

Modulhandbuch

des berufsbegleitenden Studiengangs Master Maschinenbau (FMM)

Inhalt

1.	Se	mest	er	5
	1.1	Höl	nere Mathematik	5
	1.2	Höl	nere Technische Mechanik	6
	1.3	Bet	riebswirtschaft für Ingenieure	7
	1.3	3.1	Betriebswirtschaft für Ingenieure - Teilmodul Unternehmensführung	8
	1.3	3.2	Betriebswirtschaft für Ingenieure - Teilmodul Marketing	9
	1.3	3.3	Betriebswirtschaft für Ingenieure - Teilmodul Wirtschaftsrecht	10
	1.4	Pro	jekt	11
2.	Se	mest	er	12
	2.1	Spe	ezielle Werkstofftechnik	12
	2.2	Spe	ezielle Fertigungstechnik	13
	2.3	Sel	bstmanagement und Führung (Leadership and Management Skills)	14
3.	Se	mest	er	16
	3.1	Pro	duktentwicklung	16
	3.2	We	rkzeugmaschinen	17
	3.3	Pro	zess- und Projektmanagement	19
	3.3	3.1	Prozess- und Projektmanagement - Teilmodul Prozessmodellierung	20
	3.3	3.2	Prozess- und Projektmanagement - Teilmodul Projektmanagement	21
	3.3	3.3	Prozess- und Projektmanagement - Teilmodul Planspiel (online)	22
4.	Se	mest	er	23
	4.1	Wa	hlpflichtangebot im 4. Semester/Sommersemester	23
	4.1	1.1	Numerische Methoden	24
	4.1	1.2	Patentrecht	25
	4.1	1.3	CAM II - Automatisierte Werkzeugwegerstellung	26
	4.1 Ma		Nachhaltige technische Entwicklung – Ökobilanzierung (Environmental ement - Life Cycle Assessment)	27
	4.2	CA	E	28
5.	Se	mest	er	30

5.1 Wahlpflichtangebot im 5. Semester/Wintersemester		30	
	5.1.1	Projektarbeit (Project Work)	31
	5.1.2	Qualitätsmanagement	32
	5.2 Me	echatronik	33
6.	Semes	ter	35
	6.1 Ma	asterarbeit	35

Studienverlaufsplan Übersicht

	6 Credits	6 Credits	6 Credits	2 Credits
1. Semester	Höhere Mathematik	Höhere Technische Mechanik	Betriebswirtschaft für Ingenieure	
2. Semester	Spezielle Werkstofftechnik	Spezielle Fertigungstechnik	Selbstmanagement und Führung	Projekt
3. Semester	Produktentwicklung	Werkzeugmaschinen	Prozess-und Projektmanagement	Projekt
4. Semester	Wahlpflichtmodul 1	CAE (CAD/	FEM/MKS)	
5. Semester	Wahlpflichtmodul 2	Mechatronik		
6. Masterarbeit und Kolloquium				
Allgemeine in	ngenieurwissenschaftliche Module			
	chaftliche Module			
	schinenbaumodule			

Inhalte der Modulbeschreibung

Modulzuordnung	Pflicht- bzw. Wahlpflichtmodul
Studiengang	Dem Modul zugehöriger Studiengang
Modulverantwortliche(r)	Name der für dieses Modul verantwortlichen Person
Dozent(in)	Name der für die unmittelbare Durchführung der Lehre verantwortlichen Person
Studiensemester/Modulfrequenz	Zeitliche Einordnung des Moduls im Studienverlauf/ Jedes Semester, Sommer- (SS) bzw. Wintersemester (WS)
Sprache	Im Modul hauptsächlich verwendete Sprache
ECTS-Leistungspunkte	ECTS-Leistungspunkte nach dem ECTS Leitfaden der Europäischen Union. Für die Berechnung wurde angenommen, dass ein ECTS-Leistungspunkt (Credit) 25 Zeitstunden entspricht. Die ECTS-Leistungspunkte ermöglichen eine Abschätzung des studentischen Zeitaufwands, der für das erfolgreiche Abschließen des Moduls insgesamt vorgesehen ist.
Lehrformen/Arbeitsaufwand	Form der Lehrveranstaltung (Vorlesung, Übung, Praktikum)/ Für das Modul zu erbringender studentischer Arbeitsaufwand für Vorlesung, Übung, Praktikum usw. sowie das Selbststudium in Stunden
Medienformen Prüfungsvorleistung	Vorherrschend verwendete Medien, wobei bspw. zu unterscheiden ist zwischen PC- und Overhead-Technik, Flipchart, Printmedien, Lern- und Standardsoftware usw. Voraussetzung(en) zur Prüfungsteilnahme
Prüfungsleistung (Prüfungsart, -umfang, -dauer)	Studienleistung/Prüfungsleistung: Schriftliche Prüfung (Klausur), Mündliche Prüfung, Projekt, Hausarbeit, Entwurf/Beleg, Referat, Experimentelle Arbeit, Präsentation und Kolloquium, Leistungsnachweis
Voraussetzungen	Voraussetzungen für eine erfolgreiche Teilnahme und Hinweise zur Vorbereitung auf das Modul

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Beschreibung dessen, was die Studierenden nach erfolgreichem Abschluss dieses Moduls wissen bzw. können sollen.

Inhalt:

Wesentliche Lehrinhalte der Lehrveranstaltungen

Literatur:

Literatur, die den Studenten zur Verfügung gestellt wird (begleitend) bzw. die zur Vorbereitung auf die Prüfung ergänzend empfohlen wird.

Links zu weiteren Dokumenten:

Modulspezifische Verknüpfungen zu weiteren Informationen, Download-Möglichkeiten, Internetseiten o. ä.

Verwendbarkeit des Moduls:

Angaben zum Zusammenhang mit anderen Modulen und ggf. zum Einsatz in anderen Studiengängen

1. Semester

1.1 Höhere Mathematik

Modulblock "Allgemeine Pflichtmod		
ingenieurwissenschaftliche Module"		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Andrea Jurisch	
Dozent(in)	Prof. Dr. Andrea Jurisch	
Studiensemester/Modulfrequenz	1. Semester/Wintersemester	
Sprache	Deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	26 h Vorlesung/Übungen/Prüfung, 124 h Selbststudium	
Medienformen	Präsentationen, online-Angebote, Literatur	
Prüfungsvorleistung	keine	
Prüfungsart, -umfang, -dauer	Mündliche (30 min.)/schriftliche Prüfung (120 min.) zum Vorlesungsinhalt	
Voraussetzungen	Mathematik aus Bachelorstudium Maschinenbau	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Hauptziel der Lehrveranstaltung ist es, aufbauend auf den Grundlagen aus der Mathematikausbildung im Bachelor bezüglich Vektorrechnung, Matrizenrechnung, Differential- und Integralrechnung sowie Differentialgleichungen Zusammenhänge dieser einzelnen Gebiete zu verstehen und auf Probleme in der Technischen Mechanik anwenden zu können.

Inhalt:

- Vektoranalysis:
 - Felder und ihre Differentialoperatoren, Bereichsintegrale, Kurvenintegrale, Oberflächenintegrale, Integralsätze und Anwendungen
- Anwendung der linearen Algebra in der Technischen Mechanik:
 Orthogonale Matrizen und Koordinatentransformationen,
 Hauptachsentransformation und Anwendung zu Spannungs- und Trägheitsmatrizen
- Lineare Differentialgleichungssysteme und Anwendung zur Berechnung gekoppelte Schwingungen

Literatur:

- Papula, Lothar, Mathematik für Ingenieure und Naturwissenschaftler, Band 2 und 3, Vieweg Verlag
- Burg/Haf/Wille, Höhere Mathematik für Ingenieure, B. G. Teubner Verlag
- Zeidler, Eberhard, Teubner-Taschenbuch der Mathematik, B. G. Teubner Verlag oder andere Taschenbücher oder Formelsammlungen

Links zu weiteren Dokumenten

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul wird an der Hochschule Anhalt auch im Vollzeitstudium Master Biomedical Engineering angeboten.

1.2 Höhere Technische Mechanik

Modulblock "Allgemeine Pflic		
ingenieurwissenschaftliche Modul	e"	
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Ulrich-Michael Eisentraut	
Dozent(in)	Prof. Dr. Ulrich-Michael Eisentraut	
Studiensemester/Modulfrequenz	1. Semester/Wintersemester	
Sprache	Deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	16 h Vorlesung, 8 h Übungen, 126 h Selbststudium	
Medienformen	Folien, Tafel, Skripte, Computer-Pool,	
	Aufgabensammlung	
Prüfungsvorleistung	keine	
Prüfungsart, -umfang, -dauer	Mündliche (30 min.)/schriftliche Prüfung (120 min.) zum	
	Vorlesungsinhalt	
Voraussetzungen	Abschluss Technische Mechanik in der	
	Bachelorausbildung	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Hauptziel der Lehrveranstaltung ist es, spezielle, theoretisch fundierte ingenieurgemäße Methoden bei der Modellierung und Bewertung von beanspruchten Bauteilen und technischen Systemen anwenden zu können. Dabei stellen die Studierenden den Zusammenhang zwischen den Erhaltungssätzen und Grundprinzipien der mathematischen Physik und neuesten Erkenntnissen der Werkstoffmechanik und der Bewertung neuer Werkstoffe her und beziehen auch die Ergebnisverifizierung mittels moderner Methoden der experimentellen Mechanik und Theorien Höherer Ordnung mit ein. Die Studierenden erwerben so Fertigkeiten in der Anwendung moderner Methoden der Technischen Mechanik, welche die geforderten Vorkenntnisse deutlich übersteigen.

Inhalt:

- Elementare Energiemethoden der Mechanik
- Einführung in die Stabilitätstheorie
- Mehrachsige Spannungszustände
- Rotationssymmetrische Bauteile, Membrantheorie, Platten
- Grundlagen der Elastizitätstheorie
- Einführung in die Plastizitäts- und Viskoelastizitätstheorie
- Betriebsfestigkeit Bruchmechanik

Literatur:

- Hibbeler, Russel Charles: Technische Mechanik. Band 1-3. München 2012.
- Müller, W. H.; Ferber F.: Technische Mechanik für Ingenieure. Leipzig 2012.
- Berger, Joachim: Technische Mechanik für Ingenieure. Band 2: Festigkeitslehre.
 Braunschweig, Wiesbaden 1994.
- Dankert, H.; Dankert, J.: Technische Mechanik computerunterstützt. Stuttgart 2013.
- Göldner, H.; Holzweißig, F.: Leitfaden der Technischen Mechanik. Leipzig 1967.
- Gross, D.; Hauger, W.; Schnell, W.: Technische Mechanik. Band 1-3. Heidelberg 1982-1985.

Links zu weiteren Dokumenten

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul wird an der Hochschule Anhalt auch im Vollzeitstudium Master Maschinenbau angeboten.

1.3 Betriebswirtschaft für Ingenieure

Modulblock "Betriebswirtschaftliche Module" Pflichtm		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Jens Beyer	
Dozent(in)	siehe Teilmodule	
Studiensemester/Modulfrequenz	1./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Vorlesung Anteil 24 Präsenzstunden Selbststudium 126 h	
Medienformen	siehe Teilmodule	
Prüfungsvorleistung	Prüfungsvorleistung: Leistungsnachweis in Wirtschaftsrecht	
Prüfungsart, -umfang, -dauer	Klausur in Unternehmensführung u. Marketing	
Voraussetzungen	Betriebswirtschaftliche Grundkenntnisse aus dem grundständigen Studium	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Aktualisierung und Vertiefung betriebswirtschaftlicher Kenntnisse aus einem Bachelor-Maschinenbaustudium
- Verknüpfung des vorhandenen Wissens aus dem Berufsalltag mit betriebswirtschaftlichen Fragestellungen in den drei Teilmodulen:
 - Unternehmensführung
 - Marketing
 - Wirtschaftsrecht

Inhalte: siehe Teilmodule

Literatur: siehe Teilmodule

Links zu weiteren Dokumenten: siehe Teilmodule

Verwendbarkeit des Moduls:

Das Modul ist Teil des betriebswirtschaftlichen Modulblocks. Teilmodule werden an der Hochschule Anhalt auch in den Masterstudiengängen Elektro- und Informationstechnik sowie Wirtschaftsingenieurwesen gelehrt.

1.3.1 Betriebswirtschaft für Ingenieure - Teilmodul Unternehmensführung

Modulblock "Betriebswirtschaftliche Module"		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	siehe 1.3	
Dozent(in)	Prof. Jens Beyer	
Studiensemester/Modulfrequenz	1./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	Gesamtcredits siehe 1.3	
Lehrformen/Arbeitsaufwand	Vorlesung Anteil 8 Präsenzstunden Selbststudium 42 h	
Medienformen	MS Office, Videokonferenzsysteme, Moodle	
Prüfungsvorleistung	siehe 1.3	
Prüfungsart, -umfang, -dauer	Klausur	
Voraussetzungen	siehe 1.3	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Die Studierenden erhalten einen umfassenden Überblick zu Handlungsfeldern und Prozessen im Bereich Unternehmensführung.
- Sie lernen die Methoden und die Instrumente der Strategieentwicklung, der Organisationsgestaltung und -entwicklung, der Mitarbeiterführung sowie besondere Handlungsfelder des Managements kennen.
- Neben der Vermittlung von methodischen und konzeptionellen Kenntnissen steht dabei die Entwicklung von Fähigkeiten/ Kompetenzen zur praktischen Anwendung und Ausgestaltung der Instrumente der Unternehmensführung im Mittelpunkt der Veranstaltung.
- Die Studierenden werden in die Lage versetzt, mit einem umfassenden Verständnis der Unternehmensführung erfolgreich praktische Herausforderungen zu meistern.
- Sie sollen ein Verständnis für unternehmenspolitische und strategische Entscheidungen erlangen sowie ökonomische Zusammenhänge und konkrete Situationen der Unternehmensführung verstehen.
- Das theoretische Wissen eröffnet den Studierenden die Lösung konzeptioneller Probleme der Führungsorganisation und -gestaltung.

Inhalt:

- Spezifische Managementfunktionen (Strategieentwicklung, Organisation)
- Generelle Managementfunktionen (Managementprozess- Mitarbeiterführung)
- Besondere Handlungsfelder des Managements (Wissensmanagement, Change Management, Risikomanagement)

Literatur:

begleitend:

 Jung, H./ Heinzen, M./ Quarg, S. (2018): Allgemeine Managementlehre: Lehrbuch für die angewandte Unternehmens- und Personalführung (ESVbasics). 7. Auflage, Erich Schmidt Verlag GmbH & Co

ergänzend:

- Hill, C.W./ Schilling, M.A./ Jones, G.R. (2015): Strategic Management: Theory & Cases: An Integrated Approach. 12th ed., Cengage.
- Schreyögg, G./ Koch. J. (2020): Management: Grundlagen der Unternehmensführung. 8. Auflage, SpringerGabler

Links zu weiteren Dokumenten:

Verwendbarkeit des Moduls: siehe 1.3

1.3.2 Betriebswirtschaft für Ingenieure - Teilmodul Marketing

Modulblock "Betriebswirtschaftliche Module" Pflichtr		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	siehe 1.3	
Dozent(in)	Prof. Dr. Grimm	
Studiensemester/Modulfrequenz	1./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	Gesamtcredits siehe 1.3	
Lehrformen/Arbeitsaufwand	Vorlesung Anteil 8 Präsenzstunden Selbststudium 42 h	
Medienformen	PC- und Overhead-Technik, Flipchart, Printmedien	
Prüfungsvorleistung	siehe 1.3	
Prüfungsart, -umfang, -dauer	Klausur	
Voraussetzungen	siehe 1.3	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Verstehen grundlegender Unternehmensziele insbesondere der Zielstellungen der Marketing-Planung im Rahmen der Unternehmensziele
- Kennenlernen und bewerten verschiedener Methoden der Organisation im Marketing
- Erfassen der Elemente des Marketing als integrierten Prozess mit den Phasen:
 Zielsetzung, Planung, Realisierung und Controlling
- Verstehen des Marketingplanungsprozesses als permanenten Prozess
- Kennenlernen verschiedener Formen von Absatzwegen und Absatzmethoden
- Erfassen und Bewerten von Möglichkeiten der Gestaltung diverser Absatzwege
- Kennenlernen diverser Prognosemöglichkeiten zur Beurteilung diverser Marktsituationen sowie künftiger Marktentwicklungstrends

Inhalt:

- Festlegung von Planungszielen, Aufstellen der Strategie, Planungsergebnisse, Absatzplan, Umsatzplan, Deckungsbeitragsplan, Kostenplanung und Ergebnisplanung (Controlling)
- (Reisende, Direktabsatz Franchising, E-Commerce. Handelsvertreter), Indirekter Handelsfunktionen, Marktveranstaltungen (Messen), Absatz. Handelsbetriebsformen, Key-Account-Management, Supply Chain Management, Marketinglogistik Efficient Consumer Response, Category Management, (Auftragsabwicklung)
- Schätzung durch Vertriebsleitung, Schätzung durch Außendienstmitarbeiter, Prognose auf Grund von Abnehmerbefragungen, Freihandmethode, Trendextrapolation, Gleitende Durchschnitte, Regressionen, Aufbereitung der Daten, Skalierungsverfahren, Analysieren der Daten

Literatur:

begleitend:

 Gelbrich, K.; Wünschmann, St.; Müller, S.: Erfolgsfaktoren des Marketing. Vahlen, 2008

ergänzend:

- Drukarcyk, J.: Unternehmensbewertung. München 2003.
- Schierenbeck, H./ Lister, M.: Value Controlling: Grundlagen werteorientierter Unternehmensführung. München, Wien 2001

Links zu weiteren Dokumenten:

Verwendbarkeit des Moduls: siehe 1.3

1.3.3 Betriebswirtschaft für Ingenieure - Teilmodul Wirtschaftsrecht

Modulblock "Betriebswirtschaftliche Module"		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	siehe 1.3	
Dozent(in)	RA R. Klose	
Studiensemester/Modulfrequenz	1./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	Gesamtcredits siehe 1.3	
Lehrformen/Arbeitsaufwand	Vorlesung Anteil 8 Präsenzstunden Selbststudium 42 h	
Medienformen	PC- und Overhead-Technik, Flipchart, Printmedien	
Prüfungsvorleistung	siehe 1.3	
Prüfungsart, -umfang, -dauer	siehe 1.3	
Voraussetzungen	siehe 1.3	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Vermittlung von Grundkenntnissen in der Systematik des Gesellschaftsrechts
- Erwerb von Sicherheit im Umgang mit den verschiedensten Rechtsformen der Unternehmen
- Erkennen von Haftungsproblematiken der verschiedenen Gesellschaftsformen, einschließlich der Durchgriffshaftung auf die Unternehmungsführung
- Wahl der optimalen Rechtsform des Unternehmens; abhängig von Markt, Umfeld und Unternehmenssituation

Inhalt

- Systematik des Gesellschaftsrecht
- Rechtsformen der Unternehmen

Literatur:

begleitend:

keine

ergänzend:

- Thomas Münster, Die optimale Rechtsform, 6. Aufl. 2006, Redline Wirtschaft GmbH, Heidelberg
- Peter Kindler, Grundkurs Handels- und Gesellschaftsrecht, 6. Auflage 2012, C.H. Beck, München
- Saenger/Aderhold/Lenkaitis/Speckmann [Hrsg.], Handels- und Gesellschaftsrecht, 2. Auflage 2011, Nomos Verlagsgesellschaft, Baden-Baden
- Brunhilde Steckler, Kompendium Wirtschaftsrecht, 7. Auflage 2009, Friedrich Kiehl Verlag GmbH, Ludwigshafen (Rhein)
- Eugen Klunzinger, Grundzüge des Gesellschaftsrechts, 16. Auflage 2012, Verlag Vahlen München
- Nicco Hahn, GbR, UG, GmbH & Co, 1. Aufl. 2010, C.H.Beck, München
- Friedrich Klein-Blenkers, Rechtsformen der Unternehmen, 1. Auflage 2009, C.F.Müller, Heidelberg

Links zu weiteren Dokumenten:

Verwendbarkeit des Moduls: siehe 1.3

1.4 Projekt

Modulblock "Projekt"	Pflichtmodul mit Wahlthema
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. Daniel Landenberger
Dozent(in)	Alle Prüfer der Hochschule Anhalt
Studiensemester/Modulfrequenz	Start ab dem 1. Semester/jedes Semester möglich, Bearbeitungsdauer maximal vier Semester
Sprache	deutsch
ECTS-Leistungspunkte	8 Credits
Lehrformen/Arbeitsaufwand	Selbststudium 200 h
Medienformen	Gedruckter und gebundener/gehefteter Projektbericht, Abschlusspräsentation der Studierenden
Prüfungsvorleistung	keine
Prüfungsart, -umfang, -dauer	Projektbericht, 20 bis 30 min. Ergebnispräsentation
Voraussetzungen	keine

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

Hauptziel des Projekts ist es praxisbezogene ingenieurwissenschaftliche Aufgaben selbstorganisiert zu bearbeiten und die Ergebnisse wissenschaftlich zu dokumentieren (Stärkung der Kompetenzen zur wissenschaftlichen Themenbearbeitung unter Berücksichtigung der Erfahrungen und Kompetenzen aus dem grundständigen Studium und anderen Mastermodulen). Es können neue und einmalige Themen aus der beruflichen/betrieblichen Praxis des Studierenden oder Forschungs- und Entwicklungsthemen des Fachbereichs Elektrotechnik, Maschinenbau und Wirtschaftsingenieurwesen bearbeitet werden. Das heißt, das Projekt dient auch zur Vorbereitung auf die Dokumentations- und Präsentationsanforderungen der Masterarbeit. Weiterhin wird bei Bearbeitung in Kleingruppen die Zusammenarbeit gestärkt.

Inhalt:

- Themenstellungen der Prüfer
- Einbeziehung von betrieblichen Themen erwünscht

Literatur: Wahl durch die Studierenden

Links zu weiteren Dokumenten: Moodle-Kurs 301, Studien- und Prüfungsordnung §14 (8)

Verwendbarkeit des Moduls: Master Maschinenbau berufsbegleitend

2. Semester

2.1 Spezielle Werkstofftechnik

Modulblock "Spezielle Maschinenbaumodule" Pflichtmo		
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. J. Schuster	
Dozent(in)	Prof. Dr. J. Schuster	
Studiensemester/Modulfrequenz	2./Sommersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Vorlesung/Selbststudium 24 h/126 h	
Medienformen	Lehrpräsentation, Vorlesungsmaterialien (Vorlesungsskript, Übungsaufgaben), Literaturverzeichnis, Tafel	
Prüfungsvorleistung	Leistungsnachweis	
Prüfungsart, -umfang, -dauer	Mündliche (30 min.)/schriftliche Prüfung (120 min.) zum Vorlesungsinhalt	
Voraussetzungen	Grundlagenkenntnisse Werkstofftechnik Bachelor	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Hauptziel der Lehrveranstaltung ist es,

anwendungsbereite vertiefte Kenntnisse zu Werkstoffen des Maschinenbaus mit Betonung des Leichtbaus und von Hochleistungswerkstoffen mit Einbezug moderner Entwicklungen sowie vertiefte Kenntnisse zu Werkstoffeinsatz und -auswahl sowie zur Prüfung, insbesondere zerstörungsfreier Prüfverfahren zu vermitteln.

Inhalt:

- Stähle und Eisengusswerkstoffe (u. a. IF-, BH-, DP-, TRIP-, CP-, MP-Stähle, ADI-Guss)
- Leichtmetalllegierungen
- Verbundwerkstoffe
- Funktionswerkstoffe und smart materials
- Korrosion und Korrosionsschutz
- Werkstoffprüfung

Literatur:

- Bargel, H-J., Schulze, G., Werkstoffkunde, Springer Verlag
- Roos, E.; Maile, K. Werkstoffkunde f
 ür Ingenieure, Springer Verlag
- Berns, H.; Theisen, W. Eisenwerkstoffe Stahl und Gusseisen, Springer Verlag
- Ostermann, F. Anwendungstechnologie Aluminium, Springer Verlag
- H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer Verlag
- Buchreihe Zerstörungsfreie Prüfung, Castell Verlag
- Wendler-Kalsch, E., Gräfen, H. Korrosionsschadenkunde, Springer Verlag

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Die Inhalte des Moduls werden an der Hochschule Anhalt auch im Vollzeitstudium Master Maschinenbau im gleichnamigen Modul vermittelt.

2.2 Spezielle Fertigungstechnik – Generative Fertigung

Modulblock "Spezielle Maschinenbaumodule"		Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Christof Gaßmann	
Dozent(in)	Christof Gaßmann	
Studiensemester/Modulfrequenz	2./Sommersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Vorlesung/Übung/Praktikum insgesamt 24 h Selbststudium 126 h	١,
Medienformen	PC, Software	
Prüfungsvorleistung	Leistungsnachweis	
Prüfungsart, -umfang, -dauer	Klausur	
Voraussetzungen	Fertigungslehre-Kompetenzen aus einem grundständigen Studiengang	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

Aufbauend auf ihren Fertigungstechnik-Kenntnissen aus grundständigen Studiengängen werden den Studierenden die Verfahren der generativen Fertigung mitsamt ihren Vor- und Nachteilen im Detail vorgestellt. Dazu wird auf die physikalischen Prinzipien und die Methoden eingegangen. Weiterhin wird der zugehörige CAx-Prozess betrachtet. Dabei werden beispielsweise die fertigungsgerechte Modellierung/Konstruktion, Hilfsgeometrien, der Schichtaufbau sowie die Simulation thematisiert.

Anschließend werden Anlagen zur generativen Fertigung analysiert und bewertet. Für den Leistungsnachweis werden konkrete Aufgabenstellungen aus der Fertigungspraxis bearbeitet.

Nach Abschluss des Moduls sind die Studierenden in der Lage generative Fertigungsverfahren zu bewerten und geeignete Maschinen und Komponenten auszuwählen.

Inhalt:

- Verfahren und Werkstoffe
- Maschinentechnik
- Konstruktionsaspekte
- CAx-Kette, Datenaufbereitung
- Praxisbeispiele
- Branchen

Literatur:

- Richard, H. A., Schramm, B., Zipsner, T.: Additive Fertigung von Bauteilen und Strukturen. Springer Vieweg, Wiesbaden, 2017
- Lachmayer, R., Lippert, R. B.: Entwicklungsmethodik für die Additive Fertigung.
 Springer Vieweg, Wiesbaden, 2020

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul kann in anderen berufsbegleitenden Masterstudiengängen des Fachbereichs als Wahlpflichtmodul gewählt werden.

2.3 Selbstmanagement und Führung (Leadership and Management Skills)

Modulblock "Betriebswirtschaftliche Module"		Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Markus Holz	
Dozent(in)	Prof. Dr. Markus Holz	
Studiensemester/Modulfrequenz	2./Sommersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Seminar 24 Präsenzstunden incl. Prüfung Selbststudium 126 h	
Medienformen	siehe Teilmodule	
Prüfungsvorleistung	Leistungsnachweis	
Prüfungsart, -umfang, -dauer	Beleg	
Voraussetzungen	keine	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Lernziele/Kompetenzen:

- Das Modul unterstützt die Teilnehmer ihre eigene Arbeitseffizienz zu erhöhen, um Freiraum für außerberufliche Aufgaben (Familie, Ehrenamt…) zu gewinnen.
- Verbesserung der Selbstreflexion
- Analyse und Weiterentwicklung der Eigenmotivation
- Verbesserung der Konfliktfähigkeit
- In weiteren Modulteilen werden Führungskompetenzen aufgebaut und/oder erweitert.

Inhalt:

- Zeitplanung
- Organisationspsychologie
- Methoden der Situationsanalyse/ der Deeskalation
- Funktion des Konflikts
- Konfliktarten
- Phasen und Bausteine eines Konfliktgesprächs
- Werkzeuge zur Konfliktbearbeitung
- Schutz der eigenen Person
- Analyse, Organisation und Gestaltung von Veränderungsprozessen

Literatur:

• Lauer, Thomas: Change Management – Grundlagen und Erfolgsfaktoren. Berlin Heidelberg, Springer Verlag, 2. Auflage, 2014

Literatur, ergänzend:

- Gerrig, Richard J. & Zimbardo, Philip G.: Psychologie (18. Aufl.) München 2008 (PS)
- Glasl, F.: Konfliktmanagement.
- Fisher u. a.: Das Harvard-Konzept.
- Fey, G.: Gelassenheit siegt.
- Harris u. a.: Ich bin o. k., du bist o. k.

- Doppler & Lauterburg: Change Management: Den Unternehmenswandel gestalten.
 Frankfurt (M.), 2008. Campus Verlag.
- Patzak & Rattay: Projektmanagement. Wien (2009), Linde Verlag, 5. Auflage;
- John Kotter: Das Pinguin-Prinzip. München (2005), Droemer Verlag;
- Peter Knapp (2013): Konflikte lösen in Teams und großen Gruppen, Bonn, Manager Seminare Verlags GmbH;
- Stahl, E. (2002). Dynamik in Gruppen, Handbuch der Gruppenleitung, Beltz

Links zu weiteren Dokumenten: siehe Moodle

Verwendbarkeit des Moduls:

Das Modul ist Teil des betriebswirtschaftlichen Modulblocks.

3. Semester

3.1 Produktentwicklung

Modulblock "Spezielle Maschinenbaumodule"		Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Holger Gruss	
Dozent(in)	Stephan Voigt, M.Eng.	
Studiensemester/Modulfrequenz	3. Semester / Wintersemester	
Sprache	Deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Vorlesung 24 Präsenzstunden Selbststudium 126 h	
Medienformen	Präsentation, Skript	
Prüfungsvorleistung	keine	
Prüfungsart, -umfang, -dauer	Beleg zu einem ausgewählten Thema, semesterbegleitend	
Voraussetzungen	keine	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Hauptziel der Lehrveranstaltung ist es, den Studierenden konstruktionssystematische Methoden zur Produktentwicklung zu vermitteln. Anhand von Fallbeispielen sollen die Studierenden befähigt werden, die Arbeitsschritte des Produktentwicklungsprozesses (PEP) nach VDI 2220 erfolgreich anzuwenden:

- Anforderungsliste
- Funktions- und Wirkstrukturen
- Entwurf/Konzeption und Bewertung
- Ausarbeitung

Durch die Belegbearbeitung sollen die Studierenden insbesondere die Fähigkeit zu ergebnisorientierter Teamarbeit erwerben bzw. ausbauen, wobei als Ergebnis das virtuelle Produkte (CAD-Modell) zzgl. technischer Zeichnungen, Tragfähigkeitsnachweis (nach Norm und auf Basis numerischer Analysen) und Montage-/Bedienungsanleitung vorliegen soll.

Inhalt:

- Modellvorstellungen und Produktplanung
- Analyse von Aufgabenstellungen und Erstellung von Anforderungslisten
- Funktionsanalyse, Generierung von Funktions- und Wirkstrukturen
- Methoden zur Lösungsfindung
- Bewertung von Lösungen
- Fallbeispiele

Literatur:

 Pahl,G.; Beitz,W. u.a., Konstruktionslehre/ Grundlagen erfolgreicher Produktentwicklung, Springer- Verlag

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Die Inhalte des Moduls werden an der Hochschule Anhalt auch im Vollzeitstudium Master Maschinenbau im gleichnamigen Modul vermittelt.

3.2 Werkzeugmaschinen

Modulblock "Spezielle Maschinenbaumodule"		Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. DrIng. Daniel Landenberger	
Dozent(in)	Prof. DrIng. Daniel Landenberger	
Studiensemester/Modulfrequenz	3. Semester/Wintersemester	
Sprache	Deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	24 h Vorlesung, 126 h Selbststudium	
Medienformen	Powerpoint-Folien, Tafel, Skripte, Compute	er-Pool
Prüfungsvorleistung	Leistungsnachweis	
Prüfungsart, -umfang, -dauer	Klausur zum Vorlesungsinhalt, 90 min.	
Voraussetzungen	Spanende Fertigung	

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Hauptziel der Lehrveranstaltung ist es, die Funktionsweise von

Werkzeugmaschinen/Bearbeitungsrobotern zu verstehen. Dazu wird – aufbauend auf fertigungstechnischen Kenntnissen aus dem Bachelorstudium - das Verfahrenswissen aktualisiert und erweitert und an ausgewählten Beispielen vorgestellt.

Dieses Wissen soll beispielsweise dazu befähigen Kriterien für Investitionsentscheidungen zu definieren. Die Themen der Lehrveranstaltung sollen darüber hinaus zusammen mit dem Wissen aus Konstruktionsvorlesungen dazu befähigen Baugruppen und –komponenten zu bewerten.

Für den Leistungsnachweis sind Kompetenzen bei der Programmierung von Werkzeugmaschinen nachzuweisen.

Inhalt:

- Fertigungsverfahren und -technik (Aktualisierung und Erweiterung des Bachelor-Wissens)
- Anforderungen an Werkzeugmaschinen und Bearbeitungsroboter
- Inbetriebnahme und Betrieb
- Bauformen und Maschinenarten
- Komponenten (Gestelle, Antriebe, Getriebe, Messsysteme)
- Steuerungstechnik (Steuerungsarten, Programmierarten, Koordinatensysteme)

Literatur:

- Bartenschlager, J., Hebel, H., Schmidt, G.: Handhabungstechnik mit Robotertechnik: Funktion, Arbeitsweise, Programmierung. Springer Vieweg, Wiesbaden. 1998
- Conrad, K.-J.: Taschenbuch der Werkzeugmaschinen. Fachbuchverlag Leipzig, 2006
- Hesse, S., Malisa, V.: Taschenbuch Robotik Montage Handhabung. Hanser, München, 2010
- Hirsch, A.: Werkzeugmaschinen Grundlagen. Springer Vieweg, Wiesbaden, 2012
- Milberg, J.: Werkzeugmaschinen Grundlagen Zerspantechnik, Dynamik, Baugruppen und Steuerungen. Springer, Berlin, 1995
- Tschätsch, H.: Werkzeugmaschinen der spanlosen und spanenden Fertigung. Hanser, München, 2003
- Weck, M.; Brecher, C.: Werkzeugmaschinen 1 Maschinenarten und Anwendungsbereiche. Springer, Berlin, 2005
- Weck, M.; Brecher, C.: Werkzeugmaschinen 3 Mechatronische Systeme,
 Vorschubantriebe, Prozessdiagnose. Springer, Berlin, 2006
- Weck, M.; Brecher, C.: Werkzeugmaschinen 4 Automatisierung von Maschinen und Anlagen. Springer, Berlin, 2006

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Die Inhalte des Moduls werden an der Hochschule Anhalt auch im Vollzeitstudium Master Maschinenbau im gleichnamigen Modul vermittelt.

3.3 Prozess- und Projektmanagement

Modulblock "Betriebswirtschaftliche Module"		Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Martin Kütz	
Dozent(in)	siehe Teilmodule	
Studiensemester/Modulfrequenz	3./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	Vorlesung 24 Präsenzstunden, Selbststudit (incl. 50 h Online-Planspiel)	ım 126 h
Medienformen	siehe Teilmodule	
Prüfungsvorleistung	Prüfungsvorleistung: Leistungsnachweis in Prozessmodellierung und Management-Pla	nspiel
Prüfungsart, -umfang, -dauer	Beleg im Projektmanagement, semesterbe	gleitend
Voraussetzungen		

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Stärkung der Kompetenzen im Umgang mit beruflichen (und außerberuflichen)
 Projekten
- Weiterentwicklung des Prozessverständnisses
- Reflektion des bisher erworbenen Prozesswissens und des Projektbearbeitungswissens

Inhalt: siehe Teilmodule Literatur: siehe Teilmodule

Links zu weiteren Dokumenten: siehe Teilmodule

Verwendbarkeit des Moduls:

Das Modul wird an der Hochschule Anhalt auch in den Masterstudiengängen Elektro- und Informationstechnik sowie Wirtschaftsingenieurwesen gelehrt.

3.3.1 Prozess- und Projektmanagement - Teilmodul Prozessmodellierung

Modulblock "Betriebswirtschaftliche Module"	
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	siehe 3.3
Dozent(in)	Dr. Stefan Voigt
Studiensemester/Modulfrequenz	3./Wintersemester
Sprache	deutsch
ECTS-Leistungspunkte	Gesamtcredits siehe 3.3
Lehrformen/Arbeitsaufwand	Vorlesung 12 Präsenzstunden, Selbststudium 38 h
Medienformen	PC- und Overhead-Technik, Lern- und Standardsoftware, Web based Training
Prüfungsvorleistung	siehe 3.3
Prüfungsart, -umfang, -dauer	siehe 3.3
Voraussetzungen	siehe 3.3

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Der Studierende soll nach der Lehrveranstaltung über Grundkenntnisse zur Geschäftsprozessoptimierung verfügen.
- Er lernt die Handhabung von Softwarelösungen zur Analyse, Modellierung und Bewertung von Geschäftsprozessen kennen.
- Er ist in der Lage, eine praxisbezogene Anwendung des Erlernten am eigenen Betrieb vorzunehmen.

Inhalt:

- Anlass, Ziele und Vorgehensweise des Geschäftsprozessmanagements in Unternehmen
- Einbettung der Prozessmodellierung in die Unternehmensmodellierung (Enterprise Architecture Management)
- Vorstellung von Frameworks wie ARIS und TOGAF
- Kennenlernen von Werkzeugen zur Geschäftsprozessmodellierung & -optimierung
- Ausgewählte Fallstudien zur Geschäftsprozessmodellierung sowie Modellierung von Geschäftsprozessen am Beispiel der eigenen beruflichen Tätigkeit

Literatur:

Literatur, begleitend:

- Schmelzer, Sesselmann (2013): Geschäftsprozessmanagement in der Praxis, München: Hanser
- Wilhelm, R. (2003): Prozessorganisation, München: Oldenbourg.

Literatur, ergänzend:

- Gadatsch, A. (2017): Grundkurs Geschäftsprozess-Management. Analyse, Modellierung, Optimierung und Controlling von Prozessen, 8. Aufl., Wiesbaden: Springer Vieweg.
- Staud, J.-L.: Geschäftsprozessanalyse. 3. Auflage, Springer-Verlag, 2006.
- Krcmar, H.: Informationsmanagement. 4. Auflage, Springer-Verlag, 2005.

Links zu weiteren Dokumenten: -

Verwendbarkeit des Moduls: siehe 3.3

3.3.2 Prozess- und Projektmanagement - Teilmodul Projektmanagement

Modulblock "Betriebswirtschaftlich	e Module" Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	siehe 3.3
Dozent(in)	Prof. Dr. Martin Kütz
Studiensemester/Modulfrequenz	3./Wintersemester
Sprache	deutsch
ECTS-Leistungspunkte	Gesamtcredits siehe 3.3
Lehrformen/Arbeitsaufwand	Vorlesung 12 Präsenzstunden, Selbststudium 38 h
Medienformen	PC- und Overhead-Technik, Flipchart, Printmedien
Prüfungsvorleistung	siehe 3.3
Prüfungsart, -umfang, -dauer	siehe 3.3
Voraussetzungen	siehe 3.3

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Die Studierenden erwerben für ihre zukünftige Projektmanagement-Praxis Kenntnisse

- zur Definition, Planung, Durchführung, Steuerung und Abschluss von Projekten
- zur Führung von Projektmanagement-Teams
- zur Portfolio-Analyse im Projekt-Programm
- durch kritisch prüfende Betrachtung eigener Projekt-Erfahrungen.

Inhalt:

- Einführung in das Projektmanagement, Projektdefinitionen und Management-Modelle
- Initiierung von Projekten, Organisations-, Stakeholder- und Umfeld-Analyse
- Projektdefinition (Ziel, Messgrößen, Randbedingungen, Lastenheft)
- Planungsphase (Projektstrukturplan, Netzplan-Technik, Risikoanalyse, Pflichtenheft)
- Projektdurchführung und Kontrolle (Meilenstein-Trendanalyse, Earned Value-Analyse)
- Projektabschluss (Abnahme, Projektbewertung mittels Kennzahlen)
- Qualitätsmanagement und Verbesserungsprozess

Literatur

Begleitend: Skript vom Dozenten

Ergänzend:

- M. Burghardt, Einführung in Projektmanagement, Publicis, 2007
- R. Felkai u.a., Projektmanagement für technische Projekte, Vieweg, 2010
- W. Jacoby, Projektmanagement für Ingenieure, Vieweg 2010
- K. Olfert, Kompakt-Training PM, Kiehl Verlag, 2010

Links zu weiteren Dokumenten

Verwendbarkeit des Moduls: siehe 3.3

3.3.3 Prozess- und Projektmanagement - Teilmodul Planspiel (online)

Modulblock "Betriebswirtschaftliche Module"	
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	siehe 3.3
Dozent(in)	Prof. Grimm
Studiensemester/Modulfrequenz	3./Wintersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits (für alle Teilmodule von Prozess- und Projektmanagement)
Lehrformen/Arbeitsaufwand	Selbststudium 50 h
Medienformen	Online-Planspiel
Prüfungsvorleistung	siehe 3.3
Prüfungsart, -umfang, -dauer	siehe 3.3
Voraussetzungen	siehe 3.3

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Nachhaltige Vermittlung von betriebswirtschaftlichem Grundwissen und Zusammenhängen in einem Unternehmen auf der Grundlage des Online-Planspieles TOPSIM-easyManagement
- Einführung in betriebswirtschaftliche Grundlagen und Denkweisen
- Erkennen gesamtunternehmerischer Zusammenhänge und der Wechselwirkungen der verschiedenen Einflussgrößen
- Erreichen vorgegebener Ziele durch Umsetzung von Plänen
- Transparenz für die Folgen von Entscheidungen gewinnen
- Prozesse der Entscheidungsfindung im Team effizient und konstruktiv gestalten

Inhalt:

- Ziel-, Strategieplanung und Umsetzung
- Absatzplanung
- Marketing-Mix (Preis-, Produkt-, Vertriebs- und Kommunikationspolitik)
- Auslastungsplanung, Kostenplanung
- Investitionsrechnung
- Deckungsbeitragsrechnung
- · Gewinn- und Verlustrechnung
- Bilanzen

Literatur:

Ergänzend:

Seminarunterlagen zum Online-Planspiel easyManagement

Links zu weiteren Dokumenten:

TOPSIM-Planspiele www.topsim.com

Verwendbarkeit des Moduls: siehe 3.3

4. Semester

4.1 Wahlpflichtangebot im 4. Semester/Sommersemester

Nachfolgend sind exemplarische, in der Studien- und Prüfungsordnung namentlich aufgeführte Module beschrieben. Es sind grundsätzlich alle Module mit ausreichenden ECTS-Leistungspunkten aus den berufsbegleitenden Studiengängen Master Wirtschaftsingenieurwesen und Master Elektro- und Informationstechnik offen (terminliche Überschneidungen sind möglich).

4.1.1 Numerische Methoden

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Dr. Heinz-Peter Neumann
Dozent(in)	Dr. Heinz-Peter Neumann
Studiensemester/Modulfrequenz	4./Sommersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	Vorlesung 24 Präsenzstunden Selbststudium 126 h
Medienformen	Folien (Powerpoint, PDF), veranstaltungsspezifische Webseiten, Arbeitsblätter, Aufgabensammlung, Veranstaltungsplanung
Prüfungsvorleistung	
Prüfungsart, -umfang, -dauer	Klausur 90 min.
Voraussetzungen	Mathematik- und Informatikausbildung in einem Ingenieur-Bachelor

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Numerische Methoden der Mathematik sind aus dem Alltag eines Ingenieurs nicht mehr wegzudenken: Ziel der Ausbildung ist einerseits der Erwerb von Kenntnissen in der numerischen Mathematik. Die Studierenden ergänzen bzw. vertiefen so die mathematische Ausbildung. Andererseits erwerben sie weiter reichende Fähigkeiten und Fertigkeiten im Umgang mit PC-Technik und Computeralgebrasystemen sowie in der Algorithmisierung von mathematischen Berechnungen. Bei der rechentechnischen Umsetzung liegt das Augenmerk auf den Besonderheiten bei der Durchführung wissenschaftlich-technischer Rechnungen.

Inhalt:

- Polynome als Basisfunktionen der Numerik, Berechnung von Funktionswerten
- Lösungsalgorithmen linearer Gleichungssysteme
- Numerische Lösung nichtlinearer algebraischer Gleichungen und -systeme
- Interpolationsmethoden
- Lineare und nichtlineare Approximation
- Methoden der numerischen Differentiation
- Numerische Quadratur
- Numerische Lösung von gewöhnlichen Differentialgleichungen und -systemen
- Numerische Lösung von partiellen Differentialgleichungen
- Ein- und mehrdimensionale Suchalgorithmen

Literatur:

- Schwarz, H. R.; Köckler, N.: Numerische Mathematik. Wiesbaden 2011.
- Roos, H.-G.; Schwetlick, H.: Numerische Mathematik. Das Grundwissen für jedermann. Stuttgart, Leipzig 1999.
- Preuß, W.; Wenisch, G. (Hg.): Lehr- und Übungsbuch Numerische Mathematik.
 München, Wien, 2001.
- Knorrschild Michael.: Numerische Mathematik. München 2013.
- Oelschlägel D.; Matthäus W.-G.: Numerische Methoden, Leipzig 1991.

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul ergänzt durch die breite Einsetzbarkeit der vermittelten Kenntnisse als Wahlpflichtmodul die allgemeinen ingenieurwissenschaftlichen Module.

4.1.2 Patentrecht

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. D. Landenberger
Dozent(in)	RA Marcus Grüneberg
Studiensemester/Modulfrequenz	4./6. Sommersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	Vorlesung 24 Präsenzstunden Selbststudium 126 h
Medienformen	Präsentation, Übungsaufgaben
Prüfungsvorleistung	Leistungsnachweis Fallbeispiele
Prüfungsart, -umfang, -dauer	Mündliche Prüfung zum Vorlesungsinhalt, 30 min.
Voraussetzungen	Pflichtmodul Betriebswirtschaft

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Die Studierenden besitzen einen Überblick über das Wesen einer Erfindung und die Möglichkeiten des Schutzes gegen Nachahmung sowie über die Wirkungsmechanismen von gewerblichen Schutzrechten, schwerpunktmäßig von Patenten. Sie kennen den wesentlichen Unterschied zwischen Erfinderstatus und Inhaber eines Patentes/Schutzrechtes. Basierend darauf sind die Studierenden befähigt, ihre Grundkenntnisse über die gesetzliche Situation in Deutschland einerseits und die Komplexität des Umfelds einer Erfindung insbesondere in Hochschulen und Forschungseinrichtungen andererseits (Erfinderteams, differenzierte Rechtslage an einer gemeinsam gemachten Erfindung) erkennen und bewerten zu können. Dazu verfügt der Studierende über Wissen zum Neuheitszwang, Publikationsverbot vor Patentanmeldung, Komplexität des Schutzrechts und Grenzen eigener Anmelde- und Verwertungsmöglichkeiten.

Inhalt:

- Patente und Gebrauchsmuster in der Rechts- und Wirtschaftsordnung
- Geschichtliche Entwicklung
- Rechtsquellen, Organisation
- Technische Erfindung
- Neuheit und erfinderische Leistung
- Entstehung und Wegfall von Patenten

Literatur:

- Schmoch, U., Grupp, H.: Wettbewerbsvorsprung durch Patentinformation. Handbuch für die Recherchepraxis. TÜV Rheinland, 1990
- Kraßer, R., Ann, C.: Patentrecht. Ein Lehr- und Handbuch zum deutschen Patentund Gebrauchsmusterrecht, europäischen und internationalen Patentrecht. Beck Verlag, 2016

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul ergänzt als Wahlpflichtmodul den managementorientierten betriebswirtschaftlichen Modulblock. Das Modul wird an der Hochschule Anhalt auch im berufsbegleitenden Masterstudiengang Elektro- und Informationstechnik angeboten.

4.1.3 CAM II - Automatisierte Werkzeugwegerstellung

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. D. Landenberger
Dozent(in)	Marcus Viertel
Studiensemester/Modulfrequenz	4./6. Sommersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	Vorlesung: 4 h, Praktikum: 20 h, Selbststudium: 126 h
Medienformen	Powerpoint-Folien, Videosequenzen, Skripte, Web- Präsentation
Prüfungsvorleistung	Leistungsnachweis
Prüfungsart, -umfang, -dauer	Beleg
Voraussetzungen	CAM (empfohlen)

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Durch die zunehmende Digitalisierung der Fertigung entstehen neue Möglichkeiten bei der Programmierung von Werkzeugwegen für die spanende Bearbeitung. Im Rahmen der praxisorientierten Lehrveranstaltung werden die in der spanenden Fertigung verwendeten und benötigten Daten analysiert und bewertet. Anschließend werden Lösungen zur Optimierung der Datenhandhabung erarbeitet.

Unter anderem wird auf die Vorteile von strukturierten Bibliotheken, die automatische Werkzeugauswahl, die Nutzung von Datenbanken und Vorlagen für die automatisierte Bearbeitung und die Vorbereitung komplexer Bauteile eingegangen. Dieses Wissen soll beispielsweise dazu befähigen den Einsatz von CAM-Software in Unternehmen zu optimieren. Das heißt, die Teilnehmer der Lehrveranstaltung erhalten einen vertieften Einblick in die Tätigkeit von sogenannten Key-Usern bzw. betrieblichen Pilotanwendern im Bereich CAM. Alle Werkzeugwege werden auf virtuellen Maschinen (digitaler Zwilling) getestet. Weiterhin werden die verifizierten Werkzeugwege für die Zerspanung realer Werkstücke auf den Werkzeugmaschinen des Fachbereichs verwendet.

Inhalt:

- Festigung der 2D- und 3D-Programmierkenntnisse (insbesondere für Freiformflächen)
- Fertigungstechnische Analyse von Werkstücken
- Standardisierung in der Fertigung
- Werkzeugbibliotheken, Konstruktionsbibliotheken
- Definition von Regeln für die automatisierte 2,5D-Bearbeitung
- Definition von Regeln für die automatisierte 3D-Bearbeitung
- Datenschnittstellen
- Bearbeitungssimulation und Sicherheit
- Postprozessoren und CNC-Programmableitung

Literatur (informativ):

- Eversheim, W., Schuh, G.: Produktion und Management. Springer, Berlin, 2000
- Kief, H., Roschiwal, H.: CNC-Handbuch 2011/2012. Hanser, München, 2011
- Kief, H., Roschiwal, H.: CNC-Handbuch 2013/2014. Hanser, München, 2013

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul ergänzt als Wahlpflichtmodul gezielt fertigungstechnische Kenntnisse und wird auch im Präsenzstudium Master Maschinenbau angeboten.

4.1.4 Nachhaltige technische Entwicklung – Ökobilanzierung (Environmental Management - Life Cycle Assessment)

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. D. Landenberger
Dozent(in)	Felix Piontek, M. Sc.
Studiensemester/Modulfrequenz	4./Sommersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	Vorlesung 24 Präsenzstunden Selbststudium 126 h
Medienformen	Folien (Powerpoint, PDF)
Prüfungsvorleistung	-
Prüfungsart, -umfang, -dauer	Beleg
Voraussetzungen	-

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

Die Ökobilanzierung dient zur Analyse und Bewertung der Umweltauswirkungen von Produkten und Prozessen. Bei der Durchführung einer Ökobilanz werden die Input- und Outputflüsse und sowie die potenziellen Umweltwirkungen eines Produktsystems im Verlauf seines Lebensweges untersucht.

Am Ende der Lehrveranstaltung kennen die Teilnehmerinnen und Teilnehmer die Methode der Ökobilanzierung gemäß ISO 14040 und 14044.

Darüber hinaus können sie Studien zur Bewertung von Umweltwirkungen kritisch reflektieren. Dies bezieht sich sowohl auf Treibhausgasemissionen/ Klimawandel ("Carbon Footprint") als auch weitere Wirkungskategorien.

Weiterhin sind die Teilnehmer in der Lage softwaregestützt die potentiellen Umweltauswirkungen von Produkten zu berechnen, miteinander zu vergleichen und Lösungsvorschläge für eine Reduzierung der Umweltauswirkungen über den gesamten Produktlebenszyklus zu erarbeiten.

Inhalt:

- Begriffe und Definitionen
- Ökobilanzierung gemäß ISO 14040 und 14044
- Verschiedene methodische Ansätze der Ökobilanzierung
- Einordnung der Ökobilanzierung
- Stoff- und Energiebilanzen
- Wirkungsabschätzung
- Softwaregestützte Erstellung von Ökobilanzen

Literatur:

- Frischknecht, R.: Lehrbuch der Ökobilanzierung. Springer Spektrum. Heidelberg, 2020.
- Klöpffer, W., Grahl, B.: Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. WILEY-VCH. Weinheim, 2009.
- Hauschild, M.Z., Rosenbaum, R. K., Olsen, S.I.: Life Cycle Assessment. Springer International Publishing. Cham, 2018.

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über Moodle zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul ergänzt durch die breite Einsetzbarkeit der vermittelten Kenntnisse als Wahlpflichtmodul die allgemeinen ingenieurwissenschaftlichen Module.

4.2 CAE

Modulblock "Spezielle Maschinenbaumodule"	
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Dr. Arne Goedeke
Dozent(in)	Dr. Arne Goedeke; Franziska Drechsler, M.Eng.
Studiensemester/Modulfrequenz	4. Semester/Sommersemester
Sprache	Deutsch
ECTS-Leistungspunkte	12 Credits
Lehrformen/Arbeitsaufwand	Praktika/Vorlesung 48 h, Selbststudium 252 h
Medienformen	PC, Software
Prüfungsvorleistung	Zwei Leistungsnachweise
Prüfungsart, -umfang, -dauer	Beleg zu einem ausgewählten Thema,
Voraussetzungen	Technische Mechanik, Maschinendynamik

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Die Studierenden wenden die numerischen Verfahren der Mehrkörpersimulation (MKS) und der Finite Elemente Methode (FEM) zur Analyse von Festigkeitsuntersuchungen und der Ermittlung von Belastungsgrößen in schwingungsfähigen Systemen eigenständig an. Die Praktika sowie die semesterbegleitenden Prüfungsvorleistungen und der abschließende Beleg fördern hierbei die praktische Anwendungskompetenz der Studierenden in der Softwareumgebung ANSYS und SIMPACK. Die unterschiedlichen Softwareumgebungen werden zunächst getrennt voneinander vermittelt und abschließend in einen gemeinsamen Kontext gebracht. Im Zuge dessen wird auch auf das Vorhandensein des grundsätzlichen Spannungsfeldes zwischen Ersatzmodell, Validierung und Praxisumsetzung eingegangen. Mit Abschluss des Moduls sind die Studierenden befähigt, das Verhältnis zwischen Nutzen und Aufwand derartiger Programmsysteme einzuschätzen.

Inhalt:

- Wiederholung zur analytischen Festigkeitslehre
- Statische Festigkeitsuntersuchungen mithilfe der FEM
- Ermüdungsfestigkeitsuntersuchung mithilfe der FEM
- Einführung in die rechnergestützte Mehrkörpersimulation
- Stufen und Arten der Modellbildung
- Ganzheitliche Systemanalyse
- Untersuchung und Optimierung des dynamischen Verhaltens mechatronischer Antriebssysteme
- Modellbildung und Simulation nichtlinearer, flexibler Mehrkörpersysteme mit SIMPACK
- Stufen und Arten der Modellbildung
- Modale Reduktion nach Guyan und Craig-Bampton
- Reglung von Antriebssystemen

Literatur:

- Craig, R.; Bampton, M.: Coupling of Substructures for Dynamic Analyses. In: AIAA Journal 1968 Vol. 6, S. 1313
- Gebhardt, Christof: Praxisbuch FEM mit ANSYS Workbench. München 2014
- Klein, B.: FEM. Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und
- Fahrzeugbau; mit 12 Fallstudien und 19 Übungsaufgaben, 7. Auflage. Wiesbaden: Vieweg 2007
- Knothe, K.; Wessels, H.: Finite Elemente: eine Einführung für Ingenieure. Berlin, Heidelberg 2008
- Link, Michael: Finite Elemente in der Statik und Dynamik; Wiesbaden 2014
- Schäfer, Michael: Numerik im Maschinenbau. Berlin, Heidelberg 1999
- Craig, R.; Bampton, M.: Coupling of Substructures for Dynamic Analyses. In: AIAA Journal 1968 Vol. 6, S. 1313
- Dresig, H.: Schwingungen mechanischer Antriebssysteme. Modellbildung, Berechnung, Analyse, Synthese, 2. Auflage. Berlin, Heidelberg: Springer 2006
- Dresig, H.; Holzweissig, F.: Maschinendynamik, 8. Auflage. Berlin, Heidelberg, New York: Springer 2007
- Häuslein, A.: Systemanalyse. Grundlagen, Techniken, Notierungen. Berlin; Offenbach: VDE-Verlag 2004
- Klein, U.: Schwingungsdiagnostische Beurteilung von Maschinen und Anlagen, 3.
 Auflage. Düsseldorf: Stahleisen 2003
- Laschet, A.: Simulation von Antriebssystemen. Modellbildung der Schwingungssysteme und Beispiele aus der Antriebstechnik. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1988
- Rill, G.; Schaeffer, T.: Grundlagen und Methodik der Mehrkörpersimulation. Wiesbaden: Vieweg Teubner 2010

Links zu weiteren Dokumenten:

Dokumente werden den Teilnehmern über die Nextcloud zur Verfügung gestellt.

Verwendbarkeit des Moduls:

Das Modul ermöglicht die Bearbeitung von numerischen Struktursimulationen und Mehrkörpersimulationen in der Praxis.

5. Semester

5.1 Wahlpflichtangebot im 5. Semester/Wintersemester

Nachfolgend sind exemplarische Module beschrieben (u.a. in der Studien- und Prüfungsordnung namentlich aufgeführte Module). Es sind grundsätzlich alle Module mit ausreichenden ECTS-Leistungspunkten aus den berufsbegleitenden Studiengängen Master Wirtschaftsingenieurwesen und Master Elektro- und Informationstechnik offen (terminliche Überschneidungen sind möglich).

5.1.1 Projektarbeit (Project Work)

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. D. Landenberger
Dozent(in)	Alle Prüfer der Hochschule Anhalt
Studiensemester/Modulfrequenz	5. Semester/Wintersemester
Sprache	Deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	150 h Selbststudium
Medienformen	Abschlusspräsentation und Bericht der Studenten
Prüfungsvorleistung	keine
Prüfungsart, -umfang, -dauer	Abschlusspräsentation (20 min.) und Bericht der Studenten
Voraussetzungen	Abgeschlossenes Projekt

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

Die Projektarbeit ermöglicht die Vertiefung von ingenieurwissenschaftlichen Themenstellungen aus den vorausgehenden Semestern. Das heißt, aufbauend aus den Kenntnissen aus vorausgegangenen Lehrveranstaltungen im Masterstudium werden neue praktische Fertigkeiten und Kompetenzen erarbeitet und gefestigt. Durch die Verankerung in einem höheren Semester des Studiums wird – durch das Vorwissen - die Interdisziplinarität gestärkt.

Inhalt:

- Themenstellungen der Prüfer
- Einbeziehung von beruflichen Aufgabenstellungen der berufsbegleitend Studierenden erwünscht.

Literatur: Wahl durch die Studierenden

Links zu weiteren Dokumenten: -

Verwendbarkeit des Moduls: Master Maschinenbau berufsbegleitend

5.1.2 Qualitätsmanagement

Modulblock "Wahlpflichtmodule"	Wahlpflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. Dr. Martin Kütz
Dozent(in)	Prof. Dr. Martin Kütz
Studiensemester/Modulfrequenz	5./Wintersemester
Sprache	deutsch
ECTS-Leistungspunkte	6 Credits
Lehrformen/Arbeitsaufwand	Vorlesung/Selbststudium 24 h/126 h
Medienformen	PowerPoint-Folien
Prüfungsvorleistung	Leistungsnachweis
Prüfungsart, -umfang, -dauer	Beleg zu einem ausgewählten Thema, semesterbegleitend
Voraussetzungen	Prozess- und Projektmanagement

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Die Studierenden besitzen Kenntnisse zum Qualitätsmanagement und zu dessen Nutzung mit Hilfe der Moderations- und Präsentationstechnik für die Führung und Anleitung von Teams. Sie sind in der Lage, den sicheren Einsatz der unterschiedlichen Normreihen mit zugehöriger Entwicklung für die jeweilige Organisation sowie den sicheren Einsatz von Qualitätswerkzeugen herauszufinden.

Inhalt:

- Darstellung der Qualität als Wettbewerbsfaktor, der Qualitätsphilosophien und der einzusetzenden
 - Qualitäts-werkzeuge (Quality Function Deployment, Balanced Scorecard) für Organisationen
- Erläuterung der Normenreihe (Einbeziehung der Qualitätsplanung, -lenkung, sicherung, -verbesserung)
- Vorbereitung von Qualitätsstrategien mit Einordnung bis zur Prüfplanung
- TQM-Praxis in der Industrie

Literatur:

• Skript vom Dozenten (begleitend)

Ergänzend:

- Masing: Handbuch Qualitätsmanagement. Hanser Verlag
- Zink: Qualitätswissen. Springer Verlag 1997
- Mittag: Qualitätsregelkarten. Hanser Verlag 1996
- Hiroyuki: Poka-yoke. 240 Tips für Null-Fehler-Programme. Verlag Moderne Industrie
- DIN EN ISO 9001: 2008 Qualitätsmanagement System.
- Pfeifer, Schmitt: Fertigungsmesstechnik. Oldenbourg Wissenschaftsverlag
- Felderhoff, Freyer: Elektrische und elektronische Messtechnik. Hanser Verlag
- Linß: Qualitätsmanagement für Ingenieure. Fachbuchverlag Leipzig

Links zu weiteren Dokumenten

Verwendbarkeit des Moduls:

Das Modul ergänzt als Wahlpflichtmodul den managementorientierten betriebswirtschaftlichen Modulblock. Das Modul wird an der Hochschule Anhalt auch im berufsbegleitenden Masterstudiengang Elektro- und Informationstechnik angeboten.

5.2 Mechatronik

Modulblock "Spezielle Maschinenbaumodule" Pflic		odul
Studiengang	Master Maschinenbau (berufsbegleitend)	
Modulverantwortliche(r)	Prof. Dr. Marco Franke	
Dozent(in)	Prof. Dr. Marco Franke	
Studiensemester/Modulfrequenz	5./Wintersemester	
Sprache	deutsch	
ECTS-Leistungspunkte	6 Credits	
Lehrformen/Arbeitsaufwand	150 h einschließlich 22 Lehrstunden, davon Praktiku Stunden; Selbststudium 128 h	m 6
Medienformen	Präsentation, Tafel, Script, Simulation	
Prüfungsvorleistung	Leistungsnachweis (LNW)	
Prüfungsart, -umfang, -dauer	Klausur zum Vorlesungsinhalt, 120 min.	
Voraussetzungen		

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen): Die Studierenden begreifen die Mechatronik als interdisziplinäres Wissens- und Arbeitsgebiet. Sie besitzen vertieftes Wissen über Modellbildung und -analyse sowie über die Simulations- und Berechnungswerkzeuge Matlab/Simulink. Die Studierenden erwerben Kenntnisse zum Entwicklungsprozess für mechatronische Systeme nach VDI Richtlinie 2206

Die Studierenden entwickeln die Fähigkeit, anhand von Beispielen aus der Automobilindustrie typische Komponenten mechatronischer Systeme, wie Aktoren, Sensoren und mechanische Grundstrukturen mathematisch zu beschreiben, in Matlab/Simulink zu programmieren und zu simulieren sowie Komponenten zum Gesamtsystem zusammen zu setzen, zu simulieren und die Ergebnisse zu analysieren. Darüber hinaus erlangen sie die Fähigkeit zur kritischen Analyse eigener und fremder Simulationsmodelle und zur Validierung bzw. Verifikation von Simulationsmodellen. Die Studierenden besitzen die Kompetenz, interdisziplinäre Aufgabenstellungen zu strukturieren, zu durchdringen und unter Nutzung moderner Simulationswerkzeuge zu lösen.

Inhalt:

- Mechatronische Systeme im Kraftfahrzeug
- Prozessanalyse mechatronischer Systeme
- Signalverarbeitung
- Modellbildung
- Entwurf mechatronischer Systeme
- Berechnungen ausgewählter Beispiele
- Simulationen von mechatronischen Systemen

Literatur:

- Heimann, Gerth, Popp: Mechatronik. Hanser Verlag
- Isermann: Mechatronische Systeme. Springer Verlag
- Robert Bosch GmbH: Kraftfahrtechnisches Taschenbuch. Vieweg Verlag
- Roddeck: Einführung in die Mechatronik. Teubner Verlag
- Schmitz: Mechatronik im Automobilbau. Expert Verlag
- Zurawka, Schäuffele: Automotive-Software-Engineering. Vieweg Verlag
- Bolton: Bausteine mechatronischer Systeme. Pearson-Studium

Links zu weiteren Dokumenten:

Verwendbarkeit des Moduls:

Das Modul ist Teil des Modulblocks "Allgemeine ingenieurwissenschaftliche Module". Die Inhalte des Moduls werden an der Hochschule Anhalt auch im Vollzeitstudium Master Maschinenbau im gleichnamigen Modul vermittelt.

6. Semester

6.1 Masterarbeit

Modulblock "Abschlussarbeit"	Pflichtmodul
Studiengang	Master Maschinenbau (berufsbegleitend)
Modulverantwortliche(r)	Prof. DrIng. Daniel Landenberger
Dozent(in)	Alle Prüfer der Hochschule Anhalt
Studiensemester/Modulfrequenz	Beginn unabhängig vom Semester möglich; Bearbeitung nach Studienverlaufsplan ab 5. Semester (siehe aber Voraussetzungen)
Sprache	deutsch/englisch
ECTS-Leistungspunkte	28 Credits
Lehrformen/Arbeitsaufwand	700 h
Medienformen	Medienformen für das Referat nach Abstimmung mit den Betreuern/Prüfern
Prüfungsvorleistung	keine
Prüfungsart, -umfang, -dauer	siehe Studien- und Prüfungsordnung § 30 Besondere Forderungen an eine Masterarbeit
Voraussetzungen	siehe Studien- und Prüfungsordnung § 29 Meldung und Zulassung zur Masterarbeit

Modulziele und angestrebte Lernergebnisse (Kenntnisse/Fertigkeiten/Kompetenzen):

- Abstraktion, Formulierung und Dokumentation komplexer wissenschaftlicher Probleme
- Kreative Anwendung bzw. Entwicklung neuer wissenschaftlicher Produkte/Prozesse/Technologien/Verfahren
- Stärkung des ingenieurwissenschaftlichen Bewertungs- und Entscheidungsvermögens
- Kompetenzerweiterung zur Erlangung ingenieurwissenschaftlicher Informationen
- Optimierung der Projektbearbeitung
- Weiterentwicklung der Teamfähigkeiten (bei Bearbeitung in der Gruppe nach §28
 (5) der Studien- und Prüfungsordnung)

Inhalt:

- Themenstellungen der Prüfer
- Einbeziehung von betrieblichen Themen erwünscht

Literatur:

Links zu weiteren Dokumenten:

Verwendbarkeit des Moduls:

Master Maschinenbau berufsbegleitend