

Nicolas Drougard
ONERA-The French Aerospace Lab, DCSD, Toulouse

retour sur innovation

Outline

- 1 Context and Background
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Conclusions/Perspectives

Outline

- 1 Context and Background
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Conclusions/Perspectives

Partially Observable Markov Decision Processes (POMDPs)

 a_t

Bayes rule, Strategy, Criterion.

$$b_{t+1}(s') = \textit{nextBelief}(b_t, a, \tilde{o}) = \frac{p(\tilde{o}|s', a). \sum_s p(s'|s, a)b_t(s)}{\sum_{\underline{s}, \overline{s}} p(\tilde{o}|\overline{s}, a). p(\overline{s}|\underline{s}, a)b_t(\underline{s})}$$

Bayes rule, Strategy, Criterion.

$$b_{t+1}(s') = \textit{nextBelief}(b_t, a, \tilde{o}) = \frac{p(\tilde{o}|s', a). \sum_s p(s'|s, a)b_t(s)}{\sum_{\underline{s}, \overline{s}} p(\tilde{o}|\overline{s}, a). p(\overline{s}|\underline{s}, a)b_t(\underline{s})}$$

Actions choice: strategy $\delta(b_t) = a_t \in \mathcal{A}$

maximizing $\mathbb{E}[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \delta(b_t)) | b_0]$, $0 < \gamma < 1$.

practical issues: Complexity, Vision and Initial Belief.

■ strategy computation > PSPACE-complete:

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ Initial belief b_0 (prior information on the system state).

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' | s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ Initial belief b_0 (prior information on the system state). uniform = subjectif, mix up with frequencies!

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ **Initial belief** b_0 (*prior* information on the system state). uniform = subjectif, mix up with frequencies!

Qualitative Possibility Theory:

 \rightarrow simplification, ignorance and imprecision modeling.

Qualitative Possibility Theory

$$\mathcal{L}$$
 finite scale, ex: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$.

events $e \subset \Omega$ (sample space) sorted with possibility degrees $\pi(e) \in \mathcal{L}$, \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities).

Qualitative Possibility Theory

$$\mathcal{L}$$
 finite scale, ex: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$.

events $e \subset \Omega$ (sample space) sorted with possibility degrees $\pi(e) \in \mathcal{L}$, \neq

quantified with **frequencies** $p(e) \in [0,1]$ (probabilities).

$$e_1 \neq e_2$$
, two events $\subset \Omega$

$$lacksquare$$
 $\pi(e_1) < \pi(e_2) \Leftrightarrow$ " e_1 is less plausible than e_2 ";

Qualitative Possibility Theory

$$\mathcal{L}$$
 finite scale, ex: $\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$.

events
$$e \subset \Omega$$
 (sample space) sorted with possibility degrees $\pi(e) \in \mathcal{L}$, \neq

quantified with **frequencies** $p(e) \in [0,1]$ (probabilities).

$$e_1 \neq e_2$$
, two events $\subset \Omega$

lacksquare $\pi(e_1) < \pi(e_2) \Leftrightarrow$ " e_1 is less plausible than e_2 ";

Probability (\mathbb{P}) / Possibility (Π):		
e_1 or e_2	$\mathbf{p}(e_1) + \mathbf{p}(e_2 \cap \overline{e_1})$	$\max\left\{\pi(e_1),\pi(e_2)\right\}$
e_1 and e_2	$\mathbf{p}(e_1).\mathbf{p}\left(\left.e_2\left \right.\right.e_1\right.\right)$	$\min \{\pi(e_1), \pi(e_2 \mid e_1)\}$

Outline

- 1 Context and Background
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Conclusions/Perspectives

Possibilistic models: π -MOMDPs

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

• finite belief space $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

Possibilistic models: π -MOMDPs

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

• finite belief space $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

contribution (UAI13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h .

Possibilistic models:

$\pi ext{-MOMDPs}$

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

lacksquare finite belief space $\#\mathcal{B}=\#\mathcal{L}^{\#\mathcal{S}}-(\#\mathcal{L}-1)^{\#\mathcal{S}}$

contribution (UAI13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_{v} \times \mathcal{S}_{h}$

i.e. state s = visible component s_v & hidden component s_h .

- beliefs are only over S_h (component s_v observed),
- lacktriangle computations on $\mathcal{X} = \mathcal{S}_{v} \times \mathcal{B}_{h}$ whose size is

$$\#\mathcal{X} = \#\mathcal{S}_{\mathsf{v}} \cdot (\#\mathcal{L}^{\#\mathcal{S}_h} - (\#\mathcal{L} - 1)^{\#\mathcal{S}_h}) \ll \#\mathcal{B}.$$

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

$$\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$$
 preference,

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$ **preference**, and, until convergence,

 $\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\},\,$

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, V_0(x) = \mu(x)$ **preference**, and, until convergence,

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}, \text{ and }$$

if
$$V_{i+1}(x) > V_i(x)$$
, $\delta(x) = \underset{a \in \mathcal{A}}{\operatorname{argmax max}} \min\{\pi(x' \mid x, a), V_i(x')\}.$

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$ **preference**, and, until convergence, $\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}, \text{ and }$ if $V_{i+1}(x) > V_i(x), \delta(x) = \underset{a \in \mathcal{A}}{\operatorname{argmaxmaxmin}} \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}.$

Recognition mission: robot on a grid $g \times g$, 2 targets T1, T2.

- **goal:** reach the object A = T1 or T2; - noisy observations of the targets natures: $\mathbf{p}(o' \mid s', a)$.

Actually, misperception in the error zone is: $P_{bad} > \frac{1}{2}$.

Outline

- 1 Context and Background
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Conclusions/Perspectives

Factorization and symbolic solver

contribution (AAAI14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_v \times \mathcal{B}_h =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model.

Factorization and symbolic solver

contribution (AAAI14): factored π -MOMDP

 $\Leftrightarrow \mathsf{state} \; \mathsf{space} \; \mathcal{X} = \mathcal{S}_{\nu} \times \mathcal{B}_{h} = \mathsf{Boolean} \; \mathsf{variables} \; \big(X_{1}, \dots, X_{n}\big) \\ + \; \mathsf{independence} \; \mathsf{assumptions} \; \Leftarrow \; \mathsf{graphical} \; \mathsf{model}.$

transition functions
 T_i^a = π (X_i' | parents(X_i'), a)
 represented by Algebraic Decision
 Diagrams (ADD).
 (SPUDD − Hoey et al., UAI-99).

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{c|c} \mathbf{1} & V^* \leftarrow 0 \; ; V^c \leftarrow \mu \; ; \; \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} \\ \mathbf{3} & V^* \leftarrow V^c \; ; \\ \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} \\ \mathbf{5} & \mathbf{6} & q^a \leftarrow \mathrm{swap} \; \mathrm{each} \; X_i \; \mathrm{variable} \; \mathrm{in} \; V^* \; \mathrm{with} \; X_i' \; ; \\ \mathbf{6} & \mathbf{for} \; \mathbf{1} \leqslant i \leqslant n \; \mathbf{do} \\ \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \left\{ q^a, \pi(X_i' \mid parents(X_i'), a) \right\} \; ; \\ \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ \mathbf{9} & V^c \leftarrow \overline{\max} \left\{ q^a, V^c \right\} \; ; \\ \mathbf{10} & \mathbf{0} & \mathbf{0} & \mathbf{0} \; \mathbf{0}
```

computations on trees: CU Decision Diagram Package.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{lll} & 1 & V^* \leftarrow 0 \ ; \ V^c \leftarrow \mu \ ; \ \delta \leftarrow \overline{a} \ ; \\ & \text{2 while } V^* \neq V^c \ \text{do} & & & \text{factorization} \\ & & & V^* \leftarrow V^c \ ; \\ & & & \text{for } a \in \mathcal{A} \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & \text{for } 1 \leqslant i \leqslant n \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & & & \text{for } 1 \leqslant i \leqslant n \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &
```

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

assumptions: independent captors, hidden states...

Experiments: Navigation problem – agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: reach a goal; spots with accident risk. 2 possibilistic translations: M1 (optimistic) et M2 (cautious).

Experiments: Navigation problem – agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: reach a goal; spots with accident risk. 2 possibilistic translations: M1 (optimistic) et M2 (cautious).

Performances, function of the instance size

reached goal frequency

SPUDD M1 PPUDD M1 PPUDD M2 PPUDD M2 PPUDD M2 PPUDD M2 PPUDD M2 Size of the navigation problem

time to reach the goal

Experiments: Navigation problem – agent = robot.

computation time

max size of ADDs

- PPUDD + M2 (pessimistic translation)
 faster and same performances as SPUDD;
- SPUDD only solves the 5 first instances;
- verified intuition: ADDs are smaller.

Experiments: RockSample problem – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al., solver POMDP*). RockSample benchmark: recognize and sample "good" rocks;

Experiments: RockSample problem – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al., solver POMDP*).

RockSample benchmark: recognize and sample "good" rocks;

computation time:

probabilistic solvers, prec. 1; PPUDD, exact resolution.

average of rewards

APPL stopped when

- approximate model + exact resolution solver
 - ightarrow can improve of computation time and performances.

IPPC 2014 – MDP track. ADDs-based approaches: PPUDD vs symbolic LRTDP (*Bonet et al.*)

PPUDD + BDD mask over reachable states.

Figure: mean of rewards over simulations.

Outline

- 1 Context and Background
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Conclusions/Perspectives

Conclusions/Perspectives

towards a hybrid POMDP

Possibility Theory:

- **granulated** belief space representation (discretization),
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs);
- **ignorance and imprecision** modeling.

Conclusions/Perspectives

towards a hybrid POMDP

Possibility Theory:

- **granulated** belief space representation (discretization),
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs);
- ignorance and imprecision modeling.
- choice of the qualitative criterion (optimistic/pessimistic);
- non additive utility degrees, from the same scale as possibility degrees.

Work in progress... towards a hybrid POMDP

POMDP — POMDP with possibilistic beliefs

- transition probability distributions over possibilistic beliefs;
- reward aggregation: Choquet integral;
- factored POMDPs leads to factorized MPDs;
- resolution with any MDP solver.

Thank you.

