MATEMÁTICAS BÁSICAS Tercera entrega

- 1. Sean $f y g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por $f(x) = x^3 + 1$ y $g(x) = x^3 1$. Hallar las funciones $f \circ f$, $f \circ g$, $g \circ f$, $g \circ g$ y determinar el conjunto $\{x \in \mathbb{R} | f(g(x)) = g(f(x))\}$.
- 2. Se define en \mathbb{R}^2 la relación $(x,y)\mathcal{R}(a,b)$ si y solo si $y^2-b^2=x-a$. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)], [(0,2)] y [(1,1)]. Describe la clase de un punto cualquiera $(a,b) \in \mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .

MATEMÁTICAS BÁSICAS Tercera entrega

- 1. Sean X un conjunto y $f: X \to X$ y $g: X \to X$ dos aplicaciones tales que $g \circ f: X \to X$ es inyectiva y $f \circ g: X \to X$ es sobreyectiva. Demostrar que f es biyectiva.
- 2. Se define en \mathbb{R}^2 la relación $(x,y)\mathcal{R}(a,b)$ si y solo si $y^2=b^2$. Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [(0,0)],[(1,-2)],[(0,2)] y [(-1,1)]. Describe la clase de un punto cualquiera $(a,b)\in\mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/\mathcal{R} .

MATEMÁTICAS BÁSICAS Tercera entrega

Sea $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3 - 3x$

- 1. Calcular el polinomio $f \circ f f$ y calcular su raíces reales.
- 2. Para cada $z \in \mathbb{R}$ calcular cuantos elementos tiene el conjunto $f^{-1}(z)$ (Puede ser útil dibujar la gráfica de f).
- 3. Consideramos la relación de equivalencia $x\mathcal{R}y$ si y solo si f(x) = f(y). Calcular la clase de equivalencia de 1, 2, 3. ¿Cuantos elementos hay en las clases de equivalencia de un $x \in \mathbb{R}$ arbitrario?

MATEMÁTICAS BÁSICAS Tercera entrega

- 1. Sean $f:A\to B$ una aplicación y $X\subset B$. ¿Es cierto en general que $f(f^{-1}(X))=X$? ¿Y si f es inyectiva? ¿Y si f es sobreyectiva?
- 2. Sea k un entero positivo ≥ 3 . En \mathbb{Z} se considera la relación \mathcal{R} definida por $n\mathcal{R}m$ si y sólo si n-m es divisible por k^2 . Demuestra que \mathcal{R} es una relación de equivalencia. Describe las clases de equivalencia [0], [1], [2]. Describe la clase de un elemento cualquiera $z \in \mathbb{Z}$. Describe el conjunto cociente \mathbb{Z}/\mathcal{R} y calcula su cardinal.