Homework 3

Solution 1.

1.

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z_m} \sigma' \prod_{k=2}^m \sigma'(a_k) w_k$$

- 2. (a) The derivative of sigmoid function reaches a maximum at $\sigma'(0) = \frac{1}{4}$. Since $|w_j| < 1$, we have $|w_j \sigma'(a_j)| < \frac{1}{4} < 1$.
 - (b) To avoid the vanishing gradient problem we need $|w\sigma'(a)| \geq 1$. But, the $\sigma'(a)$ term also depends on $w : \sigma'(a) = \sigma(wz + b)$. If we make w large we tend to make wz + b very large, and $\sigma'(a)$ very small.
- 3. As long as a > 0, $\sigma'(a) = 1$. So we dont have the issue as in 2(b).

Solution 2.

We first show H can shatter n+1 points. Let $S=x_{i=0}^n$ and $y_i\in 1,1$ be the label of x_i . If we can place S such that $y_i(a^Tx_i+b)geq0$ holds for all y_i , then S can be shattered by H. Let $x_0=0$ and x_i be the unit vector on the i-th coordinate. Take $b=y_0/2$ and $a_i=y_i$. Then

$$y_0(0+b) = \frac{1}{2}y_0^2 \ge 0$$

$$y_1(y_1+b) = y_1^2 + \frac{1}{2}y_0y_1 \ge 0$$

$$\vdots$$

$$y_n(y_n+b) = y_n^2 + \frac{1}{2}y_0y_n \ge 0$$

always hold. Therefore $VCdim(H) \ge n + 1$.

Now let S contain n+2 points, we show H cannot shatter S. Let $P = \{x : a^Tx + b \ge 0\}$ be the halfspace defined by $h \in H$. Notice that $S \subseteq P \Rightarrow \mathbf{conv}(S) \subseteq P$, since

$$a^{T}(\sum_{i=1}^{k} \alpha_{i} x_{i}) + b = \sum_{i=1}^{k} \alpha_{i}(a^{T} x_{i} + b) \ge 0$$

Similar for the opposite halfspace P^c . Suppose H can shatter S. Now H can separate any disjoint subsets S_1 and S_2 such that $S_1 \subseteq P$ and $S_2 \subseteq P^c$. By the claim above, this implies $\mathbf{conv}(S_1) \subseteq P$ and $\mathbf{conv}(S_2) \subseteq P^c$. However by Radons theorem there exist S_1 and S_2 whose convex hulls intersect. This is a contradiction. Hence $\mathrm{VCdim}(H) \leq n+1$.