Introduction to Machine Learning

→ Summary
→ ML?

-> MLE VS SDE

> ML Tasks

-> Type> of learning

Already Learnt

-> DS Libraries: Numpy, Pandas, Senborn

Jumpy:

X & Y

mp.dot (X,Y)

mp.dot (W,X)

Pandas: read & manipulate data frames

matphotible scarborn :

Prob. & States

Calculus & Optimization
Loss func.

diff

Minimire loss "Gradient", Parthal dif

ML v/s Classical Programming:

What is ML?

Definition by Arthur Samuel -

explicitly

ML provides ability to learn without being programmed

Q.1 - But can a "dumb" computer perform anything by itself if don't tell what to do?

Q.2 - If somehow, let's assume that it is possible, shouldn't we use ML for everything?

Think: Why do we have SDEs then? Why not all of them MLEs?

Lets understand with a task

Given an email, you have to identify whether is spam or not spam

How does the SDE pipeline look?

1. Look at the data, find some "patterns" certain keywords, certain phrases

2. Build a long if-elif-else with lots of rule

We can visualise the SDE approach as

- Inputs Input text, Rules (written by programmer)
- 2. Output Decision (Spam/Not Spam)

Can you think of any potential problems here?

- Rules are rigid will it handle synonyms?
- Lot of hard coding every new pattern, even similar, has to be added separately

ontbut Prediction Deuisien (5/45) - mapping | function

How does the ML pipeline look?

We can visualise the ML approach as

- Inputs Training Data (Text, Decision (Spam/Not Spam))
- 2. Learning Algorithm ML Algo
- Output Trained Model (also called Hypothesis)

Given a "unknown" sample, we can use hypothesis to "predict" whether its a spam or not spam

Mitchell Tom M.

a computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Hishoul Smail (S/NS)

Accuracy

Past stock price data

Predict Price Stock

Fredricted ~ 1050 Achal ~ 918

Based on the type of "task" ML Algos can be categorised as

Classification:

Classify into one of categories,

e.g: citrus 55 fruits classification

Span Detection

Regression:

predict a real value, Continu e.g. price prediction

- House Price

using stock fundamentals

Clustering:

Group similar samples,

e.g: customer

segmentation

Recommendation:

A different task e.g: recommend a movie Netflix

Forecasting:

Forecasting stock prices based on last 10 IDdays prices

Time series
Forecasting

Which of the followings is/are true about classification?

42 users have participated

Classification can be defined as a predictive model mapping inputs to discrete outputs

Class label prob. enables classification algos to predict continuous values.

7%

A classification algorithm can have both discrete and real-valued input variables.

P(7=5/x)

Based on the type of "learning" use in training the model

Supervised Learning:

Output labels used for training

Unsupervised Learning:

Output labels are not used

Reinforcement Learning:

To be discussed later

Span Detection

House Price Prediction

Unsupervised clusking group similar 3 Cakquiris" Amazon date 500K 300 K C+ 3 Sook

Keg 8 ession

Classification

$$D = \left\{ (x^{i}, y^{i})_{i=1}^{N}; x_{i} \in \mathbb{R}^{n}, y_{i} \in \{0,1\} \right\} D = \left\{ (x^{i}, y^{i})_{i=1}^{N}; x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R} \right\}$$

$$\mathbb{R}^{2}$$