Lasers: EPL 334

Major, 29th April, 2008. 8:00am

Attempt all questions

Full Marks. 33	iiie. Ziii.
 (a) Explain in brief the basic mechanism for Doppler broadening. Name and broadening effect in solid state gain medium which gives similar lineshape futhe Doppler broadening. (b) What is amplified spontaneous emission and how does it affect a laser and 	nction as [2]
(c) A He-Ne laser has a gain region of length 0.2m, mirrors of reflectivity scattering losses per pass of 0.5%. What is the threshold gain required to make What would be the population difference ΔN_{ul} required to reach that threshold? If the population difference were increased by a factor of 10 from those required threshold condition, what intensity would be required in the cavity (compared reduce the gain to its steady state value. $A_{ul} = 3.4 \times 10^6/s$, refractive index = 1.0, $\Delta v = 1.5 \times 10^9$ Hz.	99% and a laser? If from the to I_{sat}) to
$A_{ul} = 5.4 \text{ x}$ To 7s, reflactive index = 1.0, 210^{-2} 1.5 x To -12 .	[4]
 2. (a) What is spectral and spatial hole-burning? (b) State a method for selecting a particular longitudinal mode without short length of the gain medium. (c) A resonator is made of a convex mirror (radius of curvature R_I) and a mirror (radius of curvature R_I) with a separation L between them. Find the valuable which the resonator is stable. Consider both cases R_I > R_I and R_I < R_I. 	[1] concave
 3. (a) What is the importance of optimum output coupling of a laser cavity? (b) Derive a relationship between optimum output coupling with small s coefficient and other cavity parameters. (c) Explain carrier and phonon confinement effects in a semiconductor laser? 	[4]
 4. (a) Explain self focusing mechanism and its use in Kerr lens modelocking. (b) A 10-fs unchirped Gaussian pulse with central wavelength λ₀ = 800 nm 1mm thick fused silica plate with a group delay dispersion of 36.16 fs² a Calculate the pulse broadening at the output of the plate due to dispersion. (c) Explain with sketch how a positively chirped pulse can be compensate cavity. 	at 800nm. [3]
5. (a) Sketch, label and indicate the importance of the relevant energy levels of (i) Ar ion laser	:
(ii) Ti-sapphire laser.(b) Sketch and label an Ar ion laser cavity and explain the importance of the disk and the off centre holes in the cavity.(c) How a dye laser is affected by excited state absorption?	[2]
(a) From a difference is affected by excited state abstriction?	[1]