Principles of Communication Systems Lab (303 P)

Lab-4 (DSB-SC modulation and demodulation)

(Due Date: 7-9-2021, Time: 1 pm)

Instructions:

- 1. NO PLAGIARISM. Your solution must be written in your words.
- 2. Please strictly follow the LaTex template for making lab reports. The template has been uploaded on LMS.
- 3. Please mention legends, axis labels, titles etc in your plot/subplot for better understanding and clarity.
- 4. For best quality, please add .eps format of simulation plot in the report. You can directly export .eps plot from MATLAB.
- 5. The report to be submitted must include MATLAB code and all observations pertaining to each plot below the same.
- 6. Kindly number your answers correctly.
- 7. Please feel free to ask any questions in class or via LMS..

Questions:

- 1. Consider a DSB-SC modulated signal $\phi(t) = A_c m(t) \cos(2\pi f_c t)$ with message signal $m(t) = A_m \cos(2\pi f_m t)$. Assume $A_m = A_c = 2$ $f_m = 200$ Hz and $f_c = 2$ KHz.
 - (a) Plot the message signal $m(t) = A_m \cos(2\pi f_m t)$ for complete five cycles.
 - (b) Plot the carrier signal $c(t) = A_c \cos(2\pi f_c t)$ for a duration equal to the duration of the message signal m(t).
 - (c) Plot the DSB-SC signal $\phi(t)$
 - (d) Plot the frequency spectrum of the signals in part (a) and (b) and identify the tones of carrier signal and the message signal.
 - (e) Demodulate the above DSB-SC signal using the synchronous detector discussed in the class. Plot the demodulated signal and its spectrum. Assume that the receiver can generate a carrier $c(t) = A_c \cos(2\pi f_c t)$.

Note: Do not use inbuilt function 'modulate' and 'demodulate'! Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.

- 2. Consider a multi-tone signal $m(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$ and a carrier signal $A_c \cos(2\pi f_c t)$ with $A_c = A_1 = A_2 = 1$, $f_1 = 250$ Hz, $f_2 = 350$ Hz and $f_c = 2.5$ KHz.
 - (a) Plot the signal $A_1 \cos(2\pi f_1 t)$ for complete five cycles.
 - (b) Plot the signal $A_2 \cos(2\pi f_2 t)$ and the carrier signal $A_c \cos(2\pi f_c t)$ over the duration of signal $A_1 \cos(2\pi f_1 t)$.
 - (c) Plot the frequency spectrum of the message signal m(t) and the carrier signal $c(t) = A_c \cos(2\pi f_c t)$
 - (d) Plot the frequency spectrum of DSB-SC signal $\phi(t) = A_c m(t) \cos(2\pi f_c t)$ and identify the tones of the message signal and the carrier signal and .
 - (e) Demodulate the DSB-SC signal using the synchronous detector discussed in the class and plot the demodulated signal and its spectrum. Assume that the receiver knows the the carrier signal perfectly.

Note: Do not use the inbuilt function 'modulate' and 'demodulate'. Take a large no. of samples to get a smooth curve. Plot all the sub-parts in the same plot using subplot.