# Lecture One

### **Section 1.1 – The Binomial Theorem**

A binomial is a sum a+b, where a and b represent numbers. If n is a positive integer, then a general formula for expanding  $(a+b)^n$  is given by the **binomial theorem**.

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

The expansions of  $(a+b)^n$  for n=2, 3, 4, and 5 have the following properties:

- ✓ There are n + 1 terms, the first being  $a^n$  and the last  $b^n$
- ✓ The power of a decreases by 1 and the power of b increases by 1. For each term, the sum of the exponents of a and b is n.
- $\checkmark$  Each term has the form  $(c)a^{n-k}b^k$ , where the coefficient c is an integer and k = 0, 1, 2, ..., n.
- $\checkmark$  The following formula is true for each of the first n terms of the expansion:

$$\frac{\text{(coefficient of term).(exponent of a)}}{\text{number of term}} = \text{coefficient of next term}$$

Coefficient of the (k+1)st Term in the Expansion of  $(a+b)^n$ 

$$\frac{n.(n-1).(n-2).(n-3)....(n-k+1)}{k.(k-1)....3.2.1}, \quad k = 1, 2, ..., n$$

#### **Factorial Notation**

# Definition of n! (n factorial)

$$\begin{cases} n! = n(n-1)(n-2) \cdots 1 & if \quad n > 0 \\ 0! = 1 \end{cases}$$

Calculators: Math  $\rightarrow$  Prob  $\rightarrow$  4

#### Illustration

$$1! = 1$$

$$2! = 2.1 = 2$$

$$3! = 3.2.1 = 6$$

$$4! = 4.3.2.1 = 24$$

### Example

Simplify the quotient of factorial:  $\frac{7!}{5!}$ 

#### **Solution**

$$\frac{7!}{5!} = \frac{7.6.5.4.3.2.1}{5.4.3.2.1} = 7.6 = 42$$

Coefficient of the (k+1)st Term in the Expansion of  $(a+b)^n$  (Alternative Form)

$$\binom{n}{k} = C(n, k) = \frac{n!}{k!(n-k)!}, \quad k = 0,1,2,...,n$$

### Example

Find  $\binom{5}{2}$ 

$${5 \choose 2} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2!3!}$$

$$= \frac{1.2.3.4.5}{(1.2)(1.2.3)}$$

$$= \frac{20}{2}$$

$$= 10$$

#### **Binomial Theorem**

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n-1}ab^{n-1} + b^n$$

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \dots + \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}a^{n-k}b^k + \dots + nab^{n-1} + b^n$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

### Example

Find the binomial expansion of  $(2x + 3y^2)^4$ 

$$(2x+3y^2)^4 = (2x)^4 + {4 \choose 1}(2x)^3(3y^2)^1 + {4 \choose 2}(2x)^2(3y^2)^2 + {4 \choose 3}(2x)^1(3y^2)^3 + (3y^2)^4$$

$$= 16x^4 + 4(8x^3)(3y^2) + 6(4x^2)(9y^4) + 4(2x)(27y^6) + 81y^8$$

$$= 16x^4 + 96x^3y^2 + 216x^2y^4 + 216xy^6 + 81y^8$$

#### Pascal's Triangle

|   |   |    |   |    |           |     |    |           |     | 1         |     |           |    |     |           |    |   |    |   |   |
|---|---|----|---|----|-----------|-----|----|-----------|-----|-----------|-----|-----------|----|-----|-----------|----|---|----|---|---|
|   |   |    |   |    |           |     |    |           | 1   |           | 1   |           |    |     |           |    |   |    |   |   |
|   |   |    |   |    |           |     |    | 1         |     | 2         |     | 1         |    |     |           |    |   |    |   |   |
|   |   |    |   |    |           |     | 1  |           | 3   |           | 3   |           | 1  |     |           |    |   |    |   |   |
|   |   |    |   |    |           | 1   |    | 4         |     | 6         |     | 4         |    | 1   |           |    |   |    |   |   |
|   |   |    |   |    | 1         |     | 5  |           | 10  |           | 10  |           | 5  |     | 1         |    |   |    |   |   |
|   |   |    |   | 1  |           | 6   |    | 15        |     | 20        |     | <b>15</b> |    | 6   |           | 1  |   |    |   |   |
|   |   |    | 1 |    | 7         |     | 21 |           | 35  |           | 35  |           | 21 |     | 7         |    | 1 |    |   |   |
|   |   | 1  |   | 8  |           | 28  |    | <b>56</b> |     | <b>70</b> |     | <b>56</b> |    | 28  |           | 8  |   | 1  |   |   |
|   | 1 |    | 9 |    | <b>36</b> |     | 84 |           | 126 |           | 126 |           | 84 |     | <b>36</b> |    | 9 |    | 1 |   |
| 1 |   | 10 |   | 45 |           | 140 |    | 210       |     | 252       |     | 210       |    | 140 |           | 45 |   | 10 |   | 1 |

#### Example

Find the eighth row of the Pascal's triangle, and use it to expand  $(a+b)^7$ 

#### Solution



### Example

Find the binomial expansion of  $\left(\frac{1}{x} - 2\sqrt{x}\right)^5$ 

$$\left(\frac{1}{x} - 2\sqrt{x}\right)^5 = \frac{1}{x^5} - 10\frac{1}{x^4}\left(\sqrt{x}\right) + 10\frac{1}{x^3}(4x) - 10\frac{1}{x^2}\left(8x\sqrt{x}\right) + 5\left(\frac{1}{x}\right)\left(16x^2\right) - 32x^{5/2}$$

$$= \frac{1}{x^5} - 10\frac{1}{x^{7/2}} + 40\frac{1}{x^2} - 80\frac{1}{x^{1/2}} + 80x - 32x^{5/2}$$

# **Exercises** Section 1.1 – The Binomial Theorem

- 1. Find the *fifth* term in the expansion  $\left(x^3 + \sqrt{y}\right)^{13}$
- **2.** Find the term involving  $q^{10}$  in the binomial expansion  $\left(\frac{1}{3}p+q^2\right)^{12}$

Expand and simplify:

3. 
$$(4x-y)^3$$

**4.** 
$$(x+y)^6$$

5. 
$$(a-b)^6$$

**6.** 
$$(x-y)^7$$

7. 
$$(a+b)^8$$

8. 
$$(3t-5x)^4$$

**9.** 
$$\left(\frac{1}{3}x + y^2\right)^5$$

**10.** 
$$\left(\frac{1}{x^2} + 3x\right)^6$$

$$11. \quad \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^5$$

**12.** 
$$(2y-3)^4$$

**13.** 
$$(x+2)^5$$

**14.** 
$$(x^2 - y^2)^6$$

**15.** 
$$(ax - by)^4$$

**16.** 
$$(ax + by)^5$$

**17.** 
$$(\sqrt{x} - \sqrt{3})^4$$

**18.** 
$$(\sqrt{x} - \sqrt{2})^6$$

**19.** 
$$(2x-1)^{12}$$

**20.** 
$$\left(x - \frac{1}{x^2}\right)^9$$

**21.** 
$$\left(\frac{2}{x} - 3y\right)^5$$

**22.** 
$$\left(3\sqrt{x} + \sqrt[4]{x}\right)^4$$

**23.** 
$$(x+1)^5$$

**24.** 
$$(x-1)^5$$

**25.** 
$$(x-2)^6$$

**26.** 
$$\left(\frac{1}{x^3} - 2x\right)^5$$

**27.** 
$$\left(\frac{1}{x} - 2x\right)^6$$

**28.** 
$$(x^2 - 2y)^5$$

**29.** 
$$\left(\frac{2}{x} + 3\sqrt{x}\right)^4$$

**30.** 
$$(2x+5y)^7$$

**31.** 
$$(2x-3)^{11}$$

**32.** 
$$(2x-3y)^6$$

**33.** 
$$(2x+3y)^5$$

**34.** 
$$(3x-2y)^4$$

**35.** 
$$\left(x^2 + y^3\right)^3$$

**36.** 
$$\left(x^2 - y^2\right)^3$$

**37.** 
$$(2+i)^6$$

**38.** 
$$(2-i)^6$$

**39.** 
$$(\sqrt{2}+i)^5$$

**40.** 
$$(3-i)^4$$

### **Section 1.2 – Functions**

A set is a collection of objects of some type, and the objects are called elements of the set.

| Notation or<br>Terminology | Meaning                                                         | Example                         |
|----------------------------|-----------------------------------------------------------------|---------------------------------|
| $a \in S$                  | $\boldsymbol{a}$ is an element of $\boldsymbol{S}$              | $3 \in \mathbb{Z}$              |
| $a \notin S$               | $\boldsymbol{a}$ is not an element of $\boldsymbol{S}$          | $\frac{3}{2} \notin \mathbb{Z}$ |
| $S \subset T$              | S is a subset of T Every element of S is an element of T        | $\mathbb{Z} \subset \mathbb{R}$ |
| Constant                   | A letter or symbol that represents a specific element of a set. | $5, \sqrt{2}, \pi$              |
| Variable                   | A letter or symbol that represents any element of a set.        | Let $x$ denote any $\mathbb{R}$ |

#### **Definition of a** *Function*

A *function* is a relation between two variables such that to matches each element of a first set (called *domain*) to an element of a second set (called *range*) in such way that no element in the first set is assigned to two different elements in the second set.

The *domain* of the function is the set of all values of the independent variable for which the function is defined.

The *range* of the function is the set of all values taken on by the dependent variable.

### The **Domain** of a Function

**1.** Rational function:  $\frac{f(x)}{h(x)}$   $\Rightarrow$  **Domain**:  $h(x) \neq 0$ 

**Example**:  $f(x) = \frac{1}{x-3}$  **Domain**:  $x \neq 3$ 

**2.** Irrational function:  $\sqrt{g(x)}$   $\Rightarrow$  **Domain**:  $g(x) \ge 0$ 

**Example**:  $g(x) = \sqrt{3-x} + 5$  **Domain**:  $x \le 3$ 

**3.** Otherwise: *Domain* all real numbers

**Example**:  $f(x) = x^3 + |x|$  **Domain**: All real numbers,  $\mathbb{R}$ , or  $(-\infty, \infty)$ 

6

(1) & (2)  $\rightarrow$  Find the domain:  $f(x) = \frac{x+1}{\sqrt{x-3}}$   $\Rightarrow$  *Domain:* x > 3

#### Example

Let  $g(x) = \frac{\sqrt{4+x}}{1-x}$ . Find the domain of g.

#### **Solution**

$$\begin{cases} 4+x \ge 0 \Rightarrow x \ge -4 \\ 1-x \ne 0 \Rightarrow x \ne 1 \end{cases}$$

$$\rightarrow \quad \boxed{-4, 1) \cup (1, \infty)}$$

### **Difference Quotients**

$$\frac{f(x+h)-f(x)}{(x+h)-x}$$

The difference quotient is given by:

$$\frac{f(x+h)-f(x)}{h}$$



### Example

For the function f given by  $f(x) = 2x^2 - 3x$ , find the difference quotient  $\frac{f(x+h) - f(x)}{h}$ 

$$\frac{f(x+h) - f(x)}{h} = \frac{2(x+h)^2 - 3(x+h) - (2x^2 - 3x)}{h}$$

$$= \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$$

$$= \frac{4xh + 2h^2 - 3h}{h}$$

$$= \frac{4xh}{h} + \frac{2h^2}{h} - \frac{3h}{h}$$

$$= 4x + 2h - 3$$

### **Piecewise-Defined Functions**

Function are sometimes described by more than one expression, we call such functions *piecewise-defined functions*.

## Example

Graph each function

$$f(x) = \begin{cases} 2x+5 & if \quad x \le -1 \\ x^2 & if \quad |x| < 1 \\ 2 & if \quad x \ge 1 \end{cases}$$



# **Composition of Functions**

The composite function  $f \circ g$ , the composite of f and g, is defined as

$$(f \circ g)(x) = f(g(x))$$

Where x is in the domain of g and g(x) is in the domain of f





### Example

Let  $f(x) = x^2 - 1$  and g(x) = 3x + 5

- a) Find  $(f \circ g)(x)$  and the domain of  $f \circ g$
- b) Find  $(g \circ f)(x)$  and the domain of  $g \circ f$
- c) Find (f(g))(2) in two different ways: first using the functions f and g separately and second using the composite function  $f \circ g$ .

#### **Solution**

a) 
$$(f \circ g)(x) = f(g(x))$$
  
 $= f(3x+5)$   
 $= (\_)^2 - 1$   
 $= (3x+5)^2 - 1$   
 $= 9x^2 + 30x + 25 - 1$   
 $= 9x^2 + 30x + 24$ 

**Domain**:  $(3x+5) \rightarrow \mathbb{R}$ 

**Domain**:  $(9x^2 + 30x + 24) \rightarrow \mathbb{R}$ 

**Domain** of  $f \circ g : \mathbb{R}$ 

b) 
$$(g \circ f)(x) = g(f(x))$$
  

$$= g(x^{2} - 1)$$

$$= 3(x^{2} - 1) + 5$$

$$= 3x^{2} - 3 + 5$$

$$= 3x^{2} + 2$$
Domain:  $(3x^{2} + 2) \rightarrow \mathbb{R}$ 

**Domain** of  $g \circ f : \mathbb{R}$ 

c) 
$$g(2) = 3(2) + 5 = 11$$
  
 $(f \circ g)(2) = f(g(2))$   
 $= f(11)$   
 $= 11^2 - 1$   
 $= 120$   
 $(f \circ g)(x) = 9x^2 + 30x + 24$   
 $(f \circ g)(2) = 9(2)^2 + 30(2) + 24 = 120$ 

### Example

Let  $f(x) = x^2 - 16$  and  $g(x) = \sqrt{x}$ 

- a) Find  $(f \circ g)(x)$  and the domain of  $f \circ g$
- b) Find  $(g \circ f)(x)$  and the domain of  $g \circ f$

#### Solution

a) 
$$(f \circ g)(x) = f(g(x))$$
  

$$= f(\sqrt{x})$$

$$= (\sqrt{x})^2 - 16$$

$$= x - 16$$

**Domain** of  $f \circ g : x \geq 0$ 

**b**) 
$$(g \circ f)(x) = g(f(x))$$
  
=  $g(x^2 - 16)$   
=  $\sqrt{x^2 - 16}$ 

**Domain** of  $g \circ f : |x| \ge 4$  or  $(-\infty, -4] \cup [4, \infty)$ 

**Domain**: 
$$(\sqrt{x}) \rightarrow x \ge 0$$

**Domain**: 
$$(x-16) \rightarrow \mathbb{R}$$

**Domain**: 
$$(x^2 - 1) \rightarrow \mathbb{R}$$

**Domain**: 
$$\left(\sqrt{x^2 - 16}\right) \rightarrow |x| \ge 4$$

#### Even and Odd Functions

Given the function f(x) then find f(-x) and simplify:

- If  $f(-x) = f(x) \Rightarrow f$  is **even**, or
- If  $f(-x) = -f(x) \Rightarrow f$  is **odd**
- Neither

### Example

Decide whether each function is even, odd, or neither

a) 
$$f(x) = 8x^4 - 3x^2$$
  
 $f(-x) = 8(-x)^4 - 3(-x)^2$   
 $= 8x^4 - 3x^2$   
 $= f(x)$ 

Function is Even

b) 
$$f(x) = 6x^3 - 9x$$
$$f(-x) = 6(-x)^3 - 9(-x)$$
$$= -6x^3 + 9x$$
$$= -\left(6x^3 - 9x\right)$$
$$= -f(x)$$

Function is *Odd* 

c) 
$$f(x) = 3x^2 + 5x$$
  
 $f(-x) = 3(-x)^2 + 5(-x)$   
 $= 3x^2 - 5x$ 

Function is *Neither* 

# Exercises

### **Section 1.2 – Functions**

(1-80) Find the Domain

1. 
$$f(x) = 7x + 4$$

**2.** 
$$f(x) = |3x - 2|$$

3. 
$$f(x) = 3x + \pi$$

**4.** 
$$f(x) = \sqrt{7}x + \frac{1}{2}$$

5. 
$$f(x) = -2x^2 + 3x - 5$$

**6.** 
$$f(x) = x^3 - 2x^2 + x - 3$$

7. 
$$f(x) = x^2 - 2x - 15$$

8. 
$$f(x) = 4 - \frac{2}{x}$$

**9.** 
$$f(x) = \frac{1}{x^4}$$

**10.** 
$$g(x) = \frac{3}{x-4}$$

**11.** 
$$y = \frac{2}{x-3}$$

**12.** 
$$y = \frac{-7}{x-5}$$

**13.** 
$$f(x) = \frac{x+5}{2-x}$$

**14.** 
$$f(x) = \frac{8}{x+4}$$

**15.** 
$$f(x) = \frac{1}{x+4}$$

**16.** 
$$f(x) = \frac{1}{x-4}$$

17. 
$$f(x) = \frac{3x}{x+2}$$

**18.** 
$$f(x) = x - \frac{2}{x-3}$$

**19.** 
$$f(x) = x + \frac{3}{x - 5}$$

**20.** 
$$f(x) = \frac{1}{2}x - \frac{8}{x+7}$$

**21.** 
$$f(x) = \frac{1}{x-3} - \frac{8}{x+7}$$

**22.** 
$$f(x) = \frac{1}{x+4} - \frac{2x}{x-4}$$

**23.** 
$$f(x) = \frac{3x^2}{x+3} - \frac{4x}{x-2}$$

**24.** 
$$f(x) = \frac{1}{x^2 - 2x + 1}$$

**25.** 
$$f(x) = \frac{x}{x^2 + 3x + 2}$$

**26.** 
$$f(x) = \frac{x^2}{x^2 - 5x + 4}$$

**27.** 
$$f(x) = \frac{1}{x^2 - 4x - 5}$$

**28.** 
$$g(x) = \frac{2}{x^2 + x - 12}$$

**29.** 
$$h(x) = \frac{5}{\frac{4}{x} - 1}$$

**30.** 
$$y = \sqrt{x}$$

**31.** 
$$f(x) = \sqrt{8-3x}$$

**32.** 
$$y = \sqrt{4x+1}$$

33. 
$$y = \sqrt{7 - 2x}$$

**34.** 
$$f(x) = \sqrt{8-x}$$

**35.** 
$$f(x) = \sqrt{3-2x}$$

**36.** 
$$f(x) = \sqrt{3+2x}$$

**37.** 
$$f(x) = \sqrt{5-x}$$

**38.** 
$$f(x) = \sqrt{x-5}$$

**39.** 
$$f(x) = \sqrt{6-3x}$$

**40.** 
$$f(x) = \sqrt{3x-6}$$

**41.** 
$$f(x) = \sqrt{2x+7}$$

**42.** 
$$f(x) = \sqrt{x^2 - 16}$$

**43.** 
$$f(x) = \sqrt{16 - x^2}$$

**44.** 
$$f(x) = \sqrt{9 - x^2}$$

**45.** 
$$f(x) = \sqrt{x^2 - 25}$$

**46.** 
$$f(x) = \sqrt{x^2 - 5x + 4}$$

**47.** 
$$f(x) = \sqrt{x^2 + 5x + 4}$$

**48.** 
$$f(x) = \sqrt{x^2 + 3x + 2}$$

**49.** 
$$f(x) = \sqrt{x^2 - 3x + 2}$$

**50.** 
$$f(x) = \sqrt{x-4} + \sqrt{x+1}$$

**51.** 
$$f(x) = \sqrt{3-x} + \sqrt{x-2}$$

**52.** 
$$f(x) = \sqrt{1-x} + \sqrt{4-x}$$

**53.** 
$$f(x) = \sqrt{1-x} - \sqrt{x-3}$$

**54.** 
$$f(x) = \sqrt{x+4} - \sqrt{x-1}$$

$$55. \quad f(x) = \frac{\sqrt{x+1}}{x}$$

**56.** 
$$g(x) = \frac{\sqrt{x-3}}{x-6}$$

**57.** 
$$f(x) = \frac{\sqrt{x+4}}{\sqrt{x-1}}$$

$$58. \quad f(x) = \frac{\sqrt{5-x}}{x}$$

$$59. \quad f(x) = \frac{x}{\sqrt{5-x}}$$

**60.** 
$$f(x) = \frac{1}{x\sqrt{5-x}}$$

**67.** 
$$f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$$

**75.** 
$$f(x) = \frac{4x}{6x^2 + 13x - 5}$$

**61.** 
$$f(x) = \frac{x+1}{x^3 - 4x}$$

**68.** 
$$f(x) = \frac{\sqrt{2-x}}{\sqrt{x+2}}$$

**76.** 
$$f(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$

$$62. \quad f(x) = \frac{\sqrt{x+5}}{x}$$

**69.** 
$$f(x) = \frac{x-4}{\sqrt{x-2}}$$

77. 
$$f(x) = \frac{x^2}{\sqrt{x^2 - 5x + 4}}$$

$$63. \quad f(x) = \frac{x}{\sqrt{x+5}}$$

**70.** 
$$f(x) = \frac{1}{(x-3)\sqrt{x+3}}$$

**78.** 
$$f(x) = \frac{x+2}{\sqrt{x^2+5x+4}}$$

**64.** 
$$f(x) = \frac{1}{x\sqrt{x+5}}$$

**71.** 
$$f(x) = \sqrt{x+2} + \sqrt{2-x}$$

79. 
$$f(x) = \frac{\sqrt{x+2}}{\sqrt{x^2+3x+2}}$$

**65.** 
$$f(x) = \frac{x+3}{\sqrt{x-3}}$$

**72.** 
$$f(x) = \sqrt{(x-2)(x-6)}$$

73.  $f(x) = \sqrt{x+3} - \sqrt{4-x}$ 

**80.** 
$$f(x) = \frac{\sqrt{2x+3}}{x^2 + 6x + 5}$$

**66.** 
$$f(x) = \frac{\sqrt{x+3}}{\sqrt{x-3}}$$

**74.** 
$$f(x) = \frac{\sqrt{4x-3}}{x^2-4}$$

(81 – 97) Find and simplify the difference quotient  $\frac{f(x+h)-f(x)}{h}$  for the given function

**81.** 
$$f(x) = 9x + 5$$

**88.** 
$$f(x) = -5x - 7$$

**93.** 
$$f(x) = 2x^2 - x - 3$$

**82.** 
$$f(x) = 6x + 2$$

**89.** 
$$f(x) = 2x^2$$

**94.** 
$$f(x) = x^2 - 2x + 5$$

**83.** 
$$f(x) = 4x + 11$$

**90.** 
$$f(x) = 5x^2$$

**95.** 
$$f(x) = 3x^2 - 2x + 5$$

**84.** 
$$f(x) = 3x - 5$$
  
**85.**  $f(x) = -2x - 3$ 

**91.** 
$$f(x) = 3x^2 - 4x$$

**96.** 
$$f(x) = -2x^2 - 3x + 7$$

**86.** 
$$f(x) = -4x + 3$$

**92.** 
$$f(x) = 2x^2 - 3x$$

**97.** 
$$f(x) = \sqrt{x-3}$$

**87.** 
$$f(x) = 3x - 6$$

**98.** Let f(x) = 4x - 3 and g(x) = 5x + 7. Find each of the following and give the domain

a) 
$$(f+g)(x)$$

b) 
$$(f-g)(x)$$

c) 
$$(fg)(x)$$

$$d$$
)  $\left(\frac{f}{g}\right)(x)$ 

**99.** Let  $f(x) = 2x^2 + 3$  and g(x) = 3x - 4. Find each of the following and give the domain

a) 
$$(f+g)(x)$$
 b)  $(f-g)(x)$  c)  $(fg)(x)$ 

b) 
$$(f-g)(x)$$

c) 
$$(fg)(x)$$

$$d$$
)  $\left(\frac{f}{g}\right)(x)$ 

**100.** Let  $f(x) = x^2 - 2x - 3$  and  $g(x) = x^2 + 3x - 2$ . Find each of the following and give the domain

a) 
$$(f+g)(x)$$

a) 
$$(f+g)(x)$$
 b)  $(f-g)(x)$  c)  $(fg)(x)$ 

c) 
$$(fg)(x)$$

$$d$$
)  $\left(\frac{f}{g}\right)(x)$ 

- **101.** Let  $f(x) = \sqrt{4x-1}$  and  $g(x) = \frac{1}{x}$ . Find each of the following and give the domain
  - a) (f+g)(x) b) (f-g)(x) c) (fg)(x)
- d)  $\left(\frac{f}{g}\right)(x)$
- **102.** Find (f+g)(x), (f-g)(x),  $(f \cdot g)(x)$ , and (f/g)(x) and the domain of  $f(x) = \sqrt{3-2x}, \quad g(x) = \sqrt{x+4}$
- **103.** Find (f+g)(x), (f-g)(x),  $(f \cdot g)(x)$ , and (f/g)(x) and the domain of  $f(x) = \frac{2x}{x-4}$ ,  $g(x) = \frac{x}{x+5}$
- **104.** Let  $f(x) = \sqrt{4x-1}$  and  $g(x) = \frac{1}{x}$ . Find each of the following and give the domain

  - e) (f+g)(x) f) (f-g)(x) g) (fg)(x)
- h)  $\left(\frac{f}{g}\right)(x)$

- **105.** Given that f(x) = x + 1 and  $g(x) = \sqrt{x + 3}$ 
  - a) Find (f+g)(x)
  - b) Find the domain of (f+g)(x)
  - c) Find: (f+g)(6)
- **106.** Given that  $f(x) = x^2 4$  and g(x) = x + 2
  - a) Find (f+g)(x) and its domain
  - b) Find (f/g)(x) and its domain
- **107.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3)) $f(x) = 2x^2 + 3x - 4$ , g(x) = 2x - 1
- **108.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3)) $f(x) = x^3 + 2x^2$ , g(x) = 3x
- **109.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3)) $f(x) = |x|, \quad g(x) = -7$

- (110-139) For the given function; find:
  - a) Find  $(f \circ g)(x)$  and the **domain** of  $f \circ g$
  - b) Find  $(g \circ f)(x)$  and the **domain** of  $g \circ f$
- **110.** f(x) = x 3 and g(x) = x + 3
- **111.**  $f(x) = \frac{2}{3}x$  and  $g(x) = \frac{3}{2}x$
- **112.** f(x) = x 1 and  $g(x) = 3x^2 2x 1$
- **113.** f(x) = 3x 2 and  $g(x) = x^2 5$
- **114.**  $f(x) = x^2 2$  and g(x) = 4x 3
- **115.**  $f(x) = 4x^2 x + 10$  and g(x) = 2x 7
- **116.**  $f(x) = \sqrt{x}$  and g(x) = x + 3
- **117.**  $f(x) = \sqrt{x}$  and g(x) = 2 3x
- **118.** f(x) = 3x + 2 and  $g(x) = \sqrt{x}$
- **119.**  $f(x) = x^4$  and  $g(x) = \sqrt[4]{x}$
- **120.**  $f(x) = x^n$  and  $g(x) = \sqrt[n]{x}$
- **121.**  $f(x) = x^2 3x$  and  $g(x) = \sqrt{x+2}$
- **122.**  $f(x) = \sqrt{x-2}$  and  $g(x) = \sqrt{x+5}$
- **123.**  $f(x) = x^2 + 2$  and  $g(x) = \sqrt{3-x}$
- **124.**  $f(x) = x^5 2$  and  $g(x) = \sqrt[5]{x+2}$
- **125.**  $f(x) = 1 x^2$  and  $g(x) = \sqrt{x^2 25}$

- **126.** f(x) = 2x + 3 and  $g(x) = \frac{x-3}{2}$
- **127.** f(x) = 4x 5 and  $g(x) = \frac{x+5}{4}$
- **128.**  $f(x) = \frac{4}{1-5x}$  and  $g(x) = \frac{1}{x}$
- **129.**  $f(x) = \frac{1}{x-2}$  and  $g(x) = \frac{x+2}{x}$
- **130.**  $f(x) = \frac{1}{1+x}$  and  $g(x) = \frac{1-x}{x}$
- **131.**  $f(x) = \frac{3x+5}{2}$  and  $g(x) = \frac{2x-5}{3}$
- **132.**  $f(x) = \frac{x-1}{x-2}$  and  $g(x) = \frac{x-3}{x-4}$
- **133.**  $f(x) = \frac{6}{x-3}$  and  $g(x) = \frac{1}{x}$
- **134.**  $f(x) = \frac{6}{x}$  and  $g(x) = \frac{1}{2x+1}$
- **135.** f(x) = 3x 7 and  $g(x) = \frac{x + 7}{3}$
- **136.**  $f(x) = \frac{2x+3}{x-4}$  and  $g(x) = \frac{4x+3}{x-2}$
- **137.**  $f(x) = \frac{2x+3}{x+4}$  and  $g(x) = \frac{-4x+3}{x-2}$
- **138.** f(x) = x + 1 and  $g(x) = x^3 5x^2 + 3x + 7$
- **139.** f(x) = x 1 and  $g(x) = x^3 + 2x^2 3x 9$
- **140.** Given that f(x) = 2x 5 and  $g(x) = x^2 3x + 8$ , find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$  and their domain then find  $(f \circ g)(7)$
- **141.** Given that  $f(x) = \sqrt{x}$  and g(x) = x 1, find
  - a)  $(f \circ g)(x) = f(g(x))$
  - b)  $(g \circ f)(x) = g(f(x))$
  - c)  $(f \circ g)(2) = f(g(2))$

**142.** Given that  $f(x) = \frac{x}{x+5}$  and  $g(x) = \frac{6}{x}$ , find

a) 
$$(f \circ g)(x) = f(g(x))$$

b) 
$$(g \circ f)(x) = g(f(x))$$

c) 
$$(f \circ g)(2) = f(g(2))$$

(143 - 167) Determine whether f is even, odd, or neither

**143.** 
$$f(x) = 3x^4 + 2x^2 - 5$$

**144.** 
$$f(x) = 8x^3 - 3x^2$$

**145.** 
$$f(x) = \sqrt{x^2 + 4}$$

**146.** 
$$f(x) = 3x^2 - 5x + 1$$

**147.** 
$$f(x) = \sqrt[3]{x^3 - x}$$

**148.** 
$$f(x) = |x| - 3$$

**149.** 
$$f(x) = x^3 - \frac{1}{x}$$

**150.** 
$$f(x) = -x^3 + 2x$$

**151.** 
$$f(x) = x^5 - 2x^3$$

**152.** 
$$f(x) = .5x^4 - 2x^2 + 6$$

**153.** 
$$f(x) = .75x^2 + |x| + 4$$

**154.** 
$$f(x) = x^3 - x + 9$$

**155.** 
$$f(x) = x^4 - 5x + 8$$

**156.** 
$$f(x) = x^3 + x$$

**157.** 
$$g(x) = x^2 - x$$

**158.** 
$$h(x) = 2x^2 + x^4$$

**159.** 
$$f(x) = 2x^2 + x^4 + 1$$

**160.** 
$$f(x) = \frac{1}{5}x^6 - 3x^2$$

**161.** 
$$f(x) = x\sqrt{1-x^2}$$

**162.** 
$$f(x) = x^2 \sqrt{1 - x^2}$$

**163.** 
$$f(x) = 5x^7 - 6x^3 - 2x$$

**164.** 
$$f(x) = 5x^6 - 3x^2 - 7$$

**165.** 
$$f(x) = x^2 + 6$$

**166.** 
$$f(x) = 7x^3 - x$$

**167.** 
$$h(x) = x^5 + 1$$

**168.** 
$$f(x) = \begin{cases} 2+x & \text{if } x < -4 \\ -x & \text{if } -4 \le x \le 2 \\ 3x & \text{if } x > 2 \end{cases}$$

Find: 
$$f(-5)$$
,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

**169.** 
$$f(x) = \begin{cases} -2x & \text{if } x < -3 \\ 3x - 1 & \text{if } -3 \le x \le 2 \\ -4x & \text{if } x > 2 \end{cases}$$
 Find:  $f(-5)$ ,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

Find: 
$$f(-5)$$
,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

170. 
$$f(x) = \begin{cases} x^3 + 3 & \text{if } -2 \le x \le 0 \\ x + 3 & \text{if } 0 < x < 1 \end{cases}$$
 Find:  $f(-5)$ ,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 
$$4 + x - x^2 \quad \text{if } 1 \le x \le 3$$

**171.** 
$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$$
 Find:  $h(5)$ ,  $h(0)$ , and  $h(3)$ 

**172.** Graph the piecewise function defined by  $f(x) = \begin{cases} 3 & \text{if } x \le -1 \\ x - 2 & \text{if } x > -1 \end{cases}$ 

173. Sketch the graph 
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^3 & \text{if } -1 < x < 1 \\ -x+3 & \text{if } x \ge 1 \end{cases}$$

174. Sketch the graph 
$$f(x) = \begin{cases} x-3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x+4 & \text{if } x \ge 1 \end{cases}$$

# Section 1.3 – Polynomial Functions & Graphs

#### **Polynomial Function**

A Polynomial function P(x) in x is a sum of the form is given by:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Where the coefficients  $a_n$ ,  $a_{n-1}$ , ...,  $a_2$ ,  $a_1$ ,  $a_0$  are real numbers and the exponents are whole numbers.



| Degree of f | Form of $f(x)$                 | Graph of $f(x)$                 |
|-------------|--------------------------------|---------------------------------|
| 0           | $f(x) = a_0$                   | A horizontal line               |
| 1           | $f(x) = a_1 x + a_0$           | A line with slope $a_1$         |
| 2           | $f(x) = a_2 x^2 + a_1 x + a_0$ | A parabola with a vertical axis |

All polynomial functions are continuous functions.

# End Behavior $\left(a_n x^n\right)$

If n (degree) is **even**:

If 
$$a_n < 0 \rightarrow \begin{cases} x \to -\infty \implies f(x) \to -\infty \\ x \to \infty \implies f(x) \to -\infty \end{cases}$$

If 
$$a_n > 0 \rightarrow \begin{cases} x \to -\infty \Rightarrow f(x) \to \infty \\ x \to \infty \Rightarrow f(x) \to \infty \end{cases}$$

If n (degree) is **odd**:

If 
$$a_n < 0 \rightarrow \begin{cases} x \to -\infty \implies f(x) \to \infty \\ x \to \infty \implies f(x) \to -\infty \end{cases}$$

If 
$$a_n > 0 \rightarrow \begin{cases} x \to -\infty \Rightarrow f(x) \to -\infty \\ x \to \infty \Rightarrow f(x) \to \infty \end{cases}$$

#### The intermediate value *Theorem*

For any polynomial function f(x) with real coefficients and  $f(a) \neq f(b)$  for a < b, then f takes on every value between f(a) and f(b) in the interval [a, b].

f(a) and f(b) are the opposite signs. Then the function has a real zero between a and b.

#### **Example**

Using the intermediate value theorem, determine, if possible, whether the function has a real zero between a and b.

a) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -4$ ,  $b = -2$ 

b) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -1$ ,  $b = 3$ 

#### Solution

a) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -4$ ,  $b = -2$   
 $f(-4) = (-4)^3 + (-4)^2 - 6(-4)$   
 $= -24$ 

$$f(-2) = (-2)^3 + (-2)^2 - 6(-2)$$
= 8

f(x) has a zero between -4 and -2.

**b)** 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -1$ ,  $b = 3$   
 $f(-1) = (-1)^3 + (-1)^2 - 6(-1) = 6$   
 $f(3) = (3)^3 + (3)^2 - 6(3) = 18$ 

Can't be determined.

#### The Rational Zeros Theorem

If the polynomial  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$  has integer coefficients, then  $possible \ rational \ zeros = \frac{possibilities \ for \ a_0}{possibilities \ for \ a_n}$ 

#### **Example**

Find all rational solutions of the equation:  $3x^4 + 14x^3 + 14x^2 - 8x - 8 = 0$ 

#### **Solution**

Possibilities: 
$$\pm \left\{ \frac{8}{3} \right\} = \pm \left\{ \frac{1, 2, 4, 8}{1, 3} \right\}$$
  
=  $\pm \left\{ 1, 2, 4, 8, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3} \right\}$ 

The calculation will show that -2 is a zero.

Hence, the polynomial has roots x = -2,  $-\frac{2}{3}$ ,  $-1 \pm \sqrt{3}$ 

# **Sketching**

### Example

Let  $f(x) = x^3 + x^2 - 4x - 4$ . Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

#### **Solution**

$$f(x) = x^{3} + x^{2} - 4x - 4$$

$$= x^{2}(x+1) - 4(x+1)$$

$$= (x+1)(x^{2} - 4)$$

$$= (x+1)(x+2)(x-2)$$

The zeros of f(x) (x-intercepts) are: -2, -1, and 2

| Interval       | -∞ -2        | -1           | 0       | 2     | 8            |
|----------------|--------------|--------------|---------|-------|--------------|
| Sign of $f(x)$ | _            | +            | _       |       | +            |
| Position       | Below x-axis | Above x-axis | Below x | -axis | Above x-axis |



We can conclude from the chart and the graph that:

$$f(x) > 0$$
 if  $x$  is in  $(-2, -1) \cup (2, \infty)$   
 $f(x) < 0$  if  $x$  is in  $(-\infty, -2) \cup (-1, 2)$ 

### **Example**

Let  $f(x) = x^4 - 4x^3 + 3x^2$ . Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

#### **Solution**

$$f(x) = x^{2} (x^{2} - 4x + 3)$$
$$= x^{2} (x-1)(x-3)$$

The zeros are: 0, 1, 3. Since the factor  $x^2$  is always positive, it has no factor





$$f(x) > 0 \implies x \text{ is in } (-\infty, 0) \cup (0, 1) \cup (3, \infty)$$
  
 $f(x) < 0 \implies x \text{ is in } (1, 3)$ 

#### **Exercises** Section 1.3 – Polynomial Functions & Graphs

(1-4) Find the quotient and remainder if f(x) is divided by p(x)

1. 
$$f(x) = 2x^4 - x^3 + 7x - 12$$
;  $p(x) = x^2 - 3$ 

3. 
$$f(x) = 7x + 2$$
;  $p(x) = 2x^2 - x - 4$ 

2. 
$$f(x) = 3x^3 + 2x - 4$$
;  $p(x) = 2x^2 + 1$ 

**4.** 
$$f(x) = 9x + 4; \quad p(x) = 2x - 5$$

(5-6) Use the remainder theorem to find f(c)

**5.** 
$$f(x) = x^4 - 6x^2 + 4x - 8$$
;  $c = -3$  **6.**  $f(x) = x^4 + 3x^2 - 12$ ;  $c = -2$ 

**6.** 
$$f(x) = x^4 + 3x^2 - 12$$
;  $c = -2$ 

- Use the factor theorem to show that x-c is a factor of f(x):  $f(x) = x^3 + x^2 2x + 12$ ; c = -3
- Use the synthetic division to find the quotient and remainder if the first polynomial is divided by the second

8. 
$$2x^3 - 3x^2 + 4x - 5$$
;  $x - 2$ 

**10.** 
$$9x^3 - 6x^2 + 3x - 4$$
;  $x - \frac{1}{3}$ 

9. 
$$5x^3 - 6x^2 + 15$$
:  $x - 4$ 

(11-13) Use the synthetic division to find f(c)

**11.** 
$$f(x) = 2x^3 + 3x^2 - 4x + 4$$
;  $c = 3$ 

**13.** 
$$f(x) = x^3 - 3x^2 - 8$$
;  $c = 1 + \sqrt{2}$ 

**12.** 
$$f(x) = 8x^5 - 3x^2 + 7$$
;  $c = \frac{1}{2}$ 

- **14.** Use the synthetic division to show that c is a zero of f(x):  $f(x) = 3x^4 + 8x^3 2x^2 10x + 4$ ; c = -2
- Use the synthetic division to show that c is a zero of f(x):  $f(x) = 27x^4 9x^3 + 3x^2 + 6x + 1$ ;  $c = -\frac{1}{3}$
- (16 18) Find all values of k such that f(x) is divisible by the given linear polynomial:

**16.** 
$$f(x) = kx^3 + x^2 + k^2x + 3k^2 + 11$$
;  $x + 2$ 

**17.** 
$$f(x) = x^3 + k^3 x^2 + +2kx - 2k^4$$
;  $x - 1.6$ 

**18.** 
$$f(x) = k^2 x^3 - 4kx + 3; x - 1$$

(19 - 30) Find all solutions of the equation

19. 
$$x^3 - x^2 - 10x - 8 = 0$$

**23.** 
$$x^4 + 3x^3 - 30x^2 - 6x + 56 = 0$$

**20.** 
$$x^3 + x^2 - 14x - 24 = 0$$

**24.** 
$$3x^5 - 10x^4 - 6x^3 + 24x^2 + 11x - 6 = 0$$

**21.** 
$$2x^3 - 3x^2 - 17x + 30 = 0$$

**25.** 
$$6x^5 + 19x^4 + x^3 - 6x^2 = 0$$

**22.** 
$$12x^3 + 8x^2 - 3x - 2 = 0$$

**26.** 
$$x^4 - x^3 - 9x^2 + 3x + 18 = 0$$

**27.** 
$$2x^4 - 9x^3 + 9x^2 + x - 3 = 0$$

**29.** 
$$3x^3 - x^2 + 11x - 20 = 0$$

**28.** 
$$8x^3 + 18x^2 + 45x + 27 = 0$$

**30.** 
$$6x^4 + 5x^3 - 17x^2 - 6x = 0$$

- 31. If  $f(x) = 3x^3 kx^2 + x 5k$ , find a number k such that the graph of f contains the point (-1, 4).
- **32.** If  $f(x) = kx^3 + x^2 kx + 2$ , find a number k such that the graph of f contains the point (2, 12).
- 33. If one zero of  $f(x) = x^3 2x^2 16x + 16k$  is 2, find two other zeros.
- **34.** If one zero of  $f(x) = x^3 3x^2 kx + 12$  is -2, find two other zeros.
- **35.** Find a polynomial f(x) of degree 3 that has the zeros -1, 2, 3; and satisfies the given condition: f(-2) = 80
- **36.** Find a polynomial f(x) of degree 3 that has the zeros -2i, 2i, 3; and satisfies the given condition: f(1) = 20
- **37.** Find a polynomial f(x) of degree 4 with leading coefficient 1 such that both -4 and 3 are zeros of multiplicity 2, and sketch the graph of f.
- (38-43) Find the zeros of the following functions and state the multiplicity of each zero

**38.** 
$$f(x) = x^2(3x+2)(2x-5)^3$$

**41.** 
$$f(x) = (6x^2 + 7x - 5)^4 (4x^2 - 1)^2$$

**39.** 
$$f(x) = 4x^5 + 12x^4 + 9x^3$$

**42.** 
$$f(x) = x^4 + 7x^2 - 144$$

**40.** 
$$f(x) = (x^2 + x - 12)^3 (x^2 - 9)^2$$

**43.** 
$$f(x) = x^4 + 21x^2 - 100$$

(44 – 102) Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f

**44.** 
$$f(x) = x^4 - 4x^2$$

**51.** 
$$f(x) = x^3 + 2x^2 - 5x - 6$$

**45.** 
$$f(x) = x^4 + 3x^3 - 4x^2$$

**52.** 
$$f(x) = x^3 + 8x^2 + 11x - 20$$

**46.** 
$$f(x) = x^3 + 2x^2 - 4x - 8$$

**53.** 
$$f(x) = x^4 + x^2 - 2$$

**47.** 
$$f(x) = x^3 - 3x^2 - 9x + 27$$

**54.** 
$$f(x) = x^4 - x^3 - 6x^2 + 4x + 8$$

**48.** 
$$f(x) = -x^4 + 12x^2 - 27$$

**55.** 
$$f(x) = 4x^5 - 8x^4 - x + 2$$

**49.** 
$$f(x) = x^2(x+2)(x-1)^2(x-2)$$

**56.** 
$$f(x) = 2x^4 - x^3 - 5x^2 + 2x + 2$$

**50.** 
$$f(x) = 2x^3 + 11x^2 - 7x - 6$$

**57.** 
$$f(x) = x^3 - x^2 - 10x - 8$$

**58.** 
$$f(x) = x^3 + x^2 - 14x - 24$$

**59.** 
$$f(x) = 2x^3 - 3x^2 - 17x + 30$$

**60.** 
$$f(x) = 12x^3 + 8x^2 - 3x - 2$$

**61.** 
$$f(x) = x^3 + x^2 - 6x - 8$$

**62.** 
$$f(x) = x^3 - 19x - 30$$

**63.** 
$$f(x) = 2x^3 + x^2 - 25x + 12$$

**64.** 
$$f(x) = 3x^3 + 11x^2 - 6x - 8$$

**65.** 
$$f(x) = 2x^3 + 9x^2 - 2x - 9$$

**66.** 
$$f(x) = x^3 + 3x^2 - 6x - 8$$

**67.** 
$$f(x) = 3x^3 - x^2 - 6x + 2$$

**68.** 
$$f(x) = x^3 - 8x^2 + 8x + 24$$

**69.** 
$$f(x) = x^3 - 7x^2 - 7x + 69$$

**70.** 
$$f(x) = x^3 - 3x - 2$$

**71.** 
$$f(x) = x^3 - 2x + 1$$

**72.** 
$$f(x) = x^3 - 2x^2 - 11x + 12$$

73. 
$$f(x) = x^3 - 2x^2 - 7x - 4$$

**74.** 
$$f(x) = x^3 - 10x - 12$$

**75.** 
$$f(x) = x^3 - 5x^2 + 17x - 13$$

**76.** 
$$f(x) = 6x^3 + 25x^2 - 24x + 5$$

77. 
$$f(x) = 8x^3 + 18x^2 + 45x + 27$$

**78.** 
$$f(x) = 3x^3 - x^2 + 11x - 20$$

**79.** 
$$f(x) = x^4 - x^3 - 9x^2 + 3x + 18$$

**80.** 
$$f(x) = 2x^4 - 9x^3 + 9x^2 + x - 3$$

**81.** 
$$f(x) = 6x^4 + 5x^3 - 17x^2 - 6x$$

**82.** 
$$f(x) = x^4 - 2x^2 - 16x - 15$$

**83.** 
$$f(x) = x^4 - 2x^3 - 5x^2 + 8x + 4$$

**84.** 
$$f(x) = 2x^4 - 17x^3 + 4x^2 + 35x - 24$$

**85.** 
$$f(x) = x^4 + x^3 - 3x^2 - 5x - 2$$

**86.** 
$$f(x) = 6x^4 - 17x^3 - 11x^2 + 42x$$

**87.** 
$$f(x) = x^4 - 5x^2 - 2x$$

**88.** 
$$f(x) = 3x^4 - 4x^3 - 11x^2 + 16x - 4$$

**89.** 
$$f(x) = 6x^4 + 23x^3 + 19x^2 - 8x - 4$$

**90.** 
$$f(x) = 4x^4 - 12x^3 + 3x^2 + 12x - 7$$

**91.** 
$$f(x) = 2x^4 - 9x^3 - 2x^2 + 27x - 12$$

**92.** 
$$f(x) = 2x^4 - 19x^3 + 51x^2 - 31x + 5$$

**93.** 
$$f(x) = 4x^4 - 35x^3 + 71x^2 - 4x - 6$$

**94.** 
$$f(x) = 2x^4 + 3x^3 - 4x^2 - 3x + 2$$

**95.** 
$$f(x) = x^4 + 3x^3 - 30x^2 - 6x + 56$$

**96.** 
$$f(x) = 3x^5 - 10x^4 - 6x^3 + 24x^2 + 11x - 6$$

**97.** 
$$f(x) = 6x^5 + 19x^4 + x^3 - 6x^2$$

**98.** 
$$f(x) = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$$

**99.** 
$$f(x) = x^5 - x^4 - 7x^3 + 7x^2 + 12x - 12$$

**100.** 
$$f(x) = x^5 - 2x^3 - 8x$$

**101.** 
$$f(x) = x^5 - 7x^4 + 19x^3 - 37x^2 + 60x - 36$$

**102.** 
$$f(x) = 3x^6 - 10x^5 - 29x^4 + 34x^3 + 50x^2 - 24x - 24$$

**103.** A storage shelter is to be constructed in the shape of a cube with a triangular prism forming the roof. The length *x* of a side of the cube is yet to be determined.



- a) If the total height of the structure is 6 *feet*, show that its volume V is given by  $V = x^3 + \frac{1}{2}x^2(6-x)$
- b) Determine x so that the volume is  $80 ft^3$
- **104.** A canvas camping tent is to be constructed in the shape of a pyramid with a square base. An 8–foot pole will form the center support. Find the length x of a side of the base so that the total amount of canvas needed for the sides and bottom is  $384 \, ft^2$



**105.** Glasses can be stacked to form a triangular pyramid. The total number of glasses in one of these pyramids is given by

$$T(k) = \frac{1}{6}(k^3 + 3k^2 + 2k)$$



Where k is the number of levels in the pyramid. If 220 glasses are used to form a triangle pyramid, how many levels are in the pyramid?

**106.** Glasses can be stacked to form a triangular pyramid. The total number of glasses in one of these pyramids is given by

$$T(k) = \frac{1}{6}(2k^3 + 3k^2 + k)$$



Where k is the number of levels in the pyramid. If 140 glasses are used to form a triangle pyramid, how many levels are in the pyramid?

**107.** A carbon dioxide cartridge for a paintball rifle has the shape of a right circular cylinder with a hemisphere at each end. The cylinder is 4 *inches* long, and the volume of the cartridge is  $2\pi$  in<sup>3</sup>.



The common interior radius of the cylinder and the hemispheres is denoted by x. Estimate the length of the radius x.

**108.** A propane tank has the shape of a circular cylinder with a hemisphere at each end. The cylinder is 6 *feet* long and the volume of the tank is  $9\pi$   $ft^3$ . Find the length of the radius x.



**109.** A cube measures n inches on each edge. If a slice 2 *inches* thick is cut from one face of the cube, the resulting solid has a volume of 567  $in^3$ . Find n.



**110.** A cube measures n inches on each edge. If a slice 1 *inch* thick is cut from one face of the cube and then a slice 3 inches thick is cut from another face of the cube, the resulting solid has a volume of 1560  $in^3$ . Find the dimensions of the original cube.



**111.** For what value of x will the volume of the following solid be  $112 in^3$ 



112. For what value of x will the volume of the following solid be 208  $in^3$ 



113. The length of rectangular box is 1 *inch* more than twice the height of the box, and the width is 3 *inches* more than the height. If the volume of the box is  $126 \, in^3$ , find the dimensions of the box.



**114.** One straight cut through a thick piece of cheese produces two pieces. Two straight cuts can produce a maximum of four pieces. Two straight cuts can produce a maximum of four pieces. Three straight cuts can produce a maximum of eight pieces.



You might be inclined to think that every additional cut doubles number of pieces. However, for four straight cuts, you get a maximum of 15 pieces. The maximum number of pieces P that can be produced by n straight cuts is given by

$$P(n) = \frac{n^3 + 5n + 6}{6}$$

- a) Determine number of pieces that can be produces by five straight cuts.
- b) What is the fewest number of straight cuts that are needed to produce 64 pieces?
- 115. The number of ways one can select three cards from a group of n cards (the order of the selection matters), where  $n \ge 3$ , is given by  $P(n) = n^3 3n^2 + 2n$ . For a certain card trick, a magician has determined that there are exactly 504 ways to choose three cards from a given group. How many cards are in the group?
- **116.** A nutrition bar in the shape of a rectangular solid measure 0.75 in. by 1 in. by 5 inches.



To reduce costs, the manufacturer has decided to decrease each of the dimensions of the nutrition bar by x inches, what value of x will produce a new bar with a volume that is 0.75  $in^3$  less than the present bar's volume.

30

117. A rectangular box is square on two ends and has length plus girth of 81 *inches*. (Girth: distance *around* the box). Determine the possible lengths l(l > w) of the box if its volume is 4900  $in^3$ .



# **Section 1.4 – Rational Functions**

A function f is a *rational function* if  $f(x) = \frac{g(x)}{h(x)}$ ,

Where g(x) and h(x) are polynomials. The domain of f consists of all real numbers *except* the zeros of the denominator h(x).

| Notation              | Terminology                                                               |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| $x \rightarrow a^{-}$ | x approaches $a$ from the left (through values $less$ than $a$ )          |  |  |  |  |  |
| $x \rightarrow a^+$   | x approaches $a$ from the right (through values <b>greater</b> than $a$ ) |  |  |  |  |  |
| $f(x) \to \infty$     | f(x) increases without bound (can be made as large positive as desired)   |  |  |  |  |  |
| $f(x) \to -\infty$    | f(x) decreases without bound (can be made as large negative as desired)   |  |  |  |  |  |

#### The Domain of a Rational Function

#### **Example**

Consider:  $f(x) = \frac{1}{x-3}$ 

Find the domain and graph f.

#### **Solution**

 $x-3=0 \implies \boxed{x=3}$ 

Thus the domain is:  $\{x | x \neq 3\}$  or  $(-\infty, 3) \cup (3, \infty)$ 



| Function                                         | Domain                                       |                                               |  |  |  |
|--------------------------------------------------|----------------------------------------------|-----------------------------------------------|--|--|--|
| $f(x) = \frac{1}{x}$                             | $\left\{x \middle  x \neq 0\right\}$         | $(-\infty, 0) \cup (0, \infty)$               |  |  |  |
| $f(x) = \frac{1}{x^2}$                           | $\left\{x \middle  x \neq 0\right\}$         | $(-\infty, 0) \cup (0, \infty)$               |  |  |  |
| $f(x) = \frac{x-3}{x^2 + x - 2}$                 | $\{x \mid x \neq -2 \text{ and } x \neq 1\}$ | $(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$ |  |  |  |
| $f(x) = \frac{2x+5}{2x-6} = \frac{2x+5}{2(x-3)}$ | $\{x   x \neq 3\}$                           | $(-\infty, 3) \cup (3, \infty)$               |  |  |  |

### Asymptotes

### Vertical Asymptote (VA) - Think Domain

The line x = a is a *vertical asymptote* for the graph of a function f if

$$f(x) \rightarrow \infty$$
 or  $f(x) \rightarrow -\infty$ 

As x approaches a from either the left or the right

When the denominator and the numerator have both 0, then both the numerator and denominator can be factored by using (x-a) and can be cancelled out. This means there is a **hole** in the function at this point.

### Horizontal Asymptote (HA)

The line y = c is a **horizontal asymptote** for the graph of a function f if

$$f(x) \rightarrow c$$
 as  $x \rightarrow -\infty$  or  $x \rightarrow -\infty$ 

Let 
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n x^n}{b_m x^m}$$
 be a rational function.

1. If the degree of numerator is less than of denominator  $(n < m) \implies y = 0$ 

$$y = \frac{2x+1}{4x^2+5} \implies \underline{y=0}$$

2. If the degree of numerator is equal of denominator (n = m)  $\Rightarrow$   $y = \frac{a_n}{b_m}$ 

$$y = \frac{2x^2 + 1}{4x^2 + 5}$$
  $\Rightarrow$   $y = \frac{2}{4} = \frac{1}{2}$ 

3. If the degree of numerator is greater than of denominator  $(n > m) \Rightarrow$  No horizontal asymptote

$$y = \frac{2x^3 + 1}{4x^2 + 5} \implies No \ HA$$

If **no** Horizontal Asymptote, then there is an **Oblique Asymptote**.

### **Slant or Oblique Asymptotes**

When the degree of the numerator is one greater than the degree of the numerator, the graph has a slant or oblique asymptote and it is a line y = ax + b,  $a \ne 0$ . To find the slant asymptote, divide the fraction using long division. The quotient (not remainder) is the slant asymptote.

33

### Example

Find all the asymptotes and sketch the graph of f if  $f(x) = \frac{x^2 - 9}{2x - 4}$ 

**Solution** 



$$f(x) = \left(\frac{1}{2}x + 1\right) - \frac{5}{2x - 4}$$

VA: x = 2 HA: n/a

*Hole*: n/a *Oblique asymptote*:  $y = \frac{1}{2}x + 1$ 





# Example

Find the vertical asymptote of  $f(x) = \frac{1}{x-2}$ , and sketch the graph.

**Solution** 

*VA*: x = 2 *HA*: y = 0

Hole: n/a Oblique asymptote: n/a

 $f(x) \to \infty$  as  $x \to 2^+$ 

 $f(x) \to -\infty$  as  $x \to 2^-$ 



# **Example**

Sketch the graph of g if  $g(x) = \frac{3x^2 + x - 4}{2x^2 - 7x + 5}$ 

#### **Solution**

$$g(x) = \frac{(3x+4)(x-1)}{(2x-5)(x-1)}$$
$$= \frac{3x+4}{2x-5}$$

$$f\left(x\right) = \frac{3x+4}{2x-5}$$

g has a hole at x = 1

$$f\left(1\right) = -\frac{7}{3}$$

*VA*: 
$$x = \frac{5}{2}$$
 *HA*:  $y = 0$ 

**Hole**: 
$$(1, -\frac{7}{3})$$

Hole:  $\left(1, -\frac{7}{3}\right)$  Oblique asymptote: n / a



# **Example**

Find all asymptotes for the graph of f, if it exists

a) 
$$f(x) = \frac{3x-1}{x^2-x-6}$$

$$f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

a) 
$$f(x) = \frac{3x-1}{x^2-x-6}$$
 b)  $f(x) = \frac{5x^2+1}{3x^2-4}$  c)  $f(x) = \frac{2x^4-3x^2+5}{x^2+1}$ 

#### **Solution**

a) 
$$f(x) = \frac{3x-1}{x^2-x-6}$$

$$VA: x = -2, x = 3$$
  $HA: y = 0$ 

Hole: 
$$n/a$$

Oblique asymptote: n/a

**b**) 
$$f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

$$3x^2 - 4 = 0 \rightarrow 3x^2 = 4 \rightarrow x^2 = \frac{4}{3} \rightarrow x = \pm \frac{2}{\sqrt{3}}$$

**VA**: 
$$x = \pm \frac{2}{\sqrt{3}}$$
 **HA**:  $y = \frac{5}{3}$ 

Hole: 
$$n/a$$

Oblique asymptote: n/a

c) 
$$f(x) = \frac{2x^4 - 3x^2 + 5}{x^2 + 1}$$

VA: n/a

HA: n/a

Hole: n/a

Oblique asymptote:  $y = 2x^2 - 5$ 

$$\frac{2x^{2} - 5}{x^{2} + 1 \overline{\smash{\big)}} 2x^{4} - 3x^{2} + 5}$$

$$\underline{-2x^{4} - 2x^{2}}$$

$$-5x^{2} + 5$$

# Example

Sketch the graph of f if  $f(x) = \frac{3x+4}{2x-5}$ 

### **Solution**

*VA*:  $x = \frac{5}{2}$ 

**HA**:  $y = -\frac{5}{3}$ 

*Hole*: n/a

Oblique asymptote: n/a

| x              | y              |
|----------------|----------------|
| 0              | $-\frac{4}{5}$ |
| $-\frac{4}{3}$ | 0              |
| 4              | 5.3            |



Sketch the graph of f if  $f(x) = \frac{x^2}{x^2 - x - 2}$ 

# **Solution**

VA: x = -1, 2

HA: y=1

Hole: n/a

Oblique asymptote: n/a

| x  | у             |
|----|---------------|
| 0  | 0             |
| -4 | 0.88          |
| -2 | 1             |
| 3  | <u>9</u><br>4 |



Sketch the graph of f if  $f(x) = \frac{x-1}{x^2 - x - 6}$ 

# **Solution**

*VA*: x = -2, 3

HA: y=0

Hole: n/a

Oblique asymptote: n/a

| x  | у             |
|----|---------------|
| -4 | 36            |
| -3 | 67            |
| 0  | $\frac{1}{6}$ |
| 1  | 0             |
| 4  | .5            |
| 5  | $\frac{2}{7}$ |



# **Exercises** Section 1.4 – Rational Functions

(1-21) Determine all asymptotes of the function

$$1. \qquad y = \frac{3x}{1-x}$$

**8.** 
$$y = \frac{x-3}{x^2-9}$$

**15.** 
$$f(x) = \frac{3-x}{(x-4)(x+6)}$$

2. 
$$y = \frac{x^2}{x^2 + 9}$$

**9.** 
$$y = \frac{6}{\sqrt{x^2 - 4x}}$$

**16.** 
$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$$

$$3. \qquad y = \frac{x-2}{x^2 - 4x + 3}$$

**10.** 
$$y = \frac{5x-1}{1-3x}$$

**17.** 
$$f(x) = \frac{3x^2 + 5}{4x^2 - 3}$$

**4.** 
$$y = \frac{3}{x-5}$$

**11.** 
$$f(x) = \frac{2x - 11}{x^2 + 2x - 8}$$

**18.** 
$$f(x) = \frac{x+6}{x^3+2x^2}$$

$$5. y = \frac{x^3 - 1}{x^2 + 1}$$

**12.** 
$$f(x) = \frac{x^2 - 4x}{x^3 - x}$$

**19.** 
$$f(x) = \frac{x^2 + 4x - 1}{x + 3}$$

**6.** 
$$y = \frac{3x^2 - 27}{(x+3)(2x+1)}$$

13. 
$$f(x) = \frac{x-2}{x^3 - 5x}$$

**20.** 
$$f(x) = \frac{x^2 - 6x}{x - 5}$$

7. 
$$y = \frac{x^3 + 3x^2 - 2}{x^2 - 4}$$

$$14. \quad f(x) = \frac{4x}{x^2 + 10x}$$

**21.** 
$$f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$$

(22-53) Determine all asymptotes (if any) (*Vertical Asymptote, Horizontal Asymptote*; *Hole; Oblique Asymptote*) and sketch the graph of

**22.** 
$$f(x) = \frac{-3x}{x+2}$$

**29.** 
$$f(x) = \frac{x-1}{1-x^2}$$

**36.** 
$$f(x) = \frac{1}{x-3}$$

23. 
$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$

**30.** 
$$f(x) = \frac{x^2 + x - 2}{x + 2}$$

**37.** 
$$f(x) = \frac{-2}{x+3}$$

**24.** 
$$f(x) = \frac{2x^2 - 2x - 4}{x^2 + x - 12}$$

**31.** 
$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

$$38. \quad f(x) = \frac{x}{x+2}$$

**25.** 
$$f(x) = \frac{-2x^2 + 10x - 12}{x^2 + x}$$

**32.** 
$$f(x) = \frac{2x^2 - 3x - 1}{x - 2}$$

**39.** 
$$f(x) = \frac{x-5}{x+4}$$

**26.** 
$$f(x) = \frac{x^2 - x - 6}{x + 1}$$

**33.** 
$$f(x) = \frac{2x+3}{3x^2+7x-6}$$

**40.** 
$$f(x) = \frac{2x^2 - 2}{x^2 - 9}$$

**27.** 
$$f(x) = \frac{x^3 + 1}{x - 2}$$

**34.** 
$$f(x) = \frac{x^2 - 1}{x^2 + x - 6}$$

**41.** 
$$f(x) = \frac{x^2 - 3}{x^2 + 4}$$

**28.** 
$$f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$$

**35.** 
$$f(x) = \frac{-2x^2 - x + 15}{x^2 - x - 12}$$

**42.** 
$$f(x) = \frac{x^2 + 4}{x^2 - 3}$$

**43.** 
$$f(x) = \frac{x^2}{x^2 - 6x + 9}$$

**47.** 
$$f(x) = \frac{x-3}{x^2 - 3x + 2}$$

**51.** 
$$f(x) = \frac{x^2 - 2x}{x - 2}$$

**44.** 
$$f(x) = \frac{x^2 + x + 4}{x^2 + 2x - 1}$$
 **48.**  $f(x) = \frac{x^2 + 2}{x^2 + 3x + 2}$ 

**48.** 
$$f(x) = \frac{x^2 + 2}{x^2 + 3x + 2}$$

**52.** 
$$f(x) = \frac{x^2 - 3x}{x + 3}$$

**45.** 
$$f(x) = \frac{2x^2 + 14}{x^2 - 6x + 5}$$

**49.** 
$$f(x) = \frac{x-2}{x^2 - 3x + 2}$$

**53.** 
$$f(x) = \frac{x^3 + 3x^2 - 4x + 6}{x + 2}$$

**46.** 
$$f(x) = \frac{x^2 - 4x - 5}{2x + 5}$$

**50.** 
$$f(x) = \frac{x^2 + x}{x + 1}$$

(54-59) Find an equation of a rational function f that satisfies the given conditions

54. 
$$\begin{cases} vertical \ asymptote: \ x = 4 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 3 \end{cases}$$

57. 
$$\begin{cases} vertical \ asymptote: \ x = -2, \ x = 0 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ 2, \quad f(3) = 1 \end{cases}$$

55. 
$$\begin{cases} vertical \ asymptote: \ x = -4, x = 5 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: \ -2 \end{cases}$$

58. 
$$\begin{cases} vertical \ asymptote: \ x = -3, \ x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \ f(0) = -2 \\ hole \ at \ x = 2 \end{cases}$$

56.  $\begin{cases} vertical \ asymptote: \ x = 5 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 2 \end{cases}$ 

59. 
$$\begin{cases} vertical \ asymptote: \ x = -1, \ x = 3 \\ horizontal \ asymptote: \ y = 2 \\ x - intercept: \ -2, \ 1 \\ hole: \ x = 0 \end{cases}$$

# Section 1.5 – Inverse, Exponential & Logarithmic Functions

#### One-to-One Function

A function f is one-to-one (1-1) if different inputs have different outputs that is,

if 
$$a \neq b$$
, then  $f(a) \neq f(b)$ 

*Or* if 
$$f(a) = f(b)$$
, then  $a = b$ 

### **Definition** of Inverse Function

Let f be one-to-one function with domain D and range R. A function g with domain R and range D is the *inverse function* of f, provided the following condition is true for every x in D and every y in R:

$$y = f(x)$$
 iff  $x = g(y)$ 

If the inverse of a function f is also a function, it is named  $f^{-1}$  read "f – inverse"

The -1 in  $f^{-1}$  is not an exponent! And is not equal to



**Domain** and **Range** of f and  $f^{-1}$ 

domain of 
$$f^{-1}$$
 = range of  $f$   
range of  $f^{-1}$  = domain of  $f$ 

# **Example**

For the given function  $f(x) = \frac{2x+3}{x+5}$ 

- a) Is f(x) one-to-one function
- b) Find  $f^{-1}(x)$ , if it exists
- c) Find the domain and range of f(x) and  $f^{-1}(x)$

a) 
$$f(a) = f(b)$$
  

$$\frac{2a+3}{a+5} = \frac{2b+3}{b+5}$$

$$2ab+10a+3b+15 = 2ab+10b+3a+15$$

$$7a = 7b$$

$$a = b \quad \checkmark$$

$$f(x) \text{ is } 1-1$$

**b)** 
$$y = \frac{2x+3}{x+5}$$
  
 $xy+5y=2x+3$   
 $x(y-2)=3-5y$   
 $x = \frac{-5y+3}{y-2}$   
 $f^{-1}(x) = \frac{-5x+3}{x-2}$ 

c) Domain of  $f(x) = \text{Range of } f^{-1}(x) \colon \mathbb{R} - \{-5\}$ Range of  $f(x) = \text{Domain of } f^{-1}(x) \colon \mathbb{R} - \{2\}$ 

### **Definition** (Exponential Functions)

The exponential function f with base b is defined by

$$f(x) = b^{x}$$
 or  $y = b^{x}$ 
Base

where b > 0,  $b \ne 1$  and  $\boldsymbol{x}$  is any real number.

## **Graphing Exponential**

1. Define the Horizontal Asymptote  $f(x) = b^x \pm d$  $y = 0 \pm d$ 

The exponential function always equals to 0  $x \to \infty$  or  $x \to -\infty \Rightarrow f(x) \to 0$ 

2. Define/Make a table

(Force your exponential to = 0, then solve for x)

|             | x                | f(x) |
|-------------|------------------|------|
|             | x-1              |      |
| <del></del> | $\boldsymbol{x}$ |      |
|             | x+1              |      |

*Domain*:  $(-\infty, \infty)$ 

*Range*:  $(d, \infty)$ 

## Example

$$f(x) = 3^{x}$$
Asymptote:  $y = 0$ 

| Х  | f(x) |
|----|------|
| -1 | 1/3  |
| 0  | 1    |
| 1  | 3    |



Sketch 
$$f(x) = 3^{x-2}$$

#### **Solution**

Shift right 2 unit

Asymptote: y = 0

Domain:  $\mathbb{R}$ 

Range:  $(0, \infty)$ 

| х | f(x) |
|---|------|
| 1 | 1/3  |
| 2 | 1    |
| 3 | 3    |



# Example

Sketch the graph of  $f(x) = 2^{-x^2}$ 

#### **Solution**

$$f(x) = \frac{1}{2^{x^2}}$$

Asymptote: y = 0

Domain:  $\mathbb{R}$ 

*Range*: (0, 1]

| X  | f(x)           |
|----|----------------|
| ±0 | 1              |
| ±1 | $\frac{1}{2}$  |
| ±2 | $\frac{1}{16}$ |



# Natural Base e

The irrational number  $e \approx 2.71828$  is called natural base  $f(x) = e^x$  is called natural exponential function

# Example

Sketch 
$$f(x) = e^{x+3} + 1$$

#### **Solution**

Asymptote: y = 1

*Domain*:  $\mathbb{R}$ 

*Range*:  $(1, \infty)$ 





#### **Logarithmic Function** (*Definition*)

For x > 0 and  $b > 0, b \ne 1$ 

$$y = \log_b x$$
 is equivalent to  $x = b^y$ 

$$y = \log_b x \Leftrightarrow x = b^y$$
Base

The function  $f(x) = \log_b x$  is the logarithmic function with base b.

 $\log_b x$ : <u>read</u>  $\log \text{base } b \text{ of } x$ 

log x means  $log_{10} x$ 

ln x means  $log_e x$  ln x read "el en of x"

## Example

Write the equation in its equivalent exponential form:

$$3 = \log_7 x \qquad \Rightarrow x = 7^3$$

Write the equation in its equivalent logarithmic form:

$$2^5 = x \qquad \Rightarrow 5 = \log_2 x$$

# **Basic** Logarithmic Properties

$$\log_b b = 1 \quad \rightarrow \quad b = b^1 \qquad \qquad \log_b 1 = 0 \quad \rightarrow 1 = b^0$$

## **Inverse Properties**

$$\log_b b^x = x \qquad \qquad b^{\log_b x} = x$$

## **Change-of-Base Logarithmic**

$$\log_b M = \frac{\log_a M}{\log_a b} \qquad \qquad \log_b M = \frac{\log M}{\log b} \quad \textit{or} \quad \log_b M = \frac{\ln M}{\ln b}$$

#### **Domain**

The domain of a logarithmic function of the form  $f(x) = \log_b x$  is the set of all positive real numbers. (*Inside* the log has to be > 0)

 $Range: \mathbb{R}$ 

## Example

Find the domain of

- a)  $f(x) = \log_4(x-5)$
- *Domain*: x > 5
- $b) \quad f(x) = \ln(4 x)$
- Domain: x < 4
- c)  $h(x) = \ln(x^2)$
- **Domain**:  $\mathbb{R} \{0\}$  or  $\{x \mid x \neq 0\}$  or  $(-\infty, 0) \cup (0, \infty)$

## Graphs of Logarithmic Functions

## Example

Graph 
$$g(x) = \log(x-2)+1$$

#### **Solution**

Asymptote: x = 2

*Domain*: x > 2

Range:  $\mathbb{R}$ 

| x   | g(x) |  |
|-----|------|--|
| -2  |      |  |
| 2.5 | .7   |  |
| 3   | 1    |  |
| 4   | 1.3  |  |



# Example

Graph 
$$f(x) = \log_3 |x|$$
 for  $x \neq 0$ 

### **Solution**

$$f(-x) = \log_3 |-x| = \log_3 |x| = f(x)$$

 $\therefore$  The graph is symmetric with respect to the *y*-axis.

Asymptote: x = 0

*Domain*:  $\mathbb{R} - \{0\}$ 

Range:  $\mathbb{R}$ 



# **Exercises**

# Section 1.5 – Inverse, Exponential & Logarithmic Functions

(1-9) Determine whether the function is *one*-to-*one* 

1. 
$$f(x) = 3x - 7$$

**4.** 
$$f(x) = \sqrt[3]{x}$$

7. 
$$f(x) = (x-2)^3$$

2. 
$$f(x) = x^2 - 9$$

$$5. f(x) = |x|$$

8. 
$$y = x^2 + 2$$

$$3. \qquad f(x) = \sqrt{x}$$

**6.** 
$$f(x) = \frac{2}{x+3}$$

**9.** 
$$f(x) = \frac{x+1}{x-3}$$

**10.** Given the function  $f(x) = (x+8)^3$ 

a) Find 
$$f^{-1}(x)$$

b) Graph f and  $f^{-1}$  in the same rectangular coordinate system

c) Find the domain and the range of f and  $f^{-1}$ 

(11-38) For the given functions

a) Is f(x) one-to-one function

b) Find  $f^{-1}(x)$ , if it exists

c) Find the domain and range of f(x) and  $f^{-1}(x)$ 

**11.** 
$$f(x) = \frac{2x}{x-1}$$

**20.** 
$$f(x) = \frac{3x-1}{x-2}$$

**30.** 
$$f(x) = 2 - 3x^2$$
;  $x \le 0$ 

**12.** 
$$f(x) = \frac{x}{x-2}$$

**21.** 
$$f(x) = \frac{3x-2}{x+4}$$

**31.** 
$$f(x) = 2x^3 - 5$$
  
**32.**  $f(x) = \sqrt{3-x}$ 

**13.** 
$$f(x) = \frac{x+1}{x-1}$$

**22.** 
$$f(x) = \frac{-3x - 2}{x + 4}$$

33. 
$$f(x) = \sqrt[3]{x} + 1$$

**14.** 
$$f(x) = \frac{2x+1}{x+3}$$

**23.** 
$$f(x) = \sqrt{x-1}$$
  $x \ge 1$ 

**24.**  $f(x) = \sqrt{2-x}$   $x \le 2$ 

**34.** 
$$f(x) = (x^3 + 1)^5$$

**15.** 
$$f(x) = \frac{3x - 1}{x - 2}$$

**25.** 
$$f(x) = x^2 + 4x$$
  $x \ge -2$ 

**35.** 
$$f(x) = x^2 - 6x$$
;  $x \ge 3$ 

**16.** 
$$f(x) = \frac{2x}{x-1}$$

**26.** 
$$f(x) = 3x + 5$$

**36.** 
$$f(x) = (x-2)^3$$

$$17. \quad f(x) = \frac{x}{x-2}$$

**27.** 
$$f(x) = \frac{1}{3x-2}$$

**37.** 
$$f(x) = \frac{x+1}{x-3}$$

**18.** 
$$f(x) = \frac{x+1}{x-1}$$

**28.** 
$$f(x) = \frac{3x+2}{2x-5}$$

**38.** 
$$f(x) = \frac{2x+1}{x-3}$$

**19.** 
$$f(x) = \frac{2x+1}{x+3}$$

**29.** 
$$f(x) = \frac{4x}{x-2}$$

- 39. Simplify the expression  $\frac{\left(e^x + e^{-x}\right)\left(e^x + e^{-x}\right) \left(e^x e^{-x}\right)\left(e^x e^{-x}\right)}{\left(e^x + e^{-x}\right)^2}$
- **40.** Simplify the expression  $\frac{\left(e^x e^{-x}\right)^2 \left(e^x + e^{-x}\right)^2}{\left(e^x + e^{-x}\right)^2}$
- (41 52)Write the equation in its equivalent logarithmic form

(53-64) Write the equation in its equivalent exponential form

**41.** 
$$2^6 = 64$$

**45.** 
$$b^3 = 343$$

**42.** 
$$5^4 = 625$$

**46.** 
$$8^y = 300$$

**43.** 
$$5^{-3} = \frac{1}{125}$$

**46.** 
$$8^y = 300$$
 **47.**  $\sqrt[n]{x} = y$ 

**50.** 
$$e^{x-2} = 2y$$

**49.**  $\left(\frac{1}{2}\right)^{-5} = 32$ 

44. 
$$\sqrt[3]{64} = 4$$

**48.** 
$$\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$$

**51.** 
$$e = 3x$$
  
**52.**  $\sqrt[3]{e^{2x}} = y$ 

**53.** 
$$\log_5 125 = y$$

**57.** 
$$\log_6 \sqrt{6} = x$$

**61.** 
$$\log_{\sqrt{3}} 81 = 8$$

**54.** 
$$\log_4 16 = x$$

**58.** 
$$\log_3 \frac{1}{\sqrt{3}} = x$$

**62.** 
$$\log_4 \frac{1}{64} = -3$$

**55.** 
$$\log_5 \frac{1}{5} = x$$

**59.** 
$$6 = \log_2 64$$

**63.** 
$$\log_4 26 = y$$

**56.** 
$$\log_2 \frac{1}{8} = x$$

**60.** 
$$2 = \log_9 x$$

**64.** 
$$\ln M = c$$

(65-71) Evaluate the expression without using a calculator

**65.** 
$$\log_4 16$$

**67.** 
$$\log_6 \sqrt{6}$$

**69.** 
$$\log_3 \sqrt[7]{3}$$

**71.** 
$$\log_{\frac{1}{2}} \sqrt{\frac{1}{2}}$$

**66.** 
$$\log_2 \frac{1}{8}$$

**68.** 
$$\log_3 \frac{1}{\sqrt{3}}$$
 **70.**  $\log_3 \sqrt{9}$ 

**70.** 
$$\log_3 \sqrt{9}$$

(72-80) Simplify

**72.** 
$$\log_{5} 1$$

**75.** 
$$10^{\log 3}$$

78. 
$$\ln e^{x-5}$$

**73.** 
$$\log_{7} 7^2$$

**76.** 
$$e^{2+\ln 3}$$

**78.** 
$$\ln e^{x-5}$$
 **79.**  $\log_b b^n$ 

**74.** 
$$3^{\log_3 8}$$

77. 
$$\ln e^{-3}$$

**80.** 
$$\ln e^{x^2 + 3x}$$

(81 - 108) Find the domain of

**81.** 
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

**82.** 
$$f(x) = \frac{e^{|x|}}{1 + e^x}$$

**83.** 
$$f(x) = \sqrt{1 - e^x}$$

**84.** 
$$f(x) = \sqrt{e^x - e^{-x}}$$

**85.** 
$$f(x) = \log_5(x+4)$$

**86.** 
$$f(x) = \log_5(x+6)$$

**87.** 
$$f(x) = \log(2 - x)$$

**88.** 
$$f(x) = \log(7 - x)$$

**89.** 
$$f(x) = \ln(x-2)^2$$

**90.** 
$$f(x) = \ln(x-7)^2$$

**91.** 
$$f(x) = \log(x^2 - 4x - 12)$$

$$92. \quad f(x) = \log\left(\frac{x-2}{x+5}\right)$$

$$93. \quad f(x) = \log\left(\frac{3-x}{x-2}\right)$$

$$94. \quad f(x) = \ln\left(\frac{x^2}{x-4}\right)$$

$$95. \qquad f(x) = \log_3(x^3 - x)$$

**96.** 
$$f(x) = \log \sqrt{2x-5}$$

**97.** 
$$f(x) = 3\ln(5x - 6)$$

**98.** 
$$f(x) = \log\left(\frac{x}{x-2}\right)$$

**99.** 
$$f(x) = \ln(x^2 + 4)$$

**100.** 
$$f(x) = \ln|4x - 8|$$

**101.** 
$$f(x) = \ln(x^2 - 9)$$

**102.** 
$$f(x) = \ln|5 - x|$$

**103.** 
$$f(x) = \ln(x-4)^2$$

**104.** 
$$f(x) = \ln(x^2 - 4)$$

**105.** 
$$f(x) = \ln(x^2 - 4x + 3)$$

**106.** 
$$f(x) = \ln(2x^2 - 5x + 3)$$

**107.** 
$$f(x) = \log(x^2 + 4x + 3)$$

**108.** 
$$f(x) = \ln(x^4 - x^2)$$

(109 – 129) Find the asymptote, domain, and range of the given functions. Then, sketch the graph

**109.** 
$$f(x) = 2^x + 3$$

**110.** 
$$f(x) = 2^{3-x}$$

**111.** 
$$f(x) = \left(\frac{2}{5}\right)^{-x}$$

**112.** 
$$f(x) = -\left(\frac{1}{2}\right)^x + 4$$

**113.** 
$$f(x) = 4^x$$

**114.** 
$$f(x) = 2 - 4^x$$

**115.** 
$$f(x) = -3 + 4^{x-1}$$

**116.** 
$$f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$$

**117.** 
$$f(x) = e^{x-2}$$

**118.** 
$$f(x) = 3 - e^{x-2}$$

**119.** 
$$f(x) = e^{x+4}$$

**120.** 
$$f(x) = 2 + e^{x-1}$$

**121.** 
$$f(x) = \log_4(x-2)$$

**122.** 
$$f(x) = \log_4 |x|$$

**123.** 
$$f(x) = \left(\log_4 x\right) - 2$$

**124.** 
$$f(x) = \log(3-x)$$

**125.** 
$$f(x) = 2 - \log(x+2)$$

125. 
$$f(x) = 2 - \log(x + 2)$$

**126.** 
$$f(x) = \ln(x-2)$$

**127.** 
$$f(x) = \ln(3-x)$$

**128.** 
$$f(x) = 2 + \ln(x+1)$$

**129.** 
$$f(x) = 1 - \ln(x - 2)$$

**130.** On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed *w*, in feet per second, of a person living in a city of population *P*, in *thousands*, is given by the function:

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.
- **131.** The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of  $I_0$  to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity  $10,000I_0$ 

132. Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1); \quad t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?
- **133.** Starting on the left side of a standard 88–*key* piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (27.5) 2^{\frac{n-1}{12}}$$



- a) Determine the frequency of middle C, key number 40 on an 88–key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?

# **Section 1.6 – Exponential and Logarithmic Equations**

**Properties of Logarithms**  $\underline{\text{For } M > 0 \text{ and } N > 0}$ 

**Product** Rule  $\log_b MN = \log_b M + \log_b N$ 

**Power Rule**  $\log_b M^p = p \log_b M$ 

**Quotient** Rule  $\log_b \frac{M}{N} = \log_b M - \log_b N$ 

#### Example

Express  $\log_a \frac{x^3 \sqrt{y}}{z^2}$  in terms of logarithms of x, y, and z.

#### **Solution**

$$\log_a \frac{x^3 \sqrt{y}}{z^2} = \log_a x^3 y^{1/2} - \log_a z^2$$
Quotient Rule
$$= \log_a x^3 + \log_a y^{1/2} - \log_a z^2$$
Product Rule
$$= 3\log_a x + \frac{1}{2}\log_a y - 2\log_a z$$
Power Rule

# Example

Express as one logarithm:  $\frac{1}{3}\log_a(x^2-1)-\log_a y-4\log_a z$ 

$$\frac{1}{3}\log_{a}\left(x^{2}-1\right)-\log_{a}y-4\log_{a}z=\log_{a}\left(x^{2}-1\right)^{1/3}-\log_{a}y-\log_{a}z^{4} \qquad \textit{Power Rule}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}y+\log_{a}z^{4}\right) \qquad \textit{Factor (-)}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}yz^{4}\right) \qquad \textit{Product Rule}$$

$$=\log_{a}\frac{\sqrt[3]{x^{2}-1}}{\sqrt[3]{x^{4}}} \qquad \textit{Quotient Rule}$$

## **Exponential Functions are One-to-One**

$$b^{\mathbf{M}} = b^{\mathbf{N}} \iff \mathbf{M} = \mathbf{N} \text{ for any } b > 0, \neq 1$$

# Example

Solve 
$$8^{x+2} = 4^{x-3}$$

#### **Solution**

$$\left(2^{3}\right)^{x+2} = \left(2^{2}\right)^{x-3}$$

$$2^{3(x+2)} = 2^{2(x-3)}$$

$$3(x+2) = 2(x-3)$$

$$3x + 6 = 2x - 6$$

$$3x - 2x = -6 - 6$$

$$x = -12$$

## **Using** Natural Logarithms

- 1. Isolate the exponential expression
- 2. Take the natural logarithm on both sides of the equation
- 3. Simplify using one of the following properties:  $\ln b^x = x \ln b$  or  $\ln e^x = x$
- 4. Solve for the variable

## Example

Solve the equation  $3^x = 21$ 

| 1 <sup>st</sup> method     |               | 2 <sup>nd</sup> method               |                     |
|----------------------------|---------------|--------------------------------------|---------------------|
| $3^x = 21$                 | In both sides | $3^x = 21 \Rightarrow x = \log_3 21$ | Convert to log form |
| $\ln 3^x = \ln 21$         |               | $x = \frac{\ln 21}{\ln 3}$           | Change of base      |
| $x \ln 3 = \ln 21$         |               | ln 3                                 | change of case      |
| $x = \frac{\ln 21}{\ln 3}$ |               |                                      |                     |

Solve the equation  $5^{2x+1} = 6^{x-2}$ 

#### **Solution**

$$\ln 5^{2x+1} = \ln 6^{x-2}$$

$$(2x+1)\ln 5 = (x-2)\ln 6$$

$$2x \ln 5 + \ln 5 = x \ln 6 - 2 \ln 6$$

$$2x \ln 5 - x \ln 6 = -2 \ln 6 - \ln 5$$

$$x(2\ln 5 - \ln 6) = -\ln 6^2 - \ln 5$$

$$x(\ln 5^2 - \ln 6) = -(\ln 36 + \ln 5)$$

$$x\left(\ln\frac{25}{6}\right) = -\ln\left(36 \times 5\right)$$

$$|\underline{x} = -\frac{\ln(180)}{\ln\frac{25}{6}} \approx -3.64|$$

## Example

Solve the equation  $\frac{5^x - 5^{-x}}{2} = 3$ 

#### **Solution**

$$5^{x} - 5^{-x} = 6$$

Multiply by 2 both sides

$$5^{x}5^{x} - 5^{-x}5^{x} = 65^{x}$$

 $5^x 5^x - 5^{-x} 5^x = 65^x$  Multiply by  $5^x$  both sides

$$\left(5^{x}\right)^{2} - 1 = 6\left(5^{x}\right)$$

$$(5^x)^2 - 6(5^x) - 1 = 0$$

$$5^{x} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(-1)}}{2(1)} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = \begin{cases} 3 + \sqrt{10} \\ 3 - \sqrt{10} < 0 \end{cases}$$

$$5^x = 3 + \sqrt{10}$$

$$\ln 5^{x} = \ln \left( 3 + \sqrt{10} \right)$$

$$x\ln 5 = \ln\left(3 + \sqrt{10}\right)$$

$$x = \frac{\ln\left(3 + \sqrt{10}\right)}{\ln 5} \qquad \approx 1.13$$

## **Logarithmic Equations**

- **1.** Express the equation in the form  $\log_b M = c$
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:

$$\log_{b} M = c \implies b^{c} = M$$

- 3. Solve for the variable
- **4.** Check proposed solution in the original equation. Include only the set for M > 0

## Example

Solve:  $\log x + \log(x - 3) = 1$ 

#### **Solution**

$$\log[x(x-3)] = 1$$

$$x(x-3) = 10^{1}$$

$$x^{2} - 3x = 10$$

$$x^{2} - 3x - 10 = 0$$

$$\Rightarrow x = -2, 5$$
Product Rule

Convert to exponential form

Solve for x

Check: 
$$x = -2 \Rightarrow \log(-2) + \log(x - 3) = 1$$
  
 $x = 5 \Rightarrow \log(5) + \log(5 - 3) = 1$ 

## Example

Solve the equation  $\log_2 x + \log_2 (x+2) = 3$ 

$$\log_2[x(x+2)] = 3$$
 Product Rule
$$x(x+2) = 2^3$$
 Change to exponential form
$$x^2 + 2x - 8 = 0$$
 Solve for  $x$ 

$$x = -4 \quad x = 2$$

Check: 
$$\log_2(-4) + \log_2(-4 + 2) = 3$$
 Not a solution (negative inside the log)  $\log_2(2) + \log_2(2 + 2) = 3$  Only solution

#### **Property of Logarithmic Equality**

The logarithmic function with base b is 1-1. Thus the following equivalent conditions are satisfied for positive real numbers M and N.

For any M > 0, N > 0, b > 0,  $\neq 1$ If  $\log_b M = \log_b N \implies M = N$ If  $M \neq N \implies \log_b M \neq \log_b N$ 

#### Example

Solve the equation  $\log_6 (4x-5) = \log_6 (2x+1)$ 

#### **Solution**

$$\log_{6}(4x-5) = \log_{6}(2x+1)$$

$$4x-5 = 2x+1$$

$$4x-2x = 5+1$$

$$2x = 6$$

$$x = 3$$
Check:
$$\log_{6}(4(3)-5) = \log_{6}(2(3)+1)$$

$$\log_{6}(7) = \log_{6}(7)$$
True statement
$$x = 3$$
is a solution

## Example

Solve the equation  $\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$ 

$$\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$$

$$\ln(x+6) - \ln(x-1) = \ln 10 - \ln 2$$

$$\ln\left(\frac{x+6}{x-1}\right) = \ln\frac{10}{2}$$

$$\frac{x+6}{x-1} = 5$$

$$x+6 = 5(x-1)$$

$$x+6 = 5x-5$$

$$x-5x = -5-6$$

$$-4x = -11$$

$$x = \frac{11}{4}$$

Check: 
$$\ln\left(\frac{11}{4} + 6\right) - \ln 10 = \ln\left(\frac{11}{4} - 1\right) - \ln 2$$
  
 $\ln\left(\frac{35}{4}\right) - \ln 10 = \ln\left(\frac{7}{4}\right) - \ln 2$ 

$$x = \frac{11}{4}$$
 is the solution

Solve the equation  $\log \sqrt[3]{x} = \sqrt{\log x}$  for x.

#### Solution

$$\log x^{1/3} = \sqrt{\log x}$$
$$\left(\frac{1}{3}\log x\right)^2 = \left(\sqrt{\log x}\right)^2$$

$$\frac{1}{9}(\log x)^2 = \log x$$

$$(\log x)^2 = 9\log x$$

$$(\log x)^2 - 9\log x = 0$$

$$\log x (\log x - 9) = 0$$

$$\log x = 0 \qquad \log x - 9 = 0$$

$$\boxed{x = 1} \qquad \log x = 9$$

$$\boxed{x = 10^9}$$

Check: 
$$x = 1 \implies \log \sqrt[3]{1} = \sqrt{\log 1} \rightarrow 0 = 0$$
  
$$x = 10^9 \implies \log \sqrt[3]{10^9} = \sqrt{\log 10^9} \rightarrow 3 = 3$$

The equation has two solutions: x = 1,  $10^9$ 

## **Example** (hyperbolic secant function)

Solve the equation  $y = \frac{2}{e^x + e^{-x}}$  for x in terms of y.

$$y = \frac{2}{e^x + e^{-x}}$$

$$y(e^x + e^{-x}) = 2$$

$$ye^x + ye^{-x} = 2$$

$$ye^x e^x + ye^{-x}e^x = 2e^x$$

$$y(e^x)^2 - 2e^x + y = 0$$

$$e^x = \frac{2 \pm \sqrt{4 - 4y^2}}{2y}$$

$$= \frac{2 \pm \sqrt{4(1 - y^2)}}{2y}$$

$$= \frac{2 \pm 2\sqrt{1 - y^2}}{2y}$$

$$= \frac{1 \pm \sqrt{1 - y^2}}{y}$$

$$\ln e^x = \ln\left(\frac{1 \pm \sqrt{1 - y^2}}{y}\right)$$

$$x = \ln\frac{1 \pm \sqrt{1 - y^2}}{y}$$

# **Exercises** Section 1.6 – Exponential and Logarithmic Equations

(1-31) Express the following in terms of sums and differences of logarithms

1.  $\log_3(ab)$ 

2.  $\log_{7}(7x)$ 

3.  $\log \frac{x}{1000}$ 

 $4. \qquad \log_5\left(\frac{125}{y}\right)$ 

 $5. \quad \log_b x^7$ 

6.  $\ln \sqrt[7]{x}$ 

 $7. \quad \log_a \frac{x^2 y}{z^4}$ 

 $8. \quad \log_b \frac{x^2 y}{b^3}$ 

 $9. \quad \log_b \left( \frac{x^3 y}{z^2} \right)$ 

 $10. \quad \log_b \left( \frac{\sqrt[3]{x}y^4}{z^5} \right)$ 

11.  $\log \left( \frac{100x^3 \sqrt[3]{5-x}}{3(x+7)^2} \right)$ 

12.  $\log_a \sqrt[4]{\frac{m^8 n^{12}}{a^3 b^5}}$ 

13.  $\log_p \sqrt[3]{\frac{m^5 n^4}{t^2}}$ 

**14.**  $\log_b \sqrt[n]{\frac{x^3 y^5}{z^m}}$ 

 $15. \quad \log_a \sqrt[3]{\frac{a^2 b}{c^5}}$ 

**16.**  $\log_b \left( x^4 \sqrt[3]{y} \right)$ 

 $17. \quad \log_5\left(\frac{\sqrt{x}}{25y^3}\right)$ 

**18.**  $\log_a \frac{x^3 w}{y^2 z^4}$ 

 $19. \quad \log_a \frac{\sqrt{y}}{x^4 \sqrt[3]{z}}$ 

**20.**  $\ln \sqrt[4]{\frac{x^7}{y^5z}}$ 

**21.**  $\ln x \sqrt[3]{\frac{y^4}{z^5}}$ 

**22.**  $\log_b \sqrt[5]{\frac{m^4 n^5}{x^2 a b^{10}}}$ 

**23.**  $\log_b \frac{a^5 b^{10}}{c^2 \sqrt[4]{d^3}}$ 

**24.**  $\ln\left(x^2\sqrt{x^2+1}\right)$ 

**25.**  $\ln \frac{x^2}{x^2 + 1}$ 

**26.**  $\ln\left(\frac{x^2(x+1)^3}{(x+3)^{1/2}}\right)$ 

27.  $\ln \sqrt{\frac{(x+1)^5}{(x+2)^{20}}}$ 

 $28. \quad \ln\frac{\left(x^2+1\right)^5}{\sqrt{1-x}}$ 

**29.**  $\ln \left( 3 \frac{x(x+1)(x-2)}{(x^2+1)(2x+3)} \right)$ 

 $30. \quad \ln\left(\sqrt{\frac{1}{x(x+1)}}\right)$ 

**31.**  $\ln\left(\sqrt{(x^2+1)(x-1)^2}\right)$ 

(32-55) Write the expression as a single logarithm and simplify if necessary

**32.**  $\log(x+5) + 2\log x$ 

**33.**  $3\log_b x - \frac{1}{3}\log_b y + 4\log_b z$ 

**34.**  $\frac{1}{2}\log_b(x+5) - 5\log_b y$ 

**35.**  $\ln(x^2 - y^2) - \ln(x - y)$ 

36.  $\ln(xz) - \ln(x\sqrt{y}) + 2\ln\frac{y}{z}$ 

 $37. \quad \log(x^2y) - \log z$ 

**38.**  $\log(z^2\sqrt{y}) - \log z^{1/2}$ 

**39.**  $2\log_a x + \frac{1}{3}\log_a (x-2) - 5\log_a (2x+3)$ 

**40.** 
$$5\log_a x - \frac{1}{2}\log_a (3x - 4) - 3\log_a (5x + 1)$$
 **48.**  $\frac{1}{2}\log_y p^3 q^4 - \frac{2}{3}\log_y p^4 q^3$ 

**41.** 
$$\log(x^3y^2) - 2\log(x\sqrt[3]{y}) - 3\log(\frac{x}{y})$$

**42.** 
$$\ln y^3 + \frac{1}{3} \ln \left( x^3 y^6 \right) - 5 \ln y$$

$$43. \quad 2\ln x - 4\ln\left(\frac{1}{y}\right) - 3\ln\left(xy\right)$$

**44.** 
$$4 \ln x + 7 \ln y - 3 \ln z$$

**45.** 
$$\frac{1}{3} \left[ 5 \ln(x+6) - \ln x - \ln(x^2 - 25) \right]$$

**46.** 
$$\frac{2}{3} \left[ \ln \left( x^2 - 4 \right) - \ln \left( x + 2 \right) \right] + \ln (x + y)$$

**47.** 
$$\frac{1}{2}\log_b m + \frac{3}{2}\log_b 2n - \log_b m^2 n$$

**48.** 
$$\frac{1}{2}\log_y p^3 q^4 - \frac{2}{3}\log_y p^4 q^3$$

**49.** 
$$\frac{1}{2}\log_a x + 4\log_a y - 3\log_a x$$

**50.** 
$$\frac{2}{3} \left[ \ln \left( x^2 - 9 \right) - \ln \left( x + 3 \right) \right] + \ln \left( x + y \right)$$

**51.** 
$$\frac{1}{4}\log_b x - 2\log_b 5 - 10\log_b y$$

**52.** 
$$2 \ln (x+4) - \ln x - \ln (x^2-3)$$

**53.** 
$$\ln x + \ln (y+3) + \ln (y+2) - \ln (y^2 + 5y + 6)$$

**54.** 
$$\ln x + \ln (x+4) + \ln (x+1) - \ln (x^2 + 5x + 4)$$

**55.** 
$$\ln(x^2 - 25) - 2\ln(x + 5) + \ln(x - 5)$$

(56 - 169) Solve the equations

**56.** 
$$2^x = 128$$

**57.** 
$$3^x = 243$$

**58.** 
$$5^{x} = 70$$

**59.** 
$$6^{x} = 50$$

**60.** 
$$5^x = 134$$

**61.** 
$$7^x = 12$$

**62.** 
$$9^x = \frac{1}{\sqrt[3]{3}}$$

**63.** 
$$49^x = \frac{1}{343}$$

**64.** 
$$2^{5x+3} = \frac{1}{16}$$

**65.** 
$$\left(\frac{2}{5}\right)^x = \frac{8}{125}$$

**66.** 
$$2^{3x-7} = 32$$

**67.** 
$$4^{2x-1} = 64$$

**68.** 
$$3^{1-x} = \frac{1}{27}$$

**69.** 
$$2^{-x^2} = 5$$

**70.** 
$$2^{-x} = 8$$

**71.** 
$$\left(\frac{1}{3}\right)^x = 81$$

**72.** 
$$3^{-x} = 120$$

**73.** 
$$27 = 3^{5x} 9^{x^2}$$

**74.** 
$$4^{x+3} = 3^{-x}$$

**75.** 
$$2^{x+4} = 8^{x-6}$$

**76.** 
$$8^{x+2} = 4^{x-3}$$

**77.** 
$$7^x = 12$$

78. 
$$5^{x+4} = 4^{x+5}$$

**79.** 
$$5^{x+2} = 4^{1-x}$$

**80.** 
$$3^{2x-1} = 0.4^{x+2}$$

**81.** 
$$4^{3x-5} = 16$$

**82.** 
$$4^{x+3} = 3^{-x}$$

**83.** 
$$7^{2x+1} = 3^{x+2}$$

**84.** 
$$3^{x-1} = 7^{2x+5}$$

**85.** 
$$4^{x-2} = 2^{3x+3}$$

**86.** 
$$3^{5x-8} = 9^{x+2}$$

**87.** 
$$3^{x+4} = 2^{1-3x}$$

**88.** 
$$3^{2-3x} = 4^{2x+1}$$

**89.** 
$$4^{x+3} = 3^{-x}$$

**90.** 
$$7^{x+6} = 7^{3x-4}$$

**91.** 
$$2^{-100x} = (0.5)^{x-4}$$

**92.** 
$$4^x \left(\frac{1}{2}\right)^{3-2x} = 8.\left(2^x\right)^2$$

**93.** 
$$5^x + 125(5^{-x}) = 30$$

**94.** 
$$4^x - 3(4^{-x}) = 8$$

**95.** 
$$5^{3x-6} = 125$$

**96.** 
$$e^{x} = 15$$

**97.** 
$$e^{x+1} = 20$$

**98.** 
$$9e^x = 107$$

**99.** 
$$e^{x \ln 3} = 27$$

100. 
$$e^{x^2} = e^{7x-12}$$

**101.** 
$$f(x) = xe^x + e^x$$

**102.** 
$$f(x) = x^3 \left(4e^{4x}\right) + 3x^2 e^{4x}$$

**103.** 
$$e^{2x} - 2e^x - 3 = 0$$

**104.** 
$$e^{0.08t} = 2500$$

**105.** 
$$e^{x^2} = 200$$

**106.** 
$$e^{2x+1} \cdot e^{-4x} = 3e^{-4x}$$

**107.** 
$$e^{2x} - 8e^x + 7 = 0$$

108. 
$$e^{2x} + 2e^x - 15 = 0$$

**109.** 
$$e^x + e^{-x} - 6 = 0$$

**110.** 
$$e^{1-3x} \cdot e^{5x} = 2e$$

**111.** 
$$6 \ln(2x) = 30$$

**112.** 
$$\log_5(x-7) = 2$$

**113.** 
$$\log_4 (5+x) = 3$$

**114.** 
$$\log(4x-18)=1$$

**115.** 
$$\log_3 x = -2$$

**116.** 
$$\log(x^2 + 19) = 2$$

**117.** 
$$\ln(x^2 - 12) = \ln x$$

**118.** 
$$\log(2x^2 + 3x) = \log(10x + 30)$$

**119.** 
$$\log_5(2x+3) = \log_5 11 + \log_5 3$$

**120.** 
$$\log_3 x - \log_9 (x + 42) = 0$$

**121.** 
$$\log_5 x + \log_5 (4x - 1) = 1$$

**122.** 
$$\log x - \log(x+3) = 1$$

**123.** 
$$\log x + \log (x - 9) = 1$$

**124.** 
$$\log_2(x+1) + \log_2(x-1) = 3$$

**125.** 
$$\log_{8}(x+1) - \log_{8}x = 2$$

**126.** 
$$\ln(x+8) + \ln(x-1) = 2 \ln x$$

**127.** 
$$\ln(4x+6) - \ln(x+5) = \ln x$$

**128.** 
$$\ln(5+4x) - \ln(x+3) = \ln 3$$

**129.** 
$$\ln \sqrt[4]{x} = \sqrt{\ln x}$$

$$130. \quad \sqrt{\ln x} = \ln \sqrt{x}$$

**131.** 
$$\log x^2 = (\log x)^2$$

**132.** 
$$\log x^3 = (\log x)^2$$

**133.** 
$$\log(\log x) = 1$$

**134.** 
$$\log(\log x) = 2$$

**135.** 
$$\ln(\ln x) = 2$$

**136.** 
$$\ln\left(e^{x^2}\right) = 64$$

**137.** 
$$e^{\ln(x-1)} = 4$$

**138.** 
$$10^{\log(2x+5)} = 9$$

**139.** 
$$\log \sqrt{x^3 - 9} = 2$$

**140.** 
$$\log \sqrt{x^3 - 17} = \frac{1}{2}$$

**141.** 
$$\log_4 x = \log_4 (8 - x)$$

**142.** 
$$\log_7(x-5) = \log_7(6x)$$

**143.** 
$$\ln x^2 = \ln (12 - x)$$

**144.** 
$$\log_2(x+7) + \log_2 x = 3$$

**145.** 
$$\ln x = 1 - \ln (x + 2)$$

**146.** 
$$\ln x = 1 + \ln (x+1)$$

**147.** 
$$\log_6 (2x-3) = \log_6 12 - \log_6 3$$

**148.** 
$$\log(3x+2) + \log(x-1) = 1$$

**149.** 
$$\log_5(x+2) + \log_5(x-2) = 1$$

**150.** 
$$\log_2 x + \log_2 (x - 4) = 2$$

**151.** 
$$\log_3 x + \log_3 (x+6) = 3$$

**152.** 
$$\log_3(x+3) + \log_3(x+5) = 1$$

**153.** 
$$\ln x = \frac{1}{2} \ln \left( 2x + \frac{5}{2} \right) + \frac{1}{2} \ln 2$$

**154.** 
$$\ln(-4-x) + \ln 3 = \ln(2-x)$$

**155.** 
$$\log_A x + \log_A (x-2) = \log_A (15)$$

**156.** 
$$\ln(x-5) - \ln(x+4) = \ln(x-1) - \ln(x+2)$$

**157.** 
$$\ln(4-x) = \ln(x+8) + \ln(2x+13)$$

**158.** 
$$\log(x^2+4) - \log(x+2) = 2 + \log(x-2)$$

**159.** 
$$\log_3(x-2) = \log_3 27 - \log_3(x-4) - 5^{\log_5 1}$$

**160.** 
$$\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$$

**161.** 
$$\frac{10^x - 10^{-x}}{2} = 20$$

**166.** 
$$\frac{e^x - e^{-x}}{2} = 15$$

$$162. \ \frac{10^x + 10^{-x}}{2} = 8$$

**167.** 
$$\frac{1}{e^x - e^{-x}} = 4$$

**163.** 
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 5$$

**168.** 
$$\frac{e^x + e^{-x}}{e^x - e^{-x}} = 3$$

**164.** 
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 2$$

**169.** 
$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = 6$$

**165.** 
$$\frac{e^x + e^{-x}}{2} = 15$$

(170 - 173) Use common logarithms to solve for x in terms of y

**170.** 
$$y = \frac{10^x + 10^{-x}}{2}$$

**172.** 
$$y = \frac{e^x - e^{-x}}{2}$$

**171.** 
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

**173.** 
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- **174.** Solve for *t* using logarithms with base *a*:  $2a^{t/3} = 5$
- **175.** Solve for *t* using logarithms with base *a*:  $K = H Ca^t$