AGLA II / Geometrie

Stefan Wiedmann / Verena Spratte – Sommersemester 2021

Aufgabenblatt 6

Vorname	Nachname	1	2	3	4	Σ

Gruppenabgabe im Stud.IP: Mittwoch 19.05.2021 bis 18 Uhr.

Geben Sie bitte jede Aufgabe in einzelnen Dateien in den zugehörigen Abgabeordner im Stud.IP ab. Verwenden Sie

- \bullet Nachname Blatt
6A1.pdf für Aufgabe 1.
- NachnameNachnameBlatt6A2.pdf für Aufgabe 2.

Andere Formate und/oder mehr Dateien pro Aufgabe werden nicht akzeptiert.

Aufgabe 6.1. (20 Punkte, Einzelabgabe)

- 1) Schreiben Sie aus dem Gedächtnis möglichst viele Begriffe und Sätze aus der Vorlesung auf.
- 2) Benutzen Sie Ihre Unterlagen und korrigieren Sie die Definitionen und Sätze, wo nötig.
- 3) Benutzen Sie Ihre Unterlagen und schreiben Sie Inhalte aus der Vorlesung auf, die Sie für besonders interessant oder wichtig halten.

Aufgabe 6.2. (20 Punkte)

Sei (V, b) eine metrische Struktur über einem Körper K.

- 1) Zeigen Sie: Ist (V, b) nicht ausgeartet und ist $\sigma : V \to V$ eine orthogonale Abbildung, die alle 1-dimensionalen Untervektorräume in sich selbst überführt, dann ist $\sigma = \pm i d_V$.
- 2) Sei $R = \operatorname{Rad}(V, b)$ und sei $V = R \perp U$ eine beliebige Zerlegung des Vektorraums V. Zeigen Sie:
 - a) Die Bilinearform auf V/R gegeben durch:

$$b'(v+R, w+R) := b(v, w)$$

ist wohldefiniert und nicht ausgeartet.

- b) U und V/R sind isometrisch, d.h. es gibt eine Isometrie $\sigma: U \to V/R$.
- c) Folgern Sie erneut die Dimensionsformel aus Blatt 5 A4. Hinweis: $(W+R)/R \cong W/(R\cap W)$ und $((W+R)/R)^{\perp} = W^{\perp}/R$.
- 3) Sei $V = H_1 \perp H_2$ eine Zerlegung von (V, b) in hyperbolische Ebenen mit hyperbolischen Basen $H_1 = \text{Span}(e_1, f_1)$ und $H_2 = \text{Span}(e_2, f_2)$. Sei $\sigma : V \to V$ eine orthogonale Abbildung mit $\sigma(e_1) = e_1$ und $\sigma(e_2) = e_2$.

Bestimmen Sie alle Möglichkeiten für die darstellende Matrix $A = M_{\mathcal{B}}(\sigma)$ zur Basis $\mathcal{B} = [e_1, e_2, f_1, f_2]$ und zeigen Sie, dass $\det(\sigma) = 1$ gilt.