LÓGICA PARA COMPUTAÇÃO

1ª LISTA DE EXERCÍCIOS

ENTREGA: 11 DE ABRIL EM FORMA MANUSCRITA

- 1. Quais das sentenças a seguir são proposições?
 - a) Abra a porta.
 - b) Excelente apresentação!
 - c) Esta semana tem oito dias.
 - d) Em que continente fica o Brasil?
 - e) A Lua é um satélite da Terra.
 - f) Esta frase é falsa.
- 2. Sejam as proposições:
 - p : está frio
 - q : está chovendo

Traduzir para a linguagem natural as seguintes proposições:

- a) ~p
- b) $p \wedge q$
- c) pvq
- d) $q \leftrightarrow p$
- e) $p \rightarrow \sim q$
- f) p ∨ ~q
- g) ~p ^ ~q
- h) p ↔ ~q
- i) $p \land \sim q \rightarrow p$
- 3. Sejam as proposições:
 - p : Jorge é rico
 - q : Carlos é feliz

Traduzir para a linguagem natural as seguintes proposições:

- a) $q \rightarrow p$
- b) ~~p
- c) ~(~p ^ ~q)
- 4. Construir a tabela-verdade para a proposição: p v ~q
- 5. Sejam as proposições:
 - p : Sueli é rica
 - q : Sueli é feliz

Traduzir para linguagem simbólica (lógica) as seguintes frases:

- a) Sueli é pobre, mas é feliz
- b) Sueli é rica o infeliz
- c) Sueli é pobre e infeliz
- d) Sueli é pobre ou rica, mas é feliz
- 6. Simbolizar, utilizando a lógica, as seguintes frases:

- a) X é maior que 5 e menor que 7 ou X não é igual a 6.
- b) Se X é menor que 5 e maior que 3, então X é igual a 4.
- c) X é maior que 1 ou X é menor que 1 e maior que 0.
- 7. Dadas as seguintes proposições:
 - p: o número 596 é divisível por 2.
 - q: o número 596 é divisível por 4.
 - r: o número 596 é divisível por 3.

Traduzir para a linguagem simbólica:

- a) É falso que número 596 é divisível por 2 e por 3, ou o número 596 não é divisível por 4.
- b) O número 596 não é divisível por 2 ou por 4, mas é divisível por 3.
- c) Se não é verdade que o número 596 é divisível, então ele é divisível por 2 e não por 4.
- d) É falso que o número 596 não é divisível por 2 e por 4, mas é divisível por 3 e por 2.
- 8. Sabendo-se que V(p) = V(q) = T (true) e V(r) = V(s) = F (false), determine os valores lógicos das seguintes proposições:
 - a) $(p \land (q \lor r)) \rightarrow (p \rightarrow (r \lor q))$
 - b) $(q \rightarrow r) \leftrightarrow (\sim q \lor r)$
 - c) $(\sim p \vee \sim (r \wedge s))$
 - d) $\sim (q \leftrightarrow (\sim p \land s))$
 - e) $(p \leftrightarrow q) \lor (q \rightarrow \sim p)$
 - f) $\sim (\sim q \land (p \land \sim s))$
 - g) $\sim q \land ((\sim r \lor s) \leftrightarrow (p \rightarrow \sim q))$
 - h) $\sim (\sim p \vee (q \wedge s)) \rightarrow (r \rightarrow \sim s)$
 - i) $\sim (p \rightarrow (q \rightarrow r)) \rightarrow s$
- 9. Construir as tabelas verdade para as seguintes proposições:
 - a) $P(p,q,r) = p \vee \sim r \rightarrow q \wedge \sim r$
 - b) $P(p,q) = \sim (p \land q) \lor \sim (q \Leftrightarrow p)$
 - c) $P(p,q,r) = (p \land q \rightarrow r) \lor (\sim p \leftrightarrow q \lor \sim r)$
- 10. Aplicando as Leis de Morgan, dar a negação de cada uma das seguintes proposições:
 - a) p ∧ ~q
 - b) ~p ^ ~q
 - c) ~p v q
 - d) ~p ∨ ~q
- 11. Dar a negação da proposição: "Rosas são vermelhas e violetas são azuis"