[thm]

Teselados del plano: aperiodicidad, indecidibilidad, y un teorema de Rice

Nicanor Carrasco-Vargas

Estudiante de doctorado UC, Chile Supervisores: Cristóbal Rojas y Sebastián Barbieri njcarrasco@uc.cl Beamer en nicanorcarrascovargas.github.io

Escuela de posgrado UFRO - Lican Ray

Contenidos

1 (In)decidibilidad

2 Teselados

3 El pantano de la indecidibilidad

Decidibilidad

Definición (Informal)

Un problema matemático se llama **decidible** si existe un algoritmo que lo resuelve. Si no existe, es **indecidible**.

Ejemplos

Example

Determinar si un polinomio en $\mathbb{Z}[X]$ tiene una raiz en \mathbb{Z} , es decidible.

Ejemplos

Example

Determinar si un polinomio en $\mathbb{Z}[X]$ tiene una raiz en \mathbb{Z} , es decidible.

Example

Determinar si un polinomio en $\mathbb{Z}[X_1, X_2, X_3, \dots, X_9]$ tiene una raiz en \mathbb{Z}^9 , es indecidible (Davis, Putnam, Robinson, Matiyasevich).

Ejemplos

Example

Determinar si un polinomio en $\mathbb{Z}[X]$ tiene una raiz en \mathbb{Z} , es decidible.

Example

Determinar si un polinomio en $\mathbb{Z}[X_1, X_2, X_3, \dots, X_9]$ tiene una raiz en \mathbb{Z}^9 , es indecidible (Davis, Putnam, Robinson, Matiyasevich).

Example

Hay un grupo finitamente presentado $\langle S \mid r_1, \ldots, r_n \rangle$ donde determinar si una palabra en los generadores $s_0 \ldots s_k$ corresponde a la identidad, es indecidible (Novikov-Boone).

El teorema de Rice

Proposición (Turing?)

Determinar si un algoritmo se detiene o corre infinitamente, es indecidible.

El teorema de Rice

Proposición (Turing?)

Determinar si un algoritmo se detiene o corre infinitamente, es indecidible.

Teorema (Rice)

Toda propiedad no trivial y semántica de un algoritmo es indecidible.

El teorema de Rice

Proposición (Turing?)

Determinar si un algoritmo se detiene o corre infinitamente, es indecidible.

Teorema (Rice)

Toda propiedad no trivial y semántica de un algoritmo es indecidible.

No trivial = algun algoritmo la cumple y alguno no la cumple. Semántica = depende de input \rightarrow output.

Un teorema de Rice para grupos

Proposición

Determinar si un grupo finitamente presentado $\langle S \mid R \rangle$ es trivial, es indecidible.

Un teorema de Rice para grupos

Proposición

Determinar si un grupo finitamente presentado $\langle S \mid R \rangle$ es trivial, es indecidible.

No todas las propiedades de grupos f.p. son indecidibles, pero:

Un teorema de Rice para grupos

Proposición

Determinar si un grupo finitamente presentado $\langle S \mid R \rangle$ es trivial, es indecidible.

No todas las propiedades de grupos f.p. son indecidibles, pero:

Teorema (Adian y Rabin)

Sea P una propiedad de grupos. Supongamos que hay grupos f.p. G_- y G_+ tales que:

- **1** G_{-} no tiene P, y arruina a cualquier grupo que contenga una copia de G_{-} .
- **2** G_+ si tiene P.

Entonces P es indecidible.

Teselados aperiodicos

Izquerda: Teselado aperiódico de 1 forma, descubierto por Smith, Myers, Kaplan, and Goodman-Strauss.

Derecha: Teselado aperiódico de 2 formas, descubierto por Penrose.

El primer teselado aperiodico

El primer teselado aperiódico fue exhibido por Berger en 1966, con mas de 20.000 piezas. En 1971, Robinson lo simplificó a uno de 6 piezas (32 contando rotaciones y reflexiones).

El teselado de Robinson

Como definir un teselado?

Conjunto finito de formas

Como definir un teselado?

Conjunto finito de formas + reglas para pegar

Teselados e indecidibilidad

Observación

Dado un conjunto de baldosas cuadradas con dibujos, es posible que no admitan ningún teselado infinito.

Teselados e indecidibilidad

Observación

Dado un conjunto de baldosas cuadradas con dibujos, es posible que no admitan ningún teselado infinito.

Teorema (Berger 1966)

No existe algoritmo que, dado un conjunto de baldosas cuadradas con dibujos, decida si pueden formar un teselado de \mathbb{Z}^2 .

******	В	0		QO		В	В
	п	D		-	φ <u>□</u>	п	11
	В	0		φ <u>n</u>	В	В	В
	В	0	φ Π	В	В	В	В
******	В	φ□		В	В	В	В
***************************************	ф E			п	В	В	п

El pantano de la indecidibilidad

Teorema (Folklore)

Las siguientes propiedades de un conjunto de teselados de \mathbb{Z}^2 son indecidibles (con entrada el conjunto de baldosas) :

- 1 Ser vacío.
- 2 Tener elementos periódicos.
- **3** Tener infinitos elementos.
- 4 ...

El pantano de la indecidibilidad

La mayoría parte de las propiedades que le interesan a la gente, son indecidibles. En un libro, Lind acuñó el termino «pantano de indecidibilidad» para expresar esto.

Un teorema de Rice para teselados?

Pregunta

Se puede establecer un teorema de Rice para teselados?

Un teorema de Rice para teselados?

Pregunta

Se puede establecer un teorema de Rice para teselados?

Pregunta

Qué serían dos teselados equivalentes?

Equivalencia dinámica

Conjunto τ de baldosas cuadradas con dibujos.

Espacio X_{τ} de teselados de \mathbb{Z}^2 .

 \downarrow

Con la acción de \mathbb{Z}^2 por traslaciones, es un sistema dinámico topológico.

Equivalencia dinámica

Conjunto τ de baldosas cuadradas con dibujos.

Espacio X_{τ} de teselados de \mathbb{Z}^2 .

 \downarrow

Con la acción de \mathbb{Z}^2 por traslaciones, es un sistema dinámico topológico.

Definición

Un sistema dinámico topológico es una acción continua de un grupo en un espacio topológico compacto.

Equivalencia dinámica

Conjunto τ de baldosas cuadradas con dibujos.

Espacio X_{τ} de teselados de \mathbb{Z}^2 .

 \downarrow

Con la acción de \mathbb{Z}^2 por traslaciones, es un sistema dinámico topológico.

Definición

Un sistema dinámico topológico es una acción continua de un grupo en un espacio topológico compacto.

Definición

Un morfismo de sistemas $G \curvearrowright X$ a $G \curvearrowright Y$ es una funcion continua $X \to Y$ que commuta con las acciones. Se llama isomorfismo si su inversa es morfismo.

No hay teorema de Rice para propiedades dinámicas de teselados

Definición

Una propiedad de teselados se llama dinámica si se preserva por isomorfismo.

No hay teorema de Rice para propiedades dinámicas de teselados

Definición

Una propiedad de teselados se llama dinámica si se preserva por isomorfismo.

Proposición

Tener un punto fijo es una propiedad dinámica, no trivial, y decidible para teselados de \mathbb{Z}^2 .

No hay teorema de Rice para propiedades dinámicas de teselados

Definición

Una propiedad de teselados se llama dinámica si se preserva por isomorfismo.

Proposición

Tener un punto fijo es una propiedad dinámica, no trivial, y decidible para teselados de \mathbb{Z}^2 .

Luego, no se puede probar un teorema de Rice para propiedades dinámicas de SFTs.

Un casi teorema de Rice para SFTs

Teorema (arXiv:2401.10347)

Sea P una propiedad de teselados en \mathbb{Z}^2 . Supongamos que existen dos sistemas X_- y X_+ que cumplen lo siguiente:

- **1** X_{-} no satisface P, y arruina a cualquier sistema que extienda a X_{-} .
- $2 X_{+}$ cumple P.
- **3** X_+ admite un morfismo hacia X_- .

Entonces P es indecidible.

Un casi teorema de Rice para SFTs

Examples

El resultado aplica a muchas propiedades: minimalidad, transitividad, ser únicamente ergódico, periodicidad, aperiodicidad, entropía topológica positiva, entropía topológica completamente positiva, etc.

Un casi teorema de Rice para SFTs

Examples

El resultado aplica a muchas propiedades: minimalidad, transitividad, ser únicamente ergódico, periodicidad, aperiodicidad, entropía topológica positiva, entropía topológica completamente positiva, etc.

Otros mundos

Otros mundos

Observación

Estos resultados siguen siendo validos para teselados de otros espacios en vez de \mathbb{Z}^2 . Esto incluye, entre otros, teselados hiperbolicos, y teselados de (grafos de Cayley de) grupos de Baumslag-Solitar.

El fin

Gracias!

Las imagenes de baldosas con dibujos son mias, el resto fueron tomadas de internet, y el crédito es a los respectivos autores. Las imagenes del teselado de Robinson fueron tomadas de «arXiv:1711.03401». La imagen del pantano fue creada por DeepAl image generator.