Matlab Brief Manual

https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

https://www.mathworks.com/help/matlab/mathematics.html

 $\verb|https://www.mathworks.com/help/matlab/language-fundamentals.html|$

Official Manual

6 Graph

Functions Descriptions

Τι	Tutorials	
ht	ttps://matlabacademy.mathworks.com	
C	Contents	
1	As Calculator	2
2	Variable	2
3	Function	5
4	Vector & Matrix	6
5	If, For, While	10

13

1 As Calculator

In "Command Window", type expression $\xrightarrow{\text{Press Enter}}$ Output

Quick Example

Commands Table

Commands	Descriptions	Remarks
+, -, *, /, ^	add, subtract, multiply, divide, power	
sin, cos, tan	sine, cosine, tangent	in Radian
asin, acos, atan	arcsine, arccosine, arctangent	in Radian
exp, log	natural exponential function, natural logarithm	
abs, sign	absolute value, sign function	
ceil, floor, fix, round	upper integer, lower integer, integer part, nearest integer	
many otherse.g. xxx	type help xxx to obtain descriptions	

2 Variable

Quick Example

Rules for variable name:

1. Case sensitive
>> a1=2,A1=3,a1+A1
a1 =
2
A1 =
3
ans =
5

2. First letter must be English alphabet, the rest must be English alphabets, numbers, or underline "_"
e.g. x1, x_1, alpha_k are valid, 2nd_root, mid-point, total area are invalid.

Commands Table

Commands	Descriptions	Before	After
	-	>> a=2,b=3,c=a+b	>> a=2;b=3,c=a+b
		a =	b =
		2	3
;	suppress print	b =	c =
		3	5
		c =	
		5	
		>> a=2^0.5	>>format long
		a =	>> a=2^0.5
		1.4142	a =
format long	15-digit print	>> b=3^0.5	1.414213562373095
		b =	>> b=3^0.5
		1.7321	b =
			1.732050807568877
		>> a=log(2)	>> format short
		a =	>> a=log(2)
	5-digit print	0.693147180559945	a =
format short		>> b=log(3)	0.6931
		b =	>> b=log(3)
		1.098612288668110	b =
			1.0986
		>> format short	>>
		>> a=log(2)	
	clear Command Window	a =	
clc		0.6931	
CIC		>> b=log(3)	
		b =	
		1.0986	
		>> clc	
		>> a=5,b=10	a=5,b=10
		a =	a =
		5	5
_		b =	b =
clear	clear variables	10	10
		>> a	>> clear
		a =	>> a
		5	Undefined function or
			variable 'a'.

Commands	Descriptions	Examples
disp	display text or variable value	1. >> a=5;
fprintf	display text and variable value	<pre>1. >> a=2^0.5;</pre>
input	user input	1. >> a=input('The value of a is ') The value of a is enter a value here The value of a is 3 a = 3 2. >> a=input('choose a = ') choose a = enter a value here choose a = 5 a = 5
other functions	e.g. sin, cos, log,	<pre>>> a=2; >> sin(a) ans = 0.9093 >> cos(2*a+1) ans = 0.2837 >> log(1+cos(a)) ans = -0.5381</pre>

3 Function

Quick Example

Save & Load

To save: "New Sript" \rightarrow construct the function \rightarrow save \rightarrow remember the folder. To load: Change the "Current Folder" to the folder where the function m.file is saved. (The m.file name is usually saved as the same as the function name)

Multiple Input

Sub-function(s)

1. In "Editor" In "Command Window"

function y = mixfun1(x)
y=sin(s1(x))+sin(3*s1(x)); >> a=mixfun1(1)

function w = s1(z) $w=1+z+z^2;$

(mixfun1 is main function, s1 is sub-function.)

2. In "Editor" In "Command Window"

0.5532

(mixfun2 is main function, pol1 and pol2 are sub-functions.)

$\overline{\text{Commands Table}}$

Commands	Descriptions	Examples
%	comment / remark (not executed)	<pre>function A = cyl_area(r,h) % A is total surface area of the cylinder % r is base radius, h is height A1=2*pi*r*h; % lateral surface area A2=pi*r^2; % base area A=A1+2*A2;</pre>
	code separation	<pre>function y = long_fun(a,b,c,d) y=(a+b+c+d)^2+(a-b+c+d)^2+(a+bc+d)^2+(a+b+c-d)^2;</pre>

4 Vector & Matrix

Quick Examples

Vector

Matrix

Commands Table

Commands	Descriptions	Results
[2 3 4] or [2,3,4]	row vector	[2 3 4]
[2;3;4]	column vector	$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$
[2,3,4;3,5,6]	matrix	$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 5 & 6 \end{bmatrix}$
2:5	row vector with step 1	$\begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix}$
2:0.5:5	row vector with step 0.5	$\begin{bmatrix} 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 \end{bmatrix}$

In the following table, denote

u=[2,3,4,5,6,7] =
$$\begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$$
 and A=[1,2,3;4,5,6;7,8,9] = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

Commands	Descriptions	Results
u(2)	2-nd entry	3
u(3:5)	3-rd to 5-th entries	4 5 6
A(2,3)	2-nd row 3-rd column entry	6
A(2,1:2)	2-nd row, 1-st to 2-nd column entries	4 5
A(2:3,1)	2-nd to 3-rd row, 1-st column entries	$\begin{bmatrix} 4 \\ 7 \end{bmatrix}$
A(2:3,1:2)	2-nd to 3-rd row, 1-st to 2-nd column entries	$\begin{bmatrix} 4 & 5 \\ 7 & 8 \end{bmatrix}$
A(:,1)	1-st column entries	$\begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$
A(3,:)	3-rd row entries	[7 8 9]

In the following table, denote
$$A=[2,3;1,2]=\begin{bmatrix}2&3\\1&2\end{bmatrix}$$
 and $B=[1,2;1,1]=\begin{bmatrix}1&2\\1&1\end{bmatrix}$.

Commands	Descriptions	Results
A+B	entry-wise addition	$\begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$
A-B	entry-wise subtraction	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
A *B	matrix multiplication AB	5 7 3 4
A/B	AB^{-1} , or solution to $XB = A$	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
A\B	$A^{-1}B$, or solution to $AX = B$	$\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$
A^2	matrix power A^2	7 12 4 7
A.*B	entry-wise multiplication	$\begin{bmatrix} 2 & 6 \\ 1 & 2 \end{bmatrix}$
A./B	entry-wise division	$ \begin{array}{ c c c } \hline 2 & 1.5 \\ 1 & 2 \end{array} $
A.^B	entry-wise power	$\begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix}$
Α'	matrix conjugate transpose $A^* = (\bar{A})^{\intercal}$	$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$
A.,	matrix transpose A^{\intercal}	$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$

Commands	Descriptions	Examples
	-	1. >> A=zeros(3)
		A =
		0 0 0
		0 0 0
zeros	zero vector / matrix	0 0 0
26108	zero vector / matrix	2. >> A=zeros(2,3)
		A =
		0 0 0
		1. >> A=eye(3)
		A =
		1 0 0
		0 1 0
eye	identity matrix	0 0 1
		2. >> A=eye(2,3)
		A =
		1 0 0
		0 1 0
		1. >> A=[2,3,1;4,0,2;1,1,3]
		A =
		2 3 1
		4 0 2
		1 1 3
		>> diag(A)
		ans =
		2
	$matrix \rightarrow vector of diagonal$	0
diag	vector→ diagonal matrix	3
	9	2. >> a=[1,2,3]
		a =
		1 2 3
		>> diag(a)
		ans =
		1 0 0
		0 2 0
		0 2 0
		1. >> A=ones(3)
		1. >> A=ones(3) A =
		1 1 1
	(4 22 4 1 1 1 1	1 1 1
ones	"one" vector / matrix	1 1 1
		2. >> A=ones(2,3)
		A =
		1 1 1
		1 1 1

		1. >> rand()
		ans =
		0.3922
		2. >> rand(3)
		ans =
rand	random number / vector / matrix	0.6555 0.0318 0.0971
Tunu	with entries between 0 and 1	0.1712 0.2769 0.8235
		0.7060 0.0462 0.6948
		3. >> rand(2,3)
		ans =
		0.3171 0.0344 0.3816
		0.9502 0.4387 0.7655
		>> a=[2,3,5,7,11]
		a =
	number of entries in a vector	2 3 5 7 11
length		>> length(a)
		ans =
		5
		>> A=[1,3,5;2,4,6]
		A =
		1 3 5
		2 4 6
	size(A,1): number of rows	>> size(A,1)
size	size(A,2): number of columns	ans =
	zzzz (m,z). namber er cerumin	2
		>> size(A,2)
		ans =
		3
		3

5 If, For, While

Quick Examples

Commands Table

Commands	Descriptions
&&	and
	or
<, <=	less than, less than or equal to
>, >=	greater than, greater than or equal to
~=	not equal to
break	exit from "for", "while"
ctrl+c	terminate execution

1 branch: if...end e.g.

```
c=0;
a=rand();
if a>0.4 && a<0.6
    c=1;
end
disp([c,a])</pre>
>> c=0;
a=rand();
if a>0.4 && a<0.6
    c=1;
end
disp([c,a])

0 0.9058
```

2 branches: if...else...end

e.g.

```
a=floor(6*rand());
if a=1 || a=3 || a==5
    fprintf('%1.0f is odd \n',a)
else
    fprintf('%1.0f is even \n',a)
end
>> a=floor(6*rand());
if a==1 || a==3 || a==5
    fprintf('%1.0f is odd \n',a)
else
    fprintf('%1.0f is even \n',a)
end

2 is even
```

3 or more branches: if...elseif...else...end e.g.

```
>> x=rand();
x=rand();
                                      if x \le 1/3
if x < = 1/3
                                           y=3*x;
    y=3*x;
                                      elseif x <= 2/3
elseif x <= 2/3
                                           y=1;
    y=1;
                                      else
else
                                           y=3*(1-x);
    y=3*(1-x);
                                      fprintf('f(x) = %4.2f\n',y)
fprintf('f(x) = %4.2f\n',y)
                                      f(x) = 0.43
```

Example 5.1

```
function n=min_n(b)
% Given that a_(n+1) = a_n + 1/a_n
% find minimum n such that a_n >= b
                                             >> min_n(10)
% stop when n > 1000
                                             ans =
n=1;
                                                  50
a(n)=1;
                                             >> m=min_n(20)
while a(n) < b
    a(n+1)=a(n)+1/a(n);
                                                  199
    n=n+1;
                                             >> m=min_n(50)
    if n==1001
                                             n>1000
        disp('n>1000')
                                             m =
        break
                                                  1001
    end
end
disp(a(n))
```

Example 5.2

```
function [a,b]=sol_py(c)
% find integer pair (a,b) such that a^2+b^2=c
                                                     >> [a,b]=sol_py(10)
% a,b are between 0 and 9
                                                     a =
d=0; % change to 1 when solution is found
                                                         1
for i=1:9
                                                     b =
    for j=1:9
                                                         3
        if i^2+j^2==c
                                                     >> [x,y]=sol_py(20)
            a=i;b=j;d=1;
            break; % exit from 'for' loop of i
        end
                                                     y =
    end
    if d==1
                                                     \gg [m,n]=min_n(30)
        break % exit from 'for' loop of i
                                                     no solution between 0 and 9
                                                     m =
end
if d \sim =1
                                                     n =
    a=0;b=0;
                                                         0
    disp('no solution between 0 and 9')
end
```

6 Graph

Quick Examples

$\overline{\text{Commands Table}}$

Commands	Descriptions	Examples (in "Editor")
7 .	1 4 6 4:	1. ezplot('x.^2+1')
ezplot	lot plot function	2. ezplot('x.^2+1',[-2,2,0,5])
		x=-2:0.1:2;
plot	plot points	y=x.^2+1;
		plot(x,y)
		<pre>subplot(1,2,1),ezplot('x.^2+1')</pre>
subplot	plot multiple graphs	$x=-2:0.1:2; y=x.^2+1;$
		subplot(1,2,2),plot(x,y)
	diamless amid	ezplot('x.^2+1')
grid on	display grid	grid on
	limits of coordinates	ezplot('x.^2+1')
axis	limits of coordinates	axis([-2,2,0,5])
title	manh title	ezplot('x.^2+1')
title	graph title	<pre>title('function 1')</pre>
xlabel		ezplot('x.^2+1')
ylabel	labels of coordinates	<pre>xlabel('length')</pre>
zlabel		<pre>ylabel('height')</pre>
	labels of functions	x=-2:0.1:2;
		y1=x.^2+1;
legend		y2=2-x.^2;
		plot(x,y1,x,y2)
		<pre>legend('fun 1','fun 2')</pre>
mla+2	plot 3D curve	t=0:0.1:12
plot3		plot3(cos(t),sin(t),t)
		t=-1:0.1:1;
mesh	plot 3D "net" surface	<pre>[x,y]=meshgrid(t);</pre>
mesn		z=sin(x.*y);
		mesh(x,y,z)
		t=-1:0.1:1;
meshc	plot 3D "net" surface	<pre>[x,y]=meshgrid(t);</pre>
mesnc	with contour	z=sin(x.*y);
		meshc(x,y,z)
		t=-1:0.1:1;
gurf	plot 3D "smooth" surface	<pre>[x,y]=meshgrid(t);</pre>
surf		z=sin(x.*y);
		surf(x,y,z)
		t=-1:0.1:1;
surfc	plot 3D "smooth" surface with contour	<pre>[x,y]=meshgrid(t);</pre>
Suiic		z=sin(x.*y);
		<pre>surfc(x,y,z)</pre>

Styles of plot

Colours	Lines	Points
y yellow	- solid line (default)	+ plus sign
m magenta	dashed line	o circle
c cyan	: dotted line	* asterisk
r red	dash-dot line	. point
g green		x cross
b blue		s square
w white		d diamond
k black		

Example 6.1

```
x=-2:0.1:2;
y=x.^2+1;
subplot(2,3,1),plot(x,y,'g'),title('g'),legend('1')
subplot(2,3,2),plot(x,y,'g--'),title('g--'),legend('2')
subplot(2,3,3),plot(x,y,'g--o'),title('g--o'),legend('3')
subplot(2,3,4),plot(x,y,'--'),title('--'),legend('4')
subplot(2,3,5),plot(x,y,'o'),title('o'),legend('5')
subplot(2,3,6),plot(x,y,'--o'),title('--o'),legend('6')
```

