

NPTEL

reviewer1@nptel.iitm.ac.in ▼

Courses » Social Networks

Announcements

Course

Forum

Progress

Mentor

Unit 13 - Week -9 : Power Laws and Rich-Get-Richer Phenomena

Course outline	Week 9 - Assignment 1
Course Trailer	·
FAQ	1) In G(1000, 0.1) random network, each edge will be placed with the probability 0.1 0.9 0.5 0.7
Things to Note	
Accessing the Portal	
Week 1 - Introduction	
Week 2 - Handling Real- world Network Datasets	Accepted Answers: 0.1 2) Which of the following distributions depict a normal/bell curve? 1 point
Week 3- Strength of Weak Ties	Weights of people in a city Heights of people in a city Intelligence quotients of people in a city All of the above Accepted Answers: All of the above 3) Given a random graph on 1000 nodes where each of the possible $\binom{1000}{2}$ edges is present $\binom{1000}{2}$ edges is present with a probability of 0.1. Let N_1 represent the number of nodes having the least degree (i.e. 0), N_2 represent the number of nodes having the highest degree (i.e. 999) and N_3 represent the number of nodes having the median values of degrees (i.e. 499 or 500). Choose the correct statement. $N_1 > N_3$ and $N_2 > N_3$ $N_1 < N_3$ and $N_2 < N_3$ $N_1 < N_3$ and $N_2 < N_3$
Week4 Strong and Weak Relationships (Continued) & Homophily	
Week 5 - Homophily Continued and +Ve / -Ve Relationships	
Week 6- Link Analysis	
Week 7 - Cascading Behaviour in Networks	
Week 8 : Link Analysis (Continued)	
Week -9 : Power Laws and Rich-	Accented Answers

Get-Richer Phenomena

- Lecture 115 -Introduction to Power Law
- Lecture 116 -Why do Normal Distributions Appear?
- Lecture 117 -Power Law emerges in WWW graphs
- Lecture 118 -Detecting the Presence of Power Law
- Lecture 119 -Rich Get Richer Phenomenon
- Leture 120 -Summary So Far
- Lecture 121 Implementing
 Rich-getting-richer
 Phenomenon
 (Barabasi-Albert Model)-1
- Lecture 122 -Implementing Rich-gettingricher
 Phenomenon (Barabasi-Albert Model)-2
- Lecture 123 -Implementing a Random Graph (Erdos- Renyi Model)-1
- Leture 124 -Implementing a Random Graph (Erdos- Renyi Model)-2
- Lecture 125 -Forced Versus Random Removal of Nodes (Attack Survivability)
- Quiz : Week 9 -Assignment 1
- Week 9 -Assignment 1 answers
- Feedback for week 9

Week 10 - Power law (contd..) and Epidemics Social Networks - - Unit 13 - Week -9: Power Laws and Rich-Get-Richer Phenomena

 $N_1 < N_3 \ \ \text{and} \ N_2 < N_3$

4) Given the World Wide Web (WWW) network. Let N_1 represent the number of nodes having **1** point the least degree, N_2 represent the number of nodes having the highest degree and N_3 represent the number of nodes having the median values of degrees. Choose the correct statement.

 $N_1 > N_3$ and $N_2 > N_3$

 $N_1 < N_3 \text{ and } N_2 < N_3$

 $N_1 > N_3 \text{ and } N_2 < N_3$

 $N_1 < N_3 \text{ and } N_2 > N_3$

Accepted Answers:

 $N_1 > N_3$ and $N_2 < N_3$

5) Given set E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We pick a value a_1 uniformly at random from this **1** point set E. Next, we pick another value a_2 , again uniformly at random from this set E. Similarly we pick 8 more values, $a_3, a_4, \ldots, a_9, a_{10}$. Look at the sum, $S = a_1 + a_2 + \ldots + a_9 + a_{10}$. Which of the following sets define the range from which the sum S can have values from?

- (1, 2, ..., 9, 10)
- **10**, 11, ..., 19, 20**)**
- {1, 2, ..., 9, 100}
- **10**, 11, ..., 99, 100}

Accepted Answers:

{10, 11, ..., 99, 100}

6) Given set E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We pick a value a_1 uniformly at random from this **1** point set E. Next, we pick another value a_2 , again uniformly at random from this set E. Similarly we pick 8 more values, $a_3, a_4, \ldots, a_9, a_{10}$. Look at the sum, $a_1 + a_2 + \ldots + a_9 + a_{10}$. Let p(i) be the probability that S = i, i.e., the probability that the sum of these randomly chosen 10 elements is i. Which of the following is true?

- p(50) < p(100)
- p(100) < p(50)
- p(50) < p(10)
- p(100) < p(10)

Accepted Answers:

p(100) < p(50)

7) Given set E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We pick a value a_1 | uniformly at random from this **1** point set E. Next, we pick another value a_2 , again uniformly at random from this set E. Similarly we pick 8 more values, $a_3, a_4, \ldots, a_9, a_{10}$. Look at the sum, $a_1 + a_2 + \ldots + a_9 + a_{10}$. Let p(i) be the probability that S = i, i.e., the probability that the sum of these randomly chosen 10 elements is i. We plot i on the X-axis and p(i) on the Y axis. Choose the correct statement from the following.

- The plot has very high values in the beginning but then drops.
- The plot is a constant curve.
- The plot is a bell shaped curve.
- The plot is linear.

Accepted Answers:

Week 11- Small World Phenomenon

Week 12-Pseudocore (How to go viral on web?) The plot is a bell shaped curve.

8) Which of the following represents the correct equation for power law?

1 point

- $y = \frac{1}{x^2}$
- $y = \frac{1}{x^3}$
- $y = \frac{1}{x^4}$
- All of the above

Accepted Answers:

All of the above

9) Which of the following distributions follow a power law?

1 point

- Telephone conversation duration
- Number of song downloaded from a website
- Number of incoming links for nodes in the web graph
- All of the above

Accepted Answers:

All of the above

10Power law degree distribution in real world networks follow the characteristic equation $y=\frac{1}{\mu^{\alpha}}$. What is the value of α here?

1 point

- 1 <α< 2</p>
- 2 <α< 3
- 3 <α< 4
- None of the above

Accepted Answers:

2 <α< 3

11) Consider the equation g (k) = $\frac{1}{k^2}$. Let x = log k and f(x) = log g(k). How does the plot of f(x) **1** point look like?

Accepted Answers:

12)How does the power law degree distribution come by in real world networks?

1 point

- By preferential attachment
- By random linking
- By uniform edge connection
- No hypothesis is found.

Accepted Answers:

By preferential attachment

13)n the preferential attachment, a new coming node will prefer to make the connection with the *1 point* node having

- fewer friends
- More friends
- Average number of friends
- Average number of friends

Accepted Answers:

More friends

14)Given a network being generated by 'rich get richer' phenomenon. The figure below shows **1** point the snapshot of the network at time t. A new node u enters the network at time t + 1 and makes an edge with one of the existing nodes. What is the probability that u will make an edge with C?

Accepted Answers:

1/4

15)Given a network being generated by 'rich get richer' phenomenon. The figure below shows **1** point the snapshot of thenetwork at time t. A new node u enters the network at time t + 1 and makes an edge with one of the existing nodes. The probability of u making an edge with an existing node w is defined as p(w). Which of the following equations is correct?

- p(F) < p(C) < p(B)
- All of the above

Accepted Answers:

All of the above

16)Given a network being generated by 'rich get richer' phenomenon. The figure below shows **1** point the snapshot of thenetwork at time t. A new node u enters the network at time t + 1 and makes an edge with one of the existing nodes. Which of the node it makes a link to?

- A
- О в
- _ c
- Can't say

Accepted Answers:

Can't say

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

NASSCOM®

Funded by

In association with

Government of India Ministry of Human Resource Development

Powered by

