- 1. 已知集合 $A = \{y | y = \sin x, \ x \in \mathbf{R}\},$ 集合 $B = \{y | y = \sqrt{x}, \ x \in \mathbf{R}\},$ 则 $A \cap B =$ ______.
- 2. 已知 1+i 是实系数一元二次方程 $x^2 + ax + b = 0$ 的根 (i 为虚数单位), 则 2a + b =_____.
- 3. 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$, 则 xy =______.
- 4. 已知球的主视图的面积为 $\frac{\pi}{4}$, 则该球的体积为_____.
- 5. 在平面直角坐标系 xOy 中, 直线 l 的参数方程为 $\begin{cases} x=t-1, & (t \ \text{为参数}) 圆 O \ \text{的参数方程为} \\ y=t, & \\ y=\sin\theta, \end{cases}$ 为参数) 则直线 l 与圆 O 的位置关系是
- 6. 已知实数 x、y 满足条件 $\begin{cases} x-y\geq 0,\\ y\geq 0, \end{cases}$ 则目标函数 z=2x-y 的最大值为______. $x+y\leq 1,$
- 7. 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为______
- 8. 某校高一、高二、高三共有 200 名学生, 为调查他们的体育锻炼情况, 通过分层抽样获得了 20 名学生一周的 锻炼时间, 数据如下表 (单位: 小时):

高一	6	6.5	7	7.5	8			
高二	6	7	8	9	10	11	12	
高三	3	4.5	6	7.5	9	10.5	12	13.5

则根据上述样本数据估计该校学生一周的锻炼时间不小于7小时的人数为_____

- 9. 从 $m(m \in \mathbb{N}^*, m \ge 4)$ 个男生、6 个女生中任选 2 个人当发言人,假设事件 A 表示选出的 2 个人性别相同,事件 B 表示选出的 2 个人性别不同. 如果 A 的概率和 B 的概率相等,则 $m = ______$.
- 10. 将函数 $f(x)=2\sin 2x$ 的图像向左平移 $\frac{\pi}{6}$ 个单位,再向下平移 1 个单位,得到函数的 y=g(x) 图像. 若 y=g(x) 在 [0,b](b>0) 上至少含有 2021 个零点,则 b 的最小值为______.
- 11. 如图, 在 $\triangle ABC$ 中, $\angle BAC = \frac{\pi}{3}$, D 为 AB 中点, P 为 CD 上一点, 且满足 $\overrightarrow{AP} = t\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AB}$, 若 $\triangle ABC$ 的面积为 $\frac{3\sqrt{3}}{2}$, 则 $|\overrightarrow{AP}|$ 的最小值为______.

- 12. 已知数列 $\{a_n\}$, $\{b_n\}$ 满足 $a_1=b_1=1$, 对任何正整数 n 均有 $a_{n+1}=a_n+b_n+\sqrt{a_n^2+b_n^2}$, $b_{n+1}=a_n+b_n-\sqrt{a_n^2+b_n^2}$, 设 $c_n=3^n(\frac{1}{a_n}+\frac{1}{b_n})$, 则数列 $\{c_n\}$ 的前 2020 项之和为______.
- 13. 已知实数 $a \neq 0$, 则 "a < 1" 是 " $\frac{1}{a} > 1$ " 的_____(
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既非充分又非必要条件
- 14. 如图, 正方体 $A_1B_1C_1D_1 ABCD$ 中, $E \times F$ 分别为棱 $A_1A \times BC$ 上的点, 在平面 ADD_1A_1 内且与平面 DEF 平行的直线 ().

- A. 有一条
- B. 有二条
- C. 有无数条
- D. 不存在
- 15. 已知函数 $f(x)(x \in D)$, 若对任意的 $x \in D$, 都存在 $t \in D$, 使 f(t) = -f(x) 成立, 称 f(x) 是 "拟奇函数". 下 列函数是 "拟奇函数" 的个数是 ().
 - ① $f(x) = x^2$; ② $f(x) = \ln x$; ③ $f(x) = x + \frac{1}{x}$; ④ $f(x) = \cos x$
 - A. 1 个

B. 2 个

C. 3 个

- D. 4 个
- 16. 设集合 $S = \{1, 2, 3, \cdots, 2020\}$, 设集合 A 是集合 S 的非空子集, A 中的最大元素和最小元素之差称为集合 A 的直径. 那么集合 S 所有直径为 71 的子集的元素个数之和为 ().
 - A. 71 · 1949
- B. $2^{70} \cdot 1949$
- C. $2^{70} \cdot 37 \cdot 1949$
- D. $2^{70} \cdot 72 \cdot 1949$
- 17. 如图所示的几何体是圆柱的一部分, 它是由边长为 2 的正方形 ABCD(及其内部) 以 AB 边所在直线为旋转轴顺时针旋转 120° 得到的.

- (1) 求此几何体的体积;
- (2) 设 P 是弧 EC 上的一点, 且 $BP \perp BE$, 求异面直线 FP 与 CA 所成角的大小. (结果用反三角函数值表示)

- 18. 已知锐角 α 、 β 的顶点与坐标原点重合,始边与 x 轴正方向重合,终边与单位圆分别交于 P、Q 两点,若 P、Q 两点的横坐标分别为 $\frac{3\sqrt{10}}{10}$ 、 $\frac{2\sqrt{5}}{5}$.
 - (1) 求 $\cos(\alpha + \beta)$ 的大小;
 - (2) 在 $\triangle ABC$ 中, a,b,c 为三个内角 A,B,C 对应的边长, 若已知角 $C=\alpha+\beta$, $\tan A=\frac{3}{4}$, 且 $a^2=\lambda bc+c^2$, 求 λ 的值.
- 19. 疫情后, 为了支持企业复工复产, 某地政府决定向当地企业发放补助款, 其中对纳税额在 3 万元至 6 万元(包括 3 万元和 6 万元)的小微企业做统一方案. 方案要求同时具备下列两个条件: ① 补助款 f(x)(万元) 随企业原纳税额 x(万元) 的增加而增加; ② 补助款不低于原纳税额 x(万元) 的 50%. 经测算政府决定采用函数模型 $f(x) = \frac{x}{4} \frac{b}{x} + 4(其中 b 为参数)作为补助款发放方案.$
 - (1) 判断使用参数 b=12 是否满足条件, 并说明理由;
 - (2) 求同时满足条件①、②的参数 b 的取值范围.
- 20. 在平面直角坐标系 xOy 中, F_1 , F_2 分别是椭圆 Γ : $\frac{x^2}{a^2} + y^2 = 1 (a > 0)$ 的左、右焦点, 直线 l 与椭圆交于不同的两点 A, B, 且 $|AF_1| + |AF_2| = 2\sqrt{2}$.
 - (1) 求椭圆 Γ 的方程;
 - (2) 已知直线 l 经过椭圆的右焦点 F_2 , P, Q 是椭圆上两点, 四边形 ABPQ 是菱形, 求直线 l 的方程;
 - (3) 已知直线 l 不经过椭圆的右焦点 F_2 , 直线 AF_2 , l, BF_2 的斜率依次成等差数列, 求直线 l 在 y 轴上截距的取值范围.
- 21. 若数列 $\{a_n\}$ 对任意连续三项 $a_i, a_{i+1}, a_{i+2},$ 均有 $(a_i a_{i+2})(a_{i+2} a_{i+1}) > 0$, 则称该数列为"跳跃数列".
 - (1) 判断下列两个数列是否是跳跃数列:
 - ① 等差数列: $1,2,3,4,5,\cdots$; ② 等比数列: $1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16},\cdots$;
 - (2) 若数列 $\{a_n\}$ 满足对任何正整数 n, 均有 $a_{n+1}=a_1^{a_n}(a_1>0)$. 证明: 数列 $\{a_n\}$ 是跳跃数列的充分必要条件是 $0<a_1<1$;
 - (3) 跳跃数列 $\{a_n\}$ 满足对任意正整数 n 均有 $a_{n+1} = \frac{19 a_n^2}{5}$, 求首项 a_1 的取值范围.
- 22. 已知集合 $A = \{y|y = 10^x, x \in \mathbf{R}\}, B = \{y|y = x^2, 1 \le x \le 2\}, 则 A \cap B = _____.$
- 23. $\lim_{n \to \infty} \frac{3^n 1}{3^n + 1} = \underline{\hspace{1cm}}$
- 24. 若关于 x,y 的方程组 $\begin{cases} x+y=m, \\ & \text{ 有无穷多组解}, 则 \ m+n \ \text{的值为} \underline{\hspace{1cm}} \\ x+ny=1 \end{cases}$
- 25. 若 -1 + 2i(i 为虚数单位) 是方程 $x^2 + bx + c = 0(b, c \in \mathbb{R})$ 的一个根,则 c b =_____.
- 26. 已知 P 为抛物线 $C: y^2 = 2px(p > 0)$ 上一点, 点 P 到抛物线 C 的焦点的距离为 7, 到 y 轴的距离为 5, 则 $p = ______$.
- 27. 设复数 $z=\begin{vmatrix}\cos\alpha & \mathrm{i}\\ \sin\alpha & \sqrt{2}+\mathrm{i}\end{vmatrix}$ (i 为虚数单位), 若 $|z|=\sqrt{2}$, 则 $\tan2\alpha=$ ______.

- 28. 若 $(ax^2 + \frac{1}{\sqrt{x}})^5$ 的展开式中的常数项为 $-\frac{5}{2}$, 则实数 a 的值为______.
- 29. 设函数 f(x) 的定义域为 D. 若对于 D 内的任意 $x_1, x_2(x_1 \neq x_2)$, 都有 $(x_2 x_1)[f(x_2) f(x_1)] > 0$, 则称函数 f(x) 为 "Z 函数". 有下列函数: ① f(x) = 1; ② f(x) = -2x + 1; ③ $f(x) = x^3$; ④ $f(x) = \lg x$. 其中 "Z 函数" 的序号是_____(写出所有的正确序号).
- 30. 已知直三棱柱的各棱长都相等,体积等于 $18(cm^3)$. 若该三棱柱的所有顶点都在球 O 的表面上,则球 O 的体积等于 (cm^3) .
- 31. 已知 F_1, F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{3} = 1 (a > \sqrt{3})$ 的左、右焦点,过原点 O 且倾斜角为 60° 的直线与椭圆 C 的一个交点为 M. 若 $|\overrightarrow{MF_1} + \overrightarrow{MF_2}| = |\overrightarrow{MF_1} \overrightarrow{MF_2}|$,则椭圆 C 的长轴长为______.
- 32. 已知无穷等比数列 a_1, a_2, a_3, \cdots 各项的和为 $\frac{9}{2}$, 且 $a_2 = -2$, 若 $|S_n \frac{9}{2}| < 10^{-4}$, 则 n 的最小值为______.
- 33. 若同一平面上不共线的四个点 P,Q,R,S 满足: $mn\overrightarrow{RP}=n(1-3m)\overrightarrow{QP}+m(n-1)\overrightarrow{SP}(m>0$ 、n>0), 则当 $\triangle PRS$ 的面积是 $\triangle PQR$ 的面积的 $\frac{1}{3}$ 倍时, $\frac{1}{m+n}$ 的最大值为______.
- 34. 设 $x \in \mathbb{R}$, 则 "x > 3" 是 " $x^2 > 9$ " 的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既非充分条件又非必要条件
- 35. 某班有学生 40 人,将这 40 人编上 1 到 40 的号码,用系统抽样的方法抽取一个容量为 4 的样本.已知编号为 3、23、33 的学生在样本中,则另一学生在样本中的编号为().
 - A. 12

B. 13

C. 14

- D. 15
- 36. 已知函数 $f(x) = \sin(\omega x + \frac{\pi}{6}) + \frac{1}{2}(\omega > 0)$ 在区间 $(0, \frac{\pi}{2})$ 上有且仅有两个零点,则实数 ω 的取值范围为 (). A. $(2, \frac{14}{3}]$ B. $[2, \frac{14}{3})$ C. $[\frac{10}{3}, 4)$ D. $(\frac{10}{3}, 6]$
- 37. 如果数列 u_1,u_2,\cdots,u_{10} 同时满足以下四个条件: ① $u_i\in \mathbf{Z}(i=1,2,\cdots,10);$ ② 点 $(u_5,2^{u_2+u_8})$ 在函数 $y=4^x$ 的图像上; ③ 向量 $\overrightarrow{a}=(1,u_1)$ 与 $\overrightarrow{b}=(3,u_{10})$ 互相平行; ④ $u_{i+1}-u_i$ 与 $\frac{2}{u_{i+1}-u_i}$ 的等差中项为 $\frac{3}{2}(i=1,2,\cdots,9)$. 那么,这样的数列 u_1,u_2,\cdots,u_{10} 的个数为 ().
 - A. 78

B 80

C 82

- D. 90
- 38. 在三棱锥 P-ABC 中, $PA=PB=PC=AC=2\sqrt{2},\,BA=BC=2,\,O$ 是线段 AC 的中点, M 是线段 BC 的中点.

- (1) 求证: *PO* ⊥ 平面 *ABC*;
- (2) 求直线 PM 与平面 PBO 所成的角的大小.
- 39. 将关于 x 的函数 $y = \frac{m(x+2)^2}{x} (m \in \mathbf{R})$ 的图像向右平移 2 个单位后得到的函数图像记为 C, 并设 C 所对应的函数为 f(x).
 - (1) 当 m > 0 时, 试直接写出函数 f(x) 的单调递减区间;
 - (2) 设 f(4) = 8, 若函数 $g(x) = x^2 2ax + 5(a > 1)$ 对于任意 $t_1 \in [0, 1]$, 总存在 $t_2 \in [0, 1]$, 使得 $g(t_2) = f(t_1)$ 成立, 求 a 的取值范围.
- 40. 某工厂制作如图所示的一种标识,在半径为 R 的圆内作一个关于圆心对称的 "H" 型图形,"H" 型图形由 两竖一横三个等宽的矩形组成,两个竖直的矩形全等且它们的长边是横向矩形长边的 $\frac{3}{2}$ 倍,设 O 为圆心, $\angle AOB = 2\alpha$,记 "H" 型图形的面积为 S.

- (1) 将 AB, AD 用 R, α 表示, 并将 S 表示成 α 的函数;
- (2) 为了突出 "H" 型图形, 设计时应使 S 尽可能大, 则当 α 为何值时, S 最大? 并求出 S 的最大值.
- 41. 已知椭圆 C 的方程为 $\frac{x^2}{2} + y^2 = 1$.、、(1) 设 $M(x_M, y_M)$ 是椭圆 C 上的点, 证明: 直线 $\frac{x_M x}{2} + y_M y = 1$ 与 椭圆 C 有且只有一个公共点;
 - (2) 过点 $N(1,\sqrt{2})$ 作两条与椭圆只有一个公共点的直线, 公共点分别记为 A、B, 点 N 在直线 AB 上的射影为点 Q, 求点 Q 的坐标;
 - (3) 互相垂直的两条直线 l_1 与 l_2 相交于点 P, 且 l_1 、 l_2 都与椭圆 C 只有一个公共点, 求证点 P 落在 $x^2+y^2=3$ 上.
- 42. 若数列 $\{a_n\}$ 满足 "对任意正整数 $i, j, i \neq j$,都存在正整数 k,使得 $a_k = a_i \cdot a_j$ ",则称数列 $\{a_n\}$ 具有 "性质 P".
 - (1) 判断各项均等于 a 的常数列是否具有"性质 P", 并说明理由;
 - (2) 若公比为 2 的无穷等比数列 $\{a_n\}$ 具有 "性质 P", 求首项 a_1 的值;
 - (3) 若首项 $a_1 = 2$ 的无穷等差数列 $\{a_n\}$ 具有 "性质 P", 求公差 d 的值.

В.

C.

D.

x	1	2	3	4	5
y	2.2	1	2	4.6	7

