Soroush Mesforush Mashhad	Digital Logic Design	20	1	
Student Number: 810198472	lw!	Due Date: 99 / /2 /18	1 6	
1_ 6539 Binory, represantati	1100110001011	- 13 bits f.	24	
unlighed Binory repre	sentation.			
6539 <u>BCO</u> , 0110	0/6/ 00// /0/1/6	F145		
2- BOIL of the 4-bit	gray ade and binard	ide are useful numl	ber	
system which are depicted below and can be converted to eachoth				
in a monner which I Shall explain Shortly.				
Binary Code. 0000	Gray code: 0 0000			
2 00 10	2 00 []			
30011	3 00/0			
5 0 1 0 1	5011			
6 0 1 1 0	6 0 1 0 1	7		
7 0111				
	70100			
8 / 000	8 1100			
9 1001	9 1101			
1011	10 1111			
12 1100	11 110			
13 1101	12 1010			
14 1110	13 1011			
15 1111	14 1001			
(5) (1)	15 1000			
Now we				
we mant to	Convert Binory to gra	in code, if we ar	mpare	
the most significant bit	-(MSB) of these two, col	J	,	
the Same.	1 1.675 Jano 109	es in all Goes they	are	

Soroush Mesforush Mashhad	Digital Logic Design	Due Date: 9 / 12 / 18 2			
Student Number: 810198472	HW:	1) / 12 / 18 6			
to find the other bi	to of the gray cale from	on binary we do the following			
		~ pinary we must perform			
XOR on the (n-1)th and who bit of the binary number and pot it					
as the nth bit of					
example: 1011	oracle Man code				
Gate implementation.	, ,				
abod -, wryz	6	~ X			
		~ ~			
	d	2			
Now we shall Convert	gray cole to binory.				
To do this, we note that the MSB for gray Code and binary ade are					
the same, for the nth bit we check the gray code, if its not bit is					
I, then the nth bit f	or binory shall be the com	plement of the in-1,th bit			
of the pinary number of	ind if the gray Code's not be	it is a the nth bit of			
The same of the same of	cits (n-1)th bit				
Gate implementation a		X			
gray binary					
d		> t			
1		Scanned by CamScanner			

1

Soroush Mesforush Mashhad	Digital Logic Design	Due Date: 97 / 12 / 18			
Student Number: 810198472	HW1	6			
3 For inputs a and b and output w the boulean form of the					
NAND gate shall be. $w = a.b$ and the cmos implementation					
18 - Vad					
and Troth table: a b w					
nmos: # (35,7)					
Pmos:# (4,6,8)					
F _{C-1}					
Worst Case Delay to 1: For us to have I on the output one of the pmos					
transistors should anduct,	transistors should anduct, which means we need 4 nano seconds for, it both the				
runos transistors should Send Z So the worst ase delay to I shall be: 7+7= 14x5					
Worst GE Delay to 0: to have a on the output we must get 7 from at					
least one of the pmos transisters which takes a minimum of 8 nano Seconds					
and both the nmos transistors must sendo so the delay is: 5+5= long					
Worst Case to 1 Delay waveform; Worst Case to a Delay worldom:					
Worst Case to 1 Delay waveform; Worst Case to 0 Delay worlform: a b w a b w condisole o 1 a b w - a b w n. lillerence & can be					
time Par pros le souls Con be la als.					
a o time	for pros to sent?				
	ons a o	8ns Tin for 1/mos to sent 2			
b° mans	b 0	8ns 7ns			
0	X	X			
M	w ° ~	2ns 7ns			
in this part the Pmas is sending I and the nones don't send 2 yet so we have X					

Soroush Mesforush Mashhad Digital Logic Design Due Date: 99 / 12 / 18 Student Number: 810198472 HWI Here I shall create a ZXI MUX, for inputs al, b and s as the Sole of Value a Simple Schematic and truth table is depicted below: truth table; a Boolean W= 5.a+ S.b NAND gate implementation of MUX: 5- In question 3 the worst case to 1 for a nand gate was: 14ms and the worst case to a was: In ms here we shall use these delays. the worst pathque can choose is depicted below for all Scenarios we worst thing that can happen is two worst case to 1 Delays and one worst case to o, this is the worst case all in all which is: 111+14+10 - 38ns Scanned by CamScanner

nd

IW H

opper pros transistor shows the Same manner, So: Delay - 16mg

ToI: For this to hoppen a=0, EN=1 in this Case the lower

Part of the structure his a luns relay, and the pros of the

inverter Shall have an 8ns delay and the lower price connects in 4ns

hence wehere 8+4=12ms So: Delay=14/ns

To Z: The Doly for a= EN =0 is greater than the other form So I shall write this one only In this case westell have to 2 delays For the lower nmrs transistors which Is luns. For the inverter we have a 7 ns nows delay and for the Gollowing pross we have 8he

de ay So. Delay: 8+7 = 15ns

7- For the first we shall find the time needed to go from a.a.vo to 0.1 Vo V= V0 e RC 0,9 V0 = No E NRC (1) 0.1 V0 = V0 e RC (1) (1)

9= e st /n RC - St = lng - , Dt = RC/R2 \square 2.19 RC

For the second part a reasonable approximation Guld be co,001 Vo Similar to the last port we have: lood= excl. nt = Rchiloooj = 69 RC

Forther Vo= No e + RC (1) 0.5 Vo= Voe + C (1) (1) -1 2 = ext /n rt= RC/n2 M 0.69 RC