Efficient Validation of Basic Solutions via the Roundoff-Error-Free Factorization Framework

Adolfo R. Escobedo and Erick Moreno-Centeno

ICMS: July 12th, 2016

Outline

- Introduction
 - Roundoff Errors in LP and MIP
 - State-of-the-Art Exact IP

- The Roundoff-Error-Free (REF) Factorization Framework
 - Integer-Preserving Gaussian Elimination (IPGE)
 - REF Algorithms
 - Computational Tests

The Bottom Line

"Existing LP-solvers do not claim to solve LPs to optimality. In fact, **they come** with hardly any guarantee. Feasible problems may be classified as infeasible and vice versa, a solution returned is not guaranteed to be feasible, and the objective value returned comes with no approximation guarantee." (Dhiflaoui et al. 2003)

The Bottom Line

"Existing LP-solvers do not claim to solve LPs to optimality. In fact, **they come** with hardly any guarantee. Feasible problems may be classified as infeasible and vice versa, a solution returned is not guaranteed to be feasible, and the objective value returned comes with no approximation guarantee." (Dhiflaoui et al. 2003)

```
C\Windows\system32\cmd.exe - cplex
                                                           - 0 X
Selected objective sense:
Selected objective name:
 Selected RHS
                             RHS1
                A A6 sec
     esolve eliminated 1 rows and 0 columns.
 ggregator did 61 substitutions.
Reduced LP has 382 rows, 473 columns, and 3851 nonzeros.
Presolve time = 0.05 sec.
 nitializing dual steep norms
                     Dual objective
                                                     -1689.820000
                     Dual objective
                     Dual objective
Dual simplex - Optimal Solution time - 0.09 sec. Iterations = 352 (0)
Deterministic time = 9.89 ticks (105.25 ticks/sec)
CPLEX> _
```

The Bottom Line

"Existing LP-solvers do not claim to solve LPs to optimality. In fact, **they come** with hardly any guarantee. Feasible problems may be classified as infeasible and vice versa, a solution returned is not guaranteed to be feasible, and the objective value returned comes with no approximation guarantee." (Dhiflaoui et al. 2003)

```
Selected objective sense: MINIMIZE
Selected objective sense: 0BJ.ROM
Selected RMS
name: 0BJ.ROM
Selected RMS
Selected
```

Additional concerns

- Not exclusive to large problems
- "In mixed-integer optimization problems, numerical stability is of overriding importance to prevent wrong fathoming." (Suhl and Suhl 1990)

CPLEX 7.1 Primal	-6,398.71	85.76
CPLEX 7.1 Dual	-6,484.44	0.03
CPLEX 9.0 Primal	-6,406.78	77.69
CPLEX 9.0 Dual	-6,484.47	0.00
CPLEX 11.0 Primal	-6,425.87	58.60
CPLEX 11.0 Dual	-6,484.46	0.01
CPLEX 12.1 Primal	-6,425.87	58.60
CPLEX 12.1 Dual	-6,484.47	0.00
CPLEX 12.4 Primal	-6,424.23	60.24
CPLEX 12.4 Dual	-6,441.56	42.91
CPLEX 12.4 Barrier	-6,460.43	24.04
Gurobi 2.0 Primal	-6,484.47	0.00
Gurobi 2.0 Dual	-6,484.47	0.00
XPress-15 Primal	-6,380.45	104.02
XPress-15 Dual	-6,344.30	140.17
XPress-20 Primal	-6,349.93	134.54
XPress-20 Dual	-6,408.02	76.45
QSopt Primal	-6,419.94	64.53
QSopt Dual	-6,480.33	4.14
CLP-1.02.01	-6,480.95	3.52
CLP-1.12.0	-6,481.26	3.21
GLPK-4.37	-6,463.66	20.81
GLPK-4.44	-6,484.47	0.00
MOSEK 6.0	-6,292.06	192.41
SoPlex 1.2.2	-6,473.33	11.14

sgpf5y6 (Mittelmann 2006)

Inconsistent "optimality"

• Exact: ≈ -6484.47

• Smallest: ≈ -6292.06

• Largest: ≈ -6484.47

Adapted from (Steffy 2011)

Effect on LP

Effect on MIP

Effect on LP

Effect on MIP

Mathematical applications

- Computer-assisted mathematics
- Numerically difficult problems
- Cut generation

Effect on LP

Effect on MIP

Mathematical applications

- Computer-assisted mathematics
- Numerically difficult problems
- Cut generation

Other applications

- Combinatorial auctions
- Robot control
- Chip design verification

Extended precision comes at a high cost

Extended precision comes at a high cost

Exactness of every operation is excessive

Extended precision comes at a high cost

Exactness of every operation is excessive

Extended precision comes at a high cost

Exactness of every operation is excessive

Bulk of operations are floating-point

- Bulk of operations are floating-point
- Certify output via unlimited-precision

- Bulk of operations are floating-point
- Certify output via unlimited-precision
- Two state-of-the-art implementations

- Bulk of operations are floating-point
- Certify output via unlimited-precision
- Two state-of-the-art implementations
- ⇒ Hybrid strategies

State-of-the-art exact LP solvers

- Precision-boosting approach used in
 - A rational LU factorization of the basis calculated after solver concludes for some precision level

State-of-the-art exact LP solvers

- Precision-boosting approach used in
 - A rational LU factorization of the basis calculated after solver concludes for some precision level

Exact solving capability of SoPlex

release 2.2.0:

- A rational LU factorization of the basis calculated after promising refinement rounds
- Rational reconstruction via continued fraction approximations
- → Improvements to exact LU factorization benefit both solvers

Procedure bottleneck in validation:

- Procedure bottleneck in validation:
- ★ Exact rational arithmetic

- Procedure bottleneck in validation:
- ★ Exact rational arithmetic
- ★ Extra storage

- Procedure bottleneck in validation:
- ★ Exact rational arithmetic
- ⋆ Extra storage
- ★ Repeated (GCD) operations

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$

Binary Euclid's GCD Algorithm:

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$

0 / 0

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$
7.	54	147	$a \leftarrow a/2$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$
7.	54	147	$a \leftarrow a/2$
8.	27	147	$b \leftarrow b - a$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$
7.	54	147	$a \leftarrow a/2$
8.	27	147	$b \leftarrow b - a$
9.	27	120	$b \leftarrow b/2$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$
7.	54	147	$a \leftarrow a/2$
8.	27	147	$b \leftarrow b - a$
9.	27	120	$b \leftarrow b/2$
10.	27	60	$b \leftarrow b/2$

Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$
2.	2196	147	$a \leftarrow a/2$
3.	1098	147	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$
5.	402	147	$a \leftarrow a/2$
6.	201	147	$a \leftarrow a - b$
7.	54	147	$a \leftarrow a/2$
8.	27	147	$b \leftarrow b - a$
9.	27	120	$b \leftarrow b/2$
10.	27	60	$b \leftarrow b/2$

	Step	a	b	Action					
	11.	27	30	$b \leftarrow b/2$					
	12.	27	15	$a \leftarrow a - b$					
	13.	12	15	$a \leftarrow a/2$					
	14.	6	15	$a \leftarrow a/2$					
	15.	3	15	$b \leftarrow b - a$					
	16.	3	12	$b \leftarrow b/2$					
	17.	3	6	$b \leftarrow b/2$					
	18.	3	3	$b \leftarrow b - a$					
	19.	3	0	$b \leftarrow b - a$					

Step	a	b	Action	Step	a	b	Action
1.	2343	147	$a \leftarrow a - b$	11.	27	30	$b \leftarrow b/2$
2.	2196	147	$a \leftarrow a/2$	12.	27	15	$a \leftarrow a - b$
3.	1098	147	$a \leftarrow a/2$	13.	12	15	$a \leftarrow a/2$
4.	549	147	$a \leftarrow a - b$	14.	6	15	$a \leftarrow a/2$
5.	402	147	$a \leftarrow a/2$	15.	3	15	$b \leftarrow b - a$
6.	201	147	$a \leftarrow a - b$	16.	3	12	$b \leftarrow b/2$
7.	54	147	$a \leftarrow a/2$	17.	3	6	$b \leftarrow b/2$
8.	27	147	$b \leftarrow b - a$	18.	3	3	$b \leftarrow b - a$
9.	27	120	$b \leftarrow b/2$	19.	3	0	$b \leftarrow b - a$
10.	27	60	$b \leftarrow b/2$				

$$O(N^2)$$
 \Rightarrow **19 steps**: $GCD(2343, 147) = 3$ $\Rightarrow a_{4,4}^3 = \frac{-781}{49}$

Outline

- Introduction
 - Roundoff Errors in LP and MIP
 - State-of-the-Art Exact IP

- The Roundoff-Error-Free (REF) Factorization Framework
 - Integer-Preserving Gaussian Elimination (IPGE)
 - REF Algorithms
 - Computational Tests

Is there a better recipe?

Want an algorithm that...

- Avoids rational arithmetic
- Bound word length polynomially
- Has a predictable number of steps

Is there a better recipe?

Want an algorithm that...

- Avoids rational arithmetic
- Bound word length polynomially
- Has a predictable number of steps

$$a_{i,j}^k = a_{i,j}^{k-1} - \frac{a_{k,j}^{k-1}}{a_{k,k}^{k-1}} a_{i,k}^{k-1} = \frac{a_{k,k}^{k-1} a_{i,j}^{k-1} - a_{k,j}^{k-1} a_{i,k}^{k-1}}{a_{k,k}^{k-1}} \quad \Leftarrow \quad \mathbf{GE}$$

Is there a better recipe?

Want an algorithm that...

- Avoids rational arithmetic
- Bound word length polynomially
- Has a predictable number of steps

$$a_{i,j}^k = a_{i,j}^{k-1} - \frac{a_{k,j}^{k-1}}{a_{k,k}^{k-1}} a_{i,k}^{k-1} = \frac{a_{k,k}^{k-1} a_{i,j}^{k-1} - a_{k,j}^{k-1} a_{i,k}^{k-1}}{a_{k,k}^{k-1}} \quad \Leftarrow \quad \mathbf{GE}$$

$$a_{i,j}^k = \frac{a_{k,k}^{k-1}a_{i,j}^{k-1} - a_{k,j}^{k-1}a_{i,k}^{k-1}}{{\color{blue}a_{k-1,k-1}^{k-2}}} \quad \Leftarrow \text{IPGE}$$

IPGE properties

• Its divisions are **exact** (Edmonds 1967):

Given
$$A^0 \in \mathbb{Z}^{n \times n+1}$$
, $A^k \in \mathbb{Z}^{n \times n+1} \ \forall k$

• Its entries have a special structure (Bareiss 1968):

$$a_{i,j}^k = \left\{ \begin{array}{ll} (-1)^{i+k} \det \left(A_{1,\ldots,i-1,i+1,\ldots,k,j}^{1,\ldots,k}\right) & \quad \text{if } i \leq k \\ \det \left(A_{1,\ldots,k,j}^{1,\ldots,k,i}\right) & \quad \text{otherwise} \end{array} \right.$$

• Each entry's bit-length is bounded **polynomially** (Bareiss 1972) :

$$\lceil \log(|a_{i,j}^k|) \rceil \leq \lceil \log(\sigma^n n^{\frac{n}{2}}) \rceil = \lceil n \log(\sigma \sqrt{n}) \rceil$$

No gcd calculations are required!

Α

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Backward substitution

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

 $= \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$

0 / 0

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix}
u_{11} & u_{12} & u_{13} & u_{14} \\
0 & u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{bmatrix}$$

Backward substitution

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

 $= \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix}
u_{11} & u_{12} & u_{13} & u_{14} \\
0 & u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{bmatrix}$$

Backward substitution

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

 $= \begin{bmatrix} y_1 \\ \mathbf{y}_2 \\ y_3 \\ y_4 \end{bmatrix}$

Α

L

U

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Backward substitution

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

 $= \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$

The Roundoff-Error-Free Factorizations

REF LU:

$$\begin{bmatrix} \mathbf{a_{1,1}^0} & & & & & \\ a_{2,1}^0 & \mathbf{a_{2,2}^1} & & & \\ a_{3,1}^0 & a_{3,2}^1 & \mathbf{a_{3,3}^2} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ a_{n,1}^0 & a_{n,2}^1 & a_{n,3}^2 & \dots & \mathbf{a_{n,n}^{n-1}} \end{bmatrix} \mathbf{D^{-1}} \begin{bmatrix} \mathbf{a_{1,1}^0} & a_{1,2}^0 & a_{1,3}^0 & \dots & a_{1,n}^0 \\ & \mathbf{a_{2,2}^1} & a_{2,3}^1 & \dots & a_{2,n}^1 \\ & & \mathbf{a_{3,3}^2} & \dots & a_{3,n}^2 \\ & & & & \ddots & \vdots \\ & & & & \mathbf{a_{n,n}^{n-1}} \end{bmatrix}$$

$$D = diag\left(a_{1,1}^{0}, a_{1,1}^{0}a_{2,2}^{1}, a_{2,2}^{1}a_{3,3}^{2}, \dots, a_{n-1,n-1}^{n-2}a_{n,n}^{n-1}\right)$$

The Roundoff-Error-Free Factorizations

REF LU:

$$\begin{bmatrix} \mathbf{a_{1,1}^0} & & & & \\ a_{2,1}^0 & \mathbf{a_{2,2}^1} & & & \\ a_{3,1}^0 & a_{3,2}^1 & \mathbf{a_{3,3}^2} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ a_{n,1}^0 & a_{n,2}^1 & a_{n,3}^2 & \dots & \mathbf{a_{n,n}^{n-1}} \end{bmatrix} \mathbf{D^{-1}} \begin{bmatrix} \mathbf{a_{1,1}^0} & a_{1,2}^0 & a_{1,3}^0 & \dots & a_{1,n}^0 \\ & \mathbf{a_{2,2}^1} & a_{2,3}^1 & \dots & a_{2,n}^1 \\ & & & \mathbf{a_{3,3}^2} & \dots & a_{3,n}^2 \\ & & & & \ddots & \vdots \\ & & & & \mathbf{a_{n,n}^{n-1}} \end{bmatrix}$$

$$D = diag\left(a_{1,1}^{0}, \ a_{1,1}^{0}a_{2,2}^{1}, \ a_{2,2}^{1}a_{3,3}^{2}, \dots, \ a_{n-1,n-1}^{n-2}a_{n,n}^{n-1}\right)$$

REF Cholesky:

$$(\boldsymbol{L}\sqrt{\boldsymbol{D^{-1}}})(\boldsymbol{L}\sqrt{\boldsymbol{D^{-1}}})^T = \boldsymbol{L}\boldsymbol{D^{-1}}\boldsymbol{L^T}$$

Exact forward and backward substitution

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & \mathbf{884} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & 884 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & 0 & 0 \\ 0 & \frac{1}{3(-49)} & 0 & 0 \\ 0 & 0 & \frac{1}{-49(-17)} & 0 \\ 0 & 0 & 0 & \frac{1}{-17(884)} \end{bmatrix} \begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & 884 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & \mathbf{884} \end{bmatrix}$$

Solve
$$Ax = b$$
 using $(\mathbf{L}\mathbf{D}^{-1}\mathbf{U})x = b$:

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Exact forward and backward substitution

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & \mathbf{884} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & 884 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & 0 & 0 \\ 0 & \frac{1}{3(-49)} & 0 & 0 \\ 0 & 0 & \frac{1}{-49(-17)} & 0 \\ 0 & 0 & 0 & \frac{1}{-17(884)} \end{bmatrix} \begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & 884 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & \mathbf{884} \end{bmatrix}$$

Solve Ax = b using $(\mathbf{L}\mathbf{D}^{-1}\mathbf{U})x = b$:

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \implies Ly = b:$$

$$3y_1 = 1 \quad \Rightarrow \quad y_1 = \frac{1}{3} \quad |$$

Exact forward and backward substitution

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & \mathbf{884} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 0 & 0 & 0 \\ 5 & -\mathbf{49} & 0 & 0 \\ 6 & -87 & -\mathbf{17} & 0 \\ 7 & -47 & 527 & \mathbf{884} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 & 0 & 0 \\ 0 & \frac{1}{3(-49)} & 0 & 0 \\ 0 & 0 & \frac{1}{-49(-17)} & 0 \\ 0 & 0 & 0 & \frac{1}{-17(884)} \end{bmatrix} \begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & \mathbf{884} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{3} & 11 & 8 & 7 \\ 0 & -\mathbf{49} & -31 & -20 \\ 0 & 0 & -\mathbf{17} & 57 \\ 0 & 0 & 0 & \mathbf{884} \end{bmatrix}$$

Solve Ax = b using $(\mathbf{L}\mathbf{D}^{-1}\mathbf{U})x = b$:

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \implies \begin{bmatrix} \mathbf{L}y = b : \\ (\mathbf{L}\mathbf{D}^{-1})y = b : \\ \end{bmatrix}$$

$$\mathbf{L}y = b$$
:

$$3y_1 = 1 \quad \Rightarrow \quad y_1 = \frac{1}{3}$$

$$(\boldsymbol{L}\boldsymbol{D^{-1}})y = b:$$

$$3\left(\frac{1}{3}\right)y_1 = 1 \quad \Rightarrow \quad y_1 = 1$$

$$\vdots$$

$$\frac{-1}{17}y_4 = 4 - \frac{7}{3} - \frac{47}{3(-49)} + \frac{620}{49}$$

Roundoff-Error-Free Substitution

REF Forward Substitution

$$\psi_{i,r} = \left\{ \begin{array}{ll} b_i & \text{if } r=0 \\ \frac{l_{r,r}\psi_{i,r-1} - l_{i,r}\psi_{r,r-1}}{l_{r-1,r-1}} & \text{if } 0 < r < i \end{array} \right. \quad \text{for} \quad i=1..m$$

REF Backward Substitution

$$x'_{i} = \frac{1}{u_{i,i}} \left(y'_{i} - \sum_{h=i+1}^{m} x'_{h} u_{i,h} \right)$$
 for $i = m \dots 1$

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Roundoff-Error-Free Substitution

REF Forward Substitution

$$\psi_{i,r} = \left\{ \begin{array}{ll} b_i & \text{if } r=0 \\ \frac{l_{r,r}\psi_{i,r-1} - l_{i,r}\psi_{r,r-1}}{l_{r-1,r-1}} & \text{if } 0 < r < i \end{array} \right. \quad \text{for} \quad i=1..m$$

REF Backward Substitution

$$x'_{i} = \frac{1}{u_{i,i}} \left(y'_{i} - \sum_{h=i+1}^{m} x'_{h} u_{i,h} \right)$$

for
$$i=m\dots 1$$

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad \Longrightarrow \qquad y = \begin{bmatrix} 1 \\ 1 \\ -20 \\ -238 \end{bmatrix}$$

Roundoff-Error-Free Substitution

REF Forward Substitution

$$\psi_{i,r} = \left\{ \begin{array}{ll} b_i & \text{if } r=0 \\ \frac{l_{r,r}\psi_{i,r-1} - l_{i,r}\psi_{r,r-1}}{l_{r-1,r-1}} & \text{if } 0 < r < i \end{array} \right. \quad \text{for} \quad i=1..m$$

REF Backward Substitution

$$x_i' = \frac{1}{u_{i,i}} \left(y_i' - \sum_{h=i+1}^m x_h' u_{i,h} \right)$$
 for $i = m \dots 1$

$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad \Rightarrow \qquad y = \begin{bmatrix} 1 \\ 1 \\ -20 \\ -238 \end{bmatrix} \qquad \Rightarrow \qquad x' = \begin{bmatrix} 476 \\ -74 \\ 242 \\ -238 \end{bmatrix}$$

$$x' = \begin{vmatrix} 476 \\ -74 \\ 242 \\ -238 \end{vmatrix}$$

Computational advantages (1)

Construction and solution (in secs)

Computational advantages (1)

Construction and solution (in secs)

Computational advantages (1)

Construction and solution (in secs)

- \Rightarrow Construction times $> 15 \times$ faster
- \Rightarrow Substitution times \geq 35 \times faster

An alternative IPGE-based optimization approach

Simplex algorithm based on IPGE:

- Q-matrix framework (Edmonds and Maurras 1997)
- Q-matrix revised simplex method (Azulay and Pique 2001)

Methodology is **obscure** and **unutilized**:

⇒ A full unlimited-precision LP solver

An alternative IPGE-based optimization approach

Simplex algorithm based on IPGE:

- Q-matrix framework (Edmonds and Maurras 1997)
- Q-matrix revised simplex method (Azulay and Pique 2001)

Methodology is obscure and unutilized:

⇒ A full unlimited-precision LP solver

An additional comparison

- Efficient adaptation of Q-matrix framework
- Construction routine: Use IPGE to obtain $Adj(A) = det(A)A^{-1}$
- **Solution routine**: Perform matrix-vector multiplication Adj(A)b

Computational advantages (2)

Construction (in mins) and solution (in secs)

Computational advantages (2)

Construction (in mins) and solution (in secs)

Computational advantages (2)

Construction (in mins) and solution (in secs)

- \Rightarrow Construction times $\geq 7 \times$ faster
- \Rightarrow Substitution times $\geq 7 \times$ slower

Computational advantages (3)

Asymptotic performance $(\log_2 n, \log_2 \text{secs})$

Computational advantages (3)

Asymptotic performance $(\log_2 n, \log_2 \text{secs})$

- \Rightarrow QLU \approx Adj Q-Mat for larger n
- ⇒ REF LU maintains its edge

Computational advantages (4)

Storage (in limbs)

	Crout/REF	Doolittle/REF	Q-Mat/REF
n	AVG	AVG	AVG
50	1.9583	1.9574	2.77
100	1.9757	1.9753	2.97
150	1.9822	1.9823	3.03
200	1.9862	1.9862	3.03
250	1.9890	1.9891	3.09
300	1.9908	1.9909	3.13
350	1.9920	1.9921	3.10
400	1.9929	1.9929	3.11
450	1.9937	1.9937	3.12
500	1.9944	1.9944	3.12

Computational advantages (4)

Storage (in limbs)

	Crout/REF	Doolittle/REF	Q-Mat/REF
n	AVG	AVG	AVG
50	1.9583	1.9574	2.77
100	1.9757	1.9753	2.97
150	1.9822	1.9823	3.03
200	1.9862	1.9862	3.03
250	1.9890	1.9891	3.09
300	1.9908	1.9909	3.13
350	1.9920	1.9921	3.10
400	1.9929	1.9929	3.11
450	1.9937	1.9937	3.12
500	1.9944	1.9944	3.12

- ⇒ QLU requires 2x the storage of REF LU
- ⇒ Adj Q-Mat requires >3x the storage of REF LU

Questions??

Thank you!

(email: adRes@asu.edu)