CS736 Assignment 2

Adish Shah and Padakanti Akshay Kiran

March 2022

Contents

1	Problem 1			
	1.1	d) Initial Pointsets	2	
	1.2	e)	3	
	1.3	f)	4	
	1.4	g)	5	
		1.4.1 Results based on codel1	5	
		1.4.2 Results based on code22	6	
2	Problem 2			
	2.1	d) Initial Pointsets	7	
	2.2	e)	8	
	2.3		9	
	2.4		10	
		9/	10	
			11	
3	Pro	oblem 3	12	
	3.1	Procrustes Distance	12	
	3.2		12	
	3.3		12	
	3.4		12	
	3.5		$\frac{12}{12}$	

1 Problem 1

1.1 d) Initial Pointsets

Figure 1: Scatter plot

Figure 2: Each pointset represented by polylines

1.2 e)

Figure 3: Result based on code11

Figure 4: Result based on code22

1.3 f)

Figure 5: Result based on code 11. First two eigenvalues are significantly greater than other eigenvalues which are close to $0\,$

Figure 6: Result based on code22

1.4 g)

1.4.1 Results based on code11

Figure 7: First Mode of variation

Figure 8: Second Mode of variation

Figure 9: Third mode of variation

1.4.2 Results based on code22

Figure 10: First Mode of variation

Figure 11: Second Mode of variation

Figure 12: Third mode of variation

2 Problem 2

2.1 d) Initial Pointsets

Figure 13: Scatter plot

Figure 14: Each pointset represented by polylines

2.2 e)

Figure 15: Result based on code11

Figure 16: Result based on code22

2.3 f)

Figure 17: Result based on code 11. First two eigenvalues are significantly greater than other eigenvalues which are close to $0\,$

Figure 18: Result based on code22

2.4 g)

2.4.1 Results based on code11

Figure 19: First Mode of variation captures

Figure 20: Second Mode of variation $\,$

Figure 21: Third mode of variation

2.4.2 Results based on code22

Figure 22: First Mode of variation

Figure 23: Second Mode of variation

Figure 24: Third mode of variation

3 Problem 3

3.1 Procrustes Distance

The simplest way to define proximity is just the magnitude of the Euclidean norm of the difference between the two shape vectors in \mathbb{R}^{dN} which is the square of the Procrustes distance between the shapes. Procrustes distance between z_1 and z_2 (resulting from aligning z_2 to z_1 by similarity transformations is

$$min_{\theta,T,s} \sum_{n=1,...,N} ||z_{1n} - sM_{\theta}z_{2n} - T||$$

where s is the scaling factor, M_{θ} is the rotation matrix of dimensions $d \times d$ and T represents a translation in \mathbb{R}^d .

3.2 K - means algorithm in the Shape space

We apply the k-means algorithm to the points X_1, X_2, \ldots, X_n by using the Procrustes distance and Procrustes Mean.

3.3 Objective Function

$$W(\mathcal{C}, [Z_1], \dots, [Z_k]) = \sum_{i=1}^k \sum_{l \in C_i} Procrustes_distance([X_l], [Z_i])$$

3.4 Algorithm for clustering

- 1. **Initialisation condition** The starting centroid vector can be assigned in different ways: at random, using prior information, etc. In our application we will choose it at random.
- 2. Given a vector of shapes $Z = ([Z_1], \ldots, [Z_k])$ $[Z_i] \in \sum_{1}^{n}$ $i = 1, \ldots, k$ we minimize with respect to $C = (C_1, \ldots, C_k)$ assigning each shape $([X_1], \ldots, [X_n])$ to the class whose centroid has the minimum Procrustes distance to it.
- 3. Given C, we minimize with respect to the vector shapes Z, taking $Z = ([\hat{\mu_1}], \dots, [\hat{\mu_k}])$, and $[\hat{\mu_i}]$ i = 1, ..., k, the Procrustes mean of shapes in C_i . This is calculated using the algorithm mentioned below.
- 4. Repeat steps 2 and 3 till convergence.
- 5. **Stopping condition** When the value of the objective function doesn't decrease further, we stop.

3.5 Algorithm to find the Procrustes Means

1. Center the configurations to remove location. Let $X_i, i = 1, ..., n$ be the configurations. Initially let

$$X_i^P = X_i, i = 1, \dots, n$$

2. Calculate $G = \frac{1}{n} \sum_{i=1}^{n-1} \sum_{j=i+1}^n ||X_i^P - X_j^P||^2$ For the ith configuration let

$$\overline{X}_{(i)} = \frac{1}{n-1} \sum_{j \neq i} X_i^P$$

We can optimise $||\overline{X}_{(i)} - X_i^P M||^2$ over rotations. Set $X_i^P = X_i^P \hat{M}$, where \hat{M} is the optimal rotation matrix. Repeat this for all i. Calculate the new G value. This process is repeated until G can't be reduced further.

- 3. For the ith configuration calculate $\hat{\beta}_i = \frac{\sum_{k=1}^n ||X_k^P||^2}{||X_i^P||^2} \phi_i$, where ϕ_i is the ith component of the eigenvector ϕ corresponding to the largest eigenvalue of the correlation matrix ϕ of the $vector(X_i^P)$. Set $X_i^P = \hat{\beta}_i X_i^P$. Repeat this for all i and calculate the new G value.
- 4. Repeat steps 2 and 3 until G cannot be reduced further.

5.

$$[\hat{\mu}] = \frac{1}{n} \sum_{i}^{n} X_{i}^{P}$$