Sujet 1.

- **Exercice 1.** Donner une condition nécessaire et suffisante sur le paramètre $m \in \mathbb{R}$ pour que les vecteurs u = (1, 1, -2), v = (2, 1, 0) et w = (-1, m, 1) forment une base de \mathbb{R}^3 .
- * Exercice 2. On considère les sous-espaces vectoriels

$$F = \{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\} \text{ et } G = \{(x - y, x + y, x - 3y) | (x, y) \in \mathbb{R}^2\}$$

Déterminer l'équation cartésienne de G et en déduire une description de $F \cap G$.

* Exercice 3. On se place dans le \mathbb{C} -espace vectoriel $\mathcal{M}_2(\mathbb{C})$. Le vecteur $u = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ est il une combinaison linéaire des vecteurs $u_1 = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $u_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$?

Sujet 2.

* Exercice 2. On considère le sous-espace vectoriel suivant :

$$S = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}.$$

Donner une base de S puis déterminer les coordonnées de (3,2,-1) dans cette base.

- * Exercice 2. On considère les vecteurs $u_1 = (1,0,1)$, $u_2 = (0,1,1)$ et $u_3 = (1,1,1)$ dans \mathbb{R}^3 .
 - 1. Montrer que $\mathcal{B} = \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 .
 - 2. Déterminer les coordonnées de v = (1, 2, 4) dans la base \mathcal{B} .
- \star Exercice 3. Déterminer la dimension du sous-espace vectoriel de \mathbb{R}^4 suivant :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 | x - z = 0 \text{ et } x - 3y + t = 0\}$$

Sujet 3.

 \star Exercice 1. On considère les polynômes de R[X] suivants :

$$P_0 = X^2 + X$$
, $P_1 = X - 2$ et $P_2 = -X^2 + 1$

La famille (P_0, P_1, P_2) est-elle libre ou liée?

- * Exercice 2. On considère les vecteurs u = (1,0,1,0), v = (0,1,-1,0), w = (1,1,1,1), x = (0,0,1,0) et y = (1,1,0,-1) dans \mathbb{R}^4 . On pose F = Vect(u,v,w) et G = Vect(x,y) deux sous-espaces vectoriels de \mathbb{R}^4 .
 - 1. Montrer que x n'appartient pas à F.
 - 2. En déduire les dimensions de F, G, F + G et $F \cap G$.
- \star Exercice 3. Déterminer si les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^2 :

$$F = \left\{ (x,y) \in \mathbb{R}^2 \mid x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \text{ et } G = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 - 3y = 0 \right\},$$

Sujet 1.

- **Exercice 1.** Donner une condition nécessaire et suffisante sur le paramètre $m \in \mathbb{R}$ pour que les vecteurs u = (1, 1, -2), v = (2, 1, 0) et w = (-1, m, 1) forment une base de \mathbb{R}^3 .
- \star Exercice 2. Déterminer la dimension du sous-espace vectoriel de \mathbb{R}^4 suivant :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - z = 0 \text{ et } x - 3y + t = 0\}$$

Exercice 3. On se place dans le \mathbb{C} -espace vectoriel $\mathcal{M}_2(\mathbb{C})$. Le vecteur $u = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ est il une combinaison linéaire des vecteurs $u_1 = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $u_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$?

Sujet 2.

 \star Exercice 1. On considère les polynômes de $\mathbb{R}[X]$ suivants :

$$P_0 = X^2 + X$$
, $P_1 = X - 2$ et $P_2 = -X^2 + 1$

La famille (P_0, P_1, P_2) est-elle libre ou liée?

- **Exercice 2.** On considère les vecteurs $u_1 = (1,0,1)$, $u_2 = (0,1,1)$ et $u_3 = (1,1,1)$ dans \mathbb{R}^3 .
 - 1. Montrer que $\mathcal{B} = \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 .
 - 2. Déterminer les coordonnées de v = (1, 2, 4) dans la base \mathcal{B} .
- * Exercice 3. On considère les sous-espaces vectoriels

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\} \text{ et } G = \{(x - y, x + y, x - 3y) \mid (x, y) \in \mathbb{R}^2\}$$

Déterminer l'équation cartésienne de G et en déduire une description de $F \cap G$.

Sujet 3.

* Exercice 1. On considère le sous-espace vectoriel suivant :

$$S = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}.$$

Donner une base de S puis déterminer les coordonnées de (3, 2, -1) dans cette base. -

- **Exercice 2.** On considère les vecteurs u = (1,0,1,0), v = (0,1,-1,0), w = (1,1,1,1), x = (0,0,1,0) et y = (1,1,0,-1) dans \mathbb{R}^4 . On pose F = Vect(u,v,w) et G = Vect(x,y) deux sous-espaces vectoriels de \mathbb{R}^4 .
 - 1. Montrer que x n'appartient pas à F.
 - 2. En déduire les dimensions de F, G, F + G et $F \cap G$.
- \star Exercice 3. Déterminer si les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^2 :

$$F = \left\{ (x, y) \in \mathbb{R}^2 \mid x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \text{ et } G = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 - 3y = 0 \right\},$$

Sujet 1.

* Exercice 1. Calculer les développements limités suivants :

a)
$$\frac{1}{1-x} - \exp(x)$$
 à l'ordre 3 en 0. b) $\ln\left(\frac{\sin(x)}{x}\right)$ à l'ordre 4 en 0.

 \bigstar Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z) = (-3x - y + z, 8x + 3y - 2z, -4x - y + 2z).$$

- 1. Montrer que f est une application linéaire, puis déterminer une base de son noyau et son image.
- 2. Écrire la matrice de f dans les bases canoniques. L'application f est-elle injective ou surjective?
- \star Exercice 3. Soient $E = \mathbb{C}[X]$, p un entier naturel et f l'application de E dans E définie par

$$f(P) = (1 - pX)P + X^2P'$$

Vérifier que f est une application linéaire. f est-elle injective? Surjective?

Sujet 2.

* Exercice 1. Calculer les développements limités suivants :

a)
$$\sin(x)\cos(2x)$$
 à l'ordre 6 en 0. b) $\frac{1}{1+x+x^2}$ à l'ordre 4 en 0.

* Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^4$ l'application linéaire définie par

$$f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- 1. Montrer que f est une application linéaire, puis déterminer une base de son noyau et son image.
- 2. Écrire la matrice de f dans les bases canoniques. L'application f est-elle injective ou surjective?
- * Exercice 3. Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,0,0) et v=(1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Sujet 3.

* Exercice 1. Calculer les développements limités suivants :

a)
$$(\ln(1+x))^2$$
 à l'ordre 4 en 0. b) $\tan(x)$ à l'ordre 5 en 0.

* Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application définie par

$$f(x,y) = (x + y, x - y, x + y).$$

- 1. Montrer que f est une application linéaire, puis déterminer une base de son noyau et son image.
- 2. Écrire la matrice de f dans les bases canoniques. L'application f est-elle injective ou surjective?
- * Exercice 3. Soient E l'e.v. des applications de \mathbb{R} dans \mathbb{R} et $L: E \to E$ l'application qui à $f \in E$ associe

$$L(f): x \mapsto f(x) - f(-x).$$

Vérifier que f est un endomorphisme de E. L est-elle injective? Surjective?