

超高密度游戏直播转码架构

沈悦时 Twitch, Principal Research Engineer

成为软件技术专家 全球软件开发大会的必经之路

[北京站] 2018

2018年4月20-22日 北京·国际会议中心

十二购票中,每张立减2040元

团购享受更多优惠

识别二维码了解更多

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

AICON

全球人工智能与机器学习技术大会

助力人工智能落地

2018.1.13 - 1.14 北京国际会议中心

扫描关注大会官网

SPEAKER INTRODUCE

沈悦时

Twitch, Principal Research Engineer

沈悦时博士带领的研发团队负责Twitch的直播视频转码、ABR播放算法、多平台播放兼容性、画面质量、时延等核心视频技术

沈博士同时是AOM (Alliance of Open media)新一代视频编码协议AV1高层句法的主要贡献者。他发表、申请近20项技术专利,涵盖视音频压缩、推流、播放等领域

沈博士毕业于上海交通大学(本科)、澳洲新南威尔士大学(硕士)、澳洲国立大学(博士)。

TABLE OF

CONTENTS 大纲

- Twitch.tv是干嘛的?
- Twitch直播平台架构,极低成本转码的商业需求
- FFmpeg有点小毛病,还是得重起炉灶
- Shopping也很难:各种转码方案的利弊
- 大团圆结局以及未来努力的方向

Twitch.tv是干嘛的?

总部位于旧金山,是亚马逊AWS的 子公司

全球(除中国市场外)最大的互动直播平台

主播、观众主要集中在北美、欧洲但亚太、南美是新增长点

服务:直播、聊天室、直播录像、上传视频、短视频、社区、游戏整合

营收模式:广告、打赏、游戏商店

有关Twitch.tv的统计数据

1500万+ 日活跃用户

220万+月活跃主播

200万+高峰并发观众

4万+高峰并发直播频道

106分钟 用户平均每天浏览时间

\$6500万+ Twitch社群筹集的慈善捐款

与Netflix受众的不耦合性

注:Netflix为美国以及全球最大的付费内容网络视频服务商,美国75%的网络视频观众是其注册用户

电竞已成为深受年轻人喜爱的大众内容

Twitch直播平台架构

Twitch直播平台架构

转码的商业需求

"Providing transcoding to our broadcasters would help them give their viewers better user experiences."

Twitch的直播转码系统

FFmpeg做RTMP转HLS实时转码

1进N出并转码每个variant:

```
ffmpeg -i <input file or RTMP stream> \
```

-c:v libx264 -x264opts keyint=120:no-scenecut -s 1920x1080 -r 60 -b:v <target bitrate> -profile:v main -preset veryfast -c:a libfdk_aac -sws_flags bilinear -hls_list_size <number of playlist entries> <output file or playlist>.m3u8 \
-c:v libx264 -x264opts keyint=120:no-scenecut -s 1280x720 -r 60 -b:v <target bitrate> -profile:v main -preset veryfast -c:a libfdk_aac -sws_flags bilinear -hls_list_size <number of playlist entries> <output file or playlist>.m3u8 \
-c:v libx264 -x264opts keyint=60:no-scenecut -s 1280x720 -r 30 -b:v <target bitrate> -profile:v main -preset veryfast -c:a libfdk_aac -sws_flags bilinear -hls_list_size <number of playlist entries> <output file or playlist>.m3u8 \
-c:v libx264 -x264opts keyint=60:no-scenecut -s 852x480 -r 30 -b:v <target bitrate> -profile:v main -preset veryfast -c:a libfdk_aac -sws_flags bilinear -hls_list_size <number of playlist entries> <output file or playlist>.m3u8

若要转封装某个variant:

-c:v copy -c:a copy -hls_list_size <number of playlist entries> <output file or playlist>.m3u8 \

有点问题之一:转码+转封装的IDR对齐

有点问题之一:转码+转封装的IDR对齐

有点问题之一:转码+转封装的IDR对齐

有点问题之二:单线程结构影响软件性能

有点问题之二:单线程结构影响软件性能

```
// reap_filters line 1423
for (i = 0; i < nb_output_streams; i++) { // Loop through all output streams
       ... // initialize contexts and files
       OutputStream *ost = output_streams[i];
       AVFilterContext *filter = ost->filter->filter;
       AVFrame filtered_frame = ost->filtered_frame;
       while (1) { // process the video/audio frame for one output stream
                    // frame is not already complete
              ret = av_buffersink_get_frame_flags(filter, filtered_frame, ...);
              if (ret < 0) {
                                    // handle errors and logs
                     break;
              switch (av_buffersink_get_type(filter)) {
              case AVMEDIA_TYPE_VIDEO:
                     do_video_out(of, ost, filtered_frame, float_pts);
              case AVMEDIA_TYPE_AUDIO:
                     do_audio_out(of, ost, filtered_frame);
```


TwitchTranscoder的高性能:多路输出方显优势

TwitchTranscoder的高性能:多路输出方显优势

TwitchTranscoder的高性能:多路输出方显优势

Shopping一个低成本、高密度的转码方案

成本、成本、成本!

稳定性

画质

3年的总体拥有成本:1/5现有的软件解决方案

48小时不间断运行,能对付各路畸形码流

对比基准:x264 veryfast

Twitch的测试内容:https://media.xiph.org/video/derf/

H.264编码的API:IDR插入,码率控制

平均故障间隔,零件物流,NetBoot,IPMI

现成的服务器产品,软件开发支持

软件集成

运维

Time to market

Shopping还真有点难

	优点	缺点	
乙	灵活	成本太高,特别是egress流量成本巨大	
软件	部署便捷,高画质	低密度	
ASIC	高密度,低功耗(低OPEX)	无现成的服务器产品	
GPU	高密度,现成的服务器产品	画质不够理想	

Nvidia Nvenc

H.264 codec 100%用ASIC实现

测试了Maxwell代的Quadro M5000, Tesla M60

行业最高的编码器密度

高画质 (SDK 2016.3以后版本)

解码器资源不够,拖累转码器密度

新Pascal代的Tesla P4或有突破

Intel Quicksync

H.264 codec GPGPU和ASIC混合实现

Broadwell代在密度方面有显著提高

市面上有多个基于Xeon E3服务器产品

软硬件成熟,运行稳定,极佳的技术支持

SDK支持对一进N出ABR转码的性能优化

画质不能算非常理想

```
// feed source H.264 frame
m_ext_bs_proc_vector[0]->PushInFrame (in_frame);
// force IDR if needed
for (unsigned int i = 1; i < m_session_vector.size(); ++i) {
 if (m_force_idr) {
    m_session_vector[i]->pPipeline->setForceIDR (true);
// collect output H.264 frames of multiple variants
std::vector<MediaFramePtr> out_frames; // of one variant
for (unsigned int i = 1; i < m_ext_bs_proc_vector.size(); ++i)
  m_ext_bs_proc_vector[i]->PopCopyOutFrames
(out_frames);
```


Intel Quicksync: 小心SKU

	4 Products	Intel® Xeon® Processor E3- 1285L v4	Intel® Xeon® Processor E3- 1285 v4	Intel® Xeon® Processor E3- 1265L v4	Intel® Xeon® Processor E3- 1278L v4
<	Vertical Segment	Server	Server	Server	Embedded
	Graphics Base Frequency	300.00 MHz	300.00 MHz	300.00 MHz	800.00 MHz
	Graphics Max Dynamic Frequency	1.15 GHz	1.15 GHz	1.05 GHz	1.00 GHz

Intel Quicksync Skylake: 末代皇帝?

- Skylake和Broadwell比,SDK的软件优化 + 更大的GPGPU,能带来 10-20%的性能提高
- 未来新版SDK对于ABR转码的性能或有大幅提升
- · Kaby Lake的转码性能缩水50%,因为VDBOX用了老一代GT2
- · Kaby Lake的新功能仅限于增加了HEVC 10bit 硬件解码的功能
- Kaby Lake并无VP9硬件编码的功能

讨论:后H.264时代(好像有点混乱)

- 编码器的优化努力基本集中在基于内容的VBR,比如Beamr、Harmonic、Ateme等 等
- · 实时H.264编码效率超过x264 medium很难:x264 slow/slower提高不明显, veryslow提高明显但无法实时编码
- · VP9:解码已被广泛支持(除iOS),编码效率确有提高,但实时编码依然有难度(libvpx speed 4就已难做到1080p60)
- · HEVC:专利池依然混乱,依然没有浏览器支持,但被机顶盒、SmartTV广泛支持, 编码效率出色,并有众多软硬件实时编码产品
- · 数(2020年的)风流人物,还看AV1(但估计实时编码有难度)

大团圆结局,但依然有进步的空间

- · Twitch是全球(除中国市场以外)最大的互动直播平台,峰值并发直播频道超过4万路。
- · 软件优化+硬件转码方案的部署使Twitch的转码容量在2017年提高了10倍,同时正式 支持1080p60 6mbps高清,超过50%的Twitch用户观看1080p高清码流
- · 有必要跟进Skylake在密度方面的提升,以降低转码器成本
- · 有必要评估基于Skylake Quicksync的第三方编码器(用GPGPU做ME等),以提升 画质
- · 对于超高观众的频道,可考虑广播VP9、HEVC以降低流量成本

THANKYOU

如有需求,欢迎至[讲师交流会议室]与我们的讲师进一步交流

