Examen parcial de Física - ELECTRÒNICA 19 de Maig de 2016

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) L'alumini (Al), que té tres electrons de valència, es pot utilitzar per a la substitució d'un àtom de silici (Si), que té quatre electrons de valència, a la xarxa cristal·lina d'un semiconductor. Quina afirmació sobre el semiconductor resultant és INCORRECTA?
 - a) L'àtom d'alumini és un àtom acceptor.
 - b) Aquest és un semiconductor extrínsec.
 - c) La conducció elèctrica és majoritàriament deguda als electrons.
 - d) El semiconductor dopat amb Al és de tipus p.
- T2) Desitgem operar amb un díode de llum LED blanca "super brillant" amb una tensió umbral $V_{\gamma} = 3.4 \text{ V}$ i una intensitat de treball I = 20 mA. L'alimentem amb una font de tensió de 6 V. Quina resistència hem de connectar en sèrie amb el díode i la font perquè el LED funcioni en condicions òptimes?
 - a) 130 Ω .
- b) 1.3Ω .
- c) 300Ω .
- d) 170 Ω .
- T3) En el circuit de la figura sabem que les resistències són $R_1 = 100 \ \Omega$, $R_2 = 200 \ \Omega$, $R_3 = 300 \ \Omega$, i $R_4 = 400 \ \Omega$. La tensió Zener del díode és $V_Z = 5 \ V$ i la tensió llindar és $V_{\gamma} = 0.7 \ V$. Aleshores, quin és el valor de la tensió mínima de la fem perquè el díode comenci a conduir? R_1 R_2
 - a) 0.7 V.
 - b) 10 V.
 - c) 1.4 V.
 - d) 5 V.

- T4) El transistor PMOS de la figura té per paràmetres $V_T = -2$ V i $\beta = 100 \mu \text{A/V}^2$. Sabem que $V_{DD} = 5$ V. Aleshores, el corrent de drenador I_D és:
 - a) 0.9 mA.
 - b) 0 A.
 - c) 1.25 mA.
 - d) 450 μ A.

- T5) Quina és la funció lògica corresponent al circuit indicat a la fi
 - a) $(A \cdot B) + (C \cdot D)$.
 - b) $\overline{(A \cdot B) + (C \cdot D)}$.
 - c) $(A + B) \cdot (C + D)$.
 - d) $\overline{(A+B)\cdot(C+D)}$.

Examen parcial de Física - ELECTRÒNICA 19 de Maig de 2016

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) En el circuit de la figura sabem que les resistències són $R_1 = 100 \ \Omega$, $R_2 = 200 \ \Omega$, $R_3 = 300 \ \Omega$, i $R_4 = 400 \ \Omega$. La tensió Zener del díode és $V_Z = 5 \ V$ i la tensió llindar és $V_{\gamma} = 0.7 \ V$. Aleshores, quin és el valor de la tensió mínima de la fem perquè el díode comenci a conduir? R_1 R_2

- c) 5 V.
- d) 0.7 V.

T2) Desitgem operar amb un díode de llum LED blanca "super brillant" amb una tensió umbral $V_{\gamma} = 3.4$ V i una intensitat de treball I = 20 mA. L'alimentem amb una font de tensió de 6 V. Quina resistència hem de connectar en sèrie amb el díode i la font perquè el LED funcioni en condicions òptimes?

a)
$$300 \Omega$$
.

c) 130
$$\Omega$$
.

d)
$$170 \Omega$$
.

T3) El transistor PMOS de la figura té per paràmetres $V_T = -2$ V i $\beta = 100 \mu \text{A/V}^2$. Sabem que $V_{DD} = 5$ V. Aleshores, el corrent de drenador I_D és:

c) 450
$$\mu$$
A.

T4) Quina és la funció lògica corresponent al circuit indicat a la fi

a)
$$\overline{(A+B)\cdot(C+D)}$$
.

b)
$$\overline{(A \cdot B) + (C \cdot D)}$$
.

c)
$$(A \cdot B) + (C \cdot D)$$
.

$$d) (A+B) \cdot (C+D).$$

- **T5)** L'alumini (Al), que té tres electrons de valència, es pot utilitzar per a la substitució d'un àtom de silici (Si), que té quatre electrons de valència, a la xarxa cristal·lina d'un semiconductor. Quina afirmació sobre el semiconductor resultant és INCORRECTA?
 - a) Aquest és un semiconductor extrínsec.
 - b) El semiconductor dopat amb Al és de tipus p.
 - c) La conducció elèctrica és majoritàriament deguda als electrons.
 - d) L'àtom d'alumini és un àtom acceptor.

Examen parcial de Física - ELECTRÒNICA 19 de Maig de 2016

Problema: 50% de l'examen

En el circuit de la figura (A) s'ha connectat un transistor NMOS de caràcterístiques $\beta = 2 \text{ mA/V}^2$ i $V_T = 0.8 \text{ V}$ a una resistència de drenador de $R_D = 2.5 \text{ k}\Omega$. Sabem que $V_{DD} = 10 \text{ V}$.

- a) Calculeu els valors de V_{DS} i I_D , i esbrineu el règim de treball del transistor, sabent que $V_0 = 4$ V. Demostreu que aquest règim de treball és correcte.
- b) Substituïm el transistor per un PMOS de caràcterístiques $\beta = 2 \,\mathrm{mA/V^2}$ i $V_T = -0.8 \,\mathrm{V}$ amb el drenador connectat a R, com es veu a la figura (B) (noteu que la porta G ja no està connectada a la font V_0). Quin valor màxim pot tenir R per tal que el transistor estigui en règim de saturació, amb un corrent de $I_D = 4 \,\mathrm{mA}$?

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	b
T2)	a	c
T3)	c	c
T4)	d	b
T5)	b	c

Resolució del Model A

- **T1)** Dopant amb Al el Si tenim un semiconductor extrínsec de tipus p, amb conducció majoritària per forats a la banda de valència. Les impureses són acceptores d'electrons.
- **T2)** L'equació elèctrica del circuit és $\varepsilon = IR + V_{\gamma}$. Per tant, $R = (\varepsilon V_{\gamma})/I$. Substituint valors, I = 20 mA, $\varepsilon = 6$ V i $V_{\gamma} = 3.4$ V, trobem R = 130 Ω .
- T3) El díode Zener està en polarització directa. Quan comença a conduir la caiguda de tensió en la branca que conté les resistències de 200 Ω i 300 Ω , que estan en sèrie, és igual a la tensió llindar. La intensitat de corrent és $I=0.7V/(200\Omega+300\Omega)=1.4mA$. La caiguda de tensió en el circuit és $1.4mA(100\Omega+200\Omega+300\Omega+400\Omega)=1.4V$.
- T4) La diferencia de potencial entre la porta i la font $V_{GS}=-5V$ és més petita que la tensió llindar del transistor, $V_{GS}=-5V < V_T=-2V$, i per tant el transistor condueix. La diferencia de potencial entre el drenador i la font $V_{DS}=-5V$ és més petita que $V_{GT}=V_{GS}-V_T=-3V$ i el transistor està treballant en la zona de saturació. La intensitat és $I_D=\frac{\beta}{2}(V_{GS}-V_T)^2=\frac{1}{2}100\mu A/V^2(3V)^2=450\mu A$
- **T5)** Des de la font V_{DD} trobem una estructura paral·lela de transistors NMOS, que corresponen a una estructura NOR. Dins de cada branca hi tenim dos NMOS en sèrie que corresponen a portes NAND a cada branca. Ajuntant els dos criteris, trobem que la porta satisfà la funció lògica $\overline{(A \cdot B) + (C \cdot D)}$.

Resolució del Problema

a) A partir de les dades, tenim que $V_S=0$ i $V_G=4\,\mathrm{V}$, per la qual cosa: $V_{GS}=4\,\mathrm{V}$ i $V_{GT}=3.2\,\mathrm{V}$.

Suposarem que el transistor treballa en règim òhmic. En tal cas, es satisfà que:

$$I_D = \beta \left(V_{GT} V_{DS} - \frac{V_{DS}^2}{2} \right)$$

També sabem que

$$V_{DD} = R_D I_D + V_{DS}$$

Combinant les equacions anteriors, ens queda una equació de segon grau per V_{DS} :

$$\beta R_D (V_{GT} V_{DS} - \frac{V_{DS}^2}{2}) = V_{DD} - V_{DS}$$

Substituint pels valors, l'equació queda:

$$2.5V_{DS}^2 - 17V_{DS} + 10 = 0$$

Aquesta equació té dues solucions:

$$V_{DS} = 6.15 \text{ V}, \quad V_{DS} = 0.65 \text{ V}$$

Com que un NMOS en zona òhmica verifica $V_{DS} < V_{GT}$, la solució correcta és la segona. **Informació addicional**: si suposeu que treballa en saturació arribareu a una incongruència $(V_{DS} < 0)$.

Finalment, podem obtenir $I_D = 3.74 \,\mathrm{mA}$.

b) La condició de saturació d'un PMOS és: $V_{DS} \leq V_{GT} < 0$. Un PMOS en saturació transporta una intensitat:

$$I_D = \frac{\beta}{2} V_{GT}^2$$

o, el que és el mateix (recordant que $V_{GT} < 0$):

$$V_{GT} = -\sqrt{\frac{2I_D}{\beta}} = -2 \text{ V}$$

Per aquest circuit també es verifica:

$$V_{DD} = R I_D + V_{SD}$$

o, el que és el mateix:

$$V_{DS} = R I_D - V_{DD}$$

Així, inserint les equacions anteriors en la condició de saturació tenim:

$$0.004 R - 10 \le -2$$

és a dir: $R \leq 2000 \,\Omega$.