Stat-PINNs Readme

October 2024

1 Overview

This is the readme file of the code for Statistical-Physics-Informed Neural Networks (Stat-PINNs). This machine learning framework can learn the dissipative operator and free energy (or entropy) of a pure dissipative GENERIC-type isothermal (or closed) system. Following will introduce the related codes and files.

2 Stat-PINNs (Folder 'NN')

This part is included in the folder 'NN'. It contains the Stat-PINNs python code 'Stat-PINNs.ipynb' and input data for examples shown in the manuscript, which is included in folder 'Data'.

2.1 Stat-PINNs.ipynb

This code, Stat-PINNs, is coded in python (primarily using JAX) can learn the dissipative operator and free energy from data, which includes the fluctuations and evolution within a short time interval (repeated by a large number of time) for a pure dissipative GENERIC-type isothermal system, and can predict the corresponding evolution in continuum scale. It includes the following parts,

- 1. Preparation: Import libraries and define functions.
- 2. Stat-PINNs: MLP and two neural networks for learning dissipative operator and free energy, respectively.
- 3. Code for Continuum Evolution Prediction
- 4. Load data for Stat-PINNs training: Import the data (measured dissipative operator entries, short time evolution and related parameters) from MATLAB files 'AllSummaryParams.mat' and 'AllSummariesMPK2.mat' in folder 'NN/Data/xxx', where 'xxx' is the folder name of a given simulation/experiment.
- 5. K_NN Training and Prediction: Define training data, train neural network for dissipative operator and output training results in file 'NN/Data/xxx/K_fe_NN_model/K_params.pkl'.
- 6. fe_NN Training and Prediction: Define training data, train neural network for free energy and output training results in file 'NN/Data/xxx/K_fe_NN_model/fe_params.pkl'.
- 7. Continuum Prediction: Predict continuum evolution from both NN results and the long-rang analytic Arrhenius diffusion model. Then compare with the long-time Kinetic Monte-Carlo (KMC) simulation results loaded from folder 'NN/Data/yyy', where 'yyy' is the folder name of a given long-time KMC simulation/experiment.

2.2 Folder 'NN/Data'

This folder contains three examples for Arrhenius process used in the manuscript, which can be found in following three folders,

```
NN/Data/Arr_Nb2e3_G25_JL0.9_L40
NN/Data/Arr_Nb2e3_G25_JL0.9_L2
NN/Data/Arr_Nb2e3_G25_JL2.2_L2
```

and three corresponding long-time evolution profiles obtained by Kinetic Monte-Carlo (KMC) simulations,

```
NN/Data/ArrL_Nb2e3_G25_600t_c05A045f1_JL0.9_L40_1e3T0.32
NN/Data/ArrL_Nb2e3_G25_600t_c05A045f1_JL0.9_L2_1e3T0.32
NN/Data/ArrL_Nb1333_G17_600t_c05A04f1_JL2.2_L2_1e3T1.8
```

Here the names of each folder are defined by following notations:

- JL: Interaction strength J_0L ;
- ullet L: Interaction range L (in each direction) in the unit of bin number;
- Nb: Bin number N_b ;
- G: N_{γ} , the number of shape function $\gamma_i x$;
- 600t: The average profile is obtained from 600 independent trajectories (realizations);
- c05A045f1: The initial profile has average density (concentration) $\rho_{ave} = 0.5$, amplitude A = 0.45 and frequency f = 1;
- 1e3T0.32: The total simulation time is T = 0.32 with 1001 steps of output at $t_i = iT/1000$, where $i = 0, 1, \dots, 1000$.

Notice that systems with different scales/discretizations are involved in training and prediction, and rescaling are done to match them with each other.

- All training data in folders Arr_xxx are obtained from simulation in system ranging in $x \in [0, 1]$ with 2000 bins and 25 shape functions. The corresponding training and prediction for operator and free energy are done for the same system. After doing a rescaling, these numbers and figures will be the same as the ones shown in the manuscript, where the system is ranging in $x \in [0, 1]$ with 4000 bins and 50 shape functions.
- When predicting continuum evolution, the code rescale all variables to the system ranging in $x \in [0, 1]$ with 4000 bins and 50 shape functions in according to the manuscript. This rescaling is achieved through a variable called 'model_range_factor' in the code.
- All long-time KMC simulations are done in system with periodic boundary condition ranging in xin[0,1] with $N_b = 2000$ and $N_{\gamma} = 25$, or with $N_b = 1333$ and $N_{\gamma} = 17$. In order to rescale them to the one used in the manuscript, these profiles are duplicated 2 times for system with $N_b = 2000$, and 3 times for system with $N_b = 1333$, then rescaled in length and time. This rescaling process is achieved though a variable called 'scale_factor_LongKMC' in the code.