CS663 Assignment-4

Saksham Rathi, Kavya Gupta, Shravan Srinivasa Raghavan

Department of Computer Science, Indian Institute of Technology Bombay

Question 3

Solution

Let *A* be a real $m \times n$ matrix. *A* can always be expressed as $A = U\Sigma V^T$ where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$, U, V being orthogonal matrices and Σ being a diagonal matrix with non negative values (called singular values) on the diagonal. Let $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_{\min(m,n)})$. We will show that the squares of the non-zero singular values of A are the eigenvalues of either AA^T or A^TA . This is equivalent to showing that the non-zero singular values of A are the squareroots of either AA^T or A^TA because, the singular values are non-negative by definition.

Part a

We will show that the non zero singular values of A are equal to the square roots of the eigen values of either AA^T or A^TA . We define $\Sigma_m^2 = \Sigma \Sigma^T$ and $\Sigma_n^2 = \Sigma^T \Sigma$.

$$AA^{T} = (U\Sigma V^{T}) \cdot (U\Sigma V^{T})^{T}$$

$$= U\Sigma V^{T} \cdot (V\Sigma^{T}U^{T})$$

$$= U\Sigma V^{T}V\Sigma^{T}U^{T}$$

$$= U\Sigma (V^{T}V)\Sigma^{T}U^{T}$$

$$= U\Sigma I_{n}\Sigma^{T}U^{T}$$

$$= U\Sigma\Sigma^{T}U^{T}$$

$$= U\Sigma\Sigma^{n}U^{T}$$

Similarly, $A^TA = V\Sigma^T\Sigma V^T = V\Sigma_n^2 V^T$. Clearly, $\Sigma_m^2 \in R^{m \times m}$ and equals $diag(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2) = D$. Now $m = \min(m, n)$ or n = 1 $\min(m, n)$.

Let $m = \min(m, n)$. In this case, Σ_m^2 is a diagonal matrix (*D*) whose entries are squares of the singular values of *A*. Since AA^T is a real symmetric matrix, by **spectral theorem** it has an orthogonal decomposition given by $AA^T = \mathcal{UDU}^T$ where \mathcal{D} is a diagonal matrix whose entries are the eigenvalues of AA^T and \mathcal{U} is an orthogonal matrix. Therefore the non zero entries of D are the eigenvalues of AA^T . Since $D = \Sigma_m^2$, the non zero entries of D are the squares of the non zero singular values of A and the squares of the any non-zero singular value of A is an eigenvalue of AA^T , we are done.

CS663 Assignment-4

Let $n = \min(m, n)$. In this case, we deal with the diagonal matrix $D = \Sigma_n^2$ whose entries are the squares of all the singular values of A (this is because $n = \min(m, n)$). The proof is very similar to the case above. Since A^TA is a real symmetric matrix, it has an orthogonal decomposition \mathcal{VDV}^T and therefore we have the non-zero entries of D to be the eigenvalues of A^TA and following a similar argument we arrive at the conclusion that the square of any non-zero singular value of A is an eigen value of A^TA and that any eigenvalue of A^TA is the square of some non-zero singular value of A. This completes the proof.