Projet système Master 1

R. Blanc A.Castel C.Eymond Laritaz M.Garnier

UFR IM²AG Université Grenoble-Alpes

Jeudi 17 Janvier 2019

Outline

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Appels systèmes et choix d'implémentations

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- 2 Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Nachos Input-Output

Appels systèmes

- void PutChar(char c);
- void PutString(char *s);
- char GetChar();
- void GetString(char *s, int n);
- void PutInt(int n);
- void GetInt(int *n);

- Limite de chaîne de caractères traités de 200
- Les espaces sont lus comme les autres caractères

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- 2 Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- 4 Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Gestion de la pile

- L'emplacement dans la pile des Threads est géré avec une Bitmap
- 3 pages sont allouées à chaque Thread utilisateur
- La valeur maximale de SP que le main peut atteindre est fixée
- Le Thread Main n'apparaît pas dans la Bitmap

BitMap

blocs mémoire occupés pour les piles de threads

BitMap

blocs mémoire occupés pour les piles de threads

Gestion de la pile

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Appels Système

Appels systèmes

- int UserThreadCreate(void f(void *arg), void *arg);
 - Créé un Thread utilisateur, qui exécute la fonction "f" avec les arguments "arg"
 - Retourne l'identifiant du Thread créé

Multi-Threading

- int UserThreadCreate(void f(void *arg), void *arg);
 - Créé un Thread utilisateur, qui exécute la fonction "f" avec les arguments "arg"
 - Retourne l'identifiant du Thread créé
- void UserThreadExit();
 - Termine un Thread utilisateur

Appels Système

Appels systèmes

- int UserThreadCreate(void f(void *arg), void *arg);
 - Créé un Thread utilisateur, qui exécute la fonction "f" avec les arguments "arg"
 - Retourne l'identifiant du Thread créé

Multi-Threading

- void UserThreadExit();
 - Termine un Thread utilisateur
- void UserThreadJoin(int tid);
 - Attend la terminaison du Thread utilisateur "tid"

Appels Système

Choix d'implémentation

• Le nombre de Threads est limité à 50

- Le nombre de Threads est limité à 50
- La gestion de la terminaison des Threads est laissée à l'utilisateur, sauf pour le main

- Le nombre de Threads est limité à 50
- La gestion de la terminaison des Threads est laissée à l'utilisateur, sauf pour le main
- Un Thread peut faire un UserThreadJoin() sur n'importe quel Thread créé lors de l'exécution du programme

- Le nombre de Threads est limité à 50
- La gestion de la terminaison des Threads est laissée à l'utilisateur, sauf pour le main
- Un Thread peut faire un UserThreadJoin() sur n'importe quel Thread créé lors de l'exécution du programme
- L'identifiant d'un Thread est unique, il n'est jamais réutilisé

- Le nombre de Threads est limité à 50
- La gestion de la terminaison des Threads est laissée à l'utilisateur, sauf pour le main
- Un Thread peut faire un UserThreadJoin() sur n'importe quel Thread créé lors de l'exécution du programme
- L'identifiant d'un Thread est unique, il n'est jamais réutilisé
- C'est à l'utilisateur d'utiliser correctement UserThreadJoin()

Le nombre de Threads est limité à 50

Multi-Threading

- La gestion de la terminaison des Threads est laissée à l'utilisateur, sauf pour le main
- Un Thread peut faire un UserThreadJoin() sur n'importe quel Thread créé lors de l'exécution du programme
- L'identifiant d'un Thread est unique, il n'est jamais réutilisé
- C'est à l'utilisateur d'utiliser correctement UserThreadJoin()
 - Par exemple, l'utiliser sur un identifiant de Thread incorrect donnera lieu à un comportement indéfini.

Mémoire virtuelle

- - Appels systèmes et choix d'implémentations
- - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Pagination

FrameProvicer

FIRST_FREE_FRAME

Pagination

FrameProvicer

- FIRST_FREE_FRAME
- RANDOM_FREE_FRAME

Mémoire virtuelle

Multiprocessus

Appel système

- ForkExec(char* filename)
 - Crée un nouveau processus qui exécute le programme contenu dans le fichier filename.

Arborescence de répertoires

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- 2 Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- 4 Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

Arborescence de répertoires

Principe

- Le secteur contenant l'i-node du répertoire Root est le 1
- Un répertoire est représenté sur disque par un fichier Nachos classique

Arborescence de répertoires

Fonctionnalités

Création de répertoire (mkdir)

- Création de répertoire (mkdir)
 - Le nouveau répertoire contiendra deux fichiers : "." et ".."

- Création de répertoire (mkdir)
 - Le nouveau répertoire contiendra deux fichiers : "." et ".."
- Changement de répertoire courant (cd)

- Création de répertoire (mkdir)
 - Le nouveau répertoire contiendra deux fichiers : "." et ".."
- Changement de répertoire courant (cd)
 - Parcours de l'arborescence grâce aux fichiers spéciaux "." et

- Création de répertoire (mkdir)
 - Le nouveau répertoire contiendra deux fichiers : "." et ".."

Mémoire virtuelle

- Changement de répertoire courant (cd)
 - Parcours de l'arborescence grâce aux fichiers spéciaux "." et
 - Le répertoire racine s'appelle "/"

- Nachos Input-Output
 - Appels systèmes et choix d'implémentations
- 2 Multi-Threading
 - Gestion de la pile
 - Appels Système
- Mémoire virtuelle
 - Appels systèmes
- Système de fichiers
 - Arborescence de répertoires
 - Page des fichiers ouverts

- int Create (char *name, int size);
 - Retourne 1 si l'execution s'est bien passé, 0 sinon
 - Créé un fichier "name" dans le répertoire courant, de taille "size"

- int Create (char *name, int size);
 - Retourne 1 si l'execution s'est bien passé, 0 sinon
 - Créé un fichier "name" dans le répertoire courant, de taille "size"
- OpenFileId Open (char *name);
 - Ouvre le fichier "name", retourne un OpenFileld, manipulable par l'utilisateur

Mémoire virtuelle

Renvoie -1 si l'ouverture est impossible

- int Write (char *buffer, int size, OpenFileId id);
 - Ecrit la chaine de taille "size" contenue dans "buffer" dans le fichier "id"
 - Renvoie le nombre de bytes effectivement écrits

- int Write (char *buffer, int size, OpenFileId id);
 - Ecrit la chaine de taille "size" contenue dans "buffer" dans le fichier "id"
 - Renvoie le nombre de bytes effectivement écrits
- int Read (char *buffer, int size, OpenFileId id);
 - Remplis "buffer" avec un nombre de caractères "size" lus depuis le fichier "id"
 - Renvoie le nombre de bytes lus

- int Write (char *buffer, int size, OpenFileId id);
 - Ecrit la chaine de taille "size" contenue dans "buffer" dans le fichier "id"

Mémoire virtuelle

- Renvoie le nombre de bytes effectivement écrits
- int Read (char *buffer, int size, OpenFileId id);
 - Remplis "buffer" avec un nombre de caractères "size" lus depuis le fichier "id"
 - Renvoie le nombre de bytes lus
- void Close (OpenFileId id);
 - Ferme le fichier "id"

Table des fichiers ouverts

- Interface entre le système de fichiers et le programme utilisateur.
- Nachos permet l'ouverture de 10 fichiers simultanément au total au niveau des programmes utilisateurs

Proiet systèmeMaster 1