Capítulo 1 - Sucessões de números reais

Com vista a uma melhor compreensão sobre as séries de números reais, vamos agora fazer uma breve revisão de conceitos básicos sobre sucessões de números reais.

1. Sucessões de números reais

Definição

Conceitos variados

Subsucessão

Limite de uma sucessão

Propriedades aritméticas dos limites

Algumas sucessões de relevo

Limites infinitos

Progressões aritméticas

Progressões geométricas

Sucessão $(a^n)_n$, $a \in \mathbb{R}$

Soma de todos os termos de uma progressão geométrica

Definição

Chamamos *sucessão* de números reais a toda a aplicação u definida em $\mathbb N$ com valores em $\mathbb R$,

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u(n)$

onde u(n) é habitualmente representado por u_n .

- ▶ A imagem por u do genérico $n \in \mathbb{N}$, u_n , designa-se por termo de ordem n ou termo geral da sucessão.
- ▶ Para indicar a sucessão u, usaremos a notação $(u_n)_{n\in\mathbb{N}}$ ou, mais simplesmente, $(u_n)_n$.
- \triangleright Por vezes, escreveremos ainda $u_1, u_2, u_3, \ldots, u_n, \ldots$

Conceitos variados

Seja $(u_n)_n$ uma sucessão de números reais. Dizemos que $(u_n)_n$ é uma sucessão:

a) constante se

$$u_n = a, \, \forall n \in \mathbb{N}, \quad \text{ para algum } a \in \mathbb{R};$$

b) de termos distintos dois a dois se

$$u_n \neq u_m$$
, sempre que $n \neq m$;

c) alternada se os seus termos são alternadamente positivos e negativos, isto é, se

$$u_n = (-1)^n a_n$$
, com $a_n > 0$, $\forall n \in \mathbb{N}$, ou com $a_n < 0$, $\forall n \in \mathbb{N}$;

Conceitos variados

d) limitada inferiormente ou minorada se

$$\exists a \in \mathbb{R} : u_n \in [a, +\infty[, \forall n \in \mathbb{N};$$

e) limitada superiormente ou majorada se

$$\exists b \in \mathbb{R} : u_n \in]-\infty, b], \forall n \in \mathbb{N};$$

f) limitada se

$$\exists a, b \in \mathbb{R} : u_n \in [a, b], \forall n \in \mathbb{N},$$

ou, equivalentemente, se

$$\exists M \in \mathbb{R}^+ : u_n \in [-M, M], \forall n \in \mathbb{N},$$

ou ainda se

$$\exists M \in \mathbb{R}^+ : |u_n| \leq M, \forall n \in \mathbb{N};$$

Cálculo (LCC) 2019/2020

Conceitos variados

g) crescente se

$$u_n \leq u_{n+1}, \ \forall n \in \mathbb{N};$$

em particular, estritamente crescente se

$$u_n < u_{n+1}, \ \forall n \in \mathbb{N};$$

h) decrescente se

$$u_n > u_{n+1}$$
, $\forall n \in \mathbb{N}$;

em particular, estritamente decrescente se

$$u_n > u_{n+1}, \ \forall n \in \mathbb{N};$$

i) monótona se é crescente ou decrescente.

Subsucessão

Dada uma sucessão $(u_n)_n$ de números reais, uma sua *subsucessão* é uma restrição da correspondente aplicação $u:\mathbb{N}\longrightarrow\mathbb{R}$ a um subconjunto infinito (ou seja, não limitado) de \mathbb{N} , digamos a

$$\mathbb{N}^* = \left\{ \textit{n}_1, \, \textit{n}_2, \, \ldots, \, \textit{n}_p, \, \ldots \right\}, \qquad \text{com} \qquad \textit{n}_1 < \textit{n}_2 < \cdots < \textit{n}_p < \ldots$$

Tal subsucessão representa-se por $(u_n)_{n\in\mathbb{N}^*}$ ou por $(u_{n_p})_{n\in\mathbb{N}}$.

Subsucessão

Dada uma sucessão possuindo certas "propriedades boas", qualquer sua subsucessão possui as mesma propriedades. Em particular, vale o resultado seguinte.

Propriedade

Seja $(u_n)_n$ uma sucessão e $(w_n)_n$ uma sua subsucessão.

- 1. Se $(u_n)_n$ é limitada então $(w_n)_n$ também é limitada.
- 2. Se $(u_n)_n$ é monótona então $(w_n)_n$ também é monótona, apresentando o mesmo tipo de monotonia.

Subsucessão

Observações

- Para concluir que uma sucessão não é limitada basta encontrar uma sua subsucessão que não seja limitada.
- Para mostrar que uma sucessão não é monótona basta encontrar uma sua subsucessão que não seja monótona, ou então duas subsucessões com monotonias diferentes.
- 3. Uma dada sucessão pode não ser limitada ou não ser monótona e possuir subsucessões limitadas e subsucessões monótonas.
- Nem sempre é possível extrair uma subsucessão limitada de uma dada sucessão não limitada.

Dada uma sucessão real $(u_n)_n$ e um elemento $a \in \mathbb{R}$, dizemos que a sucessão $(u_n)_n$ converge para a, ou que a é o limite da sucessão $(u_n)_n$, quando existe uma ordem a partir da qual, todos os termos da sucessão estão tão próximos de a quanto se queira. Ou seja, a partir de uma certa ordem suficientemente grande, todos os termos da sucessão estão arbitrariamente próximos de a.

Simbolicamente, escrevemos

$$\lim_{n\to\infty}u_n=a\quad \mathrm{sse}\quad \forall\delta>0\;,\;\;\exists p\in\mathbb{N}:\;n>p\implies \mid u_n-a\mid<\delta$$

$$\mathrm{sse}\quad \forall\delta>0\;,\;\;\exists p\in\mathbb{N}:\;n>p\implies u_n\in\left]a-\delta,a+\delta\right[.$$

Abreviadamente, escrevemos

$$\lim_{n} u_n = a$$
 ou $u_n \longrightarrow a$.

Se uma sucessão $(u_n)_n$ converge para algum $a \in \mathbb{R}$, diz-se que $(u_n)_n$ é convergente . Caso contrário, diz-se que $(u_n)_n$ é divergente.

Teorema

[Unicidade do limite]

O limite de uma sucessão convergente é único.

Teorema

Se $(u_n)_n$ converge para a então toda a sua subsucessão converge também para a.

Consequências

- 1. Se $(u_n)_n$ possui uma subsucessão divergente então $(u_n)_n$ é também divergente.
- 2. Se $(u_n)_n$ possui duas subsucessões convergentes para limites diferentes então $(u_n)_n$ é divergente.
- 3. Se $(u_n)_n$ é uma sucessão convergente possuindo uma subsucessão de limite a então $\lim_n u_n = a$.
- 4. Se $\lim_n u_n = a$ então, para todo $k \in \mathbb{N}$, $\lim_n u_{n+k} = a$.

Teorema

Toda a sucessão convergente é limitada.

Observações

- 1. Toda a sucessão não limitada é divergente.
- 2. O recíproco é falso, isto é, nem toda a sucessão limitada é convergente.

Basta pensar na sucessão definida por $u_n=(-1)^n\,,\;n\in\mathbb{N}$, que é limitada mas divergente.

Teorema

Toda a sucessão limitada e monótona é convergente.

Mais especificamente:

1. se $(u_n)_n$ é limitada e crescente então

$$\lim_{n} u_{n} = \sup \{u_{n}: n \in \mathbb{N}\};$$

2. se $(u_n)_n$ é limitada e decrescente então

$$\lim_{n} u_{n} = \inf \left\{ u_{n} : n \in \mathbb{N} \right\}.$$

Teorema

[Bolzano-Weierstrass]

Toda a sucessão real limitada possui uma subsucessão convergente.

Propriedades aritméticas dos limites

Vejamos agora alguns dos resultados mais simples sobre limites envolvendo as operaçõs aritméticas e a relação de ordem nos reais. Começamos com um resultado muito útil para o cálculo de limites.

Teorema

Se $\lim_n u_n = 0$ e $\left(v_n\right)_n$ é uma sucessão limitada então $\lim_n \left(u_n v_n\right) = 0.$

Teorema

[Propriedades aritméticas dos limites]

Sejam $(u_n)_n$ e $(v_n)_n$ duas sucessões convergentes, tais que $\lim_n u_n = a$ e $\lim_n v_n = b$. Então:

- 1. $\lim_{n} (u_n + v_n) = a + b;$ 2. $\lim_{n} (u_n v_n) = a b;$
- 3. $\lim_{n} (u_n v_n) = ab$; 4. $\lim_{n} \left(\frac{u_n}{v_n}\right) = \frac{a}{b}$, sempre que $b \neq 0$.

Cálculo (LCC) 2019/2020

Propriedades aritméticas dos limites

Teorema

[Permanência do sinal]

- 1. Se $(u_n)_n$ é uma sucessão convergente para a, com a > 0, então existe uma ordem a partir da qual todos os termos da sucessão $(u_n)_n$ são positivos.
- 2. Se $(u_n)_n$ é uma sucessão convergente para b, com b < 0, então existe uma ordem a partir da qual todos os termos da sucessão $(u_n)_n$ são negativos.

Teorema

[Sucessões enquadradas]

Sejam $(u_n)_n$ e $(w_n)_n$ sucessões convergentes tais que $\lim_n u_n = \lim_n w_n = a$. Seja $(v_n)_n$ outra sucessão tal que, a partir de uma certa ordem, se tem $u_n \leq v_n \leq w_n$. Então $(v_n)_n$ também é convergente e $\lim_n v_n = a$.

Cálculo (LCC) 2019/2020

Algumas sucessões de relevo

1. Consideremos a sucessão definida por

$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}, \ \forall n \in \mathbb{N}.$$

Mostra-se que se trata de uma sucessão convergente e vamos introduzir o número *e* como o limite desta sucessão.

- i) $(a_n)_n$ é uma sucessão estritamente crescente.
- ii) $(a_n)_n$ é limitada. Tem-se $2 \le a_n < 3, \forall n \in \mathbb{N}$.
- iii) Por i) e ii), a sucessão $(a_n)_n$ é convergente. Designamos por e o seu limite, a que se chama n'umero de Neper,

$$e = \lim_{n} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right),$$

tendo-se necessariamente $2 \le e \le 3$.

Algumas sucessões de relevo

2. Consideremos a sucessão definida por

$$b_n = \left(1 + \frac{1}{n}\right)^n, \ \forall n \in \mathbb{N}.$$

Mostra-se que se trata de uma sucessão convergente e que $\lim_{n} b_n = \lim_{n} a_n$, ou seja, que

$$\lim_{n} \left(1 + \frac{1}{n}\right)^{n} = e.$$

Mais em geral, mostra-se que

• se $(u_n)_n$ é uma sucessão que tende para $+\infty$ e $\alpha \in \mathbb{R}$, então

$$\lim_{n} \left(1 + \frac{\alpha}{u_n} \right)^{u_n} = e^{\alpha};$$

• se $\lim_n u_n = +\infty$ e $(a_n)_n$ é uma sucessão convergente para **a** então

$$\lim_{\text{CálBulo}} \left(1 + \frac{a_n}{a_n} \right)^{u_n} = e^a.$$

Aproximação para o número de Neper

n	$\left(1+\frac{1}{n}\right)^n$	n	$1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$
1	2.0000000	1	<u>2</u> .0000000
10	2.5937424	5	<u>2.71</u> 66666
100	2.7048138	6	<u>2.718</u> 0555
1000		7	<u>2.7182</u> 539
	<u>2.71</u> 69239	8	<u>2.7182</u> 787
10000	<u>2.718</u> 1459	9	2.7182815
100000	<u>2.7182</u> 682	10	<u>2.7182818</u>

Com 8 casas decimais exactas, e = 2.71828182.

Algumas sucessões de relevo

3. Consideremos as sucessão definida por

$$c_n = \sqrt[n]{a}, \ \forall n \in \mathbb{N}, \quad \text{ onde } a \in \mathbb{R}^+.$$

Mostra-se que

$$\lim_{n} \sqrt[n]{a} = 1.$$

4. Consideremos a sucessão definida por

$$d_n = \sqrt[n]{n}, \ \forall n \in \mathbb{N}.$$

Mostra-se que

$$\lim_{n} \sqrt[n]{n} = 1.$$

Dizemos que uma sucessão $(u_n)_n$ tende para $+\infty$ quando todos os termos da sucessão são arbitrariamente grandes a partir de uma certa ordem p suficientemente "alta", isto é, quando

$$\forall A > 0$$
, $\exists p \in \mathbb{N} : n > p \implies u_n > A$.

Significa que todos os termos da sucessão, à exceção, possivelmente, de um número finito, são superiores a qualquer número real arbitrariamente grande. Neste caso, embora $(u_n)_n$ seja uma sucessão divergente, adotamos o mesmo tipo de notação usada para o limite real, escrevendo

$$\lim_n u_n = +\infty \qquad \text{ou} \qquad u_n \longrightarrow +\infty.$$

Analogamente, dizemos que uma sucessão $(u_n)_n$ tende para $-\infty$, quando todos os seus termos, a partir de uma ordem p suficientemente "alta", são negativos e arbitrariamente grandes em valor absoluto, isto é, quando

$$\forall A > 0$$
, $\exists p \in \mathbb{N} : n > p \implies u_n < -A$.

Significa que os termos da sucessão, à exceção, possivelmente, de um número finito, são inferiores a qualquer número real negativo, arbitrariamente fixado.

Escrevemos

$$\lim_{n} u_n = -\infty$$
 ou $u_n \longrightarrow -\infty$.

Teorema

[Operações aritméticas com limites infinitos] Sejam $(u_n)_n$ e $(v_n)_n$ sucessões reais.

- 1. Se $\lim_{n} u_n = +\infty$ e $(v_n)_n$ é limitada inferiormente então $\lim_{n} (u_n + v_n) = +\infty$.
- 2. Se $\lim_n u_n = +\infty$ e existem $c \in \mathbb{R}^+$, $p \in \mathbb{N}$ tais que $v_n > c$ para todo n > p então $\lim_n u_n v_n = +\infty$.
- 3. Se existe $p \in \mathbb{N}$ tal que $u_n > 0$ para todo n > p, então

$$\lim_{n} u_{n} = 0 \iff \lim_{n} \frac{1}{u_{n}} = +\infty.$$

- 4. Se existem $c \in \mathbb{R}^+$ e $p \in \mathbb{N}$ tais que $u_n > c$ para todo n > p e se $\lim_n v_n = 0$, então $\lim_n \frac{u_n}{v_n} = +\infty$.
- 5. Se $(u_n)_n$ é limitada e $\lim_n v_n = +\infty$, então $\lim_n \frac{u_n}{v_n} = 0$.

Cálculo (LCC) 2019/2020

Observações

1. No cálculo de limites de sucessões, algumas indeterminações comuns são

$$\frac{0}{0}\;,\quad \infty-\infty\;,\quad 0\times\infty\;,\quad \frac{\infty}{\infty}\;,\quad 0^0\;,\quad \infty^0\;,\quad 1^\infty.$$

2. É útil saber que:

$$\lim_n \ \frac{\mathrm{e}^n}{n^k} = +\infty \,, \quad \forall k \in \mathbb{R};$$

$$\lim_{n} \frac{n}{(\ln n)^{k}} = +\infty, \quad \forall k \in \mathbb{R};$$

$$\lim_n \frac{\operatorname{sen} u_n}{u_n} = 1, \quad \operatorname{sempre que } \lim_n u_n = 0 \text{ e } u_n \neq 0, \, \forall n \in \mathbb{N}.$$

Cálculo (LCC) 2019/2020

Progressões aritméticas

Dizemos que a sucessão $(u_n)_n$ é uma progressão aritmética se

$$u_{n+1} - u_n = r$$
 (constante), $\forall n \in \mathbb{N}$,

isto é, uma sucessão em que é constante a diferença entre cada termo e o anterior. À constante r dá-se o nome de razão da progressão.

Temos, então, que cada termo se obtém do anterior somando-o à razão:

$$u_{n+1}=u_n+r, \quad \forall n\in\mathbb{N}.$$

Toda a progressão aritmética $(u_n)_n$ de razão r é uma sucessão monótona

- crescente se r > 0;
- decrescente se r < 0;
- constante se r=0.

Progressões aritméticas

Exemplo

A sucessão

$$1, 2, 3, \ldots, n, \ldots$$

de termo geral $u_n = n$, $\forall n \in \mathbb{N}$, é uma progressão aritmética de razão 1 (crescente).

Exemplo

A sucessão

$$-2, -5, -8, \ldots, 1 - 3n, \ldots$$

de termo geral $u_n = 1 - 3n$, $\forall n \in \mathbb{N}$, é uma progressão aritmética de razão -3 (decrescente).

Termo geral de uma progressões aritmética

Seja $(u_n)_n$ uma progressão aritmética de razão r,

$$u_1, u_2, u_3, \ldots, u_n, \ldots$$

Por definição,

Assim, qualquer progressão aritmética está bem definida se se conhecem o primeiro termo e a razão. Temos

$$u_n = u_1 + (n-1)r, \quad \forall n \in \mathbb{N}.$$

Termo geral de uma progressões aritmética

Exemplo

Numa progressão aritmética de razão -7 e primeiro termo 18 , vamos calcular o 6.º e o 20.º termos.

O termo geral da progressão é

$$u_n = 18 + (n-1) \times (-7) = 25 - 7n.$$

Então,

$$u_6 = 25 - 7 \times 6 = -17,$$

 $u_{20} = 25 - 7 \times 20 = -115.$

Soma dos n primeiros termos de uma progressão aritmética

Vamos verificar que a soma de dois termos equidistantes dos extremos é igual à soma dos extremos.

Sejam, então, u_p e u_s dois termos equidistantes dos extremos.

$$\underbrace{u_1, u_2, \dots u_{p-1}}_{p-1 \text{ termos}}, u_p, \dots, u_s, \underbrace{u_{s+1}, \dots, u_{n-1}, u_n}_{p-1 \text{ termos}}$$

Como

$$u_p = u_1 + (p-1)r$$
 e $u_n = u_s + (p-1)r$,

vem

$$u_p - u_1 = u_n - u_s \iff u_p + u_s = u_1 + u_n$$
.

Soma dos n primeiros termos de uma progressão aritmética

A partir desta propriedade vamos obter a fórmula que permite calcular a soma dos *n* primeiros termos de uma progressão aritmética.

Com efeito,

$$S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n-2} + u_{n-1} + u_{n}$$

$$+ S_{n} = u_{n} + u_{n-1} + u_{n-2} + \dots + u_{3} + u_{2} + u_{1}$$

$$2S_{n} = \underbrace{(u_{1} + u_{n}) + (u_{2} + u_{n-1}) + \dots + (u_{n-1} + u_{2}) + (u_{n} + u_{1})}_{}$$

Como cada uma destas parcelas é igual à soma dos extremos, vem

$$2S_n = (u_1 + u_n) \times n$$

n parcelas

ou seja,

$$S_n = \frac{u_1 + u_n}{2} \times n.$$

Soma dos n primeiros termos de uma progressão aritmética

Exemplo

Vamos calcular a soma dos vinte primeiros números pares.

A sucessão dos números pares é uma progressão aritmética de razão 2 e em que o primeiro termo é 2. Então,

$$u_n = 2 + (n-1) \times 2 = 2n$$

е

$$S_{20} = \frac{u_1 + u_{20}}{2} \times 20 = \frac{2 + 40}{2} \times 20 = 420.$$

Progressões geométricas

Dizemos que a sucessão $(u_n)_n$ é uma progressão geométrica se

$$\frac{u_{n+1}}{u_n} = r \text{ (constante)}, \quad \forall n \in \mathbb{N},$$

isto é, uma sucessão em que é constante o quociente entre cada termo e o anterior. À constante *r* dá-se o nome de *razão da progressão*.

Temos, então, que cada termo se obtém do anterior multiplicando-o pela razão:

$$u_{n+1} = u_n \times r, \quad \forall n \in \mathbb{N}.$$

Progressões geométricas

Da definição resulta que uma progressão geométrica $(u_n)_n$ de razão r em que $u_1 \neq 0$ e

- ▶ r > 1 é monótona crescente ou decrescente, conforme $u_1 > 0$ ou $u_1 < 0$;
- r=1 é monótona constante (todos os termos são iguais ao primeiro);
- ▶ 0 < r < 1 é monótona decrescente ou crescente, conforme $u_1 > 0$ ou $u_1 < 0$;
- r = 0 é uma sucessão com todos os termos nulos a partir do primeiro;
- ► r < 0 é não monótona (os termos são alternadamente positivos e negativos).

Se $u_1 = 0$ todos os termos da sucessão são nulos.

Progressões geométricas

Exemplo

Vamos verificar que a sucessão de termo geral

$$u_n = 3 \times 6^{n-1}$$

é uma progressão geométrica monótona crescente.

Temos

$$\frac{u_{n+1}}{u_n} = \frac{3 \times 6^n}{3 \times 6^{n-1}} = \frac{3 \times 6^n}{3 \times 6^n \times 6^{-1}} = 6 \text{ (constante)}, \quad \forall n \in \mathbb{N},$$

o que mostra que $(u_n)_n$ é uma progressão geométrica de razão 6.

Como a razão é maior do que 1 e o primeiro termo

$$u_1 = 3 \times 6^{1-1} = 3$$

é positivo, a sucessão é monótona crescente.

Cálculo (LCC) 2019/2020

Termo geral de uma progressão geométrica

Consideremos uma progressão geométrica $(u_n)_n$ em que $u_1 \neq 0$ e $r \neq 0$. Da definição resulta

$$\frac{u_2}{u_1} = r \iff u_2 = u_1 \cdot r$$

$$\frac{u_3}{u_2} = r \iff u_3 = u_2 \cdot r = u_1 \cdot r^2$$

$$\frac{u_4}{u_3} = r \iff u_4 = u_3 \cdot r = u_1 \cdot r^3$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{u_n}{u_n} = r \iff u_n = u_{n-1} \cdot r = u_1 \cdot r^{n-1}.$$

Podemos, então, afirmar que qualquer progressão geométrica fica bem definida se se conhecem o primeiro termo e a razão. Temos

$$u_n = u_1 \cdot r^{n-1}, \quad \forall n \in \mathbb{N}.$$

Soma dos *n* primeiros termos de uma progressão geométrica

Consideremos os n primeiros termos de uma progressão geométrica $(u_n)_n$ de razão $r \neq 0$ e $r \neq 1$ e em que $u_1 \neq 0$,

$$u_1, u_2, u_3, \ldots, u_n$$
.

Vamos procurar uma fórmula que permita calcular a soma S_n de todos estes termos:

$$S_n = u_1 + u_2 + u_3 + \ldots + u_n.$$

Soma dos *n* primeiros termos de uma progressão geométrica

Atendendo a que

$$u_2 = u_1 \cdot r, \quad u_3 = u_1 \cdot r^2, \quad \dots, \quad u_n = u_1 \cdot r^{n-1},$$

podemos escrever

$$S_n = u_1 + u_1 r + u_1 r^2 + \ldots + u_1 r^{n-1}$$
(3)

е

$$rS_n = u_1r + u_1r^2 + u_1r^3 + \ldots + u_1r^n.$$
(4)

Subtraindo membro a membro (3) e (4), vem

$$S_n - rS_n = u_1(1 - r^n) \iff (1 - r)S_n = u_1(1 - r^n),$$

ou seja,

$$S_n = u_1 \cdot \frac{1 - r^n}{1 - r}, \quad r \neq 1.$$

Cálculo (LCC) 2019/2020

Soma dos *n* primeiros termos de uma progressão geométrica

Observe que:

- ▶ se r = 0, $S_n = u_1$;
- se $u_1 = 0$, $S_n = 0$:
- ▶ se r = 1, $S_n = nu_1$.

Exemplo

Vamos calcular a soma das primeiras dez potências de base 2 e expoente natural,

$$2 + 2^2 + 2^3 + \ldots + 2^{10}$$
.

A sucessão das potências de base dois e expoente natural é uma progressão geométrica de razão 2 e em que o primeiro termo é 2,

$$r = 2$$
 e $u_1 = 2$.

Então,

$$S_{10} = u_1 \cdot \frac{1 - r^{10}}{1 - r} = 2 \cdot \frac{1 - 2^{10}}{1 - 2} = 2 \cdot (2^{10} - 1) = 2 \cdot (1024 - 1) = 2046.$$

Vamos estudar quanto à monotonia e convergência as sucessões do tipo

$$a, a^2, a^3, \ldots, a^n, \ldots, a \in \mathbb{R},$$

cujos termos são as sucessivas potências de base a e expoente natural. Consideremos os possíveis valores de a em \mathbb{R} .

•
$$a > 1$$

Para, por exemplo, a=2, temos a sucessão $u_n=2^n,\, \forall n\in\mathbb{N}$,

$$2, 2^2, 2^3, \ldots, 2^n, \ldots$$

Monotonia

Como

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{2^n} = 2 > 1$$

e todos os termos são positivos, vem

$$\frac{u_{n+1}}{u_n} > 1 \Longleftrightarrow u_{n+1} > u_n, \quad \forall n \in \mathbb{N},$$

e a sucessão é monótona crescente.

Convergência

Sendo $L \in \mathbb{R}^+$ (qualquer), há sempre um termo da sucessão (potência de 2) que é maior do que L e como a sucessão é crescente, a partir desse termo todos os outros são superiores a L. Isto significa que

$$2^n \longrightarrow +\infty$$
.

A sucessão é divergente.

• a = 1

Neste caso temos a sucessão

$$u_n=1^n=1, \forall n\in\mathbb{N},$$

que é uma sucessão constante e convergente para 1.

• 0 < a < 1

Por exemplo, para
$$a=\frac{1}{2}$$
, temos a sucessão $u_n=\left(\frac{1}{2}\right)^n$, $\forall\in\mathbb{N}$.
$$\frac{1}{2},\,\frac{1}{4},\,\frac{1}{8},\,\frac{1}{16},\cdots$$

Monotonia

Como

$$\frac{u_{n+1}}{u_n} = \frac{\left(\frac{1}{2}\right)^{n+1}}{\left(\frac{1}{2}\right)^n} = \frac{1}{2} < 1$$

e todos os termos são positivos, vem

$$\frac{u_{n+1}}{u_n} < 1 \Longleftrightarrow u_{n+1} < u_n, \quad \forall n \in \mathbb{N},$$

e a sucessão é monótona decrescente.

Convergência

A sucessão é um infinitésimo e, portanto, convergente. Basta notar que

$$\left(\frac{1}{2}\right)^n = \frac{1}{2^n}$$

e, como $2^n \longrightarrow +\infty$, então, $\frac{1}{2^n} \longrightarrow 0$.

Cálculo (LCC) 2019/2020

• a = 0

Neste caso temos a sucessão constante nula,

$$u_n=0^n=0, n\in\mathbb{N},$$

que é convergente para 0.

• -1 < a < 0

Tomemos, por exemplo, $a = -\frac{1}{2}$ e temos a sucessão

$$u_n=\left(-\frac{1}{2}\right)^n,\quad n\in\mathbb{N}.$$

Monotonia

A sucessão é não monótona, visto que os termos são alternadamente positivos e negativos,

$$-\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \ldots, \left(-\frac{1}{2}\right)^n, \ldots$$

Convergência

Atendendo a que

$$\left(-\frac{1}{2}\right)^n = \frac{(-1)^n}{2^n} = \begin{cases} \frac{1}{2^n} & \text{se } n \text{ \'e par} \\ -\frac{1}{2^n} & \text{se } n \text{ \'e impar} \end{cases}$$

e, dado que $\frac{1}{2^n} \longrightarrow 0$, concluímos que também

$$\left(-\frac{1}{2}\right)^n \longrightarrow 0$$

e, portanto, a sucessão é convergente.

Cálculo (LCC) 2019/2020

$$\bullet$$
 $a=-1$

A sucessão

$$u_n=(-1)^n, n\in\mathbb{N},$$

é não monótona e divergente (oscilante).

• | *a* < −1

Fazendo, por exemplo, a=-2, consideremos a sucessão $u_n=(-2)^n, \quad n\in\mathbb{N}.$

Monotonia

Trata-se de uma sucessão não monótona, pois os seus termos são alternadamente positivos e negativos,

$$-2, 4, -8, \ldots, (-2)^n, \ldots$$

Convergência

Uma vez que $2^n \longrightarrow +\infty$ e como

$$(-2)^n = (-1)^n 2^n = \begin{cases} 2^n & \text{se } n \text{ \'e par} \\ -2^n & \text{se } n \text{ \'e impar,} \end{cases}$$

temos

$$(-2)^{2n} \longrightarrow +\infty$$
 e $(-2)^{2n+1} \longrightarrow -\infty$

e concluímos que $(-2)^n$ é divergente (oscilante).

Os quadros seguintes resumem o que acabámos de expor sobre a monotonia e a convergência da sucessão $(a^n)_n$, $n \in \mathbb{N}$, $a \in \mathbb{R}$.

Monotonia

$a \ge 0$	Monótona	crescente se $a>1$
		constante se $a=0$ ou $a=1$
		decrescente se $a < 1$
a < 0	Não monótona	

Convergência

$a \le -1$ ou $a > 1$	Divergente	propriamente $(+\infty)$ se $a>1$
		oscilante se $a \leq -1$
-1 < a < 1	Convergente	para 0 se $-1 < a < 1$
_ , , ,		para 1 se $a=1$

Exemplo

Consideremos as sucessões de termos gerais

$$a_n = \left(\frac{7}{5}\right)^n \quad e \quad b_n = (0.1)^n, \qquad \forall n \in \mathbb{N}.$$

Vamos classificar estas sucessões quanto à monotonia e convergência.

Como $\frac{7}{5} > 1$, a sucessão $(a_n)_n$ é monótona crescente e é propriamente divergente, visto o seu limite ser $+\infty$.

Como 0 < 0.1 < 1, a sucessão $(b_n)_n$ é monótona decrescente e é convergente para 0.

Exemplo

Calculemos

$$\lim_{n} \frac{2^{n} + 7^{n+1}}{3^{n+1} + 7^{n}}.$$

Estamos perante uma indeterminação do tipo $\frac{\infty}{\infty}$. Dividamos ambos os termos da fracção por 7ⁿ:

$$\lim_{n} \frac{2^{n} + 7^{n+1}}{3^{n+1} + 7^{n}} = \lim_{n} \frac{\frac{2^{n}}{7^{n}} + \frac{7^{n+1}}{7^{n}}}{\frac{3^{n+1}}{7^{n}} + \frac{7^{n}}{7^{n}}} = \lim_{n} \frac{\left(\frac{2}{7}\right)^{n} + 7}{3 \cdot \left(\frac{3}{7}\right)^{n} + 1}.$$

 $Como\left(\frac{2}{7}\right)^n\longrightarrow 0$ e $\left(\frac{3}{7}\right)^n\longrightarrow 0$, aplicando os teoremas sobre limites, vem

$$\lim_{n} \frac{\left(\frac{2}{7}\right)^{n} + 7}{3 \cdot \left(\frac{3}{7}\right)^{n} + 1} = \frac{0 + 7}{3 \times 0 + 1} = 7.$$

Suponhamos que $(u_n)_n$ é uma progressão geométrica de razão r,

$$u_1, u_1r, u_1r^2, \ldots, u_1r^{n-1}, \ldots$$

Como vimos anteriormente, a soma dos *n* primeiros termos é dada por

 $ightharpoonup S_n = nu_1, \quad \text{se } r = 1.$

Somos levados a concluir que se S_n representa a soma dos n primeiros termos da sucessão, então

$$\lim_{n} S_n$$

representa a soma de todos os termos da sucessão.

Se $r \neq 1$, temos

$$\lim_{n} S_{n} = \lim \left(u_{1} \cdot \frac{1 - r^{n}}{1 - r} \right),$$

e, como u_1 e r são constantes, vem

$$\lim_{n} S_{n} = \frac{u_{1}}{1-r} \cdot \left(1 - \lim_{n} r^{n}\right).$$

Assim, se

•
$$r > 1$$

Neste caso temos

$$\lim_{n} r^{n} = +\infty$$

e, portanto,

$$\lim_{n} S_{n} = \frac{u_{1}}{1-r} \cdot (1-\infty) = \begin{cases} +\infty & \text{se } u_{1} > 0 \\ -\infty & \text{se } u_{1} < 0. \end{cases}$$

• -1 < r < 1

Temos

$$\lim_{n} r^{n} = 0$$

е

$$\lim_{n} S_{n} = \frac{u_{1}}{1-r} \cdot (1-0) = \frac{u_{1}}{1-r}.$$

Neste caso a soma de todos os termos da progressão é o número real $\frac{u_1}{1-r}$.

• r < -1

Neste caso,

$$\lim_{n} r^{n} = \infty \text{ (sem sinal determinado)}$$

e o mesmo acontece com $\lim S_n$.

• r = -1

Não existe $\lim_{n} r^{n}$ e, portanto, também não existe $\lim_{n} S_{n}$.

• *r* = 1

$$\lim_{n} S_{n} = \lim_{n} (nu_{1}) = u_{1} \lim_{n} n = \begin{cases} +\infty & \text{se } u_{1} > 0 \\ -\infty & \text{se } u_{1} < 0. \end{cases}$$

<u>Conclusão</u>: a soma de todos os termos de uma progressão geométrica de razão r (que são em número infinito), $\lim_n S_n$, é um número real apenas quando -1 < r < 1 e, neste caso, tem-se

$$\lim_n S_n = \frac{u_1}{1-r}.$$

Exemplo

Vamos determinar a representação fraccionária do número $0,1\overline{2}$, dízima infinita periódica de período 2.

Observe-se que

$$0,1\overline{2}=0,1+0,0\overline{2}$$

e que

$$0, 0\overline{2} = 0, 02 + 0, 002 + 0, 0002 + \dots$$

é uma progressão geométrica de razão $r = \frac{0,002}{0,02} = \frac{1}{10}$.

A soma de todos os termos desta progressão é

$$\lim_{n} S_{n} = \frac{u_{1}}{1 - r} = \frac{0,02}{1 - 0,1} = \frac{2}{90}$$

e temos, então.

$$0, 1\overline{2} = 0, 1 + \frac{2}{90} = \frac{1}{10} + \frac{2}{90} = \frac{11}{90}.$$