Feuille de TD 1 : Rappels sur les fonctions trigonométriques

Exercice 1 (Formules à connaître). En utilisant l'identité $e^{it} = \cos t + i \sin t$ pour tout $t \in \mathbb{R}$, retrouver les égalités suivantes pour a, b dans \mathbb{R}

- 1. $\cos(a+b) = \cos a \cos b \sin a \sin b$,
- 2. $\sin(a+b) = \sin a \cos b + \sin b \cos a$,
- 3. $\cos(a-b) = \cos a \cos b + \sin a \sin b$,
- 4. $\sin(a-b) = \sin a \cos b \sin b \cos a$.

En déduire les égalités suivantes pour $t \in \mathbb{R}$

- 1. $\cos(2t) = \cos^2 t \sin^2 t = 2\cos^2 t 1 = 1 2\sin^2 t$
- $2. \sin(2t) = 2\sin t \cos t$

On rappelle le résultat (à connaître) suivant :

Proposition. Soit I et J deux intervalles de \mathbb{R} et $f: I \to J$ une fonction bijective dérivable telle que pour tout $t \in I$, $f'(t) \neq 0$. Alors la bijection réciproque f^{-1} est dérivable et pour tout $s \in J$, $(f^{-1})'(s) = \frac{1}{f'(f^{-1}(s))}$.

Exercice 2. 1. Montrer que la fonction sinus réalise une bijection de $[-\pi/2, \pi, 2]$ sur [-1, 1].

- 2. Soit $\arcsin: [-1,1] \to [-\pi/2,\pi/2]$ la bijection réciproque. Vérifier que arcsin est dérivable sur]-1,1[et que $\arcsin'(t)=\frac{1}{\sqrt{1-t^2}}.$
- 3. Montrer que la fonction cosinus réalise une bijection de $[0, \pi]$ sur [-1, 1].
- 4. Soit $\arccos: [-1,1] \to [0,\pi]$ la bijection réciproque. Vérifier que arccos est dérivable sur]-1,1[et que $\arccos'(t)=\frac{-1}{\sqrt{1-t^2}}.$
- 5. Montrer que la fonction tangente réalise une bijection de $]-\pi/2,\pi,2[$ sur $\mathbb{R}.$
- 6. Soit $\arctan:]-\pi/2,\pi,2[\to\mathbb{R}$ la bijection réciproque. Vérifier que \arctan est dérivable sur \mathbb{R} et que $\arctan'(t)=\frac{1}{1+t^2}$.

Exercice 3. Soit $\theta \in]-\pi,\pi[$. On note $t=\tan(\theta/2)$. Exprimer $\cos\theta$ et $\sin\theta$ en fonction de t.