Online Course(CS-325)

- 1-Newton Forward and Backward difference formula(3.3)
- 2- Newton centered difference (Stirling) formula(3.3)
- 3-Numerical differentiation (4.1)
 - a) Three-point formula
 - b) Five-point formulas

3.3 Divided Differences

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$$

$$P_n(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0 \dots x_2]$$

$$+ (x - x_0)(x - x_1)(x - x_2)f[x_0 \dots x_3] + \dots$$

$$+ (x - x_0)(x - x_1)\dots(x - x_{n-1})f[x_0 \dots x_n].$$

Algorithm 3.2

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1}),$$

$$x_0 \quad y_0 = f[x_0]$$
 a0 $f[x_0, x_1]$ a1 $x_1 \quad y_1 = f[x_1]$ $f[x_1, x_2]$ $f[x_1, x_2]$ $f[x_1, x_2, x_3]$ $f[x_2, x_3]$ $f[x_2, x_3]$ $f[x_2, x_3]$ $f[x_3, x_2, x_3]$

$$f[x_k] = f(x_k)$$

$$f[x_k \ x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$$

$$f[x_k \ x_{k+1} \ x_{k+2}] = \frac{f[x_{k+1} \ x_{k+2}] - f[x_k \ x_{k+1}]}{x_{k+2} - x_k}$$

$$f[x_k \ x_{k+1} \ x_{k+2}] = \frac{f[x_{k+1} \ x_{k+2}] - f[x_k \ x_{k+1}]}{x_{k+2} - x_k}$$

Table 3.9

х	f(x)	First divided differences	Second divided differences	Third divided differences
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
<i>x</i> ₁	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	<i>(</i> [1
<i>X</i> ₂	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{f[x_1, x_2, x_3]}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
AZ	J [X2]	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$x_3 - x_1$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
<i>X</i> 3	$f[x_3]$		$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	
<i>x</i> ₄	$f[x_4]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
X5	$f[x_5]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	A.J. A.J.	

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.

i	x_i	$f[x_i]$	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3},\ldots,x_i]$	$f[x_{i-4},\ldots,x_i]$		
0	1.0	0.7651977	-0.4837057				Table	3.10
1	1.3	0.6200860	-0.4637037	-0.1087339			Х	f(x)
			-0.5489460		0.0658784		1.0	0.7651977
2	1.6	0.4554022		-0.0494433		0.0018251	1.3	0.6200860
			-0.5786120		0.0680685		1.6 1.9	0.4554022 0.2818186
3	1.9	0.2818186	-0.5715210	0.0118183			2.2	0.1103623
4	2.2	0.1103623						

$$P_4(x) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3)$$

$$+ 0.0658784(x - 1.0)(x - 1.3)(x - 1.6)$$

$$+ 0.0018251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9).$$

$$P_4(1.5) = 0.5118200$$

Use Newton DD

$$\begin{split} f(x) \approx f_0 + (x-x_0)f[x_0,x_1] + (x-x_0)(x-x_1)f[x_0,x_1,x_2] \\ + \cdots + (x-x_0)(x-x_1)\cdots(x-x_{n-1})f[x_0,\cdots,x_n]. \end{split}$$

Compute f(9.2) from the values shown in the first two columns of the following table.

x_j	$f_j = f(x_j)$	$f[x_j, x_{j+1}]$	$f[x_j, x_{j+1}, x_{j+2}]$	$f[x_j,\cdots,x_{j+3}]$
8.0	2.079442			
9.0	2.197225	(0.117783)	(-0.006433)	
9.0	2.19/223	0.108134	(-0.006455)	(0.000411)
9.5	2.251292		-0.005200	
		0.097735		
11.0	2.397895			

$$f(x) \approx p_3(x) = 2.079442 + 0.117783(x - 8.0) - 0.006433(x - 8.0)(x - 9.0) + 0.000411(x - 8.0)(x - 9.0)(x - 9.5).$$

$$f(9.2) \approx 2.079442 + 0.141340 - 0.001544 - 0.000030 = 2.219208.$$

EXERCISE SET 3.3

- Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
 for the following data. Approximate the specified value using each of the polynomials.
 - a. f(8.4) if f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091
 - b. f(0.9) if f(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) = 0.65809197
- Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.
 - a. f(0.43) if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) = 4.48169
 - **b.** f(0) if f(-0.5) = 1.93750, f(-0.25) = 1.33203, f(0.25) = 0.800781, f(0.5) = 0.687500
- Use Newton the forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.
 - a. $f\left(-\frac{1}{3}\right)$ if f(-0.75) = -0.07181250, f(-0.5) = -0.02475000, f(-0.25) = 0.33493750, f(0) = 1.10100000
 - **b.** f(0.25) if f(0.1) = -0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, f(0.4) = 0.24842440

Newton Forward-Difference Formula

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} {s \choose k} \Delta^k f(x_0)$$

$$h = x_{i+1} - x_i, \text{ for each } i = 0, 1, \dots, n-1 \text{ and let } x = x_0 + sh.$$

Newton Backward-Difference Formula

$$\binom{s}{k} = \frac{s(s-1)\cdots(s-k+1)}{k!},$$

$$P_n(x) = f[x_n] + \sum_{k=1}^n (-1)^k {\binom{-s}{k}} \nabla^k f(x_n)$$

$$P_n(x) = f[x_n] + (-1)^1 \binom{-s}{1} \nabla f(x_n) + (-1)^2 \binom{-s}{2} \nabla^2 f(x_n) + \dots + (-1)^n \binom{-s}{n} \nabla^n f(x_n).$$

If, in addition, the nodes are equally spaced with $x = x_n + sh$

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3},\ldots,x_i]$	$f[x_{i-4},\ldots,x_i]$
0	1.0	0.7651977				
			-0.4837057			
1	1.3	0.6200860		-0.1087339		
			-0.5489460		0.0658784	
2	1.6	0.4554022		-0.0494433		0.0018251
			-0.5786120		0.0680685	
3	1.9	0.2818186		0.0118183		
			-0.5715210			
4	2.2	0.1103623				

- a) Approximate f(1.1) use Newton forward difference
- b) Approximate f(2.0) use Newton backward difference

$$P_4(1.1) = P_4(1.0 + \frac{1}{3}(0.3))$$

$$= 0.7651977 + \frac{1}{3}(0.3)(-0.4837057) + \frac{1}{3}\left(-\frac{2}{3}\right)(0.3)^2(-0.1087339)$$

$$+ \frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^3(0.0658784)$$

$$+ \frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^4(0.0018251)$$

$$= 0.7196460.$$

$$P_4(2.0) = P_4\left(2.2 - \frac{2}{3}(0.3)\right)$$

$$= 0.1103623 - \frac{2}{3}(0.3)(-0.5715210) - \frac{2}{3}\left(\frac{1}{3}\right)(0.3)^2(0.0118183)$$

$$-\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^3(0.0680685) - \frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^4(0.0018251)$$

$$= 0.2238754.$$

Centered Differences

The Newton forward- and backward-difference formulas are not appropriate for approximating f(x) when x lies near the center of the table. We will consider only one centered-

difference formula, Stirling's method.

For the centered-difference formulas, we choose x_0 near the point being approximated and label the nodes directly below x_0 as x_1, x_2, \ldots and those directly above as x_{-1}, x_{-2}, \ldots . With this convention, Stirling's formula is given by

$$P_{n}(x) = P_{2m+1}(x) = f[x_{0}] + \frac{sh}{2}(f[x_{-1}, x_{0}] + f[x_{0}, x_{1}]) + s^{2}h^{2}f[x_{-1}, x_{0}, x_{1}]$$

$$+ \frac{s(s^{2} - 1)h^{3}}{2}f[x_{-2}, x_{-1}, x_{0}, x_{1}] + f[x_{-1}, x_{0}, x_{1}, x_{2}])$$

$$+ \dots + s^{2}(s^{2} - 1)(s^{2} - 4) \dots (s^{2} - (m - 1)^{2})h^{2m}f[x_{-m}, \dots, x_{m}]$$

$$+ \frac{s(s^{2} - 1) \dots (s^{2} - m^{2})h^{2m+1}}{2}(f[x_{-m-1}, \dots, x_{m}] + f[x_{-m}, \dots, x_{m+1}]),$$

Table 3.13

х	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
x_{-2}	$f[x_{-2}]$	$f[x_{-2}, x_{-1}]$			
x_{-1}	$f[x_{-1}]$	$f[x_{-1}, x_0]$	$f[x_{-2}, x_{-1}, x_0]$	$f[x_{-2}, x_{-1}, x_0, x_1]$	
x_0	$f[x_0]$		$f[x_{-1}, x_0, x_1]$		$f[x_{-2}, x_{-1}, x_0, x_1, x_2]$
x_1	$f[x_1]$	$f[x_0, x_1]$	$f[x_0, x_1, x_2]$	$f[x_{-1}, x_0, x_1, x_2]$	
x_2	$f[x_2]$	$f[x_1,x_2]$			

Example 2 Consider the table of data given in the previous examples. Use Stirling's formula to approximate f(1.5) with $x_0 = 1.6$.

Table 3.14

х	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
		-0.4837057			
1.3	0.6200860		-0.1087339		
		-0.5489460		0.0658784	
1.6	0.4554022		-0.0494433		0.0018251
		-0.5786120		0.0680685	
1.9	0.2818186		0.0118183		
		-0.5715210			
2.2	0.1103623				

The formula, with h = 0.3, $x_0 = 1.6$, and $s = -\frac{1}{3}$, becomes

$$P_n(x) = P_{2m+1}(x) = f[x_0] + \frac{sh}{2} (f[x_{-1}, x_0] + f[x_0, x_1]) + s^2h^2 f[x_{-1}, x_0, x_1]$$

$$+ \frac{s(s^2 - 1)h^3}{2} f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2])$$

$$+ \dots + s^2(s^2 - 1)(s^2 - 4) \dots (s^2 - (m - 1)^2)h^{2m} f[x_{-m}, \dots, x_m]$$

$$f(1.5) \approx P_4 \left(1.6 + \left(-\frac{1}{3} \right) (0.3) \right)$$

$$= 0.4554022 + \left(-\frac{1}{3} \right) \left(\frac{0.3}{2} \right) ((-0.5489460) + (-0.5786120))$$

$$+ \left(-\frac{1}{3} \right)^2 (0.3)^2 (-0.0494433)$$

$$+ \frac{1}{2} \left(-\frac{1}{3} \right) \left(\left(-\frac{1}{3} \right)^2 - 1 \right) (0.3)^3 (0.0658784 + 0.0680685)$$

$$+ \left(-\frac{1}{3} \right)^2 \left(\left(-\frac{1}{3} \right)^2 - 1 \right) (0.3)^4 (0.0018251) = 0.5118200.$$

4.1 Numerical Differentiation

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$f'(x) \approx \frac{f(x_0+h)-f(x_0)}{h}$$
.

Example 1 Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

$$\frac{f(1.8+h)-f(1.8)}{h}$$

with h = 0.1 gives

$$\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722.$$

Bound for approximation error:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi).$$

For small values of h, the difference quotient $[f(x_0 + h) - f(x_0)]/h$ can be used to approximate $f'(x_0)$ with an error bounded by M|h|/2, where M is a bound on |f''(x)| for x between x_0 and $x_0 + h$. This formula is known as the forward-difference formula if h > 0 (see Figure 4.1) and the backward-difference formula if h < 0.

Because $f''(x) = -1/x^2$ and $1.8 < \xi < 1.9$, a bound for this approximation error is

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321.$$

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar manner and the results are shown in Table 4.1.

Table 4.1

h	f(1.8 + h)	$\frac{f(1.8+h) - f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Since f'(x) = 1/x, the exact value of f'(1.8) is $0.55\overline{5}$, and in this case the error bounds are quite close to the true approximation error.

Three-Point Formulas

Three-Point Endpoint Formula

•
$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0),$$
 (4.4)

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi_1),$$
 (4.5)

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

Five-Point Formulas

Five-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi),$$
 (4.6)

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Five-Point Endpoint Formula

•
$$f'(x_0) = \frac{1}{12h} [-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5} f^{(5)}(\xi), \tag{4.7}$$

where ξ lies between x_0 and $x_0 + 4h$.

Example 2 Values for $f(x) = xe^x$ are given in Table 4.2. Use all the applicable three-point and five-point formulas to approximate f'(2.0).

We can use the endpoint formula (4.4) with h = 0.1 or with h = -0.1

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)]$$

$$\frac{1}{0.2}[-3f(2.0) + 4f(2.1) - f(2.2] = 5[-3(14.778112) + 4(17.148957) - 19.855030)] = 22.032310,$$

and with h = -0.1 gives 22.054525.

Table 4.2

x	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Using the midpoint formula (4.5) with h = 0.1 gives

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)]$$

$$\frac{1}{0.2}[f(2.1) - f(1.9)] = 5(17.148957 - 12.7703199) = 22.228790,$$

and with h = 0.2 gives 22.414163.

The only five-point formula for which the table gives sufficient data is the midpoint formula (4.6) with h = 0.1. This gives

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)]$$

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)]$$

$$\frac{1}{1.2}[f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)] = \frac{1}{1.2}[10.889365 - 8(12.703199) + 8(17.148957) - 19.855030]$$

$$= 22.166999$$

The true value in this case is $f'(2.0) = (2+1)e^2 = 22.167168$, so the approximation errors are actually:

Three-point endpoint with h = 0.1: 1.35×10^{-1} ;

Three-point endpoint with h = -0.1: 1.13×10^{-1} ;

Three-point midpoint with h = 0.1: -6.16×10^{-2} ;

Three-point midpoint with h = 0.2: -2.47×10^{-1} ;

Five-point midpoint with h = 0.1: 1.69×10^{-4} .

Second Derivative Midpoint Formula

•
$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi), \tag{4.9}$$

for some ξ , where $x_0 - h < \xi < x_0 + h$.

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of $f(x) = xe^x$ at x = 2.0. Use the second derivative formula (4.9) to approximate f''(2.0).

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)]$$

Solution The data permits us to determine two approximations for f''(2.0). Using (4.9) with h = 0.1 gives

$$\frac{1}{0.01}[f(1.9) - 2f(2.0) + f(2.1)] = 100[12.703199 - 2(14.778112) + 17.148957]$$
$$= 29.593200,$$

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)]$$

and using (4.9) with h = 0.2 gives

$$\frac{1}{0.04}[f(1.8) - 2f(2.0) + f(2.2)] = 25[10.889365 - 2(14.778112) + 19.855030]$$
$$= 29.704275.$$

Because $f''(x) = (x + 2)e^x$, the exact value is f''(2.0) = 29.556224. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1} , respectively.

EXERCISE SET 4.1

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	0.5 0.6 0.7	0.4794 0.5646 0.6442	

b.	х	f(x)	f'(x)
	0.0	0.00000	
	0.2	0.74140	
	0.4	1.3718	

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.
$$x$$
 $f(x)$ $f'(x)$

$$-0.3 1.9507$$

$$-0.2 2.0421$$

$$-0.1 2.0601$$

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exercise 1, and find error bounds using the error formulas.

a.
$$f(x) = \sin x$$

b.
$$f(x) = e^x - 2x^2 + 3x - 1$$

The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exercise 2, and find error bounds using the error formulas.

a.
$$f(x) = 2\cos 2x - x$$

b.
$$f(x) = x^2 \ln x + 1$$

Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	1.1	9.025013	
	1.2	11.02318	
	1.3	13.46374	
	1.4	16.44465	

b.	х	f(x)	f'(x)
	8.1	16.94410	
	8.3	17.56492	
	8.5	18.19056	
	8.7	18.82091	

c.	х	f(x)	f'(x)
	2.9	-4.827866	
	3.0	-4.240058	
	3.1	-3.496909	
	3.2	-2.596792	

d.	х	f(x)	f'(x)
	2.0	3.6887983	
	2.1	3.6905701	
	2.2	3.6688192	
	2.3	3.6245909	

18. Consider the following table of data:

х	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

- a. Use all the appropriate formulas given in this section to approximate f'(0.4) and f''(0.4).
- b. Use all the appropriate formulas given in this section to approximate f'(0.6) and f''(0.6).