

(11)Publication number:

09-326506

(43)Date of publication of application: 16.12.1997

(51)Int.CI.

H01L 33/00 H01L 29/06 H01L 29/66 H01L 29/68

H01L 29/88 H01S 3/18

(21)Application number: 08-212811

(71)Applicant:

FUJITSU LTD

(22)Date of filing:

12.08.1996

(72)Inventor:

SUGIYAMA YOSHIHIRO

NAKADA YOSHIAKI

(30)Priority

Priority number: 08 84261

Priority date: 05.04.1996

Priority country: JP

(54) QUANTUM SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PROBLEM TO BE SOLVED: To provide a quantum semiconductor device containing a quantum dot and showing a sharp energy spectrum corresponding to a quantum level.

SOLUTION: A heteroepitaxial structure, with which a distortion system is formed on a substrate 1, is repeatedly deposited on a substrate 1 pinching an intermediate layer 3a, and a bunch of quantum dots 3b, which are in alignment in a vertical direction, are formed. In that case, the thickness of the intermediate layer 3a is formed substantially smaller than the Bohr radius in such a manner that a single quantum dot 3b is vertically formed by quantum- mechanically coupling of the above-mentioned bunch of aligned quantum dots 3b.

LEGAL STATUS

[Date of request for examination]

27.01.2003

[Date of sending the examiner's decision of rejection]

25.01.2005

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

2005-03349

[Date of requesting appeal against examiner's decision of

24.02.2005

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-326506

(43)公開日 平成9年(1997)12月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
H01L 33/00			H01L	33/00	Α	
29/06				29/06		
29/66				29/66		
29/68				29/68		
29/88			H01S	3/18		
<u> </u>		審査請求	未請求 請求	≷項の数32 O	L (全 19 頁)	最終頁に続く
(21)出願番号	特願平8-212811	·	(71)出願	人 000005223		
				富士通株式	会社	
(22)出願日	平成8年(1996)8月12日			神奈川県川	崎市中原区上小	田中4丁目1番
				1号		
(31)優先権主張番号	特願平8-84261		(72)発明	者 杉山 芳弘	ζ.	
(32)優先日	平8 (1996) 4月5日 神奈川県川崎市中原区上小田				田中4丁目1番	
(33)優先権主張国	日本 (JP)			1号 富士	通株式会社内	
			(72)発明	者中田 義昭	3	
				神奈川県川	崎市中原区上小	田中4丁目1番
				1号 富士	通株式会社内	
			(74)代理。	人 弁理士 伊	東忠彦	

(54) 【発明の名称】 量子半導体装置およびその製造方法

(57)【要約】

【課題】 量子ドットを含み、量子準位に対応して鋭い エネルギスペクトルを示す量子半導体装置を提供するこ とにある。

【解決手段】 基板上に、基板に対して歪み系を形成するへテロエピタキシャル構造を、中間層を挟みながら交互に繰り返し堆積し、垂直方向に整列した一連の量子ドットを形成し、その際、中間層の厚さを、前記整列した一連の量子ドットが、互いに量子力学的に結合し、実効的に単一の量子ドットが形成されるように、Bohr半径よりも実質的に小さくなるように設定する。

本発明の原理を示す図

たAllnAsバッファ層上のInAsよりなるS-Kモード量子ドットについて、1.5μm帯のPL波長を報告している。しかし、この報告においても、PLスペクトルのFWHMは110meV以上あり、個々の量子ドットの波長制御に実質的な課題が残っていることを示している。

【0010】とのように、従来のS-Kモードの量子ドットでは、応用上重要な1.3μm帯あるいは1.5μm帯において鋭い発光ピークを得ることができず、実用的な光半導体装置を構成することができなかった。また、RHETのような電子装置においても同様な問題が生じていた。すなわち、従来のS-Kモードの童子ドットをこのようなRHETの共鳴トンネルバリアとして使った場合、得られるエネルギフィルタの特性が悪く、所望の鋭い共鳴トンネル効果が得られない。

【0011】そこで、本発明は、前記の課題を解決した 量子ドット構造を有する半導体装置およびその製造方法 を提供することを概括的目的とする。本発明のより具体 的な目的は、S-Kモードによりヘテロエピタキシャル 構造上に形成される複数の量子ドットからなる量子半導 20 体装置において、形成される量子準位を個々の量子ドットの大きさとは独立に設定できる量子半導体装置、およ びかかる量子半導体装置の製造方法を提供することにある。

【0012】本発明の他の目的は、互いに量子力学的に結合し、全体として所定のエネルギの離散的量子準位を形成する複数の量子ドットを含む量子半導体装置、およびかかる量子半導体装置の製造方法を提供することにある。

[0013]

【課題を解決するための手段】本発明は、上記の課題 を、請求項1に記載したように、半導体基板と、前記半 導体基板上に形成された、量子構造を含む活性層とより なる量子半導体装置において、前記量子構造は:第1の 格子定数を有する第1の半導体結晶よりなり、互いに繰 り返し積層された複数の中間層と;各々の中間層中に形 成され、前記第1の格子定数とは異なる第2の格子定数 を有し、前記第1の半導体結晶に対して歪み系を形成す る第2の半導体結晶よりなり、各々前記中間層の厚さに 実質的に等しい高さを有する複数の量子ドットとを含 み、前記複数の中間層の各々において、各々の量子ドッ トは、隣接する中間層中の対応する量子ドットと、前記 半導体基板の主面に垂直な方向に、実質的に整列し、前 記複数の中間層の各々はキャリアのBohr半径以下の 厚さに厚さを設定されていることを特徴とする量子半導 体装置により、または請求項2に記載したように、前記 複数の中間層の各々は、前記量子ドットが自由成長した 場合に有する高さよりも実質的に小さい厚さを有すると とを特徴とする請求項1記載の量子半導体装置により、 または請求項3に記載したように、前記複数の量子ドッ

トの各々は、直上の量子ドットと直接に接触していると とを特徴とする請求項1または2記載の量子半導体装置 により、または請求項4に記載したように、前記中間層 の各々は、実質的に平坦な上主面を有することを特徴と する請求項1~3のうち、いずれか一項記載の量子半導 体装置により、または請求項5に記載したように、前記 複数の量子ドットの各々はInAsよりなり、前記複数 の中間層の各々はGaAsよりなり、前記複数の中間層 の各々は3 n m以下、1 n m以上の範囲の厚さを有する てとを特徴とする請求項1~4のうち、いずれか

一項記 載の量子半導体装置により、または請求項6に記載した ように、前記複数の中間層の各々は、約2~3 n mの範 囲の厚さを有することを特徴とする請求項5記載の量子 半導体装置により、または請求項7に記載したように、 前記複数の量子ドットの各々はInAsよりなり、前記 複数の中間層の各々はInPよりなり、前記複数の中間 層の各々は7.6nm以下の厚さを有することを特徴と する請求項1~4のうち、いずれか一項記載の量子半導 体装置により、または請求項8に記載したように、前記 複数の量子ドットの各々はA1Sb, InSb, GaS bより選ばれ、前記複数の中間層の各々はGaAsより なり、前記複数の中間層の各々は8.7 n m以下の厚さ を有することを特徴とする請求項1~4のうち、いずれ か請求項1記載の量子半導体装置により、または請求項 9に記載したように、前記複数の量子ドットの各々はG aInSbよりなり、前記複数の中間層の各々はGaS bよりなり、前記複数の中間層の各々は4分子層分以下 の厚さを有することを特徴とする請求項1~4のうち、 いずれか一項記載の量子半導体装置により、または請求 30 項10に記載したように、前記複数の量子ドットの各々 はInPよりなり、前記複数の中間層の各々はInGa Pよりなり、前記複数の中間層の各々は5 nm以下の厚 さを有することを特徴とする請求項1~4のうち、いず れか一項記載の量子半導体装置により、または請求項1 1 に記載したように、前記複数の中間層の各々におい て、各々の量子ドットは、隣接する中間層中の対応する 量子ドットとアロイ化していることを特徴とする請求項 1~10のうち、いずれか一項記載の量子半導体装置に より、または請求項12に記載したように、半導体基板 と:前記半導体基板上に形成された第1のクラッド層 と;前記第1のクラッド層上に形成され、量子構造を含 む活性層と:前記活性層上に形成された第2のクラッド 層と;前記半導体基板上に形成され、前記第1のクラッ ド層を介して第1の導電型のキャリアを前記活性層に注 入する第1の電極と;前記第2のクラッド層上に形成さ れ、前記第2のクラッド層を介して第2の導電型のキャ リアを前記活性層に注入する第2の電極とよりなる半導 体発光装置において、前記量子構造は:前記半導体基板 と格子整合する第1の格子定数を有する第1の半導体結 晶よりなり、互いに繰り返し積層された複数の中間層

と:各々の中間層中に形成され、前記第1の格子定数と は異なる第2の格子定数を有し、前記第1の半導体結晶 に対して歪み系を形成する第2の半導体結晶よりなり、 各々前記中間層の厚さに実質的に等しい高さを有する複 数の量子ドットとを含み、前記複数の中間層の各々にお いて、各々の量子ドットは、隣接する中間層中の対応す る量子ドットと、前記半導体基板の主面に垂直な方向 に、実質的に整列し、前記複数の中間層の各々はキャリ アのBohr半径以下の厚さに厚さを設定されており、 前記第1および第2のクラッド層は、いずれも前記中間 10 層を構成する第1の半導体結晶と実質的に等しい格子定 数の半導体結晶よりなることを特徴とする半導体発光装 置により、または請求項13に記載したように、前記複 数の中間層の各々は、前記量子ドットが自由成長した場 合に有する高さよりも実質的に小さい厚さを有すること を特徴とする請求項12記載の量子半導体装置により、 または請求項14に記載したように、前記複数の量子ド ットの各々は、直上の量子ドットと直接に接触している ことを特徴とする請求項12または13記載の量子半導 体装置により、または請求項15に記載したように、前 20 記中間層の各々は、実質的に平坦な上主面を有するとと を特徴とする請求項12~14のうち、いずれか一項記 載の量子半導体装置により、または請求項16に記載し たように、前記複数の量子ドットの各々はInAsより なり、前記複数の中間層の各々はGaAsよりなり、前 記複数の中間層の各々は3nm以下、1nm以上の範囲 の厚さを有することを特徴とする請求項12~15のう ち、いずれか一項記載の量子半導体装置により、または 請求項17に記載したように、前記複数の中間層の各々 は、約2~3 n mの範囲の厚さを有することを特徴とす る請求項16記載の量子半導体装置により、または請求 項18に記載したように、前記複数の量子ドットの各々 はInAsよりなり、前記複数の中間層の各々はInP よりなり、前記複数の中間層の各々は7.6mm以下の 厚さを有することを特徴とする請求項12~15のう ち、いずれか一項記載の量子半導体装置により、または 請求項19に記載したように、前記複数の量子ドットの 各々はAISb, InSb, GaSbより選ばれ、前記 複数の中間層の各々はGaAsよりなり、前記複数の中 間層の各々は8.7 n m以下の厚さを有することを特徴 40 とする請求項12~15のうち、いずれか請求項1記載 の量子半導体装置により、または請求項20に記載した ように、前記複数の量子ドットの各々はGalnSbよ りなり、前記複数の中間層の各々はGaSbよりなり、 前記複数の中間層の各々は4分子層分以下の厚さを有す ることを特徴とする請求項12~15のうち、いずれか 一項記載の量子半導体装置により、または請求項21に 記載したように、前記複数の量子ドットの各々はInP よりなり、前記複数の中間層の各々はInGaPよりな

ることを特徴とする請求項12~15のうち、いずれか 一項記載の量子半導体装置により、または請求項22に 記載したように、前記複数の中間層の各々において、各 々の量子ドットは、隣接する中間層中の対応する量子ド ットとアロイ化していることを特徴とする請求項12~ 21のうち、いずれか一項記載の量子半導体装置によ り、または請求項23に記載したように、量子ドット構 造を含む量子半導体装置の製造方法において、

- (a) 半導体基板上に、前記半導体基板に対して歪み 系を形成する量子ドットを、互いに孤立した成長島の形 で、エピタキシャル成長する工程と;
- (b) 前記半導体基板上に、前記量子ドットを覆うよ うに、前記半導体基板に対して格子整合する半導体層 を、中間層としてエピタキシャル成長する工程と:
- (c) 前記中間層上に、前記半導体基板に対して歪み 系を形成する量子ドットを、互いに孤立した成長島の形 で、エピタキシャル成長する工程と;
- (d) 前記工程(b)で形成された前記中間層 トに、 前記工程(c)で形成された量子ドットを覆うように、 前記半導体基板に対して格子整合する半導体層を、次の 中間層としてエピタキシャル成長する工程とを含み;前 記工程(c)および工程(d)は、繰り返し、交互に実 行され前記工程(b)および工程(d)において、前記 中間層の厚さは、自由成長した状態における前記量子ド ットの高さよりも実質的に小さく設定されることを特徴 とする量子半導体装置の製造方法により、または請求項 24 に記載したように、前記工程(b) および(d) に おいて、前記中間層の堆積に伴い、前記量子ドットの高 さが減少し、前記中間層の厚さに実質的に等しくなると とを特徴とする請求項23記載の量子半導体装置の製造 方法により、または請求項25に記載したように、前記 量子ドットの各々は「NASよりなり、前記中間層の各 々はGaAsよりなり、前記中間層の各々は3nm以 下、1nm以上の範囲の厚さを有することを特徴とする 請求項23または24記載の量子半導体装置の製造方法 により、または請求項26に記載したように、前記中間 層の各々は、約2~3 nmの範囲の厚さを有することを 特徴とする請求項25記載の量子半導体装置の製造方法 により、または請求項27に記載したように、前記量子 ドットの各々はInAsよりなり、前記中間層の各々は In Pよりなり、前記複数の中間層の各々は7.6nm 以下の厚さを有することを特徴とする請求項23または 24記載の量子半導体装置の製造方法により、または請 求項28に記載したように、前記量子ドットの各々はA ISb, InSb, GaSbより選ばれ、前記中間層の 各々はGaAsよりなり、前記中間層の各々は8.7n m以下の厚さを有することを特徴とする請求項23また は24記載の量子半導体装置の製造方法により、または 請求項29に記載したように、前記量子ドットの各々は り、前記複数の中間層の各々は5mm以下の厚さを有す 50 GalnSbよりなり、前記中間層の各々はGaSbよ

(8)

14

ける量子ドット密度も、中間層3aの厚さを10nmと した場合に最低になるのがわかる。

【0023】一方、図4より、中間層3aの厚さを5nm以下、特に3nm以下にすると、量子ドットの径の増大は実質的に抑制されることがわかる。また、図5は、中間層3aの厚さを5nm以下、特に3nm以下にした場合、量子ドット密度の減少が抑止されることを示す。また、先に図2で示されたように、中間層3aの厚さを3nm以下にすると、積層を重ねても、量子ドット3bの径は、それ以上増大しない。

【0024】以上の結果は、図1に示す積層量子構造3 たんおいて、中間層3 a の厚さを3 n m以下に設定することにより、下層の量子ドット3 b に整列して確実に上層の量子ドット3 b が形成されることを示す。このような場合、中間層3 a の厚さはキャリアのBohr半径(GaAsでは12nm)よりも実質的に小さいため、下層の量子ドット3 b 中のキャリアの波動関数は上層の量子ドット3 b 中に進入し、またその逆も真で、下層の量子ドット3 b と上層の量子ドット3 b との間に量子力学的な結合が形成される。換言すると、積層量子構造3中において、基板主面に対して略垂直方向に整列した一連の量子ドット3 b は、全体に拡がった波動関数を有し、互いに連結した、実効的に単一の量子ドットとして作用する。

【0025】一方、中間層3aの厚さが約10nmである場合、図3あるいは図5に示すように、量子ドット密度が下層と上層とで異なってしまい、下層の量子ドット3bと上層の量子ドット3bとが、完全には対応しなくなる。図6は、図1の積層量子構造3を示す平面TEM写真である。

【0026】図6よりわかるように、個々の量子ドット3bは略円形ないしディスク状に形成され、ほぼ一様な間隔で、互いに分散して形成されている。また、個々の量子ドット3bの大きさは余り大きくは変化していないように見える。図7(A)~(D)は、図1の積層量子構造3において、中間層3aの厚さdを3nmとした場合の、それぞれ1層目、3層目、5層目および10層目に形成された量子ドット3bのAFM(原子間力顕微鏡)像を示す。すなわち、図7(A)~(D)は図2において、厚さdを3nmに設定した場合に対応する。【0027】図7(A)~(D)を参照するに 図7

【0027】図7(A)~(D)を参照するに、図7(A)に示す1層目の量子ドット3 bは、図.7(B)~(D)に示す3層目以降の量子ドット3 bよりもわずかに小さく、またその数も多いが、量子ドット3 bの大きさおよび密度は、3層目の積層以降はほとんど変化しないことがわかる。

【0028】 これに対し、図8(A)~(D)は、中間層3aの厚さdを10nmとした場合の、それぞれ1層目、3層目、5層目および10層目に形成された量子ドット3bのAFM像を示す。すなわち、図8(A)~

(D)は、図2において、厚さdを10nmに設定した場合に対応する。

【0029】図8(A)~(D)よりわかるように、形成される量子ドット3bの大きさは、積層の進行と共に増大し、それに伴い量子ドットの密度は減少する。従って図8(D)に示す10層目の単一の量子ドットに対して、図8(A)に示す1層目では、複数の量子ドットが対応するような場合が生じ、これらの量子ドットが、中間層3aを隔てて量子力学的な結合を生じた場合、非常に複雑な構造が形成されることになる。

【0030】図9は、中間層3aの厚さを2nmとして 量子ドット3bを5層積層した場合の積層量子構造3の 詳細を示す断面TEM写真、また図10は、中間層3a の厚さを3nmとして量子ドット3bを5層積層した場 合の積層量子構造3の詳細を示す断面TEM写真である。

【0031】中間層の厚さを、自由成長した量子ドットの高さよりも小さく設定した系では、量子ドットは中間層を突き抜けることが予測されるが、実際に得られた構造では、以上のTEM写真よりわかるように、中間層は平坦な上主面を維持していることが観察される。これは、中間層の堆積に伴って、量子ドットが変形し、高さが減少することを意味する。また、これに伴い、量子ドットの高さは中間層の厚さに実質的に等しくなる。さらに、このような構造では、量子ドットは、その直上の量子ドットと直接に接触している可能性がある。

【0032】また、図9、10よりわかるように、上層 の量子ドット3 bは、対応する下層の量子ドット3 bに 対して、一対一の関係で、上下に整列しているのがわか 30 る。また、このように中間層3aの厚さを3nmあるい は2 nmまで減少させても、上下に整列した量子ドット 3 b は互いに完全に融合することはなく、積層構造を保 持することがわかる。また、このように中間層3aの厚 さを量子ドット3bの高さに略等しく設定した系では、 仮に量子ドット3bが直上の量子ドット3bと直接に接 触せず、間に1~2原子層の中間層3aが存在しても、 かかる中間層3aのうち量子ドット3bを覆う部分の結 晶構造は、量子ドット3bの結晶構造に対応して著しく 変形される。かかる結晶構造の変形の結果、中間層3a 40 は通常の量子井戸層におけるようなクローニッヒ・ベニ ー型のポテンシャルバリアは形成せず、これに伴い、前 記垂直方向に整列した―連の量子ドット3 bは、キャリ アがポテンシャルバリアを通過するトンネル効果がなく ても、実効的に単一の量子ドットを形成するものと考え られる。また、このような中間層3aの結晶構造の著し い変形の結果、上層の量子ドット3bと下層の量子ドッ ト3aの大きさが、先に見たように揃うものと考えられ る。

【0033】図11は、図1の積層量子構造3におい 50 て、中間層3aおよび量子ドット3bを5層積層した構

造について、77Kでのフォトルミネッセンス(PL)スペクトルを測定した結果を示す。図11を参照するに、量子ドット3bを1層積層しただけの構造では、PLスペクトル強度は低く、また非常に拡がっており、個々の量子ドット3bの大きさにかなりのばらつきがある

【0034】とれに対し、中間層3aおよび量子ドット3bを5層積層した場合には、PLスペクトル強度は非常に高くなり、また、ピーク波長もやや低エネルギ側にシフトする。これは、積層された複数の量子ドット3bが量子力学的に結合して実効的に単一の量子ドットを形成することを示唆するが、中間層3aの厚さを20nmあるいは6nm程度に設定した場合、PLピークの幅はかなり拡がってしまう。

てとが示唆される。

【0035】一方、図11は、中間層3aの厚さを3nmあるいは2nmまで減少させると、PLピークがさらに大きく低エネルギ側にシフトし、またピーク幅が非常に狭くなることを示している。すなわち、このように中間層3aの厚さを、対応する量子ドット3bの高さに匹敵する程度、あるいはそれ以下に減少させることにより、上下に積層した量子ドット3b相互の量子力学的結合がさらに進行することが示唆される。

【0036】図12は、中間層3aの厚さを3nmとした場合のPLスペクトルと、量子ドット3bの積層数との関係を示す。図12を参照するに、中間層3aの厚さを3nmとした場合、3回の積層で、すでに非常に鋭いPLピークが、約1.13eVのエネルギにおいて得られるのがわかる。積層回数を増やして5回とした場合、PLピークはさらに高くなり、より低エネルギ側、すなわち長波長側にシフトする。これは、積層を繰り返すことにより互いに量子力学的に結合した複数の量子ドット3bにより形成される実効的に単一の量子ドットの大きさが、増大する結果であると考えられる。

【0037】図13は、図1に示す積層量子構造3において、量子ドット3bを5層積層した場合について、得られたPLピークの半値幅(FWHM: Full Width at HalfMaximum)を、中間層3aの厚さdの関数として示す。図13よりわかるように、PLピークの半値幅は中間層3aの厚さを2~3nm程度にした場合に最小になり、垂直に整列した量子ドット3b間に非常に効率の高い量子力学的結合が生じることが示される。一方、中間層3aの厚さをさらに薄くして1nm程度にすると、前記半値幅は逆に増大することがわかる。

【0038】以上の結果をまとめると、図1に示す積層 置子構造3において、中間層3aの厚さを置子ドット3bの高さに略等しくなるように設定することにより、垂直方向に整列した量子ドット3bの大きさが一様に揃い、また整列した量子ドット3b間に強い量子力学的な結合が形成される。このような場合、量子ドット3bの大きさは種層を繰り返しても実質的に変化せず、従って

かかる積層を繰り返すことにより、実効的に単一の、任 意の大きさの量子ドットを形成することができる。

16

【0039】図14は、量子ドット3bを堆積する際の基板温度と得られる量子ドット3bの径との関係を示す。図14を参照するに、形成される量子ドット3bの径は、白丸で示すように基板温度と共に増大する傾向があり、またこれに伴って中間層上の量子ドット密度は基板温度と共に減少する。すなわち、量子ドット3bを形成する際の基板温度を制御することにより、量子ドット3bの大きさもある程度制御可能である。

[0040]

【発明の実施の形態】以下、本発明を好ましい実施例について、詳細に説明する。図15は、本発明の第1実施例による発光ダイオード20の構成を示す。図15を参照するに、発光ダイオード20は、(100)面で画成されたn・型GaAs基板21上に形成され、前記GaAs基板21上に典型的には400~500nmの厚さで堆積されたn・型GaAsバッファ層22と、前記バッファ層22上に、典型的には300nmの厚さで形成されたn・型A1GaAsよりなる下側クラッド層23と、前記クラッド層23上に典型的には100nmの厚さに形成されたn型GaAsよりなる下側導波層24とを含む。さらに、導波層24上には、積層量子構造の一部を構成する非ドープGaAs層25が、20nmの厚さに形成される。

【0041】層22~25は、例えばMBE法により、 620°Cの基板温度で形成される。その際、堆積した 層からのAsの離脱を防ぐため、堆積を行なう反応容器 内のAs圧を6×10-6Torrに設定するのがよい。 30 層25が形成された後、Gaの供給を遮断して基板温度 を例えば510° Cまで下げる。さらに、前記510° Cの基板温度において前記反応容器中に In の分子ピー ムを導入し、1.8分子層分の非ドープ1nAs層を、 前記GaAs層25上に堆積する。かかる堆積に引き続 きさらに約30秒間のアニールを行うことにより、先に も説明したように、堆積されたInAsは、GaAs層 25上において、径が約20nm、高さが約5nmの、 相互に離間した成長島26bを形成する。図14参照。 【0042】 このようにして第1層目の1nAs島26 40 bが形成された後、前記GaAs層25上には、前記1 nAs島26bを覆うように、厚さが2~3nmの非ド ープGaAsよりなる第1層目の中間層26aを堆積す る。かかる堆積の結果、厚さが2~3nmのGaAs層 26a中に径が約20nm、高さが約2~3nmのIn As量子ドット26bが分散した量子構造が得られる。 かかる中間層26aの堆積に伴い、先に自由成長してい たInAs島26bは変形し、高さが中間層26aの厚 さに実質的に等しい2~3nmに減少する。

結合が形成される。このような場合、量子ドット3bの 【0043】さらに、前記lnAs島26bの形成と前大きさは積層を繰り返しても実質的に変化せず、従って 50 記中間層26aの堆積を例えば4回繰り返し、lnAs

島26 bが上下に整列した積層量子構造26が、図1の 積層量子構造3の場合と同様に得られる。かかる堆積の 繰り返しの結果、積層量子構造26は、約20 n mの厚 さに形成される。積層量子構造26は、発光ダイオード の活性層を形成する。

17

【0044】とのような、中間層26aの厚さが自由成長したInAs島26bの高さよりも小さい積層量子構造26では、量子ドット26bは、直上の別の量子ドット26bと直接に接している可能性がある。ただし、との場合でも、量子ドット26bと直上の別の量子ドット 1026bとが融合してしまうことはなく、積層量子構造26の積層構造は維持される。また、量子ドット26bと直上の別の量子ドット26bとの間に1~数原子層のGaAsが介在している可能性もある。

【0045】図1の発光ダイオードでは、さらに前記積層量子構造26上に非ドープGaAs層27が堆積され、その上にp型GaAsよりなる上側導波層28およびp*型AlGaAsよりなる上側クラッド層29が、それぞれ120nmおよび300nmの厚さに形成され、さらに層29上にp*型GaAsよりなるキャップ層30が、50nmの厚さに形成される。層27~30の形成も、MBE法により行なえばよい。

【0046】さらに、このようにして形成された積層半導体構造に対して、前記GaAsバッファ層22が露出するまでメサエッチングを行い、形成されたメサ構造上にSiN等の保護膜33を形成した後、バッファ層22上に電極31を、また前記キャップ層30上に電極32を形成する。

【0047】かかる構成の発光ダイオードでは、互いに 量子力学的に結合した量子ドット26bが基板主面に垂 直に整列し、77Kにおいて約1.1eVの波長の非常 に鋭い発光スペクトルを生じる。図16は、本発明の第 2実施例による端面発光型レーザダイオード40の構成 を示す縦断面図である。ただし、図16中、先に説明し た部分に対応する部分には同一の参照符号を付し、説明 を省略する。またレーザダイオード40の横断面図は、 図15のものと実質的に同じであるので省略する。

【0048】図16を参照するに、レーザダイオードの対向する端面には高反射率ミラーMおよび低反射率ミラーARが形成され、その結果、前記積層量子構造26はレーザダイオードの光共振器を形成する。すなわち、垂直に整列した量子ドット26bにより形成された光は前記光共振器を往復する際に誘導放出により増幅され、コヒーレント光となって前記低反射率ミラーARが設けられた端面から出射する。

【0049】また、図示は省略するが、前記クラッド層31と光導波層との間に回折格子を形成してもよい。との場合は、レーザダイオード40はいわゆるDFBレーザダイオードとなる。図17は、本発明の第3実施例による面発光型レーザダイオード50の構成を示す断面図

である。ただし、図16中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。【0050】面発光型レーザダイオード50では、電極32がリング状に形成され、露出したGaAsキャップ層30の表面には反射防止膜ARが形成される。また、GaAs層24およびGaAs層28の代わりに、GaAsとAIGaAsを交互に積層しミラーとして作用する層24′、28′が形成され、層24′と層28′との間に、垂直な光共振器が形成される。一般に、層28′の間に、垂直な光共振器が形成される。一般に、層28′の積層数は、層24′の積層数よりも少なくする。【0051】かかる構成では、垂直に整列した量子ドット26bにより形成された光は、前記光共振器を基板に垂直な方向に往復する際に誘導放出により増幅され、コヒーレント光となって、前記反射防止膜ARが設けられたキャップ層30の上主面より出射する。

【0052】図18は、本発明の第4実施例によるRHET60の構成を示す。図18を参照するに、RHET60は、半絶縁性GaAs基板61の(100)面上に形成され、前記基板61上に形成された非ドープGaAsよりなるバッファ層62と、前記バッファ層62上に形成されたn型コレクタ層63と、前記コレクタ層63上に形成された非ドープA1GaAsよりなるバリア層64とを含み、コレクタ層63上にはコレクタ電極63Aが形成される。

【0053】コレクタ層64上には、n型GaAsよりなるベース層65が形成され、さらにベース層65上には、非ドープAIAsよりなるバリア層66、を介して、図1に示したと同様な構成の積層量子構造66が、共鳴トンネルバリア構造として形成される。すなわち、30 積層量子構造66は、非ドープInAs成長島よりなる量子ドット66bと、前記量子ドットを覆う非ドープAIGaAs中間層66aとよりなる単位層を繰り返し積層した構造を有し、量子ドット66bは基板に略垂直な方向に整列する。

【0054】さらに積層量子構造66上には、非ドープ A1As よるなる別のパリア層66、を介して、 n^* 型 1nGaAs (In=0.05) よりなるエミッタ層67が形成され、さらにエミッタ層67上には n^* 型GaAs よりなるキャップ層68が形成される。また、前記ベース層65の一部には、ベース電極65Aが、また前記キャップ層68にはエミッタ電極68Aが形成される

【0055】かかる構成のRHETでは、垂直方向に整列した量子ドット66bが量子力学的に結合して実効的に単一の量子ドットを形成するため、非常に鋭い共鳴トンネル特性が得られ、従ってエミッタ層67からベース層65に注入され、さらにコレクタ層63に到達するキャリアの流れを、バリア層64が形成するボテンシャルバリアにより、高い精度でオンオフ制御することができる

19

【0056】以上の各実施例で説明した積層量子構造に おいて、さらにアニール処理を施し、垂直に整列した量 子ドットを実際に融合させてしまうことも可能である。 図19は、図15の実施例において、このようなアニー ルを行なった場合に得られる本発明の第4実施例による 発光ダイオード20'の構造を示す。かかる構造では、 量子ドット26bが融合して物理的に単一の量子ドット 26b'が形成されるが、かかる量子ドット26b'が . 共鳴するエネルギスペクトルはさらに鋭くなると考えら れる。かかるアニールは、例えば800° Cで1分間行 10 なえばよい。ただし、図19中、先に説明した部分には 同一の参照符号を付し、説明は省略する。

【0057】図20は、本発明の第6実施例による共鳴 トンネルダイオード70の構成を示す図である。図20 を参照するに、共鳴トンネルダイオード70は、(10 0)面を有するn・型GaAs基板71上に構成され、 基板71上には厚さが300nm、キャリア密度が5× 10¹⁸cm⁻³のn⁺ 型GaAsバッファ72と、厚さが 5 n mの非ドープG a A s スペーサ層 7 3 と、厚さが 2 nmの非ドープAlAs層74とが、順次形成される。 さらに、前記A1As層74上には、SKモードにより 形成された非ドープ In Asよりなる高さが5nmの成 長島75aを厚さが3nmの非ドープGaAs中間層7 5 b で埋め込んだ構造を7層繰り返した積層量子構造7 5が形成される。先にも説明したように、中間層75b を堆積する際に、InAs成長島75aは変形し、高さ が中間層75bの厚さに実質的に等しくなる。かかる積 層量子構造75では、InAs島75aは垂直に整列 し、量子力学的に結合することにより、より大きな量子 ドット75Aを形成する。

【0058】とのようにして形成された積層量子構造7 5上には、さらに厚さが2nmの非ドープA1As層7 6を隔てて別の同様な積層量子構造77が形成される。 さらに、前記積層量子構造77上には、厚さが2nmの 別の非ドープA1As層78および厚さが5nmの非ド ープGaAsよりなるスペーサ層79が順次堆積され、 さらにキャリア密度が2×101°cm-3のn・型GaA sよりなるコンタクト層80が、50nmの厚さに堆積 される。

【0059】とのようにして形成された半導体積層構造 体は、さらにエッチングによりメサ構造が形成され、メ サ構造最上部のコンタクト層80上には上部電極81 が、また基部を形成するバッファ層72上には下部電極 83が形成される。さらに、メサ構造の側壁部にはSi O、絶縁膜82が保護膜として堆積される。

【0060】図21は、図20の共鳴トンネルダイオー ドの動作を説明する図である。図21を参照するに、図 20に示したAlAs層74,76,78がポテンシャ ルバリアを形成し、量子ドット構造75,77の各々に は、基底準位および高次の励起状態に対応する複数の量 50 では、一の準位と隣接する準位の中間に許容されるキャ

子準位が形成されているのがわかる。

【0061】図21は、図20の構造中の電極81およ び82に直流電圧Vを印加した状態を示しており、これ に伴って積層量子構造75の基底準位および積層量子構 造77の1次励起準位がn・型GaAs層72のフェル ミ準位Efに一致しているのがわかる。かかる共鳴状態 では、GaAs層72から供給される電子は、積層量子 構造75および77をホットエレクトロンとして通過 し、GaAs層80に到達する。これに対し、図21の バイアス状態を変化させると、共鳴状態は消失し、電子 の通過は阻止される。

【0062】図22は、図20の共鳴トンネルダイオー ド70の動作特性を示す。図22を参照するに、かかる 積層量子構造75,77は、量子ドット75Aにおける キャリアの3次元閉じ込めに伴い、各量子準位において いわゆる

る関数的な鋭い状態密度を示し、

量子準位を外 れると、許容される状態が実質的にゼロになる。このた め、共鳴トンネルダイオード70では、量子構造として 図22に破線で示した特性を示す2次元のキャリア閉じ 込めを行なう量子細線を使った場合に比べて、オフ時に おけるリーク電流を実質的にゼロにすることが可能であ

【0063】図23Aは、積層量子構造75,77にお いて、積層数を5、堆積温度を510°C,中間層75 bの厚さを2nmとした場合のPLスペクトルを示す。 ただし、PLスペクトルの測定は77°Kにおいて、A rレーザを照射しながら行なった。

【0064】図23Aよりわかるように、Aェレーザの 出力を増大させると、図21に示したエネルギ準位に対 応して、エネルギ的に等間隔に並んだ複数のPLピーク 30 が出現することがわかる。図23 Bは、積層量子構造7 5,77において、堆積温度を525°C,中間層の厚 さを3nmとした場合のPLスペクトルを示す。

【0065】図23Bにおいても、図23Aと同様な複 数のPLピークが観測されるが、ピーク間隔が図23A の場合よりも狭まっていることがわかる。これは、堆積 温度および中間層の厚さ、さらには積層数を変えること により、形成される量子準位の間隔を制御することが可 能であることを意味している。図20の実施例では、図 21 Bに示すように、量子準位間隔を縦光学(LO)フ ォノンのエネルギh/2π・ωωに等しく設定してある が、これは以下に図24を参照しながら説明するよう に、励起準位から基底準位への遷移を高速で行なうため

【0066】図24を参照するに、本発明の各実施例に おいて使われる量子ドット構造では、先にも説明したよ うに、る関数的な非常に鋭い形状の状態密度が、量子準 位に対応するエネルギにおいて、離散的に出現する。と のような3次元的なキャリアの閉じ込めが生じている系

リアの状態が存在しないため、キャリアの遷移は生じに くい。これは、エネルギ緩和のボトルネック問題として 知られている。

21

【0067】本発明では、量子半導体装置の動作速度を 向上させるため、量子準位の間隔を、半導体結晶中にお けるLOフォノンのエネルギに等しく設定する。その結 果、キャリアはLOフォノンを吸収あるいは放出すると とにより、容易に一の状態から他の状態に遷移すること が可能になる。

【0068】以上の説明は、図20の共鳴トンネルダイ オード70を例にして行なったが、先に説明した全ての - 実施例に対しても有効である。以上の各実施例では、G aAs層上に形成されたInAsの島により形成される **量子ドットを考えたが、本発明は、かかる特定の材料の** 組み合わせに限定されるものではなく、歪みヘテロエピ タキシャル系を形成する他の半導体材料の組み合わせを 使うことも可能である。

【0069】例えば、図15の構成において、中間層2 6 aをGaAsまたはAlGaAsとし、量子ドット2 6 bをInAsまたはInGaAsとしてもよい。ま た、中間層26aをGaAs, AlGaAsまたはIn GaPとし、量子ドット26bをInAs、InP、G aSbあるいはInGaSbとしてもよい。

【0070】前記量子ドット26bをInAsより構成 し、前記中間層26aをInPより構成する場合、自由 成長状態において量子ドット26bは7.6nmの高さ を有し、従って、中間層26aは7.6nm以下の厚 さ、例えば4分子層以下の厚さを有するのが好ましい。 前記量子ドット26bをAISb,InSb,GaSb のいずれかより形成し中間層26aをGaAsより形成 する場合には、量子ドット26bは自由成長状態におい て8.7nmの高さを有し、従って中間層26aは8. 7 n m以下の厚さ、例えば4分子層以下の厚さを有する のが好ましい。さらに、前記量子ドット26bをGal nSbより形成し中間層26aをGaSbGaSbより 形成する場合は、中間層26aは4分子層分以下の厚さ を有するのが好ましい。また。量子ドット26bをIn ・Pより形成し、中間層26aをInGaPより形成する 場合、前記量子ドット26bは自由成長状態において5 nmの高さを有し、従って中間層26aは5nm以下の 厚さ、例えば2分子層の厚さを有するのが好ましい。

【0071】また、以上に説明した各実施例において、 中間層の組成は、基板との格子定数のずれが7%以下に なるように設定するのが好ましい。以上、本発明を好ま しい実施例について説明したが、本発明はかかる実施例 に限定されるものではなく、特許請求の範囲に記載の要 旨内において様々な変形・変更が可能である。

[0072]

【発明の効果】請求項1または12記載の特徴によれ

子構造を含む活性層とよりなる量子半導体装置あるいは 半導体発光装置において、前記量子構造を第1の格子定 数を有する第1の半導体結晶よりなり、互いに繰り返し 積層された複数の中間層と、各々の中間層中に形成さ れ、前記第1の格子定数とは異なる第2の格子定数を有 し、前記第1の半導体結晶に対して歪み系を形成する第 2の半導体結晶よりなり、各々前記中間層の厚さに対応 する高さを有する複数の量子ドットとにより構成し、そ の際前記複数の中間層の各々において、各々の量子ドッ トは、隣接する中間層中の対応する量子ドットと、前記 半導体基板の主面に垂直な方向に、実質的に整列させ、 前記複数の中間層の各々はキャリアのBohr半径以下 の厚さに厚さを設定することにより、前記整列した量子 ドットが互いに量子力学的に結合し、実効的に単一の量 子ドットを形成する。

【0073】請求項2~10または13~21記載の特 徴によれば、前記複数の中間層の各々の厚さを、自由成 長した場合の前記量子ドットの高さよりも小さく設定す ることにより、下層の量子ドットと上層の量子ドットと 20 がほぼ1対1に対応し、前記整列した量子ドット間の量 子力学的な結合が実質的に向上し、非常に鋭いエネルギ スペクトルを特徴とする量子準位が実現される。

【0074】請求項11,22,31記載の本発明の特 徴によれば、前記複数の中間層の各々において、各々の 量子ドットを、隣接する中間層中の対応する量子ドット とアロイ化することにより、単に実効的に同一であるの みならず、実際にも単一の量子ドットが形成される。

【0075】請求項23~32記載の本発明の特徴によ れば、自由成長した量子ドット上に、かかる自由成長し 30 た量子ドットの高さよりも小さい厚さの中間層を堆積す ることにより、量子ドットが変形し、中間層の厚さに実 質的に等しい高さを有するようになる。かかる構造を繰 り返し形成することにより、下層の量子ドットと上層の 量子ドットとが力学的および量子力学的に結合し、上下 に整列し、単一の量子ドットとして作用する量子ドット の列が形成される。

【図面の簡単な説明】

【図1】本発明の原理を示す図である。

【図2】図1の構成において、量子ドットの径と積層数 との関係を示す図である。

【図3】図1の構成において、量子ドット密度と積層数 との関係を示す図である。

【図4】図1の構成において、量子ドットの径と中間層 の厚さとの関係を示す図である。

【図5】図1の構成において、量子ドット密度と中間層 の厚さとの関係を示す図である。

【図6】本発明による量子ドットを示す平面TEM写真 の図である。

【図7】(A)~(D)は、中間層の厚さを3nmとし ば、半導体基板と、前記半導体基板上に形成された、量 50 た場合における積層の進行に伴う量子ドット径および密

度の変化を示すAFM写真の図である。

【図8】(A)~(D)は、中間層の厚さを10nmとした場合における積層の進行に伴う量子ドット径および密度の変化を示すAFM写真の図である。

【図9】中間層の厚さを2nmとした場合の量子ドットの整列状態を示す断面TEM写真の図である。

【図10】中間層の厚さを3nmとした場合の量子ドットの整列状態を示す断面TEM写真の図である。

【図11】垂直に整列した量子ドットのPLスペクトルを示す図である。

【図12】垂直に整列した量子ドットのPLスペクトル・を示す別の図である。

【図13】中間層の厚さとPLスペクトルの鋭さの関係を示す図である。

【図14】 堆積温度と量子ドットサイズおよび密度の関係を示す図である。

【図15】本発明の第1実施例による発光ダイオードの 構成を示す断面図である。

【図16】本発明の第2実施例による端面発光型レーザダイオードの構成を示す断面図である。

【図17】本発明の第3実施例による面発光型レーザダイオードの構成を示す断面図である。

【図18】本発明の第4実施例によるRHETの構成を示す断面図である。

【図19】本発明の第5実施例による発光ダイオードの 構成を示す断面図である。

【図20】本発明の第6実施例による共鳴トンネルダイオードの構成を示す断面図である。

【図21】図19の共鳴トンネルダイオードの動作原理 を説明するパンド構造図である。

【図22】図19の共鳴トンネルダイオードの動作特性 を示す図である。 *【図23】(A), (B)は堆積条件を変えて形成した 積層量子構造のPLスペクトルを示す図である。

【図24】本発明の積層量子構造における高次の励起状態、および、状態間の遷移を促進する構成を示す図である。

【符号の説明】

1,21,61,71 基板

2, 22, 62, 72 バッファ層

3, 26, 66, 75, 77 積層量子構造

·10 3a, 26a, 66a, 75b 中間層

3b, 26b, 26b', 66b, 75a, 75A 量 子ドット

20 発光ダイオード

23,29 クラッド層

24.28 導波層

24', 28' 反射層

25,27 非ドープ層

30,68 キャップ層

31, 32, 81, 83 電極

20 33 保護膜

40 端面発光型レーザダイオード

50 面発光型レーザダイオード

60 RHET

63 コレクタ層

63A コレクタ電極

64 バリア層

65 ベース層

65A ベース電極

661,662 共鳴トンネルバリア層

30 67 エミッタ層

68A エミッタ電極

70 共鳴トンネルダイオード

【図1】

本発明の原理を示す図

【図2】

図1の構成において、量子ドットの径と積度数との関係を示す図

【図3】

図1の構成において、量子ドット密度と積層数との関係を示す図

【図5】

図1の構成において、量子ドット密度と中間層 の厚さとの関係を示す図

【図4】

図1の構成において、量子ドットの径と 中間層の厚さとの関係を示す図

【図6】

本発明による量子ドットを示す平面TEM写真の図

[図22]

図19の共鳴トンネルダイオードの動作特性を示す図

【図7】

中間層の厚さを3 nmとした場合における積層の進行に伴う 量子ドット径および密度の変化を示すAFM写真の図

【図12】

[図8]

中間層の厚さを10nmとした場合における積層の進行に伴う 量子ドット径および密度の変化を示すAFM写真の図

[図13]

中間層の厚さとPレスペクトルの鋭さの関係を示す図

[図9]

【図10】

【図21】

整列状態を示す断面T EM写真の図

整列状態を示す断面TEM写真の図

中間層の厚さを2mmとした場合の量子ドットの 中間層の厚さを3mmとした場合の量子ドットの 図19の共鳴トンネルダイオードの動作原理を説明 するパンド構造図

[図14]

堆積温度と量子ドットサイズおよび密度の関係を示す図

[図15]

本発明の第1実施例による発光ダイオードの構成を示す前面図

20

26 n+ Al Go As n+GaAs buffer layer - 22 (100) n+ GaAs Substrate -21

温度(°C)

【図11】

垂直に整列した量子ドットのPLスペクトルを示す図

【図16】

本発明の第2 実施例による端面発光型 レーザダイオードの構成を示す断面図

【図17】

本発明の第3実施例による面発光型レー ザダイオードの構成を示す断面図

[図18]

本発明の第4英施例によるRHETの構成を示す断面図

[図19]

本発明の第5実施例による発光ディオードの構成を示す断面図

[図23]

(A),(B)は堆積条件を変えて形成した積層量子構造の P L スペクトルを示す図

PL 勤獻(任意単位)

【図20】

本発明の第6実施例による 共鳴トンネルダイオードの構成を示す断面図

70

[図24]

本発明の積層素子標道における高次の励起状態。 および状態間の連移を促進する構造を示す図

(19)

特開平9-326506

フロントページの続き

(51)Int.Cl.⁶ H01S 3/18

識別記号

庁内整理番号

FΙ

技術表示箇所

HO1L 29/88

S