Association of Denovo Copy Number Variants with Oral Clefts

Rob Scharpf

June 24, 2012

Cleft lip

Unilateral incomplete

Unilateral complete

Bilateral complete

Cleft palate, cleft lip and palate

Incomplete cleft palate

Unilateral complete lip and palate

Bilateral complete lip and palate

Goal

To identify structural variants contributing to oral cleft:

- denovo CNV discovery (by-sample)
- compare denovo frequency among oral cleft offspring to similar controls

Rob Scharpf () Cleft GWAS June 24, 2012 4 / 41

Sample size

	Cleft	Controls
Discovery	2082	752
WGA	120	99
MAD > 0.3	212	138
non-EA	1090	-
n	660	515

- cell frequencies are the number of Father-Mother-Offspring trios
- The controls are trios with dental caries.

Illumina 610 quad: Distance between markers

Rob Scharpf () Cleft GWAS June 24, 2012 6 / 41

Low level summaries

B allele frequencies

log₂ R ratios

Rob Scharpf () Cleft GWAS June 24, 2012 7 / 41

Data for case-parent trio: false positive

PennCNV joint HMM: '332' is denovo hemizygous deletion

False positives

Computational characteristics

- The joint HMM is \approx 3 hours per trio
- 3 * 2082 trios \approx 6,246 CPU hours

\$ qstat	-u hschwend				
job-ID	name	user	state	submit/star	rt at
371289	Top10.sh	hschwend	r	10/30/2009	00:12:21
371291	reasons.sh	hschwend	r	10/30/2009	00:14:39
371292	for.sh	hschwend	r	10/30/2009	00:14:39
371293	working.sh	hschwend	r	10/30/2009	00:15:09
371294	late.sh	hschwend	r	10/30/2009	00:15:09
371295	and.sh	hschwend	r	10/30/2009	00:15:09
371296	not.sh	hschwend	r	10/30/2009	00:15:09
371297	going.sh	hschwend	r	10/30/2009	00:15:25
371298	to.sh	hschwend	r	10/30/2009	00:15:25
371299	bed.sh	hschwend	r	10/30/2009	00:15:25

Rob Scharpf () Cleft GWAS June 24, 2012 10 / 41

The minimum distance

$$\mbox{minimum distance} \quad \equiv \quad (r_{\rm O} - r_{\rm F}) \times I_{[|r_{\rm O} - r_{\rm F}| > |r_{\rm O} - r_{\rm M}|]} + (r_{\rm O} - r_{\rm M}) \times I_{[|r_{\rm O} - r_{\rm F}| \le |r_{\rm O} - r_{\rm M}|]}$$

Rob Scharpf () Cleft GWAS June 24, 2012 11 / 41

False positives

Rob Scharpf () Cleft GWAS June 24, 2012 12 / 41

False positives

Rob Scharpf () Cleft GWAS June 24, 2012 13 / 41

Algorithm

- Calculate the minimum distance
- Segment the minimum distance
- Osterior classification

Computational characteristics

- 591 CPU hours (versus 6,246)
- When multiple CPUs are detected, the MinimumDistance R package parallelizes by chromosome
 - system time ≈ 1 day

Rob Scharpf () Cleft GWAS June 24, 2012 16 / 41

Rob Scharpf () Cleft GWAS June 24, 2012 17 / 41

Rob Scharpf () Cleft GWAS June 24, 2012 18 / 41

Rob Scharpf () Cleft GWAS June 24, 2012 19 / 41

Denovo CNV in the DiGeorge region

Sample size

	Cleft	Controls
Discovery	2082	752
WGA	120	99
MAD > 0.3	212	138
non-EA	1090	-
n	660	515

- cell frequencies are the number of Father-Mother-Offspring trios
- The controls are trios with dental caries.

Frequency of denovo deletions

Rob Scharpf () Cleft GWAS June 24, 2012 22 / 41

Size of deletions

Distance to nearest gene

Association of de novo deletions with oral cleft

Rob Scharpf () Cleft GWAS June 24, 2012 25 / 41

Association of de novo deletions with oral cleft

Rob Scharpf () Cleft GWAS June 24, 2012 26 / 41

Association of de novo deletions with oral cleft

Rob Scharpf () Cleft GWAS June 24, 2012 27 / 41

Association of cleft with denovo deletions

MinimumDistance

Rob Scharpf () Cleft GWAS June 24, 2012 28 / 41

Association of cleft with denovo deletions

PennCNV

Rob Scharpf () Cleft GWAS June 24, 2012 29 / 41

What about the DiGeorge region?

What about the DiGeorge region?

Only 2 de novo deletions among the offspring with European ancestry

Rob Scharpf () Cleft GWAS June 24, 2012 31 / 41

Chromosome 7

European ancestry

Rob Scharpf () Cleft GWAS June 24, 2012 33 / 41

PennCNV only

PennCNV only

Chromosome 7

Conclusions

- False positives are problematic using standard approaches for de novo CNV discovery
- Oral cleft offspring tend to have slightly bigger denovo deletions than in the controls, and the deletions tended to be closer to coding regions of the genome
- The association of the chromosome 7 region was statistically significant after adjusting for multiple testing.
- The association study used a small fraction of the available oral cleft data.

Rob Scharpf () Cleft GWAS June 24, 2012 38 / 41

Acknowledgements

- Samuel Younkin
- Ingo Ruczinski
- Terri Beaty
- Holger Schwendl
- Alan Scott
- Jackie Hetmanski