Elastic Media and Elastic Waves

1. What is a homogeneous/non-homogeneous, isotropic/anisotropic medium?

- **Homogeneous Medium**: A medium where properties (e.g., density, elasticity) are the same throughout. Example: Pure quartz.
- **Non-Homogeneous Medium**: A medium where properties vary spatially. Example: Sedimentary rock layers with different compositions.
- **Isotropic Medium**: A medium where properties are identical in all directions. Waves travel at the same speed regardless of direction.
- **Anisotropic Medium**: A medium where properties change with direction. Example: Crystals or layered geological formations, where wave velocity depends on the direction of propagation.

2. What are P- and S-waves: velocity and polarization?

- P-Waves (Primary Waves):
 - Longitudinal or compressional waves.
 - Particle motion is **parallel** to wave propagation.
 - Fastest seismic wave, travels through solids, liquids, and gases.
 - Velocity:

$$V_p = \sqrt{\frac{k + \frac{4\mu}{3}}{\rho}}$$

where K is the bulk modulus, μ is the shear modulus, and ρ \rho is density.

- S-Waves (Secondary Waves):
 - Transverse or shear waves.
 - Particle motion is **perpendicular** to wave propagation.
 - Only travels through solids (since fluids cannot support shear stress).
 Velocity:

$$V_{s} = \sqrt{\frac{\mu}{\rho}}$$

3. What are surface waves?

• Waves that travel along the surface of a medium, decreasing in amplitude with depth.

• Two main types:

- Rayleigh waves: Elliptical particle motion, causing both vertical and horizontal displacement.
- Love waves: Horizontal shear motion, causing significant ground movement.
- **Applications**: Used in seismic surveys and telecommunications for surface-based signal propagation studies.

4. What is acoustic media?

- A medium in which pressure waves (P-waves) can propagate.
- In fluids (liquids and gases), only P-waves exist (no shear waves).
- **In solids**, both P-waves and S-waves propagate.
- Used in ultrasound, underwater acoustics, and telecommunications applications like SONAR and ultrasonic transducers.

5. What happens at the interface between two media: scatter coefficients?

- When a wave encounters a boundary between two materials, it undergoes **reflection**, **transmission**, and **refraction**.
- The reflection coefficient R and transmission coefficient T are calculated using:

$$R = \frac{z_2 - z_1}{z_2 + z_1}, T = 1 + R$$

• Used in radar, sonar, and medical imaging applications.

6. What causes wave amplitude attenuation?

- **Geometric spreading**: Energy spreads out over a larger area as the wave propagates.
- **Intrinsic absorption**: Energy is lost as heat due to the internal friction of the medium (quantified by the quality factor O).
- **Scattering**: Part of the wave energy is deflected in different directions when encountering irregularities.

7. What are the measured variables and output display?

- Measured variables:
 - Wave velocity, amplitude, frequency, phase, travel time.

• Output formats:

• Seismic traces, wavefield snapshots, spectrum analysis graphs.

Electrical Methods

1. What are the principles?

- Electrical methods measure **subsurface resistivity** by injecting current into the ground and measuring voltage differences.
- Governed by **Ohm's Law**: $J = \sigma E$ where J is the current density, σ is conductivity, and E is the electric field.

2. What equipment is used?

- Current electrodes: Inject current into the ground.
- **Potential electrodes**: Measure the voltage difference.
- Multimeters and georesistivity meters: Record data.

3. How to build a pseudosection?

- A **pseudosection** is a 2D representation of apparent resistivity.
- Steps:
 - Collect resistivity measurements using different electrode spacings.
 - Arrange data in a depth plot, assuming greater depth for larger electrode spacing.

4. What are apparent and true resistivity?

- Apparent resistivity (ρ_a): Measured resistivity assuming a homogeneous medium.
- True resistivity (ρ_t) :): Actual subsurface resistivity obtained through inversion techniques.

5. What are the measured variables and output display?

- Variables: Voltage, current, resistivity.
- Output: Pseudosections, depth-resistivity profiles.

Electromagnetic Methods

1. What are EM parameters?

- Electrical conductivity (σ): Ability to conduct electricity.
- Magnetic permeability (μ) : Response to a magnetic field.
- **Dielectric permittivity** (ε): Response to an electric field.

2. What are low and high-frequency measurements?

- Low frequency (e.g., magnetotellurics, VLF methods): Penetrates deeper.
- High frequency (e.g., Ground Conductivity Meters, GPR): Limited penetration, higher resolution.

3. What are the applications?

• Used in geophysical exploration, detecting underground utilities, and environmental assessments.

4. What equipment is used?

- Ground conductivity meter: Measures conductivity to map subsurface variations.
- **Metal detector**: Finds buried metallic objects based on induced eddy currents.

5. What are the measured variables and output display?

- Variables: Magnetic field strength, phase shift, conductivity.
- **Output**: Conductivity-depth profiles, subsurface maps.

Ground Penetrating Radar (GPR)

1. What are the principles?

- GPR transmits high-frequency electromagnetic waves into the ground.
- Reflections occur at material boundaries with different dielectric permittivity.

2. What are the applications?

 Used for utility detection, archaeological surveys, structural assessment, and environmental studies.

3. What is the link between antenna frequency, penetration depth, and resolution?

- Higher frequency:
 - Better resolution, but lower penetration.
 - Used for detecting shallow objects (e.g., cables, concrete assessment).

• Lower frequency:

- Greater penetration, but lower resolution.
- Used for deeper targets (e.g., groundwater, void detection).

4. What are the measured variables and output display?

- Variables: Reflection amplitude, two-way travel time, depth.
- Output: Radargrams (amplitude vs. travel time), depth slices, 3D subsurface models.