실험체 제작에 사용된 콘크리트 재료 특성은 콘크리트 공시체를 제작하여, 대우건설기술 연구소에서 콘크리트 압축 강도 실험을 수행하였으며, [표 3.5.1]에는 대우건설기술연구소 에서 수행된 실험체 별 콘크리트 압축 강도를 정리하였다.

실험체	설계강도 (MPa)	콘크리트 압축강도(MPa)	
		긴장력 도입 시	재하 실험 시
부착률 100%	40	32.7	49.2
		35.9	46.8
		34.6	47.6
부착률 50%		35.4	44.1
		34.5	37.5
		33.9	38.1
부착률 25%		30.0	38.3
		21.2	31.1
		28.9	33.0

[표 3.5.1] 실험체 별 콘크리트 압축강도

4. 실험방법

가. 긴장력 도입

긴장력 도입 시 실험체 충격이 가해지지 않도록 1분 간격으로 50kN씩 긴장력을 도입하 였다. 긴장력이 도입되면서 실험체 중앙부 솟음량과 단부 회전각을 측정하기 위하여 그림 4와 같이 실험 중앙부 및 양단에 LVDT를 설치하였다. 또한, 긴장력이 도입되면서 강선의 변형률을 측정하기 위하여 변형률 게이지를 [그림 3.5.8]과 같이 부착하였다.

[그림 3.5.8] 긴장력 도입