Shenzhen Academy of Information and Communications Technology

FCC PART 15C TEST REPORT No. B17N01624-BT

for

Roam Data Inc.

POS Tablet

Moby/M70

with

Hardware Version: 9888C

Software Version: M70

FCC ID: 2ABY6-M70

Issued Date: 2017-11-27

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
B17N01624-BT	Rev.0	1st edition	2017-11-27

CONTENTS

CONT	ENTS	3
1. T	EST LABORATORY	7
1.1.	TESTING LOCATION	7
1.2.	TESTING ENVIRONMENT.	
1.3.	Project data	7
1.4.	Signature	7
2. C	LIENT INFORMATION	8
2.1.	APPLICANT INFORMATION	8
2.2.	MANUFACTURER INFORMATION	8
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
3.1.	ABOUT EUT	9
3.2.	INTERNAL IDENTIFICATION OF EUT	9
3.3.	INTERNAL IDENTIFICATION OF AE	9
3.4.	GENERAL DESCRIPTION	9
4. R	EFERENCE DOCUMENTS	10
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	10
4.2.	REFERENCE DOCUMENTS FOR TESTING	10
5. T	EST RESULTS	11
5.1.	SUMMARY OF TEST RESULTS	11
5.2.	STATEMENTS	11
5.3.	TERMS USED IN THE RESULT TABLE	11
5.4.	LABORATORY ENVIRONMENT	12
6. T	EST FACILITIES UTILIZED	13
ANNE	X A: MEASUREMENT RESULTS FOR RECEIVER	14
A.0	Antenna requirement	14
A.1	MAXIMUM PEAK OUTPUT POWER	15
	BAND EDGES COMPLIANCE	
	CONDUCTED EMISSION	
	RADIATED EMISSION	
	20dB Bandwidth	
	TIME OF OCCUPANCY (DWELL TIME)	
	NUMBER OF HOPPING CHANNELS	
	CARRIER FREQUENCY SEPARATION	
A.9	AC Power line Conducted Emission	24
ANNE	X B: TEST FIGURE LIST	25
FIG.	1 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 0)	25

Fig. 2	MAXIMUM PEAK OUTPUT POWER(GFSK, CH 39)	25
FIG. 3	MAXIMUM PEAK OUTPUT POWER(GFSK, CH 78)	26
Fig. 4	MAXIMUM PEAK OUTPUT POWER(II/4 DQPSK, CH 0)	26
Fig. 5	MAXIMUM PEAK OUTPUT POWER(II/4 DQPSK, CH 39)	27
FIG. 6	MAXIMUM PEAK OUTPUT POWER(II/4 DQPSK, CH 78)	27
Fig. 7	MAXIMUM PEAK OUTPUT POWER(8DPSK, CH 0)	28
Fig. 8	MAXIMUM PEAK OUTPUT POWER(8DPSK, CH 39)	28
Fig. 9	MAXIMUM PEAK OUTPUT POWER(8DPSK, CH 78)	29
FIG. 10	BAND EDGES (GFSK, CH 0, HOPPING ON)	29
Fig. 11	BAND EDGES (GFSK, CH 78, HOPPING ON)	30
FIG. 12	BAND EDGES (II/4 DQPSK, CH 0, HOPPING ON)	30
FIG. 13	BAND EDGES (II/4 DQPSK, CH 78, HOPPING ON)	31
FIG. 14	BAND EDGES (8DPSK, CH 0, HOPPING ON)	31
FIG. 15	BAND EDGES (8DPSK, CH 78, HOPPING ON)	32
FIG. 16	BAND EDGES (GFSK, CH 0, HOPPING OFF)	32
Fig. 17	BAND EDGES (GFSK, CH 78, HOPPING OFF)	33
FIG. 18	BAND EDGES (II/4 DQPSK, CH 0, HOPPING OFF)	33
Fig. 19	BAND EDGES (II/4 DQPSK, CH 78, HOPPING OFF)	34
FIG. 20	BAND EDGES (8DPSK, CH 0, HOPPING OFF)	34
FIG. 21	BAND EDGES (8DPSK, CH 78, HOPPING OFF)	35
FIG. 22	CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 2.402GHz)	35
FIG. 23	CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 1 GHz-3 GHz)	36
FIG. 24	CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 3GHz-10 GHz)	36
FIG. 25	CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 2.441GHz)	37
FIG. 26	CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 1GHz-3 GHz)	37
FIG. 27	CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 3GHz-10 GHz)	38
FIG. 28	CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 2.480GHz)	38
Fig. 29	CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 1GHz-3 GHz)	39
FIG. 30	CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 3GHz-10 GHz)	39
FIG. 31	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH0, 2.402GHz)	40
FIG. 32	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH0, 1GHz-3 GHz)	40
FIG. 33	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH0, 3GHz-10 GHz)	41
FIG. 34	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH39, 2.441GHz)	41
FIG. 35	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH39, 1GHz-3 GHz)	42
Fig. 36	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH39, 3GHz-10 GHz)	42
FIG. 37	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH78, 2.480GHz)	43
FIG. 38	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH78, 1GHz-3 GHz)	43
Fig. 39	CONDUCTED SPURIOUS EMISSION (II/4 DQPSK, CH78, 3GHz-10 GHz)	44
FIG. 40	CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 2.402GHz)	44
FIG. 41	CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 1GHz-3 GHz)	45
FIG. 42	CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 3GHz-10 GHz)	45
FIG. 43	CONDUCTED SPURIOUS EMISSION (8DPSK, CH39, 2.441GHz)	46
Fig. 44	CONDUCTED SPURIOUS EMISSION (8DPSK, CH39, 1GHz-3 GHz)	46
FIG. 45	CONDUCTED SPURIOUS EMISSION (8DPSK, CH39, 3GHz-10 GHz)	47

FIG. 46	CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 2.480GHz)	47
Fig. 47	CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 1GHz-3 GHz)	48
FIG. 48	CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 3GHz-10 GHz)	48
Fig. 49	CONDUCTED SPURIOUS EMISSION (ALL CHANNEL, 30 MHz-1 GHz)	49
FIG. 50	CONDUCTED SPURIOUS EMISSION ALL CHANNEL, 10 GHz-26 GHz,)	49
FIG. 51	RADIATED SPURIOUS EMISSION (GFSK, CH0, 1 GHz~18 GHz)	50
FIG. 52	RADIATED SPURIOUS EMISSION (GFSK, CH39, 1 GHz~18 GHz)	50
FIG. 53	RADIATED SPURIOUS EMISSION (GFSK, CH78, 1 GHz ~18 GHz)	51
FIG. 54	RADIATED BAND EDGES (GFSK, Ch0, 2380GHz~2450GHz)	51
FIG. 55	RADIATED BAND EDGES (GFSK, CH78, 2450GHz~2500GHz)	52
FIG. 56	RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH0, 1 GHz ~18 GHz)	52
Fig. 57	RADIATED SPURIOUS EMISSION (II/4 DQPSK, CH39, 1 GHz~18 GHz)	53
FIG. 58	RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH78, 1 GHz ~18 GHz)	53
FIG. 59	RADIATED BAND EDGES (II/4 DQPSK, CH0, 2380GHz~2450GHz)	54
FIG. 60	RADIATED BAND EDGES (II/4 DQPSK, CH78, 2450GHz~2500GHz)	54
FIG. 61	RADIATED SPURIOUS EMISSION (8DPSK, CH0, 1 GHz~18 GHz)	55
FIG. 62	RADIATED SPURIOUS EMISSION (8DPSK, CH39, 1 GHz~18 GHz)	55
FIG. 63	RADIATED SPURIOUS EMISSION (8DPSK, CH78, 1 GHz~18 GHz)	56
FIG. 64	RADIATED BAND EDGES (8DPSK, CH0, 2380GHz~2450GHz)	56
FIG. 65	RADIATED BAND EDGES (8DPSK, CH78, 2450GHz~2500GHz)	57
FIG. 66	RADIATED SPURIOUS EMISSION (ALL CHANNELS, 9 KHz~30 MHz)	57
Fig. 67	RADIATED SPURIOUS EMISSION (ALL CHANNELS, 30 MHz~1 GHz)	58
FIG. 68	RADIATED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz ~26.5 GHz)	58
FIG. 69	20DB BANDWIDTH (GFSK, CH 0)	59
FIG. 70	20DB BANDWIDTH (GFSK, CH 39)	59
Fig. 71	20dB Bandwidth (GFSK, CH 78)	60
Fig. 72	20DB BANDWIDTH (П/4 DQPSK, CH 0)	60
FIG. 73	20DB BANDWIDTH (П/4 DQPSK, CH 39)	61
Fig. 74	20DB BANDWIDTH (П/4 DQPSK, CH 78)	61
Fig. 75	20DB BANDWIDTH (8DPSK, CH 0)	62
Fig. 76	20dB Bandwidth (8DPSK, CH 39)	62
FIG. 77	20dB Bandwidth (8DPSK, Ch 78)	63
Fig. 78	TIME OF OCCUPANCY(DWELL TIME) (GFSK, CH39)	63
Fig. 79	TIME OF OCCUPANCY(DWELL TIME) (GFSK, CH39)	64
FIG. 80	TIME OF OCCUPANCY(DWELL TIME) (II/4 DQPSK, CH39)	64
FIG. 81	TIME OF OCCUPANCY(DWELL TIME) (II/4 DQPSK, CH39)	65
FIG. 82	TIME OF OCCUPANCY(DWELL TIME) (8DPSK, CH39)	65
FIG. 83	TIME OF OCCUPANCY(DWELL TIME) (8DPSK, CH39)	66
FIG. 84	HOPPING CHANNEL CH0~39 (GFSK, CH39)	66
FIG. 85	HOPPING CHANNEL CH39~78 (GFSK, CH39)	67
FIG. 86	HOPPING CHANNEL CH0~39 (Π/4 DQPSK, CH39)	67
Fig. 87	HOPPING CHANNEL CH39~78 (Π/4 DQPSK, CH39)	68
FIG. 88	HOPPING CHANNEL CH0~39 (8DPSK, CH39)	68
FIG. 89	HOPPING CHANNEL CH39~78 (8DPSK, CH39)	69

No. B17N01624-BT Page 6 of 73

ANNEX C	· PERSONS INVOLVED IN THIS TESTING	73
Fig. 94	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1)	72
FIG. 93	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)	71
FIG. 92	CARRIER FREQUENCY SEPARATION (8DPSK, CH39)	70
FIG. 91	CARRIER FREQUENCY SEPARATION (11/4 DQPSK, CH39)	70
Fig. 90	CARRIER FREQUENCY SEPARATION (GFSK, CH39)	69

1. Test Laborato

1.1. Testing Location

Location:

Shenzhen Academy of Information and Communications Technology

Address:

Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong Province, China

Postal Code:

518026

Telephone:

+86(0)755-33322000

Fax:

+86(0)755-33322001

1.2. Testing Environment

Normal Temperature:

15-35℃

Relative Humidity:

20-75%

1.3. Project data

Testing Start Date:

2017-11-06

Testing End Date:

2017-11-17

1.4. Signature

An Ran

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Roam Data Inc.

Address: 101 Federal Street, Suite 700, Boston, MA 02110 USA

Contact Person Christopher Rotsaert

Telephone: 857-350-7418

Fax:

E-Mail christopher.rotsaert@ingenico.com

2.2. Manufacturer Information

Company Name: Roam Data Inc.

Address: 101 Federal Street, Suite 700, Boston, MA 02110 USA

Contact Person Christopher Rotsaert

Telephone: 857-350-7418

Fax:

E-Mail christopher.rotsaert@ingenico.com

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description POS Tablet Model Name Moby/M70

Market Name /

Frequency Band 2400MHz~2483.5MHz

Type of Modulation GFSK/ \pi /4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Integrated
Antenna Gain 3.6dBi

Power Supply 3.7V DC by Battery

FCC ID 2ABY6-M70

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	1	9888C	M70	2017-10-26

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer
AE1	Adapter	1	1
AE2	Battery	/	/

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) are a model of Tablet with integrated antenna.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C: 2016	
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	Р
6	Time of Occupancy(Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
10	AC Powerline Conducted Emission	15.107,15.207	Р

See ANNEX A and ANNEX B for details.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropic radiated power	
ISM	Industrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Тх	Transmitter	

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Normalised site attenuation (NSA)	$<$ \pm 4dB, 3m/10m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Voltage Standing Wave Ratio	≤6dB, from 1 to 18 GHz,3m distance
(VSWR)	

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2018-01-18	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2018-01-05	1 year

Radiated emission test system

	Radiated emission test system					
No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.	Equipment	Wiodei	Number	Wanulacturer	Due date	Period
1	LISN	ESH2-Z5	100196	Rohde & Schwarz	2018-01-05	1 year
2	Test Receiver	ESCI	100702	Rohde & Schwarz	2018-06-25	1 year
3	Loop Antenna	HLA6120	35779	TESEQ	2019-05-02	3 years
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2020-02-27	3 years
5	Horn Antenna	3117	00066585	ETS-Lindgren	2019-03-05	3 years
6	Test Receiver	ESR7	101676	Rohde & Schwarz	2018-11-29	1 year
7	Spectrum Analyzer	FSV40	101192	Rohde & Schwarz	2018-05-22	1 year
8	Chamber	FACT5-2.0	4166	ETS-Lindgren	2018-05-13	3 years
9	Antenna	3160-09	LM4214/0011 8383	ETS-Lindgren	2018-07-14	3 years

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is MTK engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

ANNEX A: MEASUREMENT RESULTS FOR RECEIVER

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 3.6dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1) &	< 21
RSS-247 Issue1 5.4	<21

Measurement Results:

Test Result (dBm)						
Mode	2402MHz (Ch0)		2441MHz (Ch39)		2480 MHz (Ch78)	
GFSK	Fig.1	6.35	Fig.2	6.40	Fig.3	6.19
π /4 DQPSK	Fig.4	6.39	Fig.5	6.44	Fig.6	6.22
8DPSK	Fig.7	6.78	Fig.8	6.84	Fig.9	6.64

See ANNEX B for test graphs.

A.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d) &	> 20
RSS-247 Issue1 5.5	> 20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	ON	Fig.10	Р
GFSK	78	ON	Fig.11	Р
π /4 DQPSK	0	ON	Fig.12	Р
11/4 DQPSK	78	ON	Fig.13	Р
8DPSK	0	ON	Fig.14	Р
ODPSK	78	ON	Fig.15	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.16	Р
GFSK	78	OFF	Fig.17	Р
# /4 DODOK	0	OFF	Fig.18	Р
π /4 DQPSK	78	OFF	Fig.19	Р
8DPSK	0	OFF	Fig.20	Р
ODPSK	78	OFF	Fig.21	Р

See ANNEX B for test graphs.

A.3 Conducted Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) &	20dB below peak output power in 100 kHz
RSS-247 Issue1 5.5	bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.22	Р
	0	1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
		2.441 GHz	Fig.25	Р
GFSK	39	1GHz-3GHz	Fig.26	Р
		3GHz-10GHz	Fig.27	Р
		2.480 GHz	Fig.28	Р
	78	1GHz-3GHz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
- 14		2.441 GHz	Fig.34	Р
π/4 DQPSK	π/4	1GHz-3Ghz	Fig.35	Р
DQPSK		3GHz-10GHz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	1GHz-3Ghz	Fig.38	Р
		3GHz-10GHz	Fig.39	Р
		2.402 GHz	Fig.40	Р
	0	1GHz-3GHz	Fig.41	Р
		3GHz-10GHz	Fig.42	Р
		2.441 GHz	Fig.43	Р
8DPSK	39	1GHz-3GHz	Fig.44	Р
ODPSK		3GHz-10GHz	Fig.45	Р
		2.480 GHz	Fig.46	Р
	78	1GHz-3GHz	Fig.47	Р
		3GHz-10GHz	Fig.48	Р
1	All channels	30 MHz-1GHz	Fig.49	Р
I	All Challies	10GHz-26GHz	Fig.50	Р

See ANNEX B for test graphs.

A.4 Radiated Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dP holow poak output power	
& RSS-247 Issue1 5.5	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(μV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.51	Р
	39	1 GHz ~18 GHz	Fig.52	Р
GFSK	78	1 GHz ~18 GHz	Fig.53	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.54	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.55	Р
	0	1 GHz ~18 GHz	Fig.56	Р
/4	39	1 GHz ~18 GHz	Fig.57	Р
π/4 DQPSK	78	1 GHz ~18 GHz	Fig.58	Р
DQPSK	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.59	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.60	Р
	0	1 GHz ~18 GHz	Fig.61	Р
	39	1 GHz ~18 GHz	Fig.62	Р
8DPSK	78	1 GHz ~18 GHz	Fig.63	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.64	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.65	Р
		9 kHz ~30 MHz	Fig.66	Р
1	All channels	30 MHz ~1 GHz	Fig.67	Р
		18 GHz ~26.5 GHz	Fig.68	Р

Worst Case Result

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13964.000000	56.48	74.00	17.52	V	20.0
14682.000000	57.18	74.00	16.82	Н	21.5
15524.000000	60.21	74.00	13.79	V	22.9
16082.500000	61.58	74.00	12.42	V	25.4
16643.000000	62.49	74.00	11.51	V	25.7
17874.000000	61.96	74.00	12.04	Н	27.8

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13910.500000	44.92	54.00	9.08	Н	21.1
14681.000000	45.13	54.00	8.87	V	21.5
15574.000000	49.06	54.00	4.94	V	23.7
15939.000000	50.28	54.00	3.72	V	24.9
16593.500000	51.15	54.00	2.85	Н	26.3
17711.000000	51.00	54.00	3.00	Н	27.7

π /4 DQPSK CH39 (1-18GHz)

7 12 Q 1 011 0112)					
Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
12736.500000	54.94	74.00	19.06	V	19.7
14577.000000	56.49	74.00	17.51	Н	21.2
15551.500000	60.03	74.00	13.97	V	23.4
16325.000000	61.82	74.00	12.18	Н	25.8
16555.000000	62.54	74.00	11.46	Н	25.6
17701.500000	63.29	74.00	10.71	Н	27.5

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13907.500000	44.82	54.00	9.18	V	21.0
14688.000000	45.11	54.00	8.89	V	21.6
15574.000000	48.87	54.00	5.13	V	23.7
15936.000000	50.23	54.00	3.77	V	24.9
16592.500000	50.87	54.00	3.13	Н	26.3
17704.500000	50.77	54.00	3.23	Н	27.6

8DPSK CH39 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)		(dB)
13918.500000	55.65	74.00	18.35	V	20.5
14622.500000	56.39	74.00	17.61	V	21.6
15564.000000	61.26	74.00	12.74	Н	23.4
15854.000000	61.80	74.00	12.20	V	24.2
16579.000000	63.17	74.00	10.83	V	26.4
17705.500000	62.84	74.00	11.16	Н	27.6

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
13907.500000	44.82	54.00	9.18	V	21.0
14688.000000	45.11	54.00	8.89	V	21.6
15574.000000	48.87	54.00	5.13	V	23.7
15936.000000	50.23	54.00	3.77	V	24.9
16592.500000	50.87	54.00	3.13	Н	26.3
17704.500000	50.77	54.00	3.23	Н	27.6

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See ANNEX B for test graphs.

A.5 20dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a) &	
RSS-247 Issue1 5.1	

Measurement Result:

Mode	Channel	20dB Bandwidth (KHz)		conclusion
	0	Fig.69	944	
GFSK	39	Fig.70	943	1
	78	Fig.71	944	
	0	Fig.72	1260	
π /4 DQPSK	39	Fig.73	1279	1
	78	Fig.74	1261	
	0	Fig.75	1254	
8DPSK	39	Fig.76	1255	/
	78	Fig.77	1287	

See ANNEX B for test graphs.

Conclusion: PASS

A.6 Time of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a) &	< 400 ms	
RSS-247 Issue1 5.1	< 400 ms	

Measurement Results:

Mode	Channel	Packet	Dwell Time(ms)		Conclusion	
GFSK	20	20 015	Fig.78	200	Р	
GFSK	39	DH5	Fig.79	308	P	
π /4 DQPSK	39	2-DH5	Fig.80	308	P	
11/4 DQPSK	33	Fig.81	2-0110		P	
ODDON	20	2 DUE	Fig.82	200	В	
8DPSK	39 3-D	39	3-DH5	Fig.83	308	Р

See ANNEX B for test graphs.

A.7 Number of Hopping Channels

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a) &	At least 15 pag averlanning channels	
RSS-247 Issue1 5.1	At least 15 non-overlapping channels	

Measurement Results:

Mode	Packet	Number of hopping		Test result	Conclusion
GFSK	DH5	Fig.84	Fig.85	79	Р
π/4 DQPSK	2-DH5	Fig.86	Fig.87	79	Р
8DPSK	3-DH5	Fig.88	Fig.89	79	Р

See ANNEX B for test graphs.

Conclusion: Pass

A.8 Carrier Frequency Separation

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a) & RSS-247 Issue1 5.1	By a minimum of 25 kHz or two-thirds of the 20 dB	
	bandwidth of the hopping channel, whichever is	
R33-247 ISSUET 5.1	greater	

Measurement Results:

Mode	Channel	Packet	Separation of hopping channels	Test result (KHz)	Conclusion
GFSK	39	DH5	Fig.90	1004	Р
π /4 DQPSK	39	2-DH5	Fig.91	1328	Р
8DPSK	39	3-DH5	Fig.92	1003	Р

See ANNEX B for test graphs.

A.9 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)	
120	60	

Measurement Result and limit:

BT (Quasi-peak Limit)-AE1

Frequency range	Quasi-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBμV)	Traffic Idle		Conclusion
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.93	Fig.94	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Average Limit)-AE1

Frequency range	Average-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBμV)	Traffic Idle		Conclusion
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig 93	Fig 94	Р
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Note: The measurement results include the L1 and N measurements.

See ANNEX B for test graphs.

ANNEX B: TEST FIGURE LIST

Fig. 1 Maximum Peak Output Power(GFSK, Ch 0)

Fig. 2 Maximum Peak Output Power(GFSK, Ch 39)

Fig. 3 Maximum Peak Output Power(GFSK, Ch 78)

Fig. 4 Maximum Peak Output Power(π /4 DQPSK, Ch 0)

Fig. 5 Maximum Peak Output Power(π /4 DQPSK, Ch 39)

Fig. 6 Maximum Peak Output Power(π /4 DQPSK, Ch 78)

Fig. 7 Maximum Peak Output Power(8DPSK, Ch 0)

Fig. 8 Maximum Peak Output Power(8DPSK, Ch 39)

Fig. 9 Maximum Peak Output Power(8DPSK, Ch 78)

Fig. 10 Band Edges (GFSK, Ch 0, Hopping ON)

Fig. 11 Band Edges (GFSK, Ch 78, Hopping ON)

Fig. 12 Band Edges (π/4 DQPSK, Ch 0, Hopping ON)

Fig. 13 Band Edges (π /4 DQPSK, Ch 78, Hopping ON)

Fig. 14 Band Edges (8DPSK, Ch 0, Hopping ON)

Fig. 15 Band Edges (8DPSK, Ch 78, Hopping ON)

Fig. 16 Band Edges (GFSK, Ch 0, Hopping OFF)

Fig. 17 Band Edges (GFSK, Ch 78, Hopping OFF)

Fig. 18 Band Edges (π/4 DQPSK, Ch 0, Hopping OFF)

Fig. 19 Band Edges (π/4 DQPSK, Ch 78, Hopping OFF)

Fig. 20 Band Edges (8DPSK, Ch 0, Hopping OFF)

Fig. 21 Band Edges (8DPSK, Ch 78, Hopping OFF)

Fig. 22 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

Fig. 23 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

Fig. 24 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

Fig. 25 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

Fig. 26 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

Fig. 27 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)

Fig. 28 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

Fig. 29 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)

Fig. 30 Conducted Spurious Emission (GFSK, Ch78, 3GHz-10 GHz)

Fig. 31 Conducted Spurious Emission (π/4 DQPSK, Ch0, 2.402GHz)

Fig. 32 Conducted Spurious Emission (π /4 DQPSK, Ch0, 1GHz-3 GHz)

Fig. 33 Conducted Spurious Emission (π/4 DQPSK, Ch0, 3GHz-10 GHz)

Fig. 34 Conducted Spurious Emission (π/4 DQPSK, Ch39, 2.441GHz)

Fig. 35 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz-3 GHz)

Fig. 36 Conducted Spurious Emission (π/4 DQPSK, Ch39, 3GHz-10 GHz)

Fig. 37 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)

Fig. 38 Conducted Spurious Emission (π/4 DQPSK, Ch78, 1GHz-3 GHz)

Fig. 39 Conducted Spurious Emission (π /4 DQPSK, Ch78, 3GHz-10 GHz)

Fig. 40 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

Fig. 41 Conducted Spurious Emission (8DPSK, Ch0, 1GHz-3 GHz)

Fig. 42 Conducted Spurious Emission (8DPSK, Ch0, 3GHz-10 GHz)

Fig. 43 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)

Fig. 44 Conducted Spurious Emission (8DPSK, Ch39, 1GHz-3 GHz)

Fig. 45 Conducted Spurious Emission (8DPSK, Ch39, 3GHz-10 GHz)

Fig. 46 Conducted Spurious Emission (8DPSK, Ch78, 2.480GHz)

Fig. 47 Conducted Spurious Emission (8DPSK, Ch78, 1GHz-3 GHz)

Fig. 48 Conducted Spurious Emission (8DPSK, Ch78, 3GHz-10 GHz)

Fig. 49 Conducted Spurious Emission (All channel, 30 MHz-1 GHz)

Fig. 50 Conducted Spurious Emission All channel, 10 GHz-26 GHz,)

Fig. 51 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz)

Fig. 52 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz)