## **BLOCOS COMBINATÓRIOS FUNDAMENTAIS**

## **Tópicos**

- Multiplexers.
- Síntese de circuitos combinatórios genéricos com multiplexers e lógica elementar.
- Simulação no Quartus Prime.

## Exercícios

**1.** Utilizando os blocos elementares apresentados na Figura 1, projecte um sistema de multiplexagem que permita seleccionar uma entre 8 palavras de 4 *bits* cada.



Figura 1 Multiplexers elementares: quad 2:1 (74157) e dual 4:1 (74153).

Justifique as suas opções e simule o circuito recorrendo aos componentes da família "74xxx" disponíveis na biblioteca "maxplus2" do Quartus Prime.



**Figura 2** Pesquisa de componentes da família "74xxx" na biblioteca maxplus2 disponível no ambiente Quartus Prime.

- **2.** Implemente o mesmo sistema de multiplexagem do problema anterior, agora com base em *buffers* de 3 estados do tipo 74244 (e lógica adicional que julgue pertinente utilizar). Compare as duas soluções em termos do número de circuitos integrados necessário.
- **3.** Implemente a função  $F(A,B,C,D) = A + C' \cdot D + B \cdot D' + B' \cdot D + B' \cdot C$ , usando apenas um *multiplexer*, as variáveis independentes (não complementadas) e as constantes "0" e "1".

## **Exercícios Complementares**

- **4.** Sugira implementações da função  $f(A, B, C, D) = \sum m_{A,B,C,D}(0,3,5,7,11,12,13,15)$  baseadas em:
  - a) Multiplexer 16:1
  - b) Multiplexer 8:1
  - c) Multiplexer 4:1 e lógica elementar adicional.

[Nota: nas alíneas b) e c), admita que dispõe das variáveis também na forma complementada]

**5.** Pretende-se construir um subsistema computacional com 2 entradas de dados, A e B, e 3 entradas de controlo, C2, C1 e C0. A saída do circuito, F, obedece à seguinte a tabela de verdade:

| C <sub>2</sub> | C <sub>1</sub> | C <sub>0</sub> | F                        |
|----------------|----------------|----------------|--------------------------|
| 0              | 0              | 0              | 1                        |
| 0              | 0              | 1              | A+B                      |
| 0              | 1              | 0              | $\overline{A \bullet B}$ |
| 0              | 1              | 1              | $\underline{A \oplus B}$ |
| 1              | 0              | 0              | $\overline{A \oplus B}$  |
| 1              | 0              | 1              | $A \bullet B$            |
| 1              | 1              | 0              | $\overline{A+B}$         |
| 1              | 1              | 1              | 0                        |

Implemente o circuito com base num *multiplexer* e lógica elementar adicional.