- 1. Problem set 1: C²-Cubic B-spline Interpolation
 - (a) Write the algorithm in Epperson, 2013, Section 2.6, for solving an $n \times n$ tridiagonal matrix. Note that the matrix is stored using three vectors. [10 marks]
 - (b) Let $f:[a,b] \to \mathbb{R}$ be sampled at $n+1 \ge 4$ equally spaced points $a=x_0 < x_1 < ... < x_n = b$. Write a function that will take as input the function values $\{f(x_i)\}_{i=0}^n$ and return the coefficients $\{c_i\}_{i=-1}^{n+1}$ of the *natural* C^2 -Cubic B-spline $q_3^n(x)$ that interpolates f. Use your code from the previous question to solve the tridiagonal system.
 - (c) Write a function that will take as input the coefficients $\{c_i\}_{i=-1}^{n+1}$, and the nodes $\{x_i\}_{i=0}^n$ and output the values of the spline q_3^n evaluated at 20n+1 uniformly spaced points $\{\hat{x}_j\}_{j=0}^{20n}$ on the interval [a,b]. Your code should also output the evaluation points $\{q_3^n(\hat{x}_j)\}_{j=0}^{20n}$. [10 marks]
 - (d) Test your code, from the previous question, for $f(x) = e^{-x} \cos(6\pi x)$ on the interval [-1,1] for n = 16, 32, 64, 128. For each n:
 - i Provide a plot of the spline $q_3^n(x)$.
 - ii Compute an approximation to the error $||f q_3^n||_{\infty, [-1,1]}$.

Plot
$$\log_{10}(\|f-q_3^n\|_{\infty,[-1,1]})$$
 against $\log_{10}(n)$. Comment on these results. [15 marks]

- 2. Problem set 2: LSQ approximation + Gaussian quadrature
 - (a) Let $f:[-1,1] \to \mathbb{R}$ be a function to be approximated using LSQ with Legendre basis functions. Write a function to integrate a function using a Gauss–Legendre quadrature with n=10 on the interval [-1,1]. You can either use a built-in function or take the table for n=10 in this link. Integrate $f(x)=e^{-x^2}$ from -1 to 1 using 10 quadrature points. Compare with the analytical solution

$$\int_{-1}^{1} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi} \, \mathrm{erf}(1). \tag{1}$$

[5 marks]

(b) Write a function that will compute the LSQ coefficients for a given f and n. Note that the Legendre polynomials may be obtained using the Bonnet's recurrence relation of Legendre polynomials:

$$n P_n(x) = (2n-1)x P_{n-1}(x) - (n-1) P_{n-2}(x)$$
(2)

with
$$P_0(x) = 1$$
 and $P_1(x) = x$. [10 marks]

2 MATH4064

(c) Test your code for $f(x) = e^{-x} \cos(\pi x)$ on the interval [-1,1] for n=3,5,7. For each n, provide a plot of the LSQ approximation. [15 marks]

- 3. Problem set 3: Nonlinearity
 - (a) Using finite differences, write a function to compute the Jacobian of a smooth vector-valued function $F: \mathbb{R}^n \to \mathbb{R}^n$, given by

$$J_F(x) = \frac{\partial F_i}{\partial x_i}(x) \approx \frac{F_i(x + \epsilon \, \boldsymbol{e}_j) - F_i(x)}{\epsilon},\tag{3}$$

where e_i is the canonical basis in the jth direction.

[10 marks]

(b) Write a function to solve the following nonlinear system of equations using Newton's method with the Jacobian approximated with $\epsilon=0.005,0.05,0.5$

$$F_1(x_1, x_2) = x_1^2 - x_2, F_2(x_1, x_2) = x_1^2 + x_2^2 + 2, \text{with } (x_1^{(0)}, x_2^{(0)}) = (2, 2).$$
 (4)

print the output (solution) for the last iteration and comment on your results. [15 marks]