Job Number:	BWhite
Issue:	Consulting Ltd

PRODUCER STATEMENT-PS1-DESIGN

ISSUED BY: BWhite Consulting Ltd (Design Engineer: Bevan White)

TO BE SUPPLIED TO: Far North District Council IN RESPECT OF: Proposed NEW Farm Shed

AT: 125C Frantoio Ridge Road, Mangonui 0494, New Zealand

LEGAL DESCRIPTION

We have been engaged by Ezequote Pty Ltd to provide Specific Structural Engineering
Design services in respect of the requirements of Clause(s) B1 of the Building Code for part only
(as specified in the attachment to this statement), of the proposed building work.

☐ ALL ☐ Part only as specified: Purlins, Rafters, Girts, Poles, Columns, Pole embedment and all connections

The design has been prepared in accordance with compliance documents to NZ Building Code issued by Ministry of Business, Innovation & Employment Clauses **B1/VM1** and **B1/VM4**

The proposed building work covered by the producer statement is described on **Ezequote** drawings title **496-99815C** and numbered **A101 - A111 Rev-1** dated **27/03/2025** together with the following specification, and other documents set out in the schedule attached to this statement: **Design Featured Report Dated 02/04/2025 and numbered "Second Page"**

On behalf of BWhite Consulting Ltd, and subject to:

- 1. Site verification of the following design assumptions: an Ultimate foundation bearing pressure of 300 kPa in accordance with NZS3604:2011
- 2. The building has a design life of 50 years and am Importance Level 1
- 3. Unless specifically noted, compliance of the drawings to None-Specific codes such as NZS3604 and NZS4229 have not been checked by this practice
- 4. This Certificate does not cover any other building code clause including weather tightness
- 5. Inspections of the building to be completed by Far North District Council. As BWhite Consulting Ltd are not undertaking inspections, we cannot issue a producer Statement-PS4- Construction Review.
- 6. This Producer Statement- Design is valid for a building consent issued within 1 year from the date of issue
- 7. All proprietary products meeting their performance specification requirements

I believe on reasonable grounds that a) the building, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached schedule, will comply with the relevant provisions of the Building Code and that b), the presons who have undertaken the design have the necessary competency to do so. I also recommend the follow level of construction monitoring/observation:

 \square CM1 \square CM2 \square CM3 \square CM4 \square CM5 or as per agreement with owner/developer (stated above)

I, **Bevan White** am CPEng **108276** I am Member of Engineering New Zealand and hold the following qualification: **BE.Civil** and holds a current policy of Professional Indemnity Insurance no less than \$200,000

Signed by Bevan White on behalf of BWhite Consulting Ltd Dated: 02/04/2025

Email: bwhitecpeng@gmail.com Phone: 0211-979786

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise(including negligence), is limited to the sum of \$200,000.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent

Date: 02/04/2025

BWhite

Consulting Ltd

18B Jules Crescent,

Bell Block New Plymouth 4312

New Zealand File No:

DESIGN FEATURES SUMMARY FOR PROPOSED NEW FARM SHED 125C FRANTOIO RIDGE ROAD, MANGONUI 0494, NEW ZEALAND

Site Specific Loads

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & EQ ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	3.0	Design Wind Speed	37.99 m/s
Wind Pressure	0.87 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years

Timber

Sawn Timber to be graded to the properties of SG6 and SG8 or better as mentioned on plans, with moisture content of 18% or less for dry and 25% or less for wet.

The following standards have been used in the design of this structure

- NZS 3603:1993 Timber Structures Standard
- NZS 3604:2011 Timber Framed Buildings. Standards New Zealand, 2011
- NZS 3404:1997 Steel Structures
- AS/NZS 1170 2003 Structural Design Actions
- AS/NZS 1170.2 2021 Structural Design Actions-Wind Action
- Branz. "Engineering Basis of NZS 3604". April 2013

Yours Faithfully

BWhite CONSULTING LTD

Bevan White

Director | BE Civil . CMengNZ CPEng

Email: bwhitecpeng@gmail.com Contact: 0211 979 786

Job No.: 496-99815C Address: 125C Frantoio Ridge Road, Mangonui Date: 02/04/2025

0494, New Zealand

Latitude: -35.01618 **Longitude:** 173.560598 **Elevation:** 33.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	3.0	Design Wind Speed	37.99 m/s
Wind Pressure	0.87 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.30 m Cpe = -0.9 pe = -0.63 KPa pnet = -0.79 KPa

For roof CP,e from 3.30 m To 6.60 m Cpe = -0.5 pe = -0.35 KPa pnet = -0.51 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 8.50 m Cpe = 0.7 pe = 0.55 KPa pnet = 0.81 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.51 KPa pnet = -0.51 KPa

Maximum Upward pressure used in roof member Design = 0.79 KPa

Maximum Downward pressure used in roof member Design = 0.40 KPa

Maximum Wall pressure used in Design = 0.81 KPa

Maximum Racking pressure used in Design = 0.94 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5350 mm Try Purlin 240x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.50 S1 Downward =13.82 S1 Upward =23.71

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.97 Kn-m	Capacity	2.73 Kn-m	Passing Percentage	281.44 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.07 Kn-m	Capacity	3.64 Kn-m	Passing Percentage	118.57 %
$M_{0.9D ext{-W}nUp}$	-1.62 Kn-m	Capacity	-2.44 Kn-m	Passing Percentage	150.62 %
V _{1.35D}	0.72 Kn	Capacity	10.42 Kn	Passing Percentage	1447.22 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	1.50 Kn	Capacity	13.89 Kn	Passing Percentage	926.00 %
$ m V_{0.9D ext{-}WnUp}$	-1.21 Kn	Capacity	-17.37 Kn	Passing Percentage	1435.54 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 21.66 mm

Limit by Woolcock et al, 1999 Span/240 = 22.08 mm

Deflection under Dead and Service Wind = 16.56 mm

Limit by Woolcock et al, 1999 Span/100 = 53.00 mm

Reactions

Maximum downward = 1.50 kn Maximum upward = -1.21 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5500 Internal Rafter Span = 5650.000000001228 Try Rafter 2x290x45 SG8 mm Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.47 S1 Upward = 7.47

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	7.41 Kn-m	Capacity	8.48 Kn-m	Passing Percentage	114.44 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	15.36 Kn-m	Capacity	11.3 Kn-m	Passing Percentage	73.57 %
M0.9D-WnUp	-12.40 Kn-m	Capacity	-14.12 Kn-m	Passing Percentage	113.87 %
V _{1.35D}	5.24 Kn	Capacity	25.18 Kn	Passing Percentage	480.53 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	10.88 Kn	Capacity	33.58 Kn	Passing Percentage	308.64 %
$ m V_{0.9D ext{-}WnUp}$	-8.78 Kn	Capacity	-41.96 Kn	Passing Percentage	477.90 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 22.155 mm Limit by Woolcock et al, 1999 Span/240 = 24.17 mm Deflection under Dead and Service Wind = 28.715 mm Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 10.88 kn Maximum upward = -8.78 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.26 Kn > -8.78 Kn

Rafter Design External

External Rafter Load Width = 2750 mm External Rafter Span = 5614 mm Try Rafter 290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

K8 Upward =0.89 S1 Downward =15.23 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	3.66 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	103.28 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	7.58 Kn-m	Capacity	5.04 Kn-m	Passing Percentage	66.49 %
$M_{0.9D\text{-W}n\text{Up}}$	-6.12 Kn-m	Capacity	-6.29 Kn-m	Passing Percentage	102.78 %
$V_{1.35D}$	2.61 Kn	Capacity	12.59 Kn	Passing Percentage	482.38 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	5.40 Kn	Capacity	16.79 Kn	Passing Percentage	310.93 %
$ m V_{0.9D ext{-}WnUp}$	-4.36 Kn	Capacity	-20.98 Kn	Passing Percentage	481.19 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 24.61 mm Limit by Woolcock et al, 1999 Span/240= 24.17 mm Deflection under Dead and Service Wind = 28.72 mm Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 5.40 kn Maximum upward = -4.36 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -21.73 kn > -4.36 Kn

8/14

Single Shear Capacity under short term loads = -14.63 Kn > -4.36 Kn

Intermediate Design Sides

Intermediate Spacing = 2900.0000000000614 mm Intermediate Span = 3375 mm Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward = 1.00 S1 Downward = 12.23 S1 Upward = 0.75

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.67 Kn-m	Capacity	6.06 Kn-m	Passing Percentage	362.87 %
$ m V_{0.9D ext{-}WnUp}$	1.98 Kn	Capacity	27.5 Kn	Passing Percentage	1388.89 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.285 mm Limit by Woolcock et al, 1999 Span/100 = 33.75 mm

Reactions

Maximum = 1.98 kn

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 2750 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
$ m V_{0.9D ext{-}WnUp}$	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al, 1999 Span/100 = 27.50 mm Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2900 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.74 S1 Downward =10.36 S1 Upward =18.60

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.11 Kn-m	Capacity	1.22 Kn-m	Passing Percentage	109.91 %
$ m V_{0.9D ext{-}WnUp}$	1.53 Kn	Capacity	10.13 Kn	Passing Percentage	662.09 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.07 mm Limit by Woolcock et al. 1999 Span/100 = 29.00 mm Sag during installation = 5.29 mm

Reactions

Maximum = 1.53 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3310 mm
Area	8438 mm2	As	6328.125 mm2

Ix	24719238 mm4	Zx	263672 mm3
Iy	24719238 mm4	Zx	263672 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 31.90000000006752 m2

Dead	7.98 Kn	Live	7.98 Kn
Wind Down	12.76 Kn	Snow	0.00 Kn
Moment wind	10.17 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	121.50 Kn	PhiMnx Wind	7.66 Kn-m	PhiVnx Wind	14.98 Kn
PhiNcx Dead	72.90 Kn	PhiMnx Dead	4.59 Kn-m	PhiVnx Dead	8.99 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 1.56 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 2.00 < 1 \text{ OK}$

Deflection at top under service lateral loads = 74.38 mm < 33.10 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 10.17 Kn-m

Shear Wind = 3.77 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.73 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level)	Dry Use	Height	3400 mm
Area	7313 mm2	As	5484.375 mm2
Ix	16091309 mm4	Zx	198047 mm3
Iy	16091309 mm4	Zx	198047 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 15.95000000003376 m2

Dead	3.99 Kn	Live	3.99 Kn
Wind Down	6.38 Kn	Snow	0.00 Kn
Moment Wind	5.08 Kn-m		
Phi	0.8	K8	0.63
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

12/14

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_{S} =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	65.87 Kn	PhiMnx Wind	3.60 Kn-m	PhiVnx Wind	12.99 Kn
PhiNcx Dead	39.52 Kn	PhiMnx Dead	2.16 Kn-m	PhiVnx Dead	7.79 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 1.63 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 2.21 < 1 \text{ OK}$

Deflection at top under service lateral loads = 61.98 mm < 35.91 mm

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 15.95000000003376 m2

Moment Wind = 5.08 Kn-m Shear Wind = 1.88 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.65 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

13/14

$$K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$$

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

fl = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.08 Kn-m Shear Wind = 1.88 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.65 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 25.36 Kn

Uplift on one Pile = 18.02 Kn

Uplift is ok

Last Page