Graph (20 pts)

Problem Description

In this problem, we ask you to implement the standard depth first search (DFS) algorithm to traverse a given directed graph $G = \{V, E\}$. Then, according to the results, classify each edge in E to be a tree edge, a back edge, a forward edge, or a cross edge.

The pseudo code of the DFS algorithm is given below, which is identical to the one in Chapter 20.3 of the textbook.

```
DFS(G)
   for each vertex u \in G. V
2
        u.color = WHITE
        u.\pi = \text{NIL}
3
4
   time = 0
5
   for each vertex u \in G. V
        if u.color == WHITE
6
7
            DFS-Visit(G, u)
DFS-VISIT(G, u)
    time = time + 1
    u.d = time
    u.color = GRAY
    for each v \in G.Adj[u]
         if v.color == WHITE
 5
 6
              v.\pi = u
 7
              DFS-VISIT(G, v)
    u.color = BLACK
    time = time + 1
   u.f = time
10
```

In the given graph $G = \{V, E\}$, each vertex in V is identified with an integer between 1 and |V|. We denote the vertex with identification number k as vertex k.

One additional assumption is that in line 5 of DFS and in line 4 of DFS-VISIT, the for loops should iterate over the vertices with their identification numbers in ascending order. For example, in line 5 of DFS, the for loop would iterate with this order: vertex 1, vertex 2, ..., vertex |V|.

Input

The first line specifies |V|, the number of vertices in G.

The next |V| lines specify the adjacency lists of G. For the k-th line, $1 \leq k \leq |V|$, it starts with an integer specifying the out degree of vertex k, d_k , followed by a sequence of identification numbers of the vertices, with consecutive numbers separated by a single space character, $n_1 n_2 \ldots n_{d_k}$. This specifies that there exist edges $(k, n_1), (k, n_2), \ldots, (k, n_{d_k})$ in G. if the out degree $d_k = 0$, then the line only contains d_k and no other number. You can assume that $n_1 n_2 \ldots n_{d_k}$ are sorted in ascending order.

Output

The output should have |V| lines. For the k-th line, $1 \leq k \leq |V|$, it starts with the identification number of the vertex, k, a space character, followed by a string of length d_k specifying the classification of the edges coming out from vertex k. That is, if the k-th line of the adjacency list part in the input is d_k n_1 n_2 ... n_{d_k} , then in the k-th line of the output we have k $c_1c_2 \ldots c_{d_k}$, with the j-th character c_j of the string representing the classification of the edge (k, n_j) , $c_j \in \{T, B, F, C\}$. Here, T represents a tree edge, B represents a back edge, F represents a forward edge, and C represents a cross edge.

Constraint

- $1 \le |V| \le 1000$
- There are neither self edges nor multiple edges in G. In other words, you can assume that $0 \le |E| \le |V| \times (|V| 1)$.

Sample Testcases

Sample Input 1	Sample Output 1
5	
2 2 4	1 TT
1 1	2 B
3 2 4 5	3 CBT
2 3 5	4 TF
0	5
Sample Input 2	Sample Output 2
Sample Input 2 3	
	1 TF
3	1 TF 2 BT
3 2 2 3	1 TF