

3. Réseaux locaux

Réseau

- <u>Réseau</u>: ensemble d'ordinateurs/boîtiers reliés entre eux par un support de transmission: ces éléments communiquent entre eux à partir de règles appelées **protocoles**.
- <u>Caractéristiques</u>: il n'existe pas de classification universelle des réseaux, mais deux critères importants les caractérisent:
 - La technologie de transmission utilisée
 - La taille du réseau

Différents types de réseau

- Selon la technologie de transmission
 - Diffusion (canal partagé par toutes les machines)
 - Point à point (connexion entre machines 2 à 2)
- Selon la taille
 - WPAN (Wireless Personnal Area Network)
 - LAN (Local Area Network)
 <10km, 10Mbps-10Gbps, version 'W'
 - MAN (Metropolitan Area Network)
 <100km, 56kbps-1Gbps, version 'W' style UMTS: WBWA
 - WAN (Wide Area Network)

TCP/IP et OSI

Application
Présentation
Session
Transport
Réseau

Application
TCP
IP

Les 2 couches des réseaux locaux

Caractéristiques d'une technologie 'réseau local'

- Topologie
- Câblage
- Méthode d'accès au médium

Topologie (logique)

- bus
- étoile
- anneau

Auteur: C. Pham, Université de Pau et des Pays de l'Adour (UPPA)

Câblage

- Câblage (topologie physique) :
 - bus / étoile / anneau / arborescent / bus-arborescent
- Support physique
 - Paire téléphonique
 - 10Mbps, qq centaines de mètres, faible coût,
 - performances limitées, sensible aux parasites.
 - Paire torsadée blindée :
 - même chose en mieux (>100Mbps).
 - câble coaxial :
 - >=40 Mbps, quelques km (obsolète pour Ethernet)
 - fibre optique :
 - débit très élevé, quelques dizaines de km.

Câblage (suite)

- Autres supports « physiques »
 - Wifi
 - quelques dizaines de m
 - Support hertzien boucle locale radio, Wimax
 - quelques dizaines de km
 - Faisceaux hertziens
 - Liaisons optiques
 - Courant porteur en ligne (Indoor / Outdoor)
 - ...

Exemples de topologie/câblage

- Starlan (préhistoire...)
 - topologie physique : arborescent
 - topologie logique : bus
- Ethernet
 - topologie physique : bus ou arborescent
 - topologie logique : bus

Méthodes d'accès au support

- But : gérer l'accès au médium
- Normalisées
 - IEEE (Institute of Electrical and Electronic Engineers)
 - ISO
- Réalisées par la couche MAC (Medium Access Control)

Méthodes d'accès au support

- Deux approches
 - accès par élection (centralisée ou distribuée)
 - accès par compétition (résolution des collisions)

- Différentes méthodes :
 - CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
 - anneau à jeton
 - bus à jeton

Méthodes d'accès au support CSMA/CD

- Norme : IEEE 802.3, ISO 8802.3
- Topologie logique : bus
- Principes
 - Carrier Sense : chaque station est à l'écoute pour détecter la présence d'un signal
 - Multiple Access : plusieurs stations peuvent émettre en même temps
 - Collision Detection : chaque station sait si elle a provoqué une collision

CSMA/CD: Durée minimale d'émission

- A regarde si le câble est libre avant d'émettre
- 2. Le délai de propagation n'est pas nul => B peut émettre alors que A a déjà commencé son émission
- Les 2 trames se percutent : c'est la collision
- 4. Avec une durée d'émission 'trop courte', A ne peut pas savoir que son message a provoquer une collision...

CSMA/CD: Durée minimale d'émission

- Si une station en train d'émettre détecte une collision, elle s'arrête d'émettre.
- 2. Une station détecte une collision lorsqu'elle reçoit une trame 'accidentée' (ie trop courte).

CSMA/CD

- Durée minimale d'émission
 - D: débit
 - P : durée maximale de propagation
 - Durée d'émission >= 2*P
- Ce qui revient à dire que la trame doit avoir une longueur >= 2*P*D

CSMA/CD : La trame CSMA/CD

CSMA/CD : la trame CSMA/CD

- Préambule: 56 bits = 7 X (1010101010), permet la 'synchronisation bit'.
- **Délimiteur de début de trame** (Start Frame Delimiter) : 8 bits = 10101011; permet la 'synchronisation trame/caractère'.
- Adresse (6octets) individuelle/multicast/broadcast.
- Longueur du champ de données : valeur comprise entre 1 et 1500, indique le nombre d'octets des données (compatibilité avec Ethernet...).
- **Padding**: contenu sans signification complétant une trame dont la longueur des données est inférieure à 46 octets.
- Contrôle : séquence de contrôle basée sur un CRC polynomial de degré 32.

Méthodes d'accès au support Anneau à jeton

- structure : anneau unidirectionnel
- normalisé (IEEE 802.5, ISO 8802.5)
- principe:
 - une unique trame circule en permanence
 - 1bit (jeton) indique si la trame est pleine ou libre
 - une trame pleine est lue par la station réceptrice
 - une trame pleine est vidée par la station émettrice

Ethernet

- 1980 (DEC, INTEL et XEROX)
- Topologie logique / physique
 - Bus / Bus+Arborescent
- Méthode d'accès : CSMA/CD
 - Une implémentation de la norme 802.3
 - Adresse Ethernet
 - codée sur 6 octets (00:40:07:03:04:2b)
 - adresses particulières.
 Ex : FF:FF:FF:FF:FF (broadcast address)
- Câblage
 - support de transmission XBaseY

Rôle de la couche physique

- Détecter l'émission d'une autre station sur le médium (Carrier Sense), alors que la station est en écoute
- Transmettre et recevoir des bits sur le médium
- Détecter l'émission d'une autre station pendant que la station émet (Collision Detect)

Taille minimale de trame

- Vitesse de propagation : 200 000 km/s
- Distance maximale entre 2 stations : 2,5 km
- Délai maximal de propagation
 - $P = 2.5/200\ 000 = 12.5\ \mu s$
- Tranche canal (Slot Time)
 - $TC = 2xP = 25 \mu s$.
 - on prend TC = 51,2 μs
- Taille de trame minimale
 - D x TC = 10Mbps x 51,2µs
 = 512 bits soit 64 octets.

Ce « Slot Time » d'acquisition du canal est égal à 51.2 µs : ce délai passé, aucune collision ne peut plus arriver!
Par conséquent, une station doit donc écouter le signal « Collision Detection » pendant 51.2 µs à partir du début d'émission de la trame.

Délai d'attente avant retransmission

La station attend R * 51.2 µs tel que

$$0 \le R \le 2^{i-1}$$

- R étant un entier « Random » et i = min(n, KM)
- n = nombre de retransmissions déjà effectuées
- le nombre de réémissions est limité à NM

Généralement :

KM=10

NM=15

Délai d'attente avant retransmission (suite)

Format d'une trame Ethernet

- Identique à la trame 802.3 sauf le champ **type** indiquant le type de protocole véhiculé dans le trame :
 - 2 octets représentés sous la forme hexadécimale XX-YY ou XXYY.
 - Quelques exemples de valeurs :

• **0806**: ARP

• **0800** : IP

• ...

La trame Ethernet

Câblage

- Classes de transmission
 - Norme IEEE 802.3, ISO 8802.3
 - Câblage : (bus) ou arborescent
- Support : (câble coaxial), paire torsadée, fibre optique.
- Désignation: XType-Y
 - X: le débit en Mbps
 - Type: le type de transmission (Base = bande de base)
 - Y: la nature du support (avec la longueur max du brin)

Principales classes de transmission

	XBase-Y	Debit	Support	maxi
Ethernet	10Base-T	10 Mbps	Paire torsadée	100m
	100Base-TX	100 Mbps	Paire torsadée	100m
Fast Ethernet {	100Base-FX	100 Mbps	Fibre optique	200m
	1000Base-SX	1 Gbps	Fibre optique	550m
Gigabit Ethernet	1000Base-LX	1 Gbps	Fibre optique	5000m
	1000Base-CX	1 Gbps	Paire torsadée blindée	25m

Exemple de câblage

- Cas du 100Base-TX
 - Au plus 100m
 - Câble de catégorie 5 (paire torsadée)
 - Boitiers : hub et/ou switch

Boîtier: Hub

Ethernet et ses supports Du bus physique au bus logique

10 BASE 5 et 10 BASE 2 sont deux moutures anciennes d'Ethernet se basant sur un bus physique sous forme de câble coaxial

Le Hub, ou répéteur ou concentrateur à remplacé la topologie physique par une étoile, tout en conservant la topologie logique en bus

Source: http://www.metz.supelec.fr/metz/personnel/vialle/course/SI

Boîtier: Commutateur Ethernet

- Appelé aussi:
 - hub commuté
 - pont multiport
 - **switch** Ethernet

domaine de collision restreint

La commutation Ethernet Du Hub au commutateur

Le commutateur met fin à transmission systématique par diffusion sur tous les ports.

29

Quelques mots sur le réseau du département informatique

- Quelques photos des installations (non contractuelles...)
- Description sommaire du réseau (100Base-TX)

Aujourd'hui...

