

《数值分析》3

- → 不动点迭代法
- → 不动点迭代的收敛性
- → 迭代序列的收敛速度
- → 序列收敛加速方法

《数值分析》3

→ 不动点迭代法

不动点迭代的收敛性 迭代序列的收敛速度 序列收敛加速方法

迭代法:一类常见常用的计算技术

举例:

方程:
$$x = \cos(x)$$

- ■构造有效的迭代格式
- ■选取合适的迭代初值
- ■对迭代格式进行收敛性分析

一简单迭代:
$$x_{n+1} = \cos(x_n)$$
 ($n=1,2,3,\dots$)

初值: $x_0=0.5$

举例1: 方程 $x^3 + 4x^2 - 10 = 0$ 在 [1, 2] 上有一个根. 将方程变换成另一形式

(1)
$$x = \sqrt{10 - x^3} / 2$$
 $\varphi(x) = \sqrt{10 - x^3} / 2$
 $x_{n+1} = \varphi(x_n)$ $(n = 0, 1, 2, \dots)$
 $x_0 = 1.5$

(2)
$$x = \sqrt{10/(x+4)}$$
 $\varphi(x) = \sqrt{10/(x+4)}$ $x_{n+1} = \varphi(x_n)$ $(n = 0, 1, 2, \dots)$ $x_0 = 1.5$

唯一性? 构造规律? 构造有效?

$$x_{n+1} = \frac{1}{2} \sqrt{10 - x_n^3}$$

n	\boldsymbol{x}_n	$ x_{n+1} - x_n $
0	1.5000	
1	1.2870	2.1e-1
2	1.4025	1.1e-1
3	1.3455	5.7e-2
4	1.3752	2.9e-2
5	1.3601	1.5e-2
6	1.3678	7.7e-3
7	1.3639	3.9e-3
8	1.3659	2.0e-3
9	1.3649	1.0e-3
10	1.3654	5.3e-4

v –	10
$\lambda_{n+1} - 1$	$\overline{x_n+4}$

n	x_n	$ x_{n+1} - x_n $
0	1.5000	
1	1.3484	1.5e-1
2	1.3674	1.8e-2
3	1.3650	2.4e-3
4	1.3653	3.0e-4
5	1.3652	3.9e-5
6	1.3652	4.9e-6

$$f(x) = 0 \quad \Rightarrow \quad x = \varphi(x)$$

若存在 x^* , 使得 $x^* = \varphi(x^*)$, 则称 $x^* \to \varphi(x)$ 的不动点

$$\varphi(x)$$
 — 迭代函数

$$x_{n+1} = \varphi(x_n)$$

$$\Rightarrow \begin{cases} y_n = \varphi(x_n) \\ x_{n+1} = y_n \end{cases}$$

$$(x_n, y_n) \rightarrow (x_{n+1}, y_n)$$

$$\rightarrow (x_{n+1}, y_{n+1})$$

引理2.1 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

(1)
$$a \le \varphi(x) \le b$$
; (2) $|\varphi'(x)| \le L < 1$ 则 $\varphi(x)$ 在 $[a,b]$ 有唯一的不动点 x^*

证: 1)若 $\varphi(a) = a$ 或 $\varphi(b) = b$,显然 $\varphi(x)$ 有不动点设 $\varphi(a) \neq a$, $\varphi(b) \neq b$ 则有 $\varphi(a) > a$, $\varphi(b) < b$ 记 $\psi(x) = \varphi(x) - x$ 则有 $\psi(a) \cdot \psi(b) < 0$ 所以, 存在 x^* , 使得 $\psi(x^*) = 0$ 即 $x^* = \varphi(x^*)$, 故 x^* 是 $\varphi(x)$ 的不动点.

2) 如果 $\varphi(x)$ 有两个不同的不动点 $x_1^* \neq x_2^*$ 则有

$$x_1^* = \varphi(x_1^*)$$
 $x_2^* = \varphi(x_2^*)$

两式相减得
$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*)$$

由拉格朗日中值定理知, 存在 ξ 介于 x_1^* x_2^* 之间, 使

$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*) = \varphi'(\xi)(x_1^* - x_2^*)$$

- $|x_1^* x_2^*| = |\varphi'(\xi)| \cdot |x_1^* x_2^*|$
- $|x_1^* x_2^*| \le L \cdot |x_1^* x_2^*|$
- $1 \le L$ (与 $L \le 1$ 条件矛盾)

故不动点唯一。

定理2.4 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

(1)
$$a \le \varphi(x) \le b$$
 ; (2) $|\varphi'(x)| \le L < 1$

则对任意的 $x_0 \in [a, b]$, 迭代格式 $x_{n+1} = \varphi(x_n)$

产生的序列 $\{x_n\}$ 收敛到不动点 x^* ,且有

$$|x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

证:

$$\begin{cases} x_n = \varphi(x_{n-1}) & |x_n - x^*| = |\varphi(x_{n-1}) - \varphi(x^*)| \\ x^* = \varphi(x^*) & = |\varphi'(\xi)| \cdot |x_{n-1} - x^*| \end{cases}$$

$$\rightarrow |x_n - x^*| \le L |x_{n-1} - x^*|$$

$$|x_n-x^*| \leq L^n |x_0-x^*|$$

$$\lim_{n\to\infty} |x_n - x^*| \le \lim_{n\to\infty} L^n |x_0 - x^*| = 0 \quad (0 \le L \le 1)$$

所以,
$$\lim_{n\to\infty} x_n = x^*$$
 故迭代格式收敛

$$|x_n - x^*| = |x_n - x_{n+1} + x_{n+1} - x^*|$$

$$\leq |x_n - x_{n+1}| + |x_{n+1} - x^*| \leq |x_n - x_{n+1}| + L|x_n - x^*|$$

$$\rightarrow$$
 $(1-L) | x_n - x^* | \le | x_n - x_{n+1} |$

$$\rightarrow |x^* - x_n| \le \frac{1}{1 - I} |x_{n+1} - x_n|$$

数列的 r 阶收敛(概念):

设 $\lim_{n\to\infty} x_n = x^*$,若存在 a>0,r>0 使得

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = a \quad \text{则称数列}\{x_n\} \; r \; \text{阶收敛}.$$

- 特别: (1) 收敛阶/=1时,称为线性收敛
 - (2) 收敛阶r>1时,称为超收敛;
 - (3) 收敛阶r=2时,称为平方收敛

序列的收敛阶数越高, 收敛速度越快

例2.3 方程 $x^3+10x-20=0$,取 $x_0=1.5$,证明迭代法 在[1,2]上, $x_{n+1} = 20/(x_n^2 + 10)$ 是线性收敛

$$\Rightarrow \begin{cases} \varphi(1) \approx 1.82 & \varphi(2) \approx 1.43 \\ \varphi'(x) = -40x/(x^2 + 10)^2 \end{cases}$$

$$\Rightarrow \begin{cases} \varphi''(x) = 40 \frac{3x^2 - 10}{(x^2 + 10)^3} \end{cases}$$

$$\varphi''(x) = 0 \quad \Rightarrow \quad \hat{x} = \sqrt{10/3}$$

$$\varphi'(\hat{x}) \approx -0.4108 \quad \rightarrow \quad |\varphi'(x)| \leq 0.411$$

显然,在x*附近

$$|\varphi'(x)| < 1 \quad \varphi'(x) \neq 0$$

利用Lagrange中值定理,有

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = |\varphi'(\xi_n)| |x_n - x^*|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} |\varphi'(\xi_n)| = |\varphi'(x^*)|$$

由此可知,这一序列的收敛阶数为1,即迭代法是线性收敛.

n	\boldsymbol{x}_n	$ x_{n+1}-x_n $	$ x_{n+2}-x_{n+1} $
0	1.5000000		$ x_{n+1}-x_n $
1	1.6326530	1.3265e-001	
2	1.5790858	5.3567e-002	4.0381e-001
3	1.6008308	2.1745e-002	4.0594e-001
4	1.5920195	8.8113e-003	4.0521e-001
5	1.5955927	3.5732e-003	4.0553e-001
6	1.5941442	1.4486e-003	4.0540e-001
7	1.5947315	5.8733e-004	4.0545e-001
8	1.5944934	2.3812e-004	4.0543e-001
9	1.5945899	9.6545e-005	4.0544e-001
10	1.5945508	3.9143e-005	4.0544e-001
11	1.5945666	1.5870e-005	4.0544e-001
12	1.5945602	6.4343e-006	4.0544e-001

定理2.6 设 x^* 是 $\varphi(x)$ 的不动点,且

$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$

而
$$\varphi^{(p)}(x^*) \neq 0$$
 则 $x_{n+1} = \varphi(x_n)$ p阶收敛

由Taylor公式

$$|x_{n+1}-x^*|=|\varphi(x_n)-\varphi(x^*)|=\frac{|x_n-x^*|^p}{p!}|\varphi^{(p)}(\xi_n)|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = \frac{1}{p!} \lim_{n\to\infty} |\varphi^{(p)}(\xi_n)| = \frac{1}{p!} |\varphi^{(p)}(x^*)|$$

故迭代法p阶收敛.

理一下思路

计算基本常识:误差、有效数字、计算中数的规则

算法的稳定概

念: 引迭代格

式重要性

迭代法的引入:二 分法(区间迭代、 误差定理)

经典迭代法:牛顿 迭代(推导、几何 、优缺点....)

迭代法深入:不动点迭代(初值点迭代、收敛性条件、收敛性条件、收敛速差、收敛速度,定理2.4)

这章迭代法的对象 (干什么)?