Implementación de una SDN con tráfico de ingeniería que prioriza loT

Redes de Telecomunicaciones

Pablo Bermeo

Tyrone Novillo

Pablo Bermeo

Tyrone Novillo

Año	Número de dispositivos conectados a IoT
2022	13.8 mil millones
2023	15.9 mil millones
2024*	18 mil millones
2025*	20.1 mil millones
2026*	22.4 mil millones
2027*	24.7 mil millones
2028*	27.1 mil millones
2029*	29.6 mil millones
2030*	32.1 mil millones
2031*	34.6 mil millones
2032*	37.1 mil millones
2033*	39.6 mil millones

Fuente: Statista

Tamaño del mercado, participación y análisis de la industria del Internet de las cosas (IoT), por componente (plataforma, solución y servicios), por implementación (local y en la nube), por tipo de empresa (pymes y grandes empresas), por industria (BFSI, comercio minorista, gobierno, atención médica, manufactura, agricultura, energía sostenible, transporte, TI y telecomunicaciones, entre otros) y pronóstico regional (2024-2032)

- Se estima que el mercado de loT está valorado en 714,48 mil millones de dólares.
- En comparación, el mercado se valoró en 595,73 mil millones de dólares en 2023.
- Se prevé que el mercado de loT alcance un valor de 4,06 billones de dólares para 2032, con un crecimiento anual compuesto del 24,3 % entre 2024 y 2032

Fuente: DemandSage

El mercado global de Internet de las Cosas (IoT) en el sector de la salud fue valorado en **369.6 mil millones de dólares estadounidenses en 2024**.

Se espera una tasa de crecimiento por año del 13.73%.

Fuente: IMARC

Topología desarrollada en Mininet

Pablo Bermeo

Tyrone Novillo

Sn OpenVSwitch

(I)

Host

Aplicaciones IoT implementadas

Pablo Bermeo

Tyrone Novillo

Gestor de temperatura ambiental

Autenticador de referencias

Autenticador de referencias

Regulador de temperatura

Regulador de temperatura

Radar con interfaz gráfica

Radar giratorio transmisor

Radar giratorio transmisor

Receptor graficador

Prioridades

Note que

Radar con interfaz gráfica > Gestor de temperatura

Ingeniería de tráfico implementada en la red

Pablo Bermeo

Rutas en condiciones de no congestión

Rutas en condiciones de congestión

Reenrutamiento rápido para el sensor de temperatura

Tablas de flujo y tablas de grupo

Pablo Bermeo Tyrone Novillo

Prioridad	Protocolo	Puerto de entrada	IP origen	IP destino	Puerto transporte	Acciones
100	TCP	s1-eth6	192.168.10.138	192.168.10.169	dst 1883	group:1
100	TCP	s1-eth7	192.168.10.138	192.168.10.169	dst 1883	output:s1-eth3
200	UDP	s1-eth7	192.168.10.150	192.168.10.108	dst 2000	output:s1-eth5
100	TCP	s1-eth5	192.168.10.105	192.168.10.169	dst 1883	output:s1-eth3
100	TCP	s1-eth4	192.168.10.105	192.168.10.169	dst 1883	output:s1-eth3
100	TCP	s1-eth3	192.168.10.169	192.168.10.138	src 1883	group:2
200	UDP	s1-eth5	192.168.10.108	192.168.10.150	src 2000	output:s1-eth7
100	TCP	s1-eth3	192.168.10.169	192.168.10.105	src 1883	output:s1-eth4
100	ARP	-	_	_		CONTROLLER:65535
30	UDP	s1-eth1	_	_	dst 5004	mod_vlan_vid:10, output:s1-eth4
30	UDP	s1-eth2	_	_	dst 5004	mod_vlan_vid:10, output:s1-eth4
30	UDP	s1-eth3	_	_	dst 5004	mod_vlan_vid:10, output:s1-eth4
30	UDP	s1-eth4	_	_	src 5004	group:20
10	IP	s1-eth1	_	_	-	group:10
10	IP	s1-eth2	_	-	-	group:10
10	IP	s1-eth3	_	_	-	group:10
10	IP	s1-eth4	_	_	-	strip_vlan, output:s1-eth1/output:s1-eth2/output:s1-eth3
10	IP	s1-eth6	_	_	-	strip_vlan, output:s1-eth1/output:s1-eth2/output:s1-eth3
0	ANY		_	_	-	drop

Group ID	Tipo	Buckets
1	ff	watch_port:"s1-eth6"→ output:"s1-eth3"
		watch_port:"s1-eth7"→ output:"s1-eth3"
10	select	weight:80 → push_vlan:0x8100, set_field:4106->vlan_vid, output:"s1-
		eth6"
		weight:20 → push_vlan:0x8100, set_field:4106->vlan_vid, output:"s1-
		eth4"
20	all	pop_vlan, output:"s1-eth1"
		pop_vlan, output:"s1-eth2"
		pop_vlan, output:"s1-eth3"
2	ff	watch_port:"s1-eth6"→ output:"s1-eth6"
		watch_port:"s1-eth7" \rightarrow output:"s1-eth7"

Resultados de la ingeniería de tráfico

Pablo Bermeo

Tyrone Novillo

Efectos sobre IPTV

Red en estado de no congestión

Efectos sobre UDP (Radar con interfaz gráfica)

Red en estado de no congestión

Red congestionada

Efecto sobre MQTT

Flujo MQTT en red sin congestión

Flujo MQTT en red congestionada sin TE

Flujo MQTT en red congestionada con TE

Red en estado de congestión