SOLUTIONS SHEET 10

Exercise 29. Let everything be defined as on page 76/77 in the script by Prof. Sauter. Taylor expansion of $\mathbf{g}(h)$ around h = 0 yields (by already plugging in the simplifications of formula (4.24))

$$\begin{split} \mathbf{g}(h) = &\mathbf{g}(0) + \mathbf{g}'(0)h + \frac{1}{2}\mathbf{g}''(0)h^2 + O(h^3) \\ = &f\mathbf{1} + h\left(\partial_1 f + f\partial_2 f\right)\mathbf{c} \\ &+ \frac{1}{2}h^2\left(\left(\partial_1^2 f + 2f\partial_1\partial_2 f + f^2\partial_2^2 f\right)\mathbf{c}^{\odot 2} + 2\left(\partial_2 f\partial_1 f + f(\partial_2 f)^2\right)\mathbf{A}\mathbf{c}\right) + O(h^3) \end{split}$$

Plugging this into the Runge-Kutta method yields

$$y_1 = y_0 + hf\langle \mathbf{b}, \mathbf{1} \rangle + h^2(\partial_1 f + f\partial_2 f)\langle \mathbf{b}, \mathbf{c} \rangle$$

+ $\frac{1}{2}h^3(\partial_1^2 f + 2f\partial_1\partial_2 f + f^2\partial_2^2 f)\langle \mathbf{b}, \mathbf{c}^{\odot 2} \rangle + h^3(\partial_2 f\partial_1 f + f(\partial_2 f)^2)\langle \mathbf{b}, \mathbf{A}\mathbf{c} \rangle + O(h^4)$

Now we immediately see

by comparing y_1 to

(2)
$$y(x_0 + h) = y_0 + y'(x_0)h + \frac{1}{2}y''(x_0)h^2 + \frac{1}{6}y'''(x_0)h^3 + O(h^4)$$

with

$$y'(x_0) = f$$

$$y''(x_0) = \partial_1 f + f \partial_2 f$$

$$y'''(x_0) = \partial_1^2 f + 2f \partial_1 \partial_2 f + \partial_1 f \partial_2 f + f (\partial_2 f)^2 + f^2 \partial_2^2 f$$

These are precisely the order conditions.

<u>Remark:</u> It should be $\mathbf{D_k}\partial_1\mathbf{F}(0, f\mathbf{1}) = -(\partial_2 f)\mathbf{A}$, otherwise there is a wrong sign.

Exercise 30.

a. By the theorem of Guillou & Soulé 1969, Wright 1970 [HLW02, p. 27] we have

$$a_{11} = \int_{0}^{c_{1}} \ell_{1}(\tau)d\tau = \int_{0}^{c_{1}} \frac{\tau - c_{2}}{c_{1} - c_{2}}d\tau = \frac{c_{1}(c_{1} - 2c_{2})}{2(c_{1} - c_{2})}$$

$$a_{12} = \int_{0}^{c_{1}} \ell_{2}(\tau)d\tau = \int_{0}^{c_{1}} \frac{\tau - c_{1}}{c_{2} - c_{1}}d\tau = \frac{c_{1}^{2}}{2(c_{1} - c_{2})}$$

$$a_{21} = \int_{0}^{c_{2}} \ell_{1}(\tau)d\tau = \int_{0}^{c_{2}} \frac{\tau - c_{2}}{c_{1} - c_{2}}d\tau = \frac{c_{2}^{2}}{2(c_{2} - c_{1})}$$

$$a_{22} = \int_{0}^{c_{2}} \ell_{2}(\tau)d\tau = \int_{0}^{c_{2}} \frac{\tau - c_{1}}{c_{2} - c_{1}}d\tau = \frac{c_{2}(c_{2} - 2c_{2})}{2(c_{2} - c_{1})}$$

and

$$b_1 = \int_0^1 \ell_1(\tau)d\tau = \frac{1 - 2c_2}{2(c_1 - c_2)}$$
 $b_2 = \int_0^1 \ell_2(\tau)d\tau = \frac{1 - 2c_1}{2(c_2 - c_1)}$

b. Since we have already determined b_1 and b_2 we can work with **Theorem 1.5 (Superconvergence)** [HLW02, p. 28]. We get

(3)
$$b_1 + b_2 = \frac{1 - 2c_2}{2(c_1 - c_2)} + \frac{1 - 2c_1}{2(c_2 - c_1)} = \frac{1 - 2c_2}{2(c_1 - c_2)} - \frac{1 - 2c_1}{2(c_1 - c_2)} = 1$$

and thus the collocation method is at least of order 1 (with no restriction for c_1 and c_2). Further

(4)
$$b_1c_1 + b_2c_2 = \frac{c_1 - 2c_1c_2}{2(c_1 - c_2)} + \frac{c_2 - 2c_1c_2}{2(c_2 - c_1)} = \frac{c_1 - 2c_1c_2}{2(c_1 - c_2)} - \frac{c_2 - 2c_1c_2}{2(c_1 - c_2)} = \frac{1}{2}$$

and thus the collocation method is at least of order 2 (with no restrictions for c_1 and c_2). For order 3 however it must hold that

$$(5) b_1c_1^2 + b_2c_2^2 = \frac{1 - 2c_2}{2(c_1 - c_2)}c_1^2 - \frac{1 - 2c_1}{2(c_2 - c_1)}c_2^2 = \frac{(c_1^2 - c_2^2) - 2c_1c_2(c_1 - c_2)}{2(c_1 - c_2)} = \frac{c_1 + c_2}{2} - c_1c_2 \stackrel{!}{=} \frac{1}{3}$$

Thus we get the restriction $c_1 = \frac{2 - 3c_2}{3(1 - 2c_2)}$ for order 3.

c. For order 4 it must hold that $b_1c_1^3 + b_2c_2^3 = \frac{1}{4}$. Thus by

$$\begin{split} b_1c_1^3 + b_2c_2^3 &= \frac{1 - 2c_2}{2(c_1 - c_2)}c_1^3 - \frac{1 - 2c_1}{2(c_1 - c_2)}c_2^3 \\ &= \frac{c_1^3 - 2c_1^3c_2 - c_2^3 + 2c_1c_2^3}{2(c_1 - c_2)} \\ &= \frac{\left(c_1^3 - c_2^3\right) - 2c_1c_2\left(c_1^2 - c_2^2\right)}{2(c_1 - c_2)} \\ &= \frac{\left(c_1 - c_2\right)\left(c_1^2 + c_1c_2 + c_2^2\right) - 2c_1c_2\left(c_1 - c_2\right)\left(c_1 + c_2\right)}{2(c_1 - c_2)} \\ &= \frac{c_1^2 + c_1c_2 + c_2^2}{2} - c_1^2c_2 - c_1c_2^2 \end{split}$$

we get the quadratic equation for c_1

(6)
$$(1 - 2c_2) c_1^2 + (c_2 - 2c_2^2) c_1 - \frac{1 - 2c_2^2}{2} = 0$$

This gets kinda messy to evaluate. Hence I will use MAPLE to prevent calculation errors. Since equation 6 is a polynomial of degree 2 we get two roots and hence two conditions for c_1 dependent on c_2 . Equate with above condition for order 3 we get

(7)
$$c_2 = \frac{1}{2} + \frac{\sqrt{3}}{6} \qquad c_2 = \frac{1}{2} - \frac{\sqrt{3}}{6}$$

and thus by the order condition for order 3 corresponding

(8)
$$c_1 = \frac{1}{2} - \frac{\sqrt{3}}{6} \qquad c_1 = \frac{1}{2} + \frac{\sqrt{3}}{6}$$

As can see in the file $ex_30_c.mw$. Thus there are precisely two collocation methods with s = 2 and order 4 (which one of is a *Gauss method*).

Exercise 31. By **Theorem 1.8** [HLW02, p. 32] the discontinuous collocation method is equivalent to a 4-stage Runge-Kutta method with $c_1 = 0$, $c_2 = \frac{1}{3}$, $c_3 = \frac{2}{3}$ and $c_4 = 1$. Also the condition B(s-2) holds. This gives us

(9)
$$b_1 + b_2 + b_3 + b_4 = 1 \qquad b_1 c_1 + b_2 c_2 + b_3 c_3 + b_4 c_4 = \frac{1}{2}$$

or equivalently

(10)
$$b_2 + b_3 = \frac{3}{4} \qquad \frac{1}{3}b_2 + \frac{2}{3}b_3 = \frac{3}{8}$$

This immediately yields $b_2 = b_3 = \frac{3}{8}$. Now we can apply **Theorem 1.9 (Superconvergence)** [HLW02, p. 33] which states that the discontinuous collocation method has the same order as the underlying quadrature formula. The given discontinuous collocation method has the underlying quadrature formula on the interval [0,1]

(11)
$$I(f) = \frac{1}{8}f(0) + \frac{3}{8}f\left(\frac{1}{3}\right) + \frac{3}{8}f\left(\frac{2}{3}\right) + \frac{1}{8}f(1)$$

This is precisely the $\frac{3}{8}$ -rule. The $\frac{3}{8}$ -rule has the error term $h^5 \frac{3}{80} f^{(4)}(\xi)$ for some $\xi \in]0,1[$ and thus is exact for all polynomials of degree 3. Since the order of a quadrature method

is defined as degree of exactness plus one we have that the given discontinuous collocation method is of order 4.

Exercise 32. a. First of all we have to generalize the Störmer/Verlet method to a general partitioned method *. By introducing the velocity $v := \dot{q}$ we get from $\ddot{q} = f(q)$ the system $\dot{v} = f(q)$ and the Störmer/Verlet method admits a one-step formulation $\Phi_h : (q_n, v_n) \mapsto (q_{n+1}, v_{n+1})$ given by

(12)
$$v_{n+\frac{1}{2}} = v_n + \frac{h}{2}f(q_n),$$

$$q_{n+1} = q_n + hv_{n+\frac{1}{2}},$$

$$v_{n+1} = v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}).$$

The Störmer/Verlet method can also be interpreted as a composition method † Further we get by splitting formula 12 in the middle the scheme $\hat{\Phi}_h: (v_n, q_n) \mapsto (v_{n+\frac{1}{2}}, q_{n+\frac{1}{2}})$

(14)
$$v_{n+\frac{1}{2}} = v_n + \frac{h}{2}f(q_n),$$

$$q_{n+\frac{1}{2}} = q_n + \frac{h}{2}v_{n+\frac{1}{2}}.$$

From the scheme 14 one has the $adjoint^{\ddagger}$ scheme $\hat{\Phi}_h^*: (v_{n+\frac{1}{2}}, q_{n+\frac{1}{2}}) \mapsto (v_{n+1}, q_{n+1})$ by formally replacing h by -h and index shifting

(16)
$$q_{n+1} = q_{n+\frac{1}{2}} + \frac{h}{2}v_{n+\frac{1}{2}},$$

$$v_{n+1} = v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}).$$

We see that the one-step formulation of the Störmer/Verlet method is the composition $\hat{\Phi}_h^* \circ \hat{\Phi}_h$. Now we want to generalize method 12 to partitioned systems of the form

$$\dot{q} = g(q, v) \qquad \dot{v} = f(q, v)$$

For that consider the extended formulae 14 and 16

(18)
$$\begin{aligned} v_{n+\frac{1}{2}} &= v_n + \frac{h}{2} f(q_n, v_{n+\frac{1}{2}}), \\ q_{n+\frac{1}{2}} &= q_n + \frac{h}{2} g(q_n, v_{n+\frac{1}{2}}). \end{aligned}$$

(13)
$$\Psi_h = \Phi_{\gamma_s h} \circ \dots \circ \Phi_{\gamma_1 h}$$

the corresponding $composition\ method$ as defined in [HLW02, p. 43]

[‡] This follows essentially [HLW02, pp. 38–39]. The adjoint method Φ_h^* of a method Φ_h is the inverse map of the original method with reversed time step -h, i.e.

(15)
$$\Phi_h^* := \Phi_{-h}^{-1}$$

In other words, $y_1 = \Phi_h^*(y_0)$ is implicitly defined by $\Phi_{-h}(y_1) = y_0$.

^{*}I will follow here the elegant paper of *Hairer*, *Lubich* and *Wanner* found here http://www.math.kit.edu/ianm3/lehre/geonumint2009s/media/gni_by_stoermer-verlet.pdf, last accessed May 18, 2016.

[†] Let Φ_h be a basic one-step method and $\gamma_1, \ldots, \gamma_s$ real numbers. Then we call its composition with stepsizes $\gamma_1 h, \gamma_2 h, \ldots, \gamma_s h$, i.e.,

(19)
$$q_{n+1} = q_{n+\frac{1}{2}} + \frac{h}{2}g(q_{n+1}, v_{n+\frac{1}{2}}),$$

$$v_{n+1} = v_{n+\frac{1}{2}} + \frac{h}{2}f(q_{n+1}, v_{n+\frac{1}{2}}).$$

Composition of formula 19 and formula 18 yields

(20)
$$v_{n+\frac{1}{2}} = v_n + \frac{h}{2} f(q_n, v_{n+\frac{1}{2}}),$$

$$q_{n+1} = q_n + \frac{h}{2} \left(g(q_n, v_{n+\frac{1}{2}}) + g(q_{n+1}, v_{n+\frac{1}{2}}) \right),$$

$$v_{n+1} = v_{n+\frac{1}{2}} + \frac{h}{2} f(q_{n+1}, v_{n+\frac{1}{2}}).$$

Let us consider the partitioned initial value problem

$$\dot{y} = f(y, z) \qquad \dot{z} = g(y, z)$$

Applying formula 20 on the partitioned initial value problem 21 for n = 0 yields

(22)
$$z_{\frac{1}{2}} = z_0 + \frac{h}{2}g(y_0, z_{\frac{1}{2}}),$$

$$y_1 = y_0 + \frac{h}{2}\left(f(y_0, z_{\frac{1}{2}}) + f(y_1, z_{\frac{1}{2}})\right),$$

$$z_1 = z_{\frac{1}{2}} + \frac{h}{2}g(y_1, z_{\frac{1}{2}}).$$

Plugging the first equation into the last one yields $z_1 = z_0 + \frac{h}{2} \left(g(y_0, z_{\frac{1}{2}}) + g(y_1, z_{\frac{1}{2}}) \right)$ from which immediately $\hat{b}_1 = \hat{b}_2 = \frac{1}{2}$, $\ell_1 = g(y_0, z_{\frac{1}{2}})$ and $\ell_2 = g(y_1, z_{\frac{1}{2}})$ follows. Further by $\ell_1 = g(y_0, z_{\frac{1}{2}}) = g(y_0 + ha_{11}k_1 + ha_{12}k_2, z_0 + h\hat{a}_{11}\ell_1 + \hat{a}_{12}\ell_2)$ follows $a_{11} = a_{12} = 0$ and by plugging the first equation into ℓ_1 we get that $\ell_1 = g(y_0, z_{\frac{1}{2}}) = g(y_0, z_0 + \frac{h}{2} g(y_0, z_{\frac{1}{2}}))$ and thus $\hat{a}_{11} = \frac{1}{2}$, $\hat{a}_{12} = 0$. By plugging in the first equation

into ℓ_2 we get $\ell_2 = g(y_1, z_{\frac{1}{2}}) = g(y_1, z_0 + \frac{h}{2} \underbrace{g(y_0, z_{\frac{1}{2}})})$. Further plugging in the second

equation yields

(23)
$$\ell_2 = g(y_1, z_{\frac{1}{2}}) = g\left(y_0 + \frac{h}{2}\left(f(y_0, z_{\frac{1}{2}}) + f(y_1, z_{\frac{1}{2}})\right), z_0 + \frac{h}{2}g(y_0, z_{\frac{1}{2}})\right)$$

which implies $\hat{a}_{21} = \frac{1}{2}$, $\hat{a}_{22} = 0$, $a_{21} = a_{22} = \frac{1}{2}$ with $k_1 = f(y_0, z_{\frac{1}{2}})$ and $k_2 = f(y_1, z_{\frac{1}{2}})$. Of interest is only k_2 to complete the Butcher tableau of the first Runge-Kutta method. By plugging in the definition of y_1 into k_2 we get

(24)
$$k_2 = f(y_1, z_{\frac{1}{2}}) = f\left(y_1 = y_0 + \frac{h}{2} \left(\underbrace{f(y_0, z_{\frac{1}{2}})}_{=k_1} + \underbrace{f(y_1, z_{\frac{1}{2}})}_{=k_2}\right), z_{\frac{1}{2}}\right)$$

and hence $a_{12}=a_{22}=\frac{1}{2}$. Since $c_i=\sum_{j=1}^s a_{ij}$ for all $i=1,\ldots,s$ we get that the first

Runge-Kutta method is the implicit trapezoidal rule and the second Runge-Kutta method is given by

$$\begin{array}{c|cccc}
1/2 & 1/2 & 0 \\
1/2 & 1/2 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}$$

Hence the Störmer/Verlet method is a partitioned Runge-Kutta method.

b. Let s=2. Then $c_1=0$ and $c_2=1$ for any Lobatto IIIA method. Thus we have again to use the theorem of *Guillou & Soulé* 1969, *Wright* 1970 [HLW02, p. 27] which gives us

$$a_{11} = \int_{0}^{c_1} \ell_1(\tau)d\tau = 0$$

$$a_{12} = \int_{0}^{c_2} \ell_2(\tau)d\tau = 0$$

$$a_{21} = \int_{0}^{c_2} \frac{\tau - c_2}{c_1 - c_2}d\tau = \frac{1}{2}$$

$$a_{22} = \int_{0}^{c_2} \frac{\tau - c_1}{c_2 - c_1}d\tau = \frac{1}{2}$$

and

(25)
$$b_1 = \int_0^1 \ell_1(\tau)d\tau = \frac{1}{2} \qquad b_2 = \int_0^1 \ell_2(\tau)d\tau = \frac{1}{2}$$

Hence we get the Runge-Kutta method

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1/2 & 1/2 \\
\hline
& 1/2 & 1/2
\end{array}$$

which is precisely the Butcher tableaux for the implicit trapezoidal rule.

References

[HLW02] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration : structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics. Berlin, Heidelberg, New York: Springer, 2002.