

Particule dans un potentiel constant par morceaux - étude des états stationnaires

FIGURE XXII.1 – Puce de silicium visualisée à l'aide d'un microscope à effet tunnel.

PLAN DU CHAPITRE

Ι	Pos	ition du problème	3
	I.1	Particule face à un potentiel : premier exemple de la jonction PN	3
	I.2	La modélisation en marche de potentiel - problématique	4
II	Etu	de complète des états stationnaires de la particule pour la marche de potentiel	4
	II.1	Equation de Schrödinger indépendante du temps	5
		a - Etablissement	5
		b - Conditions de raccordement (***)	5
	II.2	Cas $E>V$: probabilité de transmission et réflexion	6
		a - Résolution complète par morceaux	6
		b - Exploitation du "raccordement"	7

		c - Coefficients de transmission et réflexion de courant de probabilité	8
	II.3	Cas $0 < E < V$: onde évanescente	9
		a - Résolution complète	9
		b - Coefficients de transmission et réflexion - réflexion totale $\dots \dots$	10
		c - Quelques ordres de grandeurs pour δ	11
	II.4	Simulations	11
III	Fran	chissement d'une barrière finie de potentiel dans le cas $E < V$: l'effet tunnel	11
	III.1	Situation du problème - intérêt	11
	III.2	Principe de résolution par morceaux	11
	III.3	Raccordement - coefficient de transmission	13
	III.4	Cas limite E«V - exemple d'exploitation - ordres de grandeur	13
	III.5	Exemples d'applications de l'effet tunnel	15

