Problema de Machine Learning de Classificação: Diagnóstico de Diabetes

1 - Definindo o problema de negócio

Você foi contratado por um hospital para desenvolver um modelo de machine learning que possa ajudar os médicos no diagnóstico precoce de diabetes em pacientes. O hospital deseja melhorar a eficiência dos diagnósticos, permitindo uma intervenção mais rápida e precisa para os pacientes em risco de desenvolver diabetes.

2 - Decisões

O problema de negócio já informa que é requerido um modelo de Machine Learning. No dataset, temos a coluna "Outcome" que é a variável que queremos prever. Desta forma, iremos utilizar aprendizagem supervisionada.

3 - Versão python e import dos pacotes utilizados

```
In [1]: # Versão da Linguagem Python
        from platform import python version
        print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python version())
        Versão da Linguagem Python Usada Neste Jupyter Notebook: 3.9.13
In [2]: # Para atualizar um pacote, execute o comando abaixo no terminal ou prompt de coman
        # pip install -U nome pacote
        # Para instalar a versão exata de um pacote, execute o comando abaixo no terminal d
        #!pip install nome_pacote==versão_desejada
        # Depois de instalar ou atualizar o pacote, reinicie o jupyter notebook.
        # Instala o pacote watermark.
        # Esse pacote é usado para gravar as versões de outros pacotes usados neste jupyter
        #!pip install -q -U watermark
In [3]: # Imports
        import numpy as np
         import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        from sklearn.model_selection import cross_val_score
        from sklearn.model selection import GridSearchCV
```

```
from sklearn.model selection import train test split
from sklearn.feature_selection import RFE
from sklearn.preprocessing import StandardScaler
from imblearn.under_sampling import RandomUnderSampler
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve, auc, roc_auc_score, confusion_matrix
from sklearn.metrics import accuracy_score
%matplotlib inline
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
```

```
In [4]: # Versões dos pacotes usados neste jupyter notebook
%reload_ext watermark
%watermark -a "Danilo Temerloglou de Abreu" --iversions
```

Author: Danilo Temerloglou de Abreu

sklearn : 1.2.1
seaborn : 0.12.2
matplotlib: 3.7.1
numpy : 1.23.5
pandas : 1.3.4

4 - Dicionário de dados

```
In [5]: #Pregnancies - Número de vezes grávida

#Glucose - Concentração de glicose no plasma

#BloodPressure - Pressão sanguínea diastólica

#SkinThickness - Espessura da dobra da pele do tríceps

#Insulin - Nível de insulina sérica

#BMI - Índice de massa corporal (IMC)

#DiabetesPedigreeFunction - Função de pedigree de diabetes

#Age - Idade

#Outcome - Variável de classe (0 ou 1, indicando a presença ou ausência de diabetes
```

5 - Carregando o Conjunto de dados

```
In [6]: # Carrega o dataset
df = pd.read_csv('diabetes.csv')
```

6 - EDA Análise Exploratória de Dados

```
In [7]: # Shape
df.shape
Out[7]: (768, 9)
In [8]: #nomes das colunas
df.columns
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767

Data	columns (total 9 columns)	:	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Outcome

In [10]: # Amostra
 df.sample(5)

Out[10]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	415	3	173	84	33	474	35.7	0.258
	9	8	125	96	0	0	0.0	0.232
	437	5	147	75	0	0	29.9	0.434
	223	7	142	60	33	190	28.8	0.687
	399	3	193	70	31	0	34.9	0.241

768 non-null

int64

Exploração das variáveis numéricas

In [11]:	<pre>df.describe()</pre>										
Out[11]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe			
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000				
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578				
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160				
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000				
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000				
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000				
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000				
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000				

```
In [12]: # Plot
    df.hist(figsize = (15,15), bins = 10)
    plt.show()
```


In [13]: # Insighs:

- # Predomínio de grávidas maioira até 4 filhos
- # Concentração de glicose no plasma maioria de 100 a 130 (Os níveis normais de glic
- # Pressão sanguínea diastólica maioria entre 60 e 85 (Seu valor para uma pessoa sau
- # Espessura da dobra da pele do tríceps maioria até 40
- # Nível de insulina sérica maioria até 100 (IMC de até 25: 2 a 13 mU/L de insulina.
- # Índice de massa corporal (IMC) maioria de 20 a 40 (Menor que 18,5 Baixo pes
- # Função de pedigree de diabetes maioria até 0,75 (Função que pontua a probabilidad
- # Idade maioria até 55 anos
- # Saída maioria dos casos sem diabetes

In [14]: # Correlação (tabela)
df.corr()

Out[14]:

•	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМ
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.22107
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.28180!
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.14064
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.29269!

In [15]: #A variável Outcome (que é a que queremos prever) tem melhor correlação com as vari # As variáveis preditoras Glucose e Insulin tem alta correlação entre si o que não

> # As variáveis preditoras Age e Pregnancies tem alta correlação entre si o que não # As variáveis preditoras SkinThickness e BMI tem alta correlação entre si o que nã

In [16]: df['Outcome'].value_counts()

Out[16]: 0 500 1 268

Name: Outcome, dtype: int64

In [17]: # A variável Outcome (que é a que queremos prever) está desbalanceada. Isso é ruim

Verificando a relação entre atributos

```
In [18]: # Define o estilo do background
sns.set_style('darkgrid')

# Facetgrid
sns.FacetGrid(df, hue = 'Outcome').map(plt.scatter, 'Age', 'BloodPressure').add_leg
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x20592d8c6d0>

Observando os histogramas, podemos ver que os dados estão normalmente distribuídos (seguem uma distribuição normal).

Observando o gráfico de dispersão, não parece haver correlação entre as duas variáveis. Vamos confirmar calculando o coeficiente de correlação entre elas.

```
In [19]: # Define o estilo do background
sns.set_style('whitegrid')

# Facetgrid
sns.FacetGrid(df, hue = 'Pregnancies').map(plt.scatter, 'Glucose', 'Insulin').add_]
Out[19]: <seaborn.axisgrid.FacetGrid at 0x20592e98910>
```


7 - Pré-Processamento de Dados Para Construção de Modelos de Machine Learning

```
In [20]: df.shape
Out[20]: (768, 9)

In [21]: # Verificando valores ausentes
    numero_ausentes = df.isnull().sum()
    print('A quantidade de valores ausentes em cada coluna é:\n', numero_ausentes)
```

```
A quantidade de valores ausentes em cada coluna é:
          Pregnancies
                                        0
         Glucose
                                      0
          BloodPressure
                                      0
          SkinThickness
                                      0
         Insulin
                                      0
          BMI
                                       0
         DiabetesPedigreeFunction
                                      0
         Age
                                      0
         Outcome
                                       0
         dtype: int64
In [22]:
          # Verifica registros duplicados (remove uma das duplicatas)
          numero_duplicados = df.duplicated().sum()
          print('A quantidade de valores duplicados é: ', numero_duplicados)
          A quantidade de valores duplicados é: 0
          #Tratamento de outliers
In [23]:
In [24]:
          # Boxplot
          sns.boxplot(df.Pregnancies)
          <Axes: >
Out[24]:
          17.5
           15.0
           12.5
           10.0
           7.5
           5.0
           2.5
           0.0
                                                   0
          # Boxplot
In [25]:
          sns.boxplot(df.Glucose)
         <Axes: >
Out[25]:
```



```
In [26]: # Boxplot
sns.boxplot(df.BloodPressure )
```

Out[26]: <Axes: >


```
In [27]: # Boxplot
sns.boxplot(df.SkinThickness)
```

Out[27]: <Axes: >


```
In [28]: # Boxplot
sns.boxplot(df.Insulin )
```

Out[28]: <Axes: >


```
In [29]: # Boxplot
sns.boxplot(df.BMI )
Out[29]: <Axes: >
```


Out[30]: <Axes: >


```
In [31]: # Boxplot
sns.boxplot(df.Age)
```

Out[31]: <Axes: >


```
#outliers - variável Pregnancies
In [32]:
         # Calcular os quartis
         Q1 = df['Pregnancies'].quantile(0.25)
         Q3 = df['Pregnancies'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
          limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
          outliers_inferiores = df[df['Pregnancies'] < limite_inferior]</pre>
         outliers_superiores = df[df['Pregnancies'] > limite_superior]
          # Contar a quantidade de outliers inferiores e superiores
          quantidade_outliers_inferiores = len(outliers_inferiores)
          quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 0
         Quantidade de outliers superiores: 4
In [33]:
         # Decisão: Manter os outliers
In [34]: #outliers - variável Glucose
         # Calcular os quartis
         Q1 = df['Glucose'].quantile(0.25)
         Q3 = df['Glucose'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
```

```
limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['Glucose'] < limite_inferior]</pre>
         outliers_superiores = df[df['Glucose'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
         quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 5
         Quantidade de outliers superiores: 0
        # Decisão: Manter os outliers
In [35]:
In [36]: #outliers - variável BloodPressure
         # Calcular os quartis
         Q1 = df['BloodPressure'].quantile(0.25)
         Q3 = df['BloodPressure'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
         limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['BloodPressure'] < limite_inferior]</pre>
         outliers_superiores = df[df['BloodPressure'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
          quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade outliers inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 38
         Quantidade de outliers superiores: 7
In [37]: # Decisão: Manter os outliers
In [38]: #outliers - variável SkinThickness
         # Calcular os quartis
         Q1 = df['SkinThickness'].quantile(0.25)
         Q3 = df['SkinThickness'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
          limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['SkinThickness'] < limite_inferior]</pre>
         outliers_superiores = df[df['SkinThickness'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
```

```
quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 0
         Quantidade de outliers superiores: 1
        # Decisão: Manter o outlier
In [39]:
In [40]: #outliers - variável Insulin
         # Calcular os quartis
         Q1 = df['Insulin'].quantile(0.25)
         Q3 = df['Insulin'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
         limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['Insulin'] < limite_inferior]</pre>
         outliers_superiores = df[df['Insulin'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
         quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
         print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 0
         Quantidade de outliers superiores: 34
In [41]:
          # Decisão: Manter os outliers
In [42]: #outliers - variável BMI
         # Calcular os quartis
         Q1 = df['BMI'].quantile(0.25)
         Q3 = df['BMI'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
         limite inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['BMI'] < limite_inferior]</pre>
         outliers_superiores = df[df['BMI'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
         quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
         print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
```

Quantidade de outliers inferiores: 11

```
Quantidade de outliers superiores: 8
         # Decisão: Manter os outliers
In [43]:
In [44]: #outliers - variável DiabetesPedigreeFunction
         # Calcular os quartis
         Q1 = df['DiabetesPedigreeFunction'].quantile(0.25)
         Q3 = df['DiabetesPedigreeFunction'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
         limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['DiabetesPedigreeFunction'] < limite_inferior]</pre>
         outliers_superiores = df[df['DiabetesPedigreeFunction'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
          quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Quantidade de outliers inferiores: 0
         Quantidade de outliers superiores: 29
In [45]:
        # Decisão: Manter os outliers
In [46]: #outliers - variável Age
         # Calcular os quartis
         Q1 = df['Age'].quantile(0.25)
         Q3 = df['Age'].quantile(0.75)
         # Calcular o intervalo interquartil (IQR)
         IQR = Q3 - Q1
         # Definir limites para identificar outliers
         limite_inferior = Q1 - 1.5 * IQR
         limite superior = Q3 + 1.5 * IQR
         # Identificar outliers
         outliers_inferiores = df[df['Age'] < limite_inferior]</pre>
         outliers_superiores = df[df['Age'] > limite_superior]
         # Contar a quantidade de outliers inferiores e superiores
         quantidade_outliers_inferiores = len(outliers_inferiores)
         quantidade_outliers_superiores = len(outliers_superiores)
          print("Quantidade de outliers inferiores:", quantidade_outliers_inferiores)
         print("Quantidade de outliers superiores:", quantidade_outliers_superiores)
         Ouantidade de outliers inferiores: 0
         Quantidade de outliers superiores: 9
         # Decisão: Manter os outliers
In [47]:
```

Balanceando os dados de saída

```
In [48]:
         # Vamos fazer o Under sampling para este balanceamento
         # Separar features e target
         X = df.drop('Outcome', axis=1)
         y = df['Outcome']
         # Criar o objeto RandomUnderSampler para balancear as classes
         rus = RandomUnderSampler(random_state=42)
          # Aplicar o undersampling aos dados
         X_resampled, y_resampled = rus.fit_resample(X, y)
         # Converter os dados balanceados de volta para DataFrame
          df_balanceado = pd.DataFrame(X_resampled, columns=X.columns)
          df_balanceado['Outcome'] = y_resampled
          # Visualizar o DataFrame balanceado
         #print(df_balanceado)
          # novo shape após balanceamento
         df_balanceado.shape
         (536, 9)
Out[48]:
In [49]:
         # Quantidade de respostas com e sem diabetes balanceada
         df_balanceado['Outcome'].value_counts()
Out[49]:
              268
         Name: Outcome, dtype: int64
```

8 - Construção, Treinamento e Avaliação do Modelo 1 com Regressão Logística (Benchmark)

```
In [50]: # Preparando os dados de treino e teste
# X = df.drop(columns='Outcome')
# y = df['Outcome']

X = df_balanceado.drop(columns='Outcome')
y = df_balanceado['Outcome']
X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2, random
```

Padronização

```
X teste = scaler.transform(X teste)
In [54]:
In [55]: X_treino[:5]
         array([[ 0.85591446, -0.55980992, 0.25421671, -1.24039822, -0.68454544,
Out[55]:
                  -0.36678014, -0.67948254, -0.2685443 ],
                 \hbox{[-1.15216677, } 1.662925 \hbox{ , -0.13524101, } 1.10840803, \hbox{-0.68454544,}
                   1.20939441, 3.73085429, -0.78318741],
                 [-0.57842927, -1.13832996, -0.52469873, 0.32547261, -0.551268]
                 -0.51931316, 0.69824318, -1.04050896],
                [-0.86529802, 1.17575022, 0.64367443, 1.34931124, -0.12644619,
                  0.03997458, -0.4453768 , 1.36115887],
                 [-0.86529802, -0.19442883, -1.20624974, 1.59021444, -0.15976554,
                  0.38317388, -0.6095199 , -0.78318741]])
In [56]: X_teste[:5]
         array([[ 0.56904572, -0.43801622, -0.23260544,
                                                          1.10840803, -0.68454544,
Out[56]:
                  0.21792977, -0.66333731, -0.86896126],
                 [-1.15216677, -1.26012366, -0.23260544, 0.08456941, -0.13477603,
                  0.42130713, 0.10356079, -1.12628281],
                 [-0.86529802, 0.07960698, 0.93576772, 1.10840803, 0.23173691,
                   0.51028473, 1.48128651, 0.24609881],
                 [-0.29156053, \ -1.3210205 \ , \ \ 0.05948785, \ -1.24039822, \ -0.68454544,
                 -1.44722237, -0.31621501, -0.78318741],
                [1.14278321, 1.69337342, -0.03787658, 0.92773063, 3.43872514,
                  -0.30322472, 0.29192173, 2.21889738])
```

8.1 - Modelo de Regressão Logística

```
# Cria o modelo
In [57]:
         modelo_v1 = LogisticRegression()
         # Treinamento
In [58]:
         modelo_v1.fit(X_treino, y_treino)
Out[58]: ▼ LogisticRegression
         LogisticRegression()
In [59]: # Avaliação do Modelo
          Previsao = modelo v1.predict(X teste)
         print('Matriz Confusão: \n', confusion matrix(y teste, Previsao), '\n')
         Matriz Confusão:
          [[40 10]
          [17 41]]
In [60]: # Métricas de Classificação - Relatório de Classificação
          print('Relatório de Classificação - Regressão Logistica: \n', classification_report
```

```
Relatório de Classificação - Regressão Logistica:
               precision
                           recall f1-score
                                             support
           0
                   0.70
                             0.80
                                       0.75
                                                   50
           1
                   0.80
                             0.71
                                       0.75
                                                   58
                                       0.75
    accuracy
                                                  108
                   0.75
                             0.75
                                                  108
  macro avg
                                       0.75
                                       0.75
                                                  108
weighted avg
                   0.76
                             0.75
```

```
In [61]: # Previsão Balanceada
    print('Score (Treino): ', round(modelo_v1.score(X_treino, y_treino), 2))
    print('Score (Teste): ', round(modelo_v1.score(X_teste, y_teste), 2))

    Score (Treino): 0.76
    Score (Teste): 0.75

In [62]: # Fazer previsões no conjunto de teste
    y_pred = modelo_v1.predict(X_teste)

In [63]: # Avaliar a precisão do modelo
    accuracy_v1 = accuracy_score(y_teste, y_pred)
    print("Accuracy:", accuracy_v1)

    Accuracy: 0.75
```

8.2 - Modelo de Random Forest

```
# Cria o modelo
In [64]:
         modelo_v2 = RandomForestClassifier(max_depth=3)
         # Treinamento
In [65]:
         modelo_v2.fit(X_treino, y_treino)
Out[65]:
                 RandomForestClassifier
         RandomForestClassifier(max_depth=3)
In [66]: # Avaliação do modelo
          Previsao forest = modelo v2.predict(X teste)
         print('Relatório de Classificação - Random Forest: \n', classification_report(y_tes
         Relatório de Classificação - Random Forest:
                        precision
                                     recall f1-score
                                                         support
                    0
                            9.67
                                       9.74
                                                 9.79
                                                             50
                     1
                            0.75
                                       0.69
                                                 0.72
                                                             58
                                                 0.71
                                                            108
             accuracy
                                                 0.71
            macro avg
                            0.71
                                       0.71
                                                            108
                            0.72
                                       0.71
                                                 0.71
                                                            108
         weighted avg
        # Fazer previsões no conjunto de teste
In [67]:
         y_pred = modelo_v2.predict(X_teste)
         # Avaliar a precisão do modelo
In [68]:
          accuracy_v2 = accuracy_score(y_teste, y_pred)
          print("Accuracy:", accuracy_v2)
```

Accuracy: 0.7129629629629

8.3 - Modelo de SVM

```
In [69]: # Cria o modelo
         modelo_v3 = SVC(kernel='linear')
In [70]:
         # Treinamento
         modelo_v3.fit(X_treino, y_treino)
Out[70]:
                   SVC
         SVC(kernel='linear')
In [71]: # Avaliação do modelo
         Previsao_svm = modelo_v3.predict(X_teste)
         print('Relatório de Classificação - SVM: \n', classification_report(y_teste, Previs
         Relatório de Classificação - SVM:
                        precision
                                    recall f1-score
                                                        support
                    0
                            0.69
                                   0.82
                                               0.75
                                                            50
                            0.82
                                    0.69
                                               0.75
                                                            58
             accuracy
                                                0.75
                                                           108
                            0.76
                                   0.75
                                               0.75
                                                           108
            macro avg
         weighted avg
                            0.76
                                      0.75
                                                0.75
                                                           108
        # Fazer previsões no conjunto de teste
In [72]:
         y_pred = modelo_v3.predict(X_teste)
In [73]: # Avaliar a precisão do modelo
         accuracy_v3 = accuracy_score(y_teste, y_pred)
         print("Accuracy:", accuracy_v3)
         Accuracy: 0.75
```

8.4 - Modelo de Rede Neural

```
In [76]: # Avaliação do modelo
Previsao_rn = modelo_v4.predict(X_teste)
print('Relatório de Classificação - Rede Neural: \n', classification_report(y_teste
```

```
Relatório de Classificação - Rede Neural:
               precision
                            recall f1-score
                                                 support
           0
                   0.72
                              0.78
                                        0.75
                                                     50
                   0.80
                              0.74
                                        0.77
                                                     58
                                        0.76
                                                    108
    accuracy
                   0.76
                              0.76
                                        0.76
                                                    108
   macro avg
                                        0.76
weighted avg
                   0.76
                              0.76
                                                    108
```

```
In [77]: # Treinamento
    modelo_v4.fit(X_treino, y_treino)
```

C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\neural_network_multilayer_per
ceptron.py:684: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500)
reached and the optimization hasn't converged yet.
 warnings.warn(

Out[77]: ▼ MLPClassifier

MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=500, random_state=4
2)

```
In [78]: # Fazer previsões no conjunto de teste
y_pred = modelo_v4.predict(X_teste)
```

In [79]: # Avaliar a precisão do modelo
 accuracy_v4 = accuracy_score(y_teste, y_pred)
 print("Accuracy:", accuracy_v4)

Accuracy: 0.7592592592592593

8.5 - Modelo de XGBOOST

```
# Criar o modelo
In [80]:
         modelo_v5 = XGBClassifier(learning_rate=0.01, n_estimators=1000, max_depth=3, rando
         # Treinamento
In [81]:
         modelo_v5.fit(X_treino, y_treino)
Out[81]:
                                         XGBClassifier
         XGBClassifier(base_score=None, booster=None, callbacks=None,
                       colsample bylevel=None, colsample bynode=None,
                       colsample bytree=None, device=None, early stopping round
         s=None,
                       enable_categorical=False, eval_metric=None, feature_type
         s=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=0.01, max bi
         n=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max delta step=None, max depth=3, max leaves=None,
```

```
In [82]: # Fazer previsões no conjunto de teste
y_pred = modelo_v5.predict(X_teste)
```

```
In [83]:
         # Avaliação do modelo
         Previsao_xgboost = modelo_v5.predict(X_teste)
         print('Relatório de Classificação - XGBOOST: \n', classification_report(y_teste, Pr
         Relatório de Classificação - XGBOOST:
                        precision
                                    recall f1-score
                                                         support
                    0
                            0.70
                                      0.74
                                                 0.72
                                                             50
                            0.76
                                      0.72
                                                 0.74
                                                             58
                                                 0.73
                                                            108
             accuracy
                            0.73
                                      0.73
                                                 0.73
                                                            108
            macro avg
                                                 0.73
         weighted avg
                            0.73
                                      0.73
                                                            108
In [84]:
        # Avaliar a precisão do modelo
```

```
In [84]: # Avaliar a precisão do modelo
accuracy_v5 = accuracy_score(y_teste, y_pred)
print("Accuracy:", accuracy_v5)
```

Accuracy: 0.7314814814814815

8.6 - Modelo de LIGHTGBM

```
In [85]:
         # Criar o modelo
         modelo_v6 = LGBMClassifier(learning_rate=0.01, n_estimators=1000, max_depth=3, rand
         # Treinamento
In [86]:
         modelo_v6.fit(X_treino, y_treino)
         C:\Users\Chilov\anaconda3\lib\site-packages\joblib\externals\loky\backend\context.
         py:110: UserWarning: Could not find the number of physical cores for the following
         reason:
         found 0 physical cores < 1
         Returning the number of logical cores instead. You can silence this warning by set
         ting LOKY_MAX_CPU_COUNT to the number of cores you want to use.
           warnings.warn(
           File "C:\Users\Chilov\anaconda3\lib\site-packages\joblib\externals\loky\backend
         \context.py", line 217, in _count_physical_cores
             raise ValueError(
```

```
[LightGBM] [Info] Number of positive: 210, number of negative: 218
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing
was 0.000239 seconds.
You can set `force col wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 532
[LightGBM] [Info] Number of data points in the train set: 428, number of used feat
ures: 8
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.490654 -> initscore=-0.037388
[LightGBM] [Info] Start training from score -0.037388
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

18/04/2024, 09:29

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Out[86]:
                                      LGBMClassifier
         LGBMClassifier(learning_rate=0.01, max_depth=3, n_estimators=1000,
                         random state=42)
         # Fazer previsões no conjunto de teste
In [87]:
         y_pred = modelo_v6.predict(X_teste)
         # Avaliação do modelo
In [88]:
         Previsao_lightGBM = modelo_v6.predict(X_teste)
         print('Relatório de Classificação - XGBOOST: \n', classification_report(y_teste, Pr
         Relatório de Classificação - XGBOOST:
                        precision
                                     recall f1-score
                                                        support
                    0
                            0.67
                                      0.78
                                                0.72
                                                            50
                            0.78
                                      0.67
                                                0.72
                                                            58
             accuracy
                                                0.72
                                                           108
                            0.73
                                      0.73
                                                0.72
                                                           108
            macro avg
                            0.73
                                                0.72
                                                           108
         weighted avg
                                      0.72
In [89]: # Avaliar a precisão do modelo
         accuracy_v6 = accuracy_score(y_teste, y_pred)
         print("Accuracy:", accuracy_v6)
         Accuracy: 0.72222222222222
         print('A acurácia do modelo_v1 (Regressão Logística) é:\n', accuracy_v1)
In [90]:
         print('A acurácia do modelo v2 (Random Forest) é:\n', accuracy v2)
         print('A acurácia do modelo v3 (SVM) é:\n', accuracy v3)
         print('A acurácia do modelo_v4 (Rede Neural) é:\n', accuracy_v4)
         print('A acurácia do modelo_v5 (XGBOOST) é:\n', accuracy_v5)
         print('A acurácia do modelo_v5 (LIGHTBGM) é:\n', accuracy_v6)
         A acurácia do modelo_v1 (Regressão Logística) é:
          0.75
         A acurácia do modelo_v2 (Random Forest) é:
          0.7129629629629629
         A acurácia do modelo v3 (SVM) é:
         A acurácia do modelo_v4 (Rede Neural) é:
          0.7592592592592593
         A acurácia do modelo_v5 (XGBOOST) é:
          0.7314814814814815
         A acurácia do modelo_v5 (LIGHTBGM) é:
          0.72222222222222
```

Seleção do Modelo

Os melhores modelos são v1 e v3. Neste caso, devemos procurar o modelo mais simples. Então seguiremos com o modelo_v1 Regressão Logística

8.6 - Otimização do modelo

8.6.1 - Otimização somente com mudança de hiperparâmetro

```
In [91]: #obtem variáveis preditoras
         X = df balanceado.drop(columns='Outcome')
         y = df balanceado['Outcome']
          # Dividir os dados em conjuntos de treinamento e teste
         X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2, random
         # Inicializar o classificador (Random Forest)
         clf = RandomForestClassifier()
         # Inicializar o seletor de características (RFE) com o classificador e o número de
         rfe = RFE(estimator=clf, n features to select=3, step=1)
          # Ajustar o seletor de características aos dados de treinamento
          rfe.fit(X_treino, y_treino)
         # Obter as características selecionadas
          selected_features = rfe.support_
         # Imprimir as características selecionadas
          print("Características selecionadas:")
         for i in range(len(selected_features)):
             if selected_features[i]:
                  print(f"Feature {i}: {X.columns[i]}")
         Características selecionadas:
         Feature 1: Glucose
         Feature 5: BMI
         Feature 7: Age
In [92]: #vamos novamente treinar só com estas variáveis
         df.columns
Out[92]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
               dtype='object')
In [93]: #X = df_balanceado.drop(columns=['Pregnancies','BloodPressure', 'SkinThickness', '1
         X = df_balanceado[['Glucose', 'BMI', 'DiabetesPedigreeFunction']]
         y = df balanceado['Outcome']
         X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2, random
In [94]: # Padronização
          scaler = StandardScaler()
          scaler.fit(X_treino)
         X_treino = scaler.transform(X_treino)
         X_teste = scaler.transform(X_teste)
In [95]: # Cria o modelo
         modelo_v7 = LogisticRegression()
          # Treinamento
         modelo_v7.fit(X_treino, y_treino)
```

```
Out[95]:
          ▼ LogisticRegression
         LogisticRegression()
         # Avaliação do Modelo
In [96]:
          Previsao = modelo_v7.predict(X_teste)
          print('Matriz Confusão: \n', confusion_matrix(y_teste, Previsao), '\n')
          Matriz Confusão:
           [[41 9]
           [19 39]]
In [97]: # Métricas de Classificação - Relatório de Classificação
          print('Relatório de Classificação - Regressão Logistica: \n', classification_report
          Relatório de Classificação - Regressão Logistica:
                        precision
                                    recall f1-score
                                                       support
                    0
                            0.68
                                     0.82
                                               0.75
                                                          50
                    1
                            0.81
                                     0.67
                                               0.74
                                                          58
             accuracy
                                               0.74
                                                         108
            macro avg
                            0.75
                                     0.75
                                               0.74
                                                         108
          weighted avg
                            0.75
                                     0.74
                                               0.74
                                                         108
In [98]: # Fazer previsões no conjunto de teste
          y_pred = modelo_v7.predict(X_teste)
          # Avaliar a precisão do modelo
          accuracy_v7 = accuracy_score(y_teste, y_pred)
          print("Accuracy:", accuracy_v7)
          Accuracy: 0.7407407407407407
         # tive uma acurácia um pouco menor com um modelo com menos variáveis preditoras, ou
In [99]:
          # Define lista de hiperparâmetros
In [100...
          'penalty': ['l1', 'l2']}
          # Criaremos o modelo com GridSearch
In [101...
          # Vários modelos serão criados com diferentes combinações de hiperparâmetros
          modelo_v8 = GridSearchCV(LogisticRegression(),
                                  tuned_params_v8,
                                  scoring = 'accuracy',
                                  n jobs = -1)
          # Treinamento do modelo
In [102...
          modelo_v8.fit(X_treino, y_treino)
```

```
C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_validation.p
          y:378: FitFailedWarning:
          45 fits failed out of a total of 90.
          The score on these train-test partitions for these parameters will be set to nan.
          If these failures are not expected, you can try to debug them by setting error_sco
          re='raise'.
          Below are more details about the failures:
          45 fits failed with the following error:
          Traceback (most recent call last):
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_valid
          ation.py", line 686, in _fit_and_score
              estimator.fit(X_train, y_train, **fit_params)
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\linear_model\_logisti
          c.py", line 1162, in fit
              solver = _check_solver(self.solver, self.penalty, self.dual)
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\linear_model\_logisti
          c.py", line 54, in _check_solver
              raise ValueError(
          ValueError: Solver lbfgs supports only '12' or 'none' penalties, got 11 penalty.
            warnings.warn(some_fits_failed_message, FitFailedWarning)
          C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_search.py:95
          2: UserWarning: One or more of the test scores are non-finite: [
                                                                                 nan 0.51168
                                      nan 0.7478796
nan 0.74785226
          263
                     nan 0.73376197
                                         nan 0.74787962
                  nan 0.74314637
                                                             nan 0.74785226
                  nan 0.74785226
                                      nan 0.74785226
                                                             nan 0.74785226]
           warnings.warn(
                     GridSearchCV
Out[102]:
           ▶ estimator: LogisticRegression
                 ▶ LogisticRegression
In [103...
          # Selecionamos o melhor modelo
          modelo v8.best estimator
Out[103]: ▼
               LogisticRegression
          LogisticRegression(C=0.01)
In [104...
          # Previsões com dados de teste
          y pred v8 = modelo v8.predict(X teste)
In [105...
          # Mostra as 10 primeiras previsões
          y_pred_v8[:10]
          array([0, 0, 1, 0, 1, 0, 0, 0, 0, 0], dtype=int64)
Out[105]:
In [106...
          # Obtemos as previsões no formato de probabilidade para cada classe
          y pred proba v8 = modelo v8.predict proba(X teste)
          # Mostra as 10 primeiras previsões
In [107...
          y_pred_proba_v8[:10]
```

```
array([[0.56429416, 0.43570584],
Out[107]:
                  [0.62198388, 0.37801612],
                  [0.41778668, 0.58221332],
                  [0.75769115, 0.24230885],
                  [0.3285916 , 0.6714084 ],
                  [0.64310392, 0.35689608],
                  [0.57421192, 0.42578808],
                  [0.62734546, 0.37265454],
                  [0.74740611, 0.25259389],
                  [0.68575121, 0.31424879]])
In [108...
          # Obtemos as previsões no formato de probabilidade filtrando para a classe positiva
          # Precisamos disso para calcula a Curva ROC
          y_pred_proba_v8 = modelo_v8.predict_proba(X_teste)[:,1]
In [109...
           # Mostra as 10 primeiras previsões
          y_pred_proba_v8[:10]
          array([0.43570584, 0.37801612, 0.58221332, 0.24230885, 0.6714084,
Out[109]:
                  0.35689608, 0.42578808, 0.37265454, 0.25259389, 0.31424879])
           # Matriz de confusão
In [110...
           confusion_matrix(y_teste, y_pred_v8)
          array([[41, 9],
Out[110]:
                  [19, 39]], dtype=int64)
In [111...
          # Extraindo cada valor da CM
          tn, fp, fn, tp = confusion_matrix(y_teste, y_pred_v8).ravel()
In [112...
          # Calcula a métrica global AUC (Area Under The Curve) com dados reais e previsões e
          roc_auc_v8 = roc_auc_score(y_teste, y_pred_v8)
          print(roc_auc_v8)
          0.7462068965517242
          # Calcula a curva ROC com dados e previsões em teste
In [113...
          fpr v8, tpr v8, thresholds = roc curve(y teste, y pred proba v8)
          # AUC em teste
In [114...
          auc_v8 = auc(fpr_v8, tpr_v8)
          print(auc_v8)
          0.8437931034482758
In [115...
          # Acurácia em teste
          acuracia_v8 = accuracy_score(y_teste, y_pred_v8)
          print(acuracia_v8)
          0.7407407407407407
```

8.6.2 - Otimização excluindo outliers e buscando melhor hiperparâmetro

```
In [116... # Remover outliers - variável Glucose
Q1 = df['Glucose'].quantile(0.25)
Q3 = df['Glucose'].quantile(0.75)
IQR = Q3 - Q1
limite_inferior = Q1 - 1.5 * IQR
limite_superior = Q3 + 1.5 * IQR
df = df[(df['Glucose'] >= limite_inferior) & (df['Glucose'] <= limite_superior)]</pre>
```

```
# Remover outliers - variável BMI
In [117...
           Q1 = df['BMI'].quantile(0.25)
           Q3 = df['BMI'].quantile(0.75)
           IQR = Q3 - Q1
           limite_inferior = Q1 - 1.5 * IQR
           limite_superior = Q3 + 1.5 * IQR
           df = df[(df['BMI'] >= limite_inferior) & (df['BMI'] <= limite_superior)]</pre>
          # Remover outliers - variável DiabetesPedigreeFunction
In [118...
           Q1 = df['DiabetesPedigreeFunction'].quantile(0.25)
           Q3 = df['DiabetesPedigreeFunction'].quantile(0.75)
           IQR = Q3 - Q1
           limite inferior = Q1 - 1.5 * IQR
           limite superior = Q3 + 1.5 * IQR
           df_sem_outliers = df[(df['DiabetesPedigreeFunction'] >= limite_inferior) & (df['DiabetesPedigreeFunction']
In [119...
           df_sem_outliers.shape
          (717, 9)
Out[119]:
           df_sem_outliers['Outcome'].value_counts()
In [120...
                475
Out[120]:
                242
           Name: Outcome, dtype: int64
In [121...
           # Vamos fazer o Under sampling para este balanceamento
           # Separar features e target
           X = df_sem_outliers.drop('Outcome', axis=1)
           y = df_sem_outliers['Outcome']
           # Criar o objeto RandomUnderSampler para balancear as classes
           rus = RandomUnderSampler(random_state=42)
           # Aplicar o undersampling aos dados
           X_resampled, y_resampled = rus.fit_resample(X, y)
           # Converter os dados balanceados de volta para DataFrame
           df_balanceado = pd.DataFrame(X_resampled, columns=X.columns)
           df_balanceado['Outcome'] = y_resampled
           # Visualizar o DataFrame balanceado
           #print(df balanceado)
           # novo shape após balanceamento
           df balanceado.shape
Out[121]: (484, 9)
          #X = df_balanceado.drop(columns=['Pregnancies', 'BloodPressure', 'SkinThickness', 'I
In [122...
           X = df_balanceado[['Glucose', 'BMI', 'DiabetesPedigreeFunction']]
           y = df balanceado['Outcome']
           X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2, random
          # Padronização
In [123...
           scaler = StandardScaler()
           scaler.fit(X_treino)
           X_treino = scaler.transform(X_treino)
           X teste = scaler.transform(X teste)
```

```
# Define lista de hiperparâmetros
In [124...
          'penalty': ['l1', 'l2']}
          # Criaremos o modelo com GridSearch
In [125...
          # Vários modelos serão criados com diferentes combinações de hiperparâmetros
          modelo_v9 = GridSearchCV(LogisticRegression(),
                                  tuned_params_v9,
                                  scoring = 'accuracy',
                                   n_{jobs} = -1
          # Treinamento do modelo
In [126...
          modelo_v9.fit(X_treino, y_treino)
          C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_validation.p
          y:378: FitFailedWarning:
          45 fits failed out of a total of 90.
          The score on these train-test partitions for these parameters will be set to nan.
          If these failures are not expected, you can try to debug them by setting error_sco
          re='raise'.
          Below are more details about the failures:
          45 fits failed with the following error:
          Traceback (most recent call last):
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_valid
          ation.py", line 686, in _fit_and_score
              estimator.fit(X_train, y_train, **fit_params)
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\linear_model\_logisti
          c.py", line 1162, in fit
              solver = _check_solver(self.solver, self.penalty, self.dual)
            File "C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\linear_model\_logisti
          c.py", line 54, in _check_solver
              raise ValueError(
          ValueError: Solver lbfgs supports only '12' or 'none' penalties, got 11 penalty.
            warnings.warn(some_fits_failed_message, FitFailedWarning)
          C:\Users\Chilov\anaconda3\lib\site-packages\sklearn\model_selection\_search.py:95
          2: UserWarning: One or more of the test scores are non-finite: [
                                                                              nan 0.56360
                    nan 0.74159174 nan 0.744089
n 0.74665335 nan 0.74662005
          306
                                        nan 0.74408924
                  nan 0.74665335
                                                            nan 0.74662005
                  nan 0.74405594
                                      nan 0.74405594
                                                            nan 0.74405594]
           warnings.warn(
                     GridSearchCV
Out[126]:
           ▶ estimator: LogisticRegression
                 ▶ LogisticRegression
          # Selecionamos o melhor modelo
In [127...
          modelo v9.best estimator
          # Previsões com dados de teste
          y pred v9 = modelo v9.predict(X teste)
          # Obtemos as previsões no formato de probabilidade filtrando para a classe positiva
          # Precisamos disso para calcula a Curva ROC
          y_pred_proba_v9 = modelo_v9.predict_proba(X_teste)[:,1]
          # Matriz de confusão
          confusion_matrix(y_teste, y_pred_v9)
          # Extraindo cada valor da CM
          tn, fp, fn, tp = confusion_matrix(y_teste, y_pred_v9).ravel()
```

```
In [128...
          # Calcula a métrica global AUC (Area Under The Curve) com dados reais e previsões e
          roc_auc_v9 = roc_auc_score(y_teste, y_pred_v9)
          print(roc_auc_v9)
          0.6804255319148935
In [129...
          # Calcula a curva ROC com dados e previsões em teste
          fpr_v9, tpr_v9, thresholds = roc_curve(y_teste, y_pred_proba_v9)
In [130...
          # AUC em teste
          auc_v9 = auc(fpr_v9, tpr_v9)
          print(auc_v9)
          0.8038297872340425
          # Acurácia em teste
In [131...
          acuracia_v9 = accuracy_score(y_teste, y_pred_v9)
          print(acuracia_v9)
          0.6804123711340206
```

Conclusão

O modelo_V8 foi o melhor utilizando somente as variáveis 'Glucose', 'BMI', 'DiabetesPedigreeFunction' como preditoras com uma acurácia de 74% que é aceitável diante da pouca quantidade de dados.

Fim