Notes on Greedy Algorithms for Submodular Maximization

Thibaut Horel

February 26, 2015

1 Submodular Functions

All the functions we consider are set functions defined over subsets of a ground set N.

Definition 1. A function $f: 2^N \to \mathbf{R}$ is monotone iff:

$$\forall S \subseteq T \subseteq N, \ f(S) \le f(T)$$

Definition 2. For $f: 2^N \to \mathbf{R}$ and $S \subseteq N$, the marginal contribution to S is the function f_S defined by:

$$\forall T \subseteq N, \ f_S(T) = f(S \cup T) - f(S)$$

When there is no ambiguity, we write $f_S(e)$ instead of $f_S(\{e\})$ for $e \in N$, S + e instead of $S \cup \{e\}$ and S - e instead of $S \setminus \{e\}$.

Definition 3. A function $f: 2^N \to \mathbf{R}$ is submodular iff:

$$\forall S \subseteq T \subseteq N, \forall e \in N \setminus T, f_T(e) \leq f_S(e)$$

This "decreasing marginal contribution" definition of submodular functions often leads to treating them as "discrete concave functions".

Proposition 4. The following statements are equivalent:

- 1. f is submodular.
- 2. for all $S \subseteq N$, f_S is submodular.
- 3. for all $S \subseteq N$, f_S is subadditive.

Proof. $(1. \Rightarrow 2.)$ is immediate. To prove $(2. \Rightarrow 3.)$, we show that any submodular function f is subadditive. Let f be a submodular function. Consider A and B two subets of N. Writing $B = \{e_1, \ldots, e_n\}$ and $B_i = \{e_1, \ldots, e_i\}$:

$$f(A \cup B) = f(A) + \sum_{i=1}^{n} f(A \cup B_i) - f(A \cup B_{i-1})$$

$$\leq f(A) + \sum_{i=1}^{n} f(B_i) - f(B_{i-1}) = f(A) + f(B)$$

where the inequality uses the submodularity of f.

Finally, we prove $(3. \Rightarrow 1.)$. Let f be a function satisfying 3., and let us consider $S \subseteq T \subseteq N$ and $e \in N \setminus T$. Writing $T' = T \setminus S$:

$$f_T(e) = f_S(T' + e) - f_S(T')$$

 $\leq f_S(T') + f_S(e) - f_S(T') = f_S(e)$

where the inequality used that f_S is subadditive.

Remark. Proposition 4 implies in particular that a submodular function is subadditive.

The following corollary will be very useful in analysing greedy algorithms involving submodular functions. It can be seen as the "integrated" version of Definition 3¹.

Corollary 5. *Let f be a submodular function, then:*

$$\forall S \subseteq T \subseteq N, \ f(T) \le f(S) + \sum_{e \in T \setminus S} f_S(e)$$

Furthermore, if f is monotone submodular, S need not be a subset of T:

$$\forall S \subseteq N, T \subseteq N, f(T) \leq f(S) + \sum_{e \in T \setminus S} f_S(e)$$

Proof. If f is submodular, using that f_S is subadditive:

$$f_S(T) = f_S(T \setminus S) \le \sum_{e \in T \setminus S} f_S(e)$$

which proves the first part of the corollary.

If f is monotone submodular, $f(T) \le f(S \cup T)$ and applying the first part of the corollary to $S \cup T$ and T concludes the proof. \square

Remark. The two inequalities of Corollary 5 can be proved to be respectively equivalent to "f is submodular" and "f is monotone submodular".

2 Cardinality Constraint

Henceforth, f will be a monotone submodular function. Furthermore, we assume that f is *normalized*, that is, $f(\emptyset) = 0$. Consider the following maximization program:

$$S^* \in \operatorname*{arg\,max}_{S \colon |S| \le K} f(S)$$

The choice of a representation for f has a big impact on the computational nature of the above program. We assume the *value query model*: for any $S \subseteq N$, the algorithm can query a blackbox oracle for the value f(S). An algorithm making $O(\operatorname{poly}(|N|))$ queries to the oracle is considered to have polynomial running time.

Proposition 6. Let S_G be the set returned by Algorithm 1, then $f(S_G) \ge (1 - \frac{1}{e}) f(S^*)$.

Proof. Let us denote by $S_i = \{e_1, \dots, e_i\}$, the value of S_G after the *i*th time line 4 of Algorithm 1 is executed. Then:

$$f(S^*) \le f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}}(e)$$

$$\le f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f(S_i) - f(S_{i-1})$$

$$\le f(S_{i-1}) + K(f(S_i) - f(S_{i-1}))$$

¹Note the analogy to $f(b) \le f(a) + (b-a)f'(a)$, for f concave.

Algorithm 1 Greedy (Cardinality constraint)

Input: N, K, value query oracle for f1: $S_G \leftarrow \emptyset$ 2: while $|S_G| < K$ do
3: $x^* \leftarrow \arg\max_{x \in N} f_{S_G}(x)$ 4: $S_G \leftarrow S_G + x^*$ 5: $N \leftarrow N - x^*$ 6: end while

7: return S_G

where the first inequality used Corollary 5, the second inequality used the greediness of Algorithm 1 and the third inequality used that $|S^*| \leq K$.

Subtracting $K \cdot f(S^*)$ both sides gives:

$$f(S_i) - f(S^*) \ge \frac{K - 1}{K} (f(S_{i-1}) - f(S^*))$$

which in turn implies by induction:

$$f(S_i) \ge \left(1 - \left(1 - \frac{1}{K}\right)^i\right) f(S^*)$$

Taking i=K and using $(1-\frac{1}{K})^K \leq \frac{1}{e}$ concludes the proof. \square

Remark. Feige [1998] proved that unless P = NP, no polynomial time algorithm can achieve an approximation ratio better than $1 - \frac{1}{e}$ for the cardinality constrained maximization of set cover functions.

3 Knapsack Constraint

There is now a cost function $c: N \to \mathbf{R}^+$ and a budget $B \in \mathbf{R}^+$. c is extended to 2^N by $c(S) = \sum_{e \in S} c(e)$. Consider the following Knapsack constrained optimization problem:

$$S^* \in \underset{S: c(S) \le B}{\arg\max} f(S)$$

A natural way to extend Algorithm 1 to this case is Algorithm 2. The two main differences are that:

- 1. instead of maximizing the marginal contribution at each time step, Algorithm 2 maximizes the "bang-per-buck": the marginal contribution divided by the cost.
- when adding an item would violate the budget constraint, the item is thrown away, and the iteration keeps inspecting possibly cheaper items.

Unfortunately, Algorithm 2 has unbounded approximation ratio. Similarly to the standard Knapsack problem (when f is additive), problems arise when there are high value items. Consider the case where f is additive and $N=\{e_1,e_2\}$ with $f(e_1)=v, f(e_2)=\varepsilon v, c(e_1)=B$ and $c(e_2)=\frac{\varepsilon B}{2}$. The best solution is clearly to pick $\{e_1\}$ for a value of v. In contrast, Algorithm 2 picks $\{e_2\}$ for a value of εv . As ε gets close to zero, the approximation ratio becomes arbitrarily large.

However, the following lemma will be useful to use Algorithm 2 as a building block for algorithms solving the Knapsack constrained submodular maximization.

Algorithm 2 Greedy (Knapsack constraint)

Input: N, B, value query oracle f, cost function c1: $S_G \leftarrow \emptyset$ 2: while $N \neq \emptyset$ do

3: $x^* \leftarrow \arg\max_{x \in N} \frac{f_{S_G}(x)}{c(x)}$ 4: if $c(S_G) + c(x^*) \leq B$ then

5: $S_G \leftarrow S_G + x^*$ 6: end if

7: $N \leftarrow N - x^*$ 8: end while

9: return S_G

Lemma 7. Whenever line 4 of Algorithm 2 evaluates to False, $f(S_G + x^*) \ge (1 - \frac{1}{e}) f(S^*)$.

Proof. Let us denote by $S_i = \{e_1, \dots, e_i\}$, the value of S_G after the *i*th time line 5 of Algorithm 2 is executed. Then:

$$f(S^*) \leq f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}}(e)$$

$$= f(S_{i-1}) + \sum_{e \in S^* \setminus S_{i-1}} c(e) \frac{f_{S_{i-1}}(e)}{c(e)}$$

$$\leq f(S_{i-1}) + \frac{f(S_i) - f(S_{i-1})}{c(e_i)} \sum_{e \in S^* \setminus S_{i-1}} c(e)$$

$$\leq f(S_{i-1}) + \frac{B}{c(e_i)} (f(S_i) - f(S_{i-1}))$$

where the first inequality used Corollary 5, the second inequality used the greediness of Algorithm 2 and the last inequality used that $c(S^*) \leq B$.

Subtracting $\frac{B}{c_i}$ both sides and reordering the terms:

$$f(S_i) - f(S^*) \ge \left(1 - \frac{c(e_i)}{B}\right) \left(f(S_{i-1}) - f(S^*)\right)$$

Solving this recursive inequality yields:

$$f(S_i) \ge \left(1 - \prod_{k=1}^i \left(1 - \frac{c(e_i)}{B}\right)\right) f(S^*)$$

Finally, using that $1 - x \le e^{-x}$:

$$f(S_i) \ge \left(1 - \exp\frac{-c(S_i)}{B}\right) f(S^*)$$

We are now ready to prove the lemma. Let us consider S_G at some iteration of Algorithm 2 where line 5 evaluates to false. The above analysis didn't assume that line 5 evaluated to True when element e_i was added to S_G , hence we can apply it to $S_G + x^*$:

$$f(S_G + x^*) \ge \left(1 - \exp\frac{-c(S_G) - c(x^*)}{B}\right) f(S^*)$$

and using that $c(S_G) + c(x^*) > B$ by assumption of Lemma 7 concludes the proof.

We now present two algorithms which exploit Lemma 7 to obtain a constant approximation ratio to the optimal solution.

Algorithm 3 Greedy (Knapsack constraint), simple fix

```
Input: N, B, value query oracle f, cost function c

1: e^* \leftarrow \arg\max_{e \in N, c(e) \leq B} f(e)
```

2: S_G ← result of Algorithm 2
3: return arg max{f(S_G), f(e*)}

Proposition 8. Let S be the set returned by Algorithm 3, then $f(S) \ge \frac{1}{2} \left(1 - \frac{1}{e}\right) f(S^*)$.

Proof. Let us consider the value of S_G the first time line 4 of Algorithm 2 evaluated to False after the last element of S_G was added:

$$2f(S) \ge f(S_G) + f(e^*) \ge f(S_G) + f(x^*)$$
$$\ge f(S_G + x^*) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$

where the first inequality used the definition of S, the second inequality used the definition of e^* , the third inequality used the subadditivity of f and the last inequality used Lemma 7.

Remark. Khuller et al. [1999] noted that the above analysis can be refined to show that the approximation ratio of Algorithm 3 is at least $1 - \frac{1}{\sqrt{e}}$.

Algorithm 4 Greedy (Knapsack constraint), partial enumeration

```
Input: N, B, value query oracle f, cost function c
 1: S_1 \leftarrow \arg\max_{S \subset N, c(S) \leq B, |S| < d} f(S)
 2: S_2 \leftarrow \emptyset
 3: for all S \subseteq N, |S| = d, c(S) \leq B do
          N' \leftarrow N \setminus S
 4:
          S_G \leftarrow \text{Algorithm 2 for } N' \text{ and initialization } S_G \leftarrow S
  5:
 6:
          if f(S_G) > f(S_2) then
               S_2 \leftarrow S_G
 7:
 8:
          end if
 9: end for
10: return arg max\{f(S_1), f(S_2)\}
```

For some constant d (fixed later in the analysis), Algorithm 4 first compute S_1 , the set of maximum value among all sets of at most d-1 elements. Then for all sets of S of d elements, the algorithm completes S greedily using Algorithm 2 where the initialisation $S_G \leftarrow \emptyset$ is replaced by $S_G \leftarrow S$. The best set obtained by such a greedy completion is S_2 . Algorithm 4 then returns the best of S_1 and S_2 .

Proposition 9. For d=3, let S be the set returned by Algorithm 4, then $f(S) \ge \left(1 - \frac{1}{e}\right) f(S^*)$.

Proof. Wlog, assume that $|S^*| > d$, otherwise Algorithm 4 finds the optimal solution. Let us write $S^* = \{e_1^*, \dots e_n^*\}$ and $S_i^* = \{e_1^*, \dots, e_i^*\}$ where the elements of S^* where ordered such that:

$$e_i^* \in \underset{e \in S^* \setminus S_{i-1}^*}{\arg \max} f_{S_{i-1}^*}(e)$$

Let us now consider the iteration of Algorithm 4 where $S = S_d^*$. Then line 5 is equivalent to running Algorithm 2 for the function $f_{S_d^*}$ and set $N \setminus S_d^*$. Let us consider the first time line 4 of

Algorithm 2 evaluated to false for some element x^* of $S^* \setminus S_d^{*2}$. Then by Lemma 7:

$$f(S_G + x^*) - f(S_d^*) \ge \left(1 - \frac{1}{e}\right) \left(f(S^*) - f(S_d^*)\right)$$
 (1)

But by submodularity of f and the ordering of S_d^* :

$$f_{S_G}(x^*) \le f_{S_i^*}(x^*) \le f(S_i^*) - f(S_{i-1}^*), \quad 1 \le i \le d$$

Summing for $1 \le i \le d$:

$$f(S_G + x^*) \le f(S_G) + \frac{1}{d}f(S_d^*)$$
 (2)

Combining Equations (1) and (2) gives

$$f(S_G) \ge \left(1 - \frac{1}{e}\right) f(S^*) + \left(\frac{1}{e} - \frac{1}{d}\right) f(S_d^*)$$

which concludes the proof after observing that $\frac{1}{e} - \frac{1}{d} > 0$ for d = 3.

4 Matroid Constraint

Definition 10. A matroid M is a pair (N, \mathcal{I}) . N is a finite set called the ground set and \mathcal{I} is family of subsets of N called the *independent sets* such that:

- 1. (downward closure) if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$
- 2. (exchange property) if $A \in \mathcal{I}, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$

Maximal independent sets of M are called *bases*.

Remark. It follows from the exchange property that all bases have the same cardinality. This cardinality is the rank of M.

Proposition 11 (bijective basis exchange). If B_1 and B_2 are two bases of a matroid M, then there exists a bijection $\phi: B_1 \setminus B_2 \to B_2 \setminus B_1$ such that:

$$\forall x \in B_1 \setminus B_2, \ B_1 - x + \phi(x) \in \mathcal{I}$$

Proof. This is a standard result in matroid theory. See for example Corollary 39.12a in Schrijver [2003]. □

Remark. The bijection ϕ of Proposition 11 can be extended to $\phi: B_1 \to B_2$ by defining it to be the identity function on $B_1 \cap B_2$.

We now look at the problem of maximizing a monotone submodular function over a matroid $M = (N, \mathcal{I})$:

$$S^* \in \operatorname*{arg\,max}_{S \in \mathcal{I}} f(S)$$

From a computational perspective, we still assume a value query oracle for f. Furthermore, we assume an *independence oracle* for M: given $S \subseteq N$, the independence oracle tests whether or not $S \in \mathcal{I}$.

 $^{^2}$ This necessarily happens since all the elements in N are eventually considered in the while loop.

Algorithm 5 Greedy (Matroid constraint)

```
Input: N, value query oracle f, independence oracle for \mathcal{I}

1: S_G \leftarrow \emptyset

2: while N \neq \emptyset do

3: x^* \leftarrow \arg\max_{x \in N} f_{S_G}(x)

4: if S_G + x \in \mathcal{I} then

5: S_G \leftarrow S_G + x^*

6: end if

7: N \leftarrow N - x^*

8: end while

9: return S_G
```

Remark. The set S_G constructed by Algorithm 5 is a base of M. When the rank K of M is known, the while loop can be stopped as soon as $|S_G| = K$ (cf. cardinality constrained submodular maximization).

Proposition 12. Let S_G be the set returned by Algorithm 5, then $f(S_G) \ge \frac{1}{2}f(S^*)$.

Proof. Wlog, assume that S^* is a base of M. Let $\phi: S^* \to S_G$ be a bijection as in Proposition 11. Le us write:

$$S^* = \{e_1^*, \dots, e_K^*\}$$
 and $S_G = \{e_1, \dots, e_K\}$

where $e_i = \phi(e_i^*)$ and define $S_i = \{e_1, \dots, e_i\}$. Then:

$$f(S^*) - f(S_G) \le \sum_{i=1}^K f_{S_G}(e_i^*) \le \sum_{i=1}^K f_{S_{i-1}}(e_i^*)$$
$$\le \sum_{i=1}^K f(S_i) - f(S_{i-1}) = f(S_G)$$

where the first inequality used Corollary 5, the second inequality used submodularity of f, and the third inequality used the greediness of Algorithm 5 and that $S_{i-1} + e_i^* \in \mathcal{I}$ by Proposition 11.

5 Bibliographical Notes

A systematic analysis of greedy algorithms for submodular maximization was made by Fisher et al. [1978], Nemhauser et al. [1978]. The results about submodular maximization under cardinality and matroid constraints can be found in these papers, even though some of them had already been obtained by Edmonds [1971]. The lower bound of $(1-\frac{1}{e})$ for the approximation ratio of a polynomial time algorithm is due to Feige [1998].

For Knapsack constraints, Khuller et al. [1999] were the first to obtain an approximation ratio of $(1-\frac{1}{e})$ using partial enumeration in the case of a set cover function. It was then noted by Sviridenko [2004], that the result extended to any submodular function.

It is possible to obtain a $(1-\frac{1}{e})$ approximation ratio under matroid constaints. This result was first obtained by Calinescu et al. [2007] using continuous optimization. A combinatorial algorithm was later constructed by Filmus and Ward [2012].

More complex constraints can also be considered: intersection of independence systems, matroids, knapsack constraints. Nemhauser et al. [1978] summarize some results from the late 70's. A general framework to combine constraints can be found in Vondrák et al. [2011].

References

- G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. In *Integer* programming and combinatorial optimization, pages 182–196. Springer, 2007.
- J. Edmonds. Matroids and the greedy algorithm. *Mathematical programming*, 1(1):127–136, 1971.
- U. Feige. A threshold of ln n for approximating set cover. *Journal of the ACM (JACM)*, 45(4):634–652, 1998.
- Y. Filmus and J. Ward. A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In *Foundations of Computer Science (FOCS)*, pages 659–668. IEEE, 2012.
- M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing submodular set functions—II. Springer, 1978.
- S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. *Information Processing Letters*, 70(1):39–45, 1999.
- G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions—i. *Mathematical Programming*, 14(1):265–294, 1978.
- A. Schrijver. *Combinatorial optimization: polyhedra and efficiency*, volume 24. Springer, 2003.
- M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. *Operations Research Letters*, 32 (1):41–43, 2004.
- J. Vondrák, C. Chekuri, and R. Zenklusen. Submodular function maximization via the multilinear relaxation and contention resolution schemes. In *Proceedings of the forty-third annual ACM* symposium on Theory of computing, pages 783–792. ACM, 2011.