

4. Übungsblatt zum Vorkurs Physik

Wintersemester 2020/21 Für den 22.10.2020 Prof. Dr. Carsten Westphal Prof. Dr. Jan Kierfeld

Aufgabe 1: Erstes Mal Taylor-Entwicklung

Gegeben ist $f(x) = \sqrt[3]{2x+2}$, $x \ge -1$.

- a) Bestimmen Sie die ersten zwei Ableitungen der Funktion f.
- b) Stellen Sie das Taylorpolynom 2. Grades von f mit Entwicklungspunkt $x_0 = 3$ auf.

Aufgabe 2: Von Taylor-Entwicklung zu Taylor reihe

Berechnen Sie alle Ableitungen $f^{(n)}$ mit n=0,1,2,... der Funktion f und geben Sie damit die Taylorreihe für f mit Entwicklungspunkt $x_0=0$ an,

- a) $f(x) = \sin(3x), x \in \mathbb{R}$,
- b) $f(x) = \sqrt{1+x}, |x| \le 1.$

Aufgabe 3: Taylor-Entwicklung die Zweite

Bestimmen Sie das Taylorpolynom dritten Grades der Funktion $f(x)=e^{\sin(x)}$ im Entwicklungspunkt $x_0=0$.

Aufgabe 4: Taylor-Entwicklung die Letzte

Bestimmen Sie das Taylorpolynom dritten Grades der Funktion

- a) * $f(x) = \sin(x) \text{ mit } x_0 = 0,$
- b) $f(x) = x \ln(x)$ mit $x_0 = 1$.

Aufgabe 5: Kurvendiskussion

- a) Bestimmen Sie die Extrempunkte der Funktion f mit $f(x) = e^{2x} + e^{-x}$.
- b) Bestimmen Sie den Wendepunkt der Funktion f mit $f(x) = (x-1) \cdot e^x$.

Aufgabe 6: Und weil's so schön war Kurvendiskussion

a) Die Funktion f hat das nebenstehende Schaubild und die Funktionsgleichung $f(x) = a \cdot e^x + b$ mit $(a,b \in \mathbb{R})$ mit der Nullstelle N mit $N = \ln(\frac{3}{c})$. Bestimmen Sie die Werte von a und b. Tipp: Betrachten Sie den Verlauf der Funktion.

b) Gegeben sind die Funktionen f und g mit $f(x) = \frac{1}{1-x} + 3$ und $g(x) = -\frac{1}{1+x}$. Geben Sie die waagerechte Asymptote der Funktion f an und bestimmen Sie die Stelle, an der f und g die gleiche Steigung haben.