1-3-1: Achieving Cloud Observability Using Tracing

After completing this episode, you should be able to:

• Identify and explain the importance of tracing to cloud observability, given a scenario.

Description: In this episode, the learner will examine tracing, tracing components, such as traces, spans, annotations, and exporters. We will explore the benefits of leveraging to achieve cloud observability.

- Describe tracing
 - o The practice of monitoring and recording information about software executions, specifically within distributed systems.
- Describe the purpose of tracing
 - o Helps in understanding the journey and behavior of requests as they flow through various services and components of cloud-based applications and infrastructure.
 - o Targets the latency, failures, and overall performance of individual requests or transactions.
- Describe the benefits of tracing to cloud observability
 - o Performance optimization
 - ♠ Help identify bottlenecks in the system by providing a detailed breakdown of where time is spent in a distributed transaction.
 - o Error diagnosis
 - It enables developers to pinpoint the exact service or operation where a failure occurs
 - ♠ Facilitates quicker root cause analysis
 - o Service dependency analysis
 - ◆ Tracing visually represents interactions between services, helping understand dependencies and the impact of one service on another.
 - o Capacity planning
 - Analyzing trace data can help organizations better understand usage patterns and plan capacity accordingly to ensure performance and scalability. (demo resource scaling options)
 - o Improved user experience
 - ♠ Tracing can contribute to optimizing application performance and reliability by reducing downtime and slow response times.
- Describe a real-world example of performing tracing in a cloud environment
 - o Using the Performance Diagnostic feature in Azure on a cloud resource, such as a server, application, or service.

Additional References

- Traces represents the complete lifecycle of a single user request or transaction as it traverses through the different services in a system.
- Spans represents a specific unit of work or operation within a service, with each trace comprised of multiple spans.
- Annotations metadata added to spans to provide additional details about the execution, which can include:
 - o Timestamps
 - o Events
 - o Other key-value information
- Trace exporters components that send trace data to a backend system or observability platform for storage and analysis.