UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT 1110 — Kalkulus og lineær algebra.

Eksamensdag: Fredag 13.08.2004. Kontinuasjonseksamen.

Tid for eksamen: 09.00 - 12.00.

Oppgavesettet er på 2 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1.

a) Finn alle løsninger på likningssystemet

$$x_1 + 2x_2 = 4$$

$$x_2 - x_3 = 1$$

$$3x_2 - 3x_3 + x_4 = 6$$

$$x_1 + 3x_2 - x_3 = 5$$

La $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 1 \\ 1 & 3 & -1 & 0 \end{bmatrix}$. Finn den reduserte trappeformen til A (dvs. finn

en matrise på redusert trappeform som er rekkeekvivalent med A). Finn en basis for nullrommet og kolonnerommet til A.

b) La
$$B = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
 og la $C = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$. Beregn BC og finn a slik at $C = B^{-1}$.

c) For hvilke verdier av b har likningssystemet

$$x_1 + x_3 = 0$$

 $bx_1 + x_2 = 1$
 $x_2 + 2x_3 = 1$

ingen, én eller uendelig mange løsninger.

Oppgave 2.

- a) La D være det begrensete området i \mathbb{R}^3 som både ligger inne i paraboloiden $z=4-x^2-y^2$ og inne i sylinderen $x^2+y^2=1$ og som ligger over xy-planet. Finn volumet av D.
- b) Finn arealet av den delen av randflaten til D som ligger på paraboloiden $z=4-x^2-y^2$.

Oppgave 3.

- a) La C være den parametriserte kurven $\vec{r}(t) = \frac{1}{t}\vec{i} + \sqrt{2}\,t\vec{j} + \frac{1}{3}t^3\vec{k},\,t\in[1,2].$ Finn buelengden til C.
- b) For hvilke x er rekka $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2^n} x^{n+1}$ konvergent?
- c) La f(x) betegne summen av rekka i b) der den konvergerer. Finn et funksjonsuttrykk for f(x).

Oppgave 4.

- a) La D være det begrensete området i \mathbb{R}^2 som er begrenset av parabelen $y=1-x^2$ og x-aksen. La C være den lukkete randkurven til D. Orienter C mot urviseren. Regn ut kurveintegralet $I=\oint\limits_C -y\,dx+x^2dy$ ved direkte utregning av kurveintegralet.
- b) Regn ut I ved å beregne et dobbelt integral $\iint_D f(x,y)dA$ av et passelig skalarfelt f(x,y).

SLUTT