

Cesar J. Deschamps

Hipótese de Boussinesq

- ☐ Os modelos a serem considerados são do tipo "single-point closures", implicando que todas as correlações são avaliadas em uma mesma posição espacial.
 - Dentro dessa classe de modelos existe uma grande variação quanto à metodologia utilizada para a descrição da turbulência;
 - A maioria assume que os fluxos de quantidade de movimento, uu, e de escalares, u, podem ser representados por um coeficiente de difusão turbulenta.
 - Boussinesq (1877) sugeriu que para um escoamento simples, onde somente ∂Ū/∂y fosse importante, o fluxo de quantidade de movimento uv poderia ser avaliado através da relação

$$\overline{uv} = -v_t \frac{\partial U}{\partial y}$$

onde v_t é a viscosidade turbulenta.

- ☐ Modelos seguindo essa hipótese podem expressar v₁ através de:
 - Relações algébricas envolvendo grandezas do campo de velocidade média ou
 - Equações diferenciais para o cálculo das quantidades da turbulência envolvidas na definição de v_i.

Considerações Iniciais

- Embora informações sobre o caráter transiente da turbulência sejam importantes, em muitas situações é suficiente uma descrição estatística do escoamento médio.
 - Através da proposta de Reynolds (1895), a velocidade instantânea é expressa como a soma de uma velocidade média e uma flutuação de velocidade em torno da média.
 - A introdução dessa decomposição para as variáveis instantâneas, e a subsequente médias das equações de Navier-Stokes, resulta nas equações de Revnolds;
 - Esta abordagem é denominada Simulação via Média de Reynolds (RANS Reynolds Averaged Navier-Stokes Equations).
- Seja qual for o modelo de turbulência a ser adotado, algumas características são desejáveis:
 - Simplicidade matemática;
 - Capacidade de prever uma grande variedade de escoamentos;
 - Numericamente estável;
 - Baseado em um pequeno número de conceitos físicos.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

•

Conceito de Viscosidade Turbulenta

☐ Kolmogorov apresentou uma generalização da hipótese da viscosidade turbulenta, originalmente proposta por Boussinesq, definida como:

$$-\overline{u_{i}u}_{j} = v_{t} \left(\frac{\partial U_{i}}{\partial x_{i}} + \frac{\partial U_{j}}{\partial x_{i}} \right) - \frac{2}{3} k \delta_{ij}$$

onde δ_{ij} é o delta de Kronecker e k é a energia cinética das estruturas turbulentas.

Introduzindo a relação acima na equação de Reynolds resulta:

$$\frac{\partial U_{i}}{\partial t} + U_{j} \frac{\partial U_{i}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial}{\partial x_{i}} \left(P + \frac{2}{3} \rho k \right) + \frac{\partial}{\partial x_{j}} \left[\left(v + v_{t} \right) \left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) \right] + \frac{F_{i}}{\rho}$$

Modelo do Comprimento de Mistura

- □ Considerando um escoamento turbulento onde somente ∂U/∂y era importante, Prandtl (1925) propôs um modelo algébrico de turbulência através de sua "Hipótese do comprimento de Mistura" (MLH);
 - Prandtl imaginou que para o escoamento ao longo de uma parede, porções de fluido se juntam e movimentam-se através de um determinado comprimento ℓ_m sem alterar sua quantidade de movimento na direção x.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelo do Comprimento de Mistura

É natural se esperar que a componente da flutuação de velocidade v possua a mesma ordem de magnitude:

$$\|\overline{v}\| = c\|\overline{u}\| = c\ell_m \left\| \left(\frac{\partial U}{\partial y} \right) \right\|$$

 Tendo em mente que movimentos com v > 0 tendem a gerar uma condição de u < 0, escreve-se

$$\overline{uv} = -c \| \overline{u} \| \cdot \| v$$

ou

$$\overline{uv} = -\ell_m^2 \left(\frac{\partial U}{\partial y} \right)^2$$

■ A constante c pode ser absorvida na expressão para \(\ell_m \) que deve ainda ser proposta.

Modelo do Comprimento de Mistura

Assumindo que uma porção de fluido inicialmente em (y - $\ell_{\rm m}$) se desloque com v > 0 para a posição y, a diferença entre as velocidades na nova posição será:

$$\Delta U_1 = U(y) - U(y - \ell_m)$$

 A expressão acima pode ser escrita através de uma série de Taylor, desprezando os termos de ordem superior

$$\Delta U_{1} = \ell_{m} \left(\frac{\partial U}{\partial y} \right)$$

□ Considerando agora uma porção de fluido vinda de $(y + \ell_m)$ com v < 0 para a posição y, a diferença de velocidades será

$$\Delta U_2 = U_{(y+L_m)} - U_{(y)} = \ell_m \left(\frac{\partial U}{\partial y} \right)$$

- As diferenças no valor da velocidade originada pelo movimento transversal podem ser interpretadas como flutuações de velocidade na direção x.
- Logo, o valor médio do módulo dessas flutuações em x pode ser avaliado por

$$\overline{\left\|u\right\|} = \frac{1}{2} \left(\left\|\Delta U_1\right\| + \left\|\Delta U_2\right\| \right) = \ell_m \left\| \left(\frac{\partial U}{\partial y}\right) \right\|$$

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelo do Comprimento de Mistura

☐ Finalmente, considerando o sinal que uv deve apresentar em diferentes situações de perfis de velocidade temos:

$$-\overline{uv} = \ell_m^2 \left\| \left(\frac{\partial U}{\partial y} \right) \right\| \left(\frac{\partial U}{\partial y} \right)$$

- A expressão acima é o principal resultado da "Hipótese do Comprimento de Mistura";
- Portanto, em linha com a hipótese de Boussinesq, uma estimativa para a viscosidade turbulenta é

$$\mathbf{v}_{t} = \boldsymbol{\ell}_{m}^{2} \left\| \frac{\partial U}{\partial y} \right\|$$

Valores para Comprimento de Mistura e Escala de Comprimento

Escoamentos livres:

$$\ell_{\rm m} = c_{\kappa} \delta$$

onde δ pode ser a espessura da camada limite de mistura, de esteiras ou de jatos.

O valor de c, varia bastante de acordo com o escoamento livre em questão.

Constantes c_x do comprimento de mistura para escoamentos livres (Wilcox, 1993)

Esteira	Jato Plano	Jato Radial	Camada de Mistura Plana
0,180	0,098	0,080	0,071

25

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Aplicação dos Modelos Algébricos

- Atualmente, os modelos algébricos têm aplicação quase que restrita à aerodinâmica.
 - No entanto, esses modelos podem ser adotados em conjunto com modelos mais complexos, a fim de resolver a região viscosa de escoamentos parietais.
 - Além disso, algumas ideias dos modelos algébricos, tal como a hipótese do comprimento de mistura, são empregadas na modelação das tensões sub-malha na Simulação de Grandes Escalas (LES).

Valores para Comprimento de Mistura e Escala de Comprimento

Camada limite sobre superfícies sólidas:

$$\ell_{\rm m} = \min \left[\kappa \ y \ (1-e^{-y+/A+}), \ C_1 \ \delta \right]$$

onde κ = 0,41 (constante de von Karman); A+ = 26; C₁ = 0,089;

y+ = u_x y / v_y ; δ - espessura da camada limite.

2025

Nodelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

- 1

Modelos a uma Equação

Nos modelos a uma equação, a viscosidade turbulenta é caracterizada pela velocidade característica k^{1/2} e por uma escala de comprimento L. Assim.

$$v_t = C_{\mu} k^{1/2} L$$

- Os valores de L precisam ser prescritos de forma semelhante ao realizado no modelo de comprimento de mistura;
- Por outro lado, a energia cinética da turbulência é obtida de sua equação de transporte, derivada a partir da equação de Navier-Stokes.
- A equação para a energia cinética k já foi introduzida anteriormente e tem a seguinte forma:

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = -\overline{u_i} \underline{u}_j \frac{\partial U_i}{\partial x_j} - \nu \frac{\overline{\partial u_i}}{\partial x_k} \frac{\partial u_i}{\partial x_k} + \frac{\partial}{\partial x_j} \left[\nu \frac{\partial k}{\partial x_j} - \frac{\overline{pu}_j}{\rho} - \frac{1}{2} \overline{u_i} \underline{u_i} \underline{u}_j \right]$$

Modelos a uma Equação

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \overline{-u_i u_j} \frac{\partial U_i}{\partial x_j} - \overline{v \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k}} + \frac{\partial}{\partial x_j} \left[v \frac{\partial k}{\partial x_j} - \overline{\frac{\overline{pu}_j}{\rho}} - \frac{1}{2} \overline{u_i u_i u_j} \right]$$

 O primeiro termo no lado direito da equação corresponde à produção da energia cinética e é calculado com o auxílio da relação de Kolmogorov.

$$-\overline{u_{i}u}_{j} = v_{t} \left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) - \frac{2}{3} k \delta_{ij}$$

O segundo termo representa a dissipação viscosa da energia cinética:

$$v \frac{\overline{\partial u_i}}{\partial x_k} \frac{\partial u_i}{\partial x_k} = \varepsilon$$

- O primeiro termo dentro dos colchetes refere-se ao transporte difusivo molecular de k;
- Os outros dois termos são associados ao transporte difusivo turbulento e, portanto, são aproximados por

$$\left(\frac{\overline{u_i u_i u_j}}{2} + \frac{\overline{p u_j}}{\rho}\right) \cong \frac{v_t}{\sigma_k} \frac{\partial k}{\partial x_j}$$

onde o número de Prandtl turbulento σ_k é comumente assumido ser igual a 1.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

13

Valores para Comprimento de Mistura e Escala de Comprimento

- □ O modelo a uma equação também necessita de uma expressão para o cálculo das variações de L_n:
- Por exemplo:
 - Regiões próximas a paredes sólidas $L_D = c_i y$; $c_i = 2.44$
 - Escoamentos livres
- $L_D = c \delta$
- ; 0,4 < c < 1
- $\hfill \square$ Apesar das vantagens no cálculo de $\mu_t,\ a$ necessidade de correlações para L_D torna difícil a aplicação do modelo a uma equação na simulação de escoamentos complexos.
- Esse tipo de modelo é empregado em aplicações de aerodinâmica e também em conjunto com modelos mais complexos para a solução de escoamentos junto a paredes.

Modelos a uma Equação

Como já discutido, uma estimativa da dissipação é

$$\varepsilon \sim u^3 / L$$

 Adotando a velocidade característica como k^{1/2}, podemos reescrever a equação acima como

$$\varepsilon = c_D \, \frac{k^{3/2}}{L}$$

■ Utilizando L_D = L / c_D, pode-se escrever

$$\varepsilon = \frac{k^{3/2}}{L_D}$$

Desta forma, usando as aproximações apresentada anteriormente, o modelo a uma equação pode ser expresso como:

$$\frac{\partial k}{\partial t} + U_{j} \frac{\partial k}{\partial x_{j}} = v_{t} \left[\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right] \left[\frac{\partial U_{i}}{\partial x_{j}} \right] \frac{k^{3/2}}{L_{D}} + \frac{\partial}{\partial x_{j}} \left[\left(v + v_{t} \right) \frac{\partial k}{\partial x_{j}} \right]$$

е

 $v_t = C_u k^{1/2} L$

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Comparação entre Modelos Algébricos e Modelos a Uma Equação

- O modelo algébrico necessita somente de valores do campo do escoamento médio e, desta forma, demanda recursos computacionais menores;
 - Sob condição de equilíbrio local os dois modelos são equivalentes;
 - Para escoamentos em dutos, o modelo a uma equação permite o cálculo de regiões plenamente desenvolvidas, ou em desenvolvimento, com a simples prescrição de L_D.
 - No caso da MLH, deve-se introduzir ajustes para evitar que $v_t = 0$ quando $\partial U/\partial y = 0$.

 Em regiões de separação os gradientes de velocidade média são pequenos mas os coeficientes do transporte turbulento são significativos. A MLH é totalmente inadequada nestes casos.

Modelos a Duas Equações

A equação para o transporte da energia cinética k utilizada no modelo a uma equação pode ser escrita como:

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \nu_t \Bigg[\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \Bigg] \Bigg[\frac{\partial U_i}{\partial x_j} \Bigg] \frac{k^{3/2}}{L_D} + \frac{\partial}{\partial x_j} \Bigg[\Big(\nu + \nu_t \Big) \frac{\partial k}{\partial x_j} \Bigg]$$

com

$$v_t = C_{\mu} k^{1/2} L_D$$

- Na elaboração de um modelo a duas equações, faz sentido continuar usando a equação para a energia cinética k, devido ao pouco empirismo usado na sua obtenção.
- Qualquer combinação do tipo kaLb pode ser usada para a segunda variável:
 - L escala de comprimento (Rotta, 1968; Rodi e Spalding, 1970; Ng e Spalding, 1972)
 - f (=k^{1/2}/L) frequência da turbulência (Kolmogorov, 1942)
 - w (=k/L²) vorticidade da turbulência
 (Spalding, 1969; Saffman e Wicox, 1976; Wilcox e Rubesin, 1980)
 - s (=k^{3/2}/L) dissipação da energia cinética k
 (Davidov, 1961; Harlow e Nakayama, 1968; Jones e Launder, 1972).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

17

Interpretação dos termos da Equação de Transporte para ε

$$\begin{split} &\underbrace{\frac{\partial \epsilon}{\partial t} + U_{j} \frac{\partial \epsilon}{\partial x_{j}}}_{IV} = -2\nu \frac{\partial U_{i}}{\partial x_{j}} \left[\underbrace{\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}}}_{i} + \underbrace{\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}}}_{i} \right] - 2\nu u_{j} \underbrace{\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial^{2} U_{i}}{\partial x_{k} \partial x_{j} \partial x_{k}}}_{III} \\ &\underbrace{-2\nu \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}}}_{IV} - 2 \underbrace{\left[\nu \frac{\partial^{2} u_{k}}{\partial x_{j} \partial x_{k}}\right]^{2}}_{V} - \underbrace{\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}}\right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - \nu \frac{\partial \epsilon}{\partial x_{j}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} - \nu \frac{\partial \epsilon}{\partial x_{j}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2} + \frac{2\nu}{\rho} \frac{\overline{\partial \rho}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} - \nu \frac{\partial \epsilon}{\partial x_{k}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{j}}{\partial x_{k}}\right) + \nu \frac{\partial u_{j}}{\partial x_{k}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{j}}{\partial x_{k}}\right) + \nu \frac{\partial u_{j}}{\partial x_{k}} - \nu \frac{\partial u_{j}}{\partial x_{k}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{j}}{\partial x_{k}}\right) + \nu \frac{\partial u_{j}}{\partial x_{k}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{j}}{\partial x_{k}}\right) + \nu \frac{\partial u_{j}}{\partial x_{k}} \right]}_{VI} \\ &\underbrace{-\frac{\partial}{\partial x_{j}} \left[\nu u_{j} \left(\frac{\partial u_{j}}{\partial x_{k}}\right) + \nu \frac{\partial u_$$

- O termo l corresponde à taxa da variação local e à taxa do transporte de ε por advecção;
- Os termos II e III representam a geração de ε devido a mecanismos associados a vorticidade e ao escoamento médio. De acordo com Tennekes e Lumley (1987), ambos podem ser desprezados em situações de números de Reynolds elevados;
- Os termos IV e V são, respectivamente, a geração devido ao alongamento dos vórtices e a destruição de ε decorrente da ação viscosa;
- Finalmente, o termo VI representa a difusão de ε.

Equação de Transporte para ε

- O modelo k-ε é sem dúvida o modelo que tem recebido maior atenção;
 - Uma equação exata para o transporte de ε pode ser obtida pela manipulação das equações de Navier-Stokes;

$$\frac{\partial \varepsilon}{\partial t} + U_{j} \frac{\partial \varepsilon}{\partial x_{j}} = -2v \frac{\partial U_{i}}{\partial x_{j}} \left[\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} + \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}} \right] + v \overline{u_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial^{2} U_{i}}{\partial x_{j} \partial x_{k}}
-2v \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} - 2 \left[v \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{k}} \right]^{2}
-\frac{\partial}{\partial x_{j}} \left[v \overline{u_{j}} \left(\frac{\partial u_{i}}{\partial x_{k}} \right)^{2} + \frac{2v}{\rho} \frac{\partial \rho}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}} - v \frac{\partial \varepsilon}{\partial x_{j}} \right]$$

 Porém, vários termos desconhecidos aparecem na equação e precisam ser aproximados.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Modelação da Equação de ε

Os termos podem ser agrupados de tal forma a representarem mecanismos físicos distintos:

$$\frac{\partial \epsilon}{\partial t} + U_j \frac{\partial \epsilon}{\partial x_j} = difusão + produção - destruição$$

- As principais técnicas para a modelação dos termos na equação de ε são a análise dimensional e a intuição física;
- Δ difusão é aproximada usando o gradiente de ε:

Difusão
$$\equiv d_{\epsilon} \cong \frac{\partial}{\partial x_{j}} \left[\left(\frac{v_{t}}{\sigma_{\epsilon}} + v \right) \frac{\partial \epsilon}{\partial x_{j}} \right]$$

 \square A produção de k deve ser balanceada pela produção de ε para evitar um aumento ilimitado de k. Assim,

$$Produção \equiv P_{\epsilon} \sim \frac{\epsilon}{k} P_{k}$$

onde (ε/k) é o inverso da escala de tempo.

2025

Modelação da Equação de ε

 \Box O termo de destruição na equação de ε deve tender a infinito quando k \rightarrow 0, caso contrário o valor de k pode resultar negativo. Desta forma:

$$Destruição \equiv \mathfrak{T}_{\epsilon} \sim \frac{\epsilon}{k} \, \epsilon$$

 \square Usando as aproximações introduzidas, a equação da dissipação ε assume a sequinte forma modelada:

$$\frac{\partial \epsilon}{\partial t} + U_j \frac{\partial \epsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\frac{v_t}{\sigma_\epsilon} + v \right) \frac{\partial \epsilon}{\partial x_j} \right] + c_{\epsilon l} \frac{\epsilon}{k} P_k - c_{\epsilon 2} \frac{\epsilon^2}{k}$$

Os valores de c₋₁, c₋₂ e σ₋ são obtidos com o auxílio de resultados experimentais.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Constantes no Modelo k-a: Determinação de c_{s2}

☐ Assumindo uma variação para a energia cinética de acordo a k = cxⁿ nas equações acima temos

Ucnx
$$^{n-1} = -\epsilon$$

Ucnxⁿ⁻¹ =
$$-\varepsilon$$
 $-U^2$ cn(n-1)xⁿ⁻² = $-c_{\varepsilon 2} \frac{\left(U$ cnxⁿ⁻¹ $\right)^2}{cx^n}$

Portanto

$$c_{\varepsilon 2} = \frac{n-1}{n}$$

De medições experimentais do decaimento de k, n ≅ -1,08 e desta forma

$$c_{e2} = 1,92$$

Constantes no Modelo k-ε: Determinação de c.,

 O valor de c_{ε2} é determinado pela observação do decaimento da turbulência gerada por uma tela em um túnel de vento:

- Para uma posição suficientemente afastada da tela, obtém-se a condição de isotropia para a turbulência e. portanto, k = 3/2 uu:
- Considerando que o escoamento seja uniforme e a turbulência homogênea na direção transversal, as equações de k e ε assumem as sequintes formas:

$$U \frac{dk}{dx} = -$$

$$U\frac{dk}{dx} = -\varepsilon \qquad \qquad U\frac{d\varepsilon}{dx} = -c_{\varepsilon 2}\frac{\varepsilon^2}{k}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Constantes no Modelo k-e: Determinação de c.,

☐ A constante c_{...} é determinada da região logarítmica do perfil de velocidade junto a uma superfície sólida, onde a produção da energia cinética é igual a sua dissipação e $\overline{uv} \cong \tau_w/\rho$. Do perfil de velocidade

$$\frac{\partial U}{\partial y} = \frac{u^*}{\kappa y}$$

Substituindo a relação na equação da energia cinética para a condição de equilíbrio

$$P = \epsilon = \frac{\tau_{\rm w}}{\rho} \left[\frac{\left(\tau_{\rm w} / \rho\right)^{1/2}}{\kappa y} \right]$$

Portanto

$$\varepsilon = \frac{\left(u^*\right)^3}{\kappa v}$$

Constantes no Modelo k-ε: Determinação de c_u

 Expressando a tensão turbulenta através do conceito de viscosidade turbulenta adotada no modelo k-ε

$$-\overline{uv} = c_{\mu} \frac{k^2}{\epsilon} \frac{\partial U}{\partial y}$$

- □ Substituindo as estimativas para ε e $\partial U/\partial y \Rightarrow -\overline{uv}/k = c_u^{1/2}$
 - Ao longo da maior parte da camada limite, $-\overline{uv}/k \cong 0.3$.
 - Logo, $c_u = 0.09$.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

25

Formulação do Modelo k-ε para Números de Reynolds Elevados

O modelo k-ε para números de Reynolds elevados é apresentado abaixo.

$$v_t = c_\mu \frac{k^2}{\varepsilon}$$

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{\nu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right] + P_k - \epsilon$$

$$\frac{\partial \epsilon}{\partial t} + U_j \frac{\partial \epsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{v_t}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_j} \right] + c_{\epsilon 1} \frac{\epsilon}{k} P_k - c_{\epsilon 2} \frac{\epsilon^2}{k}$$

onde

$$P_{k} = v_{t} \left[\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right] \left[\frac{\partial U_{i}}{\partial x_{j}} \right]$$

$$c_{11} = 0.09$$
; $c_{E1} = 1.44$; $c_{E2} = 1.92$; $\sigma_{k} = 1.0$; $\sigma_{E} = 1.3$

Constantes no Modelo k- ϵ : Determinação de $c_{\epsilon 1}$

□ A determinação de c_{ε1} é realizada resolvendo a equação da dissipação na região do perfil de velocidade logarítmico. Desprezando o transporte por convecção

$$0 = -\frac{\partial}{\partial y} \left(\frac{u^{*4}}{\sigma_\epsilon} \, y^{-1}\right) + \frac{\left(c_{\epsilon 2} - c_{\epsilon 1}\right) c_\mu^{1/2} u^{*4}}{\kappa^2 y^2}$$

□ Resolvendo a equação acima

$$\boldsymbol{c}_{\epsilon l} = \boldsymbol{c}_{\epsilon 2} - \frac{\kappa^2}{\sigma_\epsilon c_\mu^{1/2}}$$

 O valor de c_{s1} é determinado com base em escoamentos livres, sendo geralmente assumido como igual a 1,44.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

26

Subcamada Limite Viscosa

- Junto a superfícies sólidas o transporte difusivo molecular não pode ser desprezado e, portanto, deve ser incluído em todas as equações de transporte;
 - De fato, mesmo nos modelos algébricos, o cálculo de v_t deve prever o amortecimento da turbulência causado pelas superfícies;
 - No caso dos modelos a duas equações, praticamente todos utilizam alguma correção de v_t em função de um número de Reynolds da turbulência, a fim de prever corretamente o escoamento.
- Considera-se que os efeitos viscosos começam a afetar os movimentos de grande escala quando:

$$R_t = \frac{k^2}{v\varepsilon} < 100$$

 Em regiões próximas a paredes sólidas, a condição de não-deslizamento implica que

$$k \rightarrow 0$$
 , $\epsilon \neq 0$ quando $y \rightarrow 0$

onde y é a distância à parede. Então $R_t \rightarrow 0$.

Limite de uiui junto a Paredes Sólidas

☐ Considere o escoamento sobre uma placa plana, conforme abaixo:

A condição de não-deslizamento implica que

$$\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_1} = \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_3} = 0 \quad \text{em} \quad \mathbf{x}_2 = 0$$

Assim, pela continuidade,

$$\frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_2} = 0 \quad \text{em} \quad \mathbf{x}_2 = 0$$

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Limite de uiui junto a Paredes Sólidas

Uma vez que

$$\varepsilon = \sqrt{\frac{\partial u_i}{\partial x_i}^2}$$

então

$$\epsilon_{\rm w} = \nu \sqrt{\left(\frac{\partial u_1}{\partial x_2}\right)^2 + \left(\frac{\partial u_3}{\partial x_2}\right)^2} = 2\nu \left[\frac{\partial k^{1/2}}{\partial x_2}\right]^2$$

□ Na parede $\varepsilon \neq 0$, mas pode-se definir

$$\widetilde{\varepsilon} = \varepsilon - 2\nu \left[\frac{\partial k^{1/2}}{\partial x_2} \right]^2$$

Logo

$$\widetilde{\epsilon}_{w} = 0$$

Limite de uiu junto a Paredes Sólidas

☐ Portanto, representando a variação de u₁, u₂ e u₃ através de polinômios

$$\begin{split} u_1 &= a_1 x_2 + a_2 x_2^2 + \cdots \\ u_2 &= \qquad + b_2 x_2^2 + \cdots \\ u_3 &= c_1 x_2 + c_2 x_2^2 + \cdots \end{split} \qquad \left(\partial u_2 / \partial x_2 = 0 \text{ em } x_2 = 0 \right) \end{split}$$

Desta forma.

$$\overline{u_1 u_2} = a_1 b_2 x_2^3 + \cdots$$

$$k = \frac{1}{2} (a_1^2 + c_1^2) x_2^2 + \cdots$$

Podemos mostrar também que

$$v_t \sim x_2^3$$

2025

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Modelo k-ε para Números de Reynolds Baixos

- O primeiro modelo k-ε para números de Reynolds baixos foi proposto por Jones e Launder (1972);
 - Basicamente, esse modelo adota $\widetilde{\epsilon}$ ao invés de ϵ com o objetivo de simplificar a prescrição da condição de contorno na parede;
 - Além disto, os autores adicionam na equação da dissipação um termo fonte proporcional a

$$vv_t \left[\frac{\partial^2 U_i}{\partial x_k \partial x_m} \right]^2$$

com o objetivo de melhorar a previsão do perfil da energia cinética k junto à parede.

Por outro lado, a viscosidade turbulenta é calculada através de

$$v_t = f_\mu c_\mu \frac{k^2}{\epsilon}$$

onde $\textbf{f}_{_{\! 1}}$ é uma função de $\,\widetilde{R}_{_{t}}=k^2/\,\nu\widetilde{\epsilon}\,$.

 O modelo de Jones e Launder (1972) foi otimizado mais tarde por Launder e Sharma (1974), a fim de tornar as constantes do modelo compatíveis com as usadas em escoamentos livres.

Modelo k-ε para Números de Reynolds Baixos

Modelo de Launder e Sharma

$$\begin{split} & \nu_{t} = c_{\mu} f_{\mu} \frac{k^{2}}{\epsilon} \\ & \frac{\partial k}{\partial t} + U_{j} \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \Bigg[\Bigg(\nu + \frac{\nu_{t}}{\sigma_{k}} \Bigg) \frac{\partial k}{\partial x_{j}} \Bigg] + P_{k} - \widetilde{\epsilon} - 2\nu \Bigg(\frac{\partial k^{1/2}}{\partial x_{j}} \Bigg)^{2} \\ & \frac{\partial \widetilde{\epsilon}}{\partial t} + U_{j} \frac{\partial \widetilde{\epsilon}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \Bigg[\Bigg(\nu + \frac{\nu_{t}}{\sigma_{\epsilon}} \Bigg) \frac{\partial \widetilde{\epsilon}}{\partial x_{j}} \Bigg] + c_{\epsilon l} \frac{\widetilde{\epsilon}}{k} P_{k} - c_{\epsilon 2} f_{\epsilon} \frac{\widetilde{\epsilon}^{2}}{k} + 2\nu \nu_{t} \Bigg(\frac{\partial^{2} U_{i}}{\partial x_{k} \partial x_{m}} \Bigg)^{2} \\ & \text{onde} \qquad P_{k} = \nu_{t} \Bigg[\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \Bigg] \Bigg[\frac{\partial U_{i}}{\partial x_{j}} \Bigg] \\ & f_{\mu} = exp \Bigg[\frac{-3.4}{(1 + \widetilde{R}_{t} / 50)^{2}} \Bigg] \quad ; \qquad f_{\epsilon} = 1.0 - 0.3 \, exp(-\widetilde{R}_{t}^{2}) \end{split}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Fronteira de Entrada

- Componente de velocidade U
 - Interpolada de dados experimentais ou calculada de hipóteses para o perfil de velocidade (por exemplo, escoamento plenamente desenvolvido)
- Componente de velocidade V
 - Usualmente tomada como zero ou interpolada de resultados experimentais
- Energia cinética da turbulência k
 - Obtida de resultados experimentais ou avaliada através de relações, tais como:

$$k = \frac{\ell_m^2}{c_s^{1/2}} \left(\frac{\partial U}{\partial y}\right)^2$$
 ; onde $\ell_m = \min(\kappa y, c\delta)$

 $\lambda = 0.09$ para escoamentos em canais = 0.13 para escoamentos em tubulações circulares

Outras expressões para L_m existem para diferentes tipos de escoamentos.

- Para a solução numérica do problema deve-se prescrever as condições de contorno, que geralmente são de quatro tipos:
 - entrada;
 - eixo ou plano de simetria;
 - saída;
 - paredes sólidas.

2025

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

_

Fronteira de Entrada

- Dissipação da energia cinética ε
 - A relação anterior para a energia cinética tem sua origem na condição de equilíbrio local (P_k = ε), onde

$$\varepsilon = \frac{k^{3/2}}{L_D}$$

A escala de comprimento L_D pode ser relacionada com L_m através de

$$L_D = c_{\mu}^{-3/4} \ell_m$$

Assim, a condição de contorno para ε pode ser calculada como

$$\varepsilon = \frac{k^{3/2}}{c_{u}^{-3/4} \ell_{u}}$$

Simetria e Fronteira de Saída

- Plano ou eixo de simetria
 - A componente de velocidade normal à fronteira é zero:
 - Também são iguais a zero os gradientes na direção normal à fronteira de todas as outras propriedades;
 - Assim, nenhum fluxo (advecção ou difusão) ocorre na direção normal à fronteira.
- Fronteira de saída
 - Geralmente, a fronteira do escoamento é posicionada de tal forma que o escoamento possa ser considerado localmente parabólico;
 - Assumindo que não há variação da área de passagem, assume-se que não ocorre variação de nenhuma propriedade na direção normal à fronteira, ou seja:

$$\frac{\partial \Phi}{\partial n} = 0$$
 ; $(\Phi = U, V, k, \varepsilon)$

Esta condição pode ser aplicada com bastante segurança em muitas situações.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

37

Paredes Sólidas

- Os modelos para números de Reynolds baixos requerem uma malha computacional extremamente refinada junto à parede;
 - Em algumas situações é necessário, por economia, utilizar o modelo de turbulência para números de Reynolds elevados combinado com funções-parede;
 - Este tipo de tratamento é baseado no perfil logarítmico de velocidade, válido para uma região próxima à parede e situada aproximadamente entre 30 < y* < 400.</p>

- A região 0 < y < y_e é composta de duas camadas com interface em y = y_y;
- A região 0 < y < y_v é a subcamada limite viscosa, onde os efeitos viscosos são dominantes e a tensão ū_iū_i = 0;
- A outra camada y_v < y < y_e é totalmente turbulenta e a tensão cisalhante ū_iū_j é
 praticamente constante e igual a tensão na parede τ_w.

Paredes Sólidas

- Os modelos de turbulência para números de Reynolds elevados são inadequados na subcamada limite viscosa;
- Uma alternativa é a utilização de modelos para números de Reynolds baixos.
 - Neste caso, podemos prescrever a condição de não escorregamento para a componente de velocidade U;
 - Além disto, assumindo que a parede seja impermeável, a componente de velocidade V normal à parede também é zero;
 - Não há flutuações de velocidade na parede e, assim, k = 0;
 - Em relação à dissipação, para o modelo de Launder e Sharma adota-se uma substituição de variável tal que

$$\widetilde{\epsilon}_{w} = \epsilon_{w} - 2\nu \left(\frac{\partial k^{1/2}}{\partial y}\right)^{2} \implies \widetilde{\epsilon}_{w} = 0$$

 Outras condições de contorno devem ser consideradas de acordo com o modelo de turbulência adotado.

20:

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

3

Paredes Sólidas

 A espessura da subcamada limite viscosa é determinada pelo número de Reynolds

$$Re = \frac{k^{1/2}y}{v}$$

tal que $\text{Re}_{\nu} = (k_{\nu}^{1/2} y_{\nu})/\nu = 20$, correspondendo a y_{+} = 11,2.

- \square O efeito da condição de não-deslizamento sobre a velocidade U_P é transmitida ao ponto P através da tensão cisalhante τ_w ;
- \square Para y > y_v , a velocidade paralela à parede varia de acordo com o Perfil Logarítmico de Velocidade

$$\frac{U_{P}}{\left(\tau_{w}/\rho\right)^{1/2}} = \frac{1}{\kappa} ln \left[\frac{E \ y_{P} \ \left(\tau_{w}/\rho\right)^{1/2}}{\nu} \right]$$

Paredes Sólidas

Uma vez que para uma grande parte da camada limite

$$-\frac{\overline{uv}}{k} = \frac{\left(\tau_w/\rho\right)}{k} = c_\mu^{1/2}$$

o perfil de velocidade logarítmico pode ser reescrito como

$$\frac{U_{P}}{\tau_{w}/\rho}c_{\mu}^{1/4}k_{P}^{1/2} = \frac{1}{\kappa}ln\left[\frac{Ey_{P}c_{\mu}^{1/4}k_{P}^{1/2}}{\nu}\right]$$

- Assim, caso tenhamos o valor de k_P podemos determinar o valor de τ_ω;
- As constantes E e κ são normalmente tomadas como 9,7 e 0,41, respectivamente.

2025

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Paredes Sólidas

- Os gradientes elevados de k e ε junto a paredes tornam necessárias algumas correções nas suas estimativas;
- □ A energia cinética k_P no volume é obtida através da solução de sua equação de transporte com as seguintes modificações:

- A difusão na parede é zero: $(\partial k/\partial y)_n = 0$. Além disto, $V_n = 0$.
- Por hipótese, considera-se também que a tensão cisalhante na região y, < y < y_e é constante e igual a Tw. Assim, a integral de volume do termo de produção Pk é aproximado por:

- A velocidade U_o é obtida por interpolação das velocidades U_p no ponto P e U_o no centro do volume de controle abaixo daquele mostrado na figura;
- O valor de U_V pode ser obtido do perfil logarítmico de velocidade.

$$\frac{U_{\nu}}{(\tau_{\nu}/\rho)^{1/2}} = \frac{1}{\kappa} ln \Bigg[\frac{E y_{\nu} c_{\mu}^{1/4} k_{\nu}^{1/2}}{\nu} \Bigg] \hspace{1cm} \text{onde} \hspace{1cm} y_{\nu}^{+} = \frac{y_{\nu} c_{\mu}^{1/4} k_{\nu}^{1/2}}{\nu} \cong c_{\mu}^{1/4} \, Re_{\nu}$$

$$y_{\nu}^{+} = \frac{y_{\nu} c_{\mu}^{1/4} k_{\nu}^{1/2}}{\nu} \cong c_{\mu}^{1/4} \ Re_{\nu}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Paredes Sólidas

- Com a tensão cisalhante τ_w conhecida, a condição de não-deslizamento passa a ser uma condição de fluxo prescrito;
 - O fluxo na face norte do volume de controle pode ser expresso como:

 $F_{n} = (\rho V)_{n} A_{n} U_{n} - \mu \left(\frac{\partial U}{\partial y} \right)_{n} A_{n}$ ■ Como V₋ = 0

 $F_n = -\mu \left(\frac{\partial U}{\partial v} \right) A_n = \tau_w A_n$

 \blacksquare Substituindo a relação obtida para τ_w na equação anterior temos:

$$F_n = \left[\frac{\rho c_{\mu}^{1/4} k_p^{1/2} \kappa}{\ln(E y_p c_{\mu}^{1/4} k_p^{1/2} / \nu)} U_p \right] \!\! A_n$$

- A condição anterior é implementada pelo desacoplamento entre U_P e U_N (fazendo o coeficiente A_N = 0) e então adicionando-se o fluxo F_n como um termo fonte na equação discretizada.
- Para a componente de velocidade normal à parede tem-se que $V_p = 0$ e $(\partial V/\partial y)_p = 0$.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Уe

Paredes Sólidas

 É necessário também calcular a integral de ε, aparecendo como um sumidouro na equação de k. Neste caso,

$$\iiint \epsilon d \forall \cong \left\{ \frac{1}{y_e} \int_0^{y_e} \epsilon dy \right\} \forall \cong \frac{1}{y_e} \left\{ \int_0^{y_v} \epsilon dy + \int_{y_v}^{y_e} \epsilon dy \right\} \forall$$

A distribuição de ε na subcamada limite viscosa é assumida ser constante e iqual

$$\varepsilon = 2vk_y / y_y^2$$

■ Na camada turbulenta a escala de comprimento L_D (=k^{3/2}/ε) varia linearmente. Assim

$$\varepsilon = c_{\mu}^{3/4} k^{3/2} / \kappa y$$

Integrando de 0 a y_ε para ε

$$\overline{\epsilon} = \frac{k_P^{3/2}}{y_e} \left[\frac{2}{Re_v} + \frac{c_\mu^{3/4}}{\kappa} ln\! \left(\frac{y_e}{y_v} \right) \right] \quad \text{onde} \quad \quad \frac{y_e}{y_v} = \frac{y_e^+}{y_v^+} \quad \quad \text{e} \quad \quad y_e^+ = \frac{y_e \left(\tau_w/\rho \right)^{1/2}}{\nu}$$

A dissipação ε_P no ponto P é prescrita, ao invés de ser calculada de sua equação de transporte, usando a seguinte relação da condição de equilíbrio local:

$$\varepsilon = c_{\mu}^{3/4} k_{P}^{3/2} / \kappa y_{P}$$

Deficiências de Modelos de Viscosidade Turbulenta

- Os modelos de viscosidade turbulenta apresentam deficiências em algumas situações comuns de escoamento, tais como:
 - Escoamentos com efeitos de memória
 - Escoamentos na presença de curvatura de linhas de corrente
 - Escoamentos com gradientes adversos de pressão
 - Escoamentos com separação
 - Escoamentos com pontos de estagnação
 - Jatos
 - Escoamentos sob ação de campos de força
- ☐ Essas deficiências podem ser causadas por diferentes tipos de limitações:
 - Relação entre as tensões de Reynolds e taxas de deformação do escoamento médio;
 - Conceito de viscosidade turbulenta;
 - Modelo de turbulência adotado (modelo a uma equação, modelo k-ε, etc).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

45

Escoamentos com Efeitos de Memória

- Os efeitos de memória discutidos no cap. 3 podem ser empregados para explicar a não coincidência dos pontos de máximo de U₁ e u₁u₂ em um jato de parede.
 - Para um volume material carregado pelo escoamento, a deformação média mudará com o tempo.
 - A evolução da turbulência desta porção pode ser considerada similar a de um escoamento homogêneo com cisalhamento médio variável.
 - A porção encontrará o ponto em que o cisalhamento médio é zero, mas necessitará de um tempo adicional para que, sob a ação de um cisalhamento reverso, alcance um valor nulo para u₁u₂.
 - Assim, espera-se que a condição u₁u₂ = 0 aconteça em uma região mais próxima da parede do que o máximo de U₁, como observado na prática.

Escoamentos com Efeitos de Memória

- Considere o caso de um jato de parede.
 - Para a componente não nula

$$-\overline{\mathbf{u}_1 \mathbf{u}_2} = \mathbf{v}_t \frac{\partial \overline{\mathbf{U}}_1}{\partial \mathbf{x}_2} \tag{4.17}$$

- O resultado acima implica que a tensão de cisalhamento deve ser nula onde a variação da velocidade média passa por um ponto de inflexão.
- O resultado experimental para um jato de parede, mostrado na figura abaixo, é uma evidência contrária à validade desta formulação.

125

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

46

Curvaturas de Linhas de Corrente

- Bradshaw (1973) mostrou que taxas de deformação pequenas associadas a curvaturas suaves de linhas de corrente têm um grande efeito sobre as tensões de Reynolds;
 - Dados experimentais mostram que para reproduzir estes efeitos através do conceito de viscosidade turbulenta, usado no modelo k-ε, precisamos de uma relação do tipo

$$-\overline{uv} = v_t \left(\frac{\partial U}{\partial y} + \alpha \frac{\partial V}{\partial x} \right)$$

onde $8 < \alpha < 15$

Curvaturas de Linhas de Corrente

Gradientes Adversos de Pressão

- Sabe-se que o modelo k-ε superestima os valores das escalas de comprimento
 L_D quando a camada limite progride em direcão à separação;
 - Consequentemente, os níveis de turbulência tornam-se elevados e o escoamento tende a se manter sem separação, mesmo em situações em que os dados experimentais indicam o contrário;
 - O problema é associado à equação de ε e é ainda mais crítico quando se utiliza a versão do modelo k-ε para baixos números de Reynolds.
- Para contornar o problema de escalas de comprimento superestimadas, adotam-se diferentes técnicas:
 - Modificações no modelo padrão (Hanjalic-Launder, Yap, etc).
 - Adoção de uma formulação k-ω junto à superfície.

Gradientes Adversos de Pressão

- O termo de transporte $\partial \left(\rho \overline{U} \, \overline{uv} \right) / \partial x$ não está presente nos modelos de turbulência k- ϵ padrões.
 - No entanto, na presença de gradientes elevados de pressão, esse termo pode representar 20% do transporte total.

- Para a incorporação do efeito desse termo de transporte, pode-se adotar algumas alternativas:
 - Modelo para as tensões de Reynolds;
 - Modelo algébrico de taxa de deformação não linear.
 - Modificação do modelo de viscosidade turbulenta (modelo de Johnson-King, modelo SST)

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

50

Gradientes Adversos de Pressão

 Yap (1987) indica uma forma de correção diferente daquela sugerida por Hanjalic e Launder (1979):

$$Y = 0.83 \left(\frac{L_D}{L_e} - 1\right) \left(\frac{L_D}{L_e}\right) \frac{\varepsilon^2}{k}$$

onde

$$L_D = k^{3/2}/\epsilon \qquad \qquad L_e = 2,44 \, y$$

- O termo é introduzido como fonte na equação de e e age no sentido de trazer L_D para valores de equilíbrio local L_e.
- A modificação só deve ser utilizada se L_D > L_e;
- A principal deficiência da proposição de Yap é a necessidade de se prescrever uma distância à parede.

Gradientes Adversos de Pressão

Regiões de Estagnação

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

2025

Modelo k-ε padrão

Versão de Kato-Launder

Regiões de Estagnação

☐ Termo de produção na forma exata

$$P_{(\tau_{i,j})} = -\rho \overline{u_i u_k} \frac{\partial U_j}{\partial x_k} - \rho \overline{u_j u_k} \frac{\partial U_i}{\partial x_k}$$

$$P_{(k)} = -\overline{u_i u_j} \frac{\partial U_i}{\partial x_j}$$

 Termo de produção na forma aproximada (modelos baseados no conceito de viscosidade turbulenta)

$$P_{(k)} = \mu_t \frac{\partial U_i}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$

- O termo de produção na forma exata varia linearmente com a taxa de deformação.
- Por outro lado, a forma aproximada é uma função quadrática e, portanto, sempre positiva;
 - Isto resulta em níveis excessivos de turbulência em regiões de taxas de deformação elevadas, distorcendo completamente o escoamento;
 - A espessura de camada-limite torna-se elevada;
 - Atrito viscoso é previsto de forma incorreta.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

54

Jatos

- Os jatos circulares têm uma taxa de espalhamento em torno de 20 % menor do que os jatos planos;
 - Entretanto, previsões do escoamento com o modelo k-ε fornecem um espalhamento maior;
 - Várias tentativas foram realizadas para a otimização das constantes no modelo, mas todas sem sucesso;
 - O problema novamente é atribuído à equação de ε.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

56

2025 Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Conclusões sobre as Deficiências de Modelos de Viscosidade Turbulenta

- Conforme mostrado, alguns modelos de viscosidade turbulenta apresentam deficiências significativas em situações comuns de escoamento.
 - Parte dessas deficiências se devem à limitação do conceito de viscosidade turbulenta;
 - Erros são também originados pela relação linear comumente adotada entre as tensões de Reynolds e a taxa de deformação do escoamento médio;
 - Finalmente, podem existir também limitações do próprio modelo adotado.
- O modelo k-ε padrão falha na previsão de escoamentos afastados da condição de equilíbrio local e, assim, deve ser utilizado com cautela na simulação de escoamentos complexos;
 - Basicamente, os erros no modelo k-ε se originam de dois aspectos:
 - Uso de uma relação entre tensões turbulentas e taxas de deformação do escoamento médio análogo à usada para o escoamento laminar;
 - Pouca fundamentação física da equação de transporte de ε.
 - As correções propostas para a equação da dissipação ε não apresentam generalidade suficiente.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

57

Modelo de Spalart-Allmaras

 No modelo de Spalart-Allmaras (1992), a viscosidade turbulenta é avaliada através da função

$$v_t = \widetilde{v} f_{v1}$$

cuja equação de transporte para o termo \tilde{v} é expressa por

$$\frac{\partial}{\partial t} (\rho \widetilde{v}) + \frac{\partial}{\partial x_j} (\rho \widetilde{v} U_j) = C_{b1} \rho \widetilde{S} \widetilde{v} + \frac{1}{\sigma_{\widetilde{v}}} \left[\frac{\partial}{\partial x_j} \left\{ (\mu + \rho \widetilde{v}) \frac{\partial \widetilde{v}}{\partial x_j} \right\} + C_{b2} \rho \left(\frac{\partial \widetilde{v}}{\partial x_j} \right)^2 \right] - Y_v$$

 Esse modelo é bastante difundido em aplicações de aerodinâmica de asas de aviões

Outras Alternativas de Modelos Baseados no Conceito de Viscosidade Turbulenta

- Outras versões de modelos de turbulência têm sido propostas para eliminar parte das deficiências discutidas aqui.
 - Alguns desses modelos adotam uma única equação de transporte e são geralmente desenvolvidos para a solução de escoamentos junto a superfícies sólidas.
 - Outra categoria de modelo tenta melhorar a acurácia da previsão de escoamentos turbulentos a partir de modificações nas equações do modelo k-ε, tanto por meio de argumentos físicos como também de forma empírica.
 - Alguns autores abandonam a equação de ε ou até mesmo introduzem equações adicionais a fim de melhorar a previsão das tensões de Reynolds.
 - A combinação de dois ou mais modelos é também uma estratégia comum para o desenvolvimento de modelos híbridos de turbulência, buscando tirar proveito das vantagens de cada um em certas regiões do escoamento.
 - Embora ainda não muito difundidos, modelos de turbulência não-lineares têm sido propostos como uma alternativa para a simulação de escoamentos complexos em que a previsão da anisotropia da turbulência é necessária.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Modelo de uma Equação de Wolfshtein (1969)

 \square No modelo a uma equação de Wolfshtein (1969), a viscosidade turbulenta, ν_t é calculada por meio das escalas de velocidade, $k^{1/2}$, e de comprimento, $l_\mu.$

$$v_t = C_u l_u k^{1/2}$$
 ; $l_u = y C_t^* (1 - e^{-Re_y/A_\mu})$

sendo $C_l^* = \kappa C_\mu^{-3/4}, \ C_\mu = 0.0845$, $A_\mu = 70$ e κ é a constante de Von Kárman.

- \blacksquare O número de Reynolds da turbulência é definido por $Re_{_{y}}=\left(\rho yk^{1/2}\right)/\mu$
- \square Além disso, a dissipação ε é avaliada das escalas de velocidade $~k^{1/2}$ e de comprimento l_{\circ} :

$$\varepsilon = k^{3/2} / l_a$$

com

$$l_{\varepsilon} = yC_{l}^{*}(1 - e^{-Re_{y}/A_{\varepsilon}})$$
 $A_{\varepsilon} = 2C_{l}^{*}$

Esse modelo tem sido adotado para a solução do escoamento junto a paredes sólidas em combinação com diferentes modelos para as regiões afastadas.

Modelo de Renormalização k-ε

- Constantes são obtidas através de desenvolvimento teórico;
 - Viscosidade efetiva

$$v_{\rm eff} = v \left[1 + \sqrt{\frac{C_{\mu}}{v}} \frac{k}{\sqrt{\varepsilon}} \right]^2$$

Energia cinética da turbulência

$$U_{j} \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\alpha v_{t} + v) \frac{\partial k}{\partial x_{j}} \right] + v_{t} S^{2} - \varepsilon$$

Dissipação da energia cinética

$$U_{j} \frac{\partial \varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\alpha v_{t} + v) \frac{\partial \varepsilon}{\partial x_{j}} \right] + C_{\varepsilon 1} \frac{\varepsilon}{k} v_{t} S^{2} - C_{\varepsilon 2} \frac{\varepsilon^{2}}{k} - R$$

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

61

Modelo k-ω

O modelo k-ω usa ω (=ε/k) em substituição à dissipação ε. Uma versão, proposta por Wilcox (1993), adota as seguintes equações:

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho U_j k)}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\mu + \frac{\mu_t}{\sigma_k^*} \right) \frac{\partial k}{\partial x_i} \right] + \mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} - \rho k \omega$$

$$\frac{\partial(\rho\omega)}{\partial t} + \frac{\partial(\rho U_{j}\omega)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\omega}} \right) \frac{\partial\omega}{\partial x_{j}} \right] + c_{\omega l} \frac{\omega}{k} P_{k} - \rho c_{\omega 2} \omega^{2}$$

$$\mu_t = \rho \, c_\mu \, \frac{k}{\omega} \quad ; c_\mu = 0.09 \quad ; c_{\omega l} = 0.56 \quad ; c_{\omega 2} = 0.83 \quad ; \sigma_k^* = 2.0 \quad ; \sigma_\omega = 2.0$$

- A principal vantagem desse modelo é o fato de poder ser empregado junto a paredes sem o emprego de funções-parede ou funções de amortecimento.
- Além disso, retorna valores menores para as escalas de comprimento junto a paredes sólidas.
- Versão para números de Reynolds baixos é numericamente estável.
- No entanto, o modelo é sensível às condições de escoamento livre e não é adequado em regiões de separação.

Modelo de Renormalização k-ε

Constantes

$$C_{11} = 0.0845$$

$$C_{c1} = 1,42$$

$$C_{c2} = 1.68$$

Inverso do número de Prandtl para o transporte turbulento

$$\left| \frac{\alpha - 1,3929}{\alpha_0 - 1,3929} \right|^{0.6321} \left| \frac{\alpha + 2,3929}{\alpha_0 + 2,3929} \right|^{0.3679} = \frac{v}{v_{\text{eff}}}$$

Termo associado à taxa de deformação do escoamento

$$R = \frac{C_{\mu} \eta^3 (1 - \eta / \eta_0)}{1 + \beta \eta^3} \frac{\epsilon^2}{k}$$

$$\alpha_0 = 1.0$$

$$\eta = Sk/\epsilon$$

$$\eta_o \cong 4,38$$

$$S^2 = 2S_{ij}S_{ij}$$

 $S_{ii} \rightarrow tensor taxa de deformação$

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Modelo SST

- Menter (1994) propôs uma versão de modelo k-ω para eliminar as suas duas principais deficiências:
 - Previsões de valores excessivamente elevados para o coeficiente de atrito em escoamentos sob gradientes adversos de pressão;
 - Sensibilidade a condições de escoamento livre.
- A primeira deficiência foi corrigida pela imposição de um limite para a razão tensão-intensidade

$$-\overline{uv} = v_t \left| \frac{\partial U}{\partial v} \right| = a_1 k$$

Embora em muitos escoamentos a₁ ≈ 0,3, valores menores são observados sob gradientes favoráveis de pressão.

Modelo SST

Uma formulação mais geral pode ser escrita como

$$v_{t} = min \left[\frac{c_{\mu}k}{\omega}, \frac{c_{\mu}^{1/2} k}{|\Omega F_{2}|} \right]$$

- O uso do limitador como indicado acima melhora a previsão de escoamentos com gradientes adversos de pressão ou com regiões de separação;
- A função F₂ é introduzida na expressão de tal forma a ser praticamente igual a unidade dentro da camada limite e tender a zero à medida que se alcança a sua borda.

$$F_2 = \tanh(\arg \frac{2}{2})$$

$$arg_2 = max \left[\frac{2\sqrt{k}}{\omega y}, \frac{500c_{\mu}v}{\omega y^2} \right]$$

2025 Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelo SST

Equações do modelo

$$\frac{\partial(\rho k_{i})}{\partial t} + \frac{\partial(\rho \overline{U}_{j} k)}{\partial x_{j}} = P_{k} - \rho k \omega + \frac{\partial}{\partial x_{j}} \left[(\mu + \frac{\mu_{t}}{\widetilde{\sigma}_{k}}) \frac{\partial k}{\partial x_{j}} \right]$$

$$\frac{\partial(\rho\omega_{i})}{\partial t} + \frac{\partial(\rho\overline{U}_{j}\omega)}{\partial x_{i}} = \widetilde{c}_{\epsilon 1}\frac{\omega}{k}P_{k} - \widetilde{c}_{\epsilon 2}\rho\omega^{2} + (1 - F_{1})\frac{2}{\sigma_{\omega}}\frac{\partial k}{\partial x_{i}}\frac{\partial\omega}{\partial x_{i}} + \frac{\partial}{\partial x_{i}}\left[\left(\mu + \frac{\mu_{t}}{\widetilde{\sigma}_{\omega}}\right)\frac{\partial\omega}{\partial x_{i}}\right]$$

 Todos as constantes dos modelos (cε1, cε2, σk e σω) são também interpoladas. Por exemplo,

$$\widetilde{c}_{\epsilon 1} = (c_{\epsilon 1})_{k-\omega} F_1 + (c_{\epsilon 1})_{k-\epsilon} (1 - F_1)$$

	k-w	k-ε
Subcamada limite	Estável Preciso Simples	Instável Menos preciso Complexo
Camada logarítmica	Preciso	Escalas de comprimento superestimadas
Camada externa	Não prevê efeitos de transporte	Não prevê efeitos de transporte
Borda da camada limite	Sensível a condições do escoamento livre	Bem definido

Modelo SST

- Para contornar o problema de sensibilidade às condições de escoamento livre, Menter (1994) adotou uma combinação do modelo k-ω e do modelo k-ε.
- A transição entre os dois modelos é realizada de forma suave, através da seguinte função:

$$F_1 = \tanh(\arg_1^4)$$

$$arg_1 = min \left[max \left(\frac{\sqrt{k}}{\omega y}, \frac{500c_{\mu}v}{\omega y^2} \right), \frac{2k\omega}{y^2 max(\nabla k.\nabla \omega, 10^{-20})} \right]$$

A função acima é apenas um expediente para a interpolação dos dois modelos, fazendo com que F₁ tenda à unidade até a metade da espessura da camada limite e então a zero próximo à borda da camada.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

.

Modelo k-ε Realizável

- O modelo k-ε realizável se distingue por uma série de características:
 - O parâmetro C_u varia de acordo com a condição local do escoamento.
 - Apresenta uma versão melhorada para a equação de ε.
- A equação para a energia cinética turbulenta é igual àquela do modelo k-ε padrão.
- O modelo apresenta maior acurácia nas seguintes situações:
 - Jatos planos e circulares (prevê corretamente o espalhamento dos jatos).
 - Camadas limites com elevados gradientes adversos de pressão ou com separação.
 - Escoamentos com rotação e recirculação.
 - Escoamentos com linhas de corrente curvas.

Modelo k-ε Realizável

Da relação para a viscosidade turbulenta

$$-\rho \, \overline{u_i u}_j = \mu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \, \rho \, k \, \delta_{ij}$$

Assim, a componente normal do tensor de Reynolds:

$$\overline{u^2} = \frac{2}{3} k - 2C_{\mu} \frac{k^2}{\varepsilon} \frac{\partial U}{\partial x}$$

Logo, a tensão normal será negativa na seguinte condição:

$$\frac{k}{\varepsilon} \frac{\partial U}{\partial x} > \frac{1}{3C_{\mu}} \approx 3.7$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

71

Modelos Não-Lineares de Viscosidade **Turbulenta**

- \square Como já mencionado, a relação linear usada para u_iu_i não é adequada;
 - Por exemplo, para um escoamento plenamente desenvolvido em um duto de secão retangular o modelo k-ε prevê a situação de isotropia, contradizendo os resultados experimentais;
 - Esse erro ocasiona a supressão do escoamento secundário, verificado experimentalmente, uma vez que para isto precisamos uu ≠ vv .

Modelo k-ε Realizável

Expressão para C_u

$$C_{\mu} = \frac{1}{A_o + A_s \frac{U^* k}{\varepsilon}} \qquad \mu_t = \rho C_{\mu} \frac{k^2}{\varepsilon}$$

$$\mu_t \equiv \rho C_\mu \frac{k^2}{\varepsilon}$$

Garante valores positivos para as tensões normais:

$$\overline{u_i^2} \ge 0$$

■ Garante a desigualdade de Cauchy–Schwarz, apresentada no cap. 3:

$$(\overline{u_i u_j})^2 \le \overline{u_i^2} \overline{u_j^2}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelos Não-Lineares de Viscosidade **Turbulenta**

Outra deficiência é a previsão das tensões normais em regiões de separação do escoamento, onde as mesmas são muito influentes sobre o campo de velocidade.

- À medida que os recursos computacionais permitem a previsão de escoamentos mais complexos, modelos de maior acurácia se tornam necessários.
 - Modelos não-lineares têm o potencial de oferecer maior acurácia do que modelos lineares, com um acréscimo moderado no custo computacional.
 - A proposta de uma relação não-linear entre as tensões de Reynolds e o tensor deformação foi apresentada há muito tempo atrás por Pope (1975).

2025

Modelos Não-Lineares de Viscosidade Turbulenta

Alternativas empregam formulações explícitas não-lineares:

$$\begin{split} -\overline{u_iu_j} &= -\nu_\tau \bigg[S_{ij} + \frac{2}{3} \delta_{ij} k \bigg] - \\ \nu_\tau \bigg[a_1 \big(S_{ik} S_{kj} \big) - \frac{1}{3} \delta_{ij} S_{ik} S_{kl} \bigg] + \\ \nu_\tau \bigg[a_2 \big(\Omega_{ik} S_{kj} \big) + \Omega_{jk} S_{ki} \bigg] + \\ \nu_\tau \bigg[a_1 \big(\Omega_{ik} \Omega_{kj} \big) - \frac{1}{3} \delta_{ij} \Omega_{ik} \Omega_{kl} \bigg] \ + \ \dots \end{split}$$

- $\hfill \Box$ Outras tentativas de contornar o problema também consistem na inclusão de termos não-lineares no cálculo de $\overline{u_i u_{\dot{r}}}$
 - Rivlin (1957); Lumley (1970); Pope (1978); Speziale (1987).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

73

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

 $\mathbf{s}_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_i} + \frac{\partial U_j}{\partial x_i} \right) \; ; \qquad \mathbf{s}_{ij}^o = \frac{\partial \mathbf{s}_{ij}}{\partial t} + U_j \frac{\partial \mathbf{s}_{ij}}{\partial x_i} - \frac{\partial U_i}{\partial x_m} \mathbf{S}_{mi} - \frac{\partial U_j}{\partial x_m} \mathbf{S}_{mi} \right)$

Modelos Não-Lineares de Viscosidade

Turbulenta

 $\overline{u_i u}_j = -\frac{2}{3} \delta_{ij} k + 2 c_\mu \frac{k^2}{\epsilon} s_{ij} + 4 c_D c_\mu^2 \frac{k^3}{\epsilon^2} \left(s_{im} s_{mj} - \frac{1}{3} s_{mn} s_{mn} \delta_{ij} \right) +$

■ Modelo de Speziale (1987)

onde

 $+4c_{\rm E}c_{\mu}^2\frac{{\rm k}^3}{{\rm s}^2}\left({\rm s}_{ij}^{\rm o}-\frac{1}{3}{\rm s}_{\rm mn}^{\rm o}\delta_{ij}\right)$

7

Modelos Não-Lineares de Viscosidade Turbulenta

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

- A complexidade de implementação e o tempo de processamento computacional são comparáveis aos do Modelo Diferencial das Tensões de Reynolds (DRSM);
- No entanto, o Modelo das Tensões de Reynolds requer 30% a mais de memória computacional.

Modelo Não-Linear Quadrático

- Outra forma de construir esses modelos é através da inclusão de todas as formas de tensores que satisfazem as propriedades de simetria e contração, ou seja, u,u, = u,u, e u,u, = 2k.
 - Os coeficientes de cada termo da nova relação são então ajustados para um conjunto de escoamentos.
 - Por exemplo, incluindo todos os termos quadráticos de gradientes de velocidade média que satisfazem os requerimentos supracitados, resulta na sequinte relação:

$$\begin{split} a_{i\bar{j}} &\equiv \overline{u_i}\overline{u_j}/k - (2/3)\delta_{i\bar{j}} = -(\nu_t/k)S_{i\bar{j}} + c_1\frac{\nu_t}{\varepsilon}\left(S_{ik}S_{jk} - (1/3)S_{mk}S_{mk}\delta_{i\bar{j}}\right) \\ &\quad + c_2\frac{\nu_t}{\varepsilon}\left(\Omega_{ik}S_{k\bar{j}} + \Omega_{jk}S_{k\bar{i}}\right) \\ &\quad + c_3\frac{\nu_t}{\varepsilon}\left(\Omega_{ik}\Omega_{jk} - (1/3)\Omega_{lk}\Omega_{lk}\delta_{i\bar{j}}\right) \end{split}$$

sendo

 $S_{ij} = \partial U_i / \partial x_i + \partial U_i / \partial x_i$ and $\Omega_{ij} = \partial U_i / \partial x_j - \partial U_i / \partial x_j$

Modelo Não-Linear Quadrático

☐ Em um escoamento cisalhante simples com gradiente de velocidade dU/dy, essa relação quadrática fornece

$$\overline{u^2} = (2/3)k + c_{\mu}kS^2 [(1/3)c_1 + (1/3)c_3 + 2c_2]$$

$$\overline{v^2} = (2/3)k + c_{\mu}kS^2 [(1/3)c_1 + (1/3)c_3 - 2c_2]$$

$$\overline{w^2} = (2/3)k + c_{\mu}kS^2 [-(2/3)c_1 - (2/3)c_3]$$

$$\overline{uv} = -c_{\mu}kS$$

com
$$S = (k/\varepsilon) dU/dy$$

- \square A escolha adequada dos coeficientes c_1 , c_2 e c_3 , deve fornecer os níveis esperados de anisotropia ($\overline{u}\overline{u} > \overline{w}\overline{w} > \overline{v}\overline{v}$).
- \square Pode-se observar que o valor de \overline{uv} não é afetado pelos termos quadráticos.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

77

Modelo Não-Linear Cúbico

- Uma alternativa é a inclusão de termos de ordem superior na relação entre as tensões de Reynolds e o tensor deformação.
- ☐ Se todas as possíveis relações cúbicas de termos de gradientes de velocidade forem incluídos, chega-se na seguinte forma:

$$\begin{split} \overline{u_i u_j} &= (2/3)k\delta_{ij} - v_t S_{ij} + c_1 v_t \frac{k}{\varepsilon} \left(S_{ik} S_{jk} - (1/3) S_{kl} S_{kl} \delta_{ij} \right) \\ &+ c_2 v_t \frac{k}{\varepsilon} \left(\Omega_{ik} S_{kj} + \Omega_{jk} S_{ki} \right) + c_3 v_t \frac{k}{\varepsilon} \left(\Omega_{ik} \Omega_{jk} - (1/3) \Omega_{lk} \Omega_{lk} \delta_{ij} \right) \\ &+ c_4 v_t \frac{k^2}{\varepsilon^2} \left(S_{ki} \Omega_{lj} + S_{kj} \Omega_{li} \right) S_{kl} \\ &+ c_5 v_t \frac{k^2}{\varepsilon^2} \left(\Omega_{il} S_{mj} + S_{ll} \Omega_{mj} - (2/3) S_{ln} \Omega_{mn} \delta_{ij} \right) \Omega_{lm} \\ &+ c_6 v_t \frac{k^2}{\varepsilon^2} S_{ij} S_{kl} S_{kl} + c_7 v_t \frac{k^2}{\varepsilon^2} S_{ij} \Omega_{kl} \Omega_{kl} \end{split}$$

O uso de termos cúbicos permite a previsão de efeitos de curvatura de linhas de corrente e de remoinho (swirl).

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelo Não-Linear Quadrático

Existem várias propostas de modelos quadráticos na literatura:

Modelo	c_{μ}	c ₁	<i>c</i> ₂	c ₃	Outros termos
Speziale (1987)	0.09	-0.15	0	0	$-0.3v_t/\varepsilon(\dot{S}_{ij}-\dot{S}_{kk}\delta_{ij}/3)$
Nisizima- Yoshizawa (1987)	0.09	-0.76	0.18	1.04	
Rubinstein- Barton (1990)	0.0845	0.68	0.14	-0.56	
Myong-Kasagi (1990)	0.09	0.28	0.24	0.05	W _{ij}
Shih-Zhu-Lumley (1993)	$\frac{2/3}{1.25+S+0.9\Omega}$	$\frac{0.75/c_{\mu}}{1000+S^3}$	$\frac{3.8/c_{\mu}}{1000+S^3}$	$\frac{4.8/c_{\mu}}{1000+S^3}$	

- A pouca concordância entre os valores dos coeficientes desses modelos indica que provavelmente os mesmos possuem uma faixa de aplicação estreita.
- Mesmo com o uso de termos quadráticos, efeitos de curvatura de linhas de corrente e de remoinho (swirl) não podem ser corretamente modelados.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelo Não-Linear Cúbico

□ Suga (1995) desenvolveu um modelo cúbico, otimizando os coeficientes para uma faixa de escoamentos, incluindo cisalhamento simples, impinging, curvatura e swirling.

c ₁	c ₂	c ₃	<i>c</i> ₄	c ₅	c ₆	C7
-0.1	0.1	0.26	$-10c_{\mu}^{2}$	0	$-5c_{\mu}^{2}$	$5c_{\mu}^2$

com

$$c_{\mu} = \frac{0.3}{1 + 0.35 \eta^{3/2}} \left[1 - \exp\left(\frac{-0.36}{\exp(-0.75\eta)}\right) \right]$$

$$\eta = \max(S, \Omega) \qquad S = \frac{k}{\varepsilon} \left[\frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)^2 \right]^{1/2} \qquad \Omega = \frac{k}{\varepsilon} \left[\frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} - \frac{\partial U_j}{\partial x_i} \right)^2 \right]^{1/2}$$

Modelo Não-Linear Cúbico

Craft et al. (2000) subsituiu a proposta de Yap, Y, por um termo baseado no gradiente da escala de comprimento.

Referências

- Wilcox, D.C. Reassessment of the scale determining equation for advanced turbulence models, AIAA J., 26:1299-1310, 1988.
- Wilcox, D.C. Progress in hypersonic turbulence modelling, Proc. AIAA 22nd Fluid Dynamics, Plasmadynamics & Laser Conference, Honolulu, 1991.
- Wolfshtein, M. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient, *Int. J. Heat Mass Transfer*, 12:301-318, 1969.

2025 Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

92

Referências

- Launder, B.E., Reece, G.J., Rodi, W. Progress in the development of a Reynolds stress turbulence closure, J. Fluid Mechanics, 68:537, 1975.
- □ Launder, B.E., Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, *Lett. in Heat Mass Transfer*, 1:131-138, 1974.
- Menter, F.R. Zonal two equation k-w turbulence models for aerodynamic flows, AIAA 24th Fluid Dynamics Conference, Orlando, Florida, 1993.
- Pope, S.B. A more general effective-viscosity hypothesis, J. Fluid Mechanics, 72:331-340, 1975.
- Reynolds, W.C. Fundamentals of turbulence for turbulence modeling and simulation. Lecture Notes for Von Karman Institute Agard Report No. 755, 1987.
- □ Shih, T.H., Liou, W.W., Shabbir, A. and Zhu, J. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers and Fluids, 24(3):227-238, 1995.
- Speziale, C.G. On nonlinear k-l and k-e models of turbulence, J. Fluid Mech., 178:459-475, 1987.
- □ Suga, K. Development and application of a non-linear eddy viscosity model sensitized to stress and strain invariants, *PhD Thesis*, Faculty of Technology, University of Manchester, 1995.

25 Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

82