第二次作业

5.9

当 t = 28, p = 8, L = 5, o = 2, g = 4时

工作原理:

根的远程子节点发送数据的时刻为: $(28-1)-(5+2\times 2)=18$

其余3个子节点发送数据的时刻分别为:

$$(28-1) - (5+2 \times 2 + 4) = 14$$

$$(28-1) - (5+2 \times 2 + 2 \times 4) = 10$$

$$(28-1) - (5+2 \times 2 + 3 \times 4) = 6$$

对于 P_0

 P_0 有4个子节点,所以会接受4次消息,所以需要 $4 \times (4-2) = 8$ 次局部加法来填充计算g,至少需要 $4 \times (4-2-1) = 4$ 次自身内部加法来填充g

对于 P_5

 P_5 有2个子节点,所以会接受2次消息,所以需要2 imes (4-2) = 4次局部加法来填充计算g,至少需要2 imes (4-2-1) = 2次自身内部加法来填充g

6.3

由题初始序列为

A1	A2	А3	A4	A5	A6	A7	A8
33	21	13	54	82	33	40	72

选取主元A1 = 33, 得

-	1	2	3	4	5
LC	2	3	6	-	8
RC	4	-	5	7	-

最后构建的二叉树为

所得的序列为

13 21 33 33 40 54 72

7.3

由题 m=16,则 $log_2m=4$, $k(m)=\frac{m}{log_2m}=4$ 所以B可被划分为 $B_0=(3,4,5,6)$, $B_1=(8,10,12,13)$, $B_2=(14,15,20,21)$, $B_3=(22,26,29,31)$ 由于: $rank(b_4=4:A)=3, rank(b_8=13:A)=6, rank(b_{12}=21:A)=10$ 所以,A可以划分为 $A_0=(0,1,2)$, $A_1=(7,9,11)$, $A_2=(16,17,18,19)$, $A_3=(23,24,25,27,28,30,33,34)$ 在分别归并 (A_0,B_0) , (A_1,B_1) , (A_2,B_2) , (A_3,B_3) 后 最终的结果为 (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)

7.6

1.

正向传播次数: $n/2+n/4+\ldots+n/n=n-1$ 反向传播次数: $n/n+n/2+\ldots+n=2n-1$ 所以W(n)=3n-2

2.

正向遍历:

反向遍历:

所以前缀和为:1,3,6,10,15,21,28,36