419

金沢大学大学虎自然科学研究科 博士前期課程入学試験 問題用紙

專攻名	電子情報工学	-
試験科目名	専門科目 P. 1/5	

[電気回路]

注:問1と問2の解答は別々の答案用紙に書くこと。

問1 図1の交流回路(角周波数ω)について次の間に答えよ。

- (1) a-a' 端子から電源側をみた回路のテブナン等価回路を書き、その電圧源の電圧 E₀ とインピーダンス Z₀ を求めよ。

- ○問2 図2の回路において時刻t=0で直流電圧E[V]を加える。ただし初期電流は無いものとする。 このとき以下の問いに答えよ。
 - (1) 時間 $t \ge 0$ において電流 $i_t(t)$, $i_2(t)$ が満たすべき微分方程式を求めよ.
 - (2) (1)で得られた微分方程式を $I_1(s)=$ L $\left[i_1(t)\right]$, $I_2(s)=$ L $\left[i_2(t)\right]$ としてラプラス変換する。ただしsは複素数,L $\left[\cdot\right]$ はラプラス演算子を表す。このとき $I_1(s)$, $I_2(s)$ を R_1 , R_2 , L, E, sを用いて表せ、
 - (3) $R_1=2$ [Ω], $R_2=3$ [Ω], L=6 [H], E=10 [V]のとき, (2)の結果を逆ラブラス変換することで $i_1(t)$, $i_2(t)$ を求めよ.
 - (4) $R_1=2[\Omega]$, $R_2=3[\Omega]$, L=6[H], E=10[V]のとき, (3)で得られた $i_1(t)$, $i_2(t)$ の時間応答の概形を描け、ただし、 $0 \le t \le 10$ [sec] とする.

