Comprehensive Report on MOSQUITO-NET Implementation and Understanding

Prepared by:

📌 Revanth Puvaneswaren

📌 Imthias Abubakkar

Introduction

This report outlines the implementation of the **MOSQUITO-NET** system, inspired by the research paper:

MOSQUITO-NET: A Deep Learning-Based CADx System for Malaria Diagnosis Along with Model Interpretation Using Grad-CAM and Class Activation Maps".

The objective of this notebook is to develop a **lightweight deep learning model** for **accurate malaria detection** while incorporating interpretability features such as **Grad-CAM** for visual insights.

📚 Research Paper Overview

The MOSQUITO-NET framework employs Convolutional Neural Networks (CNNs) for malaria detection, integrating Grad-CAM for hotspot visualizations that highlight areas influential to predictions. This interpretability enhances diagnostic trust and facilitates deployment in resource-constrained areas.

Notebook Workflow

1. Downloading and Extracting the Data

Library of Medicine (Download Link).

* It contains labeled blood smear images of infected and uninfected cells, categorized into:

- Infected cells
- X Uninfected cells

Model Architecture

The **MOSQUITO-NET** architecture is a **lightweight CNN** for efficient malaria cell classification. Below is a detailed breakdown:

- 1. Input Layer
 - Input Dimensions: 75x75 images with 3 channels (RGB format).
 - Purpose: Standardizes the input shape for computations.
- 2. Convolutional Layers
- These layers extract spatial features such as edges, textures, and patterns:
 - Conv2D Layers:
 - First Layer: 16 filters, kernel size 5x5, stride 1, padding =
 'same'
 - Second Layer: 32 filters, same configuration
 - Third Layer: 64 filters, kernel size 5x5, padding = 'same' (named
 "rr" for Grad-CAM integration)
 - Purpose: Layers learn progressively complex features.
- 3. Batch Normalization
- ₱ Function: Normalizes activations to stabilize learning & improve convergence speed.
- 4. ReLU Activation
- **☑ Non-Linearity:** Helps the network learn complex patterns.
- 5. Max Pooling Layers

- **Kernel Size:** 2x2, stride of 2.
- Purpose: Reduces spatial dimensions while retaining essential features.

• 6. Flatten Layer

🔄 Converts multi-dimensional outputs into a one-dimensional array for dense layers.

• 7. Fully Connected (Dense) Layers

- First Dense Layer: 512 neurons with ReLU activation.
- **Dropout:** 0.2 (Prevents overfitting).
- Second Dense Layer: 128 neurons.
- • Output Layer: 2 neurons with Sigmoid activation for binary classification.

• 8. Sigmoid Activation for Classification

Produces probability scores for each class (infected/uninfected).

MODEL STRUCTURE

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 120, 120, 16)	1,216
batch normalization (BatchNormalization)	(None, 120, 120, 16)	64
re_lu (ReLU)	(None, 120, 120, 16)	0
max_pooling2d (MaxPooling2D)	(None, 60, 60, 16)	0
conv2d_1 (Conv2D)	(None, 60, 60, 32)	12,832
batch normalization 1 (BatchNormalization)	(None, 60, 60, 32)	128
re_lu_1 (ReLU)	(None, 60, 60, 32)	0
max_pooling2d_1 (MaxPooling2D)	(None, 30, 30, 32)	0
rr (Conv2D)	(None, 30, 30, 64)	51,264
batch normalization 2 (BatchNormalization)	(None, 30, 30, 64)	256
re_lu_2 (ReLU)	(None, 30, 30, 64)	0
max_pooling2d_2 (MaxPooling2D)	(None, 15, 15, 64)	0
flatten (Flatten)	(None, 14400)	0
dense (Dense)	(None, 512)	7,373,312
dropout (Dropout)	(None, 512)	8
dense_1 (Dense)	(None, 128)	65,664
dropout_1 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 2)	258
Total params: 7,504,994 (28.63 MB) Trainable params: 7,504,770 (28.63 MB) Non-trainable params: 224 (896.00 B)		

Training and Validation

▼ Trained using TensorFlow/Keras, with accuracy & loss monitored.

Training and validation accuracy plots provided insights into overfitting & generalization.

Training Visualization

Accuracy comparisons were visualized using **Matplotlib**, generating interpretable **performance graphs**.

Predictions and Interpretability

Making Predictions

The trained model was tested on unseen validation data. Below is a visualization:

```
fig, axes = plt.subplots(5,5, figsize=(15,15))
for i, ax in enumerate(axes.flat):
    r = np.random.randint(X_val.shape[0])
    ax.imshow(X_val[r])
    ax.grid(False)
    ax.axis('off')
    ax.set_title('Original: {} Predicted: {}'.format(np.argmax(y_val[r]), np.argmax(model.predict(X_val[r].reshape(1, 75, 75, 3)))))
```

POUTPUT IMAGE:

Confusion Matrix

Purpose: Evaluates model performance by analyzing: True Positives (TP), X False Positives (FP), True Negatives (TN), X False Negatives (FN).

• Helps diagnose classification errors & improve model refinement.

Learnings

- **X** Technical Skills
- Model Design & Implementation: Lightweight CNN, Batch Normalization, Activation Functions.
- Grad-CAM for Interpretability: Understanding hotspot visualizations.
- **Data Augmentation**: Using ImageDataGenerator to improve generalization.
- Visualization: Creating confusion matrices & performance plots.
- Real-World Applications
- Resource Efficiency: Al tailored for edge devices in remote regions.
- Scalability: Optimizing performance vs. computational constraints.
- Problem-Solving
- Data Challenges: Handling large datasets, preprocessing techniques.
- Error Analysis: Confusion matrix insights for classification improvements.
- **♥ Big-Picture Insights**
- 🔽 Al in Healthcare: Transformative potential of Al in global health diagnostics.
- Model Transparency: Importance of interpretability & trust in Al models.

Conclusion

The MOSQUITO-NET model was successfully implemented, demonstrating malaria detection capabilities using deep learning.

- Future Work:
 - Expand the dataset.
 - Refine model architecture.
 - Real-world deployment for field testing.