MEMORY OPTIMIZATION FOR FINE-TUNING MODELS

Sneha Jha Imperial College London

ML in PL 2023

The VRAM Bottleneck

	GPU	Tier	\$ / hr (AWS)	VRAM (GiB)
	H100	Enterprise	12.29	80
J ⁻	A100	Enterprise	5.12	80
) [V100	Enterprise	3.90	32
	A10G	Enterprise	2.03	24
5	T4	Enterprise	0.98	16
	RTX 4080	Consumer	N/A	16

Sources of the Bottleneck

Model Parameters

Gradients

Optimizer States

Precision Options

Precision Options

Model Parameters

Model Parameters

Quantization

Quantization

Optimizer State

$$m_{t} = \beta_{1} * m_{t-1} + (1 - \beta_{1}) * \nabla w_{t}$$

$$v_{t} = \beta_{2} * v_{t-1} + (1 - \beta_{2}) * (\nabla w_{t})^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}} \qquad \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$w_{t+1} = w_{t} - \frac{\eta}{\sqrt{\hat{v}_{t} + \epsilon}} * \hat{m}_{t}$$

Low Rank Adaptation (LoRA)

Low Rank Decomposition of a Matrix

Low Rank Adaptation (LoRA)

Weight matrix

1024 x 1024

LoRA matrices

respectively

1024x8 and 8x1024

Uses 1024 * 8 * 2 parameters

Low Rank Adaptation (LoRA)

Activations

Quantized LoRA

QLoRA

Towards NF4 representation

4-bit integers can represent 16 levels

-1.0, -0.8667, -0.7333, -0.6,

-0.4667, -0.3333, -0.2, -0.0667,

0.0667, 0.2, 0.3333, 0.4667,

0.6, 0.7333, 0.8667, 1.0

Peak Memory: 13.5GB

More to do

- Gradient Accumulation
- Paged Optimizers
- Double Quantization
- AdaLoRA
- LongLoRA

etc...

References

Finetuning LLMs with LoRA and QLoRA: Insights from Hundreds of Experiments - Lightning Al

https://blog.eleuther.ai/transformer-math/

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." *arXiv preprint arXiv:2106.09685* (2021).

Dettmers, Tim, et al. "Qlora: Efficient finetuning of quantized llms." arXiv preprint arXiv:2305.14314 (2023).

Li, Yixiao, et al. "LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models." *arXiv preprint arXiv:2310.08659* (2023).

Chen, Yukang, et al. "LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models." *arXiv preprint arXiv:2309.12307* (2023).