	(FILE	'USPA	T	' ENTERED	AΤ	15:25:15	ON	05	AUG	95)			
L1		5492	S	PHOSPHOL	IPII)?							
L2		278	S	NEUTRAL :	LIP	ID?							
L3		191	S	L1 AND L	2								
L4		8563	S	TRIGLYCE	RID	?							
L5		1094	S	L1 AND L	4								
L6		1107	S	PHOSPHAT	IDYI	LCHOLINE?							
L7		208	S	L4 AND L	6								
L8		132	S	CHOLESTE	RYL	ESTER							
L9		136	S	SPHINGOS	INE								
L10		12	S	L7 AND L	8								
L11		4	S	L7 AND L	9						•		
L12		0	S	L10 AND	Լ11				i.				

.

.

·

•

.

·

• •

•

	(FILE	'USPA	T	EN	TERE:	D AT	15:25:15	ON	05	AUG	95)
L1		5492	S	PHO:	SPHO	LIPII)?				
L2		278	S	NEU'	TRAL	LIP	ID?				
L3		191	S	L1 2	AND :	L2					
L4		8563	S	TRIC	GLYC:	ERID?	?				
L5		1094	S	L1 2	AND :	L4					
L6		1107	S	PHO	SPHA'	TIDYI	LCHOLINE?)			
L7		208	S	L4 1	AND :	L6					
L8		132	S	CHO	LEST:	ERYL	ESTER				
L9		136	S	SPH	INGO	SINE					
L10		12	S	L7 2	AND :	L8					
L11		4	S	L7 7	AND	L9					
L12		0	S	L10	AND	L11					
L13	•	2937	S	LIP	OSOM	?					
L14		286	S	L13	AND	L4					
L15		77	S	L14	AND	L6					
L16		5	S	L15	AND	L8					
L17		1	S	L15	AND	L9					,
L18		0	S	L16	NOT	10					
L19		0	S	L16	NOT	L10					
L20		0	S	L17	NOT	L11	•				
L21		57	S	L13	AND	L9					
L22		0	S	L21	AND	L8					
L23		5	S	L21	AND	L4					

=>

(FILE 'HOME' ENTERED AT 15:57:02 ON 05 AUG 95)

FILE 'REGISTRY' ENTERED AT 15:57:07 ON 05 AUG 95

	FILE	'CA' I	ENT.	TERED AT 15:57:40 ON 05 AUG 95
L1		30933	S	PHOSPHATIDYLCHOLIN?
L2		32173	S	TRIGLYCERID?
L3		2486	S	CHOLESTERYL ESTER
L4		1932	S	SPHINGOSIN?
L5		3659	S	CHOLESTERYL ESTER?
L6		1603	S	L1 AND L2
L7		4	S	L6 AND L4
L8		121	S	L6 AND L5
L9		64	S	LIPSOM?
L10		23271	S	LIPOSOM?
L11		7589	S	L10 AND L1
L12		33	S	L11 AND L2
L13		23	S	L11 AND L4
L14		53	S	L11 AND L5
L15		0	S	L12 AND L13 AND L14
L16		0	S	L12 AND L13
L17		0	S	L13 AND L14
L18		8	S	L12 AND L14

- L13 ANSWER 10 OF 23 CA COPYRIGHT 1995 ACS
- AN 110:5222 CA
- TI Calcium-independent activation of prothrombin on membranes with positively charged lipids
- AU Rosing, Jan; Tans, Guido; Speijer, Han; Zwaal, Robert F. A.
- CS Dep. Biochem., Univ. Limburg, Maastricht, 6200 MD, Neth.
- SO Biochemistry (1988), 27(25), 9048-55 CODEN: BICHAW; ISSN: 0006-2960
- DT Journal
- LA English
- OS CJACS
- AΒ The activation of prothrombin by blood-coagulation factor Xa is strongly accelerated by neg. charged phospholipids plus Ca2+. it is reported that pos. charged membranes can also stimulate prothrombin activation provided that the activation reaction is carried out in the absence of Ca2+. Membranes composed of a mixt. ***phosphatidylcholine*** (PC) and pos. charged lipids like stearylamine, ***sphingosine*** , or hexadecyltrimethylammonium bromide caused a >1000-fold increase of the rate of prothrombin Prothrombin activation by the factor Xa-factor Va complex was also considerably stimulated by such membranes. Stimulation of prothrombin activation by pos. charged membranes was suppressed at high ionic strength. This suggests that electrostatic attraction of neg. charged proteins by pos. charged membranes is the major driving force in the assocn. of prothrombin and factor Xa with Ca2+ strongly inhibited prothrombin activation the lipid surface. on vesicles composed of PC and stearylamine (80/20 M/M), which indicated that the .gamma.-carboxyglutamic acid (Glu)-contg. regions of prothrombin and/or factor Xa are important for the interaction of these proteins with pos. charged membranes. The importance of the Gla domain was confirmed by the observation that PC/stearylamine vesicles had much less effect on the reactions between proteins that lack Gla residues [Gla-domainless de-1-45-prothrombin, prethrombin 1, prethrombin 2, or Gla-domainless de-1-44-factor Xa]. efficiency of prothrombin and prothrombin derivs. to act as substrate decreased in the order prothrombin > de-1-45-prothrombin = prethrombin 1 > prethrombin 2, whereas prothrombin activation by Gla-domainless de-1-44-factor Xa was hardly stimulated by pos. These results indicated that the main function charged membranes. of the Gla domain relates to a contribution of Gla to the overall neq. charge of the proteins. The findings further suggested that it is possible to form a fully active membrane-bound prothrombinase complex by pure electrostatic interactions and that the interaction of metal ions with Gla residues is no prerequisite for the expression of the catalytic activity of such a membrane-bound complex.