Parametric inference for hypoelliptic stochastic diffusion

Anna Melnykova

Université de Cergy-Pontoise, Université de Grenoble Alpes

DynStoch 2018, June 2018 Porto, Portugal

Example 1: Stochastic Damping Hamiltonian System

$$\begin{cases} dX_t = Y_t dt \\ dY_t = -(c(X_t, Y_t)Y_t + \nabla V(X_t))dt + \sigma(X_t, Y_t)dW_t \end{cases}$$

- \triangleright $V(X_t)$ potential
- ightharpoonup coefficient
- $ightharpoonup \sigma(X_t, Y_t)$ diffusion coefficient

Examples: noisy Van der Pol oscillator, Kramer's oscillator, linear oscillator.

Example 2: Hypoelliptic FitzHugh-Nagumo model

The behaviour of the neuron is defined through

$$\begin{cases} dX_t = \frac{1}{\varepsilon} (X_t - X_t^3 - Y_t - s) dt \\ dY_t = (\gamma X_t - Y_t + \beta) dt + \sigma dW_t \end{cases}$$

- $ightharpoonup X_t$ membrane potential
- $ightharpoonup Y_t$ recovery variable
- ightharpoonup s magnitude of the stimulus current
- Parameters to be estimated are $\theta = (\gamma, \beta, \varepsilon, \sigma)$.

Example 3: Stochastic approximation of Hawkes process

Interacting system of neurons is described by:

$$dZ_t = A(Z_t)dt + B(Z_t)dW_t.$$

- \triangleright κ populations (= κ rough variables)
- ► $\sum_{i=1}^{\kappa} \eta_i$ memory variables (smooth variables)
- N neurons

$$A(z) = \begin{pmatrix} -\nu_{1}z^{1} + z^{2} \\ -\nu_{1}z^{2} + z^{3} \\ \vdots \\ -\nu_{1}z^{\eta_{1}+1} + c_{1}f_{2}(z^{\eta_{1}+2}) \\ -\nu_{2}z^{\eta_{1}+2} + z^{\eta_{1}+3} \\ \vdots \\ -\nu_{n}z^{\kappa} + c_{n}f_{1}(z^{1}) \end{pmatrix}, \quad B(z) = \frac{1}{\sqrt{N}} \begin{pmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & \frac{c_{1}}{\sqrt{\rho_{2}}} \sqrt{f_{2}(z^{\eta_{1}+2})} \\ 0 & 0 \\ \vdots & \vdots \\ \frac{c_{n}}{\sqrt{\rho_{1}}} \sqrt{f_{1}(z^{1})} & 0 \end{pmatrix}$$

$$\mathbf{Reference:} \quad \text{Ditlevsen and Löcherbach (2017)}$$

$$\begin{pmatrix} 0\\ \vdots\\ \frac{c_1}{\sqrt{p_2}}\sqrt{f_2(\mathbf{z}^{\eta_1+2})}\\ 0\\ \vdots\\ 0 \end{pmatrix}$$

Reference: Ditlevsen and Löcherbach (2017)

Model and assumptions

$$\begin{cases} dX_t = a_1(X_t, Y_t; \theta) dt \\ dY_t = a_2(X_t, Y_t; \theta) dt + b(X_t, Y_t; \sigma) dW_t, \end{cases}$$
(1)

- $ightharpoonup Z_t := (X_t, Y_t)^T \in \mathbb{R} \times \mathbb{R},$
- $A(Z_t;\theta) := (a_1(X_t,Y_t;\theta), a_2(X_t,Y_t;\theta))^T \text{drift term},$
- ► $B(Z_t; \sigma) := \begin{pmatrix} 0 & 0 \\ 0 & b(X_t, Y_t; \sigma) \end{pmatrix}$ degenerate diffusion coefficient,
- $ightharpoonup dW_t$ is a standard Brownian motion,
- $(\theta, \sigma) \in \Theta_1 \times \Theta_2$ vector of the unknown parameters.

Goal:

Estimation of (θ, σ) from $(X_i, Y_i)^T$, $i \in 1, ..., N$ on time interval [0, T], $T = N\Delta$. $T \to \infty, \Delta \to \mathbf{0}$

Model and assumptions

- **A1** $a_1(x, y; \theta)$ and $a_2(x, y; \theta)$ have bounded partial derivatives of every order, uniformly in θ . Furthermore $\partial_y a_1 \neq 0 \quad \forall (x, y) \in \mathbb{R}^2$ (ensures hypoellipticity).
- A2 Global Lipschitz and linear growth conditions (ensures existence of a unique strong solution).
- **A3** Process Z_t is **ergodic** and there exists a unique invariant probability measure ν_0 with finite moments of any order.
- **A4** $a_1(Z_t;\theta)$ and $a_2(Z_t;\theta)$ are **identifiable**, that is $a_i(Z_t;\theta) = a_i(Z_t;\theta) \Leftrightarrow \theta = \theta_0$.

Model and assumptions

Difficulties:

- ightharpoonup Degenerate diffusion coefficient \longrightarrow non-invertible covariance matrix of the approximated transition density
- lacktriangle Each coordinate has a variance of different order \longrightarrow numerical instabilities

Solution:

- ► Use a high-order scheme to "catch" the propagated noise in all coordinates
- ► Build a quasi-maximum likelihood estimator based on the approximated density

Related works

► Stochastic Damping Hamiltonian Systems:

- Ozaki (1989), consistency is later proven in León et al. (2018): Local linearization scheme
- Samson and Thieullen (2012): 1-dimensional contrast, Euler Scheme,
- Pokern et al. (2007): Bayesian approach,
- Cattiaux et al. (2014), Cattiaux et al. (2016): non-parametric approach
- ▶ Linear homogeneous systems: Le-Breton and Musiela (1985).
- ► General systems: Ditlevsen and Samson (2017): 1.5 strong order scheme

For Hamiltonian systems with constant diffusion coefficient: see Ozaki (1989), and León et al. (2018) for consistency.

Generalization (Melnykova, 2018)

On each small time interval of size Δ we approximate (1) by

$$d\mathcal{Z}_s = J_{\tau} \mathcal{Z}_s ds + B(Z_{\tau}; \sigma) d\tilde{W}_s, \quad \mathcal{Z}_0 = Z_{\tau}, \quad s \in (\tau, \tau + \Delta].$$
 (2)

- ▶ \mathcal{Z}_0 observation of the true process $\{Z_t\}$ at time τ
- ▶ J_{τ} is the Jacobian. **Assumption**: When Δ is small enough, $J_{t} = const$ and $J_{t}Z_{t} = A(Z_{t}; \theta)$.

Solution of (2) has an explicit form:

$$\mathcal{Z}_s = Z_{\tau} e^{J_{\tau} s} + \int_{\tau}^{s} e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_v, \quad \forall s \in (\tau, \tau + \Delta]$$

For Hamiltonian systems with constant diffusion coefficient: see Ozaki (1989), and León et al. (2018) for consistency.

Generalization (Melnykova, 2018)

On each small time interval of size Δ we approximate (1) by

$$d\mathcal{Z}_s = J_{\tau} \mathcal{Z}_s ds + B(Z_{\tau}; \sigma) d\tilde{W}_s, \quad \mathcal{Z}_0 = Z_{\tau}, \quad s \in (\tau, \tau + \Delta].$$
 (2)

- ▶ \mathcal{Z}_0 observation of the true process $\{Z_t\}$ at time τ
- ▶ J_{τ} is the Jacobian. **Assumption:** When Δ is small enough, $J_{t} = const$ and $J_{t}Z_{t} = A(Z_{t}; \theta)$.

Solution of (2) has an explicit form:

$$\mathcal{Z}_s = Z_{\tau} e^{J_{\tau} s} + \int_{\tau}^{s} e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_{v}, \quad \forall s \in (\tau, \tau + \Delta].$$

First and second moment of \mathcal{Z}_s on each Δ -interval:

$$\begin{split} \mathbb{E}[\mathcal{Z}_s] &= Z_{\tau} e^{J_{\tau} s} \\ \Sigma(\mathcal{Z}_s; \theta, \sigma^2) &= \mathbb{E}\left[\left(\int_{\tau}^s e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_v\right) \left(\int_{\tau}^s e^{J_{\tau}(s-v)} B(Z_{\tau}; \sigma) d\tilde{W}_v\right)^T\right]. \end{split}$$

The approximation of the solution of (1) at time $i\Delta$:

$$Z_{i+1} = \bar{A}(Z_i; \theta) + \bar{B}(Z_i; \theta, \sigma)\Xi_i,$$

- $ightharpoonup \Xi_i$ standard Gaussian 2-dimensional random vector
- $ightharpoonup \bar{A}$ is a discrete approximation of $\mathbb{E}[\mathcal{Z}_s]$.
- $ightharpoonup \bar{B}$ any matrix s. t. $\bar{B}\bar{B}^T = \Sigma(\mathcal{Z}_s; \theta, \sigma^2)$.

Proposition (Discretization of the covariance matrix)

The second-order Taylor approximation of matrix $\Sigma(\mathcal{Z}_{\Delta}; \theta, \sigma^2)$ defined in (10) has the following form:

$$b^{2}(Z_{\tau};\sigma)\begin{pmatrix} \left(\partial_{y}a_{1}\right)^{2}\frac{\Delta^{3}}{3} & (\partial_{y}a_{1})\frac{\Delta^{2}}{2}+(\partial_{y}a_{1})(\partial_{y}a_{2})\frac{\Delta^{3}}{3} \\ \left(\partial_{y}a_{1}\right)\frac{\Delta^{2}}{2}+(\partial_{y}a_{1})(\partial_{y}a_{2})\frac{\Delta^{3}}{3} & \Delta+(\partial_{y}a_{2})\frac{\Delta^{2}}{2}+(\partial_{y}a_{2})^{2}\frac{\Delta^{3}}{3} \end{pmatrix}+\mathcal{O}(\Delta^{4}),$$

where the derivatives are computed at time τ .

Contrast estimator

The contrast function is defined as follows:

$$\mathcal{L}(\theta, \sigma^2; Z_{0:N}) = \frac{1}{2} \sum_{i=0}^{N-1} (Z_{i+1} - \bar{A}(Z_i; \theta))^T \Sigma_{\Delta}^{-1} (Z_{i+1} - \bar{A}(Z_i; \theta)) + \sum_{i=0}^{N-1} \log \det(\Sigma_{\Delta}).$$

The estimator is then:

$$(\hat{\theta}, \hat{\sigma}^2) = \operatorname*{arg\,min}_{\theta, \sigma^2} \mathcal{L}(\theta, \sigma^2; Z_{0:N})$$

Theorem

Under assumptions (A1)-(A4) and $\Delta_N \to 0$ and $N\Delta_N \to \infty$ the following holds:

$$(\hat{\theta}, \hat{\sigma}^2) \xrightarrow{\mathbb{P}_{\theta}} (\theta_0, \sigma_0^2)$$

Outline of the proof

- ► Ergodic theorem convergence in probability of the approximated density to true transition density
- ► Identifiability of the diffusion coefficient:

$$\underset{\sigma^2}{\arg\min} \lim_{\Delta \to 0, N \to \infty} \frac{1}{N} \mathcal{L}_{N,\Delta_N}(\theta, \sigma^2; Z_{0:N}) \to \sigma_0^2$$

- ▶ Parameters of the drift term are identifiable under different scaling!
 - · Smooth variable:

$$\arg\min_{\theta}\lim_{\Delta\to 0,N\to\infty}\frac{\Delta_{N}}{N}\left[\mathcal{L}_{N,\Delta_{N}}(\theta,\sigma_{0}^{2};Z_{0:N})-\mathcal{L}_{N,\Delta_{N}}(\theta_{0},\sigma_{0}^{2};Z_{0:N})\right]\to\theta_{0}$$

· Rough variable:

$$\arg\min_{\psi}\lim_{\Delta\to 0, N\to\infty}\frac{1}{\mathsf{N}\Delta_{\mathsf{N}}}\left[\mathcal{L}_{\mathsf{N},\Delta_{\mathsf{N}}}(\varphi_0,\psi,\sigma_0^2;\mathsf{Z}_{0:\mathsf{N}})-\mathcal{L}_{\mathsf{N},\Delta_{\mathsf{N}}}(\varphi_0,\psi_0,\sigma_0^2;\mathsf{Z}_{0:\mathsf{N}})\right]\to \psi_0$$

Outline of the proof

- ► Ergodic theorem convergence in probability of the approximated density to true transition density
- ► Identifiability of the diffusion coefficient:

$$\underset{\sigma^2}{\arg\min} \lim_{\Delta \to 0, N \to \infty} \frac{1}{N} \mathcal{L}_{N,\Delta_N}(\theta, \sigma^2; Z_{0:N}) \to \sigma_0^2$$

- ► Parameters of the drift term are identifiable under different scaling!
 - · Smooth variable:

$$\arg\min_{\theta}\lim_{\Delta\to 0,N\to\infty}\frac{\Delta_{N}}{N}\left[\mathcal{L}_{N,\Delta_{N}}(\theta,\sigma_{0}^{2};Z_{0:N})-\mathcal{L}_{N,\Delta_{N}}(\theta_{0},\sigma_{0}^{2};Z_{0:N})\right]\to\theta_{0}$$

· Rough variable:

$$\arg\min_{\psi}\lim_{\Delta\to 0, N\to\infty}\frac{1}{\mathsf{N}\Delta_{\mathsf{N}}}\left[\mathcal{L}_{\mathsf{N},\Delta_{\mathsf{N}}}(\varphi_0,\psi,\sigma_0^2;\mathsf{Z}_{0:\mathsf{N}})-\mathcal{L}_{\mathsf{N},\Delta_{\mathsf{N}}}(\varphi_0,\psi_0,\sigma_0^2;\mathsf{Z}_{0:\mathsf{N}})\right]\to \psi_0$$

Numerical performance: FitzHugh-Nagumo model

- ▶ Data (1000 trajectories) generated with N = 500000, $\Delta = 0.0001$
- Contrast is minimized with respect to subsampled data $(N = 50000, \Delta = 0.001)$
- ► Minimization: optim in R, method: Conjugate Gradient

	γ	β	arepsilon	σ
Set 1:	1.5	0.3	0.1	0.6
Lin. contrast	1.477 (1.056)	0.289 (0.428)	0.100 (0.561)	0.672 (0.291)
1.5 scheme	1.497 (1.055)	0.299 (0.393)	0.099 (0.563)	0.597 (0.288)
Set 2:	1.2	1.3	0.1	0.4
Lin. contrast	1.199 (0.531)	1.315 (0.621)	0.102 (0.683)	0.472 (0.340)
1.5 scheme	1.221 (0.645)	1.324 (0.777)	0.088 (0.575)	0.398 (0.338)

Table: Comparison between presented scheme and the method presented in Ditlevsen and Samson (2017) (separate estimation of parameters presented in each equation)

Conclusions

Strong points:

- Straightforward implementation
- All parameters are estimated simultaneously

Weak points:

- Numerical instability due to the different order of variance
- Sensitivity to the initial value of the parameters
- ► Asymptotic normality?

Future work:

- ► Partial observation case
- Multidimensional system

Acknowledgements

Financial support: LabEx PERSYVAL-Lab, LABEX MME-DII, Laboratoire Jean Kuntzmann (University of Grenoble Alpes), AGM (University of Cergy-Pontoise).

Literature

- Cattiaux, P., León, J. R., and Prieur, C. (2014). Estimation for stochastic damping hamiltonian systems under partial observation. ii drift term. *ALEA*, 11(1):p-359.
- Cattiaux, P., León, J. R., Prieur, C., et al. (2016). Estimation for stochastic damping hamiltonian systems under partial observation. iii. diffusion term. *The Annals of Applied Probability*, 26(3):1581–1619.
- Ditlevsen, S. and Löcherbach, E. (2017). Multi-class oscillating systems of interacting neurons. SPA, 127:1840–1869.
- Ditlevsen, S. and Samson, A. (2017). Hypoelliptic diffusions: discretization, filtering and inference from complete and partial observations. *submitted*.
- Le-Breton, A. and Musiela, M. (1985). Some parameter estimation problems for hypoelliptic homogeneous gaussian diffusions. Banach Center Publications, 16(1):337–356.
- León, J., Rodriguez, L., and Ruggiero, R. (2018). Consistency of a likelihood estimator for stochastic damping hamiltonian systems. totally observed data.
- Melnykova, A. (2018). Parametric inference for multidimensional hypoelliptic diffusion with full observations. *ArXiv e-prints*.
- Ozaki, T. (1989). Statistical identification of nonlinear random vibration systems. *Journal of Applied Mechanics*, 56:186–191.
- Pokern, Y., Stuart, A. M., and Wiberg, P. (2007). Parameter estimation for partially observed hypoelliptic diffusions. J. Roy. Stat. Soc., 71(1):49–73.
- Samson, A. and Thieullen, M. (2012). Contrast estimator for completely or partially observed hypoelyetic with the complete of the complete of