Machine learning exam 2017

Henrik Lund Mortensen

December 29, 2017

1 Linear Models

2 Learning Theory

- Supervised learning
- In-sample error vs out-of-sample error

Learning feasibility

In general, we have an unknown function f(x) and only a finte set of samples $\mathcal{D} = \{x_i, f(x_i)\}$. Our job is to use \mathcal{D} to estimate f outisde of \mathcal{D} . Consider a set of hypotheses, \mathcal{H} . The goal is to choose the hypothesis, $g \in \mathcal{H}$ that approximates f(x) best. There are two thing we must consider:

- 1. Can we find a g such that the training samples are well explained, i.e. low $E_{\rm in}(g)$?
- 2. Can we make sure that the $E_{\text{out}}(g)$ is close to $E_{\text{in}}(g)$?

The answer to the first question depends on the complexity of f and the \mathcal{H} . It is clear that we can always find a set \mathcal{H} which contains a hypothesis that matches the training data perfectly, i.e. $E_{\rm in}=0$. However, we get in trouble in the part 2 above. We cannot guarantee that $E_{\rm out}(g)$ is close to $E_{\rm in}(g)$, but we can estimate the probability that is it. This is given by the Hoeffding bound

$$\mathcal{P}\left[|E_{\text{out}}(g) - E_{\text{in}}(g)| > \epsilon\right] \le 2Me^{-2\epsilon^2 N},\tag{1}$$

where N is the number of samples in \mathcal{D} and M is the size of \mathcal{H} (number of hypotheses). There is a trade-off between choosing \mathcal{H} complex enough to describe f well, while low enough to have a reasonable bound in Eq. (1). The Hoeffding bound only applies to finte \mathcal{H} , as it becomes meaningless when $M \to \infty$.

When the hypothesis space becomes infinite we must replace M by something else. We call the replacement the *growth function*. We restrict outselves

to binary target functions, such that the target function (and our hypotheses, $h \in \mathcal{H}$) map from \mathcal{X} to $\{+1, -1\}$. Further, we define a dichotomy as an N-tuple of +1's and -1's such that the dichotomies generated by \mathcal{H} on some set $x_1, x_2, \ldots, x_N \in \mathcal{X}$ is given by

$$\{h(x_1), h(x_2), \dots, h(x_N) | \forall h \in \mathcal{H}\}.$$
(2)

It is clear that there can be a maximum of 2^N different dichotomies for N points. However, it is not true that any \mathcal{H} can generate all dichotomies. We say that if \mathcal{H} generates all possible dichotomies for some set, it *shatters* this set.

3 Support Vector Machines

In a binary classifier labels inputs either +1 or -1 (for example). However, points close to the decision boundary are more uncertain that those far from it.

- 4 Neural Nets
- 5 Decision Trees and Ensemble Methods
- 6 Hidden Markov Models Decoding
- 7 Hidden Markov Models Training
- 8 Unsupervised Learning Clustering
- 9 Unsupervised Learning Outlier Detection and Dimensionality Reduction