Robustness of Measurement

Paul Skrzypczyk Joint work with Noah Linden September 21, 2018

Outline

1. Robustness of Measurement & Its Properties

2. Operational Significance I: State discrimination

- 3. Operational Significance II: Single-Shot Accessible Information
- 4. Summary

Robustness of Measurement & Its Properties

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \operatorname{tr}[M_a \rho]$$

· How informative is a measurement M?

 $p(a|\rho) = \text{tr}[M_a \rho]$

$$M = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = tr[M_a\rho]$$

- · How informative is a measurement M?
- Completely uninformative measurement $\mathbb{C} = \{C_a\}_a$

$$extstyle C_a = q(a) \mathbb{I}$$
 where $\mathbf{q} = \{q(a)\}_a$ probability vector

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = tr[M_a\rho]$$

- · How informative is a measurement M?
- Completely uninformative measurement $\mathbb{C} = \{C_a\}_a$

$$egin{aligned} & extstyle C_a = q(a)\mathbb{I} \ \end{aligned}$$
 where $\mathbf{q} = \{q(a)\}_a$ probability vector

• For all ρ , $p(a|\rho) = q(a)$.

$$M = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = tr[M_a\rho]$$

- How informative is a measurement M?
- Completely uninformative measurement $\mathbb{C} = \{C_a\}_a$

$$\mathcal{C}_a = q(a)\mathbb{I}$$
 where $\mathbf{q} = \{q(a)\}_a$ probability vector

- For all ρ , $p(a|\rho) = q(a)$.
- How far is a measurement from being completely uninformative?

Robustness of Measurement

 Minimal amount of 'noise' that needs to be added to make a measurement completely uninformative

Robustness of Measurement

$$a = 1, \dots, o$$

 $p(a|\rho) = tr[M_a \rho]$

 Minimal amount of 'noise' that needs to be added to make a measurement completely uninformative

Robustness of Measurement

$$R(\mathbb{M}) = \min_{r, \mathbb{N}, \mathbf{q}} r$$
s.t.
$$\frac{M_a + rN_a}{1 + r} = q(a)\mathbb{I} \quad \forall a,$$

$$N_a \ge 0 \quad \forall a,$$

$$\sum_a N_a = \mathbb{I}.$$

$$\mathbb{M} = \{M_a\}_a$$
$$a = 1, \dots, o$$

$$p(a|
ho) = \text{tr}[M_a
ho]$$

Properties

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a\rho]$$

Properties

1. Faithfulness: $R(\mathbb{M}) = 0$ if and only if $M_a = q(a)\mathbb{I}$ for all a.

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a\rho]$$

Properties

- 1. Faithfulness: $R(\mathbb{M}) = 0$ if and only if $M_a = q(a)\mathbb{I}$ for all a.
- 2. Convexity: $R(p\mathbb{M}_1 + (1-p)\mathbb{M}_2)$ $\leq pR(\mathbb{M}_1) + (1-p)R(\mathbb{M}_2)$

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a\rho]$$

Properties

- 1. Faithfulness: $R(\mathbb{M}) = 0$ if and only if $M_a = q(a)\mathbb{I}$ for all a.
- 2. Convexity: $R(p\mathbb{M}_1 + (1-p)\mathbb{M}_2)$ $\leq pR(\mathbb{M}_1) + (1-p)R(\mathbb{M}_2)$
- 3. Non-increasing under measurement simulation: $R(\mathbb{M}') \leq R(\mathbb{M})$ where $\mathbb{M}' = \{M_b'\}_b$,

$$M_b' = \sum_a p(b|a) M_a,$$

$$p(b|a) \ge 0$$
, $\sum_b p(b|a) = 1$ for all a .

Semidefinite program

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

SDP formulation

$$R(\mathbb{M}) = \min_{\tilde{q}} \sum_{a} \tilde{q}(a) - 1$$

s.t. $\tilde{q}(a)\mathbb{I} \ge M_a \quad \forall a,$

Explicit form

$$M = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = tr[M_a\rho]$$

Explicit form

$$R(\mathbb{M}) = \sum_{a} \|M_a\|_{\infty} - 1$$

 Function only of the largest eigenvalue of each POVM element

Bounds

$$R(\mathbb{M}) \leq o-1$$

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \ldots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

Bounds

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a\rho]$$

• $||M_a||_{\infty} \leq 1$ for all a

$$R(\mathbb{M}) \leq o - 1$$

· Universal solution

$$N_a = \frac{\operatorname{tr}[M_a]\mathbb{I} - M_a}{d - 1}, \quad q(a) = \frac{1}{d}\operatorname{tr}[M_a]$$
$$R(\mathbb{M}) \le d - 1$$

Bounds

$$M = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = tr[M_a\rho]$$

• $||M_a||_{\infty} \leq 1$ for all a

$$R(\mathbb{M}) \leq o - 1$$

Universal solution

$$N_a = \frac{\operatorname{tr}[M_a]\mathbb{I} - M_a}{d - 1}, \quad q(a) = \frac{1}{d}\operatorname{tr}[M_a]$$
$$R(\mathbb{M}) \le d - 1$$

Bound

$$R(\mathbb{M}) \le \min(o, d) - 1$$
$$\le d - 1$$

Examples: Maximally robust measurements

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a\rho]$$

Examples: Maximally robust measurements

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

• Ideal projective measurements $M_a = |\psi_a\rangle \langle \psi_a|$ $||M_a||_{\infty} = 1$ for all $a = 1, \dots, d$

$$R(\mathbb{M}) = d - 1$$

Examples: Maximally robust measurements

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

• Ideal projective measurements $M_a = |\psi_a\rangle \langle \psi_a|$ $||M_a||_{\infty} = 1$ for all $a = 1, \dots, d$

$$R(\mathbb{M}) = d - 1$$

 \cdot rank-1 measurements $\mathit{M}_{a}=lpha_{a}\left|\phi_{a}
ight
angle\left\langle \phi_{a}\right|$

$$\sum_{a} \alpha_a = d$$

$$R(\mathbb{M}) = d - 1$$

Dual semidefinite program formulation

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

Dual SDP

$$R(\mathbb{M}) = \max_{\{\rho_a\}} \sum_a \operatorname{tr}[M_a \rho_a] - 1$$

s.t. $\rho_a \ge 0 \quad \forall a,$
 $\operatorname{tr}[\rho_a] = 1 \quad \forall a.$

Dual semidefinite program formulation

$$\mathbb{M} = \{M_a\}_a$$

$$a = 1, \dots, o$$

$$p(a|\rho) = \text{tr}[M_a \rho]$$

Dual SDP

$$R(\mathbb{M}) = \max_{\{\rho_a\}} \sum_a \operatorname{tr}[M_a \rho_a] - 1$$

s.t. $\rho_a \ge 0 \quad \forall a,$
 $\operatorname{tr}[\rho_a] = 1 \quad \forall a.$

• By inspection ho_a^* any pure state in max-eigenvalue eigenspace of M_a

$$\operatorname{tr}[M_a \rho_a^*] = \|M_a\|_{\infty}$$

Operational Significance I: State discrimination

• Consider situation where state σ_x produced with probability p(x)

$$\mathcal{E} = \{p(x), \sigma_x\}$$

 $\mathcal{E} = \{p(x), \sigma_x\}$

- Consider situation where state σ_x produced with probability p(x)
- Goal: Given ability to perform measurement \mathbb{M} , determine which state σ_{X} was produced

 $\mathcal{E} = \{p(x), \sigma_x\}$

- Consider situation where state σ_x produced with probability p(x)
- Goal: Given ability to perform measurement \mathbb{M} , determine which state σ_{X} was produced

$$P_{guess}^{Q}(\mathcal{E}, \mathbb{M}) = \max_{\mathbb{M}'} \quad \sum_{x,g} p(x) \operatorname{tr}[\sigma_{x} M_{g}'] \delta_{g,x}$$
s.t.
$$M_{g}' = \sum_{a} p(g|a) M_{a}$$

 $\mathcal{E} = \{p(x), \sigma_x\}$

- Consider situation where state σ_X produced with probability p(X)
- Goal: Given ability to perform measurement \mathbb{M} , determine which state σ_{X} was produced

$$P_{guess}^{Q}(\mathcal{E}, \mathbb{M}) = \max_{\mathbb{M}'} \quad \sum_{x,g} p(x) \text{tr}[\sigma_x M_g'] \delta_{g,x}$$

s.t. $M_g' = \sum_a p(g|a) M_a$

 Compare to completely uninformative measurement

$$P_{guess}^{C}(\mathcal{E}) = \max_{x} p(x)$$

$$\frac{p_{guess}^{Q}(\mathcal{E},\mathbb{M})}{p_{guess}^{C}(\mathcal{E})}$$

$$\max_{\mathcal{E}} \frac{p_{guess}^{\mathbb{Q}}(\mathcal{E}, \mathbb{M})}{p_{guess}^{\mathbb{C}}(\mathcal{E})}$$

$$\max_{\mathcal{E}} \frac{p_{guess}^{Q}(\mathcal{E}, \mathbb{M})}{p_{guess}^{C}(\mathcal{E})} = 1 + R(\mathbb{M})$$

Operational Significance

$$\max_{\mathcal{E}} \frac{p_{guess}^{Q}(\mathcal{E}, \mathbb{M})}{p_{guess}^{C}(\mathcal{E})} = 1 + R(\mathbb{M})$$

 Robustness of Measurement determines the advantage M provides in an optimally chosen state discrimination task

$$\mathcal{E} = \{p(x), \sigma_x\}$$

$$\max_{\mathcal{E}} \frac{p_{guess}^{Q}(\mathcal{E}, \mathbb{M})}{p_{guess}^{C}(\mathcal{E})} = 1 + R(\mathbb{M})$$

- Robustness of Measurement determines the advantage M provides in an optimally chosen state discrimination task
- Proof idea: Upper bound from primal SDP, lower bound from dual SDP

$$\max_{\mathcal{E}} \frac{p_{guess}^{Q}(\mathcal{E}, \mathbb{M})}{p_{guess}^{C}(\mathcal{E})} = 1 + R(\mathbb{M})$$

- Robustness of Measurement determines the advantage M provides in an optimally chosen state discrimination task
- Proof idea: Upper bound from primal SDP, lower bound from dual SDP
- $\mathcal{E}^* = \{\frac{1}{0}, \rho_X^*\}$

· Ideal projective measurements $\mathit{M}_{a} = \ket{\psi_{a}} ra{\psi_{a}}$

· Ideal projective measurements $\mathit{M}_{a} = |\psi_{a}\rangle\,\langle\psi_{a}|$

$$\rho_{\mathbf{x}}^* = |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|, \quad \mathcal{E}^* = \{\frac{1}{d}, |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|\}$$

$$\mathcal{E} = \{p(x), \sigma_x\}$$

· Ideal projective measurements $M_a = |\psi_a\rangle \langle \psi_a|$

$$\rho_{\mathbf{x}}^* = |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|, \quad \mathcal{E}^* = \{\frac{1}{d}, |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|\}$$

$$p_{guess}^{Q}(\mathcal{E}^*, \mathbb{M}) = 1, \quad p_{guess}^{C}(\mathcal{E}^*) = \frac{1}{d}$$

· Ideal projective measurements $M_a = \ket{\psi_a} ra{\psi_a}$

$$\rho_{\mathbf{x}}^* = |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|, \quad \mathcal{E}^* = \{\frac{1}{d}, |\psi_{\mathbf{x}}\rangle \langle \psi_{\mathbf{x}}|\}$$

$$p_{guess}^{Q}(\mathcal{E}^*, \mathbb{M}) = 1, \quad p_{guess}^{C}(\mathcal{E}^*) = \frac{1}{d}$$

 \cdot rank-1 measurements $\mathit{M}_{a}=lpha_{a}\left|\phi_{a}
ight
angle\left\langle \phi_{a}\right|$

· Ideal projective measurements $M_a = |\psi_a\rangle \langle \psi_a|$

$$ho_{\mathrm{x}}^{*}=\left|\psi_{\mathrm{x}}
ight
angle\left\langle \psi_{\mathrm{x}}
ight|,\quad\mathcal{E}^{*}=\left\{ rac{1}{d},\left|\psi_{\mathrm{x}}
ight
angle\left\langle \psi_{\mathrm{x}}
ight|
ight\}$$

$$p_{guess}^{Q}(\mathcal{E}^*, \mathbb{M}) = 1, \quad p_{guess}^{C}(\mathcal{E}^*) = \frac{1}{d}$$

 \cdot rank-1 measurements $\mathit{M}_{a}=lpha_{a}\left|\phi_{a}
ight
angle\left\langle \phi_{a}\right|$

$$\rho_{x}^{*} = |\phi_{x}\rangle \langle \phi_{x}|, \quad \mathcal{E}^{*} = \{\frac{1}{0}, |\phi_{x}\rangle \langle \phi_{x}|\}$$

· Ideal projective measurements $M_a = |\psi_a\rangle \langle \psi_a|$

$$ho_{\mathrm{x}}^{*}=\left|\psi_{\mathrm{x}}
ight
angle\left\langle \psi_{\mathrm{x}}
ight|,\quad\mathcal{E}^{*}=\left\{ rac{1}{d},\left|\psi_{\mathrm{x}}
ight
angle\left\langle \psi_{\mathrm{x}}
ight|
ight\}$$

$$p_{guess}^{Q}(\mathcal{E}^*, \mathbb{M}) = 1, \quad p_{guess}^{C}(\mathcal{E}^*) = \frac{1}{d}$$

 \cdot rank-1 measurements $\mathit{M}_{a}=lpha_{a}\left|\phi_{a}
ight
angle\left\langle \phi_{a}\right|$

$$\rho_{X}^{*} = |\phi_{X}\rangle \langle \phi_{X}|, \quad \mathcal{E}^{*} = \{\frac{1}{0}, |\phi_{X}\rangle \langle \phi_{X}|\}$$

$$p_{guess}^{Q}(\mathcal{E}^{*}, \mathbb{M}) = \frac{d}{o}, \quad p_{guess}^{C}(\mathcal{E}^{*}) = \frac{1}{o}$$

Operational Significance II: Single-Shot

Accessible Information

Measurements as $Q \rightarrow C$ channels

 Measurements can be associated to quantum-to-classical channels

$$\Lambda_{\mathbb{M}}(
ho) = \sum_{a} \operatorname{tr}[M_{a}
ho] \ket{a} ra{a}$$

Measurements as $Q \rightarrow C$ channels

 Measurements can be associated to quantum-to-classical channels

$$\Lambda_{\mathbb{M}}(\rho) = \sum_{a} \operatorname{tr}[M_{a}\rho] |a\rangle \langle a|$$

• Does $R(\mathbb{M})$ have operational significance from this viewpoint also?

· Accessible Information of a channel $\Lambda(\cdot)$

$$\mathcal{E} = \{p(x), \sigma_x\}_x$$
$$\mathbb{N} = \{N_q\}_q$$

$$I^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E}.\mathbb{N}} I(X:G)$$

where

$$p(x,g) = p(x) \operatorname{tr}[N_g \Lambda(\sigma_x)]$$

$$\mathcal{E} = \{p(x), \sigma_x\}_x$$

$$\mathbb{N} = \{N_g\}_g$$

 $\mathbb{N} = \{N_q\}_q$

· Accessible Information of a channel $\Lambda(\cdot)$

$$I^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E}.\mathbb{N}} I(X:G)$$

where

$$p(x,g) = p(x) \operatorname{tr}[N_g \Lambda(\sigma_x)]$$

I(X : G) mutual information

 $\mathbb{N} = \{N_a\}_a$

· Accessible Information of a channel $\Lambda(\cdot)$

$$I^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E}.\mathbb{N}} I(X:G)$$

where

$$p(x,g) = p(x) tr[N_g \Lambda(\sigma_x)]$$

I(X : G) mutual information

$$I(X:G) = H(X) - H(X|G)$$

 Accessible Information of a channel relevant in asymptotic regime of many uses of a channel

$$\mathcal{E} = \{p(x), \sigma_x\}_x$$
$$\mathbb{N} = \{N_g\}_g$$

 $\mathcal{E} = \{p(x), \sigma_x\}_x$

 $\mathbb{N} = \{N_a\}_a$

- Accessible Information of a channel relevant in asymptotic regime of many uses of a channel
- In single-shot regime may want to define single-shot variant

$$I_{min}^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E},\mathbb{N}} I_{min}(X:G)$$

 $\mathbb{N} = \{N_a\}_a$

- Accessible Information of a channel relevant in asymptotic regime of many uses of a channel
- In single-shot regime may want to define single-shot variant

$$I_{min}^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E}, \mathbb{N}} I_{min}(X : G)$$

 $I_{min}(X : G)$ min-mutual information

 $\mathcal{E} = \{p(x), \sigma_x\}_x$

 $\mathbb{N} = \{N_a\}_a$

- Accessible Information of a channel relevant in asymptotic regime of many uses of a channel
- In single-shot regime may want to define single-shot variant

$$I_{min}^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E}, \mathbb{N}} I_{min}(X : G)$$

 $I_{min}(X : G)$ min-mutual information

$$I_{min}(X:G) = H_{min}(X) - H_{min}(X|G)$$

$$\mathcal{E} = \{p(x), \sigma_x\}_x$$
$$\mathbb{N} = \{N_g\}_g$$

- Accessible Information of a channel relevant in asymptotic regime of many uses of a channel
- In single-shot regime may want to define single-shot variant

$$I_{min}^{acc}(\Lambda(\cdot)) = \max_{\mathcal{E},\mathbb{N}} I_{min}(X:G)$$

 $I_{min}(X:G)$ min-mutual information

$$I_{min}(X:G) = H_{min}(X) - H_{min}(X|G)$$

where

$$H_{min}(X) = -\log \max_{x} p(x)$$

$$H_{min}(X|G) = -\log \sum_{g} \max_{x} p(x,g)$$

 $\mathcal{E} = \{p(x), \sigma_x\}_x$

 $\mathbb{N} = \{N_q\}_q$

• For $Q \rightarrow C$ channels, find

Operational Significance

$$I_{min}^{acc}(\Lambda_{\mathbb{M}}(\cdot)) = \log(1+R(\mathbb{M}))$$

 $\mathcal{E} = \{p(x), \sigma_x\}_x$

 $\mathbb{N} = \{N_a\}_a$

• For $Q \rightarrow C$ channels, find

Operational Significance

$$I_{min}^{acc}(\Lambda_{\mathbb{M}}(\cdot)) = \log(1 + R(\mathbb{M}))$$

· Optimal final measurement $\mathbb N$ equal to $\mathbb M$

Single-Shot Accessible Information of a $Q \rightarrow C$ channel

$$\mathcal{E} = \{p(x), \sigma_x\}_x$$
$$\mathbb{N} = \{N_a\}_a$$

• For $Q \rightarrow C$ channels, find

Operational Significance

$$I_{min}^{acc}(\Lambda_{\mathbb{M}}(\cdot)) = \log(1+R(\mathbb{M}))$$

- · Optimal final measurement $\mathbb N$ equal to $\mathbb M$
- Left with same optimisation over $\ensuremath{\mathcal{E}}$ as before

 Proposal to quantify the informativeness of a measurement through Robustness-based measure

- Proposal to quantify the informativeness of a measurement through Robustness-based measure
- Nice properties + easy to calculate

- Proposal to quantify the informativeness of a measurement through Robustness-based measure
- Nice properties + easy to calculate
- Operational significance in terms of state discrimination and single-shot information theory

- Proposal to quantify the informativeness of a measurement through Robustness-based measure
- · Nice properties + easy to calculate
- Operational significance in terms of state discrimination and single-shot information theory
- · Open questions
 - · Look at instruments instead of POVMs

- Proposal to quantify the informativeness of a measurement through Robustness-based measure
- · Nice properties + easy to calculate
- Operational significance in terms of state discrimination and single-shot information theory
- · Open questions
 - · Look at instruments instead of POVMs
 - · Revisit information-disturbance trade-off

- Proposal to quantify the informativeness of a measurement through Robustness-based measure
- Nice properties + easy to calculate
- Operational significance in terms of state discrimination and single-shot information theory
- · Open questions
 - · Look at instruments instead of POVMs
 - · Revisit information-disturbance trade-off
 - Extend the connection between robustness, discrimination problems and single-shot information theory to other contexts

Thank you