

Máquinas Asíncronas

14/02/2020

Estator

Una fase del arrollamiento de una máquina asincrónica cuadripolar.

14/02/2020

Rotor

14/02/2020

Principio de funcionamiento

14/02/2020

El motor a inducción como transformador

a) Circuito abierto rotor detenido

	Io %
transf.	15
motor	18 a 40

14/02/2020

El motor a inducción como transformador

b) Arrollamiento rotórico cerrado (rotor bloqueado

	Icc/In
transf.	40
motor	3,8 a 8

14/02/2020

El motor a inducción como transformador

c) Rotor girando, motor en marcha

14/02/2020

Diagrama Vectorial

14/02/2020

Circuito equivalente reducido al 1°

14/02/2020

Circuito equivalente reducido al 1°

Impedancia del motor

14/02/2020

Ciclo de carga variable

14/02/2020

Momento motor

Curva característica del momento

14/02/2020

Momento motor

• Curva característica del momento. Resistencia de arranque.

14/02/2020

Momento motor

• Alteraciones a la curva de momento

Influencia de la 5° y 7° armónica

Influencia de la inclinación: 1- Ranura recta 2- Ranura inclinada

14/02/2020

1- Balance energético

14/02/2020

14/02/2020

Localización en el motor

Arranque de motores asíncronos trifásicos

Electrotecnia y Máquinas Eléctricas 14/02/2020

14/02/2020

1- Arranque directo

2- Motor con arrollamiento dividido

14/02/2020

3- Conmutación estrella-triángulo

3- Conmutación estrella-triángulo

4- Estatórico por resistencias

5- Por autotransformador

14/02/2020

6- Con anillos rozantes

7- Arranque electrónico por tensión variable y limitación de corriente

14/02/2020

7- Arranque electrónico por tensión variable y limitación de corriente

14/02/2020

7- Arranque electrónico por tensión variable y limitación de corriente

14/02/2020

8- Jaulas especiales

14/02/2020

Datos sobre distintas formas de arranque

Métodos de Arranque	Sobre intensidad $I/Icc\%$	$\frac{M_{arr}}{M_n}.100 a U_n$
A tensión nominal	100	" 100
Autotransformador		
80% de U _n	71	64
65%	48	42
50%	28	25
R ó X en el circuito		
primario	80	64
80% de U _n	65	42
65%	50	33
58%	50	25
50%		
Y/A	33	33
Devanado Parcial	60	48
Devanado Parcial con R	30 ÷ 60	12 ÷ 48
Rotor Bobinado	25	150

14/02/2020

Tiempo de arranque

Vel. Motor [v/min]	versión A [seg]	versión B [seg]
3000	8	7
1500	10	
1000	12	10
750	16	

Tiempo máx admisible de arranque

Variación de velocidad

Electrotecnia y Máquinas Eléctricas 14/02/2020

Métodos

Variando s

- Control por variación de U₁
 - a) Autotransformador
 - b) Reactancia saturable
 - c) Tiristores con control de fase
- 2. Control por variación de l_{2.}
 - a) resistencia rotórica
 - b) f.c.e.m. en el rotor

Variando n₁

- 3. Control por variación de **p**.
- 4. Control por variación de f.
 - a) Cicloconvertidor
 - b) Rectificador/inversor
 - I. Modulación por amplitud de pulsos PAM
 - II. Modulación por ancho de pulsos PWM

1. Control por variación de U₁

- •Al cargar un motor asíncrono la velocidad se estabiliza a un cierto valor, en el que el par motor y el resistente son iguales.
- •Al bajar la tensión se produce una fuerte caída del M, dado que $M = f(U^2)$
- \bullet Si la carga mantiene un M_{res} elevado a bajas velocidades se entra en la zona inestable de la curva de par y el motor se detiene.

1. Control por variación de U₁

Inconveniente de inestabilidad a bajas velocidades

•Puede *reducirse* con los **motores de anillos rozantes**, ya que al incluir resistencias en el rotor, se logra deformar la curva, ampliando la zona estable.

1.b) Reactancias saturables

- •El devanado de excitación de la reactancia regula su impedancia y por tanto la tensión aplicada.
- •Se utiliza para potencias más elevadas.

14/02/2020

1.c)Tiristores con control de fase

- •Se regula el disparo de los tiristores un cierto ángulo, lo que determina una reducción de la tensión.
- •Inconvenientes: gran contenido de armónicos.

14/02/2020

2.a)Control por variación de I₂ con resistencia rotórica.

- •En <u>motores con anillos</u> se consigue conectando reóstatos a los mismos.
- •En <u>dispositivos de arranque con</u> <u>intensidad reducida</u>, se anula la resistencia una vez que se alcanza la velocidad de régimen.
- •Se puede usar para reducir la velocidad por debajo de la nominal, no más allá de un 75% u 80%.

•<u>Inconveniente</u>: disipación de energía y por ende bajo rendimiento.

14/02/2020

2.a)Control por variación de I₂ con resistencia rotórica.

•<u>Aplicaciones con cambio</u> <u>frecuente de velocidad:</u>

Se emplea un equipo estático que utiliza un rectificador, junto con una resistencia equivalente variable (dada por una resistencia y un tiristor en paralelo)

14/02/2020

2.b) control por. f.c.e.m. en el rotor

Se opone una f.c.e.m. a la tensión generada U2 en los anillos, ya que, variando la tensión secundaria se varía la velocidad.

$$(E_{2s} = s.E_2)$$

Por control estático de la I₂

- •Se rectifica la tensión que entregan los anillos obteniéndose s.E₂.
- •Un inversor autonomo, constituído por tiristores, se conecta a la red. Entrega $E_2.\cos \alpha$, siendo α el ángulo de disparo de los tiristores.

Μ

•El **CONTROL** se conecta a la salida del inversor autónomo.

2.b) control por. f.c.e.m. en el rotor

• Se verifica: E_2 . $s = E_2$. $\cos \alpha$

$$s = \cos \alpha$$

• Es decir:

Regulando el disparo de los tiristores se regula el deslizamiento o velocidad.

14/02/2020

3. Control por variación de p

N

Cambio de polos

Conexión dahlander

14/02/2020

4. Control por variación de f

- Estos dispositivos permiten variar la velocidad y el momento de los motores, convirtiendo las magnitudes constantes: frecuencia y tensión de red, en magnitudes variables.
- La potencia decae en forma lineal con la disminución de la frecuencia.

14/02/2020

4.a) Ciclo convertidor

4.b) Rectificador inversor.

PAM

PWM

Frenado de motores asíncronos

Electrotecnia y Máquinas Eléctricas 14/02/2020

Electrotecnia y Máquinas 14/02/2020 Eléctricas

Frenado eléctrico

1. Por contracorriente

2. Por corriente continua

3. supersíncrono

Electrotecnia y Máquinas 14/02/2020 Eléctricas

1. Por contracorriente

• 3

2. Frenado por corriente continua, frenado dinámico

Motores asíncronos monofásicos

Electrotecnia y Máquinas Eléctricas 14/02/2020

14/02/2020

Forma constructiva

Principio de funcionamiento

Campos rodantes cruzados

• Flujo sobre espira:

$$\varphi = \Phi \cdot \cos(\omega t)$$

Considerando que:

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

• Se descompone en 2 rodantes de sentido contrario

$$\varphi = \frac{\Phi}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

Principio de funcionamiento

• Los campos rodantes φ_a y φ_b giran a la velocidad de sincronismo n_1 y tienen un módulo de:

$$|\phi_a| = |\phi_b| = |\frac{\phi}{2}|$$

• Se definen entonces 2 resbalamientos, y un resbalamiento total

$$s_a = \frac{n_1 - n_2}{n_1}$$
 $s_b = \frac{n_1 - (-n_2)}{n_1}$

$$s_a + s_b = 2$$

Momento motor

•A cada resbalamiento corresponde un momento:

$$M_a = \frac{30}{\pi} \cdot \frac{m_1}{n_1} \cdot \frac{R_{21} \cdot I_{21a}^2}{s_a}$$

$$M_b = \frac{30}{\pi} \cdot \frac{m_1}{n_1} \cdot \frac{R_{21} I_{21b}^2}{2 - s_a}$$

• Puntos característicos:

$$s = o \Rightarrow Ma = o ; Mb = -k/2$$

$$s = 1 \Rightarrow Ma = k ; Mb = -k$$

$$s = 2 \Rightarrow Ma = k/2$$
; $Mb = 0$

14/02/2020

Tipo de motores

1. Motor con fase auxiliar arranque resistivo

Diagrama vectorial

Diagrama de flujos

2. Motor con capacitor de arranque

• El momento de arranque es proporcional a la superficie del triángulo OAM.

$$M = \frac{P}{n} = \frac{UI}{n} = \frac{1}{n} \sup triángulo$$

Sup
$$\frac{\Delta}{\text{OAM}} = \frac{OM \cdot AB}{2} = \frac{1}{2} I_M . I_A \cdot sen(\varphi_M - \varphi_A)$$

14/02/2020

2. Motor con capacitor de arranque

- Por lo tanto al aumentar el ángulo entre las corrientes (cercano a los 90°) mejora notablemente el momento de arranque.-
- •El condensador utilizado es del tipo electrolítico (polarizado).

3. Motor con capacitor permanente

- Trabaja como motor bifásico, produciendo un campo rodante imperfecto, pero mejor que en los anteriores.
- Emplean condensadores en aceite o cerámico de baja capacitancia, lo que resulta en *momentos de arranque bajos*, hasta un 50 % del nominal.

- 4. Motor con capacitor de arranque y marcha
- •Para un óptimo funcionamiento se requiere
 - ➤ En el arranque: gran capacidad (I_{arr} grande y muy desfasada)
 - ➤En marcha: menor capacidad (I_n menor y poco desfasado)

- Este motor lo logra con:
 - C arranque (electrolítico) = 10. C marcha (aceite, cerámico)
- Son los mejores motores, pero los más caros.

- 5. Motor con polos sombra
- a) Características constructivas
- El estator se caracteriza por tener, en un extremo de la expansión polar, una espira cortocircuitada de gran sección.
- •Para aumentar el momento de arranque se construye el entrehierro no uniforme.

Tetrapolares

5. Motor con polos sombra

b) Principio de funcionamiento

- 5. Motor con polos sombra
- c) Variación de velocidad

 $Por\ autotransformador$

Por bobina de reactancia

Por bobinado con tomas

Electrotecnia y Máquinas 14/02/2020 Eléctricas

5. Motor con polos sombra

d) Curvas características

Inversión de marcha

