哲学演習 「論理学入門」 第3回

池田 真治*

2014年5月2日

「論理学とは、他人にそれを教えるだけでなくみずから自身を教えるために、諸事物の知識の中で、その推論[理性]を良く導くための術である」―アントワーヌ・アルノー、ピエール・ニコル『論理学あるいは思考の術』1662

「証明[論証]とは、それによってある命題が確実になるところの、推論である」― ライプニッツ、Herman Conring 宛の手紙、1678 年 3 月 19-29

「3.318 私は――フレーゲやラッセルと同様――命題をそこに現れている諸表現の 関数 Funktion として捉える」―ウィトゲンシュタイン『論理哲学論考』1918 (1933)

目次

3	論理結合子と真理表	1
3.1	「かつ」、「または」、「でない」、「ならば」の真理値表	2
3.2	論理式の真理値分析	3

3 論理結合子と真理表

論証の正しさはそこに現れる結合子(論理定項)の意味だけに依存しており、推論の正 しさはそこに現れる命題の真偽に間接的に関係している。したがって、結合子の意味を、

^{*} 富山大学 人文学部 shinji@hmt.u-toyama.ac.jp; URL: http://researchmap.jp/shinjike

命題の真偽の関係から明確に規定すれば、望ましい論理学が作れるはずだ。

3.1 「かつ」、「または」、「でない」、「ならば」の真理値表

「かつ」、「または」、「でない」、「ならば」は、真理関数型結合子であるということを前回説明した。つまり、結合子は、命題を入れたら一つの真理値を返す関数である。われわれが今扱っている論理学での真理値は、真・偽の2つしかない。つまり、われわれの論理学は、二値原理を採用している。以下では、真を"1"、偽を"0"で表すことにする。

3.1.1 「かつ」の真理表

A	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

3.1.2 「でない」の真理表

A	$\neg A$
1	0
0	1

3.1.3 「または」の真理表

A	В	$A \vee B$
1	1	1
1	0	1
0	1	1
0	0	0

3.1.4 「ならば」の真理表

A	В	$A \rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

3.1.5 排他的選言の真理表

「A か B かのいずれか一方だけ」を意味する選言を、結合子の「または」と区別して、排他的選言と呼んで、「 \underline{V} 」という記号で表すことにする。

A	В	$A \underline{\vee} B$
1	1	
1	0	
0	1	
0	0	

3.1.6 練習問題 6

上の、「 $\underline{\mathsf{V}}$ 」の意味を定義する真理表を埋めなさい。

3.1.7 問題

われわれが定義した人工言語の「ならば」(→) と、日常言語の「ならば」の違いについて、説明しなさい(たとえば、教科書 p.39 および p.81~の 3.10 節を参照)。

3.2 論理式の真理値分析

3.2.1 真理値分析のやり方

- (1) 調べたい論理式の形成木を描いて、部分論理式を取り出す。
- (2) 取り出した部分論理式にしたがって、真理表を書く。

3.2.2 例

次の論理式の真理値分析をしなさい。

$$(\neg A \to A) \to B$$

A	В	$\neg A$	$\neg A \to A$	$(\neg A \to A) \to B$
1	1			
1	0			
0	1			
0	0			

3.2.3 宿題

練習問題7をやってくること。

3.2.4 双条件法の真理表

 $(A \to B) \land (B \to A)$ を略して、 $A \leftrightarrow B$ と書く。「A であるのは B であるとき、かつそのときに限る」(A if and only if B; A iff B) と読む。

A	В	$A \leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

3.2.5 問題

 $(A \to B) \land (B \to A)$ の真理表を書いてみて、実際に $A \leftrightarrow B$ の真理表と一致することを確かめよう。