	_			
		Ring and Field theory	PART-1	
LE CTURE 1				
* A ring (R,+,-) is a se	t R with two binary ope	vations: + (addition) and · (m	ultiplication) such that the follow	owing heads:
(i) (R,+) is an ab				0
	b,ceR, a.(b·c)= (a·b)·c			
		2.c and (b+c).a= b.a+c.	a	
4 We say Ris a w	istal ring if there is se	R such that 1:a=a·1 Vae	R.	
0	0			
* We say Ris a com	nutative ring if a b = 6.a	Y a, b e R		
	6			
4 · Z , Q , R , C ave	rinas			
· Zz. is not zing	J			
500 S00 W	ve ring but not unital			
	but not commutative	(n21)		
MA CIPY IS CHILLE	Day 101 Cammerative	(nei)		
# If R is unital then so	- N (0)			
111				
proof: Consider (14 0)				
# If M _n (R) is unital then				
		dy the matrix with (1,1) being x.		
So N _X I = N _X and I	Mx Mx. Denote e in (1,1) co	efficient of I . We get ex=xe=x.		
≯ . The set Z _n of integer	200			
		2		
• R[x]= { a, x" + ···	+ a, n e Z20, a,, an E f	KI is a ring		

(sumpute $([i]_{ij} \times + [i]_{ij})([i]_{ij} \times^{2} + [i]_{ij})$ in $Z_{ij}[x]$
Solution	$\left(\left[2 \right]_{i_{1}} \times + \left[1 \right]_{i_{1}} \right) \left(\left[2 \right]_{i_{1}} \times^{2} + \left[2 \right]_{i_{1}} \times + \left[1 \right]_{i_{1}} \right)$
	$= [2.3]_{M}^{X^{\frac{1}{2}}} + [2.1]_{M}^{X} + [1.2]_{M}^{X^{\frac{1}{2}}} + [1.3]_{M}^{X^{\frac{1}{2}}} + [1.4]_{M}^{1}$
	= [2] ₁₁ x ² + [2] ₁₁ x + [2] ₁₁ x ² + [3] ₁₁ x + [1] ₁₁
	= [2+2] ₄ x ² + [2+3] ₄ x + [1] ₄
	= (1) ₄ x + (1) ₄
	= >+1 -> for simplicity
#	(ompute (x+1) in Z(x)
solution	(x+1) ⁵ = x ⁵ + 1 + 3x(x+1) = x ⁵ +1
#	Suppose & is prime. Compute (x11) in Bp[x]
Solution	$(x^{(1)})^{p} = x^{p} + \binom{p}{1} x^{p-1} + \cdots + x^{p} = x^{p} + 1 \text{as} \binom{p}{1} \forall 1 \in i \in P^{-1}.$
¥ He	ie polynomials are also defined as Zixo Gixi. Two polynomials are equal only if coefficient are same.
X4 1h	direct product of rings R; :
	x ₁ ×·· ×R _n := {(ε ₁ ,, ε _n) ε ₁ ∈ R ₁ ,, ε _n ∈ R _n }
with	operations
	$(s_1, \ldots, s_m) + (s_1', \ldots, s_n') := (s_1 + s_1', \ldots, s_n + s_n')$
	$(x_1, \dots, x_n) \cdot (x_1', \dots, x_n') = (x_1, x_1', \dots, x_n, x_n')$
# Con	npute (2,2)·(3,3) in Z ₅ × Z ₆
Solution	. (2:5,2:3) = (1,0)
*	Suppose R is a ring and o is the neutral element of the abelian group (R,+). Then Y a, be R, the following hold:
	1) 6·a= a·o=o
	2) (-a)·b = -(a·b) = a·(-a)
	3) (-a)·(-b) = a·b

proof:	(1) Since 0= 0+0, we have 0-0= (0+0)-a y ac R
	0. Q = (0·u) + (0·a) => 0 = 0·a =
w	Note that a'b + (-a) b = (a+(-a)) b = 0-b + a ⇒ (-a) b = -(a:b)
D O	(-a)·(-b) = -(a·(-b))= -(·(a·b)) = a·b
	soce Ris a writed ring. Then there is a wringere 106R such that
	1 _g .a. a 1 _g . a
proof:	Suppose both 1st' sality 1 = 1-7-21 =
⋘ WI	renever we learn a new struckture, you should look for subjets that share the same properties & maps that processes those
*	Suppose (R,+,·) is a ring. A subset Sof R is culted subring of R if
	1. (S,+) is a subgroup of (A,+)
	2. S is closed under maltiplication. This means that for every a, b & S, we have ab & S.
X 7	is a subring of Q.Q is subring of R. Ris subring of C.
ur	
	at is the smallest subsing of C that contain Q and i?
2 · w	that is the smallest subring of 6 that contains Q and 12?
3.	What is the smallest subving of a that contains Q and \$2?
solution	r i. Q [i]
2· Q	
3. Q	[V _L , V _N]
× S	appose R, 2 R, are two ring. Then a function f: R, -> Rz is called ring homosphism Ya, 6 & R:
	f(a+b) = f(a) +f(b) - Additionally +(1,) = 1,
	t (m.p) = t (w) · k(p)
3	
2200	
*	For every positive integer $n, c_n: \mathbb{Z} \to \mathbb{Z}_n$, $c_n(a):= [a]_n$ is a ring homomorphism.

ECTURE	2
# 54	ppose f: RR. is a bijustre sing homosphism. Then f: R2-R, is a sing homosphism.
	Since F is bijution, it is inventible and there is the function f" Rs > R.
	f(f,(0)) + t,(0)) = t(f,(0)) + t(f,(0)) = 0+0 = t(f,(0+0))
=>	f"(a) + f"(b) = f"(a 16) (by injectively)
	$f(f'(a), f(f'(a), f'(b)) = a \cdot b = f(f'(a)) \cdot f(f'(b)) = f(f'(a) \cdot f'(b))$
	=> f'(a·b) = f'(a)·f'(b) by injectivity =
* .	bijethre ring homorphism is culted ring homorphism. We say two ring are isomorphic, it there is a ring isomorphism between them.
▼ Sula	THUP critation: Suppose (G,:) is a group and His a non-empty subset. If for every h, h' of H, hhen H is a subgroup.
*	Subring criterion: Suppose Ris aring and S is a non-empty subset of R. If for every a, to & S, we have
	· a-b e S
	a-ь eS
	sen Sis a subving
proof:	By subgroup criterion, by 1) we deduce that (S,+) is a subgroup of (R,+). Since
	S is also closed under multiplication, we get S is substing so
ж.	kernel of group homosphism. f between two abelian groups A, 9 Az is kerf:= {a = A, l f(a) = 03, kerf \le A,.
	mage of fix Imf = ff(a) a e A,3 < A2.
#	Suppose f: R, -> R_ is a ring homorphism. Then the kernel kerf of f is a subring of R, and imf is a subring of R. Moreover
	Yach, xekerf, ax, xa ekirf.
proof:	It is emoneyh to show that they are closed under multiplication.
	$\forall \alpha \in \ker F \text{ and } \forall \alpha' \in R$, we have $f(\alpha \cdot \alpha') = f(\alpha) \cdot f(\alpha') = o \cdot f(\alpha') = o$ $\Rightarrow \alpha \cdot \alpha' \in \ker F$
	So clased.
	¥ b 1 b' e imf ⇒ ∃ c,c' ∈ R, st f(c)=b, f(c')=b' ⇒) f(c·c')=b·b'. m
#	Find the Kernel of $c_n: \mathbb{Z} \to \mathbb{Z}_{n > c_0}(a) := [a]_n$

Solution	: Note as ker cn (a) = [o]n (=> n a.
	So ker c _n = n Z.
#	Note $c_n: \mathbb{Z}[x] \to \mathbb{Z}_n[x]$, $c_n(\sum_{i=0}^{\infty} a_i x^i) := \sum_{i=0}^{\infty} c_n(a_i) x^i$ is a xing homomorphism. Find Keenel of c_n .
	$\sum_{i=0}^{c_n} a_i x^i$ G ker $c_n \iff \sum_{i=0}^{c_n} c_n(a_i) x^i = 0 \iff a c_n(a_i) = 0 \iff a a_i \in \ker c_n$
	So Ker cn = n 7 [×].
	30 Nes Ch - 1/2 C - 3
75	
X	IF (G,) is a group and g & G, then cyclic groups generated by g is
	Egn In ∈ Z3 and eg (n):= gn is a group homorphism.
4	Suppose R is unital with the identity element to Then
	e: 7 → R, e(n):= n1
	is a ring homotrhism
Dago f .	ωε s _{lo} ω ε(mh) = ε(m)·ε(n)
•	
	Case 1: M=0 of 6=0
	→ e(0) = U
	(ase 1: m, n 7 o
	→ e(mn) = 1 + · · + 1 R mn rimes
	wy.1111-2
	e(m) ((n) = (1 + + + + + + + + + + + + + + + + + +
	an times of times
	creasily both are equal .
	Others can be dealt similarly.
also and	
	uppose B is a commutative ring and A is a subsing of B. Suppose $b \in B$, then evaluation map $\phi_b: A[X] \to B$, $\phi_b(f(X)) := f(X) \to B$
i	s a ring he morphism
proof:	We have to show that for every fife EA[x]
	(i) $\phi^{P}(t'(x) + t^{P}(x)) = \phi^{P}(t'(x)) + \phi^{P}(t^{P}(x))$

	ci) ф	ر (الم) الم	+ f, (x)) - 4), ((f,-	(x) (x)) = (_f ,	1f2) (b)							
									+ ø , (ξ(x))					
									CRISA	(A)					
	Gis d) (f, (x)	· f, (x)) -	4 (P	<i>-</i> ((ی	p(b)								
		101	altiply .	them (x)= p(
						ρ(b)	. S	lens B							
	(,	then ker ob	= }	(x) €	[×]A	1(6)=	50								
	im 4 =								, ne7}						
	1,6				i a	- 120									

TURE	3													
		is ø _n : Al	x] →β , ø, (F(x)) := F(b)										
#	Suppose A	is a subring	of a unital co	mmulative zing	g B and be B	3. Then the i	mage of the	evaluation	map & is	the smalles	t subring	of B that co	ntains both	A or
pres f			hememorphism						Name .					
			ASS. Thu	۱ ۷ a ₀ , ,	anch, by	considering	b(v)=d ⁰ + a ¹	x+·- +4 ₀	i ^{xn} , we g	lt if ρ(bi) G Im Ob	, it also '	belongs to	, S.
		ι _{φω} <u>⊆</u> S do, is #	he smallest	such set &										
		ь												
*	Suppose	Asasu	bring of a	unital com	nulative m	ng B, and b	68							
	The sma	ullest subri	ng of B whi	ul contains A	18 lo is de	enoted by	[63]							
n n	2 32 4		(5 <u>2</u> 05) //2/2/0		20 2000	•	514T 54.21325		4.0				. 1	.1
		is a unital red by R ^X .	ring Wa	say a e K	. We say	aeK is a	whit se th	EYE 15 (a'EK suc	n that a	ar= aria	"IR. The	sct of all i	unit:
#	Suppose R	is a unital	commutative	ring and a el	R is a unit	. Then then	e is a un	igu a' e	R such	that a a	• 14.			
pronf:	Say 0' 8	a" are in	vers.											
	Nek a"	= a"·a·a' =	۵′ و											
# 9	Suppose R is	a unital viva	. Then (Kx,) is a dam	.9.									
proof			ses properly											
		•	b) · (b"' a"')											
* Q`:	= Q\ {•\$,	R* = 12 \ 1	(બુ											
# F	ind Z×													
		2× =) ua'	=\ => a	q′ =1 => ,	a = 1 m -1.									
			nich works 🕏											

# Find 2" in Z	3									+
Solution: [2]3 · [2	.1, = [:1, ⇒ ,	$^{-1}$ = 2 in \mathbb{Z}_{s} .								+
										+
♥ .Z+bZ =	ged (a,b) Z									1
w · Z , * = { [a]										
· [Z,*] = \psi(n)										
										Ť
(Enler's Mearem			gcd (a,n)=1.							t
	σ Φ(4) Ξ 1 · 0	nod n								+
										+
* A unital comm	utative ring F is c	called field if F"	= F \ 3 o \$							1
* Q, R, C age (20. 7									
T W, , IK, C are I	ields . Z 13 not .									Ť
										t
# Suppose n is a	positive integer. The	n In is a held if	and only it n	is prime						+
proof: Zn is he	us zn× = z) { [1] _n } =	[[a], gcd (a,n)	=1} <=> V+	re introger less t	Mon n is cap	rime with n.			+
* suppose R is	a commutative vina	we say a eR i	2 are divised	fato and ob=	0 for tome	700-700 h 6	R The set	al zama dis	roinne in do	u alve
		we sty were .			J. J. Julie		K . III , Kr	3 200	13 4	
D(R).										Ť
										t
* A unital comm	cutative ring D x	called an Integral	domain if D he	s no zero di	visors and m	ore than a	ne clement.			+
					() <	> 1 ≠ 0 R	. If 1 #	Ope then me	ove than one	el
							=) 1€ ×€			
* 7 0 8 6	are integral domai	ins and Zisa	d interval damai			,				
- , ω, ii.) .	- Mary Mary	or 15 ft								
# Suppose R	s a unital co	mmutative sing.	Then Rx OD	R) =16.						+
proof: let op a e	R* N D(R) ⇒	3 67 ER St	a.a-'= l and	opbeR st	a ·lo = 0	o = a ⁻¹ ·(u	·p)=(a-1 · a) p	= b =>	b=o . A con	trac
# Every field	d is an integro	domain								
	ow Fisafi									
We Kn	ow FXND(F)	= P => D(F) = Ø => F	is introp	ral domain					+

#	
-//	(Cancellation law) Suppose Dis an Integral domain. Then & ofaeD, b,ceD
	ab=ac => b=c
25	
broot.	Since ab=ac => a(b-c) = 0 => b-c =0 => b=c
	Integral domain
v #	Suppose Dis a finite integral domain. Then D is a field.
proof:	Since D is integral domain, it is also a commutative ring and op #1 p.
	So we need to show that every non-zero element a ED is a unit.
	We do the "FLT" trick.
	let $\{x_1, \dots, x_n\}$ be the set.
	Note Hant 1 & 2x1, /xn3
	Consider Sax, , . , a x _n 3
	Note that la.x, ,a.x, s = {x, ,x, s else db ≠c st ab=ac => a(b-c)=0. His integral domain.
	So 3 X; st ax; =1. S. X; is the inverse of a. •
*	Suppose Ris a ring. let
	$N^+(R) = \{ n \in \mathbb{Z}^+ \mid \forall a \in R, na = 0 \}$
	IF N (R) is empty, we say that characteristic of R is zero. If N (R) is not empty, the characteristic of R is minimum of
	The charadoristic of R is denoted by char(R)
S	ingroves of the form a Z
1	moreoups of the form of the fo
77	et R be a unital ring and e: Z > R, e(f) := f & For every unital ring R, we have kere = thar (R) Z.
proof:	Note that keve $\leq Z$, hence is of the form $n_0 Z$. Let char $(R) = n$.
	Clearly nig=0 => nZ < kere.
	If $n_0 < n \implies e(n_0) = n_0 1_{R} = 0$ is not possible that $(R) = n_0 n_0$.
	Here kere=nZ.
#	Suppose D is an integral domain. Then char(D) is either o or a prime.
brook:	16 char(D) = n +0 and say n is composite => 3 a,b +1 st n=ab
	Then $(1_0 + \cdots + 1_D)(1_0 + \cdots + 1_D) = (a 1_D)(b 1_D) = ab 1_D = 0$ and $a 1_D \neq 0$, $b 1_D \neq 0$. Not possible as $D \equiv 0$

LECTURE	4		5:x + y is e	mbedding it it is	injective and stru	chuse preserving		
₩ £v.	cry inte	egral demain	can be embedded into a f	eld				
		25. 5.	al domain. For (a, b) and (c, d	18/0)xa ni (05) , we say (a,	b) ≈ (c,d) if ad = bc	. Note ~ is equive	alance velation as:
) NA) as ab = bc.	2				
	40		,d) =) ad=b(=) cb=	S				
	(h) IF	(•,b) ~ (c,d)	2 (c,1) ~(c,t) => ad=	oc, cf= de	⇒ ade = b		, act = ade , be	F=bde
							= bed => af =be	at interne Idomoia
					WA 7 - 0 CF	Lra	and comm	
	€ We	let <u>a</u> be H	be equivalence class	Eca, 60], lut				
			b) = { 2} (a,b) & D x(
			C 81					
*	<u>.</u>	<u>A + C</u> := 1	ad + bc ond e c	:= <u>ac</u> hd				
	To de	eck if it is	well defined:					
	W	4, = a2 b2	and $\frac{c_1}{d_1} = \frac{c_2}{d_2}$					
	•	a, + c, ;	= aid, + c, b,	, <u>as</u> + <u>c</u>	$\frac{a_1d_2+}{a_2d_3+}$	<u>c, b, .</u> 2		
		we need to	Show aid + cibi	= a2d2 +c2b.				
			+0.5 how => (0,d, + c,b,) (62.82)	= (0.4, + c.	r)(r47)			
			to show => a'q'p'q' + c'p'	~		c. h h.d.		
			but we know and 2 = 0			2 02 31 31		
			Hence the equality follows					
	. a	. = <u>a,</u> ,	C1 - C2 To show	a, c, a, a,	Ge or show	a, c, . 62 طيء هء	· Coobs-di	
	ь	1 62	או מע	מל ואיום			asb, , c,ds=c,d,	

×	(Q(D), +,·) is a ring.
	as 9 T (-a) = 9 = 9 . So Q(D) is group. Multiplication is defined too. So a zing.
	· o is additive identity on a+ a = o b+a:) = a. Note a = o.
	· t is multiplicate re identify: 1 = = =
	· Note = ·b = eb = 1. =) Q(0) is a field
#	
1.1	Suppose D is an integral domain. Let i: b = Q(D), i(a) = q. Then i is an injective ring homorphism.
Dvoof:	: We need to show i(a)+i(b)= i(a+b) and i(a) i(b) = i(a+b) \text{\$\text{\$\frac{1}{2}\$}\$ \text{\$\frac{1}{2}\$}\$ \text{\$\frac{1}{2}\$}\$
	$i(a) + i(b) = \frac{a}{1} + \frac{b}{1} = \frac{a \cdot 1 + b \cdot 1}{1 \cdot 1} = \frac{a + b}{1} = i(a + b)$
	$i(a) \cdot i(b) = \underline{a} \cdot \underline{b} = \underline{a} \cdot \underline{b} = i(a \cdot b)$
	1+ is injective as i(a) = 1(b) => a = b => a - 1 = (-b => a = b =
	Suppose A and B are rings. We say A can be embedded in B if there is an injective ring homorphism from A to B.
	C) we also say B has a copy of A
井	Suppose D 15 on integral domain and F is a field. Suppose F:D-> F is an injective ting homorphism.
	Then \$: Q(D) > F, \$ (a) = f(a)f(b) is well defined.
	Moreover the following is a commuting diagram (alled Universal proporty of field of fractions
	p i 0(0)
	* 7 E
	$\Rightarrow \hat{f} \circ i = f i : D \to Q(D) i(\alpha) = \frac{\alpha}{L} .$
t.	• F is well defined as
	$\frac{a_1}{b_1} = \frac{a_2}{b_2}$ $\mathbf{f}\left(\frac{a_1}{b_1}\right) = \mathbf{f}(a_1)\mathbf{f}(b_1)^{-1}$
	$f\left(\frac{a_{1}}{b_{1}}\right) = f(a_{1}) f(b_{2})^{-1}$

	To show $f(a_1) + (b_1)^{-1} = f(a_2) + (b_2)^{-1}$
	8.4 $a_1b_2 < a_2b_1 \Rightarrow f(a_1b_2) = f(a_2b_1)$
	=> f(0,)f(b,)= f(a,)&(b,)-1.
	F is ring homorphism as fis ring homerphism.
٠	\hat{f} is injective as $0 = \hat{f}\left(\frac{a}{a}\right) = f(a)f(b^{-1}) \Rightarrow f(a) = 0 \Rightarrow a = 0$. So kernel is trivial.
	b
	To show the diogram commute, we need to show
	F(i(a)) = f(a) Y a e D.
	$f'(i(a)) = f(a) f(i) \forall a \in D$
	But $f(1\cdot) = f(1)f(1)$ as $f(1)=1$ as $f(1)$ is injudive
	So dans. 8
	Se dant . B
-)	Hence It is a hill which contains a contain a contain a contain a contain a
	Hence if F is a field which contains a copy of D => F contains a copy of Q(D).
4	
¥	Q(D) is the smallest field which combins a copy of D.
	Q(D) is the smallest field which combains a copy of D.
₩ То	$Q(D)$ is the smallest field which combains a copy of D . Show $Q(D) \stackrel{?}{=} F$:
₩ То	Q(D) is the smallest field which combains a copy of D.
▼ To 1> Pa	$Q(D)$ is the smallest field which combains a copy of D . Show $Q(D) \stackrel{?}{=} F$:
▼ To 1> Pn 2> F	$Q(D)$ is the smallest field which contains a copy of D . Show $Q(D) \stackrel{?}{=} F$: $Cope F$ is a field
 ▼ To 1> Pa 2> F 3> 1 	$Q(D)$ is the smallest field which contains a copy $Q(D)$. Show $Q(D) \stackrel{?}{=} F$: Find an injective ring homosphism $f:D \rightarrow F$
 ▼ To 1> Pa 2> F 3> 1 	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$
 ▼ To 1> Pa 2> F 3> 1 	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$
	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$
 ▼ To 1> Pa 2> F 3> 1 	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$
	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$
1> Pn 2> F 3> 1	Q(D) is the smallest field valuish contains a copy of D. show Q(D) $\stackrel{?}{=} F$: nove F is a field find an injective ving homosphism $f:D \rightarrow F$ the universal property of field of fractions to get the injective sing homosphis $\stackrel{?}{+}:Q(D) \rightarrow F$, $\stackrel{?}{+}(\frac{a}{b})=f(a)f(b)^{-1}$

		6, 7, 8, 7, 10, 11, 12, 13, 14
LECTURE	F	
		11 00 7 (12) 20 (1)
		that $Q(Z(i)) \stackrel{>}{=} Q(i)$
p100	it: St	ep1: Q(i) is a field
	- c	(i) is a ring dearly. Just to show inverses exist. let at bit Q [i] be a non-zero element.
		$\frac{1}{(a+bi)} = \frac{a-bi}{(a+bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} = \frac{b}{a^2+b^2}$
		(a+b1) (aTb1)(x-51) ~ 10 a-46
		Since a, b & Q , we are done.
		step 2: f: Z[i] → Q[i], f(z):= Z
		this is clearly an injective ring homomorphism.
		Step 3: By the universal property of field of fractions.
		$f': Q(z_{(i)}) \rightarrow Q_{(i)} \hat{f}(z_{(i)}) = f(z_{(i)})f(z_{(i)})^{-1}$
		which is well defined injective ving homomorphism.
		Steph: J is susjective
		suppose $a+bi \in Q(i) = \frac{r+si}{L} \approx f(r+si)f(t)^{-1}$.
		So surjective.
		Kunce isomorphism #
я	. .	
		use A is a ring, and I is a non-empty subset. We say I is an ideal of A if
		· For every x, y G I, x-y E I and
	(2. For every XEI and ack, then axe I, xa cI.
		So I is subying
X	For c	very zing homomorphism f A -> B, we have that kexf is an ideal.
Pi co	f: 1f	a e kerf, be kurf => f(a-b)= f(a) -f(b) = 0-0=0.
	·	actust, x (A =) f(ax) = f(a)·f(x)=0·f(x)=0. **

析	Suppose A is a writal communitive ring, and x,, x, eA. Then the smallest ideal of A which contains x, xa is
	$\mathbf{I} = \{a_1 x_1 + \cdots + a_n x_n \mid a_1, \cdots, a_n \in \mathbb{N}\}$
· ·	se denote this ideal by < x1, xn> call it ideal generated by < x1, xn>.
	we show that it is an ideal.
) h)	Suppose y,y'=I.
	$y = \sum_{i=1}^{n} a_i x_i$ and $y' = \sum_{i=1}^{n} a_i' x_i$
	⇒ y-y = ¬¬¬ (= 1
	3
	$\Rightarrow ay = \sum_{i=1}^{n} a_i x \in I$
	So it is an ideal.
1000 0 00	
	,, x _i € I .
	ose J is ideal containing xi's.
Then	for $a_i \in A$, we get $a_i \times_i \in J \Rightarrow 2a_i \times_i \in J$. So $\forall i \in I$, $i \in J$.
S.	rel D
× w	e Say ideal I is a principal ideal if it is generated by one element.
	$\langle x \rangle = \{ ax \mid a \in A \}$
	We dende < X7 by XA.
*	$(x + L) + (y + \overline{L}) := (x+y) + \overline{L}$
岩	Suppose I a.A. The following is a well defined operation on AII.
	$(x+1)\cdot(y+2):=(3+y)\cdot(1+x)$
broot:	Suppose $x_1 + L = x_2 + L$ and $y_1 + L = y_2 + L$.
	Then x,-x2 & I and y,-y2&I.
,	$b \leq b \leq \lambda_1 + \overline{\lambda} = \lambda_2 + \overline{\lambda}$
	$\Rightarrow x_1 y_1 - x_2 y_2 \in I$

But	x, (Y,-Y2) & I & y, (x,-x) & I
S•	4.11
# Su	ppose A is a ring and I 4A. Then
ь	(A/I,t,) is a ring where for every x+I, y+I EA/I we have
	(x+I , y+I) := (x+y+I and (x+I) · (y+I) = xy+I
2-	Pz: A > A/ E, Pz (6) = x+1 is a surjective ting homomorphism
3.	her P = I
ρ100+;. \	is clear.
	$(x) + P_{\Sigma}(y) = (x+1) + (y+1) = (x+y) + \Sigma = P_{\Sigma}(x+y)$
1. 4.	$(x) + y_{\underline{x}}(y) - (x + b) = (x + y) + \underline{b} = y_{\underline{x}}(x + y)$
	$\frac{1}{2}(x) \cdot \ell_{\Sigma}(x) = (x+1) \cdot (x+1) = (x+1) + \Gamma = \ell_{\Sigma}(x+1)$
	let x+I G A/I and P_(x) = x+I => P_ is surjective in
3.	x6 ker ((>) (\) = 0 + I (>) x + I = 0 + I (>) x ∈ I .
♥ The	ring A/I is called a quotient ring of A and PI is called the natural map
34 Sug	pose A is axing and I a a subset of A. Then I is the Kernel of a ring homemorphism lift I is an ideal.
# (The	ist isomorphism theorem for groups) Suppose F: 6 -> 6' is a group homomosphism. Then
	$\overline{f}: \alpha/\ker f \rightarrow \lim_{r \to r} f (g \ker f) = f(g)$
is a	well defined group isomorphism.
* Suppo	se F: A > A' is a ring homomorphism. Then
	F: A/nerf - Imf, F(a+kert):= F(a) is a ring isomorphism
broot :	We know by 1st isomorphism theorem for groups of is isomorphism. We show that it preserve multiplication
	$\overline{f}(xy + keyf) = f(x)f(y) = \overline{f}(x + keyf)\overline{f}(y + keyf) \forall x, y \in A$
	1.691.001/ 100/ - 360/100/
*	Suppose n is a positive integer. Then $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$
Proof	: let cn: Z → Zn be the residue map cn(x) = [x]n. Then cn is surjective and x ∈ ker cn <=> x = nZ
	S. Z/nZ ¥Zn

*	0[x]/ <x2-2> = Q[12] and Q[12]= {a+b12 a,beQ3</x2-2>
proof:	<x2-2> = ideal generated by x2-2</x2-2>
	= } 4(x2-2) 760}
	$\phi_{\sqrt{2}}: Q \ [x] \to 0$ be the evaluation map.
	$Q(x)/\ker \phi_{\sqrt{2}} \cong \operatorname{Im} \phi_{\sqrt{L}}$
	Clearly im P _{VZ} = Q ExJ
	$Ker \ \phi_{\sqrt{2}} := Netc + Heat $
	het for) & ker of JL.
	$let f(x) = q_{(x)} \cdot (x^2 - 2) + Y(x)$
	⇒ 7(x) & ker \$\dag{\sqrt{2}} \deg \gamma \c2.
	⇒ 7(x)= ax+ b =) a(2+b =0 but a, b ∈ Q =) a=b=0.
	γ(x)=0 => x²-2 fω).
	So $\ker_{\varphi} = \langle x^1 - \lambda \rangle$.

CTURE	6
	uppose A is a unital commutative ring and $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in A[x]$ and $a_n \neq 0$. We say $a_n x^n$ is the leading form of $f / Ld(f) := a_n x^n$
	leading coefficient an
	degxee := n
*	for zero polynamial
	deg 0 = -00 and 1d(0)=0
ж.	Find deg((2x+1)(3x2+1)) in 7 [x]
Solu	From: $(2x+1)(3x^2+1) = 6x^3 + 3y^2 + 2x+1 = 3x^2 + 2x+1$ Hence deg $((2x+1)(3x^2+1)) = 2$.
#	Suppose A is a unital commutative ring and f(r), g(x) & A[x]
	1. Suppose the leading coeffecient of f is a and the leading coefficient of g is b. It ab \$0, then Id (fg) = Id (f) Id (g) and deg (fg) = deg (f) + deg (g)
	2. Suppose that the leading coefficient of f is not a zono-divisor. Then
proof:(1d (fg) = 1d(f) 1d(g), deg fg = degf + degg
	$f(x) = \begin{cases} a_0 + a_1x + \cdots + a_nx^n \end{cases}$ $f(x) = b_0 + b_1x + \cdots + b_nx^n \end{cases}$ $f(x) = b_0 + b_1x + \cdots + b_nx^n \end{cases}$ $f(x) = b_0 + b_1x + \cdots + b_nx^n \end{cases}$ $f(x) = b_0 + b_1x + \cdots + b_nx^n \end{cases}$
	Similarly for 2. 8
#	
	Suppose $f(x)g(x)=0$. Then deg fg = $-\infty$ \Rightarrow deg f +deg g = $-\infty$ \Rightarrow atteast one of them 0. (also we can have at leading effs and compans)
	- atteast one of them 0. (albu one our list at leading cys and company)

#	Suppose D is an integral domain. Then D[x] = Dx
preof	Clearly $D^{\times} \subseteq D[\times]^{\times}$
	Say $f(x) \in D[x]^{\lambda}$ \Rightarrow $g(\lambda) \in D[x]^{\lambda}$
	3+ f(x)g(x)=1 => dagf +dagg= dagkg= dag 1=0
	=) f & g digow are 0.
	So f.9 & D
*	long division: Suppose A is with commutative ving fix), g(x) & A(x) and leading of g(x) is a unit in A.
	f(x) = g(x) y(x) + x (x) and deg x 4 deg g
	Then there are unique q(x) GAEXI (quotient) & x(x)
Proof:	· We proceed by strong induction on degf. If degf < degg, then q(x)=0 and r(x)=f(x)
	If assume deg f > degg.
	Suppose $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_i x^i$, $a_n \neq 0$ and $b_m \neq 0$.
	$\overline{f}(x) = f(x) - (l_{m'} a_{n}) \times^{n-m} g(x)$
	Note deg F < degf then by industrian hypothesis
	$\vec{f}(x) = \vec{q}(x) g(x) + r(x)$
	$Ham f(x) = \left(\sqrt[n]{x} + \left(\sqrt[n]{x} \right) \sqrt[n-m]{x} \right) g(x) + Y(x)$
	· Say f(x) = 9, (x) 9(x) + x,(x)
	= 1/2 (x) 2 (x) + 1/2 (x)
	=> (9,(x)-4,(x)) g(x) = 1 (x)-7, W
	but deg $(r_1-r_2) \leq deg g(x)$
	$= \frac{1}{2}(x) - \frac{1}{2}(x) = 0 \qquad = \frac{1}{2}(x) - \frac{1}{2}(x) = $

LECTURE 7	
# Suppose A is a unital commutative ring and flise ATXJ. Then	
1. Sevenery a = A, there is a unique q(x) = A[x] such that	
f(x)= (x-2)q(x) +f(a)	
2: (The fuctor theorem) we have that a is a zero iff 2 g (x) E A[x] such that	
f(x) = (x-x) f(x)	
proof: Note by long divisor 2 aprix) & 7(x) whique such that	
$f(x) = (x-\alpha) q(x) + \gamma(x)$	
but note that rex) will have dog < 1. So it is a combined polynomial.	
N_{ofe} $f(\alpha) = 0 \cdot \varphi(x) + \gamma(x) = \lambda x(x) = f(\alpha)$.	
2. If a is $z(n) \Rightarrow f(a) = 0 \Rightarrow \tau(x) = 0 \Rightarrow x-a \cdot f(x)$.	
$\ker d = \langle x-\alpha \rangle, \text{ where } \phi : A[x] \to A, \phi_0 \left(f(x) \right) = f(a)$	
# Suppose Dis an integral domain, f(x) & DIX] and a,, an are distinct elements of D. Then a,, an are zeros of two if f scere is a, (x) & DIX]	
F(x) = (x-a1) (x-an) q(x)	
proof: We proceed by induction on n. Boue courner follows.	
Suppose a,,, and are distinct zeroes of fix).	
By induction $3\sqrt{(x)}$ st $f(x) = (x-a_1) - (x-a_n)\sqrt{(x)}$	
Note and is zero of give as f(and)=0 and (and) (and of and we know that it is integral domain. So just = (x-and) april	
$f(x) = (x - \alpha_1) \cdots (x - \alpha_n) (x - \alpha_{n+1}) \phi_1(x)$	
If Factor theorem is true for any unital commutative ring , but generalised sequire (D.	
# Give an example where Generalized theorem finils	
Solution: See Z. [X]	
welfor (x -2) (x-3) = x ² -5x = x (x-5)	
So zeroes of x2-sx are 2,3,0,5.	
But $(x-2)(x-3) \times (x-5) \cdot q(x) \neq x^2 - 5$. on deg $(x-2)(x-5) \times (x-5) > deg(x^2-5)$	

	S.	t(x) ∈ I bub	day row < day	PC) . NP.						
	Sa	Y(x)=0. \$.	t(x)∈ < 6°(x))> a						
*	Embose D is	an integral a	domain. We say	D is a Princi	pal bleat Domain	if every idea	l of D is principal.			
*	Z and Fix.), Fis field and	PIDS							
	Swler	ys are n72 = <	(n)							
* A,	n integral du	main Dis calle	d a Euclidean e	lomain if there	is a norm fun	chion N:D→	Z ²⁰ with the	following prope	rties:	
	1. N(Y) = 0									
	2. 4 ac D	866 D \ 2048	, there are apr	not conjugate by? That should be a						
	(i) a = la	y + ^y								
	(Y) NCY)	< N(P)								
#	Suppose D is	a Euclidean o	tomain. Then Dis	a PiD.						
proof:		100	. Y I is zaro,	we are done.	Suppose I is	not zero. Choose	q, EL such Hu	at N (4 ₀) is	himum	
	Uaim: Is	100000000000000000000000000000000000000								
			m N(r) < N (a ₀)							
	but	Clearly YE I	z) γ=6 ≡) α∈a ₆	NG <43€						

I E (.T U	PRE 8
JE → F	
	i] is a Euclidean domain and PID
prof:	We define the norm function
	$N: \mathcal{D}[i] \rightarrow \mathbb{Z}_{\geq 0}$, $N(s):= s _{r}$
	S. NC a+bi) = a2+b2 e Z20
	Note N(z)=0 <⇒ (z)=0 <⇒ z=0.
	Now to show the existence of 9, 7 . +
	z=qutr it N(r) <n(a)< td=""></n(a)<>
	Say 2 67(1) 2 we 27(1)
	or = rris , where r, i = Q (rationalize denominator)
	choose indexors of $(x-a) \leq \frac{1}{2}$ and $(x-b) \leq \frac{1}{2}$.
	<= β(γ+is)
	= B(a+ib) + B((y-a) + i(s-b))
	= pq + 4
	We need to show N(Y) < N(B)
	$N(\gamma) = N(6) \cdot N((\gamma - \alpha) + i(6 - b)$
	$= N(6) \cdot ((r-a)^2 + (c-b)^2)$
	$\stackrel{!}{=} N(\beta) \cdot \left(\frac{1}{10} + \frac{1}{10} \right) = \frac{N(\beta)}{2}$
	$N(P) = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{N(Q)}{2}$
H	
T	Let $w = \frac{-1}{2} + \sqrt{3}i$ and $\mathbb{Z}[w] = \frac{1}{2} a_1bw a_1b \in \mathbb{Z}_3^2$. Show it is a PID.
proof:	1) Draw a picture of the lattice in the complex plane of points at two where w: (1+5-3).
	sω Sωy a, be Z[ω]
	: wz with addition
	ο ω _ι

	Draw p	oint b	mol se	he	unn	ur st	- %	is d	loset to	ь.					
	S. b= 0	ya-y					70.								
	Note 3			diskunce	ıs elg	<u>1 1/4</u>									
		ا ۲۱ ک													
		S. N(Y) 4	0.50												
		So yey!													

	35 £ 1 £	e e fulf, => f1 = fe	as News the see	Manic			
	37 1/11	2 2 12 15, -3 7, = 12	er that posts we	postuc.			
		m _a (x) = g(x) h(x) bo			***		
	Sim	u ma (x)=v => g (x)	ه الله الله الله الله الله الله الله ال	mx > deg 8 day	ng ≥ dyh		
	Buk	F[x] x ID =>	g(x) = 0 or h(x)=0				
		⇒ day y ≥ day m	n or degheat	, m _k .NP■			
#	Characherisation of	suppose (alaiman yleg laminin	E is a field ensurement of F.	and KEE is algebraic over	F. Thun, a monic non-	constant polynomial pla	in FEAT is the mi-
		pla) cannot be written as		8			
	He showed => direct						
		b. Since Kan d is guner			(v) of (x). I but p	(4) Commut be wri	then as smalle
하	cm,(x)= (w), cef	. But leading of must	be the P(x) is many				
_s,	m ^(x) ≈ (x) m						
₩ \$.	m _{ec} (u) has the smealtest	t degree among non-zero	polygaments in FIv1 stud a	has zero.			
# 50	pport E is a field ex	tension of F, x e E is algal	orace good F. Them the f	ollowing hold:			
		x)=0 if used only if m _e (x					
	780 79	a nan-zero polynomial po		in Mc, Hun Hune is a non	-2000 constant c such th	mt b(x) = c M (x)	
		un of = < m (x)> <=> 1					
	ي نډ ((۵) څن چ	by e ner dy so my	(x) P(x) => P(x)	= mx(x) q(x) =) de	g(x) = deg(x).	-	
	So quotienting	ph fix)					
# Suf	pose A is a unital	commutative risy and po	c) EAS=1 is a manic pol	unmil of degree not.	Then every element of	NEXT can be we	Hen unliquely or
0.0	+ 0, X+ - + 0, X ^{N-1}	+ < 100>					
	let twif A[x]						
		P(X) +3(X) & deg 76	o a dea pros				
	It a(x): $\sum_{n=0}^{i>0}$	No. of Control					
	Then f(x)	+ < P(x)) = \(\int_{i=0}^{N-1} \ \epsilon_i \)	x'				

=>	1=v	(a; -a;	,') x ⁱ	€ <	\cdots							
	but ma	× deav	ret is	n-1								
	a; ~											
	•											

LEC	TURE 9
#	Suppose E 1s a field extension of F, and K & E is algebraic over F.
proof:	Suppose the degree of the minimal polynomial $m_{a}(x)$ of a over F is m . Thun every element of $F[x]$ for some $a; 3$ in F $ \overline{\Phi}_{a}: F[x]/\langle m_{a}(x)\rangle \longrightarrow F[x] $
	we every element $F[X]/\langle m_{\kappa}(x) \rangle$ can be written uniquely as $(\sum_{i=0}^{n-1} a_i x^i) + \langle m_{\kappa}(x) \rangle$. So $\Phi_{\kappa}(\sum_{i=0}^{n-1} a_i x^i + \langle m_{\kappa}(x) \rangle) = \sum_{i=0}^{n-1} a_i x^i$
	Q[1] = { a + bi a, b \in \mathbb{R}} because m (x) = x2+1
	and Q[\$\int 2] = { a = + a \$\int \tau + a \tau \$\int \q \ 0, a a \tau \text{Q} \text{\$\int \text{because} m \ (\text{\$\tau} - \text{\$\text{\$\tau}\$} \) = \text{\$\text{\$\tau}\$}.
×	Suppose Dis an integral domain we say de Dis irreducible if
	1. d & DX () for some a, b e D, thun either a e DX or b E DX.
	For instance an integer n is irreducible in Z if n = = p for some p prime.
析	Suppose to is a field. Then p(x) eFCxI is irreducible if and only if p(x) is not constant and it can not be written as product of
Proof:	degree polynomials. >> Since F(x) is irreducible => flatic non constant (by duf as constant are units).
	»> IF f(x) = g(x) h(x) thun if dag g, h < f ⇒> y g or h = 0 as whit
	= Suppose f(x)=g(N)h(x) . Since f can not be contitioned a product of smaller degree polynomials in Fix1, duy g = dey f order h = 30 day=0 or day f=0, which is unit.
XX ((Minimal polynomial and irreductibility) Suppose En a field extension of E, x & E is algebrain and F, and P(x) & F [x] is a manic polynomial.
	p(x) = on (x) if and only if p(x) = c and p(x) is inveducible.
3443	What can we say about iduals agenerated by irrudicible elements a their quartient rings

* 8	suppose A is a unlimb communistre viry and I.S.A. We say I's a maximal ideal if 45 S.A., IS5 => 153
	J=A.
♥ So	suppose D is a PID, and as D. Tuen
	508 is museiand setand iff D is a field
2-	for a 70, <a>n\tag{n} is invested.
#	Suppose A is a unital commutative ring and I = a. Then J is an ideal of A/I is and only it I = 5/I for some J = A which contains I.
word:	
	=> Suy J is an ideal of AIS and let J := faeAlarIeJ3
	We show J= 3/I and J@A. Note (CJ.
	Soy a, a'&J. Thun a+I, a'+I & J.
	$S_{\bullet} (\alpha_{T})^{-} (\alpha' + I) \in \overline{S} \Rightarrow (\alpha - \alpha') + I \in \overline{S} \Rightarrow \alpha - \alpha' \in \overline{S}$
	Fre a 6 3 j be h , a+I 6 J ,b+I 6 h/s
	bat I e 5 =) ab e 5. So I is ideal.
# s	Suppose A is a unital commutative ring and ISA. Then I is a maximal what it and only it A/I is a field
	We A/I is field 👄 it has only two ideals I/I and A/I 👄 A/I has exactly two ideals A8I which contain I& I is mover malid
井	D is a PID and not a field, and a o D. Then D/ <n7 a="" d.<="" field="" in="" irreducible="" is="" it="" td=""></n7>
bred:	D/Ca) 15 a field (25) ca) 15 a maximal wheal (25) Siace Dis art a field, Ca) is provind
	164 les chucible a
1	
	Suppose E is field extension of F, and of F & is algebraic most F
	Then FE x3 is a field.
, (Post	We know Many for proceducible in FEXI and FEX) is PID and not a field. So above collarly proces took FEmilia a field.

solutim:	Su essentially dis algebraic over Q.	
	Q[x] = Q[x]/20-x+1> 24(2-1) (24-1)	
	30 Q [4] is a field. And 43-4+1=0 23-x=1	
	30 $\frac{1}{4} \in Q[x]$ as $A(x^2 + 1) = -x^3 + 1 = 1 = 3 - x^2 + 1 = \frac{1}{4}$	
	1 = 0 [x] 00 (x+1) (-x(x-1)) = 1 =>-1(x-1)=1	
		-
	we use extended ended algorithm.	_
	f= x5-x+1 = <1,0>	
	9 = x2+1 = <0,1>	
	$1 \cdot f - x \cdot g = x^3 - x + i - (x^3 + x) = -2x + i < i, x >$	
x² +2-2x²+	$+ x = 2 \cdot \langle 0, 1 \rangle + x \langle 1, -x \rangle = \langle 0, 2 \rangle + \langle x, -x^2 \rangle = \langle x, -x^2 + 2 \rangle$	
	-2×+1 + 2 (×+2) = 5	
	=> <1,-x> + 2 < x, -x ² 12> = 5	
	>> \frac{1}{5} < 1,-x> + \frac{1}{5} < 2x / -2x^2 + 4 > = 1	
	$\Rightarrow \cdot \left(-\frac{x}{5} - \frac{2x^2}{5} + \frac{y}{5} \right) \left(x^2 + 1 \right) = 1$	
		-
		-
		-

LECTU	IRE 10										
# 5	appear F is a field	and fix) cfC	3								
	if degf=1, them fis	retoducible									_
2. 1	18 day F32 and F 1	has a zero in F,	turn find in	relluise							1
3- 1	suppose day f > 2 or 3	Then F is	irreducible in	F[=) : ++ f &	on at have a	sero in F.					_
broot: 02	uppose day F= 1	=) if f=gh =>	1= deg g + digh	→ both day	21 not possible						1
72	ve an vost of	f(x). Team (x=	wolfeway ger)(*-*) =t(*)	. Hunce de	f-12 day .	f 8 kg (x-a)	colaf			_
S.	f(x) is not invol	uaible .									+
											+
(3)	Suppose duy f = 9	jush (n) and a	legg, degh -	c day f 53	•						+
	dayse day + a	e, h => .	اسم ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰) h =1							+
	WIDG Say of Colo	: 4 ₀ +4, X ⇒ -0	o, TeFis a zero								+
											+
折 1· ftr	x) = x3 - x +1 is a	sseducible in Zs	(x)								+
2. Z ₃ [in/secon is a	held of order at									t
8	ce deg fis, Cis is				-						t
	Z 3/ <f(vj)2 <b="">Z3/</f(vj)2>										5 Mm
Si ni	y demont e7sti) / <f(s)) be<="" can="" td=""><td>uniquely soni</td><td>them ob mcx>4<f< td=""><td>(xi) with puly</td><td>nomik with d</td><td>g at most s.</td><td>Nate Hull H</td><td>ure are 27 pol</td><td>9 -</td><td>t</td></f<></td></f(s))>	uniquely soni	them ob mcx>4 <f< td=""><td>(xi) with puly</td><td>nomik with d</td><td>g at most s.</td><td>Nate Hull H</td><td>ure are 27 pol</td><td>9 -</td><td>t</td></f<>	(xi) with puly	nomik with d	g at most s.	Nate Hull H	ure are 27 pol	9 -	t
			B = 1		7						Ť
	al root criterion)										Ť
	and a 70. 16 f (b										T
h): ;	Siace ((be) = 0 3	> ~ ~ ~ ~									
		>> clan		90							
		Similarly b (a									
		J									
# S.	uppose f(x) & Z	Z[x] is a mo	onic polynum	(al. Then	every ration	al evo of	4 is an	integer	which di	vidies flo)	
	Suppose b 1										

	2) b = ±6 = 7 => b) a 0 8	
#	Suppose f(x) = xn+a, xn++ + +a,x+1 = Z[x] Prove that f has a retional evo it and only if f(1):	=0 1
b wed	since fix manic integer palynomial. So every rational objects is integer and f(0)=1 => it is ±1 =	
# 5	oppose A and B are unital commobine ringe and c: A-28 is a ring homorphism. Then	
	$ c: A[x] \rightarrow B[x], $	
	For ug A, beB,	
	$\phi: A[\times] \rightarrow A$, $\phi_{A}(f(x)) = f(x)$	
	$\phi_b: B[x] \rightarrow B, \phi_b(g(b)) \approx g(b)$	
	be the evaluation people. Then for every a G A, we love	
	$((\phi_{\alpha}(f(x))) = \phi_{c(\alpha)}(c(f(x)))$	
-1: J	ohl s	
	pose $c: A \rightarrow B$ is a ring homomorphism and $f(x) \subseteq A(x)$. If $c(f(x))$ doesn't have at zero in B, then $f(x)$ date at hore zero in A. $f(u) = 0 \text{, a.g. } A f(x) \subseteq A(x) \implies c(f(x)) = c(a) = 0 \implies$	
# 9	upperse f(x) & Z(x) is a manic odynamial. If f(x) does not a zero in Zn , speen f(x) does not have a zero in Q	
proof:	suppose f(x) has a zero in Q. Since f(x) e Z[7] is omir of f(x) has zero in Z, then consider the residence map and done a	
Note:	a p call to the case of the to	
	popular pris prime. Prove tend f(x) = x + px p2 p x + (2p+1) depend have a rational tens.	
200 2-	et $x^2 + p \times \frac{p(p-1)}{2} = x + 2p+1$ be the polynomial.	
	sorting in $\mathbb{Z}_p[x]$, we get $x^2 + px^{p(r-1)} - x + 2r^{r-1} = x + fx^{r-1} - x + 2p+1 = 2p+1 = 1$ and p Y . So downly time root in \mathbb{Z}_p	
	ia jeceducilda 🗷	

LECTU	KE 11																			
			- 12						027 12											
¥ 27																				
proof.						1 55					in Field	is irre	ducible.							
(· 2»:		le it	are n	t unit		A ter	V. J. 20	7	nts)										
	14	ded d	13.1	10.7.1., 79	ien 1	CPM)	est pc i	TEALLIN	E 100 A	LA J										
* Sup.	pose f()) := ,	_x^ +	+4,	c Z [x1	نهما	non - Lur	o polyn	mid . Th	conh	int of f	is the a	nreatest	CPAN EN ON	divisor	of the c	sell ici en	s a _b ,		a.e.
	de iti							35.38												
节!	L(2x	-6)=2	and	4(2x2-	(X+3)=															
	. Thes	conten	ا م	travi L po	Lynemi	al is I.														
特战	n by a	posities	integer	ε _η : 72	(×1 >)	Ex3 1	or the m	odulo 1	esidue m	م رمه	c Z\ 1.2	, and s	op pase	FW, gW	eZ[1]	Oure -	has non	-zura pal	gamiels.	I
	· «(2 F(x))	= a c	x (±)																
1	- 16	k(f)=	d_,tun	- 1	f(x)	= Z [1]	and	x (1	t(x)) =											
	3- n	(4)	ift f	CKW C	n.,														-	
proof:	, diq	(aa, ,	·· ya	<u>") = </u>	و إما	d(a,	, · · , a)												
	الماو ٠				- 5															
	· n/	a,,	,nla.	(E) n [ged (a	, · · · / · · ·)													
	200			- 11																
400	ξω)=			gai nos	NA D	yponia	1 1	W(3	ĿΙ											
-)	1()]	wit)	(1)																	
#	Every	Name -	uto nd	lynomi	al fi	x) = (λ[x],	Mure (are un	que pa	itive									
	•			1								er fo	O. May	cover fo	o fi	x) & 7	2[2],0	(f)=q		
proof:				7.1										. w. ŋ						
								1927		₹(×)			20.0							
			,								1 10		rv	F ₁ (x)=	-	.,,				

	let	- n }	ae smal	lest jabo	yur st	m	avi e a	Z	٠ .	mg fi	(x) =	m qv2	f (x)	•		
								Š	ر	n, f(×) ;		- tc(x)	ه) (د	d(n,	F,W
* Th	e anique ri	ntional n	umber	given i	a above	is called	contra			100						N2 FL
	ľ							0			C					: N ₂ .
#	For every	y him-	-zero fc	x) E Q	C×3 an	d ae (Q 183,	, we have	de	2 f(x))	= 101×	(H/A)				
	We	,											lence	af(x) =	- a xl	(f.) <u>t</u> (x)
, ,							(af(x)):									
				1 % &	5 0											
# (G	acus limm	ma) if	fand	a are t	147D GP INV	nitive p	ele monia	l then	fn is	also	mimihv	le.				
	Suppne			~					100				الوء (1)=0 W C	م(م)=>	ه اه (±
	341		Mail Cons								7	,				place.
																P1 0
A (Carlo lein		Sumpa	. f.		620	11 ma - 7e	- 1			T.1 1					
77	Gauss lem					ne two	Num = con	io pur nu	ome are	IN (X	[X1.	hen				
		action)= 01	(F) d(g))											
4.		f(x)= d	. (1)	(*)												
proof:																
		g (x)=														
					((x (5) g)											
	>)	Y (F(X)		0.5/10	(x) [(x)											
				_)×(2) ×		Д(З(X))									
				٨١	(+1×cg)	- 1										
# 5,	uppose t(x)		4					Same 916	a Ex	- Thon	Huge one	primith	e polymen	rieb 3;	(n) such	Had
) and fix)	= 1 9; (x)	ju.									
Proo	of: 1= L (f) = L															
	T 5; (x) =	Ť (× ((c), (°)) = (ji,	د ري <u>ي) آ</u> ڙِع	i(x) = £(x)	3 •									
# Sw	ppose find is	primitive	and deg	f 31 Than	fun is i	treducile.	in Z[x];	iff this in	reducible	m Q[x]						

040ed : Sup	opose fen) s	is not irreducib	le in Q[x].	As duy f≥1 :	⇒ 19,(U),g,(V)	With day 21	st fix)= g,cx	igalx) . Since	u(f) =1
•		ico e deg		•			, J,		
		irreducible	3						
Suy f(x) is ma	rivvaduvibe, i	n B[x]. Since	dug f>, i+ is	ud wist.					
					of unit) then	& (+)≠1, S	o flx) is not in	red. in Q[x] B	
1555									
# (mod-pirre	duci bility crib	niem) Suppa	e fix)e qua	is primitive,	pie prime w	hich doesn't	divide the leas	ery a of fi	g and cp: 2013
is the model									
		in Zptx), the	au f(x) is	irreduncible	. CxJ D nt				
oroof: Sm	f(x) ic nult	irreducible in	Q [x]. Hence	f(x) is either	company out the	o smiles dear	,. Since it is	<i>ایرولسنها</i>	
	315	is not complement					. =	100	
					rs f(x) is primi	dive -> f(ಎ: <u>ಕ</u> ಾಚುಕ್ಕಾರಿ	=> Since al	bearing y of f
	leading of of		, 12-, , 11				3,000		287.
		ر داري!) = qab	ō: =da, «						
		t) = 4 (5) 4(
	100	J , cp(+) i							
	00 16 010	, cpc1/ 11/	NI III GEL.						

LECT	URE	12																		
# Pro:	ve thu	+ f(x)	= 37 -	9×5+21	x3 -147	²− 8×1	ill is	wede	wiblein	Q[x].										
mod.		f(x)						000 000 00		۸ . (۱۳	me f(x)	is prin	itine	bus	المطان	_ઝ યુ	knt	a nulh	plu of 7	₽. S
# 1.	Prove	-flood >	, ^ч + × 1	T le	irreduc	jble in	Z_[x]													
2- prod :		tout f									ynomial	l di vida	s . No	he bhan c	on!	2 ² Jupe	• 2 -	polynomi	uls in 7	R ₂ [2
		ام مهرا مهرا	41 , x ^L t	x , x ² +	rtl 0	nd bw	uh force	_i}												
			(x) = ->	⁶ FX ⁻	rı volui	ch io			Z ₂ 0	×1										
¥ (Eis							f(x) =	a-x" 1		· ~9 V	÷0.	2 Z [×1	and	, h. b.	r)me	Suppere	exa	. 0\0		
and	P ²	rab	- Then	t(%)	is iyyed	eccipa	in Q[×)												
bool:	٧٠	S. A	(f) =	k(ع, ع,	? ≃	d(9,) a), (> / % -	φ). A	4 J; (*.	be.	-yea	kulmp.	e py	nsmert	łucia	THAT	9;(*)=	Æ(9¡)	gi ^l
		a) t																		
	Note	that ^C p(ľ			1	Le p	f the l	moding of	g 3,0	c) e <u>g</u> ,	(v)							
	Note	duę) (cp	(5 <u>;</u>)) :	- deg (:5;)>:	3													
	lemm						L 9, ,9	CFEX	1 are	two n	on - const	ant poli	ynomials	Such -	nut q),(x) g ₂	(x) = c	× ⁿ for s	uma C e	PX
			Thun	9, (0)	= 92(0)	Eq.														

		proof: Suppose 9, (x) = b, x + + b, x + bo
		9, (λ)= c ₈ x ³ + + c, x + c ₆
		b, cj∈ F , br,c, ∈ F*
		So by Cs x +5 is the largest form.
		by companing cfs, cobo=0 => either co or bo is 0. sw104 co=0. Then say s' is the smallest st cs1 is nonzero.
		and let τ' be the smallest index at b_{τ} , $\neq 0$.
		Note that $c_{ij}^{ij} \times x^{ij+1} = c_{ij}^{ij} b_{ij}^{ij} = 0$ If $x^{ij} \neq x$ or $x^{ij} \neq x$. Contambilities.
		δο 9, (ο) = 0 , 9, (ο) = 0.
		Using the above lime,
		$c_{\rho}(\bar{g}, \bar{b}) = c_{\rho}(\bar{g}, \bar{b}) = 0$
		$\Rightarrow P[\bar{\eta}, \omega), P[\bar{\eta}, \omega)$
		$=$ $\rho^2 \bar{g_1}(0) \bar{g_2}(0)$
		$a_0 = f(0) = a(4) \bar{g}_1(0) \bar{g}_2(0)$
		⇒ ρ ² a ₀ , Nρ. > .
	#	Prove that $f(x) = \frac{\pi}{2} \times 6 - \frac{4}{3} \times 6 + 2 \times \frac{8}{11}$ is irreducible in Q [x]
	bood:	fun = 5x6 - 1 x3 + 3x - 3
		f(x) is primitive form is $(33xx)x^{L} - (22x4)x^{3} + (6cx7)x - (6x3)$
		We work in Z2 and our eismulein
Q		
	#	Suppose p is prime. Then f(x) = xp-1 + xp-2 + +1 is irreducible in QCX).
	proof:	$f(x)(x-1) = (x^{p-1} + x^{p-2} + \dots + 1)(x-1) = x^{p-1}$
		5. (a) - 2 ^f =1
		ut g(y) := f(y+)
		$\Im(y) = \frac{(y+y)^p - 1}{y} = y^{p-1} + \binom{p}{p-1} y^{p-2} + \cdots + \binom{p}{1}$
		3 (7)
		poste by example another of the graph of the introductible in Q[x] => \$ (x) is transmission Q[x].

	po existence.
	an integral alomain D is called Unique factorization Domain (UFD) it every non-zono unit element of D can be written as a product of irreducable Clements and
	the irreducible fedors are unique up to reprotecting and multiplying by a unit.
*	The viny of introjers is a UFD.
*	Suppose D is con ID.
	wt deD.
	1. If d is irreducible one one data
	2 Heat, 3 a, si, '60 st d-a, li,'
	3. Repeat this process for each one of the Auctors
*	Soughory that d is multiple of d, ⇒ <012 ≤ <01.7
	More $\langle d \rangle = \langle A_i \rangle$ iff $A = ud_1$, $u \in D^{\times}$.
So we git	choin of (principal) iduals:
	<y>> ← <y> ← <y> · · · · · · · · · · · · · · · · · · ·</y></y></y>
* 4	zing A is called Northerian if there is no infinite ascending chain of ideals
	So is D is Northerian Integral damain. Then Greay non-zero element of D can be written as a product of irreducible elements of D.
# Sup	puse A is a unital commutative ring. Then A is Northunian iff every ideal of h is finited generalted.
	=) Suppose there is an ideal I which is not finitely generated.
	so consider the elements of I C use can get it) st
	∠q,> ⊊ <a,,a,> ⊊ ····</a,,a,>
,	Say every ichtal 13h is finitely generalad.
	1ct $\Gamma_i \subseteq \Gamma_Z \subseteq \cdots$ be an ascending chain of ideals. Let $\Gamma = \bigcup_{i=1}^{N} \Gamma_i$.
	Note that I is an ideal as iel, a cathum ia classical; , a iel; .
	if a 61; , o' e1; . wich 1; \(\) 1; \(\) a' -a \(\) a' -a \(\).
	Since I is finitely generated, the chain has to end. ** D is a PID \Rightarrow D is maltunian

LECT	URE	13																	
* \$4	ppec	Pı	, 1, .	ılm	and q	/1 · . ·	?n	wre i	rridu	ible d	luments	go.							
				, Pm															
	Hun.	P, -	: υ, γ;	, P ₁ =	ue orig		for	some	u;e	D^ .									
519	S.	ı→i.			, "	-s im		in	partic	lav	m=n								
×	Supp	u Di	s on in	hopal d	Smain_														
	1. For	a,b e	D,wes	ay al	, if a	YED	st b	=ad											
	2· A	NON-Zen	o,non u	nit ele	ment p	op D	ic ca	us p	time.	when 1	in every	a, þ é	Dif	plab	=> pl a	ox p11	.		
st.	2712702-2		7040													0.00	Tr. No.		
#									unit 6	limont	of D con	be to	nitien.	06 0	product	d 13.	reducibl	e eleme	nts. The
	a ur	D MI	every	irreduc	(50 6)	MARAAR 15	griens												
lde	- dpr	ed: =	Say	p is in	re duhi	le. Swy	plab	. Then	ub=	p.d	her som	ne d.	de cam	iogs A _i lo,	al indo in	redu able	factors		
			\$.	by unio	numa of	VFD,	Have sh	ould be	a hader	Ø in	Ки ехрам	im of ob	Se el	a or flb.					
(€ We	only re	ed loska	w uniqu	intol.	i4 64 -	- f _m =	Ay o	ka , whe	e 1	, Ni onc	primes							
					4	0, 19	9cn 1	0 1,19	i . As	Wi is	irrelucib	k=) (, =q; .	So ram u	ا بهدر ا	nduction.			
11-	182				A1 120														
				ral don <6> <6> ≤		a,b e D													
				on for too															
				a (🖘		ar) neb	}, be	(a) <=	< b>	د دمې									
-0.00	w i	10 2 01	a s) p	=ac & 0	=bd =	o=bL=	acl	الم, د	are unil	s									
				1	2(0)	ce> is	a non zi	ra prope	w ideal	e) or b	فر۹).								
* 5	Abberr	A is a	unital	com mut			10000				• baye	ne ideal i							
·	O L is	Des Per	(I #A`)															

10. 10. 21. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18		
with N is mostly parameter. Note to $\mathbb{Z}[V-G]$ is a unit left $\mathbb{N}(\mathbb{Z})=1$. The is invariable, where $V-G$ is a left funit. If $V-G=XY$ then $G=\mathbb{N}(X)\mathbb{N}(X)$. But there is no X st $\mathbb{N}(X)=2$ as $\mathbb{R}^2+G\mathbb{N}^2>\mathbb{C}$ (t by \mathbb{C}).	4 Ta v	2 (T-C) 15 met a (15)
Note the theory is no x st $N(x)=2$ as $a^2+cb^2> C$ if $b\ne 0$.		
Nate $\Rightarrow \in \mathbb{Z}[\sqrt{-c}]$ is a unit left $\mathbb{N}(e)=1$ The is iggreducible. Nate $\sqrt{-c}$ is all finit. If $\sqrt{-c} = xy$ than $\mathbb{N}(\sqrt{-c}) = xy$. Then $C = \mathbb{N}(x)\mathbb{N}(y)$ But there is no x st $\mathbb{N}(x)=2$ as $a^2+cb^2 > C$ if $b\neq 0$.		
The is iggreducible. Note The is not unit. If $V^-6=\times y$ then $N(V^-6)=\times y$. Then $G=p(x)N(y)$. But there is no \times st $N(x)=2$ as $a^2+cb^2=2$ as $a^2+cb^2>C$ if $b\neq 0$.		
But there is no \times st $N(x)=2$ by $a^2+cb^2=2$ by $a^2+cb^2>$ G (t $b\neq 0$).		