Test report No. : 10607274H-C-R1
Page : 32 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **20dB Bandwidth**

#### 11n-40



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 33 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# **6dB Bandwidth**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H

Date 03/02/2015 03/03/2015

Temperature/ Humidity 23deg. C / 32% 22deg. C / 33% RH Engineer Tsubasa Takayama Tsubasa Takayama

Mode 11a Tx / 11n-20 Tx / 11n-40 Tx

#### 11a

| Frequency | 6dB Bandwidth | Limit |
|-----------|---------------|-------|
| [MHz]     | [MHz]         | [kHz] |
| 5745      | 16.478        | > 500 |
| 5785      | 16.346        | > 500 |
| 5825      | 16.452        | > 500 |

#### 11n-20

| Frequency [MHz] | 6dB Bandwidth<br>[MHz] | Limit<br>[kHz] |
|-----------------|------------------------|----------------|
| 5745            | 17.691                 | > 500          |
| 5785            | 17.525                 | > 500          |
| 5825            | 17.358                 | > 500          |

#### 11n-40

| Frequency [MHz] | 6dB Bandwidth<br>[MHz] | Limit<br>[kHz] |
|-----------------|------------------------|----------------|
| 5755            | 36.092                 | > 500          |
| 5795            | 36.118                 | > 500          |

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 34 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **6dB Bandwidth**

#### 11a



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 35 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **6dB Bandwidth**

## 11n-20



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 36 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **6dB Bandwidth**

## 11n-40



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 37 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

## **Maximum Conducted Output Power**

Test place Ise EMC Lab. No.11 Measurement Room

10607274H Report No. Date 03/02/2015

Temperature/ Humidity 24deg. C / 32% RH Tsubasa Takayama Engineer Mode 11a Tx / 11n-20 Tx

#### 11a

| Freq.  | P/M     | Cable | Atten. | Duty   | Antenna | Re      | sult    | Re         | sult       | Limit   | Limit      | Margin  | Margin     |
|--------|---------|-------|--------|--------|---------|---------|---------|------------|------------|---------|------------|---------|------------|
|        | Reading | Loss  | Loss   | Factor | Gain    | (Cond.) | (Cond.) | (e.i.r.p.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dBi]   | [dBm]   | [mW]    | [dBm]      | [mW]       | [dBm]   | [dBm]      | [dB]    | [dB]       |
| 5180.0 | -21.03  | 2.95  | 10.12  | 9.80   | 6.50    | 1.84    | 1.53    | 8.34       | 6.83       | 23.47   | 29.97      | 21.63   | 23.14      |
| 5220.0 | -21.33  | 2.96  | 10.12  | 9.80   | 6.50    | 1.55    | 1.43    | 8.05       | 6.39       | 23.47   | 29.97      | 21.92   | 23.58      |
| 5240.0 | -21.53  | 2.97  | 10.12  | 9.80   | 6.50    | 1.36    | 1.37    | 7.86       | 6.11       | 23.47   | 29.97      | 22.11   | 23.86      |
| 5260.0 | -21.45  | 2.97  | 10.12  | 9.80   | 6.50    | 1.44    | 1.39    | 7.94       | 6.23       | 23.43   | 29.97      | 21.99   | 23.74      |
| 5300.0 | -21.86  | 2.98  | 10.12  | 9.80   | 6.50    | 1.04    | 1.27    | 7.54       | 5.68       | 23.42   | 29.97      | 22.38   | 24.29      |
| 5320.0 | -21.73  | 2.99  | 10.12  | 9.80   | 6.50    | 1.18    | 1.31    | 7.68       | 5.86       | 23.42   | 29.97      | 22.24   | 24.11      |
| 5500.0 | -22.07  | 3.03  | 10.12  | 9.80   | 6.50    | 0.88    | 1.22    | 7.38       | 5.47       | 23.38   | 29.97      | 22.50   | 24.50      |
| 5580.0 | -21.83  | 3.04  | 10.12  | 9.80   | 6.50    | 1.13    | 1.30    | 7.63       | 5.80       | 23.40   | 29.97      | 22.27   | 24.17      |
| 5700.0 | -21.79  | 3.06  | 10.12  | 9.80   | 6.50    | 1.19    | 1.31    | 7.69       | 5.87       | 23.42   | 29.97      | 22.23   | 24.10      |
| 5745.0 | -22.18  | 3.07  | 10.12  | 9.80   | 6.50    | 0.81    | 1.20    | 7.31       | 5.38       | 29.50   | 36.00      | 28.69   | 30.62      |
| 5785.0 | -22.49  | 3.07  | 10.12  | 9.80   | 6.50    | 0.50    | 1.12    | 7.00       | 5.01       | 29.50   | 36.00      | 29.00   | 30.99      |
| 5825.0 | -23.04  | 3.08  | 10.12  | 9.80   | 6.50    | -0.04   | 0.99    | 6.46       | 4.42       | 29.50   | 36.00      | 29.54   | 31.58      |

Result(Cond.) = Reading + Cable Loss + Atten.Loss + Duty Factor
Result(e.i.r.p.) = Reading + Cable Loss + Atten.Loss + Antenna Gain + Duty Factor

Conducted limit was calcutated by following because Antenna gain is 6.5dBi;

Conducted Inmit was calcutated by following because Antenna gain is 6.5dBi;

POutLimit = PLimit - (GTx - 6)

15.407(a)(1)(iv) Limit(cond.) = 23.97dBm(250mW)

15.407(a)(1)(iv) Limit(e.ir.p) = 29.97dBm (250mW + 6dBi)

15.407(a)(2) Limit(cond.) = 23.97dBm(250mW) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

15.407(a)(2) Limit(cond.) = 29.97dBm (250mW + 6dBi) or 11 dBm + 6dBi + 10 log B, where B is the 26 dB emission bandwidth in megahertz

15.407(a)(3) Limit(cond.) = 30dBm(IW)

15.407(a)(3) Limit(cond.) = 30dBm(IW)

15.407(a)(3) Limit(e.i.r.p) = 30dBm + 6dBi (1W+6dBi)

#### 11n-20

| Freq.  | P/M     | Cable | Atten. | Duty   | Antenna | Re      | sult    | Re         | sult       | Limit   | Limit      | Margin  | Margin     |
|--------|---------|-------|--------|--------|---------|---------|---------|------------|------------|---------|------------|---------|------------|
|        | Reading | Loss  | Loss   | Factor | Gain    | (Cond.) | (Cond.) | (e.i.r.p.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dBi]   | [dBm]   | [mW]    | [dBm]      | [mW]       | [dBm]   | [dBm]      | [dB]    | [dB]       |
| 5180.0 | -22.02  | 2.95  | 10.12  | 9.57   | 6.50    | 0.62    | 1.15    | 7.12       | 5.16       | 23.47   | 29.97      | 22.85   | 24.81      |
| 5220.0 | -21.17  | 2.96  | 10.12  | 9.57   | 6.50    | 1.48    | 1.41    | 7.98       | 6.29       | 23.47   | 29.97      | 21.99   | 23.68      |
| 5240.0 | -21.40  | 2.97  | 10.12  | 9.57   | 6.50    | 1.26    | 1.34    | 7.76       | 5.97       | 23.47   | 29.97      | 22.21   | 24.00      |
| 5260.0 | -21.31  | 2.97  | 10.12  | 9.57   | 6.50    | 1.35    | 1.37    | 7.85       | 6.10       | 23.47   | 29.97      | 22.12   | 23.87      |
| 5300.0 | -21.66  | 2.98  | 10.12  | 9.57   | 6.50    | 1.01    | 1.26    | 7.51       | 5.64       | 23.46   | 29.97      | 22.45   | 24.33      |
| 5320.0 | -21.64  | 2.99  | 10.12  | 9.57   | 6.50    | 1.04    | 1.27    | 7.54       | 5.67       | 23.47   | 29.97      | 22.43   | 24.30      |
| 5500.0 | -21.74  | 3.03  | 10.12  | 9.57   | 6.50    | 0.98    | 1.25    | 7.48       | 5.60       | 23.47   | 29.97      | 22.49   | 24.37      |
| 5580.0 | -21.46  | 3.04  | 10.12  | 9.57   | 6.50    | 1.27    | 1.34    | 7.77       | 5.99       | 23.47   | 29.97      | 22.20   | 23.98      |
| 5700.0 | -21.87  | 3.06  | 10.12  | 9.57   | 6.50    | 0.88    | 1.22    | 7.38       | 5.47       | 23.47   | 29.97      | 22.59   | 24.50      |
| 5745.0 | -22.22  | 3.07  | 10.12  | 9.57   | 6.50    | 0.54    | 1.13    | 7.04       | 5.05       | 29.50   | 36.00      | 28.96   | 30.95      |
| 5785.0 | -22.69  | 3.07  | 10.12  | 9.57   | 6.50    | 0.07    | 1.02    | 6.57       | 4.54       | 29.50   | 36.00      | 29.43   | 31.46      |
| 5825.0 | -22.98  | 3.08  | 10.12  | 9.57   | 6.50    | -0.21   | 0.95    | 6.29       | 4.25       | 29.50   | 36.00      | 29.71   | 31.75      |

Result(Cond.) = Reading + Cable Loss + Atten.Loss + Duty Factor
Result(e.i.r.p.) = Reading + Cable Loss + Atten.Loss + Antenna Gain + Duty Factor

Conducted limit was calcutated by following because Antenna gain is 6.5dBi;

POutLimit = PLimit - (GTx - 6)

PolitLimit = PLimit = (G1x = 6) 15.407(a)(1) (iv) Limit(Cond.) = 23.97dBm(250mW) 15.407(a)(1) (iv) Limit(e.i.r.p) = 29.97dBm (250mW + 6dBi) 15.407(a)(2) Limit(Cond.) = 23.97dBm(250mW) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz 15.407(a)(2) Limit(e.i.r.p) = 29.97dBm (250mW + 6dBi) or 11 dBm + 6dBi + 10 log B, where B is the 26 dB emission bandwidth in megahertz

15.407(a)(3) Limit(Cond.) = 30dBm(1W) 15.407(a)(3) Limit(e.i.r.p) = 30dBm + 6dBi (1W+6dBi)

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 38 of 95 **Issued date** : June 26, 2015 : July 7, 2015 Revised date FCC ID : UJHNR213

# **Maximum Conducted Output Power**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H 03/02/2015 Date

24deg. C / 32% RH Tsubasa Takayama Temperature/ Humidity Engineer

11n-40 Tx Mode

#### 11n-40

| Freq.  | P/M     | Cable | Atten. | Duty   | Antenna | Re      | sult    | Result     |            | Limit   | Limit      | Margin  | Margin     |
|--------|---------|-------|--------|--------|---------|---------|---------|------------|------------|---------|------------|---------|------------|
|        | Reading | Loss  | Loss   | Factor | Gain    | (Cond.) | (Cond.) | (e.i.r.p.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) | (Cond.) | (e.i.r.p.) |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dBi]   | [dBm]   | [mW]    | [dBm]      | [mW]       | [dBm]   | [dBm]      | [dB]    | [dB]       |
| 5190.0 | -23.76  | 2.96  | 10.12  | 9.66   | 6.50    | -1.02   | 0.79    | 5.48       | 3.53       | 23.47   | 29.97      | 24.49   | 24.49      |
| 5230.0 | -24.71  | 2.97  | 10.12  | 9.66   | 6.50    | -1.96   | 0.64    | 4.54       | 2.84       | 23.47   | 29.97      | 25.43   | 25.43      |
| 5270.0 | -24.87  | 2.98  | 10.12  | 9.66   | 6.50    | -2.11   | 0.62    | 4.39       | 2.75       | 23.47   | 29.97      | 25.58   | 25.58      |
| 5310.0 | -25.49  | 2.99  | 10.12  | 9.66   | 6.50    | -2.72   | 0.53    | 3.78       | 2.39       | 23.47   | 29.97      | 26.19   | 26.19      |
| 5510.0 | -25.41  | 3.03  | 10.12  | 9.66   | 6.50    | -2.60   | 0.55    | 3.90       | 2.45       | 23.47   | 29.97      | 26.07   | 26.07      |
| 5590.0 | -25.26  | 3.04  | 10.12  | 9.66   | 6.50    | -2.44   | 0.57    | 4.06       | 2.55       | 23.47   | 29.97      | 25.91   | 25.91      |
| 5670.0 | -25.77  | 3.05  | 10.12  | 9.66   | 6.50    | -2.94   | 0.51    | 3.56       | 2.27       | 23.47   | 29.97      | 26.41   | 26.41      |
| 5755.0 | -25.28  | 3.07  | 10.12  | 9.66   | 6.50    | -2.43   | 0.57    | 4.07       | 2.55       | 29.50   | 36.00      | 31.93   | 31.93      |
| 5795 0 | -25 80  | 3.07  | 10.12  | 9 66   | 6.50    | -2.95   | 0.51    | 3.55       | 2.26       | 29 50   | 36.00      | 32.45   | 32 45      |

Result(co.i.r.p.) = Reading + Cable Loss + Atten.Loss + Duty Factor
Result(e.i.r.p.) = Reading + Cable Loss + Atten.Loss + Antenna Gain + Duty Factor
Conducted limit was calcutated by following because Antenna gain is 6.5dBi;

Conducted limit was calcutated by following because Antenna gain is 6.5dBi;

POutLimit = PLimit — (GTx — 6)

15.407(a)(1)(iv) Limit(Cond.) = 23.97dBm(250mW)

15.407(a)(1)(iv) Limit(e.ir.p) = 29.97dBm (250mW + 6dBi)

15.407(a)(2) Limit(cond.) = 23.97dBm(250mW) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

15.407(a)(2) Limit(e.ir.p) = 29.97dBm (250mW + 6dBi) or 11 dBm + 6dBi + 10 log B, where B is the 26 dB emission bandwidth in megahertz

15.407(a)(3) Limit(cond.) = 30dBm(1W)

15.407(a)(3) Limit(e.ir.p) = 30dBm + 6dBi (1W+6dBi)

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 39 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# <u>Maximum Conducted Output Power & Maximum Power Spectral Density</u> (Reference data)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H
Date 03/02/2015
Temperature/ Humidity 24deg. C / 32% RH
Engineer Tsubasa Takayama

Mode 11a Tx

#### 5180MHz

| Data Rate | Reading | Duty<br>Factor | Result | Remark |
|-----------|---------|----------------|--------|--------|
| [Mbps]    | [dBm]   | [dB]           | [dBm]  |        |
| 6         | -22.06  | 9.56           | -12.50 |        |
| 9         | -22.13  | 9.83           | -12.30 |        |
| 12        | -22.10  | 9.64           | -12.46 |        |
| 18        | -22.08  | 9.76           | -12.32 |        |
| 24        | -21.10  | 9.32           | -11.78 |        |
| 36        | -21.66  | 9.82           | -11.84 |        |
| 48        | -21.13  | 9.80           | -11.33 |        |
| 54        | -21.03  | 9.80           | -11.23 | *      |

<sup>\*</sup> Worst Rate

All comparison were carried out on same frequency and measurement factors.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 40 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# <u>Maximum Conducted Output Power & Maximum Power Spectral Density</u> (Reference data)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H
Date 03/02/2015
Temperature/ Humidity 24deg. C / 32% RH
Engineer Tsubasa Takayama

Mode 11n-20 Tx

#### 5180MHz

| Data Rate | Reading | Duty<br>Factor | Result | Remark |
|-----------|---------|----------------|--------|--------|
| [MCS]     | [dBm]   | [dB]           | [dBm]  |        |
| 0         | -22.36  | 9.87           | -12.49 |        |
| 1         | -22.47  | 9.72           | -12.75 |        |
| 2         | -22.37  | 9.74           | -12.63 |        |
| 3         | -22.32  | 9.74           | -12.58 |        |
| 4         | -22.24  | 9.54           | -12.70 |        |
| 5         | -22.11  | 9.54           | -12.54 |        |
| 6         | -22.04  | 9.54           | -12.50 |        |
| 7         | -22.02  | 9.57           | -12.45 | *      |

<sup>\*</sup> Worst Rate

All comparison were carried out on same frequency and measurement factors.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 41 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# <u>Maximum Conducted Output Power & Maximum Power Spectral Density</u> (Reference data)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H
Date 03/02/2015
Temperature/ Humidity 24deg. C / 32% RH
Engineer Tsubasa Takayama

Mode 11n-40 Tx

#### 5190MHz

| Data Rate | Reading | Duty<br>Factor | Result | Remark |
|-----------|---------|----------------|--------|--------|
| [MCS]     | [dBm]   | [dB]           | [dBm]  |        |
| 0         | -24.02  | 9.40           | -14.62 |        |
| 1         | -23.96  | 9.40           | -14.29 |        |
| 2         | -23.99  | 9.40           | -14.59 |        |
| 3         | -23.84  | 9.67           | -14.17 |        |
| 4         | -23.86  | 9.69           | -14.17 |        |
| 5         | -23.89  | 9.68           | -14.21 |        |
| 6         | -23.77  | 9.66           | -14.11 |        |
| 7         | -23.76  | 9.66           | -14.10 | *      |

<sup>\*</sup> Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 42 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

## **Maximum Power Spectral Density**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H Date 03/02/2015

Temperature/ Humidity 24deg. C / 32% RH Tsubasa Takayama Engineer 11a Tx / 11n-20 Tx Mode

#### 11a

| Freq.  | Reading | Cable | Atten. | Duty   | Correction | Antenna | Result       | Limit        | Margin |
|--------|---------|-------|--------|--------|------------|---------|--------------|--------------|--------|
|        |         | Loss  | Loss   | factor | factor     | Gain    | [dBm/MHz]    | [dBm/MHz]    |        |
|        |         |       |        |        |            |         | or           | or           |        |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dB]       | [dBi]   | [dBm/500kHz] | [dBm/500kHz] | [dB]   |
| 5180.0 | -29.55  | 2.95  | 10.12  | 9.80   | 0.00       | 6.50    | -6.68        | 10.50        | 17.18  |
| 5220.0 | -31.56  | 2.96  | 10.12  | 9.80   | 0.00       | 6.50    | -8.68        | 10.50        | 19.18  |
| 5240.0 | -31.65  | 2.97  | 10.12  | 9.80   | 0.00       | 6.50    | -8.76        | 10.50        | 19.26  |
| 5260.0 | -31.06  | 2.97  | 10.12  | 9.80   | 0.00       | 6.50    | -8.17        | 10.50        | 18.67  |
| 5300.0 | -30.85  | 2.98  | 10.12  | 9.80   | 0.00       | 6.50    | -7.94        | 10.50        | 18.44  |
| 5320.0 | -31.74  | 2.99  | 10.12  | 9.80   | 0.00       | 6.50    | -8.83        | 10.50        | 19.33  |
| 5500.0 | -33.50  | 3.03  | 10.12  | 9.80   | 0.00       | 6.50    | -10.55       | 10.50        | 21.05  |
| 5580.0 | -31.74  | 3.04  | 10.12  | 9.80   | 0.00       | 6.50    | -8.77        | 10.50        | 19.27  |
| 5700.0 | -32.42  | 3.06  | 10.12  | 9.80   | 0.00       | 6.50    | -9.44        | 10.50        | 19.94  |
| 5745.0 | -36.48  | 3.07  | 10.12  | 9.80   | 0.27       | 6.50    | -13.23       | 29.50        | 42.73  |
| 5785.0 | -36.99  | 3.07  | 10.12  | 9.80   | 0.27       | 6.50    | -13.73       | 29.50        | 43.23  |
| 5825.0 | -36.21  | 3.08  | 10.12  | 9.80   | 0.27       | 6.50    | -12.94       | 29.50        | 42.44  |

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correction factor Limit was calcutated by following because Antenna gain is 6.5dBi;

POutLimit = PLimit - (GTx -6) 15.407(a)(1)(iv) Limit = 11.00dBm in any 1 megahertz 15.407(a)(2) Limit = 11.00dBm in any 1 megahertz 15.407(a)(3) Limit(Cond.) = 30dBm in any 500-kHz band

11n-20

| Freq.  | Reading | Cable | Atten. | Duty   | Correction | Antenna | Result       | Limit        | Margin |
|--------|---------|-------|--------|--------|------------|---------|--------------|--------------|--------|
|        |         | Loss  | Loss   | factor | factor     | Gain    | [dBm/MHz]    | [dBm/MHz]    |        |
|        |         |       |        |        |            |         | or           | or           |        |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dB]       | [dBi]   | [dBm/500kHz] | [dBm/500kHz] | [dB]   |
| 5180.0 | -31.64  | 2.95  | 10.12  | 9.57   | 0.00       | 6.50    | -9.00        | 10.50        | 19.50  |
| 5220.0 | -33.30  | 2.96  | 10.12  | 9.57   | 0.00       | 6.50    | -10.65       | 10.50        | 21.15  |
| 5240.0 | -32.96  | 2.97  | 10.12  | 9.57   | 0.00       | 6.50    | -10.30       | 10.50        | 20.80  |
| 5260.0 | -32.46  | 2.97  | 10.12  | 9.57   | 0.00       | 6.50    | -9.80        | 10.50        | 20.30  |
| 5300.0 | -32.43  | 2.98  | 10.12  | 9.57   | 0.00       | 6.50    | -9.76        | 10.50        | 20.26  |
| 5320.0 | -33.39  | 2.99  | 10.12  | 9.57   | 0.00       | 6.50    | -10.72       | 10.50        | 21.22  |
| 5500.0 | -33.16  | 3.03  | 10.12  | 9.57   | 0.00       | 6.50    | -10.44       | 10.50        | 20.94  |
| 5580.0 | -31.91  | 3.04  | 10.12  | 9.57   | 0.00       | 6.50    | -9.18        | 10.50        | 19.68  |
| 5700.0 | -33.03  | 3.06  | 10.12  | 9.57   | 0.00       | 6.50    | -10.28       | 10.50        | 20.78  |
| 5745.0 | -35.27  | 3.07  | 10.12  | 9.57   | 0.27       | 6.50    | -12.24       | 29.50        | 41.74  |
| 5785.0 | -36.51  | 3.07  | 10.12  | 9.57   | 0.27       | 6.50    | -13.48       | 29.50        | 42.98  |
| 5825.0 | -38.26  | 3.08  | 10.12  | 9.57   | 0.27       | 6.50    | -15.22       | 29.50        | 44.72  |

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correction factor

PoutLimit was calcutated by following because Antenna gain is 6.5dBi; PoutLimit = PLimit – (GTx – 6)

15.407(a)(1)(iv) Limit = 11.00dBm in any 1 megahertz

15.407(a)(2) Limit = = 11.00dBm in any 1 megahertz

15.407(a)(3) Limit(Cond.) = 30dBm in any 500-kHz band

\*\*PDW is set to be 470kHz for 5.755.5850GHz, po 1010c/500kHz/470kHz)

\*RBW is set to be 470 kHz for 5.725 - 5.850 GHz, so  $10 \log(500 \text{kHz}/470 \text{kHz})$  was added to the test result as correction factor.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>RBW is set to be 470kHz for 5.725-5.850GHz, so 10log(500kHz/470kHz) was added to the test result as correction factor.

: 10607274H-C-R1 Test report No. Page : 43 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

# **Maximum Power Spectral Density**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H Date 03/02/2015

Temperature/ Humidity 24deg. C / 32% RH Tsubasa Takayama Engineer Mode 11n-40 Tx

#### 11n-40

| Freq.  | Reading | Cable | Atten. | Duty   | Correction | Antenna | Result       | Limit        | Margin |
|--------|---------|-------|--------|--------|------------|---------|--------------|--------------|--------|
| •      |         | Loss  | Loss   | factor | factor     | Gain    | [dBm/MHz]    | [dBm/MHz]    |        |
|        |         |       |        |        |            |         | or           | or           |        |
| [MHz]  | [dBm]   | [dB]  | [dB]   | [dB]   | [dB]       | [dBi]   | [dBm/500kHz] | [dBm/500kHz] | [dB]   |
| 5190.0 | -36.39  | 2.96  | 10.12  | 9.66   | 0.00       | 6.50    | -13.65       | 10.50        | 24.15  |
| 5230.0 | -36.97  | 2.97  | 10.12  | 9.66   | 0.00       | 6.50    | -14.22       | 10.50        | 24.72  |
| 5270.0 | -37.23  | 2.98  | 10.12  | 9.66   | 0.00       | 6.50    | -14.47       | 10.50        | 24.97  |
| 5310.0 | -37.61  | 2.99  | 10.12  | 9.66   | 0.00       | 6.50    | -14.84       | 10.50        | 25.34  |
| 5510.0 | -37.89  | 3.03  | 10.12  | 9.66   | 0.00       | 6.50    | -15.08       | 10.50        | 25.58  |
| 5590.0 | -37.02  | 3.04  | 10.12  | 9.66   | 0.00       | 6.50    | -14.20       | 10.50        | 24.70  |
| 5670.0 | -36.42  | 3.05  | 10.12  | 9.66   | 0.00       | 6.50    | -13.59       | 10.50        | 24.09  |
| 5755.0 | -40.16  | 3.07  | 10.12  | 9.66   | 0.27       | 6.50    | -17.04       | 29.50        | 46.54  |
| 5795.0 | -40.69  | 3.07  | 10.12  | 9.66   | 0.27       | 6.50    | -17.57       | 29.50        | 47.07  |

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator + Duty factor + Correction factor

Limit was calcutated by following because Antenna gain is 6.5dBi;

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

POutLimit = PLimit—(GTx—6)

15.407(a)(1)(iv) Limit = 11.00dBm in any 1 megahertz

15.407(a)(2) Limit = = 11.00dBm in any 1 megahertz

15.407(a)(3) Limit(Cond.) = 30dBm in any 500-kHz band

\*RBW is set to be 470kHz for 5.725-5.850GHz, so 10log(500kHz/470kHz) was added to the test result as correction factor.

: 10607274H-C-R1 Test report No. Page : 44 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

## **Maximum Power Spectral Density**

#### 11a



# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 45 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Maximum Power Spectral Density**

#### 11a



# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 46 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# **Maximum Power Spectral Density**

## 11n-20



# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 47 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# **Maximum Power Spectral Density**

## 11n-20



# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 48 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Maximum Power Spectral Density**

## 11n-40



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 49 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Maximum Power Spectral Density**

## 11n-40



# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 50 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/09/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 34% RH Engineer Takafumi Noguchi Tomoki Matsui Tsubasa Takayama

(1-10GHz) (10-26.5GHz) (Below 1GHz)

Mode 11a Tx 5180MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 75.897    | QP       | 36.0    | 6.3      | 7.7  | 32.1 | 17.9     | 40.0     | 22.1   | Outside             |             |
| Hori     | 146.253   | QP       | 34.1    | 14.7     | 8.6  | 32.1 | 25.3     | 43.5     | 18.2   | Outside             |             |
| Hori     | 243.749   | QP       | 35.5    | 17.1     | 9.4  | 32.0 | 30.0     | 46.0     | 16.0   | Inside              |             |
| Hori     | 341.243   | QP       | 34.0    | 16.0     | 10.2 | 31.9 | 28.3     | 46.0     | 17.7   | Outside             |             |
| Hori     | 374.976   | QP       | 33.3    | 16.9     | 10.4 | 31.9 | 28.7     | 46.0     | 17.3   | Outside             |             |
| Hori     | 627.167   | QP       | 33.4    | 19.7     | 12.0 | 32.0 | 33.1     | 46.0     | 12.9   | Outside             |             |
| Hori     | 983.016   | QP       | 41.0    | 23.3     | 13.6 | 30.5 | 47.4     | 53.9     | 6.5    | Inside              |             |
| Hori     | 1249.977  | PK       | 57.1    | 24.7     | 1.8  | 34.6 | 49.0     | 68.2     | 19.2   | Outside             |             |
| Hori     | 1844.445  | PK       | 64.5    | 25.9     | 2.2  | 33.2 | 59.4     | 68.2     | 8.8    | Outside             |             |
| Hori     | 2499.933  | PK       | 56.4    | 26.9     | 2.5  | 32.7 | 53.1     | 73.9     | 20.8   | Inside              |             |
| Hori     | 3132.345  | PK       | 50.4    | 27.5     | 2.8  | 32.4 | 48.3     | 68.2     | 19.9   | Outside             |             |
| Hori     | 5150.000  | PK       | 41.3    | 31.3     | 3.7  | 31.7 | 44.6     | 68.2     | 23.6   | Bandedge            |             |
| Hori     | 8197.121  | PK       | 48.8    | 37.1     | 4.8  | 32.9 | 57.8     | 73.9     | 16.1   | Inside              |             |
| Hori     | 10360.000 | PK       | 41.3    | 38.8     | -2.1 | 33.6 | 44.4     | 68.2     | 23.8   | Outside             | Floor Noise |
| Hori     | 15540.000 | PK       | 43.5    | 39.1     | -0.9 | 32.1 | 49.6     | 73.9     | 24.3   | Inside              | Floor Noise |
| Hori     | 2499.933  | AV       | 54.5    | 26.9     | 2.5  | 32.7 | 51.2     | 53.9     | 2.7    | Inside              |             |
| Hori     | 5150.000  | AV       | 31.6    | 31.3     | 3.7  | 31.7 | 34.9     | 53.9     | 19.0   | Bandedge            |             |
| Hori     | 8197.121  | AV       | 38.6    | 37.1     | 4.8  | 32.9 | 47.6     | 53.9     | 6.3    | Inside              |             |
| Hori     | 15540.000 | AV       | 35.0    | 39.1     | -0.9 | 32.1 | 41.1     | 53.9     | 12.8   | Inside              | Floor Noise |
| Vert     | 79.634    | QP       | 40.0    | 6.3      | 7.8  | 32.1 | 22.0     | 40.0     | 18.0   | Outside             |             |
| Vert     | 108.000   | QP       | 35.2    | 11.3     | 8.1  | 32.1 | 22.5     | 43.5     | 21.0   | Inside              |             |
| Vert     | 146.253   | QP       | 36.4    | 14.7     | 8.6  | 32.1 | 27.6     | 43.5     | 15.9   | Outside             |             |
| Vert     | 243.749   | QP       | 36.0    | 17.1     | 9.4  | 32.0 | 30.5     | 46.0     | 15.5   | Inside              |             |
| Vert     | 276.000   | QP       | 33.0    | 18.6     | 9.8  | 31.9 | 29.5     | 46.0     | 16.5   | Inside              |             |
| Vert     | 341.263   | QP       | 33.0    | 16.0     | 10.2 | 31.9 | 27.3     | 46.0     | 18.7   | Outside             |             |
| Vert     | 375.000   | QP       | 32.1    | 16.9     | 10.4 | 31.9 | 27.5     | 46.0     | 18.5   | Outside             |             |
| Vert     | 627.177   | QP       | 31.0    | 19.7     | 12.0 | 32.0 | 30.7     | 46.0     | 15.3   | Outside             |             |
| Vert     | 719.949   | QP       | 31.3    | 20.8     | 12.4 | 31.9 | 32.6     | 46.0     | 13.4   | Outside             |             |
| Vert     | 983.016   | QP       | 38.0    | 23.3     | 13.6 | 30.5 | 44.4     | 53.9     | 9.5    | Inside              |             |
| Vert     | 1249.868  | PK       | 56.6    | 24.7     | 1.8  | 34.6 | 48.5     | 68.2     | 19.7   | Outside             |             |
| Vert     | 1844.330  | PK       | 63.3    | 25.9     | 2.2  | 33.2 | 58.2     | 68.2     | 10.0   | Outside             |             |
| Vert     | 2499.933  | PK       | 56.7    | 26.9     | 2.5  | 32.7 | 53.4     | 73.9     | 20.5   | Inside              |             |
| Vert     | 3132.322  | PK       | 52.7    | 27.5     | 2.8  | 32.4 | 50.6     | 68.2     | 17.6   | Outside             |             |
| Vert     | 5150.000  | PK       | 42.2    | 31.3     | 3.7  | 31.7 | 45.5     | 68.2     | 22.7   | Bandedge            |             |
| Vert     | 8195.911  | PK       | 47.7    | 37.1     | 4.8  | 32.9 | 56.7     | 73.9     | 17.2   | Inside              |             |
| Vert     | 10360.000 | PK       | 42.4    | 38.8     | -2.1 | 33.6 | 45.5     | 68.2     | 22.7   | Outside             | Floor Noise |
| Vert     | 15540.000 | PK       | 43.5    | 39.1     | -0.9 | 32.1 | 49.6     | 73.9     | 24.3   | Inside              | Floor Noise |
| Vert     | 2499.933  | AV       | 54.8    | 26.9     | 2.5  | 32.7 | 51.5     | 53.9     | 2.4    | Inside              |             |
| Vert     | 5150.000  | AV       | 32.0    | 31.3     | 3.7  | 31.7 | 35.3     | 53.9     | 18.6   | Bandedge            |             |
| Vert     | 8195.911  | AV       | 37.1    | 37.1     | 4.8  | 32.9 | 46.1     | 53.9     | 7.8    | Inside              |             |
| Vert     | 15540.000 | AV       | 34.9    | 39.1     | -0.9 | 32.1 | 41.0     | 53.9     | 12.9   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 51 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/09/2015

Temperature/ Humidity
Engineer

23deg. C / 40% RH
Takafumi Noguchi
(1-10GHz)

23deg. C / 39% RH
Tomoki Matsui
Tomoki Matsui
Tsubasa Takayama
(10-26.5GHz)
(Below 1GHz)

Mode 11a Tx 5180MHz





# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 52 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5260MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.977  | PK       | 57.4    | 24.7     | 1.8  | 34.6 | 49.3     | 68.2     | 18.9   | Outside             |             |
| Hori     | 1844.522  | PK       | 64.8    | 25.9     | 2.2  | 33.2 | 59.7     | 68.2     | 8.5    | Outside             |             |
| Hori     | 2499.815  | PK       | 56.3    | 26.9     | 2.5  | 32.7 | 53.0     | 73.9     | 20.9   | Inside              |             |
| Hori     | 3132.242  | PK       | 50.7    | 27.5     | 2.8  | 32.4 | 48.6     | 68.2     | 19.6   | Outside             |             |
| Hori     | 8195.720  | PK       | 48.6    | 37.1     | 4.8  | 32.9 | 57.6     | 73.9     | 16.3   | Inside              |             |
| Hori     | 10480.000 | PK       | 42.7    | 38.8     | -2.1 | 33.6 | 45.8     | 68.2     | 22.4   | Outside             | Floor Noise |
| Hori     | 15720.000 | PK       | 43.6    | 38.5     | -0.9 | 32.2 | 49.0     | 73.9     | 24.9   | Inside              | Floor Noise |
| Hori     | 2499.815  | AV       | 54.4    | 26.9     | 2.5  | 32.7 | 51.1     | 53.9     | 2.8    | Inside              |             |
| Hori     | 8195.720  | AV       | 37.8    | 37.1     | 4.8  | 32.9 | 46.8     | 53.9     | 7.1    | Inside              |             |
| Hori     | 15720.000 | AV       | 35.0    | 38.5     | -0.9 | 32.2 | 40.4     | 53.9     | 13.5   | Inside              | Floor Noise |
| Vert     | 1249.931  | PK       | 56.3    | 24.7     | 1.8  | 34.6 | 48.2     | 68.2     | 20.0   | Outside             |             |
| Vert     | 1844.565  | PK       | 67.4    | 25.9     | 2.2  | 33.2 | 62.3     | 68.2     | 5.9    | Outside             |             |
| Vert     | 2499.735  | PK       | 56.6    | 26.9     | 2.5  | 32.7 | 53.3     | 73.9     | 20.6   | Inside              |             |
| Vert     | 3131.197  | PK       | 52.4    | 27.5     | 2.8  | 32.4 | 50.3     | 68.2     | 17.9   | Outside             |             |
| Vert     | 8200.070  | PK       | 47.2    | 37.1     | 4.8  | 32.9 | 56.2     | 73.9     | 17.7   | Inside              |             |
| Vert     | 10480.000 | PK       | 41.8    | 38.8     | -2.1 | 33.6 | 44.9     | 68.2     | 23.3   | Outside             | Floor Noise |
| Vert     | 15720.000 | PK       | 43.6    | 38.5     | -0.9 | 32.2 | 49.0     | 73.9     | 24.9   | Inside              | Floor Noise |
| Vert     | 2499.735  | AV       | 54.7    | 26.9     | 2.5  | 32.7 | 51.4     | 53.9     | 2.5    | Inside              |             |
| Vert     | 8200.070  | AV       | 36.5    | 37.1     | 4.8  | 32.9 | 45.5     | 53.9     | 8.4    | Inside              |             |
| Vert     | 15720.000 | AV       | 34.7    | 38.5     | -0.9 | 32.2 | 40.1     | 53.9     | 13.8   | Inside              | Floor Noise |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 53 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5320MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.920  | PK       | 57.5    | 24.7     | 1.8  | 34.6 | 49.4     | 68.2     | 18.8   | Outside             |             |
| Hori     | 1844.315  | PK       | 65.8    | 25.9     | 2.2  | 33.2 | 60.7     | 68.2     | 7.5    | Outside             |             |
| Hori     | 2499.778  | PK       | 56.4    | 26.9     | 2.5  | 32.7 | 53.1     | 73.9     | 20.8   | Inside              |             |
| Hori     | 3132.224  | PK       | 50.9    | 27.5     | 2.8  | 32.4 | 48.8     | 68.2     | 19.4   | Outside             |             |
| Hori     | 5350.000  | PK       | 43.3    | 31.6     | 3.8  | 31.7 | 47.0     | 68.2     | 21.2   | Bandedge            |             |
| Hori     | 8196.231  | PK       | 48.5    | 37.1     | 4.8  | 32.9 | 57.5     | 73.9     | 16.4   | Inside              |             |
| Hori     | 10640.000 | PK       | 43.1    | 38.7     | -2.1 | 33.7 | 46.0     | 73.9     | 27.9   | Inside              | Floor Noise |
| Hori     | 15960.000 | PK       | 43.2    | 37.8     | -0.8 | 32.3 | 47.9     | 73.9     | 26.0   | Inside              | Floor Noise |
| Hori     | 2499.778  | AV       | 54.5    | 26.9     | 2.5  | 32.7 | 51.2     | 53.9     | 2.7    | Inside              |             |
| Hori     | 5350.000  | AV       | 32.6    | 31.6     | 3.8  | 31.7 | 36.3     | 53.9     | 17.6   | Bandedge            |             |
| Hori     | 8196.231  | AV       | 38.1    | 37.1     | 4.8  | 32.9 | 47.1     | 53.9     | 6.8    | Inside              |             |
| Hori     | 10640.000 | AV       | 33.9    | 38.7     | -2.1 | 33.7 | 36.8     | 53.9     | 17.1   | Inside              | Floor Noise |
| Hori     | 15960.000 | AV       | 34.7    | 37.8     | -0.8 | 32.3 | 39.4     | 53.9     | 14.5   | Inside              | Floor Noise |
| Vert     | 1249.886  | PK       | 56.7    | 24.7     | 1.8  | 34.6 | 48.6     | 68.2     | 19.6   | Outside             |             |
| Vert     | 1844.458  | PK       | 67.7    | 25.9     | 2.2  | 33.2 | 62.6     | 68.2     | 5.6    | Outside             |             |
| Vert     | 2499.778  | PK       | 56.4    | 26.9     | 2.5  | 32.7 | 53.1     | 73.9     | 20.8   | Inside              |             |
| Vert     | 3131.197  | PK       | 52.1    | 27.5     | 2.8  | 32.4 | 50.0     | 68.2     | 18.2   | Outside             |             |
| Vert     | 5350.000  | PK       | 47.3    | 31.6     | 3.8  | 31.7 | 51.0     | 68.2     | 17.2   | Bandedge            |             |
| Vert     | 8194.641  | PK       | 47.0    | 37.1     | 4.8  | 32.9 | 56.0     | 73.9     | 17.9   | Inside              |             |
| Vert     | 10640.000 | PK       | 42.4    | 38.7     | -2.1 | 33.7 | 45.3     | 73.9     | 28.6   | Inside              | Floor Noise |
| Vert     | 15960.000 | PK       | 44.1    | 37.8     | -0.8 | 32.3 | 48.8     | 73.9     | 25.1   | Inside              | Floor Noise |
| Vert     | 2499.778  | AV       | 54.6    | 26.9     | 2.5  | 32.7 | 51.3     | 53.9     | 2.6    | Inside              |             |
| Vert     | 5350.000  | AV       | 34.0    | 31.6     | 3.8  | 31.7 | 37.7     | 53.9     | 16.2   | Bandedge            |             |
| Vert     | 8194.641  | AV       | 36.6    | 37.1     | 4.8  | 32.9 | 45.6     | 53.9     | 8.3    | Inside              |             |
| Vert     | 10640.000 | AV       | 33.9    | 38.7     | -2.1 | 33.7 | 36.8     | 53.9     | 17.1   | Inside              | Floor Noise |
| Vert     | 15960.000 | AV       | 34.6    | 37.8     | -0.8 | 32.3 | 39.3     | 53.9     | 14.6   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

: 10607274H-C-R1 Test report No. Page : 54 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer (1-10GHz)

Mode 11n-20 Tx 5180MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5150.000  | PK       | 44.1    | 31.3     | 3.7  | 31.7 | 47.4     | 68.2     | 20.8   | Bandedge            |        |
| Hori     | 5150.000  | AV       | 32.2    | 31.3     | 3.7  | 31.7 | 35.5     | 53.9     | 18.4   | Bandedge            |        |
| Vert     | 5150.000  | PK       | 44.8    | 31.3     | 3.7  | 31.7 | 48.1     | 68.2     | 20.1   | Bandedge            |        |
| Vert     | 5150.000  | AV       | 32.5    | 31.3     | 3.7  | 31.7 | 35.8     | 53.9     | 18.1   | Bandedge            |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

: 10607274H-C-R1 Test report No. Page : 55 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

Temperature/ Humidity 23deg. C / 40% RH Engineer Takafumi Noguchi (1-10GHz)

Mode 11n-20 Tx 5320MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5350.000  | PK       | 44.4    | 31.6     | 3.8  | 31.7 | 48.1     | 68.2     | 20.1   | Bandedge            |        |
| Hori     | 5350.000  | AV       | 32.6    | 31.6     | 3.8  | 31.7 | 36.3     | 53.9     | 17.6   | Bandedge            |        |
| Vert     | 5350.000  | PK       | 46.5    | 31.6     | 3.8  | 31.7 | 50.2     | 68.2     | 18.0   | Bandedge            |        |
| Vert     | 5350.000  | AV       | 33.9    | 31.6     | 3.8  | 31.7 | 37.6     | 53.9     | 16.3   | Bandedge            |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

Test report No. : 10607274H-C-R1
Page : 56 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5500MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.963  | PK       | 57.6    | 24.7     | 1.8  | 34.6 | 49.5     | 68.2     | 18.7   | Outside             |             |
| Hori     | 1844.440  | PK       | 65.2    | 25.9     | 2.2  | 33.2 | 60.1     | 68.2     | 8.1    | Outside             |             |
| Hori     | 2499.798  | PK       | 56.1    | 26.9     | 2.5  | 32.7 | 52.8     | 73.9     | 21.1   | Inside              |             |
| Hori     | 3132.378  | PK       | 51.0    | 27.5     | 2.8  | 32.4 | 48.9     | 68.2     | 19.3   | Outside             |             |
| Hori     | 5470.000  | PK       | 44.5    | 31.8     | 3.8  | 31.8 | 48.3     | 73.9     | 25.6   | Bandedge            |             |
| Hori     | 8191.681  | PK       | 48.6    | 37.1     | 4.8  | 32.9 | 57.6     | 73.9     | 16.3   | Inside              |             |
| Hori     | 11000.000 | PK       | 41.9    | 38.8     | -2.0 | 33.7 | 45.0     | 73.9     | 28.9   | Inside              | Floor Noise |
| Hori     | 16500.000 | PK       | 43.8    | 38.9     | -0.5 | 32.2 | 50.0     | 68.2     | 18.2   | Outside             | Floor Noise |
| Hori     | 2499.798  | AV       | 54.0    | 26.9     | 2.5  | 32.7 | 50.7     | 53.9     | 3.2    | Inside              |             |
| Hori     | 5470.000  | AV       | 32.1    | 31.8     | 3.8  | 31.8 | 35.9     | 53.9     | 18.0   | Bandedge            |             |
| Hori     | 8191.681  | AV       | 38.3    | 37.1     | 4.8  | 32.9 | 47.3     | 53.9     | 6.6    | Inside              |             |
| Hori     | 11000.000 | AV       | 33.5    | 38.8     | -2.0 | 33.7 | 36.6     | 53.9     | 17.3   | Inside              | Floor Noise |
| Vert     | 1249.975  | PK       | 56.3    | 24.7     | 1.8  | 34.6 | 48.2     | 68.2     | 20.0   | Outside             |             |
| Vert     | 1844.541  | PK       | 67.1    | 25.9     | 2.2  | 33.2 | 62.0     | 68.2     | 6.2    | Outside             |             |
| Vert     | 2499.771  | PK       | 56.5    | 26.9     | 2.5  | 32.7 | 53.2     | 73.9     | 20.7   | Inside              |             |
| Vert     | 3132.305  | PK       | 52.3    | 27.5     | 2.8  | 32.4 | 50.2     | 68.2     | 18.0   | Outside             |             |
| Vert     | 5470.000  | PK       | 46.0    | 31.8     | 3.8  | 31.8 | 49.8     | 73.9     | 24.1   | Bandedge            |             |
| Vert     | 8196.193  | PK       | 48.0    | 37.1     | 4.8  | 32.9 | 57.0     | 73.9     | 16.9   | Inside              |             |
| Vert     | 11000.000 | PK       | 42.6    | 38.8     | -2.0 | 33.7 | 45.7     | 73.9     | 28.2   | Inside              | Floor Noise |
| Vert     | 16500.000 | PK       | 43.1    | 38.9     | -0.5 | 32.2 | 49.3     | 68.2     | 18.9   | Outside             | Floor Noise |
| Vert     | 2499.771  | AV       | 54.6    | 26.9     | 2.5  | 32.7 | 51.3     | 53.9     | 2.6    | Inside              |             |
| Vert     | 5470.000  | AV       | 32.9    | 31.8     | 3.8  | 31.8 | 36.7     | 53.9     | 17.2   | Bandedge            |             |
| Vert     | 8196.193  | AV       | 38.1    | 37.1     | 4.8  | 32.9 | 47.1     | 53.9     | 6.8    | Inside              |             |
| Vert     | 11000.000 | AV       | 33.6    | 38.8     | -2.0 | 33.7 | 36.7     | 53.9     | 17.2   | Inside              | Floor Noise |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 57 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5580MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.852  | PK       | 57.7    | 24.7     | 1.8  | 34.6 | 49.6     | 68.2     | 18.6   | Outside             |             |
| Hori     | 1844.399  | PK       | 65.3    | 25.9     | 2.2  | 33.2 | 60.2     | 68.2     | 8.0    | Outside             |             |
| Hori     | 2499.795  | PK       | 56.2    | 26.9     | 2.5  | 32.7 | 52.9     | 73.9     | 21.0   | Inside              |             |
| Hori     | 3132.416  | PK       | 51.0    | 27.5     | 2.8  | 32.4 | 48.9     | 68.2     | 19.3   | Outside             |             |
| Hori     | 8191.332  | PK       | 48.5    | 37.1     | 4.8  | 32.9 | 57.5     | 73.9     | 16.4   | Inside              |             |
| Hori     | 11160.000 | PK       | 42.3    | 39.0     | -1.8 | 33.7 | 45.8     | 73.9     | 28.1   | Inside              | Floor Noise |
| Hori     | 16740.000 | PK       | 43.3    | 39.5     | -0.4 | 32.2 | 50.2     | 68.2     | 18.0   | Outside             | Floor Noise |
| Hori     | 2499.795  | AV       | 54.2    | 26.9     | 2.5  | 32.7 | 50.9     | 53.9     | 3.0    | Inside              |             |
| Hori     | 8191.332  | AV       | 38.0    | 37.1     | 4.8  | 32.9 | 47.0     | 53.9     | 6.9    | Inside              |             |
| Hori     | 11160.000 | AV       | 33.5    | 39.0     | -1.8 | 33.7 | 37.0     | 53.9     | 16.9   | Inside              | Floor Noise |
| Vert     | 1249.811  | PK       | 56.4    | 24.7     | 1.8  | 34.6 | 48.3     | 68.2     | 19.9   | Outside             |             |
| Vert     | 1844.556  | PK       | 67.2    | 25.9     | 2.2  | 33.2 | 62.1     | 68.2     | 6.1    | Outside             |             |
| Vert     | 2499.770  | PK       | 56.6    | 26.9     | 2.5  | 32.7 | 53.3     | 73.9     | 20.6   | Inside              |             |
| Vert     | 3132.356  | PK       | 53.0    | 27.5     | 2.8  | 32.4 | 50.9     | 68.2     | 17.3   | Outside             |             |
| Vert     | 8196.211  | PK       | 48.2    | 37.1     | 4.8  | 32.9 | 57.2     | 73.9     | 16.7   | Inside              |             |
| Vert     | 11160.000 | PK       | 42.3    | 39.0     | -1.8 | 33.7 | 45.8     | 73.9     | 28.1   | Inside              | Floor Noise |
| Vert     | 16740.000 | PK       | 43.3    | 39.5     | -0.4 | 32.2 | 50.2     | 68.2     | 18.0   | Outside             | Floor Noise |
| Vert     | 2499.770  | AV       | 54.3    | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    | Inside              |             |
| Vert     | 8196.211  | AV       | 38.2    | 37.1     | 4.8  | 32.9 | 47.2     | 53.9     | 6.7    | Inside              |             |
| Vert     | 11160.000 | AV       | 33.6    | 39.0     | -1.8 | 33.7 | 37.1     | 53.9     | 16.8   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 58 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5700MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.777  | PK       | 57.2    | 24.7     | 1.8  | 34.6 | 49.1     | 68.2     | 19.1   | Outside             |             |
| Hori     | 1844.401  | PK       | 65.2    | 25.9     | 2.2  | 33.2 | 60.1     | 68.2     | 8.1    | Outside             |             |
| Hori     | 2499.780  | PK       | 56.3    | 26.9     | 2.5  | 32.7 | 53.0     | 73.9     | 20.9   | Inside              |             |
| Hori     | 3132.428  | PK       | 51.1    | 27.5     | 2.8  | 32.4 | 49.0     | 68.2     | 19.2   | Outside             |             |
| Hori     | 5725.000  | PK       | 48.4    | 32.1     | 3.9  | 31.8 | 52.6     | 73.9     | 21.3   | Bandedge            |             |
| Hori     | 8191.333  | PK       | 48.9    | 37.1     | 4.8  | 32.9 | 57.9     | 73.9     | 16.0   | Inside              |             |
| Hori     | 11400.000 | PK       | 42.5    | 39.4     | -1.7 | 33.6 | 46.6     | 73.9     | 27.3   | Inside              | Floor Noise |
| Hori     | 17100.000 | PK       | 44.9    | 41.0     | -0.2 | 32.2 | 53.5     | 68.2     | 14.7   | Outside             | Floor Noise |
| Hori     | 2499.780  | AV       | 54.3    | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    | Inside              |             |
| Hori     | 5725.000  | AV       | 32.4    | 32.1     | 3.9  | 31.8 | 36.6     | 53.9     | 17.3   | Bandedge            |             |
| Hori     | 8191.333  | AV       | 38.3    | 37.1     | 4.8  | 32.9 | 47.3     | 53.9     | 6.6    | Inside              |             |
| Hori     | 11400.000 | AV       | 33.2    | 39.4     | -1.7 | 33.6 | 37.3     | 53.9     | 16.6   | Inside              | Floor Noise |
| Vert     | 1249.790  | PK       | 56.6    | 24.7     | 1.8  | 34.6 | 48.5     | 68.2     | 19.7   | Outside             |             |
| Vert     | 1844.502  | PK       | 67.2    | 25.9     | 2.2  | 33.2 | 62.1     | 68.2     | 6.1    | Outside             |             |
| Vert     | 2499.769  | PK       | 56.6    | 26.9     | 2.5  | 32.7 | 53.3     | 73.9     | 20.6   | Inside              |             |
| Vert     | 3132.366  | PK       | 53.2    | 27.5     | 2.8  | 32.4 | 51.1     | 68.2     | 17.1   | Outside             |             |
| Vert     | 5725.000  | PK       | 49.7    | 32.1     | 3.9  | 31.8 | 53.9     | 73.9     | 20.0   | Bandedge            |             |
| Vert     | 8196.299  | PK       | 48.4    | 37.1     | 4.8  | 32.9 | 57.4     | 73.9     | 16.5   | Inside              |             |
| Vert     | 11400.000 | PK       | 42.4    | 39.4     | -1.7 | 33.6 | 46.5     | 73.9     | 27.4   | Inside              | Floor Noise |
| Vert     | 17100.000 | PK       | 44.3    | 41.0     | -0.2 | 32.2 | 52.9     | 68.2     | 15.3   | Outside             | Floor Noise |
| Vert     | 2499.769  | AV       | 54.2    | 26.9     | 2.5  | 32.7 | 50.9     | 53.9     | 3.0    | Inside              |             |
| Vert     | 5725.000  | AV       | 32.7    | 32.1     | 3.9  | 31.8 | 36.9     | 53.9     | 17.0   | Bandedge            |             |
| Vert     | 8196.299  | AV       | 38.1    | 37.1     | 4.8  | 32.9 | 47.1     | 53.9     | 6.8    | Inside              |             |
| Vert     | 11400.000 | AV       | 33.3    | 39.4     | -1.7 | 33.6 | 37.4     | 53.9     | 16.5   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 59 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer (1-10GHz)

Mode 11n-20 Tx 5500MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5470.000  | PK       | 44.5    | 31.8     | 3.8  | 31.8 | 48.3     | 73.9     | 25.6   | Bandedge            |        |
| Hori     | 5470.000  | AV       | 32.2    | 31.8     | 3.8  | 31.8 | 36.0     | 53.9     | 17.9   | Bandedge            |        |
| Vert     | 5470.000  | PK       | 45.5    | 31.8     | 3.8  | 31.8 | 49.3     | 73.9     | 24.6   | Bandedge            |        |
| Vert     | 5470.000  | AV       | 32.9    | 31.8     | 3.8  | 31.8 | 36.7     | 53.9     | 17.2   | Bandedge            |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor:  $10 GHz - 26.5 GHz \quad 20 log (3.0 m/1.0 m) = 9.5 dB$ 

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

: 10607274H-C-R1 Test report No. Page : 60 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

Temperature/ Humidity 23deg. C / 40% RH Engineer Takafumi Noguchi (1-10GHz)

Mode 11n-20 Tx 5700MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5725.000  | PK       | 47.3    | 32.1     | 3.9  | 31.8 | 51.5     | 73.9     | 22.4   | Bandedge            |        |
| Hori     | 5725.000  | AV       | 32.8    | 32.1     | 3.9  | 31.8 | 37.0     | 53.9     | 16.9   | Bandedge            |        |
| Vert     | 5725.000  | PK       | 48.0    | 32.1     | 3.9  | 31.8 | 52.2     | 73.9     | 21.7   | Bandedge            |        |
| Vert     | 5725.000  | AV       | 33.0    | 32.1     | 3.9  | 31.8 | 37.2     | 53.9     | 16.7   | Bandedge            |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor:  $10 GHz - 26.5 GHz \quad 20 log (3.0 m/1.0 m) = 9.5 dB$ 

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

: 10607274H-C-R1 Test report No. Page : 61 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity 25deg. C / 39% RH 23deg. C / 38% RH Engineer Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5745MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.844  | PK       | 57.5    | 24.7     | 1.8  | 34.6 | 49.4     | 68.2     | 18.8   | Outside             |             |
| Hori     | 1844.510  | PK       | 65.3    | 25.9     | 2.2  | 33.2 | 60.2     | 68.2     | 8.0    | Outside             |             |
| Hori     | 2499.812  | PK       | 56.4    | 26.9     | 2.5  | 32.7 | 53.1     | 73.9     | 20.8   | Inside              |             |
| Hori     | 3132.244  | PK       | 51.3    | 27.5     | 2.8  | 32.4 | 49.2     | 68.2     | 19.0   | Outside             |             |
| Hori     | 5725.000  | PK       | 47.8    | 32.1     | 3.9  | 31.8 | 52.0     | 73.9     | 21.9   | Bandedge            |             |
| Hori     | 8195.699  | PK       | 48.2    | 37.1     | 4.8  | 32.9 | 57.2     | 73.9     | 16.7   | Inside              |             |
| Hori     | 11490.000 | PK       | 43.3    | 39.6     | -1.7 | 33.6 | 47.6     | 73.9     | 26.3   | Inside              | Floor Noise |
| Hori     | 17235.000 | PK       | 45.3    | 42.1     | 0.0  | 32.2 | 55.2     | 68.2     | 13.0   | Outside             | Floor Noise |
| Hori     | 2499.812  | AV       | 54.2    | 26.9     | 2.5  | 32.7 | 50.9     | 53.9     | 3.0    | Inside              |             |
| Hori     | 5725.000  | AV       | 32.6    | 32.1     | 3.9  | 31.8 | 36.8     | 53.9     | 17.1   | Bandedge            |             |
| Hori     | 8195.699  | AV       | 38.2    | 37.1     | 4.8  | 32.9 | 47.2     | 53.9     | 6.7    | Inside              |             |
| Hori     | 11490.000 | AV       | 33.5    | 39.6     | -1.7 | 33.6 | 37.8     | 53.9     | 16.1   | Inside              | Floor Noise |
| Vert     | 1249.933  | PK       | 56.5    | 24.7     | 1.8  | 34.6 | 48.4     | 68.2     | 19.8   | Outside             |             |
| Vert     | 1844.555  | PK       | 67.0    | 25.9     | 2.2  | 33.2 | 61.9     | 68.2     | 6.3    | Outside             |             |
| Vert     | 2499.731  | PK       | 56.5    | 26.9     | 2.5  | 32.7 | 53.2     | 73.9     | 20.7   | Inside              |             |
| Vert     | 3132.193  | PK       | 53.3    | 27.5     | 2.8  | 32.4 | 51.2     | 68.2     | 17.0   | Outside             |             |
| Vert     | 5725.000  | PK       | 51.2    | 32.1     | 3.9  | 31.8 | 55.4     | 73.9     | 18.5   | Bandedge            |             |
| Vert     | 8196.313  | PK       | 48.5    | 37.1     | 4.8  | 32.9 | 57.5     | 73.9     | 16.4   | Inside              |             |
| Vert     | 11490.000 | PK       | 42.0    | 39.6     | -1.7 | 33.6 | 46.3     | 73.9     | 27.6   | Inside              | Floor Noise |
| Vert     | 17235.000 | PK       | 44.5    | 42.1     | 0.0  | 32.2 | 54.4     | 68.2     | 13.8   | Outside             | Floor Noise |
| Vert     | 2499.731  | AV       | 54.0    | 26.9     | 2.5  | 32.7 | 50.7     | 53.9     | 3.2    | Inside              |             |
| Vert     | 5725.000  | AV       | 33.9    | 32.1     | 3.9  | 31.8 | 38.1     | 53.9     | 15.8   | Bandedge            |             |
| Vert     | 8196.313  | AV       | 38.0    | 37.1     | 4.8  | 32.9 | 47.0     | 53.9     | 6.9    | Inside              |             |
| Vert     | 11490.000 | AV       | 33.4    | 39.6     | -1.7 | 33.6 | 37.7     | 53.9     | 16.2   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB Distance factor:

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 62 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5785MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.976  | PK       | 57.2    | 24.7     | 1.8  | 34.6 | 49.1     | 68.2     | 19.1   | Outside             |             |
| Hori     | 1844.442  | PK       | 64.7    | 25.9     | 2.2  | 33.2 | 59.6     | 68.2     | 8.6    | Outside             |             |
| Hori     | 2499.931  | PK       | 56.1    | 26.9     | 2.5  | 32.7 | 52.8     | 73.9     | 21.1   | Inside              |             |
| Hori     | 3132.331  | PK       | 50.5    | 27.5     | 2.8  | 32.4 | 48.4     | 68.2     | 19.8   | Outside             |             |
| Hori     | 8195.123  | PK       | 48.7    | 37.1     | 4.8  | 32.9 | 57.7     | 73.9     | 16.2   | Inside              |             |
| Hori     | 11570.000 | PK       | 42.6    | 39.6     | -1.5 | 33.6 | 47.1     | 73.9     | 26.8   | Inside              | Floor Noise |
| Hori     | 17355.000 | PK       | 43.8    | 43.0     | 0.0  | 32.2 | 54.6     | 68.2     | 13.6   | Outside             | Floor Noise |
| Hori     | 2499.931  | AV       | 54.3    | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    | Inside              |             |
| Hori     | 8195.123  | AV       | 38.5    | 37.1     | 4.8  | 32.9 | 47.5     | 53.9     | 6.4    | Inside              |             |
| Hori     | 11570.000 | AV       | 33.6    | 39.6     | -1.5 | 33.6 | 38.1     | 53.9     | 15.8   | Inside              | Floor Noise |
| Vert     | 1249.877  | PK       | 56.6    | 24.7     | 1.8  | 34.6 | 48.5     | 68.2     | 19.7   | Outside             |             |
| Vert     | 1844.331  | PK       | 65.0    | 25.9     | 2.2  | 33.2 | 59.9     | 68.2     | 8.3    | Outside             |             |
| Vert     | 2499.932  | PK       | 56.8    | 26.9     | 2.5  | 32.7 | 53.5     | 73.9     | 20.4   | Inside              |             |
| Vert     | 3132.347  | PK       | 52.6    | 27.5     | 2.8  | 32.4 | 50.5     | 68.2     | 17.7   | Outside             |             |
| Vert     | 8195.902  | PK       | 47.9    | 37.1     | 4.8  | 32.9 | 56.9     | 73.9     | 17.0   | Inside              |             |
| Vert     | 11570.000 | PK       | 41.5    | 39.6     | -1.5 | 33.6 | 46.0     | 73.9     | 27.9   | Inside              | Floor Noise |
| Vert     | 17355.000 | PK       | 44.2    | 43.0     | 0.0  | 32.2 | 55.0     | 68.2     | 13.2   | Outside             | Floor Noise |
| Vert     | 2499.932  | AV       | 54.8    | 26.9     | 2.5  | 32.7 | 51.5     | 53.9     | 2.4    | Inside              |             |
| Vert     | 8195.902  | AV       | 37.3    | 37.1     | 4.8  | 32.9 | 46.3     | 53.9     | 7.6    | Inside              |             |
| Vert     | 11570.000 | AV       | 33.4    | 39.6     | -1.5 | 33.6 | 37.9     | 53.9     | 16.0   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

Test report No. : 10607274H-C-R1
Page : 63 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/03/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 40% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Takafumi Noguchi Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11a Tx 5825MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1249.955  | PK       | 57.4    | 24.7     | 1.8  | 34.6 | 49.3     | 68.2     | 18.9   | Outside             |             |
| Hori     | 1844.321  | PK       | 65.6    | 25.9     | 2.2  | 33.2 | 60.5     | 68.2     | 7.7    | Outside             |             |
| Hori     | 2499.794  | PK       | 56.4    | 26.9     | 2.5  | 32.7 | 53.1     | 73.9     | 20.8   | Inside              |             |
| Hori     | 3132.222  | PK       | 50.8    | 27.5     | 2.8  | 32.4 | 48.7     | 68.2     | 19.5   | Outside             |             |
| Hori     | 5850.000  | PK       | 45.7    | 32.2     | 4.0  | 31.8 | 50.1     | 73.9     | 23.8   | Bandedge            |             |
| Hori     | 8196.229  | PK       | 48.6    | 37.1     | 4.8  | 32.9 | 57.6     | 73.9     | 16.3   | Inside              |             |
| Hori     | 11650.000 | PK       | 43.2    | 39.6     | -1.5 | 33.5 | 47.8     | 73.9     | 26.1   | Inside              | Floor Noise |
| Hori     | 17475.000 | PK       | 45.6    | 44.0     | 0.0  | 32.2 | 57.4     | 68.2     | 10.8   | Outside             | Floor Noise |
| Hori     | 2499.794  | AV       | 54.3    | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    | Inside              |             |
| Hori     | 5850.000  | AV       | 31.6    | 32.2     | 4.0  | 31.8 | 36.0     | 53.9     | 17.9   | Bandedge            |             |
| Hori     | 8196.229  | AV       | 38.4    | 37.1     | 4.8  | 32.9 | 47.4     | 53.9     | 6.5    | Inside              |             |
| Hori     | 11650.000 | AV       | 33.8    | 39.6     | -1.5 | 33.5 | 38.4     | 53.9     | 15.5   | Inside              | Floor Noise |
| Vert     | 1249.889  | PK       | 56.7    | 24.7     | 1.8  | 34.6 | 48.6     | 68.2     | 19.6   | Outside             |             |
| Vert     | 1844.456  | PK       | 67.5    | 25.9     | 2.2  | 33.2 | 62.4     | 68.2     | 5.8    | Outside             |             |
| Vert     | 2499.794  | PK       | 56.7    | 26.9     | 2.5  | 32.7 | 53.4     | 73.9     | 20.5   | Inside              |             |
| Vert     | 3132.196  | PK       | 52.2    | 27.5     | 2.8  | 32.4 | 50.1     | 68.2     | 18.1   | Outside             |             |
| Vert     | 5850.000  | PK       | 45.8    | 32.2     | 4.0  | 31.8 | 50.2     | 73.9     | 23.7   | Bandedge            |             |
| Vert     | 8194.658  | PK       | 46.9    | 37.1     | 4.8  | 32.9 | 55.9     | 73.9     | 18.0   | Inside              |             |
| Vert     | 11650.000 | PK       | 43.4    | 39.6     | -1.5 | 33.5 | 48.0     | 73.9     | 25.9   | Inside              | Floor Noise |
| Vert     | 17475.000 | PK       | 46.2    | 44.0     | 0.0  | 32.2 | 58.0     | 68.2     | 10.2   | Outside             | Floor Noise |
| Vert     | 2499.794  | AV       | 54.7    | 26.9     | 2.5  | 32.7 | 51.4     | 53.9     | 2.5    | Inside              |             |
| Vert     | 5850.000  | AV       | 31.9    | 32.2     | 4.0  | 31.8 | 36.3     | 53.9     | 17.6   | Bandedge            |             |
| Vert     | 8194.658  | AV       | 36.7    | 37.1     | 4.8  | 32.9 | 45.7     | 53.9     | 8.2    | Inside              |             |
| Vert     | 11650.000 | AV       | 33.8    | 39.6     | -1.5 | 33.5 | 38.4     | 53.9     | 15.5   | Inside              | Floor Noise |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10GHz)) - Gain (Amprifier)$ 

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

: 10607274H-C-R1 Test report No. Page : 64 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

Temperature/ Humidity 23deg. C / 40% RH Engineer Takafumi Noguchi

(1-10GHz)

Mode 11n-20 Tx 5745MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5725.000  | PK       | 51.3    | 32.1     | 3.9  | 31.8 | 55.5     | 73.9     | 18.4   | Bandedge            |        |
| Hori     | 5725.000  | AV       | 34.0    | 32.1     | 3.9  | 31.8 | 38.2     | 53.9     | 15.7   | Bandedge            |        |
| Vert     | 5725.000  | PK       | 53.0    | 32.1     | 3.9  | 31.8 | 57.2     | 73.9     | 16.7   | Bandedge            |        |
| Vert     | 5725.000  | AV       | 34.6    | 32.1     | 3.9  | 31.8 | 38.8     | 53.9     | 15.1   | Bandedge            |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor:  $10 GHz - 26.5 GHz \quad 20 log (3.0 m/1.0 m) = 9.5 dB$ 

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

: 10607274H-C-R1 Test report No. Page : 65 of 95 **Issued date** : June 26, 2015

Revised date : July 7, 2015 FCC ID : UJHNR213

# **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015

23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer

(1-10GHz)

Mode 11n-20 Tx 5825MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5850.000  | PK       | 45.9    | 32.2     | 4.0  | 31.8 | 50.3     | 73.9     | 23.6   | Bandedge            |        |
| Hori     | 5850.000  | AV       | 32.0    | 32.2     | 4.0  | 31.8 | 36.4     | 53.9     | 17.5   | Bandedge            |        |
| Vert     | 5850.000  | PK       | 45.8    | 32.2     | 4.0  | 31.8 | 50.2     | 73.9     | 23.7   | Bandedge            |        |
| Vert     | 5850.000  | AV       | 32.2    | 32.2     | 4.0  | 31.8 | 36.6     | 53.9     | 17.3   | Bandedge            | ·      |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). Distance factor:  $10 GHz - 26.5 GHz \quad 20 log (3.0 m/1.0 m) = 9.5 dB$ 

26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

: 10607274H-C-R1 Test report No. Page : 66 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

## **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

03/04/2015 03/05/2015 Date 03/05/2015 03/09/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH 23deg. C / 34% RH Koji Yamamoto Tomoki Matsui Takafumi Noguchi Tsubasa Takayama Engineer (Below 1GHz)

(1-10GHz) (10-26.5GHz) (Above26.5GHz) Mode 11n-40 Tx 5190MHz

| Polarity | Frequency    | Detector | _      | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|--------------|----------|--------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]        |          | [dBuV] | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 77.690       | QP       | 36.0   | 6.3      | 7.8  | 32.1 | 18.0     | 40.0     | 22.0   | Outside             |        |
| Hori     | 146.253      | QP       | 34.0   | 14.7     | 8.6  | 32.1 | 25.2     | 43.5     | 18.3   | Outside             |        |
| Hori     | 243.749      | QP       | 35.4   | 17.1     | 9.4  | 32.0 | 29.9     | 46.0     | 16.1   | Inside              |        |
| Hori     | 341.243      | QP       | 34.2   | 16.0     | 10.2 | 31.9 | 28.5     | 46.0     | 17.5   | Outside             |        |
| Hori     | 374.976      | QP       | 33.3   | 16.9     | 10.4 | 31.9 | 28.7     | 46.0     | 17.3   | Outside             |        |
| Hori     | 627.167      | QP       | 33.3   | 19.7     | 12.0 | 32.0 | 33.0     | 46.0     | 13.0   | Outside             |        |
| Hori     | 983.016      | QP       | 40.8   | 23.3     | 13.6 | 30.5 | 47.2     | 53.9     | 6.7    | Inside              |        |
| Hori     | 1249.998     | PK       | 57.9   | 24.7     | 1.8  | 34.6 | 49.8     | 68.2     | 18.4   | Outside             |        |
| Hori     | 1838.050     | PK       | 62.1   | 25.9     | 2.2  | 33.3 | 56.9     | 68.2     | 11.3   | Outside             |        |
| Hori     | 2499.892     | PK       | 57.5   | 26.9     | 2.5  | 32.7 | 54.2     | 73.9     | 19.7   | Inside              |        |
| Hori     | 3132.351     | PK       | 49.5   | 27.5     | 2.8  | 32.4 | 47.4     | 68.2     | 20.8   | Outside             |        |
| Hori     | 5150.000     | PK       | 43.2   | 31.3     | 3.7  | 31.7 | 46.5     | 68.2     | 21.7   | Bandedge            |        |
| Hori     | 8195.533     | PK       | 49.3   | 37.1     | 4.8  | 32.9 | 58.3     | 73.9     | 15.6   | Inside              |        |
| Hori     | 10380.000    | PK       | 41.5   | 38.8     | -2.1 | 33.6 | 44.6     | 68.2     | 23.6   | Outside             |        |
| Hori     | 15570.000    | PK       | 43.7   | 39.0     | -0.9 | 32.1 | 49.7     | 73.9     | 24.2   | Inside              |        |
| Hori     | 2499.892     | ΑV       | 55.8   | 26.9     | 2.5  | 32.7 | 52.5     | 53.9     | 1.4    | Inside              |        |
| Hori     | 5150.000     | AV       | 32.3   | 31.3     | 3.7  | 31.7 | 35.6     | 53.9     | 18.3   | Bandedge            |        |
| Hori     | 8195.533     | AV       | 37.8   | 37.1     | 4.8  | 32.9 | 46.8     | 53.9     | 7.1    | Inside              |        |
| Hori     | 15570.000    | AV       | 35.0   | 39.0     | -0.9 | 32.1 | 41.0     | 53.9     | 12.9   | Inside              |        |
| Vert     | 78.481       | QP       | 40.6   | 6.3      | 7.8  | 32.1 | 22.6     | 40.0     | 17.4   | Outside             |        |
| Vert     | 108.000      | QP       | 35.0   | 11.3     | 8.1  | 32.1 | 22.3     | 43.5     | 21.2   | Inside              |        |
| Vert     | 146.253      | QP       | 36.5   | 14.7     | 8.6  | 32.1 | 27.7     | 43.5     | 15.8   | Outside             |        |
| Vert     | 243.749      | QP       | 36.2   | 17.1     | 9.4  | 32.0 | 30.7     | 46.0     | 15.3   | Inside              |        |
| Vert     | 276.000      | QP       | 33.0   | 18.6     | 9.8  | 31.9 | 29.5     | 46.0     | 16.5   | Inside              |        |
| Vert     | 341.263      | QP       | 32.4   | 16.0     | 10.2 | 31.9 | 26.7     | 46.0     | 19.3   | Outside             |        |
| Vert     | 375.000      | QP       | 32.0   | 16.9     | 10.4 | 31.9 | 27.4     | 46.0     | 18.6   | Outside             |        |
| Vert     | 627.177      | QP       | 31.2   | 19.7     | 12.0 | 32.0 | 30.9     | 46.0     | 15.1   | Outside             |        |
| Vert     | 719.949      | QP       | 31.0   | 20.8     | 12.4 | 31.9 | 32.3     | 46.0     | 13.7   | Outside             |        |
| Vert     | 983.016      | QP       | 38.1   | 23.3     | 13.6 | 30.5 | 44.5     | 53.9     | 9.4    | Inside              |        |
| Vert     |              | PK       | 54.7   | 24.7     | 1.8  | 34.6 | 46.6     | 68.2     | 21.6   | Outside             |        |
| Vert     |              | PK       | 65.1   | 25.9     | 2.2  | 33.3 | 59.9     | 68.2     | 8.3    | Outside             |        |
| Vert     |              | PK       | 56.2   | 26.9     | 2.5  | 32.7 | 52.9     | 73.9     | 21.0   | Inside              |        |
| Vert     |              | PK       | 53.9   | 27.5     | 2.8  | 32.4 | 51.8     | 68.2     | 16.4   | Outside             |        |
| Vert     |              | PK       | 45.6   | 31.3     | 3.7  | 31.7 | 48.9     | 68.2     | 19.3   | Bandedge            |        |
| Vert     |              | PK       | 47.6   | 37.1     | 4.8  | 32.9 | 56.6     | 73.9     | 17.3   | Inside              |        |
| Vert     |              | PK       | 42.0   | 38.8     | -2.1 | 33.6 | 45.1     | 68.2     | 23.1   | Outside             |        |
| Vert     | 15570.000    | PK       | 43.8   | 39.0     | -0.9 | 32.1 | 49.8     | 73.9     | 24.1   | Inside              |        |
| Vert     | 2499.892     | AV       | 54.3   | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    |                     |        |
| Vert     |              | AV       | 32.3   | 31.3     | 3.7  | 31.7 | 35.6     | 53.9     |        | Bandedge            |        |
| Vert     | 8195.533     | AV       | 37.1   | 37.1     | 4.8  | 32.9 | 46.1     | 53.9     |        | Inside              |        |
| Vert     | 15570.000    |          | 35.1   | 39.0     | -0.9 | 32.1 | 41.1     | 53.9     |        | Inside              |        |
|          | Pooding + An |          |        |          |      |      |          |          |        |                     |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB Distance factor:

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 67 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015 03/09/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer C / 38% RH Tomoki Matsui Takafumi Noguchi Tsubasa Takayama

(1-10GHz) (10-26.5GHz) (Above26.5GHz) (Below 1GHz)

Mode 11n-40 Tx 5190MHz





# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 68 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Koji Yamamoto Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5270MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 57.7    | 24.7     | 1.8  | 34.6 | 49.6     | 68.2     | 18.6   | Outside             |             |
| Hori     | 1838.050  | PK       | 62.9    | 25.9     | 2.2  | 33.3 | 57.7     | 68.2     | 10.5   | Outside             |             |
| Hori     | 2499.892  | PK       | 57.3    | 26.9     | 2.5  | 32.7 | 54.0     | 73.9     | 19.9   | Inside              |             |
| Hori     | 3132.351  | PK       | 48.6    | 27.5     | 2.8  | 32.4 | 46.5     | 68.2     | 21.7   | Outside             |             |
| Hori     | 8195.533  | PK       | 48.8    | 37.1     | 4.8  | 32.9 | 57.8     | 73.9     | 16.1   | Inside              |             |
| Hori     | 10540.000 | PK       | 42.5    | 38.7     | -2.1 | 33.6 | 45.5     | 68.2     | 22.7   | Outside             | Floor Noise |
| Hori     | 15810.000 | PK       | 43.6    | 38.3     | -0.9 | 32.2 | 48.8     | 73.9     | 25.1   | Inside              | Floor Noise |
| Hori     | 2499.892  | AV       | 55.5    | 26.9     | 2.5  | 32.7 | 52.2     | 53.9     | 1.7    | Inside              |             |
| Hori     | 8195.533  | AV       | 37.1    | 37.1     | 4.8  | 32.9 | 46.1     | 53.9     | 7.8    | Inside              |             |
| Hori     | 15810.000 | AV       | 34.6    | 38.3     | -0.9 | 32.2 | 39.8     | 53.9     | 14.1   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 54.9    | 24.7     | 1.8  | 34.6 | 46.8     | 68.2     | 21.4   | Outside             |             |
| Vert     | 1838.050  | PK       | 65.5    | 25.9     | 2.2  | 33.3 | 60.3     | 68.2     | 7.9    | Outside             |             |
| Vert     | 2499.892  | PK       | 56.5    | 26.9     | 2.5  | 32.7 | 53.2     | 73.9     | 20.7   | Inside              |             |
| Vert     | 3132.351  | PK       | 54.4    | 27.5     | 2.8  | 32.4 | 52.3     | 68.2     | 15.9   | Outside             |             |
| Vert     | 8195.533  | PK       | 48.2    | 37.1     | 4.8  | 32.9 | 57.2     | 73.9     | 16.7   | Inside              |             |
| Vert     | 10540.000 | PK       | 43.0    | 38.7     | -2.1 | 33.6 | 46.0     | 68.2     | 22.2   | Outside             | Floor Noise |
| Vert     | 15810.000 | PK       | 43.5    | 38.3     | -0.9 | 32.2 | 48.7     | 73.9     | 25.2   | Inside              | Floor Noise |
| Vert     | 2499.892  | AV       | 54.1    | 26.9     | 2.5  | 32.7 | 50.8     | 53.9     | 3.1    | Inside              |             |
| Vert     | 8195.533  | AV       | 37.3    | 37.1     | 4.8  | 32.9 | 46.3     | 53.9     | 7.6    | Inside              |             |
| Vert     | 15810.000 | AV       | 34.6    | 38.3     | -0.9 | 32.2 | 39.8     | 53.9     | 14.1   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 69 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5310MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 57.6    | 24.7     | 1.8  | 34.6 | 49.5     | 68.2     | 18.7   | Outside             |             |
| Hori     | 1838.050  | PK       | 63.2    | 25.9     | 2.2  | 33.3 | 58.0     | 68.2     | 10.2   | Outside             |             |
| Hori     | 2499.892  | PK       | 56.7    | 26.9     | 2.5  | 32.7 | 53.4     | 73.9     | 20.5   | Inside              |             |
| Hori     | 3132.351  | PK       | 50.3    | 27.5     | 2.8  | 32.4 | 48.2     | 68.2     | 20.0   | Outside             |             |
| Hori     | 5350.000  | PK       | 46.0    | 31.6     | 3.8  | 31.7 | 49.7     | 68.2     | 18.5   | Bandedge            |             |
| Hori     | 8195.533  | PK       | 48.3    | 37.1     | 4.8  | 32.9 | 57.3     | 73.9     | 16.6   | Inside              |             |
| Hori     | 10620.000 | PK       | 42.3    | 38.7     | -2.1 | 33.7 | 45.2     | 73.9     | 28.7   | Inside              | Floor Noise |
| Hori     | 15930.000 | PK       | 44.3    | 37.9     | -0.8 | 32.3 | 49.1     | 73.9     | 24.8   | Inside              | Floor Noise |
| Hori     | 2499.892  | AV       | 55.2    | 26.9     | 2.5  | 32.7 | 51.9     | 53.9     | 2.0    | Inside              |             |
| Hori     | 5350.000  | AV       | 33.5    | 31.6     | 3.8  | 31.7 | 37.2     | 53.9     | 16.7   | Bandedge            |             |
| Hori     | 8195.533  | AV       | 36.5    | 37.1     | 4.8  | 32.9 | 45.5     | 53.9     | 8.4    | Inside              |             |
| Hori     | 10620.000 | AV       | 33.8    | 38.7     | -2.1 | 33.7 | 36.7     | 53.9     | 17.2   | Inside              | Floor Noise |
| Hori     | 15930.000 | AV       | 34.7    | 37.9     | -0.8 | 32.3 | 39.5     | 53.9     | 14.4   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 55.1    | 24.7     | 1.8  | 34.6 | 47.0     | 68.2     | 21.2   | Outside             |             |
| Vert     | 1838.050  | PK       | 65.7    | 25.9     | 2.2  | 33.3 | 60.5     | 68.2     | 7.7    | Outside             |             |
| Vert     | 2499.892  | PK       | 55.6    | 26.9     | 2.5  | 32.7 | 52.3     | 73.9     | 21.6   | Inside              |             |
| Vert     | 3132.351  | PK       | 55.1    | 27.5     | 2.8  | 32.4 | 53.0     | 68.2     | 15.2   | Outside             |             |
| Vert     | 5350.000  | PK       | 47.6    | 31.6     | 3.8  | 31.7 | 51.3     | 68.2     | 16.9   | Bandedge            |             |
| Vert     | 8195.533  | PK       | 47.7    | 37.1     | 4.8  | 32.9 | 56.7     | 73.9     | 17.2   | Inside              |             |
| Vert     | 10620.000 | PK       | 42.3    | 38.7     | -2.1 | 33.7 | 45.2     | 73.9     | 28.7   | Inside              | Floor Noise |
| Vert     | 15930.000 | PK       | 44.2    | 37.9     | -0.8 | 32.3 | 49.0     | 73.9     | 24.9   | Inside              | Floor Noise |
| Vert     | 2499.892  | AV       | 54.2    | 26.9     | 2.5  | 32.7 | 50.9     | 53.9     | 3.0    | Inside              |             |
| Vert     | 5350.000  | AV       | 33.0    | 31.6     | 3.8  | 31.7 | 36.7     | 53.9     | 17.2   | Bandedge            |             |
| Vert     | 8195.533  | AV       | 38.1    | 37.1     | 4.8  | 32.9 | 47.1     | 53.9     | 6.8    | Inside              |             |
| Vert     | 10620.000 | AV       | 33.7    | 38.7     | -2.1 | 33.7 | 36.6     | 53.9     | 17.3   | Inside              | Floor Noise |
| Vert     | 15930.000 | AV       | 34.8    | 37.9     | -0.8 | 32.3 | 39.6     | 53.9     | 14.3   | Inside              | Floor Noise |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 70 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Koji Yamamoto Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5510MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 58.0    | 24.7     | 1.8  | 34.6 | 49.9     | 68.2     | 18.3   | Outside             |             |
| Hori     | 1838.050  | PK       | 62.6    | 25.9     | 2.2  | 33.3 | 57.4     | 68.2     | 10.8   | Outside             |             |
| Hori     | 2499.892  | PK       | 56.5    | 26.9     | 2.5  | 32.7 | 53.2     | 73.9     | 20.7   | Inside              |             |
| Hori     | 3132.351  | PK       | 49.2    | 27.5     | 2.8  | 32.4 | 47.1     | 68.2     | 21.1   | Outside             |             |
| Hori     | 5470.000  | PK       | 44.1    | 31.8     | 3.8  | 31.8 | 47.9     | 73.9     | 26.0   | Bandedge            |             |
| Hori     | 8195.533  | PK       | 49.1    | 37.1     | 4.8  | 32.9 | 58.1     | 73.9     | 15.8   | Inside              |             |
| Hori     | 11020.000 | PK       | 42.1    | 38.8     | -2.0 | 33.7 | 45.2     | 73.9     | 28.7   | Inside              | Floor Noise |
| Hori     | 16530.000 | PK       | 43.2    | 39.0     | -0.5 | 32.2 | 49.5     | 68.2     | 18.7   | Outside             | Floor Noise |
| Hori     | 2499.892  | AV       | 55.1    | 26.9     | 2.5  | 32.7 | 51.8     | 53.9     | 2.1    | Inside              |             |
| Hori     | 5470.000  | AV       | 33.1    | 31.8     | 3.8  | 31.8 | 36.9     | 53.9     | 17.0   | Bandedge            |             |
| Hori     | 8195.533  | AV       | 38.3    | 37.1     | 4.8  | 32.9 | 47.3     | 53.9     | 6.6    | Inside              |             |
| Hori     | 11020.000 | AV       | 33.6    | 38.8     | -2.0 | 33.7 | 36.7     | 53.9     | 17.2   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 56.1    | 24.7     | 1.8  | 34.6 | 48.0     | 68.2     | 20.2   | Outside             |             |
| Vert     | 1838.050  | PK       | 63.9    | 25.9     | 2.2  | 33.3 | 58.7     | 68.2     | 9.5    | Outside             |             |
| Vert     | 2499.892  | PK       | 55.9    | 26.9     | 2.5  | 32.7 | 52.6     | 73.9     | 21.3   | Inside              |             |
| Vert     | 3132.351  | PK       | 54.5    | 27.5     | 2.8  | 32.4 | 52.4     | 68.2     | 15.8   | Outside             |             |
| Vert     | 5470.000  | PK       | 44.9    | 31.8     | 3.8  | 31.8 | 48.7     | 73.9     | 25.2   | Bandedge            |             |
| Vert     | 8195.533  | PK       | 48.1    | 37.1     | 4.8  | 32.9 | 57.1     | 73.9     | 16.8   | Inside              |             |
| Vert     | 11020.000 | PK       | 42.2    | 38.8     | -2.0 | 33.7 | 45.3     | 73.9     | 28.6   | Inside              | Floor Noise |
| Vert     | 16530.000 | PK       | 44.4    | 39.0     | -0.5 | 32.2 | 50.7     | 68.2     | 17.5   | Outside             | Floor Noise |
| Vert     | 2499.892  | AV       | 54.7    | 26.9     | 2.5  | 32.7 | 51.4     | 53.9     | 2.5    | Inside              |             |
| Vert     | 5470.000  | AV       | 32.6    | 31.8     | 3.8  | 31.8 | 36.4     | 53.9     | 17.5   | Bandedge            |             |
| Vert     | 8195.533  | AV       | 37.7    | 37.1     | 4.8  | 32.9 | 46.7     | 53.9     | 7.2    | Inside              |             |
| Vert     | 11020.000 | AV       | 33.7    | 38.8     | -2.0 | 33.7 | 36.8     | 53.9     | 17.1   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier) \*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 71 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Koji Yamamoto Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5550MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 57.7    | 24.7     | 1.8  | 34.6 | 49.6     | 68.2     | 18.6   | Outside             |             |
| Hori     | 1838.050  | PK       | 61.8    | 25.9     | 2.2  | 33.3 | 56.6     | 68.2     | 11.6   | Outside             |             |
| Hori     | 2499.892  | PK       | 57.0    | 26.9     | 2.5  | 32.7 | 53.7     | 73.9     | 20.2   | Inside              |             |
| Hori     | 3132.351  | PK       | 48.3    | 27.5     | 2.8  | 32.4 | 46.2     | 68.2     | 22.0   | Outside             |             |
| Hori     | 8195.533  | PK       | 48.8    | 37.1     | 4.8  | 32.9 | 57.8     | 73.9     | 16.1   | Inside              |             |
| Hori     | 11100.000 | PK       | 44.3    | 38.9     | -1.8 | 33.7 | 47.7     | 73.9     | 26.2   | Inside              | Floor Noise |
| Hori     | 16650.000 | PK       | 45.6    | 39.3     | -0.5 | 32.2 | 52.2     | 68.2     | 16.0   | Outside             | Floor Noise |
| Hori     | 2499.892  | AV       | 54.1    | 26.9     | 2.5  | 32.7 | 50.8     | 53.9     | 3.1    | Inside              |             |
| Hori     | 8195.533  | AV       | 37.2    | 37.1     | 4.8  | 32.9 | 46.2     | 53.9     | 7.7    | Inside              |             |
| Hori     | 11100.000 | AV       | 33.5    | 38.9     | -1.8 | 33.7 | 36.9     | 53.9     | 17.0   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 56.5    | 24.7     | 1.8  | 34.6 | 48.4     | 68.2     | 19.8   | Outside             |             |
| Vert     | 1838.050  | PK       | 62.9    | 25.9     | 2.2  | 33.3 | 57.7     | 68.2     | 10.5   | Outside             |             |
| Vert     | 2499.892  | PK       | 56.2    | 26.9     | 2.5  | 32.7 | 52.9     | 73.9     | 21.0   | Inside              |             |
| Vert     | 3132.351  | PK       | 53.3    | 27.5     | 2.8  | 32.4 | 51.2     | 68.2     | 17.0   | Outside             |             |
| Vert     | 8195.533  | PK       | 47.9    | 37.1     | 4.8  | 32.9 | 56.9     | 73.9     | 17.0   | Inside              |             |
| Vert     | 11100.000 | PK       | 44.1    | 38.9     | -1.8 | 33.7 | 47.5     | 73.9     | 26.4   | Inside              | Floor Noise |
| Vert     | 16650.000 | PK       | 45.5    | 39.3     | -0.5 | 32.2 | 52.1     | 68.2     | 16.1   | Outside             | Floor Noise |
| Vert     | 2499.892  | AV       | 54.3    | 26.9     | 2.5  | 32.7 | 51.0     | 53.9     | 2.9    | Inside              |             |
| Vert     | 8195.533  | AV       | 37.1    | 37.1     | 4.8  | 32.9 | 46.1     | 53.9     | 7.8    | Inside              |             |
| Vert     | 11100.000 | AV       | 33.5    | 38.9     | -1.8 | 33.7 | 36.9     | 53.9     | 17.0   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB). 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB Distance factor:

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 72 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5670MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 56.8    | 24.7     | 1.8  | 34.6 | 48.7     | 68.2     | 19.5   | Outside             |             |
| Hori     | 1838.050  | PK       | 63.5    | 25.9     | 2.2  | 33.3 | 58.3     | 68.2     | 9.9    | Outside             |             |
| Hori     | 2499.892  | PK       | 57.1    | 26.9     | 2.5  | 32.7 | 53.8     | 73.9     | 20.1   | Inside              |             |
| Hori     | 3132.351  | PK       | 50.5    | 27.5     | 2.8  | 32.4 | 48.4     | 68.2     | 19.8   | Outside             |             |
| Hori     | 5725.000  | PK       | 41.4    | 32.1     | 3.9  | 31.8 | 45.6     | 73.9     | 28.3   | Bandedge            |             |
| Hori     | 8195.533  | PK       | 48.9    | 37.1     | 4.8  | 32.9 | 57.9     | 73.9     | 16.0   | Inside              |             |
| Hori     | 11340.000 | PK       | 42.5    | 39.3     | -1.7 | 33.6 | 46.5     | 73.9     | 27.4   | Inside              | Floor Noise |
| Hori     | 17010.000 | PK       | 43.7    | 40.2     | -0.2 | 32.2 | 51.5     | 68.2     | 16.7   | Outside             | Floor Noise |
| Hori     | 2499.892  | AV       | 54.5    | 26.9     | 2.5  | 32.7 | 51.2     | 53.9     | 2.7    | Inside              |             |
| Hori     | 5725.000  | AV       | 32.5    | 32.1     | 3.9  | 31.8 | 36.7     | 53.9     | 17.2   | Bandedge            |             |
| Hori     | 8195.533  | AV       | 36.7    | 37.1     | 4.8  | 32.9 | 45.7     | 53.9     | 8.2    | Inside              |             |
| Hori     | 11340.000 | AV       | 33.4    | 39.3     | -1.7 | 33.6 | 37.4     | 53.9     | 16.5   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 55.6    | 24.7     | 1.8  | 34.6 | 47.5     | 68.2     | 20.7   | Outside             |             |
| Vert     | 1838.050  | PK       | 64.7    | 25.9     | 2.2  | 33.3 | 59.5     | 68.2     | 8.7    | Outside             |             |
| Vert     | 2499.892  | PK       | 56.7    | 26.9     | 2.5  | 32.7 | 53.4     | 73.9     | 20.5   | Inside              |             |
| Vert     | 3132.351  | PK       | 53.3    | 27.5     | 2.8  | 32.4 | 51.2     | 68.2     | 17.0   | Outside             |             |
| Vert     | 5725.000  | PK       | 42.9    | 32.1     | 3.9  | 31.8 | 47.1     | 73.9     | 26.8   | Bandedge            |             |
| Vert     | 8195.533  | PK       | 48.5    | 37.1     | 4.8  | 32.9 | 57.5     | 73.9     | 16.4   | Inside              |             |
| Vert     | 11340.000 | PK       | 42.4    | 39.3     | -1.7 | 33.6 | 46.4     | 73.9     | 27.5   | Inside              | Floor Noise |
| Vert     | 17010.000 | PK       | 44.4    | 40.2     | -0.2 | 32.2 | 52.2     | 68.2     | 16.0   | Outside             | Floor Noise |
| Vert     | 2499.892  | AV       | 54.1    | 26.9     | 2.5  | 32.7 | 50.8     | 53.9     | 3.1    | Inside              |             |
| Vert     | 5725.000  | AV       | 32.6    | 32.1     | 3.9  | 31.8 | 36.8     | 53.9     | 17.1   | Bandedge            |             |
| Vert     | 8195.533  | AV       | 38.2    | 37.1     | 4.8  | 32.9 | 47.2     | 53.9     | 6.7    | Inside              |             |
| Vert     | 11340.000 | AV       | 33.5    | 39.3     | -1.7 | 33.6 | 37.5     | 53.9     | 16.4   | Inside              | Floor Noise |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 73 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Koji Yamamoto Tomoki Matsui Takafumi Noguchi (1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5755MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | M argin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|---------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]    | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 56.5    | 24.7     | 1.8  | 34.6 | 48.4     | 68.2     | 19.8    | Outside             |             |
| Hori     | 1838.050  | PK       | 64.1    | 25.9     | 2.2  | 33.3 | 58.9     | 68.2     | 9.3     | Outside             |             |
| Hori     | 2499.892  | PK       | 54.6    | 26.9     | 2.5  | 32.7 | 51.3     | 73.9     | 22.6    | Inside              |             |
| Hori     | 3132.351  | PK       | 51.6    | 27.5     | 2.8  | 32.4 | 49.5     | 68.2     | 18.7    | Outside             |             |
| Hori     | 5725.000  | PK       | 44.0    | 32.1     | 3.9  | 31.8 | 48.2     | 73.9     | 25.7    | Bandedge            |             |
| Hori     | 8195.533  | PK       | 48.3    | 37.1     | 4.8  | 32.9 | 57.3     | 73.9     | 16.6    | Inside              |             |
| Hori     | 11510.000 | PK       | 42.5    | 39.6     | -1.6 | 33.6 | 46.9     | 73.9     | 27.0    | Inside              | Floor Noise |
| Hori     | 17265.000 | PK       | 44.1    | 42.3     | 0.0  | 32.2 | 54.2     | 68.2     | 14.0    | Outside             | Floor Noise |
| Hori     | 2499.892  | AV       | 51.2    | 26.9     | 2.5  | 32.7 | 47.9     | 53.9     | 6.0     | Inside              |             |
| Hori     | 5725.000  | AV       | 33.0    | 32.1     | 3.9  | 31.8 | 37.2     | 53.9     | 16.7    | Bandedge            |             |
| Hori     | 8195.533  | AV       | 36.5    | 37.1     | 4.8  | 32.9 | 45.5     | 53.9     | 8.4     | Inside              |             |
| Hori     | 11510.000 | AV       | 33.4    | 39.6     | -1.6 | 33.6 | 37.8     | 53.9     | 16.1    | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 55.1    | 24.7     | 1.8  | 34.6 | 47.0     | 68.2     | 21.2    | Outside             |             |
| Vert     | 1838.050  | PK       | 63.7    | 25.9     | 2.2  | 33.3 | 58.5     | 68.2     | 9.7     | Outside             |             |
| Vert     | 2499.892  | PK       | 55.8    | 26.9     | 2.5  | 32.7 | 52.5     | 73.9     | 21.4    | Inside              |             |
| Vert     | 3132.351  | PK       | 53.9    | 27.5     | 2.8  | 32.4 | 51.8     | 68.2     | 16.4    | Outside             |             |
| Vert     | 5725.000  | PK       | 46.2    | 32.1     | 3.9  | 31.8 | 50.4     | 73.9     | 23.5    | Bandedge            |             |
| Vert     | 8195.533  | PK       | 47.5    | 37.1     | 4.8  | 32.9 | 56.5     | 73.9     | 17.4    | Inside              |             |
| Vert     | 11510.000 | PK       | 42.3    | 39.6     | -1.6 | 33.6 | 46.7     | 73.9     | 27.2    | Inside              | Floor Noise |
| Vert     | 17265.000 | PK       | 44.5    | 42.3     | 0.0  | 32.2 | 54.6     | 68.2     | 13.6    | Outside             | Floor Noise |
| Vert     | 2499.892  | AV       | 50.3    | 26.9     | 2.5  | 32.7 | 47.0     | 53.9     | 6.9     | Inside              |             |
| Vert     | 5725.000  | AV       | 33.5    | 32.1     | 3.9  | 31.8 | 37.7     | 53.9     | 16.2    | Bandedge            |             |
| Vert     | 8195.533  | AV       | 37.3    | 37.1     | 4.8  | 32.9 | 46.3     | 53.9     | 7.6     | Inside              |             |
| Vert     | 11510.000 | AV       | 33.6    | 39.6     | -1.6 | 33.6 | 38.0     | 53.9     | 15.9    | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

: 10607274H-C-R1 Test report No. Page : 74 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H

Date 03/04/2015 03/05/2015 03/05/2015

Temperature/ Humidity 23deg. C / 35% RH 25deg. C / 39% RH 23deg. C / 38% RH Engineer Koji Yamamoto Tomoki Matsui Takafumi Noguchi

(1-10GHz) (10-26.5GHz) (Above26.5GHz)

Mode 11n-40 Tx 5795MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 1250.000  | PK       | 56.3    | 24.7     | 1.8  | 34.6 | 48.2     | 68.2     | 20.0   | Outside             |             |
| Hori     | 1838.050  | PK       | 62.5    | 25.9     | 2.2  | 33.3 | 57.3     | 68.2     | 10.9   | Outside             |             |
| Hori     | 2499.892  | PK       | 55.3    | 26.9     | 2.5  | 32.7 | 52.0     | 73.9     | 21.9   | Inside              |             |
| Hori     | 3132.351  | PK       | 53.2    | 27.5     | 2.8  | 32.4 | 51.1     | 68.2     | 17.1   | Outside             |             |
| Hori     | 5850.000  | PK       | 41.4    | 32.2     | 4.0  | 31.8 | 45.8     | 73.9     | 28.1   | Bandedge            |             |
| Hori     | 8195.533  | PK       | 47.6    | 37.1     | 4.8  | 32.9 | 56.6     | 73.9     | 17.3   | Inside              |             |
| Hori     | 11590.000 | PK       | 42.5    | 39.6     | -1.5 | 33.5 | 47.1     | 73.9     | 26.8   | Inside              | Floor Noise |
| Hori     | 17385.000 | PK       | 43.3    | 43.3     | 0.0  | 32.2 | 54.4     | 68.2     | 13.8   | Outside             | Floor Noise |
| Hori     | 2499.892  | AV       | 50.2    | 26.9     | 2.5  | 32.7 | 46.9     | 53.9     | 7.0    | Inside              |             |
| Hori     | 5850.000  | AV       | 32.2    | 32.2     | 4.0  | 31.8 | 36.6     | 53.9     | 17.3   | Bandedge            |             |
| Hori     | 8195.533  | AV       | 36.9    | 37.1     | 4.8  | 32.9 | 45.9     | 53.9     | 8.0    | Inside              |             |
| Hori     | 11590.000 | AV       | 33.7    | 39.6     | -1.5 | 33.5 | 38.3     | 53.9     | 15.6   | Inside              | Floor Noise |
| Vert     | 1250.000  | PK       | 55.7    | 24.7     | 1.8  | 34.6 | 47.6     | 68.2     | 20.6   | Outside             |             |
| Vert     | 1838.050  | PK       | 61.7    | 25.9     | 2.2  | 33.3 | 56.5     | 68.2     | 11.7   | Outside             |             |
| Vert     | 2499.892  | PK       | 55.5    | 26.9     | 2.5  | 32.7 | 52.2     | 73.9     | 21.7   | Inside              |             |
| Vert     | 3132.351  | PK       | 54.5    | 27.5     | 2.8  | 32.4 | 52.4     | 68.2     | 15.8   | Outside             |             |
| Vert     | 5850.000  | PK       | 43.7    | 32.2     | 4.0  | 31.8 | 48.1     | 73.9     | 25.8   | Bandedge            |             |
| Vert     | 8195.533  | PK       | 48.8    | 37.1     | 4.8  | 32.9 | 57.8     | 73.9     | 16.1   | Inside              |             |
| Vert     | 11590.000 | PK       | 42.5    | 39.6     | -1.5 | 33.5 | 47.1     | 73.9     | 26.8   | Inside              | Floor Noise |
| Vert     | 17385.000 | PK       | 43.4    | 43.3     | 0.0  | 32.2 | 54.5     | 68.2     | 13.7   | Outside             | Floor Noise |
| Vert     | 2499.892  | AV       | 50.1    | 26.9     | 2.5  | 32.7 | 46.8     | 53.9     | 7.1    | Inside              |             |
| Vert     | 5850.000  | AV       | 32.3    | 32.2     | 4.0  | 31.8 | 36.7     | 53.9     | 17.2   | Bandedge            |             |
| Vert     | 8195.533  | AV       | 37.1    | 37.1     | 4.8  | 32.9 | 46.1     | 53.9     | 7.8    | Inside              |             |
| Vert     | 11590.000 | AV       | 33.5    | 39.6     | -1.5 | 33.5 | 38.1     | 53.9     | 15.8   | Inside              | Floor Noise |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier) \*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

Test report No. : 10607274H-C-R1
Page : 75 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity
Engineer

25 deg. C / 43% RH
Tsubasa Takayama
(30MHz-40GHz)

Mode 11n-20 Tx 2412MHz + 11a Tx 5180MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark      |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|-------------|
| 1        | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |             |
| Hori     | 146.100   | QP       | 35.8    | 14.7     | 7.8  | 28.1 | 30.2     | 43.5     | 13.3   | Outside             |             |
| Hori     | 249.987   | QP       | 25.3    | 17.2     | 8.5  | 27.6 | 23.4     | 46.0     | 22.6   | Inside              |             |
| Hori     | 341.251   | QP       | 35.2    | 15.9     | 9.1  | 27.8 | 32.4     | 46.0     | 13.6   | Outside             |             |
| Hori     | 374.949   | QP       | 35.4    | 16.9     | 9.3  | 28.1 | 33.5     | 46.0     | 12.5   | Outside             |             |
| Hori     | 720.002   | QP       | 30.5    | 20.9     | 10.7 | 28.0 | 34.1     | 46.0     | 11.9   | Outside             |             |
| Hori     | 786.503   | QP       | 29.4    | 21.7     | 11.0 | 27.7 | 34.4     | 46.0     | 11.6   | Outside             |             |
| Hori     | 983.006   | QP       | 33.7    | 23.4     | 11.6 | 27.1 | 41.6     | 53.9     | 12.3   | Inside              |             |
| Hori     | 1249.982  | PK       | 61.6    | 25.8     | 2.0  | 35.8 | 53.6     | 68.2     | 14.6   | Outside             |             |
| Hori     | 1844.828  | PK       | 62.6    | 28.5     | 2.4  | 35.2 | 58.3     | 68.2     | 9.9    | Outside             |             |
| Hori     | 3750.349  | PK       | 49.9    | 30.5     | 3.5  | 34.1 | 49.8     | 73.9     | 24.1   | Inside              |             |
| Hori     | 4824.000  | PK       | 44.5    | 32.7     | 4.0  | 34.2 | 47.0     | 73.9     | 26.9   | Inside              | Floor Noise |
| Hori     | 7236.000  | PK       | 44.3    | 36.8     | 5.1  | 34.1 | 52.1     | 68.2     | 16.1   | Outside             | Floor Noise |
| Hori     | 9648.000  | PK       | 43.5    | 38.9     | 6.0  | 34.7 | 53.7     | 68.2     | 14.5   | Outside             | Floor Noise |
| Hori     | 10360.000 | PK       | 45.7    | 40.0     | -3.3 | 34.4 | 48.0     | 68.2     | 20.2   | Outside             | Floor Noise |
| Hori     | 12060.000 | PK       | 45.3    | 40.3     | -2.7 | 33.5 | 49.4     | 73.9     | 24.5   | Inside              | Floor Noise |
| Hori     | 14472.000 | PK       | 45.3    | 41.6     | -2.4 | 32.8 | 51.7     | 73.9     | 22.2   | Inside              | Floor Noise |
| Hori     | 15540.000 | PK       | 45.1    | 39.6     | -2.1 | 33.5 | 49.1     | 73.9     | 24.8   | Inside              | Floor Noise |
| Hori     |           | PK       | 45.0    | 41.3     | -1.8 | 32.8 | 51.7     | 68.2     | 16.5   | Outside             | Floor Noise |
| Hori     |           | AV       | 39.7    | 30.5     | 3.5  | 34.1 | 39.6     | 53.9     | 14.3   | Inside              |             |
| Hori     |           | AV       | 35.6    | 32.7     | 4.0  | 34.2 | 38.1     | 53.9     | 15.8   | Inside              | Floor Noise |
| Hori     |           | AV       | 35.4    | 40.3     | -2.7 | 33.5 | 39.5     | 53.9     | 14.4   | Inside              | Floor Noise |
| Hori     |           | AV       | 35.2    | 41.6     | -2.4 | 32.8 | 41.6     | 53.9     | 12.3   | Inside              | Floor Noise |
| Hori     | 15540.000 | AV       | 34.5    | 39.6     | -2.1 | 33.5 | 38.5     | 53.9     | 15.4   | Inside              | Floor Noise |
| Vert     | 48.750    | QP       | 30.7    | 11.1     | 7.0  | 28.5 | 20.3     | 40.0     | 19.7   | Outside             |             |
| Vert     | 146.250   | ÒР       | 32.4    | 14.7     | 7.8  | 28.1 | 26.8     | 43.5     | 16.7   | Outside             |             |
| Vert     | 249.987   | QP       | 26.8    | 17.2     | 8.5  | 27.6 | 24.9     | 46.0     | 21.1   | Inside              |             |
| Vert     | 341.266   | ÒР       | 30.7    | 15.9     | 9.1  | 27.8 | 27.9     | 46.0     | 18.1   | Outside             |             |
| Vert     | 374.970   | QP       | 30.6    | 16.9     | 9.3  | 28.1 | 28.7     | 46.0     | 17.3   | Outside             |             |
| Vert     | 719.960   | ÒР       | 31.2    | 20.9     | 10.7 | 28.0 | 34.8     | 46.0     | 11.2   | Outside             |             |
| Vert     | 786.403   | QP       | 31.2    | 21.7     | 11.0 | 27.7 | 36.2     | 46.0     | 9.8    | Outside             |             |
| Vert     | 982.506   | ÒР       | 37.6    | 23.4     | 11.6 | 27.1 | 45.5     | 53.9     | 8.4    | Inside              |             |
| Vert     | 1249.931  | PK       | 59.2    | 25.8     | 2.0  | 35.8 | 51.2     | 68.2     | 17.0   | Outside             |             |
| Vert     | 1844.828  | PK       | 63.9    | 28.5     | 2.4  | 35.2 | 59.6     | 68.2     | 8.6    | Outside             |             |
| Vert     | 3750.349  | PK       | 52.4    | 30.5     | 3.5  | 34.1 | 52.3     | 73.9     | 21.6   | Inside              |             |
| Vert     | 4824.000  | PK       | 44.0    | 32.7     | 4.0  | 34.2 | 46.5     | 73.9     | 27.4   | Inside              | Floor Noise |
| Vert     | 7236.000  | PK       | 45.1    | 36.8     | 5.1  | 34.1 | 52.9     | 68.2     | 15.3   | Outside             | Floor Noise |
| Vert     | 9648.000  | PK       | 44.9    | 38.9     | 6.0  | 34.7 | 55.1     | 68.2     | 13.1   | Outside             | Floor Noise |
| Vert     | 10360.000 | PK       | 45.6    | 40.0     | -3.3 | 34.4 | 47.9     | 68.2     | 20.3   | Outside             | Floor Noise |
| Vert     |           | PK       | 45.3    | 40.3     | -2.7 | 33.5 | 49.4     | 73.9     | 24.5   | Inside              | Floor Noise |
| Vert     |           | PK       | 45.6    | 41.6     | -2.4 | 32.8 | 52.0     | 73.9     | 21.9   | Inside              | Floor Noise |
| Vert     |           | PK       | 45.4    | 39.6     | -2.1 | 33.5 | 49.4     | 73.9     | 24.5   | Inside              | Floor Noise |
| Vert     | 16884.000 | PK       | 45.6    | 41.3     | -1.8 | 32.8 | 52.3     | 68.2     | 15.9   | Outside             | Floor Noise |
| Vert     |           | AV       | 42.4    | 30.5     | 3.5  | 34.1 | 42.3     | 53.9     | 11.6   | Inside              |             |
| Vert     |           | AV       | 35.6    | 32.7     | 4.0  | 34.2 | 38.1     | 53.9     | 15.8   | Inside              | Floor Noise |
| Vert     |           | AV       | 35.4    | 40.3     | -2.7 | 33.5 | 39.5     | 53.9     | 14.4   | Inside              | Floor Noise |
| Vert     |           | AV       | 35.2    | 41.6     | -2.4 | 32.8 | 41.6     | 53.9     | 12.3   | Inside              | Floor Noise |
| Vert     | 15540.000 | AV       | 35.0    | 39.6     | -2.1 | 33.5 | 39.0     | 53.9     | 14.9   | Inside              | Floor Noise |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 76 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

# Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H
Date 06/24/2015
Temperature/ Humidity 25 deg. C / 43% RH
Engineer Tsubasa Takayama (30MHz-26.5GHz)

Mode 11n-20 Tx 2412MHz + 11a Tx 5180MHz Co location transmitting





# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 77 of 95 **Issued date** : June 26, 2015 : July 7, 2015 Revised date FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity 25 deg. C / 43% RH Engineer Tsubasa Takayama (5150MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5180MHz Co location transmitting

11n-20 Tx 2412MHz + 11n-20 Tx 5180MHz Co location transmitting 11n-20 Tx 2412MHz + 11n-40 Tx 5190MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain  | Result | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|-------|--------|----------|--------|---------------------|--------|
| 1 olunty | [MHz]     | Beteetor | [dBuV]  | [dB/m]   | [dB] | [dB]  |        | [dBuV/m] |        | of Restricted Bands |        |
| Hori     | ,         | DIZ      |         |          | 4.2  | _     | ,      | , ,      |        |                     |        |
|          | 5150.000  |          | 43.4    | 33.0     |      | 34.1  | 46.5   |          |        | Bandedge            | 11a    |
| Hori     | 5150.000  | PK       | 43.6    | 33.0     | 4.2  | 34.1  | 46.7   | 68.2     | 21.5   | Bandedge            | 11n-20 |
| Hori     | 5150.000  | PK       | 43.9    | 33.0     | 4.2  | 34.1  | 47.0   | 68.2     | 21.2   | Bandedge            | 11n-40 |
| Hori     | 5150.000  | AV       | 34.4    | 33.0     | 4.2  | 34.1  | 37.5   | 53.9     | 16.4   | Bandedge            | 11a    |
| Hori     | 5150.000  | AV       | 34.8    | 33.0     | 4.2  | 34.1  | 37.9   | 53.9     | 16.0   | Bandedge            | 11n-20 |
| Hori     | 5150.000  | AV       | 34.3    | 33.0     | 4.2  | 34.1  | 37.4   | 53.9     | 16.5   | Bandedge            | 11n-40 |
| Vert     | 5150.000  | PK       | 43.5    | 33.0     | 4.2  | 34.1  | 46.6   | 68.2     | 21.6   | Bandedge            | 11a    |
| Vert     | 5150.000  | PK       | 43.6    | 33.0     | 4.2  | 34.1  | 46.7   | 68.2     | 21.5   | Bandedge            | 11n-20 |
| Vert     | 5150.000  | PK       | 43.3    | 33.0     | 4.2  | 34.1  | 46.4   | 68.2     | 21.8   | Bandedge            | 11n-40 |
| Vert     | 5150.000  | AV       | 33.6    | 33.0     | 4.2  | 34.1  | 36.7   | 53.9     | 17.2   | Bandedge            | 11a    |
| Vert     | 5150.000  | AV       | 33.8    | 33.0     | 4.2  | 34.1  | 36.9   | 53.9     | 17.0   | Bandedge            | 11n-20 |
| Vert     | 5150,000  | ΔV       | 34.0    | 33.0     | 4.2  | 3.4.1 | 37.1   | 53.0     | 16.8   | Bandedge            | 11n-40 |

Result = Reading + Ant Factor + Loss (Cable-Attenuator+Filter-Distance factor(above 100Hz)) - Gain(Amprifier)
\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor:  $10 \text{GHz} \cdot 26.5 \text{GHz}$   $20 \log(3.0 \text{m/} 1.0 \text{m}) = 9.5 \text{dB}$   $26.5 \text{GHz} \cdot 40 \text{GHz}$   $20 \log(3.0 \text{m/} 0.5 \text{m}) = 15.6 \text{dB}$  \*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 78 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity
Engineer

25 deg. C / 43% RH
Tsubasa Takayama
(5350MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5320MHz Co location transmitting

11n-20 Tx 2412MHz + 11n-20 Tx 5320MHz Co location transmitting 11n-20 Tx 2412MHz + 11n-40 Tx 5310MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5350.000  | PK       | 44.5    | 32.9     | 4.3  | 34.0 | 47.7     | 68.2     | 20.5   | Bandedge            | 11a    |
| Hori     | 5350.000  | PK.      | 44.4    | 32.9     | 4.3  | 34.0 | 47.6     | 68.2     | 20.6   | Bandedge            | 11n-20 |
| Ногі     | 5350.000  | PK       | 44.6    | 32.9     | 4.3  | 34.0 | 47.8     | 68.2     | 20.4   | Bandedge            | 11n-40 |
| Hori     | 5350.000  | AV       | 34.2    | 32.9     | 4.3  | 34.0 | 37.4     | 53.9     | 16.5   | Bandedge            | 11a    |
| Hori     | 5350.000  | AV       | 34.6    | 32.9     | 4.3  | 34.0 | 37.8     | 53.9     | 16.1   | Bandedge            | 11n-20 |
| Ногі     | 5350.000  | AV       | 34.5    | 32.9     | 4.3  | 34.0 | 37.7     | 53.9     | 16.2   | Bandedge            | 11n-40 |
| Vert     | 5350.000  | PK       | 43.7    | 32.9     | 4.3  | 34.0 | 46.9     | 68.2     | 21.3   | Bandedge            | 11a    |
| Vert     | 5350.000  | PK.      | 44.0    | 32.9     | 4.3  | 34.0 | 47.2     | 68.2     | 21.0   | Bandedge            | 11n-20 |
| Vert     | 5350.000  | PK       | 44.0    | 32.9     | 4.3  | 34.0 | 47.2     | 68.2     | 21.0   | Bandedge            | 11n-40 |
| Vert     | 5350.000  | AV       | 34.4    | 32.9     | 4.3  | 34.0 | 37.6     | 53.9     | 16.3   | Bandedge            | 11a    |
| Vert     | 5350.000  | AV       | 34.2    | 32.9     | 4.3  | 34.0 | 37.4     | 53.9     | 16.5   | Bandedge            | 11n-20 |
| Vert     | 5350.000  | AV       | 34.2    | 32.9     | 4.3  | 34.0 | 37.4     | 53.9     | 16.5   | Bandedge            | 11n-40 |

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amprifier)$ 

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 79 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity
Engineer

25 deg. C / 43% RH
Tsubasa Takayama
(5470MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5500MHz Co location transmitting

11n-20 Tx 2412MHz + 11n-20 Tx 5500MHz Co location transmitting 11n-20 Tx 2412MHz + 11n-40 Tx 5510MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5470.000  | PK       | 44.1    | 32.9     | 4.3  | 33.9 | 47.4     | 73.9     | 26.5   | Bandedge            | 11a    |
| Hori     | 5470.000  | PK       | 44.5    | 32.9     | 4.3  | 33.9 | 47.8     | 73.9     | 26.1   | Bandedge            | 11n-20 |
| Hori     | 5470.000  | PK       | 44.3    | 32.9     | 4.3  | 33.9 | 47.6     | 73.9     | 26.3   | Bandedge            | 11n-40 |
| Hori     | 5470.000  | AV       | 34.2    | 32.9     | 4.3  | 33.9 | 37.5     | 53.9     | 16.4   | Bandedge            | 11a    |
| Hori     | 5470.000  | AV       | 34.3    | 32.9     | 4.3  | 33.9 | 37.6     | 53.9     | 16.3   | Bandedge            | 11n-20 |
| Hori     | 5470.000  | AV       | 34.5    | 32.9     | 4.3  | 33.9 | 37.8     | 53.9     | 16.1   | Bandedge            | 11n-40 |
| Vert     | 5470.000  | PK       | 43.8    | 32.9     | 4.3  | 33.9 | 47.1     | 73.9     | 26.8   | Bandedge            | 11a    |
| Vert     | 5470.000  | PK       | 44.2    | 32.9     | 4.3  | 33.9 | 47.5     | 73.9     | 26.4   | Bandedge            | 11n-20 |
| Vert     | 5470.000  | PK       | 44.0    | 32.9     | 4.3  | 33.9 | 47.3     | 73.9     | 26.6   | Bandedge            | 11n-40 |
| Vert     | 5470.000  | AV       | 34.4    | 32.9     | 4.3  | 33.9 | 37.7     | 53.9     | 16.2   | Bandedge            | 11a    |
| Vert     | 5470.000  | AV       | 34.5    | 32.9     | 4.3  | 33.9 | 37.8     | 53.9     | 16.1   | Bandedge            | 11n-20 |
| Vert     | 5470.000  | AV       | 34.4    | 32.9     | 4.3  | 33.9 | 37.7     | 53.9     | 16.2   | Bandedge            | 11n-40 |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 80 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity
Engineer

25 deg. C / 43% RH
Tsubasa Takayama
(5725MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5700MHz Co location transmitting

11n-20 Tx 2412MHz + 11n-20 Tx 5700MHz Co location transmitting 11n-20 Tx 2412MHz + 11n-40 Tx 5670MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5725.000  | PK       | 44.5    | 33.2     | 4.5  | 33.9 | 48.3     | 73.9     | 25.6   | Bandedge            | 11a    |
| Hori     | 5725.000  | PK       | 44.4    | 33.2     | 4.5  | 33.9 | 48.2     | 73.9     | 25.7   | Bandedge            | 11n-20 |
| Hori     | 5725.000  | PK       | 44.6    | 33.2     | 4.5  | 33.9 | 48.4     | 73.9     | 25.5   | Bandedge            | 11n-40 |
| Hori     | 5725.000  | AV       | 34.5    | 33.2     | 4.5  | 33.9 | 38.3     | 53.9     | 15.6   | Bandedge            | 11a    |
| Hori     | 5725.000  | AV       | 34.2    | 33.2     | 4.5  | 33.9 | 38.0     | 53.9     | 15.9   | Bandedge            | 11n-20 |
| Hori     | 5725.000  | AV       | 34.2    | 33.2     | 4.5  | 33.9 | 38.0     | 53.9     | 15.9   | Bandedge            | 11n-40 |
| Vert     | 5725.000  | PK       | 44.1    | 33.2     | 4.5  | 33.9 | 47.9     | 73.9     | 26.0   | Bandedge            | 11a    |
| Vert     | 5725.000  | PK       | 44.5    | 33.2     | 4.5  | 33.9 | 48.3     | 73.9     | 25.6   | Bandedge            | 11n-20 |
| Vert     | 5725.000  | PK       | 44.3    | 33.2     | 4.5  | 33.9 | 48.1     | 73.9     | 25.8   | Bandedge            | 11n-40 |
| Vert     | 5725.000  | AV       | 34.3    | 33.2     | 4.5  | 33.9 | 38.1     | 53.9     | 15.8   | Bandedge            | 11a    |
| Vert     | 5725.000  | AV       | 34.4    | 33.2     | 4.5  | 33.9 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-20 |
| Vert     | 5725.000  | AV       | 34.4    | 33.2     | 4.5  | 33.9 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-40 |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup>Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

: 10607274H-C-R1 Test report No. Page : 81 of 95 **Issued date** : June 26, 2015 : July 7, 2015 Revised date FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity 25 deg. C / 43% RH Engineer Tsubasa Takayama (5725MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5745MHz Co location transmitting

11n-20 Tx 2412MHz + 11n-20 Tx 5745MHz Co location transmitting 11n-20 Tx 2412MHz + 11n-40 Tx 5755MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5725.000  | PK       | 44.6    | 33.2     | 4.5  | 33.9 | 48.4     | 73.9     | 25.5   | Bandedge            | 11a    |
| Hori     | 5725.000  | PK       | 44.3    | 33.2     | 4.5  | 33.9 | 48.1     | 73.9     | 25.8   | Bandedge            | 11n-20 |
| Hori     | 5725.000  | PK       | 44.5    | 33.2     | 4.5  | 33.9 | 48.3     | 73.9     | 25.6   | Bandedge            | 11n-40 |
| Hori     | 5725.000  | AV       | 34.3    | 33.2     | 4.5  | 33.9 | 38.1     | 53.9     | 15.8   | Bandedge            | 11a    |
| Hori     | 5725.000  | AV       | 34.2    | 33.2     | 4.5  | 33.9 | 38.0     | 53.9     | 15.9   | Bandedge            | 11n-20 |
| Hori     | 5725.000  | AV       | 34.4    | 33.2     | 4.5  | 33.9 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-40 |
| Vert     | 5725.000  | PK       | 44.4    | 33.2     | 4.5  | 33.9 | 48.2     | 73.9     | 25.7   | Bandedge            | 11a    |
| Vert     | 5725.000  | PK       | 44.6    | 33.2     | 4.5  | 33.9 | 48.4     | 73.9     | 25.5   | Bandedge            | 11n-20 |
| Vert     | 5725.000  | PK       | 34.5    | 33.2     | 4.5  | 33.9 | 38.3     | 73.9     | 35.6   | Bandedge            | 11n-40 |
| Vert     | 5725.000  | AV       | 34.3    | 33.2     | 4.5  | 33.9 | 38.1     | 53.9     | 15.8   | Bandedge            | 11a    |
| Vert     | 5725.000  | AV       | 34.4    | 33.2     | 4.5  | 33.9 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-20 |
| Vert     | 5725 000  | AV       | 34.2    | 33.2     | 4.5  | 33.9 | 38.0     | 53.9     | 15.9   | Bandedge            | 11n-40 |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor/above 100Hz) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor:  $10 \text{GHz} \cdot 26.5 \text{GHz}$   $20 \log(3.0 \text{m}/1.0 \text{m}) = 9.5 \text{dB}$   $26.5 \text{GHz} \cdot 40 \text{GHz}$   $20 \log(3.0 \text{m}/0.5 \text{m}) = 15.6 \text{dB}$  \*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 82 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Radiated Spurious Emission**

Test place Ise EMC Lab. No. 2 Semi Anechoic Chamber

Report No. 10607274H Date 06/24/2015

Temperature/ Humidity
Engineer

25 deg. C / 43% RH
Tsubasa Takayama
(5725MHz edge)

Mode 11n-20 Tx 2412MHz + 11a Tx 5825MHz Co location transmitting

 $11n\mbox{-}20$  Tx  $2412MHz+11n\mbox{-}20$  Tx 5825MHz Co location transmitting  $11n\mbox{-}20$  Tx  $2412MHz+11n\mbox{-}40$  Tx 5795MHz Co location transmitting

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Inside or Outside   | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|---------------------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | of Restricted Bands |        |
| Hori     | 5850.000  | PK       | 44.3    | 33.4     | 4.5  | 34.0 | 48.2     | 73.9     | 25.7   | Bandedge            | 11a    |
| Hori     | 5850.000  | PK       | 44.5    | 33.4     | 4.5  | 34.0 | 48.4     | 73.9     | 25.5   | Bandedge            | 11n-20 |
| Hori     | 5850.000  | PK       | 44.3    | 33.4     | 4.5  | 34.0 | 48.2     | 73.9     | 25.7   | Bandedge            | 11n-40 |
| Hori     | 5850.000  | AV       | 34.4    | 33.4     | 4.5  | 34.0 | 38.3     | 53.9     | 15.6   | Bandedge            | 11a    |
| Hori     | 5850.000  | AV       | 34.7    | 33.4     | 4.5  | 34.0 | 38.6     | 53.9     | 15.3   | Bandedge            | 11n-20 |
| Hori     | 5850.000  | AV       | 34.3    | 33.4     | 4.5  | 34.0 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-40 |
| Vert     | 5850.000  | PK       | 44.1    | 33.4     | 4.5  | 34.0 | 48.0     | 73.9     | 25.9   | Bandedge            | 11a    |
| Vert     | 5850.000  | PK       | 44.3    | 33.4     | 4.5  | 34.0 | 48.2     | 73.9     | 25.7   | Bandedge            | 11n-20 |
| Vert     | 5850.000  | PK       | 34.6    | 33.4     | 4.5  | 34.0 | 38.5     | 73.9     | 35.4   | Bandedge            | 11n-40 |
| Vert     | 5850.000  | AV       | 34.8    | 33.4     | 4.5  | 34.0 | 38.7     | 53.9     | 15.2   | Bandedge            | 11a    |
| Vert     | 5850.000  | AV       | 34.5    | 33.4     | 4.5  | 34.0 | 38.4     | 53.9     | 15.5   | Bandedge            | 11n-20 |
| Vert     | 5850.000  | AV       | 34.3    | 33.4     | 4.5  | 34.0 | 38.2     | 53.9     | 15.7   | Bandedge            | 11n-40 |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

\*Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

\*Noises that had duty cycle synchronized with the fundamental frequency were not detected at the band-edge and harmonics frequencies.

# UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 83 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015 Temperature/ Humidity 23deg. C / 40% RH Engineer Takafumi Noguchi

Mode 11a Tx



<sup>\*</sup> Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

#### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 84 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H
Date 03/03/2015
Temperature/ Humidity 23deg. C / 40% RH
Engineer Takafumi Noguchi

Mode 11a Tx



<sup>\*</sup> Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 85 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015 23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer Mode 11n-20 Tx

#### 11n-20 Peak detect



<sup>\*</sup> Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

#### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 86 of 95 **Issued date** : June 26, 2015 : July 7, 2015 Revised date FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015 23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer Mode 11n-20 Tx

11n-20 Average detect



<sup>\*</sup> Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

#### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 87 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015 23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer Mode 11n-40 Tx

#### 11n-40 Peak detect



<sup>\*</sup> Final result of band edge was measured as radiated spurious emission. Refer to Radiated Spurious Emission's pages.

#### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 88 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

#### **Band Edge confirmation**

Test place Ise EMC Lab. No.3 Anechoic Chamber

Report No. 10607274H Date 03/03/2015 23deg. C / 40% RH Takafumi Noguchi Temperature/ Humidity Engineer Mode 11n-40 Tx



<sup>\*</sup> Final result of band edge was measured as Radiated Spurious Emission. Refer to Radiated Spurious Emission's pages.

#### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10607274H-C-R1 Test report No. Page : 89 of 95 **Issued date** : June 26, 2015 Revised date : July 7, 2015 FCC ID : UJHNR213

### **VBW (AV) Calculation**

Ise EMC Lab. No.11 Measurement Room

Test place Report No. 10607274H Date 03/02/2015 24deg. C / 32% RH Tsubasa Takayama Temperature/ Humidity Engineer

Mode 11a Tx / 11n-20 Tx / 11n-40 Tx

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11a <b>54Mbps</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11n-20 MCS7                          |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--|--|
| Tx on / (Tx o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n + Tx off) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tx on / (Tx or                       | n + Tx off) =                                            |                                  | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.110         |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n + Tx off) * 100 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tx on / (Tx or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n + Tx off) * 10                     | 00 =                                                     | 1                                | 11.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Duty factor =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 * log (2.006 / 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) = 9.80 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duty factor =                        | 2) = 9                                                   | = 9.57 dB                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |  |  |
| * Agilent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * Agilent                            |                                                          |                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T Mkr2        | 2 021           |  |  |
| Ref 0 dBm<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Atten 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.42 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref 0 dBm<br>•Peak                   | Atten 10 dB                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2.39            |  |  |
| .0g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Log                                  |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |  |  |
| iB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>dB/                            |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100           | t Alm           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1           |                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |  |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s | 28                                   |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |  |  |
| gAv MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ationsphines of the spines of the state of the spines of t | hythic pertitions the property of the periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LgAv WY TW                           | Mingrid and popular state of the digital section in      | the distribution of the state of | printing the state of the state | digital and   | - 10            |  |  |
| 11 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W1 S2                                |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0               |  |  |
| Center 5.180 000 GHz<br>Res BW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ●VBW 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span 0 Hz<br>Sweep 2.4 ms (1201 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center 5.180 000 GHz<br>Res BW 1 MHz | •VBI                                                     | W 3 MHz                          | Ѕнее                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p 2.48 ms (12 | oan 0<br>201 pt |  |  |
| 16 (1) T<br>2R (1) T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inse 92 ps -7 inse 210 ps inse 92 ps -7 inse 92 ps -7 inse 2,006 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anplitude<br>7,74 dBn<br>-1,96 dB<br>7,74 dBn<br>-8,42 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marker Trace (1) (1) (2) (2) (2) (1) | Type X fixis Time 125.8 Time 223.2 Time 126.3 Time 2.021 | ne<br>he<br>he                   | -76.48 dBm<br>-2.66 dB<br>-76.48 dBm<br>-2.39 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                 |  |  |
| 1a (1) 1<br>28 (1) 1<br>2a (1) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,74 dBm<br>-1.90 dB<br>7,74 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on - Tx on - Tx on / (Tx on - Tx o | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.74 dBa -1.99 dB -1.99 dB -1.99 dB -1.99 dB -1.94 dB -1.42 dB -1. | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on - Tx on - Tx on / (Tx on - Tx o | see   92 µs   -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.74 dBn<br>-1.99 dB<br>7.74 dBn<br>-8.42 dB<br>0.108<br>10.8 %<br>= 9.66 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Fx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.74 dBn -1.99 dB -1.99 dB -1.99 dB -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.96 dBn  | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.74 dBa -1.99 dB -1.99 dB -1.99 dB -1.99 dB -1.94 dB -1. | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Fx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.74 dBn -1.99 dB -1.99 dB -1.99 dB -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.96 dBn  | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Fx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.74 dBn -1.99 dB -1.99 dB -1.99 dB -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.94 dBn -1.96 dBn  | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.108<br>10.8 %<br>= 9.66 dB<br>R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.108<br>10.8 %<br>= 9.66 dB<br>R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on   Tx on   Tx on   Tx on   (Tx on   Tx on   Tx on   Tx on   Tx on   (Tx on   Tx on    | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.108<br>10.8 %<br>= 9.66 dB<br>R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Duty factor = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11n-40 MCS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.108<br>10.8 %<br>= 9.66 dB<br>R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Duty factor = 1 Agilent  Ref 0 dBm  PPavg  18 Agilent  Ref 0 dBm  PCak   | 11n-40 MCS7  + Tx off) = + Tx off) * 100 = 0 * log (1.007 / 0.1088) * *Atten 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.108<br>10.8 %<br>= 9.66 dB<br>R T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Tx on / (Tx on Duty factor = 1 Agilent  Ref @ dBm  PPavs  April 1 32  Center 5.190 @00 GHz  Res BH 1 MHz  Marker Trace T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ### 10 dB  #### 10 dB  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.108<br>10.8 %<br>= 9.66 dB<br>R T<br>AMKr2 1.007 ms<br>-2.36 dB<br>Span 0 Hz<br>Sweep 1.28 ms (1201 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on  | ### 10 dB  ### 10 dB  ### 10 dB  ### 10 dB  #### 10 dB  #### 10 dB  ##### 10 dB  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.74 dBa -1.99 dB 7.74 dBa -1.99 dB 7.74 dBa -0.42 dB  0.108 10.8 % = 9.66 dB  R T  A Mkr2 1.007 ms -2.36 dB  Span 0 Hz Sweep 1.28 ms (1201 pts) Replitude 3.93 dBa 0.55 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |
| Tx on / (Tx on Tx on / (Tx on Tx on / (Tx on Duty factor = 1  # Agilent  Ref 0 dBm  Peak  #PRV9  #PR | #USH 3 MHZ  *USH 3 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.74 dBa -1.99 dB -1.99 dB -1.99 dB -1.99 dB -1.99 dB -1.94 dB -1. | 1R (1)<br>16 (1)<br>2R (1)           | Time 125.8<br>Time 223.2<br>Time 126.3                   | ne<br>he<br>he                   | -2.66 dB<br>-76.48 dBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |  |  |

### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone : +81 596 24 8124 Facsimile

Test report No. : 10607274H-C-R1
Page : 90 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Conducted Spurious Emission**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H
Date 03/03/2015
Temperature/ Humidity 23deg. C / 32% RH
Engineer Tsubasa Takayama

Mode 11a Tx

#### 11a Tx 5180MHz



| I | Frequency | Reading | Cable | Attenator | Antenna | N         | EIRP  | Distance | Ground | E                | Limit    | Margin | Remark |
|---|-----------|---------|-------|-----------|---------|-----------|-------|----------|--------|------------------|----------|--------|--------|
|   |           |         | Loss  |           | Gain    | (Number   |       |          | bounce | (field strength) |          |        |        |
| L | [kHz]     | [dBm]   | [dB]  | [dB]      | [dBi]   | of Output | [dBm] | [m]      | [dB]   | [dBuV/m]         | [dBuV/m] | [dB]   |        |
| I | 10.76     | -99.7   | 1.00  | 9.8       | 6.5     | 1         | -82.3 | 300      | 6.0    | -21.1            | 46.9     | 68.0   |        |
|   | 175.00    | -89.8   | 1.00  | 9.8       | 6.5     | 1         | -72.5 | 300      | 6.0    | -11.2            | 22.7     | 33.9   |        |

E=EIRP-20log(D)+Ground bounce +104.8[dBuV/m]

 $EIRP = Reading + Cable (including \ customer \ supply's \ cable) \ Loss + Attenator + Antenna \ Gain + 10*log(N)$ 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 91 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

#### **Conducted Spurious Emission**

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 10607274H
Date 03/03/2015
Temperature/ Humidity 23deg. C / 32% RH
Engineer Tsubasa Takayama
Mode 11n-40 Tx

#### 11n-40 Tx 5190MHz



| Frequency | Reading | Cable | Attenator | Antenna | N         | EIRP  | Distance | Ground | Е                | Limit    | Margin | Remark |
|-----------|---------|-------|-----------|---------|-----------|-------|----------|--------|------------------|----------|--------|--------|
|           |         | Loss  |           | Gain    | (Number   |       |          | bounce | (field strength) |          |        |        |
| [kHz]     | [dBm]   | [dB]  | [dB]      | [dBi]   | of Output | [dBm] | [m]      | [dB]   | [dBuV/m]         | [dBuV/m] | [dB]   |        |
| 10.76     | -99.8   | 1.00  | 9.8       | 6.5     | 1         | -82.5 | 300      | 6.0    | -21.2            | 46.9     | 68.1   |        |
| 1244.00   | -91.2   | 1.01  | 9.8       | 6.5     | 1         | -73.9 | 30       | 6.0    | 7.4              | 25.7     | 18.3   |        |

E=EIRP-20log(D)+Ground bounce +104.8[dBuV/m]

 $EIRP = Reading + Cable (including \ customer \ supply's \ cable) \ Loss + Attenator + Antenna \ Gain + 10*log(N)$ 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1 Page : 92 of 95 Issued date : June 26, 2015 Revised date FCC ID : July 7, 2015 : UJHNR213

### **APPENDIX 2: Test instruments**

| Control No. | Instrument                          | Manufacturer         | Model No                                            | Serial No                      | Test Item | Calibration Date * Interval(month) |
|-------------|-------------------------------------|----------------------|-----------------------------------------------------|--------------------------------|-----------|------------------------------------|
| MAEC-03     | Semi Anechoic                       | TDK                  | Semi Anechoic                                       | DA-10005                       | RE        | 2015/02/19 * 12                    |
|             | Chamber(NSA)                        |                      | Chamber 3m                                          |                                |           |                                    |
| MOS-13      | Thermo-Hygrometer                   | Custom               | CTH-180                                             | 1301                           | RE        | 2015/01/13 * 12                    |
| MJM-16      | Measure                             | KOMELON              | KMC-36                                              | -                              | RE        | -                                  |
| COTS-MEMI   | EMI measurement program             | TSJ                  | TEPTO-DV                                            | -                              | RE        | -                                  |
| MSA-03      | Spectrum Analyzer                   | Agilent              | E4448A                                              | MY44020357                     | RE        | 2014/04/08 * 12 *1)                |
| MHA-20      | Horn Antenna 1-18GHz                | Schwarzbeck          | BBHA9120D                                           | 258                            | RE        | 2014/05/26 * 12 *1)                |
| MCC-167     | Microwave Cable                     | Junkosha             | MWX221                                              | 1404S374(1m) /<br>1405S074(5m) | RE        | 2014/05/26 * 12 *1)                |
| MPA-11      | MicroWave System<br>Amplifier       | Agilent              | 83017A                                              | MY39500779                     | RE        | 2014/03/24 * 12 *1)                |
| MHA-16      | Horn Antenna 15-40GHz               | Schwarzbeck          | BBHA9170                                            | BBHA9170306                    | RE        | 2014/05/26 * 12 *1)                |
| MHF-22      | High Pass Filter 7-<br>20GHz        | TOKIMEC              | TF37NCCB                                            | 602                            | RE        | 2015/01/27 * 12                    |
| MCC-79      | Microwave Cable 1G-<br>26.5GHz      | Suhner               | SUCOFLEX104                                         | 278923/4                       | RE        | 2014/12/15 * 12                    |
| MPA-22      | Pre Amplifier                       | MITEQ, Inc           | AMF-6F-2600400-<br>33-8P / AMF-4F-<br>2600400-33-8P | 1871355<br>/1871328            | RE        | 2014/09/11 * 12                    |
| MHA-29      | Horn Antenna 26.5-<br>40GHz         | ETS LINDGREN         | 3160-10                                             | 00152399                       | RE        | 2014/09/02 * 12                    |
| MCC-54      | Microwave Cable                     | Suhner               | SUCOFLEX101                                         | 2873(1m) /<br>2876(5m)         | RE        | 2014/03/11 * 12 *1)                |
| MTR-08      | Test Receiver                       | Rohde & Schwarz      | ESCI                                                | 100767                         | RE        | 2014/08/19 * 12                    |
| MBA-03      | Biconical Antenna                   | Schwarzbeck          | BBA9106                                             | 1915                           | RE        | 2014/10/18 * 12                    |
| MLA-03      | Logperiodic Antenna                 | Schwarzbeck          | USLP9143                                            | 174                            | RE        | 2014/10/18 * 12                    |
| MCC-51      | Coaxial cable                       | UL Japan             | -                                                   | -                              | RE        | 2014/07/14 * 12                    |
| MAT-70      | Attenuator(6dB)                     | Agilent              | 8491A-006                                           | MY52460153                     | RE        | 2014/04/14 * 12 *1)                |
| MPA-13      | Pre Amplifier                       | SONOMA<br>INSTRUMENT | 310                                                 | 260834                         | RE        | 2015/03/10 * 12                    |
| MRENT-116   | Spectrum Analyzer                   | Agilent              | E4440A                                              | MY46187620                     | AT        | 2015/03/09 * 12                    |
| MPM-12      | Power Meter                         | Anritsu              | ML2495A                                             | 0825002                        | AT        | 2014/06/16 * 12                    |
| MPSE-17     | Power sensor                        | Anritsu              | MA2411B                                             | 0738285                        | AT        | 2014/06/16 * 12                    |
| MPSE-22     | Power sensor                        | Agilent              | N1923A                                              | MY54070003                     | AT        | 2014/04/04 * 12 *1)                |
| MPM-16      | Power Meter                         | Agilent              | 8990B                                               | MY51000271                     | AT        | 2014/04/04 * 12 *1)                |
| MAT-23      | Attenuator(10dB) 1-<br>18GHz        | Orient Microwave     | BX10-0476-00                                        | -                              | AT        | 2014/03/13 * 12 *1)                |
| MCC-66      | Microwave Cable 1G-<br>40GHz        | Suhner               | SUCOFLEX102                                         | 28636/2                        | AT        | 2014/04/09 * 12 *1)                |
| MOS-19      | Thermo-Hygrometer                   | Custom               | CTH-201                                             | 0001                           | AT        | 2014/12/22 * 12                    |
| MCC-38      | Coaxial Cable                       | UL Japan             | -                                                   | -                              | AT        | 2014/12/02 * 12                    |
| MAT-10      | Attenuator(10dB)                    | Weinschel Corp       | 2                                                   | BL1173                         | AT        | 2014/11/19 * 12                    |
| MSA-16      | Spectrum Analyzer                   | Agilent              | E4440A                                              | MY46186390                     | AT        | 2015/02/16 * 12                    |
| MHA-06      | Horn Antenna 1-18GHz                | Schwarzbeck          | BBHA9120D                                           | 254                            | RE        | 2015/02/05 * 12                    |
| MPA-03      | Microwave System<br>Power Amplifier | Agilent              | 83050A                                              | 3950M00205                     | RE        | 2015/06/02 * 12                    |
| MAEC-02     | Semi Anechoic<br>Chamber(NSA)       | TDK                  | Semi Anechoic<br>Chamber 3m                         | DA-06902                       | RE        | 2014/06/25 * 12                    |
| MOS-22      | Thermo-Hygrometer                   | Custom               | CTH-201                                             | 0003                           | RE        | 2015/01/13 * 12                    |
| MJM-14      | Measure                             | KOMELON              | KMC-36                                              | -                              | RE        | -                                  |
| MSA-04      | Spectrum Analyzer                   | Agilent              | E4448A                                              | US44300523                     | RE        | 2014/11/12 * 12                    |
| MTR-03      | Test Receiver                       | Rohde & Schwarz      | ESCI                                                | 100300                         | RE        | 2015/06/08 * 12                    |
| MBA-02      | Biconical Antenna                   | Schwarzbeck          | BBA9106                                             | VHA91032008                    | RE        | 2014/10/18 * 12                    |
| MLA-02      | Logperiodic Antenna                 | Schwarzbeck          | USLP9143                                            | 201                            | RE        | 2014/10/18 * 12                    |

### UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10607274H-C-R1
Page : 93 of 95
Issued date : June 26, 2015
Revised date : July 7, 2015
FCC ID : UJHNR213

EMI test equipment (2/2)

| Control No. | Instrument      | Manufacturer     | Model No | Serial No      | Test Item | Calibration Date * Interval(month) |
|-------------|-----------------|------------------|----------|----------------|-----------|------------------------------------|
| MCC-12      | Coaxial Cable   | Fujikura/Agilent | -        | -              | RE        | 2015/02/06 * 12                    |
| MAT-07      | Attenuator(6dB) | Weinschel Corp   | 2        | BK7970         | RE        | 2014/11/11 * 12                    |
| MPA-09      | Pre Amplifier   | Agilent          | 8447D    | 2944A10845     | RE        | 2014/09/26 * 12                    |
| MCC-166     | Microwave Cable | Junkosha         | MWX221   | 1303S120(1m) / | RE        | 2014/09/24 * 12                    |
|             |                 |                  |          | 1311S167(5m)   |           |                                    |
| MPA-10      | Pre Amplifier   | Agilent          | 8449B    | 3008A02142     | RE        | 2015/01/28 * 12                    |

<sup>\*1)</sup> This test equipment was used for the tests before the expiration date of the calibration.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission

**AT: Antenna Terminal Conducted test** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN