Конспекти лекцій з математичного аналізу Анікушина А.В. Модуль 3.

Автор текста @bezkorstanislav Если есть ошибки, пишите ему в телеграм Афтар выражает благодарность @vic778 за многочисленные поправки

November 2019

Диференціальне числення функції однієї змінної

Означення похідної. Основні правила диференційонування

Нехай $f: \mathbb{R} \to \mathbb{R}$ — деяка функція однієї змінної, $x_0 \in D_f$, $x_0 \in (D_f)'$

Означення. Якщо $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, то функція f називається диференційованою в точці x_0 , а сама границя називається похідною функції f в точці x_0 . І позначається $f'(x_0)$ або $\frac{df(x_0)}{dx}$.

Зауваження 1. Для функції однієї змінної ми ототожнили диференційованість та існування похідної, що не завжди є правдою для функцій багатьох змінних.

Зауваження 2.

$$x - x_0 = \Delta x$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$f(x_0 + \Delta x) - f(x_0) = \Delta f(x_0)$$

Отже, похідна дорівнює відношенню зміни приросту функції до приросту аргументу, що породжує цей приріст.

3ауваження 3. Із теорії границі функції, якщо функція $f \in$ диференційованою в точці x_0 , то:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \Longleftrightarrow \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + o(1) \Longleftrightarrow$$
$$\iff f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$$

Приріст функції є лінійним до приросту аргументу:

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x)$$

Отже, якщо має місце рівність:

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0) \Longrightarrow \exists f'(x_0) = A$$

Теорема. (**Необхідна умова диференційованості**). Функція $f \in$ диференційованою в x_0 тільки тоді, коли f — неперервна в точці x_0 . (Але не завжди неперервна функція ϵ диференційованою)

Доведення. Щоб існувала похідна треба, щоб

$$f(x) - f(x_0) \rightarrow 0, x \rightarrow x_0$$

. З цього випливає, що f неперервна в точці x_0 .

Теорема. (Диференційованість композиції функцій). Нехай дано функції f і g. Точка $x_0 \in D_{f \circ q}, \ x_0 \in (D_{f \circ q})'$.

Якщо g диференційована в точці x_0 , а f диференційована в точці $y_0 = g(x_0)$, то $f \circ g$ диференційована в точці x_0 і має місце рівність:

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0)$$

Доведення.

$$(f\circ g)(x)-(f\circ g)(x_0)=f(g(x))-f(g(x_0))=f(y)-f(y_0)=$$

$$=f'(y_0)(y-y_0)+o(y-y_0)=f'(y_0)(g(x)-g(x_0))+o(y-y_0)=$$

$$=f'(y_0)(g'(x_0)(x-x_0)+o(x-x_0))+o(y-y_0)=$$

$$=f'(y_0)(g'(x_0)(x-x_0)+o(x-x_0))+o(g(x)-g(x_0))=$$

$$=f'(y_0)(g'(x_0)(x-x_0)+o(x-x_0))+o(g'(x_0)(x-x_0)+o(x-x_0))$$
 Отже,

$$\lim_{x \to x_0} \frac{(f \circ g)(x) - (f \circ g)(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f'(y_0)(g'(x_0)(x - x_0)(1 + o(1))) + o(g(x_0)(x - x_0) + o(x - x_0))}{x - x_0} =$$

$$= \lim_{x \to x_0} f'(y_0)(g'(x_0)(1 + o(1))) + o(g(x_0) + o(1)) =$$

$$= \lim_{x \to x_0} f'(y_0)g'(x_0)(1 + o(1)) + o(1) = f'(y_0)g'(x_0)$$

Теорема. (Лінійність похідної). Нехай f і g — диференційовані в точці x_0 . Тоді $\forall \alpha, \beta \in \mathbb{R}$:

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

Доведення.

$$\lim_{x \to x_0} \frac{(\alpha f + \beta g)(x) - (\alpha f + \beta g)(x_0)}{x - x_0} =$$

$$\lim_{x \to x_0} \frac{\alpha f(x) - \alpha f(x_0)}{x - x_0} + \frac{\beta g(x) - \beta g(x_0)}{x - x_0} =$$

$$\lim_{x \to x_0} \alpha \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \beta \frac{g(x) - g(x_0)}{x - x_0} = \alpha f'(x_0) + \beta g'(x_0)$$

Теорема. Похідна добутку. Нехай f і g диференційовані в точці x_0 .

Тоді функція $f \cdot g$ теж диференційована в точці x_0 , причому справедливе наступне співвідношення:

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

Доведення. За означенням:

$$\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)(g(x) - g(x_0))}{x - x_0} + \frac{g(x_0)(f(x) - f(x_0))}{x - x_0} =$$

Оскільки f — диференційована в точці x_0 , то $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

Абсолютно аналогічно $\exists \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = g'(x_0).$

Окрім того f — диференційована в точці x_0 , а значить f — неперервна в точці x_0 , а значить:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Отже:

$$\lim_{x \to x_0} \frac{f(x)(g(x) - g(x_0))}{x - x_0} + \frac{g(x_0)(f(x) - f(x_0))}{x - x_0} =$$

$$= f(x_0)g'(x_0) + g(x_0)f'(x_0)$$

Теорема. Похідна частки. Нехай f і g диференційовані в точці x_0 і $g(x_0) \neq 0$.

Тоді, $\frac{f}{g}$ теж диференційована в точці x_0 і $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$ Доведення. Аналогічно. Це доведення на дз :).

 $\Pi pu\kappa na\partial$. Обчислити похідну від функції f в точці x_0 .

1.
$$f(x) = x^3$$
.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0} = \dots = 3x_0^2$$

2.
$$f(x) = \begin{cases} x^3, & x \neq 2 \\ 8, & x = 2 \end{cases}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(a)
$$x_0 = 2$$
. $f'(x_0) = \frac{x^3 - 8}{x - 2} = 3 \cdot 4 = 12$.

(b)
$$x_0 \neq 2$$
. $\lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0} = 3x_0^2$.

3.
$$f(x) = \begin{cases} x^3, & x \neq 2 \\ 7, & x = 2 \end{cases}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(a)
$$x_0 \neq 2$$
. $\lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0} = 3x_0^2$.

(b)
$$x_0 = 2$$
. $f'(x_0) = \lim_{x \to 2} \frac{x^3 - 7}{x - 2} = \lim_{x \to 2} \frac{8 - 7}{2 - 2} = \lim_{x \to 2} \frac{1}{0} = +\infty$.

Похідна не може дорівнювати нескінченності, отже $\nexists f'(2)$.

4.
$$f(x) = \begin{cases} x^3, & x \ge 2\\ 12x - 16, & x < 2 \end{cases}$$

Як не треба робити:

$$f'(x) = \begin{cases} 3x^2, & x \ge 2\\ 12, & x < 2 \end{cases}$$

Як треба робити:

Розглядаємо 3 випадки:

(a) $x_0 > 2$.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0} = 3x_0^2$$

(b) $x_0 < 2$.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 12$$

(c) $x_0 = 2$.

$$\lim_{x \to x_0} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2+0} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2-0} \frac{f(x) - f(2)}{x - 2} = 12$$

Отже, функція диференційована на всіх дійсній прямій.

Теорема. (Про диференційованість оберненої функції). Нехай функція $f: \mathbb{R} \to \mathbb{R}$ — оборотна, то $x_0 \in D_f$ і $x_0 \in (D_f)'$, $y_0 = f(x_0)$. Якщо існує $f'(x_0) \neq 0$ і обернена функція f^{-1} — неперервна в точці y_0 , то вона диференційовна в цій точці. Якщо, крім того, y_0 — гранична точка множини $E_f = D_{f^{-1}}$, то

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Доведення. Лектор не дав:(

 $\it 3ауваженн.$ Функція $\it f$ називається диференційованою на множині $\it A$ якщо f має похідну в кожній точці $x_0 \in A$. Це позначається як $f \in D(A)$, де D(A) — множина диференційованих на A функцій.

Односторонні похідні

Нехай $x_0 \in (D_f \cap (-\infty, x_0))' \cap (D_f \cap (x_0, +\infty))' \cap D_f$. Це рівносильно тому, що

$$\exists \{x_n\}_{n=1}^{\infty} \in D_f : x_n < x_0, \ x_n \to x_0, n \to \infty$$

Границя $\lim_{x\to x_0-}\frac{f(x)-f(x_0)}{x-x_0}$ називається **лівосторонньою похідною** f в точці x_0 . Позначаємо її як $f_\pi'(x_0)$. Аналогічно, $f_\pi'(x_0)=\lim_{x\to x_0+}\frac{f(x)-f(x_0)}{x-x_0}$

Аналогічно,
$$f'_{\pi}(x_0) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0}$$

 Π риклади:

1.
$$f(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 1 \end{cases}$$

$$f'_{\pi}(x_0) = \lim_{x \to x_0 -} \frac{0 - 0}{x - 0} = 0$$

$$f'_{\pi}(x_0) = \lim_{x \to x_0 +} \frac{1-0}{x-0} = +\infty \Longrightarrow \nexists f'_{\pi}(x_0)$$

2.
$$f(x) = \begin{cases} 0, & x \le 0 \\ x, & x > 0 \end{cases}$$

$$f'_{\pi}(x_0) = \lim_{x \to x_0 -} \frac{0 - 0}{x - 0} = 0$$

$$f'_{\pi}(x_0) = \lim_{x \to x_0 +} \frac{x - 0}{x - 0} = 1$$

Теорема. (Критерій диференційованості.)

Нехай $x_0 \in (D_f \cap (-\infty, x_0))' \cap (D_f \cap (x_0, +\infty))' \cap D_f$. Тоді:

$$\exists f'(x_0) \iff \exists f'_{\pi}(x_0), \ \exists f'_{\pi}(x_0), \ f'_{\pi}(x_0) = f'_{\pi}(x_0)$$

Доведення.

$$\exists f'(x_0) \Longrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \Longleftrightarrow$$

$$\iff \exists \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}, \ \exists \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}, \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\iff \exists f'_{\pi}(x_0), \ \exists f'_{\pi}(x_0), \ f'_{\pi}(x_0) = f'_{\pi}(x_0)$$

Зауваження.

$$f'_{\pi}(x_0) \neq \lim_{x \to x_0 -} f'(x)$$

Розглянемо параметрично задану функцію y(x):

$$\begin{cases} y = \varphi(t) \\ x = \Psi(t) \end{cases}$$

$$y(x) = \varphi(\Psi^{-1}(x))$$

Часом виразити y через x може бути просто, як тут:

$$\begin{cases} y = t^3 \\ x = t^5 \end{cases} \implies y = x^{\frac{3}{5}}$$

Але буває, що не дуже просто:

$$\begin{cases} y = t^3 \\ x = t^5 + t \end{cases} \iff y = ???$$

Але ж так хочеться знайти похідну...

Припустимо, що $\exists \varphi'$ і $\exists (\Psi^{-1})'$ і $\Psi' \neq 0$.

Тоді
$$y'_x = \varphi'(\Psi^{-1}(x)) \cdot (\Psi^{-1})'(x) = \varphi'(t) \frac{1}{\Psi'(t)} = \frac{\varphi'(t)}{\Psi'(t)}$$

Приклад:

1. Знайти похідну y_x

$$\begin{cases} y = t^3 \\ x = t^5 \end{cases} \iff y = x^{\frac{3}{5}}$$

Ми уже знайшли, що $y = x^{\frac{3}{5}}$, отже:

$$y'_x = \frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5}(t^5)^{-\frac{2}{5}} = \frac{3}{5}t^{-2}$$

Але давайте спробуємо *по-нормальному*, застосувавши нашу формулу:

$$y'_x = \frac{(t^3)'}{(t_5)'} = \frac{3}{5} \frac{t^2}{t^4} = \frac{3}{5} t^{-2}$$

2.

$$\begin{cases} y = \cos^2 t \\ x = \sin^2 t \end{cases}$$
$$y'_x = \frac{2\cos t(-\sin t)}{2\sin t \cos t} = -1$$

Як цікавий факт можна помітити, що y=1-x, де $x\in [0;1]$

Похідні вищих порядків

Кажуть, що порядок похідної ϵ вищим, якщо цей порядок більше за 1.

Нехай $f \in D((a,b))$. Припустимо, що f' є диференційованою в точці $x_0 \in (a,b)$. Тоді функція f є двічі диференційованою в точці x_0 , а число $(f')'(x_0)$ називається другою похідною функції f в точці x_0 . Вона позначається як $f''(x_0)$.

Наприклад:

$$f(x) = x^3$$
$$f'(x) = 3x^2$$
$$f''(x) = (f')'(x) = 6x$$

Аналогічно у функції f існує n—та похідна $f^{(n)}(x)$ на проміжку (a,b) і вона є диференційованою в точці $x_0 \in (a,b)$, того f має (n+1)-шу похідну в точці x_0 .

$$f^{(n+1)}(x_0) = (f^{(n)})|_{x_0} = \lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{x - x_0}$$

Приклад:

$$f(x) = \ln x$$

$$f'(x) = \frac{1}{x}$$

$$f''(x) = \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

$$f'''(x) = \left(-\frac{1}{x^2}\right)' = 2\frac{1}{x^3}$$

$$f^{(4)}(x) = -3 \cdot 2 \cdot \frac{1}{x^4} = -6\frac{1}{x^4}$$

$$f^{(n)}(x) = (-1)^{n-1}(n-1)! \frac{1}{x^n}$$

Якщо f має n-ту похідну $f^{(n)}(x)$ у кожній точці проміжку I, то кажуть, що f є n разів диференційованою і позначається це так:

$$f \in D^{(n)}(I)$$

Якщо при цьому $f^{(n)} \in C(I)$, то кажуть, що $f \in C^{(n)}(I)$.

$$C(I) \supset D(I) \supset C^{(1)}(I) \supset D^{(1)}(I) \supset C^{(2)}(I) \supset \dots$$

Домашня робота. Якщо у функції є похідна, чи обов'язково похідна неперервна?

Якщо $\forall n \in \mathbb{N} \ \exists f^{(n)}$ на I, то кажуть, що f — нескінченно диференційована на I. Позначається так:

$$f \in D^{\infty}(I)$$

Дві властивості п-тої похідної

Теорема. (Лінійність n-тої похідної). Нехай $f,g \in D^{(n)}(I)$, тоді

$$\forall \alpha, \beta \in \mathbb{R} \ \alpha f + \beta g \in D^{(n)}(I)$$

$$(\alpha f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$$

Теорема. Формула Лейбніца. Нехай $f, g \in D^{(n)}(I)$, тоді:

$$f \cdot g \in D^{(n)}(I)$$

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} C_n^k \cdot f^{(n-k)} \cdot g^{(k)}$$

Доведення. Це вам нам Д/З. (Підзказка: воно доводиться так само, як формула бінома Ньютона).

 Π риклад:

1. Обчислити *n*-ту похідну від $f(x) = x^2 \ln x$.

$$(x^{2} \ln x)^{(n)} = C_{n}^{0}(x^{2})^{(n)} \ln x + C_{n}^{1}(x^{2})^{(n-1)} (\ln x)^{(1)} + C_{n}^{2}(x^{2})^{(n-2)} (\ln x)^{(2)} + \dots +$$

$$+ \dots + C_{n}^{n-3}(x^{2})^{(3)} (\ln x)^{(n-3)} + C_{n}^{n-2}(x^{2})^{(2)} (\ln x)^{(n-2)} + C_{n}^{n-1}(x^{2})^{(1)} (\ln x)^{(n-1)} +$$

$$+ C_{n}^{n}(x^{2})^{(0)} (\ln x)^{(n)}$$

Тепер варто помітити, що:

$$(x^{2})^{(1)} = 2x$$
$$(x^{2})^{(2)} = 2$$
$$(x^{2})^{(3)} = 0$$
$$(x^{2})^{(n)} = 0, \ n > 3$$

Отже виходить, що наша сума дорівнює наступному:

$$C_n^{n-2} \frac{2(-1)^{n-3}(n-3)!}{x^{n-2}} + C_n^{n-1} \frac{2x(-1)^{n-2}(n-2)!}{x^{n-1}} + C_n^n \frac{x^2(-1)^{n-1}(n-1)!}{x^n}$$

2. Обсчислити $(\frac{1}{a-x})^{(n)}$

$$\left(\frac{1}{a-x}\right)^{(0)} = \frac{1}{a-x}$$
$$\left(\frac{1}{a-x}\right)^{(1)} = \frac{1}{(a-x)^2}$$
$$\left(\frac{1}{a-x}\right)^{(2)} = \frac{2}{(a-x)^3}$$
$$\left(\frac{1}{a-x}\right)^{(n)} = \frac{n!}{(a-x)^{n+1}}$$

3. Обчислити n-ту похідну від $f(x) = \frac{1}{x^2 - 3x + 2}$.

$$f(x) = \frac{1}{x^2 - 3x + 2} = \frac{1}{(x - 1)(x - 2)} = \frac{1}{x - 1} \frac{1}{x - 2} = \frac{1}{1 - x} \frac{1}{2 - x} = \frac{1}{1 - x} \frac{1}{$$

З формули Лейбніца:

$$f^{(n)} = \sum_{k=0}^{n} C_n^k \left(\frac{1}{1-x}\right)^{(n-k)} \left(\frac{1}{2-x}\right)^{(k)}$$

А тепер використовуємо формулу з прикладу 2.

$$f^{(n)} = \sum_{k=0}^{n} C_n^k \left(\frac{(n-k)!}{(1-x)^{n-k+1}} \right) \left(\frac{(k!)}{(2-x)^{k+1}} \right)$$

Цікавий факт: конкретно у цьому завданні можна було зробити набагато простіше:

$$f(x) = \frac{1}{1-x} \cdot \frac{1}{2-x} = \frac{1}{1-x} - \frac{1}{2-x}$$
$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}} - \frac{n!}{(2-x)^{n+1}}$$

Як обчислити похідну вищого порядку від параметрично заданої функції?

Ось приклад:

$$\begin{cases} y = t^2 \\ x = t^3 + t \end{cases}$$
$$y'_x = \frac{y'_t(t)}{x'_t(t)} = \frac{(t^2)'}{(t^3 + t)'} = \frac{2t}{3t^2 + 1}$$

Початкова система задавала залежність y від x. Тепер ми можемо побудувати систему залежності y' від x:

$$\begin{cases} y'_x(t) = \frac{2t}{3t^2 + 1} \\ x = t^3 + t \end{cases}$$
$$y''_x = (y'_x)' = \frac{(y'_x)'_t}{x'_t} = \frac{\left(\frac{2t}{3t^2 + 1}\right)'}{(t^3 + t)'} = \frac{-6t^2 + 2}{(3t^2 + 1)^3}$$

Тепер ми можемо побудувати залежність y_x'' від x:

$$\begin{cases} y_x''(t) = \frac{-6t^2 + 2}{(3t^2 + 1)^3} \\ x = t^3 + t \end{cases}$$

I так далі...

Диференціал функції

Функція f називається диференційованою в точці x_0 , якщо:

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Нехай $x - x_0 = \Delta x$. Тоді:

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x)$$
$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) + o(1)$$

Домножимо все на Δx :

$$f(x_0 + \Delta x) - f(x_0) = \Delta x \cdot f'(x_0) + o(\Delta x)$$

Отже, $\Delta x f'(x_0)$ — головна частина приросту функції.

Означення. Лінійне відображення

$$L(h) = f'(x_0) \cdot h$$

Називається **диференціалом функції** f в точці x_0 . Це позначається так:

$$d_{x_0}f(h) = f'(x_0) \cdot h$$

Приклад:

$$f(x) = x^3, x_0 = 1$$
$$f'(x_0) = 3$$
$$d_{x_0}f(h) = 3h$$

 Γ еометричний зміст диференціалу. Диференціал задає рівняння прямої, яка паральна дотичній до графіку функції у точці x_0 і проходить через початок координат.

Розглянемо f(x) = x. Тоді:

$$f'(x_0) = 1$$
, для $\forall x_0 \in \mathbb{R}$

Тоді:

$$d_{x_0}x(h) = 1 \cdot h = h$$

А тепер нехай g — довільна диференційована в x_0 функція:

$$(d_{x_0}g)(h) = g'(x_0) \cdot h = g'(x_0) \cdot d_{x_0}x(h)$$

Якщо ми приберемо h, отримуємо:

$$d_{x_0}g = g'(x_0) \cdot d_{x_0}x$$

Запис, який ще часто можна зустріти:

$$dg = g'(x_0)dx$$

3ауваження. Диференціал функції f у точці x_0 $d_{x_0}f$ ще позначають $df|_{x_0},\ df(x_0).$

Інколи точку x_0 взагалі не пишуть і пишуть просто df.

Зауваження. З теореми про лінійність похідної, похідної частки, добутку та суперпозиції випливають наступні правила дій з диференціалом:

$$d(f \pm g) = df \pm dg$$

$$d(f \cdot g) = df \cdot g + f \cdot dg$$

$$d\left(\frac{f}{g}\right) = \frac{df \cdot g - f \cdot dg}{g^2}$$

$$d(f(g(x))) = f'(g(x)) \cdot dg(x)$$

Ці властивості справедливі при виконанні умов відповідних теорем.

Приклад:

$$f = \ln(e^{u^2} + v)$$

$$df = d\ln(e^{u^2} + v) = \frac{1}{e^{u^2} + v} \cdot d(e^{u^2} + v) = \frac{de^{u^2} + dv}{e^{u^2} + v} =$$

$$= \frac{e^{u^2} \cdot du^2 + dv}{e^{u^2} + v} = \frac{e^{u^2} \cdot 2 \cdot u \cdot du + dv}{e^{u^2} + v}$$

Домашне завдання. Познайомитися з поняттям подвійної похідної та властивостями другого диференціалу.

(Лектор сказав, що такого на іспиті не буде і взагалі ця тема буде використана у другому семетрі, тож не зробиши цього багато не втратите.)

Теорема про середні

Означення. Нехай $x_0 \in D'_f \cap D_f$.

Функція f має **локальний максимум** в точці x_0 , якщо \exists деяких ε -окіл точки x_0 $U_{\varepsilon}(x_0 - \varepsilon, x_0 + \varepsilon)$:

$$\forall x \in (U_{\varepsilon} \cap D_f) \ f(x) \le f(x_0)$$

Аналогічно означається локальний мінімум.

Означення. Якщо в точці x_0 f має локальний максимум і при цьому

$$\forall x \in (U_{\varepsilon} \cap D_f) \setminus \{x_0\} \ f(x) < f(x_0)$$

Тоді кажуть, що в точці x_0 f має **строгий локальний максимум**.

Теорема Ферма. Нехай $x_0 \in (D_f \cap (-\infty, x_0))' \cap (D_f \cap (x_0, +\infty))' \cap D_f$. Якщо f має локальний екстремум (тобто мінімум або максимум) в точці x_0 і є диференційованою в точці x_0 , то $f'(x_0) = 0$.

Доведення. Згідно критерію диференційованості:

$$\exists f'(x_0) \iff \exists f'_{\pi}(x_0), f'_{\pi}(x_0), f'_{\pi}(x_0) = f'_{\pi}(x_0)$$

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}$$

Розглянемо випадок, коли f має локальний мінімум. Випадок з максимумом доводиться аналогічно.

Якщо f має локальний мінімум в точці x_0 , то:

$$\forall x \in U_{\varepsilon} \cap D_f$$

$$f(x_0) \le f(x) \Longrightarrow f(x) - f(x_0) \ge 0$$

При $x \to x_0 -:$

$$x-x_0<0$$
 $f(x)-f(x_0)\geq 0, \; ext{отжe}:$ $rac{f(x)-f(x_0)}{x-x_0}\leq 0,$ для $\forall x\in (U_{arepsilon}\cap D_f), \; ext{отжe}:$ $\lim_{x o x_0-}rac{f(x)-f(x_0)}{x-x_0}\leq 0$

Аналогічно

$$\lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$0 \ge \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Отже:

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} = 0 \Longrightarrow$$
$$f'(x_0) = 0$$

Зауваження. Зворотнє твердження не є правдивим. Наприклад функція $f = x^3$ не має екстремуму в $x_0 = 0$, але f'(0) = 0.

Теорема Ролля. Нехай $f \in C([a,b]) \cap D((a,b))$.

Якщо
$$f(a) = f(b)$$
, то $\exists \xi \in (a, b) : f'(\xi) = 0$

Доведення. Використаємо теорему Вейершрасса. Тоді f досягає на [a,b] свого максимального і мінімального значення. Нехай

$$f(x^*) = \max_{x \in [a,b]} f(x)$$

$$f(x_*) = \min_{x \in [a,b]} f(x)$$

Якщо хоча б одне з цих чисел x^*, x_* потрапляє на інтервал (a, b), то виконано всі умови теореми Ферма, а отже f' в цій точці дорівнює нулю за теоремою Ферма.

Якщо обидві точки не належать інтервалу (a,b), то $\{x^*,x_*\}\subset\{a,b\}$. Зважаючи, що f(a)=f(b), тоді

$$f(x^*) = f(x_*) \Longrightarrow f$$
 є сталою на $[a,b]$

Тоді $\forall \xi \in (a,b) \ f'(\xi) = 0$

 Π риклад: Нехай $f \in D([0,1])$ і f(0) = f(1) = 0. Тоді $\forall \alpha \in \mathbb{R}$ рівняння

$$f'(x) + \alpha f(x) = 0$$

Має розв'язок на [0,1]. Доведення. Розглянемо функцію

$$F(x) = e^{\alpha x} f(x)$$

$$F(0) = 0, \ F(1) = 0$$

Тоді за теоремою Ролля $\exists \xi \in [a,b]$:

$$F'(\xi) = 0$$

$$F'(x) = e^{\alpha x} \cdot f'(x) + \alpha e^{\alpha x} \cdot f(x)$$

$$e^{\alpha \xi} \cdot f'(\xi) + \alpha e^{\alpha \xi} \cdot f(\xi) = 0$$

Поділимо вираз на $e^{\alpha \xi}$.

$$f'(\xi) + \alpha f(\xi) = 0$$

Теорема Дарбу. Нехай $f\in C([a,b])\cap D((a,b))$ і $f_{\pi}'(a)\cdot f_{\pi}'(b)<0$. Тоді $\exists \xi:f'(\xi)=0$.

Доведення. Використаємо теорему Вейершрасса. Тоді f досягає на [a,b] свого максимального і мінімального значення. Нехай

$$f(x^*) = \max_{x \in [a,b]} f(x)$$

$$f(x_*) = \min_{x \in [a,b]} f(x)$$

Якщо хоча б одне з цих чисел x^*, x_* потрапляє на інтервал (a, b), то виконано всі умови теореми Ферма, а отже f' в цій точці дорівнює нулю за теоремою Ферма.

Якщо обидві точки не належать інтервалу (a,b), то $\{x^*,x_*\}\subset\{a,b\}$. Тепер у нас можливі два випадки:

- Якщо $x^* = x_*$, то за теоремою Ролля все працює.
- Якщо $x^* \neq x_*$.

Нехай $x^* = a, x_* = b,$ тоді:

$$f'_{\pi}(a) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a}$$
$$x - a > 0, \ f(x) - f(a) \le 0 \Longrightarrow$$
$$f'_{\pi}(a) = \lim_{x \to a+} \frac{f(x) - f(a)}{x - a} \le 0$$

Аналогічно

$$f'_{\pi}(b) = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} \le 0$$

Виходить, що:

$$f'_{\pi}(a) \cdot f'_{\pi}(b) \geq 0$$

Що суперечить умові.

Теорема про проміжні значення похідної. Нехай $f \in D([a,b])$. Тоді f' приймає всі значення між $f_{\pi}'(a)$ та $f_{\pi}'(b)$. Доведення. Нехай α — дійсне число між $f_{\pi}'(a)$ та $f_{\pi}'(b)$. Розглянемо

$$F(x) = f(x) - \alpha \cdot x$$

$$F \in D([a, b])$$

$$F'_{\pi}(a) = f'_{\pi}(a) - \alpha < 0$$

$$F'_{\pi}(b) = f'_{\pi}(b) - \alpha > 0$$

Отже, ми точно знаємо, що

$$F_{\pi}'(a) \cdot F_{\pi}'(b) < 0$$

Отже, всі умови теореми Дарбу виконано, отже:

$$\exists \xi : F'(\xi) = 0 \Longrightarrow f'(\xi) - \alpha = 0 \Longrightarrow f'(\xi) = \alpha$$

Теорема Лагранжа. Нехай $f \in C([a,b]) \cap D((a,b))$.

Тоді
$$\exists \xi \in (a,b)$$
:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Доведення. Розглянемо функцію

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

$$F \in C([a, b]) \cap D((a, b))$$

$$F(a) = f(a) - \frac{f(b) - f(a)}{b - a} \cdot a =$$

$$\frac{bf(a) - af(a) - af(b) + f(a)a}{b - a} =$$

$$\frac{bf(a) - af(b)}{b - a}$$

Аналогічними перетвореннями отримуємо

$$F(b) = \frac{-f(b)a + f(a)b}{b - a}$$

Виходить, що F(a) = F(b)

Отже, за теоремою Ролля $\exists \xi \in (a,b) : F'(\xi) = 0$

$$F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0 \Longrightarrow$$

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Hacnidor. Нехай $f \in D([a,b])$ і $\forall x \in (a,b)$ f'(x) = 0, тоді

$$f = const$$
 на (a, b)

Доведення. $\forall x_1, x_2 \in (a, b)$.

Використаємо теорему Лагранжа для $[x_1, x_2]$

Тоді
$$\exists \xi \in (x_1, x_2)$$
:

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi)$$

$$f'(\xi) = 0 \Longrightarrow f(x_1) - f(x_2) = 0 \Longrightarrow f(x_1) = f(x_2)$$

 $\Pi puклад.$ Довести, що для $\forall x_1, x_2 \in \mathbb{R}$

$$| \operatorname{arctg} x - \operatorname{arctg} y | \le |x - y|$$

 $f(x) = \operatorname{arctg} x$ задовольняє усі умови теореми Лагранжа на [x, y]. Тоді:

$$\exists \xi \in (x,y):$$

$$\frac{\arctan x - \operatorname{arctg} y}{x - y} = (\operatorname{arctg} x)'|_{x = \xi} = \frac{1}{1 + \xi^2}$$
$$\left| \frac{\operatorname{arctg} x - \operatorname{arctg} y}{x - y} \right| = \frac{1}{1 + \xi^2} \le 1$$

Домноживши обидвы частини на |x-y| отримаємо:

$$|\operatorname{arctg} x - \operatorname{arctg} y| \le |x - y|$$

Геометрична інтерпретація теореми Лагранжа. Якщо $f \in C([a,b]) \cap D((a,b))$, то завжди можна провести дотичну до функції f, паралельну до відрізка, о сполучає точки (a,f(a)) та (b,f(b)).

Теорема Коші. Нехай $f,g \in C([a,b]) \cap D((a,b))$. Тоді $\exists \xi \in (a,b)$:

$$(f(b) - f(a))g'(\xi) = (g(a) - g(b))f'(\xi)$$

Доведення. Розглянемо допоміжну функцію

$$F(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$

- 1. $F \in C([a,b]) \cap D((a,b))$
- 2. F(a) = (f(b) f(a))g(a) (g(b) g(a))f(a) = f(b)g(a) f(a)g(a) + f(a)g(a) g(b)f(a) = f(b)g(a) g(b)f(a)

$$F(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = f(b)g(b) - f(a)g(b) + f(b)g(a) - g(b)f(b) = f(b)g(a) - g(b)f(a)$$
 Отже, $F(a) = F(b)$.

Тоді за теоремою Ролля

$$\exists \xi : F'(\xi) = 0$$

$$(f(b) - f(a))g'(\xi) - (g(b) - g(a))f'(\xi) = 0 \iff$$

$$(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi)$$

Наслідок. Якщо в умовах теореми Коші $\forall x \in (a,b)$ $q'(x) \neq 0$, то

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Чому у нас не буде раптом ділення на нуль?

Очевидно, що з $\forall x \in (a,b)$ $g'(x) \neq 0$ слідує те, що $g'(\xi) \neq 0$.

Подивимось на g(b)-g(a). Якби g(b)-g(a)=0, то за теоремою Ролля $\exists c \in (a,b): g'(c)=0$, що суперечить умові.

Теорема про неперервність похідної. Нехай $f \in (D((a,b)) \setminus \{x_0\})$, $f \in C((a,b)), x_0 \in (a,b)$.

Якщо
$$\exists \lim_{x \to x_0} f'(x) = \lambda \Longrightarrow \exists f'(x_0) = \lambda$$

Доведення. Розглянемо проміжки $[x_0, x], [x, x_0].$

• Розглянемо $[x_0,x]$. За теоремою Лагранжа:

$$\exists \xi \in [x_0, x] : f'(\xi) = \frac{f(x) - f(x_0)}{x - x_0}$$

$$x_0 < \xi < x$$

Тож при $x \to x_0, \, \xi \to x_0$. Отже:

$$f'(\xi) \to \lambda \Longrightarrow$$

$$\Longrightarrow \exists \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} = \lambda$$

ullet Аналогічно, розглядаючи проміжок $[x,x_0]$ доводимо, що

$$\exists \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = \lambda$$

Теорема. Типи розривів похідної.

Нехай $f \in D((a,b))$ тоді $\forall x \in (a,b)$.

f' або є неперервною в точці x або має розрив другого роду.

Доведення. Розглянемо

$$f'(x_0+0), f'(x_0-0)$$

- 1. Якщо f'(x-0) або f'(x+0) не існує або дорівнює нескінченності, то f' має розрив другого роду.
- 2. Якщо $\exists f'(x-0) \ i \ \exists f'(x+0).$

Тоді за попередньою теоремою

$$\exists f'_{\pi}(x) = \lim_{x \to x_0-} f'(x), \ \exists f'_{\pi}(x) = \lim_{x \to x_0+} f'(x)$$

- Якщо $f'_{\pi}(x) \neq f'_{\pi}(x)$. Тоді $\nexists f(x_0)$. Протиріччя.
- Якщо $f'_{\pi}(x) = f'_{\pi}(x) \Longrightarrow \exists \lim_{x \to x_0} f'(x)$. Тоді за попередньою теоремою $\exists f'(x) = \lim_{x \to x_0} f'(x)$. Отже, f' неперервна в точці x_0 .

 Π риклад.

$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0\\ 0, x = 0 \end{cases}$$

При $x \neq 0$:

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}, \ x \neq 0$$

Інакше:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Чи буде f' неперервна в точці x_0 ?

$$\lim_{x\to 0} f'(x) = \lim_{x\to 0} (2x\sin frac1x - \cos\frac{1}{x}) = -\lim_{x\to 0} \cos\frac{1}{x} =$$

$$-\lim_{y\to \infty} \cos y - \text{не існує}$$

Отже f'(x) має розрив другого роду у точці 0.

Правило Лопіталя. Нехай $f, g:(a,b) \to \mathbb{R}$. **Теорема.** Нехай $f, g \in D((a,b))$ і прицьому:

1.

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$$

2.

$$\exists \lim_{x \to a+} \frac{f'(x)}{g'(x)} = \lambda \in \mathbb{R}$$

3.

$$g'(x) \neq 0 \ \forall x \in (a, b)$$

Тоді
$$\exists \lim_{x \to a+} \frac{f(x)}{g(x)} = \lambda$$

Доведення. Доозначимо функції f і g у точці a. Розглянемо

$$F(x) = \begin{cases} 0, & x = a \\ f(x), & x \in (a, b) \end{cases}$$

Аналогічно

$$G(x) = \begin{cases} 0, & x = a \\ g(x), & x \in (a, b) \end{cases}$$

F та G задовольняють умови наслідку з теореми Коші на проміжку [a,x], $x \in (a,b).$ Тоді $\exists \xi$:

$$\frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi)}{G'(\xi)} \Longrightarrow \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}$$

$$x \to a+, \ a < \xi < x, \Longrightarrow \xi \to a+ \Longrightarrow$$

$$\Longrightarrow \exists \lim_{\xi \to a+} \frac{f'(\xi)}{g'(\xi)} \Longrightarrow \exists \lim_{x \to a+} \frac{f(x)}{g(x)} = \lambda$$

Зауважете, що слідування йде тільки в одну сторону.

Аналогічна теорема при $x \to +\infty$: **Теорема.** $f,g:[a,+\infty] \to \mathbb{R}, \ f,g \in D((a,+\infty)).$

1.

$$\exists \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$$

2.

$$\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lambda$$

3.

$$\forall x \in (a, +\infty)g'(x) \neq 0$$

Тоді
$$\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lambda$$

Зауваження. Умову $\lim f = \lim g = 0$ можна замінити на $\lim f = \lim g = \infty$ і правило Лопіталя теж буде виконуватись. Головне, щоб функції прямували до 0 або ∞ одночасно.

 $\Pi pu \kappa \Lambda a \partial$:

 $\lim_{x \to 0} \frac{\sin x}{e^x - 1} = \lim_{x \to 0} \frac{\cos x}{e^x} - 1$

 $\lim_{x \to +\infty} \frac{e^x}{x} = \lim_{x \to +\infty} \frac{e^x}{1} = +\infty$

$$\lim_{x \to 0} x \ln x = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{-1}{x^2}} = \lim_{x \to 0} (-x) = 0$$

Формула Тейлора

Нехай $f:(a,b)\to\mathbb{R},\ D_f=(a,b).$ Многочлен

$$P_{n,x}(x_0) = \sum_{k=0} n \frac{f^{(k)}(x)}{k!} \cdot (x - x_0)^k =$$

$$= f(x_0) + \frac{f'(x_0)}{1!} + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

називається **многочленом Тейлора** n-того порядку для функції f в точці x_0 .

$$r(x) = f(x) - P(x)$$

Називається залишковим членом.

$$f(x) = P(x) + r(x)$$

Теорема. Формула Тейлора із залишкоим членом у формі Пеано.

Нехай $f \in D^{(n)}((a,b)) \cap D^{(n+1)}(\{x_0\}), \ x_0, x \in (a,b).$ Тоді при $x \to x_0$:

$$r(x) = o((x - x_0)^n)$$

Тобто:

$$f(x) = \sum_{k=0}^{\infty} n \frac{f^{(k)}(x)}{k!} \cdot (x - x_0)^k + o((x - x_0)^n)$$

Доведення.

$$\lim_{x \to x_0} \frac{f(x) - \sum_{k=0} n \frac{f^{(k)}(x)}{k!} \cdot (x - x_0)^k}{(x - x_0)^n} =$$

$$= \lim_{x \to x_0} \frac{(f(x) - \sum_{k=0} n \frac{f^{(k)}(x)}{k!} \cdot (x - x_0)^k)'}{((x - x_0)^n)'}$$

$$\left(\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k\right)' = \frac{f^{(k)}(x_0)}{(k-1)!}(x-x_0)^{k-1}, \text{ отже:}$$

$$\lim_{x \to x_0} \frac{(f(x) - \sum_{k=0} n \frac{f^{(k)}(x)}{k!} \cdot (x-x_0)^k)'}{((x-x_0)^n)'} =$$

$$= \lim_{x \to x_0} \frac{f'(x) - f'(x_0) - \frac{f''(x_0)}{1!}(x-x_0) - \dots - \frac{f^{(n)}(x_0)}{(n-1)!}(x-x_0)^{n-1}}{n(x-x_0)^{n-1}} =$$

$$= \lim_{x \to x_0} \frac{(f'(x) - f'(x_0) - \frac{f''(x_0)}{1!}(x-x_0) - \dots - \frac{f^{(n)}(x_0)}{(n-1)!}(x-x_0)^{n-1})'}{(n(x-x_0)^{n-1})'} =$$

$$= \dots = \lim_{x \to x_0} \frac{f^{n-1}(x) - f^{n-1}(x_0) - \frac{f^n(x_0)}{1}(x-x_0)}{n!(x-x_0)} =$$

$$= \frac{1}{n!} \lim_{x \to x_0} \left(\frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x-x_0} - f^{(n)}(x_0)\right)$$

Оскільки $f \in D^{(n+1)}(\{x_0\})$, то:

$$\exists f^{(n)}(x_0) = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

Отже:

$$\frac{1}{n!} \lim_{x \to x_0} \left(\frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0} - f^{(n)}(x_0) \right) =$$

$$\frac{1}{n!} \lim_{x \to x_0} \left(f^{(n)}(x_0) - f^{(n)}(x_0) \right) = 0$$

Доведено.

Теорема. Формула Тейлора із залишковим членом у формі Лагранжа. Нехай $f \in D^{(n+1)}((a,b)), \ x,x_0 \in (a,b),$ тоді:

$$\exists \xi \in (x_0, x) :$$

$$f(x + 1)(\xi)$$

$$r(x) = \frac{f(n+1)(\xi)}{(n+1)!} \cdot (x - x_0)^{n+1}$$

Тобто

$$f(x) = \sum_{k=0}^{\infty} n \frac{f^{(k)}(x)}{k!} \cdot (x - x_0)^k + \frac{f^{(n+1)(\xi)}}{(n+1)!} \cdot (x - x_0)^{n+1}$$

Теорема. Формула Тейлора із залишковим членом у формі Коші.

$$\exists \xi \in (x, x_0) : r(x) = \frac{\theta^n}{n!} (x - x_0)^n f^{(n+1)}(\xi)$$

Що таке θ ? Це деяке число, яке належить проміжку [0,1]. Завдяки цьому виходить, що:

$$\theta x_0 + (1 - \theta)x \in [x, x_0]$$

Оскільки $\xi \in (x, x_0)$, то:

$$\xi = \theta x_0 + (1 - \theta x, \ \theta \in (0, 1))$$

Домашне завдання:

- 1. Виразити θ через ξ і позбавити форму Коші від неї.
- 2. Прочитати доведення цих двух теорем.
- 3. Послабити умову теореми.

 $\Pi p u \kappa \wedge a \partial$: При $x_0 = 0$:

$$\sin x = x - \frac{x^3}{3!} + r(x), \ x \in [0, 1]$$

$$\sin x = x - \frac{x^3}{3!} + \frac{\sin^{(4)}(\xi)}{4!} x^4 = x - \frac{x^3}{3!} + \frac{\sin \xi}{4!} x^4$$

$$\sin x - (x - \frac{x^3}{3!}) = \left| \frac{\sin \xi}{4!} x^4 \right| \le \frac{1}{24}$$

Дослідження функцій за допомогою похідних

Нехай $f:(a,b)\to\mathbb{R},\ D_f=(a,b).$ **Теорема.** Нехай $f\in D((a,b)).$ Тоді:

- 1. $f \nearrow$ (нестрого зростає) на $(a,b) \Longleftrightarrow \forall x \in (a,b) \ f'(x) \ge 0$.
- 2. $f \searrow$ (нестрого спадає) на $(a,b) \Longleftrightarrow \forall x \in (a,b) \ f'(x) \ge 0$.
- 3. $f \uparrow$ (строго зростає) на $(a,b) \Longleftarrow \forall x \in (a,b) \ f'(x) \ge 0$.

4. $f \downarrow$ (строго спадає) на $(a,b) \Longleftarrow \forall x \in (a,b) \ f'(x) \geq 0$.

Доведення.

1. \Longrightarrow . $\forall x_0 \in (a,b)$:

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Оскільки функція нестрого зростає, то при $x > x_0$:

$$f(x) - f(x_0) \ge 0, \ x - x_0 > 0 \Longrightarrow \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Аналогічно:

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Отже й $f'(x) \geq 0$.

 \longleftarrow . $\forall x_1, x_2 \in (a, b)$: Нехай $x_1 < x_2$. За теоремою Лагранжа можна записати наступне:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

Оскільки $f'(\xi) \ge 0$, $x_2 - x_1 > 0 \Longrightarrow f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0$ Отже, при $x_1 < x_2$ $f(x_2) - f(x_1) \ge 0 \Longleftrightarrow f(x_2) \ge f(x_1)$, що й треба було довести.

- 2. Доводиться абсолютно аналогічно з попереднім.
- Щоводиться аналогічно з 1. Але, обернена тверждення (⇒) тепер не є правдою, бо, наприклад:

$$f(x) = x^3$$
— строго зростнає на \mathbb{R} , але:

$$f'(x) = 2x^2 \Longrightarrow f'(0) = 0$$

Отже, навіть якщо функція строго зростає, f' все одно може набувати нульове значення.

4. Абсолютно аналогічно з попереднім.

Означення. Функція f називається зростаючою в точці x_0 , якщо:

$$\exists \varepsilon > 0$$

$$\forall x \in (x_0, x_0 + \varepsilon) \ f(x) > f(x_0)$$

$$\forall x \in (x_0 - \varepsilon, x_0) \ f(x) < f(x_0)$$

Аналогічно означується спадна, неспадна та зростаюча функції у точці

Теорема. Якщо $f'(x_0) > 0$, то функція зростає в точці x_0 . Доведення.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0 \Longrightarrow$$

$$\exists \varepsilon > 0 : \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \ \frac{f(x) - f(x_0)}{x - x_0} > 0$$

Отже:

$$x < x_0 \Longrightarrow f(x) - f(x_0) < 0 \Longleftrightarrow f(x) < f(x_0)$$

$$x > x_0 \Longrightarrow f(x) - f(x_0) > 0 \Longleftrightarrow f(x) > f(x_0)$$