

MEKATRONİK BÖLÜMÜ BİLGİSAYARLI KONTROL SİSTEMLERİ

Ders Kodu:	MKT2002	Tarih:	10.03.2025
Sınav Türü:	Ödev 4	Saat:	10:00
Dönemi:	2024-2025	Süre:	90dk

	Toplam
Puan:	100
Not:	110

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Soru: Ödev 1'de verilen aktif süspansiyon sistemine durum geri besleme kontrolörü tasarlayınız. Kapalı çevrim için polinom

$$p_d(z) = z^4 - 3.79z^3 + 5.386z^2 - 3.401z + 0.8051$$
 (1)

olarak verilmiştir. $p_d(A)$ terimi

$$p_d(A) = A^4 - 3.79A^3 + 5.386A^2 - 3.401A + 0.8051I$$

$$p_d(A) = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & -0.0001 & 0\\ 0 & 0 & 0 & 0\\ -0.0002 & 0 & 0.0001 & 0 \end{bmatrix}$$
(2)

ve Φ terimi ise

$$\Phi = \begin{bmatrix} B|AB|A^2B|A^3B \end{bmatrix}
\Phi = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0 & 0 & 0 & 0 \\ -0.001 & -0.001 & -0.001 & -0.0009 \end{bmatrix}$$
(3)

olarak hesaplanır. Bunlar ile durum geri besleme kontrolörü,

$$K = -\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0 & 0 & 0 & 0 & 0 \\ -0.001 & -0.001 & -0.001 & -0.0009 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.0001 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -0.0002 & 0 & 0.0001 & 0 \end{bmatrix}$$

$$K = \begin{bmatrix} -8700.0 & -906.1 & -917.2 & -167.94 \end{bmatrix}$$

$$(4)$$

olarak hesaplanır.

Extra:Fark denklemlerini kullanarak girişlere u=Kx ve $w=0.04sin(2\pi 10t)$ uygulayınız ve x_1, x_2, x_3 ve x_4 değişkenlerini çiziniz. Çizimi $0-1\,s$ arasında oluşturunuz. Durum geri besleme kontrolörü olan ve olmayan yanıtları karşılaştırınız.

Şekil 1: Extra soru için elde edilen çizim

Şekil 2: Açık ve kapalı çevrim \boldsymbol{x}_1 karşılaştırması

Şekil 3: Açık ve kapalı çevrim \boldsymbol{x}_2 karşılaştırması

Şekil 4: Açık ve kapalı çevrim \boldsymbol{x}_3 karşılaştırması

Şekil 5: Açık ve kapalı çevrim \boldsymbol{x}_4 karşılaştırması