2/2

2/2

2/2

2/2

-1/2

-1/2

Paul Adrien Note: 14/20 (score total : 14/20)

+145/1/35+

QCM	THLR 2	
Nom et prénom, lisibles :	Identifiant (de haut en bas):	
BOW At.		
MAUL Oldries		
plutôt que cocher. Renseigner les champs d'identité sieurs réponses justes. Toutes les autres n'en ont qu' plus restrictive (par exemple s'il est demandé si 0 es pas possible de corriger une erreur, mais vous pouve incorrectes pénalisent; les blanches et réponses mul	et: les 1 entêtes sont +145/1/xx+···+145/1/xx+.	
$e+f\equiv f+e$.		
🗌 faux 🏿 vrai		
0.0	\square $L(e) \not\subseteq L(f)$ \square $L(e) \subseteq L(f)$	
Q.3 Pour toute expression rationnelle e , on a $e \cdot e \equiv e$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$	
	Σ^* , on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$.	
🗌 vrai 🎇 faux		
Q.4 À quoi est équivalent ε^* ?	🔣 faux 🗌 vrai	
⊠ ε	Q.9 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas:	
Q.5 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv (e^*f)^*e^*$.	☐ '42,42e42' ☐ '42,4e42' ☐ '42,e42' ☐ '42e42'	
📵 faux 🛛 vrai	O 10 A Donner une expression estimatilla accur	
Q.6 Un langage quelconque	Q.10 \triangle Donner une expression rationnelle pour le langage des mots sur $\{a, b\}$ ayant un nombre pair	
peut avoir une intersection non vide avec son		
complémentaire		
peut être indénombrable	$b^*(ab^*ab^*)^* \qquad \Box a^*(ba^*ba^*)^*$ $c \qquad \Box a^*(ba^*b)^*a^* \qquad \blacksquare b^*(ab^*a)^*b^*$	
 peut n'inclure aucun langage dénoté par une expression rationnelle 	e \[a^*(ba^*b)^*a^* \] \[b^*(ab^*a)^*b^* \] \[Aucune de ces réponses n'est correcte.	
contient toujours (⊇) un langage rationnel		

Fin de l'épreuve.