第一章 向量与坐标 §1.7 两向量的数量积

研制者: 吴炳烨

高等教育出版社 高等教育电子音像出版社 §1.7 两向量的数量积

§1.7 两向量的数量积

教学内容: 向量数量积运算及其在长度、角度等计算中的应用

F学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🌸 §1.7 两向量的数量积 🌸 2/20

§1.7 两向量的数量积

教学内容: 向量数量积运算及其在长度、角度等计算中的应用

教学目的: 理解数量积概念及其几何意义, 掌握数量积的运算规律,

及在笛卡儿直角标架中的表示法

F学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🎕 2/20

§1.7 两向量的数量积

教学内容: 向量数量积运算及其在长度、角度等计算中的应用

教学目的: 理解数量积概念及其几何意义, 掌握数量积的运算规律,

及在笛卡儿直角标架中的表示法

教学重难点: 在直角坐标下讨论向量的方向余弦、交角问题

寧实例

寧实例 在物理学中,一个质点在力 f 的作用下,经过位移 $\overrightarrow{PP'}=s$,那 么这个力所做的功为

$$W = |\boldsymbol{f}||\boldsymbol{s}|\cos\theta,$$

寧实例 在物理学中,一个质点在力 f 的作用下,经过位移 $\overrightarrow{PP'}=s$,那 么这个力所做的功为

$$W = |\boldsymbol{f}||\boldsymbol{s}|\cos\theta,$$

其中 θ 为f和s的夹角(如图).

等学校数学专业基础课程《解析几何》 🌘 吴炳烨研制 🎕 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 3,

□ 数量积的定义

寧实例 在物理学中,一个质点在力 f 的作用下,经过位移 $\overrightarrow{PP'}=s$,那 么这个力所做的功为

$$W = |\boldsymbol{f}||\boldsymbol{s}|\cos\theta,$$

其中 θ 为f和s的夹角(如图).

·学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🌸 第一章 向量与坐标 🌸 §1.7 两向量的数量积 🐞

□ 数量积的定义

寧实例 在物理学中,一个质点在力 f 的作用下,经过位移 $\overrightarrow{PP'}=s$,那 么这个力所做的功为

$$W = |\boldsymbol{f}||\boldsymbol{s}|\cos\theta,$$

其中 θ 为f和s的夹角(如图).

这里的功是由向量 f 和 s 按上式所确定的一个数量. 类似的情况在其他问题中也常常遇到.

数量积的定义 两个向量 a, b 的模和它们夹角的余弦的乘积叫做向量 $a \rightarrow b$ 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)),

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 比 §1.7 两向量的数量积 🌸 4/

数量积的定义 两个向量 a,b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)), 记做 $a \cdot b$, 即

 $a \cdot b = |a||b|\cos\angle(a,b).$

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 з 第一章 向量与坐标 з §1.7 两向量的数量积 象 🖇

数量积的定义 两个向量 a,b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)), 记做 $a \cdot b$, 即

$$a \cdot b = |a||b|\cos \angle (a, b).$$

两向量的数量积是一个数量, 而不是向量.

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🟶 §1.7 两向量的数量积 🎕

数量积的定义 两个向量 a,b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)), 记做 $a \cdot b$, 即

$$a \cdot b = |a||b|\cos\angle(a,b).$$

两向量的数量积是一个数量, 而不是向量. 特别地当 a 和 b 中有一个为 0 时, 那么 $a \cdot b = 0$.

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🔞

数量积的定义 两个向量 a,b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)), 记做 $a \cdot b$, 即

$$a \cdot b = |a||b|\cos\angle(a,b).$$

两向量的数量积是一个数量, 而不是向量. 特别地当 a 和 b 中有一个为 0 时, 那么 $a \cdot b = 0$.

当 a, b 都不是零向量时, 根据定理 1.6.1, 有

$$|\boldsymbol{b}|\cos\angle(\boldsymbol{a},\boldsymbol{b}) = \Re \boldsymbol{b}_{\boldsymbol{a}}\boldsymbol{b}, |\boldsymbol{a}|\cos\angle(\boldsymbol{a},\boldsymbol{b}) = \Re \boldsymbol{b}_{\boldsymbol{b}}\boldsymbol{a},$$

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 з 第一章 向量与坐标 з §1.7 两向量的数量积

数量积的定义 两个向量 a,b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)), 记做 $a \cdot b$, 即

$$a \cdot b = |a||b|\cos\angle(a,b).$$

两向量的数量积是一个数量, 而不是向量. 特别地当 a 和 b 中有一个为 0 时, 那么 $a \cdot b = 0$.

当 a, b 都不是零向量时, 根据定理 1.6.1, 有

$$|\mathbf{b}|\cos\angle(\mathbf{a},\mathbf{b}) = \Re \mathbf{b}_{\mathbf{a}}\mathbf{b}, |\mathbf{a}|\cos\angle(\mathbf{a},\mathbf{b}) = \Re \mathbf{b}_{\mathbf{b}}\mathbf{a},$$

所以由向量内积的定义有

等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积

数量积的定义 两个向量 a, b 的模和它们夹角的余弦的乘积叫做向量 a 和 b 的数量积 (scalar product) (也叫内积 (inner product)、点积 (dot product)),记做 $a \cdot b$,即

$$a \cdot b = |a||b|\cos\angle(a,b).$$

两向量的数量积是一个数量, 而不是向量. 特别地当 a 和 b 中有一个为 0 时, 那么 $a \cdot b = 0$.

当 a,b 都不是零向量时, 根据定理 1.6.1, 有

$$|\mathbf{b}|\cos\angle(\mathbf{a},\mathbf{b}) = \Re \mathbf{b}_{\mathbf{a}}\mathbf{b}, |\mathbf{a}|\cos\angle(\mathbf{a},\mathbf{b}) = \Re \mathbf{b}_{\mathbf{b}}\mathbf{a},$$

所以由向量内积的定义有

$$a \cdot b = |a|$$
射影 $_a b = |b|$ 射影 $_b a$.

当b是单位向量e时,有

$$a \cdot e = \Re e a$$
.

$$a \cdot e = 射影_e a$$
.

当
$$b=a$$
 时,有

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}|^2,$$

$$a \cdot e = 射影_e a$$
.

当 b=a 时,有

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}|^2,$$

我们把 $a \cdot a$ 叫做向量 a 的数量平方, 并记做 a^2 .

□ 数量积的性质

定理1.7.1

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

□ 数量积的性质

定理1.7.1

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$\mathbf{a} \perp \mathbf{b} \Rightarrow \cos \angle (\mathbf{a}, \mathbf{b}) = 0$$

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$a \perp b \Rightarrow \cos \angle(a, b) = 0 \Rightarrow a \cdot b = |a||b|\cos \angle(a, b) = 0.$$

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$\mathbf{a} \perp \mathbf{b} \quad \Rightarrow \quad \cos \angle(\mathbf{a}, \mathbf{b}) = 0 \quad \Rightarrow \quad \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle(\mathbf{a}, \mathbf{b}) = 0.$$

充分性

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$a \perp b \implies \cos \angle (a, b) = 0 \implies a \cdot b = |a||b| \cos \angle (a, b) = 0.$$

充分性. 当 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}) = 0$ 时, 如果 \mathbf{a}, \mathbf{b} 都为非零向量, 那 么根据内积定义, 有

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$\mathbf{a} \perp \mathbf{b} \implies \cos \angle (\mathbf{a}, \mathbf{b}) = 0 \implies \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}) = 0.$$

充分性. 当 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}) = 0$ 时, 如果 \mathbf{a}, \mathbf{b} 都为非零向量, 那 么根据内积定义, 有 $\cos \angle (\mathbf{a}, \mathbf{b}) = 0$, 从而 $\mathbf{a} \perp \mathbf{b}$;

□ 数量积的性质

定理1.7.1

两向量 a, b 互相垂直的充要条件是 $a \cdot b = 0$.

证 必要性.

$$a \perp b \implies \cos \angle (a, b) = 0 \implies a \cdot b = |a||b| \cos \angle (a, b) = 0.$$

充分性. 当 $a \cdot b = |a||b|\cos\angle(a,b) = 0$ 时, 如果 a,b 都为非零向量, 那么根据内积定义, 有 $\cos\angle(a,b) = 0$, 从而 $a \perp b$; 如果 a,b 中有零向量, 那么零向量方向不定, 可以看成是与任何向量垂直, 结论也成立.

8 定理1.7.2 (向量内积的运算律)

定理1.7.2 (向量内积的运算律)

(1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;

。 定理1.7.2 (向量内积的运算律)

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \boldsymbol{a}) \cdot \boldsymbol{b} = \lambda (\boldsymbol{a} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot (\lambda \boldsymbol{b});$

。 定理1.7.2 (向量内积的运算律)

- (1) 交换律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

定理1.7.2 (向量内积的运算律)

- (1) 交換律 $\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量.

- (1) 交换律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

- (1) 交换律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

- (1) 交换律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量.

(1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

- (1) 交换律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a, b) = |b||a|\cos\angle(b, a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

$$(\lambda \boldsymbol{a}) \cdot \boldsymbol{b} = |\boldsymbol{b}|$$
射影 $_{\boldsymbol{b}}(\lambda \boldsymbol{a})$

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

$$(\lambda a) \cdot b = |b| \Re b (\lambda a) = |b| (\lambda \Re b a)$$

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

$$\begin{aligned} (\lambda \boldsymbol{a}) \cdot \boldsymbol{b} &= |\boldsymbol{b}| \Re \boldsymbol{b}_{\boldsymbol{b}} (\lambda \boldsymbol{a}) = |\boldsymbol{b}| (\lambda \Re \boldsymbol{b}_{\boldsymbol{b}} \boldsymbol{a}) \\ &= \lambda (|\boldsymbol{b}| \Re \boldsymbol{b}_{\boldsymbol{b}} \boldsymbol{a}) \end{aligned}$$

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

若 $\lambda = 0$, 结论显然成立.

$$(\lambda \mathbf{a}) \cdot \mathbf{b} = |\mathbf{b}| \Re \mathbf{b}_{\mathbf{b}} (\lambda \mathbf{a}) = |\mathbf{b}| (\lambda \Re \mathbf{b}_{\mathbf{b}} \mathbf{a})$$
$$= \lambda (|\mathbf{b}| \Re \mathbf{b}_{\mathbf{b}} \mathbf{a}) = \lambda (\mathbf{a} \cdot \mathbf{b}).$$

- (1) 交換律 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- (2) 关于数因子的结合律 $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$;
- (3) 分配律 $(a+b) \cdot c = a \cdot c + b \cdot c$.

证 若(1)-(3)中有零向量,则结论显然成立,下设它们都是非零向量. (1)交换律.

$$a \cdot b = |a||b|\cos\angle(a,b) = |b||a|\cos\angle(b,a) = b \cdot a.$$

(2)关于数因子的结合律.

 $\ddot{a} \lambda \neq 0$, 则由 $a \cdot b = |b|$ 射影ba 和 射影ba(λa) = λ 射影ba, 有

$$(\lambda \mathbf{a}) \cdot \mathbf{b} = |\mathbf{b}| \Re \mathbf{b}_{\mathbf{b}} (\lambda \mathbf{a}) = |\mathbf{b}| (\lambda \Re \mathbf{b}_{\mathbf{b}} \mathbf{a})$$
$$= \lambda (|\mathbf{b}| \Re \mathbf{b}_{\mathbf{b}} \mathbf{a}) = \lambda (\mathbf{a} \cdot \mathbf{b}).$$

 $\mathbf{a} \cdot (\lambda \mathbf{b}) = (\lambda \mathbf{b}) \cdot \mathbf{a} = \lambda (\mathbf{b} \cdot \mathbf{a}) = \lambda (\mathbf{a} \cdot \mathbf{b}).$

。 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

~ ~(3) 分配律.

根据向量和的射影等于向量射影的和,有

$$(a+b)\cdot c = |c|$$
射影 $_c(a+b)$

~ ~(3) 分配律.

根据向量和的射影等于向量射影的和,有

$$(a+b)\cdot c = |c|$$
 $\Re c(a+b) = |c|$ $\Re ca + \Re cb$

~ 2 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$(a+b) \cdot c = |c|$$
射影 $_c(a+b) = |c|$ (射影 $_ca +$ 射影 $_cb$)
= $|c|$ 射影 $_ca + |c|$ 射影 $_cb$

~ 2 (3) 分配律.

根据向量和的射影等于向量射影的和,有

$$(a+b)\cdot c = |c|$$
射影 $_c(a+b) = |c|$ (射影 $_ca +$ 射影 $_cb$)
= $|c|$ 射影 $_ca + |c|$ 射影 $_cb = a \cdot c + b \cdot c$.

。 2 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$\begin{split} (a+b)\cdot c &= |c| \$ \aleph_c(a+b) = |c| (\$ \aleph_c a + \$ \aleph_c b) \\ &= |c| \$ \aleph_c a + |c| \$ \aleph_c b = a \cdot c + b \cdot c. \end{split}$$

推论

$$(\lambda \boldsymbol{a} + \mu \boldsymbol{b}) \cdot \boldsymbol{c} = \lambda (\boldsymbol{a} \cdot \boldsymbol{c}) + \mu (\boldsymbol{b} \cdot \boldsymbol{c}).$$

学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏚 第一章 向量与坐标 比 🖇 1.7 两向量的数量积 🏚 8/

》 2 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$(a+b)\cdot c = |c|$$
 射影 $_c(a+b) = |c|$ (射影 $_ca+$ 射影 $_cb$)
= $|c|$ 射影 $_ca+|c|$ 射影 $_cb=a\cdot c+b\cdot c$.

推论

$$(\lambda \mathbf{a} + \mu \mathbf{b}) \cdot \mathbf{c} = \lambda (\mathbf{a} \cdot \mathbf{c}) + \mu (\mathbf{b} \cdot \mathbf{c}).$$

》 2 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$egin{aligned} (a+b)\cdot c &=& |c| \$ \mathbb{S}_c(a+b) = |c| (\$ \mathbb{S}_c a + \$ \mathbb{S}_c b) \ &=& |c| \$ \mathbb{S}_c a + |c| \$ \mathbb{S}_c b = a \cdot c + b \cdot c. \end{aligned}$$

推论

$$(\lambda \mathbf{a} + \mu \mathbf{b}) \cdot \mathbf{c} = \lambda (\mathbf{a} \cdot \mathbf{c}) + \mu (\mathbf{b} \cdot \mathbf{c}).$$

$$(\boldsymbol{a} + \boldsymbol{b}) \cdot (\boldsymbol{a} - \boldsymbol{b}) = \boldsymbol{a}^2 - \boldsymbol{b}^2,$$

学校数学专业基础课程《解析几何》 ● 吴炳烨研制 ● 第一章 向量与坐标 ● §1.7 两向量的数量积 ● 8

》 2 (3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$(a+b)\cdot c = |c|$$
 射影 $_c(a+b) = |c|$ (射影 $_ca+$ 射影 $_cb$)
= $|c|$ 射影 $_ca+|c|$ 射影 $_cb=a\cdot c+b\cdot c$.

推论

$$(\lambda \boldsymbol{a} + \mu \boldsymbol{b}) \cdot \boldsymbol{c} = \lambda (\boldsymbol{a} \cdot \boldsymbol{c}) + \mu (\boldsymbol{b} \cdot \boldsymbol{c}).$$

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a}^2 - \mathbf{b}^2,$$

 $(\mathbf{a} \pm \mathbf{b})^2 = \mathbf{a}^2 \pm 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2,$

学校数学专业基础课程《解析几何》 ● 吴炳烨研制 ● 第一章 向量与坐标 ● §1.7 两向量的数量积 ● 8

~ ~(3) 分配律.

根据向量和的射影等于向量射影的和, 有

$$(a+b)\cdot c = |c|$$
 射影 $_c(a+b) = |c|$ (射影 $_ca+$ 射影 $_cb$)
= $|c|$ 射影 $_ca+|c|$ 射影 $_cb=a\cdot c+b\cdot c$.

推论

$$(\lambda \mathbf{a} + \mu \mathbf{b}) \cdot \mathbf{c} = \lambda (\mathbf{a} \cdot \mathbf{c}) + \mu (\mathbf{b} \cdot \mathbf{c}).$$

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \mathbf{a}^2 - \mathbf{b}^2,$$

$$(\mathbf{a} \pm \mathbf{b})^2 = \mathbf{a}^2 \pm 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2,$$

$$(2\mathbf{a} + 3\mathbf{b}) \cdot (\mathbf{c} - 4\mathbf{d}) = 2\mathbf{a} \cdot \mathbf{c} + 3\mathbf{b} \cdot \mathbf{c} - 8\mathbf{a} \cdot \mathbf{d} - 12\mathbf{b} \cdot \mathbf{d}.$$

5等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🌘 第一章 向量与坐标 🀞 §1.7 两向量的数量积 🀞 9/20

例 1

证明平行四边形对角线的平方和等于它各边的平方和.

F学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 9/20

例 1

证明平行四边形对角线的平方和等于它各边的平方和.

证 如图, 在平行四边形 OACB 中,

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🌸 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 9/20

例 1

证明平行四边形对角线的平方和等于它各边的平方和.

证 如图, 在平行四边形 OACB 中,

等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🌸 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 9/20

例 1

证明平行四边形对角线的平方和等于它各边的平方和.

 \overline{U} 如图, 在平行四边形 OACB 中, 设 $\overline{OA} - a$

等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🌸 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🌸 9/20

例 1

证明平行四边形对角线的平方和等于它各边的平方和.

 $\overrightarrow{QA} = a$ 如图, 在平行四边形 OACB 中, 设

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{U} 如图, 在平行四边形 OACB 中, 设 $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$,

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{U} 如图, 在平行四边形 OACB 中, 设 $\overrightarrow{OA} = \boldsymbol{a}, \ \overrightarrow{OB} = \boldsymbol{b},$

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{U} 如图, 在平行四边形 \overrightarrow{OACB} 中, 设 $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$, 对角线 $\overrightarrow{OC} = \boldsymbol{m}$, $\overrightarrow{BA} = \boldsymbol{n}$,

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{U} 如图, 在平行四边形 \overrightarrow{OACB} 中, 设 $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$, 对角线 $\overrightarrow{OC} = \boldsymbol{m}$, $\overrightarrow{BA} = \boldsymbol{n}$,

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{U} 如图, 在平行四边形 \overrightarrow{OACB} 中, 设 $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$, 对角线 $\overrightarrow{OC} = \boldsymbol{m}$, $\overrightarrow{BA} = \boldsymbol{n}$,

证明平行四边形对角线的平方和等于它各边的平方和.

证 如图, 在平行四边形 OACB 中, 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 对角线 $\overrightarrow{OC} = m$, $\overrightarrow{BA} = n$, 那么 m = a + b,

证明平行四边形对角线的平方和等于它各边的平方和.

$$\stackrel{}{\underbrace{ii}}$$
 如图, 在平行四边形 $OACB$ 中, 设 $\stackrel{}{\overrightarrow{OA}}=a$, $\overrightarrow{OB}=b$, 对角线 $\overrightarrow{OC}=m$, $\overrightarrow{BA}=n$, 那么 $m=a+b$, $n=a-b$,

证明平行四边形对角线的平方和等于它各边的平方和.

证 如图, 在平行四边形 OACB 中, 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 对角线 $\overrightarrow{OC} = m$, $\overrightarrow{BA} = n$, 那么 m = a + b, n = a - b, 于是 $m^2 = (a + b)^2 = a^2 + 2a \cdot b + b^2$,

证明平行四边形对角线的平方和等于它各边的平方和.

 $\stackrel{\stackrel{\longleftarrow}{U}}{\overrightarrow{OA}}$ 如图, 在平行四边形 $\stackrel{\longleftarrow}{OACB}$ 中, 设 $\stackrel{\longleftarrow}{\overrightarrow{OA}}$ = \mathbf{a} , $\stackrel{\longleftarrow}{OB}$ = \mathbf{b} , 对角线 $\stackrel{\longleftarrow}{OC}$ = \mathbf{m} , 那么 $\mathbf{m} = \mathbf{a} + \mathbf{b}$, $\mathbf{n} = \mathbf{a} - \mathbf{b}$, 于是

$$m^2 = (a + b)^2 = a^2 + 2a \cdot b + b^2,$$

 $n^2 = (a - b)^2 = a^2 - 2a \cdot b + b^2,$

证明平行四边形对角线的平方和等于它各边的平方和.

 \overrightarrow{OA} 如图, 在平行四边形 \overrightarrow{OACB} 中, 设 \overrightarrow{OA} = a, \overrightarrow{OB} = b, 对角线 \overrightarrow{OC} = m. $\overrightarrow{BA} = n$, 那么 m = a + b, n = a - b.

于是

$$m{m}^2 = (m{a} + m{b})^2 = m{a}^2 + 2m{a} \cdot m{b} + m{b}^2, \ m{n}^2 = (m{a} - m{b})^2 = m{a}^2 - 2m{a} \cdot m{b} + m{b}^2,$$
所以

m \boldsymbol{a}

$$m^2 + n^2 = 2(a^2 + b^2),$$

证明平行四边形对角线的平方和等于它各边的平方和.

证 如图, 在平行四边形 OACB 中, 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 对角线 $\overrightarrow{OC} = m$, $\overrightarrow{BA} = n$, 那么 m = a + b, n = a - b, 于是

$$m^2 = (a + b)^2 = a^2 + 2a \cdot b + b^2,$$

 $n^2 = (a - b)^2 = a^2 - 2a \cdot b + b^2,$

所以

$$m^2 + n^2 = 2(a^2 + b^2),$$

即

$$|\mathbf{m}|^2 + |\mathbf{n}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2).$$

试证如果一条直线与一个平面内的两条相交直线都垂直,那么它就和平面内任何直线都垂直,即它垂直于平面.

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🐞 10/:

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直,那么它就和平面内任何直线都垂直,即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图),

5等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🀞 第一章 向量与坐标 🐞 §1.7 两向量的数量积 🀞 10/20

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图),

高等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🍓 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 10/20

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直.

高等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🐞 10/20

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直,那么它就和平面内任何直线都垂直,即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直.

5等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🍓 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🀞 10/20

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c,

;等学校数学专业基础课程《解析几何》 🀞 吴炳烨研制 🏶 第一章 向量与坐标 🏚 §1.7 两向量的数量积 🏶 10/20

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c,

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏟 §1.7 两向量的数量积 🌸 10/2

例 2

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c, 依条件有 $n \perp a, n \perp b$,

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c,依条件有 $n \perp a, n \perp b$,所以

 $\boldsymbol{n} \cdot \boldsymbol{a} = 0, \boldsymbol{n} \cdot \boldsymbol{b} = 0.$

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c, 依条件有 $n\bot a,n\bot b$, 所以

 $n \cdot a = 0, n \cdot b = 0$. 由于平面 α 上的任意向量 c 可用 a, b 线性表示(定理 1.4.2): $c = \lambda a + \mu b$,

n b c c b a a a

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c, 依条件有 $n\bot a,n\bot b$, 所以

 $n \cdot a = 0, n \cdot b = 0$. 由于平面 α 上的任意向量 c 可用 a, b 线性表示(定理 1.4.2): $c = \lambda a + \mu b$, 因而 $n \cdot c = n \cdot (\lambda a + \mu b)$

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c, 依条件有 $n\bot a,n\bot b$, 所以

 $n \cdot a = 0, n \cdot b = 0.$ 由于平面 α 上的任意向量 c 可用 a, b 线性表示(定理 1.4.2): $c = \lambda a + \mu b$, 因而 $n \cdot c = n \cdot (\lambda a + \mu b) = \lambda (n \cdot a) + \mu (n \cdot b) = 0$.

试证如果一条直线与一个平面内的两条相交直线都垂直, 那么它就和平面内任何直线都垂直, 即它垂直于平面.

证 设直线 n 与平面 α 内两相交直线 a,b 都垂直(如图), 下面证明 n 与 α 内任意直线 c 垂直. 在直线 n,a,b,c 上分别任意取非零向量 n,a,b,c,依条件有 $n\bot a,n\bot b$, 所以

 $n \cdot a = 0, n \cdot b = 0$. 由于平面 α 上的任意向量 c 可用 a, b 线性表示(定理 1.4.2): $c = \lambda a + \mu b$, 因而 $n \cdot c = n \cdot (\lambda a + \mu b) = \lambda (n \cdot a) + \mu (n \cdot b) = 0$. 这表明向量 n 与 c 垂直,也就是它们所在直线 n 与 c 互相垂直,从而 n 与 平面垂直

例:

试证三角形三条高交于一点.

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🎕 第一章 向量与坐标 🏚 §1.7 两向量的数量积 🌸 11/20

例 3

试证三角形三条高交于一点.

证 如图,设 $\triangle ABC$ 的边 BC,CA 上的两条高交于 P 点,

5等学校数学专业基础课程《解析几何》 ● 吴炳烨研制 ● 第一章 向量与坐标 ● §1.7 两向量的数量积 ● 11/20

例3

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC,CA 上的两条高交于 P 点,

5等学校数学专业基础课程《解析几何》 ● 吴炳烨研制 ● 第一章 向量与坐标 ● §1.7 两向量的数量积 ● 11/20

例3

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC,CA 上的两条高交于 P 点,

5等学校数学专业基础课程《解析几何》 ● 吴炳烨研制 ● 第一章 向量与坐标 ● §1.7 两向量的数量积 ● 11/20

例 3

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC,CA 上的两条高交于 P 点,

5等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🐞 11/20

例 3

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$.

5等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🐞 11/20

例 3

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$.

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = a, \overrightarrow{PB} = b, \overrightarrow{PC} = c.$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = a, \overrightarrow{PB} = b, \overrightarrow{PC} = c.$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a},$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b},$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

试证三角形三条高交于一点.

证 如图,设 $\triangle ABC$ 的边 BC,CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \Rightarrow \boldsymbol{a} \cdot (\boldsymbol{c} - \boldsymbol{b}) = 0$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \Rightarrow a \cdot (c - b) = 0 \Rightarrow a \cdot c = a \cdot b$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \Rightarrow \mathbf{a} \cdot (\mathbf{c} - \mathbf{b}) = 0 \Rightarrow \mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{b}$$

$$\overrightarrow{PB} \perp \overrightarrow{CA} \Rightarrow \mathbf{b} \cdot (\mathbf{a} - \mathbf{c}) = 0$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \Rightarrow \mathbf{a} \cdot (\mathbf{c} - \mathbf{b}) = 0 \Rightarrow \mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{b}$$

$$\overrightarrow{PB} \perp \overrightarrow{CA} \Rightarrow \mathbf{b} \cdot (\mathbf{a} - \mathbf{c}) = 0 \Rightarrow \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c}$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 $\overrightarrow{BC}, \overrightarrow{CA}$ 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \bot \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \quad \Rightarrow \quad \boldsymbol{a} \cdot (\boldsymbol{c} - \boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{a} \cdot \boldsymbol{b} \\ \overrightarrow{PB} \perp \overrightarrow{CA} \quad \Rightarrow \quad \boldsymbol{b} \cdot (\boldsymbol{a} - \boldsymbol{c}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} \\ \end{cases} \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{b} \cdot \boldsymbol{c}$$

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 $\overrightarrow{BC}, \overrightarrow{CA}$ 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \bot \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

故

$$\overrightarrow{PA} \perp \overrightarrow{BC} \quad \Rightarrow \quad \boldsymbol{a} \cdot (\boldsymbol{c} - \boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{a} \cdot \boldsymbol{b} \\ \overrightarrow{PB} \perp \overrightarrow{CA} \quad \Rightarrow \quad \boldsymbol{b} \cdot (\boldsymbol{a} - \boldsymbol{c}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} \\ \end{cases} \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{b} \cdot \boldsymbol{c}$$

$$\Rightarrow$$
 $\mathbf{c} \cdot (\mathbf{b} - \mathbf{a}) = 0$

↓□▶ √酉 ▶りへで

试证三角形三条高交于一点.

证 如图, 设 $\triangle ABC$ 的边 BC, CA 上的两条高交于 P 点, 只需证 $\overrightarrow{PC} \perp \overrightarrow{AB}$. 设

$$\overrightarrow{PA} = \boldsymbol{a}, \overrightarrow{PB} = \boldsymbol{b}, \overrightarrow{PC} = \boldsymbol{c}.$$

则

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}, \overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b}, \overrightarrow{CA} = \boldsymbol{a} - \boldsymbol{c};$$

$$\overrightarrow{PA} \perp \overrightarrow{BC} \quad \Rightarrow \quad \boldsymbol{a} \cdot (\boldsymbol{c} - \boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{a} \cdot \boldsymbol{b} \\ \overrightarrow{PB} \perp \overrightarrow{CA} \quad \Rightarrow \quad \boldsymbol{b} \cdot (\boldsymbol{a} - \boldsymbol{c}) = 0 \quad \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} \\ \end{cases} \Rightarrow \quad \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{b} \cdot \boldsymbol{c}$$

$$\Rightarrow$$
 $c \cdot (b - a) = 0 \Rightarrow \overrightarrow{PC} \perp \overrightarrow{AB}$.

▲ 课堂练习: P 46, 习题 2

已知向量 a,b 互相垂直, 向量 c 与 a,b 的夹角都为 60° , 且 |a|=1,

$$|b| = 2, |c| = 3, \text{ if }$$
 $:$

(1)
$$(a + b)^2$$
; (2) $(a + b) \cdot (a - b)$;

(3)
$$(3a-2b)\cdot(b-3c)$$
; (4) $(a+2b-c)^2$.

▲ 课堂练习: P 46, 习题 2

已知向量 a, b 互相垂直, 向量 c 与 a, b 的夹角都为 60° , 且 |a| = 1,

$$|b| = 2, |c| = 3, \text{ if }$$
 $:$

$$(1) (a + b)^2;$$

$$(2) (\boldsymbol{a} + \boldsymbol{b}) \cdot (\boldsymbol{a} - \boldsymbol{b});$$

(3)
$$(3a - 2b) \cdot (b - 3c)$$
;

(4)
$$(a + 2b - c)^2$$
.

答案: (1) 5; (2) -3; (3) $-\frac{7}{2}$; (4) 11.

》。 ② □ 数量积的坐标表示

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = (X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}) \cdot (X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k})$$

》。 ② □ 数量积的坐标表示

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$
$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i}$$

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$
$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j}$$

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$
$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

定理1.7.3

设
$$a = X_1 i + Y_1 j + Z_1 k, b = X_2 i + Y_2 j + Z_2 k,$$
 那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$a \cdot b = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

定理1.7.3

设
$$\boldsymbol{a} = X_1 \boldsymbol{i} + Y_1 \boldsymbol{j} + Z_1 \boldsymbol{k}, \boldsymbol{b} = X_2 \boldsymbol{i} + Y_2 \boldsymbol{j} + Z_2 \boldsymbol{k},$$
那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🌸 §1.7 两向量的数量积 🏶 13

》 **②** □ 数量积的坐标表示

定理1.7.3

设
$$a = X_1 i + Y_1 j + Z_1 k, b = X_2 i + Y_2 j + Z_2 k,$$
 那么

$$a \cdot b = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

定理1.7.3

设
$$a = X_1 i + Y_1 j + Z_1 k, b = X_2 i + Y_2 j + Z_2 k,$$
 那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0$$

定理1.7.3

设
$$a = X_1 i + Y_1 j + Z_1 k, b = X_2 i + Y_2 j + Z_2 k,$$
 那么

$$a \cdot b = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0,$$

定理1.7.3

设
$$a = X_1 i + Y_1 j + Z_1 k, b = X_2 i + Y_2 j + Z_2 k,$$
 那么

$$a \cdot b = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

证

$$a \cdot b = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

目

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

因此

$$a \cdot b =$$

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

目

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

因此

$$a \cdot b =$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

FL

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

因此

$$a \cdot b =$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 X_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 Y_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

目

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1,$$

因此

$$a \cdot b =$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 X_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

目

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

因此

$$a \cdot b =$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 X_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 X_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

F

$$i \cdot i = j \cdot j = k \cdot k = 1,$$

因此

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

证

$$\mathbf{a} \cdot \mathbf{b} = (X_1 \mathbf{i} + Y_1 \mathbf{j} + Z_1 \mathbf{k}) \cdot (X_2 \mathbf{i} + Y_2 \mathbf{j} + Z_2 \mathbf{k})$$

$$= X_1 X_2 \mathbf{i} \cdot \mathbf{i} + X_1 Y_2 \mathbf{i} \cdot \mathbf{j} + X_1 Z_2 \mathbf{i} \cdot \mathbf{k}$$

$$+ Y_1 X_2 \mathbf{j} \cdot \mathbf{i} + Y_1 Y_2 \mathbf{j} \cdot \mathbf{j} + Y_1 Z_2 \mathbf{j} \cdot \mathbf{k}$$

$$+ Z_1 X_2 \mathbf{k} \cdot \mathbf{i} + Z_1 X_2 \mathbf{k} \cdot \mathbf{j} + Z_1 Z_2 \mathbf{k} \cdot \mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

FL

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1,$$

因此

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2.$$

推论

设
$$a = Xi + Yj + Zk$$
, 那么

$$a \cdot i = X$$
, $a \cdot j = Y$, $a \cdot k = Z$.

$$+Z_1X_2\mathbf{k}\cdot\mathbf{i}+\widetilde{Z_1X_2\mathbf{k}\cdot\mathbf{j}}+Z_1Z_2\mathbf{k}\cdot\mathbf{k},$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0, \quad \mathbf{i} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0, \quad \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0,$$

数量积的应用

利用向量的坐标, 可以给计算向量的内积带来方便, 下面我们在直角坐 标系下, 利用向量内积来计算两点的距离、方向余弦和交角.

高等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 14/20

□ 数量积的应用

利用向量的坐标,可以给计算向量的内积带来方便,下面我们在直角坐标系下,利用向量内积来计算两点的距离、方向余弦和交角.

阿两点距离

高等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏟 §1.7 两向量的数量积 🐞 14/20

》。 ② □ 数量积的应用

利用向量的坐标,可以给计算向量的内积带来方便,下面我们在直角坐标系下,利用向量内积来计算两点的距离、方向余弦和交角.

阿西点距离

定理 1.7.4

设 a = Xi + Yj + Zk, 那么

$$|a| = \sqrt{a^2} = \sqrt{X^2 + Y^2 + Z^2}.$$

高等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🌸 §1.7 两向量的数量积 🏶 14/20

利用向量的坐标,可以给计算向量的内积带来方便,下面我们在直角坐标系下,利用向量内积来计算两点的距离、方向余弦和交角.

[©]两点距离

定理 1.7.4

设 a = Xi + Yj + Zk, 那么

$$|a| = \sqrt{a^2} = \sqrt{X^2 + Y^2 + Z^2}.$$

证 由定理 1.7.3 易知

》。 ② □ 数量积的应用

利用向量的坐标,可以给计算向量的内积带来方便,下面我们在直角坐标系下,利用向量内积来计算两点的距离、方向余弦和交角.

『两点距离

定理 1.7.4

设 a = Xi + Yj + Zk, 那么

$$|a| = \sqrt{a^2} = \sqrt{X^2 + Y^2 + Z^2}.$$

证 由定理 1.7.3 易知

$$a^2 = X^2 + Y^2 + Z^2$$

》。 ② □ 数量积的应用

利用向量的坐标,可以给计算向量的内积带来方便,下面我们在直角坐标系下,利用向量内积来计算两点的距离、方向余弦和交角.

『两点距离

定理 1.7.4

设 $\boldsymbol{a} = X\boldsymbol{i} + Y\boldsymbol{j} + Z\boldsymbol{k}$, 那么

$$|a| = \sqrt{a^2} = \sqrt{X^2 + Y^2 + Z^2}.$$

证 由定理 1.7.3 易知

$$\mathbf{a}^2 = X^2 + Y^2 + Z^2$$

$$\Rightarrow |\mathbf{a}| = \sqrt{\mathbf{a}^2} = \sqrt{X^2 + Y^2 + Z^2}.$$

<u>定</u>理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

定理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

证 因为
$$\overrightarrow{P_1P_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\},\$$

定理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

证 因为
$$\overrightarrow{P_1P_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$
,所以
$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

定理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

证 因为
$$\overrightarrow{P_1P_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$
,所以
$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

[©]向量的方向余弦

定理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

证 因为
$$\overrightarrow{P_1P_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$
,所以
$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

同量的方向余弦 向量与坐标轴(或坐标向量)所成的角叫做向量的方向角,方向角的余弦叫做向量的方向余弦.

定理 1.7.5

空间两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$ 间的距离是

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

证 因为
$$\overrightarrow{P_1P_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$
,所以
$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

□量的方向余弦 向量与坐标轴(或坐标向量)所成的角叫做向量的方向角,方向角的余弦叫做向量的方向余弦. 一个向量的方向完全可以由其方向角确定,而其方向余弦也可用向量的坐标来表示.

定理 1.7.6

非零向量 a = Xi + Yj + Zk 的方向余弦是

2 定理 1.7.6

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

。 2 定理 1.7.6

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$
$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

证 因为 $\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha$, 且 $\mathbf{a} \cdot \mathbf{i} = X$,

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|\boldsymbol{a}|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|\boldsymbol{a}|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

证 因为 $\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha$, 且 $\mathbf{a} \cdot \mathbf{i} = X$, 所以 $|\mathbf{a}| \cos \alpha = X$,

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|\boldsymbol{a}|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|\boldsymbol{a}|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

证 因为 $\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha$, 且 $\mathbf{a} \cdot \mathbf{i} = X$, 所以 $|\mathbf{a}| \cos \alpha = X$, 从而

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}}.$$

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

证 因为 $\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha$, 且 $\mathbf{a} \cdot \mathbf{i} = X$, 所以 $|\mathbf{a}| \cos \alpha = X$, 从而

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}}.$$

同理可证其余两式成立.

非零向量 a = Xi + Yj + Zk 的方向余弦是

$$\cos \alpha = \frac{X}{|a|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \beta = \frac{Y}{|a|} = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}},$$

$$\cos \gamma = \frac{Z}{|a|} = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}};$$

且

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1,$$

其中 α, β, γ 分别是 a 与 x 轴, y 轴和 z 轴的夹角, 即 a 的三个方向角.

证 因为 $\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha$, 且 $\mathbf{a} \cdot \mathbf{i} = X$, 所以 $|\mathbf{a}| \cos \alpha = X$, 从而

$$\cos \alpha = \frac{X}{|\boldsymbol{a}|} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}}.$$

凤理可证其余两式成立. 第四式显然.

》 从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. ·学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🐞 17/5

《 从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. 特别地, 单位向量的方向余弦等于它的坐标, 即有

$$a^0 = {\cos \alpha, \cos \beta, \cos \gamma}.$$

学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🐞 §1.7 两向量的数量积 🏶 17,

《 从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. 特别地, 单位向量的方向余弦等于它的坐标, 即有

$$a^0 = {\cos \alpha, \cos \beta, \cos \gamma}.$$

阿两向量的交角

等学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🕯 §1.7 两向量的数量积 🌸 17

《从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. 特别地, 单位向量的方向余弦等于它的坐标, 即有

$$a^0 = {\cos \alpha, \cos \beta, \cos \gamma}.$$

阿爾伯里的交角

定理 1.7.7

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

·学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🌸 第一章 向量与坐标 🕯 §1.7 两向量的数量积 🌸 17

《从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. 特别地, 单位向量的方向余弦等于它的坐标, 即有

$$a^0 = {\cos \alpha, \cos \beta, \cos \gamma}.$$

定理 1.7.7

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}), |\mathbf{a}| |\mathbf{b}| \neq 0,$

P校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏶 第一章 向量与坐标 🏶 🖇 1.7 两向量的数量积 🏶 17

《 从定理 1.7.6可知, 空间向量可以由它的模和方向余弦决定. 特别地, 单位向量的方向余弦等于它的坐标, 即有

$$a^0 = {\cos \alpha, \cos \beta, \cos \gamma}.$$

阿两向量的交角

定理 1.7.7

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\angle(\mathbf{a},\mathbf{b}), |\mathbf{a}||\mathbf{b}| \neq 0$, 所以

$$\cos \angle (a, b) = \frac{a \cdot b}{|a||b|}.$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2,$$

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}), |\mathbf{a}| |\mathbf{b}| \neq 0$, 所以

$$\cos \angle(a, b) = \frac{a \cdot b}{|a||b|}.$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2,$$

$$|\mathbf{a}| = \sqrt{X_1^2 + Y_1^2 + Z_1^2},$$

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}), |\mathbf{a}| |\mathbf{b}| \neq 0$, 所以

$$\cos \angle(a, b) = \frac{a \cdot b}{|a||b|}.$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2,$$

$$|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2 + Z_1^2}, \quad |\boldsymbol{b}| = \sqrt{X_2^2 + Y_2^2 + Z_2^2},$$

空间中两个非零向量 $a\{X_1,Y_1,Z_1\}$ 和 $b\{X_2,Y_2,Z_2\}$ 的交角的余弦是:

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\angle(\mathbf{a},\mathbf{b}), |\mathbf{a}||\mathbf{b}| \neq 0$, 所以

$$\cos \angle(a, b) = \frac{a \cdot b}{|a||b|}.$$

但是

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2,$$

$$|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2 + Z_1^2}, \quad |\boldsymbol{b}| = \sqrt{X_2^2 + Y_2^2 + Z_2^2},$$

所以结论成立.

证 因为
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}), |\mathbf{a}| |\mathbf{b}| \neq 0$$
, 所以

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}.$$

但是

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2,$$

$$|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2 + Z_1^2}, \quad |\boldsymbol{b}| = \sqrt{X_2^2 + Y_2^2 + Z_2^2},$$

所以结论成立.

推论

向量 $a\{X_1,Y_1,Z_1\}$ 与 $b\{X_2,Y_2,Z_2\}$ 相互垂直的充要条件是

$$X_1X_2 + Y_1Y_2 + Z_1Z_2 = 0.$$

证 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \angle(\mathbf{a}, \mathbf{b}), |\mathbf{a}||\mathbf{b}| \neq 0$, 所以

$$\cos \angle(a, b) = \frac{a \cdot b}{|a||b|}.$$

学平面情形

○○ 平面情形 在平面直角坐标系下, 平面上的向量也有完全类似的结论.

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2,$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2,$$

$$\boldsymbol{a} \cdot \boldsymbol{i} = X_1, \boldsymbol{a} \cdot \boldsymbol{j} = Y_1;$$

$$egin{aligned} oldsymbol{a} \cdot oldsymbol{b} &= X_1 X_2 + Y_1 Y_2, \\ oldsymbol{a} \cdot oldsymbol{i} &= X_1, oldsymbol{a} \cdot oldsymbol{j} &= Y_1; \\ |oldsymbol{a}| &= \sqrt{X_1^2 + Y_1^2}. \end{aligned}$$

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2,$$

$$\boldsymbol{a} \cdot \boldsymbol{i} = X_1, \boldsymbol{a} \cdot \boldsymbol{j} = Y_1;$$

$$|a| = \sqrt{X_1^2 + Y_1^2}.$$

平面上两点 $P_1(x_1, y_1)$ 与 $P_2(x_2, y_2)$ 之间的距离为

$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 🏚 第一章 向量与坐标 🏶 🖇 1.7 两向量的数量积 🏶 18

平面情形 在平面直角坐标系下, 平面上的向量也有完全类似的结论. 设 $a\{X_1,Y_1\}$, $b\{X_2,Y_2\}$ 是平面上的两向量, 那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2,$$

 $\boldsymbol{a} \cdot \boldsymbol{i} = X_1, \boldsymbol{a} \cdot \boldsymbol{j} = Y_1;$
 $|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2}.$

平面上两点 $P_1(x_1, y_1)$ 与 $P_2(x_2, y_2)$ 之间的距离为

$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

向量 a 的方向余弦为

学校数学专业基础课程《解析几何》 🌸 吴炳烨研制 в 第一章 向量与坐标 🏶 §1.7 两向量的数量积 🏶 18

平面情形 在平面直角坐标系下, 平面上的向量也有完全类似的结论. 设 $a\{X_1,Y_1\}$, $b\{X_2,Y_2\}$ 是平面上的两向量, 那么

$$\boldsymbol{a} \cdot \boldsymbol{b} = X_1 X_2 + Y_1 Y_2,$$

 $\boldsymbol{a} \cdot \boldsymbol{i} = X_1, \boldsymbol{a} \cdot \boldsymbol{j} = Y_1;$
 $|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2}.$

平面上两点 $P_1(x_1, y_1)$ 与 $P_2(x_2, y_2)$ 之间的距离为

$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

向量a的方向余弦为

$$\cos \alpha = \frac{X_1}{|a|} = \frac{X_1}{\sqrt{X_1^2 + Y_1^2}},$$

$$\cos\beta = \frac{Y_1}{|{\bm a}|} = \frac{Y_1}{\sqrt{X_1^2 + Y_1^2}},$$

$$\boldsymbol{a} \cdot \boldsymbol{i} = X_1, \boldsymbol{a} \cdot \boldsymbol{j} = Y_1;$$

$$|\boldsymbol{a}| = \sqrt{X_1^2 + Y_1^2}.$$

平面上两点 $P_1(x_1, y_1)$ 与 $P_2(x_2, y_2)$ 之间的距离为

$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

向量 a 的方向余弦为

$$\cos \alpha = \frac{X_1}{|a|} = \frac{X_1}{\sqrt{X_1^2 + Y_1^2}},$$

$$\cos \beta = \frac{Y_1}{|\boldsymbol{a}|} = \frac{Y_1}{\sqrt{X_1^2 + Y_1^2}},$$

且

$$\cos^2 \alpha + \cos^2 \beta = 1.$$

$$|a| = \sqrt{X_1^2 + Y_1^2}.$$

平面上两点 $P_1(x_1,y_1)$ 与 $P_2(x_2,y_2)$ 之间的距离为

$$d = |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

向量 a 的方向余弦为

$$\cos \alpha = \frac{X_1}{|a|} = \frac{X_1}{\sqrt{X_1^2 + Y_1^2}},$$

$$\cos \beta = \frac{Y_1}{|\boldsymbol{a}|} = \frac{Y_1}{\sqrt{X_1^2 + Y_1^2}},$$

且

$$\cos^2 \alpha + \cos^2 \beta = 1.$$

两向量 a,b 交角的余弦为

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{X_1 X_2 + Y_1 Y_2}{\sqrt{X_1^2 + Y_1^2} \sqrt{X_2^2 + Y_2^2}},$$

$$\cos \alpha = \frac{X_1}{|a|} = \frac{X_1}{\sqrt{X_1^2 + Y_1^2}},$$

$$\cos \beta = \frac{Y_1}{|a|} = \frac{Y_1}{\sqrt{X_1^2 + Y_1^2}},$$

且

$$\cos^2 \alpha + \cos^2 \beta = 1.$$

两向量 a,b 交角的余弦为

$$\cos \angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{X_1 X_2 + Y_1 Y_2}{\sqrt{X_1^2 + Y_1^2} \sqrt{X_2^2 + Y_2^2}},$$

a,b 垂直的充要条件为

$$X_1 X_2 + Y_1 Y_2 = 0.$$

$$\cos \alpha = \frac{X_1}{|a|} = \frac{X_1}{\sqrt{X_1^2 + Y_1^2}},$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} = \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} \in \boldsymbol{c}$ 上的射影.

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

解 由已知条件有

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} = \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} = \boldsymbol{c}$ 上的射影.

解 由已知条件有

$$\boldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\},\$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

解 由已知条件有

$$a = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |a| = \sqrt{2};$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

$$egin{aligned} oldsymbol{a} &= \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ oldsymbol{b} &= \overrightarrow{CA} = \{-1, 0, -1\}, \end{aligned}$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

$$\boldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |\boldsymbol{a}| = \sqrt{2};$$

$$\mathbf{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |\mathbf{b}| = \sqrt{2};$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

$$egin{aligned} oldsymbol{a} &= \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ oldsymbol{b} &= \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ oldsymbol{c} &= \overrightarrow{AB} = \{2, 1, 1\}, \end{aligned}$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, \quad |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} \, \vdash \! \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} \, \vdash \! \boldsymbol{a}$ 在 $\boldsymbol{c} \, \vdash \! \boldsymbol{b}$ 的射影.

解 由已知条件有

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, \quad |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} \, \vdash \! \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} \, \vdash \! \boldsymbol{c}$ 在 $\boldsymbol{c} \, \vdash \! \boldsymbol{b}$ 的射影.

解 由已知条件有

$$egin{aligned} oldsymbol{a} &= \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ oldsymbol{b} &= \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ oldsymbol{c} &= \overrightarrow{AB} = \{2, 1, 1\}, \quad |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1)$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) \boldsymbol{a} 与 \boldsymbol{b} 的交角; (2) \boldsymbol{a} 在 \boldsymbol{c} 上的射影.

解 由已知条件有

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, \quad |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} \, \vdash \! \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} \, \vdash \! \boldsymbol{a}$ 在 $\boldsymbol{c} \, \vdash \! \boldsymbol{b}$ 的射影.

解 由已知条件有

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, & |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, & |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, & |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

$$a \cdot c = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1$$

已知三点 A(1,0,0), B(3,1,1), C(2,0,1), 且 $\overrightarrow{BC} = \boldsymbol{a}, \overrightarrow{CA} = \boldsymbol{b}, \overrightarrow{AB} = \boldsymbol{c},$ 求: (1) $\boldsymbol{a} \, \vdash \! \boldsymbol{b}$ 的交角; (2) $\boldsymbol{a} \, \vdash \! \boldsymbol{c}$ 在 $\boldsymbol{c} \, \vdash \! \boldsymbol{b}$ 的射影.

解 由已知条件有

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, & |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, & |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, & |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

$$\mathbf{a} \cdot \mathbf{c} = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

(1)
$$\cos \angle (a, b) = \frac{a \cdot b}{|a||b|}$$

解 由已知条件有

$$egin{aligned} & oldsymbol{a} = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |oldsymbol{a}| = \sqrt{2}; \ & oldsymbol{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |oldsymbol{b}| = \sqrt{2}; \ & oldsymbol{c} = \overrightarrow{AB} = \{2, 1, 1\}, \quad |oldsymbol{c}| = \sqrt{6}; \end{aligned}$$

于是得内积

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

$$a \cdot c = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

(1)
$$\cos \angle (\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2},$$

解 由已知条件有

$$egin{aligned} & a = \overrightarrow{BC} = \{-1, -1, 0\}, \quad |a| = \sqrt{2}; \ & b = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |b| = \sqrt{2}; \ & c = \overrightarrow{AB} = \{2, 1, 1\}, \quad |c| = \sqrt{6}; \end{aligned}$$

于是得内积

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

$$a \cdot c = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

(1)
$$\cos \angle (\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2},$$

所以 $\angle(\boldsymbol{a},\boldsymbol{b}) = \frac{\pi}{3}$.

$$\mathbf{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |\mathbf{b}| = \sqrt{2};$$

$$\mathbf{c} = \overrightarrow{AB} = \{2, 1, 1\}, \quad |\mathbf{c}| = \sqrt{6};$$

于是得内积

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1,$$

$$a \cdot c = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

(1)
$$\cos \angle (\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2},$$

所以
$$\angle(\boldsymbol{a}, \boldsymbol{b}) = \frac{\pi}{3}$$
.

$$(2) 射影ca = \frac{a \cdot c}{|c|}$$

$$\mathbf{b} = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |\mathbf{b}| = \sqrt{2};$$

$$c = \overrightarrow{AB} = \{2, 1, 1\}, \quad |c| = \sqrt{6};$$

于是得内积

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1$$
,

$$\mathbf{a} \cdot \mathbf{c} = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

(1)
$$\cos \angle (\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2},$$

所以 $\angle(\boldsymbol{a},\boldsymbol{b}) = \frac{\pi}{3}$.

(2) 射影
$$_{\boldsymbol{c}}\boldsymbol{a} = \frac{\boldsymbol{a} \cdot \boldsymbol{c}}{|\boldsymbol{c}|} = \frac{-3}{\sqrt{6}} = -\frac{\sqrt{6}}{2}.$$

$$b = \overrightarrow{CA} = \{-1, 0, -1\}, \quad |b| = \sqrt{2};$$

$$c = \overrightarrow{AB} = \{2, 1, 1\}, \quad |c| = \sqrt{6};$$

于是得内积

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-1) + (-1) \cdot 0 + 0 \cdot (-1) = 1$$

$$a \cdot c = (-1) \cdot 2 + (-1) \cdot 1 + 0 \cdot 1 = -3,$$

丛此

·等学校数学专业基础课程《解析几何》 🎕 吴炳烨研制 🎕 第一章 向量与坐标 🕏 §1.7 两向量的数量积 🎕 20/20

例 5

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

利用两向量的数量积证明柯西-施瓦茨(Cauchy-Schwarz)不等式

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

证 设 $\boldsymbol{a} = \{a_1, a_2, a_3\}, \boldsymbol{b} = \{b_1, b_2, b_3\},$

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

证 设
$$\mathbf{a} = \{a_1, a_2, a_3\}, \mathbf{b} = \{b_1, b_2, b_3\},$$
 因 为
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}),$$

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

证 设
$$\mathbf{a} = \{a_1, a_2, a_3\}, \mathbf{b} = \{b_1, b_2, b_3\},$$
 因为
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}),$$
 且
$$-1 < \cos \angle (\mathbf{a}, \mathbf{b}) < 1,$$

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

证 设
$$\mathbf{a} = \{a_1, a_2, a_3\}, \mathbf{b} = \{b_1, b_2, b_3\},$$
 因为
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle (\mathbf{a}, \mathbf{b}),$$
 且
$$-1 \le \cos \angle (\mathbf{a}, \mathbf{b}) \le 1,$$
 所以
$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| |\mathbf{b}|,$$

利用两向量的数量积证明柯西-施瓦茨(Cauchy-Schwarz)不等式

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

证 设
$$\mathbf{a} = \{a_1, a_2, a_3\}, \mathbf{b} = \{b_1, b_2, b_3\},$$
 因为

$$a \cdot b = |a||b|\cos\angle(a,b),$$

$$-1 \le \cos \angle(\boldsymbol{a}, \boldsymbol{b}) \le 1$$
,

$$|\boldsymbol{a}\cdot\boldsymbol{b}|\leq |\boldsymbol{a}||\boldsymbol{b}|,$$

从而得

$$\left| \sum_{i=1}^{3} a_i b_i \right| \le \sqrt{\sum_{i=1}^{3} a_i^2} \sqrt{\sum_{i=1}^{3} b_i^2},$$

即

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

$$-1 \le \cos \angle(\boldsymbol{a}, \boldsymbol{b}) \le 1$$
,

所以

$$|\boldsymbol{a}\cdot\boldsymbol{b}| \leq |\boldsymbol{a}||\boldsymbol{b}|,$$

从而得

$$\left| \sum_{i=1}^{3} a_i b_i \right| \le \sqrt{\sum_{i=1}^{3} a_i^2} \sqrt{\sum_{i=1}^{3} b_i^2},$$

即

$$\left(\sum_{i=1}^{3} a_i b_i\right)^2 \le \sum_{i=1}^{3} a_i^2 \sum_{i=1}^{3} b_i^2.$$

下一节

$$-1 \le \cos \angle(\boldsymbol{a}, \boldsymbol{b}) \le 1$$
,

所以

$$|\boldsymbol{a}\cdot\boldsymbol{b}| \leq |\boldsymbol{a}||\boldsymbol{b}|,$$

从而得

$$\left| \sum_{i=1}^{3} a_i b_i \right| \le \sqrt{\sum_{i=1}^{3} a_i^2} \sqrt{\sum_{i=1}^{3} b_i^2},$$