Stochastik 1 für Studierende der Informatik Modul: MATH3-Inf

Veranstaltung: 65-832

Übungsgruppe 2 Dienstag, 14.15 - 15.00 Geom 431

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

5. Juli 2016

Punkte für die Hausübungen:

Zettel Nr. 1 (Ausgabe: 28. Juni 2016, Abgabe: 28. Juni 2016)

Hausübung 1.1

[| 10]

(3+4+3 Punkte). Die Funktion $f: \mathbb{R} \to \mathbb{R}$ besitze den Funktionsterm

$$f(x) = \frac{1}{2}e^{-|x|}, \quad x \in \mathbb{R}.$$

- a) Zeigen Sie, dass f tatsächlich eine Dichte ist. *Hinweis:* Es empfiehlt sich, den Integrationsbereich $(-\infty, \infty)$ in $(-\infty, 0)$ und $[0, \infty)$ aufzuteilen.
- b) Die Verteilung der reellen Zufallsvariable X besitze die Dichte f. Außerdem seien $A = \{X \ge 0\}$ und $B = \{-1 \le X \le 1\}$. Bestimmen Sie P(A) und P(B). Hinweise:
 - Als Zufallsvariable bildet die Funktion X von einem Grundraum Ω in die reellen Zahlen ab. Insofern ist formal vollständig $A = \{\omega \in \Omega : X(\omega) \le 0\}$. Mit den in der Stochastik üblichen Schreibweisen ist einfach $P(A) = P(X \ge 0)$ und entsprechend $P(B) = P(-1 \le X \le 1)$ zu interpretieren.
 - Zur Kontrolle sei hier auch das Ergebnis (wichtig ist der Rechenweg) $P(B) = 1 e^{-1}$ angegeben.
- c) Bestimmen Sie auch $P(A \cap B)$ und entscheiden Sie, ob A und B unabhängig sind.

Teilaufgabe a)

Eine Dichte muss immer positiv sein:

Durch das -|x| wird der Ausdruck immer negativ (oder 0). Nach Definition nimmt die natürliche Exponentialfunktion für $x=[-\infty,0]$ Werte zwischen 0 und 1 ein. Durch das $\cdot \frac{1}{2}$ wird dieses Intervall halbiert auf $[0,\frac{1}{2}]$. Somit gilt $f(x) \geq 0$

Des Weiteren muss für eine Dichte gelten: $\int_{-\infty}^{\infty} f(x) = 1$

$$\int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{\infty} \frac{1}{2} e^{-|x|}
= \int_{-\infty}^{0} \frac{1}{2} e^{-|x|} + \int_{0}^{\infty} \frac{1}{2} e^{-|x|}
= \left[-\frac{[x]}{2x} e^{-|x|} \right]_{-\infty}^{0} + \left[-\frac{[x]}{2x} e^{-|x|} \right]_{0}^{\infty}
= -\frac{[0]}{2 \cdot 0} e^{-|0|} - \lim_{a \to -\infty} -\frac{[a]}{2a} e^{-|a|} + \lim_{b \to \infty} -\frac{[b]}{2b} e^{-|b|} - \left(-\frac{[0]}{2 \cdot 0} e^{-|0|} \right)$$

//TODO: Rest von 12.1

NR:

Bilden der Stammfunktion von $\frac{1}{2}e^{-|x|}$

Teilaufgabe b)

Teilaufgabe c)

Hausübung 1.2

[| 11]

(4+7 Punkte). Die Verteilung der reellen Zufallsvariable X habe die Dichte $f: \mathbb{R} \to \mathbb{R}$, die der rellen Zufallsvariable Y habe die Dichte $g: \mathbb{R} \to \mathbb{R}$.

a) Es ist bekannt, dass

$$f(x) = \begin{cases} \gamma x, & 0 \le x \le 1, \\ \gamma(2-x) & 1 \le x \le 2, \\ 0, & sonst \end{cases}$$

mit einem Parameter $\gamma \in \mathbb{R}$ gilt. Skizzieren Sie den Graphen von f und bestimmen Sie γ so, dass f tatsächlich eine Dichte wird.

b) Es ist bekannt, dass

$$g(x) = \begin{cases} \frac{2(a-x)}{a^2} & 0 \le x \le a, \\ 0, & sonst \end{cases}$$

gilt. Zeigen Sie, dass g für alle a > 0 eine Dichte ist, und bestimmen Sie a so, dass $P(Y \le \frac{1}{2}) = \frac{3}{4}$ wird.

Teilaufgabe a)

Für Definition einer Dichte siehe Aufgabe 12.1 a)

 $\Rightarrow \gamma$ darf beliebig größergleich 0 gewählt werden.

$$\int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} \gamma x \, dx + \int_{1}^{2} \gamma (2 - x) \, dx + \int_{2}^{\infty} 0 \, dx
= 0 + \int_{0}^{1} \gamma x \, dx + \int_{1}^{2} \gamma (2 - x) \, dx + 0
= \int_{0}^{1} \gamma x \, dx + \int_{1}^{2} 2\gamma - 2x \, dx
= \left[\frac{\gamma}{2} x^{2}\right]_{0}^{1} + \left[2\gamma x - x^{2}\right]_{1}^{2}
= \frac{\gamma}{2} 1^{2} - \frac{\gamma}{2} 0^{2} + 2\gamma 2 - 2^{2} - 2\gamma 1 - 1^{2}
= 0.5\gamma - 0 + 4\gamma - 4 - 2\gamma - 1
= 2.5\gamma - 5$$

Damit f(x) eine Dichte wird muss 1 herauskommen:

$$\begin{array}{rcl} 1 & = & 2.5\gamma - 5 & \backslash +5 \\ 6 & = & 2.5\gamma & \backslash :2.5 \\ 2.4 & = & \gamma \end{array}$$

Somit ist $\gamma = 2.4$.

Für die Skizze siehe Abbildung 1

Abbildung 1: f(x) für $x \in [-1, 3]$

Teilaufgabe b)

Nach Aufgabenstellung ist $a - x \ge 0$

$$\begin{array}{lll} 0 & \leq & \frac{2(a-x)}{a^2} \\ 0 & \leq & \frac{2(0-x)}{0^2} \\ 0 & \leq & \frac{-2x}{0} \\ 0 & \leq & -\frac{2}{a^2} \end{array} \quad \begin{array}{ll} \text{Fall 1: a} = 0 \\ \text{Durch 0 darf nicht geteilt werden} \\ 0 & \leq & \frac{2(a-x)}{a^2} \end{array}$$

Da a>0 angenommen wurde, gilt $\frac{2(a-x)}{a^2}\geq 0$. Fall 3: a<0 ist laut Aufgabenstellung nicht möglich.

Es wird im weiteren Verlauf also nur noch Fall 2 betrachtet:

$$\begin{array}{lll} \int_{-\infty}^{\infty}g(x) & = & \int_{-\infty}^{0}0\;dx + \int_{0}^{a}\frac{2(a-x)}{a^{2}}\;dx + \int_{a}^{\infty}0\;dx \\ & = & 0 + \int_{0}^{a}\frac{2(a-x)}{a^{2}}\;dx + 0 \\ & = & \int_{0}^{a}\frac{2(a-x)}{a^{2}}\;dx \\ & = & \int_{0}^{a}\frac{2a^{2}}{a^{2}}(a-x)\;dx \\ & = & \frac{2}{a^{2}}\int_{0}^{a}(a-x)\;dx \\ & = & \frac{2}{a^{2}}\left(\int_{0}^{a}a\;dx - \int_{0}^{a}x\;dx\right) \\ & = & \frac{2}{a^{2}}\left(\left[a\cdot x\right]_{0}^{a} - \left[\frac{x^{2}}{2}\right]_{0}^{a}\right) & \\ & = & \frac{2}{a^{2}}\left(a\cdot a - 0\cdot a - \left(\frac{a^{2}}{2} - \frac{0^{2}}{2}\right)\right) \\ & = & \frac{2}{a^{2}}\left(a^{2} - 0 - \frac{a^{2}}{2} + 0\right) \\ & = & \frac{2}{a^{2}}\left(a^{2} - \frac{a^{2}}{2}\right) \\ & = & \frac{2}{a^{2}}\cdot a^{2} - \frac{2}{a^{2}}\cdot \frac{a^{2}}{2} \\ & = & 2 - 1 \\ & = & 1 \end{array}$$

Da sich das a rausgekürzt hat, ist g(x) eine Dichte für alle a < 0.

Aufgabenteil 2:

$$\begin{split} P(Y \leq \frac{1}{2}) &= \int_{-\infty}^{\frac{1}{2}} g(x) \; dx \\ &= \int_{-\infty}^{0} 0 \; dx + \int_{0}^{\frac{1}{2}} \frac{2(a-x)}{a^{2}} \; dx \\ &= 0 + \int_{0}^{\frac{1}{2}} \frac{2(a-x)}{a^{2}} \; dx \\ &= \int_{0}^{\frac{1}{2}} \frac{2(a-x)}{a^{2}} \; dx \\ &= \frac{2}{a^{2}} \left(\left[a \cdot x \right]_{0}^{\frac{1}{2}} - \left[\frac{x^{2}}{2} \right]_{0}^{\frac{1}{2}} \right) \quad \text{ \Für Aufleitung siehe oben} \\ &= \frac{2}{a^{2}} \left(\frac{1}{2} \cdot a - 0 \cdot a - \left(\frac{\frac{1}{2}}{2} - \frac{0^{2}}{2} \right) \right) \\ &= \frac{2}{a^{2}} \left(\frac{a}{2} - 0 - \frac{1}{8} + 0 \right) \\ &= \frac{2}{a^{2}} \left(\frac{a}{2} - \frac{1}{8} \right) \\ &= \frac{2}{a^{2}} \cdot \frac{a}{2} - \frac{2}{a^{2}} \cdot \frac{1}{8} \\ &= \frac{1}{a} - \frac{1}{4a^{2}} \end{split}$$

Da $P(Y \leq \frac{1}{2}) = \frac{3}{4}$ sein soll, wird dieser Wert eingesetzt.

$$\begin{array}{rcl} \frac{3}{4} & = & \frac{1}{a} - \frac{1}{4a^2} \\ \frac{3}{4} & = & \frac{4a}{4a^2} - \frac{1}{4a^2} \\ \frac{3}{4} & = & \frac{4a-1}{4a^2} \\ \frac{3}{4}a^2 & = & \frac{4a-1}{4} \\ \frac{3}{4}a^2 & = & a-\frac{1}{4} \\ a^2 - a + \frac{1}{4} & = & 0 \\ a^2 - \frac{4}{3}a + \frac{1}{3} & = & 0 \\ \end{array} \quad \begin{array}{rcl} & & \langle a \rangle \\ & & \langle a$$

 $P(Y \leq \frac{1}{2}) = \frac{3}{4}$ gilt für $a \in \{\frac{1}{3}, 1\}$

Hausübung 1.3

| 2]

(2 Punkte). Die Funktion $h: \mathbb{R} \to \mathbb{R}$ sei durch

$$h(x) = \begin{cases} \sin(x), & x \in [0, \frac{3}{2}\pi), \\ 0, & sonst \end{cases}$$

charakterisiert. Begründen Sie, dass h keine Dichte ist.

$$h(x) = \begin{cases} sin(x), & x \in \left[0, \frac{2}{3}\Pi\right), \\ 0 & \text{sonst.} \end{cases}$$
 siehe Abbildung 2
 Dies ist offensichtlich ≥ 0

Nach Abbildung 2 ist sin(x) für $x \in [0, \frac{2}{3}\Pi \approx 4.7)$ nicht überall ≥ 0 . Daher ist dies keine Dichte.

Abbildung 2: Die Sinusfunktion für $x \in [0, 5]$