NOVELCHENICALINE INPUT NOVELCTURE INPUT NOTRUCALE INFORMER ELLARGALE @ BRISTOL. AC. UNK NOTRUCALE INFORMER ELLARGALE @ BRISTOL. AC. UNK NOVELCHENICALE ELLARGALE @ BRISTOL

Overall Motivation

We want to apply machine learning (artificial intelligence) to chemistry

But,

The big advances in ML have been focussed on specific problem domains, like image recognition and text parsing

Chemical problems are a <u>very different domain</u> set, Therefore we cannot blindly apply standard ML and expect results

We need to look at how ML has dealt with issues it has faced and apply those lessons in a domain appropriate manner

e.g. we don't use the data augmentation of standard ML as it is not suitable, but we do use the approach of data augmentation, and we must develop chemically relevant data augmentation.

We need to use our <u>chemical knowledge</u> to formulate the problems in the easiest way for the algorithm to solve.

PROBLEMS UNIQUE TO APPLYING AI/ML TO CHEMISTRY

IMAGE/TEXT DATA*

CHEMICAL DATA

Many labeled examples

Complete data

Can use data augmentation

New data easy to find Data 'free' on internet

(actually 'stolen' from flickr)

* Types of data ML (esp. neural networks) has had huge success with Few labeled examples

Incomplete data

Can't use data augmentation

New data involves lab work

Some data often behind paywall, in private databases or in old textbooks

MOTIVATION 1: 3D SHAPE IS IMPORTANT

Problem	Importance of chirality / 3D shape to solution	Types of algorithms used for solution
Suggesting target molecules	Critical	(quantum mechanics, molecule mechanics)
De novo drug design	Critical	Neural networks, clustering, search, generative
Forward reaction prediction	Medium (needs to be tracked)	Neural networks, general ML, search
Retrosynthesis	High (needs to be tracked)	Search, neural networks
Condition recommendation	Low	Search, neural networks
Structure assignment	Critical	General ML, neural networks,

MOTIVATION 2: CHEMICAL DATA IS SMALL

Small compared to chemical space

MOTIVATION 2: CHEMICAL DATA IS SMALL

Small compared to chemical space

Small compared to datasets used successful in ML

DATA USED IN VISUAL CLASSIFICATION TASKS: BENCHMARK MNIST:

Input data:
greyscale
28x28 pixel
image

No. Classes = 10

No. Examples:, 60,000

No. examples per class: 6000

THE MNIST TASK IS 'UNDERSTANDABLE' MNIST:

Learned features

Fried, Ohad, and Rebecca Fiebrink. "Cross-modal Sound Mapping Using Deep Learning." *NIME*. 2013.

DATA USED IN VISUAL CLASSIFICATION TASKS

IMAGENET:

Input data: colour 244x244 pixel image

No. Classes = 1000

No. Examples:, 1,300,000

No. examples per class: 1,300

MOLECULENET: CHEMICAL BENCHMARKS

Table 1: Dataset Details: number of compounds and tasks, recommended splits and metrics

Category	Dataset	Data Type	# Tasks	Task Type	# Compounds	Rec - Split	Rec - Metric
Quantum Mechanics	QM7	SMILES, 3D coordinates	1	Regression	7160	Stratified	MAE
	QM7b	3D coordinates	14	Regression	7210	Random	MAE
	QM8	SMILES, 3D coordinates	12	Regression	21786	Random	MAE
	QM9	SMILES, 3D coordinates	12	Regression	133885	Random	MAE
	ESOL	SMILES	1	Regression	1128	Random	RMSE
Physical Chemistry	FreeSolv	SMILES	1	Regression	642	Random	RMSE
	Lipophilicity	SMILES	1	Regression	4200	Random	RMSE
	PCBA	SMILES	128	Classification	437929	Random	PRC-AUC
	MUV	SMILES	17	Classification	93087	Random	PRC-AUC
Biophysics	HIV	SMILES	1	Classification	41127	Scaffold	ROC-AUC
	PDBbind	SMILES, 3D coordinates	1	Regression	11908	Time	RMSE
	BACE	SMILES	1	Classification	1513	Scaffold	ROC-AUC
Physiology	BBBP	SMILES	1	Classification	2039	Scaffold	ROC-AUC
	Tox21	SMILES	12	Classification	7831	Random	ROC-AUC
	ToxCast	SMILES	617	Classification	8575	Random	ROC-AUC
	SIDER	SMILES	27	Classification	1427	Random	ROC-AUC
	ClinTox	SMILES	2	Classification	1478	Random	ROC-AUC

Size of Chemical Benchmark Datasets:

Min: 642

Max: 437,929

Average: 7210 \Pm 26,071.9

Taken from: Wu, Zhenqin, et al. "MoleculeNet: a

benchmark for molecular machine learning." Chemical

science 9.2 (2018): 513-530.

Size of visual benchmark datasets

MNIST: 60,000

cats versus dogs:25,000

Size of IMAGENET: 1,300,000

SOLUTION TO SMALL DATASETS: DATA AUGMENTATION

Visual data augmentation

Reflection

Crop

Rotation

Reflection!

Crop

SOLUTION TO SMALL DATASETS: But how would this work with molecules???

но[.] Н L-erythrose D-erythrose

Premise:

- Encode the 3D structure and symmetry properties
- Use deep-neural networks (NNs)
- Add in data augmentation
- We need a simpler benchmark tasks!

ENCODING CHEMICALS

See:

- [1] E. Gale & D. Durand, "Improving Reaction Prediction, Nature Chemistry, 12, 509-510 (2020)"
- [2] G. Grethe et al., ""International chemical identifier for reactions" (RInChI)", J. Cheminformatics, " (2018)
- [3] Graphical representation standards for chemical reactions (*IUPAC Recommendations 2019*), L.S. Press, J.B. Press, K.T. Taylor

HOW DIFFICULT IS THE PROBLEM?

Data type	Human	Humanity	Chemistry
3-D	~6 months	-infinity!	
2-D	~18 months	30,000 BCE	O
1-D and symbolic	~3-4 years	3400 BCE	C1COCCO1 C2H5OH Ethanol CAS 639052-78-1 [0000010100001100 0]

Input

ENCODING CHEMICALS (NEW)

Problems:

- 1. We want to retrain3D structure for chirality
- 2. Deep-NNs have had the most success wit2D image data
- 3. We need lots of data for NNs to learn (data augmentation).
- 4. Data augmentation is usually done using reflection (not appropriate for chemistry

SYMMETRY, ROTATION, AUGMENTATION

- Using different rotations of a molecule is acceptable augmentation
- Using reflection operations is not
- We need to preserve:
 - Rotational symmetry
 - Chirality
 - **★ Global structure**
 - **X** Translational invariance

ICOSAHEDRONS OFFER THE SMALLEST DISTORTION WHEN GOING FROM 3D TO 20

Icosahedron (icosphere level 0)

Icosahedron nets

Irving Fisher. A world map on a regular icosahedron by gnomonic projection. *Geographical Review*, **33**(4):605–619, 1943

1. ENCAPSULATE MOLECULE IN AN ICOSAHEDRON

SCALE AND PROJECT ATOMS FROM CENTRE OF MASS TO SURFACE OF ICOSAHEDRON

COLOUR PANELS OF ICOSAHEDRON AND UNFOLD

There are 60 possible nets. Hydrogens not shown

ENANTOMERS

R-BCIFmethane

S-BCIFmethane

SUGAR EXAMPLE

Input

Icosahedron

Tamiflu

Icosphere 1

lc 15 - 0 - 5 - 10 15 20 25 30

Icosahedron

Icosphere 1

COARSE-GRAINING

Tamiflu

Icosphere 1

MERHODOLOGY

TYPES OF DEEP NEURAL NETWORK TASKS AND ARCHITECTURE

EXPERIMENTAL ARCHITECTURES

SET-UP CONTROL **SMILES** string **SMILES** string **3D-Structure** Morgan fingerprint (binary data) (minimised) **Icosphere nets Neural network Spherical NN Output target** Output target

EXPERIMENTAL DETAILS

DATA SETS

- a. 1000 nets for 1000 molecules
- a. 60,000 nets for 1000 molecules

Icospheres level 1, 2 and 3 tested

TESTING

Molecular ID:

10% of nets <u>per</u> <u>molecule</u> taken as test set

Everything else:

10% of <u>molecules</u> taken as test set

Generalisation to new molecules

(has the NN learned the general rule?)

Actual input data is:

RGB where

R = mass of inner most atom

G = mass of outer most atom

B = sum of atom masses

Eg:

C-H is

[12.0107, 1.0078, 13.0185]

C=O is

[12.0107, 15.999, 28.0097]

O-H is

[15.999, 1.0078, 17.0068]

Also:

Problems can be hard because the NN is underpowered or the dataset is too small

e.g.:

Classifying 1000 classes from 60,000 datapoints is harder than classifying 10 classes from 60,000 data points

DIFFICULTY OF PROBLEM

EASY:

Entirely easily derivable from input data only.

(Ella can figure out the rules to do it in under 5 minutes) e.g. counting atom types, summing atomic mass

MEDIUM:

Requires some chemical knowledge that might not be given

e.g. counting valence electrons, learning what a heteroatom is (to count them) counting H donors etc

HARD:

Requires a spatial, electronic or quantum knowledge

e.g. calculating shape parameters like principal moments of inertia (and derived quantities like...)

MolLogP

RESULTARY

Task: classification

/ autoencoder Level: **hard**

Input data:

Input no: 1000 /

60,000 Level: 2

No. classes: 1000

Output target:

ID number

Test set: unseen

nets

Training details:

Epochs: 160

HAS IT LEARNED TO 'READ' THE NETS?

Task	Augmentation	Acc. On train	Acc. On test
Random (baseline)	n/a	0.1%	0.1%
Classification	no	100%	1%
Classification	yes	100%	60%

Conclusion:

Yes. But it can only differentiate 60% of them.

Task: regression

Level: easy

Input data:

Input no: 1000

Level: 2

Augmentation: no

Output target:

Exact molar weight

Test set: unseen

molecules

Results:

 $R^2 = 0.812$ MSE = 580

Training details:

Epochs: 60

Plotted: test set

EFFECT OF AUGMENTATION 1: WITHOUT AUGMENTATION

Task: regression

Level: Easy

Input data:

Input no: 1000

Level: 2

Augmentation: yes

Output target:

Exact molar weight

Test set: unseen

molecules

Results:

 $R^2 = 0.979$

MSE = 23

Training details:

Epochs: 60

Plotted: test set

EFFECT OF AUGMENTATION: WITH AUGMENTATION

Task: regression Level: Medium?

Input data:

Input no: 1000

Level: 2

Augmentation: yes

Output target:

Number of valence

electrons

Test set: unseen molecules

Results:

 $R^2 = 0.9824$

MAE = 21.9

Training details:

Epochs: 160

Plotted: test set

EFFECT OF AUGMENTATION: WITH AUGMENTATION

Task: regression

Level: hard

Input data:

Input no: 1000

Level: 2

Augmentation:

yes

Output target:
Radius of gyration

Test set: unseen

molecules

Results:

 $R^2 = 0.886$

MAE = 0.138

Training details:

Epochs: 160

Plotted: test set

CAN IT LEARN SHAPE PARAMETERS?

(I.E. THOSE BASED ON MOMENTS OF INERTIA)

Task: regression

Level: hard

Input data:

Input no: 1000 /

60,000 Level: 2

Output target:

Radius of gyration

Test set: unseen

molecules

Training details:

Epochs: 160

MATCH THE INPUT DATA TO THE PROBLEM - 1

Input	Output	Aug men tatio n	Difficulty	MAE	R2
SMILES	Radius of gyration	no	Hard- impossible?	1.1	-0.1167
Icosphere level 2	Radius of gyration	no	medium	0.258	0.667
Icosphere level 2	Radius of gyration	yes	medium	0.138	0.886

Nets contain mass and relative angle information → NN can infer about shape SMILES strings do not contain shape information (without the application of chemical know how anyway) → NN cannot learn the underlying function

Task: classification

Level: easy - medium

Input data:

Input no: 1000 /

60,000 Level: 2

No. classes: 4

Output target:

charge

Test set: unseen

molecules

Training details:

Epochs: 300

MATCH THE INPUT DATA TO THE PROBLEM - 2

Input	Output	Augmentati on	Difficulty	Acc. On test
SMILES	charge	no	easy	86%
Icosphere level 2	charge	no	medium	0.49%
Icosphere level 2	charge	yes	medium	48.9%

Both SMILES and nets contain the relevant information.

SMILES → charge is the easier problem.

SUMMARY

- Presented a method for data augmentation
- Presented a method to include information about 3D structure and symmetry
- Creating small benchmark datasets (to be done before attempting the MoleculeNet benchmarks)

FURTHER DIRECTIONS

Further data augmentation can be done by:

- Symmetry breaking by distorting along vibrational directions (normal modes)
- Including rotation of the molecule (not tested yet)

Testing the method

- Creating larger datasets of molecules (>1000)
- Trying out the MoleculeNet benchmarks
- Attempting de novo molecule suggestion etc

Developing the input data method

- Finding out what information we need to include, mass, charge, valence, distance?
- Testing unscaled icospheres

EPSRC Centre for Doctoral Training in Technology Enhanced Chemical Synthesis

