Intro to Causal Inference in Econometrics

Lecture 2

Edward Vytlacil

Yale University, Department of Economics

December 18, 2024

Overview for this lecture:

Agenda

- 1. Simple Linear Regression
- 2. Omitted Variable Bias
- 3. Multivariate Linear Regression.

Application:

Wage Regression, The Mincer Model

Part I: Simple Linear Regression Models

Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 X + e. \tag{1}$$

where

- Y is an observed random variable, called the *outcome variable*, the *left-hand side* variable, the *dependent variable*, or the *regressand*,
- X is an observed random variable, called the covariate, the right-hand side variable, the independent variable, or the regressor,
- is an unobserved random variable, called the error term,
- $ightharpoonup eta_0$ is an unknown constant, called the regression intercept ,
- $ightharpoonup eta_1$ is an unknown constant, called the regression *slope* .

Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 X + e. \tag{1}$$

What is the meaning of (1)? How to interpret?

Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 X + e. \tag{1}$$

What is the meaning of (1)? How to interpret?

Two interpretations of (1):

- 1. Best Linear Predictor: BLP of Y given X is $\beta_0 + \beta_1 X$.
- 2. Causal or structural model.

Interpretation 1: Linear Regression Model as BLP

For any (b_0, b_1) , define

$$MSE(b_0, b_1) \equiv E[(Y - b_0 - b_1 X)^2],$$

and define

$$(\beta_0, \beta_1) \equiv \underset{(b_0, b_1)}{\operatorname{argmin}} \operatorname{MSE}(b_0, b_1). \quad (2)$$

- ► MSE (b_0, b_1) is the *mean squared prediction error* if using $b_0 + b_1 X$ to predict Y.
- $ho_0 + \beta_1 X$ is called the *Best Linear Predictor* of *Y* given *X*, also called the *Linear Projection* of *Y* on *X*.
- \blacktriangleright β_0 and β_1 are called the *Linear Projection Coefficients*

Interpretation 1: Linear Regression Model as BLP

Define

$$e \equiv Y - \beta_0 - \beta_1 X, \tag{3}$$

$$\Rightarrow Y = \beta_0 - \beta_1 X + e, \tag{4}$$

with (β_0, β_1) defined by (2).

- e is defined as a prediction error, it has no economic or causal interpretation per se.
- Equation (4) is defined through BLP, no economic or causal interpretation per se.

Interpretation 1: Solving for eta_0, eta_1

$$(\beta_0, \beta_1) \equiv \underset{(b_0, b_1)}{\operatorname{argmin}} E[(Y - b_0 - b_1 X)^2],$$
 (2)

$$e \equiv Y - \beta_0 - \beta_1 X. \tag{3}$$

Minimization problem (2) has FOC:

$$\mathbb{E}[Y - \beta_0 - \beta_1 X] = 0, \tag{5}$$

$$\mathbb{E}[(Y - \beta_0 - \beta_1 X])X] = 0, \tag{6}$$

which can be solved for β_0, β_1 :

$$\beta_0 = \mathbb{E}[Y] - \beta_1 \mathbb{E}[X], \tag{7}$$

$$\beta_1 = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}.\tag{8}$$

Interpretation 1: FOC imply $\mathbb{E}[e] = \mathbb{E}[eX] = 0$.

$$(\beta_0, \beta_1) \equiv \underset{(b_0, b_1)}{\operatorname{argmin}} E[(Y - b_0 - b_1 X)^2], \tag{2}$$

$$e \equiv Y - \beta_0 - \beta_1 X. \tag{3}$$

Minimization problem (2) has FOC:

$$\mathbb{E}[Y - \beta_0 - \beta_1 X] = 0, \tag{5}$$

$$\mathbb{E}[(Y - \beta_0 - \beta_1 X])X] = 0. \tag{6}$$

We can use (3) to rewrite FOC as

$$\mathbb{E}[e] = \mathbb{E}[e \, X] = 0.$$

Equivalent Ways to State Interpretation 1

$$(\beta_0, \beta_1) \equiv \underset{(b_0, b_1)}{\operatorname{argmin}} E[(Y - b_0 - b_1 X)^2], \tag{2}$$

$$e \equiv Y - \beta_0 - \beta_1 X. \tag{3}$$

Equations (2)-(3) imply

$$Y = \beta_0 + \beta_1 X + e, \tag{9}$$

$$\mathbb{E}[e] = \mathbb{E}[eX] = 0, \tag{10}$$

and equations (9)-(10) imply (2)-(3).

Interpretation 2: Linear Regression Model as Causal/Structural Model

For example, consider potential outcome notation with binary treatment:

$$Y = Y_0 + X(Y_1 - Y_0) = \begin{cases} Y_1 & \text{if } X = 1, \\ Y_0 & \text{if } X = 0. \end{cases}$$
 (11)

where Y is observed outcome, X is binary treatment, and (Y_0, Y_1) are potential outcomes.

We can rewrite (11) as

$$Y = \beta_0 + \beta_1 X + e$$

where

$$\begin{split} \beta_0 &= \mathbb{E}[Y_0], \\ \beta_1 &= \mathbb{E}[Y_1 - Y_0 \mid X = 1], \\ e &= (Y_0 - \mathbb{E}[Y_0]) + ((Y_1 - Y_0) - \mathbb{E}[Y_1 - Y_0 \mid X = 1])X. \end{split}$$

Interpretation 2: Linear Regression Model as Causal/Structural Model

$$Y = \beta_0 + \beta_1 X + e$$

where

$$\begin{split} \beta_0 &= \mathbb{E}[Y_0], \\ \beta_1 &= \mathbb{E}[Y_1 - Y_0 \mid X = 1], \\ e &= (Y_0 - \mathbb{E}[Y_0]) + ((Y_1 - Y_0) - \mathbb{E}[Y_1 - Y_0 \mid X = 1])X. \end{split}$$

Here:

- Model is not defined as a predictive model.
- Interpretation of β_1 is as a causal parameter.
- e is not defined as prediction error, has interpretation from underlying causal model.
- ightharpoons $\mathbb{E}[e]=\mathbb{E}[\mathit{Xe}]=0$ if $\mathbb{E}[\mathit{Y}_0\mid \mathit{X}=1]=\mathbb{E}[\mathit{Y}_0].$ In other words, if no selection bias.

Part II: Ordinary Least Squares for SLR

OLS Estimator for Simple Linear Regression

▶ The OLS estimators of β_0 and β_1 are defined as the values for b_0 and b_1 that minimize the sum of squared prediction errors over all observations

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(b_0, b_1)}{\operatorname{argmin}} \sum_{i=1}^{N} (Y_i - b_0 - b_1 X_i)^2.$$

If we then define $\hat{\mathbf{e}}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$, then the FOC for the above minimization problem can be expressed as:

$$\sum_{i=1}^{n} \hat{e}_{i} = \sum_{i=1}^{n} \hat{e}_{i} X_{i} = 0.$$

OLS Estimator for Simple Linear Regression

► The FOC for the OLS minimization problem can be expressed as:

$$\sum_{i=1}^{n} \hat{e}_{i} = \sum_{i=1}^{n} \hat{e}_{i} X_{i} = 0.$$

where
$$\hat{e}_i \equiv Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

Let s_X^2 denote sample variance of X_i , and s_{XY} denote sample covariance of (X_i, Y_i) . Then, assuming $s_X^2 > 0$, can solve above FOC for $(\hat{\beta}_0, \hat{\beta}_1)$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{s_{XY}}{s_X^2},$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

Application: Returns to Education – Estimating the Univariate Model

Consider "log-linear" regression

$$\mathsf{In}\,\mathsf{Wage}_i = \beta_0 + \beta_1\mathsf{educ}_i + e_i,$$

where educ_i is years of schooling.

- Linear model with $Y_i = \ln \text{Wage}_i$, but non-linear model for wages.
- ▶ Interpretation of β_1 ?
 - Observations with 1 more year of school have β_1 higher log wage.
 - Approximately: Observations with 1 more year of school have $\beta_1 \cdot$ 100 percent higher wage.

Application: Returns to Education – Estimating the Univariate Model

Consider "log-linear" regression

In Wage_i =
$$\beta_0 + \beta_1$$
educ_i + e_i ,

where $educ_i$ is years of schooling.

Returns to Education – Estimating the Univariate Model

Figure 3.1: Linear regression of log wage on years of schooling.

Data Source: NLSYM

In general:

$$ightharpoonup Y=eta_0+eta_1X+e,$$
 with $\mathbb{E}[e]=\mathbb{E}[eX]=0$ implies

$$\beta_1 = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(X)}$$

$$\beta_0 = [Y] - \beta_1 \mathbb{E}[X]$$

OLS regression:

$$\hat{\beta}_1 = \frac{s_{\chi\gamma}}{s_{\chi}^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Simple Linear Regression with Dummy Covariate

If X is binary:

$$ightharpoonup Y=eta_0+eta_1X+e, ext{with } \mathbb{E}[e]=\mathbb{E}[eX]=0 ext{ implies}$$

$$\beta_1 = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$$

$$= \mathbb{E}[Y_i \mid X_i = 1] - \mathbb{E}[Y_i \mid X_i = 0]$$

$$\beta_0 = [Y] - \beta_1 \mathbb{E}[X]$$

$$= \mathbb{E}[Y_i \mid X_i = 0],$$

OLS regression:

$$\hat{\beta}_1 = \frac{s_{XY}}{s_X^2}$$

$$= \overline{Y}_1 - \overline{Y}_0$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$= \overline{Y}_0,$$

where \overline{Y}_X denotes the sample mean of Y_i among those with $X_i = x$.

Application: Effect of PROGRESA – Estimating the Univariate Model

Consider

SchoolEnroll_i =
$$\beta_0 + \beta_1$$
Treat_i + e_i ,

where Treat $_i$ is a dummy variable for being treated.

```
> mean.enroll <- with(dfPost,tapply(school,treat,mean))</pre>
  > mean.enroll
  0.7456201 0.7859343
  > mean.enroll[2]-mean.enroll[1]
 0.04031423
 > lm(school ~ treat, data =dfPost)
 Call:
 lm(formula = school ~ treat, data = dfPost)
 Coefficients:
  (Intercept)
              treat
      0.74562 0.04031
15
```

Part III: Omitted Variable Bias

Linear Regression and Structural Model: Wage Equation

Suppose a labor economist has a hedonic model of wages with

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + e_i, \qquad E[e_i] = E[e_i X_{1i}] = E[e_i X_{2i}] = 0,$$

where:

- \triangleright Y_i denotes wages,
- \triangleright X_{1i} is a dummy variable for being African-American,
- $ightharpoonup X_{2i}$ years of education.

The parameter of interest is β_1 , measuring taste-based discrimination.

What if we regress Y_i on X_{1i} alone by simple linear regression, omitting X_{2i} ?

OLS with Omitted Variables

$$\hat{\beta}_{1} = \frac{s_{X_{1}Y}}{s_{X_{1}}^{2}} \xrightarrow{P} \frac{Cov(Y_{i}, X_{1i})}{Var(X_{1i})}$$

$$= \frac{Cov(\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + e_{i}, X_{1i})}{Var(X_{1i})}$$

$$= \frac{Cov(\beta_{0}, X_{1i})}{Var(X_{1i})} + \frac{Cov(\beta_{1}X_{1i}, X_{1i})}{Var(X_{1i})} + \frac{Cov(\beta_{2}X_{2i}, X_{i})}{Var(X_{1i})} + \frac{Cov(e_{i}, X_{i})}{Var(X_{1i})}$$

$$= \beta_{1} + \beta_{2} \frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})} + \frac{Cov(e_{i}, X_{i})}{Var(X_{1i})}$$

$$= \beta_{1} + \underbrace{\beta_{2} \frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})}}_{Omitted Variable Bias}.$$
Omitted Variable Bias

Signing Omitted Variable Bias

$$\hat{\beta}_1 \stackrel{P}{\rightarrow} \beta_1 + \underbrace{\beta_2 \frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})}}_{\text{Omitted Variable Bias}}.$$

- $\sum \frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})}$ is the coefficient of a projection of X_2 on X_1 .
- In special case of binary X_{1i} ,

- $\qquad \text{Sign} \left\{ \textit{Cov} \big(\textit{X}_{2i}, \textit{X}_{1i} \big) \right\} = \text{Sign} \left\{ \textit{E} \big[\textit{X}_{2i} \mid \textit{X}_{1i} = 1 \big] \textit{E} \big[\textit{X}_{2i} \mid \textit{X}_{1i} = 0 \big] \right\}.$
- Connection to selection bias for treatment effects?

Signing Omitted Variable Bias

$$\hat{\beta}_1 \stackrel{P}{\rightarrow} \beta_1 + \underbrace{\beta_2 \frac{Cov(X_{2i}, X_{1i})}{Var(X_{1i})}}_{\text{Omitted Variable Bias}}.$$

- Omitted variable bias is zero if:
 - $ightharpoonup Cov(X_{2i}, X_{1i}) = 0$ (X_1 and X_2 are uncorrelated), or
 - \triangleright $\beta_2 = 0$.
- Otherwise:
 - ▶ If Sign $\{\beta_2\}$ = Sign $\{Cov(X_2, X_1)\}$, the bias is positive.
 - ▶ If Sign $\{\beta_2\}$ ≠ Sign $\{Cov(X_2, X_1)\}$, the bias is negative.

Include more Covariates?

- For prediction, adding more covariates can improve precision of predictions.
- In causal or structural models, may believe that need other regressors in model for moment conditions to hold.
 - e.g., Include "measured confounders", may believe that treatment receipt is "as-if" by randomized experiment conditional on other covariates.
 - recall omitted variable bias.

Multivariate Linear Regression Models

Multivariate Linear Regression Models are of the form:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_K X_{Ki} + e_i,$$
 (12)

with

$$E[e_i] = E[e_i X_{1i}] = \dots = E[e_i X_{Ki}] = 0.$$
 (13)

Equations 12 and 13 equivalent to

$$(\beta_0, \beta_1, ..., \beta_K) = \underset{(b_0, b_1, ..., b_K)}{\operatorname{argmin}} E[(Y - b_0 - b_1 X_1 - ... - b_K X_K)^2].$$
 (14)

► If define model by linear projection (as solution to 14), then moment conditions (13) holds by FOC for equation 14.

Multivariate Linear Regression Models

Multivariate Linear Regression Models are of the form:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \ldots + \beta_{K} X_{Ki} + e_{i},$$
 (12)

with

$$E[e_i] = E[e_i X_{1i}] = \dots = E[e_i X_{Ki}] = 0.$$
 (13)

Equations 12 and 13 equivalent to

$$(\beta_0, \beta_1, ..., \beta_K) = \underset{(b_0, b_1, ..., b_K)}{\operatorname{argmin}} E[(Y - b_0 - b_1 X_1 - ... - b_K X_K)^2].$$
 (14)

If we are defining the regression model as a causal/structural model, then (13) need not hold, and $(\beta_0, \beta_1, ..., \beta_K)$ need not be solution to equation 14.

Marginal Effects

- We call the change in predicted Y induced by a *ceterus paribus* marginal increase in X_j the **marginal effect** of changing X_j on Y.
 - May or may not be causal
- For binary X_i this is understood to mean changing X_i from 0 to 1.
- What if there is a functional relationship between regressors, e.g., $X_2 = X_1^2$?
 - $\qquad \qquad \textit{Y}_i = \beta_0 + \beta_1 \textit{X}_1 + \beta_2 \textit{X}_1^2 + \textit{e} \Rightarrow \text{marginal effect of } \textit{X}_1 \text{ equals } \beta_1 + 2\beta_2 \textit{X}_1.$
 - Are marginal effects always constant in linear models? No!

Part V: Ordinary Least Squares for MLR

Multivariate OLS

The OLS estimator of $(\beta_0, ..., \beta_K)$ are defined as the values for $(b_0, ..., b_K)$ that minimize the sum of squared prediction errors over all observations:

$$(\hat{\beta}_0, \hat{\beta}_1,, \hat{\beta}_K) = \underset{b_0, ..., b_K}{\operatorname{arg min}} \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1i} - b_2 X_{2i} - ... - b_K X_{Ki})^2.$$

If we then define

$$\hat{e}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 X_{2i} - \ldots - \hat{\beta}_K X_{Ki},$$

then the FOC for the above minimization problem can be expressed as:

$$\sum_{i=1}^n \hat{e}_i = \sum_{i=1}^n \hat{e}_i \, X_{1i} = \sum_{i=1}^n \hat{e}_i \, X_{2i} = \ldots = \sum_{i=1}^n \hat{e}_i \, X_{Ki} = 0.$$

Multivariate OLS

 \blacktriangleright $(\hat{\beta}_0, \hat{\beta}_1,, \hat{\beta}_K)$ solve

$$\sum_{i=1}^n \hat{e}_i = \sum_{i=1}^n \hat{e}_i \, X_{1i} = \sum_{i=1}^n \hat{e}_i \, X_{2i} = \ldots = \sum_{i=1}^n \hat{e}_i \, X_{Ki} = 0,$$

where
$$\hat{\mathbf{e}}_i = \mathbf{Y}_i - \hat{eta}_0 - \hat{eta}_1 \mathbf{X}_{1i} - \hat{eta}_2 \mathbf{X}_{2i} - \ldots - \hat{eta}_K \mathbf{X}_{Ki}$$
.

- In order to have a unique solution to the OLS minimization problem, we need one additional assumption: No perfect multicollinearity.
- ▶ OLS estimator has desirable properties for estimation of $(\beta_0, \beta_1, ..., \beta_K)$ as long as no perfect multicollinearity and moment equation (13) holds.

Multicollinearity

- Two or more regressors are said to exhibit **perfect multicollinearity**, if one of the regressors is a perfect linear function of the others.
- \triangleright Can not estimate OLS on a set of X's that include collinear variables.
- Intuitively, multicollinearity is a problem because it is not possible to disentangle the effects of two variables that always move together.
- Multicollinearity most often can be avoided by choosing the appropriate set of covariates. Will come back to this later in the context of the "Dummy-Variable Trap".

Terminology

- ▶ We call $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_K X_{Ki} + e_i$, the **population regression function**.
- lacksquare We call the function $\hat{eta}_0+\hat{eta}_1 X_{1i}+\ldots+\hat{eta}_{\it K} X_{\it Ki}$ the **fitted regression function**.
- lacksquare We call $\hat{Y}_i=\hat{eta}_0+\hat{eta}_1 X_i+\ldots+\hat{eta}_{\it K} X_{\it Ki}$ the **fitted values**.
- ► We call $\hat{e}_i = Y_i \hat{Y}_i$ the **residuals**.

Inference (optional)

Under appropriate regularity conditions,

$$\sqrt{N}(\hat{\beta}_j - \beta_j) \stackrel{d}{\rightarrow} N(0, V_j)$$

Suppose have consistent estimator of V_j ,

$$\hat{V}_j \stackrel{p}{\longrightarrow} V_j$$
.

Consistent standard errors:

s.e.
$$(\hat{eta}_j) = \sqrt{rac{\hat{V}_j}{N}}$$

95% Asymptotic Confidence Interval:

$$\left[\hat{eta}_j - 1.96 \cdot \text{s.e.}(\hat{eta}_j), \ \hat{eta}_j + 1.96 \cdot \text{s.e.}(\hat{eta}_j)\right].$$

Inference (optional)

Under appropriate regularity conditions,

$$\sqrt{N}(\hat{\beta}_j - \beta_j) \stackrel{d}{\rightarrow} N(0, V_j)$$

Suppose have consistent estimator of V_j ,

$$\hat{V}_j \stackrel{p}{\to} V_j$$
.

ightharpoonup To test null $H_0: eta_j = eta_{j0}$, can define test statistic

$$T = \frac{\hat{\beta}_j - \beta_{j0}}{\text{s.e.}(\hat{\beta}_j)}$$

$$\Rightarrow T \stackrel{d}{\to} N(0, 1) \quad \text{under } H_0$$

Thus reject null at at 5% level if

$$|T| \ge 1.96.$$

Inference (optional)

Under appropriate regularity conditions,

$$\sqrt{N}(\hat{\beta}_j - \beta_j) \stackrel{d}{\rightarrow} N(0, V_j)$$

Suppose have consistent estimator of V_j ,

$$\hat{V}_j \stackrel{p}{\longrightarrow} V_j$$
.

- Default s.e. in **R** and most packages are only consistent under homoscedasticity, if $\mathbb{E}[e_i^2 \mid X_{1i}, ..., X_{Ki}]$ is a constant. Typically implausible in economics.
- Typically heteroscedastic-robust s.e. in economics.
- Often believe data is "clustered", use s.e. that are both heterscedastic-robust and robust to dependence within a cluster.

Estimating the Returns to Education

- Economists have studied and tried to estimate the returns to education for more than 60 years
- Mincer (JPE, 1958): "Investment in Human Capital and Personal Income Distribution"
- ightharpoonup Implies $\ln(wage) = eta_0 + eta_1 = duc + eta_2 = xp + eta_3 = xp^2 + e$
- Wages increase at a constant rate (%) in education
- Regressions of ln(wage) on educ, exp and exp² (and other covariates) are called *Mincer regressions*.
- Original Mincer regressions did not include ethnicity, but often additionally include dummy variable for being African American.

NLSYM

- Following regressions use data from National Longitudinal Survey of Young Men (NLSYM) that was used by Card (1995).
- Data is from 1976, when respondents were between 24 and 34 years old.
- True years of work experience are not recorded in data set, and thus define "potential experience":

$$experience = Age - Education - 6.$$

See card.dta documentation for more details.

Let's run some regressions

```
> reg.1<-lm(logwage ~ education , data = NLSYM)</pre>
 > reg.2<- lm(logwage ~ experience , data = NLSYM)</pre>
  > reg.1
 Call:
 lm(formula = logwage ~ education, data = NLSYM)
 Coefficients:
 (Intercept) education
    0.9657 0.0521
10
 > reg.2
14 Call:
 lm(formula = logwage ~ experience, data = NLSYM)
16
 Coefficients:
 (Intercept) experience
    1.64481 0.00134
19
```

Lets estimate the bivariate model:

$$\mathsf{In}\,\mathsf{Wage}_{\mathit{i}} = \beta_{\mathsf{0}} + \beta_{\mathsf{1}}\mathsf{education}_{\mathit{i}} + \beta_{\mathsf{2}}\mathsf{experience}_{\mathit{i}} + e_{\mathit{i}}$$

```
1
2 > reg.3<- lm(logwage ~ education+experience , data = NLSYM)
3 > reg.3
4
5 Call:
lm(formula = logwage ~ education + experience, data = NLSYM)
7
8 Coefficients:
(Intercept) education experience
10 0.0609 0.0932 0.0407
11 >
2 with(NLSYM, cor(education, experience))
12 [1] -0.653
```

Why, in this sample, are education and experience so strongly negatively correlated?

Fitted Regression Function: $\hat{eta}_{ extsf{0}}+\hat{eta}_{ extsf{1}}$ education, $+\hat{eta}_{ extsf{2}}$ experience,

Figure 3.2: Linear regression of log wage on years of schooling and years of experience, using NLSYM.

Table of Results

- Can use stargazer to produce table of results.
- Problem: default s.e., p-values based on default s.e., require homoscedasticity for validity.
- Alternatively, can use coeftest with vcov=vcovHC for heteroscedastic-robust s.e.:

```
1 > library(sandwich)
2 > library(lmtest)
3 > reg.test.1<-coeftest(reg.1,vcov = vcovHC)
4 > reg.test.2<-coeftest(reg.2,vcov = vcovHC)
5 > reg.test.3<-coeftest(reg.3,vcov = vcovHC)
6 > stargazer(reg.1,reg.2,reg.3,
7 + se= list(reg.test.1[,2], reg.test.2[,2],reg.test.3[,2]),
8 + p=list(reg.test.1[,4], reg.test.2[,4],reg.test.3[,4]),
9 + dep.var.labels="Enrollment", intercept.bottom = FALSE,
10 + keep.stat=c("n","rsq"),
11 + notes.append = FALSE, notes.align = "l", notes = "Reporting heteroscedastic-robust standard errors in parenthesis.")
```

Table 3.1: Log Wage Regressions, Using NLSYM Data

		Dependent v	ariable:
		Log Wa	ges
Constant	0.966***	1.645***	0.061
	(0.039)	(0.019)	(0.065)
education	0.052***		0.093***
	(0.003)		(0.004)
experience		0.001	0.041***
		(0.002)	(0.002)
Observations	3,010	3,010	3,010
R^2	0.099	0.0002	0.181

Note:

Reporting heteroscedastic-robust standard errors in parenthesis.

Intuition?

How do estimated coefficients compare?

Returns to Education – What if add age?

$$\mathsf{In}\,\mathsf{Wage}_i = \beta_{\mathsf{0}} + \beta_{\mathsf{1}}\mathsf{education}_i + \beta_{\mathsf{2}}\mathsf{experience}_i + \beta_{\mathsf{3}}\mathsf{age}_i + e_i$$

- Why the NA when we add age?
 - Perfect multicolinearity!
 - Recall experience is potential experience,

$$experience = Age - Education - 6.$$

Lets estimate the model with quadratic in experience:

$$\label{eq:mage_i} \mbox{In Wage}_i = \beta_{\rm 0} + \beta_{\rm 1} \mbox{education}_i + \beta_{\rm 2} \mbox{experience}_i + \beta_{\rm 3} \mbox{experience}_i^2 + \mbox{e}_i,$$

implying marginal effect of experience:

$$\beta_2 + 2\beta_3$$
 experience_i.

Table 3.2: Log Wage Regressions, Using NSLYM Data

	Dependent variable:					
	Log Wages					
	(1)	(2)	(3)	(4)		
Constant	0.966***	1.645***	0.061	-0.137*		
	(0.039)	(0.019)	(0.065)	(0.070)		
education	0.052***		0.093***	0.093***		
	(0.003)		(0.004)	(0.004)		
experience		0.001	0.041***	0.090***		
		(0.002)	(0.002)	(0.007)		
(experience^2)				-0.002***		
				(0.0003)		
Observations	3,010	3,010	3,010	3,010		
R ²	0.099	0.0002	0.181	0.196		

In model with quadratic in experience,

Estimated Marginal Effect of Experience: $\hat{\beta}_{\rm 2} + 2\beta_{\rm 3} {\rm experience}.$

Table 3.2: Log Wage Regressions, Using NSLYM Data

		Depende	ent variable:			
	Log Wages					
	(1)	(2)	(3)	(4)		
Constant	0.966***	1.645***	0.061	-0.137*		
	(0.039)	(0.019)	(0.065)	(0.070)		
education	0.052***		0.093***	0.093***		
	(0.003)		(0.004)	(0.004)		
experience		0.001	0.041***	0.090***		
		(0.002)	(0.002)	(0.007)		
I(experience^2)				-0.002***		
				(0.0003)		
Observations	3,010	3,010	3,010	3,010		
R ²	0.099	0.0002	0.181	0.196		

In model with quadratic in experience,

Estimated Marginal Effect of Experience: $\hat{\beta}_2 + 2\beta_3 \text{experience}.$

If experience 0, estimated marginal effect: 0.09.

Table 3.2: Log Wage Regressions, Using NSLYM Data

	Dependent variable:					
	Log Wages					
	(1)	(2)	(3)	(4)		
Constant	0.966***	1.645***	0.061	-0.137*		
	(0.039)	(0.019)	(0.065)	(0.070)		
education	0.052***		0.093***	0.093***		
	(0.003)		(0.004)	(0.004)		
experience		0.001	0.041***	0.090***		
		(0.002)	(0.002)	(0.007)		
I(experience^2)				-0.002***		
				(0.0003)		
Observations	3,010	3,010	3,010	3,010		
R ²	0.099	0.0002	0.181	0.196		

In model with quadratic in experience,

Estimated Marginal Effect of Experience: $\hat{\beta}_2 + 2\beta_3$ experience.

If experience = 10, estimated marginal effect: $0.09 + 2 \cdot (-0.002) \cdot 10 = 0.05$.

Table 3.2: Log Wage Regressions, Using NSLYM Data

	Dependent variable:					
	Log Wages					
	(1)	(2)	(3)	(4)		
Constant	0.966***	1.645***	0.061	-0.137*		
	(0.039)	(0.019)	(0.065)	(0.070)		
education	0.052***		0.093***	0.093***		
	(0.003)		(0.004)	(0.004)		
experience		0.001	0.041***	0.090***		
		(0.002)	(0.002)	(0.007)		
I(experience^2)				-0.002***		
				(0.0003)		
Observations	3,010	3,010	3,010	3,010		
R ²	0.099	0.0002	0.181	0.196		

In model with quadratic in experience,

Estimated Marginal Effect of Experience: $\hat{\beta}_2 + 2\beta_3$ experience.

If experience = 20, estimated marginal effect: $0.09 + 2 \cdot (-0.002) \cdot 20 = 0.01$.

Fitted Regression Function:

$$\hat{eta}_0 + \hat{eta}_1$$
education $_i + \hat{eta}_2$ experience $_i + \hat{eta}_3$ experience $_i^2$

Fitted Regression Function:

$$\hat{eta}_0 + \hat{eta}_1$$
education $_i + \hat{eta}_2$ experience $_i + \hat{eta}_3$ experience $_i^2$

Returns to Education – Education and Ethnicity

Linear Regression Models on Education and Ethnicity:

```
1
2 > reg.1<-lm(logwage ~ education , data = NLSYM)
3 > reg.5<-lm(logwage ~ black , data = NLSYM)
4 > reg.6<- lm(logwage ~ education + black , data = NLSYM)
5 > with(NLSYM,cor(education,black))
6 [1] -0.2694
7 > with(NLSYM,tapply(education,black,mean))
8 0 1
9 13.66 11.96
```

Why not also add dummy variable for not being black? Dummy Variable Trap, would result in perfect multicolinearity.

Table 3.3: Log Wage Regressions, Using NLSYM Data

		Dependent variab	le:
		Log Wages	
	(1)	(2)	(3)
Constant	0.966***	1.731***	1.163***
	(0.039)	(0.009)	(0.040)
education	0.052***		0.042***
	(0.003)		(0.003)
black		-0.318***	-0.247***
		(0.018)	(0.018)
Observations	3,010	3,010	3,010
R ²	0.099	0.092	0.150

Note:

Reporting heteroscedastic-robust standard errors in parenthesis.

- How does estimated coefficient compare?
- Intuition?

```
In Wage<sub>i</sub> = \beta_0 + \beta_1education<sub>i</sub> + \beta_2Black<sub>i</sub> + e<sub>i</sub>,
```

Fitted Regression Function: $\hat{\beta}_0 + \hat{\beta}_1$ education_i + $\hat{\beta}_2$ Black_i

Figure 3.4: Linear regression of wage on years of schooling and dummy variable for being African-American.

Returns to Education – Estimating Model with Interactions, Education and Ethnicity

Additive model

$$\begin{split} \ln \mathsf{Wage}_i &= \beta_0 + \beta_1 \mathsf{education}_i + \beta_2 \mathsf{Black}_i + e_i \\ &= \begin{cases} \beta_0 + \beta_1 \mathsf{education}_i + e_i & \text{if not Black} \\ (\beta_0 + \beta_2) + \beta_1 \mathsf{education}_i + e_i & \text{if Black} \end{cases} \end{split}$$

Model with interactions:

$$\begin{split} \text{In Wage}_i &= \beta_0 + \beta_1 \text{education}_i + \beta_2 \text{Black}_i + \beta_3 \text{Black}_i \cdot \text{education}_i + e_i \\ &= \begin{cases} \beta_0 + \beta_1 \text{education}_i + e_i & \text{if not Black} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \text{education}_i + e_i & \text{if Black} \end{cases} \end{split}$$

OLS regression on model with interactions equivalent to running regressions $\ln \text{Wage}_i = \beta_0 + \beta_1 \text{education}_i + e_i$ separately on black and non-black samples.

Returns to Education – Estimating Model with Interactions

```
reg.7w <- lm(logwage ~ education, data = NLSYM[NLSYM$black==0,])
reg.7b <- lm(logwage ~ education, data = NLSYM[NLSYM$black==1,])
reg.7<- lm(logwage ~ education*black , data = NLSYM)
```

Returns to Education – Estimating Model with Interactions

Table 3.4: Log Wage Regressions, Using NLSYM Data

			Dependent	variable:				
	log wage							
	(1)	(2)	(3)	(4)	(5)	(6)		
Constant	0.966***	1.731***	1.163***	1.245***	0.690***	1.245***		
	(0.039)	(0.009)	(0.040)	(0.046)	(0.068)	(0.046)		
education	0.052***		0.042***	0.036***	0.060***	0.036***		
	(0.003)		(0.003)	(0.003)	(0.006)	(0.003)		
olack		-0.318***	-0.247***			-0.555***		
		(0.018)	(0.018)			(0.082)		
ducation:black						0.025***		
						(0.006)		
Sample:	Full	Full	Full	Non-Black	Black	Full		
Observations	3,010	3,010	3,010	2,307	703	3,010		
₹2	0.099	0.092	0.150	0.046	0.142	0.154		

Note:

 $Reporting\ heteroscedastic-robust\ standard\ errors\ in\ parenthesis.$

```
> reg.7
 Call:
  lm(formula = logwage ~ education * black, data = NLSYM)
 Coefficients:
  (Intercept) education black education:black
      1.2453
                 0.0355
                               -0.5550
                                                 0.0249
  #fitted regression line for non-blacks:
  > equation.7w=function(x){coef(reg.7)[2]*x+coef(reg.7)[1]}
  #fitted regression line for blacks:
  > equation.7b=function(x){(coef(reg.7)[2]+coef(reg.7)[4])*x
      +coef(reg.7)[1]+coef(reg.7)[3]}
14
```

Fitted Regression: $\hat{\beta}_0 + \hat{\beta}_1$ education_i + $\hat{\beta}_2$ Black_i + $\hat{\beta}_3$ Black_i · education_i

```
1 > ggplot(data=NLSYM, aes(x= education, y=logwage,color=as.factor(black)))+
2 + geom_point(shape=1) +
3 + ggtitle("Log Wage Regression, With Interaction, NLSYM Data")+
4 + theme_bw() + xlab("Education") + ylab("Log Wage")+ylim(0,5) +
5 + stat_function(fun=equation.7w,geom="line",color=scales::hue_pal()(2)[1])+
6 + stat_function(fun=equation.7b,geom="line",color=scales::hue_pal()(2)[2])+
7 + scale_color_hue(labels = c("Caucasian", "African Americans"))+
8 + labs(colour="Ethnicity")
```

Returns to Education – Estimating the Model with Interactions

Figure 3.5: Linear regression of wage on years of schooling, dummy variable for being African-American, and interaction.

Table 3.5: Log Wage Regressions, Using NLSYM Data

	Dependent variable:						
	Log Wages						
	(1)	(2)	(3)	(4)	(5)		
Constant	1.245*** (0.046)	0.369*** (0.069)	0.249*** (0.074)	0.208 (0.140)	0.249*** (0.074)		
education	0.036*** (0.003)	0.075*** (0.004)	0.080*** (0.004)	0.084*** (0.008)	0.080*** (0.004)		
black	-0.555*** (0.082)	-0.615*** (0.079)			-0.041 (0.158)		
experience		0.040*** (0.002)	0.045*** (0.003)	0.020*** (0.005)	0.045*** (0.003)		
education:black	0.025*** (0.006)	0.031*** (0.006)			0.004 (0.009)		
black:experience					-0.025*** (0.006)		
Sample:	Full	Full	Non — Black	Black	Full		
Observations R ²	3,010 0.154	3,010 0.233	2,307 0.159	703 0.164	3,010 0.238		

Note:

 $Reporting\ heteroscedastic-robust\ standard\ errors\ in\ parenthesis.$

Fitted Regression Function:

$$\hat{eta}_{ exttt{0}}+\hat{eta}_{ exttt{1}}$$
education $_{i}+eta_{ exttt{2}}$ experience $_{i}+\hat{eta}_{ exttt{3}}$ Black $_{i}$

Figure 3.6: Linear regression of wage on years of schooling, years of experience, and dummy variable for being African-American.

Fitted Regression Function: Including Interactions with Being African-American

Figure 3.7: Linear regression of wage on years of schooling, years of experience, dummy variable for being African-American, and interactions with being African-American.

Additional Resources, Next Week

Additional resources for this lecture:

- code, data.
- ► Handouts:
 - ► Handout: Implementing OLS in **R**.
 - ► Handout: stargazer.