24

TESTS IN HELIUM ILLUSTRATE HIGH MACH NUMBER INLET - FOREBODY INTERACTIONS

John Weidner and Carl Trexler

NASA Langley Research Center Hampton, VA 23665-5225

1st Workshop on High-Speed Inlet-Forebody Interactions Sponsored by the JANNAF Airframe Integration Panel January 10, 1991 **Presented at**

5

HIGH-SPEED INLET-FOREBODY INTERACTIONS TESTS (A Propulsion Perspective)

Objectives:

- Ideritify the impact of the forebody flow on inlet performance and operability
- Interaction of thick forebody boundary layer with inlet geometry and compressive shock waves; addressed in current tests
- Influence of flow uniformity and resulting lateral boundary layer concentrations; not addressed in current tests
- Calibrate/develop CFD codes to allow analysis for other geometries and conditions

Langley Mach 18 60" Helium Tunnel HIGH MACH HELIUM TESTS

Why Helium?

- Ambient total temperature, inexpensive models Large forebody and high Reynolds number match flight conditions Perfect gas, ideal for CFD validation
- performance and operability characteristics. (note: actual inlet configurations cannot be tested due to high value of the ratio of specific Studies of fundamental shock/viscous interactions to establish heat)

Helium Test Program

- Existing sidewall compression inlet models with and without forebody
 - Planned parametric sidewall compression inlet test
 - Parametric 2-D inlet with sidewalls

ORIGINAL PAGE IS OF POOR QUALITY

UNCLASSIFIED

45-8

RAMP SURFACE PRESSURE DISTRIBUTION (11)

 $30^{\rm o}$ Sweep inlet mounted on $4^{\rm o}$ wedge foreplate Mach No. = 18, $P_{\rm T}$ = 1200 psia, Cr = 5.0

7

RAMP SURFACE PRESSURE DISTRIBUTION (11)

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

中军工程。11

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

STATIC PRESSURE ON RAMP AND 8° COWL (U) Mach 18, P_T = 1200 psia, X_{cowl} = 8.6"

PRESSURE VARIATION ACROSS WEDGE AND RAMP Mach 18, P_T = 1200 psia, 8^oCowl

44

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

B. + 1. * 50 21-12 STATIC PRESSURE ON HAMP, 160 COWL (U) Mach 18, P_T = 1200 psia 45 35 25 30 Distance, in. warm wedge warm wedge cold wedge 20 warm wedge cold wedge 5 xcowl, in. 0 4 4 Ramp-ഗ p/p_{∞}

٠<u>٠</u>٠,

RAMP PRESSURE WITH 18° COWL & NO SIDEWALLS

CONCLUDING REMARKS

- Tests without a simulated forebody resulted in strong viscous interactions in the front portion of the inlet.
- With a simulated forebody, a more orderly inlet flow was noted, but still with significant bodyside viscous interactions.
 - Sidewall compression end effects on bodyside, sensitive to cowl
- 2-D inlet sidewall corner flow interaction with the cowl shock wave
- CFD analysis by Bill Rose and Ed Perkins tended to over predict viscous interactions
- Closer coordination with CFD community required to realize CFD code calibration aspects of high Mach number helium tests.