Visualización

Data Mining

Ester Vidaña Vila

Matplotlib

- Es una librería para crear visualizaciones estáticas, animadas o interactivas en Python.
- Recordad que para utilizar las librerías primero debemos importarlas:

import matplotlib.pyplot as plt

Ejemplo de visualización de un gráfico:

Matplotlib – gráfico de líneas

```
Tamaño del plot
plt.figure(figsize=(10,5))
                                  Datos a mostrar en el plot
plt.plot(x, y, color="green", label= "Linea Verde", lw=3, ls='--', marker="o",
markersize=8, markerfacecolor="black")
plt.plot(x, z, color="red", label="Linea Roja", lw=3, ls='--', marker="o",
markersize=8, markerfacecolor="black")
plt.title("Mi Título", fontsize=14)
                                                                       Mi Título
plt.xlabel('Mi eje X')
                                               Línea Verde

    Línea Roja

plt.ylabel('Mi eje Y')
                                        20
plt.grid(True)
                                        15
plt.legend()
                Cuadrícula
        Leyenda
                                         5
```


á.

Mi eje X

Matplotlib – funciones interesantes para gráficos de líneas

Rolling:

Pandas dispone de una función para hacer un promedio de muestras en una determinada ventana para poder visualizar mejor las tendencias.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rolling.html

```
df["dieta"].rolling(12).mean().plot(figsize=(16,8), color="royalblue", lw=2);
```

Datos sin aplicar rolling

Mismos datos tras aplicar rolling

Matplotlib – funciones interesantes para gráficos de líneas

Diff:

Pandas dispone de una función para calcular la diferencia entre puntos consecutivos, lo que nos permite ver mejor la estacionalidad.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.diff.html

```
df["dieta"].diff().plot(figsize=(16,8), color="royalblue", lw=2);
```

Datos sin aplicar diff

Mismos datos tras aplicar diff

Resolución de los gráficos

■ Podemos modificar la resolución de los gráficos utilizando:

from IPython.display import set_matplotlib_formats
 set_matplotlib_formats("jpeg")

Seaborn

Seaborn es una librería de Python basada en matplotlib que nos da una interfície para dibujar gráficos estadísticos visualmente atractivos.

import seaborn as sns

Datasets predeterminados

Seaborn dispone de varios datasets en su github:

https://github.com/mwaskom/seaborn-data

Los podemos importar directamente en Python con la función load_dataset:

Ejemplo:

Import seaborn as sns

titanic = sns.load_dataset("titanic")

Paletas de colores

Si no nos gustan los colores por defecto de seaborn, podemos cambiar la paleta de colores:

https://seaborn.pydata.org/generated/seaborn.color_palette.html

paleta = sns.color_palette() #nos devuelve la paleta que estamos utilizando
sns.palplot(paleta) #para printar la paleta y ver qué colores contiene

Podemos utilizar paletas pre-determinadas de seaborn...

paleta_predeterminada = sns.color_palette("rainbow", 10) #paleta de 10 colores
O crear nuestras propias paletas:

mi_paleta = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]

paleta_propia = sns.color_palette(mi_paleta) #paleta de 6 colores

Temas

También se pueden cambiar los temas en general de los gráficos:

https://seaborn.pydata.org/generated/seaborn.set_theme.html

sns.set_theme(style="white")
sns.set_theme(style="darkgrid")
sns.set_theme(style="whitegrid",palette="pastel")

Tipos de gráficos: gráfico de contaje

Muestra la cantidad de observaciones de cada categoría utilizando barras.

https://seaborn.pydata.org/generated/seaborn.countplot.html

Ejemplo:

Cantidad de pasajeros de Primera, segunda y tercera clase del dataset Titanic.

Tipos de gráficos: strip plot

Muestra scaterplotts que relacionan una variable numérica y una variable categórica.

https://seaborn.pydata.org/generated/seaborn.stripplot.html

Tipos de gráficos: boxplot

Nos permite ver la distribución de probabilidad de una variable a partir de un conjunto de datos.

https://seaborn.pydata.org/generated/seaborn.boxplot.html

Tipos de gráficos: boxplot

Tipos de gráficos: boxplot → outliers detection

Fuente: https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51

Tipos de gráficos: heatmap

Muestra una matriz codificada y con colores

https://seaborn.pydata.org/generated/seaborn.heatmap.html

Tipos de gráficos: KDE

Muestra un gráfico de estimación de densidad de Kernel, que representa la distribución de las estimaciones del dataset de forma continua. Así pues, es como un gráfico análogo al histograma.

https://seaborn.pydata.org/generated/seaborn.kdeplot.html

MBD

Data Mining

Tipos de gráficos: histograma

Muestra un gráfico de barras en las que se muestra la suma de observaciones para cada valor o grupo de valores distintos.

https://seaborn.pydata.org/generated/seaborn.histplot.html

Tipos de gráficos: scatter plot

Muestra puntos con posibilidad de agruparlos de distintas formas.

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

