

1부 TCP/IP 기초

1장 TCP/IP는 무엇인가

- 1.1 | 네트워크와 프로토콜
- 1.2 ¦ TCP/IP의 개발
- 1.3 ¦ TCP/IP의 기능
- 1.4 | 표준 조직 및 RFC
- 1.5 | 요약

TCP/IP 교과서

1.8 | 핵심 용어

1.1 네트워크와 프로토콜

>> 네트워크와 프로토콜

- 네트워크(network)는 공통된 전송 매체를 통해 서로 통신하는 컴퓨터 또는 컴퓨터 유사 기기의 집합체
- 전송 매체는 보통 전화선처럼 컴퓨터 간에 전자 펄스가 이동하는 절연 금속선
- 무선 네트워크처럼 선이 없는 경우도 있음
- 컴퓨터가 어떻게 연결되었는지에 상관없이 통신 과정은 '전송 매체를 통해 컴퓨터에서 다른 컴퓨터로 데이터를 전달하는 것'을 의미

1.1 네트워크와 프로토콜

>> 데이터 통신의 구성 요소

1.1 네트워크와 프로토콜

>> 데이터 통신의 구성 요소

- 메시지(Message)
 - 통신의 대상이 되는 정보(데이터)
 - (문자, 숫자, 그림, 소리, 영상 또는 이들의 조합)
- 송신자(Sender)
 - 데이터 메시지를 보내는 장치
 - (컴퓨터, 전화기, 비디오 카메라 등)
- 수신자(Receiver)
 - 메시지를 받는 장치
 - (컴퓨터, 전화기 , TV)
- 전송매체(Medium)
 - 송신자에서 수신자까지 이동하는 물리적인 경로
 - 꼬임쌍선(twisted pair wire), 동축케이블(coaxial cable), 광케이블(fiber-optic cable), 레이저 또는 무선파(radio wave)
- 프로토콜(Protocol)
 - 데이터 통신을 통제하는 규칙들의 집합(상호 합의)

1.1 네트워크와 프로토콜

>> 네트워크와 프로토콜

- 그림 1-1을 보면 컴퓨터 A는 컴퓨터 B로 메시지 혹은 요청을 보낼 수 있어야 함
- 컴퓨터 B는 컴퓨터 A의 메시지를 이해하고 컴퓨터 A에 메시지를 다시 보내 응답할 수 있어야 함
- ❤ 그림 1-1 로컬 네트워크 간략화

1.1 네트워크와 프로토콜

❤ 그림 1-2 네트워크 프로토콜 스위트

1.1 네트워크와 프로토콜

>> 네트워크와 프로토콜

- 네트워크 프로토콜(network protocol)은 네트워크 통신의 복잡한 과정을 규정하는 공통 규칙
- 수신하는 컴퓨터가 올바르게 메시지를 해석할 수 있도록 데이터가 어떻게 표시되어야 하는지 그리고 어떤 정보가 담겨야 하는지를 정의
- TCP/IP 및 관련 프로토콜은 TCP/IP 네트워크에서 데이터가 어떻게 처리, 전송, 수신 되는지를 정의하는 전체 시스템을 구성
- TCP/IP 같은 관련 프로토콜의 집합(set)을 프로토콜 스위트(protocol suite)라고 함

1.2 TCP/IP의 개발

>> TCP/IP의 개발

- 1960년대 후반, 국방부 고급 연구 프로젝트 기관(ARPA)의 이름을 딴 ARPAnet이 탄생
- TCP/IP 프로토콜이 개발되어 적용됨
- 국립 과학 재단에서 연구 시설을 연결하는 네트워크를 구축할 때 ARPAnet 프로토콜 시스템을 채택하면서 우리가 현재 알고 있는 인터넷을 만들게 됨
- TCP/IP의 두 가지 주요 기능은 다음과 같음
 - 엔드 노드 검증: 메시지를 전달하는 체인의 양쪽 끝에 있어서 엔드 노드(end node)라고 불리며 통신을 수신하고 검증하는 책임은 실제 통신하는 두 컴퓨터에 책임이 있음. 모든 컴퓨터는 기본적으로 똑같이 작동하며, 통신을 관리하는 중앙 시스템은 없음
 - **라우팅**: 노드는 여러 경로를 통해 연결되며, 라우터는 현재 상태를 기반으로 경로를 선택

1.2 TCP/IP의 개발

- >> 근거리 통신망(LAN. local area network)
 - 사용자들은 사무실의 다른 인접 컴퓨터에도 연결해 파일을 공유하고 주변 장치에도 접근 하고자 했음
 - 개인소유 또는 단일 사무실, 건물 혹은 학교 등에 있는 장치들을 서로 연결하여 자원 공유를 목적으로 설계
 - 초기 LAN 프로토콜은 인터넷 접속도 되지 않았고 독점 프로토콜 시스템으로 설계 (Ex. AppleTalk, NetBEUI, Novell's IPX/SPX 등)
 - LAN구성 예

• TCP/IP 프로토콜은 LAN들을 상호 연결하기 위해 사용

- >> TCP/IP의 기능
 - 논리 주소 지정
 - 라우팅
 - 이름 해석
 - 오류 제어 및 흐름 제어
 - 애플리케이션 지원

1.3 TCP/IP의 기능

>> 논리 주소 지정

- 네트워크 어댑터(adaptor)는 고유한 물리 주소를 가짐
- 이더넷(ethernet)의 경우, 종종 매체 접근 제어(MAC, Media Access Control) 주소라고도 하는 어댑터의 물리 주소(physical address)는 제조 공장에서 할당
- LAN에서 하드웨어를 인식하는 프로토콜은 어댑터의 물리 주소를 사용해서 데이터를 물리적 네트워크를 통해 전송
- 물리주소는 하나의 LAN 내에서만 사용 가능
- LAN과 LAN을 연결할 때 메시지가 목적지로 효율적으로 이동할 수 있게 계층적 설계를 해야 함
- 논리 주소 지정을 통해 이러한 기능을 제공
- 논리 주소(logical address)는 네트워크 소프트웨어를 통해 구성된 주소
- TCP/IP에서 컴퓨터의 논리 주소를 IP 주소라고 함

>> 논리 주소 지정

- IP 주소는 두 부분으로 구성됨
 - 네트워크를 식별하는 네트워크 ID
 - 네트워크의 컴퓨터를 식별하는 호스트 ID

Internet-ready 주소 → 공인 IP 주소 (public IP address)

- 만약 네트워크가 인터넷과 분리되었다면(네트워크가 IP 주소를 지정하는 기본 규칙을 지키는 선에서) 원하는 IP 주소를 자유롭게 사용할 수 있음
- 네트워크가 인터넷의 일부라면 국제 인터넷 주소 관리 기구(ICANN, Internet Corporation for Assigned Names and Numbers)에서 네트워크에 네트워크 ID를 할당해서 해당 네트워크 ID가 IP 주소의 앞부분을 구성

사설 IP 주소 (private IP address)

- 로컬 네트워크에서 인터넷에서 라우팅할 수 없는 IP 주소를 사용할 수 있게 함
- 네트워크 주소 변환(NAT, Network Address Translation) 장치는 인터넷 통신을 위해 로컬 주소를 공인 인터넷 주소로 전환

1.3 TCP/IP의 기능

>> 라우팅

 라우터는 논리 주소 지정 정보를 읽고 네트워크를 통해 목적지에 데이터를 직접 전달하는 특별한 장치

>> 이름 해석

- 숫자로 된 IP 주소가 확실히 네트워크 어댑터의 사전 할당된 물리 주소보다 사용자에게 편하지만, 그래도 IP 주소는 여전히 사용자의 편리함보다는 컴퓨터의 편리함을 위해 설계
- TCP/IP는 도메인 이름 (Domain Name)이라고 하는 사용자가 이해할 수 있는 영어와 숫자로 조합한 이름을 제공
- 도메인 이름을 IP 주소로 매핑하는 것을 이름 확인(name resolution)이라고 함
- 이름 서버(name server)가 이러한 도메인 이름을 IP 주소로 변환하는 서비스를 제공

1.3 TCP/IP의 기능

>> 오류 제어 및 흐름 제어

- TCP/IP 프로토콜 스위트는 네트워크에서 데이터의 안정적인 전송을 보장하는 기능을 제공
- (도착한 데이터가 정확한지를 보장하기 위해) 전송에 오류가 있는지 확인하고 네트워크 메시지를 성공적으로 수신했는지 확인
- TCP/IP의 전송 계층은 TCP 프로토콜을 통해 오류 제어, 흐름 제어, 응답확인 기능을 정의
- TCP/IP 네트워크 접근 계층에 있는 낮은 수준의 프로토콜 또한 전체 오류 제어 시스템에서 중요한 역할

>> 애플리케이션 지원

- 네트워크 애플리케이션은 동일한 컴퓨터에서 실행될 수 있음
- 프로토콜 소프트웨어는 반드시 각 애플리케이션에 속하는 패킷을 결정하는 수단을 제공
- TCP/IP의 경우 네트워크에서 애플리케이션으로의 인터페이스는 포트(port)라는 논리적 채널 시스템을 통해 수행
- 각 포트는 식별하는 데 사용되는 번호가 있음

1.3 TCP/IP의 기능

>> 애플리케이션 지원

• TCP/IP 스위트에는 다양한 네트워크 작업을 지원하도록 설계된 수많은 기성 애플리케이션도 포함

❤ 표 1-1 일반적인 TCP/IP유틸리티

유틸리티	목적
ftp	파일 전송
Lpr	출력
Ping	구성/문제 해결
NSlookup	구성/이름 확인
Traceroute	구성/문제 해결

1.4 표준 조직 및 RFC

>> 표준 조직 및 RFC

- TCP/IP의 과거와 현재의 몇몇 조직은 다음과 같이 언급할 필요가 있음
- TCP/IP 표준의 목적은 모든 TCP/IP 구현의 버전 또는 벤더(vendor)와 관계없이 호환성을 보장하는 것
 - IAB(Internet Architecture Board): 인터넷 아키텍처 위원회: 인터넷 정책을 수립하고 TCP/IP 표준의 추가 개발을 확인 및 관리하는 위원회
 - IETF(Internet Engineering Task Force): 인터넷 표준을 제정하는 단체
 - ICANN(Internet Corporation for Assigned Names and Numbers): 1998년에 설립되어 인터넷 도메인 이름, IP 주소 및 포트 번호 등 글로벌 고유 프로토콜 매개변수 할당을 조정하는 조직

1.4 표준 조직 및 RFC

>> 표준 조직 및 RFC

- TCP/IP는 어느 회사나 개인이 소유할 수 없는 개방형 표준 시스템
- 인터넷 커뮤니티는 추가 및 변경 사항을 제안하고 토론과 발표를 하기 위해 포괄적이고 독립적인 벤더 중립적 프로세스가 필요함
- 대부분의 TCP/IP 공식 문서는 TCP/IP 및 인터넷 관련 정보를 제공하는 일련의 공식 기술 문서 RFC(Request for Comment)를 통해 사용할 수 있음
- RFC 라이브러리는 작업 그룹의 인터넷 표준 및 보고서를 포함
- IETF 공식 사양은 RFC에 게재됨

1.4 표준 조직 및 RFC

▼ 표 1-2 6000개 이상의 인터넷 RFC 중 대표적 예

번호	제목
791	인터넷 프로토콜(IP, Internet Protocol)
792	인터넷 제어 메시지 프로토콜(ICMP, Internet Control Message Protocol)
793	전송 제어 프로토콜(TCP, Transmission Control Protocol)
959	파일 전송 프로토콜(FTP, File Transfer Protocol)
1180	TCP/IP 튜토리얼
1188	FDD 네트워크를 통한 데이터그램 전송을 위한 표준
2097	PPP NetBIOS 프레임 제어 프로토콜
4831	네트워크 기반의 현지화된 이동성 관리 목표

1.5 요약

>> 요약

- 이 장에서는 네트워크가 무엇이고 네트워크는 왜 프로토콜이 필요한지 살펴봤음
- TCP/IP가 미국 국방부의 실험적인 ARPAnet 네트워크로 시작했으며 다양한 환경에서 분산 네트워크를 제공하기 위해 설계되었다는 사실도 배웠음
- 이 장에서 논리 주소 지정, 이름 확인 및 애플리케이션 지원과 같은 TCP/IP의 주요 기능도 다루었음
- TCP/IP의 일부 감독 기관과 RFC에 대해 대해 알아봤음

1.8 핵심 용어

>> 핵심용어

- ARPAnet: TCP/IP의 발상지였던 실험적인 네트워크
- 도메인 이름: TCP/IP의 DNS 이름 서비스 시스템을 통한 IP 주소와 관련된 영어와 숫자로 조합된 이름
- 게이트웨이: LAN을 대규모 네트워크에 연결하는 라우터
- IP 주소: TCP/IP 네트워크에서 컴퓨터 또는 기타 네트워크 장치(예: 프린터)를 찾는 데 사용되는 논리 주소
- LAN(근거리 통신망): 단일 사무실, 조직 또는 가정에 속하는 소규모 네트워크
- 논리 주소: 프로토콜 소프트웨어를 통해 구성된 네트워크 주소
- 이름 서비스: 사람에게 친숙한 영어와 숫자로 조합된 이름을 네트워크 주소와 연결하는 서비스
- 네트워크 프로토콜: 네트워크 장치간 교환하는 메시지의 형식, 교환 절차, 메시지 송수신 시 수행 동작 등을 규정한 통신 규약
- 물리 주소: 네트워크 하드웨어와 관련된 주소로, 실제 주소는 일반적으로 제조 공장에서 할당
- 포트: 애플리케이션과 TCP/IP의 전송 계층 간에 인터페이스를 제공하는 내부 채널 또는 주소
- 독점: 기업과 같은 민간 기관에 의해 통제되는 기술