

Софийски Университет "Св. Климент Охридски" Факултет по Математика и Информатика

Курсов проект

Дисциплина: "Небесна механика"

Изготвил:

Георги Илков Терзиев

Софтуерно инженерство

ФН: 3МI0600090

Поправителна сесия 2022/2023

Задача 1:

Условие: Пресметнете координатите и скоростите на планетите в деня, в който сте родени.

Решение:

В задачата на Кеплер орбитата на всяка планета зависи от шест елемента:

- а дължина на голямата полу-ос на орбитата
- е ексцентрицитета на орбитата
- і наклонеността на плоскостта на орбитата
- І средна аномалия
- g + θ дължина на перихелия
- θ дължина на възела

Пет от тези елементи са константи, единствено средната аномалия I е линейна функция на времето t.

Допълнителен елемент е ексцентричната аномалия u. За него е сила уравнението на Кеплер:

$$l = u - e$$
. $\sin u$

Ексцентритетът e характеризира сплеснатостта на елипсата:

$$e = \sqrt{1 - rac{b^2}{a^2}} \in [0,1)$$
 където b е дължината на малката полуос

Връзката на елиптичните елементи с декартовите координати в ${\sf R}^3$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ 0 \end{pmatrix}$$

Обръщаме, $g + \theta$ в радиани (* $\pi/180$),

і в градуси (*π/180)

Стойностите на Кеплеровите елементи:

	AU, AU/Cy	e rad, rad/Cy	I deg, deg/Cy	L deg, deg/Cy	long.peri. deg, deg/Cy	long.node. deg, deg/Cy
Mercury	0.38709927	0.20563593	7.00497902	252.25032350	77.45779628	48.33076593
	0.00000037	0.00001906	-0.00594749	149472.67411175	0.16047689	-0.12534081
Venus	0.72333566	0.00677672	3.39467605	181.97909950	131.60246718	76.67984255
	0.00000390	-0.00004107	-0.00078890	58517.81538729	0.00268329	-0.27769418
EM Bary	1.00000261	0.01671123	-0.00001531	100.46457166	102.93768193	0.0
	0.00000562	-0.00004392	-0.01294668	35999.37244981	0.32327364	0.0
Mars	1.52371034	0.09339410	1.84969142	-4.55343205	-23.94362959	49.55953891
	0.00001847	0.00007882	-0.00813131	19140.30268499	0.44441088	-0.29257343
Jupiter	5.20288700	0.04838624	1.30439695	34.39644051	14.72847983	100.47390909
	-0.00011607	-0.00013253	-0.00183714	3034.74612775	0.21252668	0.20469106
Saturn	9.53667594	0.05386179	2.48599187	49.95424423	92.59887831	113.66242448
	-0.00125060	-0.00050991	0.00193609	1222.49362201	-0.41897216	-0.28867794
Uranus	19.18916464	0.04725744	0.77263783	313.23810451	170.95427630	74.01692503
	-0.00196176	-0.00004397	-0.00242939	428.48202785	0.40805281	0.04240589
Neptune	30.06992276	0.00859048	1.77004347	-55.12002969	44.96476227	131.78422574
	0.00026291	0.00005105	0.00035372	218.45945325	-0.32241464	-0.00508664
Pluto	39.48211675	0.24882730	17.14001206	238.92903833	224.06891629	110.30393684
	-0.00031596	0.00005170	0.00004818	145.20780515	-0.04062942	-0.01183482

Стойностите на µ(съотношение на масата на всяка планета към масата на слънцето) за планетите:

Планета	μ
Меркурий	1/6023600
Венера	1/408523
Земя	1/328900,5
Марс	1/3098708
Юпитер	1/1047,34
Сатурн	1/3497,8
Уран	1/22902,9
Нептун	1/19042

Относителна маса:

$$\gamma$$
 = 1 + μ , където

$$\gamma$$
 = Gm_A = 6.67 * 10⁻⁸ $\frac{sm^3}{g*(sec^2)}$ е гравитационната константа

Средно движение:

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Връзката между средната и ексцентричната аномалии:

l = u - e. sin(u) наричаме уравнение на Кеплер.

Въвеждаме времето от 01.01.2000 г. до рождената дата 31.01.2002г е 761 дни. Делим на 365.25 и получаваме

t = 2.083504449007529

От решението на задачата на Кеплер в декартови координати:

$$l = \sqrt{\gamma} \cdot a^{-\frac{3}{2}} (t - T_0) => l = n(t(2\pi) - T_0) = u - e \cdot \sin u$$

$$u = l + e \cdot \sin(l + e \cdot \sin(l + e \cdot \sin l))$$

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = Q \cdot a \begin{pmatrix} \cos(u) - e \\ \sin(u)\sqrt{1 - e^2} \\ 0 \end{pmatrix}$$

$$v = Q \cdot \frac{a \cdot n}{1 - e \cdot \cos(u)} \begin{pmatrix} -\sin(u) \\ \cos(u)\sqrt{1 - e^2} \\ 0 \end{pmatrix}$$

Където Q е от основна формула на сферичната тригонометрия

Теорема - Всяка матрица $Q \in SO(3,R)$ може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(i) & -\sin(i) \\ 0 & \sin(i) & \cos(i) \end{pmatrix} \begin{pmatrix} \cos(g) & -\sin(g) & 0 \\ \sin(g) & \cos(g) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\theta, g \in [0, 2\pi), i \in [0, \pi]$$

Описаните процедури се повтарят за всяка планета по отделно:

	Меркурий	Венера	Земя	Марс	Юпитер	Сатурн	Уран	Нептун
	-0.3314	0.5675	-0.6519	-0.0937	-4.7480	-8.9772	15.6111	5.0613
r	-0.1037	0.4541	0.7396	1.4558	-2.0755	-1.1282	12.4826	29.6565
	0.0219	-0.0265	0	0.0328	0.1149	0.3765	-0.1559	-0.7273
	0.2047	-0.7291	-0.7659	-0.8446	0.1568	0.0482	-0.1330	-0.1798
v	-1.7593	0.9123	-0.6649	0.0155	-0.4114	-0.3372	0.1740	0.0293
	-0.1625	0.0545	0	0.0211	-0.0018	0.0040	0.0024	0.0035
r	0.34798	0.72727	0.98588	1.4592	5.1831	9.0556	19.9886	30.0941
v	1.7786	1.1691	1.0142	0.84501	0.44025	0.34062	0.21897	0.18222

Код, чрез който са получени стойностите:

```
planets = {
    'Mercury',
    'Venus',
    'Earth',
    'Mars',
    'Jupiter',
    'Saturn',
    'Uranus',
    'Neptune'
};
% kepler elements values
data = [
    0.387 0.205 7.004 252.250 77.457 48.330;
    0.723 0.006 3.394 181.979 131.602 76.679;
    1 0.016 0 100.464 102.937 0;
    1.523 0.093 1.849 -4.553 -23.943 49.559;
    5.202 0.048 1.304 34.396 14.728 100.473;
    9.536 0.053 2.485 49.954 92.598 113.662;
    19.189 0.047 0.772 313.238 170.954 74.016;
    30.069 0.008 1.770 -55.120 44.964 131.784;
];
myuPlanets = [
    1/6023600;
    1/408523;
    1/328900.5;
    1/3098708;
    1/1047.34;
    1/3497.8;
    1/22902.9;
    1/19402;
];
% years from 01.01.2000 to 31.01.2002
t = 2.083504449007529;
for i = 1:8
```

```
disp(char(planets(i)));
    calculate(data(i, 1), data(i, 2), data(i, 3), data(i, 4), data(i, 5), data(i, 6),
myuPlanets(i), t);
end
function calculate(a, e, inclination, meanLongitude, periapsisLongitude,
ascendingNode, mu, time)
    theta = deg2rad(ascendingNode);
    g = deg2rad(periapsisLongitude);
    inclination = deg2rad(inclination);
    0 = rotz(theta) * rotx(inclination) * rotz(g);
    gamma = 1 + mu;
    n = sqrt(gamma / a^3);
    to = deg2rad((periapsisLongitude - meanLongitude) / n);
    1 = n * (time * 2 * pi - to);
    u = computeEccentricAnomaly(1, e);
    r = Q * a * [cos(u) - e; sin(u) * sqrt(1 - e^2); 0];
    v = Q * [-sin(u); cos(u) * sqrt(1 - e^2); 0] * a * n / (1 - e * cos(u));
    disp('Coordinates of "r"');
    disp(r);
    disp(['|r| = ', num2str(norm(r))]);
    disp('Speed of "v"');
    disp(v);
    disp(['|v| = ', num2str(norm(v))]);
end
function u = computeEccentricAnomaly(1, e)
    u = 1;
    while true
        u_prev = u;
        u = 1 + e * sin(u prev);
        if abs(u - u_prev) < 1e-8</pre>
            break:
        end
    end
end
% Rotatate around the z-axis
function R = rotz(angle)
    R = [cos(angle), -sin(angle), 0;
         sin(angle), cos(angle), 0;
         0, 0, 1];
end
% Rotatate around the x-axis
function R = rotx(angle)
    R = [1, 0, 0;
         0, cos(angle), -sin(angle);
         0, sin(angle), cos(angle)];
end
```

Задача 2:

Условие: Пресметнете елементите на Делоне и Поанкаре от I и II вид в деня, в който сте родени.

Решение:

Теорема - Елементите на Делоне:

- ➤ L
- ➤ G
- **>** Θ
- > |
- ▶ g
- \triangleright θ

където (I, L), (G, g) и (Θ , θ) са спрегнати канонично променливи и се изразяват чрез орбиталните (елиптични) елементи:

- а дължина на голямата полу-ос на орбитата
- е ексцентрицитета на орбитата
- i наклонеността на плоскостта на орбитата
- I средна аномалия
- g + θ дължина на перихелия
- θ дължина на възела

по следния начин:

$$\begin{split} L &= \mu \sqrt{\gamma.a} \\ G &= \mu.\sqrt{\gamma.a(1-e^2)} = L.\sqrt{(1-e^2)} \\ \Theta &= \mu.\sqrt{\gamma.a(1-e^2)}\cos(i) = G.\cos(i) \end{split}$$

 γ = 1 + μ (относителна маса)

Като при това I, g и θ съвпадат и в двата случая.

Елементите на Делоне - L , G, Θ , I, g, θ са константи с хамилтони:

$$\widehat{H} = -\frac{\mu^3 \gamma^2}{2L^3}$$

Обръщаме θ в радиани и і в градуси

$$1 = \sqrt{\gamma} \cdot a^{-\frac{3}{2}} (t - T_0)$$

$$u = l + e \cdot \sin(l + e \cdot \sin(l + e \cdot \sin l))$$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

(Т₀: момента на преминаване през перихелия на планета (начало на епоха))

Въвеждаме времето от 01.01.2000 г. до рождената дата — 31.01.2002 г. (t).

t=2.083504449007529

$$I = n(t(2\pi) - T_0)$$

Чрез $\lambda = I + g + \theta$, което представлява дължината на епоха, можем да изразим елементите от двете системи на Поанкаре.

Първа система (I) от шест елемента, характеризираща орбитите на планетите:

$$\begin{pmatrix} L & L - G & G - \Theta \\ \lambda & -g - \theta & -\theta \end{pmatrix}$$

И втора система (II):

$$\begin{pmatrix} L & \xi := \sqrt{2(L-G)}\cos(g+\theta) & p := \sqrt{2(G-\Theta)}\cos\theta \\ \lambda & \eta := \sqrt{2(L-G)}\sin(g+\theta) & q := \sqrt{2(G-\Theta)}\sin(\theta) \end{pmatrix}$$

Описаните процедури се повтарят за всяка планета по отделно.

Като резултат получаваме следните таблици:

	Меркурий	Венера	Земя
L	1.0328e-07	2.0814e-06	3.0404e-06
G	1.0108e-07	2.0814e-06	3.04e-06
Θ	1.0033e-07	2.0777e-06	3.04e-06
Ι	78.2719	30.337	18.0664
g	0.50836	0.95859	1.7966
θ	0.84352	1.3383	0
Н	-2.1449e-07	-1.6928e-06	-1.5202e-06

	1.0328e-07	2.1934e-09	7.5431e-10	2.0814e-06	3.7465e-11	3.6506e-09	3.0404e-06	3.892e-10	0
'	79.6238	-1.3519	-0.84352	32.6339	-2.2969	-1.3383	19.8629	-1.7966	0
	1.0328e-07	1.4384e-05	2.5823e-05	2.0814e-06	-5.7473e-06	1.9688e-05	3.0404e-06	-6.2462e-06	0
II	79.6238	-6.4652e-05	-2.9014e-05	32.6339	-6.4729e-06	-8.3148e-05	19.8629	-2.7192e-05	0

	Марс				Юпитер			Сатурн		
L	3.9826e-07				0.0021787		0.00088298			
G	3.9654e-07				0.0021762		0.00088174			
Θ	3.9633e-07				0.0021757			0.00088091		
I	9.9735			1.8696			-0.1293			
g	-1.2829				-1.4965			-0.36764		
θ	0.86497		1.7536			1.9838				
Н	-1.0595e-07		-9.186e-05			-1.4995e-05				
	3.9826e-07	1.726e-09	2.0646e-10	0.0021787	2.5114e-06	5.6359e-07	0.00088298	1.241e-06	8.2918e-07	
1	9.5557	0.41788	-0.86497 2.1267 -0.25705 -1.7536		-1.7536	1.4868	-1.6161	-1.9838		
II	3.9826e-07	5.3698e-05	1.3181e-05	0.0021787	0.0021675	-0.00019299	0.00088298	-7.1412e-05	-0.00051684	
	9.5557	2.3844e-05	-1.5466e-05	2.1267	-0.00056977	-0.001044	1.4868	-0.0015738	-0.0011795	

		Уран			Нептун	
L		0.00019127		0.00028263		
G		0.00019106		0.00028262		
Θ		0.00019104		0.00028249		
I		2.6988		-1.637		
g		1.6919		-1.5153		
θ		1.2918			2.3001	
Н	-1.1377e-06				-8.5709e-07	
	0.00019127	2.1137e-07	1.7343e-08	0.00028263	9.0444e-09	1.3485e-07
ı	5.6825	-2.9837	-1.2918	-0.85219	-0.78477	-2.3001

	0.00019127	-0.0006421	5.1285e-05	0.00028263	9.5162e-05	-0.00034604
"	5.6825	-0.00010223	-0.00017904	-0.85219	-9.5042e-05	-0.00038724

Код, чрез който са получени стойностите:

```
planets = {
    'Mercury',
    'Venus',
    'Earth',
    'Mars',
    'Jupiter',
    'Saturn',
    'Uranus',
    'Neptune'
};
% kepler elements values
data = [
    0.387 0.205 7.004 252.250 77.457 48.330;
    0.723 0.006 3.394 181.979 131.602 76.679;
    1 0.016 0 100.464 102.937 0;
    1.523 0.093 1.849 -4.553 -23.943 49.559;
    5.202 0.048 1.304 34.396 14.728 100.473;
    9.536 0.053 2.485 49.954 92.598 113.662;
    19.189 0.047 0.772 313.238 170.954 74.016;
    30.069 0.008 1.770 -55.120 44.964 131.784;
];
myuPlanets = [
    1/6023600;
    1/408523;
    1/328900.5;
    1/3098708;
    1/1047.34;
    1/3497.8;
    1/22902.9;
    1/19402;
1;
% years from 01.01.2000 to 31.01.2002
t = 2.083504449007529;
for i = 1:8
    disp(char(planets(i)));
    calculate(data(i, 1), data(i, 2), data(i, 3), data(i, 4), data(i, 5), data(i, 6),
myuPlanets(i), years);
end
function calculate(a, e, inclination, meanLongitude, periapsisLongitude,
ascendingNode, mu, t)
```

```
n = sqrt(1 / a^3);
to = deg2rad((periapsisLongitude - meanLongitude) / n);
i = deg2rad(inclination);
l = n * (t * 2 * pi - to);
% Calculate additional parameters
gamma = 1 + mu;
L = mu * sqrt(gamma * a);
G = L * sqrt(1 - e^2);
th = deg2rad(ascendingNode);
greatTh = G * cos(i);
g = deg2rad(periapsisLongitude - ascendingNode);
Hk = -mu * gamma / (2 * a);
% Calculate I type Poincare elements
PoincF1 = L;
PoincF2 = L - G;
PoincF3 = G - greatTh;
PoincF4 = 1 + g + th;
PoincF5 = -g - th;
PoincF6 = -th;
% Calculate II type Poincare elements
PoincS1 = PoincF1;
PoincS2 = sqrt(2 * (L - G)) * cos(g + th);
PoincS3 = sqrt(2 * (G - greatTh)) * cos(th);
PoincS4 = PoincF4;
PoincS5 = -sqrt(2 * (L - G)) * sin(g + th);
PoincS6 = -sqrt(2 * (G - greatTh)) * sin(th);
disp('Additional Parameters:');
disp(['L: ' num2str(L)]);
disp(['G: ' num2str(G)]);
disp(['greatTh: ' num2str(greatTh)]);
disp(['l: ' num2str(1)]);
disp(['g: ' num2str(g)]);
disp(['th: ' num2str(th)]);
disp(['Hk: ' num2str(Hk)]);
disp('I1: ' + string(PoincF1));
disp('I2: ' + string(PoincF2));
disp('I3: ' + string(PoincF3));
disp('I4: ' + string(PoincF4));
disp('I5: ' + string(PoincF5));
disp('I6: ' + string(PoincF6));
disp('II1: ' + string(PoincS1));
disp('II2: ' + string(PoincS2));
disp('II3: ' + string(PoincS3));
disp('II4: ' + string(PoincS4));
disp('II5: ' + string(PoincS5));
disp('II6: ' + string(PoincS6));
```

end