Part 5. Curve Fitting Chapter 17. Least Square Regression

Lecture 17

Linearization of Nonlinear Relationships & Nonlinear Regression Models

17.1.5,17.1.6. 17.2, 17.5

Homeyra Pourmohammadali

Nonlinear Regression

Some popular nonlinear regression models:

Exponential model:

$$y = ae^{bx}$$
$$y = ax^b$$

Power model:

$$y = ax^b$$

Saturation growth model:

$$y = \frac{ax}{b+x}$$

Polynomial model:

$$y = a_0 + a_1 x + \ldots + a_m x^m$$

Nonlinear Regression

Given n data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit to the data, where f(x) is a nonlinear function of x.

Nonlinear regression model for discrete y vs. x data

Regression

Exponential Model

$$y = ae^{bx}$$

Exponential Model

To best fit
$$y = ae^{bx}$$
 to the data.

Exponential model of nonlinear regression for y vs. x data

Exponential Model

Two methods to solve for constants of $y = ae^{bx}$

- 1. Linearize the nonlinear equation
 - take *ln* from both sides of equation

$$ln y = ln a + bx$$

$$Y = A + b X$$
, $A = \ln a$, $Y = \ln y$

2. Directly find constants by minimizing S_r

Constants of Exponential Model

The sum of the square of the residuals is defined as

$$S_r = \sum_{i=1}^n \left(y_i - ae^{bx_i} \right)^2$$

Differentiate with respect to a and b

$$\frac{\partial S_r}{\partial a} = \sum_{i=1}^n 2 \left(y_i - ae^{bx_i} \right) \left(-e^{bx_i} \right) = 0$$

$$\frac{\partial S_r}{\partial b} = \sum_{i=1}^n 2 \left(y_i - ae^{bx_i} \right) \left(-ax_i e^{bx_i} \right) = 0$$

7

Constants of Exponential Model

Rewriting the equations, we obtain

$$-\sum_{i=1}^{n} y_i e^{bx_i} + a \sum_{i=1}^{n} e^{2bx_i} = 0$$

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - a \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

Constants of Exponential Model

Solving the first equation for *a* yields

$$a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}}$$

Substituting a back into the previous equation

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

The constant **b** can be found through numerical methods such as bisection method.

Example 1. Nonlinear Regression of Exponential Equation.

Find constants of $y = ae^{bx}$ regression model using below data set and estimate y at x = 24.

	x	0	1	3	5	7	9
Ī	y	1.000	0.891	0.708	0.562	0.447	0.355

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

Can use MATLAB to solve for b

$$b = -0.1151$$

Example 1. Nonlinear Regression of Exponential Equation.

$$a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} = 0.9998$$

Exponential regression model:

$$y = 0.9998 e^{-0.1151x}$$

Example 1. Nonlinear Regression of Exponential Equation.

Estimate of y at x=24:

$$y = 0.9998 \times e^{-0.1151(24)}$$
$$= 6.3160 \times 10^{-2}$$

Regression

Power Model

$$y = ax^b$$

Power Model

- 1. Linearize the nonlinear equation
 - take *log* from both sides of equation

$$log y = log a + b log x$$

$$Y = A + b X$$
, $A = log a$, $Y = log y$

As a homework, try finding a and b by minimizing S_r

Example 2. Nonlinear Regression of Power Equation.

Find constants of $y = ax^b$ regression model using below data set.

X	y
1	0.5
2	1.7
3	3.4
4	5.7
5	8.4

Example 2. Nonlinear Regression of Power Equation.

$$log y = log a + b log x$$

$$Y = A + b X$$

$$b = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$

$$A = \overline{y} - a_1 \overline{x}$$

$$A = -0.3$$
, $b = 1.75$

$$a = 10^{A} = 10^{-0.3} = 0.5 \rightarrow y = ax^{b} \rightarrow y = 0.5 x^{1.75}$$

V	$oldsymbol{V}$
1	I

X	y	log(x)	log(y)
1	0.5	0	-0.301
2	1.7	0.301	0.230
3	3.4	0.477	0.531
4	5.7	0.602	0.756
5	8.4	0.699	0.924

Regression

Saturation Growth Model

$$y = \frac{ax}{b+x}$$

Saturation Growth Model

1. Linearize the nonlinear equation

$$y = \frac{ax}{b+x}$$

- Inverse both sides of equation

$$1/y = (1/a)[(b/x) + 1]$$

 $1/y = (1/a) + (b/a)(1/x)$
 $Y = A + BX$

As a homework, try finding a and b by minimizing S_r

Regression

Polynomial Model

$$y = a_0 + a_1x + ... + a_mx^m$$

To best fit $y = a_0 + a_1 x + ... + a_m x^m$ $(m \le n-2)$ to a given data set.

Polynomial model for nonlinear regression of y vs. x data

The residual at each data point is given by

$$e_i = y_i - a_0 - a_1 x_i - \dots - a_m x_i^m$$

The sum of the square of the residuals then is

$$S_r = \sum_{i=1}^n e_i^2$$

$$= \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)^2$$

Finding constants by minimizing S_r

$$\frac{\partial S_r}{\partial a_0} = \sum_{i=1}^n 2.(y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)(-1) = 0$$

$$\frac{\partial S_r}{\partial a_1} = \sum_{i=1}^n 2. (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i) = 0$$

$$\frac{\partial S_r}{\partial a_m} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i^m) = 0$$

These equations in matrix form are given by

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_{i}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m}\right) \\ \left(\sum_{i=1}^{n} x_{i}\right) & \left(\sum_{i=1}^{n} x_{i}^{2}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \left(\sum_{i=1}^{n} x_{i}^{m}\right) & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{2m}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ a_{1} \\ \cdot & \cdot \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} \\ \cdot & \cdot \\ \sum_{i=1}^{n} x_{i}^{m} y_{i} \end{bmatrix}$$

The above equations are then solved for $a_0, a_1, ..., a_m$

2nd-Order Polynomial Model

$$y = a_0 + a_1 x + a_2 x^2$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_2^2)^2$$

As a homework, try finding a and b by minimizing S_r

Solve 3 equations for 3 unknown constants

3rd-Order Polynomial Model

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left(y_i - a_0 - a_1 x_i - a_2 x_2^2 - a_2 x_2^2 - a_3 x_3^3 \right)^2$$

As a homework, try finding a and b by minimizing S_r

Solve 4 equations for 4 unknown constants

$$r^2 = \frac{S_t - S_r}{S_t}$$

Error for Polynomial Regression

Use general form of correlation coefficient

$$r^2 = \frac{S_t - S_r}{S_t}$$

 S_t : total sum of the squares around the mean for the dependent variable

 S_r : sum of the squares of residuals around the regression line is S_r

Part 5. Curve Fitting Chapter 18. Interpolation

Lecture 18

Linear, Quadratic, Cubic (Spline) Interpolation 18.1, 18.3,18.6

Homeyra Pourmohammadali

Interpolation

Given (x_0,y_0) , (x_1,y_1) , (x_n,y_n) , find the value of 'y' at a value of 'x' that is not given.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to evaluate, differentiate and integrate.

Interpolation Using Polynomials

• The most common method is using n^{th} -order polynomial:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where $a_0, a_1, \dots a_n$ are real constants.

- There is one and only one n^{th} -order polynomial that fits n+1 points
- Set up 'n+1' equations to find 'n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

Interpolating Polynomials

1st-order Polynomial(linear interpolation)Connecting 2 points

2nd -order Polynomial (quadratic or parabolic interpolation)

Connecting 3 points

3rd- Order Polynomial (cubic or spline interpolation)

Connecting 4 points

Linear Interpolation (1st-Order Polynomial)

$$f(x) = a_0 + a_1 x$$

Example 1. Direct Method for Linear Interpolation (1st Order Polynomial)

Find the velocity at t = 16 seconds, using the given data points for upward velocity of a rocket is given as a function of time.

Estimate using this line $v(t) = a_0 + a_1 t$

Velocity as a function of time.

t, (s)	v(t), (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

Example 1. Direct Method for Linear Interpolation (1st Order Polynomial)

$$v(t) = a_0 + a_1 t$$

Step 1. Choose 2 data points that are closest to t = 16 s that also bracket t = 16 s.

Step 2. Evaluate function (velocity) at these 2 points (times) to find a_0 and a_1

$$v(15) = a_0 + a_1(15) = 362.78$$

 $v(20) = a_0 + a_1(20) = 517.35$
 $a_0 = -100.93$ $a_1 = 30.914$

t, (s) v(t), (m/s)

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Step 3: Set equation of interpolant

$$v(t) = -100.93 + 30.914t, 15 \le t \le 20.$$

Step 4. Evaluate velocity at t = 16 s v(16) = -100.93 + 30.914(16) = 393.7 m/s

Quadratic (Parabolic) Interpolation (2nd-Order Polynomial)

$$f(x) = a_0 + a_1 x + a_2 x^2$$

Example 2. Direct Method for Quadratic Interpolation (2nd-Order Polynomial)

Find the velocity at t = 16 seconds, using the given data points for upward velocity of a rocket is given as a function of time.

Velocity as a function of time.

t, (s)	v(t), (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Quadratic interpolation.

Estimate using 2nd degree polynomial

$$v(t) = a_0 + a_1 t + a_2 t^2$$

Example 2. Direct Method for Quadratic Interpolation (2nd-Order Polynomial)

$$v(t) = a_0 + a_1 t$$

Step 1. Choose 3 data points that are closest to t = 16 s that also bracket t = 16 s.

Step 2. Evaluate function (velocity) at these 3 points (times) to find a_0 , a_1 and a_2

$$v(10) = a_0 + a_1(10) + a_2(10)^2 = 227.04$$

$$a_0 = 12.05$$

$$v(15) = a_0 + a_1(15) + a_2(15)^2 = 362.78$$

$$a_1 = 17.733$$

$$v(20) = a_0 + a_1(20) + a_2(20)^2 = 517.35$$

$$a_2 = 0.3766$$

t, (s)	v(t), (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Step 3: Set equation of interpolant

$$v(t) = 12.05 + 17.733t + 0.3766t^2, \ 10 \le t \le 20$$

Step 4. Evaluate velocity at t = 16 s

$$v(16) = 12.05 + 17.733(16) + 0.3766(16)^2$$

$$= 392.19 \,\mathrm{m/s}$$

Example 2. Direct Method for Quadratic Interpolation (2nd-Order Polynomial)

Absolute relative approximate error between the results from the 1st and 2nd order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.70}{392.19} \right| \times 100$$

$$=0.38410\%$$

Cubic (Spline) Interpolation (3rd-Order Polynomial)

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Example 3. Direct Method for Cubic (Spline) Interpolation (3rd-Order Polynomial)

Find the velocity at t = 16 seconds, using the given data points for upward velocity of a rocket is given as a function of time.

 (x_{3}, y_{3}) (x_{1}, y_{1}) (x_{2}, y_{2}) (x_{3}, y_{3}) (x_{2}, y_{3}) (x_{3}, y_{3}) (x_{2}, y_{3}) (x_{3}, y_{3}) (x_{3}, y_{3}) (x_{3}, y_{3}) (x_{4}, y_{5}) (x_{5}, y_{5}) (x_{5}, y_{5})

Velocity as a function of time.

<i>t</i> ,(s)	v(t), (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Cubic (Spline) interpolation.

Estimate using 2nd degree polynomial

$$v(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Example 3. Direct Method for Cubic (Spline) $v(t) = a_0 + a_1 t$ Interpolation (3rd-Order Polynomial)

Step 1. Choose 4 data points that are closest to t = 16 s that also bracket t = 16 s.

Step 2. Evaluate function (velocity) at these 4 points (times) to find a_0 , a_1 , a_2 and a_3

$$v(10) = 227.04 = a_0 + a_1(10) + a_2(10)^2 + a_3(10)^3$$

$$v(15) = 362.78 = a_0 + a_1(15) + a_2(15)^2 + a_3(15)^3$$

$$v(20) = 517.35 = a_0 + a_1(20) + a_2(20)^2 + a_3(20)^3$$

$$v(22.5) = 602.97 = a_0 + a_1(22.5) + a_2(22.5)^2 + a_3(22.5)^3$$

Step 3: Set equation of interpolant

$$v(t) = -4.2540 + 21.266t + 0.13204t^2 + 0.0054347t^3, \quad 10 \le t \le 22.5$$

t,(s)	v(t), (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

$$a_0 = -4.2540$$

$$a_1 = 21.266$$

$$a_2 = 0.13204$$

$$a_3 = 0.0054347$$

Step 4. Evaluate velocity at t = 16 s

$$v(16) = -4.2540 + 21.266(16) + 0.13204(16)^2 + 0.0054347(16)^3$$

= 392.06 m/s

Example 3. Direct Method for Cubic (Spline) Interpolation (3rd-Order Polynomial)

Absolute relative approximate error between the results from the 2nd- and 3rd-order polynomial is

$$\left| \in_a \right| = \left| \frac{392.06 - 392.19}{392.06} \right| \times 100$$

$$=0.033269\%$$

Comparison of Different Orders of Polynomials

$$f(x) = a_0 + a_1 x$$

$$f(x) = a_0 + a_1 x + a_2 x^2$$

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Comparison of Different Orders of Polynomials

Order of Polynomial	1	2	3
$v(t=16)\mathrm{m/s}$	393.7	392.19	392.06
Absolute Relative Approximate Error		0.38410 %	0.033269 %

t(s)	v (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Notes

 Sometimes polynomials can lead to erroneous results because of round off error and overshoot.

 Apply lower-order polynomials to subsets of data points. Such connecting polynomials are called spline functions.

