

Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition

Chapter 3 Decision Support Systems: An Overview

© 2005 Prentice Hall, Decision Support Systems and Intelligent Systems, 7th Edition, Turban, Aronson, and Liang

Learning Objectives

- Understand DSS configurations.
- Learn characteristics and capabilities of DSS.
- Understand DSS components.
- Describe structure of DSS components.
- Understand how DSS and the Web interact.
- Learn the role of the user in DSS.
- Understand DSS hardware and integration.
- Learn DSS configurations.

Decision Support Systems

- Systems designed to support managerial decision-making in unstructured problems
- More recently, emphasis has shifted to inputs from outputs
- Mechanism for interaction between user and components
- Usually built to support solution or evaluate opportunities

Decision Support Systems

- The early definitions of a DSS identified it as a system intended to support managerial decision-makers in semi structured decision situations.
- DSS were meant to be an adjunct to decision-makers to extend their capabilities but not to replace their judgment.

DSS

- A DSS is a methodology that supports decision-making.
- It is:
 - Flexible;
 - Adaptive;
 - Interactive;
 - GUI-based;
 - Iterative; and
 - Employs modeling.

A DSS APPLICATION

 A DSS is usually built to support the solution of a certain problem or to evaluate an opportunity. As such it is called a DSS application.

Components of DSS

- Subsystems:
 - Data management
 - Managed by DBMS
 - Model management
 - Managed by MBMS
 - User interface
 - Knowledge Management and organizational knowledge base

Data: external and internal

Figure 3.3 A Schematic View of DSS

Data Management Subsystem

- Components:
 - Database
 - Database management system
 - Data directory
 - Query facility

External data Marketing Finance sources Organizational Extraction Knowledge Base Decision Query support facility database

Figure 3.4 The Structure of the Data Management Subsystem

Database

- Interrelated data extracted from various sources, stored for use by the organization, and queried
 - Internal data, usually from TPS
 - External data from government agencies, trade associations, market research firms, forecasting firms
 - Private data or guidelines used by decision-makers

Database Management System

- Extracts data
- Manages data and their relationships
- Updates (add, delete, edit, change)
- Retrieves data (accesses it)
- Queries and manipulates data
- Employs data dictionary

Data Directory

- Catalog of all data
 - Contains data definitions
 - Answers questions about the availability of data items Source
 - Meaning
 - Allows for additions, removals, and alterations

Model Management Subsystem

- Components:
 - Model base
 - Model base management system
 - Modeling language
 - Model directory
 - Model execution, integration, and command processor

Models (Model Base) Strategic, tactical, operational Model • Statical, financial, marketing, Directory management science, accounting, engineering, etc. Model building blocks Model Base Management Modeling commands: creation Model execution, • Maintenance: update integration, and • Database interface command processor Modeling language Knowledge-based Data Interface management subsystem management

Model Management Subsystem

- A model base contains routine and special statistical, financial, forecasting, management science, and other quantitative models that provide the analysis capabilities in a DSS.
- The models in the model base can be divided into four major categories: strategic, tactical, operational, and analytical. In addition, there are model building blocks and routines.

Models---Strategic

- Strategic
- Supports top management decisions
- developing corporate objectives, planning for mergers and acquisitions
- The large-scale linear programming model is at the heart of the POP DSS that allows executives of the company to plan large, expensive equipment needs as many years ahead as needed.

Tactical

Tactical

- Used primarily by middle management to assist in allocating and controlling the organization's resources.
- Examples of tactical models include selecting a Web server, labor requirement planning, sales promotion planning, plant-layout determination, and routine capital budgeting

Operational models

- Operational models are used to support the day-to-day working activities of the organization.
- Typical decisions involve ecommerce transaction acceptance (purchases, etc.),
- approval of personal loans by a bank, production scheduling, inventory control, maintenance planning and scheduling, and quality control.

Analytical models

- Analytical
 - Used to perform analysis of data
- are used to perform some analysis on the data.
- They include statistical models, management science models, data mining algorithms

Model Base Management System

- Functions:
 - Model creation
 - Model updates
 - Model data manipulation
 - Generation of new routines
- Model directory:
 - Catalog of models
 - Definitions

Model Management Activities

- Model execution
 - Controls running of model
- Model command processor
 - Receives model instructions from user interface
 - Routes instructions to MBMS or module execution or integration functions
- Model integration
 - Combines several models' operations

MAJOR FUNCTIONS OF THE MBMS

- Creates models easily and quickly, either from scratch or from existing models or from the building blocks
- Allows users to manipulate models so that they can conduct experiments and sensitivity analyses ranging from whatif to goal-seeking
- Stores, retrieves, and manages a wide variety of different types of models in a logical and integrated manner

MAJOR FUNCTIONS OF THE MBMS

- Interrelates models with appropriate linkages with the database and integrates them within the DSS
- Manages and maintains the model base with management functions analogous to database management: store, access, run, update, link, catalog, and query
- Uses multiple models to support problem solving

User Interface System

User Interface Management System

- GUI
- Natural language processor
- Interacts with model management and data management subsystems
- Examples
 - Speech recognition
 - Display panel
 - Tactile interfaces
 - Gesture interface

Knowledge-Based Management System

- Expert or intelligent agent system component
- Complex problem solving
- Enhances operations of other components
- May consist of several systems
- Often text-oriented DSS

DSS Hardware

- De facto standard
- Web server with DBMS:
 - Operates using browser
 - Data stored in variety of databases
 - Can be mainframe, server, workstation, or PC
 - Any network type
 - Access for mobile devices

Lecture 003

DSS Classifications

- The first two types are *data-oriented*, performing data retrieval or analysis; the third deals both with data and models.
- The remaining four are *model-oriented*, providing simulation capabilities, optimization, or computations that suggest an answer.

classify DSS into the following six frameworks:

- 1. text-oriented DSS,
- 2. database-oriented DSS,
- 3. spreadsheet-oriented DSS,
- 4. solver-oriented DSS,
- 5. rule-oriented DSS,
- 6. and compound DSS.

TEXT-ORIENTED DSS

- Information (including data and knowledge) is often stored in a **textual format** and must be accessed by decision-makers.
- it is necessary to represent and process text documents and fragments effectively and efficiently.
- A text-oriented DSS supports a decision-maker by electronically keeping track of textually represented information that could have a bearing on decisions.
- There are many text-oriented DSS applications. electronic document management systems, knowledge- management, content management, and business rules systems. Content management systems (CMS) are used to manage the material posted on Web sites.

DATABASE-ORIENTED DSS

- In this type of DSS, the database organization plays a major role in the DSS structure.
- Early generations of database-oriented DSS mainly used the *relational* database configuration.
- The information handled by relational databases tends to be voluminous, descriptive, and rigidly structured.
- A database-oriented DSS features strong report generation and query capabilities.

SPREADSHEET-ORIENTED DSS

- spreadsheet is a modeling system that allows the user to develop models to execute DSS analysis.
- These models not only create, view, and modify procedural knowledge.'
- but also instruct the system to execute their self-contained instructions (macros), Spreadsheets are widely used in end-user developed DSS.
- some spreadsheet development tools include what-if analysis and goal-seeking capabilities

SOLVER-ORIENTED DSS

- A solver is an algorithm or procedure written as a computer program for performing certain computations for solving a particular problem type.
- Examples of a solver can be an economic order quantity procedure for calculating an optimal ordering quantity or a linear regression routine for calculating a trend.
- A solver can be commercially programmed in development software. For example, Excel, includes several powerful *solvers-functions* and *procedures-that* solve a number of standard business problems. The DSS builder can incorporate the solvers in creating

RULE-ORIENTED DSS

- The knowledge component of DSS includes both **procedural and inferential (reasoning) rules**, often in an expert system format. These rules can be qualitative or quantitative, and such a component can replace quantitative models or can be integrated with them.
- **COMPOUND DSS** A compound DSS is a hybrid system that includes two or more of the five basic structures described earlier

INTELLIGENT DSS

- The so-called intelligent or knowledge-based DSS has attracted a lot of attention.
- The rule-oriented DSS that we described above can be divided into six types: descriptive, procedural, reasoning, linguistic, presentation