Do Gasoline Expenditure Shocks Have Different Effects in Recessions & Expansions?

Naafey Sardar¹ Dr. Lance Bachmeier²

¹Ph.D. Candidate, Department of Economics, Kansas State University

²Associate Professor, Department of Economics, Kansas State University

Objective

- What happens to non-gasoline consumption when there is a shock to gasoline expenditures?
- Does the response of non-gasoline consumption to gasoline expenditures depend on the state of the business cycle?
- Why is the response of non-gasoline consumption to gasoline expenditures different between recessions and expansions?

What To Take Away

Using a structural VAR model for U.S. data covering the period 1973-2018, this paper shows that

- An increase in gasoline expenditures reduces aggregate consumption.
- The response to a gasoline expenditure shock is much stronger in a recession than in an expansion.
- The difference in response over the business cycle is due to the differences in household savings behaviour in recessions versus expansions.
- Our results are consistent with the literature showing large effects of fiscal policy in recessions.

Contributions

- This is the first paper to suggest that the effect of a gasoline expenditure shock depends on the state of the economy.
- We present a novel forecasting model that accounts for this kind of asymmetry.
- This model would allow the Federal Reserve to precisely estimate the effect of a gasoline expenditure shock on consumption (or other macro variable) in recessions and expansions.

Relationship between U.S. Consumption and Gasoline Expenditures (1973-2018)

Figure 1: Gasoline and Non-Gasoline Shares of Consumption

Relationship between U.S. Consumption and Gasoline Expenditures (1973-2018)

- Gasoline share of consumption peaked in the early 1980's.
- Low and stable global oil prices contributed to low shares during the 1990's.
- The more recent increase came in the early 2000's when oil prices increased due to high global oil demand.

Relationship between U.S. Consumption and Gasoline Expenditures (1973-2018)

- A key question in macroeconomics is how aggregate consumption responds to a shock to gasoline expenditures?
- If gasoline consumption is inelastic in the short-run, a positive shock to gasoline price will lead to higher gasoline expenditures, reducing spending on non-gasoline goods and services.
 - Hamilton (2009): Less discretionary income available as gasoline expenditures rise.
 - Hamilton (1988): As gasoline expenditures increase, demand for energy-consuming goods falls.
 - Farrell and Greig (2015): The MPC for non-energy goods is 0.8 for every dollar saved on gasoline.
 - Gicheva et al. (2008): Higher gasoline expenditures affects consumers spending on food.

U.S. Net Imports of Crude Oil (1973-2018)

Figure 2: U.S. Net Imports of Crude Oil and Petroleum Products

- Increase in gasoline expenditures have caused a transfer of U.S. income to foreign oil producers.
- Higher gasoline expenditures have the same effect as a tax on the U.S. economy and should be expected to reduce aggregate consumption.

U.S. Net Imports of Crude Oil

Jannet Yellen (2011):

"A higher price of imported oil is the equivalent of a tax on consumers. It is a transfer from US consumers to foreign oil producers. The effect should be the same as a tax increase. This tends to have a dampening effect on consumer spending."

■ S&P Global Economists Beth Bovino and Satyam Panday (2018):

"This would be tantamount to a tax increase for American households."

Fiscal Policy Literature

- The motivation for our analysis is the recent literature showing that the impact of fiscal policy depends on the state of the economy.
- Tagkalakis (2008): Tax cuts are more effective in boosting private consumption in recessions.
- Auerbach and Gorodnichenko (2012): Fiscal multipliers are larger in recessions than expansions.
- Jorda and Taylor (2016): Fiscal austerity depresses the economy more in a slump as opposed to a boom.

Motivation

- Due to the oil-importing nature of the U.S. economy, shocks to gasoline expenditures have the same effect as a change in taxes.
- Fiscal policy has different effects in recessions and expansions.
- It follows that the effect of a gasoline expenditure shock should depend on the state of the business cycle.

Why Should We Care?

- A finding of economically meaningful asymmetry of this type requires a change to empirical and theoretical macroeconomic models that include energy prices.
- Implications for consumption forecasting.
- A failure to find evidence would cast doubt on the following:
 - Treatment of a gasoline expenditure shock as a change in taxes.
 - Claims that the effect of fiscal policy depends on the state of the economy.
 - Both claims.

Linear Model

We begin the analysis by estimating a (linear) bivariate structural VAR model,

$$z_t = \alpha + \sum_{i=1}^p \beta_i z_{t-i} + e_t$$

- $z_t = (\Delta gas_t, \Delta c_t)'$
- lacktriangle Δgas_t is the percentage change in gasoline expenditures in quarter t
- $lack \Delta c_t$ is a measure of consumption growth in quarter t
- ullet $e_t = (e_{gas,t}, e_{c,t})'$ is a vector of reduced form residuals
- p represents the lag-length, whereas α and β_i are vectors of coefficients.

Linear Model

- Gasoline expenditures are defined as the real personal consumption expenditures on gasoline goods and services.
- The four measures of consumption growth we use are:
 - RPCE
 - RPCE: Durables
 - RPCE: Nondurables
 - RPCE: Services
- Estimation of the linear VAR model does not represent an original contribution.
- It provides a benchmark for comparison with results of the nonlinear model.

Data Transformation

- Data on consumption was downloaded from National Income and Product Accounts (NIPA) tables.
- Nominal variables are deflated using the Price Index for PCE and transformed into real variables.
- We conduct stationarity tests like the Augmented DF, Phillips-Perron, and ERS modified DF test.
- Results suggest that the real consumption variables are non-stationery in levels but stationery in percentage differences.

Data Transformation

A. Tests for Variables in Levels

Variables	ADF	ERS	PP
PCE	-2.2491	-1.1359	-2.0918
Durables	-1.7479	-2.2510	-1.9288
Motor Vehicles	-1.9162	-2.1404	-2.1699
Furnishing	-1.8016	-2.5069	-1.6846
Other Durables	-2.2868	-2.0202	-2.2535
Nondurables	-1.8588	-1.2780	-1.7361
Food	-0.7110	-0.8757	-0.7486
Clothing	-1.4820	-2.0279	-1.6621
Gasoline	-2.7770	-2.1776	-2.4077
Other Nondurables	-2.3964	-0.9019	-2.2589
Services	-2.1087	-0.6554	-2.1506

Figure 3: All tests include an intercept and a linear trend. 5% critical values for the respective tests are: -3.42, -2.89, -3.42.

Data Transformation

B. Tests for Variables in Percentage Difference

Variables	ADF	ERS	PP
PCE	-6.2370	-3.9626	-10.3800
Durables	-8.2022	-3.4850	-13.8494
Motor Vehicles	-9.5612	-4.2604	-16.1017
Furnishing	-5.8940	-2.3034	-9.4246
Other Durables	-8.9879	-2.9123	-12.8551
Nondurables	-8.5289	-3.9772	-11.3639
Food	-7.9926	-3.9039	-13.2261
Clothing	-8.1043	-3.2376	-12.9987
Gasoline	-10.2514	-6.1760	-10.9401
Other Nondurables	-7.1876	-4.4654	-10.9716
Services	-6.5719	-4.6473	-9.5524

Figure 4: All tests include an intercept and a linear trend. 5% critical values for the respective tests are: -3.42, -2.89, -3.42.

Identification of the Linear Model

- Our ordering of the variables implies a recursive system with gasoline expenditures ordered first.
- Consumption responds contemporaneously to gasoline expenditures, and not vice versa.
- The Cholesky decomposition of the variance-covariance matrix of reduced form residuals suggests that,

$$e_{t} = \begin{pmatrix} e_{gas,t} \\ e_{c,t} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} \begin{pmatrix} \varepsilon_{gas,t} \\ \varepsilon_{c,t} \end{pmatrix}$$

$$e_{gas,t} = arepsilon_{gas,t}$$
 $e_{c,t} = a_{21} arepsilon_{gas,t} + arepsilon_{c,t}$

Identification of the Linear Model

- Metric for judging the plausability of our assumption is to look at the contemporaneous correlations of the VAR residuals.
- If gasoline expenditures are reacting immediately to macroeconomic shocks, it will cause a positive correlations between residuals.
- On the other hand, if consumption expenditures are reacting to gasoline expenditures, the correlation will be negative.

Variables	Correlation $(e_{gas,t}, e_{c,t})$
RPCE	-0.35
RPCE:Durables	-0.07
RPCE:Nondurables	-0.26
RPCE:Services	-0.45

Interpretation of the Structural Shock

What is the structural shock $(\varepsilon_{gas,t})$ capturing?

- Unanticipated changes in the price of gasoline.
- Change in the preferences for larger or smaller vehicles.
- Change in travel patterns.
- Change in commuting behaviour due to fluctuations in house prices.

Results: Linear Model

Figure 5: Response of consumption to a 10% increase in gasoline expenditures.

Results: Linear Model

Figure 6: Contribution of each category in driving the response of consumption.

Interpretation of the Results

- The average household income before taxes for 2017 was \$73,572, of which \$60,060 was used by households for consumption.
- Based on our sample, consumers spend \$2,000 on gasoline and other energy goods.
- Following a \$200 increase in gasoline expenditures across the course of the year, an average household reduces spending by \$389 over the same time period.
- Services spending goes down by \$182, durables spending declines by \$123, and nondurables decreases by \$47.

Other Categories of Consumption

We also consider the following measures of consumption for our analysis:

- Durables
 - Furnishing Goods
 - Motor Vehicles
 - Recreational Goods
- Nondurables
 - Food and Beverages
 - Clothing
- Services
 - Housing and Utilities
 - Transportation
 - Other (Communication, Education, etc)

Results: Other Categories of Consumption

Figure 7: Response of consumption to a 10% increase in gasoline expenditures

Results: Other Categories of Consumption

Figure 8: Response of consumption to a 10% increase in gasoline expenditures

Other Categories of Consumption

- A \$200 annual increase in gasoline expenditures will force an average household to reduce spending on motor vehicles by \$82 over the course of a year.
- Spending on furnishing and other durable household equipment, and clothing goes down by \$16 and \$10 respectively.
- Spending on food stays at its original level.
- Public transportation expenditures increase by \$9.
- Expenditures on housing go down by \$57, whereas utility bills increase by \$11 over the course of a year.

Crowding Out of Non-Gasoline Spending

- The bivariate VAR model results suggest that as gasoline expenditures increase, consumption falls.
- This decline in consumption is referred to as the 'discretionary income effect'.
- Once consumers are done paying for gasoline and other gasoline goods, they have less money to spend on other goods and services.
- These results are evidence that an increase in gasoline expenditures has the same effect as an increase in tax on consumers.

- We model the asymmetric response of consumption variables to gasoline expenditure shocks in recessions and expansions using local projections.
- Local projections have the ability to accommodate nonlinear specification.
- Estimating a linear model for each regime separately will make our estimates imprecise due to insufficient degrees of freedom for recessions.
- On the other hand, a nonlinear model allows us to utilize the entire dataset for our analysis.

Assuming that consumption growth responds contemporaneously to an increase in gasoline expenditures, the immediate response of consumption growth, Δc_t , to a gasoline expenditure shock can be estimated with the following regressions.

$$\Delta c_t = \alpha + \sum_{i=0}^k \phi_i I_{t-i} + \sum_{i=0}^k \theta_i \triangle y_{t-i} + \sum_{i=1}^k \beta_i \Delta c_{t-i} + \sum_{i=0}^k \gamma_i \triangle gas_{t-i} + \sum_{i=0}^k \delta_i inter_{t-i} + \varepsilon_t$$

Where.

$$inter_{t-i} = I_{t-i} \times \triangle gas_{t-i}$$

We follow AG (2012) and define a recession in the following manner,

$$I_t = \begin{cases} 1 & F(z_t) \ge 0.8 \\ 0 & F(z_t) < 0.8 \end{cases}$$

The transition function that indicates the state of the economy takes the following functional form,

$$F(z_t) = \frac{exp(-\gamma(z_t - \bar{d}))}{1 + exp(-\gamma(z_t - \bar{d}))}, \gamma > 0.$$

Where z_t is equal to the seven quarter moving average growth rate of output and the value of γ is calibrated to be equal to 3 so that the economy spends 20% of time in recession,

$$Pr(F(z_t) > 0.8) = 0.2$$

Figure 9: Estimated values of the AG (2012) transition function

Defining Δgas_0 as the change in gasoline expenditures in recessions and expansions, and *inter*₀ as the change in gasoline expenditures in recessions, the contemporaneous response of Δc_t , Δc_0 is defined as

$$\Delta c_0 = \hat{\gamma}_0 \triangle \textit{gas}_0 + \hat{\delta}_0 \textit{inter}_0$$

$$\Delta c_0^{rec} = \hat{\gamma}_0 \triangle gas_0 + \hat{\delta}_0 inter_0$$

$$\Delta c_0^{exp} = \hat{\gamma}_0 \triangle gas_0$$

Since the shock under study is a 10% increase in gasoline expenditures $\triangle gas_0 = 0.1$. For a 10% shock in recessions, $inter_0 = 0.1$. For expansions, on the other hand, $inter_0 = 0$ since $I_t = 0$.

We then define the initial response vector for each regime,

$$d_i^{rec} = \begin{bmatrix} \Delta c_0^{rec} & \triangle gas_0 & inter_0 \end{bmatrix}$$

$$d_i^{exp} = \begin{bmatrix} \Delta c_0^{exp} & \triangle gas_0 & 0 \end{bmatrix}$$

The s-period impulse responses are then calculated by estimating a reduced form regression,

$$\begin{split} \Delta c_t &= \alpha + \sum_{i=1}^k \phi_i I_{t-i} + \sum_{i=1}^k \theta_i \triangle y_{t-i} + \sum_{i=1}^k \beta_i \Delta c_{t-i} + \sum_{i=1}^k \gamma_i \triangle gas_{t-i} \\ &+ \sum_{i=1}^k \delta_i inter_{t-i} + \varepsilon_t \end{split}$$

The response for both regimes is calculated using the following,

$$\hat{IR}_s^{rec} = \Phi_s d_i^{rec} = \hat{eta}_s \Delta c_0 + \hat{\gamma}_s \triangle gas_0 + \hat{\delta}_s inter_0$$

and

$$\hat{IR}_s^{exp} = \Phi_s d_i^{exp} = \hat{eta}_s \Delta c_0 + \hat{\gamma}_s \triangle gas_0$$

where

$$\Phi_s = \begin{bmatrix} \hat{\beta}_s & \hat{\gamma}_s & \hat{\delta}_s \end{bmatrix}$$

- Once we construct the impulse responses for both regimes, we can calculate the cumulative impulse response functions.
- The rationale to use cumulative impulse responses is that it allows us to calculate the deviation of consumption from its' long-run level.

$$CIR_s^{rec} = \sum_{j=0}^s \widehat{IR}_j^{rec}$$

$$CIR_s^{exp} = \sum_{i=0}^s \widehat{IR}_j^{exp}$$

Asymmetric Effects Over Business Cycle

In order to calculate the asymmetric response of c_t to gasoline expenditure shocks, we take the difference between the impulse responses across recessions and expansions.

$$\mathit{CIR}_s^\mathit{rec} - \mathit{CIR}_s^\mathit{exp} = \sum_{j=0}^s \widehat{\mathit{IR}}_j^\mathit{rec} - \sum_{j=0}^s \widehat{\mathit{IR}}_j^\mathit{exp}$$

$$\triangle CIR_s = \sum_{j=0}^{s} \widehat{IR}_j^{rec} - \sum_{j=0}^{s} \widehat{IR}_j^{exp}$$

If $\triangle CIR_s < 0$, this means the response of consumption, c_t is stronger in a recession as compared to an expansion. $\triangle CIR_s > 0$ suggests the opposite.

Figure 10: Response of consumption to a 10% increase in gasoline expenditures. Solid line is the response in a recession, whereas the corresponding dashed line is the response in an expansion.

- Non-gasoline consumption decreases by around 2% more in recessions as opposed to in expansions.
- Durables PCE decreases by almost 5.20% more following the shock in recessions.
- The difference in response among nondurables and services is -1.45% and -1.43% respectively.
- The highly elastic nature of durable goods explains the big drop.

Figure 11: Solid line represents the difference in response, whereas the corresponding dashed line is the 95% confidence interval.

Figure 12: The top row indicates the response of consumption to a 10% increase in gasoline expenditures, whereas the lower row represents the difference in response across regimes with the corresponding dashed lines are the 95% confidence interval

Figure 13: The top row indicates the response of consumption to a 10% increase in gasoline expenditures, whereas the lower row represents the difference in response across regimes with the corresponding dashed lines are the 95% confidence interval.

Figure 14: The top row indicates the response of consumption to a 10% increase in gasoline expenditures, whereas the lower row represents the difference in response across regimes with the corresponding dashed lines are the 95% confidence interval

Interpretation of the Results

- In dollar terms, a \$200 increase in gasoline expenditures for any year reduces total non-gasoline spending for an average household by \$1,545 in recessions and \$383 in expansions.
- Durables lose out by \$530 in recessions as opposed to \$137 in expansions.
- Spending on nondurables decreases by \$249 in recessions and \$55 in expansions.
- On the other hand, services spending goes down by \$689 in recessions as opposed to \$156 in expansions.

Source of Asymmetry

- Precautionary Savings Effect: Edelstein and Kilian (2009)
- We reestimate the nonlinear model using personal savings as the dependent variable,

 $Personal\ Savings = Disposable\ Income - Personal\ Outlays.$

■ The estimates from our model suggest that a 10% increase in gasoline expenditures over the course of a year increases savings by 3.57% in recessions as opposed to 0.92% in expansions.

Source of Asymmetry

- The difference in response of savings indicates that the precautionary savings channel is amplified in recessions.
- A \$200 increase in gasoline expenditures increases private savings by \$398 in recessions and \$60 in expansions.
- As gasoline expenditures increase in recessions, consumers become skeptical about the future path of the economy.
- Consumers increase their savings by more because they perceive a higher likelihood of unemployment during recessions.

Why Should We Care? (Change)

- A finding of economically meaningful asymmetry of requires a change to empirical and theoretical macroeconomic models that include energy prices.
- This suggests that the Federal Reserve's consumption forecasting models need to account for this asymmetric behaviour.
- Forecasts with the linear model might underestimate the effects of gasoline expenditure shocks. (Add details about models being forecasted.)

Forecasting Implications

Figure 15: Consumption forecasts following a 10% increase in gasoline expenditures.

Forecasting Implications

¹Ph.D. Candidate, Department of Economics, Kansas State University, ²Associate Professor, Department of Economics, Kansas State University

Alternative Recession Dates

- Different measures of recessions have been proposed in the literature, i.e. unemployment rate, capacity utilization, and output gap.
- We reestimate our model using an alternative recession date proposed by Hamilton.
- Hamilton like AG (2012), also estimates recession dates,

$$P(Recession|GDP) = \frac{P(Recession \cap GDP)}{P(GDP)}$$

Alternative Recession Dates (Change)

1 Ph.D. Candidate, Department of Economics, Kansas State University, ²Associate Professor, Department of Economics, Kansas State University

Alternative Measure of Shock

• We also redo the analysis using real price of gasoline.

$$\Delta c_{t} = \alpha + \sum_{i=0}^{k} \phi_{i} I_{t-i} + \sum_{i=0}^{k} \theta_{i} \triangle y_{t-i} + \sum_{i=1}^{k} \beta_{i} \Delta c_{t-i} + \sum_{i=0}^{k} \gamma_{i} \triangle rpg_{t-i}$$
$$+ \sum_{i=0}^{k} \delta_{i} inter_{t-i} + \varepsilon_{t}$$

Where,

$$inter_{t-i} = I_{t-i} \times \triangle rpg_{t-i}$$

Alternative Measure of Shock (Change)

Figure 18: Response of consumption to a 10% increase in real price of gasoline.

Positive versus Negative Shocks

- We also consider the response of consumption to negative gasoline expenditure shocks.
- Oil price decreases cause a transfer of wealth from oil-exporting to oil-importing countries.
- A decrease in gasoline expenditures frees up a portion of income, consequently, increasing spending on non-gasoline goods and services.

Positive versus Negative Shocks

Figure 19: Response of consumption to a 10% decrease in gasoline expenditures.

Conclusion

- An increase in gasoline expenditures has the same effect as a tax on U.S. consumers, because it transfers a portion of theirincome to foreign oil producers and depresses non-gasoline consumption.
- We find evidence that the effect of a gasoline expenditure shock depends on the state of the business cycle.
- The response to a gasoline expenditure shock is much stronger in a recession than in an expansion.
- We present a forecasting model that accounts for the asymmetric behaviour of consumption to a gasoline expenditure shock across recessions and expansions.

Conclusion

- The difference in response over the business cycle is due to the differences in household savings behaviour in recessions versus expansions.
- Our central estimates are robust to alternative measure of recession and shock as well.
- The extra income generated following a decrease in gasoline expenditures is more effective in boosting consumption during recessions.

Thank You.

Questions?