

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE ENGENHARIAS CURSOS DE ENGENHARIA ELETRÔNICA DISCIPLINA FENÔMENOS DE TRANSPORTE

SISTEMA TROCA DE CALOR EFICIÊNCIA DE UM DISSIPADOR

Bruno Estima de Mattos Felipe Garcia de Leon Geandro Cristofari Goncalvez Mateus Roberto Albarracin Caselato

TURMA T1 - 1° SEMESTRE 2017

Objetivo:

Utilizar uma pastilha peltier para resfriar o interior de um objeto pequeno, simulando a troca de calor de uma geladeira ou um ar-condicionado. Demostrar o funcionamento, e calcular a eficiência do dissipador interno

Princípio do efeito Peltier

O efeito Peltier é o inverso do termopar: uma corrente elétrica é forçada a passar por junções de metais diferentes, resultando em aquecimento de uma e resfriamento de outra.

Os dispositivos práticos de efeito Peltier usam semicondutores para uma maior densidade de corrente e, assim, de potência.

Em geral o material semicondutor é telureto de bismuto altamente dopado para criar semicondutores tipo P e tipo N. A Figura 01 acima dá o esquema de funcionamento. Ao circular corrente pelas junções calor é transferido de uma para outra e o dispositivo

funciona como um refrigerador sem partes móveis.

Materiais utilizados

Um par de termômetros de temperatura ambiente.

Um par de dissipador 40x40x19,5

Dissipador de CPU de computador

Um recipiente

Um par de fans

Uma fonte 12v

Pasta termicamente

Circuito eletrônico

A montagem do circuito elétrico é simples todos elementos são alimentados em 12 volts todos em paralelo, foi utilizado um botam no lado positivo da fonte para fazer o acionamento, medindo o sistema em funcionamento temos uma corrente de de 2,6 A e uma voltagem de 12V estável da fonte, o que resulta em um consumo de 31,2 watts.

Conjunto montado externo

Conjunto montado interno

Resultados

Dissipadores pequenos nos dois lados, delta interno de 6°C, temperatura estável após uma hora do sistema ligado.

Com o dissipador grande do lado quente, delta interno de 13°C, temperatura estável após uma hora do sistema ligado.

Cálculos da eficiência do dissipador:

Tabela condutividade térmica alumínio

Temperature (K)	Temperature (°C)	Pressure (Pa)	Condutividade térmica (W/m K)
1	-272	101325	4110
2	-271	101325	8180
3	-270	101325	12100
4	-269	101325	15700
5	-268	101325	18800
6	-267	101325	21300
7	-266	101325	22900
8	-265	101325	23700
9	-264	101325	23900
10	-263	101325	23500
15	-258	101325	17600
20	-253	101325	11700
30	-243	101325	4950
40	-233	101325	2400
50	-223	101325	1350
60	-213	101325	850
70	-203	101325	585
80	-193	101325	432
90	-183	101325	342
100	-173	101325	302
150	-123	101325	248
200	-73	101325	237
250	-23	101325	235
300	27	101325	237
350	77	101325	240
400	127	101325	240
500	227	101325	236
600	327	101325	231
800	527	101325	218

Do site Fundamentos de engenharia.

http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Al

Tabela ordem de grandeza do coeficiente de transferência térmica ou de película(h)

Meio	kcal/h.m² °C
Ar, convecção natural	5-25
Vapor, convecção forçada	25-250
Óleo, convecção forçada	50-1500
Água, convecção forçada	250-10000
Água convecção em ebulição	2500-50000
Vapor, em condensação	5000-100000

Do livro INTRODUÇÃO À TRANSFERÊNCIA DE CALOR. Eduardo Emery Cunha Quites Luiz Renato Bastos Lia

Dados de entrada	Valor
As área dissipador m²	0,0016
Largura base m	0,04
b comprimento aleta m	0,04
espessura base m	0,0035
e (espessura aleta) m	0,001
l (Altura aleta) m	0,016
n (Número de aletas)	11
h (coeficiente de película) W /m² K	29,074501
k (condutividade térmica alumínio) W/m K	237
Ts Temperatura inicial °C	-10
T∞ Temperatura no infinito °C	25

Calculo eficiência da aleta

$$m = \sqrt{\frac{2.h}{k.e}} \qquad \eta = \frac{tagh(m.l)}{m.l}$$

m	15,6637
m.l (metros)	0,2506207
tanh(ml) (metros)	0,24550204
η	0,97957607
Eficiência	97,96%

Cálculo da área não aletada:

$$A_R = A_S - n.A_t = A_S - n.(b.e)$$

$$A_R = 0.00116 \text{ m}^2$$

Cálculo da área das aletas :

$$A_{A} = 2.(b.l).n$$

$$A_A = 0.01408 \text{ m}^2$$

Cálculo do fluxo de calor no dissipador interno:

$$\dot{q} = h(A_R + \eta A_A)(T_S - T_\infty)$$

$$\dot{q} = -15,2157065422492 \text{ W}$$