### Programming for Data Analytics

### 4. ggplot2

Dr. Jim Duggan,
School of Engineering & Informatics
National University of Ireland Galway.

https://twitter.com/ jimduggan

#### **Course Overview**

Lectures I-3

**R** Fundamentals

Atomic Vectors – Functions – Lists – Matrices – Data Frames

Lectures 4-9

Data Science with R

**ggplot2** – dplyr – tidyr – stringr – lubridate - purrr

Lectures 10-11

**Advanced Programming with R** 

Environments – Closures – S3 Object System

Lectures 12

Machine Learning with R – Case Studies

Electricity Generation, Health

#### **Lecture Overview**

- Data Exploration
- Aesthetic Mappings
- Common Problems
- Facets
- Geometric Objects
- Statistical Transformations
- Coordinate Systems
- Layered Grammar of Graphics

Lectures I-3

R Fundamentals

Lectures 4-8 **Data Science with R**ggplot2 - dplyr - tidyr - stringr - lubridate -forcats - purrr

Lectures 9-10 Advanced Programming with R
Environments – Closures – S3 Object System

Lectures 11-12 Machine Learning with R – Case Studies
Electricity Generation, Marketing, Epidemiology

### (1) Data Exploration

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).





### Data Visualisation with ggplot2

"The simple graph has brought more information to the data analyst's mind that any other device." – John Tukey

```
> dt <- ggplot2::mpg</pre>
> dt
# A tibble: 234 \times 11
                      model displ year
  manufacturer
                                           cyl
                                                    trans
                                                             drv
                                                                    cty
                                                                          hwy
                                                                                       class
          <chr>>
                      <chr> <dbl> <int> <int>
                                                     <chr> <chr> <int> <int> <chr>
                                                                                       <chr>>
                              1.8 1999
                                                 auto(15)
                                                                    18
           audi
                         a4
                                                                                  p compact
                              1.8
                                   1999
                                             4 manual(m5)
           audi
                         a4
                                                                    21
                                                                                  p compact
3
           audi
                         a4
                              2.0
                                   2008
                                             4 manual(m6)
                                                                    20
                                                                                  p compact
                              2.0
                                   2008
                                                                    21
                                                                           30
           audi
                                                 auto(av)
                         a4
                                                                                  p compact
5
           audi
                         a4
                              2.8
                                   1999
                                                 auto(15)
                                                                    16
                                                                           26
                                                                                   p compact
                                                                    18
                                                                           26
                                   1999
                                             6 manual(m5)
           audi
                                                                                   p compact
           audi
                              3.1
                                    2008
                                                 auto(av)
                                                                    18
                                                                           27
                                                                                  p compact
                                             4 manual(m5)
                                                                    18
           audi a4 auattro
                              1.8
                                   1999
                                                                           26
                                                                                  p compact
9
           audi a4 auattro
                                                                    16
                                                                           25
                              1.8
                                   1999
                                                 auto(15)
                                                                                  p compact
10
           audi a4 quattro
                              2.0
                                   2008
                                             4 manual(m6)
                                                                    20
                                                                           28
                                                                                   p compact
# ... with 224 more rows
```

### Fuel Economy Data Set (ggplot2::mpg)

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

| manufacturer | manufacturer                   | drv   | f = front-wheel drive, r = rear<br>wheel drive, 4 = 4wd |  |
|--------------|--------------------------------|-------|---------------------------------------------------------|--|
| model        | model name                     | cty   | city miles per gallon                                   |  |
| displ        | engine displacement, in litres | hwy   | highway miles per gallon                                |  |
| year         | year of manufacture            | fl    | fuel type                                               |  |
| cyl          | number of cylinders            | class | "type" of car                                           |  |
| trans        | type of transmission           |       |                                                         |  |

### First Steps

- Generate a first graph to help answer the following question:
  - Do cars with big engines use more fuel than cars with small engines
- What might the relationship between engine size and fuel efficiency look like?
  - Positive or negative?
  - Linear or non-linear?

### Selecting data

```
> dt
# A tibble: 234 \times 11
   manufacturer
                      model displ
                                                                            hwy
                                                                                    f1
                                                                                         class
                                    year
                                            cyl
                                                      trans
                                                               drv
                                                                      cty
                                                                          <int> <chr>
           <chr>>
                       <chr>
                             <dbl> <int> <int>
                                                      <chr> <chr> <int>
                                                                                         <chr>>
                               1.8
                                     1999
                                                   auto(15)
                                                                      18
1
            audi
                          a4
                                                                                     p compact
                               1.8
                                     1999
                                               4 manual(m5)
            audi
                          a4
                                                                                     p compact
3
                               2.0
                                     2008
                                              4 manual(m6)
                                                                      20
            audi
                          a4
                                                                             31
                                                                                     p compact
                               2.0
                                     2008
                                                   auto(av)
                                                                      21
            audi
                                                                             30
4
                          a4
                                                                                     p compact
5
                               2.8
                                                                      16
            audi
                          a4
                                     1999
                                                   auto(15)
                                                                             26
                                                                                     p compact
```

- Among the variables are:
  - displ, a car's engine size in litres
  - hwy, a car's fuel efficiency on the highway in miles per gallon

### Creating a ggplot



### Interpreting the plot

- The plot shows a negative relationship between engine size (displ) and fuel efficiency (hwy)
- Cars with big engines use more fuel
- Does this confirm or refute your hypothesis about fuel efficiency and engine size?



### Challenge 4.1

- Explore the hypothesis that city driving is less fuel efficient that highway driving
- Use ggplot to present the points on the same graph, and colour each data set differently
- Does the data confirm or refute your initial hypothesis?

## (2) Aesthetic Mappings

"The greatest value of a picture is when it forces us to notice what we never expected to see" – John Tukey

```
> unique(dt$class)
[1] "compact" "midsize" "suv" "2seater" "minivan"
[6] "pickup" "subcompact"
```

- A third variable can be added to a 2-D plot by mapping it to an aesthetic.
- An aesthetic is a visual property of the plot's objects.
- An aesthetic's *level* could be colour, size or shape.



### (3) Common Problems

- R can be "extremely picky, and a misplaced character can make all the difference"
- Make sure every ( is matched with a )
- For ggplot calls, the + must come at the end of the line, not at the start (see below)
- You can get help about any function by running? function name

```
> ggplot(data=d)
> +geom_point(aes(x=displ,y=hwy),colour="blue")
Error in +geom_point(aes(x = displ, y = hwy), colour = "blue") :
  invalid argument to unary operator
```

### (4) Facets

- Another way to add categorical variables is to split a plot into facets, subplots that display one subset of the data.
- To facet your plot by a single variable, use facet\_wrap(), with ~ followed by the variable name
- To facet on the combination of two variables, used facet\_grid()





ggplot(data = dt) +
 geom\_point(mapping = aes(x=displ,y=hwy,colour=class)) +
 facet\_wrap(~manufacturer)



```
ggplot(data=mpg) +
  geom_point(mapping = aes(x=displ, y = hwy)) +
  facet_grid(drv ~ cyl)
```



```
ggplot(data=mpg) +
  geom_point(mapping = aes(x=displ, y = hwy)) +
  facet_grid(. ~ cyl)
```



ggplot(data=mpg) +
 geom\_point(mapping = aes(x=displ, y = hwy)) +
 facet\_grid(cyl ~ .)



### Challenge 4.2

 When using facet\_grid() you should usually put the variable with more unique levels in the columns. Why?

### (5) Geometric Objects

- Both of these plots contain the same x and y variable, and describe the same data
- The plots are not identical, they use a different visual object to represent the data
- In ggplot2 syntax, we say the use different geoms







#### geom

- A geom is a geometrical object that a plot uses to represent data
- Bar charts use bar geoms, line charts use line geoms, and scatter plots use the point geom.
- To change the geom in your plot, simply change the geom function that is added to the ggplot call.

### Examples of using different geoms

ggplot(data=mpg)+
 geom\_smooth(mapping=aes(x=displ,y=hwy))





ggplot(data=mpg)+
 geom\_point(mapping=aes(x=displ,y=hwy))

### Displaying Multiple geoms

- Multiple geoms can be displayed on the same plot
- Data can be specified in first ggplot() call, and shared by all geoms
- Also, different geoms can have their own data



ggplot(data=mpg, mapping = aes(x=displ, y= hwy)) +
geom\_point(aes(colour=class)) + geom\_smooth()

- Data and x,y can be defined in the first call, and then used by the different geoms
- Additional attributes can then be added for geoms (i.e. for specific layers)
- This makes it possible to display different aesthetics in different layers



- Different data can be specified for each layer
- A local data argument can override a global data argument for a specific layer
- filter() will be explained in a subsequent lecture, it is part of dplyr()





# Sample plot geoms

| Geom                                             | Purpose                                                                                                        |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| geom_smooth()                                    | Fits a smoother to data and displays the smooth and its standard error                                         |
| geom_boxplot()                                   | Produces a box-and-whisker plot to summarise the distribution of a set of points                               |
| <pre>geom_histogram() geom_freqpoly()</pre>      | Shows the distribution of continuous variables                                                                 |
| geom_bar()                                       | Shows the distribution of categorical variables                                                                |
| geom_path() geom_line()                          | Draws lines between data points                                                                                |
| geom_area()                                      | Draws an area plot, which is a line plot filled to the y-axis. Multiple groups will be stacked upon each other |
| <pre>geom_rect() geom_tile() geom_raster()</pre> | Draw rectangles                                                                                                |
| geom_polygon()                                   | Draws polygons, which are filled paths.                                                                        |

### Challenge 4.2.2

 Will these two graphs look different. Why/ why not?

```
ggplot(data=mpg,mapping=aes(x=displ,y=hwy))+
   geom_point()+
   geom_smooth()

ggplot()+
   geom_point(data=mpg,mapping=aes(x=displ,y=hwy))+
   qeom_smooth(data=mpg,mapping=aes(x=displ,y=hwy))
```

### diamonds data set (ggplot2)

#### A dataset containing the prices and other attributes of almost 54,000 diamonds.

| carat <sup>‡</sup> | cut <sup>‡</sup> | color <sup>‡</sup> | clarity <sup>‡</sup> | depth <sup>‡</sup> | table <sup>‡</sup> | price <sup>‡</sup> | x =  | у =  | z    |
|--------------------|------------------|--------------------|----------------------|--------------------|--------------------|--------------------|------|------|------|
| 0.23               | Ideal            | E                  | SI2                  | 61.5               | 55.0               | 326                | 3.95 | 3.98 | 2.43 |
| 0.21               | Premium          | E                  | SI1                  | 59.8               | 61.0               | 326                | 3.89 | 3.84 | 2.31 |
| 0.23               | Good             | E                  | VS1                  | 56.9               | 65.0               | 327                | 4.05 | 4.07 | 2.31 |
| 0.29               | Premium          | I                  | VS2                  | 62.4               | 58.0               | 334                | 4.20 | 4.23 | 2.63 |
| 0.31               | Good             | J                  | SI2                  | 63.3               | 58.0               | 335                | 4.34 | 4.35 | 2.75 |
| 0.24               | Very Good        | J                  | VVS2                 | 62.8               | 57.0               | 336                | 3.94 | 3.96 | 2.48 |
| 0.24               | Very Good        | 1                  | VVS1                 | 62.3               | 57.0               | 336                | 3.95 | 3.98 | 2.47 |
| 0.26               | Very Good        | Н                  | SI1                  | 61.9               | 55.0               | 337                | 4.07 | 4.11 | 2.53 |
| 0.22               | Fair             | E                  | VS2                  | 65.1               | 61.0               | 337                | 3.87 | 3.78 | 2.49 |
| 0.23               | Very Good        | Н                  | VS1                  | 59.4               | 61.0               | 338                | 4.00 | 4.05 | 2.39 |

# **Explanation of variables**

| Feature | Explanation                                                                                       |
|---------|---------------------------------------------------------------------------------------------------|
| price   | price in US dollars \$326-\$18,823                                                                |
| carat   | weight of the diamond (0.2–5.01)                                                                  |
| cut     | quality of the cut (Fair, Good, Very Good, Premium, Ideal)                                        |
| color   | diamond colour, from J (worst) to D (best)                                                        |
| clarity | a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best)) |
| X       | length in mm (0–10.74)                                                                            |
| У       | width in mm (0–58.9)                                                                              |
| Z       | depth in mm (0–31.8)                                                                              |
| depth   | total depth percentage = $z$ / mean( $x$ , $y$ ) = 2 * $z$ / ( $x$ + $y$ ) (43–79)                |
| table   | width of top of diamond relative to widest point (43–95)                                          |

# Summary of dataset

#### > summary(diamonds)

| carat          | cut            | color        | clarity       | depth               |
|----------------|----------------|--------------|---------------|---------------------|
| Min. :0.2000   | Fair : 161     | 0 D: 6775    | SI1 :13065    | Min. :43.00         |
| 1st Qu.:0.4000 | Good : 490     | 6 E: 9797    | VS2 :12258    | 1st Qu.:61.00       |
| Median :0.7000 | Very Good:1208 | 2 F: 9542    | SI2 : 9194    | Median :61.80       |
| Mean :0.7979   | Premium :1379  | 1 G:11292    | VS1 : 8171    | Mean :61.75         |
| 3rd Qu.:1.0400 | Ideal :2155    | 1 H: 8304    | VVS2 : 5066   | 3rd Qu.:62.50       |
| Max. :5.0100   |                | I: 5422      | VVS1 : 3655   | Max. :79.00         |
|                |                | J: 2808      | (Other): 2531 |                     |
| table          | price          | X            | У             | Z                   |
| Min. :43.00    | Min. : 326     | Min. : 0.0   | 00 Min. : 0   | .000 Min. : 0.000   |
| 1st Qu.:56.00  | 1st Qu.: 950   | 1st Qu.: 4.7 | 10 1st Qu.: 4 | .720 1st Qu.: 2.910 |
| Median :57.00  | Median : 2401  | Median : 5.7 | 00 Median : 5 | .710 Median : 3.530 |
| Mean :57.46    | Mean : 3933    | Mean : 5.7   | 31 Mean : 5   | .735 Mean : 3.539   |
| 3rd Qu.:59.00  | 3rd Qu.: 5324  | 3rd Qu.: 6.5 | 40 3rd Qu.: 6 | .540 3rd Qu.: 4.040 |
| Max. :95.00    | Max. :18823    | Max. :10.7   | 40 Max. :58   | .900 Max. :31.800   |

### (6) Statistical Transformations

- Lets explore the bar chart: appears simple, yet reveals a subtle feature of plots
- The bar chart geom\_bar()
   shows the total number
   of diamonds, grouped by
   cut
- But where does the count come from?



### Explanation

- Many graphs, like scatterplots, plot the raw values of the dataset
- However, other graphs (e.g. bar charts) calculate new values to plot
  - Bar charts, histograms and frequency polygons bin your data and plot bin counts, the number of points that fall in each bin
  - Smoothers fit a model to your data and the plot predictions from the model
  - Boxplots compute a robust summary of the distribution and display a specially formatted box



### Overriding the default stat

- Every geom has a default stat, and every stat has a default geom.
- What is the aggregated data was already contained in 5 rows?
- Use stat="identity"

```
cut Count
<ord>
<int>
<ord>
<int>
1 Fair 1610

2 Good 4906

3 Very Good 12082

4 Premium 13791

5 Ideal 21551
```



### fill aesthetic for bar charts

20000 -

- Bar charts can be coloured using the fill aesthetic
- When a different variable is used, the graph has further detail







ggplot(data=diamonds) +
 geom\_bar(mapping=aes(x=cut,fill=cut))



Premium

Very Good

#### Stacking options

- Stacking is performed automatically by the position adjustment specified by the position argument
- Examples include "identity", "fill" and "dodge"

- "fill"
  - Works like stacking, but each stacked bar is the same height
  - Makes it easier to compare proportions
- "dodge"
  - Places objects directly beside one another
  - Makes it easier to compare individual values



#### 



### Additional adjustment

- Recall our first scatterplot
- 126 points displayed, yet there are 234 observations
- Many points can overlap, so it makes it hard to see where the mass of data is
- Are all points spread equally, or is there one special combination that contains 129 values?
- "jitter" adds random noise to each point.





#### Histogram

ggplot(data=diamonds,mapping=aes(x=price)) +
 geom\_histogram(binwidth = 500)



#### Boxplot

- Display the distribution of a continuous variable broken down by a categorical variable
- Box that stretches from the 25<sup>th</sup> to 75<sup>th</sup> percentile a distance known as the interquartile range (IRQ)
- Median in the middle of box
- Points outside more that 1.5 times the IQR from either edge of the box are displayed (outliers)
- Whisker extends to the farthest non-outlier point in the distribution





## ggplot(data=mpg,mapping=aes(x=class,y=hwy)) + geom\_boxplot()



### (7) Coordinate Systems

- Probably the most complicated part of ggplot2
- Default us the Cartesian coordinate system where the x and y position act independently to find the location of each point
- A number of other coordinate systems can be helpful:
  - coord\_flip(), switchesthe x and y axes
  - coord\_quickmap() sets
     the aspect ration
     correctly for maps,
     important for plotting
     spatial data

# ggplot(data=diamonds) + geom\_bar(mapping = aes(x = cut)) + coord\_flip()



ggplot(nz, aes(long,lat, group=group)) +
 geom\_polygon(fill="white",colour="black") +
 coord\_quickmap()





#### (8) The Layered Grammar of Graphics

- The ggplot2 approach can be summarised by a template
- It can take seven
   parameters, but usually
   not all need to be
   applied (defaults used)
- These seven
   parameters compose
   the grammar of
   graphics