Ch 14 Oscillations (cont.'d)

Key words: simple harmonic motion (SHM), Hooke's Law, spring constant, spring-mass, pendulum, position function, displacement from equilibrium, frequency, period.

Objective:

- I. Solve a problem that involves a **pendulum** in SHM
 - \square By using the same approach for a **spring-mass** in SHM
- II. Solve for the velocity and acceleration for an object in SHM
 - \square By solving for x(t) and then finding its **derivatives**.
 - \square By using Conservation of Energy

Content Review:

 \blacksquare Recall: for an object in SHM, the **position function** x(t) is generally given by

$$x(t) = A\cos(\omega t + \phi)$$

where the variables are

A = amplitude

 $\omega = angular frequency$

 $\phi = \text{phase shift}$

■ Taking the derivative (with respect to time) of x(t) gives us the **velocity function** v(t)

$$v(t) = \frac{dx}{dt} =$$

■ Taking the derivative of v(t) gives us the **acceleration function** a(t)

$$a(t) = \frac{dv}{dt} =$$

■ The angular frequency ω has 2 forms: spring-mass and pendulum

$$\omega_{
m spr} = \sqrt{\frac{k}{m}}$$
 $\omega_{
m pen} =$

where the variables are

 $k = \text{spring constant}, \quad m = \text{mass of object}, \quad \ell = \text{length of string}, \quad g = \text{acc. due to gravity}$

■ The **total energy** of the oscillating spring-mass system is given by

$$E_{\text{tot}} = U + K = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

where the variables are

U =spring potential energy

K =kinetic energy

Guided Practice

A pendulum has a period of $1.35\,\mathrm{s}$ on Earth. Suppose the same pendulum is now on Mars, where the acceleration of gravity is about 0.37 that on Earth.

- (i) Determine its period on Mars.
- (ii) How should the pendulum be modified so that its period is the same as on Earth?

Solution

- (i) $T = 2.2 \,\mathrm{s}$
- (ii) By decreasing the length of the pendulum string.

Group Activity

An object with mass $2.7\,\mathrm{kg}$ is executing SHM, attached to a spring with $k=280\,\mathrm{N/m}$. When the object is $0.020\,\mathrm{m}$ from its equilibrium position, it is moving with a speed of $0.55\,\mathrm{m/s}$.

- Determine the amplitude of the motion.
- Find the maximum speed of the object as it's oscillating.

Solution

(i)
$$A = 5.8 \times 10^{-2} \,\mathrm{m}$$

(ii)
$$v_{\text{max}} = 0.59 \,\text{m/s}$$