Despliegue de aplicaciones web Tema 0: Direccionamiento IP

SERGIO ARJONA GINER

Es un modelo de referencia teórico para la definición de arquitecturas de **interconexión de sistemas de comunicaciones**. Define una estructura **jerárquica** de capas que establecen etapas por las que viajan los datos del nodo origen hasta que llegan al nodo destino. Cada capa tiene una serie **de funciones propias**, ofreciéndose así la modularidad necesaria como para que se puedan producir cambios en la capa sin que estos afecten a las capas adyacentes.

- 1. Aplicación. Ofrece la interfaz a las aplicaciones, tanto de usuario como del sistema, para que tengan acceso a los recursos de la red.
- 2. Presentación. Encargada de traducir la información, comprimirla, cifrarla.
- 3. Sesión. Controla la comunicación entre extremos.

- 4. **Transporte**. Encargada de entregar la información como un mensaje completo, llevando a cabo el correspondiente control de errores. Asimismo, identifica el proceso o servicio del nodo destinatario que debe recibir los datos.
- 5. Red. Se ocupa del direccionamiento lógico (mediante direcciones IP) y del encaminamiento entre nodos de distinta red para realizar la entrega de paquetes. En este nivel los paquetes no se relacionan entre sí (se entregan como paquetes independientes)
- 6. Enlace. Se ocupa del direccionamiento físico (mediante direcciones MAC), del acceso al medio y de la detección de errores a este nivel, haciendo que el nivel físico sea fiable.
- 7. Físico. Encargada de transmitir el flujo de datos sobre el medio físico que corresponda.

2. Modelo TCP/IP

El modelo TCP/IP describe el conjunto de protocolos implicados en la comunicación, enmarcándolos en una estructura jerárquica similar a la del modelo OSI, con lo que consigue la **interoperabilidad total de dispositivos** con independencia del fabricante. Toma su nombre de los dos protocolos más importantes TCP e IP.

Las capas de las que se compone el modelo son:

- Aplicación. Sus funciones son similares a las de las capas Aplicación, Presentación y Sesión del modelo OSI.
- 2. Transporte. Funcionalidad similar a la de su homónima en el modelo OSI.
- 3. Internet. Funcionalidad similar a la de la capa de red del modelo OSI.
- 4. Acceso a la red. Sus funciones engloban las de las capas Enlace y Físico del modelo OSI.

2. Modelo TCP/IP

3. Direccionamiento

El direccionamiento es una función propia de los protocolos de la capa de red/Internet que permite la identificación y transmisión de información entre nodos (si están dentro de la red o fuera).

Existen los siguientes tipos de direccionamiento:

- Unicast: Identifica una interfaz de un único nodo
- Multicast: Identifica un grupo de interfaces que, generalmente pertenecen a diferentes nodos.
 Cuando se envía un paquete a la multicast van dirigido a todos los nodos del grupo.
- Broadcast: Identifica al grupo formado por todas las interfaces de los nodos conectados a la red.
- Anycast: Identifica a un grupo de interfaces que, generalmente, pertenecen a diferentes nodos.
 Cuando un paquete se envía a la dirección anycast, va dirigido al nodo más cercano físicamente.

4. Protocolo IPv4

Una dirección IP está formada por 4 bytes (32 bits) y tiene dos campos (dirección_red, dirección_host):

- Para expresarlas se utiliza la "notación de punto"
- Ejemplo: 128.2.7.9 = 10000000. 00000010. 00000111. 00001001

4.1. Clases del direccionamiento IPv4

0 1 2 3 4	8	16	24	31
Clase A 0 red		hos	iş.	
Clase B 10	red		host	
Clase C 110	ſ	red		host
Clase D 11110	grupo	de multicast (m	ultidifusión)	
Clase E 1 1 1 1	(direcciones i	reservadas: no	se pueden ut	ilizar)

Clase	Formato (r=red, h=host)	Número de redes	Número de hosts por red	Rango de direcciones de redes	Máscara de subred
A	r.h.h.h	128	16.777.214	0.0.0.0 - 127.0.0.0	255.0.0.0
В	r.r.h.h	16.384	65.534	128.0.0.0 - 191.255.0.0	255.255.0.0
C	r.r.r.h	2.097.152	254	192.0.0.0 - 223.255.255.0	255.255.255.0
D	grupo	1,-7	-	224.0.0.0 - 239.255.255.255	(- a
E	no válidas	-		240.0.0.0 - 255.255.255.255	-

4.1. Clases del direccionamiento IPv4

- Existen diferentes clases de direcciones según sea la longitud de cada campo.
- Existen 3 clases primarias de direcciones IP (A, B y C) dependiendo del fragmento de dirección IP asignado a la red y al host. Se puede determinar su tipo según los primeros tres bits.
- Existen otras 2 clases más (D y E).
- Las direcciones de **tipo A**: pocas redes (126), cada una con muchos computadores (16.777.214).
- Las direcciones de **tipo B**: un número medio de redes (16.384), cada una con un número medio de computadores (65.534).
- Las direcciones de **tipo C**: muchas redes (2.097.152), cada una con pocos computadores (254).

4.2. Dirección de red

Es la dirección que identifica a una red. Esta dirección IP no se puede asignar a ninguna máquina.

Las direcciones de red serán todas las que tengan todos los bits de la parte host a 0s.

Ejemplos:

- 192.168.4.0 → Dirección de red
- 15.0.0.0 → Dirección de red
- 169.254.0.0 → Dirección de red
- 169.254.1.0 → Dirección de máquina
- 172.16.10.0 → Dirección de máquina

4.3. Dirección de broadcast

Broadcast significa **difusión**. La difusión es un modo de transmisión de información donde un nodo emisor envía información a multitud de nodos receptores de forma simultánea, sin necesidad de reproducir la misma transmisión nodo por nodo. Nunca se puede asignar una dirección de broadcast a una máquina.

Las direcciones de broadcast serán las que tengan todos los bits de la parte de máquina a 1s.

Ejemplos: 192.168.4.255, 15.255.255, 169.254.255.255

Cuidado: 169.254.0.255 es una máquina.

4.4. Direcciones IP privadas

Son direcciones usadas para **redes locales**, y únicamente son visibles desde esas misma red. **No** tienen conexión directa a Internet.

Clase A

• 10.0.0.0

Clase B

· 172.16.0.0 – 172.31.0.0

Clase C

· 192.168.0.0 – 192.168.255.0

4.5. Máscara de red

•Indica:

- Qué bits de la dirección IP identifican a la red (bits de la máscara a 1)
- Qué bits identifican al host dentro de la red (bits de la máscara a 0)
- Ejemplo: Dirección de clase C: 221.98.22.25.
 - Máscara: 255.255.255.0

- Parte de red: 221.98.22 Parte de host: 25
- •Red con 256 direcciones, desde 221.98.22.0 (dirección de red) hasta 221.98.22.255 (dirección de broadcast)

Parte host a ceros

Parte host a unos

4.5. Máscara de red

En una red de redes TCP/IP no puede haber hosts aislados: <u>todos pertenecen a alguna red y todos tienen una dirección IP y una máscara de subred</u> (si no se especifica se toma la máscara que corresponda a su clase).

Mediante esta máscara un ordenador sabe si otro ordenador se encuentra en su misma subred o en otra distinta. Si pertenece a su misma subred, el mensaje se entregará directamente. En cambio, si los hosts están configurados en redes distintas, el mensaje se enviará a la puerta de salida o *router* de la red del host origen. Este *router* pasará el mensaje al siguiente de la cadena y así sucesivamente hasta que se alcance la red del host destino y se complete la entrega del mensaje

4.6. Puerta de enlace o Gateway

Cuando un host tiene que enviar un paquete:

- 1. Extrae del paquete la dirección de destino
- 2. Extrae de la dirección de destino la parte de red (haciendo un AND con la máscara)
- 3. Compara la parte red de la dirección de destino con la suya propia (la de su interfaz).
- 4.a) Si ambas coinciden entonces el destino está en su misma LAN y envía el paquete directamente al destinatario. Para ello, el nodo origen se ocupa de obtener la MAC de nodo destino mediante el envío de paquetes ARP *request* a la dirección de broadcast y la posterior recepción del paquete ARP *reply*.
- 4.b) Si no coinciden entonces envía el paquete a su router por defecto (Gateway), el cual se encarga de enviar el paquete a su destino

El router por defecto siempre debe estar en la misma LAN que el host. (mista parte de red)

Puerta de enlace o Gateway: es la dirección IP a través de la cual se sale de la red local hacia el exterior, ya sea otra red o Internet. Suele ser la IP del *router*.

El subnetting es la técnica de dividir una red grande en redes más pequeñas (subredes), utilizando una única IP. Para ello, la parte de host se utiliza para identificar distintas subredes:

- -Idea clave: dividir la parte host en dos trozos:
 - parte_subred+parte_host.

- -Así, desde el exterior los *routers* creen que se trata de una única red sin subredes.
- -La división se indicará mediante una máscara de subred y es interna a la organización.

Sin subredes

Con subredes

- -De esta forma, **el encaminamiento de paquetes hacia la organización** se basa en la porción de *id_de_red*, y una vez dentro de la organización, se emplea la porción de *id_subred* para realizar el encaminamiento de los paquetes a su subred/destino final.
- -Aprovecha al máximo una misma dirección IP de red sobre varias redes físicas pertenecientes a la misma organización.
- -De esta forma, una dirección IP quedaría dividida en tres partes:(número de red, número de subred y número de host)

MASCARAS DE RED

-Se utilizan **mascaras de red/subred,** que acompañan a la dirección IP. **Contiene** 1's en aquellos bits que forman parte del *net_id/subnet_id*, y 0's en el resto.

Prefijos de red

Máscaras por defecto:

Clase A	1111111 00000000 00000000 00000000	255.0.0.0 (/8
Clase B	11111111 11111111 00000000 00000000	255.255.0.0 (16)
Clase C	11111111 11111111 11111111 00000000	255.255.255.0 6/24

-Nota:

-Las máscaras de red se pueden expresar también mediante su forma corta indicando cuantos bits a 1 tiene de izquierda a derecha, con un carácter /, es decir, indica cuantos bits de la dirección IP se dedican a identificar la red y la subred.

-MASCARAS DE RED

-La máscara de red permite **obtener la dirección de red/subred**, de una dirección IP mediante la operación **AND** entre la IP del host y la máscara

Ejemplos:

```
158.42.0.0/16 = 158.42.0.0 y máscara 255.255.0.0

158.42.1.0/24 = 158.42.1.0 y máscara 255.255.255.0

192.228.17.32/27 = 192.228.17.32 y máscara 255.255.255.224
```

Los bits dedicados a la parte de host de la dirección IP asignada a una organización se pueden dividir como **mejor convengan** para la distribución de redes físicas y hosts de la organización.

- Debe haber suficientes direcciones de red físicas (subredes)
- En cada una de ellas, debe haber direcciones suficientes para todos los hosts.

Si hay más subredes, habrá menos hosts por subred

Número mínimo de bits para la subred: 2 (2 subredes)

- 00,11 \rightarrow No se recomiendan (RFC 950)
- 01,10 → Identificadores de red válidos

Número mínimo de bits para hosts: 2 (2 hosts)

- 00,11 → red y difusión
- 01,10 → identificadores de host válidos

-La fórmula **2ⁿ - 2**, donde **n** es la cantidad de bits prestados a la parte de host, proporciona la cantidad de subredes UTILIZABLES que pueden ser creadas.

-La fórmula **2^m - 2**, donde **m** es la cantidad de bits que NO han sido prestados a la parte de host, proporciona la cantidad de números de host UTILIZABLES que pueden ser creados.

- Ejemplo: Si pide prestados 2 bits en una red Clase C, se crean 4 subredes, cada una con 64 hosts. Sólo 2 de las subredes son utilizables y sólo 62 hosts son utilizables por subred, lo que deja 124 hosts utilizables de 254 que eran posibles antes de elegir usar subredes. Esto significa que se están perdiendo 51% de las direcciones.
- Supongamos esta vez que se piden prestados 3 bits. Ahora tiene 8 subredes, de las cuales sólo 6 son utilizables, con 30 hosts utilizables por subred. Esto significa que hay 180 hosts utilizables, de un total de 254, pero ahora se pierde sólo el 29% de las direcciones.
- Siempre que se creen subredes, es necesario tener en cuenta el crecimiento futuro de la red y el porcentaje de direcciones que se perderían al crear las subredes. En la práctica a veces NO SE RESPETA LA REGLA 2º - 2

- •Red de clase C: 192.228.17.0=11000000.11100100.00010001.00000000
 - Máscara de subred de la clase C:

 - Una red, 254 hosts
- Puede estructurarse internamente como un conjunto de 8 subredes
 - Divide el campo de host en: dirección de subred y dirección de host
 - Nueva máscara de subred: /27

 - 3 bits de subred = 8 redes (2^3) , 6 utilizables (2^3-2) si se respeta la regla $2^n 2$
 - 5 bits de host = 30 hosts cada una $(2^5 2)$

- Nueva máscara de subred: /27
- 3 bits de subred = 8 redes (2^3) , 6 utilizables (2^3-2) si se respeta la regla $2^n 2$
- 5 bits de host = 30 hosts cada una $(2^5 2)$

Subred	Binario	Identificador de la subred	Rango de direcciones de hosts
0*	11000000.11100100.00010001.00000000	192.228.17.0/27	$192.228.17.1 \rightarrow 192.228.17.30$
1	11000000.11100100.00010001.00100000	192.228.17.32/27	$192.228.17.33 \rightarrow 192.228.17.62$
2	11000000.11100100.00010001.01000000	192.228.17.64/27	$192.228.17.65 \rightarrow 192.228.17.94$
3	11000000.11100100.00010001.01100000	192.228.17.96/27	$192.228.17.97 \rightarrow 192.228.17.126$
4	11000000.11100100.00010001.100000000	192.228.17.128/27	$192.228.17.129 \rightarrow 192.228.17.158$
5	11000000.11100100.00010001.10100000	192.228.17.160/27	$192.228.17.161 \rightarrow 192.228.17.190$
6	11000000.11100100.00010001.11000000	192.228.17.192/27	$192.228.17.193 \rightarrow 192.228.17.222$
7*	11000000.11100100.00010001.11100000	192.228.17.224/27	$192.228.17.225 \rightarrow 192.228.17.254$

4.8. Subnetting. Dirección de red

Dirección de red

- Antes (sin las subredes) podíamos saber dada una dirección IP cuál era la dirección de la red mediante la máscara de subred.
 - Ejemplo:
 - Dir. IP: 193.3.2.1
 - Máscara por defecto: 255.255.255.0
 - Operación AND: dir.IP host AND máscara =193.3.2.0
 - → Red 193.3.2.0

4.8. Subnetting. Dirección de red

- Dirección de red
- Con subredes tenemos que hacer la operación AND con la máscara de subred obtenida al realizar el subnetting:
 - Ejemplo: Dir. IP: 200.1.1.200
 - Máscara de subred: 255.255.255.224
 - Operación AND: dir.IP AND máscara

IP: 200.1.1.200	200 ->		11001000
Máscara: 255.255.255.224	224 ->	AND	11100000
			11000000

4.8. Subnetting. Dirección de broadcast

Dirección de Broadcast

- Broadcast, en castellano difusión, es un modo de transmisión de información donde un nodo emisor envía información a una multitud de nodos receptores de manera simultánea, sin necesidad de reproducir la misma transmisión nodo por nodo.
- •La dirección viene dada por todos los bits de los hosts a 1's

•

- •Del ejemplo anterior:
- $\bullet 110000000 \rightarrow 110111111 = 223$
- > Dirección de broadcast=200.1.1.223

4.8. Subnetting. Ejemplo 2.

Ejemplo: Una organización tiene una red de Clase C: 200.1.1.0 y desea crear 2 subredes, una con 72 máquinas y otra con 35 máquinas. Crea las subredes necesarias

Solución:

RED A: 200.1.1.0

IPs: 200.1.1.1-126

Máscara:255.255.255.128

Broadcast:200.1.1.127

RED B: 200.1.1.128

lps: 200.1.1.128-254

Máscara: 255.255.255.128

Broadcast:200.1.1.255

5. Introducción a IPv6

Una dirección IPv6 es un conjunto de **ocho campos** formados por cadenas hexadecimales (128 bits) separadas por dos puntos (:), que ofrecen espacio de direccionamiento de **posibles valores**. Cada cadena consta de cuatro caracteres hexadecimales (0-9, a-f). Cada grupo de campos tiene un significado especial:

- 1. Los tres primeros campos (48 bits) contienen el **prefijo del sitio** que describe la topología pública (suele ser asignado por el ISP)
- 2. El cuarto campo (16 bits) es el **identificador de la subred** (puede variarse para crear subredes)
- 3. Los últimos cuatro campos (64 bits) contienen el identificador de la interfaz (hosts).

5. Introducción a IPv6

Ejemplo:

5. Introducción a IPv6

Las direcciones IPv6 siguen ciertas reglas:

- Los ceros que hay al comienzo de cada campo se pueden omitir
- El campo, o conjunto de campos consecutivos, con todo ceros se pueden omitir, pero **solo una vez**, quedando representados por dos caracteres de dos puntos (::). A continuación se muestra un ejemplo:
- 2001:0db8:0234:C1AB:0000:00A0:0000:003F
- 2001:db8:234:C1AB:0000:A0:0000:3F
- 2001:db8:234:C1AB::A0:0:3F o 2001:db8:234:C1AB:0:A0::3F

Servicios de enrutamiento dinámico/adaptativo	RIP (Protocolo de Información de encaminamiento) es un protocolo de libre encaminamiento que calcula la ruta más corta hacia el destino a partir del número de saltos.
Servicios de administración y configuración de sistemas	DHCP (Protocolo de configuración dinámica de <i>host</i>) es un protocolo de red que permite que los clientes de una red obtengan los. parámetros de configuración de IP automáticamente
	DNS (Sistema de nombres de dominio) es un protocolo empleado en la traducción de nombres de equipos y recursos de direcciones IP y viceversa.
	NTP (Protocolo de tiempo a través de la red) permite sincronizar los relojes de los equipos clientes a través de la red
	SNMP (Protocolo simple de administración de red) permite supervisar dispositivos de red

Servicios de acceso remoto	Telnet es el protocolo empleado para hacer conexiones remotas no cifradas .
	SSH (Secure Shell) es el protocolo empleado para hacer conexiones remotas cifradas
Servicios de transferencia de ficheros	FTP (Protocolo de transferencia de ficheros) es el protocolo empleado para transferir ficheros a través de la red.
	TFTP (Trivial FTP) es el protocolo empleado para transferir ficheros de poco tamaño sin autenticación.
Servicios de impresión, compartición de archivos y sistemas de ficheros en red	NFS (Sistema de archivos en red) permite que <i>hosts</i> remotos monten sistemas de ficheros sobre la red e interactúen como si estuvieran conectados localmente.
	SMB (<i>Server Message Block</i>) se emplea para interconectar equipos Windows y compartir impresoras entre ellos. Un ejemplo es SAMBA.

Servicios de correo electrónico	IMAP (Protocolo de acceso a mensajes de Internet) permite acceder a los emails almacenados en un servidor sin necesidad de descargarlos.
	POP (Protocolo de oficina de correos) se emplea para la descargar de emails que están almacenados en un servidor.
	SMTP (Protocolo de transferencia simple de correo) se emplea para enviar emails en Internet.
Servicios de chat	IRC (Internet Relay Chat) es un protocolo que permite la creación de chats.
Servicios de mensajería instantánea	XMPP (Extensible Messaging and Presence Protocol) es un protocolo empleado para mensajería instanánea.

Servicios multimedia y de streaming	RTSP (Real Time Streaming Protocol) es un protocolo que proporciona acceso a presentaciones y contenido multimedia en tiempo real
Servicios de telefonía IP	SIP (Session Initiation Protocol) es el protocolo empleado para administrar sesiones multimedia entre dos o más dispositivos
	IAX (Inter-Asterisk eXchange) es un protocolo diseñado para facilitar las conexiones VoIP entre servidores, así como entre servidores y clientes que usen el protocolo.