

Супер Дерево

Вам дано корневое дерево с n вершинами, обозначенными индексами $0, \ldots, n-1$. Корень имеет индекс 0. Для каждого $i \in \{0, \ldots, n-1\}$ вершина i (т. е. вершина с индексом i) имеет целое число a_i , присвоенное ей. Пусть f_v — значение побитового И (далее обозначаемого &) значений a_i на простом пути от вершины v к корню. (Обратите внимание, что простой путь от вершины v к вершине v включает в себя как v, так и v.) Пусть v0 дерева равна значению

$$\sum_{0 \le u,v \le n} f_u \cdot f_v,$$

и пусть суперсила дерева равна значению (обратите внимание на разницу в диапазонах)

$$\sum_{0 \le u < v < n} f_u \cdot f_v.$$

Поясняющий пример см. в объяснении примеров тестовых примеров ниже.

Будем говорить, что вершина u принадлежит *поддереву вершины* v, если v принадлежит простому пути от вершины u к корню. Обратите внимание, что поддерево вершины x включает в себя саму вершину x.

Вам дано q запросов обновления. Каждое обновление описывается двумя целыми числами, v и x, и требует обновления $a_u := a_u \,\&\, x$ для каждой вершины u в поддереве вершины v. После каждого обновления вы должны выводить силу и суперсилу текущего дерева.

Поскольку выходные значения могут быть большими, выведите их по модулю $10^9 + 7$.

Формат входных данных

Первая строка входных данных содержит целые числа n и q.

Вторая строка входных данных содержит n-1 целых чисел, а именно p_1 , p_2 , ..., p_{n-1} , которые определяют структуру дерева. Для каждого $i\in\{1,\ldots,n-1\}$, p_i — это индекс родителя вершины i, и верно $0\leq p_i < i$.

Третья строка входных данных содержит n целых чисел, а именно a_0 , a_1 , ..., a_{n-1} . Это значения, присвоенные вершинам.

Каждая из следующих строк q содержит два целых числа: v ($0 \le v < n$) и x. Эти целые числа определяют обновления.

Формат выходных данных

Выведите q+1 строк. Каждая строка должна содержать два целых числа, разделенных пробелом. В первой строке выведите силу и суперсилу (по модулю 10^9+7) исходного дерева. В i-й строке оставшихся q строк ($i\in\{1,\ldots,q\}$) выведите силу и суперсилу (по модулю 10^9+7) дерева после i-го обновления.

Ограничения

- $1 \le n, q \le 10^6$.
- $0 \le a_i < 2^{60}$ для каждого $i \in \{0, \dots, n-1\}$.
- $0 \le x < 2^{60}$ для каждого обновления (v,x).

Оценивание

Для данного тестового примера ваше решение получит 50% оценки, если оно правильно вычислит все значения степени, но неправильно вычислит хотя бы одно значение сверхстепени для этого тестового примера.

Аналогично, 50% от суммы баллов за данный тестовый пример будет присуждено решению, которое правильно вычисляет все значения сверхстепени для этого тестового примера, но неправильно вычисляет хотя бы одно значение степени.

Подзадачи

- 1. (4 балла) n=3.
- 2. (7 баллов) n, q < 700.
- 3. (13 баллов) $n, q \leq 5000$.
- 4. (6 баллов) $n \leq 10^5$, $p_i = i-1$ (для каждого $i \in \{1,\dots,n-1\}$) и $a_i,x < 2^{20}$ (для каждого $i \in \{0,\dots,n-1\}$ и для каждого обновления (v,x)).
- 5. (7 баллов) $p_i = i-1$ (для каждого $i \in \{1, \dots, n-1\}$).
- 6. (12 баллов) $a_i, x < 2^{20}$ (для каждого $i \in \{0, \dots, n-1\}$ и для каждого обновления (v, x)).
- 7. (14 баллов) $n < 10^5$.
- 8. (11 баллов) $n < 5 \cdot 10^5$.
- 9. (26 баллов) Никаких дополнительных ограничений.

Пример 1

Стандартный ввод

3 3

0 0

7 3 4

1 6

2 2

0 3

Стандартный вывод

196 61

169 50

81 14

25 6

Пояснение к примеру

Изначально у нас есть

$$f_0 = 7$$
, $f_1 = 7 \& 3 = 3$, $f_2 = 7 \& 4 = 4$.

Следовательно, сила дерева равна

$$f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 + f_1 \cdot f_1 + f_1 \cdot f_2 + f_2 \cdot f_0 + f_2 \cdot f_1 + f_2 \cdot f_2 =$$

$$= 7 \cdot 7 + 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 7 + 3 \cdot 3 + 3 \cdot 4 + 4 \cdot 7 + 4 \cdot 3 + 4 \cdot 4 = 196.$$

Суперсила равна

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

После первого обновления:

$$a_0=7,\; a_1=3\&6=2,\; a_2=4;$$
 $f_0=7,\; f_1=2,\; f_2=4.$

После второго обновления:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

После третьего обновления:

$$a_0=7\&3=3,\; a_1=2\&3=2,\; a_2=0\&3=0;$$
 $f_0=3,\; f_1=2,\; f_2=0.$

Пример 2

Стандартный ввод

4 2

0 0 1

6 5 6 2

1 2

0 3

Стандартный вывод

256 84

144 36

16 4

Объяснение

Изначально, мы имеем

$$f_0=6,\ f_1=6\&5=4,\ f_2=6\&6=6,\ f_3=2\&5\&6=0.$$

После первого обновления:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

После второго обновления:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

Пример 3

Стандартный ввод

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Стандартный вывод

```
900 367
784 311
576 223
256 83
```