

Pirates.io

Lee Elliott

1602346

- Server/client
 - Multiple clients connected
 - Maximum of 50 clients
 - Clients only have to send one message
- Transport Layer Protocol
 - User Datagram Protocol (UDP)

Network Architecture

- Application Layer Protocol
 - SFML packets
 - Only 3 packet types
 - Update of status from client
 - Position, Size, Origin and Rotation
 - Update of "enemies" from client
 - Packet type 1
 - Number of connected clients
 - Loop to add "ID", Position, Size, Origin and Rotation
 - Server full message
 - Packet type 2
 - String containing message
 - Packets sent every 0.2s

Network API

- Sockets
 - SFML UDP sockets
 - Similar to WinSock
 - WinSock was designed for the client/server model
 - Simple to implement
 - Portable so can be used on most platforms
 - UDP
 - Computationally less expensive than TCP
 - Tethered connection not necessary
 - UDP less reliable than TCP
 - Packet loss can be accounted for using other means

Network Structure and Integration

- Client / Server model
- Client sends single packet containing their status
- Client expects to receive one of two packet types
 - Packet type 1 provides client with status details of all connected clients, which the client uses to update their stored list
 - Packet type 2 provides a polite server full message, which stops client sending messages to the server but allows client to "play offline"
- Server sends one of two packet types
 - Packet type 1 sent to connected clients
 - Packet type 2 sent to prospective clients when server is full

Prediction and Interpolation

- Interpolation
 - Position data received from server is stored in a variable in the enemy.
 - In the update function, this is compared to the current position of the enemy
 - If these do not match, interpolation is used to move the enemy towards the server provided position
 - A similar method is used to control the rotation of the enemy

Evaluation

- Tested using Clumsy
 - Noticeable issues when using several functions at the same time
 - The interpolation does an adequate job of minimizing the effects of lag, dropped packets and throttle
 - Duplicate and out of order had no effect at all
 - Tamper is extremely effective at disrupting this application
- Interpolation of rotation method made the application seem jerky
 - This method was altered and an improvement was observed