	диссертация допущена к защите
	зав. кафедрой
	«» 2019 г.
Моделирование і	нуклеосинтеза в звездах
	Тема:
Направление: –	
Магистерская программа: -	
Выполнил студент гр	

Введение

Вопрос о том, из чего состоит материальный мир стоит перед учеными с самого зарождения науки Левкипп (около 430 г. до н.э.) и Демокрит (около 420 г. до н.э.) первыми предложили атомную теорию, в которой вся материя состоит из неделимых частиц. Позже ученые добились успехов в экспериментах с процессами возникновения различных веществ. Алхимики, например, задавались вопросами преобразования обычных металлов (свинца, например) в благородные (такие как золото). Попытки их были тщетны, и теоретическая основа этих преобразований не получила никакого развития. И только в конце XX века ядерные физики добились успеха превращения висмута в золото (лишь в небольших количествах и с коммерческими расходами) В связи с развитием ядерной физики были также построено огромное количество различных математических моделей, объясняющих возникновение тяжелых элементов, а именно тяжелее железа, из более легких.

В данной работе, будут моделироваться такие реакции с использование открытой библиотеки реакций ReacLib, в основе которой лежит построение сечения зависимостью от температуры по 7 параметрам. Данная библиотека уже включает в себя некоторый набор реакций, приводящий к появлению обойденных ядер, но нас интересуют только реакции, в которых участвует столкновительный β -распад

Основной целью работы является построение сечений для столкновительного β -распада для столкновении элементов с протоном, а также оценка влияния этих реакций на полученную распространенность элементов в результате всех процессов за промежуток времени.

Сам процесс моделирования будет выполняться с помощью открытой библиотеки SkyNet, написанную Jonas Lippuner с дополнение ее своим набором реакций.

1. Столкновительный β -распад

Данный процесс является одним из процессов, приводящих к появлению обойденных ядер.

Обойдённые ядра - устойчивые атомные ядра, лежащие в стороне от всех возможных путей образования тяжёлых ядер из более лёгких в процессе последовательного захвата последними нейтронов [1]. Распространённость обойденных ядер, как правило, примерно на два порядка величины ниже, чем у близких к ним ядер, лежащих на пути нейтронного захвата. К таковым относятся: ^{74}Se , ^{78}Kr , ^{80}Kr , ^{84}Sr , ^{92}Mo , 94 , ^{96}Ru , ^{98}Ru , ^{102}Pd , ^{106}Cd , ^{108}Cd , ^{113}In , ^{112}Sn , ^{114}Sn , ^{115}Sn , ^{120}Te , ^{124}Xe , ^{126}Xe , ^{130}Ba , ^{132}Ba , ^{136}Ce , ^{138}Ce , ^{144}Sm , ^{152}Gd , ^{152}Dy , ^{158}Dy , ^{162}Er , ^{164}Er , ^{168}Yb , ^{174}Hf , ^{180}W , ^{184}Os , ^{190}Pt , ^{196}Ha .

Список литературы

 Франк-Каменецкий Д. А. Реакции (p, n) и (p, 2n) и происхождение обойдённых ядер // Астрономический журнал. 1961. Т. 38, № 1. с. 91.