НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 5.1.3 «эффект Рамзауэра»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** Исследовать энергетическую зависимоть вероятности рассеяния электронов атомами ксенона.

В работе используются: Тиратрон.

1 Теоретические сведения

Рассеяние электрона на атоме можно приближённого рассматривать как рассеяние частицы энергии E на потенциальной яме длины ℓ и глубины U_0 . Уравнение Шрёдингера имеет вид

$$\Psi'' + k^2 \Psi = 0,$$

где вне ямы

$$k^2 = k_1^2 = \frac{2mE}{\hbar^2},$$

а внутри

$$k^2 = k_2^2 = \frac{2m(E + U_0)}{\hbar^2}.$$

Коэффициент прохождения в таком случае равен

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2\ell)}.$$

Заметим, что коэффициент прохождения имеет ряд максимумов и минимумов. Он максимальнем при

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}\ell = n\pi, \ n = 1, 2, 3, \dots$$
 (1)

Качественно эффект Рамзауэра можно объяснить, рассмотрев интерференцию прошедшей и дважды отразившейся от оболочки волн де Бройля. Длины волн вне и внутри атома:

$$\lambda = \frac{h}{\sqrt{2mE}}, \ \lambda_1 = \frac{h}{\sqrt{2m(E+U_0)}}.$$

Соответственно условия на первые интерфереционные максимум и минимум

$$2\ell = \frac{h}{\sqrt{2m(E_1 + U_0)}}, \ 2\ell = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}}.$$
 (2)

Исключая из этих соотношений глубину ямы, получим

$$\ell = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}. (3)$$

Глубина ямы при этом равна

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1. \tag{4}$$

2 Описание установки

Рис. 1. (а) Схема тиратрона (слева) и его конструкция (справа): 1,2,3 – сетки, 4 – внешний металлический цилиндр, 5 – катод, 6 – анод, 7 – накаливаемая спираль. (b) Схема включения тиратрона.

Для изучения эффекта испульзуется тиратрон $T\Gamma 3$ -01/1.3Б, заполненный инертным газом (Рис. 1а). Электроны эмитируются катодом, ускоряются напряжением V и рассеиваются на атомах газа. Сетки соединены между собой и имеют один потенциал, примерно равный потенциалу анода. Рассеянные электроны отклоняются и уходят на сетку, а оставшиеся достигают анода, создавая ток $I_{\rm a}$. Таким образом, поток электронов на расстоянии x от ускоряющей сетки уменьшается с ростом x. ВАХ анода должна быть

$$I_{\mathbf{a}} = I_0 \exp\left(-Cw(V)\right),\tag{5}$$

где $I_0 = eN_0$ – ток катода, $I_{\rm a} = eN_a$ – ток анода, $C = Ln_{\rm a}\Delta_{\rm a}(L$ – расстояние между катодом и анодом, $\Delta_{\rm a}$ – площадь поперечного сечения атома, $n_{\rm a}$ – концентрация газа в лампе), w(V) – вероятность рассеяния на атоме. Формулу (5) можно переписать в виде

$$w(V) = -\frac{1}{C} \ln \frac{I_{\mathbf{a}}(V)}{I_0}.$$
 (5a)

Рис. 2. Схема установки.

Схема экспериментальной установки, изображанная на Рис. 1b, в нашей работе конструктивно осуществлена следующим образом (Рис. 2): лампатиратрон расположена непосредственно на корпусе блока источников питания (БИП), напряжение к электродам лампы подаётся от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП.

3 Ход работы

В данной работе были имерены вольт-амперные характеристики инертного газа. Они были получены динамическим и статическим метоадами.

Динамическим методом были измерены максимум и минимум тока через инертный газ.

\	$V_1 = 2.6[B]$	$V_2 = 2.98[B]$
$E_{max}[B]$	2	2
$E_{min}[B]$	7.2	7.2

 V_1, V_2 - задерживающее напряжение. Погрешность измерения динамического метода равна $\Delta=0.1[B]$. Расчитаем глубину и ширину ямы:

$$l = (3.00 \pm 0.06) \text{ Å}$$

 $U_0 = (2.16 \pm 0.04) \text{ 9B}$

Далее вольт-амперная характеристика была измерена статическим методом:

V_1	U_I	Е	V_2	U_I	Е
	0.07	0.035		0.11	0.36
	0.09	0.199		0.58	0.61
	0.10	0.257		7.96	0.32
	0.13	0.296		15.3	0.91
	0.37	0.421		34.5	1.01
	1.78	0.560		80.2	1.17
	2.38	0.587		117	1.29
	4.55	0.647		157	1.46
	6.25	0.676		178	1.61
	9.31	0.715		185	1.73
	16.2	0.776		186	1.81
	21.4	0.811		173	2.08
	24.4	0.827		143	2.49
	62.4	0.981		115	2.95
	132	1.21		90.3	3.50
	172	1.38		75.6	3.94
	188	1.51		65.4	4.40
	195	1.69		56.2	5.00
	190	1.85		52.7	5.34
	185	1.93		50.9	5.61
	177	2.04		49.8	5.85
	155	2.35		48.9	5.96
	135	2.67		48.1	6.21
	126	2.87		47.8	6.42
	101	3.62		48.1	6.66
	94.1	3.97		50.4	7.86
	89.1	4.31		54.8	8.54
	84.9	4.71		63.6	9.51
	81.8	5.23		85.1	10.6
	81.2	5.54		107	11.4
	81.3	5.76			
	81.7	5.92			
	82.4	6.13			
	84.5	6.51			
	88.9	7.03			
	97.7	7.68			
	112	8.41			
	135	9.25			

Ток через газ выражается в напряжении на резисторе R = 10[kA]. По полученным данным были построены графики BAX:

Рис. 3. Статический метод

По графикам были определены координаты максимумов и минимумов. В данном эксперименте только максимумы совпали в пределах погрешности:

	V	U_{min}	U_{max}
1	2.98	5.5 ± 0.3	1.6 ± 0.1
2	2.60	6.4 ± 0.3	1.8 ± 0.1

При измерении минимумов погрешности выше, поскольку они более пологии. Оценка погрешностей производилась по расстоянию до ближайших к экстремумам значений.

По этим данным были расчитаны параметры ямы:

Для
$$V_1=2.98~\mathrm{B}$$
 $l=(3.5\pm0.2)~\mathrm{\mathring{A}},~U_0=(1.4\pm0.1)~\mathrm{9B}$ Для $V_2=2.60~\mathrm{B}$ $l=(3.2\pm0.2)~\mathrm{\mathring{A}},~U_0=(1.9\pm0.1)~\mathrm{9B}$

Также был построен график зависимоти вероятности рассеяния от напряжения. Значение вероятности взято как логарифм тока выраженного в напряжении на резисторе.

Рис. 4. Зависимость вероятности от напряжения

Найдем, при каком значении ускоряющего потенциала на вольт амперной характиристике мы увидили бы максимумы более высоких порядков (начиная со второго и так далее). Воспользуемся для этого формулой на дифрационный максимум

$$2l = n \frac{h}{\sqrt{2m(E - U_0)}} \tag{6}$$

из нее получаем

$$U \sim E = \frac{n^2 h^2}{8l^2 m} - U_0 \tag{7}$$

Для расчета возмем значения l и U_0 для напряжения $V_2=2.60~\mathrm{B},$ поскольку при этом напряжении величина l наиболее близка к табличной. Результаты расчетов представлены в таблице.

n	U, B
1	1.81
2	12.89
3	31.36
4	57.22

4 Вывод

В данной работе был подтвержден эффект Рамзауэрас помощью тиратрона. По полученным данным были расчитаны характеристики потенциальной ямы атома. Во всех экспериментах были получены схожие значения. С учетом погрешности значение ширины ямы примерно равно l=3 Å, что сходится с реальным значением l=280 пм. Разница обусловлена грубостью модели, используемой для расчетов потенциальной ямы.