Belangrijke begrippen analyse 2 week 15.

- **bol, ball** $B(a,r) = \{x \in \mathbb{R}^d \mid |x-a| < r\}$, de open bol rond a met straal r (in dimensie d). |x-a| is de afstand tussen de punten a en x, als d=1 is dit hetzelfde als de absolute waarde. Kosmala zou schrijven $\|\vec{x} \vec{a}\|$.
- inwendig punt, interior point $a \in A$ heet inwendig punt als er een r > 0 is met $B(a, r) \subseteq A$ (voor mij zijn \subseteq en \subset gelijkwaardig). Een inwendig punt behoort noodzakelijk tot de verzameling.
- open, inwendige, interior int A, het inwendige van A is de verzameling inwendige punten van A. A heet open als A = int A.
- rand, boundary Punt a heet een randpunt van A als voor elke r > 0 de bol B(a, r) zowel punten in A als punten niet in A bevat, de rand van A geven we aan met ∂A . Een randpunt hoeft niet tot de verzameling te behoren.

Belangrijke begrippen analyse 2 week 16.

- verdichtingspunt, accumulation point Punt a is verdichtingspunt van verzameling A als voor alle r > 0, B(a, r) een punt van A bevat verschillend van a. A' is de collectie verdichtingspunten. Een verdichtingspunt hoeft niet tot de verzameling te behoren.
- afsluiting, closure De afsluiting \overline{A} is A samen met zijn verdichtingspunten, het is ook A samen met zijn rand ∂A . A heet gesloten (closed) als hij gelijk is aan zijn afsluiting, dus als hij al zijn verdichtingspunten bevat, dus als de rand van A in A zit. A is altijd bevat in zijn afsluiting.
- rijen en limieten $x^{(n)} \to a$ betekent $\lim_{n \to \infty} x^{(n)} = a$, oftewel: voor elke $\epsilon > 0$ geldt dat de bol $B(a, \epsilon)$ voor zekere N alle $x^{(n)}$ bevat waarvoor n > N. Oftewel: $\forall \epsilon > 0: \exists N \in \mathbb{N}: \forall n > N: |x^{(n)} - a| < \epsilon$.

Als de rij $x^{(n)}$ een limiet heeft dan heet de rij convergent.

- infimum en supremum Als $A \subset \mathbb{R}$ niet leeg is en van onderen begrensd, dan betekent $m = \inf A$ dat
 - (i) $m \le a$ voor alle $a \in A$;
 - (ii) m is maximaal met betrekking tot eigenschap (i), oftewel:

voor elke $\epsilon > 0$ is er een $a \in A$ met $a < m + \epsilon$. Conventies: Als A niet naar beneden begrensd is zeggen ook wel inf $A = -\infty$. Als $A = \emptyset$ dan zeggen we ook wel inf $A = \infty$. Verzin zelf wat $M = \sup A$ betekent.

Belangrijke begrippen analyse 2 week 17.

- **begrensd, bounded** A heet begrensd als er een r is met |a| < r voor alle $a \in A$ (dus $A \subseteq B(0,r)$).
- (open) overdekking, cover Een collectie (open) verzamelingen A_i , $i \in I$ (I staat hier voor een verzameling indices) heet (open) overdekking van A als $A \subseteq \bigcup_{i \in I} A_i$, dus voor elke $a \in A$ is er een $i \in I$ met $a \in A_i$. Als J een eindige deelverzameling is van I en als ook $A \subseteq \bigcup_{j \in J} A_j$, dan is dit een eindige deeloverdekking.
- compact A heet compact als elke open overdekking van A een eindige deeloverdekking heeft. Een compacte verzamelingen (in \mathbb{R}^d) is gesloten en begrensd, dit is 'eenvoudig', omgekeerd is elke gesloten begrensde verzameling compact, dit is niet eenvoudig. 'Veel' uitspraken die waar zijn voor eindige verzamelingen, en onwaar voor willekeurige oneindige verzamelingen, zijn wel waar voor compacte verzamelingen.

- verdichtingspunt, accumulation point Punt a is verdichtingspunt van verzameling A als voor alle r > 0, B(a, r) een punt van A bevat verschillend van a. A' is de collectie verdichtingspunten.
- rand, boundary Punt a is randpunt van A als voor elke r > 0 B(a,r) zowel een punt van A als een punt niet in A bevat. De verzameling randpunten is ∂A .
- afsluiting, closure De afsluiting \overline{A} is A samen met zijn verdichtingspunten, het is ook A samen met zijn rand ∂A . A heet gesloten (closed) als hij gelijk is aan zijn afsluiting, dus als hij al zijn verdichtingspunten bevat, dus als de rand van A in A zit.
- rijen en limieten $x^{(n)} \to a$ betekent $\lim_{n \to \infty} x^{(n)} = a$, oftewel: voor elke $\epsilon > 0$ geldt dat de bol $B(a, \epsilon)$ voor zekere N alle $x^{(n)}$ bevat waarvoor n > N. Oftewel: $\forall \epsilon > 0: \exists N \in \mathbb{N}: \forall n > N: |x^{(n)} - a| < \epsilon$.
- infimum en supremum Als $A \subset \mathbb{R}$ niet leeg is en van onderen begrensd, dan betekent $m = \inf A$ dat
 - (i) $m \le a$ voor alle $a \in A$;
 - (ii) m is maximaal met betrekking tot eigenschap (i), oftewel: voor elke $\epsilon > 0$ is er een $a \in A$ met $a < m + \epsilon$.

Conventies: Als A niet naar beneden begrensd is zeggen ook wel inf $A = -\infty$. Als $A = \emptyset$ dan zeggen we ook wel inf $A = \infty$.

Verzin zelf wat $M = \sup A$ betekent.

Belangrijke begrippen analyse 2 week 18.

limiet Als a een verdichtingspunt is van A, het domein van de functie f, dan betekent $\lim_{x\to a} f(x) = L$: voor elke $\epsilon > 0$ is er een $\delta > 0$ zodat als $x \in A \setminus \{a\}$ en $|x-a| < \delta$, dan $|f(x) - L| < \epsilon$.

hoogtelijnen Voor level curves: aarzel niet Mathematica te gebruiken.

tip limieten Voor limieten: probeer zoveel mogelijk de insluitstelling te gebruiken. Ook Taylorreeksen zijn vaak nuttig.

Som Kosmala 10.2.9: onderscheid de gevallen $x \neq y$ en x = y.

Belangrijke begrippen analyse 2 week 19.

Uniform continu Voor elke $\epsilon > 0$ is er een $\delta > 0$ zodanig dat voor elke a en b in het domein van f geldt $|f(a) - f(b)| < \epsilon$ als $|a - b| < \delta$.

Banach Als $f: D \to D(\subset \mathbb{R}^d)$ een contractie is en D gesloten, dan is er een uniek vast punt p (dus waarvoor f(p) = p), en voor elke $x \in D$ convergeert de rij $x, f(x), f(f(x)), \ldots$ naar dit punt p. f heet contractie op D als er een q < 1 is met $|f(x) - f(y)| \le q|x - y|$ voor alle $x, y \in D$.

Belangrijke begrippen analyse 2 week 20.

Partiële afgeleiden $\partial_x f(a,b) = \lim_{h\to 0} \frac{f(a+h,b)-f(a,b)}{h}$. Iets dergelijks voor ∂_y en voor functies van (nog) meer variabelen. Beetje verwarrend: met $\partial_{xy} f$ of ook f_{xy} bedoelen we $\partial_y (\partial_x f)$, we differentieren hier dus eerst naar x en dan naar y (voor fatsoenlijke functies maakt de volgorde overigens niet uit).

Differentieerbaar $f: \mathbb{R}^2 \to \mathbb{R}$ is differentieerbaar in (a,b) als er getallen m_1 en m_2 zijn met $f(a+h,b+k) = f(a,b) + m_1h + m_2k + \epsilon\sqrt{h^2 + k^2}$ waarbij $\epsilon \to 0$ als $(h,k) \to (0,0)$. hier zijn m_1 en m_2 de partiële afgeleiden $\partial_x f(a,b)$ en ∂_y . Het beginstuk heet de linearisering van f rond (a,b) en geeft de vergelijking van het raakvlak. Iets dergelijks voor meer variabelen.