This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BÖRDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-324526

(43)公開日 平成10年(1998)12月8日

番号 - 324526 1998) 12月 8 日

(51) Int.Cl. ⁶		識別記号		FΙ	•	
C 0 3 B	5/225			C 0 3 B	5/225	•
C03C	3/093			C03C	3/093	
G09F	9/30	3 1 6	•	G 0 9 F	9/30	3162

審査請求 未請求 請求項の数7 OL (全 9 頁)

(21)出願番号	特顏平9-130088	(71) 出願人	. 000000044
	•		旭硝子株式会社
(22)出顧日	平成9年(1997)5月20日		東京都千代田区丸の内2丁目1番2号
	·	(72) 発明者	西沢 学
•			神奈川県横浜市神奈川区羽沢町1150番地
			旭硝子株式会社中央研究所内
•		(72)発明者	中尾秦昌
		(12)	神奈川県横浜市神奈川区羽沢町1150番地
•	•		旭硝子株式会社中央研究所内
			,
		(74)代理人	、 弁理士 泉名 謙治 (外1名)

(54)【発明の名称】 無アルカリガラスの清澄方法

(57)【要約】

【課題】ヒ素やアンチモンの使用量を最少にして、無アルカリガラスの清澄を行う。

【解決手段】1.5重量%以下のSb2 O3、5.0重量%以下のSO3、2.0重量%以下のFe2 O3 および5.0重量%以下のSnO2 からなる群から選ばれる1種以上の有効量と、5.0重量%以下のC1および5.0重量%以下のFからなる群から選ばれる1種以上の有効量とを含有せしめて熔解、清澄する。

【特許請求の範囲】

【請求項1】歪点が640℃以上でAs2 O3 含有量が 0.5重量%以下の無アルカリガラスを熔解時に清澄す る方法であって、1.5重量%以下のSb2O3、5. ○重量%以下のSO3 、2.0重量%以下のFe2 O3 および5.0重量%以下のSnO2からなる群から選ば れる1種以上の有効量と、5.0重量%以下のC1およ び5. 0重量%以下のFからなる群から選ばれる1種以 トの有効量とを含有せしめて熔解、清澄することを特徴 とする清澄方法。

【請求項2】1.5重量%以下のSb2 O3、5.0重 量%以下のSO3 、2.0重量%以下のFe2 O3 およ び5. 0重量%以下のSnО₂ からなる群から選ばれる 1種以上を合量で0.01重量%以上と、5.0重量% 以下のC1および5.0重量%以下のFからなる群から 選ばれる1種以上を合量で0.01重量%以上とを含有 せしめて熔解、清澄することを特徴とする請求項1記載 の清澄方法。

【請求項3】C1を0.01~2.0重量%含有せしめ る請求項1または2記載の清澄方法。

【請求項4】SO3 をO. 01~2. 0重量%含有せし める請求項1、2または3記載の清澄方法。

【請求項5】無アルカリガラスが重量表示で以下の成分 を含有する請求項1、2、3または4記載の清澄方法。

SiO2	40~80%、
A 1 2 O3	0~35%、
B ₂ O ₃	0~25%、
MgO	0~30%、
CaQ.	0~30%、
SrO	0~30%、
BaO	0~30%、

MgO+CaO+SrO+BaO 1~50%.

【請求項6】ガラス中に、重量表示で

A s 2 O 3		0~0.5%、
S b 2 O 3		0~1.5%、
SO ₃		0~5.0%、
F e 2 O 3	 	0~2.0%、
SnO2		0~5.0%、

Sb₂ O₃ +SO₃ +Fe₂ O₃ +SnO₂

 $0.01 \sim 5.0\%$

C 1 0~5.0% 0~5.0% F

0.01~5.0% Cl+F

を含有する無アルカリガラス。

【請求項7】As₂ O₃ およびSb₂ O₃ を実質的に含 有しない請求項6記載の無アルカリガラス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は歪点の高い無アルカ リガラスの清澄方法に関する。

[0002]

【従来の技術】従来、各種ディスプレイ用基板ガラス、 特に表面に金属ないし酸化物の薄膜等を形成させるもの では、以下に示す特性が要求されてきた。

- (1)アルカリ金属酸化物を含有していると、アルカリ 金属イオンが薄膜中に拡散して、膜特性を劣化させてし まうため、実質的にアルカリ金属イオンを含まないこ ٤.
- (2) 薄膜形成工程で高温にさらされるため、ガラスの 10 変形およびガラスの構造安定化に伴う収縮(熱収縮)を 最小限に抑えるため、高い歪点を有すること。

【0003】(3)半導体形成に用いられる各種薬品に 対して充分な化学耐久性を有すること。特にSiOrや SiN_x のエッチングのためのバッファードフッ酸(フ ッ酸+フッ化アンモニウム; BHF)、およびITOの エッチングに用いられる塩酸を含有する薬液、金属電極 のエッチングに用いられる各種の酸(硝酸、硫酸等)、 レジスト剥離液のアルカリに対して耐久性があること。 (4) 内部および表面に欠点(泡、脈理、インクルージ

ョン、ピット、キズ等)をもたないこと。

[0004]

20

【発明が解決しようとする課題】電子用途の基板ガラス では上記(4)の品質に対する要求は厳しい。したがっ て、特に泡を効率的に除く目的で、従来の基板ガラスで はヒ素やアンチモンを1~2重量%添加してガラスの熔 解し、清澄を行うことが多かった。ヒ素やアンチモンは 高温粘性の高いガラスの清澄剤として知られている。

【0005】しかし、ヒ素やアンチモン、特にヒ素は、 環境に悪影響を与える元素であるため、ガラスのリサイ 30 クルに支障が生じるうえ、ガラスの製造工場や処理工場 内でのガラスの取り扱いに注意が必要であり、かつエッ チング廃液の無害化処理にも多大の設備が必要であっ た。

【0006】本発明の目的は、歪点の高い無アルカリガ ラスの熔解において、ヒ素やアンチモンを使用しない か、使用量をごく少量としても清澄が可能なガラスの熔 解時の清澄方法を提供することにある。

(0.0-0-7)

【課題を解決するための手段】本発明は、歪点が640 40 ℃以上でAs2 O3 含有量が0.5重量%以下の無アル カリガラスを熔解時に清澄する方法であって、1.5重 量%以下のSb2 O3、5. O重量%以下のSO3 、 2. 0重量%以下のFe2 O3 および5. 0重量%以下 のSnO2 からなる群から選ばれる1種以上の有効量 と、5.0重量%以下のC1および5.0重量%以下の Fからなる群から選ばれる1種以上の有効量とを含有せ しめて熔解、清澄することを特徴とする清澄方法を提供

【0008】本発明は、本発明者らが特定の清澄剤の組 50 み合わせを用いることにより、清澄効果を高め、歪点の 高い無アルカリガラスの熔解において、ヒ素やアンチモンを使用しないか、使用量を少量としても清澄できることを知見したことに基づく。

[0009]

【発明の実施の形態】本発明では、Sb2 O3、SO3、Fe2 O3 およびSnO2のいずれか1つ以上、ならびにFおよびC1のいずれか1つ以上が有効量添加されることが必須である。有効量は無アルカリガラスの組成にも依存するが、一般的には、それぞれ合量で0.01重量%以上含有されれば効果がある。これらの清澄剤10が併用されることにより、飛躍的に清澄効果が高まる。なお、添加量をあまり多くしても効果が飽和する一方、ガラスの特性に影響を与えるおそれがあるため、それぞれ合量で5.0重量%以下、好ましくは2.0重量%以下、とすることが実用的である。

【0010】このうち、Sb2 O3 は高温粘性の大きいガラスの清澄剤として知られており、同様の機能を持つ As2 O3 よりも環境への悪影響が少ない。その添加量は、環境への悪影響を最小限とするため、1.5重量以下とする。1.0重量%以下とすることが好ましく、特 20 に好ましくは不純物の程度を超えて実質的に含有されない。

【0011】SO3 は原料に熱を加えていく際に多量の 泡を発生し、かつ、泡を大きくする成分であり、建築用 にしばしば用いられるソーダライムシリケートガラスの 清澄剤として用いられることが多い。SO3 源は無アル カリであるかぎり、どのような塩の形で加えてもよい が、通常はアルカリ土類の硫酸塩として加える。O.O 1重量%以上添加することにより、清澄効果が得られ る。添加量が多すぎると、泡の発生が過剰となり原料へ 30 添加する意味がないため、実用上は5.0重量%以下、 好ましくは2.0重量%以下、とされる。

【0012】Fer O_3 は原料に熱を加えていく際にFer $O_3 \rightarrow$ Fer $O+O_2$ となって酸素泡を発生する成分である。O.01重量%以上添加することにより、清澄効果が得られる。添加量をあまり多くしても効果が飽和する一方、ガラスの着色が著しくなるため、2.0重量%以下、好ましくは1.0重量%以下、とする。

【0013】 SnO_2 は原料に熱を加えていく際に $SnO_2 \rightarrow SnO+1/2 \cdot O_2$ となって酸素泡を発生する成分である。O 1重量%以上添加することにより、清澄効果が得られる。添加量をあまり多くしても効果が飽和する一方、ガラスの特性に影響を与えるおそれがあるため、S 0重量%以下、好ましくは2 0重量%以下、とする。

【0014】一方、FやC1も、原料に熱を加えていく際に多量の泡を発生し、かつ、泡を大きくする成分であるが、上記Sb2 O3、SO3、Fe2 O3 およびSn O2のいずれか1つ以上と併用することにより、清澄効果が飛躍的に向上する。これらは、通常、アルカリナ類

のフッ化物や塩化物として加えうる。それぞれ0.01 重量%以上添加することにより、清澄効果が得られる。 添加量をあまり多くしても効果が飽和する一方、ガラス の特性(特に歪点低下)に影響を与えるおそれがあるため、5.0重量%以下、好ましくは2.0重量%以下と する。

【0015】本発明はアルカリ金属酸化物を実質的に含有しない無アルカリガラスで、歪点が640℃以上のものを対象とする。かかるガラスは、清澄可能な温度が高温域にあるため、ソーダライムシリケートガラスのように通常の芒硝による清澄ができないと考えられており、ヒ素による清澄が行われていた。

【0016】具体的には、重量表示で実質的に以下のような組成が例示できる。

S ['] i O ₂	40~80%、
A 1 2 O3	0~35%、
B ₂ O ₃	0~25%、
MgO	0~30%、
CáO	0~30%、
SrO	0~30%.
BaO	0~30%、

MgO+CaO+SrO+BaO 1~50%.

【0017】特に、以下のような2種類の組成は歪点が高いため、高温粘性が大きく、本発明が効果的に適用できる。すなわち、重量表示で実質的に、

SiO2	55~65%、
A 1.2 O3	10~18%
B ₂ O ₃	0~ 3%.
MgO	0~ 3%、
CaO	8~15%、
SrO	8~15%
BaO	0~ 2%

MgO+CaO+SrO+BaO 10~35%、 または、

MgO+CaO+SrO+BaO

9.0~18.0%、となるものである。

【0018】本発明のガラスは、例えば次のような方法で製造できる。通常使用される各成分の原料を目標成分になるように調合し、本発明の所定の清澄剤を添加したのち、これを熔解炉に連続的に投入し、1500~1600℃に加熱して熔融する。この熔融ガラスを1200~1500℃に保持することにより、泡ぬき(清澄)

果が飛躍的に向上する。これらは、通常、アルカリ土類 50 し、フロート法等により所定の板厚に成形し、徐冷後切

断する。清澄時に減圧を併用してもよい。

【0019】このようにして、製造されたガラスは、ガラス中に重量表示で

 As $2 O_3$ 0~0.5%,

 Sb $2 O_3$ 0~1.5%,

 SO 3 0~5.0%,

 Fe $2 O_3$ 0~2.0%,

 Sn O_2 0~5.0%,

 $Sb_2 O_3 + SO_3 + Fe_2 O_3 + SnO_2$

0.01~5.0%

C1 0~5.0%, F 0~5.0%, C1+F 0.01~5.0%

Cl+F 0.01~5.0%、 を含有する無アルカリガラスである。ヒ素、アンチモン は実質的に含有されないことが好ましい。

[0020]

【実施例】表に本発明の実施例を示す。 SiO_2 、 Al_2O_3 、 B_2O_3 、MgO、CaO、SrOおよびBa Oは工業用原料を用いて合計で100重量部となるように調合し、 Sb_2O_3 、 SO_3 、Cl、F、 Fe_2O_3 および SnO_2 (清澄剤)はこれに上乗せする形で加えた

【0021】表中に示した「泡数(1)」は調合原料バッチ(500g)を白金坩堝に入れ、1600℃で1時間熔解、徐冷後のガラス表面から1cm下から2cm下までの間にある泡の数(個/g)を示す。また、「泡数

(2)」には調合原料バッチ(500g)を白金坩堝にいれ1600℃で30分熔解後、通常のスクリュー状のスターラを用いて20rpmで撹拌しながら20分熔融、徐冷後のガラス表面から1cm下から2cm下までの間にある泡の数(個/g)を示す。

【0022】表にはガラスの50~350℃での平均の 熱膨張係数と歪点と耐塩酸性も示す。例1~19は実施 例、例20~38は比較例である。特に例1~8と例2 4~27とを比較することにより、清澄剤の併用の効果 10 がわかる。

【0023】実施例のガラスは泡数(1)に示すように 熔融初期に泡の残りと、泡数(2))に示すように撹拌 したときの泡の熔け残り、撹拌リボイル(再沸)泡がい ずれも少なく、また、ガラスの均一性も良く、高品質な ガラスの製造に適当であることがわかる。また、これら の清澄剤は熱膨張係数、歪点、耐塩酸性に影響を与え ず、好ましい清澄剤であるといえる。

【0024】また、SO3、C1、Fの量は添加量で示しているが、これらガラスを熔融する間に一部揮散してしまうため残存量はこれより少なくなる。この残存量はガラス組成に依存する。例えば、例3では、0.2%のF、0.2%のC1、0.05%のSO3などの残存がある。

[0025]

【表1】

7

								_8
重量部	Ø1 1	例2	例3	例4	例5	例6	例7	例8
SiO,	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0
A1.0.	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
820.	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Ng0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
CaO.	. 5.0	5.0	5.0	- 5.0	5.0	5.0	5.0	5.0
Sr0	7.0	7.0	7.0	7.0	7.0	7.0	. 7.0	7.0
BaO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SO ₁	0.1	0.1	0.1	D. C	0.1	0.1	0.1	0.0
F	0.5	0.0	0:5	0.5	0.5	0.0	0.5	0.5
C1	0.0	0.5	0.5	0.5	0.0	0.5	0.5	0.5
Fe ₂ O ₂	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1
SnO₄	0.0	ð. O	0.0	0.0	. 0.0	0.0	0.0	0.0
:0:aÅ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sb _s O _s	0.0	0.0	.0.0	0.0	0.0	0.0	0.0	0.0
Total	100.6	100.6	101.1	101.0	100.7	100.7	101.2	101.1
熟膨張係数 (x10-1/℃)	38	38	38	38	38	38	3.8	38
歪点(°C)	660	660	660	660	660	660	660	660
耐塩酸性 (mg/cm ²)	<0.1	<0.1	<0.1	<0.1	<0.1	(0.1	<0.1	<0.1
泡数(1)	120	120	90	105	105	105	85	105
泡数 (2)	75	75	45	60	45	45	30	45
均質性	0	0	0	0	0	0 .	0	0

[0026]

* * (表2)

1	0

重量部	例9	例10	例11	例1.2	例13	5014	例15	M 16
SiO,	60.0	60.0	60.0	60.D	60.0	60.0	60.0	60.0
Al.O.	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
B.O.	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
MgO .	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Ca0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Sr0	7.0	7.0	7.0	7.0	7.0	7.0	. 7.0	7.0
Ba0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S0•	0,0	0.0	0.1	0.0	0.0	0.1	0.0	0.0
F	0.0	0.5	0.5	0.0	0.5	0.5	0.0	0.5
C1 .	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0
Fe ₂ O ₄	0.0	0.0	0.1	0.0	.0.0	0.1	0.0	. 0.0
Sn0 ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
As a O a	0.0	Đ. O	0.0	0.0	0.0	0.0	0.0	0.0
Sp*0*	1.1	1.1	1.1	8.6	0.5	8.5	0.0	0.0
Total	101.6	101.6	102.3	101.0	101.0	101.7	101.0	101.0
熱膨張係数 (x10-7/℃)	38	38	38	38	38	38	38	38
(プ) 点歪	660 -	660	660	660	660	660	660	660
耐塩酸性 (mg/cm²)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	(0.1
泡数 (1)	110	100	60.	120	120	70	130	130
泡数 (2)	60 .	60	50	65	65	55	65	65
均質性	0	. 0	. 0	0	0	.0	Ō	0

[0027]

* *【表3】

11

1 1							1
重量部	例17	例18	F 119	例20	例21	6 122	例23
SiO ₂	60.0	60.0	58.9	60.0	60.0	60.0	60.0
A1:0.	17.0	13.0	16.5	17.0	17.0	17.0	17.0
B#0#.	7.0	2.0	8.9	7.0	7.0	7.0	7.0
Mg0	4.0	0.0	0.7	4.0	4.0	4.0	4.0
Ca0	5.0	12.0	4.2	5.0	5.0	5.0	5.0
Sr0	7.0	13.0	1.9	7.0	7.0	7.0	7.0
Ba0	0.0	0.0	9.5	0.0	0.0	0.0	0.0
SO ₄	0.1	0.1	D. 1	0.0	0.0	0.0	0.0
F	0.5	0.5	0.5	0.0	0.0	0.0	0.0
C1	0.5	0.5	0.5	0.0	0.0	0.0	0.0
Fe ₂ 0 ₁	0.1	0.1	0.1	0.0	0.8	0.0	8.0
Sn0 _z	0.5	0.0	0.0	0.0	0.0	0.0	0.0
As202	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zp*0*	0.0	0.0	0.0	1.6	1.1	0.5	0.0
Total	101.7	101.2	101.2	101.6	101.1	100.5	100.0
熱膨張係数 (x10-7/℃)	38	5 2	38	3.8	38	3.8	38
歪点(℃)。	660	700	670	660	660	660	660
耐塩酸性 (mg/cm²)	<0.1	<0.1	0.1	⟨ 0.1	<0.1	<0.1	<0.1
泡数 (I)	80	50	110	130.	230	420	750
泡数(2)	56	20	60	120	180	330	1200
均質性	0	Ō	0	. 0	×	×	×

[0028]

* *【表4】

1 3

13							1
重量部	例24	例25	例26	例27	例28	例29	例30
Sio.	60.0	50.0	60.0	60.0	60.0	60.0	60.0
41.0.	17.0	17.0	17.0	17.0	17.0	17.0	17.0
B ₂ O ₂	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Ng0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
CaO	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Sr0	7.0	7.0	7.0	7.0	7.0	7.0	. 7.0
BaQ	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20°	0.0	0.0	0.0	0.0	1.0	0.0	0.0
F	0.0	0.0	0.0	0.0	0.0	1.0	0.0
C1	0.1	0.5	1.0	5.0	0.0	Ð. O	0.0
Fe _z 0 _s	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Sn0 ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0
As 20 2	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0
Sb=0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	100.1	100.5	101.0	105.0	101.0	101.0	101.0
熱膨張係数 (x10 ⁻¹ / ℃)	38	3,8	38	38	38	38	38
歪点(℃)	660	660	660	660	660	660	660
耐塩酸性 (mg/cm²)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
泡数(1)	270	240	225	210	150	250	255
泡数 (2)	120	90	85	70	100	- 75	150
均質性	0	0	0	0	. 0	0.	0

[0029]

* *【表5】

15								16
重量部	例31	例32	例33	例34	例35	例36	例37	例38
SiO.	60.0	58.3	60.0	60.0	60.0	60.0	60.0	60.0
A1=0.	13.0	16.5	17.0	17.0	17.0	17.0	17.0-	17.0
B ₂ O ₂	2.0	8.9	7.0	7.0	7.0	7.0	7.0	7.0
MgO	0.0	0.7	4.0	4.0	4.0	4.0	4.0	4.0
CaO	12.0	4.2	5.0	. 6.0	6.0	5.0	5.0	5.0
Sr0	13.0	1.9	7.0	7.0	7.0	7.0	. 7.0	7.8
Ba0	0.0	9.5	0.0	0.0	0.0	0.0	0.0	0.0
\$0\$	8.0	0.0	1.0	5.0	0.0	0.0	0.0	- 0.0
F	0.0	0.0	0.0	0.0	0.1	0.5	1.0	-5.0
· C1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fe's0s	0.0	0.0	0.0	0.0	0.0	-0.0	0.0	0.D
SnO ₂	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
As:0:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sb.O.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
Total	100.0	100.0	101.0	105.0	100.1	100.5	101.0	105.0
熱膨張係数 (x10-7/℃)	52	38	38	38	38	38	38	38
歪点(℃)	700	660	660	660	660	660	660	660
耐塩酸性 (mg/cm²)	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
泡数 (1)	400	160	150	140	270	240	250	210
泡数 (2)	600	120	100	120	120	90	75	75
均質性	×	0 -	0	0	0	0	0	0

[0030]

【発明の効果】本発明によるガラスは、人体および地球 環境を悪化させずに、高品質なガラス基板(ディスプレ*

*イ用基板、フォトマスク基板、TFTタイプのディスプレイ基板等)、およびその製造方法として好適である。