

J. RECHE, M. ARGOUD, A. DE LEHELLE D'AFROUD, A. WARSONO JN-NIL 2021 | 18-19 Novembre 2021

Défectivité

PROCÉDÉ DE NANOIMPRESSION AU CEA-LETI

Création d'un moule souple intermédiaire Anti-adhésif (ASL) Moule Polymère souple: 1- Dépot 3- Stabilisation UV/Thermique 4 - Démoulage 2- Assemblage Working stamp Réplication unique 5- Impression Multiple impression 7- Démoulage Caractérisation 6- Stabilisation UV/Thermique 8a - Ouverture resine SEM cross-section : Forme des motifs et profondeur CD-SEM: Statistique sur les CD 8b - Gravure Si

- La technologie NIL au CEA-Leti
- Design pour évaluer le NIL
- Quatre critères de performance
 - Résolution atteignable
 - Intégration
 - Défectivité
 - Overlay la distorsion
- **Conclusions et perspectives**

DESIGN ET MASTER

- Lignes denses (L/S)
 - Ratio CD:Pitch = 1:5
 - CD motifs suivis
 - 100 nm
 - 50 nm
 - 45 nm

- Contact denses (C/H)
 - Ratio CD:Pitch = 1:4
 - CD motifs suivis
 - 100 nm
 - 50 nm
 - 45 nm

Marques overlay

- La technologie NIL au CEA-Leti
- Design pour évaluer le NIL
- Quatre critères de performance
 - Résolution atteignable
 - Intégration
 - Défectivité
 - Overlay la distorsion
- **Conclusions et perspectives**

IMPRESSION

- Deux types d'équipement
 - Automatique
 - Semi-Automatique
- **Mesures CD-SEM**
 - 1 plaque par équipement
 - 24 puces réparties
 - 6 Motifs différent

Résultats similaire sur les deux équipements

Performances principalement liées aux matériaux

RÉPÉTABILITÉ: OBSERVATION

Répétabilité validée sur un lot complet

RÉPÉTABILITÉ: MESURE

Première plaque comme référence

- Extraction sur L/S
- Variation = $CD-CD_{W01}$

Variations

- < +/- 0.1 nm plaque à plaque
- Faible tendance à l'augmentation <0.2 nm après 25 réplications
- Proche des valeurs de variabilité intra-plaque

Variation sur tout le lot <0.2 nm

QUATRE CRITÈRES DE PERFORMANCE

Résolution atteignable

- Résolution < 50nm
- Répétabilité sur un lot ®
- Faible dispersion

Intégration

 \exists

Etch

CAPABILITÉ DE GRAVURE L/S

100 nm X180K 167nm

50 nm

45 nm

Etape NIL

- Epaisseur résiduelle <20 nm
- Budget résine >100 nm

- Après gravure
 - Profondeur gravée ~65 nm
 - Résine restante 40 nm

Epaisseur et profondeur équivalentes sur la gamme [100-45] nm

CAPABILITÉ DE GRAVURE C/H

Etch

100 nm

50 nm

45 nm

Etape NIL

- Epaisseur résiduelle <20 nm
- Budget résine >100 nm

Après gravure

- Profondeur gravée >65 nm
- Résine restante 40 nm

Variations CD

Un biais de CD est présent entre NIL et gravure

Biais CD visible sur les motifs C/H

BIAIS CD

6 motifs mesurés sur 24 puces

- A toutes les étapes
- 100, 50 et 45 nm

Biais limité entre le master et l'impression

- L/S
 - 100 nm <5%
 - 50 et 45 nm < 2%
- C/H < 3%

Biais de gravure

- 20% pour C/H
- 50 et 45 nm L/S pas de biais

Dépendance du biais selon les motifs

QUATRE CRITÈRES DE PERFORMANCE

Résolution atteignable

- Résolution < 50nm
- Répétabilité sur un lot
- **Faible dispersion**

Intégration

- Intégration de motif 45 nm
- Résiduel faible < 20 nm
- Biais contrôlé

Défectivité

DÉFECTIVITÉ

- Critique pour la montée en puissance du NIL
 - Dépend de l'application
 - Dépend du design répliqué
- Méthodes d'analyses
 - Equipement automatique de défectivité
 - Quantification
 - Limite de détection => diam~200nm
 - Extraction des données sous deux formes
 - Cartographies à l'échelle du wafer → localisation des défauts
 - Histogrammes → comparaison entre wafers

Analyse d'un wafer

~4 défauts/cm² pour le design considéré

CARTOGRAPHIE SUR 25 WAFER IMPRIMÉS SUCCESSIVEMENT

Signature de défectivité wafer à wafer

HISTOGRAMME SUR 25 WAFER IMPRIMÉS SUCCESSIVEMENT

Note: 50 défauts ~ 1 défaut/cm² ~ 4 défauts/cm²

Quantité et dimension des défauts similaire selon les wafers

QUATRE CRITÈRES DE PERFORMANCE

Résolution atteignable

- Résolution < 50nm
- Répétabilité sur un lot
- Faible dispersion

Intégration

- Intégration de motif 45 nm
- Résiduel faible < 20 nm
- Biais contrôlé

Défectivité

- Méthode de quantification
- Stabilité WtW, ~4def /cm²
- Signature identifiée

Overlay - Distorsion

OVERLAY ET DISTORSION

Alignement

Mesure Overlay

Translation et rotation

- Liés aux capacités de l'équipement à aligner des marques
- Ajuster un niveau sur un autre

Distorsion

- Déformation de la nappe
- Liée au procédé et la technologie

Modélisation

Partie répétable plaque à plaque, lot à lot, ...

Résidu

Ce qu'il reste après modélisation

CARTOGRAPHIE DE DISTORSION

Indicateurs d'évolution de la distorsion

PREMIER BILAN 2019

Contribution axe Y > axe X

Variations plaque à plaque importantes

Jusqu'à +/- 13 µm de distorsion

AMÉLIORATION ACTUELLE ET EN COURS

Mises à jours équipement

- Nouveau bilan fin 2020
- Distorsion inférieure à 5 μm

Optimisation des procédés

- Travaux en cours
- Investigation de nouveaux paramètres

Distorsion <2µm en X et Y

- La technologie NIL au CEA-Leti
- Design pour évaluer le NIL
- Quatre critères de performance
 - Résolution atteignable
 - Intégration
 - Défectivité
 - Overlay la distorsion
- **Conclusions et perspectives**

CONCLUSIONS ET PERSPECTIVES

Résolution atteignable

- Résolution < 50nm
- Répétabilité sur un lot
- Faible dispersion

Perspectives

- Stabilité fort volume
- Formes complexes

Intégration

- Intégration de motif 45 nm
- Résiduel faible < 20 nm
- Biais contrôlé

Perspective

Intégration directe sur design réel

Défectivité

- Méthode de quantification
- Stabilité WtW, ~4def /cm²
- Signature identifiée

Perspectives

- Identification des types de défauts
- Lien potentiel master vs impression
- Impact du design sur la défectivité

Overlay - Distorsion

- Bilan de départ >13 µm
- **Distorsion proche** de 1 µm

Perspectives

- Stabilisation lot à lot
- **Evaluation de l'overlay** global

Merci de votre attention!

Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

