

CA4141

Profa. Elisa Y Takada

Aula 7 (parte 2) - 24set21

Convergência absoluta

Critério da raiz

Definição Uma série $\sum b_n$ converge absolutamente se a série $\sum |b_n|$ é convergente.

Teorema Toda série absolutamente convergente é convergente.

Observação

- a) A condição do teorema é necessária mas não é suficiente. Assim, uma série pode ser convergente sem ser absolutamente convergente.
- b) Uma série que é convergente mas não absolutamente é chamada de série condicionalmente convergente.
- c) Um contra-exemplo é a série $\sum \frac{(-1)^n}{n}$, que é convergente por Leibniz (exemplo anterior) mas não converge absolutamente pois $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ é divergente.

Critério da raiz

Também conhecido como critério de **Cauchy** quando a série tem termos positivos, o critério é utilizado para decidir se uma série converge ou diverge através de seu próprio termo geral.

Teorema Seja $\sum a_n$ uma série qualquer tal que $L = \lim_{n \to +\infty} \sqrt[n]{|a_n|}$.

- a) Se L < 1, então a série $\sum a_n$ é absolutamente convergente.
- b) Se L>1 ou $L=\infty$, então a série $\sum a_n$ é divergente.

Justificativa

No item (a), se L < 1, então escolhemos um número r tal que $0 \le L < r < 1$.

$$\sqrt[n]{|a_n|} \approx L < r \Longrightarrow |a_n| < r^n$$

Como a série geométrica $\sum r^n$ converge (pois |r| < 1), pelo critério da comparação forma-básica, a série $\sum |a_n|$ é convergente, logo $\sum a_n$ converge absolutamente.

Propriedade $\lim_{n \to +\infty} \sqrt[n]{n} = 1$ (note que ∞^0 é uma indeterminação)

De fato, como $\sqrt[n]{n} = n^{\frac{1}{n}} = e^{\frac{1}{n} \ln n}$, o limite fica:

$$\lim_{n \to +\infty} \sqrt[n]{n} = \lim_{n \to +\infty} e^{\frac{1}{n} \ln n} = \lim_{n \to +\infty} e^{\frac{\ln n}{n}} \stackrel{\text{L'H}}{=} \lim_{n \to +\infty} e^{\frac{(1/n)}{1}} = e^0 = 1$$

(aplicamos a regra de L'Hospital no limite com a indeterminação $\frac{\infty}{\infty}$)

Observação Sempre é bom lembrar as seguintes propriedades:

$$|a^m| = |a|^m$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$\sqrt[n]{\sqrt{a}} = \sqrt{\sqrt[n]{a}}$$

Exemplo

a)
$$\sum (\frac{3n}{4n+1})^{2n}$$

$$\sqrt[n]{a_n} = \sqrt[n]{(\frac{3n}{4n+1})^{2n}} = (\frac{3n}{4n+1})^2$$

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \left(\frac{3n}{4n+1}\right)^2 = \lim_{n \to +\infty} \left(\frac{3n}{4n}\right)^2 = \lim_{n \to +\infty} \left(\frac{3}{4}\right)^2 = \frac{9}{16}$$

Como $L = \frac{9}{16} < 1$, pelo critério da raiz a série dada converge.

Resposta Converge

$$b) \sum \frac{(-3)^n}{n^8}$$

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{(-3)^n}{n^8}} = \sqrt[n]{\frac{3^n}{n^8}} = \frac{3}{(\sqrt[n]{n})^8} \quad (pois | (-3)^n | = |-3|^n = 3^n)$$

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{3}{(\sqrt[n]{n})^8} = \lim_{n \to +\infty} \frac{3}{1^8} = 3 \quad \text{(pois } \lim_{n \to +\infty} \sqrt[n]{n} = 1\text{)}$$

Como L=3>1, pelo critério da raiz a série dada é divergente.

Resposta Diverge

Rascunho

$$\sqrt[n]{|a_n|} = \sqrt[n]{|\frac{(-3)^n}{n^8}|}$$

$$\left| \frac{(-3)^n}{n^8} \right| = \frac{|(-3)^n|}{n^8} = \frac{|-3|^n}{n^8} = \frac{3^n}{n^8}$$

$$\sqrt[n]{\frac{(-3)^n}{n^8}} = \sqrt[n]{\frac{3^n}{n^8}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^8}} = \frac{3}{(\sqrt[n]{n})^8}$$

$$\lim_{n \to +\infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{(-3)^n}{n^8} \right|} = \lim_{n \to \infty} \frac{3}{(\sqrt[n]{n})^8} = \frac{3}{1^8} = 3 = L > 1$$

diverge

Exercício Aplicar o critério da raiz e determinar se a série converge ou diverge.

a)
$$\sum (-1)^n (\frac{\ln n}{n})^n$$

b)
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$
 c)
$$\sum \frac{(-9)^n}{2n^2}$$

c)
$$\sum \frac{(-9)^n}{2n^2}$$

d)
$$\sum \frac{n^3(-10)^{n+1}}{5^{2n}}$$

Resolução (c) $\sum \frac{(-9)^n}{2n^2}$

$$\sqrt[n]{|a_n|} = \sqrt[n]{|\frac{(-9)^n}{2n^2}|} = \sqrt[n]{\frac{9^n}{2n^2}} = \frac{\sqrt[n]{9^n}}{\sqrt[n]{2n^2}} = \frac{9}{\sqrt[n]{2}\sqrt[n]{n^2}}$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{9}{\sqrt[n]{2}\sqrt[n]{n^2}} = \lim_{n \to \infty} \frac{9}{2^{1/n}(\sqrt[n]{n})^2} = \frac{9}{2^0 1^2} = 9$$

Como L=9>1, pelo critério da raiz a serie dada é divergente.

Resposta Diverge