

- (12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

- (19) Weltorganisation für geistiges Eigentum
Internationales Büro

- (43) Internationales Veröffentlichungsdatum
30. August 2001 (30.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/62809 A1

(51) Internationale Patentklassifikation⁷: C08F 220/54,
A61K 7/06, C08F 220/18

[DE/DE]; Zedemweg 9, 69502 Hemsbach (DE). WOOD,
Claudia [DE/DE]; Weinheimer Strasse 24, 69469 Weinheim (DE).

(21) Internationales Aktenzeichen: PCT/EP01/02047

(74) Anwälte: KINZEBACH, Werner usw.; 67059 Ludwigshafen (DE).

(22) Internationales Anmeldedatum:
22. Februar 2001 (22.02.2001)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 08 263.7 23. Februar 2000 (23.02.2000) DE

[Fortsetzung auf der nächsten Seite]

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE];
67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): NGUYEN KIM, Son

(54) Title: COSMETIC AGENT

(54) Bezeichnung: KOSMETISCHES MITTEL

represents hydrogen or a linear C₁- to C₂₂-alkyl radical; and to salts thereof.

(57) Abstract: The invention relates to a cosmetic agent which contains at least one water-soluble or water-dispersible polymer containing the following built-in components: a) 5 to 50 wt. % of at least one α,β-ethylenically unsaturated monomer of general formula (I), wherein R¹ represents hydrogen or C₁- to C₈-alkyl and X¹ represents O or NR², R² representing hydrogen, C₁- to C₈-alkyl or C₅- to C₈-cycloalkyl, b) 25 to 90 wt. % of at least one N-vinyl amide and/or N-vinyl lactame, c) 0.5 to 30 wt. % of at least one compound with a radically polymerisable, α,β-ethylenically unsaturated double bond and at least one cationogenic and/or cationic group per molecule, d) 0 to 30 wt. % of at least one α,β-ethylenically unsaturated monomer of general formula (II), wherin R³ represents hydrogen or C₁- to C₈-alkyl, X² represents O or NR⁵, R⁵ representing hydrogen, C₁- to C₈-alkyl or C₅- to C₈-cycloalkyl, and R⁴

A1

WO 01/62809

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein kosmetisches Mittel, enthaltend wenigstens ein wasserlösliches oder wasserdispersierbares Polymer, das a) 5 bis 50 Gew.-% wenigstens eines α,β-ethylenisch ungesättigten Monomers der allgemeinen Formel (I), worin R¹ für Wasserstoff oder C₁- bis C₈-Alkyl steht, und X¹ für O oder NR² steht, wobei R² für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht, b) 25 bis 90 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinylactams, c) 0,5 bis 30 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β-ethylenisch ungesättigten Doppelbindung und mindestens einer kationogenen und/oder kationischen Gruppe pro Molekül, d) 0 bis 30 Gew.-% wenigstens eines α,β-ethylenisch ungesättigten Monomers der allgemeinen Formel (II), worin R³ für Wasserstoff oder C₁- bis C₈-Alkyl steht, X² für O oder NR⁵ steht, wobei R⁵ für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht, und R⁴ für Wasserstoff oder einen linearen C₁- bis C₂₂-Alkylrest steht, eingebaut enthält, und die Salze davon.

OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML,
MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

Kosmetisches Mittel

Beschreibung

5

Die vorliegende Erfindung betrifft ein kosmetisches Mittel, welches wenigstens ein wasserlösliches oder wasserdispersierbares Polymer einpolymerisiert enthält.

10 In der Kosmetik werden Polymere mit filmbildenden Eigenschaften zur Festigung, Strukturverbesserung und Formgebung der Haare verwendet. Diese Haarbehandlungsmittel enthalten im Allgemeinen eine Lösung des Filmbildners in einem Alkohol oder einem Gemisch aus Alkohol und Wasser.

15

Haarfestigungsmittel werden im Allgemeinen in Form von wässrig-alkoholischen Lösungen auf die Haare aufgesprüht. Nach dem Verdampfen des Lösungsmittels werden die Haare an den gegenseitigen Berührungs punkten vom zurückbleibenden Polymer in der gewünschten 20 Form gehalten. Die Polymere sollen einerseits so hydrophil sein, dass sie aus dem Haar ausgewaschen werden können, andererseits aber sollen sie hydrophob sein, damit die mit den Polymeren behandelten Haare auch bei hoher Luftfeuchtigkeit ihre Form behalten und nicht miteinander verkleben. Um eine möglichst effiziente 25 Haarfestigerwirkung zu erzielen, ist es außerdem wünschenswert, Polymere einzusetzen, welche ein relativ hohes Molekulargewicht und eine relativ hohe Glastemperatur (mindestens 15 °C) besitzen.

Ein weiterer aktueller Anspruch an Haarbehandlungsmittel ist es, 30 eine gute Festigungswirkung zu erzielen, auch dann, wenn das Mittel bei Personen eingesetzt wird, die von Natur aus besonders kräftiges und/oder dunkles Haar haben. Dabei soll dem Haar ein möglichst natürliches Aussehen und Glanz verliehen werden.

35 Ein Nachteil vieler bekannter Haarfestigerpolymere ist der sogenannte "Flaking"-Effekt, d. h. nach dem Auskämmen bleibt ein weißer, schuppenförmiger Rest auf dem Haar zurück. Dies wird von den Anwendern im Allgemeinen als äußerst unangenehm empfunden. Der "Flaking"-Effekt tritt besonders deutlich bei Personen mit 40 dunkler Haarfarbe und/oder besonders kräftigen Haaren auf. Die Einsatzmöglichkeit von Haarfestigerformulierungen, die diesen Effekt aufweisen, ist somit insbesondere auf dem asiatischen

45

Markt deutlich beeinträchtigt. Als mögliche Ursache für den "Flaking"-Effekt werden u. a. die chemische Struktur der eingesetzten Haarfestigerpolymere und insbesondere die Partikelgröße des Sprays angesehen.

5

Neben den zuvor genannten Eigenschaften sollen die in den Mitteln eingesetzten Haarfestigerpolymere daher vorzugsweise eine hohe Treibgasverträglichkeit aufweisen, um eine Formulierung in Spraydosen unter möglichst hohem Druck zuzulassen. Dies gilt sowohl

10 für die klassischen Treibmittel auf Propan/Butan-Basis, als auch für deren Ersatzstoffe, z. B. auf Dimethyletherbasis.

Es ist bekannt, Copolymerisate auf Basis von Monomeren mit kationischen oder kationogenen Gruppen in Haarbehandlungsmitteln einzusetzen. So beschreiben die US 3,914,403 und die US 3,954,960 Haarkosmetika, die Copolymerisate enthalten, welche N-Vinylpyrrolidon, ein Monomer mit einer quaternisierbaren Gruppe sowie gegebenenfalls weitere Monomere eingebaut enthalten.

20 Die WO-A-96/19966 und die WO-A-96/20227 beschreiben Haarbehandlungsmittel auf Basis von Terpolymeren, die ein Vinyllactam, ein Acrylat oder Acrylamid mit einer quaternären Aminogruppe und ein weiteres hydrophobes Monomer, bevorzugt ein C₄- bis C₃₂-Alkyl(meth)acrylat oder -(meth)acrylamid, eingebaut enthalten. Die 25 Propan/Butan-Verträglichkeit der in diesen Mitteln eingesetzten Polymere ist noch Verbesserungswürdig.

Die WO-A-96/19967 beschreibt ein Verfahren zur Herstellung von Copolymerisaten aus Vinylpyrrolidon und N-3,3-Dimethylaminopropylmethacrylamid und deren Einsatz in Haarbehandlungsmitteln. Die 30 WO-A-96/19971 beschreibt Haarsprayformulierungen mit einem geringen Gehalt an flüchtigen organischen Verbindungen (VOC-Gehalt), die ein Terpolymer aus Vinylpyrrolidon, Vinylcaprolactam und N-3,3-Dimethylaminopropylmethacrylamid (DMAPMA) enthalten. Die 35 WO-A-96/20694 beschreibt eine Haarsprayformulierung mit einem geringen VOC-Gehalt, die ein Tetramer aus Vinylpyrrolidon, Vinylcaprolactam, DMAPMA und einem C₈- bis C₁₈-Alkylacrylamid oder -acrylat enthält. Polymere, die einen höheren Anteil langkettiger Acrylat- und/oder Acrylamidmonomere eingebaut enthalten, führen 40 in der Regel zu sehr weichen Filmen. Haarbehandlungsmittel, die solche Polymere enthalten, sind im Allgemeinen Verbesserungswürdig im Hinblick auf ihre Festigungswirkung.

Nachteilig an den zuvor genannten Mitteln auf Basis von Polymeren 45 mit einem hohen Vinyllactamanteil ist, dass diese klebrig sind und bei hoher Luftfeuchtigkeit leicht an Festigungswirkung verlieren. Keines der zuvor genannten Dokumente beschreibt den Ein-

satz von Polymeren, die wenigstens einen tert.-Butylester oder ein N-tert.-Butylamid einer α,β -ethylenisch ungesättigten Carbonsäure eingebaut enthalten, in der Haarkosmetik.

- 5 Die EP-A-0 372 546 und die EP-A-0 728 778 beschreiben Filmbildnerharze, welche wenigstens ein (Meth)acrylamid, wenigstens ein C₁- bis C₄-Alkyl(meth)acrylat, wenigstens ein N,N-Dialkyl(meth)acrylat oder N,N-Dialkyl(meth)acrylamid und gegebenenfalls wenigstens ein Hydroxyalkyl(meth)acrylat oder Polyalkylen-10 glykol(meth)acrylat einpolymerisiert enthalten. Diese Copolymeren weisen nur eine geringe Löslichkeit in Ethanol auf, und die resultierenden Filme sind hart, so dass bei ihrer Verwendung in Haarfestigern dem Haar kein natürliches Aussehen verliehen wird. Auch ihre Propan/Butan-Verträglichkeit ist verbesserungswürdig.
- 15 Nachteilig am Einsatz von Copolymeren, die Hydroxyalkyl(meth)acrylate und/oder Polyalkylenglykol(meth)acrylate eingebaut enthalten, ist weiterhin die hohe Viskosität und die Klebrigkeit darauf basierender wässrigen Präparate.
- 20 Anionische Polymere mit Propan/Butan-Verträglichkeit sind bereits bekannt, unter anderem Polymere auf Basis von tert.-Butylacrylat bzw. tert.-Butylmethacrylat.

Die EP-A-379 082 beschreibt z. B. ein Haarfestigungsmittel, enthaltend als Filmbildner ein Copolymerisat, welches

- A) 75 bis 99 Gew.-% tert.-Butyl(meth)acrylat,
 B) 1 bis 25 Gew.-% (Meth)acrylsäure und
 C) 0 bis 10 Gew.-% eines weiteren radikalisch copolymerisier-30 baren hydrophoben Monomeren

einpolymerisiert enthält. Haarfestigungsmittel auf Basis dieser Copolymeren, die nur die Komponenten A) und B) enthalten, machen das Haar zu hart und weisen eine zu geringe Propan/Butan-Verträglichkeit auf. Copolymeren, die zusätzlich ein Monomer C) enthalten, sind bezüglich ihrer Auswaschbarkeit verbesserungswürdig.

Die DE-A-43 14 305 beschreibt wie die EP-A-379 082 ein Haarfestigerpolymer auf Basis von tert.-Butyl(meth)acrylat und (Meth)acrylsäure, welches 0 bis 60 Gew.-% eines C₁- bis C₁₈-Alkyl(meth)acrylats oder einer Mischung davon mit N-C₁- bis -C₁₈-Alkyl(meth)acrylamiden einpolymerisiert enthält. Zusätzliche Monomere mit einer Kohlenstoffzahl von mehr als 8 führen zwar unter Umständen zu einer besseren Propan/Butan-Verträglichkeit, 45 wobei jedoch gleichzeitig die Auswaschbarkeit deutlich verschlechtert wird.

Nachteilig an anionischen Polymeren ist zudem, dass die auf ihnen basierenden Haarbehandlungsmittel häufig den zuvor beschriebenen "Flaking"-Effekt aufweisen.

5 Die deutsche Patentanmeldung DE-A-198 38 196 beschreibt kationische Polymerisate, die durch radikalische Copolymerisation von

(a) 50 bis 70 Gew.-% eines oder mehrerer Monomeren der Formel I

$$10 \quad \begin{array}{c} R^1 \\ | \\ \text{CH}_2 = \text{C} \backslash \text{---} \text{C} / \text{---} \text{X} \text{---} \text{R}^2 \\ || \\ \text{O} \end{array} \quad (\text{I})$$

15 X = O, NR¹,
 R¹ = H, C₁-C₈-Alkyl,
 R² = tert.-Butyl,

(b) 5 bis 45 Gew.-% eines oder mehrerer Monomeren der Formel II

20

$$\text{CH}_2=\text{N}-\text{H} \quad \text{---} \quad \text{C}_5\text{H}_9\text{O} \quad (\text{CH}_2)_n$$

(II)

25 mit n = 1 bis 3,

(c) 5 bis 40 Gew.-% eines monoethylenisch ungesättigten Monomers mit mindestens einer aminhaltigen Gruppe,

30 erhältlich sind, wobei bis zu 20 Gew.-%, bezogen auf (a), (b) und (c), des Monomeren (a) durch ein Monomer der Formel I mit $R^2 = C_8-C_{22}$ -Alkyl ersetzt sein können, sowie die Verwendung derartiger Polymerisate in der Haarkosmetik.

35 Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue kosmetische Mittel, insbesondere Haarbehandlungsmittel, zur Verfü-
gung zu stellen, die eine hohe Treibgasverträglichkeit aufweisen und/oder die im Wesentlichen keinen "Flaking"-Effekt zeigen. Vor-
40 zugsweise sollen diese Mittel eine gute Festigungswirkung aufwei-
sen und dem Haar Glätte und Geschmeidigkeit verleihen. Dabei sol-
len sie im Allgemeinen eine gute Auswaschbarkeit aufweisen.

Überraschenderweise wurde nun gefunden, dass diese Aufgabe durch
45 kosmetische Mittel gelöst wird, die wenigstens ein wasserlösli-
ches oder wasserdispersgierbares Polymer enthalten, das höchstens
50 Gew.-% wenigstens eines tert.-Butylesters und/oder N-tert.-Bu-

- tylamids einer α,β -ethylenisch ungesättigten Carbonsäure einpolymerisiert enthält.
- Gegenstand der vorliegenden Erfindung ist daher ein kosmetisches 5 Mittel, enthaltend wenigstens ein wasserlösliches oder wasserdispergierbares Polymer, das
- a) 5 bis 50 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel I

10

15

worin

R^1 für Wasserstoff oder C_1 - bis C_8 -Alkyl steht, und
 X^1 für O oder NR^2 steht, wobei R^2 für Wasserstoff,
 C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht,

20

- b) 25 bis 90 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinylsuccinams,
- c) 0,5 bis 30 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer kationogenen und/oder kationischen Gruppe pro Molekül,
- d) 0 bis 30 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel II

30

35

worin

- R^3 für Wasserstoff oder C_1 - bis C_8 -Alkyl steht,
- 40 X^2 für O oder NR^5 steht, wobei R^5 für Wasserstoff, C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht, und
- R^4 für Wasserstoff oder einen linearen C_1 - bis C_{22} -Alkylrest steht,

45 eingebaut enthält, und die Salze davon. Hier und im Folgenden beziehen sich, sofern nichts anderes gesagt wird, alle Angaben in Gew.-% auf die Gesamtmenge aller das Polymer bildenden Komponen-

ten, d. h. die Summe aller Gewichtsanteile der Monomere a), b), c), d) und gegebenenfalls weiterer einpolymerisierter Komponenten beträgt 100 Gew.-%.

- 5 Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck C₁- bis C₈-'Alkyl' geradkettige und verzweigte Alkylgruppen mit 1 bis 8 C-Atomen. Vorzugsweise handelt es sich dabei um geradkettige oder verzweigte C₁-C₆-Alkyl- und besonders bevorzugt C₁-C₄-Alkylgruppen. Dazu zählen insbesondere Methyl, Ethyl, Propyl, Isopropyl,
 10 n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl,
 15 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl etc.
 20 Bei der C₅- bis C₈-Cycloalkylgruppe handelt es sich z. B. um Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl.

Im Folgenden werden Verbindungen, die sich von Acrylsäure und Methacrylsäure ableiten können, teilweise verkürzt durch Einfügen
 25 der Silbe "(meth)" in die von der Acrylsäure abgeleitete Verbindung bezeichnet.

Komponente a)

- 30 Bei der Komponente a) handelt es sich bevorzugt um α,β-ethylenisch ungesättigte Verbindungen der allgemeinen Formel I, worin
 R¹ für Wasserstoff, Methyl oder Ethyl steht, und
 x¹ für O oder NR² steht, wobei R² für Wasserstoff, Methyl, Ethyl,
 35 n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl oder Cyclohexyl steht. Insbesondere steht R² für Wasserstoff.

Dabei können auch Mischungen von Verbindungen der Komponente a) eingesetzt werden.

- 40 Bevorzugt handelt es sich bei der Komponente a) um tert.-Butylacrylat, tert.-Butylmethacrylat, tert.-Butylethacrylat, N-tert.-Butylacrylamid, N-tert.-Butylmethacrylamid, N-tert.-Butylethacrylamid und Mischungen davon.

Komponente b)

- Geeignete Monomere b) sind N-Vinylactame und deren Derivate, die z. B. einen oder mehrere C₁-C₆-Alkylsubstituenten, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl etc. aufweisen können. Dazu zählen z. B. N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam etc.

Geeignete Monomere b) sind weiterhin N-Vinylamide, wie N-Vinylformamid, N-Vinylacetamid, N-Vinylpropionamid, N-Vinyl-n-butyramid, N-Vinyl-tert.-butyramid, etc. Bevorzugt wird N-Vinylformamid eingesetzt.

Bevorzugt ist die Komponente b) ausgewählt unter Vinylpyrrolidon, Vinylcaprolactam, Vinylformamid und Mischungen davon.

Komponente c)

Bevorzugt handelt es sich bei den kationogenen und/oder kationischen Gruppen der Komponente c) um stickstoffhaltige Gruppen, wie primäre, sekundäre und tertiäre Aminogruppen sowie quaternäre Ammoniumgruppen. Vorzugsweise handelt es sich bei den stickstoffhaltigen Gruppen um tertiäre Aminogruppen oder quaternäre Ammoniumgruppen. Geladene kationische Gruppen lassen sich aus den Aminostickstoffen entweder durch Protonierung, z. B. mit Carbonsäuren, wie Milchsäure, oder Mineralsäuren, wie Phosphorsäure, Schwefelsäure und Salzsäure, oder durch Quaternisierung, z. B. mit Alkylierungsmitteln, wie C₁- bis C₄-Alkylhalogeniden oder -sulfaten, erzeugen. Beispiele solcher Alkylierungsmittel sind Ethylchlorid, Ethylbromid, Methylchlorid, Methylbromid, Dimethylsulfat und Diethylsulfat.

35

Geeignete Verbindungen c) sind z. B. die Ester von α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C₂- bis C₁₂-Aminoalkoholen, welche am Aminostickstoff C₁- bis C₈-dialkyliert sind. Als Säurekomponente dieser Ester eignen sich z. B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methacrylsäure und deren Gemische eingesetzt. Bevorzugt sind N,N-Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, 45 N,N-Dimethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat, N,N-Dimethylaminocyclohexyl(meth)acrylat etc.

Bevorzugt werden N,N-Dimethylaminoethyl(meth)acrylat und N,N-Dimethylaminopropyl(meth)acrylat eingesetzt.

Geeignete Monomere c) sind weiterhin die Amide der zuvor genannten α,β -ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, die eine tertiäre und ein primäre oder sekundäre Aminogruppe aufweisen. Dazu zählen z. B. N-[2-(dimethylamino)ethyl]acrylamid, N-[2-(dimethylamino)ethyl]methacrylamid, N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)propyl]methacrylamid, N-[4-(dimethylamino)butyl]acrylamid, N-[4-(dimethylamino)-butyl]methacrylamid, N-[2-(diethylamino)ethyl]acrylamid, N-[4-(dimethylamino)cyclohexyl]acrylamid, N-[4-(dimethylamino)cyclohexyl]methacrylamid etc. Bevorzugt werden N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)propyl]methacrylamid eingesetzt.

Geeignete Monomere c) sind weiterhin N,N-Diallyl-N-alkylamine und deren Säureadditionssalze und Quaternisierungsprodukte. Alkyl steht dabei vorzugsweise für C₁- bis C₂₄-Alkyl. Bevorzugt sind N,N-Diallyl-N-methylamin und N,N-Diallyl-N,N-dimethylammoniumverbindungen, wie z. B. die Chloride und Bromide.

Geeignete Monomere c) sind weiterhin vinyl- und allylsubstituierte Stickstoffheterocyclen, wie N-Vinylimidazol, N-Vinyl-2-methylimidazol, 2- und 4-Vinylpyridin, 2- und 4-Allylpyridin etc.

Komponente d)

Bevorzugt ist die Komponente d) ausgewählt unter Verbindungen der allgemeinen Formel II

worin

- 40 R³ für Wasserstoff oder C₁- bis C₄-Alkyl steht,
- R⁴ für Wasserstoff oder einen geradkettigen C₁- bis C₃₀-Alkylrest steht, und
- X² für O oder NR⁵ steht, wobei R⁵ für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht.

Vorzugsweise steht in der Formel II R³ für Wasserstoff, Methyl oder Ethyl.

Bevorzugt steht X² für O oder NH.

5

Bevorzugt steht R⁴ für Wasserstoff, Methyl, Ethyl, n-Propyl, n-Bu-tyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Undecyl, Lauryl, Tri-decyl, Myristyl, Pentadecyl, Palmityl, Margarinyl, Stearyl, Pal-mit-

10 oleinyl, Oleyl oder Linolyl.

Vorzugsweise ist die Komponente d) ausgewählt unter n-Bu-tyl(meth)acrylat, n-Octyl(meth)acrylat, n-Nonyl(meth)acrylat, n-Decyl(meth)acrylat, n-Undecyl(meth)acrylat, Tridecyl(meth)acry-

15 lat, Myristyl(meth)acrylat, Pentadecyl(meth)acrylat, Palmi-tyl(meth)acrylat, Heptadecyl(meth)acrylat, Nonadecyl(meth)acry-lat, Arachinyl(meth)acrylat, Behenyl(meth)acrylat, Lignocere-nyl(meth)acrylat, Cerotinyl(meth)acrylat, Melissinyl(meth)acry-lat, Palmitoleinyl(meth)acrylat, Oleyl(meth)acrylat, Lino-

20 lyl(meth)acrylat, Linolenyl(meth)acrylat, Stearyl(meth)acrylat, Lauryl(meth)acrylat, n-Octyl(meth)acrylamid, n-Nonyl(meth)acryla-mid, n-Decyl(meth)acrylamid, n-Undecyl(meth)acrylamid, Tride-cyl(meth)acrylamid, Myristyl(meth)acrylamid, Pentade-cyl(meth)acrylamid, Palmityl(meth)acrylamid, Heptade-

25 cyl(meth)acrylamid, Nonadecyl(meth)acrylamid, Arachi-nyl(meth)acrylamid, Behenyl(meth)acrylamid, Lignocere-nyl(meth)acrylamid, Cerotinyl(meth)acrylamid, Melissi-nyl(meth)acrylamid, Palmitoleinyl(meth)acrylamid, Oleyl(meth)acrylamid, Linolyl(meth)acrylamid, Linole-

30 nyl(meth)acrylamid, Stearyl(meth)acrylamid, Lauryl(meth)acrylamid und Mischungen davon.

Bevorzugt als Komponente d) sind weiterhin Verbindungen der all-gemeinen Formel II, worin

35 R³ für Wasserstoff, Methyl oder Ethyl steht,

X² für O oder NH steht, und

R⁴ für Wasserstoff steht, und im Falle von X² = O auch deren Salze.

40 Bevorzugte Verbindungen d) sind primäre Amide α,β-ethylenisch un-gesättigter Monocarbonsäuren, wie Acrylamid, Methacrylamid, Ethacrylamid etc.

Besonders bevorzugte Verbindungen d) sind Verbindungen der For-45 mel II mit X² = O und R⁴ = H, wie Acrylsäure, Methacrylsäure,

Ethacrylsäure, sowie deren Alkalimetallsalze, z. B. deren Na-trium- und Kaliumsalze, und Mischungen davon. Beim Einsatz dieser

10

säuregruppenhaltigen Verbindungen d) resultieren Polymere mit anionogenen Gruppen, die durch Neutralisation, wie im Folgenden beschrieben, teilweise oder vollständig in anionische Gruppen überführt werden können. Selbstverständlich können auch die Monomere 5 d) bereits in Salzform vorliegen.

Die zuvor genannten Verbindungen der Komponente d) können einzeln oder in Form von Mischungen eingesetzt werden.

- 10 In einer bevorzugten Ausführungsform umfasst die Komponente d) wenigstens eine Verbindung der allgemeinen Formel II mit $X^2 = O$ und $R^4 = H$ in einer Menge von 0,1 bis 20 und vorzugsweise in einer Menge von 0,2 bis 10 Gew.-% bezogen auf die Gesamtmenge der Monomere a), b), c) und d). Hierunter bevorzugt sind die Monomere
15 Acrylsäure und Methacrylsäure. Selbstverständlich kann die Komponente d) neben den Monomeren der Formel II mit $X^2 = O$ und $R^4 = H$ auch davon verschiedene Monomere umfassen ($R^4 \neq H$, wenn $X^2 = O$).

Die in den erfindungsgemäßen Mitteln eingesetzten Polymere können 20 wenigstens eine weitere Komponente, die ausgewählt ist unter

- e) von d) verschiedenen Verbindungen mit einer radikalisch polymerisierbaren α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer anionogenen und/oder anionischen Gruppe pro
25 Molekül,
f) vernetzend wirkenden Monomeren mit mindestens zwei ethylenisch ungesättigten, nicht konjugierten Doppelbindungen,
30 g) von a) bis f) verschiedenen radikalisch polymerisierbaren Monomeren,

und Mischungen davon, einpolymerisiert enthalten.

- 35 Die in den erfindungsgemäßen kosmetischen Mitteln eingesetzten wasserlöslichen oder wasserdispergierbaren Polymere können zusätzlich zu den zuvor genannten Monomerkomponenten noch eine Komponente e) einpolymerisiert enthalten, die ausgewählt ist unter von d) verschiedenen Verbindungen mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer anionogenen und/oder anionischen Gruppe pro Molekül
40 und Mischungen davon.

Vorzugsweise sind die anionogenen und anionischen Gruppen der Verbindungen der Komponente e) ausgewählt unter Carboxylat- und/oder Sulfonatgruppen und deren durch teilweise oder vollständige Neutralisation mit einer Base erhältlichen Salze.

5

Geeignete Verbindungen e) sind z. B. ethylenisch ungesättigte Mono- und/oder Dicarbonsäuren und deren Halbester und Anhydride, wie Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat etc. und deren Alkalimetallsalze, wie 10 deren Natrium- und Kaliumsalze.

Geeignete Monomere e) sind weiterhin Acrylamidoalkansulfonsäuren und deren Salze, wie 2-Acrylamido-2-methylpropansulfonsäure und deren Alkalimetallsalze, z. B. deren Natrium- und Kaliumsalze.

15

Die wasserlöslichen oder wasserdispergierbaren Polymere enthalten die Verbindungen der Komponenten d) und e) mit wenigstens einer anionogenen und/oder anionischen Gruppe pro Molekül vorzugsweise in einer Menge von 0 bis 15 Gew.-%, bevorzugt 0,1 bis 12 Gew.-%, 20 bezogen auf die Gesamtmenge der zu polymerisierenden Monomere, einpolymerisiert.

Die in den erfindungsgemäßen Mitteln eingesetzten Polymere können noch wenigstens ein von den Verbindungen der Komponenten a) bis 25 e) verschiedenes vernetzend wirkendes Monomer f) einpolymerisiert enthalten, das wenigstens zwei α,β-ethylenisch ungesättigte Doppelbindungen pro Molekül aufweist.

Die erfindungsgemäßen Mittel enthalten die Komponente f) vorzugsweise in einer Menge von 0,001 bis 4 Gew.-%, insbesondere 0,01 bis 2 Gew.-%, bezogen auf die Gesamtmenge aller das Polymer bildenden Komponenten.

Geeignete Vernetzer f) sind zum Beispiel Acrylester, 35 Methacrylester, Allylether oder Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrundeliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.

40

Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole, wie 1,2-Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,2-Butandiol, 1,3-Butandiol, 2,3-Butandiol, 1,4-Butandiol, But-2-en-1,4-diol, 1,2-Pentandiol, 1,5-Pentandiol, 1,2-Hexandiol, 45 1,6-Hexandiol, 1,10-Decandiol, 1,2-Dodecandiol, 1,12-Dodecandiol, Neopentylglykol, 3-Methylpentan-1,5-diol, 2,5-Dimethyl-1,3-hexandiol, 2,2,4-Trimethyl-1,3-pentandiol,

- 1,2-Cyclohexandiol, 1,4-Cyclohexandiol,
 1,4-Bis(hydroxymethyl)cyclohexan,
 Hydroxypivalinsäure-neopentylglycolmonoester,
 2,2-Bis(4-hydroxyphenyl)propan,
 5 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylenglykol,
 Tri-ethylenglykol, Tetraethylenglykol, Dipropylenglykol,
 Tripropylenglykol, Tetrapropylenglykol, 3-Thio-pantan-1,5-diol,
 sowie Polyethylenglykole, Polypropylenglykole und
 Polytetrahydrofurane mit Molekulargewichten von jeweils 200 bis
 10 000. Außer den Homopolymerisaten des Ethylenoxids bzw.
 Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid
 oder Propylenoxid oder Copolymerisate, die Ethylenoxid- und
 Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden.
 Beispiele für zugrundeliegende Alkohole mit mehr als zwei
 15 OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit,
 1,2,5-Pantantriol, 1,2,6-Hexantriol, Tri-ethoxycyanursäure,
 Sorbitan, Zucker wie Saccharose, Glucose, Mannose.
 Selbstverständlich können die mehrwertigen Alkohole auch nach
 Umsetzung mit Ethylenoxid oder Propylenoxid als die
 20 entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die
 mehrwertigen Alkohole können auch zunächst durch Umsetzung mit
 Epi-chlorhydrin in die entsprechenden Glycidylether überführt
 werden.
- 25 Weitere geeignete Vernetzer f) sind die Vinylester oder die Ester
 einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten
 C₃- bis C₆-Carbonsäuren, beispielsweise Acrylsäure,
 Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure.
 Beispiele für solche Alkohole sind Allylalkohol, 1-Buten-3-ol,
 30 5-Hexen-1-ol, 1-Octen-3-ol, 9-Decen-1-ol, Dicyclopentenylalkohol,
 10-Undecen-1-ol, Zimtalkohol, Citronellol, Crotylalkohol oder
 cis-9-Octadecen-1-ol. Man kann aber auch die einwertigen,
 ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern,
 beispielsweise Malonsäure, Weinsäure, Trimellitsäure,
 35 Phthalsäure, Terephthalsäure, Citronensäure oder Bernsteinsäure.
- Weitere geeignete Vernetzer sind Ester ungesättigter Carbonsäuren
 mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise
 der Ölsäure, Crotonsäure, Zimtsäure oder 10-Undecensäure.
- 40 Geeignet als Monomere (f) sind außerdem geradkettige oder
 verzweigte, lineare oder cyclische, aliphatische oder aromatische
 Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen
 verfügen, die bei aliphatischen Kohlenwasserstoffen nicht
 45 konjugiert sein dürfen, z.B. Divinylbenzol, Divinyltoluol,
 1,7-Octadien, 1,9-Decadien, 4-Vinyl-1-cyclohexen,

Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20 000.

Als Vernetzer sind ferner geeignet die Acrylsäureamide, 5 Meth-acrylsäureamide und N-Allylamine von mindestens zweiseitigen Aminen. Solche Amine sind zum Beispiel 1,2-Diaminomethan, 1,2-Diaminoethan, 1,3-Diaminopropan, 1,4-Diaminobutan, 1,6-Diaminohexan, 1,12-Dodecadiamin, Piperazin, Diethylentriamin oder Isophorondiamin. Ebenfalls geeignet sind die Amide aus 10 Allylamin und ungesättigten Carbonsäuren wie Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiseitigen Carbonsäuren, wie sie oben beschrieben wurden.

Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z.B. 15 Triallylmethylammoniumchlorid oder -methylsulfat, als Vernetzer geeignet.

Geeignete Vernetzter sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiseitigen Amiden, Cyanuraten 20 oder Urethanen, beispielsweise von Harnstoff, Ethylenharnstoff, Propylenharnstoff oder Weinsäurediamid, z.B. N,N'-Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff.

Geeignete Vernetzer sind auch die in der DE-A-19838852 genannten 25 Urethanacrylate.

Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan.

30 Vorzugsweise werden solche Vernetzer eingesetzt, die in der Monomer-mischung löslich sind.

Bevorzugt eingesetzte Vernetzer sind beispielsweise Pentaerythrittriallylether, Methylenbisacrylamid, Triallylamin 35 und Triallylalkylammoniumsalze, Divinylimidazol, N,N'-Divinyl-ethylenharnstoff, Umsetzungsprodukte mehrwertiger Alkohole mit Acrylsäure oder Methacrylsäure, Methacrylsäureester und Acrylsäureester von Polyalkylenoxiden oder mehrwertigen Alkoholen, die mit Ethylenoxid und/oder Propylenoxid und/oder 40 Epichlorhydrin umgesetzt worden sind.

Die Monomere f) können jeweils einzeln oder im Gemisch mit anderen Monomeren der gleichen Gruppe eingesetzt werden.

45 Der Einsatz wenigstens einer vernetzenden Verbindung f) führt in der Regel zu Polymeren mit einem höheren Molekulargewicht als entsprechende in Abwesenheit der Komponente f) erhaltene Poly-

14

mere. Polymere, die wenigstens eine Verbindung der Komponente f) einpolymerisiert enthalten, eignen sich vorzugsweise für kosmetische Mittel in Form eines Shampoos, Haarschaums oder Haargels.

5 Die in den erfindungsgemäßen Mitteln eingesetzten Polymere können noch wenigstens ein weiteres von den Verbindungen der Komponenten a) bis f) verschiedenes radikalisch polymerisierbares Monomer g) einpolymerisiert enthalten.

10 Die erfindungsgemäßen Mittel enthalten die Komponente g) vorzugsweise in einer Menge von 0,1 bis 10 Gew.-%, insbesondere 0,5 bis 5 Gew.-%, bezogen auf die Gesamtmenge aller das Polymer bildenden Komponenten.

15 Geeignete Monomere g) sind z. B. Vinylaromaten, wie Styrol, α-Methylstyrol, o-Chlorstyrol und Vinyltoluole, Vinylhalogenide, wie Vinylchlorid, Vinylidenhalogenide, wie Vinylidenchlorid, Monoolefine, wie Ethylen und Propylen, nichtaromatische Kohlenwasserstoffe mit mindestens 2 konjugierten Doppelbindungen, 20 wie Butadien, Isopren und Chloropren, sowie Mischungen davon.

vorzugsweise enthält das Polymer

- 7 bis 50 Gew.-%, bevorzugt 10 bis 45 Gew.-%, wenigstens einer Komponente a),
 - 25 30 bis 87 Gew.-%, bevorzugt 40 bis 85 Gew.-%, insbesondere 50 bis 80 Gew.-%, wenigstens einer Komponente b),
 - 30 1 bis 25 Gew.-%, bevorzugt 3 bis 20 Gew.-%, wenigstens einer Komponente c),
 - 35 0 bis 25 Gew.-%, bevorzugt 0,1 bis 20 Gew.-% wenigstens einer Komponente d), wobei die Komponente d) insbesondere 1 bis 10 Gew.-% einer Verbindung II mit $X^2 = O$ und $R^4 = H$ umfasst, und, sofern erwünscht,
 - 40 0 bis 15 Gew.-%, bevorzugt 0,1 bis 12 Gew.-%, wenigstens einer Komponente e),
- einpolymerisiert.

Bevorzugt werden bei der Herstellung der erfindungsgemäßen, wasserlöslichen bzw. wasserdispergierbaren Polymere die Komponenten 45 c), d) und gegebenenfalls e) in solchen Mengen eingesetzt, dass

das Verhältnis von Äquivalenten kationogener Gruppen größer oder gleich den Äquivalenten anionogener Gruppen ist.

Bevorzugt sind Polymere, die

5

- wenigstens eine Verbindung der Komponente a), ausgewählt unter tert.-Butylacrylat, tert.-Butylmethacrylat, N-tert.-Butylacrylamid, N-tert.-Butylmethacrylamid und Mischungen davon,
- 10 - wenigstens eine Verbindung der Komponente b), ausgewählt unter N-Vinylformamid, N-Vinylpyrrolidon, N-Vinylcaprolactam und Mischungen davon,
- 15 - wenigstens eine Verbindung der Komponente c), ausgewählt unter Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat (DMAEMA), N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)propyl]methacrylamid (DMAPMA) und Mischungen davon,
- 20 - Acrylsäure und/oder Acrylamid und/oder Methacrylsäure als Verbindung der Komponente d) und gegebenenfalls eine oder mehrere weitere Verbindungen der Komponente d), ausgewählt unter n-Butylacrylat, n-Butylmethacrylat, n-Stearylacrylat, n-Stearylmethacrylat, n-Laurylacrylat, n-Laurylmethacrylat, einpolymerisiert enthalten.

25 30 Besonders bevorzugt sind Polymere, die N-[3-(dimethylamino)propyl]methacrylamid und (Meth)acrylsäure im Gewichtsmengenverhältnis 2:0,9 bis 2:1,1 einpolymerisiert enthalten.

Nach einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen kosmetischen Mittel zusätzlich wenigstens ein Polyalkylenoxidgruppen-haltiges Polysiloxan. Die Mittel können diese Siloxane in Form einer separaten Komponente und/oder eingebaut in eines der zuvor beschriebenen wasserlöslichen oder wasserdispergierbaren Polymere enthalten. Der Einbau der Polysiloxane erfolgt vorzugweise durch Ppropfung, d. h. Polymerisation der Monomere a) bis d) und gegebenenfalls e) bis g) in Gegenwart der Polysiloxane.

In einer bevorzugten Ausführungsform der Erfindung enthalten die wasserlöslichen oder wasserdispergierbaren Polymere ein Polyalkylenoxidgruppen-haltiges Polysiloxan eingebaut. Die Menge an Polysiloxan beträgt dann vorzugsweise 1 bis 20 Gew.-%, bezogen auf

die Gesamtmenge an Monomeren a), b), c), d), gegebenenfalls e) und Polysiloxan. In dieser Ausführungsform umfassen die Monomere d) vorzugsweise wenigstens eine Verbindung der Formel II mit $x^2 = R$ und $R^4 = H$, insbesondere Acrylsäure und/oder Methacrylsäure 5 oder deren Salze in einer Menge von 1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der Komponenten a), b), c), d), gegebenenfalls e) und Polysiloxan, sowie gegebenenfalls weitere Verbindungen der Formel II.

10 Vorzugsweise ist das Polysiloxan ausgewählt unter Verbindungen der allgemeinen Formel III

worin

die Reihenfolge der Siloxaneinheiten beliebig ist,
d und e unabhängig voneinander für 0 bis 100 stehen, wobei die Summe aus d und e mindestens 2 ist,

25 f für eine ganze Zahl von 2 bis 8 steht,

z^1 für einen Rest der Formel IV

30 steht, wobei

in der Formel IV die Reihenfolge der Alkylenoxideinheiten beliebig ist,

u für eine ganze Zahl von 1 bis 8 steht,

35 v und w unabhängig voneinander für eine ganze Zahl von 0 bis 200 stehen, wobei die Summe aus v und w > 0 ist, und $\text{R}^A = H$ oder $\text{C}_1\text{-}\text{C}_6\text{-Alkyl}$, insbesondere H , CH_3 oder C_2H_5 ist.

Bevorzugt weisen die Polysiloxane ein Molekulargewicht in einem 40 Bereich von etwa 300 bis 30000 auf.

Bevorzugt liegt die Gesamtzahl der Alkylenoxideinheiten der Polysiloxane, d. h. die Summe aus v und w in der Formel IV, in einem Bereich von etwa 3 bis 200, bevorzugt 5 bis 180.

Geeignete Polysiloxane sind die unter dem internationalen Freienamen Dimethicone Copolyole oder als Siliconenside bekannten Verbindungen, wie z. B. die unter den Markennamen Belsil® (Fa. Wacker) oder Silvet® (Fa. Witco) erhältlichen Verbindungen. Bevorzugt ist z. B. Belsil® 6031 oder Silvet®L.

Vorzugsweise liegt das Gewichtsmengenverhältnis von wasserlöslichem oder wasserdispersierbarem Polymer zu Polysiloxan in einem Bereich von etwa 70:30 bis 99,9:0,1, bevorzugt etwa 85:15 bis 10 99:1.

Ein weiterer Gegenstand der Erfindung ist ein wasserlösliches oder wasserdispersierbares Polymer, das

15 a) 5 bis 50 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel I

worin

R¹ für Wasserstoff oder C₁- bis C₈-Alkyl steht, und

25 X¹ für O oder NR² steht, wobei R² für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht,

b) 25 bis 90 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinylactams,

30 c) 0,5 bis 30 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer kationogenen und/oder kationischen Gruppe pro Molekül,

35 d) 0,1 bis 30 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel II

worin

45 R³ für Wasserstoff oder C₁- bis C₈-Alkyl steht,

X² für O oder NR⁵ steht, wobei R⁵ für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht, und

R⁴ für Wasserstoff oder einen linearen C₁- bis C₂₂-Alkylrest steht,

einpolymerisiert enthält. Hinsichtlich der bevorzugten Monomere 5 a), b), c) und d) gilt das zuvor Gesagte ebenso wie für die Mengenanteile der Monomere a), b), c) und d) bezogen auf die Gesamtmonomermenge.

Die erfindungsgemäßen Polymere können noch wenigstens eine weitere Komponente, die ausgewählt ist unter 10

- e) von d) verschiedenen Verbindungen mit einer radikalisch polymerisierbaren α,β-ethylenisch ungesättigten Doppelbindung und mindestens einer anionogenen und/oder anionischen Gruppe pro Molekül,
- f) vernetzend wirkenden Monomeren mit mindestens zwei ethylenisch ungesättigten, nicht konjugierten Doppelbindungen,
- g) von a) bis f) verschiedenen radikalisch polymerisierbaren Monomeren,

und Mischungen davon, einpolymerisiert enthalten.

Besonders bevorzugt umfasst die Komponente d) wenigstens eine Verbindung II mit X² = O und R⁴ = H, insbesondere Acrylsäure und/ oder Methacrylsäure, in einer Menge von 0,1 bis 20 Gew.-% und insbesondere 1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der Monomere a), b), c), d) und gegebenenfalls weiteren Komponenten. 30 Daneben kann die Komponente d) auch davon verschiedene Verbindungen der Formel II (d. h. R⁴ ≠ H, wenn X² = O) umfassen, z. B. in einer Menge von 0,1 bis 25 Gew.-%. Selbstverständlich können die erfindungsgemäßen Polymere auch die vorstehend genannten Monomere 35 der Komponente e) einpolymerisiert enthalten.

In einer bevorzugten Ausführungsform enthalten diese Polymere wenigstens eines der oben definierten Polysiloxane eingebaut, insbesondere eines der allgemeinen Formel III. Die Menge an Polysiloxan beträgt dann vorzugsweise 1 bis 20 Gew.-% bezogen auf die Gesamtmenge an Monomeren a), b), c) und d), gegebenenfalls e) und Polysiloxan. Derartige Polymere enthalten in der Regel 1 bis 10 Gew.-% wenigstens eines Monomers d) der Formel II mit X² = O und R⁴ = H und gegebenenfalls zusätzlich weitere Monomere der Formel II einpolymerisiert, wobei die Menge ebenfalls auf die Ge- 45

samtmenge von a), b), c), d), gegebenenfalls e) und Polysiloxan bezogen ist.

Besonders bevorzugt enthalten derartige Polymere einpolymerisiert:

10 bis 50 Gew.-% wenigstens eines Monomers der Formel I
(Komponente a)),

25 bis 70 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinyl-
10 lactams (Komponente b)),

3 bis 20 Gew.-% wenigstens eines der unter c) genannten Monomere,

1 bis 10 Gew.-% wenigstens eines Monomers der Formel II mit
 $X^2 = O$ und $R^4 = H$,

15 0 bis 25 Gew.-% eines oder mehrere Monomere der Formel II mit
 $R^4 \neq H$, wenn $X^2 = O$ und

1 bis 20 Gew.-% wenigstens eines Polysiloxans mit Polyalkylen-
oxidgruppen, insbesondere ein Polysiloxan der
Formel II, wobei alle angegebenen Gewichtsanteile sich zu 100 Gew.-% addieren.
20

Die Herstellung der in den erfindungsgemäßen Mitteln eingesetzten Polymere sowie der erfindungsgemäßen Polymere erfolgt durch radikalische Polymerisation nach üblichen, dem Fachmann bekannten Verfahren. Dazu zählt die radikalische Polymerisation in Masse, Emulsion, Suspension und in Lösung, vorzugsweise die Emulsions- und Lösungspolymerisation. Die Mengen an zu polymerisierenden Verbindungen, bezogen auf Lösungs- bzw. Dispergiermittel, werden dabei im Allgemeinen so gewählt, dass etwa 30 bis 80 gew.-%ige Lösungen, Emulsionen oder Dispersionen erhalten werden. Die Polymerisationstemperatur beträgt in der Regel 30 bis 120 °C, bevorzugt 40 bis 100 °C.

Das Polymerisationsmedium für die Lösungspolymerisation kann sowohl nur aus einem organischen Lösungsmittel als auch aus Mischungen aus Wasser und mindestens einem wassermischbaren, organischen Lösungsmittel bestehen. Bevorzugte organische Lösungsmittel sind z. B. Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Ketone, wie Aceton und Methylethyleketon, Tetrahydrofuran etc. Werden zur Polymerisation Monomere d) und/oder e) mit anionogenen und/oder anionischen Gruppen, wie z. B. Acrylsäure, Methacrylsäure etc., eingesetzt, so erfolgt die Polymerisation vorzugsweise in einem Gemisch aus Wasser und mindestens einem wassermischbaren organischen Lösungsmittel.

Werden zur Polymerisation Monomere eingesetzt, wobei die Komponente b) keine N-Vinylamide umfasst, so kann der pH-Wert bei der Polymerisation im Allgemeinen in einem weiten Bereich von schwach sauer über neutral bis alkalisch variiert werden. Wird zur Polymerisation wenigstens ein N-Vinylamid b) eingesetzt, so liegt der pH-Wert des Reaktionsgemisches, beginnend mit der Zugabe dieses Monomers, vorzugsweise in einem Bereich von 6 bis 8, insbesondere von 6,2 bis 7,2.

Die Lösungspolymerisation kann sowohl als Batchprozess als auch in Form eines Zulaufverfahrens, einschließlich Monomerenzulauf, Stufen- und Gradientenfahrweise, durchgeführt werden. Bevorzugt ist im Allgemeinen das Zulaufverfahren, bei dem man gegebenenfalls einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt und anschließend den Rest des Polymerisationsansatzes, üblicherweise über einen oder auch mehrere, räumliche getrennte Zuläufe, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zu führt.

Werden zur Polymerisation Monomere d) und/oder e) mit anionogenen und/oder anionischen Gruppen eingesetzt, so kann deren Zugabe gemeinsam mit den Monomeren mit kationogenen und/oder kationischen Gruppen c) oder zeitlich getrennt von diesen erfolgen. Bevorzugt erfolgt die Zugabe der Monomere mit anionogenen und/oder anionischen Gruppen nach Abschluss der Zugabe der Monomere mit kationogenen und/oder kationischen Gruppen. Gewünschtenfalls können die Monomere mit anionogenen Gruppen, wie z. B. Acrylsäure, Methacrylsäure etc., auch als Neutralisationsmittel nach Beendigung der Polymerisation zugegeben werden.

Als Initiatoren für die radikalische Polymerisation werden übliche Peroxo- oder Azoverbindungen eingesetzt. Dazu zählen z.B. Di-benzoylperoxid, tert.-Butylperpivalat, tert.-Butylper-2-ethylhexanoat, Di-tert.-butylperoxid, 2,5-Dimethyl-2,5-di(tert.-butylperoxy)hexan, aliphatische oder cycloaliphatische Azoverbindungen, z. B. 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2-methylbutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril), 1,1'-Azobis(1-cyclohexancarbonitril), 2-(Carbamoylazo)isobutyronitril, 4,4'-Azobis(4-cyanovaleriansäure) und deren Alkalimetall- und Ammoniumsalze, z. B. das Natriumsalz, Dimethyl-2,2'-azobisisobutyrat, 2,2'-Azobis[2-(2-imidazolin-2-yl)propan], 2,2'-Azobis(2-amidino-propan) und die Säureadditionssalze der beiden zuletzt genannten Verbindungen, z. B. die Dihydrochloride.

Ferner kommen als Initiatoren Wasserstoffperoxid, Hydroperoxide in Kombination mit Reduktionsmitteln und Persalze in Frage. Geeignete Hydroperoxide sind beispielsweise t-Butylhydroperoxid, t-Amylhydroperoxid, Cumolhydroperoxid und Pinanhydroperoxid jeweils in Kombination mit beispielsweise einem Salz der Hydroxymethansulfinsäure, einem Eisen (II)-Salz oder Ascorbinsäure. Geeignete Persalze sind insbesondere Alkalimetallperoxidisulfate.

Die verwendete Initiatormenge, bezogen auf die Monomere, liegt im Allgemeinen in einem Bereich von etwa 0,1 bis 2 Gew.-% bezogen auf das Gesamtgewicht der zu polymerisierenden Monomere.

Zur Erzielung eines gewünschten K-Wertes der Polymere kann, insbesondere bei der Emulsions- oder Suspensionspolymerisation, der Einsatz eines Reglers angebracht sein. Als Regler eignen sich beispielsweise Aldehyde, wie Formaldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd und Isobutyraldehyd, Ameisensäure, Ammoniumformiat, Hydroxylammoniumsulfat und Hydroxylammoniumphosphat. Weiterhin können Regler eingesetzt werden, die Schwefel in organisch gebundener Form enthalten, wie Di-n-butylsulfid, Di-n-octylsulfid, Diphenylsulfid etc., oder Regler, die Schwefel in Form von SH-Gruppen enthalten, wie n-Butylmercaptan, n-Hexylmercaptan oder n-Dodecylmercaptan. Geeignet sind auch wasserlösliche, schwefelhaltige Polymerisationsregler, wie beispielsweise Hydrogensulfite und Disulfite. Weiterhin eignen sich als Regler Allylverbindungen, wie Allylalkohol oder Allylbromid, Benzylverbindungen, wie Benzylchlorid oder Alkylhalogenide, wie Chloroform oder Tetrachlormethan.

Gewünschtenfalls setzt man der Polymerlösung im Anschluss an die Polymerisationsreaktion einen oder mehrere Polymerisationsinitiatoren zu und erhitzt die Polymerlösung, z. B. auf die Polymerisationstemperatur oder auf Temperaturen oberhalb der Polymerisationstemperatur, um die Polymerisation zu vervollständigen. Geeignet sind die oben angegebenen Azoinitiatoren, aber auch alle anderen üblichen, für eine radikalische Polymerisation in wässriger Lösung geeignete Initiatoren, beispielsweise Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxoester und Wasserstoffperoxid. Hierdurch wird die Polymerisationsreaktion zu einem höheren Umsatz, wie z. B. von 99,9 %, geführt. Eine Reduzierung des Restmonomergehalts gelingt alternativ auch durch eine saure Hydrolyse. Hierzu werden die nach dem oben beschriebenen Verfahren erhaltenen Polymerlösungen mit Wasser und einer Säure, beispielsweise einer organischen Säure wie Milchsäure, oder einer Mineralsäure wie Schwefelsäure, Salzsäure oder Phosphorsäure, versetzt und erwärmt, vorzugsweise auf Temperaturen $\leq 100^{\circ}\text{C}$, z. B. 50 bis 100 °C. Die Menge an Säure wird hierzu vorzugsweise so gewählt,

dass ein pH-Wert im Bereich von 4,5 bis 5,5 erreicht wird. Das Erwärmen wird vorzugsweise als Wasserdampfdestillation ausgestaltet, wobei wasserdampfflüchtige Restmonomere oder deren Hydrolyseprodukte sowie gegebenenfalls flüchtige Lösungsmittel entfernt werden. Vorzugsweise führt man eine Wasserdampfdestillation durch, bis eine Kopftemperatur von etwa 100 °C erreicht ist.

Die bei der Polymerisation entstehenden Lösungen können gegebenenfalls durch ein dem Stand der Technik entsprechendes Trocknungsverfahren in feste Pulver überführt werden. Bevorzugte Verfahren sind beispielsweise die Sprühwärmestrahlung, die Sprühwirbelschichttrocknung, die Walzentrocknung und die Bandtrocknung. Ebenfalls anwendbar sind die Gefriertrocknung und die Gefrierkonzentrierung. Gewünschtenfalls kann das Lösungsmittel auch durch übliche Methoden, z. B. Destillation bei verringertem Druck, teilweise oder vollständig entfernt werden.

Nach einer bevorzugten Ausführungsform wird als wasserlösliches oder wasserdispergierbares Polymer ein Polymer eingesetzt, das durch radikalische Polymerisation der das Polymer bildenden Monomere in Gegenwart von wenigstens einem der Polyalkylenoxidgruppen-haltigen Polysiloxane erhalten wurde.

Die Polymerisation in Gegenwart wenigstens eines Polysiloxans erfolgt nach den zuvor beschriebenen Verfahren, wobei die Polysiloxankomponente als Bestandteil der Vorlage, eines Monomerzulaufs oder als separater Zulauf eingesetzt werden kann.

Bei den in den erfindungsgemäßen Mitteln eingesetzten wasserlöslichen oder wasserdispergierbaren Polymeren handelt es sich um kationische bzw. kationogene Polymere. Geladene kationische Gruppen lassen sich aus den Aminstickstoffen der kationogenen Gruppen entweder durch Protonierung, z. B. mit Carbonsäuren, wie Milchsäure, oder Mineralsäuren, wie Phosphorsäure, Schwefelsäure und Salzsäure oder durch Quaternisierung, z. B. mit Alkylierungsmitteln, wie C₁- bis C₄-Alkylhalogeniden oder -sulfaten erzeugen. Dies kann sowohl vor der Polymerisation durch entsprechende Umsetzung der Monomere als auch nach der Polymerisation erfolgen. Die Neutralisation kann je nach Anwendungszweck partiell, z. B. zu 5 bis 95 %, vorzugsweise 30 bis 95 %, oder vollständig, d. h. zu 100 % erfolgen.

Polymere, die zusätzlich wenigstens eine Verbindung der Komponenten d) und/oder e) mit anionogenen Gruppen einpolymerisiert enthalten, können mit einer Base teilweise oder vollständig neutralisiert werden. Als Base für die Neutralisation der Polymere können Alkalimetallbasen wie Natronlauge, Kalilauge, Soda, Natrium-

hydrogencarbonat, Kaliumcarbonat oder Kaliumhydrogencarbonat und Erdalkalimetallbasen wie Calciumhydroxyd, Calciumoxid, Magnesiumhydroxyd oder Magnesiumcarbonat sowie Ammoniak und Amine verwendet werden. Geeignete Amine sind z. B. C₁-C₆-Alkylamine, bevorzugt 5 n-Propylamin und n-Butylamin, Dialkylamine, bevorzugt Diethylpropylamin und Dipropylmethylamin, Trialkylamine, bevorzugt Triethylamin und Triisopropylamin, C₁-C₆-Alkyldiethylaniline, bevorzugt Methyl- oder Ethyldiethanolamin und Di-C₁-C₆-Alkylethanolamine sowie Glucamin und Methylglucamin. Besonders für den 10 Einsatz in Haarbehandlungsmitteln haben sich zur Neutralisation der Säuregruppen enthaltenden Polymere 2-Amino-2-methyl-1-propanol, Diethylaminopropylamin und Triisopropanolamin bewährt. Die Neutralisation der Säuregruppen enthaltenden Polymere kann auch mit Hilfe von Mischungen mehrerer Basen vorgenommen werden, z. B. 15 Mischungen aus Natronlauge und Triisopropanolamin. Die Neutralisation kann je nach Anwendungszweck partiell z. B. zu 20 bis 40 % oder vollständig, d. h. zu 100 % erfolgen.

Polymere mit ionogenen und ionischen Gruppen stellen gegebenenfalls 20 amphotere Systeme dar, deren Eigenschaften in Abhängigkeit vom pH-Wert variiert werden können. Zur Einstellung des pH-Wertes von Formulierungen auf Basis dieser Polymere können die zuvor genannten Säuren und Basen eingesetzt werden. In aller Regel weisen die erhaltenen Salze der Polymere eine bessere Wasserlöslichkeit 25 oder Dispergierbarkeit in Wasser auf als die nicht neutralisierten Polymere.

Polymere, die sowohl kationogene als auch anionogene Gruppen aufweisen, können nacheinander einer Neutralisation mit wenigstens 30 einer Säure, einer Neutralisation mit wenigstens einer Base und gewünschtenfalls zusätzlich einer Quaternisierung unterzogen werden. Die Reihenfolge der Neutralisationsschritte ist dabei im Allgemeinen beliebig. Wasserlösliche oder wasserdispergierbare Polymere mit freien kationischen (Amin-)Gruppen oder mit freien 35 anionischen (Säure-)Gruppen können als "makromolekulares Neutralisationsmittel" mit wenigstens einem weiteren ionogenen Polymer zu einem wasserdispergierbaren oder wasserlöslichen polymeren Säure-Base-Komplex umgesetzt werden. Diese eignen sich für vielfältige kosmetische Anwendungen. Geeignete Polymere werden im 40 Folgenden beschrieben.

Die in den erfundungsgemäßen Mitteln eingesetzten Polymere weisen K-Werte (gemessen nach E. Fikentscher, Cellulose-Chemie 13 (1932), Seite 58-64, an einer 1 gew.-%igen Lösung in Ethanol) in 45 einem Bereich von etwa 15 bis 90, bevorzugt 20 bis 60, auf. Ihre Glasübergangstemperatur beträgt im Allgemeinen mindestens 0 °C, bevorzugt mindestens 20 °C, insbesondere bevorzugt mindestens

25 °C. Üblicherweise liegt die Glasübergangstemperatur dann in einem Bereich von etwa 30 bis 130 °C, insbesondere 40 bis 100 °C.

Die in den erfindungsgemäßen Mitteln enthaltenen Polymere sind
5 als Hilfsmittel in der Kosmetik und Pharmazie, insbesondere als oder in Beschichtungsmittel(n) für keratinhaltige Oberflächen (Haar, Haut und Nägel) und als Überzugsmittel und/oder Bindemittel für feste Arzneiformen brauchbar. Außerdem sind sie als oder in Beschichtungsmittel(n) für die Textil-, Papier-, Druck-, Le-
10 der- und Klebstoffindustrie brauchbar. Sie sind insbesondere in der Haarkosmetik brauchbar. Die zuvor genannten Polymere können auch in Cremes und als Tablettenüberzugmittel und Tablettenbinde-
mittel verwendet werden. Sie eignen sich auch als Bindemittel und Klebemittel für kosmetische Produkte, z. B. bei der Herstellung
15 von Schminken, wie Mascara und Rouge und bei der Herstellung stiftförmiger, kosmetischer Produkte, wie Deostifte, Schmink-
stifte etc.

Die erfindungsgemäßen kosmetischen Mittel eignen sich insbeson-
20 dere als Beschichtungsmittel für keratinhaltige Oberflächen (Haar, Haut und Nägel). Speziell eignen sich die erfindungsgemäß-
Ben und erfindungsgemäß eingesetzten Polymere als Hilfs- oder Wirkstoffe in haarkosmetischen Mitteln. Dazu zählen die Verwen-
dung als Festigerpolymer in Haarsprays und Schaumfestigern, als
25 Conditioner und Verdicker in Haarmousse, Haargel und Shampoos. Bevorzugt sind Haargele, die neben den erfindungsgemäß und er-
findungsgemäß eingesetzten Polymeren keine weiteren Verdicker enthalten. Die in ihnen eingesetzten Verbindungen sind wasserlös-
lich oder wasserdispergierbar. Sind die in den erfindungsgemäß-
30 Mitteln eingesetzten Verbindungen wasserdispergierbar, können sie in Form von wässrigen Mikrodispersionen mit Teilchendurchmessern von üblicherweise bis 500 nm, bevorzugt 1 bis 300 nm, zur Anwen-
dung gebracht werden. Die Feststoffgehalte der Präparate liegen dabei üblicherweise in einem Bereich von etwa 0,2 bis 20 Gew.-%,
35 bevorzugt 0,5 bis 12 Gew.-%. Diese Mikrodispersionen benötigen in der Regel keine Emulgatoren oder Tenside zu ihrer Stabilisierung.

Bevorzugt können die erfindungsgemäßen Mittel in Form eines Haar-
behandlungsmittels, insbesondere in Form eines Haarsprays vorlie-
40 gen. Zur Anwendung als Haarfestiger sind dabei Mittel bevorzugt, die Polymere enthalten, die wenigstens eine Glasübergangstempera-
tur $T_g \geq 20$ °C, bevorzugt ≥ 30 °C, aufweisen. Der K-Wert dieser Polymere liegt vorzugsweise in einem Bereich von 23 bis 90, ins-
besondere 25 bis 60.

Im Allgemeinen enthalten die erfindungsgemäßen kosmetischen Mittel die Polymere in einer Menge im Bereich von 0,2 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Mittels.

5 Vorzugsweise handelt es sich um Haarbehandlungsmittel. Diese liegen üblicherweise in Form einer wässrigen Dispersion oder in Form einer alkoholischen oder wässrig-alkoholischen Lösung vor. Beispiele geeigneter Alkohole sind Ethanol, Propanol, Isopropanol etc.

10 Weiter enthalten die erfindungsgemäßen Haarbehandlungsmittel im Allgemeinen übliche kosmetische Hilfsstoffe, beispielsweise Weichmacher, wie Glycerin und Glykol; Emollientien; Parfüms; UV-Absorber; Farbstoffe; antistatische Mittel; Mittel zur Verbesserung der Kämmbarkeit; Konservierungsmittel; Wachse, insbesondere Fettamide; und Entschäumer.

15 Wenn die erfindungsgemäßen Mittel als Haarspray formuliert sind, enthalten sie eine ausreichende Menge eines Treibmittels. Als Treibmittel werden vorzugsweise Kohlenwasserstoffe (LPG), insbesondere Propan, n-Butan, n-Pantan und Gemische davon eingesetzt. Geeignete niedrigsiedende Treibmittel sind weiterhin Ether, bevorzugt Dimethylether. Gewünschtenfalls können als Treibmittel aber auch komprimierte Gase, wie Stickstoff, Luft oder Kohlendioxid, eingesetzt werden. Die in den erfindungsgemäßen Mitteln eingesetzten, zuvor genannten Polymere weisen eine hohe Treibgasverträglichkeit, insbesondere eine hohe Verträglichkeit gegenüber Kohlenwasserstoffen, auf und lassen sich zu Produkten mit einem hohen Treibgasgehalt von z. B. mindestens 40 Gew.-%, bevorzugt 20 mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht des Mittels, formulieren. Im Allgemeinen ist es aber auch möglich, den Treibmittelgehalt gering zu halten, um Produkte mit einem niedrigen VOC-Gehalt zu formulieren. In solchen Produkten beträgt der Treibgasgehalt dann im Allgemeinen nicht mehr als 55 Gew.-%, bezogen auf das Gesamtgewicht des Mittels. Die erfindungsgemäßen Haarfestigungsmittel eignen sich auch für Pumpsprayzubereitungen ohne den Zusatz von Treibmitteln.

25 Die zuvor beschriebenen Polymere können auch in Kombination mit anderen Haarpolymeren in den Mitteln zur Anwendung kommen. Solche Polymere sind insbesondere:

- nichtionische, wasserlösliche bzw. wasserdispergierbare Polymere oder Oligomere, wie Polyvinylcaprolactam, z. B. Luviskol Plus (BASF), oder Polyvinylpyrrolidon und deren Copolymeren, insbesondere mit Vinylestern, wie Vinylacetat, z. B. Luviskol

VA 37 (BASF); Polyamide, z. B. auf Basis von Itaconsäure und aliphatischen Diaminen;

- amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer® (Delft National) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmeldungen DE 39 29 973, DE 21 50 557, DE 28 17 369 und DE 37 08 451 offenbart sind. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amerissette® (AMERCHOL) im Handel erhältlich sind und Copolymere aus Hydroxyethylmethacrylat, Methylmethacrylat, N,N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon®);
- anionische Polymere, wie Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind, Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymer, Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymer, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden, sowie Luvimer® (BASF, Terpolymer aus t-Butylacrylat, Ethylacrylat und Methacrylsäure), oder
- kationische (quaternisierte) Polymere, z. B. kationische Polyacrylatcopolymere auf Basis von N-Vinylactamen und deren Derivaten (N-Vinylpyrrolidon, N-Vinylcaprolactam etc.) sowie übliche kationische Haarconditionerpolymere, z. B. Luviquat® (Copolymer aus Vinylpyrrolidon und Vinylimidazoliummethochlorid), Luviquat® Hold (Copolymerisat aus quaternisiertem N-Vinylimidazol, N-Vinylpyrrolidon und N-Vinylcaprolactam), Merquat® (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat® (quaternäre Polymere, die durch Reaktion von Polyvinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Polymer JR (Hydroxyethylcellulose mit kationischen Gruppen), Polyquaternium-Typen (CTFA-Bezeichnungen) etc.;

- nichtionische, siloxanhaltige, wasserlösliche oder -dispergierbare Polymere, z. B. Polyethersiloxane, wie Tegopren® (Fa. Goldschmidt) oder Belsil® (Fa. Wacker).
- 5 Die erfindungsgemäßen Polymere können mit unvernetzten und vernetzten siloxangruppenhaltigen Polyurethanen und/oder mit wenigstens einem anderen siloxanfreien amidgruppenhaltigen Haarpolymer eingesetzt werden. Dazu zählen z. B. die in der DE-A-42 25 045 beschriebenen Polyurethane, die zuvor beschriebenen Vinylpyrroli-
- 10 don/Acrylat-Terpolymere und Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymere (z. B. Ultrahold®strong der BASF AG), die in der DE-A-42 41 118 beschriebenen kationischen Polyurethane, die zuvor beschriebenen amidgruppenhaltigen amphoteren Polymere (z. B. Amphomer®) und insbesondere Copolymerisate, die einen Anteil an amidgruppenhaltigen Monomeren, wie N-Vinylactamen, von mindestens 30 Gew.-% aufweisen (z. B. Luviskol®plus und Luviskol®VA37 der BASF AG).

Die anderen Haarpolymer sind vorzugsweise in Mengen bis zu 20 10 Gew.-%, bezogen auf das Gesamtgewicht des Mittels enthalten.

Ein bevorzugtes Haarbehandlungsmittel enthält:

- A) 0,2 bis 20 Gew.-% mindestens eines in Wasser löslichen oder dispergierbaren Polymers, wie in einem der Ansprüche 1 bis 5 definiert,
 - B) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, wenigstens eines Lösungsmittels, ausgewählt unter Wasser, wassermischbaren Lösungsmitteln und Mischungen davon,
 - C) 0 bis 70 Gew.-% eines Treibmittels,
 - D) 0 bis 10 Gew.-% mindestens eines von A) verschiedenen, in Wasser löslichen oder dispergierbaren Haarpolymer,
 - E) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons,
 - F) 0 bis 0,5 Gew.-% mindestens eines Wachses, insbesondere eines Fettsäureamids,
- sowie übliche Zusatzstoffe.

Das erfindungsgemäße Mittel kann als Komponente D) mindestens ein anderes, in Wasser lösliches oder dispergierbares Haarpolymer enthalten. Der Anteil dieser Komponente beträgt dann im Allgemeinen etwa 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des

Mittels. Bevorzugt können dabei wasserlösliche oder wasserdispergierbare Polyurethane eingesetzt werden, die gewünschtenfalls zusätzlich Siloxangruppen einpolymerisiert enthalten.

5 Das erfindungsgemäße Mittel kann als Komponente E) mindestens ein wasserunlösliches Silicon, insbesondere ein Polydimethylsiloxan, z. B. die Abil®-Typen der Fa. Goldschmidt, enthalten. Der Anteil dieser Komponente beträgt dann im Allgemeinen etwa 0,0001 bis 0,2 Gew.-%, bevorzugt 0,001 bis 0,1 Gew.-%, bezogen auf das Ge-
10 samtgewicht des Mittels.

Bevorzugt wird als Komponente F) wenigstens ein Fettsäureamid, wie z. B. Erucasäureamid, eingesetzt.

15 Das erfindungsgemäße Mittel kann zusätzlich gegebenenfalls einen Entschäumer, z. B. auf Silicon-Basis, enthalten. Die Menge des Entschäumers beträgt im Allgemeinen bis zu etwa 0,001 Gew.-%, be-
zogen auf die Gesamtmenge des Mittels.

20 Das erfindungsgemäßen Mittel besitzen den Vorteil, dass sie ei-
nerseits den Haaren die gewünschte Festigkeit verleihen und andererseits die Polymere leicht auswaschbar (redispergierbar) sind.
Dem Haar wird im Allgemeinen ein natürliches Aussehen und Glanz
verliehen, auch wenn es sich um von Natur aus besonders kräftiges
25 und/oder dunkles Haar handelt.

Insbesondere lassen sich die erfindungsgemäßen Mittel zu Haarbe-
handlungsmitteln, insbesondere Haarsprays, mit einem hohen Treib-
stoffgehalt formulieren. Vorteilhafterweise weisen die erfin-
30 dungsgemäßen Haarbehandlungsmitteln im Wesentlichen keinen "Fla-
king"-Effekt auf.

Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.

35

Beispiele

Vergleichsbeispiele A-C, Beispiele 1-25:

40 Lösungspolymerisation (Beispiel 13)

Zulauf 1: 640 g Monomerengemisch aus 590 g Vinylpyrrolidon und 50 g N-[3-(dimethylamino)propyl]acrylamid (DMAPMA)

45 Zulauf 2: 350 g Monomerengemisch aus 250 g tert.-Butylacrylat,

29

50 g N,N-Dimethylaminopropylacrylamid und
50 g Stearylmethacrylat

Zulauf 3: 2,5 g 2,2'-Azobis(2-methylbutyronitril) in 300 g Ethanol

Zulauf 4: 7,5 g 2,5-Bis(tert.-butylperoxy-2,5-dimethylhexan)
(Trigonox® 101 der Fa. Akzo Nobel) in 500 g Ethanol

10 Zulauf 5: 104 g Phosphorsäure (50 %ig in Ethanol)

In einer Rührapparatur mit Rückflusskühler und drei separaten Zulaufvorrichtungen wurden 128 g von Zulauf 1, 35 g von Zulauf 2, 20 g von Zulauf 3 und 10 g ethoxiliertes Polysiloxan (Belsil® DMC 6031 der Fa. Wacker) und 200 g Ethanol vorgelegt und die Mischung unter Rühren auf ca. 75 °C aufgeheizt. Nach dem Anpolymerisieren, erkennbar an einer beginnenden Viskositätserhöhung, wurde der Rest von Zulauf 1 innerhalb von einer Stunde, der Rest von Zulauf 2 innerhalb von vier Stunden und der Rest von Zulauf 3 innerhalb von fünf Stunden zugegeben, wobei die Innentemperatur auf ca. 80 °C erhöht wurde. Nach dem Ende der Zugabe wurde noch ca. zwei Stunden bei dieser Temperatur nachpolymerisiert.

Zur Verringerung des Restmonomerengehaltes wird anschließend der Zulauf 4 innerhalb von zwei Stunden zugegeben und die Reaktionsmischung 10 Stunden bei 130 °C unter Eigendruck nachpolymerisiert. (Alternativ kann man den Restmonomergehalt auch durch Zugabe von Wasser und Phosphorsäure und anschließendes Erwärmen auf Temperaturen bis 100 °C erreichen, wobei man die Phosphorsäure in einer Menge zugibt, bis ein pH-Wert im Bereich von 4,5 bis 5,5 erreicht ist (entsprechend einer Neutralisation des eingesetzten DMAPMA von 80 bis 120 Mol-%). Vorzugsweise führt man dann eine Wasserdampfdestillation durch, bis eine Innentemperatur von etwa 100 °C erreicht ist.)

35 Nach dem Abkühlen neutralisiert man den Ansatz durch Zugabe von Zulauf 5 innerhalb von 30 Minuten unter Rühren.

Die anwendungstechnischen Eigenschaften der so erhaltenen Polymere sind in Tabelle 3 wiedergegeben.

Die ethanolischen Produktlösungen können gewünschtenfalls nach der Neutralisation mit Wasser versetzt und der Alkohol kann durch Abdestillieren entfernt werden. Dabei werden wässrige (Mikro)dispersionen erhalten. Pulverförmige Produkte können durch Sprühtrocknen oder Gefriertröcknen erhalten werden.

Analog dieser Herstellungsvorschrift wurden auch die Polymere A-C, 1-12 und 14-33 hergestellt.

Alle Polymere der folgende Tabelle 1 weisen K-Werte (gemessen in 5 1 %iger ethanolischer Lösung) im Bereich von 37 bis 45 auf.

Tabelle 1:

Bsp Nr.	TBA 1)	nBA 2)	SMA 3)	LA 4)	MAS 5)	VP 6)	VFA 7)	DMA PMA 8)	Si- lo- xan 9)	AA 10)	VI 11)
A	--	25	--	--	--	65	--	10*)	--	--	--
B	--	--	10	--	--	80	--	10**)	--	--	--
C	--	--	30	--	--	60	--	10**)	--	--	--
1	10	--	--	--	--	80	--	10**)	--	--	--
2	25	--	--	--	--	65	--	10*)	--	--	--
3	30	--	--	--	--	60	--	10**)	--	--	--
4	15	--	5	--	--	65	--	15*)	--	--	--
5	15	--	--	5	--	64	--	15*)	1	--	--
6	25	--	--	--	--	65	--	10*)	--	--	--
7	25	--	--	--	--	55	--	20*)	--	--	--
8	25	--	--	--	--	55	--	17*)	3	--	--
9	25	10	--	--	--	50	--	15*)	--	--	--
10	30	--	--	--	--	60	--	10*)	--	--	--
11	30	--	--	--	--	50	--	20*)	--	--	--
12	30	--	--	--	--	59	--	10*)	1	--	--
13	25	--	--	5	--	59	--	10*)	1	--	--
14	40	--	--	--	6	40	--	12*)	2	--	--
15	40	--	--	--	--	50	--	10*)	--	--	--
16	40	--	--	--	--	50	--	10**)	--	--	--
17	40	--	--	--	--	49,5	--	10**)	0,5	--	--
18	49	--	--	--	--	35	--	15*)	1	--	--
19	49	--	--	--	5	30	--	15*)	1	--	--
20	30	19	--	--	5	27	--	17*)	2	--	--
21	20	--	--	--	--	70	--	10*)	--	--	--
22	20	--	--	--	4	65	--	8*)	3	--	--
23	20	--	--	--	3,5	--	70	6,5*)	--	--	--
24	30	--	--	--	7	--	50	13*)	--	--	--
25	32	--	--	--	8	--	40	16*)	4	--	--
26	40	--	--	--	5	38	--	10	7	--	--
27	40	--	--	--	4/3 ***)	38	--	8	7	--	--

28	32	--	8	--	3/9 ***)	35	--	6	7	--	--
29	30	--	--	--	5	20	--	10	5	--	--
30	40	--	--	--	4/3 ***)	20	--	8	7	18	--
31	20	--	--	--	2/10 ***)	20	--	4	4	40	--
32	20	--	--	--	5	20	--	10	4,5	--	--
33	10	--	--	--	9	60	--	--	--	70,7	10

10

-) neutralisiert mit H_3PO_4 , Neutralisationsgrad ca. 90 %
-) anstelle der Zugabe von Phosphorsäure wurde das einpolymerisierte DMAPMA durch Zugabe von 0,9 bis 1 Äquivalenten Diethylsulfat, bezogen auf DMAPMA, bei 40 °C (ca. 1 h) quaternisiert.
-) nicht neutralisiert/neutralisiert mit KOH

- 1) TBA = tert.-Butylacrylat
- 2) nBA = n-Butylacrylat
- 3) SMA = Stearylmethacrylat
- 4) LA = Laurylacrylat
- 5) MAS = Methacrylsäure
- 6) VP = N-Vinylpyrrolidon
- 7) VFA = N-Vinylformamid
- 8) DMAPMA = N-[3-(dimethylamino)propyl]acrylamid
- 9) Siloxan = ethoxiliertes Polysiloxan (Belsil® DMC 6031 der Fa. Wacker)
- 10) AA = Acrylamid
- 30 11) VI = Vinylimidazol

Anwendungstechnische Eigenschaften

An den Polymeren aus den Vergleichsbeispielen A-C sowie den erfindungsgemäßen Beispielen 1-25 wurde die n-Heptan-Verträglichkeit als Maß für ihre Treibmittelverträglichkeit bestimmt. Dazu wurden je 1,5 g neutralisiertes Polymer und 23,5 g Ethanol zu 6 gew.-%igen Lösungen formuliert und bei Raumtemperatur (22 °C) mit n-Heptan titriert, bis eine Trübung auftritt. Die prozentuale n-Heptan-Verträglichkeit wurde in eine Notenskala gemäß Tabelle 2 umgesetzt.

Die Polymere aus den Vergleichsbeispielen A-C sowie aus den erfindungsgemäßen Beispielen 1-25 wurden zu 5 gew.-%igen ethanolischen Lösungen formuliert. Sie wurden auf eine Glasplatte aufgetragen und die resultierenden Filme wurden im Hinblick auf drei Kriterien (Auswaschbarkeit, Klebrigkeits und Griff), die in Ta-

32

belle 2 angegeben sind, von fünf Fachleuten geprüft und mit Noten von 1 bis 4 bewertet. Die Bewertungen der Filme sind in Tabelle 3 wiedergegeben. Ebenso wurde die Stärke der Festigung mit Hilfe eines Modellkopfes bewertet.

5

Tabelle 2:

Note	Heptan-Verträglichkeit	Festigung	Auswaschbarkeit	Klebrigkeits-	Griff
10	1 > 65 %	sehr gut	sehr gut	nicht klebrig	sehr geschmeidig
	2 50-65 %	gut	gut	leicht klebrig	gut, geschmeidig
	3 35-50 %	mäßig	mäßig	klebrig	rauh, stumpf
	4 < 35 %	schlecht	schlecht löslich	sehr klebrig	rauh, bremsend, unnatürlich

20

Tabelle 3:

Bsp. Nr.	Note				
	Heptan-Verträglichkeit	Festigung	Auswaschbarkeit	Klebrigkeits-	Griff
25	A 2	2	1-2	2	2-3
	B 1	2	1-2	2	3
	C 1	2-3	3	2-3	3
30	1 1	1-2	1	2	1-2
	2 1	1-2	1-2	1-2	2
	3 1	1	1	1-2	2
	4 1	1	1-2	1-2	2
35	5 1	1-2	1-2	1-2	1-2
	6 1	1	1	1-2	2
	7 2	1	1	1-2	2
40	8 1-2	1-2	1	1-2	1-2
	9 1	1-2	1	1-2	2
	10 1	1	1	1-2	2
45	11 1-2	1	1	1	2
	12 1	1	1	1-2	1-2
	13 1	1	1	1-2	1-2
46	14 1	1	1	1	1-2
	15 1	1	1-2	1	2

	16	1	1	1	1-2	1-2
	17	1	1	1	1-2	1-2
	18	1	1	1	1	1-2
5	19	1	1	1	1	1-2
	20	1-2	1-2	1	1-2	1
	21	1-2	2	1	2	2
	22	1-2	2	1	1-2	1-2
10	23	2	2*)	1	2	1-2
	24	1-2	1-2*)	1	1-2	1-2
	25	1-2	1-2*)	1	1-2	1

*) gemessen an einem Film einer Haarspray-Formulierung mit einem VOC-Gehalt von 80 Gew.-% (Treibgas: Dimethylether)

15

Beispiele 26 bis 50

Aerosol-Haarspray-Formulierungen mit einem VOC-Gehalt von 95 Gew.-%:

20 Polymer gemäß Beisp. 1-25 5,00 Gew.-%
 Ethanol 55,00 Gew.-%
 Propan/Butan 39,96 Gew.-%
 Parfüm, Zusatzstoffe q.s.

25 Beispiele 51 bis 75

Aerosol-Haarspray-Formulierungen mit einem VOC-Gehalt von 95 Gew.-%:

30 Polymer gemäß Beisp. 1-25 5,00 Gew.-%
 Ethanol 40,00 Gew.-%
 Propan/Butan 54,96 Gew.-%
 Parfüm, Zusatzstoffe q.s.

Beispiele 76 bis 100

35 Kompakte Aerosol-Haarspray-Formulierungen mit einem VOC-Gehalt von 80 Gew.-%:

40 Polymer gemäß Beisp. 1-25 5,00 Gew.-%
 Ethanol 40,00 Gew.-%
 Dimethylether 39,96 Gew.-%
 Wasser 15,00 Gew.-%
 Parfüm, Zusatzstoffe q.s.

Beispiele 101 bis 117

45 Haarspray-Formulierungen mit einem VOC-Gehalt von 55 Gew.-%:

Polymer gemäß Beisp.

1-3, 7-14, 16-21	3,00	Gew.-%
Ethanol	15,00	Gew.-%
Wasser	42,00	Gew.-%
Dimethylether	39,96	Gew.-%
5 Parfüm, Zusatzstoffe	q.s.	

Beispiele 118 bis 142

Pump-Haarspray:

10 Polymer gemäß Beisp. 1-25	5,00	Gew.-%
Ethanol	94,96	Gew.-%
Parfüm, Zusatzstoffe	q.s.	

Beispiele 143 bis 167

15 Pump-Haarspray:

Polymer gemäß Beisp. 1-25	5,00	Gew.-%
Ethanol	79,96	Gew.-%
Wasser	15,00	Gew.-%
20 Parfüm, Zusatzstoffe	q.s.	

Beispiele 168 bis 192

Schaum-Conditioner : [Gew.-%]

25 Polymer 1-25 (20 %ige wässrige Lösung)	30,00
Cremophor® A25 ⁸⁾)	0,20
Comperlan® KD ⁹⁾)	0,10
Wasser	59,70
30 Propan/Butan	9,96
Parfüm, Konservierungsmittel	q.s.

8) CTFA-Name: Ceteareth 25, Fa. BASF AG, Umsetzungsprodukt aus Fettalkohol und Ethylenoxid

35 9) CTFA-Name: Cocamide DEA, Fa. Henkel, Kokosfettsäureamid

zur Herstellung der Schaum-Conditioner werden die Komponenten eingewogen und unter Rühren gelöst. Anschließend werden sie in einen Spender abgefüllt und das Treibgas zugesetzt.

40	Beispiele 193 bis 217
	Haarfestiger-Gel

Phase I:

45 Polymer 1-25 (20 %ige wässrige Lösung)	25,00	Gew.-%
Polysorbat 20	1,00	Gew.-%

Imidazolidinylharnstoff 0,10 Gew.-%
Parfüm, Zusatzstoffe q.s.

Phase II:

5 Hydroxyethylcellulose	1,40	Gew.-%
Ethoxilierter Oleylalkohol (20 EO)	0,10	Gew.-%
Wasser	72,36	Gew.-%

Beispiele für Anwendungen in der Hautkosmetik

10

Beispiele 218 bis 242

O/W-Cremes

	Ölphase:	Gew.-%	CTFA-Name:
15	Cremophor® A6 (BASF AG)	3,5	Ceteareth-6 (Stearylalkohol-Ethoxylat)
	Cremophor® A25 (BASF AG)	2,5	Ceteareth-25 (Fettalkohol-Ethoxylat)
	Glycerinmonostearat s.e.	2,5	Glycerylstearate
20	Paraffinöl	7,5	
	Cetylalkohol	2,5	
	Luvitol® EHO (BASF AG)	3,2	Cetearyloctanoat
	Vitamin E-Aacetat	1,0	
25	Nip-Nip®, Nipa Laboratories Ltd., USA	0,1	Methyl- und Propyl-4-hydroxybenzoate (7:3)

	Wasserphase:	Gew.-%	
	Polymer 1-25	1,5	
30	Wasser	73,6	
	Germall II, Sutton Laboratories Inc., USA	0,1	Imidazolidinylharnstoff
	1,2-Propylenglykol	1,0	

35 Zur Herstellung der Cremes werden die Komponenten für Öl- und Wasserphase getrennt eingewogen und bei 80 °C homogenisiert. Dann gibt man die Wasserphase langsam unter Rühren zu der Ölphase. Anschließend lässt man unter Rühren auf Raumtemperatur abkühlen.

40 Beispiele 243 bis 267

O/W-Cremes

	Ölphase:	Gew.-%	CTFA-Name:
45	Cremophor® A6 (BASF AG)	2,0	Ceteareth-6 (Stearylalkohol-Ethoxylat)
	Cremophor® A25 (BASF AG)	2,0	Ceteareth-25 (Fettalkohol-Ethoxylat)

	Glycerinmonostearat s.e.	6,0	Glycerylstearate
	Paraffinöl	0,9	
5	Tegiloxan 100	0,1	Dimethicone
Cetylalkohol		1,5	
Luvitol® EHO (BASF AG)	12,0		CetearylOctanoat
Vitamin E-Aacetat	0,4		

	Wasserphase:	Gew.-%	
10	Polymer 1-25	1,0	
	Wasser	74,6	
	1,2-Propylenglykol	1,0	
15	Germall II, Sutton Laboratories Inc., USA	0,1	Imidazolidinylharnstoff

Zur Herstellung der Cremes werden die Komponenten für Öl- und Wasserphase getrennt eingewogen und bei 80 °C homogenisiert. Dann gibt man die Wasserphase langsam unter Rühren zu der Ölphase. Anschließend lässt man unter Rühren auf Raumtemperatur abkühlen.

Beispiele für Verwendung als Haarfestigerpolymer in der Haarkosmetik

25 Beispiele 268-277

VOC 80 Aerosol-Haarspray [Gew.-%]

Polymer 14/19/20/22/25/26-30	4,00
Luviset® PUR (Polyurethan-	
30 Haarpolymer der Fa. BASF)	1,00
Wasser	15,00
Dimethylether	40,00
Ethanol	40,00
Silikon, Parfüm, Entschäumer	q.s.

35

Beispiele 278-287

VOC 80 Aerosol-Haarspray [Gew.-%]

Polymer 14/19/20/22/25/26-30	1,50
40 Luviset PUR	3,50
Wasser	15,00
Dimethylether	40,00
Ethanol	40,00
Silikon, Parfüm, Entschäumer	q.s.

45

Beispiele 288-297

VOC 55 Aerosol-Haarspray [Gew.-%]

Polymer 14/19/20/22/25/26-30	1,00
Luviset PUR	2,00
5 Wasser	42,00
Dimethylether	35,00
Ethanol	20,00
Silikon, Parfüm, Entschäumer	q.s.

10 Beispiele 298-307

VOC 55 Handpumpen-Spray [Gew.-%]

Polymer 14/19/20/22/25/26-30	1,50
Luviset PUR	3,50
15 Wasser	40,00
Ethanol	55,00
Silikon, Parfüm, Entschäumer	q.s.

Beispiele 308-312

20 Schaum-Conditioner [Gew.-%]

Polymer 26-30 (25%ige wässrige Lösung)	20,00
Cremophor® A25 (Ceteareth-25/BASF)	0,20
25 Comperlan® KD (Coamide DEA/Henkel)	0,10
Wasser	69,70
Propan/Butan	10,00
Silikon, Parfüm, Konservierungsmittel	q.s.

30

Herstellung: Die Komponenten werden eingewogen, unter Rühren gelöst, abgefüllt und anschließend das Treibgas zugesetzt.

Beispiele 313-315

35 Conditioner-Shampoo [Gew.-%]

Polymer 26-30 (25 % wässrige Lösung)	20,00
A) Texapon® NSO 28%ig 40 (Natriumlaurylsulfat/Henkel)	50,00
Comperlan® KD (Coamide DEA/Henkel)	1,00
Polymer 31-33 (25%ige wässrige Lösung)	20,00
45 Parfümöl	q.s.
B) Wasser	27,50
Natriumchlorid	1,50

Konservierungsmittel etc. q.s.

Herstellung: Die Komponenten werden eingewogen, die Phasen A und B unter Rühren getrennt gelöst und gemischt. Dann röhrt man Phase 5 B langsam in Phase A ein.

Verwendung in der Hautkosmetik

Beispiele 316-328

10 Standard O/W-Cremes

	Ölphase:	Gew.-%	CTFA-Name:
15	Cremophor® A6 (BASF AG)	3,5	Ceteareth-6 (und) Stearylalkohol
	Cremophor® A25 (BASF AG)	3,5	Ceteareth-25
	Glycerinmonostearat s.e.	2,5	Glycerylstearat
	Paraffinöl	7,5	
20	Cetylalkohol	2,5	
	Luvitol® EHO (BASF AG)	3,2	Cetearyloctanoat
	Vitamin E-Aacetat	1,0	Tocopherylacetat
	NiP-Nip®, Nipa Lab. Ltd., USA	0,1	Methyl- und Propyl-4-hydroxybenzoat (7:3)

	Wasserphase:	Gew.-%	
25	Polymer 14/19/20/22/25/26-33	1,5	
	Wasser	73,6	
30	1,2-Propylenglykol	1,0	
	Germall II, Sutton Lab.Inc., USA	0,1	Imidazolidinylharnstoff

Zur Herstellung der Cremes werden die Komponenten für Öl- und 35 Wasserphase getrennt eingewogen und bei 80 °C homogenisiert. Dann gibt man die Wasserphase langsam unter Rühren zu der Ölphase. Anschließend lässt man unter Rühren auf Raumtemperatur abkühlen.

Patentansprüche

1. Kosmetisches Mittel, enthaltend wenigstens ein wasserlösliches oder wasserdispergierbares Polymer, das
- 5 a) 5 bis 50 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel I

15 worin
 R^1 für Wasserstoff oder C_1 - bis C_8 -Alkyl steht, und
 x^1 für O oder NR^2 steht, wobei R^2 für Wasserstoff,
 C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht,

- 20 b) 25 bis 90 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinylactams,
- c) 0,5 bis 30 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer kationogenen und/oder kationischen Gruppe pro Molekül,
- 25 d) 0 bis 30 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel II

35 worin
 R^3 für Wasserstoff oder C_1 - bis C_8 -Alkyl steht,
 x^2 für O oder NR^5 steht, wobei R^5 für Wasserstoff, C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht, und
40 R^4 für Wasserstoff oder einen linearen C_1 - bis C_{22} -Alkylrest steht,

eingebaut enthält, und die Salze davon.

40

2. Mittel nach Anspruch 1, wobei das wasserlösliche oder wasser-dispergierbare Polymer wenigstens ein Monomer d) der Formel II mit $X^2 = O$ und $R^4 = H$ in einer Menge von 0,1 bis 20 Gew.-% bezogen auf die Gesamtmenge der Monomere a), b), c) und d) einpolymerisiert enthält.
- 5
3. Mittel nach einem der vorhergehenden Ansprüche, wobei das Po-lymer wenigstens eine weitere Komponente, die ausgewählt ist unter
- 10
- e) von d) verschiedenen Verbindungen mit einer radikalisch polymerisierbaren α,β -ethylenisch ungesättigten Doppel-bindung und mindestens einer anionogenen und/oder anioni-schen Gruppe pro Molekül,
- 15
- f) vernetzend wirkenden Monomeren mit mindestens zwei ethy-lenisch ungesättigten, nicht konjugierten Doppelbindun-gen,
- 20
- g) von a) bis f) verschiedenen radikalisch polymerisierbaren Monomeren,
- und Mischungen davon, einpolymerisiert enthält.
- 25 4. Mittel nach einem der vorhergehenden Ansprüche, das zusätz-lich wenigstens ein Polyalkylenoxidgruppen-haltiges Polysilo-xan enthält.
5. Mittel nach Anspruch 4, wobei das Polysiloxan ausgewählt ist
- 30 unter Verbindungen der allgemeinen Formel III

- 40 worin
 die Reihenfolge der Siloxaneinheiten beliebig ist,
 d und e unabhängig voneinander für 0 bis 100 stehen, wobei
 die Summe aus d und e mindestens 2 ist,
 f für eine ganze Zahl von 2 bis 8 steht,
 45 z^1 für einen Rest der Formel IV

steht, wobei

in der Formel IV die Reihenfolge der Alkylenoxideinheiten beliebig ist,

5 u für eine ganze Zahl von 1 bis 8 steht,

v und w unabhängig voneinander für eine ganze Zahl von 0 bis 200 stehen, wobei die Summe aus v und w > 0 ist, und

10 R^{A} für Wasserstoff oder $\text{C}_1\text{-C}_6\text{-Alkyl}$ steht.

6. Mittel nach einem der Ansprüche 4 oder 5, wobei das Gewichtsmengenverhältnis von wasserlöslichem oder wasserdispersierbarem Polymer zu Polysiloxan in einem Bereich von 70:30 bis 15 99,9:0,1, bevorzugt 85:15 bis 99:1, liegt.

7. Mittel nach einem der Ansprüche 4 bis 6, wobei als wasserlösliches oder wasserdispersierbares Polymer ein Polymer eingesetzt wird, das durch radikalische Polymerisation der das Polymer bildenden Monomere in Gegenwart von wenigstens einem 20 der Polyalkylenoxidgruppen-haltigen Polysiloxane erhalten wird.

25 8. Mittel nach einem der vorhergehenden Ansprüche in Form eines Haarbehandlungsmittels, insbesondere in Form eines Haarsprays.

9. Mittel nach Anspruch 8, enthaltend

30 A) 0,2 bis 20 Gew.-% mindestens eines in Wasser löslichen oder dispersierbaren Polymers, wie in einem der Ansprüche 1 bis 6 definiert,

35 B) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, wenigstens eines Lösungsmittels, ausgewählt unter Wasser, was- sermischbaren Lösungsmitteln und Mischungen davon,

C) 0 bis 70 Gew.-% eines Treibmittels,

40 D) 0 bis 10 Gew.-% mindestens eines von A) verschiedenen, in Wasser löslichen oder dispersierbaren Haarpolymeren,

E) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons,

42

- F) 0 bis 0,5 Gew.-% mindestens eines Wachses, bevorzugt mindestens eines Fettsäureamids.

10. wasserlösliches oder wasserdispersierbares Polymer, das

5

- a) 5 bis 50 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel I

10

worin

15 R¹ für Wasserstoff oder C₁- bis C₈-Alkyl steht, und

X¹ für O oder NR² steht, wobei R² für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht,

20 b) 25 bis 90 Gew.-% wenigstens eines N-Vinylamids und/oder N-Vinyllactams,

25 c) 0,5 bis 30 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer kationogenen und/oder kationischen Gruppe pro Molekül,

d) 0,1 bis 30 Gew.-% wenigstens eines α,β -ethylenisch ungesättigten Monomers der allgemeinen Formel II

30

35

worin

R³ für Wasserstoff oder C₁- bis C₈-Alkyl steht,

X² für O oder NR⁵ steht, wobei R⁵ für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl steht, und

40

R⁴ für Wasserstoff oder einen linearen C₁- bis C₂₂-Alkylrest steht,

einpolymerisiert enthält.

11. Polymer nach Anspruch 10, das wenigstens eine weitere Komponente, die ausgewählt ist unter

45

- e) von d) verschiedenen Verbindungen mit einer radikalisch polymerisierbaren α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer anionogenen und/oder anionischen Gruppe pro Molekül,
- 5 f) vernetzend wirkenden Monomeren mit mindestens zwei ethylenisch ungesättigten, nicht konjugierten Doppelbindungen,
- 10 g) von a) bis f) verschiedenen radikalisch polymerisierbaren Monomeren,
und Mischungen davon, einpolymerisiert enthält.
- 15 12. Polymer nach einem der Ansprüche 10 oder 11, das 0,1 bis 20 Gew.-%, bezogen auf die Gesamtmenge der Monomere a), b), c) und d), wenigstens eines Monomers der allgemeinen Formel II mit $X^2 = O$ und $R^4 = H$ einpolymerisiert enthält.
- 20 13. Polymer nach einem der Ansprüche 10 bis 12, das
10 bis 50 Gew.-% wenigstens eines Monomers der Formel I,
25 bis 70 Gew.-% wenigstens eines N-Vinylamids und/oder
N-Vinyllactams,
25 3 bis 20 Gew.-% wenigstens einer Verbindung mit einer radikalisch polymerisierbaren, α,β -ethylenisch ungesättigten Doppelbindung und mindestens einer kationischen und/oder kationogenen Gruppe pro Molekül,
30 1 bis 10 Gew.-% wenigstens einer Verbindung der Formel II mit $X^2 = O$ und $R^4 = H$,
1 bis 20 Gew.-% wenigstens eines Polyalkylenoxidgruppen-haltigen Polysiloxans und gegebenenfalls
0 bis 25 Gew.-% einer oder mehrerer Verbindungen der Formel
35 II mit $R^4 \neq H$, wenn $X^2 = O$,
einpolymerisiert enthält, wobei die Gewichtsanteile sich zu 100 Gew.-% addieren.
- 40 14. Verwendung der Polymere, wie in einem der Ansprüche 1 bis 7 definiert, als Hilfsmittel in der Kosmetik, bevorzugt als Beschichtungsmittel für Haar, Haut und Nägel, insbesondere in der Haarkosmetik, vorzugsweise als Festigerpolymer in Haarsprays, Schaumfestigern, Haarmousse, Haargel und Shampoos.

44

15. Verwendung der Polymere, wie in einem der Ansprüche 1 bis 7 definiert, in der dekorativen Kosmetik, bevorzugt in Mascara, Make-up und Lidschatten, als polymerer Emulgator oder Coemulgator zur Formulierung von kosmetischen oder pharmazeutischen Präparaten sowie als Hilfsmittel in der Pharmazie, bevorzugt als oder in Beschichtungsmittel(n) oder Bindemittel(n) für feste Arzneiformen.
- 10 16. Verwendung der Polymere, wie in einem der Ansprüche 1 bis 7 definiert, als oder in Beschichtungsmittel(n) für die Textil-, Papier-, Druck-, Leder- und Klebstoffindustrie sowie als Polymeremulgator für nicht-kosmetische Zubereitungen.

15

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP 01/02047

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C08F220/54 A61K7/06 C08F220/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08F A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 19966 A (ISP INVESTMENT INC.) 4 July 1996 (1996-07-04) cited in the application claim 1 ----	1
A	EP 0 373 442 A (BASF AG) 20 June 1990 (1990-06-20) ----	
P,X	DE 198 38 196 A (BASF) 2 March 2000 (2000-03-02) cited in the application claims 1,7 -----	1-16

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

15 May 2001

Date of mailing of the international search report

21/05/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Cauwenberg, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 01/02047

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9619966	A 04-07-1996	US AU AU CA CN EP JP US	5523369 A 703824 B 4608996 A 2203401 A 1171044 A 0805671 A 11500417 T 5997855 A		04-06-1996 01-04-1999 19-07-1996 04-07-1996 21-01-1998 12-11-1997 12-01-1999 07-12-1999
EP 373442	A 20-06-1990	DE CA DE ES JP JP US	3842183 A 2003987 A 58904016 D 2053931 T 2214710 A 2933655 B 5132417 A		21-06-1990 15-06-1990 13-05-1993 01-08-1994 27-08-1990 16-08-1999 21-07-1992
DE 19838196	A 02-03-2000	AU WO	5853499 A 0011051 A		14-03-2000 02-03-2000

INTERNATIONALER RECHERCHENBERICHT

Inter. ...ionale ...enzeichen

PCT/EP 01/02047

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08F220/54 A61K7/06 C08F220/18		
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK		
B. RECHERCHIERTE GEBIETE Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C08F A61K		
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen		
Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)		
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 96 19966 A (ISP INVESTMENT INC.) 4. Juli 1996 (1996-07-04) in der Anmeldung erwähnt Anspruch 1 ---	1
A	EP 0 373 442 A (BASF AG) 20. Juni 1990 (1990-06-20) ---	
P, X	DE 198 38 196 A (BASF) 2. März 2000 (2000-03-02) in der Anmeldung erwähnt Ansprüche 1,7 ----	1-16
<input type="checkbox"/> Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen		<input checked="" type="checkbox"/> Siehe Anhang Patentfamilie
<ul style="list-style-type: none"> * Besondere Kategorien von angegebenen Veröffentlichungen : *'A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist *'E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist *'L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgelöscht) *'O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *'P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist <ul style="list-style-type: none"> *'T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *'X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *'Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *& Veröffentlichung, die Mitglied derselben Patentfamilie ist 		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts	
15. Mai 2001	21/05/2001	
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlanta 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Cauwenberg, C	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 01/02047

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9619966 A	04-07-1996	US	5523369 A	04-06-1996
		AU	703824 B	01-04-1999
		AU	4608996 A	19-07-1996
		CA	2203401 A	04-07-1996
		CN	1171044 A	21-01-1998
		EP	0805671 A	12-11-1997
		JP	11500417 T	12-01-1999
		US	5997855 A	07-12-1999
-----	-----	-----	-----	-----
EP 373442 A	20-06-1990	DE	3842183 A	21-06-1990
		CA	2003987 A	15-06-1990
		DE	58904016 D	13-05-1993
		ES	2053931 T	01-08-1994
		JP	2214710 A	27-08-1990
		JP	2933655 B	16-08-1999
		US	5132417 A	21-07-1992
-----	-----	-----	-----	-----
DE 19838196 A	02-03-2000	AU	5853499 A	14-03-2000
		WO	0011051 A	02-03-2000
-----	-----	-----	-----	-----