Karnaugh maps = (truth tuble + Venn diagram)

Two input K-maps 8.1

Three input K-maps 8.2

Four input K-maps 8.3

8.4 Five input K-maps

A = 1					
	DE	C ₀₀	01	11	10
	00	m_{16}	m_{20}	m_{28}	m_{24}
	01	m_{17}	m_{21}	m_{29}	m_{25}
	11	m_{19}	m_{23}	m_{31}	m_{27}
	10	m_{18}	m_{22}	m_{30}	m_{26}

XOR gale 7, 22 f 0 0 0	The Shu
0 1 1 0 71	$\begin{array}{c c} \overline{\chi}_{1} & \chi_{2} \\ \hline 0 & 1 \end{array}$
7(₁)	0 1
B	
3 7	3

9 More Gates and notations summary

Name	C/Verilog	Boolean expr.	Truth Table	(ANSI) symbol	K-map
NAND Gate	Q = ~(x1 & x2)	$Q = \overline{x_1 \cdot x_2} = \overline{x_1 x_2}$	$\begin{array}{c cccc} x_1 & x_2 & \overline{x_1 \cdot x_2} \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	\bigcap_{B}^{A}	$\begin{bmatrix} A & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
NOR Gate	Q = ~(x1 x2)	$Q = \overline{x_1 + x_2}$	$\begin{array}{c cccc} x_1 & x_2 & x_1 + x_2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	D D D D D D D D D D D D D D D D D D D	$\begin{bmatrix} \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{bmatrix}$
XOR Gate	Q = x1 ^ x2	$Q=x_1\oplus x_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\stackrel{A}{=} \stackrel{A}{\longrightarrow} 0$	$\begin{bmatrix} A & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix}$
XNOR Gate	Q = ~(x1 ^ x2)	$Q = \overline{x_1 \oplus x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A Dout	$\begin{bmatrix} A & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Example 10. Convert the following Boolean expression into a K-map. $f = \overline{AB} + CD$

Problem 10. Convert the following logic circuit into a K-map.

10 Boolean Algebra

10.1 Axioms of Boolean algebra

1.
$$0 \cdot 0 = 0$$

2. $1 + 1 = 1$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$

Quality exists insorr

- 3. $1 \cdot 1 = 1$
- 4. 0+0=0
- 5. $0 \cdot 1 = 1 \cdot 0 = 0$
- 6. $\bar{0} = 1$
- 7. $\bar{1} = 0$
- 8. x = 0 if $x \neq 1$
- 9. $x = 1 \text{ if } x \neq 0$

10.2 Single variable theorems (Prove by drawing K-maps)

Pust to

- $1. \ x \cdot 0 = 0$
- 2. x + 1 = 1

the 2 is the of The 2

 $3. \ x \cdot 1 = x$

ル_ラロ

- $5. \ x \cdot x = x$
- 6. x + x = x
- 7. $x \cdot \bar{x} = 0$

$$8. \ x + \bar{x} = 1$$

9.
$$\bar{\bar{x}} = x$$

Remark 2 (Duality). $Swap + with \cdot and 0$ with 1 to get another theorem

10.3 Two and three variable properties (Prove by K-maps)

1. Commutative:
$$x \cdot y = y \cdot x$$
, $x + y = y + x$

2. Associative:
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
, $x + (y + z) = (x + y) + z$

RHS =
$$(3. \text{ Distributive: } x \cdot (y+z) = x \cdot y + x \cdot \frac{y+z \cdot z}{x+y \cdot (y+z)} = (x+y) \cdot (y+z)$$

= $(2. y+2) \cdot (2. y+2) + y \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) + y \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
4. Absorption: $(2. x+x) \cdot (2. y+2) = x$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2) \cdot (2. y+2) \cdot (2. y+2) + y \cdot (2. y+2)$
= $(2. y+2)$

7+4.71=7 $\chi \cdot (y + \chi) = \chi$ 744.21 = 2(1 +4) = 2° 4 + 3° 2 2(4+1)= 20-1=2(=RH)

- 5. Combining: $x = \overline{y}$, $(x + y) \cdot (x + \overline{y}) = x$ I.y + I.y = II
- 6. DeMorgan's theorem: $\overline{x\cdot y} = \bar{x} + \bar{y}, \ \overline{x+y} = \bar{x}\cdot \bar{y}.$

7. Concensus:

(a)
$$x + \bar{x} \cdot y = x + y$$

(b)
$$x \cdot (\bar{x} + y) = x \cdot y$$

(c)
$$x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$$

(d)
$$(x+y) \cdot (y+z) \cdot (\bar{x}+z) = (x+y) \cdot (\bar{x}+z)$$

20 - 7 - 7 - 7 N. y. 2 = 7 + 7 + Z = $\frac{1}{2}$ $\frac{1}{2}$

Sum of products forn NAND - NAND anis

KHL (2+4) (2+5) LHS= 26.4+2.4 = 2(1) X + 7(.y+ y = 7(+y.y) $= \chi \cdot (y + \overline{y})$ $= \gamma \cdot 1$ = 7(= RHS 20 + 21. 4 + 4.20 + 4, 5 = A+ Qyy+y, 2) + O = 7(+ 2(4+4) = 7 + 7.1

Example 11 (Multiplexer). Multiplexer is a circuit used to select one of the input lines x_1 and x_2 based only select input s. When s=0, x_1 is selected x_2 is selected otherwise. Find a boolean expression and a circuit for multiplexer

Example 13. Simplify $f = \bar{A}\bar{A}\bar{C} + \bar{A}\bar{B}C$ using K-maps.

