(1)
$$T(n) = 3T(n/2) + n^2$$

$$n \log_6 a = n \log_2 a$$

$$T(n) = \theta(n^2).$$

$$T(n) = 4T(n/2) + n^2.$$

$$n \log_2 4 = n^2$$

$$n \log_2 2 = n$$
 $n < f(n)$

 $T(n) = \Theta(n \log n)$.

$$Q \neq \frac{1}{T} - T(m) = 2(T(n/2) + \frac{n}{\log n})$$

$$h \log \frac{1}{\log n}$$

$$(3.)$$
 $T(n) = T(n/2) + 2^n$

$$n \log a^{1} = n^{\circ} = 1$$

$$1 < a^{n}$$

$$T(n) = \theta(a^n)$$

$$n \log_2 64 = n^2$$

$$n^2 > n^{0.51}$$

$$n \log_4 16 = n^2$$
 $n^2 > f(n) = T(n) = n^2$

$$0.9$$
: $T(n) = 0.5 \pm T(n_0) + \frac{1}{n}$

Theorem

Master's 1 not applicable

010 -
$$T(n) = 16T(n_4) + n!$$

 $n \log_4 16 = n^2$
 $n^2 \langle n!$
 $T(n!)$

Q16:
$$T(n) = 3T(n/4) + nlogn$$
.

 $nlog4^3 = n^{0.79} / nlogn$

Q11:
$$T(n) = 4 + T(n/2) + logn$$

$$\frac{6}{4} = 4, \quad f = 2, \quad f(n) = logn$$

$$+ n logf = n^2$$

$$+ n^2 > f(n)$$

$$T(n) = O(n^2)$$

$$T(n) = \theta(n\log n)$$
 $0.17 - T(n) = 16 6(n/3) + n\log n$
 $\frac{1}{4} = 6, \frac{1}{6} = 3, f(n) = n^2$
 $\log 6 = n \cdot 1.63$

$$a=3$$
, $b=2$, $f(n)=n$
 $n\log 6^a = n\log 3^3 = n^{1.58} 2.58 > f(n)$
 $T(n) = \Theta(n\log 3^3)$

$$a=3$$
, $b=3$, $f(n)=\frac{n}{3}$.
 $\theta = n \log_3^3 = n$
 $n > n/2$
 $T(n) = \theta(n\log n)$.

$$0.21 - 7(n) = 7 + 7(n/3) + n^{2}$$

$$1 + 1 + 7(n) = 7 + 7(n/3) + n^{2}$$

$$1 + 7(n) = 7(n) = 7(n) = 7(n)$$

$$Q22$$
: $T(n) = T(n/2) + n(2-cosn)$