Centro de Estatística Aplicada

Gustavo Kanno¹ Rodrigo Marcel Araujo² Victor Ribeiro Baião Decanini³

Julho de 2021

Sumário

Análise das séries temporais mensais	4
Análise Descritiva	4
Funções de Autocorrelações	5
Análise Correlação Cruzada	6
Selecionado as variáveis de interesse do estudo	7
Modelo da Bovinocultura	8
Regressão classifica no contexto de Séries Temporais	9
Regressão com erros autocorrelacionais	
Modelo da Avicultura de Corte	
Regressão classica no contexto de Séries Temporais	
Modelo da Pescados	
Regressão classifica no contexto de Séries Temporais	
Regressão com erros autocorrelacionais	
Modelo da Avicultura de postura	
Regressão classifica no contexto de Séries Temporais	
Regressão com erros autocorrelacionais	
Modelo do Lácteos	
Regressão classifica no contexto de Séries Temporais	
Análise dos resíduos e seleção de variáveis de acordo com p-valor	15
Modelo do Suinocultura	
Modelo do Sumocultura	. 10
Estruturando a base	15
Regressão classifica no contexto de Séries Temporais	
Análise das séries temporais anuais	16
Análise Descritiva	17
Regressão Lasso para Bovinocultura	17
Regressão Lasso para o Pescado	18
Regressão Lasso para a Avicultura de Corte	18
Regressão Lasso para Avicultura de Postura	19
Regressão Lasso para o Lácteos	19
Regressão Lasso para Suinocultura	

 $^{^{1}}$ Número USP: 9795810 2 Número USP: 9299208 3 Número USP: 9790502

```
library(randtests)
##
## Attaching package: 'randtests'
## The following object is masked from 'package:tseries':
##
##
       runs.test
library(zoo)
library(TSA)
## Registered S3 methods overwritten by 'TSA':
##
     method
                  from
##
     fitted.Arima forecast
##
     plot.Arima
                 forecast
##
## Attaching package: 'TSA'
## The following object is masked from 'package:GeneCycle':
##
##
       periodogram
## The following object is masked from 'package:readr':
##
##
       spec
## The following objects are masked from 'package:stats':
##
##
       acf, arima
## The following object is masked from 'package:utils':
##
##
       tar
library(gridExtra)
library(FitAR)
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:faraway':
##
##
       melanoma
```

```
## Loading required package: leaps
## Loading required package: ltsa
## Loading required package: bestglm
##
## Attaching package: 'FitAR'
## The following object is masked from 'package:forecast':
##
##
       BoxCox
## The following object is masked from 'package:car':
##
##
       Boot
library(glmnet)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-1
library(astsa)
##
## Attaching package: 'astsa'
## The following objects are masked from 'package:fma':
##
##
       chicken, sales
## The following object is masked from 'package:forecast':
##
##
       gas
## The following object is masked from 'package:fpp2':
##
##
       oil
```

```
## The following object is masked from 'package:faraway':
##
## star
library(lmtest)
```

Análise das séries temporais mensais

Análise Descritiva

```
#leitura dos dados
data = read_xlsx("IPCA_DADOS_AGRUPADOS.xlsx", sheet = 1)
#dados
data$Data <- as.Date(data$Data)</pre>
head(data)
# series temporais
zt2 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt7 <- ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt13 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt14 <- ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,15], frequency = 12, start = 2007, end = 2019)
zt16 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt20 <- ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
zt22 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt23 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt24 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)
plot(zt2, main="Série Temporal do Arroz", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(2, 2))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(zt5, main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")
plot(zt6,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")
```

```
\#par(mfrow = c(3, 2))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt8,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")
plot(zt9,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")
plot(zt10,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")
plot(zt11, main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")
plot(zt12,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(3, 2))
plot(zt13,main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
plot(zt14,main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")
plot(zt16,main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")
plot(zt17,main="Série Temporal do Laranja e Citrus", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal da Lácteos", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(3, 2))
plot(zt19,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")
plot(zt21, main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
plot(zt23,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")
plot(zt24,main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")
par(mfrow = c(2, 1))
plot(zt21, main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
#900#650
par(mfrow = c(2, 1))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
par(mfrow = c(2, 1))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
```

Funções de Autocorrelações

Funções de Autocorrelações para Avicultura de Corte

```
#Funções de Autocorrelações para Avicultura de Corte
par(mfrow = c(1, 2))
acf(zt3, main="ACF Avicultura de Corte")
pacf(zt3, main="PACF Avicultura de Corte")
```

Funções de Autocorrelações para Avicultura de Postura

```
#Funções de Autocorrelações para Avicultura de Postura
par(mfrow = c(1, 2))
acf(zt4, main="ACF Avicultura de Postura")
pacf(zt4, main="PACF Avicultura de Postura")
```

Funções de Autocorrelações para Suinocultura

```
#Funções de Autocorrelações para Suinocultura
par(mfrow = c(1, 2))
acf(zt22, main="ACF Suinocultura")
pacf(zt22, main="PACF Suinocultura")
```

Funções de Autocorrelações para Pescado

```
#Funções de Autocorrelações para Pescado
par(mfrow = c(1, 2))
acf(zt21, main="ACF Pescado", lag.max = 36)
pacf(zt21, main="PACF Pescado", lag.max = 36)
```

Funções de Autocorrelações para Lácteos

```
#Funções de Autocorrelações para Lácteos
par(mfrow = c(1, 2))
acf(zt18, main="ACF Lácteos", lag.max = 48)
pacf(zt18, main="PACF Lácteos", lag.max = 48)
```

Funções de Autocorrelações para Bovinocultura

```
#Funções de Autocorrelações para Bovinocultura
par(mfrow = c(1, 2))
acf(zt7, main="ACF Bovinocultura")
pacf(zt7, main="PACF Bovinocultura")
```

Análise Correlação Cruzada

Correlaões cruzadas da Bovincultura

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(zt7,zt3,main="Bovinocultura e Avicultura de Corte")
ccf(zt7,zt4,main="Bovinocultura e Avicultura de Postura")
ccf(zt7,zt18,main="Bovinocultura e Lácteos")
ccf(zt7,zt21,main="Bovinocultura e Pescados")
ccf(zt7,zt22,main="Bovinocultura e Suinocultura")
```

Correlações cruzadas da Avicultura de Corte

```
#Correlações cruzadas da Avicultura de Corte
par(mfrow = c(3,2))
ccf(zt3,zt4,main="Avicultura de Corte e Avicultura de Postura")
ccf(zt3,zt7,main="Avicultura de Corte e Bovinocultura")
ccf(zt3,zt18,main="Avicultura de Corte e Lácteos")
ccf(zt3,zt21,main="Avicultura de Corte e Pescados")
ccf(zt3,zt22,main="Avicultura de Corte e Suinocultura")
```

Correlações cruzadas da Avicultura de Postura

```
#Correlações cruzadas da Avicultura de Postura
par(mfrow = c(3,2))
ccf(zt4,zt3,main="Avicultura de Postura e Avicultura de Corte")
ccf(zt4,zt7,main="Avicultura de Postura e Bovinocultura")
ccf(zt4,zt18,main="Avicultura de Postura e Lácteos")
ccf(zt4,zt21,main="Avicultura de Postura e Pescados")
ccf(zt4,zt22,main="Avicultura de Postura e Suinocultura")
```

Correlações cruzadas dos Lácteos

```
#Correlações cruzadas dos Lácteos
par(mfrow = c(3,2))
ccf(zt18,zt3,main="Lácteos e Avicultura de Corte")
ccf(zt18,zt4,main="Lácteos e Avicultura de Postura ")
ccf(zt18,zt7,main="Lácteos e Bovinocultura")
ccf(zt18,zt21,main="Lácteos e Pescados")
ccf(zt18,zt22,main="Lácteos e Suinocultura")
```

Correlaões cruzadas dos Pescados

```
# Correlaões cruzadas dos Pescados
par(mfrow = c(3,2))
ccf(zt21,zt3,main="Pescados e Avicultura de Corte")
ccf(zt21,zt4,main="Pescados e Avicultura de Postura")
ccf(zt21,zt7,main="Pescados e Bovinocultura")
ccf(zt21,zt18,main="Pescados e Lácteos")
ccf(zt21,zt22,main="Pescados e Suinocultura")
```

Correlações cruzadas da Suinocultura

```
#Correlações cruzadas da Suinocultura
par(mfrow = c(3,2))
ccf(zt22,zt3,main="Suinocultura e Avicultura de Corte")
ccf(zt22,zt4,main="Suinocultura e Avicultura de Postura")
ccf(zt22,zt7,main="Suinocultura e Bovinocultura")
ccf(zt22,zt18,main="Suinocultura e Lacteos")
ccf(zt22,zt21,main="Suinocultura e Pescados")
```

Selecionado as variáveis de interesse do estudo

Essa função retorna a coluna com a lag a ser considerada na análise

```
#Essa função retorna a coluna com a lag a ser considerada na análise

funcao_lags = function(df,coluna,nome,lag){
    n = nrow(df)
    pre = rep(NA,lag)
    newcol = c(pre,coluna)
    for (k in 1:lag){
        df = rbind(df,rep(NA,ncol(df)))
    }
    df[nome] = newcol
    return (df)
}
```

A função a baixo retira as variáveis do modelo em função do p-valor

```
#A função a baixo retira as variáveis do modelo em função do p-valor
tirar_variaveis = function(p,d,q,x,y){
    v = p + q + 1
    max = 0.06
    while (max > 0.05){
        model = Arima(y,order=c(p,d,q),xreg = x)
        ct = coeftest(model)
        pvalues = ct[(v+1):nrow(ct),4]
        maxi = which.max(pvalues)
        max = ct[v + maxi,4]
        if (max > 0.05) {
            x = x[,-maxi]
            }
        lista = list(ct, x)
        return (lista)
}
```

A seguir vamos selecionar apenas as variáveis de interesse para análise

```
#A seguir vamos selecionar apenas as variáveis de interesse para análise
data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S
```

Modelo da Bovinocultura

Estruturando a base

```
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp9', 9)
df1 <- funcao_lags(df1, df1$Pescado, 'p3', 3)
df1 <- funcao_lags(df1, df1$Pescado, 'p10', 10)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'b1', 1)</pre>
df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Bovinocultura~.,df2)[,-1]
y = df2$Bovinocultura
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

Análise dos Resíduos

```
#Análise dos Resíduos
acf2(resid(fit))
```

Regressão com erros autocorrelacionais

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
#Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
fit2[[1]]
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
acf2(fit3$residuals)
fit4 = Arima(y,order=c(1,0,0),xreg=xx)
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals)
fit5 <- tirar_variaveis(1, 0, 0, xx, y)</pre>
fit5[[1]]
xx <- fit5[2]
xx < -xx[[1]]
```

```
fit6 = Arima(y,order=c(1,0,0),xreg=xx,fixed=c(NA,NA, NA, NA))
cof.fit6 = coeftest(fit6)
cof.fit6
checkresiduals(fit6)
acf2(fit6$residuals, main = "")
```

Modelo da Avicultura de Corte

Estruturando a base

```
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Corte', 'cort1', 1)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos12', 12)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui1', 1)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui6', 6)</pre>
df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Corte'~.,df2)[,-1]
y = df2$'Avicultura de Corte'
```

Regressão classica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

Análise dos Resíduos

```
#Análise dos Resíduos
acf2(resid(fit))
```

Seleção de variáveis

```
#Seleção de variáveis
fit2 <- tirar_variaveis(0, 0, 0, x, y)
xx <- fit2[2]
xx <- xx[[1]]
fit3 = Arima(y,order=c(0,0,0), include.mean = FALSE, xreg=xx)</pre>
```

```
fit3
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
```

Modelo da Pescados

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(df1_df1$Pescado, 'pes5', 5)
df1 <- funcao_lags(df1, df1$Pescado, 'pes5', 5)
df1 <- funcao_lags(df1, df1$Pescado, 'pes12', 12)

df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort3', 3)
df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort8', 8)

df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos2', 2)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos9', 9)

df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov7', 7)

df1 <- funcao_lags(df1, df1$Lácteos, 'lact2', 2)
df1 <- funcao_lags(df1, df1$Lácteos, 'lact2', 2)
df1 <- funcao_lags(df1, df1$Lácteos, 'lact2', 3)</pre>
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui3', 3)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Pescado~.,df2)[,-1]
y = df2$Pescado
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

```
# Análise dos Resíduos
acf2(resid(fit))
```

Regressão com erros autocorrelacionais

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
y = ts(y, frequency=12)
x = x[,-1]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-15]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-1]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-14]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-9]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-11]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-3]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
```

```
x = x[,-5]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-4]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
```

Modelo da Avicultura de postura

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Postura', 'avp12', 12)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc5', 5)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)
df1 <- funcao_lags(df1, df1$Lácteos, 'lact11', 11)
df1 <- funcao_lags(df1, df1$Pescado, 'pes2', 2)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)</pre>
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Postura'~.,df2)[,-1]
y = df2$'Avicultura de Postura'
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

Análise dos Resíduos

```
# Análise dos Resíduos
acf2(resid(fit))
```

Regressão com erros autocorrelacionais

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2<- tirar_variaveis(0, 0, 0, x, y)
fit2[1]
xx <- fit2[2]
xx<- xx[[1]]

fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals)

fit4 = Arima(y,order=c(3,0,0),xreg=xx,include.mean = FALSE,fixed=c(0,0,NA,NA,NA,NA))
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals, main = "")</pre>
```

Modelo do Lácteos

Estruturando a base

```
# Estruturando a base

df1<- funcao_lags(data_cut, data_cut$Lácteos, 'lact1', 1)

df1<- funcao_lags(df1, df1$'Avicultura de Postura', 'avp1', 1)

df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc6', 6)

df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov2', 2)

df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)

df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)</pre>

df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Lácteos~.,df2)[,-1]
y = df2$Lácteos
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

Análise dos Resíduos

```
# Análise dos Resíduos
acf2(resid(fit))
```

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)

fit2[1]
xx <- fit2[2]
xx<- xx[[1]]

fit3 = Arima(y,order=c(0,0,0),xreg=xx,include.mean = FALSE)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")</pre>
```

Modelo do Suinocultura

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Suinocultura, 'su1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc6', 6)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc10', 10)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df2 <- na.omit(df1)</pre>
```

Separando variável preditora e as covariáveis

```
# Separando variável preditora e as covariáveis
x = model.matrix(Suinocultura~.,df2)[,-1]
y = df2$Suinocultura
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1</pre>
```

Análise dos Resíduos

```
# Análise dos Resíduos
acf2(resid(fit))
```

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)
fit2[1]
xx <- fit2[2]
xx<- xx[[1]]

fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals)

fit4 = Arima(y,order=c(2,0,0),xreg=xx,fixed =c(0,NA,NA,NA,NA,NA))
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals, main = "")</pre>
```

Análise das séries temporais anuais

```
library(readxl)
data_anual = read_xlsx("Cadeia-Ano.xlsx")
```

Análise Descritiva

```
# Análise das séries temporais anuais
head(data anual)
# Análise Descritiva
z_avc = data_anual$'Avicultura de Corte'
z_{avc} = ts(z_{avc})
z_avp = data_anual$'Avicultura Postura'
z_{avp} = ts(z_{avp})
z_bov = data_anual$'Bovinocultura de corte'
z_bov = ts(z_bov)
z_lac = data_anual$'Lácteos'
z_{lac} = ts(z_{lac})
z_pesc = data_anual$Pescado
z_{pesc} = ts(z_{pesc})
z_suino = data_anual$Suinocultura
z_suino = ts(z_suino)
# Análise Descritiva
par(mfrow = c(3,2))
plot(z avc,main="Série Temporal da Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(z_avp,main="Série Temporal da Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(z_lac,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
plot(z_pesc,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(z_bov,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(z_suino,main="Série Temporal da Suinocultura", xlab= "Anos", ylab="IPCA")
```

Definindo variáveis do modelo

```
# Variáveis do modelo
library(glmnet)

colnames(data_anual) = c("ANO", "AVC", "AVP", "BOV", "LAC", "PESC", "SUIN")
data_anual = data_anual[,-1]
```

Regressão Lasso para Bovinocultura

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(z_bov,z_avc,main="Bovinocultura e Avicultura de Corte")
ccf(z_bov,z_avp,main="Bovinocultura e Avicultura de Postura")
ccf(z_bov,z_lac,main="Bovinocultura e Lácteos")
ccf(z_bov,z_pesc,main="Bovinocultura e Pescado")
```

```
ccf(z_bov,z_suino,main="Bovinocultura e Suinocultura")
acf(z_bov, main = "ACF da Bovinocultura")

# Regressão LASSO
x = model.matrix(BOV~ .,data=data_anual)[,-1]
y = data_anual$BOV

cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)

coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para o Pescado

```
# Pescados
par(mfrow = c(3,2))
ccf(z_pesc,z_avc,main="Pescado e Avicultura de Corte")
ccf(z_pesc,z_avp,main="Pescado e Avicultura de Postura")
ccf(z_pesc,z_bov,main="Pescado e Bovinocultura")
ccf(z_pesc,z_lac,main="Pescado e Lácteos")
ccf(z_pesc,z_suino,main="Pescado e Suinocultura")
acf(z pesc, main = "ACF do Pescado")
# Regressão Lasso
x = model.matrix(PESC~ .,data=data_anual)[,-1]
y = data_anual$PESC
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para a Avicultura de Corte

```
# Avicultura de Corte

par(mfrow = c(3,2))
ccf(z_avc,z_avp,main="Avicultura de Corte e Avicultura de Postura")
ccf(z_avc,z_bov,main="Avicultura de Corte e Bovinocultura")
ccf(z_avc,z_lac,main="Avicultura de Corte e Lácteos")
ccf(z_avc,z_pesc,main="Avicultura de Corte e Pescado")
ccf(z_avc,z_suino,main="Avicultura de Corte e Suinocultura")
acf(z_avc, main = "ACF da Avicultura de Corte")
```

```
## Regressão Lasso

x = model.matrix(AVC~ .,data=data_anual)[,-1]
y = data_anual$AVC

cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)

coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para Avicultura de Postura

```
# Avicultura de Postura
par(mfrow = c(3,2))
ccf(z_avp,z_avc,main="Avicultura de Postura e Avicultura de Corte")
ccf(z_avp,z_bov,main="Avicultura de Postura e Bovinocultura")
ccf(z_avp,z_lac,main="Avicultura de Postura e Lácteos")
ccf(z_avp,z_pesc,main="Avicultura de Postura e Pescado")
ccf(z_avp,z_suino,main="Avicultura de Postura e Suinocultura")
acf(z_avp, main = "ACF Avicultura de Postura")
# Regressão Lasso
x = model.matrix(AVP~ .,data=data_anual)[,-1]
y = data_anual$AVP
par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para o Lácteos

```
# Lacteos
par(mfrow = c(3,2))
ccf(z_lac,z_avc,main="Lácteos e Avicultura de Corte")
ccf(z_lac,z_avp,main="Lácteos e Avicultura de Postura")
ccf(z_lac,z_bov,main="Lácteos e Bovinocultura")
ccf(z_lac,z_pesc,main="Lácteos e Pescado")
ccf(z_lac,z_suino,main="Lácteos e Suinocultura")
acf(z_lac, main = "ACF do Lácteos")

# Regressão Lasso
```

```
x = model.matrix(LAC~ .,data=data_anual)[,-1]
y = data_anual$LAC

par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)

coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para Suinocultura

```
# Suinocultura
par(mfrow = c(3,2))
ccf(z_suino,z_avc,main="Suinocultura e Avicultura de Corte")
ccf(z_suino,z_avp,main="Suinocultura e Avicultura de Postura")
ccf(z_suino,z_bov,main="Suinocultura e Bovinocultura")
ccf(z_suino,z_lac,main="Suinocultura e Lacteos")
ccf(z_suino,z_pesc,main="Suinocultura e Pescado")
acf(z_suino, main = "ACF da Suinocultura")
# Regressão Lasso para
x = model.matrix(SUIN~ .,data=data_anual)[,-1]
y = data_anual$SUIN
par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
```