Unidad 5: "Control Estadístico de Procesos"

Cátedra de Métricas del Software

Universidad Tecnológica Nacional Facultad Regional Córdoba

Diego Rubio Álvaro Ruiz de Mendarozqueta Natalia Andriano Juan Pablo Bruno

Objetivos Específicos

- Conocer, interpretar y aplicar las actividades y elementos necesarios para el Control Estadístico de Procesos de desarrollo de software
- Analizar la capacidad de los procesos de desarrollo de software.

Agenda

- Variación
- Causas de variación
- CMMi L4&5 vs. Causas de variación
- Carta de Control
 - UCL/LCL (3s)
 - Tipos de Cartas de Control
 - Datos discretos Vs. Continuos
- Estabilidad
 - Concepto
 - Tests
- Capacidad
 - USL/LSL
 - Cp / Cpk / Cpm
-) Distribuciones Subyacentes
- Baselines. Aplicaciones en Software.
- Resumen Conceptos claves

Variación

- } La variación es inherente a todo proceso
- Separación entre variación del sistema de medición y del proceso
- ¿ Definición Operacional y plan de medición
 - ¿Qué?
 - ¿Cómo?
 - ¿Cuánto?
 - ¿Quién?
 - ¿Cuándo?

Comprendiendo la variación

- Medidas de posición
- Medidas de dispersión
- } Forma

Variance =
$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Standard Deviation: $S = \sqrt{S^2}$

Estabilidad de Proceso

La estabilidad de proceso es la medida en la que las características del proceso (posición, dispersión y forma) se mantienen constantes a lo largo del tiempo.

Causas de Variación

- Causas especiales (asignables)
 - Las causas especiales de variación provienen de fuentes que no son rutinarias o no actuan regularmente sobre el proceso.
- Causas comunes
 - Las causas comunes de variación son inherentes a la manera en que el proceso se encuentra "diseñado".

CMMi L4&5 vs. Causas de variación

- CMMi L4: Ataca las causas especiales de variación
 - Quantitative Process Management
 - Organizational Process Performance
- CMMi L5: Ataca las causas comunes de variación
 - Causal analysis and Resolution
 - Organizational Innovation and Deployment

Nota: áreas de proceso basadas en la representación por etapas de la versión CMMI-DEV 1.2.

Carta de Control

Los límites de control no son límites fijados arbitrariamente o de especificación, por el contrario son estadísticamente determinados por el proceso en sí mismo.

(son establecidos basados en los datos históricos del proceso).

Resumen de estabilidad

<u>Figure SPC-3 - In Control Process and the Control</u> Chart

Figure SPC-5 - Out of Control Process and the Control Chart

<u>Proceso bajo control = Proceso estable => No existen causas especiales de variación</u>

SPC implica conocer la estabilidad o inestabilidad del proceso

Tests de estabilidad

Capacidad

Capacidad de Proceso es la habilidad del proceso de un producto o servicio para satisfacer los requisitos del usuario. Un proceso capaz es aquel donde los valores producidos caen dentro de los límites de especificación establecidos.

12

Indices de Capacidad

- Capacidad: está definida como la habilidad de un proceso para producir resultados de acuerdo con las especificaciones de los clientes.
- Un proceso capaz es aquel en donde las distribuciones de las mediciones de los resultados del proceso estén centradas en el objetivo, y al menos un muy alto porcentaje de las mediciones caen dentro de los límites de especificaciones

Indices de Capacidad (Cp)

Figure 2: Cpk index

Interpretación del CP

- Cp: variación permitida del proceso / variación actual del proceso
- Cp no toma en cuenta la distancia de la media al objetivo
- Cp por si solo es insuficiente para describir la capacidad del proceso
 - Cp <1.0 à Capacidad pobre
 - Cp 1.0 1.5 à Capacidad marginal
 - Cp > 1.5 à Buena capacidad
 - Cp > 2.0 à Capacidad 6sigmas

Interpretación del Cpk

- Cpk toma en cuenta en donde está la media de la muestra relativa a los límites de especificación.
- Si el promedio de la muestra está sobre el objetivo (xbar=objetivo) entonces:
 - ∘ Cp = Cpk
 - De otra forma Cpk < Cp
- Proceso de calidad 6sigma:
 - \circ Cp >=2.0 y Cpk >=1.5

Usos de los índices de capacidad

- Para proveer un método para el monitoreo del mejoramiento relativo de un proceso en el tiempo.
- Para proveer un método para estimar el porcentaje de defectos o de productos no conformes.
- Para proveer un medio para comparar las capacidades de varios procesos, cada uno con diferentes unidades de medidas y diferentes especificaciones.
- Para proveer un medio para identificar el/los procesos que más necesitan ser mejorados

Índices de capacidad

- Cp>1 à proceso capaz (el proceso estará entre los límites de especificación si el proceso esta centrado)
- Cpk>1 à proceso capaz y centrado entre los límites de especificación (LSL and USL).
- Cp=Cpk à el proceso está centrado en el punto medio de los límites de especificación
- Cp>Cpk à el proceso no está centrado.

Cp = 0.8Cpk = 0.7

Ejercicio

Ejercicio

Process Capability of AEEF

Calculations Based on Lognormal Distribution Model

Process Data
LSL 0.5
Target *
USL 2
Sample Mean 2.17249
Sample N 43
Location 0.604461
Scale 0.616534

Overall Capability
Pp 0.13
PPL 0.86
PPU 0.02
Ppk 0.02

Exp. Overall Performance
PPM < LSL 17659.52
PPM > USL 442810.84
PPM Total 460470.35

0 1 2 3 4 5 6

Resumen

Conceptos básicos:

- Variación
 - Causas especiales
 - Causas comunes
- Control estadístico de proceso (SPC)
 - Límites de control (LCL-UCL)
 - Estabilidad de proceso
 - Capacidad de proceso
 - Límites de especificación (LSL-USL)
- Baselines de performance

Conceptos Claves (1/2)

- Variación
 - Causas especiales
 - Causas comunes
- Control estadístico de proceso (SPC)
 - Límites de control (LCL-UCL)
 - Estabilidad de proceso
 - Capacidad de proceso
 - Límites de especificación (LSL-USL)
- Baselines de performance

Conceptos Claves (2/2)

Lecturas Obligatorias

Autor	Título	Editor	Referencia
Anita Carleton	Statistical Process Control for Software	Carnegie	http://www.sei.
		Mellon	cmu.edu/str/de
		University	scriptions/spc.h
			<u>tml</u>

Lecturas Recomendadas

Autor	Título	Editor	Referencia
Donald J. Wheeler	Understanding Variation The key to managing chaos (2nd edition)	SPC Press	ISBN: 0- 945320-53-1
Florac, William; Park, Robert; Carleton, Anita	Statistical Process Control (SPC) for Software Tutorial	CMU/SEI. 1997	
Florac, William; Park, Robert; Carleton, Anita	Practical Software Measurement: Measuring for Process Management and Improvement	CMU/SEI. 1997	Handbook CMU/SEI-97- HB-003

Bibliografía

Autor	Título	Editor	Referencia
William A. Florac, Anita D. Carleton	Measuring the software process. Statistical process control for software process improvement.		April 1997
Donald J. Wheeler	Advanced topics in statistical process control	SPC Press, Inc. 1995	ISBN: 0- 945320-53-1
Motorola University	Six sigma e-Fundation Course	MU. 2004	http://mu.motorola .com/eFoundations /loginpage.asp

Versión

Versión	Fecha	Descripción	Autor
1.0.0_Draft_A	Ene-2008	Primera versión adaptada de Material previo	Diego Rubio
1.0.0_Draft_B	May-2008	Actualizaciones varios. Ejemplos específicos de software agregados.	Diego Rubio
1.0.0	May-2008	A línea base luego de revisión.	Diego Rubio
1.0.1	Sep-2010	Agregué información sobre índices de capacidad.	Natalia Andriano