Trigonometric Function (1)

 $\label{eq:continuous} \textbf{Trigonometry Identities} - \textbf{an equation involving trig. ratios that are true for all values of the variable.}$

1. Reciprocal Identities

$\sin\theta = \frac{1}{\csc\theta}$	$\cos\theta = \frac{1}{\sec\theta}$	$\tan \theta = \frac{1}{\cot \theta}$
$\csc\theta = \frac{1}{\sin\theta}$	$\sec \theta = \frac{1}{\cos \theta}$	$\cot \theta = \frac{1}{\tan \theta}$

Proof:

We know:

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}$$

So,
$$\sin \theta = \frac{1}{\csc \theta}$$

Similarly for the remaining functions.

2. Tangent and cotangent Identities

$\tan \theta = \frac{\sin \theta}{}$	$\cot \theta = \frac{\cos \theta}{}$
$ \tan \theta = \frac{1}{\cos \theta} $	$\frac{\cot \theta}{\sin \theta}$

Proof:

$$\tan\theta = \frac{y}{x}$$

Therefore, on dividing both numerator and denominator by r,

$$\tan \theta = \frac{y/r}{x/r} = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$

3. Pythagorean Identities

$\sin^2\theta + \cos^2\theta = 1$	$1 + \tan^2 \theta = \sec^2 \theta$	$1 + \cot^2 \theta = cs c^2 \theta$

Proof: According to the Pythagorean Theorem, $x^2 + y^2 = r^2$

Therefore, on dividing both sides by r^2 , $\frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{r^2}{r^2} = 1$

That is, according to the definitions, $\cos^2 \theta + \sin^2 \theta = 1$ Similarly for the remaining functions.

In Summary:

Reciprocal Identities	Quotient Identities	Pythagorean Identities
$\csc\theta = \frac{1}{\sin\theta}$	$ \tan \theta = \frac{\sin \theta}{\cos \theta} $	$\sin^2\theta + \cos^2\theta = 1$
. 1	$\cos \theta$	$1 + \cot^2 \theta = \csc^2 \theta$
$\sec\theta = \frac{1}{\cos\theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\cot \theta = \frac{1}{\tan \theta}$		

To prove a trig identity, you must show that each side of the identity is equivalent.

Some Suggestions....

- 1. Start with the most complicated side and work on it until it looks like the other side.
- 2. Rewrite all trig ratios in terms of sine and cosine.
- 3. If there are fractions, try a common denominator.
- 4. Try factoring and cancelling.

Example 1: Show
$$\tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x}$$

$$LS = \tan x + \frac{1}{\tan x}$$

$$LS = \frac{\sin x \sin x + \cos x \cos x}{\cos x \sin x}$$

$$LS = \frac{\sin x}{\cos x} + \frac{1}{\frac{\sin x}{\cos x}}$$

$$LS = \frac{\sin x}{\cos x} + \frac{\cos x}{\cos x \sin x}$$

$$LS = \frac{1}{\cos x \sin x}$$

Example 2: Show: $\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$

We begin with the left side:

LS =
$$\sec^2 x + \csc^2 x = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$$

= $\frac{\sin^2 x + \cos^2 x}{\cos^2 x \cdot \sin^2 x} = \frac{1}{\cos^2 x \cdot \sin^2 x}$
= $\frac{1}{\cos^2 x} \cdot \frac{1}{\sin^2 x} = \sec^2 x \cdot \csc^2 x$
= RS

Therefore, LS = RS

Example 3: Prove $\frac{\sin^2 x}{1-\cos x} = 1 + \cos x$

$$LS: \frac{\sin^2 x}{1 - \cos x}$$

$$= \frac{1 - \cos^2 x}{1 - \cos x}$$

$$= \frac{(1 - \cos x)(1 + \cos x)}{1 - \cos x}$$

$$= 1 + \cos x$$

Therefore, LS = RS

4. Trigonometric Quadratic Equation

- Gather terms to create a quadratic equation.
- Use identities to create a quadratic equation that contains only one trigonometric ratio.
- Factor the quadratic equation and solve the resulting linear equations.

- If the equation cannot be factored, use the quadratic formula to simplify.
- A quadratic equation will have multiple solutions. Consider the context and parameters of the problem carefully as some solutions are inadmissible.

Example 1: Solve the equation $2\cos^2 x - \cos x - 1 = 0$ on the interval $0 \le x \le 360^\circ$.

$$2\cos^2 x - \cos x - 1 = 0$$
$$(2\cos x + 1)(\cos x - 1) = 0$$

$$2\cos x + 1 = 0$$
 OR $\cos x - 1 = 0$
 $\cos x = -1/2$ $\cos x = 1$
 $\cos \beta = \frac{1}{2} \rightarrow \beta = 60^{\circ}$ $x = 0^{\circ}, 360^{\circ}$
By CAST rule:
 $x = 180 - 60 = 120^{\circ}$
or $x = 180 + 60 = 240^{\circ}$

Therefore, $x = 0^{\circ}$, 120° , 240° , 360°

Example 2: Solve the equation $6\cos^2 x - \sin x - 5 = 0$ on the interval $0 \le x \le 360^\circ$.

$$6\cos^2 x - \sin x - 5 = 0$$

$$6(1 - \sin^2 x) - \sin x - 5 = 0$$

$$6\sin 2x + \sin x - 1 = 0$$

$$(2\sin x + 1)(3\sin x - 1) = 0$$

$$2\sin x + 1 = 0$$

$$\sin x = -1/2$$

$$\sin \beta = \frac{1}{2} \Rightarrow \beta = 30^{\circ}$$
By CAST rule:
$$x = 180 + 30 = 210^{\circ}$$
or $x = 360 - 30 = 330^{\circ}$

Therefore, $x = 19.5^{\circ}$, 160.5° , 210° , 330° .

Practice in class: Solve each equation such that $0 \le x \le 360^{\circ}$.

a)
$$\sin^2(x) - \sin(x) = 2$$
 b) $2\cos^2(x) - 3\cos(x) + 1 = 0$