Лабораторная работа 3.4.5. Динамический гистерезис.

Норкин Дмитрий

Цель работы

Изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Теория

Чувствительность осциллографа по оси
$$x$$
: $m_x=\frac{2R_0\sqrt{2}I_{eff}}{2x}$; по оси y : $m_y=\frac{2\sqrt{2}U_{eff}}{2y}$. Постоянная времени RC-цепочки $\tau=RC=\frac{U_{in}}{\Omega U_{out}}$, где $\Omega=50$ Гц. Напряженность магнитного поля $H=\frac{IN_0}{2\pi R}$, где $I=\sqrt{2}I_{eff}$ Индукция магнитного поля находится с помощью интегрирующей цепочки: $B=\frac{R_iC_i}{SN_i}U_{out}$

Измерения

$$R_i=20$$
 кОм; $C_i=20$ мк Φ ; $R_0=0.3$ Ом
$$K_x=50 \text{ мB/дел} \ K_x=100 \text{ мB/дел} \ M_x=49 \text{ мB/дел} \ M_x=98 \text{ мB/дел} \ K_y=20 \text{ мB/дел} \ M_y=18 \text{ мB/дел} \ M_y=100 \text{ мB/дел} \ M_y=97 \text{ мB/дел}$$

Таблица 1: Чувствительность осей.

Время RC-цепочки:

$$\tau_{th} = R_i C_i = 0.400 \text{ c}; \quad \tau_{exp} = \frac{U_{in}}{2\pi\Omega U_{out}} = 0.401 \text{ c}$$

Как можно видеть, $\tau \gg \Omega^{-1} \Rightarrow$ вывод параметров интегрирующей цепочки справедлив.

N_0	35 витков	N_0	40 витков	N_0	40 витков
N_U	220 витков	N_U	400 витков	N_U	400 витков
S	3.8 cm^2	S	3.0 cm^2	S	$1.2~\mathrm{cm}^2$
$2\pi R$	24 см	$2\pi R$	25 см	$2\pi R$	10 см
m_x	49 мВ/дел	m_x	49 мВ/дел	m_x	98 мВ/дел
m_y	97 мВ/дел	m_y	18 мВ/дел	m_y	97 мВ/дел
$H^{"}$	23.8 ≜ /дел	$H^{"}$	26.1 ≜/дел	$H^{"}$	131 <u>А</u> /дел
B	0.46 Тл/дел	B	0.06 Тл/дел	B	0.81 Тл/дел
B_s	1.07 Тл	B_s	0.16 Тл	B_s	2.10 Тл
H_c	28.6 А/м	H_c	5.22 А/м	H_c	91.7 А/м
$\mu_{ m диф}$	80000	$\mu_{ exttt{диф}}$	5000	$\mu_{ extsf{диф}}$	8000
	'		'	· · · · -	'

Таблица 2: Fe-Ni

Таблица 3: Феррит

Таблица 4: Fe-Si