Machine Learning Lab

Simran Kaur

311443

Lab 5

Exercise 1: Backward search for variable selection

Importing required libraries

```
import pandas as pd
import numpy as np
```

Reading CSV file

```
In [363...
f = pd.read_csv('bank.csv', sep = ";")
f
```

Out[363		age	job	marital	education	default	balance	housing	loan	contact	day	mont
	0	30	unemployed	married	primary	no	1787	no	no	cellular	19	0
	1	33	services	married	secondary	no	4789	yes	yes	cellular	11	m
	2	35	management	single	tertiary	no	1350	yes	no	cellular	16	a
	3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	jι
	4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	m
	•••											
	4516	33	services	married	secondary	no	-333	yes	no	cellular	30	j
	4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	9	ma
	4518	57	technician	married	secondary	no	295	no	no	cellular	19	aı
	4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	6	f€
	4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	3	a

4521 rows × 17 columns

To convert non-numerical values, I have first taken all possible values occuring in each column and then used a dictionary to give them numerical values.

```
In [365...
          f["job"].value_counts()
                             969
          management
Out[365...
          blue-collar
                             946
          technician
                             768
          admin.
                             478
                            417
          services
          retired
                             230
          self-employed
                            183
          entrepreneur
                            168
                            128
          unemployed
          housemaid
                            112
          student
                              84
                              38
          unknown
          Name: job, dtype: int64
In [366...
           f["marital"].value_counts()
                       2797
          married
Out[366...
                       1196
          single
          divorced
                        528
          Name: marital, dtype: int64
In [369...
           f["education"].value_counts()
                        2306
          secondary
Out[369...
                        1350
          tertiary
          primary
                         678
                         187
          unknown
          Name: education, dtype: int64
In [370...
           f["contact"].value_counts()
          cellular
                        2896
Out[370...
          unknown
                        1324
          telephone
                         301
          Name: contact, dtype: int64
In [371...
           f["month"].value_counts()
                  1398
          may
Out[371...
                   706
          jul
          aug
                   633
                   531
          jun
          nov
                   389
          apr
                   293
                   222
          feb
                   148
          jan
                    80
          oct
                    52
          sep
                    49
          mar
                    20
          dec
          Name: month, dtype: int64
In [372...
           f["poutcome"].value_counts()
          unknown
                      3705
Out[372...
          failure
                       490
          other
                       197
```

success 129

Name: poutcome, dtype: int64

Giving numerical values to the entries of columns

Out[373		age	job	marital	education	default	balance	housing	loan	contact	day	month	duratio
	0	30	10	2	4	0	1787	0	0	2	19	10	-
	1	33	6	2	2	0	4789	1	1	2	11	5	2;
	2	35	2	3	3	0	1350	1	0	2	16	4	18
	3	30	2	2	3	0	1476	1	1	13	3	6	19
	4	59	3	2	2	0	0	1	0	13	5	5	22
	•••												
	4516	33	6	2	2	0	-333	1	0	2	30	7	32
	4517	57	8	2	3	1	-3313	1	1	13	9	5	1!
	4518	57	4	2	2	0	295	0	0	2	19	8	1!
	4519	28	3	2	2	0	1137	0	0	2	6	2	12
	4520	44	9	3	3	0	1136	1	1	2	3	4	3₄

4521 rows × 17 columns

```
→
```

Checking if the rows of the dataframe has any missing or NA values

```
is_NA = bank.isna()
    row_has_NA = is_NA.any(axis=1)
    rows_with_NA = bank[row_has_NA]
    print(rows_with_NA)
```

Empty DataFrame

Columns: [age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome, y]
Index: []

There are no such rows

This function is for splitting the dataset into 80% training and 20% test set.

```
def split(file):
    r, c = np.shape(file)
    size = int(0.8*r)
    train = file.iloc[0:size]
    test = file.iloc[size:]
    return train, test
```

As we can see some of the columns in our dataframe has very low range values and some have

values in a bigger range. This means we need to normalize our dataframe. For this we will first make a copy of our dataframe excluding the last column which we do not want to normalize as it contain classes and normalize rest of the dataframe.

In [379	<pre>temp_bank = bank.iloc[:, :-1] temp_bank</pre>
---------	--

Out[379		age	job	marital	education	default	balance	housing	loan	contact	day	month	duratio
	0	30	10	2	4	0	1787	0	0	2	19	10	-
	1	33	6	2	2	0	4789	1	1	2	11	5	22
	2	35	2	3	3	0	1350	1	0	2	16	4	18
	3	30	2	2	3	0	1476	1	1	13	3	6	19
	4	59	3	2	2	0	0	1	0	13	5	5	22
	•••									•••			
	4516	33	6	2	2	0	-333	1	0	2	30	7	32
	4517	57	8	2	3	1	-3313	1	1	13	9	5	1!
	4518	57	4	2	2	0	295	0	0	2	19	8	1!
	4519	28	3	2	2	0	1137	0	0	2	6	2	12
	4520	44	9	3	3	0	1136	1	1	2	3	4	34

4521 rows × 16 columns

In [380	<pre>nor_bank =(temp_bank - temp_bank.mean())/temp_bank.std()</pre>											
In [125	nor_bank											
Out[125	age job marital education default balance housing loan conta											

age	job	marital	education	default	balance	housing	loan	conta
-1.056153	1.972917	-0.716234	0.432252	-0.130744	0.121058	-1.141925	-0.424709	-0.6616
-0.772497	0.478228	-0.716234	-0.481144	-0.130744	1.118521	0.875521	2.354032	-0.6616
-0.583394	-1.016461	0.721640	-0.024446	-0.130744	-0.024142	0.875521	-0.424709	-0.6616
-1.056153	-1.016461	-0.716234	-0.024446	-0.130744	0.017724	0.875521	2.354032	1.5518
1.685850	-0.642789	-0.716234	-0.481144	-0.130744	-0.472701	0.875521	-0.424709	1.5518
-0.772497	0.478228	-0.716234	-0.481144	-0.130744	-0.583345	0.875521	-0.424709	-0.6616
1.496746	1.225572	-0.716234	-0.024446	7.646823	-1.573497	0.875521	2.354032	1.5518 ₄
1.496746	-0.269117	-0.716234	-0.481144	-0.130744	-0.374682	-1.141925	-0.424709	-0.6616
-1.245256	-0.642789	-0.716234	-0.481144	-0.130744	-0.094914	-1.141925	-0.424709	-0.6616
0.267573	1.599245	0.721640	-0.024446	-0.130744	-0.095247	0.875521	2.354032	-0.6616
	-1.056153 -0.772497 -0.583394 -1.056153 1.685850 -0.772497 1.496746 1.496746 -1.245256	-1.056153 1.972917 -0.772497 0.478228 -0.583394 -1.016461 -1.056153 -1.016461 1.685850 -0.6427890.772497 0.478228 1.496746 1.225572 1.496746 -0.269117 -1.245256 -0.642789	-1.056153 1.972917 -0.716234 -0.772497 0.478228 -0.716234 -0.583394 -1.016461 0.721640 -1.056153 -1.016461 -0.716234 1.685850 -0.642789 -0.716234 -0.772497 0.478228 -0.716234 1.496746 1.225572 -0.716234 1.496746 -0.269117 -0.716234 -1.245256 -0.642789 -0.716234	-1.056153 1.972917 -0.716234 0.432252 -0.772497 0.478228 -0.716234 -0.481144 -0.583394 -1.016461 0.721640 -0.024446 -1.056153 -1.016461 -0.716234 -0.024446 1.685850 -0.642789 -0.716234 -0.481144 -0.772497 0.478228 -0.716234 -0.481144 1.496746 1.225572 -0.716234 -0.024446 1.496746 -0.269117 -0.716234 -0.481144 -1.245256 -0.642789 -0.716234 -0.481144	-1.056153 1.972917 -0.716234 0.432252 -0.130744 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 -0.583394 -1.016461 0.721640 -0.024446 -0.130744 -1.056153 -1.016461 -0.716234 -0.024446 -0.130744 1.685850 -0.642789 -0.716234 -0.481144 -0.130744 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 1.496746 1.225572 -0.716234 -0.024446 7.646823 1.496746 -0.269117 -0.716234 -0.481144 -0.130744 -1.245256 -0.642789 -0.716234 -0.481144 -0.130744	-1.056153 1.972917 -0.716234 0.432252 -0.130744 0.121058 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 1.118521 -0.583394 -1.016461 0.721640 -0.024446 -0.130744 -0.024142 -1.056153 -1.016461 -0.716234 -0.024446 -0.130744 0.017724 1.685850 -0.642789 -0.716234 -0.481144 -0.130744 -0.472701 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 -0.583345 1.496746 1.225572 -0.716234 -0.024446 7.646823 -1.573497 1.496746 -0.269117 -0.716234 -0.481144 -0.130744 -0.374682 -1.245256 -0.642789 -0.716234 -0.481144 -0.130744 -0.374682	-1.056153 1.972917 -0.716234 0.432252 -0.130744 0.121058 -1.141925 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 1.118521 0.875521 -0.583394 -1.016461 0.721640 -0.024446 -0.130744 -0.024142 0.875521 -1.056153 -1.016461 -0.716234 -0.024446 -0.130744 0.017724 0.875521 1.685850 -0.642789 -0.716234 -0.481144 -0.130744 -0.472701 0.875521 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 -0.583345 0.875521 1.496746 1.225572 -0.716234 -0.024446 7.646823 -1.573497 0.875521 1.496746 -0.269117 -0.716234 -0.481144 -0.130744 -0.374682 -1.141925 -1.245256 -0.642789 -0.716234 -0.481144 -0.130744 -0.374682 -1.141925	-1.056153 1.972917 -0.716234 0.432252 -0.130744 0.121058 -1.141925 -0.424709 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 1.118521 0.875521 2.354032 -0.583394 -1.016461 0.721640 -0.024446 -0.130744 -0.024142 0.875521 -0.424709 -1.056153 -1.016461 -0.716234 -0.024446 -0.130744 -0.01724 0.875521 2.354032 1.685850 -0.642789 -0.716234 -0.481144 -0.130744 -0.472701 0.875521 -0.424709 -0.772497 0.478228 -0.716234 -0.481144 -0.130744 -0.583345 0.875521 -0.424709 1.496746 1.225572 -0.716234 -0.024446 7.646823 -1.573497 0.875521 2.354032 1.496746 -0.269117 -0.716234 -0.481144 -0.130744 -0.374682 -1.141925 -0.424709 -1.245256 -0.642789 -0.716234 -0.481144 -0.130744 -0.374682 -1.

4521 rows × 16 columns

→

To this normalized dataframe, we will now add the last column.

```
In [381...
nor_bank["y"] = bank.iloc[:, -1]
nor_bank
```

Out[381		age	job	marital	education	default	balance	housing	loan	conta
	0	-1.056153	1.972917	-0.716234	0.432252	-0.130744	0.121058	-1.141925	-0.424709	-0.6616
	1	-0.772497	0.478228	-0.716234	-0.481144	-0.130744	1.118521	0.875521	2.354032	-0.6616
	2	-0.583394	-1.016461	0.721640	-0.024446	-0.130744	-0.024142	0.875521	-0.424709	-0.6616
	3	-1.056153	-1.016461	-0.716234	-0.024446	-0.130744	0.017724	0.875521	2.354032	1.5518
	4	1.685850	-0.642789	-0.716234	-0.481144	-0.130744	-0.472701	0.875521	-0.424709	1.5518
	•••									
	4516	-0.772497	0.478228	-0.716234	-0.481144	-0.130744	-0.583345	0.875521	-0.424709	-0.6616
	4517	1.496746	1.225572	-0.716234	-0.024446	7.646823	-1.573497	0.875521	2.354032	1.5518
	4518	1.496746	-0.269117	-0.716234	-0.481144	-0.130744	-0.374682	-1.141925	-0.424709	-0.6616
	4519	-1.245256	-0.642789	-0.716234	-0.481144	-0.130744	-0.094914	-1.141925	-0.424709	-0.6616
	4520	0.267573	1.599245	0.721640	-0.024446	-0.130744	-0.095247	0.875521	2.354032	-0.6616

4521 rows × 17 columns

We will convert this dataframe to numpy matrix with a bias column added for the linear combination in the logistic regression part.

```
nor_bank_matrix = nor_bank.to_numpy()
bias_col = np.ones(shape=(nor_bank_matrix.shape[0],1))
nor_bank_matrix = np.append(bias_col,nor_bank_matrix,axis=1)
nor_bank_matrix_X = nor_bank_matrix[:, :-1]
nor_bank_matrix_Y = nor_bank_matrix[:, -1]
```

Implementing Logistic Regression with mini batch gradient ascent

```
def sigmoid(X, beta):
    sig = (1/(1 + np.exp(-(np.dot(X, beta))))).reshape(-1,1)
    return sig

def log_likelihood(X, Y, beta):
    s = 0
    for i in range(len(X)):
        s += Y[i]*np.dot(X[i], beta) - np.log(1 + np.exp(np.dot(X[i], beta)))
    return s[0]

def log_likelihood_grad(X, Y, beta):
    return np.dot(X.T, np.subtract(Y, sigmoid(X, beta)))

def mini_batch_gradient_ascent(X, Y, i_max, alpha):
    m, n = np.shape(X)
    beta = np.zeros((n,1))
    beta_new = np.zeros((n, 1))
```

```
batch_size = 50
l = int(m/batch_size)
for i in range(l):
    for k in range(i_max):
        beta_new = beta + alpha*(log_likelihood_grad(X[i:(i+1)*batch_size][:], Y
        beta = beta_new
return beta_new
```

Backward search for variable selection using AIC:

```
min AIC = -2logL + 2p
```

We need to minimize AIC, In the backward search we will take each variable and remove one by one from the set of variables and check for the AIC. The rule is that if by removing a variable the AIC decreases then we will remove that variable and this process will continue until the AIC doesnot decrease anymore after removing a variable.

```
In [391...
          def AIC(X, Y, beta):
              p = X.shape[1]
              return -2*(log_likelihood(X, Y, beta)) + 2*p
          def backward search(X, Y):
              i max = 100
              alpha = 10**(-5)
              beta = mini_batch_gradient_ascent(X, Y, i_max, alpha)
              col_used = [i for i in range(X.shape[1])]
              improvement = True
              begin_AIC = AIC(X, Y, beta)
              while(improvement):
                  n = X.shape[1]
                  for i in range(n):
                       l = [k for k in range(n) if k!= i]
                      beta_ = mini_batch_gradient_ascent(X[:, 1], Y, i_max, alpha)
                      new_AIC = AIC(X[:, 1], Y, beta_)
                      min_.append(new_AIC)
                   if min(min_) < begin_AIC:</pre>
                      aic, val = min((v, i) for (i, v) in enumerate(min_))
                      begin_AIC = aic
                      col_used = np.delete(col_used, val)
                      X = np.delete(X, val,1)
                      min = []
                  else:
                       improvement = False
              return col used
```

This function extracts the training and test sets features and target.

```
def Extract(f, col_name):
    train, test = split(f)
    r, c = np.shape(train)
    x_train = train.loc[:, train.columns != col_name]
    x_train = x_train.to_numpy()
    bias_column1 = np.ones(shape=(r,1))
    X_train = np.append(bias_column1,x_train,axis=1)
    y_train = train.loc[:, train.columns == col_name]
    Y_train = y_train.to_numpy()
    k, l = np.shape(test)
    x_test = test.loc[:, test.columns != col_name]
```

```
x_test = x_test.to_numpy()
bias_column2 = np.ones(shape=(k,1))
X_test = np.append(bias_column2,x_test,axis=1)
y_test = test.loc[:, test.columns == col_name]
Y_test = y_test.to_numpy()
return X_train, Y_train, X_test, Y_test
```

After running backward search on initial set of variables, we get the variables that gives good AIC score.

Keeping the same variables in the test set and running mini batch gradient ascent on it we will get predictions for the test set that we can compare with the actual values to find the error.

```
train_feature = X_train[:, cols]
b = mini_batch_gradient_ascent(train_feature, Y_train, 500, 10**(-5))
test_feature = X_test[:, cols]
y = sigmoid(test_feature, b)
y_pred = np.zeros((len(y), 1))
for i,ele in enumerate(y):
    if ele >= 0.5:
        y_pred[i] = 1
    else:
        y_pred[i] = 0
```

Error on the Test Set

```
In [399...

def error(y_pred, Y_test):
    N = Y_test.shape[0]
    sum = 0
    for i in range(N):
        if y_pred[i] != Y_test[i]:
            sum += 1
    return (sum/N)*100

print(f'Error :{error(y_pred, Y_test):.2f}%')
```

Error :11.71%

Exercise 2: Regularization for Logistic Regression

Set containing all possible values for alpha and lambda.

```
alpha_set = [0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
lambda_set = [np.exp(-5), np.exp(-10), np.exp(-15), np.exp(-20), np.exp(-25)]
hyperpara_set = np.transpose([np.tile(alpha_set, len(lambda_set)), np.repeat(lambda_hyperpara_set))
```

```
array([[1.0000000e-01, 6.73794700e-03],
Out[400...
                 [5.0000000e-01, 6.73794700e-03],
                 [1.00000000e-02, 6.73794700e-03],
                 [5.00000000e-02, 6.73794700e-03],
                 [1.0000000e-03, 6.73794700e-03],
                 [5.0000000e-03, 6.73794700e-03],
                 [1.0000000e-04, 6.73794700e-03],
                 [5.00000000e-04, 6.73794700e-03],
                 [1.00000000e-01, 4.53999298e-05],
                 [5.0000000e-01, 4.53999298e-05],
                 [1.00000000e-02, 4.53999298e-05],
                 [5.0000000e-02, 4.53999298e-05],
                 [1.00000000e-03, 4.53999298e-05],
                 [5.00000000e-03, 4.53999298e-05],
                 [1.00000000e-04, 4.53999298e-05],
                 [5.00000000e-04, 4.53999298e-05],
                 [1.00000000e-01, 3.05902321e-07],
                 [5.00000000e-01, 3.05902321e-07],
                 [1.0000000e-02, 3.05902321e-07],
                 [5.00000000e-02, 3.05902321e-07],
                 [1.0000000e-03, 3.05902321e-07],
                 [5.00000000e-03, 3.05902321e-07],
                 [1.00000000e-04, 3.05902321e-07],
                 [5.0000000e-04, 3.05902321e-07],
                 [1.00000000e-01, 2.06115362e-09],
                 [5.00000000e-01, 2.06115362e-09],
                 [1.00000000e-02, 2.06115362e-09],
                 [5.0000000e-02, 2.06115362e-09],
                 [1.00000000e-03, 2.06115362e-09],
                 [5.00000000e-03, 2.06115362e-09],
                 [1.00000000e-04, 2.06115362e-09],
                 [5.00000000e-04, 2.06115362e-09],
                 [1.0000000e-01, 1.38879439e-11],
                 [5.0000000e-01, 1.38879439e-11],
                 [1.00000000e-02, 1.38879439e-11],
                 [5.0000000e-02, 1.38879439e-11],
                 [1.0000000e-03, 1.38879439e-11],
                 [5.0000000e-03, 1.38879439e-11],
                 [1.00000000e-04, 1.38879439e-11],
                 [5.0000000e-04, 1.38879439e-11]])
```

Now we will perform Mini Batch Gradient ascent for logistic regression with regularization. The training set for evaluation and the test set for prediction is found using Cross validation where we split the original entire set into K = 5 subparts and first take the first part as test and rest as training set and then second as test and remaining as training set and so on. For each pair of α and λ we will apply gradient ascent to calculate beta and then the respective mean of the risk on the test set for each test set given by cross validation. The pair of α and λ which gives the minimum risk is the one to be chosen.

I have used reg = regularizer for λ

Same loglikelihood function with just regularization term added.

```
In [494...

def log_likelihood_reg(X, Y, beta, reg):
    s = 0
    for i in range(len(X)):
        s += Y[i]*np.dot(X[i], beta) - np.log(1 + np.exp(np.dot(X[i], beta)))
    return (s[0] - reg*(np.sum(beta**2)))

def log_likelihood_reg_grad(X, Y, beta, reg):
    Y = Y.reshape(-1,1)
```

```
return (np.dot(X.T, np.subtract(Y , sigmoid(X, beta))) - 2*reg*beta)

def mini_batch_gradient_ascent_reg(X, Y, i_max, alpha, reg):
    m, n = np.shape(X)
    beta = np.zeros((n, 1))
    beta_new = np.zeros((n, 1))
    batch_size = 50
    l = int(m/batch_size)
    for k in range(i_max):
        for i in range(l):
            beta_new = beta + alpha*(log_likelihood_reg_grad(X[i:(i+1)*batch_size][: beta = beta_new
    return beta_new
```

The function crossval_split returns the kth features and target for both training and test set with K = 5 splits.

The function hyperparameter_tuning performs the gradient ascent for each pair of α and λ keeping track of risk on the test set and returns the best hyperparameter.

```
In [434...
          def crossval_split(X, y, K, k):
              A = np.zeros((X.shape[0], X.shape[1] + 1))
              A[:, :-1] = X
              A[:, -1] = y
              size = X.shape[0]//K
              B = [0]*K
              for j in range(K):
                  B[j] = A[j*size: (j+1)*size][:]
              X_{\text{test}} = B[k][:, :-1]
              y_{test} = B[k][:, -1]
              trainx = [x[:, :-1] for i,x in enumerate(B) if i!=k]
              X_train = [item for sublist in trainx for item in sublist]
              trainy = [x[:, -1] for i,x in enumerate(B) if i!=k]
              y_train = [item for sublist in trainy for item in sublist]
              return np.array(X_train), np.array(y_train), np.array(X_test), np.array(y_test)
          def pred(x,b):
              y = sigmoid(x, b)
              y_pred = np.zeros((len(y), 1))
              for i,ele in enumerate(y):
                   if ele >= 0.5:
                       y pred[i] = 1
                  else:
                       y pred[i] = 0
              return y pred
          def hyperparameter tuning(X, y):
              K = 5
              i max = 20
              R hat = [0]*K
              R_hat_mean = []
              train acc = []
              test acc = []
              train_ll = []
              test 11 = []
              for i in range(len(hyperpara set)):
                   alpha, reg = hyperpara_set[i]
                  for j in range(K):
                       xTrain = crossval_split(X,y,K,j)[0]
                       yTrain = crossval_split(X,y,K,j)[1]
                       xTest = crossval split(X,y,K,j)[2]
```

yTest = crossval_split(X,y,K,j)[3]

```
beta = mini_batch_gradient_ascent_reg(xTrain, yTrain, i_max, alpha, reg)
                      y_new = sigmoid(xTest, beta)
                      y_pred = np.zeros((len(y_new), 1))
                      for i,ele in enumerate(y new):
                           if ele >= 0.5:
                               y_pred[i] = 1
                           else:
                               y_pred[i] = 0
                      R_hat[j] = error(y_pred, yTest)/100
                  R_hat_mean.append([np.mean(R_hat), alpha, reg])
                  R_hat = [0]*K
              mini, best_alpha, best_reg = min(R_hat_mean, key=lambda x: x[0])
              return R hat mean, best alpha, best reg
In [496...
          R_hat_mean,best_alpha, best_reg = hyperparameter_tuning(nor_bank_matrix_X[:,cols], n
          R_hat_mean, best_alpha, best_reg
         C:\Users\simra\AppData\Local\Temp/ipykernel_25512/3655892362.py:2: RuntimeWarning: o
         verflow encountered in exp
           sig = (1/(1 + np.exp(-(np.dot(X, beta))))).reshape(-1,1)
         ([[0.1679203539823009, 0.1, 0.006737946999085467],
            [0.15530973451327434, 0.5, 0.006737946999085467],
           [0.15353982300884955, 0.01, 0.006737946999085467],
           [0.225, 0.05, 0.006737946999085467],
           [0.10862831858407081, 0.001, 0.006737946999085467],
           [0.11150442477876106, 0.005, 0.006737946999085467],
           [0.1081858407079646, 0.0001, 0.006737946999085467],
           [0.1084070796460177, 0.0005, 0.006737946999085467],
           [0.13783185840707962, 0.1, 4.5399929762484854e-05],
           [0.1274336283185841, 0.5, 4.5399929762484854e-05],
           [0.1608407079646018, 0.01, 4.5399929762484854e-05],
           [0.14314159292035397, 0.05, 4.5399929762484854e-05],
            [0.10862831858407081, 0.001, 4.5399929762484854e-05],
            [0.11172566371681417, 0.005, 4.5399929762484854e-05],
           [0.1081858407079646, 0.0001, 4.5399929762484854e-05],
           [0.1084070796460177, 0.0005, 4.5399929762484854e-05],
           [0.12699115044247786, 0.1, 3.059023205018258e-07],
           [0.19579646017699115, 0.5, 3.059023205018258e-07],
           [0.1243362831858407, 0.01, 3.059023205018258e-07],
           [0.12721238938053098, 0.05, 3.059023205018258e-07],
           [0.10862831858407081, 0.001, 3.059023205018258e-07],
           [0.11172566371681417, 0.005, 3.059023205018258e-07],
           \hbox{\tt [0.1081858407079646, 0.0001, 3.059023205018258e-07],}
           [0.1084070796460177, 0.0005, 3.059023205018258e-07],
            [0.134070796460177, 0.1, 2.061153622438558e-09],
           [0.17610619469026548, 0.5, 2.061153622438558e-09],
           [0.11482300884955751, 0.01, 2.061153622438558e-09],
           [0.13495575221238937, 0.05, 2.061153622438558e-09],
           [0.10862831858407081, 0.001, 2.061153622438558e-09],
            [0.11172566371681417, 0.005, 2.061153622438558e-09],
           [0.1081858407079646, 0.0001, 2.061153622438558e-09],
           \hbox{\tt [0.1084070796460177, 0.0005, 2.061153622438558e-09],}
           [0.1471238938053097, 0.1, 1.3887943864964021e-11],
           [0.1652654867256637, 0.5, 1.3887943864964021e-11],
           [0.12367256637168142, 0.01, 1.3887943864964021e-11],
           [0.13628318584070798, 0.05, 1.3887943864964021e-11],
           [0.10862831858407081, 0.001, 1.3887943864964021e-11],
           [0.11172566371681417, 0.005, 1.3887943864964021e-11],
           [0.1081858407079646, 0.0001, 1.3887943864964021e-11],
           [0.1084070796460177, 0.0005, 1.3887943864964021e-11]],
```

```
0.0001,
          0.006737946999085467)
In [497...
          z = []
          for a,b,c in R_hat_mean:
              z.append(a)
In [498...
          np.array(z).reshape(8,5)
         array([[0.16792035, 0.15530973, 0.15353982, 0.225
                                                              , 0.10862832],
Out[498...
                 [0.11150442, 0.10818584, 0.10840708, 0.13783186, 0.12743363],
                 [0.16084071, 0.14314159, 0.10862832, 0.11172566, 0.10818584],
                 [0.10840708, 0.12699115, 0.19579646, 0.12433628, 0.12721239],
                 [0.10862832, 0.11172566, 0.10818584, 0.10840708, 0.1340708],
                 [0.17610619, 0.11482301, 0.13495575, 0.10862832, 0.11172566],
                 [0.10818584, 0.10840708, 0.14712389, 0.16526549, 0.12367257],
                 [0.13628319, 0.10862832, 0.11172566, 0.10818584, 0.10840708]])
In [499...
          import matplotlib.pyplot as plt
          X, Y = np.meshgrid(alpha_set, lambda_set)
          Z = np.array(z).reshape(5,8)
          fig = plt.figure(figsize=(10,10))
          ax = plt.axes(projection='3d')
          # ax.plot surface(X, Y, Z,alpha=0.5)
          ax.scatter3D(X, Y, Z,c="r")
          ax.set_xlabel('alpha')
          ax.set_ylabel('lambda')
          ax.set_zlabel('RHat_Mean')
         Text(0.5, 0, 'RHat_Mean')
Out[499...
```


Finally, for the optimal value of α and λ , we will train our model on complete training data and evaluate on Test data.

```
In [500...
          train_features, train_targets, test_features, test_targets = Extract(nor_bank, "y")
In [501...
          beta_grad_ascent = mini_batch_gradient_ascent_reg(train_features, train_targets, 100
          beta_grad_ascent
          array([[-2.62545161],
Out[501...
                 [ 0.02096983],
                 [-0.00519946],
                 [ 0.13213052],
                 [-0.09823944],
                 [ 0.00611378],
                 [ 0.06788393],
                 [-0.38549186],
                 [-0.313453],
                 [-0.48318793],
                 [-0.0787235],
                 [-0.02648223],
                   1.00395384],
                 [-0.16358842],
                 [-0.34141883],
                 [ 0.00551926],
                 [-0.62841557]])
```

```
In [502...
    test_target_ = sigmoid(test_features, beta_grad_ascent)
    test_target_pred = np.zeros((len(test_target_), 1))
    for i,ele in enumerate(test_target_):
        if ele >= 0.5:
            test_target_pred[i] = 1
        else:
            test_target_pred[i] = 0
```

Accuracy on the test set

```
def accuracy(y_pred, Y_test):
    N = Y_test.shape[0]
    sum = 0
    for i in range(N):
        if y_pred[i] == Y_test[i]:
            sum += 1
        return (sum/N)*100

print(f'Accuracy :{accuracy(test_target_pred, test_targets):.2f}%')
```

Accuracy :88.84%

Log-likelihood for Test data

```
In [504... log_likelihood_reg(test_features, test_targets, beta_grad_ascent, best_reg)

Out[504... -258.0039952747008
```

Plot Train and Validation Accuracy and Log-likelihood metrics per k – fold iteration.

```
In [505...
          def K_Fold(X, y, alpha, reg):
              K = 5
              i max = 20
              train_acc = []
              test_acc = []
              train_ll = []
              test_11 = []
              for j in range(K):
                  xTrain = crossval_split(X,y,K,j)[0]
                  yTrain = crossval_split(X,y,K,j)[1]
                  xTest = crossval_split(X,y,K,j)[2]
                  yTest = crossval_split(X,y,K,j)[3]
                  beta = mini_batch_gradient_ascent_reg(xTrain, yTrain, i_max, alpha, reg)
                  y_pred_train = pred(xTrain,beta)
                  y_pred_test = pred(xTest,beta)
                  train_acc.append(accuracy(y_pred_train, yTrain)/100)
                  test acc.append(accuracy(y pred test, yTest)/100)
                  train ll.append(log likelihood reg(xTrain, yTrain, beta, reg))
                  test_ll.append(log_likelihood_reg(xTest, yTest, beta, reg))
              return train_acc, test_acc, train_ll, test_ll
```

By taking the best found α and λ in the k Fold iteration the accuracy and loglikelihood for both training and test set are plotted below:

```
In [506...
train_acc, test_acc, train_ll, test_ll = K_Fold(nor_bank_matrix_X, nor_bank_matrix_Y)
In [507...
tr_acc = train_acc
te_acc = test_acc
```

```
plt.plot(tr_acc,label = "Train")
plt.plot(te_acc, label = "Test")
plt.ylabel(' accuracy')
plt.legend()
plt.show()
```



```
In [508...

tr_ll = train_ll

te_ll = test_ll

plt.plot(tr_ll,label = "Train")

plt.plot(te_ll, label = "Test")

plt.ylabel(' LogLikelihood')

plt.legend()

plt.show()
```


Exercise 3: Implementing Hyperband for Logistic Regression

We have taken here possible values of alpha, lambda and batch size.

```
In [510...
alphaSet = [0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005]
lambdaSet = [np.exp(-5), np.exp(-8), np.exp(-10), np.exp(-15), np.exp(-18), np.exp(batchsizeSet = [15, 18, 20, 25, 30, 35, 40, 50]
hyperparaSet = [[a, l, b] for a in alphaSet for l in lambdaSet for b in batchsizeSet hyperparaSet
Out[510...
[[0.1, 0.006737946999085467, 15],
[0.1, 0.006737946999085467, 18],
```

[0.1, 0.006737946999085467, 20], [0.1, 0.006737946999085467, 25], [0.1, 0.006737946999085467, 30], [0.1, 0.006737946999085467, 35], [0.1, 0.006737946999085467, 40], [0.1, 0.006737946999085467, 45], [0.1, 0.00033546262790251185, 15], [0.1, 0.00033546262790251185, 18], [0.1, 0.00033546262790251185, 20], [0.1, 0.00033546262790251185, 25], [0.1, 0.00033546262790251185, 30], [0.1, 0.00033546262790251185, 35], [0.1, 0.00033546262790251185, 40], [0.1, 0.00033546262790251185, 45], [0.1, 4.5399929762484854e-05, 15], [0.1, 4.5399929762484854e-05, 18], [0.1, 4.5399929762484854e-05, 20], [0.1, 4.5399929762484854e-05, 25], [0.1, 4.5399929762484854e-05, 30], [0.1, 4.5399929762484854e-05, 35], [0.1, 4.5399929762484854e-05, 40], [0.1, 4.5399929762484854e-05, 45], [0.1, 3.059023205018258e-07, 15], [0.1, 3.059023205018258e-07, 18], [0.1, 3.059023205018258e-07, 20], [0.1, 3.059023205018258e-07, 25], [0.1, 3.059023205018258e-07, 30], [0.1, 3.059023205018258e-07, 35], [0.1, 3.059023205018258e-07, 40], [0.1, 3.059023205018258e-07, 45], [0.1, 1.522997974471263e-08, 15], [0.1, 1.522997974471263e-08, 18], [0.1, 1.522997974471263e-08, 20], [0.1, 1.522997974471263e-08, 25], [0.1, 1.522997974471263e-08, 30], [0.1, 1.522997974471263e-08, 35], [0.1, 1.522997974471263e-08, 40], [0.1, 1.522997974471263e-08, 45], [0.1, 2.061153622438558e-09, 15], [0.1, 2.061153622438558e-09, 18], [0.1, 2.061153622438558e-09, 20], [0.1, 2.061153622438558e-09, 25], [0.1, 2.061153622438558e-09, 30], [0.1, 2.061153622438558e-09, 35], [0.1, 2.061153622438558e-09, 40], [0.1, 2.061153622438558e-09, 45], [0.1, 2.7894680928689246e-10, 15], [0.1, 2.7894680928689246e-10, 18], [0.1, 2.7894680928689246e-10, 20], [0.1, 2.7894680928689246e-10, 25], [0.1, 2.7894680928689246e-10, 30], [0.1, 2.7894680928689246e-10, 35], [0.1, 2.7894680928689246e-10, 40], [0.1, 2.7894680928689246e-10, 45], [0.1, 1.3887943864964021e-11, 15], [0.1, 1.3887943864964021e-11, 18], [0.1, 1.3887943864964021e-11, 20], [0.1, 1.3887943864964021e-11, 25], [0.1, 1.3887943864964021e-11, 30], [0.1, 1.3887943864964021e-11, 35], [0.1, 1.3887943864964021e-11, 40], [0.1, 1.3887943864964021e-11, 45], [0.5, 0.006737946999085467, 15], [0.5, 0.006737946999085467, 18],

[0.5, 0.006737946999085467, 20], [0.5, 0.006737946999085467, 25], [0.5, 0.006737946999085467, 30], [0.5, 0.006737946999085467, 35], [0.5, 0.006737946999085467, 40], [0.5, 0.006737946999085467, 45], [0.5, 0.00033546262790251185, 15] [0.5, 0.00033546262790251185, 18], [0.5, 0.00033546262790251185, 20], [0.5, 0.00033546262790251185, 25], [0.5, 0.00033546262790251185, 30], [0.5, 0.00033546262790251185, 35], [0.5, 0.00033546262790251185, 40], [0.5, 0.00033546262790251185, 45], [0.5, 4.5399929762484854e-05, 15], [0.5, 4.5399929762484854e-05, 18], [0.5, 4.5399929762484854e-05, 20], [0.5, 4.5399929762484854e-05, 25], [0.5, 4.5399929762484854e-05, 30], [0.5, 4.5399929762484854e-05, 35], [0.5, 4.5399929762484854e-05, 40], [0.5, 4.5399929762484854e-05, 45], [0.5, 3.059023205018258e-07, 15], [0.5, 3.059023205018258e-07, 18], [0.5, 3.059023205018258e-07, 20], [0.5, 3.059023205018258e-07, 25], [0.5, 3.059023205018258e-07, 30], [0.5, 3.059023205018258e-07, 35], [0.5, 3.059023205018258e-07, 40], [0.5, 3.059023205018258e-07, 45], [0.5, 1.522997974471263e-08, 15], [0.5, 1.522997974471263e-08, 18], [0.5, 1.522997974471263e-08, 20], [0.5, 1.522997974471263e-08, 25], [0.5, 1.522997974471263e-08, 30], [0.5, 1.522997974471263e-08, 35], [0.5, 1.522997974471263e-08, 40], [0.5, 1.522997974471263e-08, 45], [0.5, 2.061153622438558e-09, 15], [0.5, 2.061153622438558e-09, 18], [0.5, 2.061153622438558e-09, 20], [0.5, 2.061153622438558e-09, 25], [0.5, 2.061153622438558e-09, 30], [0.5, 2.061153622438558e-09, 35], [0.5, 2.061153622438558e-09, 40], [0.5, 2.061153622438558e-09, 45], [0.5, 2.7894680928689246e-10, 15], [0.5, 2.7894680928689246e-10, 18], [0.5, 2.7894680928689246e-10, 20], [0.5, 2.7894680928689246e-10, 25], [0.5, 2.7894680928689246e-10, 30], [0.5, 2.7894680928689246e-10, 35], [0.5, 2.7894680928689246e-10, 40], [0.5, 2.7894680928689246e-10, 45], [0.5, 1.3887943864964021e-11, 15], [0.5, 1.3887943864964021e-11, 18], [0.5, 1.3887943864964021e-11, 20], [0.5, 1.3887943864964021e-11, 25], [0.5, 1.3887943864964021e-11, 30], [0.5, 1.3887943864964021e-11, 35], [0.5, 1.3887943864964021e-11, 40], [0.5, 1.3887943864964021e-11, 45], [0.01, 0.006737946999085467, 15], [0.01, 0.006737946999085467, 18],

[0.01, 0.006737946999085467, 20], [0.01, 0.006737946999085467, 25], [0.01, 0.006737946999085467, 30], [0.01, 0.006737946999085467, 35], [0.01, 0.006737946999085467, 40], [0.01, 0.006737946999085467, 45], [0.01, 0.00033546262790251185, 15], [0.01, 0.00033546262790251185, 18], [0.01, 0.00033546262790251185, 20], [0.01, 0.00033546262790251185, 25], [0.01, 0.00033546262790251185, 30], [0.01, 0.00033546262790251185, 35], [0.01, 0.00033546262790251185, 40], [0.01, 0.00033546262790251185, 45], [0.01, 4.5399929762484854e-05, 15], [0.01, 4.5399929762484854e-05, 18], [0.01, 4.5399929762484854e-05, 20], [0.01, 4.5399929762484854e-05, 25], [0.01, 4.5399929762484854e-05, 30],[0.01, 4.5399929762484854e-05, 35], [0.01, 4.5399929762484854e-05, 40], [0.01, 4.5399929762484854e-05, 45], [0.01, 3.059023205018258e-07, 15], [0.01, 3.059023205018258e-07, 18], [0.01, 3.059023205018258e-07, 20], [0.01, 3.059023205018258e-07, 25], [0.01, 3.059023205018258e-07, 30], [0.01, 3.059023205018258e-07, 35], [0.01, 3.059023205018258e-07, 40], [0.01, 3.059023205018258e-07, 45], [0.01, 1.522997974471263e-08, 15], [0.01, 1.522997974471263e-08, 18], [0.01, 1.522997974471263e-08, 20], [0.01, 1.522997974471263e-08, 25], [0.01, 1.522997974471263e-08, 30], [0.01, 1.522997974471263e-08, 35], [0.01, 1.522997974471263e-08, 40], [0.01, 1.522997974471263e-08, 45], [0.01, 2.061153622438558e-09, 15], [0.01, 2.061153622438558e-09, 18], [0.01, 2.061153622438558e-09, 20], [0.01, 2.061153622438558e-09, 25], [0.01, 2.061153622438558e-09, 30], [0.01, 2.061153622438558e-09, 35], [0.01, 2.061153622438558e-09, 40], [0.01, 2.061153622438558e-09, 45], [0.01, 2.7894680928689246e-10, 15], [0.01, 2.7894680928689246e-10, 18], [0.01, 2.7894680928689246e-10, 20], [0.01, 2.7894680928689246e-10, 25], [0.01, 2.7894680928689246e-10, 30], [0.01, 2.7894680928689246e-10, 35], [0.01, 2.7894680928689246e-10, 40], [0.01, 2.7894680928689246e-10, 45], [0.01, 1.3887943864964021e-11, 15], [0.01, 1.3887943864964021e-11, 18], [0.01, 1.3887943864964021e-11, 20], [0.01, 1.3887943864964021e-11, 25], [0.01, 1.3887943864964021e-11, 30], [0.01, 1.3887943864964021e-11, 35], [0.01, 1.3887943864964021e-11, 40], [0.01, 1.3887943864964021e-11, 45], [0.05, 0.006737946999085467, 15], [0.05, 0.006737946999085467, 18],

[0.05, 0.006737946999085467, 20], [0.05, 0.006737946999085467, 25], [0.05, 0.006737946999085467, 30], [0.05, 0.006737946999085467, 35], [0.05, 0.006737946999085467, 40], [0.05, 0.006737946999085467, 45], [0.05, 0.00033546262790251185, 15], [0.05, 0.00033546262790251185, 18], [0.05, 0.00033546262790251185, 20], [0.05, 0.00033546262790251185, 25], [0.05, 0.00033546262790251185, 30], [0.05, 0.00033546262790251185, 35], [0.05, 0.00033546262790251185, 40], [0.05, 0.00033546262790251185, 45], [0.05, 4.5399929762484854e-05, 15], [0.05, 4.5399929762484854e-05, 18], [0.05, 4.5399929762484854e-05, 20], [0.05, 4.5399929762484854e-05, 25], [0.05, 4.5399929762484854e-05, 30],[0.05, 4.5399929762484854e-05, 35], [0.05, 4.5399929762484854e-05, 40], [0.05, 4.5399929762484854e-05, 45], [0.05, 3.059023205018258e-07, 15], [0.05, 3.059023205018258e-07, 18], [0.05, 3.059023205018258e-07, 20], [0.05, 3.059023205018258e-07, 25], [0.05, 3.059023205018258e-07, 30], [0.05, 3.059023205018258e-07, 35], [0.05, 3.059023205018258e-07, 40], [0.05, 3.059023205018258e-07, 45], [0.05, 1.522997974471263e-08, 15], [0.05, 1.522997974471263e-08, 18], [0.05, 1.522997974471263e-08, 20], [0.05, 1.522997974471263e-08, 25], [0.05, 1.522997974471263e-08, 30], [0.05, 1.522997974471263e-08, 35], [0.05, 1.522997974471263e-08, 40], [0.05, 1.522997974471263e-08, 45], [0.05, 2.061153622438558e-09, 15], [0.05, 2.061153622438558e-09, 18], [0.05, 2.061153622438558e-09, 20], [0.05, 2.061153622438558e-09, 25], [0.05, 2.061153622438558e-09, 30], [0.05, 2.061153622438558e-09, 35], [0.05, 2.061153622438558e-09, 40], [0.05, 2.061153622438558e-09, 45], [0.05, 2.7894680928689246e-10, 15], [0.05, 2.7894680928689246e-10, 18], [0.05, 2.7894680928689246e-10, 20], [0.05, 2.7894680928689246e-10, 25], [0.05, 2.7894680928689246e-10, 30], [0.05, 2.7894680928689246e-10, 35], [0.05, 2.7894680928689246e-10, 40], [0.05, 2.7894680928689246e-10, 45], [0.05, 1.3887943864964021e-11, 15], [0.05, 1.3887943864964021e-11, 18], [0.05, 1.3887943864964021e-11, 20], [0.05, 1.3887943864964021e-11, 25], [0.05, 1.3887943864964021e-11, 30], [0.05, 1.3887943864964021e-11, 35], [0.05, 1.3887943864964021e-11, 40], [0.05, 1.3887943864964021e-11, 45], [0.001, 0.006737946999085467, 15], [0.001, 0.006737946999085467, 18],

[0.001, 0.006737946999085467, 20], [0.001, 0.006737946999085467, 25], [0.001, 0.006737946999085467, 30], [0.001, 0.006737946999085467, 35], [0.001, 0.006737946999085467, 40], [0.001, 0.006737946999085467, 45], [0.001, 0.00033546262790251185, 15], [0.001, 0.00033546262790251185, 18], [0.001, 0.00033546262790251185, 20], [0.001, 0.00033546262790251185, 25], [0.001, 0.00033546262790251185, 30], [0.001, 0.00033546262790251185, 35], [0.001, 0.00033546262790251185, 40], [0.001, 0.00033546262790251185, 45], [0.001, 4.5399929762484854e-05, 15], [0.001, 4.5399929762484854e-05, 18], [0.001, 4.5399929762484854e-05, 20], [0.001, 4.5399929762484854e-05, 25], [0.001, 4.5399929762484854e-05, 30], [0.001, 4.5399929762484854e-05, 35], [0.001, 4.5399929762484854e-05, 40], [0.001, 4.5399929762484854e-05, 45], [0.001, 3.059023205018258e-07, 15], [0.001, 3.059023205018258e-07, 18], [0.001, 3.059023205018258e-07, 20], [0.001, 3.059023205018258e-07, 25], [0.001, 3.059023205018258e-07, 30], [0.001, 3.059023205018258e-07, 35], [0.001, 3.059023205018258e-07, 40], [0.001, 3.059023205018258e-07, 45], [0.001, 1.522997974471263e-08, 15], [0.001, 1.522997974471263e-08, 18], [0.001, 1.522997974471263e-08, 20], [0.001, 1.522997974471263e-08, 25], [0.001, 1.522997974471263e-08, 30], [0.001, 1.522997974471263e-08, 35], [0.001, 1.522997974471263e-08, 40], [0.001, 1.522997974471263e-08, 45], [0.001, 2.061153622438558e-09, 15], [0.001, 2.061153622438558e-09, 18], [0.001, 2.061153622438558e-09, 20], [0.001, 2.061153622438558e-09, 25], [0.001, 2.061153622438558e-09, 30], [0.001, 2.061153622438558e-09, 35], [0.001, 2.061153622438558e-09, 40], [0.001, 2.061153622438558e-09, 45], [0.001, 2.7894680928689246e-10, 15], [0.001, 2.7894680928689246e-10, 18], [0.001, 2.7894680928689246e-10, 20], [0.001, 2.7894680928689246e-10, 25], [0.001, 2.7894680928689246e-10, 30], [0.001, 2.7894680928689246e-10, 35], [0.001, 2.7894680928689246e-10, 40], [0.001, 2.7894680928689246e-10, 45], [0.001, 1.3887943864964021e-11, 15], [0.001, 1.3887943864964021e-11, 18], [0.001, 1.3887943864964021e-11, 20], [0.001, 1.3887943864964021e-11, 25], [0.001, 1.3887943864964021e-11, 30], [0.001, 1.3887943864964021e-11, 35], [0.001, 1.3887943864964021e-11, 40], [0.001, 1.3887943864964021e-11, 45], [0.005, 0.006737946999085467, 15], [0.005, 0.006737946999085467, 18],

[0.005, 0.006737946999085467, 20], [0.005, 0.006737946999085467, 25], [0.005, 0.006737946999085467, 30], [0.005, 0.006737946999085467, 35], [0.005, 0.006737946999085467, 40], [0.005, 0.006737946999085467, 45], [0.005, 0.00033546262790251185, 15], [0.005, 0.00033546262790251185, 18], [0.005, 0.00033546262790251185, 20], [0.005, 0.00033546262790251185, 25], [0.005, 0.00033546262790251185, 30], [0.005, 0.00033546262790251185, 35], [0.005, 0.00033546262790251185, 40], [0.005, 0.00033546262790251185, 45], [0.005, 4.5399929762484854e-05, 15], [0.005, 4.5399929762484854e-05, 18], [0.005, 4.5399929762484854e-05, 20], [0.005, 4.5399929762484854e-05, 25], [0.005, 4.5399929762484854e-05, 30], [0.005, 4.5399929762484854e-05, 35], [0.005, 4.5399929762484854e-05, 40], [0.005, 4.5399929762484854e-05, 45], [0.005, 3.059023205018258e-07, 15], [0.005, 3.059023205018258e-07, 18], [0.005, 3.059023205018258e-07, 20], [0.005, 3.059023205018258e-07, 25], [0.005, 3.059023205018258e-07, 30], [0.005, 3.059023205018258e-07, 35], [0.005, 3.059023205018258e-07, 40], [0.005, 3.059023205018258e-07, 45], [0.005, 1.522997974471263e-08, 15], [0.005, 1.522997974471263e-08, 18], [0.005, 1.522997974471263e-08, 20], [0.005, 1.522997974471263e-08, 25], [0.005, 1.522997974471263e-08, 30], [0.005, 1.522997974471263e-08, 35], [0.005, 1.522997974471263e-08, 40], [0.005, 1.522997974471263e-08, 45], [0.005, 2.061153622438558e-09, 15], [0.005, 2.061153622438558e-09, 18], [0.005, 2.061153622438558e-09, 20], [0.005, 2.061153622438558e-09, 25], [0.005, 2.061153622438558e-09, 30], [0.005, 2.061153622438558e-09, 35], [0.005, 2.061153622438558e-09, 40], [0.005, 2.061153622438558e-09, 45], [0.005, 2.7894680928689246e-10, 15], [0.005, 2.7894680928689246e-10, 18], [0.005, 2.7894680928689246e-10, 20], [0.005, 2.7894680928689246e-10, 25], [0.005, 2.7894680928689246e-10, 30], [0.005, 2.7894680928689246e-10, 35], [0.005, 2.7894680928689246e-10, 40], [0.005, 2.7894680928689246e-10, 45], [0.005, 1.3887943864964021e-11, 15], [0.005, 1.3887943864964021e-11, 18], [0.005, 1.3887943864964021e-11, 20], [0.005, 1.3887943864964021e-11, 25], [0.005, 1.3887943864964021e-11, 30], [0.005, 1.3887943864964021e-11, 35], [0.005, 1.3887943864964021e-11, 40], [0.005, 1.3887943864964021e-11, 45], [0.0001, 0.006737946999085467, 15], [0.0001, 0.006737946999085467, 18],

[0.0001, 0.006737946999085467, 20], [0.0001, 0.006737946999085467, 25], [0.0001, 0.006737946999085467, 30], [0.0001, 0.006737946999085467, 35], [0.0001, 0.006737946999085467, 40], [0.0001, 0.006737946999085467, 45], [0.0001, 0.00033546262790251185, 15] [0.0001, 0.00033546262790251185, 18], [0.0001, 0.00033546262790251185, 20], [0.0001, 0.00033546262790251185, 25], [0.0001, 0.00033546262790251185, 30], [0.0001, 0.00033546262790251185, 35], [0.0001, 0.00033546262790251185, 40], [0.0001, 0.00033546262790251185, 45], [0.0001, 4.5399929762484854e-05, 15], [0.0001, 4.5399929762484854e-05, 18], [0.0001, 4.5399929762484854e-05, 20], [0.0001, 4.5399929762484854e-05, 25], [0.0001, 4.5399929762484854e-05, 30], [0.0001, 4.5399929762484854e-05, 35], [0.0001, 4.5399929762484854e-05, 40], [0.0001, 4.5399929762484854e-05, 45], [0.0001, 3.059023205018258e-07, 15], [0.0001, 3.059023205018258e-07, 18], [0.0001, 3.059023205018258e-07, 20], [0.0001, 3.059023205018258e-07, 25], [0.0001, 3.059023205018258e-07, 30], [0.0001, 3.059023205018258e-07, 35], [0.0001, 3.059023205018258e-07, 40], [0.0001, 3.059023205018258e-07, 45], [0.0001, 1.522997974471263e-08, 15], [0.0001, 1.522997974471263e-08, 18], [0.0001, 1.522997974471263e-08, 20], [0.0001, 1.522997974471263e-08, 25], [0.0001, 1.522997974471263e-08, 30], [0.0001, 1.522997974471263e-08, 35], [0.0001, 1.522997974471263e-08, 40], [0.0001, 1.522997974471263e-08, 45], [0.0001, 2.061153622438558e-09, 15], [0.0001, 2.061153622438558e-09, 18], [0.0001, 2.061153622438558e-09, 20], [0.0001, 2.061153622438558e-09, 25], [0.0001, 2.061153622438558e-09, 30], [0.0001, 2.061153622438558e-09, 35], [0.0001, 2.061153622438558e-09, 40], [0.0001, 2.061153622438558e-09, 45], [0.0001, 2.7894680928689246e-10, 15], [0.0001, 2.7894680928689246e-10, 18], [0.0001, 2.7894680928689246e-10, 20], [0.0001, 2.7894680928689246e-10, 25], [0.0001, 2.7894680928689246e-10, 30], [0.0001, 2.7894680928689246e-10, 35], [0.0001, 2.7894680928689246e-10, 40], [0.0001, 2.7894680928689246e-10, 45], [0.0001, 1.3887943864964021e-11, 15], [0.0001, 1.3887943864964021e-11, 18], [0.0001, 1.3887943864964021e-11, 20] [0.0001, 1.3887943864964021e-11, 25], [0.0001, 1.3887943864964021e-11, 30], [0.0001, 1.3887943864964021e-11, 35], [0.0001, 1.3887943864964021e-11, 40], [0.0001, 1.3887943864964021e-11, 45], [0.0005, 0.006737946999085467, 15], [0.0005, 0.006737946999085467, 18],

Untitled1

```
[0.0005, 0.006737946999085467, 20],
[0.0005, 0.006737946999085467, 25],
[0.0005, 0.006737946999085467, 30],
[0.0005, 0.006737946999085467, 35],
[0.0005, 0.006737946999085467, 40],
[0.0005, 0.006737946999085467, 45],
[0.0005, 0.00033546262790251185, 15]
[0.0005, 0.00033546262790251185, 18],
[0.0005, 0.00033546262790251185, 20],
[0.0005, 0.00033546262790251185, 25],
[0.0005, 0.00033546262790251185, 30],
[0.0005, 0.00033546262790251185, 35],
[0.0005, 0.00033546262790251185, 40],
[0.0005, 0.00033546262790251185, 45],
[0.0005, 4.5399929762484854e-05, 15],
[0.0005, 4.5399929762484854e-05, 18],
[0.0005, 4.5399929762484854e-05, 20],
[0.0005, 4.5399929762484854e-05, 25],
[0.0005, 4.5399929762484854e-05, 30],
[0.0005, 4.5399929762484854e-05, 35],
[0.0005, 4.5399929762484854e-05, 40],
[0.0005, 4.5399929762484854e-05, 45],
[0.0005, 3.059023205018258e-07, 15],
[0.0005, 3.059023205018258e-07, 18],
[0.0005, 3.059023205018258e-07, 20],
[0.0005, 3.059023205018258e-07, 25],
[0.0005, 3.059023205018258e-07, 30],
[0.0005, 3.059023205018258e-07, 35],
[0.0005, 3.059023205018258e-07, 40],
[0.0005, 3.059023205018258e-07, 45],
[0.0005, 1.522997974471263e-08, 15],
[0.0005, 1.522997974471263e-08, 18],
[0.0005, 1.522997974471263e-08, 20],
[0.0005, 1.522997974471263e-08, 25],
[0.0005, 1.522997974471263e-08, 30],
[0.0005, 1.522997974471263e-08, 35],
[0.0005, 1.522997974471263e-08, 40],
[0.0005, 1.522997974471263e-08, 45],
[0.0005, 2.061153622438558e-09, 15],
[0.0005, 2.061153622438558e-09, 18],
[0.0005, 2.061153622438558e-09, 20],
[0.0005, 2.061153622438558e-09, 25],
[0.0005, 2.061153622438558e-09, 30],
[0.0005, 2.061153622438558e-09, 35],
[0.0005, 2.061153622438558e-09, 40],
[0.0005, 2.061153622438558e-09, 45],
[0.0005, 2.7894680928689246e-10, 15],
[0.0005, 2.7894680928689246e-10, 18],
[0.0005, 2.7894680928689246e-10, 20],
[0.0005, 2.7894680928689246e-10, 25],
[0.0005, 2.7894680928689246e-10, 30],
[0.0005, 2.7894680928689246e-10, 35],
[0.0005, 2.7894680928689246e-10, 40],
[0.0005, 2.7894680928689246e-10, 45],
[0.0005, 1.3887943864964021e-11, 15],
[0.0005, 1.3887943864964021e-11, 18],
[0.0005, 1.3887943864964021e-11, 20],
[0.0005, 1.3887943864964021e-11, 25],
[0.0005, 1.3887943864964021e-11, 30],
[0.0005, 1.3887943864964021e-11, 35],
[0.0005, 1.3887943864964021e-11, 40],
[0.0005, 1.3887943864964021e-11, 45]]
```

```
def resplit(file):
    r, c = np.shape(file)
    size = int(0.7*r)
    train = file.iloc[0:size]
    val = file.iloc[size: size +int( 0.15*r)]
    test = file.iloc[size + int(0.15*r) :]
    return train, val, test
def extract_data(f):
    tr, va, te = resplit(f)
    x_tr = tr.loc[:, tr.columns != "y"]
    x_{tr} = x_{tr}.to_numpy()
    bias_col1 = np.ones(shape=(tr.shape[0],1))
    X_tr = np.append(bias_col1,x_tr,axis=1)
    y_tr = tr.loc[:, tr.columns == "y"]
    Y_tr = y_tr.to_numpy()
    x_va = va.loc[:, va.columns != "y"]
    x_va = x_va.to_numpy()
    bias_col2 = np.ones(shape=(va.shape[0],1))
    X_va = np.append(bias_col2, x_va, axis=1)
    y_va = va.loc[:, va.columns == "y"]
    Y_va = y_va.to_numpy()
    x_te = te.loc[:, te.columns != "y"]
    x_t = x_t \cdot to_numpy()
    bias_col3 = np.ones(shape=(te.shape[0],1))
    X_te = np.append(bias_col3, x_te ,axis=1)
    y_te = te.loc[:, te.columns == "y"]
    Y_te = y_te.to_numpy()
    return X_tr, Y_tr, X_va, Y_va, X_te, Y_te
```

```
def mini_batch_gradient_ascent_reg_para(X, Y, i_max, alpha, reg, batch_size):
    m, n = np.shape(X)
    beta = np.zeros((n, 1))
    beta_new = np.zeros((n, 1))
    l = int(m/batch_size)
    for k in range(i_max):
        for i in range(l):
            beta_new = beta + alpha*(log_likelihood_reg_grad(X[i*batch_size:(i+1)*babeta = beta_new
            return beta_new
```

Hyperband optimization

```
In [534...
          import math
          def hyperband(X, Y):
              max_iter = 81
              eta = 3
              logeta = lambda x: np.log(x)/np.log(eta)
              s max = int(logeta(max iter))
              B = (s max+1)*max iter
              for s in reversed(range(s_max+1)):
                  n = int(math.ceil(int(B/max_iter/(s+1))*eta**s))
                  r = max_iter*eta**(-s)
                  T = [hyperparaSet[i] for i in range(len(hyperparaSet))]
                  for i in range(s+1):
                      n i = int(n*eta**(-i))
                      r i = int(r*eta**(i))
                      val_losses = [log_likelihood_reg(X, Y, mini_batch_gradient_ascent_reg_pa
```

#T = [T[:,-1].argsort()]

```
return val_losses
In [535...
          X_tr, Y_tr, X_va, Y_va, X_te, Y_te = extract_data(nor_bank)
          val = hyperband(X_tr, Y_tr)
          val
          [-989.6624261318302,
Out[535...
           -975.7845877653674,
           -1100.119574775414,
           -972.090413012198,
           -1000.7326636698785
           -1002.7706985022814,
           -1035.94845699472,
           -1038.6948080258483,
           -996.3486092303933,
           -981.1987417162424,
           -1106.9810879160264,
           -976.1434775220596,
           -1003.8359230610868,
           -1005.3664294498714,
           -1040.0049214725402,
           -1040.5471248873355,
           -996.6867957488843,
           -981.4695207507955,
           -1107.3170966748733,
           -976.3416194213024,
           -1003.983065044594,
           -1005.4888164240697,
           -1040.1973307363996,
           -1040.635599218635,
           -996.739683422967,
           -981.5118408947284,
           -1107.3695472041002,
           -976.3725465230858,
           -1004.0059969457626,
           -1005.5078832079869,
           -1040.227313441063,
           -1040.6493925793097,
           -996.740024606887,
           -981.5121138836731,
           -1107.36988548314,
           -976.3727459847842,
           -1004.006144812718,
           -1005.5080061460602,
           -1040.2275067684704,
           -1040.6494815242568,
           -996.7400400642075,
           -981.512126251418,
           -1107.369900808832,
           -976.3727550213657,
           -1004.0061515118009,
           -1005.5080117157448,
           -1040.227515527133,
           -1040.6494855538922,
           -996.7400421561289,
           -981.5121279252065,
           -1107.3699028829396,
           -976.3727562443387,
           -1004.0061524184254,
```

for alpha, reg, batch_size in T]

-1005.508012469518, -1040.227516712485, -1040.6494860992436, -996.7400424672525, -981.5121281741443, -1107.3699031914123, -976.3727564262249, -1004.0061525532619, -1005.5080125816237, -1040.2275168887795, -1040.6494861803506, -2801.5971109635084, -2017.7618574239, -3360.9407275327717, -2503.6431927531353, -3179.2228792060387, -2687.5629129656418, -2532.8286308282836, -2595.109482749702, -2599.447836071409, -2254.7972061974033, -3493.1145619571466, -2540.1042432353343, -3253.3415563560775, -2675.137988852365, -2422.781760511855, -3004.068500362594, -2748.6112649958454, -2273.192785353849, -3531.331699139801, -2736.9035598811824, -3135.4915382654694, -2656.4004271474473, -2782.9877266803287, -3026.166555151669, -2758.011416137086, -2278.5680098852185, -3555.1149731520027, -2619.1289048329013, -3256.4399459696047, -2683.3188859806783, -2727.7759398151857, -4022.722320149906, -2647.947188154888, -2278.604261819403, -3555.231870406429, -2809.2771804342324, -2850.276228857647, -2683.33985874689, -2591.3385369449293, -3025.056857064298, -2708.0904284611333, -2278.605904612301, -3555.2371583268728, -2686.1921886058326, -2864.5795618572483, -2683.3408094544257, -2720.7267318513314, -3141.4053172953527, -2689.9888900125593, -2278.6061269428546, -3555.2378739153446, -2742.9416118837717, -2765.4138565111366, -2683.340938122306, -3204.573426926333, -3948.037687798332, -2904.49780698589, -2278.6061600090475 -3555.2379803402087. -2746.2418226034924, -3368.1462063268186, -2683.3409572585238, -2534.994958439292, -3754.1574850901625, -861.6052441970286, -861.8858272874627, -862.155061065775, -862.0327507264012, -861.8427768730606, -861.5476883506021, -862.1536459912943, -861.6450578291597, -861.8162021803286, -862.1161965076108, -862.2390831828859, -862.2206166637959. -862.0292392204319, -861.6949100067598, -862.2335431669432, -861.7808479167668, -861.8426412673367, -862.1386520325408, -862.2520430949146, -862.23544499017, -862.0421838957573. -861.7048587060401, -862.2395621246027, -861.789042717354, -861.8468996508384, -862.1422464975873, -862.2541358908551, -862.2378031673483, -862.0442335517988, -861.706432280124, -862.2405174172907, -861.7903332882571, -861.846927230096, -862.1422697579927, -862.2541494492565, -862.2378184143299, -862.0442467963159, -861.7064424468114, -862.240523592144, -861.7903416216744, -861.8469284796074, -862.1422708118259, -862.2541500635359, -862.2378191051027, -862.0442473963651, -861.7064429074161, -862.2405238718999, -861.7903419992226, -861.8469286487091, -862.1422709544478, -862.2541501466687, -862.2378191985877, -862.0442474775755,

-861.7064429697534, -862.2405239097619, -861.7903420503185, -861.8469286738588, -862.1422709756582, -862.2541501590352. -862.2378192124917, -862.0442474896486, -861.7064429790234, -862.2405239153952, -861.7903420579186, -883.6342669125034, -884.6944516524278, -917.8856721939676, -883.8690770515943, -885.5168286693624, -884.4379532071596, -899.8630069429266, -892.5858234436638, -884.9171745835931, -885.9841917307839, -919.1426840738856, -884.8516619019936. -886.4461767025789, -885.0865379310648, -900.6170156732933, -893.1063237789004, -885.0014090462341, -886.0619271983073, -919.2144288175385, -884.906174863232, -886.4958641304796. -885.1211377954809, -900.6553178400465, -893.1333618053519, -885.0147353661332, -886.074179666123, -919.2257087283732, -884.9147337058826, -886.50365189701, -885.1265597485817, -900.661306199795, -893.137593462049, -885.0148214694609, -886.0742587915279, -919.2257815484708, -884.9147889491644, -886.5037021516696, -885.1265947356375, -900.6613448298257, -893.1376207636669, -885.0148253704131, -886.0742623763266, -919.2257848475986, -884.9147914519691, -886.503704428459, -885.1265963207277, -900.6613465799583, -893.1376220005658, -885.0148258983464, -886.0742628614763, -919.2257852940838, -884.9147917906859, -886.5037047365897, -885.1265965352468, -900.6613468168131, -893.1376221679627, -885.0148259768624, -886.0742629336294, -919.2257853604898. -884.9147918410613, -886.5037047824137, -885.1265965671503, -900.66134685204, -893.1376221928613, -858.3681557655211, -858.2854745526121, -858.2221954970905, -858.1965421923378, -858.163537807361, -858.1498966463643, -858.0812586843888, -858.1328990007601, -858.0609394239572, -858.0631166960392, -857.9702985480297, -858.0637356350221. -858.0611960983582, -858.0634154373449, -857.9717829760857, -858.0649441933759, -858.061097135294, -858.0629846162528, -857.9666578796101, -858.0629810299063, -858.0602473125126. -858.0622178926454, -857.9688244442564, -858.0635205350667, -858.0612437881014, -858.0630488647745, -857.9661575603328, -858.0629074973858, -858.0601301650913, -858.0620539378701, -857.9683807483095, -858.0633125860066, -858.0612448406232, -858.0630493532683, -857.9661543928805, -858.0629070617439, -858.0601294365397, -858.0620529004716, -857.9683779024936, -858.063311257281, -858.0612448883408, -858.0630493754194, -857.966154249396, -858.0629070420212, -858.0601294035415, -858.0620528534791, -857.9683777735696, -858.063311197088, -858.0612448947986, -858.0630493784204, -857.9661542299804, -858.0629070393502, -858.0601293990748, -858.0620528471194, -857.9683777561213, -858.0633111889418, -858.0612448957606, -858.0630493788651, -857.9661542270912. -858.062907038954, -858.0601293984072, -858.0620528461735, -857.9683777535269, -858.0633111877318, -860.9145934188691, -860.9590098008065, -860.6235184373917, -860.9633923145858, -860.8837197438054, -860.8093941564049, -860.6287080750919, -860.8680042414824, -860.8391205299878, -860.9378250163319, -860.5285628342922, -860.9731631945501. -860.9097059489908, -860.8295089954545, -860.6063416952793, -860.8917621879339, -860.8512894632692, -860.9479210574289, -860.5328238921785, -860.9794439386601, -860.915006377889. -860.8334510449982, -860.607554144016, -860.8947016363174, -860.8533180386003, -860.9495858008297, -860.5335593046642, -860.9804692783337, -860.9158645418261, -860.8340887712769, -860.6077607870332, -860.8951737345755, -860.8533312347504, -860.9495966151426, -860.5335641090724, -860.9804759304457, -860.9158701033743, -860.834092903784, -860.6077621349187, -860.8951767909066, -860.8533318326361, -860.9495971051074, -860.5335643267565, -860.9804762318282, -860.915870355348, -860.8340930910126, -860.6077621959885, -860.8951769293776, -860.8533319135516, -860.9495971714167, -860.5335643562127, -860.9804762726204, -860.9158703894503, -860.834093116353, -860.6077622042549, -860.8951769481173, -860.8533319255865, -860.9495971812804, -860.5335643605977, -860.9804762786852, -860.9158703945234, -860.8340931201232, -860.6077622054844, -860.8951769509052, -881.3048696481654, -881.0471921713633, -881.044487377542, -880.6891365062337, -880.5342941225795, -880.4258152499888, -880.4682204345369, -880.2776891274627, -879.8228073600208, -879.8094341224819, -879.9300123740858, -879.7912010845965. -879.7812144532904, -879.775895323834, -879.8963360443425, -879.7649531845575, -879.7566725902923, -879.7540571480889, -879.8800894973697, -879.7508796981955, -879.7473440519825. -879.7466313686152, -879.8705647294622, -879.7418311382154. -879.7463990652432, -879.7454535928889, -879.8723328118156, -879.7446140375262, -879.7420804002069, -879.7420833201157, -879.8665593215104, -879.7382373546308, -879.7463328499343, -879.745398139907, -879.8722828167745, -879.7445736520656, -879.7420464728422, -879.7420540050083, -879.8665335039319, -879.7382141901361, -879.7463298500685, -879.7453956276282, -879.8722805517666, -879.7445718224154, -879.7420449357734, -879.742052676898, -879.8665323342744, -879.7382131406774, -879.7463294440822, -879.7453952876317, -879.8722802452301, -879.7445715747987, -879.7420447277557, -879.7420524971591, -879.8665321759792, -879.7382129986463, -879.7463293837014, -879.7453952370605, -879.872280199641, -879.7445715379698, -879.7420446968154, -879.7420524704248, -879.8665321524344, -879.7382129775254, -858.5797079977261, -858.4749070037899, -858.4508804609907, -858.3518169865679, -858.3036389282762, -858.2760747326258, -858.2523197038854, -858.2387961050987, -858.1061275894169, -858.1038608859772, -858.0791470655131, -858.1027648991003. -858.0997515252114, -858.1008449606851, -858.0729728480061, -858.0986858041547, -858.0952362749779, -858.094468489776, -858.0681690244494, -858.095378234031, -858.093232818432. -858.0949069770913, -858.0663357744221, -858.093549091463. -858.0936318273951, -858.0930698667173, -858.0665107002314, -858.0942616495792, -858.0922413960244, -858.0939999415314. -858.0653158836113, -858.0927601971913, -858.0936215630289, -858.0930609052075, -858.0665000531409, -858.0942544799664, -858.0922350246341, -858.093994108936, -858.0653093199052, -858.0927551205033, -858.0936210980259, -858.0930604992241, -858.0664995707898, -858.0942541551574, -858.0922347359868, -858.0939938446954, -858.0653090225437, -858.0927548905081, -858.0936210350959, -858.0930604442796, -858.0664995055121, -858.0942541111993, -858.0922346969239,

-858.0939938089357, -858.0653089823002, -858.0927548593818, -858.0936210257356, -858.0930604361077, -858.0664994958012,

```
-858.0942541046588,
           -858.092234691115,
           -858.0939938036162,
           -858.0653089763154,
           -858.0927548547529]
         Best Found hyperparameters are:
In [539...
          T[np.argmin(val)]
          [0.0001, 4.5399929762484854e-05, 50]
Out[539...
In [542...
          beta_hyper = mini_batch_gradient_ascent_reg_para(X_tr, Y_tr, 100, 0.0001, 4.53999297
          te_target_ = sigmoid(X_te, beta_hyper)
          te_target_pred = np.zeros((len(te_target_), 1))
          for i,ele in enumerate(te_target_):
               if ele >= 0.5:
                   te_target_pred[i] = 1
               else:
                   te_target_pred[i] = 0
In [543...
          print(f'Accuracy :{accuracy(te_target_pred, Y_te):.2f}%')
         Accuracy :88.66%
```