浙江大学 2020 - 2021 学年春夏学期

《编译原理》课程期中考试试卷

课程号: 21120471 ,开课学院: 计算机科学与技术学院 考试形式: 闭、 \checkmark 开卷(请在选定项上打 \checkmark),允许带_一张 A4 材料_入场 考试日期: 2021 年 5 月 10 日,考试时间: 90 分钟

诚信考试,沉着应考,杜绝违纪。

ID:	Name:	Major:			
. Mark each statement true or false	e (2 points each, 20 ce	ents)			
1) A LR(1) parser cannot parse any le	ft-recursive CFG withou	t ambiguity.	(F)
2) LL(1) grammar cannot be left-recu	rsive.		(Т)
3) Given a legal string of tokens for a	CFG, there must be a u	nique parsing tree to derivate the string.	(F)
4) The language L={a ⁿ b ⁿ n>=1} can't	be generated by any reg	gular expression.	(Т)
5) There is only one parse tree for the	e string of an unambigu	ous grammar.	(Т)
6) If a grammar is LR(1), but not LALR	(1). There may be shift-	reduce conflicts in its parsing table of			
LALR(1).			(F)
7) Finding the next handle is the man	task of a LR parser.		(T)
8) Both DFA and NFA can recognize r	egular set.		(Т)
9) The parse tree will completely refl	ect the derivation steps	for a string.	(F)
10) Left recursion is commonly used	to make operations left	associative.	(Т)
. Multiple Choice (3 points each,	30 cents)				
1) Given the CFG: $E' \rightarrow E$, $E \rightarrow E + n \mid n$, is(are) the via	ble prefix(es) of the right sentential form	ı 'n+n'.		
			(AC	D)
[A] n [B] n+ [C] E	[D] E+				
2) If a LL(1) grammar contains the ru	les: $A \rightarrow \alpha_1 \alpha_2$; $B \rightarrow \beta_1 \beta_2$,	then the following condition mu	ıst be sa	atisf	ied.
			(AD)
[A] First(β_1) \cap First(β_2) is empty	[B] First (B) ∩Follow	v (A) is empty			
[C] First (A) \cap Follow (A) is empty	[D] First (α₁) ∩First	(α_2) is empty			
3) Given the production A \rightarrow B α C, w	e have		(В)
[A] Follow (C) \subset Follow (A), First(B) ⊂First(A) [B] Follow	(A) \subset Follow (C), First(B) \subset First(A)			
[C] Follow (C) \subset Follow (A), First(A	$)$ \subset First(B) [D] Follow	$(A) \subset Follow (C)$, First(A) $\subset First(B)$			
4) Given the grammar rules: $A' \rightarrow A$	$A \rightarrow$ (A) A ϵ and the ri	ghtmost derivation $A'=>A=>(A)A=>(A)(A)$.)A => (A	۹)(A) =>
(A)()=>()() is the viable pre	efix the sentential form	(A)(A).	(В	3)
[A] A) [B] (A [C] ((A)A)A	[D] ()				
5) Give the LR(1) item $[A \rightarrow \alpha Bc, a/$	b], we have		(С)
(A) {a,b}⊂First(A) (B) {a,b}⊂	First(B)				
(C) $\{a,b\}\subset Follow(A)$ (D) $\{a,b\}\subset Follow(A)$	Follow(B)				
6) Here is a grammar:			(С)
X→a X→ε Y→b Y−	→ X				

$Z \rightarrow c$ $Z \rightarrow XYZ$ $W \rightarrow d$	W→XY			
Which symbol is not nullable	e?			
[A]. X [B].Y [C].	.Z [D].W			
7) The parsing method of YACC	C is	(Α)
[A] LALR(1) [B] LR(1) [C]] SLR(1) [D] LL(1)			
8) Which action is not in a LL(1	.) parsing table?	(🗚	۸D)
[A] Shift [B] Generate	[C] Accept [D] Reduce			
9) The output of the parser is _	.	(В)
[A] token [B] syntax tree	[C] target code [D]intermediate code			
10) Which one is not related to	o the LL(1) parsing method.	(D)
[A] Left factoring	[B] First set and follow set			
[C] Remove left recursion	[D] Remove right recursion			

3. (15 cents) Given the regular expression b*a (da|c)*b+, show the steps of converting the regular expression to the minimized DFA, and draw the DFA.

Solution:

评分标准:(给出 NFA 7 分,给出最小化 DFA 8 分)

4. (20 cents) Consider the following grammar.

$$S \rightarrow a|b|(T)$$

$$T\rightarrow T,S|S$$

- (1) Remove the left recursion. (4 cents)
- (2) Construct First and Follow sets for the nonterminals of the resulting grammar. (6 cents)
- (3) Show that the resulting grammar is LL(1). (4 cents)
- (4) Construct the LL(1) parsing table for the resulting grammar. (6 cents)

Solution:

(1) $S \rightarrow a$

 $S \rightarrow b$

 $S \rightarrow (T)$

 $T \rightarrow ST'$ (2分)

 $T' \rightarrow ,ST'|\epsilon$ (2分)

评分标准: 左递归消除一个式子2分

(2) 评分标准: 共6分, 错一个扣1分。

Nonterminal	First set	Follow set
S	a, b, (\$, ',',)
T	a, b, ()
T'	΄,', ε)

(3) 评分标准: 回答准确并简单说明理由 4分

 $First(a) \cap First(b) \cap First((T))$ is empty

First(,ST') ∩ First(ε) is empty

 $First(T') \cap Follow(T')$ is empty

Or

The associated LL(1) parsing table has at most one production in each table entry.

(4)评分标准 (共6分,错一个扣1分)

	a	b	()	,	\$
S	$S \rightarrow a$	$S \rightarrow b$	$S \rightarrow (T)$			
T	$T \rightarrow ST'$	$T \rightarrow ST'$	$T \rightarrow ST'$			
T'				$T' \to \varepsilon$	$T' \rightarrow$, ST'	

5. (15 cents) Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow a|(T)$$

$$T \rightarrow T, S|S$$

- (1) Construct the LR(1) DFA. (10 cents) (12 cents)
- (2) Is the given left-recursive CFG LR(1)? (3 cents)

Solution:

(1) The LR(1) DFA is as follows

(2) The given CFG is LR(1).