МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Факультет транспортных коммуникаций

НАУКА — ОБРАЗОВАНИЮ, ПРОИЗВОДСТВУ, ЭКОНОМИКЕ

Материалы 18-й Международной научно-технической конференции (73-й научно-технической конференции профессорско-преподавательского состава, научных работников, докторантов и аспирантов БНТУ)

Минск БНТУ 2020

Редакционная коллегия: кандидат технических наук, доцент С.Е. Кравченко; старший преподаватель С.Н. Соболевская.

Главный редактор: старший преподаватель С.Н. Соболевская.

> Технические редакторы: С.Н. Соболевская, Е.В. Богданова

В сборник включены тезисы докладов, представленные на 18-й Международной научно-технической конференции (73-й научно-технической конференции профессорско-преподавательского состава, научных работников, докторантов и аспирантов БНТУ). Факультет транспортных коммуникаций.

Рег. № БНТУ/ФТК-91.2020

© Белорусский национальный технический университет, 2020

Секция 4

ГЕОДЕЗИЯ И АЭРОКОСМИЧЕСКИЕ ГЕОТЕХНОЛОГИИ

СРАВНЕНИЕ МЕТОДИК ТРАНСФОРМАЦИИ КООРДИНАТ ПРИ СОЗДАНИИ ЦММ ДЛЯ СТРОИТЕЛЬСТВА ПРОМЫШЛЕННОГО ОБЪЕКТА

Будо А.Ю., Бобрович А.С. Белорусский национальный технический университет

Аннотация

В статье рассмотрены вопросы применения современных геодезических приборов, спутниковых измерений и методов трансформации координат при выполнении топографической съемки для строительства промышленного объекта.

Целью исследования являлось получение цифровой модели местности с использованием разработанного авторами на языке C++ программного продукта с графическим интерфейсом.

Под топографической съемкой понимают комплекс мероприятий на местности для составления инженерно-топографического плана. Топографический план — это уменьшенное подобное изображение участка местности на плоскости, на котором отображены элементы ситуации и рельефа местности, а также подземные и надземные коммуникации.

ГНСС-оборудование и современные тахеометры стали основным инструментами в инженерно-геодезических изысканиях. Эти приборы позволяют в кротчайшие сроки, с меньшими усилиями и высокой точностью выполнить геодезические работы и тахеометрическую съемку.

В процессе выполнения топографической съемки для строительства котельной на МВТ по ул. Дзержинского в г. Кобрине применялись ГНСС-приемник Leica GS07 GSM с контроллером Leica CS20 и электронный тахеометр Leica TS06 power 5".

Планово-высотное съемочное геодезическое обоснование строилось следующим образом: исходными пунктами для создания съемочного обоснования послужили точки, координаты которых были получены посредством спутниковых измерений ГНСС-приемником. Измерения в тахеометрических ходах выполнялись электронным тахеометром с регистрацией и накоплением результатов измерений. Съемка контуров, объектов местности, подземных коммуникаций и рельефа выполнялась относительно точек съемочного обоснования.

Как известно, ГНСС-приёмник определяет координаты на земной поверхности используя систему геодезических координат, в основе

которой лежит эллипсоид. Каждая точка на земной поверхности определяется широтой, долготой и эллипсоидальной высотой.

Для геодезических работ, как правило, используются местные (городские) системы координат, основой для которых служат референц-эллипсоиды, позволяющие отобразить поверхность Земли с наименьшими искажениями для всего района проведения работ. Референц-эллипсоид является математической моделью поверхности, к которой приводят все геодезические измерения.

Рис. 1. Зависимость между эллипсоидами и земной поверхностью

При использовании ГНСС-приёмников, как правило, вычисляются геодезические координаты относительно эллипсоида WGS84, которые. впоследствии должны быть трансформированы в местную (городскую) систему координат. Трансформация - это процесс преобразования координат из одной системы в другую систему координат.

При помощи ГНСС-приёмника Leica GS07 GSM были измерены геодезические координаты точек съёмочного обоснования. В РУП «Белгеодезия» были получены параметры трансформации в городскую систему координат г.Кобрин.

Разработанное авторами на языке C++ в IDE Visual Studio 2019 с использованием библиотеки QT приложение (Рис.2) позволило выполнить трансформацию точек в СК-Кобрина двумя независимыми методами:

- 1) по формулам из ГОСТ 32453-2017 [1, с.9];
- 2) по формулам, основанным на формулах Крюгера и опубликованных в Финляндии, как Рекомендации для государственного управления (JHS) [2, c.52].

Результаты трансформации координат двумя методами представлены в таблице 1. Также было выполнено сравнение полученных координат с результатами пересчета в платном программном продукте КРЕДО ТРАНСКОР 3.0, Итоговые координаты, полученные тремя способами, оказались идентичными, что подтверждает их корректность.

Преобразование геодезических координат в плоские прямоугольные координаты							
Точка трансформации геодезических координат WGS-84							
В - широта, град.	Преобразовать						
L - долгота, град.	L - долгота, град.						
Не - Эллипсоидальная высота	Сбросить						
Преобразованная точка в плоские прямоугольные координаты СК-Кобрин							
По формулам ГОСТ 32453-2017:	По формулам EPSG:						
х - абсцисса, м.	x -	х - абсцисса, м.					
у - ордината, м.	y -	у - ордината, м.					
Н - Геодезическая высота, м.	Н - Геодезическая высота, м. Н - Геодезическая высота						

Рис. 2. Фрагмент графического окна программного продукта

Таблица 1 – Вычисленные координаты пунктов съёмочного обоснования

имя	По формулам из [1, с.9]			По формулам из [2, с.52]		
	N , м	Е, м	Hn, м	N, м	Е, м	Hn, м
T0	1275.1743	3956.5308	142.88	1275.1743	3956.5308	142.88
T00	1445.6362	3795.2960	142.31	1445.6362	3795.2960	142.31
T10	1563.0528	3992.1900	141.66	1563.0528	3992.1900	141.66
T12	1571.3060	3924.3336	141.23	1571.3060	3924.3336	141.23
T22	1372.4378	3731.0783	142.60	1372.4378	3731.0783	142.60
T4	1451.0505	4014.4164	142.55	1451.0505	4014.4164	142.55
T6	1321.4939	3830.4135	142.66	1321.4939	3830.4135	142.66

В отделе архитектуры и строительства Кобринского района были получены жесткие планшеты. Для их обработки использовалось КРЕДО ВЕКТОРИЗАТОР (Рис.3).

Рис. 3. Автоматизированное создание тематических объектов

В программном продукте КРЕДО ДАТ 5.1 выполнялась обработка наземных измерений (Рис.4).

Рис. 4. Уравнивание тахеометрического хода

Для создания ЦММ использовалось КРЕДО ЛИНЕЙНЫЕ ИЗЫСКАНИЯ (рис.5).

Литература

- 1. ГОСТ 32453-2017. Глобальная навигационная спутниковая система. Системы координат. Методы преобразований координат определяемых точек (с поправками)
- 2. Coordinate Conversions and Transformations including Formulas. Geomatics Guidance Note Number 7, part 2