离散数学

数理逻辑部分

Zhou Yuan

Outline

- 命题逻辑
 - 非形式命题演算 (Informal statement calculus)
 - -形式命题演算 (Formal statement calculus)

- 谓词逻辑(一阶逻辑)
 - 非形式谓词演算 (Informal predicate calculus)
 - 形式谓词演算 (Formal predicate calculus)

- 1.1 命题和连接词
 - Example 1.1
 - If Socrates is a man then Socrates is mortal
 - Socrates is a man
 - ∴ Socrates is mortal
 - A→B, A, ∴B

- 1.2 真值函数和真值表
 - NOT: ~p (Negation)
 - AND: p \ q (Conjunction)
 - OR: p∨q (Disjunction)
 - Imply: p→q (Conditional)
 - If and only if: p<->q (Biconditional)
 - Definition 1.2: 命题形式
 - $((p \land q) \rightarrow r)$
 - $(p \rightarrow (\sim ((p \rightarrow q) \lor r)))$

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Definition 1.5
 - ●重言式 (tautology): 恒真的命题形式
 - ●矛盾式 (contradition): 恒假的命题形式
- Example 1.6
 - ●(p∨(~p)) 是重言式
 - •(p^(~p)) 是矛盾式

- Definition 1.7
 - ●若 (A→B) 是重言式,则称 A **逻辑蕴涵** B (logically imply)
 - ●若 (A<->B) 是重言式,则称 A **逻辑等价**于 B (logically equivalent)
- Example 1.8
 - (p∧q) 逻辑蕴涵 p
 - •(~(p∧q))逻辑等价于((~p)∨(~q))
- Proposition 1.9
 - 若 A 和 (A→B) 都是重言式,则 B 也是重言式

- Proposition 1.17 (De Morgan's Law)
 - ((~A₁)∨(~A₂)∨...∨(~A_n)) 逻辑等价于 (~(A₁∧A₂∧...∧A_n))

((~A₁)∧(~A₂)∧...∧(~A_n)) 逻辑等价于
 (~(A₁∨A₂∨...∨A_n))

• 严格证明略

- 1.4 范式 (SGU 182:Open the Brackets)
 - Proposition 1.20(disjunctive normal form)
 - •任何一个命题形式 A 都可以等价为如下形式的析取 (\mathbf{Q}_{i}) 如同 (\mathbf{Q}_{i}) 的形式 (\mathbf{Q}_{i}) 的形式 (\mathbf{Q}_{i}) 的形式 (\mathbf{Q}_{i})

证明: 选取 A 的真值表中使 A 为真的的那些真值赋值,如 (p→q)^(q→p) 中的 p=T,q=T 和 p=F,q=F, 然后写为:

$$((p \land q) \lor ((\sim p) \land (\sim q)))$$

- Proposition 1.21(conjunctive normal form)
 - ●任何一个命题形式 A 都可以等价为如下形式的 合取范式: (Q_{ii} 如同 p 或 ~p 的形式)

$$(\wedge_{i=1}^m(\vee_{j=1}^nQ_{ij}))$$

证明:设 ~A的析取范式为B,如((p∧q)∨(p∧(~q))),则A逻辑等价于~B,如~((p∧q)∨(p∧(~q))),逻辑等价于(((~p)∨(~q))∧((~p)∨q))为A的合取范式。(注意多次使用 De Morgan's Law)

- 1.5 连接词的完备集 (Adequate set)
 - Definition 1.23
 - 若任何真值函数都可以表示为仅含一个集合中的连接词的命题形式,则称为连接词的完备集
 - Proposition 1.24: {~, →} 是连接词的完备集
 - •证明: {~, ^, ∨} 是完备集
 - •(A∧B) 逻辑等价于 (~(A→(~B)))
 - •(A∨B) 逻辑等价于 ((~A)→B)
 - ●因而任何仅包含 {~, ∧, ∨} 的命题形式都可以 表示为仅含 {~, →} 的命题形式

- 问题起源:当命题形式的连接词过多时,我们的直觉并不一定很准确,希望建立一个简单的系统来对应直觉。这也符合我们计算机的思维。
- "如果 A 不正确蕴涵 A 正确那么 A 一定正确"这句话对吗?
- "如果当对任意的B均有A蕴涵B成立时,A一定成立,那么A一定成立"很容易理解吗?

- 2.1 形式系统 L (Definition 2.1)
 - 定义命题逻辑的形式推演系统 L 包含如下内容:
 - -1. 字母表: ~, →, (,), p₁, p₂, p₃, ...
 - -2. 合式公式: 由连接词 ~, → 构成的**有限长**公式
 - 公理模式
 - (L1) $(A \rightarrow (B \rightarrow A))$
 - (L2) $((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 - (L3) $(((\sim A) \rightarrow (\sim B)) \rightarrow (B \rightarrow A))$
 - 推演规则 (MP): 从 (A→B) 和 A 可以得到一个 直接的结论 B

- Definition 2.2(证明的定义)
- L 中的一个*证明*是一个*有限*合式公式的序列: $A_1, A_2, ..., A_n$,对任何 $1 \le i \le n$, A_i 要么是一个公理,要么有证明序列中靠前的两个合适公式 A_j 和 A_k 由 MP 推演而来 (j, k<i)。
- -称之为 L 中 A_n 的一个证明,称 A_n 为 L 的一个 定理,记为 \vdash A_n

- Remark 2.3: 可见 A_j 和 A_k 一定为如同 B 和 (B→A) 的形式

- Definition 2.5 (从公式集 Γ 出发的推演)
- 类似于 Definition 2.2 ,只不过证明序列中的 公式还可以是 Γ 的一员。
- -Example 2.6 { A, $(B\rightarrow (A\rightarrow C))$ } \vdash $(B\rightarrow C)$

```
• (1) A assumption

• (2) (B\rightarrow(A\rightarrowC)) assumption

• (A\rightarrow(B\rightarrowA)) (L1)

• (B\rightarrowA) (1),(3) MP

• ((B\rightarrow(A\rightarrowC))\rightarrow((B\rightarrowA)\rightarrow(B\rightarrowC)) (L2)

• ((B\rightarrowA)\rightarrow(B\rightarrowC)) (2),(5) MP
```

(4),(6) MP

• (B→C)

- Example 2.7 : \vdash (A \rightarrow A) - (1)(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)) (L2) - (2)(A \rightarrow ((A \rightarrow A) \rightarrow A)) (L1) - (3)((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)) (1),(2)MP - (4)(A \rightarrow (A \rightarrow A)) (L1) - (5)(A \rightarrow A) (3),(4)MP

思考:上述过程的证明可不可以转化为 A ► A 呢? 这样就容易多了。

- Proposition 2.8 (演绎定理, The Deduction Theorem)
- -设Γ∪{A} ┣B则Γ ┣A→B
- -[证明]施归纳法于 Γ∪{A} ►B 的证明长度 n
- 归纳奠基: (n = 1)
 - B是公理,则如下可证明 Γ ⊢A→B
 - (1) B (公理)
 - $\bullet \qquad (2) \quad (B \rightarrow (A \rightarrow B)) \qquad (L1)$
 - (3) $(A \rightarrow B)$ (1),(2) MP
 - B 是 「的一员,类似于上面的证明

- 一**归纳阶段**:设 n>1, 定理对一切长度小于 n 的证明序列成立, 现证明对长度为 n 的证明亦正确:
 - •如归纳奠基,亦有 B 为公理, Γ 的一员,和 B 为 A 三 种情况
 - •情况 4: B 由前方两个公式 MP 得来,这两个公式一定 形如 C 和 (C \rightarrow B),由归纳假设: Γ \vdash (A \rightarrow C) 且 Γ \vdash (A \rightarrow (C \rightarrow B)),如下证明 Γ \vdash (A \rightarrow B)
 - (1)...(q) $(A \rightarrow C)$
 - $(q+1)...(k) (A \rightarrow (C \rightarrow B))$
 - (k+1) $(A \rightarrow (C \rightarrow B)) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B))$ (L2)
 - (k+2) $(A \rightarrow C) \rightarrow (A \rightarrow B)$ (k),(k+1)MP
 - (k+3) $(A \rightarrow B)$ (q),(k+2)MP

- Remark: 演绎定理的逆定理是平凡的:

- 若有 Γ ►A→B 则一定有 Γ∪{A} ►A→B
- 同时显然有 Γ∪{A} **-**A
- 使用一次 MP 就可以得到 Γ∪{A} ►B

- Corollary 2.10 $\{(A \rightarrow B), (B \rightarrow C)\}$ ⊢ $(A \rightarrow C)$

• (HS, Hypothetical Syllogism, 假言三段论)

• (1) (A→B)

• (2) (B→C)

• (3) A

• (4) B

• (5) C

assumption

assumption

assumption

(1),(3)MP

(2),(4)MP

• 这就证明了 {(A→B), (B→C), A} ├C 由演绎定理
 不难得 {(A→B), (B→C)} ├(A→C)

• Proposition 2.11 $\vdash (\sim A \rightarrow A) \rightarrow A$

• (10) A

```
• (1) (\sim A \rightarrow A)
                                                                                assumption
• (2) (\sim A \rightarrow (\sim \sim (\sim A \rightarrow A) \rightarrow \sim A))
                                                                                                (L1)
• (3) (\sim \sim (\sim A \rightarrow A) \rightarrow \sim A) \rightarrow (A \rightarrow \sim (\sim A \rightarrow A)) (L3)
                                                                                 (2),(3)HS
• (4) (\sim A \rightarrow (A \rightarrow \sim (\sim A \rightarrow A)))
• (5) (\sim A \rightarrow (A \rightarrow \sim (\sim A \rightarrow A))) \rightarrow
                       ((\sim A \rightarrow A) \rightarrow (\sim A \rightarrow \sim (\sim A \rightarrow A)))
• (6) (\sim A \rightarrow A) \rightarrow (\sim A \rightarrow \sim (\sim A \rightarrow A))
                                                                                 (4),(5)MP
• (7) (\sim A \rightarrow \sim (\sim A \rightarrow A))
                                                                                 (1),(6)MP
• (8) (\sim A \rightarrow \sim (\sim A \rightarrow A)) \rightarrow ((\sim A \rightarrow A) \rightarrow A)
                                                                                                (L3)
• (9) (\sim A \rightarrow A) \rightarrow A
                                                                                 (7),(8)MP
                                                                                  (1),(9)MP
```

- 这就证明了(~A→A) -A , 由演绎定理:
- $\qquad \vdash ((\sim A \rightarrow A) \rightarrow A)$
- 几个 Exercises 见后页
- Remark: 可见在命题逻辑的公理系统内推演并不是一件容易的事情,是否可以证明这个系统的一些性质,如
 - 系统的定理一定是直觉上正确的 (可靠性定理)
 - 直觉上正确的公式一定可以在系统内证明

(完备性定理)

 $-Ex.1 \vdash (\sim \sim A \rightarrow A)$

-Ex.2 \vdash (A \rightarrow ~~A)

 $-Ex.3 \vdash (A \rightarrow B) \rightarrow (\sim B \rightarrow \sim A)$

-Ex.4 {B, \sim C} \vdash ∼(B \rightarrow C)

 $-Ex.5 \vdash \sim B \rightarrow (B \rightarrow C)$

-Ex.6 $\{A\rightarrow B, \sim A\rightarrow B\}$ |-B

- 2.2 完备性定理 (The Adequacy Theorem for L)
 - Proposition 2.14 可靠性定理 (The Soundness Theorem): L 的定理都是重言式
 - -证明思路:
 - •L的三条公理可靠
 - •推演规则(三段论)可靠
 - 由归纳法可知, L的所有定理可靠

- Proposition(Extra): 弱完备性定理,即若A是重言式,则A是L的定理(可以在系统内证明)。
- Remark: 联想我们靠真值表来确定 A 是否为重言式,如果可以将真值表的思想对应为系统内的一个证明序列,问题就迎刃而解了。

- Definition 2.12 真值赋值
- 真值赋值为一个函数 v:{p₁,p₂,p₃,...}→{T, F}
- 任何一个真值赋值 v 可以将定义域扩张至整个 合式公式集合, 只要按照如下规则:
 - \vee (\sim A)=T *iff.* \vee (A)=F
 - V(A→B)=T iff. v(A)=F 或 v(B)=T
- -方便起见,扩张后的真值赋值 v 通常仍记为 v

- Lemma: 设 Σ 是命题变元或其否定形式的集合,对于任何一个真值赋值 V ,令其对应的 Σ 为:
 - 若 $v(p_i) = T 则令 p_i \in \Sigma$, 否则 $\sim p_i \in \Sigma$

 - -证明: 施归纳法于A的结构
 - 归纳奠基: 若 A 为命题变元 p_i, 则显然正确
 - 归纳证明: 根据 A 的构成方法分两种情况:
 - -A 为 (~B)
 - -A 为 (B→C)

- 若 A 为 (B→C),
 - 若 v(A)=F, 则 v(B)=T,v(C)=F, 由归纳假设 ∑ ► B 和 Σ ► (~C)
 由 Ex.4 有 {B, ~C} ► ~(B→C)=~A
 即 Σ ► ~A
 - 若 v(A)=T, 则 v(B)=F 或 v(C)=T, 即
 ∑ ├ (~B) 或 ∑ ├ C
 显然有 ├ C→(B→C) 及 ├ ~B→(B→C)
 (Ex.5)
 因而一定有 ∑ ├ (B→C) 即 ∑ ├ A

- -有了这样一个引理,则可以较容易的证明弱完备性定理:由于A是重言式,那么对任意真值赋值A都为真,再由演绎定理不难得到下述事实(假设A中仅出现 p_1 和 p_2)
 - $\vdash p_1 \rightarrow (p_2 \rightarrow A) \quad \vdash \sim p_1 \rightarrow (p_2 \rightarrow A)$
 - $\vdash p_1 \rightarrow (\sim p_2 \rightarrow A) \vdash \sim p_1 \rightarrow (\sim p_2 \rightarrow A)$
 - ●由 Ex.6 的结论: {~A→B, A→B} ├B 知
 - $\vdash p_2 \rightarrow A$ $\vdash \sim p_2 \rightarrow A$
 - ●再合并一次就得到 ► A
- 由这个思路很容易得到定理的严格证明

- Remark: 可以看出,弱完备性定理的证明是构造性的,因此我们可以通过编写一个程序完成系统内的证明,希望同学们在上机时实践一下。

- Remark: 事实上我们还有另外一种更强大的证明这一命题的方法,且这种方法对于一阶谓词逻辑中的完备性定理的证明有很大的帮助。

- 强完备性定理的证明
 - Definition 2.15 形式系统 L 的一个扩充 (extension) L* 是指在 L 中修改或添加公理, 而 L 的定理仍然是 L* 的定理

- Remark: 显然 L 是 L 的扩充

- Definition 2.16 L的一个扩充 L* 是协调的 (consistent) 若不存在公式 A 使得 A 和 (~A) 都是 L* 的定理

- Proposition 2.17 L 是协调的
- 反设 L 不协调,即存在 A 和 (~A)都是 L 的定理,则由可靠性定理知 A 和 (~A)都是重言式,这显然是不可能的,因而 L 协调

- Proposition 2.18 L* 是协调的当且仅当存在 一个公式 A 不是 L* 的定理
- 若 L* 协调,则任意 A 和 (~A)总有一个不是 L* 的定理
- 若 L* 不协调,则存在 ~A 和 A 同时是 L* 的定理,由 Ex.5: ├~A→(A→B)对任意 B 成立,因而对任意 B 使用两次 MP 可知 B 是 L* 的定理,即不存在 A 不是 L* 的定理

- Proposition 2.19 设 L* 是 L 的一个协调扩充, 若 A 不是 L* 的定理,则将(~A)作为新公理扩充入 L* 得到 L** 仍然是协调的
 - 反设 L** 不协调,即任何公式都是 L** 的定理,如 A
 - 这等价于从 {~A} 出发在 L* 中可以推演出 A
 - 由演绎定理 ,(~A→A) 是 L* 的定理
 - 而由 Proposition2.11: ├(~A→A)→A
 - -由一次 MP 得 A 是 L* 的定理,矛盾
 - 因此 L** 协调

- Definition 2.20
- -设L*是L的一个扩充,若对任意A和(~A),至少有一个是L*的定理,则称L*是极大的(complete)
- Remark: 显然 L 不是极大的

- Proposition 2.21 (Lindenbaum 定理)
- 若 L* 是 L 的一个协调扩充,则一定存在 L* 的一个极大协调的扩充
 - 首先合式公式集合是可数集,因此可以将所有合式公式排成一列 A₀, A₁, A₂, ...
 - •按如下方式得到 L* 的扩充序列 J_0 , J_1 , J_2 , ...
 - $\bullet \Leftrightarrow J_0 = L^*,$
 - 对 n>0, 若 A_{n-1} 是 J_{n-1} 的定理,则令 $J_n=J_{n-1}$ 否则将 ($\sim A_{n-1}$) 作为一条新公理扩充 如 J_{n-1} 得到 J_n

- 首先 J₀ 协调 , 若 J_{n-1} 协调
 - 若 A_{n-1} 是 J_{n-1} 的定理,那么 $J_n=J_{n-1}$ 亦协调
 - 若 A_{n-1} 不是 J_{n-1} 的定理,由 Proposition 2.19,将 ($\sim A_{n-1}$)作为一条新公理扩充入 J_{n-1} 得到 J_n 仍然协调
- -由归纳原理:对有限的n都有 J_n 协调
- -令J为L的一个扩充,其公理集为所有Ji集合的并
- 反若 J 不协调, 在 J 中可推演出 A 和 (~A), 由于证明长度有限, 因而使用到的公理有限, 存在有限 n 使得 J_n 包含了所有需要的公理, 进而 A 和 (~A)

- 一下面证明 J 是极大的:
- 设 A 是任意公式 , 则 A 一定出现在序列 A_1 , A_2 … 中
- 设 A=A_i
- -则如果 A_i 是 J_i 的定理 ,则 A_i 一定是 J 的定理
- 若 A_i 不是 J_i 的定理 ,(~A_i) 是 J_{i+1} 的公理 ,即 (~A_i) 是 J 的定理

- 这样我们就找到了要求的极大协调的 J

- Proposition 2.22(可满足性定理)
- 若 L* 是 L 的协调扩充,则存在一真值赋值 v 使得 v 下 L* 的任何定理都是真的
 - ●不妨令 J 是 L* 的一个极大协调的扩充
 - 对任何 p_i, 若 p_i 是 J 的定理则令 v(p_i)=T, 否则 (~p_i) 一定是 J 的定理, 令 v(p_i)=F
 - •不难利用结构归纳法证明对任意公式 A,A 是 J 的定理当且仅当 v(A)=T(*留作练习*)
 - ●那么若 A 是 L* 的定理,则 A 是 J 的定理,则 v(A)=T

- → Proposition 2.23 完备性定理: 若 A 是重言 式,则 A 是 L 的定理
 - 反设 A 不是 L 的定理,则将 (~A)作为新的公理加入 L 得到 L*,由 Proposition 2.19, L*可满足
- 由 Proposition 2.22, 存在真值赋值 v 使 L* 下任何定理都为真, 那么有 v(~A)=T
- -而A是重言式,一定有 v(A)=T,矛盾,所以A 是L的定理

小结/参考书目

- 这样我们就建立了一个和直觉完全对应的逻辑系统 L, 这对计算机模拟人的思维非常重要!
- 参考书目:Logic for Mathematicians
 A.G. Hamilton
 Cambridge University Press

影印版由清华大学出版社发行

• 对一阶谓词逻辑感兴趣的同学可以继续阅读这本书