

第二章 对抗搜索

- ◆对抗搜索: 博弈
- ◈博弈问题
- ◆极小极大方法
- **◆α-**β剪枝
- ◆蒙特卡洛博弈方法

2.1 博弈问题

- ◆博弈问题
 - □双人
 - 。一人一步
 - 。双方信息完备
 - □零和

简准事大学 Tsinghua University

分钱币问题

中国象棋

- ◆一盘棋平均走50步,总状态数约为10161。
- ◆假设1毫微秒走一步,约需10145年。

◆宇宙年龄: 1.38*1010

◆结论:不可能穷举。

2.3 α-β剪枝

- ◆极大节点的下界为α。
- ◈极小节点的上界为β。
- ◆剪枝的条件:
 - 。后辈节点的β值≤祖先节点的α值时, α剪枝
 - □后辈节点的α 值≥祖先节点的β值时,β剪枝
- ◆简记为:
 - □极小≤极大,剪枝
 - □极大≥极小,剪枝

练习题

◆上述例题自己独立做一遍。

2.4 蒙特卡洛博弈方法

- ◆为什么α-β剪枝方法在围棋上失效?
 - οα-β剪枝方法存在的问题
 - 依赖于局面评估的准确性
 - 。局面评估问题
 - 大量专家知识
 - 知识的统一性问题
 - 人工整理

围棋落子模型

- ◆围棋对弈过程可看做一个马尔科夫过程:
- ◆五元组: {T, S, A(i), P(a | i), r(i,a)}
 - □T: 决策时刻
 - □S: 状态空间, S={i}
 - □A(i): 可行动集合(可落子点)
 - □P(a|i): 状态i下选择行动a的概率
 - r(i,a): 状态i下选择行动a后课获得的收益

蒙特卡洛方法

- ◆二十世纪40年代中期S.M.乌拉姆和J.冯·诺伊曼提出的一种随机模拟方法
 - □多重积分
 - □矩阵求逆
 - 。线性方程组求解
 - 。积分方程求解
 - □偏微分方程求解
 - 。随机性问题模拟

蒲丰投针问题

- ◆1777年法国科学家蒲丰提出一种计算π的 方法:
- ◆取一张白纸,在上面画上许多条间距为d的等距平行线,另取一根长度为1(I<d)的针,随机地向该纸上投掷针,并记录投掷次数n以及针与直线相交的次数m,据此计算π值。

- ◆(x,α)决定了针的位置
- ♦针与直线的相交条件: $x ≤ (l/2) \cdot \sin \alpha$
- ◆其中: x∈[0, d/2], α∈[0, π]

◆ 黄颜色部分与长方形面积之比即为针与直线相 交的概率

$$P = \frac{\int_0^{\pi} \frac{l}{2} \sin \alpha \, d\alpha}{\frac{d}{2}\pi} = \frac{2l}{\pi d}$$

$$\pi = \frac{2l}{Pd} \approx \frac{2nl}{md}$$

n: 投掷次数

m: 针与直线相交的次数

蒙特卡洛评估

- ◆从当前局面的所有可落子点中随机选择 一个点落子
- ◆重复以上过程
- ◆直到胜负可判断为止
- ◆经多次模拟后,选择胜率最大的点落子

蒙特卡洛树搜索

- ◆解决马尔科夫决策问题的有效方法之一
- ◆基本思想与特点:
 - 。将可能出现的状态转移过程用状态树表示
 - 。从初始状态开始重复抽样,逐步扩展树中的 节点
 - 某个状态再次被访问时,可以利用已有的结果,提高了效率
 - 在抽样过程中可以随时得到行为的评价

蒙特卡洛树搜索的步骤

- ◆选择
 - 。从根节点出发自上而下地选择一个落子点
- ◆扩展
 - □向选定的点添加一个或多个子节点
- ◆模拟
 - 」对扩展出的节点用蒙特卡洛方法进行模拟
- ◆回溯
 - □根据模拟结果依次向上更新祖先节点估计值

更新过程

- ◆设n_i为当前要模拟的节点,△为模拟获得的收益
- ◆对n_i及其祖先的模拟次数加1
- ♦n_i的收益加△
- ◆更新n_i的同类祖先节点的收益 (这里节点的类型按照极大极小节点划分)

蒙特卡洛树搜索流程

选择落子点的策略

- ◆两方面的因素:
 - □对尚未充分了解的节点的探索
 - □对当前具有较大希望节点的利用

多臂老虎机模型

多臂老虎机模型

- ◆1952年Robbins提出的一个统计决策模型
- ◆多臂老虎机
 - □ 多臂老虎机拥有k个手臂,拉动每个手臂所获得的收益遵循一定的概率且互不相关,如何 找到一个策略,使得拉动手臂获得的收益最 大化
- ◆用于解决蒙特卡洛树搜索中选择落子点 的问题

信心上限算法UCB1

- function UCB1
- ◆ for each 手臂j:
- ♦ 访问该手臂并记录收益
- end for
- ◆ while 尚未达到访问次数限制 do:
- ◆ 计算每个手臂的UCB1信心上界I_j
- end while

$$I_{j} = \overline{X}_{j} + \sqrt{\frac{2\ln(n)}{T_{j}(n)}}$$

- ◆其中:
- \bullet \bar{X}_{i} 是手臂j所获得回报的均值
- ◆n是到当前这一时刻为止所访问的总次数
- ◆ $T_j(n)$ 是手臂j到目前为止所访问的次数
- ◆上式考虑了"利用"和"探索"间的平衡

信心上限树算法UCT

- ◆将UCB1算法应用于蒙特卡洛树搜索中,用于选择可落子点
 - 。可落子点不是随机选择,而是根据UCB1选择信心上限值最大的节点
 - 。实际计算UCB1时,加一个参数c进行调节:

$$I_{j} = \overline{X}_{j} + c\sqrt{\frac{2\ln(n)}{T_{j}(n)}}$$

- ◆引入符号:
- ◆v: 节点,包含以下信息:
 - □ s(v): v对应的状态
 - □ a(v): 来自父节点的行为
 - □ Q(v): 随机模拟获得的收益
 - □N(v):v的总访问次数

- ◆信心上限树算法(UCT)
- \diamond function UCTSEARCH(S₀)
- \diamond 以状态 s_0 创建根节点 v_0 ;
- ◆ while 尚未用完计算时长 do:
- $\bullet \qquad \mathbf{v}_{l} = \mathbf{T}_{REEPOLICY}(\mathbf{v}_{0});$
- \diamond BACKUP $(v_1, \triangle);$
- end while
- \diamond return a(BESTCHILD(v_0 , 0));

◆全部算法的伪代码, 请见课程资料

UCT算法示例

节点: 获胜次数/模拟总次数 获胜次数是从本节点角度说的

假设c=0,即 $I_j = \bar{X}_j$

AlphaGo

AlphaGo

AlphaGo

- ◆利用策略网络缩小搜索的范围
- ◆将估值网络的结果结合到信心上限的计算中
- ◆一个节点被模拟一定次数后才扩展
- ◆最终选择模拟次数最多的节点为最佳走步

小结

- ◈ 极小极大方法
- α-β剪枝
 - 剪枝的目的
 - □什么情况下可以剪枝
- ◆蒙特卡洛树搜索
 - 。采用蒙特卡洛树搜索的目的
 - 。蒙特卡洛树搜索过程