Mathématique - Corrigé Devoir Maison n°12

Exercice 1

(a) Soit f une fonction impaire sur [-1,1], alors f(-t) = -f(t) pour tout $t \in [-1,1]$.

D'où
$$\int_0^1 f(t) dt = \int_0^{-1} f(-u)(-du)$$
 en posant $t = -u$ ce qui donne $\int_0^1 f(t) dt = -\int_{-1}^0 f(u) du$.

On en déduit que $\int_{-1}^1 f(t) dt = \int_{-1}^0 f(t) dt + \int_0^1 f(t) dt = 0$. Donc $I(f) = 0$.

Par ailleurs, $S(f) = \frac{f(-1) + 4f(0) + f(1)}{3} = 0$ car f est impaire et donc $f(0) = 0$ et $f(-1) = -f(1)$. en déduit donc que $\int_0^1 f(t) dt = \int_0^1 f(t) dt = \int_0^1 f(t) dt = 0$.

(b) Si
$$f(t) = t^4$$
 alors $I(f) = \int_{-1}^1 t^4 dt = \left[\frac{t^5}{5}\right]_{-1}^1 = \frac{2}{5}$ et $S(f) = \frac{1+4.0+1}{3} = \frac{2}{3}$.

(c) Si
$$f(t) = \frac{1}{t+2}$$
 alors $I(f) = \int_{-1}^{1} \frac{1}{t+2} dt = [\ln(t+2)]_{-1}^{1} = \ln 3$ et $S(f) = \frac{\frac{1}{1} + 4 \cdot \frac{1}{2} + \frac{1}{3}}{3} = \frac{10}{9}$.

(d) Si
$$f(t) = \frac{1}{t^2 + 2t + 3}$$
 alors
$$I(f) = \int_{-1}^{1} \frac{1}{(t+1)^2 + 2} dt = \frac{1}{2} \int_{-1}^{1} \frac{1}{1 + \left(\frac{t+1}{\sqrt{2}}\right)^2} dt = \frac{1}{\sqrt{2}} \left[\arctan\frac{t+1}{\sqrt{2}}\right]_{-1}^{1} = \frac{1}{\sqrt{2}} \arctan\sqrt{2}$$
 et $S(f) = \frac{\frac{1}{2} + 4 \cdot \frac{1}{3} + \frac{1}{6}}{3} = \frac{2}{3}$.

2. Si $f: x \longrightarrow 1$ alors I(f) = 2 = S(f)

Si $f: x \mapsto x$ alors I(f) = 0 et S(f) = 0 car $t \mapsto t$ est une fonction impaire.

Si
$$f: x \mapsto x^2$$
 alors $I(f) = \left[\frac{t^3}{3}\right]_{-1}^1 = \frac{2}{3}$ et $S(f) = \frac{2}{3}$

Si $f: x \mapsto x^3$ alors I(f) = 0 et S(f) = 0 car $t \mapsto t^3$ est une fonction impaire.

On remarque de pour toutes fonctions f et g, et pour tout réel λ on a

$$I(f + \lambda g) = \int_{-1}^{1} \lambda f(t) + g(t) dt = \lambda \int_{-1}^{1} f(t) dt + \int_{-1}^{1} g(t) dt = \lambda I(f) + I(g)$$
De même $S(\lambda f + g) = \frac{\lambda f(-1) + g(-1) + 4(\lambda f(0) + g(0)) + \lambda f(1) + g(1)}{3} = \lambda S(f) + S(g).$

Donc I et S sont deux applications linéaires (on peut dire ici "formes linéaires" car I et S sont à valeurs dans \mathbb{R}) Pour tout polynôme $P = a_0 + a_1X + a_2X^2 + a_3X^3$ on a alors

$$I(P) = I(a_0 + a_1X + a_2X^2 + a_3X^3) = a_0I(1) + a_1I(X) + a_2I(X^2) + a_3I(X^3) = a_0S(1) + a_1S(X) + a_2S(X^2) + a_3S(X^3) = S(P)$$

Pour tout polynôme
$$P \in \mathbb{R}_3[X]$$
, on a $I(P) = S(P)$.

3. En posant
$$P = a_0 + a_1 X + a_2 X^2 + a_3 X^3$$
 on a $P' = a_1 + 2a_2 X + 3a_3 X^2$. Dans ces conditions:
$$\begin{cases}
P(1) = f(1) \\
P(0) = f(0) \\
P(-1) = f(-1)
\end{cases}
\iff
\begin{cases}
a_0 + a_1 + a_2 + a_3 = f(1) \\
a_0 = f(0) \\
a_0 - a_1 + a_2 - a_3 = f(-1)
\end{cases}
\iff
\begin{cases}
a_0 = f(0) \\
a_1 = f'(0) \\
a_2 + a_3 = f(1) - f(0) - f'(0) \\
a_2 - a_3 = f(-1) - f(0) + f'(0)
\end{cases}
\iff
\begin{cases}
a_0 = f(0) \\
a_1 = f'(0) \\
a_2 - a_3 = f(-1) - f(0) + f'(0)
\end{cases}$$

$$\iff
\begin{cases}
a_0 = f(0) \\
a_1 = f'(0) \\
a_1 = f'(0)
\end{cases}$$

$$a_1 = f'(0)
\end{cases}$$

$$a_2 = \frac{f(1) - 2f(0) + f(-1)}{2}$$

$$a_3 = \frac{f(1) - f(-1) - 2f'(0)}{2}
\end{cases}$$
Il existe une unique solution à ce système.

$$\forall f \in C^4([-1,1]), \exists ! P_f \in \mathbb{R}_3[X] \text{ tel que } P_f(1) = f(1), P_f(0) = f(0), P_f(-1) = f(-1) \text{ et } P_f'(0) = f'(0).$$

- 4. (a) En dérivant $h(x) = f(x) P_f(x) kx^2(x^2 1)$ on obtient $h'(x) = f'(x) P'_f(x) 4kx^3 2kx$. Comme $f'(0) = P'_f(0)$ on en déduit que h'(0) = 0
 - (b) $h(-1) = f(-1) P_f(-1) 0 = 0$, $h(0) = f(0) P_f(0) 0 = 0$, $h(1) = f(1) P_f(1) 0 = 0$ et $h(\alpha) = 0$. h(x) = 0 pour les quatre réels -1, 0, 1 et α
 - (c) Rappelons le théorème de Rolle :

Soit h une fonction continue sur un segment [a, b] et dérivable sur]a, b[telle que h(a) = h(b). Alors il existe au moins un réel $c \in]a, b[$ tel que h'(c) = 0. Que l'on utilisera ici avec l'hypothèse h(a) = h(b) = 0.

Avec [a, b] = [-1, 0], ce théorème prouve qu'il existe $x_1 \in]-1, 0[$ tel que $h'(x_1) = 0$.

De même avec $[a, b] = [0, \alpha]$, et $[a, b] = [\alpha, 1]$, ce théorème prouve qu'il existe $x_2 \in]0, \alpha[$ et $x_3 \in]\alpha, 1[$ tels que $h'(x_2) = 0$ et $h'(x_3) = 0$.

Ayant également h'(0) = 0, on a montré que

h' s'annule en quatre points distincts de l'intervalle [-1,1]

(d) D'après la question précédente, h' s'annule en 4 points

h' vérifie les hypothèses du théorème de Rolle sur chacun des 3 intervalles $[x_1, 0], [0, x_2], [x_2, x_3]$.

Alors il existe 3 réels b_1, b_2, b_3 tels que $-1 \le x_1 < b_1 < 0 < b_2 < x_2 < b_3 < x_3 \le 1$ et $h''(b_1) = h''(b_2) = h''(b_3) = 0$.

La fonction h'' est de classe \mathscr{C}^2 donc elle est continue et dérivable.

Elle vérifie les hypothèses du théorème de Rolle sur $[b_1, b_2]$, $[b_2, b_3]$. Alors il existe deux réels a_1 et a_2 tels que $-1 < a_1 < a_2 < 1$ et $h^{(3)}(a_1) = h^{(3)}(a_2) = 0$

La fonction $h^{(3)}$ est de classe \mathscr{C}^1 donc elle est continue et dérivable.

Elle vérifie les hypothèses du théorème de Rolle sur $[a_1, a_2]$.

Alors il existe un réel
$$\beta$$
 tel que $-1 < \beta < 1$ et $h^{(4)}(\beta) = 0$

On a pour $x \in \mathbb{R}$, $kx^2(x^2-1) = kx^4 - kx^2$ donc sa dérivée d'ordre 4 vaut k.4!

Par ailleurs, le polynôme P_f étant de degré ≤ 3 , sa dérivée d'ordre 4 est nulle.

On en déduit que pour tout x on a $h^{(4)}(x) = f^{(4)}(x) - k.4!$

En utilisant l'hypothèse $h^{(4)}(\beta) = 0 = f^{(4)}(\beta) - k$.4! on obtient $k = \frac{f^{(4)}(\beta)}{4!}$.

(e) Sachant que $h(\alpha) = 0$ on a $f(\alpha) - P_f(\alpha) = k \cdot \alpha^2 (\alpha^2 - 1) = \frac{f^{(4)}(\beta)}{4!} \alpha^2 (\alpha^2 - 1)$

On passe à la valeur absolue et on majore : $|f(\alpha) - P_f(\alpha)| = \frac{|f^{(4)}(\beta)|}{4!} \alpha^2 (1 - \alpha^2) \le \frac{M_4}{4!} \alpha^2 (1 - \alpha^2)$

Donc $\left| f(\alpha) - P_f(\alpha) \right| \le \frac{M_4}{4!} \alpha^2 (1 - \alpha^2)$, où M_4 est la valeur maximale prise par $\left| f^{(4)} \right|$ sur [-1, 1]

5. En posant $t = \alpha \in]0, 1[$, on vient de prouver le résultat recherché. Par ailleurs, pour t = 0 et t = 1 le résultat est trivial : $0 \le 0$.

On en déduit que $\forall t \in [0,1], |f(t)-P_f(t)| \leq \frac{M_4}{4!}t^2(1-t^2)$

6. On sait que $\left| \int_{-1}^{1} (f(t) - P_f(t)) dt \right| \le \int_{-1}^{1} |f(t) - P_f(t)| dt$ car les bornes sont dans le bon sens.

En utilisant la majoration $|f(t)-P_f(t)| \le \frac{M_4}{4!}t^2(1-t^2)$ et en intégrant avec les bornes dans le bon sens

cela implique : $\left| \int_{-1}^{1} (f(t) - P_f(t)) dt \right| \le \frac{M_4}{4!} \int_{-1}^{1} t^2 (1 - t^2) dt$

On calcule $\int_{-1}^{1} t^2 (1 - t^2) dt = \left[\frac{t^3}{3} - \frac{t^5}{5} \right]_{-1}^{1} = \frac{2}{3} - \frac{2}{5} = \frac{4}{15}$

Si bien que en notant que $\int_{-1}^{1} f(t)dt = I(f)$ et $\int_{-1}^{1} P_f(t)dt = I(P_f) = S(P_f) = S(f)$ (d'après la question 2.), on a montré que $|I(f) - S(f)| \le \frac{M_4}{90}$ 7. Pour $f(t) = t^4$, on trouve $I(f) - S(f) = \frac{2}{5} - \frac{2}{3} = -\frac{4}{15}$ Et $f^{(4)}(t) = 24$ d'où $M_4 = 24$.

Alors $|I(f) - S(f)| = \frac{4}{15}$ et $\frac{M_4}{90} = \frac{24}{90} = \frac{3}{15}$. On a donc dans ce cas particulier, $|I(f) - S(f)| = \frac{M_4}{90}$ La constante dans la majoration d'erreur précédente ne peut donc pas être améliorée

Exercice 2

1. (a) Pour tout $u = (x, y, z) \in \mathbb{R}^3$ on a : $u \in F \iff x + y - z = 0 \iff z = x + y \iff u = x(1,0,1) + y(0,1,1)$ Donc F = Vect((1,0,1),(0,1,1)) : F est un sous-espace vectoriel engendré par deux vecteurs *F* est un sous-espace vectoriel de \mathbb{R}^3 .

G est le sous-espace vectoriel engendré par u_0 : G un sev de \mathbb{R}^3 .

(b) **première solution**: $E = F \oplus G \iff E = F + G \text{ et } F \cap G = \{(0,0,0)\}$ $F + G = \text{Vect}(F \cup G) = \text{Vect}((1, 0, 1), (0, 1, 1), (1, -1, 1)),$

Or le produit mixte des trois vecteurs vaut $+1 \neq 0$. Ce qui prouve que ces trois vecteurs forment une base de \mathbb{R}^3 . Tout vecteur de \mathbb{R}^3 est combinaison linéaire de ces trois vecteurs. Donc $F + G = \mathbb{R}^3$

$$(x, y, z) \in F \cap G \iff (x, y, z) = (x, -x, x) \text{ et } x + y - z = 0 \iff x = y = z = 0 \text{ donc } F \cap G = \{(0, 0, 0)\}$$

Donc $\mathbb{R}^3 = F \oplus G$.

deuxième solution : en utilisant la définition qui est :

$$\mathbb{R}^3 = F \oplus G \Longleftrightarrow \forall \overrightarrow{u} \in \mathbb{R}^3, \ \exists ! (\overrightarrow{v}, \overrightarrow{w}) \in F \times G \text{ t.q. } \overrightarrow{u} = \overrightarrow{v} + \overrightarrow{w}$$

Soit $\overrightarrow{u} \in \mathbb{R}^3$. \overrightarrow{u} se décompose en $\overrightarrow{u} = \overrightarrow{v} + \overrightarrow{w}$ avec $\overrightarrow{v} \in F$ et $\overrightarrow{w} \in G$ si et seulement si il existe $\alpha \in \mathbb{R}$ et $\overrightarrow{v} \in F$ tels que $\overrightarrow{u} = \overrightarrow{v} + \alpha \overrightarrow{u}_0 \iff$ il existe α tel que $\overrightarrow{v} = \overrightarrow{u} - \alpha \overrightarrow{u}_0$ et $\overrightarrow{v} \in F$.

On obtient par calcul, en notant $\overrightarrow{u} = (x, y, z)$, $\overrightarrow{v} = (x, y, z) - \alpha(1, -1, 1) = (x - \alpha, y + \alpha, z - \alpha)$.

On introduit ces coordonnées dans l'équation de F:

$$\overrightarrow{v} \in F \iff x - \alpha + y + \alpha - (z - \alpha) = 0 \iff \alpha = -x - y + z$$

On en déduit que la décomposition existe $\overrightarrow{u} = \overrightarrow{v} + \alpha \overrightarrow{u}_0$ et et comme on a trouvé une seule solution pour α , la décomposition est unique. Donc F et G sont supplémentaires dans $E: E = F \oplus G$.

(c) Pour $\overrightarrow{u} = (x, y, z) \in \mathbb{R}^3$, on cherche le vecteur $\overrightarrow{w} \in G$ tel que $\overrightarrow{u} = \overrightarrow{v} + \overrightarrow{w}$ avec $\overrightarrow{v} \in F$. On sait que $p(\overrightarrow{u}) = \overrightarrow{w}$, s'écrit $p(\overrightarrow{u}) = \alpha \overrightarrow{u}_0$ avec $\alpha = -x - y + z$.

On en déduit p(x, y, z) = (-x - y + z).(1, -1, 1) Ce qui donne

$$p(x, y, z) = (-x - y + z, x + y - z, -x - y + z).$$

(a) On peut vérifier, par la définition, que $\forall (u, v) \in (\mathbb{R}^3)^2$ et $\forall \lambda \in \mathbb{R}$ on a $g(u + \lambda v) = g(u) + \lambda g(v)$ ou bien g est combinaison linéaire d'applications coordonnées du type : $(x, y, z) \mapsto (x, 0, 0)$ ou encore : $(x, y, z) \mapsto$ (y,0,0) ... qui sont linéaires donc g est linéaire.

(b)
$$(x, y, z) \in \text{Ker}(g) \iff g(x, y, z) = (0, 0, 0) \iff \begin{cases} -6x - 2y + 4z = 0 \\ -3x - y + 2z = 0 \iff 3x + y - 2z = 0 \\ -9x - 3y + 6z = 0 \end{cases}$$

le noyau de g est le plan vectoriel d'équation 3x + y - 2z = 0. On réécrit y = -3x + 2z ce qui donne une

représentation paramétrique : $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ avec $(\alpha, \beta) \in \mathbb{R}^2$.

$$Ker g = Vect((1, -3, 0), (0, 2, 1)) = \{(x, y, z) | 3x + y - 2z = 0\}$$

 $\operatorname{Ker}(g) \neq \{O_{\mathbb{R}^3}\}\$ donc l'application linéaire g n'est pas injective. Elle n'est donc pas bijective

g n'est pas un automorphisme de \mathbb{R}^3

(c) Un vecteur (a, b, c) est dans Im(g) si et seulement si il existe (x, y, z) tels que g(x, y, z) = (a, b, c) ce qui est équivalent à

$$\begin{cases}
-6x - 2y + 4z &= a \\
-3x - y + 2z &= b \text{ a une solution} \iff \begin{cases}
0 &= a - 2b \\
-3x - y + 2z &= b \text{ a une solution.} \\
0 &= -3b + c
\end{cases}$$

Ce système a une solution si et seulement si les équations de compatibilité sont vérifiées :

$$\begin{cases} a-2b = 0 \\ -3b+c = 0 \end{cases}$$
 ce sont les équations de Im g.

$$(a,b,c)$$
 est dans $\operatorname{Im}(g) \Longleftrightarrow (a,b,c) = \alpha(2,1,3)$ avec $\alpha \in \mathbb{R}$. Alors

$$\operatorname{Im} g = \operatorname{Vect}(2, 1, 3)$$

(d) On a Im g = Vect(w) avec w = (2, 1, 3). Or w vérifie l'équation de F : x + y - z = 2 + 1 - 3 = 0 donc $w \in F$ donc $\text{Vect}(w) \subset F$ donc Im $g \subset F$.

Le vecteur (1,-1,0) est dans F mais n'est pas dans l'image de g. Donc $F \neq \operatorname{Im} g$.

Le vecteur $u_0=(1,-1,1)$ vérifie l'équation de $\operatorname{Ker} g: 3x+y-2z=3-1-2=0$ donc $u_0\in \operatorname{Ker} g.$ Alors $\operatorname{Vect}(u_0)\subset \operatorname{Ker} g$ donc $G\subset \operatorname{Ker} g.$

Le vecteur (0,2,1) est dans Ker g mais n'est pas colinéaire à u_0 donc n'est pas dans G. Alors $G \neq \text{Ker } g$.

(e) Soit $u \in \mathbb{R}^3$, on a $g(u) \in \operatorname{Im} g$. Mais $\operatorname{Im} g \subset F$ donc $g(u) \in F$.

Or on sait que p est le projecteur sur G parallèlement à F donc les éléments de F sont projetés sur (0,0,0): Ker p=F. On en déduit que p(g(u))=(0,0,0) pour tout $u \in \mathbb{R}^3$. Cela signifie que $p \circ g=0$.

Soit $u \in \mathbb{R}^3$, on a $p(u) \in G$ car p projette sur G. Mais $G \subset \operatorname{Ker} g$ donc $p(u) \in \operatorname{Ker} g \iff g(p(u)) = (0,0,0)$. Ceci est vrai pour tout $u \in \mathbb{R}^3$, alors $g \circ p = 0$.

(f) $g \circ g(x, y, z) = g(g(x, y, z)) = (X, Y, Z)$ avec :

$$X = -6(-6x - 2y + 4z) - 2(-3x - y + 2z) + 4(-9x - 3y + 6z) = 6x + 2y - 4z$$

$$Y = -3(-6x - 2 + 4z) - (-3x - y + 2z) + 2(-9x - 3y + 6z) = 3x + y - 2z$$

$$Z = -9(-6x - 2y + 4z) - 3(-3x - y + 2z) + 6(-9x - 3y + 6z) = 9x + 3y - 6z$$

Donc
$$g \circ g(x, y, z) = -g(x, y, z)$$
 et on a $g^2 = -g$.

on constate que
$$g^0 = Id$$
 et on établit par récurrence que, pour $k \ge 1$ on a $g^k = (-1)^{k+1}g$

On a alors $g^1 = (-1)^{1+1}g$ qui donne la formule $g^k = (-1)^{k+1}g$ vraie pour k = 1 et pour k = 2.

Si la formule est vraie pour un entier k, alors $g^{k+1} = g^k \circ g$

mais
$$g = (-1)^{k+1}g$$
 d'où $g^{k+1} = ((-1)^{k+1}g) \circ g = (-1)^{k+1}g \circ g$.

or, on sait que
$$g \circ g = -g$$
 alors $g^{k+1} = -(-1)^{k+1}g = -(-1)^{k+2}g$.

On en déduit par le principe de récurrence que la formule est vraie pour tout entier $k \ge 1$.

3. (a) On voit que \mathcal{H} est l'ensemble des combinaisons linéaires de p et g. Comme $p \in \mathcal{L}(\mathbb{R}^3)$ et $g \in \mathcal{L}(\mathbb{R}^3)$, leurs combinaisons linéaires sont linéaires de \mathbb{R}^3 dans \mathbb{R}^3 .

On en déduit que $\mathcal{H} = \text{Vect}(p, g)$ et que $|\mathcal{H}|$ est un sev de $\mathcal{L}(\mathbb{R}^3)$.

(b) Soit f_1 et f_2 dans \mathcal{H} , on peut écrire $f_1 = a_1 p + b_1 g$ et $f_2 = a_2 p + b_2 g$ avec $(a_1, a_2, b_1, b_2) \in \mathbb{R}^4$. On a alors $f_1 \circ f_2 = (a_1 p + b_1 g) \circ (a_2 p + b_2 g) = a_1 a_2 p \circ p + a_1 b_2 p \circ g + b_1 a_2 g \circ p + b_1 b_2 g \circ g$.

Mais $p \circ p = p$ car p est un projecteur, $p \circ g = g \circ p = 0$ et $g \circ g = -g$,

alors
$$f_1 \circ f_2 = a_1 a_2 p - b_1 b_2 g$$
.

On en déduit que $f_1 \circ f_2 \in \mathcal{H}$ donc \mathcal{H} est stable par composition des applications.

(c) On a montré que $f^2 = a^2b - b^2g$. On imagine que l'on a la formule $f^n = a^np - (-1)^nb^ng$ et on démontre cette formule par récurrence. Cette formule est vraie pour n = 1 et n = 2. Si elle est vraie pour un entier n, on a

$$f^{n+1} = f^n \circ f = (a^n p - (-1)^n b^n g) \circ (ap + bg) = a^{n+1} p \circ p + 0 + 0 - (-1)^n b^{n+1} g \circ g = a^{n+1} p - (-1)^{n+1} b^{n+1} g$$
 car $p \circ p = p$ et $g \circ g = -g$.

La formule est héréditaire et initialisée, alors elle est vraie pour tout entier $n \in \mathbb{N}^*$.

$$\forall n \in \mathbb{N}^*, \qquad f = a^n p - (-1)^n b^n g$$