Experiment No.1 Date:14/09/2021

Make Circuits on Breadboard

Aim:

To learn to make circuits on breadboard on www.tinkercad.com

Observation:

Voltage and Current Measurements

S.No	Parameter to be measured	Value Measured with Units
1	Voltage across R1	8.57 V
2	Voltage across R2	1.43 V
3	Voltage across R3	1.43 V
4	Current through R1	8.57 mA
5	Current through R2	2.86 mA
6	Current through R3	5.71 mA

Sharable link of the Simulation

Screenshot of Simulation done in TinkerCAD

RESISTOR COLOUR CODES

Color	Significant figures	Multiplier	Tolerance		Temp. Coefficient (ppm/K)	
<u>Black</u>	0	×10 ⁰	_		250	U
<u>Brown</u>	1	×10 ¹	±1%	F	100	S
Red	2	×10 ²	±2%	G	50	R
<u>Orange</u>	3	×10 ³	-		15	Р
Yellow	4	×10 ⁴	-		25	Q
<u>Green</u>	5	×10 ⁵	±0.5%	D	20	Z
<u>Blue</u>	6	×10 ⁶	±0.25%	С	10	Z
<u>Violet</u>	7	×10 ⁷	±0.1%	В	5	M
Gray	8	×10 ⁸	±0.05%	A	1	K
<u>White</u>	9	×10 ⁹	_		_	
<u>Gold</u>	-	×10 ⁻¹	±5%	J		-
<u>Silver</u>	-	×10 ⁻²	±10% K		-	

None	_	_	±20%	M	-			
1. Any temperature coefficient not assigned its own letter shall be markd "Z", and the coefficient								

found in other documentation.

2. For more information, see EN 60062.

Resistor values are always coded in ohms. Band A is first significant figure of component value. Band **B** is the second significant figure. Band **C** is the decimal multiplier. Band **D** if present, indicates tolerance of value in percent (no color means 20%). The standard color code per EN **60062:**2005 is as follows:

For example, a resistor with bands of yellow, violet, red, and gold will have first digit 4 (yellow in table below), second digit 7 (violet), followed by 2 (red) zeros: 4,700 ohms. Gold signifies that the tolerance is $\pm 5\%$, so the real resistance could lie anywhere between 4,465 and 4,935 ohms.

Tight tolerance resistors may have three bands for significant figures rather than two, and/or an additional band indicating temperature coefficient, in units of ppm/K. All coded components will have at least two value bands and a multiplier; other bands are optional.

As an example, let us take a resistor which (read left to right) displays the colors *yellow*, violet, yellow, brown. We take the first two bands as the value, giving us 4, 7. Then the third band, another yellow, gives us the multiplier 10^4 . Our total value is then $47 \times 10^4 \Omega$, totalling $470,000 \Omega$ or $470 k\Omega$. Our brown is then a tolerance of $\pm 1\%$.

Breadboard Connections

