MATH 601 (DUE 10/23)

HIDENORI SHINOHARA

Contents

1. Field Extension 1

1. FIELD EXTENSION

Exercise. (Problem 1) Let p be a prime number. Let $K = \mathbb{Z}/p\mathbb{Z}(t)$ be the fraction field of $\mathbb{Z}/p\mathbb{Z}[t]$.

- (i) What is the characteristic of K?
- (ii) What is the characteristic of any extension field of K?
- (iii) Show that the Frobenius endormophism, $F: K \to K$ is not a ring isomorphism.
- (iv) Let $f(x) = x^p t \in K[x]$. Prove that f(x) is irreducible.
- (v) Prove that f(x) is not a separable polynomial.
- (vi) Construct an explicit field extension $K \subset L$ such that $f(x) \in L[x]$ has a factor of positive degree < p.
- (vii) With f and L above find all the roots of f(x) in L and determine their multiplicities.

Proof.

(i) We will prove in general that if $R \subset S$ are both commutative rings with 1, they have the same characteristic. Let $i: R \to S$ be the inclusion map. Let $\phi: \mathbb{Z} \to R$ be the unique ring homomorphism.

Then $i \circ \phi : \mathbb{Z} \to S$ is a ring homomorphism, and this is the only homomorphism from \mathbb{Z} to S by the uniqueness.

$$a \in \ker(\phi) \iff \phi(a) = 0$$

 $\iff i(\phi(a)) = 0$ (*i* is injective)
 $\iff a \in \ker(i \circ \phi).$

Thus $\ker(\phi) = \ker(i \circ \phi)$, so R and S have the same characteristic.

Therefore, $\mathbb{Z}/p\mathbb{Z}$ has the same characteristic as K. The kernel of $\psi : \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is (p), so the characteristic of K is p.

(ii) Using the result that we proved in (i), we conclude that the characteristic of any extension field of K is p.

(iii) Suppose that it is a ring isomorphism. Let $a/b \in K$ be chosen such that F(a/b) = t.

$$\left(\frac{a}{b}\right)^p = t \implies a^p = tb^p$$

$$\implies p\deg(a) = \deg(t) + p\deg(b)$$

$$\implies p(\deg(a) - \deg(b)) = 1.$$

However, $p \geq 2$, so this is impossible. Therefore, F is not a ring isomorphism.

- (iv) t is an irreducible element in $\mathbb{Z}/p\mathbb{Z}[t]$ because t=ab implies that the degree of a or b must be 0, which implies that one of them is a unit. By Corollary 4 on P.300 (Dummit and Foote), $\mathbb{Z}/p\mathbb{Z}[t]$ is a principal ideal domain and unique factorization domain. By Proposition 2 on P.284 (Dummit and Foote), t is a prime element in $\mathbb{Z}/p\mathbb{Z}[t]$. By the Eisenstein irreducibility criterion from the Factorization in Integral Domain handout, $x^p t$ is irreducible in K[x] because $-t \in (t)$ but $-t \notin (t^2)$.
- (v) $f'(x) = px^{p-1} = 0$. Thus $f(x) \in GCD(f(x), f'(x))$ and $f(x) = x^p t$ is not a unit. By Lemma 3.2 of the Field Extension handout, f(x) is not separable.
- (vi) Let $L = K[y]/(y^p t)$. Since $y^p t$ is irreducible in K[y], $(y^p t)$ is a maximal ideal in K[y]. Thus L is a field. Then $x^p t$ has a root in L because $y^p t = 0$. This implies the existence of a linear factor of $x^p t$.
- (vii) In L[x], $(x-y)^p = \sum_{i=0}^p {p \choose i} x^i (-y)^{p-i} = x^p y^p$ because $p \mid {p \choose i}$ for $1 \le i \le p-1$. Since $y^p = t$, $x^p y^p = x^p t$. Therefore, the only root is y and the multiplicity is p.

Exercise. (Problem 2) Let F be a field of characteristic 0. Let $f(x) \in F[x]$ be an irreducible polynomial. Then f(x) is separable.

Proof. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ be an irreducible polynomial with $a_n \neq 0$. Since f(x) is irreducible, f(x) is neither a unit nor 0. Since F is a field, all polynomials of degree 0 are units. Thus $\deg(f(x)) = n \geq 1$. It suffices to show that $\operatorname{GCD}(f(x), f'(x)) = F^*$ by Lemma 3.2. Let $g(x) \in F[x]$ be given such that $g(x) \mid f(x), g(x) \mid f'(x)$. Since f(x) is irreducible, either g(x) is a unit or there exists a unit $u \in F^*$ such that g(x) = uf(x). Suppose g(x) is not a unit. Since $g(x) \mid f'(x), f'(x) = h(x)g(x) = uh(x)f(x)$ for some $h(x) \in F[x]$. Thus $\deg(f'(x)) = \deg(uh(x)) + \deg(f(x))$.

- $f'(x) = \sum_{i=1}^{n} i a_i x^{i-1}, n \ge 1$ and $a_n \ne 0$. Since F is a field of characteristic $0, na_n \ne 0$. Therefore, $\deg(f'(x)) = n 1$.
- $\deg(uh(x)) \ge 0$.
- $\deg(f(x)) = n$.

However, this implies that $n-1 \ge 0+n=n$. This is a contradiction, so g(x) must be a unit. Therefore, $GCD(f(x), f'(x)) = F^*$.

Exercise. (Problem 3) Let F be a field. Let $f(x) \in F[x]$ be an irreducible polynomial which is not separable. Show that $f'(x) = 0 \in F[x]$.

Proof. Suppose f(x) is irreducible. Then $f(x) \neq 0$ and f(x) is not a unit by definition. Thus $\deg(f(x)) \geq 1$.

Since f(x) is not separable, there exists a non-unit $g(x) \in F[x]$ such that $g(x) \mid f(x)$ and $g(x) \mid f'(x)$ by Lemma 3.2 from the Field Extension handout. Since f(x) is irreducible and g(x) is not a unit, f(x) is the product of g(x) and a unit. This implies that $\deg(f(x)) = \deg(g(x))$.

Since $g(x) \mid f'(x), f'(x) = h(x)g(x)$. If f'(x) = 0, we are done. Suppose otherwise. Then $\deg(f'(x)) = \deg(h(x)) + \deg(g(x)) = \deg(h(x)) + \deg(f(x)) \geq \deg(f(x))$. However, by the definition of the ' operator, $\deg(f'(x)) < \deg(f(x))$. This is a contradiction, so f'(x) = 0. \square

Exercise. (Problem 4) Let F be a field of prime characteristic p. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ be an irreducible polynomial. Give a necessary and sufficient criterion for f(x) to be inseparable in terms of the coefficients a_i .

Proof. We claim that $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

- Suppose f(x) is inseparable. By Lemma 5.5 from the Field Extension handout, f'(x) = 0. If f'(x) = 0, then $ia_i = 0$ for each i. Since p is a prime, a_i must be 0 if $i \notin p\mathbb{Z}$.
- Suppose $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$. Then f'(x) = 0, so $f(x) \mid f(x), f(x) \mid f'(x)$ and f(x) is not a unit since f(x) is irreducible. Therefore, $GCD(f(x), f'(x)) \neq F^{\times}$, so f is inseparable by Lemma 3.2.

Hence, $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

Exercise. (Problem 5) What is the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$?

Proof. Then ϕ is injective, so the characteristic is 0.

$$1\mapsto (1,1,1)$$

Exercise. (Problem 6) Let K be a finite field of characteristic p. Let $a, b \in K^*$ be two elements which have the same order in this finite group. Show that $\mathbb{Z}/p[a] = \mathbb{Z}/p[b]$ as subfields of K.

Can I just say they both have the same number of elements and use the lemma from *Proof.*

3