Genomic relationships

Andrés Legarra, UR 631 Saga, INRA Toulouse, France

Acknowledgements

- ANR projects Amasgen, Rules&Tools; Apisgene
- Toulouse bioinformatics platform (bioinfo.genotoul.fr)
- GENOMIA funding: www.poctefa.eu

- <u>Coancestry</u> r_{xy} (Malécot coefficent, coefficient de parenté ou d'apparenté): probability that a randomly drawn gene from x is identical by descent with a gene randomly drawn from y
- <u>Inbreeding</u> f_z (coefficient de consanguinité): the probability that the two genes in z descending from x and y are *identical by descent*. r_{xy} = f_z
 - and $r_{zz} = (1+f_z)/2$
- Additive relationship: covariance between additive genetic values (u) of individuals x and y
 - Cov(u_x, u_y)= $a_{xy}\sigma^2_u$
 - Twice the coancestry

- The additive or numerator relationship matrix (a_{xv}, numerator)
 - is not a matrix with probabilities
 - but of 2 * coancestries (r_{xy})
 - describes covariances between individuals due to additive variation
- Inbreeding and relationships
 - are defined with respect to a base population (usually founders)
 - where an arbitrary relationship across individuals is defined (usually 0).

- Wright (and Cockerham later) was very open in his interpretation of F
 - F (=inbreeding, relationship) can be, depending on the context,
 - a correlation (and as such, it can be negative),
 - a variance component (positive),
 - a measure of the structure of populations (F_{st}) or
 - a relationship between individuals
- But in all cases, it measures the excess from Hardy-Weinberg equilibrium
 - mind, if mate animals against homozigosity inbreeding can be negative

	А	а
Α	p ² +Fpq	pq(1-F)
а	pq(1-F)	q ² +Fpq

- How do we conciliate negative « F »'s (inbreeding, whatever) with our A which has (positive) probabilities only?
- Remember: IBD is a <u>proxy</u> to the true (unknown)
 IBS at the gene
 - Coancestry is usually positive <u>as a byproduct</u> of considering founders as <u>unrelated</u>
 - certainly this is false: founders are always related
 - But there is no need to *impose* coancestry to be positive

Molecular relationships

- In conservation genetics, molecular markers have often been used to estimate relationships
 - Either estimates of r_{xy}, or estimates of « the most likely relation » (son-daughter, cousins, whatever)
 - Not very accurate
 - e.g. Ritland, 1996
- Some formulae pop out in later works

genomic relationships

- Two ways of deriving the genomic relationship matrix
 - The first is an extension of BLUP_SNP
 - SNP have effects
 - Individuals are similar because they share SNP effects
 - SNPs give clues on « family » relationships
 - i.e., two individuals sharing lots of genotypes at SNPs are likely because they belong to the same family
 - We estimate a relationship that is more accurate than the one estimated by genealogy

The genomic relationship matrix

VanRaden, 2007, 2008

Using centered coding!

• Assume g = Za

(genetic value = sum of SNP effects).

- If we assume $Var(\mathbf{a}) = \mathbf{I}\sigma^2_a$, it follows from theory that
 - $Var(\mathbf{g}) = \mathbf{ZZ'} \sigma^2_a$
 - This is the covariance matrix of g, individual genetic values (or BVs)
 - This is not very informative because σ_a^2 has no interpretation for us (it is just the variance of SNP effects)
 - And also, we would like the covariance of individuals to look like a relationship matrix (~1 in the diagonal and not something that depends on the number of SNPs)
 - Also, there is an issue with Z (which coding should I use?)

Centering Z

- value of « 1 » allele = -p_i a_i
- value of « 2 » allele = (1-p_i) a_{i,} where a_i is the effect of the SNP at that locus, and p_i is the frequence of the allele 2
- Thus results in centered Z matrix (E(Za)=0 for any a)
- e.g. the sum of each column of **Z** is 0
 - " 11 " = -2p_i - " 12 " = 1-2p_i - " 22 " = 2-2p_i
- i.e. we force the average BV to be 0.

Variance of the genetic values

Gianola et al., 2009 (Genetics)

- Suppose a population in Hardy-Weinberg, Linkage Equilibrium
 - The variance of the genetic values of the pool of individuals that form this population is σ^2_{II}

• Then
$$\sigma_u^2 = 2 \sum_{all \, SNPs} p_i \left(1 - p_i\right) \sigma_a^2$$

- Remember, this is an approximation because HW, LE do not always hold
 - For instance if the population is a cross of two lines

The genomic relationship matrix

- We want to transform
 - $Var(\mathbf{g}) = \mathbf{ZZ'} \sigma_a^2$ into
 - $Var(\mathbf{g}) = \mathbf{G}\sigma^2_{\mu}$
 - where σ^2_{u} is the genetic variance of the population
- One way is to use $G = ZZ'/2 \sum_{all SNPs} p_i (1-p_i)$

in this case we assume
$$\sigma_u^2 = 2 \sum_{all \, SNPs} p_i \left(1 - p_i\right) \sigma_a^2$$

- And we have « declared » a base population with average 0, allelic frequencies *p* and « genomic » genetic variance σ²,
- Usually this **G** is compatible with pedigree (as in the Single Step) but it won't be so for extreme cases (too much drift, strong selection, crosses)

The genomic relationship matrix

- Different weights by SNP can be given by using Var(a)=D where D is a matrix with different variances (weights) for each SNP.
- Thus
 - $Var(\mathbf{g}) = \mathbf{Z}\mathbf{D}\mathbf{Z}' = \mathbf{G}\sigma^2_{\mathsf{u}}$
- These weights can be obtained by another method (Bayesian Lasso, BayesB: Zhang et al., 2010, Legarra et al., 2011)
- In this case one should use $G = ZDZ'/\sigma_u^2$

Some properties of G

- In H-W, Linkage equilibrium
 - Average of Diag(G) = 1
 - Average off-diagonal(**G**) =0
 - Average genetic value of genotyped individuals =0
 - This corresponds to the definition of base population
- With average inbreeding F
 - Average of Diag(G) = 1+F

	AA	Aa	aa
freq	q ² + pqF	2pq(1-F)	p ² + pqF

 $\mathbf{G} = \mathbf{ZZ'}/2 \sum_{i} p_i (1-p_i)$

Average genetic value=0

Let matrix **Z** be composed of $\mathbf{Z} = (\mathbf{z}_1, \mathbf{z}_2, \cdots \mathbf{z}_n)$ columns. Each \mathbf{z}_i column has $2(1-p_i)$ occurrences of allele 1 (with effect $-p_i a_i$) and $2p_i$ of allele 2 (with effect $(1-p_i)a_i$); therefore, the sum of $\mathbf{z}_i a_i$ cancels out for any column.

Average off-diagonal=0

Also, in case of LE, terms out of the diagonal of $\mathbf{Z}'\mathbf{Z}$ are null, for the following. These are the crossproducts of covariables associated with loci i and j. In LE, these crossproducts occur with frequency $(1-p_i)(1-p_j)$ for the co-occurrence of alleles "1" in i and "1" in j, $(p_i)(1-p_j)$ for "2" and "1", and so on. Then, by summing in order genotypes at respective loci i and j "1" and "1", "1" and "2", "2" and "1", and "2" and "2", weighted by the respective frequencies:

$$\mathbf{z}_{i}'\mathbf{z}_{j} = (1 - p_{i})(1 - p_{j})(-p_{i})(-p_{j}) + (p_{i})(1 - p_{j})(1 - p_{i})(-p_{j}) + (1 - p_{i})(p_{j})(-p_{i})(1 - p_{j}) + (p_{i})(p_{j})(1 - p_{i})(1 - p_{j}) = 0$$

Not positive definite

- Strandén & Christensen (2011) showed that
 G constructed with « centered » coding is not positive definite (has no inverse)
- We could use BLUP equations with noninverted G (Henderson, 1984)
- Instead, we use $G = 0.99 \frac{ZZ'}{2\sum p_i (1-p_i)} + 0.01A$

or something similar

Take-home message 1

- By defining a genomic relationship matrix, we define a genetic base
 - All inference will refer to this genetic base.
 - For instance, reliabilities computed from inverse of the MME will be different depending on the assumed p's.
 - It seems that « observed » p's (or even better,
 p's at the base population) are a good
 reference

- GBLUP is a « BLUP » defined
 - Sustitute A for G
- As in regular BLUP, we can include animals with genotype but without phenotype

constructed with **G** so
$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{W} \\ \mathbf{W'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{W'}\mathbf{R}^{-1}\mathbf{W} + \mathbf{G}\boldsymbol{\sigma}_{u}^{-2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{W'}\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$$

$$\mathbf{G} = \frac{\mathbf{ZZ'}}{2\sum p_i \left(1 - p_i\right)}$$

 GBLUP gives identical results to BLUP_SNP if we fit equivalent variances in both

$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z'}\mathbf{R}^{-1}\mathbf{Z} + \mathbf{I}\boldsymbol{\sigma}_a^{-2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$$

$$\sigma_u^2 = 2\sum_{all\,SNPs} p_i \left(1 - p_i\right) \sigma_a^2$$

$$\mathbf{G} = \frac{\mathbf{ZZ'}}{2\sum p_i \left(1 - p_i\right)}$$

 $\hat{\mathbf{g}}$ from GBLUP = $\mathbf{Z}\hat{\mathbf{a}}$ from BLUP_SNP

$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{I} \\ \mathbf{I'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{I'}\mathbf{R}^{-1}\mathbf{I} + \mathbf{G}\boldsymbol{\sigma}_{u}^{-2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{I'}\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$$

 We can jump from GBLUP to BLUP_SNP

SNP effects from GEBV's (Henderson, 1973; Strandén and Garrick, 2009)

$$\hat{\mathbf{a}} = \mathbf{I}\boldsymbol{\sigma}_a^2 \, \mathbf{Z}' \mathbf{G}^{-1} \boldsymbol{\sigma}_u^{-2} \hat{\mathbf{g}}$$

Some advantages of GBLUP:

- It fits nicely into existing BLUP software
- ...and into existing theory (REML, multiple traits...Single Step)
- Provides measures of accuracy from the inverse of the LHS
- Accomodates all animals

Inconvients:

- Can't easily accommodate major genes (unless using weights in the construction of G)
- Computation of G and inversion might be challenging

GREML, G-Gibbs...

Use of **G** to estimate variance components...

It can be done with remlf90, gibbs*f90, AsReml, TM...

The result will refer to an ideal population with whatever allelic frequencies we introduced in the computation of **G**.

Remember: the simplest is to use « observed » (centered) allelic frequencies

Otherwise (for instance fixing all p=0.5) your estimated variances will be too high.

• What has this **G** to do with pedigree relationships?

The genomic relationship matrix

- The other way around
 - SNPs are genotyped, and thus follow Mendel rules in transmission
 - So, we can use this Mendel rules...
 - to deduce « true » relationships
- But what is a « true » relationship?

The genomic relationship matrix

- The relationship matrix **A** based on pedigree is an average relationship which assumes infinite loci.
- « Real » relationships are a bit different due to finite genome size (Hill and Weir, 2010)
- Therefore A is the <u>expectation</u> of realized relationhips
- SNPs more informative than A.
 - Two half-sibs might have a correlation of 0.3 or 0.2
- You need many markers to get these « fine relationships »

Example

- •In the infinitesimal model, each son receives exactly half the sire.
- •But we don't even know if the halves are identical or not. This « noise » is the mendelian sampling

Example

- •In reality, two sons are identical and other two are very different from the first two but alike among them.
 - Somehow with SNP we can see this and catch mendelian sampling

Realized vs. expected

- With G, we estimate this <u>realized</u> relationship matrix
- A is a matrix of <u>expected</u> relationships

• E(**G**)=**A**

First derivation

- VanRaden (2008) explains (without much detail) that G (if derived properly) and the pedigree relationship (A) are somehow « compatible »
- The idea behind is that genetic base and variances are the same
- He provides three derivations; I'll show two
 - I will provide first the rationale why G is related to A (Toro et al., 2011 GSE)

Molecular measures of similarity

1) Molecular coancestry

	Individual i	Individual j	$f_{M(i,j)}$
Locus 1	AA	AA	1
Locus 2	Bb	Bb	0.5
Locus 3	Cc	CC	0.5
•	•	•	•
Locus L	mm	MM	O

the probability that two alleles taken at random, one from each individual, are equal

$$f_{M(i,j)} = \frac{\sum_{L} f_{l(i,j)}}{L}$$

In more formal terms if g_{ik} is the frequency (= gene content/2)

of an allele (A, B,C,..) in individual i

Note that g's are half Z's in G=ZZ'/2sumpq

	Individual i	Individual j	\boldsymbol{g}_{ik}	g_{jk}
Locus 1	AA	AA	1	1
Locus 2	Bb	Bb	0.5	0.5
Locus 3	Cc	CC	0.5	1
•	•	•	•	•
•	•	•	•	•
Locus L	mm	MM	0	0

$$f_{M(i,j)} = \frac{1}{L} \sum_{k} g_{ik} g_{jk} + (1 - g_{ik})(1 - g_{jk})$$

2) Molecular covariance

If g_{ik} is the frequency of allele BIG (A, B,C,...) in individual i

	Individual i	Individual j	\boldsymbol{g}_{ik}	g_{jk}	
Locus 1	AA	AA	1	1	
Locus 2	Bb	Bb	0.5	0.5	
Locus 3	Cc	CC	0.5	1.0	
•	•	•	•	•	
•	•	•	•	•	
Locus L	mm	MM 1	0	0	Within-individual average allelic
$Cov_{M(i,j)}$	$= Cov(g_{i}, g_{j}$	$(x) = \frac{1}{L} \sum_{k} (g_{ik} - $	$\overline{g}_i)(g_{jk} -$	\overline{g}_j)	frequency
					$\overline{g}_i = \frac{1}{L} \sum_{k} g_{ik}$

Equivalences

- Pedigree (Malécot)
 relationships assumes we
 have 2N founder alleles
- Then we genotype individual
 9
- In this case,
 - molecular coancestry =Malécot IBD coancestry
- However SNPs have 2 alleles
 - How are then these equivalences?

With SNPs...

- Let us imagine that to each one of the 2M founder alleles we assign at random a tag saying if the allele is A or a with probability p and q=1-p
- Then we genotype 9
- Can we say which ancestral allele (1 to 8) inherited 9?

with SNPs...

- The molecular coancestry between two individuals i and j will be
 - probability that two alleles are equal (alike in state) f_{Mii} ,
 - either because they have become identical by descent or
 - either because they are not identical by descent but equal in the base population.

$$f_{M_{ij}} = p^2 + q^2 + 2pqf_{ij}$$

Doing the algebra (Cockerham, 1969) ...

• it can be shown that, on expectation,

In other words

$$- Cov(g_i, g_j) = r_{ij}pq$$
 $r_{ij} = A_{ij}/2$

with allelic frequency p in the base population!!

Compare with VanRaden's G

Therefore, **G** is an estimator, based on SNP, of « true » relationships; whereas as **A** is another estimator based on pedigree

Note that either one can be very bad (too little SNPs, incomplete pedigree)

Compare with VanRaden's G's

Actually VanRaden suggests three G's

1st
$$\Longrightarrow$$
 $\mathbf{G} = \mathbf{ZZ'}/2\sum_{all\ SNPs} p_i (1-p_i)$

2nd
$$\longrightarrow$$
 $\mathbf{G} = \frac{1}{nsnp} \sum \frac{\mathbf{Z}_i \mathbf{Z}_i'}{p_i q_i}$ Very used in human genetics; numerically unstable if $p \sim 0$, it does not give better results

it does not give better results in our experience

Real results (AMASGEN)

- 9 real French bulls among 1827 genotyped, ~50000 SNPs
- Very complex pedigree
- All genotyped bulls are included in genomic estimations
- Genomic relationships as explained before
- Population means for allelic frequencies
- Programming by (most) I Aguilar and (a little) myself

Figure 3. Direct genealogical paths of the nine animals in the example.

Pedigree-based relationship

Little inbreeding

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.00 0.51 0.57 0.51 0.26 0.15 0.15 0.14 0.14 [2,] 0.51 1.01 0.30 0.33 0.17 0.17 0.12 0.11 0.11 [3,] 0.57 0.30 1.07 0.30 0.20 0.12 0.18 0.11 0.12 [4,] 0.51 0.33 0.30 1.01 0.17 0.18 0.11 0.11 0.11 [5,] 0.26 0.17 0.20 0.17 1.00 0.56 0.51 0.52 0.53 [6,] 0.15 0.17 0.12 0.18 0.56 1.06 0.31 0.32 0.32 [7,] 0.15 0.12 0.18 0.11 0.51 0.31 1.01 0.30 0.29 [8,] 0.14 0.11 0.11 0.11 0.52 0.32 0.30 1.02 0.30 [9,] 0.14 0.11 0.12 0.11 0.53 0.32 0.29 0.30 1.03
```

Cousin relationships ~0.125

"first G" genomic relationship

Less than 1 in the diagonal

Negative coefficients

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,1] 0.82 0.40 0.43 0.38 0.12 0.04 0.04 0.01 0.10 [2,] 0.40 0.91 0.18 0.24 0.02 0.05 -0.04 -0.04 0.04 [3,] 0.43 0.18 0.88 0.19 0.07 0.00 0.07 -0.02 0.05 [4,] 0.38 0.24 0.19 0.86 0.02 -0.01 -0.02 0.01 0.03 [5,] 0.12 0.02 0.07 0.02 0.73 0.34 0.30 0.31 0.35 [6,] 0.04 0.05 0.00 -0.01 0.34 0.85 0.15 0.14 0.18 [7,] 0.04 -0.04 0.07 -0.02 0.30 0.15 0.80 0.14 0.17 [8,] 0.01 -0.04 -0.02 0.01 0.31 0.14 0.14 0.80 0.17 [9,] 0.10 0.04 0.05 0.03 0.35 0.18 0.17 0.17 0.85
```

Relationships among cousins are ~0

$$\mathbf{G} = \mathbf{ZZ'}/2\sum_{all\,SNPs} p_i \left(1 - p_i\right)$$

"Second **G**" genomic relationship

Closer to 1 in the diagonal

Very similar but more "exaggerated"

$$\mathbf{G} = \frac{1}{nsnp} \sum \frac{\mathbf{z}_i \mathbf{z}_i'}{p_i q_i}$$

Use of G

- Genomic selection (GBLUP)
- Estimation of genomic parameters (GREML, G-Gibbs)
 - In populations with no pedigree recording
 - With pedigree recording: how much variance due to SNPs, how to pedigree

Genetic parameters estimates using chicken data (resistance to salmonella) and ~900 SNPs Legarra et al., 2010, Poult. Sci.

Table 1. Estimates of genetic parameters of analyses with pedigree only (top, Control) or pedigree and SNP markers (bottom, Combined) for chicken caecal load (Young_{log(cfu)}), adult liver (Adult_{liver}), spleen (Adult_{Spleen}) or caecal (Adult_{Caeca}) contamination as well as animal contamination (Adult₀₋₁). Residual variance and heritability explained by pedigree (h_u^2) or markers (h_h^2).

Method of genetic		Young _{log(cfu)}	Adult _{liver}	Adult _{Spleen}	Adult _{Caeca}	Adult ₀₋₁	
evaluation		Same residual variances					
Control	Var(e)	1.72	0.011	0.022	0.17	0.18	
	h_{u}^{2}	0.17	0.04	0.17	0.18	0.21	
	N	Markers + pedig capture al	M	Markers explain almost everything			
Combined	Var(e)	1.85	0.011	0.024	0.18	0.19	
Pedigree: A 🔷	h ² u	0.048	0.002	0.019	0.02	0.02	
∕larkers: G →	h ² _h	0.034	0.009	0.079	0.13	0.19	

Genetic parameters estimates using mice data and pedigree (A) or G

Take home

- Genomic relationships work very well and are well defined
- With >50K SNP chips they are similar, but more exact, than pedigree relationships
- The exact formula for G depends on the interpretation but results do not change much
 - Unless somebody wants to combine pedigree and molecular relationships