ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4801: Compiler Design

Programmable calculators are not allowed. Do not write anything on the question paper. There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

	Figures in the right margin indicate marks.							
U)	Discuss the role of symbol table manager and error handler during compilation. Write down the algorithm for SLR parsing method along with parser block diagram. Discuss on various sentential forms.	10						
2. a)	In a proposed programming language variables are needed to be declared as per following format-							
	data_type var1,var2,var3;							
	Keywords to declare various types of variables in the proposed language are integer, char and float.							
	Design a grammar to recognize multiple lines of variable declarations in prescrib	ped						
b)	Discuss on various recovery strategies for syntax analysis phase. Explain the drawbacks of recursive-descent parsing.	10						
3. a)	Write short notes on the following lex variables/functions.							
b)	yylex(), yytext, yyleng, yywrap(), yyin, ECHO Write a lex program which will search email addresses inside a text file. File name will be new line for each of the detected email address:							
	email_address, line_number, position_in_line							
4. a)	Show that the following grammar is ambiguous-							
	stmt → if expr then stmt if expr then stmt else stmt other	8						
b)	Rewrite the grammar by eliminating the ambiguity. Find the sets of FIRST and FOLLOW for each non-terminal of the following grammar: $S \rightarrow A a$							
		7						
	$A \rightarrow B D$ $B \rightarrow b \mid \epsilon$ $D \rightarrow d \mid \epsilon$							
c)	An SLR parse table is shown in Figure 1 and respective grammar is shown in Figure 2. Show the moves of a SLR parser for validation of input: id*(id+id(.	10						

STATE	ACTION					GOTO			
	id	+	A.			\$	E	T	F
0	\$5			s 4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			54				9	3
7	s5			84					10
8		s6			s11				
9		r1	s 7		r1	r1			
10		r3	r3		r3	r3			
11		r 5	r5		r5	r5			

Figure 1

1. $E \rightarrow E + T$

2. $E \rightarrow T$

3. $T \rightarrow T * F$

 $4. T \rightarrow F$

5. $F \rightarrow (E)$

 $6. F \rightarrow id$

Figure 2