Structure relaxation using Kernel Ridge Regression

Malthe Kjær Bisbo

April 3, 2018

ML-enhanced Monte Carlo

Diagram of the global search method

KRR/GPR

Prediction

$$E^*(\mathbf{x}^*) = \sum_{i}^{N} \alpha_i k(\mathbf{x}^*, \mathbf{x}_i) = \vec{\alpha}^T \vec{\kappa}$$
$$F^*(\mathbf{x}^*) = -\sum_{i}^{N} \alpha_i \frac{\partial k(\mathbf{x}^*, \mathbf{x}_i)}{\partial \mathbf{r}^*} = -\vec{\alpha}^T \nabla_{\mathbf{r}^*} \vec{\kappa}$$

Training

$$\vec{\alpha} = (\mathbf{K} + \lambda I)^{-1} \vec{E}$$

where $k(\cdot,\cdot)$ is the kernel function and $\mathbf{K}_{ij}=k(\vec{x_i},\vec{x_j})$

Gaussian kernel

$$k(\cdot,\cdot) = \exp\left(-\frac{d(\cdot,\cdot)^2}{2\sigma^2}\right)$$

with the 2-norm for the dissimilarity d.

Feature

$$F_{A,B}\left(R\right) = \sum_{A_i,B_j} rac{\delta\left(R - R_{ij}\right)}{4\pi R_{ij}^2 \Delta\left(rac{N_A N_B}{V}\right)}$$

+ an angular equivalent

Model system - "Double" Lennard Jones

Interaction potential

Ground state for 19 atoms

Search results

Structures with 19 atoms

Structure check - prediction error

Filtering unresonable ML-relaxed structures

Rejection criteria:

