Problem Statement

Your goal in this problem is to find the last digit of n^{th} Fibonacci number. Recall that Fibonacci numbers

grow exponentially fast. For example,

 F_{200} = 280 571 172 992 510 140 037 611 932 413 038 677 189 525 .

Therefore, a solution like

 $F_{[0]} \leftarrow 0$

 $F_{[1]} \leftarrow 1$

for i from 2 to n:

$$F_{[i]} \leftarrow F_{[i-1]} + F_{[i-2]}$$

 $print(F_{[n]} \mod 10)$

will turn out to be too slow, because as i grows the ith iteration of the loop computes the sum of longer

and longer numbers. Also, for example, F_{1000} does not fit into the standard C++ int type. To overcome

this difficulty, you may want to store in $F_{[i]}$ not the i^{th} Fibonacci number itself, but just its last digit (that

is, $F_i \mod 10$).

Computing the last digit of F_i is easy: it is just the last digit of the sum of the last digits of

 F_{i-1} and F_{i-2} :

 $F_{[i]} \leftarrow (F_{[i-1]} + F_{[i-2]}) \mod 10$

This way, all F[i]'s are just digits, so they fit perfectly into any standard integer type, and computing a

sum

of $F_{[i-1]}$ and $F_{[i-2]}$ is performed very quickly.

Problem Description

Task. Given an integer n, find the last digit of the nth Fibonacci number Fn (that is, $Fn \mod 10$).

Input Format. The input consists of a single integer n.

Constraint:

 $10^5 \le n \le 10^8$.

Output Format: Output the last digit of F_n .

Feel free to use any methods or algorithms in achieving the task and also the use any python library is

allowed. Happy Coding ©