c) (1.5 point) Soit un modèle de Markov caché où les variables cachées H_t et observées S_t ont comme domaine {nord,sud,est,ouest}. Supposons que la séquence S_1 =nord, S_2 =sud, S_3 =sud, S_4 =ouest et S_5 =nord soit observée, et que vous ayez calculé les tableaux α et β suivants :

α(<u>i,t)</u>	i	1	2	3	4	5
	nord	0.025	0.00319	0.0008	0.00098	0.00011
	est	0.05	0.0375	0.0095	0.00038	0.00027
	sud	0.025	0.01375	0.00284	0.00227	0.00012
	ouest	0.15	0.00256	0.0008	0.00098	0.00067

B(1,t)	i	1	2	3	4	5
	nord	0.00261	0.0104	0.06588	0.24	1
	est	0.00466	0.01924	0.08525	0.285	1
	sud	0.00632	0.02654	0.08409	0.28	1
	ouest	0.00475	0.01929	0.08404	0.195	1

Calculez la distribution de lissage au temps t=2, c.-à-d. $P(H_2 | S_1=nord, S_2=sud, S_3=sud, S_4=ouest et S_5=nord)$

