* Extreme points of a convex set.
let X = R ⁿ be a convex set.
A point no E X is called an extreme point
A point $n_0 \in X$ is called an extreme point (EP) of X if $\exists n_1, n_2 \in X$, $m_1 \neq n_2$ and a scalar $\lambda \in (0,1)$ such that
scalar $\lambda \in (0,1)$ such that
$n_0 = \lambda n_2 + (1 - \lambda) n_4$
there in polyhedron
there in polyhedron.
g of mynite extense pro
Eg of infinite extreme pts Comment be a polyhedron
1
All boundary pts are extreme pts
are extreme pts
(uncountably extreme
phs).
& Recult: An FD M X in a house to
& Result: An EP of X is a boundary pt. of X. Converse is not true.
70F / . 2000 132 23 1001 + 1500C.
I no is an EP of convex set X.
then no EX > no E insterios, X
y no is an EP of convex set X, then no ∈ X → no € interior X or no € boundary X.
Po show: no & interior X.
Suppose no E interior X
7) 7 8 7 0 ≤ .t. Ng(no) < n
$\frac{n_1 = n_0 - \delta_1 e}{2 \text{ Ney}} = \frac{e}{1}$
- Ney
$m_1 = m_0 - \delta_1 e$ 2 Ney $m_2 = m_0 - \delta_2 e$ 1 Ney

11 m -noll = 8/2 = 1/22 -noy and my 7 m.
mynze Ns(no)
and no = 1 24 + 6 22
Henre, no cannot be EP De Contradictor
turce, no & interior X.
X -> convex set in R ^y .
Let no EX be arbitrary.
A vector dERN, d 70, a die Vector of X at no if no t Ad EX, + A ≥0.
Dx (no) = { d ∈ IR ⁿ : d ≠ 0 : no + 2d ∈ x + 20}