

## دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده مهندسی کامپیوتر

پایان نامه کارشناسی

# هدایت پهپاد با علائم دست مبتنی بر بینایی ماشین

نگارش سارا تاجرنیا

استاد راهنما

دکتر مهدی جوانمردی

اردیبهشت ۱۴۰۳





## دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده مهندسی کامپیوتر

پایان نامه کارشناسی

# هدایت پهپاد با علائم دست مبتنی بر بینایی ماشین

نگارش سارا تاجرنیا

استاد راهنما

دکتر مهدی جوانمردی

اردیبهشت ۱۴۰۳

# صفحه فرم ارزیابی و تصویب پایان نامه - فرم تأیید اعضاء کمیته دفاع

در این صفحه فرم دفاع یا تایید و تصویب پایان نامه موسوم به فرم کمیته دفاع- موجود در پرونده آموزشی- را قرار دهید.

#### نكات مهم:

- نگارش پایان نامه/رساله باید به زبان فارسی و بر اساس آخرین نسخه دستورالعمل و راهنمای تدوین پایان نامه های دانشگاه صنعتی امیرکبیر باشد.(دستورالعمل و راهنمای حاضر)
- رنگ جلد پایان نامه/رساله چاپی کارشناسی، کارشناسی ارشد و دکترا باید به ترتیب مشکی، طوسی و سفید رنگ باشد.
- چاپ و صحافی پایان نامه/رساله بصورت پشت و رو(دورو) بلامانع است و انجام آن توصیه می شود.

#### به نام خدا



#### تعهدنامه اصالت اثر



اینجانب سارا تاجرنیا متعهد می شوم که مطالب مندرج در این پایان نامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیر کبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایان نامه قبلاً برای احراز هیچ مدرک همسطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایاننامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر ماخذ بلامانع است.

سارا تاجرنيا

امضا

این بایان نامه را تفدیم می کنم به مهرباتسرین بمراهان زندگیم ، پدر ، مادر ، برادران عزیزم که حضورشان بمیشه گرما بخش روح من بوده است.

# سیاس گزاری

زندگی دفتری از خاطره هاست، یک نفر در دل شب، یک نفر در دل خاک، یک نفر همدم خوشبختی هاست، یک نفر همسفر سختی هاست، چشم تا باز کنیم، عمرمان می گذرد ما همه رهگذریم، آنچه باقیست فقط خوبی هاست.

تشکر می کنم از تمامی عزیزانی که در تمامی مراحل زندگی همراه من بودهاند. و همچنین از استاد گرامی جناب آقای دکتر مهدی جوانمردی که در انتخاب و پیشبرد این پروژه به

عنوان استاد پروژه، کمکهای فراوانی به این جانب داشتند، کمال تشکر را دارم.

سارا تاجرنیا اردیهشت ۱۴۰۳

#### چکیده

پهپادهای تجاری که به عنوان هواپیماهای بدون سرنشین انیز شناخته می شوند، به سرعت در حال رایج شدن هستند و در بسیاری از کاربردهای مختلف مانند نظارت برای رویدادهای ورزشی، حمل و نقل تجهیزات و کالاهای اضطراری، فیلمبرداری، عکاسی هوایی و بسیاری از فعالیتهای دیگر مورد استفاده قرار می گیرند.

هدف این پروژه توسعه سیستمی است که از حرکات دست به عنوان روشی برای کنترل پرواز یک پهپاد استفاده میکند. بدین صورت که با استفاده از روشهای بینایی ماشین<sup>۲</sup>، روشی بصری برای ارتباط بدون عامل بین پهپاد و اپراتور آن ایجاد میکند. روشهای مبتنی بر بینایی ماشین بر توانایی دوربین هواپیماهای بدون سرنشین متکی هستند. بدین صورت که تصاویر اطراف را گرفته و با استفاده از ترجمه تصاویر و تشخیص الگوی دست اطلاعات معناداری را استخراج میکنند. ساختار این پروژه از دو ماژول اصلی تشکیل شده است: تشخیص حرکت دست و دستور به هواپیمای بدون سرنشین. برای ماژول اول از یک روش یادگیری عمیق آستفاده شده است. الگوریتهها و تکنیکهای پردازش تصویر بهعنوان روشی پویا برای شناسایی ژستها و حرکات دست معرفی شدهاند. ماژول دوم وظیفه ارتباط با پهپاد را بر عهده دارد. بدین صورت که پیامهای بین سیستم پیشنهادی و پهپاد متصل به سیستم را ارسال و دریافت میکند و طبق آن پیامها عملیات مورد نظر را اجرا میکند.

#### واژههای کلیدی:

پهپاد، هواپیمای بدون سرنشین، ژست دست، بینایی ماشین، شبکههای عصبی پیچشی<sup>۵</sup> ، حافظه طولانی

<sup>&</sup>lt;sup>1</sup>Unmanned aerial vehicles

<sup>&</sup>lt;sup>2</sup>Computer vision

<sup>&</sup>lt;sup>3</sup>Hand detection

<sup>&</sup>lt;sup>4</sup>Deep learning

<sup>&</sup>lt;sup>5</sup>Convolutional neural network

<sup>&</sup>lt;sup>6</sup>Long short-term memory

<sup>&</sup>lt;sup>7</sup>Machine learning

<sup>&</sup>lt;sup>8</sup>Human–drone interface

 $^{\lambda}$ کوتاه مدت $^{2}$ ، یادگیری ماشین $^{\gamma}$  ، رابط انسان و پهپاد

### فهرست مطالب

| صفحه | صف                                | وان                  | عنږ |
|------|-----------------------------------|----------------------|-----|
| ١    |                                   | مقدمه                | ١   |
| ٣    | ه از پهپاد                        | ۱-۱ چالشهای استفاد   |     |
| ٣    | بینایی ماشین د <sub>ر</sub> پهپاد | ۲-۱ اهمیت استفاده از |     |
| ۵    |                                   | ۱-۳ هدف پروژه        |     |
| ۵    |                                   | ۱-۴ مراحل انجام پروژ |     |
| ۵    | پروژه                             | ۱-۵ چالشهای اجرای    |     |
| ٧    |                                   | موسیقی               | ۲   |
| ٨    |                                   | ۱-۲ مدیاپایپ         |     |
| ٨    | خیص کف دست                        | ۱-۱-۲ مدل تش         |     |
| ٩    | خيص نقاط عطف دست                  | ۲-۱-۲ مدل تش         |     |
| ٩    | ت                                 | ۲-۲ اهمیت ژست دس     |     |
| ١.   |                                   | ۲-۳ کنترل پهپاد      |     |
| 11   |                                   | ا <b>بنامه</b>       | کت  |

| صفحه |  |  |  |  |  | فهرست تصاوير |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ىكل | ش |  |  |  |  |  |  |  |  |     |      |   |     |  |
|------|--|--|--|--|--|--------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---|--|--|--|--|--|--|--|--|-----|------|---|-----|--|
| ٩    |  |  |  |  |  |              |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |   |  |  |  |  |  |  |  |  | . ر | ييسر | ي | 1-7 |  |

فهرست جداول

فهرست جداول

صفحه

جدول

# فصل اول مقدمه

پهپادها یا به عبارتی هواپیماهای بدون سرنشین امروزه در صنایع مختلف به عنوان یک فناوری بسیار گسترده و کارآمد مورد استفاده قرار می گیرند. هواپیماهای بدون سرنشین اساساً به عنوان رباتهای پرندهای دیده می شوند که عملکردهای متعددی مانند جمع آوری دادهها و سنجش از محیط اطراف را بر عهده دارند [۱]. از جمله این صنایع می توان به کشاورزی، ساخت و ساز، خدمات حمل و نقل و نقشه برداری اشاره کرد. یکی از دلایل اصلی افزایش کاربرد این هواپیماهای بدون سرنشین، کارایی بالای آنها است. این فناوری نه تنها به دلیل سرعت بالا در پوشش دهی مساحتهای گسترده، بلکه به دلیل قابلیت برنامه ریزی و استفاده در صنایع مختلف مورد توجه قرار می گیرد. همچنین، صرفه جویی در هزینه های و جانی و افزایش امنیت نیز از جمله عوامل مهمی است که اهمیت پهپادها را بیشتر می کند[۲].

این واقعیت که اکثر پهپادها می توانند محموله ها را حمل کنند، بسیاری از شرکت های تولید کننده پهپادها را تشویق کرده است تا انواع مختلفی از ویژگی های نرمافزاری و سختافزاری مانند حسگرها را به پهپادها اضافه کنند، که ابتدایی ترین آنها دوربین است. در ادامه زمینه مطالعاتی جدیدی به نام رابط هواپیماهای بدون سرنشین و انسان آگشوده شد تا تعامل بین پهپاد و انسان را پیشرفت دهد. این تعامل مجموعه دستگاههای سنتی مانند کنترلر رادیویی تا کنترل پهپادها با استفاده از وضعیت بدن و دست انسان را شامل می شود [۳].

یکی از رویکردهای مورد استفاده برای افزایش کاربرد و دسترسی به پهپادها، استفاده از بینایی ماشین است. این ویژگی معمولا از طریق پردازش تصویر و با استفاده از شبکههای عصبی به کار میرود. پهپادهایی که با مدلهای بینایی ماشین آموزش میبینند، توانایی تحلیل تصاویر و ویدئوهایی که از محیط اطراف دریافت میکنند را دارا هستند. این قابلیت به پهپاد این امکان را میدهد که بدون نیاز به تداخل انسانی، وظایفی همچون امنیت، ارسال کالا، پست و این چنین موارد را انجام دهد[۴]. میتوان گفت هدف اصلی استفاده از بینایی ماشین در پهپادها برای به حداقل رساندن دخالت انسان به صورت مستقیم است. این امر پهپاد را قادر میسازد تا تشخیص اشیاء، تشخیص چهره، تحلیل تصاویر، شناسایی الگوهای مختلف و مواردی از این دست را به صورت خودکار انجام دهند [۵].

<sup>&</sup>lt;sup>1</sup>Human drone interface

<sup>&</sup>lt;sup>2</sup>Radio Controller

#### ۱-۱ چالشهای استفاده از پهپاد

استفاده از پهپادها، با چالشهای متعددی همراه است. یکی از این چالشها، محدودیت زمان پرواز است که پس از مدتی نیاز به شارژ مجدد دارند. همچنین، محدودیتهای محیطی نیز می تواند به چالشهایی بدل شوند؛ زیرا پهپادها به شرایط محیطی مانند آب و هوا، یا وزن و ارتفاع حساس هستند و این موارد می تواند در طراحی آنها تأثیر بهسزایی داشته باشد. در ادامه باید به میزان اهمیت امنیت اطلاعات هم اشاره کرد، زیرا پهپادها به دلیل استفاده از سیستمهای موقعیتیاب و ارتباطات بی سیم ممکن است در برابر حملات سایبری آسیبپذیر باشند و اطلاعات مهمی که توسط آنها مخابره می شود، در معرض خطر قرار گیرد.

همچنین می توان به برخی چالشهایی که ما هم در این پروژه به صورتی با آنها سر و کار داریم و در تلاشیم آنها را از بین ببریم یا کمتر کنیم اشاره کرد. مانند انتقال اطلاعات زیرا برای ارتباط با پهپادها از شبکههای بی سیم استفاده می شود و در شرایطی مانند اشباع شبکه یا فاصله بین پهپاد و کنترل کننده ممکن است این ارتباط دچار مشکل شود. علاوه بر این، محدودیت محاسباتی پهپاد نیز با توجه به اهدافی که برای آن در نظر گرفته شده می تواند چالش برانگیز باشد؛ زیرا پهپادها به دلیل محدودیتهای سخت افزاری و نرم افزاری، دارای پرداز شگرها و حافظه های محدودی هستند [۶]. قابل ذکر است که با ادامه پیشرفت فناوری پهپاد، می توان انتظار داشت که ویژگیهای جدید و نوآورانه ای برای از بین بردن این محدودیتها و چالشها به پهپادهای آینده اضافه شود.

### ۲-۱ اهمیت استفاده از بینایی ماشین در پهپاد

طبق اعلام پیشبینی اداره هوانوردی فدرال، بازار هواپیماهای بدون سرنشین تا سال ۲۰۲۵ به ۱۷ میلیارد خواهد رسید و ۷ میلیون هواپیمای بدون سرنشین به آسمان پرواز خواهند کرد. پهپادهای کنترل از راه دور به تدریج به دستگاه های نیمه خودکار یا کاملاً خودکار تبدیل میشوند که از پیاده سازی مبتنی بر هوش مصنوعی بهره میبرند. در این پروژه هدف ما هدایت پهپاد با استفاده از علائم دست مبتنی بر بینایی ماشین است که یک حوزه پژوهشی مهم در ترکیب هوش مصنوعی و رباتیک است. استفاده از حرکات دست در کنترل هواپیماهای بدون سرنشین در حال تبدیل شدن به یک روش محبوب برای تعامل است، این پایان نامه یک سیستم کامل برای کنترل هواپیماهای بدون سرنشین با استفاده از حرکات دست

<sup>&</sup>lt;sup>3</sup>Real-time

<sup>&</sup>lt;sup>4</sup>Accuracy

پیشنهاد می کند. سیستم پیشنهادی باید در زمان واقعی کار کند و دقت \*خوبی داشته باشد تا بتواند به بهترین نحو ممکن پهپاد را کنترل کند  $[\mathfrak{P}]$ .

در این روش، از سیستم بینایی ماشین به منظور تشخیص و تحلیل حرکات دست از روی تصاویر ویدئویی پهپاد استفاده می شود. با استفاده از الگوریتمهای یادگیری عمیق و شبکههای عصبی، سیستم قادر است علائم و حرکات دست را تشخیص داده و به تفسیر آنها بپردازد. سپس، براساس تحلیل این حرکات، دستورات مربوطه برای حرکت و کنترل پهپاد صادر می شود. بدین صورت این روش نه تنها از دقت بالا برای تشخیص و تفسیر حرکات دست برخوردار است، بلکه قابلیت ارائه یک رابط کاربری بین انسان و پهپاد را نیز فراهم می کند. به طوری که با استفاده از حرکات دست کاربر قادر است به راحتی و بدون نیاز به دستگاههای کنترل خارجی، پهپاد را هدایت کند [۷].

استفاده از حرکات دست برای کنترل پهپاد مزایای زیادی دارد. ابتدا باید گفت که حرکات دست یک شکل طبیعی ارتباطی هستند و استفاده از آنها برای کنترل پهپاد یک روش شهودی و طبیعی برای تعامل با فناوری است. این امر باعث می شود که کاربران بتوانند به راحتی و با کمترین تلاش پهپاد را کنترل کند و کنند. استفاده از حرکات دست به کاربر اجازه می دهد پهپاد را با سرعت و دقت بیشتری کنترل کند و محدودیتهای مرتبط با دستگاههای کنترل سنتی را کاهش دهد. همچنین، این روش، حرکت و دنبال کردن پهپاد را آسان تر می کند و امکان جابجایی پهپاد در فضا را بهبود می بخشد.

استفاده از علائم دست سبب کاهش نیاز به دستگاههای کنترل پیچیده می شود و به این ترتیب، پهپاد را برای طیف وسیعتری از کاربران قابل دسترس می کند. این امر به کاربرانی که با دستگاههای کنترل سنتی آشنایی ندارند، امکان استفاده آسان از پهپاد را می دهد. همچنین، با توجه به چالشهایی که از قبل بیان شده است، این روش خطرات مرتبط با اتصالات بی سیم بین کنترلر و پهپاد را کاهش می دهد و دقت در کنترل پهپاد در محیطهای پرتلاطم و مختلف را افزایش می دهد. همچنین، می توان به توانایی تشخیص حرکات دست و گستردگی حرکات کنترلی اشاره کرد.

<sup>&</sup>lt;sup>5</sup>Image Processing

<sup>&</sup>lt;sup>6</sup>Deep Neural Network

<sup>&</sup>lt;sup>7</sup>Convolutional Neural Network(CNN)

<sup>&</sup>lt;sup>8</sup>Image Classification

#### ۱-۳ هدف پروژه

هدف این پروژه کنترلکردن پهپاد با استفاده از پردازش تصویر  $^{6}$  در زمان واقعی است. برای پیادهسازی آن می توان از یک شبکه عصبی عمیق  $^{7}$  ، مانند یک شبکه عصبی کانولوشن  $^{7}$  ، استفاده کرد. دلیل استفاده از این معماری قابلیت استخراج خودکار ویژگیها با توجه به الگوریتم طبقهبندی تصاویر  $^{6}$  است. عملکرد شبکه عصبی کانولوشنال به این گونه است که ویژگیها را با توجه به لایههای پنهان می آموزد، همچنین می تواند تعداد پارامترها را بدون به خطر انداختن دقت مدل تغییر دهد. با گذشت زمان محققان معماریهای مختلفی از شبکه عصبی کانولوشن را برای دقت  $^{6}$  بهتر، زمان پردازش کمتر و پیچیدگی های معماریهای مطرح کردند.

#### **۱-۴** مراحل انجام پروژه

- ۱. جمع آوری دیتاست ویدیو
- ۲. استخراج فریمها از ویدیو (۳۰ فریم بر ثانیه) و کم کردن حجم عکسها
  - ٣.
  - ۴.
  - ۵.

### ۱-۵ چالشهای اجرای پروژه

وجود سختافزاری مناسب برای اجرای این پروژه الزامی است. پهپاد انتخاب شده در ابتدا باید شامل یک دوربین با رزولوشن نسبتا بالا (حداقل \*\*\* پیکسل باشد) تا ژست دست تا فاصله سه متری از پهپاد به وضوح گرفته شود. در ادامه از آنجایی که زمان واقعی در این پروژه از اهمیت بالایی برخوردار است پهپاد باید پردازنده نسبتا قوی داشته باشد تا بتواند به صورت مستقل و بدون نیاز به هیچگونه سخت افزار خارجی مدل را اجرا کرده، بدین صورت که در هر لحظه ورودی عکس گرفته شده از دوربین را به مدل بدهد و در کمترین زمان ممکن بتواند خروجی مدل را به دست آورده و دستور مورد نظر را روی

<sup>&</sup>lt;sup>9</sup>Accuracy

<sup>&</sup>lt;sup>10</sup>Complexity

پهپاد به اجرا درآورد. از دیدگاهی دیگر از آنجایی که اجرای یک مدل بینایی ماشین یک برنامه سنگین است و اجرای آن برای عموم پهپادها انرژی زیادی میطلبد، لذا باید پهپادی را انتخاب کرد که از شامل باطری بادوام و باکیفیت باشد که هم در هنگام اجرای مدل بتواند انرژی موردنیاز پردازنده را فراهم کند و همچنین عمر کوتاه آن به مرور زمان برای استفاده کننده آزاردهنده نباشد.

# فصل دوم موسیقی

#### ۱-۲ مدیاپایپ

برای این پروژه ما از مدل از قبل آموزش داده شده  $^{1}$  در کلاس مدیاپایپ که مخصوص نقاط عطف دست است استفاده میکنیم. مدیاپایپ از یک خط لوله یادگیری ماشین متشکل از چندین مدل که با هم کار می کنند استفاده می کند: یک مدل تشخیص کف دست  $^{7}$  که تصویر را از ورودی می گیرد و عکس محدوده دست را به عنوان خروجی دریافت میکند و یک مدل تشخیص نقاط عطف دست  $^{7}$  که عکس دست را به عنوان ورودی گرفته و مختصات  $^{7}$  نقطه کلیدی بندهای انگشتان دست را در ناحیه دست تشخیص می دهد.

#### ۱-۱-۲ مدل تشخیص کف دست

مدل تشخیص کف دست مدیاپایپ دارای دقت متوسط ۷.۹۵ درصد است که این دقت بالا با استفاده از استراتژیهای مختلف بهدست آمده است. ابتدا، به جای آشکار کردن دست  $^{\dagger}$  ، آشکار کردن کف دست را به مدل آموزش میدهند، زیرا پیدا کردن محدود از اجسام سفت و سخت مانند کف دست و مشت بسیار ساده تر از تشخیص دستها با انگشتان مفصلی است. علاوه بر این، از آنجایی که کف دستها اشیاء کوچکی هستند، الگوریتم سرکوب غیر حداکثری  $^{4}$  که یک تکنیک پس پردازش  $^{2}$  است و در تشخیص اشیا برای حذف تشخیص های تکراری  $^{7}$  و انتخاب مرتبط ترین اشیاء شناسایی شده استفاده می شود. این به کاهش مثبت کاذب  $^{7}$  و پیچیدگی محاسباتی  $^{9}$  یک الگوریتم تشخیص کمک می کند. تا بهترین محدوده مربعی  $^{17}$  با واریانس بالا  $^{17}$  را بدست آورد. [۸]

<sup>&</sup>lt;sup>1</sup>Pretrained

<sup>&</sup>lt;sup>2</sup>Palm detection model

<sup>&</sup>lt;sup>3</sup>Hand landmark model

<sup>&</sup>lt;sup>4</sup>hand detector

<sup>&</sup>lt;sup>5</sup>Non-maximum suppression

<sup>&</sup>lt;sup>6</sup>post-process

<sup>&</sup>lt;sup>7</sup>duplicate detections

<sup>&</sup>lt;sup>8</sup> false positive

<sup>&</sup>lt;sup>9</sup>computational complexity

<sup>&</sup>lt;sup>10</sup>bounding box

<sup>&</sup>lt;sup>11</sup>high scale variance

<sup>&</sup>lt;sup>12</sup>regression



شکل ۲-۱ ییییس

#### ۲-۱-۲ مدل تشخیص نقاط عطف دست

در این مرحله مکانیابی مختصات ۲۱ نقطه کلیدی بندهای انگشتان دست که شامل سه بعد است از طریق رگرسیون ۱۲ مختصات سه بعدی طریق رگرسیون ۱۲ مختصات سه بعدی برچسب زده شده ۱۳ آموزش دیده است برای پوشش بهتر ژستهای احتمالی دست و ارائه نظارت بیشتر بر ماهیت هندسه دست، این دیتاست از مدلهای دست مصنوعی با کیفیت بالا را نیز روی پسزمینه های مختلف ارائه می کند تا دقت را به بالاترین حد ممکن برساند. این مدل حتی در برابر دست های نیمه نیز عملکرد قوی نشان می دهد. [۸]

#### ۲-۲ اهمیت ژست دست

وقتی مردم صحبت می کنند، ژست می گیرند. ژست جزء اساسی زبان است که اطلاعات معنادار و منحصر به فردی را انتقال میدهد. ژستها به گوینده کمک میکنند تا اهداف خود را بهتر منعکس کند. آنها نقش های بسیاری را در ارتباط، یادگیری و درک هم برای افرادی که آنها را مشاهده می کنند و هم برای کسانی که آنها را ایجاد می کنند، ایفا می کنند. وقتی مردم صحبت می کنند، دستان خود را حرکت می دهند. به حرکات خود به خودی دست که در ریتم گفتار ایجاد می شوند، حرکات هم گفتاری ۱۴ نامیده می شوند و مردم از همه فرهنگ ها و پیشینه های زبانی شناخته شده ژست می گیرند و برای ارتباط از حرکات هم گفتاری برای رساندن بهتر مفهوم خود کمک می گیرند. در واقع، نوزادان قبل از اینکه اولین حرکات خود را بیان کنند، از انواع ژستها استفاده می کنند. دستهای ما به ما کمک می کنند صحبت

<sup>&</sup>lt;sup>13</sup>labeling

<sup>&</sup>lt;sup>14</sup>co-speech gestures

کنیم، فکر کنیم، و به خاطر بسپاریم، گاهی دانش منحصر به فردی را که هنوز نمی توان به زبان آورد، آشکار می کنند. به طوری که می توان گفت ژستها اغلب به عنوان زبان گفتاری ثانویه در نظر گرفته می شود.[۹] ژستها به ویژه زمانی مؤثر هستند که مزیتی نسبت به کلمات داشته باشند. [۱۰] توانایی در که شکل و حرکت دستها می تواند یک جزء حیاتی در بهبود تجربه کاربر ۱۵ در حوزهها و پلتفرمهای مختلف فناوری باشد. درک مفهوم ژست دست در زمان واقعی برای افراد به طور طبیعی وجود دارد، یک کار بینایی کامپیوتری کاملاً چالش برانگیز است، زیرا دست ها اغلب خود یا یکدیگر را مسدود می کنند مانند انسداد انگشت، کف دست و لرزش دست و فاقد الگوهای کنتراست بالا هستند.[۸]

#### ۲-۳ کنترل پهپاد

اکثر پهپادهای تجاری موجود در بازار یا دارای کنترلرهای طراحی شده ویژه هستند، یا دارای فرستنده سیگنال اختصاصی و برنامههای نرمافزاری هستند که روی دستگاههای دستی کاربران مانند تلفنهای همراه یا تبلتها اجرا میشوند. در هر دو مورد، کنترل کننده فرمانهایی را با اطلاعات دقیق از طریق کانالهای بیسیم مانند وای فای یا بلوتوث ارسال می کند. اخیراً محصولات تجاری وجود داشته است که حرکات دست را به عنوان یک مکانیسم کنترل قابل اجرا معرفی می کنند. برای گرفتن ژست ها، دو رویکرد وجود دارد.

- استفاده از دستکش های طراحی شده ویژه: کنترل کننده بر روی دستکشی که توسط کاربران استفاده می شود نصب می شود و در زمان واقعی انحراف، گام و چرخش دست را شناسایی می کند تا به حرکات مربوطه برای پهپاد را شناسایی و ارسال کند. محصولات عبارتند از MenKind Motion Control Drone
- استفاده از بینایی کامپیوتر از طریق دوربین: این دستگاهها از دوربین نصب شده روی پهپاد استفاده می کنند تا بتوانند در لحظه تشخیص دهند که دست کاربر کجاست و در چه حالتی قرار دارد تا پهپاد را کنترل کند. محصولات عبارتند از DJI Spark Drone

<sup>&</sup>lt;sup>15</sup>user experience

## كتابنامه

- [1] Walter, Ian and Khadr, Monette. Gesture controlled drone.
- [2] Puri, Vikram, Nayyar, Anand, and Raja, Linesh. Agriculture drones: A modern breakthrough in precision agriculture. *Journal of Statistics and Management Systems*, 20(4):507–518, 2017.
- [3] Hadri, Soubhi. Hand gestures for drone control using deep learning. 2018.
- [4] Zhu, Pengfei, Wen, Longyin, Bian, Xiao, Ling, Haibin, and Hu, Qinghua. Vision meets drones: A challenge. *arXiv preprint arXiv:1804.07437*, 2018.
- [5] Guvenc, Ismail, Koohifar, Farshad, Singh, Simran, Sichitiu, Mihail L, and Matolak, David. Detection, tracking, and interdiction for amateur drones. *IEEE Communications Magazine*, 56(4):75–81, 2018.
- [6] Hassanalian, Mostafa and Abdelkefi, Abdessattar. Classifications, applications, and design challenges of drones: A review. *Progress in Aerospace sciences*, 91:99–131, 2017.
- [7] Yoo, Minjeong, Na, Yuseung, Song, Hamin, Kim, Gamin, Yun, Junseong, Kim, Sangho, Moon, Changjoo, and Jo, Kichun. Motion estimation and hand gesture recognition-based human—uav interaction approach in real time. *Sensors*, 22(7):2513, 2022.
- [8] Zhang, Fan, Bazarevsky, Valentin, Vakunov, Andrey, Tkachenka, Andrei, Sung,

- George, Chang, Chuo-Ling, and Grundmann, Matthias. Mediapipe hands: On-device real-time hand tracking. *arXiv preprint arXiv:2006.10214*, 2020.
- [9] Clough, Sharice and Duff, Melissa C. The role of gesture in communication and cognition: Implications for understanding and treating neurogenic communication disorders. *Frontiers in Human Neuroscience*, 14:323, 2020.
- [10] Kang, Seokmin and Tversky, Barbara. From hands to minds: Gestures promote understanding. *Cognitive Research: Principles and Implications*, 1:1–15, 2016.