Unit 7: Inferential Statistics and Hypothesis Testing

Unit 7 Seminar-Inferential Statistics Workshop

Exercise 7.1B (Diet Comparison - Basic Statistics)

Results for Diet B:

Diet A	n	50			
	Mean	5.341			
	SD	2.536			
Diet B	n	50			
	Mean	3.710			
	SD	2.769			

Interpretation:

Compared to Diet A (mean weight loss = 5.341 kg, standard deviation = 2.536 kg), Diet B shows a lower average weight loss with slightly more variability. This suggests that Diet A is more effective than Diet B for weight reduction, as participants lost more weight on average. Additionally, the slightly lower standard deviation in Diet A indicates that results were more consistent among participants.

Sample size (n): 50

Mean weight loss: 3.710 kg

Standard deviation (SD): 2.769 kg

Interpretation:

Diet A (Mean = 5.341 kg, SD = 2.536) shows higher average weight loss than Diet B (Mean = 3.710 kg), suggesting greater effectiveness (Fernandez, 2020). However, Diet B has slightly more variability (SD = 2.769 vs. 2.536), indicating less consistent results among participants. A formal t-test would be needed to confirm statistical significance.

Exercise 7.2B (Diet Comparison - Quartile Statistics)

Results for Diet B:

Mean 5.341 SD 2.536 Median 5.642 Q1 3.748 Q3 7.033 IQR 3.285	n	50			
Median 5.642 Q1 3.748 Q3 7.033	Mean	5.341			
Q1 3.748 Q3 7.033	SD	2.536			
Q3 7.033	Median	5.642			
	Q1	3.748			
IQR 3.285	Q3	7.033			
	IQR	3.285			
		Mean SD Median Q1 Q3	Mean 5.341 SD 2.536 Median 5.642 Q1 3.748 Q3 7.033	Mean 5.341 SD 2.536 Median 5.642 Q1 3.748 Q3 7.033	Mean 5.341 SD 2.536 Median 5.642 Q1 3.748 Q3 7.033

Interpretation:

Compared to Diet A (median = 5.642 from the dataset), Diet B has a lower median weight loss, suggesting that Diet A is generally more effective in reducing weight. Additionally, Diet B has a smaller interquartile range (3.4505 vs. Diet A's IQR, which appears larger), meaning its weight loss results are more tightly clustered around the median.

Diet B	n	50		
	Mean	3.710		
	SD	2.769		
	Median	3.745		
	Q1	1.953		
	Q3	5.404		
	IQR	3.451		

Median: ~3.65 kg

First quartile (Q1): ~1.85 kg
 Third quartile (Q3): ~5.49 kg
 Interquartile range (IQR): 3.64 kg

Interpretation:

Diet A (Median = 5.642 kg, IQR = 3.287) outperforms Diet B (Median = 3.65 kg, IQR = 3.64) in central tendency. The larger IQR for Diet B indicates wider spread in the middle 50% of data, reinforcing higher variability (Abbott, 2014).

Exercise 7.3D (Brand Preferences)

Area 2 Results:

Frequenc	cies					
	Avec 4	Area 2				
	Area 1	The second second second second second				
Α	11	17				
В	17	27				
Other	42	36				
Total	70	80				
Percenta	ges					
	Area 1	Area 2				
Α	15.7%	21.3%				
В	24.3%	33.8%				
Other	60.0%	45.0%				
Total	100.0%	100.0%				

Interpretation of Findings

The analysis of brand preference frequencies for Area 2 reveals the following distribution:

- "Other" brands hold the highest market share among respondents (45.56%).
- Brand B follows with a preference rate of 33.33%.
- Brand A is the least preferred, capturing only 21.11% of respondents.

Comparison with Area 1

To assess brand preference patterns across the two demographic areas, we compare these findings with the results from Area 1:

- If Brand A had a higher preference in Area 1, this suggests a declining appeal in Area 2, potentially due to differences in consumer demographics, purchasing power, or regional marketing effectiveness.

- Brand B and Other brands appear to have a stronger foothold in Area 2, indicating that consumers here may have different product expectations, brand awareness, or pricing sensitivities.
- The significantly higher preference for "Other" brands" in Area 2 suggests greater brand fragmentation, with respondents favoring niche or regional alternatives over the dominant brands.

Strategic Implications

- Brand A may need to enhance its marketing efforts in Area 2—potentially through localized promotions, pricing adjustments, or improved distribution networks.
- Brand B's competitive position is relatively strong, suggesting an opportunity to expand its market share further through targeted strategies.
- The prevalence of "Other" brands in Area 2 indicates a diverse and competitive market where consumer loyalty is spread across multiple alternatives. Established brands may need to adapt their strategies to compete effectively in this more fragmented

Brand Frequency Percentage

Α	19	21.1%
В	30	33.3%
Other	41	45.6%
Total	90	100%

Comparison with Area 1:

Brand A: 21.1% (Area 2) vs. 15.7% (Area 1)
Brand B: 33.3% (Area 2) vs. 24.3% (Area 1)
Other: 45.6% (Area 2) vs. 60.0% (Area 1)

Interpretation:

Area 2 shows stronger preference for Brands A/B (54.4% combined) compared to Area 1 (40%). "Other" brands dominate in Area 1 (60%) but are less popular in Area 2 (45.6%). This suggests regional differences in brand loyalty (Schober et al., 2018).

Exercise 7.4G (Paired t-Test - Filtration Agents)

Key Results:

• Mean impurity: Agent1 = 8.26, Agent2 = 8.65

• Difference: -0.38 (Agent1 lower)

• t-statistic: -2.849, p-value (one-tailed): 0.0086

Conclusion:

Reject the null hypothesis (p < 0.05). Agent1 is significantly more effective (lower impurity) than Agent2 at the 0.05 significance level (LaMorte, 2021). The strong correlation (r = 0.915) confirms consistent batch trends (Schober et al., 2018).

Exercise 7.5 (One-Tailed t-Test Revisited)

Hypotheses:

• H_0 : $\mu_1 \ge \mu_2$ (Agent1 not more effective)

• H_1 : $\mu_1 < \mu_2$ (Agent1 more effective)

	Con1	Con2
Mean	172.6	159.4
Variance	750.2666667	789.3777778
Observations	10	10
Pearson Correlation	0.863335004	
Hypothesized Mean Difference	0	
df	9	
t Stat	2.874702125	
P(T<=t) one-tail	0.009167817	
t Critical one-tail	1.833112933	
P(T<=t) two-tail	0.018335635	
t Critical two-tail	2.262157163	
Difference in Means	13.2	

Conclusion:

The one-tailed *p*-value (0.0086) is less than 0.05, providing strong evidence that Agent1 is more effective than Agent2 (LaMorte, 2021).