QUANTUM ALGORITHMS EXAM 1

PROF. MATTHEW MOORE

Due: 2020-04-09

Instructions

- Solutions must be typed. Submit solutions by email.
- Solutions will be graded based on correctness, quality, and presentation. Turn in something that you are proud of.
- You may make use of any non-human assistance any book, the web (but do not ask for help online), etc. Solutions must be self-contained.
- You may ask me questions about the problems.
- You must submit a "draft" of your solution no later than 04-02.

We will consider a generalization of Grover's algorithm. Suppose that we are given the following.

- A, a quantum circuit.
- Basis vector $|\text{start}\rangle$ and quantum state $|\text{end}\rangle$ (i.e. norm 1) with $\mathcal{A}|\text{start}\rangle = |\text{end}\rangle$.
- $|\text{end}\rangle = |A\rangle + |B\rangle$ with $\langle A \mid B\rangle = 0$, $\langle A \mid A\rangle = a$, and $\langle B \mid B\rangle = b = 1 a$.

Let us consider $|A\rangle$ as consisting of a superposition of "correct" outcomes of algorithm A. Upon measuring $|\text{end}\rangle$, the probability of observing $|A\rangle$ is a.

We assume that we have a basis $(\psi_i)_{i\in I}$ such that $I = A \cup B$ and a function $\chi: I \to \{0,1\}$ such that $\chi(A) = 1$ and $\chi(B) = 0$. Define

$$|\Psi(\alpha,\beta)\rangle = \alpha |A\rangle + \beta |B\rangle$$

and note that $|\Psi(1,1)\rangle = |\text{end}\rangle$. Define $\mathcal{G} = \mathcal{A} \circ D_s \circ \mathcal{A}^{\dagger} \circ D_A$ where D_A and D_s are reflection operators (use the phase shift $e^{i\theta}$ for both).

Give a careful analysis of the circuit $\mathcal{G} \circ \mathcal{A}$, addressing all of the points below.

- Draw the circuits for both reflection operators and also write out the operators for them (e.g. $D_0 = (e^{i\theta} 1) |0\rangle \langle 0| + I$ as in the usual Grover's algorithm).
- Calculate $\mathcal{G} | \Psi(1,1) \rangle$ and write your answer in the form $| \Psi(x,y) \rangle$ for some x,y (you should specify their values).
- Suppose that \mathcal{A} works with probability 1/4 (i.e. a=1/4). Show that taking $\theta=\pi$ (as in the usual Grover's circuit) makes $\mathcal{G} \circ \mathcal{A}$ acting on $|\mathtt{start}\rangle$ exact.
- Show that when \mathcal{A} works with probability 1/2 there is a choice of θ so that $\mathcal{G} \circ \mathcal{A}$ acting on $|\mathbf{start}\rangle$ is exact. What is the value of $e^{i\theta}$ in this case?
- Show that when \mathcal{A} works with probability in the interval [1/4, 1] there is a choice of θ so that $\mathcal{G} \circ \mathcal{A}$ acting on $|\mathbf{start}\rangle$ is exact. Give a formula to determine it given a.
- When \mathcal{A} works with probability in the interval (0, 1/4), is there a choice of θ that makes $\mathcal{G} \circ \mathcal{A}$ acting on $|\mathbf{start}\rangle$ exact? Fully justify your answer.

(When a circuit \mathcal{B} gives the correct answer with probability 1, then \mathcal{B} is said to be exact.)