```
% Angewandte Numerik 1, SoSe 2020
% Uebungsblatt 12, Aufgabe 54: Zusammengesetzte Quadraturformeln
% Vergleich verschiedener zusammengesetzter Quadraturformeln:
  - zusammengesetzte linke Rechteckregel (linke Rechteck-Summe),
  - zusammengesetzte Mittelpunktregel (Mittelpunkt-Summe),
  - zusammengesetzte Trapezregel (Trapez-Summe)
   - zusammengesetzte Simpsonregel (Simpson-Summe)
% fuer 1 bis 2^17 Intervalle fuer das Integral
% I(f) = integral(f,0,1) = pi der Funktion <math>f(x) = 4/(x^2 + 1)
% Der absolute Fehler wird in doppelt logarithmischer Skala in
% Abhaengigkeit von n dargestellt.
% Letzte Aenderung: 14.07.2020
% Cleanup -----
% Alle Variablen loeschen
clearvars;
% Alle Schaubilder schliessen
close all;
% Command window leeren
clc;
% Initialisierung ------
fprintf( '\n\nAngewandte Numerik 1, Sommersemester 2020\n' );
fprintf ...
  ('Uebungsblatt 12, Aufgabe 54: Zusammengesetzte Quadraturformeln\n\n');
% Linke Integrationsgrenze
     = 0;
% Rechte Integrationsgrenze
     = 1;
% Zu integrierende Funktion
     = 0(x) 4./(x.^2+1);
% Anzahl Verfahren
Nverf = 5;
% Vektor mit den Anzahlen der Teilintervalle
Nint = 2.^(0:17);
% Matrix fuer Werte des Integrals initialisieren
integ = zeros( length(Nint), Nverf );
% Matrix fuer Fehler der Approximationen initialisieren
err = zeros( length(Nint), Nverf );
```

```
% Ueberschrift der Ausgabetabelle
fprintf('NUMERISCHE INTEGRATION MIT VERSCHIEDENEN QUADRATURFORMELN\n'n');
fprintf('Funktion:\tf = 1 / (1 + x^2), ');
fprintf('Integrationsgrenzen: a = %d, b = %d\n', a, b);
fprintf(['----', ...
 '----\n']);
fprintf(['Anzahl | Fehler | Fehler | Fehler
 'Fehler | Fehler | \n'] ):
'Simpson- | Simpson- |\n']);
fprintf(['Intervalle | ecksumme | punktsumme | Summe
 'Summe 1 | Summe 2 |\n']);
fprintf(['-----|', ...
 '----|\n']);
% Alle Quadraturformeln fuer verschiedene Anzahlen Teilintervalle ------
for k = 1:length(Nint)
 n = Nint(k);
 % Linke Rechtecksumme -------
 % Integral berechnen
 integ(k, 1) = linkeRechteckSumme( f, a, b, n );
 % Fehler zum exakten Integral berechnen
 err(k, 1) = abs(integ(k, 1) - pi);
 % Mittelpunktsumme ------
 % Integral berechnen
 integ(k, 2) = mittelpunktSumme( f, a, b, n );
 % Fehler zum exakten Integral berechnen
 err(k, 2) = abs(integ(k, 2) - pi);
 % Integral berechnen
 integ(k, 3) = trapezSumme( f, a, b, n );
 % Fehler zum exakten Integral berechnen
 err(k, 3) = abs(integ(k,3) - pi);
 % Simpsonsumme (vektorisiert) -----
 % Integral berechnen
 integ(k, 4) = simpsonSummeV( f, a, b, n );
 % Fehler zum exakten Integral berechnen
 err(k, 4) = abs(integ(k,4) - pi);
 % Simpsonsumme (mit Gewichten) ------
 % Integral berechnen
```

```
integ(k, 5) = simpsonSumme(f, a, b, n);
 % Fehler zum exakten Integral berechnen
  err(k, 5) = abs(integ(k,5) - pi);
 % Fehler aller Quadraturformeln ausgeben -----
                | %12.4e | %10.4e | %10.4e | %10.4e | %10.4e |\n', ...
 fprintf(', %7d
   n, err(k,1), err(k,2), err(k,3), err(k,4), err(k,5));
end
% Schaubild Quadraturfehler ueber Nint ------
hf1 = figure( 'NumberTitle', 'off', 'Units', 'normalized', 'Name', ...
  'Angewandte Numerik 1, Blatt 11, Aufgabe 54: Quadraturfehler', ...
  'MenuBar', 'None', 'Position', [0.08, 0.08, 0.84, 0.87] );
% Zum Plotten mit loglog: O-Fehlerwerte auf 10^16 setzen
err(err==0) = 1e-16;
% Plot der Quadraturfehler
loglog( Nint, err(:,1), 'x-r', 'Display', 'Linke Rechteckregel' );
hold on;
loglog( Nint, err(:,2), 'd-b', 'Display', 'Mittelpunktregel' );
loglog( Nint, err(:,3), 's-g', 'Display', 'Trapezregel' );
loglog( Nint, err(:,4), '*-m', 'Display', 'Simpsonregel,vekt.' );
loglog( Nint, err(:,5), '*-c', 'Display', 'Simpsonregel,Gewichte' );
% Steigungsgeraden einzeichnen
loglog( Nint, 0.5*Nint.^-1, 'k-', 'Display', 'Steigung 1' );
loglog( Nint, 0.01*Nint.^-2, 'k:', 'Display', 'Steigung 2' );
loglog( Nint, (1e-3)*Nint.^-4, 'k-.', 'Display', 'Steigung 4' );
loglog( Nint, (1e-4)*Nint.^-6, 'k-', 'Display', 'Steigung 6');
% Maschinengenauigkeit eps einzeichnen
loglog( Nint, eps*ones(size(Nint)), 'k:', 'Display', ...
  'Maschinengenauigkeit');
hold off;
% Achsen: Wertebereiche, Schriftgroesse
axis([1, max(Nint), 6*1e-17, 30]);
ha = gca;
ha.FontSize = 12;
% Skalierung der x-Achse
xticks( Nint );
xlab = cellstr( string( Nint ) );
xticklabels( xlab );
```

```
% Achsenlabel, Legende und Titel
xlabel( 'n (Anzahl der Teilintervalle)', 'FontSize', 16 );
ylabel( 'Fehler', 'FontSize', 16 );
legend( 'show', 'Location', 'NorthEast', 'NumColumns', 2, 'FontSize', 12 );
title( 'Vergleich der Fehler zusammengesetzter Quadraturformeln', ...
'FontSize', 22 );
```

Angewandte Numerik 1, Sommersemester 2020 Uebungsblatt 12, Aufgabe 54: Zusammengesetzte Quadraturformeln

NUMERISCHE INTEGRATION MIT VERSCHIEDENEN QUADRATURFORMELN

Funktion: $f = 1 / (1 + x^2)$, Integrationsgrenzen: a = 0, b = 1

Anzahl Teil- Intervalle	Fehler Linke Recht- ecksumme	Fehler Mittel- punktsumme	Fehler	Fehler Simpson- Summe 1	Fehler Simpson- Summe 2
1	8.5841e-01	5.8407e-02	1.4159e-01	8.2593e-03	8.2593e-03
2	4.5841e-01	2.0760e-02	4.1593e-02	2.4026e-05	2.4026e-05
4	2.3958e-01	5.2079e-03	1.0416e-02	1.5113e-07	1.5113e-07
8	1.2240e-01	1.3021e-03	2.6042e-03	2.3650e-09	2.3650e-09
16	6.1849e-02	3.2552e-04	6.5104e-04	3.6957e-11	3.6957e-11
32	3.1087e-02	8.1380e-05	1.6276e-04	5.7687e-13	5.7776e-13
64	1.5584e-02	2.0345e-05	4.0690e-05	1.0214e-14	8.8818e-15
128	7.8023e-03	5.0863e-06	1.0173e-05	4.4409e-16	0.0000e+00
256	3.9037e-03	1.2716e-06	2.5431e-06	1.3323e-15	0.0000e+00
512	1.9525e-03	3.1789e-07	6.3578e-07	8.8818e-16	4.4409e-16
1024	9.7640e-04	7.9473e-08	1.5895e-07	8.8818e-16	0.0000e+00
2048	4.8824e-04	1.9868e-08	3.9736e-08	2.6645e-15	0.0000e+00
4096	2.4413e-04	4.9671e-09	9.9341e-09	2.6645e-15	0.0000e+00
8192	1.2207e-04	1.2418e-09	2.4835e-09	2.2204e-15	4.4409e-16
16384	6.1035e-05	3.1044e-10	6.2089e-10	9.7700e-15	4.4409e-16
32768	3.0517e-05	7.7610e-11	1.5522e-10	0.0000e+00	8.8818e-16
65536	1.5259e-05	1.9402e-11	3.8820e-11	1.7764e-14	4.4409e-16
131072	7.6294e-06	4.8503e-12	9.7016e-12	2.7534e-14	1.7764e-15

