Laboratorium nr 11 Całkowanie numeryczne

f(x) – funkcja ciągła i ograniczona na przedziałe domkniętym [a,b]. Przedział [a,b] dzielimy na n podprzedziałów za pomocą punktów siatki (węzłów) x_i , $0 \le i \le n$:

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b \tag{1}$$

W przypadku równomiernej siatki (równy odstęp pomiędzy punktami) mamy $h = x_i - x_{i-1} = \text{const}$ i wtedy krok siatki wynosi h = (b-a)/n. Będziemy wyznaczać przybliżoną wartość całki

$$I(f) = \int_{a}^{b} f(x)dx. \tag{2}$$

Przedstawione poniżej wzory dotyczą przypadku równego kroku siatki h.

1 Metoda prostokątów (wariant \rightarrow metoda lewych prostokątów)

W metodzie prostokątów sumujemy pola prostokątów o podstawie długości h i wysokościach $y_i = f(x_i)$ – zatem funkcję f(x) na podprzedziale (odcinku) $[x_i, x_{i+1}]$ zastępujemy linią poziomą $y = y_i$. Wzór prostokątów z niedomiarem:

$$\int_{a}^{b} f(x)dx \approx P_{n}(f) = h \sum_{i=0}^{n-1} f(x_{i})$$
(3)

2 Metoda trapezów

W metodzie trapezów funkcję f(x) na odcinku $[x_i, x_{i+1}]$ przybliżamy funkcją liniową przechodzącą przez punkty x_i i x_{i+1} (zastosowanie interpolacji liniowej). Wzór trapezów przyjmuje postać:

$$\int_{a}^{b} f(x)dx \approx T_{n}(f) = h \left[\frac{f(x_{0}) + f(x_{n})}{2} + \sum_{i=1}^{n-1} f(x_{i}) \right]$$
(4)

Algorytm nr 1 – obliczanie całki oznaczonej metodą trapezów

```
Zmienne
    całkowite: i, n
    rzeczywiste: a, b, calkaT, h, suma
    tablice (typu rzeczywistego): x[0 \dots n]

Podać a, b, n

Zdefiniować f(z)

Obliczyć suma = 0.5 * (f(a) + f(b))

Obliczyć h = (b - a)/n

Dla i = 0, 1, 2, \dots, n

Obliczyć x_i = a + i * h

Dla i = 1, 2, \dots, n - 1

Obliczyć suma = suma + f(x_i)

Obliczyć calkaT = h * suma

Wyświetlić calkaT
```

3 Metoda Simpsona

W ramach metody Simpsona korzystamy z interpolacji kwadratowej, zatem wymagana jest parzysta liczba podprzedziałów, a wzór Simpsona jest postaci:

$$\int_{a}^{b} f(x) dx \approx S_{n}(f) = \frac{h}{3} \left(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right)$$
(5)

Algorytm nr 2 – obliczanie całki oznaczonej metodą Simpsona

```
Zmienne
     całkowite: i, n
     rzeczywiste: a, b, calkaS, h, suma2, suma4, x
Zdefiniować f(z)
Podać a, b, n
Jeżeli (n \mod 2)! = 0 to
     Drukować "Nieparzysta liczba podprzedziałów"
     Zakończ
Obliczyć calkaS = f(a) + f(b)
Obliczyć h = (b-a)/n
Obliczyć suma4 = 0.0, suma2 = 0.0
Dla i = 1, 3, 5, \dots, n-1
     Obliczyć x = a + i * h
     Obliczyć suma4 = suma4 + f(x)
Dla i = 2, 4, 6, \dots, n-2
     Obliczyć x = a + i * h
     Obliczyć suma2 = suma2 + f(x)
Obliczyć calkaS = (h/3.0) * (calkaS + 4 * suma4 + 2 * suma2)
Wyświetlić calkaS
```

*Uwaga. Druga pętla **for** z powyższego pseudokodu ma sens tylko wtedy, gdy $n \ge 4$. Dla każdego parzystego indeksu i, przybliżenie wartości całki na przedziale $[x_i, x_{i+2}]$ uzyskujemy ze wzoru lokalnego:

$$\int_{x_i}^{x_{i+2}} f(x)dx = \sigma_i \approx \frac{h}{3} \left(f(x_i) + 4f(x_{i+1}) + f(x_{i+2}) \right)$$
 (6)

n	$P_n(f)$	$I(f) - P_n(f)$
2	1.324360635350	3.93921×10^{-1}
4	1.512436676000	2.05845×10^{-1}
8	1.613125977886	1.05156×10^{-1}
16	1.665144821441	5.31370×10^{-2}
32	1.691573506747	2.67083×10^{-2}
64	1.704892710065	1.33891×10^{-2}
128	1.711578529691	6.70330×10^{-3}
256	1.714927994171	3.35383×10^{-3}
512	1.716604365088	1.67746×10^{-3}
1024	1.717442960217	8.38868×10^{-4}

Tabela 1: Metoda prostokątów zastosowana do $f(x) = e^x$, [a, b] = [0, 1].

n	$T_n(f)$	$I(f) - T_n(f)$
2	1.753931092465	-3.56493×10^{-2}
4	1.727221904558	-8.94008×10^{-3}
8	1.720518592164	-2.23676×10^{-3}
16	1.718841128580	-5.59300×10^{-4}
32	1.718421660316	-1.39832×10^{-4}
64	1.718316786850	-3.49584×10^{-5}
128	1.718290568083	-8.73962×10^{-6}
256	1.718284013367	-2.18491×10^{-6}
512	1.718282374686	-5.46227×10^{-7}
1024	1.718281965016	-1.36557×10^{-7}

Tabela 2: Metoda trapezów zastosowana do $f(x) = e^x$, [a, b] = [0, 1].

Literatura

- [1] E. Majchrzak, B. Mochnacki, Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne, Gliwice 2004.
- [2] J. F. Epperson, An introduction to numerical methods and analysis, Wiley, Hoboken, New Jersey, 2013.

n	$S_n(f)$	$I(f) - S_n(f)$
2	1.718861151877	-5.79323×10^{-4}
4	1.718318841922	-3.70135×10^{-5}
8	1.718284154700	-2.32624×10^{-6}
16	1.718281974052	-1.45593×10^{-7}
32	1.718281837562	-9.10273×10^{-9}
64	1.718281829028	-5.68970×10^{-10}
128	1.718281828495	-3.55616×10^{-11}
256	1.718281828461	-2.22222×10^{-12}
512	1.718281828459	-1.38334×10^{-13}
1024	1.718281828459	-9.54792×10^{-15}

Tabela 3: Metoda Simpsona zastosowana do $f(x) = e^x$, [a, b] = [0, 1].

Rysunek 1: Metoda prostokątów dla funkcji $f(x) = 2 + \sin(x)$ na przedziale [a, b] = [1, 11], n = 10.

Rysunek 2: Metoda trapezów dla funkcji $f(x)=2+\sin(x)$ na przedziale [a,b]=[1,11], n=10.

Rysunek 3: Metoda Simpsona dla funkcji $f(x) = 2 + \sin(x)$ na przedziale [a, b] = [1, 11].