Editing Assignments Avinash Iyer

Theorem 1

- The theorem statement is incorrect: for example, if a = 6, b = 3, c = 4, then a|(bc) but $a \not|b$ and $a \not|c$.
- The proof only looks at one case and generalizes to the entire integers.

Corrected Theorem and Proof

Theorem 1. Let a, b, $c \in \mathbb{Z}$ such that a < b < c. If a|(bc), then a|b or a|c

Proof. Suppose toward contradiction that for $a, b, c \in \mathbb{Z}$, a|(bc), $a \not|b$, and $a \not|c$. Then $\forall x, y \in \mathbb{Z}$, $b \neq xa$ and $c \neq ya$. Then, $bc \neq (xy)a$. However, this means $a \not|bc$, as $xy \in \mathbb{Z}$. \bot

Theorem 2

- The proof states the wrong assumption.
- The proof states the wrong conclusion, it is supposed to be that $1 > \frac{1}{a}$, not $a > \frac{1}{a}$.

Corrected Theorem and Proof

Theorem 2. If $a \in \mathbb{R}$ and a > 1, then $0 < \frac{1}{a} < 1$.

Proof. Let $a \in \mathbb{R}$, a > 1. Then, a > 0, so $\frac{1}{a} > 0$.

By the order properties of \mathbb{R} , multiplication by $\frac{1}{a}$ must preserve the sign in the inequality a > 1. So, $\frac{a}{a} > \frac{1}{a}$.

Thus, we have $0 < \frac{1}{a} < 1$.

Theorem 3

- Instead of \abs{x} , the command for absolute value is |x|.
- Instead of \epsilon, the proof writer should have used \varepsilon.
- The proof does not state that it is toward contradiction.

Corrected Theorem and Proof

Theorem 3. If $|x| < \varepsilon$ for every real number $\varepsilon > 0$, then x = 0.

Proof. Suppose toward contradiction that $\exists x \neq 00$ such that $|x| < \varepsilon$ for every $\varepsilon > 0$.

Then, $\frac{|x|}{2} > 0$, as $|x| \neq 0$. This means $|x| < \frac{|x|}{2}$ by the theorem hypothesis.

Dividing by |x|, we get $1 < \frac{1}{2}$. \perp

Theorem 4

• The theorem's proof uses k to denote the values of both a and b.

Corrected Theorem and Proof

Theorem 4. Let $a, b \in \mathbb{Z}$ where $a \equiv 1 \mod 3$ and $b \equiv 2 \mod 3$. Then, $(a + b) \equiv 0 \mod 3$.

Proof. Let $a \equiv 1 \mod 3$ and $b \equiv 2 \mod 3$. Then, for some $k, \ell \in \mathbb{Z}$, a = 3k + 1 and $b = 3\ell + 2$.

Then, $a+b=(3k+1)+(3\ell+2)=3(k+\ell+1)$, so $a+b\equiv 0 \mod 3$.

Editing Assignments Avinash Iyer

Theorem 5

• The proof of the theorem is often imprecise, using words such as "impossible," and does not state that it is toward contradiction.

• In the third sentence of the proof, math mode is used even though the word "and" should not be in math mode.

Corrected Theorem and Proof

Theorem 5. There are no integers a, b for which 2a + 4b = 1.

Proof. Suppose toward contradiction that $\exists a, b \in \mathbb{Z}$ such that 2a+4b=1. Then, $a+2b=\frac{1}{2}$. However, since $a,b\in\mathbb{Z}$, and a+2b are all operations

Theorem 6

• The proof of the theorem uses k in reference to both n and $n^2 + 5$.

Corrected Theorem and Proof

Theorem 6. Let n be an integer. If $n^2 + 5$ is odd, then n is even.

```
Proof. Let n be odd. Then, n = 2k+1 for some k \in \mathbb{Z}. So, n^2+5 = (2k+1)^2+5, or (4k^2+4k+1)+5. So, n^2+5=2(2k^2+2k+3).
```

Theorem 7

- The proof states that it is "to the contrary," rather than by contradiction.
- n^2 cannot be less than n by the ordering properties of \mathbb{N} .

Theorem 8

- The series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ is conditionally convergent, meaning that its terms can be rearranged to satisfy any condition, implying that this proof cannot hold.
- On the first line of the second align section, there are two equal signs.
- On the third line, a is put in place of a 2.