1.2 Basic of Information Security

- Goals of Security
 - Prevention
 - Prevent attackers from violating security policy
 - Detection
 - Detect attackers' violation of security policy
 - Recovery
 - Attack is stopped, system is fixed, resume (重新开始) operations
 - (Advanced Version) Continue to function correctly even if attack succeeds
- Trust and Assumptions
 - Policies (策略)
 - Correctly capture security requirements
 - Unambiguously (明确) partition system states
 - Mechanisms (机制)
 - Assumed (假定) to enforce policy
 - Rely on supporting infrastructure (基础设施)
 - 策略:允许什么,禁止什么。
 - 机制:实施安全策略。

2.1 History of Cryptography

- The Vigenère Square
- One Time Pads (一次性密码本)

2.2 A Brief Introduction To Cryptography

- Secret-Key (Symmetric) Cryptography
 - classic ciphers
 - substitution ciphers (替换密码)
 - transposition ciphers (换位密码)
 - 重新编排明文字母顺序,而所有的字母没有改变
 - product ciphers
 - use both
 - block ciphers
 - DES
 - Problems with private key ciphers
 - In order for Alice & Bob to be able to communicate securely using a private key cipher, such as DES, they have to have a shared key in the first place.
 - Alice needs to keep 100 different keys if she wishes to communicate with

100 different people

- Public Key (Asymmetric) Cryptography
 - Major Differences with Private Key Ciphers
 - The public encryption key is different from the secret decryption key.
 - Infeasible for an attacker to find out the secret decryption key from the public encryption key.
 - no need for Alice & Bob to distribute a shared secret key beforehand!
 - only one pair of public and secret keys is required for each user! No matter how many communication counterparties

• RSA

- 公钥: {e,n} 秘钥: {d} c = m^e (mod n) m = c^d (mod n)
- The message m has to be an integer between in the range [1, n].
- To encrypt long messages we can use a hybrid cryptosystem (混合密码系统) (see later).

Compare

- Private key ciphers
 - Good points
 - – in-expensive to use
 - - fast
 - – low cost VLSI chips available
 - · bad points
 - – key distribution is a problem
- Public key ciphers
 - good points
 - – key distribution is NOT a problem
 - bad points
 - – relatively expensive to use
 - - relatively slow
 - - VLSI chips not available or relatively high cost
- Combining 2 type of ciphers
 - use a public key cipher (such as RSA) to distribute keys
 - – use a private key cipher (such as DES) to encrypt and decrypt messages
- Digital Signatures & Hash Algorithms
 - 数字签名对于短文档:
 - 使用非对称加密,公钥加密文档作为签名,秘钥验证。
 - 数字签名对于长文档:
 - 长文档->单向哈希算法,非对称加密作为签名。用秘钥解出后与源文档的哈希比较。
 - A good one-way hash algorithm H needs to have these properties
 - Easy to Evaluate:

- Hard to Reverse:
- Hard to find Collisions:

·3.1 Authentication (认证)

- Upgrading Phase 1: Salting
 - salt (chosen randomly when password is first set)
 - Users with the same password have different entries in the password file
 - Dictionary attack is still possible!
 - Advantages of Salting
 - Without salt, attacker can pre-compute hashes of all dictionary words once for all password entries
 - With salt, attacker must compute hashes of all dictionary words once for each password entry
- Upgrading Phase 2: Shadow Passwords
 - Store hashed passwords in /etc/shadow file which is only readable by system administrator (root)
- Other upgradings
 - Add biometrics (生物识别技术)
 - Graphical passwords (图形密码)
 - Rely on the difficulty of computer vision (计算机视觉)
- 认证协议

3.2 Authorization

- Access matrix model
 - subjects
 - principle (身份)
 - users
 - objects
 - 横:objects 纵:subjects 格:rights
- Access control lists versus Capabilities
 - ACL
 - Store column of matrix with the resource
 - •能力
 - User holds a unforgeable (不可伪造的) "ticket" for each resource
 - 比较:
 - ACL require authentication of subjects
 - Capabilities do not require authentication of subjects, but do require unforgeability and control of propagation (传播) of capabilities
 - Access Review
 - ACL's provide for superior access review on a per-object basis

- Capabilities provide for superior access review on a per-subject basis
- Revocation (撤回)
 - ACL's provide for superior revocation facilities on a per-object basis
 - Capabilities provide for superior revocation facilities on a per-subject basis
- Capabilities provide for finer grained (更细粒度) least privilege control with respect to subjects, especially dynamic shortlived subjects created for specific tasks
- ACL: RWX
- Bell-LaPadula model
 - DAC----自主访问控制
 - allow access rights to be propagated from one subject to another
 - 个人用户可以设置访问控制机制来许可或拒绝对客体的访问
 - MAC----强制访问控制
 - restrict the access of subjects to objects on the basis of security labels
 - 系统控制对客体的访问,而个人用户不能改变
 - no reads up no writes down
- Covert channels
 - based on the use of system resources not normally intended for communication between the subjects(processes) in the system.
 - 使用共享资源作为通信通道
 - resource exhaustion channel (资源耗尽型)
 - load sensing channel (负载感知型)
 - Coping with Covert Channels
 - close the channel or slow it down
 - detect attempts to use the channel
 - tolerate its existence

.4.1 Malicious Code

- buffer overflow attack
 - Returned information was stored in a large buffer. Bounds weren't checked on this buffer.
 - Worm sent "too many" bytes, with the extra bytes actually being program code. this code over-wrote the original code.
 - PC (程序计数器) of the routine, after return from obtaining data, now pointed to the new code.

- 将一段恶意代码的首地址作为返回地址覆盖到原先正确的返回地址
- SQL注入
 - User gives username 'OR 1=1 --
 - Web server executes query set UserFound=execute(
 - SELECT * FROM UserTable WHERE
 - username=' ' OR 1=1 -- ...);

.6.1 Web Security

- JavaScript
 - Often used to exploit other vulnerabilities
 - – Attacker gets to execute some code on user's machine
 - Cross-scripting: attacker inserts malicious JavaScript into a Web page or HTML email; when script is executed, it steals user's cookies and hands them over to attacker's site
- JavaScript Security Model
 - Script runs in a "sandbox"
 - Not allowed to access files or talk to the network
 - Same-origin policy
 - Can only read properties of documents and windows from the same server, protocol, and port
 - – If the same server hosts unrelated sites, scripts from one site can access document properties on the other
 - User can grant privileges to signed scripts
 - - UniversalBrowserRead/Write, UniversalFileRead, UniversalSendMail

Stealing Cookies by Cross Scripting

7.2 Botnets, Spam, Denial of Service

- Denial of Service (DoS) Redux
 - Goal: overwhelm (压倒) victim machine and deny service to its legitimate clients
- Distributed Denial of Service (DDoS)
 - Build a botnet of zombies
 - Multi-layer architecture: use some of the zombies as "masters" to control other zombies
 - Command zombies to stage a coordinated attackon the victim
 - - Does not require spoofing (诈骗) (why?)
 - - Even in case of SYN flood, SYN cookies don' thelp (why?)
 - Overwhelm victim with traffic arriving from thousands of different sources
- 结构

8.1 Perimeter Security - Firewall

- 三大优势
 - Scale 可扩展
 - - Can configure one computer to be secure,
 - but how about 1,000?
 - Threat model 分区
 - - Most threats come from less trusted zones
 - Convenience 方便
 - - Can use less secure protocols and software inside perimeter
 - – Don't bother users with security protections unless they talk to the outside
- 防火墙的种类 P522
 - Packet filter (stateless) 包过滤器
 - Filter IP packets based on their headers
 - 以数据包头部的属性(目的地址、原地址和选项)位基础实现访问控制
 - Stateless & fast
 - Implementation is based on lookup of header bits/bytes and decisions
 - 限制:
 - No connection semantics
 - Actions only on individual packets (不能够通过关联已经或者即将 到达的数据包来推断流或者数据报的信息,
 - No application semantics
 - – IP address/Port Number based only
 - Packet fragmentation

- – IP allows packets to be split into several fragments (IP碎片
- Stateful firewall 状态检测
 - Reconstruct connection state
 - Make decisions based on flows, not on packets
 - Some application protocol parsing (解析) may also be done
- Application-layer gateway
 - Application-Level Proxy (应用层代理)
 - Process incoming packets at application layer
 - 代理是指代替终端的中间代理人或服务器,不允许两个终端间的直接连接。
 - 以服务器和信息的内容以及数据包头部的属性为访问控制的基础
 - Generate transformed message stream
 - Block dangerous messages
 - - Normalize protocol semantics
 - Pro: Higher precision
 - Con: Higher costs
 - Scalability: imaging that it have to keep state for all connections for 1000' s of computers!
 - - Latency: proxy adds processing delays
 - Flexibility: proxy needs to understand everything you do with a protocol缺乏灵活性?

• 三种防火墙的比较

	Security	Performance	Modify Client Applications?
Packet Filter	Low	High	No
Session Filter	Medium	Medium	No
App. GW	Hight	Low	Unless transparent, client application must be proxyaware & configured

Note:应用代理防火墙必须为每个传输层服务设置一个代理,如果应用程序不透明,需要在应用程序端配置应用网关地址。