Intervals, Transformations, and Slope Solution (version 39)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-3,-1) \cup (1,10)$
Negative	$(-4, -3) \cup (-1, 1)$
Increasing	$(-4, -2) \cup (0, 2)$
Decreasing	$(-2,0) \cup (2,10)$
Domain	(-4, 10)
Range	(-5,5)

Intervals, Transformations, and Slope Solution (version 39)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=33$ and $x_2=53$. Express your answer as a reduced fraction.

\overline{x}	g(x)
33	87
53	91
87	53
91	33

$$\frac{f(53) - f(33)}{53 - 33} = \frac{91 - 87}{53 - 33} = \frac{4}{20}$$

The greatest common factor of 4 and 20 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{5}$$

2