

EECS151: Introduction to Digital Design and ICs

Lecture 2 – Design Process

Bora Nikolić

At HotChips'19 Cerebras announced the largest chip in the world at 8.5 in \times 8.5in with 1.2 trillion transistors, and 15kW of power, aimed for training of deep-learning neural networks

At HotChips'21 they showed the next version in 7nm CMOS, with >2x transistor count

46,225 mm² silicon
2.6 Trillion transistors
850,000 Al optimized cores
40 Gigabytes on-chip memory
20 Petabyte/s memory bandwidth
220 Petabit/s fabric bandwidth
7nm Process technology at TSMC

Sean Lie, HotChips'21

1

Review

Moore's law is slowing down

EECS151/251A L02 DESIGN

- There are continued improvements in technology, but at a slower pace
- Dennard's scaling has ended a decade ago
 - All designs are now power limited
- Specialization and customization provides added performance
 - Under power constraints and stagnant technology
- Design costs are high
 - Methodology and better reuse to rescue!
 - Abstraction, modularity, regularity are the keys
 - And creativity!

EECS151/251A L02 DESIGN

2 Berkeley @@@@

Digital Logic

Berkeley 2000

Example: RISC-V Design Process Design through layers of abstractions Specification (e.g. in plain text) Model (e.g. in C/C++/SystemVerilog) Architecture (e.g. in-order, out-of-order) RTL Logic Design https://www.sifive.com/boards/hifi (e.g. in Verilog/SystemVerilog) ve-unleashed Physical design (schematic, layout; ASIC, FPGA) Manufactured part Berkeley @080 EECS151 L02 DESIGN

Boolean Logic and Logic Gates (From CS61C/EE16B) • Logic gates Symbol Truth table Boolean equation Name NOT/INV Out Out = \overline{A} NOT or Inverter Single input Buffer Out = ANAND $\mathsf{Out} = \overline{\mathsf{A} \cdot \mathsf{B}}$ 0 Out NOR2_{Out} NOR $\mathsf{Out} = \overline{\mathsf{A} + \mathsf{B}}$ • In CMOS, basic logic gates are inverting Berkeley ©090 EECS151/251A LO2 DESIGN

Example CL Block

• 2-bit adder. Takes two 2-bit integers and produces 3-bit result.

 Think about truth table for 32-bit adder. It's possible to write out, but it might take a while!

Theorem:

Anv combinational loaic function can be implemented as a network of simple logic gates.

EECS151/251A L02 DESIGN

23 Berkeley © ® ®

23

Quiz

Total number of possible truth tables with 4 inputs is:

- a) 4
- b) 16

www.yellkey.com/foot

- c) 256
- d) 16,384
- e) 65,536
- f) None of the above

EECS151/251A LO2 DESIGN

24 Berkeley @ 90

Peer Instruction

Total number of possible truth tables with 4 inputs is:

- a) 4
- b) 16

www.yellkey.com/leg

- c) 256
- d) 16,384
- e) 65,536
- f) None of the above

EECS151/251A LO2 DESIGN

25 Berkeley @@®

25

Logic Circuit

• A logic gate can be implemented in different ways

NAND

Sizing of transistors (W/L) in CMOS

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

CMOS

of a logic gate

changes properties (delay, power, size)

Mechanical LEGO logic gates. A clockwise rotation represents a binary "one" while a counterclockwise rotation represents a binary "zero."

EECS151/251A L02 DESIGN

Berkeley @090

What Makes Circuits Digital?

• Supply noise will appear at the output of the logic gate

- The following logic gate should still interpret its inputs as 0s and 1s
- This necessary property is called "Restoration" or "Regeneration"
- A lot of money was spent in the past to unsuccessfully make logic out of nonregererative gates
 - Some of emerging CMOS replacements don't have gain...

EECS151/251A L02 DESIGN

Berkeley @000

Definition of Noise Margins M+1Noise margin high: NM_H $NM_H = V_{OH} - V_{IH}$ Undefined Region Noise margin low: NM_L $NM_L = V_{IL} - V_{OL}$ V_{OL} Gate Gate Output Input (Stage M) (Stage M+1) The amount of noise that could be added to a worst-case output so that the signal can still be interpreted correctly as a valid input to the next gate. Berkeley @090 EECS151/251A L02 DESIGN

Performance

- Throughput
 - Number of tasks performed in a unit of time (operations per second)
 - E.g. Google TPUv3 board performs 420 TFLOPS (10¹² floating-point operations per second, where a floating point operation is BFLOAT16)
 - Watch out for 'op' definitions can be a 1-b ADD or a double-precision FP add (or more complex task)
 - Peak vs. average throughput
- Latency
 - How long does a task take from start to finish
 - E.g. facial recognition on a phone takes 10's of ms
 - Sometime expressed in terms of clock cycles
 - Average vs. 'tail' latency

EECS151/251A LO2 DESIGN

Berkeley 6000

43

Design Metrics: Energy and Power

EECS151/251A L02 DESIGN

44 Berkeley 6086

Liquid

45 Berkeley @@@

Energy and Power Energy (in joules (J)) Needed to perform a task Add two numbers or fetch a datum from memory (or fetch two numbers, add them and store in memory) Active and standby Battery stores certain amount of energy (in Ws = J or Wh) That is what utility charges for (in kWh) Power (in watts (W)) Energy dissipated in time (W = J/s)

• Heat spreader, size of a heat sink, forced air, liquid, ...

45

• Sets cooling requirements

EECS151/251A LO2 DESIGN

Summary

- The design process involves traversing the abstraction layers of specification, modeling, architecture, RTL design and physical implementation
- Tests follow the design refinements
- Targets are processors, FPGAs or ASICs
- Automated design flows help manage the complexity
- Optimize for performance, energy and cost

EECS151/251A LO2 DESIGN

51 Berkeley © SO SY NC SA