

3) Ginen
$$H_4 = H_2$$
, $\Sigma_1 = 1$, $\Sigma_2 = 2$

(a) At β^{-1} for chesnoff bound $\frac{\partial K(\beta)}{\partial \beta} = 0$.

 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(\frac{\beta + 2(1-\beta)}{2^{(1-\beta)}} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$
 $\Rightarrow \frac{\partial}{\partial \beta} \left[\frac{1}{2} \ln \left(2 - \beta \right) - \ln \left(2^{(1-\beta)} \right) \right] = 0$

(b) β^{-1} for Bhattacharya bound, $\beta^{+1} = \frac{1}{2}$.

 $e^{-K(\frac{1}{2})} = \exp \left[-\frac{1}{2} \ln \left(\frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} \right) \right]$
 $= \exp \left[-\frac{1}{2} \ln \left(\frac{1}{2} + \frac{1}{2} \right) \right]$

$$= \exp\left\{-\frac{1}{2}\ln\left(\frac{3}{2\sqrt{2}}\right)\right\} = \exp\left\{\ln\left(\left(\frac{3}{2\sqrt{2}}\right)^{\frac{1}{2}}\right)\right\}$$

$$= \left(\frac{2\sqrt{2}}{3}\right)^{\frac{1}{2}}$$