Image Processing

1st Sessional Syllabus 2023

- 1. Introduction
 - What is Digital Image Processing?
 - Applications of DIP in Various bands of Electromagnetic Spectrum
 - Fundamentals steps of DIP
 - Components of Image Processing System.
- 2. Digital Image Fundamentals
 - Elements of Visual Perception
 - Structure of Human Eye, Match Band Effect, Optical illusions, Weber Ratio
 - o Brightness Adaptation
 - o Image Formation
 - Image Sensing and Acquisition
 - o Single Sensor, Sensor Strip and Sensor Array.
 - Image Formation Model
 - Image Sampling and Quantization
 - Some Basic Relationships between Pixels
 - o Neighborhood of Pixel, Connectivity, Region and Boundary
- 3. Intensity Transformations and Spatial filtering
 - Some basic Intensity Transformation Functions
 - o Image Negatives
 - Log Transformations
 - Power-Law (Gamma) Transformations
 - Piecewise Linear Transformation Functions
 - Contrast Stretching
 - o Intensity Level Slicing
 - Bit Plane Slicing
 - Histogram Processing
 - Histogram Equalization
 - O Histogram Matching (Specification)
 - Local Histogram Processing
 - Using Histogram Statistics for Image Enhancement
 - Fundamentals of Spatial Filtering
 - o The Mechanics of Spatial filtering
 - Spatial Correlation and Convolution
 - Vector Representation of Linear Filtering
 - Generating Spatial Filter Masks
 - Smoothing Spatial Fixters
 - Smoothing Linear Filters
 - o Order-Statistic (Nonlinear Filters)
 - Sharpening Spatial filters

VU-4

- o Foundation
- Using Second Derivative for Image Processing The Laplacian
- Unsharp Masking and High Boost Filtering
- Using First-Order Derivative for (Nonlinear) Image Sharpening the Gradient.
- Combining spatial enhancement Methods.
- 4. Filtering in Frequency Domain
 - Preliminary Concepts
 - o Complex Numbers
 - Fourier Series
 - o Impulses and their Sifting Property
 - o The Fourier Transform of Functions of One Continuous Variable
 - Convolution
 - Sampling and the Fourier Transform of Sampled Functions
 - o Sampling
 - o The Fourier Transform of Sampled Functions
 - o The Sampling Theorem
 - Extension to functions of Two variables
 - o The 2D impulse and its sifting property
 - o The 2D Continuous Fourier Transform Pair