Algoritmos em grafos: árvore de expansão mínima (minimum spanning tree)

R. Rossetti, A.P. Rocha, J. Pascoal Faria FEUP, MIEIC, CAL, 2013/2014

FEUP Universidade do Porto

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

Árvore de expansão mínima

Árvore que liga todos os vértices do grafo usando arestas com um custo total mínimo

- caso do grafo não dirigido
- grafo tem que ser conexo
- árvore ⇒ grafo conexo acíclico
- número de arestas = |V| 1
- exemplo de aplicação: cablamento de uma casa
 - vértices são as tomadas
 - · arestas são os comprimentos dos troços

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

2

35

29

FEUP Universidade do Porto

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

Algoritmo de Prim

- expandir a árvore por adição sucessiva de arestas e respectivos vértices
 - critério de selecção: escolher a aresta (u,v) de menor custo tal que u já pertence à árvore e v não (ganancioso)
 - início: um vértice qualquer
- ☐ idêntico ao algoritmo de Dijkstra para o caminho mais curto
 - informação para cada vértice
 - $\operatorname{dist}(v)$ é o custo mínimo das arestas que ligam a um vértice já na árvore
 - path(v) é o último vértice a alterar dist(v)
 - known(v) indica se o vértice já foi processado (i.e., já pertence à árvore)
 - diferença na regra de actualização: após a selecção do vértice v, para cada w não processado, adjacente a v, dist(w) = min{ dist(w), cost(v,w) }
 - tempo de execução
 - $O(|V|^2)$ sem fila de prioridade
 - O(|E| log |V|) com fila de prioridade

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

Algoritmo de Kruskal

- analisar as arestas por ordem crescente de peso e aceitar as que não provocarem ciclos (ganancioso)
- ☐ método
 - manter uma floresta, inicialmente com um vértice em cada árvore (há |V|)
 - · adicionar uma aresta é fundir duas árvores
 - quando o algoritmo termina há só uma árvore (de expansão mínima)
- ☐ aceitação de arestas algoritmo de Busca/União em conjuntos disjuntos
 - representados como árvores
 - se dois vértices pertencem à mesma árvore/conjunto, mais uma aresta entre eles provoca um ciclo (2 Buscas)
 - se são de conjuntos disjuntos, aceitar a aresta é aplicar-lhes uma União
- selecção de arestas: ordenar por peso ou, melhor, construir fila de prioridade em tempo linear e usar deleteMin (heapsort)
 - tempo no pior caso O(|E| log |E|), dominado pelas operações na fila
 - como $|E| \le |V|^2$, $\log |E| \le 2 \log |V|$, $\log eficiência é também <math>O(|E| \log |V|)$

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

./rr (3)

Evolução do algoritmo de Kruskal

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

Evolução do algoritmo de Kruskal

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

Pseudocódigo (Kruskal)

FEUP Universidade do Porto Faculdade de Engenharia

CAL, 2013/14, Algoritmos em Grafos: Árvore de Expansão Mínima

./rr (5)