Exemplo2: Problema de otimização

■ Maximizar a função $f(x,y) = |x * y * sen(y^{\pi}/4)|$, com $x \in y$ pertencentes ao intervalo [0,15].

- Exemplo2: Problema de otimização, solução.
 - Para evitar o valor de f(x,y) = 0, usaremos g(x,y) = 1 + f(x,y) como função de avaliação.
 - Para o intervalo definido das variáveis, 4 bits para cada variável é suficiente. Logo, cada cromossomo será formado por 8 bits.
 - Vamos utilizar uma taxa de mutação de 1%.
 - Para fins explicativos, vamos manter uma população de 6 indivíduos.

Exemplo2: Problema de otimização, solução.

Cromossomo	\boldsymbol{x}	y	g(x,y)
0100 0011	4	3	9,5
0010 1001	2	9	13,7
1001 1011	9	11	71,0
0000 1111	0	15	1,0
0101 0101	5	5	16,7
1110 0011	14	3	30,7
Somatório das avaliações:			142,6

$$M_A = \frac{\sum_{i=1}^n f_O(i)}{n} = \frac{142,6}{6} = 23,76$$

✓ Função de avaliação: Retorno da função g(x, y) = 1 + f(x, y)

[✓] **População inicial:** Neste exemplo foram criados 6 indivíduos, onde os primeiros 4 bits representam o valor de x e os ultimos 4 bits o valor de y.

A roleta para a população inicial

Cromossomo	g(x,y)	Intervalo	Aptidão (%)
0100 0011	9,5	[0; 9,5[7%
0010 1001	13,7	[9,5; 23,2[9%
1001 1011	71,0	[23,2; 94,2[49%
0000 1111	1,0	[94,2; 95,2[1%
0101 0101	16,7	[95,2; 111,9 [13%
1110 0011	30,7	[111,9; 142,6[21%

Exemplo2: Problema de otimização, solução.

Números sorteados	Cromossomos escolhidos	
12,8	00101001	
65,3	10011011	
108,3	01010101	
85,3	10011011	
1,8	01000011	
119,5	11100011	

[✓] **Seleção:** Indivíduos são selecionados para reprodução com base na sua pontuação, de acordo com os intervalos definidos.

Exemplo2: Problema de otimização, solução.

[✓] **Crossover:** Para cada par a ser cruzado é selecionado aleatoriamente um ponto de crossover dentre as posições na cadeia.

Exemplo2: Problema de otimização, solução.

Cromossomo	x	y	g(x,y)
00111011	3	11	24,3
10001001	8	9	51,9
01010111	5	7	23,8
10011000	9	8	1
01000011	4	3	9,5
11101011	14	11	109,9
Somatório das avaliações:			220,4

$$M_A = \frac{\sum_{i=1}^n f_O(i)}{n} = \frac{220,4}{6} = 36,7 > 23,76$$

✓ Função de avaliação: Avaliação da nova população utilizando a função g(x,y) = 1 + f(x,y)