Nekaj o invariantnih podprostorih

Beno Učakar

Naj bosta V_1 in V_2 vektorska prostora ter $L: V_1 \times V_2 \to V_1 \times V_2$ linearna preslikava na zunanji direktni vsoti prostorov V_1 in V_2 . Potem lahko na narave način definiramo linearni preslikavi $L_1: V_1 \to V_1$ in $L_2: V_2 \to L_V$, da velja $L(x_1, x_2) = (Lx_1, Lx_2)$. Kaj pa, če gledamo notranjo direktno vsoto? Tu bomo naleteli na pojem invariantnega podprostora.

Definicija 1. Vektorski podprostor U je invarianten podprostor linearne preslikave L, če velja $L(U) \subseteq U$

Vidimo torej, da če je prostor U invarianten, bo obnašanje preslikave L nekako ostalo znotraj prostora U. Na primer, če je $v \in V$ lastni vektor preslikave L za lastno vrednost λ , je prostor $U = \text{Lin}\{v\}$ invarianten podprostor linearne preslikave L.

Reducirajoči podprostori

Naj bo sedaj prostor V notranja direktna vsota podprostorov U_1 in U_2 , torej $V=U_1\oplus U_2$. Potem lahko vsak vektor $x\in V$ na enoličen način zapišemo kot $x=x_1+x_2$, kjer je $x_1\in U_1$ in $x_2\in U_2$. Če sta oba podprostora U_1 in U_2 še invariantna podprostora preslikave L, ju skupaj imenujemo reducirajoča podprostora. Definirajmo linearni preslikavi

$$L_1 = L_{U_1} : U_1 \to U_1$$
 in $L_2 = L_{U_2} : U_2 \to U_2$.

Ker sta prostora U_1 in U_2 oba invariantna za preslikavo L, sta preslikavi L_1 in L_2 dobro definirani. Za poljuben vektor $x \in V$ lahko potem zapišemo

$$Lx = L(x_1 + x_2) = Lx_1 + Lx_2 = L_1x_1 + L_2x_2 = (L_1 \oplus L_2)(x_1 + x_2) =$$

$$= (L_1 \oplus L_2)x, \quad (1)$$

torej velja $L=L_1\oplus L_2$. Če preslikavo L zapišemo matrično glede na razcep $V=U_1\oplus U_2$, vidimo, da je

$$L = \begin{bmatrix} L_1 & 0 \\ 0 & L_2 \end{bmatrix}$$

torej smo preslikavo L bločno diagonalizirali.

Za nadaljnje branje priporočamo učbenik Sheldona Axlerja, Linear Algebra Done Right [1].

Literatura

[1] Sheldon Jay Axler. *Linear Algebra Done Right*. Undergraduate Texts in Mathematics. Springer, New York, 1997.