- 1. (a) Déterminer la matrice qui représente dans la base canonique de IR³ la projection f sur le plan π d'équation x+2y+3z=0 parallèlement à la droite D d'équation $\frac{x}{3}=\frac{y}{2}=z$
 - (b) Ecrire la matrice A' de f dans la base $\{v_1, v_2, v_3\}$ où $\{v_1, v_2\}$ est une base de π et v_3 est une base de D. En déduire la matrice de f trouvée dans la partie \mathbf{a} .
- 2. Dans IR^n On appelle longueur du vecteur $v=\left(\begin{array}{c}a_1\\ \vdots\\ a_n\end{array}\right)$ le scalaire

$$||v|| = \sqrt{a_1^2 + \dots + a_n^2}$$

Montrer que les rotations de centre O dans le plan IR^2 conservent la longueur des vecteurs, la rotation étant définie par la matrice

$$\left(\begin{array}{ccc}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{array}\right)$$

3. Soit A une matrice carrée d'ordre n On appelle trace de A

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

(a) Montrer que l'application

$$tr: M_n(IR) \longrightarrow IR$$

est une forme linéaire

- (b) Montrer que tr(AB) = tr(BA). En déduire que deux matrices semblables ont même trace
- (c) Montrer que l'on ne peut pas trouver de matrices A, B dans $M_n(C)$ telles que

$$AB - BA = I$$

4. Soit l'application

$$f: IR_2[x] \longrightarrow IR[x]$$

 $P \rightarrow (ax+1)P + (bx^2+c)P'$

Quelles relations doivent vérifier a b et c pour que f soit un endomorphisme de $IR_2[x]$? Déterminer dans ce cas le rang de f

5. Soit l'homomorphisme d'e.v.

$$f: IR^4 \longrightarrow IR^3 (x, y, z, t) \rightarrow (x - y + z + t, x + 2z - t, x + y + 3z - 3t)$$

Déterminer une base de Ker f et une base de Im f

6. Soit la matrice $M=\left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right)$ et f l'application associé à M définie par

$$f: M_2(IR) \longrightarrow M_2(IR)$$

 $A \longrightarrow AM - MA$

- (a) Vérifier que f est un endomorphisme d'e.v.
- (b) Déterminer une base de $Ker\ f$ et une base de $\operatorname{Im} f$
- 7. Soit

$$\varphi: IR_n[x] \longrightarrow IR^{n+1}$$

 $P \longrightarrow (P(0), P(1), \cdots, P(n))$

Montrer que φ est un isomorphisme d'e.v.

- 8. Soit E un e.v. On appelle projecteur un endomorphisme P de E telque $P^2 = P$. Montrer que si P est un projecteur alors $E = Ker f \oplus Im f$
- 9. Soit f une application linéaire bijective de E dans F (c'est -à-dire un isomorphisme). Montrer que f^{-1} est une application linéaire
- 10. Soit $h \in IR$ et:

$$\varphi_h: \operatorname{IR}_n[x] \longrightarrow \operatorname{IR}_n[x]$$
 avec $Q(x) = P(x+h)$

Montrer que φ_h est un isomorphisme

11. Soit f l'endomorphisme de IR^3 qui dans la base canonique est représentée par la matrice:

$$A = \left(\begin{array}{ccc} -2 & 3 & 1\\ 5 & 1 & 0\\ 4 & 11 & 3 \end{array}\right)$$

Déterminer une base de $\ker f$, une base de $\operatorname{Im} f$ et l'équation de $\operatorname{Im} f$

- (a) Existe-t-il des applications linéaires $f: IR^4 \longrightarrow IR^3$ telles que ker f soit engendré par le vecteur v = (1, 1, 0, -1) et Im f soit le plan d'équation x + y z = 0?
- (b) Déterminer la forme générale des matrices qui représentent dans les bases canoniques de IR^4 et de IR^3 les applications linéaires $f:IR^4\longrightarrow IR^3$ pour lesquelles $\ker f=[v_1,v_2]$ avec $v_1=(1,1,0,-1),\ v_2=(0,1,-1,0)$ et $\operatorname{Im} f$ soit le plan π d'équation x+y-z=0