Problem 1 (IMO 2010/4). Let P be a point interior to triangle ABC (with $CA \neq CB$). The lines AP, BP and CP meet again its circumcircle Γ at K, L, respectively M. The tangent line at C to Γ meets the line AB at S. Show that from SC = SP follows MK = ML.

Problem 2 (IMO 2009/2). Let ABC be a triangle with circumcentre O. The points P and Q are interior points of the sides CA and AB respectively. Let K, L and M be the midpoints of the segments BP, CQ and PQ. respectively, and let Γ be the circle passing through K, L and M. Suppose that the line PQ is tangent to the circle Γ . Prove that OP = OQ.

INO 2009 - PZ

Quero.
$$0A = 0P$$
. $(=)$ $Pot_p A = Pot_p P$ $(=)$ $AA \cdot B = AP \cdot PC$ $(=)$ $AB \cdot B = AP \cdot PC$

Problem 3 (EGMO 2020/5). Consider the triangle ABC with $\angle BCA > 90^{\circ}$. The circumcircle Γ of ABC has radius R. There is a point P in the interior of the line segment AB such that PB = PC and the length of PA is R. The perpendicular bisector of PB intersects Γ at the points D and E.

Prove P is the incentre of triangle CDE.

Problem 4 (IMO 2014/3). Seja ABCD um quadrilátero convexo com $\angle ABC = \angle CDA = 90^{\circ}$. O ponto H é o pé da perperndicular de A sobre BD. Os pontos S e T são escolhidos sobre os lados AB e AD, respectivamente, de modo que H esteja no interior do triângulo SCT e

$$\angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}.$$

Prove que a reta BD é tangente à circunferência circunscrita ao triângulo TSH.

Problem 5 (IMO 2008/1). Seja H o ortocentro do triângulo acutângulo ABC. O círculo Γ_A , centrado no ponto médio de BC que passa por H intersecta a reta BC nos pontos A_1 e A_2 . Da mesma maneira, defina os pontos B_1 , B_2 , C_1 e C_2 .

Prove que os seis pontos $A_1,\ A_2,\ B_1,\ B_2,\ C_1$ e C_2 são concíclicos.