Thin Disc Flight Dynamics with Applications to Ballochore Seed Dispersal

Joe Hesse-Withbroe December 9, 2021

Final Thesis Presentation

Outline

Motivations

Methods

Theory

Results

Conclusions

Motivations

Biological & Physical

Example Seed Dispersal Mechanisms

Anemochory (Wind-Aided Seed Dispersal)

Ballochory (Ballistic Seed Dispersal)

Credit: Tenor Credit: Smithsonian Institute

Seed Dispersal Characteristic Ranges

	Dispersal Mode	Description	Example Species	Characteristic Range	
Independent (autochory)	Barochory	Dispersal by gravity	Apple, Coconut	0.1 - 1 m	
	Ballochory	Ballistic launching of seeds	Squirting cucumber	1 - 10 m	
Vector- dependent (allochory)	Anemochory	Wind-aided dispersal	Dandelion	10 - 1000 m	
	Zoochory	Animal-aided dispersal	Apple, Acorn (Oak)	10 - 1000 m	Far more effective
	Hydrochory	Water-aided dispersal	Apple, Coconut	10 - 100,000 m	

Many plants rely on a combination of dispersal mechanisms (diplochory), both in "series" and "parallel"

Credit: Vittoz and Engler, Seed Dispersal Distances

Guiding Questions

Adaptive advantages of ballochory over other dispersal methods?

What seed dispersal parameters are optimized by evolution?

How effective are seed dispersal mechanisms in certain ballochores?

Methods

Modelling & Simulation

Case Study: Ruellia Ciliatiflora

- R. ciliatiflora:
 - Perennial herb
 - South America, SE U.S.
- Seed dispersal:
 - Ballochore
 - Thin, disc-like seeds
 - High spin
- Well-studied in literature
 - Eric Cooper '18 Senior Thesis

Ruellia Ciliatiflora - Overview

Credit: Erin Tripp & Eric Cooper

- a) Fruits of R. ciliatiflora
- b) Close-up of a single fruit shows arrangement of seeds inside
- c) Individual seeds of *R. ciliatiflora* with 1mm scale bar

Ruellia Ciliatiflora – Seed Dispersal

Credit: Eric Cooper, Dwight Whitaker

Seed Orientation & Stability

Topspin Orientation – <u>unstable</u>

Approach

- Model seed as thin disc, derive equation of motion for a thin,
 spinning disc moving in air
- Simulate dispersal events under a variety of initial conditions, search for conditions that yield optimal cases (dispersal range, others?)
- Focus on initial launch orientation ϕ_o (Backspin, sidespin, topspin)

Theory

Thin Disc Flight Dynamics

Forces

Gravity

Drag

Lift

Magnus

Gravity

•
$$\vec{F}_g = -mg\hat{y}$$

Lift & Drag

- Result from displacement of fluid by a moving body
- Expressed as $|F| = C \frac{1}{2} \rho |V|^2 A$

Lift

- Acts perpendicular to flow
- $C_L = 2\pi \sin \alpha$ (inviscid result)
- $A = \pi R^2 \cos \alpha$ --- planform area
- High pressure below wing, low pressure above – Effectively, the wing "sucks" itself upward

Drag

- Acts antiparallel to flow
- C_D determined experimentally
- $A = \pi R^2 \cos \alpha + 2Rd \sin \theta$ ---- frontal area
- Also, lift-induced drag, scales with ${\cal C}_L^{\ 2}$

Lift

Direction Constraints

$$\mathbf{F_L} \cdot \mathbf{V} = 0$$

$$\mathbf{F}_{\mathbf{L}} \cdot (\mathbf{V} \times \mathbf{L}) = 0$$

$$|\mathbf{F_L}| = \frac{\pi^2 r^2 \rho}{2} \sin(2\alpha) |\mathbf{V}|^2$$

Component-wise Result

$$F_{Lx} = \frac{\frac{\pi^2 r^2 \rho}{2} \sin(2\alpha) |\mathbf{V}|^2 (L_y V_x V_y + L_z V_x V_z - L_x (V_y^2 + V_z^2))}{\sqrt{\mathbf{V}^2 (L_x^2 (V_y^2 + V_z^2) + L_y^2 (V_x^2 + V_z^2) + L_z^2 (V_x^2 + V_y^2) - 2L_x L_z V_x V_z - 2L_y V_y (L_x V_x + L_z V_z))}}$$

$$F_{Ly} = -\frac{\frac{\pi^2 r^2 \rho}{2} \sin(2\alpha) |V|^2 (L_y (V_x^2 + V_z^2) - V_y (L_x V_x + L_z V_z))}{\sqrt{V^2 (L_x^2 (V_y^2 + V_z^2) + L_y^2 (V_x^2 + V_z^2) + L_z^2 (V_x^2 + V_y^2) - 2L_x L_z V_x V_z - 2L_y V_y (L_x V_x + L_z V_z))}}$$

$$F_{Lz} = -\frac{\frac{\pi^2 r^2 \rho}{2} \sin(2\alpha) |\mathbf{V}|^2 (L_z (V_x^2 + V_y^2) - V_z (L_x V_x + L_y V_y))}{\sqrt{\mathbf{V}^2 (L_x^2 (V_y^2 + V_z^2) + L_y^2 (V_x^2 + V_z^2) + L_z^2 (V_x^2 + V_y^2) - 2L_x L_z V_x V_z - 2L_y V_y (L_x V_x + L_z V_z))}}$$

But remember, L components are represented as

$$L_x = \frac{V_x}{|\mathbf{V}|}\sin(\alpha) + \frac{V_y}{|\mathbf{V}|}\cos(\alpha)\cos(\phi) + \frac{V_z}{|\mathbf{V}|}\cos(\alpha)\sin(\phi)$$
 (2.17)

$$L_{y} = \frac{V_{y}}{|\mathbf{V}|} \frac{V_{x}}{\sqrt{V_{x}^{2} + V_{z}^{2}}} \sin(\alpha) - \frac{\sqrt{V_{x}^{2} + V_{z}^{2}}}{|\mathbf{V}|} \cos(\alpha) \cos(\phi) + \frac{V_{y}}{|\mathbf{V}|} \frac{V_{z}}{\sqrt{V_{x}^{2} + V_{z}^{2}}} \cos(\alpha) \sin(\phi)$$

$$L_z = \frac{V_z}{\sqrt{V_x^2 + V_z^2}} \sin(\alpha) - \frac{V_x}{\sqrt{V_x^2 + V_z^2}} \cos(\alpha) \sin(\phi)$$
 (2.18)

Drag

- C_D determined experimentally via video analysis of R. ciliatiflora seeds
- Lift-induced drag adds to C_D , 'penalty' associated with lift production

$$C_{D,induced} = \frac{{C_L}^2}{\pi * AR * 0.5} = 2\pi^2 (\sin \alpha)^2$$

$$F_{Dx} = |\mathbf{F_D}| \sin(\alpha) \cos(\beta) \cos(\gamma)$$

$$= -\frac{(0.301 + 2\pi^2 \sin(\alpha)^2)}{2} (\pi r^2 |\sin(\alpha)| + 2dr |\cos(\alpha)|) \rho |\mathbf{V}| \mathbf{V_x})$$

$$F_{Dy} = |\mathbf{F_D}| \sin(\alpha) \cos(\beta) \cos(\gamma)$$

$$= -\frac{(0.301 + 2\pi^2 \sin(\alpha)^2)}{2} (\pi r^2 |\sin(\alpha)| + 2dr |\cos(\alpha)|) \rho |\mathbf{V}| \mathbf{V_y})$$

$$F_{Dz} = |\mathbf{F_D}| \sin(\alpha) \cos(\beta) \cos(\gamma)$$

$$= -\frac{(0.301 + 2\pi^2 \sin(\alpha)^2)}{2} (\pi r^2 |\sin(\alpha)| + 2dr |\cos(\alpha)|) \rho |\mathbf{V}| \mathbf{V_z})$$

Magnus Effect

- Only experienced by spinning bodies
- Viscous, spin-induced deflection of wake turbulence behind bluff body

•
$$F_M = C_M \frac{1}{2} \rho |V|^2 A(\widehat{\omega} \times \widehat{V})$$

- Complex dependence of C_M on cylinder shape and material, and flow properties
- Determine C_M through video analysis of R. ciliatiflora seeds

Magnus Effect

Direction: $\vec{\omega} \times \vec{V}$

$$F_{Mx} = C_M \rho \frac{|\mathbf{V}|^2 \omega}{|\mathbf{L}|} (2rd) (L_y V_z - L_z V_y)$$

$$F_{My} = C_M \rho \frac{|\mathbf{V}|^2 \omega}{|\mathbf{L}|} (2rd) (L_z V_x - L_x V_z)$$

$$F_{Mz} = C_M \rho \frac{|\mathbf{V}|^2 \omega}{|\mathbf{L}|} (2rd) (L_x V_y - L_y V_x)$$

Torques

Lift Torque

Lift Pseudo-torque

Gravity Pseudotorque

Lift Torque

- Aerodynamic center: Point where lifting torque is independent of α
- Thin airfoil: a.c. is at 25% chord length (quarter-chord point)
- Acts in direction to increase α but remember, disc is spinning rapidly

• Torque instead induces a change in ϕ , (precession of \vec{L} about \vec{V})

• Torque instead induces a change in
$$\phi$$
, (precession of $|\tau_{lift}| = (\vec{r}_{a.c.} \times \vec{F}_{lift}) = \left(\frac{\pi r}{8}\right) \left(\frac{\pi^2}{2} r^2 \rho |V|^2 \sin 2\alpha\right) \sin \alpha$

$$= \frac{\pi^3}{16} r^3 \rho |V|^2 \sin 2\alpha \sin \theta$$

$$\frac{d\phi}{dt} = -\frac{|\boldsymbol{\tau_{lift}}|}{|\boldsymbol{L}|\sin\theta} = -\frac{\pi^3}{16|\boldsymbol{L}|}r^3\rho|\boldsymbol{V}|^2\sin2\alpha$$

Pseudo-Torques

- Fictional, think Coriolis Force result of choice of coordinate frame
- Result of defining body frame with respect to \vec{V} changes in \vec{V} changes the disc orientation <u>as viewed from the body frame</u>
- Only impact α , not ϕ

$$\frac{d\alpha}{dt} = \frac{|\mathbf{F}_{\perp}|}{m|\mathbf{V}|} = \frac{\pi^2 r^2}{2m} \rho |\mathbf{V}| \sin 2\alpha - \frac{g}{|\mathbf{V}|} \cos \beta \cos \phi$$

Equation of Motion

Translational

$$\ddot{x} = \frac{1}{m} (F_{Lx} + F_{Mx} - F_{Dx})$$

$$\ddot{y} = \frac{1}{m} (F_{Ly} + F_{My} - F_{Dy} - mg)$$

$$\ddot{z} = \frac{1}{m} (F_{Lz} + F_{Mz} - F_{Dz})$$

Rotational

$$\dot{\alpha} = g \frac{\sqrt{V_x^2 + V_z^2}}{|\mathbf{V}|^2} \cos(\phi) - \frac{\rho |\mathbf{V}| \pi^2 r^2}{2m} \sin(2\alpha)$$
$$\dot{\phi} = -\frac{\pi^3 r^3 \rho |\mathbf{V}|^2}{16|\mathbf{L}|} \sin(2\alpha)$$

System of 5 coupled nonlinear differential equations

Stability

Small angle approximation yields

$$\frac{d\alpha}{dt} = \frac{\sqrt{V_x^2 + V_z^2}}{|V|^2} g\phi - \frac{\pi^2 r^2}{m} \rho |V| \alpha$$

$$\frac{d\phi}{dt} = \frac{\pi^3}{16|L|} r^3 \rho |V|^2 \alpha$$

ullet Combine equations, solve for ϕ

$$\frac{d^2\phi}{dt^2} + 2\xi \frac{d\phi}{dt} + \omega_o^2 = 0 \quad \text{where}$$

Overdamped harmonic oscillator

Backspin - only stable orientation

Convergence $\sim 0.25 s$

$$\omega_{o} = \sqrt{\frac{\pi^{3} r^{3} \rho g}{16 L ||}} \sqrt{V_{x}^{2} + V_{z}^{2}} \approx 15 s$$

$$\xi = \frac{4 \pi r \rho |L| |V|^{2}}{m^{2} g \sqrt{V_{x}^{2} + V_{z}^{2}}} \approx 4$$

Coordinate Systems

Laboratory Frame

- Fixed, inertial reference frame
- Define disc velocity with respect to laboratory frame
- Describes disc position with respect to launch point
- Disc translational dynamics

Body Frame

- Fixed to center of disc
- Orientation defined with respect to disc's velocity vector
- Describes disc orientation with respect to airflow
- Disc angular dynamics

Results

Numerical Simulation of E.o.M.

Seed Flights – ϕ 10° increments (90°–270°)

Seed Flights – Varied ϕ & β

Parameter	Initial Value	
Spin rate ω	1500 Hz	
Launch height h	1m	

Graphic:

X: Launch Orientation ϕ

Y: Launch Angle β

Contour: Dispersal Range (m)

Lines: Range of conditions observed for R. ciliatiflora

Observations:

- Maximum dispersal range near topspin ~130°
 - Narrow ridge. Deep valley adjacent.
 - Perturbation in ϕ_o of ~20° \rightarrow failed launch
- Good dispersal range at backspin
 - Not as good as best range, but more robust
 - Consistent with experimental observations (avg observed range ~7m)

Seed Flights – Varied ϕ , β , ω

Spin rate $\omega = 1500 Hz$ Launch height h = 0.6 m

Seed Flights – Optimal ϕ given β , ω

Graphic:

X: Launch Angle (degree)

Y: Spin Rate (Hz)

Contour: Range-maximizing ϕ_o

Box: Approximate conditions observed for *R*.

ciliatiflora

Note: ~90,000 runs to generate this plot

Observations:

- Ideal ϕ_o varies by ~40 degrees in the realm of *R. ciliatiflora* launch conditions
- Recall that ~20 degrees change in ϕ_o can put you in the valley of failed launches

Conclusions

Range vs Robustness

Conclusions

- Seed dispersal ranges on the order of 12m are possible, but difficult to achieve
 - Optimal launch orientation varies by ~40 degrees in the parameter space occupied by R. ciliatiflora
 - Optimal depends on height, launch angle, spin rate, seed location in fruit
 - Proximity to danger zone failed launches of only ~3m
- Practically, backspin is more accessible, consistent range of ~7m
 - Robustness Independent of other launch parameters, far away from danger zone
 - Simplicity Obtainable with simple fruit, works for all seeds in fruit
 - Efficiency Requires less information to encode in DNA
 - Structural Fruits can grow vertically, avoid a cantilever stress

Future Work

- Parameter tuning:
 - Induced drag efficiency factor lit review and/or wind tunnel to determine e for disc
 - Magnus & drag coefficients more video analysis, wind tunnel?
- Code optimization:
 - Improve my functions –inefficient
 - Check numerical solver used by Mathematica validate results
- Other species:
 - Different seed morphologies & launch parameters *Hura crepitans*
 - Comparative evolution/biology

Acknowledgements

- Eric Cooper ('18) & Prof. Whitaker
- Phys/Astro Class of '22 / Entering '18
- PP XC/TF + Friends
- Entire Phys/Astro Department

Questions?

Unused Slides

R. Ciliatfilora Launch Mechanism

Maximum attainable rotation rate 3200 rot/sec = 2200 k rpm Observed rotation rates 1600 rot/sec = 1000 k rpm – Largest naturally occurring rotation rate (For reference, jet engine rotates 200 k rpm, small prop plane 20 k rpm)

Magnus Effect

Credit: C. Badalamenti, The Effects of Endplates on a Rotating Cylinder in Crossflow

Example Flights – Backspin $\phi = 270^o$

Example Flights – Near topspin $\phi=120^o$

Seed Flights – Varied ϕ , β , ω , h

Coordinate Systems

Laboratory Frame

Body Frame

Coordinate System Variables

Laboratory Frame

- $\vec{X} = [x, y, z]$: Position vector of disc center of mass
- $\vec{V} = \vec{X} = [\dot{x}, \dot{y}, \dot{z}]$: Velocity vector of disc center of mass
- β : Polar angle of velocity Euler angle 1 for body frame construction
- γ: Azimuthal angle of velocity Euler angle 2 for body frame construction

Body Frame

- \hat{L} : Disc angular momentum vector. Uniquely describes orientation
- θ : Polar angle of L w.r.t. \vec{V}
- ϕ : Azimuthal/Precession angle of L w.r.t. \overrightarrow{V}

• α : Complement of θ

Linking the Coordinate Systems

- Start with \vec{V} aligned with x axis. Then body frame axes [b1, b2, b3] are aligned with lab frame axes [x, y, z].
- Rotate \overrightarrow{V} about y axis by angle γ
- Rotate \vec{V} about the new b3 axis by angle β

Linking the Coordinate Systems

•
$$\mathbf{L}_{lab} = \mathbf{M}_{rot} * \mathbf{L}_{body}$$

• $\mathbf{L}_{body} = |\vec{L}| \begin{pmatrix} \cos \theta \\ -\sin \theta \cos \phi \\ -\sin \theta \sin \phi \end{pmatrix}$
• $\mathbf{M}_{rot} = \begin{pmatrix} \cos \beta \cos \gamma & -\sin \beta & -\cos \beta \sin \gamma \\ \sin \beta \cos \gamma & \cos \beta & -\sin \beta \cos \gamma \\ \sin \gamma & 0 & \cos \gamma \end{pmatrix}$

Linking the Coordinate Systems

$$L_x = \frac{V_x}{|\mathbf{V}|} \sin(\alpha) + \frac{V_y}{|\mathbf{V}|} \cos(\alpha) \cos(\phi) + \frac{V_z}{|\mathbf{V}|} \cos(\alpha) \sin(\phi)$$
 (2.17)

$$L_{y} = \frac{V_{y}}{|\mathbf{V}|} \frac{V_{x}}{\sqrt{V_{x}^{2} + V_{z}^{2}}} \sin(\alpha) - \frac{\sqrt{V_{x}^{2} + V_{z}^{2}}}{|\mathbf{V}|} \cos(\alpha) \cos(\phi) + \frac{V_{y}}{|\mathbf{V}|} \frac{V_{z}}{\sqrt{V_{x}^{2} + V_{z}^{2}}} \cos(\alpha) \sin(\phi)$$
(2.10)

$$L_z = \frac{V_z}{\sqrt{V_x^2 + V_z^2}} \sin(\alpha) - \frac{V_x}{\sqrt{V_x^2 + V_z^2}} \cos(\alpha) \sin(\phi)$$
 (2.18)