Class 5 Data Visualization with ggplot 2

Yufei (PID: A16222438)

Using ggplot

The ggplot package needs to be installed for the first time of use by install.packages("ggplot2") function.

```
#`head()` gives the first 6 items in an item
head (cars)

speed dist
1     4     2
2     4     10
3     7     4
4     7     22
5     8     16
6     9     10
```

ggplot package needs to be loaded in order to use any functions within it, by library() function.

```
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.3.1

```
ggplot()
```

Creating graph with ggplot

All ggplot figures have three components: data (what we want to plot) + aes (how we map data to the plot, e.g. x and y axes) + geom (how we want to represent the data, e.g. points, lines, columns...)

```
ggplot(cars)+
  aes(x = speed, y = dist)+
  geom_point()
```


 $\pmb{Note:}$ ggplot is not the only graphing system in R. e.g. "base R" graphics

plot(cars\$speed, cars\$dist)

Further finshing a plot

Label the graph by labs() function; Add a trend line by geom_smooth() function; Change plot theme to black-and-white by theme_bw() function

[`]geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Positive correlation between speed and stopping distance

Adding more plot aesthetics

Importing a data set on antiviral drug

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2
                                       State
      A4GNT -3.6808610 -3.4401355 unchanging
1
2
             4.5479580 4.3864126 unchanging
       AAAS
3
      AASDH 3.7190695 3.4787276 unchanging
4
       AATF
             5.0784720 5.0151916 unchanging
             0.4711421 0.5598642 unchanging
5
       AATK
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes)
```

[1] 5196

```
colnames(genes)
[1] "Gene"
                 "Condition1" "Condition2" "State"
  ncol(genes)
[1] 4
  table(genes$State)
     down unchanging
                              up
        72
                 4997
                             127
  round(table(genes$State)/nrow(genes)*100, 2)
     down unchanging
      1.39
                96.17
                            2.44
```

Making basic scatter plot

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```


Mapping color to State column

```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


Finishing up graph by changing color and labelling

Gene Expression Changes Upon Drug Treatment

Optional Extensions

```
# Obtain gapminder package online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.

gapminder <- read.delim(url)

#alternative method: >install.packages("gapminder") >library(gapminder)

#Install & use dplyr package >install.packages("dplyr")
library(dplyr)

Warning: package 'dplyr' was built under R version 4.3.1
```

filter, lag

Attaching package: 'dplyr'

The following objects are masked from 'package:base':

```
intersect, setdiff, setequal, union
```

```
#take gapmider data frame and filter to contain only the rows with a year value of 2007
gapminder_2007 <- gapminder %>% filter(year==2007)
```

Creating plot of gapminder_2007 dataset

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  #change point transparency
  geom_point(alpha = 0.4)
```


Adding more varibles to aes()

Coloring the plot by categorical values

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```


Coloring the plot by numerical value

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```


Adjusting point size

Making bar graphs

```
## sorting for top 5 countries with highest population size
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                              pop gdpPercap
          China
                     Asia 2007 72.961 1318683096
                                                   4959.115
1
2
          India
                     Asia 2007 64.698 1110396331
                                                   2452.210
3 United States
                 Americas 2007
                                78.242
                                        301139947 42951.653
4
      Indonesia
                     Asia 2007
                                70.650
                                        223547000
                                                   3540.652
5
         Brazil
                Americas 2007
                               72.390
                                        190010647
                                                   9065.801
```

Creating simple bar chart

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```


Adding aesthetics

Color by categorical variable

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = continent))
```


Color by numeric variable

```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```


Flipping bar charts

inbuilt dataset USArrests

```
head(USArrests)
```

	Murder	${\tt Assault}$	${\tt UrbanPop}$	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

Plot horizontal bars

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


Adding aesthetics

Animation

```
# install extension packages >install.packages("gifski") >install.packages("gganimate")
library(gapminder)
```

Warning: package 'gapminder' was built under R version 4.3.1

Attaching package: 'gapminder'

The following object is masked _by_ '.GlobalEnv':

gapminder

library(gganimate)

Warning: package 'gganimate' was built under R version 4.3.1

```
# CODES FOR ANIMATION HIDDEN TO REDUCE PDF REPORT SIZE
# Setup nice regular ggplot of the gapminder data
#ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
    #geom_point(alpha = 0.7, show.legend = FALSE) +
    #scale_colour_manual(values = country_colors) +
    #scale_size(range = c(2, 12)) +
    #scale_x_log10() +
    # Facet by continent
    #facet_wrap(~continent) +
    # Here comes the gganimate specific bits
    #labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
    #transition_time(year) +
    #shadow_wake(wake_length = 0.1, alpha = FALSE)
```

Combining Plots

```
# Install patchwork package >install.packages(patchwork)
library(patchwork)
```

Warning: package 'patchwork' was built under R version 4.3.1

```
# Setup some example plots
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))

# Use patchwork to combine them here:
(p1 | p2 | p3) / p4</pre>
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

 $geom_smooth()$ using method = 'loess' and formula = 'y ~ x'

Reporting R system Setup

sessionInfo()

R version 4.3.0 (2023-04-21 ucrt)

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

- [1] LC_COLLATE=Chinese (Simplified)_China.utf8
- [2] LC_CTYPE=Chinese (Simplified)_China.utf8
- [3] LC_MONETARY=Chinese (Simplified)_China.utf8
- [4] LC_NUMERIC=C
- [5] LC_TIME=Chinese (Simplified)_China.utf8

time zone: America/Los_Angeles

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

- [1] patchwork_1.1.3 gganimate_1.0.8 gapminder_1.0.0 dplyr_1.1.3
- [5] ggplot2_3.4.4

loaded via a namespace (and not attached):

[1]	Matrix_1.5-4	gtable_0.3.4	jsonlite_1.8.4	crayon_1.5.2
[5]	compiler_4.3.0	tidyselect_1.2.0	progress_1.2.2	splines_4.3.0
[9]	scales_1.2.1	<pre>yaml_2.3.7</pre>	fastmap_1.1.1	lattice_0.21-8
[13]	R6_2.5.1	labeling_0.4.3	generics_0.1.3	knitr_1.43
[17]	tibble_3.2.1	munsell_0.5.0	pillar_1.9.0	rlang_1.1.1
[21]	utf8_1.2.3	stringi_1.7.12	xfun_0.39	cli_3.6.1
[25]	tweenr_2.0.2	withr_2.5.1	magrittr_2.0.3	mgcv_1.8-42
[29]	digest_0.6.31	grid_4.3.0	hms_1.1.3	lifecycle_1.0.3
[33]	nlme_3.1-162	<pre>prettyunits_1.2.0</pre>	vctrs_0.6.2	evaluate_0.21
[37]	glue_1.6.2	farver_2.1.1	gifski_1.12.0-2	fansi_1.0.5
[41]	colorspace_2.1-0	rmarkdown_2.22	tools_4.3.0	pkgconfig_2.0.3
[45]	htmltools_0.5.5			