1 Probability

1.1 Combinatorics

Repetition, ordered: n^k

No repetiton, Ordered: permutation of length k of n distinct object, $\frac{n!}{(n-k)!} = n(n-k)$ 1)...(n-k+1)

Repetition, not ordered : $\binom{n-1+k}{k}$, number of vectors of $n_1 + \ldots + n_k = n$, $n_i >= 0 \,\forall i$ No repetition, not ordered: combination of k objects from set of n distinct ones,

 $C_n^k = \binom{n}{k} = \frac{n!}{(n-k)!k!}$

Permutations : ordered set, given $n = \sum_{i=1}^r n_i$ Multiple conditioning : $P(\bigcap_{i=1}^n A_i) =$ objects of r different types: $\frac{n!}{n_1!n_2!...n_r!}$ Combinations: non ordered selection, ways of

distributing n distinct objects in r distinct groups of size $n_1, \ldots, n_r : \frac{n!}{n_1! n_2! \ldots n_r!}$

Properties: $\binom{n}{k} = \binom{n}{n-k}, \binom{n+1}{k} =$ $\binom{n}{r-1} + \binom{n}{r}, \sum_{j=0}^{r} \binom{m}{j} \binom{n}{r-j} = \binom{m+n}{r},$ $(a + b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r},$ $(1-x)^{-n} = \sum_{j=0}^{\infty} {n+j-1 \choose j} x^j (|x| < 1),$ $\lim_{n\to\infty} n^{-r} \binom{n}{r} = \frac{1}{r!} \ (r \in \mathbb{N})$

Partition int.: number of vectors of $n_1 + \ldots +$ $n_r = n, n_i > 0 \,\forall i : \binom{n-1}{r-1}$

Geometric series : $\sum_{i=0}^{n} a\theta^{i} = \theta \neq 1$: $a^{\frac{1-\theta^{n+1}}{1-\theta}}, \theta = 1: a(n+1);$ $|\theta| < 1: \sum_{i=0}^{\infty} \theta^{i} = \frac{1}{1-\theta}$

Exponential series: $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

1.2 Probability Spaces

Probability space : (Ω, \mathcal{F}, P) , Ω sample space (universe) of all possible results ω (non-empty), Bernoulli/Indicator r.v. : binary 0 or 1 \mathcal{F} event space (non-empty) : events (subsets of Ω), $P: \mathcal{F} \to [0,1]$ probability distribution Equiprobable: finite Ω , $\forall \omega \in \Omega P(\omega) = \frac{1}{|\Omega|}$,

 $\forall A \subset \Omega P(A) = \frac{|A|}{|\Omega|}$

Event space : $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, $\{A_i\}_{i=1}^{\infty}$ $\in \mathbb{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}, \Omega \in \mathcal{F}, \emptyset \in \mathcal{F}$ Probability distribution: $A \in \mathcal{F} \Rightarrow 0 \leq$

 $P(A) < 1, P(\Omega) = 1, P \text{ of pairwise}$ disjoint events = $\sum_{i=1}^{n} P(A_i)$, continuous set function

 $\mathsf{Limits}: A_1 \subset A_2 \subset \ldots \Rightarrow \lim_{n \to \infty} P(A_n)$ $= P(\bigcup_{i=1}^{\infty} A_i);$ $A_1 \supset A_2 \supset \ldots \Rightarrow \lim_{n \to \infty} P(A_n) =$

 $P(\bigcap_{i=1}^{\infty} P(A_i))$ Properties: $P(\emptyset) = 0$, $P(A^c) = 1 - P(A)$, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $A \subset B \Rightarrow P(A) < P(B) \& P(B \setminus A) =$

 $P(B) - P(A), P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$ Inclusion-exclusion: $P(\bigcup_{i=1}^n A_i) = \sum_{r=1}^n$ $(-1)^{r+1}\sum_{1\leq i_1<\dots< i_r\leq n}P(A_i\cap\dots\cap A_{i_r})$ Gamma func. : $\alpha>0$, $\Gamma(\alpha)=$

Union bound : $P(\bigcup_{i=1}^{n+1} A_i) \leq \sum_{i=1}^{n+1} P(A_i)$

1.3 Conditional Probability

Conditional probability: A given B,

 $P(A|B)P(B) = P(A \cap B),$ $P(A) = P(A \cap B) + P(A \cap B)$ B^c)= $P(A|B)P(B) + P(A|B^c)P(B^c)$

Distributions: $B \in \mathcal{F}$ s.t. P(B) > 0, Q(A) = $P(A|B), (\Omega, \mathcal{F}, Q)$ is probability space Total probability TP: $\{B_i\}_{i=1}^{\infty}$ $(B_i \cap B_{j\neq i} = \emptyset)$, $A \subset \bigcup_{i=1}^{\infty} B_i, P(A) = \sum_{i=1}^{\infty} P(A \cap B_i)$ Bayes: TP cond.s, P(A) > 0; $P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{\infty} P(A|B_i)P(B_i)},$ P(A|B)P(B) = P(B|A)P(A)

 $P(A_1) \prod_{i=2}^{n} P(A_i | \bigcap_{i=1}^{i-1} A_i)$

1.4 Independence

 $A \perp \!\!\!\perp B \Leftrightarrow P(A|B) = P(A) \Leftrightarrow P(A \cap B) =$ P(A)P(B)

Mutually: $P(\bigcap_E A_i) = \prod_E P(A_i)$ Pairwise: $P(A_{1 \le i} \cap A_{i \le j \le n}) = P(A_i)P(A_j)$ Conditional: $P(\overline{\bigcap}_E A_i | \overline{B}) = \prod_E P(A_i | B)$

1.4.1 Circuits

Parallel: $P_P(S) = P(\bigcap_{i=1}^n F_i) = \prod_{i=1}^n p_i$ Series: $P_S(S) = P(\bigcup_{i=1}^n F_i) =$ $1 - \prod_{i=1}^{n} (1 - p_i)$ $\exists p_+, p_-, 1 > p_+ > p_i > p_- > 0, n \to \infty \Rightarrow$ $P_P(S) \to 0, P_S(S) \to 1$

2 Random Variables

Random variable r.v. : $X: \Omega \to \mathbb{R}$ Support: $D_X = \{x \in \mathbb{R} : \exists \omega \in \Omega \text{ s.t. } X(\omega) = \emptyset \}$ x}, D_X countable $\Rightarrow X$ discrete r.v.

Associate prob. : $P(X \in S) = P(\{x \in \Omega : x \in S\})$ $X(\omega) \in S$, $A_x = \{\omega \in \Omega : X(\omega) = x\},$ must have $\forall x A_x \in \mathcal{F}$ for P(X = x)

Probability Mass Function PMF: X discrete, $f_X(x) = P(X = x) = P(A_x), x \in \mathbb{R};$ $f_X(x) \ge 0, x \in D_X f_X(x) \ge 0 \Leftrightarrow D_X$ is support of f_X , $\sum_{x \in D_x} f_X(x) = 1$; $f_X \equiv f, D_X \equiv D$

Binomial r.v.: PMF $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$; $x \in [0, n] \subset \mathbb{N}, n \in \mathbb{N}, p \in [0, 1] \subset \mathbb{R};$ $X \sim B(n, p)$, n denominator, p prob. of success, n=1: Bernoulli var.

(nb. success with n peeks) Geometric distr.: PMF $f_X(x) = p(1-p)^{x-1}$; $x \in \mathbb{N}^*, p \in [0,1] \subset \mathbb{R}; X \sim \text{Geom}(p),$ p: prob. of success, (nb. trials till success)

Memorylessness: $X \sim \text{Geom}(p) \Rightarrow P(X > 1)$ n + m|X > m) = P(X > n)

Negative binomial distr. : PMF $f_X(x) =$ $\binom{x-1}{n-1} p^n (1-p)^{x-n}$;

 $x \in [n:) \subset \mathbb{N}, p \in [0,1] \subset \mathbb{R}$ $X \sim \text{NegBin}(n, p), n = 1: X \sim \text{Geom}(p), B \in \mathcal{F} \text{ s.t. } P(B) > 0, f_X(x \mid B) = P(X = x \mid B)$ (nb. trials till n successes)

 $\int_{0}^{\infty} u^{\alpha-1} e^{-u} du; \Gamma(1) = 1, \Gamma(\alpha+1) = 1$ $\alpha\Gamma(\alpha), \Gamma(n) = (n-1)!, \Gamma(1/2) = \sqrt{\pi}$ Hypergeometric distr.: P(X = x) =

 $\frac{\binom{w}{x}\binom{b}{m-x}}{\binom{w+b}{w}}, X \sim \text{HyperGeom}(w,b,m);$ $x \in [\max(0, m - b), \min(w, m)] \subset \mathbb{N}$

(nb. w found with m take in $\{w+b\}$) Discrete uniform: X discrete uniform, PMF

 $f_X(x) = \frac{1}{b-a+1}$; $x \in [a,b] \subset \mathbb{N}$, a < a $b, a, b \in \mathbb{Z}, U \sim DU(a, b), a$: start, b: end, (res from uniform pick in [a, b])

Poisson distr.: PMF $f_X(x) = \frac{\lambda^x}{-1} e^{-\lambda}$; $x \in \mathbb{N}, \lambda > 0, X \sim \operatorname{Pois}(\lambda), \lambda \operatorname{mean} \operatorname{nb}.$ per interval, (nb. of events during time)

Cumulative distr. func. CDF: $F_X(x) =$ $P(X \leq x), x \in \mathbb{R}; X \text{ discrete}: F_X(x) =$ $\sum_{x_i \in D_X, x_i \le x} P(X = x_i)$

CDF properties: $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to\infty} F_X(x) = 1$, F_X non-decreasing, $\lim_{x\to 0^+} F_X(x+t) = F_X(x), P(X>x) =$ Probability density func. : X is continuous $1 - F_X(x), x < y \Rightarrow P(x < X < y) =$ $F_X(y) - F_X(x)$

CDF descrete: X discrete, f(x) = F(X) - $\lim_{y\to x^-} F(y), D_X \subset \mathbb{Z} \Rightarrow f(x) =$ $F(x) - F(x-1), x \in \mathbb{Z}$

Transformations discrete: Y = q(X), $f_Y(y) = \sum_{x:g(x)=y} f_X(x) = P(Y = x)$ $y) = \sum_{x:a(x)=y} P(X=x)$

2.1 Expectation

Expectation : X discrete s.t.

 $\sum_{x \in D_X} |x| f_X(x) < \infty, E[X] =$ $\sum_{x \in D_X} x P(X = x) = \sum_{x \in D_X} x f_X(x)$ Function: q real-valued func.,

 $\sum_{x \in D_X} |g(x)| f_X(x) < \infty, E[g(X)] =$ $\sum_{x \in D_x} g(x) f_X(x)$

Properties: if $E[\cdot]$ finite; $E[aX + b] = aE[X] + f(x) = \frac{2}{\lambda}e^{-\lambda|x-\eta|}$ $b, E[g(X) + h(X)] = E[g(X)] + E[h(X)], \text{ Pareto dis. : } \alpha, \beta > 0 F(x) = 1 - {\beta \choose x}^{\alpha} x \ge \beta,$ $P(X = b) = 1 \Rightarrow E[X] = b$ $E[X]^2 < E[X^2]$

Moment : PMF f(x) s.t. $\sum_{x} |x|^r f(x) < \infty$: r-th moment $E[X^r]$, r-th central moment $E[(X-E[X])^r]$, variance $var(X) = E[(X-var(X))] = \int_{-\infty}^{\infty} (x-E[X])^2 f(x) dx$ $E[X])^2$, standard deviation $\sqrt{\mathrm{var}(X)}$, r-th Conditional densities : $A \subset \mathbb{R}$, $F_X(x \mid X \in \mathbb{R})$ factorial moment E[X(X-1)...(x-r+1)]

Variance properties: $var(X) = E[X^2] E[X]^{2} = E[X(X-1)] + E[X] - E[X]^{2}$ $\operatorname{var}(aX+b) = a^2\operatorname{var}(X), \operatorname{var}(X) = 0 \Rightarrow X$ constant with prob. 1

Variance properties: X takes $0, 1, ..., r \ge 2$, $E[X] < \infty; E[X] = \sum_{x=1}^{\infty} P(X \ge x),$ E[X(X-1)...(X-r+1)] = $r\sum_{x=r}^{\infty}(x-1)\dots(x-r+1)P(X\geq x)$

2.2 Conditional Probability Distributions

 $(B) = P(A_x \cap B)/P(B)$ Properties: $f_X(x \mid B) \ge 0$, $\sum_x f_X(x \mid B) = 1$ Event: B is event like $X \in \mathcal{B}, B \subset \mathbb{R}$; $f_X(x \mid B) = P(X = x, X \in \mathcal{B})/P(X \in \mathcal{B})$ \mathcal{B}) = $I(x \in \mathcal{B})/P(X \in \mathcal{B})f_X(x)$

Conditional expected value : $\sum_{x} |g(x)| f_X(x)$ $|B| < \infty, E[g(X)|B] = \sum_{x} g(x) f_X(x \mid B)$ Expected sum : $P(B^c) > 0$, $E[X] = E[X \mid B]P(B) + E[X \mid B^{c}]P(B^{c});$ $\{B_i\}_{i=1}^{\infty}$ partition $\Omega, \forall i P(B_i) > 0$, $E[X] = \sum_{i=1}^{\infty} E[X \mid B_i] P(B_i)$

2.3 Notions of Convergence

Convergence of distr.s: $(\{X_n\}, X)$, rdm. var.s with CDFs ($\{F_n\}, F$), $\{X_n\}$ converge in distr. (law) to $X(X_n \xrightarrow{D} X) \Leftrightarrow \forall x \in \mathbb{R} \text{ s.t. } F$ continuous: $F_{n\to\infty}(x)\to F(x)$; $D_X\subset\mathbb{Z}$, $\forall x f_{n\to\infty}(x) \to f(x) \Leftrightarrow F_n(x) \to F(x)$ Law small nb.: $X_n \sim B(n, p_n), np_n \rightarrow \lambda >$ $0 (n \to \infty), X_n \xrightarrow{D} X, X \sim \text{Pois}(\lambda)$

3 Continuous Random Variables (CRV)

 Ω , D_X is not countable

 $\Leftrightarrow \exists f(x) \text{ (PDF) s.t. } P(X < x) =$ $F(x) = \int_{-\infty}^{x} f(u) du, x \in \mathbb{R}; f(x) \geq 0,$ $\int_{-\infty}^{\infty} f(x) dx = 1; f(x) = \frac{dF(x)}{dx},$ P(X=x)=0Uniform distr.: a < b, $f(u) = \frac{1}{b-a}$ $a \le u \le b$,

 $0; U \sim U(a,b)$; finite interval, equal probability

Exponential distr. : $\lambda > 0$, $f(x) = \lambda e^{-\lambda x} x > 0$, $0; X \sim \exp(\lambda)$, memorylessness; waiting time, positive quantities

Gamma distr. : $\alpha, \lambda > 0, f(x) =$ $\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}x > 0,0;X \sim$ $Gamma(\alpha, \lambda)$; λ rate, $\alpha = 1$ exp. density; more flexible

Laplace distr. : $x \in \mathbb{R}, \eta \in \mathbb{R}, \lambda > 0$,

0; lie in (β, ∞) , financial loss, threshold

Moments: $E[|g(X)|] < \infty, E[g(X)] =$ $\int_{-\infty}^{\infty} g(x)f(x) dx, E[X] = \int_{-\infty}^{\infty} xf(x) dx,$

 $A) = \frac{\int_{A_x} f(y) dy}{P(X \in A)}, A_x = \{y : y \le x, y \in A\}$ A}; $f_X(x \mid X \in A) = \frac{f_X(x)}{P(X \in A)} x \in A, 0$;

 $E[g(X) \mid X \in A] = \frac{E[g(X) \mathbb{1}(X \in A)]}{P(X \in A)}$ Quantile p: 0 $F(x) \ge p$; most CRVs $x_p = F^{-1}(p)$ unique, $\sum_y f_{X,Y}(x,y)$

Transformations: $q: \mathbb{R} \to \mathbb{R}, B \subset \mathbb{R}$, $g^{-1}(B) \subset \mathbb{R}$ set s.t. $g(g^{-1}(B)) = B$

Theorem: $Y = g(X), B_y = (-\infty, y], X \text{ CRV},$ $F_Y(y) = P(Y \le y) = \int_{a^{-1}} f_X(x) dx,$ $g^{-1}(B_y) = \{x \in \mathbb{R} : g(x) \le y\};$ g monotone, g^{-1} differentiable, $y \in \mathbb{R}$. $F_Y(y) = \left| \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y} \right| f_X(g^{-1}(y))$

Normal/Gaussian distribution : $x \in \mathbb{R}, \mu \in \mathbb{R}$, $\sigma > 0, f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right);$ expectation μ , variance σ^2 , std. $\sigma > 0$, $X \sim \mathcal{N}(\mu, \sigma^2)$; average many small effects, measure subject to error

Standard normal: $Z \sim \mathcal{N}(0,1)$ standard normal, density $\phi(z) = \sqrt{2\pi}e^{-z^2/2}$, $z \in \mathbb{R}, F_Z(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-z^2/2} dz,$ $f(x) = \sigma^{-1}\phi((x-\mu)/\sigma) \,\forall x \in \mathbb{R}$

Standard normal density : bell curve $\phi(z) =$ $\frac{1}{\sqrt{2\pi}}e^{-z^2/2}, z \in \mathbb{R}$

Properties : density $\phi(z)$, CDF $\Phi(z)$, quantiles z_p : of $Z \sim \mathcal{N}(0,1), \forall z \in \mathbb{R} : \phi(z) = \phi(-z)$, $P(Z < z) = \Phi(z) = 1 - \Phi(-z) =$ $1 - P(Z > z), z_p = -z_{1-p}, 0$ $z^r \phi(z_{\to \pm \infty}) \to 0 \, r > 0 \, \text{so} \, E[Z^r] \, \text{exists}$ $\forall r \in \mathbb{R}, \phi'(z) = -z\phi(z), \phi''(z) = (z^2 - z^2)$ $1)\phi(z)$, E[Z] = 0, var(Z) = 1, $E[Z^3] = 0$, $X \sim N(\mu, \sigma^2) \Rightarrow Z = (X - \mu)/\sigma \sim$ $N(0,1), X = \mu + \sigma Z$

Moivre-Laplace: $X_n \approx B(n, p), 0 ,$ $\mu_n = E[X_n] = np, \sigma_n^2 = var(X_n) =$ $np(1-p), Z \sim \mathcal{N}(0,1), z \in \mathbb{R}, n \to \infty$ $X_n - \mu_n \xrightarrow{D} Z$; approx. $P(X_n \leq r) =$ $\Phi(\frac{r-\mu_n}{\sigma_n}), X_n \sim \mathcal{N}(np, np(1-p)), \text{valid}$ when $\min(np, np(1-p)) > 5$; instead of normal when outliers

4 Several Random Variables

Joint PMF: (X, Y) discrete r.v., $D = \{(x, y) \in$ $\mathbb{R}: P((X,Y)=(x,y))>0\}, (x,y)\in\mathbb{R}^2,$ $f_{X,Y}(x,y) = P((X,Y) = (x,y))$ $\mathsf{Joint}\,\mathsf{CDF}\, \colon F_{X,Y}(x,y) = P(X \le x, Y \le y)$ Continuous: jointly continuous if $\exists f_{X,Y}(x,y)$ joint density of (X,Y) s.t. $P((X,Y) \in A) =$

 $\int \int_{(u,v)\in A} f_{X,Y}(u,v) du dv, A \subset \mathbb{R}^2;$ $A = \{(u, v) : u \leq x, v \leq y\}, \text{ joint CDF}$ $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \overline{f}_{X,Y}(u,v) du dv,$

 $f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$

Exponential family distr.: (X_1, \ldots, X_n) discrete or continuous r.v., $(x_1, \ldots, x_n) \in D \subset \mathbb{R}^n$, $(\theta_1,\ldots,\theta_p)\in\Theta\subset\mathbb{R}^p, f(x_1,\ldots,x_n)=\exp\left(\sum_{i=1}^p s_i(x)\theta_i-\kappa(\theta_1,\ldots,\theta_p)\right)$ $+c(x_1,\ldots,x_n)$

Marginal PMF: discrete, $x \in \mathbb{R}$, $f_X(x) =$

 $P(X \leq x_p) = p, 0.5$ quantile: median of F Marginal density func.: continuous, $x \in \mathbb{R}$, $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$

Conditional PMF: $f_X(x) > 0$ (undefined for $f_X(x) = 0$, $y \in \mathbb{R}$, $f_{Y|X}(y|x) =$ $f_{X,Y}(x,y)/f_X(x)$; (X,Y) discrete: $f_X(x) = P(X = x), f_{Y|X}(y|x) = P(Y = x)$ y|X=x

Multivariate r.v.s: X_1, \ldots, X_n r.v.s on same proba. spcae, joint cumulative distr. func.

3.1 Normal distribution

 $F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 \le$ $x_1, \ldots, X_n < x_n$), Joint PMF (discrete) $f_{X_1,...,X_n}(x_1,...,x_n)$ $= P(X_1 = x_1, \dots, X_n = x_n)$ Joint density func. (continuous) $f_{X_1,...,X_n}$ $(x_1,\ldots,x_n)=rac{\partial^n F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)}{\partial x_1,\ldots,\partial x_n}$ Multinomial distr.: m denominator, (p_1,\ldots,p_k) probabilities, $x_1,\ldots,x_k\in$ $\{0,\ldots,m\}, \sum_{i=1}^{k} x_i = m, m \in \mathbb{N},$ $\sum_{\substack{i=1\\m!}}^{k} p_i = 1, f(x_1, \dots, x_k) = \frac{m!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$ Independence: X, Y on same prob. spcae, $A, B \subset \mathbb{R}, P(X \in A, Y \in B) = P(X \in A, B)$ A) $P(X \in B)$; $A = (-\infty, x], B = (-\infty, y],$ $f_{X,Y}(x,y) = f_X(x)f_Y(y) \,\forall x,y \in \mathbb{R};$ $X, Y \text{ indep.} \Rightarrow \forall x \text{ s.t. } f_X(x) > 0$: $f_{Y|X}(y|x) = f_Y(y)$ (symm. with x) Indep. and identically distrib. (iid.): random sample size n from distr. F, density f, write $X_1, \ldots, X_n \sim^{\mathsf{iid}} F$ (or $\sim^{\mathsf{iid}} f$), $f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{j=1}^n f_X(x_j)$ 4.1 Dependence

Expectation : $E[|g(X,Y)|] < \infty$, E[g(X,Y)] = $\sum_{x,y} g(x,y) f_{X,Y}(x,y)$ (discrete), $\iint g(x,y) f_{X,Y}(x,y) dx dy$ (continuous) Joint moments : $E[X^rY^s]$ Joint central moments : $E[(X - E(X))^r(Y - \text{Matrix}: X = (X_1, \dots, X_p)^T)]$ $E(Y))^s$, $r,s \in \mathbb{N}$ Covariance: cov(X, Y) = E[X - E(X)(Y -E(Y)] = E(XY) - E(X)E(Y)

Properties: $a, b, c, d \in \mathbb{R}$, X, Y, Z r.v.s cov(X, X) = var(X), cov(a, X) = 0cov(X, Y) = cov(Y, X), cov(a + bX + $cY, Z) = b \cdot \text{cov}(X, Z) + c \cdot \text{cov}(Y, Z),$ cov(a + bX, c + dY) = bdcov(X, Y) $var(a + bX + cY) = b^2 var(X) + 2bc$ $\operatorname{cov}(X,Y) + c^2 \cdot \operatorname{var}(Y), \operatorname{cov}(X,Y)^2 \le$ var(X)var(Y)

Independence: X, Y independent, \exists expectation g(X), h(Y), E[g(X)h(Y)] = $E[q(X)]E[h(Y)], X, Y \text{ indep.} \Rightarrow$ cov(X, Y) = 0 (converse false)

Average: $\overline{X} = n^{-1} \sum_{j=1}^{n} X_j$; mean μ , var. σ^2 , $E[\overline{X}] = \mu, \operatorname{var}(\overline{X}) = \sigma^2/n$

Correlation: dimensionless dependence,

 $corr(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$ Properties: $\rho = \operatorname{corr}(X, Y), -1 \le \rho \le 1$, $\rho = \pm 1 \Rightarrow \exists a, b, c \in \mathbb{R} \text{ s.t. } aX + bY + c = 0$ $(a,b) \neq (0,0)$ (X, Y linearly dependent), $X, Y \text{ indep.} \Rightarrow \operatorname{corr}(X, Y) = 0,$ $\operatorname{corr}(a+bX,c+dY) = \operatorname{sign}(bd)\operatorname{corr}(X,Y)$

Corr. Limitations: measures linear dep. (strong nonlin. dep., corr. 0), corr. can be strong but specious (2 sub-groups), corr. \neq causation

Conditional expectation : $f_X(x) >$ $0, E[(|g(X,Y)|) \mid X = x] < \infty,$

 $E[g(X,Y)|X=x] = \sum_{y} g(x,y) f_{Y|X}(y|x)$ (discrete), $\int_{-\infty}^{\infty} g(x,y) f_{Y|X}(y|x) dy$ (continuous), func. of x

Conditioning: required Es exist, E[g(X,Y)] = $E_X[E[q(X,Y)|X=x]],$ $\operatorname{var}(g(X,Y)) = E_X[\operatorname{var}(g(X,Y)|X =$ x) + var $_X(E[g(X,Y)|X=x])$]

4.2 Generating Functions

Moment-generating MGF: $t \in \mathbb{R}, M_X(t) < \infty$, $M_X(t) = E[e^{tX}]$, called Laplace transform of $f_X(x)$, $M_X(t) = E[\sum_{r=0}^{\infty} \frac{t^r X^r}{r!}] =$ $\sum_{r=0}^{\infty} \frac{t^r}{r!} E[X^r]$

Theorems: $M_X(0) = 1, M_{a+bX}(t) =$ $e^{at}M_X(bt), E[X^r] = \frac{\partial^r MX(t)}{\partial t^r}$ $E[X] = M'_X(0), \operatorname{var}(X) = M''_X(0) - M'_X(0)^2 \exists \operatorname{injection} t$ $M'_{\mathbf{Y}}(0)^2$, \exists injection btw. $F_{\mathbf{X}}(x)$ and $M_{\mathbf{X}}(t)$

Linear cominations: $a, b_1, \ldots \in \mathbb{R}, X_1, \ldots$ indep. r.v.s, $Y = a + b_1 X_1 + ... + b_n X_n$, $M_Y(t) = e^{ta} \prod_{j=1}^n M_{X_j}(tb_j); X_1, \dots$ random sample, $\bar{S} = X_1 + \ldots + X_n$, $M_S(t) = M_X(t)^n$

Continuity: $\{X_n\}$, X r.v.s with distr. fun. $\{F_n\}, F$ MGFs $M_n(t), M(t)$ exists for $0 \leq |t| < b, |t| \leq a < b, M_{n \to \infty}(t) \to$ $M(t) \Rightarrow X_n \xrightarrow{D} X$ i.e. $F_n(x) \to F(x)$ at each $x \in \mathbb{R}$ where F continuous

expectation (mean vector) $E[X]_{p \times 1} =$ $E[X[X_1] \dots E(X_p)]^T$, co-variance matrix $\operatorname{var}(X)_{p \times p, (i,j)} = \operatorname{cov}(X_i, X_j)$ (positive semi-definite)

Moment-gen. func. mlti.var. MGF: $X_{n\times 1} =$ $(X_1,\ldots,X_p)^T, t\in\mathcal{T}=\{t\in\mathbb{R}^p:$ $M_X(t) < \infty$, $M_X(t) = E[e^{t^T X}] =$ $E[e^{\sum_{r=1}^{p} t_r X_r}]$ MGF Properties: $0 \in \mathcal{T}$ so $M_X(0) =$

 $1, E[X]_{p \times 1} = M'_{X}(0) =$ $\frac{\partial M_X(t)}{\partial t}\Big|_{t=0}$, $\operatorname{var}(X)_{p\times p} =$ $\left. \frac{\partial^2 M_X(t)}{\partial t \partial t^T} \right|_{t=0} - M_X'(0) M_X'(0)^T, \mathcal{A} \cup \mathcal{B} = 0$ $\{1,\ldots,p\}$ and $\mathcal{A}\cap\mathcal{B}\neq\emptyset:X_{\mathcal{A}}$ subvector of X containing $\{X_j: j \in \mathcal{A}\}$ then $X_{\mathcal{A}}$ indep. $X_{\mathcal{B}} \Leftrightarrow M_X(t) = E[e^{t_{\mathcal{A}}^T X_{\mathcal{A}} + t_{\mathcal{B}}^T X_{\mathcal{B}}}] =$ $M_{X_{\mathcal{A}}}(t_{\mathcal{A}})M_{X_{\mathcal{B}}}(t_{\mathcal{B}}), t \in \mathcal{T}$

4.3 Multivariate Normal Distribution

Mult. var. normal distr. : $X = (X_1, \dots, X_p)^T$, $\exists \mu = (\mu_1, \dots, \mu_p)^T \in \mathbb{R}^p, p \times p$ matrix Ω (positive semi-definite), $u^T X \sim$ $\mathcal{N}(u^T \mu, u^T \Omega u), u \in \mathbb{R}^p; X \sim \mathcal{N}_p(\mu, \Omega),$ $\Omega_{i,j} = \omega_{ij}, E[X_i] = \mu_i, var(X_i) =$ ω_{ij} ,cov (X_i, X_k) , $j \neq k$, mean vector μ , covariance matrix Ω , $M_X(u) =$ $\exp(u^T + \frac{1}{2}u^T\Omega u), A \cup B = \{1, \dots, p\}$ and $A \cap B = \emptyset : X_A \perp \!\!\!\perp X_B \Leftrightarrow \Omega_{A,B} = 0$, $X_1, \ldots, X_n \sim_{\mathsf{iid}} \mathcal{N}(\mu, \sigma^2) \implies X_{n \times 1} =$ $(X_1,\ldots,X_n)^T \sim \mathcal{N}_n(\mu \mathbb{1}_n,\sigma^2 I_n),$

 $a_{r\times 1} + B_{r\times p}X \sim \mathcal{N}_r(a + B\mu, B\Omega B^T)$ Density function : $X \sim N_p(\mu, \Omega)$, iff Ω has rank $p, f(x; \mu, \Omega) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Omega|^{\frac{1}{2}}}$ $\exp\left(-\frac{1}{2}(x-\mu)^T\Omega^{-1}(x-\mu)\right), x \in \mathbb{R}^p$

Marginal/conditional distr.s : $X \sim$

 $\mathcal{N}_p(\mu_{p\times 1},\Omega_{p\times p}), |\Omega| > 0, \mathcal{A}, \mathcal{B} \subset$ $\{1,\ldots,p\}, |\mathcal{A}| = q < p, |\mathcal{B}| =$ $r < p, A \cap B = \emptyset, \mu_A, \Omega_A, \Omega_{AB}$ be $q \times 1$ of μ , $q \times q$, $q \times r$ submatrices of Ω conformable with $\mathcal{A}, \mathcal{A} \times \mathcal{A}, \mathcal{A} \times \mathcal{B}$, marginal $X_{\mathcal{A}} \sim \mathcal{N}_q(\mu_{\mathcal{A}}, \Omega_{\mathcal{A}})$, conditional $X_{\mathcal{A}}|X_{\mathcal{B}} = x_{\mathcal{B}} \sim \mathcal{N}_q(\mu_{\mathcal{A}} + \Omega_{\mathcal{A}\mathcal{B}}\Omega_{\mathcal{B}}^{-1}(x_{\mathcal{B}} - \omega_{\mathcal{A}\mathcal{B}}))$ $\mu_{\mathcal{B}}$), $\Omega_{\mathcal{A}} - \Omega_{\mathcal{B}}^{-1} \Omega_{\mathcal{B} \mathcal{A}}$)

4.4 Transformations

Bivariate: $P(Y \in \mathcal{B}), Y \in \mathbb{R}^d, q : \mathbb{R}^2 \rightarrow$ $\mathbb{R}^d, \mathcal{B} \subset \mathbb{R}^d, q^{-1}(\mathcal{B}) \subset \mathbb{R}^2$ set for which $q(q^{-1}(\mathcal{B})) = \mathbb{B}, P(Y \in \mathcal{B}) = P(q(X) \in \mathcal{B})$ \mathcal{B}) = $P(X \in q^{-1}(\mathcal{B}))$ Joint continu. densities : $X = (X_1, X_2) \in$ \mathbb{R}^2 conti. r.v., $Y = (Y_1, Y_2), Y_1 =$ $q_1(X_1, X_2), Y_2 = q_2(X_1, X_2), \text{ system}$ equations $y_1 = g_1(x_1, x_2), y_2 = g_2(x_1, x_2)$ 5.3 Central limit theorem (CLT) can be solved $\forall (y_1, y_2)$ giving the sol.s

 $x_1 = h_1(y_1, y_2), x_2 = h_2(y_1, y_2);$ g_1, g_2 conti. differentiable with Jacobian $J(x_1, x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & -\frac{\partial g_1}{\partial x_2} & \frac{\partial g_2}{\partial x_1}, \end{vmatrix}$ $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(x_1,x_2) \times$ $|J(x_1, x_2)|^{-1}|_{x_1 = h(y_1, y_2), x_2 = h_2(y_1, y_2)}$

(positive if $f_{X_1,X_2}(x_1,x_2) > 0$) Sums of independent : X, Y independant r.v.s, $S = X + Y; f_S(s) = f_X * f_Y(s) =$ $\int_{-\infty}^{\infty} f_X(x) f_Y(s-x) dx$ continuous, $\sum_{x} f_X(x) f_Y(s-x)$ discrete

Convolution: X_1, \ldots, X_n indep. r.v.s, S = $\sum_i X_i, f_S(s) = f_{X_1} * \dots * f_{X_n}(s)$

4.5 Order Statistics

Order statistics : ordered values $X_{(1)} \leq \ldots \leq$ $X_{(n)}$, not equal in continuous (<), min. $X_{(1)}$, Data : y (observed), Y (potential) $\max X_{(n)}$, median $X_{(m+1)}$ (n=2m+1odd) $\frac{1}{2}(X_{(m)} + X_{(m+1)})$ (n = 2m even)Theorem: $X_1, \ldots, X_n \sim_{\mathsf{iid}} F$ continuous density $f, P(X_{(n)} \leq x) = F(x)^n$, $P(X_{(1)} \le x) = 1 - (1 - F(x))^n$

5 Approximation & Convergence

Inequalities: X r.v., a > 0 contsant, h non-negative func., q convex func., $P(h(X) \geq a) \leq E[h(x)]/a, P(|X| \geq a)$ $a) \leq E[|X|]/a, P(|X| \geq a) \leq E[X^2]/a^2,$ $E[g(X)] \ge g(E[X]), P(|X - E[X]| \ge a) \le 6.1$ Point estimation $\operatorname{var}(X)/a^2$

Hoeffding inequality : Z_1, \ldots, Z_n indep. r.v.s s.t. $E[Z_i] = 0$ and $a_i \leq Z_i \leq b_i$ for const. $a_i \leq b_i$; $\epsilon > 0, \forall t > 0, P(\sum_{i=1}^n Z_i \geq \epsilon) \leq$ $e^{-t\epsilon} \prod_{i=1}^{n} e^{t^2(b_i - a_i)^2/8}$

5.1 Convergence

Deterministic convergence: $x_1, \ldots, x_n \in \mathbb{R}$, $x_n \to x \Leftrightarrow \forall \epsilon > 0 \exists N_{\epsilon} \text{ s.t. } |x_n - x| <$ $\varepsilon \, \forall n > N_{\epsilon}, X_n \to X \text{ if either } (n \to \infty),$ $P(X_n \leq x) \rightarrow P(X \leq x) x \in \mathbb{R}, \text{ or }$ $E[X_n] \to E[X]$

Modes of convergence of r.v.s: X, X_1, \ldots r.v.s with CDF F, F_1, \ldots , almost surely $X_n \to^{\text{a.s.}} X \text{ if } P(\lim_{n \to \infty} X_n = X) = 1$, in mean square $X_n \to^2 X$ if $\lim_{n \to \infty} E[(X_n - X_n)] = 0$ $|X|^2 = 0$ $E[X_n^2], E[X^2] < \infty$, in probability $X_n \to^P X \text{ if } \forall \epsilon > 0 \lim_{n \to \infty} P(|X_n - X_n) = 0$ $|X| > \epsilon$ = 0, in distribution $X_n \to D$ if $\lim_{n\to\infty} F_n(x) = F(x) (F(x) \text{ continuous at }$ each pt. x)

Relations: $(\rightarrow^{a.s.} \text{ or } \rightarrow^2) \Rightarrow \rightarrow^P \Rightarrow \rightarrow^D$ Limits of maxima : $X_1, \ldots, X_n \sim^{\text{iid}} F, M_n =$ $\max(X_1,...,X_n), P(M_n \le x) = P(X_1 \le x)$ $x,\ldots,X_n\leq x)=F(x)^n$, 0 when F(x)<1. Maximum likelihood estimation (MLE): (general. 1 when F(x) = 1; $Y_n = (M_n - b_n)/a_n$

5.2 Laws of Large Numbers

Weak law: iid, finite expectation μ , $\bar{X} =$ $n^{-1}(X_1 + \ldots + X_n), \bar{X} \to^P \mu, \forall \epsilon > 0$ $P(|\bar{X} - \mu| > \epsilon) \to 0, n \to \infty$

Standardisation average: $var(X_i) < \infty$, $E[\bar{X}] = \mu, \text{var}(\bar{X}) = \sigma^2/n,$ $Z_n = n^{\frac{1}{2}} (\bar{X} - \mu)/\sigma$ has expected of 0 and variance of 1

CLT: X_1, \ldots iid. expectation μ , var. $0 < \sigma^2 <$ $\infty, Z_n \to^D Z, n \to \infty$ where $Z \sim N(0,1)$; $P(Z_n \le z) \to \Phi(z)$ for large n

Use: sums of indep. r.v.s, n > 25, $E[\sum_{i=1}^{n} X_i] = n\mu, var(\sum_{i=1}^{n} X_i) = n\sigma^2,$ $P(\sum_{j=1}^{n} X_j \le x) = \Phi(\frac{x - n\mu}{(n\sigma^2)^{1/2}})$

6 Statistical interference

Induction: observed event A, say something about probability space $(\Omega, \mathcal{F}, P): A \Rightarrow$ (Ω, \mathcal{F}, P) ; say something about a process based on the data

Statistical model: proba. distr. f(y) chosen or constructed to learn from data; f(y) = $f(y; \theta)$ parameter θ of finite dimension (parametric model), known model is called simple, otherwise composite

Statistic: T = t(Y) known function of data Y Sampling distribution: of statistic T = t(Y) is its distrib. when $Y \sim f(y)$

Random sample : set of iid. r.v.s Y_1, \ldots, Y_n or their realizations y_1, \ldots, y_n

Study set of individuals elements (population), based on a subset (sample).

Statistical Model: unknown distribution F or density f of Y

Parametric statistical model: the distribution of Y is known except for values of parameters θ .

 $F(y) = F(y; \theta)$, with θ unknown Sample: must be representative of population, y_1, \ldots, y_n , supposed to be random sample $(Y_1,\ldots,Y_n\sim^{\mathsf{iid.}} F)$

Statistic: any func. $T = t(Y_1, \dots, Y_n)$ of r.v.s Y_1, \ldots, Y_n

Estimator: a statistic $\hat{\theta}$ used to estimate a parameter θ of f

Method of moments: (simple, can be inefficient), $\widetilde{\theta}$ match the theoretical/empirical moments; p unknown param.s, $E(Y^r) =$ $\int y^r f(y; \theta) dy = \frac{1}{n} \sum_{j=1}^n y_j^r (r = 1, ..., p),$ we need as many moments of underlying model as unknowns, use the first r moments

Likelihod: for θ is $L(\theta) = f(y_1, \dots, y_n; \theta) =$ $f(y_1;\theta) \times \ldots \times f(y_n;\theta)$

optimal in many param. models), $\hat{\theta}$ value that gives observed data the highest likelihood, $L(\theta) > l(\theta) \forall \theta$

Calculation of MLE: maximizing $l(\theta) =$ $\log(L(\theta))$, calculate $l(\theta)$ (plot), find value $\hat{\theta}$ maximizing $l(\theta)$ using derivative = 0, second derivative < 0

M-estimation: (more general, robust, loses efficiency), maxim. $\rho(\theta; Y) = \sum_{i=1}^{n} \rho(\theta; Y_i)$, $\rho(\theta; y)$ (if possible) concave of θ for all y, $\rho(\theta; y) = \log(f(y; \theta))$ gives maxi. likelihood estimator

Bias: compare estimators, bias of estimator $\hat{\theta}$ of θ : $b(\theta) = E[\hat{\theta}] - \theta$; $b(\theta) \forall \theta$: $< 0 \hat{\theta}$ underestimates $\theta > 0$ overestimates $\theta = 0$ unbiased; $b(\theta) \approx 0$ then $\hat{\theta}$ in the right place on average

Mean square error MSE: $MSE(\hat{\theta}) = E[(\hat{\theta} - \hat{\theta})]$ $|\theta|^2 = var(\hat{\theta}) + b(\theta)^2$ (average squared distance)

More efficient: $\hat{\theta}_1$, $\hat{\theta}_2$ unbiased of θ , $MSE(\hat{\theta}_{1/2}) = var(\hat{\theta}_{1/2}), \hat{\theta}_1$ more efficient $\hat{\theta}_2$ if $var(\hat{\theta}_1) < var(\hat{\theta}_2)$

6.2 Interval estimation

Pivot: $Y = (Y_1, \dots, Y_n)$ from distr. F, function $Q = q(Y, \theta)$, distr. of Q known (does not depend on θ)

Confidence intervals (CI): (L, U) for θ , lower L, upper U, rnd. interval contain θ with probability called confidence level; L = l(Y), U = u(Y) statistics from data (do not depend on θ); $P(\theta < L) = \alpha_L, P(U < \theta) = \alpha_U$, level: $P(L < \theta < U) = 1 - \alpha_L - \alpha_U$; $\alpha_L = \alpha_U = \alpha/2$ equi-tailed level $(1 - \alpha)$

CI construction: find pivot $Q = q(Y, \theta)$, quantiles $q_{\alpha_{II}} q_{1-\alpha_{IL}}$ of Q, transform $P(q_{\alpha_U} \le q(Y, \theta) \le q_{1-\alpha_L}) = (1 - \alpha_L) \alpha_U$ into $P(L \leq \Theta \leq U) = 1 - \alpha_L - \alpha_U$, L, U depend on $Y \& q_{\alpha}$ not on θ

BA4 - Probability and Statistics Cheat Sheet 3/3 Lucas Jung

One-sided: $(-\infty, U)$ or (L, ∞) , take $\alpha_U = 0$ or $\alpha_L = 0$, replace unwanted limit by $\pm \infty$

Standard errors: approximate pivots, T = $t(Y_1,\ldots,Y_n)$ estimator of $\theta,\tau_n^2=\mathrm{var}(T)$, $V = v(Y_1, \dots, Y_n)$ estimator of $\tau_n^2, V^{1/2}$ or $v^{1/2}$ (realization) a standard error for TTheorem: $\frac{T-\theta}{\tau_n} \to^D Z, \frac{V}{\tau^2} \to^P 1, n \to \infty$, $Z \sim \mathcal{N}(0,1), \frac{T-\theta}{V^{1/2}} = \frac{T-\theta}{T_n} \times \frac{\theta_n}{V^{1/2}} \to^D$ $Z, n \to \infty$

Normal random sample: $Y_1, \ldots, Y_n \sim^{iid}$ $\mathcal{N}(\mu, \sigma^2), \bar{Y} \sim \mathcal{N}(\mu, \sigma^2/n)$ indep. $(n-1)S^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2 \sim \sigma^2 \xi_{n-1}^2$ Comments: in most cases $U - L \propto \sqrt{V} \propto$

 $n^{-1/2}$, normal models exact CI available

6.3 Hypothesis Tests

Confidence intervals and tests: value θ^0 of θ , θ^0 lies inside $(1-\alpha)$ CI: cannot reject hypothesis that $\theta = \theta^0$ at significance level α , outside, we reject at level α ; cannot prove (only reject)

Null and alternative hypotheses : null hypothesis ROC curve : good test will have ROC close to H_0 model to test, alternative H_1 what happens if H_0 is false, type 1 error (false positive) H_0 true but wrongly reject (choose H_1), type 2 error (false negative) H_1 true but we wrongly accept H_0

Taxonomy of hypotheses: simple hypothesis entirely fixes distr. of data Y, composite does not fix

Receiver operating characteristic (ROC) curve: of test plots $\beta(t)$ against $\alpha(t)$ as cutt-off t varies, $(P_0(T > t), P_1(T > t)), t \in \mathbb{R}$

Size and power: μ increases: easier detect H_0 false, densities under H_0 and H_1 separated, H_0 and H_1 same ($\mu = 0$) curve lies on diagonal (cannot distinguish), often μ unknown so fix α and accept resulting $\beta(\alpha)$; false positive probability the size α , true positive probability power β ; size $\alpha = P_0(\text{reject } H_0), \text{ power } \beta = P_1(\text{reject } H_0)$

Power and CI: size is probability α , usually width of (L, U) satisfies $U - L \propto n^{-1/2}$

Pearson statistic (chi-square) : O_1, \ldots, O_k nb. observations of random sample size $n = n_1 + \ldots + n_k$ falling into categories $1,\ldots,k$, expected numbers E_1,\ldots,E_k , $E_i>0, T=\sum_{i=1}^k \frac{(O_i-E_i)^2}{E_i}$ Chi-square distr. : with ν degrees of freedom,

$$\begin{split} Z_1,\dots,Z_{\nu} \sim^{\mathrm{iid}} \mathcal{N}(0,1), & W = Z_1^2 + \dots + Z_{\nu}^2 \\ & \text{is chi-square, } f_W(w) = \frac{w^{\nu/2-1}e^{-w/2}}{2^{\nu/2}T(\nu/2)}, \end{split}$$
 $w > 0, \nu \in \mathbb{R}^*, \Gamma(a) = \int_0^\infty u^{a-1} e^{-u} du,$ a > 0

Pearson rationale: $O_i \approx E_i \, \forall i, T \, \text{small}$ otherwise tend to be bigger, joint distr. O_1, \ldots, O_k multinomial with denominator $n p_i = E_i/n, O_i \sim B(n, p_i), E(O_i) =$

 $np_i = E_i, \text{var}(O_i) = E_i(1 - E_i/n) \approx E_i,$ $Z_i = (O_i - E_i)/\sqrt{E_i} \sim \mathcal{N}(0,1)$ for large n Evidence and P-values: observed value of T is $t_{\text{obs}}, p_{\text{obs}} = P_0(T \ge t_{\text{obs}}), p \text{ small suggest}$ H_0 is true but something unlikely occurred or H_0 false, $p < \alpha$ test is significant at level α , reject H_0 if $p < \alpha$, provisionally accept H_0 if $P > \alpha$

Decision procedure: choose level α , test H_0 , reject H_0 if P-value is less than α or do not

Measure of evidence : against H_0 , small values of p_{obs} suggesting stronger evidence against H_0 ; H_1 need not be explicit, seek for implicit choice of T

Choice of α : 0.05, 0.01, 0.001

6.4 Comparison of Tests

Parametric tests: based on parametric statistical model (nearly optimal test)

Non-parametric tests: based on general

upper left corner, useless test have ROC diagonal

Most powerful tests: aim test statistic T to maximise the power of test for given size, partitioning sample space Ω containing data Y into rejection region \mathcal{Y} and its complement $\bar{\mathcal{Y}}; Y \in \mathcal{Y} \Rightarrow \text{reject } H_0, Y \in \bar{\mathcal{Y}} \Rightarrow \text{accept}$ H_0 ; aim to choose \mathcal{Y} such that $P_1(Y \in \mathcal{Y})$ is largest possible such that $P_0(Y \in \mathcal{Y}) = \alpha$

Neyman-Pearson: $f_0(y)$, $f_1(y)$ densities of Y under simple null and alternative hypotheses, if it exists, the set $\mathcal{Y}_{\alpha} = \{ y \in \Omega :$ $f_1(y)/f_0(y) > t$ such that $P_0(Y \in \mathcal{Y}_\alpha) =$ α maximises $P_1(Y \in \mathcal{Y}_{\alpha})$ amongst all the \mathcal{Y}' such that $P_0(Y \in \mathcal{Y}') < \alpha$, base the decision on \mathcal{Y}_{lpha}