计算机科学与技术学院可视化技术实验报告

实验题目:数据降维		学号: 201900150221		
日期: 10.9	班级: 19 智能	姓名: 张进华		

Email: zjh15117117428@163.com

实验目的:

1. 体验 tensorflow 的降维

2. 选择数据进行降维,并比较 tsne, pca, isomap 等方法的区别

实验软件和硬件环境:

Visual studio Code python 3.9.7

Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz

实验步骤

步骤一 体验 tensorflow 的降维

首先下载数据集 abalone, 此数据集用来通过物理测量预测鲍鱼的年龄, 而在我的实验中, 我将鲍鱼的性别作为分类的 label, 对其他属性信息进行降维, 在导入之前将其处理成为 tsv 格式文件数据集 PCA 降维可视化效果如下:

可以看到数据集降维的效果并不是特别好

数据集 t-sne 降维可视化效果如下:

当迭代次数较少的时候,各数据集其实并不能较好的分开,当迭代次数逐渐增大的时候其实可以较好地分离不同 label 的数据

数据集 UMAP 降维可视化效果如下:

可以看到 UMAP 降维后的效果很奇怪

数据集 custom 降维可视化效果

custom 降维效果看不出来和原数据有什么区别

步骤二 降维比较 t-sne, pca, isomap 等方法的区别

这里仍使用上面的数据进行降维可视化,第一列为 label,实验数据集可视化效果如下:

	_								
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12
4177 rows × 9 columns									

可以看到数据集为八维,无法对原数据进行可视化,然后将第一列性别数据作为 label 进行分类,并进行可视化

1- 查看数据相关性

将输入数据 X 中的各个属性进行相关性分析,将彼此之间的关系映射到 0-1 之间,代表线性相关,绘制相关性散度矩阵如下:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Length	1.00	0.98	0.82	0.92	0.89	0.90	0.89	0.55
Diameter	0.98	1.00	0.83	0.92	0.89	0.89	0.90	0.57
Height	0.82	0.83	1.00	0.81	0.77	0.79	0.81	0.55
Whole weight	0.92	0.92	0.81	1.00	0.96	0.96	0.95	0.54
Shucked weight	0.89	0.89	0.77	0.96	1.00	0.93	0.88	0.42
Viscera weight	0.90	0.89	0.79	0.96	0.93	1.00	0.90	0.50
Shell weight	0.89	0.90	0.81	0.95	0.88	0.90	1.00	0.62
Rings	0.55	0.57	0.55	0.54	0.42	0.50	0.62	1.00

2-PCA 降维可视化

PCA 是一种将 n 维数据正交分解到 k 维的降维方法,选择了方差最大的 k 个方向作为数据维度保留方向,是一种由原空间线性组合降维的方法.

算法步骤:

- <1>. 设有 m 条 n 维数据,将原始数据按列组成 n 行 m 列矩阵 X;
- <2>. 将 X 的每一行进行零均值化,即减去这一行的均值,求出协方差矩阵;
- <3>. 求出协方差矩阵的特征值及对应的特征向量;
- <4>. 将特征向量按对应特征值大小从上到下按行排列成矩阵, 取前 k 行组成矩阵 P, 即为降维到 k 维后的数据。

绘制 PCA 降维维分类图效果如下:

可以发现 PCA 降维的效果不是很好,降维后无法清楚的将三类数据区分

3-i somap 降维可视化

MDS(多维缩放)降维是一组对象之间的距离的可视化表示,也可以当做一种无监督降维算法使用。而 Isomap(等度量映射)是在 MDS 算法的基础上衍生出的一种非迭代的全局优化算法,它是一种等距映射算法,也就是说降维后的点,两两之间距离不变,这个距离是测地距离。

Isomap 算法没有多少公式推导的内容,它的创新点是引入测地线距离和提出对应的距离计算方法。此算法出发点,是认识到流形在高维空间中,两个样本之间的距离不该直接使用欧式距离计算直线距离,更应该是采用"测地线"距离,就像我们日常生活中送快递的例子,两个城市之间如果没有直达的路线,快递就会经过许多中转站才能送到,Isomap 通过将数据点连接起来构成一个邻接 Graph 来离散地近似原来的流形,而测地距离也相应地通过 Graph 上的最短路径来近似了**算法步骤**:

- <1>. 对每个样本点 x,计算它的 k 近邻;同时将 x 与它的 k 近邻的距离设置为欧氏距离,与其他点的距离设置为无穷大;
- <2>. 调用最短路径算法计算任意两个样本点之间的距离,获得距离矩阵 D;
- <3>. 调用多维缩放 MDS 算法,获得样本集在低维空间中的矩阵 Z;

绘制 i somap 降维维分类图效果如下:

可以看到 isomap 实现效果要比 PCA 好一点,大体上可以看不同 label 数据的分布

4-t-sne 降维可视化

t-SNE 全称为 t-distributed Stochastic Neighbor Embedding 翻译为 t-随机邻近嵌入,它是一种嵌入模型,能够将高维空间中的数据映射到低维空间中,主要用于高维数据的降维和可视化。

t-SNE 可以算是目前效果最好的数据降维和可视化方法之一,当我们想对高维数据集进行分类,但又不清楚这个数据集有没有很好的可分性(同类之间间隔小、异类之间间隔大)时,可以通过 t-SNE 将数据投影到 2 维或 3 维空间中观察一下:如果在低维空间中具有可分性,则数据是可分的;如果在低维空间中不可分,则可能是因为数据集本身不可分,或者数据集中的数据不适合投影到低维空间。

t-SNE 将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生 t 分布表示。通过原始空间和嵌入空间的联合概率分布的 KL 散度(用于评估两个分布的相似度的指标,经常用于评估机器学习模型的好坏)来评估嵌入效果的好坏,即将有关 KL 散度的函数作为损失函数(loss function),通过梯度下降算法最小化损失函数,最终获得收敛结果,t-SNE 的缺点很明显:占用内存较多、运行时间长。

绘制 i somap 降维维分类图效果如下:

由图可知效果比上面两种有很大的改进

结论分析与体会:

PCA 相比于其他两种算法计算速度很快,其他两种算法都需要计算距离,所以导致耗费的时间长,样本数量一旦过多或者维度过大往往难以计算。但是 pca 的算法由于是线性的,所以能力有限,有时候很难处理有些问题。而 i somap 则需要设置 knn 算法的超参 k,超参的设置也很影响降维的效果

Pca 的降维更加兼顾于全局的效果,而 i somap 则注重于特定流形的学习,而 tsne 相比之下则更加关注数据局部特征