Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 2

Consigna

Sea V un espacio vectorial de dimensión finita con producto interno, $T:V\to\mathbb{K}$ un funcional lineal no nulo, y v_0 el representante de Riesz de T.

- 1. Probar que $v_0 \in (Ker(T))^{\perp}$
- 2. Probar que $||v_0|| = \sqrt{T(v_0)}$
- 3. Probar que $\dim((Ker(T))^{\perp}) = 1$
- 4. Si $\{e\}$ es una base ortonormal de $(Ker(T))^{\perp},$ probar que $v_0=T(e)\cdot e$
- 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}$ definida por:

$$T(1,0,0) = 2$$
, $T(0,1,0) = 1$, $T(0,0,1) = -1$

Hallar una base de $(Ker(T))^{\perp}$ y utilizarla para determinar el representante de Riesz de T.

Resolución

Parte 1

Expandamos las definiciones de las cosas con las que estamos trabajando:

- v_0 es el representante de Riesz de T
 - Entonces $\forall v \in V : T(v) = \langle v, v_0 \rangle$
- $\bullet \quad v_0 \in (Ker(T))^\perp$
 - Si y solo si: $\forall s \in Ker(T) : \langle s, v_0 \rangle = 0$

Veamos que esto último lo podemos expresar de otra forma:

$$\begin{split} v_0 &\in (Ker(T))^\perp \\ \iff &(\text{definición de complemento ortogonal}) \\ \forall s &\in Ker(T): \langle s, v_0 \rangle = 0 \\ \iff &(\text{definición del representante de Riesz: } T(s) = \langle s, v_0 \rangle) \\ \forall s &\in Ker(T): T(s) = 0 \end{split}$$

Donde esto último se cumple pues todos los vectores en Ker(T) cumplen esa propiedad por pertenecer al núcleo de T

Parte 2

Queremos probar que $||v_0|| = \sqrt{T(v_0)}$.

Expandamos a ver a que podemos llegar:

$$\begin{split} & \|v_0\| \\ &= & (\text{norma inducida por el producto interno}) \\ & \sqrt{\langle v_0, v_0 \rangle} \\ &= & (\text{definición del representante de Riesz: } T(v_0) = & \langle v_0, v_0 \rangle) \\ & \sqrt{T(v_0)} \end{split}$$

Esto prueba la propiedad.

Parte 3

Queremos probar que $\dim((Ker(T))^{\perp}) = 1$.

Consideremos la siguiente propiedad del complemento ortogonal:

$$\bullet \ \ V = Ker(T) \oplus (Ker(T))^{\perp}$$

De esta podemos deducir que:

•
$$dim(V) = dim(Ker(T)) + dim((Ker(T))^{\perp})$$
 (i)

Por otra parte, usando el teorema de las dimensiones, tenemos que:

- dim(V) = dim(Im(T)) + dim(Ker(T))
- También tenemos que dim(Im(T)) = 1 pues T es no nula y es una funcional lineal (por hipótesis)

Entonces podemos concluir que:

$$\begin{split} \dim(V) &= \dim(Im(T)) + \dim(Ker(T)) \\ \iff \\ 3 &= 1 + \dim(Ker(T)) \\ \iff \\ \dim(Ker(T)) &= 2 \end{split}$$

Volviendo a (i), tenemos lo siguiente:

$$\begin{split} \dim(V) &= \dim(Ker(T)) + \dim((Ker(T))^{\perp}) \\ &\iff \\ 3 &= 2 + \dim((Ker(T))^{\perp}) \\ &\iff \\ \dim((Ker(T))^{\perp}) &= 1 \end{split}$$

Esto prueba la propiedad.

Parte 4

Queremos probar que si $\{e\}$ es una base ortonormal de $(Ker(T))^{\perp}$, probar que $v_0 = T(e) \cdot e$.

Por la propiedad 1, sabemos que $v_0 \in (Ker(T))^{\perp}$, por lo tanto si $\{e\}$ es base de $(Ker(T))^{\perp}$, tenemos que:

• $v_0 = \alpha e \operatorname{con} \alpha \in \mathbb{K}$

Ahora observemos lo siguiente:

$$T(e)$$
 =(definición del representante de Riesz)
$$\langle e, v_0 \rangle$$
 =(expandiendo v_0)
$$\langle e, \alpha e \rangle$$
 =(propiedades del producto interno)
$$\alpha \langle e, e \rangle$$
 =($\|e\|$ =1)
$$\alpha$$

Por lo tanto $\alpha = T(e)$, entonces $v_0 = T(e) \cdot e$. Esto prueba la propiedad.

Parte 5

Para esta parte primero hallemos $T(x, y, z) \quad \forall (x, y, z) \in \mathbb{R}^3$.

Tenemos que:

- T(1,0,0)=2
- T(0,1,0)=1
- T(0,0,1) = -1

Considerando la base canónica de \mathbb{R}^3 , podemos decir que:

$$\begin{split} &(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) \\ &\iff \text{(aplicando } T) \\ &T(x,y,z) = xT(1,0,0) + yT(0,1,0) + zT(0,0,1) \\ &\iff \text{(sustituyendo por los valores conocidos de } T) \\ &T(x,y,z) = 2x + y - z \end{split}$$

Y esto vale para todo $v=(x,y,z)\in\mathbb{R}^3.$

Se ve claramente que $v_0=(2,1,-1).$ Por lo que realizar el otro procedimiento no tiene sentido.