Nguyen Minh Hoang vs Ho Thi Kim Cuong

Outline

- Idea of PCA and steps
- How it works through example
- Method overview
- Practice

Idea of PCA

gene	t ₁	t ₂	t ₃
A	2	0	0
В	3	0	0
С	0.5	1	0.5
D	0	0	2

STEPS FOR PCA

STEPS FOR PCA

STEPS FOR PCA

$$A = 3 \bullet \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \bullet \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{p} = 2 \bullet \mathbf{a} + 1 \bullet \mathbf{b}$$

$$\mathbf{v}' = \begin{bmatrix} \mathbf{u} \\ \mathbf{\tilde{w}} \end{bmatrix} \rightarrow \mathbf{v} = \mathbf{u} \bullet \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \mathbf{w} \bullet \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \bullet \begin{bmatrix} \mathbf{u} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 3 \bullet \mathbf{u} + 1 \bullet \mathbf{w} \\ 1 \bullet \mathbf{u} + 2 \bullet \mathbf{w} \end{bmatrix}$$

$$\mathbf{v} = \mathbf{A} \bullet \mathbf{v}'$$
 $\mathbf{v}' = \mathbf{A}^{-1} \bullet \mathbf{v}$

Examples

	X	Υ
Gene A	4	2
Gene B	0	1
Gene C	8	7
Gene D	2	2
Gene E	6	3
μ	μ1= 4	μ2=3

	Χ - μ1	Υ - μ2
Gene A	4 - 4 = 0	2 - 3 = -1
Gene B	0 - 4 = -4	1 - 3 = -2
Gene C	8 - 4 = 4	7 - 3 = 4
Gene D	2 - 4 = -2	2 - 3 = -1
Gene E	6 - 4 = 2	3 - 3 = 0

PCA step 2: rotating the grid, base on variance

$$\sigma^2_{x,y} = E(xy) - E(x)E(y)$$
 covariance $x_1 \stackrel{=}{(=x')} x_2 = y'$ gene A 0 -1 ... gene B -4 -2 ... gene C 4 4 ... gene D -2 -1 ... gene E 2 0

$$\sigma_{x_1,x_2}^2 = E(x_1x_2) = (0+8+16+2+0)/5 = 5.2$$

 $\sigma_{x_2,x_1}^2 = \sigma_{x_1,x_2}^2 = 5.2$
 $\sigma_{x_1,x_1}^2 = E(x_1x_1) = (0+16+16+4+4)/5 = 8$
 $\sigma_{x_2,x_2}^2 = E(x_2x_2) = (1+4+16+1+0)/5 = 4.4$

Covariance Matrix

$$C = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{1,2}^2 \\ \sigma_{2,1}^2 & \sigma_{2,2}^2 \end{bmatrix} = \begin{bmatrix} 8 & 5.2 \\ 5.2 & 4.4 \end{bmatrix}$$

$$\sigma_{p'}^2 = \sigma_{x'}^2 + \sigma_{y'}^2$$

$$C' = \begin{bmatrix} e'_1 & 0 \\ 0 & e'_2 \end{bmatrix}$$

$$X = \begin{bmatrix} ev_{1,1} & ev_{1,2} \\ ev_{2,1} & ev_{2,2} \end{bmatrix} = \begin{bmatrix} 1' & 0' \\ 0' & 1' \end{bmatrix}$$

for each **v'** on x'-axis:
$$\mathbf{v'} = \begin{bmatrix} \mathbf{v'} \\ 0 \end{bmatrix}$$

$$cov(\mathbf{v'}) = C' \bullet \mathbf{v'} = \begin{bmatrix} e'_1 & 0 \\ 0 & e'_2 \end{bmatrix} \bullet \begin{bmatrix} v' \\ 0 \end{bmatrix} = \begin{bmatrix} v' \bullet e'_1 \\ 0 \end{bmatrix} = e'_1 \bullet \begin{bmatrix} v' \\ 0 \end{bmatrix} = e'_1 \bullet \mathbf{v'}$$

$$C' \bullet v' = \lambda_1 \bullet v'$$

$$v_1'$$
 on x-axis: $C' \bullet v_1' = \lambda_1 \bullet v_1'$

$$\mathbf{v_2}'$$
 on y-axis: $\mathbf{C'} \bullet \mathbf{v_2}' = \lambda_2 \bullet \mathbf{v_2}'$

$$\lambda_i$$
 = eigenvalue of C'

$$v_i$$
 = eigenvector corresponding to λ_i

The value of λ_i corresponds to the variance on the x_i -axis

$$C = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{1,2}^2 \\ \sigma_{2,1}^2 & \sigma_{2,2}^2 \end{bmatrix} = \begin{bmatrix} 8 & 5.2 \\ 5.2 & 4.4 \end{bmatrix} \qquad X = \begin{bmatrix} ev_{1,1} & ev_{1,2} \\ ev_{2,1} & ev_{2,2} \end{bmatrix}$$

$$X = \begin{bmatrix} ev_{1,1} & ev_{1,2} \\ ev_{2,1} & ev_{2,2} \end{bmatrix}$$

We have to solve: $C \circ x = \lambda \circ x$ for all λ and x (with $|x_i| = 1$)

$$\begin{bmatrix} 8 & 5.2 \\ 5.2 & 4.4 \end{bmatrix} \bullet \mathbf{x} = \lambda \bullet \mathbf{x} = \lambda_{\text{to}} \bullet \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bullet \mathbf{x} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \bullet \mathbf{x}$$

$$\Leftrightarrow \begin{bmatrix} 8 - \lambda & 5.2 \\ 5.2 & 4.4 - \lambda \end{bmatrix} \bullet \mathbf{x} = 0 \Leftrightarrow \begin{cases} 8\mathbf{x}_1 - \lambda \mathbf{x}_1 + 5.2\mathbf{x}_2 = 0 \\ 5.2\mathbf{x}_1 + 4.4\mathbf{x}_2 - \lambda \mathbf{x}_2 = 0 \\ \mathbf{x}_1^2 + \mathbf{x}_2^2 = 1 \end{cases}$$

$$\lambda_1\approx 73.59$$

$$\mathbf{x}_1 \approx \begin{bmatrix} 0.8428 \\ 0.5383 \end{bmatrix}$$

$$\lambda_2\approx 4.33$$

$$\mathbf{x}_2 \approx \begin{bmatrix} -0.5383 \\ 0.8428 \end{bmatrix}$$

$$\sigma^2_{p'} = \sigma^2_{x'} + \sigma^2_{y'}$$

 $\lambda_1 \approx 73.59 \cong 94.44\%$ of the total variance

 $\lambda_2 \approx 4.33 \cong 5.56\%$ of the total variance

PCA step 3: reducing complexity

Reducing complexity = removing dimensions:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \rightarrow \mathbf{v'} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \cong \begin{bmatrix} v_1 \end{bmatrix}$$

Dimensionality Reduction

- One approach to deal with high dimensional data is by reducing their dimensionality.
- Project high dimensional data onto a lower dimensional sub-space using <u>linear</u> or <u>non-linear</u> transformations.

$$x = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_N \end{bmatrix} --> reduce \ dimensionality --> y = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix} \ (K << N)$$

Dimensionality Reduction

Linear transformations are simple to compute and tractable.

- Classical –linear- approaches:
 - Principal Component Analysis (PCA)
 - Fisher Discriminant Analysis (FDA)

- Find a basis in a low dimensional sub-space:
 - Approximate vectors by projecting them in a low dimensional

(1) Original space representation:

$$v_N$$
 $\begin{bmatrix} a_2 \\ ... \\ a_N \end{bmatrix}$

$$x = a_1 v_1 + a_2 v_2 + ... + a_N v_N$$

where $v_1, v_2, ..., v_n$ is a base in the original N-dimensional space

(2) Lower-dimensional <u>sub-space</u> representation:

$$\hat{x} = b_1 u_1 + b_2 u_2 + \dots + b_K u_K$$

where $u_1, u_2, ..., u_K$ is a base in the K-dimensional sub-space (K<N)

• *Note:* if K=N, then $\hat{x} = x$

• Example (K=N):

$$v_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, v_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ (standard basis)}$$

$$x_{v} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = 3v_{1} + 3v_{2} + 3v_{3}$$

$$u_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, u_{2} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, u_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ (some other basis)}$$

$$x_{u} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = 0u_{1} + 0u_{2} + 3u_{3}$$

$$\text{thus, } x_{v} = x_{u}$$

- Information loss
 - Dimensionality reduction implies information loss !!
 - PCA preserves as much information as possible:

$$\min_{x} ||x - \hat{x}||$$
 (reconstruction error)

What is the "best" lower dimensional sub-space?

The "best" low-dimensional space is <u>centered</u> at the sample mean and has <u>directions</u> determined by the "best" eigenvectors of the covariance matrix of the data x.

- By "best" eigenvectors we mean those corresponding to the <u>largest</u> eigenvalues (i.e., "principal components").
- Since the covariance matrix is real and symmetric, these eigenvectors are orthogonal and form a set of basis vectors.

Methodology

- Suppose $x_1, x_2, ..., x_M$ are $N \times 1$ vectors

Step 1:
$$\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$$

Step 2: subtract the mean: $\Phi_i = x_i - \bar{x}$

Step 3: form the matrix $A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$ (NxM matrix), then compute:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = AA^T$$

(sample **covariance** matrix, NxN, characterizes the *scatter* of the data)

Step 4: compute the eigenvalues of $C: \lambda_1 > \lambda_2 > \cdots > \lambda_N$

Step 5: compute the eigenvectors of $C: u_1, u_2, \ldots, u_N$

- Methodology cont.
 - Since C is symmetric, u_1, u_2, \dots, u_N form a basis, (i.e., any vector x or actually $(x \bar{x})$, can be written as a linear combination of the eigenvectors):

$$x - \overline{x} = b_1 u_1 + b_2 u_2 + \dots + b_N u_N = \sum_{i=1}^N b_i u_i$$
 $b_i = u_i^T (x - \overline{x})$

Step 6: (dimensionality reduction step) keep only the terms corresponding to the K largest eigenvalues:

$$\hat{x} - \overline{x} = \sum_{i=1}^{K} b_i u_i$$
 where $K \ll N$

- The representation of $\hat{x} - \bar{x}$ into the basis $u_1, u_2, ..., u_K$ is thus

$$\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix}$$

- How many principal components to keep?
 - To choose K, you can use the following criterion:

$$\frac{\sum\limits_{i=1}^{K} \mathbf{\lambda}_{i}}{\sum\limits_{i=1}^{N} \mathbf{\lambda}_{i}} > Threshold \quad (\text{e.g., } 0.9 \text{ or } 0.95)$$

Eigenvalue spectrum

- Linear transformation implied by PCA
 - The linear transformation $R^N \to R^K$ that performs the dimensionality reduction is:

$$\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix} = \begin{bmatrix} u_1^T \\ u_2^T \\ \dots \\ u_K^T \end{bmatrix} (x - \bar{x}) = U^T (x - \bar{x})$$

What is the error due to dimensionality reduction?

$$e = ||x - \hat{x}||$$

$$\hat{x} - \overline{x} = \sum_{i=1}^K b_i u_i \text{ or } \hat{x} = \sum_{i=1}^K b_i u_i + \overline{x}$$

 It can be shown that the average error due to dimensionality reduction is equal to:

$$\overline{e} = 1/2 \sum_{i=K+1}^{N} \lambda_i$$

Standardization

- The principal components are dependent on the <u>units</u> used to measure the original variables as well as on the <u>range</u> of values they assume.
- We should <u>always standardize</u> the data prior to using PCA.
- A common standardization method is to transform all the data to have <u>zero mean</u> and <u>unit standard deviation</u>:

$$\frac{x_i - \mu}{\sigma}$$
 (μ and σ are the mean and standard deviation of x_i 's)