Spark Machine Learning Pipelines

Anurag Nagar

Big Data Class

Introduction

 Machine Learning projects involve multiple steps, such as pre-processing, feature extraction, model building, etc

Introduction

- Machine Learning projects involve multiple steps, such as pre-processing, feature extraction, model building, etc
- There are iterative steps that have to be done multiple times e.g. parameter optimization

Pipelines

• Pipelines simplify the ML process by modularizing various phases.

Pipelines

- Pipelines simplify the ML process by modularizing various phases.
- Pipelines consist of a series of operations that are run sequentially.

- Introduction
- Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Pipeline Components

ML pipeline consists of the following components¹

- Transformers implements a transform() method, which converts one DataFrame into another, generally by appending one or more columns. For example:
 - A Feature transformer transforms raw data to feature vectors
 - A Learning Model transforms feature vector to a prediction label
- Estimators abstracts the concept of a learning algorithm or any algorithm that fits or trains on data. It implements a fit() method which accepts a Dataframe and produces a model.

¹see https://spark.apache.org/docs/latest/ml-pipeline.html#pipeline-components for more details

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

def transform (DataFrame): DataFrame

Transformers

Feature transformer extracts features from raw data

Abstraction: Transformer

Training

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Estimators

Estimators take a Dataframe with feature vectors and produce a learning model

Abstraction: Estimator

Training

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Pipelines

Multiple stages are joined together serially to form a Pipeline.

Transformers are shown in blue and Estimators are shown in red. Overall, a Pipeline is an Estimator as it produces a model, called PipelineModel.

- Introduction
- Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Pipelines

PipelineModel produced during the training phase is used for making predictions in the test phase.

Note that there are only Transformers here.

After calling *PipelineModel.transform()* on the test dataset, we obtain a DataFrame containing predictions.

Model transforms the test data

PipelineModel takes in test dataset and produces prediction

Abstraction: PipelineModel

- Introduction
- Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Pipeline Example

See this link:

https://spark.apache.org/docs/latest/ml-pipeline.html#example-pipeline for a toy example using Pipelines.

Abstraction Summary

Summary of abstractions is shown below:

Abstractions: Summary

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

• One of the important tasks in ML is *model selection*, which involves selecting the model with the best set of **parameters**.

- One of the important tasks in ML is *model selection*, which involves selecting the model with the best set of **parameters**.
- This is frequently done by manually trying various combination of parameters for Estimators, such as a Logistic Regression model.

- One of the important tasks in ML is *model selection*, which involves selecting the model with the best set of **parameters**.
- This is frequently done by manually trying various combination of parameters for Estimators, such as a Logistic Regression model.
- Spark provides an automated alternative, both for Estimators and for entire pipelines.

- One of the important tasks in ML is *model selection*, which involves selecting the model with the best set of **parameters**.
- This is frequently done by manually trying various combination of parameters for Estimators, such as a Logistic Regression model.
- Spark provides an automated alternative, both for Estimators and for entire pipelines.
- Uses tools such as CrossValidator and TrainValidationSplit to find best choice of parameters.

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

• Create a Pipeline with training stages. This should include model creation Estimator.

- Create a Pipeline with training stages. This should include model creation Estimator.
- Create a parameter grid using the ParamGridBuilder class. This is a grid for all values of the parameters that you want to test.

- Create a Pipeline with training stages. This should include model creation Estimator.
- Create a parameter grid using the ParamGridBuilder class. This is a grid for all values of the parameters that you want to test.
- Oefine an evaluator, such as BinaryClassificationEvaluator, which will be used to evaluate the model.

- Create a Pipeline with training stages. This should include model creation Estimator.
- Create a parameter grid using the ParamGridBuilder class. This is a grid for all values of the parameters that you want to test.
- Define an evaluator, such as BinaryClassificationEvaluator, which will be used to evaluate the model.
- Oreate a CrossValidator object, which will split data into training and testing parts with a choice for folds.

- Create a Pipeline with training stages. This should include model creation Estimator.
- Create a parameter grid using the ParamGridBuilder class. This is a grid for all values of the parameters that you want to test.
- Oefine an evaluator, such as BinaryClassificationEvaluator, which will be used to evaluate the model.
- Create a CrossValidator object, which will split data into training and testing parts with a choice for folds.
- Call the *CrossValidator.fit()* method and it will try all possible choices of parameters and give you the best choice.

- Introduction
- 2 Pipelines
 - Pipeline Components
 - Transformers
 - Estimators
 - Pipelines
 - PipelineModel
 - Pipeline Example
- Parameter Tuning
 - Background
 - Parameter Tuning Steps
 - Parameter Tuning Example

Parameter Tuning Example

See this link:

https://spark.apache.org/docs/latest/ml-tuning.html#cross-validation for a toy example of parameter tuning