Contents

1		rpStack 网关 API							
		从 MQTT broker 订阅消息							
	1.2 1.3	发布消息到 MQTT broker							
	1.5	利用 ICESTIC ATT							
2	数据格式								
	2.1	由节点下发至平台的二进制帧							
		2.1.1 ping 位置报送							
		2.1.2 hit 击中							
	2.2	由平台向节点下发的二进制帧							
		2.2.1 演习							
		2.2.2 重填子弹							
3	杂项								
		经纬度含义							
		3.1.1 例子							
	3.2	冗余位含义							
1	\mathbf{C}	hirpStack 网关 API							
		F. 53555 1474							
1.	1 从	从MQTT broker 订阅消息							
ver	sion	0.11							
apı	olica	tion/2/device/32722cdd1c277953/rx							
		, -,,,							
{									
	"ap	pplicationID": "2", //应用 ID, 没用, 目前暂定为 2 pplicationName": "app", //名称, 没用							
	"ap	ppiicationName": "app", //名桥,没用 eviceName": "811", //设备名							
		ovicename: 011,							
		Info": [{							
		"gatewayID": "b827ebfffecce597", // 网关 ID							
		"uplinkID": "78b71b9c-05e3-4feb-9aa9-8b1dbcd745a7", // 上行 ID, 没用							
		"name": "rak-gateway", // 网关名称							
		"rssi": -58, //信号强度, 有用							
		"loRaSNR": 9.2, // LoRa 的信噪比							
		"location": { // 网关的位置,不是终端节点的位置,那是在二进制数据里面							
		"latitude": 24.93545,							
		"longitude": 118.64048,							
		"altitude": 18							
	2.7	}							
	}],								
	"tx	Info": {							
		"frequency": 487100000, // 传输所在频率							
	},	"dr": 5 // 数据率							
		lr":true,// 是否启用动态数据率功能							
		Int": 0, //下行计数器,连续发送的消息的话计数器也应该是连续的,没啥用							
		\mathcal{P}_{Ort} : 1 , 1 端口,确定消息类型							
		uta": "WgA=", //经过 base 64 编码的二进制数据,储存这个就好了							
		oject": {							
		"DecodeDataHex": "0x5a,0x00", // 解码后的每个 byte							

 $\begin{array}{c}
 2 \\
 3 \\
 3 \\
 4
 \end{array}$

```
"DecodeDataString": "Z\u00000" // 根据 ASCII 或者 UFT-8的译码字符串 }
```

1.2 发布消息到 MQTT broker

```
mosquitto_pub -h example.com -t "application/2/device/32722cdd1c277953/tx" -f test.json -d
{
    "confirmed": true,
    "fPort": 10,
    "data": "YWFh" //base64 encoded aaa
}
```

1.3 利用 RESTful API

RESTful 文档, 部分 MQTT API 没有的操作会在此

http://example.com:8080/api

2 数据格式

2.1 由节点下发至平台的二进制帧

以下简称为上行 (uplink)

下表中, 开始位为最低位. (也就是说, 开始位位于最后) (见例子)

tables 中有着协议的图形化解释, 可以用 Excel 打开.

2.1.1 ping 位置报送

开始 bit	结束 bit	字段含义	长度 byte	类型	范围	备注
0	7	消息类型	1	-	$0x00\sim0xFF$	在此固定为 0x8a
8	23	士兵编号	2	uint16	$0 \sim 65535$	-
24	55	纬度	4	-	-	见经纬度含义
56	87	经度	4	-	-	见经纬度含义
88	96	背甲击中次数	1	uint8	$0 \sim 255$	-
96	103	头盔击中次数	1	uint8	$0 \sim 255$	-
104	111	剩余子弹数量	1	uint8	$0 \sim 255$	-
112	119	冗余位	1	-	-	见冗余位含义

2.1.1.1 用例

{

{冗余位}(00) {剩余弹药}(80) {头盔击中次数}(01) {背甲击中次数}(01) {经度}(43 53 12 F6) {纬度}(10 EC 1B 00 00 80 01 01 43 53 12 F6 10 EC 1B 0E 00 7B 8A

- " 冗余位":0,
 - " 剩余弹药":128,
 - "头盔击中次数":1,
 - "背甲击中次数":1,
 - " 经度":172.3548549,
 - " 纬度":43.326926,
 - " 士兵编号":123,

```
"消息类型":"0x8a"}
```

2.1.2 hit 击中

开始 bit	结束 bit	字段含义	长度 byte	类型	范围	备注
0	7	消息类型	1	-	0x00~0xFF	在此固定为 0x5b
8	23	士兵编号 (被击中者)	2	uint16	$0 \sim 65535$	-
24	39	士兵编号 (开枪者)	2	uint16	$0 \sim 65535$	-
40	40	头是否被击中	-	bit	0/1	-
41	41	-	-	bit	0/1	保留位
42	42	左手是否被击中	-	bit	0/1	-
43	43	右手是否被击中	-	bit	0/1	-
44	44	左脚是否被击中	-	bit	0/1	-
45	45	右脚是否被击中	-	bit	0/1	-
46	46	前甲是否被击中	-	bit	0/1	-
47	47	后甲是否被击中	-	bit	0/1	-

2.1.2.1 用例

{击中部位}(0b01000000 = 0x40) {开枪者士兵编号}(01 C8) {被击中士兵编号}(00 78) {消息类型}(0x5b) 40 01 C8 00 78 5B

```
{
    " 开枪士兵编号":456,
    " 被击中士兵编号":123,
    " 头":false,
    " 左手":false,
    " 右手":false,
    " 右脚":false,
    " 右脚":false,
    " 前甲":true,
    " 后甲":false,
    " 消息类型":"0x5b"
}
```

2.2 由平台向节点下发的二进制帧

以下简称为下行 (downlink)

借助 LoraWAN 的 fport 来区分语义

2.2.1 演习

fport 为 3. data 为 0 时开始演习, 为 1 时停止演习.

• 开始演习 { "fPort": 3, "data": "AA==" //base64 encoded 0x00

• 结束演习

```
{
    "fPort": 3,
    "data": "AQ==" //base64 encoded 0x01
}

2.2.2 重填子弹
fport 为 5. data 为装填子弹数目.
{
    "fPort": 5,
    "data": "Hg==" //base64 encoded 0x1E = 30
}
```

3 杂项

3.1 经纬度含义

根据 NMEA 0183 规范

- 纬度 ddmm.mmmm
 - 经度 dddmm.mmmm

前两个 byte 为 小数点前 (ddmm/dddmm), 后两个 byte 为小数点后 (mmmm)

N, S, E, W 由冗余位中的两位确定. 默认为 N/E (假设在中国境内使用)

3.1.1 例子

4332.6926

- 原始的四个 byte 为 0x10, 0xec, 0x1b, 0x0e (10EC1B0E)
- 取前两个 byte 以 uint16 解析, 除以 100 得到 43.32
- 取后两个 byte 以 uint16 解析, 除以 1000000 得到 0.006926
- 最终经纬度为两者之和: 43.32+0.006926=43.326926
- 转换为度分秒 (DMS) 表示为 43°19′36.9336′′

DMS 转换参考下列 Javascript 代码

```
function toDegreesMinutesAndSeconds(coordinate) {
   var absolute = Math.abs(coordinate);
   var degrees = Math.floor(absolute);
   var minutesNotTruncated = (absolute - degrees) * 60;
   var minutes = Math.floor(minutesNotTruncated);
   var seconds = Math.floor((minutesNotTruncated - minutes) * 60);
   return degrees + " " + minutes + " " + seconds;
}
```

3.2 冗余位含义

N, S, E, W 由冗余位中的两位确定.

目前没有用处, 值为 0x00.