1 Problems

- 1. Let D_4 be the dihedral group of symmetries of a square.
 - (a) How many elements does D_4 have?
 - (b) How many of these are rotations?
 - (c) How many are reflections?
- 2. Find all subgroups of D_4 . Which of them are cyclic?
- 3. Let S_3 be the symmetric group on 3 elements. Let $\sigma = (1\ 2)$ and $\tau = (1\ 2\ 3)$.
 - (a) Compute $\sigma \tau$ and $\tau \sigma$ and compare.
 - (b) List all subgroups of S_3 . Identify which are cyclic and which are not.
- 4. Prove that set of all rotations in D_n form a subgroup of D_n .
- 5. Let G be a group and H_1 and H_2 be two subgroups of G.
 - (a) Prove that $H_1 \cap H_2$ is a subgroup and also $\bigcap H_\alpha$, $\alpha \in I$ where I is an indexing set
 - (b) what about $H_1 \cup H_2$?
- 6. Verify that $GL_n(\mathbb{R})$ satisfies all four group axioms under matrix multiplication. Define the special linear group $SL_2(\mathbb{R})$ as the set of 2×2 real matrices with determinant 1.
 - (a) Show that $SL_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$.
 - (b) Verify whether the matrix $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ belongs to $SL_2(\mathbb{R})$.
- 7. Let \mathbb{Z} be the group of integers and let $k, l \in \mathbb{Z}$. What is the subgroup generated by k and l?
- 8. Is it possible that the subgroup generated by 2 and 3 in \mathbb{Q} under addition is cyclic?
 - (a) What about the subgroup generated by any two elements in \mathbb{Q} ?
 - (b) What about subgroup generated by 2 and 3 in $\mathbb{Q} \{0\}$ under multiplication?

- 9. Define $det: GL_n(\mathbb{R}) \to \mathbb{R}$ as the determinant map. Show that this is a group homomorphism-
 - (a) What is the kernel of this homomorphism?
 - (b) What is its image?
- 10. Let $H = \langle P_{\sigma}; \sigma \in S_n \rangle$ is a subgroup of S_n . Let ϕ is a map from S_n to $GL_n(\mathbb{R})$ defined as $\phi(\sigma) = P_{\sigma}$. Prove that ϕ is one to one homomorphism.
- 11. Verify that $GL_n(\mathbb{R})$ satisfies all four group axioms under matrix multiplication. Define the special linear group $SL_2(\mathbb{R})$ as the set of 2×2 real matrices with determinant 1.
 - (a) Show that $SL_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$.
 - (b) Verify whether the matrix $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ belongs to $SL_2(\mathbb{R})$.