SIAE - 2013

C13

Décollement en supersonique*

*: Cours ENSMA pp78-80 et ENSICA pp118-135

J. Délery /J. Gressier

UF Energétique et Propulsion

gressier@isae.fr

Décollement en supersonique: exemples et physique (1)

Décollement en supersonique: exemples et physique (2)

Décollement en supersonique: exemples et physique (3)

Décollement en supersonique: exemples et physique (4)

Décollement en supersonique: exemples et physique (5)

Décollement en supersonique: exemples et physique (6)

Décollement en supersonique: exemples et physique (7)

Simulations Prof. J. Gréssier (ISAE)

Décollement en supersonique: modélisation (1)

région du décollement

pression à la paroi

Décollement en supersonique: modélisation (2)

les bases de l'analyse théorique

équation du mouvement (approximation couche limite)

$$\rho \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \rho \mathbf{v} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\mathbf{d}\mathbf{p}}{\mathbf{d}\mathbf{x}} + \frac{\partial \tau}{\partial \mathbf{y}}$$

à la paroi
$$\longrightarrow$$
 $\mathbf{u} = \mathbf{v} = \mathbf{0}$ \longrightarrow $\frac{\mathbf{dp}}{\mathbf{dx}} = \left(\frac{\partial \tau}{\partial \mathbf{y}}\right)_{\mathbf{p}}$

introduction d'échelles caractéristiques

$$\overline{\mathbf{x}} = \frac{\mathbf{x} - \mathbf{x_0}}{\mathbf{I}}$$

$$\overline{\mathbf{y}} = \frac{\mathbf{y}}{\delta_{\mathbf{0}}^*}$$

$$\overline{\tau} = \frac{\tau}{\tau_{P_0}}$$

$$\overline{\mathbf{x}} = \frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{L}} \qquad \overline{\mathbf{y}} = \frac{\mathbf{y}}{\delta_0^*} \qquad \overline{\tau} = \frac{\tau}{\tau_{P_0}} \qquad \overline{\mathbf{p}} = \frac{\mathbf{p} - \mathbf{p}_0}{1/2\gamma \mathbf{p}_0 \, \mathsf{M}_0^2}$$

$$\frac{1/2\gamma p_0 M_0^2}{L} \frac{d\overline{p}}{d\overline{x}} = \frac{\tau_{P_0}}{\delta_0^*} \left(\frac{\partial \overline{\tau}}{\partial \overline{y}}\right)_0 \longrightarrow \frac{d\overline{p}}{d\overline{x}} = \frac{L}{1/2\gamma p_0 M_0^2} \frac{\tau_{P_0}}{\delta_0^*} \left(\frac{\partial \overline{\tau}}{\partial \overline{y}}\right)_0$$

Décollement en supersonique: modélisation (3)

intégration
$$\longrightarrow \overline{p}(\overline{x}) = \frac{L}{1/2\gamma p_0 M_0^2} \frac{\tau_{P_0}}{\delta_0^*} \int_0^{\overline{x}} \left(\frac{\partial \overline{\tau}}{\partial \overline{y}}\right)_0 d\overline{x}$$
 1

équation d'interaction ou de couplage

$$tg\phi \cong \phi = \delta\phi = \frac{d\delta^*}{dx}$$

relation caractéristique linéarisée

$$\frac{\sqrt{M_0^2 - 1}}{\gamma M_0^2} \frac{dp}{p_0} - d\phi = 0$$

$$\frac{\sqrt{M_0^2 - 1}}{\gamma M_0^2} \frac{dp}{p_0} = \frac{d\delta^*}{dx}$$

Décollement en supersonique: modélisation (4)

introduction des échelles caractéristiques

intégration
$$\overline{p}(\overline{x}) = \frac{2}{\sqrt{M_0^2 - 1}} \frac{\delta_0^*}{L} \int_0^{\overline{x}} \frac{d\overline{\delta}^*}{d\overline{x}} d\overline{x}$$
 (2)

$$\overline{p} \big(\overline{x} \big)^2 = \frac{L}{1/2 \gamma p_0 M_0^2} \frac{\tau_{P_0}}{\delta_0^*} \frac{2}{\sqrt{M_0^2 - 1}} \frac{\delta_0^*}{L} \Bigg(\int_0^{\overline{x}} \left(\frac{\partial \overline{\tau}}{\partial \overline{y}} \right)_0^* d\overline{x} \right) \Bigg(\int_0^{\overline{x}} \frac{d\overline{\delta}^*}{d\overline{x}} d\overline{x} \Bigg)$$

Décollement en supersonique: modélisation (5)

fonction de corrélation sans dimension

$$\mathbf{F}(\overline{\mathbf{x}}) = \sqrt{\left(\int_0^{\overline{\mathbf{x}}} \left(\frac{\partial \overline{\mathbf{t}}}{\partial \overline{\mathbf{y}}}\right)_0^{\mathbf{d}} d\overline{\mathbf{x}}\right) \left(\int_0^{\overline{\mathbf{x}}} \frac{d\overline{\delta}^*}{d\overline{\mathbf{x}}} d\overline{\mathbf{x}}\right)}$$

coefficient de frottement pariétal

$$C_{f_0} = \frac{\tau_{P_0}}{1/2\gamma p_0 M_0^2}$$

$$\frac{p(\overline{x})}{p_0} = 1 + \frac{\gamma}{2} M_0^2 \sqrt{\frac{2C_{f0}}{\beta_0}} F(\overline{x})$$

Décollement en supersonique: modélisation (6)

conséquence \implies durant le décollement la compression obéit à la relation :

$$\frac{\mathbf{p}(\mathbf{x})}{\mathbf{p}_0} = 1 + \frac{\gamma}{2} \mathbf{M}_0^2 \sqrt{\frac{2C_{f0}}{\beta_0}} \mathbf{F}(\mathbf{x})$$

où :
$$\beta_0 = \sqrt{M_0^2 - 1}$$

X est l'abscisse normalisée $\bar{x} = (x - x_0)/L$ avec $L = X_D - X_0$

F(X) est une fonction de corrélation ne dépendant que de X pour un état laminaire ou turbulent de la couche limite donné

Décollement en supersonique: modélisation (7)

fonction de corrélation pour la pression

écoulement laminaire

écoulement turbulent

un écoulement laminaire décolle beaucoup plus facilement qu'un écoulement turbulent

Critères de décollement (1)

prédire la valeur limite du rapport de pression p_K / p_E produisant le décollement de la couche limite

$$\begin{split} &\frac{p_{\text{K}}}{p_{\text{E}}} = 1 + 6\frac{\gamma}{2} M_{\text{E}}^2 \sqrt{\frac{2C_{f_{\text{E}}}}{\beta_{\text{E}}}} \\ &\text{critère de Zukoski} & \frac{p_{\text{K}}}{p_{\text{E}}} = 1 + 0.5\,M_{\text{E}} \\ &\text{critère de Green} & \frac{M_{\text{K}}}{M_{\text{E}}} = 0.78 \\ &\text{critère de Schmucker} & \frac{p_{\text{E}}}{p_{\text{K}}} = \left(1.88M_{\text{E}} - 1\right)^{-0.64} \end{split}$$

Critères de décollement (2)

Méthode de calcul de la poussée d'une tuyère avec décollement

- 1. calculer l'écoulement dans la tuyère amorcée jusqu'en sortie
- 2. appliquer un critère de décollement en sortie tuyère

$$p_{K} > p_{a}$$
 pas de décollement $p_{K} < p_{a}$ décollement

- 3. déterminer la position du décollement dans la tuyère section X_D telle que le critère appliqué en $X_D \longrightarrow P_K = P_a$
- 4. poussée = poussée de la partie non décollée + poussée de la partie décollée

Critères de décollement (3)

> Alternative: approche de Korst (1955)

➤ Modèle physique:

> Hypothèses:

Couche limite en (0) négligée La vitesse sur la ligne de jet proportionnelle à KV₁ La recompression = choc oblique

 $\theta = \theta (M_1)$

Critères de décollement (4)

Résultats avec l'approche de Korst (1955)

