MAST30027: Modern Applied Statistics

Assignment 4, Solution, 2021

Problem 1: Posterior inference using Gibbs sampling

(a) **Solution** Let n = 100 and m = 150, we have

$$p(\mu_1|\mu_2, x_1, \dots, x_n, y_1, \dots, y_m)$$

$$\propto p(x_1, \dots, x_n|\mu_1)p(y_1, \dots, y_m|\mu_2)p(\mu_1, \mu_2)$$

$$\propto \exp\left[-\frac{1}{2}\left(\sum_{i=1}^n (x_i - \mu_1)^2 + 2\sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2)\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left((n+3)\mu_1^2 - 2\left(\sum_{i=1}^n x_i - 2\mu_2\right)\mu_1\right)\right]$$

$$\propto \exp\left[-\frac{n+3}{2}\left(\mu_1^2 - 2\frac{\sum_{i=1}^n x_i - 2\mu_2}{n+3}\mu_1\right)\right],$$

Thus, we have $\mu_1|\mu_2, x_1, \cdots, x_n, y_1, \cdots, y_m \sim \text{Normal}(\frac{\sum_{i=1}^n x_i - 2\mu_2}{n+3}, \frac{1}{n+3})$. Similarly, we have $\mu_2|\mu_1, x_1, \cdots, x_n, y_1, \cdots, y_m \sim \text{Normal}(\frac{2\sum_{i=1}^m y_i - 2\mu_1}{2m+3}, \frac{1}{2m+3})$.

(b) Solution

```
> x = scan(file="assignment4_x_2021.txt", what=double())
> y = scan(file="assignment4_y_2021.txt", what=double())
> set.seed(30027)
> # Implement Gibbs Sampler
> GibbsS <- function(mu1.0, mu2.0, nreps, x, y){
    Gsamples <- matrix(nrow=nreps, ncol=2)</pre>
    Gsamples[1,] \leftarrow c(mu1.0, mu2.0)
   # main loop
    n = length(x)
    m = length(y)
   for (i in 2:nreps) {
     mu1 = Gsamples[i-1,1]
     mu2 = Gsamples[i-1,2]
     mu1 = rnorm(1, (sum(x)-2*mu2)/(n+3), sqrt(1/(n+3)))
      mu2 = rnorm(1, (2*sum(y)-2*mu1)/(2*m+3), sqrt(1/(2*m+3)))
      Gsamples[i,] <- c(mu1, mu2)</pre>
    return(Gsamples=Gsamples)
> # number of iterations
> nreps <- 500
> # run two Gibbs sampling chains
> GibbsS1 = GibbsS(mu1.0=0, mu2.0=0, nreps, x, y)
> GibbsS2 = GibbsS(mu1.0=2, mu2.0=-1, nreps, x, y)
Make a trace plot for each of parameters.
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(1:nreps, GibbsS1[,1], type="l", col="red",
       ylim = c(min(GibbsS1[,1],GibbsS2[,1]), max(GibbsS1[,1],GibbsS2[,1])),
```

```
xlab = "iteration", ylab ="mu1")
> points(1:nreps, GibbsS2[,1], type="1", col="blue")
> plot(1:nreps, GibbsS1[,2], type="l", col="red",
       vlim = c(min(GibbsS1[,2],GibbsS2[,2]), max(GibbsS1[,2],GibbsS2[,2])),
       xlab = "iteration", ylab ="mu2")
> points(1:nreps, GibbsS2[,2], type="1", col="blue")
    3.0
   2.0
mu1
    1.0
    0.0
        0
               100
                      200
                             300
                                    400
                                            500
                        iteration
    0.0
    -1.0
mu2
        0
               100
                      200
                             300
                                     400
                                            500
                        iteration
```

Let's zoom in on the trace plot.

```
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(1:nreps, GibbsS1[,1], type="1", col="red", ylim = c(2.5,3.5),
       xlab = "iteration", ylab ="mu1")
> points(1:nreps, GibbsS2[,1], type="l", col="blue")
> plot(1:nreps, GibbsS1[,2], type="1", col="red", ylim = c(-2.5, -1.5),
       xlab = "iteration", ylab ="mu2")
> points(1:nreps, GibbsS2[,2], type="1", col="blue")
```


The trace plots show that samples from different chains are mixed well and behave similarly.

(c) **Solution** We will remove the first 50 samples as burn-in period.

```
1) make a plot that shows empirical (estimated) marginal posterior distribution.
```

```
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(density(GibbsS1[-(1:50),1]), ylab="posterior dist", xlab="mu1", main="")
> plot(density(GibbsS1[-(1:50),2]), ylab="posterior dist", xlab="mu2", main="")
```


2) estimate marginal posterior mean.

```
> # for mu1
> mean(GibbsS1[-(1:50),1])
```

Γ1] 3.144036

> # for mu2
> mean(GibbsS1[-(1:50),2])

[1] -1.976291

3) report a 90% credible interval for the marginal posterior distribution.

```
> quantile(GibbsS1[-(1:50),1], probs=c(0.05, 0.95))
```

```
5% 95%
2.974518 3.306848

> # for mu2
> quantile(GibbsS1[-(1:50),2], probs=c(0.05, 0.95))

5% 95%
-2.076106 -1.876740
```

Problem 2: Posterior inference using the Metropolis-Hastings (MH) algorithm

(a) **Solution** The posterior distribution is proportional to the product of the likelihood and prior distribution. Thus, we will use the product of the likelihood and prior distribution as a target distribution $\pi(\mu_1, \mu_2)$ in the Metropolis-Hastings algorithm.

```
> # log likelihood
> likelihood <- function(param, x, y){
+    mu1 = param[1]
+    mu2 = param[2]</pre>
```

```
+
      singlelikelihoodsX = dnorm(x, mean = mu1, sd = 1, log = T)
      singlelikelihoodsY = dnorm(y, mean = mu2, sd = sqrt(1/2), log = T)
      sumll = sum(singlelikelihoodsX) + sum(singlelikelihoodsY)
      return(sumll)
+ }
> # log prior
> prior <- function(param){</pre>
     mu1 = param[1]
      mu2 = param[2]
      return(-0.5*(3*mu1^2 + 4*mu1*mu2 + 3*mu2^2))
+ }
> # log posterior distribution up to a constant
> posterior <- function(param, x, y){</pre>
     return (likelihood(param, x, y) + prior(param))
+ }
> # proposal function
> proposalfunction <- function(param, delta){
   mu1 = param[1]
   mu2 = param[2]
   new.mu1 = rnorm(1, mu1, delta)
   new.mu2 = rnorm(1, mu2, delta)
   return(as.vector(c(new.mu1, new.mu2)))
+ }
> # log prob of proposal function
> proposal.prob <- function(old.param, new.param, delta){
   mu1 = old.param[1]
   mu2 = old.param[2]
   new.mu1 = new.param[1]
   new.mu2 = new.param[2]
   return(dnorm(new.mu1, mean = mu1, sd = delta, log = T) +
             dnorm(new.mu2, mean = mu2, sd= delta, log=T))
+ }
> # Metropolis algorithm
> run_metropolis_MCMC <- function(x, y, startvalue, iterations, delta){
      chain = array(dim = c(iterations,2))
      chain[1,] = startvalue
      for (i in 1:(iterations-1)){
          proposal = proposalfunction(chain[i,], delta)
          probab = exp(posterior(proposal,x, y) +
                         proposal.prob(proposal, chain[i,], delta) -
                         posterior(chain[i,], x, y) -
                         proposal.prob(chain[i,], proposal, delta))
          if (runif(1) < probab){</pre>
              chain[i+1,] = proposal
          }else{
              chain[i+1,] = chain[i,]
      }
      return(chain)
+ }
> # number of iterations
> nreps <- 2000
> # run two MH chains
> MHS1 = run_metropolis_MCMC(x, y, startvalue = c(0,0), nreps, delta = 1/10)
```

```
> MHS2 = run_metropolis_MCMC(x, y, startvalue = c(2,-1), nreps, delta = 1/10)
```

Make a trace plot for each of parameters.

Let's zoom in on the trace plot.

The trace plots show that samples from different chains are mixed well and behave similarly after 2000 iterations.

(b) Solution We will remove the first 300 samples as burn-in period.

1) make a plot that shows empirical (estimated) marginal posterior distribution.

```
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(density(MHS1[-(1:300),1]), ylab="posterior dist", xlab="mu1", main="")
> plot(density(MHS1[-(1:300),2]), ylab="posterior dist", xlab="mu2", main="")
```


2) estimate marginal posterior mean.

```
> # for mu1
> mean(MHS1[-(1:300),1])
```

[1] 3.142711

> # for mu2 > mean(MHS1[-(1:300),2])

- [1] -1.982071
- 3) report a 90% credible interval for the marginal posterior distribution.
- > # for mu1
- > quantile(MHS1[-(1:300),1], probs=c(0.05, 0.95))

- 2.955025 3.305431
- > # for mu2
- > quantile(MHS1[-(1:300),2], probs=c(0.05, 0.95))

-2.081424 -1.889318

Problem 3: Posterior inference using Variational Inference (VI)

(a) **Solution** From problem 1, we have

$$\log p(\mu_1, \mu_2, x_1, \dots, x_n, y_1, \dots, y_m)$$

$$= -\frac{1}{2} \left(\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right) + \text{const}$$

Then

$$\log q_{\mu_1}^*(\mu_1) = -\frac{1}{2} E_{\mu_2} \left[\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right] + \text{const}$$

$$= -\frac{1}{2} \left(\sum_{i=1}^n (x_i - \mu_1)^2 + E_{\mu_2} \left[2 \sum_{i=1}^m (y_i - \mu_2)^2 \right] + 3\mu_1^2 + 4\mu_1 E_{\mu_2}(\mu_2) \right) + \text{const}$$

$$= -\frac{1}{2} \left((n+3)\mu_1^2 - 2 \left(\sum_{i=1}^n x_i - 2E_{\mu_2}(\mu_2) \right) \mu_1 \right) + \text{const}$$

Hence, $q_{\mu_1}^*(\mu_1)$ is the pdf of $N(\mu_1^*, \sigma_1^{2*})$, where $\mu_1^* = \frac{\sum_{i=1}^n x_i - 2E_{\mu_2}(\mu_2)}{n+3}$ and $\sigma_1^{2*} = \frac{1}{n+3}$. Similarly,

$$\log q_{\mu_2}^*(\mu_2) = -\frac{1}{2} E_{\mu_1} \left[\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right] + \text{const}$$

$$= -\frac{1}{2} \left(E_{\mu_1} \left[\sum_{i=1}^n (x_i - \mu_1)^2 \right] + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + 4 E_{\mu_1}(\mu_1) \mu_2 + 3\mu_2^2 \right) + \text{const}$$

$$= -\frac{1}{2} \left((2m+3)\mu_2^2 - 2 \left(2 \sum_{i=1}^m y_i - 2E_{\mu_1}(\mu_1) \right) \mu_2 \right) + \text{const}$$

Hence, $q_{\mu_2}^*(\mu_2)$ is the pdf of $N(\mu_2^*, \sigma_2^{2*})$, where $\mu_2^* = \frac{2\sum_{i=1}^m y_i - 2E_{\mu_1}(\mu_1)}{2m+3}$ and $\sigma_2^{2*} = \frac{1}{2m+3}$.

(b) Solution

$$ELBO(q_{\mu_1}^*(\mu_1), q_{\mu_2}^*(\mu_2)) = ELBO(\mu_1^*, \mu_2^*)$$

$$= E_{\mu_1, \mu_2} \left[\log p(\mu_1, \mu_2, x_1, \dots, x_n, y_1, \dots, y_m) \right] - E_{\mu_1, \mu_2} \left[\log (q_{\mu_1}^*(\mu_1)) \right] - E_{\mu_1, \mu_2} \left[\log (q_{\mu_2}^*(\mu_2)) \right]$$

Each term is computed as follow,

$$\begin{split} E_{\mu_1,\mu_2} \left[\log p(\mu_1,\mu_2,x_1,\cdots,x_n,y_1,\cdots,y_m) \right] \\ &= -\frac{1}{2} E_{\mu_1,\mu_2} \left[\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right] + \text{const} \\ &= -\frac{1}{2} \left[\sum_{i=1}^n E_{\mu_1} (x_i - \mu_1)^2 + 2 \sum_{i=1}^m E_{\mu_2} (y_i - \mu_2)^2 + 3(\sigma_1^{2*} + \mu_1^{*2}) + 4\mu_1^* \mu_2^* + 3(\sigma_2^{2*} + \mu_2^{*2}) \right] + \text{const} \\ &= -\frac{1}{2} \left[\sum_{i=1}^n \left(\sigma_1^{2*} + \mu_1^{*2} - 2x_i \mu_1^* \right) + 2 \sum_{i=1}^m \left(\sigma_2^{2*} + \mu_2^{*2} - 2y_i \mu_2^* \right) + 3(\sigma_1^{2*} + \mu_1^{*2}) + 4\mu_1^* \mu_2^* + 3(\sigma_2^{2*} + \mu_2^{*2}) \right] + \text{const} \end{split}$$

$$E_{\mu_1,\mu_2} \left[\log(q_{\mu_1}^*(\mu_1)) \right]$$

$$= -\frac{1}{2} E_{\mu_1,\mu_2} \left[\frac{(\mu_1 - \mu_1^*)^2}{\sigma_1^{2*}} \right] + \text{const}$$

$$= -\frac{1}{2} + \text{const}$$

$$\begin{split} E_{\mu_1,\mu_2} \left[\log(q_{\mu_2}^*(\mu_2)) \right] \\ = & -\frac{1}{2} E_{\mu_1,\mu_2} \left[\frac{(\mu_2 - \mu_2^*)^2}{\sigma_2^{2*}} \right] + \text{const} \\ = & -\frac{1}{2} + \text{const} \end{split}$$

(c) Solution

Implementation CAVI algorithm

```
> # x y : data
> # initial values for mu1*, sigma1.2*, mu2*, sigma2.2*:
              mu1.vi.init, sigma1.2.vi.init, mu2.vi.init, sigma2.2.vi.init
> # epsilon : If the ELBO has changed by less than epsilon,
              the CAVI algorithm will stop
> # max.iter: maximum number of iteration
> cavi.normal <- function(x, y, mu1.vi.init, sigma1.2.vi.init,
                          mu2.vi.init, sigma2.2.vi.init, epsilon=1e-5, max.iter=100){
   n = length(x)
   m = length(y)
   mu1.vi = mu1.vi.init
   sigma1.2.vi = sigma1.2.vi.init
   mu2.vi = mu2.vi.init
   sigma2.2.vi = sigma2.2.vi.init
   # store the ELBO for each iteration
   elbo = c()
   # I will store mu1*, sigma1.2*, mu2*, sigma2.2* for each iteration
   mu1.vi.list = sigma1.2.vi.list = mu2.vi.list = sigma2.2.vi.list = c()
   # compute the ELBO using initial values of mu1*, sigma1.2*, mu2*, sigma2.2*
   Elogq.mu1 = Elogq.mu2 = -1/2
   # Elogp.x.y.mu1.mu2
```

```
A = sigma1.2.vi + mu1.vi^2 - 2*x*mu1.vi + x*x
   B = sigma2.2.vi + mu2.vi^2 - 2*y*mu2.vi + y*y
   Elogp.x.y.mu1.mu2 = -0.5*sum(A) - sum(B) -
     0.5*(3*(sigma1.2.vi + mu1.vi^2) + 4*mu1.vi*mu2.vi + 3*(sigma2.2.vi + mu2.vi^2))
   elbo = c(elbo, Elogp.x.y.mu1.mu2 -Elogq.mu1 - Elogq.mu2)
   mu1.vi.list = c(mu1.vi.list, mu1.vi)
   sigma1.2.vi.list = c(sigma1.2.vi.list, sigma1.2.vi)
   mu2.vi.list = c(mu2.vi.list, mu2.vi)
   sigma2.2.vi.list = c(sigma2.2.vi.list, sigma2.2.vi)
   # set the change in the ELBO with 1
   delta.elbo = 1
   # number of iteration
   n.iter = 1
   # If the elbo has changed by less than epsilon, the CAVI will stop.
   while((delta.elbo > epsilon) & (n.iter <= max.iter)){</pre>
     # Update mu1.vi and sigma1.2.vi
     mu1.vi = (sum(x) - 2*mu2.vi)/(n + 3)
     sigma1.2.vi = 1/(n+3)
     # Update mu2.vi and sigma2.2.vi
     mu2.vi = (2*sum(y) - 2*mu1.vi)/(2*m + 3)
     sigma2.2.vi = 1/(2*m + 3)
     # compute the ELBO using the current values of mu1*, sigma1.2*, mu2*, sigma2.2*
     Elogq.mu1 = Elogq.mu2 = -1/2
     # Elogp.x.y.mu1.mu2
     A = sigma1.2.vi + mu1.vi^2 - 2*x*mu1.vi + x*x
     B = sigma2.2.vi + mu2.vi^2 - 2*y*mu2.vi + y*y
     Elogp.x.y.mu1.mu2 = -0.5*sum(A) - sum(B) -
        0.5*(3*(sigma1.2.vi + mu1.vi^2) + 4*mu1.vi*mu2.vi + 3*(sigma2.2.vi + mu2.vi^2))
     elbo = c(elbo, Elogp.x.y.mu1.mu2 -Elogq.mu1 - Elogq.mu2)
     mu1.vi.list = c(mu1.vi.list, mu1.vi)
     sigma1.2.vi.list = c(sigma1.2.vi.list, sigma1.2.vi)
     mu2.vi.list = c(mu2.vi.list, mu2.vi)
     sigma2.2.vi.list = c(sigma2.2.vi.list, sigma2.2.vi)
     # compute the change in the elbo
     delta.elbo = elbo[length(elbo)] - elbo[length(elbo)-1]
     # increase the number of iteration
     n.iter = n.iter + 1
   return(list(elbo = elbo,
               mu1.vi.list = mu1.vi.list, sigma1.2.vi.list=sigma1.2.vi.list,
               mu2.vi.list = mu2.vi.list, sigma2.2.vi.list=sigma2.2.vi.list))
+ }
```

Applying the implemented algorithm. Run the CAVI algorithm with different initial values and check that the ELBO increases at each step by plotting them.

```
> cavi1 = cavi.normal(x, y,
                      mu1.vi.init = 3, sigma1.2.vi.init = 1,
                      mu2.vi.init = -2, sigma2.2.vi.init = 1,
                      epsilon=1e-5, max.iter=100)
> cavi.res = cavi1
> cavi.res$elbo
[1] -338.7661 -135.6699 -135.6699
> plot(cavi.res$elbo, ylab='ELBO', xlab='iteration')
> print(paste("mu1* and sigma1.2* = (",
              round(cavi.res$mu1.vi.list[length(cavi.res$mu1.vi.list)],2), ",",
              round(cavi.res$sigma1.2.vi.list[length(cavi.res$sigma1.2.vi.list)],4),
              ")", sep=""))
[1] "mu1* and sigma1.2* = (3.14, 0.0097)"
> print(paste("mu2* and sigma2.2* = (",
              round(cavi.res$mu2.vi.list[length(cavi.res$mu2.vi.list)],2), ",",
              round(cavi.res$sigma2.2.vi.list[length(cavi.res$sigma2.2.vi.list)],4),
              ")", sep=""))
[1] "mu2* and sigma2.2* = (-1.98, 0.0033)"
```


The two CAVI runs have equally highest ELBO. You can see that approximated posterior distributions from the runs are the same. I will use the output from the first run: $q_{\mu_1}^*(\mu_1)$ is a pdf of N(3.14, 0.0097) and $q_{\mu_2}^*(\mu_2)$ is a pdf of N(-1.98, 0.0033).