What is claimed is:

2

3

1	1.	A method of determining lower and upper bounds for a minimum cost
2		comprising the steps of:
3		solving an integer program using a relaxation of binary variables to
4		determine the lower bound, the binary variables having values between
5		zero and one comprising a first subset;
6		for the binary variables in the first subset and until no binary variables
7		remain in the first subset, iteratively performing the steps of:
8		rounding up a first binary variable having a lowest ratio of a
9		cost penalty to a performance reward; and
10		until no binary variables remain in a second subset, iteratively
11		performing the steps of:
12		determining the binary variables in the first subset that
13		may be rounded down without violating a performance
14		constraint, thereby forming the second subset;
15		rounding down one or more second binary variables in
16		the second subset having a zero performance reward; and
17		rounding down a third binary variable in the second
18	٠	subset having a highest ratio of a cost reward to the
19		performance reward if none of the binary variables in the
20		second subset have the zero performance reward; and
21		determining the upper bound according to the binary variables having
22		binary values.
•,		
1	2.	The method of claim 1 wherein the integer program comprises the
2		performance constraint and an objective of minimizing a cost.
1	3.	The method of claim 1 wherein the integer program models a data placement
2		problem.
1	4.	The method of claim 3 wherein the data placement problem seeks to minimize

the cost of placing data objects onto nodes of a distributed storage system while

meeting a performance requirement for a workload.

1	5.	The method of claim 1 wherein the step of rounding up the first binary
2 -		variable within the first subset further comprises calculating the cost penalty and
3		the performance reward.
1	6.	The method of claim 5 wherein the step of rounding down the one or more
2		second binary variables within the second subset further comprises calculating the
3		performance reward.
1	7.	The method of claim 6 wherein the step of rounding down the third binary
2		variable within the second subset further comprises calculating the cost reward.
	•	
1	. 8.	A method of determining bounds for a minimum cost comprising the steps of:
2		solving an integer program using a relaxation of binary variables to
3	-	determine a lower bound for the minimum cost, the relaxation allowing the
4		binary variables to take values over the range of zero to one, a first subset
5	•	of the binary variables comprising the binary variables having values
6		between zero and one, the integer program modeling a data placement
7	-	problem which seeks to minimize a cost of placing data objects onto nodes
8		of a distributed storage system while meeting a performance requirement
9.		for a workload;
10		until no binary variables remain in the first subset, iteratively
11.		performing the steps of:
12		calculating a cost penalty and a performance reward for each of
13		the binary variables in the first subset;
14	. `	rounding up a first binary variable having a lowest ratio of the
15		cost penalty to the performance reward;
16		until no binary variables remain in a second subset, iteratively
17		performing the steps of:
18		determining the binary variables in the first subset that
19		may be rounded down without violating the performance
20		requirement, thereby forming the second subset;
21		calculating a cost reward and the performance reward
22		for each of the binary variables in the second subset;

23	rounding down one or more second binary variables in
24	the second subset having a zero performance reward;
25	rounding down a third binary variable in the second
26	subset corresponding to a highest ratio of a cost reward to
27	the performance reward if none of the binary variables in
28	the second subset have the zero performance reward; and
29	determining an upper bound for the minimum cost according to the
30	binary variables having binary values.
1	9. The method of claim 8 wherein the integer program further comprises a
2	storage constraint.
1	10. The method of claim 9 wherein the step of determining the upper bound for
2	the minimum cost further comprises the steps of:
3	determining a particular node which uses a maximum amount of
4	storage within any evaluation interval; and
. 5	allocating the maximum amount of storage on all nodes for all
6.	evaluation intervals.
. 1	11. The method of claim 9 wherein the step of determining the upper bound for
2	the minimum cost further comprises the steps of:
3	determining a maximum amount of storage for each node within any
4	evaluation interval; and
5	allocating the maximum amount of storage on each node for all
6	evaluation intervals.
1	12. The method of claim 8 wherein the integer program further comprises a
2	replica constraint.
*	
1	13. The method of claim 12 wherein the step of determining the upper bound for
2	the minimum cost further comprises the steps of;
3.	determining a maximum number of replicas for any data object within
4	any evaluation interval; and
5	placing the maximum number of replicas for all data objects for all

_	evaluation	* 4 1 -
	evalliation	intervals
)	Cvaluation	IIICL Valo

1	14. The method of claim 12 wherein the step of determining the upper bound	for
2	the minimum cost further comprises the steps of;	
3	determining a maximum number of replicas for each data object v	vithin
4	any evaluation interval; and	
5	placing the maximum number of replicas for each data object for	all
6	evaluation intervals.	
1	15. A computer readable memory comprising computer code for implementi	ng a
2	method of determining bounds for a minimum cost, the method of determini	ng the
3	bounds for the minimum cost comprising the steps of:	
4	solving an integer program using a relaxation of binary variables	to
5	determine a lower bound for the minimum cost, the integer program	
6	comprising a performance constraint and an objective of minimizing	a
7	cost, the binary variables having values between zero and one compr	ising
8	a first subset;	
9	for the binary variables within the first subset and until no binary	
10	variables remain in the first subset, iteratively performing the steps of	f:
11	rounding up a first binary variable having a lowest ratio of	fa
12	cost penalty to a performance reward; and	
13	until no binary variables remain in a second subset, iterat	vely
14	performing the steps of:	
15	determining the binary variables in the first subse	that
16	may be rounded down without violating the performa	nce
17	constraint, thereby forming the second subset;	
18	rounding down one or more second binary variab	es in
19	the second subset having a zero performance reward;	and
20	rounding down a third binary variable in the second	ıd
21	subset having a highest ratio of a cost reward to the	
22	performance reward if none of the binary variables in	the
23	second subset have the zero performance reward; and	
24	determining an upper bound for the minimum cost according to	he
25	binary variables having binary values.	

1	16. The computer readable memory of claim 15 wherein the integer program	
2.	models a data placement problem.	
ì	17. The computer readable memory of claim 16 wherein the data placement	
2	problem seeks to minimize the cost of placing data objects onto nodes of a	•
3	distributed storage system while meeting a performance requirement for a	
4	workload.	
1	18. The computer readable memory of claim 15 wherein the step of rounding up	
2	the first binary variable within the subset further comprises calculating the cost	
3	penalty and the performance reward.	
-		. :
1	19. The computer readable memory of claim 18 wherein the step of rounding	
2	down the one or more second binary variables within the subset further comprise	s
3	calculating the performance reward.	٠
1	20. The computer readable memory of claim 19 wherein the step of rounding	
2	down the third binary variable within the subset further comprises calculating the	е
3	cost reward.	
•		
1	21. A computer readable memory comprising computer code for implementing a	1
2,	method of determining bounds for a minimum cost, the method of determining t	he
3	bounds for the minimum cost comprising the steps of:	
4	solving an integer program using a relaxation of binary variables to	, t. t.
5	determine a lower bound for the minimum cost, the relaxation allowing t	he
6	binary variables to take values over the range of zero to one, a first subse	et
7	of the binary variables comprising the binary variables having values	
8	between zero and one, the integer program modeling a data placement	
9	problem which seeks to minimize a cost of placing data objects onto noc	les
10	of a distributed storage system while meeting a performance requiremen	t.
11	for a workload;	
12	until no binary variables remain in the first subset, iteratively	
13	performing the steps of:	

14	calculating a cost penalty and a performance reward for each of
15	the binary variables in first the subset;
16	rounding up a first binary variable having a lowest ratio of the
17	cost penalty to the performance reward;
18	until no binary variables remain in a second subset, iteratively
19	performing the steps of:
20	determining the binary variables in the first subset that
21	may be rounded down without violating the performance
22 ·	requirement, thereby forming the second subset;
23	calculating a cost reward and the performance reward
24	for each of the binary variables in the second subset;
25	rounding down one or more second binary variables in
26	the second subset having a zero performance reward;
27	rounding down a third binary variable in the second
28	subset corresponding to a highest ratio of a cost reward to
29	the performance reward if none of the binary variables in
30	the second subset have the zero performance reward; and
31	determining an upper bound for the minimum cost according to the
32	binary variables having binary values.
r	
1	22. The computer readable memory of claim 21 wherein the integer program
2	further comprises a storage constraint.
1	23. The computer readable memory of claim 22 wherein the step of determining
2	the upper bound for the minimum cost further comprises the steps of:
3	determining a particular node which uses a maximum amount of
4	storage within any evaluation interval; and
5	allocating the maximum amount of storage on all nodes for all
6	evaluation intervals.
	en de la composition de la composition La composition de la
1	24. The computer readable memory of claim 22 wherein the step of determining
2	the upper bound for the minimum cost further comprises the steps of:
3	determining a maximum amount of storage for each node within any
4	evaluation interval; and

5	allocating the maximum amount of storage on each node for an
6	evaluation intervals.
1	25. The computer readable memory of claim 21 wherein the integer program
2 · ·	further comprises a replica constraint.
1	26. The computer readable memory of claim 25 wherein the step of determining
2	the upper bound for the minimum cost further comprises the steps of;
3	determining a maximum number of replicas for any data object within
4	any evaluation interval; and
5	placing the maximum number of replicas for all data objects for all
6	evaluation intervals.
1	27. The computer readable memory of claim 25 wherein the step of determining
2	the upper bound for the minimum cost further comprises the steps of;
3	determining a maximum number of replicas for each data object within
4	any evaluation interval; and
5	placing the maximum number of replicas for each data object for all
6	evaluation intervals.