Pre-requisites: None

Course Outcomes: After the completion of the course the student will be able to:

CO1	Design op-amp circuits to perform arithmetic operations.
CO2	Analyze and design linear and non-linear applications using op-amps.
CO3	Analyze and design oscillators and filters using functional ICs.
CO4	Choose appropriate A/D and D/A converters for signal processing applications.

Mapping of course outcomes with program outcomes:

РО	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	2	3	2		-	-	-	-	-	-	-	-	2	2
CO2	2	3	2	•	-	-	-	-	-	-	-	-	2	2
CO3	1	2	2	1	-	ı	-	-	•	ı	1	-	2	2
CO4	1	2	-	1	2	•	-	-	-		-	2	2	2

Detailed Syllabus:

INTRODUCTION TO OP-AMPS: ideal Characteristics, Pin configuration of 741 op-amp. Bias, offsets and drift, bandwidth and slew rate. Offset and Frequency compensation. Exercise problems. Practical op amps, Basic building blocks: Current sources and active loads

LINEAR AND NON-LINEAR APPLICATIONS OF OP-AMPS: Inverting and non-inverting amplifiers and their analysis, Applications: inverting and non- inverting summers, difference amplifier, differentiator and integrator, Voltage to current converter, Exercise problems. Instrumentation amplifier, Log and antilog amplifiers. Precision rectifier, Non-linear function generator, solving differential equations using analog computing blocks. Analog IC Multipliers and applications Comparators, regenerative comparators, input - output Characteristics, Astable and Monostable multi vibrator, Triangular wave- generators, RC-phase shift oscillator, Wein's bridge oscillator

ACTIVE FILTERS: Low pass, High pass, Band pass and Band Reject filters, Butterworth, Chebychev filters, Different first and second order filter Topologies, Frequency Transformation.

TIMERS & PHASE LOCKED LOOPS: 555 Timer functional diagram, monostable and astable operation, applications. PLL- basic block diagram and operation, capture range and lock range; applications of PLL IC 565, AM detection, FM detection and FSK demodulation. VCO IC 566.

IC VOLTAGE REGULATORS: Series op amp regulator, three terminal IC voltage regulator exercise problems. IC 723 general purpose regulator, Switching Regulator.

DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS: Weighted resistor DAC, R-2R and inverted R-2R DAC. IC DAC-08. Counter type ADC, successive approximation ADC, Flash ADC, dual slope ADC, 1-bit converters, sigma-Delta ADC. DAC and ADC Specifications, Specifications of AD 574 (12 bit ADC).

Reading:

- 1. G B Clayton, Operational Amplifiers, 5th Edition, Elsevier science, 2003
- 2. Sergio Franco, Design With Operational Amplifier and Analog Integrated Circuits, 4th Edition, TMH, 2011.
- 3. Roy Choudary D. and Shail B. Jain, Linear Integrated circuits, 4th Edition, New Age International Publishers, 2010
- 4. Ramakant A.Gayakward, Op-Amps and Linear Integrated Circuits, 4th Edition, PHI, 2010.