

GEOMETRÍA Capítulo 12

1st **SECONDARY**

CUADRILÁTERO: TRAPEZOIDE

HELICO | MOTIVATING

CUADRILÁTEROS

Definición: Es un polígono de 4 lados.

- VÉRTICES: A; B; C y D
- LADOS: AB; BC; CD y DA

TEOREMAS

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \psi + \delta = 360^{\circ}$$

CLASIFICACIÓN

TRAPEZOIDE.- Es aquel cuadrilátero que no tiene lados opuestos paralelos.

TRAPEZOIDE ASIMÉTRICO

TRAPEZOIDE SIMÉTRICO

1. En el trapezoide ABCD, halle el valor de x.

Resolución

Piden: x

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$x + 70^{\circ} + 80^{\circ} + 90^{\circ} = 360^{\circ}$$

$$x + 240^{\circ} = 360^{\circ}$$

$$x = 120^{\circ}$$

2. Las medidas de los ángulos internos de un trapezoide son 2α , 5α , 3α , y 2α . Halle el valor de α .

3. En el trapezoide, halle el valor de x.

HELICO | PRACTICE

4. Se construye un techo de madera de forma de trapezoide simétrico ABCD, AB = AD y BC = CD. Calcule la medida del ángulo que debe cortarse la madera en la esquina.

5. Las medidas de los ángulos internos de un trapezoide son α , 3α , 5α y 6α . Halle el valor de α .

6. En el grafico, se muestra una pieza de un rompecabeza. Halle x. Resolución

 $x = 32^{\circ}$

7. Se muestra un puente formado con estructuras trapezoidales.

Halle el valor de α .

Resolución

$$\alpha + \beta + \theta + \emptyset = 360^{\circ}$$

$$70^{\circ} + 4\alpha + \alpha + 140^{\circ} = 360^{\circ}$$

$$5\alpha + 210^{\circ} = 360^{\circ}$$

$$5\alpha = 150^{\circ}$$

$$\alpha = 30^{\circ}$$