Age perturbations of COVID-19 pandemic excess mortality

Carlo Giovanni Camarda Enrique Acosta Tim Riffe

presented for WHO RGHS TF2

4 Oct, 2023

Data

Sources for overall deaths:

Source	Nr Countries	2020	2021
UNPD sources	32	32	11
Eurostat	32	32	30
WHO	17	17	6
HMD / STMF	14	14	7
National sources	4	4	3
TAG	3	3	1
Totals	102	102	58

- Criteria for selecting sources/year:
 - 2020 or 2021 must be available
 - prioritize source coherence with respect to longer periods
 - preference for more detailed age-groups
- Sources for exposures: WPP 2022 (single year of age)
- Age-range: 0-100
- By sex

Model

- For each population over age x, we have two mortality patterns:
 - $\eta^b(x,t)$ for the baseline log mortality age pattern derived from 2D *CP*-splines model fit to prepandemic mortality (t linear)
 - $\eta^p(x,t)$ for pandemic (2020 or 2021) observed log mortality
- We model data in 2020 (2021) as follows:

$$\eta^{p}(x) = \eta^{b}(x) + c + \delta(x)$$

- c overall excess scaling factor
- $\delta(x)$ age-perturbation component $(\sum \delta(x) = 0)$
- Both $\eta^b(x)$ and $\delta(x)$ are assumed to be smooth and all estimations are carried out within a Poisson framework
- The model is multiplicative at the force of mortality level:

$$e^{\eta^{p}(x)} = \mu^{p}(x) = e^{\eta^{b}(x)} e^{c} e^{\delta(x)} = \mu^{b}(x) e^{c} e^{\delta(x)}$$

• both e^c and $e^{\delta(x)}$ can be interpreted as relative risk factors

Age perturbation

- The scale-free age perturbation factor $\delta(x)$ is the main result.
- The age-free scalar e^c relates to marginal excess. It is estimated, but it could also be an external estimate.
- Given a marginal excess estimate (count), C, and an age-pattern of baseline mortality $\mu^b(x)$ (e.g. the projection from WPP 2022) then $D^b(x) = \mu^b(x) \cdot E(x)$, and $e^c = \frac{D^b + C}{D^b}$.
- Then deaths by age, $\widehat{D(x)} = D^b(x)e^c\delta(x)$
- But...

Example: Spain females baseline fit

Example: Spain 2020 females excess components

Example: Spain 2020 females excess deaths

Age perturbation components (multiplicative scale)

Exclusions: Conflict-related perturbations

Exclusions: Low signal (there are more)

Example: Latin America concave pattern

This is the only geographically homogeneous cluster we know of

(Helpful for Honduras, Venezuela, El Salvador, and Bolivia?)

Remaining steps for age perturbation analysis

- Fine tune smoothing constraints
- Sensitivity analysis on the linearity of the time-trends
- Identify further anomalies
- Cluster / describe $\delta(x)$ patterns