

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Stability of Continuous-Time LTI Systems

Stability of CT Autonomous Linear Systems

Continuous-time linear system has an equilibrium point at $x_e = 0$

$$\dot{x}(t) = A(t)x(t) \tag{1}$$

Definition (Asymptotic Stability)

System (1) is called asymptotically stable at $x_e=0$ if its solution x(t) starting from any initial condition $x(0) \in \mathbb{R}^n$ satisfies $x(t) \to 0$ as $t \to \infty$

Definition (Exponential Stability)

System (1) is called exponentially stable at $x_e = 0$ if its solution x(t) starting from any initial condition $x(0) \in \mathbb{R}^n$ satisfies

$$||x(t)|| \le Ke^{-rt}||x(0)||, \quad \forall t \ge 0,$$

for some constants K, r > 0.

Exponential stability ⇒ asymptotic stability

Internal Stability vs Input/Output Stability

For CT LTI system $\dot{x} = Ax + Bu$, y = Cx + Du, its transfer function

$$H(s) = C(sI - A)^{-1}B + D$$

Input/Output Stability: poles of H(s) all have negative real parts

- Assume x(0) = 0, and input $u(\cdot)$ is arbitrary
- Equivalently, bounded input $u(\cdot)$ results in bounded output $y(\cdot)$ (BIBO stability)

Internal Stability: stability notion to be studied in this lecture

- Assume $u(\cdot) \equiv 0$, and x(0) is arbitrary
- Focus on state solution $x(\cdot)$ rather than output $y(\cdot)$
- A stronger notion of stability (more on this later)

Characterizing Stability of CT LTI Systems

Theorem

For CT LTI system $\dot{x} = Ax$, the following statements are equivalent

- 1 System is asymptotically stable
- 2 System is exponentially stable
- $oldsymbol{3}$ All eigenvalues of A are in the open left half of the complex plane ${\mathbb C}$

Proof: Solution $x(t) = e^{At}x(0)$ is a linear combination of modes whose entries are $p(t)e^{\lambda_i t}$, where λ_i is an eigenvalue of A and p(t) is a polynomial of t.

Phase Portraits of Stable 2D LTI Systems

Stable node

Stable degenerate node

Unstable Systems

LTI system $\dot{x} = Ax$ is unstable if ||x(t)|| is unbounded for **some** x(0)

This is the case if **either** of the following holds:

- $oldsymbol{0}$ A has eigenvalues on the open right half plane of $\mathbb C$
- **2** A has defective eigenvalues on the $j\omega$ -axis
 - An eigenvalue is defective if it has a Jordan block of size > 1

Phase Portraits of Untable 2D Systems

Saddle

Marginally Stable Systems

LTI system $\dot{x} = Ax$ is marginally stable if all solutions x(t) are bounded and at least one solution x(t) does not converge to zero

This is the case if **both** of the following hold:

- $oldsymbol{0}$ A has no eigenvalues on the open right half of ${\mathbb C}$
- **2** A has eigenvalues on the $j\omega$ -axis, all being non-defective

Note: some textbooks classify marginally stable systems as unstable

Phase Portraits of Marginally Stable 2D Systems

$$\dot{x} = Ax \text{ with } A = \underbrace{\begin{bmatrix} v_1 & v_2 \end{bmatrix}}_{T} \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} T^{-1}$$

Phase Portraits of 3D Systems

LTI system $\dot{x} = Ax$, where $A \in \mathbb{R}^{3 \times 3}$

- System has three modes
- Each mode could be stable or unstable