A Chasm Between Identity and Equivalence Testing with Conditional Queries

Joint work with Jayadev Acharya and Gautam Kamath

Outline of the talk

- Distribution Testing and Conditional Queries
- Our results
- Overview of the techniques and obstacles
- Open problems

Distribution Testing

Subfield of **property testing**:

- Big (Unknown) Object O
- Fixed property (subset of Objects) P
- Is O in P, or *far* from every object in P?

Distribution Testing

Distribution Testing

```
Big Object: probability distribution D over n elements
```

Type of queries: independent samples from D

Distance measure (for "far"): Total variation distance (L_1)

Distribution Testing: A Glimpse

Many results since seminal work of [BFRSW01]:

Testing uniformity: $\Theta(\sqrt{n}/\epsilon^2)$ [GR00,Pan08] Testing identity: $\Theta(\sqrt{n}/\epsilon^2)$ [BFF+01,VV14]

Testing equivalence: $\Theta(n^{2/3}/\epsilon^{4/3})$ [BFR+10,CDVV14]

(+monotonicity, independence, membership to a class...)

Polynomial dependence on the domain size

Given a fixed known D*, and samples from unknown arbitrary D, is D equal

Given samples from unknown arbitrary D, is D uniform or ε-far from it?

to D^* or ϵ -far from it?

Given samples from two unknown arbitrary D, D', is D equal to D' or ε-far from it?

Many results since se

Testing uniformity:

Testing identity:

Testing equivalence:

 $\Theta(\sqrt{n}/\epsilon^2)$

[GR00, Pan08]

 $\Theta(\sqrt{n}/\epsilon^2)$

[BFF+01,VV14]

 $\Theta(n^{2/3}/\epsilon^{4/3})$

[BFR+10,CDVV14]

(+monotonicity, independence, membership to a class...)

Polynomial dependence on the domain size

Distribution Testing: A Twist "Is $n^{\Theta(1)}$ our final answer?"

More power to the testers: conditional sampling [Chakraborty-Fischer-Goldhirsh-Matsliah'13, C-Ron-Servedio'12]

Tester chooses $S \subseteq [n]$ Gets sample drawn from D_s

Distribution Testing: A Twist

- Generalizes sampling model
- Allows adaptivity
- (Several restricted variants)
- Natural in some settings

"Power of comparisons"

Distribution Testing in O(1)

Testing uniformity: O(1) [CRS15]

Testing identity: O(1) [CRS15,FJO+15]

Testing equivalence: loglog n [CRS15,FJO+15]

"Should it be constant-query too?"

Distribution Testing in O(1)

Testing uniformity: O(1) [CRS15]

Testing identity: O(1) [CRS15,FJO+15]

Testing equivalence: $\Omega(\sqrt{\log \log n})$ [this work]

"Things are different now."

Our main result

Theorem. Any (adaptive) testing algorithm for equivalence in the conditional model must make $\Omega(\sqrt{\log\log n})$ queries.

"Know thy enemy — it helps for testing."

Obstacles

- How to deal with adaptivity?
 Lack of general lower bound techniques in this model.
- How to deal with arbitrary queries?
 The tester can pretty much do what it wants.
- Cannot rely on the "usual tricks"

 Heavy elements to hide the rest, only a few types of weights...

Ideas

- Bring in the concept of adaptive core tester of [CFGM13],
 + Yao's principle
- Adapt a lower bound construction of [CRS15] for a restricted conditional model (easy to beat in the full one).
- Hide it by scaling its support by a random factor.

Construction

Intuition

If you don't (roughly) guess the support size, you cannot learn anything...

But we show support size estimation is hard.

Open Questions

- Can we get ε in the picture?
- Does tolerant testing behave like this? (chasm!)
- Develop general techniques for proving lower bounds?
- Characterize problems that are still hard in this model?

Thank You.

