Nichtlokalität und Bell'sches Theorem

Benjamin Maier

Institut für Physik Humboldt-Universität zu Berlin

20. Januar 2011

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Inhaltsverzeichnis

- Eigenschaften klassischer physikalischer Theorien
- 2 Einstein-Podolsky-Rosen-Argumentation (EPR)
- Bell'sches Theorem
- 4 Konsequenzen für die Quantenmechanik

Eigenschaften klassischer physikalischer Theorien

Realität und Vollständigkeit

Eine Größe, die bei Messung ohne Störung des Systems mit Sicherheit vorausgesagt werden kann, ist ein Element physikalischer Realität. Jedes Element physikalischer Realität hat ein eindeutiges Gegenstück in der vollständigen physikalischen Theorie.

Lokalität

Eine Wechselwirkung zwischen zwei Ereignissen oder Objekten nimmt mit steigender Entfernung ab.

Moderne Physik: Eine Wechselwirkung fordert den Austausch einer Information (Photon, Gluon, etc.). Dies kann nicht instantan geschehen, sondern ist durch die Lichtgeschwindigkeit begrenzt.

EPR-Argumentation

- Phys. Rev. 47, S. 777 (1935): Orts- und Impulsmessung an verschränkten Teilchen
- Spin-0-Teilchen zerfällt in zwei Spin- $\frac{1}{2}$ -Teilchen im Singulettzustand

$$|\Psi
angle = rac{1}{\sqrt{2}}igg(|+-
angle \ - \ |-+
angleigg)$$

4 D > 4 A > 4

 D_1

Möglicher Aufbau eines 2-Spin-Experiments, aus F. Schwabl: "Quantenmechanik", S.400

EPR-Argumentation

$$|\Psi
angle = rac{1}{\sqrt{2}} ig(|+-
angle \ - \ |-+
angle ig)$$

- Messen Spin an Teilchen α (± 1) \Rightarrow Spin an Teilchen β automatisch bekannt (∓ 1)
- Verstoß gegen Realitätsanspruch und Lokalität
 ⇒ unvollständige Theorie
- Lösung: verborgene Parameter

Setup des Gedankenexperiments

• drei verschränkte Spin- $\frac{1}{2}$ -Teilchen in einem GHZ-Zustand (nach Greenberger, Horne, Zeilinger) 1

GHZ-Zustand

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \Big(|+++\rangle - |---\rangle \Big)$$

- Teilchen räumlich voneinander trennen
- an zwei Teilchen Spin messen, um dritten Spin vorhersagen zu können

¹Am. J. Phys. 58, Nr. 12, S. 1131 (1990)

Setup des Gedankenexperiments

Möglicher Aufbau eines 3-Teilchen-Experiments mit Spinmessung, nach Greenberger, et. al.

Spin

Paulimatrizen in x-y-Ebene

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{\mathsf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\begin{split} \sigma_{x}|+\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |-\rangle, \qquad \sigma_{x}|-\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |+\rangle \\ \sigma_{y}|+\rangle &= i|-\rangle, \qquad \qquad \sigma_{y}|-\rangle &= -i|+\rangle \end{split}$$

Zustand $|\Psi\rangle=\frac{1}{\sqrt{2}}\big(|+++\rangle - |---\rangle\big)$ ist Eigenzustand der Operatoren $\sigma_{xi}~\sigma_{yj}~\sigma_{yk}~(i\neq j\neq k)$

$$\sigma_{xi}\sigma_{yj}\sigma_{yk}|\Psi\rangle = \frac{1}{\sqrt{2}}\Big((+1)(i)^2|---\rangle - (+1)(-i)^2|+++\rangle\Big)$$

$$= |\Psi\rangle$$

Verborgene Parameter

- $\langle \sigma_{xi} \ \sigma_{yj} \ \sigma_{yk} \rangle = 1$
- binäre Möglichkeiten der Messungen (Ergebnisse ± 1) \Rightarrow Zustände von zwei Teilchen bekannt, Zustand des dritten folgt automatisch
- ullet EPR-Argument: nur möglich durch verborgenen Parameter λ , der vorher festgelegten vollständigen Zustand definiert
- Funktionen $X_j(\lambda)=\pm 1,\,Y_j(\lambda)=\pm 1$ definieren Spinmesswerte in x- und y-Richtung in Abhängigkeit des verborgenen Parameters λ

Verborgene Parameter

- $X_j(\lambda) = \pm 1, Y_j(\lambda) = \pm 1$ (Messergebnis des Spins in x- bzw. y-Richtung)
- führen Messungen durch, aus obiger Rechnung $\langle \sigma_{xi} \ \sigma_{yj} \ \sigma_{yk} \rangle = 1$ folgt

$$X_1 \ Y_2 \ Y_3 = 1$$

 $Y_1 \ X_2 \ Y_3 = 1$
 $Y_1 \ Y_2 \ X_3 = 1$

Produkt aller Gleichungen

$$(Y_1)^2 (Y_2)^2 (Y_3)^2 X_1 X_2 X_3 = 1$$

 $X_1 X_2 X_3 = 1$

Quantenmechanik

- Ergebnis der EPR-Argumentation: $\langle \sigma_{x1} \ \sigma_{x2} \ \sigma_{x3} \rangle = 1$
- Vergleich: an allen Teilchen des Zustands $|\Psi\rangle=\frac{1}{\sqrt{2}}\big(|+++\rangle\ -\ |---\rangle\big)$ wird $\sigma_{\scriptscriptstyle X}$ gemessen

$$\sigma_{x1} \sigma_{x2} \sigma_{x3} |\Psi\rangle = \frac{1}{\sqrt{2}} \left((+1)^3 |---\rangle - (+1)^3 |+++\rangle \right)$$
$$= -|\Psi\rangle$$

• \Rightarrow Ergebnis der QM: $\langle \sigma_{x1} \ \sigma_{x2} \ \sigma_{x3} \rangle = -1$

Bellsches Theorem

Die Ergebnisse einer Quantentheorie mit lokalen verborgenen Parametern sind unvereinbar mit denen der Quantenmechanik.

Experimentelle Durchführung

- J.-W. Pan, et. al. Nature 403, S. 515 (2000):
 3 verschränkte Photonen, horizontal (H) bzw. vertikal (V) polarisiert
- befinden sich in einem GHZ-Zustand

$$|\Psi\rangle = rac{1}{\sqrt{2}}igg(|H_1
angle|H_2
angle|H_3
angle + |V_1
angle|V_2
angle|V_3
angleigg)$$

• drücken Zustand durch 45° verschobene lineare Polarisation $|H'\rangle(|V'\rangle)$ und zirkulare Polarisation $|R\rangle(|L\rangle)$ aus

Darstellung in zirkularer und linearer Polarisation

$$|\Psi
angle = rac{1}{\sqrt{2}}igg(|H_1
angle|H_2
angle|H_3
angle + |V_1
angle|V_2
angle|V_3
angleigg)$$

$$|H'\rangle = \frac{1}{\sqrt{2}} \Big(|H\rangle + |V\rangle \Big), \qquad |V'\rangle = \frac{1}{\sqrt{2}} \Big(|H\rangle - |V\rangle \Big)$$

 $|R\rangle = \frac{1}{\sqrt{2}} \Big(|H\rangle + i|V\rangle \Big), \qquad |L\rangle = \frac{1}{\sqrt{2}} \Big(|H\rangle - i|V\rangle \Big)$

- Messung linearer Polarisation an einem Teilchen: x-Messung, Ergebnis: +1 (-1) für H' (V')
- Messung zirkularer Polarisation an einem Teilchen: y-Messung, Ergebnis: +1 (-1) für R (L)

Darstellung in zirkularer und linearer Polarisation

$$|\Psi\rangle = rac{1}{\sqrt{2}}igg(|\mathcal{H}_1
angle|\mathcal{H}_2
angle|\mathcal{H}_3
angle + |\mathcal{V}_1
angle|\mathcal{V}_2
angle|\mathcal{V}_3
angleigg)$$

- Beispiel: yyx-Messung
- Wellenfunktion für diesen Fall:

$$\begin{split} |\Psi\rangle &= \frac{1}{2} \bigg(|R\rangle_1 |L\rangle_2 |H'\rangle_3 + |L\rangle_1 |R\rangle_2 |H'\rangle_3 + \\ &+ |R\rangle_1 |R\rangle_2 |V'\rangle_3 + |L\rangle_1 |L\rangle_2 |V'\rangle_3 \bigg) \end{split}$$

Zustandsmessung I

Zweifache Messung zirkularer Polarisation und einfache Messung linearer Polarisation in allen Kombinationen

Verborgene Parameter

• Beispiel: yyx-Messung, Wellenfunktion für diesen Fall:

$$|\Psi\rangle = \frac{1}{2} \Big(|R\rangle_1 |L\rangle_2 |H'\rangle_3 + \dots \Big)$$

- Funktionen verborgener Parameter für jedes Photon j: $X_j = \pm 1$ (H'/V') und $Y_j = \pm 1$ (R/L)
- Messungen:

$$X_1 \ Y_2 \ Y_3 = -1$$

 $Y_1 \ Y_2 \ X_3 = -1$
 $Y_1 \ X_2 \ Y_3 = -1$
 $\Rightarrow X_1 \ X_2 \ X_3 = -1$

- X_1 X_2 $X_3=-1$ bedeutet z.B., dass Zustand $|H'\rangle_1|H'\rangle_2|V\rangle_3$ Teil der Wellenfunktion für diese Messung ist
- ist in Wellenfunktion jedoch nicht enthalten!

Zustandsmessung II

Konsequenzen für die Quantenmechanik

- Kopenhager Deutung der QM ist nicht lokal
 - Wellenfunktion kollabiert über hohe Reichweiten hinweg
 - Salart, et. al., 2008²: Kollaps der Wellenfunktion geschieht vermutlich instantan, mindestens mit 10⁴ c
- nicht real: es existieren keine verborgenen Parameter
- Alternative: Bohm'sche Mechanik
 - ordnet Teilchen neben Wellenfunktion auch Trajektorienfunktion zu
 - Kenntnis von Anfangsort ⇒ Kenntnis der Trajektorie
 - ebenfalls nicht lokal, trotz verborgener Parameter

Fazit[']

Die Quantenmechanik kann nicht in Einklang gebracht werden mit den Ansprüchen klassischer physikalischer Theorien. Die Vorstellung von Prozessen auf Quantenebene muss in einer Formulierung geschehen, deren Eigenschaft Nichtlokalität ist.

Vielen Dank für Ihre Aufmerksamkeit!

Weiterführende Literatur

"Bell's Theorem without Inequalities", von D. M. Greenberger, M. A. Horne, A. Shimony, A. Zeilinger: Am. J. Phys. 58, Nr. 12, S. 1131 (1990)

"Experimental Test of Quantum Nonlocality in Three-photon GHZ Entanglement", von J-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter Und A. Zeilinger, Nature (London) 403, 515 (2000)

"Testing the speed of 'spooky action at a distance", von D. Salart, A. Baas, C. Branciard, N. Gisin, H. Zbinden, Nature 454, 861 (2008)

A. Afriat und F. Selleri: "The Einstein, Podolsky and Rosen Paradox in Atomic, Nuclear and Particle Physics", erschienen bei Plenum Press, New York und London. 1999

F. Schwabl: "Quantenmechanik", S.401ff., erschienen bei Springer, Heidelberg, 2007

Wikipedia Foundation, Inc. (http://de.wikipedia.org/ , Stand: 18.01.2010), Artikel:

- EPR-Effekt
- Lokalität (Physik)
- De-Broglie-Bohm-Theorie
- Bellsche Ungleichung

