	.•	•	
· ·			
	(kg		

DE FOURIER

1 19 u

M. GASTON DARBOUX,

MINISTERE DE L'INSTRECTION PERFIQUE

TOME PRIMILE.

THEORIE ANALYTIQUE DE LA CHALLER

ř.

PARIS.

NACHHILL SHILLS II DI - IMPRIMILL-INDRAILI-

MINICIANAMI

571.8 Filto Yil

AVANT-PROPOS.

L'édition des OEuvres de Fourier, dont nous publions aujourd'hui le premier Volume, était réclamée depuis long-temps par les physiciens et les géomètres; entreprise avec l'appui bienveillant du Ministère de l'Instruction publique, elle prendra place dans la collection des Documents inédits, à côté des OEuvres de Laplace, de Lagrange, de Lavoisier, de Fresnel et de Cauchy. Par l'importance de ses découvertes, par l'influence décisive qu'il a exercée sur le développement de la Physique mathématique, Fourier méritait l'hommage qui est rendu aujourd'hui à ses travaux et à sa mémoire. Son nom figurera dignement à côté des noms, illustres entre tous, dont la liste, destinée à s'accroître avec les années, constitue dès à présent un véritable titre d'honneur pour notre pays.

La Théorie analytique de la Chaleur, qui forme à elle seule ce premier Volume, a paru en 1822. Ce bel Ouvrage, que l'on peut placer sans injustice à côté des écrits scientifiques les plus parfaits de tous les temps, se recommande par une exposition intéressante et originale des principes fondamentaux;

il éclaire de la lumière la plus vive et la plus pénétrante toutes les idées essentielles que nous devons à Fourier et sur lesquelles doit reposer désormais la Philosophie naturelle; mais il contient, nous devons le reconnaître, beaucoup de négligences, des erreurs de calcul et de détail que Fourier a su éviter dans d'autres écrits. Guidé par les conseils de notre éminent éditeur, M. Gauthier-Villars, nous nous sommes appliqué à faire disparaître les incorrections typographiques. Nous avons refait les calculs, corrigé avec le plus grand soin les renvois inexaets, les erreurs de notation et d'impression, mais en nous attachant toujours à respecter la forme si élégante et si pure que Fourier donne habituellement à sa pensée. Un membre distingué de l'Enseignement supérieur, M. Paul Morin, professeur à la Faculté des Sciences de Rennes, nous a beaucoup aidé dans cette partie essentielle de notre tâche : nous nous plaisons à lui adresser ici nos plus vifs remerciements. M. Morin yeut bien nous continuer son concours pour le second Volume, dont l'impression est déjà commencée.

Les recherches de Fourier relatives à la théorie de la chaleur remontent à la fin du xvin siècle; elles ont été communiquées à l'Académie des Sciences le 21 décembre 1807. Cette première publication ne nous est pas parvenue; on ne la connaît que par un extrait de quatre pages inséré en 1808 au Bulletin de la Société philomathique; elle a été lue et déposée, mais a, sans doute, été retirée par Fourier dans le courant de l'année 1810. L'Académie ayant mis au concours, pour 1811, la question suivante :

« Donner la théorie mathématique des lois de la propaga-» tion de la chaleur et comparer le résultat de cette théorie à » des expériences exactes »,

Fourier envoya, le 28 septembre 1811, un travail très étendu, formé, d'après ses propres déclarations, du Mémoire primitivement soumis à l'Académie et des notes qu'il y avait successivement ajoutées. Ce nouveau travail fut couronné dans la séance publique du 6 janvier 1812. Les juges du concours étaient Lagrange, Laplace, Malus, Haüy et Legendre. Leur Rapport nous a été conservé. Toutes les appréciations, sauf une peut-être, y sont d'une rigoureuse exactitude, et, cependant, il est permis de penser que, dans son ensemble, il ne rend pas pleine justice aux efforts et aux découvertes de Fourier.

« Cette pièce, dit le Rapporteur en parlant du Mémoire de » Fourier, renferme les véritables équations différentielles de » la transmission de la chaleur, soit à l'intérieur des corps, » soit à leur surface; et la nouveauté du sujet, jointe à son » importance, a déterminé la Classe à couronner cet Ouvrage, » en observant cependant que la manière dont l'Auteur par-» vient à ses équations n'est pas exempte de difficultés, et que » son analyse, pour les intégrer, laisse encore quelque chose » à désirer, soit relativement à la généralité, soit même du
» côté de la rigueur.

Le manuscrit de Fourier fait partie, aujourd'hui encore, des Archives de l'Académie. Le grand géomètre, devenu Secrétaire perpétuel après la mort de Delambre, l'a fait imprimer, saus y apporter aucun changement, dans les Volumes de Mémoires pour 1819-1820 et 1821-1822, deux ans après la publication de la Théorie de la Chaleur. Fourier désirait, sans doute, établir ainsi d'une manière incontestable ses droits de priorité; car la première Partie du Mémoire de 1811, celle qui a paru dans le Volume pour 1819-1820, ne dissère qu'en des points tout à fait secondaires de la rédaction définitive à laquelle il s'est arrêté dans la Théorie de la Chaleur. Nous avons donc renoncé à reproduire cette première Partie; mais la seconde, qui a été imprimée en 1826, dans le Volume des Mémoires pour 1821-1822, offre le plus vif intérêt; elle commencera notre second Volume et sera, croyons-nous, bien accueillie de tous.

Il y a aujourd'hui quatre-vingts ans que Fourier fit à l'Académie des Sciences sa première Communication sur les études qui ont occupé toute sa vie. Les méthodes dont l'illustre savant a enrichi la Science trouvent maintenant devant elles un champ vaste et presque inexploré d'applications nouvelles dans la théorie moderne de l'électricité. Puisse notre édition les répandre encore, puisse-t-elle maintenir et accroître dans

notre pays et parmi nos jeunes géomètres le goût de la Physique mathématique. « L'étude approfondie de la nature est la source la plus féconde des découvertes mathématiques. Non seulement cette étude, en offrant aux recherches un but déterminé, a l'avantage d'exclure les questions vagues et les calculs sans issue, elle est encore un moyen assuré de former l'Analyse elle-même, et d'en découvrir les éléments qu'il nous importe le plus de connaître et que cette science doit toujours conserver : ces éléments fondamentaux sont ceux qui se reproduisent dans tous les effets naturels. » C'est par ces réflexions, empruntées à l'admirable Discours préliminaire que l'on va lire, que nous terminerons ces quelques lignes dans lesquelles nous nous proposions surtout de remercier tous ceux qui ont pris part à notre publication ou qui l'ont rendue possible.

21 décembre 1887.

GASTON DARBOUX,

de l'Académie des Sciences.

THEORIE ANALYTIQUE

DE

LA CHALEUR.

DEUXIÈME ÉDITION

THÉORIE

ANALYTIQUE

DE LA CHALEUR,

PAR M. FOURIER.

A PARIS,

CHEZ FIRMIN DIDOT, PÈRE ET FILS,

LIBRAIRES POUR LES MATHÉMATIQUES, L'ARCHITECTURE HYDRAULIQUE ET LA MARINE, RUE JACOB, N° 24.

1822.

DISCOURS PRÉLIMINAIRE.

Les causes primordiales ne nous sont point connues, mais elles sont assujetties à des lois simples et constantes que l'on peut découvrir par l'observation, et dont l'étude est l'objet de la Philosophie naturelle.

La chaleur penètre, comme la gravité, toutes les substances de l'univers; ses rayons occupent toutes les parties de l'espace. Le but de notre Ouvrage est d'exposer les lois mathématiques que suit cet élément. Cette theorie formera desormais une des branches les plus importantes de la Physique genérale.

Les connaissances que les plus anciens peuples avaient pu acquérir dans la Mecanique rationnelle ne nous sont point parvenues, et l'histoire de cette science, si l'on excepte les premiers théorèmes sur l'harmonie, ne remonte point au delà des découvertes d'Archimède. Ce grand geomètre expliqua les principes mathématiques de l'équilibre des solides et des fluides. Il s'ecoula environ dix-huit siècles avant que Galilee, premier inventeur des theories dynamiques, découvrit les lois du mouvement des corps graves. Newton embrassa dans cette science nouvelle tout le système de l'univers. Les successeurs de ces philosophes ont donne a ces theories une étendue et une perfection admirables; ils nous ont apprès que les phénomènes les plus divers sont soumts a un petit nombre de lois fondamentales, qui se reproduisent dans tous les actes de la nature. On a reconnu que les mêmes principes règlent tous les mouvements des astres, leur forme, les inégalités

de leurs cours, l'équilibre et les oscillations des mers, les vibrations harmoniques de l'air et des corps sonores, la transmission de la lumière, les actions capillaires, les ondulations des liquides, enfin, les effets les plus composés de toutes les forces naturelles; et l'on a confirmé cette pensée de Newton : Quod tam paucis tam multa præstet Geometria gloriatur (*).

Mais, quelle que soit l'étendue des théories mécaniques, elles ne s'appliquent point aux effets de la chaleur. Ils composent un ordre spécial de phénomènes qui ne peuvent s'expliquer par les principes du mouvement et de l'équilibre. On possède depuis longtemps des instruments ingénieux propres à mesurer plusieurs de ces effets; on a recueilli des observations précieuses; mais on ne connaît ainsi que des résultats partiels, et non la démonstration mathématique des lois qui les comprennent tous.

l'ai déduit ces lois d'une longue étude et de la comparaison attentive des faits connus jusqu'à ce jour; je les ai tous observés de nouveau, dans le cours de plusieurs années, avec les instruments les plus précis dont on ait encore fait usage.

Pour fonder cette théorie, il était d'abord nécessaire de distinguer et de définir avec précision les propriétés élémentaires qui déterminent l'action de la chaleur. J'ai reconnu ensuite que tous les phénomènes qui dépendent de cette action se résolvent en un très petit nombre de faits généraux et simples; et, par là, toute question physique de ce genre est ramenée à une recherche d'Analyse mathématique. J'en ai conclu que, pour déterminer en nombre les mouvements les plus variés de la chaleur, il suffit de soumettre chaque substance à trois observations fondamentales. En effet, les différents corps ne pos-

⁽¹⁾ Philosophiæ naturalis principia mathematica. Præfatio ad lectorem. Ac gloriatur Geometria quod tam paucis principiis aliunde petitis tam multa præstet. G. D.

sèdent point au même degré la faculté de contenir la chaleur, de la recevoir ou de la transmettre à travers leur superficie, et de la conduire dans l'intérieur de la masse. Ce sont trois qualités spécifiques que notre théorie distingue clairement et qu'elle apprend à mesurer.

Il est facile de juger combien ces recherches intéressent les sciences physiques et l'économie civile, et quelle peut être leur influence sur les progrès des arts qui exigent l'emploi et la distribution du feu. Elles ont aussi une relation nécessaire avec le Système du monde, et l'on connaît ces rapports si l'on considère les grands phénomènes qui s'accomplissent près de la surface du globe terrestre.

En effet, le rayon du Solcil dans lequel cette planète est incessamment plongée pénètre l'air, la terre et les eaux; ses éléments se divisent, changent de directions dans tous les sens; et, pénétrant dans la masse du globe, ils en élèveraient de plus en plus la température moyenne, si cette chaleur ajoutée n'était pas exactement compensée par celle qui s'échappe en rayons de tous les points de la superficie, et se répand dans les cieux.

Les divers climats, inégalement exposés à l'action de la chaleur solaire, ont acquis, après un temps immense, des températures propres à leur situation. Cet effet est modifié par plusieurs causes accessoires, telles que l'élévation et la figure du sol, le voisinage et l'étendue des continents et des mers, l'état de la surface, la direction des vents.

L'intermittence des jours et des nuits, les alternatives des saisons occasionnent, dans la terre solide, des variations périodiques qui se renouvellent chaque jour ou chaque année; mais ces changements sont d'autant moins sensibles que le point où on les mesure est plus distant de la surface. On ne peut remarquer aucune variation diurne à la profondeur d'environ 3^m; et les variations annuelles cessent d'être appréciables à une profondeur beaucoup moindre que 60^m. La température

des lieux profonds est donc sensiblement fixe dans un lieu donné; mais elle n'est pas la même pour tous les points d'un même parallèle; en général, elle s'élève lorsqu'on s'approche de l'équateur.

La chaleur que le Soleil a communiquée au globe terrestre, et qui a produit la diversité des climats, est assujettie maintenant à un mouvement devenu uniforme. Elle s'avance dans l'intérieur de la masse qu'elle pénètre tout entière, et en même temps elle s'éloigne du plan de l'équateur, et va se perdre dans l'espace à travers les contrées polaires.

Dans les hautes régions de l'atmosphère, l'air, très rare et diaphane, ne retient qu'une faible partie de la chaleur des rayons solaires : c'est la cause principale du froid excessif des lieux élevés. Les couches inférieures, plus denses et plus échauffées par la terre et les eaux, se di latent et s'élèvent; elles se refroidissent par l'effet même de la dilatation. Les grands mouvements de l'air, comme les vents alizés qui soufflent entre les tropiques, ne sont point déterminés par les forces attractives de la Lune et du Soleil. L'action de ces astres ne produit sur un fluide aussi rare, à une aussi grande distance, que des oscillations très peu sensibles. Ce sont les changements des températures qui déplacent périodiquement toutes les parties de l'atmosphère.

Les eaux de l'Océan sont différemment exposées par leur surface aux rayons du Soleil, et le fond du bassin qui les renferme est échauffé très inégalement depuis les pôles jusqu'à l'équateur. Ces deux causes, toujours présentes, et combinées avec la gravité et la force centrifuge, entretiennent des mouvements immenses dans l'intérieur des mers. Elles en déplacent et en mêlent toutes les parties, et produisent ces courants réguliers et généraux que les navigateurs ont observés.

La chaleur rayonnante qui s'échappe de la superficie de tous les corps et traverse les milieux élastiques ou les espaces vides d'air a des lois spéciales, et elle concourt aux phénomènes les plus variés. On connaissait déjà l'explication physique de plusieurs de ces faits; la théorie mathématique que j'ai formée en donne la mesure exacte. Elle consiste, en quelque sorte, dans une seconde catoptrique, qui a ses théorèmes propres, et sert à déterminer par le calcul tous les effets de la chalcur directe ou réfléchie.

Cette énumération des objets principaux de la théorie fait assez connaître la nature des questions que je me suis proposées. Quelles sont ces qualités élémentaires que, dans chaque substance, il est nécessaire d'observer, et quelles expériences sont les plus propres à les déterminer exactement? Si des lois constantes règlent la distribution de la chaleur dans la matière solide, quelle est l'expression mathématique de ces lois? et par quelle analyse peut-on déduire de cette expression la solution complète des questions principales?

Pourquoi les températures terrestres cessent-elles d'être variables à une profondeur si petite par rapport au rayon du globe? Chaque inégalité du mouvement de cette planète devant occasionner au-dessous de la surface une oscillation de la chaleur solaire, quelle relation y a-t-il entre la durée de la période et la profondeur où les températures deviennent constantes?

Quel temps a dû s'écouler pour que les climats pussent acquérir les températures diverses qu'ils conservent aujourd'hui; et quelles causes peuvent faire varier maintenant leur chaleur moyenne? Pourquoi les seuls changements annuels de la distance du Soleil à la Terre ne causent-ils pas à la surface de cette planète des changements très considérables dans les températures?

A quel caractère pourrait-on reconnaître que le globe terrestre n'a pas entièrement perdu sa chaleur d'origine, et quelles sont les lois exactes de la déperdition?

Si cette chaleur fondamentale n'est point totalement dissipée,

comme l'indiquent plusieurs observations, elle peut être immense à de grandes profondeurs, et toutefois elle n'a plus aujourd'hui aucune influence sensible sur la température moyenne des climats : les effets que l'on y observe sont dus à l'action des rayons solaires. Mais, indépendamment de ces deux sources de chaleur, l'une fondamentale et primitive, propre au globe terrestre, l'autre due à la présence du Soleil, n'y a-t-il point une cause plus universelle, qui détermine la température du ciel, dans la partie de l'espace qu'occupe maintenant le système solaire? Puisque les faits observés rendent cette cause nécessaire, quelles sont, dans cette question entièrement nouvelle, les conséquences d'une théorie exacte? comment pourra-t-on déterminer cette valeur constante de la température de l'espace, et en déduire celle qui convient à chaque planète?

Il faut ajouter à ces questions celles qui dépendent des propriétés de la chaleur rayonnante. On connaît très distinctement la cause physique de la réflexion du froid, c'est-à-dire de la réflexion d'une moindre chaleur; mais quelle est l'expression mathématique de cet effet?

De quels principes généraux dépendent les températures atmospheriques, soit que le thermomètre qui les mesure reçoive immédiatement les rayons du Soleil, sur une surface métallique ou dépolie, soit que cet instrument demeure exposé, durant la nuit, sous un ciel exempt de nuages, au contact de l'air, au rayonnement des corps terrestres, et à celui des parties de l'atmosphère les plus éloignées et les plus froides.

L'intensité des rayons qui s'échappent d'un point de la superficie des corps échauffés variant avec leur inclinaison suivant une loi que les expériences ont indiquée, n'y a-t-il pas un rapport mathématique nécessaire entre cette loi et le fait général de l'équilibre de la chaleur; et quelle est la cause physique de cette inégale intensité?

Enfin, lorsque la chaleur pénètre les masses fluides et y détermine des mouvements intérieurs, par les changements continuels de température et de densité de chaque molécule, peut-on encore exprimer par des équations différentielles les lois d'un effet aussi composé; et quel changement en résulte-t-il dans les équations générales de l'Hydrodynamique?

Telles sont les questions principales que j'ai résolues, et qui n'avaient point encore été soumises au calcul. Si l'on considère, de plus, les rapports multipliés de cette théorie mathématique avec les usages civils et les arts techniques, on reconnaîtra toute l'étendue de ses applications. Il est manifeste qu'elle comprend une série entière de phénomènes distincts, et qu'on ne pourrait en omettre l'étude saus retrancher une partie notable de la science de la nature.

Les principes de cette théorie sont déduits, comme ceux de la Mécanique rationnelle, d'un très petit nembre de faits primordiaux, dont les géomètres ne considérent point la cause, mais qu'ils admettent comme resultant des observations communes et confirmées par toutes les experiences.

Les equations différentielles de la propagation de la chaleur expriment les conditions les plus générales, et ramènent les questions physiques à des problemes d'Analyse pure, ce qui est proprement l'objet de la théorie. Elles ne sont pas moins rigoureusement démontrées que les equations generales de l'equilibre et du mouvement. C'est pour rendre cette comparaison plus sensible que nous avons toujours préféré des demonstrations analogues à celles des théorèmes qui servent de fondement à la Statique et à la Dynamique. Ces équations subsistent encore, mais elles reçoivent une forme différente, si elles expriment la distribution de la chaleur lumineuse dans les corps diaphanes, ou les mouvements que les changements de température et de densité occa-

sionnent dans l'intérieur des fluides. Les coefficients qu'elles renferment sont sujets à des variations dont la mesure exacte n'est pas encore connue; mais, dans toutes les questions naturelles qu'il nous importe le plus de considérer, les limites des températures sont assez peu différentes pour que l'on puisse omettre ces variations des coefficients.

Les équations du mouvement de la chaleur, comme celles qui expriment les vibrations des corps sonores, ou les dernières oscillations des liquides, appartiennent à une des branches de la Science du calcul les plus récemment découvertes, et qu'il importait beaucoup de perfectionner. Après avoir établi ces équations différentielles, il fallait en obtenir les intégrales; ce qui consiste à passer d'une expression commune à une solution propre, assujettie à toutes les conditions données. Cette recherche difficile exigeait une analyse spéciale, fondée sur des théorèmes nouveaux dont nous ne pourrions ici faire connaître l'objet. La méthode qui en dérive ne laisse rien de vague et d'indéterminé dans les solutions; elle les conduit jusqu'aux dernières applications numériques, condition nécessaire de toute recherche, et sans laquelle on n'arriverait qu'à des transformations inutiles.

Ces mêmes théorèmes qui nous ont fait connaître les intégrales des équations du mouvement de la chaleur s'appliquent immédiatement à des questions d'Analyse générale et de Dynamique dont on désirait depuis longtemps la solution.

L'étude approfondie de la nature est la source la plus féconde des découvertes mathématiques. Non seulement cette étude, en offrant aux recherches un but déterminé, a l'avantage d'exclure les questions vagues et les calculs sans issue : elle est encore un moyen assuré de former l'Analyse elle-même, et d'en découvrir les éléments qu'il nous importe le plus de connaître, et que cette science doit toujours con-

server : ces éléments fondamentaux sont ceux qui se reproduisent dans tous les effets naturels.

On voit, par exemple, qu'une même expression, dont les géomètres avaient considéré les propriétés abstraites et qui, sous ce rapport, appartient à l'Analyse générale, représente aussi le mouvement de la lumière dans l'atmosphère, qu'elle détermine les lois de la diffusion de la chaleur dans la matière solide, et qu'elle entre dans toutes les questions principales de la Théorie des probabilités.

Les équations analytiques, ignorées des anciens géomètres, que Descartes a introduites le premier dans l'étude des courbes et des surfaces, ne sont pas restreintes aux propriétés des figures et à celles qui sont l'objet de la Mécanique rationnelle; elles s'étendent à tous les phénomènes généraux. Il ne peut y avoir de langage plus universel et plus simple, plus exempt d'erreurs et d'obscurités, c'est-à-dire plus digne d'exprimer les rapports invariables des êtres naturels.

Considérée sous ce point de vue, l'Analyse mathématique est aussi étenduc que la nature elle-même; elle définit tous les rapports sensibles, mesure les temps, les espaces, les forces, les températures; cette science difficile se forme avec lenteur, mais elle conserve tous les principes qu'elle a une fois acquis; elle s'accroît et s'affermit sans cesse, au milieu de tant de variations et d'erreurs de l'esprit humain.

Son attribut principal est la clarté; elle n'a point de signes pour exprimer les notions confuses. Elle rapproche les phénomènes les plus divers et découvre les analogies secrètes qui les unissent. Si la matière nous échappe, comme celle de l'air et de la lumière, par son extrême ténuité, si les corps sont placés loin de nous, dans l'immensité de l'espace, si l'homme veut connaître le spectacle des cieux pour des époques successives que séparent un grand nombre de siècles, si les actions de la gravité et de la chaleur s'exercent dans l'intérieur du globe solide à

des profondeurs qui seront toujours inaccessibles, l'Analyse mathématique peut encore saisir les lois de ces phénomènes. Elle nous les rend présents et mesurables, et semble être une faculté de la raison humaine destinée à suppléer à la brièveté de la vie et à l'imperfection des sens; et, ce qui est plus remarquable encore, elle suit la même marche dans l'étude de tous les phénomènes; elle les interprète par le même langage, comme pour attester l'unité et la simplicité du plan de l'univers, et rendre encore plus manifeste cet ordre immuable qui préside à toutes les causes naturelles.

Les questions de la Théorie de la chaleur offrent autant d'exemples de ces dispositions simples et constantes qui naissent des lois générales de la nature; et, si l'ordre qui s'etablit dans ces phénomènes pou vait être saisi par nos sens, ils nous causeraient une impression comparable à celles des résonances harmoniques.

Les formes des corps sont variées à l'infini; la distribution de la chaleur qui les pénètre peut être arbitraire et confuse; mais toutes les mégalites s'effacent rapidement et disparaissent à mesure que le temps s'ecoule. La marche du phénomène, devenue plus régulière et plus simple, demeure enfin assujettie à une loi déterminée, qui est la même pour tous les cas et qui ne porte plus aucune empreinte sensible de la disposition initiale.

Toutes les observations confirment ces conséquences. L'analyse dont elles dérivent sépare et exprime clairement : v° les conditions génerales, c'est-à-dire celles qui résultent des propriétés naturelles de la chaleur; 2º l'effet accidentel, mais subsistant, de la figure ou de l'etat des surfaces; 3º l'effet non durable de la distribution primitive.

Nous avons démontré dans cet Ouvrage tous les principes de la Théorie de la chaleur, et résolu toutes les questions fondamentales. On aurait pu les exposer sous une forme plus concise, omettre les questions simples, et présenter d'abord les conséquences les plus générales; mais on a voulu montrer l'origine même de la Théorie et ses progrès successifs. Lorsque cette connaissance est acquise, et que les principes sont entièrement fixés, il est préférable d'employer immédiatement les méthodes analytiques les plus étendues, comme nous l'avons fait dans les recherches ultérieures. C'est aussi la marche que nous suivrons désormais dans les Mémoires qui seront joints à cet Ouvrage, et qui en forment en quelque sorte le complément, et par là nous aurons concilié, autant qu'il peut dépendre de nous, le développement nécessaire des principes avec la précision qui convient aux applications de l'Analyse.

Ces Mémoires auront pour objet la théorie de la chaleur rayonnante, la question des températures terrestres, celle de la température des habitations, la comparaison des résultats théoriques avec ceux que nous avons observés dans diverses expériences, enfin la démonstration des équations différentielles du mouvement de la chaleur dans les fluides.

L'Ouvrage que nous publions aujourd'hui a été écrit depuis longtemps; diverses circonstances en ont retardé et souvent interrompu l'impression. Dans cet intervalle, la Science s'est enrichie d'observations importantes; les principes de notre Analyse, que l'on n'avait pas saisis d'abord, ont été mieux connus; on a discuté et confirmé les résultats que nous en avions déduits. Nous avons appliqué nousmême ces principes à des questions nouvelles, et changé la forme de quelques démonstrations. Les retards de la publication auront contribué à rendre l'Ouvrage plus clair et plus complet.

Nos premières recherches analytiques sur la communication de la chaleur ont eu pour objet la distribution entre des masses disjointes; on les a conservées dans la Section II du Chapitre IV. Les questions relatives aux corps continus, qui forment la théorie proprement dite,

ont été résolues plusieurs années après; cette théorie a éte exposée, pour la première fois, dans un Ouvrage manuscrit remis à l'Institut de France à la fin de l'année 1807, et dout il a été publié un extrait dans le Bulletin des Sciences (Société philomathique, année 1808, p. 112-116). Nous avons joint à ce Mémoire et remis successivement des Notes assez étendues, concernant la convergence des séries, la diffusion de la chaleur dans un prisme infini, son émission dans les espaces vides d'air, les constructions propres à rendre sensibles les théorèmes principaux, et l'analyse du mouvement périodique à la surface du globe terrestre. Notre second Mémoire sur la propagation de la chaleur a etc depose aux Archives de l'Institut, le 28 septembre 1811. Il est forme du precédent et des Notes déjà remises ; on y a omis des constructions geométriques et des détails d'Analyse qui n'avaient pas un rapport necessaire avec la question physique, et l'on a ajouté l'equation generale qui exprime l'état de la surface. Ce second Ouvrage à éte livre à l'impression dans le cours de 1821, pour être inséré dans la Collection de l'Académie des Sciences. Il est imprimé sans aucun changement ut addition; le texte est littéralement conforme au Manuscrit depose, qui fait partie des Archives de l'Institut.

On pourra trouver dans ce Mémoire et dans les écrits qui l'ont precédé un premier exposé des applications que ne contient pas notre Ouvrage actuel; elles seront traitées dans les Mémoires subsequents avec plus d'étendue, et, s'il nous est possible, avec plus de clarte. Les résultats de notre travail concernant ces mêmes questions sont aussi indiqués dans divers articles dejà rendus publies. L'extrait insere dans les Annales de Chimie et de Physique fait connaître l'ensemble de nos recherches (t. III, p. 350-376, année 1816). Nous avons publié dans ces Annales deux Notes séparées, concernant la chaleur rayonnante (t. IV, p. 128-145, année 1817, et t. VI, p. 259-363, année 1817).

Divers autres articles du même Recueil présentent les résultats les plus constants de la théorie et des observations; l'utilité et l'étendue des connaissances thermologiques ne pouvaient être mieux appréciées que par les célèbres rédacteurs de ces Annales (1).

On trouvera dans le Bulletin des Sciences (Société philomathique, année 1818, p. 1-11, et année 1820, p. 58-70) l'extrait d'un Mémoire sur la température constante ou variable des habitations, et l'exposé des principales conséquences de notre analyse des températures terrestres.

M. Alexandre de Humboldt, dont les recherches embrassent toutes les grandes questions de la Philosophie naturelle, a considéré, sous un point de vue nouveau et très important, les observations des températures propres aux divers climats : Mémoire sur les lignes isothermes (Société d'Arcueil, t. III, p. 462-602, année 1817); Mémoire sur la limite insérieure des neiges perpétuelles (Annales de Chimie et de Physique, t. V, p. 102-112, année 1817, et t. XIV, p. 5-57, année 1820).

Quant aux équations différentielles du mouvement de la chaleur dans les liquides, il en a été fait mention dans l'histoire annuelle de l'Académie des Sciences. Cet extrait de notre Mémoire en montre clairement l'objet et le principe (Analyse des travaux de l'Académie des Sciences, par M. Delambre, année 1820) (2).

L'examen des forces répulsives que la chaleur produit, et qui déterminent les propriétés statiques des gaz, n'appartient pas au sujet analytique que nous avons considéré. Cette question, liée à la théorie de la chaleur rayonnante, vient d'être traitée par l'illustre auteur de la Mécanique céleste, à qui toutes les branches principales de l'Analyse mathématique doivent des découvertes importantes (Connaissance des Temps pour les années 1824 et 1825).

G. D. (1) Gay-Lussac et Arago. G. D.

⁽²⁾ Ce Mémoire a été imprimé en 1833; il sera publié dans le Tome II.

Les théories nouvelles expliquées dans notre Ouvrage sont réunies pour toujours aux Sciences mathématiques et reposent comme elles sur des fondements invariables; elles conserveront tous les éléments qu'elles possèdent aujourd'hui, et elles acquerront continuellement plus d'étendue. On perfectionnera les instruments et l'on multipliera les expériences. L'analyse que nous avons formée sera déduite de méthodes plus générales, c'est-à-dire plus simples et plus fécondes, communes à plusieurs classes de phénomènes. On déterminera, pour les substances solides ou liquides, pour les vapeurs et pour les gaz permanents, toutes les qualités spécifiques relatives à la chaleur, et les variations des coefficients qui les expriment. On observera, dans les divers lieux du globe, les températures du sol à diverses profondeurs, l'intensité de la chaleur solaire et ses effets, ou constants ou variables, dans l'atmosphère, dans l'Océan et les lacs; et l'on connaîtra cette température constante du Ciel, qui est propre aux régions planétaires. La théorie elle-même dirigera toutes ces mesures et en assignera la précision. Elle ne peut faire désormais aucun progrès considérable qui ne soit fondé sur ces expériences; car l'Analyse mathématique peut déduire, des phénomènes généraux et simples, l'expression des lois de la Nature; mais l'application spéciale de ces lois à des effets très composés exige une longue suite d'observations exactes.

THÉORIE

DЕ

LA CHALEUR.

Et ignem regunt numeri. Plato.

CHAPITRE I.

INTRODUCTION.

SECTION I.

EXPOSITION DE L'OBJET DE CET OUVRAGE.

1.

Les effets de la chaleur sont assujettis à des lois constantes que l'on ne peut découvrir sans le secours de l'Analyse mathématique. La Théorie que nous allons exposer a pour objet de démontrer ces lois; elle réduit toutes les recherches physiques sur la propagation de la chaleur à des questions de Calcul intégral dont les éléments sont donnés par l'expérience. Aucun sujet n'a des rapports plus étendus avec les progrès de l'industrie et ceux des sciences naturelles; car l'action de la chaleur est toujours présente; elle pénètre tous les corps et les espaces; elle influe sur les procédés des arts et concourt à tous les phénomènes de l'univers.

Lorsque la chaleur est inégalement distribuée entre les différents points d'une masse solide, elle tend à se mettre en équilibre et passe lentement des parties plus échauffées dans celles qui le sont moins; en

F.

même temps elle se dissipe par la surface et se perd dans le milieu ou dans le vide. Cette tendance à une distribution uniforme et cette emis sion spontanée qui s'opère à la surface des corps changent continuel lement la température des différents points. La question de la propagation de la chaleur consiste à determiner quelle est la temperature de chaque point d'un corps à un instant donné, en supposant que les températures initiales sont connues. Les exemples suivants feront con naître plus clairement la nature de ces questions.

2.

Si l'on expose à l'action durable et uniforme d'un toyet de chalent une même partie d'un anneau metallique d'un grand diametre, le molècules les plus voisines du foyer s'echaufferont les première et, après un certain temps, chaque point du solide aura acquis presque entièrement la plus haute température à laquelle il puisse parvenir Cette limite ou maximum de température n'est pas la même pour les différents points; elle est d'autant moindre qu'ils sont plus clor ne de celui où le foyer est immediatement applique.

Lorsque les températures sont devenues permanentes, le foyer tranmet, à chaque instant, une quantité de chaleur qui compen e exactement celle qui se dissipe par tous les points de la surface exterience de l'anneau.

Si maintenant on supprime le foyer, la chalcur continuera de le propager dans l'intérieur du solide; mais celle qui se perd dan le milieu ou dans le vide ne sera plus compensee comme auparavant par le produit du foyer, en sorte que toutes les temperatures varieront et diminueront sans cesse, jusqu'à ce qu'elles soient devenues egale la celle du milieu environnant.

3.

Pendant que les températures sont permanentes et que le toyer subsiste, si l'on élève, en chaque point de la circonference moyenne de l'anneau, une ordonnée perpendiculaire au plan de l'anneau et dont la longueur soit proportionnelle à la température fixe de ce point, la ligne courbe qui passerait par les extrémités de ces ordonnées représentera l'état permanent des températures, et il est très facile de déterminer par le calcul la nature de cette ligne. Il faut remarquer que l'on suppose à l'anneau une épaisseur assez petite pour que tous les points d'une même section perpendiculaire à la circonférence moyenne aient des temperatures sensiblement égales. Lorsqu'on aura enlevé le foyer, la ligne qui termine les ordonnées proportionnelles aux températures des differents points changera continuellement de forme. La question consiste a exprimer par une équation la forme variable de cette courbe, et a comprendre ainsi dans une seule formule tous les états successifs du solide.

í.

Soient, la temperature fixe d'un point m de la circonférence moyenne, r la distance de ce point au foyer, c'est-à-dire la longueur de l'arc de la circonference moyenne, compris entre le point m et le point o, qui correspond à la position du foyer; z est la plus haute température que le point m puis se acquerir en vertu de l'action constante du foyer, et cette temperature permanente z est une fonction f(x) de la distance x. La première partie de la question consiste à determiner la fonction f(x) qui reprécente l'état permanent du solide.

On considerera ensuite l'état variable qui succède au précédent aussitot que l'on a éloigne le foyer; on designera par ℓ le temps écoule depuis cette suppre son du foyer et par à la valeur de la temperature du poent es après le temps ℓ . La quantité à sera une certaine fonc tou l'+1/2 de la distance ℓ et du temps ℓ ; l'objet de la question est de des ouvrit cette touction l'+1/2 dont on ne connaît encore que la valeur unit alle qui est ℓ , en sorte que l'on doit avoir l'equation de condition

1 ,

à.

Si l'on place une masse solide homogène, de forme spherique ou abique, dans un malieu entretenu a une temperature constante, et

qu'elle y demeure très longtemps plongée, elle acquerra dans tous ses points une température très peu différente de celle du fluide. Supposons qu'on l'en retire pour la transporter dans un milien plus froid, la chaleur commencera à se dissiper par la surface; les temperatures des différents points de la masse ne seront plus sensiblement les memes, et, si on la suppose divisée en une infinité de couches par des surfaces parallèles à la surface extérieure, chacune de ces couches transmettra, dans un instant, une certaine quantite de chaleur à celle qui l'enveloppe. Si l'on conçoit que chaque molecule porte un thermomètre séparé qui indique à chaque instant sa temperature, l'etat du solide sera continuellement representé par le système variable de toutes ces hauteurs thermométriques. Il s'agit d'exprimer les états successifs par des formules analytiques, en sorte que l'on puisse connaître, pour un instant donné, la temperature indiquee par chaque thermometre et comparer les quantites de chaleur qui s'ecoulent, dans le meme instant, entre deux conches contigues ou dans le milieu environnant.

6.

Si la masse est spherique, et que l'on designe par x la distance d'un point m de cette masse au centre de la sphère, par t le temps ecoule depuis le commencement du refroidissement et par x la temperature variable du point m, il est facile de voir que tous les points place : a la meme distance x du centre ont la meme temperature x. Cette quantite y est une certaine fonction y at du rayon y et du temps ecoule t: elle doit être telle qu'elle devienne constante quelle que soit la valeur de y, lorsqu'on suppose celle de t nulle; car, d'après l'hypothèse, la temperature de tous les points est la même au moment de l'emersion. La question consiste à determiner la fonction de y et de t qui exprime la valeur de y.

7.

On considerera ensuite que, pendant la durée du refroidissement, il s'ecoule à chaque instant, par la surface extérieure, une certaine quan

tité de chaleur qui passe dans le milieu. La valeur de cette quantité n'est pas constante; elle est plus grande au commencement du refroidissement. Si l'on se représente aussi l'état variable de la surface sphérique intérieure dont le rayon est x, on reconnaît facilement qu'il doit y avoir, à chaque instant, une certaine quantité de chaleur qui traverse cette surface et passe dans la partie de la masse qui est plus éloignée du centre. Ce flux continuel de chaleur est variable comme celui de la surface extérieure, et l'un et l'autre sont des quantités comparables entre elles; leurs rapports sont des nombres dont les valeurs variables sont des fonctions de la distance x et du temps écoulé t. Il s'agit de déterminer ces fonctions.

8.

Si la masse, échauffée par une longue immersion dans un milieu, et dont on veut calculer le refroidissement, est de forme cubique et si l'on détermine la position de chaque point m par trois coordonnées rectangulaires x, y, z, en prenant pour origine le centre du cube et pour axes les lignes perpendiculaires aux faces, on voit que la température v du point m, après le temps écoulé t, est une fonction des quatre variables x, y, z et t. Les quantités de chaleur qui s'écoulent à chaque instant, par toute la surface extérieure du solide, sont variables et comparables entre elles; leurs rapports sont des fonctions analytiques qui dépendent du temps t et dont il faut assigner l'expression.

9.

Examinons aussi le cas où un prisme rectangulaire d'une assez grande épaisseur et d'une longueur infinie, étant assujetti par son extrémité à une température constante, pendant que l'air environnant conserve une température moindre, est enfin parvenu à un état fixe qu'il s'agit de connaître. Tous les points de la section extrême qui sert de base au prisme ont, par hypothèse, une température commune et permanente. Il n'en est pas de même d'une section éloignée du foyer; chacun des points de cette surface rectangulaire, parallèle à la base, a acquis une température fixe, mais qui n'est pas la même pour les dif-

férents points d'une même section et qui doit être moindre pour les points les plus voisins de la surface exposée à l'air. On voit aussi qu'il s'écoule à chaque instant, à travers une section donnée, une certaine quantité de chaleur qui demeure toujours la même, puisque l'état du solide est devenu constant. La question consiste à déterminer la température permanente d'un point donné du solide et la quantité totale de chaleur qui, pendant un temps déterminé, s'écoule à travers une section dont la position est donnée.

10.

Prenons pour origine des coordonnées x, y, z le centre de la base du prisme, et pour axes rectangulaires l'axe même du prisme et les deux perpendiculaires sur les faces latérales : la température permanente v du point m dont les coordonnées sont x, y, z est une fonction de trois variables F(x, y, z); elle reçoit, par hypothèse, une valeur constante lorsque l'on suppose x nul, quelles que soient les valeurs de y et de z. Supposons que l'on prenne pour unité la quantité de chaleur qui, pendant l'unité de temps, sortirait d'une superficie égale à l'unité de surface si la masse échauffée que cette superficie termine, et qui est formée de la même substance que le prisme, était continuellement entretenue à la température de l'eau bouillante et plongée dans l'air atmosphérique entretenu à la température de la glace fondante. On voit que la quantité de chaleur qui, dans l'état permanent du prisme rectangulaire, s'écoule, pendant l'unité de temps, à travers une certaine section perpendiculaire à l'axe, a un rapport déterminé avec la quantité de chaleur prise pour unité. Ce rapport n'est pas le même pour toutes les sections; il est une fonction $\varphi(x)$ de la distance x à laquelle une section est placée; il s'agit de trouver l'expression analytique de la fonction $\varphi(x)$.

11.

Les exemples précédents suffisent pour donner une idée exacte des diverses questions que nous avons traitées.

La solution de ces questions nous a fait connaître que les effets de la propagation de la chaleur dépendent, pour chaque substance solide, de trois qualités élémentaires qui sont : la capacité de chaleur, la conducibilité propre et la conducibilité extérieure. On a observé que, si deux corps de même volume et de nature différente ont des températures égales et qu'on leur ajoute une même quantité de chaleur, les accroissements de température ne sont pas les mêmes; le rapport de ces accroissements est celui des capacités de chaleur. Ainsi le premier des trois éléments spécifiques qui règlent l'action de la chaleur est exactement défini, et les physiciens connaissent depuis longtemps plusieurs moyens d'en déterminer la valeur. Il n'en est pas de même des deux autres; en en a souvent observé les effets, mais il n'y a qu'une théorie exacte qui puisse les bien distinguer, les définir et les mesurer avec précision. La conducibilité propre ou intérieure d'un corps exprime la facilité avec laquelle la chaleur s'y propage en passant d'une molécule intérieure à une autre. La conducibilité extérieure, ou relative, d'un corps solide dépend de la facilité avec laquelle la chaleur en pénètre la surface et passe de ce corps dans un milieu donné, ou passe du milieu dans le solide. Cette dernière propriété est modifiée par l'état plus ou moins poli de la superficie; elle varie aussi selon le milieu dans lequel le corps est plongé; mais la conducibilité propre ne peut changer qu'avec la nature du solide.

Ces trois qualités élémentaires sont représentées dans nos formules par des nombres constants, et la théorie indique elle-même les expériences propres à en mesurer la valeur. Dès qu'ils sont déterminés, toutes les questions relatives à la propagation de la chaleur ne dépendent que de l'analyse numérique. La connaissance de ces propriétés spécifiques peut être immédiatement utile dans plusieurs applications des sciences physiques; elle est d'ailleurs un élément de l'étude et de la description des diverses substances. C'est connaître très imparfaitement les corps que d'ignorer les rapports qu'ils ont avec un des principaux agents de la nature. En général, il n'y a aucune théorie mathématique qui ait plus de rapport que celle-ci avec l'économie publique,

puisqu'elle peut servir à éclairer et à perfectionner l'usage des arts nombreux qui sont fondés sur l'emploi de la chaleur.

12.

La question des températures terrestres offre une des plus belles applications de la théorie de la chaleur; voici l'idée générale que l'on peut s'en former. Les différentes parties de la surface du globe sont inégalement exposées à l'impression des rayons solaires; l'intensité de cette action dépend de la latitude du lieu; elle change aussi pendant la durée du jour et pendant celle de l'année, et est assujettie à d'autres inégalités moins sensibles. Il est évident qu'il existe, entre cet état variable de la surface et celui des températures intérieures, une relation nécessaire que l'on peut déduire de la théorie. On sait qu'à une certaine profondeur au-dessous de la surface de la Terre, la température n'éprouve aucune variation annuelle dans un lieu donné: cette température permanente des lieux profonds est d'autant moindre que le lieu est plus éloigné de l'équateur. On peut donc faire abstraction de l'enveloppe extérieure, dont l'épaisseur est incomparablement plus petite que le rayon terrestre, et regarder cette planète comme une masse presque sphérique dont la surface est assujettie à une température qui demeure constante pour tous les points d'un parallèle donné, mais qui n'est pas la même pour un autre parallèle. Il en résulte que chaque molécule intérieure a aussi une température fixe déterminée par sa position. La question mathématique consisterait à connaître la température fixe d'un point donné et la loi que suit la chalcur solaire en pénétrant dans l'intérieur du globe.

Cette diversité des températures nous intéresse davantage, si l'on considère les changements qui se succèdent dans l'enveloppe même dont nous habitons la superficie. Ces alternatives de chalcur et de froid, qui se reproduisent chaque jour et dans le cours de chaque année, ont été jusqu'ici l'objet d'observations multipliées. On peut aujourd'hui les soumettre au calcul et déduire d'une théorie commune tous les faits particuliers que l'expérience nous avait appris.

que la section a l'origine soit retenue à la temperature constante i car, l'equation

In effet semblable aurant hen si les temperatures initiales, au hon d'être : \(\frac{1}{2}\)\(\text{\$\text{\$r\$}},\emps_2\), etaient \(\frac{1}{2}\)\(\text{\$t\$},\emps_2\) pour tous les points interiours du prisme, pourvir que la section à l'origine fut toupours retenue à la temperature o. Dans l'un et l'autre cas, les temperatures initiales se rapprocheraient continuellement de la temperature constante du mi hen, qui est zero, et les temperatures finales seraient toutes nulles

110

Ces principes etant poses, considerons le mouvement de la chalent dans deux prismes parlaitement égaux à celui qui est l'objet de la question. Pour le premier solide, nous supposons que les temperatures initiales sont $+\frac{1}{2}(t,x,z)$ et que la base. A conserve la temperature fixe i. Pour le second solide, nous supposons que les temperatures initiales sont $-\frac{1}{2}(t,y,z)$ et que tous les points de la base. A sont nete nus à la temperature o. Il est manifeste que, dans le premier prisme, le système des temperatures ne peut point changer et que, dans le second, ce système varie continuellement jusqu'à ce que tontes les températures deviennent nuilles.

Si maintenant on fait coincider dans le même solide ces deux états différents, le mouvement de la chaleur s'opérera librement, comme si chaque système existant seul. Dans l'état initial formé des deux systèmes reunis, chaque point du solide aura une temperature nulle, excepté les points de la section V dont la temperature sera 1, ce qui est conforme a l'hypothèse. Ensuite, les temperatures du second système changeront de plus en plus et s'evanoniront entièrement, pendant que celles du premier se conserveront sans aucun changement. Done, après un temps infini, le système permanent des temperatures sera celui que represente l'equation. E , ou

Il faut remarquer que cette consequence resulte de la condition relative a l'état unitial; on la deduira toutes les fois que la chaleur initiale contenue dans le prisme est tellement distribuée qu'elle s'évanouirait entierement si l'on retenait la base V à la temperature o.

328.

1 26 1 1

Nous ajouterons diverses remarques à la solution précédente : 1º Il est facile de connaître la nature de l'équation : tang :

le l'equation $z \operatorname{tang} z = \frac{ht}{\mathbf{k}};$

il suffit de supposer (voir f(g, x)) que l'on ait construit la courbe

l'arc ι etant pris pour abscisse et u pour ordonnée. Cette ligne est

Cette question se réduit à supposer que tous les points de la surface d'une sphère immense sont affectés de températures périodiques; l'Analyse fait ensuite connaître suivant quelle loi l'intensité des variations décroît à mesure que la profondeur augmente; quelle est, pour une profondeur donnée, la quantité des changements annuels ou diurnes, l'époque de ces changements, et comment la valeur fixe de la température souterraine se déduit des températures variables observées à la surface.

13.

Les équations générales de la propagation de la chaleur sont aux dissérences partielles, et, quoique la forme en soit très simple, les méthodes connues ne fournissent aucun moyen général de les intégrer; on ne pourrait donc pas en déduire les valeurs des températures après un temps déterminé. Cette interprétation numérique des résultats du calcul est cependant nécessaire, et c'est un degré de perfection qu'il serait très important de donner à toutes les applications de l'Analyse aux Sciences naturelles. On peut dire que, tant qu'on ne l'a pas obtenu, les solutions demeurent incomplètes ou inutiles, et que la vérité qu'on se proposait de découvrir n'est pas moins cachée dans les formules d'Analyse qu'elle ne l'était dans la question physique ellemême. Nous nous sommes attaché avec beaucoup de soin et nous sommes parvenu à surmonter cette difficulté dans toutes les questions que nous avons traitées et qui contiennent les éléments principaux de la Théorie de la chaleur. Il n'y a aucune de ces questions dont la solution ne fournisse des moyens commodes et exacts de trouver les valeurs numériques des températures acquises, ou celles des quantités de chaleur écoulées, lorsqu'on connaît les valeurs du temps et celles des coordonnées variables. Ainsi l'on ne donnera pas seulement les équations différentielles auxquelles doivent satisfaire les fonctions qui expriment les valeurs des températures; on donnera ces fonctions elles-mêmes sous une forme qui facilite les applications numériques.

sortent, dans tous les sens, de chaque point de la superficie d'un corps échauffé dépend de l'angle que fait leur direction avec la surface dans ce même point. Nous avons démontré que l'intensité de chaque rayon est d'autant moindre qu'il fait avec l'élément de la surface un plus petit angle, et qu'elle est proportionnelle au sinus de cet angle. Cette loi générale de l'émission de la chaleur, que diverses observations avaient déjà indiquée, est une conséquence nécessaire du principe de l'équilibre des températures et des lois de la propagation de la chaleur dans les corps solides.

Telles sont les questions principales que l'on a traitées dans cet Ouvrage; elles sont toutes dirigées vers un seul but, qui est d'établir clairement les principes mathématiques de la Théorie de la chaleur et de concourir ainsi aux progrès des arts utiles et à ceux de l'étude de la nature.

17.

On aperçoit, par ce qui précède, qu'il existe une classe très étendue de phénomènes qui ne sont point produits par des forces mécaniques, mais qui résultent sculement de la présence et de l'accumulation de la chaleur. Cette partie de la Philosophie naturelle ne peut se rapporter aux Théories dynamiques; elle a des principes qui lui sont propres, et elle est fondée sur une méthode semblable à celle des autres sciences exactes. Par exemple, la chaleur solaire qui pénètre l'intérieur du globe s'y distribue suivant une loi régulière, qui ne dépend point de celles du mouvement et ne peut être déterminée par les principes de la Mécanique. Les dilatations que produit la force répulsive de la chaleur et dont l'observation sert à mesurer les températures sont, à la vérité, des effets dynamiques; mais ce ne sont point ces dilatations que l'on calcule lorsqu'on recherche les lois de la propagation de la chaleur.

18.

Il y a d'autres effets naturels plus composés qui dépendent à la fois de l'influence de la chaleur et des forces attractives : ainsi les varia20.

Ces considérations offrent un exemple singulier des rapports qui existent entre la science abstraite des nombres et les causes naturelles.

Lorsqu'une barre métallique est exposée par son extrémité à l'action constante d'un foyer et que tous ses points ont acquis leur plus haut degré de chaleur, le système des températures fixes correspond exactement à une Table de logarithmes; les nombres sont les élévations des thermomètres placés aux différents points, et les logarithmes sont les distances de ces points au foyer. En général, la chaleur se répartit d'elle-même dans l'intérieur des solides, suivant une loi simple exprimée par une équation aux différences partielles, commune à des questions physiques d'un ordre différent. L'irradiation de la chaleur a une relation manifeste avec les Tables de sinus; car les rayons, qui sortent d'un même point d'une surface échaussée, différent beaucoup entre eux, et leur intensité est rigoureusement proportionnelle au sinus de l'angle que fait leur direction avec l'élément de la surface. Si l'on pouvait observer pour chaque instant, et en chaque point d'une masse solide homogène, les changements de température, on retrouverait dans la série de ces observations les propriétés des séries récurrentes, celles des sinus et des logarithmes; on les remarquerait, par exemple, dans les variations diurnes ou annuelles des températures des différents points du globe terrestre qui sont voisins de la surface.

On reconnaîtrait encore les mêmes résultats et tous les éléments principaux de l'Analyse générale dans les vibrations des milieux élastiques, dans les propriétés des lignes ou des surfaces courbes, dans les mouvements des astres et dans ceux de la lumière ou des fluides. C'est ainsi que les fonctions obtenues par des différentiations successives, et qui servent au développement des séries infinies et à la résolution numérique des équations, correspondent aussi à des propriétés physiques. La première de ces fonctions, ou la fluxion proprement dite, exprime, dans la Géométrie, l'inclinaison de la tangente des lignes

courbes, et, dans la Dynamique, la vitesse du mobile pendant le mouvement varié : elle mesure, dans la Théorie de la chaleur, la quantite qui s'écoule en chaque point d'un corps à travers une surface donnée. L'Analyse mathématique a donc des rapports nécessaires avec les phenomènes sensibles; son objet n'est point créé par l'intelligence de l'homme; il est un élément préexistant de l'ordre universel et n'a rien de contingent et de fortuit; il est empreint dans toute la nature.

21.

Des observations plus précises et plus varices feront connaître par la suite si les effets de la chaleur sont modifiés par des canses que l'on n'a point apereues jusqu'ici, et la l'heorie acquerra une nouvelle per fection par la comparaison continuelle de ses resultats avec ceux deexperiences; elle expliquera des phenomènes importants que l'on ne pouvait point encore soumettre au calcul; elle apprendra a determiner tous les effets thermometriques des rayons solaires, les temperature fixes on variables que l'on observerait à différentes distances de l'equa teur, dans l'interieur du globe ou hors des limites de l'atmo phère. dans l'Ocean on dans les différentes régions de l'air. On en deduna la connaissance mathématique des grands mouvements qui resultent de l'influence de la chaleur combinée avec celle de la gravite. Ce meme principes serviront à mesurer la conducibilité propre ou relative de différents corps et leur capacité specifique, à distinguer toute causes qui modifient l'émission de la chaleur à la surface de colade et a perfectionner les instruments thermometriques. Cette theorie exis tera dans tous les temps l'attention des geomètres, par l'exactibide rigoureuse de ses éléments et les difficultes d'Analyse qui lingout propres, et surtout par l'étendue et l'utilité de ses application ; en toutes les conséquences qu'elle fournit intéressent la Physique de ne rale, les opérations des arts, les usages domestiques on l'economic civile.

SECTION II.

NOTIONS GÉNÉRALES ET DÉFINITIONS PRÉLIMINAIRES.

22.

On ne pourrait former que des hypothèses incertaines sur la nature de la chaleur; mais la connaissance des lois mathématiques auxquelles ses effets sont assujettis est indépendante de toute hypothèse; elle exige seulement l'examen attentif des faits principaux que les observations communes ont indiqués et qui ont été confirmés par des expériences précises.

Il est donc nécessaire d'exposer, en premier lieu, les résultats généraux des observations, de donner des définitions exactes de tous les éléments du calcul et d'établir les principes sur lesquels ce calcul doit être fondé.

L'action de la chaleur tend à dilater tous les corps solides, ou liquides, ou aériformes; c'est cette propriété qui rend sa présence sensible. Les solides et les liquides augmentent de volume si l'on augmente la quantité de chaleur qu'ils contiennent; ils se condensent si on la diminue.

Lorsque toutes les parties d'un corps solide homogène, par exemple celles d'une masse métallique, sont également échauffées et qu'elles conservent, sans aucun changement, cette même quantité de chaleur, elles ont aussi et conservent une même densité. On exprime cet état en disant que, dans toute l'étendue de la masse, les molécules ont une température commune et permanente.

23.

Le thermomètre est un corps dont on peut apprécier facilement les moindres changements de volume; il sert à mesurer les températures par la dilatation des liquides ou par celle de l'air. Nous supposons ici que l'on connaît exactement la construction, l'usage et les propriétés de ces instruments. La température d'un corps dont toutes les parties sont également échauffées, et qui conserve sa chaleur, est celle qu'indique le thermomètre, s'il est et s'il demeure en contact parfait avec le corps dont il s'agit.

Le contact est parfait lorsque le thermomètre est entièrement plongé dans une masse liquide et, en général, lorsqu'il n'y a aucun point de la surface extérieure de cet instrument qui ne touche un des points de la masse solide ou fluide dont on veut mesurer la température. Il n'est pas toujours nécessaire, dans les expériences, que cette condition soit rigoureusement observée; mais on doit la supposer pour que la définition soit exacte.

24.

On détermine deux températures fixes, savoir : la température de la glace fondante qui est désignée par o, et la température de l'eau bouillante que nous désignerons par 1; on suppose que l'ébullition de l'eau a lieu sous une pression de l'atmosphère représentée par une certaine hauteur du baromètre (760^{mm}), le mercure du baromètre étant à la température o.

25.

On mesure les différentes quantités de chaleur en déterminant combien de fois elles contiennent une quantité que l'on a fixée et prise pour unité. On suppose qu'une masse de glace d'un poids déterminé (\(\text{t}^{kg}\)) soit à la température o, et que, par l'addition d'une certaine quantité de chaleur, on la convertisse en cau à la même température o : cette quantité de chaleur ajoutée est la mesure prise pour unité. Ainsi la quantité de chaleur exprimée par un nombre C contient un nombre C de fois la quantité nécessaire pour résoudre \(\text{t}^{kg}\) de glace qui a la température o en une masse d'eau qui a la même température o (').

⁽¹⁾ Les unités définies ici par Fourier n'ont pas été adoptées, on le sait, par les physiciens. Mais on verra plus loin (art. 161) que les équations de la chaleur sont établies d'une manière générale et subsistent, quelles que soient les unités choisies. Il est d'autant plus

26.

Pour élever une masse métallique d'un certain poids, par exemple τ^{kg} de fer, depuis la température o jusqu'à la température 1, il est nécessaire d'ajouter une nouvelle quantité de chaleur à celle qui était déjà contenue dans cette masse. Le nombre C, qui désigne cette quantité de chaleur ajoutée, est la capacité spécifique de chaleur du fer; le nombre C a des valeurs très différentes pour les différentes substances.

27.

Si un corps d'une nature et d'un poids déterminés (τ^{kg} de mercure) occupe le volume V, étant à la température o, il occupera un volume plus grand V + Δ , lorsqu'il aura acquis la température τ , c'est-à-dire lorsqu'on aura augmenté la chaleur qu'il contenait, étant à la température o, d'une nouvelle quantité C_0 , égale à sa capacité spécifique de chaleur. Mais si, au lieu d'ajouter cette quantité C_0 , on ajoute zC_0 (zétant un nombre positif ou négatif), le nouveau volume sera $V+\delta$, au lieu d'être $V+\Delta$. Or les expériences font connaître que, si z est égal à $\frac{1}{2}$, l'accroissement de volume δ est seulement la moitié de l'accroissement total Δ , et qu'en général la valeur de δ est $z\Delta$ lorsque la quantité de chaleur ajoutée est zC_0 .

28.

Ce rapport z des deux quantités de chaleur ajoutées zC_0 et C_0 , qui est aussi celui des deux accroissements de volume δ et Δ , est ce que l'on nomme la *température*; ainsi le nombre qui exprime la tempéra-

nécessaire de présenter lei cette remarque que, dans les applications, Fourier suppose souvent que deux corps en contact ont, l'un la température o, l'autre la température 1. Si l'on adoptait les unités de Fourier, la différence des températures serait trop grande pour que l'échange de la chaleur entre les deux corps fût réglé par la loi de Newton. Mais si l'on n'a fait à l'avance aucune hypothèse, ni sur l'origine de l'échelle des températures, ni sur la valeur de l'unité de température, il est clair qu'en choisissant convenablement cette origine et cette unité, on peut toujours exprimer deux températures différentes par les nombres o et 1.

ture actuelle d'un corps représente l'excès de son volume a 1600 mi le volume qu'il occuperait à la temperature de la clacet en leute, d'un terprésentant l'excès total du volume qui correspond à l'eterliet en collège une qui correspond à la glace fondant.

301

Les aceroissements de volume des corpe sont en central propotionnels aux aceroissements des quantites de cholem que produce at les dilatations; il fant remarquer que cette proposite aux et est propoque dans les cas où les corps dont il s'acut sont a sacrité de temporatures eloignées de celles qui determinent lem choles accord de la corne serait point fonde à appliquer ces resultats a tous les fragis aux et, l'egard de l'eau en partieulier, les dilatations no suive et pestit eque sles augmentations de chaleur.

En genéral, les temperatures sont des nombres proportiones de quantités de chaleur ajontees et, dans les cas que montre et distribute, ces nombres sont aussi proportionnels aux accions a mentodo y dominate.

30.

Supposons qu'un corps termine par une unta e plece d'une est détendue x^{m_1} soit entretenn d'une manière que le coque est de la pérature constante x, commune a tous ses pount , et que le cour dont il s'agit soit en contact avec l'air maintenu à la temperature chaleur qui s'ecoulera continuellement par la sintace, et pre est de milieu environnant, sera toujours remplaces par cette que per veri de la cause constante à l'action de Laquelle le coupe et experie de s'ecoulera ainsi par la surface, pendant un tempe determine en unite , une certaine quantite de chaleur designes par la trapada d'un flux continuel et toujours semblable à lumineme, que a braque du une unite de surface à une temperature fixe, est la mesure de la ducibilité extérieure du corps, c'est à dire de la tacilite ave laquest sa surface transmet la chaleur à l'air atmospherique.

On suppose que l'air est continuellement déplacé avec une vitesse uniforme et donnée; mais, si la vitesse du courant augmentait, la quantité de chaleur qui se communique au milieu varierait aussi; il en serait de même si l'on augmentait la densité de ce milieu.

31.

Si l'excès de la température constante du corps sur la température des corps environnants, au lieu d'être égal à 1, comme on l'a supposé, avait une valeur moindre, la quantité de chaleur dissipée serait moindre que h. Il résulte des observations, comme on le verra par la suite, que cette quantité de chaleur perdue peut être regardée comme sensiblement proportionnelle à l'excès de la température du corps sur celle de l'air et des corps environnants. Ainsi, la quantité h ayant été déterminée par une expérience dans laquelle la surface échauffée est à la température 1 et le milieu à la température 0, on en conclut qu'elle aurait la valeur hz si la température de la surface était z, toutes les autres circonstances demeurant les mêmes. On doit admettre ce résultat lorsque z est une petite fraction.

32.

La valeur h de la quantité de chaleur qui se dissipe à travers la surface échauffée est différente pour les différents corps; et elle varie pour un même corps suivant les divers états de la surface. L'effet de l'irradiation est d'autant moindre que la surface échauffée est plus polie, de sorte qu'en faisant disparaître le poli de la surface, on augmente considérablement la valeur de h. Un corps métallique échauffé se refroidira beaucoup plus vite, si l'on couvre sa surface extérieure d'un enduit noir, propre à ternir entièrement l'éclat métallique.

33.

Les rayons de chaleur qui s'échappent de la surface d'un corps parcourent librement les espaces vides d'air; ils se propagent aussi dans l'air atmosphérique; leur direction n'est point troublee par les agitations de l'air intermédiaire : ils peuvent être reflechis et se reunissent aux foyers des miroirs métalliques. Les corps dont la temperature est elevée, et que l'on plonge dans un liquide, n'echauffent immediatement que les parties de la masse qui sont en contact avec leur surface. Les molécules dont la distance à cette surface n'est pas extremement petite ne recoivent point de chaleur directe; il n'en est pas de meme des fluides aériformes; les rayons de chaleur s'y portent avec une extreme rapidité à des distances considerables, soit qu'une partie de ces rayons traverse librement les conches de l'air, soit que celles ci se les transmettent subitement sans en alterer la direction.

31.

For sque le corps echantife est place dans un air qui con erve sere iblement une temperature constante, la chaleur qui se communique a l'air rend plus legere la couche de ce fluide voisine de la surface; cette conche s'eleve d'autant plus vite qu'elle est plus chauffée, et elle est remplacee par une autre masse d'air froid. Il s'établit ainsi un contant d'air dont la direction est verticale, et dont la vitesse est d'autant plugrande que la temperature du corps est plus elevee. C'est pourquoi, si le corps se refroilissait successivement, la vitesse du contant diminue rait avec la temperature, et la loi du refroidissement ne serait par existement la même que si le corps était expose a un contant d'air d'une vitesse constante.

35.

Lorsque les corps sont assez echauffes pour repandre une tres vive lumière, une partie de leur chaleur rayonnante, melee a cette lumière, peut traverser les solides ou les liquides transparents; et elle e a sujette à la force qui produit les refractions. La quantite de chaleur qui jouit de cette faculte est d'autant moindre que les corps sont moins enflammés; elle est, pour ainsi dire, insensible pour les corps très obscurs, quelque échauffès qu'ils soient. Une lame mince et disse

phane intercepte presque toute la chaleur directe qui sort d'une masse métallique ardente; mais elle s'échauffe à mesure que les rayons interceptés s'y accumulent, ou, si elle est formée d'eau glacée, elle devient liquide; si cette lame de glace est exposée aux rayons d'un flambeau, elle laisse passer avec la lumière une chaleur sensible.

36.

Nous avons pris pour mesure de la conducibilité extérieure d'un corps solide un coefficient h, exprimant la quantité de chaleur qui passerait, pendant un temps determine une minute', de la surface de ce corps dans l'air atmospherique, en supposant que la surface ait une étendue déterminée (1^m), que la température constante du corps soit 1, que celle de l'air soit o et que la surface échauffée soit exposee à un courant d'air d'une vitesse donnée invariable. On détermine cette valeur de h par les observations. La quantite de chaleur exprimee par le coefficient se forme de deux parties distinctes qui ne penyent etre me urces que par des experiences très precises. L'une est la chaleur communiquee par voie de contact à l'air environnant; l'antre, beancoup mombre que la première, est la chaleur rayonnaute emise. On doit supposer, dans les premières recherches, que la quantite de chalcur perdue ne change point si l'on augmente d'une quantité commune et a sez petite la temperature du corps echauffe et celle du milien.

13 2 .

Les substances solides différent encore, comme nous l'avons dit, par la propriété qu'elles ont d'être plus ou moins permeables à la chaleur; cette qualité est leur conducibilité propre : nous en donnerons la définition et la mesure exacte, après avoir traite de la propagation unitorme et lineaire de la chaleur. Les substances liquides jouissent aussi de la taculte de transmettre la chaleur de molécule à molécule, et la valeur numerique de leur conducibilité varie suivant la nature de ces substances; mais on en observe difficilement l'effet dans les liquides, parce que leurs molecules changent de situation en chan court de perature. C'est de ce deplacement continuel que re ulte princip ment la propagation de la chaleur, toute de for que le periferiences de la masse sont les plus expo ce la l'action du tivo à au contraire, on applique le foyer à la partie de la masse que plus clevee, comme cela avait lieu dans plu ieur de nou expose la transmission de la chaleur, qui est tre dente, n'est est contraire deplacement, a moins que l'accrois ement de la tempe i dure de nue le volume, ce que l'on remarque en effet dans de la contraire de voisins des chancements d'état.

34

Acetexpo e de resultat principaix de oderrate e a la alune remarque cenerale em l'equilibre destenque et me es conce que les differents corps qui sont place den me para e dont tontes les parties sont et demeurent e, dement et la alacquierent aussi une temperature commune et premine de

39.

L'effet dont il s'agit est independant du contact, et il agrecie. lieu, si le corps metait enferme de toutes parts dans le sou de Mille.

dans une enceinte, sans toucher aucune de ses parties. Par exemple, si ce solide était une enveloppe sphérique d'une certaine épaisseur, entretenue par une cause extérieure à la température a, et renfermant un espace entièrement vide d'air, et si le corps m pouvait être placé dans une partie quelconque de cet espace sphérique, sans qu'il touchât aucun point de la surface intérieure de l'enceinte, il acquerrait la température commune a, ou plutôt il la conserverait s'il l'avait déjà. Le résultat serait le même pour tous les autres corps n, p, q, r, soit qu'on les plaçât séparément ou ensemble dans cette même enceinte, et quelles que fussent d'ailleurs leur espèce et leur figure.

40.

De toutes les manières de se représenter l'action de la chaleur, celle qui paraît la plus simple et la plus conforme aux observations consiste à comparer cette action à celle de la lumière. Les molécules éloignées les unes des autres se communiquent réciproquement à travers les espaces vides d'air leurs rayons de chaleur, comme les corps éclairés se transmettent leur lumière.

Si, dans une enceinte fermée de toutes parts et entretenue par une cause extérieure à une température fixe a, on suppose que divers corps sont placés sans qu'ils touchent aucune des parties de l'enceinte, on observera des effets différents suivant que les corps introduits dans cet espace vide d'air sont plus ou moins échauffés. Si l'on place d'abord un seul de ces corps, et qu'il ait la température même de l'enceinte, il enverra par tous les points de sa surface autant de chaleur qu'il en reçoit du solide qui l'environne, et c'est cet échange de quantités égales qui le maintient dans son premier état.

Si l'on introduit un second corps dont la température b soit moindre que a, il recevra d'abord, des surfaces qui l'environnent de toutes parts sans le toucher, une quantité de chaleur plus grande que celle qu'il envoie : il s'échauffera de plus en plus et il perdra par sa surface plus de chaleur qu'auparavant. La température initiale b, s'élevant

continuellement, s'approchera sans ces e de la tempe i mir dos escrite qu'après un certain temps la difference e reque que du L'effet serait contraire si l'on placait dans l'emetace e e de la temperature serait plus, i sobs que

11.

,)

Toutes les surfaces, qui recoivent le roy and de la communité en refleche contrare partiert de la communité de la communité point reflechie, manager matriel et le communité dans le solule; et, taut qu'elle curpe de la production , sipe par l'irraduation, la temperature s'éleve

13

Les rayons qui tendent a cortir de le cep le habit de la surface par une force qui en reflechit une per la la masse, Li cause qui empeche le l'ravece le sal il superficie, et qui divise ces rayon lepidence, et dont l'antre est admise, a, it de final l'rayons qui se dirigent de l'interiour du cape ver l'appear

Si, en modifiant l'état de la surface, con ce con le laquelle elle reflechit les rayon martents, con ce con actions la tamps la faculte qu'elle a de reflechir ven l'ant s'rayons qui tembent a en sortir. La qu'intité de le s'introduisent dans la masse, et celle de rayon en que sont egalement diminueces,

11,

 fés, ils recevraient et se transmettraient leurs rayons de chaleur, en sorte que dans cet échange leurs températures varieraient continuellement et tendraient toutes à devenir égales à la température fixe de l'enceinte.

Cet effet est précisément celui qui a lieu lorsque la chaleur se propage dans les corps solides; car les molécules qui composent les corps sont séparées par des espaces vides d'air et ont la propriété de recevoir, d'accumuler et d'émettre la chaleur. Chacune d'elles envoie ses rayons de toutes parts et en même temps elle reçoit ceux des molécules qui l'environnent.

45.

La chaleur envoyée par un point situé dans l'intérieur d'une masse solide ne peut se porter directement qu'à une distance extrêmement petite; elle est, pour ainsi dire, interceptée par les particules les plus voisines; ce sont ces dernières seules qui la reçoivent immédiatement et qui agissent sur les points plus éloignés. Il n'en est pas de même des fluides aériformes; les effets directs de l'irradiation y deviennent sensibles à des distances très considérables.

46.

Ainsi la chaleur qui sort dans toutes les directions d'une partie d'une surface solide pénètre dans l'air jusqu'à des points fort éloignés; mais elle n'est émise que par les molécules du corps qui sont extrêmement voisines de la surface. Un point d'une masse échauffée, placé à une très petite distance de la superficie plane qui sépare la masse de l'espace extérieur, envoie à cet espace une infinité de rayons; mais ils n'y parviennent pas entièrement : ils sont diminués de toute la quantité de chaleur qui s'arrête sur les molécules solides intermédiaires. La partie du rayon qui se dissipe dans l'espace est d'autant moindre qu'elle traverse un plus long intervalle dans la masse. Ainsi le rayon qui sort perpendiculairement à la superficie a plus d'intensité que celui qui, partant du même point, suit une direction oblique, et les rayons les plus obliques sont entièrement interceptés.

La même consequence l'applique tres productions de la superfice pent con en el l'applique tres resulte necessariement que l'applique tre transce le surface sons la derest repeties d'applique l'applique de l'applique d'applique d'ap

Continuous expression of the state of the southest of the state of the

the observation of the state of the observation of

discourse to an

1 3

solide dont les parts and analysis and et constante as a solide dont les parts and a solide dont les parts and a solide dont les parts and a solide dont les parts at the solide dont les part

rieure de l'enceinte autant de chaleur qu'il lui en envoie. Cet effet des rayons de chaleur dans un espace donné est, à proprement parler, la mesure de la température : mais cette considération suppose la théorie mathématique de la chaleur rayonnante. Si l'on place maintenant entre le thermomètre et une partie de la surface de l'enceinte un corps M dont la température soit a, le thermomètre cessera de recevoir les rayons d'une partie de cette surface intérieure; mais ils seront remplacés par ceux qu'il recevra du corps interposé M. Un calcul facile prouve que la compensation est exacte, en sorte que l'état du thermomètre ne sera point changé. Il n'en est pas de même si la température du corps M n'est pas égale à celle de l'enceinte. Lorsqu'elle est plus grande, les rayons, que le corps interposé M envoie au thermomètre et qui remplacent les rayons interceptés, ont plus de chaleur que ces derniers; la température du thermomètre doit donc s'élever.

Si, au contraire, le corps intermédiaire a une température moindre que a, celle du thermomètre devra s'abaisser; car les rayons que ce corps intercepte sont remplacés par ceux qu'il envoie, c'est-à-dire par des rayons plus froids que ceux de l'enceinte; ainsi le thermomètre ne reçoit pas toute la chaleur qui serait nécessaire pour maintenir sa température a.

49.

On a fait abstraction jusqu'ici de la faculté qu'ont toutes les surfaces de réfléchir une partie des rayons qui leur sont envoyés. Si l'on ne considérait point cette propriété, on n'aurait qu'une idée très incomplète de l'équilibre de la chaleur rayonnante.

Supposons donc que, dans la surface intérieure de l'enceinte entretenue à une température constante, il y ait une portion qui jouisse à un certain degré de la faculté dont il s'agit; chaque point de la surface réfléchissante enverra dans l'espace deux espèces de rayons: les uns sortent de l'intérieur même de la substance dont l'enceinte est formée, les autres sont seulement réfléchis par cette même surface à laquelle ils ont été envoyés. Mais en même temps que la surface repousse à l'extérieur une partie des rayons incidents, elle retient dans l'intérieur une partie de ses proper des conflictedes travelle activant sur emperior exacte, c'entrada especiale activate proper de des conflicte emperior de l'esactivate de la place proper de la proper de la place especiale de l'esactivate de la place proper de la place especiale de l'esactivate de la place proper de la place de la place especiale especiale.

Suppose of the Remark of Manager of Manager

Dans by provery

record for the day

method of great g

Dans le second cas, le thermomètre placé entre le corps échauffé M et le miroir doit acquérir une température plus grande que a. En effet, il reçoit les mêmes rayons que dans la première hypothèse; mais il y a deux différences remarquables: l'une provient de ce que les rayons envoyés par le corps M au miroir et réfléchis sur le thermomètre contiennent plus de chaleur que dans le premier cas. L'autre différence provient des rayons que le corps M envoie directement au thermomètre et qui ont plus de chaleur qu'auparavant. L'une et l'autre cause, et principalement la première, concourent à élever la température du thermomètre.

Dans le troisième cas, c'est-à-dire lorsque la température de la masse M est moindre que a, le thermomètre doit prendre aussi une température moindre que a. En effet, il reçoit encore toutes les espèces de rayons que nous avons distinguées pour le premier cas; mais il y en a deux sortes qui contiennent moins de chaleur que dans cette première hypothèse, savoir ceux qui, envoyés par le corps M, sont réfléchis par le miroir sur le thermomètre, et ceux que le même corps M lui envoie directement. Ainsi le thermomètre ne reçoit pas toute la chaleur qui lui est nécessaire pour conserver sa température primitive a. Il envoie plus de chaleur qu'il n'en reçoit. Il faut donc que sa température s'abaisse jusqu'à ce que les rayons qu'il reçoit suffisent pour compenser ceux qu'il perd. C'est ce dernier effet que l'on a nommé la réflexion du froid et qui, à proprement parler, consiste dans la réflexion d'une chaleur trop faible. Le miroir intercepte une certaine quantité de chaleur et la remplace par une moindre quantité.

51.

Si l'on place dans l'enceinte entretenue à une température constante a un corps M dont la température a' soit moindre que a, la présence de ce corps fera baisser le thermomètre exposé à ses rayons, et l'on doit remarquer qu'en général ces rayons envoyés au thermomètre par la surface du corps M sont de deux espèces, savoir ceux qui sortent de l'intérieur de la masse M, et ceux qui, venant des diverses

parties de l'enceunte, rencontrout la cartaca Martant rothe la constitue de thermometre. Ces de times court la teap et duite communio accument au cup Martant au alternational de chebrar, et accus ces rayons qui refreed cout in the manure la Samada ada, es chaque et de la curta e dia coup Martant sur a martant de la culta pare la condiminare la faculte qui etbanda de la culta de la curta e dia coup Martant sur a martant de la culta qui etbanda de la culta del

St, independent by the state of the state of

Latin, I have a formal and a fo

d'intensité que s'ils venaient de l'intérieur du miroir métallique; donc le thermomètre reçoit encore moins de chaleur qu'auparavant; il prendra donc une température a^{IV} moindre que a^{III} .

On explique facilement par les mêmes principes tous les effets connus de l'irradiation de la chaleur ou du froid.

52.

Les effets de la chaleur ne peuvent nullement être comparés à ceux d'un fluide élastique dont les molécules sont en repos. Ce serait inutilement que l'on voudrait déduire de cette hypothèse les lois de la propagation que nous expliquons dans cet Ouvrage et que toutes les expériences ont confirmées. L'état libre de la chaleur est celui de la lumière; l'habitude de cet élément est donc entièrement différente de celle des substances aériformes. La chaleur agit de la même manière dans le vide, dans les fluides élastiques et dans les masses liquides ou solides; elle ne s'y propage que par voie d'irradiation, mais ses effets sensibles différent selon la nature des corps.

53.

La chaleur est le principe de toute élasticité; c'est sa force répulsive qui conserve la figure des masses solides et le volume des liquides. Dans les substances solides, les molécules voisines céderaient à leur attraction mutuelle si son effet n'était pas détruit par la chaleur qui les sépare.

Cette force élastique est d'autant plus grande que la température est plus élevée; c'est pour cela que les corps se dilatent ou se condensent, lorsqu'on élève ou lorsqu'on abaisse leur température.

54.

L'équilibre qui subsiste dans l'intérieur d'une masse solide entre la force répulsive de la chaleur et l'attraction moléculaire est stable; c'est-à-dire qu'il se rétablit de lui-même lorsqu'il est troublé par une

The effect sounded description of the sound de

The Color of the one upper to the new equition of the end of the equition of the equition of the end of the end of the end of the equition of

tomposit top 1

tomposit and 1

de play and 1

matrix to a second 1

chalent research products and 1

etter regioners and 1

des absertation and

SECTION III.

PRINCIPE DE LA COMMUNICATION DE LA CHALEUR.

57.

Nous allons présentement examiner ce que les expériences nous apprennent sur la communication de la chaleur.

Si deux molécules égales sont formées de la même substance et ont la même température, chacune d'elles reçoit de l'autre autant de chaleur qu'elle lui en envoie; leur action mutuelle doit donc être regardée comme nulle, parce que le résultat de cette action ne peut apporter aucun changement dans l'état des molécules. Si au contraire la première est plus échauffée que la seconde, elle lui envoie plus de chaleur qu'elle n'en reçoit; le résultat de l'action mutuelle est la différence de ces deux quantités de chaleur. Dans tous les cas nous faisons abstraction des quantités égales de chaleur que deux points matériels quelconques s'envoient réciproquement; nous concevons que le point le plus échauffé agit seul sur l'autre, et qu'en vertu de cette action le premier perd une certaine quantité de chaleur qui est acquise par le second. Ainsi l'action de deux molécules, ou la quantité de chaleur que la plus échauffée communique à l'autre, est la différence des deux quantités qu'elles s'envoient réciproquement.

58.

Supposons que l'on place dans l'air un corps solide homogène dont les différents points ont actuellement des températures inégales; chacune des molécules dont le corps est composé commencera à recevoir de la chaleur de celles qui en sont extrêmement peu distantes, ou leur en communiquera. Cette action s'exerçant pendant le même instant entre tous les points de la masse, il en résultera un changement infiniment petit pour toutes les températures: le solide éprouvera à chaque

instant des effets semblables, en sorte que les variet et de ter ture deviendront de plus en plus sensible. Con idea que système de deux molecules erales et extremement variet elerchons quelle est la quantite de chalein que la que en que voir de la seconde pendant la durce d'un in tant, en que le même raisonnement a tous les autres pour es que du point m pour agir immediatement sur fundant le pour est de la point m pour agir immediatement sur fundant le pour est de la contra del contra de la co

La quantité de chalent communiques per le q dépend de la durée de l'instant, de la de 1990 a xices points, de la temperature actuelle de character. substance solide; c'est a dire que, ca l'en de la varier, tons les autres demenrant le mone, a transmise varierait and st. Or be expense, and the egard un resultat general : il con chi cara qui circonstances etant les meme , la quantité de molecules recoit de l'antre e 1 proportionne 3 pérature de ces deux molecules. Am costio qui triple, quadruple si, tout restant d'ailleme tout en en en temperature du point n a celle du point r r rquadruple. Pour se rendre raison de ce us uffid, 🚉 Paction de n sur m est toujour d'autant pluss rand difference entre les temperature, de deux perut températures sont égales ; mais, a la mobern le le des leur que la molecule egale m, c'est a dur en, le feroj v, celle de n est $v = \lambda$, une portion de la chalcar v_0 n à m. Or, si l'exces de chaleur ctait double ou, . . . chose, si la temperature de n etait $s=\pm \Delta$, la chole $\pm i$. composee de deux parties ésales correspondante de 13 la difference totale des temperatures (A) cha une 🗈 son effet propre comme si elle etait senle : am i leque i i te communiquee par n a m serant deux tors plu su consid rence des temperatures etait sculement $\Lambda, Ce(t)$ of $t \in \mathbb{N}$ des différentes parties de la chaleur excedante que sur folge de cipe de la communication de la chaleur. Il en résulte que la somme des actions partielles ou la quantité totale de chaleur que m reçoit de n est proportionnelle à la différence des deux températures.

59.

En désignant par v et v' les températures des deux molécules égales m et n, par p leur distance extrêmement petite et par dt la durée infiniment petite de l'instant, la quantité de chaleur que m reçoit de n, pendant cet instant, sera exprimée par $(v'-v) \varphi(p) dt$. On désigne par $\varphi(p)$ une certaine fonction de la distance p qui, dans les corps solides et dans les liquides, devient nulle lorsque p a une grandeur sensible. Cette fonction est la même pour tous les points d'une même substance donnée; elle varie avec la nature de la substance.

60.

La quantité de chaleur que les corps perdent par leur surface est assujettie au même principe. Si l'on désigne par σ l'étendue ou finie ou infiniment petite de la surface dont tous les points ont la température v, et si a représente la température de l'air atmosphérique, le coefficient h étant la mesure de la conducibilité extérieure, on aura $\sigma h(v-a)dt$ pour l'expression de la quantité de chaleur que cette surface σ transmet à l'air pendant l'instant dt.

Lorsque les deux molécules, dont l'une transmet directement à l'autre une certaine quantité de chaleur, appartiennent au même solide, l'expression exacte de la chaleur communiquée est celle que nous avons donnée dans l'article précédent parce que, les molécules étant extrêmement voisines, la différence des températures est extrêmement petite. Il n'en est pas de même lorsque la chaleur passe d'un corps solide dans un milieu aériforme. Mais les expériences nous apprennent que, si la différence est une quantité assez petite, la chaleur transmise est sensiblement proportionnelle à cette différence et que le nombre h peut, dans les premières recherches, être considéré comme

ayant une valeur constante, propre a chaque et d'Alleindépendante de la temperature.

GI.

Ces propositions relatives à la quantité de chale à été déduites de diverses observation . Ou vet a le la conséquence évidente des expressions dont la contract d'une quantité commune toute de la siple la masse solide et celle du milieu ou elle et ple successifs des température escraient exact mont ne faisait point cette addition. Ou ce a crét to forme aux experiences ; il a cte aduct post le proont observé les effets de la chaleur.

£ ... 3

Si le milieu est entretenu a une temperature de l'échauffe qui est place dans ce indieu ai de l'échauffe qui est place dans ce indieu ai de l'échapeur que la temperature, en l'aleu ai de pour sensiblement la meme dans tour en pour trait de tions qu'il s'echappera à chaque in tent, pour le coupeur quantite de chaleur proportionneils ai l'échapeur du milieu. On en constat le cettuelle sur celle du milieu. On en constat le certure dans la suite de cet Ouvrage, que fui représenteraient les temps courle et dont le card raient les temperatures qui correspondent a constant de logarithmique : or les observation fouring end du lorsque l'excès de la temperature du solide en cetture quantite assez petite.

633

Supposons que le milieu soit entretenu à la temper de et que les températures initiales des datterent point d'une même masse soient v. 3. 7. 8. . . . , qual entre datque

elles soient devenues α', β', γ', δ', ..., qu'à la fin du deuxième instant elles soient α'' , β'' , γ'' , δ'' , ..., ainsi de suite. On peut facilement conclure des propositions énoncées que, si les températures initiales des mêmes points avaient été $g\alpha$, $g\beta$, $g\gamma$, $g\delta$, ... (g étant un nombre quelconque), elles seraient devenues, en vertu de l'action des différents points, à la fin du premier instant, $g\alpha'$, $g\beta'$, $g\gamma'$, $g\delta'$, ..., à la fin du second instant $g\alpha''$, $g\beta''$, $g\gamma''$, $g\delta''$, ..., ainsi de suite. En effet, comparons le cas où les températures initiales des points a, b, c, d, \ldots étaient $\alpha, \beta, \gamma, \delta, \dots$ avec celui où elles sont $2\alpha, 2\beta, 2\gamma, 2\delta, \dots$, le milieu conservant, dans l'un et l'autre cas, la température o. Dans la seconde hypothèse, les différences des températures des deux points quelconques sont doubles de ce qu'elles étaient dans la première, et l'excès de la température de chaque point sur celle de chaque molécule du milieu est aussi double; par conséquent la quantité de chaleur qu'une molécule quelconque envoie à une autre, ou celle qu'elle en reçoit, est, dans la seconde hypothèse, double de ce qu'elle était dans la première. Le changement que chaque point subit dans sa température étant proportionnel à la quantité de chaleur acquise, il s'ensuit que, dans le second cas, ce changement est double de ce qu'il était dans le premier. Or on a supposé que la température initiale du premier point, qui était a, devient a' à la fin du premier instant; donc, si cette température initiale cût été 2 z et si toutes les autres cussent été doubles, elle serait devenue 2x'. Il en serait de même de toutes les autres molécules b, c, d, ..., et l'on tirera une conséquence semblable si le rapport, au lieu d'être 2, est un nombre quelconque g. Il résulte donc du principe de la communication de la chaleur que, si l'on augmente ou si l'on diminue dans une raison donnée toutes les températures initiales, on augmente ou l'on diminue dans la même raison toutes les températures successives.

Ce résultat, comme les deux précédents, est confirmé par les observations. Il ne pourrait point avoir lieu si la quantité de chaleur qui passe d'une molécule à une autre n'était point, en effet, proportionnelle à la différence des températures.

On a observé, avec des instruments precis, le tempe de la nentes des différents points d'une barre on d'une arm de me et la propagation de la chaleur dans ces meme se que l'el sieurs autres solides de forme spherique on enleque. Il se ces experiences s'accordent avec ceux que l'on de du l'el précédentes. Ils seraient entrerement différent au le cleur transmise par une molecule codade à raie acutie, cule de l'air, n'était pas proportaganelle à l'execution, cule de l'air, n'était pas proportaganelle à l'execution de cette proposition; par la on détermine le partie par tites qui sont l'objet de la que tion. In comparation de calculees avec celles que donnent de experie de la précises, on peut facilement me mont le variet ou de précises, on peut facilement me mont le variet ou de les prefectionner les premières recherche.

SECTION IN

THE MOUNTAINS UNIFORMS BY SINEARING STATES

Ti.

On considerera, en premier hen, le menvers e leur dans le cas le plue simple, qui e forlui de comentre deux plans parallele.

On suppose qu'un corpe solide forme d'une ede les compris entre deux plans infinir et paralléle, le ple entretenu par une cause quelconque a une temper d'on peut concevoir, par exemple, que la masse et proper plan. A est une section commune au solide et resulte incechauffee dans tous ses point par un tover con test rieur B est aussi maintenn par une cause cemblable a un fixe b, dont la valeur est moindre que celle de a celle a miner quel serait le resultat de cette hypothèse et che se pendant un temps infini.

Si l'on suppose que la température initiale de toutes les parties de ce corps soit b, on voit que la chaleur qui sort du foyer A se propagera de plus en plus et élèvera la température des molécules comprises entre les deux plans; mais, celle du plan supérieur ne pouvant, d'après l'hypothèse, être plus grande que b, la chaleur se dissipera dans la masse plus froide dont le contact retient le plan B à la température constante b. Le système des températures tendra de plus en plus à un état final qu'il ne pourra jamais atteindre, mais qui aurait, comme on va le prouver, la propriété de subsister lui-même et de se conserver sans aucun changement s'il était une fois formé.

Dans cet état final et fixe que nous considérons, la température permanente d'un point du solide est évidemment la même pour tous les points d'une même section parallèle à la base; et nous allons démontrer que cette température fixe, qui est commune à tous les points d'une section intermédiaire, décroît en progression arithmétique depuis la base jusqu'au plan supérieur, c'est-à-dire qu'en représentant les températures constantes a et b par les ordonnées $A\alpha$ et $B\beta$ (fig. 1).

élevées perpendiculairement sur la distance AB des deux plans, les températures fixes des couches intermédiaires seront représentées par les ordonnées de la droite $\alpha\beta$ qui joint les extrémités α et β ; ainsi, en désignant par z la hauteur d'une section intermédiaire ou la distance perpendiculaire au plan A, par e la hauteur totale ou la distance AB et par e la température de la section dont la hauteur est z, on doit avoir l'équation

 $r = a + \frac{b-a}{c} s$.

En effet, si les températures étaient étaldie d'ébeid à loi et si les surfaces extrêmes \(\Lambda \) et \(\B \) ctaient toup ou \(\text{out} \) \(\text{out} \) pératures \(a \) et \(\Lambda \), il ne pour rait inivend aucun shou \(\text{out} \) \(\text{out} \) du solide. Pour s'en convaincre, il suffina de conspirit le que chaleur qui traver érait une section intermediale \(\text{out} \) \(\text{out}

En se representant que l'état tinal du coli le contra de la convoit que la partie de la marce qui est cer le consequence de la chaleur a la partie qui est cu le communiquer de la chaleur a la partie qui est cu le compuisque cette seconde partie est montre à la inflor que l'est contra la montre de la inflormation de

Imaginous que deux points du sobile esta la communicación de la co l'un de l'autre et place, d'une maniere que l'appoint du plan Vet l'antre mande un de condances dant un in fant infiniment pet it: le per it le p niquera am une certaine quaetite de chi le majore Soienta, A. les coordonnées restangulaires les coordonnees du point m; con idenogrape de extremement voi ins l'un de l'agric et que et que de meme que m et m' sont place par rappe et la p qu'en desimant par "la di tance perpensione etc." et B. le coordonnées du point se et dif . . . point n' secont r', r, Let dr and r and egales; de plus, la difference de la tempo cara esta peratures du point m sera la memorque Lod theor des deux points n et n. En effet, entre programme \mathbb{R}^n nera en substituent, et en unite, dus log is

s I

et retranchant la seconde equation de la prenas en co

on trouvera ensuite, par les substitutions de

de la température du point n sur celle du point n' a aussi pour expression $\frac{b-a}{e}(z-z')$. Il suit de là que la quantité de chaleur envoyée par le point m au point m' sera la même que la quantité de chaleur envoyée par le point n au point n'; car tous les éléments qui concourent à déterminer cette quantité de chaleur transmise sont les mêmes.

Il est manifeste que l'on peut appliquer le même raisonnement à tous les systèmes de deux molécules qui se communiquent de la chaleur à travers la section A' ou la section B'; donc, si l'on pouvait recueillir toute la quantité de chaleur qui s'écoule, pendant un même instant, à travers la section A' ou la section B', on trouverait que cette quantité est la même pour les deux sections.

Il en résulte que la partie du solide comprise entre A' et B' reçoit toujours autant de chaleur qu'elle en perd; et comme cette conséquence s'applique à une portion quelconque de la masse comprise entre deux sections parallèles, il est évident qu'aucune partie du solide ne peut acquérir une température plus élevée que celle qu'elle a présentement. Ainsi il est rigoureusement démontré que l'état du prisme subsistera continuellement tel qu'il était d'abord.

Donc les températures permanentes des différentes sections d'un solide compris entre les deux plans parallèles infinis sont représentées par les ordonnées de la ligne droite $\alpha\beta$ et satisfont à l'équation linéaire

$$r = a + \frac{b - a}{c} z.$$

66.

On voit distinctement, par ce qui précède, en quoi consiste la propagation de la chaleur dans un solide compris entre deux plans parallèles et infinis, dont chacun est maintenu à une température constante. La chaleur pénètre successivement dans la masse à travers la base inférieure; les températures des sections intermédiaires s'élèvent et ne peuvent jamais surpasser, ni même atteindre entièrement, une certaine limite dont elles s'approchent de plus en plus : cette limite ou

Les temperatures finales sont celles qu'il tendre titre pour que son état fût permanent; l'état variable que le étre aussi soumis au calcul, comme on le verra pour le la biene considerons ici que le système de l'emperature de la nentes. Dans ce dernier état, il s'écoule, pendant en plus le verra pour temps, à travers une section parallele à la leccion de la minée de cette section, une certaine quantité de la la section stante si les divisions du temps cont e ale de la le verra même pour toutes les section untermediants, d'au sort du foyer et à celui que perd, dan de memo temps crieure du solide en vertu de la conce que monte.

67.

Il S'agit maintenant de mesurer cette quant banco propage uniformement dans le obde, pendant nativers une partie determinée d'une action par diet pend, comme on valle voir, des deux tempo caterios actions

de la distance e des deux bases; elle varietait à tima que ces éléments venait à changer, les autres demeurant le une posons un second solide, forme de la meme substance que tau

et compris entre deux plans parallèles infinis dont la distance perpendiculaire est e' (fig. 2); la base inférieure est entretenue à la température fixe a', et la base supérieure à la température fixe b'; l'un et l'autre solides sont considérés dans cet état final et permanent qui a la propriété de se conserver lui-même dès qu'il est formé. Ainsi, e étant dans le premier solide, et u dans le second, la température de la section dont z est la hauteur, la loi des températures est exprimée, pour le premier corps, par l'équation

$$r = a + \frac{b - -\alpha}{e} z,$$

et, pour le second, par l'équation

$$u = a' + \frac{b' - a'}{e'} z.$$

Cela posé, on comparera la quantité de chaleur qui, pendant l'unité de temps, traverse une étendue égale à l'unité de surface prise sur une section intermédiaire L du premier solide à celle qui, pendant le même temps, traverse une égale étendue prise sur la section L' du second, zétant la hauteur commune de ces deux sections, c'est-à-dire la distance de chacune d'elles à la base inférieure. On considérera dans le premier corps deux points n et n' extrêmement veisins, dont l'un n est audessous du plan L et l'autre n' au-dessus de ce plan; x, y, z sont les coordonnées de n, et x', y', z' les coordonnées de n', z étant moindre que z' et plus grand que z. On considérera aussi dans le second solide l'action instantanée de deux points p et p' qui sont placés, par rapport à la section L', de même que les points n et n' par rapport à la section L du premier solide. Ainsi les mêmes coordonnées x, y, z et x', y', z', rapportées à trois axes rectangulaires dans le second corps, fixeront aussi la position des points p et p'.

Or la distance du point n au point n' est égale à la distance du point p au point p', et, comme les deux corps sont formés de la même substance, on en conclut, suivant le principe de la communication de la chaleur, que l'action de n sur n', ou la quantité de chaleur donnée par n à n , et l'action de p sur p' ont entre elles le memo rapport que les différences de températures c=c' et u=a .

En substituant c, et ensuite c, dans l'equation qui convient ou premier solide et retranchant, on trouve

$$\mathcal{A} = \left(\begin{array}{c} I & i \\ i \end{array} \right)$$

on a aussi, au moyen de la seconde equation,

$$u = u = \frac{h}{\epsilon}$$

done le rapport des deux action dont il ~ 5 (to the 0.4) de à $\frac{a}{c}$ (b).

On peut concevoir maintenant plusiem antic x ten d molecules dont la première envoie à la comb, a traver d'aprel une certaine quanțite de chaleur, et, chacun de conventine de dans le premièr solide pouvant etre compare a many a traver de place dans le second et dont l'action d'excreta a traver de la contappliquera encore le raisonnement precodent peut la capport des deux actions est toujour celui de

Or la quantité totale de chaleur qui, pendant un autre, i ext, i exsection I, resulte de l'action simultance d'une muit mie de la dont chaenn est forme de deux points; donc cette que tra : et celle qui, dans le second solide, traver e pendant l'are aula section I, ont aussi entre elles le rapport de l'are

Il est donc facile de comparer entre elles le intentité de il stants de chaleur qui se propagent uniformement den incere per solide, c'est-a-dire les quantités de chaleur qui, pont de la temps, traversent l'unité de surface dans chacun de comparent port de ces deux intensités est celui des deux quotient de si les deux quotients sont egaux, les flux sont les menors que centre de si les deux quotients sont egaux, les flux sont les menors que centre de la centre de si les deux quotients sont egaux, les flux sont les menors que centre de la centre d

soient d'ailleurs les valeurs a, b, e; a', b', e'; en général, en désignant par F le premier flux, et par F' le second, on aura

$$\frac{\mathbf{F}}{\mathbf{F}'} = \frac{a-b}{e} : \frac{a'-b'}{e'}.$$

68.

Supposons que, dans le second solide, la température permanente a' du plan inférieur soit celle de l'eau bouillante 1; que la température b' du plan supérieur soit celle de la glace fondante 0; que la distance e' des deux plans soit l'unité de mesure (un mètre); désignons par K le flux constant de chaleur qui, pendant l'unité de temps (une minute), traverserait l'unité de surface dans ce dernier solide, s'il était formé d'une substance donnée, K exprimant un certain nombre d'unités de chaleur, c'est-à-dire un certain nombre de fois la chaleur nécessaire pour convertir en eau un kilogramme de glace; on aura, en général, pour déterminer le flux constant F, dans un solide formé de cette même substance, l'équation

$$\frac{\mathbf{F}}{\mathbf{K}} = \frac{a-b}{e} \quad \text{ou} \quad \mathbf{F} = \mathbf{K} \frac{a-b}{e}.$$

La valeur de F est celle de la quantité de chaleur qui, pendant l'unité de temps, passe à travers une étendue égale à l'unité de surface, prise sur une section parallèle à la base.

Ainsi l'état thermométrique d'un solide compris entre deux bases parallèles infinies, dont la distance perpendiculaire est e et qui sont maintenues à des températures fixes a et b, est représenté par les deux équations

$$\mathbf{r} = a + \frac{b - a}{c} \mathbf{z}, \quad \mathbf{F} = \mathbf{K} \cdot \frac{a - b}{c} \quad \text{ou} \quad \mathbf{F} = -\mathbf{K} \frac{d\mathbf{v}}{d\mathbf{z}}.$$

La première de ces équations exprime la loi suivant laquelle les températures décroissent depuis la base inférieure jusqu'à la face opposée; la seconde fait connaître la quantité de chalcur qui traverse,

pendant un temps donne, une partie determinee d'une section par à la base.

69.

Nous avons choisi ce meme coefficient K, qui cutre dan 4 equation, pour la mesure de la conducabilité per topo de capstance; ce nombre à des valeurs tres différents (pour 1) (1), corps.

Harpresente, en general, la quantité de chalent qui, de la homogène forme d'une substance donnée et comparation à paralleles infinis, s'écoule, pendant une misure, et traver que d'un mêtre carre prise sur une cotion parallele dans places en supposant que ces deux planes ont entre terms, l'accessiture de l'eau bouillante, l'autre à la temperature de l'eau bouillante, l'autre à la temperature de l'eau paralleles plans intermediaires ont acquis et constant perature permanente.

On pourrait employer une antre definition de la comme on pourrait estimer la capacité de chidem aux l'unite de volume, au hen de la rapporter a l'envis de la capacité de la rapporter a l'envis de la capacité de chidem aux l'environne de la capacité de la capacit

Nous ferons connaître par la mite comment on parta par l'observation la valeur kade la conducidable ou and a la differentes substances.

. 11

Pour établir les equation que nou avon a partire tiele 68, il ne serait par nece aute de apportance que exercent leur action à travers le plane ont extreme ne reque tes consequences seraient encore les menne at de aleit points avaient une grandeur quelconque; elles appliques aussi au cas ou l'action immediate de la chaleur se poits i sereieur de la masse jusqu'à des distances às ex consider de

les circonstances qui constituent l'hypothèse demeurant d'ailleurs les mêmes.

Il faut seulement supposer que la cause qui entretient les températures à la superficie du solide n'affecte pas seulement la partie de la masse qui est extrêmement voisine de la surface, mais que son action s'étend jusqu'à une profondeur finie. L'équation

$$v = a - \frac{a - b}{e} z$$

représentera encore dans ce cas les températures permanentes du solide. Le vrai sens de cette proposition est que, si l'on donnait à tous les points de la masse les températures exprimées par l'équation, et si, de plus, une cause quelconque agissant sur les deux tranches extrêmes retenait toujours chacune de leurs molécules à la température que cette même équation leur assigne, les points intérieurs du solide conserveraient sans aucun changement leur état initial.

Si l'on supposait que l'action d'un point de la masse pût s'étendre jusqu'à une distance finie ɛ, il faudrait que l'épaisseur des tranches extrèmes, dont l'état est maintenu par la cause extérieure, fût au moins égale à ɛ. Mais la quantité ɛ n'ayant en effet, dans l'état naturel des solides, qu'une valeur inappréciable, on doit faire abstraction de cette épaisseur, et il suffit que la cause extérieure agisse sur chacune des deux couches extrêmement petites qui terminent le solide. C'est toujours ce que l'on doit entendre par cette expression : entretenir la température constante de la surface.

71.

Nous allons encore examiner le cas où le même solide serait exposé, par l'une de ses faces, à l'air atmosphérique entretenu à une température constante.

Supposons donc que ce plan inférieur conserve, en vertu d'une cause extérieure quelconque, la température fixe a, et que le plan supérieur, au lieu d'être retenu, comme précédemment, à une température

moindre b, est exposé à l'air atmospherique mainte un a estre ture b, la distance perpendiculaire des deux plantes tant tempes gnée par c : il s'agit de determiner les temperature estre s

En supposant que, dans l'état initial du colide. In temperate, mune de ses molecules est b on moundinque l'anche en que la chaleur qui sort une commont du l'anche et la masse et élève de plus en plus les temperature de la chaleur qui sort une partie de la chaleur qui solide; la surface superieure de hando de la chaleur qui solide. Le système des temperatures l'approche de la chaleur qui subsisterant de lui meine de la chaleur que et état final, qui est celui que non don de la chaleur que plan B a une valeur fixe mais un connect, qui et, comme le plan inférieur A con et en que de la chaleur de que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que nente a, le système des temperature et approprié que la contrate de la chaleur de la chaleu

1.2

est z. La quantité de chaleur qui l'évoule per l'évoule est K " l'évoule est K designant la conductibilité propie

 perature fixe de l'air et h la mesure de la conducibilité de la surface B, on doit donc former l'équation

$$\mathbf{K} \frac{a}{c} = \frac{5}{c} - h_3 \mathbf{s} - h_3$$

qui fera connaître la valeur de p.

On en deduit

$$at = e^{-\frac{t_0}{\hbar r}} \frac{t_0}{\mathbf{k}}$$

equation don't le second membre est connu; car les temperatures a et b ont données, ainsi que les quantites b, K, e.

An mettant cette valeur de $a \in \mathbb{R}$ dans l'equation generale

$$A = A = \frac{5}{r} \cdot \frac{A}{r}$$

on aura, pour exprimer les temperatures de toutes les sections du volule, l'equation

 $\dim \mathbb{R}_q$ n lie d'n'entre que des quantites comues et les variables cor respondants se et s.

Not seem obtained proprie. Petertund et permanent des tempe i un alleman obtaine augri, entre deux unto a plane, infinies et por laba, confetence a de temperature un ales. Ce premier cas alleman que mant paret a bande la propri atron lineaire et uniforme, i de cas part de transport de chidemi dans le plan parallele aux bien confete que ti ver e le of a cas offe mattermement, puisque la vide de ce il de xico de mattermement, puisque la vide de ce il de xico de mattermement, puisque la vide de ce il de xico de mattermement.

the second reputer to the principle of the entire the second respective of the entire the second respective dentities the second respective description of the second respective description de

perpendiculaires qui represente tobe tenque a la bases, et a l'on mone une directe que tonque a la bases, et a l'on mone une directe que permeres ordonnes , toute de tonque a la seront proportionnelles aux ordonnes de la proportion de la proportionnelles aux ordonnes de la proportion de la pro

.

a designant la temperature de Levas Carlos Carlos.

mite de tempe, a traver. Punche de certo que comque paraffele aux homos est, i are sola comque paraffele aux homos est, i are sola carson directe de la distance qui que que que en chalem est exprimee par Komono Komono Komono que est exprimee par Komono Komono compose ente, pour nue que est esque est de la distance que est esque est de la distance que est esque est de la distance est esque est que est de la distance esque esque est de la disorte dont le cordonne esque esque est de la disorte dont le cordonne esque esque esque est la disorte dont le cordonne esque esque esque est la disorte dont le cordonne esque esque esque est la disorte dont le cordonne esque esque esque est la disorte dont le cordonne esque esque esque est la disorte dont le cordonne esque esque

a la temperature et. Unité plane de septembre de la septembre de la comperature et. Unité plane de septembre de la septembre de la competiture del competiture de la competiture de la competiture de la competitu

Comemo this do chalent for the second one of a

SECTION V.

LOI DES TEMPÉRATURES PERMANENTES DANS UN PRISME D'UNE PETITE ÉPAISSEUR.

73.

On appliquera facilement les principes qui viennent d'être exposés à la question suivante, qui est très simple en elle-même, mais dont il importait de fonder la solution sur une théorie exacte.

Une barre métallique, dont la forme est celle d'un parallélépipède rectangle d'une longueur infinie, est exposée à l'action d'un foyer de chalcur qui donne à tous les points de son extrémité A une température constante. Il s'agit de déterminer les températures fixes des différentes sections de la barre.

On suppose que la section perpendiculaire à l'axe est un carré dont le côté 2l est assez petit pour que l'on puisse, sans erreur sensible, regarder comme égales les températures des différents points d'une même section. L'air dans lequel la barre est placée est entretenu à une température constante o, et emporté par un courant d'une vitesse uniforme.

La chaleur passera successivement dans l'intérieur du solide; toutes ses parties situées à la droite du foyer, et qui n'étaient point exposées immédiatement à son action, s'échausseront de plus en plus; mais la température de chaque point ne pourra pas augmenter au delà d'un certain terme. Ce maximum de température n'est pas le même pour chaque section; il est en général d'autant moindre que cette section est plus éloignée de l'origine; on désignera par v la température fixe d'une section perpendiculaire à l'axe et placée à la distance x de l'origine Λ .

Avant que chaque point du solide ait atteint son plus haut degré de chaleur, le système des températures varie continuellement et s'approche de plus en plus d'un état fixe, qui est celui que l'on considère.

Cet état final se conserverait de lui meme. Il dant terms. P. système des temperatures sort permanent, de 1 he e tité de chaleur qui traverse, pendant l'un to de 1900 à placée à la distance a de l'origine compone exectine de la leur qui s'echappe, dans le meme tempe, par le per extérieure du prisme qui est située à la di cie de la lace tranche dont l'epaisseur est de, et dont la mile de se laisse echapper dans l'air, pendant l'unito de l'air : « chaleur exprimee par Shk dr., h ctant la me a - 3 extérieure du prisme. Donc, en pronent l'une a o jusqu'a x / , on tronvers la que de la contraction de la tonte la surface de la barre pendant l'inaib de 1 mg., la meme integrale depuis i - 10 proprie chaleur perdue par la partie de la missa ca laque section placee a la distance r. Do ., and prin dont la valeur est constante et par 1845 Et La s seconde, la différence C (18hb 11 experiment). chaleur qui s'echappe daic l'air a fraver de p a la droite de la section. D'un autre cote, il de prise entre deux sections infiniment vor im que et v=dv, doit etre assamilee a un $-{
m dol}(-\eta_D)$ plans paralleles assujettis a de tempo i diric. Inv selon Phypothèse, la temperature ne votagina del ... d'une meme section. L'epaisseur du salab et section est 47 : done la quantité de chalcia, q ment, pendant l'unite de temps, a traver (misse et a d'après les principes précedents, 💢 🔥 ' - K 👝 👈 specifique interieure; on dort done avon l'equal

74.

On obtiendrait le même résultat en considérant l'équilibre de la chaleur dans la scule tranche infiniment petite comprise entre les deux sections dont les distances sont x et x+dx. En effet, la quantité de chaleur qui, pendant l'unité de temps, traverse la première section placée à la distance x, est $-4l^2\mathbf{K}\frac{dv}{dx}$. Pour trouver celle qui s'écoule pendant le même temps, à travers la section suivante placée à la distance x+dx, il faut, dans l'expression précédente, changer x en x+dx, ce qui donne $-4l^2\mathbf{K}\left[\frac{dv}{dx}+d\left(\frac{dv}{dx}\right)\right]$. Si l'on retranche cette seconde expression de la première, on connaîtra combien la tranche que terminent les deux sections acquiert de chaleur pendant l'unité de temps; et, puisque l'état de cette tranche est permanent, il faudra que toute cette chaleur acquise soit égale à celle qui se dissipe dans l'air à travers la surface extérieure 8ldx de cette même tranche; or cette dernière quantité de chaleur est 8ldx de cette même tranche; or cette dernière quantité de chaleur est 8ldx de cette même tranche; la même équation

8 h l v d x = 4 l 2 K d
$$\left(\frac{dv}{dx}\right)$$
 ou $\frac{d^2v}{dx^2} = \frac{2h}{Kl}v$.

75.

De quelque manière que l'on forme cette équation, il est nécessaire de remarquer que la quantité de chaleur qui traverse la face de la tranche dont la distance est x a une valeur finie, et que son expression exacte est $-4l^2$ K $\frac{dv}{dx}$. Cette tranche étant comprise entre deux surfaces dont la première a la température v et la seconde une température moindre v', on aperçoit d'abord que la quantité de chaleur qu'elle reçoit par la première surface dépend de la différence v-v' et lui est proportionnelle; mais cette remarque ne suffit pas pour établir le calcul. La quantité dont il s'agit n'est point une différentielle : elle a une valeur finie, puisqu'elle équivaut à toute la chaleur qui sort par la

None in iston successful remarque, present avait faite a etc le premier obstode (1) de la point une analyse complete de la obtenait une equation non home care, etc. (2) rait pur former les equations que exprine mide de dans des ess plus compose

Il ctart neces arre an a d'interfere d'a du prisme, afin de ne point re a le comme dan una que l'observation avait fourme dan una que l'observation avait fourme dan una que l'experience qu'une forme de tremite, ne pouvait acquirra, a report de tremite, ne pouvait acquirra, a report d'un degre octo e ini d'a en que faudrait que la chaleur du fover auper d'in le fer en fusion; mais ce re ultat depend de le qu'inche, l'experience a une plus grande distance; c'e ta du que qui acquiert une temperature fixe d'un degre est du fover que la barre a plus d'epais œui, tente de d'energant les memes. On peut toupous charre a ture de l'extremite d'un cylindre de fer en solicur out ture de l'extremite d'un cylindre de fer en solicur out

autre extrémité; il ne faut que donner au rayon de la base une longueur suffisante; cela est, pour ainsi dire, évident, et d'ailleurs on en trouvera la preuve dans la solution de la question étudiée plus loin (art. 78).

76.

L'intégrale de l'équation précédente est

$$c = \Lambda e^{-x\sqrt{\frac{2\hbar}{Kl}}} + B e^{x\sqrt{\frac{2\hbar}{Kl}}},$$

A et B étant deux constantes arbitraires; or, si l'on suppose la distance a infinie, la valeur de la température e doit être infiniment petite; donc

le terme B $e^{x\sqrt{\frac{2\hbar}{KT}}}$ ne subsiste point dans l'intégrale; ainsi l'équation

$$c = \Lambda e^{-x\sqrt{\frac{2h}{h^2}}}$$

représente l'état permanent du solide; la température à l'origine est désignée par la constante Λ , puisqu'elle est la valeur de e lorsque x est nulle.

Cette même loi suivant laquelle les températures décroissent est donnée aussi par l'expérience; plusieurs physiciens ont observé les températures fixes des différents points d'une barre métallique exposée par son extrémité à l'action constante d'un foyer de chalcur, et ils ont reconnu que les distances à l'origine représentent les logarithmes, et les températures les nombres correspondants.

77.

La valeur numérique du quotient constant de deux températures consécutives étant déterminée par l'observation, on en déduit facilement celle du rapport $\frac{h}{\mathbf{k}}$: car, en désignant par c_1 , c_2 les températures qui répondent aux distances x_1 , x_2 , on aura

$$\frac{v_1}{v_2} = e^{-(v_1 - x_2)\sqrt{\frac{2h}{ht}}} \qquad \text{ou} \qquad \sqrt{\frac{2h}{K}} = \frac{\log v_1 - \log v_2}{x_2 - x_1}\sqrt{t}.$$

Quant aux valeurs separces de h et de K, on ne pent le la barre par des expériences de ce genre : il faut observer au la barre varié de la chaleur.

78.

Supposons que deux barres de meme matrere et de din. a gales soient assujetties vers leur extremite a une meme de mpe admi soient I_t le côté de la section dans la première barre et als le consection dans la seconde; on aura, pour expramer le tempe est ces deux solides, les equations

en designant, dans le premier solide, par i la tempo i i tion placee à la distance i, et, dans le second solide, j i i section placee à la distance i

Lorsque ces deux barres seront parvenne ca un chat hand rature d'une section de la première, placee a une contre de foyer, ne sera pas evale à la temperature d'une action de placee à la meme distance du foyer; pour que le braque d'unesent egales, il faudrait que les distance un sent dales a vent comparer entre elles le distance a cet a promité l'origine jusqu'aux points qui parviennent danche de aux de meme temperature, on egalera les second unendoire de aux l'on en conclura

$$\frac{t}{t}$$
.

Ainsi les distances dont il s'agit sont entre elle commicarrees des épaisseurs.

79.

Si deux barres metalliques de dimensions cyales, ma de substances différentes, sont convertes d'un memo endort per leur donner une meme conducibilité exteriente, et a consequent sujetties dans leur extremite à une meme temperature, à différente sujetties dans leur extremite à une meme temperature, à différente sujetties dans leur extremite à une meme temperature, à différente sujetties dans leur extremite à une meme temperature, à différente sujetties dans leur extremite à une meme temperature.

propagera plus facilement et à une plus grande distance de l'origine dans celui des deux corps qui jouit d'une plus grande conducibilité. Pour comparer entre elles les distances x_i et x_2 , comprises depuis l'origine commune jusqu'aux points qui acquièrent une même température fixe, il faut, en designant par \mathbf{k}_i et \mathbf{k}_2 les conducibilités respectives de « deux sub stance», cerire l'equation

Am i le i apport de deux conducibilités est celui des carres des distances compré es entre l'origine commune et les points qui atteignent une meme temperature fixe.

80.

Il et tacile de connaître combien il Seconle de chaleur pendant i mate de tempe par une cetion de la barre parvenue a son état fixe : cette quantité à pour expression

of, where ϕ is declarate, we amplify $\mathbf{A}_{\mathbf{A}} \cdot \mathbf{K}h^{T}$ pour la mesure de h or ϕ is the rape parameter due to solide pendant l'u $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of the form of the hadenrest, toutes the rape of the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the form of lands $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain l'integrale $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain la $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain la $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the premain $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ in the rape of $\mathbf{a}^{T} \cdot \mathbf{b} \cdot \mathbf{b}$ is the rape of $\mathbf{a}^{T} \cdot \mathbf{$

S111111 11

1 10 10 10 40 40 A

41

The first le l'article 72 dans la ques la present des applications utiles : elle la first le ment des espares clus

Quant aux valeurs séparées de h et de K, on ne peut les déterminer par des expériences de ce genre : il faut observer aussi le mouvement varié de la chaleur.

78.

Supposons que deux barres de même matière et de dimensions inégales soient assujetties vers leur extrémité à une même température A; soient l_1 le côté de la section dans la première barre et l_2 le côté de la section dans la seconde; on aura, pour exprimer les températures de ces deux solides, les équations

$$c_1 = \Lambda e^{-x_1 \sqrt{\frac{2h}{K I_1}}}, \quad c_2 = \Lambda e^{-x_2 \sqrt{\frac{2h}{K I_2}}},$$

en désignant, dans le premier solide, par v_1 la température de la section placée à la distance x_1 , et, dans le second solide, par v_2 la température de la section placée à la distance x_2 .

Lorsque ces deux barres seront parvenues à un état fixe, la température d'une section de la première, placée à une certaine distance du foyer, ne sera pas égale à la température d'une section de la seconde, placée à la même distance du foyer; pour que les températures fixes tussent égales, il faudrait que les distances fussent différentes. Si l'on veut comparer entre elles les distances x_1 et x_2 , comprises depuis l'origine jusqu'aux points qui parviennent dans les deux barres à la même température, on égalera les seconds membres des équations et l'on en conclura

$$\frac{x_{\frac{1}{2}}^{2}}{x_{\frac{2}{2}}^{2}} = \frac{l_{1}}{l_{2}}.$$

Ainsi les distances dont il s'agit sont entre elles comme les racines carrées des épaisseurs.

79.

Si deux barres métalliques de dimensions égales, mais formées de substances différentes, sont couvertes d'un même enduit qui puisse leur donner une même conducibilité extérieure, et si elles sont assujetties dans leur extrémité à une même température, la chaleur se propagera plus facilement et à une plus grande distance de l'origine dans celui des deux corps qui jonit d'une plus grande conducibilité. Pour comparer entre elles les distances x_i et x_2 , comprises depuis l'origine commune jusqu'aux points qui acquièrent une même température fixe, il faut, en designant par K_i et K_2 les conducibilités respectives des deux substances, ecrire l'equation

$$\frac{1}{r} = \frac{r |V_{K,1}|}{r} = \frac{r |V_{K,2}|}{r} = \frac{r |V_{K,2}|}{r} = \frac{r |V_{K,2}|}{r |V_{K,2}|} = \frac{K_1}{K_2}$$

Amsi le rapport de deux conducibilités est celui des carrés des distances comprises entre l'origine commune et les points qui atteignent une meme temperature fixe.

80.

Il est facile de connaître combien il S'écoule de chaleur pendant Finnite de temps par une section de la barre parvenue a son état fixe : cette quantité à pour expres ion

of, won be proved a Fourgine, on aima $\{\Lambda_{\lambda}, (Kht)\}$ pour la mesure de facqua etc. Le chidem qui passe du toyet d'uis le solide pendant l'uiute le tempe, a ma la deponse de la sonice de chaleur est, toutes chiere et allem $x\in \mathbb{N}$, proport ornelle à Leracaie carree du eube de tepe come con trevier et le mome resultat, en prenont l'integrale extile : extile : extile : en qu'a e milinie.

and the confidence of the american agreem

NI

Note that we change to the order ode l'article 72 dans la ques torre in vac to tent la subdron presente des applications utiles; elle in c.t. a determinent le magne d'achantlement des espaces clus.

On suppose qu'un espace d'une torme queb onque, rempt de ce sphérique, est ferme de toutes parts, et que toute de qu'il de ceinte sont homosènes et ont une epar seur commune, et de pour que le rapport de la surface exterieure ade culture de surface exterieure ade culture de surface par un foyer dont l'action est constante e par exemple, et de surface dont l'etendue est e, et qui e t catrolicus. El par permanente 7.

On me considere or que la temperature movemente de distribution de distributio

On voit d'aboud que la chalcur qui continuelle de repandra dans l'air environnant et penetre e dans le marche cemte est formée, se dissipera en partie per le mita de la l'air exterieur, que l'on suppose entreterai e ma d'air est elever et permanente v. l'un intersem de havithe a de que en sera de meure de l'encemte solube de la vatence de la sapprochera sans record d'un dermée et at que e d'al da l'est et qui aurant la propriété de sub à les d'air mem d'abssans aucun changement, pour vu que la aurant accordance à la temperature y et l'air exterieur à la temperature.

Dans cet etat permanent que l'on vent determes conserve une temperature fixe m; la 1 imperature de l'enceunte solide a au l'i une valeur tixe de l'enceunte solide a au l'i une valeur tixe de l'enceunte vette enceunte, con envente de moundre que n, mais plus grande que n de eque, i de sont commes, et les quantités m, n et le sont au l'enque.

C'est dans l'exces de la temperature m sur celle de l'accessor que consiste le degre de l'echanflement; il dejend cardenne de tendue \u03c3 de la surface celaniflante et de la temperature de aussi de l'epasseur e de l'encemte, de l'etendue e de la surface quantité de l'etendue e de la surface quantité de l'encemte.

termine, de la facilité avec laquelle la chaleur pénètre sa surface intérieure ou celle qui lui est opposée, enfin de la conducibilité spécifique de la masse solide qui forme l'enceinte; car, si l'un quelconque de ces éléments venait à être changé, les autres demeurant les mêmes, le degré de l'échaussement varierait aussi. Il s'agit de déterminer comment toutes ces quantités entrent dans la valeur de m-n.

82.

L'enceinte solide est terminée par deux surfaces égales, dont chacune est maintenue à une température fixe; chaque élément prismatique du solide compris entre deux portions opposées de ces surfaces et les normales élevées sur le contour des bases est donc dans le même état que s'il appartenait à un solide infini compris entre deux plans parallèles, entretenus à des températures inégales. Tous les éléments prismatiques qui composent l'enceinte se touchent suivant toute leur longueur. Les points de la masse qui sont à égale distance de la surface intérieure ont des températures égales, à quelque prisme qu'ils appartiennent; par conséquent, il ne peut y avoir aucun transport de chaleur dans le sens perpendiculaire à la longueur des prismes. Ce cas est donc le même que celui que nous avons déjà traité, et l'on doit y appliquer les équations linéaires qui ont été rapportées plus haut.

83.

Ainsi, dans l'état permanent que nous considérons, le flux de chaleur qui sort de la surface \(\sigma\) pendant une unité de temps est égal à celui qui passe, pendant le même temps, de l'air environnant dans la surface intérieure de l'enceinte; il est égal aussi à celui qui traverse, pendant l'unité de temps, une section intermédiaire faite dans l'enceinte solide par une surface égale et parallèle à celles qui terminent cette enceinte; enfin ce même flux est encore égal à celui qui passe de l'enceinte solide à travers sa surface extérieure et se dissipe dans l'air. Si ces quatre quantités de chaleur écoulées n'étaient point égales, il

surviendrat necessairement quelque y a ation den de de deratures, ce qui est confre l'hypothesi

La première quantité est exprimée par par gla conducibilité exterience de la cuite de la confusion de la confu

La seconde est x(m) = a(h), le coefficient b et est conduction de exterience de la surface x(q) = 1 + xq + x foyer.

La quatrome est che a H, en de nast je H exteriorie de la surface a dest la chide a surje para la la conflicient. La tili provent con a de la surface de la tat de de la conflicience de la

Su a

La valeur de mont l'abjet special de la que d'accessor mettant les equations son a ette forme

et, les ajoutant, on aura

en désignant par P la quantité connue

$$\frac{\sigma}{s}\left(\frac{g}{h}+\frac{ge}{K}+\frac{g}{H}\right);$$

on en conclut

$$m-n=(\alpha-n)\frac{\mathbf{P}}{\mathbf{I}+\mathbf{P}}=\frac{(\alpha-n)\frac{\sigma}{s}\left(\frac{g}{h}+\frac{ge}{\mathbf{K}}+\frac{g}{\mathbf{H}}\right)}{\mathbf{I}+\frac{\sigma}{s}\left(\frac{g}{h}+\frac{ge}{\mathbf{K}}+\frac{g}{\mathbf{H}}\right)}.$$

85.

Ce résultat fait connaître comment le degré de l'échauffement m-n dépend des quantités données qui constituent l'hypothèse.

Nous indiquerons les principales conséquences que l'on en peut déduire :

- 1° Le degré de l'échauffement m-n est en raison directe de l'excès de la température du foyer sur celle de l'air extérieur.
- 2° La valeur de m-n ne dépend point de la forme de l'enceinte ni de sa capacité, mais seulement de l'épaisseur e de l'enceinte et du rapport $\frac{\sigma}{s}$ de la surface dont la chaleur sort à la surface qui la reçoit.

Si l'on double la surface \(\sigma\) du foyer, le degr\(\epsilon\) de l'\(\epsilon\) devient pas double; mais il augmente suivant une certaine loi que l'\(\epsilon\)-quation exprime.

3° Tous les coefficients spécifiques qui règlent l'action de la chaleur, savoir : g, K, H et h, composent, avec la dimension e, dans la valeur de m-n, un élément unique $\frac{g}{h}+\frac{ge}{k}+\frac{g}{H}$, dont on peut déterminer la valeur par les observations.

Si l'on doublait l'épaisseur e de l'enceinte, on aurait le même résultat que si l'on employait, pour la former, une substance dont la conducibilité propre serait deux fois moindre. Ainsi l'emploi des substances qui conduisent difficilement la chaleur permet de donner peu d'épaisseur à l'enceinte; l'effet que l'on obtient ne dépend que du rapport $\frac{e}{\mathbf{k}}$.

4° Si la conducibilité K est nulle, on trouve $m=\alpha$, c'est-à-dire que

l'air intérieur prend la température du foyer: il en est de même si H est nulle ou si h est nulle. Ces conséquences sont d'ailleurs évidentes, puisque la chaleur ne peut alors se dissiper dans l'air extérieur.

5° Les valeurs des quantités g, H, h, K et α , que l'on suppose connues, peuvent être mesurées par des expériences directes, comme on le verra par la suite; mais, dans la question actuelle, il suffirait d'observer la valeur de m-n qui correspond à des valeurs données de σ et de α , et l'on s'en servirait pour déterminer le coefficient total $\frac{g}{h} + \frac{ge}{K} + \frac{g}{H}$, au moyen de l'équation

$$m-n=\frac{(\alpha-n)\frac{\sigma}{s}p}{1+\frac{\sigma}{s}p},$$

dans laquelle p désigne le coefficient cherché. On mettra dans cette équation, au lieu de $\frac{\sigma}{s}$ et de $\alpha-n$, les valeurs de ces quantités, que l'on suppose données, et celle de m-n, que l'observation aura fait connaître. On en déduira la valeur de p, et l'on pourra ensuite appliquer la formule à une infinité d'autres cas.

6° Le coefficient H entre dans la valeur de m-n de la même manière que le coefficient h; par conséquent l'état de la superficie, ou celui de l'enveloppe qui la couvre, procure le même effet, soit qu'il se rapporte à la surface intérieure ou à la surface extérieure.

On aurait regardé comme inutile de faire remarquer ces diverses conséquences, si l'on ne traitait point ici des questions toutes nouvelles dont les résultats peuvent être d'une utilité immédiate.

86.

On sait que les corps animés conservent une température sensiblement fixe, que l'on peut regarder comme indépendante de la température du milieu dans lequel ils vivent. Ces corps sont, en quelque sorte, des foyers d'une chaleur constante, de même que les substances enflammées dont la combustion est devenue uniforme. On peut donc, à

l'aide des remarques précédentes, prévoir et régler avec plus d'exactitude l'élévation des températures dans les lieux où l'on réunit un grand nombre d'hommes. Si l'on y observe la hauteur du thermomètre dans des circonstances données, on déterminera d'avance quelle serait cette hauteur, si le nombre d'hommes rassemblés dans le même espace devenait beaucoup plus grand.

A la vérité, il y a plusieurs circonstances accessoires qui modifient les résultats, telles que l'inégale épaisseur des parties des enceintes, la diversité de leur exposition, l'effet que produisent les issues, l'inégale distribution de la chaleur de l'air. On ne peut donc faire une application rigoureuse des règles données par le calcul; toutefois ces règles sont précieuses en elles-mêmes parce qu'elles contiennent les vrais principes de la matière : elles préviennent des raisonnements vagues et des tentatives inutiles ou confuses.

87.

Si le même espace était échauffé par deux ou plusieurs foyers de différente espèce, ou si la première enceinte était elle-même contenue dans une seconde enceinte séparée de la première par une masse d'air, on déterminerait facilement aussi le degré de l'échauffement et les températures des surfaces.

En supposant qu'il y ait, outre le premier foyer σ , une seconde surface échaussée ϖ dont la température constante soit β et la conducibilité extérieure j, on trouvera, en conservant toutes les autres dénominations, l'équation suivante :

$$m-n = \frac{\left[\frac{\sigma g}{s} \left(\alpha - n\right) + \frac{\varpi j}{s} \left(\beta - n\right)\right] \left(\frac{e}{K} + \frac{1}{H} + \frac{1}{h}\right)}{1 + \left(\frac{\sigma g}{s} + \frac{\varpi j}{s}\right) \left(\frac{e}{K} + \frac{1}{H} + \frac{1}{h}\right)}.$$

Si l'on ne suppose qu'un seul foyer σ et si la première enceinte est elle-même contenue dans une seconde, on représentera par s', h', K', H' les éléments de la seconde enceinte qui correspondent à ceux de la

première que l'on designe par v. h. K. H. et l'on trouver e, vir mount « ? p la temperature de l'air qui environne la suita e extra chi di seconde encemte, l'equation suivante :

$$p = p$$

La quantite P represente

On trouverait un resultat semblable a lon appear to plus grand nombre d'encemtes ances saves, et la nombre d'encemtes ances saves, et la nombre d'appearent par l'an, come me a l'appearent per le degre de l'enhauthement, que bpue per to que la la greeur.

MM.

Pour rendre cette remaique plus conclide, in the significant de chaleur qui sont de la matica dozen equal de seque de meme corps perdiant en la mitaca qui resista que separce par un intervalle remphi d'an

Si le corps Λ est celiautle par une can exceptions surface conserve la temperature fixe b, 1 and 1, and 2 rature moundre a, la quantité de chideau qui contract pendant l'unité de temp , a traver cui contract per exprime par h b a, b et ant la me une de la rieure. Done, pour que la ma se pui re concever b a a de st necessaire que le toyer, que l'qu'il cut, t and de chideur egale a b8 b a, 8 de ignant b0 a0 solide.

Supposons que l'on detache de la masse Anno e matre de munce qui soit separce du solide par un intervalie remp que la superficie de ce meme solide. A contamore masse de la

pérature b. On voit que l'air contenu entre la couche et le corps s'échaussera et prendra une température a' plus grande que a. La couche elle-même parviendra à un état permanent et transmettra à l'air extérieur dont la température fixe est a toute la chaleur que le corps perd. Il s'ensuit que la quantité de chaleur sortie du solide sera hS(b-a'), au lieu d'être hS(b-a); car on suppose que la nouvelle superficie du solide et celles qui terminent la couche ont aussi la même conducibilité extérieure h. Il est évident que la dépense de la source de chaleur sera moindre qu'elle n'était d'abord. Il s'agit de connaître le rapport exact de ces quantités.

89.

Soient e l'épaisseur de la couche, m la température fixe de sa surface intérieure, n celle de la surface extérieure et K la conducibilité propre. On aura, pour l'expression de la quantité de chaleur qui sort du solide par sa superficie, hS(b-a').

Pour celle de la quantité qui pénètre la surface intérieure de la couche, hS(a'-m).

Pour celle de la quantité qui traverse une section quelconque de cette même couche, KS $\frac{m-n}{e}$.

Enfin, pour celle de la quantité qui passe de la surface extérieure dans l'air, hS(n-a).

Toutes ces quantités doivent être égales; on a donc les équations suivantes:

$$h(n-a) = \frac{\mathbf{K}}{e} (m-n),$$

$$h(n-a) = h(a'-m),$$

$$h(n-a) = h(b-a').$$

Si l'on écrit de plus l'équation identique

$$h(n-a) = h(n-a),$$

et si on les met toutes sous cette forme

$$n - a = n - a,$$

$$m - n = \frac{he}{K} (n - a),$$

$$a' - m = n - a,$$

$$b - a' = n - a,$$

on trouvera, en les ajoutant,

$$b - a = (n - a) \left(3 + \frac{he}{K} \right).$$

La quantité de chaleur perdue par le solide était

$$hS(b-a)$$

lorsque sa superficie communiquait librement à l'air : elle est maintenant hS(b-a') ou hS(n-a), qui équivaut à

$$hS \frac{b-a}{3+\frac{he}{K}}.$$

La première quantité est plus grande que la seconde, dans le rapport de $3 + \frac{he}{K}$ à 1.

Il faut donc, pour entretenir à la température b le solide dont la superficie communique immédiatement à l'air, plus de trois fois autant de chaleur qu'il n'en faudrait pour le maintenir à la même température b lorsque l'extrême surface n'est pas adhérente, mais distante du solide d'un intervalle quelconque rempli d'air.

Si l'on suppose que l'épaisseur e est infiniment petite, le rapport des quantités de chaleur perdues sera 3, ce qui aurait encore lieu si la conducibilité K était infiniment grande.

On se rend facilement raison de ce résultat; car, la chaleur ne pouvant s'échapper dans l'air extérieur sans pénétrer plusieurs surfaces, la quantité qui s'en écoule doit être d'autant moindre que le nombre

des surfaces interposées est plus grand; mais on n'aurait pu porter, à cet égard, aucun jugement exact si l'on n'eût point soumis la question au calcul.

90.

On n'a point considéré, dans l'article précédent, l'effet de l'irradiation à travers la couche d'air qui sépare les deux surfaces; cependant cette circonstance modifie la question, puisqu'il y a une partie de la chalcur qui pénètre immédiatement au delà de l'air interposé. Nous supposerons donc, pour rendre l'objet du calcul plus distinct, que l'intervalle des surfaces est vide d'air et que le corps échausté est couvert d'un nombre quelconque de couches parallèles et éloignées les unes des autres.

Si la chaleur qui sort du solide par sa superficie plane, entretenue à la température b, se répandait librement dans le vide et était reçue par une surface parallèle entretenue à une température moindre a, la quantité qui se dissiperait pendant l'unité de temps à travers l'unité de superficie serait proportionnelle à la différence b-a des deux températures constantes; cette quantité serait représentée par H(b-a), H étant une valeur de la conducibilité relative qui n'est pas la même que h.

Le foyer qui maintient le solide dans son premier état doit donc fournir, dans chaque unité de temps, une quantité de chaleur égale à $\operatorname{HS}(b-a)$. Il faut maintenant déterminer la nouvelle valeur de cette dépense dans le cas où la superficie de ce corps serait recouverte de plusieurs couches successives et séparées par des intervalles vides d'air, en supposant toujours que le solide est soumis à l'action d'une cause extérieure quelconque qui retient sa superficie à la température b.

Concevons que le système de toutes les températures est devenu fixe : soit m la température de la surface intérieure de la première couche qui est, par conséquent, opposée à celle du solide; soient n la température de la surface extérieure de cette même couche, e son épaisseur et K sa conducibilité spécifique; désignons aussi par m', n', m'', n'', m''', n''', m''', n'''', ... les températures des surfaces intérieure et extérieure des différentes couches et par K, e la conducibilité et l'épaisseur de ces mêmes couches; enfin, supposons que toutes ces surfaces soient dans un état semblable à la superficie du solide, en sorte que la valeur du coefficient H leur soit commune.

La quantité de chaleur qui pénètre la surface intérieure d'une couche correspondante à l'indice quelconque i est $\mathrm{HS}(n_{i-1}-m_i)$, celle qui traverse cette couche est $\frac{\mathrm{KS}}{e}\,(m_i-n_i)$, et la quantité qui en sort par la surface extérieure est $\mathrm{HS}(n_i-m_{i+1})$. Ces trois quantités et toutes celles qui se rapportent aux autres couches sont égales; on pourra donc former les équations en comparant toutes les quantités dont il s'agit à la première d'entre elles, qui est $\mathrm{HS}(b-m_4)$; on aura ainsi, en désignant par j le nombre des couches,

En ajoutant ces équations, on trouvera

$$b-a=(b-m_1)j\left(1+\frac{\mathrm{H}\,e}{\mathrm{K}}\right).$$

La dépense de la source de chaleur nécessaire pour entretenir la superficie du corps ${\bf A}$ à la température b est

$$HS(b-a)$$

lorsque cette superficie envoie ses rayons à une surface fixe entretenue

à la température b. Cette dépense est

$$ext{HS}(b-m_1) \quad ext{ou} \quad ext{HS} \frac{b-a}{j\left(1+rac{ ext{HI}\,e}{ ext{K}}
ight)}$$

lorsque l'on place entre la superficie du corps A et la surface fixe entretenue à la température b un nombre j de couches isolées; ainsi la quantité de chalcur que le foyer doit fournir est beaucoup moindre dans la seconde hypothèse que dans la première, et le rapport de ces deux quantités est $\frac{1}{j\left(1+\frac{\Pi e}{K}\right)}$. Si l'on suppose que l'épaisseur e des

couches soit infiniment petite, le rapport est $\frac{1}{j}$. La dépense du foyer est donc en raison inverse du nombre des couches qui couvrent la superficie.

91.

L'examen de ces résultats et de ceux que l'on obtient lorsque les intervalles des enceintes successives sont occupés par l'air atmosphérique explique distinctement pourquoi la séparation des surfaces et l'interposition de l'air concourent beaucoup à contenir la chaleur.

Le calcul fournit encore des conséquences analogues lorsqu'on suppose que le foyer est extérieur et que la chaleur qui en émane traverse successivement les diverses enveloppes diaphanes et pénètre l'air qu'elles renferment. C'est ce qui avait lieu dans les expériences où l'on a exposé aux rayons du soleil des thermomètres recouverts par plusieurs caisses de verre, entre lesquelles se trouvaient différentes couches d'air.

C'est par une raison semblable que la température des hautes régions de l'atmosphère est beaucoup moindre qu'à la surface du globe.

En général, les théorèmes concernant l'échauffement de l'air dans les espaces clos s'étendent à des questions très variées. Il sera utile d'y recourir lorsqu'on voudra prévoir et régler la température avec quelque précision, comme dans les serres, les étuves, les bergeries, les ateliers ou dans plusieurs établissements civils, tels que les hôpitaux, les casernes, les lieux d'assemblée.

On pourrait avoir égard, dans ces diverses applications, aux circonstances accessoires qui modifient les conséquences du calcul, comme l'inégale épaisseur des différentes parties de l'enceinte, l'introduction de l'air, etc.; mais ces détails nous écarteraient de notre objet principal qui est la démonstration exacte des principes généraux.

Au reste, nous n'avons considéré, dans ce qui vient d'être dit, que l'état permanent des températures dans les espaces clos. On exprime aussi par le calcul l'état variable qui le précède, ou celui qui commence à avoir lieu lorsqu'on retranche le foyer, et l'on peut connaître par là comment les propriétés spécifiques des corps que l'on emploie ou leurs dimensions influent sur les progrès et sur la durée de l'échauffement; mais cette recherche exige une analyse différente, dont on exposera les principes dans les Chapitres suivants.

SECTION VII.

DU MOUVEMENT UNIFORME DE LA CHALEUR SUIVANT LES TROIS DIMENSIONS.

92.

Nous n'avons considéré jusqu'ici que le mouvement uniforme de la chaleur suivant une seule dimension. Il est facile d'appliquer les mêmes principes au cas où la chaleur se propage uniformément dans trois directions orthogonales.

Supposons que les différents points d'un solide compris entre six plans rectangulaires aient actuellement des températures inégales et représentées par l'équation linéaire

$$v = \mathbf{A} + ax + by + cz,$$

x, y, z étant les coordonnées rectangulaires d'une molécule dont la température est v. Supposons encore que des causes extérieures quelconques, agissant sur les six faces du prisme, conservent à chacune cles molécules qui sont situées à la superficie sa température actuelle, exprimée par l'équation générale

$$(a) \qquad v = A + ax + by + cz;$$

nous allons démontrer que ces mêmes causes qui, par hypothèse, retiennent les dernières tranches du solide dans leur état initial, suffisent pour conserver aussi la température actuelle de chacune des molécules intérieures, en sorte que cette température ne cessera point d'être représentée par l'équation linéaire.

L'examen de cette question est un élément de la théorie générale; il servira à faire connaître les lois du mouvement varié de la chaleur dans l'intérieur d'un solide d'une forme quelconque; car chacune des molécules prismatiques dont le corps est composé est, pendant un temps infiniment petit, dans un état semblable à celui qu'exprime l'équation linéaire (a). On peut donc, en suivant les principes ordinaires de l'Analyse différentielle, déduire facilement de la notion du mouvement uniforme les équations générales du mouvement varié.

93.

Pour prouver que, les extrémités du solide conservant leurs températures, il ne pourra survenir aucun changement dans l'intérieur de la masse, il suffit de comparer entre elles les quantités de chaleur qui, pendant la durée d'un même instant, traversent deux plans parallèles. Soit b la distance perpendiculaire de ces deux plans que l'on suppose d'abord parallèles au plan horizontal des xy. Soient m et m' deux molécules infiniment voisines, dont l'une est au-dessous du premier plan horizontal et l'autre au-dessus; soient x, y, z les coordonnées de la première et x', y', z' les coordonnées de la seconde. On désignera pareillement deux molécules M et M' infiniment voisines, séparées par le second plan horizontal et situées, par rapport à ce second plan, de la même manière que m et m' le sont par rapport au premier, c'està-dire que les coordonnées de M sont x, y, z + b, et celles de M' sont x', y', z' + b. Il est manifeste que la distance num' des deux molécules

m et m' est égale à la distance MM' des deux molécules M et M'; de plus, soient v la température de m et v' celle de m', soient aussi V et V' les températures de M et M'; il est facile de voir que les deux différences v-v' et V-V' sont égales; en effet, en substituant d'abord les coordonnées de m et m' dans l'équation générale

$$v = A + ax + by + cz$$

on trouve

$$c - c' = a(x - x') + b(y - y') + c(z - z'),$$

et, en substituant ensuite les coordonnées de M et M', on trouve aussi

$$V - V' = a(x - x') + b(y - y') + c(z - z').$$

Or la quantité de chaleur que m envoie à m' dépend de la distance mm' qui sépare ces molécules, et elle est proportionnelle à la différence c-c' de leurs températures. Cette quantité de chaleur envoyée peut être représentée par q(v-v')dt; la valeur du coefficient q dépend d'une manière quelconque de la distance mm' et de la nature de la substance dont le solide est formé; dt est la durée de l'instant. La quantité de chaleur envoyée de M à M', ou l'action de M sur M', a aussi pour expression q(V-V')dt, et le coefficient q est le même que dans la valeur q(v-v')dt, puisque la distance MM' est égale à num' et que les deux actions s'opèrent dans le même solide; de plus, V-V' est égal à v-v'; donc les deux actions sont égales.

Si l'on choisit deux autres points n et n' extrêmement voisins l'un de l'autre, qui s'envoient de la chaleur à travers le premier plan horizontal, on prouvera de même que leur action est égale à celles de deux points homologues N et N' qui se communiquent la chaleur à travers le second plan horizontal. On en conclura donc que la quantité totale de chaleur qui traverse le premier plan est égale à celle qui traverse le second pendant le même instant. On tirera la même conséquence de la comparaison de deux plans parallèles au plan des xz, ou de deux autres plans parallèles au plan des yz. Donc, une partie quelconque du solide, comprise entre six plans rectangulaires, reçoit par

chacune des faces autant de chaleur qu'elle en perd par la face opposée; donc il n'y a aucune portion du solide qui puisse changer de température.

94.

On voit par là qu'il s'écoule, à travers un des plans dont il s'agit, une quantité de chaleur qui est la même à tous les instants, et qui est aussi la même pour toutes les autres tranches parallèles.

Pour déterminer la valeur de ce flux constant, nous la comparerons à la quantité de chaleur qui s'écoule uniformément dans un cas plus simple que nous avons déjà traité. Ce cas est celui d'un solide compris entre deux plans infinis et entretenus dans un état constant. Nous avons vu que les températures des différents points de la masse sont alors représentées par l'équation v = A + cz; nous allons démontrer que le flux uniforme de chaleur qui se propage en sens vertical dans le solide infini est égal à celui qui s'écoule dans le même sens à travers le prisme compris entre six plans rectangulaires. Cette égalité a lieu nécessairement si le coefficient c de l'équation c = A + cz, appartenant au premier solide, est le même que le coefficient c dans l'équation plus générale v = A + ax + by + cz qui représente l'état du prisme. En effet, désignons par H dans ce prisme un plan perpendiculaire aux z, et par m et μ deux molécules extrêmement voisines l'une de l'autre, dont la première m est au-dessous du plan II, et la seconde est au-dessus de ce plan; soient v la température de m, dont les coordonnées sont x, y, z, et w la température de μ , dont les coordonnées sont $x + \alpha$, $y + \beta$, $z + \gamma$. Choisissons une troisième molécule μ' , dont les coordonnées soient $x - \alpha$, $y - \beta$, $z + \gamma$, et dont la température soit désignée par α' . On voit que \(\mu \) et \(\mu' \) sont sur un même plan horizontal, et que la verticale élevée sur le milieu de la droite µµ' qui joint ces deux points passe par le point m, en sorte que les distances $m\mu$ et $m\mu'$ sont égales. L'action de m sur μ , ou la quantité de chaleur que la première de ces molécules envoie à l'autre à travers le plan H, dépend de la différence v-w de leurs températures. L'action de m sur μ' dépend de la même mannere de la difference a la de tenar puisque la distance de reacte et la merce qui expriment par y a la la france de reacte de reacte

A

les constituies de most e e un ...

La somme des doux à tran de

Supposons maintenant que l' poi 14

pour lequel l'équation l' temp : ()

considére aires, dans et l' 3 : le s

données sont e, v. quair le present
seconde et r e s, v. quair le present
precedemment.

Aura la somme de Edens action († 1915), a dans le solule 1816 i qui lan de par se tangulaires

the trouveract universities of field anticopens in inferiors and glass it among the memorial and constitution of place in the description of the description of the description of the constitution of the con

95.

Dans le second de ces corps, qui est terminé par deux plans infinis et pour lequel l'équation des températures est c=A+cz, nous savons que la quantité de chaleur écoulée pendant l'unité de temps, à travers une surface égale à l'unité et prise sur une section horizontale quelconque, est -c K, c étant le coefficient de z, et K la conducibilité spécifique ; donc la quantité de chaleur qui, dans le prisme compris entre six plans rectangulaires, traverse pendant l'unité de temps une surface égale à l'unité et prise sur une section horizontale quelconque est aussi -c K, lorsque l'équation linéaire qui représente les températures du prisme est

$$\varphi = A + ax + by + cz$$
.

On prouve de même que la quantité de chaleur qui, pendant l'unité de temps, s'écoule uniformément à travers une unité de surface, prise sur une section quelconque perpendiculaire aux x, est exprimée par -aK, et que la chaleur totale qui traverse, pendant l'unité de temps, l'unité de surface prise sur une section perpendiculaire aux y est exprimée par -bK.

Les théorèmes que nous avons démontrés dans cet article et dans les deux précédents ne supposent point que l'action directe de la chaleur soit bornée dans l'intérieur de la masse à une distance extrêmement petite : ils auraient encore lieu si les rayons de chaleur envoyés par chaque molécule pouvaient pénétrer immédiatement jusqu'à une distance assez considérable; mais il serait nécessaire dans ce cas, ainsi que nous l'avons remarqué dans l'article 70, de supposer que la cause qui entretient les températures des faces du solide affecte une partie de la masse jusqu'à une profondeur finie.

SECTION VIII.

MESURE DU MOUVEMENT DE LA CHALEUR EN UN POINT DONNÉ D'UNE MASSE SOLIDE.

96.

Il nous reste encore à faire connaître un des principaux éléments de la Théorie de la chaleur : il consiste à définir et à mesurer exactement la quantité de chaleur qui s'écoule en chaque point d'une masse solide à travers un plan dont la direction est donnée.

Si la chaleur est inégalement distribuée entre les molècules d'un même corps, les températures de chaque point varieront à chaque instant. En designant par ℓ le temps écoule et par c la temperature que recoit après le temps ℓ une molecule infiniment petite m dont les coordonnées sont v, y, z, l'état variable du solide sera exprimé par une equation semblable à la suivante :

Supposons que la fonction F soit donnée et que, par consequent, on puisse déterminer, pour chaque instant, la temperature d'un point quelconque; concevons que par le point m on mêne un plan horizontal parallèle à celui des xy et que, sur ce plan, on trace un cercle infiniment petit ω dont le centre est en m; il s'agit de connaître quelle est la quantité de chaleur qui, pendant l'instant dt, passera, à travers le cercle ω , de la partie du solide qui est inferieure au plan dans la partie superieure. Tous les points qui sont extrémement voisins du point m, et qui sont au-dessous du plan, exercent leur action pendant l'instant infiniment petit dt sur tous ceux qui sont au-dessus du plan et extremement voisins du point m, c'est-à-dire que chacun de ces points places d'un même côte du plan enverra de la chaleur à chacun de ceux qui sont places de l'autre côté. On considerera comme positive l'action qui a pour effet de transporter une certaine quantite de chaleur andessus du plan, et comme négative celle qui fait passer de la chaleur

au-dessous du plan. La somme de toutes les actions partielles qui s'exercent à travers le cercle ω, c'est-à-dire la somme de toutes les quantités de chaleur qui, traversant un point quelconque de ce cercle, passent de la partie du solide qui est inférieure au plan dans la partie supérieure, compose le flux dont il faut trouver l'expression.

Il est facile de concevoir que ce flux ne doit pas être le même dans toute l'étendue du solide et que, si, en un autre point m', on traçait un cercle horizontal ω' égal au précédent, les deux quantités de chaleur qui s'élèvent au-dessus de ces plans ω et ω' , pendant le même instant, pourraient n'être point égales; ces quantités sont comparables entre elles et leurs rapports sont des nombres que l'on peut facilement déterminer.

97.

Nous connaissons déjà la valeur du flux constant pour le cas du mouvement linéaire et uniforme; ainsi, dans un solide compris entre deux plans horizontaux infinis dont l'un est entretenu à la température a et l'autre à la température b, le flux de chaleur est le même pour chaque partie de la masse; on peut le considérer comme ayant lieu dans le sens vertical sculement. Sa valeur correspondante à l'unité de surface et à l'unité de temps est $K\frac{a-b}{e}$, e désignant la distance perpendiculaire des deux plans et K la conducibilité spécifique; les températures des différents points du solide sont exprimées par l'équation

$$c = a - \frac{a - b}{e}z$$
.

Lorsqu'il s'agit d'un solide compris entre six plans rectangulaires parallèles deux à deux, et lorsque les températures des différents points sont exprimées par l'équation linéaire

$$A + ax + by + cz$$

la propagation a lieu en même temps selon les trois directions des x, des y et des z; la quantité de chaleur qui s'écoule à travers une por-

tion déterminée d'un plan parallèle à celui des xy est la même dans toute l'étendue du prisme; sa valeur correspondante à l'unité de surface et à l'unité de temps est -cK; elle est -bK dans le sens des y, et -aK dans celui des x.

En général, la valeur du flux vertical, dans les deux cas que l'on vient de citer, ne dépend que du coefficient de z et de la conducibilité spécifique K; cette valeur est toujours égale à $-K\frac{\partial c}{\partial z}$.

L'expression de la quantité de chaleur qui, pendant l'instant dt, s'écoule à travers un cerele horizontal infiniment petit dont la surface est ω , et passe ainsi de la partie du solide qui est inférieure au plan du cerele dans la partie supérieure est, pour les deux cas dont il s'agit,

$$K \frac{\partial v}{\partial z} \omega dt$$
.

98.

Il est aisé maintenant de généraliser ce résultat et de reconnaître qu'il a lieu, quel que soit le mouvement varie de la chaleur exprime par l'équation

En effet, désignons par x', y', z' les coordonnees du point m et par x sa température actuelle. Soient $x' + \frac{\pi}{2}$, y' = x, $z = \frac{\pi}{2}$ les coordonnees d'un point y infiniment voisin du point m et dont la temperature est α ; ξ , χ , ζ sont des quantités infiniment petites, ajontees aux coordonnees x', y', z'; elles déterminent la position des molecules infiniment voi sines du point m, par rapport à trois axes rectangulaires dont l'origine est en m et qui seraient parallèles aux axes des x, des x et des z. En différentiant l'équation

et remplaçant les différentielles par $\mathbb{Z}, \mathbb{Z}, \mathbb{Z}$, on aura, pour exprimer la valeur de w qui équivaut à v+de, l'équation lineaire

$$|w-v'-\frac{\partial v'}{\partial v}|^2 = \frac{\partial v'}{\partial v}|_{t_0} = \frac{\partial v}{\partial v}|_{t_0}$$

les coefficients v', $\frac{\partial v'}{\partial x}$, $\frac{\partial v'}{\partial y}$, $\frac{\partial v'}{\partial z}$ sont des fonctions de x, y, z, t dans lesquelles on a mis pour x, y, z les valeurs données et constantes x', y', z' qui conviennent au point m.

Supposons que le même point m appartienne aussi à un solide compris entre six plans rectangulaires, que les températures actuelles des points de ce prisme qui a des dimensions finies soient exprimées par l'équation linéaire

$$w = A + a\xi + b\eta + c\xi,$$

et que les molécules placées sur les faces qui terminent le solide soient retenues par une cause extérieure à la température qui leur est assignée par l'équation linéaire; ξ, η, ζ sont les coordonnées rectangulaires d'une molécule du prisme, dont la température est ω , et qui est rapportée aux trois axes dont l'origine est en m.

Cela posé, si l'on prend pour valeurs des coefficients constants A, a, b, c, qui entrent dans l'équation relative au prisme, les quantités e', $\frac{\partial e'}{\partial x}$, $\frac{\partial e'}{\partial y}$, $\frac{\partial e'}{\partial z}$ qui appartiennent à l'équation différentielle, l'état du prisme exprimé par l'équation

$$w = v' + \frac{\partial v'}{\partial x} \xi + \frac{\partial v'}{\partial \gamma} \eta + \frac{\partial v'}{\partial z} \zeta$$

coïncidera, le plus qu'il est possible, avec l'état du solide; c'est-à-dire que toutes les molécules infiniment voisines du point m auront la même température, soit qu'on les considère dans le solide ou dans le prisme. Cette coïncidence du solide et du prisme est entièrement analogue à celle des surfaces courbes avec les plans qui les touchent.

Il est évident, d'après cela, que la quantité de chaleur qui s'écoule dans le solide à travers le cercle ω , pendant l'instant dt, est la même que celle qui s'écoule dans le prisme à travers le même cercle; car toutes les molécules dont l'action concourt à l'un et à l'autre effet ont la même température dans les deux solides. Donc le flux dont il s'agit a pour expression, dans l'un et l'autre solide, $-K\frac{\partial v}{\partial z}\omega dt$. Il serait $-K\frac{\partial v}{\partial y}\omega dt$, si le cercle ω dont le centre est m était perpendiculaire à

Caxe des y, et $= K \frac{\partial v}{\partial x} \omega dt$ si ce cercle était perpendiculaire à l'axe des x.

La valeur du flux que l'on vient de déterminer varie dans le solide d'un point à un autre, et elle varie aussi avec le temps. On pourrait concevoir qu'elle a, dans tous les points de l'unité de surface, la même valeur qu'au point m et qu'elle conserve cette valeur pendant l'unité de temps ; alors le flux serait exprimé par $-\mathbf{K} \frac{\partial v}{\partial x}$, il serait $-\mathbf{K} \frac{\partial v}{\partial y}$ dans le sens des y et $-\mathbf{K} \frac{\partial v}{\partial x}$ dans celui des x. Nous employons ordinairement dans le calcul cette valeur du flux ainsi rapportée à l'unité de temps et à l'unité de surface.

99.

Ce théorème sert, en général, à mesurer la vitesse avec laquelle la chaleur tend à traverser un point donné d'un plan, situe d'une manière quelconque dans l'intérieur d'un solide dont les temperatures varient avec le temps. Il faut, par le point donné m, elever une perpendien-laire sur le plan et élever en chaque point de cette perpendiculaire des ordonnées qui représentent les temperatures actuelles de ses differents points. On formera ainsi une courbe plane dont l'axe des abscisses est la perpendiculaire. La fluxion de l'ordonnée de cette courbe, qui répond au point m, étant prise avec un signe contraire, exprime la vitesse avec laquelle la chaleur se porte au dela du plan. On sait que cette fluxion de l'ordonnée est la tangente de l'angle forme par l'élément de la courbe avec la parallèle aux abscisses.

Le résultat que l'on vient d'exposer est celui dont on fait les applications les plus fréquentes dans la Théorie de la chaleur. On ne peut en traiter les différentes questions sans se former une idee très exacte de la valeur du flux en chaque point d'un corps dont les temperatures sont variables. Il est nécessaire d'insister sur cette notion fondamentale; l'exemple que nous allons rapporter indiquera plus clarement l'usage que l'on en fait dans le calcul. 100.

Supposons que les différents points d'une masse cubique, dont le côté est π , aient actuellement des températures inégales, représentées par l'équation

 $v = \cos x \cos y \cos z$.

Les coordonnées x, y, z sont mesurées sur trois axes rectangulaires, dont l'origine est au centre du cube et qui sont perpendiculaires aux faces. Les points de la surface extérieure du solide ont actuellement la température o, et l'on suppose aussi que des causes extérieures conservent à tous ces points leur température actuelle o. D'après cette hypothèse, le corps se refroidira de plus en plus; tous les points situés dans l'intérieur de la masse auront des températures variables et, après un temps infini, ils acquerront tous la température o de la surface.

Or nous démontrerons par la suite que l'état variable de ce solide est exprimé par l'équation

$$v = e^{-gt} \cos x \cos y \cos z;$$

le coefficient g est égal à $\frac{3 \text{ K}}{\text{CD}}$, \mathbf{K} est la conducibilité spécifique de la substance dont le solide est formé, \mathbf{D} est la densité et \mathbf{C} la chaleur spécifique; t est le temps écoulé.

Nous supposons ici que l'on admet la vérité de cette équation, et nous allons examiner l'usage que l'on en doit faire pour trouver la quantité de chaleur qui traverse un plan donné, parallèle à l'un des plans rectangulaires.

Si, par le point m dont les coordonnées sont x, y, z, on mène un plan perpendiculaire aux z, on trouvera, d'après l'article précédent, que la valeur du flux en ce point et à travers le plan est

$$-\mathbf{K} \frac{\partial v}{\partial z}$$
 on $\mathbf{K} e^{-st} \cos x \cos y \sin z$.

La quantité de chaleur qui traverse, pendant l'instant dt, un rec-F. tangle infiniment petit situé sur ce plan et qui a pour côtes dx et dy est

 $\mathbf{K} e^{-\pi \ell} \cos x \cos y \sin z \, dx \, dy \, dt.$

Ainsi la chaleur totale qui, pendant l'instant dt, traverse l'étendue entière du même plan est

la double intégrale étant prise depuis $x=\frac{1}{2}\pi$ jusqu'a $x=\frac{1}{2}\pi$, et depuis $y=\frac{1}{2}\pi$ jusqu'à $y=\frac{1}{2}\pi$. On trouvera donc pour l'expression de cette chaleur totale $\frac{1}{4}Kc^{-\pi t}\sin z\,dt.$

Si l'on prend ensuite l'intégrale par rapport à t, depuis t = 0 jusqu'a t = t, on trouvera la quantité de chaleur qui a traverse le meme plan, depuis que le refroidissement a commence jusqu'au moment actuel. Cette intégrale est $\frac{i\mathbf{k}}{g}\sin z = e^{-gt}$; elle a pour valeur a la surface $i\mathbf{k} = e^{-gt}$, en sorte qu'après un temps infini la quantité de chaleur perdue par l'une des faces est $\frac{i\mathbf{k}}{g}$. Le meme raisonnement s'appliquant à chacune des six faces, on conclut que le solide a perdu par son refroidissement complet une chaleur totale dont la quantité est $\frac{i\mathbf{k}}{g}$ ou 8CD, puisque g équivant à $\frac{i\mathbf{k}}{G}$. Cette chaleur totale qui se dissipe pendant la durce du refroidissement doit être, en effet, independante de la conducibilité propre \mathbf{K} , qui ne peut influer que sur le plus ou moins de vitesse du refroidissement.

On peut determiner d'une autre manière la quantité de chaleur que le solide perd pendant un temps donne, ce qui servita, en quelque sorte, à verifier le calcul précedent. En effet, la masse de la molecule rectangulaire dont les dimensions sont dv, dy, dz est Ddidvd; par conséquent la quantité de chaleur qu'il faut lui donner pour la porter de la température α à celle de l'eau bouillante est (Dilidvidz, (1, 8)) fallait élever la molécule à la temperature α , cette chaleur excedante serait c'CD dx dy dz.

Il suit de là que, pour trouver la quantité dont la chaleur du solide surpasse, après le temps t, celle qu'il contiendrait à la température o, il faut prendre l'intégrale multiple $\int \int \int v CD \, dx \, dy \, dz$ entre les limites

$$x = -\frac{1}{4}\pi$$
, $x = \frac{1}{4}\pi$; $y = -\frac{1}{4}\pi$, $y = \frac{1}{4}\pi$; $z = -\frac{1}{4}\pi$, $z = \frac{1}{4}\pi$.

On trouve ainsi, en mettant pour e sa valeur, savoir

$$e^{-gt}\cos x\cos y\cos z$$
,

que l'excès de la chaleur actuelle sur celle qui convient à la température o est $8\,\mathrm{CD}(\,\mathrm{r}-e^{-gt})$ ou, après un temps infini, $8\,\mathrm{CD}$, comme on l'a trouvé précédemment.

Nous avons exposé, dans cette Introduction, tous les éléments qu'il est nécessaire de connaître pour résoudre les diverses questions relatives au mouvement de la chaleur dans les corps solides, et nous avons donné des applications de ces principes afin de montrer la manière de les employer dans le calcul; l'usage le plus important que l'on en puisse faire est d'en déduire les équations générales de la propagation de la chaleur, ce qui est l'objet du Chapitre suivant.

CHAPITRE II.

ÉQUATIONS DU MOUVEMENT DE LA CHALEUR.

SECTION 1.

ÉQUATION DU MOUVEMENT VARIÉ DE LA CHALEUR DANS UNE ARMILLE.

101.

On pourrait former les équations générales qui représentent le mouvement de la chaleur dans les corps solides d'une figure quelconque et les appliquer aux cas particuliers. Mais cette méthode entraîne quelquefois des calculs assez compliqués que l'on peut facilement éviter. Il y a plusieurs de ces questions qu'il est préférable de traiter d'une manière spéciale en exprimant les conditions qui leur sont propres. Nous allons suivre cette marche et examiner séparément les questions que l'on a énoncées dans la Section I de l'Introduction; nous nous bornerons d'abord à former les équations différentielles, et nous en donnerons les intégrales dans les Chapitres suivants.

102.

On a déjà considéré le mouvement uniforme de la chaleur dans une barre prismatique d'une petite épaisseur et dont l'extrémité est plongée dans une source constante de chaleur. Ce premier cas ne présentait aucune difficulté, parce qu'il ne se rapporte qu'à l'état permanent des . températures et que l'équation qui l'exprime s'intègre facilement. La question suivante exige un examen plus approfondi; elle a pour objet de déterminer l'état variable d'un anneau solide dont les différents points ont reçu des températures initiales entièrement arbitraires.

L'anneau solide ou armille est engendré par la révolution d'une section rectangulaire autour d'un axe perpendiculaire au plan de l'anneau $(fig.\ 3)$; l est le périmètre de la section dont S est la surface, le coefficient h mesure la conducibilité extérieure, K la conducibilité propre, C la capacité spécifique de chaleur, D la densité. La ligne oxx'x'' représente la circonférence moyenne de l'armille, ou celle qui passe par les centres de figure de toutes les sections; la distance d'une section à l'origine o est mesurée par l'arc dont la longueur est x; R est le rayon de la circonférence moyenne.

On suppose qu'à raison des petites dimensions et de la forme de la section on puisse regarder comme égales les températures des différents points d'une même section.

103.

Concevons que l'on donne actuellement aux différentes tranches de l'armille des températures initiales arbitraires, et que ce solide soit ensuite exposé à l'air, qui conserve la température o et qui est déplacé avec une vitesse constante; le système des températures variera continuellement; la chaleur se propagera dans l'anneau et elle se dissipera par la surface : on demande quel sera l'état du solide dans un instant donné.

Soit v la température que la section placée à la distance x aura acquise après le temps écoulé t; v est une certaine fonction de x et de t, dans laquelle doivent entrer aussi toutes les températures initiales; c'est cette fonction qu'il s'agit de découvrir.

10%.

On considérera le mouvement de la chaleur dans une tranche infiniment petite, comprise entre une section placée à la distance e et une autre section placée à la distance x + dv. L'état de cette tranche peudant la durée d'un instant est celui d'un solide infini que terminent deux plans parallèles retenus à des temperatures inegales; ainsi la quantité de chaleur qui s'écoule pendant cet instant dt a travers la première section, et passe ainsi de la partie du solide qui precede la tranche dans cette tranche elle-même, est mesurce, d'après les principes établis dans l'Introduction, par le produit de quatre facteurs, savoir la conducibilité K. l'aire de la section S. le rapport the et la durée de l'instant; elle a pour expression $= KS \frac{\partial v}{\partial x} dx$. Pour commutre la quantité de chaleur qui sort de la même tranche a travers la seconde section et passe dans la partie contigue du solide, il faut sculement changer x en x + dx dans l'expression precedente ou, ce qui est la même chose, ajouter à cette expression sa différentielle prise par rape port à x : ainsi la tranche reçoit par une de ses faces une quantite de KS $\frac{\partial c}{\partial x} dt$ et perd par la face opposee une quantite de chaleur égale à $-KS\frac{\partial v}{\partial x}dt - KS\frac{\partial^2 v}{\partial x^2}dxdt$. Elle acquiert done, chaleur exprimée par à raison de sa position, une quantité de chaleur egale à la différence des deux quantités précédentes, qui est kS $\frac{\partial^{2} x}{\partial x^{2}} dx dt$,

D'un autre côté, cette même tranche, dont la surface exterience est **Idx* et dont la température diffère infiniment peu de c. laisse collapper dans l'air, pendant l'instant dt, une quantite de chaleur equivalente a **Ide dx* dt; il suit de là que cette partie infiniment petite du solide con serve, en effet, une quantité de chaleur representee par

$$KS \frac{\partial^2 \psi}{\partial x^2} dx dt = h t \psi dx dt$$

et qui fait varier sa température. Il faut exammer quelle est la quantité de ce changement.

105.

Le coefficient C exprime ce qu'il faut de chaleur pour élever l'unité de poids de la substance dont il s'agit depuis la température o jusqu'à la température τ ; par conséquent, en multipliant le volume S dx de la tranche infiniment petite par la densité D, pour connaître son poids, et par la capacité spécifique de chaleur C, on aura CDS dx, pour la quantité de chaleur qui élèverait le volume de la tranche depuis la température o jusqu'à la température τ . Donc l'accroissement de la température qui résulte de l'addition d'une quantité de chaleur égale à KS $\frac{\partial^2 v}{\partial x^2} dx dt - hlv dx dt$ se trouvera en divisant cette dernière quantité par CDS dx. Donc, en désignant selon l'usage par $\frac{\partial v}{\partial t} dt$ l'accroissement de température qui a lieu pendant l'instant dt, on aura l'équation

$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{CD}} \frac{\partial^2 v}{\partial x^2} - \frac{hl}{\mathbf{CDS}} v.$$

Nous expliquerons par la suite l'usage que l'on doit faire de cette équation pour en déduire une solution complète, et c'est en cela que consiste la difficulté de la question; nous nous bornerons ici à une remarque qui concerne l'état permanent de l'armille.

106.

Supposons que, le plan de l'anneau étant horizontal, on place au-dessous de divers points m, n, p, q, ... des foyers de chaleur dont chacun exerce une action constante; la chaleur se propagera dans le solide et, celle qui se dissipe par la surface étant incessamment remplacée par celle qui émane des foyers, la température de chaque section du solide s'approchera de plus en plus d'une valeur stationnaire qui varie d'une section à l'autre. Pour exprimer, au moyen de l'équation (b), la loi de ces dernières températures qui subsisteraient d'elles-mêmes si elles étaient établies, il faut supposer que la quantité ρ ne varie point par

rapport à t, ce qui rend nul le terme $\frac{\partial v}{\partial t}$. On aura ainsi l'équation

$$\frac{d^2v}{dx^2} = \frac{hl}{\text{KS}} v;$$

d'où l'on déduit par l'intégration

$$v = Me^{-x\sqrt{\frac{hl}{KS}}} + Ne^{+x\sqrt{\frac{hl}{KS}}},$$

M et N étant les deux constantes.

107.

Supposons qu'une portion de la circonférence de l'anneau, placée entre deux foyers consécutifs, soit divisée en parties égales; désignons par $v_1, v_2, v_3, v_4, \ldots$ les températures des points de division dont les distances à l'origine sont $x_4, x_2, x_3, x_4, \ldots$; la relation entre v et x sera donnée par l'équation précédente, après que l'on aura déterminé les deux constantes au moyen des deux valeurs de v qui correspondent aux foyers. Désignant par α la quantité $e^{-\sqrt{\frac{hl}{kS}}}$ et par λ la distance $x_2 - x_4$ de deux points de division consécutifs, on aura les équations

$$\begin{aligned} c_1 &= \mathbf{M} \alpha^{x_1} &+ \mathbf{N} \alpha^{-x_1}, \\ c_2 &= \mathbf{M} \alpha^{\lambda} \alpha^{x_1} &+ \mathbf{N} \alpha^{-\lambda} \alpha^{-x_1}, \\ c_3 &= \mathbf{M} \alpha^{2\lambda} \alpha^{x_1} + \mathbf{N} \alpha^{-2\lambda} \alpha^{-x_1}; \end{aligned}$$

d'où l'on tire la relation suivante :

$$\frac{\rho_1 + \rho_3}{\rho_2} = \alpha^{\lambda} + \alpha^{-\lambda}.$$

On trouverait un résultat semblable pour les trois points dont les températures sont v_2 , v_3 , v_4 , et en général pour trois points consécutifs. Il suit de là que, si l'on observait les températures v_4 , v_2 , v_3 , v_4 , v_5 , ... de plusieurs points successifs, tous placés entre les deux mêmes foyers met n et séparés par un intervalle constant λ , on reconnaîtrait que trois températures consécutives quelconques sont toujours telles que la somme de deux extrêmes, divisée par la moyenne, donne un quotient constant $\alpha^{\lambda} + \alpha^{-\lambda}$. 108.

Si, dans l'espace compris entre deux autres foyers n et p, on observait les températures de divers autres points séparés par le même intervalle λ , on trouverait encore que, pour trois points consécutifs quelconques, la somme des deux températures extrêmes, divisée par la moyenne, donne le même quotient $\alpha^{\lambda} + \alpha^{-\lambda}$. La valeur de ce quotient ne dépend ni de la position ni de l'intensité des foyers.

109.

Soit q cette valeur constante, on aura l'équation

$$v_3 = qv_2 - v_1;$$

on voit par là que, lorsque la circonférence est divisée en parties égales, les températures des points de division compris entre deux foyers consécutifs sont représentées par les termes d'une série récurrente dont l'échelle de relation est composée de deux termes q et -1.

Les expériences ont pleinement confirmé ce résultat. Nous avons exposé un anneau métallique à l'action permanente et simultanée de divers foyers de chaleur et nous avons observé les températures stationnaires de plusieurs points séparés par un intervalle constant; nous avons toujours reconnu que les températures de trois points consécutifs quelconques, non séparés par un foyer, avaient entre elles la relation dont il s'agit. Soit que l'on multiplie les foyers, et de quelque manière qu'on les dispose, on ne peut apporter aucun changement à la valeur numérique du quotient $\frac{c_1+c_3}{c_2}$; il ne dépend que des dimensions ou de la nature de l'anneau, et non de la manière dont ce solide est échauffé.

110.

Lorsqu'on a trouvé par l'observation la valeur du quotient constant q ou $\frac{c_1 + c_3}{c_2}$, on en conclut la valeur de α , au moyen de l'équation

$$\alpha^{\lambda} + \alpha^{-\lambda} = q$$
.

Cette quantité étant déterminée, on en conclut La valeur du rappor $\frac{\hbar}{K}$, qui est $\frac{S}{\ell}(\log z)^2$. Désignant z' par ω , on aura

L'une des racines de cette équation est ϵ , et l'antre racine est ϵ , ainsi le rapport des deux conducibilités se trouve en multiplicant 2 par le carré du logarithme hyperbolique de l'une que l'onque des racines de l'équation $\omega^{2} = g\omega^{-1}(1-\alpha)$ et divisant le produit par

SECTION II

EQUATION DU MOUVEMENT VARIE DE LA CHARLER DANS UNE SEMETO COLLE

111.

Une masse solide homogene de forme spherique, avant etc plongere pendant un temps infini dans un milien entreteum e la temperature permanente r, est ensuite exposee à l'air qui conserve la temperature et qui est déplacé avec une vitesse constante : il sagat de determ use les états successifs du corps pendant toute la durce du retra de sement.

On désigne par x la distance d'un point que bonque de contre de la sphère, par c la temperature de ce meme point apir du tempe écoulé t; on suppose, pour rendre la question plus generale, que l'température initiale, commune a tous les points qui sont plus x distance x du centre, est differente pour les differente valeur. Le x destre c'est ce qui aurait lieu si l'immersion ne dur nt point un temperature.

Les points du solide, egalement distants du rentre, ne consente point d'avoir une température commune; amsi cest une touct ou de et de t. Lorsqu'on suppose t = 0, il est necessaire que la valeur de cette fonction convienne à l'état initial qui est donne, et qui est entre rement arbitraire.

112.

On considérera le mouvement instantané de la chaleur dans une couche infiniment peu épaisse, terminée par les deux surfaces sphériques dont les rayons sont x et x+dx: la quantité de chaleur qui, pendant un instant infiniment petit dt, traverse la moindre surface dont le rayon est x, et passe ainsi de la partie du solide qui est plus voisine du centre dans la couche sphérique, est égale au produit de quatre facteurs qui sont la conducibilité K, la durée dt, l'étendue $4\pi x^2$ de la surface, et le rapport $\frac{\partial v}{\partial x}$ pris avec un signe contraire; elle est exprimée par

 $-4K\pi x^2\frac{\partial v}{\partial x}dt.$

Pour connaître la quantité de chaleur qui s'écoule pendant le même instant par la seconde surface de la même couche, et passe de cette couche dans la partie du solide qui l'enveloppe, il faut changer, dans l'expression précédente, x en x + dx, c'est-à-dire ajouter au terme — $\frac{1}{4} K \pi x^2 \frac{\partial v}{\partial x} dt$ la différentielle de ce terme prise par rapport à x. On trouve ainsi

$$--\frac{1}{4}\mathbf{K}\pi x^{2}\frac{\partial v}{\partial x}dt-\frac{1}{4}\mathbf{K}\pi\frac{\partial}{\partial x}\left(x^{2}\frac{\partial v}{\partial x}\right)dxdt,$$

pour l'expression de la quantité de chaleur qui sort de la couche sphérique en traversant sa seconde surface; et, si l'on retranche cette quantité de celle qui entre par la première surface, on aura

$$4 \, \mathrm{K} \pi \, \frac{\partial}{\partial x} \left(x^2 \, \frac{\partial v}{\partial x} \right) dx \, dt.$$

Cette différence est évidemment la quantité de chaleur qui s'accùmule dans la couche intermédiaire, et dont l'effet est de faire varier sa température.

413.

Le coefficient C désigne ce qu'il faut de chaleur pour élever de la température o à la température 1 un poids déterminé qui sert d'unité; D est le poids de l'unité de volume; $4\pi x^2 dx$ est le volume de la couche intermédiaire ou n'en differe que d'une quantité qui doit être omise : donc $4\pi \text{CD} x^2 dx$ est la quantité de chaleur nécessaire pour porter la tranche intermédiaire de la température o à la température 1. Il faudra par conséquent diviser la quantité de chaleur qui s'accumule dans cette couche par $4\pi \text{CD} x^2 dx$, et l'on trouvera l'accroissement de sa température e pendant l'instant dt. On obtiendra ainsi l'équation

$$dv = \frac{\mathbf{K}}{\mathbf{CD}} dt \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial v}{\partial x} \right)$$

00

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial x^2} \right).$$

111.

L'équation précédente représente la loi du mouvement de la chaleur dans l'intérieur du solide; mais les temperatures des points de la surface sont encore assujetties à une condition particulière qu'il est nécessaire d'exprimer.

Cette condition relative à l'état de la surface peut varier selon la nature des questions que l'on traite; on pourrait supposer, par exemple, qu'après avoir échauffé la sphère et éleve toutes ses molecules à la température de l'eau bouillante, on opère le refrondissement en donnant à tous les points de la surface la temperature o et les retenant à cette température par une cause extérieure quelconque. Dans ce cas, on pourrait concevoir que la sphère dont on veut determiner l'état variable est couverte d'une enveloppe, extrêmement peu epaisse, sur laquelle la cause du refroidissement exerce son action. On supposserait : 1° que cette enveloppe infiniment mince est adherente au solide, qu'elle est de la même substance que lui, et qu'elle en fait partie, comme les autres portions de la masse; 2° que toutes les molécules de l'enveloppe sont assujetties à la température o par une cause toujours agissante qui empêche que cette temperature puisse

être jamais au-dessus ou au-dessous de α . Pour exprimer cette même condition dans le calcul, on doit assujettir la fonction e, qui contient x et t, à devenir nulle lorsqu'on donne à x sa valeur totale x égale au rayon de la sphère, quelle que soit d'ailleurs la valeur de t. On aurait donc, dans cette hypothèse, en désignant par $\varphi(x,t)$ la fonction de x et t qui doit donner la valeur de e, les deux équations

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{2}{x} \frac{\partial v}{\partial x} \right),$$
$$\varphi(X, t) = 0;$$

de plus, il faut que l'état initial soit représenté par cette même fonction $\varphi(x, t)$; on aura donc, pour seconde condition,

$$\varphi(x,0)=1$$
.

Ainsi l'état variable d'une sphère solide, dans la première hypothèse que nous avons décrite, sera représenté par une fonction e, qui doit satisfaire aux trois équations précédentes. La première est générale et convient à chaque instant à tous les points de la masse; la seconde affecte les seules molécules de la surface et la troisième n'appartient qu'à l'état initial.

115.

Si le solide se refroidit dans l'air, la seconde équation est différente; il faut alors concevoir que l'enveloppe extrêmement mince est retenue, par une cause extérieure, dans un état propre à faire sortir à chaque instant de la sphère une quantité de chaleur égale à celle que la présence du milieu peut lui enlever.

Or la quantité de chaleur qui, pendant la durée d'un instant infiniment petit dt, s'écoule dans l'intérieur du solide, à travers la surface sphérique placée à la distance x, est égale à $-4K\pi x^2 \frac{\partial v}{\partial x} dt$; et cette expression générale est applicable à toutes les valeurs de x. Ainsi, en y supposant x = X, on connaîtra la quantité de chaleur qui, dans l'état

variable de la sphère, passerait à travers l'enveloppe extrêmement mince qui la termine; d'un autre côté, la surface extérieure du solide ayant une température variable, que nous désignerons par V, laisscrait échapper dans l'air une quantité de chaleur proportionnelle à cette température et à l'étendue de la surface, qui est $4\pi X^2$. Cette quantité a pour valeur $4h\pi X^2 V dt$.

Pour exprimer, comme on le suppose, que l'action de l'enveloppe remplace à chaque instant celle qui résulterait de la présence du milieu, il suffit d'égaler la quantité $4h\pi X^2 V dt$ à la valeur que reçoit l'expression $K = 4\pi X^2 \frac{\partial c}{\partial x} dt$, lorsqu'on donne à x sa valeur totale X; et l'on obtient par là l'équation $\frac{\partial c}{\partial x} = -\frac{h}{K}c$, qui doit avoir lieu lorsque dans les fonctions $\frac{\partial c}{\partial x}$ et c on met, au lieu de x, sa valeur X, ce que l'on désignera en écrivant

$$\mathbf{K} \frac{d\mathbf{V}}{d\mathbf{X}} + h\mathbf{V} = 0.$$

116.

Il faut donc que la valeur de $\frac{\partial v}{\partial x}$, prise lorsque x=N, ait un rapport constant $-\frac{h}{K}$ avec la valeur de v qui répond au même point. Ainsi l'on supposera que la cause extérieure du refroidissement détermine toujours l'état de l'enveloppe extrêmement mince, en sorte que la valeur de $\frac{\partial v}{\partial x}$ qui résulte de cet état soit proportionnelle à la valeur de v correspondante à v = v, et que le rapport constant de ces deux quantités soit v Cette condition étant remplie au moyen d'une cause toujours présente, qui s'oppose à ce que la valeur extrême de v soit autre que v d'v, l'action de l'enveloppe tiendra lieu de celle de l'air.

Il n'est point nécessaire de supposer que l'enveloppe extérieure soit extrêmement mince et l'on verra par la suite qu'elle pourrait avoir une épaisseur indéfinie. On considère ici cette épaisseur comme infiniment petite, pour ne fixer l'attention que sur l'état de la superficie du solide.

117.

Il suit de là que les trois équations qui doivent déterminer la fonction $\varphi(x,t)$ ou c sont les suivantes :

$$\frac{\partial c}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 c}{\partial x^2} + \frac{2}{x} \frac{\partial c}{\partial x} \right),$$

$$K \frac{\partial V}{\partial X} + hV = 0, \qquad \varphi(x, o) = 1.$$

La première a lieu pour toutes les valeurs possibles de x et de t; la seconde est satisfaite lorsque x = X, quelle que soit la valeur de t; et la troisième est satisfaite pour t = 0, quelle que soit la valeur de x.

On pourrait supposer que, dans l'état initial, toutes les couches sphériques n'ont pas une même température; c'est ce qui arrive nécessairement, si l'on ne conçoit pas que l'immersion ait duré un temps infini. Dans ce cas, qui est plus général que le précédent, on représentera par F(x) la fonction donnée, qui exprime la température initiale des molécules placées à la distance x du centre de la sphère; on remplacera alors la troisième équation par celle-ci

$$\varphi(x,0) = \mathbf{F}(x).$$

Il ne reste plus qu'une question purement analytique dont on donnera la solution dans l'un des Chapitres suivants. Elle consiste à trouver la valeur de c, au moyen de la condition générale et des deux conditions particulières auxquelles elle est assujettie.

SECTION III.

ÉQUATIONS DU MOUVEMENT VARIÉ DE LA CHALEUR DANS UN CYLINDRE SOLIDE.

118.

Un cylindre solide, d'une longueur infinie, et dont le côté est perpendiculaire à la base circulaire, ayant été entièrement plongé dans un liquide dont la température est uniforme, s'est échaussé successivement, en sorte que tous les points également éloignés de l'axe ont acquis la même température; on l'expose ensuite à un courant d'air plus froid; il s'agit de déterminer les températures des dissérentes couches, après un temps donné.

x désigne le rayon d'une surface cylindrique dont tous les points sont également distants de l'axe; X est le rayon du cylindre; e est la température que les points du solide, situés à la distance x de l'axe, doivent avoir, après qu'il s'est écoulé, depuis le commencement du refroidissement, un temps désigné par t. Ainsi e est une fonction de x et de t; et, si l'on y fait t = 0, il est nécessaire que la fonction de x, qui en proviendra, satisfasse à l'état initial qui est arbitraire.

119.

On considérera le mouvement de la chalcur dans une portion infiniment peu épaisse du cylindre, comprise entre la surface dont le rayon est x et celle dont le rayon est x + dx. La quantité de chaleur que cette portion reçoit, pendant l'instant dt, de la partie du solide qu'elle enveloppe, c'est-à-dire la quantité qui traverse pendant ce même temps la surface cylindrique dont le rayon est x, et à laquelle nous supposons une longueur égale à l'unité, a pour expression $-2 \,\mathrm{K} \pi x \, \frac{\partial c}{\partial x} dt$. Pour trouver la quantité de chaleur qui, traversant la seconde surface dont le rayon est x + dx, passe de la couche infiniment peu épaisse dans la partie du solide qui l'enveloppe, il faut, dans l'expression précédente, changer x en x + dx, ou, ce qui est la même chose, ajouter au terme — $2K\pi x \frac{\partial v}{\partial x}dt$ la différentielle de ce terme, prise par rapport à x. Donc la différence de la chaleur reçue à la chaleur perdue ou la quantité de chaleur qui, s'accumulant dans la couche infiniment petite, détermine les changements de température, est cette même différentielle, prise avec un signe contraire, ou

$${}_{2}\mathbf{K}\pi dt \frac{\partial}{\partial x} \left(x \frac{\partial v}{\partial x} \right) dx;$$

CHAPITRE II. - ÉQUATIONS DIFFÉRENTIELLES.

d'un autre côté, le volume de cette couche intermédiaire est $2\pi x dx$ et $2CD\pi x dx$ exprime ce qu'il faut de chaleur pour l'élever de la température o à la température 1, C étant la chaleur spécifique, et D la densité; donc le quotient

$$\frac{2 \operatorname{K} \pi \, dt \, \frac{\partial}{\partial x} \left(x \, \frac{\partial v}{\partial x} \right)}{2 \operatorname{CD} \pi x}$$

est l'accroissement que reçoit la température pendant l'instant dt. On obtient ainsi l'équation

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{I}{x} \frac{\partial v}{\partial x} \right).$$

120.

La quantité de chaleur qui traverse, pendant l'instant dt, la surface cylindrique dont le rayon est x étant généralement exprimée par ${}_2K\pi x\frac{\partial v}{\partial x}dt$, il s'ensuit que l'on trouvera celle qui sort pendant le même temps de la superficie du solide en faisant, dans la valeur précédente, x=X; d'un autre côté, cette même quantité qui se dissipe dans l'air est, selon le principe de la communication de la chaleur, égale à $2\pi X h v dt$; on doit donc avoir à la surface l'équation déterminée $-K\frac{\partial v}{\partial x}=hv$. La nature de ces équations est expliquée avec plus d'étendue, soit dans les articles qui se rapportent à la sphère, soit dans ceux où l'on donne les équations générales pour un corps d'une figure quelconque. La fonction v, qui représente le mouvement de la chaleur dans un cylindre infini, doit donc satisfaire :

1° A l'équation générale

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{1}{x} \frac{\partial v}{\partial x} \right),$$

qui a lieu quelles que soient x et t;

13

97

2º A l'équation déterminée

$$\frac{h}{K}c + \frac{\partial c}{\partial x} = 0,$$

qui a lieu, quelle que soit la variable t, lorsque x = X;

3º A l'équation déterminée

$$v = F(x);$$

cette dernière condition doit être remplie pour toutes les valeurs de c, où l'on fait t = 0, quelle que soit la variable x. La fonction arbitraire F(x) est supposée connue et elle correspond à l'état initial.

SECTION IV.

ÉQUATIONS DU MOUVEMENT UNIFORME DE LA CHALEUR DANS UN PRISME SOLIDE D'UNE LONGUEUR INFINIE.

121.

Une barre prismatique est plongée par une de ses extrémités dans une source constante de chaleur qui maintient cette extrémité à la température A; le reste de cette barre, dont la longueur est infinie, demeure exposé à un courant uniforme d'air atmosphérique entretenu à la température o; il s'agit de déterminer la plus haute température qu'un point donné de la barre puisse acquérir.

Cette question diffère de celle de l'article 73 en ce qu'on a égard ici à toutes les dimensions du solide, ce qui est nécessaire pour que l'on puisse obtenir une solution exacte. En effet, on est porté à supposer que, dans une barre d'une très petite épaisseur, tous les points d'une même tranche acquièrent des températures sensiblement égales; cependant il peut rester quelque incertitude sur les résultats de cette supposition. Il est donc préférable de résoudre la question rigoureusement et d'examiner ensuite, par le calcul, jusqu'à quel point et dans quel cas on est fondé à regarder comme égales les températures des divers points d'une même section.

122.

La section faite perpendiculairement à la longueur de la barre est un carré dont le côté est 2l; l'axe de la barre est l'axe des x et l'origine est à l'extrémité A. Les trois coordonnées rectangulaires d'un point de la barre sont x, y, z; la température fixe du même point est désignée par c.

La question consiste à déterminer les températures que l'on doit donner aux divers points de la barre, pour qu'elles continuent de subsister sans aucun changement, tandis que la surface extrême A qui communique avec la source de chaleur demeure assujettie, dans tous ses points, à la température permanente A : ainsi ν est une fonction de x, de y et de z.

123.

On considérera le mouvement de la chaleur dans une molécule prismatique, comprise entre six plans perpendiculaires aux trois axes des x, des y et des z. Les trois premiers plans passent par le point mdont les coordonnées sont x, y, z, et les autres passent par le point m'dont les coordonnées sont x + dx, y + dy, z + dz.

Pour connaître la quantité de chaleur qui, pendant l'unité de temps, pénètre dans la molécule, à travers le premier plan passant par le point m et perpendiculaire aux x, il faut considérer que la surface de la molécule qui est située sur ce plan a pour étendue dz dy, et que le flux qui traverse cette aire est égal, suivant le théorème de l'article 98, à $-K \frac{\partial v}{\partial x}$; ainsi la molécule reçoit, à travers le rectangle dx dy passant par le point m, une quantité de chaleur exprimée par

$$= \mathbf{K} \, dx \, dy \, \frac{\partial v}{\partial x}.$$

Pour trouver la quantité de chaleur qui traverse la face opposée et sort de la molécule, il faut substituer, dans l'expression précédente, x+dx à x ou, ce qui est la même chose, ajouter à cette expression sa diffé-

rentielle prise par rapport à x seulement; on en conclut que la molécule perd, par sa seconde face perpendiculaire aux x, une quantité de chaleur équivalente à

$$- \operatorname{K} dz \, dy \, \frac{\partial v}{\partial x} - \operatorname{K} \, dz \, dy \, \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) dx \, ;$$

on doit par conséquent la retrancher de celle qui était entrée par la face opposée; la différence de ces deux quantités est

$$K dz dy dx \frac{\partial^2 v}{\partial x^2};$$

elle exprime combien il s'accumule de chaleur dans la molécule, à raison de la propagation suivant le sens des x; et cette chaleur accumulée ferait varier la température de la molécule, si elle n'était point compensée par celle qui se perd dans un autre sens.

On trouve, de la même manière, qu'à travers le plan perpendiculaire aux y et passant par le point m, il entre dans la molécule une quantité de chaleur égale à

$$-\mathbf{K}\,dz\,dx\,\frac{\partial v}{\partial y},$$

et que la quantité qui sort par la face opposée est

$$- \mathbf{K} \, dz \, dx \, \frac{\partial v}{\partial y} - \mathbf{K} \, dz \, dx \, d\frac{\partial v}{\partial y},$$

cette dernière différentielle étant prise par rapport à y sculement. Donc la différence de ces deux quantités, ou

$$\mathbf{K}\,dz\,dx\,dy\,\frac{\partial^2\varphi}{\partial y^2},$$

exprime combien la molécule acquiert de chaleur, à raison de la propagation dans le sens des y.

Enfin on démontre de même que la molécule acquiert, à raison de la propagation dans le sens des z, une quantité de chaleur égale à

$$K dx dy dz \frac{\partial^2 v}{\partial z^2}$$
.

101

Or, pour qu'elle ne change point de température, il est nécessaire qu'elle conserve autant de chaleur qu'elle en contenait d'abord, en sorte que ce qu'elle en acquiert dans un sens serve à compenser ce qu'elle en perd dans un autre. Donc la somme des trois quantités de chaleur acquises doit être nulle, et l'on forme ainsi l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0.$$

124.

Il reste maintenant à exprimer les conditions relatives à la surface. Si l'on suppose que le point m appartient à l'une des faces de la barre prismatique et que cette face est perpendiculaire aux z, on voit que le rectangle dx dy laisse échapper dans l'air, pendant l'unité de temps, une quantité de chaleur égale à

$$h dx dy V$$
,

en désignant par V la température du point m à la surface, c'est-à-dire ce que devient la fonction cherchée $\varphi(x, y, z)$ lorsqu'on fait z = l, demi-largeur du prisme. D'un autre côté, la quantité de chaleur qui, en vertu de l'action des molécules, traverse pendant l'unité de temps une surface infiniment petite ω , située dans l'intérieur du prisme perpendiculairement aux z, est, d'après les théorèmes cités, égale à $-K\omega \frac{\partial v}{\partial z}$. Cette expression est générale et, en l'appliquant aux points pour lesquels la coordonnée z a sa valeur complète l, on en conclut que

$$= \mathbb{K} \, dx \, dy \, \frac{\partial v}{\partial z},$$

ficie, est

la quantité de chaleur qui traverse le rectangle dx dy, placé à la super-

en donnant à z dans la fonction $\frac{\partial v}{\partial z}$ sa valeur complète l. Donc les deux quantités — K $dx dy \frac{\partial v}{\partial z}$ et h dx dy v doivent être égales, pour que l'action des molécules convienne avec celle du milieu. Cette égalité doit

aussi subsister si l'on donne à z dans les fonctions $\frac{\partial v}{\partial z}$ et v la valeur — ℓ , v^{\prime} qui a lieu pour la face opposée à celle que l'on considérait d'abord. De plus, la quantité de chaleur qui traverse une surface plane infiniment petite ω , perpendiculaire à l'axe des y, étant — $K\omega \frac{\partial v}{\partial y}$, il s'en suit que celle qui s'écoule à travers un rectangle dx dz, placé sur une face du prisme perpendiculaire aux y, est

$$-\mathbf{K}\,dx\,dz\,\frac{\partial c}{\partial y},$$

en donnant à y dans la fonction $\frac{\partial v}{\partial y}$ sa valeur complète l. Or ce rectangle $dx\,dz$ laisse échapper dans l'air une quantité de chaleur exprimée par

il est donc nécessaire que l'on ait l'équation

$$hv = -\mathbf{K} \frac{\partial v}{\partial r},$$

lorsqu'on fait y = l, ou y = -l, dans les fonctions c et $\frac{\partial c}{\partial y}$.

125.

La valeur de la fonction e doit être, par hypothèse, égale à Λ lorsqu'on suppose x = 0, quelles que soient les valeurs de y et de z. Ainsi la fonction cherchée e est déterminée par les conditions suivantes :

1º Elle satisfait, pour toutes les valeurs de x, y, z, à l'équation générale

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0;$$

2° Elle satisfait à l'équation

$$\frac{h}{K} c + \frac{\partial c}{\partial y} = 0,$$

CHAPITRE II. – ÉQUATIONS DIFFÉRENTIELLES.

103

lorsque y équivaut à l, ou à -l, quelles que soient x et z, et à l'équation

$$\frac{h}{K}v + \frac{\partial v}{\partial z} = 0,$$

lorsque z équivaut à l, ou à -l, quelles que soient x et y; 3° Elle satisfait à l'équation

$$c = A$$

lorsque x = 0, quelles que soient y et z.

SECTION V.

ÉQUATIONS DU MOUVEMENT VARIÉ DE LA CHALEUR DANS UN CUBE SOLIDE.

126.

Un solide de forme cubique dont tous les points ont acquis une même température est placé dans un courant uniforme d'air atmosphérique, entretenu à la température o. Il s'agit de déterminer les états successifs du corps pendant toute la durée du refroidissement.

Le centre du cube est pris pour origine des coordonnées rectangulaires; les trois perpendiculaires abaissées de ce point sur les faces sont les axes des x, des y et des z; 2l est le côté du cube, e est la température à laquelle un point dont les coordonnées sont x, y, z se trouve abaissé après le temps t qui s'est écoulé depuis le commencement du refroidissement : la question consiste à déterminer la fonction e, qui contient x, y, z et t.

127.

Pour former l'équation générale à laquelle c doit satisfaire, on cherchera quel est le changement de température qu'une portion infiniment petite du solide doit éprouver pendant l'instant dt, en vertu de l'action des molécules qui en sont extrêmement voisines. On considérera donc une molécule prismatique comprise entre six plans rectangulaires; les trois premiers passent par le point m dont les coordonnées sont x, y.

z. et les trois autres par le point m' dont les coordonnées sont x + dx, y = dy, z + dz.

La quantité de chaleur qui pénètre pendant l'instant dt dans la moléeule, à travers le premier rectangle dy dz perpendiculaire aux x, est

$$-\mathbf{K}\,dy\,dz\,\frac{\partial v}{\partial x}\,dt,$$

et celle qui sort dans le même temps de la molécule, par la face opposée, se trouve en mettant x+dx au lieu de x dans l'expression précédente; elle est

$$- \operatorname{K} dy dz \frac{\partial v}{\partial x} dt - \operatorname{K} dy dz d \frac{\partial v}{\partial x} dt,$$

cette différentielle étant prise par rapport à x seulement. La quantité de chaleur qui entre pendant l'instant dt dans la molécule, à travers le premier rectangle dx dz perpendiculaire à l'axe des y, est

$$=\mathbf{K}\,dx\,dz\frac{\partial v}{\partial y}\,dt,$$

et celle qui sort de la molécule, dans le même instant, par la face opposée, est

 $= \mathbf{K} \, dx \, dz \, \frac{\partial v}{\partial y} \, dt + \mathbf{K} \, dx \, dz \, d\frac{\partial v}{\partial y} \, dt,$

la différentielle étant prise par rapport à y seulement. La quantité de chaleur que la molécule reçoit pendant l'instant dt, par sa face in férieure perpendiculaire à l'axe des z, est

$$= \mathbf{K} \, dx \, dy \, \frac{\partial v}{\partial z} \, dt$$

et celle qu'elle perd par la face opposée est

$$-\mathbf{K}\,dx\,dy\,\frac{\partial v}{\partial z}dt - \mathbf{K}\,dx\,dy\,d\frac{\partial v}{\partial z}dt,$$

la différentielle étant prise par rapport à z seulement.

Il faut maintenant retrancher la somme de toutes les quantités de

chaleur qui sortent de la molécule de la somme des quantités qu'elle reçoit, et la différence est ce qui détermine son accroissement de température pendant un instant : cette différence est

$$\mathbf{K} \, dy \, dz \, d\frac{\partial v}{\partial x} \, dt + \mathbf{K} \, dx \, dz \, d\frac{\partial v}{\partial y} \, dt + \mathbf{K} \, dx \, dy \, d\frac{\partial v}{\partial z} \, dt$$

ou

K dx dy dz
$$\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) dt$$
.

128.

Si l'on divise la quantité que l'on vient de trouver par celle qui est nécessaire pour élever la molécule de la température o à la température 1, on connaîtra l'accroissement de température qui s'opère pendant l'instant dt. Or cette dernière quantité est $C \, D \, dx \, dy \, dz$; car $C \, d$ ésigne la capacité de chaleur de la substance, D sa densité et $dx \, dy \, dz$ le volume de la molécule. On a donc, pour exprimer le mouvement de la chaleur dans l'intérieur du solide, l'équation

$$\frac{\partial v}{\partial \bar{t}} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right).$$

129.

Il reste à former les équations qui se rapportent à l'état de la surface, ce qui ne présente aucune difficulté d'après les principes que nous avons établis. En effet, la quantité de chaleur qui traverse, pendant l'instant dt, le rectangle dx dy tracé sur un plan perpendiculaire aux x, est

$$-\mathbf{K} dy dz \frac{\partial v}{\partial x} dt.$$

Ce résultat, qui s'applique à tous les points du solide, doit avoir lieu aussi lorsque la valeur de x est égale à l, demi-épaisseur du prisme. Dans ce dernier cas, le rectangle dy dz étant placé à la superficie, la quantité de chaleur qui le traverse et se dissipe dans l'air pendant

l'instant dt est exprimée par

on doit donc avoir, lorsque x = l, l'équation

$$hv = -\mathbf{K} \frac{\partial v}{\partial x}$$

Cette condition doit aussi être satisfaite lorsque x = -l.

On trouvera de même que, la quantité de chaleur qui traverse le rectangle dx dz situé sur un plan perpendiculaire à l'axe des y étant en général

 $-\mathbf{K} dx dz \frac{\partial v}{\partial y}$

et celle qui à la superficie s'échappe dans l'air à travers ce même rectangle étant

h dx dz v dt,

il est nécessaire que l'on ait l'équation

$$hv + K \frac{\partial v}{\partial v} = 0,$$

lorsque y = l ou = -l. Enfin on obtient pareillement l'équation déterminée

$$hv + \mathbb{K} \frac{\partial v}{\partial z} = 0,$$

qui doit être satisfaite lorsque z = l ou = -l.

130.

La fonction cherchée, qui exprime le mouvement varié de la chaleur dans l'intérieur d'un solide de forme cubique, doit donc être déterminée par les conditions suivantes :

1º Elle satisfait à l'équation générale

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right);$$

107

CHAPITRE II. — ÉQUATIONS DIFFÉRENTIELLES. 1 2° Elle satisfait aux trois équations déterminées

$$hc + \mathbf{K} \frac{\partial c}{\partial x} = 0, \qquad hc + \mathbf{K} \frac{\partial c}{\partial y} = 0, \qquad hc + \mathbf{K} \frac{\partial c}{\partial z} = 0,$$

qui ont lieu lorsque $x = \pm l$, $y = \pm l$, $z = \pm l$;

3° Si, dans la fonction v qui contient x, y, z, t, on fait t = 0, quelles que soient les valeurs de x, y et z, on doit avoir, selon l'hypothèse,

$$o = A$$

qui est la valeur initiale et commune de la température.

131.

L'équation à laquelle on est parvenu dans la question précédente représente le mouvement de la chaleur dans l'intérieur de tous les solides. Quelle que soit en effet la forme du corps, il est manifeste qu'en le décomposant en molécules prismatiques on obtiendra ce même résultat. On pourrait donc se borner à démontrer ainsi l'équation de la propagation de la chaleur. Mais, afin de rendre plus complète l'exposition des principes, et pour que l'on trouve rassemblés dans un petit nombre d'articles consécutifs les théorèmes qui servent à établir l'équation générale de la propagation dans l'intérieur des solides et celle qui se rapporte à l'état de la surface, nous procéderons, dans les deux Sections suivantes, à la recherche de ces équations, indépendamment de toute question particulière et sans recourir aux propositions élémentaires que nous avons expliquées dans l'Introduction.

SECTION VI.

ÉQUATION GÉNÉRALE DE LA PROPAGATION DE LA CHALEUR DANS L'INTÉRIEUR DES SOLIDES.

132.

THÉORÈME I. — Si les différents points d'une masse solide homogène, comprise entre six plans rectangulaires, ont des températures actuelles

déterminées par l'équation linéaire

$$c = \mathbf{A} - ax - by - cz$$

et si les molécules placées à la surface extérieure sur les six plans qui terminent le prisme sont retenues par une cause quelconque à la température exprimée par l'équation (a), toutes les molécules situées dans l'intérieur de la masse conserveront d'elles-mêmes leur température actuelle, en sorte qu'il ne surviendra aucun changement dans l'état du prisme. (v désigne la température actuelle du point dont les coordonnées sont $x, y, z; \Lambda, a, b$. c sont des coefficients constants.)

Pour démontrer cette proposition, considérons dans le solide trois points quelconques m, M, μ , placés sur une même droite $m\mu$ que le point M divise en deux parties égales; désignons par x, y, z les coordonnées du point m et par v sa température, par $x + \alpha$, $y + \beta$, $z + \gamma$ les coordonnées du point μ et par v sa température, par $x - \alpha$, $y - \beta$. $z - \gamma$ les coordonnées du point m et par u sa température; on aura

$$r = A - ax - by - cz,$$

$$w = A - a(x + \alpha) - b(y + \beta) - c(z + \gamma),$$

$$u = A - a(x - \alpha) - b(y - \beta) - c(z - \gamma);$$

d'où l'on conclut

$$v - w = a\alpha + b\beta + c\gamma$$
 et $u - v = a\alpha + b\beta + c\gamma$.

Done

$$\bar{v} - w = u - c$$

Or la quantité de chaleur qu'un point reçoit d'un autre dépend de la distance des deux points et de la différence de leurs températures. Donc l'action du point M sur le point μ est égale à l'action de m sur M; ainsi le point M reçoit autant de chaleur de m qu'il en envoie au point μ .

On tirera la même conséquence quelles que soient la direction et la grandeur de la ligne qui passerait par le point M, et que ce point diviserait en deux parties égales. Donc il est impossible que ce point

CHAPITRE II. - ÉQUATIONS DIFFÉRENTIELLES.

change de température; car il reçoit de toutes parts autant de chaleur qu'il en donne. Le même raisonnement s'applique aux autres points; donc il ne pourra survenir aucun changement dans l'état du solide.

133.

COROLLAIRE I.

Un solide étant compris entre deux plans infinis parallèles A et B. on suppose que la température actuelle de ses différents points est exprimée par l'équation c = 1 - z, et que les deux plans qui le terminent sont retenus par une cause quelconque, l'une A à la température 1, et l'autre B à la température o : cc cas particulier sera donc compris dans le lemme précédent, en faisant A = 1, a = 0, b = 0, c = 1.

134.

COROLLAIRE II.

Si l'on se représente dans l'intérieur du même solide un plan M parallèle à ceux qui le terminent, on voit qu'il s'écoule à travers ce plan une certaine quantité de chaleur pendant l'unité de temps; car deux points très voisins, tels que m et n, dont l'un est au-dessous du plan et l'autre au-dessus, sont inégalement échauffés; le premier, dont la température est plus élevée, doit donc envoyer au second, pendant chaque instant, une certaine quantité de chaleur qui, au reste, peut être fort petite et même insensible, selon la nature du corps et la distance des deux molécules. Il en est de même de deux autres points quelconques séparés par le plan. Le plus échauffé envoie à l'autre une certaine quantité de chaleur et la somme de ces actions partielles, ou de toutes les quantités de chaleur envoyées à travers le plan, compose un flux continuel dont la valeur ne change point, puisque toutes les molécules conservent leur température. Il est facile de prouver que ce flux ou la quantité de chaleur qui traverse le plan M pendant l'unité de temps équivant à celle qui traverse, pendant le même temps, un autre plan N parallèle au premier. En effet, la partie de la masse qui est comprise entre les deux surfaces M et N recevra continuellement, à travers le plan M, autant de chaleur qu'elle en perd à travers le plan N. Si la quantité de chaleur qui, pénétrant au delà du plan M, entre dans la partie de la masse que l'on considère n'était point égale à celle qui en sort par la surface opposée N, le solide compris entre les deux surfaces acquerrait une nouvelle chaleur ou perdrait une partie de celle qu'il a, et ses températures ne seraient point constantes, ce qui est contraire au lemme précédent.

135.

On prend pour mesure de la conducibilité spécifique d'une substance donnée la quantité de chaleur qui, dans un solide infini formé de cette substance et compris entre deux plans parallèles, s'écoule pendant l'unité de temps à travers une surface égale à l'unité, et prise sur un plan intermédiaire quelconque parallèle aux plans extérieurs, dont la distance est égale à l'unité de mesure, et dont l'un est entretenu à la température 1, et l'autre à la température 0. On désigne par le coefficient K ce flux constant de chaleur qui traverse toute l'étendue du prisme et qui est la mesure de la conducibilité.

136.

LEMME.

Si l'on suppose que toutes les températures du solide dont il s'agit dans l'article précèdent sont multipliées par un nombre quelconque g, en sorte que l'équation des températures soit c = g - gz, au lieu d'être c = 1 - cz, et si les deux plans extérieurs sont entretenus, l'un à la température g, et l'autre à la température o, le flux constant de chaleur, dans cette seconde hypothèse, ou la quantité qui, pendant l'unité de temps, traverse l'unité de surface prise sur un plan intermédiaire parallèle aux bases, est ègale au premier flux K, multiplié par g.

En effet, puisque toutes les températures ont été augmentées dans

le rapport de 1 à g, les différences des températures des deux points quelconques m et μ sont augmentées dans le même rapport. Donc, suivant le principe de la communication de la chaleur, il faut, pour connaître la quantité de chaleur que m envoie à μ dans la seconde hypothèse, multiplier par g la quantité que ce point m envoyait à μ dans la première. Il en serait de même de deux autres points quelconques. Or la quantité de chaleur qui traverse un plan M résulte de la somme de toutes les actions que les points m, m', m'', m''', ... situés d'un même côté du plan exercent sur les points μ , μ' , μ'' , μ''' , ... situés de l'autre côté. Donc, si dans la première hypothèse le flux constant est désigné par K, il sera égal à gK lorsqu'on aura multiplié toutes les températures par g.

137.

THÉORÈME II.

Dans un prisme dont les températures constantes sont exprimées par l'équation

c = A - ax - by - cz,

et que terminent six plans rectangulaires dont tous les points sont entretenus aux températures déterminées par l'équation précédente, la quantité de chaleur qui, pendant l'unité de temps, traverse l'unité de surface, prise sur un plan intermédiaire quelconque perpendiculaire aux z, est la même que le flux constant dans un solide de même substance, qui serait compris entre deux plans parallèles infinis, et pour lequel l'équation des températures constantes serait

c = c - cz.

Pour le démontrer, considérons, dans le prisme et ensuite dans le solide infini, deux points m et μ extrêmement voisins et séparés par le plan M perpendiculaire à l'axe des z, μ étant au-dessus du plan et m au-dessous (fig. 4); choisissons au-dessous du même plan un point m' tel que la perpendiculaire abaissée du point μ sur le plan soit aussi perpendiculaire sur le milieu h de la distance mm'. Désignons par x,

v, z-h les coordonnées du point μ dont la température est w, par x-z, y-3, z les coordonnées de m dont la température est v, et par x+z, y+3, z les coordonnées de m' dont la température est v'.

L'action de m sur μ ou la quantité de chaleur que m envoie à μ pendant un certain temps peut être exprimée par q(v-w). Le facteur q dépend de la distance $m\mu$ et de la nature de la masse. L'action de mv sur μ sera donc exprimée par q(v'-w); et le facteur q est le même que dans l'expression précédente; donc la somme des deux actions de m sur μ et de m' sur μ , ou la quantité de chaleur que μ reçoit de m et de m', est exprimée par

$$q(v-w+v'-w).$$

Or, si les points m, μ , m' appartiennent au prisme, on a

$$w = \mathbf{A} - ax - by - c(z + h),$$

$$c = \mathbf{A} - a(x - \alpha) - b(y - \beta) - cz,$$

$$v' = \mathbf{A} - a(x + \alpha) - b(y + \beta) - cz;$$

et si ces mêmes points appartenaient au solide infini, on aurait, par hypothèse,

$$w = c - c(z + h),$$

$$c = c - cz,$$

$$c' = c - cz$$

Dans le premier cas on trouve

$$q(v - w + v' - w) = 2qch,$$

et dans le second cas on a encore le même résultat. Donc la quantité

CHAPITRE II. - ÉQUATIONS DIFFÉRENTIELLES.

113 de chaleur que \mu reçoit de m et de m' dans la première hypothèse, lorsque l'équation des températures constantes est

$$v = A - ax - by - cz$$

équivaut à la quantité de chaleur que μ reçoit de m et de m', lorsque l'équation des températures constantes est

$$v = c - cz$$
.

On tirerait la même conséquence par rapport à trois autres points quelconques m', μ' , m'', pourvu que le second μ' fût placé à égale distance des deux autres et que la hauteur du triangle isoscèle $m'\mu'm''$ fût parallèle aux z. Or la quantité de chaleur qui traverse un plan quelconque M résulte de la somme des actions que tous les points m, m', m'', m''', \dots situés d'un côté de ce plan exercent sur tous les points μ , μ', μ", μ", ... situés de l'autre côté : donc le flux constant qui, pendant l'unité de temps, traverse une partie déterminée du plan M dans le solide infini est égale à la quantité de chaleur qui s'écoule dans le même temps à travers la même portion du plan M dans le prisme dont les températures sont exprimées par l'équation

$$v = \Lambda - ax - by - cz$$
.

138.

COROLLAIRE.

Le flux a pour valeur cK dans le solide infini, lorsque la partie du plan qu'il traverse est l'unité de surface. Il a donc aussi dans le prisme la même valeur cK ou $-K\frac{\partial c}{\partial z}$

On prouve de la même manière que le flux constant qui a lieu, pendant l'unité de temps, dans le même prisme à travers l'unité de surface sur un plan quelconque perpendiculaire aux y est égal à bK ou $-K\frac{\partial v}{\partial y}$; et que celui qui traverse le plan perpendiculaire aux x a pour valeur aK $ou - \mathbf{K} \frac{\partial v}{\partial x}$.

៊េ

139.

Les propositions que l'on a démontrées dans les articles précédents s'appliquent aussi au cas où l'action instantanée d'une molécule s'exercerait dans l'intérieur de la masse, jusqu'à une distance appréciable. Il faut, dans ce cas, supposer que la cause qui retient les tranches extérieures des corps dans l'état exprimé par l'équation linéaire affecte la masse jusqu'à une profondeur finie. Toutes les observations concourent à prouver que, dans les solides et les liquides, la distance dont il s'agit est extrêmement petite.

140.

THÉORÈME III.

Si les températures des points d'un solide sont exprimées par l'équation

g = f(x, y, z, t),

dans laquelle x, y, z sont les coordonnées de la molécule dont la température est égale à v après le temps écoulé t, le flux de chaleur qui traverse une partie d'un plan tracé dans le solide, et perpendiculaire à l'un des trois axes, n'est plus constant; sa valeur est différente pour les différentes parties du plan, et elle varie aussi avec le temps. Cette quantité variable peut être déterminée par le calcul.

Soit ω un cercle infiniment petit dont le centre coincide avec le point m du solide et dont le plan soit perpendiculaire à la coordonnée verticale z; il s'écoulera, pendant l'instant dt, à travers ce cercle, une certaine quantité de chaleur qui passera de la partie du solide inférieure au plan du cercle dans la partie supérieure. Ce flux se compose de tous les rayons de chaleur qui partent d'un point inférieur et parviennent à un point supérieur, en traversant un point de la petite surface ω . Nous allons démontrer que la valeur du flux a pour expression $-K \frac{\partial v}{\partial z} \omega dt$.

Désignons par x', y', z' les coordonnées du point m dont la tempéra-

ture est e'; et supposons que l'on rapporte toutes les autres molécules à ce point m choisi pour l'origine de trois nouveaux axes parallèles aux précédents; soient ξ , η , ζ les trois coordonnées d'un point rapporté à l'origine m; on aura, pour exprimer la température actuelle e d'une molécule infiniment voisine de m, l'équation linéaire

$$w = v' + \xi \frac{\partial v'}{\partial x} + \eta \frac{\partial v'}{\partial y} + \xi \frac{\partial v'}{\partial z}.$$

Les coefficients v', $\frac{\partial v'}{\partial x}$, $\frac{\partial v'}{\partial y}$, $\frac{\partial v'}{\partial z}$ sont les valeurs que l'on trouve en substituant dans les fonctions v, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial z}$, aux variables x, y, z, les quantités constantes x', y', z' qui mesurent les distances du point m aux trois premiers axes des x, des y, des z.

Supposons maintenant que le même point m soit aussi une molécule

intérieure d'un prisme rectangulaire compris entre six plans perpendiculaires aux trois axes dont m est l'origine; que la température actuelle ω de chaque molécule de ce prisme, dont les dimensions sont finies, soit exprimée par l'équation linéaire $\omega = A + a\xi + b\eta + c\zeta$, et que les six faces qui terminent le prisme soient retenues aux températures fixes que cette dernière équation leur assigne. L'état des molécules intérieures sera aussi permanent et il s'écoulera, pendant l'instant dt, à travers le cercle ω , une quantité de chalcur que mesure l'expression $-Kc\omega dt$.

Cela posé, si l'on prend pour les valeurs des constantes A, a, b, c, les quantités c', $\frac{\partial v'}{\partial x}$, $\frac{\partial v'}{\partial y'}$, $\frac{\partial v'}{\partial z}$, l'état fixe du prisme sera exprimé par l'équation

$$w = v' + \frac{\partial v'}{\partial x} \xi + \frac{\partial v'}{\partial y} \eta + \frac{\partial v'}{\partial z} \zeta.$$

Ainsi les molécules infiniment voisines du point m auront, pendant l'instant dt, la même température actuelle dans le solide dont l'état est variable, et dans le prisme dont l'état est constant. Donc le flux qui a lieu au point m pendant l'instant dt, à travers le cercle infin

niment petit ω , est le même dans l'un et l'autre solide : donc il est exprimé par $-\mathbf{K}\frac{\partial v'}{\partial z}\omega\,dt$.

On en conclut la proposition suivante:

Si dans un solide dont les températures intérieures varient avec le temps, en vertu de l'action des molécules, on trace une ligne droite quelconque et que l'on élève (fig. 5), aux différents points de cette ligne, les ordon-

nées pm d'une courbe plane égales aux températures de ces points prises au même instant, le flux de chaleur, en chaque point p de la droite, serce proportionnel à la tangente de l'angle α que fait l'élément de la courbe avec la parallèle aux abscisses; c'est-à-dire que, si l'on plaçait au point p le centre d'un cercle infiniment petit ω perpendiculaire à la ligne, la quantité de chaleur écoulée pendant un instant dt, à travers ce cercle, dans le sens suivant lequel les abscisses Op croissent, aurait pour mesure le produit de quatre facteurs qui sont la tangente de l'angle α, un coefficient constant K, l'aire ω du cercle et la durée dt de l'instant.

141.

COROLLAIRE.

Si l'on représente par ε l'abscisse de cette courbe ou la distance d'un point p de la droite à un point fixe 0, et par v l'ordonnée qui représente la température du point p, v variera avec la distance ε et sera une certaine fonction $f(\varepsilon)$ de cette distance; la quantité de cha-

117

leur qui s'écoulerait à travers le cercle ω , placé au point p perpendiculairement à la ligne, sera

$$-\mathbf{K}\frac{dv}{d\varepsilon}\omega dt$$
 ou $-\mathbf{K}f'(\varepsilon)\omega dt$,

en désignant par $f'(\varepsilon)$ la fonction $\frac{df(\varepsilon)}{d\varepsilon}$.

Nous donnerons à ce résultat l'expression suivante, qui facilite les applications:

Pour connaître le flux actuel de la chaleur en un point p d'une droite tracée dans un solide dont les températures varient par l'action des molécules, il faut diviser la différence des températures de deux points infiniment voisins du point p par la distance de ces points. Le flux est proportionnel au quotient (1).

(1) Plus exactement il est égal à ce quotient multiplié par — $K \omega dt$, K désignant toujours le coefficient de conductibilité et ω la surface de l'élément normal à la droite.

En déduisant les conséquences de cette règle, Fourier aurait pu simplifier son exposition et éviter quelques incertitudes que nous signalerons plus loin.

Supposons, en effet, que l'on se propose de trouver le flux de chaleur qui s'écoule à travers un élément ω dont la normale prise dans un sens déterminé fait avec les axes coordonnés les angles z, β , γ . Soient x, γ , z les coordonnées d'un point de l'élément; si nous nous déplaçons suivant la normale en parcourant une longueur infiniment petite ds, nous aurons évidemment, pour les différentielles de x, γ , z, les valeurs

$$dx = ds \cos z$$
, $dy = ds \cos \beta$, $dz = ds \cos \gamma$

et, par conséquent,

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + \frac{\partial v}{\partial z} dz = dx \left(\frac{\partial v}{\partial x} \cos \alpha + \frac{\partial v}{\partial y} \cos \beta + \frac{\partial v}{\partial z} \cos \gamma \right).$$

Le flux de chaleur étant, d'après la règle de Fourier,

$$-K\omega \frac{ds}{ds}dt$$

aura done pour expression

$$-\operatorname{K} \omega \operatorname{clt} \left(\frac{\partial \nu}{\partial x} \cos z + \frac{\partial \nu}{\partial y} \cos \beta + \frac{\partial \nu}{\partial z} \cos \gamma \right).$$

Si l'on introduit la notion, aujourd'hui bien répandue, de la dérivée d'une fonction de point relative à une direction donnée, la règle de Fourier s'énonce ainsi :

Le flux de chaleur est égal et de signe contraire au produit de Kwdt par la dérivée de la température par rapport à la normale à l'élément, à l'instant considéré. G. D.

142.

THÉORÈME IV.

Il est facile de déduire des théorèmes précédents les équations gén érales de la propagation de la chaleur.

Supposons que les différents points d'un solide homogène d'une formice quelconque aient reçu des températures initiales qui varient successivement par l'effet de l'action mutuelle des molécules et que l'équation

$$c = f(x, y, z, t)$$

représente les états successifs du solide, on va démontrer que la fonction $\cdot \cdot \cdot$ de quatre variables satisfait nécessairement à l'équation

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right).$$

En effet, considérons le mouvement de la chalcur dans une molécule comprise entre six plans perpendiculaires aux axes des x, des y et des z; les trois premiers de ces plans passent par le point m dont les coordonnées sont x, y, z et les trois autres passent par le point m' dont les coordonnées sont x + dx, y + dy, z + dz.

La molécule reçoit pendant l'instant dt, à travers le rectangle in fèrieur dx dy qui passe par le point m, une quantité de chalcur égale it

$$-\mathbf{K} dx dy \frac{\partial v}{\partial z} dt.$$

Pour connaître la quantité qui sort de la molécule par la face opposée. il suffit de changer dans l'expression précédente z en z + dz, c'est-à-dire d'ajouter à cette expression sa propre différentielle prise par rapport à z seulement; on aura donc

$$- \operatorname{K} dx dy \frac{\partial v}{\partial z} dt - \operatorname{K} dx dy \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial z} \right) dz dt$$

pour la valeur de la quantité qui sort à travers le rectangle supérieur.

La même molécule reçoit encore, à travers le premier rectangle dx dz qui passe par le point m, une quantité de chaleur égale à

$$-K\frac{\partial v}{\partial y}\,dx\,dz\,dt;$$

et, si l'on ajoute à cette expression sa propre différentielle prise par rapport à y seulement, on trouve que la quantité qui sort à travers la face opposée dx dz a pour expression

$$-\operatorname{K}\frac{\partial v}{\partial y}dx\,dz\,dt-\operatorname{K}\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial y}\right)dy\,dx\,dz\,dt.$$

Enfin cette molécule reçoit, par le premier rectangle dy dz, une quantité de chaleur égale à

$$-\mathbf{K}\frac{\partial v}{\partial x}dydzdt$$

et ce qu'elle perd à travers le rectangle opposé qui passe par m' a pour expression

$$= \mathbf{K} \frac{\partial v}{\partial x} dy dz dt - \mathbf{K} \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} \right) dx dy dz dt.$$

Il faut maintenant prendre la somme des quantités de chaleur que la molécule reçoit et en retrancher la somme de celles qu'elle perd. On voit par là qu'il s'accumule, durant l'instant dt, dans l'intérieur de cette molécule, une quantité totale de chaleur égale à

$$\mathbf{K} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) dx \, dy \, dz \, dt.$$

Il ne s'agit plus que de connaître quel est l'accroissement de température qui doit résulter de cette addition de chaleur.

D étant la densité du solide ou le poids de l'unité de volume, et C la capacité spécifique ou la quantité de chaleur qui élève l'unité de poids de la température o à la température 1, le produit C D dx dy dz exprime combien il faut de chaleur pour élever de o à 1 la molécule dont le volume est dx dy dz. Done, en divisant par ce produit la nou-

velle quantité de chaleur que la molécule vient d'acquérir, on aura son accroissement de température. On obtient ainsi l'équation générale

$$\frac{\partial c}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} + \frac{\partial^2 c}{\partial z^2} \right)$$

qui est celle de la propagation de la chaleur dans l'intérieur de tous les corps solides (1).

143.

Indépendamment de cette équation, le système des températures est souvent assujetti à plusieurs conditions déterminées, dont on ne peut donner une expression générale, puisqu'elles dépendent de l'espèce de la question.

Si la masse dans laquelle la chaleur se propage a des dimensions finies et si la superficie est retenue par une cause spéciale dans un état donné; par exemple, si tous ses points conservent, en vertu de cette cause, la température constante o, on aura, en désignant la fonction inconnue v par $\varphi(x, y, z, t)$, l'équation de condition

$$f(x, y, z, t) = 0;$$

il est nécessaire qu'elle soit satisfaite pour toutes les valeurs de x, y, z qui appartiennent aux points de la surface extérieure et pour une valeur quelconque de t.

De plus, si l'on suppose que les températures initiales du corps son t exprimées par la fonction connue F(x, y, z), on a aussi l'équation

$$\varphi(x,y,z,0) = F(x,y,z);$$

la condition exprimée par cette équation doit être remplie pour les

⁽¹⁾ Il y a ici une remarque à présenter. Les raisonnements par lesquels Fourier a établi son équation supposent tacitement que le corps solide jouit de propriétés que nous exprimons aujourd'hui en disant que le corps est isotrope. Au reste, c'est en suivant sa méthode que ses successeurs Duhamel et Lamé ont trouvé les équations différentielles de la propagation de la chaleur dans les milieux cristallisés.

CHAPITRE II. — ÉQUATIONS DIFFÉRENTIELLES. 121 valeurs des coordonnées x, y, z qui conviennent à un point quelconque du solide.

114.

Au lieu d'assujettir la surface du corps à une température constante, on peut supposer que cette température n'est pas la même pour les différents points de la surface et qu'elle varie avec le temps suivant une loi donnée; c'est ce qui a lieu dans la question des températures terrestres. Dans ce cas, l'équation relative à la surface contient la variable t.

145.

Pour examiner en elle-même et sous un point de vue très général la question de la propagation de la chaleur, il faut supposer que le solide dont l'état initial est donné a toutes ses dimensions infinies; alors aucune condition spéciale ne trouble la diffusion de la chaleur et la loi à laquelle ce principe est soumis devient plus manifeste : elle est exprimée par l'équation générale

$$\frac{\partial c}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 c}{\partial z^2} + \frac{\partial^2 c}{\partial r^2} + \frac{\partial^2 c}{\partial z^2} \right),$$

à laquelle il faut joindre celle qui se rapporte à l'état initial et arbitraire du solide.

Supposons que la température initiale d'une molécule dont les coordonnées sont x, y, z soit une fonction connue F(x,y,z) et désignons la valeur inconnue v par $\varphi(x,y,z,t)$, on aura l'équation déterminée

$$\varphi(x,y,z,o) = \mathbf{F}(x,y,z);$$

ainsi la question est réduite à intégrer l'équation générale (Λ) en sorte qu'elle convienne, lorsque le temps est nul, avec l'équation qui contient la fonction arbitraire F.

F.

SECTION VII.

ÉQUATION GÉNÉRALE RELATIVE A LA SURFACE.

146.

Si le solide a une forme déterminée, et si la chaleur primitive se dissipe successivement dans l'air atmosphérique entretenu à une température constante, il faut ajouter à l'équation générale (A) et à celle qui représente l'état initial une troisième condition relative à l'état de la surface. Nous allons examiner dans les articles suivants la nature de l'équation qui exprime cette dernière condition.

Considérons l'état variable d'un solide dont la chaleur se dissipe dans l'air, entretenu à une température fixe o. Soient ω une partie intiniment petite de la surface extérieure et μ un point de ω , par lequel on fait passer une normale à la surface; les différents points de cette ligne ont au même instant des températures différentes.

Soient v la température actuelle du point μ , prise pour un instant déterminé, et w la température correspondante d'un point v du solide, pris sur la normale et distant du point μ d'une quantité infiniment petite z. Désignons par x, y, z les coordonnées du point μ et par $x + \delta x$, $y + \delta y$, $z + \delta z$ celles du point v; soient

$$f(x, y, z) = 0$$

l'équation connue de la surface du solide, et

$$\varphi = \varphi(x, y, z, t)$$

l'équation générale qui doit donner la valeur de c en fonction des quatre variables x, y, z, t. En différentiant l'équation f(x, y, z) on aura

$$m dx + n dy + p dz = 0;$$

m, n, p sont des fonctions de x, y, z.

Il résulte du corollaire énoncé dans l'article 141 que le flux dans le sens de la normale, ou la quantité de chaleur qui traverserait pendant l'instant dt la surface ω , si on la plaçait en un point quelconque de cette ligne perpendiculairement à sa direction, est proportionnel au quotient que l'on obtient en divisant la différence de température de deux points infiniment voisins par leur distance. Donc l'expression de ce flux à l'extrémité de la normale est

$$-K\frac{\alpha-\alpha}{\alpha}\omega dt$$

K désignant la conducibilité spécifique de la masse. D'un autre côté, la surface ω laisse échapper dans l'air, pendant l'instant dt, une quantité de chaleur égale à

how dt.

h étant la conducibilité relative à l'air atmosphérique. Ainsi le flux de chaleur à l'extrémité de la normale a deux expressions différentes, savoir : $hc\omega dt$ et $-K\frac{\alpha - c}{\alpha}\omega dt$; donc ces deux quantités sont égales, et c'est en exprimant cette égalité que l'on introduira dans le calcul la condition relative à la surface.

On a

$$w = v + \delta v = v + \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y + \frac{\partial v}{\partial z} \delta z.$$

Or il suit des principes de la Géométrie que les coordonnées δx , δy , δz , qui fixent la position du point v de la normale par rapport au point μ , satisfont aux conditions suivantes :

$$p \, \partial x = m \, \partial z, \qquad p \, \partial y = n \, \partial z.$$

On a done

$$w = e = \frac{1}{p} \left(m \frac{\partial e}{\partial x} + n \frac{\partial e}{\partial y} + p \frac{\partial e}{\partial z} \right) \delta z;$$

on a aussi

$$\alpha = \sqrt{\partial x^2 + \partial y^2 + \partial z^2} = \frac{1}{p} (m^2 + n^2 + p^2)^{\frac{1}{2}} \partial z \quad (1)$$

ou

$$\alpha = \frac{q}{p} \, \hat{o} z,$$

en désignant par q la quantité $(m^2+n^2+p^2)^{\frac{1}{2}}$; donc

$$\frac{w-v}{\alpha} = \left(m\frac{\partial v}{\partial x} + n\frac{\partial v}{\partial y} + p\frac{\partial v}{\partial z}\right)\frac{1}{q};$$

par conséquent l'égalité

$$h v \omega dt = - \mathbf{K} \left(\frac{w - v}{\alpha} \right) \omega dt$$

devient la suivante :

(B)
$$m \frac{\partial v}{\partial x} + n \frac{\partial v}{\partial y} + p \frac{\partial v}{\partial z} + \frac{h}{K} \circ q = 0.$$

Cette équation est déterminée et ne s'applique qu'aux points de la surface; elle est celle que l'on doit joindre à l'équation générale de la propagation de la chaleur (A) et à la condition qui détermine l'éta t initial du solide; m, n, p, q sont des fonctions connues des coordonnées des points de la surface.

148.

L'équation (B) signifie, en général, que le décroissement de la température dans le sens de la normale, à l'extrémité du solide, est tel que la quantité de chaleur qui tend à sortir en vertu de l'action des

(1) Il y a ici une remarque essentielle à faire. L'équation

$$\alpha = \frac{\delta z}{p} (m^2 + n^2 + p^2)^{\frac{1}{2}}$$

n'est exacte dans tous les cas que si l'on convient de donner un signe convenable au radical

$$(m^2+n^2+p^2)^{\frac{1}{2}}$$
.

La valeur de ∂z étant parfaitement déterminée quand on passe du point μ au point ν et z étant la distance des deux points μ et ν , il faudra donner au radical un signe tel que la valeur de z soit positive. Au reste nous reviendrons plus loin sur ce sujet. (7.1).

molécules équivaut toujours à celle que le corps doit prendre dans le milieu.

On pourrait concevoir que la masse du solide soit prolongée, en sorte que la surface, au lieu d'être exposée à l'air, appartienne à la fois au corps qu'elle termine et à une enveloppe solide qui le contient. Si, dans cette hypothèse, une cause quelconque réglait à chaque instant le décroissement des températures dans l'enveloppe solide et la déterminait de manière que la condition exprimée par l'équation (B) fût toujours satisfaite, l'action de l'enveloppe tiendrait lieu de celle de l'air, et le mouvement de la chaleur serait le même dans l'un et l'autre cas; on peut donc supposer que cette cause existe et déterminer, dans cette hypothèse, l'état variable du solide: c'est ce que l'on fait en employant les deux équations (A) et (B).

On voit par là comment l'interruption de la masse et l'action du milieu troublent la diffusion de la chaleur en l'assujettissant à une condition accidentelle.

149.

On peut aussi considérer sous un autre point de vue cette équation (B) qui se rapporte à l'état de la surface; il faut auparavant déduire une conséquence remarquable du théorème III (art. 140). Nous conserverons la construction rapportée dans le corollaire du même théorème (art. 141). Soient x, y, z les coordonnées du point p et

$$x + \partial x$$
, $y + \partial y$, $z + \partial z$

celles d'un point q, infiniment voisin de p et marqué sur la droite dont il s'agit. Désignons par φ et ϖ les températures des deux points p et q prises pour le même instant; on aura

$$\alpha = c + \delta v = c + \frac{\partial v}{\partial x} \partial x + \frac{\partial v}{\partial r} \partial y + \frac{\partial v}{\partial z} \partial z;$$

donc le quotient $\frac{\partial v}{\partial \varepsilon}$ est donné par l'équation

$$\frac{\partial v}{\partial \varepsilon} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \varepsilon} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \varepsilon} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial \varepsilon}$$

of I'on a d'ailleurs

$$\hat{o}\varepsilon = \sqrt{\hat{o}x^2 + \hat{o}y^2 + \hat{o}z^2};$$

ainsi la quantité de chaleur qui s'écoule à travers la surface ω, placée au point m perpendiculairement à la droite, est

$$= \mathbf{K} \circ dt \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial v}{\partial z} \frac{\partial y}{\partial z} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial z} \right) \cdot$$

Le premier terme est le produit de $-K\frac{\partial v}{\partial x}$ par dt et par $\omega \frac{\partial x}{\partial z}$. Cette dernière quantité est, d'après les principes de la Géométrie, l'aire de la projection de ω sur le plan des yz; ainsi le produit représente la quantité de chaleur qui s'écoulerait à travers l'aire de la projection, si on la plaçait au point p perpendiculairement à l'axe des x.

Le sécond terme $-K \frac{\partial v}{\partial y} \omega \frac{\partial y}{\partial z} dt$ représente la quantité de chaleur qui traverserait la projection de ω , faite sur le plan des αz , si l'on plaçait cette projection au point p parallèlement à elle-même.

Enfin, le troisième terme $-K \frac{\partial v}{\partial z} \omega \frac{\partial z}{\partial \varepsilon} dt$ représente la quantité de chaleur qui s'écoulerait pendant l'instant dt, à travers la projection de ω sur le plan des xy, si l'on plaçait cette projection au point p perpendiculairement à la coordonnée z.

On voit par là que la quantité de chaleur qui s'écoule à travers chaque partie infiniment petite d'une surface tracée dans l'intérieur du solide peut toujours être décomposée en trois autres, qui pénêtrent les trois projections orthogonales de la surface selon les directions perpendiculaires aux plans des projections. Ce résultat donne naissance à des propriétés analogues à celles que l'on remarque dans la théorie des forces.

150.

La quantité de chaleur qui s'écoule à travers une surface plane infiniment petite ω , donnée de figure et de position, étant équivalente à celle qui traverserait ses trois projections orthogonales, il s'ensuit que, si l'on conçoit dans l'intérieur du solide un élément d'une figure quelconque, les quantités de chalcur qui pénètrent dans ce polyèdre par ses différentes faces se compensent réciproquement; ou plus exactement, la somme des termes du premier ordre qui entrent dans l'expression de ces quantités de chalcur reçues par la molécule est zéro; en sorte que la chalcur qui s'y accumule en effet et fait varier sa température ne peut être exprimée que par des termes infiniment plus petits que ceux du premier ordre.

On voit distinctement ce résultat lorsqu'on établit l'équation générale (A) en considérant le mouvement de la chaleur dans une molécule prismatique (art. 427 et 442); on le démontre encore pour une molécule d'une figure quelconque, en substituant à la chaleur reçue par chaque face celle que recevraient ses trois projections.

Il est d'ailleurs nécessaire que cela soit ainsi : car, si une des molécules du solide acquérait pendant chaque instant une quantité de chaleur exprimée par un terme du premier ordre, la variation de sa température serait infiniment plus grande que celle des autres molécules; c'est-à-dire que, pendant chaque instant infiniment petit, sa température augmenterait ou diminuerait d'une quantité finie, ce qui est contraire à l'expérience.

151.

Nous allons appliquer cette remarque à une molécule placée à la surface extérieure du solide.

Par un point a(fig. 6), pris sur le plan des xy, menons deux plans

perpendiculaires, l'un à l'axe des x, l'autre à l'axe des y. Par un autre point b du même plan, infiniment voisin de a, menons aussi deux

plans parallèles aux deux précédents; les ordonnées z élevées aux points a, b, c, d jusqu'à la surface extérieure du solide marqueront sur cette surface quatre points a', b', c', d' et seront les arêtes d'un prisme tronqué dont la base est le rectangle abcd. Si par le point a', qui désigne le moins élevé des quatre points a', b', c', d', on fait passer un plan parallèle à celui des xy, on retranchera du prisme tronqué une molécule dont une des faces, savoir a'b'c'd', se confond avec la superficie du solide. Les valeurs des quatre ordonnées aa', cc', dd', bb' sont les suivantes :

$$aa' = z,$$

$$cc' = z + \frac{\partial z}{\partial x} dx,$$

$$dd' = z + \frac{\partial z}{\partial y} dy,$$

$$bb' = z + \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy.$$

152.

L'une des faces perpendiculaires aux x est un triangle, et la face opposée est un trapèze. L'aire du triangle est

$$\frac{1}{2}dy\frac{\partial z}{\partial y}dy,$$

et le flux de chaleur dans la direction perpendiculaire à cette surface étant $-\mathbf{K} \frac{\partial v}{\partial x}$, on a, en omettant le facteur dt,

$$-\mathbf{K}\frac{\partial v}{\partial x}\,\frac{dy}{2}\,\frac{\partial z}{\partial y}\,dy$$

pour l'expression de la quantité de chaleur qui pénètre pendant un instant dans la molécule, à travers le triangle dont il s'agit.

L'aire de la face opposée est

$$\frac{1}{2}dy\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)$$

et le flux perpendiculaire à cette face est aussi — $K \frac{\partial v}{\partial x}$, en supprimant les termes du second ordre, infiniment plus petits que ceux du premier; on retranchera la quantité de chaleur qui sort par cette seconde face de celle qui entre par la première, et l'on trouvera

$$\mathbf{K}\,\frac{\partial v}{\partial x}\,\frac{\partial z}{\partial x}\,dx\,dy.$$

Ce terme exprime combien la molécule reçoit de chaleur par les faces perpendiculaires aux x.

On trouvera par un calcul semblable que la même molécule reçoit par les faces perpendiculaires aux y une quantité de chaleur égale à

$$\mathbf{K} \, \frac{\partial \mathbf{v}}{\partial y} \, \frac{\partial \mathbf{z}}{\partial y} \, dx \, dy.$$

La quantité de chaleur que la molécule reçoit par la base rectangulaire est

$$-\mathbf{K}\frac{\partial v}{\partial z}dx\,dy.$$

Enfin elle laisse échapper dans l'air, à travers la surface supérieure a'b'c'd', une certaine quantité de chaleur égale au produit de hv par l'étendue ω de cette surface. La valeur de ω est, selon les principes connus, celle de dx dy multipliée par le rapport $\frac{\varepsilon}{z}$; ε désigne la longueur de la normale, depuis la surface extérieure jusqu'au plan des xy, et l'on a

$$\varepsilon = z \left[1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right]^{\frac{1}{2}};$$

donc la molécule perd à travers sa surface a'b'c'd' une quantité de chaleur égale à

he dx dy
$$\frac{\varepsilon}{z}$$
.

Or les termes du premier ordre qui entrent dans l'expression de la quantité totale de chaleur acquise par la molécule doivent se détruire,

F.

pour que la variation des températures ne soit pas à chaque instant une quantité finie; on doit donc avoir l'équation (†)

$$\mathbf{K} \frac{\partial v}{\partial x} \frac{\partial z}{\partial x} dx dy + \mathbf{K} \frac{\partial v}{\partial y} \frac{\partial z}{\partial y} dx dy - \mathbf{K} \frac{\partial v}{\partial z} dx dy - hv \frac{\varepsilon}{z} dx dy = 0$$

ou

$$\frac{h}{K} \circ \frac{\varepsilon}{z} = \frac{\partial v}{\partial x} \frac{\partial z}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial z}{\partial y} - \frac{\partial v}{\partial z}.$$

153.

En mettant pour $\frac{\partial z}{\partial x}$ et $\frac{\partial z}{\partial y}$ leurs valeurs tirées de l'équation

$$m dx + n dy + p dz = 0$$

(1) Ici encore il y a défaut de précision dans l'établissement de l'équation à la surface. La méthode suivie par Fourier suppose, ce qui peut fort bien no pas arriver, que le solide dont il considère toutes les faces soit placé à l'intérieur du corps.

Au reste, on obtient immédiatement cette équation si l'on óvalue, d'après la règle donnée dans une Note précédente (p. 117), le flux de chaleur qui passe à travers un élément infiniment petit ω de la surface; α , β , γ désignant les angles que fait avec les axes la normale extérieure au corps, le flux a pour expression

$$-K\omega dt \left(\frac{\partial v}{\partial x}\cos \alpha + \frac{\partial v}{\partial y}\cos \beta + \frac{\partial v}{\partial z}\cos \gamma\right).$$

Comme il doit être égal à $h\omega(v-\zeta)$, ζ désignant la température extérieure au contact de l'élément, on a

(B')
$$K\left(\frac{\partial v}{\partial x}\cos x + \frac{\partial v}{\partial y}\cos \beta + \frac{\partial v}{\partial z}\cos \gamma\right) + h(v - \zeta) = 0.$$

En faisant $\zeta = 0$ et en remplaçant les cosinus par leurs valeurs déduites des équations

$$\frac{\cos z}{m} = \frac{\cos \beta}{n} = \frac{\cos \gamma}{p} = \frac{\pm 1}{\sqrt{m^2 + n^2 + p^2}},$$

on retrouve l'équation (B), mais avec un signe parfaitement déterminé pour le radical q. L'équation (B'), donnée plus haut, peut encore s'écrire

$$-K\frac{\partial v}{\partial N} + h(v - \zeta) = 0,$$

 $\frac{\partial v}{\partial N}$ désignant la dérivée de v suivant la normale à la surface, *intérieure* au corps.

et désignant par q la quantité $(m^2+n^2+p^2)^{\frac{1}{2}}$, on a

(B)
$$Km\frac{\partial v}{\partial x} + Kn\frac{\partial v}{\partial y} + Kp\frac{\partial v}{\partial z} + hvq = 0;$$

on connaît ainsi d'une manière distincte ce que représente chacun des termes de cette équation.

En les prenant tous avec des signes contraires et les multipliant pa le rectangle dx dy, le premier exprime combien la molécule reçoit d chaleur par les deux faces perpendiculaires aux x, le deuxième combie elle en reçoit par ses deux faces perpendiculaires aux y, le troisièm combien elle en reçoit par la face perpendiculaire aux z, et le qua trième combien elle en reçoit du milieu. L'équation exprime donc qu la somme de tous ces termes du premier ordre est nulle, et que la cha leur acquise ne peut être représentée que par des termes du secon ordre.

454.

Pour parvenir à cette équation (B), il faut considérer une des mol cules dont la base est à la surface du solide comme un vase qui reço ou perd la chaleur par ses différentes faces. L'équation signifie que tous les termes du premier ordre qui entrent dans l'expression de chaleur acquise se détruisent mutuellement, en sorte que cet accroissement de chaleur ne peut être exprimé que par des termes du secon ordre. On peut donner à cette molécule, ou la forme d'un prisme dre dont l'axe est perpendiculaire à la surface du solide, ou celle d'un prisme tronqué, ou une forme quelconque.

L'équation générale (A) suppose que tous les termes du premi ordre se détruisent dans l'intérieur de la masse, ce qui est évide pour des molécules prismatiques comprises dans le solide. L'équ tion (B) exprime le même résultat pour les molécules placées a limites des corps.

Tels sont les points de vue généraux sous lesquels on peut envisage cette partie de la théorie de la chaleur.

L'équation

$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{C} \mathbf{D}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$

représente le mouvement de la chaleur dans l'intérieur des corps. Ce théorème fait connaître la distribution instantanée dans toutes les substances solides ou liquides; on en pourrait déduire l'équation qui convient à chaque cas particulier.

Nous ferons cette application, dans les deux articles suivants, à la question du cylindre et à celle de la sphère.

SECTION VIII.

APPLICATION DES ÉQUATIONS GÉNÉRALES.

155.

Désignons par r le rayon variable d'une enveloppe cylindrique quelconque et supposons, comme précédemment dans l'article 118, que
toutes les molécules également éloignées de l'axe ont à chaque instant
une température commune; v sera une fonction de r et t; r est une
fonction de y, z, donnée par l'équation $r^2 = z^2 + y^2$. Il est évident en
premier lieu que la variation de v par rapport à x est nulle; ainsi le
terme $\frac{\partial^2 v}{\partial x^2}$ doit être omis. On aura maintenant, suivant les principes du
Calcul différentiel, les équations

$$\frac{\partial^{v}}{\partial z} = \frac{\partial^{v}}{\partial r} \frac{\partial r}{\partial z}, \qquad \frac{\partial^{2} v}{\partial z^{2}} = \frac{\partial^{2} v}{\partial r^{2}} \left(\frac{\partial r}{\partial z}\right)^{2} + \frac{\partial v}{\partial r} \frac{\partial^{2} r}{\partial z^{2}},$$

$$\frac{\partial^{v}}{\partial y} = \frac{\partial v}{\partial r} \frac{\partial r}{\partial y}, \qquad \frac{\partial^{2} v}{\partial y^{2}} = \frac{\partial^{2} v}{\partial r^{2}} \left(\frac{\partial r}{\partial y}\right)^{2} + \frac{\partial v}{\partial r} \frac{\partial^{2} r}{\partial y^{2}};$$

done

(a)
$$\frac{\partial^2 v}{\partial z^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} \left[\left(\frac{\partial r}{\partial z} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right] + \frac{\partial v}{\partial r} \left(\frac{\partial^2 r}{\partial z^2} + \frac{\partial^2 r}{\partial y^2} \right).$$

Il faut remplacer dans le second membre les quantités

$$\frac{\partial r}{\partial z}$$
, $\frac{\partial r}{\partial y}$, $\frac{\partial^2 r}{\partial z^2}$, $\frac{\partial^2 r}{\partial y^2}$

133

par leurs valeurs respectives; pour cela, on tirera de l'équation $z^2 + y^2 = r^2$

$$z = r \frac{\partial r}{\partial z}, \qquad I = \left(\frac{\partial r}{\partial z}\right)^2 + r \frac{\partial^2 r}{\partial z^2},$$

$$y = r \frac{\partial r}{\partial y}, \qquad 1 = \left(\frac{\partial r}{\partial y}\right)^2 + r \frac{\partial^2 r}{\partial y^2}$$

et, par conséquent,

$$z^{2} + y^{2} = r^{2} \left[\left(\frac{\partial r}{\partial z} \right)^{2} + \left(\frac{\partial r}{\partial y} \right)^{2} \right],$$

$$2 = \left(\frac{\partial r}{\partial z} \right)^{2} + \left(\frac{\partial r}{\partial y} \right)^{2} + r \left(\frac{\partial^{2} r}{\partial z^{2}} + \frac{\partial^{2} r}{\partial y^{2}} \right);$$

la première équation, dont le premier membre est égal à r2, donne

$$\left(\frac{\partial r}{\partial z}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 = 1;$$

la seconde donne, lorsqu'on met pour $\left(\frac{\partial r}{\partial z}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2$ sa valeur 1,

$$\frac{\partial^2 r}{\partial z^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r}.$$

Si maintenant on substitue dans l'équation (a) les valeurs données par les équations (b) et (c), on aura

$$\frac{\partial^2 v}{\partial z^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} + \frac{\mathbf{r}}{r} \frac{\partial v}{\partial r};$$

donc l'équation qui exprime le mouvement de la chaleur dans le cylindre est

$$\frac{\partial v}{\partial t} = \frac{K}{C} \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} \right),$$

comme on l'a trouvé précédemment (art. 449).

On pourrait aussi ne point supposer que les molécules également éloignées de l'axe ont reçu une température initiale commune; dans ce cas on parviendrait à une équation beaucoup plus générale.

156.

Pour déterminer, au moyen de l'équation (A), le mouvement de la chaleur dans une sphère qui a été plongée dans un liquide, on regardera c comme une fonction de r et t; r est une fonction de x, y, z donnée par l'équation

 $r^2 = x^2 + y^2 + z^2$

r étant le rayon variable d'une enveloppe. On aura ensuite

$$\begin{split} \frac{\partial v}{\partial x} &= \frac{\partial v}{\partial r} \frac{\partial r}{\partial x}, & \frac{\partial^2 v}{\partial x^2} &= \frac{\partial^2 v}{\partial r^2} \left(\frac{\partial r}{\partial x}\right)^2 + \frac{\partial v}{\partial r} \frac{\partial^2 r}{\partial x^2}, \\ \frac{\partial v}{\partial y} &= \frac{\partial v}{\partial r} \frac{\partial r}{\partial y}, & \frac{\partial^2 v}{\partial y^2} &= \frac{\partial^2 v}{\partial r^2} \left(\frac{\partial r}{\partial y}\right)^2 + \frac{\partial v}{\partial r} \frac{\partial^2 r}{\partial y^2}, \\ \frac{\partial v}{\partial z} &= \frac{\partial v}{\partial r} \frac{\partial r}{\partial z}, & \frac{\partial^2 v}{\partial z^2} &= \frac{\partial^2 v}{\partial r^2} \left(\frac{\partial r}{\partial z}\right)^2 + \frac{\partial v}{\partial r} \frac{\partial^2 r}{\partial z^2}. \end{split}$$

En faisant les substitutions dans l'équation générale

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right),$$

on aura

(a)
$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{C} \mathbf{D}} \left\{ \frac{\partial^2 v}{\partial r^2} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 + \left(\frac{\partial r}{\partial z} \right)^2 \right] + \frac{\partial v}{\partial r} \left(\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} \right) \right\}.$$

L'équation $x^2 + y^2 + z^2 = r^2$ fournit les résultats suivants :

$$x = r \frac{\partial r}{\partial x}, \qquad 1 = \left(\frac{\partial r}{\partial x}\right)^2 + r \frac{\partial^2 r}{\partial x^2},$$
$$y = r \frac{\partial r}{\partial y}, \qquad 1 = \left(\frac{\partial r}{\partial y}\right)^2 + r \frac{\partial^2 r}{\partial y^2},$$
$$z = r \frac{\partial r}{\partial z}, \qquad 1 = \left(\frac{\partial r}{\partial z}\right)^2 + r \frac{\partial^2 r}{\partial z^2}.$$

Les trois équations du premier ordre donnent

$$x^2 + y^2 + z^2 = r^2 \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 + \left(\frac{\partial r}{\partial z} \right)^2 \right],$$

o u

$$\mathbf{I} = \left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 + \left(\frac{\partial r}{\partial z}\right)^2.$$

Les trois équations du second ordre donnent

$$3 = \left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 + \left(\frac{\partial r}{\partial z}\right)^2 + r\left(\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2}\right);$$

et, mettant pour $\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 + \left(\frac{\partial r}{\partial z}\right)^2$ la valeur 1, on a

$$\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}.$$

Faisant les substitutions dans l'équation (a), on aura l'équation

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial r^2} + \frac{2}{r} \frac{\partial v}{\partial r} \right),$$

qui est la même que celle de l'article 114.

L'équation contiendrait un plus grand nombre de termes si l'on supposait point que les molécules également éloignées du centre o reçu la même température initiale.

On pourrait aussi déduire de l'équation déterminée (B) celles q expriment l'état de la surface dans les questions particulières où l'e suppose qu'un solide d'une forme donnée communique sa chaleur l'air atmosphérique, mais le plus souvent ces équations se présente d'elles-mêmes, et la forme en est très simple lorsque les coordonné sont choisies convenablement.

SECTION 1X.

REMARQUES GÉNÉRALES.

157.

La recherche des lois du mouvement de la chaleur dans les solic consiste maintenant à intégrer les équations que nous avons rapp tées : c'est l'objet des Chapitres suivants; nous terminerons celui par des remarques générales sur la nature des quantités qui entrent dans notre analyse.

Pour mesurer ces quantités et les exprimer en nombres, on les compare à diverses sortes d'unités, au nombre de cinq, savoir : l'unité de longueur, l'unité de temps, celle de la température, celle du poids et enfin l'unité qui sert à mesurer les quantités de chaleur. On aurait pu choisir pour cette dernière unité la quantité de chaleur qui élève un volume donné d'une certaine substance depuis la température o jusqu'à la température 1. Le choix de cette unité serait préférable à plusieurs égards à celui de la quantité de chaleur nécessaire pour convertir une masse de glace d'un poids donné en une masse pareille d'eau, sans élever la température o. Nous n'avons adopté cette dernière unité que parce qu'elle était en quelque sorte fixée d'avance dans plusieurs Ouvrages de Physique; au reste, cette supposition n'apporterait aucun changement dans les résultats du calcul.

158.

Les éléments spécifiques qui déterminent dans chaque corps les effets mesurables de la chaleur sont au nombre de trois, savoir : la conducibilité propre, la conducibilité relative à l'air atmosphérique et la capacité de chaleur.

Les nombres qui expriment ces quantités sont, comme la pesanteur spécifique, autant de caractères naturels propres aux diverses substances.

Nous avons déjà remarqué (art. 36) que la conducibilité de la surface serait mesurée d'une manière plus exacte si l'on avait des observations suffisantes sur les effets de la chaleur rayonnante dans les espaces vides d'air.

On peut voir, comme nous l'avons annoncé dans la Section I du Chapitre I (art. 41), qu'il n'entre dans le calcul que trois coefficients spécifiques K, h, C; ils doivent être déterminés par des observations et nous indiquerons par la suite les expériences propres à les faire connaître avec précision.

159.

Le nombre C, qui entre dans le calcul, est toujours multiplié par la densité D, c'est-à-dire par le nombre d'unités de poids qui équivalent au poids de l'unité de volume; ainsi ce produit CD peut être remplacé par le coefficient c. Dans ce cas, on doit entendre, par capacité spécifique de chaleur, la quantité nécessaire pour élever de la température o à la température 1 l'unité de volume d'une substance donnée et non l'unité de poids de cette substance. C'est pour ne pas s'éloigner des définitions communes que l'on a rapporté dans cet Ouvrage la capacité de chaleur au poids et non au volume; mais il serait préférable d'employer le coefficient c, tel que nous venons de le définir; alors il n'entrera dans les expressions analytiques aucune grandeur mesurée par l'unité de poids; on aura seulement à considérer :

1° La dimension linéaire x, la température v et le temps t;

2º Les coefficients c, h et K.

Les trois premières quantités sont des indéterminées, et les trois autres sont, pour chaque substance, des éléments constants que l'expérience fait connaître. Quant à l'unité de surface et à l'unité de volume, elles n'ont rien d'absolu et dépendent de l'unité de longueur.

160.

Il faut maintenant remarquer que chaque grandeur indéterminée ou constante a une dimension qui lui est propre et que les termes d'une même équation ne pourraient pas être comparés, s'ils n'avaient point le même exposant de dimension. Nous avons introduit cette considération dans la Théorie de la chaleur pour rendre nos définitions plus fixes et servir à vérifier le calcul; elle dérive des notions primordiales sur les quantités: c'est pour cette raison que, dans la Géométrie et dans la Mécanique, elle équivaut aux lemmes fondamentaux que les Grecs nous ont laissés sans démonstration.

161.

Dans la théorie analytique de la chaleur, toute équation (E) exprime une relation nécessaire entre des grandeurs subsistantes x, t, v, c, h, K. Cette relation ne dépend point du choix de l'unité de longueur, qui de sa nature est contingent; c'est-à-dire que, si l'on prenait une unité différente pour mesurer les dimensions linéaires, l'équation (E) serait encore la même. Supposons donc que l'unité de longueur soit changée et que sa seconde valeur soit équivalente à la première divisée par m. Une quantité quelconque x qui, dans l'équation (E), représente une certaine ligne ab et qui, par conséquent, désigne un certain nombre de fois l'unité de longueur, deviendra mx, afin de correspondre à la même grandeur ab; la valeur t du temps et la valeur v de la température ne seront point changées; il n'en sera pas de même des éléments spécifiques h, K, c: le premier h deviendra $\frac{h}{m^2}$; car il exprime la quantité de chaleur qui sort, pendant l'unité de temps, de l'unité de surface à la température 1. Si l'on examine avec attention la nature du coefficient K, tel que nous l'avons défini dans les articles 68 et 135, on reconnaîtra qu'il devient $\frac{K}{m}$; car le flux de chaleur est en raison directe de l'étendue de la surface et en raison inverse de la distance des deux plans infinis (art. 72). Quant au coefficient c qui représente le produit CD, il dépend aussi de l'unité de longueur et devient $\frac{c}{m^3}$; donc l'équation (E) ne doit subir aucun changement si l'on écrit, au lieu de x, mx, et en même temps $\frac{K}{m}$, $\frac{h}{m^2}$, $\frac{c}{m^3}$ au lieu de K, h, c; le nombre m disparaîtra de lui-même après ces substitutions : ainsi la dimension de x par rapport à l'unité de longueur est 1; celle de K est -1, celle de h est -2, et celle de c est -3. Si l'on attribue à chaque quantité son exposant de dimension, l'équation sera homogène, parce que chaque terme aura le même exposant total. Les nombres tels que s, qui représenteraient des surfaces ou des solides, ont la dimension 2

dans le premier cas, et la dimension 3 dans le second. Les angles, les sinus et autres fonctions trigonométriques, les logarithmes ou exposants de puissance sont, d'après les principes du calcul, des nombres absolus qui ne changent point avec l'unité de longueur; on doit donc trouver leur dimension égale à o, qui est celle de tous les nombres abstraits.

Si l'unité de temps, qui était d'abord 1, devient $\frac{1}{n}$, le nombre t sera nt et les nombres x et v ne changeront point. Les coefficients K, h, c seront $\frac{K}{n}$, $\frac{h}{n}$, c. Ainsi, les dimensions de x, t, v, par rapport à l'unité de temps, sont o, 1, o et celles de K, h, c sont -1, -1, o.

Si l'unité de température était changée, en sorte que la température \mathbf{r} devînt celle qui répond à un autre effet que l'ébullition de l'eau, et si cet effet exigeait une température moindre, qui fût à celle de l'eau bouillante dans le rapport de \mathbf{r} au nombre p, v deviendrait vp, x et t conserveraient leurs valeurs et les coefficients \mathbf{K} , h, c seraient $\frac{\mathbf{K}}{p}, \frac{h}{p}, \frac{c}{p}$.

Le Tableau suivant représente les dimensions des trois indéterminées et des trois constantes, par rapport à chaque sorte d'unité:

		Longueur.	Durée.	Température.
Exposant de dimension de x		ī	0	O
))	t	O	ı	О
))	Ø	O	O	I
La conducibilité spécifique K		- 1	— r	<u> </u>
La conducibilité de la surface h		. — 2	I	r
La capacité de chaleur d	3	0	[

162.

Si l'on conservait les coefficients C et D dont le produit a été représenté par c, on aurait encore à considérer l'unité de poids et l'on trouverait que l'exposant de dimension, par rapport à l'unité de longueur, est — 3 pour la densité D et o pour C.

En appliquant la règle précédente aux différentes équations et à leurs transformées, on trouvera qu'elles sont homogènes par rapport à chaque sorte d'unité et que la dimension de toute quantité angulaire ou exponentielle est nulle. Si cela n'avait point lieu, on aurait commis quelque erreur dans le calcul ou l'on y aurait introduit des expressions abrégées.

Si l'on choisit, par exemple, l'équation (b) de l'article 105

$$\frac{\partial c}{\partial t} = \frac{K}{CD} \frac{\partial^2 c}{\partial x^2} - \frac{hl}{CDs},$$

on trouve que, par rapport à l'unité de longueur, la dimension de chacun des trois termes est o, qu'elle est 1 pour l'unité de températures et — 1 pour l'unité de temps.

Dans l'équation $v = Ae^{-x\sqrt{\frac{2\hbar}{KI}}}$ de l'article 76, la dimension linéaire de chaque terme est o, et l'on voit que celle de l'exposant $x\sqrt{\frac{2\hbar}{KI}}$ est toujours nulle, soit pour l'unité linéaire, soit pour la durée ou la température.

CHAPITRE III.

PROPAGATION DE LA CHALEUR DANS UN SOLIDE RECTANGULAIRE INFINI.

SECTION I.

EXPOSITION DE LA QUESTION.

163.

Les questions relatives à la propagation uniforme ou au mouvement varié de la chalcur dans l'intérieur des solides sont réduites, par ce qui précède, à des problèmes d'Analyse pure, et les progrès de cette partie de la Physique dépendront désormais de ceux que fera la science du calcul. Les équations différentielles que nous avons démontrées contiennent les résultats principaux de la théorie; elles expriment, de la manière la plus générale et la plus concise, les rapports nécessaires de l'analyse numérique avec une classe très étendue de phénomènes, et réunissent pour toujours aux sciences mathématiques une des branches les plus importantes de la Philosophie naturelle. Il nous reste maintenant à découvrir l'usage que l'on doit faire de ces équations pour en déduire des solutions complètes et d'une application facile. La question suivante offre le premier exemple de l'analyse qui conduit à ces solutions; elle nous a paru plus propre qu'aucune autre à faire connaître les éléments de la méthode que nous avons suivie.

164.

Nous supposons qu'une masse solide homogène est contenue entre deux plans verticaux B et C parallèles et infinis, et qu'on la divise en deux parties par un plan A perpendiculaire aux deux autres (fig. 7); nous allons considérer les températures de la masse BAC comprise entre les trois plans infinis A, B, C. On suppose que l'autre partie B'AC du solide infini est une source constante de chaleur, c'est-à-dire que tous ses points sont retenus à la température 1, qui ne peut jamais devenir moindre ni plus grande. Quant aux deux solides latéraux compris, l'un entre le plan C et le plan A prolongé, l'autre entre

le plan B et le plan A prolongé, tous leurs points ont une température constante o, et une cause extérieure leur conserve toujours cette même température; enfin, les molécules du solide compris entre A, B et C ont la température initiale o. La chaleur passera successivement du foyer A dans le solide BAC; elle s'y propagera dans le sens de la longueur qui est infinie, et en même temps elle se détournera vers les masses froides B et C qui en absorberont une grande partie. Les températures du solide BAC s'élèveront de plus en plus; mais elles ne pourront outre-passer ni même atteindre un maximum de température, qui est différent pour les différents points de la masse. Il s'agit de connaître l'état final et constant dont l'état variable s'approche de plus en plus.

Si cet état final était connu et qu'on le formât d'abord, il subsisterait de lui-même, et c'est cette propriété qui le distingue de tous les autres. Aussi la question actuelle consiste à déterminer les températures permanentes d'un solide rectangulaire infini, compris entre deux masses de glace B et C et une masse d'eau bouillante A; la considération des questions simples et primordiales est un des moyens les plus

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 143 certains de découvrir les lois des phénomènes naturels, et nous voyons, par l'histoire des Sciences, que toutes les théories se sont formées suivant cette méthode.

165.

Pour exprimer plus brièvement la même question, on suppose qu'une lame rectangulaire BAC, d'une longueur infinie, est échauffée par son extrémité A et conserve dans tous les points de cette base une température constante 1, tandis que chacune des deux arêtes infinies B et C, perpendiculaires à la première, est aussi assujettie dans tous ses points à une température constante 0; il s'agit de déterminer quelles doivent être les températures stationnaires de chaque point de la lame.

On suppose qu'il ne se fait à la superficie aucune déperdition de chaleur ou, ce qui est la même chose, on considère un solide formé par la superposition d'une infinité de lames pareilles à la précédente; on prend pour l'axe des x la droite ox qui partage la lame en deux moitiés, et les coordonnées de chaque point m sont x et y; enfin on représente la largeur A de la lame par 2l ou, pour abréger le calcul, par π , valeur de la demi-circonférence.

Concevons qu'un point m de la lame solide BAC, qui a pour coordonnées x et y, ait la température actuelle v, et que les quantités v qui répondent aux différents points soient telles qu'il ne puisse survenir aucun changement dans les températures, pourvu que celle de chaque point de la base Λ soit toujours 1, et que les côtés R et R conservent dans tous leurs points la température R.

Si l'on élevait en chaque point m une coordonnée verticale égale à la température c, on formerait une surface courbe qui s'étendrait audessus de la lame et se prolongerait à l'infini. Nous chercherons à connaître la nature de cette surface, qui passe par une ligne parallèle élevée au-dessus de l'axe des y à une distance égale à l'unité, et qui coupe le plan horizontal suivant les deux arêtes infinies parallèles aux x.

166.

Pour appliquer l'équation générale

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right),$$

on considérera que, dans le cas dont il s'agit, on fait abstraction d'une coordonnée z, en sorte que le terme $\frac{\partial^2 v}{\partial z^2}$ doit être omis; quant au premier membre $\frac{\partial v}{\partial t}$, il s'évanouit puisqu'on veut déterminer les températures stationnaires; ainsi l'équation qui convient à la question actuelle et détermine les propriétés de la surface courbe cherchée est celle-ci

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

La fonction $\varphi(x,y)$ de x et y, qui représente l'état permanent du solide BAC, doit :

- 1° Satisfaire à l'équation (a);
- 2º Devenir nulle lorsqu'on substitue $-\frac{\pi}{2}$ ou $+\frac{\pi}{2}$ au lieu de γ , quelle que soit d'ailleurs la valeur de x;
- 3° Être égale à l'unité, si l'on suppose x = 0 et si l'on attribue à x une valeur quelconque comprise entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$.

Il faut ajouter que cette fonction $\varphi(x, y)$ doit devenir extrêmement petite lorsqu'on donne à x une valeur très grande, puisque toute la chaleur sort du seul foyer A.

167.

Afin de considérer la question dans ses éléments, on cherchera en premier lieu les plus simples fonctions de x et y, qui puissent satisfaire à l'équation (a); ensuite on donnera à cette valeur de v une expression plus générale, afin de remplir toutes les conditions énoncées. Par ce moyen la solution acquerra toute l'étendue qu'elle doit

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 145 avoir, et l'on démontrera que la question proposée ne peut admettre aucune autre solution.

Les fonctions de deux variables se réduisent souvent à une expression moins composée lorsqu'on attribue à l'une des variables ou à toutes les deux une valeur infinie; c'est ce que l'on remarque dans les fonctions algébriques qui, dans ce cas, équivalent au produit d'une fonction de x par une fonction de y. Nous examinerons d'abord si la valeur de v peut être représentée par un pareil produit; car cette fonction v doit représenter l'état de la lame dans toute son étendue, et par conséquent celui des points dont la coordonnée x est infinie. On écrira donc

$$v = \mathbb{F}(x) f(y);$$

substituant dans l'équation (a) et désignant $\frac{d^2 F(x)}{dx^2}$ par F''(x) et $\frac{d^2 f(y)}{dy^2}$ par f''(y), on aura F''(x) = f''(y)

$$\frac{\mathbf{F}''(x)}{\mathbf{F}(x)} + \frac{f''(y)}{f(y)} = 0; .$$

on pourra donc supposer

F.

$$\frac{\mathbf{F}''(x)}{\mathbf{F}(x)} = m^2 \quad \text{et} \quad \frac{f''(y)}{f(y)} = -m^2,$$

m étant une constante quelconque; et, comme on se propose seulement de trouver une valeur particulière de v, on déduira des équations précédentes

$$F(.r) = e^{-mx}, \qquad f(y) = \cos my.$$

168.

On ne pourrait point supposer que m est un nombre négatif, et l'on doit nécessairement exclure toutes les valeurs particulières de v où il entrerait des termes tels que e^{mx} , m étant un nombre positif, parce que la température v ne peut point devenir infinie lorsque x est infiniment grande. En effet, la chaleur n'étant fournie que par la source constante A, il ne peut en parvenir qu'une portion extrêmement petite dans les points de l'espace qui sont très éloignés du foyer. Le reste se

détourne de plus en plus vers les arêtes infinies B et C et se perd dans les masses froides qu'elles terminent.

L'exposant m qui entre dans la fonction $e^{-mx}\cos my$ n'est pas déterminé, et l'on peut choisir pour cet exposant un nombre positif quelconque; mais, pour que v devienne nulle en faisant $y = -\frac{\pi}{2}$ ou $y = +\frac{\pi}{2}$, quelle que soit x, on prendra pour m un des termes de la suite 1, 3, 5, 7, ...; par ce moyen la seconde condition sera remplie.

169.

On formera facilement une valeur plus générale de e en ajoutant plusieurs termes semblables aux précédents, et l'on aura

(b)
$$v = ae^{-x}\cos y + be^{-3x}\cos 3y + ce^{-5x}\cos 5y + de^{-7x}\cos 7y + \dots$$

Il est évident que cette fonction v, désignée par $\phi(x,y)$, satisfait à l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

et à la condition

$$\varphi\left(x,\pm\frac{\pi}{2}\right)=0.$$

Il reste à remplir une troisième condition, qui est exprimée ainsi

$$\varphi(0, \gamma) = 1;$$

et il est nécessaire de remarquer que ce résultat doit avoir lieu lorsqu'on met pour y une valeur quelconque, comprise entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. On ne peut en rien inférer pour les valeurs que prendrait la fonction $\varphi(o,y)$ si l'on mettait au lieu de y une quantité non comprise entre les limites $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. L'équation (b) doit donc être assujettie à la condition suivante :

$$1 = a\cos y + b\cos 3y + c\cos 5y + d\cos 7y + \dots$$

C'est au moyen de cette équation que l'on déterminera les coefficients a, b, c, d, ..., dont le nombre est infini.

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 147 Le second membre est une fonction de y, qui équivaut à l'unité toutes les fois que la variable y est comprise entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. On pourrait douter qu'il existât une pareille fonction, mais cette question sera pleinement éclaircie par la suite.

170.

Avant de donner le calcul des coefficients, nous remarquerons l'effet que représente chacun des termes de la série dans l'équation (b).

Supposons que la température fixe de la base A, au lieu d'être égale à l'unité pour tous ses points, soit d'autant moindre que le point de la droite A est plus éloigné du milieu o, et qu'elle soit proportionnelle au cosinus de cette distance; on connaîtra facilement dans ce cas la nature de la surface courbe dont l'ordonnée verticale exprime la température v, ou $\varphi(x, y)$. Si l'on coupe cette surface à l'origine par un plan perpendiculaire à l'axe des x, la courbe qui termine la section aura pour équation

$$v = a \cos y$$
;

les valeurs des coefficients seront les suivantes

$$a=a$$
, $b=o$, $c=o$, $d=o$,

ainsi de suite, et l'équation de la surface courbe sera

$$\rho = ae^{-x}\cos y$$
.

Si l'on coupe cette surface perpendiculairement à l'axe des y, on aura une logarithmique dont la convexité est tournée vers l'axe; si on la coupe perpendiculairement à l'axe des x, on aura une courbe trigonométrique qui tourne sa concavité vers l'axe. Il suit de là que la fonction $\frac{\partial^2 v}{\partial x^2}$ a toujours une valeur positive, et que celle de $\frac{\partial^2 v}{\partial y^2}$ est toujours négative. Or (art. 123), la quantité de chaleur qu'une molécule acquiert, à raison de sa place entre deux autres dans le sens des x, est propor-

tionnelle à la valeur de $\frac{\partial^2 v}{\partial x^2}$; il s'ensuit donc que la molécule intermédiaire reçoit, de celle qui la précède dans le sens des x, plus de chaleur qu'elle n'en communique à celle qui la suit. Mais, si l'on considère cette même molécule comme placée entre deux autres dans le sens des y, la fonction $\frac{\partial^2 v}{\partial y^2}$ étant négative, on voit que la molécule intermédiaire communique à celle qui la suit plus de chaleur qu'elle n'en reçoit de celle qui la précède. Il arrive ainsi que l'excédent de chaleur qu'elle acquiert dans le sens des x compense exactement ce qu'elle perd dans le sens des y, comme l'exprime l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

On connaît ainsi la route que suit la chaleur qui sort du foyer A. Elle se propage dans le sens des x, et en même temps elle se décompose en deux parties, dont l'une se dirige vers une des arêtes, tandis que l'autre partie continue de s'éloigner de l'origine pour être décomposée comme la précédente, et ainsi de suite à l'infini. La surface que nous considérons est engendrée par la courbe trigonométrique qui répond à la base A, et se meut perpendiculairement à l'axe des x en suivant cet axe, pendant que chacune de ses ordonnées décroît à l'infini, proportionnellement aux puissances successives d'une même fraction.

On tirerait des conséquences analogues, si les températures fixes de la base A étaient exprimées par le terme $b\cos 3y$, ou par l'un des termes suivants $c\cos 5y$, ...; et l'on peut, d'après cela, se former une idée exacte du mouvement de la chaleur dans les cas plus généraux; car on verra par la suite que ce mouvement se décompose toujours en une multitude de mouvements élémentaires, dont chacun s'accomplit comme s'il était seul.

SECTION II.

PREMIER EXEMPLE DE L'USAGE DES SÉRIES TRIGONOMÉTRIQUES
DANS LA THÉORIE DE LA CHALEUR.

171.

Nous reprendrons maintenant l'équation

$$1 = a\cos y + b\cos 3y + c\cos 5y + d\cos 7y + \dots,$$

dans laquelle il faut déterminer les coefficients a, b, c, d, Pour que cette équation subsiste, il est nécessaire que les constantes satisfassent aux équations que l'on obtient par des différentiations successives, ce qui donne les résultats suivants

$$a = a \cos y + b \cos 3y + c \cos 5y + d \cos 7y + ...,$$

$$a = a \sin y + 3 b \sin 3y + 5 c \sin 5y + 7 d \sin 7y + ...,$$

$$a = a \cos y + 3^2 b \cos 3y + 5^2 c \cos 5y + 7^2 d \cos 7y + ...,$$

$$a = a \sin y + 3^3 b \sin 3y + 5^3 c \sin 5y + 7^3 d \sin 7y + ...,$$

et ainsi de suite à l'infini.

Ces équations devant avoir lieu lorsque y = 0, on aura

$$1 = a + b + c + d + e + f + g + \dots,$$

$$0 = a + 3^{2}b + 5^{2}c + 7^{2}d + 9^{2}e + 11^{2}f + \dots,$$

$$0 = a + 3^{4}b + 5^{4}c + 7^{4}d + 9^{4}e + \dots,$$

$$0 = a + 3^{6}b + 5^{6}c + 7^{6}d + \dots,$$

$$0 = a + 3^{8}b + 5^{8}c + \dots,$$

$$\dots \dots \dots \dots$$

Le nombre de ces équations est infini comme celui des indéterminées a, b, c, d, e, La question consiste à éliminer toutes les inconnues, excepté une seule.

172.

Pour se former une idée distincte du résultat de ces éliminations, on supposera que le nombre des inconnues a, b, c, d, ... est d'abord défini et égal à m. On emploiera les m premières équations sculement, en effacant tous les termes où se trouvent les inconnues qui suivent les m premières. Si l'on fait successivement m=2, m=3, m=4, m=5, ainsi de suite, on trouvera dans chacune de ces suppositions les valeurs des indéterminées. La quantité a, par exemple, recevra une valeur pour le cas de deux inconnues, une autre pour le cas de trois inconnues, ou pour le cas de quatre inconnues, ou successivement pour un plus grand nombre. Il en sera de même de l'indéterminée b, qui recevra autant de valeurs différentes que l'on aura effectué de fois l'élimination; chacune des autres indéterminées est pareillement susceptible d'une infinité de valeurs différentes. Or la valeur d'une des inconnues, pour le cas où leur nombre est infini, est la limite vers laquelle tendent continuellement les valeurs qu'elle reçoit au moyen des éliminations successives (1). Il s'agit donc d'examiner si, à mesure que le nombre des inconnues augmente, chacune des valeurs a, b, c, d, ... ne converge point vers une limite finie, dont elle approche continuellement.

Supposons que l'on emploie les sept équations suivantes :

$$\begin{split} \mathbf{1} &= a + b + c + d + e + f + g, \\ \mathbf{0} &= a + 3^2 b + 5^2 c + 7^2 d + 9^2 e + \mathbf{1} \mathbf{1}^2 f + \mathbf{1} 3^2 g, \\ \mathbf{0} &= a + 3^4 b + 5^5 c + 7^4 d + 9^4 e + \mathbf{1} \mathbf{1}^4 f + \mathbf{1} 3^4 g, \\ \mathbf{0} &= a + 3^6 b + 5^6 c + 7^6 d + 9^6 e + \mathbf{1} \mathbf{1}^6 f + \mathbf{1} 3^6 g, \\ \mathbf{0} &= a + 3^8 b + 5^8 c + 7^8 d + 9^8 e + \mathbf{1} \mathbf{1}^8 f + \mathbf{1} 3^8 g, \\ \mathbf{0} &= a + 3^{10} b + 5^{10} c + 7^{10} d + 9^{10} e + \mathbf{1} \mathbf{1}^{10} f + \mathbf{1} 3^{10} g, \\ \mathbf{0} &= a + 3^{12} b + 5^{12} c + 7^{12} d + 9^{12} e + \mathbf{1} \mathbf{1}^{12} f + \mathbf{1} 3^{12} g. \end{split}$$

⁽¹⁾ Ce point n'est nullement évident et aurait besoin de démonstration. Quoi qu'il en soit, la méthode si naturelle que suit ici Fourier, et qu'il emploie aussi plus Ioin dans l'étude des séries trigonométriques les plus générales, nous paraît, malgré son insuffisance, mériter l'attention des géomètres; car il y a, dans les différentes parties de la Science, bien des questions dont la solution peut se rattacher à la considération d'un nombre infini d'équations linéaires contenant un nombre infini d'inconnues.

G. D.

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 151

Les six équations qui ne contiennent plus g sont

)
$$\begin{cases} 13^{2} = a(13^{2} - 1^{2}) + b(13^{2} - 3^{2}) + c(13^{2} - 5^{2}) + d(13^{2} - 7^{2}) + c(13^{2} - 9^{2}) + f(13^{2} - 11^{2}) \\ o = a(13^{2} - 1^{2}) + 3^{2} b(13^{2} - 3^{2}) + 5^{2} c(13^{2} - 5^{2}) + 7^{2} d(13^{2} - 7^{2}) + 9^{2} e(13^{2} - 9^{2}) + 11^{2} f(13^{2} - 11^{2}) \\ o = a(13^{2} - 1^{2}) + 3^{4} b(13^{2} - 3^{2}) + 5^{4} c(13^{2} - 5^{2}) + 7^{4} d(13^{2} - 7^{2}) + 9^{4} e(13^{2} - 9^{2}) + 11^{4} f(13^{2} - 11^{2}) \\ o = a(13^{2} - 1^{2}) + 3^{6} b(13^{2} - 3^{2}) + 5^{6} c(13^{2} - 5^{2}) + 7^{6} d(13^{2} - 7^{2}) + 9^{6} e(13^{2} - 9^{2}) + 11^{6} f(13^{2} - 11^{2}) \\ o = a(13^{2} - 1^{2}) + 3^{8} b(13^{2} - 3^{2}) + 5^{8} c(13^{2} - 5^{2}) + 7^{8} d(13^{2} - 7^{2}) + 9^{8} e(13^{2} - 9^{2}) + 11^{8} f(13^{2} - 11^{2}) \\ o = a(13^{2} - 1^{2}) + 3^{10} b(13^{2} - 3^{2}) + 5^{10} c(13^{2} - 5^{2}) + 7^{10} d(13^{2} - 7^{2}) + 9^{10} e(13^{2} - 9^{2}) + 11^{10} f(13^{2} - 11^{2}) \end{cases}$$

En continuant l'élimination, on obtiendra l'équation finale en a, qui est

$$a(13^2-1^2)(11^2-1^2)(9^2-1^2)(7^2-1^2)(5^2-1^2)(3^2-1^2)=13^2.11^2.9^2.7^2.5^2.3^2.1^2.$$

173.

Si l'on avait employé un nombre d'équations plus grand d'une unité, on aurait trouvé, pour déterminer a, une équation analogue à la précédente, ayant au premier membre un facteur de plus, savoir : $15^2 - 1^2$, et au second membre 15^2 pour un nouveau facteur. La loi à laquelle ces différentes valeurs de a sont assujetties est évidente, et il s'ensuit que la valeur de a qui correspond à un nombre infini d'équations est exprimée ainsi

$$\alpha = \frac{3^2}{3^2 - 1} \frac{5^2}{5^2 - 1} \frac{7^2}{7^2 - 1} \frac{9^2}{9^2 - 1} \frac{11^2}{11^2 - 1} \frac{13^2}{13^2 - 1} \cdots$$

o u

$$a = \frac{3.3}{2.4} \frac{5.5}{4.6} \frac{7.7}{6.8} \cdot \frac{9.9}{8.10} \frac{11.11}{10.12} \frac{13.13}{12.14} \cdots$$

Or cette dernière expression est connue et, suivant le théorème de Wallis, on en conclut

$$a = \frac{4}{\pi}$$

Il ne s'agit donc maintenant que de connaître les valeurs des autres indéterminées.

174.

Les six équations qui restent après l'élimination de g peuvent être comparées aux six équations plus simples que l'on aurait employées s'il n'y avait eu que six inconnues. Ces dernières équations diffèrent des équations (c) en ce que, dans celles-ci, les lettres f, e, d, c, b, a se trouvent multipliées respectivement par les facteurs

$$\frac{13^2-11^2}{13^2}$$
, $\frac{13^2-9^2}{13^2}$, $\frac{13^2-7^2}{13^2}$, $\frac{13^2-5^2}{13^2}$, $\frac{13^2-3^2}{13^2}$, $\frac{13^2-1^2}{13^2}$.

Il suit de là que, si l'on avait résolu les six équations linéaires que l'on doit employer dans le cas de six indéterminées, et que l'on eût calculé la valeur de chaque inconnue, il serait facile d'en conclure la valeur des indéterminées de même nom, correspondantes au cas où l'on aurait employé sept équations. Il suffirait de multiplier les valeurs de f, e, d, c, b, a, trouvées dans le premier cas, par des facteurs connus. Il sera aisé, en général, de passer de la valeur de l'une des quantités, prise dans la supposition d'un certain nombre d'équations et d'inconnues, à la valeur de la même quantité, prise dans le cas où il y aurait une inconnue et une équation de plus. Par exemple, si la valeur de f trouvée dans l'hypothèse de six équations et six inconnues est représentée par f, celle de la même quantité prise dans le cas d'une inconnue de plus sera f $\frac{13^2}{13^2-11^2}$. Cette même valeur, prise dans le cas de huit inconnues, sera, par la même raison,

$$F = \frac{13^2}{13^2 - 11^2} = \frac{15^2}{15^2 - 11^2};$$

et, dans le cas de neuf inconnues, elle sera

$$F = \frac{13^2}{13^2 - 11^2} = \frac{15^2}{15^2 - 11^2} = \frac{17^2}{17^2 - 11^2}$$

ainsi de suite. Il suffira de même de connaître la valeur de b, corres-

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 153 pondante au cas de deux inconnues, pour en conclure celle de la même lettre qui correspond au cas de trois, quatre, cinq inconnues, On aura seulement à multiplier cette première valeur de b par

$$\frac{5^2}{5^2-3^2} \frac{7^2}{7^2-3^2} \frac{9^2}{9^2-3^2} \frac{11^2}{11^2-3^2} \cdots$$

Pareillement, si l'on connaît la valeur de c pour le cas de trois inconnues, on multipliera cette valeur par les facteurs successifs

$$\frac{7^2}{7^2-5^2}$$
, $\frac{9^2}{9^2-5^2}$, $\frac{11^2}{11^2-5^2}$, ...;

on calculera de même la valeur de d pour le cas de quatre inconnues seulement, et l'on multipliera cette valeur par

$$\frac{9^2}{9^2 - 7^2} \frac{11^2}{11^2 - 7^2} \frac{13^2}{13^2 - 7^2} \frac{15^2}{15^2 - 7^2} \cdots$$

Le calcul de la valeur de a est assujetti à la même règle; car, si l'on prend cette valeur pour le cas d'une seule inconnue et qu'on la multiplie successivement par

$$\frac{3^2}{3^2-1^2}$$
, $\frac{5^2}{5^2-1^2}$, $\frac{7^2}{7^2-1^2}$, $\frac{9^2}{9^2-1^2}$, ...,

on trouvera la valeur finale de cette quantité.

175.

La question est donc réduite à déterminer la valeur de a dans le cas d'une inconnue, la valeur de b dans le cas de deux inconnues, celle de c dans le cas de trois inconnues, et ainsi de suite pour les autres inconnues.

Il est facile de juger, à l'inspection seule des équations et sans F.

aucun calcul, que les résultats de ces éliminations successives doivent être

$$a = \frac{1}{1},$$

$$b = \frac{1^2}{1^2 - 3^2},$$

$$c = \frac{1^2}{1^2 - 5^2} \frac{3^2}{3^2 - 5^2},$$

$$d = \frac{1^2}{1^2 - 7^2} \frac{3^2}{3^2 - 7^2} \frac{5^2}{5^2 - 7^2},$$

$$e = \frac{1^2}{1^2 - 9^2} \frac{3^2}{3^2 - 9^2} \frac{5^2}{5^2 - 9^2} \frac{7^2}{7^2 - 9^2},$$

176.

Il ne reste qu'à multiplier les quantités précédentes par les séries des produits qui doivent les compléter et que nous avons donnés (art. 174). On aura, en conséquence, pour les valeurs finales des inconnues a, b, c, d, e, f, ..., les expressions suivantes :

$$a = 1 \quad \frac{3^{2}}{3^{2}-1^{2}} \quad \frac{5^{2}}{5^{2}-1^{2}} \quad \frac{7^{2}}{7^{2}-1^{2}} \quad \frac{9^{2}}{9^{2}-1^{2}} \quad \frac{11^{2}}{11^{2}-1^{2}} \dots,$$

$$b = \frac{1^{2}}{1^{2}-3^{2}} \quad \frac{5^{2}}{5^{2}-3^{2}} \quad \frac{7^{2}}{7^{2}-3^{2}} \quad \frac{9^{2}}{9^{2}-3^{2}} \quad \frac{11^{2}}{11^{2}-3^{2}} \dots,$$

$$c = \frac{1^{2}}{1^{2}-5^{2}} \quad \frac{3^{2}}{3^{2}-5^{2}} \quad \frac{7^{2}}{7^{2}-5^{2}} \quad \frac{9^{2}}{9^{2}-5^{2}} \quad \frac{11^{2}}{11^{2}-5^{2}} \dots,$$

$$d = \frac{1^{2}}{1^{2}-7^{2}} \quad \frac{3^{2}}{3^{2}-7^{2}} \quad \frac{5^{2}}{5^{2}-7^{2}} \quad \frac{9^{2}}{9^{2}-7^{2}} \quad \frac{11^{2}}{11^{2}-7^{2}} \dots,$$

$$e = \frac{1^{2}}{1^{2}-9^{2}} \quad \frac{3^{2}}{3^{2}-9^{2}} \quad \frac{5^{2}}{5^{2}-9^{2}} \quad \frac{7^{2}}{7^{2}-9^{2}} \quad \frac{11^{2}}{11^{2}-9^{2}} \quad \frac{13^{2}}{13^{2}-9^{2}} \dots,$$

$$f = \frac{1^{2}}{1^{2}-11^{2}} \quad \frac{3^{2}}{3^{2}-11^{2}} \quad \frac{5^{2}}{5^{2}-11^{2}} \quad \frac{7^{2}}{7^{2}-11^{2}} \quad \frac{9^{2}}{9^{2}-11^{2}} \quad \frac{13^{2}}{13^{2}-11^{2}} \quad \frac{15^{2}}{15^{2}-11^{2}} \dots,$$

ou

$$a = + 1 \frac{3.3}{2.4} \frac{5.5}{4.6} \frac{7.7}{6.8} \dots,$$

$$b = -\frac{1.1}{2.4} \frac{5.5}{2.8} \frac{7.7}{4.10} \frac{9.9}{6.12} \dots,$$

$$c = + \frac{1.1}{4.6} \frac{3.3}{2.8} \frac{7.7}{2.12} \frac{9.9}{4.14} \frac{11.11}{6.16} \dots,$$

$$d = -\frac{1.1}{6.8} \frac{3.3}{4.10} \frac{5.5}{2.12} \frac{9.9}{2.16} \frac{11.11}{4.18} \frac{13.13}{6.20} \dots,$$

$$e = + \frac{1.1}{8.10} \frac{3.3}{6.12} \frac{5.5}{4.14} \frac{7.7}{2.16} \frac{11.11}{2.20} \frac{13.13}{4.22} \frac{15.15}{6.24} \dots,$$

$$f = -\frac{1.1}{10.12} \frac{3.3}{8.14} \frac{5.5}{6.16} \frac{7.7}{4.18} \frac{9.9}{2.20} \frac{13.13}{2.24} \frac{15.15}{4.26} \frac{17.17}{6.28} \dots,$$

La quantité $\frac{\pi}{2}$, ou le quart de la circonférence, équivaut, suivant le théorème de Wallis, à

$$\frac{2.2}{1.3} \frac{4.4}{3.5} \frac{6.6}{5.7} \frac{8.8}{7.9} \frac{10.10}{9.11} \frac{12.12}{11.13} \frac{14.14}{13.15} \dots$$

Si l'on remarque maintenant quels sont, dans les valeurs de a, b, c, d, e, ..., les facteurs que l'on doit écrire aux numérateurs et aux dénominateurs, pour y compléter la double série des nombres impairs et des nombres pairs, on trouvera que les facteurs à suppléer sont

Pour	<i>b</i> .	 •				٠.	•	 •	٠.		•	$\frac{3.3}{6}$
Pour	c		 								•	$\frac{5.5}{10}$
Pour	d.		 									7·7 14
Pour	e		 	•			•					$\frac{9 \cdot 9}{18}$
Pour	<i>.f.</i> .	 •	 			٠.						22
			 						٠.			 .

et l'on en conclut

$$a = 2 \frac{2}{\pi},$$

$$b = -2 \frac{2}{3\pi},$$

$$c = 2 \frac{2}{5\pi},$$

$$d = -2 \frac{2}{7\pi},$$

$$e = 2 \frac{2}{9\pi},$$

$$f = -2 \frac{2}{11\pi},$$
.....

177.

C'est ainsi qu'on est parvenu à effectuer entièrement les éliminations et à déterminer les coefficients a, b, c, d, \ldots de l'équation

$$1 = a\cos y + b\cos 3y + c\cos 5y + d\cos 7y + e\cos 9y + \dots$$

La substitution de ces coefficients donne l'équation suivante :

$$\frac{\pi}{4} = \cos y - \frac{1}{3}\cos 3y + \frac{1}{5}\cos 5y - \frac{1}{7}\cos 7y + \frac{1}{9}\cos 9y - \frac{1}{11}\cos 11y + \dots$$

Le second membre est une fonction de y qui ne change point de valeur quand on donne à la variable y une valeur comprise entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. Il serait aisé de prouver que cette série est toujours convergente; c'est-à-dire que, en mettant au lieu de y un nombre quelconque et en poursuivant le calcul des coefficients, on approche de plus en plus d'une valeur fixe; en sorte que la différence de cette valeur à la somme des termes calculés devient moindre que toute grandeur assignable. Sans nous arrêter à cette démonstration que le lecteur peut suppléer, nous ferons remarquer que la valeur fixe dont on approche continuellement est $\frac{\pi}{4}$ si la valeur attribuée à y est comprise entre

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 13

o et $\frac{\pi}{2}$, mais qu'elle est $-\frac{\pi}{4}$ si y est comprise entre $\frac{\pi}{2}$ et $\frac{3\pi}{2}$; car, dans ce second intervalle, chaque terme de la série change de signe. En général, la limite de la série est alternativement positive et négative; au reste, la convergence n'est point assez rapide pour procurer une approximation facile, mais elle suffit pour la vérité de l'équation.

178.

L'équation

$$y = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \dots$$

appartient à une ligne qui, ayant x pour abscisse et y pour ordonnée, est composée de droites séparées dont chacune est parallèle à l'axe et égale à la demi-circonférence. Ces parallèles sont placées alternativement au-dessus et au-dessous de l'axe, à la distance $\frac{\pi}{4}$, et jointes par des perpendiculaires qui font elles-mêmes partie de la ligne. Pour se former une idée exacte de la nature de cette ligne, il faut supposer que le nombre des termes de la fonction

$$\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \dots$$

reçoit d'abord une valeur déterminée. Dans ce dernier cas, l'équation

$$y = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \dots$$

appartient à une ligne courbe qui passe alternativement au-dessus et au-dessous de l'axe, en le coupant toutes les fois que l'abscisse x devient égale à l'une des quantités

$$\pm \frac{\pi}{2}$$
, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$, ...;

à mesurc que le nombre des termes de l'équation augmente, la courbe dont il s'agit tend de plus en plus à se confondre avec la ligne précédente, composée de droites parallèles et de droites perpendiculaires, en sorte que cette ligne est la limite des différentes courbes que l'on obtiendrait en augmentant successivement le nombre des termes.

SECTION III.

REMARQUES SUR CES SÉRIES.

179.

On peut envisager ces mêmes équations sous un autre point de vue et démontrer immédiatement l'équation

$$\frac{\pi}{4} = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \frac{1}{9}\cos 9x - \dots$$

Le cas où x est nulle se vérifie par la série de Leibnitz

$$\frac{\pi}{4} = \mathbf{i} - \frac{\mathbf{i}}{3} + \frac{\mathbf{i}}{5} - \frac{\mathbf{i}}{7} + \frac{\mathbf{i}}{9} - \dots$$

Ensuite on supposera que le nombre des termes de la série

$$\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \dots,$$

au lieu d'être infini, est déterminé et égal à m. On considérera la valeur de cette suite finie comme une fonction de x et de m. On réduira la valeur de la fonction en une série ordonnée suivant les puissances négatives de m: et l'on reconnaîtra que cette valeur approche d'autant plus d'être constante et indépendante de x, que m est un plus grand nombre (').

⁽¹⁾ On remarquera que, dans cette étude de quelques séries particulières, Fourier suit précisément la méthode qui a permis plus tard à Dirichlet d'obtenir pour la première fois une théorie complètement rigoureuse des séries trigonométriques. Cette méthode consiste, comme on le voit, à exprimer par une intégrale définie la somme des m premiers termes de la série, puis à chercher la limite de cette intégrale.

G. D.

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 159 Soit y la fonction cherchée qui est donnée par l'équation

$$y = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \dots - \frac{1}{2m-1}\cos(2m-1)x$$

le nombre m des termes étant supposé pair. Cette équation, différentiée par rapport à x, donne

$$-\frac{dy}{dx} = \sin x - \sin 3x + \sin 5x - \sin 7x + \dots$$
$$+ \sin(2m - 3)x - \sin(2m - 1)x;$$

en multipliant par 2 sin 2x, on a

$$-2\frac{dy}{dx}\sin 2x = 2\sin x \sin 2x - 2\sin 3x \sin 2x + 2\sin 5x \sin 2x + \dots + 2\sin(2m-3)x \sin 2x - 2\sin(2m-1)x \sin 2x.$$

Chaque terme du second membre étant remplacé par la différence de deux cosinus, on en conclura

$$-2\frac{dy}{dx}\sin 2x = \cos(-x) - \cos 3x$$

$$-\cos x + \cos 5x$$

$$+\cos 3x - \cos 7x$$

$$-\cos 5x + \cos 9x$$

$$+\cos 7x - \cos 11x$$

$$-\dots$$

$$+\cos(2m-5)x - \cos(2m-1)x$$

$$-\cos(2m-3)x + \cos(2m+1)x.$$

Le second membre se réduit à $\cos(2m+1)x - \cos(2m-1)x$ ou $-2\sin 2mx\sin x$; done

$$y = \frac{1}{2} \int \frac{\sin 2mx}{\cos x} dx.$$

180.

On intégrera le second membre par parties, en distinguant dans l'intégrale le facteur $\sin 2mx \, dx$, qui doit être intégré successivement,

et le facteur $\frac{1}{\cos x}$ ou sécx que l'on doit différentier successivement; désignant les résultats de ces différentiations par séc'x, séc''x, séc''x, ..., on aura

$$2y = \text{const.} - \frac{1}{2m} \cos 2mx \sec x + \frac{1}{2^2 m^2} \sin 2mx \sec' x + \frac{1}{2^3 m^3} \cos 2mx \sec'' x - \dots;$$

ainsi la valeur de y, ou

$$\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \ldots + \frac{1}{2m-1}\cos(2m-1)x$$

qui est une fonction de x et m, se trouve exprimée par une série infinie; et il est manifeste que, plus le nombre m augmente, plus la valeur de y approche de celle de la constante. C'est pourquoi, lorsque le nombre m est infini, la fonction y a une valeur déterminée qui est toujours la même, quelle que soit la valeur positive de x, moindre que $\frac{\pi}{2}$. Or, si l'on suppose l'arc x nul, on a

$$y = \mathbf{i} - \frac{\mathbf{i}}{3} + \frac{\mathbf{i}}{5} - \frac{\mathbf{i}}{7} + \frac{\mathbf{i}}{9} - \dots,$$

qui équivaut à $\frac{\pi}{4}\cdot$ Donc on aura généralement

(b)
$$\frac{\pi}{4} = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \frac{1}{9}\cos 9x - \dots$$

181.

Si dans cette équation on suppose $x = \frac{\pi}{4}$, on trouvera

$$\frac{\pi}{2\sqrt{2}} = 1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{13} - \frac{1}{15} + \dots$$

En donnant à l'arc x d'autres valeurs particulières, on trouvera d'autres séries qu'il est inutile de rapporter, et dont plusieurs ont déjà été publiées dans les Ouvrages d'Euler. Si l'on multiplie l'équa-

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI.

tion (b) par dx et que l'on intègre, on aura

$$\frac{\pi x}{4} = \sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \frac{1}{7^2} \sin 7x + \dots$$

En faisant dans cette dernière équation $x = \frac{\pi}{2}$, on trouve

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots,$$

série déjà connue. On pourrait énumérer à l'infini ces cas partic liers; mais il convient mieux à l'objet de cet Ouvrage de détermin en suivant le même procédé, les valeurs de diverses séries formées sinus ou de cosinus d'arcs multiples.

182.

Soit

$$\gamma = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots + \frac{1}{m-1}\sin(m-1)x - \frac{1}{m}\sin mx,$$

m étant un nombre pair quelconque. On tire de cette équation

$$\frac{dy}{dx} = \cos x - \cos 2x + \cos 3x - \cos 4x + \ldots + \cos (m-1)x - \cos mx$$

multipliant par $2\sin x$ et remplaçant chaque terme du second mem par la différence de deux sinus, on aura

$$2\sin x \frac{dy}{dx} = \sin(x+x) - \sin(x-x)$$

$$-\sin(2x+x) + \sin(2x-x)$$

$$+\sin(3x+x) - \sin(3x-x)$$

$$+\sin[(m-1)x+x] - \sin[(m-1)x-x]$$

$$-\sin(mx+x) + \sin(mx-x)$$

et, en réduisant,

F.

$$2\sin x \, \frac{dy}{dx} = \sin x + \sin m \, x - \sin(m \, x + x);$$

la quantité

$$\sin mx - \sin(mx + x)$$

ou

$$\sin\left(mx + \frac{x}{2} - \frac{x}{2}\right) - \sin\left(mx + \frac{x}{2} + \frac{x}{2}\right)$$

équivaut à

$$-2\sin\frac{x}{2}\cos\left(mx+\frac{x}{2}\right);$$

on a done

$$\frac{dy}{dx} = \frac{1}{2} - \frac{\sin\frac{x}{2}}{\sin x} \cos\left(mx + \frac{x}{2}\right)$$

ou

$$\frac{dy}{dx} = \frac{1}{2} - \frac{\cos\left(mx + \frac{x}{2}\right)}{2\cos\frac{x}{2}};$$

on en conclut

$$y = \frac{x}{2} - \int \frac{\cos\left(mx + \frac{x}{2}\right)}{2\cos\frac{x}{2}} dx.$$

Si l'on intègre par parties, en distinguant le facteur $-\frac{1}{\cos\frac{x^2}{2}}$ ou séc $\frac{x}{2}$

qui doit être successivement différentié et le facteur $\cos\left(mx + \frac{r}{2}\right)$ que l'on intégrera plusieurs fois de suite, on formera une série dans laquelle les puissances de $m + \frac{1}{2}$ entrent aux dénominateurs. Quant à la constante, elle est nulle parce que la valeur de y commence avec celle de x. Il suit de là que la valeur de la suite finie

$$\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x - \dots - \frac{1}{m}\sin mx$$

diffère extrêmement peu de $\frac{x}{2}$, lorsque le nombre des termes est très grand; et, si ce nombre est infini, on a l'équation déjà connue

$$\frac{x}{2} = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \frac{1}{5}\sin 5x - \dots$$

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 163 On pourrait aussi déduire de cette dernière série celle que nous avons donnée plus haut pour la valeur de $\frac{\pi}{7}$.

183.

Soit maintenant

$$\dot{\gamma} = \frac{1}{2}\cos 2x - \frac{1}{4}\cos 4x + \frac{1}{6}\cos 6x - \dots + \frac{1}{2m-2}\cos(2m-2)x - \frac{1}{2m}\cos 2mx,$$

m étant un nombre pair. Différentiant, multipliant par $2\sin 2x$, substituant les différences de cosinus et réduisant, on aura

$$2\frac{dy}{dx} = -\log x + \frac{\sin(2m+1)x}{\cos x}$$

ou

$$2y = c - \int \tan x \, dx + \int \frac{\sin(2m+1)x}{\cos x} \, dx.$$

Intégrant par parties le dernier terme du second membre et supposant minfini, on a

$$y = c + \frac{1}{2}\log\cos x.$$

Si, dans l'équation

$$y = \frac{1}{2}\cos 2x - \frac{1}{4}\cos 4x + \frac{1}{6}\cos 6x - \frac{1}{8}\cos 8x + \dots,$$

on suppose x nulle, on trouve

$$v = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \ldots = \frac{1}{2} \log 2;$$

donc

$$y = \frac{1}{2}\log 2 + \frac{1}{2}\log \cos x.$$

On parvient ainsi à la série donnée par Euler

$$\log\left(2\cos\frac{1}{2}x\right) = \cos x - \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x - \frac{1}{4}\cos 4x + \dots$$

184.

En appliquant le même procédé à l'équation

$$y = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \dots,$$

on trouvera la série suivante, qui n'avait pas été remarquée :

$$\frac{\tau}{4} = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \dots$$

Il faut observer, à l'égard de toutes ces séries, que les équations qui en sont formées n'ont lieu que lorsque la variable x est comprise entre certaines limites. C'est ainsi que la fonction

$$\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \dots$$

n'est équivalente à $\frac{\pi}{4}$ que si la variable x est contenue entre les limites que nous avons assignées. Il en est de même de la série

$$\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \frac{1}{5}\sin 5x - \dots$$

Cette suite infinie, qui est toujours convergente, donne la valeur $\frac{x}{2}$ toutes les fois que l'arc x est plus grand que o et moindre que π . Mais elle n'équivaut plus à $\frac{x}{2}$ si l'arc surpasse π ; elle a, au contraire, des valeurs très différentes de $\frac{x}{2}$; car il est évident que, dans l'intervalle de $x = \pi$ à $x = 2\pi$, la fonction reprend avec le signe contraire toutes les valeurs qu'elle avait eues dans l'intervalle précédent, depuis x = 0 jusqu'à $x = \pi$. Cette série est connue depuis longtemps; mais l'analyse qui a servi à la découvrir n'indique pas pourquoi le résultat cesse d'avoir lieu lorsque la variable surpasse π .

Il faut donc examiner attentivement la méthode que nous venois

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 10

d'employer et y chercher l'origine de cette limitation à laquelle les séries trigonométriques sont assujetties.

185.

Pour y parvenir, il sussit de considérer que les valeurs exprimées par les suites infinies ne sont connucs avec une entière certitude que dans les cas où l'on peut assigner les limites de la somme des termes qui les complètent; il faut donc supposer qu'on emploie les premiers termes seulement de ces suites, et trouver les limites entre lesquelles le reste est compris.

Nous appliquerons cette remarque à l'équation

$$y = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \dots + \frac{\cos(2m-3)x}{2m-3} - \frac{\cos(2m-1)x}{2m-1};$$

le nombre des termes est pair et représenté par m; on en déduit cette équation

 $2\frac{dy}{dx} = \frac{\sin 2mx}{\cos x},$

d'où l'on peut tirer la valeur de y, en intégrant par parties. Or l'intégrale $\int uv \, dx$ peut être résolue en une série composée d'autant de termes qu'on le voudra, u et v étant des fonctions de x. On peut écrire, par exemple,

$$\int uv \, dx = c + u \int v \, dx - \frac{du}{dx} \int dx \int v \, dx$$
$$+ \frac{d^2 u}{dx^2} \int dx \int dx \int v \, dx - \int \left(d \frac{d^2 u}{dx^2} \int dx \int dx \int v \, dx \right),$$

équation qui se vérific d'elle-même par la différentiation. En désignant $\sin 2mx$ par v et sécx par u, on trouvera

$$2y = c - \frac{1}{2m} \operatorname{s\acute{e}c} x \cos 2mx + \frac{1}{2^2 m^2} \operatorname{s\acute{e}c}' x \sin 2mx + \frac{1}{2^3 m^3} \operatorname{s\acute{e}c}'' x \cos 2mx - \int \cos 2mx \, d\, \frac{\operatorname{s\acute{e}c}'' x}{2^3 m^3}.$$

186.

Il s'agit maintenant de connaître les limites entre lesquelles est comprise l'intégrale

 $\frac{1}{2^3 m^3} \int \cos 2 \, m \, x \, d \, \text{s\'ec"} \, x$

qui complète la suite. Pour former cette intégrale, il faudrait donner à l'arc x une infinité de valeurs, depuis o, terme où l'intégrale commence, jusqu'à x qui est la valeur finale de l'arc, déterminer pour chacune des valeurs de x celle de la différentielle d séc" x et celle du facteur cos 2mx, et ajouter tous les produits partiels; or le facteur variable cos 2mx est nécessairement une fraction positive ou négative : par conséquent, l'intégrale se compose de la somme des valeurs variables de la différentielle d'séc"x, multipliées respectivement par des fractions. La valeur totale de cette intégrale est donc moindre que la somme des différentielles d séc"x, prises depuis x = o jusqu'à x, et elle est plus grande que cette même somme prise négativement; car, dans le premier cas, on remplace le facteur variable $\cos 2mx$ par la quantité constante 1, et, dans le second cas, on remplace ce facteur par - 1. Or cette somme des différentielles d'séc"x, ou, ce qui est la même chose, l'intégrale $\int d \operatorname{s\acute{e}c}'' x$, prise depuis x = 0, est séc''x - séc''o; séc''x est une certaine fonction de x, et séc''o est la valeur de cette fonction, prise en supposant l'arc x nul (1).

L'intégrale cherchée est donc comprise entre

$$+(s\acute{e}c''x-s\acute{e}c''o)$$
 et $-(s\acute{e}c''x-s\acute{e}c''o);$

c'est-à-dire que, en représentant par k une fraction inconnue positive

(1) Fourier néglige d'énoncer ici une des conditions qui sont nécessaires pour l'exactitude du raisonnement, à savoir que tous les éléments de l'intégrale

$$\int\! d(\sec''x)$$

soient de même signe. Cette condition est d'ailleurs satisfaite, comme on s'en assurera aisément.

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 167 ou négative, on aura toujours

$$\int \cos 2 m x \, d \operatorname{s\acute{e}c}'' x = k(\operatorname{s\acute{e}c}'' x - \operatorname{s\acute{e}c}'' o).$$

On parvient ainsi à l'équation

$$\begin{split} 2\,y &= c - \frac{1}{2\,m}\,\mathrm{s\'ec}\,x\,\cos 2\,m\,x + \frac{1}{2^2m^2}\,\mathrm{s\'ec'}\,x\,\sin 2\,m\,x \\ &+ \frac{1}{2^3m^3}\,\mathrm{s\'ec''}\,x\,\cos 2\,m\,x + \frac{k}{2^3m^3}(\,\mathrm{s\'ec''}\,x - \mathrm{s\'ec''}\,\mathrm{o}\,), \end{split}$$

dans laquelle la quantité $\frac{k}{2^3m^3}(\sec^{\prime\prime}x - \sec^{\prime\prime}o)$ exprime exactement la somme de tous les derniers termes de la série infinie.

187.

Si l'on eût cherché deux termes seulement, on aurait eu l'équation

$$2y = c - \frac{1}{2m} \sec x \cos 2mx + \frac{1}{2^2 m^2} \sec' x \sin 2mx + \frac{k}{2^2 m^2} (\sec' x - \sec' o).$$

Il résulte de là que l'on peut développer la valeur de y en autant de termes que l'on voudra et exprimer exactement le reste de la sérié; on trouve ainsi cette suite d'équations

$$\begin{aligned} 2y &= c - \frac{1}{2m} \operatorname{s\acute{e}c.} x \cos 2m.x + \frac{k}{2m} (\operatorname{s\acute{e}c} x - \operatorname{s\acute{e}co}), \\ 2y &= c - \frac{1}{2m} \operatorname{s\acute{e}c.} x \cos 2m.x + \frac{1}{2^2 m^2} \operatorname{s\acute{e}c'} x \sin 2m.x + \frac{k}{2^2 m^2} (\operatorname{s\acute{e}c'} x - \operatorname{s\acute{e}c'o}), \\ 2y &= c - \frac{1}{2m} \operatorname{s\acute{e}c.} x \cos 2m.x + \frac{1}{2^2 m^2} \operatorname{s\acute{e}c'} x \sin 2m.x \\ &+ \frac{1}{2^3 m^3} \operatorname{s\acute{e}c''} x \cos 2m.x + \frac{k}{2^3 m^3} (\operatorname{s\acute{e}c''} x - \operatorname{s\acute{e}c''o}). \end{aligned}$$

Le nombre k qui entre dans ces équations n'est pas le même pour toutes, et il représente dans chacune une certaine quantité qui est toujours comprise entre 1 et — 1; m est égal au nombre des termes de la suite

$$\cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \dots - \frac{1}{2m-1}\cos(2m-1)x$$

dont la somme est désignée par y.

188.

On ferait usage de ces équations si le nombre m était donné, et, quelque grand que fût ce nombre, on pourrait déterminer, aussi exactement qu'on le voudrait, la partie variable de la valeur de y. Si le nombre m est infini, comme on le suppose, on considérera la première équation seulement; et il est manifeste que les deux termes qui suivent la constante deviennent de plus en plus petits; en sorte que 2y a dans ce cas pour valeur exacte la constante c; on détermine cette constante en supposant x = 0 dans la valeur de y, et l'on en conclut

$$\frac{\pi}{4} = \cos x - \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{7}\cos 7x + \frac{1}{9}\cos 9x - \dots$$

Il est facile de voir maintenant que le résultat a nécessairement lieu si l'arc x est moindre que $\frac{\pi}{2}$. En effet, attribuant à cet arc une valeur déterminée X aussi voisine de $\frac{\pi}{2}$ qu'on voudra le supposer, on pourra toujours donner à m une valeur si grande que le terme

$$\frac{k}{2m}(\sec x - \sec 0)$$

qui complète la série devienne moindre qu'une quantité quelconque; mais l'exactitude de cette conclusion est fondée sur ce que le terme sécx n'acquiert point une valeur qui excède toutes les limites possibles, d'où il suit que le raisonnement ne peut s'appliquer au cas où l'arc x n'est pas moindre que $\frac{\pi}{2}$.

On fera usage de la même analyse pour les séries qui expriment les valeurs de $\frac{x}{2}$, $\log \cos x$, et l'on pourra distinguer par ce moyen les limites entre lesquelles la variable doit être comprise pour que le résultat du calcul soit exempt de toute incertitude; au reste, ces mêmes questions seront traitées ailleurs par une méthode fondée sur d'autres principes.

169

150.

L'expression de la foi des temperatures fixes dans une lame solide suppose la comunistance de l'equation

$$\frac{1}{1} \cos \left(\frac{1}{2} \cos \left(\frac{1$$

Von the movemble place imple diolatemic cette equation :

Is la somme de deux ere equivant en quant de la circonference partendad de les returnados en general.

$$\alpha$$
 or $\tan \frac{1}{n}$,

le un la 1965 indepente les acturede l'are dont la tangente est u; et l'originale de générous tempe la vire qui donne la valeur de cet are periori ellemente result de vive ?

Tropiali e e e e e e e e e e e e e e e dans l'equation e et dans

tion the transfer of tayon divergents et celle de l'equa-

SECTION VI.

SOLUTION GÉNÉRALE.

190.

On peut maintenant former la solution complète de la question que nous nous sommes proposée; car les coefficients de l'équation (b) (art. 168) étant déterminés, il ne reste plus qu'à les substituer; et l'on aura

$$\begin{cases} \frac{\pi \rho}{4} = e^{-x} \cos y - \frac{1}{3} e^{-3x} \cos 3y + \frac{1}{5} e^{-3x} \cos 5y \\ -\frac{1}{7} e^{-7x} \cos 7y + \frac{1}{9} e^{-9x} \cos 9y + \cdots \end{cases}$$

Cette valeur de e satisfait à l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0;$$

elle devient nulle lorsqu'on donne à y une valeur égale à $\frac{\pi}{3}$ ou $-\frac{\pi}{3}$; enfin, elle équivant à l'unité toutes les fois que, x étant nulle, y est comprise entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. Ainsi toutes les conditions physiques de la question sont exactement remplies, et il est certain que, si l'on donnait à chaque point de la lame la température que l'équation (α) détermine, et si, en même temps, on entretenait la base A à la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x a la température x et les arêtes infinies x et x et

191.

Le second membre de l'équation (α) étant réduit en une série extrêmement convergente, il est toujours facile de déterminer en nombre la température d'un point dont les coordonnées α et γ sont connués. Cette solution donne lieu à diverses conséquences qu'il est

171

necessaire de remarquer, parce qu'elles appartiennent à la theoriegenerale.

Si le point m, dont on consolere la temperature fixe, est très éloigne de l'origine X, le recond membre de l'equation |x| aura pour valeur extremement approchée $e^{-(x+x)}$; il re reduit à ce premier terme si $e^{-(x+x)}$ est infini.

L'equation

represente auna un clat du obde qui se conserverait sans mieun changement, s'il claif d'abord forme; il en serait de meme de l'état exprime par la patron

et, en peneral, che pre terme de la cree corresponda un etat particulier qui point de la meine propriete der ce y temes particls existent a la fored en celui que represente a protron es, ils se superposent, et le monvement de la chaben a de repoint hecun d'enx de la meine monière que l'actor coil Dan de tat qui repoint a l'un quelconque de cesterme , le temperature per de points de la base A différent d'un point a un autre, et ce t la seube condition de la question qui ne soit pas recipies, maio de tat con cal qui re ultre de la somme de tous le termes site autre cette meine sorbition.

A many que la point dont ser con riera la temperature est plus elor ne de la carre, le monvem nt de la chab un est moins compose : err, a la distance à a une valeur assez grande, chaque terme de la crite à tout pe tit peu expecit au precedent, de sorte que l'état de la laure cohauthe à la cusablement représente par les trois premiers terme ou peu le deux premiers, ou par le premier seulement, pour les porties de « 11. Lem qui » ant de plus en plus chorgnées de l'orrgane.

La surface combé dont l'ordonn e verticale mesure la temperature fixe che forme en aportant les ordonnées d'une multitude de surfaces particulières, qui ont pour équations

$$\frac{\pi \, c_1}{4} = e^{-x} \cos y,$$

$$\frac{\pi \, c_2}{4} = -\frac{1}{3} e^{-3x} \cos 3 y,$$

$$\frac{\pi \, c_3}{4} = e^{-3x} \cos 5 y,$$

La première de celles-ci se confond avec la surface générale lorsque x est infinie, et elles ont une nappe asymptotique commune.

Si la différence $v-v_1$ de leurs ordonnées est considérée comme l'ordonnée d'une surface courbe, cette surface se confondra, lorsque x est infinie, avec celle dont l'équation est

$$\frac{1}{4}\pi v_2 = -\frac{1}{3}e^{-3x}\cos 3y.$$

Tous les autres termes de la série donnent une conclusion semblable.

On trouverait encore les mêmes résultats si la section, à l'origine, au lieu d'être terminée, comme dans l'hypothèse actuelle, par une droite parallèle à l'axe des y, avait une figure quelconque formée de deux parties symétriques. On voit donc que les valeurs particulières

$$ae^{-x}\cos y$$
, $be^{-3x}\cos 3y$, $ce^{-5x}\cos 5y$, ...

prennent leur origine dans la question physique elle-même et ont une relation nécessaire avec les phénomènes de la chaleur. Chacune d'elles exprime un mode simple suivant lequel la chaleur s'établit et se propage dans une lame rectangulaire, dont les côtés infinis conservent une température constante. Le système général des températures se compose toujours d'une multitude de systèmes simples, et l'expression de leur somme n'a d'arbitraire que les coefficients a, b, c, d, \ldots

192.

On peut employer l'équation (a) pour déterminer toutes les circonstances du mouvement permanent de la chaleur dans une lame rec-

CHAPITRE HI. SOLIDE RECFANGULAIRE INFINE

tangulaire echanifice à son origine. Si l'on demande, par exemple, quelle est la depense de la source de chaleur, c'est à dire quelle est la quantite qui, pendant un temps donne, penètre à travers la base \(\lambda\) et remplace celle qui s'écoule dans les masses froides \(\mathbb{B}\) et \(\mathbb{C}\), il faut considerer que le flux perpendiculaire à l'axe des \(\lambda\) a pour expression \(\mathbb{K}\frac{d}{d\tau}\); La quantite qui, pendant l'un tant \(dt\), s'écoule à travers une particule \(dr\), de l'axe, est donc

et, comme les temperatures, out permanentes, le produit du flux pen dant l'unité de tempese ()

on interior cette expression entre les limites as a le partir de la base on, ce qui est la meme chose, on integrar deput y so qui qu'. Le sel l'or prendra le double de la somme de partir de la contine de contine de cette, dan diquelle ou double me son aun que les double reproducte al chose A, qui contra de la some de la some de chisbour i donc pour expression.

11

L'interrale d'attitue pri stabique de la qu'als de l'interrale serviume fon tour d'alors de temp, a travers une arrive tourier de l'evoule de chaleur pendant l'urit de temp, a travers une arrive transver ale placer à la distance e de tour anns.

15,1

S. L'air vent conventre la qu'entite de chaleur qui, pendant l'unite de temps, penetre au dela d'une figue tracce sur la laure parafielement aux arêtes B et C, on se servira de l'expression — $\mathbf{K} \frac{\partial v}{\partial y}$, et, la multipliant par l'élément dx de la ligne tracée, on intégrera par rapport à x entre les termes donnés de la ligne; ainsi l'intégrale

$$-\int \mathbf{K} \, \frac{\partial v}{\partial y} \, dx$$

fera connaître combien il s'écoule de chaleur à travers toute l'étendue de la ligne; et si, avant ou après l'intégration, on fait $y=\frac{\pi}{2}$, on connaîtra la quantité de chaleur qui, pendant l'unité de temps, sort de la lame en traversant l'arête infinie C. On pourra ensuite comparer cette dernière quantité à la dépense de la source de chaleur; car il est nécessaire que le foyer supplée continuellement la chaleur qui s'écoule dans les masses B et C. Si cette compensation n'avait pas lieu à chaque instant, le système des températures scrait variable.

194.

L'équation (2) donne

$$-K\frac{\partial v}{\partial x} = \frac{4K}{\pi} \left(e^{-x}\cos y - e^{-3x}\cos 3y + e^{-5x}\cos 5y - e^{-7x}\cos 7y + \ldots\right);$$

multipliant par dy, intégrant depuis y = o, on a

$$\frac{4K}{\pi} \left(e^{-x} \sin y - \frac{1}{3} e^{-3x} \sin 3y + \frac{1}{5} e^{-3x} \sin 5y - \frac{1}{7} e^{-7x} \sin 7y + \dots \right).$$

Si l'on fait $y = \frac{\pi}{2}$ et si l'on double l'intégrale, on trouvera

$$\frac{8 \, \mathrm{K}}{\pi} \left(e^{-x} + \frac{1}{3} \, e^{-3x} + \frac{1}{5} \, e^{-5x} + \frac{1}{7} \, e^{-7x} + \dots \right)$$

pour l'expression de la quantité de chaleur qui, pendant l'unité de temps, traverse une ligne parallèle à la base et dont la distance à cette base est α .

On déduit aussi de l'équation (a)

$$-\mathbf{K}\frac{\partial v}{\partial y} = \frac{4\mathbf{K}}{\pi} \left(e^{-x} \sin y - e^{-3x} \sin 3y + e^{-5x} \sin 5y - e^{-7x} \sin 7y + \cdots \right);$$

CHAPITRE III. SOLIDE RECTANGULAIRE INFINI. 473 done l'integrale

$$\int \mathbf{k} \frac{\partial \mathbf{k}}{\partial x} dx.$$

prise depuis a o, est

Si l'on retranche cette quantité de la valeur qu'elle prend forsqu'on y fait x infini, on trouvers

et, en faisant y especialisa de la quantité totale de chaleur qui traver e l'arcte infinie C, depuis le point dont la distance à l'origine est v ju qu'à l'extremité de la laine; cette quantité est

$$\frac{\partial \mathbf{K}_{ij}}{\partial \mathbf{k}_{ij}} = \frac{1}{2} \frac{\partial \mathbf{K}_{ij}}{\partial \mathbf{k}_{ij}} =$$

on voit qu'elle equivant à la moitre de celle qui penetri pendant le meme tempe au di la de la liene transversale tracce ur la lune à la destince à de lour, me. Non avon deperemaque que ce resultat est me con a pren e noce one de conditions de la que tione; s'il n'avait par lieu, la partie de la lame qui est placce au di la de la ligne transver de ce à prodesse à l'isitue ne re extrait point par ses lorse une quantité de chick ur e als a celle qu'elle por l'par condens arctes, elle ne pourrait d'on penet « monver on ctat, ce qui est contraire à l'hypotheme.

19.

throat a la depense de la source de chaleur, on la trouve en supposant e co den l'exposs on procedente; elle acquiert par la une voleur autime, et l'or en pamoitra la raison si l'on remarque que, d'après l'hypothèse, tou des points de la ligne A out et conservent la temperature 1; les lignes paralleles qui sont tres voisnes de cette hase out aussi une temperature extremeno ni peu différente de l'innite; donc les extrémités de toutes ces lignes qui sont contiguës aux masses froides B et C leur communiquent une quantité de chaleur incomparablement plus grande que si le décroissement de la température était continu et insensible. Il existe dans cette première partie de la lame, aux extrémités voisines de B ou de C, une cataracte de chaleur ou un flux infini. Ce résultat cesse d'avoir lieu lorsque la distance a reçoit une valeur appréciable.

196.

On a désigné par π la longueur de la base. Si on lui attribue une valeur quelconque 2l, il faudra écrire, au lieu de y, $\frac{1}{2}\pi\frac{y}{l}$; et, multipliant aussi les valeurs de x par $\frac{\pi}{2l}$, on écrira $\frac{1}{2}\pi\frac{x}{l}$ au lieu de x. Désignant par A la température constante de la base, on remplacera c par $\frac{c}{\Lambda}$. Ces substitutions étant faites dans l'équation (α), on a

(B)
$$r = \frac{4\Lambda}{\pi} \left(e^{-\frac{\pi r}{2\ell}} \cos \frac{\pi r}{2\ell} - \frac{1}{3} e^{-5\frac{\pi r}{2\ell}} \cos 3\frac{\pi r}{2\ell} + \frac{1}{5} e^{-5\frac{\pi r}{2\ell}} \cos 5\frac{\pi r}{2\ell} - \frac{1}{7} e^{-7\frac{\pi r}{2\ell}} \cos 7\frac{\pi r}{2\ell} + \cdots \right).$$

Cette équation représente exactement le système des températures permanentes dans un prisme rectangulaire infini, compris entre deux masses de glace B et C et une source de chaleur constante.

197.

Il est facile de voir, soit au moyen de cette équation, soit d'après l'article 171, que la chaleur se propage dans ce solide en s'éloignant de plus en plus de l'origine, en même temps qu'elle se dirige vers les faces infinies B et C. Chaque section parallèle à celle de la base est traversée par une onde de chaleur qui se renouvelle à chaque instant et conserve la même intensité; cette intensité est d'autant moindre que la section est plus distante de l'origine. Il s'opère un mouvement semblable, par rapport à un plan quelconque parallèle aux faces infi-

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 177 nies; chacun de ces plans est traversé par une onde constante qui porte sa chaleur aux masses latérales.

Nous aurions regardé comme inutiles les développements contenus dans les articles précédents, si nous n'avions point à exposer une théorie entièrement nouvelle, dont il est nécessaire de fixer les principes. C'est dans cette même vue que nous ajouterons les remarques suivantes.

198.

Chacun des termes de l'équation (α) correspond à un seul système particulier de températures, qui pourrait subsister dans une lame rectangulaire échaussée par son extrémité et dont les arêtes infinies sont retenues à une température constante. Ainsi l'équation $v=e^{-x}\cos y$ représente les températures permanentes, lorsque les points de la base A sont assujettis à une température fixe, désignée par $\cos y$. On peut concevoir maintenant que la lame échaussée fait partie du plan qui se prolonge à l'infini dans tous les sens; en désignant par α et γ les coordonnées d'un point quelconque de ce plan et par γ la température du même point, on appliquera au plan tout entier l'équation

$$v = e^{-x} \cos y$$
;

par ce moyen, les arêtes B et C auront la température constante o; mais il n'en sera pas de même des parties contiguës; elles recevront et conserveront une température moindre. La base A aura dans tous ses points la température permanente désignée par cosy, et les parties contiguës auront une température plus élevée.

Si l'on construit la surface courbe dont l'ordonnée verticale équivaut à la température permanente de chaque point du plan, et si on la coupe par un plan vertical passant par la ligne A ou parallèle à cette ligne, la figure de la section sera celle d'une ligne trigonométrique dont l'ordonnée représente la suite infinie et périodique des cosinus. Si l'on coupe cette même surface courbe par un plan vertical parallèle à l'axe des x, la figure de la section sera dans toute son étendue celle d'une courbe logarithmique.

23

199.

On voit par là de quelle manière le calcul satisfait aux deux conditions de l'hypothèse, qui assujettissent la ligne à une température égale à cosy, et les deux côtés B et C à la température o. Lorsqu'on exprime ces deux conditions, on résout en effet la question suivante : Si la lame échauffée faisait partie d'un plan infini, quelles devraient être les températures de tous les points de ce plan pour que le système fût de lui-même permanent, et que les températures fixes des côtés du rectangle infini fussent celles qui sont données par l'hypothèse?

Nous avons supposé précédemment que des causes extérieures quelconques retenaient les faces du solide rectangulaire infini, l'une à la température 1, et les deux autres à la température o. On peut se représenter cet effet de différentes manières; mais l'hypothèse propre au calcul consiste à regarder le prisme comme une partie d'un solide dont toutes les dimensions sont infinies et à déterminer les températures de la masse qui l'environne, en sorte que les conditions relatives à la surface soient toujours observées.

200.

Pour connaître le système des températures permanentes dans une lame rectangulaire dont l'extrémité A est entretenue à la température 1, et les deux arêtes infinies à la température 0, on pourrait considérer les changements que subissent les températures, depuis l'état initial qui est donné jusqu'à l'état fixe qui est l'objet de la question. On déterminerait ainsi l'état variable du solide pour toutes les valeurs du temps, et l'on supposerait ensuite cette valeur infinie.

La méthode que nous avons suivie est différente et conduit plus immédiatement à l'expression de l'état final, parce qu'elle est fondée sur une propriété distinctive de cet état. On va prouver maintenant que la question n'admet aucune autre solution que celle que nous avons rapportée. Cette démonstration résulte des propositions suivantes.

201.

Si l'on donne à tous les points d'une lame rectangulaire infinie les températures exprimées par l'équation (α) , et si l'on conserve aux deux arêtes B et C la température fixe o pendant que l'extrémité A est exposée à une source de chaleur qui retient tous les points de la ligne A à la température fixe 1, il ne pourra survenir aucun changement dans l'état du solide. En effet, l'équation

$$\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} = 0$$

étant satisfaite, il est manifeste que la quantité de chaleur qui détermine la température de chaque molécule ne pourra être ni augmentée ni diminuée.

Supposons, les différents points du même solide ayant reçu les températures exprimées par l'équation (α) ou

$$v = \varphi(x, y),$$

qu'au lieu de retenir l'arête A à la température 1, on lui donne, ainsi qu'aux deux lignes B et C, la température fixe 0; la chaleur contenue dans la lame BAC s'écoulera à travers les trois arêtes A, B, C et, d'après l'hypothèse, elle ne sera point remplacée, en sorte que les températures diminueront continuellement et que leur valeur finale et commune sera o. Cette conséquence est évidente, parce que les points infiniment éloignés de l'origine Λ ont une température infiniment petite, d'après la manière dont l'équation (α) a été formée.

Le même effet aurait lieu en sens opposé si le système des températures était

$$r = -\varphi(x, y),$$

au lieu d'être

$$v = \varphi(x, y);$$

c'est-à-dire que toutes les températures initiales négatives varieraient continuellement et tendraient de plus en plus vers leur valeur finale o, pendant que les trois arêtes A, B, C conserveraient la température o.

202.

Soit c = f(x, y) une équation donnée qui exprime la température initiale des points de la lame BAC, dont la base A est retenue à la température 1, pendant que les arêtes B et C conservent la température 0.

Soit c = F(x, y) une autre équation donnée qui exprime la température initiale de chaque point d'une lame solide BAC parfaitement égale à la précédente, mais dont les trois arêtes B, A, C sont retenues à la température o.

Supposons que, dans le premier solide, l'état variable qui succède à l'état initial soit déterminé par l'équation

$$\varphi = \varphi(x, y, t),$$

t désignant le temps écoulé, et que l'équation

$$\mathbf{r} = \Phi(x, y, t)$$

détermine l'état variable du second solide, pour lequel les températures initiales sont F(x, y).

Enfin, supposons un troisième solide égal à chacun des deux précédents; soit

$$c = f(x, y) + \mathbf{F}(x, y)$$

l'équation qui représente son état initial, et soient i la température constante de la base A, o et o celles des deux arêtes B et C.

On va démontrer que l'état variable du troisième solide sera déterminé par l'équation

$$v = \varphi(x, y, t) + \Phi(x, y, t).$$

En effet, la température d'un point m du troisième solide varie parce que cette molécule, dont M désignera le volume, acquiert ou perd une certaine quantité de chaleur Δ . L'accroissement de la température pendant l'instant dt est

$$\frac{\Delta}{c\,\mathrm{M}}\,dt$$
,

181

le coefficient c désignant la capacité spécifique rapportée au volume. La variation de la température du même point, dans le premier solide, sera $\frac{d}{c\mathbf{M}}dt$, et elle sera $\frac{\mathbf{D}}{c\mathbf{M}}dt$ dans le second, les lettres d et \mathbf{D} représentant la quantité de chaleur positive ou négative que la molécule acquiert en vertu de l'action de toutes les molécules voisines. Or il est facile de reconnaître que Δ équivaut à $d+\mathbf{D}$. Pour s'en convaincre, il suffit de considérer la quantité de chaleur que le point m reçoit d'un autre point m_1 appartenant à l'intérieur de la lame ou aux arêtes qui la limitent.

Le point m_1 , dont la température initiale est désignée par f_1 , transmettra à la molécule m, pendant l'instant dt, une quantité de chaleur exprimée par $q_1(f_1-f)dt$, le facteur q_1 représentant une certaine fonction de la distance des deux molécules. Ainsi la quantité totale de chaleur acquise par m sera $\sum q_1(f_1-f)dt$, le signe \sum exprimant la somme de tous les termes que l'on trouverait en considérant les autres points m_2, m_3, m_4, \ldots qui agissent sur m, c'est-à-dire en mettant q_2, f_2 , ou q_3, f_3 , ou q_4, f_4 , ainsi de suite, à la place de q_4, f_4 . On trouvera de même $\sum q_4(f_1-f)dt$ pour l'expression de la quantité totale de chaleur acquise par le même point m du second solide; et le facteur q_4 est le même que dans le terme $\sum q_4(f_4-f)dt$, puisque les deux solides sont formés de la même matière, et que la situation des points est la même; on a donc

$$d = \sum q_1(f_1 - f) dt,$$

$$\mathbf{D} = \sum q_1(\mathbf{F}_1 - \mathbf{F}) dt.$$

On trouvera par la même raison

done

$$\Delta = \sum q_1 [(f_1 + F_1) - (f + F)] dt;$$

$$\Delta = d + D,$$

$$\frac{\Delta}{dM} = \frac{d}{dM} + \frac{D}{dM}.$$

Il suit de là que chaque molécule m du troisième solide acquerra, pendant l'instant dt, un accroissement de température égal à la somme

Fx 3# ,

11 11

Cette valeur de con processe extremites du solide, qui cent

elle satisfait auger à l'opost de mi

,

pursque l'equation. Contraine transcelle représente exactement le comme de deriver autre de la comme autre solution, conflic

L'equation (fours), a me trois indetermine (a, a, a, b) a fait commutic fre charence (a me verticale la temperation (a) a solide l'infin on de fait de la calente différente (a) a de la calente d'infine (a) a de la calente par con equent la valua d'incommutatra par con equent la valua

tes mellionals sout our case as

ž ,

*

On remarquera que, dan la composition de sont données par des series ambientes a somme en remplacant le quantité.

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI.

nentielles imaginaires. On obtient ainsi ces mêmes valeurs de $\frac{\partial v}{\partial x}$ et $\frac{\partial v}{\partial y}$ que nous venons de rapporter.

La question que l'on vient de traiter est la première que nous ayons résolue dans la théorie de la chaleur, ou plutôt dans la partie de cette théorie qui exige l'emploi de l'Analyse. Elle fournit des applications numériques très faciles, soit que l'on fasse usage des Tables trigonométriques ou des séries convergentes, et elle représente exactement toutes les circonstances du mouvement de la chaleur. Nous passerons maintenant à des considérations plus générales.

SECTION VI.

DÉVELOPPEMENT D'UNE FONCTION ARBITRAIRE EN SÉRIES TRIGONOMÉTRIQUES.

207.

La question de la propagation de la chalcur dans un solide rectangulaire a conduit à l'équation

$$\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} = 0;$$

et, si l'on suppose que tous les points de l'une des faces du solide ont une température commune, il faut déterminer les coefficients a, b, c, d, e, ... de la série

$$a\cos x + b\cos 3x + c\cos 5x + d\cos 7x + \dots,$$

en sorte que la valeur de cette fonction soit égale à une constante toutes les fois que l'arc x est compris entre $-\frac{\pi}{2}$ et $+\frac{\pi}{2}$. On vient d'assigner la valeur de ces coefficients; mais on n'a traité qu'un seul cas d'un problème plus général, qui consiste à développer une fonction quelconque en une suite infinie de sinus ou de cosinus d'arcs multiples. Cette question est liée à la théorie des équations aux différences partielles et a été agitée dès l'origine de cette analyse. Il était néces-

saire de la résoudre pour intégrer convenablement les équations de la propagation de la chaleur; nous allons en exposer la solution.

On examinera, en premier lieu, le cas où il s'agit de réduire en une série de sinus d'arcs multiples une fonction dont le développement ne contient que des puissances impaires de la variable. Désignant une telle fonction par $\varphi(x)$, on posera l'équation

$$\varphi(x) = a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + \dots,$$

et il s'agit de déterminer la valeur des coefficients a, b, c, d, On écrira d'abord l'équation

$$\varphi(x) = x \, \varphi'(0) + \frac{x^2}{2} \, \varphi''(0) + \frac{x^3}{2 \cdot 3} \, \varphi'''(0) + \frac{x^4}{2 \cdot 3 \cdot 4} \, \varphi^{\text{TV}}(0) + \frac{x^3}{2 \cdot 3 \cdot 4 \cdot 5} \, \varphi^{\text{V}}(0) + \dots,$$

dans laquelle $\phi'(o)$, $\phi''(o)$, $\phi'''(o)$, $\phi^{iv}(o)$, ... désignent les valeurs que prennent les coefficients

$$\frac{d\varphi(x)}{dx}$$
, $\frac{d^2\varphi(x)}{dx^2}$, $\frac{d^3\varphi(x)}{dx^3}$, $\frac{d^4\varphi(x)}{dx^4}$, ...

lorsqu'on y suppose x = 0. Ainsi, en représentant le développement selon les puissances de x par l'équation

$$\varphi(x) = \mathbf{A}x - \mathbf{B}\frac{x^3}{2.3} + \mathbf{C}\frac{x^3}{2.3.4.5} - \mathbf{D}\frac{x^7}{2.3.4.5.6.7} + \mathbf{E}\frac{x^9}{2.3.4.5.6.7.8.9} \dots,$$

on aura

$$\varphi(o) = o, \qquad \varphi'(o) = \Lambda,$$
 $\varphi''(o) = o, \qquad \varphi'''(o) = -B,$
 $\varphi^{iv}(o) = o, \qquad \varphi^{v}(o) = C,$
 $\varphi^{vi}(o) = o, \qquad \varphi^{vii}(o) = -D,$

Si maintenant on compare l'équation précédente à celle-ci

$$\varphi(x) = a \sin x + b \sin 2x + c \sin 3x + d \sin 4x + \dots,$$

en développant le second membre par rapport aux puissances de lpha, on

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 189 aura les équations

(a)
$$\begin{cases}
A = a + 2 b + 3 c + 4 d + 5 e + \dots, \\
B = a + 2^3 b + 3^3 c + 4^3 d + 5^3 e + \dots, \\
C = a + 2^5 b + 3^5 c + 4^5 d + 5^5 e + \dots, \\
D = a + 2^7 b + 3^7 c + 4^7 d + 5^7 e + \dots, \\
E = a + 2^9 b + 3^9 c + 4^9 d + 5^9 e + \dots, \\
\dots$$

Ces équations doivent servir à trouver les coefficients a, b, c, d, e, ..., dont le nombre est infini. Pour y parvenir, on regardera d'abord comme déterminé et égal à m le nombre des inconnues, et l'on conservera un pareil nombre m d'équations; ainsi l'on supprimera toutes les équations qui suivent les m premières, et l'on omettra, dans chacune de ces équations, tous les termes du second membre qui suivent les m premiers que l'on conserve. Le nombre entier m étant donné, les coefficients a, b, c, d, e, \ldots ont des valeurs fixes que l'on peut trouver par l'élimination. On obtiendrait pour ces mêmes quantités des valeurs différentes si le nombre des équations et celui des inconnues étaient plus grands d'une unité. Ainsi la valeur des coefficients varie à mesure que l'on augmente le nombre de ces coefficients et celui des équations qui doivent les déterminer. Il s'agit de rechercher quelles sont les limites vers lesquelles les valeurs des inconnues convergent continuellement, à mesure que le nombre des équations devient plus grand. Ces limites sont les véritables valeurs des inconnues qui satisfont aux équations précédentes lorsque leur nombre est infini (1).

208.

On considérera donc successivement les cas où l'on aurait à déterminer une inconnue par une équation, deux inconnues par deux équations, trois inconnues par trois équations, ainsi de suite à l'infini. Supposons que l'on désigne comme il suit différents systèmes d'équations

et

au lieu de

analogues à celles dont on doit tirer les valeurs des coefficients :

$$a_{1} = A_{1};$$

$$\begin{cases} a_{2} + 2 \ b_{2} = A_{2}, \\ a_{2} + 2^{3} b_{2} = B_{2}; \end{cases}$$

$$\begin{cases} a_{3} + 2 \ b_{3} + 3 \ c_{3} = A_{3}, \\ a_{3} + 2^{3} b_{3} + 3^{3} c_{3} = B_{3}, \\ a_{3} + 2^{5} b_{3} + 3^{5} c_{3} = C_{3}; \end{cases}$$

$$\begin{cases} a_{4} + 2 \ b_{4} + 3 \ c_{4} + 4 \ d_{4} = A_{4}, \\ a_{4} + 2^{3} b_{4} + 3^{3} c_{4} + 4^{3} d_{4} = B_{4}, \\ a_{4} + 2^{5} b_{4} + 3^{5} c_{4} + 4^{5} d_{4} = C_{4}, \\ a_{4} + 2^{7} b_{4} + 3^{7} c_{4} + 4^{7} d_{3} = D_{4}; \end{cases}$$

$$\begin{cases} a_{5} + 2 \ b_{5} + 3 \ c_{5} + 4 \ d_{5} + 5 \ c_{5} = A_{5}, \\ a_{5} + 2^{3} b_{5} + 3^{3} c_{5} + 4^{3} d_{5} + 5^{3} c_{5} = B_{5}, \\ a_{5} + 2^{5} b_{5} + 3^{5} c_{5} + 4^{5} d_{5} + 5^{5} c_{5} = C_{5}, \\ a_{5} + 2^{7} b_{5} + 3^{7} c_{3} + 4^{7} d_{5} + 5^{7} c_{3} = D_{5}, \\ a_{5} + 2^{9} b_{5} + 3^{9} c_{5} + 4^{9} d_{5} + 5^{9} c_{5} = E_{5}; \end{cases}$$

Si maintenant on élimine la dernière inconnuc $c_{\mathfrak{s}}$, au moyen des cinq équations qui contiennent A₅, B₅, C₅, D₅, E₅, ..., on trouvera

$$a_{5}(5^{2}-1^{2}) + 2 b_{5}(5^{2}-2^{2}) + 3 c_{5}(5^{2}-3^{2}) + 4 d_{5}(5^{2}-4^{2}) = 5^{2} \Lambda_{5} + B_{5},$$

$$a_{5}(5^{2}-1^{2}) + 2^{3} b_{5}(5^{2}-2^{2}) + 3^{3} c_{5}(5^{2}-3^{2}) + 4^{3} d_{5}(5^{2}-4^{2}) = 5^{2} B_{5} + C_{5},$$

$$a_{5}(5^{2}-1^{2}) + 2^{5} b_{5}(5^{2}-2^{2}) + 3^{5} c_{5}(5^{2}-3^{2}) + 4^{5} d_{5}(5^{2}-4^{2}) = 5^{2} C_{5} + C_{5},$$

$$a_{5}(5^{2}-1^{2}) + 2^{7} b_{5}(5^{2}-2^{2}) + 3^{7} c_{5}(5^{2}-3^{2}) + 4^{7} d_{5}(5^{2}-4^{2}) = 5^{2} D_{5} + C_{5},$$

$$a_{5}(5^{2}-1^{2}) + 2^{7} b_{5}(5^{2}-2^{2}) + 3^{7} c_{5}(5^{2}-3^{2}) + 4^{7} d_{5}(5^{2}-4^{2}) = 5^{2} D_{5} + C_{5},$$

$$a_{5}(5^{2}-1^{2}) + 2^{7} b_{5}(5^{2}-2^{2}) + 3^{7} c_{5}(5^{2}-3^{2}) + 4^{7} d_{5}(5^{2}-4^{2}) = 5^{2} D_{5} + C_{5},$$

On aurait pu déduire ces quatre équations des quatre qui forment le système précédent, en mettant dans ces dernières

$$(5^{2}-1)a_{5}, \quad (5^{2}-2^{2})b_{5}, \quad (5^{2}-3^{2})c_{5}, \quad (5^{2}-4^{2})d_{5}$$
 au lieu de
$$a_{4}, \quad b_{4}, \quad c_{4}, \quad d_{4}$$
 et
$$5^{2}A_{5}-B_{5}, \quad 5^{2}B_{5}-C_{5}, \quad 5^{2}C_{5}-D_{5}, \quad 5^{2}D_{5}-E_{5}$$
 au lieu de
$$A_{4}, \quad B_{4}, \quad C_{4}, \quad D_{4}.$$

On pourra toujours, par des substitutions semblables, passer du cas qui répond à un nombre m d'inconnues à celui qui répond à un nombre m+1. En écrivant par ordre toutes ces relations entre les quantités qui répondent à l'un des cas et celles qui répondent au cas suivant, on aura

(c)
$$\begin{cases} a_1 = a_2(2^2 - 1), & a_2 = a_3(3^2 - 1), & b_2 = b_3(3^2 - 2^2), \\ a_3 = a_4(4^2 - 1), & b_3 = b_4(4^2 - 2^2), & c_3 = c_4(4^2 - 3^2), \\ a_4 = a_5(5^2 - 1), & b_4 = b_3(5^2 - 2^2), & c_4 = c_5(5^2 - 3^2), & d_4 = d_5(5^2 - 4^2), \\ a_5 = a_6(6^2 - 1), & b_5 = b_6(6^2 - 2^2), & c_5 = c_6(6^2 - 3^2), & d_5 = d_6(6^2 - 4^2), & e_5 = e_6(6^2 - 3^2), \\ \dots & \dots & \dots & \dots & \dots \end{cases}$$

on aura aussi

$$(d) \begin{cases} A_1 = 2^2 A_2 - B_2, \\ A_2 = 3^2 A_3 - B_3, & B_2 = 3^2 B_3 - C_3, \\ A_3 = 4^2 A_4 - B_4, & B_3 = 4^2 B_4 - C_4, & C_3 = 4^2 C_4 - D_4, \\ A_4 = 5^2 A_5 - B_5, & B_4 = 5^2 B_5 - C_5, & C_5 = 5^2 C_5 - D_5, & D_4 = 5^2 D_5 - E_5, \\ \dots & \dots & \dots & \dots & \dots & \dots \end{cases}$$

On conclut des équations (c) que, en représentant par a, b, c, d, c, ... les inconnues dont le nombre est infini, on doit avoir

$$(c) = \frac{a_1}{(3^2 - 1)(3^2 - 1)(4^2 - 1)(6^2 - 1)...},$$

$$b = \frac{b_2}{(3^2 - 2^2)(4^2 - 2^2)(5^2 - 2^2)(6^2 - 2^2)...},$$

$$c = \frac{c_3}{(4^2 - 3^2)(5^2 - 3^2)(6^2 - 3^2)(7^2 - 3^2)...},$$

$$d = \frac{d_4}{(5^2 - 4^2)(6^2 - 4^2)(7^2 - 4^2)(8^2 - 4^2)...}$$

$$(1),$$

Les quatre équations de la page 190 peuvent être déduites de celles qui forment le sys-

⁽¹⁾ Les produits indiqués aux dénominateurs sont infinis et ne peuvent, par conséquent, être introduits dans les raisonnements. C'est une difficulté de plus, dans une méthode qui prête déjà à tant d'objections. On pourrait l'éviter de la manière suivante.

Il reste donc à déterminer les valeurs de a_1 , b_2 , c_3 , d_4 , e_5 , ...; la première est donnée par une équation dans laquelle entre Λ_1 ; la seconde est donnée par deux équations dans lesquelles entrent A_2 , B_2 ; la troisième est donnée par trois équations dans lesquelles entrent A_3 , B_3 , C_3 , et ainsi de suite. Il suit de là que, si l'on connaissait les valeurs de

$$A_1$$
; A_2 , B_2 ; A_3 , B_3 , C_3 ; A_4 , B_4 , C_4 , D_4 ; ...,

on trouverait facilement a_1 en résolvant une équation, a_2 , b_2 en résol-

tème précédent, en mettant dans ces dernières

$$\left(\mathbf{1} - \frac{\mathbf{1}}{5^2}\right) a_5, \quad \left(\mathbf{1} - \frac{2^2}{5^2}\right) b_5, \quad \left(\mathbf{1} - \frac{3^2}{5^2}\right) c_5, \quad \left(\mathbf{1} - \frac{4^2}{5^2}\right) a_5$$

au lieu de

$$a_4$$
, b_4 , c_4 , d_4

et

$$A_5 - \frac{B_5}{5^2}$$
, $B_5 - \frac{C_5}{5^2}$, $C_5 - \frac{D_5}{5^2}$, $D_5 - \frac{E_5}{5^2}$

au lieu de

$$A_4$$
, B_4 , C_4 , D_4 .

Alors les systèmes de la page 191 prendront la forme

on aura aussi

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 193 vant deux équations, a_3 , b_3 , c_3 en résolvant trois équations, et ainsi de suite; après quoi on déterminerait a, b, c, d, e, Il s'agit maintenant de calculer les valeurs de

$$A_1$$
; A_2 , B_2 ; A_3 , B_3 , C_3 ; A_4 , B_4 , C_4 , D_4 ; A_5 , B_5 , C_5 , D_5 , E_5 ;

Au moyen des équations (d): 1° on trouvera la valeur de A_1 en A_2 et B_2 ; 2° par deux substitutions on trouvera cette valeur de A_4 en A_5 , B_3 , C_3 ; 3° par trois substitutions on trouvera la même valeur de A_4 en A_5 , B_4 , C_4 , D_5 , et ainsi de suite. Ces valeurs successives de A_4 sont

$$\begin{split} &\Lambda_{1} = \Lambda_{2} \, 2^{2} - B_{2}, \\ &\Lambda_{1} = \Lambda_{3} \, 2^{2}, 3^{2} - B_{3} \, (2^{2} + 3^{2}) \, + C_{3}, \\ &\Lambda_{1} = \Lambda_{3} \, 2^{2}, 3^{2}, 4^{2} - B_{4} \, (2^{2}, 3^{2} + 2^{2}, 4^{2} + 3^{2}, 4^{2}) + C_{4} \, (2^{2} + 3^{2} + 4^{2}) - D_{4}, \\ &\Lambda_{1} = \Lambda_{5} \, 2^{2}, 3^{2}, 4^{2}, 5^{2} - B_{5} \, (2^{2}, 3^{2}, 4^{2} + 2^{2}, 3^{2}, 5^{2} + 2^{2}, 4^{2}, 5^{2} + 3^{2}, 4^{2}, 5^{2}) \\ &\quad + C_{3} \, (2^{2}, 3^{2} + 2^{2}, 4^{2} + 2^{2}, 5^{2} + 3^{2}, 4^{2} + 3^{2}, 5^{2} + 4^{2}, 5^{2}) - D_{5} \, (2^{2} + 3^{2} + 4^{2} + 5^{2}) + E_{3}, \end{split}$$

dont il est aisé de remarquer la loi. La dernière de ces valeurs, qui est

et, par suite,

$$u = \frac{u_1}{\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\cdots},$$

$$b = \frac{b_2}{\left(1 - \frac{2^2}{3^2}\right)\left(1 - \frac{2^2}{4^2}\right)\left(1 - \frac{2^2}{5^2}\right)\cdots},$$

$$c = \frac{c_3}{\left(1 - \frac{3^2}{4^2}\right)\left(1 - \frac{3^2}{5^2}\right)\left(1 - \frac{3^2}{6^2}\right)\cdots},$$

Quant aux différentes valeurs de A1 données à l'article suivant, elles deviendront

$$\begin{split} &\Lambda_1 = \Lambda_2 - \frac{B_2}{2^2}, \\ &\Lambda_1 = \Lambda_3 - B_3 \left(\frac{1}{2^2} + \frac{1}{3^2} \right) + \frac{C_3}{2^2 \cdot 3^2}, \\ &\Lambda_1 = \Lambda_4 - B_4 \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \right) + C_4 \left(\frac{1}{3^2 \cdot 4^2} + \frac{1}{2^2 \cdot 4^2} + \frac{1}{3^2 \cdot 2^2} \right) - \frac{D_4}{2^2 \cdot 3^2 \cdot 4^2}. \end{split}$$

On opérera de même pour A_2 , B_2 , A_3 , ..., et cette partie du raisonnement sera ainsi rétablie dans toute sa rigueur. G. D.

25

celle que l'on veut déterminer, contient les quantités A, B, C, D, E, ... avec un indice infini, et ces quantités sont connues; elles sont les mêmes que celles qui entrent dans les équations (a).

En divisant cette dernière valeur de A, par le produit infini

$$2^2.3^2.4^2.5^2.6^2...,$$

on a

$$\begin{split} \Lambda - B \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots \right) + C \left(\frac{1}{2^2 \cdot 3^2} + \frac{1}{2^2 \cdot 4^2} + \frac{1}{3^2 \cdot 4^2} + \dots \right) \\ - D \left(\frac{1}{2^2 \cdot 3^2 \cdot 4^2} + \frac{1}{2^2 \cdot 3^2 \cdot 5^2} + \frac{1}{3^2 \cdot 4^2 \cdot 5^2} + \dots \right) \\ + E \left(\frac{1}{2^2 \cdot 3^2 \cdot 4^2 \cdot 5^2} + \frac{1}{2^2 \cdot 3^2 \cdot 4^2 \cdot 6^2} + \dots \right) \\ - \dots & \dots & \dots & \dots & \dots \end{split}$$

Les coefficients numériques sont les sommes des produits que l'on formerait par les diverses combinaisons des fractions $\frac{1}{1^2}$, $\frac{1}{2^2}$, $\frac{1}{3^2}$, $\frac{1}{4^2}$, $\frac{1}{5^2}$, $\frac{1}{6^2}$, ..., après avoir séparé la première fraction $\frac{1}{1^2}$. Si l'on représente ces différentes sommes de produits par P_1 , Q_1 , R_1 , S_1 , T_1 , ... et si l'on emploie la première des équations (e) et la première des équations (b), on aura, pour exprimer la valeur du premier coefficient a, l'équation

$$a^{(2^{2}-1)(3^{2}-1)(4^{2}-1)(5^{2}-1)\dots} = A - BP_{1} + CQ_{1} - DR_{1} + ES_{1} - FT_{1} + \dots;$$

or les quantités P_1 , Q_1 , R_1 , S_2 , T_4 , ... peuvent être facilement déterminées comme on le verra plus bas; donc le premier coefficient α sera entièrement connu.

210.

Il faut passer maintenant à la recherche des coefficients suivants, b, c, d, e, f, ..., qui, d'après les équations (e), dépendent des quantités b_2 , c_3 , d_4 , e_5 , f_6 , On reprendra pour cela les équations (b); la première a déjà été employée pour trouver la valeur de a_1 ; les deux sui-

195

vantes donnent la valeur de b_2 ; les trois suivantes la valeur de c_3 ; les quatre suivantes la valeur de d_4 et ainsi de suite.

En effectuant le calcul, on trouvera, à la scule inspection des équations, pour les valeurs de b_2 , c_3 , d_4 , e_5 , ... les résultats suivants :

$$\begin{split} & 2\,b_2\,(\tau^2 \to 2^2) = A_2\,\tau^2 + B_2, \\ & 3\,c_3\,(\tau^2 \to 3^2)\,(2^2 + 3^2) = A_3\,\tau^2, 2^2 + B_3\,(\tau^2 + 2^2) + C_3, \\ & 4\,d_4\,(\tau^2 + 4^2)\,(2^2 + 4^2)\,(3^3 + 4^2) \\ & = A_4\,\tau^2, 2^2, 3^2 + B_4\,(\tau^2, 2^2, +\tau^2, 3^2 + 2^2, 3^2) + C_4\,(\tau^2 + 2^2 + 3^2) + D_4, \\ & 5\,c_3\,(\tau^2 + 5^2)\,(2^2 + 5^2)\,(3^2 + 5^2)\,(4^2 + 5^2) \\ & = A_3\,\tau^2, 2^2, 3^2, 4^2 + B_3\,(\tau^2, 2^2, 3^2 + \tau^2, 2^2, 4^2 + \tau^2, 3^2, 4^2 + 2^2, 3^2, 4^2) \\ & + C_3\,(\tau^2, 2^2 + \tau^2, 3^2 + \tau^2, 4^2 + 2^2, 3^2 + 2^2, 4^2 + 3^2, 4^2) + D_3\,(\tau^2 + 2^2 + 3^2 + 4^2) + E_3, \end{split}$$

La loi que suivent ces équations est facile à saisir; il ne reste plus qu'à déterminer les quantités

$$A_2$$
, B_2 ; A_3 , B_3 , C_4 ; A_4 , B_4 , C_4 ,

Or les quantités A_2 , B_2 peuvent être exprimées en A_3 , B_3 , C_3 ; ces dernières en A₄, B₄, C₄, D₄, Il suffit pour cela d'opérer les substitutions indiquées par les équations (d); ces changements successifs réduiront les seconds membres des équations précédentes à ne contenir que les quantités A, B, C, D, ... avec un indice infini, c'est-à-dire les quantités connues A, B, C, D, ... qui entrent dans les équations (a); les coefficients seront les différents produits que l'on peut faire en combinant les carrés des nombres 12, 22, 32, 42, 52 à l'infini. Il faut seulement remarquer que le premier de ces carrés 12 n'entrera point dans les coefficients de la valeur de a_1 ; que le second carré 2º n'entrera point dans les coefficients de la valeur de b_2 ; que le troisième carré 3º sera seul omis parmi ceux qui servent à former les coefficients de la valeur de c_3 , ainsi du reste à l'infini. On aura donc pour les valeurs de b_2 , c_3 , d_4 , e_5 , ... et par conséquent pour celles de b, c, d, c,\ldots des résultats entièrement analogues à celui que l'on a trouvé plus haut pour la valeur du premier coefficient a_i .

Si maintenant on représente par P2, Q2, R2, S2, ... les quantités

$$\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 3^{2}} + \frac{1}{1^{2} \cdot 4^{2}} + \frac{1}{1^{2} \cdot 5^{2}} + \frac{1}{3^{2} \cdot 4^{2}} + \frac{1}{3^{2} \cdot 5^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 3^{2} \cdot 4^{2}} + \frac{1}{1^{2} \cdot 3^{2} \cdot 5^{2}} + \frac{1}{1^{2} \cdot 4^{2} \cdot 5^{2}} + \frac{1}{3^{2} \cdot 4^{2} \cdot 5^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2}} + \frac{1}{1^{2} \cdot 4^{2} \cdot 5^{2} \cdot 6^{2}} + \dots,$$

$$\dots \dots \dots$$

que l'on forme par les combinaisons des fractions

$$\frac{1}{1^2}$$
, $\frac{1}{2^2}$, $\frac{1}{3^2}$, $\frac{1}{4^2}$, $\frac{1}{5^2}$, ...

à l'infini, en omettant la seconde de ces fractions $\frac{1}{2^2}$, on aura, pour déterminer la valeur de b_2 , l'équation

$$2 b_2 \frac{1^2 - 2^2}{1^2 \cdot 3^2 \cdot 4^2 \cdot 5^2 \cdot 6^2 \cdot ...} = A_2 - BP_2 + CQ_2 - DR_2 + ES_2 - FT_2 +$$

En représentant, en général, par P_n , Q_n , R_n , S_n , T_n , ... les sommes des produits que l'on peut faire en combinant diversement toutes les fractions $\frac{1}{1^2}$, $\frac{1}{2^2}$, $\frac{1}{3^3}$, $\frac{1}{4^2}$, $\frac{1}{5^2}$, ... à l'infini, après avoir seulement omis la fraction $\frac{1}{n^2}$, on aura, en général, pour déterminer les quantités a_1 , b_2 , c_3 , d_4 , e_5 , ..., les équations suivantes :

$$A_{1} - BP_{1} + CQ_{1} - DR_{1} + ES_{1} - \dots = a_{1} \frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2} \dots},$$

$$A_{2} - BP_{2} + CQ_{2} - DR_{2} + ES_{2} - \dots = 2 b_{2} \frac{1^{2} - 2^{2}}{1^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2} \dots},$$

$$A_{3} - BP_{3} + CQ_{3} - DR_{3} + ES_{3} - \dots = 3 c_{3} \frac{(1^{2} - 3^{2})(2^{2} - 3^{2})}{1^{2} \cdot 2^{2} \cdot 4^{2} \cdot 5^{2} \cdot 6^{2} \dots},$$

$$A_{4} - BP_{4} + CQ_{4} - DR_{4} + ES_{4} - \dots = 4 d_{4} \frac{(1^{2} - 4^{2})(2^{2} - 4^{2})(3^{2} - 4^{2})}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 6^{2} \dots},$$

$$\dots$$

Si l'on considère maintenant les équations (e) qui donnent les valeurs des coefficients a, b, c, d, \ldots , on aura les résultats suivants :

$$\alpha \frac{2^{2}-1^{2}}{2^{2}} \frac{3^{2}-1^{2}}{3^{2}} \frac{4^{2}-1^{2}}{4^{2}} \frac{5^{2}-1^{2}}{5^{2}} \cdots = A - BP_{1} + CQ_{1} - DR_{1} + ES_{1} - FT_{1} + ...,$$

$$2 b \frac{1^{2}-2^{2}}{1^{2}} \frac{3^{2}-2^{2}}{3^{2}} \frac{4^{2}-2^{2}}{4^{2}} \frac{5^{2}-2^{2}}{5^{2}} \cdots = A - BP_{2} + CQ_{2} - DR_{2} + ES_{2} - ...,$$

$$3 c \frac{1^{2}-3^{2}}{1^{2}} \frac{2^{2}-3^{2}}{2^{2}} \frac{4^{2}-3^{2}}{4^{2}} \frac{5^{2}-3^{2}}{5^{2}} \cdots = A - BP_{3} + CQ_{3} - DR_{3} + ES_{3} - ...,$$

$$4 d \frac{1^{2}-4^{2}}{1^{2}} \frac{2^{2}-4^{2}}{2^{2}} \frac{3^{4}-4^{2}}{3^{2}} \frac{5^{2}-4^{2}}{5^{2}} \cdots = A - BP_{4} + CQ_{4} - DR_{4} + ES_{4} - ...,$$

En distinguant quels sont les facteurs qui manquent aux numérateurs et aux dénominateurs pour y compléter la double série des nombres naturels, on voit que la fraction se réduit, dans la première équation, à $\frac{1}{4} \cdot \frac{1}{2}$; dans la seconde à $-\frac{2}{2} \cdot \frac{2}{4}$; dans la troisième à $\frac{3}{3} \cdot \frac{3}{6}$; dans la quatrième à $-\frac{4}{4} \cdot \frac{4}{8}$; en sorte que les produits qui multiplient

$$a, 2b, 3c, 4d, \dots$$

sont alternativement $\frac{1}{2}$ et $-\frac{1}{2}$. Il ne s'agit donc plus que de trouver les valeurs de

$$P_1$$
, Q_1 , R_1 , S_1 , ...; P_2 , Q_2 , R_2 , S_2 , ...; P_3 , Q_3 , R_3 , S_3 , ...;

Pour y parvenir, on remarquera que l'on peut faire dépendre ces valeurs de celles des quantités P, Q, R, S, T, ..., qui représentent les différents produits que l'on peut former avec les fractions $\frac{1}{1^2}$, $\frac{1}{2^2}$, $\frac{1}{3^2}$, $\frac{1}{4^2}$, ... sans en omettre aucune. Quant à ces derniers produits, leurs valeurs sont données par les séries des développements de sinus. Nous représenterons donc par

les séries

$$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 2^{2}} + \frac{1}{1^{2} \cdot 3^{2}} + \frac{1}{1^{2} \cdot 4^{2}} + \frac{1}{2^{2} \cdot 3^{2}} + \frac{1}{2^{2} \cdot 4^{2}} + \frac{1}{3^{2} \cdot 4^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2}} + \frac{1}{1^{2} \cdot 2^{2} \cdot 4^{2}} + \frac{1}{1^{2} \cdot 3^{2} \cdot 4^{2}} + \frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2}} + \dots,$$

$$\frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 4^{2}} + \frac{1}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{2}} + \frac{1}{1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 5^{2}} + \dots,$$

La série

$$\sin x = x - \frac{x^3}{2.3} + \frac{x^4}{2.3.4.5} - \frac{x^5}{2.3.4.5.6.7} + \dots$$

nous fournira les quantités P, Q, R, S, T, En effet, la valeur du sinus étant exprimée par l'équation

$$\sin x = x \left(1 - \frac{x^2}{1^2 \pi^2} \right) \left(1 - \frac{x^2}{2^2 \pi^2} \right) \left(1 - \frac{x^2}{3^2 \pi^2} \right) \left(1 - \frac{x^2}{4^2 \pi^2} \right) \left(1 - \frac{x^2}{5^2 \pi^2} \right) \dots,$$

on aura

$$\begin{aligned}
\mathbf{1} &- \frac{x^2}{2 \cdot 3} + \frac{x^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{x^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \dots \\
&= \left(\mathbf{1} - \frac{x^2}{\mathbf{1}^2 \pi^2}\right) \left(\mathbf{1} - \frac{x^2}{2^2 \pi^2}\right) \left(\mathbf{1} - \frac{x^2}{3^2 \pi^2}\right) \left(\mathbf{1} - \frac{x^2}{4^2 \pi^2}\right) \dots;
\end{aligned}$$

d'où l'on conclut immédiatement

$$P = \frac{\pi^{2}}{2.3},$$

$$Q = \frac{\pi^{4}}{2.3.4.5},$$

$$R = \frac{\pi^{5}}{2.3.4.5.6.7},$$

$$S = \frac{\pi^{8}}{2.3.4.5.6.7.8.9},$$
...

Supposons maintenant que P_n , Q_n , R_n , S_n , ... représentent les sommes de produits différents que l'on peut faire avec les fractions $\frac{1}{1^2}$, $\frac{1}{3^2}$, $\frac{1}{3^2}$, $\frac{1}{4^2}$, $\frac{1}{5^2}$, ..., dont on aura séparé la fraction $\frac{1}{n^2}$, n étant un nombre entier quelconque; il s'agit de déterminer P_n , Q_n , R_n , S_n , ... au moyen de P, Q, R, S, ... Si l'on désigne par

$$1 - q \mathbf{P}_n + q^2 \mathbf{Q}_n - q^3 \mathbf{R}_n + q^4 \mathbf{S}_n - \dots$$

le produit des facteurs

$$\left(1-\frac{q}{1^2}\right)\left(1-\frac{q}{2^2}\right)\left(1-\frac{q}{3^2}\right)\left(1-\frac{q}{4^2}\right)\cdots,$$

parmi lesquels on aurait omis le scul facteur $\tau = \frac{q}{n^2}$, il faudra qu'en multipliant par $\tau = \frac{q}{n^2}$ la quantité

$$\mathbf{I} = q \mathbf{P}_n + q^2 \mathbf{Q}_n - q^3 \mathbf{R}_n + q^4 \mathbf{S}_n - \dots,$$

on trouve

$$\mathbf{I} = q\mathbf{P} + q^2\mathbf{Q} + q^3\mathbf{R} + q^4\mathbf{S} + \dots$$

Cette comparaison donne les relations suivantes

$$\mathbf{P}_n \to -\frac{1}{n^2} = \mathbf{P},$$

$$Q_n + P_n \frac{1}{n^2} = Q,$$

$$R_n + Q_n \frac{1}{n^2} = R$$
,

$$\cdot |\mathbf{S}_n| + \mathbf{R}_n \frac{\mathbf{I}}{n^2} = \mathbf{S},$$

.

THÉORIE DE LA CHALEUR.

OH

$$P_{n} = P - \frac{1}{n^{2}},$$

$$Q_{n} = Q - \frac{1}{n^{2}}P + \frac{1}{n^{4}},$$

$$R_{n} = R - \frac{1}{n^{2}}Q + \frac{1}{n^{4}}P - \frac{1}{n^{6}},$$

$$S_{n} = S - \frac{1}{n^{2}}R + \frac{1}{n^{4}}Q - \frac{1}{n^{6}}P + \frac{1}{n^{8}},$$

En employant les valeurs connues de P, Q, R, S et faisant success vement $n=1, 2, 3, 4, 5, \ldots$, on aura les valeurs de P₁, Q₁, R₁, S₄, ... celles de P₂, Q₂, R₂, S₂, ...; celles de P₃, Q₃, R₃, S₃,

214.

Il résulte de tout ce qui précède que les valeurs de a, b, c, d, e, ... déduites des équations

$$a + 2 b + 3 c + 4 d + 5 e + \dots = A,$$

$$a + 2^{3}b + 3^{3}c + 4^{3}d + 5^{3}e + \dots = B,$$

$$a + 2^{5}b + 3^{5}c + 4^{5}d + 5^{5}e + \dots = C,$$

$$a + 2^{7}b + 3^{7}c + 4^{7}d + 5^{7}e + \dots = D,$$

$$a + 2^{9}b + 3^{9}c + 4^{9}d + 5^{9}e + \dots = E,$$

sont exprimées ainsi:

$$-D\left(\frac{\pi^{6}}{2.3.4.5.6.7} - \frac{1}{1^{2}} \frac{\pi^{4}}{2.3.4.5} + \frac{1}{1^{4}} \frac{\pi^{2}}{2.3} - \frac{1}{1^{6}}\right) + E\left(\frac{\pi^{8}}{2.3.4.5.6.7.8.9} - \frac{1}{1^{2}} \frac{\pi^{6}}{2.3.4.5.6.7} + \frac{1}{1^{4}} \frac{\pi^{4}}{2.3.4.5} - \frac{1}{1^{6}} \frac{\pi^{2}}{2.3} + \frac{1}{1^{6}} \frac{\pi^{4}}{2.3.4.5} - \frac{1}{1^{6}} \frac{\pi^{2}}{2.3.4.5} - \frac{1}{1^{6}} \frac{\pi^{2}}{$$

 $\frac{a}{2} = A - B\left(\frac{\pi^2}{2.3} - \frac{I}{I^2}\right) + C\left(\frac{\pi^4}{2.3.4.5} - \frac{I}{I^2} + \frac{\pi^2}{2.3} + \frac{I}{I^4}\right)$

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 201

$$-\frac{2b}{3} = A - B\left(\frac{\pi^2}{2.3} - \frac{1}{2^2}\right) + C\left(\frac{\pi^4}{2.3.4.5} - \frac{1}{2^2}\frac{\pi^2}{2.3} + \frac{1}{2^4}\right)$$

$$-D\left(\frac{\pi^6}{2.3.4.5.6.7} - \frac{1}{2^2}\frac{\pi^4}{2.3.4.5} + \frac{1}{2^4}\frac{\pi^2}{2.3} - \frac{1}{2^6}\right)$$

$$+ E\left(\frac{\pi^8}{2.3.4.5.6.7.8.9} - \frac{1}{2^2}\frac{\pi^6}{2.3.4.5.6.7} + \frac{1}{2^4}\frac{\pi^4}{2.3.4.5} - \frac{1}{2^6}\frac{\pi^2}{2.3} + \frac{1}{2^8}\right)$$

$$\begin{split} \frac{3\,c}{2} &= \mathbf{A} - \mathbf{B} \left(\frac{\pi^2}{2 \cdot 3} - \frac{1}{3^2} \right) + \mathbf{C} \left(\frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{1}{3^2} \frac{\pi^2}{2 \cdot 3} + \frac{1}{3^4} \right) \\ &- \mathbf{D} \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{1}{3^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{3^4} \frac{\pi^2}{2 \cdot 3} - \frac{1}{3^6} \right) \\ &+ \mathbf{E} \left(\frac{\pi^8}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9} - \frac{1}{3^2} \frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \frac{1}{3^4} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{1}{3^6} \frac{\pi^2}{2 \cdot 3} + \frac{1}{3^8} \right) \end{split}$$

$$-\frac{4d}{2} = A - B\left(\frac{\pi^2}{2.3} - \frac{1}{4^2}\right) + C\left(\frac{\pi^6}{2.3.4.5} - \frac{1}{4^2}\frac{\pi^4}{2.3} + \frac{1}{4^4}\right)$$

$$-D\left(\frac{\pi^6}{2.3.4.5.6.7} - \frac{1}{4^2}\frac{\pi^4}{2.3.4.5} + \frac{1}{4^4}\frac{\pi^2}{2.3} - \frac{1}{4^6}\right)$$

$$+ E\left(\frac{\pi^8}{2.3.4.5.6.7.8.9} - \frac{1}{4^2}\frac{\pi^6}{2.3.4.5.6.7} + \frac{1}{4^4}\frac{\pi^4}{2.3.4.5} - \frac{1}{4^6}\frac{\pi^2}{2.3} + \frac{1}{4^8}\right)$$

......

215.

Connaissant les valeurs de a, b, c, d, e, f, ..., on les substituera dans l'équation proposée

$$\varphi(x) = a \sin x + b \sin 2x + d \sin 3x + e \sin 4x + \dots;$$

et mettant aussi au lieu des quantités A, B, C, D, E, ... leurs valeurs F.

 $\varphi'(o), \varphi'''(o), \varphi^{r}(o), \varphi^{rr}(o), \varphi^{rr}(o), \dots$, on aura l'équation générale

$$\begin{array}{lll} \frac{\varphi(x)}{2} = & \sin x \left[\varphi'(\mathsf{o}) + \varphi''' \left(\mathsf{o} \right) \left(\frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{\mathsf{I}^2} \right) + \varphi^{\mathsf{v}}(\mathsf{o}) \left(\frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{\mathsf{I}}{\mathsf{I}^2} \frac{\pi^2}{2 \cdot 3} + \frac{\mathsf{I}}{\mathsf{I}^4} \right) \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{\mathsf{I}^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{\mathsf{I}^4} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{\mathsf{I}^6} \right) + \ldots \right] \\ & - \frac{\mathsf{I}}{2} \sin 2x \left[\varphi'(\mathsf{o}) + \varphi''' \left(\mathsf{o} \right) \left(\frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{2^2} \right) + \varphi^{\mathsf{v}}(\mathsf{o}) \left(\frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{\mathsf{I}}{2^2} \frac{\pi^2}{2 \cdot 3} + \frac{\mathsf{I}}{2^4} \right) \right. \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{2^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{2^4} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{2^6} \right) + \ldots \right] \\ & + \frac{\mathsf{I}}{3} \sin 3x \left[\varphi'(\mathsf{o}) + \varphi''' \left(\mathsf{o} \right) \left(\frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{3^2} \right) + \varphi^{\mathsf{v}}(\mathsf{o}) \left(\frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} - \frac{\mathsf{I}}{3^2} \frac{\pi^2}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{3^4} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{3^6} \right) + \ldots \right] \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{3^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{3^4} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^4} \right) + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right] \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right] \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^4}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right] \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right] \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right] \\ \\ & + \varphi^{\mathsf{vII}}(\mathsf{o}) \left(\frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} - \frac{\mathsf{I}}{4^2} \frac{\pi^6}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{\mathsf{I}}{4^5} \frac{\pi^2}{2 \cdot 3} - \frac{\mathsf{I}}{4^6} \right) + \ldots \right]$$

On peut se servir de la série précédente pour réduire en série de sinus d'arcs multiples une fonction proposée, dont le développement ne contient que des puissances impaires de la variable.

216.

Le cas qui se présente le premier est celui où l'on aurait

$$\varphi(x) = x$$

on trouve alors

$$\varphi'(o) = 1$$
, $\varphi''(o) = 0$, $\varphi^{v}(o) = 0$, ...

ainsi du reste. On aura donc la série

$$\frac{x}{2} = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots,$$

qui a été donnée par Euler.

203

Si l'on suppose que la fonction proposée soit x^3 , on aura

$$\varphi'(0) = 0$$
, $\varphi'''(0) = 2.3$, $\varphi^{v}(0) = 0$, $\varphi^{vu}(0) = 0$, ...

ce qui donne l'équation

$$\frac{x^3}{2} = \left(\pi^2 - \frac{2.3}{1^2}\right) \sin x - \frac{1}{2} \left(\pi^2 - \frac{2.3}{2^2}\right) \sin 2x + \frac{1}{3} \left(\pi^2 - \frac{2.3}{3^2}\right) \sin 3x + \dots$$

On parviendrait à ce même résultat en partant de l'équation précédente

$$\frac{x}{2} = \sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \frac{1}{4} \sin 4x + \dots$$

En effet, en multipliant chaque membre par dx et intégrant, on aura

$$C - \frac{x^2}{4} = \cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \frac{1}{4^2} \cos 4x + \dots;$$

la valeur de la constante C est

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \dots,$$

série dont on sait que la somme est $+\frac{1}{2}\frac{\pi^2}{2.3}$. Multipliant par dx les deux membres de l'équation

$$\frac{1}{2} \frac{\pi^2}{2 \cdot 3} \cdots \frac{x^2}{4} = \cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \dots$$

et intégrant, on aura

$$\frac{1}{2} \frac{\pi^2 x}{2 \cdot 3 \cdot 3} - \frac{1}{2} \frac{x^3}{2 \cdot 3} = \sin x - \frac{1}{2^2} \sin 2x + \frac{1}{3^2} \sin 3x - \dots$$

Si maintenant on met au lieu de x sa valeur tirée de l'équation

$$\frac{x}{2} = \sin x + \frac{1}{2} \sin 2x - \frac{1}{3} \sin 3x - \frac{1}{4} \sin 4x + \dots,$$

on obtiendra la même équation que ci-dessus, savoir

$$\frac{1}{2} \frac{x^3}{2 \cdot 3} = \left(\frac{\pi^2}{2 \cdot 3} - \frac{1}{1^2}\right) \sin x - \frac{1}{2} \left(\frac{\pi^2}{2 \cdot 3} - \frac{1}{2^2}\right) \sin 2x$$
$$+ \frac{1}{3} \left(\frac{\pi^2}{2 \cdot 3} - \frac{1}{3^2}\right) \sin 3x - \frac{1}{4} \left(\frac{\pi^2}{2 \cdot 3} - \frac{1}{4^2}\right) \sin 4x - \dots$$

On parviendrait de la même manière à développer en séries de sinus multiples les puissances x^5 , x^7 , x^9 , ... et, en général, toute fonction dont le développement ne contiendrait que des puissances impaires de la variable.

217.

L'équation (A) (art. 215) peut être mise sous une forme plus simple que nous allons faire connaître. On remarque d'abord qu'une partie du coefficient de $\sin x$ est la série

$$\varphi(o) + \frac{\pi^2}{2.3} \varphi'''(o) + \frac{\pi^4}{2.3.4.5} \varphi^{v}(o) + \frac{\pi^6}{2.3.4.5.6.7} \varphi^{vii}(o) + \dots,$$

qui représente la quantité $\frac{1}{\pi}\varphi(\pi)$. En effet, on a, en général,

$$\varphi(x) = \varphi(0) + x \varphi'(0) + \frac{x^2}{3} \varphi''(0) + \frac{x^3}{2 \cdot 3} \varphi'''(0) + \frac{x^3}{2 \cdot 3 \cdot 4} \varphi^{\text{tv}}(0) + \frac{x^3}{2 \cdot 3 \cdot 4 \cdot 5} \varphi^{\text{v}}(0) + \dots$$

Or la fonction $\varphi(x)$ ne contenant, par hypothèse, que des puissances impaires, on doit avoir

$$\varphi(0) = 0$$
, $\varphi''(0) = 0$, $\varphi^{iv}(0) = 0$,

et ainsi de suite. Donc

$$\varphi(x) = x \varphi'(0) + \frac{x^3}{2 \cdot 3} \varphi'''(0) + \frac{x^5}{2 \cdot 3 \cdot 4 \cdot 5} \varphi^{V}(0) + \dots$$

Une seconde partie du coefficient de $\sin x$ se trouve en multipliant par $-\frac{1}{1^2}$ la série

$$\phi'''(o) + \frac{\pi^3}{2.3} \phi^{v}(o) + \frac{\pi'^4}{2.3.4.5} \phi^{vtt}(o) + \frac{\pi^6}{2.3.4.5.6.7} \phi^{tx}(o) + \ldots,$$

dont la valeur est $\frac{1}{\pi}\phi''(\pi)$. On déterminera de cette manière les différentes parties du coefficient de $\sin x$ et celles qui composent les coef-

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 203 ficients de $\sin 2x$, $\sin 3x$, $\sin 4x$, $\sin 5x$, On emploiera pour cela les équations

$$\begin{array}{lll} \phi' & (o) + \frac{\pi^2}{2.3} \phi''' & (o) + \frac{\pi^4}{2.3.4.5} \phi^{\rm v} & (o) + \frac{\pi^6}{2.3.4.5.6.7} \phi^{\rm vii} & (o) + \ldots = \frac{1}{\pi} \phi & (\pi), \\ \phi''' & (o) + \frac{\pi^2}{2.3} \phi^{\rm v} & (o) + \frac{\pi^4}{2.3.4.5} \phi^{\rm vii} & (o) + \frac{\pi^6}{2.3.4.5.6.7} \phi^{\rm iv} & (o) + \ldots = \frac{1}{\pi} \phi'' & (\pi), \\ \phi^{\rm v} & (o) + \frac{\pi^2}{2.3} \phi^{\rm vii} & (o) + \frac{\pi^4}{2.3.4.5} \phi^{\rm iv} & (o) + \ldots & = \frac{1}{\pi} \phi^{\rm iv} & (\pi), \\ \phi^{\rm vii} & (o) + \frac{\pi^2}{2.3} \phi^{\rm iv} & (o) + \ldots & = \frac{1}{\pi} \phi^{\rm vi} & (\pi), \\ \end{array}$$

au moyen de cette réduction, on donnera à l'équation (A) la forme suivante

$$(\mathbf{B}) \begin{cases} \frac{\pi}{2} \varphi(x) = & \sin x \left[\varphi(\pi) - \frac{1}{1^{\frac{1}{2}}} \varphi''(\pi) + \frac{1}{1^{\frac{1}{2}}} \varphi^{\text{IV}}(\pi) - \frac{1}{1^{\frac{1}{6}}} \varphi^{\text{VI}}(\pi) + \dots \right] \\ - \frac{1}{2} \sin x \cdot r \left[\varphi(\pi) - \frac{1}{3^{\frac{1}{2}}} \varphi''(\pi) + \frac{1}{2^{\frac{1}{6}}} \varphi^{\text{IV}}(\pi) - \frac{1}{2^{\frac{1}{6}}} \varphi^{\text{VI}}(\pi) + \dots \right] \\ + \frac{1}{3} \sin 3 \cdot x \left[\varphi(\pi) - \frac{1}{3^{\frac{1}{2}}} \varphi''(\pi) + \frac{1}{3^{\frac{1}{6}}} \varphi^{\text{IV}}(\pi) - \frac{1}{3^{\frac{1}{6}}} \varphi^{\text{VI}}(\pi) + \dots \right] \\ - \frac{1}{4} \sin 4 \cdot r \left[\varphi(\pi) - \frac{1}{4^{\frac{1}{2}}} \varphi''(\pi) + \frac{1}{4^{\frac{1}{6}}} \varphi^{\text{IV}}(\pi) - \frac{1}{4^{\frac{1}{6}}} \varphi^{\text{VI}}(\pi) + \dots \right] \\ - + \dots \end{cases}$$

ou celle-ci

$$(C) \begin{cases} \frac{\pi}{2} \varphi(x) = \varphi(\pi) \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right) \\ -\varphi''(\pi) \left(\sin x - \frac{1}{2^3} \sin 2x + \frac{1}{3^3} \sin 3x - \dots \right) \\ +\varphi^{\text{IV}}(\pi) \left(\sin x - \frac{1}{2^5} \sin 2x + \frac{1}{3^5} \sin 3x - \dots \right) \\ -\varphi^{\text{VI}}(\pi) \left(\sin x - \frac{1}{2^7} \sin 2x - \frac{1}{3^7} \sin 3x - \dots \right) \\ +\dots \end{cases}$$

On peut appliquer l'une ou l'autre de ces formules toutes les fois que l'on aura à développer une fonction proposée en une série de sinus d'arcs multiples. Si, par exemple, la fonction proposée est $e^x - e^{-x}$, dont le développement ne contient que des puissances impaires de α , on aura

$$\frac{\pi}{2} \frac{e^{x} - e^{-x}}{e^{\pi} - e^{-\pi}} = \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots\right)$$

$$-\left(\sin x - \frac{1}{2^{3}} \sin 2x + \frac{1}{3^{3}} \sin 3x - \dots\right)$$

$$+\left(\sin x - \frac{1}{2^{3}} \sin 2x + \frac{1}{3^{5}} \sin 3x - \dots\right)$$

$$-\left(\sin x - \frac{1}{2^{7}} \sin 2x + \frac{1}{3^{7}} \sin 3x - \dots\right)$$

$$+\left(\sin x - \frac{1}{2^{9}} \sin 2x + \frac{1}{3^{9}} \sin 3x - \dots\right)$$

En distinguant les coefficients de $\sin x$, $\sin 2x$, $\sin 3x$, $\sin 4x$, ... et mettant au lieu de $\frac{1}{n} - \frac{1}{n^3} + \frac{1}{n^3} - \frac{1}{n^7} + \dots$ sa valeur $\frac{n}{n^2 - 1}$, on aura

$$\frac{\pi}{2} \frac{e^x - e^{-x}}{e^{\pi} - e^{-\pi}} = \frac{\sin x}{1 + \frac{1}{1}} - \frac{\sin 2x}{2 + \frac{1}{2}} + \frac{\sin 3x}{3 + \frac{1}{3}} - \frac{\sin 4x}{4 + \frac{1}{4}} + \dots$$

On pourrait multiplier ces applications et en déduire plusieurs séries remarquables. On a choisi l'exemple précédent parce qu'il se présente dans diverses questions relatives à la propagation de la chaleur (1).

 $^{(1)}$ Bien des points, dans cet article et dans les précédents, appelleraient encore les critiques. Fourier décompose les séries obtenues et leurs coefficients d'une manière tout à fait arbitraire. Il est évidemment impossible de justifier la substitution de la valeur $\frac{1}{2}$ à la série

$$...+1-1+1-1$$

que l'illustre auteur opère ici pour déterminer le coefficient de $\sin x$.

Nous avons supposé jusqu'ici que la fonction dont on demande le développement en séries de sinus d'arcs multiples peut être développée en une série ordonnée suivant les puissances de la variable x, et qu'il n'entre dans cette dernière série que des puissances impaires. On peut étendre les mêmes conséquences à des fonctions quelconques, même à celles qui seraient discontinues et entièrement arbitraires. Pour établir clairement la vérité de cette proposition, il est nécessaire de poursuivre l'analyse qui fournit l'équation précédente (B) et d'examiner quelle est la nature des coefficients qui multiplient $\sin x$, $\sin 2x$, $\sin 3x$, $\sin 4x$, En désignant par $\frac{s}{n}$ la quantité qui multiplie dans cette équation $\frac{1}{n}\sin nx$ si n est impair, et $\frac{1}{n}\sin nx$ si n est pair, on aura

$$s = \varphi(\pi) - \frac{1}{n^2} \varphi''(\pi) + \frac{1}{n^1} \varphi^{\text{IV}}(\pi) - \frac{1}{n^6} \varphi^{\text{VI}}(\pi) + \dots$$

Considérant s comme une fonction de π , différentiant deux fois et comparant les résultats, on trouve

$$s + \frac{1}{n^2} \frac{d^2s}{d\pi^2} = \varphi(\pi);$$

équation à laquelle la valeur précédente de s doit satisfaire. Or l'équation

$$s+\frac{1}{n^2}\frac{d^2s}{dx^2}=\varphi(x),$$

dans laquelle s est considérée comme une fonction de x, a pour intégrale

$$s = a \cos n x + b \sin n x + n \sin n x \int \varphi(x) \cos n x \, dx$$
$$-n \cos n x \int \varphi(x) \sin n x \, dx;$$

n étant un nombre entier et la valeur de x étant égale à π , on a

$$s = \pm n \int \varphi(x) \sin n x \, dx.$$

Le signe + doit être choisi lorsque n est impair, et le signe - lorsque ce nombre est pair. On doit supposer x égal à la demi-circonférence π , après l'intégration indiquée; ce résultat se vérific lorsqu'on développe, au moyen de l'intégration par parties, le terme

$$\int \varphi(x) \sin nx \, dx,$$

en remarquant que la fonction $\varphi(x)$ ne contient que des puissances impaires de la variable et en prenant l'intégrale depuis x = 0 jusqu'à $x = \pi$.

On en conclut immédiatement que ce terme équivaut à

$$\pm \left[\varphi(\pi) - \varphi''(\pi) \frac{1}{n^2} + \varphi^{\text{IV}}(\pi) \frac{1}{n^4} - \varphi^{\text{VI}}(\pi) \frac{1}{n^6} + \varphi^{\text{VIII}}(\pi) \frac{1}{n^8} - \dots \right].$$

Si l'on substitue cette valeur de $\frac{s}{n}$ dans l'équation (B), en prenant le signe + lorsque le terme de cette équation est de rang impair, et le signe - lorsque n est pair, on aura, en général,

$$\int \varphi(x) \sin n x \, dx$$

pour le coefficient de $\sin nx$; on parvient de cette manière à un résultat très remarquable exprimé par l'équation suivante

(D)
$$\begin{cases} \frac{\pi}{2} \varphi(x) = \sin x \int \sin x \varphi(x) dx + \sin 2x \int \sin 2x \varphi(x) dx \\ + \sin 3x \int \sin 3x \varphi(x) dx + \dots + \sin ix \int \sin ix \varphi(x) dx + \dots; \end{cases}$$

le second membre donnera toujours le développement cherché de la fonction $\varphi(x)$ si l'on effectue les intégrations depuis x = 0 jusqu'à $x = \pi$.

⁽¹⁾ C'est ici que Fourier entre dans la voie qui lui a permis d'obtenir des notions exactes et complètes sur la nature des séries trigonométriques et d'indiquer la solution véritable d'une question célèbre qui avait occupé au xviit siècle Euler, d'Alembert, D. Bernoulli et Lagrange. La détermination des coefficients de la série par des intégrales définies, intégrales qui conservent un sens, même lorsque la fonction est discontinue, est due tout

On voit par là que les coefficients a, b, c, d, e, f, \ldots , qui entrent dans l'équation

$$\frac{\pi}{2}\varphi(x) = a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + \dots,$$

et que nous avons trouvés précédemment par la voie des éliminations successives, sont des valeurs intégrales définies exprimées par le terme général

$$\int \sin i x \, \varphi(x) \, dx,$$

i étant le numéro du terme dont on cherche le coefficient. Cette remarque est importante, en ce qu'elle fait connaître comment les fonctions entièrement arbitraires peuvent aussi être développées en séries de sinus d'arcs multiples. En effet, si la fonction $\varphi(x)$ est représentée par l'ordonnée variable d'une courbe quelconque, dont l'abscisse s'étend depuis x=0 jusqu'à $x=\pi$, et si l'on construit sur cette même partie de l'axe la courbe trigonométrique connue dont l'ordonnée est $y=\sin x$, il sera facile de se représenter la valeur d'un terme intégral. Il faut concevoir que, pour chaque abscisse x à laquelle répond une valeur de $\varphi(x)$ et une valeur de $\sin x$, on multiplie cette dernière valeur par la première, et qu'au même point de l'axe on élève une ordonnée proportionnelle au produit $\varphi(x)\sin x$. On formera, par cette opération continuelle, une troisième courbe dont les ordonnées sont celles de la courbe trigonométrique, réduites proportionnellement aux ordonnées de la courbe arbitraire qui représente $\varphi(x)$, Cela

entière à Fourier; elle est l'origine des progrès fondamentaux que lui doit cette théorie. A la vérité les propositions auxquelles il s'est trouvé conduit par la formule (D), et qui sont formulées au commencement de l'article suivant, n'ont pas été démontrées par lui d'une manière rigoureuse; mais comme, une fois énoncées, elles étaient susceptibles au moins d'une vérification numérique, elles ont été admises, après quelque hésitation, par tous les géomètres, avant d'avoir été établies par Dirichlet. La théorie de Fourier a été exposée pour la première fois dans son Mémoire Sur la Théorie de la chaleur, présenté à l'Académie des Sciences le 21 décembre 1807.

posé, l'aire de la courbe réduite, étant prise depuis x=0 jusqu'à $x=\pi$, donnera la valeur exacte du coefficient de $\sin x$; et, quelle que puisse être la courbe donnée qui répond à $\varphi(x)$, soit qu'on puisse lui assigner une équation analytique, soit qu'elle ne dépende d'aucune loi régulière, il est évident qu'elle servira toujours à réduire d'une manière quelconque la courbe trigonométrique; en sorte que l'aire de la courbe réduite a, dans tous les cas possibles, une valeur déterminée qui donne celle du coefficient de $\sin x$ dans le développement de la fonction. Il en est de même du coefficient suivant b ou $\int \varphi(x) \sin 2x \, dx$.

Il faut, en général, pour construire les valeurs des coefficients a, b, c, d, e, ..., imaginer que les courbes dont les équations sont

$$y = \sin x$$
, $y = \sin 2x$, $y = \sin 3x$, $y = \sin 4x$, ...

ont été tracées pour un même intervalle sur l'axe des x, depuis $x = \alpha$ jusqu'à $x = \pi$, et qu'ensuite on a changé ces courbes en multipliant toutes leurs ordonnées par les ordonnées correspondantes d'une même courbe, dont l'équation est $y = \varphi(x)$. Les équations des courbes réduites sont

$$y = \varphi(x)\sin x$$
, $y = \varphi(x)\sin 2x$, $y = \varphi(x)\sin 3x$, $y = \varphi(x)\sin 4x$, ...

Les aires de ces dernières courbes, prises depuis x = 0 jusqu'à $x = \pi$, seront les valeurs des coefficients a, b, c, d, \ldots dans l'équation

$$\frac{\pi}{2}\varphi(x) = a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + \dots$$

221.

On peut aussi vérifier l'équation précédente (D) (art. 219), en déterminant immédiatement les quantités $a_1, a_2, a_3, \ldots, a_j, \ldots$ dans l'équation

$$\varphi(x) = a_1 \sin x + a_2 \sin 2x + a_3 \sin 3x + \ldots + a_j \sin jx + \ldots;$$

pour cela on multipliera chacun des membres de la dernière équation par $\sin ix dx$, i étant un nombre entier, et l'on prendra l'intégrale

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 211 depuis x=0 jusqu'à $x=\pi$; on aura

$$\int \varphi(x) \sin ix \, dx = a_1 \int \sin x \sin ix \, dx$$

$$+ a_2 \int \sin 2x \sin ix \, dx + \ldots + a_j \int \sin jx \sin ix \, dx + \ldots$$

Or on peut facilement prouver:

1º Que toutes les intégrales qui entrent dans le second membre ont une valeur nulle, excepté le seul terme $a_i \int \sin ix \sin ix \, dx$;

2º Que la valeur de $\int \sin ix \sin ix \, dx$ est $\frac{\pi}{2}$. D'où l'on conclura la valeur de a_i qui est

$$\frac{2}{\pi} \int \varphi(x) \sin ix \, dx.$$

Tout se réduit à considérer la valeur des intégrales qui entrent dans le second membre, et à démontrer les deux propositions précédentes. L'intégrale

$$2\int \sin jx \sin ix \, dx,$$

prise depuis x=0 jusqu'à $x=\pi$, et dans laquelle i et j sont des nombres entiers, est

$$\frac{1}{i-j}\sin(i-j)x - \frac{1}{i+j}\sin(i+j)x + C.$$

L'intégrale devant commencer lorsque x = 0, la constante C est nulle, et, les nombres i et j étant entiers, la valeur de l'intégrale deviendra nulle lorsqu'on fera $x = \pi$; il s'ensuit que chacun des termes tels que

$$a_1 \int \sin x \sin i x \, dx,$$

$$a_2 \int \sin 2x \sin i x \, dx,$$

$$a_3 \int \sin 3x \sin i x \, dx,$$

s'évanouit, et que cela aura lieu toutes les fois que les nombres i et j seront différents. Il n'en est pas de même lorsque les nombres i et j sont égaux; car le terme $\frac{1}{i-j}\sin(i-j)x$ auquel se réduit l'intégrale devient $\frac{0}{0}$, et sa valeur est π . On a, par conséquent,

$${}_{2}\int\sin ix\sin ix\,dx=\pi;$$

on obtient ainsi, de la manière la plus briève, les valeurs de a_1 , a_2 , a_3 , a_4 , ..., a_i , ..., qui sont

En les substituant, on a

$$\frac{\pi}{2}\varphi(x) = \sin x \int \varphi(x) \sin x \, dx + \sin 2x \int \varphi(x) \sin 2x \, dx$$
$$+ \sin 3x \int \varphi(x) \sin 3x \, dx + \ldots + \sin ix \int \varphi(x) \sin ix \, dx + \ldots$$

222.

Le cas le plus simple est celui où la fonction donnée a une valeur constante pour toutes les valeurs de la variable x comprises entre o et π ; dans ce cas, l'intégrale $\int \sin ix \, dx$ est égale à $\frac{2}{i}$ si le nombre i est impair, et égale à o si le nombre i est pair. On en déduit l'équation

$$\frac{\pi}{2} = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \dots,$$

que l'on a trouvée précédemment.

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 213

Il faut remarquer que, lorsqu'on a développé une fonction $\varphi(x)$ en une suite de sinus d'arcs multiples, la valeur de la série

$$a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + \dots$$

est la même que celle de la fonction $\varphi(x)$ tant que la variable x est comprise entre o et π ; mais cette égalité cesse, en général, d'avoir lieu lorsque la valeur de x surpasse le nombre π .

Supposons que la fonction dont on demande le développement soit x; on aura, d'après le théorème précédent,

$$\frac{\pi x}{2} = \sin x \int x \sin x \, dx + \sin 2x \int x \sin 2x \, dx$$
$$+ \sin 3x \int x \sin 3x \, dx + \sin 4x \int x \sin 4x \, dx + \dots$$

L'intégrale $\int_0^{\pi} x \sin ix \, dx$ équivant à $\pm \frac{\pi}{i}$; les indices o et π qui sont joints au signe \int font connaître les limites de l'intégrale; le signe + doit être choisi lorsque i est impair, et le signe - lorsque i est pair. On aura donc l'équation suivante :

$$\frac{x}{2} = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \frac{1}{5}\sin 5x - \dots$$

223.

On développera aussi en séries de sinus d'arcs multiples les fonctions différentes de celles où il n'entre que des puissances impaires de la variable. Pour apporter un exemple qui ne laisse aucun doute sur la possibilité de ce développement, nous choisirons la fonction $\cos x$, qui ne contient que des puissances paires de x, et qu'on développera sous la forme suivante

$$a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + e\sin 5x + \dots$$

quoiqu'il n'entre dans cette dernière série que des puissances impaires

de la même variable. On aura, en effet, d'après le théorème précédent.

$$\frac{\pi}{2}\cos x = \sin x \int \cos x \sin x \, dx$$

$$+ \sin 2x \int \cos x \sin 2x \, dx + \sin 3x \int \cos x \sin 3x \, dx + \dots$$

L'intégrale $\int \cos x \sin ix \, dx$ équivaut à zéro lorsque i est un nombre impair, et à $\frac{2i}{i^2-1}$ lorsque i est un nombre pair. En supposant successivement $i=2,4,6,8,\ldots$, on aura la série toujours convergente

$$\frac{\pi}{4}\cos x = \frac{2}{1.3}\sin 2x + \frac{4}{3.5}\sin 4x + \frac{6}{5.7}\sin 6x + \frac{8}{7.9}\sin 8x + \frac{10}{9.11}\sin 10x + \dots$$

ou

$$\cos x = \frac{2}{\pi} \left[-\left(\frac{1}{1} + \frac{1}{3}\right) \sin 2x + \left(\frac{1}{3} + \frac{1}{5}\right) \sin 4x + \left(\frac{1}{5} + \frac{1}{7}\right) \sin 6x + \left(\frac{1}{7} + \frac{1}{9}\right) \sin 8x + \left(\frac{1}{9} + \frac{1}{11}\right) \sin 10x + \dots \right].$$

Ce résultat a cela de remarquable qu'il offre le développement du cosinus en une suite de fonctions dont chacune ne contient que des puissances impaires. Si l'on fait dans l'équation précédente $x = \frac{\pi}{4}$, on trouvera

$$\frac{\pi}{4\sqrt{2}} = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{13} - \frac{1}{15} + \dots \right).$$

Cette dernière série est connue (Introd. in analysin infinit., cap. X).

224.

On peut employer une analyse semblable pour développer une fonction quelconque en série de cosinus d'arcs multiples. Soit $\varphi(x)$ la

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 215 fonction dont on demande le développement, on écrira

(m)
$$\varphi(x) = a_0 \cos x + a_1 \cos x + a_2 \cos x + a_3 \cos x + \dots + a_i \cos x + \dots + \dots$$

Si l'on multiplie les deux membres de cette équation par $\cos jx$ et que l'on intègre chacun des termes du second membre depuis x=0 jusqu'à $x=\pi$, il est facile de s'assurer que la valeur de cette intégrale sera nulle, excepté pour le seul terme qui contient déjà $\cos jx$. Cette remarque donne immédiatement le coefficient a_i ; il suffira, en général, de considérer la valeur de l'intégrale $\int \cos jx \cos ix \, dx$, prise depuis x=0 jusqu'à $x=\pi$, en supposant que j et i sont des nombres entiers. On a

$$\int\!\cos\!jx\cos ix\,dx = \frac{1}{2(j+i)}\sin(j+i)x + \frac{1}{2(j-i)}\sin(j-i)x + C.$$

Cette intégrale, prise depuis x = 0 jusqu'à $x = \pi$, est évidemment nulle toutes les fois que j et i sont deux nombres différents. Il n'en est pas de même lorsque ces deux nombres sont égaux. Le dernier terme $\frac{1}{2(j-i)}\sin(j-i)x$ devient $\frac{0}{0}$, et sa valeur est $\frac{\pi}{2}$, lorsque l'are x est égal à π . Si donc on multiplie les deux termes de l'équation précédente (m) par $\cos ix$, et que l'on intègre depuis o jusqu'à π , on aura

$$\int \varphi(x)\cos ix\,dx = \frac{\pi u_i}{2},$$

équation qui fera connaître la valeur du coefficient a_i . Pour trouver le premier coefficient a_0 , on remarquera que, dans l'intégrale

$$\frac{1}{2(j+i)}\sin(j+i)x + \frac{1}{2(j-i)}\sin(j-i)x,$$

si l'on a

$$j = 0$$
 et $i = 0$,

chacun des termes devient $\frac{6}{9}$, et la valeur de chaque terme est $\frac{\pi}{2}$;

ainsi l'intégrale $\int \cos jx \cos ix \, dx$, prise depuis x=0 jusqu'à $x=\pi$, est nulle lorsque les deux nombres entiers j et i sont différents; elle est $\frac{\pi}{2}$ lorsque les nombres j et i sont égaux, mais différents de zéro; elle est égale à π lorsque j et i sont l'un et l'autre égaux à zéro. On obtient ainsi l'équation suivante :

$$(n) \int_{0}^{\frac{\pi}{2}} \varphi(x) = \frac{1}{2} \int_{0}^{\pi} \varphi(x) dx + \cos x \int_{0}^{\pi} \varphi(x) \cos x dx + \cos 2x \int_{0}^{\pi} \varphi(x) \cos 2x dx + \cos 3x \int_{0}^{\pi} \varphi(x) \cos 3x dx + \dots$$

Ce théorème et le précédent conviennent à toutes les fonctions possibles, soit que l'on en puisse exprimer la nature par les moyens connus de l'Analyse, soit qu'elles correspondent à des courbes tracées arbitrairement.

225.

Si la fonction proposée dont on demande le développement en cosinus d'arcs multiples est la variable x elle-même, on écrira l'équation

$$\frac{\pi x}{2} = a_0 + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \ldots + a_i \cos ix + \ldots,$$

et l'on aura, pour déterminer un coefficient quelconque ai, l'équation

$$a_i = \int_0^{\pi} x \cos ix \, dx.$$

Cette intégrale a une valeur nulle lorsque i est un nombre pair, et est égale à $-\frac{2}{i^2}$ lorsque i est impair. On a en même temps

$$a_0 = \frac{\pi^2}{4}.$$

On formera donc la série suivante :

$$x = \frac{\pi}{2} - 4\frac{\cos x}{\pi} - 4\frac{\cos 3x}{3^2\pi} - 4\frac{\cos 5x}{5^2\pi} - 4\frac{\cos 7x}{7^2\pi} - \dots$$

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 217

On peut remarquer ici que nous sommes parvenus à trois développements différents de $\frac{x}{2}$, savoir

$$\frac{x}{2} = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \frac{1}{5}\sin 5x - \dots \quad (art. 222),$$

$$\frac{x}{2} = \frac{2}{\pi}\sin x - \frac{2}{3^2\pi}\sin 3x + \frac{2}{5^2\pi}\sin 5x - \frac{2}{7^2\pi}\sin 7x + \dots \quad (art. 181),$$

$$\frac{x}{2} = \frac{\pi}{4} - \frac{2}{\pi}\cos x - \frac{2}{3^2\pi}\cos 3x - \frac{2}{5^2\pi}\cos 5x - \dots$$

Il faut remarquer que ces trois valeurs de $\frac{x}{2}$ ne doivent point être considérées comme égales pour toutes les valeurs de x; les trois développements précédents n'ont une valeur commune que lorsque la variable x est comprise entre o et $\frac{\pi}{2}$. La construction des valeurs de ces trois séries et la comparaison des lignes dont elles expriment les ordonnées rendraient sensibles la coïncidence et la distinction alternatives des valeurs de ces fonctions.

Pour donner un second exemple du développement d'une fonction en série de cosinus d'arcs multiples, nous choisirons la fonction $\sin x$ qui ne contient que des puissances impaires de la variable, et nous nous proposerons de la développer sous la forme

$$a + b\cos x + c\cos 2x + d\cos 3x + \dots$$

En faisant à ce cas particulier l'application de l'équation générale, on trouvera, pour l'équation cherchée,

$$\frac{\pi}{4}\sin x = \frac{1}{2} - \frac{\cos 2x}{1.3} - \frac{\cos 4x}{3.5} - \frac{\cos 6x}{5.7} - \frac{\cos 8x}{7.9} - \dots$$

On parvient ainsi à développer une fonction qui ne contient que des puissances impaires en une série de cosinus dans laquelle il n'entre que des puissances paires de la variable. Si l'on donne à x la valeur particulière $\frac{\pi}{2}$, on trouvera

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots$$

F. 28

Or de l'équation connue

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots$$

on tire

$$\frac{\pi}{8} = \frac{1}{1.3} - \frac{1}{5.7} + \frac{1}{9.11} + \frac{1}{13.15} + \dots$$

et aussi

$$\frac{\pi}{8} = \frac{1}{2} - \frac{1}{3.5} - \frac{1}{7.9} - \frac{1}{11.13} - \frac{1}{13.15} + \cdots;$$

en ajoutant ces deux résultats, on a, comme précédemment.

$$\frac{\pi}{4} = \frac{1}{3} - \frac{1}{1.3} - \frac{1}{3.5} - \frac{1}{5.7} - \frac{1}{7.9} + \frac{1}{9.11} - \frac{1}{11.13} + \dots$$

226.

L'analyse précédente donnant le moyen de développer une fonction quelconque en série de sinus on de cosinus d'arcs multiples, nous l'appliquerons facilement au cas où la fonction à développer a des valeurs déterminées lorsque la variable est comprise entre de certaines limites, et a des valeurs nulles lorsque la variable est comprise entre d'autres limites. Nous nous arrêterons à l'examen de ce cas particulier parce qu'il se présente dans les questions physiques qui dépendent des équations aux différences partielles, et qu'il avait été propose autrefois comme un exemple des fonctions qui ne peuvent être developpées en sinus ou cosinus d'arcs multiples. Supposons donc que l'on ait à réduire en une série de cette forme une fonction dont la valeur est constante, lorsque x est comprise entre o et α , et dont toutes les valeurs sont nulles lorsque x est comprise entre z et π . On emploiera l'équation générale (m), dans laquelle les intégrales doivent être prises depuis x = 0 jusqu'à $x = \pi$. Les valeurs de $\varphi(x)$ qui entrent sous le signe f étant nulles depuis $x=\alpha$ jusqu'à $x=\pi$, il suffira d'integrer depuis x=0 jusqu'à $x=\alpha$. Cela posé, on trouvera, pour la série CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 219 demandée, en désignant par h la valeur constante de la fonction,

$$\frac{\pi}{3}\varphi(x) = h\left(\frac{1 - \cos z}{1 - \sin x} + \frac{1 - \cos 2z}{2} \sin 2x + \frac{1 - \cos 3z}{3} \sin 3x + \frac{1 - \cos 4z}{4} \sin 4x + \dots\right).$$

Si l'on fait $h = \frac{\pi}{2}$, et que l'on représente le sinus verse de l'arc x par $\sin V x$, on aura

$$\begin{split} \varphi(x) &= \sin \mathbf{V} \, \mathbf{z} \sin x \, + \frac{1}{2} \sin \mathbf{V} \, \mathbf{z} \, \mathbf{z} \sin \mathbf{z} \, x + \frac{1}{3} \sin \mathbf{V} \, \mathbf{J} \, \mathbf{z} \sin 3 \, x \\ &+ \frac{1}{4} \sin \mathbf{V} \, \mathbf{J} \, \mathbf{z} \sin \mathbf{J} \, x + \frac{1}{5} \sin \mathbf{V} \, \mathbf{J} \, \mathbf{z} \sin 5 \, x + \dots \end{split}$$

Cette série toujours convergente est telle que, si l'on donne à α une valeur quelconque comprise entre o et α , la somme de ses termes sera $\frac{\pi}{2}$; mais, si l'on donne à α une valeur quelconque plus grande que α et moindre que π , la somme des termes sera nulle.

Dans l'exemple suivant, qui n'est pas moins remarquable, les valeurs de $\varphi(x)$ sont égales à $\sin\frac{\pi x}{z}$ pour toutes les valeurs de x comprises entre α et α , et sont nulles pour toutes les valeurs de α comprises entre α et α . Pour trouver la série qui satisfait à cette condition, on emploiera l'équation (D).

Les intégrales doivent être prises depuis x. o jusqu'à x. π ; mais il suffira, dans le cas dont il s'agit, de prendre ces intégrales depuis x o jusqu'à x o, puisque les valeurs de $\varphi(x)$ sont supposées nulles dans le reste de l'intervalle. On en conclura

$$\varphi(x) = 2 \, \mathbf{z} \left(\frac{\sin \mathbf{z} \sin x}{\pi^2 + \mathbf{z}^2} + \frac{\sin 2 \, \mathbf{z} \sin 2 \, x}{\pi^2 + 2^2 \, \mathbf{z}^2} + \frac{\sin 3 \, \mathbf{z} \sin 3 \, x}{\pi^2 + 3^2 \, \mathbf{z}^2} + \frac{\sin 4 \, \mathbf{z} \sin 4 \, x}{\pi^2 + 4^2 \, \mathbf{z}^2} + \ldots \right).$$

Si l'on supposait $\alpha : \pi$, tous les termes de la série s'évanouiraient excepté le premier, qui deviendrait $\frac{\sigma}{\sigma}$ et qui a pour valeur $\sin x$; on aurait donc

$$\varphi(x) = \sin x$$
.

On peut étendre la même analyse au cas où l'ordonnée représentée par z x serait celle d'une ligne composée de différentes parties, dont les unes seraient des arcs de courbes et les autres des lignes droites. Par exemple, si la fonction dont on demande le développement en séries de cosinus d'arcs multiples a pour valeur $\left(\frac{\pi}{2}\right)^2 - x^2$ depuis x = 0 jusqu'à $x = \frac{\pi}{2}$ et est nulle depuis $x = \frac{\pi}{2}$ jusqu'à $x = \pi$, on emploiera l'équation générale n et, en effectuant les intégrations dans les limites données, on trouvera que le terme général

$$\int \left[\left(\frac{\pi}{2} \right)^2 + v^2 \right] \cos i.v \, d.v$$

est égal à $\frac{i}{i^3}\sin\frac{i\pi}{2}$ lorsque i est impair, à $\frac{\pi}{i^2}$ lorsque i est double d'un nombre impair, et à $-\frac{\pi}{i^2}$ lorsque i est quadruple d'un nombre impair. D'un autre côté, on trouvera $\frac{1}{3}\frac{\pi^3}{2^3}$ pour la valeur du premier terme $\frac{1}{2}\int \varphi(x)\,dx$. On aura donc le développement suivant :

$$\frac{1}{2}\phi(x) = \frac{1}{2 \cdot 3} \left(\frac{\pi}{3}\right)^2 + \frac{2}{\pi} \left(\frac{\cos x}{1^3} + \frac{\cos 3x}{3^3} + \frac{\cos 5x}{5^3} - \frac{\cos 7x}{7^4} + \dots\right) + \frac{\cos 2x}{2^2} + \frac{\cos 4x}{6^2} + \frac{\cos 6x}{6^2} + \dots$$

Le second membre est représenté par une ligne composée d'arcs paraboliques et de lignes droites.

228.

On pourra trouver de la même manière le développement d'une fonction de x qui exprime l'ordonnée du contour d'un trapèze. Supposons que $\varphi(x)$ soit égale à x depuis x = 0 jusqu'à $x = \infty$, que cette fonction soit égale à α depuis $x = \alpha$ jusqu'à $\alpha = \pi - \alpha$, et enfin égale à $\alpha = \pi - \alpha$ jusqu'à $\alpha = \pi$. Pour la réduire en une

série de sinus d'arcs multiples, on se servira de l'équation générale (D). Le terme général $f(\varphi,x)\sin i v\,dv$ sera composé de trois parties différentes, et l'on aura, après les réductions, $\frac{2}{i^2}\sin iz$ pour le coefficient de $\sin iv$, lorsque i est un nombre impair; et zéro pour ce coefficient, lorsque i est un nombre pair. On parvient ainsi à l'équation

$$(\lambda) = \begin{cases} \frac{\pi}{7} \phi(x) = \sin z \sin x + \frac{1}{3^2} \sin 3 z \sin 3 x \\ + \frac{1}{5^2} \sin 5 z \sin 5 x + \frac{1}{7^2} \sin 7 z \sin 7 x + \dots \end{cases}$$

Si l'on supposait $\alpha:=\frac{\pi}{2}$, le trapèze se confondrait avec le triangle isoscèle, et l'on aurait, comme précédemment, pour l'équation du contour de ce triangle .

$$\frac{\pi}{7}\varphi(x) = \sin x = \frac{4}{3^2}\sin 3x + \frac{4}{5^2}\sin 5x + \frac{1}{7^2}\sin 7x + \dots,$$

série qui est toujours convergente quelle que soit la valeur de x. En général, les suites trigonométriques auxquelles nous sommes parvenus en développant les diverses fonctions sont toujours convergentes; mais il ne nous a point paru nécessaire de le démontrer ici : car les termes qui composent ces suites ne sont que les coefficients des termes des séries qui donnent les valeurs des températures; et ces coefficients affectent des quantités exponentielles qui décroissent très rapidement, en sorte que ces dernières séries sont très convergentes. A l'égard de celles où il n'entre que des sinus ou des cosinus d'arcs multiples, il est également facile de prouver qu'elles sont convergentes, quoiqu'elles représentent les ordonnées des lignes discontinues. Cela ne résulte pas seulement de ce que les valeurs des termes diminuent continuellement; car cette condition ne suffit pas pour établir la convergence d'une série. Il est nécessaire que les valeurs auxquelles on parvient, en augmentant continuellement le nombre des termes, s'approchent de plus en plus d'une limite fixe et ne s'en écartent que d'une quantité qui peut devenir moindre que toute grandeur donnée : cette limite est

On peut étendre la même analyse au cas où l'ordonnée représentée par $\varphi(x)$ serait celle d'une ligne composée de différentes parties, dont les unes seraient des arcs de courbes et les autres des lignes droites. Par exemple, si la fonction dont on demande le développement en séries de cosinus d'arcs multiples a pour valeur $\left(\frac{\pi}{2}\right)^2 - x^2$ depuis x = 0 jusqu'à $x = \frac{\pi}{2}$, et est nulle depuis $x = \frac{\pi}{2}$ jusqu'à $x = \pi$, on emploiera l'équation générale (n) et, en effectuant les intégrations dans les limites données, on trouvera que le terme général

$$\int \left[\left(\frac{\pi}{2} \right)^2 - x^2 \right] \cos ix \, dx$$

est égal à $\frac{2}{i^3}\sin\frac{i\pi}{2}$ lorsque i est impair, à $\frac{\pi}{t^2}$ lorsque i est double d'un nombre impair, et à $-\frac{\pi}{t^2}$ lorsque i est quadruple d'un nombre impair. D'un autre côté, on trouvera $\frac{1}{3}\frac{\pi^3}{2^3}$ pour la valeur du premier terme $\frac{1}{2}\int \varphi(x)\,dx$. On aura donc le développement suivant :

$$\frac{1}{2}\varphi(x) = \frac{1}{2 \cdot 3} \left(\frac{\pi}{2}\right)^2 + \frac{2}{\pi} \left(\frac{\cos x}{1^3} - \frac{\cos 3x}{3^3} + \frac{\cos 5x}{5^3} - \frac{\cos 7x}{7^3} + \dots\right) + \frac{\cos 2x}{2^2} - \frac{\cos 4x}{4^2} + \frac{\cos 6x}{6^2} - \dots$$

Le second membre est représenté par une ligne composée d'arcs paraboliques et de lignes droites.

228.

On pourra trouver de la même manière le développement d'une fonction de x qui exprime l'ordonnée du contour d'un trapèze. Supposons que $\varphi(x)$ soit égale à x depuis x = 0 jusqu'à $x = \alpha$, que cette fonction soit égale à α depuis $x = \alpha$ jusqu'à $x = \pi - \alpha$, et enfin égale à $\pi - x$, depuis $x = \pi - \alpha$ jusqu'à $x = \pi$. Pour la réduire en une

CHAPITRE III. - SOLIDE RECTANGULAIRE INFINI. 221

série de sinus d'arcs multiples, on se servira de l'équation générale (D). Le terme général $f \varphi(x) \sin ix \, dx$ sera composé de trois parties différentes, et l'on aura, après les réductions, $\frac{2}{i^2} \sin i\alpha$ pour le coefficient de $\sin ix$, lorsque i est un nombre impair; et zéro pour ce coefficient, lorsque i est un nombre pair. On parvient ainsi à l'équation

(\lambda)
$$\begin{cases} \frac{\pi}{4} \varphi(x) = \sin \alpha \sin x + \frac{1}{3^2} \sin 3 \alpha \sin 3 x \\ + \frac{1}{5^2} \sin 5 \alpha \sin 5 x + \frac{1}{7^2} \sin 7 \alpha \sin 7 x + \dots \end{cases}$$

Si l'on supposait $\alpha = \frac{\pi}{2}$, le trapèze se confondrait avec le triangle isoscèle, et l'on aurait, comme précédemment, pour l'équation du contour de ce triangle

$$\frac{\pi}{4}\varphi(x) = \sin x - \frac{1}{3^2}\sin 3x + \frac{1}{5^2}\sin 5x - \frac{1}{7^2}\sin 7x + \dots,$$

série qui est toujours convergente quelle que soit la valeur de x. En général, les suites trigonométriques auxquelles nous sommes parvenus en développant les diverses fonctions sont toujours convergentes; mais il ne nous a point paru nécessaire de le démontrer ici : car les termes qui composent ces suites ne sont que les coefficients des termes des séries qui donnent les valeurs des températures; et ces coefficients affectent des quantités exponentielles qui décroissent très rapidement, en sorte que ces dernières séries sont très convergentes. A l'égard de celles où il n'entre que des sinus ou des cosinus d'arcs multiples, il est également facile de prouver qu'elles sont convergentes, quoiqu'elles représentent les ordonnées des lignes discontinues. Cela ne résulte pas seulement de ce que les valeurs des termes diminuent continuellement; car cette condition ne suffit pas pour établir la convergence d'une série. Il est nécessaire que les valeurs auxquelles on parvient, en augmentant continuellement le nombre des termes, s'approchent de plus en plus d'une limite fixe et ne s'en écartent que d'une quantité qui peut devenir moindre que toute grandeur donnée : cette limite est la valeur de la série. Or on démontre rigoureusement que les suites dont il s'agit satisfont à cette dernière condition.

229.

Nous reprendrons l'équation précédente (λ) , dans laquelle on peut donner à x une valeur quelconque; on considérera cette quantité comme une nouvelle ordonnée, ce qui donnera lieu à la construction suivante.

Ayant tracé sur le plan des xy (fig. 8) le rectangle dont la base $O\pi$

est égale à la demi-circonférence et dont la hauteur est $\frac{\pi}{2}$, sur le milieu m du côté parallèle à la base on élèvera perpendiculairement au plan du rectangle une ligne égale à $\frac{\pi}{2}$ et, par l'extrémité supérieure de cette ligne, on tirera des droites aux quatre angles du rectangle. On formera ainsi une pyramide quadrangulaire. Si l'on porte maintenant sur le petit côté du rectangle, à partir du point O, une ligne quelconque égale à α , et que par l'extrémité de cette ligne on mène un plan parallèle à la base $O\pi$, et perpendiculaire au plan du rectangle, la section commune à ce plan et au solide sera le trapèze, dont la hauteur est égale à α . L'ordonnée variable du contour de ce trapèze est égale, comme nous venons de le voir, à

$$\frac{4}{\pi} \Big(\sin \alpha \sin x + \frac{1}{3^2} \sin 3 \alpha \sin 3 x + \frac{1}{5^2} \sin 5 \alpha \sin 5 x + \frac{1}{7^2} \sin 7 \alpha \sin 7 x + \dots \Big).$$

Il suit de là qu'en appelant x, y, z les coordonnées d'un point quelconque de la surface supérieure de la pyramide quadrangulaire que nous avons formée, on aura pour l'équation de la surface du polyèdre, entre les limites x = 0, $x = \pi$, y = 0, $y = \frac{\pi}{2}$,

$$\frac{\pi z}{2} = \frac{\sin x \sin y}{1^2} + \frac{\sin 3x \sin 3y}{3^2} + \frac{\sin 5x \sin 5y}{5^2} + \dots$$

Cette série convergente donnera toujours la valeur de l'ordonnée z, ou de la distance d'un point quelconque de la surface au plan des xy.

Les suites formées de sinus ou de cosinus d'arcs multiples sont donc propres à représenter, entre des limites déterminées, toutes les fonctions possibles, et les ordonnées des lignes ou des surfaces dont la loi est discontinue. Non sculement la possibilité de ces développements est démontrée, mais il est facile de calculer les termes des séries; la valeur d'un coefficient quelconque dans l'équation

$$\varphi(x) = a_1 \sin x + a_2 \sin 2x + a_3 \sin 3x + \ldots + a_i \sin ix + \ldots$$

est celle d'une intégrale définie, savoir

$$\frac{2}{\pi} \int \varphi(x) \sin ix \, dx.$$

Quelle que puisse être la fonction $\varphi(x)$, ou la forme de la courbe qui la représente, l'intégrale a une valeur déterminée qui peut être introduite dans le calcul. Les valeurs de ces intégrales définies sont analogues à celle de l'aire totale $f\varphi(x)dx$ comprise entre la courbe et l'axe dans un intervalle donné, ou à celles des quantités mécaniques, telles que les ordonnées du centre de gravité de cette aire ou d'un solide quelconque. Il est évident que toutes ces quantités ont des valeurs assignables, soit que la figure des corps soit régulière, soit qu'on leur donne une forme entièrement arbitraire.

230.

Si l'on applique ces principes à la question du mouvement des cordes vibrantes, on résoudra les difficultés qu'avait d'abord présentées l'analyse de Daniel Bernoulli. La solution donnée par ce géomètre suppose qu'une fonction quelconque peut toujours être développée en séries de sinus ou de cosinus d'arcs multiples. Or, de toutes les preuves de cette proposition, la plus complète est celle qui consiste à résoudre en effet une fonction donnée en une telle série dont on détermine les coefficients.

Dans les recherches auxquelles on applique les équations aux différences partielles, il est souvent facile de trouver des solutions dont la somme compose une intégrale plus générale; mais l'emploi de ces intégrales exigeait que l'on en déterminat l'étendue, et que l'on pût distinguer clairement les cas où elles représentent l'intégrale générale de ceux où elles n'en comprennent qu'une partie. Il était nécessaire surtout d'assigner les valeurs des constantes, et c'est dans la recherche des coefficients que consiste la difficulté de l'application. Il est remarquable que l'on puisse exprimer par des séries convergentes et, comme on le verra dans la suite, par des intégrales définies les ordonnées des lignes et des surfaces qui ne sont point assujetties à une loi continue. On voit par là qu'il est nécessaire d'admettre dans l'analyse des fonctions qui ont des valeurs égales, toutes les fois que la variable reçoit des valeurs quelconques comprises entre deux limites données, tandis qu'en substituant dans ces deux fonctions, au lieu de la variable, un nombre compris dans un autre intervalle, les résultats des deux substitutions ne sont point les mêmes. Les fonctions qui jouissent de cette propriété sont représentées par des lignes différentes qui ne coïncident que dans une portion déterminée de leur cours et offrent une espèce singulière d'osculation finie. Ces considérations prennent leur origine dans le calcul des équations aux différences partielles; elles jettent un nouveau jour sur ce calcul et serviront à en faciliter l'usage dans les théories physiques.

231.

Les deux équations générales qui expriment le développement d'une fonction quelconque en cosinus ou en sinus d'arcs multiples donnent lieu à plusieurs remarques qui font connaître le véritable sens de ces théorèmes et en dirigent l'application.

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 225 Si, dans la série

$$a+b\cos x+c\cos 2x+d\cos 3x+e\cos 4x+\ldots$$

on rend négative la valeur de x, la série demeure la même, et elle conserve aussi sa valeur si l'on augmente la variable d'un multiple quelconque de la circonférence 2π . Ainsi dans l'équation

$$(v) \begin{cases} \frac{\pi}{2} \varphi(x) = \frac{1}{2} \int \varphi(x) \, dx + \cos x \int \varphi(x) \cos x \, dx \\ + \cos 2 x \int \varphi(x) \cos 2 x \, dx + \cos 3 x \int \varphi(x) \cos 3 x \, dx + \dots, \end{cases}$$

la fonction φ est périodique et représentée par une courbe composée d'une multitude d'arcs égaux, dont chacun correspond sur l'axe des abscisses à un intervalle égal à 2π . De plus chacun de ces arcs est composé de deux branches symétriques qui répondent aux deux moitiés de l'intervalle égal à 2π .

Supposons donc que l'on trace une ligne d'une forme quelconque $\varphi\varphi\alpha$ et qui réponde à un intervalle égal à π (fig. 9). Si l'on demande une série de la forme

$$a + b\cos x + c\cos 2x + d\cos 3x + \dots$$

telle que, en mettant au lieu de x une valeur quelconque X comprise

entre o et π , on trouve pour la valeur de la série celle de l'ordonnée $X\phi$, il sera facile de résoudre cette question : car les coefficients donnés par l'équation (ν) sont

$$\frac{1}{\pi} \int \varphi(x) dx, \quad \frac{2}{\pi} \int \varphi(x) \cos x dx, \quad \frac{2}{\pi} \int \varphi(x) \cos 2x dx, \quad \dots$$

Les diverses intégrales, qui sont prises de x = 0 à $x = \pi$, ayant tou-

jours des valeurs mesurables comme celle de l'aire $O \varphi a\pi$, et la série formée par ces coefficients étant toujours convergente, il n'y a aucune forme de la ligne $\varphi \varphi a$ pour laquelle l'ordonnée $X \varphi$ ne soit exactement représentée par le développement

$$a + b\cos x + c\cos 2x + d\cos 3x + e\cos 4x + \dots$$

L'arc $\varphi \varphi a$ est entièrement arbitraire; mais il n'en est pas de même des autres parties de la ligne; elles sont au contraire déterminées : ainsi l'arc $\varphi \alpha$ qui répond à l'intervalle de o à $-\pi$ est le même que l'arc $\varphi \alpha$; et l'arc total $\alpha \varphi \alpha$ se répète pour les parties consécutives de l'axc dont la longueur est 2π .

On peut faire varier dans l'équation (ν) les limites des intégrales. Si elles étaient prises depuis $x=-\pi$ jusqu'à $x=\pi$, le résultat serait double; il le serait aussi si les limites des intégrales étaient o et 2π , au lieu d'être o et π . Nous désignons en général par le signe \int_a^b l'intégrale qui commence lorsque la variable équivaut à a, et qui est complète lorsque la variable équivaut à b; et nous écrirons l'équation (a) sous la forme suivante :

(v)
$$\begin{cases} \frac{\pi}{2} \varphi(x) = \frac{1}{2} \int_0^{\pi} \varphi(x) \, dx + \cos x \int_0^{\pi} \varphi(x) \cos x \, dx \\ + \cos 2 x \int_0^{\pi} \varphi(x) \cos 2 x \, dx + \cos 3 x \int_0^{\pi} \varphi(x) \cos 3 x \, dx + \dots \end{cases}$$

Au lieu de prendre les intégrales depuis x=0 jusqu'à $x=\pi$, on pourrait les prendre depuis x=0 jusqu'à $x=2\pi$, ou depuis $x=-\pi$ jusqu'à $x=\pi$; mais, dans chacun de ces deux eas, il faut écrire au premier membre $\pi \varphi(x)$ au lieu de $\frac{\pi}{2} \varphi(x)$.

232.

Dans l'équation qui donne le développement d'une fonction quelconque en sinus d'arcs multiples, la série change de signe et conserve la même valeur absolue lorsque la variable x devient négative; elle CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 227 conserve sa valeur et son signe lorsque la variable est augmentée ou diminuée d'un multiple quelconque de la circonférence 2π . L'arc $\varphi \varphi u$ (fig. 10), qui répond à l'intervalle de 0 à π , est arbitraire; toutes les

autres parties de la ligne sont déterminées. L'arc $\varphi\varphi\alpha$, qui répond à l'intervalle de 0 à $-\pi$, a la même forme que l'arc donné $\varphi\varphi\alpha$; mais il est dans une situation opposée. L'arc total $\alpha\varphi\varphi\varphi\alpha$ est répété dans l'intervalle de π à 3π , et dans tous les intervalles semblables. Nous écrirons cette équation comme il suit :

$$(\mu) \begin{cases} \frac{\pi}{2} \varphi(x) = \sin x \int_0^{i\pi} \varphi(x) \sin x \, dx + \sin 2x \int_0^{i\pi} \varphi(x) \sin 2x \, dx \\ -i\sin 3x \int_0^{i\pi} \varphi(x) \sin 3x \, dx + \dots, \end{cases}$$

On pourrait changer les limites des intégrales, et écrire $\int_0^{2\pi}$ ou $\int_{-\pi}^{+\pi}$ au lieu de \int_0^{π} ; mais, dans chacun de ces deux cas, il faut écrire au premier membre $\pi \, \varphi(x)$ au lieu de $\frac{\pi}{2} \, \varphi(x)$.

233.

La fonction $\varphi(x)$, développée en cosinus d'arcs multiples, est représentée par une ligne formée de deux arcs égaux placés symétriquement de part et d'autre de l'axe des y dans l'intervalle de $-\pi$ à $+\pi$ (fig. 11); cette condition est exprimée ainsi

$$\varphi(x) = \varphi(-x).$$

La ligne qui représente la fonction $\psi(x)$, développée en sinus d'arcs multiples, est au contraire formée dans le même intervalle de deux arcs opposés, ce qu'exprime l'équation

$$\psi(x) = -\psi(-x).$$

Une fonction quelconque F(x), représentée par une ligne tracée arbitrairement dans l'intervalle de $-\pi$ à $+\pi$, peut toujours être partagée en deux fonctions telles que $\varphi(x)$ et $\psi(x)$. En effet, si la ligne F'F'mFF

représente la fonction F(x), et que l'on élève par le point O l'ordonnée Om, on tracera par le point m à droite de l'axe Om l'arc mf semblable, à l'arc mF f' de la courbe donnée, et à gauche du même axe on tracera l'arc mf f' semblable à l'arc mFF; ensuite on fera passer par le point m une ligne $\varphi'\varphi'm\varphi\varphi$ qui partagera en deux parties égales la différence de chaque ordonnée xF ou x'f' à l'ordonnée correspondante xf ou x'F'. On tracera aussi la ligne $\psi'\psi'O\psi\psi$, dont l'ordonnée mesure la demi-différence de l'ordonnée de F'F'mFF à celle de f'f'mff. Cela posé, les ordonnées de la ligne F'F'mFF et de la ligne f'f'mff étant désignées l'une par F(x) et la seconde par f(x), on aura évidemment f(x) = F(-x); désignant aussi l'ordonnée de $\varphi'\varphi'm\varphi\varphi$ par $\varphi(x)$, et celle de $\psi'\psi'O\psi\psi$ par $\psi(x)$, on aura

$$\mathbf{F}(x) = \varphi(x) + \psi(x)$$

et

$$f(x) = \varphi(x) - \psi(x) = \mathbf{F}(-x),$$

donc

$$\varphi(x) = \frac{\mathbf{F}(x) + \mathbf{F}(-x)}{2} \qquad \text{et} \qquad \psi(x) = \frac{\mathbf{F}(x) - \mathbf{F}(-x)}{2};$$

on en conclut

$$\varphi(x) = \varphi(-x)$$
 et $\psi(x) = -\psi(-x)$,

ce que la construction rend d'ailleurs évident.

Ainsi les deux fonctions $\varphi(x)$ et $\psi(x)$, dont la somme équivant à F(x), peuvent être développées l'une en cosinus d'arcs multiples et l'autre en sinus.

Si l'on applique à la première fonction l'équation (ν), et à la seconde l'équation (μ), en prenant dans l'une et l'autre les intégrales depuis $x = -\pi$ jusqu'à $x = \pi$, et si l'on ajoute les deux résultats, on aura

$$[\varphi(x) + \psi(x)] = \pi \mathbf{F}(x) = \frac{1}{2} \int \varphi(x) \, dx + \cos x \int \varphi(x) \cos x \, dx + \cos 2x \int \varphi(x) \cos 2x \, dx + .$$

$$+ \sin x \int \psi(x) \sin x \, dx + \sin 2x \int \psi(x) \sin 2x \, dx + .$$

les intégrales doivent être prises depuis $x=-\pi$ jusqu'à $x=\pi$. Il faut remarquer maintenant que dans l'intégrale $\int_{-\pi}^{+\pi} \varphi(x) \cos x \, dx$ on pourrait, sans en changer la valeur, mettre $\varphi(x)+\psi(x)$ au lieu de $\varphi(x)$: car la fonction $\cos x$ étant composée, à droite et à gauche de l'axe des x, de deux parties semblables, et la fonction $\psi(x)$ étant au contraire formée de deux parties opposées, l'intégrale $\int_{-\pi}^{+\pi} \psi(x) \cos x \, dx$ est nulle. Il en serait de même si l'on mettait $\cos 2x$ ou $\cos 3x$ et en général $\cos ix$ au lieu de $\cos x$, i étant un des nombres entiers depuis o jusqu'à l'infini. Ainsi l'intégrale $\int_{-\pi}^{+\pi} \varphi(x) \cos ix \, dx$ est la même que l'intégrale

$$\int_{-\pi}^{+\pi} \left[\varphi(x) + \psi(x) \right] \cos ix \, dx \quad \text{ou} \quad \int_{-\pi}^{+\pi} \mathbf{F}(x) \cos ix \, dx;$$

on reconnaîtra aussi que l'intégrale $\int_{-\pi}^{+\pi} \psi(x) \sin ix \, dx$ est égale à l'in-

tégrale
$$\int_{-\pi}^{+\pi} F(x) \sin ix \, dx$$
, parce que l'intégrale
$$\int_{-\pi}^{+\pi} \varphi(x) \sin ix \, dx$$

est nulle. On obtient par là l'équation suivante, qui sert à développer une fonction quelconque en une suite formée de sinus et de cosinus d'ares multiples:

$$\int_{\Gamma} \pi F(x) = \frac{1}{2} \int_{\Gamma} F(x) dx + \cos x \int_{\Gamma} F(x) \cos x dx + \cos 2x \int_{\Gamma} F(x) \cos 2x dx + \dots$$

$$+ \sin x \int_{\Gamma} F(x) \sin x dx + \sin 2x \int_{\Gamma} F(x) \sin 2x dx + \dots$$

234.

La fonction F(x) qui entre dans cette équation est représentée par une ligne F'F'FF, d'une forme quelconque. L'arc F'F'FF, qui répond à l'intervalle de $-\pi$ à $+\pi$, est arbitraire; toutes les autres parties de la ligne sont déterminées, et l'arc F'F'FF est répété dans tous les intervalles consécutifs dont la longueur est 2π . Nous ferons des applications fréquentes de ce théorème et des équations précédentes (m) et (n).

Si l'on suppose dans l'équation (p) que la fonction F(x) est représentée, dans l'intervalle de $-\pi$ à $+\pi$, par une ligne composée de deux arcs égaux symétriquement placés, tous les termes qui contiennent les sinus s'évanouiront et l'on trouvera l'équation (m). Si, au contraire, la ligne qui représente la fonction donnée F(x) est formée de deux arcs égaux de situation opposée, tous les termes qui ne contiennent point les sinus disparaissent et l'on trouve l'équation (n). En assujettissant la fonction F(x) à d'autres conditions, on trouverait d'autres résultats.

On écrira dans l'équation générale (p), au lieu de la variable x, la quantité $\frac{\pi x}{r}$, x désignant une autre variable, et x la longueur de l'intervalle dans lequel est placé l'arc qui représente F(x); cette fonc-

tion sera $F\left(\frac{\pi x}{r}\right)$, que nous désignerons par f(x). Les limites, qui étaient $x = -\pi$ et $x = \pi$, seront fournies par les équations $\frac{\pi \cdot r}{r} = -\pi$,

étaient
$$x = -\pi$$
 et $x = \pi$, seront fournies par les équations $\frac{\pi x}{r} = -\pi$, $\frac{\pi x}{r} = \pi$; on aura donc, après la substitution,

 $\int r f(x) = \frac{1}{2} \int_{-r}^{+r} f(x) dx + \cos \frac{\pi x}{r} \int f(x) \cos \frac{\pi x}{r} dx + \cos 2 \frac{\pi x}{r} \int f(x) \cos 2 \frac{\pi x}{r} dx + .$ $+ \sin \frac{\pi x}{r} \int f(x) \sin \frac{\pi x}{r} dx + \sin 2 \frac{\pi x}{r} \int f(x) \sin 2 \frac{\pi x}{r} dx + .$

toutes les intégrales doivent être prises, comme la première, de x = -r à x = +r. Si l'on fait la même substitution dans les équations (v) et (μ), on aura

et
$$(\mathbf{M}) = \frac{r}{2} f(x) = \sin \frac{\pi x}{r} \int_{0}^{r} f(x) \sin \frac{\pi x}{r} dx + \sin 2 \frac{\pi x}{r} \int_{0}^{r} f(x) \sin 2 \frac{\pi x}{r} dx + \dots$$

(N) $\frac{r}{2}f(x) = \int_0^r f(x) dx + \cos\frac{\pi x}{r} \int_0^r f(x) \cos\frac{\pi x}{r} dx + \cos 2\frac{\pi x}{r} \int_0^r f(x) \cos 2\frac{\pi x}{r} dx + \dots$

Dans la première équation (P), les intégrales pourraient être prises depuis x = 0 jusqu'à x = 2r, et, en représentant par X l'intervalle total 2*r*, on aura

$$\int \frac{X}{2} f(x) = \frac{1}{2} \int_{0}^{X} f(x) dx + \cos \frac{2\pi x}{X} \int_{0}^{X} f(x) \cos \frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \cos 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \sin 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} \int_{0}^{X} f(x) \sin 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X} dx + \cos 2\frac{2\pi x}{X}$$

235.

Il résulte de tout ce qui a été démontré dans cette Section concernant le développement des fonctions en séries trigonométriques que, si l'on propose une fonction f(x) dont la valeur est représentée, dans un intervalle déterminé, depuis x = 0 jusqu'à x = X, par l'ordonnée d'une ligne courbe tracée arbitrairement, on pourra toujours développer cette fonction en une série qui ne contiendra que les sinus ou les cosinus, ou les sinus et cosinus des arcs multiples, ou les seuls cosinus des multiples impairs. On emploiera, pour connaître les termes de ces séries, les équations (M), (N), (P).

On ne peut résoudre entièrement les questions fondamentales de la théorie de la chaleur, sans réduire à cette forme les fonctions qui représentent l'état initial des températures.

Ces séries trigonométriques, ordonnées selon les cosinus ou les sinus des multiples de l'arc, appartiennent à l'analyse élémentaire comme les séries dont les termes contiennent les puissances successives de la variable. Les coefficients des séries trigonométriques sont des aires définies, et ceux des séries de puissances sont des fonctions données par la différentiation, et dans lesquelles on attribue aussi à la variable une valeur définie. Nous aurions à ajouter plusieurs remarques concernant l'usage et les propriétés des séries trigonométriques; nous nous bornerons à énoncer brièvement celles qui ont un rapport plus direct avec la théorie dont nous nous occupons.

- 1° Les séries ordonnées selon les cosinus ou les sinus des ares multiples sont toujours convergentes, c'est-à-dire qu'en donnant à la variable une valeur quelconque non imaginaire, la somme des termes converge de plus en plus vers une scule limite fixe, qui est la valeur de la fonction développée;
- 2° Si l'on a l'expression de la fonction f(x) qui répond à une série donnée

$$a + b\cos x + c\cos 2x + d\cos 3x + c\cos 4x + \dots$$

et celle d'une autre fonction $\varphi(x)$, dont le développement donné est

$$\alpha + \beta \cos x + \gamma \cos 2x + \delta \cos 3x + \epsilon \cos 4x + \dots$$

il est facile de trouver en termes réels la somme de la série composée

$$a\alpha + b\beta + c\gamma + d\delta + e\varepsilon + \dots$$

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 233 et, plus généralement, celle de la série (1)

$$a\alpha + b\beta \cos x + c\gamma \cos 2x + d\delta \cos 3x + e\varepsilon \cos 4x + \dots$$

que l'on forme en comparant terme à terme les deux séries données. Cette remarque s'applique à un nombre quelconque de séries.

3° La série (p) (art. 233) qui donne le développement d'une fonction F(x) en une suite de sinus et de cosinus d'arcs multiples peut être mise sous cette forme

$$\pi F(x) = \frac{1}{2} \int F(\alpha) d\alpha + \begin{cases} +\cos x \int F(\alpha) \cos \alpha d\alpha + \cos 2x \int F(\alpha) \cos 2\alpha d\alpha + \dots, \\ +\sin x \int F(\alpha) \sin \alpha d\alpha + \sin 2x \int F(\alpha) \sin 2\alpha d\alpha + \dots, \end{cases}$$

 α étant une nouvelle variable qui disparaît après les intégrations. On a donc

$$\pi \mathbf{F}(x) = \int_{-\pi}^{+\pi} \mathbf{F}(\alpha) d\alpha \begin{pmatrix} \frac{1}{2} + \cos x \cos \alpha + \cos 2x \cos 2\alpha + \cos 3x \cos 3\alpha + \dots \\ + \sin x \sin \alpha + \sin 2x \sin 2\alpha + \sin 2x \sin 3\alpha + \dots \end{pmatrix}$$

ou

$$\mathbf{F}(x) = \frac{1}{\pi} \int_{-\pi}^{+\pi} \mathbf{F}(\alpha) \ d\alpha \left[\frac{1}{2} + \cos(x - \alpha) + \cos 2(x - \alpha) + \cos 3(x - \alpha) + \dots \right].$$

Donc, en désignant par

$$\sum \cos i(x-\alpha)$$

la somme de la série précédente, prise depuis $i=\iota$ jusqu'à $i=\infty$, on

(1) Si l'on se propose, en effet, de calculer l'intégrale

$$\frac{1}{\pi} \int_0^{\pi} f(x) \varphi(x+h) dx,$$

on trouvera aisément, en remplaçant f(x) et $\varphi(x+h)$ par leurs développements, l'expression

$$a\alpha + \frac{1}{2}b\beta\cos h + \frac{1}{2}c\gamma\cos 2h + \dots,$$

ce qui équivaut au résultat énoncé par Fourier.

G.D.

234

aura

$$\mathbf{F}(x) = \frac{1}{\pi} \int \mathbf{F}(\alpha) d\alpha \left[\frac{1}{2} + \mathbf{\Sigma} \cos i(x - \alpha) \right].$$

L'expression $\frac{1}{2} + \sum \cos i(x-\alpha)$ représente une fonction de x et de α , telle que, si on la multiplie par une fonction quelconque $F(\alpha)$ et si, après avoir écrit $d\alpha$, on intègre entre les limites $\alpha = -\pi$ et $\alpha = \pi$, on aura changé la fonction proposée $F(\alpha)$ en une pareille fonction de x, multipliée par la demi-circonférence π . On verra, par la suite, quelle est la nature de ces quantités, telles que $\frac{1}{2} + \sum \cos i(x-\alpha)$, qui jouissent de la propriété que l'on vient d'énoncer.

4° Si, dans les équations (M), (N) et (P) (art. 234) qui, étant divisées par r, donnent le développement d'une fonction f(x), on suppose que l'intervalle r devient infiniment grand, chaque terme de la série est un élément infiniment petit d'une intégrale; la somme de la série est alors représentée par une intégrale définie. Lorsque les corps ont des dimensions déterminées, les fonctions arbitraires qui représentent les températures initiales et qui entrent dans les intégrales des équations aux différences partielles doivent être développées en séries analogues à celles des équations (M), (N), (P); mais ces mêmes fonctions prennent la forme des intégrales définies lorsque les dimensions des

(1) Plus exactement, F(x) est la limite de l'expression

$$\frac{1}{\pi} \int F(z) dz \left[\sum_{1}^{p} \cos i(x - \alpha) + \frac{1}{2} \right]$$

lorsque p augmente indéfiniment. La série

$$\frac{1}{2} + \cos(x - \alpha) + \cos \alpha(x - \alpha) + \dots$$

avant une somme indéterminée, on ne peut attacher aucun sens à l'expression

$$\frac{1}{2} + \sum_{i=1}^{i=\infty} \cos i(x-\alpha)$$

considérée par Fourier.

CHAPITRE III. — SOLIDE RECTANGULAIRE INFINI. 235 corps ne sont point déterminées, comme on l'expliquera dans la suite de cet Ouvrage, en traitant de la diffusion libre de la chaleur.

SECTION VII.

APPLICATION A LA QUESTION ACTUELLE.

236.

Nous pouvons maintenant résoudre d'une manière générale la question de la propagation de la chaleur dans une lame rectangulaire BAC dont la base A $(fig. \ 7 \ bis)$ est constamment échauffée, pendant que ses deux arêtes infinies B et C sont retenues à la température o.

Supposons que la température initiale de tous les points de la table BAC soit nulle, mais que celle de chaque point m de l'arête A soit conservée par une cause extérieure quelconque, et que cette valeur fixe soit une fonction f(x) de la distance du point m à l'extrémité O de l'arête A, dont la longueur totale est r; soit v la température constante du point M dont les coordonnées sont y et x; il s'agit de déterminer v en fonction de y et x. La valeur

$$o = ae^{-my} \sin mx$$

satisfait à l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0;$$

a et m sont des quantités quelconques. Si l'on prend $m=i\frac{\pi}{r}$, et que i soit un nombre entier, la valeur $ae^{-i\frac{\pi y}{r}}\sin i\frac{\pi x}{r}$ deviendra nulle lorsque x sera égal à zéro ou à r, quelle que soit d'ailleurs la valeur de y. On pourra donc prendre, pour une valeur plus générale de c,

$$v = a_1 e^{-\frac{\pi y}{r}} \sin \frac{\pi x}{r} + a_2 e^{-2\frac{\pi y}{r}} \sin 2\frac{\pi x}{r} + a_3 e^{-3\frac{\pi y}{r}} \sin 3\frac{\pi x}{r} + \dots$$

Si l'on suppose y nulle, la valeur de e sera, d'après l'hypothèse, égale à la fonction connue f(x). On aura done

$$f(x) = a_1 \sin \frac{\pi x}{r} + a_2 \sin 2 \frac{\pi x}{r} + a_3 \sin 3 \frac{\pi x}{r} + a_4 \sin 4 \frac{\pi x}{r} + \dots$$

On déterminera les coefficients a_1 , a_2 , a_3 , a_4 , a_5 , ... au moyen de l'équation (M) et, en les substituant dans la valeur de e, on aura

$$\frac{1}{2}rv = e^{-\frac{\pi y}{r}}\sin\frac{\pi x}{r}\int_{0}^{r}f(x)\sin\frac{\pi x}{r}dx + e^{-\frac{y}{r}}\sin\frac{\pi x}{r}\int_{0}^{r}f(x)\sin\frac{\pi x}{r}dx$$
$$+ e^{-\frac{y}{r}}\sin\frac{\pi x}{r}\int_{0}^{r}f(x)\sin\frac{\pi x}{r}dx + \dots$$

237.

En supposant dans l'équation précédente $r = \pi$, on aura la même solution sous une forme plus simple, savoir

(a)
$$\begin{cases} \frac{1}{2}\pi^{\rho} = e^{-y}\sin x \int_{0}^{\pi} f(x)\sin x \, dx + e^{-2y}\sin 2x \int f(x)\sin x \, dx \\ + e^{-3y}\sin 3x \int f(x)\sin 3x \, dx + \dots \end{cases}$$

ou

$$\frac{1}{2}\pi v = \int_0^{\pi} f(\alpha) d\alpha \left(e^{-y} \sin x \sin \alpha + e^{-2y} \sin 2x \sin 2\alpha + e^{-3y} \sin 3x \sin 3\alpha + \dots \right)$$

α est une nouvelle variable qui disparaît après l'intégration. Si l'on détermine la somme de cette série et si l'on en fait la substitution dans

la dernière équation, on aura la valeur de ν sous une forme finie. Le double de la série équivaut à

$$e^{-y}[\cos(x-\alpha) - \cos(x+\alpha)] + e^{-2y}[\cos 2(x-\alpha) - \cos 2(x+\alpha)] + e^{-3y}[\cos 3(x-\alpha) - \cos 3(x+\alpha)] + \dots;$$

désignant par F(y, p) la somme de la série infinie

$$e^{-y}\cos p + e^{-2y}\cos 2p + e^{-3y}\cos 3p + \dots$$

on en conclura

$$\pi v = \int_{0}^{\pi} \mathbf{F}(\alpha) d\alpha \left[\mathbf{F}(y, x - \alpha) - \mathbf{F}(y, x + \alpha) \right].$$

On a

$$2\mathbf{F}(y,p) = e^{-(y+p\sqrt{-1})} + e^{-2}(y+p\sqrt{-1}) + e^{-8}(y+p\sqrt{-1}) + \dots$$
$$+ e^{-(y-p\sqrt{-1})} + e^{-2}(y-p\sqrt{-1}) + e^{-3}(y-p\sqrt{-1}) + \dots$$
$$= \frac{e^{-(y+p\sqrt{-1})}}{1 - e^{-(y+p\sqrt{-1})}} + \frac{e^{-(y-p\sqrt{-1})}}{1 - e^{-(y-p\sqrt{-1})}}$$

ou

$$\mathbf{F}(y,p) = \frac{\cos p - e^{-y}}{e^y - 2\cos p + e^{-y}};$$

done

$$\pi \circ = \int_0^{\pi} f(\alpha) \, d\alpha \left[\frac{\cos(x - \alpha) - e^{-y}}{e^y - 2\cos(x - \alpha) + e^{-y}} - \frac{\cos(x + \alpha) - e^{-y}}{e^y - 2\cos(x + \alpha) + e^{-y}} \right]$$

ou

$$\pi \, \varphi = \int_0^{\pi} f(\alpha) \, d\alpha \left\{ \underbrace{\left[e^y - 2 \cos(x - \alpha) + e^{-y} \right] \left[e^y - 2 \cos(x + \alpha) + e^{-y} \right]}_{} \right\}$$

ou, en décomposant le coefficient en deux fractions,

$$\frac{1}{e^{y}-e^{-y}}\int_{0}^{\pi}f(\alpha)\left[\frac{1}{e^{y}-2\cos(x-\alpha)+e^{-y}}-\frac{1}{e^{y}-2\cos(x+\alpha)+e^{-y}}\right]d\alpha.$$

Cette équation contient, sous la forme finie et en termes réels, l'intégrale de l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0,$$

appliquée à la question du mouvement uniforme de la chaleur dans un solide rectangulaire exposé par sa base à l'action constante d'un seul foyer.

Il est facile de reconnaître les rapports de cette intégrale avec l'intégrale générale, qui a deux fonctions arbitraires; ces fonctions se trouvent déterminées par la nature même de la question, et il ne reste d'arbitraire que la fonction $f(\alpha)$, considérée entre les limites $\alpha = 0$ et $\alpha = \pi$. L'équation (a) représente, sous une forme simple, propre aux applications numériques, cette même valeur de e réduite en une série convergente.

Si l'on voulait déterminer la quantité de chaleur que le solide contient lorsqu'il est parvenu à son état permanent, on prendrait l'intégrale fdx fvdy depuis x=0 jusqu'à $x=\pi$ et depuis y=0 jusqu'à $y=\infty$; le résultat serait proportionnel à la quantité cherchée. En général, il n'y a aucune propriété du mouvement uniforme de la chaleur dans une lame rectangulaire qui ne soit exactement représentée par cette solution. Nous envisagerons maintenant les questions de ce genre sous un autre point de vue, et nous déterminerons le mouvement varié de la chaleur dans les différents corps.

CHAPITRE IV.

DU MOUVEMENT LINÉAIRE ET VARIÉ DE LA CHALEUR DANS UNE ARMILLE.

SECTION I.

SOLUTION GÉNÉRALE DE LA QUESTION.

238.

L'équation qui exprime le mouvement de la chaleur dans une armille a été rapportée dans l'article 405; elle est

$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{CD}} \frac{\partial^2 v}{\partial x^2} - \frac{hl}{\mathbf{CDS}} v.$$

Il s'agit maintenant d'intégrer cette équation; on écrira seulement

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} - hv;$$

la valeur de k représentera $\frac{K}{CD}$, celle de h sera $\frac{hl}{CDS}$; x désigne la longueur de l'arc compris entre un point m de l'anneau et l'origine o; v est la température que l'on observerait en ce point m après un temps donné t. On supposera d'abord $v = e^{-ht}u$, u étant une nouvelle indéterminée; on en tirera

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2};$$

or cette dernière équation convient au cas où l'irradiation serait nulle à la surface, puisqu'on la déduirait de la précédente en y faisant h = 0; on conclut de là que les différents points de l'anneau se refroidissent successivement, par l'action du milieu, sans que cette circon-

stance trouble en aucune manière la loi de la distribution de la chaleur. En effet, en intégrant l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

on trouverait les valeurs de u qui répondent aux différents points de l'anneau dans un même instant, et l'on connaîtrait quel serait l'état du solide si la chaleur s'y propageait sans qu'il y cût aucune déperdition à la surface; pour déterminer ensuite quel aurait été l'état du solide au même instant si cette déperdition cût eu lieu, il suffirait de multiplier toutes les valeurs de u, prises pour les divers points et pour un même instant, par une même fraction qui est e^{-nt} . Ainsi le refroidissement qui s'opère à la surface ne change point la loi de la distribution de la chaleur; il en résulte seulement que la température de chaque point est moindre qu'elle n'eût été sans cette circonstance; et elle diminue, pour cette cause, proportionnellement aux puissances successives de la fraction e^{-ht} .

239.

La question étant réduite à intégrer l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

on cherchera, en premier lieu, les valeurs particulières les plus simples que l'on puisse attribuer à la variable u; on en composera ensuite une valeur générale, et l'on démontrera que cette valeur est aussi étendue que l'intégrale, qui contient une fonction arbitraire en x, ou plutôt qu'elle est cette intégrale elle-même, mise sous la forme qu'exige la question, en sorte qu'il ne peut y avoir aucune solution différente.

On remarquera d'abord que l'équation est satisfaite si l'on donne à u la valeur particulière $ae^{mt}\sin nx$, m et n étant assujettis à la condition $m=-kn^2$. On prendra donc pour une valeur particulière de u la fonction

Pour que cette valeur de u convienne à la question, il faut qu'elle ne change point lorsque la distance x est augmentée de la quantité $2\pi r$, r désignant le rayon moyen de l'anneau. Donc $2n\pi r$ doit être un multiple i de la circonférence 2π , ce qui donne $n=\frac{i}{r}$. On peut prendre pour i un nombre entier quelconque; on le supposera toujours positif parce que, s'il était négatif, il suffirait de changer dans la valeur $ae^{-kn^2t}\sin nx$ le signe du coefficient a. Cette valeur particulière

$$ae^{-\frac{ki^2t}{r^2}}\sin\frac{ix}{r}$$
.

ne pourrait satisfaire à la question proposée qu'autant qu'elle représenterait l'état initial du solide. Or, en faisant $t = \alpha$, on trouve

$$u = a \sin \frac{ix}{r};$$

supposons donc que les valeurs initiales de u soient exprimées en effet par $a\sin\frac{x}{r}$, c'est-à-dire que les températures primitives des différents points soient proportionnelles aux sinus des angles compris entre les rayons qui passent par ces points et celui qui passe par l'origine; le mouvement de la chaleur dans l'intérieur de l'anneau sera exactement représenté par l'équation

$$u = ae^{-\frac{kt}{r^2}}\sin\frac{x}{r},$$

et, si l'on a égard à la déperdition de la chaleur par la surface, on trouvera

$$c = ae^{-\left(h + \frac{k}{r^2}\right)t} \sin \frac{x}{t}.$$

Dans le cas dont il s'agit, qui est le plus simple de tous ceux que l'on puisse concevoir, les températures variables conservent leurs rapports primitifs, et celle d'un point quelconque diminue comme les puissances successives d'une fraction, qui est la même pour tous les points.

On remarquera les mêmes propriétés si l'on suppose que les tempé-F. ratures initiales sont proportionnelles au sinus du double de l'are et cela a lieu, en général, lorsque les températures données sont representées par $a \sin \frac{ix}{r}$, i étant un nombre entier quelconque.

On arrivera aux mêmes conséquences en prenant, pour valeur par culière de u, la quantité $ae^{-kn^2t}\cos n.x$; on a aussi $2n\pi r = 2i\pi$ $n = \frac{i}{r}$; donc l'équation

$$u = ae^{-\frac{kl^2t}{r^2}}\cos\frac{tx}{r}$$

exprimera le mouvement de la chaleur dans l'intérieur de l'annea si les températures initiales sont représentées par $a\cos\frac{ix}{r}$.

Dans tous ces cas, où les températures données sont proporties nelles aux sinus ou aux cosinus d'un multiple de l'arc $\frac{e}{r}$, les rappor établis entre ces températures subsistent continuellement pendant durée infinie du refroidissement. Il en serait de même si les temper tures initiales étaient représentées par la fonction $a\sin\frac{i\pi}{r}+b\cos\frac{i\pi}{r}$, i étant un nombre entier, a et b des coefficients quelconques.

240.

Venons maintenant au cas général, dans lequel les température initiales n'ont point les rapports que l'on vient de supposer, mais sur représentées par une fonction quelconque F(x). Donnons à cette fontion la forme $\varphi\left(\frac{x}{r}\right)$, en sorte qu'on ait $F(x) = \varphi\left(\frac{x}{r}\right)$, et concevons qu'la fonction $\varphi\left(\frac{x}{r}\right)$ est décomposée en une série de sinus on de cosinu d'arcs multiples affectés de coefficients convenables. On posera l'equation

(
$$\epsilon$$
)
$$\begin{cases} \varphi\left(\frac{x}{r}\right) = a_0 \sin \alpha \frac{x}{r} + a_1 \sin \alpha \frac{x}{r} + a_2 \sin \alpha \frac{x}{r} + \dots \\ + b_0 \cos \alpha \frac{x}{r} + b_1 \cos \alpha \frac{x}{r} + b_2 \cos \alpha \frac{x}{r} + \dots \end{cases}$$

Les nombres a_0 , a_1 , a_2 , ...; b_0 , b_1 , b_2 , ... sont regardés comme connus et calculés d'avance. Il est visible que la valeur de u sera alors représentée par l'équation

$$u = b_0 + \begin{cases} a_1 \sin \frac{x}{r} \\ b_1 \cos \frac{x}{r} \end{cases} e^{-\frac{kt}{r^2}} + \begin{cases} a_2 \sin 2 \frac{x}{r} \\ b_2 \cos 2 \frac{x}{r} \end{cases} e^{-\frac{2^2 kt}{r^2}} + \dots$$

En effet:

1° Cette valeur de u satisfera à l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

parce qu'elle est la somme de plusieurs valeurs particulières;

 2° Elle ne changera point lorsqu'on augmentera la distance x d'un multiple quelconque de la circonférence de l'anneau;

3° Elle satisfera à l'état initial, parce que, en faisant t = 0, on trouvera l'équation (ϵ).

Done toutes les conditions de la question seront remplies; et il ne restera plus qu'à multiplier par e^{-ht} cette valeur de u.

241.

A mesure que le temps t augmente, chacun des termes qui composent la valeur de u devient de plus en plus petit; le système des températures tend donc continuellement à se confondre avec l'état, régulier et constant, dans lequel la différence de la température u à la constante b_0 est représentée par

 $\left(a_1\sin\frac{x}{r}+b_1\cos\frac{x}{r}\right)e^{-\frac{kt}{r^2}}.$

Ainsi les valeurs particulières que nous avons considérées précédemment, et dont nous composons la valeur générale, tirent leur origine de la question elle-même. Chacune d'elles représente un état élémentaire qui peut subsister de lui-même dès qu'on le suppose formé; ces valeurs ont une relation naturelle et nécessaire avec les propriétés physiques de la chaleur (1).

Pour déterminer les coefficients a_0 , a_1 , a_2 , a_3 , ...; b_0 , b_4 , b_2 , b_3 , ..., on emploiera l'équation (II) (art. 234), qui a été démontrée dans la dernière Section du Chapitre précédent.

L'abscisse totale désignée par X dans cette équation sera $2\pi r$, x sera l'abscisse variable et f(x) représentera l'état initial de l'anneau; les intégrales seront prises depuis x = 0 jusqu'à $x = 2\pi r$; on aura donc

$$\pi r f(x) = \frac{1}{2} \int f(x) dx + \begin{cases} \cos \frac{x}{r} \int \cos \frac{x}{r} f(x) dx + \cos 2\frac{x}{r} \int \cos 2\frac{x}{r} f(x) dx + \dots \\ \sin \frac{x}{r} \int \sin \frac{x}{r} f(x) dx + \sin 2\frac{x}{r} \int \sin 2\frac{x}{r} f(x) dx + \dots \end{cases}$$

Connaissant ainsi les valeurs de a_0 , a_1 , a_2 , a_3 , ...; b_0 , b_1 , b_2 , b_3 , ..., on les substituera dans l'équation et l'on aura l'équation suivante, qui contient la solution complète de la question :

$$(E) \ \pi r v = e^{-ht} \left[\frac{1}{2} \int f(x) dx + \begin{cases} \sin \frac{x}{r} \int \sin \frac{x}{r} f(x) dx \\ \cos \frac{x}{r} \int \cos \frac{x}{r} f(x) dx \end{cases} \right] e^{-\frac{ht}{r^2}} + \begin{cases} \sin 2 \frac{x}{r} \int \sin 2 \frac{x}{r} f(x) dx \\ \cos 2 \frac{x}{r} \int \cos 2 \frac{x}{r} f(x) dx \end{cases} e^{-\frac{2^2 ht}{r^2}} + \begin{cases} \sin 2 \frac{x}{r} \int \sin 2 \frac{x}{r} f(x) dx \\ \cos 2 \frac{x}{r} \int \cos 2 \frac{x}{r} f(x) dx \end{cases}$$

Toutes les intégrales doivent être prises depuis x=0 jusqu'à $x=2\pi r$. Le premier terme $\frac{1}{2\pi r}\int f(x)dx$, qui sert à former la valeur de c, est évidemment la température moyenne initiale, c'est-à-dire celle qu'aurait chaque point si toute la chaleur initiale était également répartie entre tous les points.

242.

On peut appliquer l'équation précédente (E), quelle que soit la forme de la fonction donnée f(x). Nous considérerons deux cas particuliers, savoir : 1° celui qui a lieu lorsque, l'anneau ayant été élevé par l'action d'un foyer à des températures permanentes, on supprime

⁽¹⁾ Voir, pour plus de netteté, les développements donnés à cette idée à la fin de l'article 246.

tout à coup le foyer; 2° le cas où la moitié de l'anneau, échauffée également dans tous ses points, scrait réunie subitement à l'autre moitié, qui aurait dans toutes ses parties la température initiale o.

On a vu précédemment (art. 106) que les températures permanentes de l'anneau sont exprimées par l'équation

$$c = a\alpha^{-x} + b\alpha^{x}$$

et la quantité α a pour valeur $e^{-\sqrt{\frac{hl}{hS}}}$; l est le contour de la section génératrice et S la surface de cette section. Si l'on suppose qu'il y ait un seul foyer, il sera nécessaire que l'on ait l'équation $\frac{\partial v}{\partial x} = 0$ au point opposé à celui qui est occupé par le foyer. La condition

$$a\alpha^{-x} - b\alpha^x = 0$$

sera donc satisfaite en ce point. Regardons, pour plus de facilité dans le calcul, la fraction $\frac{ht}{KS}$ comme égale à l'unité, et prenons le rayon r de l'anneau pour le rayon des Tables trigonométriques; on aura

$$v = ae^x + be^{-x}$$
;

donc l'état initial de l'anneau est représenté par l'équation

$$v = be^{-\pi}(e^{-\pi + x} + e^{\pi - x}).$$

Il ne reste plus qu'à appliquer l'équation générale (E) et, en désignant par M (1) la chaleur (2) moyenne initiale, on aura

$$v = 2e^{-ht}M\left(\frac{1}{2} + \frac{\cos x}{t^2 + 1}e^{-kt} + \frac{\cos 2x}{2^2 + 1}e^{-2^2kt} + \frac{\cos 3x}{3^2 + 1}e^{-3^2kt} + \frac{\cos 4x}{4^2 + 1}e^{-k^2kt} + \dots\right).$$

Cette équation exprime l'état variable d'un anneau solide qui, ayant

(1) En faisant les calculs supprimés par Fourier, on trouve que la valeur de M est liée à celle de la constante b par la relation

$$M = \frac{b}{\pi} (1 - e^{-2\pi}).$$
 G. D.

(2) Ici et dans quelques autres passages, Fourier emploie le mot *chaleur* pour indiquer la température.

G. D.

été échauffé par un de ses points et élevé à des températures stationnaires, se refroidit dans l'air après la suppression du foyer.

243.

Pour faire une seconde application de l'équation générale (E., nous supposerons que la chaleur initiale est tellement distribuée qu'une moitié de l'anneau, comprise depuis x=0 jusqu'à $x=\pi$, a, dans tous ses points, la température u et que l'autre partie a la température u. Il s'agit de déterminer l'état de l'anneau après un temps écoulé t.

La fonction f(x) qui représente l'état initial est telle, dans ce cas, que sa valeur est 1 toutes les fois que la variable est comprise entre α et π . Il en résulte que l'on doit supposer

$$f(x) = 1$$

et ne prendre les intégrales que depuis x=0 jusqu'à $x=\pi$; les autres parties des intégrales sont nulles d'après l'hypothèse. On obtiendra d'abord l'équation suivante qui donne le développement de la fonction proposée, dont la valeur est i depuis x=0 jusqu'à $x=\pi$, et nulle depuis $x=\pi$ jusqu'à $x=2\pi$,

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right).$$

Si maintenant on substitue dans l'équation générale les valeurs qu'on vient de trouver pour les coefficients constants, on aura l'équation

$$\frac{\pi v}{2} = e^{-ht} \left(\frac{\pi}{4} + e^{-kt} \sin x + \frac{1}{3} e^{-3^2 kt} \sin 3x + \frac{1}{5} e^{-3^2 kt} \sin 5x + \dots \right).$$

qui exprime la loi suivant laquelle varie la température à chaque point de l'anneau, et fait connaître son état après un temps donné.

Nous nous bornerons aux deux applications précédentes et nous ajouterons seulement quelques observations sur la solution genérale exprimée par l'équation (E).

244.

1º Si l'on suppose k infini, l'état de l'anneau sera exprimé ainsi

$$v = \frac{e^{-ht}}{2\pi r} \int f(x) \, dx$$

ou, en désignant par M la température moyenne initiale,

$$c = M e^{-ht}$$

La température d'un point quelconque deviendra subitement égale à la température moyenne et les différents points conserveront toujours des températures égales, ce qui est une conséquence nécessaire de l'hypothèse où l'on admet une conducibilité infinie.

 2° On aura le même résultat si le rayon r de l'anneau est infiniment petit.

3º Pour trouver la température moyenne de l'anneau après un temps t, il faut prendre l'intégrale $\int c \, dx$, depuis x = 0 jusqu'à $x = 2\pi r$, et diviser par $2\pi r$. En intégrant entre ces limites les différentes parties de la valeur de c et supposant ensuite $x = 2\pi r$, on trouvera que les valeurs totales des intégrales sont nulles, excepté pour le premier terme; la température moyenne a donc pour valeur, après le temps t, la quantité Me^{-ht} . Ainsi, la température moyenne de l'anneau décroît de la même manière que si la conducibilité était infinie; les variations occasionnées par la propagation de la chaleur dans ce solide n'influent point sur la valeur de cette température.

Dans les trois cas que nous venons de considérer, la température décroît proportionnellement aux puissances de la fraction e^{-ht} ou, ceaqui est la même chose, à l'ordonnée d'une courbe logarithmique, l'abscisse étant égale au temps écoulé. Cette loi est connue depuis longtemps; mais il faut remarquer qu'elle n'a lieu, en général, que si les corps ont une petite dimension. L'analyse précédente nous apprend que, si le diamètre d'un anneau n'est pas très petit, le refroidissement d'un point déterminé ne serait pas d'abord assujetti à cette loi; il n'en est

pas de même de la température moyenne, qui décroît toujours proportionnellement aux ordonnées d'une logarithmique. Au reste, il ne faut point perdre de vue que la section génératrice de l'armille est supposée avoir des dimensions assez petites pour que les points de la même section ne différent point sensiblement de température.

4° Si l'on voulait connaître quelle est la quantité de chaleur qui s'échappe dans un temps donné par la superficie d'une portion donnée de l'anneau, il faudrait employer l'intégrale $hl \int dt \int v \, dx$, et prendre cette intégrale entre les limites qui se rapportent au temps. Par exemple, si l'on choisit o, 2π pour les limites de x et o, ∞ pour les limites de t, c'est-à-dire si l'on veut déterminer toute la quantité de chaleur qui s'échappe de la superficie entière pendant toute la durée du refroidissement, on doit trouver, après les intégrations, un résultat égal à toute la chaleur initiale ou $2\pi r$ MCDS, M étant la température moyenne initiale.

 5° Si l'on veut connaître combien il s'écoule de chaleur dans un temps donné, à travers une section déterminée de l'anneau, il faudra employer l'intégrale $-\text{KS}\int \frac{\partial c}{\partial x}dt$, en mettant pour $\frac{\partial c}{\partial x}$ la valeur de cette fonction, prise au point dont il s'agit.

245.

6° La chaleur tend à se distribuer dans l'anneau suivant une loi qui doit être remarquée. Plus le temps écoulé augmente et plus les termes qui composent la valeur de ø dans l'équation (E) deviennent petits par rapport à ceux qui les précèdent. Il y a donc une certaine valeur de ø pour laquelle le mouvement de la chaleur commence à être sensiblement représenté par l'équation

$$u = b_0 + \left(a_1 \sin \frac{x}{r} + b_1 \cos \frac{x}{r}\right) e^{-\frac{kt}{r^2}}.$$

Cette même relation continue à subsister pendant la durée infinie du refroidissement. Si, dans cet état, on choisit deux points de l'anneau

situés aux deux extrémités d'un même diamètre, en représentant par x_1 et x_2 leurs distances respectives à l'origine, par v_1 et v_2 leurs températures correspondantes au temps t, on aura

$$c_1 = \left[b_0 + \left(\alpha_1 \sin \frac{x_1}{r} + b_1 \cos \frac{x_1}{r} \right) e^{-\frac{kl}{r^2}} \right] e^{-ht},$$

$$c_2 = \left[b_0 + \left(\alpha_1 \sin \frac{x_2}{r} + b_1 \cos \frac{x_2}{r} \right) e^{-\frac{kl}{r^2}} \right] e^{-ht}.$$

Les sinus des arcs $\frac{x_1}{r}$ et $\frac{x_2}{r}$ ne différent que par le signe, et il en est de même des quantités $\cos \frac{x_1}{r}$ et $\cos \frac{x_2}{r}$; donc

$$\frac{c_1+c_2}{2}=b_0e^{-ht}.$$

Ainsi la demi-somme des températures des points opposés donne une quantité b_0e^{-ht} , qui serait encore la même si l'on avait choisi deux points situés aux extrémités d'un autre diamètre. Cette quantité b_0e^{-ht} est, comme on l'a vu plus haut, la valeur de la température moyenne après le temps t. Donc la demi-somme des températures des deux points opposés quelconques décroît continuellement avec la température moyenne de l'anneau et en représente la valeur sans erreur sensible, après que le refroidissement a duré un certain temps. Examinons plus particulièrement en quoi consiste ce dernier état, qui est exprimé par l'équation

$$v = \left[b_0 + \left(a_1 \sin \frac{x}{r} + b_1 \cos \frac{x}{r}\right) e^{-\frac{k\ell}{r^2}}\right] e^{-h\ell}.$$

Si l'on cherche d'abord le point de l'anneau pour lequel on a la condition

$$a_1 \sin \frac{x}{r} + b_1 \cos \frac{x}{r} = 0$$

o u

$$\frac{x}{r} = \arctan\left(-\frac{b_1}{a_1}\right),$$

on voit que la température de ce point est, à chaque instant, la tempé-

rature moyenne de l'anneau. Il en est de même du point diamétralement opposé, car l'abscisse x de ce dernier point satisferait encore à l'équation précédente

 $\frac{x}{r} = \arctan\left(-\frac{b_1}{a_1}\right).$

Désignons par X la distance à laquelle le premier de ces points est placé, on a

 $b_1 = -a_1 \tan g \frac{X}{r}$

et, en substituant cette valeur de b_1 ,

$$c = \left[b_0 + \frac{a_1}{\cos \frac{\mathbf{X}}{r}} \sin \left(\frac{x}{r} - \frac{\mathbf{X}}{r}\right) e^{-\frac{kt}{r^2}}\right] e^{-ht}.$$

Si l'on prend maintenant pour origine des abscisses le point qui répondait à l'abscisse X, et que l'on désigne par u la nouvelle abscisse x - X, on aura, b désignant une nouvelle constante,

$$c = e^{-ht} \left(b_0 + b \sin \frac{u}{r} e^{-\frac{kt}{r^2}} \right).$$

A l'origine, où l'abscisse u est o, et au point opposé, la température c est toujours égale à la température moyenne; ces deux points divisent la circonférence de l'anneau en deux parties dont l'état est pareil, mais de signe opposé. Chaque point de l'une de ces parties a une température qui excède la température moyenne, et la quantité de cet excès est proportionnelle au sinus de la distance à l'origine; chaque point de l'autre partie a une température moindre que la température moyenne, et la différence est la même que l'excès dans le point opposé. Cette distribution symétrique de la chaleur subsiste pendant toute la durée du refroidissement. Il s'établit, aux deux extrémités de la moitié échauffée, deux flux de chaleur dirigés vers la moitié froide, et dont l'effet est de rapprocher continuellement l'une et l'autre moitié de l'armille de la température moyenne.

246

On remarquera maintenant que, dans l'équation générale qui donne la valeur de c, chacun des termes est de la forme

$$\left(a_i\sin i\frac{x}{r}+b_i\cos i\frac{x}{r}\right)e^{-i^2\frac{kt}{r^2}}e^{-ht};$$

on pourra donc tirer, par rapport à chaque terme, des conséquences analogues aux précédentes. En effet, désignant par X la distance pour laquelle le coefficient

$$a_i \sin i \frac{x}{r} + b_i \cos i \frac{x}{r}$$

est nul, on aura l'équation

$$b_i = -a_i \tan i \frac{\mathbf{X}}{r}$$

et cette substitution donne, pour la valeur du coefficient,

$$a\sin i\left(\frac{x-X}{r}\right)$$

a étant une constante. Il suit de là que, en prenant pour l'origine des coordonnées le point dont l'abscisse était X, et désignant par u la nouvelle abscisse x-X, on aura, pour exprimer les changements de cette partie de la valeur de v, la fonction $ae^{-ht}\sin\frac{iu}{r}e^{-iz\frac{ht}{r^2}}$.

Si cette même partie de la valeur de c subsistait seule, en sorte que les coefficients de toutes les autres fussent nuls, l'état de l'anneau serait représenté par la fonction

$$ae^{-ht}\sin i\frac{u}{r}e^{-i^2\frac{kt}{r^2}}$$

et la température de chaque point scrait proportionnelle au sinus du multiple i de la distance angulaire de ce point à l'origine. Cet état est analogue à celui que nous avons décrit précédemment; il en diffère en ce que le nombre des points qui ont une même température toujours égale à la température moyenne de l'anneau n'est pas 2 seulement,

mais est en général égal à 2i. Chacun de ces points ou nœuds sépare deux portions contiguës de l'anneau, qui sont dans un état semblable, mais de signe opposé. La circonférence se trouvé ainsi divisée en plusieurs parties égales dont l'état est alternativement positif ou négatif. Le flux de la chaleur est le plus grand possible dans les nœuds; il se dirige toujours vers la portion qui est dans l'état négatif et il est nul dans le point qui est à égale distance de deux nœuds consécutifs. Les rapports qui existent alors entre les températures se conservent pendant toute la durée du refroidissement, et ces températures varient ensemble très rapidement, proportionnellement aux puissances successives de la fraction

$$e^{-h}e^{-i^2\frac{k}{r^2}}.$$

Si l'on donne successivement à i les valcurs $0, 1, 2, 3, 4, \ldots, on$ connaîtra tous les états réguliers et élémentaires que la chaleur peut affecter pendant qu'elle se propage dans un anneau solide. Lorsqu'un de ces modes simples est une fois établi, il se conserve de lui-même et les rapports qui existaient entre les températures ne changent point; mais, quels que soient ces rapports primitifs et de quelque manière que l'anneau ait été échauffé, le mouvement de la chaleur se décompose de lui-même en plusieurs mouvements simples, pareils à ceux que nous venons de décrire, et qui s'accomplissent tous à la fois sans se troubler. Dans chacun de ces états, la température est proportionnelle au sinus d'un certain multiple de la distance à un point fixe. La somme de toutes ces températures partielles, prises pour un seul point dans un même instant, est la température actuelle de ce point. Or les parties qui composent cette somme décroissent beaucoup plus rapidement les unes que les autres; il en résulte que ces états élémentaires de l'anneau, qui correspondent aux différentes valeurs de i et dont la superposition détermine le mouvement total de la chaleur, disparaissent en quelque sorte les uns après les autres. Ils cessent bientôt d'avoir une influence sensible sur la valeur de la température, et laissent subsister seul le premier d'entre eux, pour lequel la valeur de i est la

moindre de toutes. On se formera de cette manière une idée exacte de la loi suivant laquelle la chaleur se distribue dans une armille et se dissipe par sa surface. L'état de l'armille devient de plus en plus symétrique; il ne tarde point à se confondre avec celui vers lequel il a une tendance naturelle, et qui consiste en ce que les températures des différents points doivent être proportionnelles aux sinus d'un même multiple de l'arc qui mesure la distance à l'origine. La disposition initiale n'apporte aucun changement à ces résultats.

SECTION II.

DE LA COMMUNICATION DE LA CHALEUR ENTRE DES MASSES DISJOINTES.

247.

Nous avons maintenant à faire remarquer la conformité de l'analyse précédente avec celle que l'on doit employer pour déterminer les lois de la propagation de la chaleur entre des masses disjointes; nous arriverons ainsi à une seconde solution de la question du mouvement de la chaleur dans une armille. La comparaison des deux résultats fera connaître les véritables fondements de la méthode que nous avons suivie pour intégrer les équations de la propagation de la chaleur dans les corps continus. Nous examinerons en premier lieu un cas extrêmement simple, qui est celui de la communication de la chaleur entre deux masses égales.

Supposons que deux masses cubiques m et n, d'égale dimension et de même matière, soient inégalement échauffées, que leurs températures respectives soient a et b, et qu'elles soient d'une conducibilité infinie. Si l'on mettait ces deux corps en contact, la température deviendrait subitement égale dans l'une et l'autre à la température moyenne $\frac{1}{2}(a+b)$. Supposons que les deux masses soient séparées par un très petit intervalle, qu'une tranche infiniment petite du premier corps s'en détache pour se joindre au second, et qu'elle retourne au premier immédiatement après le contact. En continuant ainsi de se

porter alternativement, et dans des temps égaux et infiniment petits, de l'une des masses à l'autre, la tranche interposée fait passer successivement la chaleur du corps le plus échauffé dans celui qui l'est moins; il s'agit de déterminer quelle serait, après un temps donné, la température de chaque corps, s'ils ne perdaient par leur surface aucune partie de la chaleur qu'ils contiennent. On ne suppose point que la transmission de la chaleur dans les corps solides continus s'opère d'une manière semblable à celle que l'on vient de décrire; on veut seulement déterminer par le calcul le résultat d'une telle hypothèse.

Chacune des deux masses jouissant d'une conducibilité parfaite, la quantité de chaleur contenue dans la tranche infiniment petite s'a-joute subitement à celle du corps avec lequel elle est en contact, et il en résulte une température commune, égale au quotient de la somme des quantités de chaleur par la somme des masses. Soit ω la masse de la tranche infiniment petite qui se sépare du corps le plus échaussé, dont la température est α ; soient α et β les températures variables qui correspondent au temps t, et qui ont pour valeurs initiales α et δ . Lorsque la tranche ω se sépare de la masse m, qui devient $m - \omega$, elle a, comme cette masse, la température α et, dès qu'elle touche le second corps affecté de la température β , elle prend en même temps que lui une température égale à

$$\frac{m\beta+\alpha\omega}{m+\omega}$$
.

La tranche ω , retenant cette dernière température, retourne au premier corps, dont la masse est $m-\omega$ et la température α . On trouvera donc, pour la température de ce corps après le second contact,

$$\frac{\alpha(m-\omega)+\omega\frac{m\beta+\alpha\omega}{m+\omega}}{m}=\frac{\alpha m+\beta\omega}{m+\omega}.$$

Les températures variables α et β sont donc devenues, après l'instant dt,

$$\alpha - (\alpha - \beta) \frac{\omega}{m}, \quad \beta + (\alpha - \beta) \frac{\omega}{m};$$

on trouve ces valeurs en supprimant les puissances supérieures de ω . On a ainsi

$$d\alpha = -(\alpha - \beta) \frac{\omega}{m}, \quad d\beta = (\alpha - \beta) \frac{\omega}{m};$$

la masse qui avait la température initiale β a reçu, dans un instant, une quantité de chalcur égale à $m d\beta$ ou $(\alpha - \beta)\omega$, laquelle a été perdue dans le même temps par la première masse. On voit par là que la quantité de chalcur qui passe en un instant du corps plus échauffé dans celui qui l'est moins est, toutes choses d'ailleurs égales, proportionnelle à la différence actuelle des températures de ces deux corps. Le temps étant divisé en intervalles égaux, la quantité infiniment petite ω pourra être remplacée par K dt, K étant le nombre des unités de masse dont la somme contient ω autant de fois que l'unité de temps contient dt, en sorte que l'on a $\frac{K}{\omega} = \frac{1}{dt}$. On obtient ainsi les équations

$$d\alpha = -(\alpha - \beta) \frac{\mathbf{K}}{m} dt, \qquad d\beta = (\alpha - \beta) \frac{\mathbf{K}}{m} dt.$$

248.

Si l'on attribuait une plus grande valeur au volume \(\omega \) qui sert, pour ainsi dire, à puiser la chaleur de l'un des corps pour la porter à l'autre, la transmission serait plus prompte; il faudrait, pour exprimer cette condition, augmenter dans la même raison la valeur de K qui entre dans les équations. On pourrait aussi conserver la valeur de \(\omega \) et supposer que cette tranche accomplit dans un temps donné un plus grand nombre d'oscillations, ce qui serait encore indiqué par une plus grande valeur de K. Ainsi ce coefficient représente en quelque sorte la vitesse de la transmission, ou la facilité avec laquelle la chaleur passe de l'un des corps dans l'autre, c'est-à-dire leur conducibilité réciproque.

249.

En ajoutant les deux équations précédentes, on a

$$d\alpha + d\beta = 0,$$

et, si l'on retranche l'une des équations de l'autre, on a

$$d\alpha - d\beta + 2(\alpha - \beta) \frac{K}{m} dt = 0$$

ou, en faisant $\alpha - \beta = y$,

$$dy + 2 \frac{K}{m} y dt = 0.$$

Intégrant et déterminant la constante par la condition que la valeur initiale soit a-b, on a

$$y = (a - b) e^{-2\frac{K}{m}t}.$$

La différence y des températures diminue donc comme l'ordonnée d'une logarithmique, ou comme les puissances successives de la fraction $e^{-2\frac{K}{m}}$. On a pour les valeurs de α et β

$$\beta = \frac{1}{2}(a+b) + \frac{1}{2}(a-b)e^{-2\frac{K}{m}t}, \qquad \beta = \frac{1}{2}(a+b) - \frac{1}{2}(a-b)e^{-2\frac{K}{m}t}.$$

On suppose, dans le cas qui précède, que la masse infiniment petite ω au moyen de laquelle s'opère la transmission est toujours la même partie de l'unité de masse ou, ce qui est la même chose, que le coefficient K qui mesure la conducibilité réciproque est une quantité constante. Pour rendre la recherche dont il s'agit plus générale, il faudrait considérer le coefficient K comme une fonction des deux températures actuelles α et β . On aurait alors les deux équations

$$d\alpha = -(\alpha - \beta) \frac{\mathbf{K}}{m} dt, \qquad d\beta = (\alpha - \beta) \frac{\mathbf{K}}{m} dt,$$

dans lesquelles K serait égal à la fonction de α et β , que nous désignons par $\varphi(\alpha, \beta)$. Il sera facile de connaître la loi que suivent les températures variables α et β lorsqu'elles approchent extrêmement de leur dernier état. Soit y une nouvelle indéterminée, égale à la différence entre α et la dernière valeur, qui est $\frac{1}{2}(\alpha + b)$ ou c. Soit z une

seconde indéterminée, égale à la différence $c-\beta$. On substituera, au lieu de α et β , leurs valeurs c-y et c-z; et, comme il s'agit de trouver les valeurs de y et de z lorsqu'on les suppose très petites, on ne doit retenir dans les résultats des substitutions que la première puissance de y et de z. On trouvera donc les deux équations

$$-dy = -(z-y)\frac{1}{m}\varphi(c-y,c-z) dt,$$

$$-dz = (z-y)\frac{1}{m}\varphi(c-y,c-z) dt.$$

En développant les quantités qui sont sous le signe φ et omettant les puissances supérieures de γ et de z, on trouvera

$$dy = (z - y) \frac{1}{m} \varphi(c, c) dt, \qquad dz = -(z - y) \frac{1}{m} \varphi(c, c) dt.$$

La quantité $\varphi(c,c)$ étant constante, il s'ensuit que les équations précédentes donneront, pour la valeur de la différence z-y, un résultat semblable à celui que l'on a trouvé plus haut pour la valeur de $\alpha-\beta$.

On en conclut que, si le coefficient K, que l'on avait d'abord supposé constant, était représenté par une fonction quelconque des températures variables, les derniers changements qu'éprouvent ces températures, pendant un temps infini, seraient encore assujettis à la même loi que si la conducibilité réciproque était constante.

Il s'agit actuellement de déterminer les lois de la propagation de la chaleur dans un nombre indéfini de masses égales qui ont actuellement des températures différentes.

251.

On suppose que des masses prismatiques, en nombre n, et dont chacune est égale à m, sont rangées sur une même ligne droite, et affectées de températures différentes a, b, c, d, ...; que des tranches infiniment petites, qui ont chacune la masse ω , se séparent de ces différents corps, excepté du dernier, et se portent en même temps du premier au second, du second au troisième, du troisième au quatrième,

ainsi de suite; que, aussitôt après le contact, ces mêmes tranches retournent aux masses dont elles s'étaient séparées. Ce double mouvement ayant lieu autant de fois qu'il y a d'instants infiniment petits dt, on demande à quelle loi sont assujettis les changements de température.

Soient α , β , γ , δ , ..., ρ , σ les températures variables qui correspondent au même temps t et qui ont succédé aux valeurs initiales a, b, c, d, Lorsque les tranches ω se seront séparées des n-1 premières masses et mises en contact avec les masses voisines, il est aisé de voir que les températures seront devenues

$$\frac{\alpha(m-\omega)}{m-\omega}$$
, $\frac{\beta(m-\omega)+\alpha\omega}{m}$, $\frac{\gamma(m-\omega)+\beta\omega}{m}$, ..., $\frac{\sigma m+\rho\omega}{m+\omega}$

ou, en supprimant dans la dernière les puissances supérieures de ω,

$$\alpha$$
, $\beta + (\alpha - \beta) \frac{\omega}{m}$, $\gamma + (\beta - \gamma) \frac{\omega}{m}$, $\delta + (\gamma - \delta) \frac{\omega}{m}$, ..., $\sigma + (\rho - \sigma) \frac{\omega}{m}$

Lorsque les tranches ω seront revenues à leurs premières places, on trouvera les valeurs des nouvelles températures en suivant la même règle, qui consiste à diviser la somme des quantités de chaleur par la somme des masses, et l'on aura, pour les valeurs de α , β , γ , δ , ..., après l'instant dt,

$$\alpha - (\alpha - \beta) \frac{\omega}{m}, \quad \beta + [\alpha - \beta - (\beta - \gamma)] \frac{\omega}{m},$$

$$\gamma + [\beta - \gamma - (\gamma - \delta)] \frac{\omega}{m}, \quad \dots, \quad \sigma + (\rho - \sigma) \frac{\omega}{m};$$

le coefficient de $\frac{\omega}{m}$ est la différence de deux différences consécutives prises dans la suite α , β , γ , ..., ρ , σ . Quant au premier et au dernier coefficient de $\frac{\omega}{m}$, ils peuvent être considérés aussi comme des différences du second ordre; il suffit de supposer que le terme α est précédé d'un terme égal à α , et que le terme σ est suivi d'un terme égal à σ . On aura donc, en substituant comme précédemment K dt à ω , les

équations suivantes :

$$d\alpha = \frac{\mathbf{K}}{m} dt \left[(\beta - \alpha) - (\alpha - \alpha) \right],$$

$$d\beta = \frac{\mathbf{K}}{m} dz \left[(\gamma - \beta) - (\beta - \alpha) \right],$$

$$d\gamma = \frac{\mathbf{K}}{m} dt \left[(\delta - \gamma) - (\gamma - \beta) \right],$$

$$\dots$$

$$d\sigma = \frac{\mathbf{K}}{m} dt \left[(\sigma - \sigma) - (\sigma - \rho) \right].$$

252.

Pour intégrer ces équations, on fera, suivant la méthode connue,

$$\alpha = a_1 e^{ht}, \quad \beta = a_2 e^{ht}, \quad \gamma = a_3 e^{ht}, \quad \dots, \quad \sigma = a_n e^{ht}$$

 $h, a_1, a_2, a_3, \ldots, a_n$ étant des quantités constantes qu'il faudra déterminer. Les substitutions étant faites, on aura les équations suivantes :

Si l'on regarde a_1 comme une quantité connue, on trouvera l'expression de a_2 en a_1 et h, puis celle de a_3 en a_2 et h; il en est de même de toutes les autres indéterminées a_4 , a_5 , La première et la dernière équation peuvent être écrites sous cette forme

$$\begin{aligned} a_1 h &= \frac{K}{m} \left[(a_2 - a_1) - (a_1 - a_0) \right], \\ a_n h &= \frac{K}{m} \left[(a_{n+1} - a_n) - (a_n - a_{n-1}) \right], \end{aligned}$$

pourvu que l'on retienne ces deux conditions

$$a_0 = a_1$$
 et $a_n = a_{n+1}$.

La valeur de a_2 contiendra la première puissance de h; la valeur de a_3 contiendra la seconde puissance de h, ainsi de suite jusqu'à a_{n+1} qui contiendra la puissance $n^{\text{ième}}$ de h. Cela posé, a_{n+1} devant être égal à a_n , on aura, pour déterminer h, une équation du $n^{\text{ième}}$ degré, et a_1 demeurera indéterminé (1).

Il suit de là que l'on pourra trouver pour h un nombre n de valeurs, et que, d'après la nature des équations linéaires, la valeur générale de a sera composée d'un nombre n de termes, en sorte que les quantités α , β , γ , ... seront déterminées au moyen des équations

Les valeurs h, h', h'', \ldots sont en nombre n et égales aux n racines de l'équation algébrique du $n^{\text{lème}}$ degré en h, qui a, comme on le verra plus bas, toutes ses racines réelles. Les coefficients de la première équation $a_1, a'_1, a''_1, a'''_1, \ldots$ sont arbitraires; quant aux coefficients des lignes inférieures, ils sont déterminés par un nombre n de systèmes d'équations semblables aux équations précédentes. Il s'agit maintenant de former et de résoudre ces équations.

253.

Écrivant la lettre q au lieu de $rac{hm}{\mathbf{K}}$, on aura les équations sui-

⁽¹⁾ Il importe de remarquer que, toutes les équations étant homogènes par rapport aux coefficients a_i , le rapport $\frac{a_{n+1}}{a_1}$ sera indépendant de a_1 et, par conséquent, l'équation qui détermine h sera toujours la même, quelle que soit la valeur attribuée à a_1 . G. D.

vantes:

$$a_1 = a_0,$$
 $a_2 = a_1(q+2) - a_0,$
 $a_3 = a_2(q+2) - a_1,$
 $\dots,$
 $a_{n+1} = a_n(q+2) - a_{n-1}.$

On voit que ces quantités appartiennent à une série récurrente dont l'échelle de relation a les deux termes (q+2) et -1. On pourra donc exprimer le terme général a_m par l'équation

$$a_m = \Lambda \sin mu + B \sin(m-1)u$$

en déterminant convenablement les quantités A, B et u. On trouvera d'abord A et B en supposant m égal à o et ensuite égal à 1, ce qui donne

$$a_0 = a_1 = -B \sin u, \quad a_1 = A \sin u$$

et, par conséquent,

$$a_m = \frac{a_1}{\sin u} \left[\sin mu - \sin (m - 1)u \right].$$

En substituant ensuite les valeurs de a_m , a_{m-1} , a_{m-2} dans l'équation générale

$$a_m = a_{m-1}(q+2) - a_{m-2},$$

on trouvera

$$\sin m' u = (q + 2) \sin(m' - 1) u - \sin(m' - 2) u$$

m' désignant $m - \frac{1}{2}$.

En comparant cette équation à celle-ci :

$$\sin m' u = 2 \cos u \sin(m'-1) u - \sin(m'-2) u$$
,

qui exprime une propriété connue, on en conclut

$$q + 2 = 2 \cos u$$
, ou $q = -2 \sin V u$ (1);

il ne reste plus qu'à déterminer la valeur de l'arc u.

(1) La notation $\sin Vu$, employée ici et dans la suite, indique le sinus verse de l'arc u.

La valeur générale de a_m étant

$$\frac{a_1}{\sin u} [\sin mu - \sin (m-1)u],$$

on aura, pour satisfaire à la condition $a_{n+1} = a_n$, l'équation

$$\sin(n+1)u - \sin nu = \sin nu - \sin(n-1)u,$$

d'où l'on tire

$$\sin nu = 0, \qquad u = i\frac{\pi}{n},$$

 π étant la demi-circonférence et i un nombre entier quelconque, tel que o, 1, 2, 3, 4, ..., n-1. On en peut déduire les n valeurs de q ou $\frac{hm}{K}$; ainsi, toutes les racines de l'équation en h, qui donnent les valeurs de h, h', h'', h''', ... sont réelles, négatives et fournies par les équations

$$h = -2 \frac{K}{m} \sin V \left(o \frac{\pi}{n} \right),$$

$$h' = -2 \frac{K}{m} \sin V \left(1 \frac{\pi}{n} \right),$$

$$\vdots$$

$$h^{(n-1)} = -2 \frac{K}{m} \sin V \left[(n-1) \frac{\pi}{n} \right].$$

Supposons donc qu'on ait divisé la demi-circonférence π en un nombre n de parties égales, et que l'on prenne pour former l'arc n un nombre entier i de ces parties, i étant moindre que n; on satisfera aux équations différentielles en choisissant pour a_1 une quantité quelconque et faisant

$$\alpha = a_1 \frac{\sin u - \sin u}{\sin u} e^{-2 \frac{K}{m} t \sin v u},$$

$$\beta = a_1 \frac{\sin 2 u - \sin 1 u}{\sin u} e^{-2 \frac{K}{m} t \sin v u},$$

$$\gamma = a_1 \frac{\sin 3 u - \sin 2 u}{\sin u} e^{-\frac{k}{m} t \sin v u},$$

$$\vdots$$

$$\sigma = a_1 \frac{\sin n u - \sin (n-1) u}{\sin u} e^{-2 \frac{k}{m} t \sin v u}.$$

Comme il y a un nombre n d'arcs différents que l'on peut prendre pour u, savoir o $\frac{\pi}{n}$, $1\frac{\pi}{n}$, $2\frac{\pi}{n}$, ..., $(n-1)\frac{\pi}{n}$, il y a aussi un nombre n de systèmes de valeurs particulières pour α , β , γ , δ , ...; et les valeurs générales de ces variables sont les sommes des valeurs particulières.

On voit d'abord que, si l'arc u est nul, les quantités qui multiplient a_1 dans les valeurs de α , β , γ , δ , ... deviennent toutes égales à l'unité; car $\frac{\sin u - \sin o u}{\sin u}$ a pour valeur ι lorsque l'arc u est nul, et il en est de même des quantités qui se trouvent dans les équations suivantes. On conclut de là qu'il doit entrer dans les valeurs générales de α , β , γ , δ , ..., σ des termes constants qui sont égaux.

De plus, en ajoutant toutes les valeurs particulières correspondantes de α , β , γ , ..., on aura

$$\alpha + \beta + \gamma + \delta + \ldots = a_1 \frac{\sin nu}{\sin u} e^{-2\frac{K}{m}t \sin Vu},$$

équation dont le second membre se réduit à o toutes les fois que l'arc u n'est pas nul; tandis que, dans ce cas, on trouvera n pour la valeur de $\frac{\sin nu}{\sin u}$. On a donc, en général,

$$\alpha + \beta + \gamma + \delta + \ldots = na_1;$$

or, les valeurs initiales des variables étant a, b, c, d, \ldots , il est nécessaire que l'on ait $na_1 = a + b + c + d + \ldots$; il en résulte que le terme constant qui doit entrer dans chacune des valeurs générales de $\alpha, \beta, \gamma, \delta, \ldots, \sigma$ est

$$\frac{1}{n}(a+b+c+d+\ldots),$$

c'est-à-dire la température moyenne entre toutes les températures initiales.

Quant aux valeurs générales de α , β , γ , ..., σ , elles sont exprimées

par les équations suivantes :

$$z = \frac{1}{n}(a+b+c+...) + a_1 \frac{\sin u - \sin u u}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ b_1 \frac{\sin u' - \sin u u'}{\sin u'} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin u'' - \sin u u'}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 2u - \sin u}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ b_1 \frac{\sin 2u' - \sin u'}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 2u'' - \sin u'}{\sin u'} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 2u'' - \sin u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 3u - \sin 2u}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 3u - \sin 2u}{\sin u} e^{-2\frac{K}{m}t \sin v u}$$

$$+ c_1 \frac{\sin 3u' - \sin 2u'}{\sin u'} e^{-2\frac{K}{m}t \sin v u'}$$

$$+ c_1 \frac{\sin 3u'' - \sin 2u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u''}$$

$$+ c_1 \frac{\sin 3u'' - \sin 2u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u''}$$

$$+ c_1 \frac{\sin 3u'' - \sin (n-1)u'}{\sin u'} e^{-2\frac{K}{m}t \sin v u'}$$

$$+ c_1 \frac{\sin 3u'' - \sin (n-1)u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u'}$$

$$+ c_1 \frac{\sin 3u'' - \sin (n-1)u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u'}$$

$$+ c_1 \frac{\sin 3u'' - \sin (n-1)u''}{\sin u'} e^{-2\frac{K}{m}t \sin v u'}$$

où u, u', u'', \ldots désignent les multiples de $\frac{\pi}{n}$.

255.

Pour déterminer les constantes $a_1, b_1, c_1, d_4, \ldots$, il faut considérer l'état initial du système. En effet, lorsque le temps est nul, les valeurs

de α , β , γ , δ , ... doivent être égales à a, b, c, d, ...; on aura donc n équations semblables pour déterminer les n constantes. Les quantités

 $\sin u - \sin \alpha u$, $\sin \alpha u - \sin \alpha u$, $\sin \alpha u - \sin \alpha u$, ..., $\sin \alpha u - \sin \alpha u - \sin \alpha u$ peuvent être indiquées de cette manière

$$\Delta \sin \alpha u$$
, $\Delta \sin \alpha$, $\Delta \sin \alpha u$, ..., $\Delta \sin (n-1) u$;

les équations propres à déterminer les constantes sont, en représentant par C la température moyenne initiale,

$$a = C + a_1 + b_1 + c_1 + \dots,$$

$$b = C + a_1 \frac{\Delta \sin u}{\sin u} + b_1 \frac{\Delta \sin u'}{\sin u'} + c_1 \frac{\Delta \sin u''}{\sin u''} + \dots,$$

$$c = C + a_1 \frac{\Delta \sin 2u}{\sin u} + b_1 \frac{\Delta \sin 2u'}{\sin u'} + c_1 \frac{\Delta \sin 2u''}{\sin u''} + \dots,$$

$$d = C + a_1 \frac{\Delta \sin 3u}{\sin u} + b_1 \frac{\Delta \sin 3u'}{\sin u'} + c_1 \frac{\Delta \sin 3u''}{\sin u''} + \dots,$$

Les quantités a_1 , b_1 , c_1 , d_1 , ... et C étant déterminées par ces équations, on connaît entièrement les valeurs des variables α , β , γ , δ , ..., σ .

On peut effectuer, en général, l'élimination des inconnues dans ces équations et déterminer les valeurs des quantités $a_1, b_1, c_1, d_4, \ldots$, même lorsque le nombre des équations est infini; on emploiera ce procédé d'élimination dans les articles suivants.

256.

En examinant les équations qui donnent les valeurs générales des variables α , β , γ , ..., σ , on voit que, le temps venant à augmenter, les termes qui se succèdent dans la valeur de chaque variable décroissent très inégalement; car, les valeurs de u, u', u'', u''', ... étant

$$1\frac{\pi}{n}$$
, $2\frac{\pi}{n}$, $3\frac{\pi}{n}$, $4\frac{\pi}{n}$, ...

les coefficients $\sin Vu$, $\sin Vu'$, $\sin Vu''$, $\sin Vu'''$, ... deviennent de plus en plus grands. Si l'on suppose que le temps t est infini, le premier terme de chaque valeur subsiste seul, et la température de chaçune des masses devient égale à la température moyenne $\frac{1}{n}(a+b+c+\ldots)$. Lorsque le temps t augmente continuellement, chaçun des termes de la valeur d'une des variables diminue proportionnellement aux puissances successives d'une fraction qui est : pour le deuxième terme, $e^{-2\frac{K}{m}\sin vu}$; pour le troisième terme, $e^{-2\frac{K}{m}\sin vu}$; et ainsi de suite. La plus grande de ces fractions étant celle qui répond à la moindre des valeurs de u, il s'ensuit que, pour connaître la loi que suivent les derniers changements de température, on ne doit considérer que les deux premiers termes; car tous les autres deviennent incomparablement plus petits à mesure que le temps t augmente. Les dernières variations de température α , β , γ , δ , ... sont donc exprimées par les équations suivantes :

$$\alpha = \frac{1}{n}(a+b+c+d+\ldots) + a_1 \frac{\sin u - \sin u}{\sin u} e^{-2\frac{K}{m}t \sin v''} + \ldots,$$

$$\beta = \frac{1}{n}(a+b+c+d+\ldots) + a_1 \frac{\sin 2u - \sin u}{\sin u} e^{-2\frac{K}{m}t \sin v''} + \ldots,$$

$$\gamma = \frac{1}{n}(a+b+c+d+\ldots) + a_1 \frac{\sin 3u - \sin 2u}{\sin u} e^{-2\frac{K}{m}t \sin v''} + \ldots,$$

257.

Si l'on divise la demi-circonférence en un nombre n de parties égales et que, ayant abaissé les sinus, on prenne les différences entre deux sinus consécutifs, ces n différences seront proportionnelles aux coefficients de $e^{-2\frac{K}{m}i\sin\nu u}$ ou aux seconds termes des valeurs de α , β , γ , ..., σ . C'est pourquoi les dernières valeurs de α , β , γ , ..., σ sont telles que les différences entre ces températures finales et la température moyenne initiale $\frac{1}{n}(a+b+c+...)$ sont toujours proportionnelles

aux différences des sinus consécutifs. De quelque manière que les masses aient d'abord été échauffées, la distribution de la chaleur s'opère à la fin suivant une loi constante. Si l'on mesurait les températures dans les derniers instants où elles diffèrent peu de la température moyenne, on observerait que la différence entre la température d'une masse quelconque et cette température moyenne décroît continuellement comme les puissances successives de la même fraction; et, en comparant entre elles les températures des différences entre les températures actuelles et la température moyenne sont proportionnelles aux différences des sinus consécutifs, la demi-circonférence étant divisée en un nombre n de parties égales.

258.

Si l'on suppose que les masses qui se communiquent la chaleur sont en nombre infini, on trouve pour l'arc u une valeur infiniment petite; alors les différences des sinus consécutifs, prises dans le cercle, sont proportionnelles aux cosinus des arcs correspondants; car on a

$$\frac{\sin mu - \sin (m - 1)u}{\sin u} = \cos mu$$

lorsque l'arc u est infiniment petit. Dans ce cas, les quantités dont les températures, prises au même instant, diffèrent de la température moyenne à laquelle elles doivent toutes parvenir sont proportionnelles aux cosinus qui correspondent aux différents points de la circonférence divisée en une infinité de parties égales. Si les masses qui se transmettent la chaleur sont situées à distances égales les unes des autres sur le périmètre de la demi-circonférence π , le cosinus de l'arc à l'extrémité duquel une masse quelconque est placée est la mesure de la quantité dont la température de cette masse diffère encore de la température moyenne. Ainsi le corps placé au milieu de tous les autres est celui qui parvient le plus promptement à cette température moyenne; ceux qui se trouvent situés d'un même côté du milieu ont

tous une température excédante, et qui surpasse d'autant plus la température moyenne qu'ils sont plus éloignés du milieu; les corps qui sont placés de l'autre côté ont tous une température moindre que la température moyenne, et ils s'en écartent autant que ceux du côté opposé, mais dans un sens contraire. Enfin ces différences, soit positives, soit négatives, décroissent toutes en même temps et proportion-nellement aux puissances successives de la même fraction, en sorte qu'elles ne cessent pas d'être représentées au même instant par les valeurs des cosinus d'une même demi-circonférence. Telle est, en général et si l'on en excepte les cas singuliers, la loi à laquelle sont assujetties les dernières températures. L'état initial du système ne change point ces résultats.

Nous allons présentement traiter une troisième question du même genre que les précédentes, et dont la solution nous fournira plusieurs remarques utiles.

259.

On suppose un nombre n de masses prismatiques égales, placées à des distances égales sur la circonférence d'un cercle. Tous ces corps, qui jouissent d'une conducibilité parfaite, ont actuellement des températures connues, différentes pour chacun d'eux; ils ne laissent échapper à leur surface aucune partie de la chaleur qu'ils contiennent. Une tranche infiniment mince se sépare de la première masse pour se réunir à la seconde, qui est placée vers la droite; dans le même temps, une tranche parallèle se sépare de la seconde masse, en se portant de gauche à droite, et se joint à la troisième: il en est de même de toutes les autres masses, de chacune desquelles une tranche infiniment mince se sépare au même instant et se joint à la masse suivante. Enfin, les mèmes tranches reviennent immédiatement après et se réunissent aux corps dont elles avaient été détachées. On suppose que la chaleur se propage entre les masses au moyen de ces mouvements alternatifs, qui s'accomplissent deux fois pendant chaque instant d'une égale durée; il s'agit de trouver suivant quelle loi les températures varient; c'està-dire que, les valeurs initiales des températures étant données, il faut

connaître, après un temps quelconque, la nouvelle température de chacune des masses.

On désignera par a_1 , a_2 , a_3 , ..., a_i , ..., a_n les températures initiales dont les valeurs sont arbitraires, et par α_1 , α_2 , α_3 , ..., α_i , ..., α_n les valeurs de ces mêmes températures après le temps écoulé t. Il est visible que chacune des quantités α est une fonction du temps t et de toutes les valeurs initiales a_1 , a_2 , a_3 , ..., a_n : ce sont ces fonctions qu'il s'agit de déterminer.

260.

On représentera par ω la masse infiniment petite de la tranche qui se porte d'un corps à l'autre. On remarquera en premier lieu que, lorsque les tranches ont été séparées des masses dont elles faisaient partie et mises respectivement en contact avec les masses placées vers la droite, les quantités de chaleur contenues dans les différents corps sont

$$(m-\omega)\alpha_1+\omega\alpha_n,$$

 $(m-\omega)\alpha_2+\omega\alpha_1,$
 $\cdots,$
 $(m-\omega)\alpha_n+\omega\alpha_{n-1};$

en divisant chacune de ces quantités de chalcur par la masse m, on aura, pour les nouvelles valeurs des températures,

$$\alpha_{1} + \frac{\omega}{m} (\alpha_{n} - \alpha_{1}),$$

$$\alpha_{2} + \frac{\omega}{m} (\alpha_{1} - \alpha_{2}),$$

$$\ldots,$$

$$\alpha_{i} + \frac{\omega}{m} (\alpha_{i-1} - \alpha_{i}),$$

$$\ldots,$$

$$\alpha_{n} + \frac{\omega}{m} (\alpha_{n-1} - \alpha_{n});$$

c'est-à-dire que, pour trouver le nouvel état de la température après le

premier contact, il faut ajouter à la valeur qu'elle avait au paravant le produit de $\frac{\omega}{m}$ par l'excès de la température du corps dont la tranche s'est séparée sur celle du corps auquel elle s'est jointe. On trouvera, par la même règle, que les températures, après le second contact, sont

Le temps étant divisé en instants égaux, on désignera par dt la durée de cet instant et, si l'on suppose que ω soit contenu dans un nombre K d'unités de masse autant de fois que dt est contenu dans l'unité de temps, on aura $\omega = K dt$. En appelant $d\alpha_1, d\alpha_2, d\alpha_3, \ldots, d\alpha_i, \ldots, d\alpha_n$ les accroissements infiniment petits que reçoivent pendant l'instant dt les températures $\alpha_1, \alpha_2, \ldots, \alpha_i, \ldots, \alpha_n$, on aura les équations différentielles suivantes:

261.

Pour résoudre ces équations, on supposera en premier lieu, suivant la méthode connue,

$$\alpha_1 = b_1 e^{ht}, \\
\dots, \\
\alpha_i = b_i e^{ht}, \\
\dots, \\
\alpha_n = b_n e^{ht}.$$

Les quantités b_1 , b_2 , b_3 , ..., b_n sont des constantes indéterminées, ainsi que l'exposant h. Il est facile de voir que ces valeurs de α_1 , α_2 , α_3 , ..., α_n satisfont aux équations différentielles, si l'on a les conditions suivantes :

Soit

$$q = \frac{hm}{K};$$

on aura, en commençant par la dernière équation,

⁽¹⁾ On peut présenter d'une manière moins synthétique le raisonnement par lequel Fourier obtient les différentes solutions de ce système. Substituons à q la variable u définie

Il en résulte que l'on peut prendre pour b_1 , b_2 , b_3 , ..., b_i , ..., b_n les n sinus consécutifs que l'on obtient en divisant la circonférence entière 2π en un nombre n de parties égales. En effet, en appelant u l'arc $2\frac{\pi}{n}$, les quantités

$$\sin \alpha u$$
, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n-1)u$,

qui sont en nombre n, appartiennent, comme on le sait, à une série récurrente dont l'échelle de relation a deux termes, savoir 2 cos u et — 1, en sorte que l'on a toujours la condition

$$\sin iu = 2\cos u\sin(i-1)u - \sin(i-2)u.$$

On prendra donc pour b_1 , b_2 , b_3 , ..., b_i , ..., b_n les quantités

$$\sin \alpha u$$
, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n-1) u$,

par la relation

$$q + 2 = 2\cos u$$
;

il sera toujours possible de trouver deux constantes A et B, telles que l'on ait

$$b_1 = A\cos u + B\sin u = A,$$

 $b_2 = A\cos u + B\sin u;$

alors les équations précédentes, employées à partir de la troisième, nous donneront

$$b_{3} = A\cos 2u + B\sin 2u,$$

$$....,$$

$$b_{i} = A\cos(i-1)u + B\sin(i-1)u,$$

$$...,$$

$$b_{n} = A\cos(n-1)u + B\sin(n-1)u.$$

Les deux premières équations nous donneraient ensuite

$$b_1 = A \cos nu$$
 + B sin nu ,
 $b_2 = A \cos(n+1)u + B \sin(n+1)u$.

En égalant les deux expressions différentes auxquelles on ost ainsi conduit pour b_1 et pour b_2 , on trouve

$$\sin \frac{nu}{2} \left[A \sin \frac{nu}{2} - B \cos \frac{nu}{2} \right] = 0,$$

$$\sin \frac{nu}{2} \left[A \sin \frac{n+2}{2} u - B \cos \frac{n+2}{2} u \right] = 0.$$

Comme les constantes A et B ne sont pas nulles simultanément, on reconnaîtra aisément

et l'on aura ensuite

$$q+2=2\cos u$$

ou

$$q = -2 \sin V u$$
, $b_i = \sin i u$.

On a mis précédemment la lettre q au lieu de $\frac{hm}{K}$, en sorte que la valeur de h est $-\frac{2K}{m}\sin V\frac{2\pi}{n}$; en substituant dans les équations ces valeurs de b_i et de h, on aura

$$\begin{aligned} &\alpha_1 = \sin \alpha u \ e^{-2\frac{K}{m}t \sin V \frac{2\pi}{n}}, \\ &\alpha_2 = \sin \alpha u \ e^{-2\frac{K}{m}t \sin V \frac{2\pi}{n}}, \\ &\alpha_3 = \sin \alpha u \ e^{-2\frac{K}{m}t \sin V \frac{2\pi}{n}}, \\ &\cdots \\ &\alpha_n = \sin (n-1)u \ e^{-2\frac{K}{m}t \sin V \frac{2\pi}{n}}. \end{aligned}$$

que ces deux équations ne pouvent être vérifiées que si l'on a

$$\sin\frac{nu}{2} = 0, \qquad u = i\frac{2\pi}{n},$$

i désignant un nombre entier. A chaque valeur de u correspondent une infinité de systèmes de valeurs pour b_1, b_2, \ldots, b_n qui sont donnés par les formules

où A et B sont deux constantes arbitraires. C'est le résultat de Fourier.

Pour ce qui concerne le nombre des systèmes distincts que l'on obtient ainsi, il est aisé de voir que, si n est impair et égal à $2\lambda + 1$, la valeur o de i donne un système de solutions pour b_1, b_2, \ldots, b_n ; les valeurs $1, 2, 3, \ldots, \lambda$ de i donnent chacune deux systèmes de solutions; quant aux valeurs de i supérieures à λ , elles doivent être négligées, car on peut toujours, sans altérer une solution, changer i en n-i. Il y a donc en tout

$$2\lambda + 1 = n$$

systèmes distincts, linéairement indépendants, de solutions particulières.

Dans le cas où n est pair, les valeurs o, $\frac{n}{2}$ de i donnent chacune une solution; les valeurs $1, 2, \ldots, \frac{n}{2} - 1$ en donnent chacune deux : ce qui fait encore n systèmes distincts de solutions.

G. D.

262.

Ces dernières équations ne fournissent qu'une solution très particulière de la question proposée : car, si l'on suppose t = 0, on aura pour les valeurs initiales de $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ les quantités sino u, sin u, $\sin 2u$, ..., $\sin (n-1)u$ qui, en général, diffèrent des valeurs données $a_1, a_2, a_3, \ldots, a_n$; mais la solution précédente mérite d'être remarquée parce qu'elle exprime, comme on le verra par la suite, une circonstance qui appartient à tous les cas possibles, et représente les dernières variations des températures. On voit par cette solution que, si les températures initiales $a_1, a_2, a_3, \ldots, a_n$ étaient proportionnelles aux sinus

$$\sin \frac{2\pi}{n}$$
, $\sin \frac{2\pi}{n}$, $\sin \frac{2\pi}{n}$, ..., $\sin (n-1)\frac{2\pi}{n}$,

elles demeureraient continuellement proportionnelles à ces mêmes sinus et l'on aurait les équations

$$\alpha_1 = a_1 e^{ht}$$
, $\alpha_2 = a_2 e^{ht}$, ..., $\alpha_n = a_n e^{ht}$,
$$h = -2 \frac{\mathbf{K}}{m} \sin \mathbf{V} \frac{2\pi}{n}$$
.

C'est pourquoi, si les masses qui sont placées à distances égales sur la circonférence du cercle avaient des températures initiales proportionnelles aux perpendiculaires abaissées sur le diamètre qui passe par le premier point, les températures varieraient avec le temps en demeurant proportionnelles à ces perpendiculaires et ces températures diminueraient toutes à la fois comme les termes d'une même progression géométrique dont la raison est la fraction $e^{-\frac{2}{m} \sin v \frac{2\pi}{n}}$.

263.

Pour former la solution générale, on remarquera en premier lieu que l'on pourrait prendre pour $b_1, b_2, b_3, \ldots, b_n$ les n cosinus correspondants aux points de division de la circonférence partagée en un

nombre n de parties égales. Ces quantités

$$\cos \alpha u$$
, $\cos \alpha u$,

dans lesquelles u désigne l'arc $\frac{2\pi}{n}$, forment aussi une série récurrente dont l'échelle de relation a les deux termes $2\cos u$ et -1; c'est pourquoi l'on pourrait prendre, pour satisfaire aux équations différentielles, les équations suivantes :

$$\alpha_{1} = \cos \alpha u e^{-2\frac{K}{m}t\sin Vu},$$

$$\alpha_{2} = \cos \alpha u e^{-2\frac{K}{m}t\sin Vu},$$

$$\alpha_{3} = \cos \alpha u e^{-2\frac{K}{m}t\sin Vu},$$

$$\alpha_{n} = \cos \alpha u e^{-2\frac{K}{m}t\sin Vu},$$

$$\alpha_{n} = \cos (n-1)u e^{-2\frac{K}{m}t\sin Vu}.$$

Indépendamment des deux solutions précédentes, on pourrait choisir, pour les valeurs de b_4 , b_2 , b_3 , ..., b_n , les quantités

$$\sin 0.2 u$$
, $\sin 1.2 u$, $\sin 2.2 u$, ..., $\sin (n-1) 2 u$

ou celles-ci

$$\cos 0.2 u$$
, $\cos 1.2 u$, $\cos 2.2 u$, ..., $\cos (n-1) 2 u$.

En effet, chacune de ces séries est récurrente et formée de n termes; l'échelle de relation a les deux termes $2\cos 2u$ et -1; et, si l'on continuait la série au delà de n termes, on en trouverait n autres qui seraient respectivement égaux aux n précédents. En général, si l'on désigne par $u_1, u_2, ..., u_n$ les arcs $0, \frac{2\pi}{n}, \frac{2\pi}{n}, ..., (n-1), \frac{2\pi}{n}$, on pourra prendre, pour les valeurs de $b_4, b_2, b_3, ..., b_n$, les n quantités

$$\sin \alpha u_i$$
, $\sin \alpha u_i$, $\sin \alpha u_i$, ..., $\sin (n-1)u_i$

ou celles-ci

$$\cos \alpha_i$$
, $\cos \alpha_i$, $\cos \alpha_i$, $\cos \alpha_i$, $\cos (n-1)\alpha_i$;

la valeur de h correspondante à chacune de ces séries est donnée par l'équation

$$h = -2 \frac{K}{m} \sin V u_i.$$

On peut donner n valeurs différentes à i, depuis i = 1 jusqu'à i = n. En substituant ces valeurs de $b_1, b_2, b_3, \ldots, b_n$ dans les équations de l'article 261, on aura, pour satisfaire aux équations différentielles de l'article 260, les résultats suivants :

$$\begin{aligned} \alpha_1 &= \sin \alpha u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i} \\ \alpha_2 &= \sin 1 u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i} \end{aligned} \qquad \alpha_1 = \cos \alpha u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i},$$

$$\alpha_2 &= \cos 1 \, u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i} \end{aligned} \qquad \alpha_2 = \cos 1 \, u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i},$$

$$\alpha_3 &= \cos 2 \, u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i},$$

$$\alpha_n &= \sin (n-1) \, u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i} \end{aligned} \qquad \alpha_n = \cos (n-1) \, u_i \, e^{-2 \, \frac{\mathbf{K}}{m} \, t \sin \mathbf{V} \, u_i}.$$

264.

On satisferait également aux équations de l'article 260 en composant les valeurs de chacune des variables $\alpha_1, \alpha_2, \ldots, \alpha_n$ de la somme de plusieurs valeurs particulières que l'on aurait trouvées pour cette même variable, et l'on peut aussi multiplier par des coefficients constants quelconques chacun des termes qui entrent dans la valeur générale d'une des variables. Il suit de là qu'en désignant par A_i , B_1 , A_2 , B_2 , A_3 , B_3 , ..., A_n , B_n des coefficients quelconques, on pourra prendre, pour exprimer la valeur générale d'une des variables, par exemple de α_{m+1} , l'équation

$$\alpha_{m+1} = (A_1 \sin mu_1 + B_1 \cos mu_1) e^{-2\frac{k}{m}t \sin Vu_1}$$

$$+ (A_2 \sin mu_2 + B_2 \cos mu_2) e^{-2\frac{K}{m}t \sin Vu_2}$$

$$+ \dots$$

$$+ (A_n \sin mu_n + B_n \cos mu_n) e^{-2\frac{K}{m}t \sin Vu_n}$$

Les quantités $A_1, A_2, A_3, \ldots, A_n$; $B_4, B_2, B_3, \ldots, B_n$ qui entrent dans cette équation sont arbitraires, et les arcs $u_1, u_2, u_3, \ldots, u_n$ sont donnés par les équations

$$u_1 = o^{\frac{2\pi}{n}}, \quad u_2 = i^{\frac{2\pi}{n}}, \quad u_3 = i^{\frac{2\pi}{n}}, \quad \dots, \quad u_n = (n-1)^{\frac{2\pi}{n}}.$$

Les valeurs générales des variables $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ sont donc exprimées par les équations suivantes :

$$\begin{split} &\alpha_{1} = (\text{A}_{1} \sin \circ u_{1} + \text{B}_{1} \cos \circ u_{1}) e^{-2 \frac{K}{m} t \sin V u_{1}} \\ &+ (\text{A}_{2} \sin \circ u_{2} + \text{B}_{2} \cos \circ u_{2}) e^{-2 \frac{K}{m} t \sin V u_{2}} \\ &+ (\text{A}_{3} \sin \circ u_{3} + \text{B}_{3} \cos \circ u_{3}) e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ \dots \\ &\alpha_{2} = (\text{A}_{1} \sin \iota u_{1} + \text{B}_{1} \cos \iota u_{1}) e^{-2 \frac{K}{m} t \sin V u_{1}} \\ &+ (\text{A}_{2} \sin \iota u_{2} + \text{B}_{2} \cos \iota u_{2}) e^{-2 \frac{K}{m} t \sin V u_{2}} \\ &+ (\text{A}_{3} \sin \iota u_{3} + \text{B}_{3} \cos \iota u_{3}) e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ \dots \\ &\alpha_{3} = (\text{A}_{1} \sin 2 u_{1} + \text{B}_{1} \cos 2 u_{1}) e^{-2 \frac{K}{m} t \sin V u_{1}} \\ &+ (\text{A}_{2} \sin 2 u_{2} + \text{B}_{2} \cos 2 u_{2}) e^{-2 \frac{K}{m} t \sin V u_{2}} \\ &+ (\text{A}_{3} \sin 2 u_{3} + \text{B}_{3} \cos 2 u_{3}) e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ \dots \\ &\alpha_{n} = [\text{A}_{1} \sin (n - \iota) u_{1} + \text{B}_{1} \cos (n - \iota) u_{1}] e^{-2 \frac{K}{m} t \sin V u_{1}} \\ &+ [\text{A}_{2} \sin (n - \iota) u_{2} + \text{B}_{2} \cos (n - \iota) u_{2}] e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ [\text{A}_{3} \sin (n - \iota) u_{3} + \text{B}_{3} \cos (n - \iota) u_{3}] e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ [\text{A}_{3} \sin (n - \iota) u_{3} + \text{B}_{3} \cos (n - \iota) u_{3}] e^{-2 \frac{K}{m} t \sin V u_{3}} \\ &+ \dots \end{aligned}$$

265.

Si l'on suppose le temps nul, les valeurs $\alpha_1, \alpha_2, \ldots, \alpha_n$ doivent se confondre avec les valeurs initiales $\alpha_1, \alpha_2, \ldots, \alpha_n$. On tire de là un nombre n d'équations qui doivent servir à déterminer les coefficients $A_1, B_1, A_2, B_2, \ldots, A_n, B_n$. On reconnaîtra facilement que le nombre des inconnues est toujours égal à celui des équations. En effet, le nombre des termes qui entrent dans la valeur de chacune des variables dépend du nombre des quantités différentes $\sin V u_1$, $\sin V u_2$,

 $\sin \lambda u_n$, ... qu'on trouve en divisant la circonference γ , en un nombre n de parties egales. Or le nombre des quantites $\sin \lambda \circ \frac{c\tau}{n}$, $\sin \lambda \circ \frac{c\tau}{n}$, ... est beaucoup moundre que n, si l'on ne compte que celles qui sont différentes. En designant le nombre a, par $\gamma i = i$ s'il est impair, et par γi s'il est pair, i = i designera toujours le nombre des sinus verses differents. D'un autre cote, lorsque, dans la suite des quantites

$$\sin \left(\frac{e^{\pi}}{n} \right) = \sin \left(\frac{1}{n} \right) = \sin \left(\frac{1}{n} \right)$$

on parviendra a un sinus verse, sin $\nabla x = \frac{1}{n} + \operatorname{egal}$ a l'un des precedents $\sin \nabla z = \frac{e^n}{n}$, les deux termes des equations qui contiendiont de même simis verse n'en formeront qu'un seul; les deux x_0 s' differents u_0 et u_0 qui auront le meme sums verse auront aussi le mome cosmus, et les sinus ne differerent que par le signe. Il est aca de voir que ces ares u, et u, qui ont le meme sinus verse sont tel eque le comme d'un mul tiple queleonque de u_i est egal au cosmus du nome multiple de u_i et que le sinus d'un multiple qui le onque de a un differe que par le signe du sinus du multiple de a . Il suit de le que, la qu'on rennit en un seul les deux termes correspondants de chacune des equations, les dens indeterminées A, et A, qui entrent dans les équations sont remplacees par une seule indeterminee, savoir A. A. Quant aux deux indeterminees B, et B, elles sont aussi remplaces per une soule, qui est B, > B, ; il en resulte que le nombre des indeterminees est egal, dans tous les cas, au nombre des equations. Car le nombre des termes est toupours i > 1; il faut ajouter que l'indefermince A. dispa rait d'elle meme dans tous les preimers termes, par « qu'elle multiplic le sums d'un are mil. De plus, lorsque le nombre es est pair, il se trouve, a la fin de chaque equation, un terme dans lequel une des inde terminees disparant encore d'elle meme, parce qu'elle y multiplie un

sinus nul; ainsi le nombre des inconnuçs qui entrent dans les equations est égal a pres i le propriée le nombre le est pair et a 2(i+1)-1 lorsque le nombre est impair; par conséquent, le nombre des inconnues est, dans tous les cas, le même que le nombre des équations.

266.

L'analyse précédente nous fournit, pour exprimer les valeurs générales des températures α_1 , α_2 , α_3 , ..., α_n , les équations

Pour former ces équations, il faut continuer dans chacune la suite des

termes qui contiennent $\sin Vo\frac{i\pi}{n}, \sin Vi\frac{i\pi}{n}, \sin Vi\frac{i\pi}{n}, \cdots$ pusqu'à ce qu'on ait épuisé tous les sinus verses différents, et omettre tous les termes subséquents, en commençant par celui on il entrerait un sinus verse égal à l'un des precedents. Le nombre des equations est n. Sin est un nombre pair egal à ii, le nombre des termes de chaque equation est i+i; si le nombre n des equations est un nombre impair represente par 2i+1, le nombre des termes est encore egal n+i. Enfin, parmi les quantités A_i , B_i , A_j , B_j , ... qui entrent dans ces equations, il y en a qui doivent être omises et disparaissent d'elles-memes, comme multipliant des sinus nuls.

1961

Pour determiner les quantites Λ_i , B_i , Λ_j , B_j , Λ_j , B_j , — qui entrent dans les équations precedentes, il faut concoderer l'état initial qui est connu : on supposera t— o et l'on ecrira, au heu de x_i , x_j , \dot{x}_j , ..., les quantités données a_1, a_2, a_3, \ldots , qui sont les valeurs initiales des températures. On aura donc, pour determiner Λ_i , B_i , Λ_j , B_j , Λ_j , B_j , ..., les équations suivantes :

$$(m) \begin{cases} a_1 - A_1 \sin \alpha & a_1 - A_2 \sin \alpha + \frac{\pi}{n} - A_3 \sin \alpha + \frac{\pi}{n} \\ B_1 \cos \alpha & a_1 - \frac{\pi}{n} + B_3 \cos \alpha + \frac{\pi}{n} - B_3 \cos \alpha + \frac{\pi}{n} \\ a_3 - A_1 \sin \alpha & \frac{\pi}{n} + A_2 \sin \alpha + \frac{\pi}{n} - A_3 \sin \alpha + \frac{\pi}{n} \\ + B_1 \cos \alpha & \frac{\pi}{n} + B_3 \cos \alpha + \frac{\pi}{n} - B_3 \cos \alpha + \frac{\pi}{n} \\ a_4 - A_1 \sin \alpha & \frac{\pi}{n} - A_3 \sin \alpha + \frac{\pi}{n} - A_4 \sin \alpha + \frac{\pi}{n} \\ + B_4 \cos \alpha & \frac{\pi}{n} + B_3 \cos \alpha + \frac{\pi}{n} - B_4 \cos \alpha + \frac{\pi}{n} - \frac{\pi}{n} \\ + B_4 \cos \alpha & \frac{\pi}{n} + B_3 \cos \alpha + \frac{\pi}{n} - \frac{\pi}{n} - \frac{\pi}{n} - \frac{\pi}{n} - \frac{\pi}{n} \\ + B_4 \cos \alpha & \frac{\pi}{n} - \frac{\pi}{n} -$$

268.

Dans ces équations, dont le nombre est n, les quantités inconnues sont A_1 , B_4 , A_2 , B_2 , A_3 , B_3 , ...; il s'agit d'effectuer les éliminations et de trouver les valeurs de ces indéterminées. On remarquera d'abord que la même indéterminée a un multiplicateur différent dans chaque équation, et que la suite de ces multiplicateurs compose une série récurrente. En effet, cette suite est celle des sinus croissants en progression arithmétique, ou celle des cosinus des mêmes arcs; elle peut être représentée par

$$\sin \alpha u, \quad \sin \alpha u, \quad \sin \alpha u, \quad \dots, \quad \sin (n-1)u,$$
 ou par
$$\cos \alpha u, \quad \cos \alpha u, \quad \cos \alpha u, \quad \dots, \quad \cos (n-1)u.$$

L'arc u est égal à $i\frac{2\pi}{n}$ si l'indéterminée dont il s'agit est A_{i+1} ou B_{i+1} . Cela posé, pour déterminer l'inconnue A_{i+1} au moyen des équations précédentes, il faut comparer à la suite des équations la série des multiplicateurs $\sin \alpha u$, $\sin \alpha u$, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n-1)u$ et multiplier chaque équation par le terme correspondant de la série. Si l'on prend la somme des équations ainsi multipliées, on éliminera toutes les inconnues, excepté celle qu'il s'agit de déterminer. Il en sera de même si l'on veut trouver la valeur de B_{i+1} ; il faudra multiplier chaque équation par le multiplicateur de B_{i+1} dans cette même équation, et prendre ensuite la somme de toutes les équations. Il s'agit de démontrer qu'en opérant de cette manière on fera disparaître en effet des équations toutes les inconnues, excepté une seule. Pour cela, il suffit de faire voir :

1º Que, si l'on multiplie terme à terme les deux suites

$$\sin \alpha u$$
, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n-1)u$, $\sin \alpha v$, $\sin \alpha v$, ..., $\sin (n-1)v$,

la somme des produits

$$\sin \alpha u \sin \alpha v + \sin \alpha u \sin \alpha v + \sin \alpha u \sin \alpha v + \dots + \sin (n-1)u \sin (n-1)v$$
F.
36

sera nulle, excepté lorsque les arcs u et v seront les mêmes, chacun de ces arcs étant d'ailleurs supposé un multiple d'une partie de la circon-férence égale à $\frac{2\pi}{R}$;

2º Que, si l'on multiplie terme à terme les deux séries

$$\cos \alpha_i$$
, $\cos \alpha_i$, \cos

la somme des produits sera nulle, excepté le cas où u est égal à v; 3° Que, si l'on multiplie terme à terme les deux suites

$$\sin \alpha u$$
, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n - 1)u$,
 $\cos \alpha v$, $\cos \alpha v$, $\cos \alpha v$, ..., $\cos (n - 1)v$,

la somme des produits sera toujours nulle.

269.

On désignera par q l'arc $\frac{2\pi}{n}$, par μq l'arc u, et par νq l'arc v, μ et ν étant des nombres entiers positifs moindres que n. Le produit de deux termes correspondants des deux premières séries sera représenté par

$$\sin j\mu q \sin j\nu q$$

ou

$$\frac{1}{2}\cos j(\mu-\nu)q - \frac{1}{2}\cos j(\mu+\nu)q,$$

la lettre j désignant un terme quelconque de la suite $0, 1, 2, \ldots$ $i, \ldots, n-1$. Or il est facile de prouver que, si l'on donne à j ses n valeurs successives depuis o jusqu'à n-1, la somme

$$\frac{1}{2}\cos o(\mu - \nu)q + \frac{1}{2}\cos i(\mu - \nu)q + \frac{1}{2}\cos 2(\mu - \nu)q + \ldots + \frac{1}{2}\cos(n-i)(\mu - \nu)q$$

aura une valeur nulle, et qu'il en sera de même de la suite

$$\frac{1}{2}\cos((\mu+\nu)q+\frac{1}{2}\cos((\mu+\nu)q+\frac{1}{2}\cos((\mu+\nu)q+\ldots+\frac{1}{2}\cos((n-1)(\mu+\nu)q)$$

En effet, en représentant par α l'arc $(\mu - \nu)q$, qui est un multiple de $\frac{2\pi}{n}$, on aura la suite récurrente

$$\cos \alpha$$
, $\cos \alpha$, $\cos \alpha$, $\cos \alpha$, ..., $\cos (n-1)\alpha$,

dont la somme est nulle. Pour le faire voir, on représentera cette somme par S et, les deux termes de l'échelle de relation étant 2 cos a et — 1, on multipliera successivement les deux membres de l'équation

$$S = \cos \alpha + \cos \alpha + \cos \alpha + \dots + \cos (n-1)\alpha$$

par 1, $-2\cos\alpha$ et par +1; puis, ajoutant les trois équations, on connaîtra que les termes intermédiaires se détruisent d'eux-mêmes d'après la nature de la série récurrente. Si l'on remarque maintenant que, $n\alpha$ étant un multiple de la circonférence entière, les quantités

$$\cos((n-1)\alpha)$$
, $\cos((n-2)\alpha)$, $\cos((n-3)\alpha)$, ...

sont respectivement les mêmes que celles que l'on désignerait par

$$\cos(-\alpha)$$
, $\cos(-2\alpha)$, $\cos(-3\alpha)$, ...,

on en conclura

$$2S - 2S \cos \alpha \stackrel{\circ}{=} 0$$
;

ainsi la somme cherchée S doit en général être nulle (1).

On trouvera de même que la somme des termes dus au développement de $\frac{1}{2}\cos j(\mu + \nu)q$ est nulle. Il faut excepter le cas où l'arc représenté par α serait nul; on aurait alors

$$1 - \cos \alpha = 0$$
;

c'est-à-dire que les arcs u et v scraient les mêmes. Dans ce cas, le terme $\frac{1}{2}\cos j(\mu+\nu)q$ donne encore un développement dont la somme

(1) De l'identité
$$\cos i\alpha - 2\cos\alpha\cos(i-1)\alpha + \cos(i-2)\alpha = 0,$$

applicable à toutes les valeurs de i, on déduit généralement

$$\sum_{\alpha=0}^{n-1} \left[\cos i\alpha - 2\cos\alpha\cos(i-1)\alpha + \cos(i-2)\alpha\right] = 0$$

est nulle; mais la quantité $\frac{1}{2}\cos j(\mu-\nu)q$ fournit des termes égaux dont chacun a pour valeur $\frac{1}{2}$; donc la somme des produits terme à terme des deux premières séries est $\frac{1}{2}n$.

On trouvera de la même manière la valeur de la somme des produits terme à terme des deux secondes séries, ou $\sum \cos j\mu q \cos j\nu q$; en effet, on substituera à

$$\cos j\mu q \cos j\nu q$$

la quantité

$$\frac{1}{2}\cos j(\mu-\nu)q + \frac{1}{2}\cos j(\mu+\nu)q$$

et l'on en conclura, comme dans le cas précédent, que

$$\sum \frac{1}{2} \cos j(\mu + \nu) q$$

est toujours nulle, et que

$$\sum_{i=1}^{\infty} \cos j(\mu - \nu) q$$

est nulle, excepté le cas où $\mu = \nu$. Il suit de là que la somme des produits terme à terme des deux secondes séries, ou

$$\sum \cos j\mu \eta \cos j\nu \eta$$
,

est toujours nulle lorsque les arcs u et c sont différents, et égale a

ou
$$\sum_{i=0}^{n-1} \cos i\alpha - 2\cos \alpha \sum_{i=0}^{n-1} \cos(i-1)\alpha - \sum_{i=0}^{n-1} \cos(i-2)\alpha = 0.$$

Dans le cas traité par Fourier, $n\alpha$ est un multiple de 2π et l'on a, par conséquent

$$\sum_{0}^{n-1} \cos i\alpha \qquad -\sum_{0}^{n-1} \cos(i-1)\alpha = \cos(n-1)\alpha \quad \cos(-\alpha) \quad \alpha$$

$$\sum_{0}^{n-1} \cos(i-1)\alpha - \sum_{0}^{n-1} \cos(i-2)\alpha = \cos(n-2)\alpha - \cos(-\alpha)\alpha = 0$$

Les trois sommes qui figurent dans l'équation (a) sont donc égales et, en les remplaçant par leur valeur commune S, on trouve bien

$$2S(1-\cos\alpha)=0. (i.1)$$

 $\frac{1}{3}n$ lorsque u=v. Il ne faut plus que distinguer les cas où les arcs μq et νq sont tous les deux nuls; alors on a zéro pour la valeur de

$$\sum \sin j\mu q \sin j\nu q$$
,

qui désigne la somme des deux produits terme à terme des deux premières séries. Il n'en est pas de même de la somme

$$\sum \cos j \mu q \cos j \nu q$$
,

prise dans le cas où μq et νq sont nuls; cette somme des produits terme à terme des deux secondes séries est évidemment égale à n. Quant à la somme

$$\sum \cos j\mu q \sin j\nu q$$
,

elle est nulle dans tous les cas, ce qu'il est facile de reconnaître par l'analyse précédente.

270.

La comparaison de ces séries fournit donc les conséquences suivantes. Si l'on partage la circonférence 2π en un nombre n de parties égales, que l'on prenne un arc u composé d'un nombre entier μ de ces parties, et que l'on marque les extrémités des arcs u, 2u, 3u, 4u, ..., (n-1)u, il résulte des propriétés connues des quantités trigonométriques que les quantités

$$\sin \alpha u$$
, $\sin \alpha u$, $\sin \alpha u$, ..., $\sin (n-1) u$,

ou celles-ci

$$\cos \alpha u$$
, $\cos \alpha u$, $\cos \alpha u$, $\cos \alpha u$, $\cos \alpha u$

forment une série récurrente périodique, composée de n termes; si l'on compare une de ces deux séries, correspondante à un arc u ou $\mu \frac{2\pi}{n}$, à une série correspondante à un autre arc v ou $v \frac{2\pi}{n}$ et qu'on multiplie terme à terme les deux séries comparées, la somme des produits sera nulle lorsque les arcs u et v seront différents. Si les arcs u et v sont

égaux, la somme des produits est égale à $\frac{1}{2}n$ lorsque l'on compare deux séries de sinus, ou lorsque l'on compare deux séries de cosinus; mais cette somme est nulle, si l'on compare une série de sinus à une série de cosinus. Si l'on suppose nuls les arcs u et c, il est manifeste que la somme des produits terme à terme est nulle toutes les fois que l'une des deux séries est formée de sinus et lorsqu'elles le sont toutes les deux; mais la somme des produits est n si les deux séries composées sont formées de cosinus. En général, la somme des produits terme à terme est égale à o, ou $\frac{1}{2}n$, ou n; au reste, les formules connues conduiraient directement aux mêmes résultats. On les présente ici comme des conséquences évidentes des théorèmes élémentaires de la Trigonométrie.

271.

Il est aisé d'effectuer au moyen de ces remarques l'élimination des inconnues dans les équations précédentes. L'indéterminée A, disparaît d'elle-même comme ayant des coefficients nuls; pour trouver B, on multipliera les deux membres de chaque équation par le coefficient de B, dans cette même équation et l'on ajoutera toutes les équations ainsi multipliées; on trouvera

$$a_1 + a_2 + a_3 + \ldots + a_n = n B_1.$$

Pour déterminer A_2 , on multipliera les deux membres de chaque équation par le coefficient de A_2 dans cette équation et, en désignant l'arc $\frac{2\pi}{n}$ par q, on aura, après avoir ajouté les équations,

$$a_1 \sin \alpha q + a_2 \sin \alpha q + a_3 \sin \alpha q + \ldots + a_n \sin (n-1) q = \frac{1}{2} n \Lambda_2.$$

On aura pareillement, pour déterminer B2,

$$a_1 \cos q + a_2 \cos q + a_3 \cos q + \ldots + a_n \cos (n-1)q = \frac{1}{3} n B_2.$$

En général, on trouvera chaque indéterminée en multipliant les deux membres de chaque équation par le coefficient de l'indéterminée dans cette même équation et en ajoutant les produits. On parvient ainsi aux résultats suivants :

$$nB_{1} = a_{1} + a_{2} + a_{3} + \dots = \sum a_{i},$$

$$\frac{1}{2} nA_{2} = a_{1} \sin 0.1 \frac{2\pi}{n} + a_{2} \sin 1.1 \frac{2\pi}{n} + a_{3} \sin 2.1 \frac{2\pi}{n} + \dots = \sum a_{i} \sin(i-1)1 \frac{2\pi}{n}$$

$$\frac{1}{2} nB_{2} = a_{1} \cos 0.1 \frac{2\pi}{n} + a_{2} \cos 1.1 \frac{2\pi}{n} + a_{3} \cos 2.1 \frac{2\pi}{n} + \dots = \sum a_{i} \cos(i-1)1 \frac{2\pi}{n}$$

$$\frac{1}{2} nA_{3} = a_{1} \sin 0.2 \frac{2\pi}{n} + a_{2} \sin 1.2 \frac{2\pi}{n} + a_{3} \sin 2.2 \frac{2\pi}{n} + \dots = \sum a_{i} \sin(i-1)2 \frac{2\pi}{n}$$

$$\frac{1}{2} nB_{3} = a_{1} \cos 0.2 \frac{2\pi}{n} + a_{2} \cos 1.2 \frac{2\pi}{n} + a_{3} \cos 2.2 \frac{2\pi}{n} + \dots = \sum a_{i} \cos(i-1)2 \frac{2\pi}{n}$$

$$\frac{1}{2} nA_{4} = a_{1} \sin 0.3 \frac{2\pi}{n} + a_{2} \sin 1.3 \frac{2\pi}{n} + a_{3} \sin 2.3 \frac{2\pi}{n} + \dots = \sum a_{i} \sin(i-1)3 \frac{2\pi}{n}$$

$$\frac{1}{2} nB_{4} = a_{1} \cos 0.3 \frac{2\pi}{n} + a_{2} \cos 1.3 \frac{2\pi}{n} + a_{3} \cos 2.3 \frac{2\pi}{n} + \dots = \sum a_{i} \cos(i-1)3 \frac{2\pi}{n}$$

$$\frac{1}{2} n A_{j} = \sum a_{i} \sin(i-1) (j-1) \frac{2\pi}{n},$$

$$\frac{1}{2} n B_{j} = \sum a_{i} \cos(i-1) (j-1) \frac{2\pi}{n}.$$

272.

Il faut maintenant substituer les valeurs connues des coefficients A_1 , B_1 , A_2 , B_2 , A_3 , B_3 , ... dans les équations (μ) (art. 266), et l'on

trouvera les valeurs suivantes:

$$\begin{aligned} z_1 &= N_0 &- N_1 \epsilon^{t \sin V q_1} &+ N_2 \epsilon^{t \sin V q_2} &+ \dots \\ z_2 &= N_0 - \left[M_1 \sin q_1 &- N_1 \cos q_1 \right] \epsilon^{t \sin V q_1} &+ \left[M_2 \sin q_2 &+ N_2 \cos q_2 \right] \epsilon^{t \sin V q_2} &+ \dots \\ z_n &= N_0 - \left[M_1 \sin 2 q_1 - N_1 \cos 2 q_1 \right] \epsilon^{t \sin V q_1} + \left[M_2 \sin 2 q_2 + N_2 \cos 2 q_2 \right] \epsilon^{t \sin V q_2} &+ \dots \\ z_n &= N_0 - \left[M_1 \sin (j-1) q_1 + N_1 \cos (j-1) q_1 \right] \epsilon^{t \sin V q_1} + \left[M_2 \sin (j-1) q_2 + N_2 \cos (j-1) q_2 \right] \epsilon^{t \sin V q_2} &+ \dots \\ z_n &= N_0 - \left[M_1 \sin (n-1) q_1 + N_1 \cos (n-1) q_1 \right] \epsilon^{t \sin V q_1} + \left[M_2 \sin (n-1) q_2 + N_2 \cos (n-1) q_2 \right] \epsilon^{t \sin V q_2} &+ \dots \end{aligned}$$

Dans ces équations, on a posé

273.

Les équations que l'on vient de rapporter renferment la solution complète de la question proposée; elle est représentée par cette équation générale

$$\begin{cases} z_{j} = \frac{1}{n} \sum_{i} a_{i} + \left[\frac{2}{n} \sin(j-1) \right] \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} + \frac{2}{n} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i-1) \frac{2\pi}{n} \right] e^{-\frac{2\pi}{n} \frac{1}{n} a_{i} \sin(i-1) \frac{2\pi}{n}} \\ + \left[\frac{2}{n} \sin(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} + \frac{2}{n} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i-1) \frac{2\pi}{n} \right] e^{-\frac{2\pi}{n} \frac{1}{n} a_{i} \sin(i-1) \frac{2\pi}{n}} \\ + \frac{2}{n} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} + \frac{2}{n} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i-1) \frac{2\pi}{n} \\ + \frac{2}{n} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \sin(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(j-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i-1) \frac{2\pi}{n} \sum_{i} a_{i} \cos(i$$

dans laquelle il n'entre que des quantités connues, savoir $a_1, a_2, a_3, ..., a_n$, qui sont les températures initiales; K mesure de la conducibilité, m valeur de la masse, n nombre des masses échaussées, et ℓ le temps écoulé.

Il résulte de toute l'analyse précédente que, si plusieurs corps égaux, en nombre n, sont rangés circulairement, et qu'ayant reçu des températures initiales quelconques, ils viennent à se communiquer la chaleur comme on l'a supposé, la masse de chaque corps étant désignée par m, le temps par t, et par K un coefficient constant, la température variable de chacune des masses, qui doit être une fonction des quantités t, m et K et de toutes les températures initiales, est donnée par l'équation générale (ɛ). Il faut d'abord mettre au lieu de j le numéro qui indique la place du corps dont on veut connaître la température, savoir 1 pour le premier corps, 2 pour le second, et ainsi de suite; ensuite il restera la lettre i qui entre sous le signe Σ ; on donnera à i ses n valeurs successives 1, 2, 3, 4, ..., et l'on prendra la somme de tous les termes. Quant au nombre des termes qui entrent dans cette équation, il doit y en avoir autant que l'on trouve de sinus verses différents lorsque la suite des arcs est $0^{\frac{2\pi}{n}}$, $1^{\frac{2\pi}{n}}$, $2^{\frac{2\pi}{n}}$, ...; c'est-à-dire que, le nombre n étant égal à $2\lambda + 1$ ou à 2λ selon qu'il est impair ou pair, le nombre des termes qui entrent dans l'équation générale est toujours $\lambda + 1$.

274.

Pour donner un exemple de l'application de cette formule, nous supposerons que la première masse est la seule que l'on ait d'abord échaussée, en sorte que les températures initiales a_1, a_2, \ldots, a_n soient toutes nulles, excepté la première. Il est visible que la quantité de chaleur contenue dans la première masse se distribuera successivement entre toutes les autres. Or la loi de cette communication de la chaleur sera exprimée par l'équation suivante :

$$\alpha_{j} = \frac{1}{n} \alpha_{1} + \frac{2}{n} \alpha_{1} \cos(j-1) \cdot 1 \cdot \frac{2\pi}{n} e^{-2\frac{K}{m}t \sin V \cdot 1 \cdot \frac{2\pi}{n}}$$

$$+ \frac{2}{n} \alpha_{1} \cos(j-1) \cdot 2 \cdot \frac{2\pi}{n} e^{-2\frac{K}{m}t \sin V \cdot 2 \cdot \frac{2\pi}{n}}$$

$$+ \frac{2}{n} \alpha_{1} \cos(j-1) \cdot 3 \cdot \frac{2\pi}{n} e^{-2\frac{K}{m}t \sin V \cdot 3 \cdot \frac{2\pi}{n}}$$

$$+ \dots$$

Si la seconde masse était seule échaufféc et que les températures a_1, a_3, \ldots, a_n fussent nulles, on aurait

$$z_{j} = \frac{1}{n}a_{2} + \frac{2}{n}a_{2} \left[\sin(j-1) \frac{2\pi}{n} \sin \frac{2\pi}{n} + \cos(j-1) \frac{2\pi}{n} \cos \frac{2\pi}{n} \right] e^{-\frac{1}{m}k \sin \sqrt{1} \frac{2\pi}{n}}$$

$$+ \frac{2}{n}a_{2} \left[\sin(j-1) \frac{2\pi}{n} \sin \frac{2\pi}{n} + \cos(j-1) \frac{2\pi}{n} \cos \frac{2\pi}{n} \right] e^{-\frac{2\pi}{m}k \sin \sqrt{2} \frac{\pi}{n}}$$

et, si l'on supposait que toutes les températures initiales fussent nulles, excepté a_i et a_2 , on trouverait pour la valeur de α_j la somme des valeurs trouvées dans chacune des deux hypothèses précédentes. En général, il est facile de conclure de l'équation générale (ε) de l'article 273 que, pour trouver la loi suivant laquelle les quantités initiales de chaleur se répartissent entre les masses, on peut considérer séparément les cas où les températures initiales seraient nulles, excepté une seule. On supposera que la quantité de chaleur contenue dans une des masses se communique à toutes les autres, en regardant ces dernières comme affectées de températures nulles; et, ayant fait cette hypothèse pour chacune des masses en particulier, à raison de la chaleur initiale qu'elle a reçue, on connaîtra quelle est, après un temps donné, la température de chacun des corps, en ajoutant toutes les températures que ce même corps a dû recevoir dans chacune des hypothèses précédentes.

275.

Si, dans l'équation générale (ε) qui donne la valeur de α_j , on suppose que le temps a une valeur infinie, on trouvera

$$\alpha_j = \frac{1}{n} \sum a_i,$$

en sorte que chacune des masses aura acquis la température moyenne, résultat qui est évident par lui-même.

A mesure que la valeur du temps augmente, le premier terme $\frac{1}{n}\sum a_i$ devient de plus en plus grand par rapport au suivant, ou à la

somme des suivants. Il en est de même du second par rapport aux termes qui le suivent; et, lorsque le temps a acquis une valeur considérable, la valeur de α_j est représentée sans erreur sensible par l'équation suivante :

$$\begin{split} \alpha_j &= \frac{1}{n} \sum a_i + \frac{2}{n} \bigg[\sin(j-1) \frac{2\pi}{n} \sum a_i \sin(i-1) \frac{2\pi}{n} \\ &+ \cos(j-1) \frac{2\pi}{n} \sum a_i \cos(i-1) \frac{2\pi}{n} \bigg] e^{-2\frac{K}{m}t \sin V \frac{2\pi}{n}}. \end{split}$$

En désignant par a et b les coefficients de $\sin(j-1)\frac{2\pi}{n}$ et de $\cos(j-1)\frac{2\pi}{n}$, et par ω la fraction $e^{-2\frac{K}{m}\sin v\frac{2\pi}{n}}$, on aura

$$\alpha_j = \frac{1}{n} \sum_i a_i + \left[a \sin(j-1) \frac{2\pi}{n} + b \cos(j-1) \frac{2\pi}{n} \right] \omega^t.$$

Les quantités a et b sont constantes, c'est-à-dire indépendantes du temps et de la lettre j qui indique le rang de la masse dont la température variable est α_j ; ces quantités sont les mêmes pour toutes les masses. La différence de la température variable α_j à la température finale $\frac{1}{n}\sum a_i$ décroît donc, pour chacune des masses, proportionnellement aux puissances successives de la fraction ω . Chacun des corps tend, de plus en plus, à acquérir la température finale $\frac{1}{n}\sum a_i$, et la différence entre cette dernière limite et la température variable du même corps finit toujours par décroître comme les puissances successives d'une fraction. Cette fraction est la même, quel que soit le corps dont on considère les changements de température; le coefficient de ω^i , ou

$$a\sin u_j + b\cos u_j$$

en désignant par u_j l'arc $(j-1)\frac{2\pi}{n}$, peut être mis sous la forme

$$A\sin(u_j+B)$$
,

en prenant A et B tels que l'on ait

$$a = A \cos B, \quad b = A \sin B.$$

Si l'on voulait déterminer le coefficient de ω' qui se rapporte aux corps suivants, dont la température est α_{j+1} , α_{j+2} , α_{j+3} , ..., il faudrait ajouter à u_j l'arc $\frac{2\pi}{n}$, ou $2\frac{2\pi}{n}$, et ainsi de suite; c'est-à-dire que l'on a les équations

$$\alpha_{j} - \frac{1}{n} \sum a_{i} = A \sin (B + u_{j}) \omega^{t} + \dots,$$

$$\alpha_{j+1} - \frac{1}{n} \sum a_{i} = A \sin \left(B + u_{j} + 1 \frac{2\pi}{n}\right) \omega^{t} + \dots,$$

$$\alpha_{j+2} - \frac{1}{n} \sum a_{i} = A \sin \left(B + u_{j} + 2 \frac{2\pi}{n}\right) \omega^{t} + \dots,$$

$$\alpha_{j+3} - \frac{1}{n} \sum a_{i} = A \sin \left(B + u_{j} + 3 \frac{2\pi}{n}\right) \omega^{t} + \dots,$$

276.

On voit par ces équations que les dernières dissérences entre les températures actuelles et les températures finales sont représentées par les équations précédentes, en ne conservant que le premier terme du second membre de chaque équation. Ces dernières différences varient donc selon la loi suivante : si l'on ne considère qu'un seul corps, la différence variable dont il s'agit, c'est-à-dire l'excès de la température actuelle du corps sur la température finale et commune, diminue comme les puissances successives d'une fraction, le temps augmentant par parties égales; et si l'on compare, pour un même instant, la température de tous les corps, la différence dont il s'agit varie proportionnellement aux sinus successifs de la circonférence divisée en parties égales. La température d'un même corps, prise à divers instants successifs égaux, est représentée par les ordonnées d'une logarithmique dont l'axe est divisé en parties égales, et la température de chacun de ces corps, prise au même instant pour tous, est représentée par les ordonnées du cercle dont la circonférence est divisée en parties égales. Il est facile de voir, comme on l'a remarqué plus haut, que, si les températures initiales sont telles que les différences de cetempératures à la température moyenne ou finale soient proportionnelles aux sinus successifs des arcs multiples, ces différences diminueront toutes à la fois sans cesser d'être proportionnelles aux mêmes sinus. Cette loi, si elle régnait entre les températures initiales, ne scrait point troublée par l'action réciproque des corps et se conserverait jusqu'à ce qu'ils eussent tous acquis une température commune. La différence diminuerait pour chaque corps comme les puissances successives d'une même fraction. Telle est la loi la plus simple à laquelle puisse être assujettie la communication de la chaleur entre une suite de masses égales. Lorsque cette loi est établie entre les températures initiales, elle se conserve d'elle-même; et, lorsqu'elle ne règne point entre les températures initiales, c'est-à-dire lorsque les différences de ces températures à la température moyenne ne sont pas proportionnelles aux sinus successifs des arcs multiples, la loi dont il s'agit tend toujours à s'établir; et le système des températures variables finit bientôt par se confondre sensiblement avec celui qui dépend des ordonnées du cercle et de celles de la logarithmique.

Puisque les dernières différences entre l'excès de la température d'un corps sur la température moyenne sont proportionnelles aux sinus de l'arc à l'extrémité duquel le corps est placé, il s'ensuit que, si l'on désigne deux corps placés aux extrémités du même diamètre, la température du premier surpassera la température moyenne et constante autant que cette température constante surpassera celle du second corps. C'est pourquoi, si l'on prend à chaque instant la somme des températures de deux masses dont la situation est opposée, on trouvera une somme constante; et cette somme aura la même valeur pour deux masses quelconques placées aux extrémités d'un même diamètre.

277.

Les formules qui représentent les températures variables des masses disjointes s'appliquent facilement à la propagation de la chaleur dans les corps continus. Pour en donner un exemple remarquable, nous déterminerons le mouvement de la chaleur dans une armille au moyen de l'équation générale qui a été rapportée précédemment.

On supposera que le nombre n des masses croît successivement, et qu'en même temps la longueur de chaque masse décroît dans le même rapport, afin que la longueur du système ait une valeur constante égale à 2π . Ainsi le nombre n des masses sera successivement n, ou n,

Quant aux températures initiales a_1, a_2, \ldots, a_n , elles dépendent de la valeur de l'arc x et, en considérant ces températures comme les états successifs d'une même variable, la valeur générale a_i représente une fonction arbitraire de x. L'indice i sera alors remplacé par $\frac{x}{dx}$. A l'égard des quantités a_1, a_2, \ldots, a_n , ces températures sont des variables qui dépendent des deux quantités x et t. En désignant par e cette variable, on aura e = e(e(e). L'indice e, qui marque la place que l'un des corps occupe, sera remplacé par e(e). Ainsi, pour appliquer l'analyse précédente au cas où l'on aurait une infinité de tranches, formant un corps continu dont la forme serait celle d'une armille, il faudra substituer aux quantités

$$n, m, K, a_i, i, \alpha_j, j$$

celles qui leur correspondent, savoir

$$\frac{2\pi}{dx}$$
, dx , $\frac{\pi g}{dx}$, $f(x)$, $\frac{x}{dx}$, $\varphi(x,t)$, $\frac{x}{dx}$.

On fera ces substitutions dans l'equation |z| de l'article 273 et l'on cerira $\frac{1}{i}dx^2$ au lieu de $\sin V dx$, et i et j au lieu de i-1 et j-1. Le premier terme $\frac{1}{n}\sum a_i$ devient la valeur de l'integrale $\frac{1}{i\pi}\int_{-\pi}^{\pi}f(x)\,dx$ prise depuis $i-\alpha$ jusqu'a $i-\alpha\pi$; la quantite $\sin^3 j-1$) $\frac{i\pi}{n}$ devient $\sin j\,dx$ ou $\sin i$; la valeur de $\cos j-i-\frac{i\pi}{n}$ est $\cos v$; celle de

$$\sum_{i=1}^{n} m_i \sin i = 1 - \frac{1}{B}$$

....

l'integrale etant prise depuis / o jusqu'a x / 2\pi, et celle de

1141

l'integrale étant prisé entre les mêmes limites. Un obtient par ces substitutions l'équation

et, représentant par l'ha quantité ga, on aura

278.

Cette solution est la même que celle qui a été rapportée dans la Section précédente (p. 244); elle donne lieu à diverses remarques :

1º Il ne serait pas nécessaire de recourir à l'analyse des équations aux différences partielles pour obtenir l'équation générale qui exprime le mouvement de la chaleur dans une armille. On pourrait résoudre la question pour un nombre déterminé de corps et supposer ensuite ce nombre infini. Cette méthode de calcul a une clarté qui lui est propre, et qui dirige les premières recherches. Il est facile ensuite de passer à une méthode plus concise, dont la marche se trouve naturellement indiquée. On voit d'abord que la distinction des valeurs particulières qui, satisfaisant à l'équation aux différences partielles, composent la valeur générale dérive de la règle connue pour l'intégration des équations différentielles linéaires dont les coefficients sont constants. Cette distinction est d'ailleurs fondée, comme on l'a vu plus haut, sur les conditions physiques de la question.

2º Pour passer du cas des masses disjointes à celui d'un corps continu, nous avons supposé que le coefficient K augmentait proportionnellement au nombre n des masses. Ce changement continuel du nombre K est une suite de ce que nous avons démontré précédemment, savoir que la quantité de chaleur qui s'écoule entre deux tranches d'un même prisme est proportionnelle à la valeur de $\frac{\partial v}{\partial x}$, x désignant l'abscisse qui répond à la section et v la température. Au reste, si l'on ne supposait point que le coefficient K augmente proportionnellement au nombre des masses et que l'on retint une valeur constante pour ce coefficient, on trouverait, en faisant n infini, un résultat contraire à celui qu'on observe dans les corps continus. La diffusion de la chaleur serait infiniment lente et, de quelque manière que la masse cut été échauffée, la température d'un point ne subirait aucun changement sensible pendant un temps déterminé, ce qui est opposé aux faits. Toutes les fois que l'on a recours à la considération d'un nombre infini

de masses séparées qui se transmettent la chaleur et que l'on veut passer au cas des corps continus, il faut attribuer au coefficient K, qui mesure la vitesse de la transmission, une valeur proportionnelle au nombre des masses infiniment petites qui composent le corps donné.

3° Si, dans la dernière équation que nous venons d'obtenir pour exprimer la valeur de v, ou $\varphi(x,t)$, on suppose t=0, il sera nécessaire que l'équation représente l'état initial; on aura donc par cette voie l'équation (p) que nous avons obtenue précédemment (p. 230), savoir:

$$\pi f(x) = \frac{1}{2} \int_0^{2\pi} f(x) \, dx + \cos x \int_0^{2\pi} f(x) \cos x \, dx + \cos 2x \int_0^{2\pi} f(x) \cos 2x \, dx + \dots$$

$$+ \sin_x \int_0^{2\pi} f(x) \sin x \, dx + \sin 2x \int_0^{2\pi} f(x) \sin 2x \, dx + \dots$$

Ainsi ce théorème qui donne, entre des limites assignées, le développement d'une fonction arbitraire en série de sinus et de cosinus d'arcs multiples se déduit des règles élémentaires du calcul. On trouve ici l'origine du procédé que nous avons employé pour faire disparaître par des intégrations successives tous les coefficients, excepté un seul, dans l'équation

$$\varphi(x) = a + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots;$$

ces intégrations correspondent aux éliminations des diverses inconnues dans les équations (m) (p. 280 et suiv.) et l'on reconnaît clairement par cette comparaison des deux méthodes que l'équation (B) (page suivante) a lieu pour toutes les valeurs de x comprises entre o et 2π , sans que l'on soit fondé à l'appliquer aux valeurs de x qui excèdent ces limites.

279.

La fonction $\varphi(x,t)$ qui satisfait à la question, et dont la valeur est déterminée par l'équation (E) (p. 295), peut être exprimée comme il

298

suit:

$$\begin{aligned} \cos(x,t) &= \int f(\alpha) \, d\alpha + \left[2 \sin x \int f(\alpha) \sin \alpha \, d\alpha + 2 \cos x \int f(\alpha) \cos \alpha \, d\alpha \right] e^{-kt} \\ &+ \left[2 \sin 2x \int f(\alpha) \sin 2\alpha \, d\alpha + 2 \cos 2x \int f(\alpha) \cos 2\alpha \, d\alpha \right] e^{-kt} \\ &+ \left[2 \sin 3x \int f(\alpha) \sin 3\alpha \, d\alpha + 2 \cos 3x \int f(\alpha) \cos 3\alpha \, d\alpha \right] e^{-3kt} \\ &+ \left[2 \sin 3x \int f(\alpha) \sin 3\alpha \, d\alpha + 2 \cos 3x \int f(\alpha) \cos 3\alpha \, d\alpha \right] e^{-3kt} \end{aligned}$$

OH

Le signe Σ affecte le nombre i, et indique que la somme doit être prise de i=1 à $i=\infty$. On peut aussi comprendre le premier terme 1 sous ce signe Σ et l'on a

$$2\pi\varphi(x,t) = \int_0^{2\pi} f(\alpha) \sum_{-\infty}^{+\infty} \cos i(\alpha - x) e^{-i^2kt} d\alpha.$$

Il faut alors donner à i toutes ses valeurs en nombres entiers depuis $-\infty$ jusqu'à $+\infty$; c'est ce que l'on a indiqué en écrivant les limites $-\infty$ et $+\infty$ auprès du signe Σ ; l'une de ces valeurs de i est o. Telle est l'expression la plus concise de la solution. Pour développer le second membre de l'équation, on supposera i=0 et en suite $i=1,2,3,4,\ldots$; on doublera chaque résultat, excepté le premier qui répond à i=0. Lorsque t est nul, il est nécessaire que la fonction $\varphi(x,t)$ représente l'état initial, dans lequel les températures sont égales à f(x); on aura donc l'équation identique (i)

(B)
$$f(x) = \frac{1}{2\pi} \int_0^{2\pi} f(\alpha) \sum_{n=0}^{+\infty} \cos i(\alpha - x) d\alpha.$$

On a joint aux signes \int et Σ les indices des limites entre lesquelles

G. D.

⁽¹⁾ Voir, au sujet de cette formule, la Note de l'article 235, p. 231.

l'intégrale et la somme doivent être prises. Ce théorème a lieu généralement, quelle que soit la forme de la fonction f(x) dans l'intervalle de x = 0 à $x = 2\pi$; il est le même que celui qui est exprimé par les équations qui donnent le développement de F(x) (p. 233), et nous verrons dans la suite que l'on peut démontrer immédiatement la vérité de l'équation (B), indépendamment des considérations précédentes.

280.

Il est facile de reconnaître que la question n'admet aucune solution dissérente de celle que donne l'équation (E) (p. 295). En effet, la fonction $\varphi(x,t)$ satisfait entièrement à la question et, d'après la nature de l'équation dissérentielle

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2},$$

aucune autre fonction ne peut jouir de cette même propriété. Pour s'en convaincre, il faut considérer que, le premier état du solide étant représenté par une équation donnée $v_4 = f(x)$, la fluxion $\frac{\partial v_1}{\partial t}$ est connue, puisqu'elle équivaut à $k \frac{d^2 f(x)}{dx^2}$. Ainsi, en désignant par v_2 , ou $v_4 + \frac{\partial v_1}{\partial t} dt$, la température au commencement du second instant, on déduira la valeur de v_2 de l'état initial et de l'équation différentielle. On connaîtra donc de la même manière les valeurs $v_3, v_4, v_5, \ldots, v_n$ de la température d'un point quelconque du solide au commencement de chaque instant. Or la fonction $\varphi(x,t)$ satisfait à l'état initial, puisque l'on a

 $\varphi(x, 0) = f(x).$

De plus elle satisfait aussi à l'équation différentielle; par conséquent, étant différentiée, elle donnerait pour $\frac{\partial v_1}{\partial t}$, $\frac{\partial v_2}{\partial t}$, $\frac{\partial v_3}{\partial t}$, \cdots les mêmes valeurs que celles qui résulteraient de l'application successive de cette équation différentielle (a). Donc si, dans la fonction $\varphi(x,t)$, on donne

successivement à t les valeurs 0, ω , 2ω , 3ω , 4ω , ..., ω désignant l'élément du temps, on trouvera les mêmes valeurs v_1 , v_2 , v_3 , v_4 , ..., que l'on aurait déduites de l'état initial et de l'application continuelle de l'équation (a). Donc toute fonction $\psi(x,t)$ qui satisfait à l'équation différentielle et à l'état initial se confond nécessairement avec la fonction $\varphi(x,t)$; car ces fonctions donneront l'une et l'autre une même fonction de x, si l'on y suppose successivement t=0, ω , 2ω , 3ω , ..., $i\omega$,

On voit par là qu'il ne peut y avoir qu'une seule solution de la question et que, si l'on découvre d'une manière quelconque une fonction $\psi(x,t)$ qui satisfasse à l'équation différentielle et à l'état initial, on est assuré qu'elle est la même que la précédente donnée par l'équation (E).

281.

Cette même remarque s'applique à toutes les recherches qui ont pour objet le mouvement varié de la chaleur; elle suit évidemment de la forme même de l'équation générale.

C'est par la même raison que l'intégrale de l'équation (a) ne peut contenir qu'une seule fonction arbitraire en x. En effet, lorsqu'une valeur de v est donnée en fonction de x pour une certaine valeur du temps t, il est évident que toutes les autres valeurs de v qui correspondent à un temps quelconque sont déterminées. On peut donc choisir arbitrairement la fonction de x qui correspond à un certain état, et la fonction de deux variables x et t se trouve alors déterminée. Il n'en est pas de même de l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0,$$

que nous avons employée dans le Chapitre précédent et qui convient au mouvement constant de la chaleur; son intégrale contient deux fonctions arbitraires en x et y; mais on peut ramener cette recherche à celle du mouvement varié, en considérant l'état final et permanent comme dérivé de ceux qui le précèdent, et, par conséquent, de l'état initial qui est donné.

L'intégrale que nous avons donnée

$$\frac{1}{2\pi} \int_0^{2\pi} f(\alpha) \sum e^{-i^2kt} \cos i(\alpha - x) d\alpha$$

contient une fonction arbitraire f(x), et elle a la même étendue que l'intégrale générale, qui ne contient aussi qu'une fonction arbitraire en x; ou plutôt elle est cette intégrale elle-même, mise sous la forme qui convient à la question. En effet, l'équation

$$v_1 = f(x)$$

représentant l'état initial, et l'équation

$$v = \varphi(x, t)$$

représentant l'état variable qui lui succède, on voit que, d'après la forme même du solide échauffé, la valeur de v ne doit point changer lorsqu'on écrit, au lieu de x, $x \pm 2i\pi$, i étant un nombre entier positif quelconque. La fonction

$$\frac{1}{2\pi} \int_0^{2\pi} f(\alpha) \sum e^{-i^2 kt} \cos i (\alpha - x) d\alpha$$

remplit cette condition; elle représente aussi l'état initial, lorsqu'on suppose t = 0; car on a alors

$$f(x) = \frac{1}{2\pi} \int_0^{2\pi} f(\alpha) \sum \cos i(\alpha - x) d\alpha,$$

équation qui a été démontrée précédemment (p. 234 et 298) et qu'il est d'ailleurs facile de vérifier. Enfin la même fonction satisfait à l'équation différentielle

$$\frac{\partial v}{\partial t} = k \, \frac{\partial^2 v}{\partial x^2}.$$

Quelle que soit la valeur du temps t, la température v est donnée par une série très convergente, et les différents termes représentent tous les mouvements partiels qui se composent pour former le mouvement total. A mesure que le temps augmente, les états partiels de l'ordre le plus élevé s'effacent rapidement et ne conservent aucune influence approximate; in our posts area is a surjective form to a formal terms of plantings. A surjective surjective constraint of the surjective constraints of the surjective formal terms of the surjective constraints.

r, on onlin park prome at the property

1

2 49 4

Partite page to a contract the contract to simple de la fre etre e que at de al forme envier time a de regge e 184 . I consequent, toute le generalité que le q anitie time mar ber deffene ge at it iben . expression de l'integrale, car, cette diffict cu frantome coment to a after s de la section mose me de dans de se 1 forme different at a country of a consequence touction arbitraire saine to again the firm to be a series appliquer cette dermen mitegrade at a par so hormal a rette apple at east a conservation impartate du phenome e a fee, il ma pas exprenses par de seco accesar point les états que som editet a moment que le me fundrant dome attributer a la finetier a qui y forme periodique que la que tion improva una como desta sun cette integrale, on n'aurait point d'autre sesoitat que con

v 1,11 - 1 1 1 2

On passe aisément de cette dernière équation à l'intégrale dont il s'agit, comme nous l'avons prouvé dans le Mémoire qui a précédé cet Ouvrage. Il n'est pas moins facile d'obtenir l'équation en partant de l'intégrale elle-même. Ces transformations rendent de plus en plus manifeste l'accord des résultats du calcul; mais elles n'ajoutent rien à la théorie et ne constituent nullement une analyse différente.

On examinera dans un des Chapitres suivants les différentes formes que peut recevoir l'intégrale de l'équation (a), les rapports qu'elles ont entre elles et les cas où elles doivent être employées.

Pour former celle qui exprime le mouvement de la chaleur dans une armille, il était nécessaire de résoudre une fonction arbitraire en une série de sinus et cosinus d'arcs multiples; les nombres qui affectent la variable sous les signes sinus et cosinus sont les nombres naturels 1, 2, 3, 4, Dans la question suivante, on réduit encore la fonction arbitraire en une série de sinus; mais les coefficients de la variable sous le signe sinus ne sont plus les nombres 1, 2, 3, 4, ...; ces coefficients satisfont à une équation déterminée, dont toutes les racines sont irrationnelles et en nombre infini.

CHAPITRE V.

DE LA PROPAGATION DE LA CHALEUR DANS UNE SPIIÈRE SOLIDE.

SECTION I.

SOLUTION GÉNÉRALE.

283.

La question de la propagation de la chaleur a été exposée dans le Chapitre II, Section II, article 447 (p. 95); elle consiste à intégrer l'équation

 $\frac{\partial v}{\partial t} = k \left(\frac{\partial^2 v}{\partial x^2} + \frac{2}{x} \frac{\partial v}{\partial x} \right)$

en sorte que l'intégrale satisfasse, lorsque x = X, à la condition

$$\frac{\partial v}{\partial x} + hv = 0;$$

k désigne le rapport $\frac{K}{CD}$ et k désigne le rapport $\frac{h}{K}$ des deux conducibilités; ℓ est la température que l'on observerait, après le temps écoulé ℓ , dans une couche sphérique dont le rayon est ℓ ; ℓ est le rayon de la sphère; ℓ est une fonction de ℓ et ℓ qui équivaut à ℓ for lorsqu'on suppose ℓ o. La fonction ℓ est donnée; elle représente l'état initial et arbitraire du solide.

Si l'on fait y = vx, y étant une nouvelle indéterminée, on aura, après les substitutions,

$$\frac{\partial y}{\partial t} = k \frac{\partial^2 y}{\partial x^2};$$

ainsi il faut intégrer cette dernière équation, et l'on prendra ensuite

 $\varphi = \frac{y}{x}$. On cherchera en premier lieu quelles sont les valeurs les plus simples que l'on puisse attribuer à y, ensuite on en formera une valeur générale qui satisfera en même temps à l'équation différentielle, à l'équation à la surface et à l'état initial. Il sera facile de reconnaître que, lorsque ces trois conditions sont remplies, la solution est complète et que l'on ne pourrait en trouver aucune autre.

284.

Soit $y = e^{mt}u$, u étant une fonction de x, on aura

$$mu = k \frac{d^2 u}{dx^2}.$$

On voit d'abord que, la valeur de t devenant infinie, celle de ρ doit être nulle dans tous les points, puisque le corps est entièrement refroidi. On ne peut donc prendre pour m qu'une quantité négative. Or k a une valeur numérique positive; on en conclut que la valeur de u dépend des arcs de cercle, ce qui résulte de la nature connue de l'équation $mu = k \frac{d^2 u}{dx^2}$. Soit

$$u = \Lambda \cos nx + B \sin nx$$
;

on aura cette condition

$$m = -kn^2$$
.

Ainsi l'on peut exprimer une valeur particulière de o par l'équation

$$v = \frac{e^{-kn^2t}}{x} (\mathbf{A} \cos nx + \mathbf{B} \sin nx);$$

n est un nombre positif quelconque, et A et B sont des constantes. On remarquera d'abord que la constante A doit être nulle; car, lorsqu'on fait x = 0, la valeur de v, qui exprime la température du centre, ne peut pas être infinie; donc le terme A $\cos nx$ doit être omis.

De plus, le nombre n ne peut pas être pris arbitrairement. En effet,

39

si, dans l'équation déterminée

$$\frac{\partial v}{\partial x} + h v = 0,$$

on substitue la valeur de v, on trouvera

$$nx\cos nx + (hx - 1)\sin nx = 0.$$

Comme l'équation doit avoir lieu à la surface, on y supposera x = X, rayon de la sphère, ce qui donnera

$$\frac{nX}{\tan nX} = I - hX.$$

Soit λ le nombre $\mathfrak{l} - hX$ et posons $nX = \varepsilon$, on aura

$$\frac{\varepsilon}{\operatorname{tang}\varepsilon} = \lambda.$$

Il faut donc trouver un arc ε qui, divisé par sa tangente, donne un quotient connu λ, et l'on prendra

$$n = \frac{\varepsilon}{\mathbf{X}}$$
.

Il est visible qu'il y a une infinité de tels arcs, qui ont avec leur tangente un rapport donné; en sorte que l'équation de condition

$$\frac{nX}{\tan nX} = I - hX$$

a une infinité de racines réelles.

285.

Les constructions sont très propres à faire connaître la nature de cette équation. Soit (fig. 12)

$$u = \tan g \varepsilon$$

l'équation d'une ligne dont l'arc e est l'abscisse et u l'ordonnée, et soit

$$u = \frac{\varepsilon}{\lambda}$$

l'équation d'une droite dont ε et u désignent aussi les coordonnées. Si on élimine u entre ces deux équations, on a la proposée $\frac{\varepsilon}{\lambda} = \tan g \varepsilon$. L'inconnue ε est donc l'abscisse du point d'intersection de la courbe et de la droite. Cette ligne courbe est composée d'une infinité d'arcs; toutes les ordonnées correspondantes aux abscisses $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, $\frac{7\pi}{2}$, ... sont infinies, et toutes celles qui répondent aux points 0, π , 2π , 3π , 4π , ... sont nulles. Pour tracer la droite dont l'équation est $u = \frac{\varepsilon}{\lambda} = \frac{\varepsilon}{1-hX}$, on forme le carré 01 ω 1 et, portant la quantité hX de ω en h, on joint

le point h avec l'origine O. La courbe dont l'équation est $u=\tan g \epsilon$ a pour tangente à l'origine une ligne qui divise l'angle droit en deux parties égales, parce que la dernière raison de l'arc à sa tangente est 1. On conclut de là que, si λ , ou 1-hX, est une quantité moindre que l'unité, la droite mOm passe à l'origine au-dessus de la courbe nOn et qu'il y a un point d'intersection de cette droite avec la première branche. Il est également évident que la même droite coupe toutes les branches ultérieures $n\pi n$, $n2\pi n$, Donc l'équation $\frac{\varepsilon}{\tan g \varepsilon} = \lambda$ a un nombre infini de racines réelles. La première est comprise entre cet $\frac{\pi}{2}$, la deuxième entre π et $\frac{3\pi}{2}$, la troisième entre 2π et $\frac{5\pi}{2}$, et ainside suite. Ces racines approchent extrêmement de leurs limites supérieures lorsque leur rang est très avancé.

286.

Si l'on veut calculer la valeur d'une de ces racines, par exemple de la première, on peut employer la règle suivante : on écrira les deux équations $\varepsilon = \arctan u$ et $u = \frac{\varepsilon}{\lambda}$, arc tangu désignant la longueur de l'arc dont la tangente est u. Ensuite, prenant un nombre quelconque pour u, on en conclura, au moyen de la première équation, la valeur de ε ; on substituera cette valeur dans la seconde équation, et l'on en déduira une autre valeur de u; on substituera cette seconde valeur de u dans la première équation; on en déduira la valeur de ε , qui, au moyen de la seconde équation, fera connaître une troisième valeur de u. En la substituant dans la première équation, on aura une nouvelle valeur de ε . On continuera ainsi de détermine u par la seconde équation, et ε par la première. Cette opération donnera des valeurs de plus en plus approchées de l'inconnue ε ; la construction suivante rend cette convergence manifeste.

En effet, si le point u correspond (fig. 13) à la valeur arbitraire que

l'on attribue à l'ordonnée u, et si l'on substitue cette valeur dans la première équation $\varepsilon = \arctan g u$, le point ε correspondra à l'abscisse que l'on aura calculée au moyen de cette équation. Si l'on substitue cette abscisse ε dans la seconde équation $u = \frac{\varepsilon}{\lambda}$, on trouvera une ordonnée u' qui correspond au point u'. Substituant u' dans la première

équation, on trouvera une abscisse ε' qui répond au point ε' ; ensuite cette abscisse, étant substituée dans la seconde équation, fera connaître une ordonnée u'' qui, étant substituée dans la première, fera connaître une troisième abscisse ε'' , ainsi de suite à l'infini. C'est-à-dire que, pour représenter l'emploi continuel et alternatif des deux équations précédentes, il faut, par le point u, mener l'horizontale jusqu'à la courbe, par le point d'intersection ε mener la verticale jusqu'à la droite, par le point d'intersection ε' mener la verticale jusqu'à la droite, par le point d'intersection ε' mener la verticale jusqu'à la droite, ainsi de suite à l'infini, en s'abaissant de plus en plus vers le point cherché.

287.

La fig. 13 qui précède représente le cas où l'ordonnée prise arbitrairement pour u est plus grande que celle qui répond au point d'intersection. Si l'on choisit au contraire, pour la valeur initiale de u, une quantité plus petite et que l'on emploie de la même manière les deux équations

$$\varepsilon = \arctan g u, \qquad u = \frac{\varepsilon}{\lambda},$$

on parviendrait encore à des valeurs de plus en plus approchées de

l'inconnue. La fig. 14 fait connaître que, dans ce cas, on s'élève continuellement vers le point d'intersection en passant par les points u, ε ,

the obtaint, en partant d'une valeur de se trojs petite des quantités s', 2, qui convergent vers l'une auture et sont jous petit qu'elle; et l'on obtaint, en partant d'une valeur de se trojs grande, il quantités qui convergent aussi vers l'une nuive, et dont chacune e plus grande qu'elle thi connaît donc des hinites de plus en jous reserves, entre lesquelles la grandeur chers hee sera toujours compris L'une et l'autre approximation sont representées jour la formule.

Lorsqu'on aura effectue quelques unes des aparations subquees, resultats successifs different mouse, et l'on sera parvens à une vale approchee de :

-

the pourrait se proposer d'appliquer les deux equations

dans un order deflerent, en leur donnant cette forme

On prendrait pour a une valeur arbetracre et un la infertitionet dans prennere equation, on trouverait la valeur de a spiù e tant indicate dans la seconde equation, donnerast une reconde valeur de a seconde valeur de a se pluterait ensurte ette nouvelle valeur de a de la meme manore qui a employe la prennere. Mais il est facile de reconnaître, par les sonstituns, qu'en suivant le cours de ces operations, on a choque de pen plus du point d'intersection, au lieu de s'en approcher comme de le cas precedent. Les valeurs successives de a que l'on obtiend diminnerment continuellement jusqu'à rero, on augmenterment se limite. On passerait successivement de a' en n', de n' en c', de a con de n' en a, ainsi de suite à l'intini.

La règle que l'on vient d'exposer pouvant s'appliquer au calcul de chacune des racines de l'équation

$$\frac{\varepsilon}{\tan g \varepsilon} = I - h X,$$

qui ont d'ailleurs des limites données, on doit regarder toutes ces racines comme des nombres connus. Au reste, il était seulement nécessaire de se convaincre que l'équation a une infinité de racines réelles. On a rapporté ici ce procédé d'approximation, parce qu'il est fondé sur une construction remarquable qu'on peut employer utilement dans plusieurs cas, et qu'il fait connaître sur-le-champ la nature et les limites des racines; mais l'application qu'on ferait de ce procédé à l'équation dont il s'agit serait beaucoup trop lente; il serait facile de recourir dans la pratique à une autre méthode d'approximation.

289.

On connaît maintenant une forme particulière que l'on peut donner à la fonction v, et qui satisfait à deux conditions de la question. Cette solution est représentée par l'équation

$$v = ae^{-kn^2t} \frac{\sin nx}{nx}.$$

Le coefficient a est un nombre quelconque et le nombre n est tel que l'on a

$$\frac{nX}{\tan g nX} = I - hX.$$

Il en résulte que, si les températures initiales des différentes couches étaient proportionnelles au quotient $\frac{\sin nx}{nx}$, elles diminueraient toutes à la fois en conservant entre elles, pendant toute la durée du refroidissement, les rapports qui avaient été établis; et la température de chaque point s'abaisserait comme l'ordonnée d'une logarithmique dont l'abscisse désignerait le temps écoulé. Supposons donc que, l'arc ε étant divisé en parties égales et pris pour abscisse, on élève en chaque

point de division une ordonnée égale au rapport du sinus à l'arc. Le système de toutes ces ordonnées sera celui des températures initiales qu'il faut attribuer aux différentes couches, depuis le centre jusqu'à la surface, le rayon total X étant divisé en parties égales. L'arc & dont la longueur représenterait dans cette construction le rayon X ne doit pas être pris arbitrairement; il est nécessaire que cet arc ait avec sa tangente un rapport donné. Comme il y a une infinité d'arcs qui satisfont à cette condition, on formerait ainsi une infinité de systèmes des températures initiales, qui peuvent subsister d'eux-mêmes dans la sphère sans que les rapports des températures changent pendant la durée du refroidissement.

290.

Il ne reste plus qu'à former un état initial quelconque, au moyen d'un certain nombre ou d'une infinité d'états partiels, dont chacun représente un de ces systèmes de températures que nous avons considérés précédemment, et dans lesquels l'ordonnée varie avec la distance x, proportionnellement au quotient du sinus par l'arc. Le mouvement général de la chaleur dans l'intérieur de la sphère sera alors décomposé en autant de mouvements particuliers, dont chacun s'accomplira librement comme s'il était seul.

Désignons par n_1, n_2, n_3, \ldots les quantités qui satisfont à l'équation

$$\frac{nX}{\tan nX} = I - hX,$$

et que l'on suppose rangées par ordre, en commençant par la plus petite; on formera l'équation générale

$$vx = a_1 e^{-kn_1^2 t} \sin n_1 x + a_2 e^{-kn_2^2 t} \sin n_2 x + a_3 e^{-kn_3^2 t} \sin n_3 x + \dots$$

Si l'on fait t = 0, on aura, pour exprimer l'état initial des températures,

$$xv = a_1 \sin n_1 x + a_2 \sin n_2 x + a_3 \sin n_3 x + a_4 \sin n_4 x + \dots$$

La question consiste à déterminer, quel que soit l'état initial, les coefficients a_1 , a_2 , a_3 , a_4 , Supposons donc que l'on connaisse les

valeurs de v depuis x = 0 jusqu'à x = X, et représentons ce système de valeurs par F(x), on aura $\binom{1}{2}$

(e)
$$\mathbf{F}(x) = \frac{1}{x}(a_1 \sin n_1 x + a_2 \sin n_2 x + a_3 \sin n_3 x + a_4 \sin n_4 x + \dots).$$

291.

Pour déterminer le coefficient a_1 , on multipliera les deux membres de l'équation par $x \sin nx \, dx$, et l'on intégrera depuis x = 0 jusqu'à x = X. L'intégrale

$$\int \sin m \, x \sin n \, x \, dx,$$

prise entre ces limites, est

$$\frac{1}{m^2 - n^2} (-m \sin n \mathbf{X} \cos m \mathbf{X} + n \sin m \mathbf{X} \cos n \mathbf{X}).$$

Si m et n sont des nombres choisis parmi les racines n_1, n_2, n_3, \ldots qui satisfont à l'équation

$$\frac{nX}{\tan g nX} = 1 - hX,$$

on aura

$$\frac{mX}{\tan gm} = \frac{nX}{\tan gn}$$

ou

$$m \cos m \mathbf{X} \sin n \mathbf{X} - n \sin m \mathbf{X} \cos n \mathbf{X} = 0.$$

On voit par là que la valeur totale de l'intégrale est nulle; mais il y a un seul cas où cette intégrale ne s'évanouit pas : c'est lorsque m=n. Elle devient alors $\frac{0}{0}$ et, par l'application des règles connues, elle se réduit à

$$\frac{1}{2}X - \frac{1}{4n}\sin 2nX.$$

(1) Fourier va déterminer les coefficients a_1, a_2, \ldots , mais en admettant que le développement est possible, quelle que soit la fonction arbitraire F(x) qui définit l'état initial; or c'est là un point qui n'est nullement démontré. Poisson, qui a signalé ce défaut de la solution de Fourier, a proposé, dans sa *Théorie de la chaleur*, une méthode d'exposition différente, mais qui ne fait que reporter sur un autre point exactement la même difficulté.

G. D.

Il résulte de là que, pour avoir la valeur du coefficient a_1 dans l'équation [e], il faut écrire

$${}_{2}\int x \mathbf{F}(x) \sin n_{1}x \, dx = a_{1}\left(\mathbf{X} - \frac{1}{2n_{1}} \sin 2n_{1}\mathbf{X}\right),$$

le signe \int indiquant que l'on prend l'intégrale depuis x=0 jusqu'à x=X. On aura pareillement

$$_2 \int x \mathbf{F}(x) \sin n_2 x \, dx = a_2 \left(\mathbf{X} - \frac{1}{2n_2} \sin 2n_2 \mathbf{X} \right).$$

On déterminera de même tous les coefficients suivants. Il est aisé de voir que l'intégrale définie

$$2 \int x F(x) \sin nx dx$$

a toujours une valeur déterminée, quelle que puisse être la fonction arbitraire F(x). Si cette fonction F(x) est représentée par l'ordonnée variable d'une ligne qu'on aurait tracée d'une manière quelconque, la fonction $xF(x)\sin nx$ correspondra aussi à l'ordonnée d'une seconde ligne que l'on construirait facilement au moyen de la première. L'aire terminée par cette dernière ligne entre les abscisses x=0, x=X fora connaître le coefficient a_i , i étant l'indice du rang de la racine n.

La fonction arbitraire F(x) entre dans chaque coefficient sous le signe de l'intégration et donne à la valeur de v toute la généralité que la question exige; on parvient ainsi à l'équation suivante :

$$\frac{xv}{2} = \frac{\sin n_1 x \int x F(x) \sin n_1 x dx}{X - \frac{1}{2n_1} \sin 2n_1 X} e^{-kn_1^2 t} + \frac{\sin n_2 x \int x F(x) \sin n_2 x dx}{X - \frac{1}{2n_2} \sin 2n_2 X} e^{-kn_2^2 t} + \cdots$$

Telle est la forme que l'on doit donner à l'intégrale générale de l'équation

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} + \frac{2}{x} \frac{\partial v}{\partial x}$$

pour qu'elle représente le mouvement de la chaleur dans la sphère solide. En effet, toutes les conditions de la question seront remplies :

1º L'équation aux différences partielles sera satisfaite.

2º La quantité de chaleur qui s'écoule à la surface conviendra à la fois à l'action mutuelle des dernières couches et à l'action de l'air sur la surface, c'est-à-dire que l'équation

$$\frac{\partial v}{\partial x} + hv = 0,$$

à laquelle chacunc des parties de la valeur de v satisfait lorsque x=X, aura lieu aussi lorsqu'on prendra pour v la somme de toutes ces parties.

3° La solution donnée conviendra à l'état initial lorsqu'on supposera le temps nul.

292.

Les racines n_1 , n_2 , n_3 , n_4 , ... de l'équation

$$\frac{nX}{\tan nX} = 1 - hX$$

sont très inégales; d'où l'on conclut que, si la valeur du temps écoulé t est considérable, chaque terme de la valeur de v est extrêmement petit par rapport à celui qui le précède. A mesure que le temps du refroidissement augmente, les dernières parties de la valeur de v cessent d'avoir aucune influence sensible; et ces états partiels et élémentaires qui composent d'abord le mouvement général, et qui sont superposés de telle manière qu'ils puissent comprendre l'état initial, disparaissent presque entièrement, excepté un seul. Dans ce dernier état, les températures des différentes couches décroissent depuis le centre jusqu'à la surface, de même que, dans le cercle, les rapports du sinus à l'arc décroissent à mesure que cet arc augmente. Cette loi règle naturellement la distribution de la chaleur dans une sphère solide. Lorsqu'elle commence à subsister, elle se conserve pendant toute la durée du refroidissement. Quelle que soit la fonction $\mathbf{F}(x)$ qui représente l'état initial, la loi dont il s'agit tend de plus en plus à s'établir; et, lorsque le refroidissement a duré quelque temps, on peut supposer qu'elle existe sans erreur sensible.

293.

Nous appliquerons la solution générale au cas où la sphère, ayant été longtemps plongée dans un liquide, a acquis dans tous ses points une même température. Dans ce cas, la fonction F(x) est x, et la détermination des coefficients se réduit à intégrer $x \sin nx \, dx$, depuis x = 0 jusqu'à x = X; cette intégrale est $\frac{\sin nX - nX \cos nX}{n^2}$. Donc la valeur d'un coefficient quelconque est exprimée ainsi

$$a = \frac{2}{n} \frac{\sin n \mathbf{X} - n \mathbf{X} \cos n \mathbf{X}}{n \mathbf{X} - \sin n \mathbf{X} \cos n \mathbf{X}};$$

le rang du coefficient est déterminé par celui de la racine n; l'équation qui donne ces valeurs de n est

$$\frac{nX\cos nX}{\sin nX} = 1 - hX;$$

on trouvera donc

$$a = \frac{2}{n} \frac{h X}{n X \cos \epsilon c n X} - \cos n X.$$

Il est aisé maintenant de former la valeur générale; elle est donnée par l'équation

$$\frac{e^{x}}{2Xh} = \frac{e^{-kn_1^2t}\sin n_1x}{n_1(n_1X\cos\acute{e}c\,n_1X - \cos n_1X)} + \frac{e^{-kn_2^2t}\sin n_2x}{n_2(n_2X\cos\acute{e}c\,n_2X - \cos n_2X)} + \dots$$

En désignant par ε_1 , ε_2 , ε_3 , ε_4 , ... les racines de l'équation

$$\frac{\varepsilon}{\tan \varepsilon} = r - h X,$$

et les supposant rangées par ordre en commençant par la plus petite, remplaçant n_1X , n_2X , n_3X , ... par ε_1 , ε_2 , ε_3 , ..., et mettant au lieu de k et k leurs valeurs $\frac{K}{CD}$ et $\frac{k}{K}$, on aura, pour exprimer les variations des températures pendant le refroidissement d'une sphère solide qui avait été uniformément échauffée, l'équation

$$v = \frac{2hX}{K} \left(\frac{\sin \varepsilon_1 \frac{x}{X}}{\varepsilon_1 \frac{x}{X}} \frac{e^{-\frac{K}{CD} \frac{\varepsilon_1^2}{X^2} t}}{\varepsilon_1 \cos \varepsilon c \varepsilon_1 - \cos \varepsilon_1} + \frac{\sin \varepsilon_2 \frac{x}{X}}{\varepsilon_2 \frac{x}{X}} \frac{e^{-\frac{K}{CD} \frac{\varepsilon_1^2}{X^2} t}}{\varepsilon_2 \cos \varepsilon c \varepsilon_2 - \cos \varepsilon_2} + \dots \right).$$

SECTION 11.

REMARQUES DIVERSES SUR CETTE SOLUTION.

294.

Nous exposerons quelques-unes des conséquences que l'on peut déduire de la solution précédente. Si l'on suppose que le coefficient h, qui mesure la facilité avec laquelle la chaleur passe dans l'air, a une très petite valeur, ou que le rayon X de la sphère est très petit, la moindre valeur de ε sera extrêmement voisine de zéro, en sorte que l'équation

$$\frac{\varepsilon}{\tan g \, \varepsilon} = 1 - \frac{h}{K} \, X$$

se réduit à

$$\frac{\varepsilon \left(1 - \frac{1}{2}\varepsilon^2\right)}{\varepsilon - \frac{1}{2}\varepsilon^3} = 1 - \frac{hX}{K}$$

ou, en omettant les puissances supérieures de E,

$$\varepsilon^2 = 3 \frac{hX}{K}.$$

D'un autre côté, la quantité $\frac{\varepsilon}{\sin \varepsilon}$ — $\cos \varepsilon$ devient, dans la même hypo-

thèse, $\frac{2hX}{K}$. Quant au terme $\frac{\sin\varepsilon\frac{x}{X}}{\varepsilon\frac{x}{X}}$, il se réduit à 1. En faisant ces sub-

stitutions dans l'équation générale, on aura

$$v = e^{-3\frac{ht}{\text{CDX}}} + \dots$$

On peut remarquer que les termes suivants décroissent très rapidement en comparaison du premier, parce que la seconde racine n_2 est beaucoup plus grande que zéro; en sorte que, si les quantités h ou X ont une petite valeur, on doit prendre, pour exprimer les variations

des températures, l'équation

$$v = e^{-3 \frac{ht}{\text{CDX}}}.$$

Ainsi les différentes enveloppes sphériques dont le solide est composé conservent une température commune pendant toute la durée du refroidissement. Cette température diminue comme l'ordonnée d'une logarithmique, le temps étant pris pour abscisse; la température initiale, qui est 1, se réduit après le temps t à

$$e^{-3\frac{ht}{\text{CDX}}}$$

Pour que la température devienne égale à la fraction $\frac{1}{m}$, il faut que la valeur de t soit $\frac{\text{CDX}}{3h}\log m$. Ainsi, pour des sphères de même matière qui ont des diamètres différents, les temps qu'elles mettent à perdre la moitié, ou même une fraction déterminée de leur chaleur actuelle, lorsque la conducibilité extérieure est extrêmement petite, sont proportionnels à leurs diamètres. Il en est de même des sphères solides dont le rayon est très petit; et l'on trouverait encore le même résultat en attribuant à la conducibilité intérieure K une très grande valeur. Il a lieu, en général, lorsque la quantité $\frac{hX}{K}$ est très petite. On peut regarder le rapport $\frac{h}{K}$ comme très petit, lorsque le corps qui se refroidit est formé d'un liquide continuellement agité que renferme un vase sphérique d'une petite épaisseur. Cette hypothèse est en quelque sorte la même que celle d'une conducibilité parfaite; donc la température décroît suivant la loi exprimée par l'équation

$$v = e^{-3\frac{ht}{\text{CDX}}}$$
.

295.

On voit par ce qui précède que, dans une sphère solide qui se refroidit depuis longtemps, les températures décroissent, depuis le centre jusqu'à la surface, comme le quotient du sinus par l'arc décroît depuis l'origine, où il est i, jusqu'à l'extrémité d'un arc donné à, le rayon de chaque couche étant représente par la longueur variable de cet arc. Si la sphère à un petit diamètre, ou si la conducibilité propre est beaucoup plus grande que la conducibilité extérieure, les températures des couches successives différent très peu entre elles, parce que l'arc total à, qui représente le rayon X de la sphère, à très peu d'étendue. Alors la variation de la température à commune à tous les points est donnée par l'équation

3 1 11%

Ainsi, en comparant les temps respectifs que deux petites sphères emploient à perdie la moitie, on une partie aliquote, de leur chaleur actuelle, on doit trouver que ces temps sont proportionnels aux diamètres.

2516

Le resultat exprime par l'equation précédente ne convient qu'a des masses d'une forme semblable et de petite dimension. Il était connu depuis longtemps des physiciens, et il se presente pour ainsi dire de lui meme. En effet, si un corps quelconque est assez petit pour que l'on puisse régarder comme égales les températures des différents points, il est facile de reconnaire la loi du retroidissement. Soient r la temperature initiale commune a fous les points, et c la valeur de cette temperature ques le temps écoule t; il est visible que la quantite de chaleur qui s'écoule pendant l'instant di, dans le indien suppose entretenu a la temperature o, est hSc dt, en designant par S la surface exterience du corpé. D'un autre cote, Cetant la chaleur qui est necessaire pour élever l'unité de poids de la temperature o à la temperature i, on aura CDV pour l'expression de la quantité de chaleur qui porterait le volume V du corps dont la densité est D de la temperature o a la temperature τ . Done $\frac{h \mathbf{x}_{t} \cdot dt}{\mathbf{t} \cdot \mathbf{D} \mathbf{V}}$ est la quantite dont la temperature c'est diminuec lorsque le corps perd une quantité de chalem

égale à hSc dt. On doit donc avoir l'équation

$$dv = -\frac{h \operatorname{S} v \, dt}{\operatorname{CDV}},$$

ou

$$v = e^{-\frac{hSt}{CDV}}$$
.

Si le corps a la forme sphérique, on aura, en appelant X le rayon total, l'équation $c=e^{-3\frac{ht}{\text{CDX}}}.$

297.

Supposons que l'on puisse observer, pendant le refroidissement du corps dont il s'agit, deux températures c_1 et c_2 correspondantes aux temps t_1 et t_2 ; on aura

 $\frac{hS}{CDV} = \frac{\log v_1 - \log v_2}{t_2 - t_1}.$

On connaîtra donc facilement par l'expérience l'exposant $\frac{h\,\mathrm{S}}{\mathrm{CDV}}$. Si l'on fait cette même observation sur des corps différents et si l'on connaît d'avance le rapport de leurs chaleurs spécifiques C et C', on trouvera celui de leurs conducibilités extérieures h et h'. Réciproquement, si l'on est fondé à regarder comme égales les valeurs h et h' de la conducibilité extérieure de deux corps différents, on connaîtra le rapport de leurs chaleurs spécifiques. On voit par là qu'en observant les temps du refroidissement pour divers liquides et autres substances enfermées successivement dans un même vase d'une très petite épaisseur, on peut déterminer exactement les chaleurs spécifiques de ces substances.

Nous remarquerons encore que le coefficient K qui mesure la conducibilité propre n'entre point dans l'équation

$$v = e^{-3\frac{ht}{\text{CDX}}}$$
;

ainsi les temps du refroidissement dans les corps de petite dimension

ne dépendent point de la conducibilité propre, et l'observation de ces temps ne peut rien apprendre sur cette dernière propriété; mais on pourrait la déterminer en mesurant les temps du refroidissement dans des vases de différentes épaisseurs.

298.

Ce que nous avons dit plus haut sur le refroidissement d'une sphère de petite dimension s'applique aux mouvements du thermomètre dans l'air ou dans les liquides. Nous ajouterons les remarques suivantes sur l'usage de cet instrument.

Supposons qu'un thermomètre à mercure soit plongé dans un vase rempli d'eau échaussée, et que ce vase se refroidisse librement dans l'air, dont la température est constante. Il s'agit de trouver la loi des abaissements successifs du thermomètre.

Si la température du liquide était constante et que le thermomètre y fût plongé, il changerait de température en s'approchant très promptement de celle du liquide. Soit v la température variable indiquée par le thermomètre, c'est-à-dire son élévation au-dessus de la température de l'air; soient u l'élévation de la température du liquide au-dessus de celle de l'air, et t le temps correspondant à ces deux valeurs v et u. Au commencement de l'instant dt qui va s'écouler, la différence de la température du thermomètre à celle du mercure étant v-u, la variable v tend à diminuer, et elle perdra, dans l'instant v0, une quantité proportionnelle à v0, en sorte que l'on aura l'équation

$$dv = -h(v - u) dt$$

Pendant le même instant dt, la variable u tend à diminuer, et elle perd une quantité proportionnelle à u, en sorte que l'on a l'équation

$$du = - \mathbf{H} u \, dt$$
.

Le coefficient H exprime la vitesse du refroidissement du liquide dans l'air, quantité que l'on peut facilement reconnaître par l'expérience,

ou

et le coefficient h exprime la vitesse avec laquelle le thermomètre se refroidit dans le liquide. Cette dernière vitesse est beaucoup plus grande que H. On peut pareillement trouver par l'expérience le coefficient h, en faisant refroidir le thermomètre dans le liquide entretenu à une température constante. Les deux équations

$$du = -\operatorname{H} u \, dt, \qquad dv = -h(v - u) \, dt$$

$$u = \operatorname{A} e^{-\operatorname{H} t}, \qquad \frac{dv}{dt} = -hv + h \operatorname{A} e^{-\operatorname{H} t}$$

fournissent celle-ci:

$$v - u = be^{-ht} + ae^{-Ht},$$

a et b étant des constantes arbitraires ('). Supposons maintenant que la valeur initiale de v-u soit Δ , c'est-à-dire que la hauteur du thermomètre surpasse de Δ la vraie température du liquide au commencement de l'immersion, et que la valeur initiale de u soit E; on déterminera a et b, et l'on aura

$$v - u = \Delta e^{-ht} + \frac{HE}{h - H} (e^{-Ht} - e^{-ht}).$$

La quantité v-u est l'erreur du thermomètre, c'est-à-dire la différence qui se trouve entre la température indiquée par le thermomètre et la température réelle du liquide au même instant. Cette différence est variable et l'équation précédente nous fait connaître suivant quelle loi elle tend à décroître. On voit, par l'expression de cette différence v-u, que deux de ses termes, qui contiennent e^{-ht} , diminuent très rapidement, avec la vitesse qu'on remarquerait dans le thermomètre si on le plongeait dans le liquide à température constante. A l'égard du terme qui contient e^{-nt} , son décroissement est beaucoup plus lent et s'opère avec la vitesse du refroidissement du vase dans l'air. Il

(1) La valeur de α est liée à celle de A par la relation

résulte de la qu'après un temps bien peu considerable, l'erreur du thermometre est représentée par le seul terme

$$\frac{HE}{\lambda - H} = \frac{H}{h - H} \frac{u_*}{u_*}$$

299.

Voici maintenant ce que l'experience apprend sur les valeurs de H et h. On a plonge dans l'eau, a 8°, i division octogesimale, un thermometre qui avait d'abord ete echanffe, et il est descendu dans l'eau de 40° a 40° en six secondes. On a repete plusieurs fois et avec soin cette experience. On trouve, d'après cela, que la valeur de c 4 est 0,00004°, si le temps est compte en minutes; c'est-à-dire que, l'élèvation du thermometre etant E au commencement d'une minute, elle serà 0,000 (4). E a la fin de cette minute. On trouve aussi

On a large en memo temps se retroulir dans l'air a 196 un vase de porcelaine, rempli d'eau cchaullee a 60%. La valeur de e^{-0} dans ce cas a ete trouvee de $\alpha, \alpha 8\%$ et, celle de Hloge est $\alpha, \alpha 06\%$. On voit par la combien est petite la valeur de la fraction e^{-0} , et que, après une seule minute, chaque terme multiplie par e^{-37} n'est pas la moitie de la diximillieme partie de ce qu'il était au commencement de cette minute. On doit donc n'avoir aucun egard a ces termes dans la valeur de e^{-10} . Il reste l'equation

* 111

D'apres les valeurs trouvees pour II et h, on voit que cette dernière

estatte salear de & establemae par l'emplor de la formule donnée à l'article precédent, où l'on dont faire W=0

301.

On a déterminé, dans les articles précédents, la température v que reçoit, après le temps écoulé t, une couche sphérique intérieure placée à la distance x du centre. Il s'agit maintenant de calculer la valeur de la température moyenne de la sphère, ou celle qu'aurait ce solide si toute la quantité de chaleur qu'il contient était également distribuée entre tous les points de la masse. Le solide de la sphère dont le rayon est x étant $4\pi \frac{x^3}{3}$, la quantité de chaleur contenue dans une enveloppe sphérique dont la température est v et le rayon x sera $4v d\left(\frac{\pi x^3}{3}\right)$. Ainsi la chaleur moyenne est

$$4 \int \frac{v d\left(\frac{\pi x^3}{3}\right)}{4\pi \frac{X^3}{3}} \quad \text{ou} \quad \frac{3}{X^3} \int x^2 v \, dx,$$

l'intégrale étant prise depuis x = 0 jusqu'à x = X. On mettra pour v sa valeur

$$\frac{a_1}{x}e^{-kn_3^2t}\sin n_1x + \frac{a_2}{x}e^{-kn_2^2t}\sin n_2x + \frac{a_3}{x}e^{-kn_3^2t}\sin n_3x + \dots,$$

et l'on aura l'équation

$$\begin{split} \frac{3}{\mathbf{X}^3} \int x^2 v \, dx &= \frac{3}{\mathbf{X}^3} \left(a_1 \frac{\sin n_1 \mathbf{X} - n_1 \mathbf{X} \cos n_1 \mathbf{X}}{n_1^2} e^{-k \, r_1^2 t} \right. \\ &+ a_2 \frac{\sin n_2 \mathbf{X} - n_2 \mathbf{X} \cos n_2 \mathbf{X}}{n_2^2} e^{-k \, n_2^2 t} + \dots \right). \end{split}$$

On a trouvé précédemment

$$a_i = \frac{4 \left(\sin n_i \mathbf{X} - n_i \mathbf{X} \cos n_i \mathbf{X} \right)}{n_i \left(2 n_i \mathbf{X} - \sin 2 n_i \mathbf{X} \right)}.$$

On aura donc, en désignant par z la température moyenne,

$$\frac{z}{3.4} = \frac{(\sin \varepsilon_1 - \varepsilon_1 \cos \varepsilon_1)^2}{\varepsilon_1^3 (2\varepsilon_1 - \sin 2\varepsilon_1)} e^{-\frac{K}{CDX^2}\varepsilon_1^2 t} + \frac{(\sin \varepsilon_2 - \varepsilon_2 \cos \varepsilon_2)^2}{\varepsilon_2^3 (2\varepsilon_2 - \sin 2\varepsilon_2)} e^{-\frac{K}{CDX^2}\varepsilon_2^2 t} + \dots,$$

équation dans laquelle tous les coefficients des exponentielles sont positifs.

302.

Le terme de la valeur de z qui contient $e^{-\frac{K_{\rm B} N^2}{4}}$ devenant, à mesure que le temps augmente, beaucoup plus grand que les suivants, cette valeur de z, apres un certain temps, est exprimee sans erreur sensible par le premier terme seulement. L'exposant $\frac{K_B n_s^2}{4 \text{ D}}$ etant égal à $K_{(4DN)}^{-\frac{\pi^2}{4}}$ on voit que le retroidissement final est tres lent dans les sphères d'un grand diametre, et que l'exposant de e qui mesure la vitesse du retroidissement est en raison inver e du carre des diametres.

303.

On pent, d'après les remarques précédentes, se former une idée exacte des variations que subissent les temperatures pendant le réfroidissement d'une sphere solide. Les valeurs initiales de ces temperatures changent successivement, à me ure que la chaleur se dissipe par la surface. Si les temperatures des diverses conches sont d'abord egales, ou si elles diminuent depuis la surface jusqu'au centre, elles ne peuvent point consciver leurs premiers rapports et, dans tous les cas, le système tend de plus en plus vers un état durable qu'il ne tarde point à atteindre sensiblement. Dans ce dérnier état, les temperatures de roissent dépuis le centre jusqu'à la surface. Si l'on représente par un certain aix à, moundre que le quart de la circonférence, le rayon total de la sphere et que, divisant cet are en parties egales, on prenne en chaque point le quotient du sinus par l'are, le système de ces rapports représentera celui qui s'établit de lui-même entre les tem-

pératures des couches d'une égale épaisseur. Dès que ces derniers rapports ont lieu, ils continuent de subsister pendant toute la durée du refroidissement. Alors chacune des températures diminue comme l'ordonnée d'une logarithmique, le temps étant pris pour abscisse. On peut reconnaître que cet ordre est établi, en observant plusieurs valeurs successives z, z', z'', z''', ..., qui désignent la température moyenne pour les temps t, $t + \Theta$, $t + 2\Theta$, $t + 3\Theta$, ...; la suite de ces valeurs converge toujours vers une progression géométrique et, lorsque les quotients successifs $\frac{z}{z'}$, $\frac{z'}{z''}$, $\frac{z''}{z'''}$, ... ne changent plus, on en conclut que les rapports dont il s'agit sont établis entre les températures. Lorsque la sphère est d'un petit diamètre, ces quotients sont sensiblement égaux dès que le corps commence à se refroidir. La durée du refroidissement pour un intervalle donné, c'est-à-dire le temps nécessaire pour que la température moyenne z soit réduite à une partie déterminée d'elle-même $\frac{z}{m}$, est d'autant plus grande que la sphère a un plus grand diamètre.

304.

Si deux sphères de même matière et de dimensions différentes sont parvenues à cet état final où les températures s'abaissent en conservant leurs rapports, et que l'on veuille comparer les durées d'un même refroidissement, c'est-à-dire le temps Θ que la température moyenne z de la première emploie pour se réduire à $\frac{z}{m}$, et le temps Θ' que la température z' de la seconde met à devenir $\frac{z'}{m}$, il faut considérer trois cas différents. Si les sphères ont l'une et l'autre un petit diamètre, les durées Θ et Θ' sont dans le rapport même des diamètres. Si les sphères ont l'une et l'autre un diamètre très grand, les durées Θ et Θ' sont dans le rapport des carrés des diamètres; et si les sphères ont des diamètres compris entre ces deux limites, les rapports des temps seront plus grands que ceux des diamètres, et moindres que ceux de leurs carrés. On a rapporté plus haut les valeurs exactes de ces rapports.

La question du mouvement de la chaleur dans une sphère comprend

celle des temperatures terrestres. Pour traiter cette dernière question avec plus d'étendue, nous en avons fait l'objet d'un Chapitre séparé (!).

305

L'usage que l'on a fait precedemment de l'equation

lane /

est fonde sur une construction geometrique qui est tres propre à expliquer la nature de ces equations. En effet, cette construction fait voir clairement que toutes les raemes sont reelles; en meme temps elle en fait connaître les limites et indique les moyens de determiner la valeur numérique de chacune d'elles. L'examen analytique des équations de ce genre donnérait les memes resultats. On pourra d'abord reconnaître que l'equation précédente, dans laquelle ℓ est un nombre connu, moindre que l'unité, n'a ancune na me imaginaire de la forme $m = m\chi = r$. Il suttit de substituer au lieu de ℓ cette dermere quantité, et l'on voit, après les transformations, que le premier membre ne peut devenir nul loi aqu on attribue a m et ℓ des valeurs reelles, à moins que ℓ une soit nulle ℓ . On demontre aussi qu'il ne peut y avoir dans cetté meme equation

Alter our constant of the cons

ancune no me magnarre, de que forme que ce soit.

2

In remposphil a fact a service man, ca pathos magnification les deux membres, on tropic

Il est macrolers de que cette expanses de peut être à crater quand e cet different de zero

tel., is to be species of a new second country details dans be Memmin presente in the quality of the country of the second second second second dans l'Ouvrage que nous reimpérois à l'equit du texte est reproduite textuellement d'après le Memoire de l'oursi Asia Maria. L'et de mande Sommer, the participation of the particip

^{*} Trans is en etil terprate in more to forther

En effet : 1º les racines imaginaires du facteur $\frac{1}{\cos z}$ o n'appartienment point à l'equation $-\ell$ tang ℓ o, pursque ces racines sont toutes de la forme $m-u\chi-1$; v l'equation $\sin z=\int_{\mathbb{R}^n}\cos z-\omega$ a necessairement toutes ses racines reelles lorsque ℓ est moindre que l'unité. Pour prouver cette dernière proposition, il faut considérer sin z comme le produit d'une infinite de facteurs, qui sont

$$z\left(1-\frac{z^{2}}{2}\right)\left(1-\frac{z^{2}}{2}\right)\left(1-\frac{z^{2}}{2}\right)\left(1-\frac{z^{2}}{2}\right)\left(1-\frac{z^{2}}{2}\right)$$

et considerer coss comme derivant de surs par la differentiation. On supposera qu'au hen de former surs du produit d'un nombre infini de facteurs on emploie seulement les m premiers, et que l'on designe le produit par $\varphi_m \in \mathbb{R}$ Pour trouver la valeur correspondante qui remplace coss, on prendra $\frac{d(\varphi_m) \circ v}{dt}$ on $\varphi_m \in \mathbb{R}$ Cela pose, on aura l'equation

Or, en donnant au nombre 100 ses valeurs successives 1, 2, 7 de

et que le second membre a est toujours plus grant en auteur abs duc que le premier. Le effet, ce second membre peut s'ecris

throm a

Le second membre est donc plus grand que

il ne peut donc être égal à cette expression multipliée par la fraction :

Il y it dans la suite de cet article un certain nombre de points mesacts on contestal fermais, comme on pourrait le supprimer en entier sans interrangre la suité des idees accus nous sommes contenté de reproduire sains changement le texte de l'autrer pms i jusqu'a l'infini, on reconnaîtra, par les principes ordinaires de l'Algebre, la nature des fonctions de \hat{z} qui correspondent à ces différentes valeurs de m. On verra que, quel que soit le nombre m des facteurs, les equations en , qui en proviennent ont les caractères distinctifs de celles qui ont toutes leurs racines reelles. De là on conclut rigourensement que l'equation

lang /.

dans laquelle z est moindre que l'unite, ne peut avoir aucune racine imaginaire. Cette meme proposition pourrait encore être deduite d'une analyse différente que nous emploierons dans un des Chapitres suivants.

An reste, la solution que nons avons donnée n'est point fondée sur la propriété dont joint cette equation d'avoir toutes ses racines réelles. Il n'annait donc pas été nécessaire de démontrer cette proposition par les principes de l'Analyse algebrique. Il suffit pour l'exactitude de la solution que l'intégrale puisse coincider avec un état initial quel-conque; car il s'ensuit rigourensement qu'elle doit représenter aussi tous les états subsequents.

CHAPITRE VI.

DU MOUVEMENT DE LA CHALEUR DANS UN CYLINDRE SOLIDE.

306.

Le mouvement de la chaleur dans un cylindre solide d'une longueur infinie est représenté par les équations

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{1}{x} \frac{\partial v}{\partial x} \right), \qquad \frac{h}{K} V + \frac{\partial V}{\partial x} = 0,$$

que l'on a rapportées (p. 97 et suivantes) dans les articles 418, 419 et 120. Pour intégrer ces équations, on donnera en premier lieu à vune valeur particulière très simple, exprimée par l'équation

$$v = e^{-mt} u$$
:

m est un nombre quelconque et u une fonction de x. On désigne par k le coefficient $\frac{K}{KD}$ qui entre dans la première équation, et par k le coefficient $\frac{k}{K}$ qui entre dans la seconde. En substituant la valeur attribuée à v, on trouve la condition suivante :

$$\frac{d^2u}{dx^2} + \frac{1}{x}\frac{du}{dx} + \frac{m}{k}u = 0.$$

On choisira donc pour u une fonction de x qui satisfasse à cette équation différentielle. Il est facile de voir que cette fonction peut être exprimée par la série suivante

$$u = \mathbf{I} - \frac{g x^2}{2^2} + \frac{g^2 x^4}{2^2 \cdot 4^2} - \frac{g^3 x^6}{2^2 \cdot 4^2 \cdot 6^2} + \frac{g^4 x^6}{2^2 \cdot 4^2 \cdot 6^2 \cdot 8^2} - \dots,$$

g désignant la constante $\frac{m}{k}$. On examinera plus particulièrement par

la suite l'équation differentielle dont cette série dérive; on regarde ici. la fonction u comme étant connue, et l'on a

pour la valeur particulière de c.

L'état de la surface convexe du cylindre est assujetti à une condition exprimee par l'equation determinée

$$J_t X = \frac{JX}{JJ_t} = \alpha_t$$

qui doit etre satisfaite forsque le rayon x a sa valeur totale X; on en conclura l'equation determinée

$$h(x) = \frac{1}{x^2} \sum_{i=1}^{x} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \sum_{i=1}^{x} \frac{1}{x^2} \sum_{i=1}^{x} \sum_{i=1}^{x}$$

Ainsi le nombre g qui entre dans la valeur particulière i = [u] n'est point arbitraire : il est necessaire que ce nombre satisfasse à l'equation précedente, qui contient g et X. Nous prouverons que cette equation en g, dans laquelle h et X sont des quantites données, à une infinite de racines, et que fontes ces racines sont réelles. Il s'ensuit que l'on peut donnée à la variable i une infinite de valeurs particulières, de la forme i = [u], qui différéront seulement par l'exposant g. On pourra donc composer une valeur phisgénérale en ajoutant toutes ces valeurs particulières, multiplace—par des coefficients arbitraires. L'intégrale qui servira à résondre dans fonte son éténdue la question proposée est donnée par l'équation suivante.

 g_0, g_2, g_3, \dots designent tontes les valeurs de g qui satisfont à l'equation déterminee; u_i, u_j, u_j, \dots designent les valeurs de u qui correspondent à ces différentes radines; a_i, a_j, a_k, \dots sont des coefficients arbitraires, qui ne pouvent etre détermines que par l'état initial du solide.

307.

Il faut maintenant examiner la nature de l'équation déterminée qui donne les valeurs de g et prouver que toutes les racines de cette équation sont réelles, recherche qui exige un examen attentif.

Dans la série

$$_{1}-\frac{gX^{2}}{2^{2}}+\frac{g^{2}X^{4}}{2^{2}.4^{2}}-\frac{g^{3}X^{6}}{2^{2}.4^{2}.6^{2}}+...,$$

qui exprime la valeur que reçoit u lorsque x = X, on remplacera $\frac{gX^2}{2^2}$ par la quantité θ , et, désignant par $f(\theta)$ ou y cette fonction de θ , on aura

$$y = f(\theta) = \mathbf{1} - \theta + \frac{\theta^2}{2^2} - \frac{\theta^3}{2^2 \cdot 3^2} + \frac{\theta^4}{2^2 \cdot 3^2 \cdot 4^2} - \dots;$$

l'équation déterminée deviendra

$$\frac{hX}{2} = \frac{\theta - 2\frac{\theta^2}{2^2} + 3\frac{\theta^3}{2^2 \cdot 3^2} - 4\frac{\theta^4}{2^2 \cdot 3^2 \cdot 4^2} + \dots}{1 - \theta + \frac{\theta^2}{2^2} - \frac{\theta^3}{2^2 \cdot 3^2} + \frac{\theta^4}{2^2 \cdot 3^2 \cdot 4^2} - \dots}$$

ou

$$\frac{hX}{2} + \theta \frac{f'(\theta)}{f(\theta)} = 0,$$

 $f(\theta)$ désignant la fonction $\frac{df(\theta)}{d\theta}$.

Chacune des valeurs de θ fournira une valeur pour g, au moyen de l'équation

$$\frac{g X^2}{2^2} = 0;$$

et l'on obtiendra ainsi les quantités g_1, g_2, \ldots , qui entrent en nombre infini dans la solution cherchée.

La question est donc de démontrer que l'équation

$$\frac{h\mathbf{X}}{2} + \theta \frac{f'(\theta)}{f(\theta)} = 0$$

doit avoir toutes ses racines réelles. Nous prouverons, à cet effet, que l'équation

$$f(\theta) = 0$$

a toutes ses racines réelles; qu'il en est de même, par conséquent, de l'équation

$$f'(\theta) = 0$$

et qu'il s'ensuit que l'équation

$$\Lambda = \frac{\theta f'(\theta)}{f(\theta)}$$

a aussi toutes ses racines réelles, A représentant la quantité connue $-\frac{hX}{2}$.

308.

L'équation

$$y = 1 - \theta + \frac{\theta^2}{2^2} - \frac{\theta^3}{2^2 \cdot 3^2} + \frac{\theta^4}{2^2 \cdot 3^2 \cdot 4^2} - \dots,$$

étant différentiée deux fois, donne la relation suivante :

$$y + \frac{dy}{d\theta} + \theta \frac{d^2y}{d\theta^2} = 0.$$

On écrira, comme il suit, cette équation et toutes celles que l'on en déduit par la différentiation

$$y + \frac{dy}{d\theta} + \theta \frac{d^2 y}{d\theta^2} = 0,$$

$$\frac{dy}{d\theta} + 2 \frac{d^2 y}{d\theta^2} + \theta \frac{d^3 y}{d\theta^3} = 0,$$

$$\frac{d^2 y}{d\theta^2} + 3 \frac{d^3 y}{d\theta^3} + \theta \frac{d^4 y}{d\theta^4} = 0,$$

et, en général,

$$\frac{d^{i}y}{d\theta^{i}} + (i+1)\frac{d^{i+1}y}{d\theta^{i+1}} + \theta \frac{d^{i+2}y}{d\theta^{i+2}} = 0.$$

Or, si l'on écrit dans l'ordre suivant l'équation algébrique

$$X = 0$$

et toutes celles qui en dérivent par la différentiation

$$X = 0$$
, $\frac{dX}{dx} = 0$, $\frac{d^2X}{dx^2} = 0$, $\frac{d^3X}{dx^3} = 0$, $\frac{d^4X}{dx^4} = 0$, ...

et si l'on suppose que toute racine réelle d'une quelconque de ces équations, étant substituée dans celle qui la précède et dans celle qui la suit, donne deux résultats de signe contraire, il est certain que la proposée X = o a toutes ses racines réelles, et que, par conséquent, il en est de même de toutes ses équations subordonnées

$$\frac{d\mathbf{X}}{dx} = 0, \qquad \frac{d^2\mathbf{X}}{dx^2} = 0, \qquad \frac{d^3\mathbf{X}}{dx^3} = 0, \qquad \dots;$$

ces propositions sont fondées sur la théorie des équations algébriques et ont été démontrées depuis longtemps (1). Il suffit donc de prouver

(1) Fourier énonce ici une des conséquences du beau théorème qui constitue sa découverte capitale dans cette théorie des équations algébriques et transcendantes qui n'a jamais cessé de l'occuper et à laquelle il a consacré un Ouvrage spécial, l'Analyse des équations déterminées. On sait que la première Partie de ce Traité a seule paru et a été publiée en 1831 par les soins de Navier, un an environ après la mort de Fourier.

Fourier applique à l'équation transcendante

$$y = 0$$

une proposition qui n'est démontrée que pour les équations algébriques. Dans le XIX° Cahier du *Journal de l'École Polytechnique*, page 382, Poisson présente à ce sujet quelques remarques critiques qui paraissent justifiées. Il considère l'équation

$$y = e^x + be^{ax} = 0.$$

où a désigne une constante positive, différente de l'unité. La fonction y est une solution particulière de l'équation différentielle

(
$$\beta$$
)
$$\frac{d^2y}{dx^2} - (\alpha + 1)\frac{dy}{dx} + \alpha y = 0,$$

à laquelle on peut appliquer littéralement tous les raisonnements de Fourier. Si la proposition admise dans le texte était exacte, on devrait donc conclure que l'équation (α) a toutes ses racines réelles. Or cette équation n'a qu'une racine réelle si b est négatif; elle n'en a aucune si b est positif, et, dans les deux cas, elle a une infinité de racines imaginaires. Cela suffit, semble-t-il, à décider la question.

Cette objection de Poisson avait été très sensible à Fourier; il y revient à diverses reprises, notamment à la page 616 du tome VIII des Mémoires de l'Académie des Sciences et dans un travail spécial intitulé: Remarques générales sur l'application des principes de l'Analyse algébrique aux équations transcendantes, inséré au tome X, page 119, du même Recueil.

Il ne faudrait pas conclure des remarques précédentes que le théorème de Fourier ne peut être d'aucune utilité dans l'étude des équations transcendantes. Convenablement appliqué, il joue, au contraire, dans la résolution de ces équations, un rôle très important que Fourier a été le premier à signaler. On s'en assurera aisément en relisant divers passages de l'Ouvrage que nous avons cité plus haut.

est placée entre deux racines consécutives de

$$y=0$$
,

et réciproquement. Donc, en désignant par θ_i^* et θ_3 deux racines consécutives de l'équation y'=0.

et par θ₂ la racine de l'équation

qui est placée entre θ_4 et θ_3 , toute valeur de θ , comprise entre θ_1 et θ_2 , donnera à y un signe différent de celui que recevrait cette fonction y, si θ avait une valeur comprise entre θ_2 et θ_3 . Ainsi la quantité $\theta \frac{y'}{y'}$ est nulle lorsque $\theta = \theta_4$; elle est infinie lorsque $\theta = \theta_4$, et nulle lorsque $\theta = \theta_3$. Il est donc nécessaire que cette quantité $\theta \frac{y'}{y'}$ prenne toutes les valeurs possibles, depuis zéro jusqu'à l'infini, dans l'intervalle de θ_4 à θ_2 , et prenne aussi toutes les valeurs possibles de signe opposé, depuis l'infini jusqu'à zéro, dans l'intervalle de θ_2 à θ_3 . Donc l'équation

$$|\Lambda| \leq \theta \frac{y'}{y'}$$

a nécessairement une racine réelle entre θ_i et θ_a ; et, comme l'équation

a toutes ses racines réelles en nombre infini, il s'ensuit que l'équation

$$\Lambda = \theta \frac{y'}{y}$$

a la même propriété. On est parvenu à démontrer de cette manière que l'équation déterminée

$$\frac{h\mathbf{X}}{2} = \frac{\frac{g\mathbf{X}^2}{2^2} - 2\frac{g^2\mathbf{X}^4}{2^2 \cdot 4^2} + 3\frac{g^3\mathbf{X}^6}{2^2 \cdot 4^2 \cdot 6^2} - \dots}{1 - \frac{g\mathbf{X}^2}{2^2} + \frac{g^2\mathbf{X}^4}{2^2 \cdot 4^2} - \frac{g^2\mathbf{X}^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots},$$

dont l'inconnue est g, a toutes ses racines réelles et positives.

340

ou

$$u = 1 - \frac{g \cdot x^2}{2^2} + \frac{g^2 \cdot x^4}{2^2 \cdot 4^2} - \dots$$

Il est facile d'exprimer la somme de cette série. Pour obtenir ce résultat, on développera comme il suit la fonction $\cos(\alpha \sin x)$ en cosinus d'arcs multiples. On aura, par les transformations connues,

$$2\cos(\alpha\sin x) = e^{\frac{1}{2}\alpha e^{x\sqrt{-1}}} e^{-\frac{1}{2}\alpha e^{-x\sqrt{-1}}} + e^{-\frac{1}{2}\alpha e^{x\sqrt{-1}}} e^{\frac{1}{2}\alpha e^{-x\sqrt{-1}}},$$

et, désignant $e^{x\sqrt{-1}}$ par ω ,

$$2\cos(\alpha\sin x) = e^{\frac{\alpha\omega}{2}} e^{\frac{-\alpha\omega^{-1}}{2}} + e^{\frac{-\alpha\omega}{2}} e^{\frac{\alpha\omega^{-1}}{2}}.$$

En développant le second membre selon les puissances de ω , on trouvera que le terme qui ne contient point ω dans le développement de $\cos(\alpha \sin x)$ est

$$1-\frac{\alpha^2}{2^2}+\frac{\alpha^4}{2^2\cdot 4^2}-\frac{\alpha^6}{2^2\cdot 4^2\cdot 6^2}+\frac{\alpha^8}{2^2\cdot 4^2\cdot 6^2\cdot 8^2}-\ldots;$$

les coefficients de ω^4 , ω^3 , ω^3 , ... sont nuls; il en est de même des coefficients des termes qui contiennent ω^{-4} , ω^{-3} , ω^{-3} , ...; le coefficient de ω^{-2} est le même que celui de ω^2 ; le coefficient de ω^4 est $\frac{\alpha^4}{2\cdot 4\cdot 6\cdot 8} = \frac{\alpha^6}{2^2\cdot 4\cdot 6\cdot 8\cdot 10} + \ldots$; le coefficient de ω^{-4} est le même que celui de ω^4 ; il est aisé d'exprimer la loi suivant laquelle ces coefficients se succèdent; mais, sans s'y arrêter, on écrira $2\cos 2\alpha$ au lieu de $(\omega^2 + \omega^{-2})$, ou $2\cos 4\alpha$ au lieu de $(\omega^4 + \omega^{-4})$, et ainsi de suite. Donc la quantité $\cos(\alpha \sin \alpha)$ peut être facilement développée en une série de la forme

$$A + B\cos 2x + C\cos 4x + D\cos 6x + \dots$$

et le premier coefficient A est égal à

$$1 - \frac{\alpha^2}{2^2} + \frac{\alpha^4}{2^2 \cdot 4^2} - \frac{\alpha^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots$$

Si l'on compare maintenant l'équation générale que nous avons donnée

précèdemment

$$\frac{1}{4}\pi \, \varphi(x) = \frac{1}{4} \int \varphi(x) \, dx = \cos x \int \varphi(x) \cos x \, dx + \dots$$

a cellesci

on trouvera les valeurs des coefficients A, B, C exprimées par des intégrales definies. Il suffit ieu de trouver celle du premier coefficient A. On aura donc

l'integrale devant être prise depuis $x=\alpha$ jusqu'a $x=\pi$. Donc la valeur de la serie

est celle de l'integrale definie

On trouverait de la meme manière, par la comparaison des deux equations, les valeurs des coefficients suivants B, C, ...; on a indique ces resultats parce qu'ils sont utiles dans d'autres recherches qui dependent de la meme theorie. $^{+}$. Il suit de la que la valeur particulière de u qui satisfait à l'équation.

Le groupe complet des fonctions de Rewel peut être considéré comme défini par les deux equations

³º i les fonctions & B.t. dont l'ourier signale les toute l'importance, sont relles qui out ête étudiées depans par Ressel Jacoba Hansen et un grand nombre d'autres geometres l'Aut toutefois, pour avoir l'ensemble des fonctions de Ressel joindre aux précédente-relles qui résultent du développement de la fonction sint son r.

est

$$\frac{1}{\pi} \int \cos(x\sqrt{g}\sin r) \, dr,$$

l'intégrale étant prise depuis r=0 jusqu'à $r=\pi$. En désignant par q cette valeur, on fera dans l'équation linéaire

$$u = qs;$$

l'équation en s ainsi obtenue aura pour intégrale

$$s = a + b \int \frac{dx}{x q^2},$$

a et b désignant deux constantes arbitraires; on aura donc, pour l'intégrale complète de l'équation

$$\frac{d^2u}{dx^2} + \frac{1}{x}\frac{du}{dx} + gu = 0,$$

l'expression

$$u = q \left(a + b \int \frac{dx}{x q^2} \right)$$

$$= \left\{ \frac{a}{\pi} + b \pi \int \frac{dx}{x \left[\int \cos(x \sqrt{g} \sin r) dr \right]^{\frac{2}{3}}} \right\} \int \cos(x \sqrt{g} \sin r) dr.$$

Si l'on suppose b = 0, a = 1, on aura, comme précédemment,

$$u = \frac{1}{\pi} \int \cos(x\sqrt{g}\sin r) dr.$$

Nous ajouterons les remarques suivantes, relatives à cette dernière expression.

311.

L'équation

$$\frac{1}{\pi} \int_0^{\pi} \cos(\theta \sin u) \, du = 1 - \frac{\theta^2}{2^2} + \frac{\theta^4}{2^2 \cdot 4^2} - \frac{\theta^6}{2^2 \cdot 4^2 \cdot 6^3} + \dots$$

se vérifie d'elle-même. En effet, on a

$$\int \cos(\theta \sin u) \, du = \int du \left(1 - \frac{\theta^2 \sin^2 u}{2} + \frac{\theta^4 \sin^4 u}{2 \cdot 3 \cdot 4} - \frac{\theta^6 \sin^6 u}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \dots \right)$$

et, integrant depuis $u=\phi$ jusqu'à $u=\pi$ en designant par $S_2,\,S_3,\,S_6,\,\dots$ les integrales definies

$$\frac{1}{\pi} \int_0^{\pi} \sin^2 u \ du, \quad \frac{1}{\pi} \int_0^{\pi} \sin^2 u \ du, \quad \frac{1}{\pi} \int_0^{\pi} \sin^2 u \ du. \quad ,$$

on aura

$$\frac{1}{\pi}\int_{\mathbb{R}^{n}}\cos\sin\theta\sin\theta\,d\theta=4=\frac{1}{\pi}\mathbf{S}_{3}=\frac{\pi}{3\pi^{\frac{n}{2}}\mathbf{A}}\mathbf{S}_{3}=\frac{\pi}{3\pi^{\frac{n}{2}}\mathbf{A}}\mathbf{S}_{5}=\frac{\pi}{3\pi^{\frac{n}{$$

il reste a determiner S_2, S_3, S_4, \ldots . Le terme $\sin^n a, n$ etant un nombre pair, peut etre developpe ainsi

en multipliant par du, et integrant entre les limites u = 0 et u = π , on aura seulement

$$\int_{-\infty}^{\infty} \sin(n) \ln n = \sqrt{n} = 1$$

les autres termes s'evanouissent. On a, d'après la formule connue pour le developpement des puissances entieres du sinus,

$$\Lambda_3 = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right) = \Lambda_4 = \frac{1}{2} \left(\frac{1}{4} - \frac{1}{4} \right) = \frac{1}{2} \left(\frac{1}{4} - \frac{1}{4} \right)$$

En substituant ces valenis de S., S., S., S., . . . on trouve

$$\frac{1}{2} \int_{-\pi}^{\pi} e^{i\alpha_1} e^{-i\alpha_1} dx e^{-i\alpha_2} dx = e^{-i\alpha_1} \frac{\pi}{2^3 \cdot 1^3} = e^{3} \cdot \frac{\pi}{4^3 \cdot 6^3}$$

On pent rendre ce resultat plus general, en prenant, au heu de cos $t\sin u$, une fonction que leonque φ de $t\sin u$.

Supposons done que l'on ait une fonction $\varphi(z)$ qui soit aussi developpée

on anca

$$e^{it\sin u} = e^{-t} \cdot \sin u = \frac{t^2}{2} \cdot \sin^2 u + \frac{t^2}{4} \cdot e^{-t\sin^2 u}$$

e I

que la section à l'origine soit retenue à la température constante : car, l'équation

 $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^3} + \frac{\partial^2 v}{\partial z^2} = 0$

étant satisfaite, la variation instantanée de la température est nécessairement nulle. Il n'en serait pas de même si, après avoir donné à chaque point intérieur du solide dont les coordonnées sont x, y, z la temperature initiale $\psi(x,y,z)$, on donnait à tous les points de la section à l'origine la température constante o. On voit clairement, et sans aueun calcul, que, dans ce dernier cas, l'état du solide changerait continuellement et que la chaleur primitive qu'il renferme se dissiperait peu à peu dans l'air et dans la masse froide qui maintient la base à la température o. Ce résultat est dù à la forme de la fonction $\psi(x,y,z)$, qui devient nulle lorsque x a une valeur infinie, comme la question le suppose.

Un effet semblable aurait lieu si les temperatures initiales, au lieu d'être $+\psi(x,y,z)$, étaient $-\psi(x,y,z)$ pour tous les points interieurs du prisme, pourvu que la section à l'origine fût toujours retenue à la température o. Dans l'un et l'autre cas, les temperatures initiales se rapprocheraient continuellement de la temperature constante du milieu, qui est zéro, et les températures finales seraient toutes nulles.

327.

Ces principes étant posés, considérons le mouvement de la chaleur dans deux prismes parfaitement eganx a celui qui est l'objet de la question. Pour le premier solide, nous supposons que les temperatures mitiales sont $+\psi(x,y,z)$ et que la base Λ conserve la temperature fixe ι . Pour le second solide, nous supposons que les températures intiales sont $-\psi(x,y,z)$ et que tous les points de la base Λ sont retenus à la température o. Il est manifeste que, dans le premier prisme, le système des températures ne peut point changer et que, dans le second, ce système varie continuellement jusqu'à ce que toutes les températures deviennent nulles.

sometiment on tot connected dans le memo solide ces deux etats reports de mensement de la habent l'operers fibrement, comme si aque visteno evittat cul litar la tetanical forme des deux systèmes mis, chaque point din ded concerne temperature mille, excepte point de la cetanical dont la temperature era i, ce qui est con me a l'hypothe e din nois, le temperature du second système augeront de plus emplus et ex consideration informent, pendant que les du premier ce es cere est air air ce hair ement done, apres temperature de vivia est confirme temperature serve lui que gresente l'equation. Le vivia est mane et de temperature serve chir que gresente l'equation. Le vivia est mane et de temperature serve chir que gresente l'equation. Le vivia est mane et de temperature serve chir que gresente l'equation.

3

antremarque reque estre en sequence resulte de la condition relative etat motor esta la la la la la la tente de dons que la chadem unitade itemie dans le pareme esta liconomical esta bine esta esta esta munical.

134

. r t gyn ys 2006 es

uifit de supposer sontra no que l'on ait construit la courbe

. tile

re a clant pais pour absense et a pour ordonnée, tette ligne est

composée de branches asymptotiques. Les abscisses qui correspondent aux asymptotes sont $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, ...; celles qui correspondent aux points d'intersection sont π , 2π , 3π , Si maintenant on élève à l'origine une ordonnée égale à la quantité connue $\frac{h\ell}{K}$ et que, par son extrémité, on mène une parallèle à l'axe des abscisses, les points d'intersection donneront les racines de l'équation proposée

$$\varepsilon \tan g \varepsilon = \frac{hl}{K}$$
.

La construction indique les limites entre lesquelles chaque racine est placée. Nous ne nous arrêterons point aux procédés de calcul qu'il faut employer pour déterminer les valeurs des racines. Les recherches de ce genre ne présentent aucune difficulté.

329.

2° On conclut facilement de l'équation générale (E) que, plus la valeur de x devient grande, plus le terme de la valeur de v dans lequel se trouve la fraction $e^{-x\sqrt{n_1^2+n_1^2}}$ devient grand par rapport à chacun des suivants. En effet, n_1 , n_2 , n_3 , ... étant des quantités positives croissantes, la fraction $e^{-x\sqrt{2n_1^2}}$ est la plus grande de toutes les fractions analogues qui entrent dans les termes subséquents.

Supposons maintenant que l'on puisse observer la température d'un point de l'axe du prisme situé à une distance x extrêmement grande, et la température d'un point de cet axe situé à la distance x + 1, 1 étant l'unité de mesure; on aura alors y = 0, z = 0, et le rapport de la seconde température à la première sera sensiblement égal à la fraction $e^{-\sqrt{2n_1^2}}$. Cette valeur du rapport des températures des deux points de l'axe est d'autant plus exacte que la distance x est plus grande.

Il suit de là que, si l'on marquait sur l'axe des points dont chacun fût distant du précédent de l'unité de mesure, le rapport de la température d'un point à celle du point qui précède convergerait continuellement vers la fraction $e^{-\sqrt{2n_1^2}}$; ainsi les températures des points placés

a distances egades finissent par decroitre en progression geometrique tatte lor aura toujours lieu, quelle que soit l'épaisseur de la barre, pouvu que l'ou considére des points situés à une grande distance du tovet de châleur.

The there do you, an movem de la construction, que, si la quantité appelee L, qui est la deun épaisseur du prisme, est foit petite, n, a une valeur beaucoup plus petite que n, n, ..., il en resulte que la première traction e (100° est beaucoup plus grande qu'aucune des tractions analogues. Ames, dans le casoni l'épaisseur de la baire est tres petite, il n'est pas necessaire de s'éloigner de la source de la chaleur pour que les temperatures des pourts également distants décroissent en progression géometrapre. Cette loi règne alors dans toute l'étendue de la barre

1.111

Si la demi epaisse un l'est une tres printe quantité, la valeur generale de secréduit au premiser terme, qui contient e l'. Am a la temperature d'un point dont les coordonnes sont x, y et a est donnée, dans en cas, par l'equation.

Fare come no devicent extreme ment petit, commo on le vent par la comstruction. L'equations

: 3.5... : 4 1

a cristal distinct

. . .

La piennière valeur de z, ou z_2 , est $\sqrt{\frac{\delta z}{\hbar}}$ a l'inspection de la μ_S i p 0 p on connaît les valeurs des autres racines, en sorte que les quantites z_1, z_2, z_3 , sont les suivantes

Les valeurs de n_1 , n_2 , n_3 , ... sont donc

$$\frac{1}{l}\sqrt{\frac{\hbar l}{K}}, \quad \frac{\pi}{l}, \quad \frac{2\pi}{l}, \quad \cdots;$$

on en conclut, comme on l'a dit plus haut, que, si l est une très petite quantité, la première valeur n est incomparablement plus petite que toutes les autres, et que l'on doit omettre dans la valeur générale de v tous les termes qui suivent le premier. Si maintenant on substitue dans ce premier terme la valeur trouvée pour n, en remarquant que l'arc nl et l'arc 2nl sont égaux à leurs sinus, on aura

$$c = \cos\left(\sqrt{\frac{\hbar l}{K}} \frac{y}{l}\right) \cos\left(\sqrt{\frac{\hbar l}{K}} \frac{z}{l}\right) e^{-v\sqrt{\frac{2\hbar}{K}l}};$$

le facteur $\sqrt{\frac{\hbar \ell}{K}}$ qui entre sous les signes cosinus étant très petit, il s'ensuit que la température varie très peu pour les différents points d'une même section, lorsque la demi-épaisseur ℓ est très petite. Ce résultat est, pour ainsi dire, évident de lui-même ; mais il est utile de remarquer comment il est expliqué par le calcul. La solution générale se réduit en effet à un seul terme, à raison de la ténuité de la barre, et l'on a, en remplaçant par l'unité les cosinus d'arcs extrêmement petits,

$$c = e^{-x\sqrt{\frac{2h}{h}\ell}},$$

équation qui exprime, dans le cas dont il s'agit, les températures stationnaires.

On avait trouvé cette même équation précédemment (art. 76, p. 55 ; on l'obtient ici par une analyse entièrement différente.

331.

La solution précédente fait connaître en quoi consiste le mouvement de la chaleur dans l'intérieur du solide. Il est facile de voir que, lorsque le prisme a acquis dans tous ses points les températures stationnaires que nous considérons, il existe, dans chaque section perpendiculaire à l'axe, un flux constant de chaleur qui se porte vers l'extrémité non échauffée. Pour déterminer la quantité de ce flux qui répond à une abscisse x, il faut considérer que celle qui traverse, pendant l'unité de temps, un élément de la section est égale au produit du coefficient K, de l'aire dy dz et du rapport $\frac{\partial g}{\partial x}$ pris avec un signe contraire. Il faudra donc prendre l'intégrale

$$= \mathbf{K} \int dy \int \frac{\partial v}{\partial x} \, dz,$$

depuis z = 0 jusqu'à z = l, demi-épaisseur de la barre, et ensuite depuis y = 0 jusqu'à y = l. On aura ainsi la quatrième partie du flux total.

Le résultat de ce calcul fait connaître la loi suivant laquelle décroît la quantité de chaleur qui traverse une section du prisme; et l'on voit que les parties éloignées reçoivent très peu de chaleur du foyer, parce que celle qui en émane immédiatement se détourne en partie vers la surface, pour se dissiper dans l'air. Celle qui traverse une section quelconque du prisme forme, si l'on peut parler ainsi, une nappe de chaleur dont la densité varie d'un point de la section à l'autre. Elle est continuellement employée à remplacer la chaleur qui s'échappe par la surface, dans toute la partie du prisme située à la droite de la section : il est donc nécessaire que toute la chaleur qui sort pendant un certain temps de cette partie du prisme soit exactement compensée par celle qui y pénètre en vertu de la conducibilité intérieure du solide.

332.

Pour vérifier ce résultat, il faut calculer le produit du flux établi à la surface. L'élément de la surface est dx dy, et, v étant sa température, hv dx dy est la quantité de chaleur qui sort de cet élément pendant l'unité de temps. Donc l'intégrale $h \int dx \int v dy$ exprime la chaleur totale émanée d'une portion finie de la surface. Il faut maintenant employer la valeur connue de v en y en supposant z = l; puis intégrer, une fois depuis y = 0 jusqu'à y = l, et une seconde fois depuis x = x

jusqu'à $x = \infty$. On trouvera ainsi la moitié de la chaleur qui sort de la surface supérieure du prisme; et, prenant quatre fois le résultat, on aura la chaleur perdue par les surfaces supérieure et inférieure.

Si l'on se sert maintenant de l'expression $h \int dx \int c dz$, que l'on donne à y dans c sa valeur l, que l'on intègre, une fois depuis z = o jusqu'à z = l, et une seconde fois depuis x = x jusqu'à $x = \infty$, on aura la quatrième partie de la chaleur qui s'échappe par les surfaces latérales.

L'intégrale $h \int dx \int v dy$, étant prise entre les limites désignées, donne la valeur

$$\frac{ha}{m\sqrt{m^2+n^2}}\sin ml\cos nle^{-x\sqrt{m^2+n^2}},$$

pour chacun des termes

$$ae^{-x\sqrt{m^2+n^2}}\cos m y \cos n z$$

de c, et l'intégrale $h\int dx\int v\,dz$ donne $\frac{ha}{n\sqrt{m^2+n^2}}\cos ml\sin nle^{-x\sqrt{m^2+n^2}};$

donc la quantité de chaleur que le prisme perd à sa surface, dans toute la partie située à la droite de la section dont l'abscisse est x, se compose de tous les termes analogues à celui-ci

$$\frac{4hn}{\sqrt{m^2+n^2}}e^{-x\sqrt{m^2+n^2}}\left(\frac{1}{m}\sin ml\cos nl+\frac{1}{n}\cos ml\sin nl\right).$$

D'un autre côté, la quantité de chaleur qui pénètre, pendant le même temps, à travers la section dont l'abscisse est x se compose des termes analogues à celui-ci

$$\frac{4 \operatorname{K} a \sqrt{m^4 + n^2}}{mn} e^{-x\sqrt{m^4 + n^2}} \sin mt \sin nt;$$

il est donc nécessaire que l'on ait l'équation

$$\frac{K\sqrt{m^2+n^2}}{mn} = \frac{h}{\sin ml \sin nl} = \frac{h}{m\sqrt{m^2+n^2}} \sin ml \cos nl + \frac{h}{n\sqrt{m^2+n^2}} \cos ml \sin nl$$

ou

 $\mathbf{K}(m^2+n^2)\sin ml\sin nl = \hbar m\cos ml\sin nl + \hbar n\sin ml\cos nl;$

or on a separement

 $\mathbf{k} m^2 \sin mt \sin nt = \hbar m \cos mt \sin nt$

011

on a aussi

 $\mathbf{k} n^2 \sin nt \sin mt = hn \cos nt \sin mt$

1111

donc l'equation est satisfaite. Cette compensation qui s'établit sans cesse entre la chaleur dissipée et la chaleur transmise est une consequence manifeste de l'hypothèse, et le calcul reproduit ici la condition qui avait d'abord été exprimée; mais il était utile de remarquer cette conformite dans une matière nouvelle, qui n'avait point encore été soumise à l'Analyse.

332.

Supposons que le demi-côte l du carre qui sert de base au prisme soit une ligne extrémement grande, et que l'on vemille connaître la loi suivant baquelle les temperatures décroissent pour les différents points de l'axe; on donnera a v et a z des valeurs nulles dans l'equation generale, et a l une valeur extrémement grande. Or la construction fait connaître, dans ce cas, que la première valeur de z est $\frac{\pi}{l}$, la deuxième $\frac{4\pi}{l}$. La troisième $\frac{4\pi}{l}$, ... On fera ces substitutions dans l'equation generale, on remplacera $n_1 l$, $n_2 l$, $n_3 l$, ... par leurs valeurs $\frac{\pi}{l}$, $\frac{4\pi}{l}$, $\frac{4\pi}{l}$, ... et l'on mettra aussi la fraction z au heu de $e^{-\frac{\pi}{l}}$. On trouve alors

$$\frac{1}{3} \left(x^{k^{2}+2} - \frac{1}{3} x^{k^{2}+$$

On voit par ce résultat que la température des différents points de l'axe décroît rapidement à mesure qu'on s'éloigne de l'origine. Si donc on plaçait, sur un support échauffé et maintenu à une température permanente, un prisme d'une hauteur infinie, ayant pour base un carré dont le demi-côté l serait très grand, la chaleur se propagerait dans l'intérieur du prisme et se dissiperait par la surface dans l'air environnant, qu'on suppose à la température o. Lorsque le solide serait parvenu à un état fixe, les points de l'axe auraient des températures très inégales et, à une hauteur équivalente à la moitié du côté de la base, la température du point le plus échauffé scrait moindre que la cinquième partie de la température de la base.

CHAPITRE VIII.

DU MOUVEMENT DE LA CHALEUR DANS UN CUBE SOLIDE.

333.

Il nous reste encore à faire usage de l'équation

$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{CD}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right),$$

qui représente le mouvement de la chaleur dans un solide de forme cubique exposé à l'action de l'air (Sect. V du Chapitre II, p. 106). On choisira en premier lieu pour φ la valeur très simple

$$e^{-mt}\cos nx\cos py\cos qz;$$

ct, en substituant dans la proposée, on aura l'équation de condition

$$m = k(n^2 + p^2 + q^2),$$

la lettre k désignant le coefficient $\frac{K}{CD}$. Il suit de là que, si l'on met au lieu de n, p, q des quantités quelconques et si l'on prend pour m la quantité $k(n^2+p^2+q^2)$, la valeur précédente de v satisfera toujours à l'équation aux différences partielles. On aura donc l'équation

$$v = e^{-k(n^2 + p^2 + q^2)t} \cos nx \cos py \cos qz.$$

L'état de la question exige aussi que, si x change de signe et si y et z demeurent les mêmes, la fonction ne change point; et que cela ait aussi lieu par rapport à y et par rapport à z; or la valeur de v satisfait évidemment à ces conditions.

334.

Pour exprimer l'état de la surface, on emploiera les équations suivantes :

$$\begin{cases}
\pm K \frac{\partial c}{\partial x} + hc & 0, \\
\pm K \frac{\partial c}{\partial y} + hc & 0, \\
\pm K \frac{\partial c}{\partial z} + hc & 0.
\end{cases}$$

Elles doivent être satisfaites (†) lorsque l'on a $x = \pm a$, ou $y = \pm a$, ou $z = \pm a$. On prend le centre du cube pour l'origine des coordonnées et le côté est désigné par 2a.

La première des équations (b) donne

$$\mp e^{-mt}n\sin nx\cos py\cos qz + \frac{h}{k}\cos nx\cos py\cos qz = 0$$

0U

$$\mp n \tan n \cdot x + \frac{h}{K} = 0$$

équation qui doit avoir lieu lorsque $x = \pm a (2)$.

Il en résulte que l'on ne peut pas prendre pour n une valeur quelconque, mais que cette quantité doit satisfaire à la condition

$$na \tan g na = \frac{h}{K}a$$
.

(1) Plus exactement, on doit avoir

$$K\frac{\partial v}{\partial x} + hv = 0$$

pour x = a et

$$-K\frac{\partial v}{\partial x} + hv = 0$$

pour x = -a, et cela, quels que soient y et z. Cet énoncé s'étend de lui-même aux deux autres équations.

(2) Avec correspondance des signes, c'est-à-dire on doit prendre $x \to a$ s'il s'agut de l'équation

$$-n \tan nx + \frac{h}{K} = 0,$$

et x = -a dans le cas contraire.

Il faut donc resondre l'equation determinée

$$f_{A}(n_{k}) = \frac{\hbar}{k} a_{k}$$

ce qui donnera la valeur de γ , et l'on prendra $n=rac{1}{2}$. Or l'équation en La une infinite de Lo ines reelles; donc on pourra trouver pour n une infinite de valeurs différentes. On connaîtra de la même manière les valeurs que l'on peut donner à pet à q; elles sont toutes représentées par la con truction que l'on a employee dans la question precèdente art 3.28. Non de quierons ces racines par n_1, n_2, n_3, \ldots Ainsi l'on pourra donner a a la valeur particulière exprimee par l'equa-11:11

nomyn que l'on mette, au hen de n_i une des racines n_i , n_j , n_j , ..., et qu'il en out de meme de pet de q

On pout former are ranconfinite de valeurs particulières de c, et il est visible que la somme de pluments de ces valeurs satisfera aussi a Pequation different eller a retraux equations determinees h. Pour donner a a la formo generale que la question exige, on reunira un mounts in telesconds to make emblable accelered

Nous exprenderons cette valeur de c par l'equation suivante :

Le second membre doit se former . du produit des trois facteurs

^{2.} Il v men o presenter no sia remacipal analogue a celle qui se rapporte a l'u Inch 122 1 300 18

écrits dans les trois lignes horizontales, et les quantités a_1, a_2, a_3, \ldots sont des coefficients inconnus. Or, selon l'hypothèse, si l'on fait t = 0, la température doit être la même pour tous les points du cube. Il faut donc déterminer a_1, a_2, a_3, \ldots en sorte que la valeur de c soit constante quelles que soient celles de x, de y et de z, pourvu que chacune de ces valeurs soit comprise entre a et a. Designant par a les équations

$$1 : \alpha_1 \cos n_1 x + \alpha_2 \cos n_2 x + \alpha_3 \cos n_3 x + \dots,$$

$$1 = \alpha_1 \cos n_1 y + \alpha_2 \cos n_2 y + \alpha_3 \cos n_3 y + \dots,$$

$$1 : \alpha_1 \cos n_1 z + \alpha_2 \cos n_3 z + \alpha_3 \cos n_3 z + \dots,$$

dans lesquelles il s'agit de déterminer a_1, a_2, a_3, \ldots Après avoir multiplié chaque membre de la première par $\cos n_i x \, dx$, on integrera depuis x = a or il résulte de l'analyse employee precédemment (art. 325) que l'on a l'équation

$$\frac{1 + \frac{2\sin n_1 a \cos n_1 x}{\sin 2 n_1 a}}{n_1 a \left(1 + \frac{\sin 2 n_1 a}{2 n_1 a}\right)} + \frac{2\sin n_1 a \cos n_1 x}{n_2 a \left(1 + \frac{\sin 2 n_1 a}{2 n_2 a}\right)}$$

désignant par μ_i la quantité $\frac{1}{3}\left(1+\frac{\sin \pi n_i n}{2n_i n}\right)$, on aura

$$1 + \frac{\sin n_1 a}{n_1 a \mu_1} \cos n_1 x + \frac{\sin n_2 a}{n_1 a \mu_1} \cos n_2 x + \frac{\sin n_3 a}{n_3 a \mu_3} \cos n_3 x + \cdots ;$$

cette équation aura toujours lieu lorsque l'on donnera a x une valent comprise entre a et x = a.

On peut en conclure l'expression générale de v; elle est donnée par l'équation suivante :

$$\begin{array}{c} v = \left(\frac{\sin n_{1} \alpha}{n_{1} \alpha \mu_{1}} \cos n_{1} x e^{-k n_{1}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{1}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{2}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{2}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{2}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha \mu_{2}} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha} \cos n_{2} x e^{-k n_{2}^{2} t} + \frac{\sin n_{2} \alpha}{n_{2} \alpha} \cos n_{2} x e$$

336.

L'expression de v est donc formée du produit de trois fonctions semblables, l'une de x, l'autre de y et la troisième de z, ce qu'il est facile de vérifier immédiatement.

En effet, si, dans l'équation

$$\frac{\partial v}{\partial t} = k \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right),$$

on suppose

$$c = XYZ$$

en dénotant par X une fonction de x et t, par Y une fonction de y et t, et par Z une fonction de z et t, on aura

$$XY\frac{\partial Z}{\partial t} + XZ\frac{\partial Y}{\partial t} + YZ\frac{\partial X}{\partial t} = k\left(XY\frac{\partial^2 Z}{\partial z^2} + XZ\frac{\partial^2 Y}{\partial y^2} + YZ\frac{\partial^2 X}{\partial x^2}\right);$$

on prendra les trois équations séparées

$$\frac{\partial \mathbf{Z}}{\partial t} = k \frac{\partial^2 \mathbf{Z}}{\partial z^2}, \qquad \frac{\partial \mathbf{Y}}{\partial t} = k \frac{\partial^2 \mathbf{Y}}{\partial y^2}, \qquad \frac{\partial \mathbf{X}}{\partial t} = k \frac{\partial^2 \mathbf{X}}{\partial x^2}.$$

On doit avoir aussi, pour la condition relative à la surface,

$$\frac{\partial \mathbf{V}}{\partial x} + \frac{h}{\mathbf{K}} \mathbf{V} = \mathbf{o}, \qquad \frac{\partial \mathbf{V}}{\partial y} + \frac{h}{\mathbf{K}} \mathbf{V} = \mathbf{o}, \qquad \frac{\partial \mathbf{V}}{\partial z} + \frac{h}{\mathbf{K}} \mathbf{V} = \mathbf{o};$$

d'où l'on déduit

$$\frac{\partial X}{\partial x} + \frac{h}{K}X = 0, \qquad \frac{\partial Y}{\partial y} + \frac{h}{K}Y = 0, \qquad \frac{\partial Z}{\partial z} + \frac{h}{K}Z = 0.$$

Il suit de là que, pour résoudre complètement la question, il suffit de prendre l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

et d'y ajouter l'équation de condition

$$\frac{\partial u}{\partial x} + \frac{h}{K}u = 0$$

qui doit avoir lieu lorsque x = a. On mettra ensuite y ou z à la place de x, et l'on aura les trois fonctions X, Y, Z, dont le produit est la valeur générale de v.

Ainsi la question proposée est résolue comme il suit :

$$\begin{aligned} v &= \varphi(x, t) \, \varphi(y, t) \, \varphi(z, t), \\ \varphi(x, t) &= \frac{\sin n_1 \alpha}{n_1 \, a \, \mu_1} \cos n_1 \, x \, e^{-k n_1^2 t} + \frac{\sin n_2 \alpha}{n_2 \, a \, \mu_2} \cos n_2 \, x \, e^{-k n_2^2 t} \\ &\quad + \frac{\sin n_3 \alpha}{n_3 \, a \, \mu_3} \cos n_3 \, x \, e^{-k n_2^2 t} + \dots; \end{aligned}$$

 n_1, n_2, n_3, \ldots sont donnés par l'équation suivante

$$\varepsilon \operatorname{tang} \varepsilon = \frac{ha}{\mathbf{K}},$$

dans laquelle e représente na; la valeur de μ_i est

$$\frac{1}{2}\left(1+\frac{\sin 2n_i\alpha}{2n_i\alpha}\right).$$

On trouve de la même manière les fonctions $\varphi(y, t)$, $\varphi(z, t)$.

337.

On peut se convaincre que cette valeur de v résont la question dans toute son étendue, et que l'intégrale complète de l'équation aux différences partielles (a) doit nécessairement prendre cette forme pour exprimer les températures variables du solide.

En effet, l'expression de v satisfait à l'équation (a) et aux conditions relatives à la surface. Donc les variations des températures qui résultent dans un instant de l'action des molécules et de l'action de l'air sur la surface sont celles que l'on trouverait en différentiant la valeur de v par rapport à t. Il s'ensuit que si, au commencement d'un instant, la fonction v représente le système des températures, elle représentera encore celles qui ont lieu au commencement de l'instant suivant, et l'on prouve de même que l'état variable du solide sera toujours exprimé par la fonction v, dans laquelle on augmentera continuellement

la valeur de t. Or cette même fonction convient à l'état initial : donc elle représentera tous les états ultérieurs du solide. Ainsi, l'on est assuré que toute solution qui donnerait pour v une fonction différente de la précédente serait erronée.

338.

Si l'on suppose que le temps écoulé t est devenu très grand, on n'aura plus à considérer que le premier terme de l'expression de ν ; car les valeurs n_1, n_2, \ldots sont rangées par ordre, en commençant par la plus petite. Ce terme est donné par l'équation

$$v = \left(\frac{\sin n_1 \alpha}{n_1 \alpha \mu_1}\right)^3 \cos n_1 x \cos n_1 y \cos n_1 z e^{-3kn_1^2 t};$$

voilà donc l'état principal vers lequel le système des températures tend continuellement, et avec lequel il coïncide sans erreur sensible au bout d'un certain temps. Dans cet état, la température de chacun des points décroît proportionnellement aux puissances de la fraction e^{-3kn^2} ; alors les états successifs sont tous semblables ou plutôt ils ne diffèrent que par la quantité des températures, qui diminuent toutes comme les termes d'une progression géométrique en conservant leurs rapports.

On trouvera facilement, au moyen de l'équation précédente, la loi suivant laquelle les températures décroissent d'un point à l'autre dans le sens des diagonales ou des arêtes du cube, ou enfin d'une ligne donnée de position. On reconnaîtra aussi quelle est la nature des surfaces qui déterminent les couches de même température. On voit que, dans l'état extrême et régulier que nous considérons ici, les points d'une même couche conservent toujours la même température, ce qui n'avait point lieu dans l'état initial et dans ceux qui lui succèdent immédiatement. Pendant la durée infinie de ce dernier état, la masse se divise en une infinité de couches dont tous les points ont une température commune.

339.

Il est facile de déterminer, pour un instant donné, la température moyenne de la masse, c'est-à-dire celle que l'on obtiendrait en prenant la somme des produits du volume de chaque molécule par sa température et en divisant cette somme par le volume entier. On formera ainsi l'expression $\frac{1}{(2a)^3} \int \int c dx \, dy \, dz$, qui est celle de la température moyenne V. L'intégrale doit être prise successivement par rapport à x, à y et à z, entre les limites — a et a; v étant égal au produit XYZ, on aura

$$(2a)^3 V = \int X dx \int Y dy \int Z dz;$$

ainsi la température moyenne est $\left(\int \frac{\mathbf{X}}{2a} dx\right)^3$; car les trois intégrales totales ont une valeur commune; donc

$$\sqrt[3]{V} = \left(\frac{\sin n_1 \alpha}{n_1 \alpha}\right)^2 \frac{1}{\mu_1} e^{-kn_1^2 t} + \left(\frac{\sin n_2 \alpha}{n_2 \alpha}\right)^2 \frac{1}{\mu_2} e^{-kn_2^2 t} + \dots$$

La quantité na équivaut à ɛ, qui est une racine de l'équation

$$\varepsilon \tan g \varepsilon = \frac{ha}{K},$$

et μ est égale à $\frac{1}{2}\left(1+\frac{\sin 2\varepsilon}{2\varepsilon}\right)$. On a donc, en désignant les différentes racines de cette équation par $\varepsilon_1, \varepsilon_2, \ldots$,

$$\frac{1}{2}\sqrt[3]{V} = \left(\frac{\sin\varepsilon_1}{\varepsilon_1}\right)^2 \frac{e^{-\lambda\frac{\varepsilon_1^2}{\alpha^2}t}}{1 + \frac{\sin2\varepsilon_1}{2\varepsilon_1}} + \left(\frac{\sin\varepsilon_2}{\varepsilon_2}\right)^2 \frac{e^{-\lambda\frac{\varepsilon_1^2}{\alpha^2}t}}{1 + \frac{\sin2\varepsilon_2}{2\varepsilon_2}} + \dots;$$

 ε_1 est entre o et $\frac{\pi}{2}$, ε_2 est entre π et $\frac{3\pi}{2}$, ...; les moindres limites π , 2π , ... approchent de plus en plus des racines ε_2 , ε_3 , ... et finissent par se confondre avec elles lorsque l'indice i est très grand. Les arcs doubles $2\varepsilon_1$, $2\varepsilon_2$, ... sont compris entre o et π , entre 2π et 3π , ...; c'est pour-

quoi les sinus de ces arcs sont tous positifs; les quantités $i = \frac{\sin \alpha_i}{2\pi}$, $i = \frac{\sin \alpha_i}{2\pi}$, sont positives et comprises entre i et α . Il suit de la que tous les termes qui entrent dans la valeur de $\sqrt{\lambda}$ sont positifs.

3 411.

a etant le dema diametre de la sphere ; et la quantite a est donnée par l'equation

et etant le demi cate des cules

Cela pose, on considercia deux, as differents : celui ou le rayon de la sphere et le deux cote du cube sont l'un et l'antre egaux a a, quautite tres petite, et celus ou la valeur de a est tres grande.

Supposons d'abord que les deux corps ont une petite dimension; $\frac{ha}{K}$ ayant une tres petite valeur, il en sera de même de z; on aura donc

done la fraction $e^{-\frac{2\pi i}{2}}$ est egale a $e^{-\frac{2\pi i}{2}}$; ainsi les dermeres tempera

tures que l'on observe ont une expression de cette forme

$$Ae^{-\frac{3ht}{CDa}}$$
.

Si maintenant, dans l'équation

$$\frac{na\cos na}{\sin na} = 1 - \frac{h}{K}a,$$

on suppose que le second membre diffère très peu de l'unité, on trouve

$$\frac{h}{\mathbf{K}} = \frac{n^2 a}{3};$$

donc la fraction e^{-kn^2} est $e^{-\frac{3h}{\text{CD}\,a}}$.

On conclut de là que, si le rayon de la sphère est très petit, les vitesses finales du refroidissement dans ce solide et dans le cube circonscrit sont égales et qu'elles sont l'une et l'autre en raison inverse du rayon; c'est-à-dire que, si la température d'un cube dont le demi-côté est a passe de la valeur A à la valeur B dans le temps t, une sphère dont le demi-diamètre est a passera aussi dans le même temps de la température A à la température B. Si la quantité a venait à changer pour l'un et l'autre corps et devenait a', le temps nécessaire pour passer de A à B aurait une autre valeur t' et le rapport des temps t et t' serait celui des demi-côtés a et a'.

Il n'en est pas de même lorsque le rayon a est extrêmement grand; car ε équivaut alors à $\frac{\pi}{2}$, et les valeurs de na sont les quantités π , 2π , 3π , On trouvera donc facilement, dans ce cas, les valeurs des fractions $e^{-\frac{3\varepsilon^2}{a^2}k}$, e^{-kn^2} ; ces valeurs sont $e^{-\frac{3k\pi^2}{4a^2}}$ et $e^{-\frac{k\pi^2}{a^2}}$. On tire de là ces deux conséquences remarquables:

1° Étant donnés deux cubes de grandes dimensions, dont a et a' soient les demi-côtés, si le premier emploie le temps t pour passer de la température A à la température B, et le second le temps t' pour ce même intervalle, les temps t et t' seront proportionnels aux carrés a^2

et a ' des democotes. On a trouve un resultat semblable pour les sphères de grande dimension.

2º Si un cube a pour demi cote une longueur considerable a, et qu'une sphere ait la meme quantite a pour rayon, et que pendant le temps t la temperature du cube s'abaisse de A a B, il s'ecoulera un temps different t pendant que la temperature de la sphere s'abaissera de A a B; et les temps t et t secont dans le rapport de 4 a 3.

Ainsi le cube et le sphere inscrite se retroidissent egalement vite forsqu'ils out une petite dimension; et, dans ce cas, la durée du refroidissement est, pour l'un et l'autre corps, proportionnelle à l'épaisseur. Si le cube et la sphere inscrite out une grande dimension, la durée du réfroidissement final n'est pas la meme pour les deux solides. Cette durée est plus grande pour le cube que pour la sphere, dans la raison de l'act, et, pour che un des deux corps en particulier, la durée du réfroidissement augmente comme le caire du diametre.

111

On a suppose que le corps se retroubt librement dans l'air atmospherique dont la chaleur est constante. On pourrait assujettir la surface a une autre condition et concevoir, par exemple, que tous ses points conscivent, en vertu d'une cause exterieure, la temperature fixe o l'es quantités n, p, q, que entrent dans la valeur de s sons le signe cosmus, doixent etre teiles, dans ce cas, que n i devienne nulle lorsque e recort sa valeur complete a, et qu'il en soit de meme de py et de qz. Si le cote du cube za est represente par π , on pourra exprimer une valeur particulière de ϵ par l'equation suivante, qui satisfait en meme temps a l'equation generale du mouvement de la chaleur et a l'état de la surface,

Cette fonction est nulle, quel que soit le temps t, lorsque v, on γ , ou ε reçoivent leurs valeurs extrêmes $\beta = \frac{\pi}{2}$ ou $\beta = \frac{\pi}{2}$, mais l'expression de la

température ne peut avoir cette forme simple qu'après qu'il s'est écoulé un temps considérable, à moins que l'état initial donné ne soit luimême représenté par la fonction $\cos x \cos y \cos z$. C'est ce que l'on a supposé dans la Section VIII du Chapitre I (art. 100, p. 81). L'analyse précédente démontre la vérité de l'équation employée dans l'article que l'on vient de citer.

On a traité jusqu'ici les questions fondamentales de la Théorie de la chaleur et considéré l'action de cet élément dans les corps principaux. L'ordre et l'espèce des questions ont été tellement choisis que chacune d'elles présentât une difficulté nouvelle et d'un degré plus élevé. On a omis à dessein les questions intermédiaires, qui sont en trop grand nombre, telles que la question du mouvement linéaire de la chaleur dans un prisme dont les extrémités seraient retenues à des températures fixes, ou exposées à l'air atmosphérique. On pourrait généraliser l'expression du mouvement varié de la chaleur dans le cube ou le prisme rectangulaire qui se refroidit dans un milieu aériforme, et supposer un état initial quelconque; ces recherches n'exigent point d'autres principes que ceux qui sont expliqués dans cet Ouvrage.

CHAPITRE IX.

DE LA DIFFUSION DE LA CHALEUR.

SECTION I.

DU MOUVEMENT LIBRE DE LA CHALEUR DANS UNE LIGNE INFINIE.

342.

On considère ici le mouvement de la chaleur dans une masse solide homogène dont toutes les dimensions sont infinies. On divise ce solide par des plans infiniment voisins et perpendiculaires à un axe commun, et l'on suppose d'abord qu'on a échaussé une seule partie de la masse, savoir celle qui est comprise entre deux plans A et B parallèles, dont la distance est g. Toutes les autres parties ont la température initiale o; mais chacun des plans compris entre A et B a une température initiale donnée, que l'on regarde comme arbitraire, et qui est commune à tous ses points; cette température est dissérente pour les dissérents plans. L'état initial de la masse étant ainsi défini, il s'agit de déterminer par le calcul tous les états successifs. Le mouvement dont il s'agit est seulement linéaire, et dans le sens de l'axe des plans; car il est évident qu'il ne peut y avoir aucun transport de chaleur dans un plan quelconque perpendiculaire à cet axe, puisque la chaleur initiale de tous ses points est la même.

On peut supposer, au lieu du solide infini, un prisme d'une très petite épaisseur, et dont la surface convexe est totalement impénétrable à la chaleur. On ne considère donc le mouvement que dans une ligne infinie, qui est l'axe commun de tous les plans.

La question est plus générale lorsqu'on attribue des températures

entièrement arbitraires à tous les points de la partie de la masse qui a été échauffée, tous les autres points du solide ayant la température initiale o. Les lois de la distribution de la chaleur dans une masse solide infinie doivent avoir un caractère simple et remarquable, parce que le mouvement n'est point troublé par l'obstacle des surfaces et par l'action du milieu.

343.

La position de chaque point étant rapportée à trois axes rectangulaires, sur lesquels on mesure les coordonnées x, y, z, la température cherchée est une fonction des variables x, y, z et du temps t. Cette fonction v ou $\varphi(x, y, z, t)$ satisfait à l'équation générale

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right).$$

De plus, il est nécessaire qu'elle représente l'état initial, qui est arbitraire; ainsi, en désignant par F(x, y, z) la valeur donnée de la température d'un point quelconque, prise lorsque le temps est nul, c'està-dire au moment où la diffusion commence, on doit avoir

(b)
$$\varphi(x,y,z,o) = F(x,y,z).$$

Il faut trouver une fonction e des quatre variables x, y, z, t qui satisfasse à l'équation différentielle (a) et à l'équation déterminée (b).

Dans les questions que nous avons traitées précédemment, l'intégrale est assujettie à une troisième condition qui dépend de l'état de la surface. C'est pour cette raison que l'analyse en est plus composée et que la solution exige l'emploi des termes exponentiels. La forme de l'intégrale est beaucoup plus simple lorsqu'elle doit seulement satisfaire à l'état initial, et il serait facile de déterminer immédiatement le mouvement de la chaleur selon les trois dimensions. Mais, pour exposer cette partie de la théorie et faire bien connaître suivant quelle loi la diffusion s'opère, il est préférable de considérer d'abord le mouvement linéaire, en résolvant les deux questions suivantes; on verra par la suite comment elles s'appliquent au cas des trois dimensions.

311.

dans tous ses points à la temperature i; les autres parties de la ligne ont la temperature actuelle o, on suppose que la chaleur ne pent se dissiper dans le milieu environnant; il faut determiner quel est l'état de la ligne après un temps donne. On peut rendre cette question plus generale en supposant : il que les temperatures initiales des points compris entre à et bisont inegales et représentées par les ordonnées d'une ligne quelconque, que nous régardérons d'abord comme composée de deux parties exmétriques (voir fig. 16); ac qu'une partie de la chaleur se dissipe par la surface du solide, qui est un prisme d'une tres petite épaisseur et d'une longueur infinie.

La vecinde question consiste à determiner les états successifs d'une barre prismatique, dont une extremité est assujettie à une temperature constante, et qui est'infinament prolongée.

La resolution de ces deux questions depend de l'integration de l'equation

art. 105, qui exprime le monvement lineaire de la chaleur; c'est la temperature que le point place à la distance i de l'origine doit avoir après le temps écoule i, k, H, C, D, L, S designent la conducibilité propre, la conducibilité exterieure, la capa ité spécifique de chaleur, la densité, le contour de la section perpendiculaire, et l'aire de cette section.

345.

Nous considerous d'abord le premier cas, qui est celui où la chaleur se propage librement dans la ligue infinie dont une partie ab a reçu des temperatures initiales quelconques, tous les autres points avant la temperature initiale o. Si l'on eleve en chaque point de la barre l'ordonnée d'une courbe plane qui représente la temperature actuelle de ce point, ou voit qu'après une certaine valeur du temps t, l'état du

solide est exprimé par la figure de la courbe. Nous désignerons par v = F(x) l'équation donnée qui correspond à l'état initial, et nous supposons d'abord, pour rendre le calcul plus simple, que la figure initiale de la courbe est composée de deux parties symétriques, en sorte que l'on a la condition

$$\mathbf{F}(x) = \mathbf{F}(-x).$$

Soit

$$\frac{K}{CD} = k, \quad \frac{HL}{CDS} = h;$$

dans l'équation

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} - hv,$$

on fera

$$v = e^{-ht}u$$
,

et l'on aura

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}.$$

On prendra pour u la valeur particulière $ae^{-\hbar q^2t}\cos qx$; a et q sont des constantes arbitraires. Soient q_1, q_2, q_3, \ldots une suite de valeurs quel-conques de q, et a_1, a_2, a_3, \ldots une suite de valeurs correspondantes du coefficient a; on aura

$$u = a_1 e^{-kq_1^2 t} \cos q_1 x + a_2 e^{-kq_2^2 t} \cos q_2 x + a_3 e^{-kq_3^2 t} \cos q_3 x + \dots$$

Supposons: 1° que les valeurs q_1, q_2, q_3, \ldots croissent par degrés infiniment petits, comme les abscisses q d'une certaine courbe, en sorte qu'elles deviennent égales à dq, 2dq, 3dq, ..., dq étant la différentielle constante de l'abscisse; 2° que les valeurs a_1, a_2, a_3, \ldots soient proportionnelles aux ordonnées Q de la même courbe, et qu'elles deviennent égales à Q_1dq , Q_2dq , Q_3dq , ..., Q étant une certaine fonction de q. Il en résulte que la valeur de u pourra être exprimée ainsi

$$u = \int Q e^{-kq^2t} \cos q \, x \, dq.$$

Q est une fonction arbitraire f(q), et l'intégrale peut être prise de q = 0 à $q = \infty$. La difficulté se réduit à déterminer convenablement la fonction Q.

346.

Pour y parvenir, il faut supposer t = 0 dans l'expression de u et l'égaler à F(x). On a ainsi l'équation de condition

$$\mathbf{F}(x) = \int \mathbf{Q} \cos q \, x \, dq.$$

Si l'on mettait au lieu de Q une fonction quelconque de q, et que l'on achevât l'intégration depuis q=0 jusqu'à $q=\infty$, on trouverait une fonction de \dot{x} ; il s'agit de résoudre la question inverse, c'est-à-dire de connaître quelle est la fonction de q qui, étant mise au lieu de Q, donnera pour résultat la fonction F(x), problème singulier dont la solution exige un examen attentif.

En développant le signe de l'intégrale, on écrira comme il suit l'équation dont il faut déduire la valeur de Q

$$F(x) = Q_1 \cos q_1 x dq + Q_2 \cos q_2 x dq + Q_3 \cos q_3 x dq + \dots$$

Pour faire disparaître tous les termes du second membre, excepté un seul, on multipliera de part et d'autre par $\cos rx \, dx$, et l'on intégrera ensuite par rapport à x depuis x = 0 jusqu'à $x = n\pi$, n étant un nombre infini; r représente une grandeur quelconque égale à l'une des suivantes

$$q_1, q_2, q_3, \ldots$$

ou, ce qui est la même chose,

$$dq$$
, $2dq$, $3dq$,

Soient q_i une valeur quelconque de la variable q, et q_j une autre valeur qui est celle que l'on a prise pour r; on aura

$$r = j dq$$

et

$$g = i dg$$
.

On considérera ensuite le nombre infini n comme exprimant com-

bien l'unité de longueur contient de fois l'élément dq, en sorte que l'on aura

$$n = \frac{1}{dq}$$
.

En procédant à l'intégration, on reconnaîtra que la valeur de l'intégrale $\int \cos qx \cos rx \, dx$ est nulle toutes les fois que r et q sont des grandeurs différentes; mais cette même valeur de l'intégrale est $\frac{n\pi}{2}$ lorsque q=r. Il suit de là que l'intégration élimine dans le second membre tous les termes, excepté un seul, savoir celui qui contient q_j ou r. La fonction qui affecte ce même terme est Q_j ; on aura donc

$$\int \mathbf{F}(x)\cos qx\,dx = \frac{n\pi}{2}\,\mathbf{Q}_j\,dq;$$

et, mettant pour n dq sa valeur 1, on a

$$\frac{\pi Q_j}{2} = \int \mathbf{F}(x) \cos qx \, dx;$$

on trouve donc, en général,

$$\frac{\pi Q}{2} = \int_0^\infty \mathbf{F}(x) \cos q \, x \, dx.$$

Ainsi, pour déterminer la fonction Q qui satisfait à la condition proposée, il faut multiplier la fonction donnée F(x) par $\cos qx \, dx$, et intégrer de x nulle à x infinie, en multipliant le résultat par $\frac{2}{\pi}$, c'està-dire que, de l'équation

$$\mathbf{F}(x) = \int_0^\infty f(q) \cos q \, x \, dq,$$

on déduit celle-ci

$$f(q) = \frac{2}{\pi} \int_0^{\infty} \mathbf{F}(x) \cos q x \, dx.$$

En substituant la valeur de f(q) dans l'expression de F(x), on obtient l'équation générale

(
$$\epsilon$$
)
$$\frac{\pi}{2} \mathbf{F}(x) = \int_0^{\infty} \cos q \, x \, dq \int_0^{\infty} \mathbf{F}(x) \cos q \, x \, dx.$$

317.

La fonction F |x| representant les temperatures initiales d'un prisme infim dont une partie intermediaire seulement est échauffée, si l'on substitue dans l'expression de x la valeur que l'on a trouvée pour la fonction Q_x on a l'intégrale suivante, qui contient la solution complète de la que stion proposée :

L'integrale par rapport a ϵ ctant prise de x nulle a x infinie, il en resulte une fonction de y; et, prenant ensuite l'integrale par rapport a y de $y = \alpha$ a y = x, on obticut pour ϵ la fonction de x et ℓ qui represente les états sin $\alpha = a$ ts du solide.

Pursque l'integration par rapport a retait disparaitre cette variable, on pent la remplacer dans l'expression de ceper une variable quel conque x, en premant l'integrale entre les memes limites, savon depuis y compronaix en conque x.

". I said " when younged,

L'integration par rapport a y donnera une fonction de x, t et z; et, en premant l'integrale par rapport a z, on frouve une fonction de t et t seulement. Il serait facile d'effectuer, dans la dermere equation, l'integration par rapport a y, et l'on changerait ainsi l'expression de c. On peut, en general, donner diverses formes à l'integrale de l'equation.

elles representent toutes une meme fonction de $|\iota|$ et t

∮.

348.

Supposons en premier lieu que toutes les températures initiales des points compris entre a et b, depuis x = -1 jusqu'à x = 1, aient pour valeur commune 1, et que les températures de tous les autres points soient nulles. La fonction F(x) sera donnée par cette condition. Il faudra donc intégrer, par rapport à x, depuis x = 0 jusqu'à x = 1; car le reste de l'intégrale est nul d'après l'hypothèse. On trouvera ainsi

$$Q = \frac{2}{\pi} \frac{\sin q}{q}$$

et

$$\frac{\pi v}{2} = e^{-ht} \int_0^\infty e^{-q^2 kt} \cos q \, x \sin q \, \frac{dq}{q}.$$

Le second membre peut être facilement converti en série convergente, comme on le verra par la suite; il représente exactement l'état du solide en un instant donné et, si l'on y fait t = 0, on exprime l'état initial.

Ainsi la fonction

$$\frac{2}{\pi} \int_0^\infty \sin q \, \cos q \, x \, \frac{dq}{q}$$

équivaut à l'unité si l'on donne à x une valeur quelconque comprise entre -1 et 1, mais cette fonction est nulle si l'on donne à x toute autre valeur non comprise efftre -1 et 1. On voit par là que les fonctions discontinues peuvent aussi être exprimées en intégrales définies.

349.

Pour donner une seconde application de la formule précédente, nous supposerons que la barre a été échauffée en un de ses points par l'action constante d'un même foyer, et qu'elle est parvenue à l'état permanent que l'on sait être représenté par une courbe logarithmique.

Il s'agit de connaître suivant quelle loi s'opérera la dissussion de la chaleur après qu'on aura retiré le foyer. En désignant par F(x) la va-

leur initiale de la temperature, on ama art. 76

$$T_{n,n} = \frac{1}{|\nabla v|^{n}} \cdot \nabla \frac{m}{\kappa s_n}$$

 Λ est la temperature initiale du point le plus échauffe. On fera, pour simplifier le calcul,

On a done

on en deduit

et, premant l'integrale de 1 mille a 1 minue,

Amsi la valent de c'en r'et r'est donnée par l'equation suivante :

$$\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} dx$$

350

Sil'on fait / n. on auta

ce qui correspond a l'état mutial. Dons l'expression $\int_{-\infty}^{\infty} \frac{\cos q}{q} dq$ equivant a ϵ . Il taut comarquer que la fonction $\mathbf{L}(\epsilon)$, qui represente l'état initial, ne change point de valeur, d'après l'hypothèse, lorsque a devient negative, car la chaleur communiquee par le foyer avant que l'état initial fut forme s'est propagée egalement à la droite et à la gauche du point o qui la reçoit immédiatement. Il s'ensuit que la ligne dont l'equation serait

est composée de deux branches symétriques que l'on forme en répétant, à gauche de l'axe de y, la partie de la logarithmique qui est à la droite de cet axe et a pour équation

$$y = e^{-x}$$
.

On voit ici un second exemple d'une fonction discontinue exprimée par une intégrale définie (¹). Cette fonction $\frac{2}{\pi} \int_0^{\infty} \frac{\cos q \, x}{1 + q^2} \, dq$ équivaut à e^{-x} lorsque x est positive; mais elle est e^x lorsque x est négative.

351.

La question de la propagation de la chalcur dans une barre infinie dont l'extrémité est assujettie à une température constante se réduit, comme on le verra dans la suite, à celle de la diffusion de la chalcur dans une ligne infinie; mais il faut supposer que la chalcur initiale, au lieu d'affecter également les deux moitiés contiguës du solide, y est distribuée d'une manière contraire; c'est-à-dire qu'en représentant par F(x) la température d'un point dont la distance au milieu de la ligne est x, la température initiale du point opposé, pour lequel la distance est x, a pour valeur x. Cette seconde question diffère très peu de la précédente et pourrait être résolue par une méthode semblable; mais il est préférable de faire dépendre sa solution de l'analyse qui nous a servi à déterminer le mouvement de la chalcur dans les solides de dimensions finies.

Supposons qu'une partie ab (fig. 16) de la barre prismatique infinie soit échauffée d'une manière quelconque et que la partie opposée $a\beta$ soit dans un état pareil, mais de signe contraire, tout le reste du solide ayant la température initiale o. On suppose aussi que le milieu environnant est entretenu à la température constante o, et qu'il reçoit de la barre ou lui communique la chaleur par la surface extérieure. Il

⁽¹⁾ Il ne s'agit plus ici d'une fonction réellement discontinue, mais plutôt d'une fonction exprimée par deux lois différentes suivant que la variable est positive ou négative.

s'agit de trouver quelle sera, après un temps donné t, la température v d'un point dont la distance à l'origine est x.

On considérera d'abord la barre échauffée comme ayant une longueur finie 2X, et comme étant soumise à une cause extérieure quelconque qui retient ses deux extrémités à la température constante o; on fera ensuite $X = \infty$.

352.

On emploiera d'abord l'équation

$$\frac{\partial v}{\partial t} = \frac{K}{CD} \frac{\partial^2 v}{\partial x^2} - \frac{HL}{CDS} v$$

00

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} - hv;$$

et, faisant

$$v = ue^{-ht}$$

on aura

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}.$$

On exprimera comme il suit la valeur générale de u

$$u = a_1 e^{-kg_1^2 t} \sin g_1 x + a_2 e^{-kg_2^2 t} \sin g_2 x + a_3 e^{-kg_3^2 t} \sin g_3 x + \dots;$$

faisant ensuite x = X, ce qui doit rendre nulle la valeur de v, on aura, pour déterminer la série des exposants g, la condition

$$\sin g \mathbf{X} = \mathbf{0}$$
 ou $g \mathbf{X} = i\pi$,

i étant un nombre entier. Donc

$$u = a_1 e^{-k\frac{\pi^2}{X^2}t} \sin \frac{\pi x}{X} + a_2 e^{-k\frac{2^2\pi^2}{X^2}t} \sin 2\frac{\pi x}{X} + \dots$$

Il ne reste plus qu'à trouver la série des constantes a_1 , a_2 , a_3 , Faisant t = 0, on a

$$u = \mathbf{F}(x) = a_1 \sin \frac{\pi x}{\mathbf{X}} + a_2 \sin 2 \frac{\pi x}{\mathbf{X}} + a_3 \sin 3 \frac{\pi x}{\mathbf{X}} + \dots$$

Soit $\frac{\pi x}{X} = r$, et désignons F(x) ou $F\left(\frac{rX}{\pi}\right)$ par f(r); on aura

$$f(r) = a_1 \sin r + a_2 \sin 2r + a_3 \sin 3r + \dots$$

Or on a trouvé précédemment

$$a_i = \frac{2}{\pi} \int_0^{\pi} f(r) \sin ir \, dr;$$

done

$$\frac{\mathbf{X}a_i}{2} = \int \mathbf{F}(x) \sin i \frac{\pi x}{\mathbf{X}} dx.$$

L'intégrale devait être prise de r = 0 à $r = \pi$; donc elle doit être prise, par rapport à x, depuis x = 0 jusqu'à x = X. En faisant ces substitutions, on forme l'équation

$$(a) \qquad \begin{cases} v = \frac{2}{X}e^{-ht} \left[e^{-k\frac{\pi^2t}{X^2}} \sin\frac{\pi x}{X} \int_0^X \mathbf{F}(x) \sin\frac{\pi x}{X} dx + e^{-2^2k\frac{\pi^2t}{X^2}} \sin 2\frac{\pi x}{X} \int_0^X \mathbf{F}(x) \sin 2\frac{\pi x}{X} dx + \dots \right]. \end{cases}$$

353.

Telle serait la solution si le prisme avait une longueur finie représentée par 2X. Elle est une conséquence évidente des principes que nous avons posés jusqu'ici; il ne reste plus qu'à supposer la dimension X infinie. Soit $X = n\pi$, n étant un nombre infini; soit aussi q une variable dont les accroissements infiniment petits dq sont tous égaux;

on écrira $\frac{1}{dq}$ au lieu de n. Le terme général de la série qui entre dans l'équation (a) étant

$$e^{-i^{2}k\frac{\pi^{2}}{X^{2}}}\sin i\frac{\pi x}{X}\int_{0}^{X}\mathbf{F}(x)\sin i\frac{\pi x}{X}\,dx,$$

on représentera par $\frac{q}{dq}$ le nombre i, qui est variable et qui devient infini. Ainsi l'on aura

$$X = \frac{\pi}{dq}, \quad n = \frac{1}{dq}, \quad i = \frac{q}{dq}.$$

En faisant ces substitutions dans le terme dont il s'agit, on trouvera

$$e^{-kq^2t}\sin qx\int \mathbf{F}(x)\sin qx\,dx.$$

Chacun de ces termes doit être divisé par X ou $\frac{\pi}{dq}$: il devient par là une quantité infiniment petite, et la somme de la série n'est autre chose qu'une intégrale, qui doit être prise par rapport à q de q = o à $q = \infty$. Donc

(a)
$$v = \frac{2}{\pi} e^{-ht} \int e^{-kq^2t} \sin qx \, dq \int F(x) \sin qx \, dx.$$

L'intégrale par rapport à x doit être prise de x = 0 à $x = \infty$, ce qui donne une fonction de q; et la seconde intégrale doit être prise par rapport à q de q = 0 à $q = \infty$. On peut aussi écrire

$$\frac{\pi v}{2} = e^{-ht} \int_0^\infty e^{-kq^2t} \sin qx \, dq \int_0^\infty \mathbf{F}(\alpha) \sin q\alpha \, d\alpha$$

ou

$$\frac{\pi v}{2} = e^{-ht} \int_0^\infty \mathbf{F}(\alpha) \, d\alpha \int_0^\infty e^{-kq^2t} \sin q \, x \sin q \, \alpha \, dq.$$

L'équation (α) contient la solution générale de la question; et, en substituant pour F(x) une fonction quelconque, assujettie ou non à une loi continue, on pourra toujours exprimer en x et t la valeur de la température : il faut seulement remarquer que la fonction F(x) correspond à une ligne formée de deux parties égales et alternes.

354.

Si la chaleur initiale est distribuée dans le prisme de telle manière que la ligne FFFF (fig. 17) qui représente cet état initial soit formée

de deux arcs égaux placés à droite et à gauche du point fixe o, le mouvement variable de la chaleur est exprimé par l'équation

$$\frac{\pi r}{2} = e^{-ht} \int_0^\infty \mathbf{F}(\alpha) \, d\alpha \int_0^\infty e^{-kq^3 t} \cos q \, x \cos q \, \alpha \, dq.$$

Si la ligne ffff (fig. 18) qui représente l'état initial est formée de

deux arcs pareils et alternes, l'intégrale qui donne la valeur de température est

$$\frac{\pi v}{2} = e^{-ht} \int_0^\infty f(\alpha) \, d\alpha \int_0^\infty e^{-kq^2t} \sin q \, x \sin q \, \alpha \, dq.$$

Lorsqu'on supposera la chaleur initiale distribuée d'une manière quelconque, il sera facile de conclure des deux solutions précédentes l'expression de v. En effet, quelle que soit la fonction $\varphi(x)$ qui représente la température initiale et donnée, elle se décompose toujours en deux autres F(x) + f(x), dont l'une correspond à la ligne FFFF, et l'autre à la ligne ffff, en sorte que l'on a ces trois conditions:

$$F(x) = F(-x),$$
 $f(x) = -f(-x),$ $\varphi(x) = F(x) + f(x).$

On a déjà fait usage de cette remarque dans les articles 233 et 234. On sait aussi que chaque état initial donne lieu à un état variable partiel qui se forme comme s'il était seul; la composition de ces divers états n'apporte aucun changement dans les températures qui auraient lieu séparément pour chacun d'eux. Il suit de là qu'en désignant par v la température variable produite par l'état initial que représente la fonction totale $\varphi(x)$, on doit avoir

$$\begin{split} \frac{\pi \, v}{2} &= e^{-ht} \bigg[\int_0^\infty e^{-kq^2t} \cos q \, x \, dq \int_0^\infty \mathbf{F}(\alpha) \cos q \, \alpha \, d\alpha \\ &+ \int_0^\infty e^{-kq^2t} \sin q \, x \, dq \int_0^\infty f(\alpha) \sin q \, \alpha \, d\alpha \bigg] \, . \end{split}$$

Si l'on prenait entre les limites $-\infty$ et $+\infty$ les intégrales par rapport à α , il est évident que l'on doublerait les résultats. On peut donc, dans l'équation précédente, omettre au premier membre le dénominateur 2, et prendre dans le second les intégrales pour α depuis $\alpha = -\infty$ jusqu'à $\alpha = +\infty$. On voit facilement aussi que l'on pourrait écrire $\int_{-\infty}^{+\infty} \varphi(\alpha) \cos q\alpha \ d\alpha \ \text{au lieu de } \int_{-\infty}^{+\infty} F(\alpha) \cos q\alpha \ d\alpha; \ \text{car il résulte de la condition à laquelle est assujettie la fonction } f(\alpha) \ \text{que l'on doit avoir}$

$$o = \int_{-\infty}^{+\infty} f(\alpha) \cos q \, \alpha \, d\alpha.$$

On peut encore écrire $\int_{-\infty}^{+\infty} \varphi(\alpha) \sin q \alpha d\alpha$ au lieu de $\int_{-\infty}^{+\infty} f(\alpha) \sin q \alpha d\alpha$, car on a évidemment

$$o = \int_{-\infty}^{+\infty} F(\alpha) \sin q \, \alpha \, d\alpha.$$

On en conclut

$$\pi v = e^{-ht} \int_0^\infty e^{-kq^2t} dq \left[\int_{-\infty}^{+\infty} \varphi(\alpha) \cos q \alpha \cos q x \, d\alpha + \int_{-\infty}^{+\infty} \varphi(\alpha) \sin q \alpha \sin q x \, d\alpha \right]$$

ou

$$\pi v = e^{-ht} \int_0^\infty e^{-kq^2t} dq \int_{-\infty}^{+\infty} \varphi(\alpha) \cos q(x-\alpha) \, d\alpha$$

ıč

402

ou

$$\pi v = e^{-ht} \int_{-\infty}^{+\infty} \varphi(\alpha) \, d\alpha \int_{0}^{\infty} e^{-kq^2 t} \cos q(x - \alpha) \, dq.$$

355.

La solution de cette seconde question fait connaître distinctement quel rapport il y a entre les intégrales définies que nous venons d'employer et les résultats de l'analyse que nous avons appliquée aux solides d'une figure déterminée. Lorsque, dans les séries convergentes que cette analyse fournit, on donne aux quantités qui désignent les dimensions une valeur infinie, chacun des termes devient infiniment petit, et la somme de la série n'est autre chose qu'une intégrale. On pourrait passer directement de la même manière, et sans aucune considération physique, des diverses séries trigonomètriques que nous avons employées dans le Chapitre III aux intégrales definies; il nous suffira de donner quelques exemples de ces transformations dont les résultats sont remarquables.

356.

Dans l'équation

$$\frac{\pi}{4} = \sin u + \frac{1}{3}\sin 3u + \frac{1}{5}\sin 5u + \frac{1}{7}\sin 7u + \dots,$$

donnée aux articles 484 et 222, on écrira au lieu de u la quantité $\frac{i}{n}$. x est une autre variable et n est un nombre infini égal à $\frac{i}{dq}$; q est une quantité formée successivement par l'addition de ses parties infiniment petites égales à dq. On représentera le nombre variable i par $\frac{q}{dq}$. Si, dans le terme général $\frac{1}{2i+1}\sin(2i+1)\frac{x}{n}$, on met pour i et n leurs valeurs, ce terme deviendra $\frac{dq}{2q}\sin 2qx$. Donc la somme de la série sera

$$\frac{1}{2}\int\sin 2qx\,\frac{dq}{q},$$

l'integrale etant prise de $q=\alpha$ à $q=\infty$; on a donc l'équation

$$\frac{\pi}{4} = \frac{1}{2} \int_0^{\pi} \sin^2 q \, r \, \frac{dq}{q},$$

qui a toujours lieu quelle que soit la valeur positive de ac.

Soit 291 1, 1 clant une nouvelle variable, on aura

$$\frac{dq}{q} = \frac{dr}{r}$$
 of $\frac{dr}{r} = \int_0^{r} \sin r \frac{dr}{r}$;

cette valeur de l'integrale definie $\int_{-\infty}^{\infty} \sin r \, \frac{dr}{r}$ est connue depuis longtemps. Si, en supposant r negatif, on prenaît la même integrale de $r = \alpha$ a $r = -\infty$, on aurait evidemment un resultat de signe contraire

357

La remarque que nous venons de faire sur la valeur de l'intégrale $\int_0^\infty \sin q \, r \frac{dq}{q} \cdot \operatorname{qui}(\operatorname{ext}(\tilde{q})) \operatorname{ou}(-\tilde{q}) \operatorname{peut servir a faire connaître la nature de l'expression$

to large sing dy

dont nous avons trouve precedemment art. 348 la valeur égale à vou a o, selon que v est ou n'est pas comprise entre v et ...v. En effet, on a

be premier terms vant $\frac{1}{2}$ on $\frac{\pi}{4}$ selon que x+r est une quantite positive on negative; le second $\frac{1}{2}\int \sin q|x-r|\frac{dq}{q}$ vant $\frac{\pi}{4}$ ou $\frac{\pi}{4}$ selon que x-r est une quantite positive on negative. Done l'integrale totale est nulle si x+r et x-r ont le même signe; car, dans ce cas, les deux termes se detruisent; mais, si ces quantités sont de signe different, c'est-a-dire si l'on a en même temps x+r>0 et x-r<0, les deux termes s'ajoutent et la valeur de l'integrale est $\frac{\pi}{4}$. Done l'integrale est $\frac{\pi}{4}$.

grale définie $\frac{2}{\pi} \int_0^\infty \sin q \cos qx \, \frac{dq}{q}$ est une fonction de x égale à 1, si la variable x a une valeur quelconque comprise entre 1 et -1; et cette même fonction est nulle pour toute autre valeur de x non comprise entre les limites 1 et -1.

On pourrait déduire aussi de la transformation des séries en intégrales les propriétés des deux expressions

$$\frac{2}{\pi} \int_0^\infty \frac{\cos q \, x \, dq}{{\rm I} + q^2} \quad \text{et} \quad \frac{2}{\pi} \int_0^\infty \frac{q \sin q \, x \, dq}{{\rm I} + q^2} \cdot$$

La première (art. 350) équivaut à e^{-x} lorsque x est positive, et à e^{x} lorsque x est négative. La seconde équivaut à e^{-x} si x est positive, et à $-e^{x}$ si x est négative; en sorte que ces deux intégrales ont la même valeur lorsque x est positive, et ont des valeurs de signe contraire

lorsque x est négative. L'une est représentée par la ligne eeee (fig. 19), l'autre par la ligne eeee (fig. 20).

L'équation (1)

$$\frac{1}{2\alpha}\sin\frac{\pi x}{\alpha} = \frac{\sin\alpha\sin x}{\pi^2 - \alpha^2} + \frac{\sin2\alpha\sin 2x}{\pi^2 - 2^2\alpha^2} + \frac{\sin3\alpha\sin 3x}{\pi^2 - 3^2\alpha^2} + \dots,$$

(1) Plus exactement, le second membre de l'équation est égal à $\frac{1}{2\alpha} \sin \frac{\pi x}{\alpha}$ si la variable x est comprise entre o et α ; il est égal à zéro si x est comprise entre α et π . Pour retrouver l'intégrale déterminée par Fourier, il suffit de suivre sa méthode en remplaçant dans le terme général de la série

$$\frac{2\alpha\sin m\alpha\sin mx}{\pi^2-m^2\alpha^2}$$

$$\alpha$$
, x , m respectivement par π . dq , x dq , $\frac{q}{dq}$.

G. D.

que nous avons rapportee art. 226 , donne immediatement l'intégrale $\frac{1}{\pi}\int_{0}^{\pi}\frac{\sin q}{1-q^2}\frac{\sin q}{q^2}\frac{df}{dt}$; cette dernière expression equivant à sinx si x est comprise entre α et π , et sa valeur est nulle toutes les fois que x surpasse π .

La meme transformation s'applique a l'equation generale

$$\frac{d}{dt} = u = -\sin u \int_{-t}^{t} \sin u \, du = \sin u \, du = -\frac{1}{2} \left(-u \cdot \sin u \, du \right) = -\frac{1}{2$$

faisant $u=\frac{\epsilon}{n}$, on designera $\frac{1}{2}u$, on $\frac{1}{2}(\frac{\epsilon}{n})$, par f(e) on introduira dans le calcul une quantité q qui reçoit des accroissements infiniment petits, egans a dq; n seria egal a $\frac{1}{dq}$ et e a $\frac{q}{dq}$; substituant ces valeurs dans le terme general

$$\min_{i \in \mathcal{I}} \int_{-i}^{i} \frac{i}{n} + \min_{i \in \mathcal{I}} \frac{i}{n} \frac{ti}{t}.$$

on fromveta

$$dq \sin j i \int f(r) \sin q \cdot dr$$

L'integrale par rapport a u est prise de u = α a u = π ; done l'integration par rapport a x doct avoir hen de x = α a x = $n\pi$, on de x nulle a x infinie.

On obtaint amer un resultat general exprime par cette equation

c'est pourquoi, en designant par Q une fonction de g telle que l'on ait

equation dans laquelle f(u) est une fonction donnée, on aura

l'integrale etant prise de u mille a u infinie. Nous avons deja resolu

une question semblable (art. 346) et démontré l'équation générale

(
$$\varepsilon$$
)
$$\frac{\pi}{2} \mathbf{F}(x) = \int_0^\infty \cos q \, x \, dq \int_0^\infty \mathbf{F}(x) \cos q \, x \, dx,$$

qui est analogue à la précédente.

360.

Pour donner une application de ces théorèmes, nous supposerons $f(x) = x^r$; le second membre de l'équation (e) deviendra par cette substitution

$$\int_0^\infty \sin q \, x \, dq \int_0^\infty x^n \sin q \, x \, dx.$$

L'intégrale

$$\int x^r \sin q x \, dx$$
 ou $\frac{1}{q^{r+1}} \int q (q x)^r \sin q x \, dx$

équivant à $\frac{1}{q^{r+1}}\int u^r \sin u \, du$, l'intégrale étant prise de u nulle à u infinie. Soit μ cette intégrale totale

$$\int_0^\infty u^r \sin u \, du;$$

il reste à prendre l'intégrale

$$\int_0^\infty \sin q \, x \, \frac{\mu}{q^{r+1}} \, dq \quad \text{ou} \quad \mu x^r \int u^{-(r+1)} \sin u \, du.$$

Désignant par ν cette dernière intégrale prise de u nulle à u infinie, on aura pour résultat des deux intégrations successives le terme $x^r \mu \nu$. On doit donc avoir, selon la condition exprimée par l'équation (c),

$$\frac{\pi}{2}x^r = \mu\nu x^r \quad \text{ou} \quad \mu\nu = \frac{\pi}{2};$$

ainsi le produit des deux intégrales $\int_0^\infty u^r \sin u \, du$ et $\int_0^\infty u^{-r} \sin u \, \frac{du}{u}$ est $\frac{\pi}{2}$. Par exemple, en faisant $r=-\frac{1}{2}$, on trouve pour $\int \frac{\sin u \, du}{\sqrt{u}}$ sa valeur connue

$$\sqrt{\frac{\pi}{2}}$$
.

CHAPITRE IX. DIFFUSION DE LA CHALEUR. 407 On trouve de la même manière

et, de ces equations, on pourrait aussi conclure la suivante

qui est employee depuis longtemps (1),

361.

On pent resondre au moyen des equations |e| et |z| le problème suivant, qui appartient aussi à l'analyse des différences partielles : Quelle est la fonction Q de la variable q qui doit être placée sous le signe integral pour que l'expression $\int Qe - dq$ soit égale a une fonction donnée, l'integrale étant prise de q nulle à q infime! Mais, sans s'arrêter à ces diverses consequences, dont l'examen nous éloignérait de notre objet principal, on se hornéra au résultat suivant, que l'on obtient en combinant les deux équations |e| et |z|. Elles penvent être mises sous cette forme

1.1

$$\frac{\pi}{4} \mathbf{1} = r = \int_{-\pi}^{\pi} r \cos q \, x \, dq \int_{-\pi}^{\pi} \mathbf{1} r \, x \, r \cos q \, x \, dx.$$

Si l'on premait les integrales par rapport à z depuis — z jusqu'à) z, le resultat de chaque intégration serait double, ce qui est une consequence nécessaire des deux conditions

on a donc les deux équations

$$\pi f(x) = \int_0^\infty \sin q \, x \, dq \int_{-\infty}^{+\infty} f(\alpha) \sin q \, \alpha \, d\alpha$$

et

$$\pi F(x) = \int_0^{\infty} \cos q \, x \, dq \int_{-\infty}^{+\infty} F(\alpha) \cos q \, \alpha \, d\alpha.$$

On a remarqué précédemment qu'une fonction quelconque $\varphi(x)$ se décompose toujours en deux autres, dont l'une F(x) satisfait à la condition F(x) = F(-x), et dont l'autre f(x) satisfait à la condition f(x) = -f(-x). On a aussi les deux équations

$$o = \int_{-\infty}^{+\infty} \mathbf{F}(\alpha) \sin q \, \alpha \, d\alpha \quad \text{et} \quad o = \int_{-\infty}^{+\infty} f(\alpha) \cos q \, \alpha \, d\alpha;$$

on en conclut

$$\pi[F(x) + f(x)] = \pi \varphi(x) = + \int_0^\infty \sin q \, x \, dq \int_{-\infty}^{+\infty} f(\alpha) \sin q \, \alpha \, d\alpha$$
$$+ \int_0^\infty \cos q \, x \, dq \int_{-\infty}^{+\infty} F(\alpha) \cos q \, \alpha \, d\alpha$$

et

$$\pi \varphi(x) = \int_0^{\infty} \sin q \, x \, dq \int_{-\infty}^{+\infty} \varphi(\alpha) \sin q \, \alpha \, d\alpha + \int_0^{\infty} \cos q \, x \, dq \int_{-\infty}^{+\infty} \varphi(\alpha) \cos q \, \alpha \, d\alpha$$

ou

$$\pi \varphi(x) = \int_{-\infty}^{+\infty} \varphi(\alpha) d\alpha \int_{0}^{\infty} (\sin q \, x \sin q \, \alpha + \cos q \, x \cos q \, \alpha) \, dq$$

ou enfin

(E)
$$\varphi(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \varphi(\alpha) \, d\alpha \int_{0}^{\infty} \cos q(x - \alpha) \, dq.$$

L'intégration par rapport à q donne une fonction de x et α , et la seconde intégration ferait disparaître la variable α . Ainsi la fonction représentée par l'intégrale définie $\int_0^\infty \cos q(x-\alpha)\,dq$ a cette singulière propriété que, si on la multiplie par une fonction quelconque $\varphi(\alpha)$ et par $d\alpha$, et si l'on intègre par rapport à α entre des limites infi-

nies, le résultat est égal à $\pi \varphi(x)$; en sorte que l'effet de l'intégration est de changer α en x et de multiplier par le nombre π (1).

(1) L'intégrale

$$\int_0^\infty \cos q(x-\alpha)\,dq$$

dont parle Fourier n'a aucune valeur déterminée; car on a

$$\int_0^h \cos q(x-\alpha) dq = \frac{\sin h(x-\alpha)}{x-\alpha},$$

et le second membre ne tend vers aucune limite lorsque h grandit indéfiniment. Il semble donc difficile d'attacher un sens précis à la proposition énoncée dans ce dernier paragraphe.

La formule célèbre (E), que donne ici Fourier et à laquelle son nom est resté attaché, peut recevoir une signification très nette lorsqu'on la présente de la manière suivante :

Considérons une fonction $\varphi(x)$, analogue à celles que l'on rencontre en Physique mathématique, demeurant comprise entre deux limites fixes lorsque x varie de $-\infty$ à $+\infty$, n'ayant qu'un nombre limité de discontinuités et de maxima ou de minima. Désignons, à l'exemple de Dirichlet (*Journal de Crelle*, t. 17), par $\varphi(x+0)$ la limite de $\varphi(x+h)$ et par $\varphi(x-0)$ la limite de $\varphi(x-h)$ lorsque h tend vers zéro par des valeurs positives. Cela posé, on peut énoncer les propositions suivantes :

L'intégrale double

$$J(\Lambda, B, h) = \frac{1}{\pi} \int_{B}^{\Lambda} \varphi(\alpha) d\alpha \int_{0}^{h} \cos q(x - \alpha) dq = \frac{1}{\pi} \int_{0}^{h} dq \int_{B}^{\Lambda} \varphi(\alpha) \cos q(x - \alpha) d\alpha,$$

où h est un nombre positif et où l'on a B < A, tend vers une limite déterminée $J(A, B, \infty)$ lorsque, A et B restant fixes, h grandit indéfiniment. Cette limite est $\frac{1}{2} \left[\varphi(x+o) + \varphi(x-o) \right]$ si x est compris entre A et B, $\frac{1}{2} \varphi(B+o)$ si x est égal à B, $\frac{1}{2} \varphi(A-o)$ si x est égal à A, o si x est plus grand que A ou plus petit que B.

Il résulte de là que $J(A, B, \infty)$ a une limite déterminée $J_0(x)$ lorsque B et A tendent respectivement vers $-\infty$ et $+\infty$, et que cette limite déterminée est égale à

$$\frac{1}{2} \left[\varphi(x+0) + \varphi(x-0) \right],$$

ou à $\varphi(x)$ lorsque $\varphi(x)$ est continue pour la valeur de x considérée.

Les propositions précédentes subsisteront alors même que la fonction $\varphi(x)$ deviendrait infinie pour certaines valeurs de x, en nombre limité, pourvu que l'intégrale $\int \varphi(x) dx$ demeure finie pour les valeurs de x qui rendent $\varphi(x)$ infinie.

362.

On pourrait déduire directement l'équation (E) du théorème, rapporté dans l'article 234 $(p.\ 23o\ et\ 231)$, qui donne le développement d'une fonction quelconque F(x) en série de sinus et de cosinus d'arcs multiples. On passe de cette dernière proposition à celles que nous venons de démontrer en donnant une valeur infinie aux dimensions. Chaque terme de la série devient dans ce cas une quantité différentielle. Ces transformations des fonctions en suites trigonométriques sont des éléments de la Théorie analytique de la chaleur; il est indispensable d'en faire usage pour résoudre les questions qui dépendent de cette théorie.

La réduction des fonctions arbitraires en intégrales définies, telle que l'expriment l'équation (E) et les deux équations élémentaires dont elle dérive, donne lieu à diverses conséquences que l'on omettra ici, parce qu'elles ont un rapport moins direct avec la question physique. On fera seulement remarquer que ces mêmes équations se présentent quelquefois dans le calcul sous d'autres formes. On obtient, par exemple, ce résultat

$$\varphi(x) = \frac{1}{\pi} \int_0^{\infty} \varphi(\alpha) \, d\alpha \int_0^{\infty} \cos q(x - \alpha) \, dq,$$

qui diffère de l'équation (E) en ce que les limites de l'intégrale prise par rapport à α sont o et ∞ , au lieu d'être $-\infty$ et $+\infty$. Il faut considérer, dans ce cas, que les deux équations (E) et (E') donnent pour le second membre des valeurs égales lorsque la variable x est positive. Si cette variable est négative, l'équation (E') donne toujours pour le second membre une valeur nulle. Il n'en est pas de même de l'équation (E), dont le second membre équivaut à $\varphi(x)$, soit que l'on donne à x une valeur positive ou une valeur négative. Quant à l'équation (E'), elle résout le problème suivant : Trouver une fonction de x telle que, si x est positive, la valeur de la fonction soit $\varphi(x)$, et que, si x est négative, la valeur de la fonction soit toujours nulle.

363.

La question de la propagation de la chaleur dans une ligne infinie peut encore être resolue en donnant à l'integrale de l'équation aux différences partielles une forme différente que nons ferons connaître dans l'article suivant. Nous examinerons auparavant le cas où la source de la chaleur est constante.

Supposons que, la chalcur initiale etant répartie d'une manière quelconque dans la barre infinie, on entretienne la tranche A à une temperature constante, tandis qu'une partie de la chalcur communiquee se dissipe par la surface exterieure. Il s'agit de determiner l'état du prisme après un temps donne, ce qui est l'objet de la seconde question que nous nous sommes proposee. En désignant par i la température constante de l'extremite A, par o celle du milieu, on aura

 $e^{-i\sqrt{\frac{m}{K^*}}}$ pour l'expression de la temperature finale du point situe à la distance i de cette extremite. Designant par « la temperature variable du même point après le temps écoule i, on a, pour determiner «, cette équation

Soil maintenant

cett letterle

()11

en remplaçant $\frac{K}{CD}$ par k et $\frac{HL}{CDS}$ par h, Scl'on fact $u = e^{-kt}u$, on a

La valeur de u' ou $v-e^{-x\sqrt{\frac{HL}{KS}}}$ est celle de la différence entre la température actuelle et la température finale; cette différence u', qui tend de plus en plus à s'évanouir, et dont la dernière valeur est nulle, équivaut d'abord à

 $\mathbf{F}(x) = e^{-x\sqrt{\hat{h}}},$

en désignant par F(x) la température initiale d'un point situé à la distance x. Soit f(x) cet excès de la température initiale sur la température finale, il faudra trouver pour u' une fonction qui satisfasse à l'équation

 $\frac{\partial u'}{\partial t} = k \frac{\partial^2 u'}{\partial x^2} - hu',$

qui ait pour valeur initiale f(x), et pour valeur finale o. Au point A,

où x est égal à o, la quantité $v = e^{-x\sqrt{\frac{iii.}{KS}}}$ a, par hypothèse, une valeur constante égale à o. On voit par là que u' représente une chaleur excédante qui est d'abord accumulée dans le prisme, et qui ensuite s'évanouit, soit en se propageant à l'infini, soit en se dissipant dans le milieu. Ainsi, pour représenter l'effet qui résulte de l'échauffement uniforme de l'extrémité A d'une ligne infiniment prolongée, il faut concevoir: 1º que cette ligne est aussi prolongée à la gauche du point A, et que chaque point situé à droite est présentement affecté de la température initiale excédante; 2° que l'autre moitié de la ligne à la gauche du point A est dans un état contraire, en sorte qu'un point placé à la distance -x du point A a pour température initiale -f(x); ensuite la chaleur commence à se mouvoir librement dans l'intérieur de la barre et à se dissiper à la surface. Le point A conserve la température o, et tous les autres points parviennent insensiblement au même état. C'est ainsi que l'on peut ramener le cas où le foyer extérieur communique incessamment une nouvelle chalcur à celui où la chaleur primitive se propage dans l'intérieur du solide. On pourrait donc résoudre la question proposée de la même manière que celle de la diffusion de la chaleur (art. 347, 353 et 354); mais, afin de multiplier les moyens de résolution dans une matière aussi nouvelle, on emploiera l'intégrale sous une forme différente de celle que nous avons considérée jusqu'ici.

364.

On satisfait à l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

en supposant u égale à $e^{-x}e^{kt}$. Or, cette dernière fonction de x et t peut être mise sous la forme d'intégrale définie, ce qui se déduit très facilement de la valeur connue de $\int e^{-q^z}dq$. On a en effet $\sqrt{\pi} = \int e^{-q^z}dq$ lorsque l'intégrale est prise de $q=-\infty$ à $q=+\infty$. On aura donc aussi

$$\sqrt{\pi} = \int e^{-(q+b)^2} dq,$$

b étant une constante quelconque, et les limites de l'intégrale étant les mêmes qu'auparavant. De l'équation

$$\sqrt{\pi} = e^{-b^2} \int_{-\infty}^{+\infty} e^{-(q^2+2bq)} dq,$$

on conclut, en faisant $b^2 = kt$,

$$e^{kt} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^2} e^{-2q\sqrt{kt}} dq;$$

donc la valeur précédente de u ou $e^{-x}e^{kt}$ équivaut à

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^*} e^{-(x+2q\sqrt{kt})} dq.$$

On pourrait aussi supposer u égale à la fonction

$$ae^{-nx}e^{kn^2t}$$

a et n étant deux constantes quelconques; et l'on trouvera de même que cette fonction équivaut à

$$\frac{a}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^2} e^{-n(x+2q\sqrt{kt})} dq.$$

On peut donc prendre, en général, pour valeur de u la infinité de valeurs semblables, et l'on aura

$$u = \int_{-\infty}^{+\infty} e^{-q^2} dq \left[a_1 e^{-n_1 (x + 2q\sqrt{kt})} + a_2 e^{-n_2 (x + 2q\sqrt{kt})} + a_3 e^{-n_3 (x + 2q\sqrt{kt})} \right]$$

Les constantes a_1 , a_2 , a_3 , ... et n_4 , n_2 , n_3 , ... étant ind série représente une fonction quelconque de $x + 2q\sqrt{kt}$

$$u = \int e^{-q^2} \varphi(x + 2q\sqrt{kt}) dq.$$

L'intégrale doit être prise de $u = -\infty$ à $u = \infty$, et la val fera nécessairement à l'équation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}.$$

Cette intégrale, qui contient une fonction arbitraire, connue lorsque nous avons entrepris nos recherches sur la chaleur, qui ont été remises à l'Institut de France de décembre 1807; elle a été donnée par M. Laplace, dan qui fait partie du Tome VIII du Journal de l'École Polynous ne faisons que l'appliquer à la détermination d

linéaire de la chalcur. On en conclut
$$c=e^{-ht}\int_{-\infty}^{+\infty}e^{-q^2}\,\phi(x+2\,q\,\sqrt{kt})\,dq+e^{-x\,\sqrt{\frac{111}{hs}}};$$

lorsque t est égal à zéro, la valeur de u est $F(x) - e^{-x}$ donc

$$f(x) = \int_{-\infty}^{+\infty} \varphi(x) e^{-q^2} dq \quad \text{et} \quad \varphi(x) = \frac{1}{\sqrt{\pi}} f(x)$$

Ainsi la fonction arbitraire qui entre dans l'intégrale e

(1) LAPLACE, Mémoire sur divers points d'Analyse: Sur le Calcul d

p. 235 à 244).

ratrices. — Sur les intégrales définies des équations à différences par passage réciproque des Résultats réels aux Résultats imaginaires. — Su équations aux différences finies non linéaires. — Sur la Réduction des fe (Journal de l'École Polytechnique, XV° Cahier, p. 229-265. Voir plus

413

au moyen de la fonction donnée f(x); et l'on a l'équation suivante qui contient la solution de la question

$$\frac{1}{\sqrt{2}} \left(\frac{\sqrt{N}}{N} + \frac{e^{-kt}}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-tt} f(x) dy \sqrt{kt} \right)$$

il serait facile de représenter ce résultat par une construction.

365.

Nons appliquerons la solution précèdente au cas où, tous les points de la ligne AB ayant la temperature mitiale α , on échauffe l'extrémité Λ pour la retenir continuellement à la temperature α . Il en résulte que F(x) a une valeur nulle lorsque x différe de α . Ainsi, f(x) équivant à

 $e^{-i\sqrt{\frac{m}{ks}}}$ toutes les fois que a diffère de zero, et à zèro lorsque a est nulle. D'un autre côte, il est necessaire qu'en faisant a négative, la valeur de f(x) change de signe, en sorte que l'on a la condition f(x) = f(x). On connait ainsi la nature de la fonction discontinue f(x) elle est $e^{-i\sqrt{\frac{m}{ks}}}$ lorsque x surpasse x, et $x \in \frac{\sqrt{\frac{m}{ks}}}{s}$ lorsque x est moindre que x. Il faut maintenant cerire, an hen de x, la quantité $x \mapsto xq\sqrt{kt}$. Pour trouver n on

$$\int_{-\infty}^{1} \int_{-\infty}^{+\infty} e^{-2t} f(x) + i q \sqrt{kt} \, dq.$$

on prendra d'abord l'integrale depuis $x + 2g\sqrt{kt}$ o jusqu'a $x + 2g\sqrt{kt}$ x, et ensuite depuis $x + 2g\sqrt{kt}$ $x = \infty$ jusqu'à $x + 2g\sqrt{kt}$ o. Pour la prennère partie, on à

et, remplacant k par sa valeur $\frac{k}{\epsilon D}$, on a

ou

ou

$$-\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{\Pi L}{KS}}}\int e^{-q^2}e^{-2q\sqrt{\frac{\Pi L}{CDS}}}dq$$

$$-\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{\Pi L}{KS}}+\frac{\Pi L}{CDS}}\int e^{-\left(q+\sqrt{\frac{\Pi L}{CDS}}\right)^2}dq.$$

En désignant par r la quantité $q+\sqrt{\frac{\overline{\mathrm{HL}}\,t}{\mathrm{CDS}}}$, l'expression précédente est

$$-\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{\Pi L}{KS}}+\frac{\Pi L}{CDS}}\int e^{-r^2}dr;$$

cette intégrale $\int e^{-r^2} dr$ doit être prise, par hypothèse, depuis $x + 2g\sqrt{\frac{Kt}{CD}} = 0$ jusqu'à $x + 2g\sqrt{\frac{Kt}{CD}} = \infty$, ou depuis $q = -\frac{x}{2\sqrt{\frac{Kt}{CD}}}$

jusqu'à $q = \infty$, ou de $r = \sqrt{\frac{\overline{HL}\,t}{\overline{CDS}}} - \frac{x}{2\sqrt{\frac{\overline{K}\,t}{\overline{CD}}}}$ jusqu'à $r = \infty$.

La seconde partie de l'intégrale est

ou
$$\frac{1}{\sqrt{\pi}} \int e^{-q^{1}} e^{\left(x+2q\sqrt{\frac{K}{CD}}\right)\sqrt{\frac{HL}{KS}}} dq$$
ou
$$\frac{1}{\sqrt{\pi}} e^{x\sqrt{\frac{HL}{KS}}} \int e^{-q^{2}} e^{2q\sqrt{\frac{HL}{CDS}}} dq$$
ou
$$\frac{1}{\sqrt{\pi}} e^{x\sqrt{\frac{HL}{KS}} + \frac{HL}{CDS}} \int e^{-r^{2}} dr,$$

en désignant par r la quantité $q-\sqrt{\frac{\Pi L\,t}{\text{CDS}}}$. L'intégrale $\int e^{-r^{s}}dr$ doit être prise, d'après l'hypothèse, depuis $x+2q\sqrt{\frac{K\,t}{\text{CD}}}=-\infty$ jusqu'à $x+2q\sqrt{\frac{K\,t}{\text{CD}}}=0$, ou de $q=-\infty$ à $q=-\frac{x}{2\sqrt{\frac{K\,t}{\text{CD}}}}$, c'est-à-dire

depuis
$$r=-\infty$$
 jusqu'à $r=-\sqrt{\frac{\mathrm{HL}\,t}{\mathrm{CDS}}}-\frac{x}{\sqrt[2]{\frac{\mathrm{K}\,t}{\mathrm{CD}}}}$

Ces deux dernières limites penvent, d'après la nature de la fonction e^{-r} , être remplacees par celles e^{-r} :

Il suit de la que la valeur de u est exprimee ainsi :

$$_{H}=\frac{1}{\sqrt{\pi}}\left(\frac{\sqrt{\frac{m}{\kappa^{\alpha}}-\frac{m}{\kappa^{\alpha}}}}{\sqrt{\kappa^{\alpha}}-\frac{\kappa}{\kappa^{\alpha}}} \int_{-\kappa}^{\kappa} e^{-i\kappa} dx -\frac{1}{\sqrt{\pi}} e^{-i\kappa} \frac{m}{\kappa^{\alpha}} \frac{m}{\kappa^{\alpha}} \int_{-\kappa}^{\kappa} e^{-i\kappa} dx \right)$$

la première integrale doit être prise depuis $z = \sqrt{\frac{HLz}{CDS}} = \sqrt{\frac{Kz}{CDS}}$ jusqu'a z = z, et la seconde depuis $z = \sqrt{\frac{HLz}{CDS}} = \sqrt{\frac{Kz}{CD}}$ jusqu'à z = z, Représentous maintenant par $\frac{1}{z}$ R. l'integrale $\frac{1}{CD} = \frac{1}{z} \int e^{-z} dz$ depuis

Done u, qui equivant a $e^{-\frac{m}{(4.9)}}u$, a pour expression

R jusqu'az z z on aura

$$= \frac{1}{2} \left(\left(\begin{array}{c} \frac{H}{1} \right) \\ + \frac{K}{1} \end{array} \right) = \frac{1}{2} \left(\left(\begin{array}{c} \frac{H}{1} \right) \\ + \frac{K}{1} \end{array} \right)$$

et l'un a

117

La fonction désignée par $\psi(R)$ est connue depuis longtemps et l'on peut calculer facilement, soit au moyen de séries convergentes, soit par les fractions continues, les différentes valeurs que reçoit cette fonction lorsqu'on met au lieu de R des quantités données; ainsi l'application numérique de la solution n'est sujette à aucune difficulté (4).

366.

Si l'on fait H nulle, on a

$$v = 1 - \psi \left(\frac{-x}{2\sqrt{\frac{K t}{CD}}} \right) + \psi \left(\frac{x}{2\sqrt{\frac{K t}{CD}}} \right).$$

Cette équation représente la propagation de la chaleur dans une barre infinie dont tous les points étaient d'abord à la température o, et dont l'extrémité est élevée et entretenue à la température constante 1. On suppose que la chaleur ne peut se dissiper par la surface extérieure de la barre ou, ce qui est la même chose, que cette barre a une épaisseur infiniment grande. Cette dernière valeur de ν fait donc connaître la loi suivant laquelle la chaleur se propage dans un solide terminé par un plan infini, en supposant que ce mur, infiniment épais, a d'abord

(1) Pour ce qui concerne le calcul numérique des fonctions que Fourier désigne ici et dans l'article suivant par $\psi(R)$ et $\phi(R)$, on pourra consulter :

KRAMP, Analyse des réfractions astronomiques et terrestres, Strasbourg et Leipsiek. an VII.

Cet Ouvrage contient : 1° une Table des valeurs de l'intégrale $\int_{\mathbf{T}}^{\infty} e^{-t^2} dt$; 2° une Table des logarithmes de cette intégrale; 3° les logarithmes du produit $e^{\mathbf{T}^2} \int_{\mathbf{T}}^{\infty} e^{-t^2} dt$.

BESSEL, Fundamenta Astronomiæ (Kænigsberg, 1818).

LEGENDRE, Traité des fonctions elliptiques et des intégrales eulériennes, t. II, p. 520. 521.

ENCKE, Astronomisches Jahrbuch für 1834, Berlin, 1832.

RADAU (R.), Tables de l'intégrale $\psi(Z) = e^{Z^2} \int_Z^{\infty} e^{-t^2} dt$. — Annales de l'observatoire de Paris, Partie théorique, t. XVIII.

Les Tables que contient ce Mémoire permettent d'obtenir le logarithme de $\psi(Z)$ à $\frac{1}{4}$ d'unité près du septième ordre décimal. G. D.

dans toutes ses parties une température constante initiale o et que l'on assujettit la surface à une température constante 1. Il ne sera point inutile de faire observer quelques résultats de cette solution.

En désignant par $\varphi(\mathbf{R})$ l'intégrale $\frac{1}{\sqrt{\pi}}\int e^{-r^2}dr$ prise depuis r=o jusqu'à $r=\mathbf{R}$, on a

$$\psi(R) = \frac{\tau}{2} - \phi(R) \qquad \text{et} \qquad \dot{\psi(-R)} = \frac{\tau}{2} + \phi(R),$$

lorsque R est une quantité positive; donc

$$\psi(-R) - \psi(R) = 2 \varphi(R)$$
 et $r = 1 - 2 \varphi\left(\frac{x}{2\sqrt{\overline{K}t}}\right)$.

En développant l'intégrale $\phi(R)$, on a

$$\phi(R) = \frac{1}{\sqrt{\pi}} \bigg(R - \frac{1}{1} \, \frac{1}{3} \, R^3 + \frac{1}{1 \cdot 2} \, \frac{1}{5} \, R^5 - \frac{1}{1 \cdot 2 \cdot 3} \, \frac{1}{7} \, R^7 + \ldots \bigg);$$

donc

$$\frac{1}{2} \sqrt[3]{\pi} = \frac{1}{2} \sqrt{\pi} - \frac{x}{2\sqrt{\frac{Kt}{CD}}} + \frac{1}{1} \frac{1}{3} \left(\frac{x}{2\sqrt{\frac{Kt}{CD}}}\right)^3 - \frac{1}{1 \cdot 2} \frac{1}{5} \left(\frac{x}{2\sqrt{\frac{Kt}{CD}}}\right)^5 + \dots$$

 r° Si l'on suppose x nulle, on trouvera v = 1.

2º Si, x n'étant point nulle, on suppose t=0, la somme des termes qui contiennent x représente l'intégrale $\int e^{-r^2} dr$ prise depuis r=0 jusqu'à $r=\infty$, et par conséquent équivaut à $\frac{1}{2}\sqrt{\pi}$; donc v est nulle.

3° Différents points du solide placés à des profondeurs différentes x_1, x_2, x_3, \ldots parviennent à une même température après des temps différents t_1, t_2, t_3, \ldots , qui sont proportionnels aux carrés des longueurs x_1, x_2, x_3, \ldots

4° Pour comparer les quantités de chaleur qui traversent pendant un instant infiniment petit une section S placée dans l'intérieur du solide à la distance x du plan échauffé, on prendra la valeur de la

quantité $-KS\frac{\partial v}{\partial x}$, et l'on aura

$$-KS \frac{\partial v}{\partial x} = \frac{2SK}{2\sqrt{\frac{K}{K}t}} \frac{I}{\sqrt{\pi}} \left[1 - \frac{I}{I} \left(\frac{x}{2\sqrt{\frac{K}{CD}}} \right)^2 + \frac{I}{1 \cdot 2} \left(\frac{x}{2\sqrt{\frac{K}{CD}}} \right)^4 - \cdots \right]$$
$$= S\sqrt{\frac{CDK}{\pi t}} e^{-\frac{CD \cdot x^2}{4 \cdot K t}};$$

ainsi l'expression de la quantité $\frac{\partial v}{\partial x}$ est entièrement dégagée du signe intégral. La valeur précédente, à la surface du solide échaussé, est $S\sqrt{\frac{\text{CDK}}{\pi t}}$, ce qui fait connaître comment le flux de chaleur à la surface varie avec les quantités C, D, K, t; pour trouver combien le foyer communique de chaleur au solide pendant un temps écoulé t, on prendra l'intégrale

 $\int S \sqrt{\frac{\text{CDK}}{\pi}} \frac{dt}{\sqrt{t}} \quad \text{ou} \quad 2S \sqrt{\frac{\text{CDK}}{\pi}} \sqrt{t};$

ainsi la chaleur acquise croît proportionnellement à la racine carrée du temps écoulé.

367.

On peut traiter par une analyse semblable la question de la diffusion de la chaleur, qui dépend aussi de l'intégration de l'équation

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} - hv.$$

On représentera par f(x) la température initiale d'un point de la ligne placé à la distance x de l'origine, et l'on cherchera à déterminer quelle doit être la température de ce même point après un temps ℓ . Faisant

on aura

$$\frac{\partial z}{\partial t} = k \frac{\partial^2 z}{\partial x^2},$$

et par conséquent

$$z = \int_{-\infty}^{+\infty} e^{-q^2} \varphi(x + 2q\sqrt{kt}) dq.$$

121

Lorsque / est egal a zero, on doit avoir

$$\frac{1}{\sqrt{1+\frac{1}{2}}} \left(\frac{1}{\sqrt{1+\frac{1}{2}}} + \frac{1}{\sqrt{1+\frac{1}{2}}} \right)$$

done

OH

The state of the s

Pour appliquer cette expression generale au cas on une partie de la ligne, depuis x = x jusqu'a x = x, est uniformement celianffee, tout le reste du solide étant à la temperature α , il faut considerer que le facteur $f(x) = (q \sqrt{k}t)$, qui multiplie e^{-qt} , a, selon l'hypothèse, une valeur constante x for sque la quantite qui est sous le signe de la fonction est comprise entre x = x of x, et que toutes les autres valeurs de ce facteur sont nulles. Donc l'intégrale $\int e^{-x} dy$ doit être prise depuis $x + yq\sqrt{k}t = x$ pusqu'a $x = yq\sqrt{k}t = x$, on depuis $y = \frac{e^{-x}}{2\sqrt{k}t}$ jusqu'a $y = \frac{e^{-x}}{2\sqrt{k}t}$ Lu designant, comme ce dessus, par $\frac{e^{-x}}{2\sqrt{k}t}$ grale $\frac{e^{-x}}{2\sqrt{k}t}$ $\frac{e^{-x}}{2\sqrt{k}t}$ prise depuis e^{-x} R pusqu'a e^{-x} , on aura

Min.

Nous appliquerous encore l'equation generale

au cas ou la barre infinie, echauffee par un foyer d'une intensite constante x, est parvenue à des temperatures fixes et se refrondit ensuite librement dans un milieu entretenu à la température α . Pour cela, il suffit de remarquer que la fonction initiale designée par f(x) equivant

à $e^{-x\sqrt{\frac{h}{k}}}$ tant que la variable x qui est sous le signe de fonction est positive, et que cette même fonction équivant à $e^{x\sqrt{\frac{h}{k}}}$ lorsque la variable qui est affectée du signe f est moindre que zéro. Donc

$$v = \frac{e^{-ht}}{\sqrt{\pi}} \left(\int e^{-q^2} e^{-x\sqrt{\frac{h}{h}} - 2q\sqrt{ht}} dq + \int e^{-q^2} e^{x\sqrt{\frac{h}{h}} + 2q\sqrt{ht}} dq \right);$$

la première intégrale doit être prise depuis $x + 2q\sqrt{kt} = 0$ jusqu'à $x + 2q\sqrt{kt} = \infty$, et la seconde depuis $x + 2q\sqrt{kt} = -\infty$ jusqu'à $x + 2q\sqrt{kt} = 0$.

La première partie de la valeur de v est

$$\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{h}{k}}-ht}\int e^{-q^2-2q\sqrt{ht}}dq$$

$$\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{h}{k}}}\int e^{-(q+\sqrt{ht})^2}dq$$

$$\frac{1}{\sqrt{\pi}}e^{-x\sqrt{\frac{h}{k}}}\int e^{-r^2}dr,$$

ou

ou

en faisant $r = q + \sqrt{ht}$. L'intégrale doit être prise depuis $q = \frac{x}{3\sqrt{kt}}$ jusqu'à $q = \infty$, ou depuis $r = \sqrt{ht} - \frac{x}{2\sqrt{kt}}$ jusqu'à $r = \infty$.

La seconde partie de la valeur de v est

$$\frac{1}{\sqrt{\pi}}e^{-ht+x\sqrt{\frac{h}{k}}}\int e^{-q^2+q\sqrt{ht}}\,dq$$

ou

$$\frac{1}{\sqrt{\pi}}e^{x\sqrt{h}\over k}\int e^{-r^2}\,dr,$$

en faisant $r=q-\sqrt{ht}$. L'intégrale doit être prise de $r=-\infty$ à $r=-\sqrt{ht}-\frac{x}{2\sqrt{kt}}$ ou de $r=\sqrt{ht}+\frac{x}{2\sqrt{kt}}$ à $r=\infty$.

On en conclut l'expression suivante :

$$\frac{1}{2} \left(\frac{1}{\sqrt{kt}} - \frac{1}{\sqrt{kt}} \right) = e^{2\sqrt{kt}} \left(\sqrt{kt} - \frac{e}{\sqrt{kt}} \right).$$

$$369.$$

On a obtenu art. 367 l'equation

pour exprimer la loi de la diffusion de la chaleur dans une barre peu epaisse, cchantlee uniformement à son milieu entre les limites données x = -x, $x = \frac{1}{2} \times 0$ n avait précédemment résolu la même question en suivant une methode différente et l'on était parvenu, en supposant x = 1, à l'equation

. The property of
$$\frac{df}{dt}$$
 (and 358)

Pour comparér ces deux résultats, on supposera dans l'un et l'autre $x=\alpha$; designant encore par $\frac{1}{2}(R)$ et $\frac{\pi}{2}(R)$ les mêmes integrales qu'à l'article 366, on a

1111

D'un antre cote, on dort avoir

++11

Or l'integrale $\int e^{-u}u^{uw}du$, prise depuis u=0 jusqu'à $u=\infty$, a une

valeur connue (voir l'article suivant : m étant un nombre entier tif, on a en géneral

$$\int_{-\pi}^{\pi} e^{-n^2} n^{2m} dn = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{m}{2} \cdot \frac{1}{2} \cdot \frac{$$

l'equation précédente donne donc, en faisant q' kt = u'

$$x = \frac{4r^{-h_1}}{\pi \sqrt{h_1}} \int_0^{\infty} e^{-h^2} du \left(1 - \frac{H^2}{2\sqrt{4}} \frac{1}{h^2} - \frac{4h^4}{2\sqrt{4}} \frac{1}{h^2} \frac{1}{h^2} + \frac{4h^2}{2\sqrt{4}} \frac{1}{h^2} \frac{1}{h^2} + \frac{4h^2}{4\sqrt{4}} \frac{1}{h^2} \frac{1}{h^2} \frac{1}{h^2} + \frac{4h^2}{4\sqrt{4}} \frac{1}{h^2} \frac{1}{h^2} \frac{1}{h^2} + \frac{4h^2}{4\sqrt{4}} \frac{1}{h^2} \frac{1}$$

**11

t ette equation est la méme que la precedente, lorsqu'on suppose 2 On voit par la que ces integrales, que l'on a obtenues par des pres differents, conduisent aux memes series convergentes. On par aussi à deux résultats identiques quelle que soit la valeur de 2

On pourrait, dans cette question comme dans la précedente, se rei les quantités de chaleur qui, dans un instant donne, travadifférentes sections du prisme échantle. L'expression genérale diquantités ne confient aucun signe d'intégration; mais, sais sur a ces remarques, on terminera cetté Section par la demonstrat resultat que l'on vient d'employée et la comparazson des différs tormes que l'on a données à l'intégrale de l'équation qui répres la diffusion de la chaleur dans une ligne intimé

Der l'araftentrante a'entettere.

eass eresseritet ereriferme's

a étant une constante quelconque; on a donc

$$e^{a^2} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^2} e^{-2aq} dq,$$

ou

$$e^{a^2} = \frac{\mathrm{I}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^2} \, dq \left(\mathrm{I} - 2 \, aq + \frac{2^2 \, a^2 \, q^2}{\mathrm{I} \cdot 2} - \frac{2^3 \, a^3 \, q^3}{\mathrm{I} \cdot 2 \cdot 3} + \ldots \right).$$

Cette équation a lieu quelle que soit la valeur de a. On peut développer le premier membre; et, par la comparaison des termes, on obtiendra les valeurs déjà connues de l'intégrale $\int e^{-q^2}q^n dq$. Cette valeur est nulle lorsque n est impair; et l'on trouve, lorsque n est un nombre pair 2m,

$$\int_{-\infty}^{+\infty} e^{-q^2} q^{2m} dq = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2} \cdot \dots \cdot \frac{2m-1}{2} \sqrt{\pi}.$$

371.

Pour satisfaire à l'équation

$$\frac{\partial u}{\partial t} = k \, \frac{\partial^2 u}{\partial x^2},$$

on peut supposer $u = e^{-x}e^{kt}$, et en général $u = e^{-nx}e^{n^2kt}$; on en déduit facilement (art. 364) l'intégrale

$$u = \int_{-\infty}^{+\infty} e^{-q^2} \varphi(x + 2q\sqrt{kt}) dq.$$

On a employé précédemment pour l'intégrale de la même équation l'expression

$$u = a_1 e^{-n_1^2 kt} \cos n_1 x + a_2 e^{-n_2^2 kt} \cos n_2 x + a_3 e^{-n_2^2 kt} \cos n_3 x + \dots$$

ou celle-ci

$$u = a_1 e^{-n_1^2 kt} \sin n_1 x + a_2 e^{-n_2^2 kt} \sin n_2 x + a_3 e^{-n_3^2 kt} \sin n_3 x + \dots,$$

 a_1, a_2, a_3, \ldots et n_1, n_2, n_3, \ldots étant deux séries de constantes arbitraires. Il est aisé de voir que chacun de ces termes équivaut à

426

l'intégrale

$$\int e^{-q^2} \cos n \big(x + 2 \, q \, \sqrt{kt} \big) \, dq$$

ou

$$\int e^{-q^2} \sin n \left(x + 2q\sqrt{kt}\right) dq.$$

En effet, pour déterminer la valeur de l'intégrale

$$\int e^{-qz} \sin(x + 2q\sqrt{kt}) dq,$$

on lui donnera la forme suivante:

$$\int e^{-q^2} \sin x \cos 2q \sqrt{kt} \, dq + \int e^{-q^2} \cos x \sin 2q \sqrt{kt} \, dq$$

ou celle-ci:

$$\int e^{-q^2} \sin x \left(\frac{e^{2q\sqrt{-kt}}}{2} + \frac{e^{-2q\sqrt{-kt}}}{2} \right) dq + \int e^{-q^2} \cos x \left(\frac{e^{2q\sqrt{-kt}}}{2\sqrt{-1}} - \frac{e^{-2q\sqrt{-kt}}}{2\sqrt{-1}} \right) dq,$$

qui équivaut à

$$e^{-kt} \frac{\sin x}{2} \left(\int_{-\infty}^{+\infty} e^{-(q-\sqrt{-kt})^2} dq + \int_{-\infty}^{+\infty} e^{-(q+\sqrt{-kt})^2} dq \right) + e^{-kt} \frac{\cos x}{2\sqrt{-1}} \left(\int_{-\infty}^{+\infty} e^{-(q-\sqrt{-kt})^2} dq - \int_{-\infty}^{+\infty} e^{-(q+\sqrt{-kt})^2} dq \right).$$

L'intégrale $\int e^{-(q\pm\sqrt{-kt})^2} dq$, prise depuis $q=-\infty$ jusqu'à $q=\infty$, est $\sqrt{\pi}$; on a donc, pour la valeur de l'intégrale $\int e^{-q^2} \sin(x+2q\sqrt{kt}) dq$, la quantité $\sqrt{\pi} e^{-kt} \sin x$, et en général

$$\sqrt{\pi} e^{-n^2kt} \sin nx = \int_{-\infty}^{+\infty} e^{-q^2} \sin n \left(x + 2q\sqrt{kt}\right) dq.$$

On déterminera de la même manière l'intégrale

$$\int_{-\infty}^{+\infty} e^{-q^2} \cos n \left(x + 2q\sqrt{kt}\right) dq,$$

dont la valeur est $\sqrt{\pi} e^{-n^2kt} \cos nx$.

CHAPITRE IX. DIFFUSION DE LA CHALEUR.

On voit par là que l'integrale

$$e^{-a_1^2kt}(a_1\sin a_1x) + b_1\cos a_1x) + e^{-a_2^2kt}(a_2\sin a_2x) + b_2\cos a_2x) + \dots$$

équivant à

$$\frac{1}{\sqrt{\pi}} \int_{-\pi}^{2\pi} e^{-q^2} dq \frac{1}{t} \frac{a_1 \sin n_1 + e^{-q} \sqrt{kt} + a_2 \sin n_2 (x + eq \sqrt{kt}) + \dots }{b_1 \cos n_2 + e^{-q} \sqrt{kt} + b_2 \cos n_2 (x + eq \sqrt{kt}) + \dots }.$$

La valeur de la serie represente, comme on l'a vu précèdemment, une fonction quelconque de $x + 2q \sqrt{M}$; l'integrale génerale sera donc exprimee ams:

An reste, l'integrale de l'équation

peut être présentée sous diverses autres formes. Foutes ces expressions sont nécessairement identiques.

SECTION II.

DE MORNEMENT REMAR DE LA CHARRE DE DANG L'A MOREDE LABOR.

372

L'integrale de l'equation

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial u} + \frac{\partial u}{\partial t} +$$

fournit immediatement celle de l'équation à quatre variables

$$\frac{\partial}{\partial t} = \frac{\mathbf{k}}{\mathbf{r}} \left(\frac{\partial^2 \mathbf{r}}{\partial t^2} + \frac{\partial^2 \mathbf{r}}{\partial t^2} + \frac{\partial^2 \mathbf{r}}{\partial z^2} \right).$$

comme nous l'avons dejà remarque en traitant la question de la propagation de la chaleur dans un cube solide. C'est pour cela qu'il suffit, en géneral, de considerer l'effet de la diffusion dans le cas d'un solide linéaire. Lorsque les corps n'ont point leurs dimensions infinies, la distribution de la chaleur est continuellement troublée par le passage du milieu solide au milieu élastique; ou, pour employer les expressions propres à l'Analyse, la fonction qui détermine la température ne doit pas seulement satisfaire à l'équation aux différences partielles et à l'état initial : elle est encore assujettie à des conditions qui dépendent de la figure de la surface. Dans ce cas, l'intégrale a une forme plus difficile à connaître, et il faut examiner la question avec beaucoup plus de soin pour passer du cas d'une coordonnée linéaire à celui des trois coordonnées orthogonales; mais, lorsque la masse solide n'est point interrompue, aucune condition accidentelle ne s'oppose à la libre diffusion de la chaleur : cet élément se meut de la même manière dans tous les sens.

La température variable φ d'un point d'une ligne infinie est exprimée par l'équation

(i)
$$v = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-q^2} f(x + 2q\sqrt{t}) dq.$$

x désigne la distance entre un point fixe o et le point m dont la température équivaut à v après le temps écoulé t. On suppose que la chaleur ne peut se dissiper par la surface extérieure de la barre infinie, et l'état initial de cette barre est exprimé par l'équation v = f(x). L'équation différentielle à laquelle la valeur de v doit satisfaire est celle-ci :

$$\frac{\partial v}{\partial t} = \frac{\mathbf{K}}{\mathbf{CD}} \frac{\partial^2 v}{\partial x^2}.$$

Mais, pour simplifier le calcul, on écrit

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2};$$

ce qui suppose que l'on emploie au lieu de t une autre indéterminée t égale à $\frac{\mathbf{K}\,t}{\mathbf{CD}}$.

Si, dans une fonction f(x) de x et de constantes, on substitue

129

 $x + m\chi t$ à x et si, après avoir multiplie par $\frac{1}{\chi^{-1}} e^{-n} dn$, on intègre par rapport a n entre des limites infinies, l'expression

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-t} dt = e^{-t} \int_{-\infty}^{\infty} e^{-t} dt$$

satisfera, comme on l'a demontre plus haut, a l'equation différentielle h; c'est a dire que cette expression à la propriete de donner une même valeur pour la fluxion seconde par rapport a r et pour la fluxion première par rapport a t. D'après celà, il est evident qu'une fonction de trois variables f, r, r, r, journa d'une semblable propriéte si l'on substitue, au hen he r, r, r, les quantites

et si l'on integre après avoir multiplie par

$$\int_{\mathbb{R}^n} e^{-st} ds = \int_{\mathbb{R}^n} e^{-st} ds = dt$$

En effet, la fonction que l'on forme ainsi

$$=\frac{1}{2}\int_{-\pi}^{\pi}\int_{-\pi}$$

donnera trois termes pour la fluxion par rapport à t, et ces trois termes sont ceux que l'on trouverait en prenant la fluxion seconde pour chacune des trois variables (t, v, 2, Donc l'équation)

$$(1) \quad i = e^{\frac{it}{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-it} e^{-it} e^{-it} f(t) = (in\sqrt{t} - x) - ip\sqrt{t}, \quad x \in sq\sqrt{t} \ du \, dp \, dy$$

donne une valeur de c qui satisfait à l'equation aux différences partielles