Lecture 6 Feature Selection and Extraction

Machine Learning Ivan Smetannikov

15.06.2016

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction

Why should we look at dimensionality reduction?

- Speeds up algorithms
- Reduces space used by data for them

What is dimensionality reduction?

• You've collected many features – maybe more than you need. Can you "simply" your data set in a rational and useful way?

Example:

- Redundant data set different units for same attribute
- Reduce data to 1D (2D -> 1D)

Another Example

- Helicopter flying do a survey of pilots (x1 = skill, x2 = pilot enjoyment) These features may be highly correlated
- This correlation can be combined into a single attribute called aptitude (for example)

So what does dimensionality reduction mean?

- Let plot a line
- Take exact example and record position on that line
- So we can present x^1 as 1D number

Another example 3D -> 2D

Motivation:

Collect a large data set (50 dimensions)

						Mean	
		Per capita	5/3		Poverty	household	
	GDP	GDP	Human	500000000	Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Using dimensionality reduction come up with a different feature representation

Country	z_1	z_2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5
•••		•••

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction

Goals of feature selection:

- Avoiding retraining and improving the quality of classification
- Best understanding of models
- Boosting of classifying models

Type of elected attributes:

- Redundant attributes do not carry any additional information
- Irrelevant attributes are not generally informative

Evaluation methods of feature selection:

- At various datasets
- With different classifiers (if possible)
- By adding to datasets noise and target vectors

Feature selection types:

- Filter methods
 - a. Univariate
 - b. Multivariate
- Wrapper methods
 - a. Deterministic
 - b. Randomized
- Embedded methods

Filter methods:

Evaluate the quality of certain attributes and remove the worst of them.

- + Simple to compute, easy to scale
- Ignore the relationships between attributes or features used by classifier

Examples of filter methods:

- Univariate:
 - o Euclidian distance
 - Information gain
- Spearman corellation coefficient
 - o Multivariate:
 - o CFS
 - o MBF

Spearman corellation coefficient

$$\rho = \frac{\sum_{ij} (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{ij} (x_{ij} - \bar{x}_j)^2 \sum_{i} (y_i - \bar{y})^2}} \qquad \rho \in [-1; 1]$$

$$\rho \to 0$$

Python SciPy:

scipy.stats.pearsonr(x, y)

x : (N,) array_like

Input

 $y:(N_i)$ array_like

Input

Returns: (Pearson's correlation coefficient,

2-tailed p-value)

Parameters:

Weka:

```
ASEvaluation evaluator = new CorrelationAttributeEval();
Ranker ranker = new Ranker();
// ranker.setThreshold(0.05); or ranker.setNumToSelect(10);
AttributeSelection selection = new AttributeSelection();
selection.setInputFormat(heavyInstances);
selection.setEvaluator(evaluator);
selection.setSearch(ranker);
Instances lightInstances = Filter.useFilter(heavyInstances, selection);
```

Wrapper methods:

Get a subset of attributes of the source

- + Higher accuracy than Filtering
- + Consider the relationships between attributes
- + Direct interaction with the classifier
- Long computing time
- The probability of re-education

Examples of Wrapper methods:

- Deterministic:
 - SFS (sequential forward selection?)
 - SBE (sequential backward elimination?)
 - o SVM-RFE
- Randomized:
 - Randomized Hill Climbing
 - Genetic Algorithms

SVM-RFE

- Train SVM on training subset
- Rank features by received weights
- Throw out last features
- Repeat until the necessary amount of features will left

SVM-RFE (Python example)

$$x = [1, 5, 1.5, 8, 1, 9]$$

 $y = [2, 8, 1.8, 8, 0.6, 11]$

SVM-RFE (Python example)

```
X = np.array([[1,2], [5,8], [1.5,1.8], [8,8], [1,0.6], [9,11]])

y = [0,1,0,1,0,1]
```

Let use SVM:

```
clf = svm.SVC(kernel='linear', C = 1.0)
```

Let fit our model:

```
clf.fit(X,y)
```

Let predict predict something:

```
print(clf.predict([0.58, 0.76]))
```

Embedded

- Take into account the particular classifier
- Use individual method for each classifier

Random Forest:

Random Forest:

- Select a subsample of size N for each tree with replacement
- Build decision trees. To select next feature to split the $m \approx \sqrt{M}$ considered
- Choose the best for a given criteria

Random Forest (Python example):

```
# Import the random forest package
from sklearn.ensemble import RandomForestClassifier
# Create the random forest object which will include all the
parameters for the fit

forest = RandomForestClassifier(n_estimators = 100)
# Fit the training data to the Survived labels and create the
decision trees

forest = forest.fir(train_data[0::, 1::],
    train_data[0::, 0])
# Take the same decision trees and run it on the test data
output = forest.predict(test_data)
```

Random Forest (Weka):

```
int numFolds = 10;
br = new BufferedReader(new FileReader("data.arff"));
    Instances trainData = new Instances(br);
   trainData.setClassIndex(trainData.numAttributes() - 1);
   RandomForest rf = new RandomForest();
   rf.setNumTrees(100);
   rf.buildClassifier(trainData);
   Evaluation evaluation = new Evaluation(trainData);
    evaluation.crossValidateModel(rf, trainData, numFolds, new Random(1));
   System.out.println("F-measure= " + evaluation.fMeasure(0));
```

IG and IG

$$gain(T) = -\sum_{i=1}^{k} p(c_i) \log_2(p(c_i)) + \sum_{i=1}^{n} p(t_i) \sum_{j=1}^{k} p(c_j|t_i) \log_2(p(c_j|t_i)).$$

$$gini(T) = 1 - \sum_{i=1}^{k} (p(c_i))^2 - \sum_{i=1}^{n} p(t_i) \sum_{j=1}^{k} p(c_j|t_i) (1 - p(c_j|t_i)).$$

Redundancy

Regularization

$$gain_R(X_j) = \begin{cases} \lambda \cdot gain(X_j) & X_j \notin F \\ gain(X_i) & X_j \in F \end{cases}$$

Lecture plan

- Dimensionality Reduction
- Feature Selection
- Feature Extraction

Feature Extraction

- Reducing the amount of resources required to describe a large set of data
- New features
- Linear and nonlinear

Feature Extraction

- Reducing the amount of resources required to describe a large set of data
- New features
- Linear and nonlinear

Linear and nonlinear

PCA

We have 2D dataset which we wish to

reduce to 1D

PCA tries to find the surface (a straight line in this case) which has the minimum projection error

PCA (Python example) Let use Iris-data and import PCA

```
from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)
```

PCA (Python example) Let plot PCA-results

PCA (Weka)

```
PrincipalComponents pca = new PrincipalComponents();
pca.setInputFormat(trainingData);
pca.setMaximumAttributes(100);
newData = Filter.useFilter(newData, pca);
```