## STAT 215A Fall 2017 Week 5

Rebecca Barter 09/22/2017

#### Peer review



Image source: http://bit.ly/x2pms8

## Overplotting



#### Overplotting

Some report file sizes were so large that I couldn't open them!

You need to make sure that your figures are rendered as png rather than pdf...

```
<<dev = "png", dpi = 300>>=
ggplot(big_df) + ...
@
```

#### Overplotting: add a trendline?



#### Overplotting: add transparency?



### Overplotting: subsampling 10,000 points?



# Overplotting: meaningful subsampling (plotting only a single node)?



#### Interactive plotting: shiny apps

https://shiny.rstudio.com/gallery/lego-set.html



■ Dataset 
✓ Visualize the Data

#### Number of Sets by Year

Please hover over each point to see the Year and Total Number of Sets.



#### Number of Themes by Year

Please hover over each bar to see the Year and Total Number of Themes.

#### Interactive plotting: linked brushing via crosstalk

https://rstudio.github.io/crosstalk/using.html

```
library(crosstalk)

shared_iris <- SharedData$new(iris)
bscols(
   d3scatter(shared_iris, ~Petal.Length, ~Petal.Width, ~Species, width="100%", height=300),
   d3scatter(shared_iris, ~Sepal.Length, ~Sepal.Width, ~Species, width="100%", height=300)
)</pre>
```





## Clustering

K-means Hierarchical clustering Spectral clustering

• • •



#### Silhouette plots

A measure of the separation between clusters

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

average dissimilarity of data point *i* with all other data within the same cluster

lowest average dissimilarity of data point *i* to any other cluster

#### Silhouette plots (average sil = 0.70)

Plot silhouette widths in decreasing order, grouped by cluster

Silhouette analysis for KMeans clustering on sample data with n\_clusters = 2



### Silhouette plots (average sil = 0.59)

Silhouette analysis for KMeans clustering on sample data with n\_clusters = 3



### Silhouette plots (average sil = 0.65)

#### Silhouette analysis for KMeans clustering on sample data with n\_clusters = 4



### Silhouette plots (average sil = 0.56)

Silhouette analysis for KMeans clustering on sample data with  $n_c$  clusters = 5



## Silhouette plots (average sil = 0.45)

Silhouette analysis for KMeans clustering on sample data with n clusters = 6



#### Silhouette plots (**k** = **2** is the best!)

```
For n_clusters = 2 The average <u>silhouette_score</u> is : 0.704978749608

For n_clusters = 3 The average <u>silhouette_score</u> is : 0.588200401213

For n_clusters = 4 The average <u>silhouette_score</u> is : 0.650518663273

For n_clusters = 5 The average <u>silhouette_score</u> is : 0.563764690262

For n_clusters = 6 The average <u>silhouette_score</u> is : 0.450466629437
```

- 1. Load wine.csv (14 characteristics of 178 wines from 3 different cultivars)
- 2. Plot the wines in the space defined by the first two principal components. Color each wine by its cultivar (type).

- 1. Load wine.csv (14 characteristics of 178 wines from 3 different cultivars)
- 2. Plot the wines in the space defined by the first two principal components. Color each wine by its cultivar.
- 3. Run k-means with 3 cluster centers using all variables (except cultivar). Color each point in your previous plot by cluster.

- 1. Load wine.csv (14 characteristics of 178 wines from 3 different cultivars)
- 2. Plot the wines in the space defined by the first two principal components. Color each wine by its cultivar.
- 3. Run k-means with 3 cluster centers using all variables (except cultivar). Color each point in your previous plot by cluster.
- 4. Run k-means using the first two principal components only. Color each point in your plot by cluster. Compare the spectral clustering to the standard k-means clustering.

- 1. Load wine.csv (14 characteristics of 178 wines from 3 different cultivars)
- 2. Plot the wines in the space defined by the first two principal components. Color each wine by its cultivar.
- 3. Run k-means with 3 cluster centers using all variables (except cultivar). Color each point in your previous plot by cluster.
- 4. Run k-means using the first two principal components only. Color each point in your plot by cluster. Compare the spectral clustering to the standard k-means clustering.
- 5. Re-run steps 3 and 4 each four times. Do the results change?

- 1. Load wine.csv (14 characteristics of 178 wines from 3 different cultivars)
- 2. Plot the wines in the space defined by the first two principal components. Color each wine by its cultivar.
- 3. Run k-means with 3 cluster centers using all variables (except cultivar). Color each point in your previous plot by cluster.
- 4. Run k-means using the first two principal components only. Color each point in your plot by cluster. Compare the spectral clustering to the standard k-means clustering.
- 5. Re-run steps 3 and 4 each four times. Do the results change?
- 6. Re-run steps 3-5 with 10 cluster centers. Compare silhouette plots.

#### Introducing Lab 2



Joshua Katz, Department of Statistics, NC State University

http://www.businessinsider.com/22-maps-that-show-the-deepest-linguistic-conflicts-in-america-2013-6