



Jul 28, 2021

# SHARE-seq V1

Sai Ma<sup>1,2,3</sup>, Aviv Regev<sup>1,3,4,5</sup>, Jason Buenrostro<sup>1,3</sup>

<sup>1</sup>Broad Institute of MIT and Harvard; <sup>2</sup>Harvard; <sup>3</sup>MIT; <sup>4</sup>HHMI; <sup>5</sup>Genentech

2 Works for me Share

dx.doi.org/10.17504/protocols.io.bmbik2ke

Human Cell Atlas Method Development Community SHAREseq

Sai Ma

**ABSTRACT** 

SHARE-seq for joint profiling of chromatin accessibility and gene expression at scale.

**ATTACHMENTS** 

Table S1. Oligo design.xlsx

DOI

dx.doi.org/10.17504/protocols.io.bmbik2ke

PROTOCOL CITATION

Sai Ma, Aviv Regev, Jason Buenrostro 2021. SHARE-seq V1. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bmbik2ke

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 13, 2020

LAST MODIFIED

Jul 28, 2021

PROTOCOL INTEGER ID

42058

#### **GUIDELINES**

- 1. This protocol can be used to multiplex multiple samples in one run. Keep the samples in seperate tubes during fixation, trasnposition and RT, until loaded into Round 1 barcoding plate.
- 2. This protocol can be slightly modified for ATAC-only and RNA-only library preparation.

MATERIALS TEXT

Oligos (see attached Table)

PBS (Thermo Fisher Scientific, 10010049)

Enzymatic RNase Inhibitor (Qiagen Enzymatics, Y9240L)

SUPERase In RNase Inhibitor (Thermo Fisher Scientific, AM2696)

Citation: Sai Ma, Aviv Regev, Jason Buenrostro (07/28/2021). SHARE-seq V1. https://dx.doi.org/10.17504/protocols.io.bmbik2ke

NxGen RNase Inhibitor (Lucigen, 30281-2)

16% Formaldehyde (w/v) (Thermo Fisher Scientific, 28906)

Glycine (Sigma-Aldrich, 50046)

1M Tris HCl pH 7.5 (Thermo Fisher Scientific, 15567027)

1M Tris HCl pH 8.0 (Thermo Fisher Scientific, 15568025)

5M NaCl (Thermo Fisher Scientific, AM9760G)

1M MgCl<sub>2</sub>(Sigma-Aldrich, 63069)

10% NP40 (Thermo Fisher Scientific, 28324)

Buffer EB (Qiagen, 19086)

DNA Clean & Concentrator-5 (Zymo, D4014)

PEG 6000 (Sigma-Aldrich, 528877-100GM)

Maxima H Minus Reverse Transcriptase with buffer (Thermo Fisher Scientific, EP0753)

Deoxynucleotide (dNTP) Solution Mix (NEB, N0447L)

T4 DNA ligase (NEB, M0202L)

10× T4 ligase buffer New England Biolabs, B0202S)

Proteinase K from Tritirachium album (20mg/ml in H<sub>2</sub>O) (Sigma-Aldrich, P2308-100MG)

Sodium Dodecyl Sulfate 20% (SDS) Solution (VWR, 97062-440)

Phenylmethanesulfonyl fluoride (PMSF) (Sigma-Aldrich, P7626)

2-Propanol (IPA) (Sigma-Aldrich, 19516)

0.5M EDTA (Thermo Fisher Scientific, AM9260G)

Tween 20 (Sigma-Aldrich, P9416-100ML)

Ficoll PM-400 (20%) (Sigma-Aldrich, F5415-25ML)

KAPA HiFi HotStart ReadyMix (Fisher Scientific, NC0295239)

AMPure XP (Beckman Coulter, A63880)

100% Ethanol (Sigma-Aldrich, 8.18760.2500)

Qubit dsDNA HS Assay Kit, (Thermo Fisher Scientific, Q32854)

Gel (E-gel/Flash gels)

FlashGel DNA Cassettes (Lonza, 57031)

Dithiothreitol (DTT), 0.1M Solution (Thermo Fisher Scientific, 707265ML)

NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs, M0541L)

Glycerol (Thermo Fisher Scientific, 15514011)

Unloaded Tn5

TD buffer from Nextera kit

10,000× SYBRgreen (Thermo Fisher Scientific, S7563)

TRIS-acetate buffer 0.2M, pH 7.8 (Bioworld, 40120265-2)

Potassium acetate (Sigma-Aldrich, 95843-100ML-F)

Magnesium acetate (Sigma-Aldrich, 63052-100ML)

Dimethylformamide (DMF) (Thermo Fisher Scientific, 20673A)

Protease Inhibitor Cocktail (Sigma-Aldrich, P8340)

Quick-Load® Purple 100 bp DNA Ladder (NEB, N0551S)

Gel Loading Dye, Purple (6X) (NEB, B7024S)

#### BEFORE STARTING

- 1. By default, spin down cells at 500g for 3 min at RT using a swing bucket centrifuge. For primary samples, may use 1000g instead.
- 2. For each sample, start with 1 million-100k cells for fixation.
- 3. For primary samples, if cell recovery is low after spinning, pre-rinse tubes with 7.5% BSA before spinning.
- 4. Resuspend All oligos should be resuspended to  $100\mu M$  or 1mM concentration in the IDTE buffer.
- 5. Add RNase inhibitor freshly.

#### Buffer preparation

1 Prepare following buffer and store at 4°C

| Nuclei Isolation Buffer (NIB) | Volume (ml) | Final |
|-------------------------------|-------------|-------|
|                               |             | conc. |
| 1M Tris HCl pH 7.5            | 0.5         | 10mM  |
| 5M NaCl                       | 0.1         | 10mM  |
| 1M MgCl2                      | 0.15        | 3mM   |
| 10% NP40                      | 0.5         | 0.1%  |
| H20                           | 48.75       |       |
| Total                         | 50          |       |

| 2× BW       | Volume (ml) | 2×    |
|-------------|-------------|-------|
|             |             | conc. |
| 1M Tris 8.0 | 0.5         | 10mM  |
| 5M NaCl     | 20          | 2M    |
| 0.5M EDTA   | 0.1         | 1mM   |
| H20         | 29.4        |       |
| Total       | 50          |       |

| 1x B&W-T    | Volume (ml) | 1x conc. |
|-------------|-------------|----------|
| 1M Tris 8.0 | 0.25        | 5mM      |
| 5M NaCl     | 10          | 1M       |
| 0.5M EDTA   | 0.05        | 0.5mM    |
| 100% Tween  | 0.025       | 0.05%    |
| 20          |             |          |
| H20         | 39.675      |          |
| Total       | 50          |          |

| Oligo resuspension buffer (IDTE) | Volume (ml) | 1x conc. |
|----------------------------------|-------------|----------|
| 1M Tris 8.0                      | 0.5         | 10mM     |
| 0.5M EDTA                        | 0.01        | 0.1mM    |
| H2O                              | 49.5        |          |
| Total                            | 50          |          |

| Oligo annealing buffer (STE) | Volume (ml) | 1x conc. |
|------------------------------|-------------|----------|
| 1M Tris 8.0                  | 0.5         | 10mM     |
| 5M NaCl                      | 0.5         | 50mM     |
| 0.5M EDTA                    | 0.1         | 1mM      |
| H20                          | 48.9        |          |
| Total                        | 50          |          |

| Dilution Buffer                    | Volume (µl) | Final |
|------------------------------------|-------------|-------|
|                                    |             | conc. |
| 100% glycerol (use wide bore tips) | 500         | 50%   |
| 1M Tris pH 7.5                     | 50          | 50mM  |
| 5M NaCl                            | 20          | 100mM |
| 5mM EDTA                           | 20          | 0.1mM |
| 100mM DTT                          | 10          | 1mM   |
| 10% NP-40                          | 10          | 0.1%  |
| H20                                | 390         |       |
| Total                              | 1000        |       |

### 2 Prepare following buffer and store at room temperature.

| 2× RCB      | Volume (ml) | 2×    |
|-------------|-------------|-------|
|             |             | conc. |
| 1M Tris 8.0 | 1           | 100mM |
| 5M NaCl     | 0.2         | 100mM |
| 20% SDS     | 0.2         | 0.40% |
| H20         | 8.58        |       |
| Total       | 10          |       |

PEG 6000 50%: mix equal mass of PEG6000 and  $H_2O$ , dissolve PEG by heating to 65°C for 4min and cooling down to RT.

Anneal oligo plates

Dilute 120µl Round 1 linker oligo (1mM) with 11880µl STE buffer. Mix 90µl diluted Round 1 linker oligo with 10µl Round

Citation: Sai Ma, Aviv Regev, Jason Buenrostro (07/28/2021). SHARE-seq V1. <a href="https://dx.doi.org/10.17504/protocols.io.bmbik2ke">https://dx.doi.org/10.17504/protocols.io.bmbik2ke</a>

- 3 1 oligo (100μM) in a 96 well PCR plate.
- 4 Dilute 120μl Round 2 linker oligo (1mM) with 9480μl STE buffer. Mix 88μl diluted Round 2 linker oligo with 12μl Round 2 oligo (100μM) in a 96 well PCR plate.
- 5 Dilute 144μl Round 3 linker oligo (1mM) with 9360μl STE buffer. Mix 86μl diluted Round 3 linker oligo with 14μl Round 3 oligo (100μM) in a 96 well PCR plate.
- 6 Anneal Round 1, Round 2, and Round 3 plates.

| 95°C  | 2 min      |
|-------|------------|
|       | slow       |
|       | ramp, -    |
|       | 1°C/cycle, |
|       | 1 min per  |
|       | cycle      |
| 20°C  | 2 min      |
| 4°C   | Forever    |
| Total | ~1 h 26    |
|       | min        |

- 7 After annealing, check if there is significant water evaporation for the wells at the corners. If there is, add water to compensate.
- 8 Aliquot 10µl of annealed oligo to a new plate. Should be enough for 9×3 plates. Store the plates at -20°C.

#### Anneal adapter oligo

9 Dilute Phosphorylated\_Read2, Read1, Blocked\_ME\_Comp to 100µM with the IDTE buffer. Prepare transposition adapter and tagmentation adapter mix in PCR tubes.

| Transposition adapter      | Volume (µl) |
|----------------------------|-------------|
| 100μM Phosphorylated_Read2 | 6.5         |
| 100μM Read1                | 6.5         |
| 100μM Blocked_ME_Comp      | 13          |
| 1M Tris pH 8.0             | 0.26        |
| 5M NaCl                    | 0.26        |
| Total                      | 26.5        |

| Tagmentation adapter  | Volume |
|-----------------------|--------|
|                       | (µI)   |
| 100μM Read1           | 13     |
| 100μM Blocked_ME_Comp | 13     |
| 1M Tris pH 8.0        | 0.26   |
| 5M NaCl               | 0.26   |
| Total                 | 26.5   |

10 Anneal oligos in a thermal cycler.

| 2 min      |
|------------|
| slow       |
| ramp, -    |
| 1ºC/cycle, |
| 1 min per  |
| cycle      |
| 2 min      |
| Forever    |
| ~1 h 14    |
| min        |
|            |

Aliquot 25µl Glycerol (pre-heated to 65°C) to a new tube and then equilibrated to RT. 25µl of annealed oligo is mixed with glycerol. The annealed adapters can be immediately used for and stored at -20°C.

| Fixation | 40m |
|----------|-----|
|----------|-----|

12 Spin down cells, wash cells with 0.5ml PBS-2RI, count alive cells with Trypan blue, resuspend cells with cold PBS-2RI at concentration of 1 million cells/ml.

| PBS-2RI      | Volume |  |
|--------------|--------|--|
|              | (µI)   |  |
| 1× PBS       | 2000   |  |
| 7.5% BSA     | 10.7   |  |
| Enzymatic RI | 5      |  |
| SUPERase RI  | 2.5    |  |

- For each ml of cells in PBS-2RI, add  $66.7\mu$ l of 1.6% or 3.2% FA (final concentration 0.1-0.2% FA, 0.1% for cell line, 0.2% for tissue) at RT, mix. Keep at RT for 5 min.
- 14 For each ml of cells, quench fixation by adding 56.1μl of 2.5M Glycine, 50μl of 1M Tris pH 8.0, 13.3μl of 7.5% BSA, pipette mix. Keep on ice for 5 min.
- 15 Spin down, remove supernatant, add 0.5ml PBS-2RI without disturbing the cell pellet.
- 16 Spin down, remove supernatant, add 0.5ml PBS-2RI without disturbing the cell pellet.

Citation: Sai Ma, Aviv Regev, Jason Buenrostro (07/28/2021). SHARE-seq V1. https://dx.doi.org/10.17504/protocols.io.bmbik2ke

17 Resuspend cells to 50µl PBS-2RI.

| NIB-RI       | Volume |
|--------------|--------|
|              | (µI)   |
| NIB          | 8000   |
| Enzymatic RI | 20     |
| SUPERase RI  | 20     |
| 7.5% BSA     | 42.7   |

If starting with nuclei, replace PBS-2RI in this section with NIB-RI

ATAC 50m

Assemble transposome by mixing Tn5, dilution buffer and annealed transposition adapter oligo. Incubate at RT for 30min. The assembled transposome could be stored at -20°C for up to 2 weeks.

19 🥂

Calculate the number of required ATAC reactions. No. samples (N)=no. cells/10,000. For example, for 100k cells, N=100k/10k=10. Prepare 2× TB and 1× TB accordingly. Critical: The 2× TB should be prepared freshly.

| 2× TB buffer      | Volume |
|-------------------|--------|
|                   | (µI)   |
| 0.2M Tris-acetate | 330    |
| 5M K-acetate      | 26.4   |
| 1M Mg-acetate     | 20     |
| 10% NP-40         | 20     |
| 100% DMF          | 320    |
| H20               | 283.6  |
| Total             | 1000   |

| 1× TB        | No.     |  |
|--------------|---------|--|
|              | samples |  |
|              | (N)     |  |
| 2× TB        | 25×N    |  |
| H20          | 16.45×N |  |
| PIC          | 0.2×N   |  |
| Enzymatic In | 0.85×N  |  |
| Total        | 42.5×N  |  |

| PBS-RI       | Volume |  |
|--------------|--------|--|
|              | (µI)   |  |
| 1× PBS       | 400    |  |
| Enzymatic RI | 1      |  |

- Dilute cells with PBS-RI to 2 million/ml, aliquot  $5\times N$   $\mu l$  of diluted sample to a new tube. For example, for 100k cells, N=100k/10k=10, aliquot  $5\times 10\mu l=50\mu l$  cells to a new tube.
- 21 Add  $42.5\times N$  of 1x TB to sample, incubate at RT for 10min.
- 22~ Add 2.5×N  $\mu l$  of assembled Tn5 to sample, mix well by pipetting.

| Transposome            | Volume  |
|------------------------|---------|
|                        | (µI)    |
| 1× home-made Tn5       | 0.625×N |
| Dilution Buffer        | 0.625×N |
| annealed transposition | 1.25×N  |
| adapter with glycerol  |         |
| Total                  | 2.5×N   |

- 23 Aliquot sample into 50µl per well in 96 well-plate, seal plate, shake at 500rpm for 30min, 37C
- 24 Pool sample, spin down, add 0.5ml NIB-RI, spin down
- 25 Resuspend cells in 60µl NIB-RI

RT 1h

Add 240 $\mu$ I RT mix to 60 $\mu$ I cells/NIB, aliquot 50 $\mu$ I to 6 PCR wells. Run RT thermal cycles. At the same time, start thawing the oligo plate at RT.

| • .                                  |        |
|--------------------------------------|--------|
| Reverse transcription (RT) mix       | Volume |
|                                      | (µI)   |
| 5× RT buffer                         | 70     |
| Enzymatics RNase Inhibitor           | 2.19   |
| SUPERase RI                          | 4.38   |
| dNTPs                                | 17.5   |
| 100μM RT Primer                      | 35     |
| H20                                  | 10.94  |
| 50% PEG                              | 105    |
| Maxima H Minus Reverse Transcriptase | 35     |
| (add right before RT reaction)       |        |
| Total                                | 280    |

| 50°C  | 10min  |        |
|-------|--------|--------|
| 8°C   | 12 s   | 3      |
| 15°C  | 45 s   | cycles |
| 20°C  | 45 s   |        |
| 30°C  | 30 s   |        |
| 42°C  | 2 min  |        |
| 50°C  | 3 min  |        |
| 50°C  | 5 min  |        |
| Total | 37 min |        |
|       |        |        |

27 Pool samples, spin down.

It is normal that the pellet sometimes looks bigger than before.

- 28 Wash with 500µl NIB, spin down, and resuspend with 1152µl NIB-RI.
- 29 🗶 🗓

Optional pause point, after moving supernatnt, store the nuclei pellet at -80°C

Hybridization-ligation 4h

30 **/**i

Thaw oligo plates to RT before hybridization.

31 Pipette mix 1152μl sample with 3456μl hybridization buffer, keep sample at RT, aliquot 40μl of mixture to Round 1 plate, pipette mix, and shake at 300rpm for 30min, RT

| Hybridization buffer | Stock conc. | Final conc. | Volume<br>(µl) |
|----------------------|-------------|-------------|----------------|
| Water                | N/A         | N/A         | 2761.9         |
| T4 ligase buffer     | 10×         | 1×          | 576            |
| SUPERase RI          | 20U/μl      | 0.05U/µl    | 14.4           |
| Enzymatics RI        | 40U/μl      | 0.32U/µl    | 46.08          |
| 10% NP40             | 10%         | 0.1%        | 57.60          |
| Total                |             |             | 3456           |

Add  $10\mu l$  Blocking oligo 1 to each well, changing tips between rows. Set a multichannel to  $40\,\mu L$  and pipette each well up and down 4-5 times., and shake at 300 rpm for 30 min, RT

**፩** protocols.io 9 07/28/2021

| Blocking oligo 1 | Stock conc. | Volume |
|------------------|-------------|--------|
|                  |             | (µI)   |
| Round_1_blocking | 100μΜ       | 253    |
| T4 ligase buffer | 10×         | 211    |
| Water            |             | 687    |
| Total            |             | 1152   |

- 33 Pool samples, pipette mix in the reservoir. Aliquot 50μl of mixture to Round 2 plate, pipette mix, and shake at 300rpm for 30min, RT
- 34 Add 10µl Blocking oligo 2 to each well, changing tips between rows. Set a multichannel to 40 µL and pipette each well up and down 4-5 times., and shake at 300rpm for 30min, RT.

| Blocking oligo 2 | Stock conc. | Volume |
|------------------|-------------|--------|
|                  |             | (µl)   |
| Round_2_blocking | 100μΜ       | 304    |
| T4 ligase buffer | 10×         | 211    |
| Water            |             | 637    |
| Total            |             | 1152   |

- Pool samples, pipette mix in the reservoir. Aliquot 60µl of mixture to Round 3 plate, pipette mix, shake at 300rpm for 30min, RT.
- Add  $10\mu l$  Blocking oligo 3 to each well, changing tips between rows. Set a multichannel to  $40\,\mu L$  and pipette each well up and down 4-5 times., and shake at 300 rpm for 30 min, RT.

| Blocking oligo 3 | Stock conc. | Volume |
|------------------|-------------|--------|
|                  |             | (µI)   |
| Round_3_blocking | 100μΜ       | 265    |
| Triton X-100     | 5%          | 23     |
| Water            |             | 864    |
| Total            |             | 1152   |

- 37 Pool samples, spin down, remove supernatant, wash with 1ml NIB-RI.
- 38 Spin down, remove supernatant, resuspend and wash with 1ml NIB-RI.
- 39 Spin down, remove supernatant, resuspend to 80µl NIB-RI.
- 40 Mix sample with  $320\mu l$  Ligation mix, aliquot  $50\mu l$  to 8 PCR tubes, shake at 300 rpm for 30 min, RT.

| Ligation mix        | Volume (µI) |
|---------------------|-------------|
| Enzymatics RI       | 3.2         |
| SUPERase RI         | 1           |
| 10× ligation buffer | 40          |
| T4 Ligase 400U/µl   | 20          |
| H20                 | 251.8       |
| 10% NP40            | 4           |
| Total               | 320         |

- 41 Gently resuspend with 1 mL NIB-RI and filter through 40 µm strainer (Flowmi) into a new 1.5 mL tube.
- 42 Spin, discard supernatant and resuspend to 50μl in NIB-RI.

# 43 **(II**

Count cells with Trypan blue. Should now be nuclei that will stain with Trypan. Expect  $\sim$ 10-20K if started from 100K cells. Decide number of cells to be sequenced in each sub-library (generally 1-2K for troubleshooting/QC or 10K-20K for a full run).

optional pause point, may store product at -80°C for at least a few days. We haven't extensively tested this. Freezing extra nuclei at this stage at -80°C will usually result in good RNA quality but reduced ATAC yield.

#### Reverse crosslinking-pull down 2h 30m

44 Assuming N of  $25\mu$ l sub-libraries are prepared. For each tube add  $25\mu$ l  $2\times$  RCB,  $2\mu$ l proteinase K (20mg/ml stock),  $1\mu$ l SUPERase RI,  $55^{\circ}$ C, 1h on thermal cycler.

optional stopping point, may store product at -80°C for at least a few days. We haven't extensively tested this. Freezing extra nuclei at this stage at -80°C will usually result in good RNA quality but reduced ATAC yield.

- 45 Mix with 2.5μl of 100mM PMSF (dissolved in IPA) and incubate at RT for 10min. At the same time, prepare following buffers.
- 46 Remove supernatant, wash twice with 100×N  $\mu$ l B&W-T without RI.
- 47 Remove supernatant, wash once with 100×N μl B&W-T/Rl, and resuspend beads in 50×N μl 2× B&W/Rl.

| 1× B&W-T/RI | Volume/µl |
|-------------|-----------|
| 1× B&W-T    | 400×(N+1) |
| SUPERase RI | 4×(N+1)   |

| 2× B&W/RI   | Volume/µl |
|-------------|-----------|
| 2× BW       | 100×(N+1) |
| SUPERase RI | 2×(N+1)   |

- 48 Add 50µl of beads to each sample, rotate at 10rpm, RT, 60min.
- Put on a magnetic rack, transfer supernatant containing chromatin fragments to a new tube for library preparation later! The supernatant is stable at RT for a few hours.
- 50 Wash cDNA/RNA-bound beads with 100 $\mu$ l 1× B&W-T/RI, RT, three times.
- Put the sample on the magnetic rack, wash with  $100\mu l\,1\times$  STE/RI, without resuspending beads.

| 1× STE/RI   | Volume/µl |
|-------------|-----------|
| STE         | 200×(N+1) |
| SUPERase RI | N+1       |

ATAC library preparation 2h

52

ATAC library and RNA library are usually performed in parallel.

Clean sample by Qiagen Minelute column with  $500\mu l$  DNA binding buffer (Zymo) or PB buffer (Qiagen), elute to  $11\mu l$  EB, elute again with additional  $11\mu l$  EB ( $22\mu l$  in total).

Zymo DNA clean up column may result in inconsistent results between samples.

54 Mix  $\sim$ 20µl sample with 29µl PCR mix, 1µl of 25µM Ad1.xx primer and H<sub>2</sub>O, run PCR for 5 cycles.

| ATAC PCR mix   | Volume |
|----------------|--------|
|                | (µI)   |
| NEBNext 2× mix | 25×N   |
| P7 primer 25µM | N      |
| H20            | 3×N    |
| Total          | 29×N   |

| ATAC PCR |       |         |
|----------|-------|---------|
| 72°C     | 5 min | 1       |
|          |       | cycle   |
| 98°C     | 30 s  | 1 cycle |
| 98°C     | 10 s  | 5       |
| 65°C     | 30 s  | cycles  |
| 72°C     | 60 s  |         |



qPCR:  $5\mu$ l sample +  $10\mu$ l qPCR mix, calculate the number of cycles needed to reach  $\frac{1}{3}$  of the plateau fluorescence (0.33 Ct)

| qPCR |      |         |
|------|------|---------|
| 98°C | 30 s | 1 cycle |
| 98°C | 10 s | 20      |
| 65°C | 30 s | cycles  |
| 72°C | 60 s |         |

| Volume |
|--------|
| (µI)   |
| 5×N    |
| 0.2×N  |
| 0.2×N  |
| 0.9×N  |
| 3.7×N  |
| 10×N   |
|        |

### 56



check qPCR product size on gel, expect smear with average size ~400bp. Nucleosome pattern may or may not show up

 $10,000 \times SYBR$  green was diluted by water to  $100 \times$ , and stored in black tube at -20°C.  $100 \times SYBR$  was further diluted by water to  $10 \times freshly$ .

57 Run additional PCR cycles for the rest of sample (~45µl), N=0.33 Ct cycles.

| Additional PCR |     |         |
|----------------|-----|---------|
| 98°C           | 30s |         |
| 98°C           | 10s | 0.33 Ct |
| 65°C           | 30s | cycles  |
| 72°C           | 60s |         |

58 Expect  $\sim$ 11-13 additional cycles for 2K cells or  $\sim$ 8-10 for 10K cells.



Clean sample by Zymo DNA clean up kit (225 $\mu$ l binding buffer or 250 $\mu$ l if skipped qPCR), elute to 6 $\mu$ l EB, elute again with additional 6 $\mu$ l EB (~10 $\mu$ l in total). Store the libraries at -20°C until quantification.

RNA library preparation (Template switching)

2h

- Remove all supernatant, resuspend beads in  $50\mu$ I Template switch mix, be careful to avoid beads to dry.
- 61 Rotate samples at RT for 30min at 10rpm.
- 62 Incubate at 42°C for 90min, shaking at 300rpm, resuspend beads every 30min by pipetting mix up and down.

| Template switch mix   | Volume (μl) | Final conc. |
|-----------------------|-------------|-------------|
| H20                   | 1.25×(N+1)  |             |
| 50% PEG 6000          | 15×(N+1)    | 15%         |
| 5× Maxima RT buffer   | 10×(N+1)    | 1x          |
| FicoII PM-400 (20%)   | 10×(N+1)    | 4%          |
| 10mM dNTPs, each      | 5×(N+1)     | 1mM         |
| NxGen RNase Inhibitor | 5×(N+1)     | 0.1x        |
| 100μM TSO (BC_0127)   | 1.25×(N+1)  | 2.5µM       |
| Maxima RT Rnase H     | 2.53×(N+1)  |             |
| Minus (add last)      |             |             |
| Total                 | 50×(N+1)    |             |

#### cDNA amplification 2h

- Mix each sample with  $100\mu I H_2 O$ , magnetize and discard supernatant, wash with  $200\mu I$  STE, without resuspend beads.
- 64 Mix 55µl PCR mix with beads, transfer sample to PCR plate.
- 65 Run PCR for 5 cycles, with sample against magnetic rack, transfer supernatant to new PCR wells.

| Total               | 55×(N+1)    |
|---------------------|-------------|
| H20                 | 23.24×(N+1) |
| P7 primer 25µM      | 0.88×(N+1)  |
| RNA PCR primer 25µM | 0.88×(N+1)  |
| Kapa Hifi 2× mix    | 27.5×(N+1)  |
| cDNA PCR mix        | Volume (µl) |

**⋈** protocols.io 14 07/28/2021

| PCR  |      |
|------|------|
| 95°C | 3min |
| 98°C | 20s  |
| 65°C | 45s  |
| 72°C | 3min |





qPCR: For each sublibrary, mix 2.5µl sample with 7.5µl qPCR mix, run qPCR protocol and calculate 0.33 Ct.

| RNA qPCR mix        | Volume<br>(µl) |
|---------------------|----------------|
| Kapa Hifi 2× mix    | 3.75×(N+1)     |
| RNA PCR primer 25µM | 0.12×(N+1)     |
| P7 25µM             | 0.12×(N+1)     |
| EVAgreen 20×        | 0.5×(N+1)      |
| H20                 | 3.01×(N+1)     |
| Total               | 7.5×(N+1)      |

| qPCR |      |        |
|------|------|--------|
| 95°C | 3min |        |
| 98°C | 20s  | 20     |
| 65°C | 20s  | cycles |
| 72°C | 3min |        |

## 67



check qPCR product size on gel, expect smear with average size > 1kb.

Run additional PCR cycles for the rest of the sample ( $\sim 50 \mu l$ ), N=0.33 Ct cycles.

| Additional cycles |      |         |
|-------------------|------|---------|
| 95°C              | 3min |         |
| 98°C              | 20s  | 0.33 Ct |
| 65°C              | 20s  | cycles  |
| 72°C              | 3min |         |

For cell line, expect 6-7 additional cycles for 2k cells,  $\sim 4$  additional cycles for 10k cells. More cycles are expected for primary cells or nuclei.



Purify each sample with  $42\mu$ I AMpure beads (0.8×) for cell line sample or  $31.5\mu$ I AMpure beads (0.6×) for primary samples, elute cDNA to  $10\mu$ I EB. Store the libraries at  $-20^{\circ}$ C.

Tagmentation 1h

70 Quantify cDNA concentration by Qubit using  $1\mu l$  cDNA. Ideally, dilute 50ng cDNA to  $5ng/\mu l$  in  $H_2O$ .

Use nanodrop may result in inaccurate quantification

Expect > 50ng cDNA. If cDNA amount is low, it can get away with tagmenting 20ng cDNA; in this case, adjust the volume of  $H_2O$  and cDNA accordingly.

71 Assemble in-house produced Tn5, prepare transposome by mixing Tn5, dilution buffer and annealed oligo, and incubate the mix at RT for 30min.

| Assemble transposome                        | Volume     |
|---------------------------------------------|------------|
|                                             | (µI)       |
| 1× Tn5                                      | 1.25×(N+1) |
| Dilution Buffer                             | 1.25×(N+1) |
| annealed tagmentation adapter with glycerol | 2.5×(N+1)  |
| Total                                       | 5×(N+1)    |

- 72 Mix 10μl of 5ng/μl cDNA with 10μl H<sub>2</sub>O, 25μl TD buffer (Illumina) and 5μl assembled Tn5. Incubate at 55°C for 5min on a thermal cycler.
- Purify tagmented library with Qlagen minelute column using 250μl PB buffer, elute twice with 11μl EB each time (22μl in total).
- 74 Add 29µl of post-tagmentation PCR mix with 1µl tube specific Ad 1.xx primer, amp 7 cycles.

| Post-tagmentation PCR mix | Volume   |
|---------------------------|----------|
|                           | (µI)     |
| Sample in EB              | 20 each  |
| NEBNext 2× mix            | 25×(N+1) |
| 25μM P7                   | 1×(N+1)  |
| 25μM Ad 1.xx              | 1×(N+1)  |
| H20                       | 3×(N+1)  |
| Total                     | 50×(N+1) |

| Tagmentation PCR |      |        |
|------------------|------|--------|
| 72°C             | 5min |        |
| 98°C             | 30s  |        |
| 98°C             | 10s  | 7      |
| 65°C             | 30s  | cycles |
| 72°C             | 60s  |        |

75



Purify each sample with  $35\mu$ I AMpure beads (0.7×), elute library to  $10\mu$ I EB. Store the libraries at -20°C until quantification.

Library quantification and sequencing 1h 30m

- Recommend quantifying with KAPA qPCR kit and pool to 4nM. Expect > 30nM, average library size  $\sim 350$ bp with minimal adapter dimer.
- 77 We typically sequence libraries with a Next-seq High output 150 cycle kit. The sequencing read configuration is 50×99×8×10 for the RNA-seq library; 30×99×8×30 for the pooled ATAC/RNA or ATAC-seq library. In general, ~25k reads per cell per library type for ~50% duplication rate and ~200k reads per cell per library type for ~90% duplication rate