Monetary Transmission in a HANK Model with Housing and Rental Sectors

Daniel Albuquerque Thomas Lazarowicz Jamie Lenney

PSE, September 2025

Motivation

Recent period drew increased scrutiny to housing/rental market and effect of monetary policy.

- Limited empirical evidence base beyond house price and rent:price ratio.
- HANK literature not yet incorporated housing element.
- → This paper: HANK + housing + rental

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall (hump-shaped), but magnitude is eventually large
 - ii rents are stable for 1-2 years, then fall
 - iii sales fall is sluggish (hump-shaped) for 1-2 years
- 2. Build upon canonical HANK model: housing tenure
 - renter / owner-occupier / private landlord
 - match to the data: house market targets + aggregate IRFs
 - $i + ii + iii \rightarrow$ deviations from rational expectations
- 3. Applications
 - Housing market clearing
 - Frictions (real v behavioural) & house price dynamics
 - Rental market structure: private v commercial landlords
 - Monetary policy response to rental supply shock [Not today]

House prices: hump-shaped decline; rents: stable for at least year

Figure IRFs to 1p.p. Bank Rate shock

- Estimate a monthly VAR from 1997-2023 [regions in colours, 2005-2023], with dummies for the Covid period. IRFS
- VAR with 7 variables: GDP, CPI core ex-rent, bank rate, mortgage spread, FTSE, house prices and rents
- ▶ Use target factor from Braun et al. [2024] as instrument for bank rate

Sales and stocks: reduced activity for more than a year

▶ p_h does not fall enough to maintain activity in housing market → not FIRE?

Model: HANK + housing + rental

Model: HANK and Housing

- HANK model, with 2 assets: net financial wealth and housing
 - \rightarrow flats H_1 and houses H_2 , $H_2 > H_1$, only flats can be rented
 - → renters r, owner occupiers oo, or landlords ll
 - → borrowing against your home(s) subject to LTV/LTI constraints
 - ightarrow sticky rental transitions with probability $heta_r =$ 0.25
 - → short-run analysis: fixed housing supply
- Housing market clearing conditions:
 - Housing: $\overline{H} = H_1(s_{r,t} + s_{ooF,t}) + H_2(s_{ooH,t} + s_{ll,t})$
 - Rental: $H_1 S_{r,t} = H_1 S_{ll1,t} + 2H_1 S_{ll2,t} + \overline{HA}$

Household's problem

▶ **Stage 1**: aggregate state χ ; idiosyncratic labour productivity is $z = (z_1, z_2)$; and taste shock $\epsilon(h)$ are realised; housing transition h' is chosen

$$V^{(1)}(\chi,h',z,a) = \max_{\tilde{z}} \left[V^{(2)}(\chi,\tilde{h},z,a) + \epsilon(\tilde{h}) - \eta(\tilde{h}) \right]$$

 \rightarrow if we assume a Gumbel distribution for $\epsilon(h)$, then

$$Prob(\chi, h'|h, z, a) = \exp\left(\frac{V^{(2)}(\chi, h', z, a) - \eta(h')}{\alpha_z}\right) / \sum_{h'|h} \exp\left(\frac{V^{(2)}(\chi, h', z, a) - \eta(h')}{\alpha_z}\right)$$

Stage 2: choice of consumption/savings

$$V^{(2)}(\chi, h', a, z) = \max_{a'} u(c, h', l) + \beta \mathbf{E}[V^{(1)}(\chi'|\chi, h', z'|z, a')]$$

subject to budget and borrowing constraints, with

$$u(c, h, l) = \frac{(c^{1-\phi_h}x(h)^{\phi_h})^{1-\sigma_c}}{1-\sigma_c} - \phi_l \frac{l^{1+\psi_l}}{1+\psi_l}, x(h) = H(h)(1+\omega_{oo}\mathbf{1}_{oo})$$

Budget and borrowing constraints

$$a' + c + C_h(p_h, p_r, p_r^*, h') = (1 + r + \mathbf{1}_{\mathbf{a} < \mathbf{0}} \bar{r}) a + zwl(1 - \tau) + \Pi(z),$$

 $a' \ge \bar{a}(h', p_h, z, w, l)$

Transition	$-c_h$	ā
Own H - Own H	$-\delta_h H_2$	$\min(a, \max(-\kappa_h p_h H_2, -\kappa_v y(z)))$
Own H - Own F	$-p_h(H_1 - H_2) - 2F - \delta_h H_1$	$\max(-\kappa_h p_h H_1, -\kappa_v y(z))$
Own H - Rent	$p_h H_2 - F - p_r^*$	0
Own H - LL	$-p_h H_1 - F + p_r^* - \delta_h (H_1 + H_2)$	$\max(-\kappa_h p_h(H_1 + H_2), -\kappa_y y(z) - \kappa_h H_1 p_h)$
Own F - Own F	$-\delta_h H_1$	$\min(a, \max(-\kappa_h p_h H_1, -\kappa_y y(z)))$
Own F - Own H	$-p_h(H_2 - H_1) - 2F - \delta_h H_2$	$\max(-\kappa_h p_h H_2, -\kappa_y y(z))$
Own F - Rent	$p_h H_1 - F - p_r^*$	o ´
Rent - Own F	$-p_hH_1-F-\delta_hH_1$	$\max(-\kappa_h p_h H_1, -\kappa_y y(z)))$
Rent - Rent	$-p_{r,i}$	0
LL - Own H	$H_1p_h - F - \delta_hH_2$	$\min(a + p_h H_1 - F, \max(-\kappa_h p_h H_2, -\kappa_y y(z)))$
LL - LL	$p_{r,i} - \delta_h(H_2 + H_1)$	$\min(a, \max(-\kappa_h p_h(H_1 + H_2), -\kappa_h p_h H_1 - \kappa_y y(z))$
LL - LL x2	$-H_1p_h + 2p_r^* - F - \delta_h(H_2 + 2H_1)$	$\max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y(z))$
LL x2 - LL x2	$2p_{r,i} - \delta_h(H_2 + 2H_1)$	$\min(a, \max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y(z)))$
LL x2 - LL	$H_1p_h + p_r^* - F - \delta_h(H_2 + H_1)$	$\min(a + H_1p_h - F, \max(-\kappa_h p_h (H_1 + H_2), -\kappa_h p_h H_1 - \kappa_v y(z)))$

Deviation from Rational Expectations to match empirical IRFs **Devidence**

We allow households to simultaneously overreact to current economic conditions and under-react to news about the future (Kohlhas and Walther [2021])

$$\bar{f}_{t}(x_{t+k}-x_{ss}) = \frac{1}{1+\delta_{v}} \left(\delta_{x} \bar{f}_{t-1}[x_{t+k}-x_{ss}] + E_{t}^{*}[x_{t+k}-x_{ss}] - \gamma_{x}(x_{t}-x_{ss}) \right)$$

- $\gamma_{v} < 0$: over-reaction to current conditions; $\delta_{v} > 0$: under-reaction to news
 - $\gamma_{v} = 0$, $\delta_{v} = 0 \rightarrow RE$
 - $\gamma_v = 0$, $\delta_v > 0 \rightarrow$ sticky expectations
 - $\gamma_{\rm v} < 0$, $\delta_{\rm v} = 0 \approx {\rm extrapolative/diagnostic}$
- \triangleright We allow for γ , δ to be different for house prices vs other macro aggregates
 - find **under-reaction to news** for both: δ_x , $\delta_{ph} > 0$
 - but no over-reaction to current conditions for house prices $(\gamma_{ph} \approx 0, \gamma_x < 0)$

Rest of the Model

- ▶ Rest of the model is standard: Price/Wage PC, Fiscal rule, Taylor rule...
- ► Solved in sequence space with upper envelope EGM (Iskhakov et al. [2017])
- Generalised deviation from Rational Expectations follows Bardóczy and Guerreiro [2025] framework.
- Calibrate to hit key moments on wealth, income risk, tenure shares, iMPC's...

Calibration • More Cal.

- 1. Estimated labour income process with transitory and persistent components
- 2. Internally calibrated parameters

Targeted Moment	Model	Data	Parameter	Source
Ann. Debt to GDP	0.63	0.65	β	ONS
Share of Renters	0.33	0.33	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Flat Owners	0.10	0.10	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Landlords	0.06	0.06	$\phi_h, \omega_{oo}, p_{r,ss}$	WAS (08-20)
Annual rate $oo \rightarrow r$	0.01	0.01	η_m	EHS (97-23)

3. Untargeted Moments:

Moment	Model	Data	Source
Housing Wealth to Financial Net Worth	8.0	7.0	WAS (08-20)
Top 10 pct. Total Wealth Share	0.31	0.48	WAS (08-20)
Share of Homeowners with Mortgage	0.54	0.53	EHS (97-23)
Share of Landlords with Mortgage	0.49	0.57	WAS (07-20)
Avg Rent to Renter Disposable Income	0.28	0.33	EHS (97-23)

IRF Matching Parameters Alt. Expectations

Housing Market Clearing: Partial Equilibrium

Excess demand in the rental market and excess supply in the housing market.

Housing Market Clearing: General Equilibrium

↑ $r \rightarrow$ house prices react to close housing and rental markets; rental prices do not have a big effect • Elasticities

Frictions: House Price Path Model Quants.

1.0 - $p_{r,t}$ = $E[r_{t+1}]$ = $E[r_{t+1}]$ = $E[p_{t+1}]$ = E

(A) Rational Expectations

(B) Deviation from FIRE

$$p_{h,t} = p_{r,t} + E_t \left[\frac{p_{h,t+1}}{1 + r_{t+1}} \right] + \text{frictions}$$

- Behavioural frictions are key
- Lumpiness and constraints pull down on house price, larger when elasticity is higher.

Frictions: Frictionless Benchmark

Figure IRFs with/without frictions

- Behavioural frictions push up on rental price
- Rat Exp. HANK model has similar dynamics to frictionless benchmark.
 - Frictionless benchmark: RANK, no sticky rental contracts, no transaction costs, no borrowing constraints, no lumpiness.

Housing → **Monetary Policy**

Figure Consumption Channels and by Housing Tenure

- ightharpoonup Around 25% of transmission at the through of p_h .
- ► Winners and losers
- Landlords hit as hard(er) as renters, even though much wealthier (HTM)

Rental Market Structure: Unconstrained vs private landlords

- \triangleright Commercial sector borrows from banks and purchases rental housing $H_{CR,t}$. Pricing

- Rents have limited impact on the (non-rental) housing market
- \triangleright Higher pass-through of interest rates to rents \rightarrow big trade-offs for monetary policy

Rental Market Structure: Unconstrained vs private landlords

- Much higher Sacrifice ratio in commerical sector case (green dashed line).
 - Two to three times higher.
- Private landlords mititgate this but best is no behavioural frictions

Conclusion

- ▶ We've added to the evidence base on monetary policy and housing markets
 - Large slow house price response, flat rental prices
 - Adjustment through volumes
- ▶ Housing a potentially big channel in HANK models, creating winners and losers
- Probed housing market clearing in rental market with private landlords
 - Behavioural frictions and house price elasticity key
 - Private landlords losers in a monetary adjustment but beneficial to monetary policy

IRFs for baseline VAR (back)

Dwelling types: similar co-movement

 $\rightarrow\,$ prices across regions and types react in the same way $\rightarrow\,$ single p_h

External Calibration Calibration

Table Externally calibrated parameters

Value	Source
0.5	Auclert et al. [2020]
0.5	
1.06	Auclert et al. [2020]
0.0126	(avg 97-19 of 2yr 75pct)
0.02p _{h,ss}	Halifax
6.3	Avg 97-23 ONS;
0.90	PSD 90 pctile. FTB
4.5	PSD 90 pctile. FTB
0.25	1 year contract
0.0009	ONS CPI-H
0.15	Iskhakov et al. [2017]
	0.5 0.5 1.06 0.0126 0.02 <i>p_{h,ss}</i> 6.3 0.90 4.5 0.25 0.0009

IRF Matching Parameters • Back

Table IRF Matched Parameters

Parameter	Rational Exp.	Sticky	Baseline
Price Philips Curve κ_p	0.003	0.5	0.01
Wage Philips Curve κ_{w}	0.28	0.5	0.004
Fiscal rules (debt stab.)	0.014	0.08	0.12
Taylor rule $\left(oldsymbol{\phi}_{\pi},oldsymbol{\phi}_{y},oldsymbol{ ho}_{m} ight)$	(2.5, 0.17, 0.93)	(2.5, 0.0, 0.92)	(1.01, 0.0, 0.87)
Price update prob. $\frac{1}{1+\delta_{\nu}}$	1.0	0.05	0.13
House price update prob. $\frac{1}{1+\delta_{p_h}}$	1.0	0.09	0.36
Price extrapolation $\gamma_{\scriptscriptstyle X}$	0.0	0.0	-0.42
House price extrapolation γ_{ph}	0.0	0.0	0.02

IRF Matching (Comparison) **Back**

Commercial Sector Pricing

- Commercial sector can borrow from bank and purchase rental housing.
- Subject to fixed costs to make price same in steady state and indifferent too entry.
- ► Same contract constraints as private landlords.
- Any profits (unexpected capital gains on housing) distributed with aggregate dividends
- Sets marginal price as follows.

$$p_{r,t} = E_t \left[\frac{\epsilon_r}{\epsilon_r - 1} \left(\delta_{hf} + \frac{p_{h,t}}{v_{1,t}} - \theta_r \frac{v_{2,t}}{v_{1,t}} \right) \right],$$

where $v_{1,t}$, $v_{2,t}$ are the usual forwarding looking terms in the solution of firms' problem subject to Calvo pricing.

$$H_1 s_{r,t} = H_1 s_{ll1,t} + 2H_1 s_{ll2,t} + \overline{HA} + \underbrace{H_{CR,t}}_{Com. Supply}$$

Policy Response to Rental Market Shock

Policy Maker targets a loss function of minimising $L_{\rm x} = \sum_{\rm t=0}^{20} (\pi_{\rm t,x})^2$

Empircal evidence on expectations • Back

Table Michigan Survey

	Forecast Error		
	No extrap.	Extrap	IV
γ_{p_h}	-	-0.02	-0.03
. "	-	(0.05)	(0.04)
δ_{p_h}	1.45	1.46	1.94
. "	(0.26)	(0.32)	(1.39)
Observations	68	68	68
R^2	0.46	0.46	0.41

Notes: Tables presents for regressions of the form of Kohlhas and Walther [2021] for real log house price expectations in the Michigan Survey:

$$p_{t+4} - f_{t+1,t+4} = \gamma_{p_h} p_t + \delta_{p_h} (f_{t+1,t+4} - f_{t,t+3}) + \epsilon_t.$$

Figure Kohlhas and Walther [2021]

Sales Volumes (model) (Back)

Figure Further IRFs

Housing Market Clearing: Elasticities (Back)

Figure Housing Market Elasticities

- Little spillovers from rental price to broader housing market
- ▶ Behavioural frictions sharpen house price elasticity

Renter Share

Figure Share of renters - total and by age

Rental Market Shock: Targetting CPI with(out) rents MOTE IRES (*Back

- Rental Housing supply shock that increases rents by 10% on impact
- Follow Barnichon and Mesters [2023] with policy makers minimising a loss function of $L_{\rm v} = \sum_{t=0}^{20} (\pi_{t,\rm v})^2$
- Targetting CPI with rents after housing shock leads to (too much) output volatility

References

- A. Auclert, M. Rognlie, and L. Straub. Micro jumps, macro humps: Monetary policy and business cycles in an estimated hank model. Technical report, National Bureau of Economic Research, 2020.
- B. Bardóczy and J. Guerreiro. Unemployment insurance in macroeconomic stabilization with imperfect expectations. Manuscript, April, 2025.
 B. Barnichon and G. Mesters. A sufficient statistics approach for macro policy. American Economic Review, 113
- R. Barnichon and G. Mesters. A sufficient statistics approach for macro policy. *American Economic Review*, 113 (11):2809–2845, 2023.
- R. Braun, S. Miranda-Agrippino, and T. Saha. Measuring monetary policy in the uk: The uk monetary policy event-study database. *Journal of Monetary Economics*, page 103645, 2024.
- F. Iskhakov, T. H. Jørgensen, J. Rust, and B. Schjerning. The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks. *Quantitative Economics*, 8(2):317–365, 2017.
- A. N. Kohlhas and A. Walther. Asymmetric attention. American Economic Review, 111(9):2879-2925, 2021.