

Name:

Asia Technology Service Limited

Address: 1/F, A Building, Hao-yu Industrial Park, Qi-Feng road

DongGuan, 523001, China

TEST REPORT

FCC ID: YF7WITURA2009

Applicant: Witura Corporation Sdn bhd

Address: 101-12-03 & 04, Menara Perdana, Jalan Gurdwara, 10300 Penang, Malaysia

Equipment Under Test(EUT):

Name : GSM Remote Monitoring, Control and alarm system

Model : WT-2009, WT-9001, WT-9002, WT-009, WT-215,

WT-211,WT-1041,WT-1021,WT-1010,WT-1018 ,

WT-1011

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

Report No : ATS10051712

Date of Test : May 17---19, 2010

Date of Issue : May 21, 2010

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

Bruce

(Bruce)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Asia Technology Service Limited. Or test done by Asia Technology Service Limited. Approvals in connection with, distribution or use of the product described in this report must be approved by Asia Technology Service Limited. Approvals in writing.

Contents

1.	Gen	eral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Test Lab information	4
2.	Sum	nmary of test	5
	2.1.	Summary of test result	5
	2.2.	Assistant equipment used for test	5
	2.3.	Test mode	6
	2.4.	Test Environment Conditions.	6
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	6
	2.6.	Test Equipment	7
3.	Con	ducted Output power	8
	3.1.	Block Diagram of Test Setup	8
	3.2.	Limit	8
	3.3.	Test Procedure	8
	3.4.	Test Result	8
4.	POV	WER LINE CONDUCTED EMISSION	9
	4.1.	Conducted Emission Limits(15.209&249)	9
4.5.6.	4.2.	Test Setup	9
	4.3.	Test Procedure.	10
	4.4.	Test Resluts	10
5.	Rad	iated Output power	12
	5.1.	Block Diagram of Test Setup	12
	5.2.	Limit	12
	5.3.	Test Procedure	12
	5.4.	Test Result	13
6.	Occi	upied Bandwidth	14
	6.1.	B lock Diagram of Test Setup	
	6.2.	Limit	14
	6.3.	Test Procedure	14
	6.4.	Test Result	15
	6.5.	Orginal test data	15
7.	Freq	quency stability	19
	7.1.	Block Diagram of Test Setup	19
	7.2.	Limit	19
	7.3.	Test Procedure	19
	7.4.	Test Result	20
8.	Con	ducted spurious emissions	22
	8.1.	Block Diagram of Test Setup	22
	8.2.	Limit	22
	8.3.	Test Procedure	22
	8.4.	Test Result	22
9.	Rad	iated Spurious emissions	29
	9.1.	Block Diagram of Test Setup	29

Report No.: ATS10051712

36
35
33
32
32
32
32
30
29
29

1. General Information

1.1. Description of Device (EUT)

EUT : GSM Remote Monitoring, Control and alarm system

Model No. : WT-2009, WT-9001, WT-9002, WT-009, WT-215,

WT-211,WT-1041,WT-1021,WT-1010,WT-1018,WT-1011

DIFFERENT : All the modle are totally identical, just for different factory

Power supply : DC 12V POWER SUPPLY ADAPTER

Radio Technology : GSM/GPRS 850/900/1800/1900

GPRS Multislot Class : Class 10

Power class : GSM/GPRS 850/900: Class 4

GSM/GPRS 1800/1900: Class 1

Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

FCC Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

Modulation : GMSK

Antenna Type : External antenna, Gain:2.5dBi

Applicant : Witura Corporation Sdn bhd

Address : 101-12-03 & 04, Menara Perdana, Jalan Gurdwara,

10300 Penang, Malaysia

Manufacturer : ShenZhen Witura Telecommunications Co.,Ltd.

Address : Huangmabu Village, Xixiang Town, Baoan Zone, ShenZhen,

China

1.2. Test Lab information

Asia Technology Service Limited 1/F, A Building, Hao-yu Industrial Park, Qi-Feng road DongGuan, 523001, China

FCC Registered No.:583180

FCC ID: YF7WITURA2009 Page 4 of 38

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results	
	FCC PART 2: 2.1046		
Conducted Output power	FCC PART 22H: 22.913 (a)	PASS	
	FCC PART 24E: 24.232 (c)		
	FCC PART 22H:22.913 (a)	PASS	
Radiated Output power(erp/eirp)	FCC PART 24E:24.232(c)	PASS	
	FCC PART 2: 2.1049		
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS	
	FCC PART 24E: 24.238 (b)		
	FCC PART 2: 2.1055		
Frequency stability	FCC PART 22H: 22.355	PASS	
	FCC PART 24E: 24.235		
Conducted spurious emission	FCC PART 2: 2.1051		
-	FCC PART 22H: 22.917	PASS	
(Antenna terminal)	FCC PART 24E: 24.238		
	FCC PART 2: 2.1053		
Radiated spurious emissions	FCC PART 22H: 22.917	PASS	
	FCC PART 24E: 24.238		
DI I I I	FCC PART 22H: 22.917 (b)	DAGG	
Block edge compliance	FCC PART 24E: 24.238 (b)	PASS	
	FCC Part 15: 15.207	DA GG	
Power Line Conducted Emission Test	ANSI C63.4: 2003	PASS	

2.2. Assistant equipment used for test

N/A

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
	128	824.2
GSM 850	190	836.6
	251	848.8
	512	1850.2
PCS 1900	661	1880.0
	810	1909.8

2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	16/06/2009	1Year
Spectrum analyzer	Agilent	E4443A	MY46185649	06/06/2009	1Year
Receiver	R&S	ESCI	100492	04/06/2009	1Year
Receiver	R&S	ESCI	101202	07/01/2010	1Year
Bilog Antenna	Sunol	JB3	A121206	04/06/2009	1Year
Horn Antenna	EMCO	3115	640201028-06	04/06/2009	1Year
Power Meter	Anritsu	ML2487A	6K00001491	23/02/2010	1Year
ETS Horn Antenna	ETS	3160	SEL0076	12/08/2009	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	15/06/2009	1Year
Cable	Resenberger	N/A	No.1	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.2	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.3	04/06/2009	1Year
Pre-amplifier	R&S	AFS42-00101 800-25-S-42	SEL0081	18/06/2009	1Year
Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	18/06/2009	1Year
Base station	Agilent	E5515C	GB44300243	08/05/2010	1 Year
Temperature controller	Terchy	MHQ	120	08/05/2010	1Year
Power divider	Anritsu	K240C	020346	08/05/2010	1 Year
Signal Generator	HP	83732B	VS3449051	08/05/2010	1 Year
Attenuator	Agilent	8491B	MY39262165	08/05/2010	1 Year
GPS Signal	Welnavigate	GS50	6423517	N/A	N/A

Report No.: ATS10051712

3. Conducted Output power

3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure

- (1) The EUT's RF output port was connected to base station.
- (2) Set EUT at maximum power level through base station by power level command
- (3) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.4. Test Result

EUT:GSM Remote Monitoring, Control and alarm system M/N: WT-2009							
Power: DC 12V POWER SUPPLY ADAPTER							
Ambient Temp	perature:24℃	Relative Humio	dity: 62%				
Test date: 201	0-05-18	Test site: RF sit	te Teste	d by: Breeze	e		
Conclusion: P.	ASS						
Mode	Channel	PK Output	ERP	EIRP	Li	mit	
		Power(dBm)	(dBm)	(dBm)	ERP(dBm)	EIRP(dBm)	
	128	30.82	31.17	/	38.5	/	
GSM 850	190	30.71	31.06	/	38.5	/	
	251	30.68	31.03	/	38.5	/	
	512	28.24	/	30.74	/	33	
PCS 1900	661	28.17	/	30.67	/	33	
	810	28.29	/	30.79	/	33	
Note: EIRP=Pk output power +Antenna Gain(2.5dBi);							
ERP=PK output power + Antenna Gain(2.5dBi) -2.15							

4. POWER LINE CONDUCTED EMISSION

4.1. Conducted Emission Limits(15.209&249)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 -0.50	66 -56*	56 - 46*		
0.50 -5.00	56	46		
5.00 -30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

4.2. Test Setup

4.3. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4-2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

4.4. Test Resluts

PASS

Detailed information please see the following page.

Report No.: ATS10051712

EUT	GSM Remote Monitoring,Control and alarm system	Model Name	WT-2009	
Temperature	25°C	Relative Humidity	56%	
Pressure	960hPa	Test voltage DC 12VPOW SUPPLY ADAPTER		
Test Mode	Noraml			

FREQ	PEAK	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	RAW	RAW	RAW	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.242	48.37			63.35	53.35		-4.98	L1
0.290	47.54			61.97	51.97		-4.43	L1
0.806	35.46			56.00	46.00		-10.54	L1
1.013	35.46			56.00	46.00		-10.54	L1
11.691	43.18			60.00	50.00		-6.82	L1
13.791	43.62			60.00	50.00		-6.38	L1
0.305	48.17			61.55	51.55		-3.38	L2
0.405	38.53			58.69	48.69		-10.16	L2
0.802	33.71			56.00	46.00		-12.29	L2
1.113	33.46			56.00	46.00		-12.54	L2
11.675	42.74			60.00	50.00		-7.26	L2
17.655	38.36			60.00	50.00		-11.64	L2

Note: L1=Line One (Live Line) /L2= Line Two (Neutral Line)

5. Radiated Output power

5.1. Block Diagram of Test Setup

5.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz	
38.5dBm(ERP)	33dBm(EIRP)	

5.3. Test Procedure

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz,VBW= 3MHz and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then the EUT's

EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP - 2.15

5.4. Test Result

EUT: GSM Remote	Monitoring,	Control and a	larm system M/N:	WT-2009	
Power: DC 12V POW	ER SUPPLY	ADAPTER			
Ambient Temperature:23°C		Relative Humidity: 60%			
Test date: 2010-05-18			Test site: RF site	Tested by: Breeze	
Conclusion: PASS					
Mode	Channel	LVL	Correction	ERP	EIRP
		(dBm)	factor(dB)	(dBm)	(dBm)
	128	1.02	30.42	29.29	/
GSM 850	190	1.68	30.21	29.74	/
	251	1.24	30.05	29.14	/
	512	-21.48	46.80	/	25.32
PCS 1900	661	-21.49	46.45	/	24.96
	810	-21.51	46.58	/	25.07
ERP=LVL+Correctio	n factor -2.15				
EIRP=LVL+Correction	on factor				

6. Occupied Bandwidth

6.1. B lock Diagram of Test Setup

6.2. Limit

N/A

6.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

•

6.4. Test Result

EUT: GSM Remote M	Ionitoring, Control	l and alarm system M	/N: WT-2009	
Power: DC 12V POWE	R SUPPLY ADAP	TER		
Ambient Temperature:23°C Relative Humidity: 60%				
Test date: 2010-05-18		Test site: RF site	Tested by: Breeze	
Mode	Channel	99% bandwidth	-26dBc bandwidth	
		(KHz)	(KHz)	
	128	244.84	305.639	
GSM 850	190	246.31	317.54	
	251	245.03	311.36	
	512	246.65	309.01	
PCS 1900	661	246.00	315.44	
	810	247.68	311.02	

6.5. Orginal test data

GSM 850 CH128

GSM 850 CH190

GSM 850 CH251

PCS 1900 CH512

PCS 1900 CH661

PCS 1900 CH810

7. Frequency stability

7.1. Block Diagram of Test Setup

7.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
± 2.5 ppm	Must stay within the authorized frequency block

7.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from 15V to 9V(Note)
- 3. The variation in frequency was measured for the worst case.

7.4. Test Result

EUT: GSM Remote Mo	onitoring, Contro	ol and alarm system M/N	: WT-2009	
Power: DC 12V POWE	R SUPPLY ADA	APTER		
Ambient Temperature:23 ℃		Relative Humidity: 60%		
Test date: 2010-05-18		Test site: RF site	Tested by: Breeze	
Conclusion:PASS				
Mode	Voltage	Frequency error	frequency error	
	(V)	(Hz)	(ppm)	
	15V	29	0.035	
	14V	-27	-0.032	
CSM 950	13V	-27	-0.032	
GSM 850 CH 190	12V	-25	-0.030	
	11V	31	0.037	
	10V	-33	-0.039	
	9V	31	0.037	
	15V	-33	-0.018	
	14V	39	0.021	
PCS 1900	13V	37	0.020	
PCS 1900 CH661	12V	-36	-0.019	
СПООТ	11V	-31	-0.016	
	10V	-39	-0.021	
	9V	-32	-0.017	

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-30	27	0.032
	-20	-25	-0.030
	-10	-19	-0.023
GSM 850	0	30	0.036
CH190	10	-29	-0.035
C11190	20	-22	-0.026
	30	22	0.026
	40	-27	-0.032
	50	24	0.029
	-30	-24	-0.013
	-20	-27	-0.014
	-10	38	0.020
PCS 1900	0	-19	-0.010
CH661	10	-29	-0.015
СПООТ	20	25	0.013
	30	-24	-0.013
	40	-23	-0.012
	50	23	0.012

8. Conducted spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

8.3. Test Procedure

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low,middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

8.4. Test Result

PASS

Test Mode: GSM 850 CH 128

Test Mode: GSM 850 CH 190

Test Mode: GSM 850 CH 251

Test Mode: GSM 1900 CH 512

Test Mode: GSM 1900 CH 661

Test Mode: GSM 1900 CH 810

9. Radiated Spurious emissions

9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (43 + 10 log P) dB, in this case, -13dBm.

9.3. Test Procedure

- 1. The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz,VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then final

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction

factor and ERP = EIRP - 2.15

9.4. Test Result

EUT: GSM Re	mote Monitori	ng, Control a	nd alarm syster	n M/N: WT-20	009	
Power: DC 12	V POWER SU	PPLY ADAP	TER			
Test Date: 2010-05-18 Test site: RF			Chamber Tested by: Breeze			
Ambient Temperature: 24°C Relative Humidity: 60%						
Conclusion:PA	SS					
			Test result			
Test Mode: G	SM 850 CH1	28				
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (ERP)(dBm)	Limit (dBm)	Margin (dB)
1648.4	Н	-59.34	11.50	-49.99	-13	36.99
1648.4	V	-57.23	10.56	-48.82	-13	35.82
Test Mode: 0	GSM 850 CH	[190				
1673.2	Н	-65.12	10.94	-56.33	-13	43.33
2509.8	Н	/	/	/	-13	/
1673.2	V	-61.43	10.90	-52.68	-13	39.68
2509.8	V	/	/	/	-13	/
Test mode: GS	M 850 CH25	1				
1697.6	Н	-64.32	11.67	-54.8	-13	41.8
2546.4	Н	/	/	/	-13	/
1697.6	V	-59.23	11.13	-50.25	-13	37.25
2546.4	V	/	/	/	-13	/

Frequency	Antenna	LVL	Correction	Result	Limit	Margin
(MHz)	polarization	(dBm)	factor(dB)	(EIRP)(dBm)	(dBm)	(dB)
3700.4	Н	-55.43	8.57	-46.86	-13	33.86
5550.6	Н	/	/	/	-13	/
3700.4	V	-53.12	8.37	-44.75	-13	31.75
5550.6	V	/	/	/	-13	/
Test Mode:	GSM 1900 C	H661				
3760	Н	-54.19	8.75	-45.44	-13	32.44
5640	Н	/	/	/	-13	/
3760	V	-54.34	8.55	-45.79	-13	32.79
5640	V	/	/	/	-13	/
Test mode: GS	SM 1900 CH8	10				
3819.6	Н	-56.23	8.94	-47.29	-13	34.29
5729.4	Н	/	/	/	-13	/
3819.6	V	-55.12	8.72	-46.40	-13	33.40
5729.4	V	/	/	/	-13	/

10. Block Edge Compliance

10.1.Block Diagram of Test Setup

10.2.Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

10.3. Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.

10.4. Test Result

PASS

Test Mode: GSM 850

Test Mode: GSM 1900

11. Testsetup photo

12.Photos of EUT

