MyElectronicProjects Documentation

Release 0.0.0

ponty

December 28, 2011

CONTENTS

1	About	2	
2	Stripboard design		
3	Wire bending tool 3.1 Image	4 4 5	
4	DAPA AVR programmer 4.1 Test on Ubuntu 4.2 Image 4.3 Schematic 4.4 Partlist 4.5 Sources	7 7 7 8 8 8	
5	FTDI cable 5.1 Sources	9 9	
6	6.1 Images	10 10 11	
7	7.1 Images	12 12 12	
8	8.1 Images 8.2 Schematic 8.3 Board 8.4 Partlist 8.5 3D view	14 16 16 18 19 22	
9	9.1 Schematic 9.2 Board 9.3 Partlist	23 23 23 25 25	

	9.5	Images
10	STK2	200 AVR programmer 3
	10.1	Test on Ubuntu
	10.2	Image
	10.3	Schematic
	10.4	Board
	10.5	Partlist
	10.6	3D view
	10.7	Sources
11	USBa	asp AVR programmer 3
	11.1	V-USB hardware recommendation
	11.2	Makefile
	11.3	Test on Ubuntu
	11.4	Schematic
	11.5	Board
	11.6	Partlist
	11.7	3D view
	11.8	Reset
	11.9	Sources
12	USB	LED 4

MyElectronicProjects

Date December 28, 2011

PDF MyElectronicProjects.pdf

CONTENTS 1

CHAPTER

ONE

ABOUT

Hobby electronic projects built by me.

Most of them are built on stripboard.

Links:

• home: https://github.com/ponty/MyElectronicProjects

• documentation: http://ponty.github.com/MyElectronicProjects

Design tool: EAGLE Light Edition

STRIPBOARD DESIGN

Stripboard design representation in eagle:

- holes: copper should be cut or drilled here
- SMD: through-hole component, legs are drawn on top layer
- top layer: wires
- lines on documentation layer: wires
- bottom layer: original parallel strips of copper, only those are drawn, which are used for connection
- via: soldering points

Some components have no 3D view in the documentation.

WIRE BENDING TOOL

Status: OK

It is used for bending wires.

3.1 Image

3.2 Board

Normal:

3.3 3D view

3.3.1 Front

3.3. 3D view 5

3.3.2 Right side

3.3. 3D view 6

DAPA AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the parallel port.

4.1 Test on Ubuntu

checking:

4.2 Image

4.3 Schematic

4.4 Partlist

Table 4.1:

part	value
R1	470
R2	220
R3	470
X1	
X2	

4.5 Sources

original design

Parallel port specification

ISP pinout

4.3. Schematic 8

CHAPTER

FIVE

FTDI CABLE

Status: OK
Special cable.
connections:

FTDI pin	signal	color	6p4c (RJ14) pin
1	gnd	red	4
2	cts		
3	5v	green	3
4	rxd	yellow	2
5	txd	black	5
6	rts		

standard color code is reversed

5.1 Sources

RJ14 pinout

RJ14 wiring details

GARMIN ETREX DATA CABLE

Status: OK

It is used for connecting Garmin eTrex to the serial port.

connections:

DB9 pin	garmin pin
3 (TxD)	2 (In)
2 (RxD)	3 (Out)
5 (GND)	4 (GND)

6.1 Images

6.2 Sources

original design

6.2. Sources 11

SERIAL PORT LOOPBACK

Status: OK

It is used for testing the serial port.

Connected pins:

- 1-6-4
- 2-3
- 7-8

7.1 Images

7.2 Sources

original design

Serial port pinout

7.2. Sources 13

PARALLEL PORT MONITOR

Status: OK

It is used for monitoring the parallel port signals.

8.1 Images

8.1. Images 15

8.2 Schematic

8.3 Board

Normal, bottom mirrored, wires only:

8.2. Schematic

8.3. Board 17

8.4 Partlist

Table 8.1:

part	value	position
HIGH	LB10	(0.45 2.55)
HIGH1	LB10	(1.45 2.55)
R1	1k	(0.4 2.25)
R2	1k	(0.9 2.25)
R3	1k	(0.2 2.25)
R4	1k	(0.3 2.25)
R5	1k	(0.5 2.25)
R6	1k	(0.6 2.25)
R7	1k	(0.7 2.25)
R8	1k	(0.8 2.25)
R9	1k	(1 2.25)
R10	1k	(1.1 2.25)
R11	1k	(1.2 2.25)
R12	1k	(1.3 2.25)
R13	1k	(1.4 2.25)
R14	1k	(1.5 2.25)
R15	1k	(1.6 2.25)
R16	1k	(1.7 2.25)
R17	1k	(1.8 2.25)
SV1		(1 0.25)
X1		(2.175 1.525)
X3		(-0.175 1.525)

8.4. Partlist

8.5 3D view

8.5.1 Front

8.5. 3D view 19

8.5.2 Right side

8.5. 3D view 20

8.5.3 Left side

8.5. 3D view 21

8.5.4 **Bottom**

8.6 Sources

original idea

8.6. Sources 22

SERIAL PORT MONITOR

Status: OK

On each signal there is one LED for positive and one LED for negative voltage. It is easy to change connections or connect external parts. Examples: Loop-Back, Null Modem,..

9.1 Schematic

9.2 Board

Normal, bottom mirrored, wires only:

9.2. Board 24

9.3 Partlist

Table 9.1:

part	value	position
HIGH	LB10	(0.75 1.65)
LOW	LB10	(0.75 2.15)
R1	1k	(0.4 1.25)
R2	1k	(0.3 1.25)
R3	1k	(0.5 1.25)
R4	1k	(0.6 1.25)
R5	1k	(0.8 1.25)
R6	1k	(0.9 1.25)
R7	1k	(1 1.25)
R8	1k	(1.1 1.25)
SV1		(1.7 0.65)
SV2		(1.2 0.65)
SV3		(1.45 0.65)
X2		(2.15 0.9)
XPC		(-0.15 0.9)

9.4 3D view

9.4.1 Front

9.3. Partlist 25

9.4.2 Right side

9.4. 3D view 26

9.4.3 Left side

9.4. 3D view 27

9.4.4 Bottom

9.5 Images

9.5. Images 28

9.5. Images 29

STK200 AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the parallel port.

10.1 Test on Ubuntu

checking:

10.2 Image

10.2. Image 31

10.3 Schematic

10.4 Board

Normal, bottom mirrored, wires only:

10.3. Schematic 32

10.4. Board 33

10.5 Partlist

Table 10.1:

part	value	position
C1	100p	(2.3 0.95)
C3	100n	(2.3 1.95)
C5	100p	(3 1.8)
C6	100p	(3.4 1.1)
D1	1N4148DO35-7	(3.45 1.9)
IC1	74HC244N	(1.95 1.45)
LED1	red	(3.2 2.05)
LED2	red	(2.8 2.05)
R1	330	(1.4 1.6)
R2	150	(1.3 1.4)
R3	330	(1.2 1.55)
R4	1k	(2.7 1.8)
R5	100k	(3.2 1.45)
R6	330	(1.4 1.25)
R7	100k	(2.6 1.85)
R8	330	(1 1.55)
R9	330	(2.9 1.1)
R10	1k	(3.1 2)
R12	330	(2.5 2)
R13	100k	(1.95 2.05)
R14	330	(2.6 1.65)
R15	330	(2.4 1.85)
R16	330	(2.9 1.3)
X1		(0.2 1.4)
X2		(3.95 1.4)

10.5. Partlist

10.6 3D view

10.6.1 Front

10.6. 3D view 35

10.6.2 Right side

10.6. 3D view 36

10.6.3 Left side

10.6. 3D view 37

10.6.4 Bottom

10.7 Sources

original design

Parallel port specification

ISP pinout

similar designs:

• http://www.sbprojects.com/projects/stk200/

10.7. Sources 38

USBASP AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the USB port.

firmware, design: http://www.fischl.de/usbasp/

USBasp is based on V-USB (http://www.obdev.at/products/vusb/index.html)

11.1 V-USB hardware recommendation

only difference to USBasp: $1.5 \text{ k}\Omega$ pull-up resistor

http://vusb.wikidot.com/hardware

"Solution B: Level conversion on D+ and D- Level conversion with Zener diodes.

Instead of reducing the AVR's power supply, we can limit the output voltage on D+ and D- with Zener diodes. We recommend 3.6 V low power types, those that look like 1N4148 (usually 500 mW or less). Low power types are required because they have less capacitance and thus cause less distortion on the data lines. And 3.6 V is better than 3.3 V because 3.3 V diodes yield only ca. 2.7 V in conjunction with an 1.5 k Ω (or more exactly 10 k Ω) pull-up resistor. With 3.3 V diodes, the device may not be detected reliably.

If you use Zener diodes for level conversion, please measure the voltage levels to make sure that the diodes you have chosen match the requirements.

Advantages of the Zener diode approach:

- Low cost.
- Easy to obtain.
- Entire design can be at 5 V.
- AVR can be clocked at high rates.

Disadvantages:

- Not a clean solution, a compromise between all parameters must be found.
- Zener diodes come with a broad range of characteristics, especially at low currents, results may not be reproducible.
- High currents when sending high-level.
- High level is different for signaling and in idle state because signaling uses high currents to drive the diodes while idle state is driven by a 1.5 k Ω pull-up resistor."

11.2 Makefile

Tested with atmega88. Makefile settings:

```
TARGET=atmega88
HFUSE=0xdd
LFUSE=0xef
```

11.3 Test on Ubuntu

avrdude: Device signature = 0x1e930a

```
checking:
```

```
$ lsusb | grep -i 16c0:05dc
Bus 003 Device 006: ID 16c0:05dc VOTI shared ID for use with libusb
$ ls -1 /dev/bus/usb/003/006
crw-rw-r-- 1 root root 189, 261 2011-11-05 10:31 /dev/bus/usb/003/006
$ avrdude -patmega88 -cusbasp
avrdude: Warning: cannot query manufacturer for device: error sending control message: Operation not
avrdude: error: could not find USB device "USBasp" with vid=0x16c0 pid=0x5dc
The permission should be changed:
$sudo nano /etc/udev/rules.d/60-objdev.rules
add this line:
ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="05dc", GROUP="users", MODE="0666"
update rules:
$sudo udevadm trigger
checking again:
$ ls -1 /dev/bus/usb/003/006
crw-rw-rw- 1 root users 189, 261 2011-11-05 10:33 /dev/bus/usb/003/006
$ avrdude -patmega88 -cusbasp
avrdude: error: programm enable: target doesn't answer. 1
avrdude: initialization failed, rc=-1
        Double check connections and try again, or use -F to override
        this check.
avrdude done. Thank you.
Permission is OK now.
Testing with connected controller:
$ avrdude -patmega88 -cusbasp
avrdude: AVR device initialized and ready to accept instructions
```

11.2. Makefile 40

```
avrdude: safemode: Fuses OK avrdude done. Thank you.
```

11.4 Schematic

11.5 Board

Normal, bottom mirrored, wires only:

11.4. Schematic 41

11.5. Board 42

11.6 Partlist

Table 11.1:

part	value	position
C1	4u7	(2.4 0.8)
C3	100n	(1.7 0.85)
C4	22p	(1.5 0.75)
C5	22p	(1.6 0.7)
D1	3V6	(1.1 0.95)
D2	3V6	(1.2 0.9)
IC1		(1.95 0.85)
JP1	Supply target	(3 1.55)
JP2	Self programming	(2.6 0.25)
JP3	Slow SCK	(2.4 1.25)
JP4	Reset	(3.1 0.15)
JP5	Connect	(2.7 1.65)
LED1	green	(3 1.15)
LED2	red	(3 0.95)
LED3	POW TARG	(3.3 1.35)
LED4	POW USB	(2.7 1.35)
Q1	12MHz	(1.3 0.65)
R1	68	(1 0.6)
R2	68	(1.2 1.15)
R3	2k2	(1.3 1.35)
R4	1k	(2.7 0.8)
R5	1k	(2.6 0.95)
R6	10k	(1.6 1.2)
R7	1k	(3.5 1.45)
R8	1k	(2.5 1.5)
X1		(0.7 0.95)
X2		(3.45 0.7)

11.6. Partlist 43

11.7 3D view

11.7.1 Front

11.7. 3D view 44

11.7.2 Right side

11.7. 3D view 45

11.7.3 Left side

11.7. 3D view 46

11.7.4 Bottom

11.8 Reset

To reset on Ubuntu:

11.8. Reset 47

```
def usbstr(i):
    s=str(i)
    s='000'[0:3-len(s)]+s
    return s
def usbfs_filename(dev):
    \textbf{return} \ '/\texttt{dev/bus/usb}/\$s/\$s' \ \$ \ (\texttt{usbstr(dev.bus)}, \ \texttt{usbstr(dev.address)})
def reset1(dev):
    fname=usbfs_filename(dev)
    print("Resetting USB device %s" % fname)
    with open(fname, 'w') as fd:
         rc = fcntl.ioctl (fd, USBDEVFS_RESET, 0)
         if (rc < 0):
             print("Error in ioctl")
    print("OK")
def reset2(dev):
    dev.reset() # not working
dev=find()
if dev:
    reset1 (dev)
```

11.9 Sources

original design

ISP pinout

similar projects:

• http://lategahn.2log.de/index.php?USBASP-Stripboard-layout

11.9. Sources 48

CHAPTER

TWELVE

USB LED

Status: OK
It is used for testing USB power.

