Natural Language Processing Deep Learning for Text Classification

Copyright Policy

All content included on the Site or third-party platforms as part of the class, such as text, graphics, logos, button icons, images, audio clips, video clips, live streams, digital downloads, data compilations, and software, is the property of BitTiger or its content suppliers and protected by copyright laws.

Any attempt to redistribute or resell will result in the appropriate legal action being taken.

We thank you in advance for respecting our copyrighted content.

- 1. Processing natural language data
- 2. Recurrent neural networks
- 3. Sentiment analysis as classification
- 4. Case study: sentiment of IMDB movie reviews

Processing Language Data

Representation of Words

- Traditionally: one-hot, tf-idf, ...
 - Sparse

0 0 0 0 1 0 0 ... 0

Size = vocabulary size ²
(e.g., ~30000²)

- Recently: word embedding
 - Dense

Advantages

- Not exclusive to deep learning
- Reduced feature size
- Vector arithmetics:
 - o "Paris"- "France" + "China" = ?
- Similarity: cosine distance

[Source: Mikolov et al, NIPS'13]

- Major deep learning toolkits have it conveniently built in!
- Keras (& tensorflow)
 - keras.layers.Embedding(vocab_size, embedding_size)
- Input: sequence of word ID
- Output: sequence of word embeddings
- You must create a dictionary & decide its size

Design Challenges (I)

- Size of vocabulary
- Add special words in dictionary: <pad>, <sos>, <eos>, <unk>
- Tokenize and stemming: pros and cons

Pros: reduce size, group words with similar meanings

"read", "reader", "reading" -> "read"

Cons: ambiguity, special cases

"U.S.", "White House", " / and - ",

Design Challenges (II)

- Length: usually cropped to e.g. 100 words
- Noisy:
 - special invisible symbols → heuristic processing
 - \circ repeated symbols \rightarrow spaces, !!!!....,
 - o Emoji
 - URLs
- Characters vs. words?

Recurrent Neural Networks (RNN)

Recurrent Neural Network: Basics

- The same cell *C* is used recurrently (repeatedly)
- A memory (state) is kept in C that carries information

Almost any sequential data!

- NLP: NER, POS tagging, translation, sentiment analysis
- Numerical data: temperature, traffic, air quality...

INPUT	今	天	/]/	明	心	情	很	好
NER	X	X	PER	PER	X	X	X	X
POS	ND	ND	NB	NB	NA	NA	D	VH

The Lifelong Learning Platform of Silicon Valley

RNN Architectures

Major types:

- Many-to-one: Sentiment analysis, topic classification...
- Many-to-many: NER, Translation...
- One-to-many: NER, Translation...

?? We will explain later!

Major types:

Many-to-one: Sentiment analysis

INPUT	今	天	/]\	明	心	情	很	好
OUTPUT								P

Many-to-one (II)

Only calculate loss against one output

Major types:

Many-to-many: NER

INPUT	今	天	/]\	明	心	情	很	好
OUTPUT	X	X	PER	PER	X	X	X	X

Many-to-many (II)

Calculate loss against the entire sequence

One-to-Many (I)

- First, encode the sequence into one vector
- Second, decode the vector into another sequence

One-to-Many (II)

- Calculate loss against the entire sequence
- Back-propagation will also train the encoder

One-to-Many (III)

- Two different networks here, encoder and decoder
- They can have different architectures! e.g., CNN + RNN

Sequence to sequence (seq2seq)

- Both input and output are sequences
- Also called "encoder-decoder"
- Can be 1-to-m or m-to-m
- Can have different network architectures
- State-of-the-art in many NLP tasks
- We will talk more about them in Part II and III of this course

LSTM: concepts

Long Short-Term Memory

- Main concept: <u>learning to forget</u>
- Three gates: input, output, and forget
- Gates regulate the values of the input, output, and memory
- Value of the gates are learnable parameters of the model

An LSTM cell

Current Output

Output: regulate the output from memory

Forget: regulate previous memory

Output Gate Cell State -Forget Gate → Ct-1 Input Gate -

Previous

Input: regulate input and previous output

Previous Current Input Output

The Lifelong Learning Platform of Silico

Learning to forget (and more)

- W and U: learned weights
- Gate values {0,1}, remember sigmoids?
- So, LSTM "learn" how to modulate gates
 from the value of input x and h - -
- New memory c
 = forget some old memory + input some
 new memory

$$\begin{cases} \mathbf{i}_t = \sigma(W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + \mathbf{b}_i) \\ \mathbf{f}_t = \sigma(W_f \mathbf{x}_t + U_f \mathbf{h}_{t-1} + \mathbf{b}_f) \\ \mathbf{o}_t = \sigma(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + \mathbf{b}_o) \end{cases}$$

$$\tilde{\mathbf{c}}_t = \tanh(W_c \mathbf{x}_t + U_c \mathbf{h}_{t-1} + \mathbf{b}_c)$$

$$\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t$$

$$\mathbf{h}_t = \mathbf{o}_t \circ \tanh(\mathbf{c}_t)$$

Design Challenges: RNN

- Length!
 - Obviously, RNNs will not work for very long sequences
- Direction
 - Use bidirectional RNN to attempt to learn long sequences
- Depth
 - Can stack multiple RNNs
- Speed
 - Slow! Why?

Bidirectional RNN

The Lifelong Learning Platform of Silicon Valley

Speed of RNN

- Factors: sequence length and size of the RNN cell
 - The step *t+1* of the RNN cannot be computed until step *t* is completed
 - Size of RNN cell determines the number of parameters

Sentiment Analysis as Classification

Sequence Classification

- Many-to-one architecture
 - Input a sequence, obtain one class label
- In our sentiment analysis project: input a movie review, predict its sentiment as being "positive" or "negative"
- We will go to the code now

