

Retail-Giant Case Study

SUBMISSION

Abstract

Problem Statement:

- Global Mart is an online store super giant having worldwide operations. It takes orders and delivers across the globe and deals with all the major product categories consumer, corporate & home.
- The goal is to finalize the plan for the next 6 months. So, you want to forecast the sales and the demand for the next 6 months, that would help you manage the revenue and inventory accordingly.

Objectives of the Analysis:

- Identify the 2 most profitable and consistent market segment for the company.
- Forecast the sales and demand for the next 6 months.

Solution Approach:

• R is used for Data preparation, from raw data sources.

Solution Approach

Data Understanding

- Raw data contains 51290 rows of transactional order data.
- Broadly the data is divided in 3 segments
- Further it can be divided to 7 Markets (Geographies).

Data Preparation

- Convert the Order Date column to Date format and extract month.
- Create subsets of data for all 21 market segments.
- Aggregate all data sets on month and calculate Coefficient of variance.
- Identify 2 most consistently profitable segments.
- Create time series for sales and quantity. (Keeping last 6 months as test data).

Identifying best segments

The 2 most profitable segments are

- 1. Segment Consumer and Market APAC
- 2. Segment Consumer and Market EU

The 2 most consistently profitable segments are

- 1. Segment Consumer and Market APAC
- 2. Segment Consumer and Market EU

Classical Decomposition Consumer EU Sales Forecast

- The TS shows and additive model.
- The TS shows a linear upward trend
- The seasonality shows a sinusoidal seasons yearly.

Classical Decomposition Consumer EU Quantity Forecast

- The TS shows a linear upward trend
- The seasonality shows a sinusoidal seasons yearly.

Decomposition of multiplicative time series

Classical Decomposition Consumer APAC Sales Forecast

- The TS shows a linear upward trend
- The seasonality shows a sinusoidal seasons yearly.

Decomposition of additive time series

Classical Decomposition Consumer APAC Quantity Forecast

- The TS shows a linear upward trend
- The seasonality is yearly.

Decomposition of additive time series

Auto ARIMA Consumer EU Sales Forecast

- Auto ARIMA predicts a ARIMA (2,1,0) model.
- MAPE = 28.9226

Actual V/S Predicted

Forecasts from ARIMA(2,1,0)

Auto ARIMA Consumer EU Quantity Forecast

- Auto ARIMA predicts a ARIMA (2,1,0) model.
- MAPE = 30.13319

Actual V/S Predicted

Forecasts from ARIMA(2,1,0)

Auto ARIMA Consumer APAC Sales Forecast

- Auto ARIMA predicts a ARIMA (0,1,1) model.
- MAPE = 27.68952

Actual V/S Predicted Selection of the second of the secon

Forecasts from ARIMA(0,1,1)

Auto ARIMA Consumer APAC Quantity Forecast

- Auto ARIMA predicts a ARIMA (0,1,0) model.
- MAPE = 26.24458

Onautity Ona

Actual V/S Predicted

Months

Forecasts from ARIMA(0,1,1)

Future Forecast from Jan-2015 to June-2015

Month	Method	Consumer-EU-Sales	Consumer-EU-Quantity	Consumer-APAC-Sales	Consumer-APAC-Quantity
Jan-15	Classical Decomposition	62252.97	697.77	49717.10	766.45
Feb-15	Classical Decomposition	61033.13	635.00	44433.38	659.01
Mar-15	Classical Decomposition	59042.48	610.43	39283.80	575.44
Apr-15	Classical Decomposition	57575.83	659.55	37150.33	493.35
May-15	Classical Decomposition	58050.25	799.23	39718.73	414.26
June-15	Classical Decomposition	61598.35	1018.22	46435.21	424.94

Month	Method	Consumer-EU-Sales	Consumer-EU-Quantity	Consumer-APAC-Sales	Consumer-APAC-Quantity
Jan-15	Auto ARIMA	49358.71	626.20	64494.89	804.41
Feb-15	Auto ARIMA	58063.62	786.61	64494.89	804.41
Mar-15	Auto ARIMA	59714.33	842.92	64494.89	804.41
Apr-15	Auto ARIMA	54191.79	704.83	64494.89	804.41
May-15	Auto ARIMA	56811.55	768.63	64494.89	804.41
Jun-15	Auto ARIMA	58010.84	807.65	64494.89	804.41

Conclusion – 1 Evaluating Classical Decomposition Vs Auto ARIMA

In all cases classical decomposition shows a better accuracy as compared to Auto ARIMA process.

Conclusion – 2 Predictions Classical Decomposition Vs Auto ARIMA

Below is the comparison of predictions made by classical decomposition and Auto ARIMA.

