Exercises 1

张逸松

September 24, 2019

8.1

When
$$n = 1$$
, $1^2 + 1 = 2 = 2^1$.

When
$$n = 2$$
, $2^2 + 1 = 5 > 2^2 = 4$.

When
$$n = 3$$
, $3^2 + 1 = 10 > 2^3 = 8$.

When
$$n = 4$$
, $4^2 + 1 = 17 > 2^4 = 16$.

8.4

When
$$x > 0, y > 0, |x| + |y| = x + y = |x + y|$$
.

When
$$x > 0$$
, $y < 0$ and $x + y > 0$, $|x| + |y| = x - y > |x + y| = x + y$.

When
$$x > 0$$
, $y < 0$ and $x + y < 0$, $|x| + |y| = x - y > |x + y| = -x - y$.

When
$$x < 0, y > 0$$
 and $x + y > 0$, $|x| + |y| = -x + y > |x + y| = x + y$.

When
$$x < 0, y > 0$$
 and $x + y < 0$, $|x| + |y| = -x + y > |x + y| = -x - y$.

When
$$x < 0, y < 0, |x| + |y| = x + y = |x + y|$$
.

8.8

 $\mathbf{a})$

Let x = y, P(x) is true. Otherwise, P(x) is false.

b)

 $\exists x P(X)$ proves the existence, and $\forall x \forall y (P(x) \land P(y) \rightarrow x = y)$ proves the uniqueness.

c)

There is a x makes P(x) is true. At the same time, for all elements y, if P(y) is true only if x = y, that proves the uniqueness.