York University Team Notebook C++ (2019-2020)

Contents

1	Data	Structure
	1.1	Fenwick Tree
	1.2	Segment Tree
	1.3	Segment Tree with lazy propagation
	1.4	Persistent Segment Tree
	1.5	Sparse Table
	1.6	Treap
	1.7	Union find
2	Gran	oh Theory
	2.1	Bellman Ford
	2.2	Hopcroft Karp
	2.3	Augmented Path for BPM
	2.4	Bineary Lifint
	2.5	Bridges
	2.6	Cut Vertices
	2.7	Dijkstra
	2.8	Dinic
	2.9	Divide and Couquer on Trees
	2.10	Dsu on Trees
	2.11	Euler Cycle
	2.12	Heavy-light Decomp
	2.13	Hunarian
	2.14	Tarjan's SCC
	2.15	Two-edge-connected components
3	Math	n 1
	3.1	Baby Step Giant Step
	3.2	Chinese remainder Theorem
	3.3	Euler
	3.4	Extended Euclidean Algorithm
	3.5	Factorial
	3.6	Factorization
	3.7	FFT
	3.8	Gaussian elimination
	3.9	Lucas Theorem
	3.10	NFFT
	3.11	Sieve
	3.12	Simplex
4	Strin	ng 1
-	4.1	Aho-Corasick Automaton
	4.2	KMP
	4.3	Manacher
	4.4	Polynomial Hashing
	4.4	
		·
	4.6 4.7	Suffix Automaton
	4.7	
	4.8	Z-function
5	Geor	netry 1
	5.1	Angle
	5.2	Circle
	5.3	Geometry

```
      5.4
      Line
      22

      5.5
      Point
      23

      5.6
      Polygon
      23

      5.7
      Segment
      24

      Miscs
      24
```

1 Data Structure

1.1 Fenwick Tree

6

```
template <typename T> struct fenwick {
    int n; vector<T> t;
    fenwick(int n_{-}) : n(n_{-}), t(n + 1) {}
    fenwick(const vector<T> &v) : fenwick((int)v.size()) {
        for (int i = 1; i <= n; i++) {</pre>
            t[i] += v[i - 1];
            int j = i + (i \& -i);
            if (j <= n) t[j] += t[i];</pre>
    void add(int i, T x) {
        assert(i \ge 0 \&\& i < n);
        for (i++; i \le n; i += i \& -i) {
            t[i] += x;
    template <typename U = T> U query(int i) {
        assert(i \ge 0 \&\& i < n);
        U res{};
        for (i++; i > 0; i -= i \& -i)
            res += t[i];
        return res;
    template <typename U = T> U query(int 1, int r) {
        assert(1 >= 0 \&\& 1 <= r \&\& r < n);
        return query<U>(r) - (1 ? query<U>(1 - 1) : U{});
    int search(T prefix) { // finds first pos s.t. sum(0, pos)>=prefix
        int pos = 0;
        T sum = 0;
        for (int i = _ig(n); i >= 0; i--) {
             // could change < to <= to make it find upper bound
            if (pos + (1 << i) <= n && (sum + t[pos + (1 << i)] < prefix))
                pos += (1 << i);
                sum += t[pos];
        return pos;
};
// fenwick tree with range update and range sum query
struct fenwick_rg {
    vector<int64_t> sum1, sum2;
    fenwick_rg(int n_{-}) : n(n_{-}), sum1(n + 1), sum2(n + 1) {}
 private:
    void add(int i, int x) {
        assert(i \ge 0 \&\& i < n);
        int64_t v = (int64_t)i * x;
        for (; i \le n; i += i \& -i)
```

```
sum1[i] += x, sum2[i] += v;
 public:
   void add(int 1, int r, int x) {
        assert (1 >= 0 \&\& 1 <= r \&\& r < n);
        add(1, x);
        if (r + 1 < n) add(r + 1, -x);
   int64_t query(int p) {
        assert (p >= 0 \&\& p < n);
        p++;
        int64_t res{};
        for (int i = p; i; i -= i & -i)
            res += (p + 1) * sum1[i] - sum2[i];
        return res:
   int64_t query(int 1, int r) {
        assert (1 >= 0 \&\& 1 <= r \&\& r < n);
        return query(r) - (1 ? query(1 - 1) : 0);
};
```

1.2 Segment Tree

```
template <typename T>
struct SegTree {
   int n;
   vector<T> t;
   SegTree(int n_{-}) : n(n_{-}), t(4 * n) {
        build(1, 0, n-1, vector(n, T()));
   template<typename U>
   SegTree(const vector<T> &v) : SegTree((int)v.size()) {
       build(1, 0, n - 1, v);
   void pull(int node) { t[node] = t[node << 1] + t[node << 1 | 1]; }</pre>
   template<typename U>
   void build(int node, int 1, int r, const vector<U> &v) {
        if (1 == r) {
            t[node] = T(v[1]);
            return;
        int mid = (1 + r) >> 1;
       build(node << 1, 1, mid, v);</pre>
       build (node << 1 | 1, mid + 1, r, v);
       pull(node);
   template<typename U>
   void add(int node, int i, U x, int l, int r) {
        if (1 == r) {
            t[node] += x;
            return;
        int mid = (1 + r) / 2;
        if (i <= mid) add(node << 1, i, x, 1, mid);</pre>
        else add(node << 1 | 1, i, x, mid + 1, r);
       pull(node);
   void set(int node, int i, T x, int l, int r) {
        if (l == r) {
            t[node] = x;
            return;
        int mid = (1 + r) / 2;
        if (i <= mid) set(node << 1, i, x, 1, mid);</pre>
        else set(node << 1 | 1, i, x, mid + 1, r);
        pull(node);
```

```
T get(int node, int ql, int qr, int l, int r) {
        if (ql <= l && qr >= r) return t[node];
        int mid = (1 + r) >> 1;
        if (qr <= mid) return get (node << 1, ql, qr, l, mid);</pre>
        if (ql > mid) return get(node << 1 | 1, ql, qr, mid+1, r);</pre>
        return get (node << 1, q1, qr, 1, mid) + get (node << 1 | 1, q1, qr,
              mid+1, r);
    // wrapper
    template <typename U>
    void add(int i, U x) {
        assert(i \ge 0 \&\& i < n);
        add(1, i, x, 0, n-1);
    void set(int i, T x) {
        assert(i >= 0 \&\& i < n);
        set(1, i, x, 0, n-1);
    T get(int 1, int r) {
        assert (1 >= 0 \&\& 1 <= r \&\& r < n);
        return get (1, 1, r, 0, n-1);
};
struct node {
    int v=0; // value for leaves
    node() = default;
    // may need more constructor
    node operator+(const node& rhs) const { // used in get() and pull()
        return {v+rhs.v};
    node& operator +=(const node& rhs) { // used in add()
        v+=rhs.v;
        return *this;
};
```

1.3 Segment Tree with lazy propagation

```
// lazy propagation
template<typename T>
struct SegTree {
    int n:
    vector<T> t;
    SegTree(int n_{-}) : n(n_{-}), t(4 * n) {}
    template<typename U>
    SegTree(const vector<U> &v) : SegTree((int)v.size()) {
        build(1, 0, n - 1, v);
    void pull(int node) { t[node] = t[node * 2] + t[node * 2 + 1]; }
    template<typename U>
    void build(int node, int 1, int r, const vector<U> &v) {
        if (1 == r) {
            return t[node].apply(1, r, v[1]);
        int mid = (1 + r) / 2;
        build(node * 2, 1, mid, v);
        build(node * 2 + 1, mid + 1, r, v);
        pull(node);
    void push(int p, int 1, int r) {
        if (t[p].lazy) {
            int m = (1 + r) / 2;
            t[p * 2].apply(l, m, t[p].lazy);
            t[p * 2 + 1].apply(m + 1, r, t[p].lazy);
            t[p].lazy = 0;
```

```
template<typename U>
    void add(int node, int ql, int qr, int l, int r, U x) {
        if (r < ql \mid | l > qr) return;
        if (q1 <= 1 && qr >= r) return t[node].apply(1, r, x);
        push(node, 1, r);
        int mid = (1 + r) / 2;
        add(node * 2, ql, qr, l, mid, x);
        add(node * 2 + 1, ql, qr, mid + 1, r, x);
        pull(node);
    T get(int node, int ql, int qr, int l, int r) {
        if (gl <= l && gr >= r) return t[node];
        push(node, l, r);
        int mid = (1 + r) / 2;
        if (qr <= mid) return get(node << 1, ql, qr, l, mid);</pre>
        if (ql > mid) return get(node << 1 | 1, ql, qr, mid+1, r);</pre>
        return get (node << 1, q1, qr, 1, mid) + get (node << 1 | 1, q1, qr,
             mid+1, r);
    // wrapper
    template <typename U>
    void add(int 1, int r, U x) {
        assert (1 >= 0 && 1 <= r && r < n);
        add(1, 1, r, 0, n-1, x);
    T get(int 1, int r) {
        assert(1 >= 0 \&\& 1 <= r \&\& r < n);
        return get (1, 1, r, 0, n-1);
};
struct node {
    int v=0; // don't forget to set default value (used for leaves), not
        necessarily zero element
    void apply(int 1, int r, int x) {
        v+=x;
        lazy += (r-1) * x;
    node operator+(const node& b) const {
        node res;
        res.v=v+b.v;
        return res:
};
```

1.4 Persistent Segment Tree

```
//find the nth biggest number
#include<bits/stdc++.h>
struct PST {
   int n, tot=0;
   vector<int> lc, rc, sum, roots; // left child, right child
   PST(int n_{-}) : n(n_{-}), lc(n<<5), rc(n<<5), sum(n<<5), roots(1) { //
        change the size to n<<6 if there are 2*n modification
       build(0, n-1, roots[0]); // the initial root node is 1!
   void pushup(int rt) {
       sum[rt] = sum[lc[rt]] + sum[rc[rt]];
   void build(int 1, int r, int& rt) {
       rt = ++tot;
       if (1 == r) return;
       int mid = (1 + r) >> 1;
       build(l, mid, lc[rt]);
       build(mid + 1, r, rc[rt]);
       pushup(rt);
   void update(int pos, int val, int 1, int r, int old, int& rt) {
```

```
rt = ++tot;
        lc[rt] = lc[old];
        rc[rt] = rc[old];
        if (1 == r) {
            sum[rt] = sum[old] + val;
            return;
        int mid = (1 + r) >> 1;
        if (pos <= mid) update(pos, val, 1, mid, lc[old], lc[rt]);</pre>
        else update(pos, val, mid + 1, r, rc[old], rc[rt]);
        pushup(rt);
    int update(int pos, int val) { // return the root of the new version
        int new root;
        update(pos, val, 0, n-1, roots.back(), new_root);
        roots.push_back(new_root);
        return new_root;
    int query(int u, int v, int 1, int r, int k) {
        if (l==r) return 1;
        int mid=(1+r)/2, x=sum[lc[v]]-sum[lc[u]];
        if (k<=x) return query(lc[u], lc[v], l, mid, k);</pre>
        return query(rc[u], rc[v], mid+1, r, k-x);
int main(){
    int n, q;
    cin>>n>>q;
    vector<int> a(n);
    for (auto& x : a) cin>>x;
    auto comp=a;
    sort(comp.begin(), comp.end());
    comp.erase(unique(comp.begin(), comp.end()), comp.end());
    PST tr(comp.size());
    vector<int> roots(n+1);
    roots[0]=1;
    for (int i=0; i<n; i++) {</pre>
        int p=lower_bound(comp.begin(), comp.end(), a[i])-comp.begin();
        roots[i+1]=tr.update(p, 1);
    while (q--) {
        int 1, r, k;
        cin>>1>>r>>k:
        cout<<comp[tr.query(roots[1-1], roots[r], 0, comp.size()-1, k)]<<'</pre>
             \n';
```

1.5 Sparse Table

1.6 Treap

```
// using treap to maintain a sequence that support multiple operation,
// 0-based index, change pull(), add(), pushdown() according to the
    problem
#include<bits/stdc++.h>
mt19937 gen(chrono::high_resolution_clock::now().time_since_epoch().count
template <typename T> struct Treap {
    struct node {
        int ch[2], sz;
        unsigned k;
        T d, sum, lazy;
        node(T d_{,} int z = 1)
            : sz(z), k((unsigned)gen()), d(d_), sum(d), lazy() {
            ch[0] = ch[1] = 0;
    };
    vector<node> nodes;
    int root=0, recyc=0;
    Treap(int size = 2e5) {
        nodes.reserve(size);
        nodes.emplace_back(0, 0);
    inline int &ch(int rt, int r) { return nodes[rt].ch[r]; }
    int new_node(const T &d) {
        int id = (int) nodes.size();
        if (recyc) {
            id = recyc;
            if (ch(recyc, 0) && ch(recyc, 1))
                recyc = merge(ch(recyc, 0), ch(recyc, 1));
                recyc = ch(recyc, ch(recyc, 0) ? 0 : 1);
            nodes[id] = node(d);
        } else
            nodes.push_back(node(d));
        return id;
    int pull(int rt) {
        node &n = nodes[rt];
        n.sz = 1 + nodes[n.ch[0]].sz + nodes[n.ch[1]].sz;
        n.sum = n.d + nodes[n.ch[0]].sum + nodes[n.ch[1]].sum;
        return rt;
    void add(int rt, const T &d) {
        node &n = nodes[rt];
        n.lazy = n.lazy + d;
        n.d = n.d + d;
        n.sum = n.sum + d * n.sz;
    void pushdown(int rt) {
        node &n = nodes[rt];
        if (n.lazy) {
            add(n.ch[0], n.lazy);
            add(n.ch[1], n.lazy);
            n.lazy = T();
    int merge(int tl, int tr) {
        if (!tl) return tr;
        if (!tr) return tl;
        if (nodes[t1].k < nodes[tr].k) {</pre>
            pushdown(t1):
            ch(tl, 1) = merge(ch(tl, 1), tr);
            return pull(t1);
        } else {
            pushdown(tr);
```

```
ch(tr, 0) = merge(tl, ch(tr, 0));
            return pull(tr);
    void split(int rt, int k, int &x, int &y) { // split out first k
        if (!rt) {
            x = y = 0;
            return;
        pushdown(rt);
        if (k <= nodes[ch(rt, 0)].sz) {</pre>
            split(ch(rt, 0), k, x, ch(rt, 0));
            pull(y);
        } else {
            x = rt;
            split(ch(rt, 1), k - nodes[ch(rt, 0)].sz - 1, ch(rt, 1), y);
            pull(x);
    void remove(int &rt) {
        if (recyc == 0) recyc = rt;
        else recyc = merge(recyc, rt);
        rt = 0:
    // interface
    int size() { return nodes[root].sz; }
    const T& operator[](int k) {
        assert(k>=0 && k<size());
        int x, y, z;
        split (root, k+1, y, z);
        split(y, k, x, y);
        root = merge(merge(x, y), z);
        return nodes[y];
    void insert(int k, T v) { // insert at kth position
        assert(k>=0 && k<=size());
        int 1, r;
        split(root, k, l, r);
        int rt = new_node(v);
        root = merge(merge(1, rt), r);
    void erase(int 1, int r) {
        assert(1>=0 && 1<=r && r<size());
        int x, y, z;
        split(root, r + 1, y, z);
        split(y, 1, x, y);
        remove(y);
        root = merge(x, z);
    void range_add(int 1, int r, T v) {
        assert(1>=0 && 1<=r && r<size());
        int x, y, z;
        split(root, r + 1, y, z);
        split(y, l, x, y);
        add(y, v);
        root = merge(merge(x, y), z);
    T getsum(int 1, int r) {
        assert(1>=0 && 1<=r && r<size());
        int x, y, z;
        split(root, r + 1, y, z);
        split(y, l, x, y);
        T ret = nodes[y].sum;
        root = merge(merge(x, y), z);
        return ret;
};
```

1.7 Union find

```
struct UF {
    int n;
    vector<int> pa; // parent or size, positive number means parent,
        negative number means size
    explicit UF(int _n) : n(_n), pa(n, -1) {}
    int find(int x) {
        assert (0 \leq x && x \leq n);
        return pa[x] < 0 ? x : pa[x]=find(pa[x]);</pre>
    bool join(int x, int y) {
        assert (0 <= x \&\& x < n \&\& 0 <= y \&\& y < n);
        x=find(x), y=find(y);
        if (x==y) return false;
        if (-pa[x] < -pa[y]) swap(x, y); // size of x is smaller than size
              of y
        pa[x] += pa[y];
        pa[y]=x;
        return true;
    int size(int x) {
        assert (0 \leq x && x \leq n);
        return -pa[x];
    vector<vector<int>> groups() {
        vector<int> leader(n);
        for (int i=0; i<n; i++) leader[i]=find(i);</pre>
        vector<vector<int>> res(n);
        for (int i=0; i<n; i++) {</pre>
            res[leader[i]].push_back(i);
        res.erase(remove_if(res.begin(), res.end(),
                     [](const vector<int>& v) { return v.empty(); }), res.
        return res;
};
```

2 Graph Theory

2.1 Bellman Ford

```
struct BellmanFord {
   static constexpr long long INF=1e18;
   int n, last_relaxed=-1;
   vector<tuple<int, int, int>> edges;
   vector<bool> bad; //has negative cycle on the path
   vector<int> pre;
   vector<ll> dis:
   BellmanFord(int _n) : n(_n), bad(n), pre(n), dis(n, INF) {}
   void add_edge(int u, int v, int w) {
        edges.emplace_back(u, v, w);
   void run(int start) {
        dis[start]=0;
        for (int i=0; i<n-1; i++) {</pre>
            for (auto [u, v, w] : edges) {
                if (dis[u] < INF && dis[v] > dis[u] + w) {
                    dis[v]=dis[u]+w;
                    pre[v]=u;
```

```
for (auto [u, v, w] : edges) {
            if (dis[u] < INF && dis[v] > dis[u] + w) {
                 dis[v]=dis[u]+w;
                bad[v]=true;
                last_relaxed=v;
                pre[v]=u;
        for (int i=0; i<n; i++) {</pre>
            for (auto [u, v, w] : edges) {
                if (bad[u]) bad[v]=true;
    vector<int> find_cycle() {
        dis.assign(n, 0); // without this, only cycle reachable from 0
             will be counted
        run(0);
        if (last_relaxed==-1) return {};
        int x=last_relaxed;
        for (int i=0; i<n; i++) x=pre[x];</pre>
        vector<int> cycle;
        for (int cur=x; ; cur=pre[cur]) {
            cycle.push_back(cur);
            if (cur==x && cycle.size()>1) break;
        reverse(cycle.begin(), cycle.end());
        return cycle;
    long long get_dis(int x) {
        return bad[x] ? -INF : dis[x];
};
```

2.2 Hopcroft Karp

```
struct HopcroftKarp {
    int n, m;
    Dinic flow;
    vector<int> 1, r;
    HopcroftKarp(int n, int m) : n(n), m(m), flow(n+m+2), l(n, -1), r(m, -1)
         -1) {}
    void add_edge(int u, int v) {
        flow.addEdge(u, n+v, 1);
    int solve() {
        for (int i=0; i<n; i++)</pre>
             flow.addEdge(n+m, i, 1);
        for (int i=0; i<m; i++)</pre>
             flow.addEdge(n+i, n+m+1, 1);
        int res = flow.maxFlow(n+m, n+m+1);
        for (int i=0; i<n; i++) {</pre>
             if (flow.match[i]!=-1) {
                 1[i]=flow.match[i]-n;
                 r[flow.match[i]-n]=i;
        return res;
int main() {
    ios::sync_with_stdio(false);
    int 1, r, m;
    cin>>l>>r>>m;
    HopcroftKarp g(l, r);
    while (m--) {
        int u, v;
        cin>>u>>v;
```

```
g.add_edge(u, v);
}
cout<<g.solve()<<'\n';
for (int i=0; i<1; i++) {
    if (g.l[i]!=-1) cout<<i<' '<<g.l[i]<<'\n';
}</pre>
```

2.3 Augmented Path for BPM

cin>>u>>v;

```
// augmented path algorithm for maximum-caredinality bipartite matching
// Worst time complexity: O(nm), but very hard to hack (since we can
// usually runs extremely fast, 2e5 vertices and edges in 60 ms.
mt19937 rng(1);
struct aug_path {
    vector<vector<int>> q;
    vector<int> L, R, vis;
    aug_path(int n, int m) : g(n), L(n, -1), R(m, -1), vis(n) {}
    void add_edge(int a, int b) { g[a].push_back(b); }
    bool match(int u) {
        if (vis[u]) return false;
        vis[u] = true;
        for (auto v : g[u]) {
            if (R[v] == -1) {
                L[u] = v;
                R[v] = u;
                return true;
        for (auto vec : q[u]) {
            if (match(R[vec])) {
                L[u] = vec;
                R[vec] = u;
                return true;
        return false;
    int solve() {
        // shuffle to avoid counter test case, but may be slightly slower
        // for (auto& v : g)
        // shuffle(v.begin(), v.end(), rng);
        // vector<int> order(L.size());
        // iota(order.begin(), order.end(), 0);
        // shuffle(order.begin(), order.end(), rng);
        bool ok = true;
        while (ok) {
            ok=false;
            fill(vis.begin(), vis.end(), 0);
            // for (auto i : order)
            for (int i = 0; i < (int)L.size(); ++i)</pre>
                if (L[i] == -1) ok |= match(i);
        int ret = 0;
        for (int i = 0; i < L.size(); ++i)</pre>
            ret += (L[i] != -1);
        return ret;
int main() {
    ios::sync_with_stdio(false);
   int 1, r, m;
    cin>>1>>r>>m;
   aug_path g(l, r);
    while (m--) {
        int u, v;
```

```
g.add_edge(u, v);
}
cout<<g.solve()<<'\n';
for (int i=0; i<1; i++) {
    if (g.L[i]!=-1) cout<<i<<' '<<g.L[i]<<'\n';
}
}</pre>
```

2.4 Bineary Lifint

```
struct Binary_lifting {
    const int sz, level;
    const vector<vector<int>>& q;
    vector<vector<int>> pa;
    vector<int> dep;
    Binary_lifting(const vector<vector<int>>& q_) :
        sz((int)g_.size()),
        level(\underline{\phantom{a}}lg(sz)+2),
        q(q_{\perp}),
        pa(sz, vector<int>(level)),
        dep(q.size()) {}
    void dfs(int u, int p) {
        pa[u][0] = p;
        dep[u] = dep[p] + 1;
        for (int i = 1; i < level; i++) {</pre>
            pa[u][i] = pa[pa[u][i - 1]][i - 1];
        for (auto v : g[u]) {
            if (v == p) continue;
             dfs(v, u);
    };
    int jump(int u, int step) {
        for (int i=0; i<level; i++) {</pre>
            if (step>>i&1) u=pa[u][i];
        return u;
    int lca(int x, int y) {
        if (dep[x] > dep[y]) swap(x, y);
        y=jump(y, dep[y] - dep[x]);
        if (x == y) return x;
        for (int i=level-1; i>=0; i--) {
             if (pa[x][i] != pa[y][i]) {
                 x = pa[x][i];
                y = pa[y][i];
        return pa[x][0];
};
```

2.5 Bridges

```
struct Bridge {
    int n, pos=0;
    vector<vector<pair<int, int>>> g; // graph, component
    vector<int> ord, low, bridges; // order, low link, belong to which
        component
    Bridge(int n) : n(n), g(n), ord(n, -1), low(n) {}
    void add_edge(int u, int v, int i) {
        g[u].emplace_back(v, i);
        g[v].emplace_back(u, i);
    }
    void dfs(int u, int p) {
        ord[u] = low[u] = pos++;
        int cnt = 0;
```

2.6 Cut Vertices

```
struct cut_vertex {
   int n, pos = 0;
   vector<vector<int>> g;
   vector<int> ord, low, cuts;
   cut_vertex(int n_) : n(n_), g(n), ord(n, -1), low(n) {}
   void add_edge(int u, int v) {
       g[u].push_back(v);
        q[v].push_back(u);
   void dfs(int u, int pa) {
        low[u] = ord[u] = pos++;
        int cnt = 0, sz = 1, sum = 0;
        bool is_cut = 0;
        for (auto v : g[u]) {
           if (v == pa) continue;
            if (ord[v] == -1) {
               cnt++;
                dfs(v, u);
                if (low[v] >= ord[u]) {
                    if (u != pa || cnt > 1) is_cut = true;
                    // the subtree will be disconnected if we remove
                        vertex u.
                    // do something if needed
            low[u] = min(low[u], low[v]);
        if (is_cut) cuts.push_back(u);
   void solve() {
        for (int i = 0; i < n; i++) {
           if (ord[i] == -1) dfs(i, i);
};
```

2.7 Dijkstra

```
constexpr long long INF=1e18;
template<typename G>
vector<long long> dijkstra(const G& g, int start) {
   vector dis(g.size(), INF);
   // vector<pii> pre[N];
   using node=pair<long long, int>;
   priority_queue
rode, vector<node>, greater<>> q;
   dis[start] = 0;
   q.emplace(0, start);
   while (!q.empty()) {
```

```
auto [d, u] = q.top();
        q.pop();
        if (d != dis[u]) continue;
        for (auto [v, cost] : g[u]) {
            if (dis[v] > dis[u] + cost) {
                dis[v] = dis[u] + cost;
                // pre[v].clear();
                // pre[v].pb({cost,u});
                q.emplace(dis[v], v);
            // else if(dis[v]==dis[u]+cost)
            // pre[v].pb({cost,u});
    return dis;
// dijkstra for small edge weight (less than 10) aka 1-k bfs
vector<int> SmallDijkstra(const vector<vector<pair<int, int>>>& g, int src
    , int lim) {
    vector<vector<int>> qs(lim);
    vector<int> dis(g.size(), -1);
    dis[src] = 0;
    qs[0].push_back(src);
    for (int d = 0, maxd = 0; d <= maxd; ++d) {</pre>
        for (auto& q = qs[d % lim]; q.size(); ) {
            int u = q.back();
            q.pop_back();
            if (dis[u] != d) continue;
            for (auto [v, c] : g[u])
                if (dis[v] != -1 && dis[v] <= d + c) continue;</pre>
                dis[v] = d + c;
                qs[(d + c) % lim].push_back(v);
                maxd = max(maxd, d + c);
    return dis;
 Dinic
// indexed from 0!
struct Dinic {
    static constexpr int INF = 1e9;
    int n;
    struct Edge {
        int to, cap;
        Edge(int to, int cap) : to(to), cap(cap) {}
    };
    vector<Edge> e;
    vector<std::vector<int>> g;
    vector<int> cur, h; // h = shortest distance from source, calculated
    // after computing flow, edge (u, v) such that h[u]!=-1 and h[v]==-1
        are part of min cut
    Dinic(int n) : n(n), g(n) {}
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 \&\& h[v] == -1) {
```

h[v] = h[u] + 1;

```
if (v == t) return true;
                que.push(v);
    return false;
int dfs(int u, int t, int f) {
   if (u == t) return f;
    int r = f;
    for (int &i = cur[u]; i < int(g[u].size()); ++i) {</pre>
        int j = g[u][i];
        auto [v, c] = e[j];
        if (c > 0 \&\& h[v] == h[u] + 1) {
            int a = dfs(v, t, std::min(r, c));
            e[i].cap -= a;
            e[j ^1].cap += a;
            r -= a;
            if (r == 0) return f;
    return f - r;
void addEdge(int u, int v, int c) {
    g[u].push_back((int)e.size());
    e.emplace_back(v, c);
    g[v].push_back((int)e.size());
    e.emplace_back(u, 0);
int maxFlow(int s, int t) {
   int ans = 0;
    while (bfs(s, t)) {
        cur.assign(n, 0);
        ans += dfs(s, t, INF);
    return ans;
```

2.9 Divide and Couquer on Trees

};

```
vector<vector<pair<int,int>>> g;
vector<int> query, subtreeSize, parent;
vector<bool> blocked;
//calculate substree size
void calSize(int u,int p) {
    parent[u]=p;
    subtreeSize[u]=1;
    for(auto [v,w]:g[u]){
        if(v==p||blocked[v]) continue;
        calSize(v,u);
        subtreeSize[u] +=subtreeSize[v];
//if needed solveTree can return value
void solveTree(int root){
    queue<pii> cur; //store the result for current subtree
    for(auto [v,w]:g[root]){
        if(blocked[v]) continue;
        queue<pair<int,int>> q;//change if type of element if needed
        q.push({v,w});
        while(!q.empty()){
            auto [u,dis]=q.front();
            q.pop();
            //do ... to update answer
            cur.push({dis,len});
            for(auto [to,wei]:g[u]){
                if(to==parent[u]||blocked[to]) continue;
```

```
g.push({to,dis+wei});
        while(!cur.empty()){
            auto [dis,len]=cur.front();
            // do ... to update the result for the current tree
   }
// return some value if needed
void go(int entry){
    calSize(entry,entry);
    int centroid=entry;
    int bestSize=subtreeSize[entry];
    queue<int> q;
    q.push(entry);
    while(!q.empty()){
        int u=q.front();
        q.pop();
        int size=subtreeSize[entry]-subtreeSize[u];
        for(auto [v,w]:g[u]){
            if (v==parent[u]||blocked[v]) continue;
            size=max(size, subtreeSize[v]);
            q.push(v);
        if(size<bestSize) centroid=u, bestSize=size;</pre>
    calSize(centroid, centroid);
    blocked[centroid]=true;
    // do ... to clear the previous result
    solveTree(centroid);
    for(auto [v,w]:q[centroid]){
        if(!blocked[v]) go(v);
```

2.10 Dsu on Trees

```
int main() {
   vector<int> bch(n, -1);
    int cur\_big = -1;
    auto get_big = [&] (auto &dfs, int u, int p) -> int {
        int sz = 1, mx = 0;
        for (auto v : g[u]) {
            if (v == p) continue;
            int csz = dfs(dfs, v, u);
            if (csz > mx) mx = csz, bch[u] = v;
            sz += csz;
        return sz;
    auto add = [\&] (auto &slf, int u, int p, int x) -> void {
        // update info of u here
        for (auto v : g[u]) {
            if (v == p || v == cur_big) continue;
            slf(slf, v, u, x);
    auto dfs = [&] (auto &dfs, int u, int pa, bool keep) -> void {
        int big = bch[u];
        for (auto v : g[u])
            if (v != pa && v != big) dfs(dfs, v, u, 0);
        if (big != -1) {
            dfs(dfs, big, u, 1);
            cur_big = big;
```

2.11 Euler Cycle

```
// add an edge (end, start) if to find Eulerian path, and remove it in the
     answer with:
    // for (auto i : rep(1, ans.size())) {
          if (ans[i-1]==n-1 && ans[i]==0) {
               for (auto j : rep(i, ans.size()-1)) cout << ans[j] +1 << ' ';
               for (auto j : rep(i)) cout << ans[j] +1 << ' ';
    1/ }
struct Euler_tour {
    int n, edge_cnt=0;
    vector<vector<pair<int, int>>> g;
    vector<pair<int, int>> circuit;
    vector<int> deg;
    vector<bool> used;
    // use in-degree and out-degree if directed graph
    // vector<int> indeg, oudeg;
    bool bad=0;
    Euler_tour(int _n) : n(_n), g(n), deg(n) {}
    void add_edge(int u, int v) { // change if directed graph
        g[u].emplace_back(v, edge_cnt);
        g[v].emplace_back(u, edge_cnt);
        deg[u]++, deg[v]++;
        edge_cnt++;
    void dfs(int pre, int u) {
        while (!g[u].empty()) {
            auto [v, edge] = q[u].back();
            g[u].pop_back();
            if (used[edge]) continue;
            used[edge]=true;
            dfs(u, v);
        if (!circuit.empty() && circuit.back().first!=u) bad=true;
        circuit.emplace_back(pre, u);
    vector<int> solve(int start) {
        for (auto x : deq) if (x%2) return {}; // change if directed graph
        // for (int i=0; i<n; i++) if(indeg[i]!=oudeg[i]) return {};</pre>
        used.resize(edge_cnt);
        dfs(-1, start);
        if (circuit.size()!=edge_cnt+1 || bad) return {};
        vector<int> ans;
        for (auto [u, v] : circuit) ans.push_back(v);
        // reverse ans if directed
        // reverse(ans.begin(), ans.end());
        return ans;
};
```

2.12 Heavy-light Decomp

```
#include "../DataStructure/fenwick.cpp"
struct Heavy_light {
    vector<vector<int>> g;
```

```
vector<int> fa, dep, heavy, head, pos, posr; // initialize heavy with
    int cnt=0;
    fenwick<long long> tr;
    Heavy_light(int n): g(n), fa(n), dep(n), heavy(n, -1), head(n), pos(n
        ), posr(n), tr(n) {}
    void add_edge(int u, int v) {
        g[u].push_back(v);
        g[v].push_back(u);
    int dfs(int u) {
        int size = 1;
        int mx = 0:
        for (int v : g[u]) {
            if (v != fa[u]) {
                fa[v] = u, dep[v] = dep[u] + 1;
                int csize = dfs(v);
                size += csize;
                if (csize > mx) mx = csize, heavy[u] = v;
        return size;
    void dfs2(int u, int h) {
        head[u] = h, pos[u] = ++cnt; //1-based index, could change to 0
            based but less useful
        if (heavy[u] != -1) dfs2(heavy[u], h);
        for (int v : q[u]) {
            if (v != fa[u] && v != heavy[u])
                dfs2(v, v);
        posr[u] = cnt;
    long long pathsum(int u, int v) {
        long long res = 0;
        while (head[u] != head[v]) {
            if (dep[head[u]] < dep[head[v]]) swap(u, v);</pre>
            res += tr.query(pos[head[u]], pos[u]);
            u = fa[head[u]];
        if (pos[u] > pos[v]) swap(u, v);
        res += tr.query(pos[u], pos[v]);
        return res;
    int lca(int u, int v) {
        while (head[u] != head[v]) {
            if (dep[head[u]] > dep[head[v]]) u = fa[head[u]];
            else v = fa[head[v]];
        return dep[u] > dep[v] ? v : u;
};
```

2.13 Hunarian

```
// credits: https://github.com/the-tourist/algo/blob/master/flows/
    hungarian.cpp
// hungarian algorithm for bipartite graph matching, matches every node on
    the
// left with a node on the right and the sum of the weights is minimal.
// a[i][j] is the cost for i in L to be matched with j in R. (0-indexed)
// pa[i] is the node in R matched with i
// pb[j] is the node in L matched with j
// Negate the cost for max cost.
// Time: O(n^2M)
template<typename T>
struct Hungarian {
    int n, m;
```

```
vector< vector<T> > a;
vector<T> u, v;
vector<int> pa, pb, way;
vector<T> minv;
vector<bool> used;
T inf:
Hungarian(int _n, int _m) : n(_n), m(_m), a(n, vector<T>(m)), u(n+1),
    v(m+1), pa(n+1, -1), pb(m+1, -1), way(m, -1), minv(m), used(m+1) {
    assert (n <= m);</pre>
    inf = numeric_limits<T>::max();
inline void add_row(int i) {
    fill(minv.begin(), minv.end(), inf);
    fill(used.begin(), used.end(), false);
    pb[m] = i;
    pa[i] = m;
    int j0 = m;
    do {
        used[j0] = true;
        int i0 = pb[j0];
        T delta = inf;
        int j1 = -1;
        for (int j = 0; j < m; j++) {
            if (!used[j]) {
                T cur = a[i0][j] - u[i0] - v[j];
                if (cur < minv[j]) {
                    minv[j] = cur;
                    way[j] = j0;
                if (minv[j] < delta) {</pre>
                    delta = minv[j];
                    j1 = j;
        for (int j = 0; j \le m; j++) {
            if (used[i]) {
                u[pb[j]] += delta;
                v[j] -= delta;
            } else {
                minv[j] -= delta;
        j0 = j1;
      while (pb[j0] != -1);
        int j1 = way[j0];
        pb[j0] = pb[j1];
        pa[pb[j0]] = j0;
        j0 = j1;
    } while (j0 != m);
inline T current_score() {
    return -v[m];
inline T solve() {
    for (int i = 0; i < n; i++) {
        add row(i);
    return current_score();
```

2.14 Tarjan's SCC

};

```
// Note that strictly speaking this is not the original tarjan's algorithm
// because we use a slightly different definition for lowlink. However
this
```

```
// algorithm is still correctly and easier to code.
// See: https://cs.stackexchange.com/questions/96635/tarjans-scc-example-
    showing-necessity-of-lowlink-definition-and-calculation-r?rq=1
struct SCC {
    int n, pos = 0;
    vector<vector<int>> q;
    vector<bool> on_stk;
    vector<int> low, ord, stk, color;
    vector<vector<int>> comp;
    SCC(int _n) : n(_n), g(n), on_stk(n), low(n), ord(n, -1), color(n) {}
    void add_edge(int u, int v) { g[u].push_back(v); }
    void dfs(int u) {
        low[u] = ord[u] = pos++;
        stk.push_back(u);
        on_stk[u] = true;
        for (auto v : g[u]) {
            if (ord[v] == -1) dfs(v);
            if (on_stk[v]) low[u] = min(low[u], low[v]);
        if (low[u] == ord[u]) {
            comp.emplace_back();
            while (true) {
                int v = stk.back();
                stk.pop_back();
                on_stk[v] = false;
                comp.back().push_back(v);
                if (u == v) break;
    void solve() {
        for (int i = 0; i < n; i++)
            if (ord[i] == -1) dfs(i);
        // reverse(comp.begin(), comp.end()); to sort components in
            topological
        // order
        for (int i = 0; i < (int)comp.size(); i++) {</pre>
            for (int x : comp[i])
                color[x] = i;
    }
};
```

2.15 Two-edge-connected components

```
struct TECC {
   int n, pos=0;
   vector<int> ord, low, color; // order, low link, belong to which
   vector<vector<int>>> g, comp; // graph, component
   TECC(int n): n(n), ord(n, -1), low(n), color(n, -1), g(n) {}
   void add_edge(int u, int v) {
       g[u].emplace_back(v);
       g[v].emplace_back(u);
   bool is_bridge(int u, int v) {
       if (ord[u] > ord[v]) swap(u, v);
       return ord[u] < low[v];</pre>
   void dfs(int u, int p) {
       ord[u] = low[u] = pos++;
       int cnt = 0;
       for (int v : g[u]) {
            // in case there're repeated edges, only skip the first one
            if (v == p && cnt == 0) {
                cnt++;
                continue;
```

```
if (ord[v] == -1) dfs(v, u);
            low[u] = min(low[u], low[v]);
    void fill component(int u) {
        comp.back().emplace_back(u);
        for (int v : q[u]) {
            if (color[v] != -1 || is_bridge(v, u)) continue;
            color[v] = color[u];
            fill_component(v);
    int build() {
        for (int i = 0; i < n; i++)</pre>
            if (ord[i] == -1) dfs(i, i);
        for (int i = 0; i < n; i++) {
            if (color[i] != -1) continue;
            color[i] = k++;
            comp.emplace_back();
            fill_component(i);
        return k;
int main() {
   int n, m;
    cin >> n >> m;
    TECC q(n);
    for (int i = 0; i < m; i++) {
        int a, b;
        cin >> a >> b:
        g.add edge(a, b);
    int k = g.build();
    cout << k << '\n';
    for (int i = 0; i < k; i++) {
        cout << g.comp[i].size() << ' ';</pre>
        for (int v : g.comp[i])
            cout << v << ' ';
    return 0;
```

3 Math

3.1 Baby Step Giant Step

```
// solve a^x=b(mod n), 0<= x <n
#define MOD 76543
int hs[MOD], head[MOD], next[MOD], id[MOD], top;
void insert(int x, int y) {
   int k = x % MOD;
   hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
}
int find(int x) {
   int k = x % MOD;
   for (int i = head[k]; i != -1; i = next[i])
        if (hs[i] == x) return id[i];
   return -1;
}
int BSGS(int a, int b, int n) {
   memset(head, -1, sizeof(head));
   top = 1;</pre>
```

```
if (b == 1) return 0;
int m = sqrt(n * 1.0), j;
long long x = 1, p = 1;
for (int i = 0; i < m; ++i, p = p * a % n)
    insert(p * b % n, i);
for (long long i = m;; i += m) {
    if ((j = find(x = x * p % n)) != -1) return i-j;
    if (i > n) break;
}
return -1;
}
```

3.2 Chinese remainder Theorem

```
// a x + b y = gcd(a, b)
ll extgcd(ll a, ll b, ll &x, ll &y) {
    11 q = a; x = 1; y = 0;
    if (b != 0) g = \text{extgcd}(b, a \% b, y, x), y -= (a / b) * x;
// Solve linear congruences equation:
// a[i] * x = b[i] MOD m[i] (mi don't need to be co-prime)
// M - lcm, x - smalleset integer solution
bool chinese(const vector<11> &a, const vector<11> &b, const vector<11> &m
    , 11 &x, 11 &M) {
    11 n = a.size();
    x = 0; M = 1;
    for (int i = 0; i < n; i++) {
        11 a_ = a[i] * M, b_ = b[i] - a[i] * x, m_ = m[i];
        11 y, t, q = extgcd(a_{, m_{, y}}, t);
        if (b_ % g) return false;
        b_ /= g; m_ /= g;
        x += M * (y * b_ % m_);
        M *= m_;
    x = (x + M) % M;
    return true;
```

3.3 Euler

```
#define NEGPOW(e) ((e) % 2 ? -1 : 1)
int jacobi(int a, int m) {
    if (a == 0) return m == 1 ? 1 : 0;
    if (a % 2) return NEGPOW((a-1)*(m-1)/4)*jacobi(m%a, a);
    else return NEGPOW((m*m-1)/8)*jacobi(a/2, m);
int invMod(int a, int m) {
    if (extgcd(a, m, x, y) == 1) return (x + m) % m;
    else return 0; // unsolvable
// No solution when: n(p-1)/2 = -1 \mod p
int sqrtMod(int n, int p) {
  int S, Q, W, i, m = invMod(n, p);
  for (Q = p - 1, S = 0; Q % 2 == 0; Q /= 2, ++S);
  do { W = rand() % p; } while (W == 0 \mid \mid jacobi(W, p) != -1);
  for (int R = powMod(n, (Q+1)/2, p), V = powMod(W, Q, p); ;) {
    int z = R * R * m % p;
    for (i = 0; i < S \&\& z % p != 1; z *= z, ++i);
    if (i == 0) return R;
    R = (R * powMod(V, 1 << (S-i-1), p)) % p;
```

```
bool eulercriterion(int n, int p) {
  if(powMod(n, (p-1)/2, p) == 1) return true;
  return false;
}
int powMod(int a, int b, int p) {
  int res=1;
  while(b) {
   if(b&1) res=int( res * 111 * a % p), --b;
   else a=int (a * 111 * a%p), b>>=1;
  }
  return res;
}
```

3.4 Extended Euclidean Algorithm

```
#include <bits/stdc++.h>
using ll=long long;
// {q, x, y}: ax+by=qcd(a,b)
tuple<11, 11, 11> exgcd(11 a, 11 b) {
    if (b==0) return {a, 1, 0};
    auto [g, x, y] = exgcd(b, a%b);
    return {g, y, x-a/b*y};
solve ax+by=c, equivalently ax=c (mod b)
all solutions: x=x0+b/q*t, y=y0-a/q*t
smallest positive x=(x0\%t+t)\%t, where t=b/q
bool liEu(ll a, ll b, ll c, ll& x, ll& y) {
    11 g;
    tie(g, x, y)=exgcd(a, b);
    if (c % q != 0) return false;
    11 k = c / q;
    x *= k;
    y *= k;
    // smallest positive x:
    // b/=a;
    // x = (x \%b + b) \%b;
    return true;
```

3.5 Factorial

```
namespace Factorial {
    vector<mint> fac, invfac;
    void init(int n) {
        fac.resize(n+1);
        invfac.resize(n+1);
        fac[0]=1;
        for (int i=1; i<=n; i++) fac[i]=fac[i-1]*i;
        invfac[n]=fac[n].inv();
        for (int i=n-1; i>=0; i--) invfac[i]=invfac[i+1]*(i+1);
    }
    mint C(int n, int m) { // n choose m
        return fac[n]*invfac[n-m]*invfac[m];
    }
    mint P(int n, int m) { // n choose m with permutation
        return fac[n]*invfac[n-m];
    }
}
using namespace Factorial;
```

3.6 Factorization

```
#include<bits/stdc++.h>
// factor using naive or Rho algorithm, also see Sieve.cpp for faster
    factorization for small numbers
namespace Fractorization {
    using u64 = uint64 t;
    using u128 = __uint128_t;
    using 11 = long long;
    u64 binPow(u64 a, u64 b, u64 mod) {
        if(b == 0) return 1;
        if (b&1) return (u128)a * binPow(a, b^1, mod) % mod;
        return binPow((u128)a * a % mod, b>>1, mod);
    bool checkComp(u64 n, u64 a, u64 d, int s) {
        u64 x = binPow(a, d, n);
        if(x == 1 \mid \mid x == n-1) return false;
        for (int r=1; r<s; r++) {</pre>
            x = (u128) x * x % n;
            if(x == n-1) return false;
        return true;
    bool RabinMiller (u64 n) {
        if(n < 2) return false;</pre>
        int r = 0;
        u64 d = n-1;
        while(!(d & 1))
            d >>= 1, r++;
        for(int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
            if(n == a) return true;
            if(checkComp(n, a, d, r)) return false;
        return true;
    11 mult(11 a, 11 b, 11 mod) {
        return (__int128)a * b % mod;
    11 f(ll x, ll c, ll mod) {
        return (mult(x, x, mod) + c) % mod;
    11 rho(11 n) { // Works in O(n^(1/4) * log(n))
        11 x = 2, y = 2, g = 1;
        11 c = rand() % n + 1;
        while (q == 1) {
            x = f(x, c, n);
            y = f(y, c, n);
            y = f(y, c, n);
            g = gcd(abs(x - y), n);
        return g==n ? rho(n) : g;
    vector<pair<ll, int>> factorRho(ll n) {
        map <11, int> fact;
        function < void (11) > factRho=[&](11 n) {
            if(n == 1) return;
            if(RabinMiller(n)){
                 fact[n]++;
                 return;
            11 factor = rho(n);
            factRho(factor);
            factRho(n/factor);
        vector<pair<ll. int>> facts;
        for (auto& p : fact) facts.push_back(p);
        return facts;
    vector<pair<int, int>> factor(int n) {
        vector<pair<int, int>> facts;
        for (int f=2; f*f<=n; f++) {</pre>
```

```
if (n%f==0) {
                     int c=0;
                     while (n\%f==0) {
                        n/=f:
                        C++;
                     facts.emplace_back(f, c);
            return facts;
   using namespace Fractorization;
3.7 FFT
    // for polynomial multiplication, tested with https://open.kattis.com/
        problems/polymul2
    typedef double T;
    typedef complex<T> C;
   void fft(vector <C> &a, bool invert) {
      int n = sz(a);
      for(int i=0, j=0; i<n; ++i) {</pre>
       if(i>j) swap(a[i],a[j]);
       for (int k=n>>1; (j^=k) <k; k>>=1);
      for (int len=2;len<=n;len<<=1) {</pre>
        double ang = 2*M_PI/len*(invert?-1:1);
        C wlen(cos(ang), sin(ang));
        for (int i=0;i<n;i+=len) {</pre>
         C w(1);
          for (int j=0; j<len/2; j++) {</pre>
            // if((j \& 511) == 511)w = C(cos(ang * j), sin(ang * j));
            C u = a[i+j], v = a[i+j+len/2]*w;
            a[i+j] = u+v;
            a[i+j+len/2] = u-v;
            w \star= wlen;
      if (invert) {
        for (int i=0;i<n;i++) a[i] /= n;</pre>
   void conv(const vector<ll> &a,const vector<ll> &b,vector<ll> &res) {
     vector <C> fa(all(a)), fb(all(b));
      int n = 1;
      while (n < max(sz(a), sz(b))) n <<= 1; n <<= 1;
      fa.resize(n); fb.resize(n);
      fft(fa,false); fft(fb,false);
      for (int i=0;i<n;i++) fa[i] *= fb[i];</pre>
      fft(fa,true);
      res.resize(n);
      for (int i=0;i<n;i++) res[i] = ((ll)(fa[i].real()+(fa[i].real()</pre>
          >0?0.5:-0.5)));
      Gaussian elimination
    const double EPS = 1e-9;
    const int INF = 2;
```

3.8

```
int gauss (vector < vector<double> > a, vector<double> & ans) {
 int n = (int) a.size();
 int m = (int) a[0].size() - 1;
```

```
vector<int> where (m, -1);
for (int col=0, row=0; col<m && row<n; ++col) {</pre>
  int sel = row;
  for (int i=row; i<n; ++i)</pre>
   if (abs (a[i][col]) > abs (a[sel][col]))
      sel = i;
  if (abs (a[sel][col]) < EPS)</pre>
    continue;
  for (int i=col; i<=m; ++i)</pre>
    swap (a[sel][i], a[row][i]);
  where[col] = row;
  for (int i=0; i<n; ++i)</pre>
    if (i != row) {
      double c = a[i][col] / a[row][col];
      for (int j=col; j<=m; ++j)</pre>
        a[i][j] -= a[row][j] * c;
  ++row;
ans.assign (m, 0);
for (int i=0; i<m; ++i)</pre>
  if (where[i] != -1)
    ans[i] = a[where[i]][m] / a[where[i]][i];
for (int i=0; i<n; ++i) {</pre>
  double sum = 0;
  for (int j=0; j<m; ++j)</pre>
    sum += ans[j] * a[i][j];
  if (abs (sum - a[i][m]) > EPS)
    return 0;
for (int i=0; i<m; ++i)</pre>
  if (where[i] == -1)
    return INF;
return 1;
```

3.9 Lucas Theorem

```
// when n and m are big but p is small
11 Lucas(11 n, 11 m, 11 p) {
  if (m == 0) return 1;
  return (C(n % p, m % p, p) * Lucas(n / p, m / p, p)) % p;
```

3.10 NFFT

```
using i64 = long long;
using u64 = unsigned long long;
using u32 = unsigned;
constexpr int P = 998244353;
std::vector<int> rev, roots{0, 1};
int power(int a, int b) {
    int res = 1;
    for (; b; b >>= 1, a = 111 * a * a % P)
        if (b & 1)
            res = 111 * res * a % P;
    return res;
void dft(std::vector<int> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
```

```
for (int i = 0; i < n; ++i)
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
    for (int i = 0; i < n; ++i)
        if (rev[i] < i)
            std::swap(a[i], a[rev[i]]);
    if (int(roots.size()) < n) {</pre>
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            int e = power(3, (P - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); ++i) {
                roots[2 * i] = roots[i];
                roots[2 * i + 1] = 111 * roots[i] * e % P;
            ++k;
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; ++j) {
                int u = a[i + j];
                int v = 111 * a[i + j + k] * roots[k + j] % P;
                int x = u + v:
                if (x >= P)
                   x -= P;
                a[i + j] = x;
                x = u - v;
                if (x < 0)
                   x += P;
                a[i + j + k] = x;
void idft(std::vector<int> &a) {
   int n = a.size();
    std::reverse(a.begin() + 1, a.end());
    dft(a);
    int inv = power(n, P - 2);
    for (int i = 0; i < n; ++i)
        a[i] = 111 * a[i] * inv % P;
struct Poly {
    std::vector<int> a;
    Poly() {}
    Poly(int a0) {
        if (a0)
            a = \{a0\};
    Poly(const std::vector<int> &a1) : a(a1) {
        while (!a.empty() && !a.back())
            a.pop_back();
    int size() const {
        return a.size();
    int operator[](int idx) const {
        if (idx < 0 || idx >= size())
            return 0;
        return a[idx];
   Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    Poly modxk(int k) const {
```

```
k = std::min(k, size());
    return Poly(std::vector<int>(a.begin(), a.begin() + k));
Polv divxk(int k) const {
    if (size() <= k)
        return Poly();
    return Poly(std::vector<int>(a.begin() + k, a.end()));
friend Poly operator+(const Poly a, const Poly &b) {
    std::vector<int> res(std::max(a.size(), b.size()));
    for (int i = 0; i < int(res.size()); ++i) {</pre>
        res[i] = a[i] + b[i];
        if (res[i] >= P)
            res[i] -= P:
    return Poly(res);
friend Poly operator-(const Poly a, const Poly &b) {
    std::vector<int> res(std::max(a.size(), b.size()));
    for (int i = 0; i < int(res.size()); ++i) {</pre>
        res[i] = a[i] - b[i];
        if (res[i] < 0)
            res[i] += P;
    return Poly(res);
friend Poly operator*(Poly a, Poly b) {
    int sz = 1, tot = a.size() + b.size() - 1;
    while (sz < tot)</pre>
        sz *= 2;
    a.a.resize(sz);
    b.a.resize(sz);
    dft(a.a);
    dft(b.a);
    for (int i = 0; i < sz; ++i)
       a.a[i] = 111 * a[i] * b[i] % P;
    idft(a.a);
    return Poly(a.a);
Poly & operator += (Poly b) {
    return (*this) = (*this) + b;
Poly & operator -= (Poly b) {
    return (*this) = (*this) - b;
Poly & operator *= (Poly b) {
    return (*this) = (*this) * b;
Poly deriv() const {
    if (a.emptv())
        return Poly();
    std::vector<int> res(size() - 1);
    for (int i = 0; i < size() - 1; ++i)
        res[i] = 111 * (i + 1) * a[i + 1] % P;
    return Poly(res);
Poly integr() const {
    if (a.emptv())
        return Polv();
    std::vector<int> res(size() + 1);
    for (int i = 0; i < size(); ++i)</pre>
        res[i + 1] = 111 * a[i] * power(i + 1, P - 2) % P;
    return Poly(res);
Poly inv(int m) const {
    Poly x(power(a[0], P - 2));
    int k = 1;
    while (k < m) {
        k \star = 2;
```

```
x = (x * (2 - modxk(k) * x)).modxk(k);
    return x.modxk(m);
Poly log(int m) const {
    return (deriv() * inv(m)).integr().modxk(m);
Poly exp(int m) const {
   Poly x(1);
    int^{-}k = 1;
    while (k < m) {
       k *= 2;
        x = (x * (1 - x.log(k) + modxk(k))).modxk(k);
    return x.modxk(m);
Poly sgrt(int m) const {
   Poly x(1);
    int k = 1;
    while (k < m) {
       k *= 2;
        x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2);
    return x.modxk(m);
Poly mulT(Poly b) const {
   if (b.size() == 0)
       return Poly();
    int n = b.size();
    std::reverse(b.a.begin(), b.a.end());
    return ((*this) * b).divxk(n - 1);
std::vector<int> eval(std::vector<int> x) const {
   if (size() == 0)
       return std::vector<int>(x.size(), 0);
    const int n = std::max(int(x.size()), size());
    std::vector<Poly> q(4 * n);
    std::vector<int> ans(x.size());
    std::function<void(int, int, int)> build = [&](int p, int l, int r
        if (r - 1 == 1) {
            q[p] = std::vector < int > \{1, (P - x[1]) % P\};
        } else {
            int m = (1 + r) / 2;
            build(2 * p, 1, m);
            build(2 * p + 1, m, r);
            q[p] = q[2 * p] * q[2 * p + 1];
    };
    build(1, 0, n);
    std::function<void(int, int, int, const Poly &)> work = [&](int p,
         int 1, int r, const Poly &num) {
        if (r - 1 == 1) {
            if (1 < int(ans.size()))</pre>
                ans[1] = num[0];
            int m = (1 + r) / 2;
            work(2 * p, 1, m, num.mulT(q[2 * p + 1]).modxk(m - 1));
            work (2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m));
    work(1, 0, n, mulT(q[1].inv(n)));
    return ans;
```

```
#include <vector>
namespace Sieve {
    vector<int> primes;
    vector<int> mn factor:
    void get primes(int N) {
        mn_factor.resize(N+1);
        for (int i = 2; i \le N; ++i) {
            if (mn_factor[i] == 0) {
                primes.push_back(i);
                mn_factor[i]=i;
            for (auto p : primes) {
                if ((long long) i * p > N) break;
                mn_factor[i * p] = p;
                if (i % p == 0) break;
    bool is_prime(int n) {
        return mn_factor[n] == 0;
    vector<pair<int, int>> factor(int n) {
        vector<pair<int, int>> factors;
        while (n > 1) {
            int fac=mn_factor[n], cnt=0;
            while (n%fac==0) {
                cnt++;
                n/=fac;
            factors.emplace_back(fac, cnt);
        return factors;
    };
    vector<int> phi;
    void get_euler(int n) {
        phi.resize(n+1);
        phi[1] = 1;
        for (int i = 2; i \le n; i++) {
            if (phi[i]) continue;
            for (int j = i; j \le n; j += i) {
                if (!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
using namespace Sieve;
```

3.12 Simplex

```
* Author: Stanford
* Source: Stanford Notebook
* License: MIT
* Description: Solves a general linear maximization problem: maximize $c^
    T x$ subject to $Ax \le b$, $x \qe 0$.
* Returns -inf if there is no solution, inf if there are arbitrarily good
     solutions, or the maximum value of c^T x otherwise.
* The input vector is set to an optimal xx (or in the unbounded case, an
     arbitrary solution fulfilling the constraints).
* Numerical stability is not guaranteed. For better performance, define
    variables such that $x = 0$$ is viable.
* Usage:
* vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
* vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
* T val = LPSolver(A, b, c).solve(x);
* Time: O(NM * \#pivots), where a pivot may be e.g. an edge relaxation. O
    (2^n) in the general case.
```

};

```
* Status: seems to work?
 */
#pragma once
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 \mid \mid MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
        int m, n;
        vi N, B;
        vvd D;
        LPSolver(const vvd& A, const vd& b, const vd& c) :
                m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
                         FOR(i, 0, m) FOR(j, 0, n) D[i][j] = A[i][j];
                         FOR(i, 0, m)  { B[i] = n+i; D[i][n] = -1; D[i][n+1] =
                              b[i];}
                         FOR(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
                         N[n] = -1; D[m+1][n] = 1;
        void pivot(int r, int s) {
                T *a = D[r].data(), inv = 1 / a[s];
                FOR(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
                        T *b = D[i].data(), inv2 = b[s] * inv;
                         FOR(j,0,n+2) b[j] -= a[j] * inv2;
                        b[s] = a[s] * inv2;
                FOR (j, 0, n+2) if (j != s) D[r][j] \star = inv;
                FOR(i, 0, m+2) if (i != r) D[i][s] *= -inv;
                D[r][s] = inv;
                swap(B[r], N[s]);
        bool simplex(int phase) {
                int x = m + phase - 1;
                for (;;) {
                         FOR(j,0,n+1) if (N[j]!= -phase) ltj(D[x]);
                         if (D[x][s] >= -eps) return true;
                         int r = -1;
                         FOR(i,0,m) {
                                 if (D[i][s] <= eps) continue;</pre>
                                 if (r == -1 || MP(D[i][n+1] / D[i][s], B[i]
                                      ])
                                               < MP(D[r][n+1] / D[r][s], B[r]
                                                   ])) r = i;
                         if (r == -1) return false;
                         pivot(r, s);
        T solve(vd &x) {
                int r = 0;
                FOR (i, 1, m) if (D[i][n+1] < D[r][n+1]) r = i;
                if (D[r][n+1] < -eps) {
                         if (!simplex(2) || D[m+1][n+1] < -eps) return -inf</pre>
                         FOR(i, 0, m) if (B[i] == -1) {
                                 FOR(j,1,n+1) ltj(D[i]);
```

```
pivot(i, s);
}
bool ok = simplex(1); x = vd(n);
FOR(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;
}
};</pre>
```

4 String

4.1 Aho-Corasick Automaton

```
/** Modified from:
 * https://github.com/kth-competitive-programming/kactl/blob/master/
     content/strings/AhoCorasick.h
 * Try to handdle duplicated patterns beforehand, otherwise change 'end'
 * vector; empty patterns are not allowed. Time: construction takes $0(26N
     15.
 * where \$N = \$ sum of length of patterns. find(x) is \$O(N)\$, where N =
 * x. findAll is 0(N+M) where M is number of occurrence of all pattern (
     up to N*sqrt(N)) */
struct AhoCorasick {
   enum { alpha = 26, first = 'a' }; // change this!
    struct Node {
        // back: failure link, points to longest suffix that is in the
            trie.
        // end: longest pattern that ends here, is -1 if no patten ends
            here.
        // nmatches: number of (patterns that is a suffix of current
        // node)/(duplicated patterns), depends on needs.
        // output: output link, points to the longest pattern that is a
            suffix
        // of current node
        int back, end = -1, nmatches = 0, output = -1;
        array<int, alpha> next;
        Node(int v = -1) { fill(next.begin(), next.end(), v); }
    };
    vector<Node> N;
    AhoCorasick(): N(1) {}
    void insert(string &s, int j) { // j: id of string s
        assert(!s.empty());
        int n = 0;
        for (char c : s) {
            int &m = N[n].next[c - first];
            if (m == -1) {
                m = (int) N.size();
                N.emplace_back();
           n = m;
        N[n].end = j;
        N[n].nmatches++;
    void build() {
        N[0].back = (int)N.size();
        N.emplace_back(0);
        queue<int> q;
        q.push(0);
        while (!q.empty()) {
            int n = q.front();
            q.pop();
            for (int i = 0; i < alpha; i++) {</pre>
```

```
int pnx = N[N[n].back].next[i];
             auto &nxt = N[N[n].next[i]];
             if (N[n].next[i] == -1) N[n].next[i] = pnx;
                 nxt.back = pnx;
                 // if prev is an end node, then set output to prev
                 // otherwise set to output link of prev node
                 nxt.output = N[pnx].end == -1 ? N[pnx].output : pnx;
                 // if we don't want to distinguish info of patterns
                 // a suffix of current node, we can add info to the
                 // node like this: nxt.nmatches+=N[pnx].nmatches;
                 g.push(N[n].next[i]);
         }
     }
 // for each position, finds the longest pattern that ends here
 vector<int> find(const string &text) {
     int len = (int)text.size();
     vector<int> res(len);
     int n = 0;
     for (int i = 0; i < len; i++) {</pre>
         n = N[n].next[text[i] - first];
         res[i] = N[n].end;
     return res;
 // for each position, finds the all that ends here
 vector<vector<int>> find_all(const string &text) {
     int len = (int)text.size();
     vector<vector<int>> res(len);
     int n = 0;
     for (int i = 0; i < len; i++) {
         n = N[n].next[text[i] - first];
         res[i].push_back(N[n].end);
         for (int ind = N[n].output; ind != -1; ind = N[ind].output) {
             assert (N[ind].end != -1);
              res[i].push_back(N[ind].end);
     return res;
_{\mathrm{KMP}}
 int n = (int)s.length();
 vector<int> pi(n);
 for (int i = 1; i < n; i++) {
     int j = pi[i - 1];
     while (j > 0 \&\& s[i] != s[j]) j = pi[j - 1];
```

4.2

};

```
vector<int> prefix_function(const string& s) {
       if (s[i] == s[j]) j++;
       pi[i] = j;
   return pi;
```

Manacher

```
vector<int> manacher(const string& ss) {
    string s:
    for (auto ch:ss) s+="#", s+=ch;
    s+="#";
```

```
int n=(int)s.size();
vector<int> d1(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {
    int k = (i > r) ? 1 : min(d1[1 + r - i], r - i);
    while (0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) k++;
    d1[i] = k--;
    if (i + k > r) l = i - k, r = i + k;
return d1;
```

4.4 Polynomial Hashing

```
#include<bits/stdc++.h>
using 11 = long long;
struct PolyHash {
    static constexpr int mod = (int)1e9 + 123;
    static vector<int> pow;
    static constexpr int base = 233;
    vector<int> pref;
    PolyHash(const string &s) : pref(s.size() + 1) {
        assert (base < mod);</pre>
        int n = (int)s.size();
        while ((int)pow.size() <= n) {</pre>
            pow.push_back((ll)pow.back() * base % mod);
        for (int i = 0; i < n; i++) {
            pref[i + 1] = ((ll)pref[i] * base + s[i]) % mod;
    int get hash() {
        return pref.back();
    int substr(int pos, int len) {
        return (pref[pos + len] - (ll)pref[pos] * pow[len] % mod + mod) %
            mod:
};
vector<int> PolyHash::pow{1};
```

4.5 Suffix Array

```
#include<bits/stdc++.h>
//O(n log(n)), actually calculates cyclic shifts
vector<int> suffix_array(string s) {
    s+="#";
    int n = (int)s.size(), N = n + 256;
    vector<int> sa(n), ra(n);
    for (int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];
    for (int k = 0; k < n; k ? k *= 2 : k++) {
        vector<int> nsa(sa), nra(n), cnt(N);
        for (int i = 0; i < n; i++) nsa[i] = (nsa[i] - k + n) % n;
        for(int i = 0; i < n; i++) cnt[ra[i]]++;</pre>
        for(int i = 1; i < N; i++) cnt[i] += cnt[i - 1];</pre>
        for(int i = n - 1; i >= 0; i--) sa[--cnt[ra[nsa[i]]]] = nsa[i];
        int r = 0;
        for (int i = 1; i < n; i++) {
            if(ra[sa[i]] != ra[sa[i - 1]]) r++;
            else if(ra[(sa[i] + k) % n] != ra[(sa[i - 1] + k) % n]) r++;
            nra[sa[i]] = r;
        ra = nra;
    sa.erase(sa.begin());
    return sa;
```

```
vector<int> build_lcp(const string& s, const vector<int>& sa) { // lcp of
    suffix[i] ans suffix[i-1]
    int n=s.size();
    vector<int> pos(n);
    for (int i = 0; i < n; i++) pos[sa[i]] = i;
    vector<int> lcp(n);
    for (int i = 0, k = 0; i < n; i++) {
        if (pos[i] == 0) continue;
        if (k) k--;
        while (s[i+k] == s[sa[pos[i]-1]+k]) k++;
        lcp[pos[i]] = k;
    }
    return lcp;</pre>
```

4.6 Suffix Automaton

```
// source: https://cp-algorithms.com/string/suffix-automaton.html
   struct state {
       int len = 0, link = -1;
       unordered_map<char, int> next;
   int last = 0; // the index of the equivalence class of the whole
   vector<state> st;
   void extend(char c) {
       int cur = (int)st.size();
       st.emplace_back();
       st[cur].len = st[last].len + 1;
       int p = last;
       while (p != -1 && !st[p].next.count(c)) {
            st[p].next[c] = cur;
            p = st[p].link;
       if (p == -1) st[cur].link = 0;
       else {
            int q = st[p].next[c];
            if (st[p].len + 1 == st[q].len) {
               st[cur].link = q;
            } else {
                int clone = (int)st.size();
                st.push_back(st[q]);
                st[clone].len = st[p].len + 1;
                while (p != -1 \&\& st[p].next[c] == q) {
                    st[p].next[c] = clone;
                    p = st[p].link;
               st[q].link = st[cur].link = clone;
       last = cur;
   SAM() { st.emplace_back(); }
   SAM(const string &s) : SAM() {
       for (auto c : s)
            extend(c);
};
```

4.7 Trie

```
template<typename T>
struct Trie {
   vector<map<T, int>> child;
   vector<bool> is_leaf;
   Trie() { new_node(); }
```

```
int new_node() {
        child.emplace_back();
        is_leaf.emplace_back();
        return child.size()-1;
    template<typename S> void insert(const S& s) {
        int p=0;
        for (auto ch : s) {
            if (!child[p].count(ch)) {
                child[p][ch]=new_node();
           p=child[p][ch];
        is_leaf[p]=true;
    template<typename S> bool find(const S& s) {
        for (auto ch : s) {
            if (!child[p].count(ch)) return false;
            p=child[p][ch];
        return is_leaf[p];
};
```

4.8 Z-function

5 Geometry

5.1 Angle

```
double DEG_to_RAD(double d) { return d*M_PI/180.0; }
double RAD_to_DEG(double r) { return r*180.0/M_PI; }
double rad(P p1,P p2) {
        return atan21(p1.det(p2),p1.dot(p2));
}
bool inAngle(P a, P b, P c, P p) {
        assert(crossOp(a,b,c) != 0);
        if (crossOp(a,b,c) < 0) swap(b,c);
        return crossOp(a,b,p) >= 0 && crossOp(a,c,p) <= 0;
}
double angle(P v, P w) {
    return acos(clamp(v.dot(w) / v.abs() / w.abs(), -1.0, 1.0));
}
double orientedAngle(P a, P b, P c) { // BAC
    if (crossOp(a,b,c) >= 0) return angle(b-a, c-a);
    else return 2*M_PI - angle(b-a, c-a);
}
```

5.2 Circle

```
// double chord(double r, double ang) return sgrt(2*r*r*(1-cos(ang))); //
    or 2*r*sin(ang/2)
// double secarea(double r, double ang) {return (ang/2)*(r*r);} // rad
// double segarea(double r, double ang) {return secarea(r, ang) - r*r*sin(
    ang) /2; }
int type(P o1, double r1, P o2, double r2){
        double d = o1.distTo(o2);
        if (cmp(d,r1+r2) == 1) return 4; // outside each other
        if(cmp(d,r1+r2) == 0) return 3; // touch outside
        if(cmp(d,abs(r1-r2)) == 1) return 2; // one inside another
        if (cmp(d, abs(r1-r2)) == 0) return 1; // touch inside
        return 0;
vector<P> isCL(P o, double r, P p1, P p2) {
        if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {};
        double x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y *
             ((p1-o).abs2() - r*r);
        d = max(d, 0.0); P = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y)
        return {m-dr,m+dr}; //along dir: p1->p2
vector<P> isCC(P o1, double r1, P o2, double r2) { //need to check whether
     two circles are the same
        double d = o1.distTo(o2);
        if (cmp(d, r1 + r2) == 1) return {};
        if (cmp(d, abs(r1-r2)) ==-1) return {};
        d = min(d, r1 + r2);
        double y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1)
             -y * y);
        P dr = (o2 - o1).unit();
        P q1 = o1 + dr * y, q2 = dr.rot90() * x;
        return {q1-q2,q1+q2};//along circle 1
vector<P> tanCP(P o, double r, P p) {
        double x = (p - o) .abs2(), d = x - r * r;
        if (sign(d) <= 0) return {}; // on circle => no tangent
        P q1 = o + (p - o) * (r * r / x);
        P = q2 = (p - o) \cdot rot 90() * (r * sqrt(d) / x);
        return {q1-q2,q1+q2}; //counter clock-wise
vector<L> extanCC(P o1, double r1, P o2, double r2) {
        vector<L> ret;
        if (cmp(r1, r2) == 0) {
                P dr = (o2 - o1).unit().rot90() * r1;
                ret.push_back(L(o1 + dr, o2 + dr)), ret.push_back(L(o1 -
                     dr, o2 - dr));
        } else {
                P p = (o2 * r1 - o1 * r2) / (r1 - r2);
                vector < P > ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
                for (int i = 0; i < min(ps.size(), qs.size()); i++) ret.
                     push_back(L(ps[i], qs[i])); //c1 counter-clock wise
        return ret;
vector<L> intanCC(P o1, double r1, P o2, double r2) {
        vector<L> ret;
        P p = (o1 * r2 + o2 * r1) / (r1 + r2);
        vector\langle P \rangle ps = tanCP(o1,r1,p), qs = tanCP(o2,r2,p);
        for(int i = 0; i < min(ps.size(),qs.size()); i++) ret.push_back(L(</pre>
            ps[i], qs[i])); //cl counter-clock wise
        return ret;
double areaCT(double r, P p1, P p2) {
        vector\langle P \rangle is = isCL(P(0,0),r,p1,p2);
        if(is.empty()) return r*r*rad(p1,p2)/2;
        bool b1 = cmp(p1.abs2(), r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1;
        if(b1 && b2){
                if(sign((p1-is[0]).dot(p2-is[0])) \le 0 \&\&
                        sign((p1-is[0]).dot(p2-is[0])) \le 0)
```

```
return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(
                    is[1])/2;
                else return r*r*rad(p1,p2)/2;
        if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2;
        if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2;
        return p1.det(p2)/2;
P inCenter(P A, P B, P C) {
        double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
        return (A * a + B * b + C * c) / (a + b + c);
P circumCenter(P a, P b, P c) {
        P bb = b - a, cc = c - a;
        double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
        return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
P othroCenter(P a, P b, P c) {
        P ba = b - a, ca = c - a, bc = b - c;
        double Y = ba.y * ca.y * bc.y,
        A = ca.x * ba.y - ba.x * ca.y,
        x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
        y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
        return {x0, y0};
```

5.3 Geometry

```
typedef double T;
const double EPS = 1e-9;
inline int sign(double a) { return a < -EPS ? -1 : a > EPS; }
inline int cmp(double a, double b) { return sign(a-b); }
struct P {
 T x, y;
 P() {}
        P(T _x, T_y) : x(_x), y(_y) \{ \}
 P operator+(P p) {return {x+p.x, y+p.y};}
 P operator-(P p) {return {x-p.x, y-p.y};}
  P operator*(T d) {return {x*d, y*d};}
  P operator/(T d) {return {x/d, y/d};} // only for floatingpoint
  bool operator<(P p) const {</pre>
    int c = cmp(x, p.x);
    if (c) return c == -1;
    return cmp (y, p.y) == -1;
  bool operator==(P o) const{
                return cmp (x, o.x) == 0 && cmp (y, o.y) == 0;
  double dot(P p) { return x * p.x + y * p.y; }
  double det(P p) { return x * p.y - y * p.x; }
        double distTo(P p) { return (*this-p).abs(); }
        double alpha() { return atan2(y, x); }
  void read() { cin>>x>>y; }
  void write() {cout<<"("<<x<<","<<y<")"<<endl;}</pre>
  double abs() { return sqrt(abs2());}
        double abs2() { return x * x + y * y; }
        P rot90() { return P(-y,x);}
        P unit() { return *this/abs(); }
  int quad() const { return sign(y) == 1 \mid | (sign(y) == 0 \&\& sign(x) >= 0)
        P rot(double an) { return \{x*\cos(an)-y*\sin(an),x*\sin(an)+y*\cos(an)\}
#define cross(p1,p2,p3) ((p2.x-p1.x) * (p3.y-p1.y) - (p3.x-p1.x) * (p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool isConvex(vector<P> p) {
 bool hasPos=false, hasNeg=false;
  for (int i=0, n=p.size(); i<n; i++) {</pre>
```

```
int o = cross(p[i], p[(i+1)%n], p[(i+2)%n]);
    if (o > 0) hasPos = true;
    if (o < 0) hasNeg = true;</pre>
  return ! (hasPos && hasNeg);
bool half(P p) {
  assert(p.x != 0 || p.y != 0); // (0, 0) is not covered
  return p.y > 0 || (p.y == 0 && p.x < 0);
void polarSortAround(P o, vector<P> &v) {
  sort(v.begin(), v.end(), [&o](P v, P w) {
      return make tuple(half(v-o), 0) <</pre>
        make_tuple(half(w-o), cross(o, v, w));
 });
P proj(P p1, P p2, P q) {
        P dir = p2 - p1;
        return p1 + dir * (dir.dot(q - p1) / dir.abs2());
P reflect (P p1, P p2, P q) {
        return proj(p1,p2,q) * 2 - q;
// tested with https://open.kattis.com/problems/closestpair2
pair<P, P> closest(vector<P> v) {
  assert (sz(v) > 1);
  set <P> S:
  sort(v.begin(), v.end(), [](P a, P b) { return a.y < b.y; });</pre>
  pair<T, pair<P, P>> ret{(T)1e18, {P(), P()}};
  int j = 0;
  for (P p : v) {
    P d { 1 + (T) sqrt(ret.first), 0 };
    while (p.y - v[j].y >= d.x) S.erase (v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for(; lo != hi; ++lo) {
      ret = min(ret, \{(p - (*lo)).abs2(), \{*lo, p\}\});
    S.insert(p);
  return ret.second;
struct L {
 P ps[2]; P v; T c;
 L() {}
 P& operator[](int i) { return ps[i]; }
  // From direction vector v and offset c
 L(P \ v, \ T \ c) : v(v), c(c) \{\}
  // From equation ax+by=c
  L(T a, T b, T c) : v(\{b, -a\}), c(c) \{\}
  // From points P and Q
  L(P p, P q) : v(q-p), c(cross(P(0, 0), v,p))  {
    ps[0] = p;
    ps[1] = q;
  P dir() { return ps[1] - ps[0]; }
 bool include (P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; }
  T side(P p) {return cross(P(0, 0), v,p)-c;}
  T dist(P p) {return abs(side(p)) / v.abs();}
  T sqDist(P p) {return side(p) *side(p) / (double) v.abs();}
  L perpThrough(P p) {return L(p, p + v.rot90());}
  bool cmpProj(P p, P q) {
    return v.dot(p) < v.dot(q);</pre>
  L translate (P t) {return L(v, c + cross(P(0,0), v,t));}
 L shiftLeft(double dist) {return L(v, c + dist*v.abs());}
 L shiftRight (double dist) {return L(v, c - dist*v.abs());}
bool chkLL(P p1, P p2, P q1, P q2) {
```

```
double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
        return sign(a1+a2) != 0;
P isLL(P p1, P p2, P q1, P q2) {
        double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
        return (p1 * a2 + p2 * a1) / (a1 + a2);
P isLL(L 11,L 12) { return isLL(11[0],11[1],12[0],12[1]); }
bool parallel(L 10, L 11) { return sign( 10.dir().det( 11.dir() ) ) == 0;
bool sameDir(L 10, L 11) { return parallel(10, 11) && sign(10.dir().dot(11
    .dir())) == 1; }
bool cmp (P a, P b) {
        if (a.quad() != b.quad()) {
                return a.quad() < b.quad();</pre>
                return sign( a.det(b) ) > 0;
bool operator < (L 10, L 11) {
        if (sameDir(10, 11)) {
                return 11.include(10[0]);
        } else {
                return cmp( 10.dir(), 11.dir() );
bool check (L u, L v, L w) {
        return w.include(isLL(u,v));
vector<P> halfPlaneIS(vector<L> &1) {
        sort(l.begin(), l.end());
        deque<L> q;
        for (int i = 0; i < (int)1.size(); ++i) {</pre>
                if (i && sameDir(l[i], l[i - 1])) continue;
                while (q.size() > 1 \&\& !check(q[q.size() - 2], q[q.size()
                     - 1], l[i])) q.pop_back();
                 while (q.size() > 1 \&\& !check(q[1], q[0], 1[i])) q.
                     pop_front();
                q.push_back(l[i]);
        while (q.size() > 2 \&\& !check(q[q.size() - 2], q[q.size() - 1], q
             [0])) q.pop_back();
        while (q.size() > 2 \&\& !check(q[1], q[0], q[q.size() - 1])) q.
            pop_front();
        vector<P> ret;
        for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q</pre>
             [(i + 1) % q.size()]));
        return ret;
struct cmpX {
  bool operator()(P a, P b) const {
    return make_pair(a.x, a.y) < make_pair(b.x, b.y);</pre>
};
bool intersect(double 11, double r1, double 12, double r2) {
        if(11>r1) swap(11,r1); if(12>r2) swap(12,r2);
        return ! (cmp(r1,12) == -1 | cmp(r2,11) == -1);
bool isSS(P p1, P p2, P q1, P q2){
        return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,
             q2.y) &&
        crossOp(p1, p2, q1) * crossOp(p1, p2, q2) \le 0 && crossOp(q1, q2, p1)
                         * crossOp(q1,q2,p2) <= 0;
bool isSS strict(P pl, P p2, P q1, P q2) {
        return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,q2)
            p1)
                         * crossOp(q1,q2,p2) < 0;
```

```
bool isMiddle(double a, double m, double b) {
        return sign(a - m) == 0 \mid | sign(b - m) == 0 \mid | (a < m != b < m);
bool isMiddle(P a, P m, P b) {
        return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
bool onSeg(P p1, P p2, P q) {
        return crossOp(p1,p2,q) == 0 \&\& isMiddle(p1, q, p2);
bool onSeg_strict(P p1, P p2, P q) {
        return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-
            p2).dot(p1-p2)) < 0;
double nearest(P p1,P p2,P q){
       P h = proj(p1, p2, q);
        if(isMiddle(p1,h,p2))
                return q.distTo(h);
        return min(p1.distTo(q),p2.distTo(q));
double disSS(P p1, P p2, P q1, P q2){
        if(isSS(p1,p2,q1,q2)) return 0;
        return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(
            q1,q2,p1), nearest (q1,q2,p2)));
double DEG_to_RAD(double d) { return d*M_PI/180.0;
double RAD_to_DEG(double r) { return r*180.0/M_PI; }
double rad(P p1,P p2) {
       return atan21(p1.det(p2),p1.dot(p2));
bool inAngle(P a, P b, P c, P p) {
 assert (crossOp(a,b,c) != 0);
  if (crossOp(a,b,c) < 0) swap(b,c);
 return crossOp(a,b,p) >= 0 && crossOp(a,c,p) <= 0;
double angle(P v, P w) {
  return acos(clamp(v.dot(w) / v.abs() / w.abs(), -1.0, 1.0));
double orientedAngle(P a, P b, P c) { // BAC
 if (crossOp(a,b,c) >= 0) return angle(b-a, c-a);
  else return 2*M_PI - angle(b-a, c-a);
// double chord(double r, double ang) return sqrt(2*r*r*(1-cos(ang))); //
    or 2*r*sin(ang/2)
// double secarea(double r, double ang) {return (ang/2)*(r*r);} // rad
// double segarea(double r, double ang) {return secarea(r, ang) - r*r*sin(
int type(P o1, double r1, P o2, double r2){
        double d = o1.distTo(o2);
        if (cmp(d, r1+r2) == 1) return 4; // outside each other
        if(cmp(d,r1+r2) == 0) return 3; // touch outside
        if(cmp(d,abs(r1-r2)) == 1) return 2; // one inside another
        if(cmp(d,abs(r1-r2)) == 0) return 1; // touch inside
        return 0;
vector<P> isCL(P o, double r, P p1, P p2) {
        if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {};
        double x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y *
            ((p1-o).abs2() - r*r);
        d = max(d, 0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y)
        return {m-dr,m+dr}; //along dir: p1->p2
vector<P> isCC(P o1, double r1, P o2, double r2) { //need to check whether
     two circles are the same
        double d = o1.distTo(o2);
        if (cmp(d, r1 + r2) == 1) return {};
        if (cmp(d, abs(r1-r2)) ==-1) return {};
        d = min(d, r1 + r2);
        double y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1)
```

```
-y * y);
        P dr = (o2 - o1).unit();
        P q1 = o1 + dr * y, q2 = dr.rot90() * x;
        return {q1-q2,q1+q2};//along circle 1
vector<P> tanCP(P o, double r, P p) {
        double x = (p - o) .abs2(), d = x - r * r;
        if (sign(d) <= 0) return {}; // on circle => no tangent
        P q1 = o + (p - o) * (r * r / x);
        P q2 = (p - o).rot90() * (r * sqrt(d) / x);
        return {q1-q2,q1+q2}; //counter clock-wise
vector<L> extanCC(P o1, double r1, P o2, double r2) {
        vector<L> ret;
        if (cmp(r1, r2) == 0) {
                P dr = (o2 - o1).unit().rot90() * r1;
                ret.push_back(L(o1 + dr, o2 + dr)), ret.push_back(L(o1 -
                P p = (o2 * r1 - o1 * r2) / (r1 - r2);
                vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
                for (int i = 0; i < min(ps.size(),qs.size());i++) ret.
                    push_back(L(ps[i], qs[i])); //c1 counter-clock wise
        return ret;
vector<L> intanCC(P o1, double r1, P o2, double r2) {
        vector<L> ret;
        P p = (o1 * r2 + o2 * r1) / (r1 + r2);
        vector < P > ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
        for(int i = 0; i < min(ps.size(),qs.size()); i++) ret.push_back(L(</pre>
            ps[i], qs[i])); //c1 counter-clock wise
        return ret;
double areaCT(double r, P p1, P p2) {
        vector<P> is = isCL(P(0,0),r,p1,p2);
        if(is.empty()) return r*r*rad(p1,p2)/2;
        bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1;
        if(b1 && b2) {
                if(sign((p1-is[0]).dot(p2-is[0])) \le 0 \&\&
                        sign((p1-is[0]).dot(p2-is[0])) <= 0)
                return r*r*(rad(p1, is[0]) + rad(is[1], p2))/2 + is[0].det(
                    is[1])/2;
                else return r*r*rad(p1,p2)/2;
        if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2;
        if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2;
        return p1.det(p2)/2;
P inCenter(P A, P B, P C) {
        double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
        return (A * a + B * b + C * c) / (a + b + c);
P circumCenter(P a, P b, P c) {
        P bb = b - a, cc = c - a;
        double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
        return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
P othroCenter(P a, P b, P c) {
        P ba = b - a, ca = c - a, bc = b - c;
        double Y = ba.y * ca.y * bc.y,
        A = ca.x * ba.y - ba.x * ca.y,
        x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
        y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
        return {x0, y0};
//polygon
double area(vector<P> ps) {
        double ret = 0;
```

5.4 Line

```
struct L
 P ps[2]; P v; T c;
  L() {}
  P& operator[](int i) { return ps[i]; }
  // From direction vector v and offset c
  L(P \ v, \ T \ c) : v(v), c(c) \{\}
  // From equation ax+by=c
  L(T a, T b, T c) : v(\{b,-a\}), c(c) \{\}
  // From points P and Q
  L(P p, P q) : v(q-p), c(cross(P(0, 0), v,p))  {
    ps[0] = p;
    ps[1] = q;
  P dir() { return ps[1] - ps[0]; }
  bool include (P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; }
  T side(P p) {return cross(P(0, 0), v,p)-c;}
  T dist(P p) {return abs(side(p)) / v.abs();}
  T sqDist(P p) {return side(p)*side(p) / (double)v.abs();}
  L perpThrough(P p) {return L(p, p + v.rot90());}
  bool cmpProj(P p, P q) {
    return v.dot(p) < v.dot(q);</pre>
  L translate(P t) {return L(v, c + cross(P(0,0), v,t));}
  L shiftLeft(double dist) {return L(v, c + dist*v.abs());}
  L shiftRight (double dist) {return L(v, c - dist*v.abs());}
bool chkLL(P p1, P p2, P q1, P q2) {
        double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
        return sign(a1+a2) != 0;
P isLL(P p1, P p2, P q1, P q2) {
        double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
        return (p1 * a2 + p2 * a1) / (a1 + a2);
P isLL(L 11,L 12) { return isLL(11[0],11[1],12[0],12[1]); }
bool parallel(L 10, L 11) { return sign( 10.dir().det( 11.dir() ) ) == 0;
bool sameDir(L 10, L 11) { return parallel(10, 11) && sign(10.dir().dot(11
    .dir()) ) == 1; }
bool cmp (P a, P b) {
        if (a.quad() != b.quad()) {
                return a.quad() < b.quad();</pre>
                return sign( a.det(b) ) > 0;
bool operator < (L 10, L 11) {
        if (sameDir(10, 11)) {
                return 11.include(10[0]);
        } else {
                return cmp( 10.dir(), 11.dir() );
bool check (L u, L v, L w) {
        return w.include(isLL(u,v));
vector<P> halfPlaneIS(vector<L> &1) {
        sort(l.begin(), l.end());
        deque<L> q;
        for (int i = 0; i < (int)1.size(); ++i) {</pre>
                if (i && sameDir(l[i], l[i - 1])) continue;
                while (q.size() > 1 \&\& !check(q[q.size() - 2], q[q.size()
                     - 1], l[i])) q.pop_back();
                while (q.size() > 1 && !check(q[1], q[0], 1[i])) q.
                     pop_front();
                q.push_back(l[i]);
```

5.5 Point

```
typedef double T;
const double EPS = 1e-9;
inline int sign(double a) { return a < -EPS ? -1 : a > EPS; }
inline int cmp(double a, double b) { return sign(a-b); }
struct P {
 T x, y;
  P() {}
        P(T _x, T _y) : x(_x), y(_y) {}
  P operator+(P p) {return {x+p.x, y+p.y};}
  P operator-(P p) {return {x-p.x, y-p.y};}
  P operator*(T d) {return {x*d, y*d};}
  P operator/(T d) {return {x/d, y/d};} // only for floatingpoint
  bool operator<(P p) const {</pre>
   int c = cmp(x, p.x);
    if (c) return c == -1;
    return cmp (y, p.y) == -1;
  bool operator==(P o) const{
                return cmp(x,o.x) == 0 && cmp(y,o.y) == 0;
  double dot(P p) { return x * p.x + y * p.y; }
  double det(P p) { return x * p.y - y * p.x; }
        double distTo(P p) { return (*this-p).abs(); }
        double alpha() { return atan2(y, x); }
  void read() { cin>>x>>y; }
  void write() {cout<<"("<<x<<","<<y<<")"<<endl;}</pre>
  double abs() { return sqrt(abs2());}
        double abs2() { return x * x + y * y; }
        P rot 90() { return P(-y,x);}
        P unit() { return *this/abs(); }
  int guad() const { return sign(v) == 1 | | (sign(v) == 0 && sign(x) >= 0)
      ; }
        P rot (double an) { return \{x*\cos(an)-y*\sin(an),x*\sin(an)+y*\cos(an)\}
            ) }; }
#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool isConvex(vector<P> p) {
 bool hasPos=false, hasNeg=false;
  for (int i=0, n=p.size(); i<n; i++) {</pre>
    int o = cross(p[i], p[(i+1)%n], p[(i+2)%n]);
    if (o > 0) hasPos = true;
    if (o < 0) hasNeg = true;</pre>
  return ! (hasPos && hasNeg);
bool half(P p) {
  assert (p.x != 0 || p.y != 0); // (0, 0) is not covered
  return p.y > 0 || (p.y == 0 && p.x < 0);
void polarSortAround(P o, vector<P> &v) {
  sort(v.begin(), v.end(), [&o](P v, P w) {
      return make tuple(half(v-o), 0) <
        make_tuple(half(w-o), cross(o, v, w));
  });
```

```
P proj(P p1, P p2, P q) {
        P dir = p2 - p1;
        return p1 + dir * (dir.dot(q - p1) / dir.abs2());
P reflect (P p1, P p2, P q) {
        return proj(p1,p2,q) * 2 - q;
// tested with https://open.kattis.com/problems/closestpair2
pair<P, P> closest(vector<P> v) {
  assert (sz(v) > 1);
  set <P> S;
  sort(v.begin(), v.end(), [](P a, P b) { return a.y < b.y; });</pre>
  pair<T, pair<P, P>> ret{(T)1e18, {P(), P()}};
  int i = 0;
  for (P p : v) {
    P d { 1 + (T) sqrt(ret.first), 0 };
    while (p.y - v[j].y >= d.x) S.erase (v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for(; lo != hi; ++lo) {
      ret = min(ret, {(p - (*lo)).abs2(), {*lo, p}});
    S.insert(p);
  return ret.second;
```

5.6 Polygon

```
//polygon
double area(vector<P> ps) {
        double ret = 0;
  for(int i=0; i < ps.size(); i++) ret += ps[i].det(ps[(i+1)%ps.size()]);</pre>
        return ret/2;
int contain(vector<P> ps, P p) { //2:inside, 1:on_seq, 0:outside
        int n = ps.size(), ret = 0;
        for (int i = 0; i < n; i++) {
                P = u = ps[i], v = ps[(i+1)%n];
                 if(onSeg(u,v,p)) return 1;
                 if(cmp(u.y,v.y) \le 0) swap(u,v);
                 if(cmp(p.y,u.y) > 0 \mid \mid cmp(p.y,v.y) \le 0) continue;
                 ret \hat{} = crossOp(p,u,v) > 0;
        return ret*2;
vector<P> convexHull(vector<P> ps) {
        int n = ps.size(); if(n <= 1) return ps;</pre>
        sort(ps.begin(), ps.end());
        vector<P> qs(n * 2); int k = 0;
        for (int i = 0; i < n; qs[k++] = ps[i++])
                while (k > 1 \&\& crossOp(qs[k - 2], qs[k - 1], ps[i]) \le 0)
        for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
                 while (k > t \&\& crossOp(qs[k - 2], qs[k - 1], ps[i]) \le 0)
        qs.resize(k - 1);
        return qs;
vector<P> convexHullNonStrict(vector<P> ps) {
        //caution: need to unique the Ps first
        int n = ps.size(); if(n <= 1) return ps;</pre>
        sort(ps.begin(), ps.end());
        vector<P> qs(n * 2); int k = 0;
        for (int i = 0; i < n; qs[k++] = ps[i++])
                 while (k > 1 \&\& crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
        for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
```

```
while (k > t \&\& crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
                     --k;
        qs.resize(k - 1);
        return qs;
double convexDiameter(vector<P> ps) {
        int n = ps.size(); if(n <= 1) return 0;</pre>
        int is = 0, js = 0; for(int k = 1; k < n; k++) is = ps[k] < ps[is]?k
             :is, js = ps[js] < ps[k]?k:js;
        int i = is, j = js;
        double ret = ps[i].distTo(ps[j]);
                 if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0)
                         (++\frac{1}{1}) \% = n;
                else
                         (++i) %=n;
                 ret = max(ret,ps[i].distTo(ps[j]));
        }while(i!=is || j!=js);
        return ret;
vector<P> convexCut (const vector<P>&ps, P q1, P q2) {
        vector<P> qs;
        int n = ps.size();
        for (int i = 0; i < n; i ++) {</pre>
                P p1 = ps[i], p2 = ps[(i+1)%n];
                int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2);
                if(d1 >= 0) qs.push_back(p1);
                if(d1 * d2 < 0) qs.push_back(isLL(p1,p2,q1,q2));
        return qs;
```

5.7 Segment

```
struct cmpX {
      bool operator()(P a, P b) const {
            return make_pair(a.x, a.y) < make_pair(b.x, b.y);</pre>
};
bool intersect(double 11, double r1, double 12, double r2) {
                        if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2);
                        return ! ( cmp(r1,12) == -1 | cmp(r2,11) == -1 );
bool isSS(P p1, P p2, P q1, P q2) {
                        return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,
                        crossOp(p1,p2,q1) * crossOp(p1,p2,q2) \le 0 && crossOp(q1,q2,p1)
                                                                       * crossOp(q1,q2,p2) <= 0;
bool isSS_strict(P p1, P p2, P q1, P q2){
                        return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,
                                     p1)
                                                                        * crossOp(q1,q2,p2) < 0;
bool isMiddle(double a, double m, double b) {
                        return sign(a - m) == 0 \mid | sign(b - m) == 0 \mid | (a < m != b < m);
bool isMiddle(P a, P m, P b) {
                        return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
bool onSeg(P p1, P p2, P q) {
                       return crossOp(p1,p2,q) == 0 \&\& isMiddle(p1, q, p2);
bool onSeg_strict(P p1, P p2, P q){
                        return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p1
                                     p2).dot(p1-p2)) < 0;
 double nearest (P p1, P p2, P q) {
```

6 Miscs

6.1

```
// Mo's algorithm, solve m offline queries on array of length n in O(n
    sgrt (m))
struct MO {
    int n, m=0;
    struct node {
        int 1, r, id;
    vector<node> query;
    MO(int _n) : n(_n) {}
    void add_query(int 1, int r)
        query.push_back({1, r, m++});
    template<typename F>
    vector<int> solve(F&& move) {
        const int BLOCK_SIZE = (n<=m ? ceil(sqrt(n)) : n/ceil(sqrt(m)));</pre>
        sort(query.begin(), query.end(), [&](const node& lhs, const node&
            rhs) {
            if (lhs.1 / BLOCK_SIZE != rhs.1 / BLOCK_SIZE) return lhs.1 <</pre>
                rhs.l:
            return ((lhs.1 / BLOCK_SIZE) & 1) ? lhs.r < rhs.r : lhs.r >
                rhs.r;
        });
        vector<int> ans(m);
        int l=0, r=-1, cur=0;
        for (const auto& [ql, qr, id] : query) {
            while (1 > q1) move (--1, 1, cur);
            while (r < qr) move (++r, 1, cur);
            while (1 < q1) move (1++, -1, cur);
            while (r > qr) move (r--, -1, cur);
            ans[id]=cur;
        return ans;
// example: find the most occurrence in ranges
int main() {
    int n, q;
    vector<int> a(n), counter(n+1), freq(3e5+1);
    auto ans=mo.solve([&](int i, int dir, int& cur) {
        int val=a[i];
        int c=freq[val];
        counter[c]--;
        if (dir==1) {
            freq[val]++;
            counter[freq[val]]++;
            cur=max(cur, freq[val]);
            freq[val]--;
            counter[freq[val]]++;
```

```
York University
```

if (counter[cur]==0) cur--;
}
});