Анализ данных 16S рРНК секвенирования

Одинцова Вера,

Кномикс

Обо мне

- 7 лет опыта работы с Анализом данных (НИИ ФХМ, Атлас, Кномикс)
- Область интересов
 - кишечные, кожная, ротовая, почвенная микробиота, микробиота насекомых (около 50 проектов)
 - анализ данных 16S и shotgun секвенирования, в основном стат.
 анализ 16S данных
 - >10 публикаций, как с результатами различных исследований, так и по методам стат. анализа

https://scholar.google.com/citations?user=jrc2iSoAAAAJ&hl=ru&oi=sra

О чем расскажу

- Биоинформатический анализ
 - Как по данным с секвенатора оценить пропорции микробов в образце
 - какие еще есть характеристики образцов

• Статистический анализ

- Проверка гипотез по выборке: есть ли связь между микробиотой и различными факторами
- Особенности данных

1. Пробоподготовка и секвенирование

- Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- 6. Картирование
 - . Подготовка базы
 - Картирование
- Вычисление пропорций
- 8. Вычисление других характеристик

а. Альфа-разнообразие

b. Бета-разнообразие

Fastq

@read1

+

@read2

CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCG TCAGTTACAGACCAAAAAGCCGCCTTCGCCAC TGGTGTTCCTCCACATCTCTACGCATTTCACCG

٠.

- 1. Пробоподготовка и секвенирование
 - Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- 6. Картирование
 - а. Подготовка базы
 - b. Картирование
- 7. Вычисление пропорций
- 8. Вычисление других характеристик
 - . Альфа-разнообразие Бета-разнообразие
 - с. Метаболический потенциал

Демультиплексирование разделяем риды на файлы по образцам https://cutadapt.readthedocs.io/en/stable/

Тримминг -

убираем служебные последовательности (адаптеры, баркоды, праймеры)

https://cutadapt.readthedocs.io/en/stable/ https://docs.giime2.org/

- 1. Пробоподготовка и секвенирование
- 2. Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- 6. Картирование
 - а. Подготовка базы
 - b. Картирование
- 7. Вычисление пропорций
- 8. Вычисление других характеристик
 - Альфа-разнообразие
 - b. Бета-разнообразие с. Метаболический потенциал

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
NNNNNNNNNNNNNNNNNNNNNNNNNN	2041709	3.355499770866574	No Hit
сттететтететтететтететтететтететтететтет	240040	0.39449998261202374	No Hit
ACACTCTTTCCCTACACGACGCTCTTCCGNNNNNN	130911	0.21514908858408033	Illumina Single End PCR Primer 1 (96% over 29bp)
${\tt тстсттстсттстсттстсттстсттстсттстсттс$	106672	0.17531287345938093	No Hit
cTccTccTcTccTcccTcccccccc	97553	0.16032601567968152	No Hit
тсттстсттстсттстсттстсттстсттстсттстсттст	85228	0.1400701737962738	No Hit

FastQC, MultiQC

- обрезаем концы плохого качества или риды с плохим качеством
- выкидываем риды с низким покрытием
- проверяем наличие адаптеров и баркодов
- смотрим гистограмму длин
- проверяем количество ридов на образец

https://support.illumina.com/bulletins/2016/12/what-sequences-do-i-use-for-adapter-trimming.html

- Пробоподготовка и секвенирование
- Демультиплексирование и тримминг
- Анализ качества

Объединение парных ридов

- Исправление ошибок секвенирования
- Картирование
 - Подготовка базы
 - Картирование
- Вычисление пропорций
- Вычисление других характеристик
 - Альфа-разнообразие
- Бета-разнообразие Метаболический потенциал

- следим за количеством оставшихся ридов
- иногда лучше оставить только R1 или R2

- > vsearch -- fastq mergepairs (OR giime2 fastq-join)
- > pandaseq
- > pear
- > SeqPrep
- > leeHom (useful for short amplicons)
- > Dada2 алгоритм предполагает слияние после

Кластеризация de novo

- Пробоподготовка и секвенирование
- Демультиплексирование и тримминг
- Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- Картирование
 - Подготовка базы
 - Картирование
- Вычисление пропорций
- Вычисление других характеристик
 - Альфа-разнообразие Бета-разнообразие
 - Метаболический потенциал

OTE (операционная ШУМ таксономическа я единица)

Фильтрация (Denoising): DADA2, Deblur

Картирование на базу (closed-reference)

Референсная база

Комбинация кластеризации и картирования

Референсная база

Как выбрать длину для алгоритмов денойзинга:

Наиболее частая длина L. Риды разбиваются на группы длины L-5, L-4, L-3, L-2, L-1, >=L. Алгоритмы запускаются независимо.

Deblur

Pipelines

DADA2

Expected

OTU

UNOISE3

- 1. Пробоподготовка и секвенирование
- 2. Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
 - . Картирование
 - а. Подготовка базы b. Картирование
 - b. Картирование
- 7. Вычисление пропорций
- 8. Вычисление других характеристик
 - а. Альфа-разнообразие
 - Бета-разнообразие
 Метаболический потенциал

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3501-4

Подготовка базы:

- выбор базы
- обрезание по нужному региону
- подходит для целей исследования?
 - Сможем различить нужные бактерии по выбранному региону?
 - Насколько база обновленная?
 - Насколько хорошо курируется?

https://www.ibi.vu.nl/programs/taxmanwww/ http://bioinformatics.org/cd-hit/

Картирование:

- Illumina
 - Выравнивание (Usearch, Vsearch, blastn)
 - Классификация (RDP Naive Bayes, Qiime2 Naive Bayes)
- Oxford Nanopore
 - o Emu
 - NanoCLUST
- может занимать долгое время

Пробоподготовка и секвенирование
 Демультиплексирование и тримминг
 Анализ качества
 Объединение парных ридов
 Исправление ошибок секвенирования
 Картирование
 а. Подготовка базы b. Картирование
 Том Картирование
 Вычисление пропорций
 Вычисление других характеристик

Альфа-разнообразие Бета-разнообразие Метаболический потенциал

QC.

- есть ли "странные микробы"?
- есть ли "странные" образцы?
- состав положительного и отрицательного контроля?
- достаточное ли покрытие
- процент картировавшихся ридов

- 1. Пробоподготовка и секвенирование
- 2. Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- 6. Картирование
 - . Подготовка базы
 - о. Картирование
- 7. Вычисление пропорций
- 8. Вычисление других характеристик
 - а. Альфа-разнообразие
 - b. Бета-разнообразие
 - Метаболический потенциал

Crobach et al., 2020

Cox et al, Human Molecular Genetics, 2013

Визуализация:

- боксплот
- violin plot

Альфа-разнообразие это:

- Характеристика 1 образца
- Насколько много в образце разных микробов (богатство)
- Насколько равномерно они представлены (ровность)

Примеры:

- Индекс Шеннона (равномерность)
- Индекс Chao1 (богатство)
- Индекс Симпсона (равномерность)

Что учесть:

- Можно использовать несколько индексов
- Чувствительны к покрытию образца
- Стандартные методы статистики (обычно непараметрические)

- 1. Пробоподготовка и секвенирование
- 2. Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- 6. Картирование
 - . Подготовка базы
 - b. Картирование
- 7. Вычисление пропорций
- 8. Вычисление других характеристик
 - . Альфа-разнообразие
 - b. Бета-разнообразие
 - d.

https://doi.org/10.3390/math6070119

Визуализация:

PCoA

Бета-разнообразие это:

- Характеристика 2 образцов
- Насколько два микробных сообщества отличаются

Примеры:

- UniFrac
- Bray-Curtis
- Aitchison

Что учесть:

- Можно использовать несколько индексов
- Чувствительны к покрытию образца
- РЕRMANOVA для стат. анализа

Пробоподготовка и секвенирование
 Демультиплексирование и тримминг
 Анализ качества
 Объединение парных ридов
 Исправление ошибок секвенирования
 Картирование

 а. Подготовка базы
 b. Картирование

 Вычисление пропорций
 Вычисление других характеристик

 а. Альфа-разнообразие
 b. Бета-разнообразие
 с. Метаболический потенциал

PICRUSt2: требователен к объему памяти и времени при большом числе OTU

FAPROTAX: для сравнения >80 высокоуровневых функций разнообразных микробиомов ("ферментация", "метаногенез"…).

Tax4fun: более детальный, хорошо подходит для микробиомов океана.

https://www.nature.com/articles/s41587-020-0548-6

- 1. Пробоподготовка и секвенирование
- 2. Демультиплексирование и тримминг
- 3. Анализ качества
- 4. Объединение парных ридов
- 5. Исправление ошибок секвенирования
- Картирование
 - Подготовка базы
 - . Картирование
- Вычисление пропорций
- 8. Вычисление других характеристик
 - Альфа-разнообразие
 - р. Бета-разнообразие
 - с. Метаболический потенциал

Как все это сделать:

- 1. <u>qiime2.orq</u>
- 2. mothur.org
- 3. <u>biota.knomx.com</u>
- 4. ..

Статистический анализ

- Пропорции микробов
- альфа-разнообразие
- бета-разнообразие
- метаболический потенциал

метаданные					
1		Age	Sex	Visit	
	s1				
	s2				
	s3				
	s4				
	s5				

Метапацика

Отступление: композиционность данных

Пример: влияние диеты на микробиоту человека

		bact1	bact2	 bactM
	subj1	50	10	 3
	subj2	0	1	 0
до	•••			
	•••	120	260	 127
	subj1	70	0	 3
	subj2	0	0	 27
после	•••			
	subjN	9	14	 17

Особенности данных:

композиционные данные

Особенность	Что это значит
сумма по строчкам - случайная величина	оцениваем только относительные представленности бактерий (рис. 1)
значения - целые числа	точность оценки зависит от покрытия образца (общего количества ридов в нем)
много нулей	ноль - не всегда действительно ноль (рис. 2)

Рис. 1. Покрытие образов до и после фильтрации по качеству

Композиционность данных - важное свойство

невозможно поменять долю одной бактерии не поменяв долю остальных

Microbiome Datasets Are Compositional: And This Is Not Optional

Gregory B. Gloor 1*, Jean M. Macklaim 1, Vera Pawlowsky-Glahn 2 and Juan J. Egozcue 3

	b1	b2	b3
количество (·10 ⁷)			
образец 1	1	4	5
образец 2	1	4	15
пропорции			
различие			

	b1	b2	b3
количество (·10 ⁷)			
образец 1	1	4	5
образец 2	1	4	15
пропорции			
образец 1	10%	40%	50%
образец 2	5%	20%	75%
различие			

	b1	b2	b3
количество (·10 ⁷)			
образец 1	1	4	5
образец 2	1	4	15
пропорции			
образец 1	10%	40%	50%
образец 2	5%	20%	75%
различие			
покомпонентное	-5%	-20%	+25%

Критика покомпонентного сравнения

- 1. Видим изменения которых нет
- 2. Размер эффекта этих изменений разный
- 3. Теряется информация о постоянном соотношении бактерий b1 и b2

	b1	b2	b3
количество (·10 ⁷)			
образец 1	1	4	5
образец 2	1	4	15
пропорции			
образец 1	10%	40%	50%
образец 2	5%	20%	75%
различие			
покомпонентное	-5%	-20%	+25%
композиционное	1/2 (20%)	1/2 (20%)	3/2 (60%)

Композиционный анализ:

- 1. Наши выводы не должны меняться при переходе от абсолютных значений к долям
- 2. Различие доли бактерии в образцах "во сколько раз" (не "на сколько")
- 3. Расстояние Эйтчисона между образами как сильно отличаются пропорции между компонентами (не сами компоненты)

Разные идеи

	b1	b2	b3
количество (·10 ⁷)			
образец 1	1	4	5
образец 2	1	4	15
пропорции			
образец 1	10%	40%	50%
образец 2	5%	20%	75%
различие			
покомпонентное	-5%	-20%	+25%
композиционное	1/2 (20%)	1/2 (20%)	3/2 (60%)

логарифмирование:

- + превращает сложение в умножение
- + отсутствие изменений нулевой вектор
- + сохраняется расстояние Эйтчисона
- остается зависимость компонент нормировки
- <u>CLR</u> (centered log-ratio): ln(b_i)-mean(ln(b_i))
 - + все преимущества логарифмирования
 - + нормировка
 - остается зависимость компонент (сумма=0)
- ALR (additive log-ratio): In(b₁/b₀)
 - + превращает сложение в умножение
 - + отсутствие изменений нулевой вектор
 - + независимые компоненты
 - не сохраняется расстояние Эйтчисона
- ILR (isometric log-ratio) объединяет все плюсы, но сложная интерпретация

Примеры способов выбора ilr-координат

- произвольное (пакет balance)
- PCA
- PhiLR на основе генетического сходства
- principal balance analysis на основе анализа вариации данных
- gneiss (встроен в QIIME2)
 - кластеризация таксонов по характерным для них значениям фактора
- DBA (пакет balance)
 - о для сравнения двух групп на основе вариации данных
- selbal
 - о поиск только одного самого важного баланса
- NearestBalance
 - о приближает любой ILR вектор ближайшим балансом

NearestBalance*

для интерпретации композиций (точек)

bal - ближайший вектор-баланс (изменение микробиоты состоит только в изменении соотношения между двумя группами бактерий)

^{*} Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. Msystems. 2022 May 9:e00155-22.

Пример: болезнь Крона (34 здоровых vs 34 больных)

Данные из статьи https://pubmed.ncbi.nlm.nih.gov/28179361/:

Всего 210 микробов ²⁷

Пример: качество покрытия

Качество секвенирования достаточное

Пример: фильтрация от редких микробов

Оставляем микробы, встречающиеся в >30% образцов

	до	после
N микробов	210	89
мин. покрытие	19414	12981

Пример:

Считаем относительные представленности основных микробов (zCompositions)

Пример: альфа-разнообразие

Альфа-разнообразие:

- Возьмем индекс Шеннона
- Посчитаем его после 5-кратного прореживания до 19000 ридов и усреднения
- Построим боксплот
- Проверим стат. значимость тестом Манна-Уитни

Пример: бета-разнообразие

CD

- Используем бета-разнообразие Эйтчисона
- Визуализируем с помощью РСоА
- Проверяем различие с помощью PERMANOVA

Расстояние Эйтчисона - насколько похожи пропорции основных микробов в двух образцах

PERMANOVA - образцы из одной и той же группы больше похожи, чем из разных?

Пример: в чем именно заключаются различия

Смотреть на каждый отдельный микроб ошибочно! Изменение даже в абсолютном количестве одного микроба означают изменения всех долей

CLR:

- смотрим, вырос ли он сильнее, чем в среднем другие микробы?

Пример: в чем именно заключаются различия

- выделяем три группы микробов
- внутри каждой микробы меняются примерно одинаково
- одна ассоциирована со здоровьем, другая с заболеванием, третья - не зависит от него

83.7% всех различий описываются этим упрощением

Пример: как эти различия выражены в каждом образце

Значение баланса, p=10⁻¹⁷ (критерий Манна-Уитни)

Значение баланса характеризует соотношение микробов ассоциированных со здоровьем и болезнью в образце

Что дальше?

- биологическая интерпретация
 - что объединяет микробы, оказавшиеся в одной группе?
 - нет ли антагонизма между микробами разных групп
 - Какая может быть связь с заболеванием (где причина, где следствие)?
- анализ метаболического потенциала (аналогично)
- построение новых гипотез и проверка их другими методами

Спасибо за внимание!

v.odintsova@knomx.com