Numerical Linear Algebra Programming Assignment #03

2015-17231 박우정

Exercise 2.13.

MATLAB으로 문제에서 요구하는 프로그램을 짠 코드는 다음과 같다.

```
n=input('What is the dimension n? ');
A=zeros(n,n);
matx=eye(n); %x1, x2, ..., xn이 column 단위로 저장된 행렬. 즉 xi=matx(:,i)
check=zeros(n,n);
saveI=matx;
for j=1:n
   A(\dot{j},\dot{j}) = 2;
end
for j=1:n-1
  A(j,j+1) = -1;
  A(j+1,j) = -1;
saveA=A:
for j=1:n-1
  for k=j+1:n
     m=A(k,j)/A(j,j);
      A(k,j:n) = A(k,j:n) - m*A(j,j:n);
      matx(k,:) = matx(k,:) - m*matx(j,:); %Gauss elimination
   end
end
for j=1:n
for i=n:-1:1
  matx(i,j) = (matx(i,j) - dot(A(i,i+1:n), matx(i+1:n,j)))/A(i,i);
end %find xj=matx(:,j) for j=1:n
disp('The solution A^-1 is as follows: ')
disp(matx)
for k=1:n
  for j=1:n
      check(i,j)=saveA(i,:)*matx(:,j);
if (abs(check(i,j)-saveI(i,j)>10^-10))
  disp("This inverse is incorrect")
   disp("This inverse is correct almost everywhere")
end
```

허용오차는 10^{-10} 으로 주었고, n=10으로 input을 주어 실행하면 다음을 얻는다.

>> inverse_tridiago	onal								
What is the dimension n? 10									
The solution A^-1 is as follows:									
0.9091 0.818	2 0.7273	0.6364	0.5455	0.4545	0.3636				
0.2727 0.1818	0.0909								
0.8182 1.636	1.4545	1.2727	1.0909	0.9091	0.7273				
0.5455 0.3636	0.1818								
0.7273 1.454	5 2.1818	1.9091	1.6364	1.3636	1.0909				
0.8182 0.5455 0.2727									
0.6364 1.272		2.5455	2.1818	1.8182	1.4545				
1.0909 0.7273									
0.5455 1.090		2.1818	2.7273	2.2727	1.8182				
1.3636 0.9091									
0.4545 0.909		1.8182	2.2727	2.7273	2.1818				
1.6364 1.0909									
0.3636 0.727		1.4545	1.8182	2.1818	2.5455				
1.9091 1.2727		1 0000	1 0 6 0 6	4 6064	1 0001				
0.2727 0.545		1.0909	1.3636	1.6364	1.9091				
2.1818 1.4545		0 7070	0 0001	1 0000	1 0707				
0.1818 0.363 1.4545 1.6364		0.7273	0.9091	1.0909	1.2727				
0.0909 0.181		0 2626	0 4545	0 5455	0 6264				
0.7273 0.8182		0.3030	0.4343	0.3433	0.0304				
0.7273 0.0182	0.9091								
This inverse is cor	rect almost ev	ervwhere							
THIS THAT'S TO	TCCC almost ev	CTAMHETE							

100개의 항들이 모두 허용오차를 잘 지키고 있으므로, 알맞게 프로그래밍되었다고 할 수 있다.

Exercise 2.16

MATLAB을 이용하여 inverse of A를 구하는 Gauss-Jordan program을 작성하면 다음과 같다.

```
n=input('What is the dimension n? ');
col=zeros(n,1);row=zeros(1,n);
perm=eye(n); %Permutation matrix exchanging rows.
A=zeros(n,n); AI=zeros(n,n);
check=zeros(n,n); saveI=eye(n);
for j=1:n
   A(j,j)=2;
for j=1:n-1
   A(j,j+1) = -1;
   A(j+1,j) = -1;
end
saveA=A;
for j=1:n
  [x,ksave]=max(abs(A(j:n,j))); %Partial pivoting
   k=ksave+j-1;
   perm([j,k],:)=perm([k,j],:); %Row exchange in the permutation matrix
   A([j,k],:)=A([k,j],:);
   m=1/A(j,j); %Start Gauss-Jordran inverse matrix algorithm
   A(j,j)=m;
   col=m*A(:,j);
   row=A(j,:);
   A=A-col*row;
   A(:,j)=col;
   A(j,:) = -1*m*row;
   A(j,j)=m;
end
for i=1:n
   for j=1:n
      AI(i,j)=A(i,:)*perm(:,j);
end %undo the order of their rows.
for i=1:n %check whether the inverse is correct within the tolerance 10e-10
   for j=1:n
      check(i,j)=saveA(i,:)*AI(:,j);
      if(abs(check(i,j)-saveI(i,j))>10^-10)
          disp("This inverse is incorrect")
       end
   end
```

이를 실행하면 다음과 같은 결과를 얻을 수 있다.

>> tridiagonal_inverse_GaussJordan									
What is the dimension n? 10									
0.9091	0.8182	0.7273	0.6364	0.5455	0.4545	0.3636	0.2727		
0.1818	0.0909								
0.8182	1.6364	1.4545	1.2727	1.0909	0.9091	0.7273	0.5455		
0.3636	0.1818								
0.7273	1.4545	2.1818	1.9091	1.6364	1.3636	1.0909	0.8182		
0.5455 0.2727									
0.6364	1.2727	1.9091	2.5455	2.1818	1.8182	1.4545	1.0909		
0.7273	0.3636								
0.5455	1.0909	1.6364	2.1818	2.7273	2.2727	1.8182	1.3636		
0.9091	0.4545								
0.4545	0.9091	1.3636	1.8182	2.2727	2.7273	2.1818	1.6364		
1.0909	0.5455								
0.3636	0.7273	1.0909	1.4545	1.8182	2.1818	2.5455	1.9091		
1.2727	0.6364								
0.2727	0.5455	0.8182	1.0909	1.3636	1.6364	1.9091	2.1818		
1.4545	4545 0.7273								
0.1818	0.3636	0.5455	0.7273	0.9091	1.0909	1.2727	1.4545		
1.6364 0.8182									
0.0909	0.1818	0.2727	0.3636	0.4545	0.5455	0.6364	0.7273		
0.8182	0.9091								

허용오차를 넘는 메시지가 출력되지 않았으므로, 알맞게 프로그래밍되었다고 할 수 있다.