EDWARD O'CALLAGHAN

Contents

1.	Prelude	2
2.	Introduction	2
3.	Groups	2
3.1.	Group Homomorphisms	3
3.2.	Properties of homomorphisms	4
3.3.	Cosets	4
3.4.	Factor (or Quotient) groups	4
3.5.	Non-commutative Groups	5
3.6.	Group actions	5
3.7.	Permutations	5
3.8.	Permutation parity	6
3.9.	Fields	6
4.	Exact sequence	7
5.	First Isomorphism Theorem	7
6.	Characters	8

1. Prelude

TODO: Fix notation here...

2. Introduction

In this course we build up the rudiments of some important notions of algebraic structures. That is, a algebraic structure of an arbitrary set, or carrier set, coupled with various finitary operations defined on it. ..

3. Groups

Definition 3.1 (Binary operation). A binary operation on a set \mathcal{X} is a map $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$. **N.B.** that the binary operation is *closed*.

Definition 3.2 (Magma). A **magma** is a set \mathcal{M} equipped with a binary operation \circ . We denote the magma as the tuple pair (\mathcal{M}, \circ) .

Definition 3.3 (Semi-group). A **semi-group** is a set \mathcal{G} equipped with binary operation that is associative. Hence, a semi-group is a magma where the operation is associative; That is, given any $x, y, z \in \mathcal{G}$ then $x \circ (y \circ z) = (x \circ y) \circ z \in \mathcal{G}$. We denote the semi-group as the tuple pair (\mathcal{G}, \circ) , not to be confused with a magma from context.

Definition 3.4 (Monoid). A **semi-group with identity** or, **monoid** for short, is a semi-group (\mathcal{G}, \circ) with a unique identity element $e \in \mathcal{G}$ such that $x \circ e = x = e \circ x \, \forall x \in \mathcal{G}$

Proof: unquieness of identity. Assume some other identity $e^{'}$ exists in \mathcal{G} then, $e^{'}=e^{'}\circ e=e\circ e^{'}=e$. \square

Example 3.5. Given $\mathcal{G} = \mathbb{N}$ with the binary law of composition \circ to be defined as arithmetic addition +. Then, $(\mathbb{N}, +)$ forms a semi-group with identity 0. Verify the axioms.

Definition 3.6 (Group). A **group** is a monoid where every element has an inverse. An abelian group is a group that is commutative.

Example 3.7. Given $\mathcal{G} = \mathbb{Z}$ with the binary law of composition \circ to be defined as arithmetic addition +. Then, $(\mathbb{Z}, +)$ forms a semi-group with identity 0. Verify the axioms.

Question 3.8. Why does the set of naturals \mathbb{N} not form a group under multiplication, however does form a monoid?

Definition 3.9 (Subgroup). A group \mathcal{H} is a **subgroup** of a group \mathcal{G} if the restriction of the binary operation $\circ: \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ is a group operation on \mathcal{H} . In particular, A non-empty subset \mathcal{H} of a group \mathcal{G} is a subgroup of \mathcal{G} if and only if $h_1 \circ h_2 \in \mathcal{H}$ whenever $h_1, h_2 \in \mathcal{H}$, and $h^{-1} \in \mathcal{H}$ whenever $h \in \mathcal{H}$. We denote the subgroup by $\mathcal{H} \leq \mathcal{G}$.

Theorem 3.10 (Smallest subgroup). If \mathcal{A} is a subset of a group \mathcal{G} , there is a smallest subgroup $Gp(\mathcal{A})$ of \mathcal{G} which contains \mathcal{A} , the subgroup generated by \mathcal{A} .

Example 3.11. Suppose $\mathcal{A} = \{g\}$ then $\operatorname{Gp}(\mathcal{A}) = \operatorname{Gp}(g)$ and so $\operatorname{Gp}(g) = \{g^n : n \in \mathbb{Z}\}$, where $g^0 = e, g^n$ is the product of n copies of g where n > 0, and g^n is the product of |n| copies of g^{-1} when n < 0.

Definition 3.12 (Cyclic group). A group \mathcal{G} is *cyclic* if $\mathcal{G} = \operatorname{Gp}(g)$ for some $g \in \mathcal{G}$. Such a element is called a *generator* of the group.

Definition 3.13 (Group order). If a group \mathcal{G} has finitely many elements, then the *order* $o(\mathcal{G})$ is the number of elements of \mathcal{G} .

Definition 3.14 (Normal subgroup). A subgroup \mathcal{H} of a group \mathcal{G} is a **normal**, or *self-conjugate*, if $g^{-1}hg \in \mathcal{H} \, \forall g \in \mathcal{G}$ and $h \in \mathcal{H}$. We denote the normal $\mathcal{H} \subseteq \mathcal{G}$.

Definition 3.15 (Simple group). A group \mathcal{G} is **simple** if it has no normal subgroups other than $\{e\}$ and \mathcal{G} .

3.1. **Group Homomorphisms.** Homomorphisms are structure preserving mappings. In group homomorphisms we preserve the structure of the binary operation \circ as follows;

Definition 3.16 (Homomorphism). Let \mathcal{G} and \mathcal{H} be two groups. Then a mapping

$$\varphi:\mathcal{G}\to\mathcal{H}$$

is called a homomorphism if

$$\varphi(x \circ y) = \varphi(x) \circ \varphi(y) : x, y \in \mathcal{G}$$

It follows that, for some $g \in \mathcal{G}$ we have,

$$\varphi(e_g) = \varphi(g \circ g^{-1})$$

$$= \varphi(g) \circ \varphi(g^{-1})$$

$$= \varphi(g) \circ (\varphi(g))^{-1}$$

$$= e_h \in \mathcal{H}.$$

That is the identity e has been preserved. Hence, it does not matter if we compose in \mathcal{G} and map to \mathcal{H} or take two elements in \mathcal{G} then compose the mapped elements in \mathcal{H} , since the group structure has been preserved.

How much information about the elements inside the structure is, however, another quality to consider. Hence we fix some terminology here.

- A homomorphism that is injective is called monomorphic.
- A homomorphism that is surjective is called epimorphic.

• A homomorphism that is bijective is called isomorphic.

Thus we have the following definitions by considering a group homomorphism $\varphi: \mathcal{G} \to \mathcal{H}$.

Definition 3.17 (Monomorphic). φ is **monomorphic** if for $\varphi(x) = \varphi(y) \implies x = y \, \forall x, y \in \mathcal{G}$.

Definition 3.18 (Epimorphic). φ is **epimorphic** if $\forall h \in \mathcal{H} \exists g \in \mathcal{G}$ so that $\varphi(g) = h$.

Definition 3.19 (Isomorphic). φ is **isomorphic** if φ is **both** mono- and epic- morphic.

Some special cases are sometimes of particular interest and we shall outline them now.

Definition 3.20 (Endomorphic). A monomorphism $\mathcal{G} \to \mathcal{G}$ for a group \mathcal{G} is called an *endomorphism* of \mathcal{G} .

Definition 3.21 (Automorphic). A isomorphism $\mathcal{G} \to \mathcal{G}$ for a group \mathcal{G} is called an *automorphism* of \mathcal{G} .

Remark. The set $Aut(\mathcal{G})$ of automorphisms of \mathcal{G} forms a group, when composition of mappings is taken as the group law of composition.

3.2. Properties of homomorphisms.

Definition 3.22 (kernel). If $\varphi : \mathcal{G} \to \mathcal{H}$ is a group homomorphism, then the *kernel* is the set $\ker(\varphi) = \{g \in \mathcal{G} : \varphi(g) = e_h \in \mathcal{H}\}.$

If $\varphi: \mathcal{G} \to \mathcal{H}$ is a group homomorphism, then observe that $\ker(\varphi)$ is a normal subgroup of of \mathcal{G} .

3.3. Cosets. Let \mathcal{G} be a group and \mathcal{H} be a subgroup of \mathcal{G} with $g \in \mathcal{G} : g \notin \mathcal{H}$, then

Definition 3.23 (Left Coset). $gH = \{gh : h \in H\}$ is a **left coset of** \mathcal{H} in \mathcal{G} .

Definition 3.24 (Right Coset). $Hg = \{hg : h \in H\}$ is a **right coset of** \mathcal{H} in \mathcal{G} .

Definition 3.25 (Normal Subgroup). If gH = Hg then \mathcal{H} is a **normal** subgroup of \mathcal{G} , denoted by $\mathcal{H} \triangleleft \mathcal{G}$.

3.4. Factor (or Quotient) groups. Let \mathcal{G} be a commutative group and consider a subgroup \mathcal{H} . Then \mathcal{H} determines an equivalence relation in \mathcal{G} given by

$$x \sim x' \text{ iff } x - x' \in \mathcal{H}.$$

..

3.5. **Non-commutative Groups.** A common class of non-commutative groups are transformation groups. Note:

Definition 3.26 (Transformation). A bijective map $\varphi: X \to X$ is called a **transformation** of X. Note. The most trivial case is the *identity map* id_X by $id_X(x) = x$, $\forall x \in X$.

Hence, there exists a inverse φ^{-1} of φ such that $\varphi^{-1} \circ \varphi = id_X = \varphi \circ \varphi^{-1}$. Now, take two transformations of X, φ and ψ , and let the product $\varphi \circ \psi$ be well defined. Then the set of all transformations of X form the group **Transf(X)**. Since, given $\varphi, \psi, \phi \in Transf(X)$ then we have associativity, $\varphi \circ (\psi \circ \phi) = (\varphi \circ \psi) \circ \phi$. We have identity $e = id_X \in Transf(X)$ and so, inverses $\forall \varphi \in Transf(X) \exists ! \varphi^{-1} : \varphi \circ \varphi^{-1} = e$. Closure follows from the composition of two transformations φ and ψ , since $(\varphi \circ \psi)^{-1} = \psi^{-1} \circ \varphi^{-1}$.

A transformation group is a type of group action which describes symmetries of objects. More abstractly, since a group \mathcal{G} is a category with a single object in which every morphism is bijective. Then, a group action is a *forgetful functor* \mathcal{F} from the group \mathcal{G} in the category **Grp** to the set category **Set** that is, $\mathcal{F}: \mathcal{G} \to \mathbf{Set}$.

3.6. **Group actions.** For any mathematical object (e.g. sets, groups, vector spaces) X an isomorphism of X is a symmetry of X. The set of all isomorphisms of X, or symmetries of X, form a group called the symmetry group of X, denoted Sym(X). More formally;

Definition 3.27 (Group action). An action of a group \mathcal{G} on a mathematical object X is a mapping $\mathcal{G} \times X \to X$, defined by $(g, x) \mapsto g.x$ satisfying:

- $e.x = x \, \forall x \in X$ and
- $(gh).x = g.(h.x) \forall g, h \in \mathcal{G}, x \in X.$

That is, we have the (*left*) \mathcal{G} -action on X and denote this by $\mathcal{G} \curvearrowright X$.

Notice that we may study properties of the symmetries of some mathematical object X without reference to the structure of X in particular.

- 3.7. **Permutations.** Take a finite set X with |X| = n, then the transformations of X are called **permutations** of the elements of X. In particular, the group of permutations of $X = \{1, 2, \dots, n\}$ is a **symmetric group**, denoted S_n , with **order** $|S_n| = n!$. Thus, by taking any subgroup of S_n we have a **permutation group**. Also note that, for finite sets, *permutation* and *bijective maps* refer to the same operation, namely rearrangement of elements of X. Another way is to consider, a group \mathcal{G} and set X. Then a group action is defined as a group homomorphism φ from \mathcal{G} to the symmetric group of X. That is, the action $\varphi : \mathcal{G} \to S_n(X)$, assigns a permutation of X to each element of the group \mathcal{G} in the following way:
 - From the identity element $e \in \mathcal{G}$ to the identity transformation id_X of X, that is, $\varphi : e \to id_X$;

• A product of group homomorphisms $\varphi \circ \psi \in \mathcal{G}$ is then the composite of permutations given by φ and ψ in X.

Given that each element of \mathcal{G} is represented as a permutation. Then a group action can also be consider as a permutation representation.

A permutation $\sigma \in S_n$ can be written,

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \text{ where } a_1 = \sigma(1), a_2 = \sigma(2), \cdots.$$

The identity permutation $id_n \in S_n$ is simply,

$$id_n = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

Since $|S_n| = n!$ then the total number of ways n elements maybe permuted is n!.

Take any two permutations $\sigma, \pi \in S_n$ then composition is well defined as **functional composition** as follows.

Given,

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \text{ and } \pi = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

then,

$$\pi \circ \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(a_1) & \pi(a_2) & \cdots & \pi(a_n) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & \cdots & n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

A inverse of any permutation $\sigma \in S_n$ is given by,

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}^{-1} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

3.8. **Permutation parity.** Consider the algebraic structure:

$$\triangle_n(x_1,\ldots,x_n) = \prod_{i< j} (x_i - x_j)$$

TODO..

3.9. Fields. We now may build higher order algebraic structures using the notion of a group.

Definition 3.28 (Field). A field \mathbb{F} is a set together with two binary operations, addition and multiplication, such that:

- addition forms an abelian group,
- multiplication forms a abelian quasi-group, i.e. a commutative multiplicative group on the set $\mathbb{F} \{0\}$,

coupled together with a law of distribution between the two binary operations.

4. Exact sequence

An **exact sequence** may either be a finite or infinite sequence of objects and morphisms between them. Such a sequence is constructed so that the image of one morphism equals the kernel of the next.

In particular;

Definition 4.1 (Exact Sequence). Consider the sequence of n group homomorphism between n+1 groups in the following way:

$$\mathcal{G}_0 \xrightarrow{\varphi_1} \mathcal{G}_1 \xrightarrow{\varphi_2} \mathcal{G}_2 \xrightarrow{\varphi_3} \dots \xrightarrow{\varphi_n} \mathcal{G}_n$$

Then the sequence is said to be exact if,

$$\ker(\varphi_{k+1}) = \operatorname{im}(\varphi_k)$$

for every $k \in \{1 \dots n\}$. For n = 3 the sequence is said to be a **short exact sequence**.

Example 4.2. Suppose we have $\mathcal{K} \subseteq \mathcal{G}$ and that $q: \mathcal{G} \to \mathcal{G}/\mathcal{K}$ is the quotient mapping. Then,

$$1 \longrightarrow \mathcal{K} \stackrel{\subseteq}{\longrightarrow} \mathcal{G} \stackrel{q}{\longrightarrow} \mathcal{G}/\mathcal{K} \longrightarrow 1$$

is a short exact sequence.

5. First Isomorphism Theorem

Theorem 5.1. Let \mathcal{G} and \mathcal{H} , and let $\varphi : \mathcal{G} \to \mathcal{H}$ be a group homomorphism. Then:

- The kernel of φ is a normal subgroup of \mathcal{G} ; $\ker(\varphi) \leq \mathcal{G}$,
- The image of φ is a subgroup of \mathcal{H} ; $\operatorname{im}(\varphi) \leq \mathcal{H}$, and
- The image of φ is also isomorphic to the factor group $\mathcal{G}/\ker(\varphi)$; $\operatorname{im}(\varphi) \cong \mathcal{G}/\ker(\varphi)$.

In particular, if φ is epimorphic then $\mathcal{H} \cong \mathcal{G}/\ker(\varphi)$.

We may represent these fundamental relations in the following commutative diagram.

Notice the *exact sequence* that runs from the lower left to the upper right of the commutative diagram.

6. Characters

A group character is a group homomorphism, $\chi: \mathcal{G} \to \mathbb{C}^{\times}$, from a finite abelian group to the multiplicative group of nonzero complex numbers. In particular;

Definition 6.1 (Character). Let \mathcal{G} be a finite abelian group of order n, written additively. A character of \mathcal{G} is a group homomorphism, $\chi: \mathcal{G} \to \mathbb{C}^{\times}$, of \mathcal{G} such that:

$$\chi(g_1 + g_2) = \chi(g_1)\chi(g_2) : g_1, g_2 \in \mathcal{G}.$$

Lemma 6.2.

$$\chi(g)^n = \chi(ng)$$
$$= \chi(0) = 1 : g \in \mathcal{G}.$$

Hence the values of χ are the n^{th} roots of unity.

Lemma 6.3.

$$\chi(-g) = \chi(g)^{-1}$$
$$= \overline{\chi(g)}$$

where the bar denotes the complex conjugation.

Definition 6.4 (Principle Character). The *principle character*, denoted by χ_0 , is defined by

$$\chi_0(g) \doteq 1 : g \in \mathcal{G}.$$

Proposition 6.5. For any non-principle character χ of \mathcal{G} ,

$$\sum_{g\in\mathcal{G}}\chi(g)=0.$$

Proof. Let $h \in \mathcal{G}: \chi(h) \neq 1$ and let $S = \sum_{g \in \mathcal{G}} \chi(g)$. Then,

$$\chi(h) \cdot S = \chi(h) \sum_{g \in \mathcal{G}} \chi(g)$$

$$= \sum_{g \in \mathcal{G}} \chi(h) \chi(g)$$

$$= \sum_{g \in \mathcal{G}} \chi(g+h)$$

$$= S$$

Hence it follows that,

$$\chi(h) \cdot S = S$$
$$(\chi(h) - 1) \cdot S = 0$$

and since $\chi(h) \neq 1$ then,

$$\Rightarrow S = 0.$$

Corollary (First orthogonality relation for characters). Let χ and ψ be two characters of \mathcal{G} . Then

$$\sum_{g \in \mathcal{G}} \overline{\chi(g)} \psi(g) = \begin{cases} n & \text{if } \chi = \psi, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Consider the two cases.

i.) For when $\chi = \psi$ it is trivially so, by that,

$$\overline{\chi(g)} = \chi(g)^{-1}$$

$$\Rightarrow \overline{\chi(g)}\chi(g) = 1$$
 (for each $g \in \mathcal{G}$)

and that $|\mathcal{G}| = n$.

ii.) If $\chi \neq \psi$ then $\overline{\chi}\psi$ is a non-principle character and so $\overline{\chi(g)}\psi(g) = 0$ for each $g \in \mathcal{G}$.

Remark. As observed in the last proof, the point wise product of the characters χ and ψ is again a character:

$$(\chi\psi)(g) \doteq \chi(g)\psi(g).$$

Problem 6.6. Let $\hat{\mathcal{G}}$ denote the set of characters. Check that $\hat{\mathcal{G}}$ forms an abelian group under the operation defined by $(\chi\psi)(g) \doteq \chi(g)\psi(g)$ for every $g \in \mathcal{G}$. We call $\hat{\mathcal{G}}$ the dual group of \mathcal{G} .

Proposition 6.7. Let ω be a primitive n^{th} root of unity. Then the map $\chi_j : \mathbb{Z}_n \to \mathbb{C}^{\times}$ defined by $\chi_j(k) = \omega^{kj} : k \in \mathbb{Z}_n$ is a character of \mathbb{Z}_n for every $j \in \mathbb{Z}$. Moreover,

- (1) $\chi_i = \chi_j \Leftrightarrow i \equiv j \pmod{n};$
- (2) $\chi_j = \chi_1^j$;
- (3) $\hat{\mathbb{Z}}_n = \{\chi_0, \dots, \chi_{n-1}\};$
- (4) Consequently, $\hat{\mathbb{Z}}_n = \mathbb{Z}_n$.

Proof. TODO..

Proposition 6.8. If G is a direct sum, $G = H_1 \oplus H_2$, and $\psi_i : H_i \to \mathbb{C}^\times$ is a character of H_i , with $i \in \{1, 2\}$, then $\chi = \psi_1 \oplus \psi_2$, defined by

$$\chi(h_1, h_2) \doteq \psi_1(h_1) \cdot \psi_2(h_2),$$

is a character of G. Moreover, all characters of G are of this form. Consequently,

$$\hat{\mathcal{G}} = \hat{H_1} \oplus \hat{H_2}$$
.

Proof. TODO..

Corollary.

$$\hat{\mathcal{G}} = \mathcal{G}$$
.

Proof. TODO..