t-SNE (t distributed Stochastic Neighborhood Embedding)

Divy Kangeyan

May 26, 2017

Overview of t-SNE

• t-SNE is a dimension reduction/data visualization method

Overview of t-SNE

- t-SNE is a dimension reduction/data visualization method
- Proposed by Laurens van der Maaten & Geoffrey Hinton in 2008

Overview of t-SNE

- t-SNE is a dimension reduction/data visualization method
- Proposed by Laurens van der Maaten & Geoffrey Hinton in 2008
- t-SNE tends to preserve local structure at the same time preserving the global structure as much as possible

SNE (Stochastic Neighbor Embedding)

 Aim is to match distributions of distances between points in high and low dimensional space via conditional probabilities

SNE (Stochastic Neighbor Embedding)

- Aim is to match distributions of distances between points in high and low dimensional space via conditional probabilities
- Assume distances in both high and low dimensional space are Gaussian-distributed

• Let x_i be the i^{th} object in high dimensional space

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space
- Construct:

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space
- Construct:

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space
- Construct:

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

• $p_{i|i} = q_{i|i} = 0$

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space
- Construct:

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

- $p_{i|i} = q_{i|i} = 0$
- Match these functions by minimizing sum of Kullback-Leibler divergences:

$$C = \sum_{i} \mathit{KL}(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log \left(rac{p_{j|i}}{q_{j|i}}
ight)$$

- Let x_i be the i^{th} object in high dimensional space
- Let y_i be the i^{th} object in low dimensional space
- Construct:

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

- $p_{i|i} = q_{i|i} = 0$
- Match these functions by minimizing sum of Kullback-Leibler divergences:

$$C = \sum_{i} \mathit{KL}(P_{i}||Q_{i}) = \sum_{i} \sum_{j} p_{j|i} log \left(rac{p_{j|i}}{q_{j|i}}
ight)$$

- Since KL divergence is asymmetric,
 - large cost for representing nearby data points in high dimensional map by widely separated points in the low dimensional map
 - smaller coast for representing widely separated data points in high dimensional map by nearby points in the low dimension

- Since KL divergence is asymmetric,
 - large cost for representing nearby data points in high dimensional map by widely separated points in the low dimensional map
 - smaller coast for representing widely separated data points in high dimensional map by nearby points in the low dimension
- Hence local structure is highly preserved

- Since KL divergence is asymmetric,
 - large cost for representing nearby data points in high dimensional map by widely separated points in the low dimensional map
 - smaller coast for representing widely separated data points in high dimensional map by nearby points in the low dimension
- Hence local structure is highly preserved
- σ_i is associated with a parameter called perplexity which can be loosely interpreted as the number of close neighbors each point has

- Since KL divergence is asymmetric,
 - large cost for representing nearby data points in high dimensional map by widely separated points in the low dimensional map
 - smaller coast for representing widely separated data points in high dimensional map by nearby points in the low dimension
- Hence local structure is highly preserved
- σ_i is associated with a parameter called perplexity which can be loosely interpreted as the number of close neighbors each point has
- σ_i is found via binary search (More in the paper)

- Since KL divergence is asymmetric,
 - large cost for representing nearby data points in high dimensional map by widely separated points in the low dimensional map
 - smaller coast for representing widely separated data points in high dimensional map by nearby points in the low dimension
- Hence local structure is highly preserved
- σ_i is associated with a parameter called perplexity which can be loosely interpreted as the number of close neighbors each point has
- σ_i is found via binary search (More in the paper)
- Gradient of the cost function

$$\frac{\delta C}{\delta y_i} = 2 \sum_{j} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

SNE optimization

• Given the cost function SNE uses gradient descent for optimization

SNE optimization

- Given the cost function SNE uses gradient descent for optimization
- In addition to the gradient of the cost function it also has a momentum term to speed up the optimization and to avoid local optima

SNE optimization

- Given the cost function SNE uses gradient descent for optimization
- In addition to the gradient of the cost function it also has a momentum term to speed up the optimization and to avoid local optima
- $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta y} + \alpha(t) (\mathcal{Y}^{(t-1)} \mathcal{Y}^{(t-2)})$ where
 - $\alpha(t)$: Momentum at iteration t
 - $\mathcal{Y}^{(t)}$: Solution at iteration t
 - η : Learning rate

Drawbacks of SNE and novel features of t-SNE

SNE has two main drawbacks:

- Cost function is difficult to optimize
- Crowding problem

Drawbacks of SNE and novel features of t-SNE

SNE has two main drawbacks:

- Cost function is difficult to optimize
- Crowding problem

Novel features in t-SNE

- t-SNE cost function has two distinct features:
 - Cost function is symmetrized version of that in SNE. i.e. $(p_{i|j} = p_{j|i}$ and $q_{i|j} = q_{j|i})$
 - Student t-distribution is used to compute the similarities between data points in the low dimensional space.

Symmetric SNE

• The main feature in symmetric SNE is that $p_{ij} = p_{ji}$ and $p_{ii} = q_{ii} = 0$ for all i,j

q

$$q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq l} \exp(-||y_k - y_l||^2)}$$

Symmetric SNE

• The main feature in symmetric SNE is that $p_{ij} = p_{ji}$ and $p_{ii} = q_{ii} = 0$ for all i,j

$$q_{ij} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq l} exp(-||y_k - y_l||^2)}$$

•

•

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_k - x_l||^2/2\sigma^2)}$$

• Gradient of the cost function:

$$\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ji} - q_{ji})(y_i - y_j)$$

t-SNE mapping

 In t-SNE a student t distribution with one degree of freedom (Cauchy distribution) is used to represent the low dimensional map:

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}}$$

- t-distribution is robust to outliers and unlike a Gaussian distribution it doesn't have exponent in it so faster to evaluate
- Gradient of the cost function:

$$\frac{\delta C}{\delta y_i} = 4 \sum_j (p_{ji} - q_{ji})(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}$$

The general idea of t-SNE algorithm:

• Data: data set \mathcal{X} with data points = $x_1, x_2, ..., x_n$ each of these points have very high dimension

The general idea of t-SNE algorithm:

- Data: data set \mathcal{X} with data points = $x_1, x_2, ..., x_n$ each of these points have very high dimension
- cost function parameter: Perplexity *Perp*, perplexity is associated with variance σ in the cost function

The general idea of t-SNE algorithm:

- Data: data set \mathcal{X} with data points $= x_1, x_2, ..., x_n$ each of these points have very high dimension
- ullet cost function parameter: Perplexity *Perp*, perplexity is associated with variance σ in the cost function
- Optimization parameters: number of iterations T, learning rate η , momentum $\alpha(t)$

t-SNE algorithm: begin

1 Compute pairwise affinities $p_{j|i}$ with perplexity Perp

t-SNE algorithm:

begin

- **①** Compute pairwise affinities $p_{j|i}$ with perplexity Perp
- ② Set $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$ (n Number of data points)

$t\hbox{-}\mathsf{SNE}\ \mathsf{algorithm} :$

begin

- **1** Compute pairwise affinities $p_{i|i}$ with perplexity *Perp*
- ② Set $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$ (n Number of data points)
- **3** Sample initial solution $Y^{(0)} = y_1, y_2, ..., y_n$ from $N(0, 10^{-4}I)$ for t=1 to T do
 - $oldsymbol{0}$ Compute low-dimensional affinities q_{ij}

$t\hbox{-}\mathsf{SNE}\ \mathsf{algorithm} :$

begin

- **1** Compute pairwise affinities $p_{i|i}$ with perplexity *Perp*
- **3** Set $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$ (n Number of data points)
- **3** Sample initial solution $Y^{(0)} = y_1, y_2, ..., y_n$ from $N(0, 10^{-4}I)$ for t=1 to T do
 - Compute low-dimensional affinities q_{ij}
 - **2** Compute gradient $\frac{\delta C}{\delta y}$

t-SNE algorithm:

begin

- **1** Compute pairwise affinities $p_{i|i}$ with perplexity *Perp*
- **3** Set $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$ (n Number of data points)
- **3** Sample initial solution $Y^{(0)} = y_1, y_2, ..., y_n$ from $N(0, 10^{-4}I)$ for t=1 to T do
 - **1** Compute low-dimensional affinities q_{ij}
 - **2** Compute gradient $\frac{\delta C}{\delta y}$
 - $Set \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta y} + \alpha(t) (\mathcal{Y}^{(t-1)} \mathcal{Y}^{(t-2)})$

end

end

11 / 14

• tsne package in R: tsne(dataset, k = number of lower level dimension, perplexity,max_iter)

- tsne package in R: tsne(dataset, k = number of lower level dimension, perplexity,max_iter)
- sklearn.manifold.TSNE in sklearn module some of the arguments include n_components, perplexity, learning_rate, n_iter

- tsne package in R: tsne(dataset, k = number of lower level dimension, perplexity,max_iter)
- sklearn.manifold.TSNE in sklearn module some of the arguments include n_components, perplexity, learning_rate, n_iter
- Julia implementation in TSne

- tsne package in R: tsne(dataset, k = number of lower level dimension, perplexity,max_iter)
- sklearn.manifold.TSNE in sklearn module some of the arguments include n_components, perplexity, learning_rate, n_iter
- Julia implementation in TSne
- MATLAB implementation via tsne function input argument for the function include X = dataset, labels if already known, no_dims = number of dimension expected in lower level manifold, init_dims = initial number of dimension in the data, perplexity

 There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools

- There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools
- Different perplexity can lead to completely different clusters (too small - local variations dominate, too large - global change dominate)

- There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools
- Different perplexity can lead to completely different clusters (too small - local variations dominate, too large - global change dominate)
- Cluster size doesn't have any meaning to it. Naturally expands dense cluster and contracts sparse cluster

- There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools
- Different perplexity can lead to completely different clusters (too small - local variations dominate, too large - global change dominate)
- Cluster size doesn't have any meaning to it. Naturally expands dense cluster and contracts sparse cluster
- Distance between clusters might not have clear interpretation

- There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools
- Different perplexity can lead to completely different clusters (too small - local variations dominate, too large - global change dominate)
- Cluster size doesn't have any meaning to it. Naturally expands dense cluster and contracts sparse cluster
- Distance between clusters might not have clear interpretation
- Sometime random noise can lead to false positive structure in the t-SNE projection

- There is a great paper by Wattenberg, Viegas and Johnson titled How to Use t-SNE Effectively, it explains some of the drawbacks of t-SNE with some interactive visualization tools
- Different perplexity can lead to completely different clusters (too small - local variations dominate, too large - global change dominate)
- Cluster size doesn't have any meaning to it. Naturally expands dense cluster and contracts sparse cluster
- Distance between clusters might not have clear interpretation
- Sometime random noise can lead to false positive structure in the t-SNE projection

Summary

- t-SNE is an incredibly successful tool for clustering and data visualization
- It provides better structure for very high dimensional data
- However higher flexibility leads to other drawback like lack of interpretability
- Not very intuitive to tune the parameters (perplexity, iterations, tolerance etc.)
 - How to use t-SNE effectively