Question 1

4.Given a graph G = (V, E), and a natural number k, we can define a relation $\stackrel{G,k}{\longrightarrow}$ on pairs of vertices of G as follows. If $x,y \in V$, we say that $x \stackrel{G,k}{\longrightarrow} y$ if there exist k mutually edge-disjoint paths from x to y in G.

Is it true that for every G and every $k \ge 0$, the relation $\stackrel{G,k}{\longrightarrow}$ is transitive? That is, is it always the case that if $x \stackrel{G,k}{\longrightarrow} y$ and $y \stackrel{G,k}{\longrightarrow} z$, then we have $x \stackrel{G,k}{\longrightarrow} z$? Give a proof or a counterexample.

It is true. We give the proof as follow.

Figure 1.1 Instance

Suppose that we there are