Lecture 1 summary

https://en.wikipedia.org/wiki/Electronic_component#/media/File:Componentes.JPG

L1: Key concepts

- Boolean Constants: 0 and 1
- Boolean variables, logic signals
- Logic levels represented by voltage
- Basic logic gates: AND, OR, NOT
- Logic symbols, logic expression, truth table
- Logic circuits has inputs and outputs, need power supply to operate

L1: Key concepts (cont)

- An output can connect to one or more inputs
- Outputs should not be connected together unless one is very sure
- Timing diagram/waveform
- A logic circuit can be described by truth table, logic expression, or circuit diagram
- Evaluation of logic expression: order of precedence

Example: describe by circuit diagram

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Example: evaluate output from inputs

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Sketch timing waveforms

Example: describe by truth table

Row	Х	Υ	Z	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

From *Digital Design*: *Principles and Practices*, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

How many different 2-input truth tables can be constructed? Assume each has 1 output.

A. 4

B. 8

C. 12

D. 16

Inp	uts	Possible outputs					
а	b	X					
0	0	0	0	0		1	1
0	1	0	0	0		1	1
1	0	0	0	1		1	1
1	1	0	1	0		0	1
2^n							
_		2^(2^n)					

Commonly-used 2-input logic gates:

- AND, NAND
- OR, NOR
- XOR, XNOR

Example: describe by logic expression

$$F = (X + Y') Z + X' Y Z'$$

From *Digital Design: Principles and Practices*, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

How about describe by timing diagram?

Fig. 3.17 (taken from Wakerly)

Truth table

	output		
X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	?
1	0	0	0
1	0	1	?
1	1	0	1
1	1	1	1

Lecture 2: Key concepts

- Boolean theorems: single and multivariable, DeMorgan's theorems
- Theorems are required for algebraic manipulation and simplification
- NOR and NAND gates: universal gates can replace basic logic gates AND, OR, NOT

Boolean theorems

- Essential to know and apply the theorems
- For those interested in more proofs on Boolean theorems (optional):
- http://www.electrical4u.com/boolean-algebratheorems-and-laws-of-boolean-algebra/
- http://mines.humanoriented.com/410/books/boolea n_algebra.pdf

Absorption laws

Absorption laws:

a + ab = a

a

Absorption laws (cont)

Absorption laws:

$$a + ab = a$$

ab is absorbed in a

Simple example for illustration

Let

- A=1 means a person <u>likes</u> apples (A=0 means a person <u>dislikes</u> apples)
- B=1 means a person <u>likes</u> oranges (B=0 means a person <u>dislikes</u> oranges)

$$A + AB = A (1+B) = A(1) = A$$

A person who likes apples (A=1) may also like oranges (B=1)

Absorption laws (cont)

Absorption laws:

a

$$a + a'b = a + b$$

Absorption laws (cont)

Absorption laws:

$$a + a'b = a + b$$

a'b is absorbed in b

Simple example for illustration

Let

- A=1 means a person <u>likes</u> apples (A=0 means a person <u>dislikes</u> apples)
- B=1 means a person likes oranges (B=0 means a person <u>dislikes</u> oranges)

$$X = A + A'B = A + B$$

A person who likes apples or oranges may like either one or both

Consensus law

Consensus law:

$$bc = (ab + a'b) c$$

= $abc + a'bc$

ab + a'c + bc = ab + a'c

A part of bc is absorbed in ab, the other part is absorbed in a'c

Simple example for illustration

Let

- A=1 means a person <u>likes</u> apples (A=0 means a person <u>dislikes</u> apples)
- B=1 means a person <u>likes</u> oranges (B=0 means a person <u>dislikes</u> oranges)
- C=1 means a person <u>likes</u> pears (C=0 means a person <u>dislikes</u> pears)

Example (continue)

AB + A'C means a person who likes both apples and oranges, <u>or</u> likes pears but dislikes apples.

BC means a person who likes both oranges and pears.

AB + A'C + BC = AB + A'C

a person who likes both oranges and pears may like or dislike apples

Important: it does NOT imply BC = 0

DeMorgans theorems

$$V = (a + b + ... + g)' = a'b'...g'$$

Let V=1 means need a visa

 Don't need a visa (V=0) if one is from country a <u>or</u> b <u>or</u> c ... <u>or</u> g

 Need a visa (V=1) if one is <u>not</u> from country a, <u>and</u> not from b, <u>and</u> not from c ... <u>and</u> not from g

DeMorgans theorems (cont)

$$J = (a b c ... g)' = a' + b' + c' + ... + g'$$

Let J=1 means need an immunization jab

- Don't need a jab (J=0) if one is already immunized for viruses a <u>and</u> b <u>and</u> c ... <u>and</u> g
- Need a jab (J=1) if one is <u>not</u> immunized from virus a, <u>or</u> not from b, <u>or</u> not from c ... <u>or</u> not from g

A(B+C)' = AB' + AC' True or false?

A. True

B. False

```
A(B+C)'
= A(B'C')
= AB'C'
```


Are these two circuits algebraically equivalent?

The answer is Yes.

$$F = (X+Y')Z + X'YZ'$$

$$G = (X+Y'+Z')(X'+Z)(Y+Z)$$

$$= (X+Y'+Z')(X'Y + X'Z + YZ + ZZ)$$

$$= (X+Y'+Z')[X'Y + Z(X'+Y+1)]$$

$$= (X+Y'+Z')[X'Y + Z]$$

$$= XZ + Y'Z + X'YZ'$$

$$= (X+Y')Z + X'YZ'$$

= F

Replacing AND, OR, NOT with purely NAND, or purely NOR

Basic gate	NAND only		NOR only
NOT	(XX)' = X'	1	(X+X)' = X'
OR	X+Y = [(X')(Y')]'	3	X+Y = [(X+Y)']'
AND	XY = [(XY)']'	2	XY = [(X') + (Y')]' 3

Logic symbol approach

Basic gate	NAND only	NOR only
NOT	$A \longrightarrow X = \overline{A \cdot A}$	$A = \overline{A + A}$
OR	A 1 Ā 3 B (c)	A A B 2 B
AND	A AB 2	A 1 A 3 X = B (c)

How many NAND gates are needed in total to replace all?

- **✓**A. 3
 - **B.** 4
 - C. 5
 - **D.** 6

74LS00

(10)

(6)

74LS00

(c)

Example: NAND gates replace AND, OR

By diagram

Figure 3-32

Tocci, Widmer, Moss. 10th ed.

$$AB + CD = [(AB + CD)']'$$

$$= [(AB)'(CD)']'$$

Example: NAND gates replace AND, OR

By Boolean expression

Figure 3-32

Tocci, Widmer, Moss. 10th ed.

Universal gates <u>always</u> reduce the number of gates used. True or false?

A. True

B. False

End of L1, L2 summary