Programación Declarativa: Lógica y Restricciones

Ejemplos Iniciales de Programación Lógica

La central nuclear de Springfield (I)

Dada la siguiente información:

- 1. Si tanto Homer como Lenny trabajan, el reactor es estable.
- 2. Homer trabaja cuando hay donuts o cuando le vigila Smithers.
- 3. Lenny trabaja si trabaja Carl.
- 4. Carl trabaja cuando le vigila Smithers.
- 5. Hay donuts los lunes y los jueves.
- 6. Smithers vigila a Homer y a Lenny los lunes y los viernes; a Carl los martes y jueves.
- 7. Hoy es jueves.
- Escribir un programa lógico que permita saber si el reactor es o no estable

Recordatorio: Como escribir un programa lógico

- Para escribir un **programa lógico** debemos identificar:
 - qué objetos intervienen en el problema,
 - cuáles son las relaciones entre éstos, y
 - qué objetivos queremos alcanzar
- Una vez identificados los elementos anteriores debemos:
 - representar los objetos mediante términos
 - definir las relaciones mediante hechos y reglas
 - definir los objetivos mediante consultas

La central nuclear de Springfield (II)

Sintaxis de la Lógica Formal

 $(trabaja(homer) \land trabaja(lenny)) \rightarrow estable(reactor)$

(hay_donuts ∨ vigila(smithers,homer)) → trabaja(homer)

 $trabaja(carl) \rightarrow trabaja(lenny)$

vigila(smithers,carl) → trabaja(carl)

 $(hoy(lunes) \lor hoy(jueves)) \rightarrow hay_donuts$

Sintaxis de la Lógica Formal

(hoy(lunes) \vee hoy(viernes)) \rightarrow (vigila(smithers,homer) \wedge vigila(smithers,lenny))

 $(hoy(martes) \lor hoy(jueves)) \rightarrow vigila(smithers, carl)$

hoy(jueves)

La central nuclear de Springfield (III)

Sintaxis de la Lógica Formal	Sintaxis de un Programa Lógico
(trabaja(homer) \land trabaja(lenny)) \rightarrow estable(reactor)	<pre>estable(reactor) <- trabaja(homer), trabaja(lenny).</pre>
<pre>(hay_donuts ∨ vigila(smithers,homer)) → trabaja(homer)</pre>	<pre>trabaja(homer) <- hay_donuts. trabaja(homer) <- vigila(smithers,homer).</pre>
trabaja(carl) → trabaja(lenny)	<pre>trabaja(lenny) <- trabaja(carl).</pre>
vigila(smithers,carl) \rightarrow trabaja(carl)	<pre>trabaja(carl) <- vigila(smithers, carl).</pre>
(hoy(lunes) ∨ hoy(jueves)) → hay_donuts	<pre>hay_donuts <- hoy(lunes). hay_donuts <- hoy(jueves).</pre>

La central nuclear de Springfield (IV)

Sintaxis de la Lógica Formal	Sintaxis de un Programa Lógico
<pre>(hoy(lunes) ∨ hoy(viernes)) → (vigila(smithers,homer) ∧ vigila(smithers,lenny))</pre>	<pre>vigila(smithers,homer) <- hoy(lunes). vigila(smithers,homer) <- hoy(viernes). vigila(smithers,lenny) <- hoy(lunes). vigila(smithers,lenny) <- hoy(viernes).</pre>
(hoy(martes) \vee hoy(jueves)) \rightarrow vigila(smithers,carl)	<pre>vigila(smithers,carl) <- hoy(martes). vigila(smithers,homer) <- hoy(jueves).</pre>
hoy(jueves)	hoy(jueves).

La central nuclear de Springfield (V)

```
% SPRINGFIELD CIAO.PL
% Declaración del módulo y de sus dependencias.
:- module(_,_,[bf]).
% "Si tanto Homer como Lenny trabajan, el reactor es estable"
estable(reactor) <- trabaja(homer), trabaja(lenny).</pre>
% "Homer trabaja siempre que hay donuts o cuando le vigila Smithers"
trabaja(homer) <- hay_donuts.</pre>
trabaja(homer) <- vigila(smithers,homer).</pre>
% "Lenny trabaja si trabaja Carl"
trabaja(lenny) <- trabaja(carl).</pre>
% "Carl trabaja cuando le vigila Smithers"
trabaja(carl) <- vigila(smithers, carl).</pre>
% "Hay donuts los lunes y los jueves"
hay_donuts <- hoy(lunes).
hay_donuts <- hoy(jueves).
```

```
?- estable(reactor).
yes
?- trabaja(homer), trabaja(lenny).
yes
?- vigila(smithers,homer).
no
```

Felicidad y Futbol

- Dada la siguiente información:
 - □ Si CR7 marca y Casillas para, entonces el R. Madrid gana.
 - □ CR7 marca si es feliz o si el partido es en domingo.
 - □ CR7 es feliz cuando hay entrenamiento vespertino o cuando Marcelo es su amigo.
 - □ Casillas para cuando el partido es en sábado o cuando el partido es en domingo.
 - □ Marcelo es amigo de CR7 si Casillas para y el entrenamiento es matutino.
 - □ Hay entrenamiento vespertino los martes y jueves; y entrenamiento matutino los lunes y miércoles.
 - Hoy es martes.
 - El partido es en sábado.
- Escribir un programa lógico que permita saber si CR7 marca
 futbol ciao.pl

Mafia

Dada la siguiente información:

- 1. Si Corleone controla Manhattan y Brooklyn, eliminará a Solozzo.
- 2. Si Solozzo controla la droga y Roth le apoya, eliminará a Corleone.
- 3. Si Roth apoya a Solozzo, éste controlará el Bronx y Harlem; pero si apoya a Corleone, éste controlará Manhattan y Brooklyn.
- 4. Roth apoyará a quien le garantice impunidad.
- 5. Corleone controla el juego y Solozzo la droga.
- 6. Es necesario que Corleone controle a la policía si controla el juego.
- 7. El que Corleone controle a la policía implica que puede garantizar la impunidad de Roth.
- Escribir un programa lógico que permita saber quién eliminará a quién

Los Astros

Lenguaje Natural

La Tierra orbita en torno al Sol.

Los cuerpos que orbitan en torno al Sol son planetas.

Los cuerpos que orbitan en torno a planetas son satélites.

Pertenecen al sistema solar el Sol y los que orbitan en torno a objetos que pertenecen al sistema solar.

¿Es la Tierra un planeta?

¿Hay al menos un satélite?

¿Hay al menos un satélite y al menos un planeta?

Programación Declarativa: Lógica y Restricciones

Ejemplos Iniciales de Programación Lógica

