LONG-RANGE ARENA

PATHFINDER TASK

Task Explanation Pathfinder

Are these points connected by a path?

Task Explanation

Positive class

Negative class

Our Data:

About our Data

Meta Data Folder:

```
imgs/0 sample_0.png 0 0 1.0 6 2 2 0.5 1 1
imgs/0 sample_1.png 1 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_2.png 2 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_3.png 3 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_4.png 4 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_5.png 5 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_6.png 6 1 1.0 6 2 2 0.5 1 1
imgs/0 sample_7.png 7 0 1.0 6 2 2 0.5 1 1
imgs/0 sample_8.png 8 0 1.0 6 2 2 0.5 1 1
imgs/0 sample_9.png 9 1 1.0 6 2 2 0.5 1 1
```

About our Data

```
Dataset Information (easy):

Total samples: 199800

Positive samples (connected): 99985 (50.04%)

Negative samples (not connected): 99815 (49.96%)

Image shape: (32, 32)

Data type: uint8

Value range: [0, 255]
```

Highly imbalanced feature space: Background pixels (0): ~98% of image Path pixels (255): ~2% of image

This sparsity creates a specific challenge for attention mechanisms

About our Data 2

Trained models

VIT

- 1. Image Patching and Embedding & Positional Encoding
- Transformer Encoder Layer
 Multi-Head Self-Attention (MSA)
 Feed-Forward Network (FFN)
- 3. MLP Head (Classification Head)

7

BeiT

Performer

Traditional Attention:

 $softmax(Q * K^T) * V$

Performer computes:

$$\phi(Q) * \phi(K)^T * V$$

Where $\phi(x)$ is a kernel function that maps inputs into a higher-dimensional feature space.

 $\phi(x)$

Maps queries and keys into a new space where their dot product approximates the softmax kernel.

Performer is a transformer variant designed to reduce the computational and memory cost of self-attention.

• Uses Fast Attention via Positive Orthogonal Random Features (FAVOR+) to approximate self-attention with linear complexity O(n).

Key Idea: Self-Attention Bottleneck

Traditional Attention Formula:

Attention(Q, K, V) = softmax((Q * K^T) / $\sqrt{d_k}$) * V

- Q: Query
- K: Key
- V: Value

Complexity:

• O(n²) because it computes pairwise interactions between all tokens.

Solution by Performer:

 Replace exact attention with linear attention using kernel approximations.

Temporal Convolutional Network

$$w = 1 + \sum_{i=0}^{n-1} (k-1) \cdot b^i = 1 + (k-1) \cdot \frac{b^n - 1}{b-1}$$

Temporal Convolutional Network

Linformer

10 00111100 00

$$MultiHead(Q, K, V) = Concat(head_1, head_2, ..., head_h)W^O,$$
 (1)

where $Q, K, V \in \mathbb{R}^{n \times d_m}$ are input embedding matrices, n is sequence length, d_m is the embedding dimension, and h is the number of heads. Each head is defined as:

$$head_{i} = Attention(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V}) = \underbrace{softmax} \left[\underbrace{\frac{QW_{i}^{Q}(KW_{i}^{K})^{T}}{\sqrt{d_{k}}}} \right] VW_{i}^{V}, \tag{2}$$

where $W_i^Q, W_i^K \in \mathbb{R}^{d_m \times d_k}, W_i^V \in \mathbb{R}^{d_m \times d_v}, W^O \in \mathbb{R}^{hd_v \times d_m}$ are learned matrices and d_k, d_v are the hidden dimensions of the projection subspaces. For the rest of this paper, we will not differentiate between d_k and d_v and just use d.

Linformer

11

Mixed Precision: Orthogonal and always used Knowledge Distillation: Teacher Model Problem Persists

Sparse Attention: Performance Degradation with limited gained efficiency LSH Attention: Large Constant in Complexity

Below, we provide a theoretical analysis of the above spectrum results.

Theorem 1. (self-attention is low rank) For any $Q, K, V \in \mathbb{R}^{n \times d}$ and $W_i^Q, W_i^K, W_i^V \in \mathbb{R}^{d \times d}$, for any column vector $w \in \mathbb{R}^n$ of matrix VW_i^V , there exists a low-rank matrix $\tilde{P} \in \mathbb{R}^{n \times n}$ such that

$$\Pr(\|\tilde{P}w^T - Pw^T\| < \epsilon \|Pw^T\|) > 1 - o(1) \text{ and } rank(\tilde{P}) = \Theta(\log(n)), \tag{3}$$

where the context mapping matrix P is defined in (2).

Linformer

13

Transformer: Path Connectivity

Positional Encoding:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Hierarchical Processing:

- 1.Input Processing: Transforms 32x32 pixel images into rich 128-dimensional embeddings.
- 2.Positional Awareness: Uses sinusoidal encoding to help the model understand spatial relationships between pixels.
- 3.Multi-Head Attention: 4 attention heads work together to track both local path segments and global connections
- 4. Hierarchical Processing: 3 transformer layers progressively build understanding from pixel-level to full path recognition.

Perceiver: an Information Bottleneck

- 1.Latent Space Processing Through a Learned Bottleneck.
- 2.Cross-Attention Mechanism Between Input and Latent Array.
- 3. Iterative Refinement Through Multiple Processing Steps.

Key Parameters

- Loss Function: Binary cross-entropy with logits.
- Optimizer: Adam.
- Learning Rate: 0.001.
- Number of Epochs: 100
- Fine Tuning Approach
- Early Stopping Patience: 5
- ReduceLROnPlateau

•	LSTM and GRU:
	 Number of Layers: 1.
	o Hidden Size: 128.
•	Convolutional Layers (e.g., TCN, CNN, etc.):
	o Kernel Size: 3.

- Number of Channels: 64.
 9 layers of Temporal Blocks
- Linformer:
 - k: 128heads: 2
 - o depth: 4
- Embedding and Vocabulary:
 - o Vocabulary Size: 256.
 - Embedding Dimension: 64.

Key Parameters

Common Training Parameters

- Loss Function: Binary cross-entropy
- Optimizer: AdamW with weight_decay=0.01
- Base Learning Rate: 3e-4
- Max Epochs: 20
- Early Stopping Patience: 10
- Gradient Clipping: 1.0
- Mixed Precision Training: 16-bit

Data Processing

- Input Shape: 32x32 → 1024 sequence
- Batch Size: 128
- Train/Val/Test Split: 70/15/15

Transformer Configuration

Embedding Dimension: 128

Number of Heads: 4

Number of Layers: 3

Feedforward Dimension: 512

Dropout: 0.1

Transformer Configuration

Number of Latents: 128

Latent Dimension: 256

Self-Attention Layers: 6

Cross-Attention Layers: 2

Number of Heads: 8

Dropout: 0.1

Fine Tuning?

Hard

Scratch

Model	Accuracy	
GRU	50.19	
LSTM	49.96	

Gradual Fine Tuning

Model	Accuracy
GRU	74.89
LSTM	49.8

RNN LSTM GRU Easy

Embedding

Model	Accuracy
GRU	88.83
LSTM	50.06
RNN	49.93

No Embedding

Model	Accuracy
GRU	50.05
LSTM	49.73
RNN	49.95

GRU no embedding: Not enough Layers?

Hard

49.8

GRU: Attention Turbo!!

Normal:

Self Structured Attention:

74.89

73.52

Barebone

Standard Improvements

49.95

86.83

Best Models' Comparison

Model	Accuracy
GRU	74.38
Self Structured Attention	73.52
Linformer *	70.89
TCN *	86.83
ViT	60

Model	Memory (KB)	Speed / Epoch (s)
RNN	168	10
LSTM	466	20
GRU	366	20
GRU 2 Layers	764	10
GRU Self Structured Attention	503	20
RNN No Embedding	70	7
LSTM No Embedding	271	10
GRU No Embedding	204	10
Linformer	5	180
Barebone TCN	1100	180
TCN	1	180

Challenges

Life is too short to try all combinations / architectures

People lie in benchmarks

Data Metadata is lacking

A runtime error can lay to waste hours of training

Did not have time to try Mega / S5 / Big Bird

Lessons Learned

Embedding is the go to technique when dealing with sequences
Ensure Reproducibility by setting randomization seeds
Always use the same architecture as the paper
Start simple - Get complex later
Never underestimate a model
People lie in the benchmarks
Fine Tuning is the MVP
Pytorch Lightning and Transformers

Sources

Linformer: Self-Attention with Linear Complexity https://arxiv.org/pdf/2006.04768v3

CLASSIFICATION OF LONG SEQUENTIAL DATA USING CIRCULAR DILATED CONVOLUTIONAL NEURAL NETWORKS https://arxiv.org/pdf/2006.04768v3

LONG RANGE ARENA: A BENCHMARK FOR EFFICIENT TRANSFORMERS

https://arxiv.org/pdf/2011.04006