Title

Author 1
Department of YYY, University of XXX
and
Author 2
Department of ZZZ, University of WWW
July 22, 2021

Contents

1	Abstract	3		
2	Introduction 2.1 Background	3 3		
3	Methodology3.1 Acquisition of Data3.2 Preprocessing3.3 Machine Learning Models3.4 Deep Learning Model	3 3 3 3		
4	Results 4.1 Model Results and Comparison	3		
5	Conclusion	3		
6	Future Work			
7	References			
8	Appendix A			
9	Appendix B			

- 1 Abstract
- 2 Introduction
- 2.1 Background
- 2.2 Related Work
- 3 Methodology

3.1 Acquisition of Data

Our gold-standard dataset consisted of 16K sampled patients with APOE gene jinsert info about Biobank;. Each patient's EHR record was reviewed by an expert clinician (neurologist, psychiatrist, or geriatric psychiatrist) to annotate patients with presence, absence, or inconclusiveness of cognitive impairment.

3.2 Preprocessing

We first created a list of keywords related to cognitive impairment (full list with frequency matches in Appendix A). For each patient in the BioBank data repository (mentioned above), we extracted all sequences containing any of the keywords. Several preprocessing steps were completed to increase the sequences to 800 characters minimum (more details in Appendix B) to allow for annotators to have more context when evaluating sequences. The preprocessed sequences were used as input for all models.

- 3.3 Machine Learning Models
- 3.4 Deep Learning Model
- 4 Results
- 4.1 Model Results and Comparison
- 5 Conclusion
- 6 Future Work
- 7 References
- 8 Appendix A
- 9 Appendix B

Rank	Keyword	Match Count
1	Memory	109218
2	Cognition	87655
3	Dementia	51034
4	Cerebral	45886
5	Cerebrovascular	36370
6	Cerebellar	26863
7	Cognitive Impairment	20267
8	Alzheimer	20581
9	MOCA	9767
10	Neurocognitive	7711
11	MCI	3889
12	Amnesia	3695
13	\mathbf{AD}	2673
14	Lewy	2561
15	MMSE	2134
16	LBD	224
17	Corticobasal	147
18	Pick's	41

Table 1: Keywords indicative of Cognitive Impairment