Decoding the Genomic Language: Fine-tuning LLMs for genomic downstream tasks

Fabiana Góes

The Rosalind Franklin Institute Artificial intelligence Group

Natural Language Processing - Representation Learning

Representation learning

- Models to extract representation from raw data
- Convert words into vectors, preserving their semantic similarity
- The performance of ML depends on the quality of the representation
- Neural networks specialized for understanding the relationships among words

Embedding models:

- Transform sequences into numerical vectors capturing patterns
- Assumption: similar words should have similar vector
- High vector similarity between proteins -> similar functions and structures

Model types:

- Word2Vec, Doc2Vec
- CNNs, RNNs
- Transformer-based architectures (LLMs)

NLP - Evolution of Word Representation Learning

Traditional methods ~1990 - 2010

- · Bag of words
- TF-IDF
- One-hot encoding

No semantic

Word2Vec & GloVe ~2013 - 2014

- LSTM, bi-LSTM
- Context consideration
- · Attention mechanism

Semantic features

FastText ~2016

- Subword information
- OOV handling

Unseen words

RNN-based methods ~2014 - 2017

- LSTM, bi-LSTM
- Context consideration
- · Attention mechanism

Sequential context

ELMo ~2018

- Multiple bi-LSTM
- Stacked layers
- Deep contextualization

Deep context

BERT & Transformers ~2017 - present

- Bidirecional encoder
- Self-attention
- Transfer learning

Bidirecional encoder

Static vs Contextual Embeddings

Static Embeddings

(Word2Vec, GloVe, FastText)

- One embedding per word, regardless of context
- · Each word always has the same vector
- · Cannot handle polysemy/homonymy

Contextual Embeddings

(ELMo, BERT, Transformers)

- Embeddings based on context
- "right to vote" ≠ "turn right" (different vectors)
- · Handles multiple word meanings

NLP – Deep language models

A Pretraining

"Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said the Cat.
"I don't much care where—" said Alice.
"Then it doesn't matter which way you go," said the Cat.
"—so long as I get *somewhere*," Alice added as an explanation.
"Oh, you're sure to do that," said the Cat, "if you only walk long enough."

Original text

Masking

Language model

Masked text

Predicted text

Loss

NLP - Deep language models

A Pretraining

"Would you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to," said the Cat.
"I don't much care where—" said Alice.

"Then it doesn't matter which way you go," said the Cat.

"—so long as I get *somewhere*," Alice added as an explanation.

"Oh, you're sure to do that," said the Cat, "if you only walk long enough."

Original text

Masking Language model

"Would you tell me, sir, which way I need to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

"I don't much care where—" said Alice.

"Then it doesn't matter which way you go," said the Cat.

"—so long as I get *somewhere*," Alice added as an explanation.

"Oh, no need to do that," said the Cat, "if one only waits long enough."

Predicted text

Loss

B Fine-tuning

We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.

Text

Fine-tuned model

Topic: Biology (97%)

Prediction

www.rfi.ac.uk

Large Language Models in Genomics

- Learning from vast amounts of unlabeled data
- Capture deep biological patterns, long-range dependencies, and structural information
- Strong capacities to map inputs into latent embedding space
- Can be adapted to a wide range of tasks

Large Language Models in Genomics

- Learning from vast amounts of unlabeled data
- Capture deep biological patterns, long-range dependencies, and structural information
- Strong capacities to map inputs into latent embedding space
- Can be adapted to a wide range of tasks

LLMs - Three Approaches

Train the model Tokenization and Masking **ATGCTGAGTGCTGTA** <ATG><CTG><AGT><GCT><GTA> <ATG><CTG><MASK><GCT><MASK> Feature extraction Language modeling

<ATG><CTG><AGT><GCT><GTA>

Feature extraction

Trained from

Partial fine-tuning

Early layers frozen

Fine-tuning with adapters

Original model frozen

Lightweight adapters trainable

☑ Parameter efficient

LoRA (Low-Rank Adaptation):

Decomposes weight updates into low-rank matrices (A × B)

Trade-off: Full fine-tuning vs. Adapters

Better results vs. Efficiency

Partial fine-tuning

☑ Captures low/high level features

Fine-tuning with adapters

- Original model frozen
- Lightweight adapters trainable
- ☑ Parameter efficient

Key Concepts:

Frozen Layers:

- Parameters unchanged
- Preserve learned features
- Less computation

Hierarchical Features:

- Early: low-level features
- Later: high-level features
- Task-specific

Adapters (LoRA, etc.)

- Lightweight modules
- Few parameters
- Parameter efficient

Partial fine-tuning - Layers

- Nucleotide Transformer probing experiments
 - Pre-trained model for feature extraction
- Probing performance across layers for the enhancer prediction task
- Variation in performance may also occur when applying partial fine-tuning

Full fine-tuning vs efficient fine-tuning

- Nucleotide Transformer experiments
- Parameter efficient fine-tuning compared with full-model fine-tuning
- The performances across **different tasks** are shown and compared with respective baselines

Fine-tuning - Best Practices

Data Quality

Clean, relevant and sufficiently large datasets

Hyperparameter

Tuning Optimize learning rates, batch sizes & epochs

Regular Evaluation

Monitor progress and prevent overfitting

Assess the model's progress during training

Avoiding LLM Fine-Tuning Pitfalls

Overfitting

- High training accuracy, poor generalization
- Caused by small datasets or too many epochs

Underfitting

- Insufficient learning of the task
- Result of inadequate training or low learning rates

CatastrophicForgetting

- Loss of broad knowledge during task-specific training
- Reduces versatility

Data Leakage

- Training/validation overlap
- Leads to misleading performance metrics
- Keep datasets separate!

Hands-on: Fine-tuning and model evaluation

Hands-on

- Practical exercises about
 - Fine-tuning
 - LLMs: DNABERT2 and Nucleotide Transformer
- Evaluation and comparison
 - Pre-trained vs fine-tuned models
- Datasets
 - DNABERT2 benchmark: https://github.com/MAGICS-LAB/DNABERT2
- Practical code: https://github.com/fabianagoes/bc2_tutorial8

