2022-23 Second Semester MATH1063 Linear Algebra II (1003)

Assignment 9

Due Date: 24/May/2023 (Wednesday), 15:00 @T3-602-R25-H2.

- Write down your **CHN** name and **student number**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. Locate all critical points and classify them

(a)
$$f(x,y) = e^{-x^2}(y^2 + 1)$$

(b)
$$f(x,y) = \frac{1}{3}x^3 + xy^2 - 4xy + 1$$

(c)
$$f(x,y) = x\sin(y)$$

- 2. Show that for every symmetric $n \times n$ matrix A, there exists a symmetric $n \times n$ matrix B such that $B^3 = A$.
- 3. Let

$$A = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

- (a) Show that A is positive definite and that $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$.
- (b) The definition of definite matrix can be extended to non-symmetric matrices. But the eigenvalue test and determinant test will no longer work for non-symmetric matrices.

 Use the definition to show that B is positive definite, while B^2 is not.
- 4. Let A be an $m \times n$ matrix with rank n. Show that the matrix $A^T A$ is symmetric positive definite.
- 5. Let A be an $n \times n$ symmetric matrix, if A is positive definite, show that A can be written as $A = BB^T$, where B is an $n \times n$ matrix with orthogonal columns.