1 Introduction

We solve the following problems to better understand numerical techniques for solving ordinary differential equations. As will be described in the methods section, our tools primarily consist of second- and fourth-order Runge-Kutta methods, and Euler stability analysis.

1.1 Problem 1

Equations of motion for a rocket's vertical speed ν can be written as

$$(m_c + m_p) \frac{dv}{dt} = -(m_c + m_p)g + m_p v_e - \frac{1}{2}\rho v |v| AC_D,$$
 (1)

where z is the vertical coordinate, v = dz/dt is the vertical speed, and

$$m_c = 51.02 \text{ kg}$$
 (rocket casing mass)
 $g = 9.8 \text{ m/s}^2$ (gravitational acceleration)
 $\rho = 1.23 \text{ kg/m}^3$ (air density)
 $A = 0.1 \text{ m}^2$ (maximum cross-sectional area)
 $v_e = 360 \text{ m/s}$ (exhaust speed)
 $C_D = 0.15$ (drag coefficient)
 $m_{p0} = 102.04 \text{ kg}$ (initial propellant mass).

Furthermore, the instantaneous propellant mass at time t is given by

$$m_p(t) = m_{p0} - \int_0^t \dot{m}_p dt,$$
 (2)

and the time-varying burn rate is

$$\dot{m}_{p} = \frac{m_{p0}}{4} \cdot \begin{cases} t & 0 \le t \le 1\\ 1 & 1 \le t \le 4\\ 5 - t & 4 \le t \le 5\\ 0 & 5 \le t. \end{cases}$$
 (3)

Use a second-order Runge-Kutta (RK2) integrator with $\Delta t = 0.1$ s to plot z(t) and v(t). Use these plots to find the maximum speed, and the height and time at which it is reached; the maximum height, and the time at which it is reached; and the time and velocity when the rocket hits the ground. Check these results with those obtained from MATLAB's ODE45 solver.

This problem is fairly straight-forward. An RK2 scheme is relatively easy to implement, but we will need to be careful when accounting for the time-dependence of m_p . Furthermore, though it is not stated in the problem, when m_p reaches zero, the thrust term involving the exhaust speed ν_e in (1) needs to "turn off."

1.2 Problem 2

Consider the stream function for a two-dimensional jet in self-similar form, which can be written as

$$f''(\eta) + f(\eta)f'(\eta) = 0, \qquad f(0) = 0, \qquad f'(0) = 1.$$
 (4)

The velocities in the jet can be obtained via

$$\frac{U}{U_0} = f'(\eta), \qquad \frac{V}{U_0} = \eta f'(\eta) - \frac{1}{2}f(\eta).$$
 (5)

Using numerical integration for $0 \le \eta \le 4$, with a step size of $\Delta \eta = 0.05$, plot the quantities U/U_0 , V/V_0 , and f as functions of η . Perform this analysis with both the second- and fourth-order Runge-Kutta methods, and compare their performance. Both solutions may be compared to those obtained from the best-fit expression

$$f(\eta) = \exp(-0.682\eta^2). \tag{6}$$

1.3 Problem 3

Show that the equation

$$y'' = -\frac{19}{4}y - 10y', y(0) = -9, y'(0) = 0 (7)$$

is moderately stiff. Use Euler stability analysis to estimate the largest step size h_{\max} for which the Runge-Kutta method will be stable. Then confirm this estimate by computing y using the fourth-order Runge-Kutta method with $h=\{\frac{1}{2}h_{\max},2h_{\max}\}$. Compare these solutions with the analytical solution.

- 2 Methodology
- 3 Results
- 4 Discussion
- 5 References

No external references were used other than the course notes for this assignment.

Appendix: MATLAB Code

The following code listings generate all figures presented in this homework assignment.