GENERAL ELECTRIC CO PHILADELPHIA PA RE-ENTRY AND ENV--ETC F/G 20/5 STUDY OF LASER EFFECTS ON HEAT SHIELD MATERIALS, (U)
JAN 79 P D ZAVITSANOS, J A GOLDEN, W G BROWNE DAAG29-76-C-0043 AD-A066 068 ARO-14077.1-MSX NL UNCLASSIFIED OF AD 86068 END DATE 5 - 79 DDC

PREPARED FOR

U.S. ARMY RESEARCH OFFICE POST OFFICE BOX 12211 RESEARCH TRIANGLE PARK, NC 27709

CONTRACT NO. DAAG29-76-C-9943

PREPARED BY

GENERAL ELECTRIC CO.
RE-ENTRY AND ENVIRONMENTAL SYSTEMS DIVISION
3198 CHESTNUT STREET
PHILADELPHIA, PA 19101

404 884

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

79 03 19 035

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION F	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. JOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) STUDY OF LASER EFFECTS ON HEAT SHIP	ELD MATERIALS	5. TYPE OF REPORT & PERIOD COVERED Final Report	
		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)	
P.D. Zavitsanos J.A. Golden W.G. Browne		DAAG29-76-C-0043	
9. PERFORMING ORGANIZATION NAME AND ADDRESS General Electric Company / Re-entry & Environmental Systems D 3198 Chestnut Street, Philadelphia		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
U. S. Army Research Office		January, 1979	
P. O. Box 12211		13. NUMBER OF PAGES 35	
Research Triangle Park, NC 27709 14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)	
		Unclassified	
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Laser irradiation, heat shield materials, materials interaction with laser, carbon dioxide laser, carbon phenolic, phenolic asbestos, silica phenolic, phenolic resin, ATJ graphite, gas sampling.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

An experimental study of CO2 laser heating of heat shield materials has been conducted. The interaction of carbon phenolic, silica phenolic, phenolic asbestos, ATJ graphite and phenolic resin with a CW 100 watt and a CW 10 KW CO2 laser has been examined. Experiments at power densities of 10^1-10^4 watts/cm² induce mass losses of $1-4\times10^{-5}$ g/joule in phenolic-containing materials, mass losses from ATJ graphite are an order of magnitude lower. Sampling and mass spectrometric analysis of gases emanating from the laser interaction zone was also carried out.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

TABLE OF CONTENTS

		PAGE
I.	INTRODUCTION	1
11.	EXPERIMENTAL APPROACH	2
	A. Parameters Measured	2
	B. 100 Watt Laser System	3
	C. 10 KW Laser System	5
III.	RESULTS AND DISCUSSION	7
	A. Materials Studied and Range of Conditions	7
	B. Temperature History Data	8
	C. Ablation Rate Data (Weight Loss)	18
	D. Gaseous Species	29
IV.	REFERENCES	31

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Experimental Apparatus - 100 Watt Laser System	4
2	Experimental Apparatus - 10 KW Laser System	6
3	Laser Irradiated Carbon Phenolic Temperature vs. Time	15
4	Laser Irradiated Phenolic Asbestos Temperature vs. Time	16
5	Laser Irradiated Silica Phenolic Temperature vs. Time	17
6	Carbon Phenolic Mass Loss per Unit Energy vs. Laser Power Density	19
7	Silica Phenolic Mass Loss per Unit Energy vs. Laser Power Density	20
8	ATJ Graphite Mass Loss per Unit Energy vs. Laser Power Density	21
9	91LD Phenolic Resin Mass Loss per Unit Energy vs. Laser Power Density	22
10	Phenolic Asbestos Mass Loss per Unit Energy vs. Laser Power Density	23
11	Carbon Phenolic Mass Loss Flux vs. Power at Sample Surface	24
12	Silica Phenolic Mass Loss Flux vs. Power at Sample Surface	25
13	ATJ Graphite Mass Loss Flux vs. Power at Sample Surface	26
14	Phenolic Asbestos Mass Loss Flux vs. Power at Sample Surface	27

LIST OF TABLES

TABLE		PAGE
1	Data Summary 100 Watt CO ₂ Laser Experiments - Carbon Phenolic Samples	9
2	Data Summary 10 KW CO ₂ Laser Experiments - Carbon Phenolic Samples	10
3	Data Summary 100 Watt and 10 KW CO ₂ Laser Experiments - Phenolic Asbestos Samples	11
4	Data Summary 10 KW CO ₂ Laser Experiments - Silica Phenolic Samples	12
5	Data Summary 10 KW CO ₂ Laser Experiments - ATJ Graphite Samples	13
6	Data Summary 100 Watt CO ₂ Laser Experiments - 91LD Phenolic Resin	14
7	Mass Spectra Observed During Laser Heating of Phenolic Resin (GE 91LD)	30

I. INTRODUCTION

Materials of the type used for heat shields on re-entry vehicles undergo varying degrees of property and characteristic changes as a result of exposure to laser radiation in a space type environment at flux levels ranging from about 1 watt (cm²) up to flux levels in excess of 10,000 watts/cm2 These changes are, in general: (a) outgassing and depolymerization of the resin binder at low heat fluxes with potential loss in strength and/or delamination of the shield; (b) surface charring and high rates of outgassing and material decomposition/vaporization at intermediate heat fluxes and; (c) excessive rates of outgassing and material vaporization and shield thickness reduction at high heat fluxes. Thus a re-entry vehicle heat shield exposed to laser radiation in a space environment may provide inadequate protection during entry for reasons of reduced structural capability or inadequate remaining shield thickness. Also the heat soak into the shield and structure resulting from exposure times of several minutes may result in unacceptably high levels of temperature for the vehicle substructure or payload prior to or during entry.

To assess the importance of exoatmospheric laser heating to weapon system missions involving re-entry vehicles, it is necessary to conduct a systematic study of the response of generic classes of thermal protection materials (carbon phenolic, asbestos phenolic, phenolic refrasil and carbon) to varying radiative fluxes and exposure times. With these data and a detailed understanding of thermal protection material behavior and specific re-entry vehicle mission requirements, it will be possible to assess the adequacy of existing weapon systems against this threat. Also,

countermeasure approaches can be planned or defined if the threat is found to be unacceptably severe.

Although laser radiation exposure above about 500 watts/cm² results in very rapid material removal or loss the laser radiation flux range of 10 to about 100 watts/cm² appears to be of the greatest importance from the standpoint of studying the radiative response of thermal protection materials. Under these heating conditions, particularly with fluctuating or cyclical temperatures, organic resin bonded refractory fiber composites tend to have poor structural integrity. The tendency of the composite to warp, crack or delaminate under exposure is a complex function of the char forming characteristics of the resin and the thermal conductivity, surface area and chemical stability of the fibers. Thus the selection of phenolic based composites reinforced with carbon, refrasil or silica and asbestos for study will result in much detailed understanding of the importance of fiber-matrix interaction in controlling laser radiation induced structural damage.

II. EXPERIMENTAL APPROACH

A. Parameters Measured

A system was set up to heat cylindrical plug samples of shield materials in vacuum or in air at atmospheric pressure. Samples were heated by CO_2 laser irradiation. Two series of experiments were performed, the first with a 100 watt C.W. laser and the second with a 10 kilowatt C.W. laser.

Instrumentation was set up to measure the following parameters during sample irradiation:

	MEASUREMENT	INSTRUMENT
1	Surface Temperature vs. Time	Radiation Pyrometer (2-2.5 µm pass band)
2	Subsurface Temperature vs. Time	Chromel-Alumel Thermocouple
3	Pressure Rise	Wallace & Tiernan Ab s olute Pressure Gage
4	Gaseous Species Produced from Laser Heating	Gas Chromatograph and Time of Flight Mass Spectrometer
5	Mass Loss	Balance

B. 100 Watt Laser System

Figure 1 shows a diagram of the experimental apparatus. The output beam (1.5 cm diameter) from a 100 watt CW CO₂ laser (A) is passed through a KBr beam splitter (B) and a Germanium meniscus condensing lens (C) onto the surface of the shield material sample to be heated. A chromel-alumel thermocouple bead is imbedded on axis in the cylindrical plug sample midway between the ends. The sample is mounted in a pyrex vacuum vessel (D) connected to a sampling flask (E) which collects an integrated gas sample for gas chromatographic analysis and a gas sampling valve (F) which is attached to a Bendix Model 12 Time-of-Flight mass spectrometer (G). A mass spectrum of gases produced from the heated shield sample can be recorded at about 10 sec. intervals during a run. Surface temperature is measured with an IRCON Co model 300 Radiation Pyrometer (2-2.5 µm band pass). The pyrometer detects radiation from a 1.5 mm diameter spot

FIGURE 1 . EXPERIMENTAL APPARATUS - 100 WATT LASER SYSTEM

on the front surface of the sample. Power density (watts/cm²) at the sample surface is monitored with a Coherent Radiation Co Model 201 Power Meter. A portion of the CO2 laser beam (approximately 10% of the total power in the beam) is reflected from the KBr beam splitter into the laser power meter for this measurement. Calibration of the laser power monitor is accomplished by replacing the pyrex vacuum vessel (D) with a second laser power meter located in the same plane as the plug sample surface. A measurement of the ratio of power transmitted through all optical components to that reflected into the laser power monitor (E) as a function of laser operating power level provides the calibration data. A multichannel oscillograph is used to record the time history of pressure, temperature, and power level from the instrumentation shown in Figure 1.

C. 10 KW Laser System

The GE 10 KW CW ${\rm CO}_2$ Laser Facility was used for this work. A detailed description of the facility is given in Reference 1. The output beam from this laser is 9 cm diameter and the power level in the beam is variable from a few hundred watts to ten kilowatts.

Figure 2 shows a diagram of the experimental setup. The output beam of the laser (A) passes through a salt beam splitter (B) to monitor power at the detector (C). The main beam is reflected from a flat mirror (D) onto a concave mirror (E) which serves to condense the beam onto the surface of the sample.

FIGURE 2 . EXPERIMENTAL APPARATUS - 10 KW LASER SYSTEM

the special and special and the second second

A cylindrical copper vacuum vessel (F) was used in place of the pyrex vessel shown in Figure 1. In this vessel the laser beam entrance and the pyrometer viewing KBr windows were mounted at the end of 30 cm extension tubes to minimize the build-up of ablation product condensation. This arrangement was effective up to 2000 W/cm² heat load. At 2000 W/cm² graphite vaporizes from the shield sample and forms an opaque film on the salt windows. The film absorbs a portion of the incoming laser radiation, the window is rapidly overheated and fractures. As a result, all experiments above this power level were carried out at atmospheric pressure.

The remainder of the instrumentation used in the high power work was the same as shown in Figure 1 except that no in situ mass spectra were obtained.

III. RESULTS AND DISCUSSION

A. Materials Studied and Range of Conditions

Three R/V shield materials were studied along with GE 91LD phenolic resin. This resin is one of the components of the carbon phenolic heat shields. Also several baseline experiments were performed with ATJ graphite samples. Following is a listing of the materials examined:

- 1. Carbon Phenolic
- 2. Phenolic Asbestos
- 3. Silica Phenolic
- 4. ATJ Graphite
- 5. 91LD Phenolic Resin

Cylindrical plug samples (6.3 mm diameter x 10 mm) of the above materials were irradiated at power levels ranging from 10 to 9100 W/cm^2 at exposure times from 1 to 60 seconds. Experiments were run in air at 1 atmosphere and in vacuum (.05 - 1.5 torr).

A summary of the data obtained is given in Tables 1 through 6.

B. Temperature History Data

The measured surface temperature is shown in Figures 3 through 5 versus the laser irradiation time for carbon phenolic, phenolic asbestos and silica phenolic specimens respectively. The carbon phenolic surface temperatures in Figure 3 display a pronounced maxima at early times <4 secs when irradiated by 10 KW laser heat fluxes ≥ 650 watts/cm². A substantial falloff in temperature occurs at longer times for these conditions. The temperature peak and rapid falloff behavior exhibited at 10 KW laser fluxes ≥ 650 watts/cm² is associated with a change in the emissivity of the char as a function of time. Carbon phenolic surface temperatures increase monotonically with irradiation time for 100 W CO $_2$ CW laser heat fluxes ≤ 44 watts/cm². The intermediate laser heat flux range ~ 100 to 500 watts/cm² displays the same temporal characteristic of a broad maxima followed by a virtual isothermal zone. The anomaly of the juxtaposition of the 115 watts/cm² data with the 100 watt laser and the 325 watts/cm² data with the 10 KW laser has not been resolved.

The phenolic asbestos surface temperatures shown in Figure 4 reach their maximum values in ~ 5 seconds. The remainder of the irradiation period is uneventful. Carbon phenolic specimens reach higher temperatures than phenolic asbestos specimens under comparable irradiation conditions.

TABLE 1. DATA SUMMARY 100 WATT CO2 LASER EXPERIMENTS --- CARBON PHENOLIC SAMPLES

			TEMPE AT FND	TEMPERATURE							
RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE	SURFACE	MID POINT OF SAMPLE	TOTAL	MASS LOSS TAL RATE	MAJOR	MAJOR GASEOUS ABLATION PRODUCTS ppm	ABLAT	TON PRO	DUCTS
	w/cm ²	sec	၁°	ွ	80 E	mg/cm²-sec	Н2	Н20	8	200	HC's
			030	Č.							
LEI	10	00	760	20	*			8600	:	:	:
LE2	NO LASER EXP.	GC BACKGROUND CALIBRATION	ND CALIBRAT	LION				0099	:	:	:
LE3	10	09	412	220	5.5	.290		12800	1	:	*
LE4	15	09	209	295	16.3	.860		11000	:	114	*
LES	23	09	140	*	15.0	.791		4878	184	744	100
LE15	36	09	790	180	12.5	959.					
LE6	77	09	820	246	18.0	676.		4800	27	512	20
LE7	77	09	882	239	15.5	.817		2400	54	92	7.5
LE8	100	09	1050	280	31.5	1.66					
LE9	115	09	1390	*	29.0	1.53					
LE16	135	09	1335	270	29.0	1.53					
LE43	4840	4.1	NO DATA		8.4	11.70					

* MEASUREMENT NOT MADE

NOTES: THE LASER BEAM DIAMETER OF THE SAMPLE WAS . 635 CM FOR ALL RUNS EXCEPT LE43 WHICH WAS .1 CM

ALL EXPERIMENTS WERE RUN AT .05 TORR EXCEPT LE43 WHICH WAS AT 760 TORR.

DATA SUMMARY 10 KW CO2 LASER EXPERIMENTS---CARBON PHENOLIC SAMPLES TABLE 2.

	POWER DENSITY	EXPOSURE	TEMPE AT END	TEMPERATURE AT END OF RUN MID POINT	MAS	MASS LOSS	MAJOR	MAJOR GASEOUS ABLATION PRODUCTS	S ABLAT	TON PRO	DUCTS
RUN #	(AT SAMPLE SURFACE)	TIME	SURFACE	OF SAMPLE	TOTAL	RATE			mdd		1
	w/cm ²	sec	၁	၁၀	8	mg/cm²-sec	Н2	н20	8	200	IIC's
LE31	325	30	1280		62	6.5	23.27	56.61	10.86	5.62	3.64
*LE17	340	09	1570		90.5	4.8					
LE18	630	15	2180		83.5	17.71	19.92	34.9	3.06	1.22	62.6
LE25	650	15	1440		73.7	15.5	25.91	4.84	10.94	4.42	60.4
LE40A	650	15	1250		7.2 5		28.33	48.36	12.44	4.42	3.52
LE40B	650	11.5	1280	5	(77)						
LE20	655	15	2635		0.06	18.9	11.98	23.67	31.77	1.13	
LE 28	970	10	1675		79.4	25.1	19.85	17.06	8.53	1.05	3.54
LE19	1000	15	2325		100.0	21.1	21.35	26.5	3.81	1.35	13.87
LE34	1250	80	1600		9.08		27.53	49.07	11.67	3.71	4.55
LE37	1500	6.5	1825		76.0		31.51	47.27	12.98	3.61	4.26
*LE21	2000	7.5	2920		156.0	65.7	15.89	6.35	19.95	2.37	
LE22	4050	3.75	2800	e,	159.0	133.9			8	18	
*LE23	2000	8	SUASSUE	OK SPREEK	132.5						
LE48	2000	2	2150	MID POLINE	80.3	126.8					
LE51	7150	1.4	1890		83.5	188.4					
LE54	9100	1.1	1810		75.3	216.4					
*TD LITNING	TO ATTACA TO THE TANK OF THE T										

TABLE 3. DATA SUMMARY 100 WATT AND 10 KW CO2 LASER EXPERIMENTS---PHENOLIC ASBESTOS SAMPLES

* NIA	POWER DENSITY	EXPOSURE	TEMPERATURE AT END OF RUN MID POINT SURFACE OF SAMPLE	101	MASS LOSS FAL. RATE	MAJOR	MAJOR GASEOUS ABLATION PRODUCTS	S ABLA	TION PRO	DUCTS
	w/cm ²	sec			8	H ₂	Н20	8	200	HC's
LE32	350	30	1280	111.3	11.7					
LE26	009	15	1675	118.9	25.1					
LE29	970	10	1750	123.5	39.1				•	
LE44	\$0 *	. 09	×	37.1	1.95					
LE45	100*	33	×	35.8	3.43					
LE35	1250	œ	1850	130.4	51.5					
LE38	1500	6.5	1550	130.9	63.6					
LE47	2000	5	1700	101.9	160.9					
LE42	2095*	4.5	×	9.7	274.7					
LE41	5350*	4.1	×	9.6	292.1					
LE50	7150	1.4	2050	105.5	238.1					
LE53	9100	1.1	1950	107.8	309.8					

*100 WATT LASER RUNS

X = MEASUREMENT NOT MADE

TABLE 4. DATA SUMMARY 10 KW CO2 LASER EXPERIMENTS---SILICA PHENOLIC SAMPLES

			TEMPE AT END	TEMPERATURE AT END OF RUN							
RUN #	(AT SAMPLE SURFACE)	EXPOSURE	SURFACE	MID POINT OF SAMPLE	MAS	MASS LOSS AL RATE	MAJOR	GASEOU	S ABLA'	MAJOR GASEOUS ABLATION PRODUCTS PPm	ODUCTS
1627	w/cm ²	sec	ပ္	ွ	8	mg/cm²-sec	H ₂	н20	8	200	IIC's
								×			
LE33	325	30	1210		9.65	5.2					
LE 27	620	15	1650		9.09	12.8					
LE30	1030	10	1350	•	100.9	31.9					
LE36	1250	80	1675		90.2	35.6					
LE39	1500	6.5	1800		93.2	45.3					
LE46	2000	2	1825		74.3	117.3					
LE49	7150	1.4	1850		113.1	255.0					
LE52	9100	1.1	1810		92.8	266.0					

DATA SUMMARY 10 KW CO2 LASER EXPERIMENTS---ATJ GRAPHITE SAMPLES TABLE 5.

			TEMPE AT END	TEMPERATURE AT END OF RIN							
RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE	SURFACE	MID POINT OF SAMPLE	MAS	MASS LOSS TAL RATE	MAJOR	CASEOUS	S ABLAT	MAJOR GASEOUS ABLATION PRODUCTS Ppm	DDUCTS
	w/cm ²	sec	၀	္မွ	8	mg/cm²-sec	Н2	Н20	8	00 00	HC's
LE48A	2000	2.0	1350		0.2	0.31					
LESIA	7150	1.4	1700		2.3	5.20					
LE 54A	9100	1.1	2100		2.5	7.20					
LE56	9100	3.0	2550		15.7	16.6					
LE55	9100	5.0	2400		19.7	12.5					
LES7	9100	8.0	2400		8.44	17.71					

TABLE 6. DATA SUMMARY 100 WATT CO2 LASER EXPERIMENTS---91LD PHENOLIC RESIN

			AT END	TEMPERATURE AT END OF RUN							
RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE	SURFACE	MID POINT OF SAMPLE	MAS	MASS LOSS FAL RATE	MAJOR	CASEOU	S ABLA'	MAJOR GASEOUS ABLATION PRODUCTS	ODUCTS
	w/cm ²	sec	၁့	ွ	8	mg/cm ² -sec	Н2	Н20	8	002	HC's
LE10	10	09	520	75	10	.527					
LE11	87	09	1300	150	;	-					
LE12	23	09	006	120	35	1.84					
LE13	102	09	1645	:	78.5	4.14					
LE14	73	09	1305	180	28	3.05					
1831											

The first of the first of the first of the

Figure 5 shows the temporal response of silica phenolic to irradiation by the 10 KW CW $\rm CO_2$ laser in air at 1 torr pressure. The temperature rise for silica phenolic is far steeper than for any of the other R/V materials tested.

C. Ablation Rate Data (Weight Loss)

Data on mass loss from Tables 1 through 6 have been presented in Figures 6 through 14 as a function of laser power delivered at the sample surface. The carbon phenolic (GE CP109A) laser irradiation data in Figure 6 presented as mass loss in grams of sample lost per joule of irradiated energy falls within the range of 1 x 10^{-5} to 3 x 10^{-5} g/joule (with the exception of several tests run in air at 1 torr pressure) over the entire range of 10^1 to 10^4 watts/cm² of power density. The carbon phenolic mass loss data in Figure 6 at high power densities, i.e., 600 W/cm^2 can be represented as $2.7 \pm 0.7 \times 10^{-5}$ g/joule. This corresponds to an apparent heat of ablation of 9.5 ± 2.5 kca1/g. High mass loss rates, i.e., $\geq 2.7 \pm 0.7 \times 10^{-5}$ g/joule at low power densities $< 30 \text{ W/cm}^2$ are attributed to the release of adsorbed water from the samples.

The silica phenolic mass loss data in Figure 7 covers the range of 1.5×10^{-5} to 3.5×10^{-5} g/joule over the more restrictive power density range of 300 to 10^4 W/cm². The silica phenolic mass loss data in Figure 7 at high power densities ≥ 600 W/cm² can be represented as $2.8 \pm 0.8 \times 10^{-5}$ g/joule. This corresponds to an apparent heat of ablation of 9.3 ± 2.6 kcal/g.

the grown and which to the first it.

0 8 04

FIGURE 12. SILICA PHENOLIC MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE

FIGURE 13. ATJ GRAPHITE MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE

104 8 5 0.635 760 TORR 1 TORR 760 TORR 760 TORR FIGURE 14. PHENOLIC ASBESTOS MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE 103 CO2 LASER 100 w CW D KM CM 102 0 POWER AT SAMPLE SURFACE (WATTS/CM²)

MASS LOSS FLUX (MG/CM2SEC)

Results for ATJ graphite irradiated by the 10 KW CO₂ laser are shown in Figure 8 for the power density of 920 W/cm²; the data appear to cluster at 0.7×10^{-6} to 2×10^{-6} g/joule. The ATJ graphite mass loss data in Figure 8 can be represented as $1.33 \pm 0.6 \times 10^{-6}$ g/joule which corresponds to an apparent heat of ablation of 225 ± 101 kcal/g. Zavitsanos² has irradiated pyrolytic and spectroscopic grade graphite with a pulsed ruby laser. Mass loss data of $1.76 \pm 0.35 \times 10^{-5}$ g/joule were obtained in the energy range of 0.85 to 12.6 joule. This mass loss corresponds to an apparent heat of ablation of 14.1 ± 2.8 kcal/g. The power densities used by Zavitsanos² are $\geq 10^5$ W/cm², i.e., greater than a factor of ten above the power densities used in the present investigation. The pertinent fact appears to be that the mass loss in ATJ graphite is substantially lower than specimens which contain phenolic.

Figure 9 displays a mass loss range of 4 x 10^{-5} to 8 x 10^{-5} g/joule for 91LD phenolic resin. The 91LD phenolic resin mass loss data can be represented as $4.1 \pm 0.1 \times 10^{-5}$ g/joule at 70 to 100 W/cm^2 . This corresponds to an apparent heat of ablation of 5.8 kcal/g.

The phenolic asbestos mass loss in Figure 10 covers the range 3×10^{-5} to 5.5×10^{-5} g/joule. The phenolic asbestos mass loss can be represented as $4.3 \pm 1.1 \times 10^{-5}$ g/joule which corresponds to an apparent heat of ablation of 5.9 ± 1.5 kcal/g.

Figure 11 presents the mass loss rate in mg/cm² sec versus the power at the sample surface in W/cm² for carbon phenolic. The data are well represented by a line with a slope of 1. The silica phenolic data shown in Figure 12 behaves in much the same way as the carbon phenolic

data cited above. The ATJ mass flux data in Figure 13 demonstrates the low volatility of this specimen relative to phenolic-containing materials upon irradiation by laser. The phenolic asbestos mass flux loss data in Figure 14 exhibits a slope of one when plotted versus power density in the same manner as other phenolic-containing specimens.

D. Gaseous Species

A series of experiments was conducted in which the gaseous ablation products were sampled during irradiation using a Bendix time-of-flight Mass Spectrometer. This work was done with the pyrex vacuum system described in Figure 1. A specially designed gas sampling valve which allows direct sampling into the mass spectrometer at pressures up to one atmosphere was used in these experiments. The material examined was 91LD phenolic resin. The power range was 10 to 100 W/cm² and the exposure time was 60 seconds.

Preliminary analysis of the mass spectra indicates the following: NH₃ and CH₄ at 10 W/cm² power; from 25 to 100 W/cm² NH₃, CH₄, 2-propanol, 2-butanol, C_2H_6 , C_3H_8 , C_4H_{10} and C_5H_{12} . These results are displayed in Table 7.

TABLE 7. MASS SPECTRA OBSERVED DURING LASER HEATING OF PHENOLIC RESIN (GE 91LD)

POSSIBLE SPECIES	NH3, CH4	2-PROPANOL 2-BUTANOL	C2H6 C3H8 C4H10 C5H12
MASS PEAK	12 — 17	30,31,45,59	27,29,91,92
TIME AT WHICH MASS PEAK APPEARED (SEC.)	30 45 60 (END OF RUN) X X	× ×	×
LASER POWER W/CM ²	10 23 73 87 102	23 73 87 102	23 73 87 102
I'E#	0	11	4 11 12 12 12 12 12 12 12 12 12 12 12 12

IV. REFERENCES

- Smith, D.M., Thibault, R.J. and Horne, T.T., "10 KW CO₂ Laser Test Facility for Vulnerability and Hardening Programs", presented at 3rd DoD Conference on Laser Effects, Vulnerability and Countermeasures (1977).
- Zavitsanos, P.D., "Mass Spectrometric Analysis of Carbon Species Generated by Laser Evaporation", Carbon 1968, Vol. 6, pp. 731-737, Pergamon Press, NY.