Section A

	Answer all questions in the spaces provided.	
1	This question is about magnesium oxide. Use data from the table below, where appropriate, to answer the following questions.	
		∆H [⇔] /kJ mol ^{–1}
	First electron affinity of oxygen (formation of O ⁻ (g) from O(g))	
	Second electron affinity of oxygen (formation of O ²⁻ (g) from O ⁻ (g)) +844
	Atomisation enthalpy of oxygen	+248
1 (a)	Define the term enthalpy of lattice dissociation.	
		(3 marks)
1 (b)	In terms of the forces acting on particles, suggest one reason why the first electron affinity of oxygen is an exothermic process.	
	(Extra space)	(1 mark)

1 (c) Complete the Born–Haber cycle for magnesium oxide by drawing the missing energy levels, symbols and arrows.

The standard enthalpy change values are given in kJ mol⁻¹.

	$Mg^{2+}(g) + \frac{1}{2}O_2(g) + 2e^-$
+1450	$Mg^+(g) + \frac{1}{2}O_2(g) + e^-$
+736	$Mg(g) + \frac{1}{2}O_2(g)$
+150	$Mg(s) + \frac{1}{2}O_2(g)$
-602	

(4 marks)

1 (d) Use your Born—Haber cycle from part (c) to calculate a value for the enthalpy of lattice dissociation for magnesium oxide.

.....

MgO(s)

(2 marks)

Question 1 continues on the next page

Turn over ▶

1 (e)	The standard free-energy change for the formation of magnesium oxide from magnesium and oxygen, $\Delta G_{\rm f}^{\ominus}$ = -570 kJ mol ⁻¹ . Suggest one reason why a sample of magnesium appears to be stable in air at room temperature, despite this negative value for $\Delta G_{\rm f}^{\ominus}$.	
	(1 mark) (Extra space)	
1 (f)	Use the value of $\Delta G_{\rm f}^{ \ominus}$ given in part (e) and the value of $\Delta H_{\rm f}^{ \ominus}$ from part (c) to calculate a value for the entropy change $\Delta S^{ \ominus}$ when one mole of magnesium oxide is formed from magnesium and oxygen at 298 K. Give the units of $\Delta S^{ \ominus}$.	
	(3 marks) (Extra space)	
1 (g)	In terms of the reactants and products and their physical states, account for the sign of the entropy change that you calculated in part (f).	
	(2 marks)	

16

