Signal Analyzer Fundamentals and New Applications

Microwave & Communications
Division

Erik Diez Senior Product Manager March 13, 2013

Agenda

Introduction

Overview:

- What is Spectrum and Signal Analysis?
- What Measurements are available?

Theory of Operation

Specifications

Modern Signal Analyzer Designs & Capabilities

Wide Bandwidth Vector Measurements

Wrap-up

Appendix

Analyzer Definitions

Spectrum Analyzer

- "A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals."

Vector Signal Analyzer

- "A vector signal analyzer measures the magnitude and phase of an input signal at a single frequency within the IF bandwidth of the instrument. The primary use is to make in-channel measurements, such as error vector magnitude, code domain power, and spectral flatness, on known signals."

Signal Analyzer

– "A signal analyzer provides the functions of a spectrum analyzer and a vector signal analyzer."

Frequency versus Time Domain

What is Spectrum Analysis?

Spectrum Analysis

- Display and measure amplitude versus frequency for RF & MW signals
- Separate or demodulate complex signals into their base components (sine waves)

Different Types of Analyzers

FFT Analyzer

Different Types of Analyzers

Swept Analyzer

Types of Measurements Available

Frequency, power, modulation, distortion noise

- Spectrum monitoring

- Spurious emissions
 Scalar network analysis
 Noise figure & phase noise
 Harmonic & intermodulation distortion
- Analog, digital, burst & pulsed RF Modulation
 Wide bandwidth vector analysis
 Electromagnetic interference

- Measurement range (-172 dBm to +30 dBm)Frequency range (3 Hz to 750 GHz)

Agenda

Introduction

Overview

Theory of Operation:

Swept Spectrum Analyzer Hardware

Specifications

Modern spectrum analyzer designs & capabilities

Wide Bandwidth Vector Measurements

Wrap-up

Appendix

Swept Spectrum Analyzer Block Diagram

Display terminology

Theory of Operation Mixer

IF Filter (Resolution Bandwidth – RBW)

Envelope Detector

Digitally Implemented Detection Types

- Positive detection: largest value in bin displayed
 - Negative detection: smallest value in bin displayed
- ★ Sample detection: middle value in bin displayed

Other Detectors: Normal (Rosenfell), Average (RMS Power)

*Sweep points

Power Average Detection (rms) = Square root of the sum of the squares of ALL of the voltage data values in the bin $/50\Omega$

Video Filter (Video Bandwidth – VBW)

Video Filter vs. Trace/Video averaging

<u>Trace averaging</u> for 1, 5, 20, and 100 sweeps, top to bottom (trace position offset for each set of sweeps)

- <u>Video Filter</u> operates as the sweep progresses, sweep time may be required to slow down by the transient response of the VBW filter.
- <u>Trace/Video Average</u> takes multiple sweeps, sweep time for each sweep is not affected
- Many signals give the same results with either video filtering or trace averaging

Agenda

Overview

Theory of Operation

Specifications:

Which are important and why?

Modern spectrum analyzer designs & capabilities

Wide Bandwidth Vector Measurements

Wrap-up

Appendix

Key Specifications

- Frequency Range
- Accuracy: Frequency & Amplitude
- Resolution
- Sensitivity
- Distortion
- Dynamic Range

A Definition

Specifications describe the performance of parameters covered by the product warranty (temperature = 0 to 55°C, unless otherwise noted).

Typical values describe additional product performance information that is not covered by the product warranty. It is performance beyond specification that 80 % of the units exhibit with a 95 % confidence level over the temperature range 20 to 30° C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

Frequency Range

Description	<u>Specifications</u>
<u> </u>	

Internal Mixing

Bands

0 112 10 010 011	
	3 Hz to 3.6 GHz

1 3.5 to 8.4 GHz

2 8.3 to 13.6 GHz

3 13.5 to 17.1 GHz

4 17 to 26.5 GHz

5 26.4 to 34.5 GHz

6 34.4 to 50 GHz

Accuracy: Frequency Readout Accuracy

*Horizontal resolution is span/(sweep points - 1)

Accuracy: Frequency Readout Accuracy Example

Frequency: 1 GHz
Span: 400 kHz
RBW: 3 kHz
Sweep points: 1000

```
      Calculation: (1x10^9Hz) \times (\pm 1.55x10^{-7}/Year ref. Error)
      = 155Hz

      400kHz Span \times 0.1\%
      = 400Hz

      3kHz RBW \times 5\%
      = 150Hz

      2Hz + 0.5 \times 400kHz/(1000-1)
      = 202Hz

      Total uncertainty
      = ±907Hz
```

** The Maximum # of sweep points for the X-Series is 40,001 which helps to achieve the best frequency readout accuracy

^{*}Utilizing internal frequency counter improves accuracy to ±155Hz

SpecificationsAmplitude Accuracy

Components which contribute to uncertainty are:

- Input mismatch (VSWR)
- RF Input attenuator (Atten. switching uncertainty)
- Mixer and input filter (frequency response)
- IF gain/attenuation (reference level accuracy)
- RBW filters (RBW switching uncertainty)
- Log amp (display scale fidelity)
- Calibrator (amplitude accuracy)

Amplitude Accuracy: Reference Level Switching

Uncertainty applies when changing the Ref. Level

Also called IF Gain Uncertainty

Decision: Do I change the reference level or live with the display fidelity uncertainty in my measurements?

However with today's X-series analyzers, provided the attenuation remains unchanged, the signal no longer needs to be at the reference level for the most accurate measurement.

Accuracy: Display Fidelity

Display Fidelity includes:

- Log Amp Fidelity
- Envelope Detector Linearity
- Digitizing Circuit Linearity

Display fidelity error applies when signals are not at the same reference level amplitude when measured

In the past, technique for best accuracy was to move each measured signal to the reference line, eliminating display fidelity error.

Display Scale Fidelity of analyzers with digital IF are superior to those with analog IF i.e. X-series analyzers have +/- 0.1 db vs. ESA, 856xEC +/- 1.0 db

Display Fidelity

Resolution: Resolution BW

Determines resolvability of equal amplitude signals

Resolution BW Selectivity or Shape Factor

Determines resolvability of unequal amplitude signals

Resolution BW Selectivity or Shape Factor

Resolution: RBW Type and Selectivity

Typical Selectivity

Analog 15:1

Digital ≤5:1

* The X-series RBW shape factor is 4.1:1

Resolution: Noise Sidebands

Noise Sidebands can prevent resolution of unequal signals

Resolution: RBW Determines Sweep Time

Penalty For Sweeping Too Fast Is An Uncalibrated Display

Resolution: RBW Type Determines Sweep Time

8563E Analog RBW

10.7 sec

Sensitivity/DANL

A Spectrum Analyzer Generates and Amplifies Noise Just Like Any Active Circuit

SpecificationsSensitivity/DANL

SpecificationsSensitivity/DANL

Signal To Noise Ratio Decreases as RF Input Attenuation is Increased

Sensitivity/DANL: IF Filter(RBW)

Decreased BW = Decreased Noise

Sensitivity/DANL: Video BW filter (or Trace Averaging)

Video BW or Trace Averaging Smoothes Noise for Easier Identification of Low Level Signals

Sensitivity/DANL:

Sensitivity/DANL: Summary

For Best Sensitivity Use:

- Narrowest Resolution BW
- Minimum RF Input Attenuation
- Sufficient Averaging (video or trace)
- Using the Preamp also improves sensitivity
- Low Noise Path (PXA only)
- Noise Floor Extension (PXA only)

Mixers Generate Distortion

Most Influential Distortion is the Second and Third Order

Two-Tone Intermod

Harmonic Distortion

Distortion Products Increase as a Function of Fundamental's Power

Distortion is a Function of Mixer Level

Distortion – Internal or External?

Attenuator Test: Change power to the mixer

- 1 Change input attenuator by 10 dB
- Watch distortion amplitude on screen

No change in amplitude: distortion is part of input signal (external)

Change in amplitude:

at least some of the distortion is being generated inside the analyzer (internal)

Spectrum Analyzer Dynamic Range

The ratio, expressed in dB, of the largest to the smallest signals simultaneously present at the input of the spectrum analyzer that allows measurement of the smaller signal to a given degree of uncertainty.

Dynamic Range

Dynamic Range Can Be Presented Graphically

Dynamic Range

Dynamic Range for Spur Search Depends on Closeness to Carrier

Dynamic Range vs. Measurement Range

Summary: Optimizing Dynamic Range

- •What settings provide the best sensitivity?
 - Narrowest resolution bandwidth
 - Minimal input attenuation
 - Sufficient averaging
- •How do you test for analyzer distortion?
 - •Increase the input attenuation and look for signal amplitude changes
 - •Then set the attenuator at the lowest setting without amplitude change
- •What determines dynamic range?
 - Analyzer distortion, noise level, and sideband/phase noise

Agenda

Introduction

Overview

Theory of Operation

Specifications

Modern spectrum analyzer designs & capabilities

Wide Analysis Bandwidth Measurements

Wrap-up

Appendix

Modern Spectrum Analyzer Block Diagram

Modern Spectrum Analyzer - Specifications Digital IF provides improved accuracy

	PXA vs. Traditional	
Input impedance mismatch	±0.13	±0.29 dB
 Input attenuator switching uncertainty 	±0.14	±0.6 dB
• Frequency response	±0.35	±1.8 dB
Reference level accuracy	±0.0	± 1.0 dB
RBW switching uncertainty	±0.03	±0.5 dB
Display scale fidelity	±0.07	±0.85 dB
Calibrator accuracy	±0.24	±0.34 dB
Total accuracy (up to 3 GHz) 95% Confidence	±0.59 dB vs. ±1.8 dB ±0.19 dB	

Modern Spectrum Analyzer Features

Built-in One-Button Power Measurements

Power Measurements:

- Occupied Bandwidth
- ■Channel Power
- ACP
- •Multi-carrier ACP
- CCDF
- Harmonic Distortion
- ■Burst Power
- **-**T0I
- ■Spurious Emissions
- ■Spectral Emissions Mask

Format Setups include:

DVB-T L/SECAM/NICAM	IS-95A⊳	cdma2000 1x▷
FCC Part 15 Subpart F	J-STD-008▷	NADC⊳
S-DMB System E	IS-97D/98D▷	PDC⊳
UWB Indoor	GSM/EDGE ▷	Bluetooth DH1
	3GPP W-CDMA	TETRA⊳
		W-LAN 802.11a

Modern Spectrum Analyzer Features

Application Focused Internal Software (one-button measurements)

General purpose applications

Flexible digital modulation analysis

Power & digital modulation measurements for wireless comms **formats**

Phase noise
Ext. source control
Noise figure
Code compatibility suite
EMI pre-compliance
Analog demod
Flexible demod
LTE FDD, TDD
W-CDMA/HSPA/HSPA+
GSM/EDGE/EDGE Evo
cdma2000 & 1xEV-DO
cdmaOne
DVB-T/H/C/T2
TD-SCDMA/HSPA
WLAN (802.11a/b/g/p/j)
802.16 OFDMA
Bluetooth

ACPR. Multi-carrier Power Occupied Bandwidth (OBW) Spectral Emissions Mask Phase and Freq. (PFER) **Mod Accuracy (Rho) Code Domain Power ORFS (GSM/EDGE) Spurious Emissions Power vs Time Channel power IM** distortion **CCDF ACPR**

EVM

SEM

Enhanced Display Capabilities Spectrogram

- Allows you to see time history in bottom window
- Amplitude displayed using color
- Great for finding intermittent signals

Enhanced Display Capabilities

Trace Zoom

- Allows you to zoom in on your trace data
- Same trace in both screens but bottom screen shows "close up" view with fewer points
- Great to look more closely at high-density traces

PXA/MXA Baseband and RF

Baseband to 40 MHz (for 1ch/2ch)

10, 25 or 40 MHz BW

500 MSa memory

Who needs wide analysis BW?

Modern designs demand more bandwidth for capturing high data rate signals and analyzing the quality of digitally modulated bandwidths

Aerospace and Defense

Radar – Chirp errors & modulation quality Satellite – Capture 36/72 MHz BW's w/high data rates

Military communications – Capture high data rate digital comms & measure EVM

Emerging communications

- ❖ W-LAN, 802.16 (wireless last mile), mesh networks
 - Measure EVM on broadband, high data rate signals

Cellular Communications

- W-CDMA ACPR & Multi-carrier Pre-Distortion
 - High dynamic range over 60 MHz BW to see low level 3rd order distortion for 4 carrier pre-distortion algorithms

PXA Wideband analysis

160 MHz Path

160 MHz BW (option B1X)

ADC Nominal bits: 14
ADC Effective bits: 11.2

SFDR: up to 75 dBc

PXA Simplified Block Diagram (160 MHz BW)

Agilent Real-time spectrum analyzer (RTSA)

Spectrum analysis goes real-time

- Gap-free data acquisition: 292,968 FFT's/sec
- High-speed measurements and display
- Frequency mask trigger (FMT) to capture events

Measurement Contributions

- Short 100% POI duration: 3.57 μs
- 160 MHz wide real-time BW
- Real-time frequency coverage to 50 GHz
- 75 dBc spurious-free dynamic range

License-key upgradable to PXA

- Option RT1 (up to 85 MHz real-time BW)
- Option RT2 (up to 160 MHz real-time BW)
- Purchased with a new PXA or upgrade to existing one
- Requires wide BW option B1X

Agenda

Introduction

Overview

Theory of Operation

Specifications

Modern spectrum analyzer designs & capabilities

Wide Analysis Bandwidth Measurements

Wrap-up

Appendix

Agilent Technologies' Signal Analysis Portfolio

N9935/36/37/38A 5 kHz to 9/14/18/26.5 GHz Handhelds

N9340B, N9342/43/44C 100 kHz to 3/7/13.6/20 GHz Handhelds

X-Series Code Compatibility

- ✓ Backward CC with legacy
- ✓ Inherent X-Series CC

Agilent Vector Signal Analysis Software

89600B VSA Software

- FFT-based spectrum, time-domain & bit-level modulation analysis
- Support for more than 70 signal standards and modulation types
- Unlimited trace/marker capability and arbitrary window arrangement
- Digital persistence and cumulative history displays
- Wireless networking: 802.11a/b/g/n, 802.16 OFDMA, WiMAX, 802.11ac
- Cellular: LTE (FDD/TDD), W-CDMA HSPA+, LTE Advanced
- Custom OFDM modulation analysis for proprietary signals

- Links to over 30 hardware platforms including: X-series signal analyzers, 16800 logic analyzers, 90000 X-series scopes, Infiniium scopes, VXI, N7109A Multi Channel Signal Analyzer
- Runs on external PC linked to hardware or embedded operation on instruments with Windows OS

Basic Spectrum Analyzer Application & Product Notes

A.N. 150 - Spectrum Analysis Basics: #5952-0292EN

A.N. 150-15 - Vector Signal Analysis Basics: #5989-1121EN

Spectrum Analyzer & Signal Analyzer Selection Guide: #5968-3413E

N9030A PXA Brochure: 5990-3951EN

N9020A MXA Brochure: 5989-5047EN

N9010A EXA Brochure: 5989-6527EN

N9000A CXA Brochure: 5990-3927EN

89600B VSA Brochure: 5990-6553EN

N9342,43,44C Brochure: 5990-8024EN

N9935,36,37,38A Brochure: 5990-9779EN

www.agilent.com/find/sa

THANK YOU!