• Example 2 : Show that the Traveling Salesman (TS) Problem is NP-complete.

Given a known NPC problem - Hamiltonian Circuit (HC), show that TS problem is NPC.

Hamiltonian Circuit (HC) problem

Instance: Give an undirected graph G=(V, E)

Question: Does G contain a Hamiltonian circuit, i.e. a sequence $< v_1, v_2, ..., v_n >$ of all vertices in V which is a simple cycle.

Traveling Salesman (TS) Problem

Instance: Give an undirected <u>complete graph</u> G=(V, E) with distance $d(i,j) \ge 0$ for each edge (i,j) for $i \ne j$ and a positive integer B.

Question: Is there a tour of all cities (a simple cycle with all vertices) having total distance no more than B.

• TS is in NP

guess a tour, i.e. sequence of all vertices O(|V

verify that it is a cycle covering all vertices and total distance $\leq B$

O(|V|)

• HC \propto TS

Given arbitrary instance of HC, i.e. G=(V, E).

Construct an instance of TS as follows:

$$G' = (V, E')$$
, where $(u,v) \in E'$
for all $u, v \in V$ and $u \neq v$
 $d(u,v) = 0$ if $(u,v) \in E$
 $d(u,v) = 1$ if $(u,v) \notin E$
and $B = 0$

Note: The transformation can be done in polynomial time (based on input size of V and E)

To show the transformation is correct: The HC problem has a solution if and only if the TS problem has a solution.

➤ If HC problem has a solution, then TS problem has a solution

Assume a $\langle v_1, v_2, ..., v_n \rangle$ is the solution for HC \rightarrow It is a simple cycle which contains all vertices \rightarrow Each edge (u,v) in this cycle has d(u,v) = 0 \rightarrow Total distance is 0 \rightarrow Solution for TS

➤ If TS problem has a solution then HC problem has a solution

Obvious to see.

• Example 3 : Show that the Vertex Cover (VC) Problem is NP-complete.

Given 3SAT problem is NPC, show that VC problem is NPC.

3SAT Problem

Instance: Given a set of variables $U = \{u_1, u_2, ..., u_n\}$ and a collection of clauses $C = \{c_1, c_2, ..., c_m\}$ over U such that $|c_i| = 3$ for $1 \le i \le m$.

Question: Is there a truth assignment for U that satisfies all clauses in C?

Note: 3SAT problem is a restricted problem of SATISFIABILITY problem.

Vertex Cover (VC) Problem

Instance : Given an undirected graph G=(V, E) and a positive integer $K \le |V|$

Question: Is there a vertex cover of size K or less for G, i.e. a subset $V' \subseteq V$ such that $|V'| \le K$ and, for each $(u,v) \in E$, at least one of u or $v \in V'$.

• VC is in NP guess a set of vertices $V' \subseteq V$ O(|V|) verify that $|V'| \le K$ and, for each $(u,v) \in E$, $u \in V'$ or $v \in V'$ O(|V|+|E|)