Спектральное регулирование запаса реактивности путем изменения состава теплоносителя $(H_2O + D_2O)$

Зависимость коэффициента размножения от процентного содержания D_2O в смеси

С помощью программы GETERA была найдена зависимость K_{∞} от процентного содержания D_2O в смеси (δ_{D_2O}) , которая представлена на рисунке 1.

Рис. 1: Зависимость K_{∞} от δ_{D_2O}

Далее был выполнен расчет жесткости спектра нейтронов при различных значениях δ_{D_2O} . Изменение спектра нейтронов в зависимости от разбавления, показано на рисунке 2.

Рис. 2: Зависимость Φ_{T} / Φ_{B} от $\delta_{\mathrm{D}_{2}\mathrm{O}}$

Также было найдено значение δ_{D_2O} , при котором $K^{Begin}_{\infty} = 1.05$ для разных обогащений по U_{235} . Далее был произведен расчет выгорания при однократной перегрузке для двух случаев: при осуществелении спектрального регулирования путем изменения процентного содержания D_2O в смеси и в случае, когда замедлитель просто обычная вода. Все значения представлены в таблице 1.

\Box \subset 1	n					_	TT
Таблина Г.	Значения	выгорании	и выиг	рыш пля	DAZHLIX	обогощений	$\Pi \cap L/\mathfrak{sor}$
таолица т.	911 0 10111121	DDII Opaiiiii	II DDIIII	рыш дли	Pastibix	ооогощении	$110 \ C_{233}$

x, %	Выгорание	Выгорание	$\delta_{\mathrm{D_2O}},\%$	выйгрыш, %
	$D_2O, MBT/cyT$	$H_2O, MBT/cyT$		
4,95	41,9	36, 2	85	13
5,5	47,6	42,4	87, 5	11
6,0	52,8	48,3	89	9
6, 5	56, 1	51,3	91	8

Из результатов видно, что повышение обогащения нецелесообразно так, как не увеличивает выйгрыш в выгорании, а, наоборот, уменьшает его.

Далее, было посчитано накопление плутония и построены графики зависимости концентрации плутония, от времени с начала работы. Сначала был рассмотрен вариант однократной перегрузки со спектральным регулрованием и без(рисунок 3). Видно, что при спектральном регулировании накапливается больше плутония, который должен включиться в работу и повысить выгорание.

Рис. 3: Зависимость концентрации плутония от времни с начала работы со спектральным регулированием и без

Потом было рассмотрено накопление плутония для различных обогащений по урану 235 со спектральным регулированием.

Рис. 4: Зависимость концентрации плутония от времни с начала работы со спектральным регулированием при различных обогащениях по U_{235}

Далее были произведены двойные перегрузки со спектральным регулированием и без. Выигрыш в выгорании при спектральном регулировании составил 11%, а накопление плутония показано на рисунке 5. Из графика видно, что при спектральном регулировании накапливается больше плутония.

Рис. 5: Зависимость концентрации плутония от времни с начала работы со спектральным регулированием и без при двойных перегрузках, x=4.95%

dhsgfjdhg выоаловыр