(第3講) 原子の構造

教養教育研究院 秋山 好嗣

94

95

原子の構造はどうなってる? ラザフォード (1871-1937) イギリスの物理学者 α線、β線の発見者でもある ・ 従来の原子モデル: ぼんやりと分布する ・ 正電荷の中に電子が分布している。 約8000個のアルファ粒子のうち1つの軌道が90度以上それる後方散乱であった。 この実験によって、原子内の正電荷がごく 小さい領域に集中している、つまり原子核 が存在すると推論。

原子の構成要素

7 A: 質量数=陽子数(Z)+中性子数

Z:原子番号=陽子数(Z)

97

ヘリウム原子の構造

⁴He

X:元素記号

A:質量数=陽子数(Z)+中性子数

Z:原子番号=陽子数(Z)

粒子	電荷	質量(g)	質量比
陽子	+e	1.678 x 10 ⁻²⁷	1837
中性子	0	1.675 x 10 ⁻²⁷	1840
電子	-e	9.109 x 10 ⁻³¹	1

e:電気素量 1.6022x10⁻¹⁷ C (電荷の最小単位)

原子 = 原子核 + 電子原子核 = 陽子 + 中性子

98

同位体(同位元素)

同位体とは、原子番号が同じで質量数が異なる元素のことを同位体(同位元素)という。

→周期表の原子量は平均相対原子質量である。

X:元素記号

A: 質量数=陽子数(Z)+中性子数

Z:原子番号=陽子数(Z)

- 1912年 原子の質量を測定
- ネオンに質量の異なる二種の原子を発見
- 1922年 ノーベル化学賞受賞 「非放射性元素における同位体の発見 と質量分析器の開発」

F.W.アストン (1877-1945)

イギリスの化学者

水素の同位体

水素の場合、天然に存在する同位体は3種類存在する。

¹Hの存在比が99.985%と大部分のため、平均相対原子質量はほぼ1Hの相対原子質量である1.0となる。

100

炭素の同位体

炭素の場合も天然に存在する同位体は、3つ存在する。

¹²₆C ¹³₆C ¹⁴₆C

存在比 **0.989(8) 0.0107(8) <10**⁻¹² 質量 **12 13.003354... 14.00324...**

平均相対原子質量:12.01

12C以外に異なる炭素原子が存在するため周期表の原子 量は平均相対原子質量である。

101

元素	天然に存在する同位体とその割合(%)*
水素	¹ H (99.985) ² H (0.015) ³ H 極めて微量
ホウ素	$^{10}B (19.9)$ $^{11}B (80.1)$
炭素	12 C (98.90) 13 C (1.10)
窒素	¹⁴ N (99.634) ¹⁵ N (0.366)
酸素	¹⁶ O (99.762) ¹⁷ O (0.038) ¹⁸ O (0.200)
塩素	³⁵ Cl (75.77) ³⁷ Cl (24.23)
鉄	54 Fe (5.8) 56 Fe (91.72) 57 Fe (2.2) 58 Fe (0.28)
銅	⁶³ Cu (69.17)
臭素	79 Br (50.69) 81 Br (49.31)
銀	107 Ag (51.839) 109 Ag (48.161)

平均相対原子質量(原子量)の求め方

同位元素の存在が明らかとなった以上、原子の重さ(原子量)を算出するときには、この同位体の存在比を考慮する必要がある。

【例題】

下記の表を参考にして、銀の原子量を求めよ(12C = 12)

元素	天然に存在する同位体とその割合(%)*
銀	107 Ag (51.839) 109 Ag (48.161)

銀の原子量 = (同位体1の原子量 × 存在割合)

+ (同位体2の原子量 × 存在割合) + … = (106.91×0.51839) + (108.90 × 0.48161)

= 107.87 (周期表に記載ある値で確認)

103

同位体の分類と応用例

同じ元素で中性子の数が異なる核種

同位体 =安定同位体 + 放射性同位体

安定同位体(18O)を使った有機反応機構の解明

Q.この反応で生成する水分子中の酸素原子は、酢酸由来か、あるいはエタノール由来か、どっち?

104

酢酸エステル反応の反応機構

O
$$CH_3$$
-C-OH + $H^{18}O$ -CH $_3$ CH $_2 \iff CH_3$ -C- ^{18}O -CH $_2$ CH $_3$ +H-OH
 $^{\circ}$ (4

この反応で生じる水の酸素原子は、カルボン酸由来であることがわかる

: 1. \	//-	.41		_,	_	. ـه	۷,		
ak 1	77	+	3	١.	$\overline{}$	1.2-	14	┖	١

107

科学で使われる単位 SI(国際)単位とその定義 SI 単位の定義 メートルは、光が真空中で 1 秒の 299 792 458 分の 1 の時間に進む距離である キログラムは、国際キログラム原器の質量に 基本物理量とその記号 SI 単位の名称とその記号 長さ l メートル m 質量 加 キログラム kg 等しい 秒は、セシウム 133 の原子の基底状態の 2 つ 時間t 移は、セシウム 133 の原子の基底状態の 2つ の超微細準位の回の遷移に対応する依射状の 援動周期の 9 192 631 70 倍の時間である アンペアは、度空中で 1 no 四側でである アンペアは、度空中で 1 no 四側で平行に置 かれた無限に小さい円形新面積を有する無限 に長い 2 本の直線状導体のぞれぞれを流れ、 これら導体の長さ 1 m ごとに 2×10⁻⁷ ニュー トンの力を及ぼし合う一定の電流の大きさで ある 電流 I アンペア A 熱力学温度 T ケルビン K モル mol 物質量 n を特定して使用する

化学で使う単位

物理量 = 数値 × 単位 : 質量や体積などは、数値に単位をかけて表す。

水素1.00 molの質量は m = 2.02 g, 0 ℃, 1気圧のときの体積は22.4 L

囷	際単位	(ST)

物理量	記号	単位の記号	倍数	接頭語	記号	倍数	接頭語	記号
長さ	l, s	m	1015	ペタ	Р	10-1	デシ	d
質量	m	kg	1012	テラ	Т	10-2	センチ	С
時間	t	s	109	ギガ	G	10-3	ミリ	m
電流	I	Α	10 ⁶	メガ	M	10-6	マイクロ	μ
熱力学的温度	T	K	10 ³	キロ	k	10-9	ナノ	n
物質量	n	mol	102	ヘクト	h	10-12	ピコ	р
光度	I_{ν}	cd	10	デカ	d	10-15	フェムト	f

109

15 m > 1	5×M	
1007 >	/00×9	
Inn >	1x/0 ⁻⁹ ×m	
1×nm		

110

基本物理定数と指数表示					
物理量	物理量の記号	数值	単位		
アボガドロ定数	$N_{ m A}$	6.0221×10^{23}	mol^{-1}		
真空中の光速度	C0	299 792 458	ms^{-1}		
真空の誘電率	ε_0	8.8542×10^{-12}	$\mathrm{F}\mathrm{m}^{-1}$		
電気素量(陽子の電荷)	e	1.6022×10^{-19}	C		
プランク定数	h	6.6261×10^{-34}	Js		
ボルツマン定数	k	1.3807×10^{-23}	$ m JK^{-1}$		
気体定数	R	8.3145	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$		
ファラデー定数	F	9.6485×10^4	$\mathrm{C}\mathrm{mol}^{-1}$		
電子の静止質量	$m_{ m e}$	9.1094×10^{-31}	kg		
陽子の静止質量	$m_{ m p}$	1.6726×10^{-27}	kg		
中性子の静止質量	$m_{ m n}$	1.6749×10^{-27}	kg		

窒素分子 1 モルの個数を指数表示なしに書くと 6022100000000000000000個、、、非常にわかりにくい

単位換算の例題

次の各量を[]内に示す単位に換算しなさい。

- 1) 400 nm [m] 1 nm = 1 x 10⁻⁹ m 400 nm = 400 x 10⁻⁹ = 4.00 x 10⁻⁷ m
- 2) 1.38 g·cm⁻³ [kg·m⁻³] = 1.38 kg / m³ 1 g = 1 x 10⁻³ kg, 1 cm³ = 1 x 10⁻⁶ m³

1.38 g·cm⁻³ = 1.38 x 10⁻³ kg / 1 x 10⁻⁶ m³ = 1.38 x 10⁻³ x 10⁶ kg·m⁻³ = 1.38 x 10³ kgm⁻³

112

ナノ領域の金(ゴールド)

ナノメーター領域の金は、鮮やかな赤い発色を呈する

S Kumar, et al. Nature Protocols 3, 314 - 320 (2008)

113

金ナノ粒子はなじみの物質

A stained glass window of 13 centuries in Chartres Cathedral ステンドグラスの赤色は、金ナノ粒子の発色に基づいている

119

油型 1

ブタン (C_4H_{10}) を燃焼させたところ、二酸化炭素 (CO_2) と水 (H_2O) が生成した。この化学変化を化学反応式で表しなさい。

$$2 \times C_4 H_{10} + 1 \% O_2 \longrightarrow 2 \times CO_2 + 1 \% H_2 O$$

Cの数に注目: 4x = z

Hの数に注目: $10x = 2w \rightarrow 5x = w$

Oの数に注目: $2y = 2z + w \rightarrow y = 13/2x$

x: y: z: w = 1: 13/2: 4: 5

x:y:z:w=2:13:8:10

	সম	
HEE	-	

亜鉛Znに塩酸を反応させると、水素 H_2 が発生して、塩化亜鉛Zn Cl_2 ができた。この化学変化を化学反応式で示しなさい。

 $x Zn + \cancel{Q} HCI \longrightarrow z H_2 + w ZnCI$

Znの数に注目:X = WHの数に注目:y = 2zClの数に注目:y = 2w

 \longrightarrow x:y:z:w = 1:2:1:1

121

演習3

窒化マグネシウムはMg²⁺とN³⁻からなるイオン性化合物である。窒化マグネシウムの組成式を求めなさい。

組成式:Mg₃N₂

(電気的に中性であるから、(2+)×3 = (3-)×2)

122

演習4

塩素は2つの同位体³⁵CIと³⁷CIから成り立っている。 ¹²C=12とすると両者の質量は、それぞれ³⁵CI=34.97と ³⁷C=36.97となり、両者の存在割合はそれぞれ75.77% と24.23%である。このとき塩素の原子量を求めなさい。

 $MCI = 34.97 \times 0.7577 + 36.97 \times 0.2423$ $= 35.4546 \approx 35.45$

求める原子量MCI は <u>35.45</u>