Dimension von Varietäten

Yvan Ngumeteh

Emma Ahrens

23. April 2018

Lemma 1. Sei $I \subseteq k[X_1, \ldots, X_n]$ ein Ideal, das von einer Menge G von Monomen erzeugt wird. Dann liegt ein Polynom $f \in k[X_1, \ldots, X_n]$ in I genau dann, wenn für jeden Term $a_j X^{\alpha_j}$ von f ein $g \in G$ existiert, welches $a_j X^{\alpha_j}$ teilt.

Lemma 2. Sei $(g_i)_{i\geq 1}$ eine Folge von Monomen in $k[X_1,\ldots,X_n]$ mit $g_1\succeq g_2\succeq \ldots$ für eine Monomialordnung \preceq . Dann existiert ein $r\in\mathbb{N}$ mit $g_n=g_r$ für alle $n\geq r$.

Proposition 3 (Divisionsalgorithmus). Sei \leq eine Monomialordnung und $f, f_1, \ldots, f_s \in k[X_1, \ldots, X_n]$ nicht null. Dann gilt

$$f = \sum_{i=1}^{s} h_i f_i + r,$$

 $mit\ r, h_1, \ldots, h_s \in k[X_1, \ldots, X_n]$ und $LT(h_i f_i \leq LT(f))$ für alle $h_i \neq 0$ und r = 0 oder kein Term von r wird durch ein $LT(f_i)$ geteilt für $i \in \underline{s}$.

Satz 4. Sei $\{0\} \neq I \subseteq k[X_1,\ldots,X_n]$ ein Ideal und \leq eine Monomialordnung auf \mathbb{N}_0^n . Sei G eine Gröbnerbasis von I mit I = (G). Dann ist eine k-Basis von $k[X_1,\ldots,X_n]/I$ gegeben durch die Restklassen von X^{α} mit

$$\alpha \in C(I) := \{ \alpha \in \mathbb{N}_0^n \mid LT(g) \nmid X^\alpha \ \forall g \in G \}.$$

Abbildung 1: Anschauliche Darstellung von $k[X_1, \ldots, X_n]/I$ aus [1]

Definition 5. Sei $I \subseteq k[X_1, \ldots, X_n]$ ein Ideal und $s \in \mathbb{N}_0$. Dann definiere $I_{\leq s} := I \cap k[X_1, \ldots, X_n]_{\leq s}$. Nun gilt, dass $k[X_1, \ldots, X_n]_{\leq s}$ ein endlich dimensionaler Vektorraum über k mit $I_{\leq s}$ als Teilraum ist. Wir können die Funktion

$${}^{a}HF_{I}: \mathbb{N}_{0} \to \mathbb{N}_{0}, \quad s \mapsto dim_{k}(k[X_{1}, \dots, X_{n}]_{\leq s}/I_{\leq s})$$

definieren, die (affine) Hilbertfunktion von I genannt wird.

Lemma 6. Es gilt $|M_{n,s}| := |\{\alpha \in \mathbb{N}_0^n \mid |\alpha| \le s\}| = {s+n \choose s}$.

Lemma 7 (Macaulay). Sei \leq eine gradierte lexikographische Monomialordnung und $I \subseteq k[X_1, \ldots, X_n]$ ein Ideal. Dann ist ${}^aHF_I(s) = {}^aHF_{LT(I)}(s)$ für alle $s \in \mathbb{N}_0$.

Im folgenden sei $n \in \mathbb{N}$ beliebig aber fest.

Satz 8. Sei $I \subseteq k[X_1, ..., X_n]$, dann existiert ein eindeutiges Polynom ${}^aHP_I(t) \in \mathbb{Q}[t]$ (t ist eine Variable) und $s_0 \ge 0$, sodass ${}^aHP_I(s) = {}^aHF_I(s) = {}^aHF_$

- a) Der Grad von ${}^aHP_I(t)$ ist der größte $d \in \mathbb{N}$, sodass es $i_1, i_2, i_3, \ldots, i_d \in \mathbb{N}$ mit $1 \le i_1 < i_2 < i_3 < \ldots < i_d \le n$ existieren und $I \cap k[X_{i_1}, \ldots, X_{i_d}] = \emptyset$.
- ... $< i_d \le n$ existieren und $I \cap k[X_{i_1}, \dots, X_{i_d}] = \emptyset$. b) Sei $d = grad(^aHP_I)$. Dann gilt $^aHP_I(t) = \sum_{k=0}^d a_k t^k$ mit $a_k d! \in \mathbb{Z}, \forall k \in \underline{d_0}$ und $a_d d! > 0$

Sei $I \leq k[X_1, \dots, X_n]$ nicht trivial. Sei G eine Gröbner-Basis von I (bzgl. eine graduierte lexikographische Ordnung) und $M = \{\alpha \in \mathbb{N}_0^n : \exists f \in G \text{ sodass } LM(f) = X^{\alpha}\}$

$$\{LM(g): g \in G\} = \{X^{\beta}: \beta \in M\}$$

Die Mächtigkeit von M ist endlich , da nach dem Hilbert'sche Basissatz G eine endliche Menge von Mononen ist. Wir setzen im Folgenden

$$C(I) := \{ \alpha \in \mathbb{N}_0 : X^{\beta} \nmid X^{\alpha}, \ \forall \beta \in M \} \text{ und } C(I)_{\leq s} := \{ \alpha \in \mathbb{N}_0 : |\alpha| \leq s \text{ und } X^{\beta} \nmid X^{\alpha}, \ \forall \beta \in M \}$$

- 1. Behauptung: $\forall s \geq 0$ gilt ${}^aHF_I(s) = |C(I)_{\leq s}|$.
- 2. Seien $J\subseteq\underline{n}$ und eine Abbildung $\tau:J\longrightarrow\mathbb{N}_0$ gegeben. Wir definieren

$$C(J,\tau) := \{ \alpha \in (\mathbb{N}_0)^n : \alpha_j = \tau(j), \forall \in J \}$$

Behauptung: Es existiert eine endliche Menge χ von Tupeln (J,τ) , sodass

$$(\star) \quad C(I) = \bigcup_{(J,\tau) \in \chi} C(J,\tau)$$

- 3. Behauptung: Für alle (J, τ) im 2.Fall, existiert ein eindeutiges Polynom $F_{J,\tau}(s) \in \mathbb{Q}[t]$ mit $\operatorname{grad}(F_{J,\tau}) = n |J|$ und $F_{J,\tau}(s) = \left|C(J,\tau)_{\leq s}\right|$, für alle $s \geq |\tau| := \sum_{j \in J} \tau(j)$
- 4. Sei $m \in \mathbb{N}_0$ beliebig aber fest vorgegeben. Falls A_1, \dots, A_m endliche Teilmengen von einer Menge T sind, dann lässt sich die Mächtigkeit deren Vereinigung mittels dem Inklusion-Exklusion-Prinzip durch

$$|A_1 \cup \ldots \cup A_m| = \sum_{r=1}^m (-1)^{r-1} \sum_{J \subset \underline{n}, |J| = r} |\bigcap_{j \in J} A_j|$$

berechnen.

5. In diesem letzten Unterpunkt beweisen wir die Aussage in a). Aus dem 3.Fall gilt, dass $grad(^aHP_I)$ die größte natürliche Zahl d ist, sodass es ein $J \subset \underline{n}$ von |J| = n - d und $\tau : J \to \mathbb{N}_0$ mit $C(J,\tau) \subset C(I)$ existiert.

Das heißt, dass $grad(^aHP_I)$ gegeben ist, durch n-m, wobei $m \in \mathbb{N}_0$ die minimale Anzahl von Variablen X_{i_1}, \ldots, X_{i_m} , sodass $X_{i_1}, \ldots, X_{i_m} \in C(I)$ gilt.

Behauptung: Es gilt: $I \cap k[X_j : j \notin J] = (0)$, für alle Tupel (J, τ) sodass $C(J, \tau) \subset C(I)$.

Hieraus folgt, dass

$$grad(^{a}HP_{I}(t)) \leq \max \{d \in \underline{n} : \exists J \subset \underline{n} \ mit \ I \cap K[X_{j} : j \in J] = (0)\}$$
$$= \max \{d \in \underline{n} : \exists i_{1}, \dots, i_{n}\underline{n} \ \text{mit} \ 1 \leq i_{1} < \dots < i_{n} \leq n \ \text{und} \ I \cap K[X_{j} : j \notin J] = (0)\}.$$

Definition 9. Sei $V \subset k^n$ eine algebraische Menge und ${}^aHP_{I(V)}(t)$ ist das Hilbert-Polynom von $I(V) \subseteq k[X_1,\ldots,X_n]$ (nach Satz 8 ist wohldefiniert und eindeutig). Für $V \neq \emptyset$ (d.h. $I(V) \neq k[X_1,\ldots,X_n]$), wird die Dimension definiert als

$$dim(V) = grad(^{a}HP_{I(V)}).$$

Eine etwas handlichere Charakterisierung ist nach Satz 8 durch:

$$dim(I(V)) = \max \{ d \in \underline{n} : \exists 1 \le i_1 < \dots < i_d \le n \text{ mit } I \cap K[X_{i_1}, \dots, X_{i_d}] = \{0\} \}$$

Proposition 10. Sei $V \subseteq k^n$ algebraisch und $V = \bigcup_{i \in \underline{r}} V_i$ eine Zerlegung in irreduziblen Komponenten (vgl. Proposition 1.1.11). Dann gilt

$$dim(V) = \max \{dim(V_i) : i \in \underline{r}\}\$$

Im Folgenden wollen wir eine andere Charakterisierung von dim(V) angeben.

Definition 11. Sei A eine k-Algebra (kommutativer, assoziativer k-Algebra mit 1). Man nennt $a_1, \ldots, a_m \in A$ algebraisch unabhängig, falls

$$\forall F \in k[X_1, \dots, X_m] \setminus \{0\} \text{ gilt } F(a_1, \dots, a_m) \neq 0.$$

Man definiert

gegeben.

$$\partial_k(A) := \sup \left\{ m \geq 0 : \ \exists \ m \ \text{algebraisch} \ \text{unabhängige} \ \text{Elemente} \ \text{in} \ A \right\}$$

Bemerkung: Falls A ein Körper ist, dann nennt man $\partial_k(A)$ der transcendenz Grad von A über k.

Proposition 12. Sei $A := k[X_1, ..., X_n]/I$ mit $I \le k[X_1, ..., X_n]$ ein echtes Ideal. Dann gilt $grad(^aHP_I) = \partial_k(A)$. Ist A weiterhin einen Integrietätsbereich (IB) und K ist der Quotienten-Körper von A, dann gilt

$$grad(^{a}HP_{I}) = \partial_{k}(A) = \partial_{k}(K).$$

Insbesondere gilt $dim(V) = \partial_k(A[V])$ für jede nicht-leere algebraische $V \subset k^n$.

Lemma 13. Sei $V \subseteq k^n$ irreduzible algebraischer Menge und $W \subseteq V$ abgeschlossenen Teilmenge. Dann gilt dim(W) < dim(V), falls W echte Teilmenge von V ist.

Literatur

[1] Cox, David; Little, John; O'Shea, Donal: *Ideals, Varieties, and Algorithms*. Third Edition Springer-Verlag, 2007