Пусть $g:U\to R^m$, где U - открытое множество пространства R^n . Тогда для произвольной точки $\mathbf{M}\big(x_1,x_2,...x_n\big)\in U$ можно записать ее образ $g(M)=\big(g^1(M),g^2(M),...,g^m(M)\big)$ т.е.

$$g^{1}(M) = g^{1}(x_{1}, x_{2}, ..., x_{n}),$$

 $g^{2}(M) = g^{2}(x_{1}, x_{2}, ..., x_{n}),$
 $...$
 $g^{m}(M) = g^{m}(x_{1}, x_{2}, ..., x_{n}).$

Отображение $g:U\to R^m$ называется дифференцируемым класса C^r если для каждой функции $g^k(x_1,x_2,...,x_n)$ существуют непрерывные частные производные до порядка r включительно.

<u>Рангом</u> C^r отображения называется ранг его якобиевой матрицы.

Отображение $g:U\to V$ открытого множества $U\subset R^n$ на открытое множество $V\subset R^m$ называется диффеоморфизмом класса C^r , если отображения g и g^{-1} принадлежат классу C^r . Диффеоморфизмом класса C^0 очевидно является гомеоморфизм.

Понятие дифференцируемого многообразия

Рассмотрим многообразие M^n с атласом $A = \left\{ \left(u_\alpha, \varphi_\alpha \right) \right\}$. Карты $\left(u_\alpha, \varphi_\alpha \right)$ и $\left(u_\beta, \varphi_\beta \right)$ называются C^r согласованными если выполнено одно из следующих двух условий:

- 1. $u_{\alpha} \cap u_{\beta} = \emptyset$;
- 2. $u_{\alpha} \cap u_{\beta} \neq \emptyset$ а гомеоморфизм $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ есть диффеоморфизм класса C^r .

Атлас $A = \{(u_{\alpha}, \varphi_{\alpha})\}$ многообразия M^n называют <u>атласом класса</u> C^r если две его любые карты C^r согласованы.

На множестве C^r атласов введем отношение эквивалентности: два C^r атласа будем называть эквивалентными, если их объединение также является C^r атласом.

Введенное отношение эквивалентности разбивает множество C^r атласов многообразия M^n на непересекающиеся классы. Класс эквивалентности называют дифференцируемой структурой класса C^r .

<u>Дифференцируемым многообразием класса C^r называется M^n многообразие на котором задана дифференцируемая структура класса C^r .</u>

§13 Гомотопные отображения

Рассмотрим понятие гомотопии отображений, которое является обобщением физического процесса непрерывной деформации и было введено голландским математиком Л. Брауэром.

Прежде всего заметим, что произвольное семейство отображений $\{f_t, t \in T\}$ (здесь T - индексное множество) множества X в множество Y порождает отображение F декартова произведения $X \times T \to Y$, что $F(x,t) = f_t(x)$.

Пусть X, T, Y - топологические пространства. Семейство непрерывных отображений $\{f_t: X \to Y, t \in T\}$ называется непрерывным, если непрерывно отображение $F: X \times T \to Y$.

В дальнейшем мы будем рассматривать в качестве индексного множества единичный отрезок I = [0;1].

Определение: Два непрерывных отображения топологического пространства X в топологическое пространство Y называются <u>гомотопными</u> если, если существует такое непрерывное отображение $F: X \times I \to Y$, что

$$F(x,0) = f_0(x), F(x,1) = f_1(x)$$

для всех $x \in X$. При этом отображение F называется <u>гомотопией от</u> f_0 κ f_1 .

Если отображения f_0 и f_1 гомотопны то пишут $f_0 \cong f_1$

На основании определений гомотопией от f_0 κ f_1 можно считать непрерывное семейство отображений $f_t: X \to Y$, где $t \in I$. Если считать t- время, то в момент времени t=0 имеем отображение f_0 , далее на отрезке [0;1] непрерывно меняется отображение f_t . В момент времени t=1 получаем отображение f_1 . Поэтому гомотопию часто называют $\underline{\text{непрерывной}}$ $\underline{\text{деформацией отображений.}}$

Определение: Гомотопию F непрерывного отображения $f_0: X \to Y$ κ непрерывному отображению $f_1: X \to Y$ называют связанной множеством $A \subset Y$, если кроме условий $F(x,0) = f_0(x)$, $F(x,1) = f_1(x)$ для всех $x \in X$, выполняются дополнительные условия

$$F(a,t) = f_0(a) = f_1(a)$$

для всех $a \in A$ и всех $t \in T$.

Гомотопию относительно множества A обозначают $f_0 \cong f_1 \quad relA \, .$

Имеет место следующая

Теорема: Гомотопия отображений есть отношение эквивалентности на множестве всех непрерывных отображений одного топологического пространства в другое.

⊳ 1. Рефлексивность. Если $f: X \to Y$ непрерывно, то положим F(x,t) = f(x) для всех $t \in [0;1]$, $x \in X$. Получим гомотопию от f к f. Следовательно $f \cong f$.

- 2. Симметричность. Если $f_0 \cong f_1$ то существует гомотопия F(x,t) положим $\Phi(x,t) = F(x,1-t)$, осуществляющую гомотопию от f_1 к f_0 .
- 3. Транзитивность. Если $f_0 \cong f_1$, а $f_1 \cong f_2$. Докажем, что $f_0 \cong f_2$. Пусть F гомотопия от f_0 к f_1 , Ф гомотопия от f_1 к f_2 , тогда непрерывное отображение $\Psi: X \times I \to Y$, определяемое формулой

$$\Psi = \begin{cases} F(x,2t) & t \in \left[0;\frac{1}{2}\right], \\ \Phi(x,2t-1) & t \in \left[\frac{1}{2};1\right] \end{cases}$$

является гомотопией от f_0 к f_2 . \triangleleft

Обозначим через H(X,Y) – множество всех непрерывных отображений топологического пространства X в пространство Y. На основании предыдущей теоремы, можно утверждать, что это множество разбивается на непересекающиеся классы гомотопных между собой отображений. Эти классы эквивалентности называются <u>гомотопическими классами</u>. Множество гомотопических классов отображений X в Y обозначим $\pi(X,Y)$.

Теорема Если отображения $f_0: X \to Y$ и $f_1: X \to Y$ гомотоны, то:

- 1. Для любого непрерывного отображения $\varphi: Y \to Z$ отображения $\varphi \circ f_0: X \to Z$ и $\varphi \circ f_1: X \to Z$ гомотопны;
- 2. Для любого непрерывного отображения $\psi: \hat{X} \to X$ гомотопны отображения $f_0 \circ \psi: \hat{X} \to Y$ и $f_1 \circ \psi: \hat{X} \to Y$.

Определение Топологические пространства X и Y называются <u>гомотопически</u> <u>эквивалентными</u> если существуют такие непрерывные отображения $f: X \to Y$ и $\varphi: Y \to X$, что композиция $\varphi \circ f: X \to X$ гомотопна тождественному на X отображению, а композиция $f \circ \varphi: Y \to Y$ гомотопна тождественному не Y отображению.

Гомотопически эквивалентные пространства называют <u>пространствами</u> одного и того же гомотопического типа.

Если топологические пространства гомеоморфны, то они имеют один и тот же гомотопический тип. Обратное не всегда верно.

Ретракция и ретракт.

Одной из важных задач топологии является выяснение вопроса о возможности непрерывного продолжения некоторого отображения, заданного на подпространстве, на все пространство. Прояснит этот вопрос помогают следующие понятия.

Определение Подпространство A топологического пространства X называется ретрактом этого пространства, если существует такое непрерывное отображение \mathbf{r} пространства X на A, что r(a)=a для каждой точки $a \in A$. Отображение $r: X \to Y$ называют ретракцией.

Теорема свойство быть ретрактом транзитивно, т.е. ретракт ретракта есть ретракт.

ightharpoonup Пусть A и B - подпространства топологического пространства X, $A \subset B$, $r_1:B \to A$ - ретракция B на A, $r_2:X \to B$ ретракция X на B. Рассмотрим композицию отображений $r=r_1\circ r_2$. Найдем r(a), где $a\in A$. $r(a)=r_1(r_2(a))=r_1(a)=a$. Следовательно r есть ретракт X на A. $r(a)=r_1(r_2(a))=r_1(a)=a$.

Теорема Подмножество A топологического пространства X тогда и только тогда является его ретрактом, когда любое непрерывное отображение $f: A \to Y$, где Y некоторое топологическое пространство, может быть непрерывно продолжено на все пространство X.

Необходимость.

Пусть A - ретракт пространства X и $r: X \to A$ ретракция. Тогда композиция $r \circ f$ отображает X в Y и непрерывна.

Достаточность.

Если любое непрерывное отображение $f:A \to Y$ можно непрерывно продолжить на все пространство X, то для тождественного отображения $I_A:A \to A$ существует его непрерывное продолжение r на A. Отображение $r:X \to A$ есть ретракция пространства X на A. \lhd

Примеры:

1. Каждая прямая L пространства ${\bf R}^2$ является его ретрактом. Здесь ретракцией является ортогональное проектирование ${\bf R}^2$ на L. Это отображение непрерывно т.к. при проектировании прообраз открытого множества открыт.

2. Любой замкнутый круг A в пространстве \mathbb{R}^2 является его ретрактом. Ретракцией $r: \mathbb{R}^2 \to A$ будет отображение, оставляющее на месте все точки A и переводящее любую точку \mathbb{R}^2 в точку на границе A, с помощью

центрального проектирования. Очевидно, что все точки окружности переходят сами в себя.

