

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ

Обработка разреженных матриц

Вариант 5

Студент	Ильченко Е. А.
Группа	ИУ7-34Б

Название предприятия НУК ИУ МГТУ им. Н. Э. Баумана

Студент	 Ильченко Е. А.
Преподаватель	Силантьева А. В

Описание условия задачи

Первая разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- вектор JA, в элементе Nk которого находится номер компонент в A и IA, с которых начинается описание столбца Nk матрицы A.

Вторая разреженная матрица хранится в форме 3-х объектов:

- вектор В содержит значения ненулевых элементов;
- вектор ЈВ содержит номера столбцов для элементов вектора А;
- вектор IB, в элементе Nk которого находится номер компонент в B и JB, с которых начинается описание строки Nk матрицы B.
- 1. Смоделировать операцию умножения двух матриц, хранящихся в указанной форме, с получением результата в форме хранения первой матрицы.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Описание ТЗ

1. Описание исходных данных и результатов работы программы

Входные данные:

Пользовательская команда из доступных и необходимые аргументы определенного сценария:

- 1: Ввести матрицы
- 2: Вывести матрицы в стандартном виде
- 3: Вывести матрицы в разреженном виде
- 4: Умножить матрицы в стандартном виде
- 5: Умножить матрицы в разреженном виде
- 6: Меню
- 7: Сравнение эффективности матриц
- 0: Выйти

При вводе матрицы пользователь может выбрать случайное создание матрицы или ручной ввод матрицы.

При случайном вводе матрицы вводятся размеры матрицы и процент заполнения

матрицы.

При ручном вводе матрицы пользователь вводит размеры матрицы и количество ненулевых элементов. Далее координатным методом вводятся координаты элемента и его значение.

Выходные данные:

Матрицы в стандартном и разреженном виде, результат умножения матриц в стандартном и разреженном виде. Сравнение эффективности двух алгоритмов умножения матриц.

2. Описание задачи, реализуемой в программе

Задача, реализуемая в программе, заключается в реализации алгоритмов обработки разреженных матриц, сравнении эффективности применения этих алгоритмов со стандартными алгоритмами обработки матриц при различном размере матриц и степени их разреженности.

3. Способ обращения к программе

Запуск исполняемого файла

```
./app.exe
```

Далее выбирается, какой пункт меню выполнить

4. Описание возможных аварийных ситуаций и ошибок пользователя

- Неверный ввод пункта меню: сообщение "Неверная команда"
- Перемножение матриц с размерами, не подходящими для перемножения: сообщение "Ошибка: матрицы не могут быть перемножены"
- Неверный ввод количества ненулевых элементов матрицы: сообщение "Ошибка ввода"
- Неверный ввод количество строк матрицы: сообщение "Ошибка ввода"
- Неверный ввод количества столбцов матрицы: сообщение "Ошибка ввода"
- Неверный ввод ненулевого элемента матрицы: сообщение "Ошибка: некорректные индексы или значение элемента."
- Неверный ввод индекса элемента матрицы: сообщение "Ошибка: некорректные индексы или значение элемента."

5. Описание внутренних структур данных

```
typedef struct
{
   double *A;
```

```
int *IA;
   int *JA;
   int nonzeros;
   int rows;
   int cols;
} SparseMatrixA;
typedef struct
{
   double *B;
   int *JB;
   int *IB;
   int nonzeros;
   int rows;
   int cols;
} SparseMatrixB;
typedef struct
{
   double **data;
   int rows;
   int columns;
   int nonzeros;
} Matrix;
```

6. Описание функций

```
void generate_dense_matrix(Matrix *matrix, int rows, int cols, double
density);
```

Генерация случайной матрицы

```
void input_dense_matrix(Matrix *matrix, int rows, int cols, int density);
```

Координатный ввод матрицы

```
void convert_matrix_to_sparse_matrixA(Matrix *matrix, SparseMatrixA
*sparse_matrix);
```

Конвертация стандартной матрицы в первую форму хранения

```
void convert_matrix_to_sparse_matrixB(Matrix *matrix, SparseMatrixB
*sparse_matrix);
```

Конвертация стандартной матрицы во вторую форму хранения

```
void print_dense_matrix(const Matrix *matrix);
```

```
void print_sparse_matrixA(const SparseMatrixA *matrix);
```

Вывод разреженной матрицы в первой форме хранения

```
void print_sparse_matrixB(const SparseMatrixB *matrix);
```

Вывод разреженной матрицы во второй форме хранения

```
SparseMatrixA *multiply_sparse_matrices(const SparseMatrixA *matrixA, const
SparseMatrixB *matrixB);
```

Умножение разреженных матриц

```
void multiply_dense_matrices(Matrix *matrixA, Matrix *matrixB, Matrix
*result_matrix);
```

Стандартное умножение матриц

```
void free_sparse_matrixA(SparseMatrixA *matrix);
```

Освобождение памяти из под матрицы в первой форме хранения

```
void free_sparse_matrixB(SparseMatrixB *matrix);
```

Освобождение памяти из под матрицы во второй форме хранения

```
void free_matrix(Matrix *matrix);
```

Освобождение памяти из под стандартной матрицы

7. Описание алгоритмов

Алгоритм умножения стандартных матриц

Проверка совместимости матриц

- 1. Проверяется условие: количество столбцов матрицы A должно быть равно количеству строк матрицы B
- 2. Если условие не выполняется, алгоритм завершает выполнение с ошибкой.

Инициализация результирующей матрицы

- 1. Устанавливаются размеры результирующей матрицы: количество строк rows=A->rows и количество столбцов columns=B->columns
- 2. Для хранения данных результирующей матрицы выделяется память, инициализированная нулями.

Перебор строк и столбцов результирующей матрицы

1. Внешний цикл проходит по всем строкам результирующей матрицы

- 2. Вложенный цикл проходит по всем столбцам результирующей матрицы Расчёт элемента результирующей матрицы
 - 1. Для каждого элемента результирующей матрицы R[i][j] выполняется вычисление суммы произведений элементов:
 - а. Внутренний цикл проходит по всем индексам столбцов матрицы А к
 - b. К накопленной сумме добавляется произведение элементов A[i][k] и B[k][j]
- 2. Таким образом, R[i][j] становится равным сумме всех произведений.

Повторение для всех элементов результирующей матрицы

- 1. Шаги из пункта 4 повторяются для каждой комбинации строк матрицы A и столбцов матрицы B до полного заполнения результирующей матрицы Возврат результата
 - 1. После завершения всех вычислений возвращается результирующая матрица, содержащая произведение двух входных матриц
 - 2. Убедитесь, что память, выделенная для матриц, освобождается после их использования

Алгоритм умножения разреженных матриц

Проверка совместимости матриц

- 1. Условие для умножения: количество столбцов матрицы A должно быть равно количеству строк матрицы B
- 2. Если условие не выполняется, выводится ошибка, и алгоритм завершается. Инициализация результирующей матрицы
 - 1. Создаётся результирующая матрица R с параметрами:
 - а. количество строк равно количеству строк матрицы А
 - b. количество столбцов равно количеству столбцов матрицы В
 - с. массивы А, ІА, ЈА, где:
 - і. А массив для хранения ненулевых элементов;
 - іі. ІА массив индексов строк ненулевых элементов;
 - ііі. ЈА массив указателей на начало каждого столбца.
- 2. Инициализируется счётчик ненулевых элементов nonzeros_count=0 Инициализация временных массивов
 - 1. Создаются вспомогательные массивы:
 - a. temp values для накопления промежуточных результатов умножения;
 - b. is_nonzero для отслеживания строк, которые содержат ненулевые значения в текущем столбце.

Перебор столбцов результирующей матрицы

- 1. Внешний цикл перебирает столбцы результирующей матрицы R от 0 до B->cols-1
- 2. В каждом цикле:

- a. Сбрасываются массивы temp_values и is_nonzero, обнуляя их значения. Обход строк матрицы в для текущего столбца j
- Вложенный цикл перебирает строки к матрицы в
 - 1. Для каждого ненулевого элемента в строке к матрицы В:
 - а. Перебираются ненулевые элементы строки к матрицы А
 - b. Если столбец текущего элемента матрицы В совпадает с текущим столбцом j:
 - і. Вычисляется произведение значений элементов из матриц А и В
 - ii. Результат добавляется в соответствующую строку массива temp_values
 - ііі. Строка отмечается как ненулевая в із nonzero

Добавление ненулевых элементов в результирующую матрицу

- 1. После вычислений для столбца ј:
 - а. Ненулевые значения из массива temp_values добавляются в массив R->A
 - b. Индексы строк этих значений записываются в массив R->IA
 - с. Счётчик nonzeros_count увеличивается для каждого добавленного элемента.
 - d. Обновляется массив R->JA[j+1], указывающий на конец текущего столбца.

Освобождение временных массивов

1. После обработки всех столбцов результирующей матрицы освобождаются массивы temp_values и is_nonzero.

Возврат результата

- 1. Возвращается результирующая разреженная матрица R, содержащая:
 - а. массив ненулевых значений R->A
 - b. массив индексов строк R->IA
 - с. массив указателей на начало столбцов R->JA

Тесты

Тест	Входные данные	Выходные данные
Заполнить матрицы и вывести на экран в стандартном формате, ввод с клавиатуры	Количество строк, столбцов и количество ненулевых элементов для матрицы А: 2 2 2 Элемент 1: 0 1 1 Элемент 2: 1 0 1 Количество строк,	Матрица (2x2): 0.00 1.00 1.00 0.00 Матрица (2x2): 5.00 3.00 0.00 0.00

	столбцов и количество ненулевых элементов для матрицы В: 2 2 2 Элемент 1: 0 1 3 Элемент 2: 0 0 5	
Вывести матрицы в разреженном виде	Матрица А: 0.00 1.00 1.00 0.00 Матрица В: 5.00 3.00 0.00 0.00	Матрица А Значения ненулевых элементов (А): 1.00 1.00 Индексы строк (ІА): 1 0 Индексы начала столбцов (ЈА): 0 1 2 Матрица В Значения ненулевых элементов (В): 5.00 3.00 Индексы столбцов (ЈВ): 0 1 Индексы начала строк (ІВ): 0 2 2
Умножить матрицы и вывести в стандартном виде	Матрица А: 0.00 1.00 1.00 0.00 Матрица В: 5.00 3.00 0.00 0.00	Матрица (2x2): 0.00 0.00 5.00 3.00
Умножить матрицы и вывести в разреженном виде	Матрица А: 0.00 1.00 1.00 0.00 Матрица В: 5.00 3.00 0.00 0.00	Значения ненулевых элементов (A): 5.00 3.00 Индексы строк (IA): 1 1 Индексы начала столбцов (JA): 0 1 2
Ввод неверной команды	Команда: "а"	Неверная команда
Ввод числа 4 при выборе	4	Ошибка ввода

способа задания матрицы		
Неверный ввод количество строк матрицы	-1	Ошибка ввода
Неверный ввод количества столбцов матрицы	-1	Ошибка ввода
Перемножение матриц с размерами, не подходящими для перемножения	Матрица 2x2 и матрица 3x3	Ошибка: матрицы не могут быть перемножены
Неверный ввод количества ненулевых элементов	-1	Ошибка ввода
Неверный ввод ненулевого элемента	0	Ошибка: некорректные индексы или значение элемента.
Неверный ввод индекса элемента матрицы	-1	Ошибка: некорректные индексы или значение элемента.

Оценка эффективности

Эффективность по времени/памяти считалась путем замера 100 раз методов умножения стандартных матриц и разреженных матриц и усреднения результатов Измерения проводились на MacBook Pro 13 2019

Матрица 30х30

Заполненность 1%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	164950.00	21600	92.19 %	97.11 %
Разреженные	12880.00	624		

Заполненность 10%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	147530.00	21600	57.01 %	73.83 %
Разреженные	63430.00	5652		

Заполненность 20%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	147230.00	21600	-26.97 %	43.22 %
Разреженные	186940.00	12264		

Заполненность 25%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	146230.00	21600	-76.11 %	30.33 %
Разреженные	257530.00	15048		

Заполненность 30%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	140450.00	21600	-135.62 %	21.50 %
Разреженные	330930.00	16956		

Заполненность 40%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	140770.00	21600	-275.41 %	8.83 %
Разреженные	528460.00	19692		

Заполненность 50%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	164090.00	21600	-433.02 %	-1.72 %
Разреженные	874640.00	21972		

Матрица 70х70

Заполненность 1%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	2333910.00	117600	96.24 %	97.84 %
Разреженные	87640.00	2544		

Заполненность 10%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	2204140.00	117600	36.25 %	63.69 %
Разреженные	1405060.00	42696		

Заполненность 20%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	1836650.00	117600	-115.74 %	31.92 %
Разреженные	3962420.00	80064		

Заполненность 25%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	1793990.00	117600	-220.45 %	24.81 %

Разреженные	5748840.00	88428		
-------------	------------	-------	--	--

Заполненность 30%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	2068210.00	117600	-272.85 %	19.33 %
Разреженные	7711240.00	94872		

Заполненность 40%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	1810520.00	117600	-624.90 %	9.28 %
Разреженные	13124540.00	106692		

Заполненность 50%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	2259870.00	117600	-828.10 %	-0.72 %
Разреженные	20973930.00	118452		

Матрица 100х100

Заполненность 1%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	5362370.00	240000	96.50 %	97.94 %
Разреженные	187580.00	4944		

Заполненность 10%

Вид матрицы	Время, нс	Память, байт	Процентное	Процентное
			соотношение	соотношение

			времени	памяти
Стандартные	6674330.00	240000	-15.20 %	57.57 %
Разреженные	7689140.00	101832		

Заполненность 20%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	8830430.00	240000	-90.13 %	30.41 %
Разреженные	16789540.00	167016		

Заполненность 25%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	8948420.00	240000	-201.16 %	24.57 %
Разреженные	26949160.00	181044		

Заполненность 30%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	10467510.00	240000	-259.92 %	19.49 %
Разреженные	37674670.00	193212		

Заполненность 40%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	5339220.00	240000	-947.76 %	9.49 %
Разреженные	55942140.00	217212		

Заполненность 50%

Вид матрицы	Время, нс	Память, байт	Процентное соотношение времени	Процентное соотношение памяти
Стандартные	5197090.00	240000	-1534.38 %	-0.50 %
Разреженные	84940120.00	241212		

Вывод

В ходе лабораторной работы были реализованы алгоритмы обработки разреженных матриц, также было проведено сравнение эффективности применения этих алгоритмов со стандартными алгоритмами обработки матриц при различном размере матриц и степени их разреженности. Было выяснено, что при малой степени заполненности матриц хранение их в формате разреженных более эффективно, чем хранение в стандартном формате. Так при одном проценте заполненности матрицы алгоритм умножения для разреженных матриц работает быстрее примерно на 90% по сравнению с алгоритмом умножения для стандартных матриц. Однако при увеличении заполненности эффективность как по времени, так и по объему занимаемой памяти снижается. В данной работе при заполненности 20% и размере матрицы 30х30 алгоритм умножения в формате разреженных матриц по времени становится неэффективным (-26.97 %%), а по объему - при заполненности 50% и малых размерах матриц (-1.72 %).

Ответы на контрольные вопросы

1. Что такое разреженная матрица, какие схемы хранения таких матриц Вы знаете?

Разреженная матрица характеризуется преобладанием нулевых элементов. Она используется в таких областях, как обработка изображений, анализ графов и решение систем уравнений. Для хранения таких матриц применяются различные методы, включая линейные связные списки, диагональные схемы для симметричных матриц и другие связные структуры. Одним из самых популярных методов является "разреженный строчный формат" Чанга и Густавсона. Этот метод требует минимальных затрат памяти и эффективен при выполнении различных операций, таких как сложение и умножение матриц, перестановка строк и столбцов, транспонирование и решение систем уравнений.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Для стандартной матрицы требуется память объемом n * m ячеек, где n - 3то количество строк, а m - 6 количество столбцов. Разреженная матрица обычно требует меньше памяти, поскольку сохраняет только ненулевые элементы, и объем используемой памяти зависит от выбранной схемы хранения. Например, для схемы хранения CSC необходимо 2 * k + n + 1 ячеек памяти, где k - 6 количество ненулевых элементов, а n - 6 количество столбцов.

3. Каков принцип обработки разреженной матрицы?

Работа с разреженной матрицей отличается от работы с обычной. Главный подход в обработке разреженной матрицы заключается в исключении операций с нулевыми элементами, что снижает вычислительные и памятные затраты.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Стандартные алгоритмы обработки матриц наиболее эффективны, когда матрицы содержат преимущественно ненулевые элементы и имеют небольшие размеры. Это зависит от "плотности" разреженной матрицы: чем больше ненулевых элементов, тем менее эффективным становится использование схемы хранения разреженной матрицы. В случае плотной матрицы или когда количество ненулевых элементов невелико, применение стандартных алгоритмов может быть более эффективным.