Universidade Federal da Fronteira Sul

Curso de Ciência da Computação

Disciplina: Circuitos Digitais Professor: Luciano L. Caimi

SOLUÇÃO DA LISTA DE EXERCÍCIOS

1) O circuito multiplexador 2X1 apresenta a configuração montada abaixo (a figura da direita mostra o MUX 2X1 sem o circuito interno apenas com suas entradas e saídas):

O circuito multiplexador 16 X 1 possui 16 entradas de dados (E0 a E15) uma saída e quatro variáveis de seleção. Considerando "A" o bit mais significativo da seleção, quando montado o circuito a partir de MUX 2X1 temos a seguinte configuração:

2) Existem diversas soluções possíveis. A idéia básica é utilizar somente 8 entradas de dados e assim sendo, 3 entradas de seleção. Uma das soluções possíveis utiliza as 8 primeiras entradas de dados e faz a entrada mais significativa da seleção igual a zero, assim as 8 ultimas entradas de dados nunca serão selecionadas. Considere "A" o bit mais significativo da seleção.

3) O multiplexador 4X1 é mostrado abaixo. Ali se encontra tanto o circuito completo como sua simplificação (apenas as entradas e saídas). Considere "A" o bit mais significativo da seleção.

Α	В	S
0	0	E0
0	1	E1
1	0	E2
1	1	E3

Existem diversas soluções possíveis. Uma das soluções faz uso apenas da primeira e da última entrada do MUX do segundo estágio, assim devemos fazer com que a entrada de seleção A selecione apenas estas duas entradas.

4) A implementação da tabela verdade é dada pelo seguinte circuito. Considere "A" o bit mais significativo da seleção:

- 5)
- 6)

7) Na implementação do decodificador proposto começamos construindo a tabela-verdade:

Decimal	A	В	C		a	b	c	d	e	f	g
0	0	0	0	L	0	0	0	1	1	1	0
1	0	0	1	Н	0	1	1	0	1	1	1
2	0	1	0	Ε	1	0	0	1	1	1	1
3	0	1	1	С	1	0	0	1	1	1	0
4	1	0	0	8	1	1	1	1	1	1	1
5	1	0	1	b	0	0	1	1	1	1	1
6	1	1	0	F	1	0	0	0	1	1	1
7	1	1	1	0	1	1	1	1	1	1	0

Montando o mapa de karnaugh para cada uma das saídas temos:

$$a = B + AC'$$

$$c = B'C + AB' + AC$$

O circuito completo é mostrado abaixo

9) A tabela verdade para o circuito decodificador de BCD para Excesso 3 é apresentada abaixo

Decimal	BCD				Excesso 3			
Dec	Α	В	С	D	S0	S 1	S2	S3
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Implementando o Mapa de Karnaugh para as saídas S0, S1, S2 e S3 temos:

S0) Fazendo todos os X = 1

	C		(
A´	0	0	0	0	B´
	0			1	В
	X	X	X	X	
Α	7	1	X	X	B´
	D´	I)	D´	

$$S0 = A + BD + BC$$

S1) Fazendo os X dentro das seleções igual a 1 temos

	C	7	/ (\	
A	0	1	(1)	1) B′
	1	0	0	0	В
	X	X	X	X	
A	0	1	X	X	B′
	D′	, I) (D´	

$$S1 = B'D + B'C + BC'D'$$

S2) Fazendo os X dentro das seleções igual a 1 temos:

	\sim c		\bigcirc C			
A´	/ 1	0	1	0	B´	
	1	0	1	0	В	
	X	X	X	X		
Α	1 /	0	\ X /	X	B´	
•	D	I	\mathcal{O}	D´	-	

$$S2 = D'C' + DC$$

S3) Fazendo os X dentro das seleções igual a 1 temos:

	\sim	Z'	C			
A'	1	0	0	/1	B´	
	1	0	0	1	В	
	X	X	X	X		
Α_	_1/	0	X	X	Β´	
D´		I	D			

$$S3 = D'$$

O circuito completo é mostrado abaixo

