भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I) End-Semester Exam (November 20, 2017)

Important instructions: All Questions are compulsory. Questions 1-4 carry equal marks (8 each) and Questions 5-10 carry equal marks (3 each). The alphabets corresponding to your choices for Questions 5-10 must be written clearly at a common place. Please show the necessary rough work as appropriate separately (preferably in last four pages of the answer-script). Symbols have their usual meaning as per usage during the course lectures. Please follow all instructions carefully to avoid any penalty.

1. The wave function for a particle is given by:

$$\psi(x) = \begin{cases} 2\alpha\sqrt{\alpha}xe^{-\alpha x}, & \text{if } x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Obtain the value of Δx . Show all the steps involved in the calculation.

- 2. Obtain the S-matrix for a quantum mechanical object of mass m and energy E (E>0) in an attractive delta function potential $V(x)=-\xi\delta(x)$. Show all the steps involved in the calculation.
- 3. A particle of mass m is in the state $\Psi(x,t) = Ae^{-a[(mx^2/h)+it]}$, where, A and a are positive real constants. Obtain A and find the potential energy function V(x) for which $\Psi(x,t)$ satisfies the corresponding time dependent Schrödinger equation. Show all the steps involved in the calculation.
- A quantum mechanical system in a harmonic oscillator potential is prepared in the state. | ψ >= 1+i/2 | 3 > +1-i/2 | 4 >.
 Obtain the expectation value of < x > in this state. Show all the steps involved in the calculation.
- 5. The values of $[x, p_x]$, $[a, a^{\dagger}]$, [N, a], $[y, p_x]$ respectively, are: (a) $i\hbar$, 1,-a, 0 (b) $i\hbar$, -1, a, 0 (c) $i\hbar$, 1, a^{\dagger} , 0 (d) $i\hbar$, 1, a, $i\hbar$ (e) $-i\hbar$, 1, a, 0 (f) $-i\hbar$, -1, a, 0 (f) $-i\hbar$, -1, -a, 0
- Consider the infinite potential box in 3-d (as discussed and solved in class) given by:

$$V(x,y,z) = \begin{cases} 0, & \text{if } 0 \le x \le a; \ 0 \le y \le a; \ 0 \le z \le a \\ \infty, & \text{otherwise} \end{cases}$$
. The degeneracy of 4^{th} and

6th excited states respectively, are:

भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

- 7. The de Broglie wavelengths of a proton of kinetic energy 100 MeV and a bullet of mass 0.1 kg traveling at 1 km/s, respectively are:

 - (a) 28.57 fm and 6.626×10^{-36} m (b) 2.857 fm and 6.626×10^{-36} m (c) 2.857 \mathring{A} and 6.626×10^{-36} m (d) 2.857 pm and 6.626×10^{-36} m
 - (e) 2.857 fm and 6.626×10^{-33} m (f) 28.57 fm and 6.626×10^{-33} m
 - (g) 2.857 Å and $6.626 \times 10^{-33} \text{ m}$
- 8. When light of wavelength 110 nm falls on a metal, electrons with kinetic energy 7.154 eV are emitted. The work function of the metal, the cut-off frequency and the cut-off wavelength are respectively,
 - (a) 4.14 eV, 10^{15}Hz , 300 nm (b) 2.07 eV, $5 \times 10^{14} \text{Hz}$, 600 nm
 - (c) 8.28 eV, 2×10^{15} Hz, 150 nm (d) 1.656 eV, 4×10^{14} Hz, 750 nm
 - (e) 3.312 eV, $8 \times 10^{14} \text{Hz}$, 375 nm (f) 6.21 eV, $1.5 \times 10^{15} \text{Hz}$, 200 nm
- 9. A dumb-bell shaped rigid body with two masses (m each) connected by a rigid mass-less rod of length 2a is rotating about an axis passing through its center with angular frequesncy ω , such that the mass-less rigid rod makes an angle ϕ with the axis. The magnitude of torque involved in the process is given by:
 - (a) $ma^2\omega^2\sin(\phi)$ (b) $ma^2\omega^2\sin(\phi)\cos(\phi)$
 - (c) $ma^2\omega^2\sin(2\phi)$ (d) $ma^2\omega^2\cos(\phi)$
 - (e) $ma^2\omega^2\cos(2\psi)$ (f) $2ma^2\omega^2\sin(2\psi)$
- 10. $P_{ab}(t)$ is the probability of finding a quantum mechanical object in the range a < tx < b at a time t and J is the probability current as discussed in class. The value of $\frac{dP_{ab}}{dt}$ is
 - (a) J(b,t) J(a,t) (b) J(a,t) J(b,t) (c) J(a,t) + J(b,t)
 - (d) $J^2(a,t) J^2(b,t)$ (e) $J^2(b,t) J^2(a,t)$ (f) none of the above

End of paper

Physical Constants

Electronic charge, $e = 1.6 \times 10^{-19}$ Coulomb.

Planck's constant, $h = 6.626 \times 10^{-34} \text{ J-s}$; $\hbar = \frac{h}{2\pi}$.

1 fm = 1 × 10⁻¹⁵ m; 1 pm = 1 × 10⁻¹² m 1 $\mathring{A} = 1 \times 10^{-10}$ m.

 $1 \text{ MeV} = 10^6 \text{ eV}.$