

Lecture 5

Lagrange's Theorem &

Quotient Group

What you will learn in Lecture 5

5.1 Lagrange's Theorem (ラグランジュの定理)

5.2 Normal Subgroup (正規部分群) & Quotient Group (商群)

5.1 Lagrange's Theorem

(ラグランジュの定理)

5.1 Lagrange's Theorem (ラグランジュの定理)

In the last section, we noted that the order of a subgroup of a finite cyclic group divides the order of the group (Corollary 4.2).

We will learn that this is a special case of a general result, called Lagrange's theorem, i.e., the order of a subgroup of a finite group divides the order of the group.

History:

Lagrange proved this result in 1770, long before the creation of group theory, while working on the permutations of the roots of a polynomial equation. Lagrange's theorem is a basic theorem of finite group theory and is considered by some to be the most important result in finite group theory.

Definition 5.1

Let (H, \circ) be a subgroup of a group (G, \circ) and $a \in G$. The sets $aH = \{a \circ h \mid h \in H\}$ and $Ha = \{h \circ a \mid h \in H\}$ are called the **left and right** cosets (左剰余類と右剰余類) of H in G, respectively. The element a is called a **representative** of aH and Ha.

If G is **commutative**, then of course we have aH = Ha.

Observe that eH = H = He and that $a = ae \in aH$ and $a = ea \in Ha$.

5.1 Lagrange's Theorem (ラグランジュの定理)

Left and Right Cosets

Example 5.1 Exhibit the left cosets and the right cosets of the subgroup $(3\mathbb{Z}, +)$ of $(\mathbb{Z}, +)$.

Solution:

Due to the notation here is additive, so the left coset of $3\mathbb{Z}$ containing a is $a+3\mathbb{Z}$. We **first** take a=0, and obtain

$$3\mathbb{Z} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

It is one of the left cosets, which contains 0.

Next, we find other left cosets. Now select an element of \mathbb{Z} not in $3\mathbb{Z}$, for example, a=1, and find the left coset containing it. We have

$$1 + 3\mathbb{Z} = \{..., -8, -5, -2, 1, 4, 7, 10, ...\}$$

These two left cosets $3\mathbb{Z}$ and $1 + 3\mathbb{Z}$ still do not yet exhaust all elements of \mathbb{Z} . For example, a = 2 is in neither of them. Then we find the left coset containing 2 is

$$2 + 3\mathbb{Z} = \{..., -7, -4, -1, 2, 5, 8, 11, ...\}$$

It is clear that these three left cosets we have found do exhaust \mathbb{Z} , so they constitute \mathbb{Z} by three left cosets of $3\mathbb{Z}$.

Since \mathbb{Z} is abelian, the left coset $a + 3\mathbb{Z}$ and right coset $3\mathbb{Z} + a$ are the same.

Example 5.2 Consider the symmetric group S_3 (Example 3.7).

(1)
$$H = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

is a subgroup of S_3 .

We now compute the left and right cosets of H in S_3 . The left cosets of H in S_3 are

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} H = H$$
and
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} H$$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

and the right cosets of H in are

$$H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) = H$$

and

$$H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \right\}.$$

Thus, for all $a \in S_3$, aH = Ha.

5.1 Lagrange's Theorem (ラグランジュの定理)

Left and Right Cosets

$$H' = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

is also a subgroup of S_3 .

Now we compute the left and right cosets of H' in S_3 . The left cosets of H' in S_3

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) H^{'} = H^{'},$$

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) H^{'} = \left\{\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)\right\},$$

and

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) H^{'} = \left\{\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\}$$

and the right cosets of H' in S_3 are

$$H^{'}\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right) = H^{'}\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) = H^{'},$$

$$H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\3 & 2 & 1\end{array}\right)=H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\2 & 3 & 1\end{array}\right)=\left\{\left(\begin{array}{ccc}1 & 2 & 3\\3 & 2 & 1\end{array}\right), \left(\begin{array}{ccc}1 & 2 & 3\\2 & 3 & 1\end{array}\right)\right\},$$

and

$$H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\ 2 & 1 & 3\end{array}\right)=H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\ 3 & 1 & 2\end{array}\right)=\left\{\left(\begin{array}{ccc}1 & 2 & 3\\ 2 & 1 & 3\end{array}\right), \left(\begin{array}{ccc}1 & 2 & 3\\ 3 & 1 & 2\end{array}\right)\right\}.$$

We see that

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} H^{'} \neq H^{'} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Thus, the left and right cosets of H' in S_3 are not the same.

There are some interesting phenomena happening in the above example.

- We see that all left and right cosets of H in S_3 have the same number of elements, namely, 3; that there are the same number of distinct (相異なる) left cosets of H in S_3 as of right cosets, namely, 2; that the set of all left cosets and the set of all right cosets form partitions of S_3 ; and, finally, that $3 \cdot 2$ equals 6 which is the order of S_3 .
- Similar statements hold for the subgroup H', i.e. $2 \cdot 3$ equals 6.
- We show, in the results to follow, that these phenomena hold in general.

The following theorem tells us when two left (right) cosets are equal. It is a result that is used often in the study of groups.

Theorem 5.1

Let (H, \circ) be a subgroup of a group (G, \circ) and $a, b \in G$. Then

- (i) aH = bH if and only if $b^{-1}a \in H$.
- (ii) Ha = Hb if and only if $ab^{-1} \in H$.

Theorem 5.2

Let (H, \circ) be a subgroup of a group (G, \circ) . Then for all $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$ (i.e., two left cosets are either equal or they are disjoint). Similar result also satisfied for two right cosets.

Definition 5.2

Let (H,\circ) be a subgroup of a group (G,\circ) . Then the <u>number</u> of distinct (相異なる) left (or right) cosets, written as [G:H], of H in G is called the index of H in G.

Theorem 5.3 (Lagrange's Theorem)

Let (H, \circ) be a subgroup of a finite group (G, \circ) . Then the order of (H, \circ) divides the order of (G, \circ) . In particular,

$$|G| = [G:H]|H|.$$

Proof:

Suppose that [G:H]=m. Every element of G is in a coset of H, and Theorem 4.8 tells us we can decompose G into a union of M pairwise disjoint cosets:

$$G = H \cup Ha_1 \cup Ha_2 \cup \cdots \cup Ha_{m-1}$$

But each of these cosets has |H| elements. Thus, there must be [G:H]|H| elements in G altogether.

Theorem 5.4

Every group of prime order is cyclic.

Proof:

Let group (G, \circ) be of prime order p, and let a be an element of G different from the identity element e.

Then the cyclic subgroup $(\langle a \rangle, \circ)$ of (G, \circ) generated by a has at least two elements, a and e.

But by Lagrange's Theorem, the order $m \ge 2$ of $\langle a \rangle$ must divide the prime p.

Thus we must have m = p and $\langle a \rangle = G$, so (G, \circ) is cyclic.

5.2 Normal Subgroup (正規部分群) &

Quotient Group (商群)

Definition 5.3

Let (G, \circ) be a group. A subgroup (H, \circ) of (G, \circ) is said to be a **normal** subgroup (正規部分群) (or invariant subgroup) of G if aH = Ha for all $a \in G$.

Example 5.3 Let (G, \circ) be an **abelian group**. Every subgroup (H, \circ) of (G, \circ) is a normal subgroup.

Since gh = hg for all $g \in G$ and $h \in H$, it will always be the case that gH = Hg.

Example 5.4 Let (H, \circ) be the subgroup of S_3 consisting of elements e and $(1\ 2)$. Since

$$(1\ 2\ 3)H = \{(1\ 2\ 3), (1\ 3)\} \text{ and } H(1\ 2\ 3) = \{(1\ 2\ 3), (2\ 3)\};$$

 (H,\circ) cannot be a normal subgroup of S_3 .

However, the subgroup (N, \circ) , consisting of the permutations

e, (1 2 3), and (1 3 2), is normal since the cosets of N are

$$N = \{e, (123), (132)\}$$

$$(1\ 2)N = N(1\ 2) = \{(1\ 2), (1\ 3), (2\ 3)\}$$

5.2 Normal Subgroup (正規部分群) & Quotient Group (商群)

Normal Subgroup

If *H* is a **normal subgroup** of *G*, this **does not always mean that** ah = ha for all $h \in H$ and for all $a \in G$ as shown by the following example.

Example 5.5

Recall Example 5.2. (H, \circ) is a normal subgroup of S_3 . Consider

$$h = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in H$$
. Then

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) \circ h = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

and

$$h \circ \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$$

Hence,

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) \circ h \neq h \circ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)$$

even though we still have

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) H = H \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)$$

Theorem 5.5

Let (H, \circ) be a subgroup of a group (G, \circ) . Then (H, \circ) is a normal

subgroup of (G, \circ) if and only if for all $a \in G$, $aHa^{-1} \subseteq H$.

Proof:

First suppose that H is a normal subgroup of G. Let $a \in G$.

We now show that $aHa^{-1} \subseteq H$. Let $aha^{-1} \in aHa^{-1}$, where $h \in H$. Since H is a normal subgroup of G, aH = Ha. Also, since $ah \in aH$, we have $ah \in Ha$ and so ah = h'a for some $h' \in H$.

Thus, $aha^{-1} = h' \in H$. Hence, $aHa^{-1} \subseteq H$.

Conversely, suppose $aHa^{-1} \subseteq H$ for all $a \in G$. Let $a \in G$.

We show that aH = Ha. Let $ah \in aH$, where $h \in H$. Now $aha^{-1} \in aHa^{-1}$ and so $aha^{-1} \in H$. Thus, $aha^{-1} = h'$ for some $h' \in H$. This implies that $ah = h'a \in Ha$. Therefore, $aH \subseteq Ha$. Similarly, we can show that $Ha \subseteq aH$. Hence, aH = Ha.

Consequently, H is a normal subgroup of G.

Theorem 5.6

Let (H, \circ) and (L, \circ) be normal subgroups of a group (G, \circ) . Then

- (i) $H \cap L$ leads to a normal subgroup of (G, \circ) ,
- (ii) HL = LH leads to a normal subgroup of (G, \circ) ,
- (iii) $\langle H \cup L \rangle = HL$.

Definition 5.4

Let (G, \circ) be a group and (H, \circ) be a **normal subgroup** of (G, \circ). The **group** (G/H, \circ) is called the **quotient group** (商群) (or **factor group**) of G by H.

Theorem 5.7

Let (H, \circ) be a **normal subgroup** of a group (G, \circ) . Denote the set of all left cosets $\{aH \mid a \in G\}$ by G/H and define \circ on G/H by for all $aH, bH \in G/H$,

 $(aH) \circ (bH) = abH$

Then $(G/H,\circ)$ is a quotient group (商群).

Example 5.6

The normal subgroup of S_3 in Example 3.7, $H = \{e, (1 \ 2 \ 3), (1 \ 3 \ 2)\}.$

The cosets of H in S_3 are H and $(1\ 2)H$ from Example 5.2.

The quotient group S_3/H has the following operation table by $aH, bH \in S_3/H$ in Theorem 5.7. (Here $aH = H, bH = (1\ 2)H$)

	Н	(1 2) <i>H</i>
Н	Н	(1 2) <i>H</i>
$(1\ 2)H$	$(1\ 2)H$	H

Example 5.7

Consider the normal subgroup $3\mathbb{Z}$ of \mathbb{Z} (Example 5.1). The cosets of $3\mathbb{Z}$ in \mathbb{Z} are

$$0 + 3\mathbb{Z} = \{..., -3, 0, 3, 6, ...\}$$

$$1 + 3\mathbb{Z} = \{..., -2, 1, 4, 7, ...\}$$

$$2 + 3\mathbb{Z} = \{..., -1, 2, 5, 8, ...\}$$

The group $\mathbb{Z}/3\mathbb{Z}$ is given by the operation table below.

		$1+3\mathbb{Z}$	
$0+3\mathbb{Z}$	$0+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$1+3\mathbb{Z}$	$1+3\mathbb{Z}$	$1 + 3\mathbb{Z}$ $2 + 3\mathbb{Z}$	$0+3\mathbb{Z}$
$2+3\mathbb{Z}$	$2+3\mathbb{Z}$	$0+3\mathbb{Z}$	$1+3\mathbb{Z}$

In general, the subgroup $(n\mathbb{Z}, \circ)$ of (\mathbb{Z}, \circ) is **normal**. The cosets of $\mathbb{Z}/n\mathbb{Z}$ are

$$n\mathbb{Z}$$
 $1 + n\mathbb{Z}$
 $2 + n\mathbb{Z}$
 \vdots
 $(n-1) + n\mathbb{Z}.$

The sum of the cosets $k + \mathbb{Z}$ and $l + \mathbb{Z}$ is $k + l + \mathbb{Z}$. **Notice** that we have written our cosets additively, because the group operation is integer addition. **Example 5.8** Consider \mathbb{Z}_8 (see Example 2.7) and let $H = \{[0], [4]\}$. Then (H, \circ) is a normal subgroup of (\mathbb{Z}_8, \circ) . Now |H| = 2 and $|\mathbb{Z}_8| = 8$. Thus, $|\mathbb{Z}_8/H| = \frac{|\mathbb{Z}_8|}{|H|} = 4$. Hence, \mathbb{Z}_8/H has four elements. We know

$$[0] + H = H = [4] + H,$$

$$[1] + H = \{[1], [5]\} = [5] + H,$$

$$[2] + H = \{[2], [6]\} = [6] + H,$$

and

$$[3] + H = \{[3], [7]\} = [7] + H.$$

Hence, $\mathbb{Z}_8/H = \{[0] + H, [1] + H, [2] + H, [3] + H\}.$

Review for Lecture 5

- Left and Right Cosets (左剰余類と右剰余類) of H in G
- Lagrange's Theorem (ラグランジュの定理)
- Normal Subgroup (正規部分群)
- Quotient Group (商群)

Assignment

Please Check https://github.com/uoaworks/Applied-Algebra

References

- [1] Thomas W. Judson etc. Abstract Algebra Theory and Applications, 2018
- [2] D. S. Malik, John N. Mordeson, M.K. Sen, Introduction to Abstract Algebra, 2007
- [3] (おすすめ) 松本 眞, 代数系への入門, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon2014.pdf
- [4] Wikipedia
- [5] Materials from internet.

Appendix (付録)

*Theorem

Let (H,\circ) and (L,\circ) be <u>finite subgroups</u> of a <u>group</u> (G,\circ) . Then the <u>order</u>

$$|HL| = \frac{|H||L|}{|H \cap L|}$$