Exercices du chapitre 11

Exercice 1: Que peut-on dire des angles :

- a. 1 et 3
- b. 1 et 5
- c. 5 et 3

- d. 6 et 4
- e. 7 et 2
- f. 6 et 2

Exercice 2 : Nomme deux angles de la figure et précise le nom de la sécantes correspondante :

- 1. Alternes-internes avec l'angle n°3
- 2. correspondants avec l'angle n° 10;
- 3. alternes-internes avec l'angle n° 13;
- 4. correspondants avec l'angle n° 7.

Exercice 3:

Sur la figure ci-dessus, les droites (xy) et (zt) sont parallèles. L'angle \widehat{xMu} vaut 125°.

- 1. Donne la mesure de l'angle \widehat{vMy} . Justifie ta réponse.
- 2. Donne d'autres angles dont la mesure est de 125°. Justifie ta réponse.

Exercice 4 : La droite (lm) coupe les droites parallèles (xy), (zt), (uv) respectivement A, B, C

Donner les mesures des angles \widehat{zBm} et \widehat{lCv} en citant les propriétés.

Exercice 5 : Dans chaque cas, dire si les droites (d_1) et (d_2) sont ou non parallèles et pourquoi.

Exercice 6 : Problème ouvert

Les droites (yy') et (zz') sont parallèles. A est point de (yy') et C est un point de (zz').

Déterminer la mesure de l'angle \widehat{ABC} .

Exercice 7:

La figure ci-dessus est telle que :

- les droites (RO) et (SN) sont sécantes en T;
- le triangle RST est isocèle en R;
- les droites (RS) et (NO) sont parallèles

Montre que le triangle TNO est isocèle en O.

(Rappel: un triangle isocèle a ses angles à la base de même mesure)

Exercice 8:

La figure est tracée à main levée.

- 1. Calcule la mesure de l'angle \widehat{LON} .
- 2. Déduis-en la mesure de l'angle \widehat{ONL} .
- 3. Détermine alors si les droites (LN) et (MP) sont parallèles.

Exercice 9 : Démonstration d'une propriété

Dans cette exercice on suppose que les droites (EF) et (AB) sont parallèles. On souhaite montrer que les angles \widehat{EDC} et \widehat{DCB} sont de même mesure sans utiliser la propriété du cours.

- 1. Placer O le milieu du segment [DC]
- 2. Justifier que O est un centre de symétrie de cette figure.
- 3. Démontrer \widehat{EDC} et \widehat{DCB} sont de même mesure.

Exercice 10 : Démonstration d'une propriété.

On souhaite démontrer sans utiliser la propriété du cours que les droites (FE) et (AB) sont parallèles.

1. Tracer la droite perpendiculaire à (AB) passant par D. On note J le point d'intersection de cette droite avec (AB).

2.

- a. Calculer la mesure de l'angle $\widehat{\mathit{CDJ}}$
- b. Calculer la mesure de l'angle \widehat{IDF}
- 3. En utilisant une propriété vu en 6° démontrer que les droites (AB) et (EF) sont parallèles.

