BUNDESREPUBLIK
DEUTSCHLAND

① Offenlegungsschrift② DE 100 63 223 A 1

(5) Int. Cl.⁷: **A 61 K 31/519**

DEUTSCHES
PATENT- UND
MARKENAMT

(2) Aktenzeichen: 100 63 223.8
 (2) Anmeldetag: 19. 12. 2000
 (3) Offenlegungstag: 20. 6. 2002

(71) Anmelder:

Merck Patent GmbH, 64293 Darmstadt, DE

(72) Erfinder:

Eggenweiler, Hans-Michael, Dr., 64331 Weiterstadt, DE; Eiermann, Volker, Dr., 63322 Rödermark, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (1) Pharmazeutische Formulierung enthaltend Thienopyrimidine und Antithrombotica
- Pharmazeutische Zubereitung, enthaltend mindestens eine Verbindung der Formel I

$$R^{2}$$
 R^{2}
 R^{3}
 R^{4}
 R^{4}

worin

R¹, R², R³, R⁴, n und X die in Anspruch 1 angegebenen Bedeutungen haben, sowie deren physiologisch unbedenkliche Salze und/oder Solvate und mindestens ein Antithromboticum

zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz, Leberzirrhose und zur Behandlung weiblicher Sexualstörungen.

Beschreibung

[0001] Die Erfindung betrifft pharmazeutische Formulierungen enthaltend mindestens einen Phosphodiesterase V-Hemmer und/oder dessen physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.

[0002] Die Erfindung betrifft insbesondere solche pharmazeutische Formulierungen enthaltend mindestens eine Verbindung der Formel I

10
$$(CH_2)_n$$
 R^2
 R^3
 R^4
 R^4
 R^4

20 worin

 R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R^1 oder R^2 immer \neq H ist,

R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

R³, R⁴ jeweils unabhängig voneinander H, A, OH, OA oder Hal,

R³ und R⁴ zusammen auch Alkylen mit 3-5 C-Atomen,

 $-O-CH_2-CH_2-$, $-O-CH_2-O-$ oder

-O-CH2-CH2-O-,

X einfach durch R⁷ substituiertes R⁵ oder R⁶,

R⁵ lineares oder verzweigtes Alkylen mit 1–10 C-Atomen, worin eine oder zwei CH₂-Gruppen durch -CH=CH-Gruppen ersetzt sein können, oder

 $-C_6H_4-(CH_2)_m$

R⁶ Cycloalkylalkylen mit 6-12 C-Atomen,

R⁷ COOH, COOA, CONH₂, CONHA, CON(A)₂ oder CN,

A Alkyl mit 1 bis 6 C-Atomen,

Hal F, Cl, Br oder I,

5 m 1 oder 2 und

n 0, 1, 2 oder 3

bedeuten,

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.

[0003] Die Erfindung betrifft weiterhin die Verwendung der Formulierung zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz, Leberzirrhose und zur Behandlung weiblicher Sexualstörungen.

[0004] Pharmazeutische Formulierungen bestehend aus anderen Phosphodiesterase V (PDE V)-Hemmern zusammen mit einem zweiten Wirkstoff sind in der WO 00/15639 beschrieben.

[0005] Die Verbindungen der Formel I sind beschrieben in WO 99/28325.

[0006] Pyrimidinderivate sind beispielsweise aus der EP 201 188 oder der WO 93/06104 bekannt.

[0007] Die Verwendung anderer PDE V-Hemmer ist beschrieben z. B. in der WO 94/28902.

[0008] Der Erfindung lag die Aufgabe zugrunde, neue Arzneimittel in Form von pharmazeutischen Zubereitungen zur Verfügung zu stellen, die bessere Eigenschaften besitzen als bekannte, für die gleichen Zwecke verwendbare Arzneimittel.

[0009] Diese Aufgabe wurde durch das Auffinden der neuen Zubereitung gelöst.

[0010] Die Verbindungen der Formel I und ihre Salze zeigen bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie eine spezifische Inhibierung der cGMP-Phosphodiesterase (PDE V).

[0011] Chinazoline mit cGMP-Phosphodiesterase hemmender Aktivität sind z.B. in J. Med. Chem 36, 3765 (1993) und ibid. 37, 2106 (1994) beschrieben.

[0012] Die biologische Aktivität der Verbindungen der Formel I kann nach Methoden bestimmt werden, wie sie z. B. in der WO 93/06104 beschrieben sind. Die Affinität der erfindungsgemäßen Verbindungen für cGMP- und cAMP-Phosphodiesterase wird durch die Ermittlung ihrer IC₅₀-Werte (Konzentration des Inhibitors, die benötigt wird, um eine 50%ige Inhibierung der Enzymaktivität zu erreichen) bestimmt.

[0013] Zur Durchführung der Bestimmungen können nach bekannten Methoden isolierte Enzyme verwendet werden (z. B. W. J. Thompson et al., Biochem. 1971, 10, 311). Zur Durchführung der Versuche kann eine modifizierte "batch"-Methode von W. J. Thompson und M. M. Appleman (Biochem. 1979, 18, 5228) angewendet werden.

5 [0014] Die Verbindungen eignen sich daher zur Behandlung von Erkrankungen des Herz-Kreislaufsystems, insbesondere der Herzinsuffizienz und zur Behandlung und/oder Therapie von Potenzstörungen (erektile Dysfunktion).

[0015] Die Verwendung von substituierten Pyrazolopyrimidinonen zur Behandlung von Impotenz ist z.B. in der WO 94/28902 beschrieben.

[0016] Die Verbindungen sind wirksam als Inhibitoren der Phenylephrin-induzierten Kontraktionen in Corpus cavernosum-Präparationen von Hasen. Diese biologische Wirkung kann z. B. nach der Methode nachgewiesen werden, die von F. Holmquist et al. in J. Urol., 150, 1310–1315 (1993) beschrieben wird.

[0017] Die Inhibierung der Kontraktion, zeigt die Wirksamkeit der erfindungsgemäßen Verbindungen zur Therapie und/oder Behandlung von Potenzstörungen.

[0018] Die Wirksamkeit der erfindungsgemäßen pharmazeutischen Formulierungen insbesondere zur Behandlung von pulmonalem Hochdruck kann nachgewiesen werden, wie von E. Braunwald beschrieben in Heart Disease 5th edition, WB Saunders Company, 1997, chapter 6: Cardiac catheterization 177–200.

[0019] Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden. Ferner können sie als Zwischenprodukte zur Herstellung weiterer Arzneimittelwirkstoffe eingesetzt werden.

[0020] Die Verbindungen der Formel I nach Anspruch 1 sowie deren Salze werden durch ein Verfahren hergestellt, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel II

$$R^1$$
 N
 X
 N
 X

worin

R¹, R² und X die angegebenen Bedeutungen haben,

und L Cl, Br, OH, SCH₃ oder eine reaktionsfähige veresterte OH-Gruppe bedeutet, mit einer Verbindung der Formel III

$$H_2N \xrightarrow{(CH_2)_n} \mathbb{R}^3 \qquad \qquad III$$

worin

R³, R⁴ und n die angegebenen Bedeutungen haben, umsetzt.

oder

b) in einer Verbindung der Formel I einen Rest X in einen anderen Rest X umwandelt, indem man z. B. eine Estergruppe zu einer COOH-Gruppe hydrolysiert oder eine COOH-Gruppe in ein Amid oder in eine Cyangruppe umwandelt

und/oder daß man eine Verbindung der Formel I in eines ihrer Salze überführt.

[0021] Unter Solvaten der Verbindungen der Formel I werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen der Formel I verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z. B. Mono- oder Dihydrate oder Alkoholate.

[0022] Vor- und nachstehend haben die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷, X, L und n die bei den Formeln I, II und III angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

[0023] A bedeutet Alkyl mit 1-6 C-Atomen.

[0024] In den vorstehenden Formeln ist Alkyl vorzugsweise unverzweigt und hat 1, 2, 3, 4, 5 oder 6 C-Atome und bedeutet vorzugsweise Methyl, Ethyl oder Propyl, weiterhin bevorzugt Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, aber auch n-Pentyl, Neopentyl, Isopentyl oder Hexyl.

[0025] X bedeutet einen einfach durch R⁷ substituierten R⁵ oder R⁶-Rest.

[0026] R⁵ bedeutet einen linearen oder verzweigten Alkylenrest mit 1–10, vorzugsweise 1–8 C-Atomen, wobei der Alkylenrest vorzugsweise z. B. Methylen, Ethylen, Propylen, Isopropylen, Butylen, Isobutylen, sek.-Butylen, Pentylen, 1-, 2- oder 3-Methylbutylen, 1,1-, 1,2- oder 2,2-Dimethylpropylen, 1-Ethylpropylen, Hexylen, 1-, 2-, 3- oder 4-Methylpentylen, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutylen, 1- oder 2-Ethylbutylen, 1-Ethyl-1-methylpropylen, 1-Ethyl-2-methylpropylen, 1,1,2-oder 1,2,2-Trimethylpropylen, lineares oder verzweigtes Heptylen, Octylen, Nonylen oder Decylen bedeutet.

[0027] R⁵ bedeutet ferner z. B. But-2-en-ylen oder Hex-3-en-ylen.

[0028] R⁶ bedeutet Cycloalkylalkylen mit 6–12 C-Atomen, vorzugsweise z. B. Cyclopentylmethylen, Cyclohexylen, Cyclohexylpropylen oder Cyclohexylbutylen.

[0029] Von den Resten R¹ und R² steht einer vorzugsweise für H, während der andere bevorzugt Propyl oder Butyl, besonders bevorzugt aber Ethyl oder Methyl bedeutet. Ferner bedeuten R¹ und R² auch zusammen bevorzugt Propylen, Butylen oder Pentylen.

5

15

40

45

55

[0030] Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

[0031] Die Reste R³ und R⁴ können gleich oder verschieden sein und stehen vorzugsweise in der 3- oder 4-Position des Phenylrings. Sie bedeuten beispielsweise jeweils unabhängig voneinander H, OH, Alkyl, F, Cl, Br oder I oder zusammen Alkylen, wie z. B. Propylen, Butylen oder Pentylen, ferner Ethylenoxy, Methylendioxy oder Ethylendioxy. Bevorzugt stehen sie auch jeweils für Alkoxy, wie z. B. für Methoxy, Ethoxy oder Propoxy.

[0032] Der Rest R⁷ bedeutet vorzugsweise z. B. COOH, COOCH₃, COOC₂H₅, CONH₂, CON(CH₃)₂, CONHCH₃ oder

[0033] Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d. h. unabhängig voneinander sind.

[0034] Unter den Begriff Antithrombotica fallen auch sogenannte Antikoagulantien und Blutplättchenaggregationshemmer (Thrombozytenaggregationshemmer).

[0035] Gegenstand der Erfindung sind insbesondere solche pharmazeutischen Formulierungen enthaltend ein Antithromboticum und mindestens eine Verbindung der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die

folgenden Teilformeln Ia bis Ie ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

X durch COOH oder COOA substituiertes R5 oder R6 bedeuten;

in Ib

 R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R^1 oder R^2 immer \neq H ist, R³ und R⁴ zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O, X durch COOH oder COOA, substituiertes R⁵ oder R⁶ bedeuten;

 R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R^1 oder R^2 immer \neq H ist,

R³, R⁴ jeweils unabhängig voneinander H, A, OA oder Hal,

R³ und R⁴ zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O,

X durch COOH oder COOA substituiertes R⁵ oder R⁶,

n 1 oder 2

bedeuten;

in Id

R¹, R² jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist, R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

R³, R⁴ jeweils unabhängig voneinander H, A, OA oder Hal,

R³ und R⁴ zusammen auch -O-CH₂-O-,

X einfach durch R⁷ substituiertes R⁵,

R⁵ lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, oder -C₆H4-CH₂-,

R⁷ COOH oder COOA,

A Alkyl mit 1 bis 6 C-Atomen,

Hal F, Cl, Br oder I,

m 1 und

n 1 oder 2 bedeuten;

R¹, R² jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist,

R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

R³, R⁴ jeweils unabhängig voneinander H, A, OH, OA oder Hal,

R³ und R⁴ zusammen auch -O-CH₂-O-,

X einfach durch R⁷ substituiertes R⁵,

R⁵ lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, oder

 $-C_6H_4-CH_2-$

R⁷ COOH oder COOA,

A Alkyl mit 1 bis 6 C-Atomen,

Hal F, Cl, Br oder I,

m 1 und

n 1 oder 2 bedeuten.

[0036] Gegenstand der Erfindung ist vorzugsweise eine Formulierung enthaltend 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure sowie dessen physiologisch unbedenklichen Salze und/oder Solvate und ein Antithromboticum, Bevorzugt ist neben der freien Säure das Ethanolaminsalz.

[0037] Bevorzugte Antithrombotica sind Vitamin K Antagonisten, Heparinverbindungen, Thrombozytenaggregationshemmer, Enzyme, Faktor Xa Inhibitoren, Faktor VIIa Inhibitoren und andere antithrombotische Agenzien.

[0038] Bevorzugte Vitamin K Antagonisten sind ausgewählt aus der Gruppe Dicoumarol, Phenindione, Warfarin, Phenprocoumon, Acenocoumarol, Ethyl-biscoumacetat, Clorindione, Diphenadione, Tioclomarol.

[0039] Bevorzugte Heparinverbindungen sind ausgewählt aus der Gruppe Heparin, Antithrombin III, Dalteparin, Enoxaparin, Nadroparin, Parnaparin, Reviparin, Danaparoid, Tinzaparin, Sulodexide.

[0040] Bevorzugte Thrombozytenaggregationshemmer sind ausgewählt aus der Gruppe Ditazole, Cloricromen, Picotamide, Clopidogrel, Ticlopidine, Acetylsalicylsäure, Dipyridamole, Calcium carbassalat, Epoprostenol, Indobufen, Iloprost, Abciximab, Tirofiban, Aloxiprin, Intrifiban.

[0041] Bevorzugte Enzyme sind ausgewählt aus der Gruppe Streptokinase, Alteplase, Anistreplase, Urokinase, Fibri-

nolysin, Brinase, Reteplase, Saruplase.

[0042] Bevorzugte Antithrombotica sind weiterhin die Blutplättchen-Glycoprotein-Rezeptor (IIb/IIIa)-Antagonisten, die die Blutplättchenaggregation inhibieren.

[0043] Bevorzugte Verbindungen sind z. B. beschrieben in EP 0 623 615 B1 auf Seite 2 oder in der EP 0 741 133 A2 Seite 2, Zeile 2 bis Seite 4 Zeile 56.

[0044] Bevorzugte Faktor Xa- und VIIa-Inhibitoren sind z. B.

a) die in WO 99/6751 beschriebenen Verbindungen der Formel I

worin

R¹-C(=NH)-NH₂, das auch einfach durch -COA, -CO-[C(R⁶)₂]_n-Ar, -COOA, -OH oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

20 25

R² H, A, OR⁶, N(R⁶)₂, NO₂, CN, Hal, NHCOA, NHCOAr, NHSO₂A, NHSO₂Ar, COOR⁶, CON(R⁶)₂, CONHAr, COR⁶, COAr, $S(O)_nA$ oder $S(O)_nAr$,

 R^3 A, Cycloalkyl, $-[C(R^6)_2]_n$ Ar, $-[C(R^6)_2]_n$ -O-Ar, $-[C(R^6)_2]_n$ Het oder $-C(R^6)_2$ = $-C(R^6)_2$ -Ar,

R⁶ H, A oder Benzyl,

 $-N[[C(R^6)_2]_n$ -COOR⁶}-CO- oder -C(COOR⁶)R⁶-C(R⁶)₂-CO-,

 $Y - C(R^6)_2$ -, $-SO_2$ -, -CO-, -COO- oder $-CONR^6$ -, A Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome oder durch -CR⁶=CR⁶-Gruppen und/oder 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, Ar', OR6, N(R6)2, NO2, CN, Hal, NHCOA, NHCOAr', NHSO₂A, NHSO₂Ar', COOR⁶, CON(R⁶)₂, CONHAr', COR⁶, COAr', S(O)_nA oder S(O)_nAr substituiertes Phenyl oder Naphthyl,

Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR6, N(R6)2, NO2, CN, Hal, NHCOA, COOR6, CON(R6)2, COR⁶, oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Het ein- oder zweikerniges unsubstituiertes oder ein- oder mehrfach durch Hal, A, Ar', COOR⁶, CN, N(R⁶)₂, NO₂, Ar-CONH-CH2 und/oder Carbonylsauerstoff substituiertes gesättigtes oder ungesättigtes heterocyclisches Ringsystem, welches eines, zwei, drei oder vier gleiche oder verschiedene Heteroatome wie Stickstoff, Sauerstoff und Schwefel enthält, Hal F, Cl, Br oder I,

n 0, 1 oder 2

bedeuten,

sowie deren Salze,

b) die in WO 9931092 beschriebenen Verbindungen der Formel I

R¹-C(=NH)-NH₂, das auch einfach durch -COA, CO-[C(R⁵)₂]_m-Ar, -COOA, -OH oder durch eine konventionelle Ami- 60 noschutzgruppe substituiert sein kann,

$$\{ \begin{array}{c} N \\ O \end{array} \text{ oder } N = \begin{cases} N \\ O \end{array} ,$$
 65

5

30

35

40

100 02 442 11 1

R² H, A, OR⁵, N(R⁵)₂, NO₂, CN, Hal, NR⁵COA, NHCOAr, NHSO₂A, NHSO₂Ar, COOR⁵, CON(R⁵)₂, CONHAr, COR⁵, COAr, S(O)_nA oder S(O)_nAr,

R³ R⁵ oder -[C(R⁵)₂]_mCOOR⁵

R³ und X zusammen auch -CO-N- unter Ausbildung eines 5-Rings,

wobei R³ -C=O und X N bedeutet,

 R^4 A, Cycloalkyl, $-[C(R^5)_2]_m$ Ar, $-[C(R^5)]_2]_m$ Het oder $-CR^5=CR^5$ -Ar,

R⁵ H, A oder Benzyl,

X O, NR⁵ oder CH₂,

Y O, NR⁵, N[C(R⁵)₂]_m-Ar, N[C(R⁵)₂]_m-Het, N[C(R⁵)₂]_m-COOR⁵,

$$-N$$
 $N-$

 $20 \qquad N[C(R^5)_2]_m - CON(R^5)_2, \\ N[C(R^5)_2]_m - CONR^5 Ar \ oder \ N[C(R^5)_2]_m - CONAr_2, \\ N[C$

W eine Bindung, -SO₂-, -CO-, -COO- oder -CONR⁵-,

A Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome oder durch -CR⁵=CR⁵-Grup-

pen und/oder 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch R¹, A, Ar', OR⁵, N(R⁵)₂, NO₂, CN, Hal, NHCOA, NHCOAr', NHSO₂A, NHSO₂Ar', COOR⁵, CON(R⁵)₂, CONHAr', COR⁵, COAr', S(O)_nA oder S(O)_nAr substituiertes Phenyl oder Naphthyl,

Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch R¹, A, OR⁵, N(R⁵)₂, NO₂, CN, Hal, NHCOA, COOR⁵,

CON(R⁵)₂, COR⁵, oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Het ein- oder zweikerniges unsubstituiertes oder ein- oder mehrfach durch Hal, A, Ar', OR⁵, COOR⁵, CN, N(R⁵)₂, NO₂, NHCOA, NHCOAr' und/oder Carbonylsauerstoff substituiertes gesättigtes oder ungesättigtes heterocyclisches Ringsystem, welches eines, zwei, drei oder vier gleiche oder verschiedene Heteroatome wie Stickstoff, Sauerstoff und Schwefel enthält,

Hal F, Cl, Br oder I, m 0, 1, 2, 3 oder 4,

n 0, 1 oder 2

bedeuten,

sowie deren Salze,

c) die in WO 9957096 beschriebenen Verbindungen der Formel I

o worin

R¹, R⁴ jeweils unabhängig voneinander -C(=NH)-NH₂, das auch einfach durch -COA, -CO-[C(R⁶)₂]_n-Ar, -COOA, -OH oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann, NH-C(=NH)-NH₂, -CO-N=C(NH₂)₂,

s R⁶ H, A oder Benzyl,

A Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome oder durch -CR⁶=CR⁶-Gruppen und/oder 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituientes oder ein-, zwei- oder dreifach durch A, Ar', OR6, OAr', N(R6)2, NO2, CN, Hal, NHCOA, NHCOAr',

NHSO2A, NHSO2Ar', COOR6, CON(R6)2, CONHAr', COR6, COAr', S(O)nA oder S(O)nAr' substituiertes Phenyl oder

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR6, N(R6)2, NO2, CN, Hal, NHCOA, COOR6, CON(R6)2, COR6 oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Hal F, Cl, Br oder I,

n 0, 1 oder 2,

m 1 oder 2,

p 1 oder 2

bedeuten,

sowie deren Salze,

d) die in WO 0012479 beschriebenen Verbindungen der Formel I

$$R^2-X-Y-Y-Q$$

25 worin

R, R¹ jeweils unabhängig voneinander H, A, -(CH₂)_m-R⁴, -(CH₂)_m-OA oder -(CH₂)_m-Ar,

$$N$$
 N
 R^6

40 R³ Ar,

R⁴ CN, COOH, COOA, CONH₂, CONHA, CONA₂ oder C(=NH)-NH₂,

R⁵ unsubstituiertes oder einfach durch -COA, -COOA, -OH oder durch eine konventionelle Aminoschutzgruppe substituiertes -C(=NH)-NH₂, -NH-C(=NH)-NH₂ oder -C=O)-N=C(NH₂)₂,

$$\{ \begin{array}{c} N \\ O \\ HN \end{array} \ \ \, \text{oder} \ \ \, N = \\ CH_3 \end{array} \ \ \, ,$$

R⁶ H, A oder NH₂,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, Cycloalkyl mit 3-6 C-Atomen, OH, OA, Hal, CN, NO2, CF3, NH₂, NHA, NA₂, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO₂NH₂, SO₂NHA, SO₂NA₂, -(CH₂)_n-NH₂, -(CH₂)_n-NH₄, -(CH₂)_n-NA₂, -O-(CH₂)_n-NA₂, -O-(CH₂)_n-NH₄, -O-(CH₂)_n-NA₂, -O-(CH₂)_n-O-oder \mathbb{R}^5 substituiertes Phenyl, Naphthyl oder Biphenyl,

A Alkyl mit 1-6 C-Atomen,

X fehlt, Alkylen mit 1-4 C-Atomen oder Carbonyl,

Y fehlt, NH, O oder S,

Hal F, Cl, Br oder I,

m 0, 1 oder 2, n 0, 1, 2 oder 3

bedeuten,

sowie deren Salze,

e) die in WO 0020416 beschriebenen Verbindungen der Formel I

55

60

65

5

10

15

$$R^{3} \longrightarrow R$$

$$R^{2} - (CH_{2})_{p} \longrightarrow N$$

$$N \longrightarrow (CH_{2})_{n} - R^{1}$$

10 worin

R H, unverzweigtes oder verzweigtes Alkyl mit 1-6 C-Atomen oder Cycloalkyl mit 3-6 C-Atomen, R¹ Ar,

 $R^2 Ar'$

R³ H, R, R⁴, Hal, CN, COOH, COOA oder CONH₂,

Ar, Ar' jeweils unabhängig voneinander unsubstituiertes oder ein-, zwei- oder dreifach durch R, OH, Hal, CN, NO₂, CF₃, NH₂, NHR, NR₂, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO₂NH₂, SO₂NHR, SO₂NR₂, -CONHR, -CONR₂, -(CH₂)_n-NH₂, -(CH₂)_n-NHR, -(CH₂)_n-NHR, -(CH₂)_n-NHR, -O-(CH₂)_n-NHR, -O-(CH₂)_n-NR₂, R⁴ oder zusammen durch -O-(CH₂)_m-O- substituiertes Phenyl, Naphthyl oder Biphenyl,

R⁴ unsubstituiertes oder einfach durch -COR, -COOR, -OH oder durch eine konventionelle Aminoschutzgruppe substituiertes -C(=NH)-NH₂ oder -NH-C(=NH)-NH₂, -C(=O)-N=C(NH₂)₂,

$$\{ \begin{array}{c} N \\ N \end{array} \quad \text{oder} \quad N = \{ \begin{array}{c} N \\ N \end{array} \quad \text{CH}_3$$

A Alkyl mit 1-4 C-Atomen,

Hal F, Cl, Br oder I,

m 1 oder 2,

n 0, 1, 2 oder 3,

p 0 oder 1

bedeuten,

sowie deren Salze,

35 f) die in WO 0040583 beschriebenen Verbindungen der Formel I

45 worir

R H oder unverzweigtes oder verzweigtes Alkyl mit 1-6 C-Atomen oder Cycloalkyl mit 3-6 C-Atomen,

R¹ Ar

R² Ar',

R³ H, R, R⁴, Hal, CN, COOH, COOA oder CONH₂,

Ar, Ar' jeweils unabhängig voneinander unsubstituiertes oder ein-, zwei- oder dreifach durch R, OH, Hal, CN, NO₂, CF₃, NH₂, NHR, NR₂, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO₂NH₂, SO₂NHR, SO₂NR₂, -CONHR, -CONR₂, -(CH₂)_n-NH₂, -(CH₂)_n-NHR, -(CH₂)_n-NHR, -(CH₂)_n-NHR, -O-(CH₂)_n-NHR, -O-(CH₂)_n-NR₂, R⁴ oder zusammen durch -O-(CH₂)_m-O- substituiertes Phenyl, Naphthyl oder Biphenyl, oder durch NH₂ substituiertes Isochinolinyl,

R⁴ unsubstituiertes oder einfach durch -COR, -COOR, -OH oder durch eine konventionelle Aminoschutzgruppe substituiertes -C(=NH)-NH₂ oder -NH-C(=NH)-NH₂, -C(=O)-N=C(NH₂)₂,

$$\{ \begin{array}{c} N \\ O \end{array} \quad \text{oder} \quad N = \begin{cases} N \\ O \end{array} \quad \text{CH}_3$$

A Alkyl mit 1-4 C-Atomen,

Hal F, Cl, Br oder I,

s m 1 oder 2,

n 0 oder 1

bedeuten.

sowie deren Salze und Solvate,

g) die in WO 0051989 beschriebenen Verbindungen der Formel I

$$R^4$$
 R^4
 $N-N$
 $N-N$
 R^3

worin

 \mathbb{R}^1 , \mathbb{R}^2 jeweils unabhängig voneinander H, A, Cycloalkyl- $[\mathbb{C}(\mathbb{R}^7\mathbb{R}^7)]_{n^2}$ oder Ar- $[\mathbb{C}(\mathbb{R}^7\mathbb{R}^7)]_{n^2}$,

R³, R⁴ jeweils unabhängig voneinander H, Ar, Het, R⁵, wobei mindestens einer der beiden Reste R⁵ bedeutet,

R⁵ durch -C(=NH)-NH₂, das auch einfach durch -COA, Ar-[C(R⁷R⁷)]_n-CO-, COOA, OH oder durch eine konventionelle

Aminoschutzgruppe substituiert sein kann, -NH-C(=NH)-NH₂, -CO-N=C(NH₂)₂,

$$\{ \begin{array}{c} N \\ O \end{array} \quad \text{oder} \quad N = \\ CH_3 \end{array}$$

substituiertes Phenyl, Naphthyl oder Biphenyl, die gegebenenfalls zusätzlich ein- oder zweifach durch A, Ar', Het, OR⁶, NR⁶R⁶, NO₂, CN, Hal, NR⁶COA, NR⁶COAr', NR⁶SO₂A, NR⁶SO₂Ar', COOR⁶, CO-NR⁶R⁶, COR⁷, CO-Ar', SO₂NR⁶R⁶, S(O)_nAr' oder S(O)_nA substituiert sein können,

R⁶, R⁶ jeweils unabhängig voneinander H, A, CR⁷R⁷-Ar' oder CR⁷R⁷-Het,

R⁷, R⁷ jeweils unabhängig voneinander H oder A,

X, Y jeweils unabhängig voneinander $(CR^7R^7)_n$,

A Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome und/oder durch -CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, Ar', Het, OR⁶, NR⁶R⁶, NO₂, CN, Hal, NR⁶COA, NR⁶COAr', NR⁶SO₂A, NR⁶SO₂Ar', COOR⁶, CO-NR⁶R⁶, CON⁶Ar', COR⁷, COAr', SO₂NR⁶R⁶, S(O)_nAr' oder S(O)_nA substituiertes Phenyl, Naphthyl oder Biphenyl,

Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR⁷, NR⁷R⁷, NO₂, CN, Hal, NR⁷COA, NR⁷SO₂A, COOR⁷, CO-NR⁷R⁷, COR⁷, SO₂NR⁷R⁷ oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch A, OR⁷, NR⁷R⁷, NO₂, CN, Hal, NR⁷COA, NR⁷SO₂A, COOR⁷, CO-NR⁷R⁷, COR⁷, SO₂NR⁷R⁷, S(O)_nA und/oder Carbonylsauerstoff substituiert sein kann,

Hal F, Cl, Br oder I,

n 0, 1 oder 2

bedeuten.

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

h) Verbindungen der Formel I

worin

R -CO-N=C(NH₂)₂, -NH-C(=NH)-NH₂ oder -C(=NH)-NH₂, das auch einfach durch OH, -OCOOA, 5 -OCOO(CH₂)_nNAA', -COO(CH₂)_nNAA', -OCOO(CH₂)_m-Het, -COO(CH₂)_m-Het, -CO-CAA'-R³, -COO-CAA'-R³, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

$$\{ \begin{array}{c} N \\ N \end{array} \quad \text{oder} \quad N = \begin{cases} N \\ CH_3 \end{cases}$$

R¹ unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1–20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome ersetzt sein können, Ar, Ar' oder X,

R² einfach durch S(O)_pA, S(O)_pNHA, CF₃, COOA, CH₂NHA, CN oder OA substituiertes Phenyl,

 R^3 -C(Hal)₃, -O(C=O)A oder

30

40

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', NO₂, CF₃, CN, Hal, NHCOA, COOA, CONAA', S(O)_pA, S(O)_pNAA' substituiertes Phenyl oder Naphthyl,

 $Ar' - (CH_2)_n - Ar$

A, A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1–20 C-Atomen, Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder durch A substituiert sein kann,

15 $X - (CH_2)_n - Y$, Y COOA oder

Hal F, Cl, Br oder I,

5 m 0 oder 1,

n 1, 2, 3, 4, 5 oder 6,

p 0, 1 oder 2

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

i) Verbindungen der Formel I

$$R^2$$

o worin

R -CO-N=C(NH₂)₂, -NH-C(=NH)-NH₂ oder -C(=NH)-NH₂, das auch einfach durch OH, -OCOOA, -OCOO(CH₂)_nNAA', -COO(CH₂)_nNAA', -OCOO(CH₂)_m-Het, -COO(CH₂)_m-Het, -CO-CAA'-R³, -COO-CAA'-R³, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

R¹ unveigteigtes, verzweigtes oder cycüsches Alkyl mit 1–20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O-oder S-Atome ersetzt sein können, Ar, Ar' oder X,

R² einfach durch S(O)_pA, S(O)_pNHA, CF₃, COOA, CH₂NHA, CN oder OA substituiertes Phenyl, R³ -C(Hal)₃, -O(C=O)A oder

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', NO₂, CF₃, CN, Hal, NHCOA, COOA, CONAA', S(O)_pA, S(O)_pNAA' substituiertes Phenyl oder Naphthyl,

 $Ar' - (CH_2)_n - Ar$

60

A, A' jeweils unabhängig voneinander H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1–20 C-Atomen, Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder durch A substituiert sein kann,

X -(CH₂)_n-Y, Y COOA oder

$$\left\{\begin{array}{c} N \\ N \\ N \end{array}\right\}$$

Hal F, Cl, Br oder I,

m 0 oder 1,

n 1, 2, 3, 4, 5 oder 6,

p 0, 1 oder 2

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

j) Verbindungen der Formel I

 R^1 R^2 R^2 R^3 R^5 R^5

worin

 R^1 H, Cl, F, OH, OA, O-(CH₂)_n-Ar, NH₂, NHCOA, NHCOOA, NH-(CH₂)_n-Ar, CN, CONH₂, CSNH₂, C(=NH)SA, C(=NH)NH₂, C(=NH-OH)-NH₂, C(=NH-O-COA)-NH₂, C(=NH-O-COAr)-NH₂, C(=NH-O-COHet)-NH₂, C(=NH)-OA, C(=NH)NHNH₂, C(=NH)NH-COO-(CH₂)_m-Ar, C(=NH)NH-COO-(CH₂)_m-Het, NH-C(=NH)NH₂, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH₂)_m-Ar,

 $\begin{cases} \begin{array}{c} N \\ O \end{array} & \text{oder} & N = \\ N = \\ O \end{array} ,$ R^6

R², R²' jeweils unabhängig voneinander H, A, CF₃, Cl, F, COA, COOH, COOA, CONH₂, CONHA, CONA₂, CH₂NH₂, CH₂NHCOA, CH₂NHCOOA, OH, OA, OCF₃, NO₂, SO₂A, SO₂NH₂ oder SO₂NHA,

R³, R⁴ zusammen (CH₂)_p, CO(CH₂)_p, COO(CH₂)_n, COOCH(A)-, COOCH(Ar)-, CONH(CH₂)_n, CH₂CH(OR⁷)-(CH₂)_n-CH₂-O-(CH₂)_n, CH₂-S-(CH₂)_n, CA₂-O-(CH₂)_n, CA₂-S-(CH₂)_n, CHAr-S-(CH₂)_n, (CH₂)₂NHCH₂ oder (CH₂)₂-N(R⁸)-CH₂-CH

R⁵, R⁵, R⁵, R⁵, R⁵, R⁵ jeweils unabhängig voneinander (CH₂)_n-COOH, (CH₂)_n-COO-(CH₂)_n-Ar, Ar, Py oder R²,

R⁶ OH, A oder Ar,

R⁷ H, A, Ar oder Het,

 R^8 H, $(CH_2)_n$ -COOH, $(CH_2)_m$ -COO- $(CH_2)_n$ -Ar, $(CH_2)_m$ -COO- $(CH_2)_n$ -Het, $(CH_2)_m$ -CONH₂, $(CH_2)_m$ -CONH₃, $(CH_2)_m$ -CONH₄, $(CH_2)_m$ -CONH₅, $(CH_2)_m$ -CONH₆, $(CH_2)_m$ -CONH₇, $(CH_2)_m$ -CONH₇, $(CH_2)_m$ -CONH₈, $(CH_2)_m$ -CONH₉, $(CH_2)_m$ -CONH₉

R⁹ H, A oder Benzyl,

U CO oder CH2,

V NH oder CO,

W fehlt oder CO,

X CH oder N,

Y fehlt, CH₂, CO oder SO₂,

A unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O-oder S-Atome, -CH=CH- oder -C≡C- und/oder 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, CF₃, Hal, OH, OA, OCF₃, SO₂A, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NACOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-(CH₂)_m-Ar', COO-(CH₂)_m-Het, CONH₂, CONHA, CONA₂, CONHAr', CHO, COA, COAr', CH₂Ar', (CH₂)_mNH₂, (CH₂)_mNHA, (CH₂)_mNHCHO, (CH₂)_mNHCOA, (CH₂)_mNHCOOA, (CH₂)_mNHCOO-(CH₂)_mAr', (CH₂)_mNHCOO-(CH₂)_mHet, NO₂, CN, CSNH₂, C(=NH)SA, C(=NH)OA, C(=NH)NH₂, C(=NH)NHOH, C(=NH)NHCOOA oder C(=NH)NHCOOAr' substituiertes Phenyl oder Naphthyl,

Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR⁹, N(R⁹)₂, NO₂, CN, Hal, NHCOA, COOR⁹, CON(R⁹)₂,

COR⁹, oder S(O)₂A substituiertes Phenyl oder Naphthyl,

Het ein- oder zweikerniger gesättigter, ungesättigter oder aromatischer Heterocyclus mit 1-4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei-, drei- oder vierfach durch A, CF₃, Hal, OH, OA, OCF₃,

5

10

15

45

50

SO₂A, SO₂-(CH₂)_m-Ar, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NACOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-(CH₂)_m-Ar', CONH₂, CONHA, COA, COAr', CH₂NH₂, CH₂NHCHO, CH₂NHCOOA, CH₂NHCOOA, NO₂, CN, CSNH₂, C(=NH)SA, C(=NH)OA, C(=NH)NH₂, C(=NH)NHOH, C(=NH)NHCOOA, C(=NH)COOAr' und/oder Carbonylsauerstoff substituiert ist,

Py unsubstituiertes oder ein- oder mehrfach durch A, Hal, CN, CONH₂, CONHA, COOH, COOA, CH₂NH₂, CH₂NHA, CH₂NHCHO, CH₂NHCOOA, CH₂NHCOOA, CH₂OH, CH₂OA, CH₂OAr, CH₂OCOA, NO₂, NH₂, NHA oder NA₂ substituiertes 2-, 3- oder 4-Pyridyl,

Hal F, Cl, Br oder I,

n 1 oder 2,

m 0, 1 oder 2,

p 2, 3 oder 4

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

k) Verbindungen der Formel I

worin
R¹ H, Cl, F, OH, OA, O-(CH₂)_n-Ar, NH₂, NHCOA, NHCOOA, NH-(CH₂)_n-Ar, CN, CONH₂, CSNH₂, C(=NH)SA, C(=NH)NH₂, C(=NH-OH)-NH₂, C(=NH-O-COA)-NH₂, C(=NH-O-COAr)-NH₂, C(=NH-O-COHet)-NH₂, C(=NH)-O-COHet)-NH₂, C(=NH)-O-COHet)-NH₂, C(=NH)-COA, C(=NH)NH-COA, C(=NH)NH-COO-(CH₂)_m-Ar, C(=NH)NH-COO-(CH₂)_m-Het, NH-C(=NH)NH₂, NH-C=(NH)NH-COOA, NHC(=NH)NH-COO-(CH₂)_m-Ar,

R², R², R² jeweils unabhängig voneinander H, A, CF₃, Cl, F, COA, COOH, COOA, CONH₂, CONHA, CONA₂, CH₂NH₂, CH₂NHCOA, CH₂NHCOOA, OH, OA, OCF₃, NO₂, SO₂A, SO₂NH₂, SO₂NHA oder SO₂NA₂,

 R^3 A, $(CH_2)_n$ -Ar oder $(CH_2)_n$ -Het,

 $R^4 A$

 R^3 , R^4 zusammen auch $(CH_2)_p$, $(CH_2)_n$ - $N(R^8)$ - $(CH_2)_2$, $(CH_2)_2$ - $CH(NH_2)$ - $(CH_2)_2$ -, $(CH_2)_2$ -CH(NH-COOA)- $(CH_2)_2$ -, $(CH_2)_2$ - $CH(NH-CH_2)$ - $(CH_2)_2$ -, $(CH_2)_2$ - $(CH_2)_2$ -(CH

R⁵, R⁵, R⁵, R⁵, R⁵, R⁵ jeweils unabhängig voneinander (CH₂)_n-COOH, (CH₂)_n-COOA, (CH₂)_n-COO-(CH₂)_m-Ar, (CH₂)_n-COO-(CH₂)_m-Het, Ar, Py oder R²,

R⁶ OH, A oder Ar,

R⁷, R⁷, R⁷, R⁷ jeweils unabhängig voneinander H, Hal, OH, OA, COOH, COOA, COO(CH₂)_mAr, CONH₂, CONHA

o oder CONA2,

 R^8 H, A, COA, COOA, $(CH_2)_n$ -COOH, $(CH_2)_m$ -COOA, COO- $(CH_2)_m$ -Ar, COO- $(CH_2)_m$ -Het, $(CH_2)_n$ -COO- $(CH_2)_m$ -Het, $(CH_2)_n$ -COO+ $(CH_2)_m$ -CONHA, $(CH_2)_m$ -CONHA, $(CH_2)_m$ -CONA2, SO₂A oder SO₃H, R^9 H, A oder Benzyl,

U CO oder CH₂,

65 V NH oder CO,

W fehlt oder CO,

X CH oder N,

Y fehlt, CH2, CO oder SO2,

A unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O-oder S-Atome, -CH=CH- oder -C≡C- und/oder 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, CF₃, Hal, OH, OA, OCF₃, SO₂A, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NACOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-(CH₂)_m-Ar', COO-(CH₂)_m-Het, CONH₂, CONHA, CONA₂, CONHAr', CHO, COA, COAr', CH₂Ar', (CH₂)_mNH₂, (CH₂)_mNHA, (CH₂)_mNHCHO, (CH₂)_mNHCOOA, (CH₂)_mNHCOOA, (CH₂)_mNHCOO-

Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR⁹, N(R⁹)₂, NO₂, CN, Hal, NHCOA, COOR⁹, CON(R⁹)₂, COR⁹, oder S(O)₂A substituiertes Phenyl oder Naphthyl,

Het ein- oder zweikerniger gesättigter, ungesättigter oder aromatischer Heterocyclus mit 1–4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei-, drei- oder vierfach durch A, CF₃, Hal, OH, OA, OCF₃, SO₂A, SO₂-(CH₂)_m-Ar, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NACOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-(CH₂)_m-Ar', CONH₂, CONHA, COA, COAr', CH₂NH₂, CH₂NHA, CH₂NHCHO, CH₂NHCOOA, CH₂NHCOOA, NO₂, CN, CSNH₂, C(=NH)SA, C(=NH)OA, C(=NH)NH₂, C(=NH)NHOH, C(=NH)NHCOOA, C(=NH)COOAr' und/oder Carbonylsauerstoff substituiert ist,

Py unsubstituiertes oder ein- oder mehrfach durch A, Hal, CN, CONH₂, CONHA, COOH, COOA, CH₂NH₂, CH₂NHA, CH₂NHCHO, CH₂NHCOOA, CH₂NHCOOA, CH₂OH, CH₂OA, CH₂OAr, CH₂OCOA, NO₂, NH₂, NHA oder NA₂ substituiertes 2-, 3- oder 4-Pyridyl,

Hal F, Cl, Br oder I,

n 1 oder 2,

m 0, 1 oder 2,

p 2, 3, 4 oder 5

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

1) Verbindungen der Formel I

worin

R CN, CH₂NH₂, -NH-C(=NH)-NH₂, -CO-N=C(NH₂)₂, -C(=NH)-NH₂, das auch einfach mit Ar', OH, O-COA, O-COAr, OCOOA, OCOO(CH₂)_nN(A)₂, -COO(CH₂)_nNA₂, OCOO(CH₂)_mHet, COO-(CH₂)_mHet, CO-C(A)₂-R³, COOA, COSA, COSAr, COOAr, COOAr', COA, COAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

$$\{ \begin{array}{c} N \\ O \end{array} \text{ oder } N = \begin{cases} N \\ O \end{array} \text{ }$$

R¹ R⁴, Ar, Ar' oder X,

R² einfach durch SA, SOA, SO₂A, SONHA, SO₂NHA, CF₃, COOA, CH₂NHA, CN oder OA substituiertes Phenyl, R³ CHal₃, OCOA oder

R⁴ Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome und/oder durch -CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F ersetzt sein können,

A H oder Alkyl mit 1-20 C-Atomen,

A' Alkyl mit 1-10 C-Atomen,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A', OH, OA', NH₂, NHA', NA'₂, NO₂, CF₃, CN, Hal, NHCOA, COOA, CONH₂, CONHA', CONA'₂, SA, SOA, SO₂A, SO₂NH₂, SO₂NHA' oder SO₂NA'₂ substituiertes Phenyl oder Naphthyl,

Ar' (CH₂)_n-Ar,

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch A', OA', NH₂, NHA', NA'₂, NO₂, CN, Hal, NHCOA',

5

10

20

25

40

50

60

NHSO₂A', COOA, CONH₂, CONHA', CONA'₂, COA, SO₂NH₂, SA', SOA', SO₂A' und/oder Carbonylsauerstoff substituiert sein kann,

X (CH₂)_nY,

Y COOA oder

Hal F, Cl, Br oder I, n 1, 2, 3, 4, 5 oder 6,

15 m 0 oder 1 bedeuten,

10

20

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

m) Verbindungen der Formel I

$$R$$
 R
 R
 R
 R
 R
 R
 R
 R

worin

R CH₂NH₂, -CO-N=C(NH₂)₂, -NH-C(=NH)-NH₂ oder -C(=NH)-NH₂, das auch einfach durch OH, -OCOOA, OCOO(CH₂)_nNAA', -COO(CH₂)_nNAA', -COO(CH₂)_m-Het, -COO(CH₂)_m-Het, -CO-CAA'-R³, -COO-CAA'-R³, COOA, COSA, COOAr, COOAr' oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

R¹ unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O-oder S-Atome ersetzt sein können, Ar, Ar' oder X,

 R^2 einfach durch $S(O)_pA$, $S(O)_pNHA$, CF_3 , COOA, CH_2NHA , CN oder OA substituiertes Phenyl, R^3 - $C(Hal)_3$, -O(C=O)A oder

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OA, NAA', NO₂, CF₃, CN, Hal, NHCOA, COOA, CONAA', S(O)_pA, S(O)_pNAA' substituiertes Phenyl oder Naphthyl,

 $Ar' - (CH_2)_n - Ar$

50

65

A H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen,

A' unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-10 C-Atomen, Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder durch A substituiert sein kann, X -(CH₂)_n-Y,

Y COOA oder

Hal F, Cl, Br oder I,

m 0 oder 1,

n 1, 2, 3, 4, 5 oder 6,

p 0, 1 oder 2

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

n) Verbindungen der Formel I

$$R1-W-X-V$$
 R_3
 R_4
 R_3

worin bedeuten:

R1: durch -C(=NH)NH2, das auch einfach durch -COA, -CO-[C(R6)2-Ar', -COOA, -OH oder durch eine konventionelle 35 Aminoschutzgruppe substituiert sein kann, -NHC(=NH)-NH₂,

$$N \rightarrow CH_3$$
 oder $N \rightarrow CH_3$ oder $N \rightarrow CH_3$ oder $N \rightarrow CH_3$

$$\{ \begin{array}{c} N \\ O \end{array} \text{ oder } N = \{ \begin{array}{c} N \\ O \end{array} \}$$

$$CH_3$$

substituiertes Phenyl oder Naphthyl, das gegebenenfalls durch -A, -OR5, -N(R5)2, -NO2, -CN, -Hal, -NR5COA, -NR⁵COAr', -NR⁵SO₂A, -NR⁵SO₂Ar', -COOR⁵, -CON(R⁵)₂, -CONR⁵Ar', -COR⁶, -COAr' oder S(O)_nA substituiert sein

 R^2 : -N(R^5)₂, -NR⁵COA, -NR⁵COAr, -NR⁵COOR⁵;

 R^3 , R^4 : unabhängig voneinander, -H, -A, -OR 5 , -N(R^5)₂, -NO₂, -CN, -Hal, -NR 5 COA, -NR 5 COAr', -NR 5 SO₂Ar', -COOR 5 , -CON(R^5)₂, -CONR 5 Ar', -COR 6 , -COAr', -S(O)Ar', S(O)_nA;

 R^{5} : -H, -A, -C($R^{6}R^{7}$)Ar' oder -C($R^{6}R^{7}$)Het;

R⁶, R⁷: unabhängig voneinander -H, -A oder -(CH₂)₁-Ar';

X: -O-, -NR⁵-, -CONR⁵-, -N(SO₂Ar)-, -N(SO₂Het)-; W: -(CR⁶R⁷)_n-, -OCR⁶R⁷-, 1,3-phenylen, 1,3-phenylen-C(R⁶)₂-, 1,4-phenylen, 1,4-phenylen-C(R⁶)₂-;

 $V: -(C(R^6)_2)_m -;$

A: Alkyl mit 1 bis 20 C-Atomen, worin eine oder zwei CH2-Gruppen durch O-oder S-Atome oder durch -CH=CH-Gruppen und auch durch 1 bis 7 H-Atome durch F ersetzt sein können;

Ar: unsubstituiertes oder ein-, zwei- oder dreifach durch -A, -Ar', -Het, -OR⁵, -N(R⁵)₂, -NO₂, -CN, -Hal, -NR⁵COA, -NR⁵COAr, -NR⁵SO₂A, -NR⁵SO₂Ar', -COOR⁵, -CON(R⁵)₂, -CON(R⁵)₂, -CONR⁵Ar', -COAr', oder -S(O)_nA substituiertes Phenyl oder Naphthyl;

Ar': unsubstituiertes oder ein-, zwei- oder dreifach durch -A, -OR⁶, -N(R⁶)₂, -NO₂, -CN, -Hal, -NR⁶COA, -NR⁶SO₂A, -COOR⁶, -CON(R⁶)₂, -COR⁶, -SO₂NR⁶ oder -S(O)_nA substituiertes Phenyl oder Naphthyl;

Het: einen ein-, zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-

55

60

65

5

Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei- oder dreifach durch -A, -OR⁶, -N(R⁶)₂, -NO₂, -CN, -Hal, -NR⁶COA, -NR⁶SO₂A, -COOR⁶, -CON(R⁶)₂, -COR⁶, -SO₂NR⁶, -S(O)_nA und/oder Carbonylsauerstoff substituiert sein kann;

Hal: -F, -Cl, -Br oder -I;

I: 0, 1, 2, 3, 4 oder 5;

m: 0 oder 1;

n: 0, 1 oder 2;

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

o) Verbindungen der Formel I

o worin bedeuten:

R¹: durch -C(=NH)NH₂, das auch einfach durch -COA, -CO-[C(R⁷)₂]_n-Ar', -COOA, -OH oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann, -NHC(=NH)-NH₂, -CON=C(NH₂)₂,

substituiertes Phenyl oder Naphthyl, das gegebenenfalls durch -A, -OR⁵, -N(R⁵)₂, -NO₂, -CN, -Hal, -NR⁵COA, -NR⁵COAr', -NR⁵SO₂A, -NR⁵SO₂Ar', -COOR⁵, -CON(R⁵)₂, -COR⁷, -COAr' oder S(O)_nA substituiert sein kann; R²: -S(O)_nA, -CF₃, -COOR⁷, -OA;

 R^3 , R^4 : unabhängig voneinander, -H, -A, -OR⁵, -N(R⁵)₂, -NO₂, -CN, -Hal, -NR⁵COA, -NR⁵COAr', -NR⁵SO₂A, -NR⁵SO₂Ar', -COOR⁵, -CON(R⁵)₂, -CONR⁵Ar', -COR⁷, -COAr', -S(O)_nA;

35 $R^5 R^6$: unabhängig voneinander -H, -A, - $[C(R^7 R^8)]_n Ar'$ oder - $[C(R^7 R^8)]_n Het$;

R⁷, R⁸: unabhängig voneinander -H oder -A;

W: $-[C(R^5R^6)]_m \check{C} \check{O} NR^5[C(R^5R^6)]_{l^-}$, $-OC(R^5R^6)CONR^5[C(R^5R^6)]_{l^-}$,

A: Alkyl mit 1 bis 20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome oder durch -CH=CH-Gruppen und auch 1 bis 7 H-Atome durch -F ersetzt sein können;

Ar: unsubstituiertes oder ein-, zwei- oder dreifach durch -A, -Ar', -Het, -OR⁵, -N(R⁵)₂, -NO₂, -CN, -Hal, -NR⁵COA, -NR⁵COAr, -NR⁵SO₂A, -NR⁵SO₂Ar', -COOR⁵, -CON(R⁵)₂, -CONR⁵Ar', -COAr', -SO₂NR⁵, -S(O)_nAr' oder -S(O)_nA substituiertes Phenyl oder Naphthyl;

Ar': unsubstituiertes oder ein-, zwei- oder dreifach durch -A, -OR 7 , -N(R 7)₂, -NO₂, -CN, -Hal, -NR 7 COA, -NR 7 SO₂A, -COOR 7 , -CON(R 7)₂, -COR 7 , -SO₂NR 7 oder -S(O)_nA substituiertes Phenyl oder Naphthyl;

Het: einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei- oder dreifach durch -A, -OR⁷, -N(R⁷)₂, -NO₂, -CN, -Hal, -NR⁷COA, -NR⁷SO₂A, -COOR⁷, -CON(R⁷)₂, -COR⁷, -SO₂NR⁷, -S(O)_nA und/oder Carbonylsauerstoff substituiert sein kann;

Hal: -F, -Cl, -Br oder -I;

50 1: 0 oder 1;

m: 1 oder 2;

n: 0, 1 oder 2;

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

p) Verbindungen der Formel I

wobei bedeuten:

65 R¹ H, Cl, F, OH, OA, O-(CH₂)_n-Ar, NH₂, NHCOA, NHCOOA, NH-(CH₂)_n-Ar, CN, CONH₂, CSNH₂, C[NH]SA, C[NH]NH₂, C[NH]NHA, C[NH]NOH, C[NH]NOCOA, C[NH]NOCOA, C[NH]NOCOAr, C[NH]NHNH₂, C[NH]NHCOOA, C[NH]NHCOOA, C[NH]NHCOO-(CH₂)_m-Ar, C[NH]NHCOO-(CH₂)_m-Het, NHC[NH]NH₂, NHC[NH]NHCOOA, NHC[NH]NHCOO-(CH₂)_m-Ar, Q1,

 R^2 H, ein- oder mehrfach A, CF₃, Br, Cl, F, COA, COOH, COOA, CONH₂, CONHA, CONA₂, CH₂NH₂, CH₂NHCOA, CH₂NHCOA, NHSO₂A, OH, OA, OCF₃, NO₂, SO₂A, SO₂NH₂, SO₂NHA,

R³ H, COH, COA, COCF₃, COOA, SO₂A

 R^4 H, A, $-(CH_2)_n$ -Ar, $-(CH_2)_n$ -Het, $-(CH_2)_m$ -COOR 7 , $-(CH_2)_m$ -CONHR 7 , $-(CH_2)_n$ -S(O)_mA, $-(CH_2)_o$ -NH₂, $-(CH_2)_o$ -NHCOOA, $-(CH_2)_o$ -NHCOA, $-(CH_2)_o$ -NHCINH]NH₂, $-(CH_2)_o$ -(C[A]OH)-A, $-(CH_2)_o$ -OH, $-(CH_2)_o$ -OOA, $-(CH_2)_o$ -OCOA, $-(CH_2)_o$ -COOA, $-(CH_2)_o$

R⁶ OH, A, Ar,

R⁷ H, A, Ar, Het,

U CO, CH₂,

V NH, CO, O,

W Bindung, CO,

X CH, N,

Y Bindung, CH₂, CO, SO₂,

n 1, 2,

m 0, 1, 2,

o, 1, 2, 3, 4, 5,

p 2, 3, 4,

A Alkyl mit 1-20 C-Atomen (linear, verzweigt, cyclisch), worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome oder durch -CH=CH- oder -C≡C-Gruppen und auch 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, CF₃, Hal, OA, OCF₃, SO₂A, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NACOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-(CH₂)_m-Ar, COO-(CH₂)_m-Het CONH₂, CONHA, CONA₂, CONHAr, COA, COAr, CH₂Ar, -(CH₂)_m-NH₂, -(CH₂)_m-NHCOO, -(CH₂)_m-NHCOO, -(CH₂)_m-NHCOO -(CH₂)_m-NHCOO-(CH₂)_m-NHCOO-(CH₂)_m-Het, -(CH₂)_m-Het, NO₂, CN, CSNH₂, C[NH]SA, C[NH]OA, C[NH]NH₂, C[NH]NHOH, C[NH]NHCOOA, C[NH]NHCOOAr substituiertes Phenyl oder Naphthyl,

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei-, drei- oder vierfach durch A, CF₃, Hal, OH, OA, SO₂A, SO₂-(CH₂)_m-Ar, SO₂NH₂, SO₂NHA, SO₂NA₂, NH₂, NHA, NA₂, NHCHO, NHCOA, NHCOOA, NHSO₂A, NHSO₂Ar, COOH, COOA, COO-[CH₂]_m-Ar, CONH₂, CONHA, COA, COAr, CH₂NH₂, CH₂NHA, CH₂NHCHO, CH₂NHCOOA, CH₂NHCOOA, NO₂, CN, CSNH₂, C[NH]SA, C[NH]OA, C[NH]NH₂, C[NH]NHOH, C[NH]NHCOOA, C[NH]NHCOOAr, und/oder Carbonylsauerstoff substituiert sein kann,

Py 2-, 3- und/oder 4-Pyridyl, unsubstituiert oder ein- oder mehrfach substituiert durch A, Hal, CN, CONH₂, CONHA, COOH, COOA, CH₂NH₂, CH₂NHA, CH₂NHCHO, CH₂NHCOA, CH₂NHCOOA, CH₂OH, CH₂OA, CH₂OAr, CH₂OCOA, NO₂, NH₂, NHA, NA₂,

Hal F, Cl, Br, I,

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

q) Verbindungen der Formel I

wobei bedeutet:

 R^1 -(CH₂)_n-NH₂, -CON=C(NH₂)₂, -NHC(=NH)-NH₂ oder -C(=NH)-NH₂, das auch einfach mit -OH, -OCOOA, 5 -OCOO(CH₂)_nN(A)₂, -OCOO(CH₂)_m-Het, -CO-C(A)₂-R⁵, -COOA, -COOA, -COOAr, -COOAr' oder durch

$$N \longrightarrow Me$$
 $N \longrightarrow O$ $N \longrightarrow O$ $N \longrightarrow O$

substituiert sein kann,

R² H, COOA,

R³ unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O-oder S-Atome ersetzt sein können, Ar, Ar', X oder Hal,

R⁴ mit S(O)_kA, S(O)_kNHA, CF₃, COOA, CH₂NHA, CN oder OA monosubstituiertes Phenyl,

R5 -CHal3, -O(C=O)A oder

65

10

15

20

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, OH, OA, NH2, NHA, NA2, NO2, CF3, CN, Hal, NHCOA, COOA, CONH2, CONHA, CONA2, S(O)nA, S(O)nNH2, S(O)nNHA, S(O)nNA2 substituiertes Phenyl oder Naphthyl, $Ar' - (CH_2)_n - Ar$

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder durch A substituiert sein kann,

A H, unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-Atomen, X - (CH₂)_n - Y,

Y COOA, Hal F, Cl, Br oder I, n 1, 2, 3, 4, 5 oder 6, m 0 oder 1,

k 0, 1 oder 2,

10, 1, 2, 3 oder 4, sowie ihre pharmazeutisch verträglichen Salze und Solvate, r) Verbindungen der Formel I

worin bedeuten:

-D=E--N=C(NH₂)- oder -C(NH₂)=N-, R1, R2 unabhängig voneinander H, A, OR6, N(R6)2, NO2, CN, Hal, NR6COA, NR6COAr', NR6SO2A, NR6SO2Ar', COOR6, CON(R6)2, CONR6Ar', COR7, COAr', S(O)nA,

R³ SO₂(NR⁶)₂, S(O)_nA, CF₃, COOR⁶, OA, CN, R⁴, R⁵ unabhängig voneinander H, A, OR⁶, N(R⁶)₂, NO₂, CN, Hal, NR⁶COA, NR⁶COAr', NR⁶SO₂A, NR⁶SO₂Ar', COOR⁶, CON(R⁶)₂, CONR⁶Ar', COR⁷, COAr', S(O)_nA, R_{-}^{6} H, A, $[C(R^{7})_{2}]_{n}$ Ar' oder $[C(R^{7})_{2}]_{n}$ Het,

R⁷ H oder A,

-NR 6 C(R 6)₂CONR 6 [C(R 6)₂]₁-, $-[C(R^6)_2]_mCONR^6[C(R^6)_2]_1$ oder $CONR^6C(R^6)_2CONR^6[C(R^6)_2]_1$ -, W

 $-OC(R^6)_2CONR^6[C(R^6)_2]_{l}$ -, A Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH2-Gruppen durch O- oder S-Atome oder durch -CH=CH-Gruppen und auch 1-7 H-Atome durch F ersetzt sein können, Ar unsubstituiertes oder ein, zwei oder dreifach durch A, Ar', Het, OR6, N(R6)2, NO2, CN, Hal, NR6COA, NR6COAr',

NR⁶SO₂A, NR⁶SO₂Ar', COOR⁶, CON(R⁶)₂, CONR⁶Ar', COR⁷, COAr', SO₂NR⁶, S(O)_nAr' oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Ar' unsubstituiertes oder ein, zwei oder dreifach durch A, OR7, N(R7)2, NO2, CN, Hal, NR7COA, NR7SO2A, COOR7, CON(R⁷)₂, CORT, SO₂NR⁷ oder S(O)_nA substituiertes Phenyl oder Naphthyl,

Het einen ein- oder zweikermigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein, zwei- oder dreifach durch A, OR⁷, N(R⁷)₂, NO₂, CN, Hal, NR⁷COA, NR⁷SO₂A, COOR⁷, CON(R⁷)₂, COR⁷, SO₂NR⁷, S(O)_nA und/oder Carbonylsauerstoff substituiert sein

Hal F, Cl, Br oder I, n 0, 1 oder 2,

m 1 oder 2,

10 oder 1.

sowie ihre pharmazeutisch verträglichen Salze und Solvate,

s) Verbindungen der Formel I

$$D \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow (CH_2)_n \longrightarrow E \longrightarrow W \longrightarrow I$$

worin

D unsubstituiertes oder ein- oder mehrfach durch Hal, A, OR², N(R²)₂, NO₂, CN, COOR² oder CON(R²)₂ substituiertes Phenyl oder Pyridyl,

R¹ H, Ar, Het, Cycloalkyl oder A, das durch OR², SR², N(R²)₂, Ar, Het, Cycloalkyl, CN, COOR² oder CON(R²)₂ substituiert sein kann,

R² H oder A,

E Phenylen, das ein- oder mehrfach durch Hal, A, OR², N(R²)₂, NO₂, CN, COOR² oder CON(R²)₂ substituiert sein kann, oder Piperidin-1,4-diyl,

W Ar, Het oder $N(R^2)_2$ und falls E = Piperidin-1,4-diyl, auch R^2 oder Cycloalkyl,

X NH oder O,

A unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin eine oder zwei CH₂-Gruppen durch O- oder S-Atome und/oder durch -CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F ersetzt sein können,

Ar unsubstituiertes oder ein-, zwei- oder dreifach durch Hal, A, OR², N(R²)₂, NO₂, CN, COOR², CON(R²)₂, NR²COA, NR²SO₂A, COR², SO₂NR², SO₃H oder S(O)_mA substituiertes Phenyl,

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch Hal, A, OR², N(R²)₂, NO₂, CN, COOR², CON(R²)₂, ND²OA, ND²OA,

NR²OA, NR²SO₂A, COR², SO₂NR², SO₃H oder S(O)_mA und/oder Carbonylsauerstoff substituiert sein kann, Hal F, Cl, Br oder I,

n 0 oder 1,

m 0, 1 oder 2

bedeuten,

sowie ihre pharmazeutisch verträglichen Salze und Solvate.

[0045] Andere bevorzugte Faktor Xa Inhibitoren sind z. B. die in den nachstehenden Dokumenten beschriebenen Verbindungen:

a) in WO 97/30971, Seite 4, Zeile 5 bis Seite 13, Zeile 19;

- b) in EP 0 921 116 A1, Seite 2, Zeile 1 bis Zeile 51;
- c) in EP 0 540 051 B1, Seite 2, Zeile 41 bis Seite 3, Zeile 14;
- d) in EP 0 798 295 A1, Seite 69, Zeile 10 bis Seite 71, Seite 53;

[0046] Bevorzugte andere Verbindungen sind ausgewählt aus der Gruppe Defibrotide, Desirudin oder Lepirudin.

[0047] Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart), beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

[0048] In den Verbindungen der Formeln II oder III haben R¹, R², R³, R⁴, X und n die angegebenen Bedeutungen, insbesondere die angegebenen bevorzugten Bedeutungen.

[0049] Falls L eine reaktionsfähige veresterte OH-Gruppe bedeutet, so ist diese vorzugsweise Alkylsulfonyloxy mit 1–6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6–10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy, ferner auch 2-Naphthalinsulfonyloxy).

[0050] Die Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit Verbindungen der Formel III umsetzt.

[0051] Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

[0052] Andererseits ist es möglich, die Reaktion stufenweise durchzuführen.

[0053] Die Ausgangsverbindungen der Formel II und III sind in der Regel bekannt. Sind sie nicht bekannt, so können sie nach an sich bekannten Methoden hergestellt werden.

[0054] Verbindungen der Formel II können z. B. durch Umsetzung mit POCl₃ aus Verbindungen erhalten werden, die aus Thiophenderivaten und CN-substituierten Alkylencarbonsäureestern aufgebaut werden (Eur. J. Med. Chem. 23, 453 (1988)).

[0055] Im einzelnen erfolgt die Umsetzung der Verbindungen der Formel II mit den Verbindungen der Formel III in Gegenwart oder Abwesenheit eines inerten Lösungsmittels bei Temperaturen zwischen etwa –20 und etwa 150°, vorzugsweise zwischen 20 und 100°.

[0056] Der Zusatz eines säurebindenden Mittels, beispielsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise

15

20

25

30

40

45

55

des Kaliums, Natriums oder Calciums, oder der Zusatz einer organischen Base wie Triethylamin, Dimethylamin, Pyridin oder Chinolin oder eines Überschusses der Aminkomponente kann günstig sein.

[0057] Als inerte Lösungsmittel eignen sich z. B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwassertoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

[0058] Es ist ferner möglich, in einer Verbindung der Formel I einen Rest X in einen anderen Rest X umzuwandeln, z. B. indem man einen Ester oder eine Cyangruppe zu einer COOH-Gruppe hydrolysiert.

[0059] Estergruppen können z. B. mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

[0060] Carbonsäuren können z. B. mit Thionylchlorid in die entsprechenden Carbonsäurechloride und diese in Carbonsäureamide umgewandelt werden. Durch Wasserabspaltung in bekannter Weise erhält man aus diesen Carbonitrile. [0061] Eine Säure der Formel I kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Basen in Frage, die physiologisch unbedenkliche Salze liefern.

[0062] So kann die Säure der Formel I mit einer Base (z. B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

[0063] Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z. B. Ethanolamin.

[0064] Eine Säure der Formel I kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Basen in Frage, die physiologisch unbedenkliche Salze liefern.

30 [0065] So kann die Säure der Formel I mit einer Base (z. B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

[0066] Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z. B. Ethanolamin.

[0067] Andererseits kann eine Base der Formel I mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z. B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z. B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z. B. Pikrate, können zur Isolierung und/oder Aufreinigung der Verbindungen der Formel I verwendet werden.

[0068] Gegenstand der Erfindung sind ferner pharmazeutische Formulierungen enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze und mindestens ein Antithromboticum sowie enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.

[0069] Die Herstellung der pharmazeutischer Zubereitungen geschieht insbesondere auf nicht-chemischem Wege. Hierbei werden die Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform gebracht werden.

[0070] Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z. B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die tenische Anwendung Salben (Impraes oder Puder Die neuen Verbindungen können auch krophilisiert und die erhalten.

die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z. B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z. B. ein oder mehrere Vitamine. Sie könne ferner als Nasensprays verabreicht werden.

[0071] Dabei werden die Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, all-

gemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

[0072] Gegenstand der Erfindung ist daher auch die Verwendung der beschriebenen pharmazeutischen Zubereitungen zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz, Leberzirrhose und zur Behandlung weiblicher Sexualstörungen.

[0073] Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Formulierungen zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

[0074] Die Bestandteile der neuen pharmazeutischen Zubereitung werden vorzugsweise kombiniert verabreicht. Sie können aber auch einzeln gleichzeitig oder aufeinanderfolgend verabreicht werden.

[0075] Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

- (a) einer wirksamen Menge an 5-(4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]- benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und
- (b) einer wirksamen Menge eines Antithromboticums.

[0076] Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z. B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und des Anti-thromboticums gelöst oder in lyophylisierter Form vorliegt.

[0077] Gegenstand der Erfindung ist ferner die Verwendung von 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetra-hydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

[0078] Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation.

[0079] Massenspektrometrie (MS): EI (Elektronenstoß-Ionisation) M⁺ FAB (Fast Atom Bombardment) (M+H)⁺

Beispiel 1

[0080] 1,9 g 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester [erhältlich durch Cyclisierung von 2-Amino-4,5,6,7-tetrahydrobenzothiophen-3-carbonsäuremethylester mit 3-Cyanpropionsäuremethylester und nachfolgender Chlorierung mit Phosphoroxichlorid/Dimethylamin] und 2,3 g 3-Chlor-4-methoxybenzylamin ("A") in 20 ml N-Methylpyrrolidon werden 5 Stunden bei 110° gerührt. Das Lösungsmittel wird entfernt und wie üblich aufgearbeitet. Man erhält 2,6 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester als farbloses Öl.
[0081] Analog erhält man durch Umsetzung von "A"
mit 3-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester
mit 3-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

mit 3-(4-Cnior-3,0-cyclonepieno-[1]-benzotmeno-[2,3-d]-pyrimidin-2-yl)-propionsaurementylesier 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;

mit 3-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

3-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;

mit 3-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;

mit 3-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

3-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;

mit 3-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

3-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;

mit 2-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-essigsäuremethylester

2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-essigsäuremethyle-ster

[0082] Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

mit 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

3-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester:

mit 3-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester

15

20

25

35

45

50

55

60

100 00 220 111

- 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester:
- mit 3-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
- 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureme
 - mit 3-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
 - 3-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
 - mit 3-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
 - 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
- mit 3-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimid in-2-yl)-propionsäuremethylester
 - 3-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
 - mit 3-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
 - 3-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester. [0083] Analog erhält man durch Umsetzung von "A"
- mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethy-
- mit 4-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethy-
- - mit 4-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethy-
 - mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
- 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester; mit 4-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
 - mit 4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
- mit 4-(4,6-Chlor-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
 - 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.
 - [0084] Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
 - mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
 - 4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethy-
- - mit 4-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethyle-
 - mit 4-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
- 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethyle
 - mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
 - 4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
 - mit 4-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
- 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
 - mit 4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
 - 4-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
 - mit 4-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
 - 4-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.
- [0085] Analog erhält man durch Umsetzung von "A'
- mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-vaieriansäureme
 - mit 5-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
- 55 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäureme
 - mit 5-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäureme-
- mit 5-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester; mit 5-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester; mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
- $5-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valerians \"{a}ure methylester;$ mit 5-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.
 - [0086] Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

~~ IUU UJ ##J 11 1

```
mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäureme-
thylester:
mit 5-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäureme-
                                                                                                                      5
mit 5-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäureme-
mit 5-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
                                                                                                                      10
5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
mit 5-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
                                                                                                                     15
mit 5-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.
[0087] Analog erhält man durch Umsetzung von "A"
mit 7-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
mit 7-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
mit 7-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
                                                                                                                     25
7-[4-(3-Chlor-4-methoxy-benzylamino)-.5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
mit 7-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
mit 7-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
                                                                                                                     30
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
mit 7-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
mit 7-(4-Chlor-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester.
                                                                                                                     35
[0088] Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
mit 7-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
mit 7-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
                                                                                                                     40
7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
lester:
mit 7-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethy-
                                                                                                                     45
mit 7-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
mit 7-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
mit 7-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
                                                                                                                     50
7-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
mit 7-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
7-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester.
[0089] Analog erhält man durch Umsetzung von "A"
mit 2-[4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-cyclohexyl-1-yl]-essigsäuremethylester
                                                                                                                     55
2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-
yl}-essigsäuremethylester;
mit 2-[4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-cyclohexyl-1-yl]-essigsäuremethylester
2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäuremethy-
                                                                                                                     60
lester:
[0090] Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
mit 2-[4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-cyclohexyl-1-yl]-essigsäuremethylester
2-{4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-
yl}-essigsäuremethylester.
[0091] Analog erhält man durch Umsetzung von Benzylamin
                                                                                                                      65
mit 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
3-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester;
mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
```


- 4-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester, mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester, mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-Benzylamino-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
- mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-Benzylamino-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.

10

Beispiel 2

[0092] 2,2 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester wird in 20 ml Ethylenglycolmonomethylether gelöst und nach Zugabe von 10 ml 32%iger NaOH 5 Stunden bei 110° gerührt. Nach Zugabe von 20%iger HCl wird mit Dichlormethan extrahiert. Durch Zugabe von Petrolether erhält man 2,0 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, F. 229°.

[0093] Die ausgefallenen Kristalle werden in 30 ml Isopropanol gelöst und mit 0,5 g Ethanolamin versetzt. Nach Kristallisation erhält man 1,35 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, Ethanolaminsalz, F. 135°.

[0094] Analog erhält man aus den unter Beispiel 1 aufgeführten Estern die nachstehenden Carbonsäuren:

- 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
- 25 3-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
- 2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-essigsäure, Ethanolaminsalz, F. 126°;
 - 3-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
- 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
- 3-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - 3-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
- 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 142°;
 - 4-(4-(3-Chlor-4-methoxy-benzylamino)-5,6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
- 40 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 170°;
 - 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 114°;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
- 45 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 170°;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - 4-[4-(3,4-Methylendioxy-benzyiamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
- 50 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, F. 165°; Ethanol aminsalz, F. 112°;
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz,
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, I
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
- 5-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F.
- 5-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 5-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - 7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure, Etha-

nolaminsalz, F. 130°;	
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	5
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure, Etha-	
nolaminsalz, F. 137°;	
7-[4-(3,4-Methylendioxy-benzyiamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	10
7-[4-(3,4-Methylendioxy-benzytamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure; 7-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3,4-Methylendioxy-benzylamino)-5,6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	
7-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;	15
2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-	13
essigsäure;	
2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-essigsäure;	
2-{4-[4-(3,4-Methylendioxy-benzyiamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-	
essigsäure;	20
3-(4-Benzyiamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäure, Ethanolaminsalz, F. 126°;	
4-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäure, Ethanolaminsalz, F. 133°;	
5-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure, Ethanolaminsalz, F. 135°;	
4-[4-Benzylamino-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 165°;	
5-[4-Benzylamino-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 162°.	25
Beispiel 3	
1 Äquivalent 3-[4-(3-Chlor-4-methoxy-benzy[amino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-	
Il maintain and 1.2 A minutes Triangle hard granden of Stunden in Dichlographen gogillet. Dog I Stunden ittel	20

yl]-propionsäure und 1,2 Aquivalente Thionylchlorid werden 2 Stunden in Dichlormethan gerührt. Das Lösungsmittel wird entfernt und man erhält 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäurechlorid.

[0096] Man überführt in wässriges Ammoniak, rührt eine Stunde und erhält nach üblicher Aufarbeitung 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid.

Beispiel 4

[0097] 1 Äquivalent DMF und 1 Äquivalent Oxalylchlorid werden bei 0° in Acetonitril gelöst. Danach wird 1 Äquivalent 3-[4-(3-Chlor-4-methoxybenzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid zugegeben. Es wird eine Stunde nachgerührt. Nach üblicher Aufarbeitung erhält man 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionitril.

Beispiel 5

[0098] Analog zu den Beispielen 1 und 2 werden die nachstehenden Verbindungen erhalten	45
6-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-hexansäure,	
165°;	
2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, Et-	
hanolaminsalz, F. 150°;	
4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-2,2-dimethyi-but-	50
tersäure, Ethanolaminsalz, F. 130°;	
4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-2,2-dimethyl-but-	
tersäure, Ethanolaminsalz, F. 126°;	
5-[4-(3-Chlor-4-hydroxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-vaieriansäure, F.	
179°;	55
5-[4-(3,4-Dichlor-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanola-	
minsalz F. 136°;	
5-[4-(3-Chlor-4-isopropyloxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure,	
Ethanolaminsalz, F. 118°;	
2-[4-(4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-phenyl]-essig-	60
säure, Ethanolaminsalz, F. 119°;	
2-[4-(4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-phenyl]-essig-	

65

35

[0099] Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A

Injektionsgläser

[0100] Eine Lösung von 100 g eines Wirkstoffes der Formel I, 100 g des Antithromboticums und 5 g Dinatriumhydrogenphosphat wird in 3 l zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg jedes Wirkstoffs.

10

Beispiel B

Suppositorien

[0101] Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I, von 20 g eines Antithromboticums mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg jedes Wirkstoffs.

Beispiel C

20

Lösung

[0102] Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 1 g eines Antithromboticums, 9,38 g NaH₂PO₄ · 2 H₂O, 28,48 g Na₂HPO₄ · 12 H₂O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D

Salbe

30

[0103] Man mischt 500 mg eines Wirkstoffes der Formel I, 500 m g eines Antithromboticums mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E

35

Tabletten

[0104] Ein Gemisch von 1 kg Wirkstoff der Formen I, 1 kg eines Antithromboticums, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg jedes Wirkstoffs enthält.

Beispiel F

Dragees

45

[0105] Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

Beispiel G

50

Kapseln

[0106] 2 kg Wirkstoff der Formel I und 2 kg eines Antithromboticums werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg jedes Wirkstoffs enthält.

55

Beispiel H

Ampullen

60 [0107] Eine Lösung von 1 kg Wirkstoff der Formel I und 1 kg eines Antithromboticums in 60 l zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg jedes Wirkstoffs.

Beispiel I

65

Inhalations-Spray

[0108] Man löst 14 g Wirkstoff der Formel I und 14 g eines Antithromboticums in 10 l isotonischer NaCl-Lösung und

füllt die Lösung in handelsübliche Sprühgefäße mit Pump-Mechanismus. Die Lösung kann in Mund oder Nase gesprüht werden. Ein Sprühstoß (etwa 0,1 ml) entspricht einer Dosis von etwa 0,14 mg jedes Wirkstoffs.

Patentansprüche

- 1. Pharmazeutische Formulierung enthaltend mindestens einen Phosphodiesterase V-Hemmer und/oder dessen physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.
- 2. Pharmazeutische Formulierung nach Anspruch 1 enthaltend mindestens eine Verbindung der Formel I

$$R^{2}$$
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{7

worin

- R¹, R² jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R oder R² immer ≠ H ist,
- R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,
- R³, R⁴ jeweils unabhängig voneinander H, A, OH, OA oder Hal,
- R³ und R⁴ zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O-,
- X einfach durch R⁷ substituiertes R⁵ oder R⁶,
- R⁵ lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, worin eine oder zwei CH₂-Gruppen durch -CH=CH-Gruppen ersetzt sein können, oder C₆H₄-(CH₂)_m-,
- R⁶ Cycloalkylalkylen mit 6-12 C-Atomen,
- R⁷ COOH, COOA, CONH₂, CONHA, CON(A)₂ oder CN,
- A Alkyl mit 1 bis 6 C-Atomen,
- Hal F, Cl, Br oder I,
- m 1 oder 2 und
- n 0, 1, 2 oder 3

bedeuten,

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.

- 3. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2, worin X durch COOH oder COOA substituiertes R⁵ oder R⁶ bedeutet; und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.
- 4. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2, worin
- R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R^1 oder R^2 immer \neq H ist, R^3 und R^4 zusammen Alkylen mit 3–5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O,
- X durch COOH oder COOA, substituiertes R5 oder R6 bedeuten;
- und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.
- 5. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2, worin
- R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R^1 oder R^2 immer \neq H ist, R^3 , R^4 jeweils unabhängig voneinander H, A, OA oder Hal, R^3 und R^4 zusammen Alkylen mit 3–5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O,
- X durch COOH oder COOA substituiertes R⁵ oder R⁶,
- n 1 oder 2
- bedeuten;
- und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.
- 6. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2, worin
- R¹, R² jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist,
- R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,
- R³, R⁴ jeweils unabhängig voneinander H, A, OA oder Hal,
- R³ und R⁴ zusammen auch -O-CH₂-O-,
- X einfach durch R⁷ substituiertes R⁵,
- R⁵ lineares oder verzweigtes Alkylen mit 1–10 C-Atomen, oder -C₆H₄-CH₂-,
- R⁷ COOH oder COOA,
- A Alkyl mit 1 bis 6 C-Atomen,
- Hal F, Cl, Br oder I,
- m 1 und
- n 1 oder 2
- bedeuten;

5

25

30

35

45

50

60

~~ IOO OJ ~~~ IX I

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.

- 7. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2, worin
- R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R^1 oder R^2 immer \neq H ist,

R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

R³, R⁴ jeweils unabhängig voneinander H, A, OH, OA oder Hal,

R³ und R⁴ zusammen auch -O-CH₂-O-,

X einfach durch R⁷ substituiertes R⁵,

- R⁵ lineares oder verzweigtes Alkylen mit 1-10 C-Atomen; oder -C₆H₄-CH₂-,
- 10 R⁷ COOH oder COOA,

A Alkyl mit 1 bis 6 C-Atomen,

Hal F, Cl, Br oder I,

m 1 und

n 1 oder 2

15 bedeuten;

5

20

25

30

40

45

50

55

60

65

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Antithromboticum.

- 8. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 2 ausgewählt aus der Gruppe
 - (a) 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
 - (b) 4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-but-tersäure:
 - (c) 7-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure:
 - (d) 7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure:
 - (e) 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - (f) 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
 - (g) 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - (h) 4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
 - (i) 2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure;
 - (k) 5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure.
- 9. Pharmazeutische Formulierung nach Anspruch 2, enthaltend mindestens
 - 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und mindestens ein Antithromboticum.
 - 10. Pharmazeutische Formulierung nach den Ansprüchen 1 bis 9, worin das Antithromboticum ausgewählt ist aus der Gruppe der Vitamin K Antagonisten, Heparinverbindungen, Thrombozytenaggregationshemmer, Enzyme, Faktor Xa Inhibitoren, Faktor VIIa Inhibitoren, andere antithrombotische Agenzien.
 - 11. Pharmazeutische Formulierung nach Anspruch 10, wobei die Vitamin K Antagonisten ausgewählt sind aus der Gruppe Dicoumarol, Phenindione, Warfarin, Phenprocoumon, Acenocoumarol, Ethyl-biscoumacetat, Clorindione, Diphenadione, Tioclomarol.
 - 12. Pharmazeutische Formulierung nach Anspruch 10, wobei die Heparinverbindungen ausgewählt sind aus der Gruppe Heparin, Antithrombin III, Dalteparin, Enoxaparin, Nadroparin, Parnaparin, Reviparin, Danaparoid, Tinzaparin, Sulodexide.
 - 13. Pharmazeutische Formulierung nach Anspruch 10, wobei die Thrombozytenaggregationshemmer ausgewählt sind aus der Gruppe Ditazole, Cloricromen, Picotamide, Clopidogrel, Ticlopidine, Acetylsalicylsäure, Dipyridamole, Calcium carbassalat, Epoprostenol, Indobufen, Iloprost, Abciximab, Tirofiban, Aloxiprin, Intrifiban.
 - 14. Pharmazeutische Formulierung nach Anspruch 10, wobei die Enzyme ausgewählt sind aus der Gruppe Streptokinase, Alteplase, Anistreplase, Urokinase, Fibrinolysin, Brinase, Reteplase, Saruplase.
 - 15. Pharmazeutische Formulierung nach Anspruch 10, wobei andere antithrombotische Agenzien ausgewählt sind aus der Gruppe Defibrotide, Desirudin, Lepirudin.
 - 16. Pharmazeutische Formulierung nach Anspruch 10, wobei das Antithromboticum ausgewählt ist aus der Gruppe der Blutplättchen-Glycoprotein-Rezeptor (IIb/IIIa)-Antagonisten.
 - 17. Pharmazeutische Formulierung nach einem der vorhergehenden Ansprüche enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.
 - 18. Verwendung einer pharmazeutischen Zubereitung gemäß einem der Ansprüche 1 bis 17 zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz, Leberzirrhose und zur Behandlung weiblicher Sexualstörungen.
 - 19. Verwendung nach Anspruch 18 zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.
 - 20. Set (Kit), bestehend aus getrennten Packungen von
 - (a) einer wirksamen Menge an 5-[4-(3-Chlor-4-methoxybenzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-

1/1/ 1/1/ UJ 44J 11 1

[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und

(b) einer wirksamen Menge eines Antithromboticums.

21. Verwendung von 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

- Leerseite -