US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

Inventor(s)

August 07, 2025

LETUKAS; Anthony et al.

Mobility Vehicle

Abstract

In some embodiments, a vehicle may include a frame having longitudinal axis. The vehicle may include a steering assembly having a steering input and at least one wheel. The steering assembly may be coupled to the frame and configured to steer the vehicle based on input from a steering input. The vehicle may include a first drive wheel and a second drive wheel. The vehicle may include a steering position sensor configured to detect steering input including a position of the steering input and at least one of i) a rate of change of position of steering input and ii) steering position time. The vehicle may include at least one controller configured to process a signal from the steering position sensor and, in response to the processed signal, drive the first drive wheel and the second drive wheel, the first drive wheel being driven independent of the second drive wheel.

Inventors: LETUKAS; Anthony (Dallas, PA), DAVIES; Robert William (Mountaintop, PA),

KUZMA; Nicholas E. (Dallas, PA), ANTONISHAK; Stephen (Alden, PA),

MULHERN; James P. (Nanticoke, PA)

Applicant: PRIDE MOBILITY PRODUCTS CORPORATION (Duryea, PA)

Family ID: 63252980

Appl. No.: 19/180492

Filed: April 16, 2025

Related U.S. Application Data

parent US continuation 19039427 20250128 PENDING child US 19180492 parent US continuation 18365600 20230804 parent-grant-document US 12240552 child US 19039427

parent US continuation 17739909 20220509 parent-grant-document US 11780497 child US 18365600

parent US continuation 16488527 20190823 parent-grant-document US 11358633 US continuation PCT/US2018/019569 20180223 child US 17739909

us-provisional-application US 62463622 20170225 us-provisional-application US 62526489 20170629

Publication Classification

Int. Cl.: B62D9/00 (20060101); B62D1/14 (20060101); B62D5/04 (20060101); B62D6/00 (20060101); B62D7/18 (20060101); B62D11/00 (20060101); B62D11/04 (20060101); B62J45/413 (20200101); B62K5/007 (20130101); B62K5/08 (20060101)

U.S. Cl.:

CPC **B62D9/00** (20130101); **B62D1/14** (20130101); **B62D5/046** (20130101); **B62D6/003** (20130101); **B62D7/18** (20130101); **B62D11/003** (20130101); **B62D11/04** (20130101); **B62J45/413** (20200201); **B62K5/007** (20130101); **B62K5/08** (20130101);

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to and is a continuation of U.S. patent application Ser. No. 19/039,427 filed Jan. 28, 2025, which is a continuation of U.S. patent application Ser. No. 18/365,600 filed Aug. 4, 2023, now U.S. Pat. No. 12,240,552, issued Mar. 4, 2025, which is a continuation of Ser. No. 17/739,909 filed May 9, 2022 now U.S. Pat. No. 11,780,497 issued Oct. 10, 2023, which is a continuation of U.S. patent application Ser. No. 16/488,527 filed Aug. 23, 2019 now U.S. Pat. No. 11,358,633 issued Jun. 14, 2022, which is a 371 National Stage entry of International Application No. PCT/US2018/019569 filed Feb. 23, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/463,622 filed Feb. 25, 2017 entitled "Mobility Vehicle Control System" and U.S. Provisional Patent Application No. 62/526,489 filed Jun. 29, 2017 entitled "Mobility Vehicle Control System", each of which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The present application generally relates to a mobility vehicle and, more particularly, to a steering assembly and a control system for a mobility vehicle such as a scooter.

BRIEF SUMMARY OF THE INVENTION

[0003] In some embodiments, a vehicle comprises: a frame having longitudinal axis; a steering assembly having a steering input and at least one wheel, the steering assembly coupled to the frame and configured to steer the vehicle based on input from the steering input; a first drive wheel and a second drive wheel; a steering position sensor configured to detect a position of the steering input and at least one of i) a rate of change of the position of the steering input and ii) a steering position time; and at least one controller configured to process a signal from the steering position sensor and, in response to the processed signal, drive the first drive wheel and the second drive wheel, the first drive wheel being driven independently of the second drive wheel.

[0004] In some embodiments, the vehicle further comprises a first motor coupled to the at least one controller and the first drive wheel and a second motor coupled to the at least one controller and the second drive wheel, wherein the first drive wheel is driven by the first motor and the second drive wheel driven by the second motor in response to one or more drive signals from the at least one controller.

[0005] In some embodiments, the first motor is configured to drive the first drive wheel in a first direction and the second motor is configured to drive the second drive wheel in a second direction opposite the first direction.

[0006] In some embodiments, the first motor receives a first drive signal of the one or more drive signals from the at least one controller to drive the first drive wheel and the second motor receives a second drive signal of the one or more drive signals from the at least one controller to drive the second drive wheel.

[0007] In some embodiments, the second drive signal has an amount of current that, when received by the second motor, causes the second motor to drive the inner drive wheel at a speed of 0 revolutions per minute.

[0008] In some embodiments, while the vehicle is turning in a left or right direction, the first drive wheel is the outer drive wheel and the second drive wheel is the inner drive wheel, the inner drive wheel being closer to a center of a turning path of the vehicle than the outer drive wheel and wherein the first motor is configured to drive the outer drive wheel in a first direction at a speed greater than 0 revolutions per minute and the second motor is configured to drive the inner drive wheel at a speed of 0 revolutions per minute.

[0009] In some embodiments, the at least one wheel includes a left front wheel and a right front wheel.

[0010] In some embodiments, a distance between the left front wheel and the right front wheel is less than a distance between the first drive wheel and the second drive wheel.

[0011] In some embodiments, the at least one controller is configured to: receive one or more signals related to the position of the steering input and at least one of i) the rate of change of position of the steering input, an ii) the steering position time; and command the first motor and the second motor to drive the first wheel and second wheel in opposite directions based upon the one or more drive signals.

[0012] In some embodiments, the steering assembly includes a steering linkage configured and dimensioned such that each of the left front wheel and the right front wheel have: a maximum inward turn angle characterized by a limit to which either the left front wheel or right front wheel can turn toward the longitudinal axis, and a maximum outward turn angle characterized by a limit to which either the left front wheel or right front wheel can turn away from the longitudinal axis, wherein when one of the left front wheel or the right front wheel is an outside wheel turned to a respective left or right maximum inward turn angle, the other of the left front wheel or right front wheel is an inside wheel turned to an intermediate maximum outward turn angle that is less than the maximum outward turn angle unless a biasing force is applied to the inside wheel to urge the inside wheel to the respective maximum outward turn angle.

[0013] In some embodiments, the biasing force is a function of a difference between a voltage in a first drive signal provided to a first motor to drive the first drive wheel and a voltage in a second drive signal provided to a second motor to drive the second drive wheel.

[0014] In some embodiments, the biasing force is applied to the inside wheel independent of the movement of the steering input.

[0015] In some embodiments, the tiller, when operated by a user, is configured to turn the inside wheel up to, without exceeding, the intermediate maximum outward turn angle.

[0016] In some embodiments, the biasing force is caused by a force exerted by the ground.

[0017] In some embodiments, the intermediate maximum outward turn angle is different from the maximum outward turn angle by approximately 100.

[0018] In some embodiments, the at least one wheel includes a left front wheel and a right front wheel, and wherein a steering linkage is configured to engage a stop when one of the left front wheel or the right front wheel reaches a respective maximum outward turn angle to prevent said left or right front wheel from turning beyond the respective maximum outward turn angle.

[0019] In some embodiments, the steering linkage further comprises a linkage member configured to pivot in response to movement of the steering input.

[0020] In some embodiments, the linkage member includes a tie rod.

[0021] In some embodiments, the at least one wheel includes a left front wheel and a right front

wheel, and wherein the steering assembly further comprises: a steering stem, a stem tab coupled to the steering stem, an axle beam pivotably mounted to the frame, the axle beam comprising a left stop and right stop, a left king pin and right king pin coupled to the axle beam, and a left tie rod and a right tie rod, each of the left and right tie rods being pivotably coupled to the stem tab and to the left king pin and right king pin respectively, wherein each of the left and right tie rods is configured to pivot in response to movement of the steering input and to engage the left or right stop respectively when one of the left front wheel or the right front wheel reaches a respective maximum outward turn angle to prevent said left or right front wheel from turning beyond the respective maximum outward turn angle.

[0022] In some embodiments, the left king pin is rotatable about a left king pin axis and the right king pin is rotatable about a right king pin axis, and wherein each of the left king pin and the right king pin is pivotably coupled to the respective left and right tie rod that translates relative to the axle beam when the left or right king pin rotates about the respective left and right king pin axis. [0023] In some embodiments, the axle beam is further coupled to the frame by at least one suspension member configured to allow each of the left front wheel and right front wheel to translate relative to the frame.

[0024] In some embodiments, each of the left front wheel and the right front wheel is translatable relative to the frame by a value between 0.25 inches and 1 inch.

[0025] In some embodiments, the vehicle further comprises a swing arm pivotably coupled to the frame and fixed to the axle beam.

[0026] In some embodiments, the vehicle further comprises a left and a right steering arm coupled to the left and right kingpin respectively, each of the left and right steering arm being rotatable about and projecting from the left and right kingpin respectively; and a left and right wheel axle coupled to the left and right kingpin respectively, each of the left and right wheel axle being rotatable about the left and right kingpin axis respectively and projecting from the left and right kingpin respectively, the left front wheel and right front wheel being rotatable about the respective left and right wheel axle, wherein each of the left and right steering arm is fixed relative to the left and right wheel axle respectively at an angle of approximately 73°.

[0027] In some embodiments, the each of the left and right king pin axes is oriented relative to the frame at a camber angle of approximately 4 degrees.

[0028] In some embodiments, the each of the left and right king pin axes is oriented relative to the frame at a caster angle of approximately 2 degrees.

[0029] In some embodiments, the maximum outward turn angle is approximately 91 degrees. [0030] In some embodiments, the vehicle further comprises a rear wheel axis about which the first and second drive wheels rotate; a left and right front wheel axis about which the respective left and right front wheels rotate; and a left and right front wheel axis vertical projection extending through the left and right front wheel axis, the left and right front wheel axis vertical projections intersecting at a point that is forward of the rear wheel axis when one of the left or right front wheel is at the maximum outward turn angle.

[0031] In some embodiments, the left and right front wheel axis vertical projections intersect at a point that is set off from the longitudinal axis on a left side of the frame when the left front wheel is at the maximum outward turn angle.

[0032] In some embodiments, one of the axle beam or the left or the right steering arm comprises an adjustable steering stop that is fixed to the one of the axle beam or the left or the right steering arm and is configured to limit the motion of the left or the right steering arm relative to the axle beam to a first degree when the adjustable steering stop is in a first configuration and to limit the motion of the left or the right steering arm relative to the axle beam to a second degree when the adjustable steering stop is in a second configuration wherein the first degree is less than the second degree.

[0033] In some embodiments, the vehicle is further configured and dimensioned to produce the

biasing force when the vehicle is operated in a forward direction.

[0034] In some embodiments, the vehicle is configured and dimensioned to reduce the biasing force in response to a reduction in a difference between relative torque applied to the first and second drive wheels, respectively.

[0035] In some embodiments, the vehicle further comprises a retractable steering stop configured to restrict pivoting movement of one of the left or right steering arms relative to the axle beam when the retractable steering stop is in an engagement ready position.

[0036] In some embodiments, the retractable steering stop is further configured to not restrict pivoting movement of one of the left or right steering arms relative to the axle beam when the steering stop is in a retracted position.

[0037] In some embodiments, the vehicle further comprises a retraction means configured to cause the retractable steering stop to toggle from the engagement ready position to a retracted position based upon at least one of: a user command, vehicle speed, a position of the steering input, a duration in the position of the steering input and the rate of change of position of steering input. [0038] In some embodiments, the steering position sensor is configured to detect the position of the steering input and the rate of change of the position of the steering input.

[0039] In some embodiments, a mobility scooter comprises: a frame having longitudinal axis; a steering assembly, coupled to the frame, having a left front wheel and a right front wheel on either side of the longitudinal axis, each of the left front wheel and the right front wheel coupled to the vehicle via a steering linkage configured to steer the mobility scooter based on input from a user; a first drive wheel driven by a first motor about a drive wheel axis and a second drive wheel driven by a second motor about the drive wheel axis, the drive wheel axis having a center point equally spaced between the first drive wheel and the second drive wheel, an inside drive wheel being one of the first drive wheel and the second drive wheel closest to a center of a turning path of the mobility scooter, wherein an axis of rotation of the mobility scooter during a turn intersects the drive wheel axis between the center point and a centerline of the inside drive wheel.

[0040] In some embodiments, the left front wheel, the right front wheel, the first drive wheel, and the second drive wheel are each laterally spaced from the longitudinal axis by an approximately equal distance.

[0041] In some embodiments, the steering linkage is configured and dimensioned such that each of the left front wheel and the right front wheel have: a maximum inward turn angle characterized by a limit to which the front of either the left front wheel or the right front wheel can turn toward the longitudinal axis, and a maximum outward turn angle characterized by a limit to which the front of either the left front wheel or right front wheel can turn away from the longitudinal axis, wherein when one of the left front wheel and the right front wheel is an outside wheel turned to a respective left or right maximum inward turn angle, the other of the left front wheel and the right front wheel is an inside wheel turned to an intermediate maximum outward turn angle that is less than the maximum outward angle until a biasing force is applied to the inside wheel to urge the inside wheel to the respective maximum outward turn angle.

[0042] In some embodiments, the mobility scooter is configured to turn about the axis of rotation when the inside wheel is turned to the maximum outward turn angle and to turn about a different axis of rotation when the inside wheel is turned to the intermediate maximum outward turn angle. [0043] In some embodiments, the mobility scooter comprises a controller configured to simultaneously drive the first drive wheel and the second drive wheel in opposite directions when the inside drive wheel is in the maximum outward angle.

[0044] In some embodiments, the controller powers each of the first drive wheel and the second drive wheel at power levels of approximately the same absolute value and in different directions when the inside drive wheel is in the maximum outward angle.

[0045] In some embodiments, the first drive wheel operates at a different angular velocity that the second drive wheel when the power levels are of approximately the same absolute value.

[0046] In some embodiments, the steering assembly includes a steering linkage pivotable at each end of the steering linkage.

[0047] In some embodiments, the controller powers each of the first drive wheel and the second drive wheel at power levels of approximately the same absolute value and opposite polarities to apply torque in opposite directions to each of the first and second drive wheels, when the inside drive wheel is in the maximum outward angle.

[0048] In some embodiments, a vehicle, comprises a frame having longitudinal axis; a steering assembly having a steering input and a single directional control wheel, the steering assembly coupled to the frame and configured to steer the vehicle based on input from a steering input; a first drive wheel and a second drive wheel; a steering position sensor configured to detect steering input including a position of the steering input and at least one of i) a rate of change of position of steering input and ii) steering position time; and at least one controller configured to process a signal from the steering position sensor and, in response to the processed signal, drive the first drive wheel and the second drive wheel, the first drive wheel being driven independent of the second drive wheel.

[0049] In some embodiments, a vehicle, comprises a steering assembly configured to steer the vehicle based on an input from a steering input; a first drive wheel driven by a first motor and a second drive wheel driven by a second motor; a throttle configured to receive a speed input from a user; at least one steering sensor configured to detect steering input including at least one of i) input associated with a position of the steering input and ii) input associated with a rate of change of position of the steering input; and at least one controller communicatively coupled to the first motor, the second motor, and the steering sensor, the at least one controller configured to: receive one or more steering indicators associated with the at least one steering sensor; determine whether the steering indicator meets major turn entering criteria based on the position of the steering input and at least one of i) the rate of change of the position of steering input and ii) a steering position time lapse; in response to a determination that the steering indicator meets major turn entering criteria: operate the first motor and the second motor in major turn mode, including the at least one controller being configured to: provide a first drive signal to the first motor, the first drive signal configured to cause the first motor to drive the first drive wheel in a forward direction at a first speed that is less than a commanded speed indicated by the throttle, and provide a second drive signal to the second motor, the second drive signal configured to cause the second motor to drive the second drive wheel in a reverse direction at a second speed that is less than a commanded speed indicated by the throttle.

[0050] In some embodiments, the at least one controller being configured to determine whether the steering indicator meets the major turn entering criteria includes the at least one controller being configured to determine that the position of the steering input is in a major turn position and determine that the rate of change of the position of the steering input exceeds a predetermined steering rate of change threshold.

[0051] In some embodiments, the at least one controller being configured to determine whether the steering indicator meets the major turn entering criteria includes, the at least one controller being configured to: determine that the position of the steering input is in a major turn position, and determine that steering position of the steering input has transitioned from an intermediate turn position to the major turn position in an amount of time that is less than a predetermined steering rotation timing threshold.

[0052] In some embodiments, the at least one controller being configured to determine that the steering indicator meets the major turn entering criteria includes, the at least one controller being configured to: determine that the position of the steering input is in a major turn position, after a determination that the position of the steering input is in the major turn position, determine that the rate of change of the position of the steering input is less than a predetermined steering rate of change threshold, and after a determination that the rate of change of the position of the steering

input is less than a predetermined steering rate of change threshold, confirm that the position of the steering input is in the major turn position.

[0053] In some embodiments, the at least one controller being configured to determine that the steering indicator meets the major turn entering criteria includes, the at least one controller being configured to: determine that the position of the steering input is in a major turn position, after a determination that the position of the steering input is in the major turn position, determine that steering position of the steering input has transitioned from an intermediate turn position to the major turn position in an amount of time that is greater than a predetermined steering rotation timing threshold, and after determining that steering position of the steering input has transitioned from an intermediate turn position to the major turn position in an amount of time that is greater than a predetermined steering rotation timing threshold, confirm that the position of the steering input is in the major turn position.

[0054] In some embodiments, the predetermined steering rotation timing threshold is approximately 250 ms.

[0055] In some embodiments, the at least one steering sensor includes: an intermediate turn position sensor to detect that the steering input is in an intermediate turn position, and a major turn position sensor to detect that the steering input is in a major turn position, wherein the rate of change of the position of the steering input is based on a time to transition from an intermediate turn position, as detected by the intermediate turn position sensor, to a major turn position, as detected by the major turn position sensor.

[0056] In some embodiments, the at least one steering sensor includes an accelerometer to detect movement of the steering input for determining the rate of change of the position of the steering input.

[0057] In some embodiments, the steering sensor includes a force sensor to detect a force applied to the steering input for determining when a steering input has transitioned to, or transitioned from, a major turn position.

[0058] In some embodiments, the at least one controller being configured to determine that the steering indicator meets the major turn entering criteria includes the at least one controller being configured to determine that the steering input is in a major turn position and the steering position time lapse is greater than a predetermined major turn position timing threshold.

[0059] In some embodiments, the predetermined major turn position timing threshold is approximately 250 ms.

[0060] In some embodiments, the vehicle comprises a vehicle turn rate sensor that detects a turn rate of the vehicle, and wherein the at least one controller is further configured to: while the first motor and the second motor are operating in major turn mode, determine whether the turn rate of the vehicle, as detected by the vehicle turn rate sensor, is less than a predetermined turn rate threshold, determine whether a turn rate commanded by the throttle is greater than a commanded turn rate threshold, and in response to a determination that the turn rate of the vehicle is less than a predetermined turn rate threshold and that the turn rate indicated by the throttle is greater than the commanded turn rate threshold: provide a third drive signal to the first motor, the third drive signal configured to cause the first motor to drive the first drive wheel in a forward direction at a third speed that is greater than the first speed, and provide a fourth drive signal to the second motor, the second drive signal configured to cause the second motor to drive the second drive wheel in a reverse direction at a fourth speed that is greater than the second speed.

[0061] In some embodiments, the at least one controller is further configured to: while the first motor and the second motor are operating in major turn mode, determine whether the turn rate of the vehicle, as detected by the vehicle turn rate sensor, is greater than a predetermined turn rate threshold, in response to a determination that the turn rate of the vehicle is greater than a predetermined turn rate threshold: provide a fifth drive signal to the first motor, the fifth drive signal configured to cause the first motor to drive the first drive wheel in a forward direction at a

fifth speed that is less than the first speed, and provide a sixth drive signal to the second motor, the sixth drive signal configured to cause the second motor to drive the second drive wheel in a reverse direction at a sixth speed that is less than the second speed.

[0062] In some embodiments, the vehicle turn rate sensor is an inertial measurement sensor.

[0063] In some embodiments, the vehicle turn rate sensor is an accelerometer.

[0064] In some embodiments, the at least one controller is further configured to: while the motors are operating in major turn mode and in response to a determination that the steering input has transitioned from a major turn position to an intermediate turn position: provide a seventh drive signal to the second motor, the seventh drive signal configured to cause the second motor to rotate the second drive wheel in the forward direction.

[0065] In some embodiments, the at least one controller is further configured to: while the first motor and the second motor are operating in major turn mode and in response to a determination that the steering input has transitioned from a major turn position to a minor turn position: provide an eighth drive signal to the second motor, the eighth drive signal configured to cause the second motor to rotate the second drive wheel in the forward direction at a commanded speed indicated by the throttle and continue providing the first drive signal to the first motor during a first time period, and after the first time period, provide a ninth motor drive signal to the first motor, the ninth motor drive signal configured to cause the first motor to rotate the first drive wheel in the forward direction at a commanded speed indicated by the throttle.

[0066] In some embodiments, the first time period is between 20 ms and 1000 ms.

[0067] In some embodiments, the at least one controller is further configured to: in response to a determination that the steering indicator does not meet major turn entering criteria: operate the first motor and the second motor in standard driving mode, including: providing a tenth drive signal to the first motor, the tenth drive signal configured to cause the first motor to drive the first drive wheel in the forward direction at a commanded speed indicated by the throttle and providing an eleventh drive signal to the second motor, the eleventh drive signal configured to cause the second motor to drive the second drive wheel in the forward direction at a commanded speed indicated by the throttle.

[0068] In some embodiments, the vehicle comprises a tilt sensor configured to detect tilt angle of the vehicle, and wherein the at least one controller being configured to determine whether the steering indicator meets the major turn entering criteria includes the at least one controller being configured to determine whether the tilt angle of the vehicle, as detected by the tilt sensor, along the lateral axis or longitudinal axis, is less than a predetermined tilt angle threshold.

[0069] In some embodiments, the throttle is configured to receive a reverse speed input to direct the vehicle to move in a reverse direction, wherein the at least one controller is configured to: in response to a determination that the steering position meets a major turn entering criteria, and in response to a determination that the throttle receives a reverse input: provide a twelfth drive signal to the first motor, the twelfth drive signal configured to cause the first motor to drive the first drive wheel in a direction opposite a direction indicated by the first drive signal, at a twelfth speed that is less than the first speed, and provide a thirteenth drive signal to the second motor, the thirteenth drive signal configured to cause the second motor to drive the second drive wheel in a direction opposite a direction indicated by the second drive signal, at a thirteenth speed that is less than the second speed.

[0070] In some embodiments, the twelfth drive signal is configured to cause the first motor to drive the first drive wheel at approximately 50 percent of a power of the first motor as caused by the first drive signal, wherein the thirteenth drive signal is configured to cause the second motor to drive the second drive wheel at approximately 50 percent of a power of the second motor as caused by the second drive signal.

[0071] In some embodiments, the throttle is configured to receive a reverse speed input to direct the vehicle to move in a reverse direction, wherein the at least one controller is configured to: in

response to the throttle receiving a reverse input, determine that the steering indicator does not meet major turn entering criteria.

[0072] In some embodiments, the first speed and the second speed are approximately 30 percent of a commanded speed indicated by the throttle while the at least one controller is operating in an indoor mode and wherein the first speed and the second speed are approximately 60 percent of a commanded speed indicated by the throttle while the at least one controller is operating in an outdoor mode.

[0073] In some embodiments, the vehicle comprises an environmental mode selection input selectable by a user and configured to cause the at least one controller to operate in the indoor mode or in the outdoor mode.

[0074] In some embodiments, the environmental mode selection input is on the steering input. [0075] In some embodiments, the environmental mode selection input is a switch on the steering input.

[0076] In some embodiments, the vehicle comprises an operator weight sensor that detects a weight of an operator of the vehicle and wherein the at least one controller is further configured to: while the first motor and the second motor are operating in major turn mode, determine that the weight of the operator, detected by the operator weight sensor, exceeds a predetermined operator weight threshold, and in response to a determination that the weight of the operator exceeds a predetermined operator weight threshold: provide a fourteenth drive signal to the first motor, the fourteenth drive signal configured to cause the first motor to drive the first drive wheel in the forward direction at a fourteenth speed that is greater than the first speed and provide a fifteenth drive signal to the second motor, the fifteenth drive signal configured to cause the second motor to drive the second drive wheel in the reverse direction at a fifteenth speed that is greater than the second speed.

[0077] In some embodiments, the predetermined operator weight threshold is 250 lbs.

[0078] In some embodiments, the fourteenth drive signal and fifteenth drive signal cause the first motor and the second motor to drive the first drive wheel and the second drive wheel, respectively, using approximately twice the power as compared to the first drive signal and the second drive signal, respectively.

[0079] In some embodiments, the first drive signal is configured to cause the first motor to drive the first drive wheel at approximately 30 percent of a maximum power of the first motor, wherein the second drive signal is configured to cause the second motor to drive the second drive wheel at approximately 15 percent of a maximum power of the second motor.

[0080] In some embodiments, the fourteenth drive signal is configured to cause the first motor to drive the first drive wheel at approximately 60 percent of a maximum power of the first motor, wherein the fifteenth drive signal is configured to cause the second motor to drive the second drive wheel at approximately 30 percent of a maximum power of the second motor.

[0081] In some embodiments, the major turn exiting criteria includes a criterion that is met when a time period that the vehicle operates in a major turn mode exceeds a major turn mode time limit threshold.

[0082] In some embodiments, the major turn mode time limit threshold is a function of a weight of an operator of the vehicle.

[0083] In some embodiments, the major turn mode time limit threshold when the weight of the operator of the vehicle is less than an operator weight threshold is approximately half an amount of time as the major turn mode time limit threshold when the weight of the operator of the vehicle is greater than an operator weight threshold.

[0084] In some embodiments, the operator weight threshold is 250 lbs.

[0085] In some embodiments, the major turn mode time limit threshold is between 7 and 10 seconds.

[0086] In some embodiments, the vehicle comprises a steering assembly configured to steer the

motor coupled to the left drive wheel and configured to drive the left drive wheel; a right motor coupled to the right drive wheel and configured to drive the right drive wheel; a throttle configured to receive a speed input from the user; at least one full left turn position sensor configured to detect the steering assembly transitioning into and out of a full left turn; at least one full right turn position sensor configured to detect the steering assembly transitioning into and out of a full right turn; a controller communicatively coupled to the first motor, the second motor, the throttle, the at least one left turn position sensor, and the at least right turn position sensor, the controller configured to: receive a full left turn signal from the left turn position sensor, in response to receiving the full left turn signal from the left turn position sensor: provide a first drive signal to the right motor, the first drive signal configured to cause the right motor to drive the right drive wheel in a forward direction at a first speed that is less than a commanded speed indicated by the throttle, and provide a second drive signal to the left motor, the second drive signal configured to cause the left motor to drive the left drive wheel in a reverse direction at a second speed that is less than a commanded speed indicated by the throttle; receive a full right turn signal from the right turn position sensor, in response to receiving the full right turn signal from the right turn position sensor: provide a third drive signal to the left motor, the third drive signal configured to cause the left motor to drive the left drive wheel in a forward direction at a third speed that is less than a commanded speed indicated by the throttle, and provide a fourth drive signal to the right motor, the fourth drive signal configured to cause the right motor to drive the right drive wheel in a reverse direction at a fourth speed that is less than a commanded speed indicated by a throttle. [0087] In some embodiments, the vehicle comprises at least one intermediate left turn position sensor configured to detect the steering assembly transitioning into and out of an intermediate left turn; at least one intermediate right turn position sensor configured to detect the steering assembly transitioning into and out of an intermediate right turn; wherein the controller is configured to: receive at least one of: an intermediate left turn signal from the intermediate left turn position sensor and an intermediate right turn signal from the intermediate right turn position sensor, in response to receiving at least one of: an intermediate left turn signal and the intermediate right turn signal: provide a fifth drive signal to the left motor, the fifth drive signal configured to cause the left motor to drive the left drive wheel in a forward direction at a commanded speed indicated by the throttle, and provide a sixth drive signal to the right motor, the sixth drive signal configured to cause the right motor to drive the right drive wheel in a forward direction at a fourth speed that is less than a commanded speed indicated by the throttle.

vehicle based on a steering input from a user; a left drive wheel and a right drive wheel; a left

[0088] In some embodiments, a vehicle comprises a steering assembly configured to steer the vehicle; a first drive wheel and a second drive wheel configured to drive the vehicle; a first motor coupled to the first drive wheel and configured to drive the first wheel; a second motor coupled to the second drive wheel and configured to drive the second wheel; a throttle configured to control the first motor and the second motor; a steering position sensor configured to detect a steering position of the steering assembly; a throttle input sensor configured to detect a throttle input of the throttle; one or more controllers communicatively coupled to the first motor, the second motor, the throttle input sensor and the steering position sensor, the one or more controllers being configured to: determine that the steering position and the throttle input meets a major turn criteria and as a result, cause the first motor to rotate in a reverse direction at a first speed and cause the second motor to rotate in a forward direction at a second speed, wherein the first speed and the second speed fall below a speed threshold; determine that the steering position and the throttle input meets a major turn exiting criteria and as a result, cause the first motor to rotate in the forward direction and cause the second motor to rotate in the forward direction at one or more speeds based on the steering position, the steering rotation speed and the throttle input.

[0089] In some embodiments, the major turn exiting criteria includes a slow transition intermediate turn criterion, and wherein the one or more controllers are further configured to: determine that the

steering position and the throttle input meets slow transition intermediate turn criterion and as a result, cause the first motor to rotate in the forward direction at a third speed and cause the second motor to rotate in the first direction at a fourth speed, wherein the third speed and the fourth speed fall below a speed threshold.

[0090] In some embodiments, the slow transition intermediate turn criterion is met when the steering position of the steering assembly transitions from a major turn position to an intermediate turn position in an amount of time that exceeds a steering rotation timing threshold and the throttle input exceeds a throttle input threshold.

[0091] In some embodiments, the steering rotation timing threshold is approximately 250 ms. [0092] In some embodiments, the major turn exiting criteria includes a fast transition intermediate turn criterion and wherein the one or more controllers are further configured to: determine that the steering position and the throttle input meets that the fast transition intermediate turn criterion and as a result: cause the first motor to rotate in the forward direction at a third speed and cause the second motor to rotate in the forward direction at a fifth speed and cause the second motor to rotate in the forward direction at a fifth speed and cause the second motor to rotate in the forward direction at a sixth speed during a second time period, wherein the third speed, the fifth speed, and the sixth speed exceed the speed threshold, wherein the fourth speed falls below the speed threshold, and wherein the first time period occurs before the second time period.

[0093] In some embodiments, the fast transition intermediate turn criterion is met when the steering position of the steering assembly transitions from a major turn position to an intermediate turn position in an amount of time that falls below a steering rotation timing threshold and the throttle input exceeds a throttle input threshold.

[0094] In some embodiments, the major turn exiting criteria includes a fast transition minor turn criterion, and wherein the one or more controllers are further configured to: determine that the steering position and the throttle input meets the fast transition minor turn criterion and as a result, cause the first motor to rotate in the forward direction at a third speed and cause the second motor to rotate in the forward direction at a fourth speed, wherein the third speed and the fourth speed exceed the speed threshold.

[0095] In some embodiments, the fast transition minor turn criterion is met when the steering position of the steering assembly transitions from a major turn position, through an intermediate turn position, to a minor steering position in an amount of time that falls below a steering rotation timing threshold and the throttle input exceeds a throttle input threshold.

[0096] In some embodiments, the one or more controllers are further configured to: before the determination that the vehicle meets the major turn criteria, determine that the steering position of the steering assembly transitions from an intermediate turn position to a major turn position in an amount of time that exceeds a steering rotation timing threshold and the throttle input exceeds a throttle input threshold and as a result: cause the first motor to rotate in the reverse direction at a third speed and cause the second motor to rotate in the forward direction at a fourth speed, wherein the third speed and the fourth speed fall below the speed threshold.

[0097] In some embodiments, the one or more controllers are further configured to: before the determination that the vehicle meets the major turn criteria, determine that the steering position of the steering assembly transitions from an intermediate turn position to a major turn position in an amount of time that falls below a steering rotation timing threshold and the throttle input exceeds a throttle input threshold and as a result: cause the first motor to rotate in the reverse direction at a third speed and cause the second motor to rotate in the forward direction at a fourth speed during a first time period, wherein the third speed and the fourth speed exceed the speed threshold and cause the first motor to rotate in the reverse direction at a fifth speed and cause the second motor to rotate in the forward direction at a sixth speed during a second time period, wherein the fifth speed and the sixth speed fall below the speed threshold, and wherein the second time period occurs after the

first time period.

[0098] In some embodiments, the one or more controllers are further configured to: determine that the steering position meets standard drive criteria and as a result: cause the first motor to rotate in the forward direction at a third speed and cause the second motor to rotate in the forward direction at a fourth speed, the third speed and the fourth speed being based on the throttle input.

[0099] In some embodiments, the vehicle comprises a tilt sensor that detects rotational tilt angle of the vehicle, wherein the major turn criteria includes a rotational tilt criterion that is met when the rotational tilt angle of the vehicle falls below a rotational tilt angle threshold.

[0100] In some embodiments, the vehicle comprises a first directional control wheel coupled to the steering assembly via a first axle; and a second directional control wheel coupled to the steering assembly via a second axle, the first directional control wheel and the second directional control wheel being configured to reorient in response to movement of the steering assembly, wherein the first axle is independent of the second axle.

[0101] In some embodiments, the first axle pivots about a different axis than the second axle. [0102] In some embodiments, only one directional control wheel is coupled to the steering assembly, the directional control wheel being configured to reorient in response to movement of the steering assembly.

Description

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0103] The foregoing summary, as well as the following detailed description of embodiments of the invention, will be better understood when read in conjunction with the appended drawings of an exemplary embodiment. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.

[0104] In the drawings:

[0105] FIGS. **1**A-**1**C are a side elevational view, top plan view, and front elevational view, respectively, of a vehicle in accordance with at least one embodiment of the invention;

[0106] FIG. **2** is a bottom plan view of a vehicle in accordance with at least one embodiment of the invention such as the embodiment reflected in the foregoing figures;

[0107] FIG. **3** is a bottom perspective view of a front portion of the vehicle with portions of the steering assembly removed to show an exemplary steering position sensor system in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;

[0108] FIG. **4** is a bottom perspective view of a front portion of the vehicle of FIG. **3** showing the exemplary steering position sensor system from another angle in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;

[0109] FIG. **5**A is a schematic top view of an exemplary steering position sensor configuration detecting when the steering input is in a major turn position in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;

[0110] FIG. **5**B is a schematic top view of the exemplary steering position sensor configuration of FIG. **5**A detecting when the steering input is in an intermediate turn position in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;

[0111] FIG. 5C is a schematic top view of the exemplary steering position sensor configuration of FIG. 5A detecting when the steering input is in a minor turn position in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected

- in the foregoing figures;
- [0112] FIG. **6** is a schematic top view of a vehicle illustrating exemplary major turn functionality according to some embodiments of the invention in accordance with at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0113] FIG. 7A is a flow chart illustrating functionality for determining whether a vehicle meets major turn entering criteria, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0114] FIG. 7B is a schematic representation of vehicle illustrating exemplary major turn entering functionality of FIG. 7A, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0115] FIG. 7C is a schematic representation of a vehicle illustrating exemplary major turn entering functionality where the steering input has a slow transition to a major turn position to enter into the major turn mode of FIG. **6**, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0116] FIG. 7D is a schematic representation of a vehicle illustrating exemplary major turn entering functionality where the steering input has a fast transition to a major turn position to enter into the major turn mode of FIG. **6**, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0117] FIG. **8**A is a flow chart illustrating functionality for selectively increasing, decreasing, or maintaining wheel speeds based on measured turn rate, while in major turn mode, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0118] FIGS. **8**B-**8**C are schematic representations of a vehicle illustrating functionality for selectively increasing or decreasing wheel speeds based on measured turn rate, while in major turn mode of FIG. **8**A, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0119] FIG. **9**A is a flow chart illustrating functionality for determining whether a vehicle meets major turn exiting criteria, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures.
- [0120] FIGS. **9**B**-9**C are schematic representations of a vehicle illustrating exemplary major turn exiting functionality of FIG. **9**A, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0121] FIG. **9**D is a schematic representation of a vehicle illustrating exemplary major turn exiting functionality where the steering input slowly transitions to an intermediate turn position to exit into the major turn mode of FIG. **6**, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0122] FIG. **9**E is a schematic representation of a vehicle illustrating exemplary major turn exiting functionality where the steering input has a fast transition to an intermediate turn position to exit into the major turn mode of FIG. **6**, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0123] FIG. **9**F is a schematic representation of vehicle illustrating exemplary major turn exiting functionality where the steering input quickly transitions to a minor turn position to exit into the major turn mode of FIG. **6**, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0124] FIGS. **10**A-**10**B are schematic representations of a vehicle illustrating exemplary major turn entering functionality based on tilt angle, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures; [0125] FIG. **11**A is a schematic representation of a vehicle illustrating exemplary major turn entering functionality and operating the vehicle at a reduced speed while the vehicle is traveling in

- reverse, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0126] FIG. **11**B is a schematic representation of a vehicle illustrating exemplary major turn entering functionality that may be disabled while the vehicle is traveling in reverse, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0127] FIGS. **12**A-**12**B are schematic representations of a vehicle illustrating exemplary major turn entering functionality based on user weight, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures; [0128] FIG. **13**A1 illustrates a bottom front perspective view of a portion of a vehicle according to
- at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0129] FIGS. **13**A**2-13**A**3** illustrate top views of a portion of a vehicle according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0130] FIGS. **13**B**1-13**B**2** illustrate bottom views of a portion of a vehicle according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0131] FIG. **13**B**3** is a stem tab of a vehicle **100** according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures.
- [0132] FIG. **13**C**1** illustrates a top front perspective view of a portion of a vehicle according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0133] FIG. **13**C**2** illustrates a top view of a steering assembly of a vehicle, according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0134] FIG. **13**C**3** illustrates a front view of a steering assembly of a vehicle, according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0135] FIG. **13**C**4** is a steering arm and a wheel axle of a vehicle **100** according to at least one embodiment of the invention;
- [0136] FIGS. **13**D**-13**E are front views of a portion of the steering input, according to at least one embodiment of the invention; including, for example, one or more of the embodiments reflected in the foregoing figures
- [0137] FIG. **13**F is a bottom view of a portion of a vehicle in a major turn mode configuration, according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0138] FIGS. **13**G**1-13**G**4** are a top front view of a steering assembly including steering stops, according to at least one embodiment of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0139] FIG. **14** is a schematic representation of a turn radius of a vehicle conducting a right turn while operating in a drive mode where the inner wheel is at a turn angle less than an intermediate outward turn angle, and the vehicle is not operating in major turn mode, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0140] FIG. **15** is a schematic representation of a turn radius of the vehicle conducting a turn with the inner wheel at a maximum outward turn angle, and without operating in major turn mode according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;

- [0141] FIG. **16** is a schematic representation of a turn radius of the vehicle while operating in major turn mode, according to some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0142] FIG. **17** is a schematic representation comparing the turn radius of the vehicle in FIG. **14** to the turn radius of the vehicle in FIG. **16** including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0143] FIG. **18** is a schematic representation comparing the turn radius of the vehicle in FIG. **15** to the turn radius of the vehicle in FIG. **16** including, for example, one or more of the embodiments reflected in the foregoing figures;
- [0144] FIGS. **19**A**-19**F illustrate a bottom view of a vehicle showing a relationship between a position of a pivot point of a vehicle during a major turn and different outward turn angles of the inside directional control wheel, in accordance with some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures; and [0145] FIG. **20** is a bottom view of vehicle showing a relationship between a position of a pivot point of a vehicle and the intermediate outward turn angle of the inside wheel, in accordance with some embodiments of the invention including, for example, one or more of the embodiments reflected in the foregoing figures.

DETAILED DESCRIPTION OF THE INVENTION

[0146] There has been a dramatic increase in popularity of personal mobility vehicles over the last several decades. This increase is due to many factors including the advent of new structural techniques and materials, as well as an aging population. There is also an increased use of the mobility vehicles indoors and in crowded environments. With such use, there is an increased need for personal mobility vehicles with an improved turning radius to navigate tight areas in homes, stores, and other areas.

[0147] In addition to decreasing the radius of turn, there is also a need for vehicles with better handling entering or exiting a tight turn. For example, if a driver attempts to enter a tight turn with a personal mobility vehicle at too high of a speed, the vehicle may become unstable. The vehicle may also skid in the direction of its forward momentum and the driver will lose control of the vehicle. This is referred to as understeering, or plowing. Another problem exists when a driver attempts to exit a tight turn. Specifically, if a driver attempts to exit a tight turn too quickly and at too high of a speed, the vehicle may oversteer, or tend to continue in the direction of the turn. [0148] Three wheeled vehicles, vehicles with a single steering wheel and two rear drive wheels, may be configured to have a tight turning radius but may be considered unstable without mitigating configurations controls or designs. Vehicles with two closely spaced directional control wheels that share a common axis while turning may also have similar stability concerns as three wheeled vehicles.

[0149] As disclosed in some embodiments herein, adding an additional steerable front wheel may result in a more stable vehicle. In some embodiments, by configuring the vehicle as described herein, the four wheeled vehicle may have tight radius turning capabilities that are at least as effective as a three wheeled vehicle, with an increase in stability over a three wheeled vehicle. There is thus disclosed herein exemplary vehicles with a steering configuration and a control system configured to improve turning radius and/or steering functionality while maintain a desired level of stability.

[0150] Referring to the drawings in detail, wherein like reference numerals indicate like elements throughout, there is shown in FIGS. **1**A-**20** a vehicle **100** in accordance with an exemplary embodiment of the present invention.

[0151] Referring to FIGS. **1**A-**1**C and **2**, in some embodiments, the vehicle **100** includes a steering assembly **202** configured to steer the at least one front directional control wheel (e.g., right and left front wheels **103***a*-**103***b*) of the vehicle **100** based on an input from the user. While FIGS. **1**A-**1**C and **2** show two directional control wheels (that are steerable), in some embodiments, the vehicle

100 may include one directional control wheel, one directional control wheel with a caster wheel, or three directional control wheels. The steering assembly **202** may include a steering input **102**, and a linkage to couple the right and left directional control wheels **103***a***-103***b* to one another and to the steering input **102**. In response to detecting movement (e.g., rotation) of steering input **102**, the steering assembly **202** causes the right and left directional control wheels **103***a*, **103***b* to reorient in different configurations. As a result, a user can control the right and left directional control wheels **103***a***-103***b* via rotation of the steering input **102**.

[0152] In the example shown in FIGS. 1A-1C, the steering input 102 (e.g., a tiller) that a user grasps and steers or turns, along a generally vertical axis. In some embodiments, the steering input 102 includes a steering wheel, foot pedals, cable pulls, hand paddles, levers, switches and/or buttons to control the steering direction of the vehicle **100**. The steering input **102** may be coupled to a right directional control wheel **103***a* and a left directional control wheel **103***b* as described, for example, in further detail below. Movement (e.g., rotation) of the steering input **102**, as performed by a user, causes the right and left directional control wheels **103***a* and **103***b* to reorient (e.g., rotate) in a similar direction, thereby allowing a user to steer the vehicle **100**. In one embodiment, by including two directional control wheels **103***a*, **103***b*, four total wheels, the vehicle **100** has increased stability as compared to a vehicle having one directional control wheel for a total of three wheels (or five wheels where the vehicle includes two caster front wheels for stability). [0153] As shown in FIG. 1B and FIG. 2, the steering input 102 may be pivotably coupled to the right directional control wheel **103***a* via one or more linkages **204** and the steering input **102** may be coupled to the left directional control wheel **103***b* via one or more linkages **204** as described in further detail below. The right directional control wheel **103***a* pivots about right wheel axle **112***a* and the left directional control wheel **103***b* pivots about left wheel axle **112***b*. In some embodiments, the right wheel axle **112***a* is moveable independent of the left wheel axle **112***b*, such that the right wheel axle **112***a* pivots about a different axis than the left wheel axle **112***b* as the vehicle turns. In one embodiment, the right wheel axle **112***a* is collinear with left wheel axle **112***b* when the vehicle is going straight and then the right axel **112***a* is non-collinear with left wheel axle **112***b* when the vehicle is turning left or right.

[0154] In some embodiments, the right and left front wheels **103***a***-103***b* are each laterally spaced from the longitudinal axis LA by an approximately equal distance.

[0155] In some embodiments, by orienting the right and left control wheels **103***a*, **103***b* and independently driving the right and left drive wheels **104***a*, **104***b* the turning radius of the vehicle **100** is decreased. The maximum turn, or minimum turning radius, of the vehicle may be referred to as a major turn. The maximum turn of the tiller, or maximum turn input of the steering assembly, may be referred to as the major turn position. When controlling the drive wheels of the vehicle while the tiller in the major turn position and the vehicle is in a major turn may be referred to as the major turn mode. In some embodiments, there may be delay in entering major turn mode after the tiller is in the major turn position (e.g., while the inside steering wheel advances from an intermediate maximum outside turning angle to a maximum outside turning angle) as discussed in further detail below. In FIG. 2, the steering input 102 of the vehicle 100 is in an exemplary major turn position, such as where the steering input **102** is fully rotated in a clock-wise or counter-clockwise direction. As a result of the steering input **102** of the vehicle **100** being in a major turn position, the steering assembly **202** causes the right and left directional control wheels **103***a*, **103***b* to reorient in a direction parallel to the lateral axis MP of the vehicle **100**. In some embodiments, the lateral axis MP extends from side to side of the vehicle **100** and is perpendicular to the longitudinal axis LA. This orientation, where the right and left directional control wheels **103***a*, **103***b* are reoriented in a direction substantially parallel to the lateral axis MP may allow the vehicle **100** to perform a major turn. In one embodiment, the vehicle **100**, while in a major turn, rotates about a first vertical axis B. In some embodiments, the first vertical axis B may intersect the rear wheel drive axis RA and an inside directional control wheel rotational axis (e.g., right front axis

RFA of right directional control wheel 103a), between the midpoint of the vehicle 100 and the inside drive wheel 104a, as discussed in further detail below.

[0156] The steering assembly **202** may be coupled to the right directional control wheel **103***a* via a right wheel axle **112***a* and may be coupled to the left directional control wheel **103***b* via a left wheel axle **112***b*. In some embodiments, the right wheel axle **112***a* pivots about a second vertical axis C, and the left wheel axle **112***b* pivots about a third vertical axis D, separate and distinct from the second vertical axis C. In one embodiment, the right directional control wheel **103***a* and the left directional control wheel **103***b* share a common axle and axis. In one embodiment, only a single front wheel is provided.

[0157] In some embodiments, the vehicle **100** includes a right drive wheel **104***a* and a left drive wheel **104***b*. The right drive wheel **104***a* and left drive wheel **104***b* may be configured to drive the vehicle **100** while in operation. In some embodiments, the right and left drive wheels **104***a*-**104***b* are each laterally spaced from the longitudinal axis LA by an approximately equal distance. [0158] In some embodiments, the vehicle **100** includes a right motor **106***a* coupled to right drive wheel **104***a*. The right motor **106***a* may be configured to drive the right drive wheel **104***a* while in operation. In some embodiments, the vehicle **100** includes a left motor **106***b* coupled to the left drive wheel **104***b*. The left motor **106***b* may be configured to drive the left drive wheel **104***b* while in operation. The right motor **106***a* and the left motor **106***b* may be configured to drive the right drive wheel **104***a* and the left drive wheel **104***b* in the forward or rearward direction and independent of one another as discussed in further detail below.

[0159] In some embodiments, the vehicle **100** includes a user speed input device or throttle **108** controllable by a user and configured to receive a speed input from a user to control the speed of the vehicle **100**. In some embodiments, the user speed input device **108** is a lever, such as shown, configured to be squeezed by the user. In one embodiment, the throttle **108** is coupled to the steering input **102**. The throttle may include a lever, button, paddle, switch, and/or grip that the user actuates with his or her hand. In some embodiments, the user speed input device **108** includes a button, a pedal, and/or a switch that the user actuates with his or her foot or other means. In response to a user input, the throttle **108** generates a throttle input (e.g., a throttle command) that is used to control right motor **106***a* and left motor **106***b* and thereby a speed of the vehicle **100**. The throttle **108** may be configured to cause the right motor **106***a* and/or the left motor **106***b* to drive the vehicle **100** based on the throttle input. In one embodiment, a single throttle **108** is provided for controlling both the right and left motors **106***a*, **106***b*.

[0160] In some embodiments, the vehicle **100** includes at least one steering sensor **109** configured to monitor user control (e.g., steering and/or throttle), and/or detect steering input **102** of the vehicle **100**. In some embodiments, the at least one steering sensor **109** includes at least one of: a steering position sensor configured to detect a steering position of the steering input **102**, a steering rotation sensor configured to detect a steering rotation speed of the steering input 102 and a throttle input sensor configured to detect an amount of throttle 108 activated by a user. In some embodiments, the at least one steering sensor **109** includes accelerometers, gyroscopes or any inertial measurement devices to detect a rate of change or position of the steering input **102**. In some embodiments, at least one steering sensor includes contact sensors (e.g., sliding electrical contacts, spring loaded contacts, resistive potentiometer, electromechanical brushed coupling, mechanical switch cam coupling) or contact-less sensors (e.g., magnetic, inductive, ultrasonic, infrared (IR), laser, optical or capacitive sensors). In some embodiments, the at least one steering sensor **109** includes a force sensor (e.g., strain gauge sensor) configured to detect a rotational force exerted on the steering input **102** by a user to detect a rate of change or position of the steering input **102**. In some embodiments, the steering position sensor and the steering rotation sensor are a single integrated sensor (e.g., accelerometer). A further example of steering position and steering rotation sensors are described in more detail below in reference to FIGS. 3-4.

[0161] In some embodiments, the vehicle **100** includes at least one controller **110**. In some

embodiments, the at least one controller **110** may include one or more computers having at least one processor and memory. In some embodiments, the memory may store programs a processor executes to control and run the various systems and methods disclosed herein. In some embodiments, the at least one controller **110** may include at least one electrical circuit configured to execute the various systems and methods disclosed herein. The controller **110** may be coupled to the at least one steering sensor **109** to monitor user control (e.g., steering and/or throttle) of the vehicle **100**. The controller **110** may be configured to receive one or more steering indicators (e.g., steering indicator signals) from the at least one steering sensor. In response to receiving one or more steering indicators (e.g., data such as steering position, steering rotation and/or throttle input), the controller **110** may be configured to process the one or more steering indicators and determine whether the steering indicator meets certain driving or turning criteria (described in more detail below). In response to a determination that the vehicle characteristics meet certain driving or turning criteria, the controller **110** may be coupled to the right motor **106***a* and the left motor **106***b* and may be configured to cause the right motor **106***a* and/or the left motor **106***b* to rotate in forward or reverse directions (or opposite directions) at one or more speeds to minimize plowing or oversteering.

[0162] In some embodiments, the controller **110** includes a plurality of communicatively coupled controllers. In some embodiments, each of a plurality of controllers is coupled to one of the motors to individually cause each of the motors to rotate in a certain direction at a certain speed based on certain criteria. For example, in one embodiment, a first controller is coupled to the right motor **106***a* and a second controller is coupled to left motor **106***b*. Such functionality can result in improved vehicle stability and control with less understeering. It is contemplated that, in some embodiments, any of the controls performed by the controller **110**, described herein, may be incorporated into any of the structural embodiments, described herein.

Exemplary Sensor Configuration

[0163] FIG. **3** illustrates an exemplary bottom view of a front portion of the vehicle **100** without some of the components of steering assembly **202** and the first and second directional control wheels **103***a***-103***b*. FIG. **3** illustrates an exemplary steering position sensor system in accordance with at least one embodiment of the invention.

[0164] As illustrated in this example, a control system of the vehicle **100** is configured to track steering position of the steering input **102** using a contactless sensor configuration. As shown, an extension arm 302 radially extends, relative to longitudinal axis A, from a bottom of the steering input **102**. In one embodiment, the extension arm includes a target or magnet **304** attached proximate to an end of the extension arm **302**. A plurality of sensors **306***a-f*, such as Hall Effect sensors, may be attached to a frame of the vehicle 100 and coupled to the controller 110 (not shown in FIG. **3** but previously shown in FIGS. **1**A-**1**C). In some embodiments, the plurality of sensors **306***a-f* are radially spaced relative to a longitudinal axis A of the steering input **102** (where longitudinal axis A is approximately orthogonal to the page) with each of the plurality of sensors **306***a*-*f* indicating different steering positions of the steering input **102**. As a user rotates the steering input **102**, the steering input **102** causes the extension arm **302**, and as a result, the magnet **304** to revolve around the longitudinal axis A of the steering input **102**. As the magnet **304** revolves, the magnet **304** moves relative to the sensors **306***a*-*f*. When the magnet **304** is proximate to one of the sensors **306***a-f*, the one of the sensors **306***a-f* detects a magnetic field produced by the magnet **304**, generates an output signal indicative of the detected magnetic field and transmits the output signal to the controller **110**. The controller **110** then determines the position of the steering input **102** and, optionally, an amount of time needed for the steering input 102 to transition from one steering position to another steering position based on which of the one or more sensors **306***a-f* generated an output signal.

[0165] In some embodiments, each of the sensors **306***a-f* corresponds to a steering position of the steering input **102**. For example, in FIG. **3**, sensor **306***a* corresponds to a major left turn steering

position; sensor **306***b* corresponds to an intermediate left turn steering position; sensor **306***c* corresponds to a minor left turn steering position; sensor **306***d* corresponds to a minor right turn steering position; sensor **306***e* corresponds to an intermediate right turn steering position; sensor **306***f* corresponds to a major right turn steering position.

[0166] In some embodiments, sensors **306***a*, **306***f* which correspond to the major left turn position and major right turn position, respectively, are positioned from 40 to 64 degrees; from 45 to 59 degrees; from 50 to 54 degrees; or approximately 52 degrees off the longitudinal axis LA of the vehicle **100** based on the vertical axis of the steering input **102**. In some embodiments, sensors **306***b*, **306***e* which correspond to the intermediate left turn position and intermediate right turn position, respectively, are positioned from 25 to 51 degrees; from 30 to 45 degrees; from 35 to 40 degrees; or approximately 39 degrees off the longitudinal axis LA of the vehicle **100** based on the vertical axis of the steering input **102**. In some embodiments, sensors **306***c*, **306***d* which correspond to the minor left turn position and minor right turn position, respectively, are positioned from 0 to 38 degrees; from 10 to 35 degrees; from 15 to 30 degrees; from 20 to 28 degrees; or approximately 24 degrees off the midline of the vehicle **100** based on the vertical axis of the steering input **102**. In some embodiments, the position of the magnet **304** and the sensors **306***a*-*f* are reversed such that one or more sensors is on the extension arm **302** and one or more targets are on the frame of the vehicle **100**.

[0167] FIG. **4** is a bottom perspective view of a front portion of the vehicle **100** showing the exemplary steering position sensor system in FIG. **3**. In FIG. **4**, the magnet **304** is positioned over sensor **306***e* as a result of the steering input **102** being rotated by the user.

[0168] FIG. **5**A-**5**C illustrate schematic representations **502**-**504** of the exemplary steering position sensor system shown in FIGS. **3-4** but shown from a top view rather than a bottom view.

[0169] In FIGS. 5A-5C, the steering position sensor system includes the steering input **102**. Throttle **108** is coupled to the steering input **102**, as well as the magnet **304**. Sensors **306***a*-*f* are shown circumferentially around the magnet **304**. In this example, the sensors **306***a*-*f* are Hall Effect sensors, but other sensors may be used, including capacitive and inductive sensors. The one of the sensors **306***a*-*f* positioned closest to the magnet **304** is represented as a solid square, while the other of the sensors **306***a-f* are represented as outlined squares. As discussed above, each of the sensors **306***a*-*f* represent a different steering position of the steering input **102** as positioned by a user. In FIG. **5**A, schematic representation **502** illustrates a steering input **102** in a right major-turn steering position because the magnet **304** is positioned closest to sensor **306***f*, which is representative of a right major-turn steering position, as discussed above. Sensor **306***f* is represented as a solid square while the other of the sensors **306***a***-306***e* are represented as outlined squares. In FIG. **5**B, schematic representation **503** illustrates a steering input **102** in a right intermediate-turn steering position because the magnet **304** is positioned closest to sensor **306***e*, which is representative of a right intermediate-turn steering position, as discussed above. Sensor **306***e* is represented as a solid square while the other of the sensors **306***a***-306***d* and **306***f* are represented as outlined squares. In FIG. **5**C, schematic representation **504** illustrates a steering input **102** in a right minor-turn steering position because the magnet **304** is positioned closest to sensor **306***d*, which is representative of a right minor-turn steering position, as discussed above. Sensor **306***d* is represented as a solid square while the other of the sensors **306***a***-306***c* and **306***e***-306***f* are represented as outlined squares. Also, while not shown, the steering input **102** may be positioned at sensors **306***a*-*c* to represent the steering input **102** in corresponding left turn positions.

Steering Operating Modes

[0170] In some embodiments, improved mobility can be achieved by driving the right and left drive wheels **104***a*-*b* at different speeds and/or in different directions during different steering operating modes. Exemplary steering operating modes are described as follows.

Major Turn Mode

[0171] As an example of a steering operating mode, the user may direct the vehicle **100** to perform

a major turn where the vehicle **100** rotates about a pivot point. In one embodiment, the pivot point is proximate the inside drive wheel (see for example vertical axis B in FIG. 6). In some embodiments, the pivot point is between the two drive wheels. In some embodiments, the pivot point is at a center point between two drive wheels. In some embodiments, the pivot point is on or near or proximate to the drive wheel axis. In one embodiment, the mobility vehicle turns at its tightest turning radius where the pivot point of the turn is outside the rear wheel track width. Although schematically illustrated as pivoting about a single point, in some embodiments, the pivot point is not precisely circular. In one embodiment, the axis of rotation B is aligned with the inside drive wheel during a major turn. Some configurations allow the vehicle **100** to navigate tight hallways or corridors. While some of the embodiments disclosed herein have a fixed pivot point, the present invention is not limited to a vehicle having a fixed axis of rotation in major turn mode. [0172] FIG. **6** is a schematic representation of vehicle **100** illustrating exemplary operation of major turn functionality according to some embodiments of the invention. For example, in FIG. 6, the steering input **102** is in a right major-turn position, as illustrated by schematic representation **502** (and as explained in detail in FIG. **5**A). In some embodiments, an inside wheel is the wheel closest to a point that the vehicle turns about during the turn and the outside wheel is the wheel farthest from the point that the vehicle turns about during the turn. For example, in FIG. 6, the right directional control wheel **103***a* is the inside wheel and the left directional control wheel **103***b* is the outside wheel. In some embodiment, in accordance with a determination by the controller **110** that the steering position is in a right major-turn position, controller 110 determines that major turn entering criteria is met.

[0173] In response to determining that major turn entering criteria is met, in some embodiments, the controller **110** causes the vehicle **100** to operate in major turn mode by providing a first drive signal to the left motor **106***b* to cause the left motor **106***b* to drive the left drive wheel **104***b* in a forward direction at a first speed and by providing a second drive signal to the right motor **106***a* to cause the right motor **106***a* to drive the right drive wheel **104***a* in a forward direction at a second speed. In some embodiments, the first drive signal provided to the left motor **106***b* causes the left motor **106***b* to apply torque to the left drive wheel **104***b* in a forward direction (represented by the arrow **604**) and the second drive signal provided to the right motor **106***a* causes the right motor **106***a* to apply torque to the right drive wheel **104***a* in a rearward direction (represented by the arrow **602**). In some embodiments, while the vehicle **100** is operating in major turn mode, the first drive signal has an approximately similar power (e.g., voltage, current) level as the second drive signal. In some embodiments, while the vehicle **100** is operating in major turn mode, the first drive signal has a polarity opposite the second drive signal. In some embodiments, while the vehicle **100** is operating in major turn mode, the first drive signal provided to the inside drive motor (e.g., right drive motor **106***a*) causes the inside drive wheel (e.g., right drive wheel **104***a*) to be stationary. In some embodiments, the first drive signal causes a clutch to disconnect the inside drive wheel from the inside drive motor. This allows the vehicle **100** to make a tighter turn or even rotate about an axis B, in a clockwise direction as illustrated by arrows **606**, **608**.

[0174] In some embodiments, the second speed is the same as the first speed. In some embodiments, the second speed is different than the first speed. In some embodiments, the first speed of a first motor is 0 mph (i.e., stationary) or approximately 0 mph. In addition, controller 110 causes the right drive wheel 104a and the left drive wheel 104b to drive at reduced speeds (e.g., a speed that falls below a predetermined speed value (e.g., 25% of full speed of the vehicle 100). This allows the vehicle 100 to avoid understeering or plowing. As discussed herein, the term "speed" may refer to actual wheel speed while no load is applied to the right and left drive wheels 104a-104b. The term "speed" may also refer to an intended wheel speed commanded by the controller 110 via the one or more drive signals. In some embodiments, the commanded wheel speed may differ from the actual wheel speed of either the right or left drive wheels 104a-104b due to external forces being exerted on each drive wheel 104a-104b. For example, in some

embodiments, while the absolute values of the drive signals to each drive motor **106***a***-106***b* may be similar, the reaction of each drive wheel **104***a***-104***b* may be different because the vehicle **100** uses steered right and left front wheels **103***a***-103***b*, rather than caster wheels.

[0175] Arrow representations may be used to illustrate the speed and direction of the wheels. To illustrate a reverse direction for a wheel, an arrow points towards the rear of the vehicle **100**, as illustrated by arrow **602** at right drive wheel **104***a* in FIG. **6**. To illustrate a forward direction for a wheel, an arrow points towards the front of the vehicle **100**, as illustrated by arrow **604** at left drive wheel **104***b* in FIG. **6**. The length of the tail of the arrow corresponds to the speed of the corresponding wheel. By rotating the motors and wheels at certain speeds and in certain direction (e.g., as shown in FIG. **6** and described above and below), the vehicle **100** has a reduced turning radius, thereby allowing the vehicle **100** to navigate tight hallways and corridors. This results in improved functionality and usability for the vehicle **100** because the vehicle **100** is now usable in more environments and situations than a vehicle with a larger turning radius.

Entering Major Turn Mode

Entering Major Turn Mode—Transition to Major Turn

[0176] FIG. 7A is a flow chart illustrating functionality for determining whether a vehicle **100** meets major turn entering criteria, according to some embodiments of the invention. In one embodiment, the functionality is intended to determine whether a user of the vehicle indicates an intent for the vehicle to enter major turn mode. In some embodiments, the system is configured to prevent the vehicle from entering major turn mode when conditions indicate that major turn mode is not desired by the user in spite of the steering input **102** being in a position indicative of major turn mode. For example, a user may inadvertently position a tiller at a turning limit or the tiller may be confronted with an untended force that causes the tiller to inadvertently position at a turning limit. In some embodiments, therefore, tiller position alone should not indicate an intention to enter major turn mode. FIG. **7B** is a schematic representation of vehicle **100** illustrating exemplary major turn entering functionality of FIG. **7A**, according to some embodiments of the invention.

[0177] In FIG. **7A**, at step **702**, the controller **110** receives a steering indicator (e.g., steering position signal) from a steering position sensor.

[0178] At step **704**, the controller **110** determines whether the steering position of the steering input **102** is in a major turn position. For example, in FIG. 7B, at position 1, the steering position of the steering input **102** is in an intermediate-turn position (illustrated by the engaged sensor in an intermediate turn position) and is thus not in the major turn position, so the controller **110** proceeds to step **712**. At position 2, the steering position of the steering input **102** has transitioned from the intermediate-turn position to the major turn position, so the controller **110** proceeds to step **706**. [0179] At step **706**, the controller **110** determines whether the steering input **102** has transitioned from an intermediate turn position to the major turn position in an amount of time that is greater than a predetermined steering rotation timing threshold (e.g., 100 ms). In some embodiments, the predetermined steering rotation timing threshold is a value less than 250 ms, less than 200 ms, less than 150 ms, or less than 100 ms. In some embodiments, the predetermined steering rotation timing threshold is a value of approximately 250 ms, approximately 200 ms, approximately 150 ms, or approximately 100 ms. If the controller **110** determines that the steering input **102** has transitioned from an intermediate turn position to a major turn position in an amount of time (e.g., 300 ms) that is greater than a predetermined steering rotation timing threshold (e.g., 100 ms), the controller 110 proceeds to step **708**. If the controller **110** determines that the steering input **102** has transitioned from an intermediate turn position to a major turn position in an amount of time (e.g., 50 ms) that is less than a predetermined steering rotation timing threshold (e.g., 100 ms), the controller 110 proceeds to step **714**.

[0180] At step **708**, the controller **110** confirms whether the steering position of the steering input **102** remained in a major turn position. If the controller **110** determines the steering position of the steering input **102** remains in the major turn position, the controller **110** proceeds to step **710**. If the

controller **110** determines the steering position of the steering input **102** has transitioned to another turn position (e.g., an intermediate turn position) the controller **110** proceeds to step **712** and remains in standard driving mode. To allow the right motor **106***a* and the left motor **106***b* to remain in standard driving mode, the controller **110** provides a drive signal to the right motor **106***a* to drive the right drive wheel **104***a* in a forward direction at a commanded speed indicated by the throttle **108**, and provides a drive signal to the left motor **106***b* to drive the left drive wheel **104***b* in a forward direction at a commanded speed indicated by the throttle **108**. In FIG. 7B, arrows **713** and **714** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 1. By confirming whether the steering position is still in a major turn position, the controller **110** can verify that the user desires to enter major turn mode, and hasn't accidentally transitioned to a major turn position, while only intending to remain in an intermediate turn position. This will delay activation of major turn mode to prevent the vehicle **100** from inadvertently entering major turn mode when it is not intended by the user.

[0181] At step **710**, if the controller **110** confirms that the steering position of the steering input **102** has remained in a major turn position, the controller **110** causes the right motor **106***a* and left motor **106***b* to operate in major turn mode (as described in FIG. **6**).

[0182] At step **712**, if the controller **110** does not confirm that the steering position of the steering input **102** remains in a major turn position, the controller **110** causes the right motor **106***a* and left motor **106***b* to remain in standard driving mode.

[0183] At step **714**, if the controller **110** determines that the steering input **102** has transitioned from an intermediate turn position to the major turn position in an amount of time that is less than a predetermined steering rotation timing threshold, the controller **110** causes the right motor **106***a* and left motor **106***b* to operate in major turn mode. In FIG. **7B**, arrows **716** and **718** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2.

Major Turn Entering—Rate of Change

[0184] In some embodiments, at step **706**, instead of the controller **110** determining an amount of time a steering input **102** took to transition from an intermediate turn position to the major turn position that is less than or greater than a predetermined steering rotation timing threshold, the controller **110** may determine whether a rate of change of the steering input **102** is less than a predetermined steering rate of change threshold. If the controller **110** determines that the rate of change of the steering input **102** is less than a predetermined steering rate of change threshold, the controller **110** proceeds to step **708**. If the controller **110** determines that the rate of change of the steering input **102** is greater than a predetermined steering rate of change threshold, the controller **110** proceeds to step **714**.

[0185] In some embodiments, the predetermined steering rate of change threshold is approximately $30^{\circ}/0.5$ s; approximately $25^{\circ}/0.5$ s; approximately $15^{\circ}/0.5$ s; or approximately $10^{\circ}/0.5$ s. In some embodiments, the predetermined steering rate of change threshold is less than $30^{\circ}/0.5$ s; less than $25^{\circ}/0.5$ s; or less than $20^{\circ}/0.5$ s. In some embodiments, the predetermined steering rate of change threshold is greater than $10^{\circ}/0.5$ s; or greater than $15^{\circ}/0.5$ s.

Major Turn Entering—Maintain Major Turn Position Embodiment

[0186] In some embodiments, at step **706**, instead of the controller **110** determining that the amount of time a steering input **102** took to transition from an intermediate turn position to the major turn position is less than or greater than a predetermined steering rotation timing threshold, the controller **110** calculates a steering position time lapse in order to determine whether to operate the vehicle **100** in major turn mode. The steering position time lapse may represent an amount of time that a steering position is maintained in a major turn position. If the controller **110** determines a steering position time lapse is greater than a predetermined major turn position timing threshold (e.g., 250 ms), the controller **110** operates the right motor **106***a* and left motor **106***b* to operate in major turn mode. If the controller **110** determines a steering position time lapse is less than a

predetermined major turn position timing threshold (e.g., 250 ms), the controller **110** operates the right motor **106***a* and left motor **106***b* in standard driving mode.

Major Turn Entering—Throttle Input Embodiment

[0187] In some embodiments, the controller **110** determines whether steering input **102** has transitioned from an intermediate turn position to the major turn position and whether the throttle input exceeds a throttle input threshold to determine whether to cause the vehicle **100** to operate in major turn mode or in standard driving mode. If the controller **110** determines that the steering input **102** has transitioned from an intermediate turn position to the major turn position, and that the throttle input exceeds a throttle input threshold, the controller **110** causes the right motor **106***a* and left motor **106***b* to operate in major turn mode. If the controller **110** determines that the steering input **102** has transitioned from an intermediate turn position to the major turn position, and the throttle input does not exceed a throttle input threshold, the controller **110** causes the right motor **106***a* and left motor **106***b* to operate in standard driving mode.

[0188] In some embodiments, the throttle input threshold is greater than 10%; greater than 20%; greater than 30%; greater than 40%; greater than 50%; greater than 60%; greater than 70%; greater than 80%; or greater than 90% of full throttle. In some embodiments, the throttle input threshold is from 5% to 50%; from 10% to 40%; from 15% to 35%; from 20% to 30%; or approximately 25% of full throttle.

Major Turn Entering—Throttle Input and Turn Rate Embodiment

[0189] In certain situations, entering major turn mode can present undesirable conditions for the user of vehicle **100**. While in a normal driving mode (e.g., a vehicle **100** driving in a forward direction), if the controller **110** simply causes the vehicle **100** to perform a major turn in response to a quick turn of the steering input **102** by the user, the vehicle **100** may understeer or plow. To avoid these problem, the controller **110** is configured to cause the right and left drive wheels **104***a*-**104***b* to rotate at certain speeds in certain directions based on the steering position of the steering input **102**, the steering rotation speed of the steering input **102** and the throttle input of the throttle **108** that allow the vehicle **100** to safely enter a major turn while being more responsive to the user's control inputs of the vehicle **100**.

[0190] FIG. 7C is a schematic representation of vehicle **100** illustrating exemplary major turn entering functionality where the steering input 102 has a slow transition to a major turn position to enter into the major turn mode of FIG. 6, when certain criteria are met. In these embodiments, the controller **110** may operate the vehicle **100** in a major turn mode when the controller **110** determines that certain major turn mode entering criteria, and specifically, slow transition major turn criterion is met. In some embodiments, slow transition major turn criterion is met when the steering position of the steering input **102** has transitioned from a minor or intermediate turn position to a major turn position in an amount of time that exceeds a steering rotation timing threshold (e.g., 300 ms) (or, in some embodiments, a steering rotation speeds that falls below a steering rotation speed threshold) and the throttle input exceeds a throttle input threshold. [0191] In FIG. 7C, the vehicle **100** is shown in two positions: position 1 and position 2, with position 2 occurring after position 1. In position 1, the steering input **102** is in a right intermediateturn position, as illustrated by schematic representation **503**. The controller **110** determines that the steering position of the steering input **102** meets standard drive mode criteria because the steering position of the steering input **102** is in an intermediate-turn position. In response to determining that the steering position of the steering input **102** meets standard drive mode criteria, the controller **110** causes the right motor **106***a* and the right drive wheel **104***a* to rotate in a forward direction at a speed based on the throttle input, and the left motor **106***b* and the left drive wheel **104***b* are rotating in a forward direction at a speed that is also based on the throttle input. Arrows **720** and **722** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 1. As shown in the transition from position 1 to position 2, the steering input **102** transitions from the right intermediate-turn position to a right major-turn position in, for example, 300 ms. In some

embodiments, the controller **110** determines that slow transition major turn criterion is met because the steering position of the steering input **102** has transitioned from an intermediate turn position **503** to a major turn position **502** in an amount of time (i.e., 300 ms) that exceeds a steering rotation timing threshold (e.g., 250 ms), and the throttle input exceeds a throttle input threshold. In response to the controller determining that slow transition major turn criterion is met, as shown in position 2, the controller **110** causes the vehicle **100** to operate in a major turn mode as shown in FIG. **6**. Specifically, the controller **110** provides a drive signal that commands (or in some embodiments, causes) a first motor (i.e., right motor **106***a*) to drive a first wheel (i.e., right drive wheel **104***a*) in a reverse direction at a speed that falls below a predetermined speed value (e.g., 50% of full speed of the vehicle **100**) and causes a second motor (i.e., left motor **106***b*) to drive a second wheel (i.e., the left drive wheel **104***b*) in a forward direction at a speed that falls below the predetermined speed value, despite the throttle input exceeding the throttle input threshold. In some embodiments, the speeds of the two wheels are approximately the same. In some embodiments, the speeds of the two wheels are different. Arrows **724** and **726** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2. By incorporating the above major turn entering functionality, the vehicle **100** can safely enter a major turn without understeering or plowing while still being responsive to a slow turn by a user.

[0192] FIG. 7D is a schematic representation of vehicle **100** illustrating exemplary major turn entering functionality where the steering input **102** has a fast transition to a major turn position to enter into the major turn mode of FIG. **6**, according to some embodiments of the invention. In these embodiments, the controller **110** may operate the vehicle **100** in a major turn mode when the controller **110** determines that certain major turn mode entering criteria, and specifically, fast transition major turn criterion is met. In some embodiments, fast transition major turn criterion is met when the steering position of the steering input **102** has transitioned from a minor or intermediate turn position to a major turn position in an amount of time that is less than a steering rotation timing threshold (e.g., 300 ms) (or, in some embodiments, a steering rotation speeds that is less than a steering rotation speed threshold) and the throttle input exceeds a throttle input threshold.

[0193] In FIG. 7D, the vehicle **100** is shown in two positions: position 1 and position 2, with position 2 occurring after position 1. In some embodiments, the vehicle **100** may also be in a third position (e.g., position 3) occurring after position 2. In position 1, the controller **110** determines that the steering input **102** is in a right intermediate-turn position, as illustrated by schematic representation **503**. In response to a determination that the steering input **102** is in a right intermediate-turn position, the controller **110** operates the vehicle **100** in standard drive mode (as described in position 1 of FIG. 10). Arrows 732 and 734 illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 1. While in position 1, the steering input **102** has transitioned from the right intermediate-turn position to a right major-turn position (as shown in position 2) after, for example, 200 ms. In some embodiments, the controller 110 determines that fast transition major turn criterion is met because the steering position of the steering input 102 has transitioned from an intermediate turn position **503** to a major turn position **502** in an amount of time (i.e., 200 ms) that is less than a steering rotation timing threshold (e.g., 250 ms), and the throttle input exceeds a throttle input threshold. In response to a determination that fast transition major turn criterion is met, as shown in position 2, the controller **110** causes the vehicle **100** to operate in a major turn mode as shown in FIG. **6**. Specifically, in this example, the controller **110** provides a drive signal that commands a first motor (i.e., right motor **106***a*) to drive a first wheel (i.e., first drive wheel **104***a*) in a reverse direction at a speed that exceeds a predetermined speed value (e.g., 50% of full wheel speed) and provides a drive signal that commands a second motor (i.e., left motor **106***b*) to drive a second wheel (i.e., the left drive wheel **104***b*) in a forward direction at a speed that exceeds the speed value during a first time period. In some embodiments, the speeds of the first drive wheel **104***a* and the second drive wheel **104***b* at position 2 are approximately the

same. In some embodiments, the speeds of the first drive wheel **104***a* and the second drive wheel **104***b* at position 2 are approximately different. Arrows **736** and **738** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2. In some embodiments, after the first time period, at position 3, the controller **110** provides a drive signal that commands the first motor (i.e., right motor **106***a*) to drive the first wheel (i.e., first drive wheel **104***a*) in the forward direction at a speed that falls below the predetermined speed value and provides a drive signal that commands the second motor (i.e., left motor **106***b*) to drive the second wheel (i.e., the left drive wheel **104***b*) in the forward direction at a speed that falls below the predetermined speed value during a second time period, despite the throttle input exceeding the throttle input threshold. In some embodiments, the speeds of the first drive wheel **104***a* and the second drive wheel **104***b* at position 3 are approximately the same. In some embodiments, the speeds of the first drive wheel **104***a* and the second drive wheel **104***b* at position 3 are approximately different. Arrows **737** and **739** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2. At position 3, the controller **110** is operating the vehicle **100** in major turn mode as shown in FIG. **6**. By incorporating the above major turn entering functionality, in some embodiments, the vehicle **100** can safely enter a major turn without understeering or plowing despite a throttle input from a user that represents a user intent to drive the vehicle **100** at a fast speed that usually causes understeering.

Adapting Major Turn Mode Based on Measured Turn Rate

[0194] FIG. **8**A is a flow chart illustrating functionality for selectively increasing, decreasing, or maintaining wheel speeds based on measured turn rate, while in major turn mode, according to some embodiments of the invention. FIGS. **8**B-**8**C are schematic representations of vehicle **100** illustrating functionality for selectively increasing or decreasing wheel speeds based on measured turn rate, while in major turn mode of FIG. **8**A, according to some embodiments of the invention. In FIGS. **8**B-**8**C, the vehicle **100** is similar to the vehicle **100** shown in FIG. **7**B. The vehicle **100** may also include an inertial measurement device **813** configured to detect a turn rate of the vehicle **100**. Examples of an inertial measurement device **813** include accelerometers, gyroscopes, or inclinometers, or MEMS sensors configured to measure turn rate of the vehicle **100**. [0195] In FIG. **8**A, while the vehicle is operating in major turn mode, at step **802**, the controller **110** receives a measured turn rate signal from a turn rate sensor. The measured turn rate signal may be representative of the turn rate of a vehicle **100**. In some embodiments, the turn rate sensor may include one or more of: accelerometers, gyroscopes or any inertial measurement devices. The turn rate sensor may be attached to the vehicle **100**.

[0196] At step **804**, the controller **110** determines whether the measured turn rate of the vehicle **100** is greater than a turn rate threshold. If the controller **110** determines that the measured turn rate of the vehicle **100** is greater than a predetermined turn rate threshold, the controller **110** proceeds to step **806**. If the controller **110** determines that the measured turn rate of the vehicle **100** is less than the predetermined turn rate threshold, the controller **110** proceeds to step **808**.

[0197] At step **806**, the controller **110** continues to provide one or more drive signals that commands the first and second motor to operate in major turn mode by providing a third drive signal to the first motor, the third drive signal configured to command the first motor to drive the first drive wheel in a forward direction at a third speed that is less than the first speed. The controller **110** may provide a fourth drive signal to the second motor, the fourth drive signal configured to command the second motor to drive the second drive wheel in a reverse direction at a fourth speed that is less than the second speed. FIG. **8**B illustrates functionality for selectively decreasing wheel speeds based on measured turn rate. In FIG. **8**B, at position 1, the vehicle **100** is operating in major turn mode. Arrows **822** and **824** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 1. At position 1, the controller **110** determines that the vehicle **100** has a measured turn rate of 2.0 Gs that is greater than a turn rate threshold (1.5 Gs), as indicated by turn rate representation **850**. In response to a determination that the measure turn rate

of 2.0 Gs is greater than the predetermined turn rate threshold, as shown in position 2, the controller **110** provides a third drive signal to the left motor **106** to cause the left drive wheel **104** at the third speed, less than the first speed. The controller **110** also provides a fourth drive signal to the right motor **106** a to cause the right drive wheel **104** at the fourth speed, less than the second speed. Arrows **826** and **828** illustrate the speed and direction of the right and left drive wheels **104** a **104** b at position 2.

[0198] At step **808** (illustrated in FIG. **8**A), the controller **110** determines whether a commanded turn rate is greater than a commanded turn rate threshold. The commanded turn rate may be representative of a throttle input provided by a user to command the vehicle **100** to turn at a certain turn rate. If the controller **110** determines that the commanded turn rate is greater than a commanded turn rate threshold, the controller **110** proceeds to step **810**. If the controller **110** determines that the commanded turn rate is less than a commanded turn rate threshold, the controller **110** proceeds to step **812**.

[0199] At step **810**, the controller **110** continues to cause the first and second motors to operate in major turn mode by providing a fifth drive signal to the first motor, the fifth drive signal configured to cause the first motor to drive the first drive wheel in a forward direction at a fifth speed that is greater than the first speed. The controller **110** may provide a sixth drive signal to the second motor, the sixth drive signal configured to cause the second motor to drive the second drive wheel in a reverse direction at a sixth speed that is greater than the second speed. FIG. **8**C illustrates functionality for selectively increasing wheel speeds based on commanded turn rate. In FIG. 8C, at position 1, the vehicle **100** is operating in major turn mode. Arrows **830** and **832** illustrate the speed and direction of the right and left drive wheels 104a-104b at position 1. At position 1, the controller 110 determines that the vehicle 100 has a measured turn rate of 1.0 Gs that is less than a measured turn rate threshold of 1.5 Gs, as indicated by turn rate representation **851**. In response to a determination that the measured turn rate is less than a measured turn rate threshold, the controller **110** then determines that its commanded turn rate of 2.0 Gs is greater than a commanded turn rate threshold (1.5 Gs), as indicated by turn rate representation **852**. In response to a determination that the commanded turn rate of 2.0 Gs is greater than the turn rate threshold, as shown in position 2, the controller **110** provides a third drive signal to the left motor **106***b* to cause the left drive wheel **104***b* at the fifth speed, greater than the first speed. The controller **110** also provides a sixth drive signal to the right motor **106***a* to cause the right drive wheel **104***a* at the sixth speed, greater than the second speed. Arrows **834** and **836** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2.

[0200] At step **812**, if the controller **110** determines that the commanded turn rate is less than a commanded turn rate threshold, the controller **110** continues to cause the right motor **106***a* and left motor **106***b* to operate in major turn mode at maintained wheel speeds.

[0201] In some embodiments, by adjusting the wheel speed based on measured turn rate, the vehicle **100** can provide better performance and control in different environments. For example, if the vehicle **100** is traveling through tall grass, thereby decreasing the speed of the vehicle **100**, or traveling over a slippery surface, thereby increasing the speed of the vehicle **100**, the controller **110** can increase or decrease the wheel speeds accordingly to compensate for the driving surface and drive the vehicle **100** at a speed that is acceptable to a user.

Exiting Major Turn Mode

[0202] Unless mitigated, exiting major turn mode can present poses challenges to some users of the vehicle **100**. For example, due to positioning of the directional control wheels while in major turn mode, as described herein, it may be difficult for the user to exert enough force on the tiller to rotate the directional control wheels **103***a***-103***b* from a major turn position to a standard driving position. Also, if the controller **110** causes the right and left drive wheels **104***a***-104***b* to rotate in a forward direction too quickly after detecting a quick change in steering position, the vehicle **100** may understeer or plow in the direction of the major turn. To avoid these problem, the controller

110 is configured to cause the first and second motor **106***a***-106***b* to drive the first and second drive wheels **104***a***-104***b* at certain speeds in certain directions at certain times based on the steering position of the steering input **102** to allow the vehicle **100** to safely exit a major turn while being more responsive to the user's control inputs of the vehicle **100**.

[0203] FIG. **9**A is a flow chart illustrating functionality for determining whether a vehicle **100** meets major turn exiting criteria, according to some embodiments of the invention. FIGS. **9B-9**C are schematic representations of vehicle **100** illustrating exemplary major turn exiting functionality of FIG. **9**A, according to some embodiments of the invention.

[0204] In FIG. **9**A, at step **902**, while operating the vehicle **100** in major turn mode, the controller **110** receives a steering indicator (e.g., steering position signal) from a steering position sensor. [0205] At step **904**, the controller **110** determines whether the steering position of the steering input **102** is in an intermediate turn position. If the controller **110** determines that the steering position of the steering input **102** is in an intermediate turn position, the controller **110** proceeds to step **906**. If the controller **110** determines that the steering position of the steering input **102** remains in a major turn position, the controller **110** proceeds to step **914**.

[0206] At step **906**, the controller **110** provide a seventh drive signal to the second motor, the seventh drive signal configured to cause the second motor to drive the second drive wheel in the forward direction. In some embodiments, the seventh drive signal is configured to cause the second motor to rotate the second drive wheel in the forward direction at a speed that is less than a commanded speed indicated by the throttle 108. For example, in FIG. 9B, the controller 110 determines that the steering input **102** transitioned from a major turn position, as shown in position 1, to an intermediate turn position, as shown in position 2. In response to a determination that the steering input **102** has transitioned from a major turn position to an intermediate turn position, the controller **110** causes the right motor **106***a* to drive the right drive wheel **104***a* in a forward direction at a reduced speed less than a commanded speed indicated by the throttle **108**. Arrows **901** and **903** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. [0207] At step **908**, the controller **110** determines whether the steering position of the steering input **102** is in a minor turn position. If the controller **110** determines that the steering position of the steering input **102** is in a minor turn position, the controller **110** proceeds to step **910**. If the controller **110** determines that the steering position of the steering input **102** remains in an intermediate turn position, the controller **110** proceeds to step **912**.

[0208] At step **910**, the controller **110** provides an eighth drive signal to the second motor, the eighth drive signal configured to cause the second motor to rotate the second drive wheel in the forward direction at a commanded speed indicated by the user speed input device and continue providing the first drive signal to the first motor during a first time period. After the first time period, the controller **110** provide a ninth motor drive signal to the first motor, the ninth motor drive signal configured to cause the first motor to rotate the first drive wheel in the forward direction at a commanded speed indicated by the throttle 108. For example, in FIG. 9C, the controller 110 determines the steering input **102** transitioning from a major turn position, as shown in position 1, to a minor turn position, as shown in position 2. In response to a determination that the steering input **102** has transitioned from a major turn position to a minor turn position, the controller **110** causes the right motor **106***a* to drive the right drive wheel **104***a* in a forward direction at a commanded speed indicated by the throttle **108** (shown as a full throttle) for, for example, 500 ms, as shown at position 2. Arrows **905** and **907** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. After the time expires, the controller **110** causes the left motor **106***b* to drive the left drive wheel **104***b* in a forward direction at a commanded speed indicated by the throttle **108** (shown as a full throttle), as shown in position 3. Arrows **909** and **911** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*.

[0209] In some embodiments, the first time period is from 20 to 1000 ms; from 50 to 900 ms; from 150 to 800 ms; from 300 to 700 ms; from 500 to 600 ms; or approximately 550 ms. In some

embodiments; the first time period is less than 1000 ms; less than 900 ms; less than 800 ms; less than 700 ms; less than 600 ms; less than 500 ms; less than 300 ms; less than 200 ms; or less than 100 ms.

[0210] At step **912**, the controller **110** continues to provide the seventh drive signal to the second motor **106***b*, the seventh drive signal configured to cause the second motor to rotate the second drive wheel in the forward direction.

[0211] At step **914**, the controller **110** continues to operate the right motor **106**a and left motor **106**b in major turn mode.

Exiting Major Turn Mode—Transition Time and Throttle Input Embodiments [0212] In some embodiments, if unabated, exiting major turn mode can present some challenges for a user of the vehicle **100**. For example, if the controller **110** causes the right and left drive wheels **104***a***-104***b* to rotate in a forward direction at a fast speed after detecting a quick change in steering position, the vehicle **100** may understeer or plow in the direction of the major turn. However, merely having the controller **110** cause the right and left drive wheels **104***a***-104***b* to operate at slow speeds for some predetermined time period after detecting a quick change in steering position despite a high throttle input, the vehicle **100** will not be properly responsive to a user's control. To avoid these problems, in one embodiment, the controller **110** is configured to cause the right and left drive wheels **104***a***-104***b* at certain speeds in certain directions based on the steering position of the steering input **102**, the steering rotation speed of the steering input **102** and the throttle input of the throttle **108** that allow the vehicle **100** to safely exit a major turn while being more responsive to the user's control inputs of the vehicle **100**.

[0213] FIG. **9**D is a schematic representation of vehicle **100** illustrating exemplary major turn exiting functionality where the steering input **102** slowly transitions to an intermediate turn position to exit into the major turn mode of FIG. **6**, according to some embodiments of the invention. In these embodiments, the vehicle **100** may exit a major turn mode when the controller **110** determines that certain major turn mode exiting criteria, and specifically, slow transition intermediate turn criterion is met. In some embodiments, slow transition intermediate turn criterion is met when the steering position of the steering input **102** has transitioned from a major turn position to an intermediate turn position in an amount of time that is greater than a steering rotation timing threshold (e.g., 250 ms) or, in some embodiments, a steering rotation speeds that is less than a steering rotation speed threshold) and the throttle input exceeds a throttle input threshold. [0214] In FIG. **9**D, the vehicle **100** is shown in two positions, with position 2 occurring after position 1. In position 1, the controller **110** determines that the steering input **102** is in a right major-turn position, as illustrated by schematic representation **502**. In response to a determination that the steering input **102** is in a right major-turn position, the controller **110** has caused the vehicle **100** to operate in a major turn mode, where, in some embodiments, the vehicle **100** rotates about a vertical axis B. In position 2, the steering input **102** has transitioned to a right intermediate-turn position, as illustrated by schematic representation **503** (and as explained in detail in FIG. **5**B), after 300 ms. In some embodiments, the controller **110** determines that slow transition intermediate turn criterion is met because the steering position of the steering input **102** has transitioned from a major turn position **502** to an intermediate turn position **503** in an amount of time (i.e., 300 ms) that exceeds a steering rotation timing threshold (e.g., 250 ms) and the throttle input exceeds a throttle input threshold. In response to a determination that slow transition intermediate turn criterion is met, the controller **110** causes a first motor (i.e., right motor **106***a*) to drive a first wheel (i.e., first drive wheel **104***a*) in a forward direction at a speed that is less than a predetermined speed value (e.g., 50% of full speed) and causes a second motor (i.e., left motor **106***b*) to drive a second wheel (i.e., the left drive wheel **104***b*) in a forward direction at a speed that is less that the predetermined speed value. In some embodiments, the speed of the first drive wheel **104***a* and the second drive wheel **104***b* are the same. In some embodiments, the speed of the first drive wheel **104***a* and the second drive wheel **104***b* are different. In some embodiments, controller **110** causes the right drive

wheel **104***a* and the left drive wheel **104***b* to rotate at slow speeds (e.g., a speed that are less than the predetermined speed value), despite the throttle input that exceeds the throttle input threshold. Arrows **920** and **922** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. By incorporating the above major turn exiting functionality, the vehicle **100** can safely exit a major turn without understeering or plowing despite a throttle input from a user that represents a user's intent to quickly accelerate the vehicle **100**.

[0215] FIG. **9**E is a schematic representation of vehicle **100** illustrating exemplary major turn exiting functionality where the steering input **102** has a fast transition to an intermediate turn position to exit into the major turn mode of FIG. 6, according to some embodiments of the invention. In these embodiments, the vehicle **100** may exit a major turn mode when the controller **110** determines that certain major turn mode exiting criteria, and specifically, fast transition intermediate turn criterion is met. In some embodiments, fast transition intermediate turn criterion is met when the steering position of the steering input **102** has transitioned from a major turn position to an intermediate turn position in an amount of time that is less than a steering rotation timing threshold (e.g., 250 ms) (or, in some embodiments, a steering rotation speeds that exceeds a steering rotation speed threshold) and the throttle input exceeds a throttle input threshold. [0216] In FIG. **9**E, the vehicle **100** is shown in three positions: position 1, position 2, and position 3, with position 2 occurring after position 1 and position 3 occurring after position 2. In position 1, the vehicle **100** is operating in a major turn mode, as shown in FIG. **6**. In position 2, the steering input **102** has transitioned to a right intermediate-turn position, as illustrated by schematic representation **503**, after, for example, 200 ms. In some embodiments, the controller **110** determines that fast transition intermediate turn criterion is met because the steering position of the steering input **102** has transitioned from a major turn position **502** to an intermediate turn position **503** in an amount of time (i.e., 200 ms) that is less than a steering rotation timing threshold (e.g., 250 ms) and the throttle input exceeds a throttle input threshold. In response to a determination that the fast transition intermediate turn criterion is met, the controller **110** causes a first motor (i.e., right motor **106***a*) to drive a first wheel (i.e., right drive wheel **104***a*) in a forward direction at a speed that exceeds a predetermined speed value (e.g., 50% of full speed) and causes a second motor (i.e., left motor **106***b*) to drive a second wheel (i.e., the left drive wheel **104***b*) in a forward direction at a speed that is less than the speed value during a first time period (e.g., from 100 to 1000 ms), despite the throttle input exceeding the throttle input threshold. Arrows **930** and **932** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2. After the first time period occurs, in position 3, the controller **110** causes the first motor (i.e., right motor **106***a*) to drive the first wheel (i.e., first drive wheel **104***a*) in the forward direction at a speed that exceeds the predetermined speed value and cause the second motor (i.e., left motor **106***b*) to drive the second wheel (i.e., the left drive wheel **104***b*) in the forward direction at a speed that exceeds the predetermined speed value during a second time period, in response to the throttle input that exceeds the throttle input threshold. In some embodiments, the speeds of the first wheel and the second wheel are the same. In some embodiments, the speeds of the first wheel and the second wheel are different. Arrows **934** and **936** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 3. By incorporating the above major turn exiting functionality, the vehicle **100** can safely exit a major turn without understeering or plowing despite a throttle input from a user that represents a user's intent to quickly accelerate the vehicle **100**. [0217] In some embodiments, the first time period is from 100 to 1000 ms; from 200 to 900 ms; from 300 to 800 ms; from 400 to 700 ms; from 500 to 600 ms; or approximately 550 ms. In some embodiments; the first time period is less than 1000 ms; less than 900 ms; less than 800 ms; less than 700 ms; less than 600 ms; less than 500 ms; less than 400 ms; less than 300 ms; less than 200 ms; or less than 100 ms.

[0218] FIG. **9**F is a schematic representation of vehicle **100** illustrating exemplary major turn exiting functionality where the steering input **102** quickly transitions to a minor turn position to exit

into the major turn mode of FIG. **6**, according to some embodiments of the invention. In these embodiments, the vehicle **100** may exit a major turn mode when the controller **110** determines that certain major turn mode exiting criteria, and specifically, fast transition minor turn criterion is met. In some embodiments, fast transition minor turn criterion is met when the steering position of the steering input **102** has transitioned from a major turn position, through an intermediate turn position, to a minor turn position in an amount of time (e.g., 200 ms) that falls below a steering rotation timing threshold (e.g., 250 ms) (or, in some embodiments, a steering rotation speeds that falls below a steering rotation speed threshold) and the throttle input exceeds a throttle input threshold.

[0219] In FIG. **9**F, the vehicle **100** is shown in two positions, position 1 and position 2, with position 2 occurring after position 1. In position 1, the controller **110** determines that steering input **102** is in a right major-turn position, as illustrated by schematic representation **502** (and as explained in detail in FIG. **6**). In response to a determination that the steering input **102** is in a right major-turn position, the controller **110** causes the vehicle **100** to operate in a major turn mode. In position 2, the steering input **102** has been transitioned to a right minor-turn position, as illustrated by schematic representation **504** (and as explained in detail in FIG. **5**C), after, for example, 200 ms. In some embodiments, the controller **110** determines that fast transition minor turn criterion is met because the steering position of the steering input **102** has transitioned from a major turn position **502** through an intermediate turn position to a minor turn position **504** in an amount of time (i.e., 200 ms) that is less than a steering rotation timing threshold (e.g., 250 ms) while the throttle input exceeds a throttle input threshold. In response to a determination that the fast transition major turn criterion is met, the controller **110** causes a first motor (i.e., right motor **106***a*) to drive a first wheel (i.e., right drive wheel **104***a*) in a forward direction at a speed that exceeds a predetermined speed value (e.g., 50% of full speed) and causes a second motor (i.e., left motor **106***b*) to drive a second wheel (i.e., the left drive wheel **104***b*) in a forward direction at a speed that exceeds the predetermined speed value, in response to the throttle input that exceeds the throttle input threshold. In some embodiments, the fourth speed is the same as the third speed. In some embodiments, the fourth speed is different than the third speed. Arrows **938** and **940** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. By incorporating the above major turn exiting functionality, the vehicle **100** can exit a major turn in a manner that is more responsive to a throttle input from a user.

Entering/Exiting Major Turn Mode Based on Steering Position

[0220] In some embodiments, the controller **110** determines whether to operate the vehicle **100** in major turn mode if the steering input **102** is in a major turn position and operate the vehicle **100** in standard drive mode if the steering input **102** is in an intermediate turn position. For example, If the controller **110** receives a sensor position signal indicating that the steering input **102** is in a full left turn position or full right turn position (e.g., major turn position), then the controller **110** causes the right motor **106***a* and the left motor **106***b* to operate in major turn mode. If the controller **110** receives a sensor position signal indicating that the steering input **102** is in an intermediate left turn position or intermediate right turn position (e.g., intermediate turn position), then the controller **110** causes the right motor **106***a* and the left motor **106***b* to operate in standard drive mode. In some embodiments, a first set of one or more sensors (e.g., **306***a*, **306***f* of FIG. **5**C) may be configured to detect when the steering input **102** is in a major turn position and a second set of one or more sensors may be configured to detect when the steering input **102** is in an intermediate turn position (e.g., **306***b*, **306***e* of FIG. **5**C).

Disabling Major Turn Mode—Excessive Angular Vehicle Tilt

[0221] In some embodiments, major turn mode functionality may be disabled despite the steering indicators indicating that the vehicle **100** should operate in a major turn mode (e.g., as shown in FIG. **6**). For example, if the vehicle **100** is subject to an excessive angular tilt (e.g., greater than 10° from horizontal), such as while traveling up or down steep includes or declines, operating in major

turn mode may make the vehicle **100** less stable or reduce the available drive power to the wheels for climbing. In these scenarios, the vehicle **100** is operated in a standard drive mode for safety. [0222] FIGS. **10**A-**10**B are schematic representations of vehicle **100** illustrating exemplary major turn entering functionality based on tilt angle, according to some embodiments of the invention. In some embodiments, vehicle **100** may include a tilt sensor **1001** configured to detect tilt angle (e.g., pitch or roll) of the vehicle **100**. In some embodiments, acceleration or deceleration of the vehicle **100** on a flat surface does not affect measurements made by the tilt sensor **1001**. Examples of tilt sensors **1001** include accelerometers, gyroscopes, or inclinometers, or MEMS orientation sensors to measure orientation of the vehicle **100**.

[0223] In FIG. **10**A, at position 1, the vehicle **100** is operating in standard drive mode, where the controller **110** causes the first and second drive motors **106***a***-106***b* to drive the right and left drive wheels **104***a***-104***b* at a speed based on a throttle input of the throttle **108**. Arrows **1002** and **1004** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. The controller **110** may be configured to determine whether the steering indicator meets major turn criteria by also determining whether the tilt angle of the vehicle as detected by the tilt sensor, along the lateral or longitudinal axis, is less than a predetermined tilt angle threshold (e.g., approximately 10° for pitch and approximately 6° for roll). If the controller **110** determines that the tilt angle of the vehicle **100** is less than a predetermined tilt angle threshold (e.g., as shown in FIG. **10**A where tilt graphic **1020** illustrates that the vehicle **100** traveling on a flat surface **1022** at an angle of 0°)), the controller **110** determines that the steering indicator meets major turn criteria, and thereby causes the right motor **106***a* and the left motor **106***b* to operate in a major turn mode, as shown in position 2 of FIG. **10**A. Arrows **1006** and **1008** illustrate the speed and direction of the right and left drive wheels **104***a*-**104***b* at position 2. If the controller **110** determines that the tilt angle of the vehicle **100** is greater than a predetermined tilt angle threshold (e.g., as shown in FIG. 10B where tilt graphic 1020 illustrates that the vehicle **100** traveling up a steep incline **1024** at an angle of 20° relative to flat surface **1022**)), the controller **110** determines that the steering indicator does not meet major turn criteria, and thereby causes the right motor **106***a* and the left motor **106***b* to operate in a standard driving mode, as shown in position 2 of FIG. 10B. Arrows 1010 and 1012 illustrate the speed and direction of the right and left drive wheels **104***a***-104***b* at position 2.

[0224] By utilizing the above major turn disabling functionality, the vehicle **100** can safely refrain from entering a major turn when the vehicle **100** is excessively tilted.

[0225] In some embodiments, the rotational tilt angle threshold is from 1° to 30°; from 5° to 20°; from 10° to 15°; or approximately 10°. In some embodiments, the rotational tilt angle threshold is less than 30°; less than 20°; less than 15°; less than 5°.

Disabled Major Turn Mode or Reduced Speed in Major Turn Mode—Reverse Driving [0226] In some embodiments, major turn mode functionality may be disabled or modified while the vehicle **100** is traveling in reverse, despite the steering indicators indicating that the vehicle **100** should operate in a major turn mode (e.g., as shown in FIG. **6**). For example, if the vehicle **100** is traveling in reverse, operating in major turn mode may make the vehicle **100** difficult to navigate because the user must be looking backwards to see where the vehicle **100** is traveling. In these embodiments, the vehicle **100** can be operated in a standard drive mode, or a reduced speed mode, for safety.

[0227] FIG. **11**A is schematic representations of vehicle **100** illustrating exemplary major turn entering functionality and operating the vehicle **100** at a reduced speed while the vehicle is traveling in reverse, according to some embodiments of the invention.

[0228] In FIG. **11**A, as shown in position 1, the vehicle **100** is operating in standard drive mode, where the controller **110** causes the right and left drive motors **106***a***-106***b* to drive the right and left drive wheels **104***a***-104***b* at a speed based on a throttle input of the throttle **108**. In this example, the controller **110** causes the right and left drive motors **106***a***-106***b* to drive the right and left drive wheels **104***a***-104***b* in a reverse direction. Arrows **1102** and **1104** illustrate the speed and direction of

the right and left drive wheels **104***a***-104***b*. The controller **110** may be configured to determine that the steering indicator meets major turn criteria by also determining whether the user speed input device receives a reverse speed input. If the controller **110** determines that the user speed input device receives a reverse speed input, the controller **110** determines that the steering indicator meets major turn criteria, and thereby causes the right motor **106***a* and the left motor **106***b* to operate in a major turn mode, as shown in position 2 of FIG. 11A. In some embodiments, the controller **110** is configured to provide a twelfth drive signal to the left motor **106***b*. The twelfth drive signal may be configured to cause the first motor (e.g., left motor **106***b*) to drive the first drive wheel (e.g., left drive wheel **104***b*) in a direction opposite a direction indicated by the first drive signal, at a twelfth speed that is less than the first speed while the vehicle is operating in major turn mode shown in FIG. **6**. In some embodiments, the controller **110** is configured to provide a thirteenth drive signal to the second motor (e.g., right motor **106***a*), the thirteenth drive signal configured to cause the second motor to drive the second drive wheel (e.g., right drive wheel **104***a*) in a direction opposite a direction indicated by the second drive signal, at a thirteenth speed that is less than the second speed while the vehicle is operating in major turn mode shown in FIG. **6**. Arrows **1106** and **1108** illustrate the speed and direction of the right and left drive wheels **104***a*-**104***b* at position 2.

[0229] FIG. **11**B is schematic representations of vehicle **100** illustrating exemplary major turn entering functionality that may be disabled while the vehicle is traveling in reverse, according to some embodiments of the invention.

[0230] In FIG. 11B, vehicle 100 is substantially similar to the vehicle 100 in position 1 of FIG. 11A. In FIG. 11B, the controller 110 may be configured to determine that the steering indicator meets major turn criteria by also determining whether the user speed input device does not receive a reverse speed input. If the controller 110 determines that the user speed input device receives a reverse speed input, the controller 110 determines that the steering indicator does not meet major turn criteria, and thereby causes the right motor 106a and the left motor 106b to operate in a standard drive mode, as shown in position 2 of FIG. 11B. Arrows 1110 and 1112 illustrate the speed and direction of the right and left drive wheels 104a-104b at position 2. In some embodiments, the twelfth drive signal is configured to cause the left motor 106b to drive the left drive wheel 104b at approximately 50 percent of a power of the left motor 106b as caused by the first drive signal. In some embodiments, the thirteenth drive signal is configured to cause the right motor 106a to drive the right drive wheel 104a at approximately 50 percent of a power of the right motor 106a as caused by the second drive signal.

Zero Turn Modes Based on Operator Weight

[0231] In some embodiments, major turn mode functionality may be disabled despite the steering indicators indicating that the vehicle **100** should operate in a major turn mode (e.g., as shown in FIG. **6**). For example, if the vehicle **100** is subject to an excessive user weight (e.g., >250 lbs), operating in major turn mode may not have sufficient power to drive the vehicle **100**. In these scenarios, the controller **110** may need to increase power to the drive wheels **104***a***-104***b* to improve usability.

[0232] FIGS. **12**A-**12**B are schematic representations of vehicle **100** illustrating exemplary major turn entering functionality based on user weight, according to some embodiments of the invention. In some embodiments, vehicle **100** may include a user weight sensor **1201** configured to detect a weight of a user operating the vehicle. Examples of weight sensor **1201** include an accelerometer, a strain gauge.

[0233] In FIG. **12**A, at position 1, the vehicle **100** is operating in standard drive mode, where the controller **110** causes the first and second drive motors **106***a***-106***b* to drive the right and left drive wheels **104***a***-104***b* at a speed based on a throttle input of the throttle **108**. Arrows **1202** and **1204** illustrate the speed and direction of the right and left drive wheels **104***a***-104***b*. At position 2, the controller **110** determines that the steering indicator meets major turn criteria. The controller **110**

may also determine that the weight of an operator of the vehicle **100** is greater than an operator weight threshold. In response to a determination that the steering indicator meets major turn criteria and the weight of an operator of the vehicle **100** is greater than an operator weight threshold, the controller **110** provides a fourteenth drive signal to the first motor (e.g., left motor **106***b*). The fourteenth drive signal may be configured to cause the first motor to drive the first drive wheel (e.g., left drive wheel **104***b*) in the forward direction at a fourteenth speed that is greater than the first speed of the first drive wheel while operating in major turn mode as shown in FIG. **6**. Also, in response to a determination that the steering indicator meets major turn criteria and the weight of an operator of the vehicle **100** is greater than an operator weight threshold, the controller **110** provides a fifteenth drive signal to the second motor (e.g., right motor **106***a*). The fifteenth drive signal may be configured to cause the second motor to drive the second drive wheel (e.g., right drive wheel **104***a*) in the reverse direction at a fifteenth speed that is greater than the second speed of the second drive wheel while operating in major turn mode as shown in FIG. **6**. Arrows **1206** and **1208** illustrate the speed and direction of the right and left drive wheels **104***a*-**104***b* at position

[0234] In some embodiments, the fourteenth drive signal and fifteenth drive signal cause the right motor **106***a* and the left motor **106***b* to drive the left drive wheel **104***b* and the right drive wheel **104***a*, respectively, using approximately twice the power as compared to the first drive signal and the second drive signal, respectively. In some embodiments, the fourteenth drive signal is configured to cause the first motor (e.g., left motor **106***b*) to drive the first drive wheel (e.g., left drive wheel **104***b*) at approximately 60 percent of a maximum power of the first motor, and the fifteenth drive signal is configured to cause the second motor (e.g., right motor **106***a*) to drive the second drive wheel (e.g., right drive wheel **104***a*) at approximately 30 percent of a maximum power of the second motor.

[0235] In FIG. **12**B, the vehicle **100** at position 1 is substantially similar to the vehicle **100** at position 1 of FIG. **12**A. At position 2, if the controller **110** determine that the weight of an operator of the vehicle **100** is less than an operator weight threshold, the controller **110** causes the right motor **106***a* and the left motor **106***b* to operate in major turn mode, represented in FIG. **6**. In some embodiments, the first drive signal is configured to cause the first motor (e.g., left motor **106***b*) to drive the first drive wheel (e.g., left drive wheel **104***b*) at approximately 30 percent of a maximum power of the first motor. The second drive signal is configured to cause the second motor (e.g., right motor **106***a*) to drive the second drive wheel (e.g., right drive wheel **104***a*) at approximately 15 percent of a maximum power of the second motor. Arrows **1206** and **1208** illustrate the speed and direction of the right and left drive wheels **104***a*-**104***b* at position 2.

[0236] In some embodiments, the predetermined operator weight threshold is approximately 250 lbs.

[0237] In some embodiments, the controller **110** deactivates major turn mode if the controller **110** determines that a time period that the vehicle **100** operates in major turn mode exceeds a major turn mode time limit threshold. In some embodiments, the major turn mode time limit threshold is between 7 and 10 seconds. Deactivation of major turn mode may be necessary to reduce any excess wear on the vehicle **100** that is caused by operating in major turn mode for a prolonged period of time.

[0238] In some embodiments, the major turn mode time limit threshold is a function of a weight of an operator of the vehicle. In some embodiments, if an operator weight is above a weight threshold (e.g., 250 lbs), then the major turn mode time limit may be a high value (e.g., 10 seconds) and if the operator weight is below the operator weight threshold, then the major turn mode time limit may be a lower value (e.g., 7 seconds). In some embodiments, the major turn mode time limit threshold when the operator weight is less than the operator weight threshold is half an amount of time as the major turn mode time limit threshold when the weight of the operator of the vehicle is greater than the operator weight threshold.

Indoor/Outdoor Mode

[0239] In some embodiments, the vehicle **100** can be operated in an indoor mode or an outdoor mode. While in indoor mode, the user may desire to drive the vehicle **100** at reduced speeds while in major turn mode, as compared to driving the vehicle **100** outdoors. This may be because there are tighter hallways and more objects to avoid while driving indoors as compared to driving outdoors. In some embodiments, in an indoor mode, while the controller 110 operates the vehicle **100** in major turn mode, the controller **110** is configured to cause the first and second motors **106***a*-**106***b* to drive the first and second wheels **104***a***-104***b* at a speed that is approximately 30 percent of a commanded speed indicated by the user speed input device. In some embodiments, in an outdoor mode, while the controller **110** operates the vehicle **100** in major turn mode, the controller **110** is configured to cause the first and second motors **106***a***-106***b* to drive the first and second wheels **104***a***-104***b* at a speed that is approximately 60 percent of a commanded speed indicated by the user speed input device. In some embodiments, while the controller **110** operates the vehicle **100** in major turn mode and outdoor mode, the controller 110 is configured to cause the first and second motors **106***a***-106***b* to drive the first and second wheels **104***a***-104***b* at a speed that is approximately twice the speed that the controller **110** is configured to cause the first and second motors **106***a***-106***b* to drive the first and second wheels **104***a***-104***b* while in major turn mode and indoor mode. [0240] In some embodiments, an environmental mode selection input selectable by a user is provided on the vehicle **100**. In some embodiments, the environmental mode selection input is a switch or dial. In some embodiments, the environmental mode selection input may a light sensor, an accelerometer, a temperature sensor or a humidity sensor. In some embodiments, the environmental mode selection input is integrated into the throttle, such that repeatedly engaging and disengaging the throttle causes toggling between indoor and outdoor mode. The environmental mode selection input is configured to cause the controller **110** to operate in the indoor mode or the outdoor mode. In some embodiments, the environmental mode selection input is positioned on the steering input **102**. In some embodiments, environmental mode selection input is a switch. Steering Assembly

[0241] In some embodiments, vehicles such as mobility scooters having the functionality described above, are implemented with the steering assemblies and front end configurations as described in the following embodiments. For example, embodiments of the steering assembly 202 are described below and shown in further detail in FIGS. 13A1-13C3. FIG. 13A1 illustrates a bottom front perspective view of a portion of the vehicle 1300 according to at least one embodiment of the invention. FIGS. 13A2-13A3 illustrate top views of a portion of the vehicle 1300 according to at least one embodiment of the invention. FIGS. 13B1-13B2 illustrate bottom views of a portion of the vehicle 1300 according to at least one embodiment of the invention. FIG. 13C1 illustrates a top front perspective view of a portion of the vehicle 1300 according to at least one embodiment of the invention. FIGS. 13C2-13C3 illustrate a top and front views, respectively, of a steering assembly 102 of the vehicle 1300, according to at least one embodiment of the invention.

[0242] Turning now to FIG. **13**A**1**, the vehicle **1300** (which, in some embodiments, is similar to vehicle **100**) may include a frame **1302**. The frame **1302** may be disposed along a longitudinal axis LA. The vehicle **1300** may include steering assembly **202**. The steering assembly **202** may be coupled to the frame **1302**. The steering assembly **202** may have a left directional control wheel **103***a* and the right directional control wheel **103***a* positioned on either side of the longitudinal axis of the frame **1302**. The right and left directional control wheels **103***a***-103***b* may also be referred to herein as right and left front wheels **103***a***-103***b*. The right and left front wheels **103***a***-103***b* may be coupled to the steering input **102** via a steering linkage **1308** (also referred to herein as linkage member). In some embodiments, the steering linkage **1308** includes a right tie rod **1308***a* and a left tie rod **1308***b*.

[0243] The steering linkage **1308** may be configured to pivot in response to movement of the steering input **102**. The steering linkage **1308** may be configured and dimensioned such that each of

the right front wheel **103***a* and the left front wheel **103***b* has a maximum inward turn angle. As used herein, inward turn angle refers to the direction of a wheel relative the longitudinal axis such that a vector representing the forward direction of the wheel would cross the longitudinal axis. Also as used herein, an outward turn angle refers to the direction of a wheel relative to the longitudinal axis such that a vector representing the forward direction of wheel would diverge from the longitudinal axis. In a vehicle turn, a front wheel having an inward turn angle would be an outside front wheel and the front wheel having an outward turn angle would be an inside front wheel. The maximum inward turn angle may be characterized by a limit to which either the left front wheel **103***b* or right front wheel **103***a* can turn inward relative to the longitudinal axis. For example, in FIG. **13**A**2**, while the steering input **102** is positioned in a full-right turn (e.g., major turn position), the left front wheel **103***b* (e.g., the outside from wheel)) has a maximum inward turn angle of 60° represented in FIG. **13**A**2** as the angle between longitudinal axis LA and left wheel longitudinal axis LWLA. Each of the left front wheel **103***b* or right front wheel **103***a* may be configured to have a firm maximum inward turn angle and corresponding variable outward maximum turn angle. For example, a firm maximum inward turn angle may be caused by rigid members in the steering assembly engaging each other to limit their respective movement. A variable outward maximum turn angle may, in some embodiments have an intermediate maximum outward turn angle and a maximum outward turn angle. In some embodiments, steering assembly **202** includes linkage components that flex through the intermediate maximum outward turn angle to the maximum outward turn angle until the maximum turn limit is reached (by for example, the engagement of rigid members at the maximum outward turn angle. In some embodiments, the maximum outward turn angle is governed by the corresponding front end linkage and can only be achieved when the outside wheel is turned to reach the maximum inward turn angle. In some embodiments, the steering assembly **202** is configured to position the inside wheel to the intermediate maximum outward turn angle when the outside wheel is turned to the maximum inward turn angle. That position can be overcome however to urge the inside wheel to its maximum outward turn angle even while the outside wheel remains at the maximum inward turn angle. [0244] At the maximum inward turn angle, the pivot point at which the tie rod is linked to the embodiments, each of left front wheel **103***b* and right front wheel **103***a* have a maximum inward

steering bracket is positioned rearward of a line passing through the two king pin axes. In some turn angle and a maximum outward turn angle. In some embodiments, the steering linkage 1308 may be configured and dimensioned such that each of the left front wheel **103***b* and the right front wheel **103***a* have an intermediate outward turn angle and a maximum outward turn angle. The maximum outward turn angle may be characterized by a limit to which the front of either the left front wheel 103b or right front wheel 103a can turn away from the longitudinal axis (in some embodiments, while the vehicle **100** is at rest). In some embodiments, when the right and left front wheel **103***a***-103***b* (e.g., inner wheel) is turned to a respective right or left maximum inward turn angle, the other of the right and left front wheel **103***a***-103***b* (e.g., outer wheel) is turned to an intermediate outward turn angle that is less than the maximum outward angle unless a biasing force is applied to the other of the left front wheel **103***b* or right front wheel **103***a* to urge the wheel to the respective maximum outward turn angle. For example, when the tiller may be turned to the greatest degree possible, the steering assembly **202** is configured to position an outside wheel in the maximum inward turn angle while the inside wheel is positioned in the intermediate maximum outward turn angle. Yet, in one example, while both the tiller and the outside wheel have reached the limit of their travel distance, the inside wheel is capably of further rotation to achieve the maximum outward turn angle. In some embodiments, this is due to the flexing of the steering assembly **202** in response to a further biasing force (e.g., beyond the mere motion of the tiller). For example, in FIG. 13A2, and in some embodiments, the intermediate outward turn angle is approximately 88° as represented in FIG. **13**A**2** as the angle between longitudinal axis LA and right wheel longitudinal axis RWLA and in FIG. 13A3, while the steering input 102 is positioned in a

full-right turn, the right front wheel **103***a* has a maximum outward turn angle of 91°. In FIG. **13**A2, while the steering input **102** is positioned in a full-right turn, and the right and left drive wheels **104***a***-104***b* is driven in a forward direction, indicated by the representative arrows **1330** and **1327** on the right and left drive wheels **104***a***-104***b*, the right front wheel **103***a* has an intermediate outward turn angle of 88°. While turning the vehicle **100** pivots about intersection point **1333** of the right front wheel axis RFA and the rear axis RA. In FIG. **13**A3, when the vehicle **100** is operated in major turn mode to pivot about intersection point 1335 of the right front wheel axis RFA and the rear axis RA, and the right drive wheel **104***a* is driven in a reverse direction, indicated by the representative arrows **1332** and **1327** on the right and left drive wheels **104***a***-104***b*, a biasing force is applied (or increased) to the right front wheel **103***a* to urge the right front wheel **103***a* to the respective maximum outward turn angle of 91°. Without wishing to be bound to any one particular theory, in some embodiments, the biasing force is a function of a difference in the relative power levels (e.g., voltage, current) provided to the right motor **106***a* and the left motor **106***b*. In some embodiments, the biasing force is attributable to friction on the inside from wheel from the ground surface and/or the relative power levels exerted by right motor **106***a* and left motor **106***b* and/or by one of the right motor **106***a* and left motor **106***b*.

[0245] In some embodiments, the intermediate maximum outward turn angle is different from the maximum outward turn angle by a value of approximately less than 10°, inclusive; less than 8°, inclusive; less than 6° inclusive; less than 4°, inclusive; less than 2°, inclusive. In some embodiments, the intermediate maximum outward turn angle is approximately 83°, approximately 84°, approximately 85°, approximately 86°, approximately 87°, or approximately 88°. In some embodiments, the intermediate maximum outward turn angle is greater than 83°, greater than 84°, greater than 85°, greater than 86°, greater than 87°, or greater than 88°. In some embodiments, the maximum outward turn angle is approximately 90°, approximately 91°, approximately 92°, approximately 93°, approximately 94°, or approximately, 95°. In some embodiments, the maximum outward turn angle is greater than 87°, greater than 88°, greater than 89°, greater than 90°, greater than 91°, greater than 92°, greater than 93°, greater than 94°, or greater than 95°. [0246] In some embodiments, controller **110** is configured to simultaneously drive a first drive wheel (e.g., right drive wheel **104***a*) and a second drive wheel (e.g., left drive wheel **104***b*) in opposite directions for at least a portion of time when one of the left front wheel or right front wheel (e.g., right or left front wheel **103***a***-103***b*) is in the maximum outward angle. [0247] In some embodiments, the controller **110** is configured to power each of the first drive wheel and the second drive wheel (e.g., right and left drive wheels **104***a***-104***b*) at power levels of approximately the same absolute value and in different directions when one of the left front wheel or right front wheel (e.g., right or left front wheel **103***a***-103***b*) is in the maximum outward angle. [0248] In some embodiments, the first drive wheel (e.g., right drive wheel **104***a*) operates at a different revolutions per minute (or angular velocity) than the second drive wheel (e.g., left drive wheel **104***b*) when the power levels are of approximately the same absolute value. This can arise because of the relative configuration of the steering assembly 202 at the time the wheels are being powered and the geometry of the turn arc.

[0249] Turning now to FIGS. **13B1-13B2**, the steering assembly **202** may include a steering stem **1310** and/or a stem tab **1312**. The stem tab **1312** may be coupled to the steering stem **1310**. The stem tab **1312** may rotate about the steering stem **1310** in response to movement of the steering input **102**, as illustrated by representative arrow **1334**, for example. Steering assembly **202** may include a linkage member **1308** that may be coupled to the stem tab **1312**. The linkage member **1308** may be configured to pivot in response to movement of the steering input **102**, via the steering stem **1310** and stem tab **1312**. The linkage member **1308** may include one or more tie rods, such as right tie rod **1308***a* and left tie rod **1308***b* shown in FIGS. **13B1-13B2**. The right and left tie rods **1308***a***-1308***b* may be configured to pivot, via the steering stem **1310** and stem tab **1312**, in

response to movement of the steering input **102** to cause the right and left front wheels **103***a***-103***b* to orient relative to the steering position of the steering input **102**. In one embodiment, stem tab **1312** comprises two tie rod connection points **1360***a***-1360***b* separated by a distance DST. Stem tab **132** may pivot about a steering stem **1310** at a steering stem pivot point A. In some embodiments, a line from the stem pivot point A and the first tie rod connection point **1360***a* is approximately. In one embodiment, as shown in FIG. **13B3**, the angle between a line from the stem pivot point A and the first tie rod connection point **1360***a* and a line from the stem pivot point A to the second tie rod connection point **1360***b* is approximately 20°. In one embodiment, the angle between a line of the stem pivot point A and the first tie rod connection point **1360***a* and the longitudinal axis LA is approximately 10°.

[0250] Turning back to FIGS. **13**B**1-13**B**2**, the steering assembly **202** may include an axle beam **1314**. The axle beam **1314** may be pivotably mounted to the frame **1302**. The axle beam **1314** may be substantially perpendicular to the longitudinal axis LA of the vehicle **100**. The axle beam **1314** may include a right wheel axle **1318***a* and a left wheel axle **1318***b* (which, in some embodiments, may be similar or identical to right and left wheel axles **112***a***-112***b*. The right wheel axle **1318***a* and the left wheel axle **1318***b* may be rearwardly offset from the axle beam **1314**. The right wheel axle **1318***a* and the left wheel axle **1318***b* may be are configured to angle rearward of the main body of the vehicle **100**. The configuration is selected to allow the inside front wheel during a turn to achieve the maximum outside turn direction while limiting the effect of cam over. In some embodiments, illustrated for example, in FIG. **13**F, left tie rod **1308** is pivotably connected to left steering arm **1324***a* at steering/rod pivot point. Left tie rod **1308** is also pivotably connected to stem tab **1302** at a tab/rod pivot point. If left tie rod **1308** is pivoted such that axis of the tie rod between the steering/rod pivot point and the tab/rod pivot point passes to the rear of the left king pin, there is a risk of significant cam-over effect which is suboptimal for operation of the vehicle at least because it can be more difficult to steer the vehicle out of a major turn. In some embodiments, a bump is provided to limit or prevent that cam-over. In some embodiments, a slight cam over effect is induced which may enhance the biasing force to keep the inside drive wheel at the major outward turn direction. In some embodiments, the bias caused by the cam over can be relieved by altering the motion of one or both drive wheels. For example, the force applied to drive the inner drive wheel may be reduced or eliminated to reduce the cam-over effect.

[0251] The steering input **102** may include right king pin **1316***a* and/or a left king pin **1316***b* coupled to the axle beam **1314**. The right king pin **1316***a* and/or a left king pin **1316***b* may be rotatable about a respective king pin axis **1316***c*-**1316***d*. The right and left king pins **1316***a*-**1316***b* may be configured to allow each of the respective right and left front wheels **103***a*-**103***b* to pivot along one the respective king pin axes **1316***c*-**1316***d*. The right and left tie rod **1308***a*-**1308***b* may be pivotably coupled to a respective right and left king pin **1316***a*-**1316***b*.

[0252] In some embodiments, such as in FIGS. 13C1-13C3, the steering assembly 202 may include right steering arm 1324a and/or a left steering arm 1324b to couple the right and left king pins 1316a-1316b to the right and left tie rods 1308a-1308b. The right and left steering arms 1324a-1324b may couple to the respective right and left king pins 1316a-1316b via right and left king pin sleeves 1317a-1317b. Each of the left steering arm 1324a and a left steering arm 1324b may be rotatable about and projecting from the right and left kingpin axes 1316c-1316d, respectively. In some embodiments, the right steering arm 1324a and/or a left steering arm 1324b is configured to project a distance that is configured to achieve the maximum outward turn angle without confronting the inside of the inside wheel. In this configuration, movement of the steering input 102 causes the right and left front wheels 103a-103b to reorient accordingly.

[0253] As shown in FIGS. **13**B**1**, **13**B**2** and **13**C**2**, the steering assembly **202** may comprise a right stop **1315***a* and a left stop **1315***b*. Right stop **1315***a* and left stop **1315***b* are configured to prevent elements (e.g., tie rods) of steering assembly **202** from passing beyond right stop **1315***a* and left stop **1315***b* respectively, in some embodiments. By limiting movement of components of steering

assembly **202**, the respective right wheel and left wheel reach their respective maximum turn angle. In some embodiments, right stop and left stop are configured as retractable steering stops such as described in more detail below such as in connection with FIGS. **13G1-13G4**. In some embodiments, right stop **1315***a* and a left stop **1315***b* are positioned on axle beam **1314**. In some embodiments, as the right tie rod **1308***a* and/or left tie rod **1308***b* pivot, the right tie rod **1308***a* or left tie rod **1308***b* may engage the right stop **1315***a* or left stop **1315***b* respectively when one of the right or left front wheels **103***a*-**103***b* reaches the respective maximum outward turn angle. The right stop **1315***a* and left stop right stop **1315***b* may be configured to prevent the right front wheel **103***a* and the left front wheel **103***b* from turning beyond the respective maximum outward turn angle. FIG. **13B2** illustrates a vehicle **100** in a full right turn. The right tie rod **1308***b* is pivoted and has engaged the right stop **1315***a* such that the right front wheel **103***a* is at a maximum outward turn angle.

[0254] As shown in FIG. **13**C1, in some embodiments, the axle beam **1314** may be coupled to the frame **1302** by at least one suspension member. The suspension member may be configured to allow each of the right front wheel **103***a* and left front wheel **103***b* to translate (or move vertically) relative to the frame **1302** substantially along a vertical axes (illustrated by representative arrow **1340**) of the vehicle **1300**. The suspension member may include at least one spring, such as springs **1320***a***-1320***b* shown in FIG. **13**C. The suspension member may include a swing arm **1322** pivotably coupled to the frame **1302** and fixed to the axle beam **1314**. The suspension member may be configured to allow the right front wheel 103a and the right front wheel 103b to translate (or move vertically) along a vertical axes (illustrated by representative arrow 1340) of the vehicle **1300**. For example, the springs **1320***a***-1320***b* shown in FIG. **13**C**1** may compress and expand in response to an increase or decrease of force applied to the right front wheel **103***a* and the left front wheel **103***b*. The swing arm **1322** shown in FIG. **13**C may pivot in response to an increase or decrease of force applied to the right front wheel **103***a* and the right front wheel **103***b*. In some embodiments, each of right and left front wheels **103***a***-103***b* are translatable relative to the frame by no more than a value between 0.25 inches and 1 inch. In some embodiments, the degree of suspension member travel is selected to accommodate an inside wheel maximum outward turn angle. For example, in some embodiments, a suspension that is too soft may hamper the linkage in achieving the desired maximum turn angles.

[0255] In some embodiments, such as in FIGS. **13**C**2-13**C**3**, the steering assembly **202** includes a right wheel axle **1326***a* and left wheel axle **1326***b* coupled to the right and left kingpin **1316***a*-**1316***b* respectively. Each of the right and left wheel axles **1326***a*-**1326***b* being rotatable about and projecting from the right and left kingpin axis **1316***c*-**1316***d* respectively. The right front wheel **103***a* and left front wheel **103***b* may be rotatable about the respective right and left wheel axle **1326***a*-**1326***b*, respectively.

[0256] In some embodiments, each of the right steering arm **1324***a* and left steering arm **1324***b* is fixed relative to the right and left wheel axle **1326***a***-1326***b* respectively at an angle between 60° and 100°; an angle between 70° and 90°; an angle of approximately 68°, approximately 69°, approximately 70°, approximately 71°, approximately 72°, approximately 73°, approximately 79° or an angle of approximately 80°. For example, in FIG. **13C4**, an angle between right steering arm **1324***a* and right wheel axle **1326***a* is shown as 73°, and in some embodiments, can be an angle between 68 and 78 degrees. In some embodiments, each of the right and left steering arms **1324***a***-1324***b* includes a tie rod connection point. For example, in FIG. **13C4**, the right steering arm **1324***a* includes a tie rod connection point **1362**. A distance between a center of a tie rod connection point **1362** and a king pin axis **1316***c* of king pin **1316***a* is approximately 1.9 (e.g., 1.89 inches in FIG. **13C4**). Referring to FIGS. **13B3** and **13C4**, in some embodiments, a ratio between (i) a distance between a center of a tie rod connection point **1362** and a kingpin axis **1316***a* and (i) a distance between a tie rod connection point **1360** and a steering axis **A** is approximately 1.2, or in some

embodiments, between 1.1 and 1.3.

[0257] In some embodiments, the axle beam **1314** may comprise one or more cutouts, such as right and left cutouts **1342***a***-1342***b* shown in FIG. **13**C2. When the right or left front wheel **103***a***-103***b* is at a maximum inward turn angle, the respective right or left steering arm **1324***a***-1324***b* is configured to register within the respective right and left cutout **1342***a***-1342***b*. Wheel Axes Intersection Point

[0258] FIGS. **13**D**-13**E are front and left side views, respectively of a portion of the steering input **102**, according to at least one embodiment of the invention. In some embodiments, the steering assembly **202** includes an axle beam **1314**, a right steering arm **1324***a*, a right kingpin **1316***a*, a left steering arm **1324***b* and a left kingpin **1316***b*. The right steering arm **1324***a* and the left steering arm **1324***b* may be oriented relative to a plane defined by the longitudinal axis and the vertical axis of the vehicle **1300** at a camber angle of approximately 4°, a camber angle of approximately 3°, a camber angle between 3° and 5°, inclusive or a camber angle between 2° and 6°, inclusive. As used herein, camber angle may be the angle between the vertical axis of the vehicle and the vertical axis of the wheels when viewed from the front of the vehicle. In some embodiments, the right kingpin **1316***a*, and left kingpin **1316***b* may be oriented relative to a plane defined by the lateral axis and the vertical axis of the vehicle **1300** at a caster angle of approximately 2°, a caster angle of approximately 3°, a caster angle between 1° and 3°, or a caster angle between 1° and 4°. As used herein, caster angle may be an angular displacement of the steering axis of the wheels from the vertical axis of a vehicle. FIG. 13D illustrates an axle beam 1314 having a camber angle of 4° as illustrated by vertical axis VA and camber axis CamA. FIG. 13E illustrates a left side view of left steering arm **1324***b* having a caster angle of 2° as illustrated by vertical axis VA and caster axis CasA.

[0259] FIG. **13**F is a bottom view of a portion of the vehicle **1300** in a major turn mode configuration, according to at least one embodiment of the invention. In FIG. 13F, right and left drive wheels **104***a***-104***b* (not shown) rotate about a rear wheel axis RA. Right front wheel **103***a* rotates about a right front wheel axis RFA. Left front wheel **103***b* rotates about a left front wheel axis LFA. While the right front wheel **103***a* is at a maximum outward turn angle, as shown in FIG. **13**F, projections of the right front wheel axis RFA and left front wheel axis LFA intersect at a vertical projection intersection point LR IP that is forward of the rear wheel axis RA. In some embodiments, the left front wheel axis LFA and right front wheel axis RFA projections intersect at a point that is set off from a longitudinal axis LA on the left side of the frame **1302** when the left front wheel is at the maximum outward turn angle. By configuring the right and left front wheels **103***a***-103***b* such that the vertical projection intersection point LR IP is inside the inner drive wheel, a tight turning radius about a pivot point can be achieved. For example, in some embodiments, the pivot point of the vehicle **100** is proximate the inside drive wheel (e.g., vertical axis B proximate right drive wheel **104***a* in FIG. **13**F). In some embodiments, the pivot point is between the two drive wheels (e.g., right and left drive wheels **104***a***-104***b*). In some embodiments, the pivot point is at a center point between two drive wheels (e.g., vertical center point axis E between right and left drive wheels **104***a***-104***b*). In some embodiments, the pivot point is on or near or proximate to the drive wheel axis RA. In some embodiments, the pivot point is between a center point between two drive wheels (e.g., center point E) and an inside edge of the inner drive wheel (e.g., inside edge **1344** of right drive wheel **104***a* during a right turn or inside edge **1346** of left drive wheel **104***b* during a left turn). In some embodiments, while the vehicle **100** operates in major turn mode, the turning radius is substantially controlled by the inside wheel. The steering assembly **202** may be configured to permit the outside wheel (e.g., left front wheel **103***b*) to slide and thereby not influence or only minimally influence turn radius of the vehicle **100**.

[0260] In some embodiments, a distance between the vertical projection intersection point LR IP and the rear axis RA increases as the one of the right and left front wheel **103***a***-103***b* rotates from an intermediate maximum turn angle towards a maximum outward turn angle. In some

embodiments, the distance between the vertical projection intersection point LR IP and the rear axle RA is a value between 93 inches and 117 inches, when the one of the right and left front wheel **103***a***-103***b* is rotated at an angle between an intermediate maximum turn angle towards a maximum outward turn angle. In some embodiments, a distance between vertical projection intersection point LR IP and the longitudinal axis decreases as the one of the right and left front wheel **103***a***-103***b* rotates from an intermediate maximum turn angle towards a maximum outward turn angle. In some embodiments, the distance between the vertical projection intersection point LR IP and the longitudinal axis LA is a value between 56 inches and 76 inches, when the one of the right and left front wheel **103***a***-103***b* is rotated at an angle between an intermediate maximum turn angle towards a maximum outward turn angle. In some embodiments, the distance between vertical projection intersection point LR IP and the rear axle RA varies linearly as the one of the right and left front wheel **103***a***-103***b* pivots from an intermediate maximum turn angle towards a maximum outward turn angle.

[0261] In some embodiments, the vertical projection intersection point LR IP is at, near or proximate to the rear axle RA.

[0262] In some embodiments, the outside drive wheel (e.g., left front wheel **103***b*) may follow an arc **1350** about an intersection point B between the inner wheel axis (e.g., right front wheel **103***a*) and the rear axis RA rather than following an arc **1352** about an intersection point F between the outside wheel axis (e.g., left front wheel axis LFA) and the rear axis RA, due to the inside drive wheel (e.g., right drive wheel **104***a*) being driven in a reverse direction.

Retractable Steering Stops

[0263] In some embodiments, when performing at or near a major turn, vehicle **1300** may have certain disadvantages when encountering obstacles while at or near the maximum steering angle. For example, when an inside front wheel at the maximum steering angle contacts obstacles such as driving surface irregularities (e.g., small curbs or sidewalk irregularities), forces act upon the inside front wheel to cause the inside front wheel to be undesirably forced toward the maximum outside steering angle. In some embodiments, where the tiller handle has a higher sweep angle, for example, the result of contacting a surface irregularity may result in a force against a wheel that translates to the tiller and result in an abrupt change that startles the user.

[0264] In one embodiment, the vehicle **1300** may include a steering stop configured to prevent the inner front wheel from transitioning to a maximum outward turn angle. In some embodiments, the steering stop permits the inner wheel to achieve an intermediate maximum turn angle but not a maximum outward turn angle. In some embodiments the steering stop is configured to include an engageable position where the steering stop prevents maximum outward turn angle and a nonengageable position where the steering stop does not prevent movement into the maximum outward turn angle. In some embodiments, the steering stop is retractable.

[0265] The steering stop is preferably configured to prevent unintended forces from being applied to the steering input **102** by the irregular driving surface. For example, in FIGS. **13G1-13G2**, the vehicle **1300** includes a retractable right stop **1328***a* and a retractable left stop **1328***b*. The retractable right and left stops **1328***a***-1328***b* may each toggle between an engagement ready position **1329** and a retraction position. The retractable right and left stops **1328***a***-1328***b* may each be configured to restrict pivoting movement of one of the right or left steering arm **1324***a***-1324***b* relative to the axle beam **1314** when the respective retractable steering stop is in an engagement ready position. In some embodiments, the retractable right and left stops **1328***a***-1328***b* may be configured to allow pivoting movement of one of the right or left steering arm **1324***a***-1324***b* relative to the axle beam **1314** when the corresponding retractable right and left stops **1328***a***-1328***b* is in a retracted position. In some embodiments, the vehicle **1300** includes a retraction means, such as a controller, solenoid, motor, foot lever, hand lever, etc. or other means of manual or powered retraction.

[0266] The retraction means may be configured to cause at least one of the retractable right and left

stops **1328***a***-1328***b* to toggle from the engagement ready position (e.g., left stop **1328***b* in an engagement ready position **1329** as shown in FIG. **13**G**2**) to a retracted position (e.g., left stop **1328***b* in a retracted position **1331** as shown in FIG. **13G1**) based upon at least one of: a user command (e.g., speed input, user actuation of a command controller, a switch), the position of the steering input **102**, position dwell time, and the rate of change of position of steering input **102**. In some embodiments, the retraction means is configured to cause at least one of the retractable right or left stops **1328***a***-1328***b* to be in a retracted position when the speed of the vehicle **1300** is greater than a speed threshold. In some embodiments, the retraction means is configured to cause the at least one of the retractable right and left stops **1328***a***-1328***b* to be in an engagement ready position when the speed of the vehicle **1300** is less than a speed threshold. In some embodiments, the retraction means is configured to cause at least one of the retractable right and left stops **1328***a*-**1328***b* to be in a retracted position in response to a user command. In some embodiments, the retraction means is configured to cause at least one of the retractable right and left stops **1328***a*-**1328***b* to be in a retracted position when a position of the steering input **102** is in a major turn position. In some embodiments, the retraction means is configured to cause at least one of the retractable right and left stops **1328***a***-1328***b* to be in an engagement ready position when a position of the steering input **102** is in a position other than a major turn position. By utilizing a retractable stop, the vehicle **1300** can minimize the impact of contacting surface irregularities when the vehicle **1300** is in a compromising configuration, while also otherwise providing full turning capabilities to the user in other configurations.

[0267] In one embodiment the retractable steering stop is positioned at or near a steering arm (e.g., right or left steering arm **1324***a***-1324***b*) such that the steering arm is configured to prevent the steering stop from further rotation relative to the axle beam. For example, in FIG. 13G1, right retractable steering stop **1328***a* is positioned at right steering arm **1324***a* and left retractable steering stop **1328***b* is positioned at left steering arm **1324***b*. In one embodiment, the steering stop is rotatably coupled (e.g., fixed to, integral with) to the steering arm. In one embodiment, the steering stop is rotatably coupled to (e.g., fixed to, integral with) the axle beam **1314**. In one embodiment, the steering stop is rotatably coupled to (e.g., fixed to, integral with) the king pin bracket. [0268] In one embodiment, the steering stop is engageable with an abutment member (e.g., right and left abutment members **1354***a***-1354***b*) to prevent movement of the inner wheel to the maximum outward turn angle. For example, in FIG. **13**G**2**, left retractable steering stop **1328***b* is engaged with an abutment member **1354***b* while left retractable steering stop **1328***b* is in an engagement-ready position. An enlarged view **1353** at the left steering arm **1324***b* further illustrates left retractable steering stop **1328***b* engaging with abutment member **1354***b*. The enlarged view **1353** also shows a cable **1356** that connects the left retractable steering stop **1328***b* to the controller **110**. The cable 1356 may be connected to a biasing member 1357 (e.g., a spring) that is configured to be urged into one of a biased position (e.g., as shown in FIG. 13G1 where spring 1357 is compressed) or an unbiased position by a force exerted from cable **1356** and controller **110**. The biasing member **1357** may be configured to move to an unbiased position (e.g., as shown in FIG. 13G2 when spring 1357 is released) when the force exerted from cable 1356 and controller 110 ceases. In FIG. 13G1, left retractable steering stop **1328***b* is in a retracted position, such that the left retractable steering stop **1328***b* will not engage the left abutment member **1354***b* when the left wheel **103***a* moves to a maximum outward turn angle. The steering stop and/or abutment member may include an angled contact surface of 4°, 6°, 8° or 15°. The enlarged view **1353** also shows the abutment member **1354***b* having an angled contact surface at 4°. In one embodiment, the abutment member is coupled to one of the steering arm, axle beam, king pin bracket, or king pin collar and the steering stop is coupled to another of the steering arm, axle beam, king pin bracket, or king pin collar (or sleeve). For example, in FIG. **13**G**1**, the abutment member **1354***b* is coupled to king pin sleeve **1317***b* and the left retractable steering stop **1328***b* is coupled to left steering arm **1324***b*. In one embodiment, the steering stop is configured to have a first position in which the inside wheel during a turn is

prevented from turning beyond an intermediate maximum turn angle and/or a second position in which the inside wheel is permitted to extend beyond the intermediate maximum turn angle, but not beyond the maximum outward turn angle.

[0269] In one embodiment, the steering stop is configured to automatically enter an engageable position (e.g., a position in which an inside wheel is prevented from turning beyond the intermediate maximum turn angle) from a non-engageable position as the inside wheel moves from a maximum outward turn angle to an intermediate maximum turn angle. In one embodiment, the steering stop includes a release that prevents the steering stop from staying in a non-engageable position when the inside wheel transitions from a maximum outward turn angle to an intermediate maximum turn angle.

[0270] FIGS. **13**G**3-13**G**4** are enlarged views **1353** of the left steering stop **1328***b* in sub-positions of the engagement-ready position, specifically an engaged and engageable sub-position, respectively, according to at least some embodiments of the invention. FIG. **13**G**4** is an enlarged view **1353** of the left steering stop **1328***b* in an engageable sub-position, according to at least one embodiment of the invention. in FIG. 13G3, force exerted by the biasing member 1357 when the biasing member **137** is in the released position causes left steering stop **1328***b* to move toward left abutment member **1354***b*. Once left abutment member **1354***b* moves, because of movement of the wheel, for example, the left steering stop **1328***b* continues moving toward the area previously occupied by the left abutment member **1354***b* until the left steering stop **1328***b* is in the engaged sub-position shown in FIG. **13**G**4**. In the engaged sub-position, left steering stop **1382***b* prevents the movement of the abutment member 1357 from one side to the other side of the left steering stop **1328***b*. In some embodiments, after the left steering stop **1328***b* has engaged the abutment member **1354***b*, the left steering stop **1328***b* may be commanded to move back into a retracted position to allow the abutment member 1357 to move freely. To reduce the friction caused by the movement of the left steering stop **138***b* while contacting the abutment member **1354***b*, the surfaces of the left steering stop **1328***b* and the abutment member **1357** that contact may have a hardening process applied to reduce friction. In some embodiments, to reduce friction, a bearing may be positioned on the surface of the left steering stop **1328***b* or the abutment member **1357**.

Turn Radius Embodiments

[0271] FIGS. **14-18** are schematic representations of turning radii of vehicles operating in different drive modes and steering configurations according to some embodiments of the invention. [0272] FIG. **14** is a schematic representation of a turn radius of a vehicle **1400** conducting a right turn while operating in a drive mode where the inner wheel is at a turn angle less than an intermediate outward turn angle, and the vehicle **1400** not operating in major turn mode, according to some embodiments of the invention. In FIG. **14**, the left front wheel **103***b* and the right front wheel 103a are in a right turn configuration, with the right front wheel 103a corresponding to the inner wheel. The right front wheel **103***a* is at an outward turn angle that is less than an intermediate maximum outward turn angle (e.g., less than 88°). The front right wheel **103***a* rotates about a right front wheel RFA**14**. The right and left drive wheels **104***a***-104***b* are being driven in a forward direction, as represented by arrows **1402** and **1404**, respectively. While the vehicle **1400** is conducting a right turn, a projection of the right front wheel RFA14 and rear axis RA intersect at a vertical projection intersection point IP **14**. While the vehicle **1400** is conducting a right turn, the vehicle **1400** turns around vertical projection intersection point IP **14**. The right front wheel **103***a* may follow an arced path **1410**. The left front wheel **103***b* may follow an arced path **1412**. In some embodiments, a turn radius TR**14** of vehicle **1400**, measured as a distance from intersection point IP**14** to an outside directional control wheel (e.g., left front wheel **103***b*), is approximately 45.25

[0273] FIG. **15** is a schematic representation of a turn radius of the vehicle **100** conducting a turn with the inner wheel at a maximum outward turn angle, and without operating in major turn mode according to some embodiments of the invention. In FIG. **15**, the left front wheel **103***b* and the

right front wheel **103***a* are in a right turn configuration, with the right front wheel **103***a* corresponding to the inner wheel. The right front wheel **103***a* is at an intermediate maximum outward turn angle (e.g., 88°). The front right wheel **103***a* rotates about a right front wheel RFA. The right and left drive wheels **104***a***-104***b* are being driven in a forward direction, as represented by arrows **1502** and **1504**, respectively. While the vehicle **100** is conducting a right turn, a projection of the right front wheel RFA and rear axis RA intersect at a vertical projection intersection point IP**15**. While the vehicle **100** is conducting a right turn, the vehicle **100** turns around vertical projection intersection point IP**15**. The right front wheel **103***a* may follow an arced path **1510**. The left front wheel **103***b* may follow an arced path **1512**. In some embodiments, such as the embodiment shown in FIG. **15**, a turn radius TR**15** of vehicle **100**, measured as a distance from intersection point IP**15** to an outside directional control wheel (e.g., left front wheel **103***b*), is approximately **42** inches.

[0274] FIG. **16** is a schematic representation of a turn radius of the vehicle **100** while operating in major turn mode, according to some embodiments of the invention. The left front wheel **103***a* and the right front wheel **103***a* are in a right turn configuration, with the right front wheel **103***a* corresponding to the inner wheel. The right front wheel **103***a* is at a maximum outward turn angle (e.g., 91°). The front right wheel **103***a* rotates about a right front wheel RFA. The left drive wheel **104***a* is being driven in a forward direction, as represented by arrow **1604**. The right drive wheel **104***a* is being driven in a reverse direction, as represented by arrow **1602**. While the vehicle **100** is conducting a right turn, a projection of the right front wheel RFA and rear axis RA intersect at a vertical projection intersection point IP**16**. While the vehicle **100** is conducting a right turn, the vehicle **100** turns around vertical projection intersection point IP**16**. The right front wheel **103***a* may follow an arced path **1610**. The left front wheel **103***b* may follow an arced path **1612**. In some embodiments, such as the embodiment shown in FIG. **16**, a turn radius TR**16** of vehicle **100**, measured as a distance from intersection point IP**16** to an outside directional control wheel (e.g., left front wheel **103***b*), is approximately 38 inches (e.g., 38.25 inches).

[0275] FIG. **17** is a schematic representation comparing the turn radius of the vehicle **1400** in FIG. **14** to the turn radius of the vehicle **100** in FIG. **16**. In FIG. **17**, vehicle **1400** and vehicle **100** are shown as overlapping. The turn radius TR**14** of vehicle **1400** is 44.75 inches while the turn radius TR**16** of vehicle **100** is 38.25 inches.

[0276] FIG. **18** is a schematic representation comparing the turn radius of the vehicle **100** in FIG. **15** to the turn radius of the vehicle **100** in FIG. **16**. In FIG. **18**, the vehicles **100** are shown as overlapping. The turn radius TR**15** of vehicle **100** shown in FIG. **15** is 42 inches while the turn radius TR**16** of vehicle **100** shown in FIG. **16** is 38.25 inches.

Pivot Point Embodiments

[0277] FIGS. **19**A-**19**F illustrate a bottom view of vehicle **100** showing a relationship between a position of a pivot point of a vehicle during a major turn and different outward turn angles of the inside directional control wheel, in accordance with some embodiments of the invention. In some embodiments, the position of a pivot point of vehicle **100** during a major turn is based on the maximum outward turn angle of the inside directional control wheel. In some embodiments, as the maximum outward turn angle of the directional control wheel increases, a distance between the pivot point and the center point E decreases. In FIGS. **19**A-**19**F, the vehicle **100** is making a right turn so right front wheel **103***a* corresponds to the inside directional control wheel and left front wheel **103***a* is at a maximum outward turn angle of 87° and the distance between pivot point B and center point E is 188.47 mm (7.42 inches). In FIG. **19**B, the right front wheel **103***a* is at a maximum outward turn angle of 88°, and the distance between pivot point B and center point E is 185.63 mm (7.3 inches). In FIG. **19**C, the right front wheel **103***a* is at a maximum outward turn angle of 89°, and the distance between pivot point B and center point E is 185.51 mm (6.2 inches). In FIG. **19**D, the right front wheel **103***a* is at a maximum outward turn angle of 89°, and the distance between pivot point B and center point E is 158.51 mm (6.2 inches). In FIG. **19**D,

pivot point B and center point E is 154.15 mm (6.0 inches). In FIG. **19**E, the right front wheel **103***a* is at a maximum outward turn angle of 91°, and the distance between pivot point B and center point E is 132.01 mm (5.1 inches). In FIG. **19**F, the right front wheel **103***a* is at a maximum outward turn angle of 91°, and the distance between pivot point B and center point E is 121.28 mm (4.7 inches). [0278] FIG. **20** illustrates a bottom view of vehicle **100** showing a relationship between a position of a pivot point of a vehicle and the intermediate outward turn angle of the inside wheel, in accordance with some embodiments of the invention. In FIG. **20**, the vehicle **100** is making a right turn so right front wheel **103***a* corresponds to the inside directional control wheel and left front wheel **103***b* corresponds to the outside directional control wheel. The right front wheel **103***a* is at a maximum intermediate outward turn angle of 73° and the distance between pivot point B and center point E is 410.95 mm (1.6 inches).

ADDITIONAL EMBODIMENTS

[0279] In at least one embodiment, there is included one or more computers having one or more processors and memory (e.g., one or more nonvolatile storage devices). In some embodiments, memory or computer readable storage medium of memory stores programs, modules and data structures, or a subset thereof for a processor to control and run the various systems and methods disclosed herein. In one embodiment, a non-transitory computer readable storage medium having stored thereon computer-executable instructions which, when executed by a processor, perform one or more of the methods disclosed herein.

[0280] It will be appreciated by those skilled in the art that changes could be made to the exemplary embodiments shown and described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the exemplary embodiments shown and described, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the claims. For example, specific features of the exemplary embodiments may or may not be part of the claimed invention and features of the disclosed embodiments may be combined. The words "right", "left", "lower" and "upper" designate directions in the drawings to which reference is made. The words "inwardly" and "outwardly" refer to directions toward and away from, respectively, the geometric center of the vehicle **100** or any component of the vehicle **100**. Unless specifically set forth herein, the terms "a", "an" and "the" are not limited to one element but instead should be read as meaning "at least one". As used herein, the term "about" or "approximately" may refer to + or -15% of the value referenced. For example, "about 9" is understood to encompass 7.6 and 10.4.

[0281] It is to be understood that at least some of the figures and descriptions of the invention have been simplified to focus on elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that those of ordinary skill in the art will appreciate may also comprise a portion of the invention. However, because such elements are well known in the art, and because they do not necessarily facilitate a better understanding of the invention, a description of such elements is not provided herein.

[0282] Further, to the extent that the method does not rely on the particular order of steps set forth herein, the particular order of the steps should not be construed as limitation on the claims. The claims directed to the method of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the steps may be varied and still remain within the spirit and scope of the present invention.

Claims

1. A mobility vehicle, comprising: a frame having a longitudinal axis; and a steering assembly coupled to the frame and configured to steer the mobility vehicle based on input from a steering input, the steering assembly comprising: the steering input; an inner front wheel; and a steering linkage, wherein the inner front wheel has a maximum outward turn angle characterized by a limit

to which the inner front wheel can turn away from the longitudinal axis, and wherein the inner front wheel is turned to an intermediate maximum outward turn angle that is less than the maximum outward turn angle unless a biasing force is applied to the inner front wheel to urge the inner front wheel to the maximum outward turn angle.

- 2. The vehicle of claim 1, further comprising: a first motor coupled to at least one controller and a first drive wheel and a second motor coupled to the at least one controller and a second drive wheel, wherein the first drive wheel is driven by the first motor and the second drive wheel is driven, independently of the first motor, by the second motor in response to one or more drive signals from the at least one controller.
- **3.** The vehicle of claim 2, wherein the first motor is configured to drive the first drive wheel in a first direction and the second motor is configured to drive the second drive wheel in a second direction opposite the first direction.
- **4.** The vehicle of claim 3, wherein the first motor receives a first drive signal of the one or more drive signals from the at least one controller to drive the first drive wheel and the second motor receives a second drive signal of the one or more drive signals from the at least one controller to drive the second drive wheel.
- **5.** The vehicle of claim 4, wherein the second drive signal has an amount of current that, when received by the second motor, causes the second motor to stop rotation of the second drive wheel.
- **6**. The vehicle of claim 2, wherein, while the vehicle is turning, the second drive wheel is an inner drive wheel and the first drive wheel is an outer drive wheel, the inner drive wheel being closer to a center of a turning path of the vehicle than the outer drive wheel.
- **7**. The vehicle of claim 6, wherein the first motor is configured to drive the outer drive wheel in a first direction and the second motor is configured to stop rotation of the inner drive wheel.
- **8.** The vehicle of claim 6, wherein the first motor is configured to drive the outer drive wheel in a first direction and the second motor is configured to drive the inner drive wheel in a second direction.
- **9**. The vehicle of claim 2, wherein the at least one controller is configured to: receive one or more position signals related to the position of the steering input; and command the first motor and the second motor to drive the first drive wheel and the second drive wheel, respectively, to affect operation of the vehicle based on the one or more position signals.
- **10**. The vehicle of claim 1, wherein the steering assembly further comprises: a steering stem coupled to the steering input; an axle beam coupled to the frame; a king pin coupled to the axle beam; at least one steering stop positioned proximate the king pin; and the steering linkage pivotably coupled to the steering stem and to the king pin, wherein the inner front wheel is pivotably coupled to the king pin, wherein the steering linkage is configured to move in response to movement of the steering input, via the steering stem, and wherein the at least one steering stop is positioned to control an extent of a cam over effect of the steering assembly.
- **11**. The vehicle of claim 10, wherein the king pin is rotatable about a king pin axis, and wherein the steering linkage is pivotably coupled to the king pin such that movement of the steering linkage rotates the king pin about the king pin axis.
- **12**. The vehicle of claim 10, wherein the axle beam is further coupled to the frame with at least one suspension member configured to allow the inner front wheel to translate relative to the frame.
- **13**. The vehicle of claim 10 further comprising: a steering arm coupled to the king pin, the steering arm being rotatable about and projecting from the king pin axis; and an inner wheel axle coupled to the king pin, the inner wheel axle being rotatable about the king pin axis and projecting from the king pin, the inner front wheel being rotatable about the inner wheel axle, wherein the steering arm is fixed relative to the inner wheel axle at an angle of approximately 73°.
- **14**. The vehicle of claim 13, wherein the king pin axis is oriented relative to the frame at a camber angle of approximately 4°.
- 15. The vehicle of claim 1, wherein the biasing force is a result of a difference between a voltage in

- a first drive signal provided to a first motor to drive a first drive wheel and a voltage in a second drive signal provided to a second motor to drive a second drive wheel.
- **16**. The vehicle of claim 1, wherein the biasing force is applied to the inner front wheel independent of movement of the steering input.
- **17**. The vehicle of claim 1, wherein a tiller, when operated by a user, is configured to turn the inner front wheel up to, without exceeding, the intermediate maximum outward turn angle.
- **18**. The vehicle of claim 1, wherein the biasing force includes a force exerted by a ground.
- **19**. The vehicle of claim 1, wherein the intermediate maximum outward turn angle is different from the maximum outward turn angle by approximately 10°.
- **20**. The vehicle of claim 1, wherein the steering linkage is configured to engage a stop when the inner front wheel reaches the maximum outward turn angle to prevent the inner front wheel from turning beyond the maximum outward turn angle.