Całki funkcji elementarnych

Funkcja y = f(x)	Całka $\int f(x)dx$
$y = x^n$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$
$y = \sin x$	$\int \sin x dx = -\cos x + C$
$y = \cos x$	$\int \cos x dx = \sin x + C$
y=1/sin ² x	$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C \mathbf{sin} \mathbf{x} \neq 0$
$y=1/\cos^2 x$	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C \mathbf{COSX} \neq 0$
y = lnx	$\int \ln x dx = x \ln x - x + C = x(\ln x - 1) + C$
y=1/x	$\int \frac{dx}{x} = \ln x + C$
$y = e^x$	$\int e^x dx = e^x + C$
$y = a^x$	$\int a^x dx = \frac{1}{\ln a} a^x + C \ \boldsymbol{a} > 0, \ \boldsymbol{a} \neq 1$
y = kf(x)	$\int kf(x)dx = k \int f(x)dx$
y = f(x) + g(x)	$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
[y = u(x)v(x)]	$\int u dv = uv - \int v du$
y = f(g(x))	$\int f(g(x))g'(x)dx = \int f(u)du \ \mathbf{g(x)} = \mathbf{u}$