Intégration numérique

Informatique pour tous

Question

Question

Comment calculer une intégrale $\int_a^b f(x) dx$?

• Trouver une primitive.

Question

- Trouver une primitive.
- Intégration par partie.

Question

- Trouver une primitive.
- 2 Intégration par partie.
- 3 Changement de variable.

Question

- Trouver une primitive.
- 2 Intégration par partie.
- Ochangement de variable.
- ???

En général, on ne sait pas calculer la valeur exacte d'une intégrale $\int_a^b f(x) dx$.

En général, on ne sait pas calculer la valeur exacte d'une intégrale $\int_a^b f(x) dx$.

Il faut donc trouver des moyens d'approximer $\int_a^b f(x) dx$.

En général, on ne sait pas calculer la valeur exacte d'une intégrale $\int_a^b f(x) dx$.

Il faut donc trouver des moyens d'approximer $\int_a^b f(x) dx$.

Idée: interpréter $\int_a^b f(x) dx$ comme l'aire sous la courbe de f, et l'approcher par l'aire de «quelque chose» qu'on sait calculer.

En utilisant un polygone à 96 côtés, Archimède parvient à l'approximation:

$$\frac{220}{71} \le \pi \le \frac{22}{7}$$

La **méthode des rectangles** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des rectangles.

La **méthode des rectangles** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des rectangles.

La **méthode des rectangles** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des rectangles.

Question

Que vaut a_k , si a_0 , ..., a_n sont n+1 réels régulièrement espacés de a à b?

$$a_k = a + k \times \frac{b - a}{n}$$

Question

Que vaut l'aire totale des *n* rectangles?

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$$

Vous verrez en cours de mathématiques:

Sommes de Riemann

Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue. Alors:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}) \xrightarrow[n\to\infty]{} \int_a^b f$$

Question

Écrire une fonction rectangle qui approxime l'intégrale d'une fonction par la méthode des rectangles (quels sont ses arguments)?

Question

Écrire une fonction rectangle qui approxime l'intégrale d'une fonction par la méthode des rectangles (quels sont ses arguments)?

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

Méthode des rectangles: exemple

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

Méthode des rectangles: exemple

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

```
In [5]: rectangle(lambda x : 1/(1+x**2), 0, 1, 100)
Out[5]: 0.7878939967307818
```

Méthode des rectangles: exemple

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

```
In [5]: rectangle(lambda x : 1/(1+x**2), 0, 1, 100)
Out[5]: 0.7878939967307818
```

Vérification: on peut montrer mathématiquement que $\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}$.

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

Question

Comment utiliser rectangle pour approximer ln(2)?

```
def rectangle(f, a, b, n):
    res = 0
    pas = (b - a) / n
    for k in range(n):
        res += f(a + k * pas)
    return pas * res
```

Question

Comment utiliser rectangle pour approximer ln(2)?

Utiliser
$$\ln(2) = \int_1^2 \frac{1}{x} dx$$
.

Question

Quelle est la complexité de rectangle?

La **méthode des trapèzes** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des trapèzes

La **méthode des trapèzes** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des trapèzes (trapèze = quadrilatère ayant 2 côtés parallèles).

La **méthode des trapèzes** approxime l'aire $\int_a^b f(x) dx$ sous la courbe par des trapèzes (trapèze = quadrilatère ayant 2 côtés parallèles).

Question

Que vaut l'aire du trapèze de a_k à a_{k+1} ?

Question

Que vaut l'aire du trapèze de a_k à a_{k+1} ?

Question

Que vaut l'aire du trapèze de a_k à a_{k+1} ?

$$\underbrace{\left(a_{k+1}-a_{k}\right)}_{=\frac{b-a}{n}}\times\frac{f(a_{k})+f(a_{k+1})}{2}$$

La méthode des trapèzes consiste à approximer $\int_a^b f$ par:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(a_k) + f(a_{k+1})}{2}$$

Comparaisons des deux méthodes

En posant
$$a_k = a + k \frac{b-a}{n}$$
:

- **1** Méthode des rectangles: $\int_a^b f \approx \left| \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k) \right|$
- **Méthode des trapèzes**: $\int_a^b f \approx \left| \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(a_k) + f(a_{k+1})}{2} \right|$

La méthode des trapèzes demande de calculer deux fois plus de valeurs de f pour le même n, mais donne une meilleure approximation de l'intégrale.