EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

300,000 1111	CHAINES 00//	
Question number	Scheme	Marks
5	3 \rightarrow 2 Before 0.5 \rightarrow 0.2 Afrer (a) $0.5 \times 3 - 0.2 \times 2 = 0.5 \times 1.5 + 0.2 \times V$ \rightarrow $V = 1.75 \text{ m s}^{-1}$	M1 A1
	(b) $T = 0.2(2+1.75)$	mi AI
	= 0.75 Ns	A1 (3)

EDEXCEL - LONDON EXAMINATIONS Physics And Maths Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

ubject	MECHANICS 6677	
--------	-----------------------	--

Question number	Scheme	Marks
2.	FITHER	
	(a) F /3 Vector A attempt	mı
	L40 Cornel	AI
	$F^2 = S^2 + 3^2 - 2.5.3$ as 140 (cos rule)	mi Al
\cap	→ F 2 7.55 N	A1 (5)
	(b) $\frac{F}{\sin 140} = \frac{3}{\sin 0} \Rightarrow \theta = \frac{14.8^{\circ}}{}$	M 1 A 1 , A 1
	OR. F 1 Vector A attempt	mı .
	(a) 3 3 sinto correel	AI
	5 3cm40 F2 = (5+3cm40)2 + (3sin40)2	mi Al
	F & 7.55 N	A1 (5)
	(b) $tan \theta = \frac{3 \sin 40}{5 + 3 \cos 40}$, $\theta = \frac{14.80}{5}$	M (A I , V A I (3)
	$ \underline{QR}(a) \stackrel{P}{\sim} = \begin{pmatrix} 5 \\ 0 \end{pmatrix} \text{ or } 5i $ $ \underline{Q} = \begin{pmatrix} 3\omega + 0 \\ 3\sin 40 \end{pmatrix} \text{ or } 3\omega + 0i + 3\sin 40i $ $ 3\sin 40i $	Mi
	$\Rightarrow F = \begin{pmatrix} 5+3 & 40 \\ 3 & 40 \end{pmatrix}$	Al
	$ F = (5+3 cm +0)^2 + (3 sin +0)^2$	MIAIN
	△ 7.55 N	A1 (5)
,	(b) $Van \theta = \frac{3 \sin 40}{5 + 3 \cos 40}$	MI AI
	<u>√ 14.8°</u>	A1 (3)

EDEXCEL - LONDON EXAMINATIONSPhysics Andiviatins Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Suhi	iect	MECHANICS	6677
วนบ	CCL	MUCHANICS	00//

Question number	Scheme	Marks
3.	(a) Distance = $\frac{1}{2} \times (30+17) \times 3$, + 4×17	MI AI, MI
	= 138.5 m.	A1 (4)
- Control	OR = 138.5m	mi Al, mi
	(b) Str. line graph ⇒ wonst. decel ² "F=ma" ⇒ Foonst	MI Al cso
	(c) $2ecel^2 = 30-17$	Mι
	Force = $1200 \times \left(\frac{30 - 17}{3}\right) = \frac{5200 \text{ N}}{}$	m1 A1 (3)
4:	(a) Diag. with 4 ferres marked (Allow For Combined if clear)	B2 -1 e.e(2)
O .	(b) R(1) R = 3g cm 30° + 30 sin 30° (3 rems) = 40.46 ~ 40.5 or 40 N.	m1 A2 -ie.e. A1 (4)
	(c) R(d) F = 30 cm 30° - 39 sin 30° (31cm	(1
	$F = \mu R$, $\Rightarrow \mu = \frac{F}{R} = \frac{11.28}{40.46}$ $\sim 0.28 \text{ (or } 0.279)$	M1, M1 A1 (5)
		(1)

EDEXCEL - LONDON EXAMINATIONS Physics And Maths Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
5.	(a) O	B1 (1)
	(b) $\frac{1}{1}$ $\frac{2}{2}$ $\frac{2}{1}$	mi Al
	$\Rightarrow W = 3750 N$	A1 (3)
	[If moments about another pr: MI for a	
	moments agui ² correct.]	
	(c) r $M(p) 1500.5 = W'(4-x)$	mi A1
	M(c) 1000.5 = W'x	mi)Ai
	Solve → W1 = 3125 N	(m) A1(6)
	(d) >c = 1.6 m	m 1 A 1(2)
	(e). AB remains straight line (o.e.)	B1 (1)
		(13)
• •		

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2003

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
6.	(a) Car + Van: $3200a = 2320 - 800 - 240$ $a = 0.4 \text{ ms}^{-2}$ (b) Car: $200a = T - 240$	mi Al Al (3) mi A2 \rightarrow -lever
	$T = 720 \text{ N}$ $\begin{cases} OR \text{ Van} = \frac{7}{2320} \\ Poo \end{cases} \Rightarrow 7 = 720 \text{ N}$ $\Rightarrow T = 720 \text{ N}$	A((4)
	NB If use equ ² fer car avan alone, allow MIA2 fer an equ ² involving T, then MIAI for a second equ ² provided it is part of a complete matted to find a/T. Then AI AI for a a T.	
	(c) $a' = 2320$ (4 tems) = $32000 a' = 2320 - 1040 - 3200g \cdot \frac{1}{200}$ $a' = -0.09 \text{ m s}^{-2}$ $\Rightarrow \text{magn. } 0.09 \text{ m s}^{-2}$ $\Rightarrow \text{perd decreasing}$	N
		(13)

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

	•	Marks
<u>い</u>	Mast (a) $W_1 = 2j + bi + bj$ Pipe $= bi + 8j$ (b) $OW_1 = \sqrt{(b^2 + 8^2)} = 10 \text{ km}$ W_2 $S_5 V^2 \text{ Fine} = \frac{10}{5} = 2 \text{ hrs} - N$ (c) $W_2 = 2j + bi - bj$	BI BI (2) MI AN (A)
	$= 6i - 4j$ $(d) \text{ P.v. of resone party after 1 kmur} = R = 3i + 4j$ $RW_2 = 3i - 8j$ $tan \theta = \frac{3}{8} = 20.6^{\circ}$ $=) \text{ Required bearing} = 180^{\circ} - 20.6^{\circ}$ $= 159.4^{\circ}$	MI AI MI AI MI AI MI AI MI AI MI AI (3)