Трансцендентные уравнения

Вступление

В приложениях очень часто приходится иметь дело с трансцедентными уравнениями, зависящими от одного или нескольких параметров. Как правило, они не имеют аналитического решения, а только численное; однако наличие в таких задачах малого или большого параметра на практике помогает найти приближённый вид ответа.

Задача 1 (намагниченность ферромагнетика в теории среднего поля)

Решим уравнение

$$m = \tanh(m/T)$$

Оно всегда имеет тривиальное решение m=0; однако, существует критическая точка $T=T_c$, вблизи которой появляется нетривиальное решение m(T). Найти асимптотическое поведение этого решения вблизи критической точки (при $|T-T_c|\ll T_c$), а также вблизи нуля (при $T\ll T_c$).

Решение

Решать задачу будем графически. Для удобства сделаем перемасштабирование - введем $\tilde{m}=m/T$; уравнение перепишется как $T\tilde{m}=\tanh \tilde{m}$. Нарисуем на графике левую и правую часть уравнения.

Рис. 1: $T\tilde{m} = \tanh(\tilde{m}), T = 3$; 1; 0.5

Функция $\tanh x$ ведет себя вблизи нуля линейно: $\tanh x \sim x$. Из-за симметрии уравнения относительно замены $m \mapsto -m$, всегда будут иметься как положительные, так и отрицательные решения, поэтому следить мы будем только за положительными. Из этого и из картинки можно сделать следующие выводы:

- при T=1, прямая касается графика $\tanh \tilde{m}$. Это и есть искомая критическая точка $T_c=1$.
- \bullet при T>1, прямая идет более круто и точек пересечения нет; единственное решение уравнения тривиальное.

- \bullet при T<1, прямая идет полого, и имеются точки пересечения обоих графиков, отличные от m=0; это и есть наши нетривиальные решения.
- при $T \to 0$, прямая идет практически горизонтально. Ордината точки пересечения стремится к 1, поэтому решение уравнения $m(T \to 0) \to 1$.

Перейдем обратно от переменной \tilde{m} к переменной m и найдем асимптотику аналитически.

Окрестность критической точки $1-T\ll 1$ Вблизи критической точки, $m(T)\ll 1$; это позволяет нам разложить $\tanh(m/T)$ по малости своего аргумента, и переписать уравнение приближенно как:

$$m \approx \frac{m}{T} - \frac{1}{3} \left(\frac{m}{T}\right)^3 \Rightarrow m(T) \approx \sqrt{3(1-T)}$$

В последнем равенстве мы выбросили $T^2 \approx 1$, поскольку мы интересуемся ведущим порядком разложения по 1-T. Кроме того, видно, что наше предположение $m(T) \ll 1$ действительно выполняется.

Окрестность нуля $T \ll 1$ Тут видно, что $m(T) \approx 1$ (то есть $1 - m(T) \ll 1$). В таком случае удобно искать решение в виде:

$$m = 1 - \varepsilon$$

Здесь $\varepsilon \ll 1$. Подставляя, получаем:

$$1 - \varepsilon = \tanh \frac{1 - \varepsilon}{T} \approx 1 - 2e^{-2/T}$$

Таким образом, мы получили поправку к 1: $m \approx 1 - 2e^{-2/T}$.

Рис. 2: Точное решение и найденные асимптотики

Задача 2 (уровни энергии прямоугольной квантовой ямы)

Решим уравнение

$$\tan Ax = \frac{1}{x}$$

при $A\gg 1$. Его решения нумеруются целым числом n; найти асимптотическое поведение решений при $n\ll A$ и $n\gg A$.

Решение

Будем решать уравнение опять графически. Нарисуем левую и правую часть уравнения.

Рис. 3:
$$\tan Ax = \frac{1}{x}$$
, $A = 10$

Видно, что имеется целая серия точек пересечения, которые являются решением нашего уравнения. Из картинки также можно сделать вывод о том, вблизи каких точек расположены корни в обоих случаях и в окрестности каких точек стоит искать решение.

Случай $n \ll A$ При $n \ll A$, период тангенса мал и все решения лежат вблизи нуля: $x_n \ll 1$. Это значит, что в качестве начального приближения можно заменить правую часть на $+\infty$:

$$\tan Ax = +\infty \Rightarrow x_n^{(0)} \approx \frac{1}{A} \left(\frac{\pi}{2} + \pi n\right)$$

Найдём поправки, используя модификацию метода итераций: метод последовательных приближений. Введём поправку согласно $x_n^{(1)} = \frac{1}{A} \left(\frac{\pi}{2} + \pi n + \epsilon_n \right)$ и $|\epsilon_n| \ll 1$; подстановка в уравнение даёт:

$$\tan\left(\frac{\pi}{2} + \pi n + \epsilon_n\right) = \frac{A}{\frac{\pi}{2} + \pi n + \epsilon_n}$$

Разложимся до наинизшего порядка. Левая часть равна $-\frac{1}{\tan \epsilon_n} \approx -\frac{1}{\epsilon_n}$; в правой же части в ведущем приближении поправку можно просто выбросить.

$$\epsilon_n \approx -\frac{1}{A} \left(\frac{\pi}{2} + \pi n \right)$$

(видно, что $|\epsilon_n| \ll 1$, и наше предположение было верным). Таким образом, в этом случае приближенно ответ записывается как:

$$x_n \approx \frac{1}{A} \left(\frac{\pi}{2} + \pi n \right) - \frac{1}{A^2} \left(\frac{\pi}{2} + \pi n \right)$$

Случай $n \gg A$ В этом случае $x_n \gg 1$ и в качестве нулевого приближения можно заменить правую часть на ноль:

$$\tan Ax = 0 \Rightarrow x_n^{(0)} \approx \frac{\pi n}{A}$$

Опять воспользуемся методом последовательных приближений - сделаем подстановку $x_n^{(1)} = \frac{1}{4}(\pi n + \epsilon_n)$ и $|\epsilon_n| \ll 1$:

$$\tan\left(\epsilon_n + \pi n\right) = \frac{A}{\epsilon_n + \pi n}$$

Проводя разложение левой части $\tan(\pi n + \epsilon_n) \approx \epsilon_n$ и выбрасывая ϵ_n в правой части, мы получаем:

$$\epsilon_n \approx \frac{A}{\pi n}$$

(предположение $\epsilon_n \ll 1$ тем самым выполнено). Поэтому ответ записывается как:

$$x_n \approx \frac{\pi n}{A} + \frac{1}{\pi n}$$

Метод итераций

Один из способов решения трансцедентных уравнений вида x = f(x) есть метод простых итераций. Сам метод заключается в следующем:

- Выберем начальное приближение x_0
- Построим последовательность $\{x_k\}$ согласно $x_{k+1} = f(x_k)$
- ullet Если при этом $x_k \underset{k \to \infty}{\longrightarrow} \widetilde{x}$, то \widetilde{x} является решением нужного уравнения.

Этот метод очень часто применяется для нахождения численных решений; однако, в случае наличия в задаче большого или малого параметра, он может помочь найти и приближенный аналитический вид этого решения. В таком случае, как правило, достаточно заменить последний критерий на условие $|x_{k+1} - x_k| \ll x_k$; при выполнении этого условия, x_k может являться хорошим аналитическим приближением к ответу. Обычно для того, чтобы увидеть, что либо условие на каком-то шаге выполнилось, либо последовательность приближений расходится, достаточно проделать несколько итераций.

Задача 3 (логарифмическая точность)

При $\alpha \gg 1$ решим уравнение

$$x = e^{-\alpha x}$$

Решение

Графический анализ показывает, что решение $x \ll 1$.

Кроме того, видно, что αx не может быть малым числом: в противном случае $e^{-\alpha x} \approx 1 \Rightarrow x \approx 1$, что противоречит этому анализу. Для решения мы воспользуемся методом итераций, но применим его не к исходному уравнению, а к переписанному в виде $x = \frac{1}{\alpha} \ln \frac{1}{x}$.

- В качестве начального приближения давайте возьмём произвольное число $x_0 \sim 1$. В дальнейшем мы увидим, что от него зависеть ничего не будет.
- Первое приближение даёт $x_1 = \frac{1}{\alpha} \ln \frac{1}{x_0}$. Поскольку $x_1 \ll x_0$, то $|x_0 x_1| \approx x_0$ и это приближение не является хорошим.
- Второе приближение даёт $x_2 = \frac{\ln \alpha}{\alpha} \frac{1}{\alpha} \ln \ln \frac{1}{x_0}$. В силу $\alpha \gg 1$, второе слагаемое мало и его можно выбросить (и тем самым выпадает зависимость от начального приближения). В таком случае $x_2 \gg x_1$ и приближение опять-таки не является хорошим.

Рис. 4:
$$x = e^{-\alpha x}$$
, $\alpha = 20$

• Третье приближение даёт $x_3 = \frac{\ln \alpha}{\alpha} - \frac{\ln \ln \alpha}{\alpha}$. В этом случае поправка действительно оказывается малой: $|x_3 - x_2| = \frac{\ln \ln \alpha}{\alpha} \ll x_2 = \frac{\ln \alpha}{\alpha}$; это наконец и означает, что мы нашли хорошее приближение, а также ведущую поправку к нему.

Таким образом, ответ приближенно записывается как $x \approx \frac{\ln \alpha}{\alpha}$.

Рис. 5: Численное решение $x=e^{-\alpha x}$ и его асимптотика

Из-за того, что логарифм - медленно растущая функция, первое приближение работает в данном интервале не очень хорошо. Более точным будет учесть поправку:

Рис. 6: Численное решение $x=e^{-\alpha x}$ и его асимптотика с учётом первой поправки

Задачи для домашнего решения

Упражнение 1

При $\alpha\gg 1$ и $\alpha\ll 1$ приближенно решите уравнение

$$x = 1 + \exp(-\alpha x)$$
.

Упражнение 2

При $\alpha \gg 1$ и $\alpha \ll 1$ приближенно решите уравнение

$$\ln x = e^{-\alpha x}.$$

Упражнение 3

На семинаре была определена функция Ламберта $x(\lambda)$, которая при $\lambda \geq 0$ задается как решение уравнения

$$xe^x = \lambda$$
.

При $-\frac{1}{e} < \lambda < 0$ это уравнение имеет два решения: $x_1(\lambda) > -1$ и $x_2(\lambda) < -1$ (для непрерывности обычно именно $x_1(\lambda)$ называют функцией Ламберта на $-\frac{1}{e} \le \lambda < 0$). При $\lambda = -\frac{1}{e}$, как легко увидеть, $x_1 = x_2 = -1$, а при $\lambda < -\frac{1}{e}$ действительных решений нет. Приближенно найдите $x_1(\lambda)$, $x_2(\lambda)$ при $\lambda < 0$, $|\lambda| \ll 1$.

Упражнение 4

Найдите $x_1(\lambda)$, $x_2(\lambda)$ из упражнения 3 при $\lambda > -\frac{1}{e}$, $|\lambda + \frac{1}{e}| \ll 1$.

Задача 1

Приближенно решите уравнение

 $\tanh \alpha x = \arctan x$

при $0 < \alpha - 1 \ll 1$ и при $\alpha \gg 1$.

Задача 2

При $\alpha \ll 1$ положительные решения неравенества

$$\left|\cos x + \alpha \frac{\sin x}{x}\right| > 1$$

разбиваются на серию зон, нумеруемых целыми числами $k=0,1,\dots$ Определить ширину k-ой зоны при $k\gg 1.$