ADATSZERKEZETEK ÉS ALGORITMUSOK

- A gyakorlatban sokszor csak a BESZÚR, KERES, TÖRÖL műveleteket megvalósító dinamikus szerkezetre van szükségünk
 - Hogyan lehetne ezt hatékonyan tenni?
- Az eddigi kereső szerkezeteink
 - A kulcsok összehasonlításán alapultak
 - Végrehajtási idő $\mathcal{O}(n)$ vagy $\mathcal{O}(\log n)$ volt
- Szeretnénk az előzőnél jobbat elérni ...
- Ha vektorban indexelünk, az csak $\mathcal{O}(1)$...

07/1 EA

Vizsgáljuk meg, hogy a személyi szám alkalmas-e kulcsnak?

Mezőnév	nem	év	hó	nap	azonosító	
Példaérték	2	72	08	15	2806	
Értékek száma	8	100	12	31	999	~300 M

- (Az utolsó 4 jegyből csak 3 értékes jegy, 1 a többiből képződik.)
- Ha összeszámoljuk az összes kitöltési lehetőséget, akkor ~300 milliót kapunk ...
- A ~10 millió lakosra pedig elég egy ~12 millió rekordot tartalmazó fájl.
 - A személyi szám tehát nem alkalmas kulcsnak.
- Kell egy olyan h függvény, ami minden személyi számhoz rendel egy egészet a

 $[0; 12 * 10^6 - 1]$ intervallumból!

A hash-elés jelensége

- Adott a K kulcsok halmaza. A K elemeivel azonosított rekordok száma azonban várhatóan jóval kisebb, mint K számossága.
- Ekkor K-t egy alkalmas h függvénnyel leképezzük az ábrázolás alapját képező kisebb tartományra. Legyen ez a [0..M-1] intervallum.
- A $h: K \to [0 ... M 1]$ függvényt hash-függvénynek nevezzük.
- Mivel M < |K|, sőt általában $M \ll |K|$, ezért h nem lehet injektív, hanem szükségképpen fellép a kulcsütközés: van olyan $k \neq k'$, amelyre h(k) = h(k').
- A hasításos technikák feladata éppen az, hogy megoldást adjanak a kulcsütközésre.

Fontos kérdés

Milyen hatékonyságot várhatok?

- A közvetlen hozzáférésű (címzésű) táblák – a legegyszerűbb eset
- Tegyük fel, hogy az elemek kulcsai különböző egész értékek a [0, m - 1] intervallumból, és m nem túl nagy
 - Használjuk magukat a kulcsértékeket, hogy kiválasszunk egy helyet a táblában
 - Egy k kulcsú elem keresése: nézzük meg a k indexű elemet
 - ha van itt egy érték, megtaláltuk,
 - ha a jelző itt pl. −1, akkor nincs benne.
- Komplexitás: O(1)
 - Beszúrás, törlés is


```
Közvetlen_címzésű_keresés (T, k) return T[k]

Közvetlen_címzésű_beszúrás (T, x)

T[x.kulcs] \leftarrow x

Közvetlen_címzésű_törlés (T, x)

T[x.kulcs] \leftarrow -1
```

Mindegyik O(1) idejű

Hasító táblázatok – megszorítások

- Megszorítások
 - Kulcsok egészek kell legyenek
 - Kulcsok egyediek kell legyenek
 - Kulcsok kis intervallumból kerülhetnek ki
 - A tárolás hatékonysága miatt a kulcsok sűrűn kell legyenek az intervallumban
 - Ha ritkásan vannak sok üres hely van az értékek között túl sok helyet használunk el, hogy a sebességet megnyerjük
 - "Hely a sebességért kereskedelem" ©

 A közvetlen címzésű táblák: T-indexei a kulcsok, T-ben mutatók, csak akkor tárolom az egészet, ha kell:

07/1 EA

```
T inicializálása
  minden elemét null-ra állítjuk
Közvetlen_címzésű_keresés (T, k)
  return "a T[k] által mutatott objektum"
Közvetlen címzésű beszúrás (T, x)
  helyet foglalunk x-nek,
  T[x.kulcs] mutatóját erre állítjuk
Közvetlen címzésű törlés (T, x)
  felszabadítjuk a T[x.kulcs] által mutatott objektumot
  (T[x.kulcs] is null lesz!)
```

Mindegyik $\mathcal{O}(1)$ idejű

A megszorítások gyengítése

- A kulcsok egészek legyenek
 - Kell egy hash függvény
 h(kulcs) → egész
- Ezt a függvényt a kulcsra alkalmazva egy indexet kapunk
- Ha h minden kulcsot egy egyedi egész értékre képez le a $0 \dots m-1$ intervallumban, akkor a keresés $\mathcal{O}(1)$

A megszorítások gyengítése

- A kulcsoknak egyedieknek kell lenniük
 - hozzuk létre a duplikátumok láncolt listáját, és ezt kapcsoljuk a táblához
 - ha egy keresésnek elég akármelyik k kulcsú elem, a végrehajtás még mindig $\mathcal{O}(1)$
- De ha az elemnek még van valami más megkülönböztető jegye is, ami meg kell egyezzen, akkor $\mathcal{O}(n_{dup_max})$ -t kapunk
 - ahol n_{dup_max} a duplikátumok legnagyobb száma, vagyis a leghosszabb lista hossza

A megszorítások gyengítése

Láncolásos hasítás műveletei

```
T inicializálása
 minden elemét null-ra állítjuk
Láncolt hasító keresés (T, k)
 a k kulcsú elem keresése a T[h(k)] listában
Láncolt hasító beszúrás (T, x)
  helyet foglalunk x-nek,
  beszúrjuk a T[h(x.kulcs)] lista elejére
Láncolt hasító törlés (T, x)
 x törlése a T[h(x.kulcs)] listából
  (T[x.kulcs] is null lesz!)
```

Hash függvények

- A hash függvény formája
 - Példa egy n-karakteres kulcsot használva
 int hash(char *s, int n)
 {
 int sum = 0;
 while(n--) sum=sum+ *s++;
 return sum % 256;
 }
 ez a függvény a 0 ... 255 egy értékét adja vissza
 - a xor függvényt is gyakran használják sum=sum^ *s++;
 - De tetszőleges függvény, ami a 0..m-1-ben generál értékeket egy megfelelő (nem túl nagy) m-re jó lesz!
 - Amíg a hash függvény maga $\mathcal{O}(1)$!

07/1 EA

Kulcsütközés feloldása

Következő téma