Week 4

Quadratic Programming

Portfolio Optimization

Methodology, Modelling, and Consulting Skills The University of Edinburgh

Where are we?

- 1. Linear programming
- 2. More linear programming
- 3. Integer programming
- 4. Quadratic programming
 - Assignment 1 due 10 October
 - Assignment 2 released
- 5. Facility location problems
 - I will release the project
- 6. How to innovate
 - Guest lecture Christina Starko Edinburgh Innovations
 - Assignment 2 due 24 October
 - Release assignment 3 due 7 November
- 7.-10. Project
 - Report due 28 November
 - Presentations on 29 November

- ▶ We would like to earn as much as possible.
- But profitable investments are risky.

- ▶ We would like to earn as much as possible.
- But profitable investments are risky.

- ▶ We would like to earn as much as possible.
- But profitable investments are risky.

- ▶ We would like to earn as much as possible.
- But profitable investments are risky.

Markowitz Portfolio Model

Mean Variance Optimization

Vocabulary

Fund money that can be invested.

Asset class Stock, Bond etc that can be bought.

Portfolio Combination of assets bought.

Return Value gained of the portfolio.

Risk

Markowitz's idea

Use variance of the expected return as measure for risk

The goals

- ► We would like to:
 - Maximize return.
 - Minimize risk.

The goals

- ► We would like to:
 - Maximize return.
 - Minimize risk.
- ▶ We cannot (usually) do both at the same time!

The goals

- ► We would like to:
 - Maximize return.
 - Minimize risk.
- ▶ We cannot (usually) do both at the same time!
- ► What we do is:
 - Fix the level of risk and maximize return, or
 - Fix the level of return and minimize risk.

The problem

- Given a set of assets, select the portfolio with minimum risk.
- ► The risk is the variance of the portfolio.
- ▶ The expected returns and the covariance matrix are known:
 - **r** is the array of expected returns.
 - **Q** is the covariance matrix.
- Model introduced by Markowitz in 1950s.

Variables:

 x_i = "fraction of capital invested in asset i".

Variables:

$$x_i$$
 = "fraction of capital invested in asset i ".

▶ We define the risk of the portfolio as

$$\mathbf{x}^T Q \mathbf{x}$$
.

Variables:

$$x_i$$
 = "fraction of capital invested in asset i ".

▶ We define the risk of the portfolio as

$$\mathbf{x}^T Q \mathbf{x}$$
.

We impose that there is a minimum expected return *m*:

$$r^T x \geq m$$
.

Variables:

$$x_i$$
 = "fraction of capital invested in asset i ".

▶ We define the risk of the portfolio as

$$\mathbf{x}^T Q \mathbf{x}$$
.

▶ We impose that there is a minimum expected return *m*:

$$r^T x \geq m$$
.

We cannot exceed the available capital:

$$e^T x \leq 1$$
,

where
$$e^T = (1, 1, ..., 1)$$
.

Variables:

$$x_i$$
 = "fraction of capital invested in asset i ".

▶ We define the risk of the portfolio as

$$\mathbf{x}^T Q \mathbf{x}$$
.

▶ We impose that there is a minimum expected return *m*:

$$r^T x \geq m$$
.

We cannot exceed the available capital:

$$e^T x \leq 1$$
,

where
$$e^T = (1, 1, ..., 1)$$
.

We can add some additional requirements:

$$Ax \leq b$$
.

► The full model is

```
Min. \mathbf{x}^T Q \mathbf{x}

s.t. \mathbf{r}^T \mathbf{x} \ge m, \mathbf{e}^T \mathbf{x} \le 1, \mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}.
```

► The full model is

Min.
$$\mathbf{x}^T Q \mathbf{x}$$

s.t. $\mathbf{r}^T \mathbf{x} \ge m$, $\mathbf{e}^T \mathbf{x} \le 1$, $\mathbf{A} \mathbf{x} \le \mathbf{b}$, $\mathbf{x} \ge 0$.

► The objective function is non-linear:

$$\sum_{i} \sigma_{ii} x_i^2 + \sum_{\substack{i,j,\\i< j}} 2\sigma_{ij} x_i x_j.$$

- Decision makers often desire information on the equilibrium price and quantity that would exist in a given market
- Basic economic theory states that when price changes, so does the quantity demanded

Consider an industry which produces n products using r different inputs.

Demand and supply response
Consider an industry which produces *n* products using *r* different inputs.

Index sets		Parameters	
N R	set products set set of resources	b_{ji}	amount of resource j required to produce a unit product i $(i \in N, j \in R)$
Variables		<i>p</i> _i	selling price of unit $i (i \in N)$
Xi	amount of product i produced ($i \in N$)	c_j	cost of producing resource j $(j \in R)$
Уј	amount of input j required $(j \in R)$		

Demand and supply response
Consider an industry which produces *n* products using *r* different inputs.

Index sets			Parameters	
N R	set products set set of resources		b_{ji}	amount of resource j required to produce a unit product i $(i \in N, j \in R)$
Variables			<i>p</i> _i	selling price of unit $i \ (i \in N)$
Xi	amount of product i produced $(i \in N)$		c_j	cost of producing resource j $(j \in R)$
Уј	amount of input j required $(j \in R)$			
	max	$\sum_{i\in N}p_ix_i-$	$\sum_{J\in R} c_j y_j$	
	s.t.	$\sum b_{ii} x_i \leq$	$\leq v_i \forall i \in R$	

 $x_i, y_j \ge 0 \quad \forall i \in N, j \in R$

Demand and supply response
Consider an industry which produces *n* products using *r* different inputs.

Index sets			Parameters	
N	set products		b_{ji}	amount of resource <i>j</i> required
R	set set of resources			to produce a unit product i $(i \in N, j \in R)$
Variables			<i>p</i> _i	selling price of unit $i (i \in N)$
X _i	amount of product i produced $(i \in N)$		c_j	cost of producing resource j $(j \in R)$
У ј	amount of input j required $(j \in R)$			
	max	$\langle p^T \rangle$	$\mathbf{c} - \mathbf{c}^T \mathbf{y}$	
	s.t	. В х	$\leq y$	
		X , y	y ≥ 0	

Suppose that the selling price of the products are given as

$$p^T = \alpha - x^T D$$

and that the production costs of the resources are given as

$$\boldsymbol{c}^T = \boldsymbol{\beta} + \boldsymbol{y} F$$

where α and β are the constant intercept terms, D is the $n \times n$ matrix of demand gradient where the entry $D_{i,j}$ is the effect that the price of product i on product j and F is similarly the $r \times r$ matrix of supply gradient

max
$$\alpha x - \beta y - x^T D x - y^T F y$$

s.t. $Bx \le y$
 $x, y \ge 0$

max
$$\alpha x - \beta y - \gamma x^T D x - \gamma y^T F y$$

s.t. $Bx \le y$
 $x, y \ge 0$

- We often introduce the parameter $\gamma \in [0.5, 1]$ to model the effects of market competition
- In the case where $\gamma = 1$ we have the market monopoly
- In the case where $\gamma = 0.5$ we haver the case of perfect competition

Demand and supply response example

A firm in Florida producing oranges has two uses for the oranges it produces. One is to convert them into juice, the other is sell fresh oranges. If y denotes the number of oranges produced then the supply price of oranges is given as

$$c = 3 + 0.0005y$$
.

If x_1 denotes the number of fresh oranges sold and x_2 denotes the quantity of orange juice sold then the selling price of fresh oranges and orange juice is given as

$$p_1 = 4 - 0.002x_2 - 0.001x_1$$

and

$$p_2 = 7.5 - 0.005x_2 - 0.0002x_1$$

respectively. Assuming a purely competitive market where all prices are those received by the producer and that the producer makes 1 unit of juice from 2 oranges. Formulate a QP that maximises the firms profits.

Demand and supply response example

A firm in Florida producing oranges has two uses for the oranges it produces. One is to convert them into juice, the other is sell fresh oranges. If y denotes the number of oranges produced then the supply price of oranges is given as

$$c = 3 + 0.0005y$$
.

If x_1 denotes the number of fresh oranges sold and x_2 denotes the quantity of orange juice sold then the selling price of fresh oranges and orange juice is given as

$$p_1 = 4 - 0.0002x_2 - 0.001x_1$$

and

$$p_2 = 7.5 - 0.005x_2 - 0.0002x_1$$

respectively. Assuming a purely competitive market where all prices are those received by the producer and that the producer makes 1 unit of juice from 2 oranges. Formulate a QP that maximises the firms profits.

Demand and supply response example

max
$$\alpha x - \beta y - 0.5x^{T} Dx - 0.5y^{2} F$$

s.t. $x_{1} + 2x_{2} \le y$
 $x, y \ge 0$

where $\alpha = [4, 7.5], \beta = [3],$

$$\mathbf{D} = \begin{bmatrix} 0.001 & 0.0002 \\ 0.0002 & 0.005 \end{bmatrix}$$

and $\mathbf{F} = [0.0005]$. The optimal solution is to supply 806 oranges to produce 116 units of orange juice and sell 574 as fresh oranges.

Nonlinear Programs

General form

min
$$f(x)$$

s.t. $g_i(x) \le 0$, for all $i \in \{1, \dots, m\}$.

where $f, g_i : \mathbb{R}^n \to \mathbb{R}$.

Difficulty

- Finding global optima very difficult.
- Finding local optima much easier, when f, g_i suitably regular.

Important case: f, g_i convex, then local optima are global optima.

Linear vs non-linear

Linear is nicer

- Linear models have good properties: there is an optimal solution on a vertex.
- Non-linear models do not have this property.

But

sometimes we need nonlinearities.

Quadratic Programming

Quadratic program

min
$$x^{\top}Qx$$

s.t. $Ax \leq b$.

Notes

- Some authors also allow quadratic constraints.
- ▶ If Q is positive semidefinite, then objective is convex \Rightarrow local minimum is global.
- ▶ If *Q* is a covariance matrix, then *Q* is positive semidefinite.