1)

i)	tn - teue Palel xm - feature vector xm - feature vector xm >0 importance of on accomple E(v) = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	and since $\Phi = \{\Phi_{o}(x_{1}), \Phi_{v}(x_{2}), $
ß	$\Phi' = \begin{bmatrix} \Phi_{\bullet}(x_{0}) r_{1}^{\frac{1}{2}} & \Phi_{\bullet}(x_{0}) r_{1}^{\frac{1}{2}} & \Phi_{n-1}(x_{0}) r_{1}^{\frac{1}{2}} \\ \Phi_{\bullet}(x_{0}) r_{2}^{\frac{1}{2}} & \Phi_{\bullet}(x_{0}) r_{2}^{\frac{1}{2}} & \Phi_{n-1}(x_{0}) r_{1}^{\frac{1}{2}} \end{bmatrix}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

classmate Date Page
After taking gradient of log Diselihood 2 5 5 tin - w f (Gray) DOCKNT
and solling it to 0 IN O = E t'm b' (Mm) - w (E p' (xm) b(mm)) wmi= [(b' T (b')] (b' t') Rose t' in the whole vector of singe = N

```
Instances: 506
    Attributes: 14
           att_1
           att_2
           att_3
           att_4
           att_5
           att_6
           att_7
           att_8
           att_9
           att_10
           att_11
           att_12
           att_13
           class
    Test mode:split 60.0% train, remainder test
   For different values of \,\lambda
\lambda =
   a) 0.00001
    Linear Regression Model
    class =
      -0.1084 * att_1 +
       0.0458 * att_2 +
       2.7187 * att_4 +
      -17.376 * att_5 +
       3.8016 * att_6 +
      -1.4927 * att_8 +
       0.2996 * att_9 +
      -0.0118 * att_10 +
      -0.9465 * att_11 +
       0.0093 * att_12 +
      -0.5226 * att_13 +
      36.3411
    Time taken to build model: 0.04 second
    === Evaluation on test split ===
    === Summary ===
```

Correlation coefficient 0.8612
Mean absolute error 3.3689
Root mean squared error 4.5651
Relative absolute error 51.6839 %
Root relative squared error 50.8522 %
Total Number of Instances 202

b) 0.0001

Linear Regression Model

class =

-0.1084 * att_1 + 0.0458 * att_2 + 2.7187 * att_4 + -17.376 * att_5 + 3.8016 * att_6 + -1.4927 * att_8 + 0.2996 * att_9 + -0.0118 * att_10 + -0.9465 * att_11 + 0.0093 * att_12 + -0.5226 * att_13 + 36.3411

Time taken to build model: 0.03 seconds

=== Evaluation on test split === === Summary ===

Correlation coefficient 0.8612

Mean absolute error 3.3689

Root mean squared error 4.5651

Relative absolute error 51.6839 %

Root relative squared error 50.8522 %

Total Number of Instances 202

c) 0.001

Linear Regression Model

class =

-0.1084 * att_1 + 0.0458 * att_2 + 2.7187 * att_4 + -17.3759 * att_5 +

```
3.8016 * att_6 +
-1.4927 * att_8 +
0.2996 * att_9 +
-0.0118 * att_10 +
-0.9465 * att_11 +
0.0093 * att_12 +
-0.5226 * att_13 +
36.3408
```

Time taken to build model: 0.03 seconds

```
=== Evaluation on test split ===
=== Summary ===
```

Correlation coefficient	0.8612
Mean absolute error	3.3689
Root mean squared error	4.5651
Relative absolute error	51.6838 %
Root relative squared error	50.8522 %
Total Number of Instances	202

d) 0.01

Linear Regression Model

class =

```
-0.1084 * att_1 + 0.0458 * att_2 + 2.7188 * att_4 + -17.3743 * att_5 + 3.8017 * att_6 + -1.4925 * att_8 + 0.2995 * att_9 + -0.0118 * att_10 + -0.9465 * att_11 + 0.0093 * att_12 + -0.5225 * att_13 + 36.3376
```

Time taken to build model: 0.02 seconds

```
=== Evaluation on test split ===
=== Summary ===
```

Correlation coefficient	0.8612
Mean absolute error	3.3689

Root mean squared error 4.565
Relative absolute error 51.6831 %
Root relative squared error 50.8517 %
Total Number of Instances 202

e) 0.1

Linear Regression Model

class =

-0.1083 * att_1 + 0.0458 * att_2 + 2.7195 * att_4 + -17.3593 * att_5 + 3.8029 * att_6 + -1.4911 * att_8 + 0.2989 * att_9 + -0.0117 * att_10 + -0.9463 * att_11 + 0.0093 * att_12 + -0.5224 * att_13 + 36.3057

Time taken to build model: 0.09 seconds

=== Evaluation on test split === === Summary ===

Correlation coefficient 0.8612

Mean absolute error 3.3684

Root mean squared error 4.5646

Relative absolute error 51.6755 %

Root relative squared error 50.8468 %

Total Number of Instances 202

f) 1

Linear Regression Model

class =

-0.1074 * att_1 + 0.0453 * att_2 + 2.7262 * att_4 + -17.2099 * att_5 + 3.8142 * att_6 + -1.4767 * att_8 +

```
0.2928 * att_9 +

-0.0115 * att_10 +

-0.9439 * att_11 +

0.0093 * att_12 +

-0.5212 * att_13 +

35.9922
```

Time taken to build model: 0.02 seconds

```
=== Evaluation on test split ===
=== Summary ===
```

Correlation coefficient 0.8615

Mean absolute error 3.3635

Root mean squared error 4.5605

Relative absolute error 51.6015 %

Root relative squared error 50.8017 %

Total Number of Instances 202

g) 10

Linear Regression Model

class =

-0.0998 * att_1 + 0.0413 * att_2 + 2.7775 * att_4 + -15.8401 * att_5 + 3.9043 * att_6 + -1.3486 * att_8 + 0.2428 * att_9 + -0.0094 * att_10 + -0.9214 * att_11 + 0.0093 * att_12 + -0.5098 * att_13 + 33.2887

Time taken to build model: 0.03 seconds

```
=== Evaluation on test split ===
=== Summary ===
```

Correlation coefficient 0.8634

Mean absolute error 3.3299

Root mean squared error 4.5403

Relative absolute error 51.0848 %

Root relative squared error 50.576 %

h) 100

Linear Regression Model

class =

-0.075 * att_1 + 0.0272 * att_2 + 2.8313 * att_4 + -9.2248 * att_5 + 3.9836 * att_6 + -0.7395 * att_8 + 0.0822 * att_9 + -0.0043 * att_10 + -0.7827 * att_11 + 0.0086 * att_12 + -0.4259 * att_13 +

22.9394

Time taken to build model: 0.04 seconds

=== Evaluation on test split === === Summary ===

Correlation coefficient 0.86

Mean absolute error 3.4177

Root mean squared error 4.746

Relative absolute error 52.4325 %

Root relative squared error 52.8679 %

Total Number of Instances 202

i) 1000

Linear Regression Model

class =

-0.0546 * att_1 + 0.016 * att_2 + -0.071 * att_3 + 1.7399 * att_4 + -3.5029 * att_5 + 2.1139 * att_6 + -0.0103 * att_7 + -0.087 * att_8 +

```
-0.0028 * att_10 +
-0.4174 * att_11 +
0.0051 * att_12 +
-0.1924 * att_13 +
22.4032
```

Time taken to build model: 0.02 seconds

=== Evaluation on test split === === Summary ===

Correlation coefficient 0.8086

Mean absolute error 4.5596

Root mean squared error 6.389

Relative absolute error 69.951 %

Root relative squared error 71.1692 %

Total Number of Instances 202

3) Done

4)

4 Let no assume Nimput values *

X = (081, 924, 92m) 1 and their corresponding torret values to (tyte ta) Assuring Garrison disterbution of we have the following P(tla, w, B)= N(tloge) w, B siplest from \$ (60) = 70 So gerauso of intependence gasamplies P(t|X,w) = A,TT P(t; |x; w) = 11 5 exp { - B(ti-06) w)} = 1 cops-1 |t- 0(x) w/2/ N (tlb(X) FW,BTT) where of (X) is the given ey.

D. (02) D. (02) PM-(21) 006g) O.(a2) Q H+ (x2) P. (xn) OM7 (90) Et us also assume a Craussian as peior distribition for w P(w/9) = N w/0,9-1] = 9- 1/2 exp(- = w/w) Using bayes theorem, the postecial distribution and the Rekolihood function and applying simple perceduce we get. p(w/t, x, a) ox P(t/X, w) p(w/4) α σερ-B(t-Φ(x) ω) (t-Φ(x) ω)} · ΘΧΡ ξ-1(ω-3)Τ CT (ω-3)3 where = = B (B \$ (B \$ (X) \$ (X) + 9 I) \$ (X) t and correience maleix c2 (BOX) O(X) + 9 I) So p(w/t, X, a) ~ N(TopPco(x)t,c)

	Date Page
Q5	0 S (M+d-1)! d21 (M-1)!d!
Cer	configuration of teems will be like sign
	who intiz in so
	mulee of possible posmulation of i
	involve of different polynomics D deM-1 E CM-1 = E (M+d-1)! d=1 d=1 (M-1)!d!
	dai (Lar)idi


```
7)
```

class

Test mode:evaluate on training data

For a =

a) 0.1

λ =

i) 0.001

Linear Regression Model

class =

0.4953 * x^1 + -0.0001 * x^9 + -0.0207

Time taken to build model: 0.03 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.9222

Mean absolute error 0.236

Root mean squared error 0.2809

Relative absolute error 36.0293 %

Root relative squared error 38.6637 %

Total Number of Instances 63

ii) 0.01

Linear Regression Model

class =

```
0.4951 * x^1 + -0.0001 * x^9 + -0.0207
```

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.9222

Mean absolute error 0.236

Root mean squared error 0.2809

Relative absolute error 36.0281 %

Root relative squared error 38.6637 %

Total Number of Instances 63

iii) 0.1 Linear Regression Model

class =

0.0896 * x^3 + -0.0001 * x^9 + -0.0226

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.7091

Mean absolute error 0.441

Root mean squared error 0.5123

Relative absolute error 67.316 %

Root relative squared error 70.5198 %

Total Number of Instances 63

iv) 1

Linear Regression Model

class =

0.0011 * x^7 +

```
-0.0001 * x^9 + -0.0107
```

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.4225

Mean absolute error 0.5827

Root mean squared error 0.6703

Relative absolute error 88.9447 %

Root relative squared error 92.2722 %

Total Number of Instances 63

v) 10

Linear Regression Model

class =

0.3873 * x^1 + -0.001 * x^5 + -0.0002 * x^7 + 0 * x^9 + -0.0147

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.9315

Mean absolute error 0.2571

Root mean squared error 0.3142

Relative absolute error 39.2476 %

Root relative squared error 43.2522 %

Total Number of Instances 63

vi) 100

Linear Regression Model

class = 0.1199 * x^1 + -0.0087

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.7842
Mean absolute error 0.5022
Root mean squared error 0.5717
Relative absolute error 76.6562 %
Root relative squared error 78.7014 %
Total Number of Instances 63

vii) 1000

Linear Regression Model

class =

0.0183 * x^1 + -0.0129

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.7842

Mean absolute error 0.6263

Root mean squared error 0.7006

Relative absolute error 95.6043 %

Root relative squared error 96.4519 %

Total Number of Instances 63

b) 0.5

λ =

i) 0.001

Linear Regression Model

class =

0.5151 * x^1 + -0.0001 * x^9 + -0.0995

Time taken to build model: 0.06 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient	0.8016
Mean absolute error	0.4265
Root mean squared error	0.5302
Relative absolute error	55.5615 %
Root relative squared error	59.7835 %
Total Number of Instances	63

ii) 0.01

Linear Regression Model

class =

0.5149 * x^1 + -0.0001 * x^9 + -0.0995

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.8016

Mean absolute error 0.4265

Root mean squared error 0.5302

Relative absolute error 55.5624 %

Root relative squared error 59.7835 %

Total Number of Instances 63

rotal Nulliber of instances

iii) 0.1

Linear Regression Model

class =

-0.0022 * x^6 + 0.0002 * x^8 + 0 * x^9 + -0.0434

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.24
Mean absolute error 0.7399
Root mean squared error 0.861
Relative absolute error 96.399 %

Root relative squared error 97.078 % Total Number of Instances 63

iv) 1

Linear Regression Model

class =

0.7385 * x^1 +

-0.0675 * x^3 +

-0.0928

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.8424
Mean absolute error 0.3923
Root mean squared error 0.4814
Relative absolute error 51.114 %
Root relative squared error 54.2743 %
Total Number of Instances 63

v) 10

Linear Regression Model

class =

0.3749 * x^1 +

0 * x^9 +

-0.0932

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.7914

Mean absolute error 0.4505

Root mean squared error 0.5631

Relative absolute error 58.6898 %

Root relative squared error 63.4884 %

Total Number of Instances 63

vi) 100

Linear Regression Model

```
class =
```

```
0.1333 * x^1 + -0.0901
```

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.7141

Mean absolute error 0.6022

Root mean squared error 0.7337

Relative absolute error 78.4577 %

Root relative squared error 82.7272 %

Total Number of Instances 63

vii) 1000

Linear Regression Model

class =

Time taken to build model: 0.04 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.7141

Mean absolute error 0.7367

Root mean squared error 0.8609

Relative absolute error 95.9842 %

Root relative squared error 97.0669 %

Total Number of Instances 63

c) 1

λ =

i) 0.001

Linear Regression Model

class =

0.695 * x^1 +

```
-0.0099 * x^5 + -0.1009
```

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient 0.593

Mean absolute error 0.796

Root mean squared error 0.9924

Relative absolute error 81.5531 %

Root relative squared error 80.517 %

Total Number of Instances 63

ii) 0.01

Linear Regression Model

class =

0.6945 * x^1 + -0.0099 * x^5 + -0.1009

Time taken to build model: 0.02 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.593

Mean absolute error 0.796

Root mean squared error 0.9924

Relative absolute error 81.5492 %

Root relative squared error 80.517 %

Total Number of Instances 63

iii) 0.1

Linear Regression Model

class =

0.7037 * x^1 + -0.0104 * x^5 + 0.0051 * x^6 + -0.0006 * x^8 + -0.1953

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient	0.6118
Mean absolute error	0.7922
Root mean squared error	0.9751
Relative absolute error	81.1621 %
Root relative squared error	79.1093 %
Total Number of Instances	63

iv) 1 Linear Regression Model

class =

```
0.8336 * x^1 + -0.096 * x^3 + -0.0941
```

Time taken to build model: 0.02 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient	0.6052
Mean absolute error	0.7952
Root mean squared error	0.9851
Relative absolute error	81.4653 %
Root relative squared error	79.925 %
Total Number of Instances	63

v) 10

Linear Regression Model

class =

```
0.3693 * x^1 + -0.0001 * x^9 + -0.0971
```

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient	0.5636
Mean absolute error	0.8103

Root mean squared error	1.0381
Relative absolute error	83.0203 %
Root relative squared error	84.2186 %
Total Number of Instances	63

vi) 100

Linear Regression Model

class =

0.1054 * x^1 + -0.0848

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.4061

Mean absolute error 0.9156

Root mean squared error 1.168

Relative absolute error 93.8028 %

Root relative squared error 94.7577 %

Total Number of Instances 63

vii) 1000

Linear Regression Model

class =

+

-0.0892

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0
Mean absolute error 0.9761
Root mean squared error 1.2326
Relative absolute error 100 %
Root relative squared error 100 %
Total Number of Instances 63

d) 2

λ =

i) 0.001

Linear Regression Model

class =

0.9374 * x^1 + -0.1023 * x^3 +

0.0731

Time taken to build model: 0.03 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.3342

Mean absolute error 1.7087

Root mean squared error 2.1675

Relative absolute error 93.4849 %

Root relative squared error 94.2496 %

Total Number of Instances 63

ii) 0.01

Linear Regression Model

class =

0.936 * x^1 + -0.1021 * x^3 +

0.0731

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.3342

Mean absolute error 1.7086

Root mean squared error 2.1675

Relative absolute error 93.4841 %

Root relative squared error 94.2496 %

Total Number of Instances 63

iii) 0.1

Linear Regression Model

```
class =
```

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.3342

Mean absolute error 1.7088

Root mean squared error 2.1675

Relative absolute error 93.495 %

Root relative squared error 94.2509 %

Total Number of Instances 63

iv) 1 Linear Regression Model

class =

Time taken to build model: 0.02 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.3331

Mean absolute error 1.7112

Root mean squared error 2.1696

Relative absolute error 93.6228 %

Root relative squared error 94.3428 %

Total Number of Instances 63

v) 10

Linear Regression Model

class =

Time taken to build model: 0.01 seconds

```
=== Evaluation on training set ===
=== Summary ===
```

Correlation coefficient	0.2596
Mean absolute error	1.7492
Root mean squared error	2.2224
Relative absolute error	95.7019 %
Root relative squared error	96.6379 %
Total Number of Instances	63

vi) 100

Linear Regression Model

class =

0.1257 * x^1 + 0.0815

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.2596

Mean absolute error 1.7793

Root mean squared error 2.2513

Relative absolute error 97.3491 %

Root relative squared error 97.8915 %

Total Number of Instances 63

vii) 1000

Linear Regression Model

class =

+

0.0763

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0
Mean absolute error 1.8277
Root mean squared error 2.2997
Relative absolute error 100 %

Root relative squared error 100 % Total Number of Instances 63

e) 10

λ =

i) 0.001

class =

-4.6864 * x^2 +

0.4606 * x^4 +

5.7743

Time taken to build model: 0.02 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.3906

Mean absolute error 8.0141

Root mean squared error 9.7644

Relative absolute error 92.2647 %

Root relative squared error 92.0566 %

Total Number of Instances 63

ii) 0.01

Linear Regression Model

class =

-4.6712 * x^2 +

0.4589 * x^4 +

5.7577

Time taken to build model: 0.08 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.3906

Mean absolute error 8.0138

Root mean squared error 9.7644

Relative absolute error 92.2619 %

Root relative squared error 92.0567 %

Total Number of Instances 63

Linear Regression Model

class =

-4.5249 * x^2 + 0.4425 * x^4 + 5.5971

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.3905

Mean absolute error 8.0115

Root mean squared error 9.7654

Relative absolute error 92.235 %

Root relative squared error 92.066 %

Total Number of Instances 63

iv) 1

Linear Regression Model

class =

3.7124 * x^1 + -2.7438 * x^2 + -0.7805 * x^3 + 0.0289 * x^6 + 0.0005 * x^9 + 4.402

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correlation coefficient 0.483

Mean absolute error 7.8584

Root mean squared error 9.3402

Relative absolute error 90.4723 %

Root relative squared error 88.0579 %

Total Number of Instances 63

v) 10

Linear Regression Model

```
class =
```

-1.3356 * x^2 + 0.0013 * x^8 + 2.3379

Time taken to build model: 0.01 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0.3696

Mean absolute error 8.1603

Root mean squared error 10.0002

Relative absolute error 93.948 %

Root relative squared error 94.2794 %

Total Number of Instances 63

vi) 100

Linear Regression Model

class =

+

-0.6515

Time taken to build model: 0.02 seconds

=== Evaluation on training set === === Summary ===

Correlation coefficient 0
Mean absolute error 8.6859
Root mean squared error 10.6069
Relative absolute error 100 %
Root relative squared error 100 %

63

vii) 1000

Linear Regression Model

Total Number of Instances

class =

+

-0.6515

Time taken to build model: 0.01 seconds

Correlation coefficient	0
Mean absolute error	8.6859
Root mean squared error	10.6069
Relative absolute error	100 %
Root relative squared error	100 %
Total Number of Instances	63

Bias of mean estimator =
$$\left(\frac{1}{100}\sum_{i=1}^{100}m_i\right)-M$$

Where M is mean ie 5 here and m_i is mean of ith subset

Variance of mean estimator =
$$\frac{1}{100}\sum_{i=1}^{100}(v_i-V)^2$$

Where v_i = is variance of i^{th} subset

Bias of variance estimator =
$$\frac{1}{1000} \sum_{i=1}^{1000} (x_i - X)^2$$
 - V

Where $x_i = i^{th}$ term and V is variance ie 2 and X is mean of all x_i

Variance of variance estimator = is the variance of all the 100 variances of the subset

Bias of mean estimator -0.0542

Variance of mean estimator 0.3891

Bias of variance estimator 1.7724

Variance of variance estimator 2.8490