

Module: Machine Learning (ML – SDSI)

- Course 3 -

Chapter 3: Unsupervised Learning

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Université Constantine 2 2024/2025 Semester 2

Module: Machine Learning (ML – SDSI)

- Course 3 -

Chapter 3: Unsupervised Learning

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
NTIC	TLSI	M1	SDSI

Université Constantine 2 2024/2025 Semester 2

Goals of the Chapter

- Grasp Unsupervised Learning Basics
- Learn Key Clustering Algorithms such as K-Means,
 Hierarchical Clustering, and DBSCAN
- Assess Clustering Quality like Silhouette Score,
 Davies-Bouldin Index, and Adjusted Rand Index
- Explore Dimensionality Reduction , such as PCA and t-SNE
- Apply to Real-World Use Cases (e.g., segmentation, anomaly detection)

Main Titles

Introduction Clustering **Anomaly Detection Dimensionality Reduction**

What is Unsupervised Learning?

- Unsupervised learning deals with datasets that have no labels. The goal is to discover the inherent structure in the data.
- Key Tasks:
 - **Clustering**: Group similar instances.
 - Dimensionality Reduction: Reduce the number of features while retaining key structure.
 - Anomaly Detection: Identify rare or abnormal observations.

Clustering

- Clustering is a method to organize unlabeled data by finding natural groups based on similarities.
- Example:

Dimensionality Reduction

 Transform high-dimensional data into a lower-dimensional representation while retaining its meaningful structure.

Goals:

- Reducing noise (removing irrelevant features).
- Preserving critical patterns (keeping the most useful information).
- Enabling efficiency (faster computation, easier visualization).

Anomaly Detection

 The process of identifying rare, unusual, or suspicious data points that deviate significantly from the majority of the data

What is Unsupervised Learning?

Applications:

- Market Segmentation,
- Image Compression
- Social Network Analysis
- Fraud Detection

100% 53%

Clustering

What is Clustering?

- Group similar data points into clusters based on feature similarity
- No predefined labels; goal is to reveal hidden structures
- Distance/similarity metrics play a central role (e.g., Euclidean distance)
- Applications:
 - Customer segmentation
 - Document classification
 - Image grouping

Clustering - Principal Algorithms

- K-Means: partitions data into K clusters based on centroid distance
- DBSCAN: groups data based on density; handles noise and irregular shapes
- Hierarchical Clustering: merges or splits clusters iteratively
- Spectral Clustering: uses graph Laplacian and eigen decomposition

K-Means Clustering (Overview)

- Objective: partition n observations into K clusters
- Each observation belongs to the cluster with the nearest mean
- Assumes spherical, equally sized clusters

Clustering – K-means

Example

Plot the data

Clustering – K-means

Example:

Initialize 3 centroids randomly

Clustering – K-means

Example:

Assign each point to nearest centroid

Clustering – K-means

Example:

Form the clusters

Clustering – K-means

Example:

Update centroids as mean of assigned points

Clustering – K-means

Example:

Repeat the process until convergence

Clustering – K-means

Example:

Repeat the process until convergence

Clustering – K-means

Example:

Repeat the process until convergence

Clustering – K-means

Example:

Repeat the process until convergence

K-Means (Algorithm Details)

- Input: dataset X, number of clusters K
- Steps:
 - 1. Initialize K centroids randomly
 - Assign each point to nearest centroid
 - 3. Update centroids as mean of assigned points
 - 4. Repeat steps 2-3 until convergence

K-Means (Mathematical Formulation)

Minimize within-cluster variance:

$$J = \sum_{i=1}^n \sum_{k=1}^K r_{ik} \|x_i - \mu_k\|^2$$

Where:

- r_{ik} = 1 if point x_i belongs to cluster k, 0 otherwise
- μ_k : centroid of cluster k

Evaluating Clustering (Inertia & Silhouette)

Inertia:

- sum of squared distances of samples to their closest cluster center
- Measures compactness of clusters
- Lower inertia indicates tighter clusters

Silhouette Score:

- Measures cohesion vs. separation
- Values range from -1 to 1
- High value means points are well matched within their cluster and poorly matched to others

Choosing the Number of Clusters (K)

- Choosing an appropriate K is crucial for optimal clustering.
- Common methods:
 - Elbow Method
 - Silhouette Score
 - Gap Statistic

Choosing the Number of Clusters (K)

Elbow Method:

- Plot inertia vs. number of clusters.
- Look for a "knee" point where inertia starts decreasing more slowly.
- Suggests optimal trade-off between number of clusters and compactness.

Choosing the Number of Clusters (K)

Elbow Method (Example)

What is it?

- Anomaly detection is the process of identifying <u>rare</u>, <u>unusual</u>, or <u>suspicious data points</u> that deviate significantly from the majority of a dataset. These anomalies (also called outliers) can indicate:
 - Fraud (e.g., credit card transactions)
 - Defects (e.g., faulty sensors in manufacturing)
 - Cyberattacks (e.g., unusual network traffic)
 - Biological abnormalities (e.g., rare diseases in medical data)

Anomaly Detection Techniques

Several approaches exist, each suited to different scenarios:

- Isolation Forest → Fast, tree-based outlier isolation
- Statistical Methods (Z-Score) → Simple threshold-based detection
- Density-Based (LOF, DBSCAN) → Neighborhood density analysis
- Boundary-Based (One-Class SVM) → Learned normal-data boundaries
- • •

Isolation Forest

How it works:

- Builds random decision trees to "isolate" points
- Anomalies require fewer splits to separate
- Best when: You need speed and have high-dimensional data
- Limitation: May miss grouped anomalies

Isolation Forest

Example

Isolation Forest

Example

Isolation Forest

Example

Isolation Forest

Example

Isolation Forest

Example

Isolation Forest

Example

Isolation Forest

Example

Low number of splits = High probability of anomaly

Isolation Forest

Example

By comparison, isolating a sample lost within the mass...

Requires very high number of splits

Principles

- Reduce number of features while preserving essential structure
- Removes redundancy and noise, improves visualization and learning
- Main methods:
 - PCA (Principal Component Analysis)
 - t-SNE, UMAP, Autoencoders (used for non-linear manifolds)

PCA - Principal Component Analysis (Overview)

- Linear dimensionality reduction method
- Projects data onto orthogonal directions (principal components)
- Directions maximize variance of the data

PCA – Principal Component Analysis (Overview)

Principal Steps of PCA:

- Standardize the data (Optional but recommended: center and scale the features so they have mean 0 and variance 1)
- 2) Compute the covariance matrix

$$\mathbf{S} = rac{1}{n-1} X^T X$$

3) Compute eigenvalues and eigenvectors of the covariance matrix. Solve:

$$\mathbf{S}\mathbf{w} = \lambda \mathbf{w}$$

PCA – Principal Component Analysis (Overview)

Principal Steps of PCA:

- 4) Sort eigenvalues and eigenvectors
 - \succ Sort the eigenvalues λ from largest to smallest.
 - \triangleright Keep the corresponding eigenvectors w in the same order.
- Select the top k eigenvectors (based on how much variance you want to keep).
- 6) Project the data onto the new space

$$X_{
m new} = X imes W_k$$

where W_k is the matrix of the top k eigenvectors.

PCA - Principal Component Analysis (Example)

How to choose the number of components?

Variance explained threshold (most common way):

- Choose k so that the cumulative variance is above a threshold, like 95% or 99%.
- Formula:

$$ext{Cumulative variance} = rac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^n \lambda_i}$$

Here, λi are eigenvalues sorted decreasingly.

How to choose the number of components?

Example:

How to choose the number of components?

Other methods:

- Scree plot (elbow method)
- Parallel Analysis
- Cross-validation

...

Reference

Université Constantine 2 © 2024 / H.-E. GUERGOUR

51

Reference

- Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
 Springer. A comprehensive textbook with in-depth coverage of clustering and dimensionality reduction.
- Saint-Cirgue, G. [Machine Learnia]. (2025). Apprentissage non-supervisé avec Python (24/30) [Video]. YouTube.
 https://www.youtube.com/watch?v=FTtzd31IAOw&t=1546s

Thank you for your attention...

Université Constantine 2 53