Théorie de l'information

Quelques présentations...

Nom: Adeline Paiement

Métier : Enseignante-chercheure

Domaine de recherche : IA, science des données

Qui dit IA, dit...

Qui dit IA, dit...

Qui dit science des données, dit...

Qui dit science des données, dit...

Peut on vraiment résumer

l'IA & la science des données

à des réseaux de neurones ?

IA & science des données : qu'est ce que c'est (vraiment) ?

• Indice: cherchez le lien avec l'information...

Qu'est ce que la science des données ?

Réponse : Extraire l'information utile cachée / noyée dans les données

Dans ce module :

Théorie de l'information...

...du point de vue de la science des données

...avec des applications concrètes

Petit historique de la théorie de l'information

Boltzmann et Markov, fin XIXème : probabilité d'un événement

Claude Shannon, 1949: A Mathematical Theory of Communication

- La Compagnie des Téléphones Bell cherche à envoyer des messages de manière plus économique et plus fiable
- Information comme grandeur mesurable
- Théorie *probabiliste* de la *transmission* de l'information

Questions à aborder

Théorie de l'information en science des données

- Qu'est ce que l'information en science des données ?
- Quelles propriétés et défis pour cette information ?

Quelques rappels et définitions fondamentales

- Probabilités
- Quantité d'information
- Entropie
- Indépendance
- Information mutuelle

Quelles applications en science des données ?

Questions à aborder

Manipulation des données

- Peut on transformer les données tout en préservant l'information ?
 - Nettoyage
 - Simplification
 - etc.

Transmission de l'information

- Comment s'assurer qu'un message envoyé reçu transporte bien l'information ?
- Application du principe à l'analyse des données (science des données)

Théorie de (la communication de) l'information

 Comment transmettre puis récupérer l'information utile via un message (les données transmises)
 pouvant être dégradé pendant la transmission ?

Théorie de l'information en science des données

 Comment récupérer l'information utile des données mesurées (c.à.d. transmises)
 pouvant être dégradée pendant la mesure ?

• Peut prendre beaucoup de formes

• Peut prendre beaucoup de formes

• N'est pas observable directement, mais peut être mesurée

Peut prendre beaucoup de formes

• N'est pas observable directement, mais peut être *mesurée*

• Peut être contenue dans des « messages » / données de types variés

- Peut prendre beaucoup de formes
- N'est pas observable directement, mais peut être *mesurée*
- Peut être contenue dans des « messages » / données de types variés
- C'est le contenu utile du message / des données

• Accélérométrie et reconnaissance d'activités

• Son et reconnaissance de la parole

Mot Signification de la phrase

• Emissions en fréquences radio et détection / caractérisation d'éruptions solaires

Position Durée Epaisseur

• Vidéo et détection / suivi de voitures et piétons

• IRM et détection / caractérisation de tumeurs

Position
Etendue / taille
Evolution au cours du temps

- Peut prendre beaucoup de formes
- N'est pas observable directement, mais peut être mesurée
- Peut être contenue dans des « messages » / données de types variés
- C'est le contenu utile du message / des données
- Souvent noyée dans les données (autres « info » inutiles, redondances), et partiellement masquée par du bruit

Théorie de l'information en science des données

• Comment récupérer l'information utile

des données mesurées (c.à.d. transmises)

pouvant être dégradée pendant la mesure ?

• Accélérométrie et reconnaissance d'activités

• Son et reconnaissance de la parole

Bruit dans l'enregistrement Mots redondants

• Emissions en rayons X et détection / caractérisation d'éruptions solaires

Bruit de mesure

• Vidéo et détection / suivi de voitures et piétons

Les conditions météo peuvent changer

• IRM et détection / caractérisation de tumeurs

Dégradations du message / des données

• Comment récupérer l'information utile

des données mesurées (c.à.d. transmises)

pouvant être dégradée pendant la mesure ?

Erreurs de mesure

Autres objets et phénomènes captur

L'information dans son contexte

L'information est « utile » pour une application donnée

L'information dans son contexte

Laquelle de ces deux phrases nous donne le plus d'information ?

• Hercule est un petit animal.

• Hercule est un poisson rouge.

L'information dans son contexte

Laquelle de ces deux phrases nous donne le plus d'information ?

Hercule est un petit animal.

• Hercule est un poisson rouge.

message + contexte

= véritable porteur d'information

Questions à aborder

Théorie de l'information en science des données

- Qu'est ce que l'information en science des données ?
- Quelles propriétés et défis pour cette information ?

Quelques rappels et définitions fondamentales

- Probabilités
- Quantité d'information
- Entropie
- Indépendance
- Information mutuelle

Quelles applications en science des données ?

• Variable aléatoire discrète $X \in \mathcal{X}$:

Source qui génère des objets (nombres, lettres, etc.) d'un ensemble $\boldsymbol{\mathcal{X}}$ en suivant une loi de probabilité donnée

• Variable aléatoire discrète $X \in \mathcal{X}$:

Source qui génère des objets (nombres, lettres, etc.) d'un ensemble $\boldsymbol{\mathcal{X}}$ en suivant une loi de probabilité donnée

Exemple:

Un dé équilibré génère des nombres entre 1 et 6, en suivant une loi uniforme

• Variable aléatoire discrète $X \in \mathcal{X}$:

Source qui génère des objets (nombres, lettres, etc.) d'un ensemble $\boldsymbol{\mathcal{X}}$ en suivant une loi de probabilité donnée

Exemple 2:

Un dé pipé génère des nombres entre 1 et 6, en suivant une loi non uniforme

• Variable aléatoire discrète $X \in \mathcal{X}$:

Source qui génère des objets (nombres, lettres, etc.) d'un ensemble $\boldsymbol{\mathcal{X}}$ en suivant une loi de probabilité donnée

Exemple 3:

Un texte est généré par une variable aléatoire qui génère des lettres de A à Z selon la distribution

suivante:

lettre	%	Lettre	%	Lettre	%	Lettre	%	Lettre	%	Lettre	%
A	6,4	В	0,64	С	2,59	D	2,6	Е	14,86	G	0,83
Н	0,61	I	5,91	J	0,23	K	0,01	L	4,65	M	2,45
N	6,23	О	4,59	P	2,56	Q	0,81	R	5,55	S	6,97
T	5,72	U	5,06	W	0	X	0,31	Y	0,21	Z	0,08
Espace	18,35										
F	1,12	V	0,66								

• Valeurs pouvant être générées par une variable aléatoire discrète $X \in \mathcal{X}$:

Les éléments de X

- □ Dé : {1; 2; 3; 4; 5; 6}
- ☐ Texte : {A; B; C;; Y; Z}
- ☐ etc.

• Distribution / loi de probabilité :

Chance qu'une valeur donnée soit générée par la variable aléatoire

lettre	%	Lettre	%	Lettre	%	Lettre	%	Lettre	%	Lettre	%
A	6,4	В	0,64	C	2,59	D	2,6	Е	14,86	G	0,83
Н	0,61	I	5,91	J	0,23	K	0,01	L	4,65	M	2,45
N	6,23	O	4,59	P	2,56	Q	0,81	R	5,55	S	6,97
T	5,72	U	5,06	W	0	X	0,31	Y	0,21	Z	0,08
Espace	18,35										
F	1,12	V	0,66								

• Distribution / loi de probabilité :

Probabilité de piocher une boîte bleue parmi toutes les boîtes ?

Probabilité de piocher une boîte grise parmi toutes les boîtes ?

•••

• Distribution / loi de probabilité :

Probabilité de piocher une boîte bleue parmi toutes les boîtes : $\frac{n_{bleue}}{N}$

Probabilité de piocher une boîte grise parmi toutes les boîtes : $\frac{n_{grise}}{N}$

•••

• Distribution / loi de probabilité :

Probabilité de la valeur bleue : $\frac{n_{bleue}}{N}$

Probabilité de la valeur grise : $\frac{n_{grise}}{N}$

• • •

Questions?

Comment mesure t'on l'information?

