- کاوش نظاممند فضای جستجو در الگوریتمهای جستجوی کلاسیک
 - در نظر گرفتن یک درخت جستجو
 - مسیرهای مختلف جستجو به صورت همزمان بررسی میشود
 - نگهداری گزینههای دیگر کاوش در هنگام بررسی یک مسیر (مجموعه مقدم)
 - یک مسیر به هدف (راهحل) جستجو می شود
 - در بسیاری از مسائل مسیر رسیدن به هدف مهم نیست
 - مثال: مسأله ٨ وزير شطرنج
 - سعی در یافتن هدف بجای یافتن مسیر رسیدن به هدف
 - نیازی به نگهداری مسیرهای مختلف (درخت جستجو) نیست

- در نظر گرفتن حالت فعلی در جستجوی موضعی
- عدم نیاز به نگهداری حالتهای آماده بررسی و کاوش شده
- حالت بعدی از بین مجاورین (neighbors) حالت فعلی انتخاب میشود

- نیاز به حافظه بسیار کم (معمولاً ثابت)
- امکان بکارگیری در مسائلی با فضای حالت بسیار بزرگ یا نامحدود
 - هدف یافتن جواب قابل قبول (reasonable) است
 - لزوماً بهترین جواب (حالت هدف) را پیدا نمی کند

- تعریف مسأله برای جستجوی موضعی
 - نیاز به حالتها، کنشها و مدل انتقال
 - نیازی به هزینه مسیر نیست
 - مسیرها نگهداری نمیشوند
- استفاده از تابع هدف (objective) بجای آزمایش هدف
 - ارزش (evaluation) هر حالت از مسأله را تعیین می کند
- الگوریتم جستجو باید حالتی با بهترین ارزش را پیدا کند
 - یک مسأله بهینهسازی (optimization)
 - هدف یافتن نقطه بهینه (optimum) تابع هدف است

- چشمانداز (landscape) فضاى حالت مسأله
- حالتهای مسأله در مجاورت هم و ارزش آنها را نشان میدهد

- جستجوی موضعی در چشمانداز فضای حالت مسأله
 - حالتهای بهینه موضعی (local) و سراسری (global)
 - مفاهیم کمال و بهینگی
 - برخی مواقع یافتن حالتهای بهینه موضعی نیز کافی است

جستجوی تپهنوردی (hill-climbing)

- هر بار بررسی تمام حالات مجاور حالت فعلی و انتخاب بهترین آنها
 - حالات مجاور با یک کنش از حالت فعلی بدست میآیند
 - حرکت در جهت افزایش (کاهش) مقدار تابع هدف
- تندترین صعود (steepest ascent) یا شیب نزولی (gradient descent) در بهینهسازی
 - توقف با رسیدن به یک قله (دره)

function HILL-CLIMBING(problem) returns a state that is a local maximum

 $current \leftarrow Make-Node(problem.Initial-State)$ **loop do**

 $neighbor \leftarrow$ a highest-valued successor of current if neighbor. VALUE \leq current. VALUE then return current. STATE $current \leftarrow neighbor$

- جستجوی موضعی حریصانه
- حالات فراتر از حالات مجاور را در نظر نمی گیرد

- مثال: ٨ وزير شطرنج (با تعريف حالت كامل)
- تابع هدف (h): تعداد وزیرانی که در هر حالت یکدیگر را تهدید می کنند
 - هر حالت دارای ۵۶ حالت مجاور است

$$h = 17$$

			$\overline{}$				
18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	W	13	16	13	16
₩	14	17	15	w	14	16	16
17	<u>₩</u>	16	18	15	W	15	₩
18	14		15		-	₩	
14	14	13	17	12	14	12	18

• امکان پیشرفت سریع به سمت حالت هدف با بهبود حالات بد

جستجوى تيهنوردي

- الگوریتم می تواند گیر کند (gets stuck)
 - بهینههای موضعی
 - بستگی به نقطه شروع جستجو

- دنبالهای از بهینههای موضعی که مستقیماً به هم مرتبط نیستند
 - (plateau) سطوح مسطح
- بهینههای موضعی مسطح یا شانهها
- استفاده از حرکتهای به کنار (sideways move)
- در نظر گرفتن یک بیشینه و بخاطرسپاری حالتهای کاوش شده برابر

- گونههای دیگر الگوریتم
- تپەنوردى تصادفى (stochastic)
- انتخاب تصادفی از بین مجاورین بهتر
- احتمال حالت بعدی بسته به تندی شیب رسیدن به آن دارد
 - تپهنوردی اولین گزینه (first-choice)
- تولید تعدادی حالت مجاور بصورت تصادفی تا یافتن یک مجاور بهتر
- مناسب برای مسائلی که هر حالت دارای تعداد بسیار زیادی حالت مجاور است
 - تپهنوردی با شروع مجدد تصادفی (random-restart)
 - بكارگیری یک دنباله از تپهنوردیها با شروع از حالتهای اولیهی تصادفی
 - بهترین حالت یافته شده در میان تمام تپهنوردیها جواب است

- كارایی الگوریتمهای مختلف بسته به وضعیت چشمانداز مسأله دارد
 - تعداد بهینههای موضعی

- ویژگیهای الگوریتم
- تقریباً هیچ گونهای از الگوریتم کامل نیست
 - در بهینههای محلی گیر میکنند
- احتمال کامل بودن تپهنوردی با شروع مجدد تصادفی با افزایش تکرارها به یک میل می کند
 - نهایتاً یکی از حالتهای شروع تصادفی حالت هدف خواهد بود
- اگر p احتمال موفقیت هر تپهنوردی باشد، تعداد شروعهای مجدد لازم p خواهد بود p
 - هزینه جستجو بر حسب تعداد گامهای مورد نیاز برای یافتن هدف

$$N_s + \frac{1-p}{p}N_f$$

متوسط گامها در تکرارهای ناموفق

تبرید شبیهسازی شده (Simulated Annealing)

- جستجوی گامبرداری تصادفی (random walk)
- از بین مجاورین یک حالت بصورت تصادفی با توزیع یکنواخت انتخاب میشود
 - امکان انتخاب حالتهای مجاور بدتر
 - کامل است اما کارایی بسیار ضعیفی دارد
 - جستجوی تپهنوردی کارایی بالایی دارد اما کامل نیست
 - همیشه حالتهای مجاور بهتر را به صورت حریصانه انتخاب می کند
 - سعی در تلفیق این دو راهبرد
 - دستیابی به کمال و کارایی بصورت همزمان
 - جستجوی تبرید شبیهسازی شده با این رویکرد طراحی شده است

تبرید شبیهسازی شده

- هدف تبرید: کمینه کردن انرژی جنبشی
- آبدیده کردن فلزات با گرم کردن و سپس سرد کردن تدریجی
 - امکان فرار از بهینههای موضعی
- قبول حرکت به حالتهای بدتر و کاهش تدریجی بسامد این حرکتها

تبرید شبیهسازی شده

• شبیه حرکت یک توپ بر روی یک صفحه نامسطح با کمک لرزاندن

تبرید شبیهسازی شده

• الگوریتم جستجوی تبرید شبیهسازی شده

- نیاز به یک زمانبندی (schedule) برای کاهش تدریجی حرکات بد
 - با زمانبندی مناسب احتمال کامل بودن الگوریتم به یک میل می کند
 - زمانبندی مناسب؟

جستجوی پرتوی موضعی (local beam)

- نگهداری و بررسی همزمان چندین (k) حالت
- هر بار حالتهای مجاور تمام حالتهای فعلی بررسی و k همسایه بهتر برای مرحله بعدی الگوریتم انتخاب می شوند
 - بهینهسازی با استفاده از یک جمعیت (population) از حالتهای مسأله
- تبادل اطلاعات بین جستجوهای موازی در مورد حالتهای امید بخش
 - تفاوت با k تکرار موازی تپهنوردی با شروع مجدد تصادفی

جستجوى پرتوى موضعي

- امکان همگرایی زودرس (premature convergence)
- تمام حالتهای فعلی در یک منطقه از فضای جستجو متمرکز میشوند
 - عدم امکان کاوش مناسب تمام فضای جستجو
 - شبیه به جستجوی تپهنوردی خواهد شد
 - جستجوی پرتوی تصادفی (stochastic)
- بجای انتخاب k بهترین همسایه، k همسایه بصورت تصادفی انتخاب می شوند \bullet
 - شانس انتخاب هر همسایه متناسب با ارزش آن است

الگوریتم ژنتیکی (Genetic Algorithm)

- نگهداری یک جمعیت از افراد (حالتهای مسأله)
 - ارزیابی افراد با استفاده از یک تابع برازندگی
 - تابع هدف مسأله جستجو
- بكارگیری نوع خاصی از نمایش فاكتوربندی شده برای نشان دادن افراد
- هر فرد بصورت یک رشته (کروموزوم chromosome) از متغیرها (ژنها (Genes) با دامنه مقادیر (alleles) مشخص در نظر گرفته می شود
 - مثلاً در رشتههای بیتی دامنه مقادیر 0 و 1 است
 - استفاده از عملگرهای ژنتیکی بجای کنشهای مسأله
 - عملگرهای تقطیع (crossover) و جهش (mutation

- مراحل الگوريتم
- تولید یک جمعیت اولیه از افراد (معمولاً به صورت تصادفی)
 - ارزیابی افراد جمعیت و تعیین برازندگی آنها
- انتخاب برخی از افراد بر اساس برازندگی به عنوان والدین (parents)
 - جفتسازی (pairing) والدین (بر اساس برازندگی آنها)
 - اعمال تقطیع روی هر جفت با احتمال P_c و تولید یک جفت فرزند
 - $P_{\rm m}$ اعمال جهش روی هر یک از فرزندان با احتمال
 - ارزیابی کلیه فرزندان (offspring) تولید شده و تعیین برازندگی آنها
 - ورندان در جمعیت افراد (replacement) جایگزینی
- بازگشت به مرحله انتخاب والدین تا محقق شدن شرط توقف الگوریتم

- عملگر تقطیع با توجه به نقطه (های) تقطیع در رشته
- ترکیب قسمتهای سمت چپ و راست نقطه تقطیع از دو والد
 - مثال: عملگر تقطیع در مسأله ۸ وزیر

- تقطیع باعث افزایش سطح پیشروی (granularity) جستجو میشود
 - شبیه به اعمال چندین کنش در یک حالت از مسأله
 - فاصله والدین به مرور (طی نسلها) نسبت به هم کم میشود

- عملگر جهش در یک رشته
- مقدار هر ژن با احتمالی ($P_{\rm m}$) تغییر می کند
- انتخاب تصادفی یکی از مقادیر ممکن جدید برای متغیر (ژن) مشخص شده
 - شبیه به اعمال یک کنش در یک حالت از مسأله
 - مثال: یک نسل از الگوریتم در مسأله ۸ وزیر

- یک الگوریتم بسیار پرکاربرد در مسائل بهینهسازی
 - بخصوص در مسائل چندهدفه (multi-objective)
 - كامل نيست
 - یک الگوریتم جستجوی موضعی است
- تئورى شِما (schema theory) براى تحليل عملكرد الگوريتم
 - بررسی نحوه تکامل افراد در طی نسلهای پیدرپی
 - پیچیدگی زمانی و فضایی محدود
 - دارای نسخههای متنوع برای مسائل مختلف
- گونهای از دسته کلی تر الگوریتمهای تکاملی (evolutionary algorithms)