Math
$$3 \times_{n-1} 3 \times_{n-2} 3 \dots 3 \times_{r-3} \dots$$

$$\times_{r} = 2A \quad | \quad \text{dim } rk(A) \leq r$$

$$\text{(Aim } \text{per}(A) \geq n - r \text{)}$$

$$\text{Every} \qquad \text{Math } x_r \in \text{Sing}(X_{r+1})$$

$$\text{Every} \qquad \text{Math } x_r \in \text{Math }$$

Rmk. Ir is a smooth

variety of dim = dim(G(n-r,n))+rn

= (n-r)r+rn= $n^2-(n-r)^2$

1 = (e,,..., enr)
Open set containing 1:

S, we have

Can get from one rank of to any other stab of ACXx 1Xx-1 ~ Gr ((ber(A)).

Then dim -n2-dim stab 2 n2- (n-r)2

Consider a cone, I homog, ideal.

E.g. I = (F)

(i) F = 2a; x; ~> v(I) ~ k"

ii non-sin at 6.

deg(3F) 21, homog. 3 VF(0) = 0.

(i) Arbitrory homog, ideal E,

T=(Li,..., Le, Fi)

T=(Fi)

N(Li,..., Le)

NCE) sing. a+0, w/

T(0) = 0

Away from Q, VCI) = C(X) is birational to Kek.

X=VCI) CIP".

I e k[xo,..., xn].

Then R. = k[xo,..., xn]/ may be integrally closed.

(localizins)

TO V(I) is normal (including at 0!.)

E.g. Suppose XCIP" is normal. Does it follow that CCX) is normal? Not necessarily.

XCIPⁿ
R. CR. CE(R.)

R. CR. CE(R.)

Rd. ERd. for an appropriate d.

Properties of non-singular points.

Prop. If xeX non-singular, then $\widehat{O}_{X,X} \simeq R(CX_1,...,X_m)$ (m = dim X).

Let u,,..., um gen meA.

out kelling..., um) -> A (Look no Cohen or something)

When (A, m) is regular and

Tu, ..., Tu & m/m² is a basis,

tun KCC ** , ... , xn 77 -> A is an iso.