Type Reconstruction and Polymorphism Week 9 Martin Odersky

1

Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

Type checking: Given Γ , t and T, check whether $\Gamma \vdash t : T$

Type reconstruction: Given Γ and t, find a type T such that $\Gamma \vdash t : T$

Type checking and reconstruction seem difficult since parameters in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have many types.

Idea: : We construct all type derivations in parallel, reducing type reconstruction to a unification problem.

From Judgements to Equations

```
TP: Judgement \rightarrow \textbf{Equations}
TP(\Gamma \vdash t : T) =
\textbf{case } t \text{ of}
x : \{\Gamma(x) \stackrel{?}{=} T\}
\lambda x.t' : \textbf{let } a, b \text{ fresh in}
\{(a \rightarrow b) \stackrel{?}{=} T\} \quad \cup
TP(\Gamma, x : a \vdash t' : b)
t \ t' : \textbf{let } a \text{ fresh in}
TP(\Gamma \vdash t : a \rightarrow T) \quad \cup
TP(\Gamma \vdash t' : a)
```

Example

Let twice = $\lambda f.\lambda x.f(f(x))$.

Then twice gives rise to the following equaltions (see blackboard).

Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type as follows:

```
newInstance(\forall a_1, \ldots, a_n.S) =
let \ b_1, \ldots, b_n \ fresh \ in
[b_1/a_1, \ldots, b_n/a_n]S
TP(\Gamma \vdash t : T) =
case \ tof
x : \{newInstance(\Gamma(x)) \triangleq T\}
\ldots
```

5

Soundness and Completeness I

Definition: In general, a type reconstruction algorithm \mathcal{A} assigns to an environment Γ and a term t a set of types $\mathcal{A}(\Gamma, t)$.

The algorithm is sound if for every type $T \in \mathcal{A}(\Gamma,t)$ we can prove the judgement $\Gamma \vdash t:T$.

The algorithm is complete if for every provable judgement $\Gamma \vdash t : T$ we have that $T \in \mathcal{A}(\Gamma, t)$.

Theorem: TP is sound and complete. Specifically:

Here, tv denotes the set of free type varibales (of a term, and environment, an equation set).

7

Type Reconstruction and Unification

Problem:: Transform set of equations

$$\{T_i = U_i\}_{i=1,\ldots,m}$$

into equivalent substitution

$$\{a_j \mapsto T'_j\}_{j=1,\ldots,n}$$

where type variables do not appear recursively on their right hand sides (directly or indirectly). That is:

$$a_j \notin tv(T'_k)$$
 for $j = 1, \ldots, n, k = j, \ldots, n$

Substitutions

A substitution s is an idempotent mapping from type variables to types which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a = T with a not in tv(T).

Substitutions can be generalized to mappings from types to types by definining

$$s(T \to U) = sT \to sU$$

 $s(K[T_1, \dots, T_n]) = K[sT_1, \dots, sT_n]$

Substitutions are idempotent mappings from types to types, i.e. s(s(T)) = s(T). (why?)

The operator denotes composition of substitutions (or other functions): $(f \circ g) x = f(gx)$.

9

A Unification Algorithm

We present an incremental version of Robinson's algorithm (1965).

```
\begin{array}{lll} mgu & : & (Type \; \hat{=} \; Type) \to Subst \to Subst \\ mgu(T \; \hat{=} \; U) \; s & = & mgu'(sT \; \hat{=} \; sU) \; s \\ mgu'(a \; \hat{=} \; a) \; s & = & s \\ mgu'(a \; \hat{=} \; T) \; s & = & s \cup \{a \; \mapsto \; T\} \qquad \text{if } a \not \in tv(T) \\ mgu'(T \; \hat{=} \; a) \; s & = & s \cup \{a \; \mapsto \; T\} \qquad \text{if } a \not \in tv(T) \\ mgu'(T \; \to \; T' \; \hat{=} \; U \to U') \; s & = & (mgu(T' \; \hat{=} \; U') \circ mgu(T \; \hat{=} \; U)) \; s \\ mgu'(K[T_1, \, \ldots, \, T_n] \; \hat{=} \; K[U_1, \, \ldots, \, U_n]) \; s \\ & = & (mgu(T_n \; \hat{=} \; U_n) \circ \ldots \circ mgu(T_1 \; \hat{=} \; U_1)) \; s \\ mgu'(T \; \hat{=} \; U) \; s & = & error \qquad \text{in all other cases} \end{array}
```

Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations $\{T_i = U_i\}_{i=1,\ldots,m}$ if $uT_i = uU_i$, for all i. It is a most general unifier if for every other unifier u' of the same equations there exists a substitution s such that $u' = s \circ u$.

Theorem: Given a set of equations EQNS. If EQNS has a unifier then $mgu\ EQNS$ $\{\}$ computes the most general unifier of EQNS. If EQNS has no unifier then $mgu\ EQNS$ $\{\}$ fails.

11

From Judgements to Substitutions

```
\begin{split} TP: Judgement &\to Subst \\ TP(\Gamma \vdash t:T) = \\ & \textbf{case } t \textbf{ of} \\ & x &: & \text{mgu}(newInstance(\Gamma x) \triangleq T) \\ & \lambda x.t' : & \textbf{let } a, b \textbf{ fresh in} \\ & & \text{mgu}((a \to b) \triangleq T) & \circ \\ & & TP(\Gamma, x:a \vdash t':b) \\ & t \ t' &: & \textbf{let } a \textbf{ fresh in} \\ & & & TP(\Gamma \vdash t:a \to T) & \circ \\ & & & & TP(\Gamma \vdash t':a) \end{split}
```

Soundness and Completeness II

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

```
\begin{array}{ccc} \Gamma \ \vdash \ t:T & \text{iff} & T=r(s(t)) \\ & & \textbf{where} \\ & & t \text{ is a new type variable} \\ & & s=TP \ (\Gamma \ \vdash \ t:t) \ \{\} \\ & & r \text{ is a substitution on } tv(s\ t) \backslash tv(s\ \Gamma) \end{array}
```

13

Strong Normalization

Question: Can Ω be given a type?

```
\Omega = (\lambda x.xx)(\lambda x.xx) :?
```

What about Y?

Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If $\vdash t:T$, then there is a value V such that $t \to^* V$.

Corollary: Simply typed lambda calculus is not Turing complete.

Polymorphism

In the simply typed lambda calculus, a term can have many types.

But a variable or parameter has only one type.

Example:

```
(\lambda x.xx)(\lambda y.y)
```

is untypable. But if we substitute actual parameter for formal, we obtain

```
(\lambda y.y)(\lambda y.y): a \to a
```

Functions which can be applied to arguments of many types are called polymorphic.

15

Polymorphism in Programming

Polymorphism is essential for many program patterns.

```
Example: map

def map f xs =
   if (isEmpty (xs)) nil
   else cons (f (head xs)) (map (f, tail xs))
...
names: List[String]
nums : List[Int]
...
map toUpperCase names
map increment nums
```

Without a polymorphic type for map one of the last two lines is always illegal!

Forms of Polymorphism

Polymorphism means "having many forms".

Polymorphism also comes in several forms.

- Universal polymorphism, sometimes also called generic types: The ability to instantiate type variables.
- Inclusion polymorphism, sometimes also called subtyping: The ability to treat a value of a subtype as a value of one of its supertypes.
- Ad-hoc polymorphism, sometimes also called overloading: The ability to define several versions of the same function name, with different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

17

Explicit Polymorphism

We introduce a polymorphic type $\forall a.T$, which can be used just as any other type.

We then need to make introduction and elimination of \forall 's explicit. Typing rules:

$$(\forall \mathbf{E}) \frac{\Gamma \vdash t : \forall a.T}{\Gamma \vdash t[U] : [U/a]T} \qquad (\forall \mathbf{I}) \frac{\Gamma \vdash t : T}{\Gamma \vdash \Lambda a.t : \forall a.T}$$

We also need to give all parameter types, so programs become verbose.

Example:

```
def map [a][b] (f: a -> b) (xs: List[a]) =
  if (isEmpty [a] (xs)) nil [a]
  else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))
...
names: List[String]
nums : List[Int]
...
map [String] [String] toUpperCase names
map [Int] [Int] increment nums
```

19

Translating to System F

The translation of map into a System-F term is as follows: (See blackboard)

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we have a new syntactic category of type schemes. Syntax:

Type Scheme
$$S ::= T \mid \forall a.S$$

Type schemes are not fully general types; they are used only to type named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its inventors. (The original treatment uses let ... in ... rather than val ...; ...).

21

Hindley/Milner Typing rules

(VAR)
$$\Gamma, x : S, \Gamma' \vdash x : S$$
 $(x \notin dom(\Gamma'))$

$$(\forall \mathbf{E}) \ \frac{\Gamma \vdash t : \forall \mathbf{a}.T}{\Gamma \vdash t : [U/a]T} \qquad (\forall \mathbf{I}) \ \frac{\Gamma \vdash t : T \qquad a \not\in tv(\Gamma)}{\Gamma \vdash t : \forall \mathbf{a}.T}$$

(Let)
$$\frac{\Gamma \vdash t : \mathbf{S} \qquad \Gamma, x : \mathbf{S} \vdash t' : T}{\Gamma \vdash \mathbf{let} \ x = t \ \mathbf{in} \ t' : T}$$

The other two rules are as in simply typed lambda calculus:

$$(\rightarrow \mathbf{I}) \ \frac{\Gamma, x: T \ \vdash \ t: U}{\Gamma \ \vdash \ \lambda x. t: T \rightarrow U} \ (\rightarrow \mathbf{E}) \ \frac{\Gamma \ \vdash \ M: T \rightarrow U \quad \Gamma \ \vdash \ N: T}{\Gamma \ \vdash \ M \ N: U}$$

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner system.

```
let map = \lambda f. \lambda xs in if (isEmpty (xs)) nil else cons (f (head xs)) (map (f, tail xs)) ... // names: List[String] // nums : List[Int] // map : \forall a. \forall b. (a \rightarrow b) \rightarrow List[a] \rightarrow List[b] ... map toUpperCase names map increment nums
```

23

Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic. I.e.

$$(\lambda x.xx)(\lambda y.y)$$

is still ill-typed, even though the following is well-typed:

let
$$id = \lambda y.y$$
 in id id

With explicit polymorphism the expression could be completed to a well-typed term:

```
(\Lambda a.\lambda x: (\forall a: a \to a).x[a \to a](x[a]))(\Lambda b.\lambda y.y)
```

The Essence of let

We regard

$$\mathbf{let} \ x = t \ \mathbf{in} \ t'$$

as a shorthand for

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM' be the type system that results if we replace rule (Let) from the Hindley/Milner system HM by:

$$(\text{Let'}) \ \frac{\Gamma \ \vdash \ t:T \qquad \Gamma \ \vdash \ [t/x]t':U}{\Gamma \ \vdash \ \textit{let} \ x = t \ \textit{in} \ t':U}$$

25

Theorem: $\Gamma \vdash_{HM} t : S \text{ iff } \Gamma \vdash_{HM'} t : S$

The theorem establishes the following connection between the Hindley/Milner system and the simply typed lambda calculus F_1 :

Corollary: Let t^* be the result of expanding all \boldsymbol{let} 's in t according to the rule

let
$$x = t$$
 in $t' \rightarrow [t/x]t'$

Then

$$\Gamma \vdash_{HM} t: T \ \Rightarrow \ \Gamma \vdash_{F_1} t^*: T$$

Furthermore, if every let-bound name is used at least once, we also have the reverse:

$$\Gamma \vdash_{F_1} t^* : T \Rightarrow \Gamma \vdash_{HM} t : T$$

Principal Types

Definition: A type T is a generic instance of a type scheme $S = \forall \alpha_1 \dots \forall \alpha_n. T'$ if there is a substitution s on $\alpha_1, \dots, \alpha_n$ such that T = sT'. We write in this case $S \leq T$.

Definition: A type scheme S^\prime is a generic instance of a type scheme S iff for all types T

$$S' \le T \implies S \le T$$

We write in this case $S \leq S'$.

27

Definition: A type scheme S is principal (or: most general) for Γ and t iff

- $\Gamma \vdash t : S$
- $\bullet \ \Gamma \ \vdash \ t:S' \ \text{implies} \ S \leq S'$

Definition: A type system TS has the principal typing property iff, whenever $\Gamma \vdash_{TS} t : S$ then there exists a principal type scheme for Γ and t.

Theorem:

- 1. HM' without let has the p.t.p.
- 2. HM' with let has the p.t.p.
- 3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed lambda calculus. (2.): Expand all \mathbf{let} 's and apply (1.). (3.): Use equivalence between HM and HM'.

These observations could be used to come up with a type reconstruction algorithm for ${\cal H}{\cal M}.$ But in practice one takes a more direct approach.

29

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply typed lambda calculus. We only have to add a clause for ${m let}$ expressions:

```
TP: Judgement \rightarrow Subst \rightarrow Subst TP(\Gamma \vdash t:T) \ s = \mathbf{case} \ t \ \mathbf{of} ... \mathbf{let} \ x = t_1 \ \mathbf{in} \ t_2 \ : \ \mathbf{let} \ a, b \ \mathsf{fresh} \ \mathbf{in} \mathbf{let} \ s_1 = TP \ (\Gamma \vdash t_1:a) \ \mathbf{in} TP \ (\Gamma, x: \mathbf{gen}(s_1 \ \Gamma, s_1 \ a) \ \vdash \ t_2:b) \ s_1 where \mathbf{gen}(\Gamma, T) \ = \ \forall tv(T) \backslash tv(\Gamma).T.
```

31

