Stochastic Processes

2023年2月23日

目录

2	Markov Chains		

1 Review of Martingales

1 Review of Martingales

- $(X_n)_{n>0}$ is L^2 -bounded martingale $\Rightarrow X_n$ converges in L^2 .
- $(X_n)_{n\geq 0}$ is L^1 -bounded martingale $\Rightarrow X_n$ converges a.s.
- (1) + (2): If $(X_n)_{n\geq 0}$ is L^p -bounded martingale for p>1, then X_n converges in $L^{p'}$ for $p'\in [1,p)$.
- Statement is false when p=1. Example: $\Omega=[0,1), \mathscr{F}_n=\sigma\{[\frac{i}{2^n},\frac{i+1}{2^n})\}_{i=0}^{2^n-1}, X_n(\omega):=\begin{cases} 2^n & \omega\in[0,\frac{1}{2^n})\\ 0 & \text{otherwise} \end{cases}$.
- Let p > 1 and $(X_n)_{n \ge 0}$ be L^p bounded martingale w.r.t. \mathscr{F}_n . Then $\exists X \in L^p(\Omega, \mathscr{F}_\infty, P)$ s.t. $X_n \to X$ in L^p and a.s. and $X_n = \mathbb{E}(X|\mathscr{F}_n)$.
- Doob's maximal inequality: Let p > 1, $\exists C = C_p$ s.t. \forall martingale $(X_n)_{n \geq 0}$, we have $\mathbb{E}|X_n^*|^p \leq C_p \mathbb{E}|X_n|^p$ where $|X_n^*| = \sup_{0 \leq k \leq n} \sup |X_k|$.
- Let $(Z_n)_{n\geq 0}$ be a nonnegative sub-martingale and $Z_n^* = \sup_{0\leq k\leq n} Z_k$, then $P(Z_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E}(Z_n 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda} \mathbb{E}Z_n$. Corollary: $P(Z_n^* > \lambda) \leq \frac{1}{\lambda^p} \mathbb{E}(Z_n^p 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda^p} \mathbb{E}(Z_n^p)$.
- If $(X_n)_{n>0}$ is a martingale with $\sup_n \mathbb{E}(|X_n|\log(1+|X_n|)) < +\infty$, then X_n converges in L^1 .
- Two prob measures P and Q on (Ω, \mathscr{F}) , Q << P on \mathscr{F}_n for every n and $M_n = \frac{dQ}{dP}|_{\mathscr{F}_n}$. $(M_n)_{n\geq 0}$ is a P-martingale w.r.t. $(\mathscr{F}_n)_{n\geq 0}$. Q << P on \mathscr{F}_∞ if and only if $M_n \to M$ in L^1 . $Q(A) = \int_A M dP + Q(A \cap \{M = +\infty\})$.
- Statement is false if $M_n \not\to M$ in L^1 . Example: $\Omega = \{\omega = (\omega_1, \cdots, \omega_n, \cdots) \in \{\pm 1\}^{\mathbb{N}}\}, X_n(\omega) = \omega_n$. X_n 's are i.i.d. under P and Q, but $P(X_n = 1) = \frac{1}{2}, P(X_n = -1) = \frac{1}{2}, Q(X_n = 1) = \frac{1}{3}, Q(X_n = -1) = \frac{2}{3}$. $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$. $P(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = 0) = 1, Q(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = -\frac{1}{3}) = 1$.
- Monotone class theorem for functions: Suppose \mathcal{A} us a π -system and \mathcal{H} be a class of functions from Ω to \mathbb{R} s.t. (1) $1_A \in \mathcal{H}$ for every $A \in \mathscr{A}$, (2) if $f, g \in \mathcal{H}$ then $af + bg \in \mathcal{H}$, (3) if $f_n \in \mathcal{H}$ and $f_n \uparrow f$ then $f \in \mathcal{H}$. Then all nonnegative $\sigma(\mathcal{A})$ -measurable functions are in \mathcal{H} .
- Let $(Y_n)_{n\geq 0}$ be i.i.d., nonnegative r.v.'s with $\mathbb{E}Y_k=1$. Then $M_n=\prod_{k=1}^n Y_k$ converges in L^1 iff $Y_n\equiv 1$. Otherwise $M_n\to 0$ a.s.
- Kakutani's theorem: $M_n = \prod_{k=1}^n Y_k$, $Y_k \ge 0$ are independent, $\mathbb{E}Y_k = 1$, $\lambda_k = \mathbb{E}\sqrt{Y_k}$. (1) If $\prod_k \lambda_k > 0$, then $M_n \to M$ in L^1 ; (2) If $\prod_k \lambda_k = 0$, then $M_n \to 0$ a.s.

2 Markov Chains

- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain on a discrete space S. P^x : law of $(X_n)_{n\geq 0}$ conditioned on $X_0=x$. $P(X_{n+1}\in A|\mathscr{F}_n)=P^{X_n}(X_1\in A)=P(X_1\in A|X_0=X_n)$. \mathbb{E}^x : expectation under P^x . $P^x(X_1=y)=p(x,y)$.
- For every $f: S \to \mathbb{R}$ bounded, define $(Pf)(x) = \sum_{y \in S} p(x, y) f(y) = \mathbb{E}^x(f(X_1)), (Lf)(x) = \sum_{y \in S} p(x, y) f(y) f(x).$ $L = P \mathrm{id}$, the generator.
- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain with generator L. Then for every bounded $f: S \to \mathbb{R}$, $M_n = f(X_n) f(X_0) \sum_{k=0}^{n-1} (Lf)(X_k)$ is a martingale.