

数据技术嘉年华

// Data Technology Carnival

开源 · 融合 · 数智化 — 引领数据技术发展 释放数据要素价值

KluStron高可用和容灾技术体系

演讲人: 丁奇

目录 CONTENTS

01 数据库HA的基础实践

02 跨IDC金融级可用性的挑战

03 Klustron高可用体系

04 2023数据技术嘉年华

数据库HA的基础实践

- 物质基础: 没有单点
 - 多副本
 - 延迟处理
- 逻辑基础: 及时切换
 - 探测能力
 - 切换能力

可靠性和性能的权衡

- 类SemiSync机制的原理和存在的问题
 - 确保事务日志在系统中至少保存两份
 - 问题1: 不是很"确保" -- ACK时机
 - 问题2: 两份也不够 -- 跨IDC容灾需求

ACK时机的选择

ACK时机	可靠性排名	性能排名
收到binlog ack (semisync)	3	2
备库 relaylog 落盘ACK(Klustron FullSync)	2	1
备库apply log后ack (实时强同步)	1	3

ACK备库数目及对象

ACK备机数目及对象	跨节点可靠性	跨IDC可靠性
只支持1个,随机备库(semisync)	确定	不确定
支持配置多个,且支持分组(Klustron FullSync)	确定	确定

Klustron集群间数据同步和异地多活技术

shard镜像 双向复制 单元化 主动切换

谢谢观看

THANKS FOR WATCHING

中国**DBA**联盟 **於** 墨天轮