

quarta-feira, 22 de setembro de 2021

Ex. 5

a) Energia cinéticz:
$$T = m_1 \dot{x}_1^2 + m_2 \dot{x}_2^2$$

18:20

• Energia potencial:
$$V = k_1 x_1^2 + k_2 x_2^2$$

Potencial de Rayleigh:
$$R = b_1 \dot{x}_1^2 + b_2 \dot{x}_2^2 + b_3 (\dot{x}_2 - \dot{x}_1)^2$$

· Para
$$x_1: \rightarrow \frac{\partial L}{\partial \dot{x}_1} = m_1 \dot{x}_1 \Rightarrow \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}_1} \right) = m_1 \ddot{x}_1$$

$$\frac{9\ddot{x}'}{9B} = \rho' \dot{x}' - \rho^3 (\dot{x}^3 - \dot{x}')$$

$$\begin{array}{c} \frac{1}{3\dot{x}_{1}} = p_{1}\dot{x}_{2} - p_{3}(\dot{x}_{2} - x_{1}) \\ + \frac{1}{3\dot{x}_{1}} = p_{1}\dot{x}_{2} - p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{1}} = p_{1}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{1}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}(\dot{x}_{2} - x_{1}) \\ \Rightarrow \frac{1}{3\dot{x}_{2}} = -p_{2}\dot{x}_{2} + p_{3}\dot{x}_{2} + p_{3}\dot{x}_{2} - p_{3}\dot{x}_{1} \\ \Rightarrow \frac{1}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}}{3\dot{x}_{2}} = \frac{1}{3\dot{x}_{2}} \\ \Rightarrow \frac{1}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}}{3\dot{x}_{2}} \\ \Rightarrow \frac{1}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}\dot{x}_{2} + p_{3}\dot{x}_{2} + p_{3}\dot{x}_{2} \\ \Rightarrow \frac{1}{3\dot{x}_{2}} + \frac{3\dot{x}_{2}\dot{x}_{2} \\$$

d) · Nó 1:
$$V_1 \begin{bmatrix} C_1D + 1 + 1 \\ R_1 & R_3 \end{bmatrix} - V_2 L = i(t)$$
 (F)

· Nó 1:
$$V_2 \left[C_2 D + \frac{1}{R_2} + \frac{1}{R_3} \right] - V_1 \perp = 0$$
 (II)

$$+ \operatorname{Eq}(I) : \dot{x}_1 \lceil m_1 D + b_1 + b_3 + \frac{k_1}{D} \rceil - \dot{x}_2 b_3 = f(t) \Rightarrow$$

$$\Rightarrow m\ddot{x}_1 + (b_1 + b_2) \dot{x}_1 + k_1 x_1 - b_3 \dot{x}_2 = f(t)$$

	→E	((π)):	m	+ As	p2+,	b3+ 1	Ra D	-×ı	b ₃ =	0 ⇒	
:	=> m ₂	×2+	(b ₂ t	b ₃);	×2+	· k _a	Х ² -	- b ₃ ?	(¹ ={			