$\begin{array}{c} {\rm Math~221~Worksheet~11}\\ {\rm October~8,~2020} \\ {\rm Section~3.1:~Maximum~and~Minimum~Values} \end{array}$

1. State the extreme value theorem. Find a function f that satisfies the following: (i) the domain of f is $[-1,1]$, (ii) f is discontinuous at exactly one point in its domain, (iii) f attains neither a maximum nor a minimum value.
2. Find all critical points of the function $f(x) = x^4 + 2x^2 + 8x$.
3. Find all critical points of the function $f(x) = \sin(x)\cos(x)$ in the interval $[0, 2\pi]$.
4. Find the global minimum and maximum of the function $f(x) = 3x^2 - 12x + 5$ on the interval [0, 3].
5. Find the global minimum and maximum of the function $f(x) = \sin(x) + \cos(x)$ on the interval $[0, \pi]$.

6.	Find the global	minimum an	d maximum	of the function	$f(x) = x^3 +$	$5x^2 - 8x + 2$	on the interv	val $[-1, 2]$.

7. Find the global minimum and maximum of the function
$$f(x) = \frac{x}{x^2+1}$$
 on the interval $[-2,2]$.

8. Find all critical points of the function
$$f(x) = \sin(\cos(x))$$
. Does f have a global maximum? Why or why not?

9. Which point on the parabola defined by
$$y = x^2$$
 is closest to the point $(3,0)$?

10. (Optional) Let
$$P$$
 and Q be polynomials of degree 10 such that $P(0) = 0$ and $Q(0) = P'(0) = 1$. Show that the function $\frac{P}{Q}$ has at most 29 critical points.

11.	(Optional)	Does	there	exist	a conti	nuous	function	n that	has	3 local	l minin	na but	only	1 local	maxim	um?