LAB REPORT NO 7

CSE-206L Electronic Circuits Lab

Submitted by: Muhammad Ali

Registration No: - 19PWCSE1801

Class Section: A

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Engr. Abdullah Hamid

Data:(20,06,2021)

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

For Vin<Vz: -

For Vin>Vz: -

Zener Diode reading: -

V _{in}	Vz	Vs	Is
2	2V	0	0
5	5V	0	0
10	10V	0	0
12	11.9V	0.08V	0.08mA
15	12V	2.98V	2.98mA
20	12V	7.96V	7.96mA

Part B:

DOIDE as regulator: -

According to the circuit,

R_L = load resistor

R_s = voltage control resistor

V out = output voltage at load resistor.

Vin = input source voltage.

 V_z = diod voltage.

$$V \text{ out} = Vin*(R_L/R_L + R_s)$$

As:
$$V \text{ out} = V_z$$

$$V_z = Vin*(R_L/R_L + R_s)$$

$$V_{in}R_L - V_zR_L = R_sV_z$$

$$R_L = V_z * R_s / (V_{in} - V_z)$$

Putting values

 V_{in} =20V, V_z =12V and R_L =1000.

$$R_L = 12*1000 / (20-12)$$

$$R_L = 1500$$

Now, find Rs efficient value,

$$V_z = Vin*(R_L/R_L + R_s)$$

$$V_{in}R_L - V_zR_L = R_sV_z$$

$$R_s = V_{in}R_L - V_zR_L / V_z$$

Putting values R_L=1000

$$R_s = 20*1000 - 12*1000 / 12$$

$$R_s = 666.6$$

I find threshold value of R_L for more efficiency, so that less current will dissipate through Zener diode.

RL threshold level circuit: -

