Instructions

- This is a closed notes exam.
- The exam contains 4 + 1 questions and is worth 30% of your grade.
- You have 2 hours.

Question 1 [10 Points]

For each of the following statements, determine whether it is **true or false**. No justification required. $[\mathbf{5} \times \mathbf{2} \ \mathbf{Points}]$

- (a) There is an uncountable chain in $(\mathcal{P}(\mathbb{Q}), \subseteq)$.
- (b) There is a subset of plane that intersects every line at exactly 7 points.
- (c) If ϕ and ψ are satisfiable propositional formulas, then $(\phi \wedge \psi)$ is satisfiable.
- (d) There exist infinite ordinals $\alpha \neq \beta$ such that $\alpha + \alpha + \alpha = \beta + \beta + \beta$.
- (e) ZFC has finitely many axioms.

Question 2 [7 Points])

- (a) [1 Points] State the Schröder-Bernstein theorem.
- (b) [2 Points] Suppose X is an uncountable set and Y is a countable subset of X. Show that $|X \setminus Y| = |X|$.
- (c) [4 Points] Let \mathcal{F} be the set of all bijections from \mathbb{R} to \mathbb{R} . Show that $|\mathcal{F}| > |\mathbb{R}|$.

Question 3 [5 Points]

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$,

$$f(x + y) = f(x) + f(y) - f(x)f(y).$$

- (a) [1 Point] Define h = 1 f. Show that h(x + y) = h(x)h(y).
- (b) [4 Points] Suppose f is continuous. Show that either f is identically 1 or $f(x) = 1 a^x$ for some constant a > 0.

Question 4 [8 Points]

- (a) [2 Points] State Zorn's lemma.
- (b) Consider the partial ordering (\mathcal{F},\subseteq) where \mathcal{F} is the family of all $X\subseteq\mathbb{R}^2$ that satisfy: For every circle $C\subseteq\mathbb{R}^2$,

$$|X \cap C| \le 3.$$

- (i) [2 Points] Show that (\mathcal{F}, \subseteq) has a maximal element.
- (ii) [4 Points] Show that there exists $M \subseteq \mathbb{R}^2$ such that for every circle $C \subseteq \mathbb{R}^2$,

$$|M \cap C| = 3.$$

Bonus problem [5 Points]

Prove or disprove the following statement. There is an uncountable family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ such that for every $A, B \in \mathcal{F}$,

$$A \neq B \implies A \cap B$$
 is finite.