I. Hypothesis testing

- a. Fisher's null hypothesis testing (only to reject H_0)

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Use P-value to test

- b. Neyman-Pearson decision theory (may reject H_0 and take H_1)
 - i. H_0 and H_1 are not necessarily mutual exclusive.
 - ii. Error
 - 1) Type I error (reject H_0 thought it is true) (denoted by α);
 - 2) Type II error (fail to reject H_0 when it is false) (denoted by β)
 - 3) Power:= 1β
 - a) Calculate β for normal distribution

Calculate
$$\beta$$
 for normal di
$$\beta = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-z_{\beta}} e^{-t^{2}/2} dt$$

$$n \approx \frac{\left(\frac{z_{\alpha}}{2} + z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}$$

ever is not P-value.

- 5) $\alpha + \beta$ may not necessarily equal 1!
- iii. Acceptance sampling

Producer's risk: α ; consumer's risk: β

- c. Null Hypothesis Significance Testing (NHST)
 - i. H_1 is always the logical negation of H_0

II. Tests

a. T-test

(test for the mean when normal distribution)

i. Statistics:

$$T_{n-1} = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

ii. Reject H_0 if ...

$$\Box H_0: \mu = \mu_0, \qquad \left(|T_{n-1}| > t_{\frac{\alpha}{2}, n-1} \right)$$

$$\Box H_0: \mu \leq \mu_0, \qquad (T_{n-1} > t_{\alpha, n-1})$$

$$\Box H_0: \mu \geq \mu_0, \qquad (T_{n-1} < -t_{\alpha,n-1})$$

iii. Parameter for OC curve of the test

$$d = \frac{|\mu - \mu_0|}{\sigma}$$

b. Chi-squared test

(test for the variance when normal distribution)

i. Statistic

$$\chi_{n-1}^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

ii. Reject H_0 if ...

$$\Box H_0: \sigma = \sigma_0, \qquad (\chi_{n-1}^2 > \chi_{\alpha/2, n-1}^2 \text{ or } \chi_{n-1}^2 < \chi_{1-\alpha/2, n-1}^2)$$

- $\Box \ H_0: \sigma \leq \sigma_0, \qquad (\chi_{n-1}^2 > \chi_{\alpha,n-1}^2)$ $\Box \ H_0: \sigma \geq \sigma_0, \qquad (\chi_{n-1}^2 < \chi_{\alpha,n-1}^2)$
- iii. Parameter for OC curve of the test

$$\lambda = \frac{\sigma}{\sigma_0}$$

c. Sign test

(test for the median when random sample)

i. Statistics

$$Q_+ = \text{number of } X_k \text{ when } X_k - M_0 > 0$$

$$Q_{-}$$
 = number of X_k when $X_k - M_0 < 0$

ii. Reject H_0 if ...

- \Box H_0 : $M \le M_0$ if Q_- is too small to have occurred by chance
- $\Box H_0$: $M \ge M_0$ if Q_+ is too small to have occurred by chance
- \Box H_0 : $M = M_0$ if $Q := \min(Q_-, Q_+)$ is too small to have occurred by chance
- iii. P-value is calculated by binomial distribution. When it is a two tail test, remember to time two!
- d. Wilcoxon signed rank test

(test for the median when random sample from a continuous symmetric distribution)

i. Statistics

$$W_{+} = \sum_{R_{i}>0} R_{i}$$

$$W_{-} = \sum_{R_{i}<0} |R_{i}|$$

ii. Reject H_0 if ...

- \Box H_0 : $M \le M_0$ if W_- is too small to have occurred by chance
- $\Box H_0$: $M \ge M_0$ if W_+ is too small to have occurred by chance
- \Box H_0 : $M = M_0$ if $W := \min(W_-, W_+)$ is too small to have occurred by chance
- e. Test for proportion
 - i. Test (for large-sample)

$$H_0: p = p_0$$

ii. Statistic

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}, \qquad \hat{p} = \bar{X}$$

iii. $100(1-\alpha)\%$ confidence interval for p:

$$\hat{p} \pm z_{\alpha/2} \sqrt{p(1-p)/n}$$

Then
$$d = z_{\alpha/2} \sqrt{p(1-p)/n}$$

Sample size $n = \frac{z_{\alpha/2}^2}{4d^2}$ when given d

iv. Reject H_0 and in favor of H_1 if ...

$$\Box H_1: p \neq p_0, \qquad (|Z| > z_{\alpha/2})$$

$$\Box H_1: p > p_0, \qquad (Z > z_\alpha)$$

$$\Box H_1: p > p_0, \qquad (Z > z_\alpha)$$

$$\Box H_1: p < p_0, \qquad (Z < -z_\alpha)$$

III. Comparing two statistics

- a. Comparing two proportions (both approximately normally distributions)
 - i. Test

$$H_0: p_1 - p_2 = (p_1 - p_2)_0$$

ii. Statistic

$$Z = \frac{\widehat{p_1} - \widehat{p_2} - (p_1 - p_2)_0}{\sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}}$$

$$\Box H_1: p_1 - p_2 \neq (p_1 - p_2)_0, \quad (|Z| > z_{\alpha/2})$$

$$\Box H_1: p_1 - p_2 > (p_1 - p_2)_0, \qquad (Z > z_\alpha)$$

$$\Box H_1: p_1 - p_2 > (p_1 - p_2)_0, \qquad (Z > z_{\alpha})$$

$$\Box H_1: p_1 - p_2 < (p_1 - p_2)_0, \qquad (Z < -z_{\alpha})$$

- b. Pooled large sample test for equality of proportions (both Bernoulli distributions)
 - i. Test

$$H_0: p_1 - p_2 = 0$$

ii. Statistics

$$Z = \frac{\widehat{p_1} - \widehat{p_2}}{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n_1} + \frac{\widehat{p}(1-\widehat{p})}{n_2}}}, \qquad \widehat{p} = \frac{n_1 \widehat{p_1} + n_2 \widehat{p_2}}{n_1 + n_2}$$

- c. Comparing two means (variance known)
 - i. For OC curves

$$d = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}}, \quad \text{when } n_1 = n_2 = n$$

$$n = \frac{\sigma_1^2 + \sigma_2^2}{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \quad \text{when } n_1 \neq n_2$$

ii. Pooled estimator: (equal variances)

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

iii. $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$:

$$(\overline{X_1} - \overline{X_2}) \pm t_{\frac{\alpha}{2}, n_1 + n_2 - 2} S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})$$

iv. Pooled *T*-test

(when variances are independent and equal)

1) Test

$$H_0$$
: $\mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$

2) Statistic

$$T_{n_1+n_2-2} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

3) Reject H_0 and in favor of H_1 if ...

•
$$H_1: \mu_1 - \mu_2 \neq (\mu_1 - \mu_2)_0$$
, $\left(\left| T_{n_1 + n_2 - 2} \right| > t_{\frac{\alpha}{2}, n_1 + n_2 - 2} \right)$

$$\bullet$$
 $H_1: \mu_1 - \mu_2 > (\mu_1 - \mu_2)_0$, $(T_{n_1 + n_2 - 2} > t_{\alpha, n_1 + n_2 - 2})$

4) OC curve

$$d = \frac{|\mu_1 - \mu_2|}{2\sigma}$$

v. Pooled *T*-test

(when variances are independent but unequal)

$$\gamma = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

$$T_{\gamma} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

Compared with t

vi. Paired T-test when variances are dependent

$$D = X - Y$$

$$T = \frac{\overline{D}}{s_D / \sqrt{n}}$$

vii. Comparison between Paired and Pooled T-Tests

$$T_{\text{pooled}} = \frac{(\overline{X_1} - \overline{X_2})}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$
$$T_{\text{paired}} = \frac{\overline{D}}{S_D/\sqrt{n}}$$

viii. F-test (comparing two variances) (related to F-distribution)

1) Test

$$H_0$$
: $\sigma_1 = \sigma_2$

2) Statistic

$$F_{n_1 - 1, n_2 - 1} = S_1^2 / S_2^2$$

3) Reject H_0 and in favor of H_1 if ...

4) OC curve for *F*-test

When
$$n_1 = n_2 = n$$
, $\lambda = \frac{\sigma_1}{\sigma_2}$.

- d. Wilcoxon Rank-Sum Test (for medians of same kind of distribution)
 - i. Test

$$H_0: M_1 = M_2$$

IV. F-distribution with γ_1 and γ_2 degrees of freedom

$$F_{\gamma_{1},\gamma_{2}} = \frac{\chi_{\gamma_{1}}^{2}/\gamma_{1}}{\chi_{\gamma_{2}}^{2}/\gamma_{2}}$$

$$f_{\gamma_{1},\gamma_{2}} = \gamma_{1}^{\gamma_{1}/2}\gamma_{2}^{\gamma_{2}/2} \frac{\Gamma(\frac{\gamma_{1}+\gamma_{2}}{2})}{\Gamma(\frac{\gamma_{1}}{2})\Gamma(\frac{\gamma_{2}}{2})} \frac{\chi^{\frac{\gamma_{1}}{2}-1}}{(\gamma_{1}x+\gamma_{2})^{(\gamma_{1}+\gamma_{2})/2}}$$

$$f_{1-\alpha,\gamma_{1},\gamma_{2}} = \frac{1}{f_{\alpha,\gamma_{1},\gamma_{2}}}$$