ТФКП, М3238-39

upd 14 февраля 2019

1 Комлексные числа

- 1.1 Решить уравнение $\bar{z} = z^{n-1}, (n \neq 2)$
- 1.2 Доказать, что оба значения $\sqrt{z^2-1}$ лежат на прямой, проходящей через начало координат и параллельной биссектрисе внутреннего угла треугольника с вершинами в точках -1,1 и z, проведённой из вершины z.
- 1.3 Доказать, что $(^n\sqrt{z})^m$ (n,m целые числа, а (n,m) наибольший общий делитель) имеет $\frac{n}{(n,m)}$ различных значений
- 1.4 Доказать $|1 \bar{z_1}z_2|^2 |z_1 z_2|^2 = (1 |z_1|^2)(1 |z_2|^2)$
- 1.5Доказать, что если $|z_1|+|z_2|+|z_3|=0$ и $|z_1|=|z_2|=|z_3|=1,$ то точки z_1,z_2,z_3 являются вершинами правильного треугольника
- 1.6 Изобразить область или прямую:
 - $|z-2|^2 |z+2|^2 > 3$;
 - $log_{\frac{1}{2}} \frac{|z-1|+4}{3|z-1|-2} > 1;$
 - $Im(\overline{z^2 z}) = 2 Imz;$
 - |z| 3Imz = 6;