SPANNING TREES

Spanning tree

Let *G* be a simple graph.

A **spanning tree** of **G** is a subgraph of **G** that is a tree containing every vertex of **G**.

A simple graph G must be connected

→ Because there is a path in the spanning tree between any two vertices

Every connected simple graph has a spanning tree.

Other spanning trees

Original

Other spanning trees

Original

Other spanning trees

Original

Other spanning trees

Original

Other spanning trees

Theorem 1

A simple graph is connected if and only if it has a spanning tree

```
DFS-iterative (G, s): //Where G is graph and s is source vertex
          let S be stack
          S.push(s)//Inserting s in stack
          mark s as visited.
          while (S is not empty): //Pop a vertex from stack to visit
                    next v = S.top()
                    S.pop()
                    //Push all the neighbours of v in stack that are not visited
                    for all neighbours w of v in Graph G:
                              if w is not visited : S.push(w)
                                         mark w as visited
```

```
DFS-recursive(G, s):

mark s as visited

for all neighbours w of s in Graph G:

if w is not visited:

DFS-recursive(G, w)
```

Visited: f

Depth-first Search

Procedure visit(v : vertex of G)

visit(f)

1: for each vertex w adjacent to v and not yet in T do

2: add vertex w and edge $\{v, w\}$ to T

3: visit(w)

4: end for

Procedure visit(v : vertex of G)

1: for each vertex w adjacent to v and not yet in T do

2: add vertex w and edge $\{v, w\}$ to T

3: visit(w)

4: end for

add vertex g and edge (f, g) to T visit(g)

g

Procedure visit(v : vertex of G)

1: for each vertex w adjacent to v and not yet in T do

2: add vertex w and edge $\{v, w\}$ to T

3: visit(w)

4: end for

add vertex h and edge (g, h) to T visit(h)

i h g f

i h g f

h g

k h g f

j k h g

k h g

h g

h

m I

Anaysis

- The time complexity of Depth First Search (DFS) is O(V + E), where V is the number of vertices and E is the number of edges.
- DFS visits each vertex and explores each edge once (in an adjacency list representation).
- Time Complexity:
- You visit each node once: O(V)
- For each node, you look at its neighbors (edges): O(E)
- Total: O(V+E)

```
BFS (graph G, start vertex s)
        initially all nodes are unexplored
        let Q = queue, initialized with s
        while Q is not empty:
                v = Q.dequeue()
                         if v is not yet explored:
                                 label v as explored
                                 foreach edge (v,w):
                                          Q.enqueue(w)
```


BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):
 Q.enqueue(w)

BFS (graph G, start vertex s)

initially all nodes are unexplored

let Q = queue, initialized with s

while Q is not empty:

v = Q.dequeue()

if v is not yet explored:

label v as explored

foreach edge (v,w):

Q.enqueue(w)

 $Q = \{e\}$

 $L = \{\}$

BFS (graph G, start vertex s)
initially all nodes are unexplored
let Q = queue, initialized with s
while Q is not empty:
v = Q.dequeue()
if v is not yet explored:
label v as explored
foreach edge (v,w):

c a i f

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

h
c
a
i

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):
 Q.enqueue(w)

j g h c a

```
BFS (graph G, start vertex s)
  initially all nodes are unexplored
  let Q = queue, initialized with s
    while Q is not empty:
    v = Q.dequeue()
    if v is not yet explored:
        label v as explored
        foreach edge (v,w):
        Q.enqueue(w)
```


BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

k j g

BFS (graph G, start vertex s)

initially all nodes are unexplored
let Q = queue, initialized with s

while Q is not empty:

v = Q.dequeue()

if v is not yet explored:

label v as explored

foreach edge (v,w):

BFS (graph G, start vertex s)

initially all nodes are unexplored
let Q = queue, initialized with s

while Q is not empty:

v = Q.dequeue()

if v is not yet explored:

label v as explored

foreach edge (v,w):

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

BFS (graph G, start vertex s)
 initially all nodes are unexplored
 let Q = queue, initialized with s
 while Q is not empty:
 v = Q.dequeue()
 if v is not yet explored:
 label v as explored
 foreach edge (v,w):

m

Algorithm 2 BFS(G: connected graph with vertices v_1, v_2, \ldots, v_n)

```
1: T = tree consisting only of vertex v_1
    2: L = \text{empty list}
                                                                                                                                                                                                                                                             L = \{k\}
    3: put v_1 in the list L of unprocessed vertices
    4: while L is not empty do
                                                                                                                                                                                                                                                             L = \{\}
                                remove the first vertex, v, from L
                               for each neighbor w of v do
     6:
                                            if w is not in L and not in T then
    7:
                                                                                                                                                                                                                                                           L = \{\}
                                                         add w to the end of the list L
    8:
                                                         add w and edge \{v, w\} to T
                                                                                                                                                                                                                                                            T = \{(e, b), (e, d), (e, f), (e, i), (b, a), (b, c), (d, h), (e, d), (e, d),
                                            end if
10:
                                                                                                                                                                                                                                                                                                                                           (f, g), (f, j), (i, k), (g, l), (k, m)}
                                end for
12: end while
```


BFS (graph G, start vertex s)

initially all nodes are unexplored

let Q = queue, initialized with s

while Q is not empty:

v = Q.dequeue()

if v is not yet explored:

label v as explored

foreach edge (v,w):

Q.enqueue(w)

Analysis

- Runs in O(V + E) time using a stack (LIFO)
- Like DFS, BFS explores all vertices and edges once, assuming an adjacency list representation.
- Every vertex is enqueued and dequeued exactly once.

Minimum spanning trees

Prim's algorithm

- Begin by choosing any edge with smallest weight, putting it into the spanning tree.
- Successively add to the tree edges of minimum weight that are incident to a vertex already in the tree, never forming a simple circuit with those edges already in the tree.
- Stop when n 1 edges have been added

{b, f}

1

{b, f}

1

{b, f}

{a, b}

1

2

{b,	f}
(' '	٠,

$$\{f, j\}$$

{b, f}	1
{a, b}	2
{f, j}	2

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1
{g, h}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1
{g, h}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1
{g, h}	3
{h, i}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1
{g, h}	3
{h, i}	3

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
{f, g}	3
{c, g}	2
{c, d}	1
{g, h}	3
{h, i}	3
{k, I}	1

{b, f}	1
{a, b}	2
{f, j}	2
{a, e}	3
{i, j}	3
$\{f, g\}$	3
{c, g}	2
{c, d}	1
{g, h}	3
{h, i}	3
{k, l}	1
Total	24

Analysis

- Using a binary min-heap and an adjacency list to represent the graph, here's how the complexity arises:
- Operations in Prim's (Min-Heap):
 - 1. Insert or update key of a vertex in the min-heap → log V
 - **2.Extract the minimum** from the min-heap \rightarrow log V
- Key Steps:
 - You extract V vertices (each once):
 - V * log V → total time for extract-min
 - You examine all E edges (in adjacency list):
 - For each edge, you may perform a decrease-key operation → log V
 - So E * log V time for decrease-key operations

- Begin by choosing an edge in the graph with minimum weight.
- Successively add edges with minimum weight that do not form a simple circuit with those edges already chosen.
- Stop after n 1 edges have been selected.

{c, d}

{c, d}	1
{k, I}	1
{b, f}	1

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3
{g, h}	3

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3
{g, h}	3
{j, k}	3

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3
{j, k}	3
{g, h}	3
{a, e}	3

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3
{j, k}	3
{g, h}	3
{a, e}	3
{i, j}	3

{c, d}	1
{k, I}	1
{b, f}	1
{c, g}	2
{a, b}	2
{f, j}	2
{b, c}	3
{j, k}	3
{g, h}	3
{a, e}	3
{i, j}	3

Analysis

End of Lecture