STATS 202C: Project 2

Exact sampling of the Ising/Potts Model with coupled Markov Chains

Eric Chuu (604406828)

May 13, 2017

Introduction

We consider the Ising model in an $n \times n$ lattice with 4 nearest neighbors. The state X is a binary image defined on the lattice X, each at site or pixel s takes value in $\{0,1\}$. The model sis

$$\pi(X) = \frac{1}{Z} \exp\{\beta \sum_{\langle s,t \rangle} 1 (X_s = X_t)\}$$
 (1)

We simulate 2 Markov Chains with the Gibbs sampler:

- MC1 starts with all sites being 1 (white chain) and its state is denoted by X^1
- \bullet MC2 starts with all sites being 0 (black chain) and its state is denoted by X^2

At each step, the Gibbs sampler picks up a site s in both images, and calculates the conditional probabilities, which only depends on its 4 nearest neighbors, denoted by ∂s

$$\pi\left(X_s^1|X_{\partial s}^1\right) \qquad \pi\left(X_s^2|X_{\partial s}^2\right)$$

It updates the variables X_s^1 and X_s^2 according to the above two conditional probabilities, and shares the same random number r = rand[0, 1].

Probem 1

Prove that $X_s^1 \geq X_s^2$, for all s, in any time. That is, the white chain is always above the black chain.

Solution

Problem 2

We plot the two chain states, using their total sum $\sum_s X_s^1$ and $\sum_s X_s^2$ over the sweeps, and we can see the image when the two chains coalesce. We use the following values for β :

$$\beta = \{0.5, 0.65, 0.75, 0.83, 0.84, 0.85, 0.9, 1.0\}$$

Problem 3

We plot the curve of τ versus β to see a critical slowing-down around 0.84.