О ПРАКТИКЕ СТУДЕНТОВ 2 СЕМЕСТРА

1. Общие свеления

- 1.1. Задание на практику выдается студентам на второй семестр и предполагает завершение его самостоятельного выполнения студентами не позднее начала экзаменационной сессии.
- 1.2. Один и тот же вариант задания выдается двум студентам в одной группе и может выполняться ими как независимо, так и во взаимодействии. В последнем случае двумя студентами сдаются идентичные варианты отчетов, отличающиеся лишь фамилиями на титульных листах и на бланках заданий.
- 1.3. Получение оценки за практику помимо сдачи отчета предполагает его защиту студентами.

2. Структура задания

- 2.1. Задание формулируется в текстовом виде, содержит краткое описание постановки задачи, перечень исходных данных и формат их преставления, а также формат представления результатов.
- 2.2. Как правило, задания относятся к ранее изученным курсам "Аналитическая геометрия" и "Математический анализ" и требуют программной реализации алгоритма решения конкретной задачи.
- 2.3. Конкретные алгоритмы решения в заданиях как правило не указаны; предполагается, что они должны быть разработаны студентами самостоятельно. При необходимости студентам рекомендуется обращаться к необходимым дополнительным источникам информации, как печатным, так и электронным.
- 2.4. Задание предполагает реализацию алгоритма решения задачи на языке программирования С++. Эффективность алгоритма, характеризуемая временем, затрачиваемым на его исполнение, не является критичной, если время счета не превышает нескольких секунд. Качество написанного кода будет учитываться при выставлении оценки во время защиты отчета.

3. Подготовка отчета и процедура его защиты

- 3.1. По окончании работы над заданием студент (или пара студентов, работающих совместно) после завершения подготовки отчета по практике до его защиты должен обратиться к преподавателю, ответственному за практику, который, в свою очередь, может выдать ему тестовое задание. Если таковое выдано и разработанные студентом алгоритмы позволяют решить тестовую задачу верно, то студент получает допуск к защите отчета, что обозначается на отчете соответствующей визой и подписью преподавателя. Возможно, к середине или концу весеннего семестра будет реализована автоматическая проверка правильности алгоритмов.
- 3.2. Отчет оформляется в MS Word. Качество оформления отчета учитывается при выставлении оценки за практику.

- 3.3. Основная часть отчета должна содержать:
 - описание метода или методов решения задачи с приведением всех необходимых для выполнения расчетов формул,
 - описание алгоритма, например, в виде блок-схемы,
 - обсуждение особенностей его реализации и т.п.,
 - также примеры решения задач.

Тексты программ включать в отчет не нужно.

- 3.4. В рамках выполнения задания настоятельно рекомендуется провести анализ сложности реализуемых алгоритмов: как правило, наиболее информативными являются сведения о количестве выполняемых арифметических операций. Эти сведения целесообразно включить в отчет.
- 3.5. В ходе защиты отчета по практике студентами демонстрируются презентации небольшого объема, рассчитанные на 5-7 минут, в которых представляются основные полученные результаты. В ходе защиты студенту (или паре студентов, работающих совместно) обязательно задаются вопросы, качество ответов на которые с учетом качества подготовленных отчетов и презентации определяет оценку за практику.

4. Программная реализация

- 4.1. Программная реализация алгоритма решения задачи выполняется на языке программирования С++.
- 4.2. Программа должна быть написана таким образом, чтобы она была кросс-платформенной: при автоматической проверке правильности решения задач Ваш код будет автоматически компилироваться в операционной системе Linux компилятором g++. Вы, разумеется, можете разрабатывать код в любой операционной системе, используя любую удобную Вам среду программирования.
- 4.3. Программа может состоять как из одного файла с расширением . сpp, так и из нескольких файлов с расширениями . сpp, . h, . hpp. При этом предполагается, что все файлы кода находятся либо в одном каталоге, либо в подкаталогах первого уровня

Рис. 1. Возможные способы организации кода основной программы

4.4. Обратите внимание, что Linux – регистрочувствительная операционная система, поэтому, например, файлы с именами "abc.cpp", "Abc.cpp", "ABC.cpp", "abc.Cpp" и т.д. являются разными и вполне могут присутствовать в одной папке. Это необходимо учитывать, в частности, при подключении библиотек после директивы #include в коде программы: писать имена файлов нужно в правильном регистре. Также в Linux при резделении имен каталогов нужно использовать значок «слэш» («/»), например,

#include "myvector/myvector.h"

При этом в Windows допустимы и «слэш», и «обратный слэш» (т.е. «/» и «\»), поэтому для обеспечения кросс-платформенности следует использовать «слэш» («/»).

- 4.5. В систему автоматического тестирования (если она будет готова к моменту защиты отчетов) Вы будете отправлять исходный код Вашей программы, а не файлы с результатами расчетов.
- 4.6. Исходные данные должны поступать в стандартный поток ввода, т.е. при исполнении программы они должны считываться из потока cin. Чтобы облегчить процедуру отладки и не вводить многократно одни и те же данные каждый раз с клавиатуры, рекомендуется использовать следующий прием: ввести необходимые данные в текстовый файл так, как это указано в задании, сохранив его под произвольным именем, например, input.txt а затем при запуске программы вместо исполнения, к примеру

mycode.exe

исполнять команду

mycode.exe < input.txt</pre>

Если Вы работаете в MS Visual Studio, то для автоматизации этого действия на этапе отладки кода зайдите в меню Проект —> Свойства проекта, в открывшемся окне в левом столбце выберите «Отладка», и в строке «Аргументы команды» укажите нужную конструкцию.

4.7. Результаты вычислений необходимо вывести в стандартный поток вывода с учетом той структуры, которая указана в задании. При желании сохранить результаты вывод можно направить в файл, исполнив команду

mycode.exe > output.txt

Если исполнить код

mycode.exe < input.txt > output.txt

то исходные данные будут считаны из файла input.txt в текущем каталоге, а вывод вместо экрана будет перенаправлен в файл output.txt

Похожий механизм будет использован в системе автоматической проверки Ваших кодов.

4.8. Поскольку основной объем расчетов Вы будете выполнять с вещественными числами, проверка правильности получаемых результатов будет производиться следующим образом: если должно получиться число x, не равное нулю, а Ваша программа выводит значение y, то ответ будет засчитан как верный, если относительная погрешность не превысит 10^{-6} , т.е.

$$\frac{|x-y|}{|x|} < 10^{-6};$$

если же «эталонное» значение х равно нулю, то ответ верен, если $|y| < 10^{-6}$.

Теоретически, эту точность может обеспечивать тип данных float, однако настоятельно рекомендуется все вычисления производить с двойной точностью (тип данных double).

Целочисленные значения погрешности не допускают.