M2

ymonbru

April 2, 2024

Presheaves and sheaves

Let X be a locally compact Hausdorf space.

1.1 Sheaves

Definition 1.1. A presheave on X is a contravariant functor from the category of open sets of X to abélian groups.

Definition 1.2. If \mathcal{F} is a presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim \mathcal{F}(U)$.

Definition 1.3. If \mathcal{F} is a presheaf on X, it is said to be a sheaf if for any $U \subset X$ open and any covering family of U $(U_a)_{a \in A}$ one has the exact sequence:

$$0 \to \mathcal{F}(U) \to \prod_{a \in A} \mathcal{F}(U_a) \to \prod_{a,b \in A} F(U_a \cap U_b) \tag{1.1}$$

1.2 \mathcal{K} -sheaves

Definition 1.4. A \mathcal{K} -presheave on X is a contravariant functor from the category of compact sets of X to abélian groups.

Definition 1.5. If \mathcal{F} is a \mathcal{K} -presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim \mathcal{F}(K) = \mathcal{F}(\{p\})$.

Definition 1.6. If \mathcal{F} is a \mathcal{K} -presheaf on X, it is said to be a \mathcal{K} -sheaf if the following conditions are satisfied:

$$\mathcal{F}(\emptyset) = 0 \tag{1.2}$$

• For K_1 and K_2 two comapets of X the following sequence is exact:

$$0 \to \mathcal{F}(K_1 \cup K_2) \to \mathcal{F}(K_1) \bigoplus \mathcal{F}(K_2) \to \mathcal{F}(K_1 \cap K_2) \tag{1.3}$$

ullet Pour tout compact K de X, le morphisme naturel suivant est un isomorphisme

$$\lim \mathcal{F}(\overline{U}) \to \mathcal{F}(K) \tag{1.4}$$

1.3 Technical lemmas

Proof.

Lemma 1.7. If $K_1, \dots K_n$ are comapets of X then $\{U_1 \cap \dots \cap U_n\}_{U_i \supset K_i \text{ open in } X}$ is a cofinale systeme of neighborhoods of $K_1 \cap \dots K_n$.
Proof. TODO □
Lemma 1.8. If $\mathcal C$ and $\mathcal D$ are two categories, $F:\mathcal C\to\mathcal D$ and $G:\mathcal D\to\mathcal C$ two functors such that (F,G) is an adjoint pair. Then for (F,G) to be an equivalence of category, it's enough to have that thes canonical naturals transformations $id_{\mathcal D}\Rightarrow F\circ G$ and $G\circ F\Rightarrow id_{\mathcal D}$ are isomorphisms.
Proof. TODO □
Lemma 1.9. If $(K_a)_{a\in A}$ is a filtered directed system of comapets substes of X , and $\mathcal F$ a $\mathcal K$ -presheaf satisfying (1.4), then $\varinjlim \mathcal F(K_a) \to \mathcal F(\bigcap_{a\in A} K_a)$
is an isomorphism.
Proof. TODO
1.4 Equivalence of category
Definition 1.10.
• If $\mathcal F$ is a presheaf then let $\alpha^*\mathcal F$ ne the $\mathcal K$ -presheaf:
$K\mapsto \underrightarrow{\lim} F(U)$
• If $\mathcal G$ is a $\mathcal K$ -presheaf then let $\alpha_*\mathcal G$ ne the presheaf :
$U \mapsto \underline{\lim}_{U \supset K \ compact} \mathcal{F}(K)$
Proposition 1.11. The pair (α^*, α_*) is an adjonit pair.
Proof. TODO □
Lemma 1.12.
$ullet$ α^* send sheaves to $\mathcal K$ -sheaves
$ullet$ α^* send $\mathcal K$ -sheaves to sheaves
• The reistrictions obtained still form an adjoint pair.
The previous adjoint pair give rise to an adjoint pair between shaeves and K -sheaves
Proof. TODO □
Lemma 1.13. The previous adjoint pair give rise to an equivalence of category between shaeves and K -sheaves

Homotopy sheaves

Pushforward, exceptional pushforward, and pullback

Čech cohomology

Purehomotopy $\mathcal{K}\text{-sheaves}$

Poincaré–Lefschetz duality

Homotopy colimits

Homotopy colimits of pure homotopy $\mathcal{K}\text{-sheaves}$

Steenrod homology