Build a Personalized Online Course Recommender System with Machine Learning

Faheemuddin Sayyed 18.12.2024

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

• Project Overview:

• The goal of this capstone project is to build a personalized course recommender system for an online learning platform. This system utilizes multiple machine learning techniques to deliver customized recommendations based on user preferences and course content.

• Objectives:

- 1. Understand user preferences and course attributes.
- 2. Implement different types of recommender systems:
 - Content-based filtering using user profiles and course genres.
 - Collaborative filtering (KNN, NMF, and neural networks).
 - Hybrid approaches for better recommendations.
- 3. Evaluate the performance of these models.
- Why Personalized Recommendations Matter:

Personalized recommendations can:

- Improve user engagement and satisfaction.
- Help users discover relevant courses more efficiently.
- Increase course enrollments on the platform.

Exploratory Data Analysis

Course counts per genre

- The bar chart shows the distribution of courses across various genres. It highlights the most popular genres by their course counts, helping identify the platform's content focus.

Course enrollment distribution

- The histogram illustrates user engagement, showing enrollment frequency across courses. It identifies trends like courses with the highest or lowest enrollments.

20 most popular courses

- This list reflects the platform's topenrolled courses, giving insight into user preferences and trending topics.

	TITLE	Enrolls
0	python for data science	NaN
1	introduction to data science	NaN
2	big data 101	NaN
3	hadoop 101	NaN
4	data analysis with python	NaN
5	data science methodology	NaN
6	machine learning with python	NaN
7	spark fundamentals i	NaN
8	data science hands on with open source tools	NaN
9	blockchain essentials	NaN
10	data visualization with python	NaN
11	deep learning 101	NaN
12	build your own chatbot	NaN
13	r for data science	NaN
14	statistics 101	NaN
15	introduction to cloud	NaN
16	docker essentials a developer introduction	NaN
17	sql and relational databases 101	NaN
18	mapreduce and yarn	NaN
19	data privacy fundamentals	NaN

Word cloud of course titles

- The word cloud emphasizes the most common keywords in course titles, showcasing the primary themes and topics offered.

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

- Illustrates the process of constructing user vectors from their profiles and matching them with course genre vectors to recommend content.

Evaluation results of user profile-based recommender system

Hyperparameters tuned: score threshold = 10

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

res_df['SCORE'].mean()
19.117858018800018

What are the most frequently recommended courses? Return the top-10 commonly recommended courses across all users

COURSE_ID	
TA0106EN	17390
excourse21	15656
excourse22	15656
GPXX0IBEN	15644
ML0122EN	15603
excourse04	15062
excourse06	15062
GPXX0TY1EN	14689
excourse73	14464
excourse72	14464

Flowchart of content-based recommender system using course similarity

- Describes the methodology for calculating similarity between courses and generating recommendations for users based on their history.

Evaluation results of course similarity based recommender system

Hyperparameters tuned:

threshold = 0.6

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for i in range(len(res_df['COURSE_ID'])):
    s+=len(res_df['COURSE_ID'].iloc[i])
avg = s/len(res_df['COURSE_ID'])
avg
8.546591545972095
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

DS0110EN	15003
excourse62	14937
excourse22	14937
excourse63	14641
excourse65	14641
excourse68	13551
excourse72	13512
excourse67	13291
excourse74	13291
BD0145EN	12497

Flowchart of clustering-based recommender system

- Demonstrates clustering user profiles into segments to deliver group-based recommendations.

Evaluation results of clustering-based

recommender system

Hyperparameters tuned:

n_clusters = 20

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

DS0103EN	22012
BD0101EN	19753
DS0101EN	19424
BD0111EN	18971
PY0101EN	18965
DS0105EN	17733
DA0101EN	17637
ML0101ENv3	13027
BD0211EN	11752
DV0101EN	11235

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for r in user_recommendations.values:
    s+=r[1:].sum()
avg=s/len(user_recommendations)
print(avg)

6.8580277867909505
```

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

- Explains the implementation of KNN using historical user-course interactions to generate recommendations.

Flowchart of NMF based recommender system

- Visualizes how NMF decomposes the user-course matrix to predict missing values and generate personalized suggestions.

Flowchart of Neural Network Embedding based recommender system

- Outlines the process of embedding users and courses into a shared space for high-quality recommendations.

Compare the performance of collaborative-filtering models

- The bar chart compares the RMSE of various collaborative filtering models, with the neural network model achieving the best performance, followed by NMF and KNN.

Conclusions

• Summary:

The project successfully demonstrated a personalized course recommendation system using multiple machine learning techniques, enhancing user satisfaction and engagement.

Key Findings:

- Content-based models efficiently utilized user preferences and course metadata.
- Collaborative filtering methods, especially neural networks, outperformed in prediction accuracy.
- Combining diverse approaches ensures robust recommendations.

Additional Insights

1. Hybrid Recommendations:

Exploring combining content-based and collaborative filtering for improved accuracy and diversity in recommendations.

2. Explainable Recommendations:

Implementing feature to show users why a course was recommended, increasing trust and engagement.

3. Real-Time Recommendations:

Introducing models capable of updating recommendations dynamically based on user activity.

4. Enhanced Evaluation Metrics:

Beyond RMSE, considering user engagement metrics like click-through rates and completion rates for holistic model assessment.

Appendix

• GitHub Repo Link:

https://github.com/Faheem219/IBM-Machine-Learning-Codes