en National du Brevet de Technicien Supérieur-Session de juin 2013 alité/Option: ELT-ENR-MEB-CIR-MEI-MSE-MAB-BAT-GEG-TPU-Autres Epreuve : Mathématiques Durée: 3 heures

EXERCICE 1

PARTIE A: résolution d'une équation différentielle.

On admet que la fonction C est solution de l'équation différentielle :

(E): y'+0.3y=36

Résoudre l'équation différentielle : (E_1) : y'+0.3y=0

- Déterminer la solution constante de l'équation différentielle (E).
- En déduire les solutions de (E) et donner la fonction C solution qui vérifie C(0)=0.

PARTIE B: étude d'une fonction

Soit f la fonction définie sur $[0; +\infty[$ par : $f(t) = 120(1-e^{-0.3.t})$.

- a) Chercher les variations de f sur $[0; +\infty[$.
- Déterminer la limite de f en +\infty; que peut-on en déduire sur sa courbe représentative?
 - Représenter graphiquement la fonction f dans un repère orthogonal (unité: 1,5 cm pour une unité en abscisse et 1 mm pour une unité en ordonnée).
 - d) Calculer la valeur moyenne de f sur [2; 12[et en donner une aleur approchée à une unité près.

CICE 2

outes les parties de cet exercice peuvent être traitées de façon indépendante.

<u>PARTIE A :</u> probabilité conditionnelle.

On rappelle qu'un événement E se réalise sachant qu'un événement F (de Probabilité non nulle) est réalisée se note $P_F(E)=P(E \text{ inter } F)/P(F)$.

A la suite d'une campagne de vaccination lancée par l'organisation mondiale de la santé (OMS) pour lutter contre une pandémie, on estime que, dans une population donnée, il ne reste plus que 1% de personnes non vaccinées.

D'après une étude, on estime également que 95% des vaccinées sont immunisées contre le virus de la pandémie et que 20% des personnes non vaccinées sont naturellement immunisées contre ce virus.

On choisit au hasard une personne dans la population concernée.

- On note A l'événement : « la personne choisit est vaccinée » ;
- Et B : « la personne choisie est immunisée contre le virus ».
- Montrer que la probabilité que la personne choisie soit immunisée contre le virus est égale à 0,9425.
- Calculer la probabilité que la personne choisie ait été vaccinée sachant qu'elle est immunisée contre le virus. Arrondir au millième.

PARTIE B: statistique

Le tableau statistique ci-dessous donne la distribution des étudiants d'une classe de 2^{eme} année de BTS suivant leurs poids et leurs tailles.

Xi	50	51	52	53	54	55	56	57	58	59	60
yi	135	140	147	153	150	153	152	152	152	158	160

 x_i : Poids; y_i : Taille

- Donner une équation de la droite de régression de y en x par la méthode des moindres carrés.
- 2) Donner une estimation de la taille d'une étudiante qui pèse 63 kg.
- 3) Calculer le coefficient de corrélation linéaire entre x et y.

Correction Session de juin-juillet 2013

EXERCICE 1

On admet que la fonction C est solution de : (E): y'+0.3y=36

Résolvons l'équation différentielle : (E_1) : y'+0.3y=01) Cette équation différentielle a pour équation caractéristique :

 $r+0,3=0 \Leftrightarrow r=-0,3 \text{ c'est-à-dire } y=Ke^{-0,3t}, K \in \mathbb{R}$

Déterminons la solution constante de l'équation (E). 2) Posons: $y = a \Leftrightarrow y' = 0$

Donc $0.3a = 36 \Leftrightarrow a = 120$. Ainsi y = 120

Déduisons les solutions de (E) et la fonction C qui vérifie C(0)=0. Les solutions de (E) sont les sommes des solutions de l'équation homogène et de la solution constante.

Donc C(x)=K.e^{-0,3t}+120. Or C(0)=0 \Leftrightarrow K=-120

D'où
$$C(x)=120[1-e^{-0.3t}]$$

ARTIE B: étude d'une fonction

oit f la fonction définie sur $[0; +\infty[$ par : $f(t) = 120(1 - e^{-0.3.t})$

a) Cherchons les variations de f sur $[0; +\infty[$.

La fonction f est dérivable sur [0; +∞[et sa dérivée est :

 $f'(t) = 3.6e^{-0.3.t} > 0$. Donc la fonction f est croissante sur $[0;+\infty[$.

Déterminons la limite de f en +∞.

$$\lim_{t \to +\infty} f(t) = \lim_{t \to +\infty} 120 \left(1 - e^{-0.3.t} \right) = 120.$$

Donc la droite d'équation y = 120 est asymptote horizontale à la courbe de f.

c) Représentons graphiquement la fonction f dans un repère.

d) Calculons la valeur moyenne de f sur [2; 12] et en donnons une valeur approchée à une unité près.

On a:
$$\bar{f} = \frac{1}{12 - 2} \int_{2}^{12} f(t) dt \Leftrightarrow \bar{f} = \frac{120}{10} \int_{2}^{12} (1 - e^{-0.3.t}) dt$$

$$\Leftrightarrow \bar{f} = 12 \left[t + \frac{10}{3} e^{-0.3t} \right]_{2}^{12}$$

Donc
$$\left[\overline{f} = 12 \left[10 + \frac{10}{3} \left(e^{-3.6} - e^{-0.6} \right) \right] \right]$$

Ainsi une valeur approchée de \bar{f} est 99,1 cm à une unité près.

EXERCICE 2

PARTIE A: probabilité conditionnelle.

D'après l'énoncé, $P(A) = 1\% \Leftrightarrow P(\overline{A}) = 99\%$, $P_A(B) = 95\%$ et $P_{\overline{A}} = 20\%$

1) Montrons que P(B) = 0.9425.

On a:
$$B = (A \cap B) \cup (\overline{A} \cap B) \Leftrightarrow P(B) = ((A \cap B) \cup (\overline{A} \cap B))$$

Dans ce cas, $P(B) = P(A \cap B) + P(\overline{A} \cap B) = P_A(B)P(A) + P_{\overline{A}}(B)P(\overline{A})$

Ainsi, $P(B) = 0.95 \times 0.99 + 0.2 \times 0.01 = 0.9425$

Donc
$$P(B) = 0.9425$$

 Calculons la probabilité que la personne choisie ait été vaccinée sachant qu'elle est immunisée contre le virus. Arrondir au millième.

P'après la formule de Bayes,
$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{P_A(B)P(A)}{P(B)}$$

En appliquant numériquement, on obtient : $P_B(A) = 0.998$

ARTIE B: statistique

Donnons une équation de la droite de régression de y en x.

Calcul des moyennes;

On a:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{11} x_i$$
 $\Leftrightarrow \overline{x} = \frac{605}{11}$ c'est-à-dire $\overline{x} = 55$

De même,
$$y = \frac{1}{n} \sum_{i=1}^{11} y_i \Leftrightarrow y = \frac{1652}{11}$$
 c'est-à-dire $y = 150,182$

Calcul des variances;

On a:
$$V(x) = \frac{1}{n} \sum_{i=1}^{11} x_i^2 - x^2 \Leftrightarrow V(x) = \frac{33385}{11} - 3025 = 10$$

De même,
$$V(y) = \frac{1}{n} \sum_{i=1}^{11} y_i^2 - y^2 \iff V(y) = 48,51$$

Donc
$$V(x) = 10 \text{ et } V(y) = 48,51$$

Calcul de la covariance;

On a:
$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{11} x_i y_i - \overline{xy} c'est-à-dire cov(x,y) = 19,2727$$

Ainsi,
$$y = \frac{\text{cov}(x,y)}{V(x)} (x-\overline{x}) + \overline{y} \Leftrightarrow y = \frac{19,2727}{10} (x-55) + 150,182$$

D'où
$$y = 1,92727x + 44,18015$$

Donnons une estimation de la taille pour un poids 63 kg.

On a:
$$x = 64 \Leftrightarrow y = 1,92727 \times 64 + 44,18015 = 165,6$$

Donc d'une étudiante qui pèse 63 kg a une taille d'environ 165,6 cm.

3) Calculons le coefficient de corrélation linéaire entre x et y.

On a:
$$r_{xy} = \frac{\text{cov}(x,y)}{\sqrt{V(x).V(y)}} \Leftrightarrow r_{xy} = \frac{19,2727}{\sqrt{48,51 \times 10}} \text{ c'est-à-dire } r_{xy} = 0,87$$