TP5 – Estructuras Algebraicas - Morfismos

Agustina Sol Rojas

Ejercicio 1.

Analizar si las siguientes funciones son homomorfismos entre las estructuras algebraicas indicadas y en caso afirmativo hallar nucleó e imagen.

a) $f: G \to F$ dada por $f(x) = 2^x$ y siendo los grupos G = (R, +) los reales con la suma usual, $F = (R_0, \cdot)$ los reales sin el 0 con el producto usual.

Verificación de neutro a neutro:

El neutro de la suma en los reales es el 0. El neutro del producto en los reales sin el 0 es el 1.

$$f(0) = 2^0 = 1$$

Verificación de morfismo:

Es homomorfismos ya que sucede $f(a+b)=f(a)\cdot f(b)$ para todo $a,b\in G$: $f(a+b)=2^{a+b}=2^a\cdot 2^b=f(a)\cdot f(b)$

$$Nu(f) = 0$$

Img(f) = los reales positivos pares sin el 0.

b) $f: G \to F$ dada por f(x) = -x y siendo los grupos G = (Z,*) los enteros con la operación a*b = a+b+ab, $F = (Z, \circ)$ los enteros con la operación $a \circ b = a+b-ab$.

No es homomorfismos ya que no se cumple $f(a*b) = f(a) \circ f(b)$ para todo $a,b \in G$:

$$f(a * b) = f(a + b + ab) = -(a + b + ab) = -a - b - ab \neq a + b - ab$$

= $f(a) \circ f(b)$

c) $f: (P(A), \cup) \to (P(A), \cap)$ dada por $f(X) = X^c$ (siendo A cualquier conjunto, P(A) indica el conjunto de partes de A y X^c el complemento de un conjunto).

Verificación de neutro a neutro:

Neutro de la unión $\rightarrow \emptyset$

Neutro de la intersección $\rightarrow A$

$$f(\emptyset) = \emptyset^c = A$$

Verificación de morfismo:

Es homomorfismos ya que sucede $f(X \cup Y) = f(X) \cap f(Y)$ para todo $X, Y \in P(A)$:

$$f(X \cup Y) = (X \cup Y)^c = X^c \cap Y^c = f(X) \cap f(Y)$$

$$Nu(f) = \emptyset$$

$$Img(f) = A$$

Ejercicio 2.

Sea $f:G\to H$ un homomorfismo de grupos. Demostrar que el nucleó y la imagen de f son subgrupos de G y H respectivamente.

1. Nu(f) subgrupo de G

//

2. Img(f) subgrupo de H

//