Experiment 5: Multilayer Perceptron (MLP) Multi-class Classification Report

Prepared by: **Sreeram GM** Course / Lab: Experiment 5

September 9, 2025

Contents

1	Aim	1				
2	Dataset					
3 Preprocessing						
4	Implementation 4.1 Mounting and CSV / Image loading	3				
	4.4 Model (MLP) definition	5 6				
5	Hyperparameter Search Results	7				
6	Evaluation on Test Set 6.1 Full Classification Report (per-class metrics)	7 7 9				
7	Discussion	11				
8	3 Conclusion					

1 Aim

Implement a Multilayer Perceptron (MLP) for multi-class classification on the provided image dataset, perform grid-based hyperparameter search, evaluate the best model on a held-out test set, and present metrics and plots.

2 Dataset

- Dataset root (Colab / Google Drive): /content/drive/MyDrive/colabdata/dataset
- Contents:
 - Img/: folder containing image files.

- *.csv : CSV file mapping image filenames to labels.
- Summary (from experiment run):

```
- Loaded X: (3410, 784), y: (3410,)
```

- Number of classes: **62**
- Data splits: Train: 2182, Validation: 546, Test: 682

3 Preprocessing

- 1. Mount Google Drive and locate dataset folder.
- 2. Load CSV and auto-detect filename and label columns.
- 3. Resolve image file paths robustly (search in Img/ and dataset root).
- 4. For each image:
 - Convert to grayscale (PIL 'L').
 - Resize to 28×28 .
 - Normalize pixel values to [0,1].
 - Flatten to a vector of length 784.
- 5. Use LabelEncoder to obtain integer labels.
- 6. Use stratified splits: first train/test (80/20), then train/val from train.

4 Implementation

Below are the key code sections used in the experiment. The full runnable code (single Colab cell) is included in the appendix.

4.1 Mounting and CSV / Image loading

```
# Mount Drive and set dataset paths
  from google.colab import drive
  drive.mount('/content/drive')
  DATASET_ROOT = '/content/drive/MyDrive/colabdata/dataset'
  IMG_FOLDER = DATASET_ROOT + '/Img'
  import os, pickle
  print("Dataset root:", DATASET_ROOT)
  print("Image folder:", IMG_FOLDER)
  print("Exists?:", os.path.exists(DATASET_ROOT), os.path.exists(
      IMG_FOLDER))
11
  # find CSV file
12
  def find_csv_file(dataset_root):
13
       candidates = [f for f in os.listdir(dataset_root) if f.lower().
14
          endswith('.csv')]
       if not candidates:
15
           raise FileNotFoundError(f"No CSV file found in {dataset_root}."
16
       return os.path.join(dataset_root, candidates[0])
17
```

```
18
   CSV_PATH = find_csv_file(DATASET_ROOT)
19
  print("Using CSV:", CSV_PATH)
20
  df = pd.read_csv(CSV_PATH).dropna().reset_index(drop=True)
21
  print("CSV columns:", df.columns.tolist())
22
23
   # auto-detect filename & label columns
24
  possible_file_cols = ['filename','file','image','img','path','
25
      image_path','file_name']
  possible_label_cols = ['label','class','target','y']
26
  file_col = next((c for c in df.columns if any(p in c.lower() for p in
27
      possible_file_cols)), df.columns[0])
  label_col = next((c for c in df.columns if any(p in c.lower() for p in
      possible_label_cols)), (df.columns[1] if len(df.columns)>1 else df.
      columns[0]))
  print("Detected file column:", file_col)
29
  print("Detected label column:", label_col)
```

Listing 1: Mount Drive and auto-detect CSV + load filenames

4.2 Preprocessing function and dataset build

```
from PIL import Image
   import numpy as np
   from tqdm import tqdm
3
   def resolve_image_path(fname, img_folder, dataset_root):
5
       if os.path.isabs(fname) and os.path.exists(fname):
6
           return fname
7
       p1 = os.path.join(img_folder, fname); p2 = os.path.join(img_folder,
           os.path.basename(fname))
       p3 = os.path.join(dataset_root, fname)
9
       if os.path.exists(p1): return p1
10
       if os.path.exists(p2): return p2
11
       if os.path.exists(p3): return p3
12
       # recursive search
13
       base = os.path.basename(fname).lower()
14
       if os.path.exists(img_folder):
15
           for root, _, files in os.walk(img_folder):
16
               for f in files:
17
                    if f.lower() == base:
18
                        return os.path.join(root, f)
19
       for root, _, files in os.walk(dataset_root):
20
           for f in files:
21
               if f.lower() == base:
22
                    return os.path.join(root, f)
23
       return None
24
25
   def load_and_preprocess(img_path, size=(28,28)):
26
       img = Image.open(img_path).convert("L").resize(size, Image.BILINEAR
27
       arr = np.asarray(img, dtype=np.float32)/255.0
28
       return arr.flatten()
29
30
   image_paths, labels = [], []
31
  missing = []
32
33 for _, row in df.iterrows():
```

```
fname = str(row[file_col])
34
       resolved = resolve_image_path(fname, IMG_FOLDER, DATASET_ROOT)
35
       if resolved:
36
            image_paths.append(resolved)
37
            labels.append(row[label_col])
38
       else:
39
           missing.append(fname)
40
41
   print("Resolved images:", len(image_paths), "Missing entries:", len(
42
      missing))
43
   X_{list} = []
44
   failed = []
   for p in tqdm(image_paths, desc="Loading images"):
46
       try:
47
           X_list.append(load_and_preprocess(p, size=(28,28)))
48
       except Exception as e:
           failed.append((p,str(e)))
50
   if failed:
51
       print("Warning: some images failed to load. Example:", failed[:3])
52
53
   X = np.vstack(X_list)
54
  y_raw = np.array(labels)
55
  print("Loaded X:", X.shape, "y:", y_raw.shape)
```

Listing 2: Image preprocessing and building X,y arrays

4.3 Label encoding and splits

```
from sklearn.preprocessing import LabelEncoder
  from sklearn.model_selection import train_test_split
  le = LabelEncoder()
  y = le.fit_transform(y_raw)
5
  print("Num classes:", len(le.classes_))
  RNG\_SEED = 42
  X_train_full , X_test , y_train_full , y_test = train_test_split(
9
       X, y, test_size=0.2, stratify=y, random_state=RNG_SEED
10
11
  X_train, X_val, y_train, y_val = train_test_split(
12
       X_train_full, y_train_full, test_size=0.2, stratify=y_train_full,
13
          random_state=RNG_SEED
14
  print("Shapes -> train:", X_train.shape, "val:", X_val.shape, "test:",
15
      X_test.shape)
```

Listing 3: Label encoding and train/val/test split

4.4 Model (MLP) definition

```
import torch, torch.nn as nn, torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

class MLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, activation="
        relu", num_hidden=1):
```

```
6
           super().__init__()
           act_fn = {"relu": nn.ReLU(), "tanh": nn.Tanh(), "sigmoid": nn.
              Sigmoid() } [activation]
           layers = []
           layers.append(nn.Linear(input_dim, hidden_dim))
           layers.append(act_fn)
10
           if num_hidden == 2:
11
               layers.append(nn.Linear(hidden_dim, hidden_dim))
12
               layers.append(act_fn)
13
           layers.append(nn.Linear(hidden_dim, output_dim))
14
           self.net = nn.Sequential(*layers)
15
       def forward(self, x):
16
           return self.net(x)
```

Listing 4: MLP model class (PyTorch)

4.5 Training / Eval helpers

```
def get_loader(Xt, yt, batch_size, shuffle=True):
       ds = TensorDataset(Xt, yt)
2
       return DataLoader(ds, batch_size=batch_size, shuffle=shuffle)
3
4
   def train_model(params):
       batch_size, lr, hidden_dim, activation, optimizer_name, num_hidden
6
           = params
       train_loader = get_loader(X_train_t, y_train_t, batch_size=
7
          batch_size, shuffle=True)
       val_loader = get_loader(X_val_t, y_val_t, batch_size=batch_size,
          shuffle=False)
       model = MLP(X_train.shape[1], hidden_dim, len(le.classes_),
9
          activation, num_hidden)
       criterion = nn.CrossEntropyLoss()
10
       if optimizer_name == "sgd":
11
           optimizer = optim.SGD(model.parameters(), lr=lr)
12
       else:
13
           optimizer = optim.Adam(model.parameters(), lr=lr)
14
       history = {"train_loss": [], "val_loss": [], "val_acc": []}
15
       EPOCHS = 20
16
       for epoch in range(EPOCHS):
17
           model.train()
18
           train_loss = 0.0
19
           for xb, yb in train_loader:
20
                optimizer.zero_grad()
21
                out = model(xb)
22
                loss = criterion(out, yb)
23
                loss.backward()
24
                optimizer.step()
25
                train_loss += loss.item()
26
           # validation
27
           model.eval()
28
           val_loss = 0.0
29
           correct = 0
30
           with torch.no_grad():
31
32
                for xb, yb in val_loader:
                    out = model(xb)
33
                    loss = criterion(out, yb)
34
                    val_loss += loss.item()
35
```

```
preds = out.argmax(dim=1)
correct += (preds == yb).sum().item()
acc = correct / len(val_loader.dataset)
history["train_loss"].append(train_loss / len(train_loader))
history["val_loss"].append(val_loss / len(val_loader))
history["val_acc"].append(acc)
return model, history
```

Listing 5: Training and evaluation helper functions

4.6 Hyperparameter Search (Grid)

```
search_space = [
1
       (bs, lr, hd, act, opt, nh)
2
       for bs in [32, 64, 128]
3
       for lr in [0.1, 0.01, 0.001]
4
       for hd in [128, 256]
5
       for act in ["relu", "tanh", "sigmoid"]
6
       for opt in ["sgd", "adam"]
       for nh in [1, 2]
8
9
10
   best_acc, best_params, best_model, best_history = 0, None, None, None
11
12
   for params in tqdm(search_space, desc="Grid search"):
13
       model_cand, hist_cand = train_model(params)
14
15
       final_val_acc = hist_cand["val_acc"][-1]
       if final_val_acc > best_acc:
16
           best_acc = final_val_acc
17
           best_params = params
18
19
           best_model = model_cand
           best_history = hist_cand
20
21
   print("\nBest Params:", best_params)
22
   print("Best Val Accuracy:", best_acc)
```

Listing 6: Grid configuration and loop

4.7 Final Retrain and Test Evaluation

```
# Evaluate best model on test
1
  best_model.eval()
2
  with torch.no_grad():
3
       out_test = best_model(X_test_t)
       probs = torch.softmax(out_test, dim=1).cpu().numpy()
       preds = probs.argmax(axis=1)
6
  print("\nMLP Test Accuracy:", accuracy_score(y_test, preds))
  print("\nClassification Report:\n")
  print(classification_report(y_test, preds, target_names=le.classes_,
10
      zero_division=0))
11
12
  # Save model
  save_path = "/content/mlp_best_model.pth"
13
  torch.save({"model_state": best_model.state_dict(), "best_params":
14
      best_params, "label_encoder": le}, save_path)
```

Listing 7: Retrain on train+val, evaluate on test, save model

Hyperparameter Search Results **5**

- Grid search progress printed: 100%|| 216/216 [10:54<00:00, 3.03s/it]
- Best Params: (32, 0.001, 256, 'sigmoid', 'adam', 1)
- Best Validation Accuracy: 0.25824175824175827

Evaluation on Test Set

- MLP Test Accuracy: 0.2316715542521994
- Test set size: 682
- Macro F1 (approx): 0.1923

Full Classification Report (per-class metrics)

Table 1: Per-class metrics (test set)

class_label	precision	recall	f1-score	support
0	0.67	0.18	0.29	11
1	0.15	0.45	0.22	11
2	0.25	0.09	0.13	11
3	0.33	0.09	0.14	11
4	0.00	0.00	0.00	11
5	0.00	0.00	0.00	11
6	0.17	0.36	0.23	11
7	0.13	0.18	0.15	11
8	0.71	0.45	0.56	11
9	0.18	0.36	0.24	11
A	0.27	0.55	0.36	11
В	0.29	0.36	0.32	11
\mathbf{C}	0.39	0.82	0.53	11
D	0.00	0.00	0.00	11
E	0.00	0.00	0.00	11
F	0.27	0.36	0.31	11
G	0.27	0.27	0.27	11
H	0.29	0.18	0.22	11
I	0.00	0.00	0.00	11
J	0.33	0.27	0.30	11
K	0.00	0.00	0.00	11
L	0.55	0.55	0.55	11
\mathbf{M}	0.24	0.64	0.35	11
N	0.00	0.00	0.00	11
O	0.36	0.73	0.48	11
P	0.24	0.82	0.37	11
Q	1.00	0.18	0.31	11
R	0.00	0.00	0.00	11
S	1.00	0.09	0.17	11

class_label	precision	recall	f1-score	support
$\overline{\mathrm{T}}$	0.24	0.82	0.38	11
U	0.24	0.55	0.33	11
V	0.25	0.09	0.13	11
W	0.38	0.27	0.32	11
X	0.20	0.36	0.26	11
Y	0.19	0.27	0.22	11
\mathbf{Z}	0.50	0.09	0.15	11
a	0.11	0.09	0.10	11
b	0.00	0.00	0.00	11
c	0.14	0.18	0.16	11
d	0.20	0.09	0.12	11
e	0.33	0.18	0.24	11
f	0.33	0.09	0.14	11
g	0.15	0.18	0.17	11
h	0.00	0.00	0.00	11
i	0.19	0.27	0.22	11
j	0.36	0.36	0.36	11
k	0.00	0.00	0.00	11
1	0.00	0.00	0.00	11
m	0.26	0.55	0.35	11
n	0.40	0.18	0.25	11
O	0.00	0.00	0.00	11
p	0.75	0.27	0.40	11
q	0.50	0.09	0.15	11
r	0.07	0.18	0.11	11
S	0.00	0.00	0.00	11
t	0.00	0.00	0.00	11
u	0.19	0.36	0.25	11
V	0.27	0.27	0.27	11
W	0.00	0.00	0.00	11
X	0.05	0.18	0.08	11
У	0.18	0.36	0.24	11
Z	0.00	0.00	0.00	11

6.2 Figures (placeholders)

Figure 1: Confusion matrix (MLP). Replace with the actual image file.

Figure 2: ROC curves (micro / macro). Replace with the actual image file.

Figure 3: MLP Loss vs Epochs (training/validation).

Figure 4: MLP Validation Accuracy vs Epochs.

7 Discussion

- The best MLP configuration achieved validation accuracy of **0.2582** via grid search.
- Test accuracy is **0.2317** with macro F1 approximately **0.1923**. Performance is limited, likely due to:
 - Large number of classes (62) with relatively few examples per class (support=11 each in test).
 - Balanced but small per-class supports the model may overfit or under-generalize.
 - MLP capacity and training schedule might need tuning (longer training, different architectures, or CNNs).
- Several classes obtain very high recall but low precision or vice versa suggests skewed predictions and class confusion for many classes.

8 Conclusion

The MLP baseline provides a working classifier and a grid-search-based tuning procedure. Accuracy and macro F1 are modest on this dataset; next steps should include stronger feature extractors (CNNs), augmentation, or per-class balancing strategies.