1 Preprocess

Alphabet Size: $|\mathcal{A}| = 4$

Character to One-hot Encoding:

Given a vocabulary $\mathcal{A} = \{h, e, l, o\}$, the one-hot encoding of a character $c \in \mathcal{A}$ is defined as:

one_hot
$$(c)_i = \begin{cases} 1 & \text{if } A_i = c, \\ 0 & \text{otherwise.} \end{cases}$$

 $h: [1\ 0\ 0\ 0]$

 $e : [0 \ 1 \ 0 \ 0]$

 $l:[0\ 0\ 1\ 0]$

 $o: [0\ 0\ 0\ 1]$

Input and Target Sequences:

$$x_1 = h y_1 = e$$

$$x_2 = e y_2 = l$$

$$x_3 = l y_3 = l$$

$$x_4 = l y_4 = o$$

Replacing characters with one-hot encoding:

$$x_1 = [1 \ 0 \ 0 \ 0]$$
 $y_1 = [0 \ 1 \ 0 \ 0]$

$$x_2 = [0 \ 1 \ 0 \ 0]$$
 $y_2 = [0 \ 0 \ 1 \ 0]$

$$x_3 = [0 \ 0 \ 1 \ 0]$$
 $y_3 = [0 \ 0 \ 1 \ 0]$

$$x_4 = [0\ 0\ 1\ 0]$$
 $y_4 = [0\ 0\ 0\ 1]$

2 Forward Pass Formulas

For a sequence of characters x_1, x_2, \ldots, x_T , the network computes:

1. Hidden State at time t, h_t :

$$h_t = \tanh(Ux_t + Wh_{t-1} + b)$$

2. Calculating Attention Score, A:

$$\mathcal{A}_{t,i} = h_i \cdot h_t$$
 for $i = 1, \dots t$

3. Calculating the Weights of the Attention Scores for each Hidden State:

$$\operatorname{softmax}(\mathcal{A}_{t,i}) = \frac{e^{\mathcal{A}_{t,i}}}{\sum_{k=0}^{t} e^{\mathcal{A}_{t,k}}} \quad for \quad i = 1, \dots t$$

4. Context Vector, Sum of Weighted Attention Score

$$\mathcal{Z}_t = \sum_{k=0}^t \operatorname{softmax}(\mathcal{A}_{t,k}) \cdot h_k$$

5. Output before softmax, Ω_t :

$$\Omega_t = V \mathcal{Z}_t + c$$

4. Softmax Output, \hat{y}_t , for each character:

softmax(
$$\Omega_t$$
) = $\hat{y}_t = \frac{e^{\Omega_t}}{\sum_{k=1}^{|\mathcal{A}|} e^{\Omega_{t,k}}}$ for $t = 1, \dots, |\mathcal{A}|$

5. Cross-Entropy Loss for the correct character y_t :

$$L_t = -y_t \ln(\hat{y}_t)$$

3 Backpropagation Through Time Formulas

Gradients of the loss L with respect to the parameters U, W, V, b, c are computed as follows:

1. Gradient of Loss w.r.t. Output (Softmax Gradient):

$$\frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial \Omega_t} = (\hat{y}_t - y_t)$$

2. Updates for V and c:

$$\begin{split} \frac{\partial L}{\partial V} &= \sum_{t=1}^{S} \frac{\partial L_{t}}{\partial V} \\ &= \sum_{t=1}^{S} \frac{\partial L_{t}}{\partial \hat{y}_{t}} \frac{\partial \hat{y}_{t}}{\partial \Omega_{t}} \frac{\partial \Omega_{t}}{\partial V} \\ &= \sum_{t=1}^{S} (\hat{y}_{t} - y_{t}) \cdot h_{t}^{\top} \\ \frac{\partial L}{\partial c} &= \sum_{t=1}^{T} \frac{\partial L_{t}}{\partial c} \\ &= \sum_{t=1}^{T} \frac{\partial L_{t}}{\partial \hat{y}_{t}} \frac{\partial \hat{y}_{t}}{\partial \Omega_{t}} \frac{\partial \Omega_{t}}{\partial c} \\ &= \sum_{t=1}^{T} (\hat{y}_{t} - y_{t}) \end{split}$$

3. Updates for U, W and b:

$$\begin{split} \frac{\partial L}{\partial W} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \; \frac{\partial \hat{y}_t}{\partial \Omega_t} \; \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial W} \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \; V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \; (1 - h_{j+1}^2) \bigg((1 - h_k^2) \; h_{k-1} \bigg) \bigg) \bigg) \\ \frac{\partial L}{\partial U} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial U} = \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \; \frac{\partial \hat{y}_t}{\partial \Omega_t} \; \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial U} \bigg) \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \; V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \; (1 - h_{j+1}^2) \bigg((1 - h_k^2) \; x_k \bigg) \bigg) \bigg) \\ \frac{\partial L}{\partial b} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \; \frac{\partial \hat{y}_t}{\partial \Omega_t} \; \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial b} \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \; V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \; (1 - h_{j+1}^2) \bigg((1 - h_k^2) \bigg) \bigg) \bigg) \end{split}$$

Parameter Updates

The parameters are updated by subtracting the gradient scaled by a learning rate η :

$$V = V - \eta \frac{\partial L}{\partial V}$$

$$c = c - \eta \frac{\partial L}{\partial c}$$

$$W = W - \eta \frac{\partial L}{\partial W}$$

$$U = U - \eta \frac{\partial L}{\partial U}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

4 Parameters Initialized

The network parameters are initialized as follows:

$$U = \begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix}$$

$$W = \begin{bmatrix} -0.5870 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \end{bmatrix}$$

$$V = \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix}$$

$$c = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

5 Forward Pass

5.1 Hidden State at t = 1:

$$h_1 = \tanh(U \cdot x_1 + W \cdot h_0 + b)$$

$$= \tanh \left(\begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -0.5869 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \right)$$

$$h_1 = \begin{bmatrix} 0.1432 \end{bmatrix}$$

5.2 Hidden State at t = 2:

$$h_2 = \tanh(U \cdot x_2 + W \cdot h_1 + b)$$

$$= \tanh \left(\begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -0.5869 \end{bmatrix} \begin{bmatrix} 0.1432 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \right)$$

$$h_2 = \begin{bmatrix} -0.3055 \end{bmatrix}$$

5.3 Hidden State at t = 3:

$$h_3 = \tanh(U \cdot x_3 + W \cdot h_2 + b)$$

$$= \tanh \left(\begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -0.5869 \end{bmatrix} \begin{bmatrix} -0.3055 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$

$$h_3 = \begin{bmatrix} -0.4540 \end{bmatrix}$$

5.4 Hidden State at t = 4:

$$h_4 = \tanh(U \cdot x_4 + W \cdot h_3 + b)$$

$$= \tanh \left(\begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -0.5869 \end{bmatrix} \begin{bmatrix} -0.4540 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$

$$h_4 = \begin{bmatrix} -0.3821 \end{bmatrix}$$

Output Stage at t = 1

$$\begin{split} \mathcal{A}_{1,1} &= h_1 \cdot h_1 \\ \mathcal{A}_{1,1} &= [0.1432] \cdot [0.1432] \\ \mathcal{Z}_1 &= \operatorname{softmax}(\mathcal{A}_{1,1}) \cdot h_1 \\ \mathcal{Z}_1 &= [0.1432] \\ \Omega_1 &= V \cdot \mathcal{Z}_1 + c \\ &= \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix} \cdot [0.1432] + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \Omega_1 &= \begin{bmatrix} -0.0322 \\ -0.0437 \\ 0.0703 \\ 0.0396 \end{bmatrix} \\ \hat{y}_1 &= \operatorname{softmax}(\Omega_1) \\ \hat{y}_1 &= \begin{bmatrix} 0.2398 \\ 0.2370 \\ 0.2656 \\ 0.2576 \end{bmatrix} \end{split}$$

Based on the maximum value of the softmax function, our model predicts it as 'l', but we actually want it to predict 'e'.

$$L_{1} = -y_{1} \cdot \ln(\hat{y}_{1})$$

$$= -\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \cdot \ln \begin{bmatrix} 0.2398\\0.2370\\0.2656\\0.2576 \end{bmatrix}$$

$$= 1.4397$$

Output Stage at t=2

$$\begin{split} \mathcal{A}_{2,1} &= h_2 \cdot h_1 \\ \mathcal{A}_{2,1} &= [-0.3055] \cdot [0.1432] \\ \mathcal{A}_{2,2} &= h_2 \cdot h_2 \\ \mathcal{A}_{2,2} &= [-0.3055] \cdot [-0.3055] \\ \mathcal{Z}_2 &= \sum_{k=1}^2 \operatorname{softmax}(\mathcal{A}_{2,k}) \cdot h_k \\ \mathcal{Z}_2 &= [0.4658] \cdot [0.1432] + [0.5342] \cdot [-0.3055] \\ \mathcal{Z}_2 &= [-0.0965] \\ \Omega_2 &= V \cdot \mathcal{Z}_2 + c \\ &= \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix} \cdot [-0.0965] + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \Omega_2 &= \begin{bmatrix} 0.0217 \\ 0.0294 \\ -0.0473 \\ -0.0267 \end{bmatrix} \\ \hat{y}_2 &= \operatorname{softmax}(\Omega_2) \\ \hat{y}_2 &= \begin{bmatrix} 0.2568 \\ 0.2588 \\ 0.2397 \\ 0.2447 \end{bmatrix} \end{split}$$

Based on the maximum value of the softmax function, our model predicts it as 'e', but we actually want it to predict 'l'.

$$L_{2} = -y_{2} \cdot \ln(\hat{y}_{2})$$

$$= -\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \ln \begin{bmatrix} 0.2568 \\ 0.2588 \\ 0.2397 \\ 0.2447 \end{bmatrix}$$

$$= 1.4284$$

Output Stage at t = 3

$$\begin{split} \mathcal{A}_{3,1} &= h_3 \cdot h_1 \\ \mathcal{A}_{3,1} &= [-0.4540] \cdot [0.1432] \\ \mathcal{A}_{3,2} &= h_3 \cdot h_2 \\ \mathcal{A}_{3,2} &= [-0.4540] \cdot [-0.3055] \\ \mathcal{A}_{3,3} &= h_3 \cdot h_3 \\ \mathcal{A}_{3,3} &= [-0.4540] \cdot [-0.4540] \\ \mathcal{Z}_3 &= \sum_{k=1}^3 \operatorname{softmax}(\mathcal{A}_{3,k}) \cdot h_k \\ \mathcal{Z}_3 &= [0.2827] \cdot [0.1432] + [0.3466] \cdot [-0.3055] + [0.3707] \cdot [-0.4540] \\ \mathcal{Z}_3 &= [-0.2337] \\ \Omega_3 &= V \cdot \mathcal{Z}_3 + c \\ &= \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix} \cdot [-0.2337] + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \Omega_3 &= \begin{bmatrix} 0.0525 \\ 0.0713 \\ -0.1146 \\ -0.0647 \end{bmatrix} \\ \hat{y}_3 &= \operatorname{softmax}(\Omega_3) \\ \hat{y}_3 &= \begin{bmatrix} 0.2663 \\ 0.2714 \\ 0.2254 \\ 0.2369 \end{bmatrix} \end{split}$$

Based on the maximum value of the softmax function, our model predicts it as 'e', but we actually want it to predict 'l'.

$$L_3 = -y_3 \cdot \ln(\hat{y}_3)$$

$$= -\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \ln \begin{bmatrix} 0.2663 \\ 0.2714 \\ 0.2254 \\ 0.2369 \end{bmatrix}$$

$$= 1.4901$$

Output Stage at t = 3

$$\begin{split} \mathcal{A}_{4,1} &= h_4 \cdot h_1 \\ \mathcal{A}_{4,1} &= [-0.3821] \cdot [0.1432] \\ \mathcal{A}_{4,2} &= h_4 \cdot h_2 \\ \mathcal{A}_{4,3} &= h_4 \cdot h_3 \\ \mathcal{A}_{4,3} &= [-0.3821] \cdot [-0.4540] \\ \mathcal{A}_{4,3} &= h_4 \cdot h_4 \\ \mathcal{A}_{4,3} &= [-0.3821] \cdot [-0.3821] \\ \mathcal{Z}_4 &= \sum_{k=1}^4 \operatorname{softmax}(\mathcal{A}_{4,k}) \cdot h_k \\ \mathcal{Z}_4 &= [0.2143] \cdot [0.1432] + [0.2544] \cdot [-0.3055] + [0.2693] \cdot [-0.4540] + [0.2620] \cdot [-0.3821] \\ \mathcal{Z}_4 &= [-0.2694] \\ \Omega_4 &= V \cdot \mathcal{Z}_4 + c \\ &= \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix} \cdot [-0.2694] + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \Omega_4 &= \begin{bmatrix} 0.0605 \\ 0.0822 \\ -0.1321 \\ -0.0746 \end{bmatrix} \\ \hat{y}_4 &= \operatorname{softmax}(\Omega_4) \\ \hat{y}_4 &= \begin{bmatrix} 0.2688 \\ 0.2747 \\ 0.2217$$

Based on the maximum value of the softmax function, our model predicts it as 'e', but we actually want it to predict 'o'.

$$L_4 = -y_4 \cdot \ln(\hat{y}_4)$$

$$= -\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \cdot \ln \begin{bmatrix} 0.2688 \\ 0.2747 \\ 0.2217 \\ 0.2348 \end{bmatrix}$$

$$= 1.4489$$

$$\sum_{t=1}^{k} L_t = 1.4397 + 1.4284 + 1.4901 + 1.4489 = 5.8071$$

6 Backpropagation Through Time

6.1 Gradient of L w.r.t. Output

$$\begin{split} \frac{\partial L_1}{\partial \hat{y}_1} \frac{\partial \hat{y}_1}{\partial \Omega_1} &= (\hat{y}_1 - y_1) \\ &= \begin{bmatrix} 0.2398 \\ 0.2370 \\ 0.2656 \\ 0.2576 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0.2398 \\ -0.7630 \\ 0.2656 \\ 0.2576 \end{bmatrix} \\ \frac{\partial L_2}{\partial \hat{y}_2} \frac{\partial \hat{y}_2}{\partial \Omega_2} &= (\hat{y}_2 - y_2) \\ &= \begin{bmatrix} 0.2568 \\ 0.2588 \\ 0.2397 \\ 0.2447 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0.2568 \\ 0.2588 \\ -0.7603 \\ 0.2447 \end{bmatrix} \\ \frac{\partial L_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial \Omega_3} &= (\hat{y}_3 - y_3) \\ &= \begin{bmatrix} 0.2663 \\ 0.2714 \\ 0.2254 \\ 0.2369 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0.2663 \\ 0.2714 \\ -0.7746 \\ 0.2369 \end{bmatrix} \\ \frac{\partial L_4}{\partial \hat{y}_4} \frac{\partial \hat{y}_4}{\partial \Omega_4} &= (\hat{y}_4 - y_4) \\ &= \begin{bmatrix} 0.2688 \\ 0.2747 \\ 0.2348 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 0.2688 \\ 0.2747 \\ 0.2217 \\ -0.7652 \end{bmatrix} \\ 11 \end{split}$$

6.2 Update V

$$\begin{split} \frac{\partial L}{\partial V} &= \sum_{t=1}^{S} \frac{\partial L_t}{\partial V} \\ &= \sum_{t=1}^{S} (\hat{y}_t - y_t) \cdot h_t^{\top} \\ &= \begin{bmatrix} -0.2677 \\ -0.4165 \\ 0.5373 \\ 0.1470 \end{bmatrix} \\ \eta &= 0.1 \\ V_{new} &= V - \eta \frac{\partial L}{\partial V} \\ &= \begin{bmatrix} -0.2246 \\ -0.3053 \\ 0.4905 \\ 0.2768 \end{bmatrix} - 0.1 \cdot \begin{bmatrix} -0.2677 \\ -0.4165 \\ 0.5373 \\ 0.1470 \end{bmatrix} \\ V_{new} &= \begin{bmatrix} -0.2219 \\ -0.3011 \\ 0.4851 \\ 0.2753 \end{bmatrix} \end{split}$$

6.3 Update c:

$$\begin{split} \frac{\partial L}{\partial c} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial c} \\ &= \sum_{t=1}^{\mathcal{S}} (\hat{y}_t - y_t) \\ &= \begin{bmatrix} 1.0317 \\ 0.0419 \\ -1.0476 \\ -0.0260 \end{bmatrix} \\ \eta &= 0.1 \\ c_{new} &= c - \eta \frac{\partial L}{\partial c} \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} - 0.1 \begin{bmatrix} 1.0317 \\ 0.0419 \\ -1.0476 \\ -0.0260 \end{bmatrix} \\ c_{new} &= \begin{bmatrix} -0.0103 \\ -0.0004 \\ 0.0105 \\ 0.0003 \end{bmatrix} \end{split}$$

6.4 Update W:

$$\begin{split} \frac{\partial L}{\partial W} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \ \frac{\partial \hat{y}_t}{\partial \Omega_t} \ \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial W} \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \ V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \ (1 - h_{j+1}^2) \bigg((1 - h_k^2) \ h_{k-1} \bigg) \bigg) \\ &= \left[0.0274 \right] \\ \eta &= 0.1 \\ W_{new} &= W - \eta \frac{\partial L}{\partial W} \\ &= \left[-0.5870 \right] - 0.1 \cdot \left[0.0274 \right] \\ W_{new} &= \left[-0.5872 \right] \end{split}$$

6.5 Update U:

$$\begin{split} \frac{\partial L}{\partial U} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \ \frac{\partial \hat{y}_t}{\partial \Omega_t} \ \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial U} \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \ V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \ (1 - h_{j+1}^2) \bigg((1 - h_k^2) \ x_k \bigg) \bigg) \\ &= \begin{bmatrix} 0.1817 & -0.3287 & -0.2169 & 0 \end{bmatrix} \\ \eta &= 0.1 \\ U_{new} &= U - \eta \frac{\partial L}{\partial U} \\ &= \begin{bmatrix} 0.1442 & -0.2315 & -0.6690 & 1.1585 \end{bmatrix} - 0.1 \cdot \begin{bmatrix} 0.1817 & -0.3287 & -0.2169 & 0 \end{bmatrix} \\ U_{new} &= \begin{bmatrix} 0.1424 & -0.2282 & -0.6668 & 1.1585 \end{bmatrix} \end{split}$$

6.6 Update b:

$$\begin{split} \frac{\partial L}{\partial b} &= \sum_{t=1}^{\mathcal{S}} \frac{\partial L_t}{\partial \hat{y}_t} \ \frac{\partial \hat{y}_t}{\partial \Omega_t} \ \frac{\partial \Omega_t}{\partial \mathcal{Z}_t} \bigg(\sum_{m=1}^t \sum_{k=1}^m \frac{\partial \mathcal{Z}_t}{\partial h_m} \prod_{j=k}^{m-1} \frac{\partial h_{j+1}}{\partial h_j} \bigg(\frac{\partial h_k}{\partial b} \bigg) \bigg) \\ &= \sum_{t=1}^{\mathcal{S}} (y_t - \hat{y}_t) \ V^\top \bigg(\sum_{m=1}^t \sum_{k=1}^m \mathcal{A}_{t,m} \prod_{j=k}^{m-1} W^\top \ (1 - h_{j+1}^2) \bigg((1 - h_k^2) \bigg) \bigg) \\ &= \left[-0.3639 \right] \\ \eta &= 0.1 \\ b_{new} &= b - \eta \frac{\partial L}{\partial b} \\ &= \left[0 \right] - 0.1 \cdot \left[-0.3639 \right] \\ b_{new} &= \left[0.0036 \right] \end{split}$$

6.7 Following Epochs Loss Values

$$L_1 = -y_1 \cdot \ln(\hat{y}_1)$$

$$= -\begin{bmatrix} 0.\\1.\\0.\\0.\end{bmatrix} \cdot \ln \begin{pmatrix} \begin{bmatrix} 0.2372\\0.2368\\0.2683\\0.2576 \end{bmatrix} \end{pmatrix}$$

$$L_1 = 1.4404$$

$$L_2 = -y_2 \cdot \ln(\hat{y}_2)$$

$$= -\begin{bmatrix} 0.\\0.\\1.\\0.\end{bmatrix} \cdot \ln \begin{pmatrix} \begin{bmatrix} 0.2539\\0.2583\\0.2428\\0.2450 \end{bmatrix} \end{pmatrix}$$

$$L_2 = 1.4155$$

$$L_3 = -y_3 \cdot \ln(\hat{y}_3)$$

$$= -\begin{bmatrix} 0.\\0.\\1.\\0.\end{bmatrix} \cdot \ln \begin{pmatrix} \begin{bmatrix} 0.2633\\0.2709\\0.2285\\0.2373 \end{bmatrix} \end{pmatrix}$$

$$L_3 = 1.4764$$

$$L_4 = -y_4 \cdot \ln(\hat{y}_4)$$

$$= -\begin{bmatrix} 0.\\0.\\0.\\1. \end{bmatrix} \cdot \ln \begin{pmatrix} \begin{bmatrix} 0.2657\\0.2741\\0.2248\\0.2353 \end{bmatrix} \end{pmatrix}$$

$$L_4 = 1.4468$$

$$\sum_{t=1}^{k} L_t = 1.4404 + 1.4155 + 1.4764 + 1.4468 = 5.7791$$

in Epoch #100 Total Loss Will be 4.6789

in Epoch #1000 Total Loss Will be 2.1040

in Epoch #10000 Total Loss Will be 0.3418