

進化する BigQuery

~ エンタープライズ DWH における 9 つのポイント ~

Tetsuki Takamura

Data Analytics Specialist - Customer Engineer

Google Cloud Japan

スピーカー自己紹介

Tetsuki Takamura (tetsuki@)

Google Cloud Japan Solution & Technology Data Analytics Specialist 日系 Sler 企業を経て、2021 年より現職

Google Cloud の Data Analytics 領域の Specialist として、 お客様のデータ活用を技術観点から支援

週末はサッカーコーチ (小学3年生担当)

BigQuery に どんなイメージを お持ちでしょうか?

BigQuery って、データサイエンティストが アドホックに分析する OLAP 基盤としては いいと思うんだけど、

エンタープライズ用途の DWH として 使うのは向いてないんじゃないの?

本セッションの目的

BigQuery の近年のリリースにより強化された機能を 踏まえて、エンタープライズ DWH としての価値を お客様やパートナーの皆様にお伝えするためのセッションです

「へー、BigQuery って、それできるようになったんだ!」「DWH / Datalake の更改の際に候補にしてみよう」

※本日はハイライトのみお伝えします。各機能の詳細は、公式 HP や Blog 等をご覧ください

1 低レイテンシ・大量同時接続への対応	6
2	7
3	8
4	9
5	

低レイテンシ・大量同時接続への対応

懸念点

- BI レポートは**低レイテンシ・大量同時接続数**のケースが多い (例:月曜日にダッシュボードの参照で 2,000-3,000 位のアクセスあり)
- OLTP データベースなら処理できるけど、**BigQuery は苦手**な分 野じゃないの?

低レイテンシ・大量同時接続への対応

BigQuery BI Engine SQL Interface

GA (2021-12-14)

Sub-second queries

Simplified architecture

Smart tuning

1 低レイテンシ・大量同時接続への対応	6
2 パフォーマンスチューニングの選択肢	7
3	8
(4)	9)
(5)	

パフォーマンスチューニングの選択肢

懸念点

- 性能問題が発生した時、BigQuery でパフォーマンスチューニングに関して何ができるか?
- Enterprise な移行案件だと、スキーマの変更や クエリの書き換えはそんなに簡単にできないんだけど
- いざって時にアクセラレートできる方法があれば、 性能試験で問題が発生しても安心できる

パフォーマンスチューニングの選択肢

BigQuery のチューニングバリエーション

SQL チューニング

テーブル・スキーマ最適化

(進化) Materialized View (V2)

Partitioning

Clustering

(進化) BI Engine SQL Interface

(進化) Reservations (Flex slots)

query 書き換え必要

1 低レイテンシ・大量同時接続への対応	6
2 パフォーマンスチューニングの選択肢	7
3 コスト効率の良いクエリ処理	8
4	9
(5)	

懸念点

 必要なデータだけにアクセスしてコストと パフォーマンスを最適化したいんだけど、BigQuery って全表走査(フルスキャン)してるから効率悪いん じゃないの?

コスト効率の良いクエリ処理

これまでの BigQuery

+

Partitioning & Clustering

- BigQuery では、Partitioning 及び Clustering により読み取りデータ量を最 小化した上で、独自の分散処理技術 (Borg / Dremel / Colossus / Jupiter) を用 いて高速処理を実現します
- 結果、分散キーの設計や管理を行う 必要がなく、高いパフォーマンスを 実現しています

パーティションなし c2 c3 user_id 2018-01-01 2018-01-02 2018-01-03 2018-01-04 2018-01-05

さらに進化

Native JSON

Preview (2022-01-06)

 Native JSON対応により、非構造化データや 絶えず変化するデータ構造を対象とした検 索が可能に

テキスト検索インデックス

Preview

全文検索とインデックス機能 (String 列限定 / SEARCH 関数で利用)

BigQuery でのテキスト検索インデックス プレビュー

これまでのパワフルなスキャンに加え、 フルマネージドのテキストインデックスを BigQuery で提供することにより、ベタバイト 規模のデータから、特定のデータ要素の位置を瞬時に特定。

データレイク、データウェアハウス、ログ分析ソフトの データサイロを解消する。

高速な列横断検索

構造化、半構造化、非構造化データのインデックスを効率的に生成。 使いやすい SOL 関数によってデータポイントを迅速に発見できるめ、テーブル内のテキストすべてをスキャンする必要はなく、データが格納されている列すら不明であってもかまいません。

新しいネイティブ JSON データ型プレビューとの統合 新しいネイティブの JSON と原因に除さされたことにより、非構造化 データや視えず変化するデーク構造を対象とした検索に加え、 BigQueryのパブォーマンスとストレージ最適化を JSON で利用するこ とも可能となっています。

ログ分析の利便性がさらに向上

Cloud Logging から発表された新しい**ログ分析**アプリケーションをサポート。これにより、ロギングデータを BigCovery プロジェクトに複製することなく、ログにあるトレンド履歴を検索し、指標を集計できるように。

1 低レイテンシ・大量同時接続への対応	6
2 パフォーマンスチューニングの選択肢	7
3 コスト効率の良いクエリ処理	8
4 高度なワークロード管理	9
(5)	

ワークロード管理

懸念点

- BigQuery は、多くの利用者が同時にアクセスしても ストレスなく使える反面、ワークロードの制御が難しい
- 例えば、重要なワークロードに優先的にリソース 割り振ってコスト効果を高めたいんだけど、 BigQueryって対応できる?

ワークロード管理

これまでの BigQuery

ダイナミッククエリプラン&フェアスケジューラ

- 分析者にストレスを感じさせない
- 動的にクエリプランを生成し、実行中も最適化
- 有効に使えるリソース (Slot) を常に最大限活用

さらに進化

Reservation (Slot) による ワークロード管理

- プロジェクトレベルで Slot の割当量をコントロール
- 割り当てするジョブタイプ (QUERY, PIPELINE, ML EXTERNAL)も指定可能

Query Queues

ラーでスロットが分割される

Preview

ジョブキューとリソース割り当てを可能に

1 低レイテンシ・大量同時接続への対応	6
2 パフォーマンスチューニングの選択肢	7
3 コスト効率の良いクエリ処理	8
4 高度なワークロード管理	9
(5) 柔軟なバックアップ・コピー	

懸念点

- BigQuery の Time Travel は便利だけど、7 日までしかできないんだよなぁ
- それ以前の時点のデータのスナップショットを 取ったり、テーブルを複製する良い方法はないの?

柔軟なバックアップ・コピー

これまでの BigQuery

データセットやテーブルのCopy

GCS へのデータExport

Time travel (FOR SYSTEM_TIME AS OF)

● 自動で 7 days 以内の任意のデータが復元可能 (無料)

Time travel

Read data from any time within the last 7 days.

さらに進化

Table Snapshot

GA (2021-10-28)

特定ポイントのデータの Snapshot を保持 (PITR)

CREATE SNAPSHOT TABLE

myproject.library_backup.books
CLONE myproject.library.books
OPTIONS(expiration_timestamp = TIMESTAMP "2022-04-27 12:30:00.00-08:00")

Table Clone

Preview (2022-02-15)

- Snapshot の可変バージョン
- 本番環境の変更テストなど柔軟に

スナップショット

ベーステーブルの、変更不可能な読み取り専用バージョン。 タイムトラベルの時間枠を超える論理バックアップまたは クエリに有用です。

クローン

ベーステーブルの可変パージョン。読み取り/書き込み/ スキーマを進化させることができ、本番環境の変更テストに 有用です。

低コスト

ベースデーブルが変更または削除されるか (一意のパイトに 対して課金)、テーブルクローンが変更されるまで、テーブル ステージョットおよびクローンに追加のストレージコストは 発生しません。

~

懸念点

- 大規模開発で、同時に複数チームで 開発・テストするから、環境のクローンを作りたい
- 他の DB だと新しいインスタンスを作成して 環境作れるけど、BigQuery だと開発環境に容易に クローンを作れないんだよな

BigQuery 環境構成パターン

: project A : project B : project C

(A) データー元化

(ex:別組織にデータを参照させる)

データの複製コストなく 共有が可能

(B) 環境クローン

(ex:開発環境を複製し、複数チームで同時開発)

同一の dataset 名・table 名で query 実行可能

(C) リージョンクローン

(ex:別リージョンで同じ dataset名を利用)

同一の dataset 名・table 名で query 実行可能

Google Cloud

懸念点

● エンタープライズ用途だと、BI レポートで参照中の データを更新するケースもあるので、複数の更新処理をまと めて Commit or Rollback するって普通に必要に なるんだけど・・・ BigQueryって、 トランザクションは未対応ですよね?

トランザクション対応

これまでの BigQuery

+

さらに進化

- DML ステートメントは暗黙の トランザクション (終了時点で自動コミット)

• マルチ ステートメント トランザクション

Preview (2021-07-09)

- BEGIN、COMMIT、ROLLBACK を使って 複数のステートメントにまたがる トランザクションを制御可能に
- 分離レベル = Snapshot Isolation

```
BEGIN TRANSACTION;
INSERT INTO mydataset.NewArrivals
VALUES ('top load washer', 100, 'warehouse #1');
-- Trigger an error.
SELECT 1/0;
COMMIT TRANSACTION;

EXCEPTION WHEN ERROR THEN
-- Roll back the transaction inside the exception handler.
SELECT @@error.message;
ROLLBACK TRANSACTION;
END;
```

(1) 低レイテンシ・大量同時接続への対応 (6) 環境の複製・クローン

2 パフォーマンスチューニングの選択肢 7 トランザクション対応

3 コスト効率の良いクエリ処理 8 デプロイ・バージョン管理

4 高度なワークロード管理 9

(5) 柔軟なバックアップ

懸念点

インフラ、テーブルスキーマ、データ変換スクリプト、BI レポート向けのメトリック・・・
 色んな管理対象があるが、これらの構成管理、どうすれば良いのか・・・

デプロイ・バージョン管理

管理対象(例)

ツール (例)

Semantic

Dimension、Measure、フィールド定義

LookML

Application

● バッチ処理等の変換 SQL スクリプト

• ETL の Transformation のパイプライン

● BigQuery のテーブル DDL Data

INFORMATION_SCHEMA

● Google Cloud サービスの構成、

● BigQuery の各種メタデータ情報

Terraform

Dataform, dbt

Infrastructure

コンフィギュレーション

(1) 低レイテンシ・大量同時接続への対応

6 環境の複製、クローン

(2) パフォーマンスチューニングの選択肢

7) トランザクション対応

(3) コスト効率の良いクエリ処理

8 デプロイ・バージョン管理

4) 高度なワークロード管理

9 │ 監視・ログ分析

5 】 柔軟なバックアップ

懸念点

 Cloud Logging の UI がいまいち慣れなくて、 BigQuery にデータ連携してログ分析 してるんだけど、 Log Sink しなきゃいけないし、コストも かかるのが気になる

監視・ログ分析

これまでの BigQuery

Log Sinks & Logging Ecosystem

 Cloud Logging によるモニタリングでは、Log sink を使用することで、フィルタを かけながら GCS, BigQuery などの別の Product にログデータを転送することが可能

さらに進化

Log Analytics

Preview

 Cloud Logging のログを、低コスト& 簡単に BigQueryに連携しアドホックなログ分析が可能に

本日のまとめ

本日お伝えしたこと

お客様が 現在・将来 にわたり実現したいこと

BigQuery の強み・特性

エンタープライズ DWH 対応

On-demand·従量課金

フェアスケジューラ

ペタバイトクラスのデータ分析

Compute と Storage の分離

Dremel, Colossus, MindMeld, Jupiter

ML, GIS, Analytics Hub

低レイテンシ・大量同時接続

パフォーマンスチューニングの選択肢

コスト効率の良いクエリ処理

デプロイ・バージョン管理

高度なワークロード管理

監視・ログ分析

柔軟なバックアップ

環境の複製・クローン

トランザクション対応

不確実な状況の中、

現在及び将来の多様なワークロードに対応するために、

貴重なデータをどこにおき、活用していくべきか?

DWH modernization を進める企業にとって、 シンプルかつ最適なソリューションを決定することは非常に難しく、 また後から変更できない重要な選択

進化する BigQuery と
Google Cloud エコシステムにより
お客様の Data-To-Value (データの価値化) を最大化します

Thank you.

