Проект по МИИАД

Классификация музыкальных произведений по жанрам

Дживеликян Е.А. Латышев А.К. Сизов В.С.

Национальный исследовательский университет "Московский физико-технический институт"

4 ноября 2020 г.

Датасет

- 8000 треков по 30 секунд каждый, в формате .mp3
- 8 жанров, 1000 треков для кадого жанра

International Rock Folk Electronic **Instrumental** Experimental Pop Hip-Hop

Инструменты

Библиотека инструментов для обработки звука

Признаки

В данной работе были использованы признаки:

- MFCC(Мел-частотные кепстральные коэффициенты)
- Tonnetz
- Средний темп произведения
- Мощность гармонической и перкуссионной компоненты

MFCC

Спектр спектра, но по мел-шкале.

Мел-шкала

Пример MFC

В датасете посчитаны 20 коэффициентов по бинам, на которые разбита песня.

И для каждой псоледовательности коэффициента расчитаны статистики: mean, standard deviation, skew, kurtosis, median, minimum and maximum

Tonnetz

Данный признак позволяет оценить наличие гармонии в сигнале, выделить характерные интервалы путём преобразования пространства классов высоты звука.

Пространство интервалов

В данной работе используются различные статистики (те же, что и для MFCC), вычисленные для этого признака по всем фреймам трека.

Темп

Темпоральный спектр произведения

Гармоника и перкуссия

Вычислены мощности гармонической и перкуссионной составляющих треков.

Результаты. Часть 1

Модель	F1	Параметры	Время обучения	ЭВМ
SVC	59.92	kernel='rbf' C=3	20.2 секунды	Intel(R) Xeon(R) CPU @ 2.30GHz Google Colaboratory
Random Forest Classifier	56.23	n_estimators=500 class_weight='balanced'	28 секунд	Intel Core i9 2400 GHz
Gradient Boosting Classifier	57.13	learning_rate=0.05 max_depth=5 n_estimators=200 subsample=0.5	3 минуты 32 секунды	AMD Razen 5 3500U 2100 MHz
Logistic Regression	53.59	C=0.01 solver='lbfgs' multi_class ='multinomial'	516 милисекунд	AMD Razen 5 3500U 2100 MHz
CatBoost	59.34	iterations=800 depth=6 bagging_temperature =0.05 l2_leaf_reg=0	3 минуты 28 секунд	AMD Razen 5 3500U 2100 MHz

Вклад участников

Дживеликян Е.А.

Разбор признаков Tonnetz. Настройка и работа с Gradient Boosting Classifier.

Латышев А.К.

Разбор признаков MFCC и вычисление гармонической и перкуссионной компонент. Настройка и работа с SVC, Logistic Regression, CatBoost

Сизов В.С.

Разбор признаков Temp. Настройка и работа с Hастройка и работа с Random Forest Classifier.

VGG эмбеддинги

Для выделения признаков высокого уровня использовалась предобученная на Audioset VGG net.

VGG обучалась определять множество разных меток на 0.960 секундных отрывках на датасете Audioset, полученном из роликов youtube.

LogReg

В качестве baseline использовалась логистическая регрессия, на вход которой подавались эмбеддинги.

В результате поиска параметра С в диапазоне от 10^{-5} до 1. Была найдена лучшая модель: solver='newton-cg', C=0.001.

Accuracy: 53.12

F1 = 52.63

Time: 2 минуты 15 секунд

AMD Razen 5 3500U 2100 MHz

LSTM

Пространство поиска

Сэмплировано случайным образом 200 конфигураций с помощью Ray Tune

DOOMOD CKDLITOEO CROG	от 2 ³ до 2 ⁹	
размер скрытого слоя	с шагом степени 1	
число слоёв	{1, 2, 3, 4, 5}	
скорость обучения	$(10^{-4}; 10^{-1})$	
размер батча	{16, 32, 64, 128, 256}	
дропаут между LSTM	$(0; 25*10^{-2})$	
дропаут на выходе	$(0;25*10^{-2})$	

Использовался ранний останов по validation accuracy и по алгоритму ASHA.

Обучение модели с лучшими параметрами

размер скрытого слоя	64
число слоёв	2
скорость обучения	0.006
размер батча	64
дропаут между LSTM	0.1
дропаут на выходе	0.15

Оптимизатор: Adam

Функция потерь: Cross Entropy на softmax

Fully Connected NN

Результаты FCNN

Для трех предложенных моделей использовался оптимизатор SGD (Ir=0.005). И лосс функции NLLLoss и CrossEntropyLoss (значимой разницы они не показали).

В моделях 2, 2-1 и 3 подбирались размеры скрытых слоев в диапазоне от 3000 до 50.

Значимых различий для этих моделей и модели 1 не наблюдалось, но в среднем модель 2-1 показала лучший результат (вероятность dropout 0.5).

Лучшая FCNN

красный-валлидация, синий-трейн

Для модели 2-1 был проведен более подробный анализ размера внутреннего слоя. Значения были в диапазоне от 100 до 20 с шагом 10. Было прогнано 3 модели для каждого параметра. В результате лучшим оказалось 30 скрытых нейронов.

Количество батчей: 100

 $F1: 0.4832 \pm 0.0024$ AUC: 0.8388 + 0.0059

Epoch: 360 ± 17

Convolutional NN

Построенная архитектура состоит из двух сверхточных слоёв и одного линейного преобразования

Количество батчей: 25

Результат на трейне:

Loss: 1.2092

Accuracy: 59.3333 Результат на тесте:

Loss: 1.299 Accuracy: 0.55

Вклад участников

Дживеликян Е.А.

Подготовка эмбеддингов. Обучение архитектур с рекуррентными слоями.

Латышев А.К.

Обучение полносвязных глубоких сетей и логистической регресси.

Сизов В.С.

Обучение свёрточных архитектур.

Все участвовали в оформлении репозитория и презентации.

Основные слайды

- 1 Датасет и инструменты
- 2 Признаки
- 3 Результаты. Часть 1
- Ф Результаты. Часть 2 RNN FCNN CNN

CNN