

#### AI & CHATBOT

Aula 18 – Aprendizado de Máquina Supervisionado:

Algoritmos de Regressão

Prof. Henrique Ferreira

#### ML Supervisionado - Regressão



A tarefa de regressão é agrupada dentro dos algoritmos de aprendizado de máquina supervisionada.



#### Regressão vs Classificação



- Na classificação nosso atributo alvo é um objeto (string); A curva obtida pelo algoritmo funciona como fronteira de separação de classes;
- Na regressão nosso atributo alvo é um número (float); A curva obtida pelo algoritmo funciona como uma linha de tendência dos dados;

#### **Classificação:** predição de classe



#### **Regressão:** predição de valor







Gabriel R. Schleder Adalberto Fazzio Revista Brasileira de Ensino de Física, vol. 43, suppl. 1, e20200407 (2021)

## Regressão vs Classificação



□ Sempre conseguimos transformar os rótulos de **regressão** (valores) para rótulos de **classificação** (classes), definindo as faixas de valores de cada classe.

Exemplo: valor de um imóvel -> faixa de valor do imóvel

□ A volta não é sempre verdadeira! Nem sempre temos informação numérica que nos permita aplicar regressão.

Exemplo: imóvel acima ou abaixo do preço de mercado e sem a informação do valor em si.



Um modelo matemático de regressão tem como objetivo predizer um valor de uma variável dependente através de uma função das variáveis independentes.

Atributo alvo = variável resposta (ou dependente)
Atributos descritivos = variáveis regressoras (ou independentes)

#### Abordagem Paramétrica:

assumimos uma classe de funções que descrevem o relacionamento entre as variáveis regressoras e de resposta;

#### Abordagem Não Paramétrica:

não assumimos nenhuma classe de função a rigor, deixando o algoritmo regredir a função sozinho (funcionando como uma caixa preta);



A regressão, diferentemente da classificação, opera sobre dados numéricos  $\mathbb{R}^N$ .

Matematicamente, a regressão tentar estimar a função  $f(x_1, x_2, ..., x_N)$  que relaciona os atributos  $x_1, x_2, ..., x_N$  com um atributo alvo y.

Uma forma de realizar isso automaticamente é realizando minimização da função erro (ou função custo) E(f(x), y).

A regressão é uma tarefa supervisionada, que opera sobre um conjunto de k exemplos;

Lembrando que exemplos são as linhas na tabela de dados e atributos são as colunas.



Regressão é uma técnica supervisionada!

$$f(x_1, x_2, \dots, x_N)$$



Atributos descritivos

Atributo alvo

| Índice da linha | <b>x1</b> | <b>x2</b> |     | xn      | У        |
|-----------------|-----------|-----------|-----|---------|----------|
| 1               | 548.4     | -9789     |     | 0.4875  | -7595.28 |
| 2               | 689.4     | -10235    |     | -0.358  | -7468.82 |
| 3               | 3154.8    | -1031858  | ••• | -0.1458 | -1019232 |
|                 |           |           |     |         |          |
| k               | 803.54    | -20000    |     | 1.054   | -16791.4 |



O objetivo da regressão é encontrar a regra que relaciona as variáveis, mostrando uma "linha de tendência":





# ALGORITMOS DE DE REGRESSÃO

#### Regressão Linear (paramétrica)



#### Função linear:

$$f(x) = \hat{y} = ax + b$$



O algoritmo de regressão pretende determinar quais são os coeficientes a e b do modelo matemático.

Uma vez conhecidos esses valores, o modelo pode generalizar a saída y para uma data entrada arbitrária x.

# Com funciona?



Chuta valores para os **coeficientes da equação** e então calcula o erro médio obtido para os dados de treinamento. Altera os valores dos coeficientes e recalcula o erro. Repete esse passo até chegar em um erro mínimo aceitável.

Exemplo - queremos determinar uma função de uma variável que é linear:

$$f(x) = \hat{y} = ax + b$$

Treinar o modelo significa encontrar os valores de *a* e *b* 

| x  | у  | $\widehat{\mathbf{y}}$ | Erro |
|----|----|------------------------|------|
| 1  | 0  | 1                      | -1   |
| 5  | 8  | 5                      | 3    |
|    |    |                        |      |
| 10 | 18 | 10                     | 8    |

Chutamos 
$$a = 1$$
 e  $b = 0$ 

$$MSE = \frac{(-1)^2 + (3)^2 + \dots + 8^2}{N}$$

# Regressão Linear (paramétrica)



- Nosso problema pode envolver muitas features (colunas), ou seja, diferentes variáveis de entrada x<sub>i</sub>.
- O modelo de Regressão Linear então deverá ter mais coeficientes para cada coluna de entrada;
- Ele pode ser entendido como a combinação linear das entradas:

$$f(x_1, x_2, x_3, ..., x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + a_0$$

• O algoritmo de regressão pretende determinar quais são os coeficientes  $a_i$  que produzem o menor erro médio em cima dos dados de treinamento.

#### Regressão - Quadrática



Função do segundo grau:

$$f(x) = ax^2 + bx + c$$



O algoritmo de regressão pretende determinar quais são os coeficientes a, b e c do modelo matemático.

Uma vez conhecidos esses valores, o modelo pode generalizar a saída y para uma data entrada arbitrária x.

# Regressão - Polinomial



Polinômio de grau i:

$$f(x) = a_i x^i + a_{i-1} x^{i-1} + a_{i-2} x^{i-2} + \dots + a_1 x + a_0$$

É possível realizar a regressão de qualquer série de dados através de um polinômio de grau elevado; Isso é possível pois, dado que existe uma função f(x) infinitamente diferenciável, podemos aproximá-la através de uma série de Taylor:

$$f(x)=\sum_{n=0}^{\infty}rac{f^{(n)}(a)}{n!}(x-a)^n.$$

## Regressão – Mudança de variável



- Sempre é possível criar um algoritmo para outras funções gerais.
- Funções polinomiais podem ser reduzidas em funções lineares de varias variáveis;
- Na prática é como se houvesse uma nova coluna com o valor de x²;



## Regressão – Outras funções



Usando a abordagem paramétrica você pode testar toda uma vasta classe de funções:

$$f(x) = a\frac{1}{x} + be^{x-1} - \sqrt{2x} + \sin(2x)\log_{10}(3x+2) + \cdots$$

- Se você quer modelos simplificados e com explicações, vale a pena estudar funções diferentes para saber como seus dados se comportam realmente;
- Existem algoritmos avançados chamados de Regressão Simbólica que tentam encontrar a melhor função que descreve os dados;
- Apesar de ser possível aproximar qualquer função por uma série infinita, como a série de Taylor ou a série de Fourier, essas aproximações podem não corresponder a coeficientes observáveis e acabam gerando overfitting;

## Regressão - Overfitting



Um modelo com **overfitting** tem mais coeficientes do que o necessário. É um modelo com pouca capacidade de generalização: ele terá alta acurácia para os dados de treinamento e acurácia extremamente baixa para os dados de teste.







Ajuste de boa qualidade



Variância alta (superajuste)



Função custo ou função erro é uma função E(f(x), y) escolhida para estimar a distância entre o valor real de y e o valor previsto pelo modelo  $\hat{y} = f(x)$ .



Existem vários tipos de função custo. O objetivo do algoritmo é minimizar o resultado dessa função custo, minimizando assim o erro entre o modelo e o dado real.



Por exemplo, para uma função linear:







- Erro quadrático médio (MSE);
- Erro absoluto médio (MAE);
- Distância euclidiana média;
- Distância máxima absoluta na direção y;
- Distância euclidiana máxima;
- Erro absoluto percentual médio (MAPE);
- Erro percentual médio (MPE);
- Menor erro absoluto (LAE);
- Erro percentual absoluto médio simétrico (SMAPE);

Cada função escolhida pode ter um domínio de aplicação específico que permite o algoritmo performar melhor; Em todos os casos, estamos interessados em um problema de otimização: reduzir o valor dessa função.



Soma dos erros absolutos:

$$SEA = \sum_{i=1}^{k} |y_i - \widehat{y_i}|$$

Soma dos quadrados dos erros:

$$SQE = \sum_{i=1}^{\kappa} (y_i - \widehat{y}_i)^2$$

OBS: Famoso método dos mínimos quadrados, visto em cálculo numérico.

# Regressão – Otimização



- A otimização é o processo automático de minimizar os erros residuais, isto é, minimizar a função custo assumida;
- Existem vários algoritmos de otimização diferentes;
- Algoritmos de otimização são toda uma área da computação e da IA, cujos resultados geram muitas aplicações de impacto econômico e de engenharia;
- Exemplos de algoritmos de otimização para reduzir a função custo são:
  - Descida do gradiente (Gradient Descent GD)
  - Mínimos quadrados (Ordinary least squares OLS)
  - Método de Adams
  - Decomposição e valores singulares

# Regressão – MMQ



- O método dos mínimos quadrados (MMQ) é um dos métodos mais usados para realizar regressões;
- A função custo nesse caso é a soma dos quadrados dos erros;
- O objetivo é encontrar os coeficientes de um equação (método paramétrico) que minimize o valor da função custo;
- Quando a função avaliada é linear, existe um método analítico de solução (caso especial de otimização), o que torna o método muito mais rápido;
- Entretanto, nem sempre é possível inverter as matrizes da equação paramétrica associada, e o problema torna-se computacionalmente mais difícil;

$$SQRes(\boldsymbol{\theta}) = \sum_{i=1}^{n} [y_i - f(\mathbf{x}_i, \boldsymbol{\theta})]^2$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X^2 + \ldots + \beta_k X^k + \varepsilon$$



É um algoritmo de otimização iterativo que pode ser aplicado a diversos problemas. A ideia central é utilizar informações sobre os gradientes da função para determinar a próxima iteração do algoritmo;





Máximo ou mínimo 
$$\frac{d}{d\theta}f(\theta)=0$$

Operador gradiente:

$$\nabla = \left(\frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2}, \dots, \frac{\partial}{\partial \theta_k}\right)$$

$$\nabla erro(\theta_1, \theta_2, ..., \theta_k) = 0$$





O tamanho do incremento usado para varrer o espaço de busca é o learning rate. O learning rate é um exemplo de hiperparâmetro do algoritmo de Aprendizado de Máquina;

- Se ele for muito pequeno: o algoritmo deverá iterar muitas vezes para convergir (algoritmo lento);
- Se ele for muito grande: o algoritmo pode não convergir (rápido mas não funciona);





| S.NO. | Gradient Descent                                                   | Normal Equation                                                                        |
|-------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.    | In gradient descenet , we need to choose learning rate.            | In normal equation , no need to choose learning rate.                                  |
| 2.    | It is an iterative algorithm.                                      | It is analytical approach.                                                             |
| 3.    | Gradient descent works well with large number of features.         | Normal equation works well with small number of features.                              |
| 4.    | Feature scaling can be used.                                       | No need for feature scaling.                                                           |
| 5.    | No need to handle non-invertibility case.                          | If ( $X^T \mathbf{X}$ ) is non-invertible , regularization can be used to handle this. |
| 6.    | Algorithm complexity is 0 (k $n^2$ ). n is the number of features. | Algorithm complexity is $\mathrm{O}(n^3)$ . n is the number of features.               |

https://www.geeksforgeeks.org/difference-between-gradient-descent-and-normal-equation/

# Regressão - Ridge e Lasso



#### Regularização L1 e L2

- Na regularização de L1, tentamos minimizar a função custo adicionando um termo de penalidade à soma dos valores absolutos dos coeficientes.
- Na regularização de L2, tentamos minimizar a função custo adicionando um termo de penalidade à soma dos quadrados dos coeficientes.

## Regressão – Regressão Ridge



Na função custo da regressão linear, tentamos minimizar a soma dos quadrados dos erros.

Na Regressão Ridge, adicionamos uma restrição na soma dos quadrados dos coeficientes de regressão por meio de um parâmetro de regularização que chamamos de **L2**. Assim a função custo fica como:

$$Min(\sum arepsilon^2 + \lambda eta^2) = Min\sum (Y - (eta_1 + eta_2 X_2 + eta_3 + \ldots + eta_k X_k))^2 + \lambda \sum eta^2$$

λ é um número não negativo chamado de parâmetro de regularização;



#### Regressão - Regressão Lasso



Lasso significa Least Absolute Shrinkage and Selection

Operator. Faz uso da técnica de regularização L1, assim como a regressão Ridge na função objetivo. Assim, a função objetivo na regressão LASSO torna-se:

$$Min(\sum arepsilon^2 + \lambda \sum |eta|) = Min\sum (Y - (eta_1 + eta_2 X_2 + eta_3 + \ldots + eta_k X_k))^2 + \lambda \sum |eta|$$



## Regressão SVR



- É possível adaptar o método de classificação SVM para criar um método de regressão (Support Vector Regression – SVR);
- No Sklearn existem 3 implementações desse método: SVR, LinearSVR e NuSVR;
- A vantagem de usar esses métodos é que devido ao truque de kernel é possível regredir funções não lineares;

https://scikit-learn.org/stable/modules/svm.html#svm-regression

# Regressão SVR





# Árvores de Decisão



- Também é possível adaptar o método de Árvore de Decisão para realizar a tarefa de regressão;
- As árvores de decisão são métodos não paramétricos;



# Árvores de Decisão



#### Vantagens:

- Modelo caixa-branca: fácil de entender e de interpretar (as árvores podem ser visualizadas);
- Requer pouca preparação dos dados;
- O tempo computacional é logarítmico com o número de exemplos de treinamento  $O(\log n)$ ;
- Consegue resolver problemas de múltiplos outputs;
- É possível validar com analises estatísticas;

#### **Desvantagens:**

- Overffiting: modelos tem pouca capacidade de generalização (preciso usar métodos de poda e limites para a profundidade da árvore para eliminar isso);
- São instáveis a ruído (dados com alta variância e outliers);
- Não são bons extrapoladores pois aproximam as funções por retas constantes;
- Dataset precisa estar balanciado para não gerar bias;
- Funções XOR, paridade e problemas de multiplexação podem ser difíceis de serem resolvidos;



# MÉTRICAS DE DESEMPENHO DE REGRESSÃO

### Desempenho de Regressão



- Na regressão a resolução do problema envolve predizer um valor numérico ŷ a partir de dados de treinamento (x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, ..., x<sub>n</sub>, y). Para realizar isso, o algoritmo pode encontrar um modelo matemático expresso por f(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>). Lembrando que, durante a estimação da função f o algoritmo usa as informações do y de treinamento.
- Com os dados de teste devemos realizar uma análise de desempenho do algoritmo de regressão treinado;
- Algumas métricas possíveis:
  - Erro médio quadrático;
  - Erro absoluto médio;
  - Coeficiente de determinação R<sup>2</sup>;
  - Coeficiente de correlação de Pearson;

# Regressão - Métrica



Erro absoluto médio (Mean Absolute Error – MAE):

$$MAE = \frac{1}{k} \sum_{i=1}^{k} |y_i - \widehat{y_i}|$$

Erro quadrático médio (Mean Squared Error – MSE):

$$MSE = \frac{1}{k} \sum_{i=1}^{k} (y_i - \hat{y}_i)^2$$

## Coeficiente de Determinação R<sup>2</sup>



- Baseado nos quadrados dos resíduos (erros);
- R<sup>2</sup> = 0.76 significa que o modelo de regressão linear explica 76% da variância de y a partir de  $(x_1, x_2, x_3, ..., x_n)$ ;

Soma Total dos Quadrados

$$SQ_{tot} = \sum_{i=1}^{\kappa} (y_i - \bar{y})^2$$

Soma dos Quadrados dos Resíduos  $SQ_{res} = \sum (y_i - \hat{y}_i)^2$ 

$$SQ_{res} = \sum_{i=1}^{k} (y_i - \widehat{y}_i)^2$$

Coeficiente de determinação  $R^2 = 1 - \frac{SQ_{res}}{SQ_{tot}}$ 

$$R^2 = 1 - \frac{SQ_{res}}{SQ_{tot}}$$

Quanto mais próximo de 1, melhor!

# Gráfico $\hat{y}$ vs $y_{test}$







# Na prática:







- Em Python já existem bibliotecas prontas para se calcular essas métricas;
- O scikit-learn traz módulos internos com funções prontas para isso:

https://scikit-learn.org/stable/modules/model\_evaluation.html

```
1 mean_absolute_error(y_test, y_pred)
```

1 mean\_squared\_error(y\_test, y\_pred)

| Regression                           |                                        |  |
|--------------------------------------|----------------------------------------|--|
| 'explained_variance'                 | metrics.explained_variance_score       |  |
| 'max_error'                          | metrics.max_error                      |  |
| 'neg_mean_absolute_error'            | metrics.mean_absolute_error            |  |
| 'neg_mean_squared_error'             | metrics.mean_squared_error             |  |
| 'neg_root_mean_squared_error'        | metrics.mean_squared_error             |  |
| 'neg_mean_squared_log_error'         | metrics.mean_squared_log_error         |  |
| 'neg_median_absolute_error'          | metrics.median_absolute_error          |  |
| 'r2'                                 | metrics.r2_score                       |  |
| 'neg_mean_poisson_deviance'          | metrics.mean_poisson_deviance          |  |
| 'neg_mean_gamma_deviance'            | metrics.mean_gamma_deviance            |  |
| 'neg_mean_absolute_percentage_error' | metrics.mean_absolute_percentage_error |  |





Copyright © 2023 Prof. Henrique Ferreira dos Santos

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).