- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

| Pregunta | 1  | 2 | Total |
|----------|----|---|-------|
| Puntos   | 12 | 5 | 17    |
| Puntaje  |    |   |       |

Nombre: \_

1. Sea  $\mathcal{O}$  un punto que consideraremos como origen. Sean  $P_1$  y  $P_2$  dos vectores de longitud 1 y que son ortogonales, es decir, determinan un sistema de coordenadas en el plano al que llamaremos  $S_1$ . Considera además un vector  $\vec{v}$  como en la imagen. Sea X el punto final del vector  $\vec{v}$ . La recta ZX es paralela a la recta  $\mathcal{O}P_1$ . Sea  $\vec{u}_1 := \mathcal{O}P_1$  y sea  $\vec{u}_2 := \mathcal{O}P_2$ . Asume que  $\langle \vec{u}_1, \vec{u}_2 \rangle = 0$  y que  $A^{\pm}(\vec{u}_1, u_2) = 1$ .

Todas las líneas rectas que aparecen en la retícula forman paralelogramos.

- (a) (2 Puntos) Expresa los vectores  $\vec{w}_1$  y  $\vec{w}_2$  como combinación lineal de los vectores  $\vec{u}_1$  y  $\vec{v}$
- (b) (4 Puntos) Encuentra las coordenadas de los puntos X, R, S, Z en el sistema de coordenadas  $S_1$ .
- (c) (3 Puntos) Calcula Área $^{\pm}(\vec{w}_1, \vec{w}_2)$
- (d) (3 Puntos) Calcula  $\|\vec{w}_1\|$ ,  $\|\vec{w}_2\|$  y  $\langle \vec{w}_1, \vec{w}_2 \rangle$



2. (5 Puntos) Sea  $A=(\ ,\ )$  y  $B=(\ ,\ )$ . Encuentra las coordenadas de un punto C de tal forma que ABC sea un triángulo equilátero.

Fin del exámen