Lesson 11: Midterm Study Guide Solutions

- Definitions, axioms, postulates
- Labeling
- Propositions
 - Proposition 1.2 know the construction and proof.
 - Remember to end proofs with Q.E.D. or Q.E.F.
 - Conclusions of proofs using them in other poofs
- Proofs and Word Problems

Practice Problems

- 1. Name the triangles, line segments, angles, and circle. What angles are sums of others?
- 2. Prove the following: If point Y is the center of circle MAR and $\overline{XY} \perp \overline{MA}$, then $\triangle MXY = \triangle AXY$.

 \overline{MX} , \overline{XY} , \overline{XA} , \overline{MA} , \overline{MY} , \overline{YA}

 $\angle XMY, \angle XAY, \angle XYM, \angle XYA, \angle YXM, \angle YXA, \angle MXA$

Circle MAR

$$\angle YXM + \angle YXA = \angle MXA$$

2.

Given:

- Point Y is the center $\rightarrow \overline{MY} = \overline{YA}$
- $\overline{XY} \perp \overline{MA} \rightarrow \angle XYM = \angle XYA$

Prove: $\triangle MXY = \triangle AXY$

 $\overline{XY} = \overline{XY}$ (its the same line)

R

Χ

Μ

Since
$$\overline{XY} = \overline{XY}$$
, $\overline{MY} = \overline{YA}$, and $\angle XYM = \angle XYA$, we can use **Proposition 1.4**. Therefore $\triangle MXY = \triangle AXY$.

Q.E.D.

- 2. Name the triangles, line segments, and angles. What angles are sums of others?
- 3. If $\triangle AFE$ is an isosceles triangle and $\overline{BF} = \overline{DE}$ then
 - a. $\triangle FCE$ is an isosceles triangle
 - b. $\angle BFC = \angle DEC$

$$\triangle$$
 ABD, \triangle AFE, \triangle BCD,
 \triangle FEC, \triangle FCB, \triangle ECD,
 \triangle FDB, \triangle EBD, \triangle FBE,
 \triangle FDE, \triangle AFD, \triangle AEB

$$\overline{AB}, \overline{BD}, \overline{DA}$$

$$\overline{AF}, \overline{FE}, \overline{EA}$$

$$\overline{FB}, \overline{BC}, \overline{CF}$$

$$\overline{CD}, \overline{ED}, \overline{CE}$$

$$\angle ABD$$
, $\angle ABE$, $\angle EBD$

$$\angle ADB$$
, $\angle ADF$, $\angle FDB$

$$\angle BAD$$

$$\angle EFB$$
, $\angle EFD$, $\angle DFB$, $\angle AFE$, $\angle AFD$

$$\angle FED$$
, $\angle FEB$, $\angle BED$, $\angle AEF$, $\angle AEB$

$$\angle FCB$$
, $\angle FCE$, $\angle ECD$, $\angle DCB$

$$\angle EFB = \angle EFD + \angle DFB$$

$$\angle AFD = \angle AFE + \angle EFD$$

$$\angle FED = \angle FEB + \angle BED$$

$$\angle AEB = \angle AEF + \angle FEB$$

$$\angle FBD = \angle FBE + \angle EBD$$

$$\angle EDB = \angle EDF + \angle FDB$$

Given:

- $\triangle AFE$ is an isosceles triangle $\rightarrow \overline{AF} = \overline{AE}$
- $\overline{BF} = \overline{DE}$

Prove:

- $\triangle FCE$ is an isosceles triangle $\rightarrow \overline{CF} = \overline{CE}$
- $\angle BFC = \angle DEC$

Proof (Please note there is more than one way to prove this theorem.)

1. Since $\triangle AFE$ is an isosceles triangle and lines \overline{BF} , \overline{DE} are extended from the equal lines of the triangle, \overline{AF} and \overline{AE} , then $\angle EFB = \angle FED$, because they are the angles below the base of the triangle (**Prop 1.5**).

2. With respect with the two triangles, $\triangle EFB$ and $\triangle FED$, $\overline{FE} = \overline{FE}$ because they are the same line, $\overline{BF} = \overline{DE}$ is given, and $\angle EFB = \angle FED$, therefore $\overline{BE} = \overline{DF}$, $\triangle EFB = \triangle FED$, and $\angle FED = \angle EFB$ and $\angle EBF = \angle FDE$ (**Prop 1.4**).

- 3. Since $\angle FEB = \angle EFD$ and $\angle FEB = \angle FEC$ and $\angle EFD = \angle EFC$ then $\angle FEC = \angle EFC$ (A1). Therefore, $\overline{CE} = \overline{CF}$ (Prop 1.6) and $\triangle FCE$ is an isosceles triangle (Def 20).
- 4. $\angle EFB = \angle FED$ (From #1). $\angle EFD + \angle DFB = \angle FEB + \angle BED$ because $\angle EFB = \angle EFD + \angle DFB$ and $\angle FED = \angle FEB + \angle BED$ (A1). $\angle EFD + \angle DFB = \angle EFD + \angle BED$ since $\angle FEB = \angle EFD$ (A1). Then $\angle DFB = \angle BED$ after subtracting $\angle EFD$ (A3).
 - But $\angle DFB = \angle BFC$ and $\angle BED = \angle DEC$, therefore, $\angle BFC = \angle DEC$ (A1).
- 5. In conclusion, if $\triangle AFE$ is an isosceles triangle and $\overline{BF} = \overline{DE}$, then $\triangle FCE$ is an isosceles triangle and $\angle BFC = \angle DEC$.

Q.E.D.