Fibonacci felbontások

Tekintsük a Fibonacci sorozat alábbi definícióját:

$$Fib(n) = \begin{cases} 1 & ha & n = 1 \\ 2 & ha & n = 2 \\ Fib(n-1) + Fib(n-2) & na & n > 2 \end{cases}$$

A sorozat első néhány eleme: 1, 2, 3, 5, 8, 13, 21, ... Adott p egész számra jelölje X(p) azt, hogy p hányféleképpen állítható elő különböző Fibonacci számok összegeként! Két előállítást különbözőnek tekintünk, ha van olyan Fibonacci szám, amelyik csak az egyikben fordul elő tagként. Adott egy n darab pozitív egész számot tartalmazó sorozat: a_1 , a_2 , ..., a_n . Ennek egy nem üres a_1 , a_2 , ..., a_k kezdőszeletére definiáljuk a p_k = Fib(a_1)+Fib(a_2)+ ... +Fib(a_k) számot.

Kiszámítandó $X(p_k)$ modulo (10^9+7) , minden k=1,...,n esetén!

Bemenet

A standard bemenet első sorában az n értéke van ($1 \le n \le 100\,000$). A második sorban az n darab pozitív egész szám van ($1 \le a_i \le 10^9$).

Kimenet

A standard kimenet k-adik sorba kell írni az X (pk) modulo (109+7) értéket!

Példa

Bemenet	Kimenet
4	2
4 1 1 5	2
	1
	2

Magyarázat

A p_k értékek:

Az 5 kétféleképpen állítható elő: Fib (2) +Fib (3), illetve Fib (4) magában (vagyis 2+3, illetve 5). Tehát X $(p_1) = 2$. X $(p_2) = 2$, mivel $p_2 = 1+5=1+2+3$.

A 7 csak egyféleképpen állítható elő különböző Fibonacci számok összegeként: 2+5.

Végül, a 15 kétféleképpen: 2+13 és 2+5+8.

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 256 MB

Pontozás

1. tesztcsoport (6 pont): n, a_i≤15

- 2. tesztcsoport (18 pont): n, ai≤100
- 3. tesztcsoport (8 pont): n≤100, ai különböző természetes számok négyzetei
- 4. tesztcsoport (18 pont): n≤100
- 5. tesztcsoport (12 pont): a_i különböző páros számok
- 6. tesztcsoport (38 pont): nincs egyéb feltétel