PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS IEC – Instituto de Educação Continuada Pós-graduação *Lato Sensu* em Ciência de Dados e Big Data

Melkson Felix Correia da Silva Raphael São José Rabelo Romeu Teixeira Rebello Thiago Ramos Bezerra da Silva

PROPOSTA DE MODELO PARA AUXILIAR NA TOMADA DE DECISÃO DE PROJETOS COM MAIOR VIABILIDADE

Melkson Felix Correia da Silva Raphael São José Rabelo Romeu Teixeira Rebello Thiago Ramos Bezerra da Silva

PROPOSTA DE MODELO PARA AUXILIAR NA TOMADA DE DECISÃO DE PROJETOS COM MAIOR VIABILIDADE

SUMÁRIO

1. Introdução	5
1.1. Contextualização	5
1.2. O problema proposto	5
1.3. Objetivos	6
2. Coleta de Dados	6
2.1 Informações da Base	7
3. Processamento/Tratamento de Dados	9
3.1. Dados Nulos	9
3.2. Dados que não serão utilizados	10
3.3. Cálculo da duração do negócio	11
3.4. Processamento da target	11
4. Análise e Exploração dos Dados	13
4.1. Análise Estatísticas	13
4.1.1. Análise Univariada e Multivariada das Colunas	14
4.1.1.1. Coluna Escritório	14
4.1.1.1. Análise Univariada	14
4.1.1.1.2. Análise Multivariada	14
4.1.1.2. Coluna Data Início	17
4.1.1.2.1. Análise Univariada	17
4.1.1.2.2. Análise Multivariada	17
4.1.1.3. Coluna Tipo	18
4.1.1.3.1. Análise Univariada	18
4.1.1.3.2. Análise Multivariada	19
4.1.1.4. Coluna Duração Negócio	20
4.1.1.4.1. Análise Univariada	20
4.1.1.4.2. Análise Multivariada	20
4.1.1.5. Coluna Valor Mensal	22
4.1.1.5.1. Análise Univariada	22
4.1.1.5.2. Análise Multivariada	22
4.1.1.6. Coluna Valor Fee Sucesso	24
4.1.1.6.1. Análise Univariada	24
4.1.1.6.2. Análise Multivariada	25

4.1.1.7. Coluna Valor da Transação	26
4.1.1.7.1. Análise Univariada	26
4.1.1.7.2. Análise Multivariada	27
4.2. Insights com a target	28
5. Criação de Modelos de Machine Learning	35
6. Interpretação dos Resultados	43
7. Apresentação dos Resultados	45
8. LINKS	46
APÊNDICE	47

1. Introdução

1.1. Contextualização

A empresa objeto do estudo, atualmente, necessita de semanas em diversas reuniões para os envolvidos classificarem os negócios por níveis de interesse.

Este método, além de demorado, tem como base a discussão entre os participantes acerca dos principais negócios da empresa baseando-se no *know-how* dos colaboradores que, muitas vezes, pode ser tendenciosa e incorrer em erros.

1.2. O problema proposto

O problema da empresa objeto do estudo inicia devido à alta demanda por analisar as propostas para novos negócios que muitas vezes requerem muito tempo de análise e dependem da subjetividade dos indivíduos envolvidos.

A alta dependência do recurso humano é um dos problemas. É comum em organizações a detenção do conhecimento por parte de uma ou poucas pessoas que são responsáveis pela análise e possuem mais familiaridade com os negócios considerados mais importantes. No entanto, na empresa em questão, não se vê uma padronização ou automatização através de modelos que possam direcionar para os negócios mais relevantes, baseados em lições aprendidas e padrões que serão alimentados no modelo.

O acúmulo de análises devido a alta demanda, a quantidade de parâmetros, e o período curto de tempo para análise, podem gerar perda de negócios e consequentemente perdas financeiras irreversíveis.

Os dados em questão são de uma empresa privada do ramo de consultoria que serão analisados no período entre 2018 até a atualidade.

1.3. Objetivos

O objetivo principal dessa análise é mostrar, através de modelos de dados, um conjunto de soluções mais produtivas, com foco em prever negócios com maior interesse em um menor tempo de análise. Espera-se também agilizar o processo de elegibilidade dos negócios, reduzindo recursos com pessoal e custos operacionais inerentes.

2. Coleta de Dados

O modelo trabalhará com uma classificação relacionada ao nível de interesse do negócio para a empresa. Utilizaremos um modelo de classificação absorvendo os parâmetros extraídos da base de dados para gerar o resultado esperado.

Os campos são elencados conforme o dataset abaixo:

Nome da coluna/campo	Descrição	Tipo
nome	Nome do negócio	Texto
escritorio	Local onde o negócio ocorreu	Texto
data_inicio	Data do início do negócio	Data
area	Área da empresa responsável pelo negócio	Texto
tipo	Tipo do negócio	Texto
palavras_chaves	Palavras chaves do negócio	Texto
origem	Origem do negócio	Texto
iniciais_originadores	Iniciais dos nomes das pessoas que originaram o negócio	Texto
valor_da_transacao	Valor da transação do negócio	Número
valor_fee_successo	Valor que a empresa irá receber em caso de sucesso do negócio	Número
valor_fee_mensal	Valor que a empresa irá receber mensalmente	Número
expectativa_fechamento	Data no qual é esperado em que o negócio conclua com sucesso	Data

status_atual	Status atual do negócio na empresa	Texto
data_conclusao_conforme	Data em que ocorreu o respectivo status	Data
_status		
qtde_negocios_com_o_cli	Quantidade de negócios passados ou	Número
ente	atuais, com o cliente do respectivo	
	negócio	
ult_interacao	Data em que houve a última interação	Data
	com o respectivo negócio	
interesse(target)	Nível de interesse que a empresa possui	Número
	com o negócio (1 – Maior interesse)	

Teremos os seguintes níveis de Interesse, classificados em:

Alto: 1

Médio: 2 a 3

Baixo: 4 a 5

A fonte de dados está no formato CSV, e possui campos com dados ausentes. Os dados sensíveis foram previamente tratados a fim de serem preservados.

2.1 Informações da Base:

A base escolhida possui 1961 linhas e 17 colunas (figuras 1 e 2). Devido à grande quantidade de itens nulos (Figura 3), foi feita tratativa para que alguns campos fossem melhorados com dados mais consistentes para o propósito do trabalho.

#	Column	Non-Null Count	Dtype	
0	nome Captura Retang	1961 non-null	object	
1	data_inicio	1961 non-null	object	
2	escritorio	1586 non-null	object	
3	area	1961 non-null	object	
4	tipo	1961 non-null	object	
5	palavras_chaves	416 non-null	object	
6	origem	54 non-null	object	
7	iniciais_originadores	1640 non-null	object	
8	valor_da_transacao	610 non-null	float64	
9	valor_fee_sucesso	538 non-null	float64	
10	valor_fee_mensal	353 non-null	float64	
11	expectativa_fechamento	1009 non-null	object	
12	status_atual	1961 non-null	object	
13	data_conclusao_conforme_status	816 non-null	object	
14	qtde_negocios_com_o_cliente	1961 non-null	int64	
15	ult_interacao	1961 non-null	object	
16	interesse(target)	1058 non-null	float64	
dtypes: float64(4), int64(1), object(12)				
momo	ny usaga: 260 61 VP			

memory usage: 260.6+ KB

Figura 1 - Informações da base

	valor_da_transacao	valor_fee_sucesso	valor_fee_mensal	qtde_negocios_com_o_cliente	<pre>interesse(target)</pre>
count	610.00	538.00	353.00	1961.00	1058.00
mean	96468748.24	1727343.46	53071731.61	2.33	2.59
std	274766815.22	2636951.06	666565332.17	3.61	1.42
min	0.00	0.00	441.94	0.00	1.00
25%	16283588.75	500000.00	90000.00	1.00	1.00
50%	4000000.00	1000000.00	128000.00	1.00	2.00
75%	100000000.00	2000000.00	240000.00	2.00	4.00
max	5000000000.00	4000000.00	12000000000.00	29.00	5.00

Figura 2 – Descrição da base

nome	0
data_inicio	0
escritorio	375
area	0
tipo	0
palavras_chaves	1545
origem	1907
iniciais_originadores	321
valor_da_transacao	1351
valor_fee_sucesso	1423
valor_fee_mensal	1608
expectativa_fechamento	952
status_atual	0
data_conclusao_conforme_status	1145
qtde_negocios_com_o_cliente	0
ult_interacao	0
interesse(target)	903
dtype: int64	

Figura 3 – Descrição de itens nulos para posterior tratativa

3. Processamento/Tratamento de Dados

3.1 Dados Nulos

A base possuía muitos campos nulos, aos quais tivemos que dar algumas tratativas de reclassificação. Nota-se que nem todos os campos puderam ser alterados, para que não houvesse distorção dos dados originais da base, conforme descrito abaixo:

Campos Nulos em "Escritório": substituídos por "Araujo Fontes BH". Por falta de atualização dos usuários com relação ao volume de negócios deste escritório, criou-se uma cultura do não preenchimento deste campo pois, para eles, estava subentendida esta informação;

Campos Nulos em "Origem": substituídos por "Interna"; Pelo mesmo motivo do item anterior, culturalmente os usuários não preenchiam a origem, devido ao grande volume de negócios de origem interna e a escassez de externos.

Campos Nulos em "Valor da transação", "Valor fee sucesso" e "valor fee mensal": substituídos por "0";

Campos Nulos em "Interesse": substituídos por "5", ou seja, de menor interesse. Em conversa com os usuários, nos foi dito que os negócios de pouco interesse para a empresa sequer eram atualizados os dados, o que nos levou a substituir os nulos por 5;

Campos Nulos em "Data_conlusão", caso o status seja:

- "Concluído com sucesso": pegar dado da coluna "ult interação" (última interação);
- 2. "Concluído sem sucesso": pegar dado da coluna "ult interação" (última interação);
- 3. Campos Nulos em "Expectativa de fechamento", caso o status seja:
- 4. "Concluído com sucesso": pegar dado da coluna data de conclusão conforme status;
- 5. "Concluído sem sucesso": pegar dado da coluna data de conclusão conforme status

Resultado após a trativa dos nulos:

nome	0
data_inicio	0
escritorio	0
area	0
tipo	0
palavras_chaves	1544
origem	0
iniciais_originadores	321
valor_da_transacao	0
valor_fee_sucesso	0
valor_fee_mensal	0
expectativa_fechamento	530
status_atual	0
data_conclusao_conforme_status	903
qtde_negocios_com_o_cliente	0
ult_interacao	0
interesse(target) dtype: int64	0

Figura 4 - Resultado das tratativas dos campos nulos

3.2 Dados que não serão utilizados

Os negócios que possuem o tipo "institucional" foram removidos, tendo em vista a não aderência aos objetivos do trabalho. Tais tipos são projetos internos, os quais não são relevantes uma vez que é mais fácil decidir a relevância e não ter envolvimento de clientes por sua natureza interna.

Para tanto, foi feito um drop na base onde o index do tipo Institucional estava presente

```
df_base.drop(df_base.loc[df_base['tipo']=='Institucional'].index, inplace=True)
```

Figura 5 - Exclusão de coluna não relevante

<pre>df_base.describe()</pre>					
	valor_da_transacao	valor_fee_sucesso	valor_fee_mensal	qtde_negocios_com_o_cliente	interesse(target)
count	610.00	538.00	353.00	1959.00	1056.00
mean	96468748.24	1727343.46	53071731.61	2.33	2.59
std	274766815.22	2636951.06	666565332.17	3.61	1.42
min	0.00	0.00	441.94	0.00	1.00
25%	16283588.75	500000.00	90000.00	1.00	1.00
50%	4000000.00	1000000.00	128000.00	1.00	2.00
75%	10000000.00	2000000.00	240000.00	2.00	4.00
max	5000000000.00	40000000.00	12000000000.00	29.00	5.00

Figura 6 - Resultado da Exclusão dos campos desnecessários

3.3 Cálculo da duração do negócio

Esta informação traz um novo *insight* de uma possível tendência de sucesso ou não de um determinado negócio considerando o tempo que levaria entre a data de início e sua conclusão.

Para isso, usamos a coluna "data_de_inicio" para aplicarmos no cálculo da diferença entre ela e a coluna "data_de_conclusão_conforme_status".

Foi necessária a conversão destas duas colunas para o tipo data, conforme o código abaixo:

```
df_base["data_conclusao_conforme_status"]=pd.to_datetime(df_base["data_conclusao_conforme_status"])
df_base["data_inicio"]=pd.to_datetime(df_base["data_inicio"])
```

Figura 7 – "data conclusão conforme status" e "data inicio"

Para mensurar o tempo, foi feito um cálculo simples de subtração entre o campo "data_de_conclusão_conforme_status" e "data_de_inicio", cujo resultado foi definido em nova coluna chamada "diferença dias inclusão conclusão":

```
days = df_base["data_conclusao_conforme_status"] - df_base["data_inicio"]
days_diff = days.dt.days
df_base["diferenca_dias_inclusao_conclusao"]= days_diff
```

Figura 8 – Cálculo de tempo entre duas variáveis do tipo data

3.4 Processamento da target

Foi criada nova coluna "interesse_name" onde rotulamos os níveis de interesse conforme mostrado abaixo:

Alto: 1

Médio: 2 e 3

Baixo: 4 e 5

O código e o exemplo abaixo mostram o resultado pretendido:

```
for i,row in df_base.iterrows():
    if row['interesse(target)'] == 1:
        df_base.at[i,'class_interesse'] = 'Alto'
    elif row['interesse(target)'] >= 2 and row['interesse(target)'] <= 3:
        df_base.at[i,'class_interesse'] = 'Médio'
    elif row['interesse(target)'] >= 4:
        df_base.at[i,'class_interesse'] = 'Baixo'
```

|--|

	interesse(target)	class_interesse
0	5.0	Baixo
1	2.0	Médio
2	5.0	Baixo
3	5.0	Baixo
4	5.0	Baixo
1956	4.0	Baixo
1957	1.0	Alto
1958	1.0	Alto
1959	1.0	Alto
1960	4.0	Baixo

Figura 9 – Criação de nova coluna de acordo com os níveis de interesse e tabela dos resultados

4. Análise e Exploração dos Dados

4.1 Análises Estatísticas

plt.show()

Antes de realizar as análises estatísticas, foi necessário transformar os dados categóricos em dados numéricos para analisarmos as correlações entre eles.

Figura 10 — Transformação de dados categóricos para análise de correlação e gráfico da correlação

4.1.1 Análises Univariadas e Multivariadas das Colunas

4.1.1.1 Coluna Escritório

4.1.1.1.1 Análise Univariada:

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['escritorio'].describe())

# dados distintos
print("\nDados distintos")
print(df_base['escritorio'].unique())

Informações da coluna:

count 1959
unique 4
top Araujo Fontes BH
freq 1651
Name: escritorio, dtype: object

Dados distintos
['Araujo Fontes BH' 'Araujo Fontes Goiânia' 'Araujo Fontes Rib. Preto'
'Araujo Fontes São Paulo']
```

Figura 11 – Informações da coluna Escritório

4.1.1.1.2 Análise Multivariada

Quantidade de negócios por status por escritório (em percentual)

Cruzamos os dados de negócios em relação a seu status atual de negócios com a empresa por escritório para entender quais são as empresas mais envolvidas e seu nível de atividade. O resultado está no gráfico abaixo:

	escritorio	status_atual	T_Esc_Status_Neg	T_Esc_Neg	percentual
0	Araujo Fontes BH	Ativo	722	1651	43.73
1	Araujo Fontes BH	Concluído com sucesso	129	1651	7.81
2	Araujo Fontes BH	Concluído sem sucesso	703	1651	42.58
3	Araujo Fontes BH	Inativo	97	1651	5.88
4	Araujo Fontes Goiânia	Ativo	14	144	9.72
5	Araujo Fontes Goiânia	Concluído com sucesso	5	144	3.47
6	Araujo Fontes Goiânia	Concluído sem sucesso	124	144	86.11
7	Araujo Fontes Goiânia	Inativo	1	144	0.69
8	Araujo Fontes Rib. Preto	Ativo	15	57	26.32
9	Araujo Fontes Rib. Preto	Concluído com sucesso	6	57	10.53
10	Araujo Fontes Rib. Preto	Concluído sem sucesso	31	57	54.39

Figura 12 - Relação de negócios por escritório

Pode-se inclusive inferir que a diferença nos dados indica algum tipo de causa que desconhecemos mas claramente demonstra um diferente nível de resultado para diferentes escritórios. Diferentes teorias que pensamos, indicam uma qualidade melhor no atendimento, uma velocidade diferente na conclusão de etapas ou mesmo algum motivo econômico regional, mas para ir mais a fundo nesse quesito seria necessária uma análise focada no resultado.

Valor_da_transacao, valor_fee_sucesso, valor_mensal por escritorio

Agora vamos analisar o valor das transações frente ao seu valor de sucesso por mês para entender a representatividade de cada escritório na atividade mês a mês.

Figura 13 – Valor de fee de sucesso por escritório

Claramente os dados parecem apontar para uma maior atividade no Office (Branch) de Belo Horizonte e um valor bem maior nas fees relacionadas aos negócios, o que também indica que além de mais volume a precificação e lucratividade também são maiores nesta branch.

Figura 14 - Valor de fee mensal por escritório

Figura 15 - valor de transação por escritório

4.1.1.2 Coluna Data Inicio

4.1.1.2.1 Análise Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['data_inicio'].describe())

Informações da coluna:

count 1959
unique 830
top 2018-12-12 00:00:00
freq 50
first 2008-09-09 00:00:00
last 2022-11-01 00:00:00
Name: data_inicio, dtype: object
```

Figura 16 - Análise univariada da coluna 'data_inicio'

4.1.1.2.2 Análise Multivariada

Quantidade negócios mês/ano e por área

Figura 17 – Quantidade de negócios por área

Utilizamos o código abaixo para plotar o gráfico da análise multivariada entre as colunas "negocio", "area" e "ano_inicio":

Figura 18 – Negócios por área e ano de início

Figura 19 – Gráfico de negócios por área e ano de início

4.1.1.3 Coluna Tipo

4.1.1.3.1 Análise Univariada

A Coluna "tipo" possui quatro tipos únicos para o negócio, que seguem respectivamente a sequência Pré-Lead, Lead, Proposta, Projeto.

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['tipo'].describe())

# dados distintos
print("\nDados distintos")
print(df_base['tipo'].unique())

Informações da coluna:

count 1959
unique 4
top Lead
freq 737
Name: tipo, dtype: object
```

Figura 20 - Análise univariada do campo "tipo".

4.1.1.3.2 Análise Multivariada

Quantidade de negócios por tipo

Aqui decidimos criar uma planilha para visualizar onde os negócios estão baseados em diferentes estágios de desenvolvimento. Lead seria um negócio já contactado, projeto um negócio que já estaria encaminhado esperando finalização, proposta seria a formalização e em fase de análise e Pré-lead uma oportunidade de negócio de que temos a possibilidade mas sem contato ou proposta.

	Qtde
tipo	
Lead	737
Projeto	496
Proposta	393
Pré-Lead	333

Figura 21 – Quantidade de negócios por tipo

Os dados mostram que a empresa possivelmente ainda precisa focar em sua área de relações e de contato com clientes porque existem muito mais projetos em Lead e Pré-Lead do que aqueles em andamento.

Percentual de negócio por tipo por status

Abaixo mostramos mais informações para entender essa relação entre lead e projeto, agora divididas em subcategorias específicas e suas porcentagens.

	tipo	T_Tipo_Neg	status_atual	T_Tipo_Status_Neg	Percentual
0	Lead	737	Ativo	334	45.32
1	Lead	737	Concluído com sucesso	7	0.95
2	Lead	737	Concluído sem sucesso	357	48.44
3	Lead	737	Inativo	39	5.29
4	Projeto	496	Ativo	152	30.65
5	Projeto	496	Concluído com sucesso	136	27.42

Figura 22 - Percentual de negócios por tipo e status

Claramente, o setor comercial precisa focar em transformar estas "Leads" em projetos. A quantidade de Leads ativas e inativas em relação aos projetos está muito alta. Algo não está correspondendo às expectativas, talvez haja muitas leads e oportunidades de negócio recentemente, o que pode ter causado inconsistência por causa da pausa abrupta causada pelo covid-19. Esta é mais uma boa frente de pesquisa para que a empresa possa otimizar este processo e aumentar a quantidade de negócios ou descartar leads inadequados e investir no setor de novos negócios. Vale lembrar que existe a possibilidade de uma *lead* se tornar um projeto, sem necessariamente, se tornar um proposta, oportunidades essas não aproveitadas para alavancar a conclusões com sucesso.

4.1.1.4 Coluna Duração Negócio

4.1.1.4.1 Análise Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['diferenca_dias_inclusao_conclusao'].describe())
Informações da coluna:
count 1056.00
mean
        276.84
std
        328.77
       -331.00
25%
        60.00
        218.50
50%
       399.75
max
       4347.00
Name: diferenca_dias_inclusao_conclusao, dtype: float64
```

Figura 23 - Análise univariada da coluna "diferenca dias inclusao conclusao".

4.1.1.4.2 Análise Multivariada

Média de dias x área x status

Figura 24 – Média dia por área e status

Logo abaixo, tabela da análise multivariada do item anterior:

			diferenca_dias_inclusao_conclusao
	area	status_atual	
AFCR11		Concluído com sucesso	19.750000
		Concluído sem sucesso	145.000000
Assessoria Estratégica		Concluído com sucesso	409.666667
		Concluído sem sucesso	285.176471
Consultoria		Concluído com sucesso	360.419355
		Concluído sem sucesso	196.062500
Câmbio		Concluído sem sucesso	294.666667

Figura 25 - Tabela da relação média dias x área x status

Figura 26 - Gráfico Média de Dias por área e Status Atual dos negócios

Com as informações acima, pudemos ter mais clareza sobre quais tipos de negócios levaram mais ou menos tempo para serem concluídos com ou sem sucesso. Por ter características próprias, cada tipo de negócio mostra oportunidades de análise de viabilidades futuras na relação tempo x retorno.

4.1.1.5 Coluna Valor Mensal

4.1.1.5.1 Análise Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_fee_mensal'].describe())
# dados distintos
print("\nSoma Total")
print(df_base['valor_fee_mensal'].sum())
Informações da coluna:
count
               1959.00
mean 9565266
e+d 283358660.15
min
                  0.00
25%
                  0.00
50%
                 0.00
75%
                 0.00
max 12000000000.00
Name: valor_fee_mensal, dtype: float64
Soma Total
18734321259.760002
```

Figura 27 - Descrição da coluna valor fee mensal

4.1.1.5.2 Análise Multivariada

Valor Mensal por tipo e área

	tipo	area	Total_Feed_Mensal
0	Lead	Dívida Captação	260000.00
1	Lead	Imobiliário	1680000.00
2	Projeto	AFCR11	1371205.85
3	Projeto	Assessoria Estratégica	260000.00
4	Projeto	Consultoria	2848220.95
5	Projeto	Câmbio	441.94

Figura 28 – Valor mensal de negócios por tipo e área

Percebe-se, com clareza, que as fases de negócio dos tipos Pré-Lead e Lead são as que menos trazem retorno. Em contrapartida, à medida que os negócios avançam, percebe-se o aumento do retorno financeiro nas fases mais avançadas de Proposta e Projeto. Esta análise é fundamental para ilustrar a importância do trabalho do

setor comercial em avançar nas etapas de negócios, desde o pré-lead até o projeto em si.

O mesmo padrão é percebido na análise seguinte que calcula a média dos valores mensais por tipo e área, conforme é mostrado abaixo:

	tipo	area	Média_Feed_Mensal
0	Lead	Dívida Captação	130000.00
1	Lead	Imobiliário	1680000.00
2	Projeto	AFCR11	1371205.85
3	Projeto	Assessoria Estratégica	86666.67
4	Projeto	Consultoria	81377.74
5	Projeto	Câmbio	441.94
6	Projeto	Dívida Captação	129456.73
7	Projeto	Dívida Reperfilamento	235076.19
8	Projeto	Fusão com Alvo Pré-definido	182500.00
9	Projeto	Fusão com Definição de Alternativas Estratégicas	240000.00
10	Projeto	Gestão de Recursos	780322.99

Figura 29 - Médias de valores por tipo e área

4.1.1.6 Coluna Valor Fee Sucesso

4.1.1.6.1 Análise Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_fee_sucesso'].describe())
# dados distintos
print("\nDados distintos")
print(df_base['valor_fee_sucesso'].unique())
Informações da coluna:
 count
             1959.00
         474380.18
mean
std
        1581692.31
min
               0.00
25%
               0.00
50%
               0.00
75%
          95000.00
       40000000.00
max
Name: valor_fee_sucesso, dtype: float64
Dados distintos
[0.00000000e+00 5.00000000e+05 5.00000000e+06 1.50000000e+06
 2.00000000e+06 6.00000000e+05 7.00000000e+06 8.00000000e+05
 1.00000000e+06 1.37500000e+06 3.75000000e+06 4.50000000e+05
 3.50000000e+06 9.00000000e+05 1.20000000e+06 7.00000000e+05
 4.60000000e+06 8.00000000e+06 1.05000000e+06 2.40000000e+04
 1.40000000e+06 5.25000000e+05 2.10000000e+06 5.70000000e+05
 6.60000000e+06 3.00000000e+06 1.75000000e+06 6.00000000e+06
 7.20000000e+06 7.50000000e+05 9.90000000e+05 1.22500000e+06
 1.32000000e+06 2.40000000e+06 8.75000000e+02 8.23683790e+05
 4.00000000e+06 3.30000000e+06 4.30000000e+05 4.01119630e+05
 1.00000000e+05 2.40000000e+05 1.25000000e+05 4.00000000e+05
 1.60000000e+07 9.60000000e+05 1.00000000e+00 1.87500000e+06
 2.00000000e+05 4.96941630e+05 7.98000000e+05 1.25000000e+06
 1.00142500e+06 1.62500000e+06 2.50000000e+05 3.50000000e+05
 3.36000000e+06 4.50000000e+06 6.86000000e+05 4.91514747e+06
```

Figura 30 - Valores de fee de sucesso

4.1.1.6.2 Análise Multivariada

Média dos valores Sucesso por tipo e área

Conforme mostrado abaixo, nota-se uma concentração de negócio (em termos financeiros) nas áreas de Dívida e Captação, Dívida e Reperfilamento, Fusão com Alvo Pré-Definido, Imobiliário e M&A Sell Side. Esta análise é fundamental na tomada de decisão no sentido do direcionamento e foco em novos negócios e aprimoramento dos negócios atuais. Mostra, também, quais áreas estão mais deficitárias, para que a empresa consiga perceber padrões negativos em cada tipo de negócio por área.

		valor_fee_sucesso
are	a tipo	
Assessoria Estratégica	Projeto	1112333.33
	Proposta	1618437.50
Consultoria	Projeto	145890.13
	Proposta	80000.00
Câmbio	Projeto	43224.44
Dívida Captação	Projeto	1405673.60
	Proposta	1547000.00
Dívida Reperfilamento	Projeto	951889.13
	Proposta	1732976.43
Fusão com Alvo Pré-definido	Projeto	2035000.00
	Proposta	1850000.00
Fusão com Definição de Alternativas Estratégica	s Projeto	1200000.00
lmobiliário	Projeto	1650138.70

Figura 31 - Tabela com Média do valor de sucesso x tipo x área

Figura 32 - Gráfico da relação Média do valor de sucesso x tipo x área

4.1.1.7 Coluna Valor da Transação

4.1.1.7.1 Análise Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_da_transacao'].describe())
# Valor total
print("\nValor Total")
print(df_base['valor_da_transacao'].sum())
Informações da coluna:
 count
               1959.00
        30038762.85
mean
       159619516.27
std
                 0.00
min
25%
                 0.00
50%
                 0.00
75%
         13000000.00
       5000000000.00
Name: valor_da_transacao, dtype: float64
Valor Total
58845936427.5
```

Figura 33 - Análise univariada do campo Valor de Transação

4.1.1.7.2 Análise Multivariada

Valor de transação por tipo e área

Conclui-se que as maiores áreas de negócio da empresa são: imobiliário, assessoria estratégica, M&A Sell Side e dívida captação. Esta análise nos mostra em quais áreas a empresa está deficitária de ações e atenção aos negócios, o que nos leva a outro *insight*: o custo operacional x retorno financeiro ainda mostra se ainda é viável a continuidade de alguns segmentos da empresa, como Consultoria, Câmbio ou se estas áreas poderiam ser fundidas com outras de interesses e processos similares, visando a redução com diversos tipos de recursos não produtivos.

	tipo	area	Total_Valor_Transação
31	Pré-Lead	Imobiliário	30000000.00
30	Pré-Lead	Dívida Captação	10000000.00
28	Proposta	M&A Sell Side	6847355000.00
23	Proposta	Dívida Captação	2198000000.00
26	Proposta	Imobiliário	1206000000.00
21	Proposta	Assessoria Estratégica	864500000.00
24	Proposta	Dívida Reperfilamento	841790000.00
27	Proposta	M&A Buy Side	315000000.00
25	Proposta	Fusão com Alvo Pré-definido	20000000.00
22	Proposta	Consultoria	30040000.00
29	Proposta	Seguros	300000.00
19	Projeto	M&A Sell Side	24776302463.93
12	Projeto	Dívida Captação	3253040063.16
13	Projeto	Dívida Reperfilamento	1937697043.07
14	Projeto	Fusão com Alvo Pré-definido	1375000000.00

Figura 34 - Valores de transação por tipo e área

4.2 Insights com a target

1- Se o tempo de duração dos projetos recentes afeta o interesse do cliente ao longo do tempo.

Figura 35 - Relação tempo x interesse x quantidade projetos

O gráfico aponta para uma situação em que o interesse continua forte e rígido nos primeiros 200 e de 200-500 se mantém embora comece a oscilar levemente e após 500 se mantém mais robusto e com menos variações. Ou seja, seria um bom objetivo manter a duração até 400 para que o cliente continue engajado ou mesmo para aumentar a chance de futuros negócios.

2- Buscar entender se o interesse é alterado de acordo com o valor das transações. Ou seja: Será que negócios com interesses mais baixos serão os com valor de transação menores?

Figura 36 - Relação entre volume de negócios por transações baseada em interesse

Inicialmente uma pequena variação no valor da transação parece alterar o interesse mas não demonstra uma relação contínua. Com o aumento progressivo dos valores, especialmente chegando em R \$300 milhões e em diante o comprometimento do cliente com o negócio se estabiliza em alta. Portanto, sim, valores muito altos retém a atenção do cliente, mas mudanças em valores baixos parecem não ser o fator decisor na medida de interesse.

3- Agora vamos comparar o interesse baseado em diferentes áreas da empresa. O objetivo é tentar entender se o nível de interesse condiz, proporcionalmente, com o número de negócios.

Figura 37 - Contagem de negócios por interesse por cada empresa

Esta foi a análise que retornou os dados mais preocupantes sobre como a empresa está tratando dos seus negócios. Percebe-se uma quantidade absurda de negócios com níveis de interesse baixo e, ao mesmo tempo, pouquíssimos negócios com interesse alto para a empresa. Nos leva a perguntar o porquê de a empresa estar fechando tantos negócios que não são interessantes e vantajosos: Falta de análise?, análises tendenciosas?

Partindo disto, podemos criar modelos que nos mostram quais são os fatores de para conclusão de negócio com sucesso e bom retorno financeiro, bem como mudar o viés decisório atual, mostrando quais os padrões levaram a decidir pelo fechamento de negócios, agora, com resultados baseados em maior favorecimento à empresa.

4- Comparando status para compreender o interesse. Será que negócios com maior interesse tendem a ser concluídos com sucesso?

Figura 38 - Status por negócios e interesse

Percebe-se, novamente, que muitos dos negócios que tem status como "Baixo Interesse" estão sendo concluídos com sucesso, bem como estão se mantendo ativos. A partir desse ponto, podem os negócios que foram classificados com baixo interesse ser reclassificados para médio ou alto interesse, uma vez que o nível de conclusão com sucesso e status ativo tem surpreendido?

Do mesmo modo, negócios com o status "Alto" parecem estar estáveis em todos os níveis de conclusão, mas merecem mais atenção de qualquer forma ou uma reanálise questionando se, de fato, a classificação inicial de interesses vista na base tem reflexo na realidade.

5- Comparação do interesse ao longo dos meses e anos. Nosso objetivo é entender se existe alguma variação na busca pela empresa baseada em época do ano ou datas específicas.

Figura 39 – Relação de interesse ao longo dos meses

Inicialmente, percebe-se que existe uma sazonalidade típica na relação entre meses e interesse ao longo dos anos. A cada mês, em média, existe um padrão de queda e elevação no interesse, ou seja, em um determinado mês, existe uma elevação no interesse e, no mês seguinte, a queda. Esse padrão se repete por vezes, até mudar entre junho e julho de 2021, onde existe uma retomada da elevação do interesse a um nível recorde. O declínio visto ao final do gráfico é apenas por não existirem mais dados coletados, por volta de fevereiro de 2022.

6- Aqui vamos analisar o interesse de acordo com a quantidade geral de negócios com o cliente. Será que quanto mais negócios com um cliente, maior será o interesse?

Figura 40 - Relação quantidade de negócios por interesse

Independentemente do nível de interesse, parece haver continuidade do negócio. Seria interessante analisar o porquê de clientes com baixo interesse não subirem de status para alto interesse mesmo tendo negócios constantes. Aparentemente existe uma concomitância entre diferentes níveis por volume também. Existem dois "outliers" que representam clientes que têm uma quantidade de negócios alto e similar porem nível de interesse diferentes e independentes (não sabemos explicar o porquê nesta variância).

7- Comparação entre valor da transação e o valor independente da fee por sucesso. Aqui está uma comparação entre o valor calculado da relação fees de sucesso com o valor total da transação.

Figura 41 – Gráfico da relação dos fees de sucesso por valor de transação

Os negócios de maior interesse da empresa estão visivelmente relacionados com transações de valor baixo, não possibilitando, consequentemente e proporcionalmente, valores altos de fee de sucesso.

Os negócios categorizados na base como baixo interesse, são os que tem trazido maiores valores de fee de sucesso. Isso mostra como a empresa tem insistido em uma análise enviesada de suas oportunidades de negócio.

5. Criação de Modelos de Machine Learning

Para a criação dos modelos, inicialmente, consideramos relevantes colunas da base categorizadas para as quais atribuímos valores numéricos para o processamento.

- escritorio_cat
- area_cat
- tipo_cat
- class_interesse_cat
- qtde_negocios_com_o_cliente
- valor_da_transação

	escritorio	escritorio_cat
0	Araujo Fontes BH	0
1	Araujo Fontes Goiânia	1
2	Araujo Fontes Rib. Preto	2
3	Araujo Fontes São Paulo	3

Figura 42 - Descrição da categoria escritório

0	AFCR11	0
1	AFHI11	1
2	Assessoria Estratégica	2
3	Consultoria	3
4	Câmbio	4
5	Desenvolvimento de Sistemas	5
6	Dívida Captação	6
7	Dívida Reperfilamento	7
8	Fusão com Alvo Pré-definido	8
9	Fusão com Definição de Alternativas Estratégicas	9
10	Gestão de Recursos	10
11	Imobiliário	11
12	M&A Buy Side	12
13	M&A Sell Side	13
14	Projetos Internos	14
15	Seguros	15

Figura 43 - Descrição da categoria áreas

	tipo	tipo_cat
0	Lead	0
1	Projeto	1
2	Proposta	2
3	Pré-Lead	3

Figura 44 - Descrição da categoria tipo

A coluna class_interesse_cat, que antes continha os valores 0, 1 e 2, foi reclassificada e atribuída nova coluna class_interesse_alto, cujos valores 0 e 2 (antes médio e baixo interesse), receberam valores 0 (interesse baixo) e o valor 1 continuou com valor 1 (interesse alto). Esse ajuste foi necessário pois o modelo retornava baixa acurácia (em torno de 50% a 60%), enquanto estávamos considerando 3 classes de target - baixo, médio e alto interesse. Após a reclassificação, percebemos que o processamento ficou mais fluido e a acurácia imediatamente saltou para 83% em praticamente todos os modelos. Isso se explica pois, por se tratar de um modelo de classificação, onde a abordagem da target é booleana, o algoritmo não conseguia realizar uma predição com boa acurácia com mais de 02 classes.

	class_interesse_cat	class_interesse_alto
0	0	1.00
1	1	0.00
2	2	0.00

Figura 45 - Reclassificação da coluna class_interesse_cat

Ressaltamos que tal ajuste foi feito após diversas tentativas de aprimoramento da acurácia, muito embora esteja sendo já mostrado para atualizar tais ajustes das colunas de forma a evitar repetições neste trabalho.

As features escolhidas, dentre as diversas oriundas da base, são as que mais tem relevância, de acordo com o modelo de negócio e nossa proposta de modelo para auxiliá-los na tomada de decisão.

Após a escolha das *features*, partimos para a preparação do dataframe para o modelo, chamando aquelas colunas explicitadas acima e definindo a coluna class_interesse_alto como nossa *target* e definimos que 20% da base seria usada para testes.

Preparada a base, partimos para a escolha dos modelos para a realização dos testes e posteriores ajustes para a melhoria da acurácia. Foram escolhidos modelos aprendidos em sala de aula na disciplina de *Machine Learning* dessa Pós-graduação em Ciência de Dados e Big Data, bem como são os melhores modelos de classificação. São eles:

- XGBoost
- Decision Tree
- Random Forest
- LightGBM

A parametrização dos modelos foi uma etapa extensa e repetitiva, com muitos ajustes, tendo em vista a baixa acurácia retornada por cada modelo. As configurações que entendemos como mais adequadas para o problema proposto são estas:

```
classifiers=[]
# MODELO 1 - XGB
param grid1 = {'n estimators': [400, 700, 1000],
               'colsample bytree': [0.7, 0.8],
               'max depth': [15,20,25],
               'reg alpha': [1.1, 1.2, 1.3],
               'reg lambda': [1.1, 1.2, 1.3],
               'subsample': [0.7, 0.8, 0.9]
model1 = xgboost.XGBClassifier()
classifiers.append(tuple([model1,param grid1]))
## MODELO 2 - Decision Tree
param grid2 = {'criterion': ['entropy', 'gini'],
                'max depth':range(1,20),
                'min samples leaf': range(1,4)
model2 = tree.DecisionTreeClassifier()
classifiers.append(tuple([model2,param grid2]))
## MODELO 3 - Random Forest
param grid3 = {'bootstrap': [True, False],
```

```
'criterion': ['entropy', 'gini'],
               'max depth': range(1,20),
               'max features': ['auto'],
               'min samples leaf': [1, 2, 4],
               'min_samples_split': [2, 5, 10],
               'n estimators': [90,100,115,130]
model3 = RandomForestClassifier()
classifiers.append(tuple([model3,param grid3]))
## MODELO 4 - LGBM
param grid4 ={ 'num_leaves': range(1, 20),
             'boosting_type': ['gbdt'],
             'max depth': range(1,20),
             'n estimators':[90,100,115,130],
             'min_data_in_leaf':[20]
model4 = lgb.LGBMClassifier()
classifiers.append(tuple([model4,param grid4]))
```

A partir disso, pudemos realizar a passagem dos parâmetros nos modelos de acordo com os *classifiers* criados, bem como realizar o treinamento da base e a predição:

```
mod=[]
for modelo, parametros in classifiers:
 print("-----\n"%(modelo))
  gs = GridSearchCV(
           estimator=modelo,
           param_grid=parametros,
           cv=3,
           n jobs=-1,
           verbose=2)
  fitted_model = gs.fit(X_train, y_train)
  print("#Melhor Acurácia do modelo:\n ",fitted_model.best_score_)
      print("#Melhores Parametros
                                       para o modelo:\n
",fitted_model.best_params_)
 y pred= fitted model.predict(X test)
 acc = accuracy score(y test, y pred)
 print("#Acurácia:
                               \n %s"% (acc))
          mod.append({'modelo':modelo, 'melho modelo':fitted model,
'y pred':y pred})
  cm = confusion_matrix(y_test, y_pred)
 tn, fp, fn, tp = cm.ravel()
  cm reorganizada = np.array([[tp, fn], [fp, tn]])
 print("#Matriz de Confusão:
                                        \n %s"%(cm reorganizada))
```

Nesse processo, obtivemos como resultado a melhor acurácia do teste, melhores parâmetros para o modelo, a acurácia do modelo, a matriz de confusão, a visualização gráfica da matriz de confusão e a visualização do relatório de classificação, conforme mostrado abaixo para cada modelo:

----- MODELO - XGBClassifier() ------

Fitting 3 folds for each of 486 candidates, totalling 1458 fits

#Melhor Acurácia do modelo: 0.8391793586954134

#Melhores Parametros para o modelo: {'colsample_bytree': 0.7, 'max_depth': 15, 'n_estimators': 400, 'reg_alpha':

1.3, 'reg_lambda': 1.3, 'subsample': 0.9}

#Acurácia: 0.8061224489795918

#Matriz de Confusão: [[16 66] [10 300]]

#Visualização da importância de cada campo para o modelo:

Figura 46 - Gráfico da importância das features para modelo XGBClassifier

#Visualização Gráfica da Matriz de Confusão

Figura 47 - Gráfico da matriz de confusão do modelo XGBClassifier

	pre	ecision	recall	f1-score	support
	0	0.82	0.97	0.89	310
	1	0.62	0.20	0.30	82
acc	uracy	y		0.81	392

----- MODELO - Decision Tree Classifier() ------

Fitting 3 folds for each of 114 candidates, totalling 342 fits

#Melhor Acurácia do modelo: 0.8398215912226593

#Melhores Parametros para o modelo: {'criterion': 'entropy', 'max_depth': 1, 'min_samples_leaf': 1}

#Acurácia: **0.7908163265306123** #Matriz de Confusão: [[0 82][0 310]]

#Visualização da importância de cada campo para o modelo:

Figura 48 - Gráfico da importância das features para modelo árvore de decisão

#Visualização Gráfica da Matriz de Confusão

Figura 49 - Gráfico da matriz de confusão do modelo árvore de decisão

	pre	cision	recall	f1-score	support
()	0.79	1.00	0.88	310
1	l	0.00	0.00	0.00	82
accu	ıracy	/		0.79	392

----- MODELO - RandomForestClassifier() ------

Fitting 3 folds for each of 2736 candidates, totalling 8208 fits

#Melhor Acurácia do modelo: 0.847473437702224

#Melhores Parametros para o modelo: {'bootstrap': True, 'criterion': 'gini', 'max_depth': 7, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 90}

#Acurácia: **0.7959183673469388** #Matriz de Confusão: [[9 73][7 303]]

#Visualização da importância de cada campo para o modelo:

Figura 50 - Gráfico da importância das features para modelo Random Forest

#Visualização Gráfica da Matriz de Confusão

Figura 51 - Gráfico da matriz de confusão do modelo Random Forest

	pre	ecision	recall	f1-score	support
	0	0.81	0.98	0.88	310
	1	0.56	0.11	0.18	82
acci	uracy	/		0.80	392

----- MODELO - LGBMClassifier() ------

Fitting 3 folds for each of 1444 candidates, totalling 4332 fits

#Melhor Acurácia do modelo: 0.8449228222090358

#Melhores Parametros para o modelo: {'boosting_type': 'gbdt', 'max_depth': 2, 'min_data_in_leaf': 20,

'n_estimators': 130, 'num_leaves': 3} #Acurácia: **0.8137755102040817** #Matriz de Confusão: [[12 70][3 307]]

#Visualização da importância de cada campo para o modelo:

Figura 52 - Gráfico da importância das features para modelo LGBMClassifier

#Visualização Gráfica da Matriz de Confusão

Figura 53 - Gráfico da matriz de confusão do modelo LGBMClassifier

	pre	ecision	recall	f1-score	support
	0	0.81	0.99	0.89	310
	1	0.80	0.15	0.25	82
acc	uracy	y		0.81	392

6. Interpretação dos Resultados

Na etapa de treinamento dos modelos, percebemos alguns padrões e tivemos alguns *insights* com os quais percebemos, inicialmente, que deveríamos mostrar os escritórios com uma das colunas para ser processada no modelo, porque nos mostra um leque de padrões relacionados à quantidade de negócios e as respectivas tendências de conclusão de sucesso, retorno financeiro etc. Muito embora alguns escritórios possuam um volume global de negócios concluídos com sucesso, proporcionalmente, escritórios menores podem possuir taxas de sucesso maiores. Partindo de uma análise segmentada, a escolha dessa coluna escritório traria ao modelo mais características a serem processadas e, consequentemente, uma análise enviesada para o segmentado.

Após testes com alguns modelos e parâmetros, percebemos que a coluna escritório não era muito relevante para os modelos, conforme informado pelo próprio resultado do uso das *features*. Muito embora a acurácia dos modelos tenha chegado à marca dos 83%, a decisão de criar um novo modelo sem essa *feature* foi necessária, porque estaríamos criando um viés analítico e de treinamento apenas por escritórios, quando, na verdade, gostaríamos que houvesse um viés dos negócios de maneira global, para melhor atender as dinâmicas da empresa.

Consideramos interessante também a inclusão das colunas: área (de negócio), tipo (de negócio), que deram ao modelo mais padrões por segmento. Por exemplo: a área imobiliária tem características próprias, com vários tipos de níveis de negócio (pré-lead, lead, proposta ou projeto), com diferentes resultados atrativos ou não às expectativas da empresa.

Por uma questão de falta de atualização da base, percebemos que a empresa possui muitos negócios que ela considera pouco atrativos (baixo interesse) e poucos negócios que ela considera mais atrativos (alto interesse). Com uma constante atualização da base, os modelos escolhidos posteriormente poderão mostrar dados mais decisórios, enquanto, no momento, nos mostram dados de alerta para a correção de padrões organizacionais.

Dentro desse cenário levantado, concluímos que:

Os modelos XGB e LGBM foram os modelos que mais balancearam os campos em relação à importância. O campo valor_da_transação foi o mais importante e a quantidade_de_negocios_com_o_cliente em ambos os modelos.

Já os modelos Decision Tree e Random Forest, foram os que mais tiveram discrepância no balanceamento das importâncias dos campos. Curiosamente, no modelo Decision Tree, o campo area_cat teve importância igual a zero, enquanto que no Random Forest, quantidade_de_negocios_com_o_cliente foi novamente o que teve menos importância, seguindo a linha dos modelos XGB e LGBM.

Fica claro que a coluna valor_da_transação foi a coluna mais importante em todos os modelos, o que talvez sugira a linha de decisão que a empresa usa para determinar a importância de seus negócios.

Em termos de acurácia do modelo, todos os 04 modelos apresentaram resultados muito parecidos. O XGB e Decision Tree, obtiveram 80,36% de acurácia. O LGBM obteve 80,31% de acurácia, enquanto que o Random Forest obteve 79,85% de acurácia.

Num contexto geral, LGBM foi o modelo escolhido para auxiliar a empresa no processo de tomada de decisão, levando os processos da empresa a um nível mais alinhado à sua realidade de dados.

7. Apresentação dos Resultados

Date: 17/04/2022 Iteration: .	DATA SOURCES Unitzaremos uma base de textos coletados em reunicas de empresa citada, que nos foi oferecido para o trabalho. Esta base de dados foi criada e dispombilizada para o nosso uso durante a criação deste trabelho e extiste em formato 'csy'.	FEATURES area_cat, tipo_cat, class_interesse_alto, qtde_negocios_com_o_citente. valor_da_transacao.	
Designed by:	DATA COLLECTION Os dados foram coletados ao longo de 2 anos em reunidos e encouros organizados com a empresa e cientes. Os dados sensiveis foram prevármente untados a fim de serem preservados e unificados em um arquivo 'csv.'.	BUILDING MODELS MODELO 1 - XGB MODELO 2 - Decision Tree MODELO 3 - Random Forest MODELO 4 - LGBM	3
Designed for:	PROPOSITION O objetivo principal dessa malise ei mostrar, stravès de modelos de dados, um conjumo de soluções mais produtivas, com foco em prever negócios com maior interesse em um memor tempo de análise. Espera-se trambém agilizar o processo de elegibilidade dos negócios, reduzindo recursos com pessoal e custos operacionais inerentes		o do modelo e sua utilização é stravés da cio e a data de conclusão conforme status. a aplicação de novas regras baseadas no
ARNING CANVAS	DECISIONS Nesse processo será unitzado como principal alvo do modelo o campo "classe de interesse alto", onde determinará se o negócio será de interesse alto ou não.	MAKING PREDICTIONS As predições realizadas podem ser antalizadas sempre que houver uma nova caras de dados da empresa. Ralatorios podem ser gerados para apresentar méricas, gráficos para auxiliar uns tomadas de decisão.	MONITORING A melhor maneira de monitorar a aplicação do modelo e sua utilização é através da diminuição do intervalo entre a data de início e a data de conclusão conforme status. Quanto menor está métrica se tornar com a aplicação de novas regras baseadas no modelo, melhor será seu rendimento.
THE MACHINE LEARNING CANVAS	Essa análise foi realizada ao longo de 4 meses, mas pode ser alongo de 4 meses, mas pode ser aprofundada em um projeto mais extenso. As entidades principais são a própria serviços oferecidos por ele. Neste trabelho esperamos que os resultados apontem possiveis tendeánicas de produtridade, melhores récuricas de negócios e até mesuno padrões e detalhes imperceptiveis sem ajuda do aprendizado de máquinas.	IMPACT SIMULATION As análises indicam que em muitos casos os processos se arrastam desnecessariamente por até um ano antes de ter um desfecto. Ajustando para os parâmetros que estabelecemos seria possível reduzir (devido a melhoria no acompanhamento e cobamça de resultados) esse tempo para até ó meses. Essa alteração sozinha seria capaz de evitar muibões em desperdiços e liberar o time mais rápidos para negociar com outros clientes por exemplo.	

8. Links

Link para o repositório:

 $\underline{https://github.com/MelksonF/ProjetoIntegrado_CDBG_PUC.git}$

APÊNDICE

Programação/Scripts

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import plotly.express as px

import numpy as np

import re

import seaborn as sns

from sklearn.metrics import

precision_recall_curve,precision_score,recall_score,f1_score,accuracy_score,classification_report,confusion_matrix

from sklearn.ensemble import RandomForestClassifier

from sklearn import svm, tree

import xgboost

import lightgbm as lgb

from sklearn.model selection import

train_test_split,StratifiedKFold,cross_validate,GridSearchCV

from scipy.stats import uniform as sp_uniform

from matplotlib.pyplot import figure

from mlxtend.plotting import plot_confusion_matrix

import warnings

warnings.filterwarnings('ignore')

Importação da base

from google.colab import drive

drive.mount('/content/drive')

Caminho do drive onde está localizada a base

mypath = '/content/drive/MyDrive/Colab Notebooks/Projeto integrado de ciencia de dados/'
Mounted at /content/drive

importanto o csv da base com o pandas
df_base = pd.read_csv(mypath+'dataset_projeto_integrado.csv')

Análise Iniciais da Base

#Formatar campos de valores numericos pd.options.display.float_format = '{:.2f}'.format

Shape (tamanho) da base df_base.shape

Pré-Processamento da base

Dados que não serão utilizados

remover os negócios que possui o tipo Institucional

df_base.drop(df_base.loc[df_base['tipo']=='Institucional'].index, inplace=True)

Registros Nulos

- os escritórios que tiverem null, considerar como Araújo Fontes BH
- as origens nulas, consideram como Interno
- valor_da_transacao, valor_fee_sucesso e valor_fee_mensal, considerar como 0 os nulos
- Interesse, quando for null, considerar como 5
- Data conclusão conforme status quando for null, caso status seja:
 - o Concluído com sucesso: pegar o dado da coluna de ult interação
 - o Concluído sem sucesso: pegar o dado da coluna de ult interação
- Expectativa de fechamento quando for null, caso status seja:
 - o Concluído com sucesso: pegar o dado da coluna data conclusão conforme status
 - o Concluído sem sucesso: pegar o dado da coluna data conclusão conforme status

```
df_base["escritorio"].fillna("Araujo Fontes BH", inplace=True)

df_base["origem"].fillna("Interno", inplace=True)

df_base["valor_da_transacao"].fillna(0, inplace=True)

df_base["valor_fee_sucesso"].fillna(0, inplace=True)

df_base["valor_fee_mensal"].fillna(0, inplace=True)

df_base["interesse(target)"].fillna(5, inplace=True)

df_base.loc[(df_base['data_conclusao_conforme_status'].isna()) & ((df_base['status_atual'] =='Concluído com sucesso')),

'data_conclusao_conforme_status'] = df_base["ult_interacao"]

df_base.loc[(df_base['expectativa_fechamento'].isna()) & ((df_base['status_atual'] =='Concluído com sucesso')), 'expectativa_fechamento'] = df_base["data_conclusao_conforme_status"]
```

Calcular duração do negócio para os status Concluído com sucesso e Sem sucesso

calcular a diferença de dias entre data de início e data conclusão conforme status

```
df_base["data_conclusao_conforme_status"]=pd.to_datetime(df_base["data_conclusao_conforme_status"])

df_base["data_inicio"]=pd.to_datetime(df_base["data_inicio"])

days = df_base["data_conclusao_conforme_status"] - df_base["data_inicio"]

days_diff = days.dt.days

df_base["diferenca_dias_inclusao_conclusao"]= days_diff

r = df_base[df_base["data_conclusao_conforme_status"].notna()]

r[['nome', 'data_inicio', 'data_conclusao_conforme_status',
'diferenca_dias_inclusao_conclusao']].shape
```

Processamento da target

Análises Estatísticas

df_base[['interesse(target)', 'class_interesse']]

Categorizando as colunas

```
plt.figure(figsize=(16,9))
sns.heatmap(base_corr.corr(),linewidth = 0.30, annot = True)
plt.show()
```

Coluna Escritório

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['escritorio'].describe())
# dados distintos
print("\nDados distintos")
print(df_base['escritorio'].unique())
```

Multivariada

Quantidade de negocios por status por escritorio (em percentual)

```
negocios_status_escritorio =

pd.DataFrame(df_base.groupby(['escritorio', 'status_atual']).agg({'nome': 'count'}).reset_index())

negocios_status_escritorio.rename(columns={'nome': 'T_Esc_Status_Neg'}, inplace=True)

negocios_escritorio = pd.DataFrame(df_base.groupby(['escritorio']).agg({'nome': 'count'}).reset_index())

negocios_escritorio.rename(columns={'nome': 'T_Esc_Neg'}, inplace=True)

g = pd.merge(negocios_status_escritorio, negocios_escritorio, how = 'inner', on = 'escritorio')

g['percentual'] = (g['T_Esc_Status_Neg'] /

g['T_Esc_Neg']) *100
```

g

Valor da transação, Fee Sucesso e Fee Mensal por escritorio

```
fee_escritorio_sucesso = df_base.groupby(['escritorio']).agg({
                  'valor_fee_sucesso': [('Total Sucesso', 'sum')]
                  })
fee_escritorio_sucesso_graph = pd.concat([fee_escritorio_sucesso],axis=0).plot.bar()
fee_escritorio_sucesso_graph.set_title('Valor de Fee de Sucesso por escritorio')
handler, labels = fee_escritorio_sucesso_graph.get_legend_handles_labels()
editar_labels = [re.search(',\s(.+?)\)', label).group(1) for label in labels]
fee_escritorio_sucesso_graph.legend(editar_labels,bbox_to_anchor=(1,1), loc=0)
fee_escritorio_mensal = df_base.groupby(['escritorio']).agg({
                   'valor_fee_mensal': [('Total Mensal', 'sum')]
fee_escritorio_mensal_graph = pd.concat([fee_escritorio_mensal],axis=1).plot.bar()
fee_escritorio_mensal_graph.set_title('Valor de Fee de Mensal por escritorio')
handler, labels = fee_escritorio_mensal_graph.get_legend_handles_labels()
editar_labels = [re.search(',\s(.+?)\)', label).group(1) for label in labels]
fee_escritorio_mensal_graph.legend(editar_labels,bbox_to_anchor=(1,1), loc=0)
fee_escritorio_transacao = df_base.groupby(['escritorio']).agg({
                   'valor_da_transacao': [('Total Transação', 'sum')]
                  })
fee_escritorio_transacao_graph = pd.concat([fee_escritorio_transacao],axis=1).plot.bar()
fee_escritorio_transacao_graph.set_title('Valor de Transação por escritorio')
handler, labels = fee_escritorio_transacao_graph.get_legend_handles_labels()
editar_labels = [re.search(',\s(.+?)\)', label).group(1) for label in labels]
fee_escritorio_transacao_graph.legend(editar_labels,bbox_to_anchor=(1,1), loc=0)
```

Coluna Data Início

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['data_inicio'].describe())
```

• quantidade de negocios ano e por area

Coluna Tipo

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['tipo'].describe())

# dados distintos
print("\nDados distintos")
print(df_base['tipo'].unique())

Informações da coluna:
```

1959

count

```
unique 4
top Lead
freq 737
Name: tipo, dtype: object

Dados distintos
['Lead' 'Projeto' 'Proposta' 'Pré-Lead']
```

quantidade de negócios por tipo

```
df3 = df_base.groupby(['tipo']).agg({'nome':'count'}).reset_index()
df3.rename(columns={'nome': 'T_Tipo_Neg'}, inplace=True)
df3
```

percentual de negócios por tipo e status

g2

Coluna Duração negócio

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['diferenca_dias_inclusao_conclusao'].describe())
```

média de dias por area e status

Coluna Valor Mensal

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_fee_mensal'].describe())
# dados distintos
print("\nSoma Total")
print(df_base['valor_fee_mensal'].sum())
```

Multivariada

• valor mensal por tipo e area

```
valor_mensal_por_tipo_area =
df_base[df_base['valor_fee_mensal']>0].groupby(['tipo', 'area']).agg({
                 'valor_fee_mensal':'sum'}).reset_index()
valor_mensal_por_tipo_area.rename(columns={'valor_fee_mensal': 'Total_Feed_Mensal'},
inplace=True)
valor_mensal_por_tipo_area

    média dos valores mensais por tipo e area

media_valor_mensal_por_tipo_area =
df_base[df_base['valor_fee_mensal']>0].groupby(['tipo','area']).agg({
                 'valor_fee_mensal':'mean'}).reset_index()
media_valor_mensal_por_tipo_area.rename(columns={'valor_fee_mensal':
'Média Feed Mensal'}, inplace=True)
media_valor_mensal_por_tipo_area
Coluna Valor Fee Sucesso
Univariada
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_fee_sucesso'].describe())
```

Informações da coluna: 1959.00 count 474380.18 mean std 1581692.31 0.00 min 25% 0.00 50% 0.00 75% 95000.00 4000000.00 max Name: valor_fee_sucesso, dtype: float64

• média dos valores sucesso por tipo e area

```
df6 = df_base[df_base['valor_fee_sucesso'] > 0]\
    .groupby([df_base['area'], df_base["tipo"]])\
.agg({'valor_fee_sucesso':'mean'}).round(2).reset_index().sort_values(['area','valor_fee_sucesso']
,ascending=False)
df6.rename(columns={'valor_fee_sucesso': 'Média_Feed_Sucesso'}, inplace=True)
df6
grafico2 = df_base[df_base["tipo"] != 'Lead'][df_base["tipo"] !=
'Pré-Lead'][df_base['valor_fee_sucesso'] > 0]\
    .groupby([df_base['area'], df_base["tipo"]])\
    .agg({'valor_fee_sucesso':'mean'}).round(2)\
    .unstack().plot(figsize=(15,10), kind='barh', grid=True)
grafico2.set_title('Média de Valores de Sucesso x Tipo x Area', fontsize=25)
grafico2.set_xlabel('Média de Valor de Sucesso')
grafico2.set_ylabel('Area')
plt.xticks(rotation=0)
handler, labels = grafico2.get_legend_handles_labels()
editar_labels2 = [re.search(',\s(.+?)\)', label).group(1) for label in labels]
grafico2.legend(editar_labels2,bbox_to_anchor=(1,1), loc=0)
       Total de Valor Mensal por Tipo e Area
df7 = df_base[df_base['valor_fee_mensal'] > 0]\
    .groupby([df_base['area'], df_base["tipo"]])\
.agg({'valor_fee_mensal':'sum'}).round(2).sort_values(['area','valor_fee_mensal'],ascending=Fals
e).reset_index()
df7.rename(columns={'valor_fee_mensal': 'Total_Feed_Sucesso'}, inplace=True)
df7
grafico3 = df_base[df_base["tipo"] != 'Lead'][df_base["tipo"] !=
'Pré-Lead'][df_base['valor_fee_mensal'] > 0]\
```

```
.groupby([df_base['area'], df_base["tipo"]])\
    .agg({'valor_fee_mensal':'count'})\
    .unstack().plot(figsize=(15,10), kind='barh')
grafico3.set_title('Total de Valores Mensais x Tipo x Area', fontsize=25)
grafico3.set_xlabel('Valor Mensal')
grafico3.set_ylabel('Area')
plt.xticks(rotation=0)
handler3, labels3 = grafico3.get_legend_handles_labels()
editar_labels3 = [re.search(',\s(.+?)\)', label).group(1) for label in labels3]
grafico3.legend(editar_labels3,bbox_to_anchor=(1,1), loc=0)
```

Coluna Valor Transação

Univariada

```
# informações da coluna
print('Informações da coluna:')
print("\n",df_base['valor_da_transacao'].describe())

# Valor total
print("\nValor Total")
print(df_base['valor_da_transacao'].sum())

Valor Total
58845936427.5
```

Multivariada

valor de transação por tipo e area

```
df8.rename(columns={'valor_da_transacao': 'Total_Valor_Transação'}, inplace=True) df8
```

• média dos valores de transação por tipo e area

```
df8 = df_base[df_base['valor_da_transacao']>0].groupby(['tipo','area']).agg({
   'valor_da_transacao':'mean'}).reset_index().sort_values(['tipo','valor_da_transacao'],ascending=F
   alse)

df8.rename(columns={'valor_da_transacao': 'Média_Valor_Transação'}, inplace=True)
   df8
```

Insights com a target

- insight da base, ex:
- Duração dos negócios que não estão inativos é um fator decisório na classificação do interesse

```
base_g0 = df_base.query("diferenca_dias_inclusao_conclusao > 0 & status_atual != 'Inativo'")
plt.rcParams["figure.figsize"]=10,8
sns.kdeplot(data=base_g0, x="diferenca_dias_inclusao_conclusao", hue="class_interesse",
fill=True, cut=0, alpha=.5)
plt.ylabel('QTDE. Negócios')
plt.xlabel('Prazo Negócios')
```

 Tendência do valor de transação conforme o interesse (ex: negócios com interesses mais baixos são aqueles com valor de transação menores)

```
base_g1 = df_base.where((df_base['valor_da_transacao']>0) & (df_base['status_atual'] != 'Ativo') & (df_base['status_atual'] != 'Inativo')).dropna().sort_values('data_inicio', ascending=False) sns.relplot(data=base_g1, x="valor_da_transacao", y="nome", hue="class_interesse", kind="scatter", height=5) plt.yticks([]) plt.yticks([])
```

```
plt.xlabel('Valor Transações')
```

interesse de acordo com a area (se determinada area tende a ter um maior interesse)

```
df_ultimos_negocios_area = df_base[['area','interesse(target)', 'data_inicio', 'class_interesse', 'class_interesse_cat']].sort_values(by='data_inicio', ascending=False).head(100) sns.catplot(y="area", hue="class_interesse", kind="count", palette="pastel", edgecolor=".10",size=8, aspect = 1.5, data=df_base)
```

 como o status afeta o interesse (ex: negócios com maior interesse tendem a ser concluídos com sucesso)

 interesse ao longo do mês/ano (se o tempo é um fator decisório na classificação do interesse.....ex: ao longos dos anos o interesse veio aumentando ou diminuindo)

```
##Interesse ao longo do mês/ano
grafico5 = df_base[df_base['data_inicio'] >'2020-01-01']\
.groupby([df_base['data_inicio'].dt.strftime('%Y-%m'), df_base['class_interesse']])\
.agg({'nome':'count'})\
.sort_values(by='data_inicio', ascending=True)\
.unstack().plot(figsize=(20,8), kind='area')
grafico5.set_title('Interesse ao longo do mês/ano', fontsize=25)
grafico5.set_xlabel('Ano Data de Inicio')
```

```
grafico5.set_ylabel('Quantidade de Negócios')
handler, labels = grafico5.get_legend_handles_labels()
editar_labels5 = [re.search(',\s(.+?)\)', label).group(1) for label in labels]
grafico.legend(editar_labels5,bbox_to_anchor=(1,1), loc=0)
```

#interesse de acordo com qtde_negocios_com_o_cliente

g.add_legend()

 interesse de acordo com qtde_negocios_com_o_cliente (se quanto maior a qtde de negócios com o cliente o interesse também é maior)

```
g = sns.FacetGrid(df_base, hue='class_interesse', size=5)
g.map(sns.scatterplot,'interesse(target)','qtde_negocios_com_o_cliente')
g.add_legend()

#interesse segue a tendencia entre valor de transação e valor fee de sucesso
g = sns.FacetGrid(df_base, hue='class_interesse', size=5, )
g.map(sns.scatterplot,'valor_da_transacao','valor_fee_sucesso')
```

Construção, validação e avaliação do Modelo

```
Colunas para modelo:
escritorio_cat,area_cat,tipo_cat,class_interesse_cat,qtde_negocios_com_o_cliente,
valor_da_transacao

#Coluna Escritório

df_base[['escritorio','escritorio_cat']].groupby('escritorio').agg({'escritorio_cat':'max'}).reset_index()

#Coluna Área

df_base[['area','area_cat']].groupby('area').agg({'area_cat':'max'}).reset_index()

#Coluna Tipo

df_base[['tipo','tipo_cat']].groupby('tipo').agg({'tipo_cat':'max'}).reset_index()
```

 Reclassificar a coluna class_interesse_cat para class_interesse_alto quando class_interesse_cat for igual a 1, caso contrário classificar com zero, repectivamente
 True e False

```
df_base[['class_interesse','class_interesse_cat']].groupby('class_interesse').agg({'class_interesse
_cat':'max'}).reset_index()
for i,row in df_base.iterrows():
  if row['class_interesse_cat'] == 0:
     df_base.at[i,'class_interesse_alto'] = int(1)
  else:
   df_base.at[i,'class_interesse_alto'] = int(0)
df_base[['class_interesse_cat','class_interesse_alto']].groupby('class_interesse_cat').agg({'class_i
nteresse_alto':'max'}).reset_index()
#Preparando DataFrame para o modelo
df_base_modelo =
df_base[['escritorio_cat','area_cat','tipo_cat','class_interesse_alto','qtde_negocios_com_o_cliente'
,'valor_da_transacao']]
df_base_modelo['class_interesse_alto'] = df_base_modelo["class_interesse_alto"].astype(int)
X2= df_base_modelo[['area_cat','tipo_cat','qtde_negocios_com_o_cliente','valor_da_transacao']]
Y2= df_base_modelo[['class_interesse_alto']]
X_train, X_test, y_train, y_test = train_test_split(X2,Y2,test_size=0.2)
classifiers=[]
# MODELO 1 - XGB
param_grid1 = {'n_estimators': [400, 700, 1000],
         'colsample_bytree': [0.7, 0.8],
         'max_depth': [15,20,25],
         'reg_alpha': [1.1, 1.2, 1.3],
         'reg_lambda': [1.1, 1.2, 1.3],
         'subsample': [0.7, 0.8, 0.9]
```

}

```
model1 = xgboost.XGBClassifier()
classifiers.append(tuple([model1,param_grid1]))
## MODELO 2 - Decision Tree
param_grid2 = {'criterion': ['entropy', 'gini'],
          'max_depth':range(1,20),
          #'n_estimators':[90,100,115,130],
          'min_samples_leaf': range(1,4)
model2 = tree.DecisionTreeClassifier()
classifiers.append(tuple([model2,param_grid2]))
## MODELO 3 - Random Forest
param_grid3 = {'bootstrap': [True, False],
         'criterion': ['entropy', 'gini'],
         'max_depth': range(1,20),
         'max_features': ['auto'],
         'min_samples_leaf': [1, 2, 4],
         'min_samples_split': [2, 5, 10],
         'n_estimators': [90,100,115,130]
model3 = RandomForestClassifier()
classifiers.append(tuple([model3,param_grid3]))
## MODELO 4 - LGBM
param_grid4 ={'num_leaves': range(1, 20),
        'boosting_type': ['gbdt'],
        'max_depth': range(1,20),
        'n_estimators':[90,100,115,130],
        'min_data_in_leaf':[20]
model4 = lgb.LGBMClassifier()
classifiers.append(tuple([model4,param_grid4]))
classifiers
```

Out[]:

```
[(XGBClassifier(),
 {'colsample_bytree': [0.7, 0.8],
 'max_depth': [15, 20, 25],
 'n_estimators': [400, 700, 1000],
 'reg_alpha': [1.1, 1.2, 1.3],
 'reg_lambda': [1.1, 1.2, 1.3],
 'subsample': [0.7, 0.8, 0.9]}),
(DecisionTreeClassifier(),
 {'criterion': ['entropy', 'gini'],
 'max_depth': range(1, 20),
 'min_samples_leaf': range(1, 4)}),
(RandomForestClassifier(),
 {'bootstrap': [True, False],
 'criterion': ['entropy', 'gini'],
 'max_depth': range(1, 20),
 'max_features': ['auto'],
 'min_samples_leaf': [1, 2, 4],
 'min_samples_split': [2, 5, 10],
 'n_estimators': [90, 100, 115, 130]}),
(LGBMClassifier(),
 {'boosting_type': ['gbdt'],
 'max_depth': range(1, 20),
 'min_data_in_leaf': [20],
 'n_estimators': [90, 100, 115, 130],
 'num_leaves': range(1, 20)})]
mod=[]
for modelo, parametros in classifiers:
 print("-----\n"%(modelo))
 gs = GridSearchCV(
       estimator=modelo,
       param_grid=parametros,
       cv=3,
       n_jobs=-1,
       verbose=2)
 fitted_model = gs.fit(X_train, y_train)
 print("#Acurácia do Teste:
                                   \n ",fitted_model.best_score_)
```

```
print("#Melhores Parâmetros para o modelo:\n ",fitted_model.best_params_)
 y_pred= fitted_model.predict(X_test)
 acc = accuracy_score(y_test, y_pred)
 print("#Acurácia do Modelo:
                                    \n %s"%(acc))
 mod.append({'modelo':modelo, 'melho_modelo':fitted_model, 'y_pred':y_pred})
 cm = confusion_matrix(y_test, y_pred)
 tn, fp, fn, tp = cm.ravel()
 cm_reorganizada = np.array([[tp, fn], [fp, tn]])
 print("#Matriz de Confusão:
                                    \n %s"%(cm_reorganizada))
------ MODELO - XGBClassifier() ------
Fitting 3 folds for each of 486 candidates, totalling 1458 fits
#Acurácia do Teste:
 0.8404662656986782
#Melhores Parâmetros para o modelo:
 {'colsample_bytree': 0.8, 'max_depth': 15, 'n_estimators': 400, 'reg_alpha': 1.3, 'reg_lambda':
1.2, 'subsample': 0.8}
#Acurácia do Modelo:
0.8035714285714286
#Matriz de Confusão:
[[ 12 62]
[ 15 303]]
----- MODELO - DecisionTreeClassifier() ------
Fitting 3 folds for each of 114 candidates, totalling 342 fits
#Acurácia do Teste:
 0.8442915784512671
#Melhores Parâmetros para o modelo:
 {'criterion': 'gini', 'max_depth': 3, 'min_samples_leaf': 1}
#Acurácia do Modelo:
0.8035714285714286
#Matriz de Confusão:
[[ 4 70]
[ 7 311]]
```

```
----- MODELO - RandomForestClassifier() ------
Fitting 3 folds for each of 2736 candidates, totalling 8208 fits
#Acurácia do Teste:
 0.8468421939444554
#Melhores Parâmetros para o modelo:
 {'bootstrap': True, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 4,
'min_samples_split': 5, 'n_estimators': 90}
#Acurácia do Modelo:
0.798469387755102
#Matriz de Confusão:
[[ 6 68]
[11 307]]
----- MODELO - LGBMClassifier() ------
Fitting 3 folds for each of 1444 candidates, totalling 4332 fits
#Acurácia do Teste:
 0.8462060662891414
#Melhores Parâmetros para o modelo:
 {'boosting_type': 'gbdt', 'max_depth': 2, 'min_data_in_leaf': 20, 'n_estimators': 115, 'num_leaves':
3}
#Acurácia do Modelo:
0.8010204081632653
#Matriz de Confusão:
[[ 5 69]
[ 9 309]]
```

Interpretação dos Resultados

Resultados obtidos na análise

Exploração de dados

#Exploração dos dados coletados dos 4 modelos analisados.

```
for i in mod:
 print('MODELO -',i['modelo'])
 print('#Melhores Parâmetros do Modelo: ',i['melho_modelo'].best_params_)
 print('#Acurácia do Teste:
                                  ',round(i['melho_modelo'].best_score_*100, 2),'%')
 print('#Acurácia do Modelo:
                                    ',round(accuracy_score(y_test, i['y_pred'])*100, 2),'%')
 print("\n#Visualização da importância de cada campo para o modelo:")
 best_rf = i['melho_modelo'].best_estimator_
 feat_importances = pd.Series(best_rf.feature_importances_, index=X_train.columns)
 feat_importances.nlargest(10).plot(kind='barh', figsize=(6, 6))
 plt.show()
 print("\n#Visualização da Matriz de Confusão:")
 conf_matrix = confusion_matrix(y_true=y_test, y_pred=i['y_pred'])
 tn, fp, fn, tp = conf_matrix.ravel()
 cm_reorganizada = np.array([[tp, fn], [fp, tn]])
 fig, ax = plot_confusion_matrix(conf_mat=cm_reorganizada, figsize=(6, 6))
 plt.xticks([])
 plt.yticks([])
 plt.annotate('VP', (0.05,0.02), fontweight='bold')
 plt.annotate('FN', (1.06,0.02), fontweight='bold')
 plt.annotate('FP', (0.05,1.02), fontweight='bold')
 plt.annotate('VN', (1.06,1.02), fontweight='bold')
 plt.xlabel('Predição', fontsize=18)
 plt.ylabel('Real', fontsize=18)
 plt.show()
 print('\n#Visualização do relatório de classificação:')
 target names = ['0 - Não Altos', '1 - Altos']
 print(classification_report(y_test, i['y_pred'], target_names=target_names),'\n')
 print('-----
                                                                                        --\n')
MODELO - XGBClassifier()
#Melhores Parâmetros do Modelo: {'colsample bytree': 0.8, 'max depth': 15, 'n estimators': 400,
'reg_alpha': 1.3, 'reg_lambda': 1.2, 'subsample': 0.8}
#Acurácia do Teste:
                            84.05 %
#Acurácia do Modelo:
                              80.36 %
```

#Visualização da importância de cada campo para o modelo:

#Visualização da Matriz de Confusão:

#Visualização do relatório de classificação:

precision recall f1-score support

0 - Não Altos 0.83 0.95 0.89 318 1 - Altos 0.44 0.16 0.24 74

accuracy 0.80 392 macro avg 0.64 0.56 0.56 392 weighted avg 0.76 0.80 0.76 392

MODELO - DecisionTreeClassifier()

#Melhores Parametros do Modelo: {'criterion': 'gini', 'max_depth': 3, 'min_samples_leaf': 1}

#Acurácia do Teste: 84.43 %

#Acurácia do Modelo: 80.36 %

#Visualização da importância de cada campo para o modelo:

#Visualização da Matriz de Confusão:

#Visualização do relatório de classificação:

precision recall f1-score support

0 - Não Altos 0.82 0.98 0.89 318 1 - Altos 0.36 0.05 0.09 74

accuracy 0.80 392 macro avg 0.59 0.52 0.49 392 weighted avg 0.73 0.80 0.74 392

MODELO - RandomForestClassifier()

#Melhores Parâmetros do Modelo: {'bootstrap': True, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 90}

#Acurácia do Teste: 84.68 %

#Acurácia do Modelo: 79.85 %

#Visualização da importância de cada campo para o modelo:

#Visualização da Matriz de Confusão:

#Visualização do relatório de classificação:

precision recall f1-score support

0 - Não Altos 0.82 0.97 0.89 318 1 - Altos 0.35 0.08 0.13 74

accuracy 0.80 392 macro avg 0.59 0.52 0.51 392 weighted avg 0.73 0.80 0.74 392

MODELO - LGBMClassifier()

#Melhores Parâmetros do Modelo: {'boosting_type': 'gbdt', 'max_depth': 2, 'min_data_in_leaf':

20, 'n_estimators': 115, 'num_leaves': 3}

#Acurácia do Teste: 84.62 %
#Acurácia do Modelo: 80.1 %

#Visualização da importância de cada campo para o modelo:

#Visualização da Matriz de Confusão:

#Visualização do relatório de classificação:

precision recall f1-score support

0 - Não Altos 0.82 0.97 0.89 318 1 - Altos 0.36 0.07 0.11 74

accuracy 0.80 392 macro avg 0.59 0.52 0.50 392 weighted avg 0.73 0.80 0.74 392
