MATH 633 (HOMEWORK 5)

HIDENORI SHINOHARA

Exercise. (Problem 1)

Exercise. (Problem 2)

Exercise. (Problem 3) p(z) = az + b with $a \neq 0$ are the only bijective polynomials.

By the fundamental theorem of algebra, every polynomial p(z) with coefficients in \mathbb{C} is of the form $a \prod_{i=1}^{n} (z - a_i)$ for $a \neq 0, a_1, \dots, a_n \in \mathbb{C}$. If $a_i \neq a_j$ for some i, j, then p cannot be injective. Thus any bijective polynomials must be of the form $a(z-b)^n$ for some $a \neq 0$ and $b \in \mathbb{C}$. If $n \geq 2$, then $p(\omega + b) = a\omega^n = a$ where $\omega = e^{2\pi i j/n}$ where $j = 0, \dots, n-1$. Thus n=1 if the polynomial is injective. In other words, any bijective polynomial must be linear.