \{\mathbf{e}_{tr,1}^{\mathrm{tot}} = \mathbf{e}_{tr}^{\mathrm{inc}}, \ \forall tr\}

2: \mathbf{for} \ i = 1 \ \mathrm{to} \ N^{\mathrm{bim}} \ \mathbf{do}

3: \mathbf{H}_i = cas(\mathbf{G}\mathcal{D}(\mathbf{e}_{1,i}^{\mathrm{tot}}), ..., \mathbf{G}\mathcal{D}(\mathbf{e}_{N^{\mathrm{tra}},i}^{\mathrm{tot}}))

4: \mathbf{t}_i = min_{\mathbf{t}} ||\mathbf{H}_i\mathbf{t} - \mathbf{e}^{\mathrm{mea}}||_2^2 \ \mathrm{s.t.} \ |\mathbf{t}| < l_1

5: \mathbf{for} \ tr = 1 \ \mathrm{to} \ N^{\mathrm{tra}} \ \mathbf{do}

6: \mathbf{e}_{tr,i+1}^{\mathrm{tot}} = (\mathbf{I} + \mathbf{A}\mathcal{D}(\mathbf{t}_i))^{-1} \mathbf{e}_{tr}^{\mathrm{inc}}

7: \mathbf{end} \ \mathbf{for}

8: \mathbf{end} \ \mathbf{for}
```

Algorithm 2 Trained Born Iterative Method Input: l_1 1: Initialization: $\{\mathbf{e}_{tr,1}^{\text{tot}} = \mathbf{e}_{tr}^{\text{inc}}, \forall tr\}$ 2: for i=1 to N^{bim} do 3: $\mathbf{H}_i = cas(\mathbf{G}\mathcal{D}(\mathbf{e}_{1,i}^{\mathrm{tot}}), ..., \mathbf{G}\mathcal{D}(\mathbf{e}_{N^{tra},i}^{\mathrm{tot}}))$ 4: $\gamma_i = \mathcal{P}(\mathbf{H}_i)$ 5: for l=1 to N^{lwb} do 6: $\mathbf{t}_{i,l} = \mathcal{R}_i^{\mathrm{net}} \left(\mathbf{t}_{i,l-1} - \gamma_i \mathbf{H}_i^{\dagger} \left(\mathbf{H}_i \mathbf{t}_{i,l-1} - \mathbf{e}^{\mathrm{mea}} \right) \right)$ 7: end for 8: **for** tr=1 to N^{tra} **do** $\mathbf{e}_{tr,i+1}^{\mathrm{tot}} = BiCGSt(\mathbf{F}_i, \mathbf{e}_{tr}^{\mathrm{inc}})$ end for 11: end for 12: return $t_{N^{\text{bim}}}$

Proposed approach, (TBIM)

Block diagram for the trained Born iterative method

U-net regularization network

Numerical Results

- Two training datasets were created:
 - i) Cylindrical targets
 - ii) Multiple shape targets
- Each set contains 70000 example
- 2000 example used for validation
- 2000 example used for testing
- 64000 for training
- The figure show the receivertransmitter configuration and the colormap

Cylindrical targets

Results from the first seven examples of the testing set reconstructed at 3 BIM iterations and using 7 TISTA iteration

TABLE I
RNES OF THE EXAMPLES SHOWN IN FIG. 5. IN ADDITION, 15 DB TBIM
AND 10 DB TBIM RESULTS ARE INCLUDED.

Ex. No.	Noiseless TBIM	25 dB TBIM	15 dB TBIM	10 dB TBIM	Noiseless SBIM
Ex. 1	6.55%	11.40%	15.64%	17.13%	42.14%
Ex. 2	2.34%	3.56%	13.07%	18.71%	48.83%
Ex. 3	7.96%	11.85%	12.68%	16.07%	50.73%
Ex. 4	5.73%	10.44%	13.69%	21.14%	55.33%
Ex. 5	10.29%	10.70%	15.08%	15.66%	86.88%
Ex. 6	4.05%	6.40%	12.43%	14.98%	41.14%
Ex. 7	6.65%	9.75%	14.12%	11.28%	21.03%

TABLE II
TESTING SET MRNE PER TBIM ITERATION COUNT AT DIFFERENT SNR
LEVELS FOR CYLINDRICAL TARGETS SET.

SNR	i = 1	i = 2	i = 3
Noiseless	13.74%	9.46%	7.64%
25 dB	14.54%	11.56%	11.17%
15 dB	16.70%	14.55%	14.13%
10 dB	19.11%	17.31%	17.26%

Multiple shape targets

Results from the first seven examples of the testing set reconstructed using 7 TISTA iterations, all at 25dB noise level

TABLE III
RNEs of the examples shown in Fig. 6.

	7	

Ex. No.	$N^{\text{bim}} = 3,$	$N^{\text{bim}} = 3,$	$N^{\text{bim}} = 25,$
	TBIM	TBIM	SBIM
Ex. 1	13.82%	48.24%	33.97%
Ex. 2	51.79%	60.93%	55.60%
Ex. 3	9.06%	61.28%	25.91%
Ex. 4	17.58%	64.49%	49.67%
Ex. 5	8.44%	65.10%	42.60%
Ex. 6	3.98%	49.23%	32.05%
Ex. 7	51.85%	63.79%	47.99%

TABLE IV
TESTING SET MRNE PER TBIM ITERATION COUNT AT 25DB SNR LEVEL
FOR MULTIPLE-SHAPE TARGETS SET.

SNR	i = 1	i=2	i = 3
25 dB	21.34%	14.18%	12.74%

Thank you