Business Analytics	Business analytics makes extensive use of statistical analysis, including explanatory and predictive modeling, and fact-based management to drive decision making. Analytics may be used as input for
Analytics	human decisions or may drive fully automated decisions.
	Descriptive analytics (What has occurred?)
	Predictive analytics (What is likely to occur?) Prescriptive analytics
From data to	Prescriptive analytics Data consolidation
information	2. Selection and Preprocessing
	3. Predictive analytics
	4. Interpretation and evaluation
Numeric	Given a collection of data with known numeric outputs, create a function that outputs a predicted value from a new set of outputs
Prediction Classification	From data with known labels, create a classifier that determines which label to apply to a new
Classification	observation
Clustering	Identify "natural" groupings of data (no predefined groups)
Association Rule	Identify relationship s in data from co-occurring terms or items
Analysis	
Machine	• Supervised learning: attempt the discovery of the relationships between input attributes and a
Learning	target attribute. (→ form a description that can be used to predict unseen examples) ○ Training: estimate the prediction function f of the training data set
	 Testing: apply f t a never seen test example
	 Unsupervised learning: there is no supervisor and only input data is available. (→ find
	regularities, irregularities, relationships, similarities and associations in the input)
Model	Representation of a system that allows for investigation of the properties of the system and, in some
	cases, prediction of future outcomes. • Decision Trees
	Neural Networks
Causal Inference	Causal inference is the process of deriving cause-and-effect conclusions by reasoning from knowledge
	and factual evidence.
	Randomized control trials are the gold standard for causal inference in the social sciences, but often
Econometrics	only observational data is available. Data analysis focusing on causal relationships in economics (Correlation ≠ Causation)
Descriptive	Descriptive statistics can be used to summarize the data, either numerically or graphically, to describe
statistics	the sample (e.g. mean, standard deviation,)
Inferential	Inferential statistics is used to model patterns in the data, accounting for randomness and drawing
statistics	inferences about the larger population (estimation, hypothesis testing, forecasting, correlation,
Random	regression) X is a random variable if it represents a random draw from some population and is associated with a
Variables	probability distribution
Variables	Discrete: random variable can take only selected values
	Continuous: random variable can take any value in the real interval
	Standard Normal: any random variable can be "standardized" by subtracting the mean and dividing by
	the standard deviation. Expected Value : the expected value of a probability weighted average of X is the mean or expected
	value of the distribution of X.
Random Sample	A random sample is a set of independent, identically distributed random variables (every combination
	of n sample points has an equal chance of being selected)
Statistical	Every member of the population has the same chance of being selected in the sample.
Estimation	An estimator is a statistic that is used to estimate an unknown population parameter. • Point estimate: sample mean, sample proportion
	 Interval estimate: confidence interval for mean, confidence interval for proportion
	Point estimate is always within the interval estimate
Standard	The standard deviation of the sample means is equal to the standard deviation of the population
Deviation	divided by the square root of the sample size
Central Limit	The central limit theorem states that the standardized average of any population of random variables is
theorem	asymptotically ~N(0,1)
Confidence Interval (CI)	Provide us with a range of values that we believe, with a given level of confidence, contains a population parameter CI for the population means
miterval (CI)	Larger sample = smaller interval
	Lower confidence interval = smaller interval

	A Mana variation I amon interval
Chartertaaliaai	More variation = larger interval Samuelata har at a significant and a sign
Statistical test	Formulate hypothesis Self-out data to took hypothesis (suptamostic organization on the controlled by statistical circuitions or any self-out of the statistical circuit of the statistical circuitions of the statistical circuit of the statistica
	2. Collect data to test hypothesis (systematic error can be controlled by statistical significance or
	by confidence interval) 3. Accept or reject hypothesis
Llunathasia	
Hypothesis	 State null and alternative hypothesis (H₀ usually a statement of no effect) Choose α level (related to confidence interval) - probability of falsely rejecting the H₀
testing	3. <i>Calculate test statistic and find p-value</i> (how far data are from null hypothesis)
	4. State conclusion
	a. $P \le \alpha$, reject null hypothesis
	 b. P > α, insufficient evidence to reject null hypothesis
	Type I error: reject null hypothesis when the null hypothesis is actually true
	Type II error: fail to reject the null hypothesis when the alternative hypothesis is true
Student t-	When the population is normally distributed, the statistic t is Student t distributed (bell-shaped and
Distribution	symmetric around zero)
	· ·
T-Test	• Single sample: tests whether a sample mean is significantly different from a pre-existing value
	Paired samples: tests the relationship between 2 linked samples
	Independent samples: tests the relationship between 2 independent populations
Selected	Parametric tests
Statistical Tests	 T-Tests: compares two sample means or tests a single sample mean
	 F-Test: compares the equivalence of variances of two samples
	Non-parametric tests
	Wicoxon signed-rank test: independence of two means for 2 paired samples when
	normality is not assumed
	Mann-Whitney-U test: used for 2 independent samples May lead Wellia Tests are included as a few whiteless are a few well and programme the samples.
	Kruskal-Wallis-Test: equivalence of multiple means in case of several non-normally
	distributed samples
	Tests of the Probability Distribution Nolmagazay Smirnoy and Chi square tests used to determine whether two underlying.
	Kolmogorov-Smirnov and Chi-square test: used to determine whether two underlying probability distributions differ, or whether an underlying probability distributions.
	probability distributions differ, or whether an underlying probability distribution differs from a hypothesized distribution
Linear Regression	Regressions identify relationships between dependent and independent variables. The linear
Lilledi Keglessioli	regression is a statistical tool for numerical predictions
	$Y = \beta_0 + \beta_1 X + \varepsilon$ (first order linear model)
Oud!	β ₀ and β ₁ are unknown, therefore, are estimated from the data
Ordinary Least	Minimize the sum of squared residuals.
Squares (OLS)	OLS requires choosing values of the estimated coefficients, such that Residual Sum of Squares (RSS) is
Desidual Come of	as small as possible for the sample.
Residual Sum of	Sum of squared differences between the points and the regression line (how well line fits the data)
Squares (RSS)	
Total Deviation	The Total Sum of Squares (TSS) is the sum of the Explained Sum of Squares (ESS) and the RSS
Coefficient of	R^2 measure the proportion of the variation in y that is explained by the variation in x ($R^2 = 1 \rightarrow perfect$
Determination	match between the line and data points, $R^2 = 0 \rightarrow no$ linear relationship between x and y)
Multiple Linear	A p-variable regression model can be expressed as a series of equations. Beta coefficients are known as
Regression	partial regression coefficients
	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 = \mathbf{X} \hat{\beta}$
	Adjusted R ² : It represents the proportion of variability of y explained by X. R ² is adjusted so that models
	with a different number of variables can be compared
	F-Test: significant F indicates a linear relationship between y and at least one of the Xs
	T-Test: significant t indicates that the variable in question influences the response variable while
	controlling for other explanatory variables
Model	In regression analysis the specification is the process of developing a regression model (selecting an
Specification	appropriate functional form and choosing which variables to include). The model might include
	irrelevant variables or omit relevant variables.
	Non-linear models are challenging, but some nonlinear regression problems can be linearized.
Subset Selection	Fit a parsimonious model that explains variation in Y with a small set of predictors
	Best subset (computationally expensive)
	Backward elimination (top-down approach)
	Forward selection (bottom-up approach)
	Stepwise regression (combines forward and backward)

_	
Gauss-Markov	The Gauss-Markov theorem states that in a linear regression model in which errors
Theorem	Have expectation zero
	Are uncorrelated
	Have equal variances
	The best (lowest variance) linear unbiased estimator (BLUE) of the coefficients is given by the ordinary
	least squares (OLS) estimator.
Unbiased	Expected value for estimator "is true" ($E(\beta) = \beta$)
Consistent	$Var(\beta)$ decreases with increasing sample size n
Efficient	Estimator β has lower variance than any other estimator
OLS assumptions	 Linearity: linear relationship in parameters β (when linearity does not hold, try to reformulate)
OLO GOSGIII PUONS	No multicollinearity: no linear dependency between predictors
	Homoscedasticity: residuals exhibit constant variance (the spread of the data points does not
	change much)
	 No autocorrelation: there is no correlation between the I and j residual terms
	• Exogeneity: expected value of the residual vector, given X, is 0
Outlier	An outlier is an observation that is unusually large or small. Possibilities :
Outilei	There was an error in recording the value
	_
	 The point does not belong in the sample The observation is valid
84	
Multicollinearity	1. Calculate the correlation coefficient for each pair of predictor variables
check	→ Large correlations (greater than the correlations between predictor and response) indicate
	problems.
	VIF = $\frac{1}{1-R_k^2}$ where the R_k^2 is the value when the predictor in
	question (k) is set as the dependent variable (how much of the variance can be explained)
	→ remove variables with VIF scores greater than 10
	If the variable has a non-significant t-value, then either
	The variable is not related to the response
	• The variable is not related to the response, but it is not required in the regression because it is
	strongly related to a third variable that is in the regression
	→ The usual remedy is to drop one or more variables from the model
Heteroscedasticit	When the requirement of a constant variance is violated.
	Breusch-Pagan test or White test are used to check for heteroscedasticity. If there is
У	heteroscedasticity, the estimated $Var(\beta)$ is biased and OLS might not be efficient anymore
Autocorrelation	By examining the residuals over time, no pattern should be observed. Reasons of autocorrelation:
	Omission of an important variable
	Functional misfit
	Measurement error in the independent variable
	Durbin-Watson (DW) statistic to test for first order autocorrelation.
Modeling	A regression can estimate both the trend and additive seasonal indexes:
seasonality	Create dummy variables which indicate the season
Seasonanty	Regress on time and the seasonal variables
	Use the multiple regression model to forecast
•-	$y = \beta_0 + \beta_1 t + \beta_2 Q_1 + \beta_3 Q_2 + \beta_4 Q_3$ (if all 4 Qs are modelled \rightarrow multicollinearity!)
Exogeneity	Other factors, which are not explicitly accounted for in the model but are contained in the error term,
	are not correlated with X
Endogeneity	Endogeneity is given when an independent variable is correlated with the error term and the
	covariance is not null (e.g. omitted variable)
Cross-section	Refers to data observing many subjects at the same point in time, or without regard to differences in
data	time (there might be omitted variables describing important characteristics of individuals)
Panel Data	A panel data set is one where there are repeated observations on the same units
	Balanced panel: every unit is surveyed in every time period
	 Unbalanced panel: some individuals have not been recorded in some time period
	Individual effects:
	 Fixed effects: individual-specific effects are correlated to other covariates (endogeneity)
	Random effects: individual-specific effects are uncorrelated to other covariates
	The Hausman test can help decide on one or the other (the test takes into account the covariance
	matrix of the FE and RE estimators as well as the estimates and follows a chi-square distribution)
Fixed effect	Treat λ (the individual-specific heterogeneity) as a constant for each individual
model	$y_{it} = (\beta_0 + \lambda_i) + \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_p x_{pit} + \varepsilon_{it}$
	2 u (r 0 1) / 1 lu / 2 2u

	Estimators: first differences, within, between, least squares dummy variable estimator
Random effect	The larger the variance of individual effects λ , the more random effects accounts for it.
model	$Y_{it} = \beta_0 + \beta_1 X_{1it} + \beta_2 X_{2it} + \beta_3 X_{3i} + \beta_4 X_{4i} + \varepsilon_{it}$
Logistic Regression	The logistic function $Pr[Y X]$ constraints the estimated probabilities to lie between 0 and 1. $Pr[X Y]$ is the estimated probability that the i th case is in a category and $\beta 0 + \beta 1X$ is the regular linear regression
	 equation → Probability of success (Y=1) given the predictor variable (X) is a logistic function (non-linear) β0 is the regression constant
	• $\beta 1X$ is the regression slope (if $\beta 1 < 0$ and X increases \rightarrow the odds go down, opposite by $\beta 1 > 0$)
	Odds : by algebraic manipulation, the logistic regression equation can be written in terms of an odd of success (range from 0 to INF).
	Logit : taking the natural log of both sides, we can write the equation in terms of logits (log-odds). The presence of multicollinearity will not lead to biased coefficients, but it will have an effect on the standard errors.
	The inclusion f irrelevant variables can result in a poor model fit (consult Wald statistics). Multiple Logistic Regression: more than one independent variable
Multinomial	The dependent variable, Y, is a discrete variable that represents a choice, or category, from a set of
Logit model	mutually exclusive choices or categories (more than 2)> conditional logit
Generalized	Ordered logit models have ordinal dependent variables. GLMs are a general class of linear models that are made up for three components:
Linear Models	 Random component: identifies dependent variable μ and its probability distribution
(GLM)	• Systematic component: identifies the set of explanatory variables (X1,, Xk)
(0=)	• Link function: identifies a function of μ that is a linear function of the explanatory variables
	 Identity link: form used in normal linear regression models
	\circ Log link: used when μ cannot be negative as when data are Poisson counts
Maximum	\circ Logit link: used when μ is bounded between 0 and 1 as when data are binary Maximum Likelihood estimation is a statistical method for estimating the coefficients of a model. (MLE
Likelihood	involves finding the coefficients that make the log of the likelihood function (LL<0) as large as possible.
Estimation (MLE)	Likelihood Function (L): measures the probability of observing the particular set of dependent variable
Listillation (WILL)	values that occur in the sample
Goodness of Fit	 Null model: assumes one parameter (the intercept) for all of the data points, which means you only estimate 1 parameter
	Fitted model: assumes you can explain your data points with p parameters and an intercept
	term, so you have p+1 parameters • Null deviance (-2ln(L(null))): how much is explained by a model with only the intercept
	 Null deviance (-2In(L(null))): how much is explained by a model with only the intercept Residual deviance (-2In(L(fitted))): small values mean that the fitted model explains the data well
	 Likelihood ratio test: Non-significant χ 2 values indicate that a significant amount of the variance is unexplained
	• Wald test: used to test the statistical significance of each coefficient in the model hypothesis that $\beta i = 0$
Count Variables	Count variables are non-negative integers. (OLS bad regression model as count variables cannot be negative and are often highly skewed.
Count models	Poisson regression model
	Negative binomial regression model
Poisson	In Poisson regression, y is typically conceptualized as a rate (positive coefficients indicate higher rate). Poisson models are non-linear (coefficients don't have a simple linear interpretation
Regression	Poisson Model has a log form; exponentiation aids interpretation
	Assumptions:
	The mean and variance are the same (often not met in real data> variance is often greater
	than μ : Overdispersion)
	• Overdispersion \rightarrow standard errors will be underestimated; potential overconfidence in results
Zero-Inflation	→ Negative binomial regression as alternative to Poisson regression If outcome variable has many zero values it tends to be highly skewed.
ZEI U-IIIII ati Ofi	Zero-inflated model : assume two types of groups in your sample:
	Type A: Always zero (no probability of non-zero values)
	2. Type ~A: non-zero chance of positive count value
	→ Use logit to model group membership (A or ~A)
	→ Use Poisson or NB regression to model counts for those in group ~A
	Compute probabilities based on those results

Classification	Given a database D of tuples and a set of classes C, the classification problem is to define a mapping D- C where each x is assigned to one class. A class contains precisely those tuples mapped to it. Prediction is similar, but usually implies a mapping to numeric values instead of a class C.
	Algorithms:
	Logistic Regression
	Statistical Modeling (e.g. Naïve Bayes)
	Decision Trees: divide and conquer
	• Classification Rules (e.g. PRISM)
	Instance-Based Learning (e.g. kNN)
	Support Vector Machines
	•
Naïve Bayes	Naïve Bayes classifier takes all attributes into account. Assumptions :
Classifier	All attributes are equally important
	All attributes independent (value of one value tells nothing about value of another attribute)
	Adding to many redundant attributes will cause problems
Bayesian (Belief)	Bayesian Belief Network describe conditional independence among subsets of attributes: combing
Networks	prior knowledge about dependencies among variables with observed training data (Graphical
	representation: directed acyclic graph) Ex. P(A,B,C,D,E) = P(A) P(B A) P(C A,B) P(D A,B,C) P(E A,B,C,D)
	Inference: other than the joint probability of specific events, we may want to infer the probability of an
	event, given observations about a subset of other variables
Conditional	Probability of events change when we know something of the world.
	$P(A B) \rightarrow Probability of A given that we know B is true = P(A \cap B)/P(B)$
probability	If events A and B do not influence each other \rightarrow P(A B) = P(A)P(B)
	$\Pr[e h]\Pr[h]$
	$Pr[h e] = \frac{Pr[e h]Pr[h]}{Pr[e]}$
	Normalization:
	$\Pr[h \mid e] = \frac{\Pr[e_1 \mid h] \Pr[e_2 \mid h] \dots \Pr[e_n \mid h] \Pr[h]}{\Pr[e]}$
	Dealing with numeric attributes → Probability density function
	$1 - \frac{(x-\mu)^2}{2}$
	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ (normal or gaussian probability)
	For unknown distributions -> Kernel Density Estimate
Zero Frequency	Attribute value does not occur with every class value → add 1 to the numerator for every attribute-
Problem	class combination, and the probability can never be 0
Troblem	Modified Probability Estimates: in some cases adding a constant different from 1 might be more
	appropriate
Probability Laws	Chain rule: the joint distribution is independent of the ordering
•	 Conditional independence: event A causes something in event B (rain → umbrella)
Decision Trees	Internal node: test on an attribute
	Branch: outcome of the test
	Leaf node: class label or class label distribution
Building Decision	Top-down tree construction: all training examples are at the root. Partition the examples
Tree	recursively by choosing one attribute each time
	Bottom-up tree pruning: remove subtrees or branches, in a bottom-up manner, to improve
	the estimated accuracy on new cases (on the basis of an evaluation)
	The output of decision trees can be used for descriptive as well as predictive purposes
Attribute	Choose the attribute which will result in the smallest tree (not good)
selection	Choose the attribute that produces the "purest" nodes (heuristics)
	Choose attribute that results in the greatest information gain
Entropy	Gives the information required in bits. The distribution's entropy represents the info required to
063	predict an event
	entropy $(p_1, p_2,, p_n) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 p_n \log_2 p_n$
	$(\text{entropy} = 0 \rightarrow \text{perfectly ordered system})$
Expected	Gain(S,a) is the information gained adding a sub-tree. Problems:
•	Attributes with a large number of values (e.g. ID codes)
Intermation Cain	
Information Gain	 Subsets are more likely to be nure if there is a large number of values → Overfitting
Information Gain	• Subsets are more likely to be pure if there is a large number of values → Overfitting Gain ratio: modification of the information gain that reduces its bias on high-branch attributes. Gain
Information Gain	Gain ratio: modification of the information gain that reduces its bias on high-branch attributes. Gain
Information Gain	Gain ratio : modification of the information gain that reduces its bias on high-branch attributes. Gain ratio takes number and size of branches into account when choosing an attribute
Information Gain	Gain ratio: modification of the information gain that reduces its bias on high-branch attributes. Gain

	Intrinsic Information: how much info do we need to tell which branch an instance belongs to
Splitting Criterion	 Gini Index: frequency of positive and negative classes (select the split that decreases the Gini index most) C4.5 and CART
Industrial- Strength Algorithm	 For an algorithm to be useful in a wide range of real-world applications it must: (e.g. C4.5) Permit numeric attributes: every attribute has many possible split points (evaluate info gain) Numeric attributes may be tested several times along a path in the tree Allow missing values Be robust in the presence of noise
Handling Missing Values (Tree)	 Ignore instances with missing values Ignore attributes with missing values Treat missing value as another nominal value Estimate missing value Follow the leader: an instance with a missing value is sent down the branch with the most instances Partition the instance: send down part of the instance proportional to the number of training instances
Overfitting	Chasing every abnormality (noise, outliers) causes overfitting: ■ Decision tree gets too large and complex ■ Good accuracy on training set, poor accuracy on test set ■ Does not generalize the data any more → Prune the tree
Propositional rules	Rules comparing attributes to constants are called propositional rules
Pruning	 Prepruning: tries to decide a priori when to stop creating subtrees (halt tree construction) Postpruning: simplifies an existing decision tree (construct complete tree) ○ Subtree replacement: replace a subtree with a single leaf node To determine if a node should be replaced, compare the error rate estimate for the node with the combined error rates of its children → replace the node if combined error rate is higher
Data understanding	 Quantity Number of instances (>5000) Number of attributes (<50) Number of targets (>100 for each class) Visualization Data summaries
Data preparation	 Data cleaning: Missing values Discretization: reduces the number of values for a continuous attribute (binning) Equal Frequency: bins with equal number of instances Class Dependent (supervised discretization) Conversion: ordered attributes to numeric attributes Building balanced train sets → Subset Selection Best subset (computationally expensive) Backward elimination (top-down approach) Froward selection (bottom-up approach) Stepwise regression (combines forward/backward)
Validity	 External validity: a statistical study has external validity if its inferences and conclusions can be generalized from the population and setting studied to other populations and settings Internal validity: a statistical analysis has internal validity if the statistical inferences about causal effects are valid for the population being studied. Problems: Misspecification of the functional form of the model Measurements errors in the independent variable Simultaneous causality Omitted variable bias Sample selection bias (if data is not collected via a randomized controlled trial)
Data Collection	 Randomized controlled trials (RCTs): randomized experiments, where each subject is randomly assigned to a treated group or a control group in order to control for extraneous factors Quasi-experiments: compare natural groups and measure effects without randomization of the subjects. The independent variable is controlled, but the assignment of subjects is not random

Observational studies: draw inferences from a sample to a population where the independent variable is not under control of the researcher Cross-sectional studies: data collection at one specific point in time Longitudinal study: repeated observations of the same variables over long periods of Panel study: group of subjects is closely monitored over a span of time Case-control study: two existing groups differing in outcome are identified and compared on the basis of some supposed causal attribute Confounding Is an extraneous variable in a statistical model that correlates (directly or inversely) with both the dependent variable and the independent variable, in a way that "explains away" some or all of the variable correlation between these two variables. **Identification strategies:** Randomized controlled trials Fixed effects models for panel data: eliminates alternative explanations that are "fixed" across Propensity score matching: only difference in similar subjects is treatment a. Estimate propensity score: individual being selected in the treatment b. Match subjects with similar propensity score (balance the pretreatment covariates) c. Evaluate quality of matching: check if the treatment and comparison group are similar d. Evaluate outcomes Instrument variables: determines observed versus unobserved explanations for taking treatment, and only uses observed portion Regression discontinuity analysis Difference-in-differences for quasi-experimental data: if the treatment in quasi-experiment is as if subjects were randomly assigned, we can use the differences regression Treatment and control group have the same overall trend **Common trend** assumption **Experiments** Lab experiment: create a situation with desired conditions, manipulate some variables while controlling others, examine the dependent variable Field experiment: research study in a natural setting, manipulate some variables, examine the dependent variable Randomized experiment Quasi-experiment High internal validity/ Low internal validity / Field High external validity High external validity High internal validity/ Low internal validity/ Low external validity Low external validity **CRISP Data** 1. Business understanding 2. Data evaluation **Mining Process** 3. Data preparation 4. Modeling Evaluation Deployment **Bias-Variance** The bias-variance tradeoff provides a conceptual framework for determining a good model Models with too few parameters are inaccurate because of a large bias (not enough flexibility) Tradeoff → Underfitting: model is too simple to represent all relevant characteristics (high bias, low variance) models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample) → Overfitting: model is too complex and fits irrelevant characteristics/noise (low bias, high Model selection Estimating performances of different models to choose the best one (minimum of the test error) Akaike Information Criterion (AIC) Minimum description length Resampling methods (cross validation, jackknife, bootstrap, etc... Holdout procedure: reserve some data for testing o Stratified holdout: guarantee that class are proportionally represented in the test and Repeated holdout: randomly select holdout set several times and average the error rate estimates

Resampling methods	 Cross validation: Train most of the data and use remaining for testing (use all parts of the data once for testing) → k-fold cross validation: divide data in k partition and use 1 for testing (estimate error rates)
	• Jackknife (Leave-One Out Holdout): use all but one instance for training. Each iteration is
	evaluated by predicting the omitted instance
	 Bootstrap: sampling several times with replacement from training set to form a "bootstrap" data set. Some observations are considered more than once and others not at all. Prediction are made for original training set (process repeated many times)
Model	Having chosen a model, estimating the prediction error on new data
assessment	
Measuring errors	 Error rate = (False negative (FN) + false positive (FP)) / N (Instances)
incusumg circis	• Recall (hit rate) = TP / (TP+FN)
	• Precision = TP / (TP+FP)
	• Specificity = TN / (TN+FP)
	• False alarm rate = FP / (FP+TN)
Cost-sensitive	Weighting of instances according to costs (ex. Increase the "no" instances in training> when testing
	on the original test data set, there will be fewer false positives)
learning	
Gain Curve	Instances are sorted according to their predicted probability (x axis = sample size, y axis = number of
	 positives) Random List (ex. 5% of random list have 5% of targets)
	,
1:ft Comes	Model-Ranked List (ex. 5% of model ranked list have 20% of targets Gain(5%) = 20%) Llow much times better the model ranked is in semparison to the random list.
Lift Curve	How much times better the model-ranked is in comparison to the random list
ROC Curves	(Receiver Operating Characteristics) Recall vs. False alarm rate: y axis shows percentage of true
	positives in sample, x axis shows percentage of false positives in sample
	Jagged curve: one set of test data
	Smooth curve: use cross-validation and average
Real-world	Logistic regression (discriminant analysis) - widely used
comparison	Decision trees – widely used
studies	K-nearest neighbor
	Non-parametric statistical methods
	Neural networks
Algorithmic	Kolmogorov complexity
Information	Minimum description length principle
Theory	A good model is a simple model that achieves high accuracy on the given data
	Theory 1 : very simple, elegant theory that explains the data almost perfectly (preferable) Theory 2 : significantly more complex theory that produces the data without mistakes
Volmogorov	The Kolmogorov complexity (K) of a binary object is the length of the shortest program that generates
Kolmogorov	this object on a universal Turing machine (random strings are not compressible)
complexity	Kolmogorov complexity is not computable! (it needs approximation)
Minimum	MDL restricts the set of allowed codes in such a way that it becomes possible (computable) to find the
description	shortest codelength of the data, relative to the allowed codes (model selection criterion)
•	DL = space required to describe a theory + space required to describe the theory's mistakes
length principle	
Computational	Probably approximately correct (PAC) learning: only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept.
learning theory	with high probability it learns a close approximation to the target concept
	 Vapnik-Chervonenkis (VC) theory: provides a measure of the expressiveness of infinite hypothesis spaces
	Bayesian inference
	Concepts:
	• Sample complexity: how many training examples are needed for a learner to converge to a
	successful hypothesis
	Computational complexity: how much computational effort is needed for a learner to
	converge to a successful hypothesis
	 Mistake bound: how many trainings examples will the learner misclassify before converging to
	a successful hypothesis
Ensembles	Combining multiple models
	(+) often improves predictive performance
	• (-) usually produces output that is very hard to analyze
	Methods:
	Bagging
	Random Forests

	Boosting
	• Stacking
Bagging	Combining predictions by voting/averaging
-	1. Sample several training sets of size n from the population
	2. Build a classifier for each training set
	3. Combine the classifiers' predictions
	- If the learning scheme is unstable (small change in the data causes big change in the model)
	 bagging almost always improves the performance (+) Can be applied to numeric prediction and classification
	(+) Can help a lot if the data is noisy
	 (+) Can easily be parallelized because ensemble members are created independently
Bias-Variance	The bias-variance decomposition is used to analyze how much restriction to a single training set affects
decomposition	performance.
uccomposition	Bias: expected error of the ensemble classifier on new data
	Variance: component of the expected error due to the particular training set being used to
	build our classifier
	 Total expected error = bias + variance
	→ Combining multiple classifiers generally decreases the expected error by reducing variance
Random Forests	Random forests randomize data and features (more generally applicable than bagging).
	1. Draw a bootstrap sample from the data
	2. Grow a "random" tree, where at each node, the best split is chosen among mtry randomly selected variables. The tree is grown to maximum size and not pruned back
	3. Store the resulting decision tree
	4. For each of the decision tree predict class of instance
Boosting	Boosting tries to minimize the bias in terms of training performance of simple learners (ex. AdaBoost)
g	Boosting needs weight, but you can apply boosting without weights (resample data with probability
	determined by weights)
	- Boosting implements forward stagewise additive modelling (well-known statistical technique)
Forward	Build simple regression model
Stagewise	2. Gather residuals, learn model predicting residuals, and repeat
additive model	3. Sum up individual predictions from all regression models
Additive	Additive regression greedily minimizes squared error of ensemble if base learner minimizes squared
Regression	error
Stacking	In stacking, the predictions from heterogeneous classifiers are used as input into a meta-learner, which
	attempts to combine the predictions to create a final best predicted classification
	Level-0 Models:Decision tree
	 Naïve Bayes
	o Instance-based
	Level-1 Model
	o Meta learner
Meta Learning	Holdout part of the training set
_	2. Use remaining part for training level-0 methods
	3. Use holdout data to train level-1 learning
	4. Retrain level-0 algorithms with all the data
	If the base learner can output class probabilities, use those as input to meta learner instead of plain
Chustoning	classifications Find a natural partitioning of the dta set into a number of clusters such that:
Clustering	Find a natural partitioning of the dta set into a number of clusters such that: - Intra-cluster similarity is maximized (items in same cluster are similar)
	- Inter-cluster similarity is minimized (items in different clusters are different)
	Clusters are not known a priori.
	Many different methods and algorithms:
	- Numeric and/or nominal data
	- Deterministic vs. probabilistic
	- Partitional vs. overlapping
	- Hierarchical vs. flat
Hierarchical	Bottom up:
Clustering	1- Start with single instance clusters
	2- At each step, join the two closest clusters Top down:
	1- Start with one universal cluster
	1

	2- Find two clusters	
	3- Proceed recursively on each subset	
	(MST Algorithm: compute the minimal spanning tre	e of the graph)
K-Means	K-Means is an example of a partial clustering algorit	
clustering	1- Pick a number (k) of cluster centers (at rand	
ciustering	2- Assign every item to its nearest cluster cen	
	3- Move each cluster center to the mean of it	
	4- Repeat steps 2 and 3 until convergence	S
	Results can vary significantly depending on the initia	Il choice of seeds. To increase chance of finding
	global optimum restart with different random seeds	
K-Means Pros	(+) Simple and understandable	(-) Must pick number of clusters before hand
and Cons	(+) Items automatically assigned to clusters	(-) All items forced into clusters (sensitive to
		outliers)
Probability-based	Model each cluster with a probability distribution (n	nixture). Each probability distribution gives the
clustering	probability of an instance being in a given cluster.	
	 Start with initial guesses for the parameter 	
	2- Calculate cluster probabilities for each insta	
	3- Re-estimate the distribution parameters fo	rm probabilities (maximization)
	4- Repeat	
	The maximum found by EM could be a local optimul	m, so repeat several times with different initial
	values.	and the second s
	How do we know the parameters for the mixture? L	ise an iterative approach similar in spirit to the k-
	means algorithm.	
	Extending the model	-
	- Multiple clusters: use k normal distribution	es of all attributes to get the probability of an
	instance (in case of correlation among attri	
	- For nominal attributes: crate probability dis	
Dimensionality	Dimensionality reduction is used when the number	
problem		
Principal	Principal component analysis (PCA) converts a set o	f nossibly correlated variables into a (nossibly
Component	smaller) set of values of linearly uncorrelated variab	
Analysis (PCA)	components are orthogonal (they are the Eigenvect	
Alialysis (PCA)	Rotation of the axes	,
	→ Eigenvalues explain the proportion of variance ex	plained by PC
	→ The PCA score for any of the x is just its coefficier	
	PCA Stages	
	1. Calculate Zero mean data (calculate the me	en of each column and subtract the mean from
	each value)	
	2. Calculate the variance matrix, which summ	
	variables are measured in different units us	
	3. Calculate the Eigenvectors and Eigenvalues	
	4. Order the Eigenvectors by Eigenvalues (from	n highest to lowest)
	5. Rotate to get the Eigenvectors as axes	inviting and (long name information)
	You can decide to ignore the components of lesser s → How many dimensions should remain? Take enough	
	variance (the first k components display as much as	
		nce from the origin, subsequent PCs are orthogonal
	to first PC and describe maximum residual	
	PCA can be used for example for image compression	
PCA Assumptions		s are linear (if the structure of the data is nonlinear,
	the principal axes will not be an efficient ar	
		nts assuming continuous variables. With discrete
	variables special techniques are in order)	<u> </u>
Singular Value	SVD of the data matrix can be seen as an alternative	technique to compute the same Eigenvectors.
Decomposition	$A = USV^T$	_
•		
	=	
	$II = \mathcal{L}^T$	
	$A U S V^T$	ular values lit is accustomed to sort them by size!
	- The diagonal values of S are called the <i>sing</i> - The Columns of U are called the <i>left singulo</i>	ular values (it is accustomed to sort them by size)
	- The Columns of O are called the left singula	II VELLUIS

	- The columns of V are called the <i>right singular vectors</i> (principal axes)
	 The columns of US are the <i>principal components</i> (scores) Singular values of the SVD decomposition of the matrix A is the square root of the Eigenvalues
	of the matrix (AA^t) or (A^tA)
Principal	PCR will tend to do well in cases when the first few principal components are sufficient to capture most
Component	of the variation in the predictors as well as the relationship with the response.
Regression	1. PCA to compress the data
	2. PC regression
Partial Least	In PCR, the number of principal components is typically chosen Partial Least Squares (PLS) is just like PC Regression except in how the components are computed. PLS
Squares	makes use of the response y in order to identify new features that do not only approximate the old
Squares	features well, but also that are related to the response.
	→ Weights are calculated from the covariance matrix of the predictors
	→ Weights reflect the covariance structure between predictors and response y
Regularization	By regularizing the estimator in some way, its variance will be reduced. If the corresponding increase in
	bias is small, this will be worthwhile.
	Subset selection (forward, backward, all subsets) Pidga regression
	Ridge regressionThe lasso
Ridge regression	Ridge coefficient minimize a penalized RSS. This is a biased estimator that for some value of ②>0 may
	have smaller mean squared error than the least squares estimator.
	Ridge regression estimates will be more biased than the OLS ones but have lower variance
The Lasso	The lasso coefficients minimize the quantity. The lasso has a major advantage over the ridge
	regression, in that it produces simpler and more interpretable models that involved only a subset of
	predictors. The lasso can generate more accurate predictions compared to ridge regression.
	→ Cross-validation can be used in order to determine which approach is better on a particular data set
Ridge-PCA-PLS-	Ridge regression and PCR outperform PLS in prediction
Lasso	 Lasso outperforms ridge when there are a moderate number of sizable effects, rather than
	many small effects. It also produces more interpretable models.
Association Rule	Aims to discover interesting correlations or other relationships in large databases.
Discovery	- Market Basket Analysis: analyze customer buying habits by finding associations and
	correlations between the different items that customers place in their "shopping basket" Steps:
	1- Find all (frequent) itemsets that meet minimum support
	2- Find all rules that meet minimum confidence
	3- Prune
	Subset Property: every subset of a frequent set is frequent
	Apriori Algorithm: use one-item sets to generate two-item sets, two-item sets to generate three-item
Support of	sets, Supp(I) is the proportion of transactions that support (contain) I
itemset	Supply is the proportion of transactions that support (contain) i
Frequent Itemset	A frequent itemset I is one with at least the minimum support (supp(i) > minsupp). Association rules
rrequent itemset	with maximum support and confidence are sometimes called "strong" rules.
	Frequent itemsets represent sets of items which are positively correlated.
Recommender	Systems for recommending items to users based on examples of their preferences
Systems	- Collaborative filtering: based on similarities among users tastes. For a given user, find other
	users whose ratings strongly correlate with the current user → recommend items rated highly by these similar users
	o Product associations (ex. 90% of users who like A and B also like C)
	 User associations (ex. 90% of products liked by A and B are also liked by C)
	 Combination of product and user associations
	(-) Cold start: needs to be enough other users already in the system to find a match
	(-) Sparsity: hard to find users that have rated the same items
	(-) First rater: cannot recommend an item that has not been previously rated
	(-) First rater: cannot recommend an item that has not been previously rated(-) Popularity bias: tends to recommend popular items
	 (-) First rater: cannot recommend an item that has not been previously rated (-) Popularity bias: tends to recommend popular items Content-Based filtering: recommendations are based on information on the content of items
	 (-) First rater: cannot recommend an item that has not been previously rated (-) Popularity bias: tends to recommend popular items Content-Based filtering: recommendations are based on information on the content of items rather than on other users' opinions
	 (-) First rater: cannot recommend an item that has not been previously rated (-) Popularity bias: tends to recommend popular items Content-Based filtering: recommendations are based on information on the content of items rather than on other users' opinions (+) Able to recommend to users with unique tastes
	 (-) First rater: cannot recommend an item that has not been previously rated (-) Popularity bias: tends to recommend popular items Content-Based filtering: recommendations are based on information on the content of items rather than on other users' opinions
	 (-) First rater: cannot recommend an item that has not been previously rated (-) Popularity bias: tends to recommend popular items Content-Based filtering: recommendations are based on information on the content of items rather than on other users' opinions (+) Able to recommend to users with unique tastes (+) Able to recommend new and unpopular items

Similarity	Typically use Pearson correlation coefficient between ratings for active user, a, and another user, u
Weigjting	
Significance	Include significance weights, sa,u, based on number of co-rated items, n
Weighting	→ Important not to trust correlations based on very few co-rated items
Rating prediction	Predict a rating for each item (for active user A) by using the k selected neighbor users
Neural Network	Tredict a rating for each item (for active district A) by using the kiselected heighbor district x_0 x_1 x_2 x_3 x_4 x_5 x_5 x_6
	Sigmoid leads to greater than zero error on correct classifications
	Perceptron Error
	Perceptrons use strictly classification error
	
	Problems with Neural networks:
	 Interpretation of hidden layers (what are the hidden layers doing?)
	 Feature extraction (the non-linearities in the feature extraction can make
	 interpretation of hidden layers very difficult> NN treated as black boxes) Overfitting
Multi-Layer Feed-	Multi-layer networks can represent arbitrary functions, but an effective an effective learning algorithm
Forward	for such networks was thought to be difficult.
Networks	A typical multi-layer network consists of an input, hidden and output layer, each fully connected to the
Networks	next, with activation feeding forward. The weights determine the overall function computed
	Feed-Forward: predictions are fed forward through the network to classify
	> The output from one layer is the input to the next (each layer has its own sets of weights)
Cost Function	Use a cost function to compute the average (misclassification) cost for all training data (for a particular
(NN)	set of weights and biases it computes a single number)> Minimize the cost function!
	(-) There is no "closed-form" solution
	(+) Convex (for any pair of points within a region, the line is in the region)
Backpropagation	Backpropagation is a method used in artificial neural networks to calculate a gradient that is needed in
	the calculation of the weights to be used in the network. It describes how a single training example,
	starting from the output neurons, determines the goal for the neurons on the next layer and steps
	 backwards recursively Epoch: one pass through the training set, with an adjustment to the network weights for each
	training example. (perform as many epochs as needed to reduce the classification error)
	• Loss function: function that maps values of one or more variables onto a real number
	intuitively representing the cost associated with the event
	Risk function R: expectation of the loss function
Gradient descent	Gradient points in the direction of fastest increase
	2. To minimize R, move in the opposite direction
	3. Nearly guaranteed to converge to the minimum
	→ Can only find a local minimum unless the function is convex
	→ Can Oscillate if the steps are too large (stall if derivate is ever 0 not at the minimum)
Linear Regression	The product of two linear transformations is itself a linear transformation (nothing special)
Neural Networks	→ Non-linearities to identify complex regions in space
Linearly	Two classes of points are linearly separable, if there exists a line such that all the points of the class fall
separability	on one side of the line, and all the points of the other class fall on the other side of the line

If f(x) is linear, the NN can only draw straight decision boundaries → Use the non-linear, differentiable sigmoidal "logistic" function f(x), which can draw complex **Hidden nodes** The number of nodes in the hidden layer affects generality and convergence Too few hidden nodes → convergence may fail Few but not too few nodes → possibly slow convergence but good generalization Too many nodes → rapid convergence, but "overfitting" happens Error backpropagation unravels the multivariate chain rule and solves the gradient for each partial **Error** component separately. The target values for each layer come from the next layer **Backpropagation** → Feeds the errors back along the network **Recurrent Neural** Output or hidden layer information is stored in a context or memory layer → Learn patterns in time series and sequential learning tasks Networks Output Layer Hidden Layer Context Layer Input Layer Time Delayed Recurrent Neural Networks (TDRNN): Output layer from time t are used as inputs to the hidden layer at time t+1 Output Layer With an optional decay Input Layer **Deep Neural** Many-layer neural network architectures capable of learning the true underlying features and "feature logic", and therefore generalize very well. Regularization is used to combat overfitting. **Networks** There is no universally agreed threshold of depth dividing shallow learning from deep learning (most researchers agree that deep learning has multiple nonlinear layers) **Problems with** Lack of transparency (where is the knowledge?) **Neural Networks** Difficulty in predicting convergence

- Difficulty in scaling up (NNs are often useful subsystems, but highly complex systems must be carefully structured into separately trainable subsystems)

Point Estimate $ \overline{X} = \frac{\sum X}{n} $ Estimate of variability in population $ s = \frac{1}{\sqrt{n-1}} \sum_{i} (X_i - \overline{X})^2 $ Depends on degrees of freedom $ \overline{SD} = \sigma / \sqrt{n} $ Second of Sample mean $ \overline{SE} = s / \sqrt{n} $ Depends on degrees of freedom $ \overline{SE} = s / \sqrt{n} $ Depends on degrees of freedom $ \overline{SE} = s / \sqrt{n} $ Paired t-test $ \overline{SE} = s / \sqrt{n} $ (2 Samples, independent) $ \overline{SE} = s / \sqrt{n} $ Rejection region: $ \overline{EE} = s / \sqrt{n} $ (1 Sample, 6 known) $ \overline{EE} = s / \sqrt{n} $ Rejection region: $ \overline{EE} = s / \sqrt{n} $ Rejection re
True Standard deviation in sample mean $SE = \sigma/\sqrt{n}$ $SE = s/\sqrt{n}$ $SE $
Standard error of sample mean $SE = s/\sqrt{n}$ Depends on degrees of freedom Welch Test $t_0 = \frac{\overline{x}_2 - \overline{x}_1 - \mu_0}{s_{\overline{x} - \overline{w}}}$ (2 Samples, independent) Paired t-test $t_0 = \frac{\overline{d} - \mu_0}{s_d} \sqrt{n}$ (2 Samples, dependent) $z_1 = \frac{\overline{d} - \mu_0}{s_d} \sqrt{n}$ (1 Sample, 6 known) Rejection region: $\mu \neq \mu_0 z \geq z_{u/2}$ $\mu > \mu_0 z \leq z_u$ $\mu < z_0 z \leq z_u$ $z_0 z \leq z_u$ $z \leq z$
Depends on degrees of freedom $t_0 = \frac{\overline{x}_2 - \overline{x}_1 - \mu_0}{s_{\overline{x} - \overline{w}}}$ $(2 \text{ Samples, independent})$ Paired t-test $t_0 = \frac{\overline{a}_2 - \overline{a}_1 - \mu_0}{s_{\overline{x}} - \overline{w}}$ $(2 \text{ Samples, dependent})$ $Z - \frac{\overline{x} - \mu_0}{s_{\overline{x}} - \overline{w}}$ $Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ Rejection region: $\mu \neq \mu_0 \qquad z \geq z_{\alpha}$ $\mu < \mu_0 \qquad z \leq -z_{\alpha}$ $T - \text{test}$ $(1 \text{ Sample, 6 unknown})$ Rejection region: $\mu_{\sigma} \neq \lambda_0 \qquad t \geq t_{\alpha_2, n-1}$ $\mu_{\sigma} \geq \lambda_0 \qquad t \geq t_{\alpha_2, n-1}$ $\mu_{\sigma} < \lambda_0 \qquad t \geq t_{\alpha_2, n-1}$ Formulas for coefficients $\beta_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{1}{n} \frac{\sum_i^n x_i y_i - \bar{x}\bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y_i - \bar{y}_i)^2 = \sum_i (\hat{y} - \bar{y}_i)^2 + \sum_i (y_i - \hat{y}_i)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Welch Test $t_0 = \frac{\overline{x_2 - \overline{x_1} - \mu_0}}{s_{\overline{x} - \overline{w}}}$ (2 Samples, independent) $t_0 = \frac{\overline{d} - \mu_0}{s_{\overline{d}}} \sqrt{n}$ (2 Samples, dependent) $z_{-\text{test}} / \text{Gauss test}$ $z = \frac{\overline{d} - \mu_0}{\sigma / \sqrt{n}}$ Rejection region: $\mu \neq \mu_0 \qquad z \ge z_{w/2}$ $\mu > \mu_0 \qquad z \le z_a$ $\mu < \mu_0 \qquad z \le -z_a$ $\mu < \mu_0 \qquad z \le -z_a$ $1 \text{Sample, 6 unknown}$ Rejection region: $\mu_d = \frac{\overline{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_d = \frac{\overline{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_d = \frac{\overline{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_d = \frac{\overline{d} - \Delta_0}{s/\sqrt{n}} + \frac{1}{t} \ge t_{\alpha_0, n-1}$ Formulas for coefficients $\beta_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{1}{n} \sum_{i=1}^n x_i y_i - \bar{x} \bar{y}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y_i - \hat{y}_i)^2 = \sum_i (\hat{y} - \hat{y}_i)^2 + \sum_i (y_i - \hat{y}_i)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
$t_0 = \frac{\frac{\gamma_2}{S_1 - \mu_0}}{S_{\overline{S} - \overline{W}}}$ $t_0 = \frac{\frac{d - \mu_0}{s_d}}{s_d} \sqrt{n}$ $2 \cdot \text{test } / \text{Gauss test}$ $z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ $(1 \cdot \text{Sample, 6 known})$ $Rejection region: \mu \neq \mu_0 z \geq z_{a/2} \mu \leq \mu_0 z \leq z_a \mu \leq \mu_0 z \leq z_a$ $\mu \leq \mu_0 z \leq z_a z \leq z_a $
Paired t-test $t_0 = \frac{\bar{d} - \mu_0}{s_d} \sqrt{n}$ (2 Samples, dependent) $Z - \text{test } / \text{ Gauss test}$ $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$ Rejection region: $\mu \neq \mu_0 z \geq z_{\alpha/2}$ $\mu > \mu_0 z \leq z_{\alpha}$ $\mu < \mu_0 z \leq -z_{\alpha}$ Thest $t = \frac{\bar{d} - \Delta_0}{s / \sqrt{n}}$ Rejection region: $\mu_{\alpha} \neq \Delta_0 z \geq t_{\alpha/2, n-1}$ Formulas for coefficients $\beta_1 = \frac{\sum_{l=1}^{n} (x_l - \bar{x})(y_l - \bar{y})}{\sum_{l=1}^{n} (x_l - \bar{x})^2} = \frac{1}{n} \frac{\sum_{l=1}^{n} x_l y_l - \bar{x} \bar{y}}{1 - \sum_{l=1}^{n} x_l^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{l=1}^{n} (y_l - \hat{y}_l)^2$ Total Deviation $\sum_{l=1}^{n} (y_l - \hat{y}_l)^2 = \sum_{l=1}^{n} (\hat{y}_l - \hat{y}_l)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
$t_0 = \frac{\alpha}{s_d} \sqrt{n}$ Z-test / Gauss test $z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$ (1 Sample, 6 known) $Rejection region: \mu \neq \mu_0 z \geq z_{\alpha/2}$ $\mu > \mu_0 z \geq z_{\alpha}$ $\mu < \mu_0 z \leq -z_{\alpha}$ T-test $t = \frac{\bar{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_d \neq \Delta_0 t \geq t_{\alpha/2, n-1}$ $\mu_d > \Delta_0 t \geq t_{\alpha, n-1}$ $\mu_d < \Delta_0 t \geq -t_{\alpha, n-1}$ Formulas for coefficients $\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{1}{n} \sum_i^n x_i y_i - \bar{x}\bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y - \bar{y})^2 = \sum_i (\hat{y} - \bar{y})^2 + \sum_i (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Z-test / Gauss test $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$ Rejection region: $\mu \neq \mu_0 z \geq z_{\omega 2}$ $\mu > \mu_0 z \geq z_{\alpha}$ $\mu < \mu_0 z \leq -z_{\alpha}$ Thest $t = \frac{\bar{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_0 \neq \lambda_0 t \geq t_{\omega 2, n-1}$ $\mu_0 \neq \lambda_0 t \geq t_{\alpha, n-1}$ $\mu_0 \neq \lambda_0 t \geq t_{\alpha, n-1}$ $\mu_0 \neq \lambda_0 t \geq t_{\alpha, n-1}$ Formulas for coefficients $\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{1}{n} \frac{\sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Total Deviation $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$
(1 Sample, 6 known)
T-test $t = \frac{\bar{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_{\sigma} \neq \Delta_0 \qquad t \geq t_{\sigma/2, n-1}$ $\mu_{\sigma} \geq \Delta_0 \qquad t \geq t_{\sigma/2, n-1}$ Formulas for coefficients $\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{1}{n} \frac{\sum_i^n x_i y_i - \bar{x}\bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y - \bar{y})^2 = \sum_i (\hat{y} - \bar{y})^2 + \sum_i (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$
T-test $t = \frac{\bar{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_d \neq \Delta_0 \qquad t \geq t_{\omega 2, n-1} \\ \mu_d > \Delta_0 \qquad t \geq t_{\alpha, n-1} \\ \mu_d < \Delta_0 \qquad t \leq t_{\alpha, n-1} \\ \mu_d < \Delta_0 \qquad t \leq t_{\alpha, n-1} \\ \mu_d < \Delta_0 \qquad t \leq t_{\alpha, n-1} \\ \hline \text{Formulas for coefficients}$ $\beta_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y} \\ \frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2 \\ \hline \text{Residual Sum of Squares (RSS)}$ $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ $\sum_i^n (y_i - \hat{y}_i)^2 \qquad Total Deviation$ $\sum_i (y_i - \bar{y}_i)^2 \qquad + \sum_i (y_i - \hat{y}_i)^2$ $\sum_i^n (y_i - \hat{y}_i)^2 \qquad Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS)$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
T-test $t = \frac{\bar{d} - \Delta_0}{s/\sqrt{n}}$ Rejection region: $\mu_{\sigma} \neq \Delta_0 \qquad t \geq t_{\sigma/2, n-1} \atop \mu_{\sigma} \geq \Delta_0 \qquad t \leq t_{\alpha, n-1}$ Formulas for coefficients $\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{\frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y - \bar{y})^2 = \sum_i (\hat{y} - \bar{y})^2 + \sum_i (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Rejection region: $\mu_{d} \neq \Delta_{0} \qquad t \geq t_{\alpha/2, n-1} \\ \mu_{d} > \Delta_{0} \qquad t \geq t_{\alpha, n-1} \\ \mu_{d} < \Delta_{0} \qquad t \leq -t_{\alpha, n-1} \\ t \leq t_{\alpha/2, n-1} + t \leq -t_{\alpha, n-1} $ Formulas for coefficients $\hat{\beta}_{1} = \frac{\sum_{i}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}^{n} (x_{i} - \bar{x})^{2}} = \frac{\frac{1}{n} \sum_{i}^{n} x_{i} y_{i} - \bar{x} \bar{y}}{\frac{1}{n} \sum_{i}^{n} x_{i}^{2} - \bar{x}^{2}}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ $\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ Total Deviation $\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Formulas for coefficients $\beta_1 = \frac{\sum_{l=1}^n (x_l - \bar{x})(y_l - \bar{y})}{\sum_{l=1}^n (x_l - \bar{x})^2} = \frac{1}{n} \frac{\sum_{l=1}^n x_l y_l - \bar{x}\bar{y}}{\frac{1}{n} \sum_{l=1}^n x_l^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{l=1}^n (y_l - \hat{y}_l)^2$ Total Deviation $\sum_{l=1}^n (y_l - \hat{y}_l)^2 + \sum_{l=1}^n (y_l - \hat{y}_l)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \left(\text{Coefficient of Determination} \right)$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Formulas for coefficients $\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{\frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y - \bar{y})^2 = \sum_i (\hat{y} - \bar{y})^2 + \sum_i (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Formulas for coefficients $\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{\frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y - \bar{y})^2 = \sum_i (\hat{y} - \bar{y})^2 + \sum_i (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
$\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{\frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$ Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ $\sum_{i=1}^n (y_i - \hat{y}_i)^2 + \sum_i (y_i - \hat{y}_i)^2$ Total Deviation $\sum_i (y_i - \bar{y}_i)^2 + \sum_i (y_i - \hat{y}_i)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Residual Sum of Squares (RSS) $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Total Deviation $\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Total Deviation $\sum_{i=1}^{r} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{r} ($
Total Deviation $\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of Determination)}$ $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
$\sum (y-y)^2 = \sum (y-y)^2 + \sum (y-y)^2$ Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^2 \text{ (Coefficient of } R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Total deviation (TSS) = explained deviation (ESS) + unexplained deviation (RSS) $R^{2} \text{ (Coefficient of } R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
R ² (Coefficient of Determination) $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$
Determination) $R^2 = \frac{1}{TSS} = \frac{1}{TSS} = \frac{1}{TSS}$
$R^2 = 1$ > Perfect match between the line and data points
·
$R^2 = 0$ > There is no linear relationship between x and y
Multiple linear regression $\hat{Y}=\hat{eta}_0+\hat{eta}_1X_1+\hat{eta}_2X_2=\mathbf{X}\hat{eta}$ model
Variance Inflation Factor (VIF) $VIF = \frac{1}{1 - R_k^2}$
Durbin-Watson statistic (DW) $DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$
• $DW = 2$ – no autocorrelation
• $DW = 0$ – perfect positive autocorrelation
• DW = 4 – perfect negative autocorrelation
Logit (log odds) $\ln\left(\frac{p(x)}{1-n(x)}\right)$
(1 p(n))
p = 0.50, then logit = 0 p = 0.70, then logit = 0.84
p = 0.30, then logit = -0.84

	(11)
Odds of success	$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$
Likelihood function for the	(0 + 0 ×)
logit model	$\Pr(Y_i = 1) = F(\beta_0 + \beta_1 X_{1i}) = \frac{e^{(\beta_0 + \beta_1 X_{1i})}}{1 + e^{(\beta_0 + \beta_1 X_{1i})}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_{1i})}}$
Likelihood Ratio test	$D = -2\ln\left(\frac{L(\text{null})}{L(\text{fitted})}\right) = -2\left(LL(\text{null}) - LL(\text{fitted})\right)$
McFadden R ²	$R_{McFadden}^2 = 1 - \frac{LL(fitted)}{LL(null)}$
Conditional Probability (Bayes	
Rule)	$Pr[h e] = \frac{Pr[e h]Pr[h]}{Pr[e]}$
Normalization	$\Pr[h \mid e] = \frac{\Pr[e_1 \mid h] \Pr[e_2 \mid h] \dots \Pr[e_n \mid h] \Pr[h]}{\Pr[e]}$
Density function f(x)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
Entropy(p ₁ , p ₂ , , p _n)	entropy $(p_1, p_2,, p_n) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 p_n \log_2 p_n$
Gini Index	$Gini(S) = 1 - P^2 - N^2 \in [0,0.5]$
dill fluex	with $P = p / (p + n)$ $N = n / (p + n)$
C4.5 Method	
	$e = p = \left(f + \frac{z^2}{2n} + z * \sqrt{\frac{f}{n} - \frac{f^2}{n} + \frac{z^2}{4n^2}} \right) / \left(1 + \frac{z^2}{n} \right)$
	f is the error on the training datan is the number of instances covered by the node
Euclidian distance	. 1/2
	$d_2(x,y) = \left(\sum_{j=1}^p x_j - y_j ^2\right)^{1/2}$
Manhattan distance	/ n
	$d(x,y) = \left(\sum_{j=1}^{p} x_j - y_j \right)$
Correlation Matrix	$\rho = corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$
Reconstruction of Original data	X ≈ PCA Scores * Eigenvectors + original mean
with one Eigenvector	A - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Similarity Weighting	201/11 11
James of the state	$c_{a,u} = \frac{\text{cov}(r_a, r_u)}{\sigma_r \sigma_r}$
	$\sigma_{r_a}\sigma_{r_u}$
Significance Weighting	$W_{a,u} = S_{a,u}C_{a,u}$
	$s_{a,u} = \left\{ \frac{1}{50} \inf n > 50 \atop 100 \text{ of } n \le 50 \right\}$
Rating prediction	$p_{a,i} = \bar{r}_a + \sum_{u=1}^k \frac{w_{a,u}(r_{u,i} - \bar{r}_u)}{\sum_{u=1}^k w_{a,u} }$
Neural network	$f(\vec{x}, \theta) = \sum_{n=0}^{N-1} \sum_{d=1}^{D} \theta_d \phi_d(x_n) + \theta_0$

Logistic Neuron Optimization
(gradient descent)

$$\begin{split} R(\theta) &= & \frac{1}{2N} \sum_{i=0}^{N-1} (t_i - g(\theta^T x_i))^2 \\ & \text{derivative of } f(\mathbf{z})^2 \Rightarrow 2f(\mathbf{z})f'(\mathbf{z}) \text{ (chain rule)} \\ \nabla_{\theta} R &= & \frac{1}{2N} \sum_{i=0}^{N-1} 2(t_i - g(\theta^T x_i))(-1)g'(\theta^T x_i)x_i = 0 \end{split}$$