TEAM REFERENCE

Universidad de la Habana : UH++

ACM-ICPC Caribbean Finals 2016

Team Members: Marcelo José Fornet Fornés, Ariel Cruz Cruz, Eloy Pérez Torres Developed by: José Carlos Gutiérrez Pérez

7.5. Linear Recursion	44	9.7. Linear Congruences	53
7.6. Matrix Computation Algorithms	45	9.8. Miller Rabin	54
7.7. Roots Newton	47	9.9. Mobius Mu	54
7.8. Simplex	47	9.10. Modular Arithmetics	55
7.9. Simpson	48	9.11. Mod Fact	56
8. Misc	49	9.12. Pollard Rho	57
8.1. Cube	49	9.13. Primitive Root	57
8.2. Josephus	49	9.14. Sieve	58
8.3. Partition $O(n\sqrt{n})$	49	10. String	59
8.4. Useful	50	10.1. KMP	59
9. Number Theory	51	10.2. Manacher	59
9.1. $C(n,m) \mod p$	51	10.3. Maximal Suffix	59
9.2. Discrete Logarithm	51	10.4. Minimum Rotation	60
9.3. Discrete Roots	52	10.5. Palindromic Tree	60
9.4. Divisor Sigma	52	10.6. Suffix Array	61
9.5. Euler Phi	53	10.7. Suffix Automaton	62
9.6. Extended GCD	53	10.8. Z-function	63

1. Data Structures

1.1. Heavy Light Decomposition.

```
/* Notes:
  Split a tree in several path in a way that there is
  at most log(n) path from any node u to the root.
  pos -> Position of node u in the list.
  ipos -> Reverse of pos (Node on position i)
  No need to initialize for several uses.
typedef vector<vector<int>> graph;
struct heavy_light{
  int n, heavy[maxn], root[maxn], depth[maxn];
  int pos[maxn], ipos[maxn], parent[maxn];
  int dfs(int s, int f, graph &G) {
     parent[s] = f, heavy[s] = -1;
     int size = 1, maxSubtree = 0;
     for (auto u : G[s]) if (u != f) {
        depth[u] = depth[s] + 1;
        int subtree = dfs(u, s, G);
        if (subtree > maxSubtree)
           heavy[s] = u, maxSubtree = subtree;
        size += subtree;
     }
     return size;
```

1.2 Order Statistic

```
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
```

```
void go(graph &G, int ROOT=0) {
      n = (int)G.size();
      depth[ROOT] = 0;
      dfs(ROOT, -1, G);
      for (int i = 0, currentPos = 0; i < n; ++i)
         if (parent[i] == -1 || heavy[parent[i]] != i)
            for (int u = i; u != -1; u = heavy[u], currentPos++)
               root[u] = i, pos[u] = currentPos, ipos[currentPos] = u;
   int lca(int u, int v, segment_tree &ST) {
      int ans = oo;
      for (; root[u] != root[v]; v = parent[root[v]]) {
         if (depth[root[u]] > depth[root[v]]) swap(u, v);
         ans = min(ans, ST.operation(1, 0, n, pos[root[v]], pos[v] + 1));
      if (depth[u] > depth[v]) swap(u, v);
      ans = min(ans, ST.operation(1, 0, n, pos[u], pos[v] + 1));
      // LCA at u
      return ans;
   int go_up(int u, int k){
      // The kth node (0 indexed) in the path from (u to root)
      for (;pos[u] - pos[root[u]] < k; u = parent[root[u]])</pre>
         k \rightarrow pos[u] - pos[root[u]] + 1;
      return ipos[pos[u] - k];
};
```

```
4
```

```
int main() {
    ordered_set X;
    for(int i = 1; i <= 16; i *= 2)
        X.insert(i);
    cout << *X.find_by_order(1) << endl; // 2
    cout << *X.find_by_order(2) << endl; // 4
    cout << *X.find_by_order(4) << endl; // 16</pre>
```

1.3. Persistent Array.

```
struct node{
   node *1, *r;
   int value;
};

node* clone(node *u) {
   node *ans = new node();
   ans->1 = u->1, ans->r = u->r, ans->value = u->value;
   return ans;
}

node* build(int b, int e) {
   node *ans = new node();
   if (b + 1 < e) {
      int m = (b + e) >> 1;
      ans->1 = build(b, m);
      ans->r = build(m, e);
   }
   return ans;
}

node* update(node *root, int b, int e, int x, int v) {
```

1.4. Randomized Kd Tree.

```
typedef complex<double> point;
struct randomized_kd_tree
{
    struct node
    {
        point p;
        int d, s;
    }
}
```

```
cout << (X.end() == X.find_by_order(6)) << endl; // true</pre>
   cout << X.order_of_key(-5) << endl; // 0
   cout << X.order_of_key(1) << endl; // 0
   cout<<X.order_of_key(3)<<end1; // 2</pre>
   cout << X.order_of_key(4) << endl; // 2
   cout << X.order_of_key(400) << endl; // 5
   root = clone(root);
   if (b + 1 == e) {
      root->value = v;
   else{
      int m = (b + e) >> 1;
      if (x < m) root->1 = update(root->1, b, m, x, v);
      else root->r = update(root->r, m, e, x, v);
   return root;
int query(node *root, int b, int e, int x){
   if (b + 1 == e) return root->value;
   int m = (b + e) >> 1;
   if (x < m) return query(root->1, b, m, x);
   else return query(root->r, m, e, x);
            node *1, *r;
            bool is_left_of(node *x)
                  if (x->d)
                         return real(p) < real(x->p);
                         return imag(p) < imag(x->p);
```

}*root;

```
randomized_kd_tree() : root(0) {}
int size(node *t)
      return t ? t->s : 0;
node *update(node *t)
      t->s = 1 + size(t->1) + size(t->r);
      return t;
pair<node*, node*> split(node *t, node *x)
      if (!t)
            return {0, 0};
      if (t->d == x->d)
            if (t->is_left_of(x))
                  auto p = split(t->r, x);
                  t->r = p.first;
                  return {update(t), p.second};
            else
                  auto p = split(t->1, x);
                  t->1 = p.second;
                  return {p.first, update(t)};
      else
            auto 1 = split(t->1, x);
            auto r = split(t->r, x);
            if (t->is_left_of(x))
                  t->1 = 1.first;
                  t->r = r.first;
                  return {update(t), join(1.second, r.second, t->d)};
            else
                  t->1 = 1.second;
                  t->r = r.second;
```

```
return { join(l.first, r.first, t->d), update(t) };
node *join(node *l, node *r, int d)
      if (!1)
            return r;
      if (!r)
            return 1;
      if (rand() % (size(l) + size(r)) < size(l))</pre>
            if (1->d == d)
                  1->r = join(1->r, r, d);
                  return update(1);
            else
                  auto p = split(r, 1);
                  1->1 = join(1->1, p.first, d);
                  1->r = join(1->r, p.second, d);
                  return update(1);
      else
            if (r->d == d)
                  r->1 = join(1, r->1, d);
                  return update(r);
            else
                  auto p = split(l, r);
                  r->1 = join(p.first, r->1, d);
                  r->r = join(p.second, r->r, d);
                  return update(r);
node *insert(node *t, node *x)
      if (rand() % (size(t) + 1) == 0)
```

```
auto p = split(t, x);
            x->1 = p.first;
            x->r = p.second;
            return update(x);
      else
            if (x->is_left_of(t))
                   t->1 = insert(t->1, x);
             else
                   t->r = insert(t->r, x);
            return update(t);
void insert(point p)
      root = insert(root, new node({ p, rand() % 2 }));
node *remove(node *t, node *x)
      if (!t)
            return t;
      if (t->p == x->p)
            return join(t->1, t->r, t->d);
      if (x->is_left_of(t))
            t \rightarrow 1 = remove(t \rightarrow 1, x);
            t->r = remove(t->r, x);
      return update(t);
void remove(point p)
      node n = \{ p \};
      root = remove(root, &n);
void closest(node *t, point p, pair<double, node*> &ub)
      if (!t)
            return;
      double r = norm(t->p - p);
      if (r < ub.first)</pre>
            ub = \{r, t\};
      node *first = t->r, *second = t->1;
```

```
double w = t->d ? real(p - t->p) : imag(p - t->p);
      if (w < 0)
            swap(first, second);
      closest(first, p, ub);
      if (ub.first > w * w)
            closest (second, p, ub);
point closest (point p)
      pair<double, node*> ub(1.0 / 0.0, 0);
      closest(root, p, ub);
      return ub.second->p;
// verification
int height(node *n)
      return n ? 1 + max(height(n->1), height(n->r)) : 0;
int height()
      return height(root);
int size_rec(node *n)
      return n ? 1 + size_rec(n->1) + size_rec(n->r) : 0;
int size_rec()
      return size_rec(root);
void display(node *n, int tab = 0)
      if (!n)
            return;
      display (n->1, tab + 2);
      for (int i = 0; i < tab; ++i)</pre>
            cout << "_";
      cout << n->p << "\underline{\ }(" << n->d << ")" << endl;
      display(n->r, tab + 2);
```

```
void display()
{
```

1.5. **Treap.**

```
Treap implementation.
   jcg solution of Robotic Sort
const int oo = 0x3f3f3f3f3f;
struct node
   pair<int, int> val, mn;
  int prio, size, rev;
  node *1, *r;
  node(pair<int, int> val) : val(val), mn(val), prio(rand()),
                         size(1), rev(0), l(0), r(0) {}
} ;
int size(node *u)
   return u ? u->size : 0;
pair<int, int> mn(node *u)
   return u ? u->mn : make_pair(oo, oo);
node *update(node *u)
   if (u)
      // Change this
      u->mn = min(\{u->val, mn(u->l), mn(u->r)\});
      u \rightarrow size = 1 + size(u \rightarrow 1) + size(u \rightarrow r);
   return u;
void push (node *u)
```

```
display(root);
};
   if (!u) return;
   // Change this
   if (u->rev)
      swap(u->1, u->r);
      if (u->1) u->1->rev = !u->1->rev;
      if (u->r) u->r->rev = !u->r->rev;
      u \rightarrow rev = 0;
node *merge(node *u, node *v)
   push(u); push(v);
   if (!u || !v) return u ? u : v;
   if (u->prio > v->prio)
      u->r = merge(u->r, v);
      return update(u);
   else
      v->1 = merge(u, v->1);
      return update(v);
pair<node*, node*> split(node *u, int k)
   push(u);
   if (!u) return make_pair(nullptr, nullptr);
   if (size(u->1) >= k)
```

```
auto p = split(u->1, k);
     u \rightarrow 1 = p.second;
     return make_pair(p.first, update(u));
   else
      auto p = split(u->r, k - size(u->l) - 1);
     u \rightarrow r = p.first;
      return make_pair(update(u), p.second);
int find_min(node *u)
  push(u);
   if (u->mn == u->val)
      return size(u->1);
   if (u->mn == mn(u->1))
      return find_min(u->1);
   return 1 + size(u->1) + find_min(u->r);
void dfs(node *u) {
   // Debug
  if (u) {
     push(u);
      if (u->1) dfs(u->1);
      cout << u->val << endl;
      if (u->r) dfs(u->r);
```

1.6. Vantage Point Tree.

```
/*

Vantage Point Tree (vp tree)

Description:

Vantage point tree is a metric tree.

Each tree node has a point, radius, and two childs.

The points of left descendants are contained in the ball B(p,r) and the points of right descendants are excluded from the ball.

We can find k-nearest neighbors of a given point p efficiently by pruning search.
```

```
int main()
   node *root = nullptr;
   for (int i = 1; i <= N; ++i)</pre>
      int P;
      cin >> P;
      node *u = new node(make_pair(P, i));
      root = merge(root, update(u));
   for (int i = 1; i <= N; ++i)</pre>
      int k = find_min(root);
      cout << i + k << "_ \n"[i == N];
      pair<node*, node*> a = split(root, k);
      pair<node*, node*> b = split(a.second, 1);
      if (a.first) a.first->rev = !a.first->rev;
      root = merge(a.first, b.second);
      delete b.first;
      Complexity:
      Construction: O(n log n)
      Search: O(log n)
```

typedef complex<double> point;

bool operator <(point p, point q)</pre>

namespace std

```
if (real(p) != real(q))
                  return real(p) < real(q);</pre>
            return imag(p) < imag(q);</pre>
struct vantage_point_tree
      struct node
            point p;
            double th;
            node *1, *r;
     }*root;
     vector<pair<double, point>> aux;
     vantage_point_tree(vector<point> ps)
            for (int i = 0; i < ps.size(); ++i)</pre>
                  aux.push_back({ 0, ps[i] });
            root = build(0, ps.size());
     node *build(int 1, int r)
            if (1 == r)
                  return 0;
            swap(aux[1], aux[1 + rand() % (r - 1)]);
            point p = aux[1++].second;
            if (1 == r)
                  return new node({ p });
            for (int i = 1; i < r; ++i)</pre>
                  aux[i].first = norm(p - aux[i].second);
            int m = (1 + r) / 2;
            nth_element(aux.begin() + 1, aux.begin() + m, aux.begin() + r);
            return new node({ p, sqrt(aux[m].first), build(l, m), build(m, r) });
```

```
priority_queue<pair<double, node*>> que;
void k_nn(node *t, point p, int k)
      if (!t)
            return;
      double d = abs(p - t->p);
      if (que.size() < k)</pre>
            que.push({ d, t });
      else if (que.top().first > d)
            que.pop();
            que.push({ d, t });
      if (!t->1 && !t->r)
            return;
      if (d < t->th)
            k_nn(t->1, p, k);
            if (t->th - d <= que.top().first)</pre>
                  k_nn(t->r, p, k);
      else
            k_nn(t->r, p, k);
            if (d - t->th <= que.top().first)</pre>
                  k_nn(t->1, p, k);
vector<point> k_nn(point p, int k)
      k_nn(root, p, k);
      vector<point> ans;
      for (; !que.empty(); que.pop())
            ans.push_back(que.top().second->p);
      reverse(ans.begin(), ans.end());
      return ans;
```

} ;

2. Dynamic Programming

2.1. Convex Hull Trick.

```
Dynamic hull for max dot queries
     Complexity:
      - Add: O(log n)
      - Query: O(log^2 n) but very fast in practice
      Tested: http://codeforces.com/gym/100377/problem/L
typedef long long 11;
typedef complex<1l> point;
11 cross(point a, point b) { return imag(conj(a) * b); }
11 dot(point a, point b) { return real(conj(a) * b); }
11 area2(point a, point b, point c) { return cross(b - a, c - a); }
namespace std
     bool operator<(const point &a, const point &b)</pre>
            return real(a) < real(b) || (real(a) == real(b) && imag(a) < imag(b));</pre>
const 11 oo = 0x3f3f3f3f3f3f3f3f3f;
struct dynamic_hull
      dynamic_hull() : hulls() {}
     void add_point(point p)
            hull h;
            h.add_point(p);
            for (hull &_h : hulls)
                  if (_h.empty())
                        h.swap(_h);
                        break;
```

```
else h = merge(h, _h), _h.clear();
            if (!h.empty()) hulls.emplace_back(h);
      11 max_dot(point p)
            11 \text{ best = -oo;}
            for (hull &h : hulls)
                  if (!h.empty()) best = max(best, h.max_dot(p));
            return best;
private:
      struct hull : vector<point>
            void add_point(point p)
                   for (int s = size(); s > 1; --s)
                         if (area2(at(s - 2), at(s - 1), p) < 0) break;
                         else pop_back();
                  push_back(p);
            11 max_dot(point p)
                   int lo = 0, hi = (int) size() - 1, mid;
                   while (lo < hi)</pre>
                         mid = (lo + hi) / 2;
                         if (dot(at(mid), p) <= dot(at(mid + 1), p))</pre>
                               lo = mid + 1;
                         else hi = mid;
                  return dot(at(lo), p);
      } ;
```

```
static hull merge(const hull &a, const hull &b)
{
    hull h;
    size_t i = 0, j = 0;

while (i < a.size() && j < b.size())
    if (a[i] < b[j]) h.add_point(a[i++]);
    else h.add_point(b[j++]);</pre>
```

```
while (i < a.size()) h.add_point(a[i++]);
    while (j < b.size()) h.add_point(b[j++]);
    return h;
}
    vector<hull> hulls;
};
```

3.1. Antipodal Points.

3.2. Polygon Area.

```
/*
    Tested: AIZU(judge.u-aizu.ac.jp) CGL.3A
    Complexity: O(n)
*/
double area2(const polygon &P)
```

3.3. Basics.

```
typedef complex<double> point;
typedef vector<point> polygon;
```

3. Geometry

```
ans.push_back({ p, q });
            while (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)]))
                        > abs(area2(P[p], P[NEXT(p)], P[q])))
                  q = NEXT(q);
                  if (p != q0 || q != 0)
                        ans.push_back({ p, q });
                        return ans;
            if (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)]))
                        == abs(area2(P[p], P[NEXT(p)], P[q])))
                  if (p != q0 || q != n - 1)
                        ans.push_back({ p, NEXT(q) });
                  else
                        ans.push_back({ NEXT(p), q });
      return ans;
      double A = 0;
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            A += cross(P[i], P[NEXT(i)]);
      return A;
#define NEXT(i) (((i) + 1) % n)
```

```
struct circle { point p; double r; };
struct line { point p, q; };
using segment = line;

const double eps = 1e-9;

// fix comparations on doubles with this two functions
int sign(double x) { return x < -eps ? -1 : x > eps; }

int dblcmp(double x, double y) { return sign(x - y); }

double dot(point a, point b) { return real(conj(a) * b); }

double cross(point a, point b) { return imag(conj(a) * b); }

double area2(point a, point b, point c) { return cross(b - a, c - a); }

int ccw(point a, point b, point c)
```

3.4. Centroid.

3.5. Circle.

```
b -= a; c -= a;
      if (cross(b, c) > 0) return +1; // counter clockwise
      if (cross(b, c) < 0) return -1; // clockwise</pre>
      if (dot(b, c) < 0) return +2; // c--a--b on line</pre>
      if (dot(b, b) < dot(c, c)) return -2; // a--b--c on line
      return 0;
namespace std
      bool operator<(point a, point b)</pre>
            if (a.real() != b.real())
                  return a.real() < b.real();</pre>
            return a.imag() < b.imag();</pre>
      point c(0, 0);
      double scale = 3.0 * area2(P); // area2 = 2 * polygon_area
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            int j = NEXT(i);
            c = c + (P[i] + P[j]) * (cross(P[i], P[j]));
      return c / scale;
      if (sign(d - abs(C.r - D.r)) < 0) return {}; // too close</pre>
      double a = (C.r*C.r - D.r*D.r + d*d) / (2*d);
      double h = sqrt(C.r*C.r - a*a);
      point v = (D.p - C.p) / d;
      if (sign(h) == 0) return {C.p + v*a}; // touch
      return {C.p + v*a + point(0,1)*v*h, // intersect
                  C.p + v*a - point(0,1)*v*h};
// circle-line intersection
vector<point> intersect(line L, circle C)
```

```
point u = L.p - L.q, v = L.p - C.p;
      double a = dot(u, u), b = dot(u, v), c = dot(v, v) - C.r*C.r;
      double det = b*b - a*c;
      if (sign(det) < 0) return {}; // no solution</pre>
      if (sign(det) == 0) return {L.p - b/a*u}; // touch
      return {L.p + (-b + sqrt(det))/a*u,
                  L.p + (-b - sqrt(det))/a*u;
// circle tangents through point
vector<point> tangent(point p, circle C)
      double sin2 = C.r*C.r/norm(p - C.p);
      if (sign(1 - sin2) < 0) return {};</pre>
     if (sign(1 - sin2) == 0) return {p};
     point z(sqrt(1 - sin2), sqrt(sin2));
     return {p + (C.p - p)*conj(z), p + (C.p - p)*z};
bool incircle (point a, point b, point c, point p)
      a -= p; b -= p; c -= p;
      return norm(a) * cross(b, c)
                  + norm(b) * cross(c, a)
                  + norm(c) * cross(a, b) >= 0;
                  // < : inside, = cocircular, > outside
point three_point_circle(point a, point b, point c)
     point x = 1.0 / conj(b - a), y = 1.0 / conj(c - a);
      return (y - x) / (conj(x) * y - x * conj(y)) + a;
  Get the center of the circles that pass through p0 and p1
   and has ratio r.
  Be careful with epsilon.
vector<point> two_point_ratio_circle(point p0, point p1, double r) {
  if (abs(p1 - p0) > 2 * r + eps) // Points are too far.
     return {};
   point pm = (p1 + p0) / 2.01;
  point pv = p1 - p0;
```

```
pv = point(-pv.imag(), pv.real());
   double x1 = p1.real(), y1 = p1.imag();
   double xm = pm.real(), ym = pm.imag();
   double xv = pv.real(), vv = pv.imag();
   double A = (sqr(xv) + sqr(yv));
   double C = sqr(xm - x1) + sqr(ym - y1) - sqr(r);
   double D = sqrt( - 4 * A * C );
   double t = D / 2.0 / A;
   if (abs(t) <= eps)</pre>
      return {pm};
   return {c1, c2};
      Area of the intersection of a circle with a polygon
      Circle's center lies in (0, 0)
      Polygon must be given counterclockwise
      Tested: LightOJ 1358
      Complexity: O(n)
#define x(_t) (xa + (_t) * a)
#define y(_t) (ya + (_t) * b)
double radian(double xa, double ya, double xb, double yb)
      return atan2(xa * yb - xb * ya, xa * xb + ya * yb);
double part (double xa, double va, double xb, double vb, double r)
      double 1 = sqrt((xa - xb) * (xa - xb) + (ya - yb) * (ya - yb));
      double a = (xb - xa) / 1, b = (yb - ya) / 1, c = a * xa + b * ya;
      double d = 4.0 * (c * c - xa * xa - ya * ya + r * r);
      if (d < eps)
            return radian(xa, ya, xb, yb) * r * r * 0.5;
      else
            d = sqrt(d) * 0.5;
            double s = -c - d, t = -c + d;
            if (s < 0.0) s = 0.0;
```

3.6. Closest Pair Points.

3.7. Points in Polygon.

```
/*
    Determine the position of a point relative
    to a polygon.

Tested: AIZU(judge.u-aizu.ac.jp) CGL.3C
    Complexity: O(n)

*/

enum { OUT, ON, IN };
int contains(const polygon &P, const point &p)
{
    bool in = false;
```

```
double intersection_circle_polygon(const polygon &P, double r)
      double s = 0.0;
      int n = P.size();;
      for (int i = 0; i < n; i++)</pre>
            s += part(P[i].real(), P[i].imag(),
                  P[NEXT(i)].real(), P[NEXT(i)].imag(), r);
      return fabs(s);
      const double oo = 1e9; // adjust
      double ans = oo;
      for (int i = 0, ptr = 0; i < n; ++i)
            while (ptr < i && abs(P[i].real() - P[ptr].real()) >= ans)
                  S.erase(P[ptr++]);
            auto lo = S.lower_bound(point(-oo, P[i].imag() - ans - eps));
            auto hi = S.upper_bound(point(-oo, P[i].imag() + ans + eps));
            for (decltype(lo) it = lo; it != hi; ++it)
                  ans = min(ans, abs(P[i] - *it));
            S.insert(P[i]);
      return ans;
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            point a = P[i] - p, b = P[NEXT(i)] - p;
            if (imag(a) > imag(b)) swap(a, b);
            if (imag(a) <= 0 && 0 < imag(b))</pre>
                  if (cross(a, b) < 0) in = !in;
            if (cross(a, b) == 0 && dot(a, b) <= 0)</pre>
                  return ON;
      return in ? IN : OUT;
```

3.8. Convex Cut.

```
/*
    Cut a convex polygon by a line and
    return the part to the left of the line

    Tested: AIZU(judge.u-aizu.ac.jp) CGL.4C
    Complexity: O(n)
*/

polygon convex_cut(const polygon &P, const line &l)
{
```

3.9. Convex Hull.

```
/*
    Tested: AIZU(judge.u-aizu.ac.jp) CGL.4A
    Complexity: O(n log n)
*/
polygon convex_hull(vector<point> &P)
{
    int n = P.size(), k = 0;
```

3.10. Line Segment Intersections.

```
polygon Q;
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            point A = P[i], B = P[(i + 1) % n];
            if (ccw(l.p, l.q, A) != -1) Q.push_back(A);
            if (ccw(1.p, 1.q, A) * ccw(1.p, 1.q, B) < 0)</pre>
                  Q.push_back(crosspoint((line){ A, B }, 1));
      return 0;
      vector<point> h(2 * n);
      sort(P.begin(), P.end());
      for (int i = 0; i < n; h[k++] = P[i++])
            while (k \ge 2 \&\& area2(h[k - 2], h[k - 1], P[i]) \le 0) --k;
      for (int i = n - 2, t = k + 1; i >= 0; h[k++] = P[i--])
            while (k \ge t \&\& area2(h[k - 2], h[k - 1], P[i]) \le 0) --k;
      return polygon(h.begin(), h.begin() + k - (k > 1));
bool intersectLP(const line &1, const point &p)
      return abs(cross(l.q - p, l.p - p)) < eps;
bool intersectSS(const segment &s, const segment &t)
      return ccw(s.p, s.q, t.p) * ccw(s.p, s.q, t.q) <= 0
                  && ccw(t.p, t.q, s.p) * ccw(t.p, t.q, s.q) <= 0;
bool intersectSP(const segment &s, const point &p)
      return abs(s.p - p) + abs(s.q - p) - abs(s.q - s.p) < eps;
      // triangle inequality
      return min(real(s.p), real(s.q)) <= real(p)</pre>
```

```
&& imag(p) \le max(imag(s.p), imag(s.q))
                 && cross(s.p - p, s.q - p) == 0;
point projection(const line &1, const point &p)
     double t = dot(p - 1.p, 1.p - 1.q) / norm(1.p - 1.q);
     return 1.p + t * (1.p - 1.q);
point reflection(const line &1, const point &p)
     return p + 2.0 * (projection(1, p) - p);
double distanceLP(const line &1, const point &p)
     return abs(p - projection(l, p));
double distanceLL(const line &1, const line &m)
     return intersectLL(1, m) ? 0 : distanceLP(1, m.p);
double distanceLS(const line &1, const line &s)
     if (intersectLS(1, s)) return 0;
3.11. Minkowski.
  Minkowski sum of two convex polygons. O(n + m)
  Note: Polygons MUST be counterclockwise
polygon minkowski (polygon &A, polygon &B) {
     int na = (int)A.size(), nb = (int)B.size();
     if (A.empty() || B.empty()) return polygon();
     rotate(A.begin(), min_element(A.begin(), A.end()), A.end());
     rotate(B.begin(), min_element(B.begin(), B.end()), B.end());
     int pa = 0, pb = 0;
```

```
return min(distanceLP(1, s.p), distanceLP(1, s.q));
double distanceSP(const segment &s, const point &p)
      const point r = projection(s, p);
      if (intersectSP(s, r)) return abs(r - p);
      return min(abs(s.p - p), abs(s.q - p));
double distanceSS(const segment &s, const segment &t)
      if (intersectSS(s, t)) return 0;
      return min(min(distanceSP(s, t.p), distanceSP(s, t.q)),
                  min(distanceSP(t, s.p), distanceSP(t, s.q)));
point crosspoint (const line &1, const line &m)
      double A = cross(1.q - 1.p, m.q - m.p);
      double B = cross(l.q - l.p, l.q - m.p);
      if (abs(A) < eps && abs(B) < eps)
            return m.p; // same line
      if (abs(A) < eps)</pre>
            assert(false); // !!!PRECONDITION NOT SATISFIED!!!
      return m.p + B / A * (m.q - m.p);
      polygon M;
      while (pa < na && pb < nb) {
            M.push_back(A[pa] + B[pb]);
            double x = cross(A[(pa + 1) % na] - A[pa],
                                     B[(pb + 1) % nb] - B[pb]);
            if (x <= eps) pb++;
            if (-eps <= x) pa++;
      while (pa < na) M.push_back(A[pa++] + B[0]);</pre>
      while (pb < nb) M.push_back(B[pb++] + A[0]);</pre>
      return M;
```

3.12. Pick Theorem.

```
/*
    Pick's theorem
    A = I + B/2 - 1:
    A = Area of the polygon
    I = Number of integer coordinates points inside
    B = Number of integer coordinates points on the boundary
    Polygon's vertex must have integer coordinates

    Tested: LightOJ 1418
    Complexity: O(n)
*/

typedef long long ll;
typedef complex<ll> point;
struct segment { point p, q; };
```

3.13. Points 3D.

```
const double pi = acos(-1.0);

// Construct a point on a sphere with center on the origin and radius R

// TESTED [COJ-1436]
struct point3d
{
         double x, y, z;
         point3d(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}

         double operator*(const point3d &p) const
         {
              return x * p.x + y * p.y + z * p.z;
         }

         point3d operator-(const point3d &p) const
         {
                 return point3d(x - p.x, y - p.y, z - p.z);
            }
};

double abs(point3d p)
```

```
11 points_on_segment(const segment &s)
{
      point p = s.p - s.q;
      return __gcd(abs(p.real()), abs(p.imag()));
// <Lattice points (not in boundary), Lattice points on boundary>
pair<11, 11> pick_theorem(polygon &P)
     11 A = area2(P), B = 0, I = 0;
      for (int i = 0, n = P.size(); i < n; ++i)</pre>
            B += points_on_segment({P[i], P[NEXT(i)]});
      A = abs(A);
      I = (A - B) / 2 + 1;
      return {I, B};
      return sqrt (p.x * p.x + p.y * p.y + p.z * p.z);
point3d from_polar(double lat, double lon, double R)
      lat = lat / 180.0 * pi;
     lon = lon / 180.0 * pi;
      return point3d(R * cos(lat) * sin(lon),
                          R * cos(lat) * cos(lon), R * sin(lat));
struct plane
      double A, B, C, D;
};
double euclideanDistance(point3d p, point3d q)
      return abs(p - q);
```

/*

18

```
Geodisic distance between points in a sphere
R is the radius of the sphere
double geodesic_distance(point3d p, point3d q, double r)
     return r * acos(p * q / r / r);
const double eps = 1e-9;
// Find the rect of intersection of two planes on the space
// The rect is given parametrical
// TESTED [TIMUS 1239]
3.14. Polygon Width.
     Compute the width of a convex polygon
      Tested: LiveArchive 5138
      Complexity: O(n)
const int oo = 1e9; // adjust
double check(int a, int b, int c, int d, const polygon &P)
     for (int i = 0; i < 4 && a != c; ++i)</pre>
           if (i == 1) swap(a, b);
           else swap(c, d);
     if (a == c) // a admits a support line parallel to bd
           double A = abs(area2(P[a], P[b], P[d]));
           // double of the triangle area
           double base = abs(P[b] - P[d]);
           // base of the triangle abd
           return A / base;
3.15. Rectangle Union.
```

Tested: MIT 2008 Team Contest 1 (Rectangles)

Complexity: O(n log n)

```
void planePlaneIntersection(plane p, plane q)
      if (abs(p.C \star q.B - q.C \star p.B) < eps)
            return; // Planes are parallel
      double mz = (q.A * p.B - p.A * q.B) / (p.C * q.B - q.C * p.B);
      double nz = (q.D * p.B - p.D * q.B) / (p.C * q.B - q.C * p.B);
      double my = (q.A * p.C - p.A * q.C) / (p.B * q.C - p.C * q.B);
      double ny = (q.D * p.C - p.D * q.C) / (p.B * q.C - p.C * q.B);
      // parametric rect: (x, my * x + ny, mz * x * nz)
      return oo;
double polygon_width(const polygon &P)
      if (P.size() < 3)
            return 0;
      auto pairs = antipodal(P);
      double best = oo;
      int n = pairs.size();
      for (int i = 0; i < n; ++i)
            double tmp = check(pairs[i].first, pairs[i].second,
                        pairs[NEXT(i)].first, pairs[NEXT(i)].second, P);
            best = min(best, tmp);
      return best;
typedef long long 11;
```

```
struct rectangle
     ll xl, yl, xh, yh;
};
11 rectangle_area(vector<rectangle> &rs)
     vector<11> ys; // coordinate compression
     for (auto r : rs)
           ys.push_back(r.yl);
           ys.push_back(r.yh);
     sort(ys.begin(), ys.end());
     ys.erase(unique(ys.begin(), ys.end()), ys.end());
     int n = ys.size(); // measure tree
     vector<11> C(8 * n), A(8 * n);
     function<void(int, int, int, int, int, int) > aux =
                  [&] (int a, int b, int c, int 1, int r, int k)
                        if ((a = max(a,1)) >= (b = min(b,r))) return;
                        if (a == 1 && b == r) C[k] += c;
                       else
                              aux(a, b, c, 1, (1+r)/2, 2*k+1);
                              aux(a, b, c, (1+r)/2, r, 2*k+2);
```

3.16. Rectilinear Mst.

```
/*
    Tested: USACO OPENO8 (Cow Neighborhoods)
    Complexity: O(n log n)
*/

typedef long long ll;
typedef complex<ll> point;

ll rectilinear_mst(vector<point> ps)
{
    vector<int> id(ps.size());
    iota(id.begin(), id.end(), 0);

    struct edge
```

```
else A[k] = A[2*k+1] + A[2*k+2];
            };
struct event
     11 x, 1, h, c;
// plane sweep
vector<event> es;
for (auto r : rs)
      int 1 = lower_bound(ys.begin(), ys.end(), r.yl) - ys.begin();
      int h = lower_bound(ys.begin(), ys.end(), r.yh) - ys.begin();
      es.push_back({ r.xl, l, h, +1 });
      es.push_back({ r.xh, l, h, -1 });
sort(es.begin(), es.end(), [](event a, event b)
           {return a.x != b.x ? a.x < b.x : a.c > b.c;});
11 area = 0, prev = 0;
for (auto &e : es)
      area += (e.x - prev) * A[0];
      prev = e.x;
     aux(e.1, e.h, e.c, 0, n, 0);
return area;
      int src, dst;
      ll weight;
};
vector<edge> edges;
for (int s = 0; s < 2; ++s)
      for (int t = 0; t < 2; ++t)
            sort(id.begin(), id.end(), [&](int i, int j)
```

});

return real(ps[i] - ps[j]) < imag(ps[j] - ps[i]);</pre>

if (C[k]) A[k] = ys[r] - ys[1];

4. Graph

4.1. Articulation Points.

```
Articulation points / Biconnected components
     Description:
     - Let G = (V, E). If G-v is disconnected, v in V is said to
     be an articulation point. If G has no articulation points,
     it is said to be biconnected.
     - A biconnected component is a maximal biconnected subgraph.
     The algorithm finds all articulation points and biconnected
     components.
     Complexity: O(n + m)
      Tested:
      - http://www.spoj.com/problems/SUBMERGE/
      - http://codeforces.com/problemset/problem/487/E
struct graph
     int n;
     vector<vector<int>> adj;
     graph(int n) : n(n), adj(n) {}
     void add_edge(int u, int v)
            adj[u].push_back(v);
            adj[v].push_back(u);
     int add_node()
            adj.push_back({});
            return n++;
     }
     vector<int>& operator[](int u) { return adj[u]; }
};
vector<vector<int>>> biconnected_components(graph &adj)
     int n = adj.n;
```

```
vector<int> num(n), low(n), art(n), stk;
vector<vector<int>> comps;
function<void(int, int, int&)> dfs = [&](int u, int p, int &t)
     num[u] = low[u] = ++t;
     stk.push_back(u);
     for (int v : adj[u]) if (v != p)
           if (!num[v])
                  dfs(v, u, t);
                  low[u] = min(low[u], low[v]);
                  if (low[v] >= num[u])
                        art[u] = (num[u] > 1 || num[v] > 2);
                        comps.push_back({u});
                        while (comps.back().back() != v)
                              comps.back().push_back(stk.back()),
                              stk.pop_back();
           else low[u] = min(low[u], num[v]);
};
for (int u = 0, t; u < n; ++u)
     if (!num[u]) dfs(u, -1, t = 0);
// build the block cut tree
function<graph()> build_tree = [&]()
{
     graph tree(0);
     vector<int> id(n);
     for (int u = 0; u < n; ++u)
           if (art[u]) id[u] = tree.add_node();
     for (auto &comp : comps)
```

```
int node = tree.add_node();
for (int u : comp)
    if (!art[u]) id[u] = node;
    else tree.add_edge(node, id[u]);
}
```

4.2. Bipartite Matching.

```
/*
    Tested: AIZU(judge.u-aizu.ac.jp) GRL_7_A
    Complexity: O(nm)

*/

struct graph
{
    int L, R;
    vector<vector<int>> adj;

    graph(int L, int R) : L(L), R(R), adj(L + R) {}

    void add_edge(int u, int v)
    {
        adj[u].push_back(v + L);
        adj[v + L].push_back(u);
    }

    int maximum_matching()
    {
        vector<int> visited(L), mate(L + R, -1);
        function<bool(int)> augment = [&](int u)
        {
        if (visited[u]) return false;
```

4.3. Bridges.

```
Bridges / Bridges connected components

Description:
    - Let G = (V, E). If G-(u,v) is disconnected, (u,v) in V is said to be a bridge.
    - Bridge-blocks or bridge-connected components are the components of G formed by deleting all the bridges. The bridge-blocks partition V in equivalences classes such that two vertices are in the same class
```

```
return tree;
};

return comps;
}
```

```
visited[u] = true;
                   for (int w : adj[u])
                         int v = mate[w];
                         if (v < 0 || augment(v))</pre>
                               mate[u] = w;
                               mate[w] = u;
                               return true;
                  return false;
            };
            int match = 0;
            for (int u = 0; u < L; ++u)
                   fill(visited.begin(), visited.end(), 0);
                  if (augment(u))
                         ++match;
            return match;
};
```

if and only if there is a (not necessarily simple) cycle of G
containing both of them.
The algorithm finds all briges and bridge-blocks.

Complexity: O(n + m)

Tested: http://codeforces.com/gym/100114/problem/J

```
struct graph
      int n;
     vector<vector<int>> adj;
     graph(int n) : n(n), adj(n) {}
     void add_edge(int u, int v)
            adj[u].push_back(v);
            adj[v].push_back(u);
      vector<int>& operator[](int u) { return adj[u]; }
} ;
vector<vector<int>>> bridge_blocks(graph &adj)
      int n = adj.n;
      vector<int> num(n), low(n), stk;
     vector<vector<int>> comps;
     vector<pair<int, int>> bridges;
      function<void(int, int, int&)> dfs = [&](int u, int p, int &t)
            num[u] = low[u] = ++t;
            stk.push_back(u);
            // remove if there isn't parallel edges
            sort(adj[u].begin(), adj[u].end());
            for (int i = 0, sz = adj[u].size(); i < sz; ++i)</pre>
                  int v = adj[u][i];
                  if (v == p)
                        if (i + 1 < sz && adj[u][i + 1] == v)</pre>
                              low[u] = min(low[u], num[v]);
                        continue;
```

4.4. Centroid Decomposition.

```
if (!num[v])
                  dfs(v, u, t);
                  low[u] = min(low[u], low[v]);
                  if (low[v] == num[v])
                        bridges.push_back({u, v});
            else low[u] = min(low[u], num[v]);
      if (num[u] == low[u])
            comps.push_back({});
            for (int v = -1; v != u; stk.pop_back())
                  comps.back().push_back(v = stk.back());
};
for (int u = 0, t; u < n; ++u)
      if (!num[u]) dfs(u, -1, t = 0);
// this is for build the bridge-block tree
function<graph()> build_tree = [&]()
      vector<int> id(n);
      for (int i = 0; i < (int) comps.size(); ++i)</pre>
            for (int u : comps[i]) id[u] = i;
      graph tree(comps.size());
      for (auto &e : bridges)
            tree.add_edge(id[e.first], id[e.second]);
      return tree;
};
return comps;
```

Centroid decomposition of a tree.

```
Find the centroid of the subtree that contains node c.

Nodes availables are those which aren't marked, i.e mk[u] == False
*/
vi adj[maxn];
bool mk[maxn];
int q[maxn], p[maxn], sz[maxn], mc[maxn];
int centroid(int c) {
    int b = 0, e = 0;
    q[e++] = c, p[c] = -1, sz[c] = 1, mc[c] = 0;

    while (b < e) {
        int u = q[b++];
    }
}</pre>
```

4.5. Dominator Tree.

```
/*
    Dominator Tree (Lengauer-Tarjan)

Tested: SPOJ EN
    Complexity: O(m log n)

*/

struct graph
{
    int n;
    vector<vector<int>> adj, radj;

    graph(int n) : n(n), adj(n), radj(n) {}

    void add_edge(int src, int dst)
    {
        adj[src].push_back(dst);
            radj[dst].push_back(src);
    }

    vector<int> rank, semi, low, anc;

    int eval(int v)
    {
        if (anc[v] < n && anc[anc[v]] < n)
        {
            int x = eval(anc[v]);
            if (rank[semi[low[v]]]) > rank[semi[x]])
```

```
for (auto v : adj[u]) if (v != p[u] && !mk[v])
                  p[v] = u, sz[v] = 1, mc[v] = 0, q[e++] = v;
for (int i = e - 1; ~i; --i) {
     int u = q[i];
      int bc = max(e - sz[u], mc[u]);
     if (2 * bc <= e) return u;
      sz[p[u]] += sz[u], mc[p[u]] = max(mc[p[u]], sz[u]);
assert (false);
return -1;
                  low[v] = x;
           anc[v] = anc[anc[v]];
      return low[v];
vector<int> prev, ord;
void dfs(int u)
      rank[u] = ord.size();
      ord.push_back(u);
      for (auto v : adj[u])
            if (rank[v] < n)
                  continue;
           dfs(v);
           prev[v] = u;
vector<int> idom; // idom[u] is an immediate dominator of u
void dominator tree(int r)
```

idom.assign(n, n);

semi.resize(n);

prev = rank = anc = idom;

```
iota(semi.begin(), semi.end(), 0);
low = semi;
ord.clear();
dfs(r);
vector<vector<int>> dom(n);
for (int i = (int) \text{ ord.size}() - 1; i >= 1; --i)
      int w = ord[i];
      for (auto v : radj[w])
            int u = eval(v);
            if (rank[semi[w]] > rank[semi[u]])
                  semi[w] = semi[u];
      dom[semi[w]].push_back(w);
      anc[w] = prev[w];
      for (int v : dom[prev[w]])
            int u = eval(v);
            idom[v] = (rank[prev[w]] > rank[semi[u]]
```

4.6. Flow With Lower Bound.

```
e.flow += f;
                        adj[e.dst][e.rev].flow -= f;
                        return f;
            }
      return 0;
int bfs(int s, int t)
      level.assign(n + 2, n + 2);
      level[t] = 0;
      queue<int> Q;
      for (Q.push(t); !Q.empty(); Q.pop())
            int u = Q.front();
            if (u == s)
                  break;
            for (edge &e : adj[u])
                  edge &erev = adj[e.dst][e.rev];
                  if (erev.cap - erev.flow > 0
                        && level[e.dst] > level[u] + 1)
                        Q.push(e.dst);
                        level[e.dst] = level[u] + 1;
      return level[s];
const T oo = numeric_limits<T>::max();
T max flow(int source, int sink)
      vector<T> delta(n + 2);
      for (int u = 0; u < n; ++u) // initialize
            for (auto &e : adj[u])
                  delta[e.src] -= e.low;
                  delta[e.dst] += e.low;
                  e.cap -= e.low;
                  e.flow = 0;
```

```
T sum = 0;
int s = n, t = n + 1;
for (int u = 0; u < n; ++u)
      if (delta[u] > 0)
            add_edge(s, u, 0, delta[u]);
            sum += delta[u];
      else if (delta[u] < 0)</pre>
            add_edge(u, t, 0, -delta[u]);
add_edge(sink, source, 0, oo);
T flow = 0;
while (bfs(s, t) < n + 2)
      iter.assign(n + 2, 0);
      for (T f; (f = augment(s, t, oo)) > 0;)
            flow += f;
if (flow != sum)
      return -1; // no solution
for (int u = 0; u < n; ++u)
      for (auto &e : adj[u])
            e.cap += e.low;
            e.flow += e.low;
            edge &erev = adj[e.dst][e.rev];
            erev.cap -= e.low;
            erev.flow -= e.low;
adj[sink].pop_back();
adj[source].pop_back();
while (bfs(source, sink) < n + 2)</pre>
      iter.assign(n + 2, 0);
      for (T f; (f = augment(source, sink, oo)) > 0;)
            flow += f;
} // level[u] == n + 2 ==> s-side
```

return flow;

4.7. Gabow Edmonds.

```
/*
     Tested: Timus 1099
     Complexity: O(n^3)
*/
struct graph
     int n;
     vector<vector<int>> adj;
     graph(int n) : n(n), adj(n) {}
     void add_edge(int u, int v)
            adj[u].push_back(v);
            adj[v].push_back(u);
      queue<int> q;
     vector<int> label, mate, cycle;
     void rematch(int x, int y)
            int m = mate[x];
            mate[x] = y;
            if (mate[m] == x)
                 if (label[x] < n)</pre>
                        rematch(mate[m] = label[x], m);
                 else
                        int s = (label[x] - n) / n, t = (label[x] - n) % n;
                        rematch(s, t);
                        rematch(t, s);
     void traverse(int x)
            vector<int> save = mate;
```

};

```
rematch(x, x);
      for (int u = 0; u < n; ++u)
            if (mate[u] != save[u])
                  cycle[u] ^= 1;
      save.swap(mate);
void relabel(int x, int y)
      cycle = vector<int>(n, 0);
      traverse(x);
      traverse(y);
      for (int u = 0; u < n; ++u)
            if (!cycle[u] || label[u] >= 0)
                  continue;
            label[u] = n + x + y * n;
            q.push(u);
}
int augment(int r)
      label.assign(n, -2);
      label[r] = -1;
      q = queue<int>();
      for (q.push(r); !q.empty(); q.pop())
            int x = q.front();
            for (int y : adj[x])
                  if (mate[y] < 0 && r != y)</pre>
                        rematch (mate[y] = x, y);
                        return 1;
                  else if (label[y] >= -1)
                        relabel(x, y);
                  else if (label[mate[y]] < -1)</pre>
                        label[mate[y]] = x;
```

```
q.push(mate[y]);
}

return 0;
}

int maximum_matching()
{
```

4.8. Gomory Hu Tree.

```
/*
    Gomory-Hu tree

    Tested: SPOj MCQUERY
    Complexity: O(n-1) max-flow call

*/

template<typename flow_type>
struct edge
{
    int src, dst;
    flow_type cap;
};

template<typename flow_type>
vector<edge<flow_type>> gomory_hu(dinic<flow_type> &adj)
```

4.9. Bipartite Matching (Hopcroft-Karp).

```
/*
    Tested: SPOJ MATCHING
    Complexity: O(m n^1.5)

*/

struct graph
{
    int L, R;
    vector<vector<int>> adj;
    graph(int L, int R) : L(L), R(R), adj(L + R) {}

    void add_edge(int u, int v)
    {
```

```
adj[u].push_back(v + L);
adj[v + L].push_back(u);
}
int maximum_matching()
{
    vector<int> level(L), mate(L + R, -1);
    function<bool(void)> levelize = [&]()
    {
        queue<int> Q;
        for (int u = 0; u < L; ++u)
        {
            level[u] = -1;
        }
}</pre>
```

4.10. Hungarian.

```
function<bool(int)> augment = [&](int u)
                  for (int w : adj[u])
                         int v = mate[w];
                         if (v < 0 \mid | (level[v] > level[u] && augment(v)))
                               mate[u] = w;
                               mate[w] = u;
                               return true;
                  return false;
            };
            int match = 0;
            while (levelize())
                  for (int u = 0; u < L; ++u)
                         if (mate[u] < 0 && augment(u))
                               ++match:
            return match;
} ;
```

table[h][j - (1 << h)])];

4.11. LCA (Euler-tour + RMQ).

```
struct tree
     int n:
     vector<vector<int>> adj;
     tree(int n) : n(n), adj(n) {}
     void add_edge(int s, int t)
            adj[s].push_back(t);
            adj[t].push_back(s);
     vector<int> pos, tour, depth;
     vector<vector<int>> table;
     int argmin(int i, int j)
            return depth[i] < depth[j] ? i : j;</pre>
     void rootify(int r)
            pos.resize(n);
            function<void(int, int, int)> dfs = [&](int u, int p, int d)
                  pos[u] = depth.size();
                 tour.push_back(u);
```

```
py[v] += (t[v] < 0 ? 0 : delta);
      else ++u;
T cost = 0;
for (int u = 0; u < n; ++u)
      cost += a[u][x[u]];
return cost;
            depth.push_back(d);
            for (int v : adj[u])
                  if (v != p)
                        dfs(v, u, d+1);
                        tour.push_back(u);
                        depth.push_back(d);
      };
      dfs(r, r, 0);
      int logn = __lg(tour.size()); // log2
      table.resize(logn + 1, vector<int>(tour.size()));
      iota(table[0].begin(), table[0].end(), 0);
      for (int h = 0; h < logn; ++h)</pre>
            for (int i = 0; i + (1 << h) < (int) tour.size(); ++i)</pre>
                  table[h + 1][i] = argmin(table[h][i],
                                           table[h][i + (1 << h)]);
int lca(int u, int v)
      int i = pos[u], j = pos[v];
      if (i > j) swap(i, j);
      int h = __lg(j - i); // = log2
      return i == j ? u : tour[argmin(table[h][i],
```

};

32

4.12. Max Flow Dinic.

```
/*
      Maximum Flow (Dinitz)
     Complexity: O(n^2 m) but very fast in practice
      Tested: http://www.spoj.com/problems/FASTFLOW/
template<typename flow_type>
struct dinic
      struct edge
            size_t src, dst, rev;
            flow_type flow, cap;
     };
     int n:
     vector<vector<edge>> adj;
     dinic(int n) : n(n), adj(n), level(n), q(n), it(n) {}
     void add_edge(size_t src, size_t dst, flow_type cap, flow_type rcap = 0)
            adj[src].push_back({src, dst, adj[dst].size(), 0, cap});
            if (src == dst) adj[src].back().rev++;
            adj[dst].push_back({dst, src, adj[src].size() - 1, 0, rcap});
     vector<int> level, q, it;
     bool bfs(int source, int sink)
            fill(level.begin(), level.end(), -1);
            for (int qf = level[q[0] = sink] = 0, qb = 1; qf < qb; ++qf)
                  sink = q[qf];
                  for (edge &e : adj[sink])
                        edge &r = adj[e.dst][e.rev];
                        if (r.flow < r.cap && level[e.dst] == -1)</pre>
                              level[q[qb++] = e.dst] = 1 + level[sink];
```

```
return level[source] != -1;
     flow_type augment(int source, int sink, flow_type flow)
           if (source == sink) return flow;
           for (; it[source] != adj[source].size(); ++it[source])
                 edge &e = adj[source][it[source]];
                 if (e.flow < e.cap && level[e.dst] + 1 == level[source])</pre>
                       flow_type delta = augment(e.dst, sink,
                                               min(flow, e.cap - e.flow));
                       if (delta > 0)
                            e.flow += delta;
                            adj[e.dst][e.rev].flow -= delta;
                            return delta;
           return 0;
     flow_type max_flow(int source, int sink)
           for (int u = 0; u < n; ++u)
                 for (edge &e : adj[u]) e.flow = 0;
           flow_type flow = 0;
           flow_type oo = numeric_limits<flow_type>::max();
           while (bfs(source, sink))
                 fill(it.begin(), it.end(), 0);
                 for (flow_type f; (f = augment(source, sink, oo)) > 0;)
                       flow += f:
           return flow:
};
```

4.13. Max Flow Push Relabel.

```
/*
     Maximum Flow (Goldberg-Tarjan)
     Complexity: O(n^3) faster than Dinic in most cases
     Tested: http://www.spoj.com/problems/FASTFLOW/
*/
template<typename flow_type>
struct goldberg_tarjan
     struct edge
            size_t src, dst, rev;
            flow_type flow, cap;
     };
     int n;
     vector<vector<edge>> adj;
     goldberg_tarjan(int n) : n(n), adj(n) {}
     void add_edge(size_t src, size_t dst, flow_type cap, flow_type rcap = 0)
           adj[src].push_back({ src, dst, adj[dst].size(), 0, cap });
           if (src == dst) adj[src].back().rev++;
           adj[dst].push_back({ dst, src, adj[src].size() - 1, 0, rcap });
     flow_type max_flow(int source, int sink)
           vector<flow_type> excess(n);
           vector<int> dist(n), active(n), count(2 * n);
           queue<int> q;
           auto enqueue = [&](int v)
                 if (!active[v] && excess[v] > 0)
                        active[v] = true;
                        q.push(v);
           };
           auto push = [&] (edge &e)
                 flow_type f = min(excess[e.src], e.cap - e.flow);
```

```
if (dist[e.src] <= dist[e.dst] || f == 0) return;</pre>
      e.flow += f;
      adj[e.dst][e.rev].flow -= f;
      excess[e.dst] += f;
      excess[e.src] -= f;
      enqueue(e.dst);
};
dist[source] = n;
active[source] = active[sink] = true;
count[0] = n - 1;
count[n] = 1;
for (int u = 0; u < n; ++u)
      for (edge &e : adj[u]) e.flow = 0;
for (edge &e : adj[source])
      excess[source] += e.cap;
     push(e);
for (int u; !q.empty(); q.pop())
      active[u = q.front()] = false;
      for (auto &e : adj[u]) push(e);
      if (excess[u] > 0)
            if (count[dist[u]] == 1)
                  int k = dist[u]; // Gap Heuristics
                  for (int v = 0; v < n; v++)</pre>
                        if (dist[v] < k)
                               continue;
                        count[dist[v]]--;
                        dist[v] = max(dist[v], n + 1);
                        count[dist[v]]++;
                        enqueue(v);
            }
            else
                  count[dist[u]]--; // Relabel
                  dist[u] = 2 * n;
                  for (edge &e : adj[u])
                        if (e.cap > e.flow)
                              dist[u] = min(dist[u], dist[e.dst] + 1);
```

count[dist[u]]++;

```
enqueue(u);
}
}
flow_type flow = 0;
```

4.14. Min Cost Max Flow.

```
Minimum Cost Flow (Tomizawa, Edmonds-Karp)
     Complexity: O(F m log n), where F is the amount of maximum flow
      Tested: Codeforces [http://codeforces.com/problemset/problem/717/G]
template<typename flow_type, typename cost_type>
struct min_cost_max_flow
     struct edge
           size_t src, dst, rev;
           flow_type flow, cap;
           cost_type cost;
     };
     int n;
     vector<vector<edge>> adj;
     min_cost_max_flow(int n) : n(n), adj(n), potential(n), dist(n), back(n) {}
     void add_edge(size_t src, size_t dst, flow_type cap, cost_type cost)
            adj[src].push_back({src, dst, adj[dst].size(), 0, cap, cost});
           if (src == dst)
                 adj[src].back().rev++;
           adj[dst].push_back({dst, src, adj[src].size() - 1, 0, 0, -cost});
     vector<cost_type> potential;
     inline cost_type rcost(const edge &e)
           return e.cost + potential[e.src] - potential[e.dst];
```

```
flow += e.flow;
      return flow;
void bellman ford(int source)
      for (int k = 0; k < n; ++k)
            for (int u = 0; u < n; ++u)
                  for (edge &e : adj[u])
                        if (e.cap > 0 && rcost(e) < 0)
                              potential[e.dst] += rcost(e);
const cost_type oo = numeric_limits<cost_type>::max();
vector<cost_type> dist;
vector<edge*> back;
cost_type dijkstra(int source, int sink)
      fill(dist.begin(), dist.end(), oo);
      typedef pair<cost_type, int> node;
      priority_queue<node, vector<node>, greater<node>> pq;
      for (pq.push({dist[source] = 0, source}); !pq.empty();)
            node p = pq.top(); pq.pop();
            if (dist[p.second] < p.first) continue;</pre>
            if (p.second == sink) break;
            for (edge &e : adj[p.second])
                  if (e.flow < e.cap &&</pre>
                        dist[e.dst] > dist[e.src] + rcost(e))
                        back[e.dst] = &e;
                        pg.push({dist[e.dst] = dist[e.src] + rcost(e),
                                     e.dst});
```

for (edge e : adj[source])

};

4.15. Satisfiability Twosat.

```
if (dist[u] < dist[sink])</pre>
                              potential[u] += dist[u] - dist[sink];
                  flow_type f = numeric_limits<flow_type>::max();
                  for (edge *e = back[sink]; e; e = back[e->src])
                        f = min(f, e->cap - e->flow);
                  for (edge *e = back[sink]; e; e = back[e->src])
                        e->flow += f, adj[e->dst][e->rev].flow -= f;
                  flow += f;
                  cost += f * (potential[sink] - potential[source]);
            return {flow, cost};
};
            add_edge(u, v);
            add_edge(neg(v), neg(u));
      vector<bool> solve()
            int size = 2 * n;
            vector<int> S, B, I(size);
            function<void(int)> dfs = [&](int u)
                  B.push_back(I[u] = S.size());
                  S.push_back(u);
                  for (int v : imp[u])
                        if (!I[v]) dfs(v);
                        else while (I[v] < B.back()) B.pop_back();</pre>
```

I[S.back()] = size;

for (B.pop_back(), ++size; I[u] < S.size(); S.pop_back())</pre>

if (I[u] == B.back())

for (int u = 0; u < 2 * n; ++u)

};

for (int u = 0; u < n; ++u)

```
if (!I[u]) dfs(u);

vector<bool> values(n);

for (int u = 0; u < n; ++u)
    if (I[u] == I[neg(u)]) return {};</pre>
```

4.16. Gabow SCC.

4.17. Stoer Wagner.

```
/*
Tested: ZOJ 2753
Complexity: O(n^3)
*/
```

```
else values[u] = I[u] < I[neq(u)];</pre>
            return values;
};
      vector<int> S, B, I(n);
      function<void(int) > dfs = [&](int u)
            B.push_back(I[u] = S.size());
            S.push_back(u);
            for (int v : adj[u])
                  if (!I[v]) dfs(v);
                  else while (I[v] < B.back()) B.pop_back();</pre>
            if (I[u] == B.back())
                   scc.push_back({});
                   for (B.pop_back(); I[u] < S.size(); S.pop_back())</pre>
                         scc.back().push_back(S.back());
                         I[S.back()] = n + scc.size();
      };
      for (int u = 0; u < n; ++u)
            if (!I[u]) dfs(u);
      return scc; // in reverse topological order
template<typename T>
pair<T, vector<int>> stoer_wagner(vector<vector<T>> &weights)
      int n = weights.size();
```

vector<int> used(n), cut, best_cut;

```
T best_weight = -1;
for (int phase = n - 1; phase >= 0; --phase)
      vector<T> w = weights[0];
      vector<int> added = used;
      int prev, last = 0;
      for (int i = 0; i < phase; ++i)
            prev = last;
            last = -1;
            for (int j = 1; j < n; ++j)</pre>
                  if (!added[j] && (last == -1 || w[j] > w[last]))
                        last = j;
            if (i == phase - 1)
                  for (int j = 0; j < n; ++j)
                        weights[prev][j] += weights[last][j];
                  for (int j = 0; j < n; ++j)
                        weights[j][prev] = weights[prev][j];
```

4.18. Tree Isomorphism.

```
/*
    Tested: SPOJ TREEISO
    Complexity: O(n log n)
*/
#define all(c) (c).begin(), (c).end()

struct tree
{
    int n;
    vector<vector<int>> adj;
    tree(int n) : n(n), adj(n) {}

    void add_edge(int src, int dst)
    {
        adj[src].push_back(dst);
        adj[dst].push_back(src);
    }

    vector<int> centers()
```

```
while (u != prev[u])
                  path.push_back(u = prev[u]);
            int m = path.size();
            if (m % 2 == 0)
                  return {path[m/2-1], path[m/2]};
            else
                  return {path[m/2]};
      vector<vector<int>> layer;
     vector<int> prev;
      int levelize(int r)
            prev.assign(n, -1);
            prev[r] = n;
            layer = {{r}};
            while (1)
                  vector<int> next;
                  for (int u : layer.back())
                        for (int v : adj[u])
                              if (prev[v] >= 0)
                                    continue;
                              prev[v] = u;
                              next.push_back(v);
                  if (next.empty())
                        break;
                  layer.push_back(next);
            return layer.size();
} ;
bool isomorphic (tree S, int s, tree T, int t)
      if (S.n != T.n)
            return false:
     if (S.levelize(s) != T.levelize(t))
            return false;
```

```
vector<vector<int>> longcodeS(S.n + 1), longcodeT(T.n + 1);
     vector<int> codeS(S.n), codeT(T.n);
      for (int h = (int) S.layer.size() - 1; h >= 0; --h)
            map<vector<int>, int> bucket;
            for (int u : S.layer[h])
                  sort(all(longcodeS[u]));
                 bucket[longcodeS[u]] = 0;
            for (int u : T.layer[h])
                  sort(all(longcodeT[u]));
                 bucket[longcodeT[u]] = 0;
            int id = 0;
            for (auto &p : bucket)
                 p.second = id++;
            for (int u : S.layer[h])
                  codeS[u] = bucket[longcodeS[u]];
                  longcodeS[S.prev[u]].push_back(codeS[u]);
            for (int u : T.layer[h])
                  codeT[u] = bucket[longcodeT[u]];
                  longcodeT[T.prev[u]].push_back(codeT[u]);
      return codeS[s] == codeT[t];
bool isomorphic(tree S, tree T)
     auto x = S.centers(), y = T.centers();
     if (x.size() != y.size())
            return false;
     if (isomorphic(S, x[0], T, y[0]))
           return true;
     return x.size() > 1 && isomorphic(S, x[1], T, y[0]);
```

5.1. Vectors.

```
template<class T>
  ostream &operator<<(ostream &os, const vector<T> &v)
{
     os << "[";
     for (int i = 0; i < v.size(); os << v[i++])
          if (i > 0) os << "_";
     os << "]";
     return os;
}</pre>
```

5. Helpers

```
template<class T>
  ostream & operator<<(ostream & os, const vector<vector<T>>> & v)
{
     os << "[";
     for (int i = 0; i < v.size(); os << v[i++])
          if (i > 0) os << endl << "_";
     os << "]";
     return os;
}</pre>
```

6. Java

6.1. Template.

```
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
     InputReader in;
     PrintWriter out;
     public void solve() throws IOException {
            // Code here...
     public void run() {
            try {
                  in = new InputReader(System.in);
                  out = new PrintWriter(System.out);
                  solve();
                 out.close();
            } catch (IOException e) {
                  e.printStackTrace();
      class InputReader {
            BufferedReader br;
            StringTokenizer st;
            InputReader(File f) {
                 try {
                        br = new BufferedReader(new FileReader(f));
```

MATH

7.1. Fast Fourier Transform.

```
/*
    Fast Fourier Transform
    Complexity: O(n log n)

    Tested: http://codeforces.com/gym/100285/problem/G
*/

struct point
{
    double x, y;
    point (double x = 0, double y = 0) : x(x), y(y) {}
};

point operator+(const point &a, const point &b) { return {a.x + b.x, a.y + b.y}; }
point operator-(const point &a, const point &b) { return {a.x - b.x, a.y - b.y}; }
point operator*(const point &a, const point &b) {
        return {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};
}
point operator/(const point &a, double d) { return {a.x / d, a.y / d}; }

void fft(vector<point> &a, int sign = +1)
{
    int n = a.size();
}
```

7.2. Fast Modulo Transform.

```
/*
    Fast Modulo Transform and
    Fast Convolution in any Modulo

Note:
    - We assume n is a power of 2 and n < 2^23 (>= 8*10^6)

Tested: SPOJ VFMUL
    Complexity: O(n log n)
*/

typedef long long ll;
```

```
11 \times = 1;
     for (; b > 0; b >>= 1)
            if (b & 1)
                 x = (a * x) % M;
            a = (a * a) % M;
      return x;
// fast modulo transform
// (1) n = 2^k < 2^2
// (2) only predetermined mod can be used
void fmt(vector<ll> &x, ll mod, int sign = +1)
     int n = x.size();
     11 h = pow(3, (mod - 1) / n, mod);
      if (sign < 0) h = inv(h, mod);
      for (int i = 0, j = 1; j < n - 1; ++j)
            for (int k = n >> 1; k > (i ^= k); k >>= 1);
            if (j < i) swap(x[i], x[j]);
      for (int m = 1; m < n; m \neq 2)
            11 w = 1, wk = pow(h, n / (2 * m), mod);
            for (int i = 0; i < m; ++i)</pre>
                  for (int j = i; j < n; j += 2 * m)
                        ll u = x[j], d = x[j + m] * w % mod;
                        if ((x[j] = u + d) >= mod)
                              x[j] -= mod;
                        if ((x[j + m] = u - d) < 0)
                              x[j + m] += mod;
                  w = w * wk % mod;
     if (sign < 0)
            11 n_{inv} = inv(n, mod);
            for (auto &a : x)
                 a = (a * n_inv) % mod;
```

```
// convolution via fast modulo transform
vector<ll> conv(vector<ll> x, vector<ll> y, ll mod)
      fmt(x, mod, +1);
      fmt(v, mod, +1);
      for (int i = 0; i < x.size(); ++i)</pre>
            x[i] = (x[i] * y[i]) % mod;
      fmt(x, mod, -1);
      return x;
// general convolution by using fmts with chinese remainder thm.
vector<ll> convolution(vector<ll> x, vector<ll> y, 11 mod)
      for (auto &a : x) a %= mod;
      for (auto &b : y) b %= mod;
      int n = x.size() + y.size() - 1, size = n - 1;
      for (int s : { 1, 2, 4, 8, 16 })
            size |= (size >> s);
      size += 1;
     x.resize(size);
      y.resize(size);
      11 A = 167772161, B = 469762049, C = 1224736769, D = (A \star B \% mod);
      vector<11> z(n), a = conv(x, y, A), b = conv(x, y, B), c = conv(x, y, C);
      for (int i = 0; i < n; ++i)</pre>
            z[i] = A * (104391568 * (b[i] - a[i]) % B);
            z[i] += D * (721017874 * (c[i] - (a[i] + z[i]) % C) % C);
            if ((z[i] = (z[i] + a[i]) % mod) < 0)
                  z[i] += mod;
      return z;
const int WIDTH = 5;
const 11 RADIX = 100000; // = 10^WIDTH
vector<ll> parse(const char s[])
      int n = strlen(s);
      int m = (n + WIDTH - 1) / WIDTH;
      vector<11> v(m);
      for (int i = 0; i < m; ++i)</pre>
            int b = n - WIDTH * i, x = 0;
            for (int a = max(0, b - WIDTH); a < b; ++a)</pre>
```

7.3. **Gauss.**

```
Tested: SPOJ GS
      Complexity: O(n^3)
const int oo = 0x3f3f3f3f3f;
const double eps = 1e-9;
int gauss(vector<vector<double>> a, vector<double> &ans)
      int n = (int) a.size();
      int m = (int) a[0].size() - 1;
      vector<int> where(m, -1);
      for (int col = 0, row = 0; col < m && row < n; ++col)</pre>
            int sel = row;
            for (int i = row; i < n; ++i)</pre>
                  if (abs(a[i][col]) > abs(a[sel][col]))
                         sel = i;
            if (abs(a[sel][col]) < eps)</pre>
                   continue;
            for (int i = col; i <= m; ++i)</pre>
                  swap(a[sel][i], a[row][i]);
            where[col] = row;
            for (int i = 0; i < n; ++i)</pre>
                  if (i != row)
```

```
11 c = 0;
for (i = 0; i < N; ++i)
      c += digits[i];
      digits[i] = c % RADIX;
      c /= RADIX;
for (i = N - 1; i > 0 && digits[i] == 0; --i);
printf("%lld", digits[i]);
for (--i; i >= 0; --i)
     printf("%.*lld", WIDTH, digits[i]);
printf("\n");
                  double c = a[i][col] / a[row][col];
                  for (int j = col; j <= m; ++j)</pre>
                        a[i][j] -= a[row][j] * c;
      ++row;
ans.assign(m, 0);
for (int i = 0; i < m; ++i)
      if (where[i] != -1)
            ans[i] = a[where[i]][m] / a[where[i]][i];
for (int i = 0; i < n; ++i)</pre>
      double sum = 0;
      for (int j = 0; j < m; ++j)
            sum += ans[j] * a[i][j];
      if (abs(sum - a[i][m]) > eps)
            return 0;
for (int i = 0; i < m; ++i)</pre>
      if (where[i] == -1)
            return oo;
```

return 1;

7.4. Goldsection Search.

7.5. Linear Recursion.

```
/*
    Linear Recurrence Solver

    Description: Consider
    x[i+n] = a[0] x[i] + a[1] x[i+1] + ... + a[n-1] x[i+n-1]
    with initial solution x[0], x[1], ..., x[n-1]
    We compute k-th term of x in O(n^2 log k) time.

    Tested: SPOJ REC
    Complexity: O(n^2 log k) time, O(n log k) space

*/

typedef long long ll;

ll linear_recurrence(vector<ll> a, vector<ll> x, ll k)

{
    int n = a.size();
    vector<ll> t(2 * n + 1);
    function<vector<ll> (l1) > rec = [&](l1 k)
    {
        vector<ll> c(n);
        if (k < n) c[k] = 1;
    }
}</pre>
```

```
a = b;
b = c;
c = d - r * (d - a);
fb = fc;
fc = f(c);
}
else
{
    d = c;
    c = b;
    b = a + r * (d - a);
fc = fb;
fb = f(b);
}
return c;
}
```

```
else
             vector<11> b = rec(k / 2);
             fill(t.begin(), t.end(), 0);
             for (int i = 0; i < n; ++i)</pre>
                   for (int j = 0; j < n; ++j)
                         t[i+j+(k&1)] += b[i]*b[j];
             for (int i = 2*n-1; i >= n; --i)
                   for (int j = 0; j < n; ++j)
                         t[i-n+j] += a[j]*t[i];
             for (int i = 0; i < n; ++i)</pre>
                   c[i] = t[i];
      return c;
vector<11> c = rec(k);
11 \text{ ans} = 0;
for (int i = 0; i < x.size(); ++i)</pre>
      ans += c[i] * x[i];
return ans;
```

7.6. Matrix Computation Algorithms.

```
/*
      Matrix Computation Algorithms (double)
typedef vector<double> vec;
typedef vector<vec> mat;
int sign(double x)
      return x < 0 ? -1 : 1;
mat eye(int n)
      mat I(n, vec(n));
      for (int i = 0; i < n; ++i)</pre>
            I[i][i] = 1;
      return I;
mat add(mat A, const mat &B)
      for (int i = 0; i < A.size(); ++i)</pre>
            for (int j = 0; j < A[0].size(); ++j)</pre>
                  A[i][j] += B[i][j];
      return A;
mat mul(mat A, const mat &B)
      for (int i = 0; i < A.size(); ++i)</pre>
            vec x(A[0].size());
            for (int k = 0; k < B.size(); ++k)
                  for (int j = 0; j < B[0].size(); ++j)</pre>
                         x[j] += A[i][k] * B[k][j];
            A[i].swap(x);
      return A;
mat pow(mat A, int k)
      mat X = eye(A.size());
      for (; k > 0; k /= 2)
```

```
if (k & 1)
                   X = mul(X, A);
            A = mul(A, A);
      return X;
double diff(vec a, vec b)
      double S = 0;
      for (int i = 0; i < a.size(); ++i)</pre>
            S += (a[i] - b[i]) * (a[i] - b[i]);
      return sqrt(S);
double diff(mat A, mat B)
      double S = 0;
      for (int i = 0; i < A.size(); ++i)</pre>
             for (int j = 0; j < A[0].size(); ++j)</pre>
                   S += (A[i][j] - B[i][j]) * (A[i][j] - B[i][j]);
      return sqrt(S);
vec mul(mat A, vec b)
      vec x(A.size());
      for (int i = 0; i < A.size(); ++i)</pre>
             for (int j = 0; j < A[0].size(); ++j)</pre>
                   x[i] += A[i][j] * b[j];
      return x;
mat transpose (mat A)
      for (int i = 0; i < A.size(); ++i)</pre>
             for (int j = 0; j < i; ++j)
                   swap(A[i][j], A[j][i]);
      return A;
double det(mat A)
      double D = 1;
```

```
for (int i = 0; i < A.size(); ++i)</pre>
             int p = i;
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   if (fabs(A[p][i]) < fabs(A[j][i]))</pre>
                          \dot{r} = \dot{q}
             swap(A[p], A[i]);
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   for (int k = i + 1; k < A.size(); ++k)</pre>
                          A[j][k] = A[i][k] * A[j][i] / A[i][i];
             D \star = A[i][i];
             if (p != i)
                   D = -D;
      return D;
// assume: A is non-singular
vec solve (mat A, vec b)
      for (int i = 0; i < A.size(); ++i)</pre>
             int p = i;
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   if (fabs(A[p][i]) < fabs(A[j][i]))</pre>
             swap(A[p], A[i]);
             swap(b[p], b[i]);
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   for (int k = i + 1; k < A.size(); ++k)</pre>
                          A[j][k] -= A[i][k] * A[j][i] / A[i][i];
                   b[j] -= b[i] * A[j][i] / A[i][i];
      for (int i = A.size() - 1; i >= 0; --i)
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   b[i] -= A[i][j] * b[j];
            b[i] /= A[i][i];
      }
      return b:
// TODO: verify
mat solve (mat A, mat B)
```

```
// A^{-1} B
      for (int i = 0; i < A.size(); ++i)</pre>
             // forward elimination
             int p = i;
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   if (fabs(A[p][i]) < fabs(A[j][i]))</pre>
             swap(A[p], A[i]);
             swap(B[p], B[i]);
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   double coef = A[j][i] / A[i][i];
                   for (int k = i; k < A.size(); ++k)</pre>
                          A[j][k] -= A[i][k] * coef;
                   for (int k = 0; k < B[0].size(); ++k)</pre>
                          B[j][k] -= B[i][k] * coef;
      for (int i = A.size() - 1; i >= 0; --i)
             // backward substitution
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   for (int k = 0; k < 0; ++k)
                         B[i][k] -= A[i][j] * B[j][k];
             for (int k = 0; k < B[0].size(); ++k)</pre>
                   B[i][k] /= A[i][i];
      return B;
// LU factorization
struct lu_data
      mat A;
      vector<int> pi;
};
lu_data lu(mat A)
      vector<int> pi;
      for (int i = 0; i < A.size(); ++i)</pre>
             int p = i;
             for (int j = i + 1; j < A.size(); ++j)</pre>
                   if (fabs(A[p][i]) < fabs(A[j][i]))</pre>
                          p = j;
```

7.7. Roots Newton.

```
template < class F, class G>
double find_root(F f, G df, double x)
{
    for (int iter = 0; iter < 100; ++iter)
    {
        double fx = f(x), dfx = df(x);
}</pre>
```

7.8. Simplex.

```
for (int i = 0; i < n; ++i)</pre>
      T[m][i] = c[i];
while (1)
      int p = 0, q = 0;
      for (int i = 0; i < n + m; ++i)
            if (T[m][i] <= T[m][p])</pre>
                   p = i;
      for (int j = 0; j < m; ++j)</pre>
            if (T[j][n + m] <= T[q][n + m])</pre>
                   q = j;
      double t = min(T[m][p], T[q][n + m]);
      if (t >= -eps)
             vec x(n);
             for (int i = 0; i < m; ++i)</pre>
                   if (row[i] < n) x[row[i]] = T[i][n + m];</pre>
             // x is the solution
            return -T[m][n + m]; // optimal
      if (t < T[q][n + m])
             // tight on c -> primal update
             for (int j = 0; j < m; ++j)
                   if (T[j][p] >= eps)
                          if (T[j][p] * (T[q][n + m] - t) >=
                                T[q][p] * (T[j][n + m] - t))
                                q = j;
            if (T[q][p] <= eps)
                   return oo; // primal infeasible
```

7.9. Simpson.

```
template<class F>
double simpson(F f, double a, double b, int n = 2000)
{
    double h = (b - a) / (2 * n), fa = f(a), nfa, res = 0;
    for (int i = 0; i < n; ++i, fa = nfa)
    {
}</pre>
```

```
}
      else
            // tight on b -> dual update
            for (int i = 0; i < n + m + 1; ++i)</pre>
                  T[q][i] = -T[q][i];
            for (int i = 0; i < n + m; ++i)</pre>
                  if (T[q][i] >= eps)
                        if (T[q][i] * (T[m][p] - t) >=
                              T[q][p] * (T[m][i] - t))
                              p = i;
           if (T[q][p] <= eps)
                  return -oo; // dual infeasible
      for (int i = 0; i < m + n + 1; ++i)
           if (i != p) T[q][i] /= T[q][p];
     T[q][p] = 1; // pivot(q, p)
     base[p] = 1;
     base[row[q]] = 0;
      row[q] = p;
      for (int j = 0; j < m + 1; ++j)
           if (j != q)
            {
                  double alpha = T[j][p];
                  for (int i = 0; i < n + m + 1; ++i)
                        T[j][i] = T[q][i] * alpha;
return oo;
     nfa = f(a + 2 * h);
      res += (fa + 4 * f(a + h) + nfa);
     a += 2 * h;
```

res = res * h / 3;

return res;

8.1. **Cube.**

```
template < class T>
struct cube
{
        T F, U, D, L, R, B;

        void rotX()
        {
             swap(D, B);
             swap(B, U);
             swap(U, F);
        } // FUBD -> DFUB

        void rotY()

8.2. Josephus.

/*
        Tested: ??????
*/

// n-cantidad de personas, m es la longitud del salto.
// comienza en la k-esima persona.
11 josephus(11 n, 11 m, 11 k)
```

for (ll i = n - k + 1; i <= n; ++i) x = (x + m) % i;

8.3. Partition $O(n\sqrt{n})$.

 $11 \times = -1;$

return x;

```
typedef long long 11;

11 partition(11 n)
{
    vector<11> dp(n + 1);
    dp[0] = 1;
    for (int i = 1; i <= n; i++)</pre>
```

8. Misc

```
swap(D, R);
            swap(R, U);
            swap(U, L);
      } // LURD -> DLUR
      void rotZ()
            swap(B, R);
            swap(R, F);
            swap(F, L);
      } // LFRB -> BLFR
};
11 josephus_inv(ll n, ll m, ll x)
      for (11 i = n;; i--)
            if (x == i)
                  return n - i;
            x = (x - m \% i + i) \% i;
      return -1;
            for (int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0; j++, r *= -1)
                  dp[i] += dp[i - (3 * j * j - j) / 2] * r;
                 if (i - (3 * j * j + j) / 2 >= 0)
                        dp[i] += dp[i - (3 * j * j + j) / 2] * r;
      return dp[n];
```

8.4. Useful.

```
// TIME
for (int a = 0; ;++a) {
   if (clock()>=2.5*CLOCKS_PER_SEC) break;
   // It will stop when 2.5 seconds have passed
}
```

```
// LAMBDA
function<bool(int, int)> add_edge = [&](int u, int v)
{
   // code here...
   return true;
};
```

9.1. $C(n, m) \mod p$.

```
Returns C(n, m) (mod p)
     Note: p can be any number
     Tested: XV OpenCup GP of Tatarstan,
     http://codeforces.com/gym/100633/problem/J
ll c1(ll n, ll p, ll pk)
     if (n == 0)
           return 1;
     11 i, k, ans = 1;
     for (i = 2; i <= pk; i++)
           if (i % p)
                 ans = ans * i % pk;
     ans = pow(ans, n / pk, pk);
     for (k = n % pk, i = 2; i <= k; i++)
           if (i % p)
                 ans = ans * i % pk;
     return ans * c1(n / p, p, pk) % pk;
ll cal(ll n, ll m, ll p, ll pi, ll pk)
```

9.2. Discrete Logarithm.

9. Number Theory

```
11 i, k = 0, a, b, c, ans;
      a = c1(n, pi, pk), b = c1(m, pi, pk), c = c1(n - m, pi, pk);
      for (i = n; i; i /= pi)
            k += i / pi;
      for (i = m; i; i /= pi)
            k -= i / pi;
      for (i = n - m; i; i /= pi)
            k -= i / pi;
      ans = a * inv(b, pk) % pk * inv(c, pk) % pk * pow(p, k, pk) % pk;
      return ans * (p / pk) % p * inv(p / pk, pk) % p;
11 comb(11 n, 11 m, 11 p)
      11 \text{ ans} = 0, x, i, k;
      for (x = p, i = 2; x > 1; i++)
            if (x % i == 0)
                  for (k = 1; x % i == 0; x /= i)
                        k \star = i;
                  ans = (ans + cal(n, m, p, i, k)) % p;
      return ans;
            t = mul(t, a, M);
      11 c = pow(a, n - k, M);
      for(ll i = 0; i * k < n; i++)</pre>
            if(_hash.find(b) != _hash.end())
                  return i * k + _hash[b];
            b = mul(b, c, M);
      return -1;
```

9.3. Discrete Roots.

9.4. Divisor Sigma.

```
11 \text{ my} = 11 \text{ (pow(g, 11(i * 111 * k % (n - 1)), n) * 111 * a % n);}
      auto it = lower_bound(dec.begin(), dec.end(), make_pair(my, 011));
      if (it != dec.end() && it->first == my)
            any_ans = it->second * sq - i;
            break;
if (any_ans == -1)
      return {};
11 \text{ delta} = (n - 1) / \underline{gcd(k, n - 1)};
vector<ll> ans;
for (ll cur = any_ans % delta; cur < n - 1; cur += delta)</pre>
      ans.push_back(pow(q, cur, n));
sort(ans.begin(), ans.end());
return ans;
vector<ll> res(hi - lo), sigma(hi - lo, 1);
iota(res.begin(), res.end(), lo);
for (ll p : ps)
      for (ll k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
            while (res[k - lo] > 1 \&\& res[k - lo] % p == 0)
                   res[k - lo] /= p;
                   b = 1 + b * p;
            sigma[k - lo] *= b;
for (11 k = 10; k < hi; ++k)</pre>
      if (res[k - lo] > 1)
```

sigma[k - lo] *= (1 + res[k - lo]);

return sigma; // sigma[k-lo] = sigma(k)

52

9.5. Euler Phi.

```
/*
     Euler Phi (Totient Function)
     Tested: SPOJ ETFS, AIZU NTL_1_D
typedef long long 11;
ll euler_phi(ll n)
      if (n == 0)
           return 0;
     11 \text{ ans} = n;
     for (11 x = 2; x * x <= n; ++x)
            if (n % x == 0)
                  ans -= ans / x;
                  while (n % x == 0)
                        n /= x;
     if (n > 1)
           ans -= ans / n;
     return ans;
```

9.6. Extended GCD.

9.7. Linear Congruences.

```
/*
Solve x=ai(mod mi), for any i and j, (mi,mj)|ai-aj
Return (x0,M) M=[m1..mn]. All solutions are x=x0+t*M
```

```
// phi(n) for all n in [lo, hi)
vector<ll> euler_phi(ll lo, ll hi)
      vector<ll> ps = primes(sqrt(hi) + 1);
      vector<ll> res(hi - lo), phi(hi - lo, 1);
      iota(res.begin(), res.end(), lo);
      for (ll p : ps)
            for (ll k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
                  if (res[k - lo] < p)
                        continue;
                  phi[k - lo] *= (p - 1);
                  res[k - lo] /= p;
                  while (res[k - lo] > 1 \&\& res[k - lo] % p == 0)
                        phi[k - lo] *= p;
                        res[k - lo] /= p;
      for (11 k = 10; k < hi; ++k)</pre>
            if (res[k - lo] > 1)
                  phi[k - lo] *= (res[k - lo] - 1);
      return phi; // phi[k-lo] = phi(k)
```

```
if(b == 0)
    return x = 1, y = 0, a;
    ll r = gcd(b, a % b, y, x);
    y -= a / b * x;
    return r;
}
```

Note: be carful with the overflow in the multiplication Tested: LIGHTOJ 1319

```
pair<11, 11> linear_congruences(const vector<11> &a, const vector<11> &m)
{
    int n = a.size();
    11 u = a[0], v = m[0], p, q;
    for (int i = 1; i < n; ++i)
    {
        11 r = gcd(v, m[i], p, q);
        11 t = v;
        if ((a[i] - u) % r)</pre>
```

9.8. Miller Rabin.

9.9. Mobius Mu.

```
typedef long long l1;

11 mobius_mu(l1 n)
{
    if (n == 0)
         return 0;
    l1 mu = 1;
    for (l1 x = 2; x * x <= n; ++x)
        if (n % x == 0)</pre>
```

```
return {-1, 0}; // no solution
v = v / r * m[i];
u = ((a[i] - u) / r * p * t + u) % v;
}
if (u < 0)
u += v;
return {u, v};
}</pre>
```

```
bool miller_rabin(ll n)
      if (n < 2)
            return 0;
      if (n == 2)
            return 1;
      if (n % 2 == 0)
            return 0;
     11 d = n - 1, s = 0;
      while (d % 2 == 0)
            ++s, d /= 2;
      vector<11> test = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
      for (11 p : test)
            if (p >= n) break;
            else if (witness(p, s, d, n))
                  return 0;
     return 1;
```

```
{
    mu = -mu;
    n /= x;
    if (n % x == 0)
        return 0;
}
return n > 1 ? -mu : mu;
}
// phi(n) for all n in (lo, hi)
```

```
vector<ll> mobius_mu(ll lo, ll hi)
{
    vector<ll> ps = primes(sqrt(hi) + 1);
    vector<ll> res(hi - lo), mu(hi - lo, 1);
    iota(res.begin(), res.end(), lo);
    for (ll p : ps)
        for (ll k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
        {
            mu[k - lo] = -mu[k - lo];
            if (res[k - lo] % p == 0)
            {
                res[k - lo] /= p;
            }
}</pre>
```

9.10. Modular Arithmetics.

```
/*
     Modular arithmetics (long long)
     Note:
           int < 2^31 < 10^9
           long long < 2^63 < 10^18
      feasible for M < 2^62 (10^18 < 2^62 < 10^19)
      Tested: SPOJ
*/
typedef long long 11;
typedef vector<ll> vec;
typedef vector<vec> mat;
ll add(ll a, ll b, ll M)
     a += b;
     if (a >= M) a -= M;
     return a;
ll sub(ll a, ll b, ll M)
     if (a < b) a += M;
     return a - b;
11 mul(11 a, 11 b, 11 M)
     11 q = (long double) a * (long double) b / (long double) M;
```

```
if (res[k - lo] % p == 0)
                              mu[k - lo] = 0;
                              res[k - lo] = 1;
      for (ll k = lo; k < hi; ++k)
            if (res[k - lo] > 1)
                  mu[k - lo] = -mu[k - lo];
      return mu; // mu[k-1o] = mu(k)
      11 r = a * b - q * M;
      return (r + 5 * M) % M;
ll pow(ll a, ll b, ll M)
      11 \times = 1;
      for (; b > 0; b >>= 1)
            if (b & 1) x = mul(x, a, M);
            a = mul(a, a, M);
      return x;
ll inv(ll b, ll M)
      11 u = 1, x = 0, s = b, t = M;
      while (s)
            11 q = t / s;
            swap(x -= u * q, u);
            swap(t -= s * q, s);
      return (x %= M) >= 0 ? x : x + M;
// solve a * x = b (M)
11 div(11 a, 11 b, 11 M)
```

11 u = 1, x = 0, s = b, t = M;

```
while (s)
                                                                                                          A = mul(A, A, M);
            11 q = t / s;
                                                                                                    return X;
            swap(x -= u * q, u);
            swap(t -= s * q, s);
                                                                                              // assume: M is prime (singular ==>
     if (a % t) return -1; // infeasible
                                                                                              // verify: SPOJ9832
     return mul(x < 0 ? x + M : x, a / t, M);
                                                                                              mat inv(mat A, 11 M)
                                                                                                    int n = A.size();
// Modular Matrix
                                                                                                    mat B(n, vec(n));
mat eye(int n)
                                                                                                    for (int i = 0; i < n; ++i)</pre>
                                                                                                          B[i][i] = 1;
      mat I(n, vec(n));
     for (int i = 0; i < n; ++i)</pre>
                                                                                                    for (int i = 0; i < n; ++i)</pre>
           I[i][i] = 1;
     return I;
                                                                                                          int j = i;
                                                                                                          while (j < n && A[j][i] == 0) ++j;</pre>
                                                                                                          if (j == n)
mat zeros(int n)
                                                                                                                return {};
                                                                                                          swap(A[i], A[j]);
     return mat(n, vec(n));
                                                                                                          swap(B[i], B[j]);
                                                                                                          11 \text{ inv} = \text{div}(1, A[i][i], M);
                                                                                                          for (int k = i; k < n; ++k)
mat mul(mat A, mat B, 11 M)
                                                                                                                A[i][k] = mul(A[i][k], inv, M);
                                                                                                          for (int k = 0; k < n; ++k)
     int 1 = A.size(), m = B.size(), n = B[0].size();
                                                                                                                B[i][k] = mul(B[i][k], inv, M);
     mat C(1, vec(n));
                                                                                                          for (int j = 0; j < n; ++j)
      for (int i = 0; i < 1; ++1)</pre>
            for (int k = 0; k < m; ++k)
                                                                                                                if (i == j || A[j][i] == 0)
                  for (int j = 0; j < n; ++j)</pre>
                                                                                                                      continue;
                         C[i][j] = add(C[i][j], mul(A[i][k], B[k][j], M), M);
                                                                                                                11 cor = A[j][i];
                                                                                                                 for (int k = i; k < n; ++k)
      return C;
                                                                                                                      A[j][k] = sub(A[j][k], mul(cor, A[i][k], M), M);
                                                                                                                for (int k = 0; k < n; ++k)
mat pow(mat A, 11 b, 11 M)
                                                                                                                       B[j][k] = sub(B[j][k], mul(cor, B[i][k], M), M);
                                                                                                    }
     mat X = eye(A.size());
     for (; b > 0; b >>= 1)
                                                                                                    return B;
            if (b & 1) X = mul(X, A, M);
9.11. Mod Fact.
                                                                                                    Complexity: O(p log n)
      Return a (mod p) where n!=a*p^k
```

9.12. Pollard Rho.

```
/*
    Return a proper divisor of n

Note: n shouldn't be prime
    Tested: SPOJ FACT1

*/

11 pollard_rho(11 n)
{
    if (! (n & 1))
        return 2;
    while (1)
    {
        11 x = (11) rand() % n, y = x;
        11 c = rand() % n;
        if (c == 0 || c == 2) c = 1;
        for (int i = 1, k = 2;; i++)
        {
            x = mul(x, x, n);
        }
}
```

9.13. Primitive Root.

```
/*
    Find a primitive root of m

Note: Only 2, 4, p^n, 2p^n have primitive roots
    Tested: http://codeforces.com/contest/488/problem/E
*/

11 primitive_root(l1 m) {
    if (m == 1)
        return 0;
    if (m == 2)
        return 1;
```

res = res * i % p;

if ((n /= p) % 2 > 0)
 res = p - res;

return res;

```
if (m == 4)
    return 3;
auto pr = primes(0, sqrt(m) + 1); // fix upper bound
11 t = m;
if (!(t & 1))
    t >>= 1;
for (11 p : pr)
{
    if(p > t)
        break;
    if (t % p)
        continue;
```

9.14. **Sieve.**

```
/*
      Tested: SPOJ PRIME1, ETFS
      Complexity: O(n log log n)
typedef long long 11;
// primes in [lo, hi)
vector<ll> primes(ll lo, ll hi)
      const 11 M = 1 << 14, SQR = 1 << 16;</pre>
     vector<bool> composite(M), small_composite(SQR);
     vector<pair<ll, ll>> sieve;
     for (11 i = 3; i < SQR; i += 2)
            if (!small_composite[i])
                  ll k = i * i + 2 * i * max(0.0, ceil((lo - i*i)/(2.0*i)));
                  sieve.push_back({ 2 * i, k });
                  for (11 j = i * i; j < SQR; j += 2 * i)</pre>
                        small_composite[j] = 1;
     vector<11> ps;
     if (10 <= 2)
```

```
f[n++] = y;
      for (ll i = 1; i < m; ++i)</pre>
             if (__gcd(i, m) > 1)
                   continue;
             bool flag = 1;
             for (11 j = 0; j < n; ++j)
                   if (pow(i, x / f[j], m) == 1)
                          flag = 0;
                          break;
             if (flag)
                   return i;
      return 0;
             ps.push_back(2);
             10 = 3;
      for (l1 k = lo | 1, low = lo; low < hi; low += M)</pre>
             11 \text{ high} = \min(\text{low} + M, \text{ hi});
             fill(composite.begin(), composite.end(), 0);
             for (auto &z : sieve)
                   for (; z.second < high; z.second += z.first)</pre>
                          composite[z.second - low] = 1;
             for (; k < high; k += 2)</pre>
                   if (!composite[k - low])
                          ps.push_back(k);
      return ps;
vector<ll> primes(ll hi)
```

return primes(0, hi);

10. String

10.1. **KMP.**

```
/*
    Prefix function and Knuth-Morris-Pratt string matching
    Complexity: O(n + m)

    Tested: http://www.spoj.com/problems/NHAY/
*/

vector<int> prefix_function(const string &p)
{
    int n = p.length();
    vector<int> pref(n + 1);

    for (int i = 0, j = pref[0] = -1; i < n; pref[++i] = ++j)
        while (j >= 0 && p[i] != p[j]) j = pref[j];

return pref;
```

10.2. Manacher.

10.3. Maximal Suffix.

```
/*
    Complexity: O(n)
```

```
vector<int> knuth_morris_pratt(const string &s, const string &p)
      int n = s.length(), m = p.length();
      vector<int> pref = prefix_function(p), matches;
      for (int i = 0, j = 0; i < n; ++i)
            while (j \ge 0 \&\& s[i] != p[j]) j = pref[j];
            if (++\dot{\gamma} == m)
                  matches.push\_back(i - m + 1), j = pref[j];
      return matches;
            rad[i] = j;
            for (k = 1; i >= k &&
                  rad[i] >= k \&\& rad[i - k] != rad[i] - k; ++k)
                  rad[i + k] = min(rad[i - k], rad[i] - k);
      return rad;
bool is_pal(const vector<int> &rad, int b, int e)
      int n = rad.size() / 2;
      return b >= 0 && e < n && rad[b + e] >= e - b + 1;
```

```
int maximal_suffix(const string &s)
{
    int n = s.length(), i = 0, j = 1;

    for (int k = 0; j < n - 1; k = 0)
    {
        while (j + k < n - 1 && s[i + k] == s[j + k]) ++k;
        if (s[i + k] < s[j + k])</pre>
```

10.4. Minimum Rotation.

```
/*
    Complexity: O(n)
*/
int minimum_rotation(const string &s)
{
    int n = s.length(), i = 0, j = 1, k = 0;
    while (i + k < 2 * n && j + k < 2 * n)
    {
        char a = i + k < n ? s[i + k] : s[i + k - n];
        char b = j + k < n ? s[j + k] : s[j + k - n];
        if (a > b)
        {
            i += k + 1;
        }
}
```

10.5. Palindromic Tree.

```
/*
    Palindromic Tree

    Complexity: O(n)

    Tested: ??
*/

template<size_t maxlen, size_t alpha>
struct PalindromicTree
{
    int go[maxlen + 2][alpha], slink[maxlen + 2], length[maxlen + 2];
    int s[maxlen], slength, size, last;
```

else j += k + 1;

return i;

i += (k / (j - i) + 1) * (j - i);

```
int new_node()
{
    memset(go[size], 0, sizeof go[size]);
    slink[size] = length[size] = 0;
    return size++;
}

PalindromicTree() { reset(); }

void reset()
{
    size = slength = 0;
    length[new_node()] = -1;
    last = new_node();
```

10.6. Suffix Array.

```
Suffix array + 1cp
     Complexity: O(n log n)
     Tested:
     - http://www.spoj.com/problems/SARRAY/
     - http://acm.timus.ru/problem.aspx?space=1&num=1393
     - http://wcipeg.com/problem/coci092p6
     - http://www.spoj.com/problems/LCS/
     Note: lcp[i] = lcp(s[sa[i-1]...], s[sa[i]...])
template<typename charT>
struct SuffixArray
     int n;
     vector<int> sa, rank, lcp;
     SuffixArray(const basic_string<charT> &s) :
           n(s.length() + 1), sa(n), rank(n), lcp(n)
           vector<int> _sa(n), bucket(n);
           iota(sa.rbegin(), sa.rend(), 0);
            sort(next(sa.begin()), sa.end(),
                  [&] (int i, int j) { return s[i] < s[j]; });
            for (int i = 1, j = 0; i < n; ++i)
```

```
int p = get_link(last), np;
            if (go[p][c]) return go[p][c];
            length[np = new_node()] = 2 + length[p];
            go[p][c] = np;
            if (length[np] == 1) return slink[np] = 1, np;
            p = slink[p];
            slink[np] = go[get_link(p)][c];
            return np;
      void extend(int c) { last = _extend(c); }
};
                  rank[sa[i]] = rank[sa[i - 1]] +
                                      (i == 1 \mid \mid s[sa[i - 1]] < s[sa[i]]);
                  if (rank[sa[i]] != rank[sa[i - 1]])
                        bucket[++j] = i;
            for (int len = 1; len <= n; len += len)</pre>
                  for (int i = 0, j; i < n; ++i)
                        if ((j = sa[i] - len) < 0) j += n;
                        _sa[bucket[rank[j]]++] = j;
                  sa[sa[bucket[0] = 0]] = 0;
                  for (int i = 1, j = 0; i < n; ++i)
                        if (rank[_sa[i]] != rank[_sa[i - 1]] ||
                              rank[\_sa[i] + len] != rank[\_sa[i - 1] + len])
                              bucket[++j] = i;
                        sa[\_sa[i]] = j;
                  copy(sa.begin(), sa.end(), rank.begin());
                  sa.swap(_sa);
```

if (rank[sa[n - 1]] == n - 1) break;

```
for (int i = 0, j = rank[lcp[0] = 0], k = 0; i < n - 1; ++i, ++k)
    while (k >= 0 && s[i] != s[sa[j - 1] + k])
```

10.7. Suffix Automaton.

```
Generalized Suffix Automaton
     Complexity: O(n)
     Tested:
     - http://codeforces.com/contest/616/problem/F
     - http://codeforces.com/contest/452/problem/E
     - http://codeforces.com/contest/204/problem/E
template<size_t maxlen, size_t alpha>
struct SuffixAutomaton
     int go[2 * maxlen][alpha], slink[2 * maxlen], length[2 * maxlen];
     int size, last;
     int new_node()
            memset(go[size], 0, sizeof go[size]);
            slink[size] = length[size] = 0;
           return size++;
     SuffixAutomaton() { reset(); }
     void reset()
           size = last = 0;
           new_node();
            slink[0] = -1;
     int extend(int c)
           int p, q, np, nq;
           if (q = go[last][c])
```

```
if (length[q] == 1 + length[last]) return q;
            int nq = new_node();
            length[nq] = 1 + length[last];
            memcpy(go[nq], go[q], sizeof go[q]);
            slink[nq] = slink[q];
            slink[q] = nq;
            for (p = last; p != -1 && go[p][c] == q; p = slink[p])
                  go[p][c] = nq;
            return nq;
      np = new_node();
      length[np] = 1 + length[last];
      for (p = last; p != -1 && !go[p][c]; p = slink[p])
            qo[p][c] = np;
      if (p == -1) return slink[np] = 0, np;
      if (length[q = go[p][c]] == 1 + length[p]) return slink[np] = q, np;
      nq = new_node();
      length[nq] = 1 + length[p];
      memcpy(go[nq], go[q], sizeof go[q]);
      slink[nq] = slink[q];
      slink[q] = slink[np] = nq;
      for (; p != -1 && go[p][c] == q; p = slink[p])
            go[p][c] = nq;
      return np;
void extend(int c) { last = extend(c); }
int bucket[maxlen + 1], order[2 * maxlen];
void top_sort()
      int max1 = 0;
      for (int e = 0; e < size; ++e)</pre>
            maxl = max(maxl, length[e]);
      for (int 1 = 0; 1 <= max1; ++1)</pre>
            bucket[1] = 0;
      for (int e = 0; e < size; ++e)</pre>
            ++bucket[length[e]];
```

lcp[j] = k--, j = rank[sa[j] + 1];

};

10.8. **Z-function.**

} **;**

return suff;