THE LANCET

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Jinatongthai P, Kongwatcharapong J, Foo CY, et al. Comparative efficacy and safety of reperfusion therapy with fibrinolytic agents in patients with ST-segment elevation myocardial infarction: a systematic review and network meta-analysis. *Lancet* 2017; **390:** 747–59.

Supplementary appendix

Comparative efficacy and safety of Reperfusion Therapy with Fibrinolytic Agents in Patient with ST-segment Elevation Myocardial Infarction: A Systematic Review and Network Meta-analysis.

Jinatongthai P, Kongwatcharapong J, Foo CY, Phrommintikul A, Nathisuwan S, Thakkinstian A, Reid CM, Chaiyakunapruk N.

Online Supplementary Content

Contents	4
Appendix 1 Additional methods	
Appendix 2 Search strategies	
eTable 2.1 Search algorithms.	
eFigure 2.1 Flow diagram and references of included studies.	
Appendix 3 General characteristics of treatment options	
eTable 3.1 General characteristics of treatment options.	
Appendix 4 Description of included studies	
eTable 4.1 Description of included studies.	
eTable 4.2 Description of participants of included studies.	
eTable 4.3 Description of treatment interventions of included studies.	
eTable 4.4 Description of outcomes in studies included in network analyses.	.41
eTable 4.5 Detail of reported concomitant therapies received in the included studies (ordered by year of publication).	.53
Appendix 5 Risk of bias assessments	.54
eFigure 5.1 Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages for all of included studies (76 studies)	.54
eFigure 5.2 Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages for studies including in network analyses (40 studies).	.54
eTable 5.2 Risk of bias summary: review authors' judgements about each risk of bias item for each included study.	.55
Appendix 6 Networks of treatment comparisons	.58
eFigure 6.1 Networks map of treatment comparisons for each outcomes.	.59
Appendix 7 Assessment of inconsistency for each outcome network	.60
eTable 7.1 Evaluation of the global inconsistency in networks using the 'design-by-treatment' interaction mod for each outcome.	
Appendix 8 Results of meta-analyses of direct comparisons of treatment options	
eTable 8.1 Pairwise meta-analysis risk ratio (and 95% CI) for all dichotomous outcomes	
Appendix 9 Results of network meta-analysis.	
eFigure 9.1 Network estimated risk ratios (95% confidence intervals) of treatment options on all-cause mortali within 30-35 days.	ity
eFigure 9.2 Network estimated risk ratios (95% confidence intervals) of treatment options on major bleeding	
eFigure 9.3 Network estimated risk ratios (95% confidence intervals) of treatment options on recurrent infarction.	.67
eFigure~9.4~Network~estimated~risk~ratios~(95%~confidence~intervals)~of~treatment~options~on~all-type~stroke	. 68
eFigure 9.5 Network estimated risk ratios (95% confidence intervals) of treatment options on hemorrhagic stro	
Appendix 10 Treatment ranking and surface under the cumulative ranking curves (SUCRA) for each outcome	e 70
eFigure 10.1 SUCRA ranking curve for all-cause mortality within 30-35 days	
eFigure 10.2 SUCRA ranking curve for major bleeding.	.71
eFigure 10.3 SUCRA ranking curve for recurrent infarction.	.72

eFigure 10.4 SUCRA ranking curve for all-type stroke.	73
eFigure 10.5 SUCRA ranking curve for hemorrhagic stroke.	74
eFigure 10.6 Cluster rank plot of SUCRA probability for all-cause mortality within 30-35 days and major bleeding.	75
Appendix 11 Net clinical benefit analysis	76
eTable 11.1 Pooled risk estimates and net clinical benefit of treatment options compared with tPA_acc+PAC	
eFigure 11.1 Sensitivity analyses of net clinical benefit by varying weighting factors from 0.15 to 0.6	79
Appendix 12 Evaluation of the quality of evidence using GRADE framework for primary outcomes	80
eTable 12.1 Estimates of effects and quality ratings for comparison of treatment options in all of the outcom	
Appendix 13 Subgroup analyses	
eTable 13.1 Subgroup analyses for the risk of all-cause mortality within 30-35 days with treatment options i differing populations of patients with STEMI.	
eTable 13.2 Subgroup analyses for the risk of major bleeding with treatment options in differing populations patients with STEMI.	
Appendix 14 Sensitivity analyses	96
eTable 14.1 Sensitivity analyses for the risk of all-cause mortality within 30-35 days with treatment options differing populations of patients with STEMI.	
eTable 14.1 Table continued	97
eTable 14.1 Table continued	98
eTable 14.2 Sensitivity analyses for the risk of major bleeding with treatment options in differing population patients with STEMI.	
eTable 14.2 Table continued.	100
eTable 14.2 Table continued	101
Appendix 15 Comparison-adjusted funnel plot for each outcome from the network meta-analyses	102
eFigure 15.1 Comparison-adjusted funnel plot for the network of all-cause mortality within 30-35 days in al comparisons.	
eTable 15.2 Comparison-adjusted funnel plot for the network of major bleeding in all comparisons	103
eTable 15.3 Comparison-adjusted funnel plot for the network of recurrent infarction in all comparisons	104
eTable 15.4 Comparison-adjusted funnel plot for the network of all-type stroke in all comparisons	105
eTable 15.5 Comparison-adjusted funnel plot for the network of hemorrhagic stroke in all comparisons	106
Appendix 16 Assessment of small study effects by funnel plots and Egger's test in each outcome	107
eTable 16.1 Assessment of small study effects by Egger's test for each pairwise in each outcome	107
eFigure 16.1 Assessment of small study effects by contour-enhanced funnel plot of all-cause mortality within 30-35 days for treatment pairwise SK+PAC vs tPA+PAC	
eFigure 16.2 Assessment of small study effects by funnel plots of all-cause mortality within 30-35 days for treatment pairwise SK+PAC vs tPA+PAC	111
Appendix 17 Reference	112

Appendix 1 Additional methods

Type of studies

All randomized controlled trials (RCTs) will be included if they investigated the efficacy and safety of reperfusion therapy with fibrinolytic agents, whether given alone or in combination with adjunctive antithrombotic therapy, comparing with each other, treatment with antithrombotic therapy only, placebo, or no treatment in adult patients with STEMI. No language restriction will be applied. Non-control study such as prepost study, non-RCT, observational or cross-sectional study will be excluded. Study established to determine non-clinical outcome will be included if the clinical outcomes of interest are reported. Studies with PCI as a facilitation of fibrinolytic therapy or in comparison with fibrinolytic agents will be excluded. Trials investigating adjunctive antithrombotic therapy after reperfusion with fibrinolytic agents will also be excluded if the results of the studies are not stratified by each fibrinolytic agent or distribution of patients between each of the treatment regimen are not equal.

Types of participants

Studies investigating adults 18 years or older with a diagnosis of STEMI will be considered to be included in this review. Patients will be included if they were diagnosed with STEMI (new ST elevation at the J point in at least 2 contiguous leads of \geq 2 mm [0.2 mV] in men or \geq 1.5 mm [0.15 mV] in women in leads V2–V3 and/or of \geq 1 mm [0.1mV] in other contiguous chest leads or the limb leads) or STEMI equivalent (new or presumably new LBBB) and were candidate of reperfusion therapy with fibrinolytic agents according to clinical practice guidelines recommendation. Studies investigating patients with ST depression will be considered if it is suspected to be a true posterior (inferobasal) MI or if it is associated with ST elevation in lead aVR. Patients with other types of ACS (other than STEMI, such as non-ST segment elevation myocardial infarction, NSTEMI; or unstable angina) will be excluded. Study with mixed population other than STEMI will also be excluded.

Types of interventions

Randomized controlled trials investigating one or more of the following fibrinolytic agents administered in intravenous form, whether given alone or in combination with adjunctive antithrombotic therapy: streptokinase, alteplase (separate into 2 type based on administration regimen, accelerated and non-accerelated infusion alteplase), lanoteplase, tenecteplase, and reteplase.

If the including studies were identified, they will be considered to be included in the network meta-analysis after determining their comparability with the pre-specified set of competing treatment options. The findings for these treatment options and the conclusions of the review will be reported. For a randomized trial that have investigated the efficacy of adjunctive antithrombotic treatment with fibrinolytic agents (for example, streptokinase plus unfractionated heparin versus accelerated infusion alteplase plus enoxaparin), the treatment comparison will be coded as each type of fibrinolytic agent plus the group of adjunctive antithrombotic treatment based on its pharmacological property regardless of the dosage regimen (coded as streptokinase plus parenteral anticoagulants [PAC] versus accelerated infusion alteplase plus PAC). Trial with similar coding of treatment comparison will not be considered in the network meta-analysis.

Only treatment options using approved dosing regimens will be considered. Adjunctive antithrombotic treatment that are not available or not approved in the current practice will be excluded, except for the combination regimen with Glycoprotein IIb/IIIa. Treatment regimens of fibrinolytic agents in combination with glycoprotein IIb/IIIa were included in the network meta-analysis in order to test the efficacy and safety of the addition of glycoprotein IIb/IIIa into the regimen. Treatment regimen with Glycoprotein IIb/IIIa was grouped similarly. Data on dose confirmation study from phase II clinical trials are also included. When studies compare more than 2 intervention arms with assumed equal distribution of patients in each arm, only the intervention meeting the above criteria will be included if it remains at least two interventions in each study.

Outcome measures

Primary efficacy outcomes: All-cause mortality within 30-35 days (including inhospital mortality)

Primary safety outcome: Major bleeding (as a report of significant bleeding [major bleeding, serious bleeding, severe bleeding] as per the definition of each trial, or a composite of bleeding event reporting as intracranial hemorrhage, cardiac tamponade, intraocular bleed, retroperitoneal bleed, or bleeding associated with dropping hemoglobin/hematocrit, or bleeding requiring intervention)

Secondary efficacy outcomes:

- 1. All-type stroke (as report in trials)
- 2. Recurrent myocardial infarction (as report in trials)
- 3. Another cardiovascular outcome such as death from cardiovascular causes or combined cardiovascular outcomes will also be assessed for the possibility to perform the analysis

Secondary safety outcomes: hemorrhagic stroke or intracranial hemorrhage (as reported in trials)

The definition of major bleeding included are tabulated.

Search methods for identification of studies

The following databases will be used to search for original research articles from inception to May 2016: Medline (Pubmed), Embase OVID, Cochrane Central Register of Control Trials, ClinicalTrials.gov, WHO International Clinical Trials Registry (WHO ICTR). A combination of medical subject headings (MeSH) and keywords were used to design the search strategy. The MeSH and keywords contain "plasminogen activator", "fibrinolytic agent", "acute coronary syndrome", "myocardial infarction", "heart infarction", "ST segment elevation myocardial infarction", name of fibrinolytic agents (streptokinase, tenecteplase, alteplase, reteplase, and lanoteplase), and synonymous words. References derived from full text review were screened to identify potential studies not indexed in the above databases. No language restriction was applied. See the Appendix 2 for search terms used in strategies of this review.

Data collection and analysis

A calibration exercise was conducted. Two reviewers independently screened the titles and abstracts. Assessment of non-English studies was performed after electronic translation. Conflicts were resolved by discussion. The same process was adopted in data extraction and methodological quality appraisal using the Cochrane Risk of Bias Tool.³ Two independent reviewers (PJ, JK) extracted the necessary data using a standard extraction form. The form was developed through a consensus process involving all reviewers.

Data extracted include:

- 1) Characteristics of the study such as year, country, number of arms, study design, period of study, period of follow up, center of study.
- 2) Characteristic of participant such as age, gender, number of patients included in analysis, population of analysis (intention to treat, per protocol, other), type of ECG, time from an onset of symptoms, a subclassification of STEMI severity (such as Killip classification).
- 3) Type of intervention and type of comparator(s) such as dosing strategy, drug category (fibrin/non-fibrin specific fibrinolytic agents), concomitant medication (adjunctive antithrombotic drugs and other pharmacologic intervention), time to reperfusion.
- 4) Outcome measures such as time to outcome measure, outcomes of interest as stated above including primary and secondary outcomes, composite outcomes, and net clinical outcome.

Risk of bias assessment

The quality of individual studies was assessed using Cochrane's Risk of Bias Tool³ on selection bias, attrition bias, performance bias, detection bias and reporting bias. Each studies was judged to be at high, low or unclear risk of bias based on their adequacy of sequence generation, allocation concealment, blinding, and method of addressing incomplete data, selective reporting, and other biases. Quality assessment was undertaken by one reviewer and checked by a second reviewer. Disagreements were resolved by consensus, or by consulting a third party.

Measures of treatment effect

Relative treatment effects

All outcomes are dichotomous and the relevative effect were measured by the risk ratio (RR). Presentation of the treatment effect estimated by the network meta-analysis are summarized as relative effect sizes for each possible pair of treatments.

Relative treatment ranking

The ranking probabilities of being at each possible have been estimated for all treatment options. A treatment hierarchy is obtained by using the surface under the cumulative ranking curve (SUCRA) and mean ranks. SUCRA is shown as a percentage and can be interpreted as the percentage of efficacy/safety of a treatment that would be ranked first without uncertainty.⁴

Data synthesis

The overall effect (summary measure) was estimated using both fixed effect models (MantelHaenszel) and random effects models (DerSimonian and Laird). The choice between the two models was based on the presence (or absence) of heterogeneity diagnosed using the Cochran Q test and the I2 statistic. Network meta-analysis allowing for indirect comparisons was performed. Direct meta-analysis was performed using a random effects model. Publication bias was examined using funnel plot and Egger's regression test. We modeled the comparative efficacy of any two treatments as a function of each treatment relative to the placebo. This approach assumes "consistency" of treatment effects across all included trials – that is, the direct and indirect estimates are the same effects. Network inconsistency was evaluated by comparing the direct estimates to the indirect estimates. The GRADE approach was used to rate the quality of evidence of the estimates derived from network meta-analysis.

Standard Pairwise and Network Meta-Analysis was performed using STATA version 14 (StataCorp, College Station, Texas, USA) and a programmed STATA routines for network meta-analysis available at http://www.mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis.

Sensitivity and subgroup analyses

The benefit of reperfusion therapy with fibrinolytic agents among the patients with higher risk of bleeding were assessed using subgroup analysis technique. The rationale for this assessment was based on the hypothesis that patients who are at higher risk of bleeding may gain less benefit from reperfusion therapy with fibrinolytic agents. Elderly, female gender, patients with low body weight, and Asian participants are factors considered to be related to increase risk of bleeding⁵⁻⁸. Other subgroup analyses included Killip classification.

Sensitivity analyses were conducted on the primary outcomes in order to determine the sources of heterogeneity or inconsistency and to assess applicability of the findings. This included restricting the analyses to: trials that have included ASA in the trial treatment protocol; excluding trials that have reported mortality of less than 30 days; trials with clearly reported major bleeding definition; trials that have investigated fibrinolytics with PAC; excluding trials with small sample size (<25th and <75th percentiles); and excluding trials with inadequate concealed allocation. We also have conducted a restrictive analysis that have excluded trials conducted in China. This is due to the raising concerns of data fabrication in Chinese clinical trials reported recently.⁹

Differences between protocol and review

We have also conducted a net clinical benefit analysis in order to determine the value of fibrinolytic therapy taking into consideration of both the risk and benefit. See the Appendix 11 for detials.

We have also decided to exclude lanoteplase from the original inclusion criteria because this agent has been withdrawn from the market as we learnt along the conduct of this study.

We updated the search until the end of February 2017.

In order to minimize the heterogeneity of the definition of major bleeding across the included studies, bleeding events was matched agaist the standardized bleeding end-point definitions adopted by Bleeding Academic Research Consortium (BARC). We defined major bleeding in this study according to BARC type 3a, 3b, or 3c. Table below provides an example of the matching process between major bleeding by the Thrombolysis in Myocardial Infarction (TIMI) bleeding and the Global Use of Strategies to Open Occluded Arteries (GUSTO) with BARC definition.

	BARC bleeding definition	TIMI major bleeding	GUSTO severe or life- threatening
Type 0	No bleeding		
Type 1	Bleeding that is not actionable and does		
	not cause the patient to seek		
	unscheduled performance of studies,		
	hospitalization, or treatment by a		
	healthcare professional		
Type 2	Any overt, actionable sign of		
	hemorrhage that does meet at least one		
	of the following criteria: (1) requiring		
	nonsurgical, medical intervention by a		
	healthcare professional, (2) leading to		
	hospitalization or increased level of		
	care, or (3) prompting evaluation		
Type 3a	Overt bleeding plus Hb drop of 3 to <5		
	g/dL		Resulting in substantial
	Any transfusion with overt bleeding		hemodynamic compromise
Type 3b	Overt bleeding plus Hb drop ≥5 g/dL	Clinically overt signs of hemorrhage	requiring treatment
		associated with a drop in hemoglobin of	
		≥5 g/dL	-
	Cardiac tamponade		
	Bleeding requiring surgical intervention		
	for control (excluding		
	dental/nasal/skin/hemorrhoid)		
	Bleeding requiring intravenous		
Т 2-	vasoactive agents	A i	T-4
Type 3c	Intracranial hemorrhage	Any intracranial bleeding	Intracerebral hemorrhage
	Subcategories confirmed by autopsy or		
	imaging or lumbar puncture		
Trme 4	Intraocular bleed compromising vision		
Type 4	CABG-related bleeding	Establis din s	-
Type 5	Fatal bleeding	Fatal bleeding	

Appendix 2 Search strategies

eTable 2.1 Search algorithms.

Database	Step	Search algorithm	Items found
PubMed	#1	streptokinase	11198
	#2	tenecteplase	515
	#3	alteplase	27605
	#4	reteplase	447
	#5	lanoteplase	59
	#6	plasminogen activator	54383
	#7	fibrinolytic agent	163486
	#8	acute coronary syndrome	24933
	#9	myocardial infarction	219989
	#10	ST segment elevation myocardial infarction	17516
	#11	((((#1) OR #2) OR #3) OR #4) OR #5	37087
	#12	((#11) OR #6) OR #7	189121
	#13	((#8) OR #9) OR #10	234072
	#14	(#12) AND #13	19650
	#15	((#12) AND #13) Filters: Clinical Study	4249
	#16	((#12) AND #13) Filters: Clinical Study; Clinical Trial	4249
	#17	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I	4249
	#18	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II	4249
	#19	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV	4249
	#20	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase IV; Controlled Clinical Trial	4249
	#21	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Controlled Clinical Trial; Meta-Analysis	4615
	#22	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Controlled Clinical Trial; Meta-Analysis; Multicenter Study	4952
	#23	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Controlled Clinical Trial; Meta-Analysis; Multicenter Study; Randomized Controlled Trial	4952
	#24	((#12) AND #13) Filters: Clinical Study; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Clinical Trial, Phase IV; Controlled Clinical Trial; Meta-Analysis; Multicenter Study; Randomized Controlled Trial; Humans	4947
Embase	#1	streptokinase	20548
	#2	tenecteplase	2288
	#3	alteplase	16539
	#4	reteplase	1962
	#5	lanoteplase	322
	#6	plasminogen activator	93126
	#7	blood clot lysis	39084

Database	Step	Search algorithm	Items found
	#9	fibrinolytic agent	122964
	#10	fibrinolysis	78571
	#11	acute coronary syndrome	52410
	#12	heart infarction	344220
	#13	1 or 2 or 3 or 4 or 5	35116
	#14	6 or 13	94460
	#15	9 or 14	139797
	#16	ST segment elevation myocardial infarction	35285
	#17	15 and 16	2098
	#18	11 or 12 or 16	370793
	#19	6 or 7 or 8 or 9 or 10 or 13	278282
	#20	18 and 19	52997
	#21	1 or 2 or 3 or 4 or 5 or 6 or 9	139797
	#22	18 and 21	21607
	#23	22	21607
	#24	limit 23 to human	20305
	#25	limit 24 to ((clinical trial or randomized controlled trial or controlled clinical trial or multicenter study or phase 1 clinical trial or phase 2 clinical trial or phase 3 clinical trial or phase 4 clinical trial) and (conference abstract or conference paper or conference proceeding or "conference review" or journal))	5579
Cochrane	#1	streptokinase	1453
	#2	tenecteplase	187
	#3	alteplase	799
	#4	reteplase	149
	#5	lanoteplase	32
	#6	plasminogen activator	3961
	#7	fibrinolytic agent	2889
	#8	acute coronary syndrome	4129
	#9	myocardial infarction	23222
	#10	ST segment elevation myocardial infarction	3311
	#11	#1 or #2 or #3 or #4 or #5	2295
	#12	#11 or #6 or #7	6944
	#13	#8 or #9 or #10	25181
	#14	#12 and #13	2503
Clinicaltrail.gov	#1	streptokinase	22
	#2	tenecteplase	42
	#3	alteplase	338
	#4	reteplase	7
	#5	lanoteplase	0
	#6	plasminogen activator	360
	#7	reperfusion	809
	#8	fibrinolytic agent	2451
	#9	acute coronary syndrome	1597
	#10	myocardial infarction	4051
	#11	ST segment elevation myocardial infarction	732
		2	,32

Database	Step	Search algorithm	Items found
	#12	(streptokinase OR tenecteplase OR alteplase OR reteplase OR lanoteplase OR plasminogen activator OR fibrinolytic agent) AND (acute coronary syndrome OR myocardial infarction OR ST segment elevation myocardial infarction)	613
WHO ICTRP	#1	streptokinase	36
	#2	tenecteplase	78
	#3	alteplase	366
	#4	reteplase	5
	#5	lanoteplase	0
	#6	plasminogen activator	208
	#7	reperfusion	518
	#8	fibrinolytic agent	80
	#9	acute coronary syndrome	1384
	#10	myocardial infarction	2934
	#11	ST segment elevation myocardial infarction	273
	#12	streptokinase AND acute coronary syndrome OR streptokinase AND myocardial infarction OR streptokinase AND ST segment elevation myocardial infarction	19
	#13	tenecteplase AND acute coronary syndrome OR tenecteplase AND myocardial infarction OR tenecteplase AND ST segment elevation myocardial infarction	32
	#14	alteplase AND acute coronary syndrome OR alteplase AND myocardial infarction OR alteplase AND ST segment elevation myocardial infarction	16
	#15	reteplase AND acute coronary syndrome OR reteplase AND myocardial infarction OR reteplase AND ST segment elevation myocardial infarction	4
	#16	lanoteplase AND acute coronary syndrome OR lanoteplase AND myocardial infarction OR lanoteplase AND ST segment elevation myocardial infarction	0
	#17	plasminogen activator AND acute coronary syndrome OR plasminogen activator AND myocardial infarction OR plasminogen activator AND ST segment elevation myocardial infarction	10
	#18	fibrinolytic agent AND acute coronary syndrome OR fibrinolytic agent AND myocardial infarction OR fibrinolytic agent AND ST segment elevation myocardial infarction	14
	#19	combination of 12-18 (manually combined)	86

eFigure 2.1 Flow diagram and references of included studies.

Appendix 3 General characteristics of treatment options

eTable 3.1 General characteristics of treatment options.

Treatment	Fibrinolytic agents	PAC	GP IIb/IIIa	Definition of abbreviation of intervention
No_ATbx	-	-	-	No antithrombotics
nPA+UFH	nPA	UFH	-	Lanoteplase+Unfrationated heparin
rPA+UFH	rPA	UFH	-	Reteplase+Unfrationated heparin
rPA_red+UFH	rPA_red	UFH	-	Reteplase (reduced dose)+Unfrationated heparin
rPA_red+UFH+Abx	rPA_red	UFH	Abx	Reteplase (reduced dose)+Unfrationated heparin+Abciximab
rSK	rSK	-	-	Streptokinase (recombinant)
SK	SK	-	-	Streptokinase
SK+Bival	SK	Bival	-	Streptokinase+Bivalirudin (Hirulog)
SK+Dalte	SK	Dalte	-	Streptokinase+Dalteparin
SK+Efeg	SK	Efeg	-	Streptokinase+Efegatran
SK+Enox	SK	Enox	-	Streptokinase+Enoxaparin
SK+Ept	SK	-	Ept	Streptokinase+Eptifibatide
SK+Fraxi	SK	Fraxi	-	Streptokinase+Fraxiparin
SK+Lepi	SK	Lepi	-	Streptokinase+Lepirudin
SK+UFH	SK	UFH	-	Streptokinase+Unfrationated heparin
SK-tPA_red+UFH	SK-tPA_red	UFH	-	Streptokinase + alteplase (reduced dose)+Unfrationated heparin
SK_acc	SK_acc	-	-	Streptokinase (accelerated infusion)
SK_acc+UFH	SK_acc	UFH	-	Streptokinase (accelerated infusion)+Unfrationated heparin
SK_FL+UFH	SK_FL	UFH	-	Streptokinase (front loaded)+Unfrationated heparin
SK_red+UFH	SK_red	UFH	-	Streptokinase (reduced dose)+Unfrationated heparin
TNK+Enox	TNK	Enox	-	Tenecteplase+Enoxaparin
TNK+UFH	TNK	UFH	-	Tenecteplase+Unfrationated heparin
TNK+UFH+Abx	TNK	UFH	Abx	Tenecteplase+Unfrationated heparin+Abciximab
TNK_red	TNK_red	-	-	Tenecteplase (reduced dose)
TNK_red+Enox+Abx	TNK_red	Enox	Abx	Tenecteplase (reduced dose)+Enoxaparin+Abciximab
TNK_red+UFH+Abx	TNK_red	UFH	Abx	Tenecteplase (reduced dose)+Unfrationated heparin+Abciximab
TNK_red+UFH+Ept	TNK_red	UFH	Ept	Tenecteplase (reduced dose)+Unfrationated heparin+Eptifibatide
tPA	tPA	-	-	Alteplase (non-accelerated infusion)
tPA+UFH	tPA	UFH	-	Alteplase (non-accelerated infusion)+Unfrationated heparin
tPA_acc+Argat	tPA_acc	Argat	-	Alteplase (accelerated infusion)+Argatroban
tPA_acc+Dalte	tPA_acc	Dalte	-	Alteplase (accelerated infusion)+Dalteparin
tPA_acc+Efeg	tPA_acc	Efeg	-	Alteplase (accelerated infusion)+Efegatran
tPA_acc+Enox	tPA_acc	Enox	-	Alteplase (accelerated infusion)+Enoxaparin
tPA_acc+Fonda	tPA_acc	Fonda	-	Alteplase (accelerated infusion)+Fondaparinux
tPA_acc+UFH	tPA_acc	UFH	-	Alteplase (accelerated infusion)+Unfrationated heparin
tPA_acc+UFH+Ept	tPA_acc	UFH	Ept	Alteplase (accelerated infusion)+Unfrationated heparin+Eptifibatide
tPA_DB+UFH	tPA_DB	UFH	-	Alteplase (double bolus)+Unfrationated heparin
tPA_red	tPA_red	-	-	Alteplase (reduced dose)

Treatment	Fibrinolytic agents	PAC	GP IIb/IIIa	Definition of abbreviation of intervention
tPA_red+UFH	tPA_red	UFH	-	Alteplase (reduced dose)+Unfrationated heparin
tPA_red+UFH+Ept	tPA_red	UFH	Ept	Alteplase (reduced dose)+Unfrationated heparin+Eptifibatide
tPA_red+UFH+Tiro	tPA_red	UFH	Tiro	Alteplase (reduced dose)+Unfrationated heparin+Tirofiban
tPA_red_acc+UFH	tPA_red_acc	UFH	-	Alteplase (reduced dosed-accelerated infusion)+Unfrationated heparin
tPA_red_acc+UFH+Abx	tPA_red_acc	UFH	Abx	Alteplase (reduced dosed-accelerated infusion)+Unfrationated heparin+Abciximab
UFH	-	UFH	-	Unfrationated heparin

Appendix 4 Description of included studies

eTable 4.1 Description of included studies.

Study group/ first author	Year	Trial design	Location of trial (country)	n	n Treatment (n)*		Inclusi	ion criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
mst author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
AMI SK ¹¹	2002	Randomized, placebo controlled	Europe (5)	496	- SK (243) - SK+Enox (253)	≥18	ST↑	Not specified	≤12	Yes (study protocol)	No (study protocol)	Yes (only intervention group)	No (study protocol)
ASSENT-2 ¹²	1999	Randomized, double- blind, double dummy	Africa (1), Asia (1), Europe (20), Latin America (3), North America (2), Oceania (2)	16949	- TNK+UFH (8461) - tPA_acc+UFH (8488)	≥18	ST↑, LBBB	Not specified	≤6	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
ASSENT-3 ¹³	2001	Randomized, open- label, active controlled	Africa (1), Asia (1), Europe (18), Latin America (3), North America (2), Oceania (1)	6095	- TNK+Enox (2040) - TNK+UFH (2038) - TNK+UFH+Abx (2017)	≥18	ST↑, LBBB	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Open (according to local practice)	Open (according to local practice)
ASSENT-3 Plus ¹⁴	2003	Randomized, open- label, active controlled	Europe (12), North America (2)	1639	- TNK+Enox (818) - TNK+UFH (821)	≥18	ST↑, LBBB	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Yes (only intervention group)	Open (according to local practice)
ASSENT Plus ¹⁵	2003	Randomized, open- label, active controlled	Europe (1), North America (1)	434	- tPA_acc+Dalte (221) - tPA_acc+UFH (213)	≥18	ST↑, LBBB	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Yes (only intervention group)	No (study protocol)
BIOMACS-II ¹⁶	1999	Randomized, double- blind, placebo controlled	Europe (1)	101	- SK (47) - SK+Dalte (54)	≤80	ST↑, LBBB	Not specified	≤12	Yes (study protocol)	No (study protocol)	Yes (only intervention group)	Not report
Bleich ¹⁷	1990	Randomized, open- label, active controlled	North America (1)	84	- tPA (42) - tPA+UFH (42)	Not specified	ST↑	≥30	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
Central Illinois ¹⁸	1993	Randomized, double- blind, active controlled	North America (1)	253	- SK_FL+UFH (130) - tPA+UFH (123)	≤75	ST↑	Not specified	≤4	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Cherng ¹⁹	1992	Randomized, open- label, active controlled	Asia (1)	122	- SK+UFH (63) - tPA+UFH (59)	<70	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
COBALT ²⁰	1997	Randomized, open- label, active controlled	Africa (1), Asia (1), Europe (19), Latin America (3), Oceania (2)	7169	- tPA_acc+UFH (3584) - tPA_DB+UFH (3585)	Not specified	ST↑	≥20	≤6	Yes (study protocol)	Yes (study protocol)	Depend on investigator	Depend on investigator

Study group/ first author	Year	Trial design	Location of trial (country)	n	Treatment (n)*		Inclusion	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
mst author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
CORRETA ²¹	2004	Randomized, active controlled	Asia (1)	266	- TNK+UFH (132) - tPA_acc+UFH (134)	≥18	ST↑, LBBB	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Cortadellas ²²	1989	Randomized, active controlled	Europe (1)	214	- No_ATbx (104) - SK_red+UFH (110)	<70	ST↑	≥30	Not specified	Not report	Yes (study protocol)	Not report	Not report
Curylo ²³	1997	Randomized, active controlled	Europe (1)	86	- SK+Fraxi (45) - SK+UFH (41)	Not specified	ST↑	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)		Not report
DouBLE ²⁴	1998	Randomized, open- label, active controlled	Europe (1), North America (2)	461	- tPA_acc+UFH (237) - tPA_DB+UFH (224)	18-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Dwivedi ²⁵	2000	Randomized, active controlled	Asia (1)	47	- SK+UFH (23) - SK_acc+UFH (24)	Not specified	ST↑	≥30	≤12	Yes (study protocol)	Yes (study protocol)	Not report	Not report
ECSG ²⁶	1985	Randomized, single- blind, active controlled	Europe (4)	129	- SK+UFH (65) - tPA+UFH (64)	21-70	ST↑ (including Q-wave)	≥30	≤6	Not report	Yes (study protocol)	Not report	Not report
ECSG-6 ²⁷	1992	Randomized, double- blind, placebo controlled	Europe (6)	644	- tPA (320) - tPA+UFH (324)	21-70	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
ECSG-tPA ²⁸	1988	Randomized, double- blind, placebo controlled	Europe (7)	721	- tPA+UFH (355) - UFH (366)	21-71	ST↑	≥30	≤5	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
ENTIRE TIMI-23 ²⁹	2002	Randomized, open- label, active controlled, phase II-dose ranging	Europe (4), North America (2)	483	- TNK+Enox (160) - TNK+UFH (82) - TNK_red+Enox+Abx (164) - TNK_red+UFH+Abx (77)	21-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (only intervention group)	Yes (only intervention group)	Yes (only intervention group)
ESCALAT ³⁰	1999	Randomized, active controlled	North America (2)	178	- SK+Efeg (116) - tPA_acc+UFH (62)	21-75	ST↑	≥30	≤12	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
FRAMI ³¹	1997	Randomized, double- blind, placebo controlled	Europe (1)	776	- SK (388) - SK+Dalte (388)	All ages	ST↑ with anterior Q wave MI	Not specified	≤24	Yes (study protocol)	No (study protocol)	Yes (only intervention group)	No (study protocol)
Ghaffari ³²	2013	Randomized, active controlled	Asia (1)	300	- SK+UFH (100) - SK_acc+UFH (200)	Not specified	ST↑	≥30	Not specified	Yes (study protocol)	Yes (study protocol)	Not report	Not report
GISSI-2/ ISG ^{33,34}	1990	Randomized, open- label, active controlled	Europe (11), Latin America (1), Oceania (2)	20768	- SK±UFH (10396) - tPA±UFH (10372)	Not specified	ST↑	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report

Study group/ first author	Year	Trial design	Location of trial (country)	n	Treatment (n)*		Inclusion	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
iirst author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
GUSTO-I ³⁵	1993	Randomized, open- label, active controlled	Europe (11), North America (2), Oceania (2)	41021	- SK+UFH (20251) - SK-tPA_red+UFH (10374) - tPA_acc+UFH (10396)	Not specified	ST↑	≥20	<6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
GUSTO-III ³⁶	1997	Randomized, open- label, active controlled	Africa (1), Europe (14), North America (2), Latin America (1), Oceania (2)	15059	- rPA+UFH (10138) - tPA_acc+UFH (4921)	Not specified	ST↑, BBB	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Depend on investigator	Depend on investigator
GUSTO-V ³⁷	2001	Randomized, open- label, active controlled	Africa (1), Europe (14), Latin America (1), North America (2), Oceania (1)	16588	- rPA+UFH (8260) - rPA_red+UFH+Abx (8328)	≥18	ST↑, LBBB	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Depend on investigator	Yes (only intervention group)
HART-II ³⁸	2001	Randomized, open- label, active controlled	Europe (1), North America (2)	400	- tPA_acc+Enox (200) - tPA_acc+UFH (200)	≥18	ST↑	≥30	≤12	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
HERO ³⁹	1997	Randomized, double- blind, placebo controlled, dose variation	Europe (4), North America (1), Oceania (2)	412	- SK+Bival (272) - SK+UFH (140)	Not specified	ST↑	Not specified	≤12	Yes (study protocol)	Yes (only intervention group)	Not report	Open (according to local practice)
HERO-2 ⁴⁰	2001	Randomized, open- label, active controlled	Africa (1), Asia (6), Europe (26), Latin America (7), North America (4), Oceania (2)	17073	- SK+Bival (8516) - SK+UFH (8557)	Any age	ST↑, LBBB	>30	≤6	Yes (study protocol)	Yes (only intervention group)	Open (according to local practice)	Open (according to local practice)
HIT-4 ⁴¹	1999	Randomized, double- blind, matching placebo	Europe (7)	1208	- SK+Lepi (603) - SK+UFH (605)	18-75	ST↑	Not specified	<6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
IMPACT AMI ⁴²	1997	Randomized, double- blind, placebo controlled, dose confirmation	North America (1)	48	- tPA_acc+UFH (13) - tPA_acc+UFH+Ept (35)	18-75	ST↑, LBBB	>30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Yes (only intervention group)
INJECT ⁴³	1995	Randomized, double- blinded, double- dummy	Europe (9)	6010	- rPA+UFH (3004) - SK+UFH (3006)	≥18	ST↑, BBB	≥30	≤12	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
INTEGRITI ⁴⁴	2003	Randomized, open- label, active controlled	Africa (1), Europe (4), North America (2)	237	- TNK+UFH (118) - TNK_red+UFH+Ept (119)	18-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Yes (only intervention group)
InTIME ⁴⁵	1998	Randomized, double- blind, placebo control, phase II-dose ranging	Europe (11), North America (2)	602	- nPA+UFH (478) - tPA_acc+UFH (124)	18-80	ST↑, LBBB	≥20	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report

Study group/ first author	Year	Trial design	Location of trial (country)	n	n Treatment (n)*		Inclusion	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
nist author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
InTIME-II ⁴⁶	2000	Randomized, double- blind, active controlled	Africa (1), Europe (26), Latin America (5), North America (2), Oceania (1)	15060	- nPA+UFH (10038) - tPA_acc+UFH (5022)	>18	ST↑, LBBB	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)
INTRO AMI ⁴⁷	2002	Randomized, open- label, active controlled, phase II, dose confirmation	Africa (1), Europe (2), North America (2)	299	- tPA_acc+UFH (100) - tPA_red+UFH+Ept (199)	>18	ST↑	≥20	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Yes (only intervention group)
ISAM ⁴⁸	1986	Randomized, double- blind, double dummy	Europe (2), North America (1)	1741	- SK+UFH (859) - UFH (882)	≤75	ST↑	Not specified	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Janousek ⁴⁹	1988	Randomized, active controlled	Europe (1)	57	- SK+UFH (31) - UFH (26)	≤65	ST↑	Not specified	≤4	Not report	Yes (study protocol)	Not report	Not report
Jiang ⁵⁰	2005	Randomized, active controlled	Asia (1)	184	- tPA_acc+UFH (93) - tPA_red+UFH (91)	<75	ST↑, LBBB	≥30	<12	Yes (study protocol)	Yes (study protocol)	Not report	Not report
KAMIT ⁵¹	1991	Randomized, active controlled	North America (1)	216	- SK-tPA_red+UFH (109) - tPA+UFH (107)	18-75	ST↑	Not specified	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Kennedy ⁵²	1988	Randomized, active controlled	North America (1)	368	- SK+UFH (191) - UFH (177)	≤75	ST↑	≥20	≤6	Not report	Yes (study protocol)	Not report	Not report
Khalilullah ⁵³	1984	Randomized, active controlled	Asia (1)	30	- No_ATbx (11) - SK_red+UFH (19)	Not specified	ST↑	Not specified	Not specified	Not report	Yes (only intervention group)	Not report	Not report
LATE ⁵⁴	1993	Randomised double- blind, placebo controlled	Europe (10), North America (2), Oceania (1)	5711	- tPA+UFH (2836) - UFH (2875)	≥18	ST↑, BBB	≥30	≤24	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
Li ⁵⁵	2006	Randomized, active controlled	Asia (1)	89	- tPA_acc_30 min+UFH (46) - tPA_acc_45 min+UFH (43)	<75	ST↑	>30	<12	Yes (study protocol)	Yes (study protocol)	Yes (study protocol)	Not report
Lidon ⁵⁶	1994	Randomized, double- blind, active controlled	North America (1)	45	- SK+Bival (30) - SK+UFH (15)	Not specified	ST↑	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
MINT ⁵⁷	1999	Randomized, single- blind, active controlled, dose variation	Latin Amarica (2), North America (1)	125	- tPA_acc+Argat (85) - tPA_acc+UFH (40)	≥21	ST↑	≥30	<6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
NCT00148460 ⁵	2005	Randomized, open- label, active controlled	Asia (3)	267	- TNK+UFH (130) - tPA_acc+UFH (137)	18-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	No (study protocol)	No (study protocol)

Study group/	Year	Trial design	Location of trial	n	Treatment (n)*		Inclusi	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
first author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
NHFA ⁵⁹	1988	Randomized, double- blind, placebo controlled	Oceania (1)	144	- tPA+UFH (73) - UFH (71)	≤75	ST↑	Not specified	≤4	Not report	Yes (study protocol)	Not report	Not report
O'Rourke ⁶⁰	1988	Randomized, double- blind, placebo controlled	Oceania (1)	145	- tPA+UFH (74) - UFH (71)	21-72	ST↑	>30	<2.5	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
Olson ⁶¹	1986	Randomized, active controlled	North America (1)	52	- SK_red+UFH (28) - UFH (24)	Not specified	ST↑	Not specified	≤12	Yes (study protocol)	Yes (study protocol)	Not report	Not report
PAIMS ⁶²	1989	Randomized, single blind, active controlled	Europe (1)	171	- SK+UFH (85) - tPA+UFH (86)	20-70	ST↑	≥30	≤3	Not report	Yes (study protocol)	Not report	Not report
PENTALYSE ⁶³	2001	Randomized, open- label, active controlled, phase II-dose finding	Europe (6)	326	- tPA_acc+Fonda (241) - tPA_acc+UFH (85)	21-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (only intervention group)		Not report
Plotnikov ⁶⁴	1993	Not specified	Europe (1)	80	- SK_red+UFH (39) - tPA+UFH (41)	21-70	ST↑	≥30	≤6	Not report	Yes (study protocol)	Not report	Not report
PRIME ⁶⁵	2002	Randomized, single- blind, active controlled, phase II-dose ranging	North America (1)	321	- tPA_acc+Efeg (238) - tPA_acc+UFH (83)	21-75	ST↑	Not specified	≤12	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
RAAMI ⁶⁶	1992	Randomized, open- label, active controlled	North America (1)	281	- tPA+UFH (138) - tPA_acc+UFH (143)	Any age	ST↑	≥30	<6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
RAPID ⁶⁷	1994	Randomized, open- label, active controlled, dose variation	Europe (2), North America (1), Oceania (1)	606	- rPA+UFH (154) - rPA_red+UFH (298) - tPA+UFH (154)	18-75	ST↑	≥30	≤6	Yes (study protocol)	Yes (study protocol)	Not report	Not report
RAPID-II ⁶⁸	1996	Randomized, open- label, active controlled	Europe (1), North America (1)	324	- rPA+UFH (169) - tPA_acc+UFH (155)	>18	ST↑, LBBB	≥30	≤12	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
Ronner ⁶⁹	2000	Randomized, double- blind, placebo controlled, phase II- dose ranging	Europe (2)	181	- SK (62) - SK+Ept (119)	≥18	ST↑	Not specified	≤6	Yes (study protocol)	No (study protocol)	Not report	Yes (only intervention group)
Sarullo ⁷⁰	2001	Randomized, double- blind, active controlled	Europe (1)	120	- tPA_acc+UFH (60) - tPA_red+UFH+Tiro (60)	<70	ST↑	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
SPEED ⁷¹	2000	Randomized, active controlled, dose confirmation	Europe (5), North America (1), Latin America (1), Oceania (1)	224	- rPA+UFH (109) - rPA_red+UFH+Abx (115)	≥18	ST↑	≥30	≤12	Yes (study protocol)	Yes (study protocol)	No (study protocol)	No (study protocol)

Study group/	Year	Trial design	Location of trial	n	Treatment (n)*		Inclusi	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
first author			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
Srimahachota ⁷²	2000	Randomized, active controlled	Asia (1)	40	- SK (20) - SK_acc (20)	15-75	ST↑	≥20	≤6	Open (according to local practice)	Open (according to local practice)	Open (according to local practice)	Open (according to local practice)
Strandberg ⁷³	1996	Not specified, dose variation	Europe (1)	20	- SK (5) - SK+Dalte (15)	Not specified	ST↑	≥30	≤12	No (study protocol)	Not report	Yes (only intervention group)	Not report
Tabatabaie ⁷⁴	2009	Randomized, double- blind, active controlled	Asia (1)	150	- SK+Enox (75) - SK+UFH (75)	18-75	ST↑	≥30	≤12	Not report	Yes (only intervention group)	Yes (only intervention group)	Not report
TAMI-3 ⁷⁵	1989	Randomized, active controlled	North America (1)	134	- tPA (70) - tPA+UFH (64)	<75	ST↑	≥30	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
TERIMA ⁷⁶	1999	Randomized, active controlled	Latin America (1)	224	- SK (111) - rSK (113)	≤70	ST↑, BBB	≥30	≤12	Yes (study protocol)	Open (according to local practice)	Not report	Not report
Theroux ⁷⁷	1995	Randomized, double- blind, placebo controlled, phase II- dose ranging	North America (1)	68	- SK+Bival (55) - SK+UFH (13)	≤81	ST↑, LBBB	Not specified	≤6	Yes (study protocol)	Yes (only intervention group)	Not report	Not report
TIMI-1 ⁷⁸	1987	Randomized, open- label, active controlled	North America (1)	290	- SK+UFH (147) - tPA+UFH (143)	≤75	ST↑	≥30	≤7	Yes (study protocol)	Yes (study protocol)	Not report	Not report
TIMI-10B ⁷⁹	1998	Randomized, active controlled, phase II- dose ranging	Europe (3), North America (2)	837	- TNK+UFH (526) - tPA_acc+UFH (311)	<80	ST↑	≥30	≤12	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)
TIMI-14 ⁸⁰	1999	Randomized, open- label, active controlled, phase II,dose confirmation	Europe (5), North America (2)	211	- tPA_acc+UFH (72) - tPA_red_acc+UFH+Abx (139)	18-75	ST↑	≥30	≤12	Yes (study protocol)	Yes (only intervention group)	Open (according to local practice)	Yes (only intervention group)
TIMI-14-rPA ⁸¹	2000	Randomized, active controlled, dose variation	Europe (4), North America (2)	299	- rPA+UFH (102) - rPA_red+UFH+Abx (197)	18-75	ST↑	≥30	≤12	Yes (study protocol)	Yes (only intervention group)	Not report	Yes (only intervention group)
Verstraete ⁸²	1985	Randomized, double- blind, placebo controlled	Europe (4)	129	- tPA+UFH (64) - UFH (65)	<70	ST↑ (including Q-wave)	≥30	≤6	Not report	Yes (study protocol)	Not report	Not report
White ⁸³	1987	Randomized, double- blind, placebo controlled	Oceania (1)	219	- SK_acc+UFH (107) - UFH (112)	<70	ST↑	≥30	<4	Yes (study protocol)	Yes (study protocol)	Not report	Not report

Study group/ first author	Year	Trial design	Location of trial (country)	n	Treatment (n)*		Inclusi	on criteria		Aspirin	UFH	LMWH	GP IIb/IIIa
mst autior			(country)			Age (year)	Type of ECG	Duration of chest pain (min)	Duration from chest pain (hour)				
White ⁸⁴	1989	Randomized, double- blind, placebo controlled	Oceania (1)	270	- SK+UFH (135) - tPA+UFH (135)	<70	ST↑	≥30	<3	Yes (study protocol)	Yes (study protocol)	Not report	Not report
Zhai ⁸⁵	2016	Randomized, single- blind, active controlled	Asia (1)	251	- TNK_red (124) - tPA_red (127)	18-70	ST↑	>30	≤12	Open (according to local practice)	Open (according to local practice)	Not report	Not report
Zhang ⁸⁶	2010	Randomized, active controlled	Asia (1)	54	- rPA_red+UFH (29) - tPA_red+UFH (25)	>75	ST↑	Not specified	≤6	Yes (study protocol)	Yes (study protocol)	Open (according to local practice)	Open (according to local practice)

^{*} Treatment was grouped regardless of dosage. For the details of dosage regimen in each treatment group, please refer to eTable 4.3 Description of treatment interventions of included studies.

Abbreviation: BBB, Bundle branch block; ECG, Electrocardiogram; GP IIb/IIIa, Glycoprotein IIb/IIIa inhibitors; LBBB, Left bundle branch block; LMWH, Low molecular weight heparin; n, Number of patient; TIMI, Thrombolysis in myocardial infarction.

eTable 4.2 Description of participants of included studies.

Study group/ first author	Year	Treatment*	n	Age (year	r) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
AMI SK ¹¹	2002	SK	243	62.9±11.9	Mean	79.4	33.0		40.7	43.6	14.8	31.3				2.8	Median
		SK+Enox	253	62.8±11.7	Mean	72.3	24.0		40.3	39.9	17.0	32.8				3.3	Median
ASSENT-2 ¹²	1999	TNK+UFH	8461	61 (52, 70)	Median	77.1	15.8		44.3	37.7	16.4		12.0	39.4		2.7 (1.9, 3.8)	Median
		tPA_acc+UFH	8488	61 (52, 70)	Median	76.7	16.1		43.7	38.5	15.7		11.9	40.2		2.8 (1.9, 3.9)	Median
ASSENT-3 ¹³	2001	TNK+Enox	2040	61±12	Mean	77.0	14.0	6.2	44.0	41.0	19.0		10.3	39.0		3.0	Median
		TNK+UFH	2038	61±13	Mean	77.0	14.0	6.4	47.0	41.0	18.0		12.4	38.0		3.1	Median
		TNK+UFH+Abx	2017	61±12	Mean	76.0	13.0	6.0	47.0	41.0	18.0		11.4	39.0		3.1	Median
ASSENT-3 Plus ¹⁴	2003	TNK+Enox	818	62±13	Mean	76.3	14.7	7.4	41.9	35.5	14.1		27.0	42.0			Median
		TNK+UFH	821	62±13	Mean	77.6	14.3	6.4	45.1	36.3	15.6		27.0	43.0			Median
ASSENT Plus ¹⁵	2003	tPA_acc+Dalte	221	64.1±10.6	Mean	71.5	12.7	3.2	35.3	28.5	13.1		11.9	44.8			
		tPA_acc+UFH	213	65.0±10.9	Mean	69.5	16.4	5.2	32.1	35.7	10.8		12.2	43.2			
BIOMACS-II ¹⁶	1999	SK	47	64.0	Median	77.0	11.0		30.0	36.0	13.0						
		SK+Dalte	54	68.0	Median	65.0	17.0		35.0	18.0	7.0						
Bleich ¹⁷	1990	tPA	42	56.6	Mean	83.0								50.0		2.8	Mean
		tPA+UFH	42	59.4	Mean	79.0								45.0		2.6	Mean
Central Illinois ¹⁸	1993	SK_FL+UFH	130	59±11	Mean	72.0								36.0		2.5±1.0	Mean
		tPA+UFH	123	59±10	Mean	72.0								44.0		2.4±1.0	Mean
Cherng ¹⁹	1992	SK+UFH	63	57.8±9.5	Mean	79.4			71.0	41.0	33.0			61.9		4.9	Mean
		tPA+UFH	59	57.3±9.6	Mean	91.5			78.0	39.0	22.0			57.6		5.2	Mean
COBALT ²⁰	1997	tPA_acc+UFH	3584	62 (53, 70)	Median	76.0	16.0	2.0	44.0	37.0	13.0		16.0	43.0		2.9 (2.0, 4.0)	Median
		tPA_DB+UFH	3585	63 (53, 70)	Median	77.0	17.0	2.0	45.0	38.0	13.0		17.0	45.0		3.0 (2.0, 4.1)	Median
CORRETA ²¹	2004	TNK+UFH	132	46.0	Median		6.1		59.8					60.0		2.9±0.2	Mean
		tPA_acc+UFH	134	47.0	Median		7.5		51.5					61.0		3.1±0.2	Mean
Cortadellas ²²	1989	No_ATbx	104	54.0	Median	97.1								46.2			
		SK_red+UFH	110	54.0	Median	92.7								48.2			
Curylo ²³	1997	SK+Fraxi	45				11.1		77.8	22.2	13.3	28.9		44.4			
		SK+UFH	41				7.3		80.5	29.3	9.8	26.8		46.3			

Study group/ first author	Year	Treatment*	n	Age (year	·) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
DouBLE ²⁴	1998	tPA_acc+UFH	237	57.4±10.5	Mean	76.4	19.0			35.0	11.0			34.2	66.1	2.9±1.4	Mean
		tPA_DB+UFH	224	58.0±10.3	Mean	69.2	20.1			33.9	11.2			35.7	57.9	2.8±1.5	Mean
Dwivedi ²⁵	2000	SK+UFH	23	53.4±11.6	Mean	56.0			17.0	4.0	13.0		26.1	56.0			
		SK_acc+UFH	24	55.6±10.2	Mean	50.0			12.0	0.0	17.0		25.0	50.0			
ECSG ²⁶	1985	SK+UFH	65	54.3	Median	83.1								48.4		2.6	Median
		tPA+UFH	64	55.1	Median	81.3								53.1		3.0	Median
ECSG-6 ²⁷	1992	tPA	320	56.0	Median	88.0	5.0		63.0	26.0				44.0	66.4	2.5	Median
		tPA+UFH	324	57.0	Median	86.0	6.0		62.0	24.0				40.0	75.5	2.5	Median
ECSG-tPA ²⁸	1988	tPA+UFH	355	58 (41, 69)	Median	88.0	8.0						23.0	41.0		2.9 (1.4, 4.6)	Median
		UFH	366	58 (43, 69)	Median	83.0	7.0						26.0	36.0		2.8 (1.3, 4.5)	Median
ENTIRE TIMI-23 ²⁹	2002	TNK+Enox	160	58 (51, 64)	Median	84.0	9.0	6.0	51.0	23.0	15.0			33.0	50.0	2.9 (2.0, 3.8)	Median
		TNK+UFH	82	56 (50, 66)	Median	84.0	4.0	1.0	57.0	22.0	16.0			39.0	52.0	3.0 (2.1, 4.0)	Median
		TNK_red+Enox+Abx	164	60 (51, 68)	Median	81.0	15.0	9.0	53.0	31.0	14.0			37.0	52.0	2.9 (2.3, 3.8)	Median
		TNK_red+UFH+Abx	77	59 (52, 66)	Median	82.0	14.0	9.0	55.0	26.0	7.0			31.0	48.0	3.0 (2.2, 4.1)	Median
ESCALAT ³⁰	1999	SK+Efeg	116	57.0	Mean	79.0	11.0	8.0	45.0				15.0	37.0	40.0	3.3	Mean
		tPA_acc+UFH	62	55.6	Mean	76.0	10.0	8.0	42.0				16.0	50.0	53.0	3.0	Mean
FRAMI ³¹	1997	SK	388	63.6±11.7	Mean	74.2	8.2			16.5			8.0	100.0		4.8±5.5	Mean
		SK+Dalte	388	63.7±12.1	Mean	72.4	8.2			16.2			8.2	100.0		4.3±2.2	Mean
Ghaffari ³²	2013	SK+UFH	100	60.1±13.2	Mean	75.0			33.0	32.0	15.0	16.0	10.6	61.0	85.7	4.5±2.9	Mean
		SK_acc+UFH	200	58.7±12.1	Mean	81.5			44.0	35.5	16.0	15.0	8.7	53.0	75.4	4.2±2.9	Mean
GISSI-2/ISG ^{33,34}	1990	SK±UFH	10396			78.9	16.9						20.6			63.7% ≤3 hr,	98.5% ≤6 hr
		tPA±UFH	10372			78.2	17.4						20.7			63.9% ≤3 hr,	98.4% ≤6 hr
GUSTO-I ³⁵	1993	SK+UFH	9841	62 (52, 70)	Median	75.0	16.0		43.0	39.0	15.0					2.7 (1.9, 3.9)	Median
		SK+UFH	10410	62 (52, 70)	Median	75.0	17.0		43.0	38.0	15.0					2.8 (2.0, 3.8)	Median
		SK-tPA_red+UFH	10374	61 (52, 70)	Median	75.0	16.0		43.0	38.0	14.0					2.8 (2.0, 4.0)	Median
		tPA_acc+UFH	10396	62 (52, 70)	Median	75.0	17.0		43.0	38.0	15.0					2.8 (2.0, 3.8)	Median
GUSTO-III ³⁶	1997	rPA+UFH	10138	62.9 (53, 71)	Median	72.5	18.4		41.3	39.5	15.5	34.4	14.3	47.4		2.7 (1.8, 3.8)	Median
		tPA_acc+UFH	4921	63.0 (53, 72)	Median	72.8	18.4		41.4	39.1	15.9	34.8	14.7	47.7		2.7 (1.9, 3.9)	Median

Study group/ first author	Year	Treatment*	n	Age (year) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
GUSTO-V ³⁷	2001	rPA+UFH	8260	61.1±12.2	Mean	76.0	15.0		46.0	33.0	16.0	16.0		37.0		2.9±1.6	Mean
		rPA_red+UFH+Abx	8328	61.6±12.1	Mean	75.0	16.0		45.0	35.0	16.0	18.0		38.0		3.1±2.2	Mean
HART-II ³⁸	2001	tPA_acc+Enox	200	61.0	Mean	74.0	13.5		49.0	30.1	11.3						
		tPA_acc+UFH	200	59.5	Mean	78.0	11.0		48.5	20.4	15.4						
HERO ³⁹	1997	SK+Bival	136	61±12	Mean	73.5	15.0		62.0	31.0				33.0	46.0	4.1±3.1	Mean
		SK+Bival	136	61±12	Mean	76.5	11.0		65.0	32.0				32.0	48.0	3.9±2.7	Mean
		SK+UFH	140	62±12	Mean	75.0	16.0		62.0	28.0				34.0	35.0	3.9±2.5	Mean
HERO-2 ⁴⁰	2001	SK+Bival	8516	61.8 (52.1, 70.5)	Median	70.6	15.1	1.2	43.8	51.8	14.0	24.6	22.1	45.3		3.3	Median
		SK+UFH	8557	61.8 (51.6, 70.3)	Median	72.7	15.2	1.2	44.2	51.6	14.0	25.4	21.1	44.1		3.3	Median
HIT-4 ⁴¹	1999	SK+Lepi	603	61.1±11.6	Mean	76.0	12.1	4.3	43.3	39.6	12.9	25.0	12.4	38.9		2.9±1.3	Mean
		SK+UFH	605	61.3±11.9	Mean	75.9	14.5	5.6	45.0	34.2	13.4	24.5	11.4	41.6		2.8±1.3	Mean
IMPACT AMI ⁴²	1997	tPA_acc+UFH	13	61 (53, 68)	Median	62.0	8.0			42.0	15.0			46.0	77.0	2.0 (1.5, 2.8)	Median
		tPA_acc+UFH+Ept	35	55 (49, 67)	Median	83.0	23.0			40.0	17.0			26.0	64.0	2.4 (1.6, 3.7)	Median
INJECT ⁴³	1995	rPA+UFH	3004	61.8±11.5	Mean	71.8	14.5		44.8	34.1	11.5			41.4		4.2±2.8	Mean
		SK+UFH	3006	61.9±11.7	Mean	72.9	14.7		45.5	32.5	11.3			44.0		4.1±2.4	Mean
INTEGRITI ⁴⁴	2003	TNK+UFH	118	57 (51, 66)	Median	76.0	8.0		49.0	35.0	17.0		15.0	32.0	49.0	2.8 (2.1, 4.0)	Median
		TNK_red+UFH+Ept	119	58 (49, 66)	Median	70.0	17.0		48.0	34.0	13.0		11.0	32.0	59.0	3.0 (2.3, 3.8)	Median
InTIME ⁴⁵	1998	nPA+UFH	123	58.3±10.4	Mean	79.0	15.4						8.0	15.0	47.1	3.1±1.3	Mean
		nPA+UFH	123	59.2±11.3	Mean	85.0	21.1						7.0	21.0	44.0	3.0±1.3	Mean
		nPA+UFH	123	59.4±11.0	Mean	80.0	13.0						8.0	25.0	23.6	3.1±1.5	Mean
		nPA+UFH	109	59.7±10.2	Mean	78.0	10.1						7.0	24.0	29.5	3.1±1.3	Mean
		tPA_acc+UFH	124	59.1±11.3	Mean	84.0	14.5						8.0	23.0	37.4	3.2±1.3	Mean
InTIME-II ⁴⁶	2000	nPA+UFH	10038	62 (52, 70)	Median	75.4	16.3		45.0	30.2	13.5		12.8	42.5		2.8 (2, 4)	Median
		tPA_acc+UFH	5022	61 (52, 70)	Median	75.1	15.5		44.9	31.0	14.7		12.2	41.2		2.9 (2, 4)	Median
INTRO AMI ⁴⁷	2002	tPA_acc+UFH	100	59 (50, 68)	Median	78.0	16.0			41.0	13.0			33.0	47.0	3.0	Median
		tPA_red+UFH+Ept	100	59 (49, 71)	Median	78.0	18.0			36.0	21.0			36.0	59.0	3.0	Median
		tPA_red+UFH+Ept	99	60 (50, 68)	Median	73.7	16.2			46.5	16.2			37.0	46.0	2.9	Median

Study group/ first author	Year	Treatment*	n	Age (year	r) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolyti	
ISAM ⁴⁸	1986	SK+UFH	859	58.3	Mean	80.8	12.3			23.5	12.9			42.9		55.5%	≤3 hr
		UFH	882	58.4	Mean	82.4	11.6			23.2	10.9			46.8		52.4%	≤3 hr
Janousek ⁴⁹	1988	SK+UFH	31	54±9	Mean								3.0	35.0		2.5±0.8	Mean
		UFH	26	55±7	Mean								0.0	38.0		2.5±1.0	Mean
Jiang ⁵⁰	2005	tPA_acc+UFH	93	57.3±8.9	Mean	83.9	2.2		49.5	39.8	11.8	25.8				4.0	Mean
		tPA_red+UFH	91	57.8±8.8	Mean	86.8	3.3		56.0	42.9	13.2	22.0				3.9	Mean
KAMIT ⁵¹	1991	SK-tPA_red+UFH	109	53+11	Mean	83.0	12.0							42.0		2.9±1.2	Mean
		tPA+UFH	107	55±11	Mean	83.0	13.0							42.0		3.0±1.2	Mean
Kennedy ⁵²	1988	SK+UFH	191	57.0±11.0	Mean	82.2	13.7								60.8	3.5±1.4	Mean
		UFH	177	57.1±10.1	Mean	85.9	13.0								37.1	-	Mean
Khalilullah ⁵³	1984	No_ATbx	11			100.0								36.4	45.5		
		SK_red+UFH	19			89.5								63.2	52.6		
LATE ⁵⁴	1993	tPA+UFH	2836	62.5±10.8	Mean	71.6	21.8		41.0	35.3	12.5		64.3	43.6			
		UFH	2875	62.8±10.8	Mean	73.2	21.3		40.9	35.7	13.1		65.4	42.9			
Li ⁵⁵	2006	tPA_red_acc+UFH	46		Mean										47.5		
		tPA_red_acc+UFH	43		Mean										46.6		
Lidon ⁵⁶	1994	SK+Bival	30	56.3±10.6	Mean	80.0	20.0	3.3	46.7	13.3	16.7	30.0	3.3	33.3	67.0	2.5±0.9	Mean
		SK+UFH	15	55.5±9.4	Mean	73.3	33.3	20.0	73.3	33.3	6.7	33.3	6.7	26.7	40.0	2.6±1.1	Mean
MINT ⁵⁷	1999	tPA_acc+Argat	47	56±1.8	Mean	85.1									58.7	3.1±0.2	Mean
		tPA_acc+Argat	38	59±1.7	Mean	73.7									56.8	3.0±0.2	Mean
		tPA_acc+UFH	40	60±1.5	Mean	82.5									42.1	2.7±0.2	Mean
NCT00148460 ⁵⁸	2005	TNK+UFH	130	57.3±10.9	Mean	76.9	1.5	57.7	50.8	46.2	18.5		17.0	57.7	57.9	3.6±1.4	Mean
		tPA_acc+UFH	137	56.1±10.8	Mean	82.5	5.1	53.3	49.6	49.6	14.6		8.7	51.1	62.1	3.5±1.5	Mean
NHFA ⁵⁹	1988	tPA+UFH	73	59.6±10.1	Mean	75.3	19.2			45.2	11.0			46.6		100%	≤4 hr
		UFH	71	58.5±10.1	Mean	67.6	12.7			38.0	5.6			33.8		100%	≤4 hr
O'Rourke ⁶⁰	1988	tPA+UFH	74	56 (29, 71)	Median	79.7				39.2	2.7			52.7		2.0±0.5	Mean
		UFH	71	56 (30, 70)	Median	87.3				35.2	7.0			40.8		1.9±0.5	Mean

Study group/ first author	Year	Treatment*	n	Age (year	•)†	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
Olson ⁶¹	1986	SK_red+UFH	28	56±7.1	Mean		25.0		50.0	53.6	14.3	10.7	46.4	46.4			
		UFH	24	61±10	Mean		37.5		50.0	33.3	16.7	0.0	54.2	37.5			
PAIMS ⁶²	1989	SK+UFH	85	58±8	Mean	77.6			62.0	40.0	15.0	28.0		43.5		2.1±0.7	Mean
		tPA+UFH	86	57±8	Mean	87.2			72.0	34.0	9.0	21.0		51.2		2.1±0.7	Mean
PENTALYSE ⁶³	2001	tPA_acc+Fonda	83	59 (49, 67)	Median	83.0	11.0		42.0	28.0	8.0	49.0			75.9	2.6 (2, 3.8)	Median
		tPA_acc+Fonda	77	55 (48, 66)	Median	83.0	8.0		53.0	33.0	12.0	39.0			93.2	3.1 (2.2, 4.3)	Median
		tPA_acc+Fonda	81	61 (53, 68)	Median	85.0	16.0		62.0	35.0	9.0	47.0			82.3	2.8 (2.2, 3.8)	Median
		tPA_acc+UFH	85	55 (48, 65)	Median	80.0	9.0		59.0	25.0	9.0	34.0			81.0	2.7 (2, 3.5)	Median
Plotnikov ⁶⁴	1993	SK_red+UFH	39	52.7±1.5	Mean									43.6		4.6±0.1	Mean
		tPA+UFH	41	51.4±1.2	Mean									43.9		4.2±0.1	Mean
PRIME ⁶⁵	2002	tPA_acc+Efeg	117	58 (47, 65)	Median	81.0	21.0				13.0			40.0	58.0	3.0 (1.8, 4.3)	Median
		tPA_acc+Efeg	121	61 (52, 66)	Median	81.0	17.0				14.0			30.0	56.0	3.0 (1.7, 4.3)	Median
		tPA_acc+UFH	83	58 (52, 66)	Median	89.0	20.0				18.0			33.0	54.0	2.5 (1.7, 3.8)	Median
RAAMI ⁶⁶	1992	tPA+UFH	138	57.1±9.4	Mean	75.0	17.0							42.0		2.8±1.3	Mean
		tPA_acc+UFH	143	58.8±10.9	Mean	78.0	10.0							41.0		2.7±1.1	Mean
RAPID ⁶⁷	1994	rPA+UFH	154	57±10	Mean	77.0	12.0							50.0	62.7	3.0±1.4	Mean
		rPA_red+UFH	152	57±10	Mean	77.0	10.0							49.0	45.7	2.9±1.3	Mean
		rPA_red+UFH	146	57±10	Mean	82.0	9.0							49.0	40.9	3.0±1.4	Mean
		tPA+UFH	154	59±10	Mean	73.0	13.0							45.0	49.0	3.1±1.3	Mean
RAPID-II ⁶⁸	1996	rPA+UFH	169	58.0	Median	76.0	17.0			49.0	15.0			39.0	59.9	2.5	Median
		tPA_acc+UFH	155	62.0	Median	81.0	8.0			39.0	14.0			37.0	45.2	2.4	Median
Ronner ⁶⁹	2000	SK	62	58.0	Mean	76.0	5.0		66.0	23.0	16.0		7.0	39.0	31.0		
		SK+Ept	45	60.0	Mean	84.0	16.0		71.0	20.0	18.0		7.0	49.0	42.0		
		SK+Ept	30	62.0	Mean	70.0	7.0		63.0	20.0	3.0		7.0	27.0	45.0		
		SK+Ept	44	63.0	Mean	77.0	5.0		73.0	27.0	7.0		16.0	30.0	46.0		
Sarullo ⁷⁰	2001	tPA_acc+UFH	60	54±9	Mean	68.3			61.7	60.0	33.3	46.7		38.3			
		tPA_red+UFH+Tiro	60	55±7	Mean	70.0			66.7	56.7	35.0	50.0		36.7			

Study group/ first author	Year	Treatment*	n	Age (year	·) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
SPEED ⁷¹	2000	rPA+UFH	109	60 (51, 71)	Median	74.0	14.0			31.0	14.0			42.0	47.0	2.5 (2.0, 3.6)	Median
		rPA_red+UFH+Abx	115	60 (53, 71)	Median	75.0	10.0			26.0	17.0			44.0	54.0	2.8 (2.0, 3.9)	Median
Srimahachota ⁷²	2000	SK	20	58.2±8.6	Mean	75.0	20.0		60.0	40.0	30.0	50.0	30.0	40.0		5.1±1.3	Mean
		SK_acc	20	54.1±9.0	Mean	95.0	15.0		65.0	15.0	35.0	15.0	20.0	45.0		5.0±2.2	Mean
Strandberg ⁷³	1996	SK	5	66.0	Mean	80.0	20.0		40.0	40.0	0.0			60.0		3.0	Mean
		SK+Dalte	5	59.0	Mean	60.0	0.0		60.0	60.0	0.0			100.0		3.0	Mean
		SK+Dalte	5	63.0	Mean	80.0	20.0		40.0	20.0	0.0			60.0		4.0	Mean
		SK+Dalte	5	68.0	Mean	80.0	0.0		40.0	0.0	20.0			60.0		7.0	Mean
Tabatabaie ⁷⁴	2009	SK+Enox	75	58.9±9.4	Mean	66.7											
		SK+UFH	75	56.3±9.0	Mean	72.0											
TAMI-3 ⁷⁵	1989	tPA	70	58.0	Median	81.0	20.0								52.9	2.6	Median
		tPA+UFH	64	55.0	Median	84.0	11.0								54.0	3.0	Median
TERIMA ⁷⁶	1999	rSK	113	58.8±9.3	Mean	100.0	11.5			44.2	18.6	6.2	7.1			4.2±2.3	Mean
		SK	111	53.4±9.1	Mean	82.9	14.4			46.8	10.8	11.7	8.1			4.6±2.6	Mean
Theroux ⁷⁷	1995	SK+Bival	28	60±10	Mean	85.7	32.1		64.3		14.3	50.0		28.6	61.0	2.5±1.5	Mean
		SK+Bival	27	60±8	Mean	85.2	22.2		59.3		11.1	40.7		37.0	85.0	2.1±1.5	Mean
		SK+UFH	13	63±12	Mean	69.2	7.7		53.8		23.1	15.4		30.8	31.0	2.6±1.5	Mean
TIMI-1 ⁷⁸	1987	SK+UFH	147	58.0	Mean	80.0	19.0		56.0	38.0	13.0			52.0		4.8	Mean
		tPA+UFH	143	56.0	Mean	80.0	17.0		57.0	51.0	13.0			44.0		4.8	Mean
TIMI-10B ⁷⁹	1998	TNK+UFH	76	61 (51, 70)	Median	73.7	15.8		42.1		18.4			38.2	65.8	2.9 (2.1, 3.9)	Median
		TNK+UFH	302	59 (51, 70)	Median	77.2	15.2		50.7		14.9			39.1	54.3	2.8 (1.9, 4.5)	Median
		TNK+UFH	148	58 (50, 68)	Median	69.6	13.5		50.0		14.9			41.9	62.8	2.9 (1.8, 4.3)	Median
		tPA_acc+UFH	311	59 (51, 69)	Median	78.5	14.5		43.7		15.1			36.9	62.7	2.9 (2.1, 4.1)	Median
TIMI-14 ⁸⁰	1999	tPA_acc+UFH	72	58 (50, 67)§	Median	77.0§	12.0§		52.0§	26.0§	13.0§			37.0 [§]	64.0	3 (2, 5)§	Median
		tPA_red_acc+UFH+Abx	69	58 (50, 67)§	Median	77.0§	12.0§		52.0§	26.0§	13.0§			37.0§	78.0	3 (2, 5)§	Median
		tPA_red_acc+UFH+Abx	70	58 (50, 67)§	Median	77.0§	12.0§		52.0§	26.0§	13.0§			37.0§	69.0	3 (2, 5)§	Median

Study group/ first author	Year	Treatment*	n	Age (year	r) [†]	Male (%)	Previous MI (%)	Previous PCI (%)	Current smoker (%)	HTN (%)	DM (%)	DLP (%)	Killip class ≥2 (%)	Anterior location (%)	TIMI 3 flow at 60-90 min (%) [‡]	Average fibrinolytic	
TIMI-14-rPA ⁸¹	2000	rPA+UFH	102	59 (51, 66)	Median	79.0	7.8		50.0	28.0	13.0			38.0	70.0	3.0 (2.0, 4.0)	Median
		rPA_red+UFH+Abx	63	61 (50, 67)	Median	76.0	7.9		48.0	33.0	18.0			43.0	74.0	3.0 (2.0, 6.0)	Median
		rPA_red+UFH+Abx	42	59 (53, 67)	Median	79.0	7.1		45.0	29.0	12.0			36.0	85.0	3.0 (2.0, 5.0)	Median
		rPA_red+UFH+Abx	42	59 (45, 65)	Median	79.0	4.8		62.0	24.0	5.0			41.0	71.0	3.0 (2.0, 6.0)	Median
		rPA_red+UFH+Abx	50	60 (56, 68)	Median	78.0	18.0		36.0	30.0	8.0			30.0	71.0	3.0 (2.0, 6.0)	Median
Verstraete ⁸²	1985	tPA+UFH	64	56.4	Mean	92.2								49.2		3.4	Median
		UFH	65	54.9	Mean	90.8								47.7		3.3	Median
White ⁸³	1987	SK_acc+UFH	107	56±8.7	Mean	72.0	26.0		82.0	23.0	12.0			38.0		3.0±0.8	Mean
		UFH	112	55±8.6	Mean	80.0	17.0		83.0	35.0	8.0			38.0		3.0±0.8	Mean
White ⁸⁴	1989	SK+UFH	135	56±9	Mean	79.0			56.0	26.0	10.0			32.0		2.5±0.6	Mean
		tPA+UFH	135	55±9	Mean	81.0			55.0	22.0	10.0			36.0		2.5±0.6	Mean
Zhai ⁸⁵	2016	TNK_red	124	55.9±9.67	Mean	84.7	5.7	2.4	66.1	35.5	13.7	39.5	9.7	51.6	65.6	4.5±2.8	Mean
		tPA_red	127	55.47±9.63	Mean	89.8	6.3	2.4	66.9	40.9	26.0	40.9	7.9	58.3	54.0	4.4±2.7	Mean
Zhang ⁸⁶	2010	rPA_red+UFH	29														
		tPA_red+UFH	25														

^{*} Treatment was grouped regardless of dosage. For the details of dosage regimen in each treatment group, please refer to eTable 4.3 Description of treatment interventions of included studies.

‡ After treatment with fibrinolytic agents.

§ Data were presented by using the average data from the whole study.

Abbreviation: DLP, Dyslipidemia; DM, Diabetes mellitus; HTN, Hypertension; n, Number of patient.

 $^{^{\}dagger}\, Data \ were \ presented \ in \ term \ of \ mean \pm standard \ deviation \ (S.D.) \ or \ median \ (interquartile \ range; IQR).$

eTable 4.3 Description of treatment interventions of included studies.

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
AMI SK ¹¹	2002	SK	243	- SK 1.5 MU IV infusion over 1 hr	Yes	Recommended treatment in current practice guidelines	SK
		SK+Enox	253	- SK 1.5 MU IV infusion over 1 hr - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr	Yes	Recommended treatment in current practice guidelines	SK+PAC
ASSENT-2 ¹²	1999	TNK+UFH	8461	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		tPA_acc+UFH	8488	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
ASSENT-3 ¹³	2001	TNK+Enox	2040	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK+UFH	2038	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK+UFH+Abx	2017	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 40 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	TNK+PAC+GP
ASSENT-3 Plus ¹⁴	2003	TNK+Enox	818	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		TNK+UFH	821	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
ASSENT Plus ¹⁵	2003	tPA_acc+Dalte	221	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Dalte 30 IU/kg IV bolus, then 120 IU/kg SC q 12 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+UFH	213	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	No	Comparison between similar treatments after re-coding of treatment for network analyses	-

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
BIOMACS-II ¹⁶	1999	SK	47	- SK 1.5 MU IV infusion over 1 hr	No	Not recommended treatment in current practice guidelines	-
		SK+Dalte	54	- SK 1.5 MU IV infusion over 1 hr - Dalte 100 U/kg SC, then 120 IU/kg SC q 12 hr	No	Not recommended treatment in current practice guidelines	-
Bleich ¹⁷	1990	tPA	42	- tPA 6 mg IV bolus, then 54 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr)	Yes	Recommended treatment in current practice guidelines	tPA
		tPA+UFH	42	- tPA 6 mg IV bolus, then 54 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
Central Illinois ¹⁸	1993	SK_FL+UFH	130	- SK 375,000 U IV bolus over 5 min, then 1,125,000 U infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA+UFH	123	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
Cherng ¹⁹	1992	SK+UFH	63	- SK 1.5 MU IV infusion over 1 hr - UFH 40 U/kg IV bolus, then 15 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA+UFH	59	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 40 U/kg IV bolus, then 15 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
COBALT ²⁰	1997	tPA_acc+UFH	3584	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_DB+UFH	3585	- tPA 50 mg IV bolus, then 50 mg (40 mg for BW<60 kg) IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
CORRETA ²¹	2004	TNK+UFH	132	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		tPA_acc+UFH	134	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
Cortadellas ²²	1989	No_ATbx	104	- Standard therapy	No	Not recommended treatment in current practice guidelines	-
		SK_red+UFH	110	- SK 840,000 U IV infusion over 1 hr - UFH 800 mg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
Curylo ²³	1997	SK+Fraxi	45	- SK 1.5 MU IV infusion over 1 hr - Fraxi 250 U/kg IV for 48 hr, then 250 U/kg SC	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	41	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
DouBLE ²⁴	1998	tPA_acc+UFH	237	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_DB+UFH	224	- tPA 50 mg IV bolus, then 0.6 mg/kg (max 50 mg) IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
Dwivedi ²⁵	2000	SK+UFH	23	- SK 1.5 MU IV infusion over 1 hr - UFH 10000 U IV bolus, then 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK_acc+UFH	24	- SK 1.5 MU IV infusion over 15 min - UFH 10000 U IV bolus, then 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
ECSG ²⁶	1985	SK+UFH	65	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus	No	Not recommended treatment in current practice guidelines	-
		tPA+UFH	64	- tPA 0.75 mg/kg IV infusion over 90 min - UFH 5000 U IV bolus	No	Not recommended treatment in current practice guidelines	-
ECSG-6 ²⁷	1992	tPA	320	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr	Yes	Recommended treatment in current practice guidelines	tPA
		tPA+UFH	324	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
ECSG-tPA ²⁸	1988	tPA+UFH	355	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
		UFH	366	- UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
ENTIRE TIMI-23 ²⁹	2002	TNK+Enox	160	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK+UFH	82	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK_red+Enox+Abx	164	- TNK 0.27 mg/kg single IV bolus over 5 second - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	TNK+PAC+GP
		TNK_red+UFH+Abx	77	- TNK 0.27 mg/kg single IV bolus over 5 second - UFH 40 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	TNK+PAC+GP
ESCALAT ³⁰	1999	SK+Efeg	116	- SK 1.5 MU IV infusion over 1 hr - Efeg 0.05-0.2 mg/kg IV bolus, then 0.3-1.0 mg/kg/h IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+UFH	62	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
FRAMI ³¹	1997	SK	388	- SK 1.5 MU IV infusion over 1 hr	No	Not recommended treatment in current practice guidelines	-
		SK+Dalte	388	- SK 1.5 MU IV infusion over 1 hr - Dalte 150 U/kg SC q 12 hr	No	Not recommended treatment in current practice guidelines	-
Ghaffari ³²	2013	SK+UFH	100	- SK 1.5 MU IV infusion over 1 hr - UFH Not specified dosage	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK_acc+UFH	200	- SK 1.5 MU IV infusion over 20 min - UFH Not specified dosage	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
GISSI-2/ISG ^{33,34}	1990	SK	5205	- SK 1.5 MU IV infusion over 1 hr	Yes	Recommended treatment in current practice guidelines	SK
		SK+UFH	5191	- SK 1.5 MU IV infusion over 1 hr - UFH 12,500 U SC BID	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA	5202	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr)	Yes	Recommended treatment in current practice guidelines	tPA
		tPA+UFH	5170	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 12,500 U SC BID	Yes	Recommended treatment in current practice guidelines	tPA+PAC

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
GUSTO-I ³⁵	1993	SK+UFH	9841	- SK 1.5 MU IV infusion over 1 hr - UFH 12,500 U SC BID	Yes	Recommended treatment in current practice guidelines	SK+PAC
		SK+UFH	10410	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		SK-tPA_red+UFH	10374	- SK+tPA SK 1.0 MU IV infusion over 1 hr + tPA 0.1 mg/kg IV bolus, then 0.9 mg/kg IV infusion over 60 min (total max 90 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+UFH	10396	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
GUSTO-III ³⁶	1997	rPA+UFH	10138	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		tPA_acc+UFH	4921	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
GUSTO-V ³⁷	2001	rPA+UFH	8260	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		rPA_red+UFH+Abx	8328	- rPA 5 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 60 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
HART-II ³⁸	2001	tPA_acc+Enox	200	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Enox 30 mg IV bolus, then 1 mg/kg SC q 12 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+UFH	200	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 4000 U IV bolus (5000 U IV bolus for BW >67 kg), then 15 U/kg/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
HERO ³⁹	1997	SK+Bival	136	- SK 1.5 MU IV infusion over 0.5-1 hr - Bival 0.125 mg/kg IV bolus, then 0.25 mg/kg/hr IV infusion for 12 hr, then 0.125 mg/kg/hr IV infusion for 60 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+Bival	136	- SK 1.5 MU IV infusion over 0.5-1 hr - Bival 0.25 mg/kg IV bolus, then 0.5 mg/kg/hr IV infusion for 12 hr, then 0.25 mg/kg/hr IV infusion for 60 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	140	- SK 1.5 MU IV infusion over 0.5-1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
HERO-2 ⁴⁰	2001	SK+Bival	8516	- SK 1.5 MU IV infusion over 0.5-1 hr - Bival 0.25 mg/kg IV bolus, then 0.5 mg/kg/hr IV infusion for 12 hr, then 0.25 mg/kg/hr IV infusion for 36 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	8557	- SK 1.5 MU IV infusion over 0.5-1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion (800 U/hr for BW <80 kg)	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
HIT-4 ⁴¹	1999	SK+Lepi	603	- SK 1.5 MU IV infusion over 1 hr - Lepi 0.5 mg/kg SC BID	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	605	- SK 1.5 MU IV infusion over 1 hr - UFH 12,500 U SC BID	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
IMPACT AMI ⁴²	1997	tPA_acc+UFH	13	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 40 U/kg IV bolus, then 15 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
		tPA_acc+UFH+Ept	35	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 40 U/kg IV bolus, then 15 U/kg/hr IV infusion - Ept 180 mcg/kg IV bolus, then 0.75 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP
INJECT ⁴³	1995	rPA+UFH	3004	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		SK+UFH	3006	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
INTEGRITI ⁴⁴	2003	TNK+UFH	118	- TNK 0.53 mg/kg or weight based IV bolus over 5 sec (0-60 kg 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK_red+UFH+Ept	119	- TNK 0.27 mg/kg - UFH 60 U/kg IV bolus, then 7 U/kg/hr IV infusion - Ept 180 mcg/kg IV bolus 2 doses apart for 10 min, then 2.0 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	TNK+PAC+GP
InTIME ⁴⁵	1998	nPA+UFH	123	- nPA 60 kU/kg IV single bolus over 2 or 4 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		nPA+UFH	109	- nPA 30 kU/kg IV single bolus over 2 or 4 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		nPA+UFH	123	- nPA 15 kU/kg IV single bolus over 2 or 4 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		nPA+UFH	123	- nPA 120 kU/kg (max 12,000 kU) IV single bolus over 2 or 4 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+UFH	124	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
InTIME-II ⁴⁶	2000	nPA+UFH	10038	- nPA 120 kU/kg (max 12,000 kU) IV single bolus over 2 or 4 min - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+UFH	5022	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
INTRO AMI ⁴⁷	2002	tPA_acc+UFH	100	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
		tPA_red+UFH+Ept	100	- tPA 15 mg IV bolus, then 35 mg over 60 min - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion - Ept 180 mcg/kg IV bolus, then 90 mcg/kg IV bolus 30 min apart, then 2.00 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP
		tPA_red+UFH+Ept	99	- tPA 15 mg IV bolus, then 35 mg over 60 min - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion - Ept 180 mcg/kg IV bolus, then 90 mcg/kg IV bolus 30 min apart, then 1.33 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP
ISAM ⁴⁸	1986	SK+UFH	859	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		UFH	882	- UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC
Janousek ⁴⁹	1988	SK+UFH	31	- SK 1.5 MU IV infusion over 45 min - UFH 500 U/hr IV infusion for 12 hr, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		UFH	26	- UFH 10000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC
Jiang ⁵⁰	2005	tPA_acc+UFH	93	- tPA 8 mg IV bolus, then 1 mg/kg IV infusion over 90 min (min 42 mg, max 92 mg) - UFH 70 U/kg IV bolus, then 12 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_red+UFH	91	- tPA 8 mg IV bolus, then 42 mg IV infusion over 90 min - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
KAMIT ⁵¹	1991	SK-tPA_red+UFH	109	- SK+tPA 10 mg IV bolus, then 40 mg IV infusion over 1 hr + SK 1.5 MU IV infusion over 1 hr - UFH 3000-5000 U IV bolus (with additional 5000-7000 U IV bolus for patient who undergone PTCA	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA+UFH	107	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 3000-5000 U IV bolus (with additional 5000-7000 U IV bolus for patient who undergone PTCA	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
Kennedy ⁵²	1988	SK+UFH	191	- SK 1.5 MU IV infusion over 1 hr - UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		UFH	177	- UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses	
Khalilullah ⁵³	1984	No_ATbx	11	- Standard therapy	No	Not recommended treatment in current practice guidelines	-	
		SK_red+UFH	19	- SK 0.5 MU IV infusion over 0.5 hr - UFH 800 mg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-	
LATE ⁵⁴	1993	tPA+UFH	2836	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC	
		UFH	2875	- UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC	
Li ⁵⁵	2006	tPA_red_acc+UFH	46	- tPA 8 mg IV bolus, then 42 mg IV infusion over 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-	
		tPA_red_acc+UFH	43	- tPA 8 mg IV bolus, then 42 mg IV infusion over 45 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-	
Lidon ⁵⁶	1994	SK+Bival	30	- SK 1.5 MU IV infusion over 45-60 min - Bival 0.5 mg/kg/hr IV infusion for 12 hr, then 0.1 mg/kg/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-	
		SK+UFH	15	- SK 1.5 MU IV infusion over 45-60 min - UFH 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-	
MINT ⁵⁷	1999	TT ⁵⁷ 1999	tPA_acc+Argat	38	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Argat 100 µg/kg IV LD, then 1.0 µg/kg/min IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+Argat	47	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Argat 100 µg/kg IV LD, then 3.0 µg/kg/min IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-	
		tPA_acc+UFH	40	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-	
NCT00148460 ⁵⁸	2005	TNK+UFH	130	- TNK 0.53 mg/kg or weight based IV bolus over 10 sec (0.0-49.9 kg 25 mg, 50.0-59.9 30 mg, 60.0-69.9 kg 35 mg, 70.0-79.9 kg 40 mg, 80.0-89.9 kg 45 mg, \geq 90 kg 50 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC	
		tPA_acc+UFH	137	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC	
NHFA ⁵⁹	1988	tPA+UFH	73	- tPA bolus injection of 10 mg of rTPA followed by 50 mg over the next hour and 40 mg over the subsequent 2 h - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC	
		UFH	71	- UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC	

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
O'Rourke ⁶⁰	1988	tPA+UFH	74	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then followed immediately by a constant infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
		UFH	71	- UFH 5000 U IV bolus, then followed immediately by a constant infusion	Yes	Recommended treatment in current practice guidelines	PAC
Olson ⁶¹	1986	SK_red+UFH	28	- SK 0.5 MU IV infusion over 15-30 min, then 0.2 MU IV infusion over 2 hr - UFH 15 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		UFH	24	- UFH 15 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
PAIMS ⁶²	1989	SK+UFH	85	- SK 1.5 MU IV infusion over 1 hr - UFH 40 U/kg IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA+UFH	86	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 40 U/kg IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
PENTALYSE ⁶³	2001	tPA_acc+Fonda	81	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Fonda 4 mg (6 mg for BW >90kg) IV, then 4 mg (6 mg for BW >90kg) SC OD	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+Fonda	83	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Fonda 12 mg (10 mg for BW <60kg) IV, then 12 mg (10 mg for BW <60kg) SC OD	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+Fonda	77	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Fonda 8 mg (6 mg for BW <60kg or 10 mg for BW >90kg) IV, then 8 mg (6 mg for BW <60kg or 10 mg for BW >90kg) SC OD	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		tPA_acc+UFH	85	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 4000 U IV bolus, then 800 U/hr IV infusion (5000 U IV bolus, then 1000 U/hr IV infusion for BW >67 kg)	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
Plotnikov ⁶⁴	1993	SK_red+UFH	39	- SK 1.0 MU IV infusion over 0.5-1 hr - UFH 5000-10000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA+UFH	41	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000-10000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
PRIME ⁶⁵	2002	tPA_acc+Efeg	121	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Efeg 0.075-0.1 mg/kg IV bolus, then 0.6-0.8 mg/kg/h IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+Efeg	117	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - Efeg 0.2-0.3 mg/kg IV bolus, then 1.0-1.2 mg/kg/h IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_acc+UFH	83	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
RAAMI ⁶⁶	1992	tPA+UFH	138	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
		tPA_acc+UFH	143	- tPA 15 mg IV bolus, then 50 mg/kg IV infusion over 30 min, then 35 mg/kg IV infusion over 60 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
RAPID ⁶⁷	1994	rPA+UFH	154	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		rPA_red+UFH	152	- rPA 10 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		rPA_red+UFH	146	- rPA 15 U IV bolus - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA+UFH	154	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
RAPID-II ⁶⁸	1996	rPA+UFH	169	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		tPA_acc+UFH	155	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
Ronner ⁶⁹	2000	SK	62	- SK 1.5 MU IV infusion over 1 hr	Yes	Recommended treatment in current practice guidelines	SK
		SK+Ept	44	- SK 1.5 MU IV infusion over 1 hr - Ept 180 mcg/kg IV bolus, then 0.75 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	SK+GP
		SK+Ept	45	- SK 1.5 MU IV infusion over 1 hr - Ept 180 mcg/kg IV bolus, then 1.33 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	SK+GP
		SK+Ept	30	- SK 1.5 MU IV infusion over 1 hr - Ept 180 mcg/kg IV bolus, then 2.00 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	SK+GP

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
Sarullo ⁷⁰	2001	tPA_acc+UFH	60	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 70 U/kg IV bolus (max 5000 U), then subsequent IV infusion (max 1200 U/hr)	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
		tPA_red+UFH+Tiro	60	- tPA 15 mg IV bolus, then 0.5 mg/kg IV infusion over 30 min (max 35 mg) - UFH 60 U/kg IV bolus (max 4000 U), then 7 U/kg/hr IV infusion (max 800 U/hr) - Tiro 0.4 mcg/kg/min IV infusion for 30 min, then 0.1 mcg/kg/min IV infusion	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP
SPEED ⁷¹	2000	rPA+UFH	109	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 70 U/kg IV bolus with weight-adjusted bolus or continuous infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		rPA_red+UFH+Abx	115	- rPA 5 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 40 U/kg IV bolus with weight-adjusted bolus or continuous infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
Srimahachota ⁷²	2000	SK	20	- SK 1.5 MU IV infusion over 1 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK_acc	20	- SK 1.5 MU IV infusion over 0.5 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
Strandberg ⁷³	1996	SK	5	- SK 1.5 MU IV infusion over 1 hr	No	Not recommended treatment in current practice guidelines	-
		SK+Dalte	5	- SK 1.5 MU IV infusion over 1 hr - Dalte 100 U/kg SC BID	No	Not recommended treatment in current practice guidelines	-
		SK+Dalte	5	- SK 1.5 MU IV infusion over 1 hr - Dalte 50 U/kg SC BID	No	Not recommended treatment in current practice guidelines	-
		SK+Dalte	5	- SK 1.5 MU IV infusion over 1 hr - Dalte 75 U/kg SC BID	No	Not recommended treatment in current practice guidelines	-
Tabatabaie ⁷⁴	2009	SK+Enox	75	- SK 1.5 MU IV infusion over 1 hr - Enox 40 mg IV bolus, then 1 mg/kg SC q 12 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	75	- SK 1.5 MU IV infusion over 1 hr - UFH 70 U/kg IV bolus with weight-adjusted bolus or continuous infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
TAMI-3 ⁷⁵	1989	tPA	70	- tPA 0.1 mg/kg IV bolus, then 0.9 mg/kg IV infusion over 1 hr (max 90 mg for the 1st hr), then 0.5 mg/kg IV infusion over 3 hr (max 45 mg)	Yes	Recommended treatment in current practice guidelines	tPA
		tPA+UFH	64	- tPA 0.1 mg/kg IV bolus, then 0.9 mg/kg IV infusion over 1 hr (max 90 mg for the 1st hr), then 0.5 mg/kg IV infusion over 3 hr (max 45 mg) - UFH 10000 U IV bolus concurrent with thrombolytic agents, then 500-1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
TERIMA ⁷⁶	1999	SK	111	- SK 1.5 MU IV infusion over 1 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK	113	- rSK 1.5 MU IV infusion over 1 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
Theroux ⁷⁷	1995	SK+Bival	28	- SK 1.5 MU IV infusion over 45-60 min - Bival 0.1 mg/kg/hr IV infusion for 12 hr	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+Bival	27	- SK 1.5 MU IV infusion over 45-60 min - Bival 0.5 mg/kg/hr IV infusion for 12 hr, then 0.1 mg/kg/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
		SK+UFH	13	- SK 1.5 MU IV infusion over 45-60 min - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	No	Comparison between similar treatments after re-coding of treatment for network analyses	-
TIMI-1 ⁷⁸	1987	SK+UFH	147	- SK 1.5 MU IV infusion over 1 hr - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA+UFH	143	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
TIMI-10B ⁷⁹	1998	TNK+UFH	76	- TNK 50 mg IV bolus over 5-10 sec - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK+UFH	148	- TNK 40 mg IV bolus over 5-10 sec - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		TNK+UFH	302	- TNK 30 mg IV bolus over 5-10 sec - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	TNK+PAC
		tPA_acc+UFH	311	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 5000 U IV bolus, then 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
TIMI-14 ⁸⁰	1999	tPA_acc+UFH	72	- tPA 15 mg IV bolus, then 0.75 mg/kg IV infusion over 30 min (max 50 mg), then 0.5 mg/kg IV infusion over 60 min (max to 35 mg) - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA_acc+PAC
		tPA_red_acc+UFH+Abx	69	- tPA 15 mg IV bolus, then 35 mg IV infusion over 60 min - UFH 60 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP
		tPA_red_acc+UFH+Abx	70	- tPA 15 mg IV bolus, then 35 mg IV infusion over 60 min - UFH 30 U/kg IV bolus, then 4 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	tPA+PAC+GP

Study group/ first author	Year	Treatment	n	Treatment details	Included in network analyses	Reason of included in network analyses	Coding of treatment for network analyses
TIMI-14-rPA ⁸¹	2000	rPA+UFH	102	- rPA 10 U IV bolus, then 10 U IV bolus apart for 30 min - UFH 70 U/kg IV bolus, then 15 U/kg/hr IV infusion	Yes	Recommended treatment in current practice guidelines	rPA+PAC
		rPA_red+UFH+Abx	42	- rPA 5 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 60 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
		rPA_red+UFH+Abx	42	- rPA 10 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 60 U/kg IV bolus, then 7 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
		rPA_red+UFH+Abx	50	- rPA 10 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 30 U/kg IV bolus, then 4 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
		rPA_red+UFH+Abx	63	- rPA 5 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 30 U/kg IV bolus, then 4 U/kg/hr IV infusion - Abx 0.25 mg/kg IV bolus, then 0.125 mcg/kg/min IV infusion for 12 hr	Yes	Treatment regimen with GP IIb/IIIa	rPA+PAC+GP
Verstraete ⁸²	1985	tPA+UFH	64	- tPA 0.75 mg/kg IV infusion over 90 min - UFH 5000 U IV bolus	No	Not recommended treatment in current practice guidelines	-
		UFH	65	- UFH 5000 U IV bolus	No	Not recommended treatment in current practice guidelines	-
White ⁸³	1987	SK_acc+UFH	107	- SK 1.5 MU IV infusion over 0.5 hr - UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		UFH	112	- UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	PAC
White ⁸⁴	1989	SK+UFH	135	- SK 1.5 MU IV infusion over 1 hr - UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	SK+PAC
		tPA+UFH	135	- tPA 10 mg IV bolus, then 50 mg IV infusion over 1 hr, then 40 mg IV infusion over 2 hr (100 mg over 3 hr) - UFH 1000 U/hr IV infusion	Yes	Recommended treatment in current practice guidelines	tPA+PAC
Zhai ⁸⁵	2016	TNK_red	124	- TNK 20 mg IV bolus over 5-10 sec	No	Not recommended treatment in current practice guidelines	-
		tPA_red	127	- tPA 8 mg IV bolus, then 42 mg IV infusion over 90 min	No	Not recommended treatment in current practice guidelines	-
Zhang ⁸⁶	2010	rPA_red+UFH	29	- rPA 5 U IV bolus, then 5 U IV bolus apart for 30 min - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-
		tPA_red+UFH	25	- tPA 8 mg IV bolus, then 42 mg IV infusion over 90 min - UFH 60 U/kg IV bolus, then 12 U/kg/hr IV infusion	No	Not recommended treatment in current practice guidelines	-

Abbreviation: n, Number of patient; NMA, Network meta-analysis.

eTable 4.4 Description of outcomes in studies included in network analyses.

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Aajor bleedi	ng definition		
					Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
AMI SK ¹¹	2002	ST-segment elevation of 0.1 mV or more in two or more limbs leads or at least 0.2 mV in two or more precordial leads	- 0-18 hr: recurrent symptoms of ischaemia at rest accompanied by new or recurrent ST-segment elevation 0.1 mV in ≥2 contiguous leads lasting 30 min ->18 hr: recurrent symptoms of ischaemia at rest lasting 30 min and meeting the ECG criteria, or meeting enzyme criteria	Not specified	No	Yes	≥5 g/dL		No	No	Yes	
ASSENT-2 ¹²	1999	ST-segment elevations of 0.1 mV or more in two or more limb leads, or 0.2 mV or more in two or more contiguous precordial leads; or have left bundle- branch block	Not specified	Primary haemorrhagic, ischaemic, ischaemic with conversion to haemorrhage, or of unknown cause (if no brain scans or necropsy results were available)	No	No			No	Yes	No	- Requiring intervention because of hemodynamic comprise
ASSENT-3 ¹³	2001	ST-segment elevation of at least 0.1 mV in two or more limb leads or at least 0.2 mV in two or more contiguous precordial leads, or left bundle-branch block	Reinfarction in the first 18 h was defined as recurrent symptoms of ischaemia at rest accompanied by new or recurrent ST-segment elevations of 0.1 mV or more in at least two contiguous leads, lasting at least 30 min. After 18 h, the definition was: new Q waves in two or more leads, or further increases in concentrations of creatine kinase MB, troponins, or total creatine kinase above the upper limit of normal and increased over the previous value. Refractory ischaemia was defined as symptoms of ischaemia with ST-segment deviation or T-wave inversion persisting for at least 10 min despite medical management and not fulfilling the diagnosis of reinfarction.	Non-cerebral bleeding complications were defined as major (requiring transfusion, intervention because of haemodynamic compromise, or both) or minor.	No	No			No	Yes	No	- Requiring intervention because of hemodynamic comprise

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Major bleedi	ng definition		
				ucamaton.	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
Bleich ¹⁷	1990	ST-segment elevation on electrocardiogram of ≥0.1 mV in at least 1 of 3 locations (anterior [≥2 of the 6 precordial leads Vi-V& inferior [≥2 of 3 inferior leads (II, III, aVF)]; or lateral [leads I and aVL])	clinical reocclusion was defined by recurrence of (1) cardiac-type chest pain similar to that which occurred with the index myocardial infarction lasting 220 minutes, unrelieved by nitroglycerin (2) ECG changes consistent with ischemia (described previously) in the same distribution as the index myocardial infarction (3) deterioration in clinical condition consistent with reinfarction.	Not specified	No	Yes			No	Yes	No	->500 ml blood loss requiring transfusion for augmentation of Hct - Gastrointestinal or other internal bleeding causing hypotension
Central Illinois ¹⁸	1993	0.2 mV of ST-segment elevation in >2 contiguous precordial leads (anterior AMI) or 2 of 3 inferior leads (II, III or aVF) (inferior AMI); patients with inferior AMI were also required to have reciprocal ST-segment depression in precordial leads or leads I and aVL	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
Cherng ¹⁹	1992	ST segment elevation of 0.1 mV or more in at least two limb leads or 0.2 mV or more in at least two precordial leads	Myocardial reinfarction was recorded if there was a recurrence of typical chest pain with serum enzyme levels rising to twice the upper limit of normal combined with new ECG changes	Not specified for all type of stroke, but intracranial bleeding was documented when a new neurologic deficit occurred and a cranial axial tomographic scan revealed a blood clot.	No	Yes	>5 g/dL	>15%	No	No	No	
CORRETA ²¹	2004	ST-segment elevations of 0.1 mV in 2 electrocardiographic limb leads or 0.2 mV in 2 contiguous precordial electrocardiographic leads, and left bundle branch block	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint	lefinition Fatal ICH Hb Hct Retrope Required Cardiac Other							
mst author				uciniuon	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
ECSG-6 ²⁷	1992	at least 0.3 mV ST segment elevation measured at 60 ms after the J point in two precordial leads (VI to V4), and/or 0.2 mV ST elevation in two frontal plane leads or V5 and V6, and/or 0.1 mV ST elevation in two frontal plane leads or V5 and V6 combined with 0.2 mV ST depression in two precordial leads (V1-V4)	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
ECSG-tPA ²⁸	1988	ST segment elevation of at least 2 mm (measured 60 milliseconds after the J point) in two or more limb leads or leads V5 and V6 had to be present or an elevation of 3 mm in two or more precordial leads. Patients with ST segment depression of 2 mm or more in two precordial leads together with ST segment elevation of a least 1 mm in two limb leads or leads V5 and V6, indicating infarction of the posterior wall, were also included	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
ENTIRE TIMI-23 ²⁹	2002	exhibited at least 0.1 mV ST-segment elevation in 2 limb leads or 0.2 mV ST- segment elevation in 2 contiguous precordial leads	The definition of recurrent infarction within or after 18 hours of thrombolytic therapy was established on the basis of ECG and enzyme criteria as previously described. Within 18 hours, recurrent ischemic discomfort greater or equal to 30 minutes and new or recurrent STsegment elevation greater or equal to 0.1 mV were required. After 18 hours, a criterion of reelevation of CKMB to above the upper limit of normal and increased by greater or equal to 50% over the previous value was added. If quantitative CKMB was not available, it was required that the total CK be reelevated to more than twice the upper limit of normal and	Not specified	No	Yes	≥5 g/dL		No	No	Yes	- Not associated with CABG

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Major bleedi	ng definition		
inst dution				deminion	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
			increased by greater or equal to 25% or greater or equal to 200 U/mL over the previous value; if reelevated to less than twice normal, the CK was required to exceed the upper limit of normal by greater or equal to 50% and the previous value by twofold or greater or equal to 200 U/mL. After coronary angioplasty, the definition of recurrent infarction was new Q waves in two or more leads and reelevation of the CKMB (or total CK if CKMB was not available) to at least twice normal and greater or equal to 50% above the previous value; after coronary artery bypass surgery, the latter criterion was set at a CKMB elevation at least five times normal.									
GISSI-2/ISG ^{33,34}	1990	ST segment elevation of 1 mm or more in any limb lead and/or of 2 mm or more in any precordial lead	The diagnosis of in-hospital reinfarction was based on the same criteria as definite AMI. AMI required two of the following three criteria: typical ischaemic chest pain; the next appearance of abnormal Q waves with evolutionary ST and T wave changes on serial tracings; total serum creatine kinase twice the upper limit of normal.	Not specified	No	No			No	Yes	No	- Requiring transfusion of 2 or more blood units
GUSTO-I ³⁵	1993	≥0.1 mV of ST-segment elevation in two or more limb leads or ≥0.2 mV in two or more contiguous precordial leads	Not specified	Not specified	No	Yes			No	No	No	- Bleeding resulted in substantial hemodynamic compromise requiring treatment
GUSTO-III ³⁶	1997	ST-segment elevation of at least 1 mm in two or more limb leads, ST-segment elevation of at least 2 mm in the precordial leads, or bundle-branch block	Not specified	Not specified	No	No			No	No	No	- Bleeding resulted in substantial hemodynamic compromise requiring treatment.
GUSTO-V ³⁷	2001	≥0.1 mV of ST-segment elevation in two or more limb leads or ≥0.2 mV in two or more contiguous precordial leads	Reinfarction required supportive evidence with either new significant electrocardiographic changes, an increase in cardiac enzyme concentration signifying myocardial necrosis, or both.	Not specified	No	No			No	No	No	- Bleeding associated with hemodynamic compromise

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Aajor bleedii	ng definition		
11100 444101				uvv.	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
IMPACT AMI ⁴²	1997	ST-segment depression in leads V1 to V6 consistent with posterior current of injury; ST-segment elevation greater or equal to 0.1 mV (measured 20 ms after the Jpoint) in at least two inferior leads (II, III, or aVF), precordial leads (V1 through V6), or leads I and aVL; or primary STsegment change in the inferior or anterior leads with left bundle-branch block	Not specified	Not specified	No	Yes			No	Yes	No	- Bleeding that resulted in hemodynamic compromise requiring intervention
INJECT ⁴³	1995	Persistent ST-segment elevation ≥0.1 mV in two of three inferior leads, or in leads I and aVL, or ≥0.2 mV in two contiguous precordial leads, or bundle branch block	Definite myocardial infarction: Either unequivocal new Q waves and peak enzyme levels exceeding the upper limit of normal (as defined locally) or peak enzymes greater than twice the upper limit of normal for local practice with an abnormal ECG as required for entry into the study. Possible myocardial infarction: Qualifying ECG but without the appearance of new Q waves, and peak enzyme levels elevated to less than twice the upper normal level. Ischaemic heart disease: Previous myocardial infarction or angina pectoris but no new permanent ECG or enzyme changes during the index admission. Chest pain of unknown cause: No previous angina or myocardial infarction, no evolution of ECG or enzyme changes, and no other proven cause of chest pain found. Other diagnoses: Irrespective of previous history, no new ECG or enzyme changes, and another proven cause of chest pain found.	strokes and other cardiovascular endpoints	N/A	N/A			N/A	N/A	N/A	
INTEGRITI ⁴⁴	2003	along with electrocardiographic criteria of STEMI	Not specified	Not specified	No	Yes	≥5 g/dL		No	Yes	No	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Aajor bleedi	ng definition		
					Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
INTRO AMI ⁴⁷	2002	Not specified	Reinfarction in the first 24 h was diagnosed if ST elevation reoccurred or there was re-elevation of CK-MB (33% for a previous decrease from peak of ≥55% or 100% for a preceding decrease of ≥50%). Reinfarction after 24 h was diagnosed based on CK-MB re-elevation to above 3 times normal (2 times normal after day 7) or new significant Q waves.	Stroke was diagnosed on the basis of an imaging study and an expert neurologist opinion.	No	Yes	≥5 g/dL		No	No	Yes	- Intraocular hemorrhage - Any clinical overt hemorrhage associated with drop in Hb - Excluding the number of CABG related bleeding
ISAM ⁴⁸	1986	ST elevations of 1 mm or more were observed in the extremity leads of the electrocardiogram, with elevations of 2 mm or more in the chest leads	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
Janousek ⁴⁹	1988	either ST elevation greater than 1 mm in two or more leads V1-V4, or at least 1 mm in two or more other leads or patients with a "giant" T waves with a complete history of classic AMI	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
Kennedy ⁵²	1988	ST segment elevation (at least 0.15 mV in V1, V2, or V3 or 0.1 mV in other leads) in two or more leads measured 60 msec beyond the J point, and one or more leads with ST segment elevation without Q waves (40 msec duration or longer)	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Major bleedi	ng definition		
inst autior				definition	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
LATE ⁵⁴	1993	ST elevation ≥1 mm in two or more limb leads or ≥2 mm in two or more chest leads, ST depression ≥2 mm in at least two leads, pathological Q waves, and abnormal T wave inversion in at least two leads and thought to represent a non-Q wave infarct. Patients with old or equivocal ECG changes or bundle-branch block were acceptable if there was evidence of raised cardiac enzymes.	Not specified	Strokes were categorised as haemorrhagic, embolic, or uncertain	No	No			No	Yes	No	- Bleeding needed to transfuse 2 or more units of blood
NCT00148460 ⁵⁸	2005	ST segment elevation ≥ 0.1 mV in two or more limb leads, or ≥ 0.2 mV in two or more contiguous precordial leads indicative of AMI	In the first 18 hours after the start of study drug administration, recurrent acute myocardial infarction (AMI) is defined as: Recurrent signs and symptoms of ischemia at rest accompanied by new or recurrent ST segment elevation of ≥0.1 mV in at least two contiguous leads Signs and symptoms of ischemia and/or ST segment elevation must persist for at least 30 minutes After 18 hours, recurrent AMI is defined as follows: ECG evidence of recurrent MI: New Q waves in two or more leads Or ECG evidence of new left branch block Enzyme evidence Re-elevation of CK-MB to above the upper limit of normal and increased by ≥50% over the previous value. If quantitative CK-MB is not available, the total CK must either be re-elevated to ≥2 times the upper limit of normal and increased by ≥25% or to ≥200U/ml over the previous value; if re-elevated to <2 times the upper limit of normal, the total CK must exceed the upper limit of normal by ≥50% and exceed the previous value by 2-fold or to ≥200U/ml. Recurrent AMI after PTCA is defined as follows:	- Stroke is defined as the sudden onset of a focal neurologic deficit that does not resolve spontaneously within 24 hours and is not a temporary result of pharmacologic interventions, e.g., lidocaine or analgesics Intracranial hemorrhage is defined as stroke with focal collections of intracerebral blood seen on a brain image (CT or MRI) or on post-mortem examination, not felt to represent hemorrhage conversion (Subarachnoid hemorrhage should be included in this category.)	No	No			Yes	Yes	No	- Bleeding that causes hemodynamic compromise requiring intervention and transfusion Acute gastrointestinal bleeding or retroperitoneal bleeding causing hemodynamic compromise.

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Iajor bleedi	ng definition		
11100 1111101				ueamuya	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
			- CK-MB (or CK, if MB is not available) >2 times the upper limit of normal and ≥50% greater than the previous value or new Q waves in two or more contiguous leads Recurrent AMI after CABG surgery is defined as follows: - CK-MB (or CK, if CK-MB is not available) of >5 times the upper limit of normal and ≥50% greater than the previous value and new Q waves in two or more contiguous leads.									
NHFA ⁵⁹	1988	>2 mm in suspected anterior infarction or >1 mm in suspected inferior infarction	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
O'Rourke ⁶⁰	1988	ST segment elevation 60 msec after the J point of more than 1 mm in two or more standard leads or V4-V6, or of greater than 2 mm in two or more of leads V1-V3	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
PAIMS ⁶²	1989	ST segment elevation ≥0.1 mV in two or more standard frontal plane leads or ≥0.2 mV in two or more precordial leads and ST segment depression ≥0.3 mV in two or more precordial leads	Not specified	Not specified	No	Yes	≥5 g/dL		No	No	No	
RAAMI ⁶⁶	1992	evidence of infarction with at least 1-mm ST segment elevation in at least two of three inferior leads (II, III or aVF) and at least two contiguous precordial leads (V1 to V6) or lateral leads I and aVL.	Recurrent ischemia: Chest pain with recurrent ST elevation. Recurrent infarction: Recurrent electrocardiographic changes with elevation of creatine kinase levels.	Not specified	N/A	N/A			N/A	N/A	N/A	
RAPID ⁶⁷	1994	ST-segment elevation of 0.1 mV in the inferior or lateral leads or 0.2 mV in the precordial leads	Not specified	Not specified	No	No			No	Yes	No	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Aajor bleedi	ng definition		
11.50 4.4.1.01				uvv.	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
RAPID-II ⁶⁸	1996	ST-segment elevation of greater or equal to 0.1 mV in two of three inferior or lateral leads or greater or equal to 0.2 mV in at least two contiguous precordial leads or left bundle-branch block	Not specified	Not specified	No	Yes			No	Yes	No	- Prolonging the period of hospitalization
Ronner ⁶⁹	2000	ST-elevation of 0.1 mV in two or more standard leads or 0.2 mV in two or more precordial leads	Not specified	Not specified	No	Yes	≥5 g/dL	≥15%	No	No	Yes	
Sarullo ⁷⁰	2001	ST-segment elevation involving more than 3 leads, >1 mm in the peripheral leads and/or 2 mm in the precordial leads	Not specified	Not specified	N/A	N/A			N/A	N/A	N/A	
SPEED ⁷¹	2000	exhibited ≥0.1-mV ST- segment elevation in 2 contiguous leads	Not specified	Not specified	No	Yes	>5 g/dL	≥15%	Yes	No	No	- Clinically overt with a hemoglobin decrease more than Hb/Hct cutpoint - Intraocular
TAMI-3 ⁷⁵	1989	ST segment elevation of 1 mm or more in two or more contiguous leads	A second rise in creatine kinase with positive myocardial isoform fraction, accompanied by recurrent clinical signs, defined reinfarction.	Not specified	No	Yes			No	Yes	No	- Bleeding with requirement of transfusion of 2 or more units PRC
TIMI-1 ⁷⁸	1987	ST segment elevation (0.1 mV) in at least two contiguous electrocardiographic leads	(1) recurrence of chest pain attributable to ischemia of 30 or more minutes duration and unresponsive to nitroglycerin (2) new ST segment elevation (0.1 mV) in at least two contiguous electrocardiographic leads but in no more than seven leads or new Q waves (3) new plasma creatine kinase elevation (accompanied by the appearance of creatine kinase-MB isoenzymes) to 50% above the average of consecutive normal values or 50% above the previous value if the creatine kinase value had not returned to within the normal range	Not specified	No	Yes	>5 g/dL	>15%	No	No	No	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Aajor bleedi	ng definition		
iii st autiloi				ucminion	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
TIMI-10B ⁷⁹	1998	ST-segment elevation ≥0.1 mV in ≥2 contiguous leads	Not specified	Not specified	Yes	No			No	No	No	- Required or prolonged hospitalization - Resulted in significant disability - necessitated medical or surgical intervention to preclude permanent impairment of a body function or structure
TIMI-14 ⁸⁰	1999	exhibited ≥0.1-mV ST- segment elevation in 2 contiguous leads	The definition of recurrent infarction within or after 18 hours of thrombolytic therapy was established on the basis of ECG and enzyme criteria as previously described. Within 18 hours, recurrent ischemic discomfort greater or equal to 30 minutes and new or recurrent STsegment elevation greater or equal to 0.1 mV were required. After 18 hours, a criterion of reelevation of CKMB to above the upper limit of normal and increased by greater or equal to 50% over the previous value was added. If quantitative CKMB was not available, it was required that the total CK be reelevated to more than twice the upper limit of normal and increased by greater or equal to 25% or greater or equal to 200 U/mL over the previous value; if reelevated to less than twice normal, the CK was required to exceed the upper limit of normal by greater or equal to 50% and the previous value by twofold or greater or equal to 200 U/mL. After coronary angioplasty, the definition of recurrent infarction was new Q waves in two or more leads and reelevation of the CKMB (or total CK if CKMB was not available) to at least twice normal and greater or equal to 50% above the previous value; after coronary artery bypass surgery, the latter criterion was set at a CKMB elevation at least five times normal.	Not specified	No	Yes	≥5 g/dL		Yes	No	No	- Intraocular hemorrhage - Any clinical overt hemorrhage associated with drop in Hb

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition				N	Major bleedi	ng definition		
iist autioi				uciniuon	Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
TIMI-14-rPA ^{SI}	2000	exhibited at least 0.1 mV ST segment elevation in two contiguous leads	The definition of recurrent infarction within or after 18 hours of thrombolytic therapy was established on the basis of ECG and enzyme criteria as previously described. Within 18 hours, recurrent ischemic discomfort greater or equal to 30 minutes and new or recurrent STsegment elevation greater or equal to 0.1 mV were required. After 18 hours, a criterion of reelevation of CKMB to above the upper limit of normal and increased by greater or equal to 50% over the previous value was added. If quantitative CKMB was not available, it was required that the total CK be relevated to more than twice the upper limit of normal and increased by greater or equal to 25% or greater or equal to 200 U/mL over the previous value; if reelevated to less than twice normal, the CK was required to exceed the upper limit of normal by greater or equal to 50% and the previous value by twofold or greater or equal to 200 U/mL. After coronary angioplasty, the definition of recurrent infarction was new Q waves in two or more leads and reelevation of the CKMB (or total CK if CKMB was not available) to at least twice normal and greater or equal to 50% above the previous value; after coronary artery bypass surgery, the latter criterion was set at a CKMB elevation at least five times normal.	Not specified	No	Yes	≥5 g/dL		Yes	No	No	- Intraocular hemorrhage - Any clinical overt hemorrhage associated with drop in Hb
White ⁸³	1987	ST-segment elevation of 1 mm or more in precordial Leads V 4 through V 6 or the limb leads of the electrocardiogram, or of 2 mm or more in precordial Leads V 1 through V3	Reinfarction was indicated by chest pain or electrocardiographic changes associated with a rise in creatine kinase above normal or by the development of a second peak in the creatine kinase curve.	Not specified	N/A	N/A			N/A	N/A	N/A	

Study group/ first author	Year	ECG criteria	Reinfarction endpoint definition	Stroke endpoint definition								
					Fatal bleeding	ICH	Hb cutpoint	Hct cutpoint	Retrope ritoneal	Required transfusion	Cardiac temponade	Other
White ⁸⁴	1989	ST-segment elevation of 1 mm or more in the limb leads or precordial Leads V4 through V6, or 2 mm or more in the precordial Leads V1 through V3. Patients with non-Q-wave infarctions were not included.	Reinfarction was defined as chest pain associated with a rise in the creatine kinase level to twice the upper limit of normal or with the development of new Q waves.	Not specified	N/A	N/A			N/A	N/A	N/A	

Abbreviation: AMI, Acute myocardial infarction; CK, Creatine kinase; CKMB, Creatine kinase myocardial band; ECG, Electrocardiogram; Hb, Hemoglobin; Hct, Hematocrit; ICH, Intracranial hemorrhage; N/A, Not available; WHO, World health organization.

 $eTable\ 4.5\ Detail\ of\ reported\ concomitant\ the rapies\ received\ in\ the\ included\ studies\ (ordered\ by\ year\ of\ publication).$

Study	Year	Treatment (n)	Include in NMA	Other oral antiplatelet agents		BBs (%)	ACEIs/ ARBs (%)	Statins (%)
				Detail	(%)			(,,,
Olson ⁶¹	1986	- SK_red+UFH (28) - UFH (24)	No	Dipyridamole 75 mg TID in combination with aspirin*				
TIMI-1 ⁷⁸	1987	- SK+UFH (147) - tPA+UFH (143)	Yes	Dipyridamole 75 mg TID in combination with aspirin*				
White ⁸³	1987	- SK_acc+UFH (107) - UFH (112)	Yes	Dipyridamole 200 mg BID in combination with aspirin*		22.2*		
O'Rourke ⁶⁰	1988	- tPA+UFH (74) - UFH (71)	Yes	Dipyridamole 100 mg TID*				
White ⁸⁴	1989	- SK+UFH (135) - tPA+UFH (135)	Yes	Dipyridamole 200 mg BID in combination with aspirin*		13.0*		
Bleich ¹⁷	1990	- tPA (42) - tPA+UFH (42)	Yes	Dipyridamole as an alternative to aspirin*				
GISSI-2+ISG ^{33,34}	1990	- SK±UFH (10396) - tPA±UFH (10372)	Yes			70.2 [†]		
Lidon ⁵⁶	1994	- SK+Bival (30) - SK+UFH (15)	No			62.2		
Theroux ⁷⁷	1995	- SK+Bival (55) - SK+UFH (13)	No			92.6	19.1	
ASSENT-2 ¹²	1999	- TNK+UFH (8461) - tPA_acc+UFH (8488)	Yes	Ticlopidine/clopidogrel	22.5	80.8	55.5	31.6
BIOMACS-II ¹⁶	1999	- SK (47) - SK+Dalte (54)	No			86.6	32.1	4.5
TERIMA ⁷⁶	1999	- SK (111) - rSK (113)	No			56.7		
ASSENT-3 ¹³	2001	- TNK+Enox (2040) - TNK+UFH (2038) - TNK+UFH+Abx (2017)	Yes	Ticlopidine/clopidogrel	30.0	83.7	64.7	51.0
GUSTO-V ³⁷	2001	- rPA+UFH (8260) - rPA_red+UFH+Abx (8328)	Yes			19.5*	13.5*	
HERO-2 ⁴⁰	2001	- SK+Bival (8516) - SK+UFH (8557)	No			12.8‡		
Sarullo ⁷⁰	2001	- tPA_acc+UFH (60) - tPA_red+UFH+Tiro (60)	Yes			31.7 [§]		
ASSENT- 3_Plus ¹⁴	2003	- TNK+Enox (818) - TNK+UFH (821)	No	Ticlopidine/clopidogrel	55.2	89.3	64.2	72.2
CORRETA ²¹	2004	- TNK+UFH (132) - tPA_acc+UFH (134)	Yes			90.6	61.3	71.4
NCT00148460 ⁵⁸	2005	- TNK+UFH (130) - tPA_acc+UFH (137)	Yes	Ticlopidine/clopidogrel	61.8	85.8	90.3	76.1
Li ⁵⁵	2006	- tPA_acc_30 min+UFH (46) - tPA_acc_45 min+UFH (43)	No	Clopidogrel 300 mg PO, then 75 mg PO daily*				
Zhai ⁸⁵	2016	- TNK_red (124) - tPA_red (127)	No	Clopidogrel	99.6			

^{*}Specified in study protocol
†Drug on entry/previous therapy
‡Full dose of beta-blocker during acute phase

[§]Intravenous beta-blocker

[¶]Exclusion criteria was set to exclude patients receiving beta-blockers

Appendix 5 Risk of bias assessments

Risk of bias assessments were followed according to the recommended approach for assessing risk of bias in studies included in Cochrane reviews. Specific bias domains have been addressed in this tool including methods for generating the random sequence, allocation concealment, blinding of participants and investigators, blinding of outcome assessment, incompleteness of outcome data and selective outcome reporting. The adjudication for the risk of bias for each item within each study is done by answering pre-specified questions about the methods reported by each study in relation to the risk domain. The conclusion of risk of bias for each item is classified to either low risk of bias, unclear risk of bias or high risk of bias. In overall, the study is considered to be at risk of bias from selective reporting domain when the data for all-cause mortality, or major bleeding were not reported.

eFigure 5.1 Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages for all of included studies (76 studies).

eFigure 5.2 Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages for studies including in network analyses (40 studies).

 $eTable 5.2 \; Risk \; of \; bias \; summary: \; review \; authors' \; judgements \; about \; each \; risk \; of \; bias \; item \; for \; each \; included \; study.$

		1. Random sequence generation	2. Allocation concealment	3. Blinding of participants and personnel	4. Blinding of outcome assessment	5. Incomplete outcome data	6. Selective reporting	7. Other bias
AMI SK ¹¹	2002	+	+	+	+	+	+	?
ASSENT-2 ¹²	1999	+	+	+	+	+	+	?
ASSENT-3 ¹³	2001	+	+	+	+	+	+	?
ASSENT-3 Plus ¹⁴	2003	+	+	+	?	+	?	+
ASSENT Plus ¹⁵	2003	?	?	-	+	+	+	?
BIOMACS-II ¹⁶	1999	+	?	?	?	?	+	?
Bleich ¹⁷	1990	+	?	+	?	?	+	?
Central Illinois ¹⁸	1993	?	?	+	?	+	+	-
Cherng ¹⁹	1992	?	?	+	?	+	+	?
COBALT ²⁰	1997	+	+	+	+	+	+	+
CORRETA ²¹	2004	+	?	?	?	?	+	?
Cortadellas ²²	1989	?	?	?	?	+	+	?
Curylo ²³	1997	?	?	?	?	?	+	?
DouBLE ²⁴	1998	?	?	+	?	?	+	?
Dwivedi ²⁵	2000	?	?	-	+	?	-	?
ECSG ²⁶	1985	+	+	-	+	+	?	+
ECSG-6 ²⁷	1992	+	+	+	?	?	+	?
ECSG-tPA ²⁸	1988	+	+	+	+	+	+	?
ENTIRE TIMI-23 ²⁹	2002	?	+	+	+	?	+	?
ESCALAT ³⁰	1999	+	+	?	?	?	+	?
FRAMI ³¹	1997	?	?	?	?	+	+	?
Ghaffari ³²	2013	+	-	-	+	?	+	?
GISSI-2 ³³ / ISG ³⁴	1990	+	+	-	?	+	+	+
GUSTO-I ³⁵	1993	?	+	+	+	+	+	+
GUSTO-III ³⁶	1997	?	+	+	+	+	+	?
GUSTO-V ³⁷	2001	?	+	+	+	+	+	+
HART-II ³⁸	2001	?	?	-	+	?	+	?

		1. Random sequence generation	2. Allocation concealment	3. Blinding of participants and personnel	4. Blinding of outcome assessment	5. Incomplete outcome data	6. Selective reporting	7. Other bias
HERO ³⁹	1997	+	+	-	+	?	+	+
HERO-2 ⁴⁰	2001	+	+	-	+	+	+	-
HIT-4 ⁴¹	1999	+	+	+	+	?	+	?
IMPACT AMI ⁴²	1997	+	?	?	?	+	+	?
INJECT ⁴³	1995	+	+	+	+	+	+	+
INTEGRITI ⁴⁴	2003	+	+	+	+	?	+	?
InTIME ⁴⁵	1998	?	+	+	+	+	+	?
InTIME-II ⁴⁶	2000	+	+	+	+	+	+	+
INTRO AMI ⁴⁷	2002	?	?	+	?	?	+	?
ISAM ⁴⁸	1986	?	?	?	+	?	+	?
Janousek ⁴⁹	1988	?	?	?	?	?	?	?
Jiang ⁵⁰	2005	?	?	?	?	?	+	+
KAMIT ⁵¹	1991	+	+	?	?	?	+	?
Kennedy ⁵²	1988	+	+	+	?	?	+	?
Khalilullah ⁵³	1984	?	?	?	?	?	?	?
LATE ⁵⁴	1993	+	+	+	+	?	+	?
Li ⁵⁵	2006	?	?	?	?	?	?	?
Lidon ⁵⁶	1994	+	+	+	+	?	-	?
MINT ⁵⁷	1999	?	?	+	?	?	+	?
NCT00148460 ⁵⁸	2005	+	?	+	+	+	+	?
NHFA ⁵⁹	1988	?	?	?	?	?	+	?
O'Rourke ⁶⁰	1988	+	+	+	?	?	-	?
Olson ⁶¹	1986	?	?	?	?	?	-	?
PAIMS ⁶²	1989	?	?	-	?	?	+	?
PENTALYSE ⁶³	2001	+	+	+	+	?	+	?
Plotnikov ⁶⁴	1993	?	?	?	?	?	+	?
PRIME ⁶⁵	2002	?	+	-	+	?	+	+
RAAMI ⁶⁶	1992	+	?	+	+	?	+	?
RAPID ⁶⁷	1994	+	+	+	+	?	+	?

		1. Random sequence generation	2. Allocation concealment	3. Blinding of participants and personnel	4. Blinding of outcome assessment	5. Incomplete outcome data	6. Selective reporting	7. Other bias
RAPID-II ⁶⁸	1996	?	?	-	?	+	+	-
Ronner ⁶⁹	2000	?	?	?	?	?	+	?
Sarullo ⁷⁰	2001	+	+	+	?	?	-	?
SPEED ⁷¹	2000	?	?	?	+	?	+	-
Srimahachota ⁷²	2000	?	?	?	?	?	-	?
Strandberg ⁷³	1996	?	?	?	?	?	+	?
Tabatabaie ⁷⁴	2009	?	?	?	?	?	-	?
TAMI-3 ⁷⁵	1989	+	+	1	+	?	?	-
TERIMA ⁷⁶	1999	+	+	+	?	?	-	-
Theroux ⁷⁷	1995	?	?	-	+	+	?	+
TIMI-1 ⁷⁸	1987	?	?	+	+	?	+	?
TIMI-10B ⁷⁹	1998	+	+	+	?	?	+	?
TIMI-14 ⁸⁰	1999	?	+	+	+	?	+	-
TIMI-14-rPA ⁸¹	2000	?	?	+	+	?	+	?
Verstraete ⁸²	1985	?	+	?	?	+	+	+
White ⁸³	1987	?	?	+	+	+	+	-
White ⁸⁴	1989	+	?	+	1	+	+	+
Zhai ⁸⁵	2016	?	?	?	?	?	?	+
Zhang ⁸⁶	2010	?	?	?	?	?	?	?

+ Low risk of bias ? Unclear risk of bias - High risk of bias

Appendix 6 Networks of treatment comparisons

The size of each treatment nodes is related to the number of studies of the treatments. Each line represents the direct comparison between treatments, the thickness of the line corresponds is relate to the number of studies of the comparison. Abbreviation for all of the following eFigure: GP, Glycoprotein IIb/IIIa inhitibor; PAC, Parenteral anticoagulants; rPA, Reteplase; SK, Streptokinase; TNK, Tenecteplase; tPA, Alteplase (non-accelerated infusion); tPA_acc, Alteplase (accelerated infusion).

eFigure 6.1 Networks map of treatment comparisons for each outcomes.

Appendix 7 Assessment of inconsistency for each outcome network

eTable~7.1~Evaluation~of~the~global~inconsistency~in~networks~using~the~'design-by-treatment'~interaction~model~for~each~outcome.

Network outcome	Chi-square	P value for test of global inconsistency
Primary outcomes		
All-cause mortality within 30-35 days	10.92	0.1422
Major bleeding	3.89	0.6919
Secondary outcomes		
Recurrent infarction	13.11	0.0695
All-type stroke	5.87	0.3187
Hemorrhagic stroke	3.84	0.7980

GP, Glycoprotein IIb/IIIa inhitibor; PAC, Parenteral anticoagulants; rPA, Reteplase; SK, Streptokinase; SE, Standard error; TNK, Tenecteplase; tPA, Alteplase (non-accelerated infusion); tPA_acc, Alteplase (accelerated infusion)

Appendix 8 Results of meta-analyses of direct comparisons of treatment options

eTable 8.1 Pairwise meta-analysis risk ratio (and 95% CI) for all dichotomous outcomes.

Con	paris	ons	No. studies	No. of patients		lysis risk ratio (95% CI)	Heterogeneity IZ (variation in RR
					Fixed effect	Random effect	attributable to heterogeneity)
All-cause mortal	ity wit	thin 30-35 days					
SK+PAC	VS.	PAC	4	2385	1.34 (1.00,1.81)	1.47 (0.94,2.31)	27.00%
tPA+PAC	VS.	PAC	4	6721	1.17 (1.01,1.37)	1.17 (0.71,1.93)	43.40%
SK+GP	vs.	SK	1	181	1.54 (0.43,5.51)	1.54 (0.43,5.51)	N/A
SK+PAC	VS.	SK	2	10892	1.17 (1.03,1.32)	1.17 (1.03,1.32)	0.00%
tPA	VS.	SK	1	10407	1.06 (0.94,1.20)	1.06 (0.94,1.20)	N/A
tPA+PAC	VS.	SK	1	10375	1.00 (0.89,1.13)	1.00 (0.89,1.13)	N/A
rPA+PAC	VS.	SK+PAC	1	6010	1.06 (0.90,1.24)	1.06 (0.90,1.24)	N/A
tPA	VS.	SK+PAC	1	10393	0.90 (0.79,1.03)	0.90 (0.79,1.03)	N/A
tPA+PAC	vs.	SK+PAC	6	11467	0.89 (0.79,1.01)	1.15 (0.79,1.66)	25.80%
tPA_acc+PAC	vs.	SK+PAC	1	30647	1.16 (1.06,1.27)	1.16 (1.06,1.27)	N/A
TNK+PAC+GP	VS.	TNK+PAC	3	6815	0.87 (0.72,1.07)	0.87 (0.71,1.07)	0.00%
tPA_acc+PAC	vs.	TNK+PAC	4	18338	1.01 (0.90,1.13)	1.03 (0.81,1.31)	15.00%
rPA+PAC+GP	VS.	rPA+PAC	3	17111	1.05 (0.93,1.19)	1.05 (0.93,1.19)	0.00%
tPA+PAC	VS.	rPA+PAC	1	308	0.50 (0.13,1.96)	0.50 (0.13,1.96)	N/A
tPA_acc+PAC	VS.	rPA+PAC	2	15383	1.02 (0.90,1.15)	0.82 (0.42,1.60)	61.10%
tPA+PAC	VS.	tPA	3	11150	0.96 (0.85,1.08)	0.96 (0.85,1.08)	0.00%
tPA_acc+PAC	VS.	tPA+PAC	1	281	0.60 (0.25,1.49)	0.60 (0.25,1.49)	N/A
tPA_acc+PAC	vs.	tPA+PAC+GP	4	684	0.76 (0.39,1.48)	0.72 (0.36,1.42)	0.00%
Major bleeding							
tPA+PAC	vs.	PAC	2	5856	0.55 (0.28,1.06)	0.55 (0.29,1.08)	0.00%
SK+GP	VS.	SK	1	181	0.06 (0.00,0.95)	0.06 (0.00,0.95)	N/A
SK+PAC	VS.	SK	2	10892	0.52 (0.35,0.79)	0.52 (0.35,0.79)	0.00%
tPA	VS.	SK	1	10407	1.37 (0.81,2.32)	1.37 (0.81,2.32)	N/A
tPA+PAC	vs.	SK	1	10375	0.82 (0.52,1.30)	0.82 (0.52,1.30)	N/A
rPA+PAC	vs.	SK+PAC	1	6010	1.02 (0.81,1.28)	1.02 (0.81,1.28)	N/A
tPA	vs.	SK+PAC	1	10393	2.63 (1.65,4.20)	2.63 (1.65,4.20)	N/A
tPA+PAC	vs.	SK+PAC	5	11197	1.47 (1.09,1.98)	1.40 (1.03,1.90)	0.00%
tPA_acc+PAC	vs.	SK+PAC	1	30647	1.00 (0.67,1.48)	1.00 (0.67,1.48)	N/A
TNK+PAC+GP	vs.	TNK+PAC	3	6815	0.53 (0.42,0.68)	0.48 (0.31,0.75)	24.10%
tPA_acc+PAC	vs.	TNK+PAC	4	18338	0.80 (0.71,0.90)	0.75 (0.50,1.13)	20.30%
rPA+PAC+GP	vs.	rPA+PAC	3	17111	0.47 (0.34,0.65)	0.47 (0.34,0.65)	0.00%
tPA+PAC	vs.	rPA+PAC	1	308	0.86 (0.30,2.49)	0.86 (0.30,2.49)	N/A
tPA_acc+PAC	vs.	rPA+PAC	2	15383	0.86 (0.65,1.14)	0.89 (0.62,1.28)	27.00%
tPA+PAC	vs.	tPA	3	10560	0.69 (0.45,1.07)	0.75 (0.42,1.35)	21.40%
tPA_acc+PAC	vs.	tPA+PAC	1	281	0.44 (0.18,1.12)	0.44 (0.18,1.12)	N/A
tPA_acc+PAC	vs.	tPA+PAC+GP	3	684	N/A	N/A	0.00%

Con	nparis	ons	No. studies	No. of patients		ysis risk ratio (95% I)	Heterogeneity I2 (variation in RR
					Fixed effect	Random effect	attributable to heterogeneity)
Recurrent infarc	tion			<u> </u>			
SK+PAC	vs.	PAC	3	2017	0.47 (0.24,0.93)	0.48 (0.24,0.94)	0.00%
tPA+PAC	VS.	PAC	4	6721	1.23 (0.95,1.58)	1.23 (0.95,1.58)	0.00%
SK+GP	vs.	SK	1	181	0.72 (0.20,2.62)	0.72 (0.20,2.62)	N/A
SK+PAC	vs.	SK	2	10892	1.06 (0.86,1.31)	1.61 (0.53,4.92)	83.00%
tPA	vs.	SK	1	10407	1.06 (0.85,1.32)	1.06 (0.85,1.32)	N/A
tPA+PAC	vs.	SK	1	10375	1.22 (0.97,1.54)	1.22 (0.97,1.54)	N/A
rPA+PAC	vs.	SK+PAC	1	6010	1.08 (0.87,1.34)	1.08 (0.87,1.34)	N/A
tPA	vs.	SK+PAC	1	10393	1.08 (0.86,1.34)	1.08 (0.86,1.34)	N/A
tPA+PAC	VS.	SK+PAC	5	11214	1.21 (0.99,1.49)	1.20 (0.98,1.48)	0.00%
tPA_acc+PAC	VS.	SK+PAC	1	30647	0.93 (0.82,1.05)	0.93 (0.82,1.05)	N/A
TNK+PAC+GP	vs.	TNK+PAC	3	6815	1.53 (1.12,2.08)	1.50 (0.72,3.10)	44.90%
tPA_acc+PAC	VS.	TNK+PAC	4	18338	1.08 (0.93,1.24)	1.05 (0.78,1.41)	18.30%
rPA+PAC+GP	VS.	rPA+PAC	3	17111	1.51 (1.27,1.81)	1.51 (1.27,1.81)	0.00%
tPA+PAC	VS.	rPA+PAC	1	308	0.57 (0.17,1.91)	0.57 (0.17,1.91)	N/A
tPA_acc+PAC	VS.	rPA+PAC	2	15383	1.00 (0.85,1.17)	1.00 (0.85,1.17)	0.00%
tPA+PAC	VS.	tPA	4	11234	1.13 (0.91,1.41)	1.13 (0.91,1.41)	0.00%
tPA_acc+PAC	VS.	tPA+PAC	1	281	0.52 (0.05,5.65)	0.52 (0.05,5.65)	N/A
tPA_acc+PAC	vs.	tPA+PAC+GP	2	473	1.83 (0.78,4.27)	1.84 (0.78,4.29)	0.00%
All-type stroke							
tPA+PAC	vs.	PAC	3	6576	0.49 (0.33,0.73)	0.50 (0.34,0.74)	0.00%
SK+GP	vs.	SK	1	181	0.38 (0.02,7.81)	0.38 (0.02,7.81)	N/A
SK+PAC	vs.	SK	2	10892	0.91 (0.62,1.33)	1.49 (0.23,9.57)	50.50%
tPA	vs.	SK	1	10407	0.61 (0.42,0.88)	0.61 (0.42,0.88)	N/A
tPA+PAC	vs.	SK	1	10375	0.70 (0.48,1.02)	0.70 (0.48,1.02)	N/A
rPA+PAC	vs.	SK+PAC	1	6010	0.81 (0.50,1.31)	0.81 (0.50,1.31)	N/A
tPA	vs.	SK+PAC	1	10393	0.72 (0.51,1.02)	0.72 (0.51,1.02)	N/A
tPA+PAC	vs.	SK+PAC	2	10614	0.82 (0.57,1.16)	0.82 (0.57,1.16)	0.00%
tPA_acc+PAC	vs.	SK+PAC	1	30647	0.85 (0.70,1.03)	0.85 (0.70,1.03)	N/A
TNK+PAC+GP	vs.	TNK+PAC	1	6095	1.06 (0.69,1.62)	1.06 (0.69,1.62)	N/A
tPA_acc+PAC	vs.	TNK+PAC	3	18072	1.08 (0.87,1.35)	1.08 (0.87,1.34)	0.00%
rPA+PAC+GP	vs.	rPA+PAC	2	16812	0.92 (0.68,1.26)	0.92 (0.67,1.26)	0.00%
tPA+PAC	vs.	rPA+PAC	1	308	0.08 (0.00,1.35)	0.08 (0.00,1.35)	N/A
tPA_acc+PAC	vs.	rPA+PAC	2	15383	0.91 (0.71,1.17)	0.91 (0.71,1.17)	0.00%
tPA+PAC	vs.	tPA	1	10372	1.15 (0.82,1.60)	1.15 (0.82,1.60)	N/A
tPA_acc+PAC	vs.	tPA+PAC	1	281	3.11 (0.33,29.53)	3.11 (0.33,29.53)	N/A
tPA_acc+PAC	VS.	tPA+PAC+GP	1	48	1.17 (0.05,26.97)	1.17 (0.05,26.97)	N/A
Hemorrhagic str	oke		1	<u>ı</u>		ı	
SK+PAC	vs.	PAC	1	1960	0.11 (0.01,2.01)	0.11 (0.01,2.01)	N/A
tPA+PAC	vs.	PAC	4	6721	0.22 (0.10,0.49)	0.24 (0.11,0.52)	0.00%
SK+GP	vs.	SK	N/A	181	N/A	N/A	N/A

Comparisons			No. studies	No. of patients	Pairwise meta-anal	Heterogeneity I2 (variation in RR attributable to	
					Fixed effect	Random effect	heterogeneity)
SK+PAC	vs.	SK	2	10892	1.56 (0.77,3.17)	1.55 (0.76,3.16)	0.00%
tPA	VS.	SK	1	10407	0.90 (0.48,1.70)	0.90 (0.48,1.70)	N/A
tPA+PAC	vs.	SK	1	10375	0.75 (0.41,1.37)	0.75 (0.41,1.37)	N/A
rPA+PAC	vs.	SK+PAC	1	6010	0.48 (0.23,0.98)	0.48 (0.23,0.98)	N/A
tPA	vs.	SK+PAC	1	10393	0.60 (0.29,1.23)	0.60 (0.29,1.23)	N/A
tPA+PAC	vs.	SK+PAC	4	11006	0.46 (0.25,0.87)	0.47 (0.25,0.88)	0.00%
tPA_acc+PAC	vs.	SK+PAC	1	30647	0.72 (0.53,0.96)	0.72 (0.53,0.96)	N/A
TNK+PAC+GP	vs.	TNK+PAC	2	6578	0.87 (0.51,1.47)	0.75 (0.27,2.11)	28.30%
tPA_acc+PAC	VS.	TNK+PAC	4	18338	0.99 (0.74,1.33)	0.99 (0.74,1.33)	0.00%
rPA+PAC+GP	VS.	rPA+PAC	3	17111	0.93 (0.64,1.36)	0.94 (0.64,1.38)	0.00%
tPA+PAC	vs.	rPA+PAC	1	308	0.11 (0.01,2.05)	0.11 (0.01,2.05)	N/A
tPA_acc+PAC	vs.	rPA+PAC	2	15383	0.97 (0.69,1.38)	0.97 (0.69,1.38)	0.00%
tPA+PAC	vs.	tPA	3	11150	0.81 (0.46,1.42)	0.82 (0.46,1.45)	0.00%
tPA_acc+PAC	vs.	tPA+PAC	1	281	5.18 (0.25,106.93)	5.18 (0.25,106.93)	N/A
tPA_acc+PAC	vs.	tPA+PAC+GP	3	564	1.03 (0.29,3.62)	1.03 (0.29,3.62)	0.00%

Appendix 9 Results of network meta-analysis

Treatment options are in order of their efficacy or safety ranking. Estimates are presented as risk ratios (RR) and 95% confidence intervals. Treatments are ordered by rankings for each outcome.

Comparisons between treatments should be read from column to row for each outcome (row treatment is reference). For efficacy outcomes, such as clinical and microbiological cure. Risk ratios more than 1 favour the column-defining treatment. To obtain risks ratios for comparisons in the opposite direction, reciprocals should be taken. For safety outcomes, nephrotoxicity, and adverse events. Risk ratios lower than 1 favour the column-defining treatment. To obtain risks ratios for comparisons in the opposite direction, reciprocals should be taken. Significant results are in bold and underlined. GP, Glycoprotein IIb/IIIa inhitibor; PAC, Parenteral anticoagulants; rPA, Reteplase; SK, Streptokinase; TNK, Tenecteplase; tPA, Alteplase (non-accelerated infusion); tPA_acc, Alteplase (accelerated infusion).

eFigure 9.1 Network estimated risk ratios (95% confidence intervals) of treatment options on all-cause mortality within 30-35 days.

tPA+PAC +GP											
0.72 (0.36,1.46)	rPA+PAC +GP										
0.72 (0.36,1.42)	0.99 (0.84,1.16)	tPA_acc +PAC									
0.71 (0.35,1.42)	0.98 (0.81,1.19)	0.99 (0.88,1.11)	TNK+PAC								
0.85 (0.20,3.64)	1.17 (0.32,4.27)	1.18 (0.33,4.29)	1.20 (0.33,4.35)	SK+GP							
0.69 (0.34,1.38)	0.95 (0.84,1.08)	0.96 (0.87,1.06)	0.97 (0.84,1.13)	0.81 (0.22,2.95)	rPA+PAC						
0.63 (0.31,1.25)	0.87 (0.74,1.02)	<u>0.88</u> (0.81,0.95)	0.89 (0.77,1.02)	0.74 (0.21,2.68)	0.91 (0.82,1.02)	SK+PAC					
0.62 (0.30,1.27)	0.85 (0.65,1.13)	0.86 (0.69,1.09)	0.87 (0.71,1.06)	0.73 (0.20,2.69)	0.90 (0.70,1.15)	0.98 (0.77,1.26)	TNK+PAC +GP		_		
0.58 (0.29,1.17)	<u>0.80</u> (0.65,0.98)	<u>0.81</u> (0.70,0.94)	<u>0.82</u> (0.68,0.98)	0.68 (0.19,2.47)	<u>0.84</u> (0.71,0.99)	0.92 (0.81,1.04)	0.94 (0.71,1.23)	tPA			
0.57 (0.28,1.14)	<u>0.78</u> (0.64,0.95)	<u>0.79</u> (0.69,0.91)	<u>0.80</u> (0.67,0.96)	0.67 (0.18,2.41)	<u>0.82</u> (0.70,0.96)	0.90 (0.80,1.01)	0.92 (0.70,1.20)	0.98 (0.87,1.10)	tPA+PAC		
0.55 (0.27,1.11)	<u>0.76</u> (0.62,0.93)	<u>0.77</u> (0.67,0.89)	<u>0.78</u> (0.65,0.94)	0.65 (0.18,2.34)	<u>0.80</u> (0.68,0.94)	<u>0.88</u> (0.78,0.99)	0.89 (0.68,1.17)	0.95 (0.84,1.08)	0.98 (0.87,1.10)	SK	
<u>0.48</u> (0.24,0.98)	<u>0.66</u> (0.53,0.84)	<u>0.67</u> (0.56,0.81)	<u>0.68</u> (0.55,0.84)	0.57 (0.16,2.06)	<u>0.70</u> (0.57,0.85)	<u>0.77</u> (0.65,0.90)	0.78 (0.58,1.04)	<u>0.83</u> (0.70,0.99)	<u>0.85</u> (0.74,0.98)	0.87 (0.73,1.04)	PAC

^{*} Treatments are ordered by SUCRA rank. Comparisons between treatments should be read from column to row for each outcome (row treatment is reference).

eFigure 9.2 Network estimated risk ratios (95% confidence intervals) of treatment options on major bleeding.

PAC											
0.83 (0.37,1.85)	tPA										
0.69 (0.31,1.52)	0.83 (0.50,1.37)	SK									
0.55 (0.28,1.09)	0.67 (0.43,1.02)	0.81 (0.53,1.23)	tPA+PAC								
<u>0.44</u> (0.20,1.00)	<u>0.53</u> (0.29,0.98)	0.64 (0.36,1.14)	0.80 (0.50,1.27)	TNK+PAC							
<u>0.40</u> (0.19,0.85)	<u>0.48</u> (0.30,0.78)	<u>0.58</u> (0.37,0.92)	0.72 (0.51,1.01)	0.90 (0.64,1.29)	rPA+PAC						
$\frac{0.38}{(0.18,0.79)}$	<u>0.46</u> (0.30,0.70)	<u>0.55</u> (0.37,0.83)	<u>0.68</u> (0.52,0.91)	0.86 (0.58,1.27)	0.95 (0.76,1.18)	SK+PAC					
<u>0.35</u> (0.16,0.75)	<u>0.42</u> (0.25,0.70)	<u>0.51</u> (0.31,0.83)	<u>0.63</u> (0.44,0.92)	<u>0.79</u> (0.63,1.00)	0.88 (0.69,1.12)	0.92 (0.70,1.21)	tPA_acc +PAC				
<u>0.27</u> (0.10,0.77)	<u>0.33</u> (0.14,0.78)	<u>0.40</u> (0.17,0.93)	0.50 (0.23,1.09)	0.62 (0.30,1.28)	0.69 (0.33,1.43)	0.72 (0.35,1.52)	0.79 (0.39,1.56)	tPA+PAC +GP			
<u>0.24</u> (0.10,0.54)	<u>0.29</u> (0.16,0.52)	<u>0.35</u> (0.20,0.61)	<u>0.43</u> (0.27,0.69)	<u>0.54</u> (0.39,0.73)	<u>0.60</u> (0.41,0.87)	<u>0.63</u> (0.42,0.94)	<u>0.68</u> (0.51,0.91)	0.86 (0.41,1.83)	TNK+PAC +GP		
<u>0.19</u> (0.08,0.43)	<u>0.22</u> (0.12,0.40)	<u>0.27</u> (0.15,0.48)	<u>0.34</u> (0.21,0.54)	<u>0.42</u> (0.26,0.69)	<u>0.47</u> (0.33,0.65)	<u>0.49</u> (0.33,0.73)	<u>0.53</u> (0.35,0.81)	0.68 (0.30,1.52)	0.78 (0.47,1.31)	rPA+PAC +GP	
$\frac{0.04}{(0.00,0.73)}$	<u>0.05</u> (0.00,0.82)	<u>0.06</u> (0.00,0.95)	0.07 (0.00,1.21)	0.09 (0.01,1.56)	0.10 (0.01,1.69)	0.10 (0.01,1.77)	0.11 (0.01,1.94)	0.14 (0.01,2.69)	0.17 (0.01,2.90)	0.21 (0.01,3.71)	SK+GP

^{*} Treatments are ordered by SUCRA rank. Comparisons between treatments should be read from column to row for each outcome (row treatment is reference).

eFigure 9.3 Network estimated risk ratios (95% confidence intervals) of treatment options on recurrent infarction.

rPA+PAC +GP											
0.93 (0.60,1.43)	TNK+PAC +GP										
0.79 (0.56,1.11)	0.85 (0.54,1.34)	tPA+PAC									
0.71 (0.48,1.05)	0.77 (0.47,1.25)	0.90 (0.69,1.18)	PAC								
<u>0.69</u> (0.49,0.99)	0.75 (0.47,1.18)	0.88 (0.70,1.09)	0.97 (0.69,1.37)	tPA							
<u>0.66</u> (0.54,0.80)	0.71 (0.48,1.05)	0.84 (0.63,1.11)	0.93 (0.66,1.31)	0.95 (0.71,1.28)	rPA+PAC						
<u>0.65</u> (0.50,0.85)	0.70 (0.47,1.05)	0.83 (0.67,1.01)	0.92 (0.67,1.25)	0.94 (0.75,1.18)	0.99 (0.82,1.19)	SK+PAC					
<u>0.63</u> (0.43,0.91)	0.67 (0.42,1.09)	<u>0.79</u> (0.62,1.00)	0.88 (0.61,1.27)	0.90 (0.71,1.15)	0.94 (0.68,1.31)	0.96 (0.75,1.21)	SK				
<u>0.63</u> (0.49,0.80)	<u>0.68</u> (0.47,0.97)	0.79 (0.61,1.02)	0.88 (0.63,1.22)	0.90 (0.69,1.19)	0.95 (0.82,1.10)	0.96 (0.83,1.11)	1.00 (0.74,1.36)	tPA_acc +PAC			
0.45 (0.12,1.73)	0.48 (0.12,1.93)	0.57 (0.15,2.12)	0.63 (0.16,2.43)	0.65 (0.17,2.42)	0.68 (0.18,2.58)	0.69 (0.18,2.56)	0.72 (0.20,2.62)	0.72 (0.19,2.71)	SK+GP		
<u>0.59</u> (0.44,0.79)	<u>0.63</u> (0.46,0.87)	0.74 (0.54,1.02)	0.82 (0.57,1.19)	0.85 (0.61,1.17)	0.89 (0.71,1.10)	0.90 (0.71,1.13)	0.94 (0.66,1.34)	0.94 (0.80,1.10)	1.31 (0.34,4.99)	TNK+PAC	
$\frac{0.37}{(0.15, 0.87)}$	<u>0.40</u> (0.16,0.98)	0.46 (0.19,1.11)	0.52 (0.21,1.26)	0.53 (0.22,1.27)	0.55 (0.24,1.29)	0.56 (0.24,1.31)	0.59 (0.24,1.42)	0.59 (0.25,1.35)	0.82 (0.17,3.91)	0.62 (0.27,1.46)	tPA+PAC +GP

^{*} Treatments are ordered by SUCRA rank. Comparisons between treatments should be read from column to row for each outcome (row treatment is reference).

eFigure 9.4 Network estimated risk ratios (95% confidence intervals) of treatment options on all-type stroke.

PAC											
0.72 (0.42,1.24)	SK										
0.66 (0.39,1.11)	0.91 (0.62,1.35)	SK+PAC									
0.60 (0.34,1.08)	0.84 (0.53,1.34)	0.92 (0.70,1.20)	rPA+PAC								
0.48 (0.02,11.58)	0.66 (0.03,15.79)	0.73 (0.03,16.88)	0.79 (0.03,18.44)	tPA+PAC +GP							
0.55 (0.29,1.08)	0.77 (0.44,1.35)	0.84 (0.56,1.27)	0.92 (0.67,1.26)	1.16 (0.05,27.51)	rPA+PAC +GP						
<u>0.56</u> (0.32,0.97)	0.77 (0.50,1.19)	0.85 (0.71,1.02)	0.92 (0.74,1.16)	1.17 (0.05,26.97)	1.00 (0.68,1.48)	tPA_acc +PAC					
0.55 (0.26,1.14)	0.76 (0.40,1.45)	0.83 (0.50,1.39)	0.90 (0.53,1.54)	1.14 (0.05,27.42)	0.98 (0.53,1.83)	0.98 (0.60,1.59)	TNK+PAC +GP				
<u>0.52</u> (0.29,0.94)	0.72 (0.44,1.16)	0.79 (0.59,1.05)	0.86 (0.63,1.17)	1.08 (0.05,25.24)	0.93 (0.60,1.45)	0.93 (0.75,1.16)	0.95 (0.62,1.46)	TNK+PAC			
<u>0.50</u> (0.34,0.73)	<u>0.69</u> (0.47,1.00)	0.75 (0.53,1.07)	0.82 (0.53,1.27)	1.04 (0.04,24.61)	0.89 (0.52,1.53)	0.89 (0.60,1.31)	0.91 (0.49,1.69)	0.96 (0.61,1.50)	tPA+PAC		
0.27 (0.01,5.90)	0.38 (0.02,7.81)	0.42 (0.02,8.77)	0.45 (0.02,9.65)	0.57 (0.01,45.76)	0.49 (0.02,10.67)	0.49 (0.02,10.40)	0.50 (0.02,11.02)	0.53 (0.02,11.28)	0.55 (0.03,11.59)	SK+GP	
$\frac{0.45}{(0.27, 0.74)}$	<u>0.62</u> (0.43,0.90)	<u>0.68</u> (0.48,0.96)	0.74 (0.48,1.14)	0.93 (0.04,22.12)	0.80 (0.47,1.37)	0.80 (0.54,1.18)	0.82 (0.44,1.52)	0.86 (0.55,1.35)	0.90 (0.65,1.25)	1.63 (0.08,34.14)	tPA

^{*} Treatments are ordered by SUCRA rank. Comparisons between treatments should be read from column to row for each outcome (row treatment is reference).

eFigure 9.5 Network estimated risk ratios (95% confidence intervals) of treatment options on hemorrhagic stroke.

PAC											
0.51 (0.20,1.27)	SK+PAC										
0.57 (0.01,31.75)	1.13 (0.02,59.40)	SK+GP									
<u>0.35</u> (0.13,0.96)	0.70 (0.47,1.05)	0.62 (0.01,33.42)	TNK+PAC								
<u>0.35</u> (0.13,0.91)	<u>0.69</u> (0.53,0.91)	0.62 (0.01,32.78)	0.99 (0.74,1.33)	tPA_acc+P AC							
<u>0.34</u> (0.13,0.91)	<u>0.67</u> (0.46,0.99)	0.60 (0.01,32.08)	0.96 (0.63,1.48)	0.97 (0.71,1.33)	rPA+PAC						
0.34 (0.07,1.65)	0.67 (0.19,2.44)	0.60 (0.01,38.68)	0.96 (0.26,3.50)	0.97 (0.28,3.42)	1.00 (0.27,3.66)	tPA+PAC+ GP					
$\frac{0.32}{(0.11,0.93)}$	0.63 (0.37,1.09)	0.56 (0.01,30.78)	0.91 (0.51,1.61)	0.91 (0.56,1.50)	0.94 (0.64,1.38)	0.94 (0.24,3.64)	rPA+PAC+ GP				
<u>0.31</u> (0.10,0.98)	0.62 (0.32,1.21)	0.55 (0.01,30.77)	0.89 (0.52,1.52)	0.90 (0.49,1.65)	0.92 (0.46,1.83)	0.92 (0.23,3.73)	0.98 (0.45,2.15)	TNK+PAC +GP			
<u>0.30</u> (0.12,0.77)	0.59 (0.30,1.16)	0.53 (0.01,26.15)	0.84 (0.39,1.84)	0.85 (0.41,1.76)	0.88 (0.41,1.89)	0.88 (0.21,3.75)	0.93 (0.40,2.20)	0.95 (0.37,2.45)	SK		
<u>0.27</u> (0.11,0.69)	0.54 (0.28,1.05)	0.48 (0.01,25.15)	0.77 (0.36,1.67)	0.78 (0.38,1.59)	0.80 (0.38,1.71)	0.80 (0.19,3.41)	0.85 (0.37,1.99)	0.87 (0.34,2.22)	0.92 (0.49,1.71)	tPA	
<u>0.21</u> (0.10,0.46)	<u>0.42</u> (0.24,0.76)	0.38 (0.01,19.63)	0.61 (0.30,1.23)	0.61 (0.32,1.16)	0.63 (0.32,1.25)	0.63 (0.15,2.59)	0.67 (0.30,1.47)	0.68 (0.28,1.65)	0.72 (0.40,1.30)	0.78 (0.45,1.38)	tPA+PAC

^{*} Treatments are ordered by SUCRA rank. Comparisons between treatments should be read from column to row for each outcome (row treatment is reference).

Appendix 10 Treatment ranking and surface under the cumulative ranking curves (SUCRA) for each outcome

eFigure 10.1 SUCRA ranking curve for all-cause mortality within 30-35 days.

eFigure 10.2 SUCRA ranking curve for major bleeding.

eFigure 10.3 SUCRA ranking curve for recurrent infarction.

eFigure 10.4 SUCRA ranking curve for all-type stroke.

eFigure 10.5 SUCRA ranking curve for hemorrhagic stroke.

eFigure 10.6 Cluster rank plot of SUCRA probability for all-cause mortality within 30-35 days and major bleeding.

Appendix 11 Net clinical benefit analysis

Description of Net Clinical Benefit Analysis

Net clinical benefit (NCB) analysis was performed to determine the value of using fibrinolytic therapy when balancing with its major side effect (bleeding). To provide more consistency, only the studies reporting for both number of mortality and major bleeding events were included into the analysis. Finally, 33 studies^{11-13,18,19,21,29,33-37,42,43,54,58,60,62,66-71,75,78-81} (124,097 patients) were included in the analysis, which comprises 12 regimens. NCB can be calculated following the approach used in a previous meta-analysis⁸⁷ as stated below;

$$NCB = \Delta E_R \rightarrow_F - wt \cdot (\Delta S_F \rightarrow_R)$$

Where E_R = pooled risk estimates of all-cause mortality within 30-35 days for the reference, accelerated infusion alteplase with parenteral anticoagulants (tPA_acc+PAC)

S_R = pooled risk estimates of major bleeding for the reference, tPA_acc+PAC

 E_R and S_R were calculated by using meta-analyses of proportions in Stata with *metaprop* command from 13 of 33 included studies. The results of pooled risk estimates of tPA_acc+PAC for mortality (E_R) and major bleeding (S_R) were 0.060 (95%CI 0.051, 0.068) and 0.047 (95%CI 0.030, 0.064), respectively.

E_F = pooled risk estimates of all-cause mortality within 30-35 days for each fibrinolytic agent as compared with PAC, getting from the results of network meta-analysis (eFigure 9.1)

S_F = pooled risk estimates of major bleeding for each fibrinolytic agent as compared with PAC, getting from the results of network meta-analysis (eFigure 9.2)

 $\Delta E_{R \to F} = E_R$ - E_F (difference in pooled risk estimates of all-cause mortality within 30-35 days between reference, E_R , and fibrinolytic agent, E_F).

 $\Delta S_F \rightarrow_R = S_F - S_R$ (difference in pooled risk estimates of major bleeding between, S_F , fibrinolytic agent and reference, E_R).

wt = weighting factor to indicate the relative effect of bleeding to death.⁸⁷ Based on the previous publications demonstrating the likelihood of death from major bleeding, about 16.1% of patient with major bleeding died within 30 days.⁸⁸ Hence, 0.15 seems to be a conservative estimation. For more information, please follow the section "Description of derivation of weight factor" as stated below.

Example of calculation

%NCB for tPA+PAC+GP =
$$[0.060 - (0.715 \times 0.060)] - 0.15 \times [(1.275 \times 0.047) - 0.047)] \times 100$$

= $(0.017 - 0.002) \times 100$
= 1.516

For interpretation, the more positive number of NCB indicates the more benefit gain for fibrinolytic regimen compared with the reference (tPA_acc+PAC).

Description of derivation of weighting factor

According to the NCB calculation method from Chatterjee et al⁸⁷, the weighting factor was derived from the previous publication⁸⁹, which is basically based on the likelihood of death and serious disability due to ICH.

 Quote "At hospital discharge, 76% of patients with intracranial hemorrhage had severe disability or died."

Similarly, weighting factor to indicate the relative effect of bleed to death associated with fibrinolytic therapy can be derived by two method as stated below;

- <u>Method 1:</u> Systematic review by pooling the number of patients who had experience with major bleeding and death from 33 studies that were included in NCB analysis.
 - After an attempt for additional extraction, none of the publication was reported on the number of death among the patients who had experienced with major bleeding.
- Method 2: Using previous publication
 - Mehta et al⁹² reported the number of STEMI patients treated with fibrinolytic who had experienced with major bleeding, 14.8% of men and 17.1% of women (total 15.7%) died within 30 days.
 - This analysis used the data from 6 large RCTs (GUSTO-I³⁶ and GUSTO-III³⁷, ASSENT-2¹³ and ASSENT-3¹⁴, HERO-2⁴¹, and GUSTO-IIb^{12,13,35,36,40,90})

Based on the above evidence, the number of 0.15 seems to be a conservative estimation. The result of NCB is presented in eTable 11.1.

Description of sensitivity analysis of NCB varying by weighting factor

To assess the robustness, NCB were calculated with a different number of weighting factor from 0.15-0.6. This was based from the previous data to estimate for weighting factor as stated below.

- Amlani et al⁹³ reported the mortality after major bleeding was 20% in patients with STEMI who were treated with thrombolysis.
 - Major bleeding was defined as a hemoglobin drop ≥ 5 g/dl, intracranial hemorrhage, bleeding requiring surgery or blood transfusion of at least 2 units.
 - Data of the study were from the prospective registry conducted at the Hamilton General Hospital, Hamilton Health Sciences (HHS) and McMaster University, between May 1, 2003 and July 10, 2007.
- Another review article by Fitchett⁹¹ stated that as the data from ASSENT-2¹², "the incidence of intracranial hemorrhage associated with thrombolysis was 0.64% to 0.94%, with an associated mortality of approximately 60%."

Therefore, the weighting factor ranged from ~0.15-0.6 were chosen to performed sensitivity analysis of NCB as presented in eFigure 11.1. The increase in weighting factor indicates the more severe type of bleeding event.

eTable 11.1 Pooled risk estimates and net clinical benefit of treatment options compared with $tPA_acc+PAC$.

Treatment	No. of	No.	Pooled risk	Net clinical benefit	
	patients	studies	Mortality	Major bleeding	(%)
tPA+PAC+GP	433	4	4.229 (2.130,8.397)	5.800 (2.918,11.530)	1.496 (-3.531,4.027)
TNK+PAC	13,687	7	5.972 (5.328,6.693)	3.610 (2.850,4.572)	0.082 (-0.784,0.839)
rPA+PAC	21,936	7	6.137 (5.552,6.783)	3.992 (3.124,5.102)	-0.141 (-0.953,0.574)
rPA+PAC+GP	8,640	3	5.846 (4.993,6.845)	8.570 (5.631,13.041)	-0.537 (-2.206,0.757)
SK+PAC	29,126	8	6.737 (6.213,7.305)	4.203 (3.193,5.531)	-0.772 (-1.539,-0.097)
tPA	5,272	2	7.309 (6.309,8.467)	1.917 (1.148,3.204)	-1.001 (-2.353,0.114)
TNK+PAC+GP	2377	3	6.846 (5.440,8.616)	6.708 (4.991,9.014)	-1.257 (-3.373,0.406)
tPA+PAC	8,847	10	7.474 (6.510,8.582)	2.878 (1.983,4.176)	-1.311 (-2.613,-0.212)
SK	5,510	3	7.665 (6.632,8.859)	2.319 (1.425,3.776)	-1.418 (-2.830,-0.250)
PAC	2,946	2	8.795 (7.329,10.554)	1.594 (0.740,3.435)	-2.439 (-4.474,-0.844)
SK+GP	119	1	4.992 (1.379,18.073)	40.170 (2.346,687.841)	-4.422 (-114.654,4.864)
tPA_acc+PAC (ref) †	24,930	12	5.912 (5.042,6.781)	4.554 (2.775,6.334)	-

[†] Pooled risk estimate of the treatment with tPA_acc+PAC (reference) was calculated by using meta-analyses of proportions.

Abbreviations: %NCB, Percentage of net clinical benefit; GP, Glycoprotein IIb/IIIa inhitibor; PAC, Parenteral anticoagulants; ref, Reference; rPA, Reteplase; SK, Streptokinase; TNK, Tenecteplase; tPA, Alteplase (non-accelerated infusion); tPA_acc, Alteplase (accelerated infusion); wt, Weighting factor.

eFigure 11.1 Sensitivity analyses of net clinical benefit by varying weighting factors from 0.15 to 0.6.

0.2

-6

-7

0.15

Abbreviations: GP, Glycoprotein IIb/IIIa inhitibor; PAC, Parenteral anticoagulants; rPA, Reteplase; SK, Streptokinase; TNK, Tenecteplase; tPA, Alteplase (non-accelerated infusion); tPA_acc, Alteplase (accelerated infusion).

0.6

0.4

Weighting factor

→ SK+GP

1.0

^{*} Plot of treatment with SK+GP for weighting factor 0.4-1.0 is omitted due to out of range.

Appendix 12 Evaluation of the quality of evidence using GRADE framework for primary outcomes

 $eTable\ 12.1$ Estimates of effects and quality ratings for comparison of treatment options in all of the outcomes.

Comparison	Direct	evidence	Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
Mortality within 30-35 days						
SK vs. PAC			0.87 (0.73,1.04)	⊕⊕⊕○ MODERATE	0.87 (0.73,1.04)	⊕⊕⊕⊜ MODERATE
SK+GP vs. PAC			0.57 (0.16,2.06)	⊕○○○ ^{††} VERY LOW	0.57 (0.16,2.06)	⊕○○○ VERY LOW
SK+PAC vs. PAC	0.73 (0.50,1.07)	⊕⊕⊕○* MODERATE	0.87 (0.53,1.42)	⊕⊕⊖⊜∥ LOW	0.77 (0.65,0.90)	⊕⊕⊕⊜ MODERATE
TNK+PAC vs. PAC			0.68 (0.55,0.84)	⊕○○○†† VERY LOW	0.68 (0.55,0.84)	⊕○○○ VERY LOW
TNK+PAC+GP vs. PAC			0.78 (0.58,1.04)	⊕○○○†† VERY LOW	0.78 (0.58,1.04)	⊕○○○ VERY LOW
rPA+PAC vs. PAC			0.70 (0.57,0.85)	⊕⊕⊖⊜∥ LOW	0.70 (0.57,0.85)	⊕⊕⊜⊝ LOW
rPA+PAC+GP vs. PAC			0.66 (0.53,0.84)	⊕○○○†† VERY LOW	0.66 (0.53,0.84)	⊕○○○ VERY LOW
tPA vs. PAC			0.83 (0.70,0.99)	⊕⊕⊕○ MODERATE	0.83 (0.70,0.99)	⊕⊕⊕⊜ MODERATE
tPA+PAC vs. PAC	0.84 (0.64,1.11)	⊕⊕⊖⊜*,§ LOW	0.70 (0.36,1.37)	⊕⊕⊕○¹ MODERATE	0.85 (0.74,0.98)	⊕⊕⊕⊜ MODERATE
tPA+PAC+GP vs. PAC			0.48 (0.24,0.98)	⊕○○○†† VERY LOW	0.48 (0.24,0.98)	⊕○○○ VERY LOW
tPA_acc+PAC vs. PAC			0.67 (0.56,0.81)	⊕⊕⊕⊜¶ MODERATE	0.67 (0.56,0.81)	⊕⊕⊕⊜ MODERATE
SK+GP vs. SK	0.65 (0.18,2.34)	⊕○○○*.‡ VERY LOW	Not estimable	Not estimable	0.65 (0.18,2.34)	⊕○○○ VERY LOW
SK+PAC vs. SK	0.86 (0.76,0.97)	⊕⊕⊕⊕ HIGH	1.41 (0.80,2.48)	⊕⊕⊕○¹ MODERATE	0.88 (0.78,0.99)	⊕⊕⊕⊜ MODERATE
TNK+PAC vs. SK			0.78 (0.65,0.94)	⊕○○○†† VERY LOW	0.78 (0.65,0.94)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK			0.89 (0.68,1.17)	⊕○○○ ^{††} VERY LOW	0.89 (0.68,1.17)	⊕○○○ VERY LOW
rPA+PAC vs. SK			0.80 (0.68,0.94)	⊕⊕⊕○ MODERATE	0.80 (0.68,0.94)	⊕⊕⊕⊜ MODERATE
rPA+PAC+GP vs. SK			0.76 (0.62,0.93)	⊕○○○ ^{††} VERY LOW	0.76 (0.62,0.93)	⊕○○○ VERY LOW
tPA vs. SK	0.95 (0.84,1.07)	⊕⊕⊕⊕ HIGH	1.48 (0.58,3.78)	⊕⊕⊕⊕ НІGН	0.95 (0.84,1.08)	⊕⊕⊕⊕ НІСН
tPA+PAC vs. SK	1.00 (0.89,1.13)	⊕⊕⊕⊕ НІGН	0.65 (0.40,1.05)	⊕⊕⊕⊕ НІGН	0.98 (0.87,1.10)	⊕⊕⊕⊕ НІСН
tPA+PAC+GP vs. SK			0.55 (0.27,1.11)	⊕○○○ ^{††} VERY LOW	0.55 (0.27,1.11)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK			0.77 (0.67,0.89)	⊕⊕⊕○ MODERATE	0.77 (0.67,0.89)	⊕⊕⊕⊜ MODERATE

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
SK+PAC vs. SK+GP			1.35 (0.37,4.87)	⊕⊕⊖⊝∥ LOW	1.35 (0.37,4.87)	⊕⊕⊖⊖ LOW
TNK+PAC vs. SK+GP			1.20 (0.33,4.35)	⊕○○○ ^{††} VERY LOW	1.20 (0.33,4.35)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK+GP			1.37 (0.37,5.07)	⊕○○○ ^{††} VERY LOW	1.37 (0.37,5.07)	⊕○○○ VERY LOW
rPA+PAC vs. SK+GP			1.23 (0.34,4.46)	⊕○○○ ^{††} VERY LOW	1.23 (0.34,4.46)	⊕○○○ VERY LOW
rPA+PAC+GP vs. SK+GP			1.17 (0.32,4.27)	⊕○○○ ^{††} VERY LOW	1.17 (0.32,4.27)	⊕○○○ VERY LOW
tPA vs. SK+GP			1.46 (0.41,5.29)	⊕⊕○○ LOW	1.46 (0.41,5.29)	⊕⊕○○ LOW
tPA+PAC vs. SK+GP			1.50 (0.41,5.41)	⊕⊕⊖⊝∥ LOW	1.50 (0.41,5.41)	⊕⊕⊜⊝ LOW
tPA+PAC+GP vs. SK+GP			0.85 (0.20,3.64)	⊕○○○ ^{††} VERY LOW	0.85 (0.20,3.64)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK+GP			1.18 (0.33,4.29)	⊕○○○ ^{††} VERY LOW	1.18 (0.33,4.29)	⊕○○○ VERY LOW
TNK+PAC vs. SK+PAC			0.89 (0.77,1.02)	⊕⊕⊕⊜¶ MODERATE	0.89 (0.77,1.02)	⊕⊕⊕⊜ MODERATE
TNK+PAC+GP vs. SK+PAC			1.02 (0.80,1.30)	⊕○○○ ^{††} VERY LOW	1.02 (0.80,1.30)	⊕○○○ VERY LOW
rPA+PAC vs. SK+PAC	0.95 (0.72,1.25)	⊕⊕⊕⊕ HIGH	0.85 (0.60,1.22)	⊕⊕⊕○ MODERATE	0.91 (0.82,1.02)	⊕⊕⊕⊕ HIGH
rPA+PAC+GP vs. SK+PAC			0.87 (0.74,1.02)	⊕⊕⊕⊕ HIGH	0.87 (0.74,1.02)	⊕⊕⊕⊕ HIGH
tPA vs. SK+PAC	1.11 (0.97,1.26)	⊕⊕⊕⊕ HIGH	0.83 (0.51,1.34)	⊕⊕⊕⊕ НІGН	1.08 (0.96,1.23)	⊕⊕⊕⊕ HIGH
tPA+PAC vs. SK+PAC	1.13 (1.00,1.27)	⊕⊕⊕○* MODERATE	1.01 (0.76,1.36)	⊕⊕⊕○ MODERATE	1.11 (0.99,1.24)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. SK+PAC			0.63 (0.31,1.25)	⊕⊕⊖⊜∥ LOW	0.63 (0.31,1.25)	⊕⊕⊜⊝ LOW
tPA_acc+PAC vs. SK+PAC	0.86 (0.68,1.09)	⊕⊕⊕⊕ НІGН	1.02 (0.69,1.50)	⊕⊕⊕○ MODERATE	0.88 (0.81,0.95)	⊕⊕⊕⊕ НІGН
TNK+PAC+GP vs. TNK+PAC	1.15 (0.94,1.40)	⊕⊕⊕⊕ НІGН	Not estimable	Not estimable	1.15 (0.94,1.40)	⊕⊕⊕⊕ НІGН
rPA+PAC vs. TNK+PAC			1.03 (0.88,1.20)	⊕⊕⊖⊜∥ LOW	1.03 (0.88,1.20)	⊕⊕⊜⊝ LOW
rPA+PAC+GP vs. TNK+PAC			0.98 (0.81,1.19)	⊕○○○ ^{††} VERY LOW	0.98 (0.81,1.19)	⊕○○○ VERY LOW
tPA vs. TNK+PAC			1.22 (1.02,1.47)	⊕○○○ ^{††} VERY LOW	1.22 (1.02,1.47)	⊕○○○ VERY LOW
tPA+PAC vs. TNK+PAC			1.25 (1.05,1.50)	⊕⊕⊖⊜ LOW	1.25 (1.05,1.50)	⊕⊕○○ LOW
tPA+PAC+GP vs. TNK+PAC			0.71 (0.35,1.42)	⊕⊕○○ LOW	0.71 (0.35,1.42)	⊕⊕○○ LOW
tPA_acc+PAC vs. TNK+PAC	0.99 (0.88,1.11)	⊕⊕⊕○* MODERATE	Not estimable	Not estimable	0.99 (0.88,1.11)	⊕⊕⊕⊜ MODERATE
rPA+PAC vs. TNK+PAC+GP			0.90 (0.70,1.15)	⊕○○○ ^{††} VERY LOW	0.90 (0.70,1.15)	⊕○○○ VERY LOW

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis		
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	
rPA+PAC+GP vs. TNK+PAC+GP			0.85 (0.65,1.13)	⊕○○○ ^{††} VERY LOW	0.85 (0.65,1.13)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC+GP			1.07 (0.81,1.40)	⊕○○○ ^{††} VERY LOW	1.07 (0.81,1.40)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC+GP			1.09 (0.83,1.43)	⊕○○○†† VERY LOW	1.09 (0.83,1.43)	⊕○○○ VERY LOW	
tPA+PAC+GP vs. TNK+PAC+GP			0.62 (0.30,1.27)	⊕○○○†† VERY LOW	0.62 (0.30,1.27)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. TNK+PAC+GP			0.86 (0.69,1.09)	⊕⊕⊕○¶ MODERATE	0.86 (0.69,1.09)	⊕⊕⊕○ MODERATE	
rPA+PAC+GP vs. rPA+PAC	0.95 (0.84,1.08)	⊕⊕⊕⊕ ніGн	Not estimable	Not estimable	0.95 (0.84,1.08)	⊕⊕⊕⊕ ніGн	
tPA vs. rPA+PAC			1.19 (1.01,1.40)	⊕⊕⊕⊕ НІСН	1.19 (1.01,1.40)	⊕⊕⊕⊕ HIGH	
tPA+PAC vs. rPA+PAC	2.00 (0.51,7.85)	⊕⊕⊜‡ LOW	1.21 (1.03,1.42)	⊕⊕⊕○¶ MODERATE	1.22 (1.04,1.42)	⊕⊕⊕⊖ MODERATE	
tPA+PAC+GP vs. rPA+PAC			0.69 (0.34,1.38)	⊕○○○ VERY LOW	0.69 (0.34,1.38)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. rPA+PAC	1.02 (0.77,1.35)	⊕⊕⊖⊜*,§ LOW	0.97 (0.65,1.44)	⊕⊕⊕⊕ НІGН	0.96 (0.87,1.06)	⊕⊕⊕⊕ HIGH	
tPA vs. rPA+PAC+GP			1.25 (1.02,1.53)	⊕○○○†† VERY LOW	1.25 (1.02,1.53)	⊕○○○ VERY LOW	
tPA+PAC vs. rPA+PAC+GP			1.28 (1.05,1.56)	⊕⊕⊕○ MODERATE	1.28 (1.05,1.56)	⊕⊕⊕⊜ MODERATE	
tPA+PAC+GP vs. rPA+PAC+GP			0.72 (0.36,1.46)	⊕○○○ ^{††} VERY LOW	0.72 (0.36,1.46)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. rPA+PAC+GP			1.01 (0.86,1.18)	⊕⊕⊕○ MODERATE	1.01 (0.86,1.18)	⊕⊕⊕⊜ MODERATE	
tPA+PAC vs. tPA	1.04 (0.93,1.18)	⊕⊕⊕⊕ НІGН	0.64 (0.36,1.13)	⊕⊕⊕○¹ MODERATE	1.02 (0.91,1.15)	⊕⊕⊕⊕ HIGH	
tPA+PAC+GP vs. tPA			0.58 (0.29,1.17)	⊕○○○ ^{††} VERY LOW	0.58 (0.29,1.17)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. tPA			0.81 (0.70,0.94)	⊕⊕⊕⊕ HIGH	0.81 (0.70,0.94)	⊕⊕⊕⊕ HIGH	
tPA+PAC+GP vs. tPA+PAC			0.57 (0.28,1.14)	⊕○○○ VERY LOW	0.57 (0.28,1.14)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. tPA+PAC	1.65 (0.67,4.08)	⊕⊕⊖⊜§ LOW	0.78 (0.68,0.89)	⊕⊕⊕○ MODERATE	0.79 (0.69,0.91)	⊕⊕⊕⊜ MODERATE	
tPA_acc+PAC vs. tPA+PAC+GP		⊕○○○ ^{†,‡} VERY LOW	Not estimable	Not estimable	1.40 (0.70,2.78)	⊕○○○ VERY LOW	
Major bleeding							
SK vs. PAC			1.46 (0.66,3.23)	⊕⊕○○ LOW	1.46 (0.66,3.23)	⊕⊕⊖⊖ LOW	
SK+GP vs. PAC			25.20 (1.37,462.41)	⊕○○○ ^{††} VERY LOW	25.20 (1.37,462.41)	⊕○○○ VERY LOW	
SK+PAC vs. PAC			2.64 (1.27,5.47)	⊕⊕○○ LOW	2.64 (1.27,5.47)	⊕⊕⊖⊖ LOW	
TNK+PAC vs. PAC			2.26 (1.00,5.11)	⊕○○○ ^{††} VERY LOW	2.26 (1.00,5.11)	⊕○○○ VERY LOW	
TNK+PAC+GP vs. PAC			4.21 (1.85,9.59)	⊕○○○ ^{††} VERY LOW	4.21 (1.85,9.59)	⊕○○○ VERY LOW	

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis		
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	
rPA+PAC vs. PAC			2.50 (1.18,5.32)	⊕○○○ VERY LOW	2.50 (1.18,5.32)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. PAC			5.38 (2.35,12.29)	⊕○○○ ^{††} VERY LOW	5.38 (2.35,12.29)	⊕○○○ VERY LOW	
tPA vs. PAC			1.20 (0.54,2.68)	⊕⊕⊖⊜ LOW	1.20 (0.54,2.68)	⊕⊕⊜⊝ LOW	
tPA+PAC vs. PAC	1.81 (0.92,3.54)	⊕⊕⊖⊜*,† LOW	Not estimable	Not estimable	1.81 (0.92,3.54)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. PAC			3.64 (1.30,10.20)	⊕○○○ ^{††} VERY LOW	3.64 (1.30,10.20)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. PAC			2.86 (1.33,6.16)	⊕○○○ VERY LOW	2.86 (1.33,6.16)	⊕○○○ VERY LOW	
SK+GP vs. SK	17.33 (1.05,284.53)	⊕○○○*,†,‡ VERY LOW	Not estimable	Not estimable	17.32 (1.05,284.33)	⊕○○○ VERY LOW	
SK+PAC vs. SK	1.91 (1.26,2.91)	⊕⊕⊕○† MODERATE	1.08 (0.36,3.23)	⊕⊕○○ LOW	1.81 (1.21,2.72)	⊕⊕⊕⊜ MODERATE	
TNK+PAC vs. SK			1.56 (0.88,2.76)	⊕○○○ ^{††} VERY LOW	1.56 (0.88,2.76)	⊕○○○ VERY LOW	
TNK+PAC+GP vs. SK			2.89 (1.63,5.12)	⊕○○○ ^{††} VERY LOW	2.89 (1.63,5.12)	⊕○○○ VERY LOW	
rPA+PAC vs. SK			1.72 (1.09,2.72)	⊕⊕⊖⊝∥ LOW	1.72 (1.09,2.72)	⊕⊕⊜⊝ LOW	
rPA+PAC+GP vs. SK			3.69 (2.09,6.53)	⊕○○○ ^{††} VERY LOW	3.69 (2.09,6.53)	⊕○○○ VERY LOW	
tPA vs. SK	0.73 (0.43,1.24)	⊕⊕⊕⊜† MODERATE	2.38 (0.47,12.05)	⊕⊕⊕⊜¹ MODERATE	0.83 (0.50,1.37)	⊕⊕⊕○ MODERATE	
tPA+PAC vs. SK	1.22 (0.75,2.00)	⊕⊕⊕○ [†] MODERATE	1.30 (0.50,3.36)	⊕⊕⊕○ MODERATE	1.24 (0.81,1.90)	⊕⊕⊕○ MODERATE	
tPA+PAC+GP vs. SK			2.50 (1.08,5.82)	⊕○○○ ^{††} VERY LOW	2.50 (1.08,5.82)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. SK			1.96 (1.21,3.20)	⊕⊕⊖⊜ LOW	1.96 (1.21,3.20)	⊕⊕⊜⊝ LOW	
SK+PAC vs. SK+GP			0.10 (0.01,1.77)	⊕⊕○○ ^{∥,**} LOW	0.10 (0.01,1.77)	⊕⊕⊜⊝ LOW	
TNK+PAC vs. SK+GP			0.09 (0.01,1.56)	⊕○○○ ^{††,**} VERY LOW	0.09 (0.01,1.56)	⊕○○○ VERY LOW	
TNK+PAC+GP vs. SK+GP			0.17 (0.01,2.90)	⊕○○○ ^{††,**} VERY LOW	0.17 (0.01,2.90)	⊕○○○ VERY LOW	
rPA+PAC vs. SK+GP			0.10 (0.01,1.69)	⊕○○○↑↑,** VERY LOW	0.10 (0.01,1.69)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. SK+GP			0.21 (0.01,3.71)	⊕○○○ ^{††,**} VERY LOW	0.21 (0.01,3.71)	⊕○○○ VERY LOW	
tPA vs. SK+GP			0.05 (0.00,0.82)	⊕⊕○○ ^{∥,**} LOW	0.05 (0.00,0.82)	⊕⊕○○ LOW	
tPA+PAC vs. SK+GP			0.07 (0.00,1.21)	⊕⊕○○ ^{∥,**} LOW	0.07 (0.00,1.21)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. SK+GP			0.14 (0.01,2.69)	⊕○○○ ^{††,**} VERY LOW	0.14 (0.01,2.69)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. SK+GP			0.11 (0.01,1.94)	⊕○○○ ^{††,**} VERY LOW	0.11 (0.01,1.94)	⊕○○○ VERY LOW	

Comparison	Direct	evidence	Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
TNK+PAC vs. SK+PAC			0.86 (0.58,1.27)	⊕⊕⊕○ MODERATE	0.86 (0.58,1.27)	⊕⊕⊕⊜ MODERATE
TNK+PAC+GP vs. SK+PAC			1.60 (1.06,2.39)	⊕○○○ ^{††} VERY LOW	1.60 (1.06,2.39)	⊕○○○ VERY LOW
rPA+PAC vs. SK+PAC	0.98 (0.71,1.35)	⊕⊕⊕○ [†] MODERATE	0.87 (0.53,1.42)	⊕⊕⊖⊜∥ LOW	0.95 (0.76,1.18)	⊕⊕⊕⊜ MODERATE
rPA+PAC+GP vs. SK+PAC			2.04 (1.36,3.06)	⊕⊕⊕⊜¶ MODERATE	2.04 (1.36,3.06)	⊕⊕⊕⊜ MODERATE
tPA vs. SK+PAC	0.39 (0.25,0.62)	⊕⊕⊕⊜† MODERATE	0.76 (0.34,1.72)	⊕⊕⊕⊜¶ MODERATE	0.46 (0.30,0.70)	⊕⊕⊕⊜ MODERATE
tPA+PAC vs. SK+PAC	0.71 (0.52,0.99)	⊕⊕⊖⊜*.† LOW	0.57 (0.29,1.14)	⊕⊕⊕⊜¹ MODERATE	0.68 (0.52,0.91)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. SK+PAC			1.38 (0.66,2.90)	⊕⊕⊖⊝∥ LOW	1.38 (0.66,2.90)	⊕⊕○○ LOW
tPA_acc+PAC vs. SK+PAC	1.00 (0.64,1.57)	⊕⊕⊕⊕ HIGH	1.14 (0.75,1.73)	⊕⊕⊖⊝∥ LOW	1.08 (0.82,1.43)	⊕⊕⊕⊕ HIGH
TNK+PAC+GP vs. TNK+PAC	1.86 (1.36,2.54)	⊕⊕⊕⊕ HIGH	Not estimable	Not estimable	1.86 (1.36,2.54)	⊕⊕⊕⊕ HIGH
rPA+PAC vs. TNK+PAC			1.11 (0.78,1.57)	⊕⊕⊖⊜ LOW	1.11 (0.78,1.57)	⊕⊕⊜⊝ LOW
rPA+PAC+GP vs. TNK+PAC			2.37 (1.45,3.89)	⊕○○○ ^{††} VERY LOW	2.37 (1.45,3.89)	⊕○○○ VERY LOW
tPA vs. TNK+PAC			0.53 (0.29,0.98)	⊕○○○ ^{††} VERY LOW	0.53 (0.29,0.98)	⊕○○○ VERY LOW
tPA+PAC vs. TNK+PAC			0.80 (0.50,1.27)	⊕○○○ VERY LOW	0.80 (0.50,1.27)	⊕○○○ VERY LOW
tPA+PAC+GP vs. TNK+PAC			1.61 (0.78,3.31)	⊕○○○ VERY LOW	1.61 (0.78,3.31)	⊕○○○ VERY LOW
tPA_acc+PAC vs. TNK+PAC	1.26 (1.00,1.60)	⊕⊕⊖⊜*,† LOW	Not estimable	Not estimable	1.26 (1.00,1.60)	⊕⊕⊜⊝ LOW
rPA+PAC vs. TNK+PAC+GP			0.60 (0.41,0.87)	⊕○○○ ^{††} VERY LOW	0.60 (0.41,0.87)	⊕○○○ VERY LOW
rPA+PAC+GP vs. TNK+PAC+GP			1.28 (0.76,2.14)	⊕○○○ ^{††} VERY LOW	1.28 (0.76,2.14)	⊕○○○ VERY LOW
tPA vs. TNK+PAC+GP			0.29 (0.16,0.52)	⊕○○○ ^{††} VERY LOW	0.29 (0.16,0.52)	⊕○○○ VERY LOW
tPA+PAC vs. TNK+PAC+GP			0.43 (0.27,0.69)	⊕○○○ ^{††} VERY LOW	0.43 (0.27,0.69)	⊕○○○ VERY LOW
tPA+PAC+GP vs. TNK+PAC+GP			0.86 (0.41,1.83)	⊕○○○ ^{††} VERY LOW	0.86 (0.41,1.83)	⊕○○○ VERY LOW
tPA_acc+PAC vs. TNK+PAC+GP			0.68 (0.51,0.91)	⊕⊕⊕○ MODERATE	0.68 (0.51,0.91)	⊕⊕⊕○ MODERATE
rPA+PAC+GP vs. rPA+PAC	2.15 (1.53,3.02)	⊕⊕⊕⊕ НІGН	Not estimable	Not estimable	2.15 (1.53,3.02)	⊕⊕⊕⊕ НІGН
tPA vs. rPA+PAC			0.48 (0.30,0.78)	⊕⊕○○ LOW	0.48 (0.30,0.78)	⊕⊕⊜⊝ LOW
tPA+PAC vs. rPA+PAC	1.17 (0.40,3.41)	⊕○○○ ^{†.‡} VERY LOW	0.68 (0.48,0.98)	⊕⊕⊖⊜∥ LOW	0.72 (0.51,1.01)	⊕⊕⊜⊝ LOW
tPA+PAC+GP vs. rPA+PAC			1.45 (0.70,3.01)	⊕○○○ VERY LOW	1.45 (0.70,3.01)	⊕○○○ VERY LOW

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
tPA_acc+PAC vs. rPA+PAC	1.12 (0.79,1.61)	⊕⊕⊖⊜*,† LOW	1.17 (0.66,2.06)	⊕⊕⊖⊜ LOW	1.14 (0.89,1.46)	⊕⊕⊖⊖ LOW
tPA vs. rPA+PAC+GP			0.22 (0.12,0.40)	⊕○○○ ^{††} VERY LOW	0.22 (0.12,0.40)	⊕○○○ VERY LOW
tPA+PAC vs. rPA+PAC+GP			0.34 (0.21,0.54)	⊕⊕⊕○ MODERATE	0.34 (0.21,0.54)	⊕⊕⊕⊜ MODERATE
tPA+PAC+GP vs. rPA+PAC+GP			0.68 (0.30,1.52)	⊕○○○ ^{††} VERY LOW	0.68 (0.30,1.52)	⊕○○○ VERY LOW
tPA_acc+PAC vs. rPA+PAC+GP			0.53 (0.35,0.81)	⊕⊕⊕○ MODERATE	0.53 (0.35,0.81)	⊕⊕⊕○ MODERATE
tPA+PAC vs. tPA	1.40 (0.89,2.20)	⊕⊕⊕○ [†] MODERATE	2.49 (0.84,7.34)	⊕⊕⊕⊜¹ MODERATE	1.50 (0.98,2.30)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. tPA			3.02 (1.28,7.15)	⊕○○○ ^{††} VERY LOW	3.02 (1.28,7.15)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA			2.37 (1.42,3.97)	⊕⊕⊕⊜¶ MODERATE	2.37 (1.42,3.97)	⊕⊕⊕⊜ MODERATE
tPA+PAC+GP vs. tPA+PAC			2.02 (0.92,4.41)	⊕○○○ VERY LOW	2.02 (0.92,4.41)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA+PAC	2.25 (0.88,5.77)	⊕○○○ ^{†,§} VERY LOW	1.47 (0.95,2.28)	⊕⊕⊖⊜∥ LOW	1.58 (1.09,2.30)	⊕⊕⊖⊖ LOW
tPA_acc+PAC vs. tPA+PAC+GP		⊕○○○ ^{†,‡} VERY LOW	Not estimable	Not estimable	0.79 (0.39,1.56)	⊕○○○ VERY LOW
Recurrent infarction						
SK vs. PAC			1.14 (0.79,1.65)	⊕○○○ VERY LOW	1.14 (0.79,1.65)	⊕○○○ VERY LOW
SK+GP vs. PAC			1.58 (0.41,6.08)	⊕○○○ ^{††} VERY LOW	1.58 (0.41,6.08)	⊕○○○ VERY LOW
SK+PAC vs. PAC	2.10 (1.06,4.18)	⊕○○○*,† VERY LOW	0.93 (0.67,1.30)	⊕○○○ VERY LOW	1.09 (0.80,1.49)	⊕○○○ VERY LOW
TNK+PAC vs. PAC			1.21 (0.84,1.75)	⊕○○○ ^{††} VERY LOW	1.21 (0.84,1.75)	⊕○○○ VERY LOW
TNK+PAC+GP vs. PAC			0.77 (0.47,1.25)	⊕○○○ ^{††} VERY LOW	0.77 (0.47,1.25)	⊕○○○ VERY LOW
rPA+PAC vs. PAC			1.08 (0.77,1.51)	⊕○○○ VERY LOW	1.08 (0.77,1.51)	⊕○○○ VERY LOW
rPA+PAC+GP vs. PAC			0.71 (0.48,1.05)	⊕○○○ ^{††} VERY LOW	0.71 (0.48,1.05)	⊕○○○ VERY LOW
tPA vs. PAC			1.03 (0.73,1.44)	⊕○○○ VERY LOW	1.03 (0.73,1.44)	⊕○○○ VERY LOW
tPA+PAC vs. PAC	0.82 (0.63,1.05)	⊕○○○* [†] VERY LOW	1.83 (0.89,3.76)	⊕○○○ VERY LOW	0.90 (0.69,1.18)	⊕○○○ VERY LOW
tPA+PAC+GP vs. PAC			1.94 (0.79,4.75)	⊕○○○ ^{††} VERY LOW	1.94 (0.79,4.75)	⊕○○○ VERY LOW
tPA_acc+PAC vs. PAC			1.14 (0.82,1.58)	⊕○○○ VERY LOW	1.14 (0.82,1.58)	⊕○○○ VERY LOW
SK+GP vs. SK	1.39 (0.38,5.06)	⊕○○○*,†,‡ VERY LOW	Not estimable	Not estimable	1.39 (0.38,5.06)	⊕○○○ VERY LOW
SK+PAC vs. SK	0.93 (0.67,1.28)	⊕○○○ ^{†,§} VERY LOW	1.12 (0.45,2.75)	⊕⊕⊖⊜ LOW	0.96 (0.75,1.21)	⊕⊕⊜⊝ LOW
TNK+PAC vs. SK			1.06 (0.74,1.52)	⊕○○○ ^{††} VERY LOW	1.06 (0.74,1.52)	⊕○○○ VERY LOW

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
TNK+PAC+GP vs. SK			0.67 (0.42,1.09)	⊕○○○ ^{††} VERY LOW	0.67 (0.42,1.09)	⊕○○○ VERY LOW
rPA+PAC vs. SK			0.94 (0.68,1.31)	⊕○○○ VERY LOW	0.94 (0.68,1.31)	⊕○○○ VERY LOW
rPA+PAC+GP vs. SK			0.63 (0.43,0.91)	⊕○○○ ^{††} VERY LOW	0.63 (0.43,0.91)	⊕○○○ VERY LOW
tPA vs. SK	0.94 (0.75,1.19)	⊕⊕○○† LOW	0.34 (0.12,1.01)	⊕⊕○○ ^{,**} LOW	0.90 (0.71,1.15)	⊕⊕⊜⊝ LOW
tPA+PAC vs. SK	0.82 (0.62,1.09)	⊕⊕⊖⊜† LOW	0.57 (0.27,1.17)	⊕⊕○○ LOW	0.79 (0.62,1.00)	⊕⊕○○ LOW
tPA+PAC+GP vs. SK			1.70 (0.70,4.13)	⊕○○○ ^{††} VERY LOW	1.70 (0.70,4.13)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK			1.00 (0.74,1.35)	⊕⊕⊖⊜ LOW	1.00 (0.74,1.35)	⊕⊕⊖⊖ LOW
SK+PAC vs. SK+GP			0.69 (0.18,2.56)	⊕○○○ ^{,**} VERY LOW	0.69 (0.18,2.56)	⊕○○○ VERY LOW
TNK+PAC vs. SK+GP			0.77 (0.20,2.93)	⊕○○○ ^{††,**} VERY LOW	0.77 (0.20,2.93)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK+GP			0.48 (0.12,1.93)	⊕○○○ ^{††,**} VERY LOW	0.48 (0.12,1.93)	⊕○○○ VERY LOW
rPA+PAC vs. SK+GP			0.68 (0.18,2.58)	⊕○○○ ^{††,**} VERY LOW	0.68 (0.18,2.58)	⊕○○○ VERY LOW
rPA+PAC+GP vs. SK+GP			0.45 (0.12,1.73)	⊕○○○ ^{††,**} VERY LOW	0.45 (0.12,1.73)	⊕○○○ VERY LOW
tPA vs. SK+GP			0.65 (0.17,2.42)	⊕○○○ ^{,**} VERY LOW	0.65 (0.17,2.42)	⊕○○○ VERY LOW
tPA+PAC vs. SK+GP			0.57 (0.15,2.12)	⊕○○○□,** VERY LOW	0.57 (0.15,2.12)	⊕○○○ VERY LOW
tPA+PAC+GP vs. SK+GP			1.23 (0.26,5.88)	⊕○○○ ^{††,**} VERY LOW	1.23 (0.26,5.88)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK+GP			0.72 (0.19,2.71)	⊕○○○ ^{††,**} VERY LOW	0.72 (0.19,2.71)	⊕○○○ VERY LOW
TNK+PAC vs. SK+PAC			1.11 (0.88,1.40)	⊕⊕⊕○ MODERATE	1.11 (0.88,1.40)	⊕⊕⊕○ MODERATE
TNK+PAC+GP vs. SK+PAC			0.70 (0.47,1.05)	⊕○○○ VERY LOW	0.70 (0.47,1.05)	⊕○○○ VERY LOW
rPA+PAC vs. SK+PAC	0.93 (0.70,1.23)	⊕⊕⊕○† MODERATE	1.03 (0.69,1.53)	⊕⊕○○ LOW	0.99 (0.82,1.19)	⊕⊕⊕○ MODERATE
rPA+PAC+GP vs. SK+PAC			0.65 (0.50,0.85)	⊕⊕⊕⊜¶ MODERATE	0.65 (0.50,0.85)	⊕⊕⊕○ MODERATE
tPA vs. SK+PAC	0.93 (0.73,1.19)	⊕⊕⊕○ [†] MODERATE	1.06 (0.56,2.03)	⊕⊕⊖⊜∥ LOW	0.94 (0.75,1.18)	⊕⊕⊕○ MODERATE
tPA+PAC vs. SK+PAC	0.83 (0.66,1.05)	⊕⊕⊖⊜*,† LOW	0.80 (0.47,1.37)	⊕⊕⊖⊜ LOW	0.83 (0.67,1.01)	⊕⊕○○ LOW
tPA+PAC+GP vs. SK+PAC			1.78 (0.76,4.15)	⊕⊕○○ LOW	1.78 (0.76,4.15)	⊕⊕○○ LOW
tPA_acc+PAC vs. SK+PAC	1.08 (0.90,1.30)	⊕⊕⊕⊕ HIGH	0.91 (0.65,1.27)	⊕⊕⊖⊜ LOW	1.04 (0.90,1.21)	⊕⊕⊕⊕ HIGH
TNK+PAC+GP vs. TNK+PAC	0.63 (0.46,0.87)	⊕⊕⊕○§ MODERATE	Not estimable	Not estimable	0.63 (0.46,0.87)	⊕⊕⊕○ MODERATE

Comparison	Direct	evidence	Indirect	evidence	Network meta-analysis		
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	
rPA+PAC vs. TNK+PAC			0.89 (0.71,1.10)	⊕⊕⊖⊜∥ LOW	0.89 (0.71,1.10)	⊕⊕⊜⊝ LOW	
rPA+PAC+GP vs. TNK+PAC			0.59 (0.44,0.79)	⊕○○○ ^{††} VERY LOW	0.59 (0.44,0.79)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC			0.85 (0.61,1.17)	⊕○○○ ^{††} VERY LOW	0.85 (0.61,1.17)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC			0.74 (0.54,1.02)	⊕⊕○○ LOW	0.74 (0.54,1.02)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. TNK+PAC			1.60 (0.69,3.73)	⊕○○○ VERY LOW	1.60 (0.69,3.73)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. TNK+PAC	0.94 (0.80,1.10)	⊕⊕⊖⊜*,† LOW	Not estimable	Not estimable	0.94 (0.80,1.10)	⊕⊕⊜⊝ LOW	
rPA+PAC vs. TNK+PAC+GP			1.40 (0.95,2.07)	⊕○○○ ^{††} VERY LOW	1.40 (0.95,2.07)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. TNK+PAC+GP			0.93 (0.60,1.43)	⊕○○○ ^{††} VERY LOW	0.93 (0.60,1.43)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC+GP			1.34 (0.85,2.11)	⊕○○○ ^{††} VERY LOW	1.34 (0.85,2.11)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC+GP			1.17 (0.75,1.84)	⊕○○○ ^{††} VERY LOW	1.17 (0.75,1.84)	⊕○○○ VERY LOW	
tPA+PAC+GP vs. TNK+PAC+GP			2.53 (1.02,6.26)	⊕○○○ ^{††} VERY LOW	2.53 (1.02,6.26)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. TNK+PAC+GP			1.48 (1.03,2.12)	⊕⊕⊖⊜ LOW	1.48 (1.03,2.12)	⊕⊕⊜⊝ LOW	
rPA+PAC+GP vs. rPA+PAC	0.66 (0.54,0.80)	⊕⊕⊕⊜† MODERATE	Not estimable	Not estimable	0.66 (0.54,0.80)	⊕⊕⊕○ MODERATE	
tPA vs. rPA+PAC			0.95 (0.71,1.28)	⊕⊕○○ LOW	0.95 (0.71,1.28)	⊕⊕○○ LOW	
tPA+PAC vs. rPA+PAC	1.75 (0.52,5.86)	⊕○○○ ^{†,‡} VERY LOW	0.80 (0.62,1.05)	⊕⊕○○ LOW	0.84 (0.63,1.11)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. rPA+PAC			1.80 (0.77,4.20)	⊕○○○ VERY LOW	1.80 (0.77,4.20)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. rPA+PAC	1.00 (0.80,1.25)	⊕⊕⊖⊜*,† LOW	1.21 (0.84,1.73)	⊕⊕⊖⊜ LOW	1.06 (0.91,1.23)	⊕⊕⊜⊝ LOW	
tPA vs. rPA+PAC+GP			1.44 (1.01,2.05)	⊕○○○ ^{††} VERY LOW	1.44 (1.01,2.05)	⊕○○○ VERY LOW	
tPA+PAC vs. rPA+PAC+GP			1.26 (0.90,1.77)	⊕⊕⊖⊜∥ LOW	1.26 (0.90,1.77)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. rPA+PAC+GP			2.72 (1.14,6.48)	⊕○○○ ^{††} VERY LOW	2.72 (1.14,6.48)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. rPA+PAC+GP			1.59 (1.25,2.04)	⊕⊕⊖⊜∥ LOW	1.59 (1.25,2.04)	⊕⊕⊜⊝ LOW	
tPA+PAC vs. tPA	0.89 (0.69,1.15)	⊕⊕⊜⊜† LOW	0.74 (0.30,1.85)	⊕⊕⊖⊜∥ LOW	0.88 (0.70,1.09)	⊕⊕○○ LOW	
tPA+PAC+GP vs. tPA			1.89 (0.79,4.54)	⊕○○○ ^{††} VERY LOW	1.89 (0.79,4.54)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. tPA			1.11 (0.84,1.45)	⊕⊕⊖⊜∥ LOW	1.11 (0.84,1.45)	⊕⊕○○ LOW	
tPA+PAC+GP vs. tPA+PAC			2.16 (0.90,5.16)	⊕○○○ ^{††} VERY LOW	2.16 (0.90,5.16)	⊕○○○ VERY LOW	

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
tPA_acc+PAC vs. tPA+PAC	1.93 (0.18,21.08)	⊕⊕⊖⊜§ LOW	1.26 (0.96,1.64)	⊕⊕⊕○ MODERATE	1.26 (0.98,1.64)	⊕⊕⊕⊖ MODERATE
tPA_acc+PAC vs. tPA+PAC+GP		⊕○○○ ^{†,‡} VERY LOW	Not estimable	Not estimable	0.59 (0.25,1.35)	⊕○○○ VERY LOW
All-type stroke						
SK vs. PAC			1.39 (0.81,2.39)	⊕⊕⊖⊜∥ LOW	1.39 (0.81,2.39)	⊕⊕⊜⊝ LOW
SK+GP vs. PAC			3.65 (0.17,78.58)	⊕○○○ ^{††,**} VERY LOW	3.65 (0.17,78.58)	⊕○○○ VERY LOW
SK+PAC vs. PAC			1.52 (0.90,2.57)	⊕⊕⊖⊜ LOW	1.52 (0.90,2.57)	⊕⊕○○ LOW
TNK+PAC vs. PAC			1.93 (1.07,3.50)	⊕○○○ ^{††} VERY LOW	1.93 (1.07,3.50)	⊕○○○ VERY LOW
TNK+PAC+GP vs. PAC			1.83 (0.88,3.82)	⊕○○○ ^{††} VERY LOW	1.83 (0.88,3.82)	⊕○○○ VERY LOW
rPA+PAC vs. PAC			1.66 (0.92,2.97)	⊕○○○ VERY LOW	1.66 (0.92,2.97)	⊕○○○ VERY LOW
rPA+PAC+GP vs. PAC			1.80 (0.93,3.50)	⊕○○○ ^{††} VERY LOW	1.80 (0.93,3.50)	⊕○○○ VERY LOW
tPA vs. PAC			2.24 (1.34,3.74)	⊕⊕⊖⊝∥ LOW	2.24 (1.34,3.74)	⊕⊕⊖⊖ LOW
tPA+PAC vs. PAC	2.02 (1.36,2.98)	⊕⊕⊖⊜*,† LOW	Not estimable	Not estimable	2.02 (1.36,2.98)	⊕⊕○○ LOW
tPA+PAC+GP vs. PAC			2.09 (0.09,50.82)	⊕○○○ ^{††,**} VERY LOW	2.09 (0.09,50.82)	⊕○○○ VERY LOW
tPA_acc+PAC vs. PAC			1.80 (1.03,3.12)	⊕○○○ VERY LOW	1.80 (1.03,3.12)	⊕○○○ VERY LOW
SK+GP vs. SK	2.63 (0.13,53.85)	⊕○○○*,†,;‡ VERY LOW	Not estimable	Not estimable	2.62 (0.13,53.84)	⊕○○○ VERY LOW
SK+PAC vs. SK	1.14 (0.77,1.68)	⊕⊕⊖⊜ ^{†,§} LOW	0.18 (0.01,2.34)	⊕⊕⊖⊜ ^{∥,**} LOW	1.09 (0.74,1.61)	⊕⊕○○ LOW
TNK+PAC vs. SK			1.39 (0.86,2.25)	⊕○○○ ^{††} VERY LOW	1.39 (0.86,2.25)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK			1.32 (0.69,2.51)	⊕○○○ ^{††} VERY LOW	1.32 (0.69,2.51)	⊕○○○ VERY LOW
rPA+PAC vs. SK			1.19 (0.75,1.90)	⊕⊕⊖⊜∥ LOW	1.19 (0.75,1.90)	⊕⊕⊜⊝ LOW
rPA+PAC+GP vs. SK			1.30 (0.74,2.28)	⊕○○○ ^{††} VERY LOW	1.30 (0.74,2.28)	⊕○○○ VERY LOW
tPA vs. SK	1.65 (1.14,2.38)	⊕⊕⊕○ [†] MODERATE	0.02 (0.00,9.24)	⊕⊕⊕⊜¶ MODERATE	1.61 (1.12,2.33)	⊕⊕⊕○ MODERATE
tPA+PAC vs. SK	1.42 (0.97,2.08)	⊕⊕⊕○ [†] MODERATE	3.41 (0.32,35.90)	⊕⊕○○ ^{∥,**} LOW	1.45 (1.00,2.11)	⊕⊕○○ LOW
tPA+PAC+GP vs. SK			1.51 (0.06,35.85)	⊕○○○ ^{††} VERY LOW	1.51 (0.06,35.85)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK			1.29 (0.84,1.98)	⊕⊕○○ LOW	1.29 (0.84,1.98)	⊕⊕⊖⊖ LOW
SK+PAC vs. SK+GP			0.42 (0.02,8.77)	⊕○○○ ^{,**} VERY LOW	0.42 (0.02,8.77)	⊕○○○ VERY LOW
TNK+PAC vs. SK+GP			0.53 (0.02,11.28)	⊕○○○ ^{††} VERY LOW	0.53 (0.02,11.28)	⊕○○○ VERY LOW

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis		
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	
TNK+PAC+GP vs. SK+GP			0.50 (0.02,11.02)	⊕○○○ ^{††} VERY LOW	0.50 (0.02,11.02)	⊕○○○ VERY LOW	
rPA+PAC vs. SK+GP			0.45 (0.02,9.65)	⊕○○○ ^{††} VERY LOW	0.45 (0.02,9.65)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. SK+GP			0.49 (0.02,10.67)	⊕○○○ ^{††} VERY LOW	0.49 (0.02,10.67)	⊕○○○ VERY LOW	
tPA vs. SK+GP			0.61 (0.03,12.89)	⊕○○○ ^{,**} VERY LOW	0.61 (0.03,12.89)	⊕○○○ VERY LOW	
tPA+PAC vs. SK+GP			0.55 (0.03,11.59)	⊕○○○ ^{,**} VERY LOW	0.55 (0.03,11.59)	⊕○○○ VERY LOW	
tPA+PAC+GP vs. SK+GP			0.57 (0.01,45.76)	⊕○○○ VERY LOW	0.57 (0.01,45.76)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. SK+GP			0.49 (0.02,10.40)	⊕○○○ VERY LOW	0.49 (0.02,10.40)	⊕○○○ VERY LOW	
TNK+PAC vs. SK+PAC			1.27 (0.96,1.69)	⊕⊕⊕○ MODERATE	1.27 (0.96,1.69)	⊕⊕⊕○ MODERATE	
TNK+PAC+GP vs. SK+PAC			1.20 (0.72,2.02)	⊕○○○ ^{††} VERY LOW	1.20 (0.72,2.02)	⊕○○○ VERY LOW	
rPA+PAC vs. SK+PAC	1.23 (0.76,1.99)	⊕⊕⊕⊕ HIGH	1.03 (0.75,1.42)	⊕⊕⊖⊝∥ LOW	1.09 (0.84,1.42)	⊕⊕⊕⊕ HIGH	
rPA+PAC+GP vs. SK+PAC			1.18 (0.79,1.78)	⊕⊕⊕⊜¶ MODERATE	1.18 (0.79,1.78)	⊕⊕⊕○ MODERATE	
tPA vs. SK+PAC	1.39 (0.98,1.98)	⊕⊕⊕○ [†] MODERATE	13.58 (1.26,146.19)	⊕⊕○○ ^{∥,**} LOW	1.47 (1.04,2.08)	⊕⊕⊕○ MODERATE	
tPA+PAC vs. SK+PAC	1.23 (0.86,1.75)	⊕⊕○○*,† LOW	7.77 (1.41,42.81)	⊕⊕○○ ^{∥,**} LOW	1.32 (0.94,1.87)	⊕⊕○○ LOW	
tPA+PAC+GP vs. SK+PAC			1.38 (0.06,32.00)	⊕⊕○○ ^{∥,**} LOW	1.38 (0.06,32.00)	⊕⊕○○ LOW	
tPA_acc+PAC vs. SK+PAC	1.18 (0.97,1.43)	⊕⊕⊕⊕ HIGH	1.20 (0.71,2.02)	⊕⊕⊖⊝∥ LOW	1.18 (0.98,1.42)	⊕⊕⊕⊕ HIGH	
TNK+PAC+GP vs. TNK+PAC	0.95 (0.62,1.46)	⊕⊕⊕⊕ HIGH	Not estimable	Not estimable	0.95 (0.62,1.46)	⊕⊕⊕⊕ HIGH	
rPA+PAC vs. TNK+PAC			0.86 (0.63,1.17)	⊕⊕○○ LOW	0.86 (0.63,1.17)	⊕⊕⊜⊝ LOW	
rPA+PAC+GP vs. TNK+PAC			0.93 (0.60,1.45)	⊕○○○ ^{††} VERY LOW	0.93 (0.60,1.45)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC			1.16 (0.74,1.81)	⊕○○○ ^{††} VERY LOW	1.16 (0.74,1.81)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC			1.04 (0.67,1.63)	⊕○○○ VERY LOW	1.04 (0.67,1.63)	⊕○○○ VERY LOW	
tPA+PAC+GP vs. TNK+PAC			1.08 (0.05,25.24)	⊕○○○ VERY LOW	1.08 (0.05,25.24)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. TNK+PAC	0.93 (0.75,1.16)	⊕⊕⊖⊜*,† LOW	Not estimable	Not estimable	0.93 (0.75,1.16)	⊕⊕⊜⊝ LOW	
rPA+PAC vs. TNK+PAC+GP			0.90 (0.53,1.54)	⊕○○○ ^{††} VERY LOW	0.90 (0.53,1.54)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. TNK+PAC+GP			0.98 (0.53,1.83)	⊕○○○ ^{††} VERY LOW	0.98 (0.53,1.83)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC+GP			1.22 (0.66,2.28)	⊕○○○ ^{††} VERY LOW	1.22 (0.66,2.28)	⊕○○○ VERY LOW	

Comparison	Direct evidence		Indirect	evidence	Network meta-analysis	
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
tPA+PAC vs. TNK+PAC+GP			1.10 (0.59,2.05)	⊕○○○ ^{††} VERY LOW	1.10 (0.59,2.05)	⊕○○○ VERY LOW
tPA+PAC+GP vs. TNK+PAC+GP			1.14 (0.05,27.42)	⊕○○○ ^{††} VERY LOW	1.14 (0.05,27.42)	⊕○○○ VERY LOW
tPA_acc+PAC vs. TNK+PAC+GP			0.98 (0.60,1.59)	⊕⊕⊕○ MODERATE	0.98 (0.60,1.59)	⊕⊕⊕○ MODERATE
rPA+PAC+GP vs. rPA+PAC	1.09 (0.79,1.49)	⊕⊕⊕⊜† MODERATE	Not estimable	Not estimable	1.09 (0.79,1.49)	⊕⊕⊕○ MODERATE
tPA vs. rPA+PAC			1.35 (0.88,2.09)	⊕⊕⊖⊜∥ LOW	1.35 (0.88,2.09)	⊕⊕⊜⊝ LOW
tPA+PAC vs. rPA+PAC	13.00 (0.74,228.79)	⊕○○○ ^{†,‡} VERY LOW	1.15 (0.74,1.78)	⊕⊕⊖⊝∥ LOW	1.22 (0.79,1.87)	⊕⊕⊜⊝ LOW
tPA+PAC+GP vs. rPA+PAC			1.26 (0.05,29.46)	⊕○○○ ^{∥,**} VERY LOW	1.26 (0.05,29.46)	⊕○○○ VERY LOW
tPA_acc+PAC vs. rPA+PAC	1.10 (0.86,1.42)	⊕⊕⊖⊜*,† LOW	1.01 (0.61,1.69)	⊕⊕⊖⊜∥ LOW	1.08 (0.86,1.36)	⊕⊕⊖⊖ LOW
tPA vs. rPA+PAC+GP			1.24 (0.73,2.12)	⊕○○○ ^{††} VERY LOW	1.24 (0.73,2.12)	⊕○○○ VERY LOW
tPA+PAC vs. rPA+PAC+GP			1.12 (0.66,1.91)	⊕⊕⊖⊜ LOW	1.12 (0.66,1.91)	⊕⊕⊜⊝ LOW
tPA+PAC+GP vs. rPA+PAC+GP			1.16 (0.05,27.51)	⊕○○○ ^{††} VERY LOW	1.16 (0.05,27.51)	⊕○○○ VERY LOW
tPA_acc+PAC vs. rPA+PAC+GP			1.00 (0.68,1.47)	⊕⊕⊖⊜ LOW	1.00 (0.68,1.47)	⊕⊕⊜⊝ LOW
tPA+PAC vs. tPA	0.87 (0.62,1.21)	⊕⊕⊕⊜† MODERATE	5.63 (0.42,74.97)	⊕⊕○○ ^{∥,**} LOW	0.90 (0.65,1.25)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. tPA			0.93 (0.04,22.12)	⊕○○○ ^{††} VERY LOW	0.93 (0.04,22.12)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA			0.80 (0.54,1.18)	⊕⊕⊖⊝∥ LOW	0.80 (0.54,1.18)	⊕⊕○○ LOW
tPA+PAC+GP vs. tPA+PAC			1.04 (0.04,24.61)	⊕○○○ ^{††} VERY LOW	1.04 (0.04,24.61)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA+PAC	0.32 (0.03,3.06)	⊕○○○ ^{†,§} VERY LOW	0.92 (0.62,1.37)	⊕⊕⊖⊝∥ LOW	0.89 (0.60,1.31)	⊕⊕○○ LOW
tPA_acc+PAC vs. tPA+PAC+GP		⊕○○○ ^{†,‡} VERY LOW	0.86 (0.04,19.81)	Not estimable	0.86 (0.04,19.81)	⊕○○○ VERY LOW
Hemorrhagic stroke						
SK vs. PAC			3.35 (1.30,8.63)	⊕⊕⊖⊜∥ LOW	3.35 (1.30,8.63)	⊕⊕⊖⊖ LOW
SK+GP vs. PAC			1.76 (0.03,97.96)	⊕○○○ ^{††} VERY LOW	1.76 (0.03,97.96)	⊕○○○ VERY LOW
SK+PAC vs. PAC	4.24 (0.41,43.99)	⊕○○○*,† VERY LOW	1.72 (0.63,4.68)	⊕⊕⊖⊜∥ LOW	1.98 (0.79,4.96)	⊕⊕⊜⊝ LOW
TNK+PAC vs. PAC			2.83 (1.04,7.67)	⊕○○○ ^{††} VERY LOW	2.83 (1.04,7.67)	⊕○○○ VERY LOW
TNK+PAC+GP vs. PAC			3.18 (1.03,9.87)	⊕○○○ ^{††} VERY LOW	3.18 (1.03,9.87)	⊕○○○ VERY LOW
rPA+PAC vs. PAC			2.94 (1.09,7.89)	⊕○○○ VERY LOW	2.94 (1.09,7.89)	⊕○○○ VERY LOW
rPA+PAC+GP vs. PAC			3.12 (1.08,9.00)	⊕○○○ ^{††} VERY LOW	3.12 (1.08,9.00)	⊕○○○ VERY LOW

Comparison	Direct	evidence	Indirect	evidence	Network m	eta-analysis
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
tPA vs. PAC			3.66 (1.44,9.27)	⊕⊕⊖⊝∥ LOW	3.66 (1.44,9.27)	⊕⊕⊜⊝ LOW
tPA+PAC vs. PAC	4.26 (1.92,9.46)	⊕○○○*.†‡ VERY LOW	10.49 (0.94,117.56)	⊕○○○□,** VERY LOW	4.66 (2.18,9.93)	⊕○○○ VERY LOW
tPA+PAC+GP vs. PAC			2.94 (0.60,14.25)	⊕○○○†† VERY LOW	2.94 (0.60,14.25)	⊕○○○ VERY LOW
tPA_acc+PAC vs. PAC			2.85 (1.10,7.41)	⊕⊕⊖⊜∥ LOW	2.85 (1.10,7.41)	⊕⊕⊖⊖ LOW
SK+GP vs. SK	0.53 (0.01,26.15)	⊕○○○*,†,‡ VERY LOW	Not estimable	Not estimable	0.53 (0.01,26.15)	⊕○○○ VERY LOW
SK+PAC vs. SK	0.64 (0.32,1.31)	⊕⊕⊕○ [†] MODERATE	0.24 (0.02,2.93)	⊕⊕○○¶** LOW	0.59 (0.30,1.16)	⊕⊕⊕○ MODERATE
TNK+PAC vs. SK			0.84 (0.39,1.84)	⊕○○○ ^{††} VERY LOW	0.84 (0.39,1.84)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK			0.95 (0.37,2.45)	⊕○○○ ^{††} VERY LOW	0.95 (0.37,2.45)	⊕○○○ VERY LOW
rPA+PAC vs. SK			0.88 (0.41,1.89)	⊕⊕⊖⊝∥ LOW	0.88 (0.41,1.89)	⊕⊕⊜⊝ LOW
rPA+PAC+GP vs. SK			0.93 (0.40,2.20)	⊕○○○ ^{††} VERY LOW	0.93 (0.40,2.20)	⊕○○○ VERY LOW
tPA vs. SK	1.11 (0.59,2.10)	⊕⊕⊕⊜† MODERATE	0.62 (0.02,24.42)	⊕⊕⊕⊜¹ MODERATE	1.09 (0.58,2.04)	⊕⊕⊕○ MODERATE
tPA+PAC vs. SK	1.34 (0.73,2.46)	⊕⊕⊕⊜† MODERATE	2.39 (0.29,19.51)	⊕⊕⊕⊜¶ MODERATE	1.39 (0.77,2.51)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. SK			0.88 (0.21,3.75)	⊕○○○ ^{††} VERY LOW	0.88 (0.21,3.75)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK			0.85 (0.41,1.76)	⊕⊕⊕⊜¶ MODERATE	0.85 (0.41,1.76)	⊕⊕⊕○ MODERATE
SK+PAC vs. SK+GP			1.13 (0.02,59.40)	⊕○○○ ^{,**} VERY LOW	1.13 (0.02,59.40)	⊕○○○ VERY LOW
TNK+PAC vs. SK+GP			1.61 (0.03,86.58)	⊕○○○ ^{††} VERY LOW	1.61 (0.03,86.58)	⊕○○○ VERY LOW
TNK+PAC+GP vs. SK+GP			1.81 (0.03,100.99)	⊕○○○ ^{††} VERY LOW	1.81 (0.03,100.99)	⊕○○○ VERY LOW
rPA+PAC vs. SK+GP			1.67 (0.03,89.75)	⊕○○○ ^{††} VERY LOW	1.67 (0.03,89.75)	⊕○○○ VERY LOW
rPA+PAC+GP vs. SK+GP			1.78 (0.03,97.03)	⊕○○○ ^{††} VERY LOW	1.78 (0.03,97.03)	⊕○○○ VERY LOW
tPA vs. SK+GP			2.08 (0.04,108.96)	⊕○○○ ^{,**} VERY LOW	2.08 (0.04,108.96)	⊕○○○ VERY LOW
tPA+PAC vs. SK+GP			2.65 (0.05,138.04)	⊕○○○ ^{,**} VERY LOW	2.65 (0.05,138.04)	⊕○○○ VERY LOW
tPA+PAC+GP vs. SK+GP			1.67 (0.03,108.05)	⊕○○○ ^{††} VERY LOW	1.67 (0.03,108.05)	⊕○○○ VERY LOW
tPA_acc+PAC vs. SK+GP			1.62 (0.03,86.40)	⊕○○○ ^{††} VERY LOW	1.62 (0.03,86.40)	⊕○○○ VERY LOW
TNK+PAC vs. SK+PAC			1.43 (0.96,2.14)	⊕⊕⊕⊜¹ MODERATE	1.43 (0.96,2.14)	⊕⊕⊕⊖ MODERATE
TNK+PAC+GP vs. SK+PAC			1.61 (0.82,3.14)	⊕○○○ ^{††} VERY LOW	1.61 (0.82,3.14)	⊕○○○ VERY LOW

Comparison	Direct e	evidence	Indirect	evidence	Network meta-analysis		
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	
rPA+PAC vs. SK+PAC	2.09 (1.02,4.28)	⊕⊕⊕⊕ HIGH	1.30 (0.82,2.04)	⊕⊕⊖⊜∥ LOW	1.49 (1.01,2.18)	⊕⊕⊕⊕ HIGH	
rPA+PAC+GP vs. SK+PAC			1.58 (0.92,2.71)	⊕⊕⊕○¶ MODERATE	1.58 (0.92,2.71)	⊕⊕⊕⊜ MODERATE	
tPA vs. SK+PAC	1.69 (0.83,3.44)	⊕⊕⊕⊕ НІСН	3.57 (0.48,26.66)	⊕⊕⊕○¶ MODERATE	1.85 (0.95,3.58)	⊕⊕⊕⊕ HIGH	
tPA+PAC vs. SK+PAC	2.15 (1.14,4.05)	⊕⊕⊕○* MODERATE	3.90 (0.89,17.07)	⊕⊕○○ ^{∥,**} LOW	2.35 (1.31,4.23)	⊕⊕⊕⊜ MODERATE	
tPA+PAC+GP vs. SK+PAC			1.48 (0.41,5.38)	⊕⊕⊖⊝∥ LOW	1.48 (0.41,5.38)	⊕⊕⊜⊝ LOW	
tPA_acc+PAC vs. SK+PAC	1.40 (1.04,1.88)	⊕⊕⊕⊕ HIGH	1.75 (0.82,3.73)	⊕⊕⊕○ MODERATE	1.44 (1.09,1.90)	⊕⊕⊕⊕ HIGH	
TNK+PAC+GP vs. TNK+PAC	1.13 (0.66,1.92)	⊕⊕⊕⊕ HIGH	Not estimable	Not estimable	1.13 (0.66,1.92)	⊕⊕⊕⊕ HIGH	
rPA+PAC vs. TNK+PAC			1.04 (0.68,1.60)	⊕⊕⊖⊝∥ LOW	1.04 (0.68,1.60)	⊕⊕⊜⊝ LOW	
rPA+PAC+GP vs. TNK+PAC			1.10 (0.62,1.96)	⊕○○○ ^{††} VERY LOW	1.10 (0.62,1.96)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC			1.29 (0.60,2.79)	⊕○○○ ^{††} VERY LOW	1.29 (0.60,2.79)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC			1.65 (0.82,3.33)	⊕⊕⊖⊝∥ LOW	1.65 (0.82,3.33)	⊕⊕⊜⊝ LOW	
tPA+PAC+GP vs. TNK+PAC			1.04 (0.29,3.78)	⊕⊕⊖⊝∥ LOW	1.04 (0.29,3.78)	⊕⊕⊜⊝ LOW	
tPA_acc+PAC vs. TNK+PAC	1.01 (0.75,1.35)	⊕⊕⊕○* MODERATE	Not estimable	Not estimable	1.01 (0.75,1.35)	⊕⊕⊕⊜ MODERATE	
rPA+PAC vs. TNK+PAC+GP			0.92 (0.46,1.83)	⊕○○○ ^{††} VERY LOW	0.92 (0.46,1.83)	⊕○○○ VERY LOW	
rPA+PAC+GP vs. TNK+PAC+GP			0.98 (0.45,2.15)	⊕○○○ ^{††} VERY LOW	0.98 (0.45,2.15)	⊕○○○ VERY LOW	
tPA vs. TNK+PAC+GP			1.15 (0.45,2.93)	⊕○○○ ^{††} VERY LOW	1.15 (0.45,2.93)	⊕○○○ VERY LOW	
tPA+PAC vs. TNK+PAC+GP			1.46 (0.61,3.54)	⊕○○○ ^{††} VERY LOW	1.46 (0.61,3.54)	⊕○○○ VERY LOW	
tPA+PAC+GP vs. TNK+PAC+GP			0.92 (0.23,3.73)	⊕○○○ ^{††} VERY LOW	0.92 (0.23,3.73)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. TNK+PAC+GP			0.90 (0.49,1.65)	⊕⊕⊕○¶ MODERATE	0.90 (0.49,1.65)	⊕⊕⊕⊜ MODERATE	
rPA+PAC+GP vs. rPA+PAC	1.06 (0.72,1.56)	⊕⊕⊕⊜† MODERATE	Not estimable	Not estimable	1.06 (0.72,1.56)	⊕⊕⊕○ MODERATE	
tPA vs. rPA+PAC			1.24 (0.58,2.65)	⊕⊕⊕○ MODERATE	1.24 (0.58,2.65)	⊕⊕⊕○ MODERATE	
tPA+PAC vs. rPA+PAC	9.00 (0.49,165.75)	⊕○○○ ^{†,‡} VERY LOW	1.43 (0.71,2.90)	⊕⊕⊖⊝∥ LOW	1.59 (0.80,3.15)	⊕⊕○○ LOW	
tPA+PAC+GP vs. rPA+PAC			1.00 (0.27,3.66)	⊕○○○ VERY LOW	1.00 (0.27,3.66)	⊕○○○ VERY LOW	
tPA_acc+PAC vs. rPA+PAC	1.03 (0.72,1.45)	⊕⊕⊖⊜*,† LOW	0.74 (0.35,1.59)	ФФФ HIGH	0.97 (0.71,1.33)	⊕⊕⊕⊕ HIGH	
tPA vs. rPA+PAC+GP			1.17 (0.50,2.74)	⊕○○○ ^{††} VERY LOW	1.17 (0.50,2.74)	⊕○○○ VERY LOW	

Comparison	Direct o	evidence	Indirect	evidence	Network m	eta-analysis
	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence	Risk ratio (95% confidence interval)	Quality of evidence
tPA+PAC vs. rPA+PAC+GP			1.49 (0.68,3.28)	⊕⊕⊖⊜∥ LOW	1.49 (0.68,3.28)	⊕⊕⊖⊝ LOW
tPA+PAC+GP vs. rPA+PAC+GP			0.94 (0.24,3.64)	⊕○○○ ^{††} VERY LOW	0.94 (0.24,3.64)	⊕○○○ VERY LOW
tPA_acc+PAC vs. rPA+PAC+GP			0.91 (0.56,1.50)	⊕⊕⊖⊜∥ LOW	0.91 (0.56,1.50)	⊕⊕⊖⊖ LOW
tPA+PAC vs. tPA	1.22 (0.69,2.16)	⊕⊕⊕○† MODERATE	3.34 (0.25,45.18)	⊕⊕○○¶** LOW	1.27 (0.73,2.23)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. tPA			0.80 (0.19,3.41)	⊕○○○ ^{††} VERY LOW	0.80 (0.19,3.41)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA			0.78 (0.38,1.59)	⊕⊕⊕○¶ MODERATE	0.78 (0.38,1.59)	⊕⊕⊕○ MODERATE
tPA+PAC+GP vs. tPA+PAC			0.63 (0.15,2.59)	⊕○○○ VERY LOW	0.63 (0.15,2.59)	⊕○○○ VERY LOW
tPA_acc+PAC vs. tPA+PAC	0.19 (0.01,3.99)	⊕⊕⊖⊜§ LOW	0.65 (0.34,1.24)	⊕⊕⊖⊜∥ LOW	0.61 (0.32,1.16)	⊕⊕⊖⊝ LOW
tPA_acc+PAC vs. tPA+PAC+GP		⊕○○○ ^{†,‡} VERY LOW	0.97 (0.28,3.42)	Not estimable	0.97 (0.28,3.42)	⊕○○○ VERY LOW

^{*}Inadequate concealment of allocation and unblinded unvalidated assessment by the physician; † Heterogeneity of outcome definition or outcome assessing between each trial; ‡Wide confidence intervals and few events; \$ Large I²; ¶Contributing direct evidence of moderate quality; ¶Contributing direct evidence of low or very low quality; **Imprecision; †† Indirect estimate from order loops higher than first order.

Appendix 13 Subgroup analyses

As the hypothesis that patients may not gain the full benefit in using of fibrinolytic agent because of bleeding side effect. According to the clinical practice guidelines and several publications of risk scores in prediction of major bleeding across the various types of patient with acute coronary syndromes; advanced age, female gender, renal impairment, and Asian participants were strongly recognized as a potent bleeding risk character. 1,2,5-8,92 Therefore, subgroup analysis was done based on those characters.

eTable 13.1 Subgroup analyses for the risk of all-cause mortality within 30-35 days with treatment options in differing populations of patients with STEMI.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to accelerated infusion alteplase plus parenteral anticoagulants before (standard analysis) and after subgroup analyses.

Treatment	Standard analysis	SUCRA rank	Advanced age (≥65- 75 years)	SUCRA rank	Female	SUCRA rank	Renal impairment	SUCRA rank	Trials with Asian participants	SUCRA rank
tPA+PAC+GP	0.72 (0.36,1.42)	1	N/A		N/A		N/A		N/A	
rPA+PAC+GP	0.99 (0.84,1.16)	2	N/A		N/A		N/A		N/A	
tPA_acc+PAC (ref)	1	3	1	1	N/A		N/A		1	1
TNK+PAC	1.01 (0.90,1.13)	4	1.49 (0.53,4.16)	4	N/A		N/A		1.25 (0.63,2.50)	2
SK+GP	0.84 (0.23,3.06)	5	N/A		N/A		N/A		N/A	
rPA+PAC	1.04 (0.94,1.15)	6	1.14 (0.90,1.43)	3	N/A		N/A		N/A	
SK+PAC	1.14 (1.05,1.24)	7	1.07 (0.93,1.23)	2	N/A		N/A		N/A	
TNK+PAC+GP	1.16 (0.92,1.46)	8	N/A		N/A		N/A		1.46 (0.56,3.80)	3
tPA	1.24 (1.07,1.43)	9	N/A		N/A		N/A		N/A	
tPA+PAC	1.26 (1.10,1.45)	10	N/A		N/A		N/A		N/A	
SK	1.30 (1.12,1.50)	11	N/A		N/A		N/A		N/A	
PAC	1.49 (1.24,1.79)	12	N/A		N/A		N/A		N/A	
Global inconsistency chi ² (P value)	10.92 (P=0.1422)		0.57 (P=0.4508)		N/A		N/A		0.40 (P=0.5272)	
Number of studies	39		4		1		0		4	

eTable 13.2 Subgroup analyses for the risk of major bleeding with treatment options in differing populations of patients with STEMI.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after subgroup analyses.

Treatment	Standard analysis	SUCRA rank	Advanced age (≥65- 75 years)	SUCRA rank	Female	SUCRA rank	Renal impairment	SUCRA rank	Trials with Asian participants	SUCRA rank
PAC	0.35 (0.16,0.75)	1	N/A		N/A		N/A		N/A	
tPA	0.42 (0.25,0.70)	2	N/A		N/A		N/A		N/A	
SK	0.51 (0.31,0.83)	3	N/A		N/A		N/A		N/A	
tPA+PAC	0.63 (0.44,0.92)	4	N/A		N/A		N/A		N/A	
TNK+PAC	0.79 (0.63,1.00)	5	N/A		N/A		N/A		0.89 (0.42, 1.88)	1
rPA+PAC	0.88 (0.69,1.12)	6	N/A		N/A		N/A		N/A	
SK+PAC	0.92 (0.70,1.21)	7	N/A		N/A		N/A		N/A	
tPA_acc+PAC (ref)	1	8	N/A		N/A		N/A		1	2
tPA+PAC+GP	1.27 (0.64,2.53)	9	N/A		N/A		N/A		N/A	
TNK+PAC+GP	1.47 (1.10,1.98)	10	N/A		N/A		N/A		1.53 (0.60, 3.90)	3
rPA+PAC+GP	1.88 (1.24,2.86)	11	N/A		N/A		N/A		N/A	
SK+GP	8.82 (0.52,151.04)	12	N/A		N/A		N/A		N/A	
Global inconsistency chi ² (P value)	3.89 (P=0.6919)		N/A		N/A		N/A		0.10 (P=0.7546)	
Number of studies	32		0		0		0		4	

Appendix 14 Sensitivity analyses

eTable 14.1 Sensitivity analyses for the risk of all-cause mortality within 30-35 days with treatment options in differing populations of patients with STEMI.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after sensitivity analyses.

Treatment	Standard analysis	SUCRA rank	Trial giving ASA in treatment protocol	SUCRA rank	Excluding trial conducted in China	SUCRA rank
tPA+PAC+GP	0.72 (0.36,1.42)	1	0.72 (0.36,1.42)	1	0.72 (0.36,1.42)	1
rPA+PAC+GP	0.99 (0.84,1.16)	2	0.99 (0.84,1.16)	2	0.99 (0.84,1.16)	2
tPA_acc+PAC (ref)	1	3	1	3	1	3
TNK+PAC	1.01 (0.90,1.13)	4	1.02 (0.90,1.13)	4	1.01 (0.89,1.12)	4
SK+GP	0.84 (0.23,3.06)	5	0.84 (0.23,3.06)	5	0.84 (0.23,3.06)	5
rPA+PAC	1.04 (0.94,1.15)	6	1.04 (0.94,1.15)	6	1.04 (0.94,1.15)	6
SK+PAC	1.14 (1.05,1.24)	7	1.14 (1.05,1.24)	7	1.14 (1.05,1.24)	7
TNK+PAC+GP	1.16 (0.92,1.46)	8	1.16 (0.92,1.46)	8	1.15 (0.91,1.44)	8
tPA	1.24 (1.07,1.43)	9	1.24 (1.07,1.43)	9	1.24 (1.07,1.43)	9
tPA+PAC	1.26 (1.10,1.45)	10	1.26 (1.10,1.45)	10	1.26 (1.10,1.45)	10
SK	1.30 (1.12,1.50)	11	1.30 (1.12,1.50)	11	1.30 (1.12,1.50)	11
PAC	1.49 (1.24,1.79)	12	1.49 (1.24,1.80)	12	1.49 (1.24,1.79)	12
Global inconsistency chi ² (P value)	10.92 (P=0.1422)		9.76 (P=0.2025)		10.92 (P=0.1422)	
Number of studies	39		35		38	

eTable 14.1 Table continued.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after sensitivity analyses.

Treatment	Standard analysis	SUCRA rank	Trial reporting time to receive fibrinolytics ≤4 hrs	SUCRA rank	Trial reporting time to receive fibrinolytics ≤6 hrs	SUCRA rank	Excluding trial with small sample size (<25 th percentiles)	SUCRA rank
tPA+PAC+GP	0.72 (0.36,1.42)	1	0.81 (0.37,1.81)	1	0.82 (0.36,1.85)	1	0.72 (0.31,1.65)	1
rPA+PAC+GP	0.99 (0.84,1.16)	2	0.96 (0.81,1.14)	2	0.95 (0.67,1.35)	2	0.99 (0.84,1.16)	2
tPA_acc+PAC (ref)	1	3	1	4	1	4	1	3
TNK+PAC	1.01 (0.90,1.13)	4	1.01 (0.90,1.13)	5	1.03 (0.81,1.30)	5	1.01 (0.90,1.13)	4
SK+GP	0.84 (0.23,3.06)	5	N/A		N/A		0.84 (0.23,3.06)	5
rPA+PAC	1.04 (0.94,1.15)	6	1.01 (0.90,1.14)	6	1.00 (0.77,1.29)	3	1.04 (0.94,1.15)	6
SK+PAC	1.14 (1.05,1.24)	7	1.16 (1.06,1.27)	10	1.10 (0.88,1.37)	7	1.14 (1.05,1.24)	7
TNK+PAC+GP	1.16 (0.92,1.46)	8	1.17 (0.92,1.46)	9	1.16 (0.81,1.67)	9	1.16 (0.92,1.46)	8
tPA	1.24 (1.07,1.43)	9	1.28 (0.58,2.82)	8	1.15 (0.81,1.64)	8	1.24 (1.07,1.43)	9
tPA+PAC	1.26 (1.10,1.45)	10	0.92 (0.61,1.41)	3	1.09 (0.67,1.77)	6	1.26 (1.10,1.45)	10
SK	1.30 (1.12,1.50)	11	1.21 (0.63,2.32)	7	1.19 (0.82,1.73)	10	1.30 (1.12,1.50)	11
PAC	1.49 (1.24,1.79)	12	1.69 (1.06,2.71)	11	1.48 (1.02,2.15)	11	1.48 (1.24,1.78)	12
Global inconsistency chi ² (P value)	10.92 (P=0.1422)		5.17 (P=0.1599)		11.02 (P=0.1376)		10.91 (P=0.1424)	
Number of studies	39		31		36		36	

eTable 14.1 Table continued.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after sensitivity analyses.

Treatment	Standard analysis	SUCRA rank	Excluding trial with small sample size (<75 th percentiles)	SUCRA rank	Excluding trial with adequate concealed allocation	SUCRA rank	Excluding trial with overall high risk of bias	SUCRA rank
tPA+PAC+GP	0.72 (0.36,1.42)	1	N/A		0.66 (0.23,1.89)	1	0.66 (0.31,1.41)	1
rPA+PAC+GP	0.99 (0.84,1.16)	2	1.00 (0.85,1.17)	3	1.00 (0.85,1.17)	4	1.00 (0.86,1.17)	3
tPA_acc+PAC (ref)	1	3	1	1	1	3	1	2
TNK+PAC	1.01 (0.90,1.13)	4	1.00 (0.89,1.12)	2	1.00 (0.89,1.12)	2	1.01 (0.90,1.13)	4
SK+GP	0.84 (0.23,3.06)	5	N/A		N/A		0.84 (0.23,3.06)	5
rPA+PAC	1.04 (0.94,1.15)	6	1.05 (0.95,1.16)	4	1.05 (0.95,1.16)	5	1.05 (0.95,1.16)	6
SK+PAC	1.14 (1.05,1.24)	7	1.15 (1.06,1.25)	5	1.15 (1.06,1.25)	7	1.14 (1.05,1.24)	7
TNK+PAC+GP	1.16 (0.92,1.46)	8	1.16 (0.91,1.47)	6	1.14 (0.91,1.44)	6	1.16 (0.92,1.46)	8
tPA	1.24 (1.07,1.43)	9	1.26 (1.09,1.47)	7	1.28 (1.10,1.49)	8	1.23 (1.06,1.43)	9
tPA+PAC	1.26 (1.10,1.45)	10	1.32 (1.14,1.53)	8	1.34 (1.16,1.56)	9	1.27 (1.10,1.46)	10
SK	1.30 (1.12,1.50)	11	1.33 (1.15,1.55)	9	1.34 (1.16,1.56)	10	1.30 (1.12,1.50)	11
PAC	1.49 (1.24,1.79)	12	1.53 (1.26,1.85)	10	1.61 (1.30,1.98)	11	1.47 (1.22,1.77)	12
Global inconsistency chi ² (P value)	10.92 (P=0.1422)		1.32 (P=0.8597)		2.18 (P=0.8242)		9.46 (P=0.2215)	
Number of studies	39		14		21		33	

eTable 14.2 Sensitivity analyses for the risk of major bleeding with treatment options in differing populations of patients with STEMI.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after subgroup analyses.

Treatment	Standard analysis	SUCRA rank	Trial giving ASA in treatment protocol	SUCRA rank	Excluding trial conducted in China	SUCRA rank	Trial with bleeding compatible with BARC type 3b or 3c	SUCRA rank
PAC	0.35 (0.16,0.75)	1	0.36 (0.17,0.77)	1	0.35 (0.16,0.78)	1	N/A	
tPA	0.42 (0.25,0.70)	2	0.42 (0.25,0.71)	2	0.43 (0.25,0.73)	2	0.99 (0.29,3.36)	5
SK	0.51 (0.31,0.83)	3	0.51 (0.31,0.84)	3	0.51 (0.31,0.86)	3	0.52 (0.09,3.15)	2
tPA+PAC	0.63 (0.44,0.92)	4	0.64 (0.44,0.94)	4	0.64 (0.43,0.94)	4	0.83 (0.38,1.83)	3
TNK+PAC	0.79 (0.63,1.00)	5	0.79 (0.63,1.00)	5	0.76 (0.55,1.04)	5	0.72 (0.50,1.04)	1
rPA+PAC	0.88 (0.69,1.12)	6	0.88 (0.69,1.12)	6	0.88 (0.67,1.15)	6	0.90 (0.61,1.34)	4
SK+PAC	0.92 (0.70,1.21)	7	0.92 (0.70,1.21)	7	0.93 (0.69,1.25)	7	1.00 (0.59,1.69)	7
tPA_acc+PAC (ref)	1	8	1	8	1	8	1	6
tPA+PAC+GP	1.27 (0.64,2.53)	9	1.27 (0.64,2.53)	9	1.27 (0.63,2.55)	9	1.27 (0.61,2.66)	8
TNK+PAC+GP	1.47 (1.10,1.98)	10	1.47 (1.10,1.98)	10	1.44 (1.00,2.08)	11	1.44 (0.87,2.37)	9
rPA+PAC+GP	1.88 (1.24,2.86)	11	1.88 (1.24,2.86)	11	1.89 (1.20,2.97)	10	1.94 (1.08,3.49)	10
SK+GP	8.82 (0.52,151.04)	12	8.88 (0.52,152.04)	12	8.91 (0.52,154.13)	12	9.00 (0.32,255.52)	11
Global inconsistency chi ² (P value)	3.89 (P=0.6919)		4.45 (P=0.6163)		3.69 (P=0.7188)		0.42 (P=0.5189)	
Number of studies	32		34		31		21	

eTable 14.2 Table continued.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after subgroup analyses.

Treatment	Standard analysis	SUCRA rank	Trial reporting time to receive fibrinolytics ≤4 hrs	SUCRA rank	Trial reporting time to receive fibrinolytics ≤6 hrs	SUCRA rank	Excluding trial with small sample size (<25 th percentiles)	SUCRA rank
PAC	0.35 (0.16,0.75)	1	0.12 (0.01,2.75)	1	0.13 (0.01,2.76)	2	0.35 (0.16,0.76)	1
tPA	0.42 (0.25,0.70)	2	0.71 (0.23,2.18)	5	0.42 (0.25,0.70)	1	0.43 (0.25,0.72)	2
SK	0.51 (0.31,0.83)	3	0.53 (0.09,3.14)	3	0.51 (0.31,0.83)	3	0.51 (0.31,0.84)	3
tPA+PAC	0.63 (0.44,0.92)	4	0.59 (0.31,1.15)	2	0.63 (0.44,0.92)	4	0.63 (0.43,0.92)	4
TNK+PAC	0.79 (0.63,1.00)	5	0.76 (0.57,1.02)	4	0.79 (0.62,1.00)	5	0.79 (0.62,1.00)	5
rPA+PAC	0.88 (0.69,1.12)	6	0.85 (0.60,1.19)	6	0.88 (0.69,1.12)	6	0.88 (0.68,1.12)	6
SK+PAC	0.92 (0.70,1.21)	7	1.02 (0.64,1.63)	8	0.92 (0.70,1.22)	7	0.92 (0.70,1.22)	7
tPA_acc+PAC (ref)	1	8	1	7	1	8	1	8
tPA+PAC+GP	1.27 (0.64,2.53)	9	1.28 (0.62,2.63)	9	1.28 (0.64,2.58)	9	1.29 (0.63,2.64)	9
TNK+PAC+GP	1.47 (1.10,1.98)	10	1.49 (0.95,2.33)	10	1.47 (1.09,1.99)	10	1.47 (1.09,2.00)	10
rPA+PAC+GP	1.88 (1.24,2.86)	11	1.82 (1.07,3.09)	11	1.88 (1.23,2.87)	11	1.88 (1.23,2.88)	11
SK+GP	8.82 (0.52,151.04)	12	N/A		N/A		8.85 (0.52,151.68)	12
Global inconsistency chi ² (P value)	3.89 (P=0.6919)		1.31 (P=0.5207)		3.86 (P=0.6957)		4.33 (P=0.6322)	
Number of studies	32	_	25		29		29	

eTable 14.2 Table continued.

The following table shows the effect sizes (risk ratio) and the rank order (SUCRA ranks) compared to alteplase plus parenteral anticoagulants before (standard analysis) and after subgroup analyses.

Treatment	Standard analysis	SUCRA rank	Excluding trial with small sample size (<75 th percentiles)	SUCRA rank	Excluding trial with adequate concealed allocation	SUCRA rank	Excluding trial with overall high risk of bias	SUCRA rank
PAC	0.35 (0.16,0.75)	1	0.38 (0.15,0.97)	2	0.33 (0.13,0.87)	1	0.35 (0.16,0.75)	2
tPA	0.42 (0.25,0.70)	2	0.37 (0.19,0.71)	1	0.43 (0.22,0.87)	2	0.35 (0.20,0.59)	1
SK	0.51 (0.31,0.83)	3	0.50 (0.27,0.95)	3	0.51 (0.26,1.00)	3	0.48 (0.29,0.78)	3
tPA+PAC	0.63 (0.44,0.92)	4	0.64 (0.36,1.16)	4	0.60 (0.33,1.11)	4	0.63 (0.43,0.92)	4
TNK+PAC	0.79 (0.63,1.00)	5	0.73 (0.50,1.07)	5	0.72 (0.49,1.05)	5	0.79 (0.62,1.01)	5
rPA+PAC	0.88 (0.69,1.12)	6	0.83 (0.59,1.19)	6	0.83 (0.56,1.23)	6	0.82 (0.63,1.08)	6
SK+PAC	0.92 (0.70,1.21)	7	0.93 (0.64,1.36)	7	0.94 (0.62,1.43)	8	0.88 (0.66,1.17)	7
tPA_acc+PAC (ref)	1	8	1	8	1	9	1	8
tPA+PAC+GP	1.27 (0.64,2.53)	9	N/A		0.91 (0.28,3.01)	7	1.50 (0.65,3.48)	9
TNK+PAC+GP	1.47 (1.10,1.98)	10	1.27 (0.74,2.17)	9	1.44 (0.86,2.41)	10	1.47 (1.09,1.98)	10
rPA+PAC+GP	1.88 (1.24,2.86)	11	1.77 (0.99,3.20)	10	1.76 (0.92,3.39)	11	1.73 (1.10,2.72)	11
SK+GP	8.82 (0.52,151.04)	12	N/A		N/A		8.28 (0.48,141.87)	12
Global inconsistency chi ² (P value)	3.89 (P=0.6919)		0.63 (P=0.7315)		2.47 (P=0.6495)		1.81 (P=0.9360)	
Number of studies	32		11		18		27	

Appendix 15 Comparison-adjusted funnel plot for each outcome from the network meta-analyses

eFigure 15.1 Comparison-adjusted funnel plot for the network of all-cause mortality within 30-35 days in all comparisons.

eTable 15.2 Comparison-adjusted funnel plot for the network of major bleeding in all comparisons.

Abbreviation: A=PAC, B=SK, C=SK+GP, D=SK+PAC, E=TNK+PAC, F=TNK+PAC+GP, $G=rPA+PAC,\ H=rPA+PAC+GP,\ I=tPA,\ J=tPA+PAC,\ K=tPA+PAC+GP,\ L=tPA_acc+PAC.$

• G vs H

- I vs J

• G vs L

Appendix 16 Assessment of small study effects by funnel plots and Egger's test in each outcome.

eTable 16.1 Assessment of small study effects by Egger's test for each pairwise in each outcome.

Outcome		Con	nparison	Number of studies	P
Mortality within 30-35 days	SK+GP	vs.	SK	1	
	SK+PAC	vs.	PAC	4	0.165
	SK+PAC	vs.	SK	2	
	TNK+PAC+GP	vs.	TNK+PAC	3	0.472
	rPA+PAC	VS.	SK+PAC	1	
	rPA+PAC+GP	VS.	rPA+PAC	3	0.890
	tPA	VS.	SK	1	
	tPA	VS.	SK+PAC	1	
	tPA+PAC	vs.	PAC	4	0.822
	tPA+PAC	VS.	SK	1	
	tPA+PAC	VS.	SK+PAC	6	0.001
	tPA+PAC	VS.	rPA+PAC	1	
	tPA+PAC	VS.	tPA	3	0.158
	tPA_acc+PAC	VS.	SK+PAC	1	
	tPA_acc+PAC	vs.	TNK+PAC	4	0.513
	tPA_acc+PAC	vs.	rPA+PAC	2	
	tPA_acc+PAC	vs.	tPA+PAC	1	
	tPA_acc+PAC	VS.	tPA+PAC+GP	4	0.155
Major bleeding	SK+GP	VS.	SK	1	
	SK+PAC	VS.	SK	2	
	TNK+PAC+GP	VS.	TNK+PAC	3	0.211
	rPA+PAC	VS.	SK+PAC	1	
	rPA+PAC+GP	VS.	rPA+PAC	3	0.786
	tPA	VS.	SK	1	
	tPA	VS.	SK+PAC	1	
	tPA+PAC	vs.	PAC	2	
	tPA+PAC	vs.	SK	1	
	tPA+PAC	vs.	SK+PAC	5	0.679
	tPA+PAC	vs.	rPA+PAC	1	
	tPA+PAC	VS.	tPA	3	0.904
	tPA_acc+PAC	vs.	SK+PAC	1	
	tPA_acc+PAC	vs.	TNK+PAC	4	0.817
	tPA_acc+PAC	vs.	rPA+PAC	2	
	tPA_acc+PAC	vs.	tPA+PAC	1	
	tPA_acc+PAC	vs.	tPA+PAC+GP	3	0.754
Recurrent infarction	SK+GP	vs.	SK	1	
	SK+PAC	vs.	PAC	3	0.764

Outcome	Comparison			Number of studies	P
	SK+PAC	vs.	SK	2	
	TNK+PAC+GP	vs.	TNK+PAC	3	0.605
	rPA+PAC	VS.	SK+PAC	1	
	rPA+PAC+GP	vs.	rPA+PAC	3	0.937
	tPA	vs.	SK	1	
	tPA	VS.	SK+PAC	1	
	tPA+PAC	VS.	PAC	4	0.485
	tPA+PAC	vs.	SK	1	
	tPA+PAC	vs.	SK+PAC	5	0.667
	tPA+PAC	vs.	rPA+PAC	1	
	tPA+PAC	vs.	tPA	4	0.636
	tPA_acc+PAC	vs.	SK+PAC	1	
	tPA_acc+PAC	vs.	TNK+PAC	4	0.844
	tPA_acc+PAC	vs.	rPA+PAC	2	
	tPA_acc+PAC	vs.	tPA+PAC	1	
	tPA_acc+PAC	vs.	tPA+PAC+GP	2	
Total stroke	SK+GP	vs.	SK	1	
	SK+PAC	vs.	SK	2	
	TNK+PAC+GP	vs.	TNK+PAC	1	
	rPA+PAC	vs.	SK+PAC	1	
	rPA+PAC+GP	vs.	rPA+PAC	2	
	tPA	vs.	SK	1	
	tPA	vs.	SK+PAC	1	
	tPA+PAC	vs.	PAC	3	0.556
	tPA+PAC	vs.	SK	1	
	tPA+PAC	vs.	SK+PAC	2	
	tPA+PAC	vs.	rPA+PAC	1	
	tPA+PAC	vs.	tPA	1	
	tPA_acc+PAC	vs.	SK+PAC	1	
	tPA_acc+PAC	vs.	TNK+PAC	3	0.620
	tPA_acc+PAC	vs.	rPA+PAC	2	
	tPA_acc+PAC	vs.	tPA+PAC	1	
	tPA_acc+PAC	vs.	tPA+PAC+GP	1	
Hemorrhagic stroke	SK+PAC	vs.	PAC	1	
	SK+PAC	vs.	SK	2	
	TNK+PAC+GP	vs.	TNK+PAC	2	
	rPA+PAC	vs.	SK+PAC	1	
	rPA+PAC+GP	vs.	rPA+PAC	3	0.911
	tPA	vs.	SK	1	
	tPA	vs.	SK+PAC	1	
	tPA+PAC	vs.	PAC	4	0.791
	tPA+PAC	vs.	SK	1	

Outcome	Comparison			Number of studies	P
	tPA+PAC	vs.	SK+PAC	4	0.193
	tPA+PAC	vs.	rPA+PAC	1	
	tPA+PAC	vs.	tPA	3	0.941
	tPA_acc+PAC	VS.	SK+PAC	1	
	tPA_acc+PAC	VS.	TNK+PAC	4	0.933
	tPA_acc+PAC	VS.	rPA+PAC	2	
	tPA_acc+PAC	VS.	tPA+PAC	1	
	tPA_acc+PAC	VS.	tPA+PAC+GP	3	0.159

eFigure 16.1 Assessment of small study effects by contour-enhanced funnel plot of all-cause mortality within 30-35 days for treatment pairwise SK+PAC vs tPA+PAC.

eFigure 16.2 Assessment of small study effects by funnel plots of all-cause mortality within 30-35 days for treatment pairwise SK+PAC vs tPA+PAC

Appendix 17 Reference

- 1. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol* 2013; **61**(4): e78-140.
- 2. Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. *Eur Heart J* 2012; **33**(20): 2569-619.
- 3. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *Bmj* 2011; **343**: d5928.
- 4. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. *PLoS One* 2013; **8**(10): e76654.
- 5. Subherwal S, Bach RG, Chen AY, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. *Circulation* 2009; **119**(14): 1873-82.
- 6. Nikolsky E, Mehran R, Dangas G, et al. Development and validation of a prognostic risk score for major bleeding in patients undergoing percutaneous coronary intervention via the femoral approach. *Eur Heart J* 2007; **28**(16): 1936-45.
- 7. Moscucci M, Fox KA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). *Eur Heart J* 2003; **24**(20): 1815-23.
- 8. Mehran R, Pocock SJ, Nikolsky E, et al. A risk score to predict bleeding in patients with acute coronary syndromes. *J Am Coll Cardiol* 2010; **55**(23): 2556-66.
- 9. Macdonald F. 80% of data in Chinese clinical trials have been fabricated. 1 OCT 2016. http://www.sciencealert.com/80-of-the-data-in-chinese-clinical-trial-is-fabricated.
- 10. Mehran R, Rao SV, Bhatt DL, et al. Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. *Circulation* 2011; **123**(23): 2736-47.
- 11. Simoons M, Krzeminska-Pakula M, Alonso A, et al. Improved reperfusion and clinical outcome with enoxaparin as an adjunct to streptokinase thrombolysis in acute myocardial infarction. The AMI-SK study. *Eur Heart J* 2002; **23**(16): 1282-90.
- 12. Van de Werf F, Adgey J, Ardissino D, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: The ASSENT-2 double-blind randomised trial. *Lancet* 1999; **354**(9180): 716-22.
- 13. Van De Werf FJ. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: The ASSENT-3 randomised trial in acute myocardial infarction. *Lancet* 2001; **358**(9282): 605-13.
- 14. Wallentin L, Goldstein P, Armstrong PW, et al. Efficacy and safety of tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: The assessment of the safety and efficacy of a new thrombolytic regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. *Circulation* 2003; **108**(2): 135-42.
- 15. Wallentin L, Bergstrand L, Dellborg M, et al. Low molecular weight heparin (dalteparin) compared to unfractionated heparin as an adjunct to rt-PA (alteplase) for improvement of coronary artery patency in acute myocardial infarction The ASSENT plus study. *European Heart Journal* 2003; **24**(10): 897-908.
- 16. Frostfeldt G, Ahlberg G, Gustafsson G, et al. Low molecular weight heparin (Dalteparin) as adjuvant treatment to thrombolysis in acute myocardial infarction A pilot study: Biochemical markers in acute coronary syndromes (BIOMACS II). *Journal of the American College of Cardiology* 1999; **33**(3): 627-33.
- 17. Bleich SD, Nichols TC, Schumacher RR, Cooke DH, Tate DA, Teichman SL. Effect of heparin on coronary arterial patency after thrombolysis with tissue plasminogen activator in acute myocardial infarction. *Am J Cardiol* 1990; **66**(20): 1412-7.
- 18. Taylor GJ, Moses HW, Koester D, et al. A difference between front-loaded streptokinase and standard-dose recombinant tissue-type plasminogen activator in preserving left ventricular function after acute myocardial infarction (the Central Illinois Thrombolytic Therapy Study). *Am J Cardiol* 1993; **72**(14): 1010-4.
- 19. Cherng WJ, Chiang CW, Kuo CT, Lee CP, Lee YS. A comparison between intravenous streptokinase and tissue plasminogen activator with early intravenous heparin in acute myocardial infarction. *Am Heart J* 1992; **123**(4 Pt 1): 841-6.
- 20. Van d WF, Adgey A, Agnelli G, Aylward P. A comparison of continuous infusion of alteplase with double-bolus administration for acute myocardial infarction. The Continuous Infusion versus Double-Bolus Administration of Alteplase (COBALT) Investigators. *Nejm*, 1997.

<u>http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/231/CN-00870231/frame.html</u> (accessed September 6, 2016).

- 21. Binbrek AS, Rao NS, Neimane D, Hatou E, Abdulali S, Sobel BE. Comparison of rapidity of coronary recanalization in men with tenecteplase versus alteplase in acute myocardial infarction. *The American journal of cardiology*, 2004. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/291/CN-00468291/frame.html (accessed September 2, 2016).
- 22. Cortadellas J, Figueras J, Curos A, et al. [Intravenous streptokinase in acute myocardial infarction. Reduction of early in-hospital mortality]. *Rev Esp Cardiol* 1989; **42**(4): 254-61.
- 23. Curylo AM, Kawecka-Jaszcz K, Czarnecka D, Grodecki J, Drozdz R, Naskalski JW. Nadroparin calcium in the treatment of acute myocardial infarction. *Medical Science Monitor* 1997; **3**(5): 700-3.
- 24. Bleich SD, Adgey AA, McMechan SR, Love TW. An angiographic assessment of alteplase: double-bolus and front-loaded infusion regimens in myocardial infarction. DouBLE Study Investigators. Double Bolus Lysis Efficacy. *Am Heart J* 1998; **136**(4 Pt 1): 741-8.
- 25. Dwivedi SK, Saran RK, Narain VS, Bansal S, Gupta R, Puri VK. Accelerated infusion of streptokinase in acute myocardial infarction results in better TIMI flow grade in infarct-related artery. *Indian heart journal*, 2000. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/050/CN-00278050/frame.html (accessed August 28, 2016).
- 26. Verstraete M, Bory M, Collen D. Randomised trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. *Lancet* 1985; **1**(8433): 842-7.
- 27. de Bono DP, Simoons ML, Tijssen J, et al. Effect of early intravenous heparin on coronary patency, infarct size, and bleeding complications after alteplase thrombolysis: results of a randomised double blind European Cooperative Study Group trial. *Br Heart J* 1992; **67**(2): 122-8.
- 28. Van de Werf F, Arnold AE. Intravenous tissue plasminogen activator and size of infarct, left ventricular function, and survival in acute myocardial infarction. *Bmj* 1988; **297**(6660): 1374-9.
- 29. Antman EM, Louwerenburg HW, Baars HF, et al. Enoxaparin as adjunctive antithrombin therapy for ST-elevation myocardial infarction: results of the ENTIRE-Thrombolysis in Myocardial Infarction (TIMI) 23 Trial. *Circulation* 2002; **105**(14): 1642-9.
- 30. Fung AY, Lorch G, Cambier PA, et al. Efegatran sulfate as an adjunct to streptokinase versus heparin as an adjunct to tissue plasminogen activator in patients with acute myocardial infarction. ESCALAT Investigators. *Am Heart J* 1999; **138**(4 Pt 1): 696-704.
- 31. Kontny F, Dale J, Abildgaard U, Pedersen TR. Randomized trial of low molecular weight heparin (Dalteparin) in prevention of left ventricular thrombus formation and arterial embolism after acute anterior myocardial infarction: The fragmin in acute myocardial infarction (FRAMI) study. *Journal of the American College of Cardiology* 1997; **30**(4): 962-9.
- 32. Ghaffari S, Kazemi B, Golzari IG. Efficacy of a New Accelerated Streptokinase Regime in Acute Myocardial Infarction: A Double Blind Randomized Clinical Trial. *Cardiovasc Ther* 2013; **31**(1): 53-9.
- 33. Feruglio GA, Lotto A, Rovelli F, et al. GISSI-2: A factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12,490 patients with acute myocardial infarction. *Lancet* 1990; **336**(8707): 65-71.
- 34. Van de Werf F, Wilcox RG, Barbash GI, et al. In-hospital mortality and clinical course of 20,891 patients with suspected acute myocardial infarction randomised between alteplase and streptokinase with or without heparin. *Lancet* 1990; **336**(8707): 71-5.
- 35. Topol E, Califf R, Van de Werf F, et al. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. *N Engl J Med* 1993; **329**(10): 673-82.
- 36. A comparison of reteplase with alteplase for acute myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO III) Investigators. *N Engl J Med* 1997; **337**(16): 1118-23.
- 37. Topol EJ. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: The GUSTO V randomised trial. *Lancet* 2001; **357**(9272): 1905-14.
- 38. Ross AM, Molhoek P, Lundergan C, et al. Randomized comparison of enoxaparin, a low-molecular-weight heparin, with unfractionated heparin adjunctive to recombinant tissue plasminogen activator thrombolysis and aspirin: Second Trial of Heparin and Aspirin Reperfusion Therapy (HART II). *Circulation* 2001; **104**(6): 648-52.
- 39. White HD, Aylward PE, Frey MJ, et al. Randomized, double-blind comparison of hirulog versus heparin in patients receiving streptokinase and aspirin for acute myocardial infarction (HERO). Hirulog Early Reperfusion/Occlusion (HERO) Trial Investigators. *Circulation* 1997; **96**(7): 2155-61.
- 40. White H, White HD, Simes RJ, et al. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: The HERO-2 randomised trial. *Lancet* 2001; **358**(9296): 1855-63.

- 41. Neuhaus KL, Molhoek GP, Zeymer U, et al. Recombinant hirudin (lepirudin) for the improvement of thrombolysis with streptokinase in patients with acute myocardial infarction: Results of the HIT-4 trial. *Journal of the American College of Cardiology* 1999; **34**(4): 966-73.
- 42. Ohman EM, Kleiman NS, Gacioch G, et al. Combined accelerated tissue-plasminogen activator and platelet glycoprotein IIb/IIIa integrin receptor blockade with Integrilin in acute myocardial infarction. Results of a randomized, placebo-controlled, dose-ranging trial. IMPACT-AMI Investigators. *Circulation* 1997; **95**(4): 846-54.
- 43. Wilcox RG. Randomised, double-blind comparison of reteplase double-bolus administration with streptokinase in acute myocardial infarction (INJECT): Trial to investigate equivalence. *Lancet* 1995; **346**(8971): 329-36.
- 44. Giugliano RP, Roe MT, Harrington RA, et al. Combination reperfusion therapy with eptifibatide and reduced-dose tenecteplase for ST-elevation myocardial infarction: Results of the integrilin and tenecteplase in acute myocardial infarction (INTEGRITI) phase II angiographic trial. *Journal of the American College of Cardiology* 2003; **41**(8): 1251-60.
- 45. Den Heijer P, Vermeer F, Ambrosioni E, et al. Evaluation of a weight-adjusted single-bolus plasminogen activator in patients with myocardial infarction: A double-blind, randomized angiographic trial of lanoteplase versus alteplase. *Circulation* 1998; **98**(20): 2117-25.
- 46. Wilcox RG, Antman E, Braunwald E, Skene A. Intravenous NPA for the treatment of infarcting myocardium early: InTIME-II, a double-blind comparison on of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. *European Heart Journal* 2000; **21**(24): 2005-13.
- 47. Brener SJ, Zeymer U, Adgey AAJ, et al. Eptifibatide and low-dose tissue plasminogen activator in acute myocardial infarction: The Integrilin and Low-Dose Thrombolysis in Acute Myocardial Infarction (INTRO AMI) trial. *Journal of the American College of Cardiology* 2002; **39**(3): 377-86.
- 48. Schroder R, Neuhaus KL, Leizorovicz A. A prospective trial of intravenous streptokinase in acute myocardial infarction (I.S.A.M.). Mortality, morbidity, and infarct size at 21 days. *New England Journal of Medicine* 1986; **314**(23): 1465-71.
- 49. Janousek S, Lupinek Z, Toman J, et al. First results of a randomized investigation of thrombolytic treatment of acute myocardial infarction Evaluation of the early period. [Czech]. *Vnitrni Lekarstvi* 1988; **34**(12): 1145-54.
- 50. Jiang SL, Zhang Y, Ji XP, Zhang L, Song ZF. A randomized clinical trial on comparison of weight-adjusted dose with low dose recombinant tissue-type plasminogen activator on Chinese patients with acute myocardial infarction. [Chinese]. *Chin J Cardiol* 2005; **33**(12): 1102-5.
- 51. Grines CL, Nissen SE, Booth DC, et al. A prospective, randomized trial comparing combination half-dose tissue-type plasminogen activator and streptokinase with full-dose tissue-type plasminogen activator. Kentucky Acute Myocardial Infarction Trial (KAMIT) Group. *Circulation* 1991; **84**(2): 540-9.
- 52. Kennedy JW, Martin GV, Davis KB, et al. The Western Washington Intravenous Streptokinase in Acute Myocardial Infarction Randomized Trial. *Circulation* 1988; **77**(2): 345-52.
- 53. Khalilullah M, Natarajan D, Bahl VK, Babu MR, Tyagi S, Kaul UA. A randomized trial of IV streptokinase in evolving acute myocardial infarction: an assessment by selective coronary angiography. *Indian heart journal* 1984; **36**(6): 339-46.
- 54. Hampton J, Wilcox R, Armstrong P, et al. Late assessment of thrombolytic efficacy (LATE) study with alteplase 6-24 hours after onset of acute myocardial infarction. *Lancet* 1993; **342**(8874): 759-66.
- 55. Li S, Li Z, Zhu X, et al. Curative effects of rapid administration of low dose rt-PA for 30 minutes and 60 minutes on acute myocardial infarction. [Chinese]. *Chinese Journal of Emergency Medicine* 2006; **15**(4): 345-7.
- 56. Lidon RM, Theroux P, Lesperance J, et al. A pilot, early angiographic patency study using a direct thrombin inhibitor as adjunctive therapy to streptokinase in acute myocardial infarction. *Circulation* 1994; **89**(4): 1567-72.
- 57. Jang IK, Brown DFM, Giugliano RP, et al. A multicenter, randomized study of argatroban versus heparin as adjunct to tissue plasminogen activator (TPA) in acute myocardial infarction: Myocardial infarction with novastan and TPA (MINT) study. *Journal of the American College of Cardiology* 1999; **33**(7): 1879-85.
- 58. Trial to Compare the Efficacy and Safety of a Single Bolus of TNK-tPA (Tenecteplase, Metalyse®) With Accelerated Infusion of Rt-PA (Alteplase, Actilyse®) in Asian Patients With Acute Myocardial Infarction. Boehringer Ingelheim. 2005.
- 59. Coronary thrombolysis and myocardial salvage by tissue plasminogen activator given up to 4 hours after onset of myocardial infarction. National Heart Foundation of Australia Coronary Thrombolysis Group. *Lancet* 1988; **1**(8579): 203-8.
- 60. O'Rourke M, Baron D, Keogh A, et al. Limitation of myocardial infarction by early infusion of recombinant tissue-type plasminogen activator. *Circulation* 1988; **77**(6): 1311-5.

- 61. Olson HG, Butman SM, Piters KM, et al. A randomized controlled trial of intravenous streptokinase in evolving acute myocardial infarction. *Am Heart J* 1986; **111**(6): 1021-9.
- 62. Magnani B. Plasminogen Activator Italian Multicenter Study (PAIMS): comparison of intravenous recombinant single-chain human tissue-type plasminogen activator (rt-PA) with intravenous streptokinase in acute myocardial infarction. *Journal of the American College of Cardiology*, 1989. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/083/CN-00057083/frame.html (accessed November 21, 2016).
- 63. Coussement PK, Bassand JP, Convens C, et al. A synthetic factor-Xa inhibitor (ORG31540/SR9017A) as an adjunct to fibrinolysis in acute myocardial infarction: The Pentalyse study. *European Heart Journal* 2001; **22**(18): 1716-24.
- 64. Plotnikov AN, Staroverov, II, Tagieva IA, et al. [A trial of the use of a new thrombolytic preparation-recombinant tissue-type plasminogen activator--in myocardial infarct patients]. *Kardiologiia* 1993; **33**(3): 32-6.
- 65. Bengtson J, Adolphson M, Brewer DL, et al. Multicenter, dose-ranging study of efegatran sulfate versus heparin with thrombolysis for acute myocardial infarction: The Promotion of Reperfusion in Myocardial Infarction Evolution (PRIME) trial. *American Heart Journal* 2002; **143**(1): 95-105.
- 66. Carney RJ, Murphy GA, Brandt TR, et al. Randomized angiographic trial of recombinant tissue-type plasminogen activator (alteplase) in myocardial infarction. *Journal of the American College of Cardiology* 1992; **20**(1): 17-23.
- 67. Smalling RW, Bode C, Kalbfleisch J, et al. More rapid, complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. *Circulation* 1995; **91**(11): 2725-32.
- 68. Bode C, Smalling RW, Berg G, et al. Randomized comparison of coronary thrombolysis achieved with double-bolus reteplase (recombinant plasminogen activator) and front-loaded, accelerated alteplase (recombinant tissue plasminogen activator) in patients with acute myocardial infarction. The RAPID II Investigators. *Circulation* 1996; **94**(5): 891-8.
- 69. Ronner E, Van Kesteren HAM, Zijnen P, et al. Safety and efficacy of eptifibatide vs placebo in patients receiving thrombolytic therapy with streptokinase for acute myocardial infarction: A phase II dose escalation, randomized, double-blind study. *European Heart Journal* 2000; **21**(18): 1530-6.
- 70. Sarullo FM, Di Pasquale P, D'Alfonso G, Amerigo L, Cannizzaro S, Castello A. Safety and efficacy of thrombolysis with alteplase (50 mg) plus tirofiban versus alteplase (100 mg) alone in acute myocardial infarction: Preliminary findings. *Italian Heart Journal* 2001; **2**(8): 605-11.
- 71. Ohman EM. Trial of abciximab with and without low-dose reteplase for acute myocardial infarction. *Circulation* 2000; **101**(24): 2788-94.
- 72. Srimahachota S, Sangwatanaroj S, Boonyaratavej S, Suitichaiyakul T, Ngarmukos P. Efficacy of rapid infusion of streptokinase in patients with acute myocardial infarction. *J Med Assoc Thai* 2000; **83**(1): 8-12.
- 73. Strandberg LE, Kahan T, Lundin P, Svensson J, Erhardt L. Anticoagulant effects of low-molecular-weight heparin following thrombolytic therapy in acute myocardial infarction: a dose-finding study. *Haemostasis* 1996; **26**(5): 247-57.
- 74. Tabatabaie SA, Asharin MR, Assadi M, et al. Comparsion of influence of enoxaparin with unfractioned heparin on acute myocardial infarction with ST-segment elevation. *Safety and usefulness of Enoxaparin versus unfractionated heparin in patients with ST elevation myocardial infarction -* 2009; **12(3)**: 198-205.
- 75. Topol EJ, George BS, Kereiakes DJ, et al. A randomized controlled trial of intravenous tissue plasminogen activator and early intravenous heparin in acute myocardial infarction. *Circulation* 1989; **79**(2): 281-6.
- 76. Multicenter, randomized, comparative study of recombinant vs. natural streptokinases in acute myocardial infarct (TERIMA). *Thromb Haemost* 1999; **82**(6): 1605-9.
- 77. Theroux P, Perez-Villa F, Waters D, Lesperance J, Shabani F, Bonan R. Randomized double-blind comparison of two doses of Hirulog with heparin as adjunctive therapy to streptokinase to promote early patency of the infarct- related artery in acute myocardial infarction. *Circulation* 1995; **91**(8): 2132-9.
- 78. Chesebro JH, Knatterud G, Roberts R, et al. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. *Circulation* 1987; **76**(1): 142-54.
- 79. Cannon CP, Gibson CM, McCabe CH, et al. TNK-tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: Results of the TIMI 10B trial. *Circulation* 1998; **98**(25): 2805-14.
- 80. Antman EM, Giugliano RP, Gibson CM, et al. Abciximab facilitates the rate and extent of thrombolysis: results of the thrombolysis in myocardial infarction (TIMI) 14 trial. The TIMI 14 Investigators. *Circulation* 1999; **99**(21): 2720-32.
- 81. Antman EM, Gibson CM, De Lemos JA, et al. Combination reperfusion therapy with abciximab and reduced dose reteplase: Results from TIMI 14. *European Heart Journal* 2000; **21**(23): 1944-53.

- 82. Verstraete M, Bleifeld W, Brower RW, et al. Double-blind randomised trial of intravenous tissue-type plasminogen activator versus placebo in acute myocardial infarction. *Lancet* 1985; **2**(8462): 965-9.
- 83. White HD, Norris RM, Brown MA, et al. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. *The New England journal of medicine*, 1987. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/787/CN-00049787/frame.html (accessed October 1,2016).
- 84. White HD, Rivers JT, Maslowski AH, et al. Effect of intravenous streptokinase as compared with that of tissue plasminogen activator on left ventricular function after first myocardial infarction. *N Engl J Med* 1989; **320**(13): 817-21.
- 85. Zhai M, Chen JL, Qiao SB, Hua L, Li YS. Efficacy and safety of recombinant human TNK tissue-typeplasminogen activator in patients with acute myocardial infarction. [Chinese]. *Chinese Journal of New Drugs* 2016; **25**(1): 82-6 and 92.
- 86. Zhang SY, Wang XQ, Liu CT, Bian QW, Meng XJ, Liu XY. Comparison of the efficacy and safety of thrombolytic therapy using low dose reteplase and alteplase in patients over 75 years with acute myocardial infarction. [Chinese]. *Chinese Journal of New Drugs* 2010; **19**(9): 766-8.
- 87. Chatterjee S, Chakraborty A, Weinberg I, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. *JAMA* 2014; **311**(23): 2414-21.
- 88. Mehta RH, Stebbins AS, Lopes RD, et al. Comparison of incidence of bleeding and mortality of men versus women with ST-elevation myocardial infarction treated with fibrinolysis. *Am J Cardiol* 2012; **109**(3): 320-6.
- 89. Fang MC, Go AS, Chang Y, et al. Death and disability from warfarin-associated intracranial and extracranial hemorrhages. *Am J Med* 2007; **120**(8): 700-5.
- 90. A comparison of recombinant hirudin with heparin for the treatment of acute coronary syndromes. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) IIb investigators. *N Engl J Med* 1996; **335**(11): 775-82.
- 91. Fitchett D. The impact of bleeding in patients with acute coronary syndromes: how to optimize the benefits of treatment and minimize the risk. *Can J Cardiol* 2007; **23**(8): 663-71.
- 92. Wang TY, Chen AY, Roe MT, et al. Comparison of baseline characteristics, treatment patterns, and inhospital outcomes of Asian versus non-Asian white Americans with non-ST-segment elevation acute coronary syndromes from the CRUSADE quality improvement initiative. *Am J Cardiol* 2007; **100**(3): 391-6.