

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 2 No. 3 (2018) 800 – 806 ISSN : 2580-0760 (media online)

Pengujian Sistem Pendukung Keputusan Penjurusan SMA di Banten menggunakan Metode *Black Box*

Tri Yani Akhirina^a, Dwi Yulistyanti^b, Ana Rusmardiana^c, Ulfa Pauziah^d

^aProgram Studi Informatika, fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI, triyani.akhirina@unindra.ac.id ^bProgram Studi Informatika, fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI, dwi.yulistyanti@unindra.ac.id ^cProgram Studi Informatika, fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI, ana.rusmardiana@unindra.ac.id

Abstract

The Decision Support System (DSS) of SMA major which had been tested in Banten was a system obtained from the former research, as it was expected to help private schools in Banten for students' major. This system has been developed through Fuzzy Tsukamoto's method in obtaining students' major. Fuzzy Tsukamoto requires three determinant factors, namely: skill, interest and aptitude. Fuzzyfication is carried out to get a firmed score of IPA and IPS. After the two scores are obtained, the comparison of those highest scores is conducted to determine the recommendation. In the process of manual data testing, Fuzzy Tsukamoto can be applied in students' major in Banten, with 98% of its accuracy level. After manual testing, Decision Support System of SMA major is designed by using Research and Development (R & D) as its developing system and by Unified Modeling Language (UML) as its designing analysis. The objective of this research aims at measuring the quality testing process of the application that is based on the aspects of functionality, reliability, usability, dan efficiency testingby employing the black box method. Based on the measurement Black Box Method, the Decision Support System of SMA major gets very goodvield, as it can be applied to be as SMA major recommendation in Banten.

Keywords: decision support system, SMA major, Fuzzy Tsukamoto, Black Box Method

Abstrak

Penjurusan siswa merupakan hal rutin yang dilakukan pada Sekolah Menengah Atas (SMA). Hadirnya sebuah tools berupa Sistem Pendukung Keputusan (SPK) Penjurusan SMA yang telah di ujicobakan di tiga belas sekolah swasta di Banten, merupakan suatu sistem yang dihasilkan dari penelitian terdahulu. Kehadiran SPK Penjurusan SMA ini sangat membantu dalam pengambilan keputusan penjurusan siswa khususnya SMA swasta di Banten.SPK ini menitikberatkan penjurusan berdasarkan tiga variabel yaitu kemampuan, bakat dan minat. Tujuan dari penelitian ini adalah pengujian kualitas aplikasi berdasarkan aspek functionality, reliability, usability, dan efficiencytesting dengan menggunakan pengujian Black Box. Metode pengumpulan data yang digunakan pada penelitian ini adalah dengan melakukan penyebaran kuisioner dan wawancara dengan penanggung jawabpenjurusan dalam hal ini bidang kurikulum dan kesiswaaan pada tiga belas sekolah yang telah menggunakan SPK Penjurusan Siswa. Hasil pengumpulan data dan wawancara ini dioleh sehingga memperoleh informasi bahwa SPK Penjurusan SMA ini masuk katagori SANGAT BAIK dengan rata-rata persentase nilai aktual sebesar 89,88%. Berdasarkan hasil tersebut, hal ini menunjukan bahwa SPK Penjurusan SMA yang telah digunakan oleh penangung jawab penjurusan siswa di 13 sekolah, sistem tersebut memiliki kulaitas yang sangat baik dalam membantu pengambilan keputusan penjurusan siswa berdasarkan kemampuan, bakat dan minat siswa.

Kata kunci:sistem pendukung keputusan, penjurusan SMA, metode Black Box

© 2018Jurnal RESTI

1. Pendahuluan

Penjurusan siswa Sekolah Menengah Atas (SMA) merupakan suatu hal yang rutin dilaksanakan di seluruh lingkungan SMA di Indonesia, baik sekolah negeri maupun swasta. Di Banten, penjurusan siswa SMA sekolah negeri telah menggunakan sistem yang terintegrasi dengan baik, dengan menggunakan portal https://siap-ppdb.com/banten. Sistem tersebut disiapkan oleh pemerintah propinsi untuk memudahkan pihak

sekolah dalam penjaringan siswa pada tahap penerimaan dan peminatan atau penjurusan siswa. Akan tetapi berbeda halnya dengan sekolah swasta. Untuk sekolah swasta masih belum memiliki sistem terintegrasi yang baik untuk penjurusan siswanya. Ruang lingkup penelitian ini mengambil data di Sekolah Menengah Atas di Banten, khususnya SMA swasta. Melihat kondisi di Banten, masih banyak sekolah-sekolah SMA yang masih menggunakan sistem manual dalam penjurusan siswanya. Ditambah lagi

Diterima Redaksi: 04-11-2018 | Selesai Revisi: 22-11-2018 | Diterbitkan Online: 22-12-2018

^dProgram Studi Informatika, fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI, ulfa.pauziah@unindra.ac.id

memprihatinkan [1].

Berdasarkan UU Pendidikan Nasional No. 20 pasal 12 poin 1 (b) berbunyi "Setiap Peserta didik pada setiap satuan pendidikan berhak memperolah pelayanan pendidikan sesuai dengan minat, bakat kemampuannya" [2]. SPK Penjurusan SMA tentunya diharapkan mampu memberikan rekomendasi keputusan yang baik berdasarkan minat, bakat dan kemampuan dan juga memberikan informasi yang baik bagi penggunanya. Saat ini, pengelolaan informasi yang cepat dan akurat menjadi hal yang sangat sampai pengguna informasi[3].

Sebuah software dikatakan berkualitas apabila memenuhi tiga ketentuan pokok. Ketentuan pokok tersebut adalah terpenuhinya kebutuhan pemakai, terpenuhi-nya standar pengembangan software, dan terpenuhinya sejumlah kriteria implisit. Hal ini berarti bahwa jika salah satu ketentuan tersebut tidak dapat dipenuhi, maka software yang bersangkutan tidak dapat dikatakan memiliki kualitas yang baik [4].

SPK tersebut telah di ujicobakan di tiga belas SMA Swasta di Banten sebagai tahapan untuk implementasi sistem. Untuk mengimplementasikan sistem tersebut tentunya diperlukan suatu pengujian kelayakan SPK Kualitas aplikasi perangkat lunak dapat tersebut. digunakan sebagai acuan dalam membuat produk dan dapat diukur oleh orang yang menggunakannya. Kualitas perangkat lunak merupakan pemenuhan terhadap kebutuhan fungsional dan kinerja yang didokumentasi-kan secara eksplisit, pengembangan standar yang didokumentasikan secara eksplisit, dan Pengujian perangkat lunakmerapukan suatu tahap yang sifat-sifat implisit yang diharapkan dari se-buah software yang dibangun secara profesional [5].Salah atau software engineering. Sejumlah strategi pengujian satu metode pengujian kelayakan yang peneliti gunakan perangkat lunak telah diusulkan di dalam literatur. adalah menggunakan metode Black Box.

Tujuan dari penelitian ini adalah menguji sistem tersebut berdasarkan aspek fungsionalitas, realibilitas, useability dan efficencyapakah dapat berjalan dengan baik dan mampu memenuhi kebutuhan pengguna dalam penjurusan siswa SMA swasta di Banten. Selain itu, diharapakan SPK Penjurusan SMA dapat diterapkan 2. sebagai tools yang membantu pihak sekolah dalam penjurusan siswa berdasarkan minat, bakat dan 3. kemampuannya.

2. Tinjauan Pustaka

2.1Pengujian Perangkat Lunak(Software)

Pengujian perangkat lunak atau software merupakan suatu langkah yang sangat deperlukan untuk memamstikan bahwa perangkat lunak yang telah dihasilkan mampu berjalan dengan baik sesuai dengan

dengan kesenjangan kondisi sekolah SMA swasta dan fungsionalitas yang telah ditentukan sebelumnya, negeri, terutama didaerah plosok yang sangat sehingga dapat diketahui bahwa perangkat lunak tersebut telah sesuai dengan tujuan yang ingin dicapai oleh perangkat lunak tersebut.Sistem dari kualitas perangkat lunak terintegrasi dalam tiga disiplin aplikasiyaitu: pemodelan proses pengembangan (process), pemodelan pengukuran produk(product), dan pemodelan manajemen dan interaksi manusia (human) [6]. Pengembang atau penguji software sangat diperlukan sesi khusus untuk dilakukan pengujian program yang sudah dibuat agar kesalahan ataupun kekurangan dapat dideteksi sejak dini dan dapat perbaiki secepatnya [7].

dibutuhkan karena ketersediaan informasi yang banyak Sebuah software dikatakan berkualitas apabila dan distribusinya yang cepat dari sumber informasi memenuhi tiga ketentuan pokok. Ketentuan pokok tersebut adalah terpenuhinya kebutuhan pemakai, terpenuhi-nya standar pengembangan software, dan terpenuhinya sejumlah kriteria implisit. Hal ini berarti bahwa jika salah satu ketentuan tersebut tidak dapat dipenuhi, maka software yang bersangkutan tidak dapat dikatakan memiliki kualitas yang baik [8].

> sistem informasi merupakan proses Pengujian mengumpulkan dan mengevaluasi fakta-fakta untuk menentukan apakah sistem informasi melindungi aset, memiliki integritas data, dan membantu tujuan organisasi dapat tercapai [9]. Pengujian perangkat lunak terdiri dari dua proses yaitu verivikasi dan validasi. Proses verifikasi menunjuk kepada kumpulan aktifitas yang memastikan bahwa perangkat lunak telah mengimplementasi sebuah fungsi spesifik. Dan proses validasi menunjuk kepada sebuah kumpulan berbeda dari aktivitas yang memastikan bahwa perangkat lunak yang telah dibangun dapat ditelusuri terhadap kebutuhan customer [7].

> dilaksanakan dalam proses rekayasa perangkat lunak Semuanyamenyediakan template untuk pengujian bagi pembuat perangkat lunak. Dalam hal ini, semuanya harus memiliki karakteristik umum berupa [7]:

- Testing dimulai pada level modul dan bekerja keluar kearah integrasi pada system berbasiskan computer.
- Teknik testing yang berbeda sesuai dengan poinpoin yang berbeda pada waktunya.
- Testing diadakan oleh pembuat/pengembang Software dan untuk proyek yang besar oleh group testing yang independent.
- Testing dan Debugging adalah aktivitas yang berbeda tetapi debugging harus diakomodasikan pada setiap strategi testing.

2.3 Metode Black Box Testing

Black Box Testing berfokus pada spesifikasi fungsional dari perangkat lunak. Tester dapat mendefinisikan kumpulan kondisi input dan melakukan pengetesan pada spesifikasi fungsional program. Black Box Testing bukanlah solusi alternatif dari White Box Testing tapi lebih merupakan pelengkap untuk menguji hal-hal yang tidak dicakup oleh White Box Testing[10].

Metode pengujian Black Box testing adalah suatu metode yang mengijinkan pengujian secara acak, tanpa perencanaan dan dapat dilakukan oleh beberapa orang yang tidak memahami secara detail mengenai spesifikasi dari sistem tersebut. Dalam menguji sebuah sistem informasi orang yang paling sesuai dalam melakukan pengujian adalah pengguna atau user [11].

BlackBoxTesting cenderung untuk menemukan lima hal, diantaranya pertama, menemukan fungsi yang tidak benar atau tidak ada. Kedua, kesalahan antarmuka (interface errors). Ketiga, menemukan kesalahan pada struktur data dan akses basis data. Keempat, menemukan kesalahan performansi (performance errors). Dan yang adalah untuk menuemukan kesalahan inisialisasi dan terminasi [10]. Pengujian didesain untuk menjawab pertanyaan-pertanyaanberikut:

- 1. Bagaimana fungsi-fungsi diuji agar dapat dinyatakan valid?
- 2. Input seperti apa yang dapat menjadi bahan kasus uii vang baik?
- 3. Apakah system sensitive pada input-input tertentu?
- 4. Bagaimana sekumpulan data dapat diisolasi?
- 5. Berapa banyak rata-rata data dan jumlah data yang dapat ditangani sistem?
- 6. Efek apa yang dapat membuat kombinasi data ditangani spesifik pada operasi sistem?

2.4 Konsep Dasar SPK Penjurusan SMA

Sistem Pendukung Keputusan (SPK) Penjurusan SMA merupakan sebuah sistem berbasis web. Dalam merekomendasikan hasil penjurusan menggunakan metode Fuzzy Tsukamoto. Terdapat dua kelompok penilaian untuk IPA dan IPS, masing-masing penilaian terdapat 3 variabel input dan satu variabel output. Variabel inputnya adalah kemampuan, bakat dan minat sedangkan variabel outputnya adalah Jurusan [12].

Terdapat tiga menu utama dalam SPK Penjurusan SMA. Pertama, Data Siswa. Pada menu data siswa, pengguna dapat melakukan proses input, update dan delete data siswa.

Kedua, Penjurusan Siswa. Pada menu ini user harus melakukan inpun nomor induk siswa terlebih dahulu setelah itu baru masuk ke lembar input data penjurusan. Ada tiga kelompok variabel utama yaitu kemampuan, Penelitian menggunakan metode kuantitatif deskriptif.

minat, merupakan hasil wawancara dengan guru bimbingan konseling. Setelah seluruh data terinput maka klik proses untuk melihat hasil dari variabel output yaitu penjurusan. Setelah hasil keluar barulah dapat disimpan.

Menu utama yang ketiga adalah Report penjurusan. Pada menu ini user dapat melihat hasil rekomendasi penjurusan melakukan pencarian dengan berdasarkan nis, IPA atau IPS.

2.5 Penelitian yang Relevan

Suatu penelitian telah dilakukan untuk menguji kelayakan suatu perangkat lunak dengan nama perpustakaan Senayan Library Management System (SLiMS) berdasarkan ISO 9126. Aspek-aspek Functionality penilaian berkaitan dengan (Fungsionalitas), Reliability (Kehandalan), Usability (Kebergunaan), Efficiency (Efisiensi), Maintainability (Pemeliharaan), dan Portability (Portabilitas) untuk dilakukan pengujian kualitas aplikasi SLiMS. Hasil dari penelitian ini adalah aplikasi SLiMS termasuk dalam kategori SANGAT BAIK. Sehingga kesimpulannya adalah aplikasi SLiMS ternyata memiliki kualitas sangat baik dan sangat membantu dalam pengelolaan perpustakaan yang ada di perguruan tinggi terutama pengguna utama yaitu pihak penanggung jawab perpustakaan [3].

Penelitian lain juga telah dilakukan adalah telah dicoba diterapkan pengujian dengan menggunakan teknik Black Box Testing. Metoda Black Box Testing yang digunakan adalah cara pengujian Boundary Value Analysis terhadap fungsi tambah pada **Aplikasi** Prediksi Kelulusan SNMPTN.Hasil pengujian menunjukkan bahwa masih terdapat banyak kekurangan saat melakukan validasi data yang akan dimasukkan, yang dapat menyebabkan data tersimpan pada database tidak sesuai dengan data yang diharapkan. Dari hasil pengujian dapat digunakan sebagai masukan untuk memperbaiki aplikasi [7].

Penelitian berikutnya, merupakan sebuah jurnal studi literartur berkaitan dengan pengujian kotak hitam dan pengujian kotak putih dalam menguji sebuah sistem informasi. Dalam penelitian ini memberikan gambaran yang jelas mekanisme pengujian kedua metode tersebut. Pengujian kotak hitam dapat dilakukan oleh pengembang sistem respondennya adalah pengguna atau user, sedangkan pengujian kotak putih responden harus orang yang mengerti perancangan sistem [11].

3. Metodologi Penelitian

diperoleh dari nilai raport siswa untuk nilai tegas IPA Dimana pengumpulan data dan informasi sangat terkait dan nilai tegas IPS. Bakat, pada variabel ini diisikan dengan user requirement yang menggunakan Sistem nilai hasil tes langsung siswa. Dan yang terakhir adalah Pendukung Keputusan Penjurusan SMA di Banten.

sekunder. Data primer, diperoleh dengan melakukan dilihat pada tabel 2. Terdapat sekitar 25 penyebaran kuisoner SPK PenjurusanSMA di Banten pernyataan yang mewakili masing-masing dengan cara mendampingi responden saat pengujian Functionality, berlangsung, sedangkan data sekunder diperoleh Efficiencydenganpemetaan variabel, sub variabel serta melalui studi pustaka, yaitu melalui studi literatur dan indikator penilaian terhadap SPK penjurusan SMA tulisan ilmiah tentang Black Box testing.

3.1 Data Primer

Untuk data primer, diperoleh dari pengisian kuesioner_ yang terdiri dari 25 pertanyaan yang dibagi menjadi empat bagian vaitu functionality (fungsionalitas),reliability (kehandalan), usability (kebergunaan) dan efficiency (efisiensi). Dengan responden sebanyak 26 (dua puluh enam) responden yang merupakan penanggung jawab penjurusan siswa yang berasal dari-13 (tiga belas) sekolah swasta (tabel 1) di Banten yang telah uji coba menggunakan sistem SPK Penjurusan

Tabel 1.Daftar Sekolah Swasta Responden Uji Coba SPK Penjurusan

No.	Nama Sekolah	Wilayah
1	SMA Nusantara Plus	Tangerang
2	SMA PGRI 56 Ciputat	Tangerang
3	SMA Muhammadiah Ciputat	Tangerang
4	SMA Al-Mukhtariah	Serang
5	SMA Nusantara Binuang	Serang
6	SMAPlus Al Kairiyah Badumusalam	Serang
7	MA Al-Khiriyah	Cilegon
8	SMA Ma'Arif	Cilegon
9	MA Nasyrul 'Ulum Bani Sholeh	Cilegon
10	SMA La Tahzan	Lebak
11	SMA PGRI Rangkasbitung	Lebak
12	MA Masyriqul Anwar	Pandeglang
13	MA Annizhomiyyah	Pandeglang

Dalam pengisian kuisioner Responden mengisi sesuai pendapat mereka mengenai pengalaman terkait penggunaan aplikasi SPK penjurusan SMA. Variabel yang diukur dalam penelitian ini adalah berdasarkan pengalaman pengguna SPK penjurusan SMA terhadap kualitas sistem dengan Blackbox testing berdasarkan (fungsionalitas), aspekfunctionality reliability (kehandalan), usability (kebergunaan) dan efficiency (efisiensi). Pada tabel 2 merupakan pembobotan di tiap kriteria jawaban responden berdasarkan skala linkert sebagai indikator dalam mengukur sikap, pendapat dan persepsi responden terhadap pengalamannya menggunakan SPK Penjurusan SMA.

Tabel 2.Bobot Kriteria Jawaban

Kriteria Jawaban	Bobot
Sangat Setuju (SS)	5
Setuju (S)	4
Ragu-ragu (R)	3
Tidak Setuju (TS)	2
Sangat Tidak Setuju (STS)	1

Pengisian kuesioner sudah dilakukan oleh para penanggung jawab penjurusan siswa, dengan memberikan penilaian berdasarkan kritria jawaban dan

Data dan informasi diperoleh dari data primer dan data bobot masing-masing dari tiap kriteria yang dapat butir aspek Reliability, Usability dan dalam menghasilkan pertanyaaan maupun pernyataan pada insturmen penelitian pada tabel 3 berikut.

Tabel 3.Kisi-kisi Insturmen

Variabel	Sub Variabel	Nomor	Total
		Pertanyaan	
Functionality	Suitability (ST)	1,2	2
	Accuracy (AC)	3,4	2
	Security (SC)	5,6	2
	Interoperability (IP)	7,8	2
	Compliance (CP)	9	1
Reliability	Maturity (MT)	10,11	2
	Fault tolerance (FT)	12,13	2
	Recoverability (RC)	14	1
Usability	Understandibility(US)	15,16	2
	Learnability (LB)	17,18	2
	Operability (OB)	19,20	2
	Attractiveness (AT)	21,22	2
Efficiency	Time behavior (TB)	23,24	2
	Resource behavior (RB)	25	1
	Total Pertanyaan		25

Setelah pengambilan data selesai maka tahap selanjutnya adalah pengolahan data dengan menghitung jumlah responden yang berpendapat sangat setuju, setuju, ragu-ragu, tidak setuju dan sangat tidak setuju terhadap masing-masing point pertanyaan semua atribut dan masing-masing aspek yaitu Functionality, Reliability, Usability dan Efficiency. Total jawaban responden dari masing-masing pertanyaan dilakukan perhutungan berdasarkan skala linkert dengan rumus total jawaban x jumlah responden x bobot kriteria untuk mendapatkan skor aktual. Kemudian skor aktual dibandingkan dengan skor ideal adalah skor atau bobot tertinggi sehingga diperoleh rumus jumlah pertanyaan x skor kritria tertinggi. Untuk mendapatkan persentase skor aktual maka hasilnya dikalikan seratus persen seperti rumus (1).

$$Persentase Skor Aktual = \frac{Skor Aktual}{Skor Ideal} x100\%$$
 (1)

Persentase skor aktual untuk menentukan kriteria hasil uji kelayakan berdasarkan tabel 4. Seluruh data kuisioner diolah dan dihitung berdasarkan pembobotan vang telah diproleh untuk mendapatkan persentase skor aktual dengan rumus(1).

Tabel 4. Kriteria Persentase Tanggapan RespondenTerhadap Skor Ideal (Sumber: ISO 9126)

Persentase (%) Jumlah Skor	Kriteria
20,00% -36,00%	Tidak Baik
36,01% - 52,00%	Kurang Baik
52,01% - 68,00%	Cukup
68,01% - 84,00%	Baik
84,01% - 100%	Sangat Baik

Catatan: Batas bawah 20% diperoleh dari 1/5 dari batas atas 100%.

4. Hasil dan Pembahasan

4.1Tampilan Sistem Pendukung Keputusan Penjurusan SMA

Berikut ini adalah tampilan yang dihasilkan dari Sistem Pendukung Keputusan Penjurusan SMA yang telah dihasilkan oleh peneliti [13].

Gambar 1. Tampilan Awal SPK Penjurusan SMA

Pada gambar 1 merupakan tampilan awal sebelum masuk ke Sistem Pendukung Keputusan Penjurusan SMA. Pada tampilan tersebut user diminta untuk memilih berdasarkan nama sekolah, lalu tekan tombol kirim untuk masuk kehalaman login yang terdapat pada gambar 2.

Gambar 2. Tampilan Login SPK Penjurusan SMA

Pada gambar 2 merupakan tampilan login, dimana user harus memasukan Nama akun dan Sandi untuk dapat mengakses data ke Sistem Pendukung Keputusan Penjurusan SMA.

Gambar 3. Tampilan Utama SPK Penjurusan SMA

Pada gambar 3 merupakan tampilan Utama SPK Penjurusan SMA. Menu utamanya adalah data siswa, Penjurusan dan Report Penjurusan. Untuk data siswa user dapat melakukan read, write, edit dan delete data tersebut. Pada menu penjurusan user (gambar 4) dapat melakukan input nilai yang dibutuhkan dalam penentuan jurusan. Data yang diperoleh akan di oleh menggunakan metode Fuzzy Tsukamoto sehingga diperoleh hasil rekomendasi penjurusan.

Gambar 4. Tampilan Penentuan Jurusan SPK Penjurusan SMA

Pada gambar 3 ada tiga kriteria utama yaitu kemampuan yang diperoleh dari nilai rapot, bakat yang diperoleh dari hasil tes tertulis dan yang terakhir adalah minat berdasarkan hasil wawancara.

Gambar 5. Tampilan Report Penjurusan

Pada gambar 5 merupakan tampilan report hasil penjurusan, dimana ada dua cara untuk melihatnya dengan menggunakan search engine berdasarkan data nomor induk siswa atau dengan memilih jurusan.

4.2Hasil Analisis Data Seluruh Aspek Pengujian *Black Box Testing*

Dasar yang digunakan untuk menentukan pengujian semua aspek instrumen penelitian dalam *blackbox tasting* adalahmenghitung total responden dikali bobot kriteria jawaban berdasarkan skala linkert (lihat tabel 2). Untuk mendapatkan skor aktual. Berikut adalah perhitungan skor aktual berdasarkan skala linkert, total jawaban dari 26 responden terhadap 25 butir pertanyaan:

- a. Sangat Setuju = 356 pernyataan x 5 = 1780
- b. Setuju = 259 pernyataan x 4 = 1036
- c. Ragu-ragu = 35 pernyataan x 3 = 105
- d. Tidak Setuju = 0 pernyataan x 2 = 0
- e. Sangat Tidak Setuju = 0 pernyataan x 1 = 0

Total keseluruhan skor aktual dari seluruh aspek adalah 1780 + 1036 + 105 + 0 + 0 = 2921. Setelah diperoleh skor aktual maka dilakukan pencarian skor ideal dari seluruh aspek pada *black box testing*. Berikut adalah perhitungan skor ideal setiap aspek.

- pertanyaan = 1170
- pertanyaan = 576
- Usability = 26 responden x 5 x 8 butir adalah tabel 6 hasil pengujian aspek reliability. pertanyaan = 1040
- d. Efficiency = 26 responden x 5 x 3 butir pertanyaan = 390

Total skor ideal seluruh aspek pengujian adalah 3176. Setelah di peroleh data skor aktual dan skor ideal maka hasil tersebut dilakuan pengolahan data untuk mendapatkan persentase skor aktual sesuai dengan rumus (1).

Persentase Skor Aktual =
$$\frac{2921}{3176} \times 100\% = 89,99\%$$
 (1)

Berdasarkan hasil persentase skor Aktual seluruh aspek pengujian maka kriteria penilaian yang diperoleh berdasarkan tabel 4, SPK Penjursan SMA berada pada kriteria sangat baik. Artinya SPK Penjurusan SMA yang telah di uji cobakan di 13 sekolah swasta di Banten (lihat tabel 1) sangat baik dalam membantu dan memberikan rekomendasi dalam penjurusan siswa 4.5 Hasil Pengujian Aspek Usability berdasarkan kemampuan, bakat dan minat siswa.

4.3 Hasil Pengujian Aspek Functionality

Aspek functionality (fungsionalitas), pada pengujian ini mengukur kemampuan SPK Penjurusan SMA dalam menyediakan fungsi sesuai kebutuhan pengguna, ketika digunakan dalam kondisi tertentu. Dimana pada aspek ini terdapat 9 pertanyaan berkaitan dengan Suitability (ST), Accuracy(AC), Security (SC), Interoperability (IP), Compliance (CP). Hasilnya dapat dilihat pada tabel 5.

Tabel 5. Hasil Pengujian Aspek Functionality

Kriteria Bobot Functionality									Total		
Jawaban		5	ST	A	AC	Ş	SC		ΙP	CP	='
		1	2	3	4	5	6	7	8	9	_
SS	5	20	24	6	18	6	21	16	15	15	704
S	4	5	2	18	6	13	5	10	11	11	324
R	3	1	0	2	2	7	0	0	0	0	36
TS	2	0	0	0	0	0	0	0	0	0	0
STS	1	0	0	0	0	0	0	0	0	0	0
J.Respon	nden	26	26	26	26	26	26	26	26	26	
S. Aktua	1	123	128	108 1	120	103 1	125	120 1	119	119	1065
S. Ideal		130 1	130	130 1	130	130 1	130	130 1	130	130	1170
Persenta	Persentase Skor Aktual Functionality								91,03%		

Pada aspek Functionality memperoleh hasil persentase Skor aktualnya sebesar 91,03%. Berdasarkan hasil tersebut, kemampuan SPK Penjurusan SMA dalam Aspek yang terakhir adalah Aspek Efficiency, dimana menyediakan fungsi sesuai kebutuhan pengguna berdasarkan tabel 4 termasuk kriteria Sangat Baik.

4.4Hasil Pengujian AspekReliability

untuk mengukur kemampuan SPK Penjurusan SMA

Functionality = 26 responden x 5 x 9 butir untuk mempertahankan tingkat kinerja tertentu, ketika digunakan dalam kondisi tertentu. Dimana terdapat 5 Reliabilty = 26 responden x 5 x 5 butir pertanyaan yang berkaitan dengan Maturity(MT), Fault tolerance(FT) danRecoverability(RC). Berikut ini

Tabel 6. Hasil Pengujian Aspek Realibility

Kriteria	Kriteria Bobot Realibility							
Jawaban		M	T	FI		RC	='	
	'-	10	11	12	13	14	='	
SS	5	15	0	11	17	21	320	
S	4	7	25	12	9	5	232	
R	3	4	1	3	0	0	24	
TS	2	0	0	0	0	0	0	
STS	1	0	0	0	0	0	0	
J.Respond	len	26	26	26	26	26		
S. Aktual		115	103	112	121	125	576	
S. Ideal		130	130	130	130	130	650	
Persentase	Skor A	ktual I	Realibility				88,62%	

Pada aspek Realibility memperoleh hasil persentase Skor aktualnya sebesar 88,62%, berdasarkan hasil tersebut SPK Penjurusan SMA memperoleh hasil sangat baik berdasarkan tabel 4.

Aspek Usability merupakan pengujian selanjutnya. indikator Dimana penilaiannya terdiri dari *Understandibility* (US), Learnability(LB), *Operability*(OB) dan Attractiveness(AT) dipetakan dengan 8 pertanyaan. Pengujian ini untuk melihatkemampuan SPK Penjurusan SMA untuk dipahami, dipelajari, digunakan, dan menarik bagi pengguna, ketika digunakan dalam kondisi tertentu.

Tabel 6. Hasil Pengujian Aspek Usability

Kriteria	Bobot		Usability							
Jawaban		U	US		JS LB OB		В	AT		
	-	15	16	17	18	19	20	21	22	
SS	5	20	22	19	6	16	23	11	15	660
S	4	5	4	7	18	10	3	13	11	284
R	3	1	0	0	2	0	0	2	0	15
TS	2	0	0	0	0	0	0	0	0	0
STS	1	0	0	0	0	0	0	0	0	0
J.Responden		26	26	26	26	26	26	26	26	-
S. Aktual		123	126	123	108	120	127	113	119	959
S. Ideal		130	130	130	130	130	130	130	130	1040
Persentase Sl	kor Akt	ual <i>l</i>	Isab	ility						92,21%

Pada aspek *Usability* memperoleh hasil persentase Skor aktualnya sebesar 92,01%. Berdasarkan tabel 1, hasil tersebut mengindikasikan kemampuan SPK Penjurusan SMA dari segi aspek *Usability*sangatlah baik.

4.6 Hasil pengujian Aspek Efficiency

pada aspek ini pengujian untuk melihat kemampuan SPK penjurusan dalam memberikan kinerja yang sesuai dan relatif terhadap jumlah sumber daya yang digunakan pada saat keadaan tersebut. Terdiri dari tiga Aspek reliability (kehandalan), pengujian ini dilakukan pertanyaan yang berkaitan dengan dua aspek yaitu

Timebehavior(TB)danResource Hasilnya tertuang pada tabel berikut.

Tabel 7. Hasil Pengujian Aspek Efficiency

Kriteria	Bobot	E	Total		
Jawaban		TB		RB	
		23	24	25	
SS	5	15	0	4	85
S	4	10	20	19	196
R	3	1	6	3	30
TS	2	0	0	0	0
STS	1	0	0	0	0
J.Responden		26	26	26	
S. Aktual					321
S. Ideal		130	130	130	390
Persentase S	kor Aktua	1 Efficiency			82,31%

Pada aspek Efficiencymemperoleh hasil persentase Skor aktualnya sebesar 82,31%. Berdasarkan hasil tersebut, kemampuan **SPK** Penjurusan dalamperforma kinerjanya berdasarkan tabel termasuk kriteria Baik.

4.7 Rekapitulasi Hasil Seluruh Aspek Pengujian SPK Penjurusan SMA

Berdasarkan analisis data yang diperoleh dari [1] kuesioner, berikut rekapitulasi hasil pengujian kualitas berdasarkan empat aspek kualitas perangkat lunak menurut ISO 9126 pada tabel 1 terhadap SPK [2] Penjurusan SMA dapat dilihat pada tabel 8 berikut.

Tabel 8. Rekapitulasi Hasil Pengujian SPK Penjurusan SMA

Aspek	Skor	Skor	Persentase	Kriteria
_	Aktual	Ideal	Skor Aktual	
Functionality	1065	1170	91,03%	Sangat Baik
Realibility	576	650	88,62%	Sangat Baik
Usability	959	1042	92,21%	Sangat Baik
Efficiency	321	390	82,31%	Baik
Total	2921	3250	89,88%	Sangat Baik

Berdasarkan table 8, dapat disimpulkan bahwa tingkat kualitas perangkat lunak Sistem Pendukung Keputusan [7] Penjurusan SMA secara keseluruhan dalam kriteria Sangat Baik, dengan persentase89,88%. Terdapat tiga aspek kualitas dengen kriteria Sangat Baik, aspek tertinggi adalah berdasarkan aspek *Usability*dengan sebesar92,21%, persentase selajutnya aspek Functionalitydengan 91,03%. Aspek Reliabilitydengan persentase sebesar 88,62%, sedangkan aspek kualitas terendah adalah dari aspek Efficiency persentase sebesar 82,31% dengan kriteria Baik.

5. Kesimpulan

5.1 Simpulan

Berdasarkan hasil pengujian menggunakan metode Black Box Testing terhadap Sistem Pendukung Keputusan Penjurusan SMA yang telah dilaksanakan di 13 Sekolah Swasta di Banten dengan jumlah responden sebanyak 26 responden. Hasil kesimpulan yang diperoleh bahwa peringkat kualitas perangkat lunak tersebut mendapat persentase skor aktual

behavior(RB). berbanding skor ideal sebesar 89,88% dengan Kriteria Sangat Baik. Sehingga SPK Penjurusan tersebut layak digunakan dan diterapkan sebagai Sistem Pendukung Keputusan Penjurusan SMA di Banten.

5.2 Saran

Penelitian ini dapat dilanjutkan dengan menggunakan metode pengujian perangkat lunak lain seperti ISO

Ucapan Terima Kasih

Terima kasih kepada Direktorat Riset dan Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset, Teknologi, dan Pendidikan Tinggi sesuai dengan Surat Perjanjian Penugasan Pelaksanaan Hibah PenelitianNomor: 032/KM/PNT/2018, Tanggal 6 Maret 2018. Dan SMA kepada LPPM Universitas Indraprasta PGRI yang telah memberikan dukungan baik secara materil dan spiritual sehingga terlaksananya penelitian ini.

Daftar Rujukan

- A. Rusmardiana, T. Y. Akhirina, D. Yulistyanti, and U. Pauziah, "Analisis Penentuan Jurusan Sekolah Menengah Atas berdasarkan Metode Fuzzy Tsukamoto dan Algoritma K-Nearest Neighbor (K-NN)," pp. 123-132, 2017.
- -, "Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 Tentang Sistem Pendidikan Nasional", 2003.
- [3] P. Dwi and A. Pamungkas, "ISO 9126 Untuk Pengujian Kualitas Aplikasi Perpustakaan Senayan Library Management System (SLiMS)," J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 465–471, 2018.
- [4] F. Abror and H. Jati, "Pengembangan Dan Analisis Kualitas Aplikasi Penilaian E-Learning Smk Berbasis Iso 19796-1 Di Yogyakarta," J. Pendidik. Vokasi, vol. Vol.6, no. Universitas Negeri Yogyakarta, p. 15, 2016.
- [5] R. Dunn, "software Quality." Prentice Hall, New Jersey, 1990. [6] Yaudi; Imam, "Menilai Kualitas Perangkat Lunak [Online]," 2008. (Updated: 10 Okt 2008)
 - Available at: https://janeman.wordpress.com/2008/03/26/46/ [Accessed 11 Okt 2018]
- M. S. Mustagbal, R. F. Firdaus, and H. Rahmadi, "(Studi Kasus: Aplikasi Prediksi Kelulusan SNMPTN)," Penguji. Apl. Menggunakan Black Box Test. Bound. Value Anal. (Studi Kasus Apl. Prediksi Kelulusan SNMPTN), vol. I, no. 3, p. 34, 2015.
- j Simarmata, "Rekayasa Perangkat Lunak, Ed. 1." Penerbit Andi, Yogyakarta, 2010.
- Bhat, A; Quadri, S.M.K, "Equivalence Class Partitioning and Boundary Value Analysis = A review." 2nd Int. Conf. Comput. Sustain. Glob. Dev., p. 2015, 2015.
- [10]Turman, "Tutorial Cara Melakukan Pengujian Black Box dan Contoh Pengujiannya [Online]," 2016. (Updated: 26 Des 2016) Available at : http://www.kuncikomputer.com/umum/tutorialcara-melakukan-pengujian-black-box-dan-contoh-pengujiannya/ [Accessed 11 Okt 2018]
- [11] Kristina, G. Hoendarto, and S. Tendean, "Penggunaan metode kotak hitam dan kotak putih dalam menguji sebuah produk sistem inormasi," J. InTekSis, vol. 4, no. 1, pp. 1-11, 2017.
- [12] U. Yulistyanti, D.; Akhirina, T.Y.; Rusmardiana, A.; Pauziah, "Prototipe Sistem Pendukung Keputusan Penjurusan SMA di Banten dengan Metode Fuzzy Tsukamoto," Pros. Semin. Nas. Ris. dan Inov. Teknol. (SEMNAS RISTEK) 2018, pp. 165-170,
- [13] U. Rusmardiana, Ana; Akhirina, T.Y.; Yulistyanti, D; Pauziah, "A Web-based High School Major Decision Support System in Banten Using Tsukamoto's Fuzzy Method," pp. 239-244, 2018.