МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ

Е. В. Потоскуев, Л. И. Звавич

ТЕОМЕТРИЯ ЗАДАЧНИК

УГЛУБЛЁННЫЙ УРОВЕНЬ

10 класс

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ

Е. В. Потоскуев, Л. И. Звавич

ГЕОМЕТРИЯ ЗАДАЧНИК

Рекомендовано Министерством образования и науки Российской Федерации УГЛУБЛЁННЫЙ УРОВЕНЬ

ПО

Класс

2-е издание, стереотипное

москва

2014

УДК 373.167.1:514 ББК 22.151я72 П64

Потоскуев, Е. В.

П64 Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10 кл. Углублённый уровень: задачник / Е. В. Потоскуев, Л. И. Звавич. — 2-е изд., стереотип. — М.: Дрофа, 2014. — 255, [1] с.: ил.

ISBN 978-5-358-13865-0

Задачник из состава УМК углублённого уровня Е. В. Потоскуева и Л. И. Звавича для 10 класса содержит более 1000 задач по стереометрии (дифференцированных по уровню сложности) и обеспечивает формирование умений и навыков использования утверждений теорем и определений, а также различных приёмов (векторного, координатного) при решении геометрических задач.

Задачник УМК Е. В. Потоскуева, Л. И. Звавича может быть использован для подготовки к дальнейшему изучению математики в высшей школе, а также при изучении геометрии по учебникам других курсов.

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки $P\Phi$ и включён в Федеральный перечень учебников.

УДК 373.167.1:514 ББК 22.151я72

Учебное издание

Потоскуев Евгений Викторович, Звавич Леонид Исаакович

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ

ГЕОМЕТРИЯ. 10 класс. Углублённый уровень

Задачник

Зав. редакцией О. В. Муравина. Редактор Т. С. Зельдман Художественный редактор А. А. Шувалова. Технический редактор И. В. Грибкова. Компьютерная верстка С. Л. Мамедова Корректор Г. И. Мосякина

В соответствии с Федеральным законом от 29.12.2010 г. N 436-ФЗ знак информационной продукции на данное издание не ставится

Сертификат соответствия № РОСС RU. AE51. H 16508.

Подписано к печати 15.05.14. Формат $60\times90^{\,1}/_{16}$. Бумага офсетная. Гарнитура «Школьная». Печать офсетная. Усл. печ. л. 16,0. Тираж 1500 экз. Заказ № 6156.

ООО «ДРОФА». 127254, Москва, Огородный проезд, д. 5, стр. 2.

Предложения и замечания по содержанию и оформлению книги просим направлять в редакцию общего образования издательства «Дрофа»: 127254, Москва, а/я 19. Тел.: (495) 795-05-41. E-mail: chief@drofa.ru

По вопросам приобретения продукции издательства «Дрофа» обращаться по адресу: 127254, Москва, Огородный проезд, д. 5, стр. 2. Тел.: (495) 795-05-50, 795-05-51. Факс: (495) 795-05-52.

Сайт ООО «ДРОФА»: www.drofa.ru Электронная почта: sales@drofa.ru

Тел.: 8-800-200-05-50 (звонок по России бесплатный)

Отпечатано в ОАО «Можайский полиграфический комбинат». 143200, г. Можайск, ул. Мира, 93. www.oaompk.ru, www.oaomπk.pф тел.: (495) 745-84-28, (49638) 20-685

ПРЕДИСЛОВИЕ

Учебный комплекс Е. В. Потоскуева, Л. И. Звавича «Математика: алгебра и начала математического анализа, геометрия. Геометрия. Углублённый уровень. 10 класс» включает учебник, задачник, рабочую программу, методическое пособие для учителя.

Настоящая книга представляет собой задачник по стереометрии для 10 классов с углубленным изучением математики.

Учебный комплекс соответствует программе курса геометрии классов с углублённым изучением математики.

В задачнике имеется более 1000 задач, соответствующих теоретическому материалу, изложенному в учебнике.

Помимо этого в задачнике имеется следующее.

- Дополнение, посвящённое планиметрии, которое содержит перечень важных теорем планиметрии и более 150 планиметрических задач разной степени сложности на построение, вычисление и на доказательство. Оно предназначено для повторения планиметрии и решения задач как учебного содержания, так и задач вступительных экзаменов в вузы.
- Список задач на построение в пространстве, в котором содержатся опорные задачи, лежащие в основе решения большинства стереометрических задач курса.
- Метрические формулы планиметрии и стереометрии; они в определённой мере заменят справочный материал.

Активное и эффективное изучение стереометрии возможно лишь при условии решения достаточно большого числа задач различной степени сложности. Поэтому в задачнике изложению теоретического материала каждого параграфа учебника соответствует определённый подбор задач. Задачи по каждой теме систематизированы по принципу от простого — к сложному.

Авторы, разумеется, не считают, что каждый должен решить все задачи или, наоборот, ограничиться решением задач только данного учебника — существует много замечательных задачников по стереометрии. В нашей книге в ос-

новном помещены наиболее типичные «учебные» задачи, как лёгкие, так и посложнее.

В связи с большим количеством задач специальным значком \odot отмечены те задачи, которые наиболее необходимы для решения в классе и дома, трудные задачи отмечены значком Ξ . Этот значок присутствует среди задач, соответствующих каждому из параграфов. В задачах, относящихся к главе в целом, мы такого ранжирования не делали, так как считаем, что учитель сам выберет понравившиеся ему задачи. К абсолютному большинству задач даны ответы, а к некоторым задачам — краткие указания. Для ряда стереометрических задач в тексте приводятся подробные решения.

Задачник может быть полезен и отдельно от учебника для всех изучающих или повторяющих курс стереометрии. Его можно использовать на факультативах и спецкурсах, он пригодится и для подготовки к поступлению в вузы.

Авторы выражают благодарность рецензентам учебника профессору Ирине Михайловне Смирновой, доктору педагогических наук Борису Петровичу Пигареву , заслуженному учителю России, кандидату педагогических наук; Илье Евгеньевичу Феоктистову, учителю школы 1741 г. Москвы. Авторы отмечают неоценимую помощь в подготовке рукописи к печати учителя математики Тамары Николаевны Потоскуевой.

Авторы будут благодарны за все замечания, присланные по адресу: 127018, Москва, Сущевский вал, д. 49, стр. 1, издательство «Дрофа», редакция математики и информатики или на сайт издательства «Дрофа» www.drofa.ru.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Геометрические фигуры

```
A, B, C, ..., M, P, Q — точки;
```

a, b, c, ..., m, p, q — прямые;

AB — прямая, проходящая через точки A и B;

 α , β , γ — плоскости;

(ABC) — плоскость, проходящая через точки A, B и C (т. е. плоскость ABC);

(a, A) — плоскость, проходящая через прямую a и точку A;

A(BC)D — двугранный угол с ребром BC и гранями ABC и DBC;

 $\alpha a \beta$ — двугранный угол с ребром a и гранями α и β ;

 $\angle (a, b)$ — угол между прямыми a и b;

 $\angle (a, \alpha)$ — угол между прямой a и плоскостью α ;

 \angle (α , β) — угол между плоскостями α и β .

Отношения между геометрическими фигурами

```
= - равенство;
```

∞ — подобие;

— параллельность;

 \perp — перпендикулярность;

∈ — принадлежность элемента множеству;

– включение одного множества в другое;

 \cap — пересечение множеств;

— объединение множеств.

Например:

 \triangle $ABC=\triangle$ $A_1B_1C_1$ — треугольник ABC равен треугольнику $A_1B_1C_1$;

 \triangle $ABC \sim \triangle$ $A_1B_1C_1$ — треугольник ABC подобен треугольнику $A_1B_1C_1$;

 $a \parallel \alpha$ — прямая a параллельна плоскости α ;

 $a \perp \alpha$ — прямая a перпендикулярна плоскости α ;

- $A \in \alpha$ точка A принадлежит плоскости α или плоскость α проходит через точку A;
- $a \subset \alpha$ прямая a лежит в плоскости α или плоскость α проходит через прямую a;
- $A \notin \alpha$ точка A не принадлежит плоскости α или плоскость α не проходит через точку A;
- $a \not\subset \alpha$ прямая a не лежит в плоскости α или плоскость α не проходит через прямую a;
- $a \cap \alpha = A$ прямая a пересекает плоскость α в точке A или плоскость α пересекает прямую a в точке A.

Величины

- AB, |AB|, $\rho(A; B)$ длина отрезка AB или расстояние между точками A и B;
 - $ho(\Phi_1;\Phi_2)$ расстояние между фигурами Φ_1 и $\Phi_2;$

$$\widehat{A(BC)D}$$
 — величина двугранного угла;

- (a;b) величина угла между прямыми a и b;
- $(a; \alpha)$ величина угла между прямой a и плоскостью α ;
- $(\alpha; \beta)$ величина угла между плоскостями α и β .

Прочие символы

- \Rightarrow знак следования; заменяет слова «следовательно», «поэтому» и т. п.;
- \Leftrightarrow знак равносильности; заменяет слова «тогда и только тогда», «равносильно» и т. п.;
 - $\Pi \mathbf{p} \cdot \mathbf{\vec{b}} \, \vec{a} \, \mathbf{n}$ проекция вектора \vec{a} на ось вектора \vec{b} ;
 - п. 23.4 пункт 23.4;
 - т. 3 теорема 3.

ВВЕДЕНИЕ В СТЕРЕОМЕТРИЮ

Задачи к § 3—4. Аксиомы и следствия из них

- **1.001.** Укажите среди перечисленных фигур плоские и неплоские фигуры: а) треугольник; б) ромб; в) окружность; г) параллелепипед; д) куб; е) пирамида; ж) сфера; з) ломаная ABCEH, вершины A и H которой не принадлежат плоскости BCE; и) фигура, состоящая из рёбер PA, PB и PC треугольной пирамиды PABC.
- **1.002.** Назовите некоторые понятия геометрии, которым даются определения: а) в планиметрии; б) в стереометрии.
- **1.003.** Какие основные понятия геометрии используются при определении: а) отрезка; б) окружности; в) треугольника; г) пирамиды?
- **1.004.** \odot Центр O данной окружности и две её точки A и B принадлежат плоскости α . Всякая ли точка этой окружности принадлежит плоскости α ? Ответ обоснуйте.
- **1.005.** 3 Запишите символически и сделайте рисунки: а) плоскость α проходит через точки A и C; б) плоскость α проходит через прямую p; в) прямая p = AB пересекает плоскость α в точке M; г) плоскости α и β пересекаются по прямой c.
- **1.006.** Прочитайте символическую запись, выполните рисунок и докажите: $(\alpha \cap \beta = a, P \in a, Q \notin \beta) \Rightarrow PQ \not\subset \beta$.
- **1.007.** Постройте (с обоснованием) прямую, лежащую в данной плоскости.
- **1.008.** Постройте (с обоснованием): а) прямую, пересекающую данную плоскость; б) плоскость, пересекающую данную плоскость; в) плоскость, пересекающую данную прямую.
- **1.009.** Две плоскости имеют две общие точки. Какая фигура является их пересечением? Ответ обоснуйте.

Введение в стереометрию

- **1.010.** \odot Вершина B параллелограмма ABCD принадлежит плоскости α . Прямая AD пересекает плоскость α в точке M, а прямая CD в точке P (рис. 1). Верно ли выполнен рисунок? Ответ обоснуйте.
- **1.011.** Нарисуйте четыре различные точки: а) принадлежащие одной плоскости; б) не принадлежащие одной плоскости.
- 1.012. Можно ли провести плоскость через четыре произвольные точки пространства? Ответ обоснуйте.
- **1.013.** \odot Точки A, B, C и D не принадлежат одной плоскости. а) Могут ли какие-то три из них принадлежать одной прямой? б) Могут ли прямые AC и BD пересекаться? Ответ обоснуйте.
- **1.014.** Каждые четыре точки некоторой фигуры Ф принадлежат одной плоскости. Докажите, что эта фигура является плоской.
- **1.015.** Даны прямая a и точка B, не принадлежащая прямой a. Докажите, что все прямые, проходящие через точку B и пересекающие прямую a, лежат в одной плоскости.
- **1.016.** \odot Прямые a и b пересекаются в точке C. Докажите, что все прямые, не проходящие через точку C и пересекающие данные прямые, лежат в одной плоскости. Лежат ли в одной плоскости все прямые, проходящие через точку C?
- **1.017.** Лежат ли в одной плоскости прямые a, b и c, если любые две из них пересекаются, но не существует точки, принадлежащей всем трём прямым? Выполните рисунок.
- **1.018.** Каждые две из трёх прямых a, b и c пересекаются, но не существует плоскости, содержащей все три прямые. Каким образом расположены данные прямые? Выполните рисунок.
- **1.019.** \odot Через точку пересечения прямых AB и AC проведена прямая m, не лежащая с ними в одной плоскости. Докажите, что прямые m и BC не пересекаются.
- **1.020.** Прямые a, b и c, лежащие в одной плоскости, пересекаются в точке O. Докажите, что существует плоскость, не проходящая через точку O, которая пересекает три данные прямые a, b и c.

- **1.021.** Прямые a, b и c проходят через точку M. Плоскость, не проходящая через точку M, пересекает прямые a, b и c в точках, не принадлежащих одной прямой. Докажите, что прямые a, b и c не лежат в одной плоскости.
- **1.022.** © Прямая a лежит в плоскости α, а прямая b пересекает эту плоскость в точке C, не принадлежащей прямой a. Докажите, что прямые a и b не пересекаются.
- **1.023.** Прямые p и q не лежат в одной плоскости. На прямой c, пересекающей прямые p и q в точках P и Q соответственно, отмечена точка A, отличная от точек P и Q. Можно ли через точку A провести ещё одну прямую, отличную от c и пересекающую p и q?
- **1.024.** Прямые a и b не лежат в одной плоскости. Прямые m и n пересекают каждую из прямых a и b в попарно различных точках. Верно ли, что прямые m и n не пересекаются?
- **1.025.** Точки H, E, F, K середины рёбер соответственно PC, AC, AB, PB тетраэдра PABC. Можно ли провести плоскость через прямые: а) PC и HF; б) PC и KE; в) PC и EF; г) HE и KF; д) EF и KH; е) HF и KE?
- **1.026.** $\[\mathbb{Z} \]$ Дана плоскость α и три прямые AB, BC и AC, пересекающие её соответственно в точках A_1 , B_1 и C_1 . Докажите, что точки A_1 , B_1 и C_1 принадлежат одной прямой.
- **1.027.** \circledcirc Точка M лежит вне плоскости, проходящей через точки A,B и C. Может ли четырёхугольник ABCM быть трапецией? Ответ обоснуйте.
- **1.028.** (Устно.) Справедливо ли утверждение: если вершины треугольника лежат в одном полупространстве относительно данной плоскости, то он весь лежит в этом полупространстве? Верным ли будет это утверждение, если вместо вершин треугольника взять середины всех трёх его сторон? Ответ обоснуйте.
- **1.029.** Плоскости α и β пересекаются по прямой a. В плоскости α дана точка A, а в плоскости β такие точки B и C, что прямые BC и a пересекаются. Постройте прямые пересечения плоскости, проходящей через точки A, B и C, с плоскостями α и β .

- **1.030.** © Плоскости α и β пересекаются по прямой a. Через точку A прямой a проведена плоскость γ , не содержащая прямую a. Докажите, что плоскость γ пересекает плоскости α и β по двум различным прямым.
- **1.031.** Плоский четырёхугольник ABCDтреугольник АМО не лежат в одной плоскости. По какой прямой пересекаются плоскости: a) ABM и AMD; б) ABC и CDM; в) ABD и ACM; г) ABC и BMD?
- **1.032.** Две различные плоскости ABC и ABD проходят через точку M. При этом AM = 5, BM = 9. Найдите длину отрезка *AB*.
- 1.033. Нарисуйте тетраэдр РАВС и выберите произвольные точки $M \in AB$, $K \in AP$. Постройте прямые пересечения плоскостей: а) АВР и СМК; б) СМК и АВС; в) СМК и АРС. Какая фигура получилась в сечении данного тетраэдра плоскостью CMK?
- **1.034.** Плоскость α проходит через вершину P тетраэдра PABC и точки $M \in AB$ и $K \in BC$. Постройте сечение тетраэдра плоскостью а. Плоскость в пересекает рёбра РА, РВ и РС соответственно в точках D, E и F. Постройте сечение тетраэдра плоскостью в и укажите отрезок прямой пересечения плоскостей α и β, лежащий внутри тетраэдра.
- **1.035.** \odot Дан куб $ABCDA_1B_1C_1D_1$. Постройте прямую, по которой пересекаются плоскости: a) AA_1B_1 и AA_1D_1 ; б) AA_1C и BCC_1 ; в) AB_1C_1 и AA_1B ; г) ACD_1 и CDD_1 ; д) A_1BC и ACD.

1.036. (Устно.) На рисунке 2 изображён куб $ABCDA_1B_1C_1D_1$; K — середина отрезка BC, $O = AC \cap BD$, $O_1 =$ $=A_1C_1\, \cap\, B_1D_1$. Постройте отрезки, по которым плоскость A_1BC_1 пересекает грани ABB_1A_1 , $A_1B_1C_1D_1$ и BCC_1B_1 данного куба. Выясните, лежит ли: а) прямая BO_1 в плоскости A_1BC_1 ; б) прямая B_1O в плоскости BDD_1 ; в плоскости

 A_1BC_1 ; в) прямая A_1O в плоскости ACC_1 ; в плоскости BDC_1 . Пересекает ли прямая C_1K прямые: a) AB; б) BB_1 ; в) AC?

- **1.037.** © Начертите куб $ABCDA_1B_1C_1D_1$ и выберите две произвольные точки M и K внутри грани ABCD. Постройте: а) прямую пересечения плоскости A_1MK и плоскости грани ABCD куба; б) точки пересечения плоскости A_1MK с прямыми, содержащими рёбра AD, BC и DD_1 куба; в) отрезки прямых, по которым плоскость A_1MK пересекает грани ABB_1A_1 , ADD_1A_1 и $A_1B_1C_1D_1$ куба.
- **1.038.** Через концы трёх рёбер куба, исходящих из одной вершины, проведена плоскость. Постройте линии пересечения этой плоскости с гранями куба. Найдите периметр и площадь фигуры, образованной полученными линиями, если ребро куба равно 1.
- **1.039.** Постройте линии пересечения куба и плоскости, проходящей через середины трёх его рёбер, исходящих из одной вершины. Найдите периметр и площадь фигуры, получившейся при этом пересечении, если ребро куба равно 1.
- **1.040.** $\[\]$ Дан правильный тетраэдр EFGS, у которого EF=12. Точки L и N лежат на рёбрах SG и SE соответственно, причём SL=3, SN=3. Точка T середина ребра SF. 1) Постройте: а) точку Y_1 пересечения прямой TL и плоскости EFG; б) точку Y_2 пересечения прямой TN и плоскости EFG; в) точку пересечения прямой TN и плоскости ELF; г) прямую пересечения плоскостей LY_1Y_2 и NFE. 2) Найдите: а) длину отрезка Y_1Y_2 ; б) отношение, в котором плоскость LY_1Y_2 делит отрезок SE, считая от точки S.
- **1.041.** На рисунке изобразите четыре прямые так, что они не лежат в одной плоскости, а любые две из них пересекаются.
- **1.042.** [⊙] Четыре прямые проходят через одну и ту же точку, но ни какие три из них не лежат в одной плоскости. Сколько существует плоскостей, каждая из которых содержит какие-либо две из данных прямых? Выполните рисунок.
- **1.043.** Как могут быть расположены прямые a, b, c и d, если известно, что все они не лежат в одной плоскости, а через любые две из них можно провести плоскость? Выполните рисунок.
- **1.044.** (Ycmho.) © Нарисуйте два треугольника ABC и ABH, не лежащие в одной плоскости. Возьмите на отрезках AC и

BC соответственно точки K и H. Пусть L — точка пересечения прямых KH и AB. Найдите точку пересечения прямой KH и плоскости ABH. Ответ обоснуйте. Будет ли прямая KH пересекать плоскость ABH, если точки K и H — середины отрезков AC и BC? Ответ обоснуйте.

- **1.045.** Фигура состоит из треугольников ABC и ACH, не лежащих в одной плоскости. Постройте сечение этой фигуры плоскостью, которая проходит через: а) точки M, O и P середины отрезков соответственно AH, CH и AB; б) точку B, точки K и O середины отрезков AC и CH.
- **1.046.** Дан правильный тетраэдр PABC; M центроид (точка пересечения медиан треугольника) грани ABC; K и L середины рёбер соответственно BC и AC. Постройте сечения тетраэдра плоскостями AKP, PMC и BPL. Постройте общий отрезок (если он существует), принадлежащий всем трём сечениям.
- **1.047.** Основание четырёхугольной пирамиды PABCD четырехугольник ABCD, не являющийся трапецией. 1) Постройте прямую, по которой пересекаются плоскости: а) PAC и PBD; б) PBM и PCH, где M и H середины рёбер соответственно PC и PA. 2) Постройте сечение пирамиды плоскостью, проходящей через ребро AB и точку K середину ребра PD.
- **1.048.** © Пусть PABC тетраэдр. Постройте его сечение плоскостью $\alpha = (MEK)$, если: а) точки M, K и E принадлежат рёбрам соответственно PA, PB и AC так, что AM:MP=3:1, BK:KP=1:2, AE:EC=1:1; б) точки M и E лежат на медианах PH и CF треугольников соответственно PAB и PBC, а точка K середина ребра PC.
- **1.049.** © $ABCDA_1B_1C_1D_1$ куб. Постройте его сечение плоскостью $\alpha=(PMK)$, если: а) точки P,M и K принадлежат соответственно рёбрам $BB_1,\ CC_1$ и DD_1 так, что $BP:PB_1=1:3,\ CM:MC_1=3:1,\ DK:KD_1=3:2;$ б) точки $M,\ P$ и K середины рёбер соответственно AB,BC и DD_1 .
- **1.050.** © Постройте сечение куба $ABCDA_1B_1C_1D_1$ плоскостью, проходящей через точки P, M и K, если: а) точки P и M лежат внутри квадрата ABCD, точка K середина ребра AA_1 ; б) точки P, M и K середины рёбер соответственно A_1B_1 , B_1C_1 и CC_1 .

- **1.051.** \odot На рисунке 3 изображены три попарно пересекающиеся прямые, которые пересекают плоскость α . Верно ли сделан рисунок?
- **1.052.** Вершина A ромба ABCD со стороной a принадлежит плоскости α , а остальные его вершины лежат в одном полупространстве относительно плоскости α . Известно, что прямая BD пересекает

Рис. 3

плоскость α в точке K. а) Постройте точки P и Q пересечения плоскости α с прямыми BC и CD. б) Найдите отношение PA:AQ, если BD:DK=3:1.

- **1.053.** \odot Определите вид треугольника DEF, если: а) через прямую, содержащую сторону FD, и точку пересечения высот треугольника можно провести, по крайней мере, две различные плоскости; б) через медиану DK и центр вписанной в треугольник окружности можно провести, по крайней мере, две различные плоскости; в) существует прямая, не лежащая в плоскости DEF, но пересекающая биссектрису DK и содержащая центр окружности, описанной вокруг треугольника KDF.
- **1.054.** Докажите, что через точку пересечения диагоналей трапеции и середины её оснований можно провести более чем одну плоскость.
- **1.055.** Диагональ AC четырёхугольника ABCD делит его на правильный треугольник ACD со стороной 10 и прямоугольный треугольник ABC с гипотенузой AC и катетом AB, равным 5. Этот четырёхугольник перегнули по диагонали AC так, что точка B не лежит в плоскости ACD. На прямой AC взяли точку M так, что сумма длин отрезков BM и MD наименьшая. Найдите значение этой суммы.
- **1.056.** Точка B не принадлежит плоскости правильного треугольника ACD со стороной 10. Длина отрезка AB равна 5, угол ABC прямой. Точка M принадлежит прямой AC. Найдите наименьшее значение длины ломаной BMD.
- **1.057.** $ABCA_1B_1C_1$ правильная треугольная призма, все рёбра которой имеют длину a. Точка M середина A_1B_1 ;

Введение в стереометрию

точка P — середина BC. Постройте сечение призмы плоскостью AMP, определите его вид и длины всех его сторон.

- **1.058.** $ABCDA_1B_1C_1D_1$ куб с ребром a. Точка P середина A_1B_1 ; точка K середина CC_1 ; точка D середина AM. Постройте сечение куба плоскостью PMK и найдите его сторону на грани $A_1B_1C_1D_1$.
- **1.059.** MABCD правильная четырёхугольная пирамида. MO её высота; AB = MO = a; точка P середина MC. Точка K лежит на отрезке MO так, что $MK = \frac{2a}{3}$. Постройте сечение пирамиды плоскостью KPD, определите его вид и найдите его сторону на грани CMB.
- **1.060.** $\[\]$ $ABCDA_1B_1C_1D_1$ куб с ребром $a.\ O$ точка пересечения диагоналей грани $A_1B_1C_1D_1$; точка K середина DC; точка M лежит на луче BB_1 , $B_1M=2a$. Постройте сечение куба плоскостью OKM и определите его вид.
- **1.061.** \odot В кубе $ABCDA_1B_1C_1D_1$ с ребром 6 точка K принадлежит ребру BB_1 и $BK:KB_1=5:1$, точка P принадлежит ребру DD_1 и $DP:PD_1=1:5$. Найдите расстояние от вершины C до общей точки трёх плоскостей A_1KP , ABD и KPC_1 .
- **1.062.** В правильном тетраэдре MABC с ребром 4 точки T и N принадлежат ребру AM, точка P середина ребра MB, точка K принадлежит ребру MC и MK = 3KC. Найдите расстояние от общей точки плоскостей MAB, NKP и TPK до прямой AB.
- **1.063.** Ξ В кубе $ABCDA_1B_1C_1D_1$ с ребром длины 4 точка M принадлежит ребру AA_1 и AM=3, точка P принадлежит ребру CC_1 и $PC_1=1$, точка K делит ребро DD_1 в отношении 1:3, считая от D. Найдите расстояния от вершины B до прямой пересечения плоскостей KMP и ADC.
- **1.064.** Ребро правильного тетраэдра MABC равно 18. Точки P и K являются соответственно серединами рёбер AM и BM, а точка T делит ребро MC в отношении MT:TC=4:1. Найдите расстояние от вершин A, B и C до общей прямой плоскостей TPK и ABC.

Графическая работа № 1 😊

Тема: «Следствия из аксиом стереометрии»

Сделайте чертежи по условиям задач, используя данные в них обозначения.

- **1.** Прямая MP лежит в плоскости α .
- **2.** Прямая AB пересекает плоскость α в точке M.
- **3.** Плоскость α проходит через прямую a и точку M, не принадлежащую прямой a, и пересекает прямую b в точке M.
- **4.** Прямые MC и MB пересекают плоскость β в одной и той же точке.
- **5.** Прямые MC и MB пересекают плоскость γ в разных точках.
- **6.** Прямые a и b, изображённые на рисунке параллельными, на самом деле не параллельны.
- **7.** Прямые a и b, изображённые на рисунке пересекающимися, на самом деле не имеют общих точек.
- **8.** Плоскости α и β имеют общую прямую a и пересекают прямую KM соответственно в точках K и M.
- **9.** Плоскости α и β пересекаются по прямой c, а плоскости α и γ также пересекаются по этой же прямой c.
- **10.** Плоскости α и β пересекаются по прямой MP, а плоскости α и γ пересекаются по другой прямой прямой MT.
- **11.** Прямые a, b и c имеют общую точку O и лежат в одной плоскости.
- **12.** Прямые a, b и c имеют общую точку O, но не существует плоскости, в которой лежат все эти три прямые.
- **13.** Плоскости α , β и γ имеют единственную принадлежащую всем трём плоскостям точку O.
- **14.** Прямые AB и MT таковы, что точка A не принадлежит плоскости BMT, а точка B не принадлежит прямой MT.
- **15.** На прямой a, пересекающей плоскость α в точке A, выбраны по разные стороны от A точки M и T. Прямые MM_1 и TT_1 параллельны между собой и пересекают плоскость α соответственно в точках M_1 и T_1 .
- **16.** Две вершины треугольника ABC лежат в плоскости α , а вершина C не лежит в α . Прямая d пересекает стороны CB и CA соответственно в точках M и T, а плоскость α в точке K.

Задачи к главе 1

- **1.065.** На рисунках 4—18 показаны точки M, P и R. Постройте сечение этого куба плоскостью MPR в каждом из заданных расположений точек M, P и R.
- **1.066.** $ABCDA_1B_1C_1D_1$ куб с ребром 1. Точка Q центр грани ABCD, точка M центр грани BCC_1B_1 , точка P центр грани ABB_1A_1 , точка K центр грани $A_1B_1C_1D_1$. Найдите длины отрезков: а) MQ; б) MP; в) BK; г) AC_1 ; д) MA_1 .

- **1.067.** В правильном тетраэдре PABC с ребром 1 точки H, R и M центры его граней соответственно ABC, PAC и PBC; точки D и F середины рёбер соответственно PB и BC. Найдите длины отрезков: а) PH; б) RH; в) AM; г) RM; д) DF.
- **1.068.** PABC правильный тетраэдр. Все рёбра имеют длину 8; M середина AP; K середина BP; точка E лежит на ребре PC; PE = 6. 1) Постройте: а) точку X_1 пересечения прямой ME и плоскости ABC; б) точку X_2 пересечения прямой KE и плоскости ABC; в) точку пересечения прямой ME и плоскости AKC; г) прямую пересечения плоскостей MX_1K и X_2PC . 2) Найдите: а) длину отрезка X_1X_2 ; б) отношение, в котором плоскость MX_1X_2 делит отрезок PB (считая от точки B).
- **1.069.** $ABCDA_1B_1C_1D_1$ куб с ребром 8; точка M середина AA_1 , точка N лежит на ребре DD_1 ; $D_1N=6$. 1) Постройте: а) точку X_1 пересечения MN и плоскости ABC; б) точку X_2 пересечения MN и плоскости $A_1B_1C_1$; в) точку X_3 пересечения BX_1 и плоскости DD_1C ; г) общую прямую плоскостей $X_1X_2X_3$ и AA_1B . 2) Найдите: а) длину отрезка X_1X_2 ; б) отношение, в котором точка X_3 делит отрезок DC (считая от D).
- **1.070.** Дана правильная треугольная призма $ABCA_1B_1C_1$, все рёбра которой имеют длину a. Точка C середина отрезка C_1P , K точка пересечения диагоналей грани

Введение в стереометрию

- AA_1C_1C , M точка пересечения диагоналей грани BB_1C_1C . Постройте сечение призмы плоскостью PKM и определите длины его сторон, лежащие в плоскостях ABC и $A_1B_1C_1$.
- **1.071.** $\[\]$ MABCD правильная четырёхугольная пирамида. O точка пересечения диагоналей ABCD. MO = AB = a. Точка O середина отрезка MP; точка K середина MD; точка T принадлежит лучу BC, $CT = \frac{a}{3}$, и C лежит между B
- и T. Постройте сечение пирамиды плоскостью PKT, определите его вид и найдите длину стороны сечения, лежащую на основании пирамиды.

ПРЯМЫЕ В ПРОСТРАНСТВЕ

Задачи к § 6. Классификация взаимного расположения двух прямых

- **2.001.** © Точки A, B, C и P не лежат в одной плоскости. Докажите, что прямые BC и AP скрещиваются.
- **2.002.** © Нарисуйте куб $ABCDA_1B_1C_1D_1$. 1) Выделите в нём ребро BB_1 и назовите все рёбра куба: а) параллельные ему; б) пересекающие его; в) скрещивающиеся с ним. 2) Выделите диагональ AD_1 грани ADD_1A_1 куба и назовите диагонали других граней: а) параллельные AD_1 ; б) пересекающие её; в) скрещивающиеся с ней. Ответ обоснуйте.
- 2.003. Каково взаимное расположение прямых, содержащих рёбра A_1D_1 и BB_1 куба $ABCDA_1B_1C_1D_1$? Существуют ли в плоскости грани AA_1B_1B прямые, пересекающие каждую из прямых A_1D_1 и BB_1 ? Если существуют такие прямые, то каково их число?
- **2.004.** \odot Прямая a лежит в плоскости α . Прямая b параллельна прямой a и имеет общую точку M с плоскостью α . Доказать, что прямая b также лежит в плоскости α .

Решение. Так как прямые a и b параллельны, то через них можно провести плоскость. Обозначим её β (рис. 19). Прямая b проходит через точку M, поэтому плоскость β проходит через прямую a и точку M. Но через M и aпроходит и плоскость а. По теореме 1 плоскости α и β совпадают. Это означает, что $b \subset \alpha$.

Заметим, что можно рассуждать и так. Предположим, что прямая b не лежит в плоскости a, а имеет с ней только одну общую точку M, т. е. прямая b пересекает плоскость α в точке M.

Прямые в пространстве

Так как прямые a и b параллельны, то они не пересекаются. Значит, точка M пересечения прямой b с плоскостью α не принадлежит прямой a, которая, в свою очередь, лежит в плоскости α . Тогда по признаку скрещивающихся прямых прямые a и b должны скрещиваться. Это противоречит условию задачи: $a \parallel b$. Следовательно, предположение о том, что прямая b не лежит в плоскости α , неверно. Это означает, что $b \subset \alpha$.

- **2.005.** Прямые a и b параллельны. Прямая b лежит в плоскости α . Может ли прямая a пересекать плоскость α ?
- **2.006.** Дано: $a \parallel b$, $a_1 \parallel a$, $b_1 \parallel b$. Каково взаимное положение прямых a_1 и b_1 ? Ответ обоснуйте.
- **2.007.** Даны четыре попарно параллельные прямые a, b, c и d, никакие три из которых не лежат в одной плоскости. Нарисуйте все плоскости, проходящие через каждые две из данных прямых. Сколько таких плоскостей можно провести?
- **2.008.** © Дано: прямые a и b скрещиваются, $a_1 \parallel a$, $b_1 \parallel b$. Каким может быть взаимное расположение прямых a_1 и b_1 ? Ответ обоснуйте.
- **2.009.** \odot Даны две скрещивающиеся прямые a и b. Точки A_1 , A_2 , A_3 лежат на прямой a, точки B_1 , B_2 , B_3 на прямой b. Могут ли отрезки A_2B_2 и A_3B_3 иметь общую середину? Ответ обоснуйте.
- **2.010.** \odot Докажите, что середины рёбер AP, CP, BC и AB тетраэдра PABC лежат в одной плоскости. Определите вид фигуры, вершинами которой служат эти точки.
- **2.011.** \odot Прямые a и b параллельны. Докажите, что все прямые пространства, пересекающие обе прямые a и b, лежат в одной плоскости.
- **2.012.** Даны два параллелограмма ABCD и ABPK, не лежащие в одной плоскости. Докажите, что треугольники AKD и BCP равны.
- **2.013.** Треугольник ABC лежит в плоскости α . Через его вершины проведены параллельные прямые, не лежащие в плос-

кости α . На них отложены равные отрезки AA_1 , BB_1 и CC_1 по одну сторону от α . Докажите, что треугольники ABC и $A_1B_1C_1$ равны.

- **2.014.** \odot Плоскости α и β пересекаются по прямой p. Точка A лежит в плоскости α , точка B в плоскости β , причём ни одна из них не лежит на прямой p. Докажите, что прямые p и AB скрещиваются.
- **2.015.** © Конец B отрезка AB лежит в плоскости α ; C внутренняя точка отрезка AB. Через A и C проведены параллельные прямые, пересекающие α соответственно в точках A_1 и C_1 . Найти длину отрезка CC_1 , если: a) BC = 12, $AB:AA_1 = 3:5;$ б) $AA_1 = 15$, AC:CB = 2:3; в) $AA_1 = 21$, AC:AB = 2:7.

Решение. Параллельные отрезки AA_1 и CC_1 определяют плоскость β , которая содержит отрезок AB и пересекает плоскость α по прямой A_1C_1 , проходящей через точку B (рис. 20).

Для вычисления длины отрезка CC_1 используем обобщённую теорему Фалеса в плоскости β .

Рис. 20

Исходя из условия $CC_1 \| AA_1$, имеем:

а)
$$AB:AA_1=BC:CC_1=3:5$$
, откуда $CC_1=\frac{5}{3}BC=20$;

6)
$$AC:CB=2:3\Rightarrow BC:AB=3:5\Rightarrow BC=\frac{3}{5}AB$$
.

Далее,
$$\triangle \, CBC_1 \cong \triangle \, ABA_1 \Rightarrow BC : AB = CC_1 : AA_1 \Rightarrow CC_1 = \frac{BC \cdot AA_1}{AB} = \frac{0.6AB \cdot AA_1}{AB} = 0.6 \cdot 15 = 9;$$

в)
$$AC:AB=2:7\Rightarrow BC:AB=5:7\Rightarrow BC=rac{5}{7}AB$$
. Тогда

$$\triangle CBC_1 \sim \triangle ABA_1 \Rightarrow CC_1 : AA_1 = BC : AB \Rightarrow CC_1 = \frac{BC \cdot AA_1}{AB} = \frac{5}{7}AA_1 = 15.$$

Ответ: а) 20; б) 9; в) 15.

- **2.016.** $\[\]$ Прямая AB пересекает плоскость α . Через концы отрезка AB и его середину C проведены параллельные прямые, пересекающие плоскость α в точках A_1 , B_1 и C_1 . Рассмотрите случаи: 1) отрезок AB не пересекает плоскость α ; 2) отрезок AB пересекает α . В каждом случае найдите: а) длину отрезка CC_1 , если: $AA_1 = 7$, $BB_1 = 5$; б) длину отрезка AA_1 , если $BB_1 = 7$, $CC_1 = 11$.
- **2.017.** Даны прямые a и b. Какую фигуру заполняют все прямые пространства, пересекающие a и параллельные b, если прямые a и b: а) скрещиваются; б) пересекаются; в) параллельны?
- **2.018.** Дан тетраэдр PABC. Точки $K_1,\ K_2,\ K_3,\ K_4,\ K_5,\ K_6$ середины рёбер соответственно $AP,\ AB,\ BC,\ CP,\ PB,\ AC$. Как расположены прямые: а) AP и BC; б) K_1K_5 и BC; в) K_2K_5 и K_3K_4 ; г) K_1K_2 и K_3K_4 ; д) K_1K_5 и K_2K_4 ; е) K_2C и K_3K_6 ; ж) K_5K_6 и K_1K_2 ; з) K_2K_4 и K_5K_6 ?
- **2.019.** $\[\]$ Через вершины A, B, C и D параллелограмма ABCD, расположенного в одном полупространстве относительно плоскости α , точку O пересечения его диагоналей и центроид M треугольника BCD проведены параллельные прямые, которые пересекают данную плоскость α соответственно в точках A_1 , B_1 , C_1 , D_1 , O_1 , M_1 . Найдите MM_1 , OO_1 и DD_1 , если $AA_1 = 17$, $CC_1 = 5$, $BB_1 = 15$.
- **2.020.** Каким может быть взаимное расположение двух прямых, если: а) они обе лежат в одной плоскости; б) не существует плоскости, в которой они обе лежат; в) одна из них лежит в плоскости α , другая в плоскости β ; г) одна из них лежит в плоскости α , а другая пересекает эту плоскость? Сделайте соответствующие рисунки.
- **2.021.** © Каждая из двух прямых a и b скрещивается с третьей прямой c. Верно ли, что прямые a и b скрещиваются? Ответ обоснуйте.
- **2.022.** \odot Даны две скрещивающиеся прямые a и b и не принадлежащая им точка C. Через точку C проведите прямую p, чтобы она пересекала прямые a и b. Всегда ли задача имеет решение?

- **2.023.** Даны две скрещивающиеся прямые a и b. Точки A_1 , A_2 , A_3 принадлежат прямой a, точки B_1 , B_2 , B_3 прямой b; точка B_1 середина отрезка A_1C_1 , точка B_2 середина A_2C_2 , точка B_3 середина A_3C_3 . а) Могут ли совпадать точки C_1 и C_2 ? б) Чему может быть равно расстояние C_2C_3 , если $C_1C_3=C_1C_2=7$?
- **2.024.** © В треугольнике ABC точка K середина AC, M центроид треугольника. Через точки A, B, C, M и K проведены параллельные прямые, пересекающие плоскость γ в точках A_1 , B_1 , C_1 , M_1 и K_1 соответственно; $AA_1 = 8$, $BB_1 = 11$, $KK_1 = 5$. Найдите MM_1 и CC_1 , если плоскость γ не пересекает треугольник.
- **2.025.** Докажите, что отрезки, соединяющие середины противолежащих рёбер тетраэдра, пересекаются в одной точке и делятся этой точкой пополам.
- **2.026.** © Дан тетраэдр ABCD; K, P произвольные точки рёбер соответственно BC и AD. Определите фигуру, образованную серединами всех таких отрезков PK.
- **2.027.** Дан куб $ABCDA_1B_1C_1D_1$. Точки P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 середины рёбер соответственно A_1B_1 , B_1C_1 , BB_1 , CC_1 , DD_1 , AB и AD. Как расположены прямые: а) P_1P_2 и P_3P_4 ; б) P_2P_3 и P_6P_7 ; в) P_2P_3 и P_5P_7 ; г) P_5P_7 и P_3P_6 ; д) P_2P_5 и P_3P_7 ; е) P_1P_2 и P_4P_5 ; ж) P_1P_3 и P_6P_7 ?
- **2.028.** Точка D не лежит в плоскости треугольника ABC. Точки M_1 , M_2 , M_3 , M_4 центроиды треугольников соответственно BDC, ACD, ABD и ABC; точки K_1 , K_2 , K_3 середины отрезков соответственно BC, CD и AB. 1) Определите взачиное положение прямых: а) AM_1 и BC; б) DM_4 и AB; в) AM_3 и BD; г) M_1M_4 и AD; д) DK_2 и BK_3 ; е) CK_1 и AD. 2) Найдите отношение: а) M_2M_4 : K_1K_2 ; б) M_2M_4 : BD.
- **2.029.** $\[\]$ Пусть точка D не лежит в плоскости ABC; точка K середина AB; точка P середина CD; точка M центроид треугольника ABC. а) Докажите, что фигура ADPB не может быть трапецией. б) Докажите, что прямые DM и KP пересекаются. в) B каком отношении (считая от D) прямая KP

Прямые в пространстве

делит отрезок DM? г) Определите взаимное положение прямых MP и AD. Ответы обоснуйте.

2.030. © В тетраэдре PABC точки K_1 , K_2 , P_1 , P_2 — середины рёбер соответственно AP, CP, AB, CB. Докажите, что отрезок, по которому пересекаются треугольники BK_1K_2 и PP_1P_2 , параллелен ребру AC и равен $\frac{1}{3}AC$.

Задачи к § 7. Угол между лучами. Угол между прямыми в пространстве. Перпендикулярные прямые

- **2.031.** Прямая AM не лежит в плоскости квадрата ABCD, угол MAD прямой, а угол MAB равен 30° . Найдите угол: 1) между лучами: а) DC и AM; б) BC и MA; в) AM и CD; 2) между прямыми: а) DC и AM; б) BC и MA; в) AC и AD.
- **2.032.** Является ли верным утверждение: две прямые в пространстве, перпендикулярные третьей прямой, параллельны, если: а) все три прямые лежат в одной плоскости; б) все три прямые параллельны одной плоскости; в) каждые две из них скрещиваются?
- **2.033.** Прямые a и b параллельны, прямая c перпендикулярна прямой a. Перпендикулярны ли прямые b и c? Может ли прямая a пересекать плоскость, в которой лежат прямые b и c?
- **2.034.** В кубе $ABCDA_1B_1C_1D_1$ диагонали AC и BD грани ABCD пересекаются в точке O. Найдите угол между прямыми: а) AD_1 и A_1C_1 ; б) AB и DC_1 ; в) AB и C_1D_1 ; г) AD_1 и OD_1 ; д) AA_1 и OD_1 .
- **2.035.** Точка E середина ребра CC_1 куба $ABCDA_1B_1C_1D_1$. Постройте угол между прямыми A_1B и B_1E и найдите его величину, если длина ребра куба равна a.
- **2.036.** Пусть E и F середины рёбер соответственно AB и AD куба $ABCDA_1B_1C_1D_1$. Опустите перпендикуляры из вершины A_1 на следующие прямые: a) AD_1 ; б) D_1E ; в) BD; г) EF; д) C_1D .

2.037. Ξ $EFGHE_1F_1G_1H_1$ — куб. Точки L, N и T — середины рёбер F_1G_1 , G_1H_1 и H_1H соответственно; K — точка пересечения диагоналей грани EE_1F_1F .

Заполните таблицу расположения прямых и величин углов между ними.

Nō	Прямые	Расположение	Величина угла между прямыми
1	LN и EG		
2	$F_1 T$ и FH		
3	F_1N и KT		
4	TN и EG		
5	F_1T и KN		
6	KH_1 и LN		

- **2.038.** © Найдите угол между непересекающимися диагоналями двух соседних граней куба.
- **2.039.** Точка E середина ребра PB правильного тетраэдра PABC. Опустите перпендикуляры из точки E на прямые: а) AP; BC и AB; б) AC. Найдите длину каждого перпендикуляра, если ребро тетраэдра равно a.

Задачи к главе 2

- **2.040.** Даны скрещивающиеся прямые a и b; прямая c пересекает каждую из данных прямых. Докажите, что любая прямая, параллельная прямой c, скрещивается по крайней мере с одной из прямых a, b.
- **2.041.** $\[\mathbb{Z} \]$ Из всех вершин и точки M пересечения диагоналей трапеции ABCD, расположенной в одном полупространстве относительно плоскости α , проведены параллельные прямые AA_1 , BB_1 , CC_1 , DD_1 , MM_1 до пересечения с плоскостью α .

Прямые в пространстве

Точки A_1 , B_1 , C_1 , D_1 , M_1 принадлежат плоскости α . Найдите MM_1 и CC_1 , если $BC \parallel AD$; $BC = \frac{1}{2}AD$; $AA_1 = 18$; $BB_1 = 7$; $DD_1 = 10$.

- **2.042.** Пусть точка D не принадлежит плоскости треугольника ABC. а) Докажите, что прямые AD и BC скрещиваются. б) Докажите, что прямые DM_1 и AM_2 пересекаются (M_1 и M_2 точки пересечения медиан треугольников ABC и DBC). в) В каком отношении (считая от точки D) прямая AM_2 делит отрезок DM_1 ? г) Определите взаимное расположение прямых AD и M_1M_2 . Ответ обоснуйте.
- **2.043.** В тетраэдре $A_1A_2A_3A_4$ с ребром 6 точки P_1 , P_2 , P_3 , P_4 , P_5 , P_6 середины рёбер соответственно A_1A_2 , A_2A_3 , A_3A_1 , A_4A_1 , A_4A_2 , A_4A_3 ; M_1 , M_2 , M_3 , M_4 центроиды граней соответственно $A_2A_3A_4$, $A_3A_4A_1$, $A_4A_1A_2$, $A_1A_2A_3$ (рис. 21). 1) До-

кажите, что: а) прямая A_4M_4 скрещивается с каждой из сторон треугольника $A_1A_2A_3$; б) четырёхугольник $A_1A_4P_6A_2$ — не трапеция; в) рёбра тетраэдра $M_1M_2M_3M_4$ параллельны соответствующим рёбрам данного тетраэдра. 2) Проверьте, не является ли тетраэдр $M_1M_2M_3M_4$ правильным. Если этот тетраэдр — правильный, найдите длины его рёбер. 3) Найди-

те углы между следующими прямыми: а) M_1M_4 и A_2A_4 ; б) M_1M_2 и P_1P_6 ; в) P_2P_4 и A_1A_4 ; г) M_2M_4 и A_2P_4 .

- **2.044.** PABC правильный тетраэдр с ребром 6. Точка H лежит на ребре AB так, что AH: HB=1:3. Проведите через точку H перпендикуляры на следующие рёбра тетраэдра: а) AC и AP; б) BC и BP; в) AB (в каждой из граней ABC и ABP). Найдите длину каждого перпендикуляра.
- **2.045.** $ABCDA_1B_1C_1D_1$ куб с ребром a; O_1 , O_2 , O_3 , O_4 , O_5 , O_6 центры граней соответственно ABB_1A_1 , BCC_1B_1 , C_1D_1DC , AA_1D_1D , ABCD, $A_1B_1C_1D_1$; M_1 центроид треугольника ACB_1 (рис. 22). Определите: 1) взаимное положе-

Рис. 22

ние прямых: а) D_1M_1 и AC; б) AC и BC_1 ; в) O_1O_2 и O_3O_4 ; г) O_1O_2 и BD; д) B_1O_5 и BC_1 ; 2) какой фигурой является четырёхугольник $O_1O_2O_3O_4$; 3) отношение отрезков: а) O_1O_5 и B_1C_1 ; б) O_1O_5 и B_1B ; в) M_1O_5 и A_1A ; 4) величину угла между прямыми: а) A_1C_1 и AD_1 ; б) A_1B и AC; в) A_1B и DC_1 ; г) CD_1 и BO_6 ; д) A_1B и CD.

Прямые в пространстве

2.047. В кубе $ABCDA_1B_1C_1D_1$ точка M — середина B_1C_1 , точка F — середина D_1C_1 , точка K — середина DC, O — точка пересечения диагоналей квадрата ABCD. Заполните таблицу.

No	Прямые	Расположение	Величина угла между прямыми
1	AA_1 и CC_1		
2	A_1C_1 и B_1D_1		
3	A_1C_1 и C_1D_1		
4	$A_1 M$ и CC_1		
5	A_1D и DC_1		
6	A_1C_1 и BD		
7	A_1C и AC		
8	$A_1 B$ и $D_1 C$		
9	$A_1 C$ и BB_1		
10	A_1D и AC		
11	$A_1 M$ и BC		
12	$A_1 M$ и BK		
13	$C_1 K$ и $B_1 F$		
14	$C_1 O$ и AB_1		
15	$A_1 B$ и $B_1 D$		

- **2.048.** Дан правильный тетраэдр PABC. Точка K середина ребра PB. Опустите из точки K перпендикуляры на прямые: а) AP; б) AC; в) BH, где точка H середина ребра AC.
- **2.049.** В правильной треугольной пирамиде PABC с вершиной P углы APB, BPC и APC прямые. Точка H центр правильного треугольника ABC. Опустите из точки H перпендикуляры на прямые: а) CP; б) BP; в) AP.

- **2.050.** В основании пирамиды PABC лежит правильный треугольник ABC, а треугольники PAB и PAC прямоугольные, причём AP = AB. Точка M середина ребра PA. Опустите перпендикуляры из точки M на следующие прямые: а) BC; б) PC; в) AH, где точка H середина ребра BP.
- **2.051.** В правильной пирамиде PABC с вершиной P углы APB, BPC и APC прямые. Точка H середина апофемы PK грани BPC. Опустите из точки H перпендикуляры на прямые: а) CP; б) AC; в) AP.
- **2.052.** Пусть точка M середина ребра AB пирамиды ABCD, а точка N делит ребро AC в отношении 1:2, считая от вершины A. Докажите, что в плоскости грани BCD нет ни одной прямой, параллельной прямой MN.
- **2.053.** $\[\]$ Равнобедренные трапеции ABCP и PCMK имеют общую боковую сторону и лежат в разных плоскостях, причём BC=3, AP=12, PK=24. Определите взаимное расположение прямых AB и MK при каждом из следующих значений длины отрезка MC: a) 5; б) 6; в) 7; г) 8.
- **2.054.** $\[\]$ ABCD правильный тетраэдр с длиной ребра 7. Точки M и K середины рёбер BD и AC соответственно. Точка P делит ребро AC в отношении 5:2, считая от точки C. Найдите длину заключённого внутри тетраэдра отрезка прямой, проходящей через точку P параллельно прямой KM.
- **2.055.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1. Найдите величину угла между прямыми: а) AC и DE_1 ; б) A_1B и C_1D ; в) A_1B и B_1D ; г) A_1B и C_1F ; д) A_1B и B_1F .

ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Задачи к § 8. Параллельность прямой и плоскости

- **3.001.** Через данную точку A, не принадлежащую данной плоскости α , проведите прямую, параллельную α .
- **3.002.** Верно ли утверждение: если прямая параллельна плоскости, то она не пересекает ни одной прямой: а) лежащей в этой плоскости; б) параллельной этой плоскости? Ответ обоснуйте.
- **3.003.** Известно, что прямая m параллельна плоскости α . Параллельна ли эта прямая любой прямой, лежащей в плоскости α ? Ответ обоснуйте.
- **3.004.** Через данную прямую a проведите плоскость, параллельную данной прямой b. (Рассмотрите возможные случаи взаимного расположения прямых a и b.)
- **3.005.** Даны две скрещивающиеся прямые a и b. Через каждую точку прямой a проводится прямая, параллельная прямой b. Доказать, что все такие прямые лежат в одной плоскости. Как расположена эта плоскость по отношению к прямой b? Ответ обосновать.

Решение. Отметим на прямой a произвольную точку B и проведём через неё прямую c (единственную!), параллельную прямой b. Через пересекающиеся прямые a и c проводим плоскость (единственную!). Обозначим её через α (рис. 23). Эта плоскость (по признаку параллельности прямой и плоскости) параллельна прямой b.

Пусть M — произвольная точка прямой a, m — прямая, проходящая через точку M параллельно прямой b. Тогда прямая m параллельна прямой c (т. 7) и лежит в плоскости α (почему?). В силу произвольного выбора точки M на пря-

мой а можно сделать вывод: все прямые пространства, параллельные прямой b и пересекающие прямую а, лежат в плоскости, которая проходит через прямую а и параллельна прямой b.

Самостоятельно докажите единственность плоскости а.

3.006. © В тетраэдре ABCD точки K, F, N и M — середины рёбер соответственно AD, BD, BC и AC. Заполните таблицу, выбрав (обведя в кружок) определённое вами расположение указанных прямой и плоскости: A — пересекаются, B — параллельны, B — прямая лежит в плоскости, Γ — невозможно определить.

Nº	Прямая и плоскость	Взаимное расположение
1	DB и AMN	АБВГ
2	MN и ABC	АБВГ
3	KC и DMN	АБВГ
4	MN и ABD	АБВГ
5	KF и DMN	АБВГ
6	FN и KMF	АБВГ
7	CF и ADN	АБВГ
8	FN и DMK	АБВГ

- **3.007.** \circledcirc Прямая a параллельна плоскости α и лежит в плоскости β . Плоскости α и β пересекаются по прямой b. Как расположены прямые a и b? Ответ обоснуйте.
- **3.008.** Прямая a параллельна плоскости α . Прямая b пересекает прямую a. Каким может быть взаимное расположение прямых b и α ?
- **3.009.** Прямая a параллельна плоскости α . Каким может быть взаимное расположение прямых a и b, если прямая b лежит в плоскости α ?
- **3.010.** Даны плоскости α и β и прямая a. Причём $\alpha \cap \beta = b$, $a \parallel \alpha$, $a \parallel \beta$. Каково взаимное расположение прямых a и b?

Прямая и плоскость в пространстве

- **3.011.** Докажите, что через каждую из двух скрещивающихся прямых можно провести плоскость, параллельную другой прямой, и притом только одну.
- **3.012.** Справедливо ли утверждение: а) $a \parallel \alpha$, $b \parallel \alpha \Rightarrow a \parallel b$; б) $a \parallel \alpha$, $\beta \parallel a \Rightarrow \alpha \parallel \beta$; в) $a \not\parallel \alpha$, $b \not\parallel \alpha \Rightarrow a \not\parallel b$? Ответ обоснуйте и сделайте соответствующий рисунок.
- **3.013.** Дано: $a \parallel \alpha$, $a \parallel b$, $b \parallel \beta$, $\alpha \parallel \beta$. Какое из четырёх утверждений является следствием трёх оставшихся? Ответ обоснуйте и сделайте соответствующий рисунок.
- **3.014.** Через данную точку M проведите: а) прямую, параллельную каждой из двух данных пересекающихся плоскостей α и β ; б) плоскость, параллельную каждой из двух данных скрещивающихся прямых a и b.
- **3.015.** 0 В правильном тетраэдре DABC, все рёбра которого равны 6, точка K лежит на ребре BD так, что DK=2; точка M лежит на ребре BC так, что BM=4; точка P середина ребра AB. а) Докажите, что прямая KM параллельна плоскости ADC. б) Докажите, что прямая PM не параллельна плоскости ADC. в) Проведите через точку P прямую, параллельную плоскости ADC и пересекающую ребро DB в точке L. Найдите длину отрезка LK. г) Постройте сечение тетраэдра плоскостью, проходящей через точки P и K параллельно прямой AC.
- **3.016.** \odot Постройте сечение тетраэдра PABC плоскостью, проходящей через внутреннюю точку H грани ABC параллельно прямым BC и AP.
- **3.017.** \odot Основанием четырёхугольной пирамиды PABCD является параллелограмм ABCD. Постройте её сечение плоскостью, проходящей через прямую AB и точку K, лежащую в грани: a) BCP; б) DCP. Какая фигура получается в сечении?
- **3.018.** $\[\]$ Основанием правильной четырёхугольной пирамиды PABCD является квадрат ABCD. Постройте сечение этой пирамиды плоскостью, проходящей через AB и точку K середину ребра PC. Найдите площадь этого сечения, если все рёбра пирамиды равны 8.

- **3.019.** \odot Постройте прямую, которая: а) лежит в данной плоскости α и параллельна данной прямой a; б) лежит в данной плоскости α и параллельна данной плоскости β ; в) проходит через данную точку A и параллельна данной плоскости β ; г) параллельна каждой из двух данных пересекающихся плоскостей α и β ; д) параллельна данной плоскости α и пересекает каждую из двух данных прямых a и b.
- **3.020.** Постройте плоскость, которая: а) проходит через данную точку A и параллельна данной прямой m; б) проходит через данную прямую a и параллельна данной прямой m; в) проходит через данную точку A и параллельна данным прямым a и m.
- **3.021.** Даны три попарно скрещивающиеся прямые a, b и c. Всегда ли существует плоскость: a) параллельная каждой из этих прямых; b0 пересекающая каждую из них? Ответ обоснуйте и выполните соответствующий рисунок.
- **3.022.** Дан куб $ABCDA_1B_1C_1D_1$. Пусть P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 середины рёбер соответственно AB, BB_1 , B_1A_1 , A_1A , CD, CC_1 , C_1D_1 , DD_1 . Каково взаимное положение таких прямых и плоскостей, как: а) P_3P_4 и $P_1P_2P_6$; б) P_7P_8 и $P_1P_2P_6$; в) P_4P_7 и $P_1P_2P_5$; г) P_1P_6 и AB_1D ; д) AC и $P_3P_4P_5$; е) BD и $P_3P_4P_5$?
- **3.023.** $\[\]$ Дан параллелепипед $ABCDA_1B_1C_1D_1$, P и Q внутренние точки граней соответственно ABCD и $A_1B_1C_1D_1$. Постройте сечение параллелепипеда плоскостью, проходящей через точки P и Q и параллельной прямой CC_1 .
- **3.024.** $\[\]$ Через вершину P правильного тетраэдра PMBH с ребром, равным 8, проведите сечение, параллельное ребру MB. Сколько таких сечений тетраэдра можно провести? Какие фигуры при этом получаются в сечениях? Найдите площадь сечения, проходящего через середину K ребра BH.
- **3.025.** $\[\]$ В правильной четырёхугольной пирамиде PABCD с вершиной P все рёбра равны 4. Постройте сечение этой пирамиды, проходящее через центр O её основания параллельно ребру BC и медиане PK грани BCP. Установите форму полученного сечения; найдите его периметр и площадь.

Прямая и плоскость в пространстве

- **3.026.** $\[\]$ Дан правильный тетраэдр PABC с ребром **6**. Через центр O основания ABC тетраэдра проведена плоскость α , параллельная BC и пересекающая ребро AP в некоторой точке K. Постройте сечение тетраэдра плоскостью α . Укажите границы изменения периметра и площади этого сечения при всевозможных положениях точки K на ребре AP.
- **3.027.** Дан куб $ABCDA_1B_1C_1D_1$; точки P и Q середины рёбер AB и BC соответственно. Постройте сечение куба плоскостью, проходящей через точки P и Q параллельно диагонали BD_1 куба.
- **3.028.** Дан куб $ABCDA_1B_1C_1D_1$; точка P середина ребра AA_1 . Постройте сечение куба плоскостью, проходящей через точки P и D_1 параллельно диагонали AC грани ABCD куба. Найдите периметр сечения, если ребро куба равно 10.

Задачи к § 9—10. Перпендикулярность прямой и плоскости.

Перпендикуляр и наклонная к плоскости

- **3.029.** (Устно.) Докажите, что отрезок, соединяющий центры двух противоположных граней куба, перпендикулярен этим граням.
- **3.030.** (Ycmho.) Через центр O окружности, описанной около треугольника ABC, проведена прямая перпендикулярно плоскости этого треугольника. Докажите, что каждая точка этой прямой равноудалена от вершин треугольника.
- **3.031.** Через точку M прямой a проводятся прямые, перпендикулярные прямой a. Докажите, что все они лежат в одной плоскости.
- **3.032.** (Устно.) Из точки M вне плоскости α проведены к ней три равные наклонные MA, MB и MC. Докажите, что основание H перпендикуляра, опущенного из точки M на плоскость α , является центром окружности, описанной около треугольника ABC.
- **3.033.** Расстояние от точки M до плоскости правильного шестиугольника со стороной 8 равно 8. Найдите расстояния

от точки M до сторон шестиугольника, если она равноудалена от каждой из них.

- **3.034.** Точка P удалена от каждой стороны правильного треугольника на 30 см. Найдите расстояние от точки P до плоскости треугольника, если площадь вписанного в этот треугольник круга равна 576π см².
- **3.035.** Точка M удалена от плоскости прямоугольного треугольника на расстояние, равное $5\sqrt{3}$, и равноудалена от каждой его стороны. Найдите расстояние от точки M до каждой из сторон этого треугольника, если его гипотенуза и один из катетов равны соответственно 25 и 15.
- **3.036.** Точка O центроид правильного треугольника ABC; OP прямая, перпендикулярная плоскости ABC; M произвольная точка прямой OP ($M \neq O$). Докажите, что: а) расстояния от точки M до вершин треугольника ABC равны; б) расстояния от точки M до сторон треугольника ABC равны; в) $\angle MAO = \angle MBO = \angle MCO$; г) $\angle AMO = \angle BMO = \angle CMO$.
- **3.037.** \odot Прямая AK перпендикулярна к плоскости квадрата ABCD. Докажите, что: а) прямая KD перпендикулярна прямой CD; б) прямая BC перпендикулярна прямой BK; в) прямая KC перпендикулярна прямой BD.
- **3.038.** \odot Из точки M проведён перпендикуляр MB к плоскости прямоугольника ABCD. Докажите, что треугольники AMD и CMD прямоугольные. Перпендикулярны ли прямые MD и AC?
- **3.039.** © Прямая AK перпендикулярна плоскости параллелограмма ABCD. Оказалось, что прямая KD перпендикулярна прямой CD. Докажите, что четырёхугольник ABCD прямоугольник.
- **3.040.** Прямая AK перпендикулярна плоскости параллелограмма ABCD. Оказалось, что прямая KC перпендикулярна прямой BD. Докажите, что четырёхугольник ABCD ромб.
- **3.041.** © Два прямоугольных треугольника ACB и ACM с прямым углом в вершине C имеют общий катет AC. Прямые AC и BM скрещиваются. Докажите, что: а) CM проекция наклонной BC на плоскость AMC; б) CB проекция наклонной MC на плоскость ABC.

- **3.042.** Прямая BM перпендикулярна плоскости треугольника AMC, а прямая BK перпендикулярна прямой AC, где точка K середина отрезка AC. Докажите, что треугольник AMC равнобедренный, и укажите его равные углы.
- **3.043.** Прямая BM перпендикулярна плоскости треугольника AMC, а прямая BC перпендикулярна прямой AC. Докажите, что треугольник AMC прямоугольный, и укажите его прямой угол.
- **3.044.** Прямая OB перпендикулярна плоскости окружности с центром O. Прямая a касается этой окружности в точке K. Докажите, что прямая BK перпендикулярна прямой a.
- **3.045.** Равные треугольники имеют общую сторону. Какую фигуру заполняют высоты всех таких треугольников, опущенные на эту сторону?
- **3.046.** Два равнобедренных треугольника PMK (PM = PK) и PHT (PH = PT) имеют общую медиану PO. Докажите, что прямая PO перпендикулярна плоскости MHK.
- **3.047.** © Точка O центр симметрии параллелограмма ABCD, M точка вне плоскости этого параллелограмма. При этом MA = MC, MB = MD. Докажите, что $MO \perp (ABC)$.
- **3.048.** Прямая a пересекает плоскость α в точке M и не перпендикулярна этой плоскости. Докажите, что в плоскости α через точку M проходит прямая, перпендикулярная прямой a, и притом только одна.
- **3.049.** К плоскости правильного шестиугольника ABCDEF проведён перпендикуляр CM. Докажите перпендикулярность прямых: а) MA и AF; б) ME и EF.
- **3.050.** К плоскости прямоугольного треугольника ABC ($\angle C = 90^{\circ}$) проведён перпендикуляр BP. На наклонных PA и PC отмечены соответственно такие точки E и K, что отре-

Рис. 24

зок EK параллелен прямой AC (рис. 24). Верно ли, что треугольник BKE — прямоугольный?

Решение. Имеем $BP \perp (ABC) \Rightarrow BP \perp AC$. Кроме того, $AC \perp BC$ ($\angle ACB = 90^{\circ}$). Следовательно, по признаку перпендикулярности прямой и плоскости $AC \perp (BCP)$. Тогда $AC \perp BK$. А так как $KE \parallel AC$ и

- $AC \perp BK$, то $KE \perp BK$. Это означает, что $\angle BKE = 90^\circ$, т. е. $\triangle BKE$ прямоугольный.
- **3.051.** В треугольнике ABC угол C прямой. Прямая AM перпендикулярна плоскости ABC. Докажите, что отрезок BC перпендикулярен плоскости ACM. Будет ли отрезок BC перпендикулярен плоскости ACM, если: a) $\angle C \neq 90^{\circ}$; 6) $AM \angle (ABC)$?
- **3.053.** В кубе $ABCDA_1B_1C_1D_1$ точки E, F и M середины рёбер соответственно A_1B_1 , B_1C_1 и BB_1 . Докажите, что прямая B_1D перпендикулярна плоскости EFM.
- **3.054.** В правильном тетраэдре PABC опустите перпендикуляры на плоскость PBC из точек: а) H середины ребра AP; б) M середины ребра AB; в) K середины медианы PT грани ABP; г) L середины PM.
- **3.055.** © Точка O центр основания ABC правильного тетраэдра PACB, точка K середина ребра AP. Постройте сечение тетраэдра плоскостью, проходящей: а) через точку O перпендикулярно прямой AC; б) через точку O перпендикулярно прямой BP; в) через точку K перпендикулярно прямой BC; д) через точку K перпендикулярно прямой BC; д) через точку K перпендикулярно прямой DP.
- **3.056.** $\[\]$ Отрезок BM перпендикулярен плоскости треугольника ABC. Докажите, что: а) высоты треугольников AMC и ABC пересекаются в точке на прямой AC; б) углы ACB и ACM либо оба острые, либо оба прямые, либо оба тупые.
- **3.057.** Отрезок MB перпендикулярен плоскости четырёхугольника ABCD. На прямой AD взята такая точка K, что $MK \perp AD$. Найдите MK, если: а) ABCD прямоугольник; б) ABCD ромб со стороной a и острым углом α ; в) ABCD ромб со стороной a и тупым углом α ; г) ABCD равнобедренная трапеция ($BC \parallel AD$), у которой AD = a, BC = b (a > b).

- **3.058.** На высоте AE треугольника ABC взята любая точка M, из которой восставлен перпендикуляр MN к плоскости этого треугольника. Докажите, что для любой точки P прямой MN имеет место: $AP \perp BC$.
- **3.059.** $\circledcirc ABCD$ ромб. Точка C середина отрезка AK; $KF \perp (ABC)$. Какие из прямых BC, BD, CD перпендикулярны AF?
- **3.060.** Прямоугольный треугольник MNL ($\angle MLN = 90^{\circ}$) вписан в окружность. Отрезок NQ перпендикулярен плоскости MNL. Докажите, что $\angle MLQ = 90^{\circ}$.
- **3.061.** В правильном тетраэдре ABCD точка K середина AC, точка F середина BD. Докажите, что: а) $AC \perp (BDK)$; б) $AC \perp BD$; в) отрезок KF общий перпендикуляр прямых AC и BD.
- **3.062.** Дан куб $ABCDA_1B_1C_1D_1$. Докажите, что:
- a) $BD \perp (AA_1C)$; 6) $BD \perp AC_1$; B) $DA_1 \perp AC_1$; r) $AC_1 \perp (A_1BD)$.
- **3.063.** O точка пересечения диагоналей ромба ABCD. Ромб перегнули по диагонали AC так, что точка B оказалась вне плоскости ADC. Докажите, что: а) проекцией наклонной BO на плоскость ADC служит прямая DO; б) перпендикуляр, опущенный из точки D на плоскость ABC, пересечёт прямую BO.
- **3.064.** Основание AD трапеции ABCD является диаметром описанной около трапеции окружности. O точка пересечения диагоналей этой трапеции. Прямая OM перпендикулярна прямым OA и BC. Докажите, что прямая MC перпендикулярна прямой CD.
- **3.065.** \odot Прямая BM перпендикулярна плоскости треугольника AMC, а прямая BK перпендикулярна прямой AC. Точка C лежит на отрезке AK. Докажите, что треугольник AMC тупоугольный, и укажите его тупой угол.
- **3.066.** $\[\] O$ точка пересечения диагоналей квадрата ABCD. PO перпендикуляр к плоскости ABC; точка M середина стороны BC. Докажите, что: а) прямая PM является проекцией наклонной OM на плоскость PBC; б) перпенди-

куляр, опущенный из точки O на плоскость ABP, пересечёт медиану PP_1 треугольника ABP.

- **3.067.** © В треугольник ABC вписана окружность с центром O, касающаяся его сторон BC, AC и AB соответственно в точках A_1 , B_1 и C_1 . Прямая MO перпендикулярна плоскости треугольника ABC. Докажите, что: а) прямая MC_1 перпендикулярна AB; б) прямая OB_1 проекция наклонной OB_1 на плоскость OB_1 в) прямая OB_1 проекция наклонной OC_1 на плоскость OB_1 равна расстоянию от точки OB_1 проекости OB_1 равна расстоянию от точки OB_1 плоскости OB_2 плоскости OB_3 равна расстоянию от точки OB_3 плоскости OB_4 плоскост
- **3.068.** Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен φ . Найдите: а) наклонную и её проекцию на данную плоскость, если длина перпендикуляра h; б) перпендикуляр и наклонную, если длина проекции наклонной равна b; в) перпендикуляр и проекцию наклонной, если наклонная равна a.
- **3.069.** Через вершину прямого угла равнобедренного прямоугольного треугольника ABC проведена прямая CM, перпендикулярная его плоскости. Найти расстояние от точки M до прямой AB, если AC=4 см, $CM=2\sqrt{7}$ см.

Решение. Пусть точка K — середина гипотенузы AB треугольника ABC (рис. 25). Так как AC=CB, то $CK\perp AB$, и по теореме о трёх перпендикулярах отрезок MK перпендикулярен AB. Это означает, что длина отрезка MK — искомое расстояние от точки M до прямой AB.

Далее, так как $MC \perp (ABC)$, то $MC \perp CK$ (по определению прямой, перпендикулярной плоскости). Поэтому $\triangle MCK$ — прямоугольный, значит, $MK^2 = MC^2 + CK^2$.

Так как $\triangle ABC$ — равнобедренный прямоугольный ($\angle C = 90^\circ$) и CK — его медиана, то $\triangle CBK$ — равнобедренный прямоугольный ($\angle K = 90^\circ$). Тогда $CK^2 = \frac{1}{2}BC^2 = 8$.

Учитывая, что $MK^2 = MC^2 + CK^2$, получаем MK = 6.

OTBET: MK = 6 cm.

Рис. 25

- **3.070.** \odot Расстояние от точки M до каждой из вершин правильного треугольника ABC (AB=6) равно 4. Найдите расстояние от точки M: а) до плоскости треугольника ABC; б) до каждой его стороны.
- **3.071.** Сторона AB, равная 8, правильного треугольника ABC лежит в плоскости α , а длины проекций двух других его сторон на эту плоскость равны $2\sqrt{7}$. Найдите: а) длину проекции медианы CK данного треугольника на плоскость α ; б) расстояние от точки C до плоскости α .
- **3.072.** Плоскость α содержит катет AC равнобедренного прямоугольного треугольника ABC ($\angle C = 90^\circ$) и не перпендикулярна катету BC. Найдите длину проекции гипотенузы AB на плоскость α , если известно, что длина катета BC равна b, а расстояние от вершины B до плоскости α равно a.
- **3.073.** © Точка K середина гипотенузы AB прямоугольного треугольника ABC. Отрезок KM перпендикулярен плоскости этого треугольника. Проведите через точку M перпендикуляры к прямым AC и BC и найдите их длины, если AC=8, BC=6, KM=5.
- **3.074.** $\[\]$ Боковая сторона равнобедренного треугольника равна 10 см, а основание 12 см. Точка M удалена от каждой его стороны на 15 см. Найдите: а) расстояние от точки M до плоскости треугольника; б) площадь круга, вписанного в треугольник.
- **3.075.** Точка M одинаково удалена от всех сторон треугольника ABC, у которого $AB=13\,\mathrm{cm},\ BC=15\,\mathrm{cm},\ AC=14\,\mathrm{cm}.$ Расстояние от точки M до плоскости треугольника равно $3\,\mathrm{cm}.$ Найдите расстояния от точки M до сторон треугольника.
- **3.077.** Из вершин параллелограмма ABCD, его центра O и центроида M треугольника BCD опущены перпендикуляры AA_1 , BB_1 , CC_1 , DD_1 , OO_1 и MM_1 на плоскость α . Причём $AA_1=34$ см, $CC_1=10$ см, $BB_1=30$ см. Найдите длины отрезков: а) OO_1 ; б) DD_1 ; в) MM_1 .

- **3.078.** (Ycmho.) Около окружности радиуса 8 дм описан ромб со стороной a. Точка M, находящаяся на расстоянии 15 дм от плоскости ромба, равноудалена от его сторон. Найдите расстояние от точки M до сторон ромба. Будет ли изменяться это расстояние с изменением длины стороны a?
- **3.079.** К плоскости ромба ABCD проведён перпендикуляр CH длиной 9 см. Найдите расстояния от точки H до прямых, на которых лежат стороны ромба, если $\angle BAD = 60^{\circ}$, а сторона ромба 6 см.
- **3.080.** $\[\mathbb{Z} \]$ В правильном тетраэдре PABC с ребром, равным 2, точка O центр основания ABC. Найдите расстояние от точки O до плоскости грани PBC.
- **3.081.** $\[\]$ Точка P равноудалена от всех сторон прямоугольной трапеции с острым углом в 60° и большей боковой стороной, равной $8\sqrt{3}$. Найдите расстояния от точки P до сторон трапеции, если известно, что расстояние от этой точки до плоскости трапеции равно 8.
- **3.082.** PABC правильный тетраэдр с основанием ABC; точка A_1 середина ребра AP; точка B_1 середина ребра BP; точка C_1 середина ребра CP. а) Постройте сечение тетраэдра плоскостью CBA_1 . б) Докажите, что $AP \perp (BCA_1)$. в) Найдите площадь треугольника BCA_1 , если ребро тетраэдра равно 2.

Задачи к § 11. Угол между прямой и плоскостью

- **3.083.** (Устно.) Под каким углом к плоскости α следует провести отрезок AB, чтобы он был вдвое больше своей проекции на эту плоскость?
- **3.084.** (Устно.) Гипотенуза AB равнобедренного прямоугольного треугольника ABC лежит в плоскости α . Может ли катет AC этого треугольника образовывать с плоскостью α угол в 60° ? Найдите наибольшее значение, которое может принимать угол между катетом AC и этой плоскостью.
- **3.085.** Катет AC равнобедренного прямоугольного треугольника ABC лежит в плоскости α , а катет BC образует с этой плоскостью угол в 45° . Докажите, что гипотенуза этого треугольника образует с плоскостью α угол в 30° .

- **3.086.** Наклонная AB образует с плоскостью α угол в 45° . В этой плоскости через основание A наклонной под углом 45° к её проекции проведена прямая AC. Найдите угол между прямой AC и наклонной AB.
- **3.087.** $\frak{2}$ Прямоугольник ABCD и прямоугольный треугольник DCP лежат в разных плоскостях. Вершина P проектируется в точку B; BP=4 см, $AB=4\sqrt{2}$ см, AD=4 см. Найдите угол между прямыми: a) DP и AB; б) PC и AD.
- **3.089.** $ABCDA_1B_1C_1D_1$ куб. Найдите угол между плоскостью A_1CC_1 и прямой a, если прямая a образует с плоскостью ACB_1 угол 45° .
- **3.090.** Прямая AM перпендикулярна плоскости α . Найдите угол между прямой KP и плоскостью α , если угол между прямыми AM и KP равен 60° .
- **3.091.** Угол ABC равен 100° . Найдите угол между прямой AB и плоскостью BMK, если прямая BC перпендикулярна этой плоскости.
- **3.092.** © OM наклонная на плоскость α . Точка O лежит в α , а расстояние от M до α равно $\rho(M;\alpha)$. Докажите, что синус угла между наклонной OM и плоскостью α равен $\frac{\rho(M;\alpha)}{OM}$.
- **3.093.** © Прямая AB пересекает плоскость α в точке O и образует с ней угол ϕ ; OB = b; OA = a. Найдите расстояния от точек A и B до плоскости α .
- **3.094.** © Прямая MC перпендикулярна к плоскости треугольника ABC; BC = MC = 3; $AC = \sqrt{3}$. Найдите углы, которые образуют прямые BM и AM с плоскостью треугольника.
- **3.095.** Катет AC равнобедренного прямоугольного треугольника ABC лежит в плоскости α , гипотенуза AB равна 4, а вершина B удалена от плоскости α на расстояние 2. Определите величину угла между плоскостью α и прямой: a) AB;

- б) BC; в) прямой, содержащей медиану CC_1 ; г) прямой, содержащей медиану BB_1 ; д) прямой, содержащей медиану AA_1 .
- **3.096.** $\[\]$ $\[O \]$ точка пересечения диагоналей ромба ABCD. Сторона ромба равна 8, $\angle ABC = 120^\circ$. Длина перпендикуляра OK к плоскости ABC равна 6. Точка O удалена от плоскости ABK на 3. Найдите величину угла, который образует с плоскостью ABK прямая: a) OK; б) AO; в) BD; г) KC; д) KD; е) CD.
- **3.097.** $\[\overline{\mathbb{Z}} \]$ Прямая DM перпендикулярна плоскости квадрата ABCD. O точка пересечения диагоналей квадрата; точка K середина стороны CD. Заполните таблицу, если DM = AD.

Nº	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	MC и ABC		
2	MВ и ABC		
3	MA и ABC		
4	MO и ABC		
5	AC и MDC		
6	AD и MDC		
7	AB и MDC		
8	OK и MDC		
9	OM и MDC		
10	AC и OAM		
11	AO u ADM		

3.098. \odot Прямая BK перпендикулярна плоскости равностороннего треугольника ABC. BK = AB; точка M — середина AC. Заполните таблицу.

Nº	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	KA и ABC		
2	КМ и АВС		
3	СА и МВК		
4	BA и BMK		
5	AC и KBA		
6	ВМ и КВА		
7	AK и BKM		
8	ВК и АСК		
9	ВМ и АСК		
10	AK и BCK		

3.099. $\[\] O$ — точка пересечения медиан правильного треугольника ABC. MO — перпендикуляр к плоскости ABC; MA = AB = a; точка K — середина стороны BC; P — точка пересечения медиан треугольника MBC. Заполните таблицу.

Nº	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	MC и ABC		
2	MK и ABC		
3	СВ и АМК		
4	CA и AMK		
5	OC и AMK		
6	СМ и АМК		
7	РВ и АМК		
8	AP и MBC		
9	OM и MBC		
10	AK и MBC		

Окончание таблицы

Nº	Прямая и плоскость	Измеряемый плоский угол	Величина угла
11	MB и ACP		
12	ВС и АСР		

3.100. © В кубе $ABCDA_1B_1C_1D_1$ точка M — середина ребра B_1C_1 , точка F — середина ребра D_1C_1 , точка K — середина ребра DC, O — точка пересечения диагоналей квадрата ABCD. Заполните таблицу.

No	Прямая и плоскость	Величина угла
1	AB_1 и ABC	
2	AC и AA_1B	
3	MF и DD_1C	
4	MF и DD_1B	
5	AM и ABC	
6	AC и MKF	
7	AK и MKF	
8	AC_1 и BCC_1	
9	C_1D и ACC_1	
10	B_1D и ACC_1	
11	AA ₁ и AMF	
12	DD_1 и AMF	

Задачи к § 12. Параллельное проектирование и его свойства. Ортогональное проектирование

3.101. Какая фигура может служить параллельной проекцией: а) прямой; б) отрезка; в) луча; г) угла; д) плоскости? Выполните рисунки.

- **3.102.** Даны три точки. Как они должны быть расположены в пространстве, чтобы их проекциями были: а) одна точка; б) две точки; в) три точки, лежащие на одной прямой; г) три точки, не лежащие на одной прямой? Выполните рисунки.
- **3.103.** В каком случае: а) проекция точки совпадает с этой точкой; б) проекция прямой совпадает с этой прямой?
- **3.104.** Какая фигура может служить параллельной проекцией двух прямых, если эти прямые: а) параллельны; б) пересекаются; в) скрещиваются? Выполните рисунки.
- **3.105.** Какая фигура может служить параллельной проекцией: а) окружности; б) треугольника; в) плоского многоугольника; г) неплоского многоугольника? Выполните рисунки.
- **3.106.** Докажите, что параллельная проекция многоугольника, плоскость которого параллельна плоскости проекций, есть многоугольник, равный данному.
- **3.107.** Скрещивающиеся прямые a и b проектируются на плоскость α , пересекающую обе прямые, причём прямая a проектируется параллельно прямой b, а прямая b параллельно прямой a. Докажите, что проекции данных прямых параллельны.
- **3.108.** Точки A, B и C лежат на прямой и проектируются на плоскость α в точки A_1 , B_1 и C_1 соответственно. Найдите A_1B_1 , если AB=7, AC=3, а $B_1C_1=5$.
- **3.109.** \circledcirc Можно ли параллелограмм ABCD так перегнуть по диагонали AC, чтобы проекцией треугольника ABC на плоскость ADC был треугольник ADC? Возможно ли, чтобы треугольник ADC был ортогональной проекцией треугольника ABC?
- **3.110.** Точки A и B лежат по одну сторону от плоскости α . Точки A_1 и B_1 проекции точек соответственно A и B на плоскость α ; $AB = A_1B_1$. Прямая AB пересекает плоскость α в точке K. Найдите угол KMB, если M середина BB_1 .
- **3.111.** \odot Из точки A, лежащей вне плоскости α , проведены к ней две наклонные AB и AC, образующие между собой угол β , а с плоскостью α угол ϕ . Найдите угол между ортогональными проекциями данных наклонных на плоскость α .

- **3.112.** © Две вершины A и B разностороннего треугольника ABC лежат в плоскости α , а C не лежит в этой плоскости. Существует ли направление проектирования на плоскость а (и если существует, то какое), при котором проекцией треугольника ABC является треугольник ABC_1 : a) равный ABC_5 ; б) подобный ABC; в) равный некоторому данному треугольг) подобный некоторому данному треугольнику; д) имеющий данную площадь; e) имеющий угол AC_1B , равный углу АСВ; ж) прямоугольный треугольник; з) правильный треугольник; и) квадрат; к) трапеция; л) треугольник, имеющий пересечением медиан данную на плоскости α точку M, не лежащую на прямой AB; м) треугольник, имеющий пересечением биссектрис данную на плоскости α точку L, не лежащую на прямой AB; н) треугольник, имеющий пересечением высот данную на плоскости α точку H, не лежащую на прямой AB?
- **3.113.** $\[\]$ Ортогональной проекцией ромба ABCD на плоскость, проходящую через вершину A ромба и параллельную его диагонали BD, является квадрат $AB_1C_1D_1$ со стороной a. Найдите периметр ромба, если его диагональ AC равна m.
- **3.114.** $\[\]$ Ортогональной проекцией плоского четырёхугольника ABCD является квадрат $A_1B_1C_1D_1$ со стороной 4; $AA_1=3$, $BB_1=6$, $CC_1=9$. Найдите длину DD_1 , вид, периметр и площадь четырёхугольника ABCD. Точки A, B, C и D лежат по одну сторону от плоскости проектирования.

Задачи к главе 3

- **3.115.** Дан правильный тетраэдр PABC, ребро которого равно 5. Постройте его сечение плоскостью, которая проходит через вершину P, центроид M треугольника ABC и параллельна ребру AB. Найдите площадь полученного сечения.
- **3.116.** Дан правильный тетраэдр PABC; точка O центроид грани ABC, точка K середина отрезка PO. Постройте сечение тетраэдра плоскостью, которая проходит через точку K и параллельна: а) грани ABC; б) грани PBC. Вычислите площади получившихся сечений, если ребро тетраэдра равно 8.

- **3.117.** Что представляет собой множество всех точек пространства, равноудалённых от: а) двух данных точек A и B; б) трёх неколлинеарных (не принадлежащих одной прямой) точек A, B и C?
- **3.118.** Точка M равноудалена от двух соседних вершин квадрата ABCD. Докажите её равноудалённость от двух других вершин этого квадрата. Будет ли это верно, если вместо квадрата взять: а) прямоугольник; б) ромб?
- **3.119.** Внутри диагоналей смежных граней куба, лежащих на скрещивающихся прямых, найдите такие точки K и H, что прямая KH параллельна грани куба. В каких границах изменяется длина отрезка KH в кубе с ребром 1?
- **3.120.** Две правильные пирамиды имеют одно и то же основание. Докажите, что их вершины и центр основания принадлежат одной прямой.
- **3.121.** Докажите, что скрещивающиеся рёбра правильного тетраэдра перпендикулярны.
- **3.122.** Докажите, что диагональ AC_1 куба $ABCDA_1B_1C_1D_1$ перпендикулярна плоскости CB_1D_1 .
- =14. Две равные равнобедренные трапеции APFD и BCKL $(AD \parallel PF$ и $BC \parallel KL)$ имеют общую точку O; AP=10, PF=2. Трапеции лежат вне плоскости прямоугольника. Найдите длину общего отрезка MR данных трапеций и площадь треугольника PFK, если точка O— середина отрезков AP и BL.
- **3.124.** Пусть в прямоугольнике ABCD сторона AB=16, AD=3. Два треугольника ABM и CDN (причём AM=BM=DN=CN=10) имеют общую точку O, лежащую вне плоскости прямоугольника. Найдите длину общего отрезка данных треугольников и расстояние между их вершинами M и N, если O— точка пересечения медиан этих треугольников.

- **3.126.** Прямая BM перпендикулярна плоскости прямоугольника ABCD. Докажите, что прямая пересечения плоскостей ADM и BCM перпендикулярна плоскости ABM и параллельна плоскости ABC.
- **3.128.** Равные равнобедренные трапеции ABCD и ABMK с общим основанием AB лежат в разных плоскостях; $AC \perp AM$. Докажите: а) прямая BD перпендикулярна прямой BK; б) прямая BD не перпендикулярна прямой BM; в) прямая BD не перпендикулярна плоскости MCP, где точка P— середина прямой AD.
- **3.129.** Через центры граней правильного тетраэдра проведены прямые, перпендикулярные плоскостям этих граней. Каково взаимное положение этих прямых?
- **3.130.** Рёбра AB и CP, AP и BC тетраэдра PABC взаимно перпендикулярны. Докажите, что рёбра AC и BP также взаимно перпендикулярны.
- **3.131.** $\[\]$ В тетраэдре PABC ребро AB перпендикулярно ребру CP и ребро AP перпендикулярно ребру BC. Докажите, что $AB^2 + CP^2 = AP^2 + BC^2$.
- **3.132.** Из точки A, не принадлежащей плоскости α , проведена к этой плоскости наклонная AB. Через точку B проводятся в плоскости α всевозможные прямые, к каждой из которых проводится перпендикуляр из точки A. Определите фигуру, образованную основаниями этих перпендикуляров.
- **3.133.** В тетраэдре PABC плоские углы APB, BPC и CPA прямые. Докажите, что ортогональной проекцией вершины P на плоскость ABC является точка пересечения высот (ортоцентр) треугольника ABC.
- **3.134.** В правильном тетраэдре PABC опустите перпендикуляры на плоскость грани BCP из следующих точек: а) E середины ребра AB; б) K середины ребра AP; в) H середины медианы PM грани APC.

- **3.135.** Точка E середина ребра CC_1 куба $ABCDA_1B_1C_1D_1$. Постройте и найдите угол между прямыми A_1B и B_1E , если ребро куба a.
- **3.136.** Через вершину A прямоугольника ABCD проведена прямая AP, перпендикулярная плоскости прямоугольника. Известно, что PD=6 см, BP=7 см, PC=9 см. Найдите расстояние между прямыми: а) AP и BC; б) AP и CD; в) BP и CD; г) PD и BC.
- **3.137.** Дан куб $ABCDA_1B_1C_1D_1$. Постройте его сечение плоскостью, которая проходит через вершину A и перпендикулярна прямой: а) BD; б) B_1D_1 ; в) CD_1 ; г) C_1D ; д) AD_1 ; е) B_1D .
- **3.138.** Точка E середина ребра PC пирамиды PABC, в основании которой лежит правильный треугольник ABC, боковое ребро PA перпендикулярно плоскости основания и AP = AB. Опустите из точки E перпендикуляры на прямые: а) BP; б) BC; в) AB.
- **3.139.** Пусть E и F середины соответственно рёбер AD и CD куба $ABCDA_1B_1C_1D_1$. Опустите перпендикуляры из вершины A_1 на следующие прямые: а) D_1E ; б) D_1F ; в) C_1D ; г) BD.
- **3.140.** Сторона BC треугольника ABC (AB=13, BC=14, AC=15) лежит в плоскости α ; расстояние от точки A до плоскости α равно 6. Найдите расстояния от точек B_1 и C_1 до плоскости α , где BB_1 и CC_1 высоты треугольника ABC.
- **3.141.** \nearrow ABCD параллелограмм со сторонами AB=6, BC=14. Сторона AD лежит в плоскости β , расстояние от точки B до плоскости β равно A до плоскости A параллелограмма. Найдите расстояние от точки A до плоскости A.
- **3.142.** В правильном тетраэдре PABC с ребром 2 точка M середина ребра PC. а) Через центроид грани ABP проведите прямую, перпендикулярную плоскости ABM. б) Найдите длину отрезка этой прямой внутри тетраэдра. в) Найдите отношение, в котором плоскость ABM делит данный отрезок.
- **3.143.** Основанием параллелепипеда $ABCDA_1B_1C_1D_1$ служит квадрат ABCD со стороной a, а боковое ребро равно b. Вершина B_1 параллелепипеда равноудалена от точек A, B, C, D. Найдите площадь диагонального сечения CAA_1C_1 .

- **3.144.** В правильном тетраэдре PABC точка O центр его основания ABC, точка K середина ребра PC. Проведите перпендикуляры: а) из точки K на (ABC); б) из точки K на (ABP); в) из точки O на (BCP); г) из точки O на (ACP). Найдите длины этих перпендикуляров, если ребро тетраэдра равно O.
- **3.145.** $\[\]$ $ABCDA_1B_1C_1D_1$ куб. Точка E середина ребра BB_1 , точка K середина ребра CC_1 , точка M середина ребра A_1B_1 . Проведите перпендикуляры: а) из точки A на плоскость BB_1D ; б) из точки B на (ACB_1) ; в) из точки A_1 на (AB_1D_1) ; г) из точки B на (A_1C_1D) ; д) из точки E на (ADD_1) ; е) из точки E на (BB_1D) ; ж) из точки E на (AB_1D_1) . Найдите длину каждого из этих перпендикуляров, если ребро куба равно a.
- **3.146.** Точка E середина ребра PB правильного тетраэдра PABC. Опустите перпендикуляры из точки E на прямые: а) AP; б) AC; в) CM, где M середина ребра AB. Найдите длину каждого перпендикуляра, если ребро тетраэдра равно a.
- **3.147.** Точки $P,\ Q,\ R$ середины рёбер соответственно $AB,\ AD$ и CC_1 куба $ABCDA_1B_1C_1D_1$ с ребром a. Постройте сечение куба плоскостью PQR и найдите площадь полученного сечения и расстояние от вершины C_1 до секущей плоскости.
- **3.148.** Найдите угол между скрещивающимися: а) диагональю куба и диагональю грани; б) диагоналями соседних граней куба.
- **3.149.** В правильном тетраэдре PABC точка O центр основания ABC, точка E середина ребра BP. Найдите угол между прямой OE и следующими прямыми: a) AB; б) BC; в) AC.
- **3.150.** Что представляет собой множество всех точек пространства, равноудалённых от всех сторон данного: а) треугольника; б) плоского выпуклого n-угольника?
- **3.151.** $\[\mathbb{Z} \]$ В кубе $ABCDA_1B_1C_1D_1$ с ребром a найдите расстояние от центра грани CDD_1C_1 до плоскости AB_1C .

- **3.152.** Плоскость α проходит через высоту AA_1 треугольника ABC перпендикулярно стороне BC, плоскость β проходит через высоту BB_1 этого треугольника перпендикулярно стороне AC. Докажите, что прямая пересечения плоскостей α и β перпендикулярна плоскости ABC.
- **3.153.** $\[\]$ Боковая сторона AD трапеции ABCD лежит в плоскости α , а расстояние от точки пересечения диагоналей трапеции до плоскости α равно 12; AB = 3CD. Найдите расстояния от точек B и C до плоскости α .
- **3.154.** В кубе $ABCDA_1B_1C_1D_1$ с ребром 2 точка M середина ребра B_1C_1 . а) Через точку M проведите прямую, перпендикулярную плоскости B_1CD_1 . б) Найдите длину отрезка этой прямой внутри куба. в) Найдите отношение, в котором плоскость B_1CD_1 делит данный отрезок.
- **3.155.** Дан куб $ABCDA_1B_1C_1D_1$. Точка K середина ребра AB, точка M середина ребра BC. Опустите перпендикуляры из точки A_1 на следующие прямые: а) B_1K и B_1M ; б) BD и KM; в) C_1B и C_1M .
- **3.156.** В треугольной пирамиде KABC на рёбрах KA, KB и AC взяты соответственно точки M (KM:MA=3:5), N (KN:NB=7:5) и P (AP:PC=2:3). Найдите отношение, в котором плоскость MNP делит ребро BC, считая от точки B.
- **3.157.** Точка A находится на расстоянии 9 от плоскости KMT, а прямые AK и AT образуют с плоскостью KMT углы соответственно 30° и 60° . В каких пределах изменяется длина отрезка KT?
- **3.158.** $\[\]$ На грани ABCD куба $ABCDA_1B_1C_1D_1$ найдите все такие точки K, что прямая D_1K образует с плоскостью ABC угол 45° . Определите длину линии, образованной этими точками, если ребро куба равно 4.
- **3.159.** На грани CDD_1C_1 куба $ABCDA_1B_1C_1D_1$ найдите такую точку K, что углы, образованные прямыми BK и B_1K с плоскостью CDD_1 , равны 45° . Определите расстояние от этой точки до плоскости ABC, если ребро куба равно 2.

- **3.160.** $\[\] MO \ —$ высота правильного тетраэдра MABC, точка K делит ребро AC в отношении AK:KC=1:3. Найдите угол между прямой MO и плоскостью MBK.
- **3.161.** Точка K лежит на окружности радиуса 1 с центром A. Прямая BK перпендикулярна плоскости окружности и BK = 1. Точка P лежит на окружности. Составьте функцию, выражающую зависимость величины угла между прямой BP и плоскостью окружности от величины x угла PAK ($0 < x \le \pi$).
- **3.162.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1. Найдите синус угла между: а) прямой B_1E и плоскостью BC_1C ; б) прямой AB и плоскостью BF_1C ; в) прямой BD_1 и плоскостью BF_1C ; г) прямой A_1B и плоскостью BB_1C ; д) прямой C_1F и плоскостью BF_1C .

Глава

ПЛОСКОСТИ В ПРОСТРАНСТВЕ

Графическая работа № 2 🙂

Тема: «Параллельность в пространстве»

Сделайте чертежи по условиям задач, используя данные в них обозначения.

- **1.** Прямая MP параллельна плоскости α , а прямая MT пересекает эту плоскость в точке T.
- **2.** Плоскость α пересекает три параллельные прямые a, b и c соответственно в точках A, B и C, принадлежащих одной прямой.
- **3.** Плоскость α пересекает три параллельные прямые a, b и c соответственно в вершинах треугольника ABC.
- **4.** Основание AD трапеции ABCD лежит на плоскости α , а прямые BK и CK пересекают эту плоскость соответственно в точках B_1 и C_1 .
- **5.** Плоскость α проходит через середины сторон AB и AC треугольника ABC и не содержит вершины A.
- **6.** Прямая MP параллельна плоскости α , а плоскость PMT пересекает плоскость α по прямой KT.
- **7.** Прямая a параллельна каждой из пересекающихся плоскостей α и β .
- **8.** Прямая a параллельна каждой из параллельных плоскостей α и β .
- **9.** Плоскости α и β имеют общую прямую a, плоскости α и γ общую прямую b, а плоскости β и γ общую прямую c. Прямые a и b пересекаются в точке M.
- **10.** Плоскости α и β имеют общую прямую a, плоскости α и γ общую прямую b, а плоскости β и γ общую прямую c. Прямые a и b параллельны.
- **11.** Плоскости α и β имеют общую прямую a, плоскости α и γ общую прямую b, а плоскости β и γ параллельны.
- **12.** Сторона BC треугольника ABC лежит на плоскости α . Через вершину A и точку M середину стороны AC проведены соответственно плоскости β и γ , пересекающие плоскость треугольника ABC по прямым AK и MT.

Задачи к § 13. Параллельность плоскостей

- **4.001.** © Плоскости α и β пересекаются, точка A не принадлежит ни α , ни β . Докажите, что любая плоскость, проходящая через A, пересекает, по крайней мере, одну из плоскостей α и β .
- **4.002.** Плоскости α и β параллельны. Прямая a пересекает плоскости α и β соответственно в точках A и B, а параллельная ей прямая b соответственно в точках A_1 и B_1 . Докажите, что отрезки AB и A_1B_1 равны.
- **4.003.** Плоскости α и β параллельны. В плоскости α лежит четырёхугольник ABCD. Через его вершины проведены параллельные прямые, пересекающие β в точках соответственно A_1, B_1, C_1, D_1 . Докажите, что $A_1B_1C_1D_1$ четырёхугольник, равный данному.
- **4.004.** © Три прямые a, b и c проходят через точку O и пересекают плоскость α соответственно в точках A, B и C, а параллельную ей плоскость β соответственно в точках A_1 , B_1 и C_1 . Докажите, что треугольники ABC и $A_1B_1C_1$ подобны.
- **4.005.** В тетраэдре PABC проведено сечение $A_1B_1P_1$, параллельное грани ABP. Определите взаимное расположение медиан PE и P_1E_1 треугольников соответственно ABP и $A_1B_1P_1$.
- **4.006.** Постройте сечение треугольной пирамиды PABC плоскостью, которая проходит через внутреннюю точку K основания ABC и параллельна грани PAB.
- **4.007.** Построить сечение пятиугольной пирамиды PABCDE плоскостью α , которая проходит через внутреннюю точку M основания ABCDE параллельно грани PAB (рис. 26).

Решение. Так как прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны, а плоскость α параллельна грани PAB, то: а) прямая пересечения плоскость α с плоскостью ABC (плоскостью основания пирамиды) должна быть параллельна AB; б) прямая пересечения плоскостью

ти α с гранью PAE — параллельна AP; в) прямая пересечения α с плоскостью грани PBC — параллельна PB; г) прямая пересечения плоскости α с плоскостью PAD — параллельна PA, поэтому проводим: 1) через точку M прямую $KF \parallel AB$, $K \in BC$, $F \in AE$; 2) прямую $FH \parallel PA$, $H \in PE$; 3) прямую $KR \parallel PB$, $R \in PC$; 4) прямую $ML \parallel AP$, $L \in PD$. Пятиугольник HLRKF — искомое сечение.

Доказательство проделайте самостоятельно.

- **4.008.** © Точки A, B и C лежат в плоскости α и не лежат на одной прямой. Равные и параллельные отрезки AA_1 , BB_1 и CC_1 расположены по одну сторону от плоскости α . Докажите, что $(A_1B_1C_1)\parallel (ABC)$.
- **4.009.** Докажите, что противоположные грани параллелепипеда параллельны (т. е. лежат в параллельных плоскостях).
- **4.010.** (Устно.) По какой прямой пересекаются плоскости сечений A_1BCD_1 и BDD_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$?
- **4.011.** \odot Точка B не лежит в плоскости треугольника AEC, точки M, K и P середины отрезков соответственно AB, BC и BE. а) Докажите, что плоскости MKP и AEC параллельны. б) Найдите площадь треугольника MKP, если площадь треугольника AEC равна 48 см^2 .
- **4.012.** Три отрезка A_1A_2 , B_1B_2 и C_1C_2 , не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости $A_1B_1C_1$ и $A_2B_2C_2$ параллельны.
- **4.013.** Докажите, что в параллелепипеде $ABCDA_1B_1C_1D_1$ плоскость A_1DB параллельна плоскости D_1CB_1 .
- **4.014.** Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNL, если $M\in B_1C_1, N\in BB_1, L\in DD_1.$
- **4.015.** $\[\]$ На рёбрах PA, PB и PC тетраэдра PABC отмечены точки M, K и H так, что PM: MA = PK: KB = PH: HC. Докажите, что плоскости MKH и ABC параллельны. Найдите площадь треугольника MKH, если площадь треугольника ABC равна $10 \ \text{cm}^2$ и PM: MA = 2: 1.
- **4.016.** Постройте сечение правильной шестиугольной призмы плоскостью, проходящей через сторону нижнего

основания и противолежащую сторону верхнего основания. Найдите площадь этого сечения, если боковые грани призмы — квадраты со стороной 4 см.

- **4.017.** В кубе $ABCDA_1B_1C_1D_1$ проведите параллельные сечения, одно из которых проходит через прямую AC, а другое через прямую BC_1 . Найдите отношение площадей этих сечений.
- **4.018.** $\[\]$ Прямая DF пересекает параллельные плоскости α , β и γ соответственно в точках D, E и F, при этом DF=3, EF=9. Прямая EG пересекает плоскости α и γ соответственно в точках G и H, при этом EG=12. Найдите длину отрезка GH.
- **4.019.** Даны плоскость α и не принадлежащая ей точка A. Докажите, что все прямые пространства, проходящие через точку A и параллельные плоскости α , лежат в одной плоскости. Как эта плоскость расположена относительно плоскости α ?
- **4.020.** Плоскости α , β и γ попарно параллельны, прямые a и b скрещиваются. Прямая a пересекает плоскости α , β и γ соответственно в точках A, B и C; прямая b соответственно в точках A_1 , B_1 и C_1 . Докажите, что $AB:BC=A_1B_1:B_1C_1$.
- **4.022.** $\[\]$ Точка O центр основания ABCD правильной четырёхугольной пирамиды PABCD. Постройте сечение этой пирамиды плоскостью α , проходящей: а) через O параллельно грани PAB; б) через середину отрезка OB параллельно диагонали AC основания и ребру PD; в) через середину отрезка PO параллельно основанию пирамиды. В каждом случае определите вид сечения и найдите его площадь, если BC = 12, PB = 10.
- **4.023.** © Параллельные плоскости α и β пересекают сторону AB угла BAC соответственно в точках P и H, а сторону AC этого угла соответственно в точках Q и K. Найдите: а) AH

Плоскости в пространстве

и AK, если PH=2PA, PH=12 см, AQ=5 см; б) HK и AH, если PQ=18 см, AP=24 см, $AH=\frac{3}{2}$ PH.

- **4.024.** Плоскости α и β пересекаются по прямой c. Через точки A и B, расположенные вне этих плоскостей, проводятся параллельно плоскости β и параллельные между собой прямые AC и BD ($C \in \alpha$, $D \in \alpha$), а также параллельно плоскости α и параллельные между собой прямые AE и BF ($E \in \beta$, $F \in \beta$). Докажите: а) плоскости ACE и BDF параллельны; б) плоскости ACE и BDF пересекают плоскости α и β по параллельным прямым.
- **4.025.** Дан правильный тетраэдр PABC; O центроид грани ABC, точка K середина отрезка PO. Постройте сечение тетраэдра плоскостью, которая проходит через точку K и параллельна: а) грани ABC; б) грани PBC. Найдите площади получившихся сечений, если ребро тетраэдра равно 8.
- **4.026.** На трёх попарно параллельных прямых, не лежащих в одной плоскости, выбраны три равных отрезка AA_1 , BB_1 и CC_1 так, что точки A_1 , B_1 и C_1 оказались по одну сторону от плоскости ABC. Докажите, что: а) плоскость ABC параллельна плоскости $A_1B_1C_1$; б) $\angle B_1A_1C_1 = \angle BAC$; в) прямая пересечения плоскостей B_1AC и BA_1C_1 параллельна плоскостям ABC и ACC_1 ; г) прямая, проходящая через точку пересечения медиан треугольников ABC и $A_1B_1C_1$, параллельна прямым AA_1 , BB_1 и CC_1 .
- **4.027.** \odot На трёх лучах, исходящих из точки E и не лежащих в одной плоскости, взяты отрезки AA_1 , BB_1 , CC_1 такие, что $EA:EA_1=EB:EB_1=EC:EC_1=1:5$. Докажите, что: а) плоскость ABC параллельна плоскости $A_1B_1C_1$; б) $\angle A_1B_1C_1=\angle ABC$; в) прямая пересечения плоскостей AB_1C_1 и A_1BC параллельна плоскостям $A_1B_1C_1$ и BC_1C ; г) прямая, проходящая через точки пересечения медиан треугольников ABC и $A_1B_1C_1$, содержит точку E.

AM: MB=3:1, точка N — середина B_1C_1 . а) Постойте сечение призмы плоскостью, проходящей через точку M параллельно плоскости A_1BC . б) Найдите периметр сечения. в) Найдите площадь сечения. г) В каком отношении плоскость сечения делит отрезок AN, считая от A?

4.029. \circledcirc В кубе $ABCDA_1B_1C_1D_1$ точка M — середина ребра A_1B_1 , точка N — середина ребра B_1C_1 , точка K — середина ребра AD, точка P — середина ребра DC, точка L — середина ребра C_1C , O — точка пересечения диагоналей квадрата ABCD. Точка A_1 — середина отрезка AQ. Заполните таблицу, выбрав (обведя в кружок) необходимое расположение указанных плоскостей: A — параллельны, B — пересекаются, B — совпадают, Γ — невозможно определить.

Nº	Плоскости	Взаимное расположение
1	$A_1B_1C_1$ и ADC	АБВГ
2	MPK и BB_1D	АБВГ
3	MNK и MNP	АБВГ
4	$D_1 K P$ и $B M N$	АБВГ
5	QBO и MKP	АБВГ
6	QB_1D_1 и A_1DO	АБВГ
7	MNK и PLN	АБВГ
8	B_1KP и DMN	АБВГ
9	A_1DC_1 и AB_1C	АБВГ
10	QBD и MOB	АБВГ
11	A_1C_1C и MKP	АБВГ
12	QC_1D_1 и A_1B_1D	АБВГ

4.030. \odot На рисунках 27-41 точки M, P и R расположены либо на рёбрах, либо на гранях куба. Пользуясь свойствами параллельных прямых и плоскостей, постройте сечение это-

Плоскости в пространстве

го куба плоскостью MPR в каждом из заданных расположений точек M, P и R.

4.031. © Постройте линию пересечения секущей плоскости NKF с плоскостью PQM, которые заданы точками, расположенными на рёбрах и в вершинах куба (рис. 42-44).

4.032. © На рисунках 45-50 точки Q, F, K, N и P расположены либо в вершинах, либо на рёбрах, либо на гранях куба. Постройте точку пересечения плоскости NKF с прямой PQ.

Задачи к § 14. Двугранные углы. Угол между двумя плоскостями

- **4.033.** \odot Точка A лежит на одной из граней двугранного угла, равного 30° , и удалена от ребра двугранного угла на 8. Найдите расстояние от точки A до плоскости второй грани двугранного угла.
- **4.034.** \odot Точки A и B лежат на разных гранях двугранного угла. Прямая AB перпендикулярна ребру двугранного угла, а точки A и B удалены от этого ребра на 3 и 4 соответственно. Найдите величину двугранного угла, если AB = 5.
- **4.035.** \odot Точка A лежит внутри острого двугранного угла величины α и удалена от каждой из его граней на расстояние h. Найдите расстояние от точки A до ребра двугранного угла.
- **4.036.** \odot Точка A лежит внутри двугранного угла и удалена от его граней на расстояния, равные 1 и $\sqrt{2}$, а от ребра двугранного угла на расстояние, равное 2. Найдите величину двугранного угла.
- **4.037.** Точка A лежит внутри двугранного угла так, что угол между перпендикулярами, опущенными из точки A на грани двугранного угла, равен 131° . Найдите величину этого угла.
- **4.038.** © Точки A_1 и A_2 проекции точки A на плоскости граней двугранного угла, при этом $\angle A_1AA_2 = 100^\circ$. Найдите величину двугранного угла.
- **4.039.** Точки A и B лежат на разных гранях двугранного угла, величина которого 60° . Точки A_1 и B_1 проекции точек A и B на ребро двугранного угла. $AA_1=A_1B_1=BB_1=2$. Найдите длину отрезка AB.
- **4.041.** © Точка A лежит внутри двугранного угла α . Точки A_1 и A_2 проекции точки A на грани двугранного угла, причём $A_1A=a$, а $A_2A=b$. Используя планиметрическую теорему косинусов, найдите расстояние от точки A до ребра двугранного угла.

- **4.042.** В правильном тетраэдре PABC точки M и K середины рёбер соответственно BC и AP. Докажите, что $\angle AMP$ и $\angle BKC$ линейные углы двугранных углов соответственно A(BC)P и B(AP)C.
- **4.043.** Точка M лежит внутри двугранного угла величиной 60° и удалена от его граней на расстояния соответственно 3 и 5. Найдите расстояние от точки M до ребра двугранного угла.
- **4.044.** Катет BC прямоугольного треугольника ABC с прямым углом C лежит в плоскости α , а угол между плоскостями ABC и α равен 60° . Найдите расстояние от точки A до плоскости α , если BC=9, AB=15.
- **4.045.** Через вершину A квадрата ABCD проведен к его плоскости перпендикуляр AM, равный 10. Угол между плоскостями ABC и MBC равен 45° . Найдите площадь треугольника MBC.
- **4.046.** © Ребро PC тетраэдра PABC перпендикулярно к плоскости ABC; $AB=BC=CA=6,\ BP=3\sqrt{7}$. Найдите двугранные углы $P(AC)B,\ P(AB)C,\ B(CP)A$.
- **4.047.** Докажите, что все двугранные углы правильного тетраэдра равны. Найдите их величину.
- **4.048.** Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD ($\angle ADC$ тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями: а) ABC и MBC; б) AMD и CMD.

Решение: а) Пусть DE — высота ромба ABCD (рис. 51). Тогда по теореме о трёх перпендикулярах $ME \perp BC$ и $\angle DEM = \phi$ — линейный угол двугранного уг-

ла, образованного плоскостями *ABC* и *MBC*. Найдём величину этого угла.

По условию задачи $DM \perp (ABC)$, поэтому $\triangle MDE$ — прямоугольный, значит, $\operatorname{tg} \varphi = \frac{DM}{DE}$. Так как DE — высота ромба

ABCD, то $DE=rac{S}{BC}$, где S — пло-

Рис. 51

Плоскости в пространстве

щадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC, катеты OB и OC которого равны 6 и 8. Значит, $BC = \sqrt{OB^2 + OC^2} = \sqrt{6^2 + 8^2} = 10$.

Учитывая, что
$$S=\frac{1}{2}\cdot AC\cdot BD=\frac{1}{2}\cdot 12\cdot 16=96$$
, находим: $DE=\frac{96}{10}=9$,6. Тогда $\operatorname{tg}\phi=\frac{DM}{DE}=\frac{3,2}{9,6}=\frac{1}{3}$, откуда $\phi=\operatorname{arctg}\frac{1}{3}$.

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD, то $AD \perp DM$, $CD \perp DM$, значит, $\angle ADC = \psi$ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM. Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

$$\cos\psi = \frac{AD^2 + CD^2 - AC^2}{2AD \cdot CD} = \frac{10^2 + 10^2 - 16^2}{2 \cdot 10 \cdot 10} = -\frac{7}{25} ,$$

откуда
$$\psi = \arccos\left(-\frac{7}{25}\right)$$
.

Otbet: a) arctg $\frac{1}{3}$; 6) arccos $\left(-\frac{7}{25}\right)$.

- **4.049.** Докажите, что биссектрисы всех линейных углов данного двугранного угла лежат в одной полуплоскости.
- **4.050.** Через центр O правильного треугольника KMP со стороной, равной $a\sqrt{3}$, проведён к его плоскости перпендикуляр OH. Угол между прямой HM и плоскостью треугольника KMP равен 45° . Найдите угол между плоскостями: а) HOM и KOM; б) KMP и HPK.
- **4.051.** Через сторону AB основания ABC правильной треугольной пирамиды PABC проведена плоскость α , пересекающая ребро PC в точке K. Найдите площадь сечения ABK, если плоскость α перпендикулярна ребру PC и образует угол в 30° с плоскостью основания. Сторона основания пирамиды равна $8 \, \mathrm{cm}$.
- **4.052.** Полуплоскость, границей которой является ребро двугранного угла, делящая его на два равных двугранных угла, называется биссектором двугранного угла. Докажи-

те, что биссектор двугранного угла есть множество всех точек этого угла, равноудалённых от его граней.

- **4.053.** 🖫 Найдите угол между гранями тетраэдра, вершинами которого служат концы трёх рёбер куба, выходящих из одной его вершины.
- **4.054.** В кубе $ABCDA_1B_1C_1D_1$ найдите угол между плоскостями: а) ACC_1 и BDD_1 ; б) ABD_1 и ABD; в) BC_1D и ABC; г) ABC_1 и BC_1D .
- **4.055.** © Дан куб $ABCDA_1B_1C_1D_1$, точка M середина ребра D_1C_1 . Заполните таблицу.

Nº	Плоскости	Взаимное расположение плоскостей	Величина угла между плоскостями
1	A_1BA и D_1CD		
2	$A_1B_1C_1$ и DD_1C		
3	A_1BD и B_1D_1C		
4	B_1AC и ADC		
5	A_1BD и C_1DB		
6	A_1BD и CC_1A		
7	AB_1C_1 и ADC		
8	$A_1 M A$ и $B_1 C_1 C$		
9	$A_1 M A$ и $B B_1 D$		
10	MA_1D и CA_1D		

Задачи к § 15. Перпендикулярность плоскостей

- **4.056.** Докажите, что смежные грани куба взаимно перпендикулярны.
- **4.057.** Докажите, что в кубе $ABCDA_1B_1C_1D_1$ взаимно перпендикулярны: а) плоскости сечений ACC_1A_1 и BDD_1B_1 ; б) плоскости A_1BC_1 и BB_1D_1 .
- **4.058.** В правильном тетраэдре PABC точка K середина ребра BC, точка D середина ребра AP. Докажите, что взаимно перпендикулярны плоскости: а) AKP и BCP; б) AKP и BCD.

- **4.059.** (Устно.) Взаимно перпендикулярные плоскости α и β пересекаются по прямой a. Любая ли прямая плоскости α перпендикулярна плоскости β ? Ответ обоснуйте.
- **4.060.** (Устно.) Плоскости α и β взаимно перпендикулярны. Каким может быть взаимное расположение двух прямых, одна из которых лежит в плоскости α , а другая в плоскости β ? Выполните соответствующие рисунки.
- **4.061.** Докажите, что все прямые пространства, перпендикулярные данной плоскости α и пересекающие данную прямую m, лежат в одной плоскости, перпендикулярной плоскости α . Выполните рисунок.
- **4.062.** © Можно ли через данную точку провести три попарно перпендикулярные плоскости? Ответ обоснуйте и выполните рисунок.
- **4.063.** $\[\]$ Плоскости α и β взаимно перпендикулярны. Прямая p пересекает плоскости α и β в точках соответственно A и B, образуя при этом с каждой из плоскостей углы, равные ϕ . Найдите длину отрезка, концами которого являются проекции точек A и B на линию пересечения данных плоскостей, если длина отрезка AB равна a.
- **4.064.** Концы A и B отрезка AB, длина которого равна $10\sqrt{2}$ см, принадлежат перпендикулярным плоскостям соответственно α и β . Углы между прямой AB и плоскостями α и β равны соответственно 30° и 45° . Найдите: а) расстояния от концов отрезка AB до линии пересечения плоскостей α и β ; δ) длины проекций отрезка AB на плоскости α и β .
- **4.065.** Плоскости равнобедренного треугольника ABF и квадрата ABCD перпендикулярны. Найдите расстояние: а) от точки F до прямой CD; б) от точки F до центра окружности, проходящей через точки A, B и центр O квадрата, если сторона квадрата равна 32 и AF = BF = 20.
- **4.066.** \odot Через середины сторон AB и BC треугольника ABC проведены плоскости α и β , перпендикулярные этим сторонам. Точка M принадлежит прямой пересечения плоскостей α и β . Докажите, что точка M одинаково удалена от вершин треугольника ABC.

- **4.067.** $\[\]$ ABCD ромб с углом 60° . Прямая MA перпендикулярна плоскости ромба, причём AB = AM = a. Найдите угол между плоскостями: a) AMB и ABC; б) AMB и AMD; в) MDC и ABC; г) MAD и MBC; д) найдите тот двугранный угол, образованный плоскостями MDC и BCM, который содержит точку A.
- **4.069.** Прямоугольники ABCD и ABMK лежат во взаимно перпендикулярных плоскостях. Верно ли, что: а) $AC \perp AK$; б) $AM \perp AD$; в) $AC \perp AM$?
- **4.070.** PABC правильный тетраэдр с ребром 8. Через вершину C проведена плоскость α , перпендикулярная ребру AP. Найдите периметр и площадь треугольника, вершинами которого служат точки пересечения плоскости α с рёбрами данного тетраэдра.
- **4.071.** Ξ В треугольной пирамиде MABC боковые грани MAC и MBC взаимно перпендикулярны и перпендикулярны основанию пирамиды, которым служит равнобедренный треугольник ACB. Через вершину C проведена плоскость α , перпендикулярная плоскости грани MAB и параллельная AB. Найдите периметр и площадь фигуры, получившейся при пересечении пирамиды и плоскости α , если MC = 10 см, AB = 20 см.
- **4.072.** © Дан куб $ABCDA_1B_1C_1D_1$. Докажите взаимную перпендикулярность следующих пар плоскостей: а) ACC_1 и BDD_1 ; б) ABC_1 и A_1B_1C ; в) BB_1D и BA_1C_1 ; г) BDA_1 и ACC_1 .
- **4.073.** © Равносторонние треугольники ABC и ABD расположены в перпендикулярных плоскостях. Найдите угол между: а) прямой CD и плоскостью ABC; б) плоскостями ACD и BCD.
- **4.074.** Изобразите куб $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью, проходящей через: а) ребро BB_1 перпендикулярно плоскости ACC_1 ; б) ребро AB перпендикулярно плоскости CDA_1 ; в) ребро BC перпендикулярно плоскости AB_1C_1 .

Задачи к § 16. Общий перпендикуляр скрещивающихся прямых

- **4.075.** \odot Прямая AM перпендикулярна плоскости α , проходящей через точку A. Докажите, что расстояние между прямой AM и любой прямой a, лежащей в плоскости α , равно расстоянию от точки A до прямой a.
- **4.076.** © Прямая a не лежит в плоскости α и параллельна прямой b, лежащей в плоскости α . Докажите, что расстояние между прямой a и любой прямой в плоскости α , пересекающей прямую b, равно расстоянию от прямой a до плоскости α . Верно ли, что расстояние между прямыми a и b также равно расстоянию от прямой a до плоскости α ?
- **4.077.** $\[\]$ Плоскости квадрата ABEF и ромба ABCD перпендикулярны; CD=6, $\angle C=60^\circ$. Найдите расстояние между прямыми: а) EF и CD; б) AF и BC.
- **4.078.** На двух скрещивающихся прямых AB и CK выбраны точки A и C так, что угол BAC равен углу ACK и равен 90° ; AC = 6. Найдите расстояние между прямыми AB и KC.
- **4.079.** $\fine {\mathbb Z}$ На двух скрещивающихся прямых AB и CK выбраны точки A и C так, что
- BAC равен углу ACK и равен 90° ; AB=KC=6. Найдите BK, если расстояние между прямыми AB и CK равно 3 и AB перпендикулярна CK.
- **4.081.** Точки A и B лежат на ребре двугранного угла M(AB)T, AB=4. MAK и TBP два линейных угла данного двугранного угла. Определите, чему может быть равно расстояние между прямыми: а) MA и BT; б) AK и PB; в) MK и PT.
- **4.082.** \odot Плоскости α и β параллельны. Прямая a лежит в плоскости α , а прямые KM и KT в плоскости β . Расстояние между прямыми a и KM равно 5, а между прямыми a и KT равно 8. Определите: а) взаимное расположение прямых a и KM; б) взаимное расположение прямых a и KT; в) расстояние между плоскостями α и β .

- **4.083.** $\[\bigcirc \]$ AC перпендикуляр, опущенный на плоскость BCP. Проекция наклонной AB перпендикулярна прямой CP. Найдите расстояние между прямыми AB и CP, если AC=4, BC=3.
- **4.085.** ABCD квадрат со стороной 4. Точка M лежит на стороне CD и делит её в отношении 3:1, считая от D. Прямая TM перпендикулярна плоскости квадрата. Найдите расстояния между прямой TM и каждой из прямых, проходящих через две вершины квадрата.
- **4.086.** © Квадрат ABCD со стороной b перегнули по прямой MT (точка M середина BC, точка T середина AD) так, что образовавшийся двугранный угол A(MT)C равен α . Заполните таблицу.

Nº	Прямые		Расстояние между прямыми
1	MC	AT	
2	AB	CD	
3	MT	AC	
4	AC	BD	
5	AB	MD	

N₀	Прямые		Расстояние между прямыми
1	AA_1	DC	
2	BB_1	DC_1	
3	DC	A_1K	
4	DD_1	A_1K	

Окончание таблицы

Nº	Прямые		Расстояние между прямыми
5	B_1D	AC	
6	AK	BC	
7	B_1C	C_1D	
8	AK	BD	
9	D K	AC_1	

4.088. $\[\]$ MABC — правильный тетраэдр с ребром 6. Точка O — центр треугольника ABC. Точка K — середина ребра MB. Точка P — середина ребра AC. Заполните таблицу.

M₂	Прямые		Расстояние между прямыми
1	AC	MO	
2	BC	AM	
3	OK	PM	
4	MO	KC	
5	BO	AM	

Графическая работа № 3 🙂

Тема: «Перпендикулярность в пространстве»

Сделайте чертежи по условиям задач, используя данные в них обозначения.

- **1.** Прямая AM перпендикулярна плоскости треугольника ABC.
- **2.** Прямая OK проходит через точку O пересечения диагоналей квадрата ABCD и перпендикулярна его плоскости.
- **3.** Прямая OK проходит через точку O пересечения диагоналей трапеции ABCD (AD большее основание) и перпендикулярна её плоскости.
- **4.** Плоскости равносторонних треугольников ABC и ABK перпендикулярны.
- **5.** Прямые OM, OK и OT попарно перпендикулярны друг другу.

- **6.** Плоскость KTC перпендикулярна плоскостям TMC и TBK.
- 7. Прямая KM перпендикулярна плоскости квадрата KTPC, а прямая MA перпендикулярна прямой PT.
- 8. Прямая KM перпендикулярна плоскости квадрата KTPC, а прямая MA перпендикулярна прямой CT.
- **9.** Вершина A треугольника ABC лежит в плоскости α , параллельной прямой BC. Прямые BB_1 и CC_1 перпендикулярны плоскости α и пересекают её соответственно в точках B_1 и C_1 .
- **10.** Прямая AB лежит в плоскости ABC, прямая CK перпендикулярна этой плоскости. Прямая KA перпендикулярна прямой AB. Прямая AT лежит в плоскости ABC и перпендикулярна прямой AB.
- **11.** Прямая KM перпендикулярна плоскости равнобедренного треугольника ABC (AB=BC) и пересекает её в точке T середине отрезка KM. Из точек K и M на прямую AC опущены перпендикуляры.

Задачи к § 17. Площадь ортогональной проекции многоугольника

- **4.089.** \odot Величина двугранного угла A(BC)M равна 60° . Отрезок AM перпендикулярен плоскости BCM. Найдите отношение площади треугольника ABC к площади треугольника MBC.
- **4.090.** Квадрат ABCD перегнули по его диагонали BC так, что образовался острый двугранный угол α . Найдите отношение площади ортогональной проекции треугольника ABC на плоскость BDC к площади треугольника BDC.
- **4.091.** © В кубе с ребром 10 проведено сечение плоскостью, пересекающей четыре параллельных ребра и образующей с каждым из них угол в 45° . Определите площадь сечения. Все ли такие сечения равны или только равновелики?
- **4.092.** $\[\]$ В кубе $ABCDA_1B_1C_1D_1$ с ребром 6 проведено сечение плоскостью, которая проходит через середины рёбер BC_1 и BA, пересекает рёбра AA_1 , CC_1 , DD_1 и образует с каждым из них угол в 60° . Определите площадь сечения.

- **4.093.** Каждое ребро правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ равно a. Определите площадь сечения, проходящего через: а) вершины A, C и D_1 ; б) сторону AB и вершину E_1 .
- **4.094.** Сумма площадей всех боковых граней правильной пятиугольной пирамиды в шесть раз больше площади её основания. Найдите двугранный угол при ребре основания пирамиды.
- **4.095.** $\[\]$ В правильной треугольной пирамиде MABC все боковые рёбра образуют с плоскостью основания углы, равные 60° . Найдите отношение площади основания пирамиды к площади сечения, проведённого через вершины B и C перпендикулярно ребру MA.
- Площадь этого сечения составляет $\frac{8}{9}$ площади основания пи-
- рамиды. Определите: а) угол наклона плоскости сечения к плоскости основания пирамиды; б) угол, который образует плоскость сечения с боковым ребром пирамиды; в) угол наклона бокового ребра пирамиды к плоскости её основания.
- **4.097.** $\[\]$ В правильной четырёхугольной пирамиде MABCD через ребро AB и середину ребра MC проведено сечение, площадь которого в 1,125 раза больше площади основания. Найдите величину угла между плоскостью сечения и плоскостью основания, а также двугранный угол при ребре основания данной пирамиды.
- **4.098.** $\[\]$ К плоскости треугольника ABC по одну сторону от неё проведены перпендикуляры AK и BM. Найдите угол между плоскостями ABC и CKM, если AB = AC = BC = AK = 0.5BM.
- **4.099.** $\[\]$ Угол между плоскостями α и β равен ϕ . Треугольник ABC, лежащий в плоскости α , спроектировали на плоскость β и получили треугольник $A_1B_1C_1$. Затем треугольник $A_1B_1C_1$ спроектировали на плоскость α и получили треугольник $A_2B_2C_2$ и так далее. После десятого проектирования получился треугольник площадью S. Найдите площадь тре-

угольника ABC и сумму площадей всех треугольников, начиная с треугольника ABC до треугольника $A_{10}B_{10}C_{10}$.

- **4.100.** Через вершину A квадрата ABCD проведён к его плоскости перпендикуляр AM, равный 10. Угол между плоскостями ABC и MBC равен 45°. Найдите площадь треугольника MBC.
- **4.101.** В основании прямого параллелепипеда квадрат со стороной a. Через середины двух смежных сторон основания проведена плоскость, пересекающая три боковых ребра параллелепипеда и наклонённая к плоскости основания под углом ϕ . Найдите площадь полученного сечения.
- **4.102.** Равнобедренные треугольники ABC и ABK с общим основанием AB лежат в различных плоскостях. Найдите площадь ортогональной проекции треугольника ABC на плоскость ABK, если AB=24 дм, AC=13 дм, AK=37 дм, CK=35 дм.
- **4.103.** Через сторону AB основания ABC правильного тетраэдра PABC проведена плоскость, перпендикулярная ребру PC. Найдите площадь сечения, если сторона основания тетраэдра равна 8 см.
- **4.104.** В правильной четырёхугольной призме постройте сечение, проходящее через середины двух смежных сторон основания и середину отрезка, соединяющего центры оснований. Найдите площадь этого сечения, если сторона основания призмы равна 2 см, а высота 4 см.
- **4.105.**

 В правильной треугольной призме, каждое ребро которой равно 9 дм, постройте сечение, проходящее через сторону основания и середину отрезка, соединяющего центры оснований призмы. Найдите: а) угол между плоскостью сечения и плоскостью основания призмы; б) площадь сечения.

Задачи к главе 4

4.106. Дана правильная треугольная пирамида. Нарисуйте два её параллельных сечения, проходящие через: а) среднюю линию основания и среднюю линию боковой грани; б) сред-

Плоскости в пространстве

нюю линию основания и медиану боковой грани; в) медианы двух боковых граней; г) высоту и среднюю линию боковой грани; д) высоту и медиану боковой грани. (Каждый раз выбираются два отрезка, лежащие на скрещивающихся прямых.)

- **4.107.** $ABCDA_1B_1C_1D_1$ куб. Постройте два его сечения, параллельные между собой и проходящие через прямые: а) AC и B_1D_1 ; б) AC и C_1D ; в) AC и KL, где точки K и L середины рёбер соответственно A_1B_1 и CD; г) AC и O_1O_2 , где точки O_1 и O_2 центры граней соответственно AA_1B_1B и $A_1B_1C_1D_1$.
- **4.108.** Точки A и B принадлежат разным граням прямого двугранного угла. Точки A_1 и B_1 проекции точек A и B на ребро двугранного угла; $AA_1=a$, $A_1B_1=b$, $BB_1=c$. Докажите, что $AB=\sqrt{a^2+b^2+c^2}$.
- **4.109.** Точка A лежит внутри двугранного угла в 60° ; точки A_1 и A_2 проекции точки A на его грани, причём $A_1A=5$, $A_2A=3$. Используя планиметрическую теорему косинусов, найдите расстояние между точками A_1 и A_2 .
- **4.110.** ABCD и ABMK прямоугольники с общим основанием AB, $AC \perp AM$. Докажите: а) $BD \perp BK$; б) прямая BD не перпендикулярна прямой BM.
- **4.111.** Известно, что в прямоугольном тетраэдре PABC плоские углы APB, BPC и CPA прямые; PA = a, PB = b, PC = c. Найдите расстояние между прямыми, содержащими каждые два скрещивающиеся ребра данного тетраэдра.
- **4.112.** В тетраэдре PABC ребро AB перпендикулярно ребру CP и ребро AP перпендикулярно ребру BC. Докажите, что $AB^2 + CP^2 = AP^2 + BC^2$.
- **4.113.** Рёбра AB и CP, AP и BC тетраэдра PABC взаимно перпендикулярны. Докажите, что рёбра AC и BP также взаимно перпендикулярны.
- **4.114.** Из точки A, не принадлежащей плоскости α , проведена к этой плоскости наклонная AB. Через точку B проводятся в плоскости α всевозможные прямые, к каждой из которых проводится перпендикуляр из точки A. Определите фигуру, образованную основаниями этих перпендикуляров.

- **4.115.** В тетраэдре PABC плоские углы APB, BPC и CPA прямые. Докажите, что ортогональной проекцией вершины P на плоскость ABC является точка пересечения высот (*opmo-центр*) треугольника ABC.
- **4.116.** В кубе $ABCDA_1B_1C_1D_1$ с ребром a найдите расстояние от центра грани CDD_1C_1 до плоскости AB_1C .
- **4.117.** $\[\]$ В параллельных плоскостях $\[\beta$ и $\[\beta_1 \]$, расстояние между которыми $\[b \]$, лежат два равных квадрата $\[ABCD \]$ и $\[A_1B_1C_1D_1 \]$ со стороной $\[a \]$, причём $\[AB \]$ и $\[DD_1 \]$ не перпендикулярны плоскости $\[\beta \]$, точка $\[K \]$ середина стороны $\[CD \]$. а) Постройте прямую пересечения плоскости $\[\beta_1 \]$ и плоскости, проходящей через точку $\[B_1 \]$ перпендикулярно прямой $\[AK \]$. б) Докажите, что прямая $\[BD \]$ перпендикулярна плоскости $\[AA_1C_1 \]$. в) Найдите расстояния от точки $\[K \]$ до плоскостей $\[AA_1B \]$ и $\[AA_1C_1 \]$. г) Найдите расстояние между прямой $\[BD \]$ и плоскостью $\[B_1D_1K \]$.
- **4.118.** В параллельных плоскостях α и α_1 , расстояние между которыми равно c, лежат равные правильные треугольники ABC и $A_1B_1C_1$ со стороной a. Соответственные стороны треугольников попарно параллельны, прямая AA_1 перпендикулярна плоскости α , прямые BB_1 и CC_1 не перпендикулярны плоскости α , точка K середина стороны BC. а) Докажите, что прямая B_1C_1 перпендикулярна плоскости AA_1K . б) Постройте прямую l, проходящую через точку K перпендикулярно плоскости ABB_1 . в) Найдите расстояние от точки C_1 до плоскости ABB_1 . г) Найдите расстояние от точки A до плоскости AC_1 .
- **4.119.** $\[\]$ Основанием параллелепипеда $ABCDA_1B_1C_1D_1$ является ромб со стороной a и острым углом A, равным α . Известно, что вершина A_1 удалена на расстояние a от точек A, B и D. Докажите, что основание перпендикуляра, проведённого из точки A_1 на плоскость ABC, принадлежит прямой AC. Найдите длину этого перпендикуляра.

Плоскости в пространстве

- **4.121.** $\[\mathbb{Z} \]$ Дан куб $ABCDA_1B_1C_1D_1$. Через любую точку K ребра AB куба проведена плоскость α , параллельная плоскости BDD_1 . Найдите угол между прямой AD_1 и плоскостью α .
- **4.123.** $\[mathbb{Z}\]$ В правильной четырёхугольной пирамиде PABCD высота PO вдвое больше стороны основания ABCD. Найдите расстояние между прямыми AB и PC, если сторона основания пирамиды равна 17.
- **4.124.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1. Найдите синус угла между плоскостями: а) ABC и BC_1F ; б) FB_1D_1 и ABC; в) A_1BC и AB_1F ; г) BC_1D и ABC; д) A_1CE_1 и ABC; е) ABC и BFD_1 .

РАССТОЯНИЯ В ПРОСТРАНСТВЕ

Задачи к § 18. Расстояние от точки до фигуры

- **5.001.** © Прямая AB пересекает плоскость α в точке O; $\rho(A;\alpha)=4$. Найдите расстояние от точки B до плоскости, если: а) точка O середина AB; б) точка B середина OA; в) точка A середина OB.
- **5.002.** © Прямая AB пересекает плоскость α в точке O; $\rho(A;\alpha)=4$. Найдите расстояние от точки B до плоскости α , если OA=8, AB=6.
- **5.003.** Точки A и B лежат по разные стороны от плоскости α . Расстояния от точек A и B до плоскости α соответственно равны 7 и 10. В каком отношении (считая от точки A) плоскость α делит отрезок AB?
- **5.004.** Точки A и B лежат по разные стороны от плоскости α . Расстояния от точек A и B до плоскости α соответственно равны 7 см и 10 см. Плоскость α пересекает отрезок AB в точке O. Найдите длины отрезков OA и OB, если длина отрезка AB равна 51 см.
- **5.005.** Точки A и B лежат по одну сторону от плоскости α . Расстояния от точек A и B до плоскости α соответственно равны 7 см и 10 см. Плоскость α пересекает прямую AB в точке O. Найдите длины отрезков OA и OB, если длина отрезка AB равна 51 см.
- **5.006.** © Точка M равноудалена от вершин прямоугольника. Равноудалена ли точка M от сторон этого прямоугольника?
- **5.007.** Точка M равноудалена от вершин правильного многоугольника. Равноудалена ли точка M от сторон этого многоугольника?
- **5.008.** Точка P удалена от каждой вершины правильного треугольника ABC на расстояние $\sqrt{21}$, а от каждой его сто-

- роны на расстояние $2\sqrt{3}$. Найдите: а) расстояние от точки P до плоскости треугольника; б) площадь данного треугольника; в) угол между плоскостями ABP и ABC.
- **5.009.** \odot Точка K находится на одинаковом расстоянии от каждой из прямых, содержащих стороны ромба ABCD, и равноудалена от каждой его вершины. Найдите углы ромба.
- **5.010.** $\[\overline{z} \]$ Вершины A и B квадрата ABCD лежат в плоскости α , а вершина C удалена от этой плоскости на 4. Найдите расстояние до плоскости α от: а) точки D; б) точки O пересечения диагоналей квадрата; в) точки M середины DO; г) точки K пересечения медиан треугольника ADO; д) точки T пересечения медиан треугольника DOC.
- **5.011.** \odot Вершины A и B треугольника ABC лежат в плоскости α , а точка M середина стороны AC, удалена от плоскости α на 6. Найдите расстояние от плоскости α до: а) точки C; б) середины BC; в) середины средней линии треугольника, параллельной BC; г) точки пересечения медиан.
- **5.012.** \odot Катет AB прямоугольного треугольника ABC лежит в плоскости α , а вершина C удалена от этой плоскости на расстояние 8. Найдите расстояние от данной плоскости до центра окружности, описанной около треугольника.
- **5.013.** В треугольнике ABC сторона AC = 4, AB = 6, BC = 8. Вершины A и C лежат в плоскости α , а точка B удалена от этой плоскости на A. Найдите расстояния до этой плоскости от точек: а) M середины биссектрисы BB_1 ; б) A_1 , где AA_1 биссектриса треугольника; в) C_1 , где CC_1 биссектриса треугольника; г) центра вписанной в треугольник окружности.
- **5.014.** © Основания BC и AD трапеции ABCD равны соответственно 8 и 10. Точки A и D лежат в плоскости α , а вершина B удалена от плоскости α на 18. Найдите расстояние от плоскости α до: а) точки C; б) точки пересечения средней линии трапеции с её диагональю AC; в) точки O пересечения диагоналей трапеции.
- **5.015.** $\[\overline{\mathbb{Z}} \]$ Вершина D тетраэдра ABCD удалена от плоскости ABC на 6. На какое расстояние от этой плоскости удалены: а) точка K середина BD; б) точка M точка пересечения

медиан треугольника ABD; в) точка N пересечения медиан треугольника BCM; г) середина MK; д) точка пересечения медиан треугольника CMK.

- **5.016.** В кубе $ABCDA_1B_1C_1D_1$ проведено сечение через вершины A_1 , C и B_1 . Расстояние от вершины B до плоскости сечения равно 8. Найдите расстояния до плоскости сечения от вершин: A; C_1 ; D_1 .
- **5.017.** В кубе $ABCDA_1B_1C_1D_1$ проведено сечение через вершины A_1 , C_1 и B. Расстояние от вершины B_1 до плоскости сечения равно 4. Найдите расстояния до плоскости сечения от вершин: A; C; D_1 ; D.
- **5.019.** В кубе $ABCDA_1B_1C_1D_1$ его диагонали A_1C и BD_1 пересекаются в точке M. Найдите расстояния от точки M до каждой из плоскостей AB_1D_1 и BC_1D , если ребро куба равно 6.
- **5.020.** © Сторона AB параллелограмма ABCD лежит в плоскости α ; K середина BC. Расстояние от точки пересечения диагоналей параллелограмма до плоскости α равно 5. Найдите расстояние от точки E до плоскости α , если точка K середина AE.

Задачи к § 19. Расстояние между фигурами

- **5.021.** © Расстояние между двумя параллельными плоскостями равно 5. Чему равно расстояние от точки, принадлежащей одной из этих плоскостей, до второй плоскости?
- **5.022.** © Расстояние от точки до каждой из двух параллельных плоскостей равно **6**. Найдите расстояние между данными плоскостями.
- **5.023.** [⊕] Расстояние между двумя параллельными плоскостями равно 8. Точка удалена от одной из этих плоскостей на 3. На какое расстояние эта точка удалена от второй плоскости?

Расстояния в пространстве

- **5.024.** © Расстояние между двумя параллельными плоскостями равно 5. Точка удалена от одной из этих плоскостей на 10. На какое расстояние эта точка удалена от второй плоскости?
- **5.025.** ^② Расстояния от точки до двух параллельных плоскостей равны соответственно 3 и 7. Найдите расстояние между этими плоскостями.
- **5.026.** \odot Точки A и B принадлежат соответственно двум параллельным плоскостям α и β , расстояние между которыми 6. Длина отрезка AB равна 12. Точка M принадлежит отрезку AB и удалена от плоскости α на 2. Найдите длины отрезков AM и BM.
- **5.027.** Точки A и B принадлежат соответственно двум параллельным плоскостям α и β , расстояние между которыми 10. Длина отрезка AB равна 30. Точка M принадлежит прямой AB и удалена от плоскости α на 2. Найдите длины отрезков AM и BM.
- **5.028.** Плоскости равностороннего треугольника ABC со стороной 6 и равнобедренного треугольника ABK (AK = BK = 9) перпендикулярны. Найдите расстояние между: а) точкой K и центром O треугольника ABC; б) прямыми AB и CK.
- **5.029.** $\[\]$ ABCD квадрат со стороной 4. Точка M принадлежит стороне CD и делит её в отношении 3:1, считая от D. Прямая TM перпендикулярна плоскости квадрата. TM=4. Найдите расстояние между прямыми: а) TD и AB; б) TD и BC; в) TC и AD; г) TB и DC.
- **5.030.** \odot Стороны основания прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ равны a и b. Найдите расстояние между диагональю BD_1 параллелепипеда и непересекающим её боковым ребром AA_1 .
- **5.031.** В правильном тетраэдре PABC с ребром a точки M и K середины рёбер соответственно BP и CP, точка O центр основания ABC. Найдите расстояние между прямыми: а) MK и OP; б) AP и BC; в) AB и MK.

Nº	Прямые		Расстояние между прямыми
1	MM_1	QP	
2	NN_1	QP_1	
3	QP	M_1K	
4	QQ_1	M_1K	
5	N_1Q	MP	
6	MK	NP	
7	N_1P	P_1Q	
8	MK	NQ	
9	QK	MP_1	

Задачи к § 20. Геометрические места точек, связанные с расстоянием в пространстве

- **5.033.** \odot Даны пересекающиеся плоскости α и β . Найдите множество всех точек пространства, принадлежащих плоскости α и удалённых на расстояние m от плоскости β .
- **5.034.** © Даны пересекающиеся плоскости α и β . Найдите множество всех точек пространства, каждая из которых удалена от плоскостей α и β соответственно на расстояния a и b ($a \neq 0$, $b \neq 0$).
- **5.035.** © Найдите множество всех точек пространства, равноудалённых от трёх данных попарно параллельных прямых.
- **5.036.** \circledcirc Даны плоскость α и не принадлежащие ей точки A и B. На плоскости α найдите множество всех точек, равноудалённых от точек A и B.
- **5.037.** © Сумма двух противоположных углов плоского четырёхугольника равна 180° . Найдите множество всех точек пространства, равноудалённых от всех вершин данного четырёхугольника.
- **5.038.** © Суммы противоположных сторон плоского четырёхугольника равны. Что собой представляет множество всех точек пространства, равноудалённых от прямых, содержащих стороны данного четырёхугольника?

Расстояния в пространстве

- **5.039.** Точка M не принадлежит плоскости α , а точка B принадлежит этой плоскости. Что собой представляет множество оснований всех перпендикуляров, проведённых из точки M ко всем прямым плоскости α , проходящим через точку B?
- **5.040.** Точка A удалена от плоскости α на расстояние, равное 4 см. В плоскости α найдите множество всех точек, удалённых от точки A на расстояние, равное 5 см.
- **5.041.** Плоскости α и β перпендикулярны, точка A принадлежит плоскости α и удалена от плоскости β на расстояние, равное 8 см. В плоскости β найдите множество всех точек, удалённых от точки A на расстояние, равное 10 см.

Задачи к главе 5

- **5.042.** Плоскость α пересекает стороны AB и BC параллелограмма ABCD соответственно в точках K (середина AB) и P (BC:PC=3). Расстояние от точки B до этой плоскости равно 6. Найдите расстояния от остальных вершин параллелограмма до плоскости α .
- **5.043.** Плоскость α , пересекая отрезок AB, делит его в отношении 7:5, считая от точки B. Найдите расстояние от точки A до плоскости α , если расстояние от середины отрезка AB до этой плоскости равно 2.
- **5.044.** Все вершины куба, кроме двух противоположных A и C_1 , лежащих на одной диагонали, одинаково удалены от некоторой плоскости α . Найдите расстояние от каждой из этих вершин (исключая A и C_1) до плоскости α , если ребро куба равно 6.
- **5.045.** MABCD правильная четырёхугольная пирамида. Ребро основания пирамиды равно 6, а её высота равна 4. Найдите расстояние от вершины A до плоскости MDC.
- **5.046.** $\[\]$ Прямая AB перпендикулярна прямой CP, прямая AP перпендикулярна прямой AB. Прямая AP перпендикулярна прямой CP; AB = AP = CP = 4. Найдите расстояние между прямыми AP и CB.
- **5.047.** Ребро куба равно a. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и его ребро; б) диагональ куба и диагональ его грани; в) диагонали двух соседних граней.

- **5.048.** Основания BC и AD трапеции ABCD равны соответственно 8 и 10. Точки C и D принадлежат плоскости α , а вершина B удалена от плоскости α на 4. Найдите расстояния от плоскости α до: а) точки A; б) точки пересечения средней линии с диагональю AC; в) точки O пересечения диагоналей трапеции.
- **5.049.** В кубе $ABCDA_1B_1C_1D_1$ проведено сечение через точки M, N и K середины рёбер соответственно A_1D_1 , C_1D_1 и DD_1 . Расстояние от вершины D_1 до плоскости сечения равно 9. Найдите расстояния до плоскости сечения от вершин: A_1 ; C_1 ; D; B_1 ; C; A; B.
- **5.050.** В правильном тетраэдре PABC с ребром a точка O центр основания ABC. Найдите расстояние от точки K середины высоты PO тетраэдра до его грани ABP.
- **5.052.** ABCD параллелограмм со сторонами AB = 6 см и BC = 14 см. Сторона AD лежит в плоскости β , расстояние от точки B до плоскости β равно 3; M точка пересечения биссектрис углов A и D параллелограмма. Найдите расстояние от точки M до плоскости β .
- **5.053.** Основанием тетраэдра PABC служит равнобедренный прямоугольный треугольник ABC (AC = BC = a). Известно, что PA = PB = PC = b. Найдите расстояние между прямыми AB и CP.
- **5.054.** Дано множество всех плоскостей, проходящих через данную прямую m, и точка A, не принадлежащая этой прямой. Найдите множество точек, являющихся основаниями перпендикуляров, проведённых из точки A ко всем данным плоскостям.
- **5.055.** Плоскости α и β перпендикулярны, точка A удалена от плоскости α на 6 см, а от плоскости β на 8 см. Найдите в каждой из плоскостей α и β множества всех точек, удалённых от точки A на расстояние, равное 10 см.

- **5.056.** На поверхности куба $ABCDA_1B_1C_1D_1$ найдите и постройте множество всех точек, равноудалённых от: а) вершин A и B; б) вершин A и C; в) вершин B и D_1 ; г) точки пересечения диагоналей грани ABCD и середины ребра A_1B_1 .
- **5.057.** На поверхности куба $ABCDA_1B_1C_1D_1$ найдите и постройте множество всех точек, удалённых от вершины A на расстояние, равное длине ребра куба.
- **5.058.** На поверхности куба $ABCDA_1B_1C_1D_1$ найдите и постройте множество всех точек, удаленных от ребра AB на расстояние, равное половине длины ребра куба.
- **5.059.** На поверхности куба $ABCDA_1B_1C_1D_1$ найдите и постройте множество всех точек, равноудалённых от плоскостей: а) ABC и ABC_1 ; б) ABC_1 и A_1CD .
- **5.060.** На поверхности тетраэдра ABCD найдите и постройте множество всех точек, равноудалённых от: а) вершин A и B; б) середины ребра AC и вершины D; в) плоскостей DAC и BAC.
- **5.061.** На поверхности правильного тетраэдра ABCD найдите и постройте множество всех точек, удалённых от вершины A на расстояние, равное половине длины ребра тетраэдра.

- **5.067.** Все вершины тетраэдра находятся на одинаковом расстоянии от плоскости. Сколько существует таких плоскостей?
- **5.068.** Точка M удалена на расстояние $4\sqrt{2}$ от каждой из трёх вершин квадрата со стороной 8. Докажите, что точка M принадлежит плоскости этого квадрата.
- **5.069.** $\[\overline{\mathbb{Z}} \]$ Точка A принадлежит окружности радиуса 1. Отрезок AB длины 2 перпендикулярен плоскости этой окружности; C такая точка окружности, что длина дуги AC равна x ($0 < x \leqslant \pi$). Задайте функцию расстояния между точками B и C от x.
- **5.070.** $\[\]$ ABCD прямоугольник со сторонами AB=3 и BC=4. Треугольники ABC и ADC вращаются вокруг диагонали AC. В каких пределах изменяется длина отрезка BD?
- **5.071.** Трапецию ABCD со сторонами AB = BC = CD = 6 и AD = 12 перегнули по диагонали AC так, что вершина D оказалась вне плоскости данной трапеции. Может ли при этом расстояние между точками B и D быть равным: a) 7; б) 5; в) 10; г) 11?
- **5.072.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1. Найдите расстояние от вершины B до прямой: а) E_1F ; б) D_1F_1 ; в) C_1D_1 ; г) AD_1 ; д) CD_1 .
- **5.073.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1. Найдите: а) расстояние от вершины A_1 до плоскости BCC_1 ; б) от вершин A_1 и D_1 до плоскости AC_1E_1 ; в) от вершин F и B_1 до плоскости AF_1D .
- **5.074.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, рёбра которой равны 1. Найдите расстояние между прямыми: а) B_1F и CE_1 ; б) A_1B и B_1C ; в) E_1E и A_1B ; г) BE_1 и B_1C .

ВЕКТОРНЫЙ МЕТОД В ПРОСТРАНСТВЕ

Задачи к § 21. Понятие вектора. Линейные операции над векторами

- **6.001.** [⊕] Может ли длина суммы двух векторов быть: а) меньше длины каждого из слагаемых; б) равной сумме длин слагаемых; в) больше суммы длин слагаемых? Ответ обоснуйте.
- **6.002.** (Устно.) \odot Дан тетраэдр РАВС. Точки $K_1, K_2, K_3, K_4, K_5, K_6$ середины рёбер соответственно РС, РВ, РА, АВ,

BC, AC. Назовите все векторы: 1) равные вектору: a) $\overrightarrow{K_1K_2}$;

- б) $\overrightarrow{K_3K_4}$; в) $\overrightarrow{K_2K_5}$; 2) противоположные вектору: а) $\overrightarrow{K_4K_5}$;
- б) $\overrightarrow{K_3K_6}$; в) $\overrightarrow{K_4K_6}$.
- **6.003.** © Изобразите параллелепипед $ABCDA_1B_1C_1D_1$. Назовите вектор, равный сумме векторов: a) $\overrightarrow{AB} + \overrightarrow{A_1D_1}$; б) $\overrightarrow{AB} + \overrightarrow{AD_1}$; в) $\overrightarrow{DA} + \overrightarrow{B_1B}$; г) $\overrightarrow{DD_1} + \overrightarrow{DB}$; д) $\overrightarrow{DB_1} + \overrightarrow{BC}$; e) $\overrightarrow{AD} + \overrightarrow{AD_1} + \overrightarrow{AD_1} + \overrightarrow{CC_1}$; ж) $\overrightarrow{AD} + \overrightarrow{D_1C_1} + \overrightarrow{DD_1} + \overrightarrow{CB} + \overrightarrow{B_1A}$.
- **6.004.** Начертите параллелепипед $ABCDA_1B_1C_1D_1$ и обозначьте $\overrightarrow{C_1D_1} = \vec{a}$, $\overrightarrow{BA_1} = \vec{b}$, $\overrightarrow{AD} = \vec{c}$. Изобразите на рисунке векторы: а) $\vec{a} \vec{b}$; б) $\vec{b} \vec{a}$; в) $\vec{a} \vec{c}$; г) $\vec{a} + \vec{c} \vec{b}$; д) $\vec{c} + \vec{b} \vec{a}$; е) $-\vec{a} \vec{b}$.
- **6.005.** © Упростите выражение: а) $\overrightarrow{AB} \overrightarrow{HM} + \overrightarrow{BC} \overrightarrow{AC} + \overrightarrow{PE} + \overrightarrow{HM}$; б) $\overrightarrow{CK} \overrightarrow{EM} \overrightarrow{AE} + \overrightarrow{AM} + \overrightarrow{KM} + \overrightarrow{PC}$; в) $\overrightarrow{KM} + \overrightarrow{BE} + \overrightarrow{AC} \overrightarrow{KE} + \overrightarrow{CA} \overrightarrow{BC} + \overrightarrow{MP}$; г) $\overrightarrow{AB} + \overrightarrow{CE} + \overrightarrow{MH} + \overrightarrow{BA} + \overrightarrow{EC} + \overrightarrow{HM}$

- **6.006.** (Устно.) Даны точки A, B, C, E. Представьте вектор \overrightarrow{AB} в виде линейной комбинации следующих векторов: a) \overrightarrow{AC} , \overrightarrow{EC} , \overrightarrow{BE} ; б) \overrightarrow{EA} , \overrightarrow{EC} , \overrightarrow{CB} ; в) \overrightarrow{EA} , \overrightarrow{CE} , \overrightarrow{BC} ; г) \overrightarrow{AC} , \overrightarrow{BE} , \overrightarrow{EC} , \overrightarrow{CB} , \overrightarrow{BA} .
- **6.007.** Дан параллелограмм ABCD, O произвольная точка пространства. Докажите, что $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OD}$.
- **6.008.** © . Дан параллелепипед $ABCDA_1B_1C_1D_1$, O произвольная точка пространства. Докажите, что: a) \overrightarrow{OA} + \overrightarrow{OC}_1 = \overrightarrow{OC} + \overrightarrow{OA}_1 ; б) \overrightarrow{OD} + \overrightarrow{OB}_1 = \overrightarrow{OB} + \overrightarrow{OD}_1 .
- **6.009.** Докажите, что $\overrightarrow{M_1A} \overrightarrow{M_1B} = \overrightarrow{M_2A} \overrightarrow{M_2B}$.
- **6.010.** (Устно.) \overrightarrow{PABC} тетраэдр с вершиной \overrightarrow{P} . Найдите точку M, если: a) $\overrightarrow{PM} = \overrightarrow{PA} + \overrightarrow{PB}$; б) $\overrightarrow{PM} = \overrightarrow{BA} + \overrightarrow{BC}$; в) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AP}$; г) $\overrightarrow{CM} = \overrightarrow{PA} \overrightarrow{PB}$; д) $\overrightarrow{AM} = \overrightarrow{PB} + \overrightarrow{AC} + \overrightarrow{PA} \overrightarrow{PB}$; е) $\overrightarrow{PM} = \overrightarrow{PA} + \overrightarrow{BC} + \overrightarrow{PB}$.
- **6.011.** 0 Известно, что $\overrightarrow{AB}=2\overrightarrow{AO}$. Докажите, что точки A и B симметричны относительно точки O.
- **6.012.** O точка пересечения диагоналей куба $ABCDA_1B_1C_1D_1$. Найдите число x такое, что: a) $\overrightarrow{AB} = \overrightarrow{xCD}$; б) $\overrightarrow{AC}_1 = \overrightarrow{xAO}$; в) $\overrightarrow{OB}_1 = \overrightarrow{xDB}_1$; г) $\overrightarrow{B_1O} = \overrightarrow{xDB}_1$; д) $\overrightarrow{A_1C} = \overrightarrow{xCO}$.
- **6.013.** Векторы \vec{a} и \vec{b} , а также векторы \vec{a} и \vec{c} коллинеарны. Докажите, что коллинеарны векторы: а) $\vec{a} + \vec{b}$ и \vec{c} ; б) $\vec{a} \vec{b}$ и \vec{c} ; в) $\vec{a} + 2\vec{b}$ и \vec{c} ; г) $-3a + 2\vec{b}$ и \vec{c} .
- **6.014.** Векторы $\vec{a} + \vec{b}$ и $\vec{a} \vec{b}$ коллинеарны. Докажите, что векторы \vec{a} и \vec{b} коллинеарны.

Векторный метод в пространстве

- **6.015.** 0 Докажите, что если точка M середина отрезка AB, а O произвольная точка пространства, то \overrightarrow{OM} = $=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$.
- **6.016.** Докажите, что если точка M центроид треугольни- ка ABC, то \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = $\vec{0}$.
- **6.017.** \odot Докажите, что если точка M центроид треугольника ABC, а O произвольная точка пространства, то $\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$.
- **6.019.** (Устно.) Дан куб $ABCDA_1B_1C_1D_1$. Точки K_1 , K_2 , K_3 , K_4 , K_5 , K_6 середины рёбер соответственно AA_1 , BB_1 , CC_1 , DD_1 , AB, C_1D_1 . Назовите векторы: 1) равные вектору:
- а) $\overrightarrow{K_1K_5}$; б) $\overrightarrow{K_3B}$; в) $\overrightarrow{BC_1}$; г) $\overrightarrow{K_4K_5}$; д) $\overrightarrow{K_4K_6}$; е) $\overrightarrow{AK_3}$; 2) противоположные вектору: а) $\overrightarrow{K_4K_6}$; б) $\overrightarrow{AD_1}$; в) $\overrightarrow{K_2C_1}$; г) $\overrightarrow{D_1K_2}$; д) $\overrightarrow{K_1C_1}$; е) $\overrightarrow{CK_1}$.
- **6.020.** Дана правильная четырёхугольная пирамида PABCD с вершиной P. Докажите, что сумма векторов \overrightarrow{AO} , \overrightarrow{PB} , \overrightarrow{PC} , \overrightarrow{OP} , \overrightarrow{DP} , \overrightarrow{BA} , \overrightarrow{BC} равна сумме векторов \overrightarrow{AP} , \overrightarrow{DA} , \overrightarrow{DC} , \overrightarrow{BC} , \overrightarrow{BC} , \overrightarrow{BA} , \overrightarrow{PC} , где точка O центр основания пирамиды.
- **6.021.** \circledcirc $ABCDA_1B_1C_1D_1$ параллелепипед. Начертите вектор \overrightarrow{AM} , если:
- a) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DD_1}$; 6) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$;
- $\mathbf{B}) \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{CC_1}; \mathbf{r}) \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA};$

д)
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC}$$
; e) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{C_1B_1} + \overrightarrow{AC}$; ж) $\overrightarrow{AM} = \overrightarrow{BC} + \overrightarrow{BB_1} + \overrightarrow{C_1D_1}$; з) $\overrightarrow{AM} = \overrightarrow{DC}_1 + \overrightarrow{BC} + \overrightarrow{B_1A}_1$; и) $\overrightarrow{AM} = \overrightarrow{AB}_1 + \overrightarrow{AD}_1 + \overrightarrow{CC}_1$; к) $\overrightarrow{AM} = \overrightarrow{AD}_1 + \overrightarrow{C_1D}_1 + \overrightarrow{AC}_1 + \overrightarrow{AC}_1$

- **6.022.** © Начертите тетраэдр PABC и постройте направленный отрезок, задающий вектор: a) $\overrightarrow{AB} + \overrightarrow{BC}$; б) $\overrightarrow{AC} + \overrightarrow{AP}$; в) $\overrightarrow{PB} + \overrightarrow{PC}$; г) $\overrightarrow{AC} \overrightarrow{AB}$; д) $\overrightarrow{AB} \overrightarrow{CB}$; е) $-\overrightarrow{BP} + \overrightarrow{BC}$; ж) $-\overrightarrow{BP} \overrightarrow{PC} + \overrightarrow{BC}$.
- **6.023.** $ABCA_1B_1C_1$ призма. Укажите точку M, если: a) $\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{C_1B_1} + \overrightarrow{A_1C_1}$; б) $\overrightarrow{B_1M} = \overrightarrow{B_1A} + \overrightarrow{B_1B} + \overrightarrow{AA_1}$; в) $\overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AC_1} \overrightarrow{B_1C_1}$.
- **6.024.** $\ \ \,$ $\ \ \,$ $\ \ \, ABCDA_1B_1C_1D_1 \ \ \,$ параллелепипед. Укажите такую точку M, что справедливо равенство:

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA}_1 + \overrightarrow{MB}_1 + \overrightarrow{MC}_1 + \overrightarrow{MD}_1 = \overrightarrow{0}.$$

- **6.025.** PABC тетраэдр. Постройте такую точку M, что справедливо равенство $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} \overrightarrow{PM} = \vec{0}$.
- **6.026.** $ABCDA_1B_1C_1D_1$ параллелепипед. Пусть $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$, $\overrightarrow{AA_1} = \vec{c}$. С помощью этого параллелепипеда убедитесь в справедливости следующих векторных равенств: a) $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c} = (\vec{c} + \vec{a}) + \vec{b}$; б) $\vec{a} + (\vec{b} \vec{c}) = (\vec{a} \vec{c}) + \vec{b}$; в) $\vec{a} (\vec{b} \vec{c}) = (\vec{a} \vec{b}) + \vec{c} = (\vec{a} + \vec{c}) \vec{b}$; г) $\vec{a} (\vec{b} + \vec{c}) = (\vec{a} \vec{b}) \vec{c} = (a \vec{c}) \vec{b}$.

- **6.028.** © Векторы $\vec{a}-2\vec{b}$ и $\vec{a}+3\vec{b}$ коллинеарны. Докажите, что векторы \vec{a} и \vec{b} коллинеарны.

6.029. $ABCDA_1B_1C_1D_1$ — параллеленипед. На диагонали AC грани ABCD взята такая точка M, что AM:MC=1:4, а на диагонали AC_1 параллеленипеда — такая точка N, что $AN:NC_1=1:5$. Доказать, что точки M, N и A_1 лежат на одной прямой. Найти отношение, в котором точка N делит отрезок MA_1 .

Решение. Для доказательства принадлежности трёх точек M, N и A_1 одной прямой достаточно показать, что векторы \overrightarrow{MA}_1 и \overrightarrow{MN} коллинеарны, т. е. $\overrightarrow{MN} = \lambda \ \overrightarrow{MA}_1$ (рис. 52). Пользуясь условием задачи, находим: $AM:MC=1:4\Rightarrow\overrightarrow{AM}==\frac{1}{5}\overrightarrow{AC}$; $AN:NC_1=1:5\Rightarrow\overrightarrow{AN}=\frac{1}{6}\overrightarrow{AC}_1=\frac{1}{6}(\overrightarrow{AA}_1+\overrightarrow{AC})$. Тогда $\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\frac{1}{6}(\overrightarrow{AA}_1+\overrightarrow{AC})-\frac{1}{5}\overrightarrow{AC}=\frac{1}{30}(5\overrightarrow{AA}_1-\overrightarrow{AC})$. Далее, $\overrightarrow{MA}_1=\overrightarrow{AA}_1-\overrightarrow{AM}=\overrightarrow{AA}_1-\frac{1}{5}\overrightarrow{AC}=\frac{1}{5}(5\overrightarrow{AA}_1-\overrightarrow{AC})$, $\overrightarrow{MA}_1=\frac{1}{5}(5\overrightarrow{AA}_1-\overrightarrow{AC})$, откуда следует $\overrightarrow{MA}_1=6\overrightarrow{MN}$. Это означает, что точки M, N и A_1 лежат на одной прямой и $MN:NA_1=1:5$.

6.030.

В Для данной неплоской замкнутой ломаной, состоящей из шести звеньев, построены два треугольника, вершинами каждого из которых служат середины несмежных звеньев. Докажите, что центроиды этих треугольников совпадают.

Задачи к § 22. Разложение вектора по базису

- **6.031.** 9 В параллелограмме ABCD точки K и P делят стороны AB и AD на части в отношении AK:KB=AP:PD=1:4. Выразите вектор \overrightarrow{KP} через векторы \overrightarrow{AB} и \overrightarrow{AD} .
- **6.032.** К центру правильного шестиугольника приложены три силы, направленные в три последовательные вершины. Найдите величину и направление равнодействующей, если величина каждой из данных сил равна 2H.
- **6.033.** Дан правильный шестиугольник ABCDEF. Пусть $\overrightarrow{AC} = \overrightarrow{a}$, $\overrightarrow{AE} = \overrightarrow{b}$. Разложите по базису $(\overrightarrow{a}; \overrightarrow{b})$ следующие векторы: a) \overrightarrow{AD} ; б) \overrightarrow{CD} ; в) \overrightarrow{AB} ; г) \overrightarrow{BC} ; д) \overrightarrow{DE} ; e) \overrightarrow{AE} ; ж) \overrightarrow{FC} ; з) \overrightarrow{EF} ; и) \overrightarrow{DB} ; к) \overrightarrow{BE} .
- **6.034.** Пусть \overrightarrow{MK} равнодействующая трёх сил, приложенных в точке M и равных \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} , где A, B и C вершины правильного треугольника, вписанного в окружность с центром O. Найдите отношение длин отрезков MK и MO.
- **6.035.** (Устно.) Дан параллелепипед $ABCDA_1B_1C_1D_1$. Какие из следующих троек векторов компланарны: а) $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$, $\overrightarrow{DD_1}$; б) \overrightarrow{AB} , \overrightarrow{AD} , $\overrightarrow{BB_1}$; в) \overrightarrow{AC} , $\overrightarrow{CC_1}$, $\overrightarrow{DD_1}$; г) \overrightarrow{AD} , $\overrightarrow{BB_1}$, $\overrightarrow{D_1C_1}$; д) \overrightarrow{AD} , $\overrightarrow{B_1C}$, \overrightarrow{AB} ; е) $\overrightarrow{DA_1}$, $\overrightarrow{BC_1}$, \overrightarrow{AD} ?
- **6.036.** © Основанием пирамиды с вершиной P является параллелограмм ABCD, диагонали которого пересекаются в точке O; точка E середина ребра PC. Разложите векторы \overrightarrow{PD} , \overrightarrow{PO} , \overrightarrow{AE} и \overrightarrow{EO} по векторам $\overrightarrow{a} = \overrightarrow{PA}$, $\overrightarrow{b} = \overrightarrow{PB}$, $\overrightarrow{c} = \overrightarrow{PC}$.
- **6.037.** © $ABCDA_1B_1C_1D_1$ куб. Пусть $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AA_1} = \overrightarrow{c}$. В базисе $(\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c})$ найдите координаты следующих векторов: a) $\overrightarrow{AC_1}$; б) $\overrightarrow{AD_1}$; в) $\overrightarrow{AB_1}$; г) \overrightarrow{AC} ; д) $\overrightarrow{A_1C}$; е) $\overrightarrow{D_1B}$.

- **6.038.** Векторы \vec{a} , \vec{b} и \vec{c} образуют базис в пространстве. Будут ли образовывать базис пространства векторы: a) $x\vec{a}$, $y\vec{b}$, $z\vec{c}$; б) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$?
- основания \overrightarrow{ABCD} . Обозначим $\overrightarrow{A_1A} = \overrightarrow{a}, \ \overrightarrow{A_1B} = \overrightarrow{b}, \ \overrightarrow{A_1D} = \overrightarrow{c}$. Разложите в базисе $(\vec{a}; \vec{b}; \vec{c})$ следующие векторы: a) $\overrightarrow{A_1O}$; б) \overrightarrow{AO} ; в) \overrightarrow{CA}_1 ; г) \overrightarrow{AC}_1 ; д) $\overrightarrow{D_1B}$; е) $\overrightarrow{C_1B}$.
- **6.040.** © *PABC* правильный тетраэдр. Точки K и M середины рёбер соответственно PC и BC; точки H и E — центроиды треугольников соответственно АВС и РВС. Обозначим $\overrightarrow{PA}=\vec{a}$, $\overrightarrow{PB}=\vec{b}$, $\overrightarrow{PC}=\vec{c}$. В базисе $(\vec{a}\,;\,\vec{b}\,;\,\vec{c}\,)$ найдите координаты векторов: a) \overrightarrow{BK} ; б) \overrightarrow{PM} ; в) \overrightarrow{PH} ; г) \overrightarrow{AE} ; д) \overrightarrow{KH} .
- **6.041.** Точки M и M_1 центроиды треугольников соответственно ABC и $A_1B_1C_1$. Докажите, что $\overrightarrow{AA_1}+\overrightarrow{BB_1}+\overrightarrow{CC_1}=$ $=3M\overline{M}_{1}$.
- **6.042.** Даны параллелограммы ABCD и $AB_1C_1D_1$. (A общая вершина.) Докажите, что при любом их взаимном расположении прямые BB_1 , CC_1 и DD_1 параллельны некоторой плоскости.

Рис. 53

- 6.043. 🖁 В наклонной треугольной призме проведено сечение, пересекающее все её боковые рёбра. Докажите, что центроиды сечения и оснований призмы лежат на одной прямой.
- **6.044.** $ABCDA_1B_1C_1D_1$ куб. Доказать, что центроид M треугольника АСО1 принадлежит диагонали B_1D и делит её в отношении 1:2, считая от вершины D.

Решение. Для решения задачи достаточно убедиться, что векторы \overrightarrow{DM} и \overrightarrow{DB}_1 (рис. 53) коллинеарны (почему?).

Введём базис $\vec{a}=\overrightarrow{DA}$, $\vec{b}=\overrightarrow{DC}$, $\vec{c}=\overrightarrow{DD_1}$ и найдём разложение векторов $\overrightarrow{DB_1}$ и \overrightarrow{DM} по этому базису.

По правилу параллелепипеда имеем

$$\overrightarrow{DB}_{1} = \overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{DD}_{1} = \vec{a} + \vec{b} + \vec{c}. \tag{1}$$

Так как точка M — центроид треугольника ACD_1 , то

$$\overrightarrow{DM} = \frac{1}{3}(\overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{DD_1}) = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c}). \tag{2}$$

Из (1) и (2) следует, что $\overrightarrow{DM}=rac{1}{3}\overrightarrow{DB}_1$, поэтому векторы

 \overrightarrow{DM} и $\overrightarrow{DB_1}$ коллинеарны и сонаправлены. Это означает, что точка M принадлежит диагонали DB_1 и $DM:DB_1=1:3$, откуда $DM:MB_1=1:2$, что и требовалось доказать.

- **6.047.** $\[\mathbb{Z} \]$ В тетраэдре PABC точки K и M середины рёбер соответственно PA и BC. Докажите, что прямые AB, KM и PC параллельны некоторой (одной) плоскости.
- **6.048.** $\[\]$ Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны, точка K лежит в плоскости треугольника ABC. Найдите значение числа x, если: a) $\overrightarrow{MK} = 0.1 \overrightarrow{MA} + 0.4 \overrightarrow{MB} + x \overrightarrow{MC}$; б) $\overrightarrow{MK} = 7 \overrightarrow{MA} + x \overrightarrow{MB} + 0.38 \overrightarrow{MC}$.

Для каждого найденного значения x определите: лежит точка K внутри треугольника или нет.

Векторный метод в пространстве

- **6.049.** Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Определите взаимное расположение отрезка MK и плоскости \overrightarrow{ABC} , если: а) $\overrightarrow{MK} = 0.3\overrightarrow{MA} + 0.4\overrightarrow{MB} + 0.2\overrightarrow{MC}$; б) $\overrightarrow{MK} = 0.37\overrightarrow{MA} + 0.25\overrightarrow{MB} + 0.38\overrightarrow{MC}$; в) $\overrightarrow{MK} = 0.7\overrightarrow{MA} 0.4\overrightarrow{MB} + 0.8\overrightarrow{MC}$; г) $\overrightarrow{MK} = 0.38\overrightarrow{MA} + 0.43\overrightarrow{MB} 0.81\overrightarrow{MC}$.
- **6.050.** © Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK} = 3\overrightarrow{MA} + 3\overrightarrow{MB} + 3\overrightarrow{MC}$. В каком отношении плоскость ABC делит отрезок MK, считая от точки M?
- **6.051.** Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK}=5\overrightarrow{MA}-2\overrightarrow{MB}-\overrightarrow{MC}$. В каком отношении плоскость ABC делит отрезок MK, считая от точки M?
- **6.052.** 0 Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK}=3\overrightarrow{MA}+2\overrightarrow{MB}+8\overrightarrow{MC}$. В каком отношении плоскость ABC делит отрезок MK, считая от точки M?
- **6.053.** Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK} = 0.3$ $\overrightarrow{MA} + 0.07$ $\overrightarrow{MB} + 0.13$ \overrightarrow{MC} . Прямая MK пересекает плоскость ABC в точке T. Найдите отношение длин отрезков MK и TK.
- **6.054.** © Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK}=1,3$ $\overrightarrow{MA}-2$ $\overrightarrow{MB}+0,9$ \overrightarrow{MC} . Прямая MK пересекает плоскость ABC в точке T. Найдите отношение длин отрезков MT и MK.
- **6.055.** Векторы \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} некомпланарны. Известно, что $\overrightarrow{MK}=0,3$ $\overrightarrow{MA}+0,7$ $\overrightarrow{MB}-2$ \overrightarrow{MC} . Прямая MK пересекает плоскость ABC в точке T. Найдите отношение длин отрезков MK и TK.
- **6.056.** © O точка пересечения диагоналей грани DD_1C_1C куба $ABCDA_1B_1C_1D_1$. а) Разложите вектор \overrightarrow{AO} по векторам

 $\overrightarrow{AA_1}$; \overrightarrow{AB} и \overrightarrow{AD} . б) В каком отношении плоскость A_1BD делит отрезок AO, считая от O?

6.057. © На продолжении рёбер MA, MB и MC правильного тетраэдра MABC взяты соответственно точки A_1 , B_1 и C_1 такие, что точка A — середина отрезка MA_1 , $MB_1 = 3MB$ и $MC_1 = 1,5MC$. Точка K — центроид (точка пересечения медиан) треугольника $A_1B_1C_1$. а) Разложите вектор \overrightarrow{MK} по векторам \overrightarrow{MA} , \overrightarrow{MB} и \overrightarrow{MC} . б) В каком отношении плоскость ABC делит отрезок MK, считая от M? в) Найдите расстояние от точки K до плоскости ABC, если ребро тетраэдра равно a.

Задачи к § 23. Скалярное произведение векторов п. 23.1—23.3

- **6.058.** (Устно.) В параллелограмме ABCD угол BAD равен 53°, а угол ADB равен 62°. Найдите углы между векторами: а) \overrightarrow{AB} и \overrightarrow{AD} ; б) \overrightarrow{BC} и \overrightarrow{DC} ; в) \overrightarrow{CB} и \overrightarrow{DC} ; г) \overrightarrow{CB} и \overrightarrow{AD} ; д) \overrightarrow{BD} и \overrightarrow{CD} ; е) \overrightarrow{AB} и \overrightarrow{BD} .
- **6.059.** © Дан куб $ABCDA_1B_1C_1D_1$. Найдите угол между векторами: а) $\overrightarrow{A_1D_1}$ и $\overrightarrow{CC_1}$; б) $\overrightarrow{AA_1}$ и $\overrightarrow{C_1C}$; в) \overrightarrow{AD} и $\overrightarrow{CB_1}$; г) \overrightarrow{DA} и $\overrightarrow{CB_1}$; д) $\overrightarrow{DC_1}$ и $\overrightarrow{BA_1}$; е) \overrightarrow{AC} и $\overrightarrow{DC_1}$.
- **6.060.** Основанием четырёхугольной пирамиды PABCD служит квадрат ABCD, каждое боковое ребро пирамиды равно стороне квадрата. Найдите угол между векторами: а) \overrightarrow{PA} и \overrightarrow{PB} ; б) \overrightarrow{PA} и \overrightarrow{BA} ; в) \overrightarrow{PA} и \overrightarrow{PC} ; г) \overrightarrow{AB} и \overrightarrow{AC} ; д) \overrightarrow{CA} и \overrightarrow{BD} .
- **6.061.** (Устно.) Какой знак имеет скалярное произведение двух векторов, если угол между ними: а) острый; б) тупой?
- **6.062.** Определите вид угла между векторами \vec{a} и \vec{b} , если их скалярное произведение: а) равно нулю; б) больше нуля; в) меньше нуля.

Векторный метод в пространстве

- **6.063.** © Вычислите скалярное произведение векторов \vec{a} и \vec{b} , если их длины и угол между ними равны соответственно:
- а) 4; 5; 60°; б) 2; 7; $\frac{\pi}{4}$; в) 4; 5; 120°; г) 7; 9; 90°; д) 14; 0,35; 180°; е) 2; 2; 0.
- **6.064.** ABCDEF правильный шестиугольник с центром O и стороной 2. Вычислите скалярное произведение векторов: a) $\overrightarrow{OA} \cdot \overrightarrow{OB}$; б) $\overrightarrow{OA} \cdot \overrightarrow{OC}$; в) $\overrightarrow{OA} \cdot \overrightarrow{OD}$; г) $\overrightarrow{AB} \cdot \overrightarrow{AC}$; д) $\overrightarrow{AB} \cdot \overrightarrow{AE}$.
- **6.065.** Для данных ненулевых векторов \vec{a} и \vec{b} известно, что $(a+\vec{b})\cdot(\vec{a}-\vec{b})=0$. Докажите, что $|\vec{a}|=|\vec{b}|$, и выясните геометрический смысл данного равенства.
- **6.066.** Докажите, что диагонали ромба взаимно перпендикулярны, используя векторы.

- e) $(\vec{a} + \vec{b} \vec{c}) \cdot (\vec{a} \vec{b} \vec{c})$; ж) $(\vec{a} + \vec{b} + \vec{c})^2$; з) $(3\vec{b} \vec{c}) \cdot (2\vec{a} 3\vec{b})$.
- **6.069.** © Найдите скалярное произведение векторов \vec{a} и \vec{b} , если: a) $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{a} + \vec{b}| = 3$; б) $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{a} \vec{b}| = 5$; в) $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$; г) $|\vec{a} + \vec{b}| = 2$, $|\vec{a} \vec{b}| = 1$; д) $|\vec{a} + 2\vec{b}| = |\vec{a} 2\vec{b}| = p$.
- **6.070.** © Векторы \vec{a} , \vec{b} , \vec{c} единичные; $(\vec{a}; \vec{b}) = 90^{\circ}$, $(\vec{a}; \vec{c}) = 90^{\circ}$, $(\vec{b}; \vec{c}) = 120^{\circ}$. Найдите длины векторов: a) $\vec{a} + \vec{b}$; 6) $4\vec{a} + 3\vec{c}$; в) $5\vec{b} + 3\vec{c}$; г) $\vec{a} + \vec{b} - 2\vec{c}$; д) $-\vec{a} - 4\vec{b} + 3\vec{c}$.
- **6.071.** Длины векторов \vec{a} , \vec{b} , \vec{c} соответственно равны 2; 4; 1; $\widehat{(\vec{a};\vec{b})} = 60^{\circ}$, $\widehat{(\vec{a};\vec{c})} = 60^{\circ}$, $\widehat{(\vec{b};\vec{c})} = 90^{\circ}$. Найдите длины векторов: a) $\vec{a} \vec{b}$; б) $\vec{b} + 2\vec{c}$; в) $\vec{a} + \vec{b} \vec{c}$; г) $\vec{a} = 0.5\vec{b} + \vec{c}$.

- **6.072.** Длины векторов \vec{a} , \vec{b} , \vec{c} соответственно равны 1; 2; 2; $(\vec{a}; \vec{b}) = 90^{\circ}$, $(\vec{a}; \vec{c}) = 120^{\circ}$, $(\vec{b}; \vec{c}) = 120^{\circ}$. При каких значениях x вектор $\vec{a} \vec{b}$ перпендикулярен вектору $\vec{a} + \vec{b} x \cdot \vec{c}$?
- **6.073.** Пусть $\vec{a} + \vec{b} + \vec{c}$ нуль-вектор и длины векторов \vec{a} , \vec{b} и \vec{c} равны соответственно 3; 1 и 4. Найдите $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- **6.074** 1 . Найдите скалярное произведение векторов $-2\vec{a}+3\vec{b}-\vec{c}$ и $7\vec{a}+7\vec{b}-4\vec{c}$.
- **6.075.** Найдите косинусы углов между вектором $6\vec{a} 3\vec{b} + 2\vec{c}$ и каждым из векторов \vec{a} , \vec{b} и \vec{c} .
- **6.076.** $\[\vec{z} \]$ Найдите разложение вектора \vec{m} в базисе $(\vec{a}\,;\,\vec{b}\,;\,\vec{c}\,)$, если длина этого вектора равна 2, а углы между ним и векторами b и \vec{c} соответственно равны 60° и 120° .
- **6.077.** Координаты векторов \vec{p} и \vec{q} в базисе $(\vec{a}; \vec{b}; \vec{c})$ равны соответственно (4; 0; 5) и (7; 1; 3). Найдите координаты единичного вектора, сонаправленного с вектором $\vec{q} p$.
- **6.078.** Определите: при каких значениях x ортогональны векторы $x\vec{a} 3\vec{b} + 2\vec{c}$ и $\vec{a} + 2\vec{b} x\vec{c}$?
- **6.079.** $\[\vec{z} \]$ Найдите координаты вектора \vec{m} в базисе $(\vec{a}; \vec{b}; \vec{c})$, если он ортогонален векторам $\vec{p} = \vec{a} 2\vec{b} + \vec{c}$ и $\vec{q} = 2\vec{a} + \vec{b} 3\vec{c}$ и образует с вектором \vec{c} острый угол, причём $|\vec{m}| = \sqrt{3}$.
- **6.080**. $\[\]$ Единичный вектор \vec{m} перпендикулярен вектору $4\vec{b}-3\vec{c}$ и вектору \vec{n} , образующему с базисными векторами a, \vec{b} и \vec{c} углы, соответственно равные $\frac{\pi}{4}$, $\frac{\pi}{4}$ и $\frac{\pi}{2}$. Найдите координаты вектора \vec{m} в этом базисе, если $\vec{m} \cdot \vec{a} > 0$.

 $^{^{1}}$ В задачах N 6.074—6.080 векторы \vec{a} , \vec{b} , \vec{c} — единичные и попарно взаимно перпендикулярные.

6.081. $\ \vec{a}$ а) Следует ли из $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, что $\vec{b} = ?$ б) Известно, что для любого вектора \vec{p} верно $\vec{a} \cdot \vec{p} = \vec{b} \cdot \vec{p}$. Верно ли, что $\vec{a} = \vec{b}$?

(Если вы считаете, что «верно», то докажите утверждение, в противном случае — приведите опровергающий пример.)

6.082. © Треугольник ABC является основанием правильного тетраэдра PABC с ребром a; точки M, K, H — середины рёбер соответственно AP, CP, AB. Вычислите скалярные произведения: a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$; б) $\overrightarrow{PA} \cdot \overrightarrow{BP}$; в) $\overrightarrow{KH} \cdot \overrightarrow{KB}$; г) $\overrightarrow{MK} \cdot \overrightarrow{AB}$; д) $\overrightarrow{KM} \cdot \overrightarrow{BC}$; е) $\overrightarrow{MH} \cdot \overrightarrow{BC}$.

6.083. $ABCDA_1B_1C_1D_1$ — куб с ребром 2. Точка M — центр основания $A_1B_1C_1D_1$. Точки E и H взяты соответственно на отрезках BB_1 и AC так, что $BE:BB_1=1:2$, AH:AC=1:4. Найти: 1) длину отрезка: а) AM; б) EH; в) MH; 2) угол между векторами: а) \overrightarrow{BC}_1 и \overrightarrow{AC} ; б) $\overrightarrow{A_1D}$ и \overrightarrow{BD}_1 ; в) \overrightarrow{HM} и \overrightarrow{CB}_1 (рис. 54).

Решение. Введём базис $\vec{a}=\overrightarrow{AB},\ \vec{b}=\overrightarrow{AD},\ \vec{c}=\overrightarrow{AA}_1$. Так как грани куба — равные квадраты со стороной 2, то

$$\vec{a}^2 = \vec{b}^2 = \vec{c}^2 = 4, \quad \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 0.$$
 (*)

Рассмотрим некоторые случаи.

1. б) Длина отрезка EH равна длине вектора \overrightarrow{EH} . Разложим вектор \overrightarrow{EH} по базису $(\vec{a}; \vec{b}; \vec{c})$. По правилу ломаной $\overrightarrow{EH} = \overrightarrow{EB} + \overrightarrow{BA} + \overrightarrow{AH} = -\frac{1}{2}\overrightarrow{AA_1} - \overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC} = -\frac{1}{2}\vec{c} - \vec{a} + \frac{1}{4}(\vec{a} + \vec{b}) = -\frac{3}{4}\vec{a} + \frac{1}{4}\vec{b} - \frac{1}{2}\vec{c}$. Тогда $|\overrightarrow{EH}|^2 = \overrightarrow{EH}^2 = -\frac{3}{4}\vec{a} + \frac{1}{4}\vec{b} - \frac{1}{2}\vec{c}$ от $|\overrightarrow{EH}|^2 = |\overrightarrow{EH}|^2 = |\overrightarrow{EH}|^2$

$$-\frac{1}{4}\overrightarrow{b}\cdot\overrightarrow{c}$$
. Учитывая (*), получаем $|\overrightarrow{EH}|^2=\frac{9}{16}\cdot 4+\frac{1}{16}\cdot 4+$ $+\frac{1}{4}\cdot 4=\frac{7}{2}$, откуда $|\overrightarrow{EH}|=\sqrt{\frac{7}{2}}$. Следовательно, $EH=\sqrt{\frac{7}{2}}$. 2. а) Обозначим $(\overrightarrow{BC_1};\overrightarrow{AC})=\phi$. Тогда $\cos\phi=\frac{\overrightarrow{BC_1}\cdot\overrightarrow{AC}}{|\overrightarrow{BC_1}|\cdot|\overrightarrow{AC}|}$.

Находим: $\overrightarrow{BC}_1 \cdot \overrightarrow{AC} = (\vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b}) = \vec{b} \cdot \vec{a} + \vec{b}^2 + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}$. Учитывая (*), получаем $\overrightarrow{BC}_1 \cdot \overrightarrow{AC} = \vec{b}^2 = 4$.

$$\begin{split} |\overrightarrow{BC}_1| &= \sqrt{(\vec{b} + \vec{c})^2} = \sqrt{\vec{b}^2 + 2\vec{b} \cdot \vec{c} + \vec{c}^2} = \sqrt{4 + 2 \cdot 0 + 4} = 2\sqrt{2}; \\ |\overrightarrow{AC}| &= \sqrt{(\vec{a} + \vec{b})^2} = \sqrt{\vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2} = 2\sqrt{2}. \end{split}$$

Получаем

$$\cos \varphi = \frac{4}{2\sqrt{2} \cdot 2\sqrt{2}} = \frac{1}{2}$$
, откуда $\varphi = 60^\circ$.

Ответ: 1. б) $\sqrt{\frac{7}{2}}$; 2. а) 60° .

6.084. \odot Все рёбра правильной четырёхугольной пирамиды PABCD имеют длину, равную 1. Найдите угол между векторами \overrightarrow{PM} и \overrightarrow{DK} , где точки M и K — середины рёбер соответственно BC и CP.

6.085. Все рёбра правильной четырёхугольной пирамиды PABCD равны 1. Точка O — центр грани ABCD. Точки E, F, H — середины рёбер соответственно BP, CP, AP. Найти:

а) длину отрезка OP; б) длину отрезка CH; в) угол между вектора-

ми \overrightarrow{AE} и \overrightarrow{BF} ; г) угол между медианой PM грани BPC и высотой AE грани APB (рис. 55), используя векторы.

Решение пунктов а) и в). Введём базис $\overrightarrow{BA} = \overrightarrow{a}, \ \overrightarrow{BC} = \overrightarrow{b}, \ \overrightarrow{BP} = \overrightarrow{c}$. Так как боковые грани пирамиды — правильные треугольники,

Векторный метод в пространстве

а основание — квадрат, то
$$|\vec{a}| = |\vec{b}| = \vec{c} = 1$$
, $(\vec{a}; \vec{c}) = (\vec{b}; \vec{c}) = 60^\circ$, $(\vec{a}; \vec{b}) = 90^\circ$.

Поэтому имеем

$$\vec{a}\cdot\vec{c}=|\vec{a}|\cdot|\vec{c}|\cdot\cos60^\circ=\frac{1}{2}\,,\,\vec{b}\cdot\vec{c}=|\vec{b}|\cdot|\vec{c}|\cdot\cos60^\circ=\frac{1}{2}\,,\,\vec{a}\cdot\vec{b}=0.\,(*)$$

а) Длина отрезка OP равна длине вектора \overrightarrow{OP} . Разложим этот вектор по базису $(\vec{a}; \vec{b}; \vec{c})$.

По правилу треугольника
$$\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP} = \overrightarrow{BP} - \overrightarrow{BO} = \overrightarrow{BP} - \frac{1}{2} \overrightarrow{BD}$$
. По правилу параллелограмма $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{BC}$. Значит, $\overrightarrow{OP} = \overrightarrow{BP} - \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) = -\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} + \overrightarrow{c}$. Тогда $|\overrightarrow{OP}|^2 = \overrightarrow{OP}^2 = \left(-\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} + \overrightarrow{c}\right)^2 = \frac{1}{4}\overrightarrow{a}^2 + \frac{1}{4}\overrightarrow{b}^2 + \overrightarrow{c}^2 + \frac{1}{2}\overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a} \cdot \overrightarrow{c} - \overrightarrow{b} \cdot \overrightarrow{c}$. Учитывая (*), получаем $|\overrightarrow{OP}|^2 = \frac{1}{2}$, откуда $|\overrightarrow{OP}| = \frac{\sqrt{2}}{2}$, т. е. $OP = \frac{\sqrt{2}}{2}$.

жим векторы
$$\overrightarrow{AE}$$
 и \overrightarrow{BF} по базису $(\vec{a}; \vec{b}; \vec{c})$. Имеем: $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = -\vec{a} + \frac{1}{2}\vec{c}; \overrightarrow{BF} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{BP}) = \frac{1}{2}(\vec{b} + \vec{c})$.

Находим:

$$\overrightarrow{AE} \cdot \overrightarrow{BF} = (-\vec{a} + 0.5\vec{c}) \cdot (0.5\vec{b} + 0.5\vec{c}) =$$

$$= -0.5\vec{a} \cdot \vec{b} - 0.5\vec{a} \cdot \vec{c} + 0.25\vec{b} \cdot \vec{c} + 0.25\vec{c}^{2};$$

$$|\overrightarrow{AE}|^{2} = (-\vec{a} + 0.5\vec{c})^{2} = \vec{a}^{2} - \vec{a} \cdot \vec{c} + 0.25\vec{c}^{2};$$

$$|\overrightarrow{BF}|^{2} = \frac{1}{4}(\vec{b} + \vec{c})^{2} = \frac{1}{4}(\vec{b}^{2} + 2\vec{b} \cdot \vec{c} + \vec{c}^{2}).$$

Принимая во внимание (*), получаем: $\overrightarrow{AE} \cdot \overrightarrow{BF} = 0,125$, $|\overrightarrow{AE}| = |\overrightarrow{BF}| = \frac{\sqrt{3}}{2}$.

Поэтому
$$\cos \phi = \frac{0,125}{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}} = \frac{1}{6}$$
, значит, $\phi = \arccos \frac{1}{6}$.

Otbet: a) $\frac{\sqrt{2}}{2}$; b) $\arccos \frac{1}{6}$.

- **6.086.** В правильном тетраэдре PABC точки M и K середины рёбер соответственно AP и BC. Докажите, что отрезок MK перпендикулярен каждому из отрезков AP и BC.
- **6.087.** PABC правильный тетраэдр с ребром 1. Точка O центроид основания ABC; точки H, E и K середины рёбер соответственно BC, CP и AB. Найдите: 1) длину отрезка:
- а) PO; б) KE; 2) угол между векторами: а) \overrightarrow{PA} и \overrightarrow{PH} ; б) \overrightarrow{PA} и \overrightarrow{BE} ; в) \overrightarrow{HP} и \overrightarrow{CK} .
- **6.088.** © PABC правильный тетраэдр с ребром 1. Точка O центр основания ABC; точки M, E и F середины рёбер соответственно BC, PC и BP. Найдите: 1) длину отрезка OE; 2) угол между: а) медианами AM и PM граней ABC и PBC; 6) векторами \overrightarrow{AF} и \overrightarrow{BE} .
- **6.089.** В правильном тетраэдре PABC на ребре PC взята точка E такая, что PE:EC=1:2, и на медиане AF грани APB отмечена точка M центроид грани APB. Найдите длину отрезка ME, если длина ребра тетраэдра равна a.

п. 23.4

6.091. Дана правильная четырёхугольная пирамида MABCD. Векторы \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , \overrightarrow{MD} — единичные. Выразить вектор \overrightarrow{MD} через \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} .

Решение. Так как \overrightarrow{ABCD} — квадрат (рис. 56, a), то \overrightarrow{MA} + $+\overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD} = 2\overrightarrow{MO}$, где O — точка пересечения диагоналей \overrightarrow{AC} и \overrightarrow{BD} . Тогда $\overrightarrow{MD} = 1 \cdot \overrightarrow{MA} - 1 \cdot \overrightarrow{MB} + 1 \cdot \overrightarrow{MC}$.

а) Рис. 56

6.092. Дана правильная шестиугольная пирамида MABCDEF. Векторы \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , \overrightarrow{MD} , \overrightarrow{ME} , \overrightarrow{MF} — единичные векторы. Выразить:

- а) векторы \overrightarrow{MD} , \overrightarrow{ME} , \overrightarrow{MF} через векторы \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} ;
- б) векторы \overrightarrow{MB} , \overrightarrow{MD} , \overrightarrow{MF} через векторы \overrightarrow{MA} , \overrightarrow{MC} , \overrightarrow{ME} . Решение. а) Пусть точка O центр правильного шестиугольника ABCDEF (рис. 56, δ); K точка пересечения диагоналей ромба ABCO. Тогда $2\overrightarrow{MK} = \overrightarrow{MB} + \overrightarrow{MO} = \overrightarrow{MA} + \overrightarrow{MC}$, откуда $\overrightarrow{MO} = 1 \cdot \overrightarrow{MA} 1 \cdot \overrightarrow{MB} + 1 \cdot \overrightarrow{MC}$.

Из равенств $2\overrightarrow{MO}=\overrightarrow{MB}+\overrightarrow{ME}=\overrightarrow{MC}+\overrightarrow{MF}=\overrightarrow{MA}+\overrightarrow{MD}$ находим:

$$\overrightarrow{ME} = 2\overrightarrow{MO} - \overrightarrow{MB} = 2\overrightarrow{MA} - 3\overrightarrow{MB} + 2\overrightarrow{MC};$$

$$\overrightarrow{MF} = 2\overrightarrow{MO} - \overrightarrow{MC} = 2\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC};$$

$$\overrightarrow{MD} = 2\overrightarrow{MO} - \overrightarrow{MA} = \overrightarrow{MA} - 2\overrightarrow{MB} + 2\overrightarrow{MC}.$$

б) Пусть точка O — центроид треугольника ACE. Это означает, что $\overrightarrow{MO} = \frac{1}{3}(\overrightarrow{MA} + \overrightarrow{MC} + \overrightarrow{ME})$. Тогда из равенств $2\overrightarrow{MO} = \overrightarrow{MB} + \overrightarrow{ME} = \overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{MC} + \overrightarrow{MF}$ находим:

$$\overrightarrow{MD} = 2\overrightarrow{MO} - \overrightarrow{MA} = -\frac{1}{3}\overrightarrow{MA} + \frac{2}{3}\overrightarrow{MC} + \frac{2}{3}\overrightarrow{ME};$$

$$\overrightarrow{MB} = 2 \overrightarrow{MO} - \overrightarrow{ME} = \frac{2}{3} \overrightarrow{MA} + \frac{2}{3} \overrightarrow{MC} - \frac{1}{3} \overrightarrow{ME};$$

$$\overrightarrow{MF} = 2 \overrightarrow{MO} - \overrightarrow{MC} = \frac{2}{3} \overrightarrow{MA} - \frac{1}{3} \overrightarrow{MC} + \frac{2}{3} \overrightarrow{ME}.$$

6.093. В правильной четырёхугольной пирамиде MABCD точка F — середина ребра MB, K такая точка ребра MD, что MK = =5KD. В каком отношении плоскость AFK делит: а) ребро MC; б) высоту MO данной пирамиды?

Решение. а) Выберем пространственный базис: $\vec{a} = \overrightarrow{MA}$, $\vec{b} = \overrightarrow{MB}$, $\vec{d} = \overrightarrow{MD}$ (рис. 57). Тогда $2\overrightarrow{MO} = \overrightarrow{MB} + \overrightarrow{MD} = \overrightarrow{MA} + \overrightarrow{MC}$, откуда

Рис. 57

$$\overrightarrow{MC} = -\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MD} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{d}. \tag{1}$$

Обозначим $L=MC\cap (AFK)$. Так как точка L лежит в плоскости AFK, то

$$\overrightarrow{ML} = x \cdot \overrightarrow{MA} + y \cdot \overrightarrow{MF} + z \cdot \overrightarrow{MK},$$

где

$$x+y+z=1. (2)$$

Учитывая условие задачи, получаем

$$\overrightarrow{ML} = x \cdot \overrightarrow{a} + \frac{1}{2} y \cdot \overrightarrow{b} + \frac{5}{6} z \cdot \overrightarrow{d}. \tag{3}$$

Из условия коллинеарности векторов \overrightarrow{MC} и \overrightarrow{ML} имеем:

$$\overrightarrow{ML} = t \cdot \overrightarrow{MC} \Rightarrow x = -t, \ \frac{1}{2}y = t, \ \frac{5}{6}z = t \Rightarrow x = -t, \ y = 2t, \ z = \frac{6}{5}t,$$

где t — коэффициент пропорциональности.

Из условия (2) находим значение t:

$$-t + 2t + \frac{6}{5}t = 1 \Rightarrow -5t + 10t + 6t = 5 \Rightarrow t = \frac{5}{11}$$
.

Тогда
$$\frac{ML}{MC} = \frac{5}{11} \Rightarrow \frac{ML}{LC} = \frac{5}{6}$$
.

Векторный метод в пространстве

б) Обозначим $P=MO\cap (AFK)$. Точка O — середина BD, значит, $\overrightarrow{MO}=\frac{1}{2}(\vec{b}+\vec{d})$. Так как точки K, F и P лежат на одной прямой, то

$$\overrightarrow{MP} = m \overrightarrow{MF} + n \overrightarrow{MK} = \frac{1}{2} m \overrightarrow{b} + \frac{5}{6} n \overrightarrow{d}$$
, где $m + n = 1$. (4)

Из коллинеарности векторов \overrightarrow{MP} и \overrightarrow{MO} имеем: $\overrightarrow{MP}=u\overrightarrow{MO}\Rightarrow \frac{1}{2}m=\frac{1}{2}u$, $\frac{5}{6}n=\frac{1}{2}u$ или m=u, $n=\frac{3}{5}u$. Из условия (4) получаем $u+\frac{3}{5}u=1$ или 8u=5, откуда $u=\frac{5}{8}$. Это означает, что MP:MO=5:8 или MP:PO=5:3. Ответ: а) 5:6; б) 5:3.

6.094. В тетраэдре MABC боковые рёбра MA, MB и MC попарно взаимно перпендикулярны и MA=1, MB=2, MC=3; точка K — середина BC; F — внутренняя точка ребра AM такая, что AF:FM=3:1. Найти расстояние между прямыми AK и CF (рис. 58).

Решение. В качестве базисных примем векторы $\vec{a}=\overrightarrow{MA},$ $\vec{b}=\overrightarrow{MB},$ $\vec{c}=\overrightarrow{MC}.$ Имеем:

$$\overrightarrow{AK} = -\overrightarrow{a} + \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}, \overrightarrow{CF} = \frac{1}{4}\overrightarrow{a} + 0 \cdot \overrightarrow{b} - \overrightarrow{c}.$$

Пусть PL — общий перпендикуляр прямых AK и CF, где $P \in AK$, $L \in CF$. Тогда

$$\overrightarrow{PL} = \overrightarrow{PK} + \overrightarrow{KC} + \overrightarrow{CL} =$$

$$= x\overrightarrow{AK} + \overrightarrow{KC} + y\overrightarrow{CF} =$$

$$= -x\overrightarrow{a} + \frac{1}{2}x\overrightarrow{b} + \frac{1}{2}x\overrightarrow{c} + \frac{1}{2}\overrightarrow{c} - \frac{1}{2}\overrightarrow{b} +$$

$$+ y\left(-\overrightarrow{c} + \frac{1}{4}\overrightarrow{a}\right) = \left(-x + \frac{1}{4}y\right)\overrightarrow{a} +$$

$$+ \left(\frac{1}{2}x - \frac{1}{2}\right)\overrightarrow{b} + \left(\frac{1}{2}x - y + \frac{1}{2}\right)\overrightarrow{c}. \quad (1)$$

Коэффициенты разложения (1) вектора \overrightarrow{PL} по базису $(a; \vec{b}; \vec{c})$ найдём из условия перпендикулярности PL к прямым AK и CF.

Имеем:

$$\begin{cases} PL \perp AK \Rightarrow \overrightarrow{PL} \cdot \overrightarrow{AK} = 0, \\ PL \perp CF \Rightarrow \overrightarrow{PL} \cdot \overrightarrow{CF} = 0 \end{cases}$$

или

$$\begin{cases} x - \frac{1}{4}y + \frac{1}{2}\left(\frac{1}{2}x - \frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}x - y + \frac{1}{2}\right) = 0, \\ \frac{1}{4}\left(-x + \frac{1}{4}y\right) + 0 \cdot \left(\frac{1}{2}x - \frac{1}{2}\right) - 1 \cdot \left(\frac{1}{2}x - y + \frac{1}{2}\right) = 0, \end{cases}$$

откуда

$$\begin{cases} 2x - y = 0, \\ -12x + 17y = 8 \end{cases}$$

И

$$\begin{cases} x = \frac{4}{11}, \\ y = \frac{8}{11}. \end{cases}$$

Тогда, подставив в (1) вместо x и y их найденные значения, получаем: $\overrightarrow{PL} = -\frac{1}{22}(4\vec{a}+7\vec{b}+\vec{c})$. Значит,

$$|PL| = |\overrightarrow{PL}| = \frac{1}{22} \sqrt{16 \cdot 1 + 49 \cdot 4 + 9} = \frac{1}{22} \sqrt{221}$$
.

Ответ: $\frac{1}{22} \sqrt{221}$.

6.095. На рёбрах MA, MB и AC тетраэдра MABC отмечены соответственно такие точки K, F и T, что AK:KM=1:2, точка F — середина ребра BM, точка T — середина ребра AC; KF=3. Точки P и Q принадлежат соответственно прямым KF и BT, при этом $PQ \parallel AM$ (рис. 59). Найти длину отрезка KP.

Рис. 59

Решение. Выберем векторы $\vec{a}=\overrightarrow{MA}$, $\vec{b}=\overrightarrow{MB}$, $\vec{c}=\overrightarrow{MC}$ в качестве базисных. По правилу ломаной $\overrightarrow{PQ}=\overrightarrow{PK}+\overrightarrow{KA}+\overrightarrow{AT}+\overrightarrow{TQ}$. Имеем:

$$AK: KM = 1: 2 \Rightarrow \overrightarrow{KA} = \frac{1}{3} \vec{a}; P \in KF \Rightarrow$$

$$\Rightarrow \overrightarrow{PK} = x\overrightarrow{KF} = x \left(\frac{1}{2} \vec{b} - \frac{2}{3} \vec{a} \right); AT = TC \Rightarrow \overrightarrow{AT} = \frac{1}{2} \overrightarrow{AC} = \frac{1}{2} (\vec{c} - \vec{a});$$

$$Q \in TB \Rightarrow$$

$$\Rightarrow \overrightarrow{TQ} = y\overrightarrow{TB} = -y \overrightarrow{BT} = -y (\overrightarrow{BM} + \overrightarrow{MT}) = -y \left(\frac{1}{2} \vec{a} + \frac{1}{2} \vec{c} - \vec{b} \right).$$

Тогда

$$\overrightarrow{PQ} = \frac{1}{3}\vec{a} + x\left(\frac{1}{2}\vec{b} - \frac{2}{3}\vec{a}\right) + \frac{1}{2}\left(\vec{c} - \vec{a}\right) - y\left(\frac{1}{2}\vec{a} + \frac{1}{2}\vec{c} - \vec{b}\right) =$$

$$= \left(-\frac{2}{3}x - \frac{1}{2}y - \frac{1}{6}\right)\vec{a} + \left(\frac{1}{2}x + y\right)\vec{b} + \frac{1}{2}\left(1 - y\right)\vec{c}. \tag{*}$$

Так как $PQ \parallel AM$, то векторы \overrightarrow{PQ} и $\overrightarrow{MA} = \overrightarrow{a}$ коллинеарны. Следовательно, координаты $\frac{1}{2}x + y$ и $\frac{1}{2}(1-y)$ в разложении

(*) вектора \overrightarrow{PQ} в базисе $(\vec{a};\vec{b};\vec{c})$ должны быть одновременно равны нулю, т. е.

$$\begin{cases} \frac{1}{2}x + y = 0, \\ 1 - y = 0, \end{cases}$$

откуда x=-2, y=1. Тогда $\overrightarrow{PK}=x\overrightarrow{KF}=-2\overrightarrow{KF}$ или $\overrightarrow{KP}=2\overrightarrow{KF}$. Значит, $|KP|=|\overrightarrow{KP}|=|-2\overrightarrow{KF}|=6$. Это означает, что точка F— середина отрезка KP.

Ответ: 6.

6.096. Дан параллелепипед $ABCDA_1B_1C_1D_1$. Точки P, M и Q выбраны на рёбрах соответственно AA_1 , AB и AD так, что $AP = PA_1 = 3:1$, AQ:QD = 1:4, AM = MB (рис. 60). В каком отношении плоскость PMQ делит диагональ AC_1 параллелепипеда?

Решение. Примем в качестве базисных векторы $\overrightarrow{AP} = \overrightarrow{a}$, $\overrightarrow{AM} = \overrightarrow{b}$, $\overrightarrow{AQ} = \overrightarrow{c}$.

Тогда
$$\overrightarrow{AA_1} = \frac{4}{3} \vec{a}$$
, $\overrightarrow{AB} = 2\vec{b}$, $\overrightarrow{AD} = 5\vec{c}$;

$$\overrightarrow{AC}_1 = \overrightarrow{AA}_1 + \overrightarrow{AB} + \overrightarrow{AD} = \frac{4}{3}\overrightarrow{a} + 2\overrightarrow{b} + 5\overrightarrow{c}.$$

Пусть $F = AC_1 \cap (PMQ)$. Для точек M, P, Q и F, принадлежащих одной плоскости, имеем

$$\overrightarrow{AF} = x\overrightarrow{AP} + y\overrightarrow{AM} + z\overrightarrow{AQ} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}$$
,

где

$$x+y+z=1. (*)$$

Так как $\overrightarrow{AF} \parallel \overrightarrow{AC_1}$, то одноимённые координаты этих векторов пропорциональны, т. е. $x=\frac{4}{3}\,t,\,y=2t,\,z=5t.$ Подставляя эти значения $x,\,y$ и z в левую часть соотношения (*), получаем $\frac{4}{3}\,t+2t+5t=1$, откуда $t=\frac{3}{25}$. Это означает:

$$AF:AC_1=3:25\Rightarrow AF:FC_1=3:22.$$

Ответ: $AF : FC_1 = 3 : 22$.

6.097. Все плоские углы трёхгранного угла MABC равны α . Прямая MP образует со всеми его рёбрами углы, равные ϕ , а со всеми гранями — углы, равные ψ . Найти величины углов ϕ и ψ .

Векторный метод в пространстве

Решение. Пусть $\overrightarrow{MA} = \vec{a}$, $\overrightarrow{MB} = \vec{b}$, $\overrightarrow{MC} = \vec{c}$ — единичные векторы базиса в пространстве; точка O — центроид треугольника ABC (рис. 61); $\overrightarrow{MK} = \vec{a} + \vec{b} + \vec{c}$.

Так как вектор \overrightarrow{MK} коллинеарен вектору $\overrightarrow{MO} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c})$, то \angle $(\overrightarrow{MK}, \vec{a}) = \angle$ $(\overrightarrow{MK}, \vec{b}) = \angle$ $(\overrightarrow{MK}, \vec{c}) = \varphi$ и \angle $(MP, (AMB)) = \angle$ $(MP, (AMC)) = \angle$ $(MP, (CMB)) = \angle$ $(\overrightarrow{MK}, \overrightarrow{ML}) = \psi$, где $\overrightarrow{ML} = \vec{a} + \vec{b}$ — направляющий вектор прямой ML, являющейся проекцией прямой MK на плоскость AMB. Прямая ML содержит биссектрису угла AMB, так как каждая точка прямой MP, образующей равные углы с рёбрами трёхгранного угла, равноудалена от каждого из этих рёбер. Имеем: $\overrightarrow{ML}^2 = (\vec{a} + \vec{b} + \vec{c})^2 = 3 + 6\cos\alpha \Rightarrow |\overrightarrow{ML}| = \sqrt{3(1 + 2\cos\alpha)}$. Тогда

$$\cos \varphi = \frac{\overrightarrow{MK} \cdot \overrightarrow{a}}{\left| \overrightarrow{MK} \right| \cdot \left| \overrightarrow{a} \right|} = \frac{\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{a}}{\left| \overrightarrow{MK} \right| \cdot \left| \overrightarrow{a} \right|} = \frac{1 + 2\cos \alpha}{\sqrt{3(1 + 2\cos \alpha)}} =$$
$$= \sqrt{\frac{1 + 2\cos \alpha}{3}} \Rightarrow \varphi = \arccos \sqrt{\frac{1 + 2\cos \alpha}{3}};$$

$$\cos \psi = \frac{\overrightarrow{MK} \cdot \overrightarrow{ML}}{\left| \overrightarrow{MK} \right| \cdot \left| \overrightarrow{ML} \right|} = \frac{(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b})}{\left| \overrightarrow{a} + \overrightarrow{b} \right| \cdot \left| \overrightarrow{a} + \overrightarrow{b} \right|} =$$

$$= \frac{2(1 + 2\cos \alpha)}{\sqrt{3(1 + 2\cos \alpha)}\sqrt{2(1 + \cos \alpha)}} = \sqrt{\frac{2(1 + 2\cos \alpha)}{3(1 + \cos \alpha)}} =$$

$$= \frac{1}{\cos \frac{\alpha}{2}} \sqrt{\frac{1 + 2\cos \alpha}{3}} \Rightarrow \psi = \arccos \frac{1}{\cos \frac{\alpha}{2}} \sqrt{\frac{1 + 2\cos \alpha}{3}}.$$

Otbet:
$$\phi = \arccos \sqrt{\frac{1+2\cos\alpha}{3}}$$
 ; $\psi = \arccos \frac{1}{\cos\frac{\alpha}{2}}\sqrt{\frac{1+2\cos\alpha}{3}}$.

- **6.098.** \odot В правильной четырёхугольной пирамиде MABCD с вершиной M величина угла между смежными боковыми гранями равна $\arccos \frac{1}{18}$ и длина бокового ребра равна 1. Точка K середина ребра BM. Найдите: а) скалярное произведение векторов \overrightarrow{AM} и \overrightarrow{AB} ; б) длину вектора \overrightarrow{AK} .
- **6.099.** $\[\]$ В правильной четырёхугольной пирамиде MABCD длины стороны основания и высоты равны соответственно 1 и 2. Найдите расстояние между прямыми BD и MA.
- **6.100.** © Точка K лежит на ребре BB_1 куба $ABCDA_1B_1C_1D_1$ так, что $BK:KB_1=2:1$. Найдите: а) величину угла между прямыми CD_1 и KD; б) расстояние между прямыми CD_1 и KD, если длина ребра куба $\sqrt{43}$.
- **6.101.** Точка K лежит на ребре BB_1 куба $ABCDA_1B_1C_1D_1$ так, что $BK:KB_1=3$, точка P делит ребро AA_1 в отношении $AP:PA_1=1:4$. Найдите: а) величину угла между прямыми CP и KD_1 ; б) расстояние между прямыми CP и KD_1 , если длина ребра куба 2.
- **6.102.** \odot Длины рёбер AA_1 , AB и AD прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ равны соответственно 12, 3 и 4. Найдите величину угла между векторами \overrightarrow{AC}_1 и $\overrightarrow{B_1D}_1$.

6.103. Длины рёбер AA_1 , AB и AD прямоугольного параллеленипеда $ABCDA_1B_1C_1D_1$ равны соответственно 6, 4 и 1. Найдите расстояние между прямыми AC_1 и B_1D_1 .

Задачи к главе 6

- **6.104.** Точки M и H середины рёбер соответственно AB и CP тетраэдра PABC. Докажите, что $2\overrightarrow{MH} = \overrightarrow{AC} + \overrightarrow{BP} = \overrightarrow{AP} + \overrightarrow{BC}$.
- **6.105.** Дана треугольная призма $ABCA_1B_1C_1$. Нарисуйте вектор \overrightarrow{AM} , если: a) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC}_1 + \overrightarrow{A_1A}$;
- 6) $\overrightarrow{AM} = \overrightarrow{BC} \overrightarrow{CC_1} + \overrightarrow{CB_1}$; B) $\overrightarrow{AM} = -\overrightarrow{AA_1} + \overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{B_1B}$; r) $\overrightarrow{AM} = \overrightarrow{AA_1} + \overrightarrow{AC} + \overrightarrow{C_1A_1} + \overrightarrow{C_1C}$.
- **6.106.** Том можно ли составить: а) треугольник из медиан данного треугольника; б) замкнутую ломаную из отрезков, идущих из каждой вершины тетраэдра в точку пересечения медиан противоположной грани?
- **6.107.** $\[\]$ Точки A_1 , B_1 и C_1 взяты на сторонах соответственно BC, AC и AB треугольника ABC так, что $AC_1:C_1B=BA_1:A_1C=CB_1:B_1A$. Докажите, что отрезки, равные AA_1 , BB_1 и CC_1 , являются сторонами некоторого треугольника.
- **6.108.** В Отрезок, соединяющий середины противоположных рёбер тетраэдра, называется его бимедианой. Докажите, что все бимедианы тетраэдра пересекаются в одной точке и делятся ею пополам.
- **6.109.** Центроиды треугольников ABC и $A_1B_1C_1$ совпадают. Докажите, что прямые AA_1 , BB_1 и CC_1 параллельны некоторой плоскости.
- **6.110.** В Отрезок, соединяющий вершину тетраэдра с центроидом противолежащей грани, называется медианой тетраэдра. Докажите, что медианы тетраэдра пересекаются в одной точке и эта точка делит каждую из медиан в отношении 3:1, считая от вершины.

- **6.111.** Центроидом тетраэдра называется точка пересечения его медиан. Точки M и M_1 центроиды тетраэдров PABC и $P_1A_1B_1C_1$. Докажите, что $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{PP}_1 = 4\overrightarrow{MM_1}$.
- **6.112.** Докажите, что не существует плоскости, которой были бы параллельны диагонали всех боковых граней треугольной призмы.
- **6.113.** Даны два параллелограмма MNPQ и $M_1N_1P_1Q_1$. Точки A, B, C, D середины отрезков соответственно MM_1 , NN_1 , PP_1 , QQ_1 . Докажите, что четырёхугольник ABCD параллелограмм.
- **6.114.** В параллелепипеде $ABCDA_1B_1C_1D_1$ точки M и K середины отрезков соответственно A_1C_1 и BB_1 . Докажите, что прямые KM, A_1B_1 и BC_1 параллельны некоторой плоскости.
- **6.115.** Докажите, что точка пересечения медиан тетраэдра совпадает с точкой пересечения его бимедиан.
- **6.116.** $\begin{cases} \begin{cases} $KABC$ тетраэдр. Какую фигуру образуют точки <math>M$ такие, что: a) $\begin{cases} \overrightarrow{KM} = <math>\begin{cases} \overrightarrow{KA} + <math>\begin{cases} \overrightarrow{KB} + <math>x\begin{cases} $\overrightarrow{KC}$$; б) $\begin{cases} \overrightarrow{KM} = <math>\begin{cases} \overrightarrow{KA} + <math>y\begin{cases} \overrightarrow{KB} + <math>x\begin{cases} $\overrightarrow{KC}$$; в) $\begin{cases} \overrightarrow{KM} = <math>z\begin{cases} \overrightarrow{KA} + <math>y\begin{cases} \overrightarrow{KB} + <math>x\begin{cases} $\overrightarrow{KC}$$; где $0\leqslant x\leqslant 1,\ 0\leqslant y\leqslant 1,\ 0\leqslant z\leqslant 1.$
- **6.117.** На диагоналях AB_1 и CA_1 боковых граней треугольной призмы $ABCA_1B_1C_1$ расположены точки E и F соответственно так, что $EF \parallel BC_1$. Найдите отношение длин отрезков EF и BC_1 .
- **6.118.** Дан тетраэдр PABC. Найдите все такие точки M пространства, что $\overrightarrow{MP} + \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$.
- **6.119.** $\[\]$ В основании пирамиды MABCD лежит трапеция ABCD ($AD \parallel BC$, AD = 3BC). На ребре MD отметили такую точку K, что KM : KD = 2 : 3; точка P середина MB. В каком отношении, считая от точки M, плоскость AKP делит ребро MC?

- **6.120.** $\[\]$ PABC тетраэдр; b_1 , b_2 , b_3 биссектрисы соответственно углов BPC, CPA, APB. Докажите, что если биссектрисы b_1 , b_2 взаимно перпендикулярны, то каждая из них перпендикулярна биссектрисе b_3 .

$$\cos \alpha + \cos \beta + \cos \gamma = -1$$
.

- **6.123.** В параллелепипеде $ABCDA_1B_1C_1D_1$ точка M середина диагонали A_1C_1 грани $A_1B_1C_1D_1$, точка K середина ребра BB_1 . Докажите, что прямые A_1B_1 , KM и BC_1 параллельны одной некоторой плоскости.
- **6.124.** Из вершины параллелепипеда проведены три диагонали его граней. На этих диагоналях (как на рёбрах) построен новый параллелепипед. Докажите, что противолежащая вершина данного параллелепипеда является серединой диагонали построенного параллелепипеда.
- **6.125.** Точки K и E середины рёбер соответственно AB и CP тетраэдра PABC. Докажите, что прямые AP, BC и KE параллельны некоторой плоскости.

Глава

КООРДИНАТНЫЙ МЕТОД В ПРОСТРАНСТВЕ

Задачи к § 24. Декартова прямоугольная система координат в пространстве

7.001. $ABCDA_1B_1C_1D_1$ — куб с ребром 1. Пусть $\overrightarrow{AD} = \overrightarrow{i}$, $\overrightarrow{AB} = \overrightarrow{j}$, $\overrightarrow{AA_1} = \overrightarrow{k}$. Найти в базисе $(\overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$ координаты векторов: a) $\overrightarrow{AC_1}$; б) $\overrightarrow{CA_1}$; в) \overrightarrow{AK} , где $K = BC_1 \cap B_1C$ (рис. 62).

Решение. a) Так как
$$\overrightarrow{CC_1} = \overrightarrow{AA_1} = \overrightarrow{k}$$
, $\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{i} + \overrightarrow{j}$, то $\overrightarrow{AC_1} =$

Рис. 62

$$=\overrightarrow{AC}+\overrightarrow{AA_1}=\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}, \text{ значит, вектор }\overrightarrow{AC_1}\text{ имеет координаты }(1;1;1), \text{ т. е. }\overrightarrow{AC_1}(1;1;1);6)\overrightarrow{CA_1}=\overrightarrow{AA_1}-\overrightarrow{AC}=\overrightarrow{k}-(\overrightarrow{i}+\overrightarrow{j})=\\=-\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}, \text{ т. е. }\overrightarrow{CA_1}(-1;-1;1); \text{ в) }\overrightarrow{AK}=\overrightarrow{AC}+\overrightarrow{CK}=\overrightarrow{AC}+\\+\frac{1}{2}(\overrightarrow{CC_1}+\overrightarrow{CB})=\overrightarrow{i}+\overrightarrow{j}+\frac{1}{2}\overrightarrow{k}+\frac{1}{2}(-\overrightarrow{i})=\frac{1}{2}\overrightarrow{i}+\overrightarrow{j}+\frac{1}{2}\overrightarrow{k}, \text{ т. е. }\overrightarrow{AK}\Big(\frac{1}{2};1;\frac{1}{2}\Big).$$

Ответ: а) (1; 1; 1); б) (-1; -1; 1); в) $\left(\frac{1}{2}; 1; \frac{1}{2}\right)$.

7.002. Коллинеарны ли векторы: а) $\vec{a}(3; 4; 5)$ и $\vec{b}(6; 8; 10);$ б) $\vec{p}(2; -3; 3)$ и $\vec{q}(4; -6; 2)$?

Решение. а) Векторы \vec{a} и \vec{b} коллинеарны, так как 3:6=4:8=5:10; б) координаты вектора \vec{q} не пропорциональны одноимённым координатам вектора \vec{p} , например, $2:4\neq 3:2$. Поэтому векторы \vec{p} и \vec{q} не коллинеарны.

Попытайтесь установить, компланарны ли векторы \vec{a} , \vec{b} и \vec{p} , если: a) $\vec{a}(-1; 4; 6)$, $\vec{b}(1; 7; 3)$, $\vec{p}(0; 11; 9)$; б) $\vec{a}(-3; 14; 6)$, $\vec{b}(6; -8; 7)$, $\vec{p}(-9; 62; 37)$; в) $\vec{a}(-1; 0; 0)$, $\vec{b}(0; 7; 0)$, $\vec{p}(0; 0; 9)$?

7.003. Найти длины векторов $\vec{p}=2\vec{a}+3\vec{b}$, $\vec{q}=2\vec{a}-3\vec{b}$, их скалярное произведение и угол между ними, если $\vec{a}=\vec{i}-\vec{j}+2\vec{k}$, $\vec{b}=2\vec{i}+2\vec{j}$.

Решение. Найдём координаты векторов \vec{p} и \vec{q} в базисе $(\vec{i}\;;\;\vec{j}\;;\;\vec{k})$.

Имеем: $\vec{a}(1; -1; 2) \Rightarrow 2\vec{a}(2; -2; 4)$,

 $\vec{b}(2;2;0) \Rightarrow 3\vec{b}(6;6;0).$

Тогда $2\vec{a}+3\vec{b}=\vec{p}(8;4;4),\,2\vec{a}-3\vec{b}=\vec{q}(-4;-8;4).$ Значит, $|\vec{p}|=\sqrt{8^2+4^2+4^2}\,=\,4\,\sqrt{6}\,;\;|\vec{q}|=\,\sqrt{(-4)^2+(-8)^2+4^2}\,=\,4\,\sqrt{6}\,;$ $\vec{p}\cdot\vec{q}=8\cdot(-4)+4\cdot(-8)+4\cdot4=-48;$

$$\cos \phi = rac{ec{p} \cdot ec{q}}{|ec{p}| \cdot |ec{q}|} = rac{-48}{4\sqrt{6} \cdot 4\sqrt{6}} = -rac{1}{2}$$
, откуда $\phi = \angle \ (ec{p} \ , \ ec{q}) = 120^\circ.$

Ответ: $4\sqrt{6}$; $4\sqrt{6}$; -48; 120° .

 $\Pi. 24.1 - 24.3$

- **7.004.** © Запишите координаты векторов: $\vec{a} = 2\vec{i} + 3\vec{j} 5\vec{k}$; $\vec{b} = \vec{i} 4\vec{j} + 6\vec{k}$; $\vec{c} = -3\vec{i} + 2\vec{j} 5\vec{k}$; $\vec{p} = \vec{i} + \vec{k}$; $\vec{m} = \vec{j} 2\vec{i}$; $\vec{n} = -\vec{k}$.
- **7.005.** © Даны векторы: $\vec{a}(3; 7; -2)$, $\vec{b}(0; -5; -2)$, $\vec{c}(-1; 2; 0)$, $\vec{p}(2; 0; -3)$, $\vec{q}(0; 0; 5)$. Запишите их разложения в базисе $(\vec{i}; \vec{j}; \vec{k})$.
- **7.006.** Даны векторы $\vec{a}(-1;2;0)$, $\vec{b}(0;-5;-2)$, $\vec{c}(2;1;-3)$. Най-дите координаты векторов $\vec{p}=\vec{a}-2\vec{b}+3\vec{c}$ и $\vec{q}=\vec{c}-2\vec{a}+3\vec{b}$.
- **7.007.** \odot При каких m и n вектор $\vec{a} = 3\vec{i} 2\vec{j} + m\vec{k}$ коллинеарен вектору $\vec{b} = n\vec{i} + \vec{j} 2\vec{k}$?
- **7.008.** Компланарны ли векторы: a) $\vec{a}(1; -2; -1)$, $\vec{b}(3; 1; 2)$, $\vec{c}(5; -3; 0)$; б) $\vec{p}(2; 0; -3)$, \vec{i} , \vec{j} ; в) $\vec{m}(2; 0; -3)$, \vec{i} , \vec{k} ; г) $\vec{a}(1; -1; 2)$, $\vec{b}(5; -1; 0)$, $\vec{c}(-2; 0; 1)$; д) $\vec{a}(0; 5; 3)$, $\vec{b}(3; 3; 3)$, $\vec{c}(1; 1; 4)$?

Решение. а) Векторы $\vec{a}(1;-2;-1)$ и $\vec{b}(3;1;2)$ не коллинеарны, так как их одноимённые координаты не пропорциональны $(1:3\neq -2:1)$. Если вектор $\vec{c}(5;-3;0)$ можно разложить по векторам \vec{a} и \vec{b} , то векторы \vec{a} , \vec{b} и \vec{c} компланарны (т. 35); в противном случае векторы \vec{a} , \vec{b} и \vec{c} не компланарны. Таким образом, для решения задачи достаточно установить, существуют ли числа x и y такие, что $\vec{c}=x\vec{a}+y\vec{b}$. В координатах это означает, имеет ли решение система уравнений относительно x и y

$$\begin{cases} x + 3y = 5, \\ -2x + y = -3, \\ -x + 2y = 0. \end{cases}$$

Складывая первое и третье уравнения этой системы, получаем y=1. Тогда x=2. Поэтому $\vec{c}=2\vec{a}+\vec{b}$. Это означает, что вектор \vec{c} является линейной комбинацией векторов \vec{a} и \vec{b} , следовательно, векторы \vec{a} , \vec{b} и \vec{c} компланарны.

7.009. \odot Найдите длины векторов: $\vec{a}(5;-1;7)$, $\vec{b}(6;2\sqrt{3};-1)$, $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, $\vec{m}=-3\vec{k}$, $\vec{p}=\vec{i}-3\vec{j}$.

7.010. Даны векторы: $\vec{a}(5; -1; 7)$, $\vec{b}(-2; 3; 1)$, $\vec{c}(-3; 2; 1)$. Найдите: а) $|\vec{a} + \vec{b}|$; б) $|\vec{a}| + |\vec{b}|$; в) $|\vec{a} - \vec{b}|$; г) $|\vec{a}| - |\vec{b}|$; д) $|3\vec{c}|$; е) $|2\vec{a} - 3\vec{c}|$; ж) $2|\vec{a}| - 3|\vec{c}|$.

7.011. (Устно.) Даны векторы:

$$ec{a}(1;-1;2), ec{b}(-1;1;1), \ ec{c}(5;6;2).$$
 Найдите: $ec{a}\cdotec{c}\,; ec{a}\cdotec{b}\,; ec{d}^{\,2}; \ \sqrt{ec{b}^{\,2}}$.

7.012. Проекции вектора \vec{p} на оси координат равны соответственно: 3; -8; 5. Найдите координаты вектора \vec{p} .

7.013. (Устно.) Даны векторы $\vec{a}(5;-1;3)$ и $\vec{b}(4;2;3)$. При каком значении числа x Пр. $\vec{b}(2\vec{a}+x\vec{b})=0$?

7.014. (Устно.) Даны векторы $\vec{a}(3;-1;1)$, $\vec{b}(-5;1;0)$, $\vec{c}(-1;-2;1)$. Выясните, какой угол (острый, прямой или тупой) между векторами: а) \vec{a} и \vec{b} ; б) \vec{b} и \vec{c} ; в) \vec{a} и \vec{c} .

7.015. (Устно.) Острый, прямой или тупой угол образует вектор \vec{b} (4; -6; 0) с базисными векторами \vec{i} , \vec{j} и \vec{k} ?

7.016. Найдите угол между векторами:

а)
$$\vec{a}(2; -2; 0)$$
 и $\vec{b}(3; 0; -3)$; б) $\vec{a}(0; 5; 0)$ и $\vec{b}(0; -\sqrt{3}; 1)$;

в)
$$\vec{a}(-\sqrt{2}\;;\;\sqrt{2}\;;-2)$$
 и $\vec{b}\Big(\frac{\sqrt{2}}{2}\;;-\frac{\sqrt{2}}{2}\;;-1\Big).$

- **7.017.** Известно, что $\widehat{(\vec{a};\vec{c})} = \widehat{(\vec{b};\vec{c})} = 60^\circ; |\vec{a}| = 1, |\vec{b}| = |\vec{c}| = 2.$ Найдите: а) $(\vec{a} + \vec{b}) \cdot \vec{c}$; б) $(2\vec{a} 3\vec{b}) \cdot \vec{c}$.
- **7.018.** Дан куб $ABCDA_1B_1C_1D_1$. Найдите угол между векторами: а) $\overrightarrow{B_1B}$ и $\overrightarrow{B_1C}$; б) \overrightarrow{DA} и $\overrightarrow{B_1D}_1$; в) $\overrightarrow{A_1C}_1$ и $\overrightarrow{A_1B}$; г) \overrightarrow{BC} и \overrightarrow{AC} ; д) $\overrightarrow{BB_1}$ и \overrightarrow{AC} ; е) $\overrightarrow{B_1C}$ и $\overrightarrow{AD_1}$; ж) $\overrightarrow{A_1D_1}$ и \overrightarrow{BC} ; з) $\overrightarrow{AA_1}$ и $\overrightarrow{C_1C}$.
- **7.019.** \odot Найдите все такие значения x, при которых векторы $\vec{a}(3; 5-x; x)$ и $\vec{b}(5+x; 7x+1; 2)$ коллинеарны.
- **7.020.** Даны векторы $\vec{a}(1;0;0)$, $\vec{b}(1;1;0)$ и $\vec{c}(1;1;1)$. Разложите по данным векторам вектор $\vec{m}(3;-7;11)$.
- **7.021.** Известно, что $\vec{m}=7\vec{a}+2\vec{b}$. Найдите координаты вектора \vec{a} , если $\vec{b}(-1;5;3)$ и $\vec{m}(0;1;8)$.
- **7.022.** При каких значениях n векторы $\vec{a}(3; n; 5)$ и $\vec{b}(-4; 3; n)$ перпендикулярны?
- **7.023.** Векторы \vec{a} и \vec{b} перпендикулярны вектору \vec{c} , $(\vec{a}; \vec{b}) = 120^{\circ}$, $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$. Найдите: а) скалярные произведения $2\vec{b} \cdot (\vec{a} + \vec{b} + \vec{c})$ и $(\vec{a} \vec{c}) \cdot (\vec{a} \vec{b} + \vec{c})$; б) $|\vec{a} \vec{b}|$; в) $|\vec{a} + \vec{b} \vec{c}|$.
- **7.024.** © Дан куб $ABCDA_1B_1C_1D_1$ с ребром 2. Точка M центр основания $A_1B_1C_1D_1$. Точки E и H взяты соответственно на отрезках BB_1 и AC так, что $BE:BB_1=1:2, AH:AC=1:4$. Выберите ортонормированный базис в пространстве и, пользуясь разложением вектора в этом базисе, найдите: 1) длину отрезка: а) AM; б) EH; в) MH; 2) угол между векторами: а) \overrightarrow{BC}_1 и \overrightarrow{AC} ; б) $\overrightarrow{A_1D}$ и \overrightarrow{BD}_1 ; в) \overrightarrow{HM} и \overrightarrow{CB}_1 .
- **7.025.** Все рёбра правильной четырёхугольной пирамиды PABCD равны 1. Точка O центр грани ABCD. Точки E, F, H середины рёбер соответственно BP, CP, AP. Выберите

ортонормированный базис в пространстве и, пользуясь разложением вектора в этом базисе, найдите: а) длину отрезка OP; б) длину отрезка CH; в) угол между векторами \overrightarrow{AE} и \overrightarrow{BF} ; г) угол между медианой PM грани BPC и высотой AE грани APB.

7.026. Найти расстояние от вершины A треугольника ABC до его центроида M, если A(-2; 1; -3), B(-1; 0; 4), C(1; 2; 6).

Решение. Пусть AA_1 — медиана $\triangle ABC$ (рис. 63). Точка A_1 — середина стороны BC — имеет координаты:

$$x = \frac{-1+1}{2} = 0, y = \frac{0+2}{2} = 1,$$

 $z = \frac{4+6}{2} = 5, \text{ t. e. } A_1(0; 1; 5).$

Далее, точка M делит медиану AA_1 в отношении $\lambda = AM: MA_1 = 2: 1 = 2$. Поэтому координаты точки M равны:

$$x = \frac{-2 + 2 \cdot 0}{1 + 2} = -\frac{2}{3}, y = \frac{1 + 2 \cdot 1}{1 + 2} = 1, z = \frac{-3 + 2 \cdot 5}{1 + 2} = \frac{7}{3}.$$

Таким образом, $M\!\left(-rac{2}{3}\,;\,1;\,rac{7}{3}
ight)$. Тогда

$$|AM| = \sqrt{\left(-rac{2}{3}+2
ight)^2+(1-1)^2+\left(rac{7}{3}+3
ight)^2} = rac{4}{3}\,\sqrt{17}\,.$$

Ответ: $\frac{4}{3}\sqrt{17}$.

Bамечание. Координаты точки M можно найти проще, если учесть, что $\overrightarrow{OM}=\frac{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})$. Кроме того, $AM=\frac{2}{3}AA_1$.

7.027. Дан треугольник ABC, координаты вершин которого: A(1; 5; 3), B(3; 6; 5), C(1; 1; 0). Найти координаты точки пересечения стороны BC и биссектрисы угла A.

Решение. $AB = \sqrt{2^2 + 1^2 + 2^2} = 3$; $AC = \sqrt{0^2 + (-4)^2 + (-3)^2} = 5$. Если биссектриса угла A пересекает сторону BC в точ-

ке $A_1(x;\ y;\ z)$, то по свойству биссектрисы внутреннего угла треугольника $\frac{BA_1}{A_1C}=\frac{AB}{AC}=0.6$, т. е. точка A_1 делит отрезок BC в отношении $\lambda=0.6$. Тогда:

$$x = \frac{3+0.6\cdot 1}{1+0.6} = \frac{9}{4}$$
, $y = \frac{6+0.6\cdot 1}{1+0.6} = \frac{33}{8}$, $z = \frac{5+0.6\cdot 0}{1+0.6} = \frac{25}{8}$.

OTBET:
$$\left(\frac{9}{4}; \frac{33}{8}; \frac{25}{8}\right)$$
.

п. 24.4-24.5

- **7.028.** © В прямоугольной системе координат Oxyz постройте точки A(1; 1; 2), B(-1; 1; 2), C(2; -1; 1), D(2; 2; -1), E(-5; -3; 1), F(0; 3; 1), G(3; 0; 1), P(3; 1; 0), K(0; 3; 0), M(0; 0; 3), H(3; 0; 0).
- **7.029.** Даны векторы $\overrightarrow{OA}(2;3;4)$, $\overrightarrow{OB}(-3;2;-5)$, $\overrightarrow{OC}(0;-1;1)$. Какие координаты имеют точки A, B и C, если O начало системы координат?
- **7.030.** (Устно.) Даны точки A(-2; 2; 0), B(4; -4; 3), C(7; 0; -9). Какие координаты имеют векторы \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{AB} , \overrightarrow{BC} , где точка O начало системы координат?
- **7.031.** 3 Найдите координаты вектора \overrightarrow{AB} , если A(3; 8; 7), B(-1; 8; -3).
- **7.032.** Найдите координаты точки M, если даны координаты точки N(-3;3;8) и вектора $\overrightarrow{MN}(1;0;5)$.
- **7.033.** Найдите координаты точки P, если даны координаты точки K(-3;3;8) и вектора $\overrightarrow{KP}(11;-2;-2)$.
- **7.034.** Вершины треугольника ABC имеют координаты: A(1; 6; 2), B(2; 3; -1), C(-3; 4; 5). Разложите векторы $\overrightarrow{AB}, \overrightarrow{BC}$ и \overrightarrow{AC} по базисным векторам $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$. Найдите координаты центроида треугольника ABC.

- **7.035.** $ABCDA_1B_1C_1D_1$ куб с ребром 1. Выберите прямоугольную систему координат с началом в вершине A и найдите координаты вектора: a) \overrightarrow{AK} , где $K = A_1C \cap (AB_1D_1)$;
- б) \overrightarrow{DO}_1 , где точка O_1 центр грани BCC_1B_1 ; в) \overrightarrow{CM} , где точка M центр куба.
- **7.036.** © Лежат ли точки A, B и C на одной прямой, если:
- a) A(3; -7; 8), B(-5; 4; 1), C(27; -40; 29);
- 6) A(-5; 7; 12), B(4; -8; 3), C(13; -23; -6);
- B) A(-4; 8; -2), B(-3; -1; 7), C(-2; -10; -16)?
- **7.037.** $\[\]$ Найдите координаты такой точки C плоскости Oxy, которая лежит на одной прямой с точками A(3; -8; 7) и B(-1; 2; -7). Какая из точек A, B, C лежит между двумя другими?
- **7.039.** (Устно.) Найдите координаты середины отрезка AB, если A(-1; 8; 3) и B(1; 5; 7).
- **7.040.** \odot Найдите координаты точек $M_1,\ M_2,\ M_3,\ M_4$ и $M_5,$ делящих отрезок AB соответственно в отношениях $\lambda=1,$ $\lambda=-3,\ \lambda=5,\ \lambda=-\frac{1}{3},\ \lambda=\frac{1}{2}$, если A(0;-1;3) и B(5;2;8). Запишите эти точки по порядку на прямой в направлении AB.
- **7.041**. К точке A(2;-1;3) приложены две силы $\vec{F}_1(1;2;-2)$ и $\vec{F}_2(-1;3;2)$. Найдите точку, в которую перейдёт точка A под действием их равнодействующей.
- a) A(-2; -13; 3), B(1; 4; 1), C(-1; -1; -4), E(0; 0; 0);
- 6) A(0; 1; 0), B(3; 4; -1), C(-2; -3; 0), E(2; 0; 3);
- B) A(5; -1; 0), B(-2; 7; 1), C(12, -15; -17), E(1; 1; -2)?
- **7.043.** Даны точки A(1; 3; 5) и B(2; 1; -7). Найти на оси абсцисс все такие точки C, что треугольник ABC прямоугольный.

Решение. Пусть C(x; 0; 0) — искомая точка. Тогда имеем: $\overrightarrow{AB}(1; -2; -12)$, $\overrightarrow{AC}(x-1; -3; -5)$, $\overrightarrow{BC}(x-2; -1; 7)$. Может представиться один и только один из трёх случаев: в треугольнике ABC прямым окажется или угол при вершине A, или угол при вершине B, или, наконец, угол при вершине C. Рассмотрим каждый из этих случаев.

- а) $\angle BAC$ прямой, если $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$. В координатной форме это означает: x 1 + 6 + 60 = 0, откуда x = -65, т. е́. вершина прямого угла имеет координаты: $C_1(-65; 0; 0)$.
- б) $\angle ABC$ прямой, если $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$. В координатах это равносильно уравнению x-2+2-84=0, откуда x=84, т. е. вершина прямого угла имеет координаты: $C_2(84;0;0)$.
- в) \angle ACB прямой, если $\overrightarrow{AC} \cdot \overrightarrow{BC} = 0$. В координатах это равносильно уравнению

(x-1)(x-2)+3-35=0 или $x^2-3x-30=0$, откуда $x_1=\frac{3-\sqrt{129}}{2}$, $x_2=\frac{3+\sqrt{129}}{2}$, т. е. существуют два прямочгольных треугольника, вершинами прямых углов которых являются точки $C_3\Big(\frac{3-\sqrt{129}}{2}\,;\,0;\,0\Big)$ и $C_4\Big(\frac{3+\sqrt{129}}{2}\,;\,0;\,0\Big)$.

Ответ: $C_1(-65;\ 0;\ 0);\ C_2(84;\ 0;\ 0);\ C_3\!\!\left(\frac{3-\sqrt{129}}{2};\ 0;\ 0\right);$ $C_4\!\!\left(\frac{3+\sqrt{129}}{2};0;0\right)\!.$

- **7.044.** © Найдите координаты точек, удалённых от каждой из координатных плоскостей на 8.
- 7.045. Где может быть расположена точка, если:
- а) ровно одна её координата равна нулю;
- б) ровно две её координаты равны нулю?
- **7.046.** Дана точка M(2; -3; 4). Каковы координаты точек, ближайших к ней и лежащих: а) на каждой из координатных плоскостей; б) на каждой из осей координат?

- **7.047.** Даны точки A(5; 0; 1) и C(0; -3; 4). Найдите координаты точки B, если $\overrightarrow{BO} = \overrightarrow{CA}; O$ начало координат.
- **7.048.** Даны точки A(3;5;6), B(4;7;8) и C(3;8;10). Найдите координаты точки пересечения медиан треугольника ABC.
- **7.049.** Докажите, что четырёхугольник ABCD является ромбом, если A(2; 3; 4;), B(4; -2; 2), C(0; -1; -2), D(-2; 4; 0).
- **7.050.** Точка M середина отрезка AB. Найдите координаты: а) точки M, если $A(0;\ 3;\ -4)$, $B(-2;\ 2;\ 0)$; б) точки B, если $A(14;\ -8;\ 5)$, $M(3;\ -2;\ -7)$.
- **7.051.** Известны координаты вершин треугольника ABC: A(0; 3; 4), B(4; -1; 2), C(1; 1; 2). Найдите длину его медианы, проведённой из вершины C, и расстояние от начала координат до центроида треугольника.
- **7.052.** © На оси Ox найдите точку, равноудалённую от точек B(3; -2; 4) и C(0; 5; -1).
- **7.053.** Даны вершины параллелограмма ABCD: A(-3; -6; -1), B(-1; 2; -3), C(3; 1; 1). Найдите координаты четвёртой вершины.
- **7.054.** Определите вид треугольника ABC, если: a) A(9; 3; -5), B(2; 10; -5), C(2; 3; 2); б) A(3; 7; -4), B(5; -3; 2), C(1; 3; -10); в) A(-5; 2; 0), B(-4; 3; 0), C(-5; 2; -2).
- **7.055.** Найдите углы, периметр и площадь треугольника ABC, если A(1; -1; 3), B(3; -1; 1), C(-1; 1; 3).
- **7.056.** 3 Точки (1; 1; 1), (2; 1; 1), (2; 2; 1), (1; 2; 1) являются вершинами куба. Каковы координаты остальных его вершин?
- **7.057.** © В правильном тетраэдре PABC с ребром 2 основание ABC лежит в плоскости Oxy. Найдите координаты вершин B и P, если: a) A(-1;0;0), C(1;0;0); б) A(0;0;0), C(2;0;0).
- **7.058.** Дана точка P(-1; 3; 8). Найдите координаты проекций точки P на координатные плоскости и на координатные оси. Вершинами какого многогранника являются эти проекции вместе с точкой P и точкой O началом координат? Найдите объём и полную поверхность этого многогранника.

- **7.060.** © Середина отрезка AB лежит на оси Ox. Найдите m и n, если: а) A(-3; m; 5), B(2; -2; n); б) $A\left(1; \frac{1}{2}; -4\right)$, B(1; m; 2n); в) A(0; m; n+1), B(1; n; 1-m).
- **7.061.** © На каждой из осей координат найдите такую точку, расстояние от которой до точки $A(-2;\ 4;\ \sqrt{3}\,)$ является начменьшим среди всех расстояний от точек этой прямой до точки A.
- **7.062.** Найдите на оси Oz точку, равноудалённую от точек C(-1; 3; 5) и D(3; -7; 1).
- **7.063.** Даны точки A(0; 1; 2), $B(\sqrt{2}; 1; 2)$, $C(\sqrt{2}; 2; 1)$, D(0; 2; 1). Докажите, что четырёхугольник ABCD квадрат.
- **7.064.** Определите вид четырёхугольника ABCD, если A(-1; 2; -3), B(-5; 2; 1), C(-9; 6; 1), D(-9; 10; -3).
- **7.065.** Дан куб $ABCDA_1B_1C_1D_1$ с ребром 1. Выберите прямоугольную систему координат и найдите расстояния между прямыми: а) AB_1 и BC_1 ; б) AA_1 и BD_1 ; в) A_1C и BC_1 .
- **7.066.** $\[\]$ Основание ABC правильного тетраэдра PABC лежит на плоскости Oxy так, что вершины A и C имеют координаты: A(0; 0; 0), C(4; 0; 0). Найдите координаты: а) остальных вершин тетраэдра; б) центроидов всех его граней.
- **7.067.** Основание ABCD куба $ABCDA_1B_1C_1D_1$ лежит на плоскости Oxy. Найдите координаты вершин: а) A_1 , B_1 , C_1 и D_1 , если A(2;1;0), B(3;2;0), C(2;3;0), D(1;2;0); б) A, B_1 , C, D, D_1 и центров всех граней куба, если A(2;2;3), B(5;2;0), $C_1(5;5;3)$.
- **7.068.** Точки M_1 , M_2 , M_3 , M_4 центры граней соответственно BCP, ABP, ACP, ABC правильного тетраэдра PABC с ребром 2. Выберите прямоугольную систему координат и найдите: 1) расстояния от вершин тетраэдра до противоле-

- жащих граней; 2) величину угла между векторами: a) \overrightarrow{AM}_1 и \overrightarrow{BM}_3 ; б) \overrightarrow{CM}_2 и \overrightarrow{PM}_4 ; в) \overrightarrow{BE} и \overrightarrow{CF} , где E и F середины рёбер соответственно PC и PA.
- **7.069.** В кубе $ABCDA_1B_1C_1D_1$ с ребром 1 точки M_1 и M_2 центроиды сечений AB_1D_1 и BC_1D соответственно. Выберите прямоугольную систему координат и найдите расстояние: а) от вершины A_1 до плоскости AB_1D_1 ; б) от вершины C до плоскости BC_1D ; в) от вершины A_1 до плоскости BC_1D ; г) между точками M_1 и M_2 . В каком отношении плоскости AB_1D_1 и BC_1D делят диагональ A_1C куба?
- **7.070.** \odot Даны точки A(3; 1; 5) и B(-2; 2; 4). Найдите на оси аппликат все такие точки C, что треугольник ABC равнобедренный.
- **7.071.** \odot Найдите четвёртую вершину правильного тетраэдра PABC, если A(0; 0; 4), B(0; 4; 0), C(4; 0; 0).
- **7.072.** $\fine{\mathbb{Z}}$ Даны точки A(2;3;1) и B(-1;-2;3). Найдите все такие точки C на оси Oz, что \triangle ABC прямоугольный.

Задачи к § 25. Задание фигур уравнениями и неравенствами

п. 25.1-25.2

- **7.073.** Напишите уравнения всех плоскостей, проходящих через точки A(8;0;0), B(0;0;5) и пересекающих ось ординат в точке, удалённой от начала координат на 7.
- **7.074.** \odot Напишите уравнение сферы с центром в точке M(-1;3;5) и радиусом 4.
- **7.075.** \odot Напишите уравнение сферы с центром в точке M(2;0;-3), проходящей через начало координат.
- **7.076.** \odot Напишите уравнение сферы с диаметром AB, если A(-3;5;0) и B(1;-7;2).
- **7.077.** Даны точки $A(4;\ 1;\ 0),\ B(-1;\ -2;\ -5),\ C(2;\ 4;\ 3),$ $E\left(-\frac{1}{3};\frac{2}{3};\ 7\right).$ Укажите, какая из них принадлежит плоскости 2x-5y+z-3=0.

- **7.078.** Даны точки A(3; 2; 5), B(-1; -2; 8), C(2; 1; 3), O(0; 0; 0) и плоскость x + 3y z 4 = 0. Назовите: а) точки, принадлежащие данной плоскости; б) точки, не принадлежащие данной плоскости; в) пары точек, расположенные по одну сторону от данной плоскости.
- **7.079.** Для каждой из данных плоскостей укажите её расположение относительно координатных плоскостей Oxy, Oxz, Oyz и координатных осей Ox, Oy, Oz (совпадение, пересечение, параллельность): а) x = 0; б) y = 2; в) 2x + 3y = 0; г) 3y 5z = 0; д) y + 3z 5 = 0; е) 2x + y z + 3 = 0.
- **7.080.** Найдите точки пересечения осей координат с плоскостью 2x + 3y z 5 = 0.
- **7.081.** © Составьте уравнение плоскости, проходящей через начало координат перпендикулярно вектору \overrightarrow{OM} , если: а) M(2;0;-2); б) M(1;1;1); в) M(-1;-2;7).
- **7.082.** \odot Напишите уравнение плоскости, проходящей через точку K(-2; 7; 1) и перпендикулярной вектору \overrightarrow{AB} , если A(-1; 2; 8) и B(1; -1; 3).
- **7.083.** Составьте уравнение плоскости, проходящей через точку M и перпендикулярной вектору \vec{p} , если: a) M(2; 0; -2), $\vec{p}(3; -4; 5)$; б) M(0; 0; 0), $\vec{p}(-2; -3; 4)$; в) M(-2; 3; 0), $\vec{p}(5; 1; -4)$.
- **7.084.** © Составьте уравнение плоскости, если она проходит: а) через точку M(3; 0; 0) и перпендикулярна оси абсцисс; б) через точку K(0; 3; 0) и перпендикулярна оси ординат; в) через точку P(0; 0; 3) и перпендикулярна оси аппликат; г) через точку E(0; 0; -4) и параллельна осям Ox и Oy; д) через точки (3; 0; 0), (0; 0; 3) и параллельна оси ординат.
- **7.085.** Составить уравнение плоскости, проходящей через точки: a) P(2; 0; 0), K(0; 2; 0), H(0; 0; 2); б) P(2; -1; 2), K(1; -2; 3), H(-1; 2; 0).

Решение. a) Воспользуемся уравнением плоскости в отрезках. В нашем случае a=b=c=2, поэтому уравнение плоскости

PKH запишется в виде $\frac{x}{2} + \frac{y}{2} + \frac{z}{2} = 1$ или x + y + z - 2 = 0.

б) Пусть плоскость $\alpha = (PKH)$ имеет уравнение $Ax + By + Cz + D = 0. \tag{1}$

Чтобы составить уравнение плоскости α , нужно найти коэффициенты A, B, C и свободный член D. Для этого используем условие принадлежности точек P, K и H плоскости α . Так как точки P, K и H принадлежат плоскости α , то их координаты удовлетворяют уравнению (1), т. е.

$$\begin{cases} P(2;-1;2) \in \alpha \Rightarrow A \cdot 2 + B \cdot (-1) + C \cdot 2 + D = 0, \\ K(1;-2;3) \in \alpha \Rightarrow A \cdot 1 + B \cdot (-2) + C \cdot 3 + D = 0, \\ H(-1;2;0) \in \alpha \Rightarrow A \cdot (-1) + B \cdot 2 + C \cdot 0 + D = 0 \end{cases}$$

или

$$\begin{cases} 2A - B + 2C + D = 0, \\ A - 2B + 3C + D = 0, \\ -A + 2B + D = 0. \end{cases}$$

Решая эту систему уравнений, выразим коэффициенты A,

$$B$$
 и C через D : $A=-rac{D}{9}$, $B=-rac{5D}{9}$, $C=-rac{2D}{3}$. Полагая $D=-9$,

имеем A=1, B=5, C=6. Подставив найденные значения A, B и C в уравнение (1), получаем искомое уравнение плоскости PKH: x+5y+6z-9=0.

- **7.086.** Напишите уравнение плоскости, проходящей через середину отрезка MN и перпендикулярной этому отрезку, если M(-3; 1; 5) и N(3; 9; -1).
- **7.087.** © Одно из оснований призмы лежит в плоскости 2x 3y + z 5 = 0. Напишите уравнение плоскости, в которой лежит другое основание, если одна из вершин призмы имеет координаты (8; 1; 0).
- **7.088.** \odot Уравнение плоскости 3x + 2y 6z 12 = 0 приведите к виду в отрезках.
- **7.089.** Составьте уравнение плоскости, проходящей через точку A(2; -1; 3) и перпендикулярной прямой BC, если B(-2; 0; 1), C(4; 2; -1).
- **7.090.** Составьте уравнение плоскости, проходящей через точку M(-1; 2; 1) и параллельной плоскости: a) Oxy; б) Oyz; в) Oxz; г) 2x y + 3z + 5 = 0.
- **7.091.** (Устио.) Найдите точки пересечения плоскости 2x y + 2z 5 = 0 с координатными осями. Напишите уравнение этой плоскости в отрезках.

- **7.092.** Нарисуйте плоскость, заданную уравнением: a) x = 3; 6)y = -3; в) z = 4; г) x 2y = 0; д) y 2z = 0; е) x + y = 1; ж) x + 3z = 2; з) x + 2y 3z = 6; и) x + 2y + 3z = 6; к) x + y z = 0.
- **7.093.** © Составьте уравнение плоскости, проходящей через точки: a) (0; 0; 3), (0; 3; 0), (3; 0; 0); б) (0; 1; 1), (1; 0; 1), (1; 1; 0); в) (2; 3; 0), (2; 0; -5), (0; 3; -5).
- **7.094.** Напишите уравнения всех сфер, радиусом которых служит отрезок PQ, если P(-1; 2; 1) и Q(0; 3; 2).
- **7.095.** © Какие из приведённых ниже уравнений являются уравнениями сферы: a) $x^2 + y^2 + z^2 = 3$; б) $(x 3)^2 + (y + 2)^2 + z^2 = 7$; в) $x^2 + y^2 + z^2 4x + 6y 10z + 35 = 0$; г) $x^2 + y^2 + z^2 x + 3y 5z + 7 = 0$; д) $x^2 + y^2 + z^2 x + 3y 5z + 9 = 0$? Найдите центр и радиус каждой сферы.
- **7.096.** Напишите уравнение сферы: 1) с центром в точке (3; -3; 3) и касающейся всех координатных плоскостей; 2) с центром в точке (2; -3; 4) и касающейся координатной плоскости: а) Oxy; б) Oxz; в) Oyz.
- **7.097.** © Напишите уравнение плоскости, состоящей из точек, равноудалённых от точек: а)(2; 0; 0) и (-2; 0; 0); б) (0; 2; 0) и (0; 4; 0); в) (3; 1; 3) и (-3; 1; 3); г) (2; 1; 5) и (2; -1; -5); д) (-1; -2; 3) и (2; 1; 5).
- **7.098.** Изобразите множество точек пространства, для которых xyz = 0.
- **7.099.** © Изобразите множество точек пространства, для которых |x|+|y|=1.
- **7.100.** \odot Изобразите множество точек пространства, для которых $x^2 + 4zy = y^2 + 4z^2$.
- **7.101.** Найдите геометрическое место таких точек M(x; y; z), которые равноудалены от начала координат и от точки P(2; -3; 8).
- **7.102.** $\[\mathbb{Z} \]$ На плоскости 2x+3y-5z-1=0 найдите такую точку $M_0(x;y;z)$, что отрезок MM_0 перпендикулярен этой плоскости, если M(1;2;-1).
- **7.103.** Найдите величину угла между плоскостями 2x + 2y z 2 = 0 и 5x + 12y 2 = 0.

- **7.104.** 9 Найдите величину двугранного угла, образованного плоскостями x+2y-2z-7=0 и 3x+4y+12z+1=0 и содержащего начало координат.
- **7.105.** Сфера задана уравнением $(x-3)^2 + (y-3)^2 + z^2 = 4$. Найдите координаты точки этой сферы: а) ближайшей к началу O системы координат; б) самой далёкой от точки O; в) ближайшей к каждой из координатных плоскостей; г) самой далёкой от каждой из координатных плоскостей; д) ближайшей к каждой из координатных осей; е) самой далёкой от каждой из координатных осей; е) самой далёкой от каждой из координатных осей; ж) ближайшей к точке (3; 3; 6); з) самой далёкой от точки (3; 3; 6).
- **7.106.** Для каждого a определите множество точек, заданных уравнением $x^2 + 4x + y^2 2y + z^2 = a$.
- **7.107.** $\[\]$ Найдите длину линии, состоящей из всех общих точек двух сфер $(x-1)^2+(y+3)^2+(z-5)^2=196$ и $(x+3)^2+(y+6)^2+(z+7)^2=225$.
- **7.108.** $\[\overline{z} \]$ Напишите уравнение плоскости, в которой лежат все общие точки сфер $x^2+y^2+z^2=4$ и $(x-1)^2+(y-2)^2+(z-2)^2=4$.
- **7.109.** \odot Напишите уравнение плоскости, касающейся сферы $x^2 + 2x + y^2 + 2y + z^2 4z = 0$ в начале координат.
- **7.110.** Напишите уравнение сферы с центром (1; 1; 2), касающейся сферы $x^2 + y^2 + z^2 = 24$.
- **7.111.** Напишите уравнения сфер, расстояния от любой точки которых до сферы $x^2 + y^2 + z^2 = 4$ равно 1.
- **7.112.** $\[\mathbb{Z} \]$ Найдите множество таких вершин C(x; y; z) треугольника ABC, что угол C является прямым, если A(1; 2; 7) и B(3; -4; -1).
- **7.113.** \odot Найдите множество точек, расстояние от которых до сферы $(x-1)^2+y^2+(z+2)^2=9$ равно 2.
- **7.114** $^{1}.$ В правильном тетраэдре PABC с ребром 2 точки \boldsymbol{M}_{1} и \boldsymbol{M}_{2} центроиды граней соответственно ABC и PBC. Выбе-

¹ Творческая задача.

рите прямоугольную систему координат и найдите координаты точки пересечения: а) прямой PM_2 и грани ABC; б) прямой AM_1 и грани PBC.

- **7.115.** \odot Выберите прямоугольную систему координат Oxyz.
- 1) Нарисуйте куб, заданный системой неравенств: $-1 \leqslant x \leqslant 1$,
- $0 \leqslant y \leqslant 2, \ 0 \leqslant z \leqslant 2.$ 2) Задайте системой неравенств:
- а) куб с ребром 4;
- б) прямоугольный параллелепипед с рёбрами 2, 3 и 4.
- **7.116.** \mathbb{Z} Найдите все точки плоскости 5x + 3y z 2 = 0, равноудалённые от координатных плоскостей.
- **7.117.** $\[\mathbb{Z} \]$ Напишите уравнение плоскости, проходящей через точки M(-1;2;7) и N(1;-9;5) параллельно оси Oy.
- **7.118.** $\[\]$ Напишите уравнение плоскости, проходящей через точки M(1; 3; 8) и N(2; 5; -1) перпендикулярно плоскости 2x y + z = 0.
- **7.119.** $\sqrt[3]{z}$ Изобразите множество точек пространства, для которых |x| + |y| + |z| = 1.
- **7.120.** \odot Изобразите множество точек пространства, для которых |x|+|y|+|z|=2x+3y+4z.
- **7.121.** Изобразите множество точек пространства, для которых |x| + |y| |z| = 4.
- **7.122.** Найдите геометрическое место таких точек M(x; y; z), сумма квадратов расстояний которых до точек A(3; 8; 1) и B(1; -1; 3) равна сумме квадратов их расстояний до точек C(0; -1; 3) и D(1; 5; -2).
- **7.123.** Найдите косинусы углов, образованных плоскостью 3x 5y + z 8 = 0 и координатными плоскостями.
- **7.124.** $\[\mathbb{Z} \]$ Докажите, что сумма квадратов косинусов углов, образованных произвольной плоскостью с тремя попарно перпендикулярными плоскостями, равна 1.
- **7.125.** Напишите уравнение плоскости, проходящей через начало координат и перпендикулярной плоскостям 2x + 3y z 5 = 0 и x + 2y + z 11 = 0.
- **7.126.** Для каждого a определите множество точек, заданных уравнением $x^2 + 2ax + y^2 + z^2 4z + 8 = 0$.

- **7.127.** \frak{R} Найдите площадь фигуры, состоящей из всех общих точек двух шаров $(x-3)^2+(y+4)^2+z^2=64$ и $(x-3)^2+(y-2)^2+(z-8)^2=36$.
- **7.128.** © Напишите уравнение плоскости, в которой лежат все общие точки сфер $(x-1)^2 + (y+2)^2 + (z+5)^2 = 9$ и $(x-4)^2 + (y+6)^2 + (z+5)^2 = 16$.
- **7.129.** Напишите уравнение плоскости, касающейся сферы $x^2 4x + y^2 + z^2 = 9$ в точке M(3; 2; 2).
- **7.130.** \odot Напишите уравнение сферы с центром в точке (5; 1; 1), касающейся сферы $x^2 + y^2 + z^2 = 3$.
- **7.131.** Найдите множество таких точек B(x; y; z), что угол ABC является тупым, если A(3; -1; 0) и C(1; 3; 2).
- **7.132.** Найдите множество таких точек K(x; y; z), что угол MKN является острым, если M(1; 2; 0) и N(-1; -2; 4).
- **7.133.** Составьте уравнение фигуры, состоящей из точек, равноудалённых от точек (-2; 1; -1) и (4; -1; 3).
- **7.134.** Напишите уравнение плоскости, равноудалённой от плоскостей: а) x = 1 и x = 5; б) x = 0 и y = 0; в) x + y + z = 3 и x + y + z 9 = 0.
- **7.135.** Дан куб $ABCDA_1B_1C_1D_1$ с ребром 1. Выберите прямоугольную систему координат и найдите координаты точек пересечений прямой B_1D с плоскостями A_1BC_1 и ACD_1 . Определите отношение, в котором диагональ B_1D делится этими плоскостями.
- 7.136¹. Дан правильный тетраэдр *PABC* с ребром 2. Выберите прямоугольную систему координат и составьте уравнения: а) его граней; б) плоскости, которая проходит через сторону его основания и середину противолежащего ребра; в) прямой, проходящей через вершину тетраэдра и центроид противолежащей грани; г) прямой, проходящей через центроиды двух граней тетраэдра; д) прямой, проходящей через середины двух противоположных рёбер тетраэдра; е) плоскости, проходящей через центроид основания тетраэдра параллельно его боковой грани.

¹ Творческая задача.

- **7.137.** $\[\]$ Даны точки A(2;0;0), B(0;-2;0), C(0;0;2). Найдите: а) точки, равноудалённые от точек A, B, C и отстоящие от плоскости Oxz на расстоянии, равном 3;6) координаты центра сферы радиуса $\sqrt{19}$, проходящей через точки A, B и C.
- **7.138.** Уравнением $x^2 + y^2 + z^2 6x 6y 6z + + 15 = 0$ задана сфера S. Найдите координаты точки этой сферы: а) ближайшей к началу O системы координат; б) самой далёкой от точки O; в) ближайшей к каждой из координатных плоскостей; r) самой далёкой от каждой из координатных плоскостей; g) ближайшей к каждой из координатных осей; g) самой далёкой от каждой из координатных осей; g0 ближайшей к точке g1; g3; g3; g3; g3) самой далёкой от точки g3; g3; g3; g3.
- **7.139**¹. Выберите прямоугольную систему координат Oxyz и задайте системой неравенств: а) правильную треугольную призму, сторона основания которой равна 2, а боковое ребро 4; б) правильный тетраэдр с ребром, равным 2.

п. 25.3-25.4

7.140. Составить уравнения прямой, проходящей через точки A(1; -2; 3) и B(2; 1; 5).

Решение. Пусть A(1; -2; 3) — «начальная» точка прямой l = AB, а AB(1; 3; 2) — её направляющий вектор. Тогда параметрические уравнения прямой l имеют вид:

$$\begin{cases} x = 1 + t, \\ y = -2 + 3t, \\ z = 3 + 2t. \end{cases}$$
 (*)

Уравнения прямой l по двум её точкам имеют вид

$$\frac{x-1}{2-1} = \frac{y+2}{1+2} = \frac{z-3}{5-3}$$
 или $\frac{x-1}{1} = \frac{y+2}{3} = \frac{z-3}{2}$. (**)

Заметим, что уравнения (**) являются каноническими уравнениями прямой l.

¹ Творческая задача.

7.141. Найти точку пересечения прямой l:

$$\begin{cases} x = 1 - 2t, \\ y = 2 + 3t, \\ z = -1 + t \end{cases}$$

и плоскости α : x + y + 2z - 3 = 0.

Решение. Обозначим $K = l \cap \alpha$. Координаты точки K удовлетворяют уравнениям прямой l и плоскости α , поэтому являются решением системы уравнений

$$\begin{cases} x + y + 2z - 3 = 0 \\ x = 1 - 2t, \\ y = 2 + 3t, \\ z = -1 + t. \end{cases}$$

Подставив в уравнение x+y+2z-3=0 вместо x,y,z их выражения через t, имеем (1-2t)+(2+3t)+2(-1+t)-3=0, откуда $t=\frac{2}{3}$. При $t=\frac{2}{3}$ получаем координаты точки K:

$$x=1-2\cdot\frac{2}{3}=-\frac{1}{3},\ y=2+3\cdot\frac{2}{3}=4;\ z=-1+\frac{2}{3}=-\frac{1}{3},\ \text{t. e.}$$

 $K\left(-\frac{1}{3}\,;\,4\,;\,-\frac{1}{3}\,
ight)$. Проверьте, что точка K является искомой.

OTBET:
$$\left(-\frac{1}{3}; 4; -\frac{1}{3}\right)$$
.

- **7.142.** (Устно.) Прямая задана точками A(3; -1; 2) и B(-1; 1; 2). Определите взаимное положение прямой AB и плоскости Oxy.
- **7.143.** Докажите, что прямая, заданная точками A(-6; 5; 1) и B(-3; 5; -2), параллельна плоскости x 3y + z + 3 = 0.
- 7.144. Найдите точку пересечения прямой

$$\begin{cases} x = 2 - 3t, \\ y = 1 - t, \\ z = -4t \end{cases}$$

и плоскости x + 2y - z + 1 = 0.

7.145. © Найдите угол между прямой

$$\begin{cases} x = 2 - 3t, \\ y = 1 - t, \\ z = -4t \end{cases}$$

и плоскостью x + 2y - z + 1 = 0.

7.146. Найдите угол между прямыми:

a)
$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{4}$$
 $\frac{x}{4} = \frac{y+1}{4} = \frac{z-5}{-1}$;

6)
$$\begin{cases} x = 1 - 2t, \\ y = 3 + 2t, \\ z = 4t \end{cases}$$

$$x = t, \\ y = -2 + t, \\ z = 1 - t.$$

7.147. \odot Как расположены точки M(-1; 1; 2), N(3; 5; 8) и K(0; 3; 4) относительно прямой

$$\begin{cases} x = -1 + t, \\ y = 1 + 2t, \\ z = 2 + 2t? \end{cases}$$

$$\begin{cases} x = 3 + 2t, \\ y = 7 - \alpha t, \\ z = 8 + \beta t? \end{cases}$$

- **7.149.** Ξ Напишите параметрические уравнения каждой из прямых, по которым плоскость 3x + 8y + z = 11 пересекается с координатными плоскостями.
- **7.150.** Напишите параметрические уравнения прямой AB и найдите точки пересечения этой прямой с координатными плоскостями, если A(-8; 1; 3) и B(1; -5; -1).
- **7.151.** \odot Напишите параметрические уравнения прямой, проходящей через начало координат и делящей пополам отрезок MN, если M(-3; 8; 1) и N(1; 0; 7).
- **7.152.** Напишите уравнения прямой, проходящей через начало координат и параллельной прямой

$$\begin{cases} x = 2 - t, \\ y = 3 + 2t, \\ z = 7t. \end{cases}$$

7.153. Какому условию должны удовлетворять числа α и β , чтобы прямые

$$\begin{cases} x = 3 - 5t, \\ y = 2 + t, \\ z = \alpha t \end{cases} \qquad \text{If} \qquad \begin{cases} x = u, \\ y = 5 - \beta u, \\ z = 2 - u \end{cases}$$

были взаимно перпендикулярны?

7.154. © Найдите величину угла между прямыми

$$\begin{cases} x = 1 - 2t, \\ y = t, \\ z = 2 \end{cases} \quad \text{M} \quad \begin{cases} x = 1 + 3u, \\ y = 5 - u, \\ z = 3 - 2u. \end{cases}$$

7.155. © Найдите величину угла между осью аппликат и прямой

$$\begin{cases} x = 2 + t, \\ y = 1 - 2t, \\ z = 2t. \end{cases}$$

7.156. 🖫 Определите взаимное расположение прямых

$$\begin{cases} x = 3 + 2t, \\ y = 5 - t, \\ z = 2 + 7t \end{cases} \qquad \text{M} \qquad \begin{cases} x = 1 - 2u, \\ y = 6 + u, \\ z = -5 - 7u. \end{cases}$$

7.157. Определите взаимное расположение прямых

$$\begin{cases} x = 5 + 7t, \\ y = 2 - t, \\ z = 9 \end{cases} \quad \text{M} \quad \begin{cases} x = 3 - 2u, \\ y = 5 + 3u, \\ z = 8 - u. \end{cases}$$

- **7.158.** Дан куб $ABCDA_1B_1C_1D_1$ с ребром 1. Начало координат находится в точке B, оси координат проходят через точки A, B_1 и C. 1) Напишите уравнения: а) плоскостей, содержащих его грани; б) плоскостей, проходящих через два его параллельных ребра, не лежащих в одной грани; в) плоскости AB_1C ; г) плоскости, проходящей через центр куба перпендикулярно его грани; д) плоскости, проходящей через центр куба перпендикулярно его диагонали. 2) Найдите расстояние: а) от вершины C_1 до плоскости A_1BD ; б) между плоскостями A_1C_1D и ACB_1 ; в) между скрещивающимися диагоналями граней ABB_1A_1 и ABCD.
- 7.159. Определите взаимное расположение прямой

$$\begin{cases} x = 1 + 5t, \\ y = 1 - 3t, \\ z = t \end{cases}$$

и плоскости 2x + 3y - z - 5 = 0.

7.160. Определите взаимное расположение прямой

$$\begin{cases} x = 2 + 3t, \\ y = 1, \\ z = 6 + 2t \end{cases}$$

и координатных плоскостей.

- **7.161.** Напишите уравнение прямой, проходящей через точку M(0; 3; 4) и перпендикулярной плоскости 5x + 2y z 5 = 0. Найдите координаты точки пересечения этой прямой и данной плоскости.
- 7.162. Найдите величину угла между прямой

$$\begin{cases} x = 2 + 3t, \\ y = 1 - t, \\ z = 2 + t \end{cases}$$

и плоскостью 2x - 3y + z - 1 = 0.

7.163. Напишите уравнение плоскости, проходящей через начало координат и перпендикулярной прямой

$$\begin{cases} x = 3 - t, \\ y = 2t, \\ z = 5 + 3t. \end{cases}$$

Найдите координаты точки пересечения этой плоскости и данной прямой.

- **7.164.** В каком отношении плоскость 2x + 3y + 5z 20 = 0 делит отрезок прямой AB, если A(2; 1; 1) и B(7; 10; 0)?
- 7.165. Определите взаимное расположение прямой

$$\begin{cases} x = 1 - 3t, \\ y = 2 + 2t, \\ z = 4 + t \end{cases}$$

и сферы $x^2 + y^2 + z^2 = 25$.

- **7.166.** (Устно.) Докажите, что прямая $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{3}$ и плоскость x-y+z-1=0 пересекаются.
- **7.167.** Напишите уравнения прямой, проходящей через середину отрезка MN и параллельной оси ординат, если M(-3;1;5) и N(7;-1;-5).
- **7.168.** $\[\overline{x} \]$ Напишите параметрические уравнения прямой, по которой пересекаются плоскости 2x + 3y z = 6 и x + y + z = 1.

- **7.169.** Определите взаимное расположение прямой AB и прямых, соответствующих осям координат, если A(-1; 2; 4) и B(8; 3; 6).
- **7.170.** Напишите уравнения прямой, проходящей через точку M(1;3;-2) перпендикулярно оси ординат и прямой

$$\begin{cases} x = 3 - 2t, \\ y = 7 + t, \\ z = 1 - 5t. \end{cases}$$

- **7.171.** Напишите уравнения прямой, проходящей через точку L(-1; 2; 3) перпендикулярно оси абсцисс, и прямой пересечения плоскостей 3x + y + z 4 = 0 и x + 2y 3z = 0.
- **7.172.** Найдите расстояние от точки A(3; -1; 1) до прямой

$$\begin{cases} x = 1 + 2t, \\ y = 7 - 8t, \\ z = 5 - 4t. \end{cases}$$

7.173. Определите взаимное расположение прямых

$$\begin{cases} x = 7 + 3t, \\ y = 2 - t, \\ z = 8 + 0.5t \end{cases}$$
 M
$$\begin{cases} x = 5 - 6u, \\ y = 8 + 2u, \\ z = 1 - u. \end{cases}$$

- **7.174.** Дана точка A(2;3;5). Пусть A_1,A_2,A_3 ортогональные проекции точки A на координатные плоскости соответственно Oxy, Oyz, Oxz. 1) Составьте уравнение плоскости $\alpha = (A_1A_2A_3)$. 2) Найдите: а) расстояния от начала координат и от точки A до плоскости α ; б) координаты точки пересечения прямой OA и плоскости α ; в) отношение, в котором плоскость α делит отрезок OA, считая от точки A; г) угол между плоскостями: α и Oxy; α и OAA_1 ; д) угол между прямой A_2A_3 и плоскостью AA_1A_3 ; е) расстояние от точки A_1 до прямой A_2A_3 .
- **7.175.** \odot Составьте уравнения прямой, проходящей через точку M(1;1;1) и перпендикулярной прямым

$$\begin{cases} x = 2 + 2t, \\ y = -3 + 3t, \\ z = t \end{cases}$$
 $X = 3t,$
$$\begin{cases} x = 3t, \\ y = -2 + t, \\ z = 1 + 2t. \end{cases}$$

7.176. 🖫 Найдите расстояние между прямыми

$$\begin{cases} x = t, \\ y = 3 + 2t, \\ z = 2 + t \end{cases} \quad \text{M} \quad \begin{cases} x = 3 + t, \\ y = -1 + 2t, \\ z = 2 + t. \end{cases}$$

7.177. Определите взаимное расположение прямой

$$\begin{cases} x = 3 - t, \\ y = 5 + 2t, \\ z = 3 \end{cases}$$

и плоскости 2x + y - 5z - 1 = 0

7.178. Определите взаимное расположение прямой

$$\begin{cases} x = 1 - 3t, \\ y = 2 + 2t, \\ z = 5 - t \end{cases}$$

и плоскости x + y + 5z = 0.

7.179. В Напишите параметрические уравнения прямой, проходящей через точку M(3; 8; 1) параллельно плоскости 2x + y + z = 0 и пересекающей ось Oy.

7.180. 🕏 Определите взаимное расположение прямой

$$\begin{cases} x = 1 + 3t, \\ y = 5 - 12t, \\ z = 12 + 5t \end{cases}$$

и сферы $(x-1)^2 + y^2 + z^2 = 169$

7.181. Определите взаимное расположение прямой

$$\begin{cases} x = 2 + 3t, \\ y = 7 - t, \\ z = 15 + 9t \end{cases}$$

и сферы $x^2 + y^2 + z^2 = 1$.

Задачи к § 26. Расстояние от точки до плоскости в координатах

7.182. Найти расстояние от точки K(1; -2; 3) до плоскости 3x + 2y - 6z + 5 = 0.

Решение. Находим координаты вектора нормали n к плоскости: n(3; 2; -6). Тогда

$$d = \frac{|3 \cdot 1 + 2 \cdot (-2) + (-6) \cdot 3 + 5|}{\sqrt{3^2 + 2^2 + (-6)^2}} = \frac{|-14|}{7} = 2.$$

Ответ: 2.

7.183. Найти множество точек, равноудалённых от плоскостей 2x + 2y - z - 3 = 0 и 3x + 4y + 12z - 13 = 0.

Решение. Пусть точка M(x; y; z) равноудалена от данных плоскостей, тогда

$$\frac{|2x+2y-z-3|}{\sqrt{2^2+2^2+(-1)^2}} = \frac{|3x+4y+12z-13|}{\sqrt{3^2+4^2+12^2}},$$
T. e.
$$\frac{|2x+2y-z-3|}{3} = \frac{|3x+4y+12z-13|}{13}.$$

Данное уравнение распадается на совокупность двух уравнений

$$\frac{2x+2y-z-3}{3} = \frac{3x+4y+12z-13}{13}$$

или

$$\frac{2x+2y-z-3}{3}=-\frac{3x+4y+12z-13}{13}.$$

После упрощения получим уравнения двух плоскостей

$$17x + 14y - 49z = 0$$
 и $35x + 38y + 23z - 78 = 0$.

Подумайте, почему эти плоскости получились взаимно перпендикулярными и как они связаны с данными в задаче плоскостями.

- **7.184.** Найдите расстояние от точки M(-3; 1; 2) до плоскости 3x + 4y 12z + 2 = 0.
- **7.185.** \odot Напишите уравнение плоскости, проходящей через начало координат и точку A(0; -2; 1), если расстояние от этой плоскости до точки M(3; -1; 3) равно 3.
- **7.186.** $\[\]$ Напишите уравнение плоскости, содержащей ось Oy, если расстояние от этой плоскости до точки M(-3; 8; 1) равно 1.

- **7.187.** Ξ Найдите геометрическое место точек, расстояние которых до плоскости 2x 3y + z 1 = 0 равно расстоянию до плоскости 2x 3y + z + 5 = 0.
- **7.188.** Найдите геометрическое место точек, удалённых от плоскости x + 2y 2z 5 = 0 на расстояние 2.
- **7.189.** Найдите геометрическое место точек, равноудалённых от плоскостей

$$3x + 12y - 4z - 1 = 0$$
 и $4x - 3y + 12z + 5 = 0$.

- **7.190.** © В каком отношении плоскость 3x 5y + 2z 5 = 0 делит отрезок AB, если A(3; 2; 1) и B(7; -1; 2)?
- **7.191.** \odot Найдите расстояние между плоскостью, заданной уравнением 2x + 3y 5z + 1 = 0, и прямой

$$\begin{cases} x = 2 + t, \\ y = t, \\ z = 3 + t. \end{cases}$$

7.192. \odot Найдите расстояние между параллельными плоскостями 3x + 2y + 4z + 11 = 0 и 9x + 6y + 12z - 5 = 0.

Задачи к главе 7

- **7.193.** $\[\mathbb{Z} \]$ Найдите центры всех сфер, проходящих через точки A(0;5;12), B(4;-3;12) и C(12;-4;-3).
- **7.194.** $\[\frac{1}{2} \]$ Найдите координаты центра и радиус сферы, описанной около тетраэдра, вершины которого имеют координаты (0; 0; 0), (8; 0; 0), (0; -2; 0) и (0; 0; -6).
- **7.195.** Найдите координаты центров всех сфер радиуса 1, касающихся каждой из плоскостей x = 0, y = 1, z = 5.
- **7.196.** Найдите множество таких точек P(x; y; z), что сумма квадратов расстояний от них до точек A(3; 4; 0) и B(1; 2; 3) равна 39.
- **7.197.** Найдите множество точек пространства, сумма квадратов расстояний которых до вершин треугольника ABC равна 32, если A(1; 2; 3), B(0; 1; 4) и C(1; -1; 0).
- **7.198.** 🕏 Докажите, что сумма квадратов расстояний от любой точки сферы, описанной около куба, до всех вершин куба есть величина постоянная. Найдите эту величину.

- **7.199.** Докажите, что сумма квадратов расстояний от любой точки шара, вписанного в куб, до всех вершин куба есть величина постоянная. Найдите эту величину.
- **7.200.** Докажите, что геометрическое место точек, сумма квадратов расстояний которых до всех вершин октаэдра с ребром 1 равна 6, есть описанный около октаэдра шар.
- **7.201.** Найдите геометрическое место точек таких, что сумма квадратов расстояний от них до вершин правильной треугольной призмы, все рёбра которой имеют длину 1, равна 5.
- **7.202.** 🖫 Найдите множество точек, сумма квадратов расстояний которых до осей координат равна 2.
- **7.203.** $\[\overline{z} \]$ Найдите множество точек, сумма квадратов расстояний которых до плоскостей $x=0,\,y-2=0,\,z+1=0$ равна 4.
- **7.204.** 🖫 Напишите уравнение плоскости, параллельной прямой

$$\begin{cases} x = 8 + t, \\ y = 1 - 8t, \\ z = 3t \end{cases}$$

и содержащей ось Ог.

7.205. 🖫 Напишите уравнение плоскости, проходящей через начало координат и содержащей прямую

$$\begin{cases} x = 3 + t, \\ y = 5 - t, \\ z = t. \end{cases}$$

7.206. Существуют ли плоскости, проходящие через прямые

$$\begin{cases} x = 5 - t, \\ y = 2 + 7t, \\ z = 1 - t \end{cases}$$
 $\forall x = 5 + 2t, \\ y = 2 - t, \\ z = 1?$

Если да, то напишите все их уравнения.

7.207. Существуют ли плоскости, проходящие через прямые

$$\begin{cases} x = 3 - t, \\ y = 2 + 5t, \\ z = t \end{cases} \quad \text{M} \quad \begin{cases} x = 2 + u, \\ y = 1 - 5u, \\ z = 1 - u? \end{cases}$$

Если да, то напишите все их уравнения.

7.208. Найдите длину хорды, отсекаемой на прямой

$$\begin{cases} x = 2 + 4t, \\ y = t, \\ z = 1 - 3t \end{cases}$$

сферой $(x-1)^2 + (y+2)^2 + (z+1)^2 = 25$.

- **7.210.** $\[\]$ Из начала координат проведены всевозможные прямые, касающиеся сферы $\[(x-4)^2+(y-3)^2+(z-12)^2==144. \]$ Найдите уравнение плоскости, в которой лежат все точки касания.

$$\begin{cases} x = 3 - 2t, \\ y = 1 + t, \\ z = 5. \end{cases}$$

- **7.212.** В плоскости x+y+2z=0 найдите все прямые, касающиеся сферы $(x-2)^2+(y-4)^2+z^2=8$ и проходящие через начало координат.
- 7.213. 🖫 Напишите уравнения проекций прямой

$$\begin{cases} x = 3 - 2t, \\ y = 1 + 3t, \\ z = 5 \end{cases}$$

на координатные плоскости.

$$\begin{cases} x = 3 + t, \\ y = 2 - t, \\ z = 1 - 2t \end{cases}$$

- а) наименьшее; б) наибольшее.
- **7.215.** Напишите уравнения центров всех сфер, касающихся всех координатных осей.

¹ Прямая, касающаяся сферы, имеет со сферой одну общую точку.

7.216. 🕏 Найдите геометрическое место центров таких шаров, что все точки прямых

$$\begin{cases} x = 3 - t, \\ y = 2 + 2t, \\ z = 1 + t \end{cases}$$
 $X = 2 + 3u, \\ y = 2u, \\ z = 6,$

для которых $t \in [-1; 3]$, $u \in [0; 6]$, принадлежат шарам, а другие точки этих прямых шарам не принадлежат.

- **7.217.** 🕏 Найдите геометрическое место точек пространства, сумма квадратов расстояний от которых до вершин куба численно в два раза больше площади полной поверхности этого куба.
- **7.218.** $\[\frac{1}{2} \]$ Найдите геометрическое место точек M пространства, для которых выполняется условие AM:BM=5:3, если A(0;-1;1) и B(0;1;0).
- **7.219.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины B, C и D_1 имеют

координаты:
$$B\!\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$$
, $C(0;\,1;\,0)$, $D_1\!\left(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,1\right)$. Постро-

ить эту призму и найти координатным методом расстояние от вершины B до прямой CD_1 .

Решение. Данная призма изображена на рисунке **64**. Составим уравнение плоскости β , проходящей через точку B перпендикулярно прямой CD_1 .

Рис. 64

В качестве вектора нормали плоскости β примем вектор $\vec{n}(\sqrt{3}\;;\;1;\;-2)$, коллинеарный вектору $\overrightarrow{D_1C}\Big(\frac{\sqrt{3}}{2}\;;\;\frac{1}{2}\;;\;-1\Big)$. Тогда плоскость β имеет уравнение:

$$\sqrt{3}\left(x-\frac{\sqrt{3}}{2}\right)+\left(y-\frac{1}{2}\right)-2(z-0)=0 \Leftrightarrow \sqrt{3}\,x+y-2z-2=0.$$

Обозначим $T=\beta \cap CD_1$, тогда $BT=\rho(B;D_1C)$. Для нахождения координат точки T достаточно решить систему

$$\begin{cases} \sqrt{3} x + y - 2z - 2 = 0, \\ x = \sqrt{3} t, & t \in \mathbf{R}, \\ y = 1 + t, \\ z = -2t, \end{cases}$$

составленную из уравнений плоскости β и прямой CD_1 .

Получаем: $\sqrt{3} \cdot \sqrt{3} \, t + 1 + t - 2(-2t) - 2 = 0 \Leftrightarrow 8t - 1 = 0 \Leftrightarrow t = \frac{1}{8}$. Значит, точка T имеет координаты: $x = \frac{\sqrt{3}}{8}$; $y = \frac{9}{8}$; $z = -\frac{1}{4}$. Тогда: $\rho(B; D_1C) = BT = \sqrt{\left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8}\right)^2 + \left(\frac{1}{2} - \frac{9}{8}\right)^2 \left(0 + \frac{1}{4}\right)^2} = \frac{\sqrt{14}}{4}$. Ответ: $\frac{\sqrt{14}}{4}$.

7.220. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины A, B, F, F_1 имеют ко-

ординаты:
$$A\!\left(\frac{\sqrt{3}}{2}\,;\,-\frac{1}{2}\,;\,0\right)$$
, $B\!\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$, $F(0;\,-1;\,0)$, $F_1(0;\,-1;\,1)$.

Постройте эту призму и найдите координатным методом расстояние от вершины *В* до прямой:

- а) $E_1 F$; б) $D_1 F_1$; в) $C_1 D_1$; г) AD_1 .
- **7.221.** $ABCDEFA_1B_1C_1D_1E_1F_1$ правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины B, C, D, C_1 имеют ко-

ординаты:
$$B\!\!\left(\frac{\sqrt{3}}{2}\,;\,-\frac{1}{2}\,;\,0\right)$$
, $C\!\!\left(0;\,1;\,0\right)$, $D\!\!\left(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$, $C_1\!\!\left(0;\,1;\,1\right)$.

Построить эту призму и найти координатным методом расстояние до плоскости AF_1D от точки: a) F; б) B_1 .

Решение. Если плоскость β ax + by + cz + d = 0 проходит через данную точку $M(x_0; y_0; z_0)$, то координаты этой точки удовлетворяют уравнению плоскости β , т. е. имеет место $ax_0 + by_0 + cz_0 + d = 0$. Воспользуемся этим утверждением при составлении уравнения плоскости $\beta = (AF_1D)$.

Пусть ax + by + cz + d = 0 — искомое уравнение плоскости β . На рисунке 65 изображено расположение данной призмы относительно системы координат Oxyz, в которой точки

$$A$$
, F , F_1 , B_1 имеют координаты: $A\!\left(rac{\sqrt{3}}{2}\,;\,-rac{1}{2}\,;\,0
ight)$, $F(0;\,-1;\,0)$, $F_1(0;\,-1;\,1)$, $B_1\!\left(rac{\sqrt{3}}{2}\,;\,rac{1}{2}\,;\,1
ight)$.

Плоскость $\beta = (AF_1D)$ проходит через начало координат, значит, d=0. Далее, имеем:

$$A\left(rac{\sqrt{3}}{2}; -rac{1}{2}; 0
ight) \in eta \Rightarrow rac{\sqrt{3}}{2} a - rac{1}{2} b = 0; F_1(0; -1; 1) \in eta \Rightarrow -b + c = 0; \ D\left(-rac{\sqrt{3}}{2}; rac{1}{2}; 0
ight) \in eta \Rightarrow -rac{\sqrt{3}}{2} a + rac{1}{2} b = 0.$$

Решая систему из уравнений:

$$\begin{cases} \frac{\sqrt{3}}{2}a - \frac{1}{2}b = 0, \\ -b + c = 0, \\ -\frac{\sqrt{3}}{2}a + \frac{1}{2}b = 0, \end{cases}$$

находим: b = c, $b = \sqrt{3} a$.

Координатный метод в пространстве

Полагая $a=\sqrt{3}$, получаем b=c=3. Тогда уравнение плоскости β имеет вид:

$$\sqrt{3}(x-0)+3(y+1)+3(z-1)=0 \Leftrightarrow \sqrt{3}x+3y+3z=0.$$

Теперь находим искомые расстояния $\rho(F; \beta)$ и $\rho(B_1; \beta)$:

$$\rho(F;\beta) = \frac{\left| \sqrt{3} \cdot 0 + 3 \cdot (-1) + 3 \cdot 0 \right|}{\sqrt{3+9+9}} = \frac{\sqrt{21}}{7};$$

$$\rho(B_1;\,\beta) = \frac{\left| \sqrt{3} \cdot \frac{\sqrt{3}}{2} + 3 \cdot \frac{1}{2} + 3 \cdot 1 \right|}{\sqrt{3 + 9 + 9}} = \frac{2\sqrt{21}}{7} \text{ . Otbet: a) } \frac{\sqrt{21}}{7} \text{ ; 6) } \frac{2\sqrt{21}}{7} \text{ .}$$

Замечание. При нахождении расстояния от точки до плоскости координатным методом во многих случаях не требуются аргументированные обоснования построения перпендикуляра из данной точки на данную плоскость. Но если $FK \perp (AF_1D)$ («виртуально»), $K \in (AF_1D)$ (см. рис. 65), то $FK = \rho(F;\beta)$; на этом рисунке перпендикуляр из вершины B_1 на плоскость AF_1D не изображён.

7.222. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которя расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины B, C, D, C_1 имеют ко-

ординаты:
$$B\!\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$$
, $C\!\left(0;\,1;\,0\right)$, $D\!\left(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$, $C_1\!\left(0;\,1;\,1\right)$.

Постройте эту призму и найдите координатным методом: а) расстояние от вершины A_1 до плоскости BCC_1 ; б) от вершин A_1 и D_1 до плоскости AC_1E_1 ; в) от вершин B и F_1 до плоскости AB_1D .

7.223. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1. Найти координатным методом расстояние между прямыми: а) B_1C и A_1B ; б) B_1C и BE_1 .

Решение. а) Найдём расстояние между прямыми $B_1 C$ и $A_1 B$.

Во введённой системе координат Oxyz (рис. 66) вершины B, C, B_1 и A_1 имеют координаты: $B\left(\frac{\sqrt{3}}{2}; \frac{1}{2}; 0\right); C(0; 1; 0);$

$$B_1\left(\frac{\sqrt{3}}{2};\frac{1}{2};1\right);A_1\left(\frac{\sqrt{3}}{2};-\frac{1}{2};1\right).$$

Используем следующий факт: расстояние между двумя скрещивающимися прямыми равно расстоянию от любой точки одной прямой до плоскости, проходящей через вторую прямую параллельно первой прямой.

Для нахождения искомого расстояния составим уравнение плоскости (обозначим её α), проходящей через прямую B_1C параллельно прямой A_1B .

В качестве вектора нормали плоскости α примем вектор $\vec{n}(a;\ b;\ c)$, перпендикулярный направляющим векторам $\overrightarrow{CB_1}\left(\frac{\sqrt{3}}{2};-\frac{1}{2};1\right)$ и $\overrightarrow{A_1B}(0;1;-1)$ прямых B_1C и A_1B . Найдём координаты этого вектора.

Имеем:

$$\begin{cases}
\overrightarrow{n} \perp \overrightarrow{CB_1}, \\
\overrightarrow{n} \perp \overrightarrow{A_1B}
\end{cases} \Rightarrow \begin{cases}
\overrightarrow{n} \cdot \overrightarrow{CB_1} = 0, \\
\overrightarrow{n} \cdot \overrightarrow{A_1B} = 0
\end{cases} \Rightarrow \begin{cases}
\frac{\sqrt{3}}{2}a - \frac{1}{2}b + c = 0, \\
b - c = 0
\end{cases} \Rightarrow \begin{cases}
\sqrt{3}a - b + 2c = 0, \\
b = c
\end{cases} \Rightarrow \begin{cases}
c = -\sqrt{3}a, \\
b = c.
\end{cases}$$

Полагая $\alpha = \sqrt{3}$, получаем: b = c = -3. Таким образом, $\vec{n}(\sqrt{3}\;;-3;-3)$. Тогда плоскость α ($C \in \alpha$) имеет уравнение:

$$\sqrt{3}(x-0)-3(y-1)-3(z-0)=0 \Leftrightarrow \sqrt{3}x-3y-3z+3=0.$$

Координатный метод в пространстве

Теперь находим: $\rho(A_1B; B_1C) = \rho(B; \alpha) =$

$$=\frac{\left|\frac{\sqrt{3}\cdot\frac{\sqrt{3}}{2}+3\cdot\frac{1}{2}+3\cdot0+3\right|}{\sqrt{3+9+9}}=\frac{\sqrt{3}}{21}=\frac{\sqrt{21}}{7}\;\text{. Otbet: }\frac{\sqrt{21}}{7}\;\text{.}$$

7.224. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины A_1 , B, C, B_1 имеют коор-

динаты:
$$A_1\left(\frac{\sqrt{3}}{2}\,;\,-\frac{1}{2}\,;\,1\right),\,B\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right),\,C(0\,;\,1\,;\,0),\,B_1\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,1\right).$$
 Постройте эту призму и найдите координатным методом

Постройте эту призму и найдите координатным методом расстояние между прямыми: а) A_1B и C_1D ; б) A_1B и E_1F ; в) A_1B и AF_1 ; г) A_1B и B_1D .

7.225. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1. Найти величину угла между прямыми BA_1 и CB_1 .

Решение. Обозначим: $\angle (BA_1, CB_1) = \varphi$.

В системе координат Oxyz (рис. 67) точки A_1 , B, B_1 , C имеют координаты: $A_1\!\left(\frac{\sqrt{3}}{2}\,;-\frac{1}{2}\,;1\right)$, $B\!\left(\frac{\sqrt{3}}{2}\,;\frac{1}{2}\,;0\right)$, C(0;1;0),

 $B_1\!\!\left(rac{\sqrt{3}}{2}\,;\,rac{1}{2}\,;\,1
ight)$. Тогда направляющие векторы $\overrightarrow{CB_1}$ и $\overrightarrow{BA_1}$ прямых соответственно CB_1 и BA_1 приобретают координаты:

 $\overrightarrow{CB_1}\left(rac{\sqrt{3}}{2};-rac{1}{2};1
ight)$ if $\overrightarrow{BA_1}(0;-1;1)$.

Теперь находим:

$$\cos \varphi = \frac{\left|\overrightarrow{CB_1} \cdot \overrightarrow{BA_1}\right|}{\left|\overrightarrow{CB_1}\right| \cdot \left|\overrightarrow{BA_1}\right|} = \frac{\left|\frac{\sqrt{3}}{2} \cdot 0 + \left(-\frac{1}{2}\right) \cdot (-1) + 1 \cdot 1\right|}{\sqrt{\frac{3}{4} + \frac{1}{4} + 1} \cdot \sqrt{0 + 1 + 1}} = \frac{3}{4} \Rightarrow$$

$$\Rightarrow \varphi = \arccos \frac{3}{4} \cdot \text{Otbet: } \arccos \frac{3}{4}.$$

7.226. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины A, F, F_1 , B_1

имеют координаты: $A\left(\frac{\sqrt{3}}{2}\,;\,-\frac{1}{2}\,;\,0\right)$, $F(0;\,-1;\,0)$, $F_1(0;\,-1;\,1)$,

 $B_1\left(\frac{\sqrt{3}}{2}\,;\;\frac{1}{2}\,;\;1\right)$. Постройте эту призму и найдите координатным методом величину угла между прямыми: а) AB_1 и CF_1 ; 6) AB и CD_1 ; в) AF_1 и A_1B .

7.227. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1. Найти синус угла между прямой BD_1 и плоскостью BF_1C .

Решение. Обозначим: $\angle (BD_1, (BF_1C)) = \alpha$.

Во введённой системе координат (рис. 68) точки B, C, F_1 ,

 D_1 имеют координаты: $B\!\!\left(rac{\sqrt{3}}{2}\,;\;rac{1}{2}\,;\;0
ight)$, $C\!\!\left(0;\;1;\;0
ight)$, $F_1\!\!\left(0;\;-1;\;1
ight)$,

$$D_1\left(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,1\right).$$

Координатный метод в пространстве

Для прямой $D_1 B$ направляющим является вектор

$$\overrightarrow{BD}_1$$
 $(-\sqrt{3}; 0; 1).$

Найдём координаты вектора нормали плоскости $\beta = (BF_1C)$, для чего составим её общее уравнение.

Пусть ax + by + cz + d = 0 — искомое уравнение плоскости $\beta = (BF_1C)$. Имеем:

$$B\left(\frac{\sqrt{3}}{2};\frac{1}{2};0\right) \in \beta \Rightarrow \frac{\sqrt{3}}{2}a + \frac{1}{2}b + d = 0;$$

$$C(0;1;0) \in \beta \Rightarrow b + d = 0; \quad F_1(0;-1;1) \in \beta \Rightarrow -b + c + d.$$

Решением системы уравнений

$$\begin{cases} \frac{\sqrt{3}}{2}a + \frac{1}{2}b + d = 0, \\ b + d = 0, \\ -b + c + d = 0 \end{cases}$$

является $a=\sqrt{3}$, b=3, c=6, d=-3. То есть, вектор нормали плоскости β имеет координаты: $\vec{n}(\sqrt{3}\,;\,3;\,6)$. Тогда

$$\sin \alpha = |\cos \angle (\overrightarrow{BD_1}; \vec{n})| = \frac{|-\sqrt{3} \cdot \sqrt{3} + 0 \cdot 3 + 1 \cdot 6|}{\sqrt{3 + 0 + 1} \cdot \sqrt{3} + 9 + 36} = 0,125\sqrt{3}.$$

Ответ: $0,125\sqrt{3}$.

7.228. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины $B,\ C,\ D,\ D_1$ имеют координаты: $B\Big(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\Big),\ C(0;\,1;\,0),\ D\Big(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\Big),$

 $D_1\!\!\left(-rac{\sqrt{3}}{2}\,;\;rac{1}{2}\,;\;1
ight)$. Постройте эту призму и найдите координатным методом синус угла между: а) прямой B_1E и плоскостью $BC_1C;$ б) прямой AB и плоскостью $BF_1C;$ в) прямой BD_1 и плоскостью $BF_1C;$ г) прямой A_1B и плоскостью $BB_1C.$

7.229. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1. Найти синус угла между плоскостями A_1BC и AB_1F .

Решение. Обозначим: $\angle (\alpha, \beta) = \varphi$. Найдём координаты векторов нормалей плоскостей $\alpha = (A_1BC)$ и $\beta = (AB_1F)$.

Во введённой системе координат Oxyz (рис. 69) точки A_1 , B, C, A, B_1, F имеют координаты:

$$A_1\left(\frac{\sqrt{3}}{2}; -\frac{1}{2}; 1\right), \ B\left(\frac{\sqrt{3}}{2}; \frac{1}{2}; 0\right), \ C(0; 1; 0), \ A\left(\frac{\sqrt{3}}{2}; -\frac{1}{2}; 0\right), \ B_1\left(\frac{\sqrt{3}}{2}; \frac{1}{2}; 1\right), \ F(0; -1; 0).$$

Вектор $\vec{n}(a;b;c)$ нормали плоскости α перпендикулярен векторам $\overrightarrow{A_1B}(0;1;-1)$ и $\overrightarrow{BC}\left(-\frac{\sqrt{3}}{2};\frac{1}{2};0\right)$. Координаты векторам $\vec{n}(a;b;c)$ найдём из условия его перпендикулярности векторам $\overrightarrow{A_1B}(0;1;-1)$ и $\overrightarrow{BC}\left(-\frac{\sqrt{3}}{2};\frac{1}{2};0\right)$.

Имеем:

$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{A_1B} = 0, \\ \overrightarrow{n} \cdot \overrightarrow{BC} = 0 \end{cases} \Rightarrow \begin{cases} b - c = 0, \\ -\frac{\sqrt{3}}{2}a + \frac{1}{2}b = 0 \end{cases} \Rightarrow \begin{cases} b = c, \\ b = -\sqrt{3}a. \end{cases}$$

Полагая $a=\sqrt{3}$, получим b=c=3. Таким образом, $\vec{n}(\sqrt{3}\,;\,3;\,3).$

Аналогично, вектор $\vec{n}_1(a_1;\ b_1;\ c_1)$ нормали плоскости β перпендикулярен векторам $\overrightarrow{AB}_1(0;\ 1;\ 1)$ и $\overrightarrow{FA}\left(\frac{\sqrt{3}}{2};\ \frac{1}{2};\ 0\right)$. Поэтому координаты $a_1,\ b_1$ и c_1 найдём, решая систему уравнений:

$$\begin{cases} b_1 + c_1 = 0, \\ \frac{\sqrt{3}}{2} a_1 + \frac{1}{2} b_1 = 0 \end{cases} \Rightarrow \begin{cases} b_1 = -c, \\ b_1 = -\sqrt{3} a_1. \end{cases}$$

Полагая $a_1=\sqrt{3}$, получим $b_1=-3$, $c_1=3$. Таким образом, $\vec{n}_1\!\!\left(\sqrt{3}\,;-3;\,3\right)$.

$$\begin{split} &\text{Тогда}\cos\alpha = \left|\cos\angle(\vec{n}\,;\,\vec{n}_{\,1})\right| = \frac{\left|\sqrt{3}\cdot\sqrt{3}+3\cdot(-3)+3\cdot3\right|}{\sqrt{3+9+9}\cdot\sqrt{3+9+9}} = \frac{1}{7} \Rightarrow \\ &\Rightarrow \sin\phi = \frac{4\sqrt{3}}{7}\,. \end{split}$$

Ответ: $\frac{4\sqrt{3}}{7}$.

7.230. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, все рёбра которой равны 1 и которая расположена в системе координат Oxyz так, что центр её основания совпадает с началом координат, а вершины A_1 , B, C, D

имеют координаты:
$$A_1\!\!\left(\frac{\sqrt{3}}{2}\,;\,-\frac{1}{2}\,;\,1\right)\!,\;B\!\!\left(\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)\!,\;C(0;1;0),$$

 $D\left(-\frac{\sqrt{3}}{2}\,;\,\frac{1}{2}\,;\,0\right)$. Постройте эту призму и найдите координатным методом синус угла между плоскостями: а) ABC и BC_1F ; 6) FB_1D_1 и ABC; в) BC_1D и ABC; г) A_1CE_1 и ABC; д) ABC и BFD_1 .

Ранее мы уже строили плоские сечения многогранников. Эти построения осуществлялись на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей.

Вместе с тем, существуют определённые методы построения плоских сечений многогранников. Наиболее эффективными в школьном курсе геометрии являются следующие три метода: 1) метод следов; 2) метод внутреннего проектирования; 3) комбинированный метод.

1.1. Метод следов

Определение. Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа следует, что в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая — в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. Причём в секущей плоскости удобно использовать такие прямые, которые пересекают рёбра многогранника.

Рассмотрим метод следов на примерах. Секущую плоскость зададим её следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

ЗАДАЧА 1. Построить сечение призмы $ABCDEA_1B_1C_1D_1E_1$ плоскостью α , которая задана следом l в плоскости ABC основания призмы и точкой M, принадлежащей ребру DD_1 .

Рис. 70

Решение.

Анализ. Предположим, что пятиугольник MNPQR — искомое сечение (рис. 70). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка M дана) — точки пересечения секущей плоскости α с рёбрами соответственно CC_1 , BB_1 , AA_1 , EE_1 данной призмы (или их продолжениями).

Для построения точки $N=\alpha \cap CC_1$ достаточно построить прямую MX пересечения секущей плоскости α с гранью CDD_1C_1 . Эта прямая будет построена, если построить точку X пересечения следа l с гранью CDD_1C_1 .

Так как прямая l лежит в плоскости основания призмы, то она может пересекать грань CDD_1C_1 лишь в точке, которая принадлежит прямой CD пересечения плоскости грани CDD_1C_1 с плоскостью основания призмы, т. е. точка $X=l\cap (CDD_1)$ является точкой пересечения следа l с прямой CD: $l\cap (CDD_1)=X=l\cap CD$.

Таким образом, для построения точки N достаточно построить точку $X=l\cap CD$.

Аналогично, для построения точек P, Q и R достаточно построить точки $Y = l \cap BC, Z = l \cap AB$ и $T = l \cap AE$.

Построение. Строим: 1) $X = l \cap CD$; 2) $N = MX \cap CC_1$; 3) $Y = l \cap BC$; 4) $P = NY \cap BB_1$; 5) $Z = l \cap AB$; 6) $Q = PZ \cap AA_1$; 7) $T = l \cap AE$; 8) $R = QT \cap EE_1$. Пятиугольник MNPQR — искомое сечение.

Рис. 71

Доказательство. Так как прямая l — след секущей плоскости α , то точки X, Y, Z и T принадлежат этой плоскости. Поэтому:

$$\begin{split} M &\in \alpha, \, X \in \alpha \Rightarrow MX \subset \alpha \Rightarrow MX \cap CC_1 = N \in \alpha; \, N = \alpha \cap CC_1; \\ N &\in \alpha, \, Y \in \alpha \Rightarrow NY \subset \alpha \Rightarrow NY \cap BB_1 = P \in \alpha; \, P = \alpha \cap BB_1; \\ P &\in \alpha, \, Z \in \alpha \Rightarrow PZ \subset \alpha \Rightarrow PZ \cap AA_1 = Q \in \alpha; \, Q = \alpha \cap AA_1; \\ Q &\in \alpha, \, T \in \alpha \Rightarrow QT \subset \alpha \Rightarrow QT \cap EE_1 = R \in \alpha; \, R = \alpha \cap EE_1. \end{split}$$

Следовательно, MNPQR — искомое сечение.

Исследование. След l секущей плоскости α расположен в плоскости основания призмы, а точка M секущей плоскости принадлежит боковому ребру DD_1 призмы. Поэтому секущая плоскость α не параллельна боковым рёбрам. Следовательно, точки N, P, Q и R пересечения этой плоскости с боковыми рёбрами призмы (или продолжениями этих рёбер) всегда существуют. А поскольку, кроме того, точка M не принадлежит следу l, то определяемая ими плоскость α единственна. Значит, задача имеет (всегда!) единственное решение.

Динамику этого построения плоского сечения призмы можно видеть на рисунке 71.

ЗАДАЧА 2. Построить сечение пятиугольной пирамиды PABCDE плоскостью, которая задана следом l и точкой K ребра PE.

Решение. Схематически построение искомого сечения можно изобразить так (рис. 72):

$$T_1 \rightarrow Q \rightarrow T_2 \rightarrow R \rightarrow T_3 \rightarrow M \rightarrow T_4 \rightarrow N$$
.

«Цепочка» последовательности построения вершин сечения такова:

- 1) $T_1 = l \cap AE$;
- 2) $Q = T_1 K \cap PA$;
- 3) $T_2 = l \cap AB$;
- 4) $R = T_2Q \cap PB$;
- 5) $T_2 = l \cap BC$;
- 6) $M = T_3 R \cap PC$;
- 7) $T_A = l \cap CD$;
- 8) $N = T_{A}M \cap PD$.

Рис. 72

Пятиугольник MNKQR — искомое сечение.

Секущая плоскость чаще всего задаётся тремя точками, принадлежащими многограннику.

ЗАДАЧА 3. Построить сечение призмы $ABCDEA_1B_1C_1D_1E_1$ плоскостью $\alpha = (MPR)$, где M, P и R являются точками соответственно рёбер AA_1 , CC_1 и EE_1 (рис. 73).

Решение. Построим след секущей плоскости α в плоскости основания ABC данной призмы.

Прямые MR и PR лежат в секущей плоскости α , а прямые AE и CE — в плоскости основания ABC. Тогда на основании свойства (какого?) точек следа секущей плоскости строим точки: 1) $T_1=MR\cap AE$; 2) $T_2=PR\cap CE$; T_1 , T_2 — точки следа.

Значит, прямая $T_1T_2=l$ — след секущей плоскости в плоскости основания призмы. Далее строим точки: 3) $T_3=l\cap AB;$ 4) $N=T_3M\cap BB_1;$ 5) $T_4=l\cap BD;$ 6) $Q=T_4N\cap DD_1.$ MNPQR — искомое сечение.

ЗАДАЧА 4. Построить сечение пятиугольной пирамиды PABCDE плоскостью $\alpha = (KQR)$, где K, Q — точки рёбер соответственно PA и PC, а точка R лежит внутри грани DPE (рис. 74).

Решение. Построим след секущей плоскости в плоскости основания пирамиды, для чего построим две любые его точки.

Рис. 74

Прямые QK и AC лежат в одной плоскости ACP и пересекаются в точке T_1 , принадлежащей этому следу (почему?). Далее — внимание! Ответственный момент!

Плоскость APR содержит прямую RK, лежащую в секущей плоскости α , и пересекает сторону DE основания пирамиды в некоторой точке F (F является точкой пересечения прямых PR и DE). Тогда прямые KR и AF лежат в одной плоскости APR и пересекаются в некоторой точке T_2 — второй точке следа (почему?). Значит, прямая $T_1T_2 = l$ — след секущей плоскости α в плоскости основания пирамиды.

След l пересекает стороны DE и AE основания пирамиды соответственно в точках M и N, которые служат вершинами искомого сечения.

Вершина H искомого сечения получается при пересечении прямых MR и PD. Далее, построив точку $T_3=l\cap AB$ и проведя прямую T_3K , получаем вершину L искомого сечения: $L=T_3K\cap PB$.

Таким образом, «цепочка» последовательности построения вершин искомого сечения такова: 1) $T_1=QK\cap AC$; 2) $F=PR\cap DE$; 3) $T_2=KR\cap AF$; $T_1T_2=l$ — след; 4) $M=l\cap E$; 5) $N=l\cap AE$; 6) $H=MR\cap PD$; 7) $T_3=l\cap AB$; 8) $L=T_3K\cap PB$. MNKLQH— искомое сечение.

Динамика построения этого сечения проиллюстрирована на рисунке 75.

Рис. 75

Для построения следа секущей плоскости достаточно в плоскости основания многогранника построить две любые точки этого следа. Этими точками являются, как правило, точки пересечения плоскости основания данного многогранника и прямой, лежащей в секущей плоскости.

На рисунках 76-80 проиллюстрировано построение точки X пересечения прямой MK с плоскостью основания пирамиды (призмы), если точки M и K, принадлежат:

- 1) боковым рёбрам одной грани многогранника (см. рис. 76);
- 2) боковым рёбрам диагонального сечения многогранника (см. рис. 77);

Рис. 78

- 3) боковой грани многогранника и не принадлежащему ей боковому ребру (см. рис. 78);
- 4) двум смежным боковым граням многогранника (см. рис. 79);
- 5) двум несмежным боковым граням многогранника (см. рис. 80).

Задачи

- 5. Постройте точку пересечения прямой с плоскостью основания четырёхугольной пирамиды (призмы), если прямая задана двумя точками, которые принадлежат: а) боковым рёбрам одной грани; б) боковым рёбрам, не лежащим в одной грани; в) боковому ребру и боковой грани; г) двум смежным боковым граням; д) двум несмежным боковым граням; е) рёбрам диагонального сечения.
- **6.** Секущая плоскость α задана тремя точками M, P, K (рис. 81). Постройте след секущей плоскости в плоскости

основания треугольной пирамиды и треугольной призмы, если:

- 1) точки принадлежат боковым рёбрам призмы (пирамиды) (рис. 81, a, δ);
- 2) две из них принадлежат боковым рёбрам, а третья боковой грани (рис. 81, β , ε);
- 3) две из них принадлежат боковым граням, а третья боковому ребру (рис. $81, \partial, e$).
- 7. Постройте сечение призмы $ABCDEA_1B_1C_1D_1E_1$ плоскостью α , заданной следом l в плоскости основания и точкой

- M, которая принадлежит ребру DD_1 , если след: а) не имеет общих точек с основанием призмы; б) проходит через сторону AB основания призмы; в) пересекает стороны AE и BC основания призмы.
- **8.** Постройте сечение пирамиды PABCDE плоскостью α , заданной следом l и точкой M, которая принадлежит ребру PE, если след l: а) не имеет общих точек с основанием пирамиды; б) проходит через сторону BC основания; в) пересекает стороны BA и BC основания.
- **9.** Постройте сечение пирамиды PABCDE плоскостью, заданной: а) точками M, N, Q рёбер соответственно PC, PE, PA; б) точками, две из которых принадлежат боковым рёбрам, третья боковой грани.
- **10.** Постройте сечение пятиугольной призмы $ABCDEA_1B_1C_1D_1E_1$ плоскостью, которая задана следом l, проходящим через сторону AB основания, и точкой P, принадлежащей ребру CC_1 . Точку P выберите так, чтобы в сечении получился: а) четырёхугольник; б) пятиугольник; в) шестиугольник.
- **11.** Постройте сечение пятиугольной призмы плоскостью, заданной тремя точками, принадлежащими трем боковым граням.
- **12.** Постройте сечение пятиугольной пирамиды плоскостью, заданной тремя точками, две из которых принадлежат боковым рёбрам, а третья стороне основания.
- **13.** Постройте сечение пятиугольной призмы плоскостью, заданной тремя точками, две из которых принадлежат боковым граням, а третья основанию призмы.

В задачах 14-28 постройте сечение куба плоскостью MRP методом следов (рис. 82-96).

1.2. Метод внутреннего проектирования

В некоторых учебных пособиях метод построения сечений многогранников, который мы сейчас будем рассматривать, называют методом внутреннего проектирования или методом соответствий, или методом диагональных сечений. Мы примем первое название этого метода.

Сущность метода внутреннего проектирования рассмотрим на примерах построения сечений призмы и пирамиды.

ЗАДАЧА 29. Построить сечение призмы $ABCDEA_1B_1C_1D_1E_1$ плоскостью α , заданной точками $M \in BB_1$, $P \in DD_1$, $Q \in EE_1$.

Решение. Плоскость нижнего основания призмы обозначим β.

Для построения искомого сечения построим точки пересечения плоскости α с рёбрами (или их продолжениями) призмы (рис. 97).

Построим точку пересечения секущей плоскости а с ребром AA_1 .

Плоскости A_1AD и BEE_1 пересекают плоскость в по прямым соответственно AD и BE. которые пересекаются в неко-

Рис. 97

торой точке K: $K = AD \cap BE$. Эти плоскости проходят через параллельные рёбра AA_1 и BB_1 призмы и имеют общую точку K. Поэтому прямая их пересечения проходит через точку K и параллельна ребру BB_1 (т. 11). Точку пересечения этой прямой с прямой QM (почему они пересекаются?) обозначим $K_1 = KK_1 \cap QM, KK_1 \parallel BB_1.$

Прямая PK_1 лежит в секущей плоскости α и пересекает (почему?) ребро AA_1 в некоторой точке R. Точка R служит точкой пересечения плоскости α и ребра AA_1 : $R=PK_1 \cap AA_1=$ $= \alpha \cap AA_1$, т. е. точка R является вершиной искомого сечения.

Аналогично строим точку N пересечения плоскости α и ребра CC_1 .

Таким образом, последовательность «шагов» построения искомого сечения такова: 1) $K = AD \cap BE$; 2) $K_1 = KK_1 \cap MQ$; $KK_1 \parallel BB_1$; 3) $R = PK_1 \cap AA_1$; 4) $H = EC \cap AD$; 5) $H_1 = HH_1 \cap AA_1$ $\cap PR$, $HH_1 \parallel CC_1$; 6) $N = QH_1 \cap CC_1$. Пятиугольник MNPQR искомое сечение.

ЗАДАЧА 30. Построить сечение пирамиды PABCDE плоскостью $\alpha = (MFR)$, если точки M, F и R являются внутренними точками рёбер соответственно PA, PC и PE (рис. 98).

Решение. Плоскость основания пирамиды обозначим в.

Для построения искомого сечения построим точки пересечения секущей плоскости α с рёбрами (или с их продолжениями) пирамиды.

Рассмотрим построение точки пересечения секущей плоскости с ребром PD пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответственно AD и CE, которые пересекаются в некоторой точке K. Тогда прямая PK, по которой пере-

секаются плоскости APD и CPE, пересекает прямую FR (почему?) в некоторой точке K_1 : $K_1=PK\cap FR$. Прямая MK_1 лежит в секущей плоскости α (почему?). Поэтому точка Q пересечения прямой MK_1 с ребром PD есть точка пересечения этого ребра и секущей плоскости: $Q=MK_1\cap PD=\alpha\cap PD$.

Аналогично строим точку пересечения плоскости α и ребра PB. Плоскости BPE и APD пересекают плоскость β по прямым соответственно BE и AD, которые пересекаются в точке H. Прямая $PH=(BPE)\cap (APD)$ пересекает прямую MQ в точке H_1 . Тогда прямая RH_1 пересекает ребро PB в точке N.

Таким образом, последовательность «шагов» построения искомого сечения такова:

1)
$$K = AD \cap EC$$
; 2) $K_1 = PK \cap RF$; 3) $Q = MK_1 \cap PD$;
4) $H = BE \cap AD$; 5) $H_1 = PH \cap MQ$; 6) $N = RH_1 \cap PB$.

MNFQR — искомое сечение.

Динамика построения этого сечения пирамиды проиллюстрирована на рисунке 99.

Рис. 99

Задачи

- **31.** На рисунках 100-102 секущая плоскость задана точками 1, 2 и 3.
- а) На рисунках 100, δ , 101, a прокомментируйте построение точек пересечения секущей плоскости с боковыми рёбрами.

Рис. 102

a)

O)

б) Используя рисунки 100, a, 101, δ , 102, a, δ , постройте точки пересечения секущей плоскости с боковыми рёбрами многогранников.

В задачах 32—34 (рис. 103—105) постройте прямую пересечения плоскости NKF с плоскостью PQM.

- **35.** Постройте сечение четырёхугольной призмы плоскостью, заданной тремя точками на её боковых рёбрах.
- **36.** Постройте сечение четырёхугольной пирамиды плоскостью, заданной тремя точками на её боковых рёбрах.
- **37.** Постройте сечение пятиугольной призмы плоскостью, которая проходит через три точки, если: а) две из них принадлежат боковым граням призмы, а третья её боковому ребру, не принадлежащему этим граням; б) две из них принадлежат боковым рёбрам призмы, а третья боковой грани, не содержащей эти рёбра.
- **38.** Постройте сечение пирамиды PABCDE плоскостью, проходящей через точки M и K, принадлежащие граням соответственно ABP и ABC, и внутреннюю точку бокового ребра PE.
- **39.** Постройте сечение пятиугольной призмы плоскостью, проходящей через три точки, две из которых принадлежат боковым несмежным граням, а третья точка совпадает с вершиной нижнего основания, не принадлежащей этим граням.

В задачах 40-54 (рис. 106-120) постройте сечение куба плоскостью MRP методом внутреннего проектирования.

1.3. Комбинированный метод

Сущность комбинированного метода построения сечений многогранников состоит в том, что на некоторых этапах построения сечения применяется или метод следов, или метод внутреннего проектирования, а на других этапах построение этого сечения осуществляется с использованием теорем, изученных в разделе «Параллельность в пространстве» и др.

Для иллюстрации применения этого метода рассмотрим следующую задачу.

ЗАДАЧА 55. Построить сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью α , заданной точками $P,\ Q$ и R, если точка P лежит на диагонали A_1C_1 , точка Q — на ребре BB_1 и точка R — на ребре DD_1 (рис. 121).

Решение. a) Решим эту задачу с применением метода следов и теорем о параллельности прямых и плоскостей.

Прежде всего построим след секущей плоскости $\alpha=(PQR)$ на плоскости ABC. Для этого строим точки $T_1=PQ\cap P_1B$, где $PP_1\parallel AA_1$, $P_1\in AC$ и $T_2=RQ\cap BD$. Построив след T_1T_2 , замечаем, что точка P лежит в плоскости $A_1B_1C_1$, которая параллельна плоскости ABC. Это означает, что секущая плоскость α пересекает плоскость $A_1B_1C_1$ по прямой, проходящей через точку P и параллельной прямой T_1T_2 . Пусть эта прямая пересекает рёбра A_1B_1 и A_1D_1 соответственно в точках M и E. Тогда прямая ER — это прямая, по которой секущая плоскость α пересекает плоскость грани ADD_1A_1 , прямая QM — это прямая, по которой секущая плоскость пересекает плоскость грани ABB_1A_1 .

Далее, так как плоскость BCC_1 параллельна плоскости грани ADD_1A_1 , то секущая плоскость пересекает грань BCC_1B_1 по прямой QF, параллельной прямой ER. Пятиугольник ERFQM — искомое сечение. (Точку F можно получить, проведя $RF \parallel MQ$.)

б) Решим эту задачу, применяя метод внутреннего проектирования и теоремы о параллельности прямых и плоскостей.

Пусть H — точка пересечения диагоналей AC и BD (рис. 122). Проведя прямую HH_1 параллельно ребру BB_1 ($H_1 \in RQ$), построим точку $F\colon F = PH_1 \cap CC_1$. Точка F — это точка пересечения секущей плоскости с ребром CC_1 (почему?). Тогда прямая RF — это прямая, по которой секущая плоскость пересекает плоскость грани CC_1D_1D , прямая QF — это прямая, по которой секущая плоскость пересекает плоскость грани BCC_1B_1 .

Так как плоскость ABB_1 параллельна плоскости CDD_1 , то секущая плоскость пересекает грань ABB_1A_1 по прямой QM ($M \in A_1B_1$), параллельной прямой FR. Далее, если E — точка пересечения прямых MP и A_1D_1 , то эта точка является точкой пересечения секущей плоскости и ребра A_1D_1 (почему?). Пятиугольник ERFQM — искомое сечение. (Точку E можно построить, проведя прямую $RE \parallel FQ$. Тогда $M = PE \cap A_1B_1$.)

Задачи на построение сечений многогранников

- **56.** Точки P, Q и R взяты на рёбрах параллелепипеда $ABCDA_1B_1C_1D_1$ следующим образом: точка P лежит на ребре CC_1 , точка Q на ребре DD_1 , точка R на ребре A_1B_1 . Постройте след секущей плоскости PQR на плоскостях: а) DCC_1 ; б) ABC; в) ADD_1 .
- **57.** Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью PQR, если $P \in CC_1$, $Q \in DD_1$, $R \in A_1B_1$. Задачу решите: а) методом следов; б) методом внутреннего проектирования; в) комбинированным методом.
- **58.** Точки P, Q и R взяты на поверхности параллелепипеда $ABCDA_1B_1C_1D_1$ следующим образом: точка P лежит на грани CC_1D_1D , точка Q в грани AA_1D_1D , точка R на ребре BB_1 . Постройте сечение параллелепипеда плоскостью PQR:

- а) методом внутреннего проектирования; б) комбинированным методом; в) методом следов.
- **59.** Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью PQR, если точка P лежит в грани CC_1D_1D , точка Q в грани BB_1CC_1 , точка R на ребре BB_1 .
- **60.** Точки P, Q и R взяты на поверхности параллелепипеда $ABCDA_1B_1C_1D_1$ следующим образом: точка P лежит на диагонали B_1D_1 , точка Q на ребре AB, точка R на ребре CC_1 . Постройте сечение параллелепипеда плоскостью PQR, если отношения $B_1P:B_1D_1$, AQ:AB и $CR:CC_1$ имеют следующие значения: a) 1:3, 1:3 и 2:3; б) 2:3, 1:2 и 2:3; в) 1:4, 1:2 и 3:4; г) 1:4, 1:3 и 1:2; д) 1:2, 1:2 и 1:2; е) 1:3, 1:4 и 3:2.
- **61.** Точки P, Q и R взяты соответственно на рёбрах B_1C_1 , AA_1 и AD параллелепипеда $ABCDA_1B_1C_1D_1$. Постройте следы секущей плоскости PQR на следующих плоскостях: а) AA_1D ; б) AA_1B ; в) BB_1C ; г) ABC; д) $A_1B_1C_1$; е) CC_1D_1 .
- **62.** Точки P, Q и R взяты на поверхности параллелепипеда $ABCDA_1B_1C_1D_1$ следующим образом: точка P лежит в грани CC_1D_1D , точка Q в грани AA_1D_1D , точка R на прямой BB_1 (вне отрезка BB_1). Постройте сечение параллелепипеда плоскостью PQR: а) методом внутреннего проектирования; б) комбинированным методом; в) методом следов.
- **63.** На рёбрах BC и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки P и Q. Постройте сечение параллелепипеда плоскостью, проходящей через прямую CQ параллельно прямой AP: а) комбинированным методом; б) методом следов.
- **64.** На рёбрах A_1B_1 и DD_1 параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки P и K, а в гранях DD_1C_1C и AA_1D_1D соответственно точки Q и R. Постройте сечение параллелепипеда плоскостью, проходящей через точку K параллельно плоскости PQR.
- **65.** На поверхности параллелепипеда $ABCDA_1B_1C_1D_1$ взяты точки P, Q и R следующим образом: точка P лежит на диагонали C_1D , точка Q на диагонали A_1D , а точка R на прямой AB. Постройте сечение параллелепипеда плоско-

- стью PQR, если отношения $DP:DC_1$, $DQ:DA_1$ и AR:AB имеют соответственно следующие значения: a) 1:2, 1:2, 1:2, 5) 1:2, 1:3, 1:3; в) 1:2, 1:3, 1:4; г) 1:3, 2:3, 2:3; д) 1:3, 1:2, 2:3; е) 1:3, 1:2, 2:1.
- **66.** Точка P взята на продолжении ребра AA_1 параллелепипеда $ABCDA_1B_1C_1D_1$, а точки Q и R соответственно на рёбрах C_1B_1 и BC. Постройте линию пересечения плоскости PQR с плоскостью BC_1D , если отношения $AP:A_1P$, $C_1Q:D_1Q$ и BR:CR принимают соответственно значения: а) $1:2,\ 2:3,\ 3:2;\ 6$) $2:3,\ 1:1,\ 2:3;\ B$) $2:5,\ 2:1,\ 1:1;$ г) $2:1,\ 3:2,\ 1:3;\ д$) $3:2,\ 1:2,\ 1:2;\ e$) $5:1,\ 1:3,\ 1:4$.
- **67.** На рёбрах CC_1 и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки P и Q середины этих рёбер, а на рёбрах AD, BB_1 и C_1D_1 взяты соответственно точки M, T и R. Постройте линию пересечения плоскостей PQD и MTR, если отношения AM:DM, $A_1Q:B_1Q$ и $C_1R:D_1R$ принимают соответственно следующие значения: a) 1:2, 1:1, 1:1; 6) 1:1, 1:1, 2:1; в) 1:1, 1:2, 1:1; г) 1:3, 1:1, 1:2; д) 1:1, 1:3, 2:1; е) 2:1, 2:3, 1:1.
- **68.** PACB изображение правильного тетраэдра, точка K середина ребра BP. 1) Постройте: а) отрезки KM и KH, перпендикулярные соответственно рёбрам PA и PC; $M \in PA$, $H \in PC$; б) точку пересечения плоскости MKH с прямой PO, где O центроид треугольника ABC. 2) Найдите площадь треугольника MKH.
- **69.** Постройте сечение куба $ABCDA_1B_1C_1D_1$ плоскостью, проходящей через середины рёбер AA_1 , BC и CC_1 . Найдите длины сторон сечения, если длина ребра куба равна a.
- **70.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ длины рёбер AB, BC и BB_1 пропорциональны числам 3, 2, 1. Постройте точку пересечения: а) ребра AB с биссектрисой угла BB_1A_1 ; б) прямой CC_1 с биссектрисой угла BB_1C_1 .

Настоящий раздел задачника посвящён повторению планиметрии в задачах. Заметим, что не ставится цели рассматривать только сложные задачи. Напротив, предлагаются разные задачи: и простые, и средней, и повышенной трудности.

Курс планиметрии полезно системно повторить путём решения задач из таких основополагающих её разделов, как «Треугольники», «Четырёхугольники», «Окружность», «Площади».

Прежде чем приступить к решению задачи, постарайтесь наглядно представить, вообразить, нарисовать фигуры, о которых идёт речь.

Алгоритмов решения геометрических задач, как правило, нет. Удачный же выбор в каждом конкретном случае подходящей теоремы достигается путём решения достаточно большого количества задач. Поэтому можно пожелать: xomume научиться решать задачи — решайте их!

Успешность решения геометрической задачи во многом зависит от знания теорем и умения их применять. Безусловно, все теоремы важны. Но из них выделяются «рабочие теоремы», которые наиболее активно используются при решении задач.

Ниже приводятся наиболее полезные, на наш взгляд, «рабочие теоремы».

2.1. «Рабочие теоремы» планиметрии

Теорема 1 (о замечательных точках и линиях в треугольнике): а) три медианы треугольника пересекаются в одной точке (эта точка называется центроидом треугольника) и делятся этой точкой в отношении 2:1, считая от вершины (рис. 123); $AM:MD=2:1 \Rightarrow AM:AD=2:3, MD:AD=1:3$;

- б) три высоты треугольника пересекаются в одной точке (эта точка называется ортоцентром треугольника) (рис. 124);
- в) три биссектрисы треугольника пересекаются в одной точке (эта точка является центром окружности, вписанной в данный треугольник) (рис. 125);
- г) три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (эта точка является центром окружности, описанной около данного треугольника) (рис. 126);
- д) ортоцентр Н треугольника, его центроид М и центр О описанной окружности лежат на одной прямой (она называется прямой Эйлера), причём

$$OM: MH = 1:2$$
 (рис. 127).

Не можем удержаться, чтобы не привести здесь формулировку не очень рабочей, но зато очень красивой $m \ e \ o \ p \ e \ m \ ы$:

основания высот треугольника, середины его сторон и середины отрезков, соединяющих ортоцентр треугольника с его вершинами, лежат на одной

Рис. 126

Рис. 127

Рис. 128

окружности (она называется окружностью Эйлера или окружностью девяти точек) (рис. 128); центр этой окружности совпадает с серединой отрезка, соединяющего ортоцентр и центр описанной окружности; радиус её равен половине радиуса описанной окружности.

Теорема 2 (теорема Менелая; названа по имени древнегреческого учёного Менелая (I в.), доказавшего её для сферического треугольника). Пусть A_1 , B_1 и C_1 — три точки, лежащие соответственно на сторонах BC, CA и AB треугольника ABC или на их продолжениях (рис. 129). Точки A_1 , B_1 и C_1 тогда и только тогда лежат на одной прямой, если:

$$\frac{|AC_1|}{|C_1B|} \cdot \frac{|BA_1|}{|A_1C|} \cdot \frac{|CB_1|}{|B_1A|} = 1.$$

Теорема 3 (теорема Чевы; названа по имени доказавшего её в 1678 г. итальянского учёного Джованни Чева (1648-1734)). Пусть A_1 , B_1 и C_1 — три точки, лежащие соответственно на сторонах BC, CA и AB треугольника ABC или на их продолжениях (рис. 130 а, б). Для того чтобы прямые AA_1 , BB_1 и CC_1 пересекались в одной точке или были все параллельны, необходимо и достаточно, чтобы:

$$\frac{\left|\frac{AC_1}{|C_1B|} \cdot \frac{|BA_1|}{|A_1C|} \cdot \frac{|CB_1|}{|B_1A|} = 1.$$

Рис. 129

Рис. 130

Рис. 132 Рис. 133

Теорема 4. Биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные сторонам этого треугольника, заключающим данный угол: BD:DC=AB:AC (рис. 131).

Теорема 5. Средние линии треугольника делят его на четыре равных треугольника (рис. 132).

Теорема 6. Середины сторон выпуклого четырёхугольника являются вершинами параллелограмма (рис. 133).

Теорема 7 (о средней линии трапеции):

- а) средняя линия трапеции равна полусумме её оснований;
- б) средняя линия трапеции (и только она) делит пополам любой отрезок с концами на основаниях трапеции.

Теорема 8 (признак прямоугольного треугольника).

Если в треугольнике одна из медиан равна половине стороны, к которой она проведена, то этот треугольник прямоугольный.

Теорема 9. В прямоугольном треугольнике:

а) высота, проведённая из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между проекциями катетов на гипотенузу (рис. 134): $CD^2 = AD \cdot BD$;

б) каждый катет является средней пропорциональной величиной между гипотенузой и проекцией этого катета на гипотенузу (рис. 134):

 $AC^2 = AB \cdot AD$; $BC^2 = AB \cdot BD$.

Теорема 10. Если R и r — радиусы соответственно описанной и вписанной окружностей прямоугольного треугольника, катеты которого равны а и b, а гипотенуза — c, то $r = \frac{a+b-c}{2}$, $R + r = \frac{a+b}{2}$.

Теорема 11. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Теорема 12 (теорема синусов). Во всяком треугольнике ABC со сторонами BC = a, CA = b, AB = c выполняется соотношение $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, где R - paduycописанной окружности.

Теорема 13 (теорема косинусов). Во всяком треугольни- $\kappa e\ ABC\ co\ cmopoнamu\ BC=a,\ CA=b,\ AB=c\ выполня$ ется соотношение

$$a^2 = b^2 + c^2 - 2bc \cos A.$$

Теорема 14 (об измерении углов, связанных с окружностью):

- а) центральный угол измеряется дугой, на которую он опирается (рис. 135);
- б) вписанный угол измеряется половиной дуги, на которую он опирается (рис. 135);
- в) угол с вершиной внутри круга измеряется полусуммой дуг, заключённых между его сторонами и их продолжениями за вершину угла (рис. 136);
- г) угол с вершиной вне круга (рис. 137) измеряется полуразностью дуг, заключённых между его сторонами (предполагается, что каждая из сторон угла пересекается с данной окружностью);

Рис. 136

Рис. 137

д) угол между касательной и хордой (рис. 138) измеряется половиной дуги, заключённой между ними.

Теорема 15 (о свойствах касательных, секущих и хорд окружности):

- а) радиус, проведённый в точку касания, перпендикулярен касательной (рис. 139);
- б) если из точки проведены две касательные к окружности, то длины отрезков касательных от этой точки до точек касания равны и центр окружности лежит на биссектрисе угла между ними (рис. 140);
- в) если из точки А проведены к окружности касательная AB и секущая AC, то $AC \cdot AD = AB^2$ (рис. 141);
- Γ) если хорды AB и CD пересекаются в точке M(рис. 142), $mo MA \cdot MB = MC \cdot MD$;
- д) если из точки М проведены к окружности две секущие MAB и MCD (рис. 143), то $MA \cdot MB = MC \cdot MD$.

Теорема 16 (теорема Птолемея; названа по имени доказавшего её древнегреческого учёного Птолемея Клавдия (ІІ в.)). Во всяком выпуклом четырёхугольнике, впи-

Рис. 141

Рис. 142

Рис. 143

санном в окружность, произведение длин диагоналей равно сумме произведений длин его противоположных сторон, т. е. имеет место равенство (рис. 144):

$$AC \cdot BD = AB \cdot CD + BC \cdot AD$$
.

Теорема 17 (об окружности и четырёхугольнике):

а) около выпуклого четырёхугольника можно описать окружность (рис. 145) тогда и только тогда, когда сумма величин его противоположных углов равна 180°:

$$\angle A + \angle C = \angle B + \angle D = 180^{\circ};$$

- б) в выпуклый четырёхугольник можно вписать окружность (рис. 146) тогда и только тогда, когда равны суммы длин его противоположных сторон: a+c=b+d:
- в) из всех параллелограммов только около прямоугольника можно описать окружность;
- г) около трапеции можно описать окружность тогда и только тогда, когда она равнобедренная;
- д) если для четырёх точек плоскости A, B, M и K выполняется одно из следующих двух условий:
- точки M и K расположены по одну сторону от прямой AB и при этом $\angle AMB = \angle AKB$;
- ullet точки M и K расположены по разные стороны от прямой AB и при этом \angle AMB+ \angle AKB= $180^{\circ},$

то точки A, B, M и K лежат на одной окружности.

(Эту формулировку мы взяли из замечательного учебника И. Ф. Шарыгина «Геометрия 7—9». М.: Дрофа, 2013.)

Теорема 18 (о площади треугольника):

а) площадь треугольника равна половине произведения основания на высоту (рис. 147):

$$S=\frac{1}{2}ah;$$

б) площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рис. 148):

$$S = \frac{1}{2}ab \sin C;$$

в) площадь треугольника равна половине произведения периметра треугольника на радиус вписанной в него окружности (рис. 149):

$$S = \frac{1}{2}(a+b+c) \cdot r;$$

г) площадь треугольника со сторонами а, b, c вычисляется по формуле (формула Герона):

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$

$$z\partial e \quad p = \frac{a-b+c}{2};$$

д) площадь треугольника со сторонами a, b, c вычисляется по формуле

$$S=\frac{abc}{4R}\,,$$

где R — радиус описанного круга;

е) отношение площадей двух подобных треугольников равно квадрату коэффициента подобия этих треугольников;

Рис. 147 Рис. 148

Рис. 149

ж) отношение площадей двух треугольников, имеющих общее основание, равно отношению высот этих треугольников (рис. 150):

$$S_{\Delta ABC}: S_{\Delta ABD} = CE: DK;$$

з) отношение площадей двух треугольников, и меющих равные высоты, равно отношению длин оснований этих треугольников (рис. 151):

$$S_{AAEC}: S_{ABEC} = AE: BE;$$

и) отношение площадей двух треугольников, имеющих равный угол, равно отношению произведений сторон, содержащих этот угол:

$$\frac{S_{ABC}}{S_{A_1B_1C_1}} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1} \quad (\angle A = \angle A_1).$$

Теорема 19 (о площади четырёхугольника):

а) площадь выпуклого четырёхугольника равна половине произведения длин его диагоналей на синус угла между ними (рис. 152):

$$S=\frac{1}{2}\,mn\,\sin\,\varphi;$$

б) площадь описанного четырёхугольника равна половине произведения его периметра на радиус вписанного круга (рис. 153):

Рис. 153

Рис. 154

- в) площадь трапеции равна произведению полусуммы её оснований на высоту (произведению средней линии трапеции на высоту);
- г) площадь параллелограмма равна произведению длин двух его сторон на синус угла между ними (рис. 154):

 $S = ab \sin \varphi;$

д) площадь ромба равна половине произведения длин его диагоналей.

Теорема 20. Если точка M — середина отрезка AB, O — произвольная точка (рис. 155, a), то справедливо векторное равенство

$$\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}).$$

Теорема 21. Если точка M — центроид треугольника ABC, O — произвольная точка (рис. 155, δ), то справедливо векторное равенство

$$\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$$

Рис. 155

2.2.Задачи на построение при помощи циркуля и линейки

- 71. Постройте середину отрезка.
- 72. Постройте биссектрису угла.
- **73.** Постройте прямую, проходящую через данную точку и перпендикулярную данной прямой.
- **74.** Постройте прямую, проходящую через данную точку и параллельную данной прямой.
- 75. Постройте треугольник по:
 - а) стороне и проведённым к ней медиане и высоте;
- б) двум сторонам и медиане, проведённой к одной из этих сторон;
- в) двум сторонам и медиане, проведённой к третьей стороне;
 - г) двум медианам и стороне (два случая);
 - д) трём медианам;
- е) стороне, прилежащему к ней углу и биссектрисе этого угла;
 - ж) стороне и двум высотам;
 - з) трём точкам, являющимся серединами его сторон.
- 76. Постройте прямоугольный треугольник по:
 - а) гипотенузе и катету;
 - б) катету и высоте, опущенной на гипотенузу;
- в) высоте и биссектрисе, проведённым из вершины прямого угла;
 - г) сумме катетов и гипотенузе;
 - д) катету и сумме гипотенузы с другим катетом.
- 77. Используя подобие, постройте треугольник по:
 - а) двум углам и биссектрисе третьего угла;
 - б) двум углам и радиусу описанной окружности;
 - в) двум углам и сумме высот.
- **78.** Дан отрезок a. Постройте отрезки, длины которых выражены формулами:

79. Даны два отрезка a и b (a > b). Постройте отрезки, длины которых выражены формулами:

- a) 3a + 5b; д) $\sqrt{a \cdot b}$;
- 6) $\sqrt{a^2 + 4b^2}$; e) $\sqrt{a^2 a \cdot b}$;
- в) $\sqrt{a^2 + 2b^2}$; ж) $\frac{b^2}{a}$;
- r) $\sqrt{a^2 b^2}$; 3) $\frac{a^2}{b}$.
- **80.** Постройте прямоугольник с данной диагональю, равновеликий данному квадрату.
- 81. Постройте трапецию по:
 - а) четырём сторонам;
 - б) двум основаниям и двум диагоналям.
- **82.** Постройте центр окружности, описанной около данного треугольника.
- **83.** Постройте центр окружности, вписанной в данный треугольник.
- **84.** Постройте центры вневписанных окружностей для данного треугольника.
- **85.** К данной окружности проведите касательную, проходящую через данную точку (все случаи).
- **86.** К данным двум окружностям проведите все общие касательные.
- 87. В данный угол впишите окружность данного радиуса.
- **88.** В данный угол впишите окружность, проходящую через данную точку, лежащую внутри угла.
- **89.** Через данную точку, лежащую внутри данного угла, проведите отрезок с концами на сторонах этого угла и серединой в данной точке.
- 90. Через данную точку проведите прямую, делящую на две равные фигуры:
 - а) данный круг;
 - б) данный параллелограмм.

91. Постройте образ точки A при:

- а) центральной симметрии относительно данной точки В;
- б) осевой симметрии относительно данной прямой b;
- в) повороте на угол 45° вокруг данной точки O;
- г) параллельном переносе на вектор \overrightarrow{MP} , заданный точками M и P;
 - д) гомотетии с данным центром О и коэффициентом 3;
 - е) гомотетии с данным центром O и коэффициентом -0.5.

92. Постройте образ прямой a при:

- а) центральной симметрии относительно данной точки B;
- б) осевой симметрии относительно данной прямой b;
- в) повороте на угол 60° вокруг данной точки O;
- г) параллельном переносе на вектор \overrightarrow{MP} , заданный точками M и P;
 - д) гомотетии с данным центром O и коэффициентом $\frac{2}{7}$.

93. Постройте образ данной окружности при:

- а) центральной симметрии относительно данной точки B;
- б) осевой симметрии относительно данной прямой b;
- в) повороте на угол 30° вокруг данной точки O;
- г) параллельном переносе на вектор $M \acute{P}$, заданный точками M и P ;
 - д) гомотетии с данным центром O и коэффициентом $\frac{3}{2}$.

ЗАДАЧА 94. Даны две прямые p и q и не принадлежащая им точка A. Построить правильный треугольник с вершиной A, чтобы две оставшиеся его вершины принадлежали по одной данным прямым.

Решение.

1. Анализ. Пусть \triangle ABC — искомый (рис. 156), т. е. \triangle ABC — правильный и $B\in p,$ $C\in q.$

Треугольник ABC будет построен, если построены его вершины $B \in p$, $C \in q$ (третья вершина треугольника находится в данной точке A). Но так как треугольник ABC равносторонний, то AB = AC и $\angle CAB = 60^\circ$. Это означает, что при повороте $R_A^{60^\circ}$ вокруг точки A на угол 60° точка C отображается на точку B ($R_A^{60^\circ}(C) = B$), а при повороте $R_A^{-60^\circ}$ вокруг точки A

на угол -60° точка B отображается на точку C ($R_A^{-60^{\circ}}(B)=C$). Поэтому для построения треугольника ABC достаточно построить одну из вершин: B или C.

Итак, треугольник ABC будет построен, если построим, например, точку B.

Так как вершина B треугольника должна принадлежать прямой p, а вершина C — прямой q и $B = R_A^{60^\circ}(C)$, то точка B является точкой пересечения прямых p и $q' = R_A^{60^\circ}(q)$. Поэтому для построения точки B достаточно построить прямую q' — образ прямой q при повороте $R_A^{60^\circ}$.

Схематически рассуждения анализа можно изобразить так:

$$\triangle$$
 $ABC \leftarrow B$ и $C \leftarrow B$ или $C \leftarrow B = p \cap q' \leftarrow q' = R_A^{60\,\circ}(q)$.

$$B=R_A^{60\,\circ}(C), \qquad C\in q, \ C=R_A^{-60\,\circ}(B) \qquad R_A^{60\,\circ}(C)=B, \ R_A^{60\,\circ}(q)=q' \qquad B=p\cap q'.$$

- 2. Построение. Строим: 1) $q'=R_A^{60\,\circ}(q);\ 2)$ $B=p\ \cap\ q';\ 3)$ $C=R_A^{-60\,\circ}(B);\ 4)$ \triangle ABC искомый.
- 3. Доказательство. $B=p \cap q' \Rightarrow B \in q', \, B \in p$. Докажем, что точка $C=R_A^{-60^\circ}(B)$ принадлежит прямой q.

Поворот $R_A^{60^\circ}$ отображает прямую q на прямую $q' = R_A^{60^\circ}(q)$ взаимно однозначно (биективно). Следовательно, на прямой q найдётся единственная (!) точка, которая отображается на точку $B \in q'$ при повороте $R_A^{60^\circ}$. Этой точкой является точка $C = R_A^{-60^\circ}(B)$. А так как $B \in q'$, то $C \in q = R_A^{60^\circ}(q')$.

4. Исследование. Анализируя каждый шаг построения, замечаем, что внимания заслуживает вопрос о существовании точки B пересечения прямых p и q': $B = p \cap q'$.

С одной стороны, угол между прямой и её образом при повороте равен углу поворота, т. е. $\widehat{(q;q')}=60^\circ$. С другой стороны, точка B пересечения прямых p и q' существует, если $q' \not \mid p$ и $q' \neq p$. Это возможно, когда $\widehat{(p;q)} \neq 60^\circ$.

Кроме того, можно построить прямую q_1' — образ прямой q при повороте $R_A^{-60^\circ}$ (рис. 156), которая пересекает прямую p в некоторой точке $B_1=p \cap q_1'$. Тогда точки A, B_1 и $C_1=R_A^{60^\circ}(B_1)$ являются вершинами другого треугольника-решения.

Таким образом, если $(p;q) \neq 60^\circ$, то задача имеет два решения.

Если же
$$(p; q) = 60^{\circ}$$
, то:

- а) задача имеет одно решение, когда расстояния от точки A до прямых p и q различны;
- б) задача имеет одно решение, когда точка A лежит на биссектрисе острого угла между прямыми p и q, и два решения, когда точка A лежит на биссектрисе тупого угла между p и q.
- **95.** Постройте отрезок, равный и параллельный данному отрезку AB, чтобы его концы принадлежали данным прямой и окружности.
- **96.** Даны острый угол и точка M внутри его. Постройте на одной стороне угла такую точку A, что расстояние от точки A до другой стороны угла равно расстоянию AM.

- **97.** Постройте квадрат, чтобы три его вершины по одной принадлежали трём данным прямым.
- **98.** Даны две прямые и окружность. Постройте окружность, касающуюся данных прямых и окружности.
- **99.** Постройте окружность, касающуюся данной окружности в данной точке A и данной прямой (окружность и прямая не пересекаются).
- **100.** Постройте треугольник, если даны его сторона, прилежащий к ней угол и сумма двух других сторон.
- **101.** В данный треугольник впишите квадрат так, чтобы две его вершины лежали на одной стороне, а две другие по одной на каждой из остальных сторон.
- **102.** В данную окружность впишите треугольник, подобный данному.
- **103.** В одной полуплоскости относительно прямой c лежат точки A и B на разных расстояниях от c. Постройте на прямой c такую точку M, чтобы:
 - а) длина ломаной AMB (AM + MB) была наименьшей;
- б) точка M лежала между проекциями A_1 и B_1 точек A и B на прямую c и угол AMA_1 был равен углу BMB_1 ;
- в) точка M лежала между проекциями A_1 и B_1 точек A и B на прямую c и угол AMA_1 был вдвое больше угла BMB_1 .
- **104.** Внутри данного острого угла дана произвольная точка M. Постройте на сторонах этого угла такие точки A и B, чтобы периметр треугольника MAB был наименьшим.
- **105.** На числовой прямой отмечены точки A и B, координаты которых соответственно равны 1 и $\sqrt{2}$. Постройте на этой прямой точку с координатой 0.

2.3. Тематическая подборка задач на вычисление и доказательство

Треугольник

ЗАДАЧА 106. Две стороны треугольника равны соответственно 6 и 8. Медианы, проведённые к этим сторонам, пересекаются под прямым углом. Найти третью сторону треугольника.

Решение. Пусть AC=6, BC=8 и медианы AE и BD пересекаются под прямым углом в точке M (рис. 157). Найдём длину стороны AB.

Так как M — точка пересечения медиан AE и BD треугольника ABC, то BM: MD = AM: ME = 2:1. Поэтому, если ME = a, MD = b, то AM = 2a, BM = 2b.

По теореме Пифагора в прямоугольных треугольниках AMD и BME имеем: $AM^2 + DM^2 = AD^2$, $EM^2 + BM^2 = BE^2$.

Учитывая, что
$$AD=rac{1}{2}AC=3, BE=rac{1}{2}BC=4$$
, получаем $\left\{ egin{aligned} 4a^2+b^2=9, \\ a^2+4b^2=16. \end{aligned}
ight.$

Сложив эти равенства, находим $a^2+b^2=5=DE^2$, откуда $DE=\sqrt{5}$. Так как DE — средняя линия треугольника ABC, то $AB=2DE=2\sqrt{5}$.

Ответ: $2\sqrt{5}$.

107. Расстояния от точки M, лежащей внутри треугольника ABC, до его сторон AC и BC соответственно равны 2 см и 4 см. Найдите расстояние от точки M до прямой AB, если AB = 10 см, BC = 17 см, AC = 21 см.

ЗАДАЧА 108. В равнобедренном треугольнике ABC (AB = BC) на стороне BC взята точка M так, что BM: MC = 1:4. В каком отношении прямая AM делит медиану BE треугольника ABC, считая от вершины B?

Решение. Проведём $EF \parallel AM$ (рис. 158), $F \in MC$. Тогда EF — средняя линия треугольника $AMC \Rightarrow F$ — середина MC. Поэтому $BM:MC=1:4,\ MF:MC=1:2,\$ откуда BM:MF=

Рис. 158

- = 1:2, значит, BM:BF=1:3. По теореме Фалеса BK:BE=1:3
- =BM:BF=1:3, следовательно, BK:KE=1:2.

Ответ: 1:2.

- **109.** Найдите третью сторону остроугольного треугольника, если две его стороны равны a и b и известно, что медианы этих сторон пересекаются под прямым углом.
- **110.** В остроугольном треугольнике ABC сторона AB=8, BC=6. Высоты AL и CK пересекаются в точке P. Через точки A и P проведены прямые, перпендикулярные прямой KL и пересекающие прямую BC соответственно в точках H и T. Найдите длину отрезка TH.
- **111.** В треугольнике ABC проведены биссектрисы BM и AE, пересекающиеся в точке O. При этом AB = BM, $BO = 2 \cdot OM$ и периметр треугольника ABM равен 14. Найдите AB.
- **112.** Найдите отношение суммы квадратов длин сторон треугольника к сумме квадратов длин его медиан.

Прямоугольный треугольник

- **113.** Медианы, проведённые из вершин острых углов прямоугольного треугольника, равны 2 и 3. Найдите площадь этого треугольника.
- **114.** В прямоугольном треугольнике ABC с гипотенузой AB проведены медиана CM и высота CH. Площадь треугольника ABC равна $10 \, \mathrm{cm}^2$, а треугольника $CHM 3 \, \mathrm{cm}^2$. Найдите длину гипотенузы.
- **115.** Катеты прямоугольного треугольника равны 9 и 12. Найдите расстояние между точкой пересечения биссектрис и точкой пересечения медиан этого треугольника.
- **116.** В прямоугольном треугольнике гипотенуза равна c, а острый угол равен β . Найдите длину биссектрисы прямого угла треугольника.

Теорема Менелая

117. В треугольнике ABC отрезки AD и BM, проведённые из вершин A и B соответственно к сторонам BC и AC, пересекаясь в точке P, делятся в отношении AP:PD=3:2 и BP:PM=4:5. В каком отношении точки D и M делят стороны треугольника, считая от C?

- **118.** В треугольнике ABC точка D делит сторону BC в отношении BD:DC=3:4. Точка M делит сторону AC в отношении AM:MC=2:5. Отрезки AD и BM пересекаются в точке K. Найдите площадь треугольника AKM, если площадь треугольника BKD равна 45.
- **119.** В треугольнике ABC точка K делит сторону AB в отношении AK: KB = 1:2, а точка P делит сторону BC в отношении CP: PB = 2:1. Прямые AP и CK пересекаются в точке M. Найдите площадь треугольника ABC, если площадь треугольника BMC равна 4.
- **120.** Прямая KP делит сторону AB треугольника ABC в отношении AK:KB=2:1, а сторону BC— в отношении BP:PC=3:1. Медиана BB_1 пересекает прямую KP в точке M. При этом площадь четырёхугольника B_1MPC равна 17. Найдите площадь треугольника ABC.
- **121.** В треугольнике ABC на основании AC взяты точки P и T, так что AP < AT. Прямые BP и BT делят медиану AM на три равные части. Найдите AC, если PT = 3.
- **122.** В треугольнике ABC площади 18 проведены отрезки BM и AK, причём точки M и K делят соответственно стороны AC и BC в отношении AM:MC=3:4 и BK:KC=2:7. Найдите площадь четырёхугольника CMPK, где P точка пересечения отрезков BM и AK.
- **123.** На сторонах треугольника ABC взяты точки M, K и P такие, что AM: MB = BK: KC = CP: PA = 2: 1. Отрезки <math>CM и BP пересекаются в точке A_1 , AK и CM в точке B_1 , AK и BP в точке C_1 . Найдите площадь треугольника ABC, если площадь треугольника $A_1B_1C_1$ равна 1.

Треугольник и окружность

- **124.** В треугольнике ABC известны стороны: BC = a, CA = b, AB = c. Найдите отрезки сторон, на которые они делятся точками касания с вписанной окружностью.
- **125.** Докажите, что в треугольнике со сторонами a, b и c высота h_a к стороне a вычисляется по формуле $h_a=\frac{bc}{2R}$, где R радиус описанной окружности.

- **126.** В окружность радиуса 32,5 см вписан треугольник, две стороны которого равны 25 см и 39 см. Найдите третью сторону треугольника.
- **127.** В треугольнике ABC площади S вписана окружность радиуса r, которая касается сторон AC и BC соответственно в точках D и E таких, что AD:DC=2:3 и BE:EC=5:6. Найдите длину стороны AC.
- **128.** На основании AC равнобедренного треугольника ABC как на диаметре построена окружность, которая пересекает сторону AB в точке D, а BC в точке E. Определите сторону AB, если AD = 30 см, а хорда DE равна 14 см.
- **129.** Пусть основание равнобедренного треугольника равно a, боковая сторона равна b, высота, опущенная на основание, равна h. Выразите радиус описанной около этого треугольника окружности через любые две из трёх величин: a, b и h.
- **130.** В прямоугольный треугольник, периметр которого равен 15, вписана окружность радиуса 1. Найдите стороны этого треугольника.
- **131.** На основании AC равнобедренного треугольника ABC расположена точка D, при этом AD = a, DC = b. Окружности, вписанные в треугольники ABD и BCD, касаются прямой BD в точках E и H, а прямой AC соответственно в точках E и
- **132.** Около равнобедренного треугольника ABC (AB = BC) с основанием AC = 6 и боковой стороной AB = 5 описана окружность. Найдите радиус окружности и расстояния от вершин A и B до касательной, проведённой через точку C.

Рис. 159

ЗАДАЧА 133. В равнобедренный треугольник ABC (AB = BC) вписана окружность, которая касается сторон AC и BC соответственно в точках D и E; проведены отрезки DF и EK, параллельные стороне AB ($F \in BC$, $K \in AC$). Найти длину стороны BC, если EF = a, KD = b.

Решение. Пусть CD = x. Тогда CK = CD - KD = x - b, CE = CD = x (как отрезки касательных), CF = CE + EF = x + a (рис. 159).

Из подобия треугольников CKE и CDF следует CK:CD==CE:CF или (x-b):x=x:(x+a), откуда находим: $x=\frac{ab}{a-b}$. Тогда $CF=\frac{ab}{a-b}+a=\frac{a^2}{a-b}$. А так как $DF\parallel AB$ и точка D — середина AC, то DF — средняя линия треугольника ABC. Значит, F — середина BC и $BC=2CF=\frac{2a^2}{a-b}$.

Ответ:
$$\frac{2a^2}{a-b}$$
.

- **134.** В равнобедренный треугольник ABC вписана окружность, касающаяся боковых сторон треугольника в точках K и E. Найдите периметр треугольника ABC, если хорда KE равна 12 см, а отрезок касательной, заключённый между боковыми сторонами и параллельный основанию, равен 10 см.
- **135.** В равнобедренный треугольник ABC (AB = BC) вписана окружность и к окружности проведена касательная, параллельная стороне AC и пересекающая стороны AB и BC соответственно в точках D и E. Найдите длину отрезка DE и радиус окружности, описанной около четырёхугольника ADEC, если AD = 15 см, BD = 30 см.
- **136.** Докажите, что в непрямоугольном треугольнике ABC расстояние от ортоцентра до вершины B вдвое больше расстояния от центра описанной окружности до стороны AC.
- **137.** AD и CE высоты остроугольного треугольника ABC, периметр которого равен 15 см. Периметр треугольника BDE равен 9 см, а радиус окружности, описанной около него, равен 1.8 см. Найдите длину AC.
- **138.** Из вершины B треугольника ABC проведены биссектрисы внутреннего и внешнего углов треугольника, пересекающие сторону AC и её продолжение в точках D и E соответственно. Найдите радиус окружности, описанной около треугольника BDE, если известно, что AC = a и AB : BC = 2 : 3.
- **139.** Боковая сторона и основание равнобедренного треугольника равны соответственно 50 см и 60 см. Найдите расстояние между точкой пересечения высот треугольника и центром вписанной в него окружности.

- **140.** BD и AE высоты равнобедренного треугольника ABC (AB = BC). Радиусы окружностей, вписанных в треугольники ABD и AEC, равны соответственно 5 см и 6 см. Найдите радиус окружности, вписанной в треугольник ABC.
- **141.** Катеты прямоугольного треугольника равны 20 см и 50 см. Найдите радиус окружности, которая касается меньшего катета и проходит через середины двух других сторон.
- **142.** Окружность радиуса R проходит через вершину A равнобедренного треугольника ABC, касается основания BC в точке B и пересекает AC в точке K. Найдите длину боковой стороны, если KC = 3AK.
- **143.** Сторона треугольника равна 48 см, а высота, проведённая к этой стороне, равна 8,5 см. Найдите расстояние от центра окружности, вписанной в треугольник, до вершины, противолежащей данной стороне, если радиус вписанной окружности равен 4 см.
- **144.** В прямоугольном треугольнике ABC из вершины C прямого угла проведена высота CK. Радиусы окружностей, вписанных в треугольники ACK и BCK, равны соответственно r_1 и r_2 . Найдите радиус окружности, вписанной в треугольник ABC.
- **145.** В прямоугольном треугольнике ABC из вершины C прямого угла проведена высота CK. Радиусы окружностей, вписанных в треугольники ABC, ACK и BCK, равны соответственно r, r_1 и r_2 . Найдите длину высоты CK.
- **146.** В треугольнике ABC сторона AB=2, BC=3, CA=4. Окружность проходит через вершины A и C, середину стороны AB и пересекает сторону BC. Найдите радиус этой окружности.
- **147.** В треугольник со сторонами 3; 5 и 6 вписана окружность. Найдите отношение площади данного треугольника к площади треугольника с вершинами в точках касания.
- **148.** В треугольник с углами 42° и 84° вписана окружность. Найдите углы треугольника с вершинами в точках касания.
- **149.** В треугольник вписана окружность. Найдите углы этого треугольника, если углы треугольника с вершинами в точках касания 68° и 50° .

- **150.** В остроугольном треугольнике ABC (AB > BC) проведены высоты AT и CM; BN диаметр окружности, описанной около треугольника ABC. Известно, что величина острого угла между высотами AT и CM равна 45° , AC = 4. Найдите площадь четырёхугольника NMBT.
- **151.** В треугольнике ABC угол BAC равен 75° , $AB=\sqrt{3}$,
- $AC = \sqrt{2}$. На стороне BC выбрана точка M так, что угол BAM равен 30° . Прямая AM пересекает окружность, описанную около треугольника, в точке N. Найдите длину AN.
- **152.** Продолжение медианы треугольника ABC, проведённой из вершины A, пересекает описанную около этого треугольника окружность в точке D. Найдите длину отрезка BC, если длина каждой из хорд AC и DC равна 1.
- **153.** Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая описанную около этого треугольника окружность в точке E. Найдите длину отрезка AC, если CE=6 и DE=DC.
- **154.** В треугольнике ABC сторона AB=6, BC=16. Центр окружности, проведённой через вершину B и середины сторон AB и AC, лежит на биссектрисе угла C. Найдите AC.
- **155.** В остроугольном треугольнике ABC проведены высоты AA_1 , BB_1 и CC_1 . Найдите величину тупого угла, образованного при пересечении BB_1 с биссектрисой A_1P треугольника $A_1B_1C_1$, если величина угла ACB равна 23° .
- **156.** В остроугольном треугольнике ABC проведены высоты AA_1 , BB_1 и CC_1 , пересекающиеся в точке K. Найдите площадь круга, вписанного в треугольник $A_1B_1C_1$, если расстояние от точки K до прямой A_1C_1 равно 5.

Площадь треугольника

- **157.** Найдите площадь треугольника ABC, если AB=13 см, AC=15 см и длина медианы AM равна 7 см.
- **158.** В треугольнике ABC отношения сторон AB:BC:CA=5:7:9; BP и CM биссектрисы, K середина BC. Найдите отношение площадей треугольников ABC и PMK.

- **159.** Площадь прямоугольного треугольника равна 60 дм², а периметр равен 40 дм. Найдите катеты треугольника.
- **160.** Точки K и M расположены соответственно на стороне BC и высоте BH остроугольного треугольника ABC так, что треугольник AKM является равносторонним. Найдите площадь треугольника AKM, если известно, что AH=3, $HC=\frac{11}{2}$, CK:KB=1:10.
- **161.** В треугольнике ABC отношения сторон AB:BC:CA=2:3:4; AK и BP биссектрисы; M середина AB. Найдите отношение площадей треугольников ABC и KMP.
- **162.** Найдите углы треугольника, если известно, что площадь S этого треугольника выражается через длины a и b его сторон формулой $S=\frac{1}{4}(a^2+b^2)$.
- **163.** Внутри прямоугольного треугольника ABC (угол B прямой) взята точка D так, что площади треугольников ABD и BDC соответственно в 3 и 4 раза меньше площади треугольника ABC. Найдите длину отрезка BD, если AD = a, DC = c.
- **164.** В треугольнике ABC на сторонах AB и BC взяты соответственно точки K и P так, что AK:KB=1:2, CP:PB=2:1. Прямые AP и CK пересекаются в точке E. Найдите площадь треугольника ABC, если площадь треугольника BEC равна 4.
- **165.** На гипотенузе AB прямоугольного треугольника ABC лежит точка N. На прямой AB выбрана точка P так, что B лежит между N и P, а угол NCP прямой. Найдите площадь треугольника NBC, если площади треугольников ABC и NCP равны соответственно a и b, а угол ACP равен 150° .
- **166.** В треугольнике ABC сторона AC = 5, AB + BC = 7, угол BAC равен $\arccos 0.8$. Найдите площадь треугольника ABC.
- **167.** Найдите площадь треугольника, если его медианы равны 5;4 и $\sqrt{17}$.
- **168.** На сторонах AB и BC треугольника ABC с острым углом при вершине B взяты точки P и M, причём P середина сто-

роны AB. Известно, что AB=4, BC=5, BM=3. Найдите длину отрезка PM, если площадь треугольника ABC на $\frac{7\sqrt{15}}{4}$ больше площади треугольника PBM.

Подобие треугольников

Ответ: 73.5 cm^2 .

ЗАДАЧА 169. В треугольник ABC вписан параллелограмм ADEF так, что угол A у них общий, а вершина E лежит на стороне BC. Площадь параллелограмма равна 36 см^2 , а треугольника $BDE - 24 \text{ см}^2$. Найти площадь треугольника ABC.

Решение. Обозначим площади треугольников ABC, DBE, DFE соответственно S, S_1 , S_2 , а их высоты — BH = h, $BK = h_1$, $FL = h_2$ (рис. 160).

Из подобия треугольников ABC и DBE ($DE \parallel AC$) следует, что отношение площадей этих треугольников равно квадрату отношения их высот: $\frac{S}{S_1} = \left(\frac{h}{h_1}\right)^2$. Найдём отношение $\frac{h}{h_1}$.

Треугольники DBE и DFE имеют общее основание DE, поэтому отношение $S_1:S_2$ площадей этих треугольников равно отношению $h_1:h_2$ их высот: $S_1:S_2=h_1:h_2$.

Учитывая, что $S_1=24$, $S_2=S_{\triangle\,DFE}=\frac{1}{2}\,S_{ADEF}=18$, получаем $24:18=h_1:h_2$, значит, $h_2=\frac{3}{4}\,h_1$. Поэтому $h=BH=BK+KH=h_1+h_2=h_1+\frac{3}{4}\,h_1=\frac{7}{4}\,h_1$. Следовательно, $\frac{h}{h_1}=\frac{7}{4}$. Тогда $S:S_1=49:16$, откуда $S=\frac{49}{16}\,S_1=\frac{49}{16}\cdot 24=73$,5 (см²).

170. Пусть AA_1 , BB_1 — высоты треугольника ABC. Докажите, что треугольник A_1B_1C подобен треугольнику ABC. Чему равен коэффициент подобия?

- **171.** В остроугольном треугольнике ABC проведены высоты AM и BK. Найдите площадь треугольника CMK, если площадь треугольника ABC равна S, а величина угла ACB β .
- **172.** На стороне BC треугольника ABC выбрана точка T и через неё проведены прямые TM и TP, параллельные соответственно прямым AC и AB ($M \in AB$; $P \in AC$). Площадь треугольника BMT равна S_1 , а площадь треугольника $TPC S_2$. Найдите: а) площадь треугольника ABC; б) площадь параллелограмма AMTP.
- **173.** Внутри треугольника ABC взята точка M, через которую проведены прямые, параллельные всем его сторонам. Площади трёх образовавшихся треугольников с общей вершиной M равны S_1 , S_2 и S_3 . Найдите площадь треугольника ABC.

Параллелограмм

- **174.** Найдите стороны параллелограмма, диагонали которого равны 50 см и 78 см, а площадь 1680 см^2 .
- **175.** Из вершины тупого угла параллелограмма опущены высоты на его стороны, расстояние между основаниями которых равно 52 см. Найдите стороны параллелограмма, если его высоты равны 56 см и 60 см.
- **176.** В параллелограмме со сторонами a и b (a > b) проведены биссектрисы внутренних углов. Найдите длины диагоналей четырёхугольника, вершинами которого служат точки пересечения биссектрис.
- **177.** Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны длины отрезков: KH = a, BD = b. Найдите расстояние от вершины B до точки пересечения высот треугольника BKH.

Ромб, прямоугольник, квадрат

178. ABCD — прямоугольник, в котором AB = 1, BC = 2. На сторонах BC и AD взяты точки M и P так, что четырёхугольник MBPD — ромб. Найдите сторону ромба.

- **179.** Стороны прямоугольника ABCD равны соответственно AB=11 см, BC=7 см. Биссектрисы углов A и B пересекаются в точке M, а биссектрисы углов C и D в точке K. Найдите MK.
- **180.** Высота BK ромба ABCD, опущенная на сторону AD, пересекает диагональ AC в точке M. Найдите длину MC, если известно, что BK = 4; AK : KD = 1 : 2.
- **181.** Окружность, центр которой лежит вне квадрата ABCD, проходит через точки B и C. Найдите угол между касательными к окружности, проведёнными из точки D, если отношение длины стороны квадрата к диаметру окружности равно 0,6.
- **182.** Точки M, K, P, Q середины сторон соответственно AB, BC, CD и DA ромба ABCD. Найдите площадь фигуры, являющейся пересечением четырёхугольников AKCQ и BPDM, если площадь ромба равна $100 \, \mathrm{cm}^2$.
- **183.** Около круга радиуса R описаны квадрат и равносторонний треугольник, причём одна из сторон квадрата лежит на стороне треугольника. Найдите площадь общей части треугольника и квадрата.
- **184.** В ромбе ABCD со стороной 6 и углом BAD, равным 60° , на стороне BC взята точка E так, что CE=2. Найдите расстояние от точки E до точки пересечения диагоналей ромба.

Трапеция

- **185.** В равнобедренной трапеции бо́льшее основание равно a, боковая сторона равна 4, угол при основании 60° . Найдите радиус окружности, описанной около этой трапеции.
- **186.** Через вершины B и C тупых углов равнобедренной трапеции ABCD проведены отрезки $CE \parallel AB$ и $BF \parallel CD$ ($E \in BD$, $F \in AC$). Периметры ABCD и BCEF равны соответственно 60 см и 40 см. Найдите длину стороны AB, если EF = 8 см.
- **187.** Диагонали трапеции перпендикулярны и равны 12 и 9. Найдите высоту трапеции и отрезок, соединяющий середины оснований.
- **188.** Площадь равнобедренной трапеции равна 100, а её диагонали взаимно перпендикулярны. Найдите высоту этой трапеции.

- **189.** В прямоугольную трапецию с основаниями a и b вписана окружность. Найдите площадь этой трапеции.
- **190.** В равнобедренной трапеции ABCD угол A равен 60° . Прямоугольник MCNK расположен так, что точка M лежит на стороне AB, точка N на стороне CD, точка K на стороне AD, при этом AK = BC = 1. Найдите стороны прямоугольника MCNK.
- **191.** Дана равнобедренная трапеция, средняя линия которой равна 9 дм, площадь равна 54 дм² и диагональ перпендикулярна боковой стороне. Найдите основания трапеции.
- **192.** Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании. Найдите все стороны трапеции, если её высота равна 12 см, а длины биссектрис 15 см и 13 см.
- **193.** В окружность вписана трапеция, боковая сторона которой равна 15 см, средняя линия 16 см и большее основание является диаметром окружности. Найдите площадь трапеции.
- **194.** Основания равнобедренной трапеции, в которую можно вписать окружность, равны 1 и 3. Найдите радиус окружности, описанной около этой трапеции.
- **195.** Центр окружности, вписанной в прямоугольную трапецию, удалён от концов её боковой стороны на расстояния 3 см и 9 см. Найдите стороны трапеции.
- **196.** Найдите среднюю линию равнобедренной трапеции с высотой h, если боковая сторона трапеции «видна» из центра описанной около неё окружности под углом 120° .
- ЗАДАЧА 197. Площадь трапеции ABCD равна 30. Точка P середина боковой стороны AB. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q. Найти площадь треугольника APQ, если AD=2BC.

Решение. Рассмотрим несколько способов решения задачи.

Первый способ (геометрический метод). Достроим трапецию ABCD до параллелограмма ABMD (рис. 161). Тогда

Рис. 161

Рис. 162

 $BM = AD = 2BC \Rightarrow C$ — середина BM. Значит, $CP \parallel AM$ (почему?).

Пусть $L = AM \cap BD$ (в параллелограмме ABMD). Из этого следует, что L — середина BD. Тогда DC и ML — медианы треугольника ВМD; точка пересечения этих медиан делит каждую из них в отношении 2:1, считая от вершины. Но отрезок CD в отношении 2:1 делит точка R ($2CD=3RD\Rightarrow$ $\Rightarrow DR:CD=2:3\Rightarrow DR:RC=2:1$). Это означает, что точка Rпринадлежит диагонали АМ параллелограмма АВМО (почему?), т. е. точки L и M лежат на прямой AR. Но точка $Q = AR \cap PD$ также лежит на прямой AR, т. е. точки Q, L, Rлежат на диагонали АМ.

Далее, CR:CD=1:3, $CP\parallel AM\Rightarrow CR:CD=PQ:PD=$ $= 1: 3 \Rightarrow S_{\wedge APD} = 3S_{\wedge APQ}.$

Кроме того, треугольники ABD и BCD имеют общую высоту (равную высоте трапеции) и AD=2BC, поэтому $S_{\wedge\,ABD}=$ $=2S_{\triangle\,BCD}$. А так как $S_{\triangle\,ABD}+S_{\triangle\,BCD}=30$, то $3S_{\triangle\,BCD}=30$, откуда $S_{\wedge BCD} = 10$, $S_{\wedge ABD} = 20$.

Поскольку точка P — середина AB, то $S_{\triangle APD} = rac{1}{2} \, S_{\triangle ABD} =$ = 10. Учитывая, что $S_{\wedge \, APD} = \, 3S_{\wedge \, APQ}$, получаем $S_{\wedge \, APQ} =$ $=\frac{10}{3}$ (кв. ед.). Ответ: $\frac{10}{3}$ кв. ед.

Второй способ (геометрический метод). Пусть PN средняя линия трапеции АВСО (рис. 162). Тогда из условия AD = 2BC получаем

$$BC: PN = 2:3.$$
 (1)

Учитывая, что N — середина стороны CD, и принимая во внимание условие 2CD = 3RD, получаем

$$CR: ND = 2:3. (2)$$

Из (1) и (2) следует, что $\triangle BCR \sim \triangle PND$ ($\angle C = \angle PND$, так как $BC \parallel PN$). Отсюда $BR \parallel PD$ и PQ — средняя линия (почему?) треугольника ABR. Значит, Q — середина отрезка AR. Если M — середина BR, то отрезки PQ, QM и MP — средние линии треугольника ABR. Это означает, что

 $S_{\triangle AQP} = \frac{1}{4} S_{\triangle ABR}.$

Найдём $S_{ riangle ABR}$.

Из рисунка 156 видно, что $S_{\triangle ABR}==S_{ABCD}-S_{\triangle BCR}-S_{\triangle ADR}.$ Так как $CR:CD=1:3,\ RD:CD=2:3,$ то высоты h_1 и h_2

треугольников ADR и BCR соответственно равны: $h_1=\frac{2}{3}h$,

 $h_2 = \frac{1}{3} \, h$, где h — высота данной трапеции. Тогда

$$\begin{split} S_{\triangle ADR} &= \frac{1}{2}AD \cdot h_1 = \frac{1}{2} \cdot \frac{2}{3}AD \cdot h = \frac{1}{3}AD \cdot h = \frac{2}{3}BC \cdot h, \\ S_{\triangle BCR} &= \frac{1}{2}BC \cdot h_2 = \frac{1}{2} \cdot \frac{1}{3}BC \cdot h = \frac{1}{6}BC \cdot h, \\ S_{ABCD} &= \frac{BC + 2BC}{2} \cdot h = \frac{3}{2}BC \cdot h. \end{split}$$

Таким образом, $S_{\triangle ABR} = \frac{3}{2}\,BC \cdot h \,-\, \frac{2}{3}\,BC \cdot h \,-\, \frac{1}{6}\,BC \cdot h \,=\,$ $= \frac{2}{3}\,BC \cdot h$. Поэтому $S_{\triangle APQ} = \frac{1}{4}\,S_{\triangle ABR} = \frac{1}{6}\,BC \cdot h$. Следовательно, $S_{ABCD}: S_{\triangle APQ} = \left(\frac{3}{2}\,BC \cdot h\right) : \left(\frac{1}{6}\,BC \cdot h\right) = 9$, т. е. $S_{\triangle APQ} = \frac{1}{6}\,S_{ABCD} = \frac{30}{9} = \frac{10}{3}$ (кв. ед.). Ответ: $\frac{10}{3}$ кв. ед.

T ретий способ (комбинированный метод). Пусть $E=AB\cap CD$ (рис. 163). Имеем $BC=rac{1}{2}AD,\ BC\parallel AD\Rightarrow BC$ средняя линия $\triangle\ ADE\Rightarrow S_{\triangle\ ADE}=4S_{\triangle\ BCE}$ (почему?).

Если $S_{\triangle\,BCE}=a$, то, учитывая, что $S_{\triangle\,ADE}=S_{ABCD}+S_{\triangle\,BEC}$, получаем 4a=a+30, откуда a=10. Таким образом, $S_{\triangle\,BEC}=10$, значит, $S_{\triangle\,ADE}=40$.

Обозначим:

$$S_{\triangle APQ} = x$$
, $S_{\triangle DQR} = y$, $S_{\triangle ADQ} = z$.

Тогда
$$AE = 2AB = 2 \cdot 2AP =$$
 $= 4AP \Rightarrow PE = 3AP \Rightarrow S_{\triangle QPE} =$
 $= 3S_{\triangle QAP}$, т. е.
$$S_{\triangle QPE} = 3x; \qquad (1)$$
 $ED = 2CD = 2 \cdot \frac{3}{2}RD = 3DR \Rightarrow$
 $\Rightarrow ER = 2RD \Rightarrow S_{\triangle QER} = 2S_{\triangle QRD}$, т. е.

 $S_{\land QER} = 2y$.

Кроме того,

$$EP = 3AP \Rightarrow S_{\land DEP} = 3S_{\land DAP}; \tag{3}$$

$$ER = 2DR \Rightarrow S_{\land AER} = 2S_{\land ADR}; \tag{4}$$

$$S_{\wedge ADE} = S_{\wedge AQE} + S_{\wedge DQE} + S_{\wedge ADQ} = 40.$$
 (5)

Из рисунка 163 и соотношений (3)—(5) с учётом (1), (2) получаем

(2)

$$\begin{cases} 3x + 3y = 3(x + z), \\ 4x + 2y = 2(y + z), \\ 4x + 3y + z = 40 \end{cases} \Rightarrow \begin{cases} y = z, \\ z = 2x, \\ 4x + 6x + 2x = 40, \end{cases}$$

откуда
$$x=\frac{10}{3}$$
 . Итак, $S_{\triangle APQ}=\frac{10}{3}$ (кв. ед.).

Ответ: $\frac{10}{3}$ кв. ед.

Анализ приведённых способов решения этой задачи свидетельствует о многообразии путей к творческому поиску решения той или иной задачи. Вот ещё подтверждение высказанного ранее: хотите научиться решать задачи — решайте их!

- **198.** Около окружности описана прямоугольная трапеция, боковые стороны которой равны 20 см и 25 см. Найдите площадь четырёхугольника, вершинами которого являются точки касания окружности со сторонами трапеции.
- **199.** Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение длины описанной окружности к длине вписанной окружности равно $2\sqrt{5}$. Найдите углы трапеции.

ЗАДАЧА 200. Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Площадь описанного круга в 12 раз больше площади вписанного круга. Найти углы трапеции.

Решение. Обозначим: AD = a, BC = b, AB = CD = c, CE = h (высота трапеции) (рис. 164); R — радиус описанной окружности, r — радиус вписанной окружности. Тогда

$$\begin{cases} S_{\text{опис. Kp}} = \pi R^2, \\ S_{\text{впис. Kp}} = \pi r^2, \\ S_{\text{опис. Kp}} = 12S_{\text{впис. Kp}} \end{cases} \Rightarrow \pi R^2 = 12\pi r^2 \Rightarrow R = 2r\sqrt{3}. \tag{1}$$

Далее выразим дважды длину диагонали AC через r и lpha, где $lpha = \angle ADC$.

Имеем, с одной стороны, в $\triangle ACD \frac{AC}{\sin \alpha} = 2R$. Учитывая (1), получаем

$$AC = 2R \sin \alpha = 4r \sqrt{3} \sin \alpha . \tag{*}$$

С другой стороны, в \triangle ACE (\angle AEC = 90°) по теореме Пифагора:

$$AC^2 = AE^2 + EC^2$$
. (**)

Выразим AE и EC через r и α .

Трапеция ABCD описана около окружности радиуса r, поэтому высота EC=2r и a+b=2c, откуда $c=\frac{a+b}{2}$. Кроме того, трапеция ABCD — равнобедренная, значит, $AE=\frac{BC+AD}{2}=\frac{a+b}{2}$. Таким образом, AE=c.

В прямоугольном треугольнике DEC находим: $c=CD=\frac{CE}{\sin\alpha}=\frac{2r}{\sin\alpha}$. Следовательно, $AE=c=\frac{2r}{\sin\alpha}$. Подставив в (**) вместо AE и EC их найденные значения, получаем

$$AE = \frac{2r\sqrt{1+\sin^2\alpha}}{\sin\alpha}.$$
 (***)

$$И3$$
 (*) и (***) имеем $4r\sqrt{3}\sin\alpha=rac{2r\sqrt{1+\sin^2\alpha}}{\sin\alpha}$ или
$$\begin{cases} 12\sin^4\alpha-\sin^2\alpha-1=0,\\ \sin\alpha\neq0. \end{cases}$$

Сделав подстановку $\sin^2\alpha=t$ (t>0), приходим к уравнению $12t^2-t-1=0$, корнями которого являются $t_1=-\frac{1}{4}$ (не удовлетворяет условию t>0) и $t_2=\frac{1}{3}$. Тогда $\sin^2\alpha=\frac{1}{3}\Leftrightarrow$ $\sin\alpha=-\frac{1}{\sqrt{3}}$ (не удовлетворяет условию, так как $\alpha<90^\circ$), $\sin\alpha=\frac{1}{\sqrt{3}}$.

Итак, $\sin\alpha=\frac{1}{\sqrt{3}}$, откуда $\alpha=\arcsin\frac{1}{\sqrt{3}}$. Таким образом, $\angle A=\angle D=\arcsin\frac{1}{\sqrt{3}}\text{, следовательно,}$ $\angle B=\angle C=\pi-\arcsin\frac{1}{\sqrt{3}}\text{.}$

Otbet: $\arcsin \frac{1}{\sqrt{3}}$; $\pi - \arcsin \frac{1}{\sqrt{3}}$.

Попытаемся решить эту задачу другим способом, для чего выразим дважды площадь трапеции через r и α .

Имеем,
$$S_{\text{трап}} = \frac{AD + BC}{2} \cdot CE = \frac{a+b}{2} \cdot h.$$

С одной стороны, в трапеции ABCD, описанной около окружности радиуса r, имеют место соотношения $\frac{a+b}{2} = c$,

h=2r, а в прямоугольном $\triangle ECD$ сторона $c=rac{h}{\sinlpha}$. Поэтому

$$S_{\text{трап}} = \frac{a+b}{2} \cdot h = c \cdot h = \frac{h^2}{\sin \alpha} = \frac{4r^2}{\sin \alpha}.$$
 (2)

 ${
m C}$ другой стороны, $\frac{a+b}{2}=AE$ (трапеция ABCD — равнобедренная). Найдём AE:

 \triangle ACE (\angle $E=90^\circ$): по теореме Пифагора $AE=\sqrt{AC^2-CE^2}$.

$$\triangle$$
 ACD : $AC=2R\sin\alpha$. Учитывая, что $R=2r\sqrt{3}$, получаем $AE=\sqrt{4R^2\sin^2\alpha-2r^2}=2r\sqrt{12\sin^2\alpha-1}$. Тогда $S_{ au ext{трап}}=AE\cdot CE=2r\sqrt{12\sin^2\alpha-1}\cdot 2r=4r\sqrt{12\sin^2\alpha-1}$. (3) Из (2) и (3) получаем $4r\sqrt{12\sin^2\alpha-1}=\frac{4r^2}{\sin\alpha}$ или

$$12\sin^2\alpha - 1 = \frac{1}{\sin^2\alpha} \Leftrightarrow \begin{cases} 12\sin^4\alpha - \sin^2\alpha - 1 = 0, \\ \sin\alpha \neq 0. \end{cases}$$

Решением этого уравнения (см. выше) является $\sin \alpha = \frac{1}{\sqrt{3}}$, откуда $\alpha = \arcsin \frac{1}{\sqrt{3}}$. Таким образом,

$$\angle A = \angle D = = \arcsin \frac{1}{\sqrt{3}}$$
, $\angle B = \angle C = \pi - \arcsin \frac{1}{\sqrt{3}}$.

Otbet: $\arcsin \frac{1}{\sqrt{3}}$, $\pi - \arcsin \frac{1}{\sqrt{3}}$.

- **201.** Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение высоты трапеции к радиусу описанной окружности равно $\frac{\sqrt{2}}{\sqrt{3}}$. Найдите углы трапеции.
- **202.** Длина одного из оснований трапеции равна 7, а длина отрезка, параллельного основаниям и делящего трапецию на две равновеликие части, равна 5. Найдите длину второго основания трапеции.
- **203.** Длина одного из оснований трапеции равна 5, а длина отрезка, параллельного основаниям и проходящего через точку пересечения диагоналей трапеции, равна 3,75. Найдите длину второго основания трапеции.
- **204.** Длина одного из оснований трапеции равна 8, а длина отрезка, параллельного основаниям и делящего трапецию на две подобные друг другу трапеции, равна 4. Найдите длину второго основания трапеции.
- **205.** Произведение длин оснований прямоугольной трапеции, в которую можно вписать окружность, равно 37. Найдите площадь этой трапеции.

- **206.** В трапеции ABCD ($BC \parallel AD$) диагонали пересекаются в точке M; BC = b, AD = a. Найдите отношение площадей треугольника ABM и трапеции.
- **207.** Основания трапеции равны 7 и 21, а боковые стороны равны 13 и 15. Найдите площадь трапеции.

Четырёхугольники

- **208.** В выпуклом четырёхугольнике ABCD длина отрезка, соединяющего середины сторон AB и CD, равна 3. Прямые BC и AD перпендикулярны. Найдите длину отрезка, соединяющего середины диагоналей AC и BD.
- **209.** В выпуклом четырёхугольнике ABCD длины диагоналей равны 2 и 3. Найдите площадь четырёхугольника, зная, что длины отрезков, соединяющих середины его противоположных сторон, равны.
- **210.** Площадь выпуклого четырёхугольника ABCD равна 4 cm^2 . Его стороны продолжены: AB за точку B так, что AB = 2BK; BC за точку C так, что BC = 2CL; CD за точку D так, что CD = 2DM; DA за точку A так, что DA = 2AP. Найдите площадь четырёхугольника KLMP.
- **211.** Диагонали BD и AC выпуклого четырёхугольника ABCD перпендикулярны и пересекаются в точке $O, OA = \frac{4}{3}$,
- OC=3. Точка M лежит на стороне AB, причём AM:MB=1:3. Треугольник DMC равносторонний. Найдите его площадь.
- **212.** Площадь треугольника ABC равна P. Прямая DE, параллельная основанию AC, отсекает от треугольника ABC треугольник BDE, площадь которого равна Q. На стороне AC взята произвольная точка M и соединена отрезками прямых с точками D и E. Чему равна площадь четырёхугольника BDME?
- ЗАДАЧА 213. В выпуклом четырёхугольнике ABCD через середину диагонали BD проведена прямая, параллельная диагонали AC. Эта прямая пересекает сторону AD в точке E. Доказать, что прямая CE разбивает четырёхугольник ABCD на две равновеликие части.

Решение. Пусть K — середина диагонали BD, P — точка пересечения данной прямой со стороной CD четырёхугольника ABCD (рис. 165). Тогда $S_{\triangle ACE} = S_{\triangle ACM}$, где M — любая точка прямой PE (почему?). Значит, $S_{ABCE} = S_{ABCM}$.

Возьмём в качестве M точку K — середину диагонали BD. Тогда S_{ABCE} = = S_{ABCK} = $\frac{1}{2}BK \cdot AC \cdot \sin \alpha$, где α — угол между диагоналями данного четырёхугольника. Так как $BK = \frac{1}{2}BD$,

то $S_{ABCK}=rac{1}{2}m{\cdot}igg(rac{1}{2}BDm{\cdot}ACm{\cdot}\sinlphaigg)$. Значит, $S_{ABCE}=rac{1}{2}S_{ABCD}$, что и требовалось доказать.

- **214.** Диагонали выпуклого четырёхугольника ABCD пересекаются в точке H. Известно, что $AD=2\sqrt{5}$, а треугольники ABH и CDH равновелики. Найдите длину стороны BC, если $S_{ABCD}\leqslant 20$, $S_{\triangle ABH}=S_{\triangle CDH}=5$.
- **215.** Докажите, что площадь четырёхугольника, имеющего равные диагонали, равна произведению отрезков, соединяющих середины противоположных сторон.
- **216.** Два равнобедренных прямоугольных треугольника ABM и CDM с гипотенузами AB и CD расположены так, что ABCD четырёхугольник. Одна диагональ этого четырёхугольника равна a. Найдите его площадь.
- **217.** В выпуклом четырёхугольнике ABCD отрезки, соединяющие середины противоположных сторон, пересекаются под углом 60° , а их длины относятся как 1:3. Чему равна меньшая диагональ четырёхугольника ABCD, если большая равна $\sqrt{13}$?

Четырёхугольник и окружность

218. В окружность вписан четырёхугольник ABCD, у которого AB=19 см, BC=7 см, CD=15 см, AD=21 см. Стороны AB и CD продолжены до взаимного пересечения в точке M. Найдите длины отрезков MB и MC.

- **219.** Вершины B, C и D четырёхугольника ABCD расположены на окружности с центром O, которая пересекает сторону AB в точке M, а сторону AD в точке E. Известно, что угол BAD прямой, длина хорды ME равна длине хорды BM и длины хорд BC, CD и ED равны между собой. Найдите величину угла ABO.
- **220.** Найдите сумму квадратов расстояний от произвольной точки окружности до всех вершин прямоугольника, вписанного в эту окружность, если длины сторон прямоугольника равны 6 и 8.
- **221.** Около выпуклого четырёхугольника ABCD описана окружность радиуса 2. Найдите длину стороны CD, если диагонали AC и BD взаимно перпендикулярны и AB=3.

Окружности

- **222.** Две окружности радиусов R_1 и R_2 ($R_1 > R_2$) касаются внутренним образом в точке A. Через точку B большей окружности проведена прямая, касающаяся меньшей окружности в точке C. Найдите AB, если BC=a.
- **223.** Окружность касается двух смежных сторон квадрата и делит каждую из двух других его сторон на отрезки, равные 2 см и 23 см. Найдите радиус окружности.
- **224.** Через точки пересечения двух окружностей проведены параллельные прямые. Докажите, что они пересекают окружности в вершинах параллелограмма.
- **225.** На отрезке AC длиной 12 см взята точка B так, что AB=4 см. На отрезках AB и AC, как на диаметрах, в одной полуплоскости с границей AC построены полуокружности. Найдите радиус окружности, касающейся построенных полуокружностей и прямой AC.
- **226.** К двум внешне касающимся окружностям радиусов R и r проведена секущая так, что окружности отсекают на ней три равных отрезка. Найдите длины этих отрезков.
- **227.** Найдите диаметр окружности, если его концы удалены от некоторой прямой, касающейся окружности, на 18 и 12.
- **228.** Две окружности радиусов r и R касаются внешним образом в точке P. K ним проведены внешняя касательная AB и внутренняя касательная PK. $(A \cup B \text{точки касания пря-}$

- мой AB и окружностей, K лежит на AB.) Найдите: а) AB; б) PK; в) величину угла APB.
- **229.** Две окружности радиусов r и R (R > r) касаются внешним образом. К ним проведена внешняя касательная. Найдите радиусы всех окружностей, касающихся двух данных окружностей и проведённой общей касательной.
- **230.** Две окружности радиусами 8 и 6 пересекаются в точках A и B. Через центры O_1 и O_2 проведена прямая; C_1 и C_2 две из четырёх точек пересечения этой прямой с окружностями, точка C_1 лежит на окружности с центром O_1 , а $C_1C_2>20$. Найдите расстояние между центрами окружностей, если $S_{\triangle AC_1O_1} \cdot S_{\triangle BC_2O_2} = 336$.
- **231.** Две окружности, отношение радиусов которых равно $9-4\sqrt{3}$, касаются внутренним образом. Проведены две равные хорды большей окружности, касающиеся меньшей окружности. Одна из этих хорд перпендикулярна отрезку, соединяющему центры окружностей. Найдите острый угол между этими хордами.
- **232.** В треугольнике ABC, в котором сторона AB=3, AC=5 и BC=7, проведена биссектриса AM. Вокруг треугольника ABM описана окружность, а в треугольник ACM вписана окружность. Найдите произведение их диаметров.
- **233.** Три данные окружности одинакового радиуса попарно касаются друг друга. Найдите отношение радиусов двух окружностей, каждая из которых касается трёх данных. (В ответе записать отношение большего радиуса к меньшему.)

Многоугольники

- **234.** В правильном шестиугольнике со стороной 5 на одной из сторон взята точка A на расстоянии 1 от ближайшей вершины шестиугольника. Найдите расстояние от точки A до центра шестиугольника.
- **235.** Около правильного шестиугольника со стороной 2 описана окружность. Найдите сумму квадратов расстояний от произвольной точки этой окружности до всех вершин данного шестиугольника.

236. В выпуклом пятиугольнике ABCDE площадь каждого из треугольников ABC, BCD, CDE, DEA равна S, а площадь треугольника BAE равна $\frac{8}{3}S$. Найдите площадь пятиугольника.

Векторы и координаты

- **237.** Найдите множество всех таких точек B, что |AB| = p, где A произвольная точка данной прямой l и $p \neq 0$.
- **238.** Дан вектор $\overrightarrow{AB} \neq \overrightarrow{0}$. Найдите множество всех таких точек C, что: a) $|\overrightarrow{AB} + \overrightarrow{BC}| = |\overrightarrow{AB}|$; б) $|\overrightarrow{AB} \overrightarrow{BC}| = |\overrightarrow{AB}|$.
- **239.** Дан вектор $\overrightarrow{AB} \neq \overrightarrow{0}$. Найдите множество всех таких точек C, что: a) $|\overrightarrow{AB} + \overrightarrow{BC}| = |\overrightarrow{BC}|$; б) $|\overrightarrow{AB} \overrightarrow{BC}| = |\overrightarrow{BC}|$.
- **240.** Даны два неколлинеарных вектора \overrightarrow{AB} и \overrightarrow{AC} . Найдите множество всех таких точек M, что: a) $\overrightarrow{AM} = \alpha \cdot \overrightarrow{AB} + \overrightarrow{AC}$, где $\alpha \in R$; б) $\overrightarrow{AM} = \overrightarrow{AB} + \beta \cdot \overrightarrow{AC}$, где $\beta \in [0; 1]$; в) $\overrightarrow{AM} = \alpha \cdot \overrightarrow{AB} + \beta \cdot \overrightarrow{AC}$, где $\alpha \in [0; 1]$; $\beta \in [0; 1]$.
- **241.** Пусть O точка пересечения диагоналей четырёхугольника ABCD, причём $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$. Верно ли, что ABCD — параллелограмм?
- **242.** Докажите, что в трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.
- **243.** В треугольнике ABC точка K делит сторону AC в отношении 3:2, считая от точки A; отрезок BK пересекает медиану AP в точке M. Найдите отношения BM:MK и AM:MP.
- **244.** В треугольнике ABC точка K делит сторону BC в отношении 1:2, считая от точки B; точка H делит сторону AC в отношении 2:3, считая от точки A; отрезки BH и AK пересекаются в точке M. Найдите отношения BM:MH и AM:MK.

- **245.** В треугольнике ABC точка K делит сторону BA в отношении 3:5, считая от точки B; точка H делит сторону BC в отношении 1:2, считая от точки B; медиана BM пересекает отрезок KH в точке O. Найдите отношение BO:OM.
- **246.** Найдите уравнение множества всех таких точек M, что вектор \overrightarrow{AM} имеет ту же длину, что и вектор a(7; 1), если точка A имеет координаты (1; -5).
- **247.** Две медианы треугольника взаимно перпендикулярны и равны 6 и 8. Найдите третью медиану треугольника.
- **248.** В треугольнике ABC известны стороны: AB = 6, AC = 8, BC = 7. Найдите биссектрису AA_1 .
- **249.** Найдите условие, которому удовлетворяют координаты вершины прямого угла треугольника с гипотенузой AB, если A(3;5), B(7;-11).
- **250.** Найдите условие, которому удовлетворяют координаты середины гипотенузы прямоугольного треугольника с вершиной прямого угла C(3;5) и длинами катетов 2 и 8.
- **251.** Найдите геометрическое место таких точек K, что KA = 3KB, где A(1; 0), B(5; 0).
- **252.** Выясните взаимное расположение окружностей $x^2 + y^2 6x + 8y = 0$ и $x^2 + y^2 + 4x 6y = 3$.
- **253.** Составьте уравнение окружности радиуса 10, касающейся окружности $x^2 + (y-5)^2 = 25$ в точке M(3; 1).
- **254.** Какое множество точек задает уравнение $x^4 + y^4 + 2x^2y^2 6x^2 26y^2 + 25 = 0$?
- **255.** Через точку M(3;4) проведена прямая, высекающая на окружности $x^2+y^2=100$ хорду, которая точкой M делится пополам. Составьте уравнение прямой и найдите длину хорды.
- **256.** Через точку $M(5;\ 12)$ проведена хорда, наиболее удалённая от центра окружности $x^2+y^2=194.$ Найдите длину этой хорды.

Список задач на построение в пространстве

- 1. Построение прямой, проходящей через данную точку параллельно данной прямой.
- 2. Построение прямой, проходящей через данную точку параллельно данной плоскости.
- **3.** Построение плоскости, проходящей через данную точку параллельно данной прямой.
- **4.** Построение плоскости, проходящей через данную прямую параллельно данной прямой.
- **5.** Построение плоскости, проходящей через данную точку перпендикулярно данной прямой.
- 6. Построение прямой, проходящей через данную точку перпендикулярно данной плоскости.
- 7. Построение плоскости, проходящей через данную точку параллельно данной плоскости.
- 8. Построение двух параллельных плоскостей, каждая из которых проходит через одну из двух данных скрещивающихся прямых.
- 9. Построение плоскости, проходящей через данную точку параллельно каждой из двух скрещивающихся прямых.
- **10.** Построение «общего перпендикуляра» двух данных скрещивающихся прямых.
- 11. Построение линейного угла данного двугранного угла.
- **12.** Построение плоскости, проходящей через данную точку перпендикулярно данной плоскости.
- 13. Построение плоскости, проходящей через данную прямую перпендикулярно данной плоскости.
- **14.** Построение точки пересечения данной прямой, лежащей на одной из граней данного многогранника, с плоскостью грани, не параллельной этой прямой.
- **15.** Построение прямой пересечения плоскости грани данного многогранника с непараллельной ей плоскостью.

Список основных теорем 10 класса

- 1. О плоскости, проходящей через прямую и не принадлежащую ей точку.
- 2. О плоскости, проходящей через две пересекающиеся прямые.
- 3. О плоскости, проходящей через две параллельные прямые.
- 4. Признак скрещивающихся прямых.
- 5. О двух параллельных прямых, одна из которых пересекает плоскость.
- **6.** О прямой, параллельной данной прямой и проходящей через данную точку пространства, не принадлежащую данной прямой.
- 7. О транзитивности параллельности прямых в пространстве.
- 8. Об углах между сонаправленными лучами.
- 9. Признак параллельности прямой и плоскости.
- 10. О линии пересечения плоскостей, одна из которых проходит через прямую, параллельную другой плоскости.
- **11.** О линии пересечения двух плоскостей, каждая из которых проходит через одну из параллельных прямых.
- 12. О прямой, параллельной каждой из двух пересекающихся плоскостей.
- 13. Признак перпендикулярности прямой и плоскости.
- **14.** О двух параллельных прямых, одна из которых перпендикулярна плоскости.
- 15. О двух прямых, перпендикулярных одной и той же плоскости.
- 16—17. Теоремы о трёх перпендикулярах.
- 18-19. Признаки параллельности плоскостей.
- 20. О прямых пересечения двух параллельных плоскостей третьей плоскостью.
- 21. О прямой, пересекающей одну из параллельных плоскостей.
- 22. О плоскости, пересекающей одну из параллельных плоскостей.
- 23. О плоскости, проходящей через точку и параллельной другой плоскости, не проходящей через эту точку.
- 24. О двух плоскостях, параллельных третьей плоскости.
- **25.** Об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями.
- **26.** О прямой, перпендикулярной одной из двух параллельных плоскостей.
- 27. О линейных углах двугранного угла.
- 28. Признак перпендикулярности плоскостей.

- 29. О прямой, лежащей в одной из двух взаимно перпендикулярных плоскостей и перпендикулярной линии пересечения этих плоскостей.
- 30. О перпендикуляре к одной из двух взаимно перпендикулярных плоскостей, имеющем с другой плоскостью общую точку.
- 31. О линии пересечения двух плоскостей, перпендикулярных третьей плоскости.
- 32. О площади ортогональной проекции многоугольника.
- 33. Признак коллинеарности векторов.
- 34. О разложении вектора по двум компланарным векторам.
- 35. Признак компланарности векторов.
- 36. О разложении вектора в пространстве.

Формулы планиметрии

Треугольник

Содержание формулы	Формула	Символы (обозначения)
Периметр (P)	$P = a + b + c;$ $p = \frac{a + b + c}{2}$	a, b, c — длины сторон; p — полупериметр
Сумма внутрен- них углов	$A+B+C=180^{\circ}$	A, B, C — величины углов
Теорема косинусов	$a^2 = b^2 + c^2 - 2bc\cos A;$ $b^2 = a^2 + c^2 - 2ac\cos B;$ $c^2 = a^2 + b^2 - 2ab\cos C;$ $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	a, b, c — длины сторон;
Теорема синусов	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	А, В, С — величины углов
Радиус описанной окружности (<i>R</i>)	$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
Площадь (S)	$S = \frac{1}{2} a h_a = \frac{1}{2} b h_b = \frac{1}{2} c h_c;$ $S = \frac{1}{2} a b \sin C = \frac{1}{2} a c \sin B =$ $= \frac{1}{2} b c \sin A;$ $S = pr;$ $S = \frac{a b c}{4 R}$	a, b, c — длины сторон; h_a, h_b, h_c — длины высот; A, B, C — величины углов; p — полупериметр; r — радиус вписанной окруж-
Формула Герона	$S = \sqrt{p(p-a)(p-b)(p-c)}$	ности; R — радиус описанной окружности

Содержание формулы	Формула	Символы (обозначения)
Связь между медианой и сторонами	$m_a^2 = \frac{2b^2 + 2c^2 - a^2}{4}$	a, b, c — длины сторон; m_a — длина медианы к стороне a ; m, n — длины отрезков, на которые биссектриса угла C делит сторону c ; h_a, h_b, h_c — длины высот; r — радиус вписанной окружности
Свойство бис- сектрисы внут- реннего угла	$\frac{m}{n} = \frac{a}{b}$	
Связь между высотами и радиусом вписанной окружности	$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r}$	
Отношение площадей треугольников ABC и $A_1B_1C_1$, имеющих равные углы с вершинами A и A_1	$\frac{S_{\triangle ABC}}{S_{\triangle A_1B_1C_1}} = \frac{AB \cdot AC}{A_1B_1 \cdot A_1C_1}$	$S_{\Delta ABC}$ и $S_{\Delta A_1 B_1 C_1}$ — площади треугольников ABC и $A_1 B_1 C_1$

Прямоугольный треугольник

Содержание формулы	Формула	Символы (обозначения)
Сумма острых углов	$A+B=90^{\circ}$	A, B — величины острых углов
Теорема Пифагора	$a^2 + b^2 = c^2$	а, b — длины кате-
Метрические соотношения	$h_c^2 = a_1 \cdot b_1;$ $a^2 = c \cdot a_1, b^2 = c \cdot b_1$	тов; c — длина гипотенузы; h_c — длина высоты

Содержание формулы	Формула	Символы (обозначения)
Зависимость между сторонами, радиусами вписанной и описанной окружностей	$R = \frac{c}{2}$; $r = \frac{a+b-c}{2}$; $r = \frac{a+b-\sqrt{a^2+b^2}}{2}$; $r = \frac{a+b-\sqrt{a^2+b^2}}{2}$; $r = \frac{1}{2}(a+b)$	a_1, b_1 — длины проекций катетов на гипотенузу; r — радиус вписанной окружности; R — радиус описанной окружности
Площадь (S)	$S = \frac{1}{2}ab$	а, b — длины кате- тов

Правильный треугольник

Содержание формулы	Формула	Символы (обозначения)
Периметр (Р)	P=3a	а — длина стороны
Величина угла	$A = B = C = 60^{\circ}$	$A,\ B,\ C\ -$ величины углов
Зависимость меж- ду высотой и сторо- ной	$h=rac{a\sqrt{3}}{2}$	h — длина высоты;
Зависимость между стороной, радиусами вписанной и описанной окружностей	$a=R\sqrt{3}\;;R=2r;$ $R=rac{a\sqrt{3}}{3}\;;$ $r=rac{a\sqrt{3}}{6}$	a — длина стороны; R — радиус описанной окружности; r — радиус вписанной окружности
Выражение площа- ди (S) через: сторо- ну, радиус описан- ной окружности, радиус вписанной окружности	$S=rac{a^2\sqrt{3}}{4};$ $S=rac{3R^2\sqrt{3}}{4};$ $S=3r^2\sqrt{3}$	a — длина стороны; R — радиус описанной окружности; r — радиус вписанной окружности

Четырёхугольник

Содержание формулы	Формула	Символы (обозначения)
Сумма углов	$A+B+C+D=360^{\circ}$	A,B,C,D — вели-
Свойство сумм величин противоположных углов вписанного четырёхугольника	$A+C=B+D=180^{\circ}$	чины углов; A, C и B, D — величины пар противоположных углов
Свойство сумм длин противопо- ложных сторон описанного четы- рёхугольника	a+c=b+d	a, c и b, d — длины пар противоположных сторон; m, n — длины диагоналей;
Теорема Птолемея	mn = ac + bd	четырёхугольник вписан в окружность
Площадь (S)	$S = \frac{1}{2} m n \sin \varphi;$ S = pr	m, n — длины диагоналей; ϕ — величина угла между ними; p — полупериметр; r — радиус вписанной окружности

Параллелограмм

Содержание формулы	Формула	Символы (обозначения)
Периметр (Р)	P=2(a+b)	a, b — длины
Соотношение между квадратами длин сторон и диагоналей	$m^2 + n^2 = 2(a^2 + b^2)$	сторон; m, n — длины диагоналей; h_a, h_b — длины высот; B — величина угла между сторонами; m, n — длины диагоналей; ϕ — величина угла между диагоналями
Площадь (S)	$S = a \cdot h_a = b \cdot h_b;$ $S = ab \sin B;$ $S = \frac{1}{2} mn \sin \phi$	

Содержание формулы	Формула	Символы (обозначения)
Свойства углов	$A + B + C + D = 360^{\circ};$ A = C; B = D; $A + B = B + C = 180^{\circ}$	A,B,C,D — величины углов

Прямоугольник

Содержание формулы	Формула	Символы (обозначения)
Периметр (Р)	P=2(a+b)	а, b — длины
Площадь (S)	$S=ab;$ $S=rac{1}{2}d^2{ m sin}\; \phi$	сторон; d — длина диагонали; φ — величина угла между диагоналями

Ромб

Содержание формулы	Формула	Символы (обозначения)
Периметр (Р)	P=4a	а — длина стороны;
Площадь (S)	$S = ah; S = \frac{1}{2} mn$	h - длина высоты; $m, n - $ длины диагоналей

Квадрат

Содержание формулы	Формула	Символы (обозначения)
Углы	$A = B = C = D = 90^{\circ}$	A, B, C, D — величины углов
Связь между длиной стороны и радиусом описанной окружности	$a=R\sqrt{2}\ ; R=rac{a\sqrt{2}}{2}$	 а — длина стороны; R — радиус описанной окружности; r — радиус вписанной окружности

Содержание формулы	Формула	Символы (обозначения)
Связь между дли- ной стороны и ра- диусом вписанной окружности	$r=rac{a}{2}$; $a=2r$	a — длина стороны; R — радиус описанной окружности; r — радиус вписан-
Площадь (S)	$S=a^2;S=2R^2$	ной окружности

Трапеция

Содержание формулы	Формула	Символы (обозначения)
Свойство средней линии	$m=rac{a+b}{2}$	m — длина средней линии;
Площадь (S)	$S = \frac{a+b}{2} \cdot h;$ $S = m \cdot h$	 а, b — длины оснований; h — длина высоты

Правильный многоугольник

Содержание формулы	Формула	Символы (обозначения)
Сумма внутренних углов (Σ)	$\Sigma = (n-2) \cdot 180^{\circ}$	 п — число сторон; А — величина угла; а_n — длина стороны; г — радиус вписанной окружности; R — радиус описанной окружности
Угол	$A = \frac{180^{\circ}(n-2)}{n}$	
Связь между длиной стороны и радиусом вписанной окружности	$a_n = 2r \operatorname{tg} \frac{180^{\circ}}{n};$ $r = \frac{a_n}{2 \operatorname{tg} \frac{180^{\circ}}{n}};$	
Связь между длиной стороны и радиусом вписанной окружности	$a_n = 2R\sin\frac{180^{\circ}}{n};$ $a_3 = R\sqrt{3};$ $a_4 = R\sqrt{2}; a_6 = R$	

Содержание формулы	Формула	Символы (обозначения)
Площадь (S)	$S = \frac{1}{2} arn;$ $S = \frac{1}{2} R^2 n \sin \frac{360^{\circ}}{n}$	a — длина стороны; n — число сторон; r — радиус вписанной окружности; R — радиус описанной окружности

Окружность и круг

Содержание формулы	Формула	Символы (обозначения)
Длина окружности (<i>C</i>)	$C=2\pi R$	C — длина окружности; R — радиус окружности; n — градусная мера дуги; ϕ — радианная мера дуги; R — радиус круга; d — диаметр; d — основание сегмента; d — высота сегмента
Длина дуги (l)	$l=\frac{\pi Rn}{180}\;;\;l=\varphi R$	
Площадь круга (S)	$S=\pi R^2;S=\frac{\pid^2}{4}$	
Площадь сектора (S)	$S = \frac{\pi R^2 n}{360}$	
Площадь сегмента (S)	$S=rac{\pi R^2 n}{360}\pm S_{ riangle}; onumber \ Spproxrac{2}{3}bh$	

Тригонометрические тождества

$$\begin{array}{ll} \sin^2\alpha + \cos^2\alpha = 1; & \sin\left(-\alpha\right) = -\sin\alpha; & \tan\alpha \cdot \cot\alpha = 1; \\ \tan\alpha = \frac{\sin\alpha}{\cos\alpha}; & \cos\left(-\alpha\right) = \cos\alpha; & 1 + \tan^2\alpha = \frac{1}{\cos^2\alpha}; \\ \cot\alpha = \frac{\cos\alpha}{\sin\alpha}; & \cot\alpha = -\cot\alpha; & 1 + \cot\alpha^2\alpha = \frac{1}{\sin^2\alpha}; \end{array}$$

$$\begin{split} &\cos{(\alpha-\beta)}=\cos{\alpha}\cos{\beta}+\sin{\alpha}\sin{\beta};\\ &\cos{(\alpha+\beta)}=\cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta};\\ &\sin{(\alpha+\beta)}=\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha};\\ &\sin{(\alpha-\beta)}=\sin{\alpha}\cos{\beta}+\sin{\beta}\cos{\alpha};\\ &\tan{(\alpha-\beta)}=\sin{\alpha}\cos{\beta}-\sin{\beta}\cos{\alpha};\\ &tg{(\alpha-\beta)}=\frac{tg{\alpha}+tg{\beta}}{1-tg{\alpha}\cdot tg{\beta}};\\ &tg{(\alpha-\beta)}=\frac{tg{\alpha}-tg{\beta}}{1+tg{\alpha}\cdot tg{\beta}};\\ &\sin{2\alpha}=2\sin{\alpha}\cos{\alpha};\\ &\cos{2\alpha}=\cos^2{\alpha}-\sin^2{\alpha};\\ &\frac{1+\cos{2\alpha}}{2}=\cos^2{\alpha};\\ &\frac{1-\cos{2\alpha}}{2}=\sin^2{\alpha};\\ &tg{2\alpha}=\frac{2tg{\alpha}}{1-tg^2{\alpha}};\\ &\sin{\alpha}+\sin{\beta}=2\sin{\frac{\alpha+\beta}{2}}\cos{\frac{\alpha-\beta}{2}};\\ &\sin{\alpha}-\sin{\beta}=2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}};\\ &\cos{\alpha}+\cos{\beta}=2\cos{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}};\\ &\cos{\alpha}-\cos{\beta}=-2\sin{\frac{\alpha+\beta}{2}}\sin{\frac{\alpha-\beta}{2}};\\ &tg{\alpha}+tg{\beta}=\frac{\sin{(\alpha+\beta)}}{\cos{\alpha}\cdot\cos{\beta}};\\ &tg{\alpha}-tg{\beta}=\frac{\sin{(\alpha-\beta)}}{\cos{\alpha}\cdot\cos{\beta}}. \end{split}$$

Формулы стереометрии

Векторы и координаты

Содержа- ние формулы	Формула	Символы (обозначения)
Правило треуголь- ника	$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$	A, B, C — про- извольные точки
Правило паралле- лограмма	$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$	ОАСВ — парал- лелограмм
Правило много- угольни- ка	$\overrightarrow{A_1 A_2} + \overrightarrow{A_2 A_3} + \dots + \overrightarrow{A_{n-1} A_n} =$ $= \overrightarrow{A_1 A_n}$	$A_1, A_2,, A_{n-1}, \ A_n$ — произвольные точки

Продолжение таблицы

Содержа- ние формулы	Формула	Символы (обозначения)
Правило паралле- лепипеда	$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OC}_1$	OA, OB, OC — ребра параллелепипеда; OC_1 — диагональ параллелепипеда
Формула вычита- ния	$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB}$	A, B, O — про- извольные точки
Признак коллине- арности двух не- нулевых векторов	$ec{b}=k\cdotec{a}$, $ ec{a}\cdotec{b} = ec{a} \cdot ec{b} $	k — число, отличное от нуля, $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$
Признак компла- нарности трёх век- торов	$ec{p}=xec{a}^{}+yec{b}$	x, y — числа
Середина отрезка	$\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$	M — середина отрезка AB ; O — произвольная точка
Точка пересече- ния меди- ан (цент- роид)	$\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$	М — центроид треугольника АВС; О — произвольная точка
Скаляр- ное про- изведе- ние век- торов	$ec{a} \cdot ec{b} = ec{a} \cdot ec{b} \mathrm{cos} ngle (ec{a}; ec{b})$	$ec{a}$, $ec{b}$ — ненулевые векторы

Продолжение таблицы

Содержа- ние формулы	Формула	Символы (обозначения)
Сложение и вычита- ние векто- ров в ко- ординатах	$\vec{a} \pm \vec{b} \ (x_1 \pm x_2; y_1 \pm y_2; z_1 \pm z_2)$	$\vec{a}(x_1; y_1 z_1);$ $\vec{b}(x_2; y_2; z_2)$
Умноже- ние век- тора на число	$k\vec{a}(kx;ky;kz)$	k — число; $\vec{a}(x; y; z)$
Скаляр- ное про- изведе- ние	$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$	$\vec{a}(x_1; y_1; z_1);$ $\vec{b}(x_2; y_2; z_2);$
Косинус угла меж- ду векто- рами	$\cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$	φ — величина угла между векторами
Длина вектора	$ \vec{a} = \sqrt{x^2 + y^2 + z^2}$	$\vec{a}(x;y;z)$
Расстоя- ние меж- ду точка- ми A и B	$AB = \frac{AB}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	$A(x_1; y_1; z_1); \\ B(x_2; y_2; z_2)$
Уравне- ние плос- кости	$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$	$\vec{a}(A; B; C)$ — вектор, перпендикулярный плоскости; $M_0(x_0; y_0; z_0)$ — точка, принадлежащая плоскости
Общее уравне- ние плос- кости	Ax + By + Cz + D = 0	M(x; y; z) — произвольная точка плоскос- ти

Продолжение таблицы

Содержа- ние формулы	Формула	должение таблиць Символы (обозначения)
Косинус угла меж- ду двумя плоскос- тями	$\cos \varphi = \frac{ A_1 A_2 + B_1 B_2 + C_1 C_2 }{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$	$A_1x + B_1y +$
Условие перпенди- кулярнос- ти двух плоскос- тей	$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$	$egin{aligned} &+ C_1 z + D_1 = 0 \ & \text{и } A_2 x + B_2 y + \ &+ C_2 z + D_2 = 0 \ &- \text{плоскости;} \ \phi - \text{величина} \ & \text{угла между} \end{aligned}$
Условие парал- лельности двух плос- костей	$rac{A_1}{A_2} = rac{B_1}{B_2} = rac{C_1}{C_2}$	этими плоскос-
Расстоя- ние от точки до плоскости (d)	$d = \frac{ Ax_0 + By_0 + Cz_0 + D }{\sqrt{A^2 + B^2 + C^2}}$	$M_0(x_0;y_0;z_0)$ — точка; $Ax+By+Cz+$ $+D=0$ — плоскость
Парамет- рические уравне- ния пря- мой	$ec{r} = ec{r}_0 + kec{p}; \ egin{aligned} x &= x_0 + ka_1, \ y &= y_0 + ka_2, \ z &= z_0 + ka_3 \end{aligned}$	\vec{r} — радиусвектор произвольной точки прямой; \vec{r}_0 — радиусвектор данной точки прямой; k — параметр; $M_0(x_0;y_0;z_0)$ — данная точка прямой; $M(x;y;z)$ — произвольная точка прямой; $p(a_1;a_2;a_3)$ — направляющий вектор прямой

Г		
Содержа- ние формулы	Формула	Символы (обозначения)
Уравне- ния пря- мой по двум её точкам	$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$	$M_1(x_1; y_1; z_1),$
Косинус угла меж- ду двумя прямыми	$\cos \varphi = \frac{ a_1b_1 + a_2b_2 + a_3b_3 }{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_2^2}}$	$M_2(x_2,y_2,z_2)$ — данные точки; $ec{p}_1(a_1;a_2;a_3)$, $ec{p}_2(b_1;b_2;b_3)$ —
Условие перпенди- кулярнос- ти двух прямых	$a_1b_1 + a_2b_2 + a_3b_3 = 0$	направляю- щие векторы прямых; ф — величина угла между ни-
Условие парал- лельнос- ти двух прямых	$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$	ми
Синус уг- ла между прямой и плоско- стью	$\sin \varphi = \frac{ Aa_1 + Ba_2 + Ca_3 }{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{a_1^2 + a_2^2 + a_3^2}}$	Ax + By + Cz + D = 0 — плос-
Условие парал- лельнос- ти пря- мой и плоскости	$Aa_1 + Ba_2 + Ca_3 = 0$	кость; $\vec{p}(a_1; a_2; a_3)$ — направляющий вектор прямой; ϕ — величина
Условие перпенди- кулярнос- ти пря- мой и плоскости	$\frac{A}{a_1} = \frac{B}{a_2} = \frac{C}{a_3}$	угла между прямой и плос- костью

Многогранники

Содержание формулы	Формула	Символы (обозначения)
Площадь поверхности куба (S)	$S = 6a^2$	a- длина ребра куба
Площадь боковой поверхности прямой призмы ($S_{ m for}$)	$S_{ ext{for}} = P \cdot h$	P - периметр основания; $h - $ высота (длина бокового ребра)
Площадь боковой поверхности на- клонной призмы $(S_{ m for})$	$S_{ ext{for}} = P \cdot l$	P — периметр перпендикулярного сечения; l — длина бокового ребра
Площадь боковой поверхности прямого параллелепипеда $(S_{ m fok})$	$S_{ ext{for}} = P ullet l$	P - периметр основания; $l - $ длина бокового ребра
Площадь боковой поверхности правильной пирамиды $(S_{ m for})$	$S_{ extstyle 60 ext{K}} = rac{1}{2} P m{\cdot} a$ $S_{ extstyle 60 ext{K}} = rac{Q}{\cos \phi}$	P — периметр основания; a — апофема; Q — площадь основания; ϕ — величина двугранного угла пристороне основания
Площадь боковой поверхности правильной усеченной пирамиды ($S_{ m for}$)	$S_{ extsf{for}} = rac{P + P_1}{2} \cdot h$	P, P_1 — периметры оснований; h — апофема
Объём куба (V)	$V = a^3$	a- длина ребра куба
Объём прямоугольного параллелепипеда (V)	V = abc	а, b, c — измерения параллелепипеда
Объём призмы (параллелепипеда) (V)	$V = S_{\text{och}} \cdot h;$ $V = Q \cdot l$	$S_{ m och}$ — площадь основания; h — высота; Q — площадь перпендикулярного сечения; l — длина бокового ребра

Содержание формулы	Формула	Символы (обозначения)
Объём пирамиды (V)	$V = \frac{1}{3} S_{\text{och}} \cdot h$	$S_{ m och}$ — площадь основания; h — высота
Объём усеченной пирамиды (V)	$V = \frac{1}{3} h \left(Q_1 + \sqrt{Q_1 Q_2} + Q_2 \right)$	$egin{aligned} Q_1, Q_2 &- ext{площади} \ ext{оснований;} \ h &- ext{высота} \end{aligned}$
Отношение объёмов тетраэдров $ABCD$ и $A_1B_1C_1D_1$, имеющих равные трёхгранные углы с вершинами A и A_1	$\frac{\frac{V_{ABCD}}{V_{A_1B_1C_1D_1}}}{\frac{AB \cdot AC \cdot AD}{A_1B_1 \cdot A_1C_1 \cdot A_1D_1}} =$	V_{ABCD} и $V_{A_1B_1C_1D_1}$ — объёмы тетраэдров $ABCD$ и $A_1B_1C_1D_1$

Фигуры вращения

Содержание формулы	Формула	Символы (обозначения)
Площадь боковой поверхности цилиндра ($S_{ m for}$)	$S_{ ext{for}} = 2\pi R \cdot h$	R — радиус основания; h — высота
Площадь полной поверхности цилиндра ($S_{\scriptscriptstyle \PiOJH}$)	$S_{ ext{полн}} = 2\pi R(h+R)$	R — радиус основа- ния; h — высота
Площадь боковой поверхности конуса $(S_{ ext{for}})$	$S_{ extstyle 60 extstyle 6} = \pi R l$	R — радиус основания; l — длина образующей
Площадь полной поверхности конуса $(S_{ ext{полн}})$	$S_{ ext{полн}} = \pi R(l+R)$	R — радиус основания; l — длина образующей
Площадь боковой поверхности усечённого конуса $(S_{ m for})$	$S_{ m 60K}=\pi l(R+r)$	R, r — радиусы оснований; l — длина образующей

Содержание формулы	Формула	Символы (обозначения)
Π лощадь сферы (S)	$S=4\pi R^2$	<i>R</i> — радиус сферы
Площадь сегментной поверхности (S)	$S=2\pi R \cdot H$	R — радиус сферы; H — высота сегментной поверхности
Площадь шарового пояса (S)	$S=2\pi Rm{\cdot} H$	R — радиус шара; H — высота шаро- вого пояса
Площадь поверхности шарового сектора (S)	$S = \frac{1}{\pi R \cdot (2h + \sqrt{2Rh - h^2})}$	R — радиус шара; h — высота шарово- го сегмента
Объём цилиндра (V)	$V = \pi R^2 \cdot H$	R — радиус основания; H — высота
Объём конуса (V)	$V = \frac{1}{3} \pi R^2 \cdot H$	$R - ext{радиус основа-} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Объём усечённого конуса (V)	$V= = rac{1}{3}\pi H(r^2+Rr+R^2)$	R, r — радиусы оснований; H — высота
Объём шара (V)	$V = \frac{4}{3} \pi R^3; V = \frac{1}{6} \pi d^3$	R — радиус шара; d — диаметр шара
Объём шарового слоя (V)	$V = = rac{\pi H}{6} \left(3 r_1^2 + 3 r_2^2 + H^2 ight)$	r_1, r_2 — радиусы оснований шарового слоя; H — высота
Объём шарового $\operatorname{cermenta}\left(V ight)$	$V=\pi H^2\!\!\left(R-rac{H}{3} ight)$ $V=rac{\pi H}{6}\left(3r^2+H^2 ight)$	 R — радиус шара; H — высота; r — радиус основания шарового сегмента
Объём шарового сектора (V)	$V = \frac{2}{3} \pi R^2 \cdot H$	R — радиус шара; H — высота

Глава 1. Введение в стереометрию

1.071. Равнобедренный треугольник; $\frac{2a\sqrt{2}}{3}$.

1.004. Указание. Рассмотрите случаи: a) $AB - \partial u$ аметр окружности; б) AB - xорда, не являющаяся диаметром окружности. 1.009. Прямая. 1.010. Нет. 1.012. Можно, если одна (любая) из точек находится в плоскости, которая проходит через три оставшиеся точки. 1.013. а) Нет; б) нет. 1.014. Указание. Через любые три точки данной фигуры проведите плоскость и докажите, что все остальные точки фигуры принадлежат этой 1.015. Указание. Через прямую и не лежащую на ней точку проходит плоскость. 1.016. Указание. Через две пересекающиеся пряпроходит плоскость. 1.017. Лежат в одной плоскости. 1.018. Три прямые проходят через одну точку. 1.019. Указание. Эти прямые не лежат в одной плоскости. 1.020. Указание. Проведите прямую, пересекающую все три данные прямые. 1.023. Нельзя. 1.024. Верно. 1.025. а) Можно; б) нельзя; в) нельзя; г) можно; д) можно; е) можно. 1.026. Указание. Три данные прямые лежат в одной плоскости. 1.027. Не может. 1.031. а) AM; б) CD; в) AC; г) BD. **1.032.** 4 или 14. **1.035.** а) AA_1 ; б) CC_1 ; в) AB_1 ; г) CD_1 ; д) BC. 1.038. $3\sqrt{2}$; $\frac{\sqrt{3}}{2}$. 1.039. $\frac{3\sqrt{2}}{2}$; $\frac{\sqrt{3}}{8}$. 1.040. в) 6; г) Y_2 ; д) NY_2 ; е) 1:3. **1.042.** Шесть. **1.043.** Прямые проходят через одну точку или параллельны. 1.051. Неверно. 1.052. 4:1. 1.053. а) Треугольник прямоугольный, так как его ортоцентр лежит на прямой, содержащей его сторону; б) треугольник равнобедренный (DE = DF), так как его медиана является его и биссектрисой; в) треугольник DEF — прямоугольный, так как треугольник KDF — прямоугольный. Центр описанной около треугольника KDF окружности лежит на его стороне DK. **1.055.** $5\sqrt{7}$. **1.056.** $5\sqrt{7}$. 1.057. Трапеция; $\frac{a\sqrt{3}}{2}$; $\frac{a\sqrt{3}}{4}$; $\frac{a\sqrt{5}}{2}$; $\frac{a\sqrt{17}}{4}$. 1.058. $A_1B_1 = a$. 1.059. Трапеция; $\frac{a}{2}$. 1.060. Трапеция. 1.061. $\frac{3\sqrt{13}}{2}$. 1.062. $\sqrt{3}$. **1.063.** $5\sqrt{2}$. **1.064.** $3\sqrt{3}$; $12\sqrt{3}$; $12\sqrt{3}$. **1.066.** a) $\frac{\sqrt{2}}{2}$; 6) $\frac{\sqrt{2}}{2}$; B) $\frac{\sqrt{6}}{2}$; г) $\sqrt{3}$; д) $\frac{\sqrt{6}}{2}$. 1.067. а) $\frac{\sqrt{6}}{3}$; б) $\frac{1}{3}$; в) $\frac{\sqrt{6}}{3}$; г) $\frac{1}{3}$; д) $\frac{1}{2}$. 1.068. в) 4; г) X_1 ; д) KX_2 ; e) 1 : 1. **1.069.** в) $8\sqrt{17}$; д) 1 : 1; e) BM. **1.070.** $\frac{a}{3}$; $\frac{2a}{3}$.

Глава 2. Прямые в пространстве

2.001. Указание. Примените признак скрещивающихся прямых. **2.003.** Любая прямая грани AA_1B_1B , проходящая через точку A_1 , пересекает скрещивающиеся прямые A_1D_1 и BB_1 . **2.005.** Нет. 2.006. Параллельны. 2.007. Шесть. 2.008. Могут пересекаться, скрещиваться. 2.009. Не могут. 2.010. Параллелограмм. Указание. Воспользуйтесь свойством средней линии треугольника. 2.011. Указание. Примените теорему 3 и аксиому прямой и плос-**2.016**. 1) a) 6; 6) 15; 2) а) 1; б) 29. **2.017.** а) Плоскость; 2.018. а) Скрещиваются; б) скрещиваются; в) Ø. в) скрещиваются; г) параллельны; д) скрещиваются; е) пересекаются; ж) скрещиваются; з) пересекаются. **2.019.** $MM_1 = 9$; $OO_1 = 11$; $DD_1 = 7.$ **2.020.** a) Могут быть параллельными, пересекаться; б) могут только скрещиваться; в) могут быть параллельными, пересекаться, скрещиваться. 2.021. Нет. 2.022. Указание. Рассмотрите плоскость $\alpha = (a, C)$ и точку её пересечения с прямой b. Найдите множество всех точек С, для которых задача не имеет решения. **2.023.** а) Не могут; б) $0 < C_1 C_2 \leqslant 14$. **2.024.** 7; 2. **2.026**. Параллелограмм, плоскость которого параллельна BC и AD. **2.027.** a) Скрещиваются; б) пересекаются; в) параллельны; г) пересекаются; д) параллельны; е) скрещиваются; ж) скрещиваются. 2.028. 1) а) Скрещиваются; б) скрещиваются; в) пересекаются; г) параллельны; д) скрещиваются; e) скрещиваются; 2) a) 2:3; б) 1:3. **2.029.** в) 3:1.2.030. Указание. Концы этого отрезка — центроиды граней $mempa \ni \partial pa$. 2.031. 1) a) 30°; б) 90°; в) 150°; 2) a) 30°; б) 90°; в) 45°. 2.032. а), б) Да; в) нет. 2.033. Не перпендикулярны. Не может. **2.034.** a) 60° ; б) 45° ; в) 0° ; г) 30° ; д) $\arctan \frac{\sqrt{2}}{2}$. **2.035.** $\arccos \frac{\sqrt{10}}{10}$.

2.037.

Nō	Прямые	Расположение	Угол между прямыми
1	LN и EG	Скрещиваются	90°
2	$oldsymbol{F_1T}$ и $oldsymbol{FH}$	Пересекаются	$arctg \frac{\sqrt{2}}{4}$
3	$F_1 N$ и KT	Параллельны	0°
4	TN и EG	Скрещиваются	60°
5	$oldsymbol{F_1T}$ и KN	Пересекаются	$\arccos \frac{\sqrt{5}}{5}$
6	KH 1 и LN	Скрещиваются	30°

2.038. 60°. **2.039.** а) $\frac{a\sqrt{3}}{4}$; б) $\frac{a\sqrt{2}}{2}$. **2.040.** Указание. Обозначим $\alpha =$

= (a, c). Все прямые пространства, параллельные с и пересекающие а, лежат в плоскости α , и ни одна из них не пересекает прямую b. Аналогично, все прямые пространства, параллельные с и пересекающие b, скрещиваются с а. Все остальные прямые, параллельные c, скрещиваются и с а, и с b. 2.041. 8 и 3. 2.042. в) 3:1.2.043.2) Тетраэдр $M_1M_2M_3M_4$ — правильный с реб-

ром 2. 3) а) 60°; б) 90°; в) 90°; г) 30°. **2.044.** а) $\frac{3\sqrt{3}}{4}$; б) $\frac{9\sqrt{3}}{4}$; в) $\frac{3\sqrt{3}}{2}$.

2.045. 1) а) Скрещиваются; б) скрещиваются; в) параллельны; г) скрещиваются; 3) а) 1:2; б) $1:\sqrt{2};$ в) $1:\sqrt{6};$ 4) а) $60^\circ;$ б) $60^\circ;$ в) $90^\circ;$ г) $30^\circ;$ д) $45^\circ.$ **2.046.** 58.

2.047.

N₂	Прямые	Расположение	Угол между прямыми
1	AA_1 и CC_1	Параллельны	0°
2	A_1C_1 и B_1D_1	Пересекаются	90°
3	A_1C_1 и C_1D_1	Пересекаются	45°
4	$A_1 M$ и CC_1	Скрещиваются	90°
5	A_1D и DC_1	Пересекаются	60°
6	A_1C_1 и BD	Скрещиваются	90°
7	$A_1 C$ и AC	Пересекаются	$arctg \frac{\sqrt{2}}{2}$
8	$A_1 B$ и $D_1 C$	Параллельны	0°
9	$A_1 C$ и BB_1	Скрещиваются	arctg $\sqrt{2}$
10	$A_1 D$ и AC	Скрещиваются	60°
11	$A_1 M$ и BC	Скрещиваются	arctg 2
12	$A_1 M$ и BK	Скрещиваются	90°
13	$C_1 K$ и $B_1 F$	Скрещиваются	2 arcsin $\sqrt{0,4}$
14	$C_1 O$ и AB_1	Скрещиваются	30°
15	$A_1 B$ и $B_1 D$	Скрещиваются	90°

2.053. При длине 6 прямые пересекаются, при остальных — скрещиваются. **2.054**. $2\sqrt{2}$. **2.055**. a) $\arccos \frac{\sqrt{6}}{4}$; б) $\arccos \frac{1}{4}$; в) $\arccos \frac{\sqrt{2}}{4}$; г) $\arccos \frac{\sqrt{10}}{10}$; д) $\arccos \frac{\sqrt{2}}{8}$.

Глава 3. Прямая и плоскость в пространстве

3.002. а) Да; б) нет. 3.003. Нет. 3.004. Указание. Рассмотрите прямые: а) параллельны; б) пересекаются; в) скрещиваются. **3.006.** 1 - A; 2 - B; 3 - A; 4 - B; 5 - B; 6 - B; 7 — A; 8 — Б. **3.007.** Параллельны. **3.008.** Могут пересекаться или быть параллельными. 3.009. Могут скрещиваться или быть параллельными. 3.010. Они параллельны. 3.012. а) Нет; б) нет; в) нет. **3.015.** 1. **3.017.** Трапеция. **3.018.** $12\sqrt{11}$. **3.021.** Нет. **3.022.** а) Паб) параллельны; в) параллельны; г) параллельны; д) параллельны; е) пересекаются. 3.024. Равнобедренные треугольники; $4\sqrt{11}$. **3.025.** Равнобедренная трапеция периметра 10 и площади $3\sqrt{3}$. **3.026.** $4(1+\sqrt{3})\leqslant P\leqslant 4(1+\sqrt{7});\ 4\sqrt{2}\leqslant S\leqslant 4\sqrt{6}$. **3.028.** $20\sqrt{5}$. **3.033**. $4\sqrt{7}$. **3.034**. 18 см. **3.035**. 10. **3.045**. Правильно: один круг или два равных круга. 3.046. Указание. Испольсвойство медианы равнобедренного треугольника. 3.051. а) Нет; б) вообще говоря, нет. 3.053. Указание. Воспользуйтесь теоремой о трёх перпендикулярах. 3.056. Указание. Воспользуйтесь теоремой о трёх перпендикулярах. 3.057. а) 0; б) $a\cos\alpha$; в) $-a\cos\alpha$; г) $\frac{a-b}{2}$. **3.059**. Прямая BD. **3.060**. Указание.

Угол MLN — прямой. **3.063.** Указание. Прямая AC перпендикулярна плоскости (BOD). **3.064.** Указание. Прямая OM перпендикулярна плоскости трапеции, а угол ACD — прямой. **3.065.** Угол ACM. Указание. Воспользуйтесь теоремой о трёх перпендикулярах. **3.066.** Указание. а) Плоскости OMP и BCP взаимно перпендикулярны; б) плоскости OPP₁ и ABP взаимно перпендикулярны.

3.070. a) 2; 6) $\sqrt{7}$. **3.071.** a) $2\sqrt{3}$; 6) 6. **3.072.** $\sqrt{2b^2-a^2}$.

3.073. $\sqrt{34}$; $\sqrt{41}$. **3.074.** $6\sqrt{6}$ cm; 9π cm². **3.075.** 5 cm. **3.076.** 13 cm.

3.077. a) 22 см; б) 14 см; в) 18 см. **3.078.** 17 при любом а

3.079. 9 cm; $6\sqrt{3}$ cm. **3.080.** $\frac{2}{3}\sqrt{\frac{2}{3}}$. **3.081.** 10. **3.082.** B) $\sqrt{2}$.

3.083. 60°. **3.084.** Нет. 45°. **3.086.** 60°. **3.087.** а) 45°; б) 45°.

3.088. φ . **3.089.** 45°. **3.090.** 30°. **3.091.** 10°. **3.093.** $b\sin\varphi$ и $a\sin\varphi$.

3.094. 45° и 60°. **3.095.** a) 30°; б) 45°; в) 30°; г) $\arcsin \frac{\sqrt{10}}{5}$;

д) $\arcsin \frac{\sqrt{10}}{10}$. **3.096.** a) 30° ; б) $\arcsin \frac{\sqrt{3}}{4}$; в) $\arcsin \frac{3}{4}$; г) $\arcsin \frac{\sqrt{21}}{7}$;

д) $\arcsin \frac{3\sqrt{13}}{13}$; e) 0.

3.097.

Nã	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	MC и ABC	Угол <i>МСD</i>	45°
2	MB и ABC	Угол МВО	arctg $rac{\sqrt{2}}{2}$
3	MA u ABC	Угол <i>МАD</i>	45°
4	MO и ABC	Угол <i>МОО</i>	arctg $\sqrt{2}$
5	AC и MDC	Угол <i>АСD</i>	45°
6	AD и MDC		90°
7	AB и MDC		0°
8	OK и MDC		90°
9	ОМ и МДС	Угол ОМК	$arctg \frac{\sqrt{5}}{5}$
10	AC и OAM		0°
11	AO и ADM	Угол <i>СА D</i>	45°

3.098.

N₂	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	KA и ABC	Угол <i>КАВ</i>	45°
2	KM и ABC	Угол КМВ	$rctg rac{2\sqrt{3}}{3}$
3	CA и MBK	_	90°
4	BA u BMK	Угол <i>АВМ</i>	30°

N⁵	Прямая и плоскость	Измеряемый плоский угол	Величина угла
5	AC и KBA	Угол СВА	60°
6	BM и KBA	Угол <i>МВА</i>	30°
7	AK и BKM	Угол АКМ	$\arcsin \frac{\sqrt{2}}{4}$
8	BK и ACK	Угол ВКМ	$arctg \frac{\sqrt{3}}{2}$
9	МВ и АСК	Угол <i>ВМК</i>	$arctg \frac{2\sqrt{3}}{3}$
10	AK и BCK		arctg $\frac{\sqrt{15}}{5}$

3.099.

Nº	Прямая и плоскость	Измеряемый плоский угол	Величина угла
1	MC и ABC	Угол МСО	$\arccos \frac{\sqrt{3}}{3}$
2	MK и ABC	Угол МКО	$\arccos \frac{1}{3}$
3	CB и AMK		90°
4	CA и AMK	Угол САК	30°
5	OC и AMK	Угол СОК	60°
6	CM и AMK	Угол СМК	30°
7	PB и AMK	Угол ВРК	60°
8	AP и MBC	_	90°
9	ОМ и МВС	Угол ОМК	$\arcsin \frac{1}{3}$
10	AK и MBC	Угол МКА	$\arccos \frac{1}{3}$
11	MB и ACP	_	90°
12	BC и ACP	Угол ВСР	30°

3.100.

Nº	Прямая и плоскость	Величина угла
1	AB_1 и ABC	45°
2	AC и AA_1B	45°
3	MF и DD_1C	45°
4	MF и DD_1B	0°
5	AM и ABC	$arctg \frac{2\sqrt{5}}{5}$
6	AC и MKF	90°
7	AK и MKF	arctg 3
8	AC_1 и BCC_1	$arctg \frac{\sqrt{2}}{2}$
9	$C_1 D$ и ACC_1	30°
10	$B_1 D$ и ACC_1	arctg $\sqrt{2}$
11	AA_1 и AMF	$arctg \frac{3\sqrt{2}}{4}$
12	DD_1 и AMF	$arctg \frac{3\sqrt{2}}{4}$

3.104. а) Две точки; прямая; две параллельные прямые; б) прямая; прямая и принадлежащая ей точка; две пересекающиеся прямые; в) прямая и не принадлежащая ей точка; две параллельные прямые; две пересекающиеся прямые. **3.108.** 3,5 или 8,75.

3.109. Можно. Невозможно. 3.110. 90°. 3.111.
$$2\arcsin\left(\frac{\sin\frac{\beta}{2}}{\cos\phi}\right)$$
.

3.113. $2\sqrt{m^2+2a^2}$. **3.114.** Ромб, $DD_1=6$, периметр 20 и площадь

$$4\sqrt{34}$$
 . 3.115. $\frac{25\sqrt{6}}{9}$. 3.116. a) $4\sqrt{3}$; 6) $\frac{100\sqrt{3}}{9}$. 3.119. $\frac{\sqrt{2}}{2}$ $\leqslant KH \leqslant 1$.

3.123. 8; $\frac{16}{3}$. **3.124.** $\frac{32}{3}$; 6. **3.129.** Пересекаются в одной точке.

3.131. Указание. Спроектируйте рёбра PA, PB и PC на плоскость ABC и воспользуйтесь теоремой о трёх перпендикулярах.

3.132. Окружность с диаметром BC, где C — основание перпендикуляра из A на α . **3.133.** Указание. Спроектируйте рёбра PA, PB и PC на плоскость (ABC) и воспользуйтесь теоремой о трёх перпен-

дикулярах. **3.136**. в)
$$4\sqrt{2}$$
; г) $3\sqrt{5}$. **3.140**. $\frac{420}{169}$; $\frac{84}{25}$. **3.141**. 3,5.

3.142. 6)
$$\frac{2}{3}$$
; B) 1:1. **3.143.** $ab\sqrt{2}$. **3.144.** a) $\frac{\sqrt{6}}{3}$; 6) $\frac{\sqrt{6}}{3}$; B) $\frac{2\sqrt{6}}{9}$.

3.145. a)
$$\frac{a\sqrt{2}}{2}$$
; 6) $\frac{a\sqrt{3}}{3}$; ж) $\frac{a\sqrt{3}}{6}$. **3.147.** $\frac{7\sqrt{11}a^2}{24}$; $\frac{7\sqrt{11}a}{22}$. **3.148.** a) 90°;

б) 60°. **3.149**. а) 60°; в) 90°. **3.150**. Прямую, перпендикулярную плоскости этого многоугольника и проходящую через центр вписанной в него окружности. **3.151**. $\frac{a}{\sqrt{3}}$. **3.153**. 48; 16. **3.154**. б) $\sqrt{3}$;

B) 1:2. 3.156. 2:7. 3.157.
$$[6\sqrt{3}; 12\sqrt{3}]$$
. 3.158. 2π . 3.159. 1.

3.161. arctg $\frac{1}{2\sin 0.5x}$. **3.162.** a) $0.2\sqrt{15}$; 6) $0.25\sqrt{3}$; B) $0.125\sqrt{3}$; F) $0.25\sqrt{6}$; $0.25\sqrt{15}$.

Глава 4. Плоскости в пространстве

4.005. Указание. Используйте теорему о пересечении двух параллельных плоскостей третьей плоскостью. **4.011.** б) 12.

4.015.
$$4\frac{4}{9}$$
 см². **4.016.** 48 см². **4.017.** $1.$ **4.018.** 6 или $3.$ **4.020.** $У \kappa a 3 a$

ние. Через точку A_1 проведите прямую $c \parallel b$. **4.021.** Указание. Через прямые а и в проведите плоскости, параллельные α . **4.022.** а) Равнобедренная трапеция; 36; б) равнобедренный тре-

угольник; $\frac{15\sqrt{2}}{2}$; в) квадрат; 36. **4.023**. а) 18 см; 15 см; б) 54 см;

72 cm. **4.025**. a)
$$4\sqrt{3}$$
; б) $\frac{100\sqrt{3}}{9}$. **4.028**. б) $\frac{3(1+2\sqrt{2})a}{4}$; в) $\frac{9\sqrt{7}a^2}{64}$;

r)
$$\frac{3}{5}$$
. **4.029**. 1 — A; 2 — B; 3 — B; 4 — A; 5 — B; 6 — A; 7 — B; 8 —

A;
$$9 - A$$
; $10 - B$; $11 - B$; $12 - A$. **4.033.** 4. **4.034.** 90°.

4.035.
$$\frac{h}{\sin \frac{\alpha}{2}}$$
. **4.036.** 75°. **4.037.** 49°. **4.038.** 100° или 80°.

4.039.
$$2\sqrt{2}$$
. **4.041.** $\frac{\sqrt{a^2+b^2+2ab\cos\alpha}}{\sin\alpha}$. **4.043.** $\frac{14\sqrt{3}}{3}$. **4.044.** $6\sqrt{3}$.

4.045. $50\sqrt{2}$. **4.046.** 90° ; 45° ; 60. **4.047.** $\arccos \frac{1}{3}$. **4.050.** a) 90° ;

6) arctg 2. **4.051**. 24 cm². **4.053**. arccos $\frac{\sqrt{3}}{3}$; 90°. **4.054**. a) 90°; 6) 45°;

в) $\arctan \sqrt{2}$; г) $\arctan \frac{\sqrt{6}}{3}$.

4.055.

Nº	Плоскости	Взаимное расположение	Угол между плоскостями
1	A_1BA и D_1CD	Параллельны	0°
2	$A_1B_1C_1$ и DD_1C	Пересекаются	90°
3	A_1BD и B_1D_1C	Параллельны	0°
4	B_1AC и ADC	Пересекаются	arctg $\sqrt{2}$
5	A_1BD и C_1DB	Пересекаются	$2 \operatorname{arctg} rac{\sqrt{2}}{2}$
6	A_1BD и CC_1A	Пересекаются	90°
7	AB_1C_1 и ADC	Пересекаются	45°
8	$A_1 M A$ и $B_1 C_1 C$	Пересекаются	arctg 0,5
9	$A_1 M A$ и $B B_1 D$	Пересекаются	$0,75\pi$ – arctg 2
10	MA_1D и CA_1D	Пересекаются	arctg $\sqrt{2}$

4.059. Нет. **4.062.** Да. **4.063.** $a\sqrt{\cos 2\varphi}$. **4.064.** а) $5\sqrt{2}$ см и 10 см; б) $5\sqrt{6}$ см и 10 см. **4.065.** а) $4\sqrt{73}$; б) 12. **4.067.** а) 90° ; б) 60° ; в) $\arctan \frac{2\sqrt{3}}{3}$; г) $\arctan \frac{\sqrt{3}}{2}$; д) $2\arcsin \frac{\sqrt{42}}{7}$ или $2\arcsin \frac{2\sqrt{7}}{7}$. **4.068.** а) $\sqrt{30}$; б) $\arcsin \frac{\sqrt{15}}{10}$. **4.069.** а) Да; б) да; в) нет. **4.070.** $8(1+\sqrt{3})$ и $16\sqrt{2}$. **4.071.** $10(\sqrt{3}+1)$ и $25\sqrt{2}$. **4.073.** а) 45° ; б) $\arccos \frac{1}{5}$. **4.076.** Неверно. **4.077.** а) $3\sqrt{7}$; б) $3\sqrt{3}$. **4.078.** 6. **4.079.** 9.

4.080. $\sqrt{21}$ или $\sqrt{37}$. **4.081**. a) 4; б) 4; в) не менее 4. **4.082**. a) Скре-

щиваются; б) параллельны; в) 5. **4.083**. 2,4. **4.084**. 4 или 3. **4.085**. Расстояние между TM и DC равно 0; между TM и BC-1; между TM и AD-3; между TM и AB-4; между TM и $AC-\frac{\sqrt{2}}{2}$; между TM и $BD-\frac{3\sqrt{2}}{2}$.

4.086.

Nō	Прямые		Расстояние между прямыми
1	MC	AT	b
2	AB	CD	$b \sin rac{lpha}{2}$
3	MT	AC	$0.5b\cos{rac{lpha}{2}}$
4	AC	BD	0
5	AB	MD	$0,5b\sin \alpha$

4.087.

Nō	Прямые		Расстояние между прямыми
1	AA_1	DC	a
2	BB_1	DC_1	a
3	DC	A_1K	a
4	DD_1	A_1K	$\frac{2a\sqrt{5}}{5}$
5	B_1D	AC	$\frac{a\sqrt{6}}{6}$
6	AK	BC	$\frac{a\sqrt{2}}{2}$
7	B_1C	C_1D	$\frac{a\sqrt{3}}{3}$
8	AK	BD	$\frac{2a\sqrt{17}}{17}$
9	DK	AC_1	0

4.088.

Nº	Пря	мые	Расстояние между прямыми
1	AC	МО	$\sqrt{3}$
2	BC	AM	$3\sqrt{2}$
3	OK	PM	0
4	МО	KC	$\frac{3\sqrt{7}}{7}$
5	ВО	AM	$\frac{6\sqrt{22}}{11}$

- **4.089.** 2. **4.090.** $\cos \alpha$. **4.091.** $100\sqrt{2}$; только равновелики.
- **4.092.** $21\sqrt{3}$. **4.093.** a) $a^2\sqrt{6}$; б) $3a^2$. **4.094.** $\arccos \frac{1}{6}$. **4.095.** $\frac{2\sqrt{3}}{3}$.
- **4.096.** a) $\arccos 0.75$; в) $\arctan \frac{2\sqrt{7}}{3}$. **4.097.** 60° и $\arctan (3\sqrt{3})$.
- **4.098.** $\arccos \frac{\sqrt{5}}{5}$. **4.099.** $\frac{S}{\cos^{10} \phi}$ $_{\varphi}$ $\frac{S(1-\cos^{11} \phi)}{2\sin^2 \frac{\phi}{2}\cos^{10} \phi}$. **4.100.** $50\sqrt{2}$.
- **4.101.** $\frac{7a^2}{8\cos\alpha}$. **4.102.** $\frac{30}{7}$ дм^2 . **4.103.** $16\sqrt{2}$ cm^2 . **4.104.** 9 cm^2 .
- **4.105**. а) 60° ; б) $36\sqrt{3}$ дм². **4.106**. Указание. Воспользуйтесь признаком параллельности плоскостей. **4.107**. Указание. Воспользуйтесь признаком параллельности плоскостей. **4.109**. 7.
- **4.111.** $\frac{ab}{\sqrt{a^2+b^2}}$; $\frac{bc}{\sqrt{b^2+c^2}}$; $\frac{ac}{\sqrt{a^2+c^2}}$. **4.113.** Указание. Спроектируй-

те рёбра PA, BP и PC на плоскость (ABC) и воспользуйтесь теоремой о трёх перпендикулярах. **4.114.** Окружность с диаметром BC,

где C — основание перпендикуляра из A на α . **4.116.** $\frac{a}{\sqrt{3}}$. **4.117.** в) a;

$$\frac{a\sqrt{2}}{4}$$
; r) $\frac{ab\sqrt{2}}{2\sqrt{2a^2+b^2}}$. 4.118. B) $\frac{a\sqrt{3}}{2}$; r) $\frac{ac\sqrt{3}}{2\sqrt{3a^2+c^2}}$.

4.119.
$$\frac{a}{2\cos\frac{\alpha}{2}} \cdot \sqrt{2\cos\alpha + 1}$$
. **4.120.** $m\sqrt{3}$. **4.121.** 30° . **4.122.** $\frac{a}{3}$.

4.123.
$$4\sqrt{17}$$
. **4.124.** а) $\frac{\sqrt{2}}{2}$; б) $\frac{2\sqrt{13}}{13}$; в) $\frac{4\sqrt{3}}{7}$; г) $\frac{2\sqrt{5}}{5}$; д) $\frac{2\sqrt{13}}{13}$; е) $\frac{2\sqrt{13}}{13}$.

Глава 5. Расстояния в пространстве

5.001. а) 4; б) 2; в) 8. **5.002**. 1 или 7. **5.003**. 7:10. **5.004**. 21 см и 30 см. **5.005**. 119 см и 170 см. **5.006**. Нет. **5.007**. Да. **5.008**. а) 3;

б) $9\sqrt{3}$; в) 60° . **5.009**. 90° . **5.010**. a) **4**; б) **2**; в) **3**; г) **2**; д) $3\frac{1}{3}$.

5.011. a) 12; б) 6; в) 3; г) 4. **5.012.** 4. **5.013.** a) 2; б) 1,6; в) $1\frac{1}{3}$; г) $1\frac{1}{7}$.

5.014. a) 18; б) 9; в) 10. **5.015.** a) 3; б) 2; в) $\frac{2}{3}$; г) 2,5; д) $1\frac{2}{3}$. **5.016.** 8;

8; 8. **5.017.** 4; 4; 4; 8. **5.018.** 3; 5; 8; 8. **5.019.** $\sqrt{3}$; $\sqrt{3}$. **5.020.** 10. **5.021.** 5. **5.022.** 12. **5.023.** 5 или 11. **5.024.** 5 или 15. **5.025.** 4 или 10. **5.026.** 4 и 8. **5.027.** 6 и 24 или 36 и 6. **5.028.** а) $5\sqrt{3}$; б) $\frac{6\sqrt{66}}{11}$.

5.029. а) 4; б) 3,2; в) $\frac{16}{\sqrt{17}}$; г) $2\sqrt{2}$. **5.030**. $\frac{ab}{\sqrt{a^2+b^2}}$. **5.031**. а) $\frac{a\sqrt{3}}{12}$;

б) $\frac{a\sqrt{2}}{2}$; в) $\frac{a\sqrt{6}}{6}$.

5.032.

Nº	Пр	ямые	Расстояние между прямыми
1	MM_1	QP	a
2	NN_1	QP_1	a
3	QP	M_1K	a
4	QQ_1	M_1K	$\frac{2a\sqrt{5}}{5}$
5	N_1Q	MP	$\frac{a\sqrt{6}}{6}$
6	MK	NP	$\frac{a\sqrt{2}}{2}$
7	N_1P	P_1Q	$\frac{a\sqrt{3}}{3}$
8	MK	NQ	$\frac{2a\sqrt{17}}{17}$
9	QK	NP_1	0

5.033. Две прямые пересечения плоскости α и двух плоскостей, параллельных плоскости β . 5.034. Четыре прямые, параллельные прямой пересечения плоскостей α и β . 5.035. Прямая, параллельная данным прямым, или пустое множество. 5.036. Прямая пересечения плоскости α и плоскости серединных перпендикуляров отрезка AB или пустое множество, или плоскость α . 5.037. Прямая, проведённая перпендикулярно плоскости четырёхугольника через центр описанной около него окружности. 5.038. Прямая, проведённая перпендикулярно плоскости четырёхугольника через центр вписанной в него окружности. 5.039. Окружность диаметра AB, где A — основание перпендикуляра AM к плоскости α . 5.040. Окружность радиуса β см, центром которой является ортогональная проекция точки α на плоскость α . 5.041. Окружность радиуса β см, центром которой является ортогональная проекция точки α на линию пересечения плоскостей α и β . 5.042. β ; β ; 15.

5.043. 10. **5.044.** $\sqrt{3}$. **5.045.** 4,8. **5.046.** $2\sqrt{2}$. **5.047.** a) $\frac{a\sqrt{2}}{2}$;

б)
$$\frac{a\sqrt{6}}{6}$$
; в) $\frac{a\sqrt{3}}{3}$. **5.048.** a) 5; б) 2,5; в) $2\frac{2}{9}$. **5.049.** 9; 9; 27; 27; 27;

45. **5.050**.
$$\frac{a\sqrt{6}}{18}$$
. **5.051**. a) 12; б) 12; в) 6; г) 8; д) 4,5. **5.052**. 3,5.

5.053. $\frac{a\sqrt{2b^2-a^2}}{2b}$. **5.054.** Окружность, плоскость α которой прохо-

дит через точку A и перпендикулярна прямой m. Диаметром окружности является отрезок AB, где B — точка пересечения m и α . **5.055.** В плоскости α окружность радиуса 8 см, а в плоскости β — окружность радиуса 6 см. Центрами этих окружностей являются

ортогональные проекции точки A на плоскости α и β . **5.062**. $\frac{a^2\sqrt{2}}{2}$.

5.063.
$$\frac{a^2\sqrt{3}}{6}$$
. **5.064.** $\frac{a^2\sqrt{66}}{44}$. **5.065.** $\frac{6a^2\sqrt{17}}{13}$. **5.066.** $\frac{a^2}{2}$. **5.067.** Семь.

5.069.
$$f(x) = 2\sqrt{1+\left(\sin^2\frac{x}{2}\right)}$$
. **5.070.** [1,4; 5]. **5.071.** а) Да; б) нет;

в) да; г) нет. **5.072**. а)
$$\sqrt{3}$$
; б) $\frac{\sqrt{13}}{2}$; в) $\frac{\sqrt{7}}{2}$; г) $\frac{2\sqrt{5}}{5}$; д) $\frac{\sqrt{14}}{4}$.

5.073. a)
$$\frac{\sqrt{3}}{2}$$
; б) $\frac{3\sqrt{13}}{13}$ и $\frac{\sqrt{13}}{13}$; в) $\frac{\sqrt{21}}{7}$ и $\frac{2\sqrt{21}}{7}$. **5.074.** a) 1; б) $\frac{\sqrt{21}}{7}$;

в)
$$\sqrt{3}$$
; г) $\frac{\sqrt{30}}{10}$.

Глава 6. Векторный метод в пространстве

6.001. а) Да; б) да; в) нет. **6.003**. а)
$$\overrightarrow{AC}$$
; б) \overrightarrow{AC}_1 ; в) $\overrightarrow{C_1B}$; г) \overrightarrow{DB}_1 ;

д)
$$\overrightarrow{DC}_1$$
; e) \overrightarrow{AC}_1 ; ж) $\overrightarrow{0}$. **6.005**. a) \overrightarrow{PE} . **6.012**. a) -1 ; б) 2. **6.014**. Указание. Воспользуйтесь признаком коллинеарности двух векторов.

$$\kappa a.$$
 6.021. a) $M = C_1;$ 6) $M = D;$ B) $\overrightarrow{AM} = 2\overrightarrow{AC};$ r) $\overrightarrow{AM} = 2\overrightarrow{AD};$

д)
$$\overrightarrow{AM} = 2\overrightarrow{AB}$$
. **6.027.** Да. **6.030.** Указание. См. 6.015, 6.017.

6.031.
$$0,2\overrightarrow{AD} - 0,2\overrightarrow{AB}$$
. **6.032.** $3H$. **6.033.** a) $\frac{2}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$; 6) $-\frac{1}{3}\overrightarrow{a} + \frac{2}{3}b$;

B)
$$\frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$$
; r) $\frac{1}{3}\vec{a} + \frac{1}{3}\vec{b}$; e) $0 \cdot \vec{a} + \vec{b}$. **6.034.** 3. **6.036.** $\overrightarrow{PD} = \vec{a} - \vec{b} + \vec{c}$;

$$\overrightarrow{AE} = -\vec{a} + 0.5\vec{c}$$
. **6.037**. $\overrightarrow{A_1C}(1; 1; -1)$. **6.038**. Да. **6.039**. a) $0 \cdot \vec{a} +$

$$+0.5\vec{b}+0.5\vec{c}; \; \text{д})\vec{a}+\vec{b}-\vec{c}; \; \text{e})\; 2\vec{a}\; +\, 0\cdot\vec{b}-\vec{c}. \; \textbf{6.040.}\; \text{a})\; (0;\; -1;\; 0.5);$$

б) (0; 0,5; 0,5); г)
$$\left(-1; \frac{1}{3}; \frac{1}{3}\right)$$
. **6.041**. Указание. См. 6.017. **6.042**. Ука-

зание. Используйте признак компланарности трёх векторов. **6.043.** Указание. Воспользуйтесь признаком коллинеарности двух векторов. **6.045.** Указание. Докажите компланарность век-

торов \overrightarrow{OP} , \overrightarrow{OH} и \overrightarrow{OK} . **6.046.** Указание. См. 6.015. **6.047.** Указание. Воспользуйтесь признаком компланарности трёх векторов. **6.048.** а) 0,5; лежит внутри треугольника; б) -6,38; лежит вне треугольника. **6.049.** а) Не имеют общих точек; б) точка K — общая;

в) отрезок пересекает плоскость; г) отрезок параллелен плоскости. **6.050.** 1:8. **6.051.** 1:1. **6.052.** 1:12. **6.053.** 1:1. **6.054.** 5:4.

6.055. 1 : 2. **6.056.** б) Пополам. **6.057.** а)
$$\overrightarrow{MK} = \frac{2}{3} \overrightarrow{MA} + \overrightarrow{MB} +$$

$$+\frac{1}{2} \overrightarrow{MC}$$
; 6) 6: 7; B) $\frac{7a\sqrt{6}}{18}$. **6.059.** a) 90°; r) 45°; e) 60°. **6.060.** a) 60°;

б)
$$120^{\circ}$$
. **6.063.** a) 10 ; б) $7\sqrt{2}$; в) -10 ; г) 0 ; д) -4 ,9; e) 4. **6.064.** a) 2;

д) 0. **6.068**. a)
$$\frac{\sqrt{3}}{2}$$
; б) $\frac{\sqrt{2}}{2}$; в) $\frac{1}{2}$; д) $\frac{\sqrt{3}-\sqrt{2}-2}{2}$. **6.069**. a) 2; г) 0,75.

6.070. a)
$$\sqrt{2}$$
; б) 5; в) $\sqrt{19}$; г) $2\sqrt{2}$; д) $\sqrt{38}$. **6.071.** a) $2\sqrt{3}$; б) $2\sqrt{5}$;

B)
$$3\sqrt{3}$$
; r) $\sqrt{19}$. **6.072.** -3. **6.073.** -13. **6.074.** 11. **6.075.** $\frac{6}{7}$; $-\frac{3}{7}$; $\frac{2}{7}$.

6.076.
$$\vec{m} = \sqrt{2} \cdot a + \vec{b} - \vec{c}$$
. **6.077.** $\left(\frac{3}{\sqrt{14}}; \frac{1}{\sqrt{14}}; -\frac{2}{\sqrt{14}}\right)$. **6.078.** -6.

6.079. (1; 1; 1). **6.080.**
$$\left(\frac{3}{\sqrt{34}}; \frac{3}{\sqrt{34}}; -\frac{4}{\sqrt{34}}\right)$$
. **6.081.** а) Нет; б) да.

6.082. a)
$$0.5a^2$$
; 6) $-0.5a^2$; r) $0.25a^2$; д) $-0.25a^2$. **6.085.** б) $\frac{\sqrt{2}}{2}$;

r) ${
m arccos}\ {1\over 6}$. **6.086.** Указание. Воспользуйтесь признаком перпен-

 ∂ икулярности ∂ вух векторов. **6.087.** 1) a) $\frac{\sqrt{6}}{3}$; б) $\frac{\sqrt{2}}{2}$; 2) a) $\arccos \frac{1}{3}$.

6.088. 2) a)
$$\arccos \frac{1}{3}$$
; 6) $\arccos \left(-\frac{1}{6}\right)$. 6.089. $\frac{a\sqrt{2}}{3}$.

6.090.
$$\arccos \frac{|2h^2 - a^2|}{2(a^2 + h^2)}$$
. **6.098.** a) $-\frac{2}{17}$; 6) $\frac{3\sqrt{17}}{34}$. **6.099.** $\frac{2}{3}$.

6.100. a)
$$\arccos \frac{\sqrt{11}}{22}$$
; 6) 3. **6.101.** a) $\arccos \frac{\sqrt{187}}{561}$; 6) $\frac{31\sqrt{2}}{29}$.

6.102.
$$\arccos \frac{7}{65}$$
. **6.103.** $\frac{12}{13}$. **6.105.** a) \overrightarrow{AC} ; в) \overrightarrow{AC} . **6.106.** a) Да;

б) да. **6.107.** Указание. Докажите, что $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = \overrightarrow{0}$. **6.109.** Указание. Воспользуйтесь признаком компланарности трёх векторов. **6.114.** Указание. Воспользуйтесь признаком компланарности трёх векторов. **6.116.** а) Отрезок; б) параллелограмм; в) параллелепипед. **6.117.** 1:3. **6.118.** Указание. Используйте центроид треугольника ABC. **6.119.** 2:3. **6.120.** Указание. Введите единичные векторы на рёбрах трёхгранного угла и используйте свойство диагоналей ромба делить его углы пополам. **6.121.** Указание. Отложите единичные векторы от точки пересечения диагоналей параллелепипеда. **6.123.** Указание. Воспользуйтесь признаком компланарности трёх векторов. **6.124.** Указание. Воспользуйтесь сложением векторов по правилу параллелепипеда. **6.125.** Указание. Воспользуйтесь признаком компланарности трёх векторов.

Глава 7. Координатный метод в пространстве

7.004.
$$\vec{a}(2; 3; -5); \vec{b}(1; -4; 6); \vec{c}(-3; 2; -5); \vec{p}(1; 0; 1); \vec{m}(-2; 1; 0); \vec{n}(0; 0; -1).$$
 7.005. $\vec{a} = 3\vec{i} + 7\vec{j} - 2\vec{k}; \vec{b} = 0 \cdot \vec{i} - 5\vec{j} - 2k; \vec{c} = -\vec{i} + 2\vec{j} + 0 \cdot \vec{k}; \vec{p} = 2\vec{i} + 0 \cdot \vec{j} - 3\vec{k}; \vec{q} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 5\vec{k}.$ **7.006.** $p(5; 15; -5); \vec{q}(4; -18; -9).$ **7.007.** $m = 4; n = -1, 5.$ **7.009.** $|\vec{a}| = 5\sqrt{3}; |\vec{b}| = 7; |\vec{c}| = \sqrt{3}; |\vec{p}| = \sqrt{10}.$ **7.011.** $\vec{a} \cdot \vec{c} = 3; \vec{a} \cdot \vec{b} = 0; \vec{a}^2 = 6; \sqrt{\vec{b}^2} = \sqrt{3}.$

7.012. (3; -8; 5). 7.013. При
$$x = -2$$
. 7.014. а) $(\vec{a}; \vec{b}) > 90^\circ$; б) $(\vec{b}; \vec{c}) < < 90^\circ$; в) $(\vec{a}; \vec{c}) = 90^\circ$. 7.015. Острый угол с \vec{i} ; тупой — с \vec{j} ; прямой —

c \vec{k} . 7.016. a) 60°; 6) 150°; B) 90°. 7.017. a) 3; 6) -4. 7.018. a) 45°; 6) 135°; B) 60°; r) 45°; $\vec{\beta}$ 90°; e) 90°; $\vec{\beta}$ 90°; 3) 180°. 7.019. 1.

7.020. $\overrightarrow{m}=10\overrightarrow{a}-18\overrightarrow{b}+11\overrightarrow{c}$. **7.021.** $\overrightarrow{a}\left(\frac{2}{7}\,;\,-\frac{9}{7}\,;\,\frac{2}{7}\right)$. **7.022.** При $n=\frac{3}{2}$.

7.023. a) 1; $\frac{1}{2}$; 6) $\sqrt{3}$; B) $\sqrt{2}$. **7.024.** 1) a) $\sqrt{6}$; 6) $\sqrt{\frac{7}{2}}$; B) $\arccos \frac{1}{6}$;

2) a) 60°; б) 90°; в) $\arccos \frac{1}{6}$. 7.025. a) $\frac{\sqrt{2}}{2}$; б) $\frac{\sqrt{5}}{2}$; в) $\arccos \left(-\frac{1}{6}\right)$;

r) $\arccos \frac{1}{6}$. **7.029**. A(2; 3; 4); B(-3; 2; -5); C(0; -1; 1).

7.030. \overrightarrow{OA} (-2; 2; 0); \overrightarrow{OB} (4; -4; 3); \overrightarrow{OC} (7; 0; -9); \overrightarrow{AB} (6; -6; 3);

 \overrightarrow{BC} (3; 4; -12). **7.031**. (-4; 0; -10). **7.032**. (-4; 3; 3). **7.033**. (8; 1; 6).

7.034. $\overrightarrow{AB} = \vec{i} - 3\vec{j} - 3\vec{k}; \overrightarrow{BC} = -5\vec{i} + \vec{j} + 6\vec{k}; \overrightarrow{AC} = -4\vec{i} - 2\vec{j} + 3\vec{k};$

 $\left(0; \frac{13}{3}; 2\right)$. **7.036.** Указание. Исследуйте, коллинеарны ли векто-

 $p\omega \overrightarrow{AB} u \overrightarrow{AC}$. **7.037.** C(1; -3; 0); точка C лежит между A и B.

7.038. Het. **7.039.** (0; 6,5; 5). **7.040.** (-2,5; -2,5; 0,5), $\left(\frac{5}{3}; 0; \frac{14}{3}\right)$,

 $(2,5;\ 0,5;\ 5,5),\ \left(\frac{25}{6};\ \frac{3}{2};\ \frac{43}{6}\right)$. **7.040.** $(2;\ 4;\ 3)$. **7.042.** a) Да; б) нет;

в) да. Указание. Проверьте компланарность векторов \overrightarrow{AB} , \overrightarrow{AC}

u AÉ. **7.044**. (8; 8; 8), (8; 8; -8), (-8; 8; 8), (-8; 8; -8), (-8; -8; 8), (-8; -8; -8), (8; -8; 8), (8; -8; -8). **7.045**. a) На координатной оси

Oxy, Oyz или Oxz; б) на оси Ox, Oy или Oz. **7.047.** B(5; 3; -3).

7.048. $\left(3\frac{1}{3}; 6\frac{2}{3}; 8\right)$. **7.050.** a) (-1; 2,5; -2); 6) (-8; 4; -19). **7.051.** $\sqrt{2}$;

 $\frac{7\sqrt{2}}{2}$. **7.052.** (0,5; 0; 0). **7.053.** (1; -3; 3). **7.054.** а) Правильный;

б) прямоугольный. **7.055.** 120° ; 30° ; $2\sqrt{2}(2+\sqrt{3})$; $2\sqrt{3}$.

7.056. (1; 1; 0), (2; 1; 0), (2; 2; 0), (1; 2; 0) или (1; 1; 2), (2; 1; 2),

(2; 2; 2), (1; 2; 2). 7.057. a) Указание. Возможны 4 случая расположения тетраэдра относительно системы координат. В одном из них $B(0; \sqrt{3}; 0), P\left(0; \frac{\sqrt{3}}{3}; \frac{2\sqrt{6}}{3}\right)$. **7.058.** (-1; 3; 0), (-1; 0; 8), (0; 3; 8), (-1; 0; 0), (0; 3; 0), (0; 0; 8); этот многогранник — прямоугольный параллелепипед; V = 24; S = 70. **7.059.** (0; 2; 8) или (0; 3; 9). **7.060.** B) m = 1; n = -1. **7.061.** (-2; 0; 0), (0; 4; 0), $(0; 0; \sqrt{3})$. **7.062.** (0; 0; -3). **7.064.** Трапеция. **7.065.** а) $\frac{\sqrt{3}}{3}$; б) $\frac{\sqrt{2}}{2}$; в) $\frac{\sqrt{6}}{6}$. 7.066. Указание. Рассмотрите 4 случая расположения тетраэдра относительно системы координат. В одном из случаев: $B(2; 2\sqrt{3}; 0), P(2; \frac{2\sqrt{3}}{3}; \frac{4\sqrt{6}}{3});$ центроиды: $(\frac{8}{3}; \frac{8\sqrt{3}}{9}; \frac{4\sqrt{6}}{9});$ $\left(\frac{4}{3}; \frac{8\sqrt{3}}{9}; \frac{4\sqrt{6}}{9}\right); \left(2; \frac{2\sqrt{3}}{9}; \frac{4\sqrt{6}}{9}\right).$ **7.067.** a) $(2; 1; \pm\sqrt{2}); (3; 2; \pm\sqrt{2});$ $(2; 3; \pm \sqrt{2}); (1; 2; \pm 2).$ **7.068.** 1) $\frac{2\sqrt{6}}{3}; 2) \arccos\left(-\frac{1}{3}\right).$ **7.069.** a) $\frac{\sqrt{3}}{3};$ 6) $\frac{\sqrt{3}}{2}$; B) $\frac{2\sqrt{3}}{3}$; r) $\frac{\sqrt{3}}{3}$; 1:1:1. **7.070.** (0; 0; 5,5), (0; 0; 5 - $\sqrt{17}$), $(0;0;5+\sqrt{17})$, $(0;0;4-\sqrt{19})$, $(0;0;4+\sqrt{19})$. **7.071.** (4;4;4) или $\left(-\frac{4}{3}; -\frac{4}{3}; -\frac{4}{3}\right)$. **7.072.** (0; 0; 9,5), (0; 0; -9,5), (0; 0; -1), (0; 0; 5). **7.073.** $\frac{x}{8} + \frac{y}{7} + \frac{z}{5} = 1$ или $\frac{x}{8} + \frac{y}{-7} + \frac{z}{5} = 1$. **7.074.** $(x+1)^2 + (y-3)^2 + \frac{z}{5} = 1$. $+(z-5)^2=16.$ **7.075.** $(x-2)^2+y^2+(z+3)^2=13.$ **7.076.** $(x+1)^2+1.$ $+(y+1)^2+(z-1)^2=41.$ 7.077. Точки A,B,E. 7.078. a) A; б) B,C,O;в) B и C, B и O, O и C. **7.080.** $M_x(2,5;0;0), M_y\left(0;\frac{5}{3};0\right), M_z(0;0;-5).$ **7.081.** a) x - z = 0; B) x + 2y - 7z = 0. **7.082.** 2x - 3y - 5z + 30 = 0. **7.083.** a) 3x-4y+5z+4=0; 6) 2x+3y-4z=0; B) 5x+y-4z+7=0. **7.084.** a) x - 3 = 0; б) y - 3 = 0; в) z - 3 = 0; г) z + 4 = 0; д) x + z - 3 = 0. **7.086.** 3x + 4y - 3z - 14 = 0. **7.087.** 2x - 3y + z - 13 = 0. **7.088.** $\frac{x}{4} + \frac{x}{4} + \frac{x}{4}$

 $+\frac{y}{6}+\frac{z}{9}=1$. 7.089. 3x+y-z-2=0. 7.090. a) z=1; 6) x+1=0;

B) y-2=0; r) 2x-y+3z+1=0. **7.091.** (2,5;0;0); (0;-5;0); (0;0;2,5);

$$\frac{x}{2,5} + \frac{y}{-5} + \frac{z}{2,5} = 1. \ \textbf{7.093.} \ a) \ x + y + z - 3 = 0; \ 6) \ x + y + z - 2 = 0;$$
 в) $15x + 10y - 6z - 60 = 0. \ \textbf{7.094.} \ (x + 1)^2 + (y - 2)^2 + (z - 1)^2 = 3 \ u$ $x^2 + (y - 3)^2 + (z - 2)^2 = 3. \ \textbf{7.095.} \ b) \ (2; -3; 5); \ \sqrt{3}; \ r) \left(\frac{1}{2}; -\frac{3}{2}; \frac{5}{2}\right); \ \frac{\sqrt{7}}{2}.$ $\textbf{7.096.} \ 2) \ a) \ (x - 2)^2 + (y + 3)^2 + (z - 4)^2 = 16. \ \textbf{7.097.} \ a) \ x = 0; \ 6) \ y = 3;$ в) $x = 0; \ r) \ y + 5z = 0; \ g) \ 3x + 3y + 2z - 8 = 0. \ \textbf{7.098.} \ \textbf{Совокупность} \ \textbf{точек}$ беоконечной цилиндрической поверхности с образующей, параллельной оси аппликат; сечением этой поверхности плоскостью Oxy является квадрат (как замкнутая ломаная) с вершинами $(\pm 1; 0; 0), (0; \pm 1; 0). \ \textbf{7.100.} \ \textbf{Совокупность} \ \textbf{точек} \ двух \ пересекающихся плоскостей $x - y + 2z = 0$ и $x + y - 2z = 0. \ \textbf{7.101.} \ x - 6y + 16z - 77 = 0.$ $\textbf{7.102.} \ M_0 \left(\frac{7}{19}; \frac{20}{19}; \frac{11}{19}\right). \ \textbf{7.103.} \ \arccos \frac{34}{39}. \ \textbf{7.104.} \ \arccos \frac{3}{3}.$ $\textbf{7.104.} \ \arccos \frac{3}{3}.$ $\textbf{7.105.} \ a) (3 - \sqrt{2}; 3 - \sqrt{2}; 0); \ b) (3 + \sqrt{2}; 3 + \sqrt{2}; 0). \ \textbf{7.106.} \ \text{Если} \ a > -5 - \text{сфера радиуса} \ \sqrt{a + 5} \ \text{с центром} \ (-2; 1; 0). \ \textbf{7.107.} \ 25 \frac{11}{13} \ \pi.$ $\textbf{7.108.} \ 2x + 4y + 4z = 9. \ \textbf{7.109.} \ x + y - 2z = 0. \ \textbf{7.110.} \ (x - 1)^2 + (y - 1)^2 + (z - 2)^2 = 54. \ \textbf{7.111.} \ x^2 + y^2 + z^2 = 1;$ $x^2 + y^2 + z^2 = 9. \ \textbf{7.112.} \ \text{Сфера радиуса} \ \sqrt{26} \ \text{с центром} \ (2; -1; 3); \ \text{точк} \ A \ B - \text{концы диаметра сферы} - \text{исключены}. \ \textbf{7.113.} \ \text{Две} \ \text{сферы:} \ (x - 1)^2 + y^2 + (z + 2)^2 = 1 \ \text{и} \ (x - 1)^2 + y^2 + (z + 2)^2 = 25.$ $\textbf{7.116.} \ \left(\frac{2}{7}; \frac{2}{7}; \frac{7}{7}, \left(\frac{2}{9}; \frac{2}{9}; -\frac{2}{9}\right), (2; -2; 2), \left(\frac{2}{3}; -\frac{2}{3}; -\frac{2}{3}\right). \ \textbf{7.117.} \ x + z - 6 = 0. \ \textbf{7.118.} \ x + 19y + 5z - 104 = 0. \ \textbf{7.119.} \ \text{Поверхность} \ \text{октанара} \ \text{с вершинами} \ (\pm 1; 0; 0, 0, 0; \pm 1; 0, 0; 0; \pm 1). \ \textbf{7.120.} \ \textbf{Поверхность} \ \text{октанара с вершинами} \ (\pm 4; 0; 0), (0; 0; \pm 4). \ \textbf{7.122.} \ 2x + 2y + 2z - 15 = 0. \ \textbf{7.123.} \ \text{arccos} \ \frac{$$

пустое множество; если a = -2 — точка (2; 0; 2); если a = 2 — точка

(-2; 0; 2); если $a \in (-\infty; -2) \cup (2; +\infty)$ — сфера радиуса $\sqrt{a^2-4}$ с центром (-a; 0; 2). **7.127.** $23,04\pi$. **7.128.** 6x - 8y - 47 = 0. **7.129.** x + 2y + 2z - 11 = 0. **7.130.** $(x - 5)^2 + (y - 1)^2 + (z - 1)^2 = 12$ или $(x-5)^2 + (y-1)^2 + (z-1)^2 = 48$. 7.131. Множество всех внутренних точек шара радиуса $\sqrt{6}$ с центром (2; 1; 1), за исключением точек диаметра AC. **7.132.** Все точки K(x; y; z), лежащие вне сферы $x^2 + y^2 + (z - 2)^2 = 9$, за исключением тех из них, которые лежат на прямой $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z}{-2}$, содержащей точки M и N. **7.133.** 3x - y + 2z - 5 = 0. **7.134.** 6) x - y = 0; B) x + y + z - 6 = 0. **7.135.** 1:1:1. **7.137.** a) (3; -3; 3) и (-3; 3; -3); б) $\left(-\frac{5}{3}; \frac{5}{3}; -\frac{5}{3}\right)$; (3; -3; 3). **7.138.** a) (1; 1; 1); б) (5; 5; 5); в) $(3; 3; 3 - 2\sqrt{3})$, $(3; 3 - 2\sqrt{3}; 3)$, $(3-2\sqrt{3}; 3; 3); r)(3; 3; 3+2\sqrt{3}), (3; 3+2\sqrt{3}; 3), (3+2\sqrt{3}; 3; 3);$ д) (3; $3-\sqrt{6}$; $3-\sqrt{6}$), ($3-\sqrt{6}$; 3; $3-\sqrt{6}$), ($3-\sqrt{6}$; 3 - $\sqrt{6}$; 3); e) $(3; 3 + \sqrt{6}; 3 + \sqrt{6})$, $(3 + \sqrt{6}; 3; 3 + \sqrt{6})$, $(3 + \sqrt{6}; 3 + \sqrt{6}; 3)$; ж) $(3; 3; 3 + 2\sqrt{3}); 3) (3; 3; 3 - 2\sqrt{3}).$ 7.142. Параллельны. **7.144.** (-13; -4; -20). **7.145.** arcsin $\frac{1}{2\sqrt{39}}$. **7.146.** a) 90°; б) arccos $\frac{\sqrt{2}}{3}$. **7.147.** Точки M и K принадлежат прямой, а точка N — нет. 7.148. $\alpha = -2$; $\beta = 0$. 7.149. $\begin{cases} x = 0, \\ y = \frac{11}{8} - \frac{1}{8}t, \\ z = t \end{cases} \begin{cases} x = \frac{11}{3} - \frac{1}{3}t, & t \in \mathbb{R}. \\ y = 0, \\ z = t \end{cases}$ $\begin{cases} x = \frac{11}{3} - \frac{8}{3}t, \\ y = t, \\ z = 0. \end{cases}$ **7.150.** $\begin{cases} x = -8 + 9t, \\ y = 1 - 6t, \\ z = 3 - 4t; \end{cases}$ $t \in \mathbb{R}; \left(0; -\frac{13}{3}; -\frac{5}{9}\right), \left(-\frac{13}{2}; 0; \frac{7}{3}\right), \end{cases}$

$$\left(-\frac{5}{4}\,;-\frac{7}{2}\,;0\right)$$
. 7.151. $\begin{cases} x=-t,\\y=4t,\\z=4t;\end{cases}$ 7.152. $\begin{cases} x=-t,\\y=2t,\\z=7t;\end{cases}$ 7.153. $\alpha+\beta=-5$. 7.154. $\arccos\sqrt{0,7}$. 7.155. $\arccos\frac{2}{3}$. 7.156. Прямые совпадают. 7.157. Прямые пересекаются в точке $A(5;2;9)$. 7.158. $2)$ а) $\frac{2\sqrt{3}}{3}$; б) $\frac{\sqrt{3}}{3}$; в) $\frac{\sqrt{3}}{3}$. 7.159. Прямая лежит в плоскости.

7.160. Прямая параллельна плоскости Oxz и пересекает плоскость

250

Oxy в точке (-7; 1; 0), а плоскость Oyz — в точке $\left(0;1;4\frac{2}{3}\right)$.

7.161. $\begin{cases} x = 5t, \\ y = 3 + 2t, & t \in \mathbb{R}; \\ z = 4 - t. \end{cases}$ (0,5; 3,2; 3,9). **7.162.** $\arcsin \frac{10}{\sqrt{154}}$.

7.163. x-2y-3z=0; $\left(3\frac{6}{7};-1\frac{5}{7};2\frac{3}{7}\right)$. **7.164.** 1:3. **7.165.** Прямая

и сфера пересекаются в точках A(4;0;3) и $B\!\!\left(\frac{1}{7};2\frac{4}{7};4\frac{2}{7}\right)\!.$

7.167. $\begin{cases} x = 2, \\ y = t, & t \in \mathbb{R}. \\ z = 0; \end{cases}$ 7.168. $\begin{cases} x = -3 - 4t, \\ y = 4 + 3t, \\ z = t; \end{cases}$ 7.169. Ox 14

AB пересекаются; Oy и AB, Oz и AB скрещиваются.

7.170. $\begin{cases} x = 1 - 5t, \\ y = 3, \\ z = -2 + 2t; \end{cases} \quad t \in \mathbb{R}. \quad 7.171. \quad \begin{cases} x = -1, \\ y = 2 + 3t, \\ z = 3 - 7t; \end{cases} \quad t \in \mathbb{R}. \quad 7.172. \quad 0.$

7.173. Прямые параллельны. **7.174.** 1) $\frac{x}{2} + \frac{y}{3} + \frac{z}{5} = 1$; 2) 6) $\left(\frac{2}{3}$; 1; $\frac{5}{3}\right)$;

в) 1:2; г) $\cos \varphi = \frac{6}{19}$, $\cos \psi = \frac{25}{19};$ д) $\arcsin \frac{2}{\sqrt{13}};$ е) $\frac{19}{\sqrt{13}}$. **7.175.** x =

 $z=1+5t,\ y=1-t,\ z=1-7t.$ 7.176. $\frac{5\sqrt{30}}{6}$. 7.177. Прямая парал-

лельна плоскости. **7.178.** Прямая пересекает плоскость в точке

 $\left(-13;\,11\frac{1}{3};\,\frac{1}{3}\right)$. **7.179.** $\begin{cases} x=3+3t,\ y=8-7t,\ t\in \emph{\textbf{R}}.\end{cases}$ **7.180.** Прямая и сфера z=1+t;

касаются в точке (1; 5; 12). **7.181.** Прямая и сфера не имеют общих

точек. **7.184.** $\frac{27}{13}$. **7.185.** 2x + 3y + 6z = 0. **7.186.** z = 0 и 3x + 4z = 0.

7.187. 2x - 3y + z + 2 = 0. **7.188.** Две плоскости x + 2y - 2z - 11 = 0 и x + 2y - 2z + 1 = 0. **7.189.** Две плоскости 7x + 9y + 8z + 4 = 0

x - 15y + 16z + 6 = 0. **7.190.** 4:25. **7.191.** $\frac{10}{\sqrt{38}}.$ **7.192.** $\frac{38}{3\sqrt{29}}.$

7.193. $\begin{cases} x = 2t, \\ y = t, & t \in \mathbb{R}. \\ z = t: \end{cases}$ **7.194.** (4; -1; -3); $\sqrt{26}$. **7.195.** (1; 2; 6),

(1; 2; 4), (1; 0; 6), (1; 0; 4), (-1; 2; 6), (-1; 2; 4), (-1; 0; 6), (-1; 0; 4).

7.196. Множество всех точек сферы радиуса $\sqrt{15,25}$ с центром

(2; 3; 1,5). **7.197**. Множество всех точек сферы радиуса $\sqrt{6}$ с центром $\left(\frac{2}{3}; \frac{2}{3}; \frac{7}{3}\right)$. **7.198**. $12a^2$, где a — ребро куба. **7.199**. $8a^2$, где a — ребро куба. **7.201**. Множество всех точек сферы радиуса 0,5 с центром в центре призмы. **7.202**. Множество всех точек сферы радиуса 2 с центром в начале координат. **7.203**. Множество всех точек сферы радиуса 2 с центром (0; 2; -1). **7.204**. 8x + y = 0. **7.205**. 5x - 3y - 8z = 0. **7.206**. Да; x + 2y + 13z - 22 = 0. **7.207**. Да; x + z - 3 = 0. **7.208**. 8. **7.209**. Такая точка единственная: (0; 0; -6,5). **7.210**. 4x + 3y + 12z - 25 = 0. **7.211**. Такая сфера единственная: $x^2 + y^2 + z^2 = 0$

$$=30.$$
 7.212. Таких прямых две: $egin{cases} x=t, \\ y=t, \\ z=-t \end{cases}$ и $egin{cases} x=t, \\ y=-11t, & t\in I\!\!R. \\ z=5t; \end{cases}$

7.213.
$$\begin{cases} x = 3 - 2t, \\ y = 1 + 3t, \\ z = 0; \end{cases} \begin{cases} x = 0, \\ y = 1 + 3u, \\ z = 5u; \end{cases} \begin{cases} x = 3 - 2v, \\ y = 0, \\ z = 5 v; \end{cases} t, u, v \in \mathbf{R}.$$

7.214. a)
$$\left(\frac{19}{\sqrt{498}}; \frac{11}{\sqrt{498}}; \frac{4}{\sqrt{498}}\right)$$
; 6) $\left(-\frac{19}{\sqrt{498}}; -\frac{11}{\sqrt{498}}; -\frac{4}{\sqrt{498}}\right)$. **7.215.** $x = \frac{1}{\sqrt{498}}$

$$y = z$$
, $x = y = -z$, $x = -y = z$, $x = -y = -z$. 7.216.
$$\begin{cases} x = 2t, \\ y = 22, 5 - 3t, \\ z = -37 + 8t; \end{cases}$$

 $t \in {\it R}$. **7.217.** Сфера, описанная около куба. **7.218.** Сфера с радиусом

$$\frac{15\sqrt{5}}{16}$$
 и центром (0; 2,125; -0,5625). **7.219.** $\frac{\sqrt{14}}{4}$. **7.220.** a) $\sqrt{3}$;

6)
$$\frac{\sqrt{13}}{2}$$
; B) $\frac{\sqrt{7}}{2}$; r) $\frac{2\sqrt{5}}{5}$. **7.221.** a) $\frac{\sqrt{21}}{7}$; 6) $\frac{2\sqrt{21}}{7}$. **7.222.** a) $\frac{\sqrt{3}}{2}$; 6) $\frac{3\sqrt{13}}{13}$;

в)
$$\frac{\sqrt{21}}{7}$$
 и $\frac{2\sqrt{21}}{7}$. **7.223.** а) $\frac{\sqrt{21}}{7}$; б) $\frac{\sqrt{30}}{10}$. **7.224.** а) $\frac{3\sqrt{5}}{5}$; б) $\frac{3\sqrt{5}}{5}$; в) $\frac{\sqrt{21}}{7}$;

r)
$$\frac{\sqrt{21}}{7}$$
. 7.225. $\arccos \frac{3}{4}$. 7.226. a) $\arccos \frac{\sqrt{10}}{10}$; 6) $\arccos \frac{\sqrt{2}}{4}$;

в)
$$\arccos \frac{3}{4}$$
. 7.227. $0,125\sqrt{3}$. 7.228. a) $0,2\sqrt{15}$; 6) $0,25\sqrt{3}$;

в)
$$0.125\sqrt{3}$$
; г) $0.25\sqrt{6}$. **7.229.** $\frac{4\sqrt{3}}{7}$. **7.230.** а) $\frac{\sqrt{2}}{2}$; б) $\frac{2\sqrt{13}}{13}$; в) $\frac{2\sqrt{5}}{5}$;

$$r) \frac{2\sqrt{13}}{13};$$
д) $\frac{2\sqrt{13}}{13}$.

Д2. Материалы для повторения и углубления планиметрии

107.
$$5,8$$
 см. 109. $\sqrt{\frac{a^2+b^2}{5}}$. 110. 6. 111. $5,6$. 112. $4:3$. 113. $\frac{8\sqrt{14}}{15}$. 114. $5\sqrt{2}$ см. 115. 1. 116. $\frac{c\cdot(\sin2\beta)}{2\sin(\beta+45^\circ)}$. 117. $\frac{25}{2}$ и $\frac{9}{1}$. 118. 16. 119. 7. 120. 52 . 121. 10. 122. $9\frac{13}{35}$. 123. 7. 124. $p-a$; $p-b$; $p-c$, $\epsilon\partial e\,p-n\sigma$ лупериметр треугольника. 126. 56 см. 127. $\frac{2S}{3r}$. 128. $41\frac{2}{3}$ см. 130. $2,5$; 6 ; $6,5$. 131. $\frac{|a+b|}{2}$. 132. $\frac{25}{8}$; 4 ; $\frac{144}{25}$. 134. 90 см. 135. 12 см; $\frac{35\sqrt{6}}{8}$ см. 137. $4,8$ см. Указание. Треугольники АВС и DВЕ подобны. 138. $\frac{6}{5}a$. 139. $7,5$ см. 140. $7,5$ см. 141. 13 см. 142. $\frac{\sqrt{13}}{2}$ R. 143. 5 см. 144. $\sqrt{r_1^2+r_2^2}$. Указание. Воспользуйтесь подобием треугольников. 145. $r+r_1+r_2$. Указание. Воспользуйтесь соотношением между катетами, гипотенузой и радиусом вписанной в прямоугольный треугольник окружности. 146. $\frac{4\sqrt{46}}{3\sqrt{15}}$. Указание. Воспользуйтесь теоремой о касательной к окружности и секущей. 147. $5\frac{5}{8}$. 148. 69° ; 48° и 63° . 149. 44° ; 80° и 56° . 150. 8. 151. 2. 152. $\sqrt{2}$. 153. $3\sqrt{2}$. 154. 18. 155. 157 $^\circ$. 156. 25π . 157. 84 см². 158. 192: 49. 159. 15 дм; 8 дм. 160. $\frac{49}{\sqrt{3}}$. 161. $30:7$. 162. 45° ; 45° ; 90° . Указание. Воспользуйтесь неравенством $\frac{a}{b}+\frac{b}{a}\geqslant 2$. 163. $\sqrt{\frac{8c^2+3a^2}{35}}$. 164. 7. 165 . $\frac{a+b-\sqrt{a^2+ab+b^2}}{2}$. 166. 6. 167. $10\frac{2}{3}$. 168. $\sqrt{10}$. 170. $\cos C$. 171. $S \cdot \cos^2\beta$. 172. a) ($\sqrt{S_1}+\sqrt{S_2}$)? b) 2 $\sqrt{S_1 \cdot S_2}$. 173. ($\sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3}$)². 174. 34 см и 56 см. 175. 70 см; 75 см. 176. $a-b$. 177. $\sqrt{b^2-a^2}$. 178. 1,25. 179. 4 см. 180. $3\sqrt{3}$.

181. 2 arcsin $\frac{5}{\sqrt{109}}$. **182.** 20 cm². **183.** $\frac{R^2\sqrt{3}(6\sqrt{3}-4)}{3}$. **184.** $\sqrt{13}$.

185.
$$\sqrt{\frac{a^2-4a+16}{3}}$$
. **186.** 15 cm. **187.** 7,2; 7,5. **188.** 10. **189.** $a \cdot b$.

190. 1;
$$\sqrt{3}$$
 . **191.** 5 дм; 13 дм. **192.** 29,4 см; 12,5 см; 14 см; 16,9 см.

193. 192 cm². **194.**
$$\sqrt{\frac{7}{3}}$$
 cm. **195.** $\frac{9\sqrt{10}}{5}$ cm; $\frac{18\sqrt{10}}{5}$ cm; $\frac{6\sqrt{10}}{5}$ cm;

$$3\sqrt{10}$$
 cm. 196. $\frac{h\sqrt{3}}{3}$. 198. 180 cm². 199. 30° ; 150° . 201. $\frac{\pi}{4}$; $\frac{3\pi}{4}$. 202. 1.

203. 3. **204.** 2. **205.** 37. **206.**
$$\frac{a \cdot b}{(a+b)^2}$$
. **207.** 168. **208.** 3. **209.** 3.

210.
$$10 \text{ cm}^2$$
. **211.** $\frac{13\sqrt{3}}{3}$. Указание. Если $DC = a$, $\angle ACM = \alpha$, то

$$a=4:\cos \alpha=3:\cos (60^{\circ}-\alpha)$$
. **212.** $\sqrt{P\cdot Q}$. **214.** $2\sqrt{5}$. **215.** Указание. Средние линии треугольника разбивают его на четыре равнове-

ликих треугольника. **216.**
$$\frac{a^2}{2}$$
. **217.** $\sqrt{7}$. **218.** 8 см; 9 см. **219.** $\frac{3\pi}{7}$.

220. 200. **221.**
$$\sqrt{7}$$
 . **222.** $a\sqrt{\frac{R_1}{R_1-R_2}}$. **223.** 17 см. **224.** Указание. Тра-

225. 3 cm. **226.**
$$\frac{1}{2}\sqrt{\frac{14Rr-R^2-r^2}{3}}$$
. **227.** 30. **228.** a) $2\sqrt{R\cdot r}$; 6) $\sqrt{R\cdot r}$;

в) 90°. **229.**
$$\frac{R \cdot r}{(\sqrt{R} + \sqrt{r})^2}$$
 и $\frac{R \cdot r}{(\sqrt{R} - \sqrt{r})^2}$. **230.** $6 + 2\sqrt{2}$. **231.** 30° . **232.** $4\frac{3}{8}$.

233. $7+4\sqrt{3}$. **234.** $\sqrt{21}$. **235.** 48. **236.** 5*S*. **237.** Полоса, заключённая между двумя параллельными прямыми, расстояние между которыми равно 2p, а прямая l делит их общий перпендикуляр пополам. **238.** а) Окружность с центром A и радиусом AB; б) окружность с радиусом, равным отрезку AB, и с центром в точке A_1 , симметричной точке A относительно точки B. **239.** а) Серединный перпендикуляр к отрезку AB; б) прямая, перпендикулярная прямой AB и проходящая через точку, симметричную середине отрезка AB относительно точки B. **240.** а) Прямая, проходящая через

точку C параллельно прямой AB; б) отрезок BD такой, что $\overrightarrow{BD} =$

 \overrightarrow{AC} ; в) параллелограмм \overrightarrow{ABDC} , где $\overrightarrow{CD} = \overrightarrow{AB}$. **241.** Да. Указание. Покажите, что диагонали данного четырёхугольника, пересекаясь, делятся пополам. **243.** $\overrightarrow{BM}: \overrightarrow{MK} = 5:3; \overrightarrow{AM}: \overrightarrow{MP} = 3:1.$ **244.** $\overrightarrow{BM}: \overrightarrow{MH} = 5:4; \overrightarrow{AM}: \overrightarrow{MK} = 2:1.$ **245.** 6:11. **246.** $(x-1)^2+$

 $+(y+5)^2=50.$ **247.** 10. Указание. Возведите в квадрат векторное

равенство $\overrightarrow{MC}_1 = \frac{1}{2}$ ($\overrightarrow{MA} + \overrightarrow{MB}$), где M — точка пересечения медиан треугольника ABC, C_1 — середина стороны AB. 248. 6. Указание. Используйте равенство $\overrightarrow{AA}_1 = \frac{4}{7} \overrightarrow{AB} + \frac{3}{7} \overrightarrow{AC}$. 249. $(x-5)^2 + (y+3)^2 = 68$, кроме точек (3; 5) и (7; -11). 250. $(x-3)^2 + (y-5)^2 = 17$. 251. Окружность с центром (5,5; 0) и радиусом 1,5. 252. Окружности пересекаются. 253. $(x-9)^2 + (y+7)^2 = 100$ или $(x+3)^2 + (y-9)^2 = 100$. 254. Две концентрические окружности с центром в начале координат и радиусами 1 и 5. 255. 3x + 4y - 25 = 0; $10\sqrt{3}$. 256. 10.

ОГЛАВЛЕНИЕ

ПредисловиеУсловные обозначения	3 5
Глава 1. ВВЕДЕНИЕ В СТЕРЕОМЕТРИЮ	
Задачи к § 3 -4 . Аксиомы и следствия из них	7
Тема: «Следствия из аксиом стереометрии»	15 16
Глава 2. ПРЯМЫЕ В ПРОСТРАНСТВЕ	
Задачи к § 6. Классификация взаимного расположения двух прямых	19 24 25
Глава З. ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ	
Задачи к § 8. Параллельность прямой и плоскости	30
Перпендикуляр и наклонная к плоскости	34 41
Ортогональное проектирование	45 47
Глава 4. ПЛОСКОСТИ В ПРОСТРАНСТВЕ	
Графическая работа $N\!\!\!_{ 2} 2.$	
Тема «Параллельность в пространстве»	54 55
плоскостями	62 65
прямых	68
Тема: «Перпендикулярность в пространстве»	70
многоугольника	71 73

Глава 5.	РАССТОЯНИЯ В ПРОСТРАНСТВЕ	
Задач	и к § 18. Расстояние от точки до фигуры	
c pacc	тоянием в пространстве 8 и к главе 5 8	
Глава 6.	ВЕКТОРНЫЙ МЕТОД В ПРОСТРАНСТВЕ	
над ве Задач Задач	и к § 21. Понятие вектора. Линейные операции екторами	1
Глава 7.	КООРДИНАТНЫЙ МЕТОД В ПРОСТРАНСТВЕ	
в прос	и к § 24. Декартова прямоугольная система координат странстве	3
Задач в коор	авенствами	6
	ІЕНИЯ. Д1. МЕТОДЫ ПОСТРОЕНИЯ СЕЧЕНИЙ РАННИКОВ	
1.2. M	Гетод следов	2
	ІЕНИЯ. Д2. МАТЕРИАЛЫ ДЛЯ ПОВТОРЕНИЯ ЛЕНИЯ ПЛАНИМЕТРИИ	
2.2. 3a 2.3. Te	Рабочие теоремы» планиметрии	3
ПРИЛОЖ	ЕНИЯ	
Списо Форму Триго Форму	рк задач на построение в пространстве	4 6 2