Лабораторна робота №2

Розфарбування графів на основі базису Гребнера

Мета роботи: навчитися застосовувати оператори SymPy для побудови базису Гребнера для систем поліномів, що задають можливе розфарбування графів, визначити хроматичне число графу на основі розв'язання базису Гребнера

Дано граф G(V, E), де $V \in множина вершин <math>G$, $E \in множина ребер <math>G$, k – позитивне число (k>=1). Необхідно з'ясувати, чи можна призначити колір кожній вершині з V, таким чином, що сусіднім вершинам (по'язаним ребром) присвоєні різні кольори.

В першу чергу треба призначити змінну кожній вершині. З огляду на те, що G має n вершин, тобто |V| = n, будемо мати змінні x1, x2, ..., xn. Далі записують поліноми системи рівнянь, яка описують той факт, що дозволено призначення одного з k кольорів до кожної вершині:

$$F_k = \{x^k - 1, k = 1, ..., n\}.$$

Також вимагають, щоб двом сусіднім вершинам (позначеним змінними хі і хј) були присвоєні різні кольори. Для цього задається система поліномів

$$F_G = \{(x_i^k - x_i^k)/(x_i - x_i), k = 1,...n\}.$$

Необхідно будувати базис Гребнера для системи поліномів $F_k + F_{G}$, вид якого означає можливість розфарбування. Якщо отримуємо базис Гребнера $\{1\}$, то граф не може бути розфарбований k фарбами. В іншому випадку розв'язок системи рівнянь, що утворені базисом Гребнера, дає повну інформацію про всіх можливі розфарбування k фарбами.

Приклад. З'ясувати чи може бути розфарбований трьома фарбами (k=3) нижченаведений граф

Граф містить 12 вершин та 23 ребра. Закодуємо вершини та ребра, використовуючи вбудовані структури мови Python:

V = range(1, 12+1) # vertices

$$E = [(1,2),(2,3),(1,4),(1,6),(1,12),(2,5),(2,7),(3,8),$$

$$(3,10)$$
, $(4,11)$, $(4,9)$, $(5,6)$, $(6,7)$, $(7,8)$, $(8,9)$, $(9,10)$,

$$(10,11),(11,12),(5,12),(5,9),(6,10),(7,11),(8,12)]$$
 #edges

Далі представляють граф в алгебраїчній формі шляхом зіставлення змінних вершинам і кортежів змінних парам індексів:

$$Vx = [Symbol('x' + str(i)) for i in V]$$

$$Ex = [(Vx[i-1], Vx[j-1]) \text{ for } i, j \text{ in } E]$$

Наступний крок – це побудова систем поліномів, що утворюють базис Гребнера (k=3):

$$F3 = [x^*3 - 1 \text{ for } x \text{ in } Vx]$$

$$Fg = [factor((x**3 - y**3)/(x-y)) for x, y in Ex]$$

Тепер можна обчислити базис Гребнера F3UFG щодо лексикографічного впорядкування термів:

G = groebner(F3 + Fg, Vx)

print(G)

Якщо побудована система поліноміальних рівнянь має розв'язок, то базис Гребнера має бути нетривіальним, що можуть бути легко перевірено в SymPy:

G!=[1]

В даному випадку вищенаведений вираз приймає значення True, тобто граф може бути розфарбований трьома кольорами.

Для пошуку всіх можливих розфарбувань необхідно отримати розв'язок системи рівнянь, що утворені базисом Гребнера:

colorings = solve(G, Vx)

Кількість елементів розв'язку показує кількість можливих варіантів розфарбувань

print(len(colorings))

Завдання

- 1. Побудувати базис Гребнера для графа, розв'язання якого визначає можливість k-розфарбування (за варіантом, k=3).
- 2. Побудувати розв'язок системи поліноміальних рівнянь, що відповідають базису Гребнера. За отриманим розв'язком знайти кількість розфарбувань та написати алгоритм побудови всіх можливих списків розфарбувань для вершин графа.
- 3. Знайти хроматичне число графа. Для цього зменшити кількість кольорів k та перевірити чи існує розфарбування при меншій кількості. Хроматичне число графа мінімальна кількість кольорів, в які можна розфарбувати вершини графа таким чином, щоб кінці будь-якого ребра мали різні кольори.

Варіанти:

Варіант 1

Варіант 2

Варіант 3

Варіант 4

Варіант 5

Варіант 6

Варіант 7

Варіант 8

Варіант 9

Варіант 10

Посилання на джерела:

Символьні обчислення мовою Python. -

https://ru.wikiversity.org/wiki/Программирование_и_научные_вычисления_н а_языке_Python/ $\S19$

Про бібліотеку SymPy. - http://www.sympy.org/ru/

SymPy Tutorial. - http://docs.sympy.org/latest/tutorial/index.html#tutorial

https://uk.wikipedia.org/wiki/Хроматичне число