Unsupervised Learning Lecture 2: Decision Tree and Random Forest

Tho Quan qttho@hcmut.edu.vn

Agenda

- Inductive learning
- Decision Tree: ID3 and C4.5
- From Decision Tree to Random Forest

Five Tribes of Machine Learning

Tribes	Origins	Master Algorithms
Symbolists	Logic, philosophy	Inverse deduction
Evolutionaries	Evolutionary biology	Genetic programming
Connectionists	Neuroscience	Backpropagation
Bayesians	Statistics	Probabilistic inference
Analogizers	Psychology	Kernel machines

The five tribes of machine learning, Pedro Domingos

Inference Mechanisms

- Deduction: cause + rule → effect
- Abduction: effect + rule → cause
- Induction: cause + effect → rule
- Inference must be made on closed-world assumption
 - All propositions must be TRUE of FALSE
 - Unknown proposition → FALSE
- IF temperature high AND NOT (water level low) THEN pressure high
- IF tranducer output low THEN water level low

Deduction and Induction

Tom Mitchell

Steve Muggleton

Ross Quinlan

	Attributes Classes			Classes
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car
Female	1	Cheap	Medium	Train
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train

Rule 1: If Travel cost/km is expensive then

mode = car

Rule 2: If Travel cost/km is standard then

mode = train

Rule 3: If Travel cost/km is cheap and gender

is male then mode = bus

Rule 4: If Travel cost/km is cheap and gender is female and she owns no car then mode = bus

Rule 5: If Travel cost/km is cheap and gender is female and she owns 1 car then mode = train

Gender: Male

Car Ownership: 1

Travel Cost/Km: Standard

Income Level: High

Transportation Mode?

Decision Tree

- Decision Tree is a hierarchical tree structure that used to classify classes based on a series of questions (or rules) about the attributes of the class
- Decision tree representation:
 - Each internal node tests an attribute
 - Each branch corresponds to attribute value
 - Each leaf node assigns a classification

Attributes			Classes	
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car
Female	1	Cheap	Medium	Train
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train

Generate a Decision Tree

- Choose best attribute
- Split data set
- Recurse until each data item classified correctly

Top-Down Induction of DTs (ID3)

```
proc growtree(data)
  if (data not perfectly classified)
  find `best' splitting attribute A
  for each (a in A)
    create child a
  data_a = data restricted to A=a
  growtree(data_a)
  endfor
  endif
endproc
```

Generate a Decision Tree

Attributes			Classes	
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car
Female	1	Cheap	Medium	Train
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train

Generate a Decision Tree

• Measure Impurity:

$$Entropy = \sum_{j} -p_{j}log_{2}p_{j} \quad Gini\ Index = 1 - \sum_{j} p_{j}^{2}$$

• Information Gain:

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Attributes			Classes	
Gender	Car ownership	Travel Cost (\$)/km	Income Level	Transportation mode
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car
Female	1	Cheap	Medium	Train
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train

- Pro(Bus) = 4/10
- Pro(Car) = 3/10
- Pro(Train) = 3/10
- Entropy = $-0.4 \log (0.4) 0.3 \log (0.3) 0.3 \log (0.3) = 1.571$
- Gini Index = $1 (0.4^2 + 0.3^2 + 0.3^2) = 0.660$

Gain of Travel Cost/km (multiway) based on

Entropy 1.210 Gini index 0.500

Travel Cost (\$)/km	Transportation mode
Cheap	Bus
Cheap	Train
Expensive	Car
Expensive	Car
Expensive	Car
Standard	Train
Standard	Train

	Cheap	Bus
	Cheap	Bus
	Cheap	Bus
	Cheap	Bus
	Cheap	Train
/		·

Travel Cost (\$)/km

Entropy 0.722 Gini index 0.320

Classes

Travel Cost (\$)/km	Classes
Expensive	Car
Expensive	Car
Expensive	Car

3C

Entropy 0.000 Gini index 0.000

Travel Cost (\$)/km	Classes
Standard	Train
Standard	Train

2T

Entropy	0.000
Gini index	0.000

How to Use a Decision Tree

How to Use a Decision Tree

- Gender :Male
- Car Ownership : 1
- Travel Cost/Km : Standard
- Income Level : High
- Transportation Mode?

- **Rule 1**: If Travel cost/km is expensive then mode = car
- Rule 2: If Travel cost/km is standard then mode = train
- Rule 3: If Travel cost/km is cheap and gender is male then mode = bus
- Rule 4: If Travel cost/km is cheap and gender is female and she owns no car then mode = bus
- Rule 5: If Travel cost/km is cheap and gender is female and she owns 1 car then mode = train

From ID3 to C4.5

- Ross Quinlan started with
 - ID3 (Quinlan, 1979)
 - C4.5 (Quinlan, 1993)
- Some assumptions in the basic algorithm
 - All attributes are nominal
 - We do not have unknown values

C4.5 algorithm

- Avoid overfitting
- Deal with continuous attributes
- Deal with missing data

Pruning

- 1. Pre-prune: Stop growing a branch when information becomes unreliable
- 2. Post-prune: Take a fully-grown decision tree and discard unreliable parts

Dealing with continuous attributes

	1			
Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
	^			

Continuous at

Split on temperature attribute:

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

- E.g.: temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3]) = 0.939 bits

Intuition about Margin

Elderly

Man

?

Woman

Problem with All Margin-based Discriminative Classifier

It might be very miss-leading to return a high confidence.

From Decision Tree to Random Forest

- Ensemble Learning
 - λ Average out biases
 - λ Reduce the variance
 - λ Unlikely to overfit

Bias-variance Decomposition

- For any learning scheme,
 - Bias = expected error of the combined classifier on new data
 - Variance = expected error due to the particular training set used
- Total expected error ~ bias + variance

Ensemble Methods

```
Bagging (Breiman 1994,...)
```

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Random forests (Breiman 2001,...)

Predict class label for unseen data by aggregating a set of predictions (classifiers learned from the training data).

Bagging

- _λBootstrap data sets:
- λOriginal data set: $X = \{x 1, x 2, ..., x N\}$.
- ^λCreation of a new data set **XB**: draw N points at random from **X**, with **replacement**, so that some points in **X** may be replicated in **XB** (where as other points may be absent from **XB**).

Bagging

Training the same model on M multiple bootstrap data sets.

When does Bagging work?

- Learning algorithm is unstable: if small changes to the training set cause large changes in the learned classifier.
- If the learning algorithm is unstable, then Bagging almost always improves performance

Why Bagging works?

- Let $S = \{(y_i, x_i), i = 1...N\}$ be the set of training dataset
- Let {S_k} be a sequence of training sets containing a sub-set of S
- Let P be the underlying distribution of S.
- Bagging replaces the prediction of the model with the majority of the predictions given by the classifiers

$$\varphi_A(x,P) = E_S(\varphi(x,S_k))$$

The Basic Random Forest Training Algorithm

- For each of N trees:
 - create a new bootstrap sample of the training set
 - use this bootstrap sample to train a decision tree
 - at each node of the decision tree, randomly select m features, and compute the information gain (or Gini impurity) only on that set of features, selecting the optimal one
 - repeat until the tree is complete

Probability Behind

The probability of the ensemble getting the correct answer is a **binomial distribution**:

$$\sum_{k=T/2+1}^{T} {T \choose k} p^k (1-p)^{T-k},$$

where **p** is the success rate of each base classifier, and **T** is the number of base classifiers.

Random Forest Power

The power of ensemble learning: if $\mathbf{p} > 0.5$ then the correctness probability approaches 1 as $\mathbf{T} \to \infty$.

Random Forest - Pros

- λRequire almost no input preparation.
- λPerform implicit feature selection
- λVery quick to train.
- _λPretty tough to beat.
- λlt's really hard to build a bad Random Forest!

Random Forest

_λDrawbacks?

- Model size
- λ Black boxes

Explanable Random Forest

_λGet back to the case study of Flight Delay prediction

What made the flight delay?

Explanable Random Forest

- Input: A selected flight in future (a flight from Changi to Tan Son Nhat for the next 48 hours by Singapore Airlines).
- Output: Delay prediction (Y/N)

Explanation

Arrival hour: 0.25467993054

Airline: 0.253308988692

Origin: 0.158077791536

Departure time: 0.1364141321

Destination: 0.105243518586

Duration: 0.0660441127126

Type: 0.0219200955523

Arrival DoW: 0.00245074824256

Departure DoW: 0.00186059074095

Operation Type: 9.12956600922e-08