Question 1. Convert the following set of sentences into the conjunctive normal form (CNF).

S1: $A \Leftrightarrow (B \lor E)$

Biconditional elimination: (A \Rightarrow B V E) \land (B V E \Rightarrow A) Implication elimination: (\neg A V B V E) \land (\neg (B V E) V A)

De Morgan: $(\neg A \lor B \lor E) \land (\neg B \land \neg E) \lor A)$

Distributivity Law: $(\neg A \lor B \lor E) \land (\neg B \lor A) \land (\neg E \lor A)$

CNF: $(\neg A \lor B \lor E) \land (\neg B \lor A) \land (\neg E \lor A)$

S2: $E \Rightarrow D$

Implication elimination: ¬E V D

 $CNF: \neg E \lor D$

S3: C \wedge F $\Rightarrow \neg$ B

Implication elimination: $\neg(C \land F) \lor \neg B$

De Morgan: $(\neg C \lor \neg F) \lor \neg B$

 $CNF: \neg C \lor \neg F \lor \neg B$

Question 2. Assuming predicates Parent(p, q) and Female(p) and constants Joan and Kevin, with the obvious meanings, express each of the following sentences in first-order logic. (You may use the abbreviation \mathbb{F}^1 to mean "there exists exactly one.")

1. Joan has a daughter (possibly more than one, and possibly sons as well).

 $\exists x \; Female(x) \land Parent(Joan,x)$

There exists an x such that x is a female and Joan is the parent of x.

Joan has exactly one daughter (but may have sons as well).

 $\exists^1 x \text{ Female}(x) \land \text{Parent}(Joan, x)$

There exists exactly one x such that x is a female and Joan is the parent of x.

3. Joan has exactly one child, a daughter.

 $\exists^1x \ Parent(Joan,x) \land Female(x)$

There exists exactly one x such that Joan is the parent of x and x is a female.

4. Joan and Kevin have exactly one child together.

 $\exists^1x \ Parent(Joan,x) \land Parent(Kevin,x)$

There exists exactly one x such that Joan is the parent of x and Kevin is the parent of x.

5. Joan has at least one child with Kevin, and no children with anyone else.

 $(\exists x \ Parent(Joan,x) \land Parent(Kevin,x)) \land (\neg \exists y \ Parent(Joan,y) \land \neg Parent(Kevin,y))$

There exists an x such that Joan is the parent of x and Kevin is the parent of x and there doesn't exist a y such that Joan is the parent of y and Kevin is not the parent of y.

Question 3. Five Customers' Rating on a New Car on a 20-point Scale.

(a) Assume K = 2 and the two initial centroids are 3 and 4.

Customer	Rating	Distance to Centroid 1	Distance to Centroid 2			Distance to Centroid 1	Distance to Centroid 2			Distance to Centroid 1	Distance to Centroid 2
Α	2	1	2			0	7.75			1.5	9.33
В	5	2	1			3	4.75			1.5	6.33
С	9	6	5			7	0.75			5.5	2.33
D	10	7	6			8	0.25			6.5	1.33
E	15	12	11			13	5.25			11.5	3.67
Centroid 1	3			New Centroid 1	2			New Centroid 1	3.5		
Centroid 2	4			New Centroid 2	9.75			New Centroid 2	11.33333		

- 1. Clusters = {2,5} and {9,10,15}
- 2. Silhouette Coefficient

Customer	Rating	2	5	9	10	15	Intra-Cluster Distance [a(i)]	Inter-Cluster Distance [b(i)]	Silhouette Coefficient [s(i)]
Α	2		3	7	8	13	3	9.33	0.68
В	5	-3		4	5	10	3	6.33	0.53
С	9	-7	-4		1	6	3.5	5.5	0.36
D	10	-8	-5	-1		5	3	6.5	0.54
E	15	-13	-10	-6	-5		5.5	11.5	0.52
									0.53

Davies-Bouldin Index

		ci	cj	dij				
Customer	Rating	3.5	11.33	7.83				
Α	2	1.5						
В	5	1.5						
С	9		2.33					
D	10		1.33					
E	15		3.67					
		si	sj		Rij	Di	Dj	DB
		1.5	2.443333		0.503619	0.503619	0.503619	0.503619

Calinski-Harabasz Index

		ci	cj	С					
Customer	Rating	3.5	11.33	8.2					
Α	2	1.5			44.18	k=1	2.25	i=1	
В	5	1.5					2.25	i=2	
С	9		2.33		29.3907	k=2	5.4289	i=3	
D	10		1.33				1.7689	i=4	
E	15		3.67				13.4689	i=5	
					Sum of nk ck - c ^2 / K -1 for each cluster		Sum of di - ck ^2 for each point for each cluster / N - K		CH
					73.5707		8.3889		8.770006

(b) Assume K = 2 and the two initial centroids are 11 and 12.

Customer	Rating	Distance to Centroid 1	Distance to Centroid 2			Distance to Centroid 1	Distance to Centroid 2
Α	2	9	10			4.5	13
В	5	6	7			1.5	10
С	9	2	3			2.5	6
D	10	1	2			3.5	5
E	15	4	3			8.5	0
Centroid 1	11			New Centroid 1	6.5		
Centroid 2	12			New Centroid 2	15		

- 1. Clusters = {2,5,9,10} and {15}
- 2. Silhouette Coefficient

Customer	Rating	2	5	9	10	15	Intra-Cluster Distance [a(i)]	Inter-Cluster Distance [b(i)]	Silhouette Coefficient [s(i)]	
Α	2		3	7	8	13	6	13.00	0.54	
В	5	-3		4	5	10	4	10.00	0.60	
С	9	-7	-4		1	6	4	6.00	0.33	
D	10	-8	-5	-1		5	4.67	5.00	0.07	
E	15	-13	-10	-6	-5		0	8.5	0.00	since Ci = 1
									0.31	

Davies-Bouldin Index

		ci	cj	dij				
Customer	Rating	6.5	15	8.5				
Α	2	4.5						
В	5	1.5						
С	9	2.5						
D	10	3.5						
E	15		0					
		si	sj		Rij	Di	Dj	DB
		3	0		0.352941	0.352941	0.352941	0.352941

Calinski-Harabasz Index

	ci	cj	С			
Rating	6.5	15	8.2			
2	4.5			11.56	20.25	
5	1.5				2.25	
9	2.5				6.25	
10	3.5				12.25	
15		0		46.24	0	
				Sum of nk ck - c ^2 / K -1 for each cluster	Sum of di - ck ^2 for each point for each cluster / N - K	CH
				57.8	13.66666667	4.229268
R	2 5 9 10	Rating 6.5 2 4.5 5 1.5 9 2.5 10 3.5	Rating 6.5 15 2 4.5 5 1.5 9 2.5 10 3.5	Rating 6.5 15 8.2 2 4.5 5 1.5 9 2.5 10 3.5	Rating 6.5 15 8.2 2 4.5 11.56 5 1.5 9 2.5 10 3.5 15 0 46.24 Sum of nk ck - c ^2 / K -1 for each cluster	Rating 6.5 15 8.2 2 4.5 11.56 20.25 5 1.5 2.25 9 2.5 6.25 10 3.5 12.25 15 0 46.24 0 Sum of nk ck - c ^2 / K - 1 for each cluster Sum of di - ck ^2 for each point for each cluster / N - K

(c) Use the results from (a) and (b) to determine which two-cluster solution should be chosen. Please describe and explain your answer in detail.

Comparing the Silhouette Coefficient Index, Davies—Bouldin Index, and Calinski-Harabasz Index of each set of clusters, it would appear that {2,5} and {9,10,15} should be chosen. This cluster solution offers both a higher Silhouette and Calinski-Harabasz Index. The Davies-Bouldin Index is skewed toward for {2,5,9,10} and {15} since the average distance to the centroid for the {15} cluster is 0 lowering the DB Index below that of {2,5} and {9,10,15}. The {2,5} and {9,10,15} option also offers a lower SSE value of 25.16 compared to 41 for {2,5,9,10} and {15}.