Rational numbers

Andrew Taylor

March 12 2022

Definition 1. Let A and B be sets. The Cartesian product of A and B, denoted $A \times B$, is the set

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Definition 2. Let X be a set. A relation R on X is a subset of $X \times X$.

If $(a,b) \in R$, we say "a is related to b", and write $a \sim b$.

Definition 3. Let X be a set. An equivalence relation R on X is a relation such that

- 1. For all $a \in X$, $(a, a) \in R$
- 2. For all $a, b \in X$, if $(a, b) \in R$, then $(b, a) \in R$
- 3. For all $a, b, c \in X$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$

If $(a,b) \in R$, we say "a is equivalent to b", and write $a \sim b$.

Definition 4. Let X be a set and let R be an equivalence relation on X. Let $a \in X$. The equivalence class of a, denoted C(a), is defined by

$$C(a) = \{b \in X \mid b \sim a\}$$

Definition 5. Let $F = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } b \neq 0\}$. Let $(a,b),(c,d) \in X$.

We define the relation \sim on F as $(a,b) \sim (c,d)$ if ad = bc.

Theorem 1. The relation \sim is an equivalence relation on F.

Proof. Let $(a,b) \in F$. We know that $(a,b) \sim (a,b)$ because a*b=b*a.

Let $(a,b), (c,d) \in F$ such that $(a,b) \sim (c,d)$. By definition, ad = bc. Remember that = is an equivalence relation on the integers. By the symmetric property, bc = ad. Since multiplication is commutative, we can write, cb = da. This is the equation we want. The equation cb = da tells us that $(c,d) \sim (a,b)$.

Let $(a,b),(c,d),(e,f) \in F$ such that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$.

Then ad = bc (1) and cf = de (2).

We can multiply both sides of equation (1) by f.

$$adf = bcf$$

Now we can substitute de for cf in the above equation.

$$adf = bde$$

We know that d is nonzero by definition, so we can divide both sides by d.

$$af = be$$

Thus $(a,b) \sim (e,f)$.

The relation \sim satisfies the reflexive property, the symmetric property, and the transitive property. Therefore \sim is an equivalence relation on F.

Definition 6. We define the rational numbers \mathbb{Q} as the set of equivalence classes in F determined by the equivalence relation \sim .

$$\mathbb{Q} = \{ C((a,b)) \mid (a,b) \in F \}$$