Logic and Proof 2004 - Paper 6 Question 9 (JEH)

Context: This question tests familiarity of several major sections of the course, by asking simple questions that test whether the student understands essential details. The sections covered are: conversion to CNF; the DPLL method; OBDDs; Skolemization; Herbrand Universes; unification; resolution with factoring; modal logic.

For each of the following statements, briefly justify whether it is true or false. In the following x, y, z are variables, and a, b, c are constants.

(a) Given any propositional logic formula ϕ that is a tautology, converting ϕ to CNF will result in \mathbf{t} .

True. The other CNF formulas are F (obviously not a tautology) or $(L_1 \setminus \ldots \setminus L_n) \setminus \ldots$ where all the literals L_i are distinct propositional letters. This is also not a tautology, because it can be falsified by setting all the L_i to false.

(b) Executing the DPLL method on the clauses

$$\{P,Q,\neg S\}$$
 $\{\neg P,Q,\neg R\}$ $\{P\}$ $\{\neg Q,R\}$ $\{S,\neg Q\}$

produces a result without needing any case split steps.

False. After propagating the unit clause $\{P\}$ and then deleting the pure literal S, we are left with the clauses $\{Q, R\}$ and $\{Q, R\}$ which now requires a case split step.

(c) The OBDD corresponding to the propositional logic formula $(P \lor Q) \land \neg P$ does not have any decision nodes for the propositional letter P.

True. Either construct the OBDD, or observe that the formula is logically equivalent to \mathbb{Q} , and the OBDD for \mathbb{Q} will obviously not have any decision nodes for \mathbb{P} .

(d) Skolemizing the first order logic formula $\exists x(\phi(x))$ results in a logically equivalent formula $\phi(a)$ (where a is a fresh constant).

False. Skolemization only preserves satisfiability, not logical equivalence. For example, ?x. P(x) is true and P(a) is false in the interpretation ({0,1}, [a $\mid -> 1$, $P \mid -> \{0\}$]).

(e) The Herbrand Universe that is generated from the clauses $\{P(a)\}$, $\{Q(x,b), \neg P(x)\}$ and $\{\neg Q(a,y)\}$ contains two elements.

True. The Herbrand universe is {a,b} and nothing else, since there are no function symbols.

(f) The two terms f(x, y, z) and f(g(y, y), g(z, z), g(a, a)) can be unified.

True. The unifier is $[z \mid -> g(a,a)]$ o $[y \mid -> g(z,z)]$ o $[x \mid -> g(y,y)]$, which becomes rather long if the substitution compositions are expanded.

(g) It is not possible to resolve the clauses $\{P(x)\}$ and $\{\neg P(f(x))\}$ because the occurs check prevents the literals being unified.

False. We are allowed to rename clauses before trying to resolve them, the first clause can become $\{P(y)\}$ and now the unification trivially succeeds.

(h) The clause $\{P(x,x), P(x,a)\}\$ can be factored to give the new clause $\{P(x,a)\}\$.

False. The only way to factor the clause is to unify P(x,x) and P(x,a) which results in the substitution $[x \mid -> a]$, so the factored clause is $\{P(a,a)\}$.

(i) The empty clause can be derived from the clauses $\{P(x), P(a)\}, \{P(x), \neg P(a)\}, \{\neg P(b), Q\}$ and $\{\neg P(c), \neg Q\}$ using resolution.

True. Resolve the first two clauses to get the clause $\{P(x)\}$. Resolve this new clause with both the last two clauses to get $\{Q\}$ and $\{^{\sim}Q\}$, and now derive the empty clause from these.

(j) Because in the modal logic S4 the equivalence $\Box \Box \phi \simeq \Box \phi$ holds for every formula ϕ , it follows that $\Diamond \Diamond \phi \simeq \Diamond \phi$.

True.
$$DDp = DD^{\sim}p = D^{\sim}B^{\sim}p = ^{\sim}BB^{\sim}p = ^{\sim}B^{\sim}p = D^{\sim}p = Dp$$

[2 marks each]