UNIT 8: Infectious disease

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

► Extremely common

- Extremely common
- ► Huge impacts on ecological interactions

- Extremely common
- ▶ Huge impacts on ecological interactions
- ► A form of exploitation, but doesn't fit well into our previous modeling framework

- Extremely common
- Huge impacts on ecological interactions
- ▶ A form of exploitation, but doesn't fit well into our previous modeling framework
 - ► How many people are there?

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - ► How many influenza viruses are there?

- Extremely common
- ▶ Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - ► How do they find each other?

- Extremely common
- ▶ Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - ▶ How many influenza viruses are there?
 - How do they find each other?

▶ Poll: Name an infectious agent that causes disease in humans?

- ▶ Poll: Name an infectious agent that causes disease in humans?
- ▶ Disease agents vary tremendously:

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies

- ▶ Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - •

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles
 - ► **Bacteria** are independent, free-living cells with hundreds or thousands of chemical pathways

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - *

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - ▶ * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - ▶ * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - ► **Eukaryotic** pathogens are nucleated cells who are more closely related to you than they are to bacteria

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - ▶ * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - **▶** 3

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Malaria, various worms

- Poll: Name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Malaria, various worms

Influenza virus

Tuberculosis bacilli

Malaria sporozoite

► For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages

- ► For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - ► Latently infected

- ► For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - ► Productively infected

- ► For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

- ► For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

► We model microparasites by counting the number of hosts in various **states**:

- ► We model microparasites by counting the number of hosts in various **states**:
 - ► Susceptible individuals can become infected

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ► Infectious individuals are infected and can infect others

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ▶ **Infectious** individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ▶ Infectious individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ▶ Infectious individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

► Models are the tools that we use to connect scales:

Measles reports from England and Wales

Models as tools

- Models are the tools that we use to connect scales:
 - ► individuals to populations

Measles reports from England and Wales

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

Measles reports from England and Wales

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

Measles reports from England and Wales

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.

▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.

▶ '

- ▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.
 - * Instantaneous rate of increase (per capita)

- ▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.
 - * Instantaneous rate of increase (per capita)

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ► * Units of 1/t

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - *

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- ▶ Poll: Want to know what factors contribute to that, and how it relates to \mathcal{R} .

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- ▶ Poll: Want to know what factors contribute to that, and how it relates to \mathcal{R} .
 - *

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- Poll: Want to know what factors contribute to that, and how it relates to R.
 - * number of new cases per case

- ▶ Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- ▶ Poll: Want to know what factors contribute to that, and how it relates to \mathcal{R} .
 - * number of new cases per case
 - *****

- ▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- Poll: Want to know what factors contribute to that, and how it relates to R.
 - * number of new cases per case
 - * Unitless

- ▶ Poll: For many diseases, especially new diseases, we can *observe* and *estimate r*.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- Poll: Want to know what factors contribute to that, and how it relates to R.
 - * number of new cases per case
 - * Unitless

 \blacktriangleright People in the disease field love to talk specifically about \mathcal{R}_0

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :
 - ► Actual value of R before an epidemic

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of R before an epidemic
 - Hypothetical value assuming no immunity

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of R before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of R before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever
- ▶ Often easier to talk simply about R.

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ▶ But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of R before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever
- Often easier to talk simply about R.

Example: the West African Ebola epidemic

 Researchers try to estimate the proportion of transmission that happens for different ages of infection

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- ► How long from the time you are infected to the time you infect someone else?

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- How long from the time you are infected to the time you infect someone else?
- ► Analogous to a life table

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- ► How long from the time you are infected to the time you infect someone else?
- ► Analogous to a life table
- ► The effective generation time \hat{G} has units of time

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- ► How long from the time you are infected to the time you infect someone else?
- ► Analogous to a life table
- ► The effective generation time \hat{G} has units of time

► Which is more dangerous, a fast disease, or a slow disease?

- ► Which is more dangerous, a fast disease, or a slow disease?
 - ► How are we measuring speed?

- ► Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - ► How are we measuring danger?

Density 0.00 0.02 0.04 0.08 0.08

10 20 30 4 Generation interval (days)

- ► Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - ► What do we already know?

002 0.08 0.08 0.08

20

Generation interval (days)

0.00

- ► Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Density 0.00 0.02 0.04 0.06 0.08

20

Generation interval (days)

Fighting Ebola

▶ If we know \mathcal{R} , what does the generation time tell us about r?

▶ If we know \mathcal{R} , what does the generation time tell us about r?

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about \mathcal{R} ?

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about R?
 - >

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about \mathcal{R} ?
 - * The faster the generations (small \hat{G}), the the *smaller* the strength of the epidemic (small reproductive number \mathcal{R})

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about \mathcal{R} ?
 - * The faster the generations (small \hat{G}), the the smaller the strength of the epidemic (small reproductive number \mathcal{R})
- $\blacktriangleright \mathcal{R} = \exp(r\hat{G})$

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about \mathcal{R} ?
 - * The faster the generations (small \hat{G}), the the *smaller* the strength of the epidemic (small reproductive number \mathcal{R})
- $\mathbb{R} = \exp(r\hat{G})$

$$ightharpoonup \mathcal{R} = \exp(r\hat{G})$$

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- ► An intuitive view:

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - $\blacktriangleright \ \, \mathsf{Epidemic} \ \mathsf{speed} = \mathsf{Generation} \ \mathsf{strength} \, \times \, \mathsf{Generation} \ \mathsf{speed}$

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ► Epidemic speed = Generation strength × Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- ► If we know generation speed, then a faster epidemic speed means:

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- ▶ If we know generation speed, then a faster epidemic speed means:
 - *****

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- ▶ If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- ▶ If we know epidemic speed, a faster generation speed means

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- ▶ If we know epidemic speed, a faster generation speed means
 - **▶** ≯

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- ▶ If we know epidemic speed, a faster generation speed means
 - ▶ * Less strength required (smaller R)

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- ▶ If we know epidemic speed, a faster generation speed means
 - ▶ * Less strength required (smaller R)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Single-epidemic model

lacktriangledown Susceptible o Infectious o Recovered

Single-epidemic model

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ▶ We also use *N* to mean the total population

Single-epidemic model

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ▶ We also use *N* to mean the total population

► What factors govern movement through the boxes?

- ▶ What factors govern movement through the boxes?
 - ► People get better independently

- ▶ What factors govern movement through the boxes?
 - ► People get better independently
 - ► People get infected by infectious people

- What factors govern movement through the boxes?
 - ► People get better independently
 - People get infected by infectious people

► Poll: What happens in the long term if we introduce an infectious individual?

► Poll: What happens in the long term if we introduce an infectious individual?

• *

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ▶ * The may be an epidemic
 - an outbreak of disease

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ★ The may be an epidemic– an outbreak of disease
 - *

- Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The may be an **epidemic**
 - an outbreak of disease
 - * Disease burns out

- Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The *may be* an **epidemic** an outbreak of disease
 - * Disease burns out
 - *

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The *may be* an **epidemic** an outbreak of disease
 - * Disease burns out
 - * Everyone winds up either recovered or susceptible

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The *may be* an **epidemic** an outbreak of disease
 - * Disease burns out
 - * Everyone winds up either recovered or susceptible
 - *

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The *may be* an **epidemic** an outbreak of disease
 - * Disease burns out
 - * Everyone winds up either recovered or susceptible
 - ▶ * Not everyone gets infected!

- ► Poll: What happens in the long term if we introduce an infectious individual?
 - ► * The *may be* an **epidemic** an outbreak of disease
 - * Disease burns out
 - * Everyone winds up either recovered or susceptible
 - ▶ * Not everyone gets infected!

► Why might there not be an epidemic?

▶ Why might there not be an epidemic?

▶ 3

- ▶ Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population

- ▶ Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - **>** 3

- ▶ Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .

- ▶ Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - *

- ▶ Why might there not be an epidemic?
 - * If the disease can't spread well enough in the population
 - * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance

- Why might there not be an epidemic?
 - * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- ▶ Why doesn't everyone get infected?

- Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- Why doesn't everyone get infected?
 - **▶** 3

- Why might there not be an epidemic?
 - * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- Why doesn't everyone get infected?
 - *****

- Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- Why doesn't everyone get infected?
 - *****

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

The simplest way to implement this conceptual model is with differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

 $\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + I + R$$

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + I + R$$

State variables

 \triangleright S, I, R, N: [people] or [people/ha]

State variables

 \triangleright S, I, R, N: [people] or [people/ha]

Parameters

▶ Susceptible people have **potentially effective** contacts at rate β (units [1/time])

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - ► Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])
 - ▶ Total recovery rate is γI

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

Simulating the model

Simulating the model

Basic reproductive number

► Poll: What *unitless* parameter can you make from the model above?

Basic reproductive number

▶ Poll: What *unitless* parameter can you make from the model above?

▶ *

Basic reproductive number

- ▶ Poll: What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number

- ▶ Poll: What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - **▶** ×

- Poll: What unitless parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - * The potential number of infections caused by an average infectious individual

- ▶ Poll: What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - * The potential number of infections caused by an average infectious individual

- Poll: What unitless parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the **basic reproductive number**
 - * The potential number of infections caused by an average infectious individual
 - * That is: the number they would cause on average if everyone else were susceptible

- ▶ Poll: What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the **basic reproductive number**
 - * The potential number of infections caused by an average infectious individual
 - ► * That is: the number they would cause on average if everyone else were susceptible

*

- Poll: What unitless parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the **basic reproductive number**
 - * The potential number of infections caused by an average infectious individual
 - * That is: the number they would cause on average if everyone else were susceptible
 - * The product of the rate β (units [1/t]) and the duration D ([t])

- Poll: What unitless parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the **basic reproductive number**
 - * The potential number of infections caused by an average infectious individual
 - * That is: the number they would cause on average if everyone else were susceptible
 - * The product of the rate β (units [1/t]) and the duration D ([t])

▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?

▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?

- ▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - * Number of infected individuals grows exponentially

- ▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - ▶ * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?

- ▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?

- ▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - ▶ * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - * Number of infected individuals does not grow (disease cannot invade)

- ▶ Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - ▶ * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - * Number of infected individuals does not grow (disease cannot invade)

The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

▶ *

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

Is the disease increasing or decreasing?

The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

Is the disease increasing or decreasing?

▶ [≯]

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - lacktriangle * It will increase when $\mathcal{R}_e>1$ (more than one case per case)

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - \blacktriangleright * It will increase when $\mathcal{R}_e > 1$ (more than one case per case)
 - *****

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - lacktriangleright * It will increase when $\mathcal{R}_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - ▶ * It will increase when $R_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- Why doesn't everyone get infected?

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - * It will increase when $\mathcal{R}_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- Why doesn't everyone get infected?
 - *

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - ▶ * It will increase when $R_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- ▶ Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_e < 1$

• *
$$\mathcal{R}_e = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - ▶ * It will increase when $R_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_e < 1$
 - *

- The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:
 - * $\mathcal{R}_e = \mathcal{R}_0 S/N$
- Is the disease increasing or decreasing?
 - ▶ * It will increase when $R_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- ▶ Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_e < 1$
 - * When $\mathcal{R}_e < 1$, the disease dies out on its own (less than one case per case)

- The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:
 - * $\mathcal{R}_e = \mathcal{R}_0 S/N$
- Is the disease increasing or decreasing?
 - ▶ * It will increase when $R_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- ▶ Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_e < 1$
 - * When $\mathcal{R}_e < 1$, the disease dies out on its own (less than one case per case)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

▶ In this model, the epidemic always burns out

- ▶ In this model, the epidemic always burns out
 - ► No source of new susceptibles

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- ► Epidemic size is determined by:

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - **▶** 3

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - *

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic
 - **▶** ∤

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic

- ▶ In this model, the epidemic always burns out
 - ► No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - **▶** ∤

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end

- ▶ In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - **>** 3

- In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - ► * The number of infected individuals at the beginning of the epidemic

- In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - ► * The number of infected individuals at the beginning of the epidemic
 - *

- In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - ► * The number of infected individuals at the beginning of the epidemic
 - * Usually relatively small (and a relatively small effect)

- In this model, the epidemic always burns out
 - ▶ No source of new susceptibles
- Epidemic size is determined by:
 - ▶ * \mathcal{R}_0 larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic
 - ▶ * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - ► * The number of infected individuals at the beginning of the epidemic
 - * Usually relatively small (and a relatively small effect)

► Why does more susceptibles at the beginning mean fewer susceptibles at the end?

Why does more susceptibles at the beginning mean fewer susceptibles at the end?

*

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒

*

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒⇒

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ► * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒

k

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ► * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒
 - * Bigger epidemic \Longrightarrow

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒
 - ▶ * Bigger epidemic ⇒

*

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ► * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒
 - ▶ * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles)

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒
 - → * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles)
 - *

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒
 - ▶ * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles)
 - ▶ * More generations needed for disease to fade out ⇒

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒
 - ▶ * Faster initial growth ⇒⇒
 - ▶ * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles)
 - ▶ * More generations needed for disease to fade out ⇒
 - *

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒⇒
 - * Faster initial growth \Longrightarrow
 - * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles) \Longrightarrow
 - * More generations needed for disease to fade out \Longrightarrow

* More infections after peak

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ▶ * More susceptibles ⇒⇒
 - * Faster initial growth \Longrightarrow
 - * Bigger epidemic ⇒
 - * More infections at peak (same number of susceptibles) \Longrightarrow
 - * More generations needed for disease to fade out \Longrightarrow

* More infections after peak

► In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January

- ► In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April

- ► In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April
- ► What happened?

- ► In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April
- ▶ What happened?

▶ Poll: What limits epidemics in our simple models?

▶ Poll: What limits epidemics in our simple models?

- ▶ Poll: What limits epidemics in our simple models?
 - ► * Depletion of susceptibles

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ► Poll: What else limits epidemics in real life?

- ▶ Poll: What limits epidemics in our simple models?
 - ▶ * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - **▶** 3

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions
 - **k**

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions
 - ▶ * Behaviour change

- ▶ Poll: What limits epidemics in our simple models?
 - ► * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions
 - ▶ * Behaviour change
 - *

What limits epidemics?

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions
 - * Behaviour change
 - ► * Heterogeneity (differences between hosts, locations, etc.)

What limits epidemics?

- ▶ Poll: What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ Poll: What else limits epidemics in real life?
 - * Interventions
 - * Behaviour change
 - ► * Heterogeneity (differences between hosts, locations, etc.)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

► Poll: If epidemics tend to burn out, why do we often see repeated epidemics?

▶ Poll: If epidemics tend to burn out, why do we often see repeated epidemics?

*

- ▶ Poll: If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity

- ▶ Poll: If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity
 - . *

- ▶ Poll: If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity
 - * Births and deaths; newborns are susceptible

- ▶ Poll: If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity
 - * Births and deaths; newborns are susceptible

Recurrent epidemics

* Loss of immunity

* Loss of immunity

- * Births and deaths
 - * Effect on dynamics is similar to loss of immunity

- * Births and deaths
 - * Effect on dynamics is similar to loss of immunity

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dR}{dt} = \gamma I - dR$$

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dR}{dt} = \gamma I - dR$$

 \blacktriangleright We often assume b=d

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dR}{dt} = \gamma I - dR$$

- ightharpoonup We often assume b=d
 - ▶ ⇒ population is constant

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dR}{dt} = \gamma I - dR$$

- ightharpoonup We often assume b = d
 - population is constant

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

lacktriangle At equilibrium, we know that $\mathcal{R}_e=1$

- lacktriangle At equilibrium, we know that $\mathcal{R}_e=1$
 - ► One case per case

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - ► Number of susceptibles at equilibrium determined by the number required to keep infection in balance

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance
 - ► $S/N = 1/\mathcal{R}_0$

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance
 - \triangleright $S/N = 1/\mathcal{R}_0$
- ▶ What does this remind you of?

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

▶
$$S/N = 1/\mathcal{R}_0$$

▶ What does this remind you of?

*

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

▶
$$S/N = 1/\mathcal{R}_0$$

- What does this remind you of?
 - * Reciprocal control!

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - ▶ One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

▶
$$S/N = 1/\mathcal{R}_0$$

- What does this remind you of?
 - * Reciprocal control!

► Number of infectious individuals determined by number required to keep susceptibles in balance.

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- ► As susceptibles go up, what happens?

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - ► Per capita replenishment goes down

Equilibrium

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - ▶ Per capita replenishment goes down
 - ► Infections required goes down

Equilibrium

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - ▶ Per capita replenishment goes down
 - Infections required goes down

► What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?

▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?

k

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - \blacktriangleright * Equation for dI/dt does not change

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - * Equation for dI/dt does not change
 - *

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for *dI/dt* does not change
 - * Number of susceptibles does not change

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - **▶** *

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for *dI/dt* does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for *dI/dt* does not change
 - * Number of susceptibles does not change
 - ► * Fewer susceptibles need to be removed by infection (some are removed by us)
 - *

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for *dI/dt* does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- ► What else could happen?

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - **▶** ≯

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - *

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - ▶ * If we keep increasing the rate . . .

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - ▶ * If we keep increasing the rate . . .
 - *

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - ▶ * If we keep increasing the rate . . .
 - * Number of susceptibles goes down

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - * Number of susceptibles does not change
 - * Fewer susceptibles need to be removed by infection (some are removed by us)
 - * Number of infectious individuals goes down
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - ▶ * If we keep increasing the rate . . .
 - * Number of susceptibles goes down

► Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?

▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?

,

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - *****

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - ▶ * We need more susceptibles to balance dI/dt
 - ► * If we have more susceptibles, then per capita replenishment goes down

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - * If we have more susceptibles, then per capita replenishment goes down
 - *****

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - ▶ * If we have more susceptibles, then per capita replenishment goes down
 - ► * So the number of infectious individuals required for balance goes down

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - ▶ * If we have more susceptibles, then per capita replenishment goes down
 - * So the number of infectious individuals required for balance goes down

*

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - ▶ * If we have more susceptibles, then per capita replenishment goes down
 - ► * So the number of infectious individuals required for balance goes down
 - * If we remove infectious individuals fast enough, the infection could go extinct

- ▶ Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - ▶ * If we have more susceptibles, then per capita replenishment goes down
 - ► * So the number of infectious individuals required for balance goes down
 - * If we remove infectious individuals fast enough, the infection could go extinct

"Closed-loop" SIR models (ie., with births or loss of immunity):

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to oscillate
 - ► Oscillations tend to be damped

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to oscillate
 - Oscillations tend to be damped
 - ► System reaches an **endemic** equilibrium disease persists

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to oscillate
 - Oscillations tend to be damped
 - ▶ System reaches an **endemic** equilibrium disease persists

Source of oscillations

► Similar to predator-prey systems

- Similar to predator-prey systems
- ▶ What happens if we start with too many susceptibles?

- Similar to predator-prey systems
- ▶ What happens if we start with too many susceptibles?
 - **▶** 3

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ▶ * There will be a big epidemic

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ▶ * There will be a big epidemic
 - *****

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ▶ * There will be a big epidemic
 - ▶ * ...then a very low number of susceptibles

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ▶ * There will be a big epidemic
 - * ... then a very low number of susceptibles
 - *

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - * ... then a very low number of susceptibles
 - ▶ * ...then a very low level of disease

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - * ...then a very low number of susceptibles
 - ▶ * ... then a very low level of disease
 - *

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - * ... then a very low number of susceptibles
 - ▶ * ... then a very low level of disease
 - ▶ * ... then an increase in the number of susceptibles

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - * ... then a very low number of susceptibles
 - ▶ * ... then a very low level of disease
 - ▶ * ... then an increase in the number of susceptibles

► Poll: If oscillations tend to be damped in simple models, why do they persist in real life?

▶ Poll: If oscillations tend to be damped in simple models, why do they persist in real life?

> 1

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - ▶ * Weather
 - * Seasonality

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - ▶ * Weather
 - * Seasonality
 - > 1

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity

*

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - . .

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity

date

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - *

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour
 - *

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - ▶ * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour
 - * People are more careful when disease levels are high

- Poll: If oscillations tend to be damped in simple models, why do they persist in real life?
 - ▶ * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour
 - * People are more careful when disease levels are high

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

▶ At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- ▶ Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- ▶ If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

- ▶ At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- ▶ If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Examples

► Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria

Examples

- ► Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero

Examples

- ▶ Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- ► Eradication of smallpox!

- ▶ Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

► What proportion of the population should be vaccinated to eliminate a disease?

► What proportion of the population should be vaccinated to eliminate a disease?

* •

- What proportion of the population should be vaccinated to eliminate a disease?
 - * Transmission should be reduced by a factor of \mathcal{R} , so at least fraction $1-1/\mathcal{R}$ should be vaccinated

- What proportion of the population should be vaccinated to eliminate a disease?
 - * Transmission should be reduced by a factor of \mathcal{R} , so at least fraction $1-1/\mathcal{R}$ should be vaccinated

▶ Polio has an \mathcal{R}_0 of about 5.

- ▶ Polio has an \mathcal{R}_0 of about 5.
- ► Poll: What proportion of the population should be vaccinated to eliminate polio?

- ▶ Polio has an \mathcal{R}_0 of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - **▶** ³

- ▶ Polio has an \mathcal{R}_0 of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - ► * At least 1-1/5 = 80%

- ▶ Polio has an \mathcal{R}_0 of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?

- ▶ Polio has an \mathcal{R}_0 of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - **▶** ≯

- ▶ Polio has an R₀ of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - ► * At least 1-1/20 = 95%

- ▶ Polio has an R₀ of about 5.
- ► Poll: What proportion of the population should be vaccinated to eliminate polio?
 - ► * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - ► * At least 1-1/20 = 95%
- ▶ If gonorrhea has an \mathcal{R}_0 of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?

- ▶ Polio has an R₀ of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - ► * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - ► * At least 1-1/20 = 95%
- ▶ If gonorrhea has an R₀ of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?
 - *****

- ▶ Polio has an R₀ of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - ▶ * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - ► * At least 1-1/20 = 95%
- ▶ If gonorrhea has an R₀ of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?
 - ▶ * At least 1-1/2 = 50%

- ▶ Polio has an R₀ of about 5.
- ▶ Poll: What proportion of the population should be vaccinated to eliminate polio?
 - ▶ * At least 1-1/5 = 80%
- ▶ Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - ► * At least 1-1/20 = 95%
- ▶ If gonorrhea has an R₀ of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?
 - ▶ * At least 1-1/2 = 50%

► Why have infectious diseases persisted?

- ▶ Why have infectious diseases persisted?
 - ► The pathogens *evolve*

- ▶ Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - ► Human populations are **heterogeneous**

- Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - Human populations are heterogeneous
 - ▶ People differ in: nutrition, exposure, access to care

- Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - Human populations are heterogeneous
 - ▶ People differ in: nutrition, exposure, access to care
 - ► Information and misinformation

- Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - Human populations are heterogeneous
 - ▶ People differ in: nutrition, exposure, access to care
 - ▶ Information and misinformation
 - Vaccine scares, trust in health care in general

- Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - Human populations are heterogeneous
 - ▶ People differ in: nutrition, exposure, access to care
 - ▶ Information and misinformation
 - Vaccine scares, trust in health care in general

▶ Heterogeneity increases \mathcal{R}_0

- ▶ Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations

- ▶ Heterogeneity *increases* \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - ► Cases per case is high

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - ► Elimination is harder

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - ► Elimination is harder
- Marginal populations

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - ▶ Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - ► Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access

- ▶ Heterogeneity *increases* \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - ▶ Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access