Replication of "Ahmad, 2012, The Influence of Ownership Structure on the Firms Dividend Policy Based on Lintner Model" and "Ownership Concentration Affects Dividend Policy of The Brazilian Firm

Mahdi Shahrabi

m.m.shahrabi@gmail.com

August 2, 2020

Ahmad (2012)

Table 1: Coefficients of the OCM in the Lintner Model				
	FAM	PAM	EW	ETM
largest_owner	0.015***	0.012***	0.012***	0.008***
${ m first_second}$	0.01**	0.002	0.003	-0.003
$first_sumtwo four$	0.009*	0.001	0.002	-0.007
sumfive	0.012***	0.01***	0.009***	0.006***
herfindahl	0.02***	0.016***	0.015***	0.008***
gini	0.162*	0.06	0.142*	0.109
sscl	0.706***	0.585***	0.591***	0.385***
ssco	-0.433***	-0.594***	-0.535***	-0.573***
ssdl	0.699***	0.57***	0.572***	0.37***
ssdo	-0.582***	-0.577***	-0.536***	-0.526***
\mathbf{bzcl}	0.572***	0.403***	0.41***	0.322***
bzco	-0.583***	-0.598***	-0.493***	-0.523***
\mathbf{bzdl}	0.506***	0.343***	0.377***	0.174***

$\mathbf{F}\mathbf{A}\mathbf{M}$

$$D_{i,t}-D_{i,t-1} = \beta_0 + \beta_1 (E_{i,t} - E_{i,t-l}) + \beta_2 [(E_{i,t} - E_{i,t-1}) \cdot \text{CONC}] + \beta_3 FSIZE + \mu_{i,t}$$

PAM

$$D_{i,t} - D_{i,r-1} = \beta_0 + \beta_1 E_{i,t} + \beta_2 [E_{i,t} \cdot \text{CONC}] + \beta_3 D_{i,k-1} + \beta_4 F \text{SIZE} + \mu_{i,t}$$

WM

$$D_{i,t} - D_{i,t-1} = \beta_0 + \beta_1 E_{i,t} + \beta_2 \left[E_{i,t} \cdot \text{CONC} \right] + \beta_3 D_{i,k-1} + \beta_4 D_{i,k-2} + \beta_5 FSIZE + \mu_{i,t}$$

ETM

$$D_{i,t} - D_{i,t-1} = \beta_0 + \beta_1 E_{i,t} + \beta_2 E_{i,t-1} + \beta_3 [E_{i,t-1} \cdot \text{CONC}] + \beta_4 D_{i,t-1} + \beta_5 FSIZE + \mu_{i,t}$$