OEIS link	Name	First elements	Short description
A000010	Euler's totient function $\varphi(n)$	1, 1, 2, 2, 4, 2, 6, 4, 6, 4	$\varphi(n)$ is the number of the positive integers not greater than n that are prime to n
A000027	Natural number	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	The natural numbers
A000032	Lucas number	2, 1, 3, 4, 7, 11, 18, 29, 47, 76	L(n) = L(n-1) + L(n-2)
A000040	Prime number	2, 3, 5, 7, 11, 13, 17, 19, 23, 29	The prime numbers
A000045	Fibonacci number	0, 1, 1, 2, 3, 5, 8, 13, 21, 34	F(n) = F(n-1) + F(n-2) with $F(0) = 0$ and $F(1) = 1$
A000058	Sylvester's sequence	2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443	$a(n + 1) = a(n)^2 - a(n) + 1$, with $a(0) = 2$
A000073	Tribonacci number	0, 1, 1, 2, 4, 7, 13, 24, 44, 81	T(n) = T(n-1) + T(n-2) + T(n-3) with $T(0) = 0$, $T(1) = T(2) = 1$
A000108	Catalan number	1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862	$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)! n!} = \prod_{k=2}^n \frac{n+k}{k} \text{ for } n \ge 0.$
A000110	Bell number	1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147	The number of partitions of a set with n elements
A000111	Euler number	1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936	The number of linear extensions of the "zig-zag" poset
A000124	Lazy caterer's sequence	1, 2, 4, 7, 11, 16, 22, 29, 37, 46	The maximal number of pieces formed when slicing a pancake with n cuts
A000129	Pell number	0, 1, 2, 5, 12, 29, 70, 169, 408, 985	a(0) = 0, $a(1) = 1$; for $n > 1$, $a(n) = 2a(n - 1) + a(n - 2)$
A000142	Factorial	1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880	$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n$
A000217	Triangular number	0, 1, 3, 6, 10, 15, 21, 28, 36, 45	a(n) = C(n + 1, 2) = n(n + 1)/2 = 0 + 1 + 2 + + n
A000292	Tetrahedral number	0, 1, 4, 10, 20, 35, 56, 84, 120, 165	The sum of the first n triangular numbers
A000330	Square pyramidal number	0, 1, 5, 14, 30, 55, 91, 140, 204, 285	(n(n+1)(2n+1)) / 6 The number of stacked spheres in a pyramid with a square base
A000396	Perfect number	6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128	n is equal to the sum of the proper divisors of n
A000668	Mersenne prime	3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111	$2^p - 1$ if p is a prime
A007588	Stella octangula number	0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381,	Stella octangula numbers: n*(2*n² - 1).
A000793	Landau's function	1, 1, 2, 3, 4, 6, 6, 12, 15, 20	The largest order of permutation of n elements
A000796	Decimal expansion of Pi	3, 1, 4, 1, 5, 9, 2, 6, 5, 3	
A000931	Padovan sequence	1, 1, 1, 2, 2, 3, 4, 5, 7, 9	P(0) = P(1) = P(2) = 1, P(n) = P(n-2) + P(n-3)
A000945	Euclid-Mullin sequence	2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139	a(1) = 2, $a(n+1)$ is smallest prime factor of $a(1)a(2)a(n)+1$.
A000959	Lucky number	1, 3, 7, 9, 13, 15, 21, 25, 31, 33	A natural number in a set that is filtered by a sieve

OEIS link	Name	First elements	Short description
A001006	Motzkin number	1, 1, 2, 4, 9, 21, 51, 127, 323, 835	The number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle
A001045	Jacobsthal number	0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341	a(n) = a(n-1) + 2a(n-2), with $a(0) = 0$, $a(1) = 1$
A001065	sequence of Aliquot sums s(n)	0, 1, 1, 3, 1, 6, 1, 7, 4, 8	s(n) is the sum of the proper divisors of the integer n
A001113	Decimal expansion of e (mathematical constant)	2, 7, 1, 8, 2, 8, 1, 8, 2, 8	
A001190	Wedderburn- Etherington number	0, 1, 1, 1, 2, 3, 6, 11, 23, 46	The number of binary rooted trees (every node has out-degree 0 or 2) with n endpoints (and $2n - 1$ nodes in all)
A001358	Semiprime	4, 6, 9, 10, 14, 15, 21, 22, 25, 26	Products of two primes
A001462	Golomb sequence	1, 2, 2, 3, 3, 4, 4, 4, 5, 5	a(n) is the number of times n occurs, starting with $a(1) = 1$
A001608	Perrin number	3, 0, 2, 3, 2, 5, 5, 7, 10, 12	P(0) = 3, $P(1) = 0$, $P(2) = 2$; $P(n) = P(n-2) + P(n-3)$ for $n > 2$
A001620	Euler- Mascheroni constant	5, 7, 7, 2, 1, 5, 6, 6, 4, 9	$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) = \lim_{b \to \infty} \int_{1}^{b} \left(\frac{1}{\lfloor x \rfloor} - \frac{1}{x} \right) dx.$
A001622	Decimal expansion of the golden ratio	1, 6, 1, 8, 0, 3, 3, 9, 8, 8	$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887\dots$
A002064	Cullen number	1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497	n 2 ⁿ + 1
A002110	Primorial	1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870	The product of first <i>n</i> primes
A002113	Palindromic number	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	A number that remains the same when its digits are reversed
A002182	Highly composite number	1, 2, 4, 6, 12, 24, 36, 48, 60, 120	A positive integer with more divisors than any smaller positive integer
A002193	Decimal expansion of square root of 2	1, 4, 1, 4, 2, 1, 3, 5, 6, 2	
A002201	Superior highly composite number	2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720	A positive integer n for which there is an $e>0$ such that $d(n)/n^e \ge d(k)/k^e$ for all $k>1$
A002378	Pronic number	0, 2, 6, 12, 20, 30, 42, 56, 72, 90	n(n+1)
A002808	Composite number	4, 6, 8, 9, 10, 12, 14, 15, 16, 18	The numbers n of the form xy for $x > 1$ and $y > 1$
A002858	Ulam number	1, 2, 3, 4, 6, 8, 11, 13, 16, 18	a(1) = 1; $a(2) = 2$; for $n > 2$, $a(n) = least number > a(n-1)$ which is a unique sum of two distinct earlier terms; semiperfect
A002997	Carmichael number	561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341	Composite numbers n such that $a^{(n-1)} == 1 \pmod{n}$ if a is prime to n
A003261	Woodall number	1, 7, 23, 63, 159, 383, 895, 2047, 4607	n 2 ⁿ - 1

OEIS link	Name	First elements	Short description
A003459	Permutable prime	2, 3, 5, 7, 11, 13, 17, 31, 37, 71	The numbers for which every permutation of digits is a prime
A005044	Alcuin's sequence	0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14	number of triangles with integer sides and perimeter n
A005100	Deficient number	1, 2, 3, 4, 5, 7, 8, 9, 10, 11	The numbers n such that $\sigma(n) < 2n$
A005101	Abundant number	12, 18, 20, 24, 30, 36, 40, 42, 48, 54	The sum of divisors of <i>n</i> exceeds 2 <i>n</i>
A005150	Look-and-say sequence	1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211,	A = 'frequency' followed by 'digit'-indication
A005224	Aronson's sequence	1, 4, 11, 16, 24, 29, 33, 35, 39, 45	"t" is the first, fourth, eleventh, letter in this sentence, not counting spaces or commas
A005235	Fortunate number	3, 5, 7, 13, 23, 17, 19, 23, 37, 61	The smallest integer $m > 1$ such that $pn# + m$ is a prime number, where the primorial $pn#$ is the product of the first n prime numbers
A005349	Harshad numbers in base 10	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12	a Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10)
A005384	Sophie Germain prime	2, 3, 5, 11, 23, 29, 41, 53, 83, 89	A prime number p such that $2p+1$ is also prime
A005835	Semiperfect number	6, 12, 18, 20, 24, 28, 30, 36, 40, 42	A natural number n that is equal to the sum of all or some of its proper divisors
A006037	Weird number	70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792	A natural number that is abundant but not semiperfect
A006842	Farey sequence numerators	0, 1, 0, 1, 1, 0, 1, 1, 2, 1	
A006843	Farey sequence denominators	1, 1, 1, 2, 1, 1, 3, 2, 3, 1	
A006862	Euclid number	2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871	1 + product of first n consecutive primes
A006886	Kaprekar number	1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728	$X^2 = Ab^n + B$, where $0 < B < b^n X = A + B$
A007304	Sphenic number	30, 42, 66, 70, 78, 102, 105, 110, 114, 130	Products of 3 distinct primes
A007318	Pascal's triangle	1, 1, 1, 1, 2, 1, 1, 3, 3, 1	Pascal's triangle read by rows
A007770	Happy number	1, 7, 10, 13, 19, 23, 28, 31, 32, 44	The numbers whose trajectory under iteration of sum of squares of digits map includes 1
A010060	Prouhet- Thue-Morse constant	0, 1, 1, 0, 1, 0, 0, 1, 1, 0	$\tau = \sum_{i=0}^{\infty} \frac{t_i}{2^{i+1}}$
A014080	Factorion	1, 2, 145, 40585	A natural number that equals the sum of the factorials of its decimal digits
A014577	Regular paperfolding sequence	1, 1, 0, 1, 1, 0, 0, 1, 1, 1	At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence
A016114	Circular prime	2, 3, 5, 7, 11, 13, 17, 37, 79, 113	The numbers which remain prime under cyclic shifts of digits
A018226	Magic number (physics)	2, 8, 20, 28, 50, 82, 126	A number of nucleons (either protons or neutrons) such that they are arranged into complete shells within the atomic nucleus.

OEIS link	Name	First elements	Short description
A019279	Superperfect number	2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056	$\sigma^2(n) = \sigma(\sigma(n)) = 2n$,
A027641	Bernoulli number	1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0	
A031214	First elements in all OEIS sequences	1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	One of sequences referring to the OEIS itself
A033307	Decimal expansion of Champernowne constant	1, 2, 3, 4, 5, 6, 7, 8, 9, 1	formed by concatenating the positive integers
A035513	Wythoff array	1, 2, 4, 3, 7, 6, 5, 11, 10, 9	A matrix of integers derived from the Fibonacci sequence
A036262	Gilbreath's conjecture	2, 1, 3, 1, 2, 5, 1, 0, 2, 7	Triangle of numbers arising from Gilbreath's conjecture
A037274	Home prime	1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773	For $n \ge 2$, $a(n) =$ the prime that is finally reached when you start with n , concatenate its prime factors (A037276) and repeat until a prime is reached; $a(n) = -1$ if no prime is ever reached
A046075	Undulating number	101, 121, 131, 141, 151, 161, 171, 181, 191, 202	A number that has the digit form <i>ababab</i>
A050278	Pandigital number	1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896	Numbers containing the digits 0-9 such that each digit appears exactly once
A052486	Achilles number	72, 108, 200, 288, 392, 432, 500, 648, 675, 800	Powerful but imperfect
A060006	Decimal expansion of Pisot- Vijayaraghavan number	1, 3, 2, 4, 7, 1, 7, 9, 5, 7	real root of x^3-x-1
A076336	Sierpinski number	78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909	Odd k for which $\{k2^n+1:n\in\mathbb{N}\}$ consists only of composite numbers
A076337	Riesel number	509203, 762701, 777149, 790841, 992077	Odd k for which $\{k2^n-1:n\in\mathbb{N}\}$ consists only of composite numbers
A086747	Baum-Sweet sequence	1, 1, 0, 1, 1, 0, 0, 1, 0, 1	a(n) = 1 if binary representation of n contains no block of consecutive zeros of odd length; otherwise $a(n) = 0$
A094683	Juggler sequence	0, 1, 1, 5, 2, 11, 2, 18, 2, 27	If $n \mod 2 = 0$ then floor(\sqrt{n}) else floor($n^{3/2}$)
A097942	Highly totient number	1, 2, 4, 8, 12, 24, 48, 72, 144, 240	Each number k on this list has more solutions to the equation $\varphi(x) = k$ than any preceding k
A100264	Decimal expansion of Chaitin's constant	0, 0, 7, 8, 7, 4, 9, 9, 6, 9	
A104272	Ramanujan prime	2, 11, 17, 29, 41, 47, 59, 67	The <i>n</i> th Ramanujan prime is the least integer R_n for which $\pi(x) - \pi(x/2) \ge n$, for all $x \ge R_n$.
A122045	Euler number	1, 0, -1, 0, 5, 0, -61, 0, 1385, 0	$\frac{1}{\cosh t} = \frac{2}{e^t + e^{-t}} = \sum_{n=0}^{\infty} \frac{E_n}{n!} \cdot t^n$