Investigación Operativa

Problema Dual

Nazareno Faillace Mullen

Dualidad - Motivación

Cada problema lineal tiene asociado un problema dual. Entre ellos existe una conexión que da lugar a una serie de propiedades interesantes.

El planteo del problema dual puede surgir a partir de la necesidad de encontrar cotas para el valor óptimo de nuestro problema.

1

Dualidad - Motivación

Por ejemplo, si tenemos el siguiente problema:

$$\begin{array}{ll} \text{máx} & z=3x_1+2x_2\\ \text{s.a:} & x_1+3x_2\leq & 5\\ & 6x_1-x_2\leq & 18\\ & x_1+2x_2\leq & 4\\ & x_1,x_2\geq & 0 \end{array}$$

Nos podría interesar hallar una cota superior para el valor óptimo z^* . La idea es manipular las restricciones para lograr una desigualdad que permita acotar z^* .

Dualidad - Motivación

Idea:

Consideramos las variables $y_1, y_2, y_3 \ge 0$ tales que:

$$\begin{array}{llll} (x_1+3x_2)y_1 \leq & 5y_1 & & x_1y_1+3x_2y_1 \leq & 5y_1 \\ (6x_1-x_2)y_2 \leq & 18y_2 & \Rightarrow & 6x_1y_2-x_2y_2 \leq & 18y_2 \\ (x_1+2x_2)y_3 \leq & 4y_3 & & x_1y_3+2x_2y_3 \leq & 4y_3 \end{array}$$

Si sumamos las tres desigualdades, tenemos que:

$$(y_1+6y_2+y_3)x_1+(3y_1-y_2+2y_3)x_2\leq 5y_1+18y_2+4y_3$$

Ahora, como nos gustaría que el lado izquierdo de la desigualdad acote a z, tenemos que pedir las siguientes condiciones:

$$y_1 + 6y_2 + y_3 \ge 3 \tag{1}$$

$$3y_1 - y_2 + 2y_3 \ge 2 \tag{2}$$

Es decir, si se cumplen ambas condiciones, tenemos que:

$$z = 3x_1 + 2x_2 \stackrel{\text{(1) } y(2)}{\leq} (y_1 + 6y_2 + y_3)x_1 + (3y_1 - y_2 + 2y_3)x_2 \leq 5y_1 + 18y_2 + 4y_3$$

Luego, para cualesquiera $y_1, y_2, y_3 \ge 0$ que cumplan (1) y (2), podemos armarnos una cota para z

Dualidad

Como el problema primal tiene como objetivo maximizar, nos interesa la mejor cota superior para z, entonces, el problema dual se plantea como:

$$\begin{array}{lll} \text{m\'in} & 5y_1+18y_2+4y_3 \\ \text{s.a.} & y_1+6y_2+y_3 \geq & 3 \\ & 3y_1-y_2+2y_3 \geq & 2 \\ & y_1,y_2,y_3 \geq & 0 \end{array}$$

4

Dualidad

Como el problema primal tiene como objetivo maximizar, nos interesa la mejor cota superior para z, entonces, el problema dual se plantea como:

$$\begin{array}{lll} & \text{min} & 5y_1+18y_2+4y_3\\ & \text{s.a.} & y_1+6y_2+y_3\geq & 3\\ & & 3y_1-y_2+2y_3\geq & 2\\ & & & y_1,y_2,y_3\geq & 0 \end{array}$$

Observación 1:

Variables del primal = # Restricciones del dual # Restricciones del primal = # Variables del dual

4

Primal	Dual
Obj: Minimizar	Obj: Maximizar
ı-ésima restricción ≤	\imath -ésima variable ≤ 0
ı-ésima restricción ≥	\imath -ésima variable ≥ 0
₁-ésima restricción =	ı-ésima variable libre
\jmath -ésima variable ≥ 0	<i>ĵ</i> -ésima restricción ≤
\jmath -ésima variable ≤ 0	<i>ე</i> -ésima restricción ≥
\jmath -ésima variable libre	ŋ-ésima restricción =

Primal	Dual	
Obj: Maximizar	Obj: Minimizar	
<i>ı</i> -ésima restricción ≤	\imath -ésima variable ≥ 0	
<i>ı</i> -ésima restricción ≥	\imath -ésima variable ≤ 0	
₁-ésima restricción =	₁-ésima variable libre	
\jmath -ésima variable ≥ 0	<i>ŋ</i> -ésima restricción ≥	
\jmath -ésima variable ≤ 0	<i>ŋ</i> -ésima restricción ≤	
\jmath -ésima variable libre	ŋ-ésima restricción =	

Ejercicio: hallar el dual asociado al siguiente problema:

$$\begin{array}{llll} \max & 3x_1+2x_2-3x_3+4x_4\\ \text{s.a:} & x_1-2x_2+3x_3+4x_4\leq & 3\\ & x_2+3x_3+4x_4\geq & 5\\ & 2x_1-3x_2-7x_3-4x_4= & 2\\ & x_1\geq & 0\\ & x_4\leq & 0\\ & x_2,x_3 & \text{libres} \end{array}$$

$$\begin{array}{lll} \text{máx} & 3x_1+2x_2-3x_3+4x_4\\ \text{s.a:} & x_1-2x_2+3x_3+4x_4\leq & 3\\ & x_2+3x_3+4x_4\geq & 5\\ & 2x_1-3x_2-7x_3-4x_4= & 2\\ & x_1\geq & 0\\ & x_4\leq & 0\\ & x_2,x_3 & \text{libres} \end{array}$$

Notemos que:

- El primal tiene 4 variables ⇒ El dual tendrá 4 restricciones
- El primal tiene 3 restricciones ⇒ El dual tendrá 3 variables

$$1y_1 + 0y_2 + 2y_3 \ge 3$$

$$y_1 + 2y_3 \ge 3$$
 -2 y_1 + 1 y_2 -3 y_3 = 2

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ \mathbf{3}y_1 + \mathbf{3}y_2 &- \mathbf{7}y_3 &= -3 \end{aligned}$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \end{aligned}$$

$$4y_1 + 4y_2 - 4y_3 \leq 4$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

$$y_1 \ge 0$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

$$y_1 \ge 0 \quad y_2 \le 0$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

$$y_1 \geq 0$$
 $y_2 \leq 0$ y_3 libre

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

$$y_1 \geq 0 \qquad y_2 \leq 0 \qquad y_3 \; \mbox{libre}$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

Variables:

$$y_1 \ge 0$$
 $y_2 \le 0$ y_3 libre

Objetivo:

$$\min 3y_1 + 5y_2 + 2y_3$$

$$\begin{aligned} y_1 + 2y_3 &\geq 3 \\ -2y_1 + y_2 - 3y_3 &= 2 \\ 3y_1 + 3y_2 - 7y_3 &= -3 \\ 4y_1 + 4y_2 - 4y_3 &\leq 4 \end{aligned}$$

Variables:

$$y_1 \ge 0$$
 $y_2 \le 0$ y_3 libre

Objetivo:

mín
$$3y_1 + 5y_2 + 2y_3$$

Primal:

$$\begin{array}{lll} \text{máx} & 3x_1+2x_2-3x_3+4x_4\\ \text{s.a:} & x_1-2x_2+3x_3+4x_4\leq & 3\\ & x_2+3x_3+4x_4\geq & 5\\ & 2x_1-3x_2-7x_3-4x_4= & 2\\ & x_1\geq & 0\\ & x_4\leq & 0 \end{array}$$

Dual:

$$\begin{array}{llll} & & & 3y_1+5y_2+2y_3\\ & & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

Teorema débil de dualidad

Para un problema con objetivo de maximizar, sean (x_1,\cdots,x_n) solución factible del primal e (y_1,\cdots,y_m) solución factible del dual, entonces:

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

Obs: si el objetivo del primal es minimizar, la desigualdad se invierte.

Teorema fundamental de dualidad

Si el problema primal tiene solución óptima (x_1^*,\cdots,x_n^*) , entonces el dual tiene solución óptima (y_1^*,\cdots,y_m^*) tal que:

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Dualidad - Teorema fundamental de dualidad

Los teoremas de dualidad nos permiten observar otra relación muy importante entre el problema primal y el problema dual:

		Dual		
		Óptimo	Infactible	No acotado
	Óptimo	✓	Х	×
Primal	Infactible	Х	✓	✓
	No acotado	X	✓	Х

✓: puede ocurrir

X: no puede ocurrir

Dualidad - Teorema de Holgura Complementaria)

Teorema de Holgura Complementaria (THC)

Sean $x^*=(x_1^*,\cdots,x_n^*)$ solución del primal e $y^*=(y_1^*,\cdots,y_m^*)$ solución del dual, las siguientes son condiciones necesarias y suficientes para la optimalidad simultánea de x^* e y^* :

$$\begin{split} \sum_{i \equiv 1}^m a_{ij} y_i^* &= c_j \quad \text{o} \quad x_j^* = 0 \quad \text{(o ambos)} \qquad \forall j = 1, \cdots, n \\ \sum_{j = 1}^m a_{ij} x_j^* &= b_i \quad \text{o} \quad y_i^* = 0 \quad \text{(o ambos)} \qquad \forall i = 1, \cdots, m \end{split}$$

11

El THC nos permite calcular el óptimo del primal a partir del óptimo del dual (y viceversa).

Ejemplo: resolver el siguiente problema lineal:

$$\begin{array}{ll} \text{máx} & 2x_1+2x_2+\frac{3}{2}x_3\\ \text{s.a:} & 2x_1+x_2+\frac{1}{2}x_3\leq & 18\\ & x_1+2x_2+3x_3\leq & 15\\ & x_1,x_2,x_3\geq & 0 \end{array}$$

Primal	Dual
Obj: Minimizar	Obj: Maximizar
<i>ı</i> -ésima restricción ≤	\imath -ésima variable ≤ 0
<i>ı</i> -ésima restricción ≥	\imath -ésima variable ≥ 0
<i>ı</i> -ésima restricción =	₁-ésima variable libre
\jmath -ésima variable ≥ 0	\jmath -ésima restricción \leq
\jmath -ésima variable ≤ 0	\jmath -ésima restricción \geq
ŋ-ésima variable libre	<i>ŋ</i> -ésima restricción =

Primal	Dual
Obj: Maximizar	Obj: Minimizar
\imath -ésima restricción \le	\imath -ésima variable ≥ 0
\imath -ésima restricción \geq	\imath -ésima variable ≤ 0
ı-ésima restricción =	ı-ésima variable libre
\jmath -ésima variable ≥ 0	<i>ŋ</i> -ésima restricción ≥
\jmath -ésima variable ≤ 0	<i>ŋ</i> -ésima restricción ≤
\jmath -ésima variable libre	ŋ-ésima restricción =
i -ésima restricción \leq i -ésima restricción \geq i -ésima restricción $=$ i -ésima variable ≥ 0 i -ésima variable ≤ 0	 i-ésima variable ≥ 0 i-ésima variable ≤ 0 i-ésima variable libre j-ésima restricción ≥ j-ésima restricción ≤

El THC nos permite calcular el óptimo del primal a partir del óptimo del dual (y viceversa).

Ejemplo: resolver el siguiente problema lineal:

$$\begin{array}{lll} \text{máx} & 2x_1+2x_2+\frac{3}{2}x_3\\ \text{s.a.} & 2x_1+x_2+\frac{1}{2}x_3\leq & 18\\ & x_1+2x_2+3x_3\leq & 15\\ & x_1,x_2,x_3\geq & 0 \end{array}$$

Aprovechamos que el dual tendrá sólo dos variables y podremos resolverlo de manera gráfica:

Pasar al dual ightarrow Resolver el dual gráficamente ightarrow Usar THC para recuperar óptimo del primal

Primal:

$$\begin{array}{lll} \text{máx} & 2x_1+2x_2+\frac{3}{2}x_3\\ \text{s.a:} & 2x_1+x_2+\frac{1}{2}x_3\leq & 18\\ & x_1+2x_2+3x_3\leq & 15\\ & x_1,x_2,x_3\geq & 0 \end{array}$$

Dual:

$$\begin{array}{lll} & \min & 18y_1+15y_2 \\ & \text{s.a.} & 2y_1+y_2 \geq & 2 \\ & y_1+2y_2 \geq & 2 \\ & \frac{1}{2}y_1+3y_2 \geq & \frac{3}{2} \\ & y_1,y_2 \geq & 0 \end{array}$$

 \Rightarrow el mínimo se alcanza en $y^*=(\frac{2}{3},\frac{2}{3})$

Según el THC, debe valer que:

Según el THC, debe valer que:

$$y^* = (\frac{2}{3}, \frac{2}{3})$$

$$y^* = (\frac{2}{3}, \frac{2}{3})$$

$$x_1^* = 0$$
 o $2y_1^* + y_2^* = 2$ (o ambas)

$$2y_1^* + y_2^* = 2.\frac{2}{3} + \frac{2}{3} = 2$$
 \checkmark

$$y^* = (\frac{2}{3}, \frac{2}{3})$$

$$x_1^* = 0$$
 o $2y_1^* + y_2^* = 2$ (o ambas)

$$2y_1^* + y_2^* = 2 \cdot \frac{2}{3} + \frac{2}{3} = 2$$
 \checkmark

$$x_2^* = 0$$
 o $y_1^* + 2y_2^* = 2$ (o ambas)

$$y_1^* + 2y_2^* = \frac{2}{3} + 2 \cdot \frac{2}{3} = 2$$
 \checkmark

$$x_3^* = 0$$
 o $\frac{1}{2}y_1^* + 3y_2^* = \frac{3}{2}$ (o ambas)

$$\frac{1}{2}y_1^* + 3y_2^* = \frac{1}{2} \cdot \frac{2}{3} + 3 \cdot \frac{2}{3} = \frac{7}{3} \neq \frac{3}{2} \quad \mathbf{x}$$

$$\implies x_3^* = 0$$

$$y_1^* = 0$$
 o $2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18$ (o ambas)

$$y_1^* \neq 0 \implies 2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18$$

$$y_1^* = 0$$
 o $2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18$ (o ambas)

$$y_1^* \neq 0 \implies 2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18$$

$$y_2^* = 0$$
 o $x_1^* + 2x_2^* + 3x_3^* = 15$ (o ambas)

$$y_2^* \neq 0 \implies x_1^* + 2x_2^* + 3x_3^* = 15$$

$$\begin{cases} 2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18\\ x_1^* + 2x_2^* + 3x_3^* = 15 \end{cases}$$

$$\begin{cases} 2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18 \\ x_1^* + 2x_2^* + 3x_3^* = 15 \end{cases} \xrightarrow{x_3^* = 0} \begin{cases} 2x_1^* + x_2^* = 18 \\ x_1^* + 2x_2^* = 15 \end{cases}$$

$$\begin{cases} 2x_1^* + x_2^* + \frac{1}{2}x_3^* = 18 \\ x_1^* + 2x_2^* + 3x_3^* = 15 \end{cases} \xrightarrow{x_3^* = 0} \begin{cases} 2x_1^* + x_2^* = 18 \\ x_1^* + 2x_2^* = 15 \end{cases}$$

$$\iff x_1^* = 7 \quad \land \quad x_2^* = 4$$

$$x^* = (7, 4, 0)$$

$$z^* = 22$$

Dualidad

Teorema

Una solución factible x_1^*,\cdots,x_n^* de

$$\begin{array}{ll} \max & \sum_{j=1}^n c_j x_j \\ \text{s.a.} & \sum_{j=1}^n a_{ij} x_j \leq & b_i & \forall i=1,\cdots,m \\ & x_j \geq & 0 & \forall j=1,\cdots,n \end{array}$$

es óptima si y sólo si existen y_1^*, \dots, y_m^* tales que:

y tales que:

$$egin{array}{lll} \sum_{i=1}^m a_{ij} y_i^* & \geq & c_j & & orall j=1,\cdots,n \ & y_i^* & \geq & 0 & & orall i=1,\cdots,m \end{array}$$

Dada una solución factible de un problema lineal, el teorema anterior brinda una manera de chequear si es óptima.

Ejemplo: supongamos que tenemos el siguiente problema lineal:

Y queremos chequear si la siguiente solución es óptima:

$$x_1^* = 2, \ x_2^* = 4, \ x_3^* = 0, \ x_4^* = 0, \ x_5^* = 7, \ x_6^* = 0$$

Basta chequear que existan y_1^*,\cdots,y_5^* que cumplan las hipótesis del teorema. Como $x_1^*>0$, $x_2^*>0$ y $x_5^*>0$, los y_i^* deben cumplir que:

$$\sum_{i=1}^m a_{ij}y_i^* = c_j \quad \forall j \in \{1,2,5\}$$

Es decir, deben cumplir que:

Por otro lado:

$$\underbrace{-3x_{1}^{*} - x_{2}^{*} + 4x_{3}^{*} - 3x_{4}^{*} + x_{5}^{*} + 2x_{6}^{*}}_{=-3} < -2 \Rightarrow y_{2}^{*} = 0$$

$$\underbrace{5x_{1}^{*} + 2x_{2}^{*} - 3x_{3}^{*} + 6x_{4}^{*} - 2x_{5}^{*} - x_{6}^{*}}_{=4} < 5 \Rightarrow y_{5}^{*} = 0$$

Juntando todas las condiciones:

La solución para este sistema es $(\frac{1}{3},0,\frac{5}{3},1,0)$. Como esta solución verifica que:

$$\sum_{i=1}^{5} a_{ij} y_i^* \geq c_j \qquad \forall j = 1, \dots, 6$$
$$y_i^* \geq 0 \qquad \forall i = 1, \dots, 5$$

Entonces x^* es solución óptima.