1. (30 pts) An op-amp is configured to provide gain (V_O/V_S) of 10V/V to a $R_L = 1k\Omega$ load. Model the op-amp with the following parameters:

- $R_{in} = \infty$ (ideal)
- $R_{out} = 0$ (ideal)
- $A_0 = 100$ (not infinite)
- f₀ = 100MHz (not ideal: finite bandwidth frequency)
 DC offset voltage of V_{OS} (not ideal)

a) What should be the ratio of R₂/R₁ to achieve the target close-loop gain assuming amplifier has an infinite gain.

b) How does the closed-loop gain change if R_s or R_L changes?

c) What's the gain error due to the non-infinite gain of amplifier?

d) When the input voltage is set to zero, we observe an output voltage of +50mV. What is the offset voltage? Specify the magnitude and draw an equivalent offset voltage in front of an ideal op-amp to model this effect.

e) What's the approximate bandwidth for small signals? (-3dB bandwidth) *Hint*: You do not need to derive this result but simply state it from what you know about feedback amplifiers.

f) Assuming that amplifier has an input-referred voltage noise of $\overline{V_{n,in}^2}$, calculate the noise PSD at the output node due to the amplifier, R₁, R₂, and R₅ noise sources. (Write down your answer in parameters only)

2. (40 pts) For the fully differential amplifier shown below:

Assume: VDD=1.5V, $|Vth_{n,p}|=0.3V$, $\mu_nC_{ox}=\frac{400\mu A}{V^2}$, $\mu_n=2\mu_p$, $\lambda_p=0.2V^{-1}$, $\lambda_n=0.1V^{-1}$, $\gamma=0$ for both NMOS and PMOS devices.

$$R_D = 1.5k\Omega, I_{SS} = 2mA$$

$$\left(\frac{W}{L}\right)_{3.4} = 2\left(\frac{W}{L}\right)_{1.2} = 250, \left(\frac{W}{L}\right)_{5.6} = 4\left(\frac{W}{L}\right)_{3.4}, L = 65nm$$

a) Draw the half-circuit model for differential mode.

b)	Find the small-signal	differential gair	$(V_{out}/V_{id}),$	where V _{out} =V _o	$_{1}$ - V_{o2} .
----	-----------------------	-------------------	---------------------	--	---------------------

d) Find the output pole (
$$\omega_{out}$$
) assuming $C_L = 1pF$.

e) Assuming amplifier has only a single pole from part (d), what is the unity-gain bandwidth (ω_u) ?

f)	Assuming	$C_{GS} = 1fF$	for $W =$	= 1 <i>um</i> (and it	linearly	scales	with V	W for	larger
	transistors)	, find the se	cond pole	e locatio	n (igno	re all oth	er para	sitic ca	pacita	nces).

g) Draw the Bode plot (magnitude only, label the slopes and poles).

- 3. (30 pts) In this problem we are interested to build a circuit that can generate a lower supply voltage (V_L) from a VDD supply (V_L < VDD) to support a circuit-block with a total load of R_L .
 - a) Suggest a very simple circuit to generate V_L from VDD?

b) In your proposed circuit, how would the output voltage (V_L) change if R_L varies?

A student taking EE332 suggested the circuit below using a feedback to generate V_L:

c)	What would be the polarity of amplifier inputs to make sure it forms a negative feedback? (either redraw the circuit or annotate the figure and explain your answer here)
4)	Ideally, what is the value of V_L as a function of V_{ref} , and resistor values.
u)	ideally, what is the value of V_L as a function of $V_{\rm ref}$, and resistor values.
e)	Calculate the loop-gain in this circuit in terms of circuit parameters and g_m of M_1 . Ignore r_o of M_1 and assume there is no loading effect from the feedback network (i.e., $R_{1,2} >> R_L$).
f)	How does the output voltage (V_L) change if R_L varies in this circuit supposing amplifier's gain (A) is large enough?