Algorithm Design & Analysis (CSE222)

Lecture-22

Recap

- Network Flow
 - Min Cut
 - Max-Flow Min-Cut Theorem

Scaling Max-Flow

CAPACITY-SCALING(G)

Foreach edge $e \in E$: $f(e) \leftarrow 0$.

 $\Delta \leftarrow$ largest power of $2 \leq C$.

WHILE
$$(\Delta \geq 1)$$

 $G_f(\Delta) \leftarrow \Delta$ -residual network of G with respect to flow f. WHILE (there exists an $s \sim t$ path P in $G_f(\Delta)$)

$$f \leftarrow AUGMENT(f, c, P)$$
.

Update $G_f(\Delta)$.

 $\Delta ext{-scaling phase}$

$$\Delta \leftarrow \Delta / 2$$
.

RETURN f.

Outline

Scaling Max-Flow

Shortest Path

Observation

- If the capacities are integers then the flow and the residual capacities are also integers.
- At $\Delta = 1$ we get $G_f(\Delta) = G_f$.
- When it terminates, the flow f is the maximum flow.

It is important to analyze the number of augmentation done in each phase, fixed $\boldsymbol{\Delta}$

Claim: There are at most 1+log C scaling phases in the algorithm.

Claim: There are at most 1+log C scaling phases in the algorithm.

Proof:

- The total capacity is C.
- Starting with Δ ' = C, in every subsequent phase we update $\Delta = \Delta$ '/2.
- So at max the the algorithm goes over 1 + log C scaling phases.

Claim: Let f be a flow at the end of Δ -scaling phase. There is an s-t cut (A,B) such that $c(A,B) \leq |f| + m\Delta$. So possible max flow is $|f| + m\Delta$.

<u>Proof</u>: Let A be the set of all nodes such that there is path s-v in $G_f(\Delta)$ & B = V \ A.

(A,B) is a cut: $s \in A$ as there is always a path s-s.

As, no path s-t in $G_f(\Delta)$ so, $t \notin A$ hence, $t \in B$.

Claim: Let f be a flow at the end of Δ -scaling phase. There is an s-t cut (A,B) such that $c(A,B) \leq |f| + m\Delta$. So possible max flow is $|f| + m\Delta$.

<u>Proof</u>: Let A be the set of all nodes such that there is path s-v in $G_f(\Delta)$ & B = V \ A.

(u, v) is saturated

(u', v') carries

no flow.

with flow.

(A,B) is a cut.

• Let, e = (u,v) be an edge such that $u \in A$ and $v \in Residual graph B$

• Then c(e) < f(e) + Δ . As no forward edge on e in $G_f(\Delta)$.

• Let e' = (u',v') edge in G, $u' \in B \& v' \in A$.

• Then $f(e') < \Delta$. As no backward edge in $G_f(\Delta)$.

 So all edge from A are almost saturated and all edge into A are almost unused.

So,
$$|f| = f^{out}(A) - f^{in}(A) > \sum_{e \text{ from } A^*} [c(e) - \Delta] - \sum_{e \text{ into } A^*} \Delta > \sum_{e \text{ from } A^*} c(e) - m\Delta = c(A,B) - m\Delta$$
.

Claim: Let f be a flow at the end of Δ -scaling phase. There is an s-t cut (A,B) such that $c(A,B) \leq |f| + m\Delta$. So possible max flow is $|f| + m\Delta$.

<u>Proof</u>: Let A be the set of all nodes such that there is path s-v in $G_f(\Delta)$ & B = V \ A. (A,B) is a cut.

(u, v) is saturated

with flow.

(u', v') carries

no flow.

- Let, e = (u,v) be an edge such that $u \in A$ and $v \in Residual graph B$
- Then c(e) < f(e) + Δ . As no forward edge on e in $G_f(\Delta)$.
- Let e' = (u',v') edge in G, $u' \in B \& v' \in A$.
- Then $f(e') < \Delta$. As no backward edge in $G_f(\Delta)$.
- So all edge from A are almost saturated and all edge into A are almost unused.

So, $c(A,B) < |f| + m\Delta$. Hence max flow is at most $|f| + m\Delta$.

Claim: Number of augmentations in a scaling phase is at most 2m.

Proof:

- At first phase it is trivially true as every edge is used for only one path s-t.
- At any intermediate scaling phase Δ , let f_p be the flow by the end of the previous phase.
- In the previous phase we used $\Delta' = 2\Delta$.
- By previous claim $|f^*| \le |f_p| + m\Delta' = |f_p| + 2m\Delta$
- In the Δ -scaling phase each augmentation increases the flow by at least Δ
- So, there can be at most 2m augmentations.

- There are 1 + log₂C scaling phases.
- In each phase there are at most 2m computations of augmenting paths.
- Every augmentation takes O(m) time.

<u>Claim</u>: Total running time of Scaling Max Flow is $O(m^2 \cdot log_2 C)$.

Is it better than Ford-Fulkerson algorithm?

Outline

Scaling Max-Flow

Shortest Path

- In the residual graph, choose the shortest (#edges) path s-t.
- Let f_i be the flow after i^{th} augmentation step. So f_0 : $E \rightarrow 0$.
- Let G_i be the corresponding residual graph. So, $G_0 = G$.
- For each node v level_i(v) be the simple shortest path s-v or level of v in BFS(s).
- If v is unreachable from s in G_i then level_i(v) = ∞ .

Claim: The level of a vertex can only increase over time.

<u>Claim</u>: For every node v and integer i > 0, level_i(v) \ge level_{i-1}(v).

Proof: Fix a node v and prove by induction.

Inductive hypothesis: assume for every node u, level_i(u) \geq level_{i-1}(u).

- If v=s then $level_i(v) = level_i(s) = 0$.
- If no path s-v then level_i(v) = ∞ ≥ level_{i-1}(v).
- Let $s \rightarrow ... \rightarrow u \rightarrow v$ be simple shortest path s-v in G_i . So, level_i(v) = level_i(u) + 1 \geq level_{i-1}(u) + 1.
 - o If u→v is an edge in G_{i-1} , then level_{i-1}(v) ≤ level_{i-1}(u) + 1. As levels are defined by BFS(s).
 - o If $u \rightarrow v$ is not an edge in G_{i-1} then its reverse $v \rightarrow u$ must be an edge in i^{th} augmenting path.
 - This is simple shortest path s-t in G_{i-1}. So, level_{i-1}(v) = level_{i-1}(u) 1 ≤ level_{i-1}(u) + 1.
- So we conclude, $\operatorname{level}_{i}(v) \ge \operatorname{level}_{i-1}(u) + 1 \ge \operatorname{level}_{i-1}(v) 1 + 1 = \operatorname{level}_{i-1}(v)$.

<u>Claim</u>: Each edge u→v disappears from the residual graphs G_i at most |V|/2 times.

Proof:

- Let u→v edge is in two residual graph G_i and G_{j+1} but not in any intermediate G_i for i < l < j, for some i < j+1.
- So, $u \rightarrow v$ must be in the ith augmenting path. So, level_i(v) = level_i(u) + 1.
- So, $v \rightarrow u$ must be in the jth augmenting path. So, level_j(u) = level_j(v) + 1 or level_j(v) = level_j(u) 1.

We know that,

 $level_{j}(u) = level_{j}(v) + 1 \ge level_{j}(v) + 1 = level_{j}(u) + 2.$

- The level difference between appearance and disappearance is 2.
- There are at most |V| possible labels, so #disappearance is at most |V|/2.

Running time

- Each edge disappears at most V/2 times.
- There are EV/2 many number of disappearance.
- Each iteration takes O(E) time to compute the simple shortest s-t path.
- Finally the running time is $O(VE^2)$.

Reference

Slides

Jeff Erickson Chp-10

Algorithms Design by Kleinberg & Tardos - Chp 7.3