

Service Manual

Color Computer Monitor

MODEL TX-1441AE

Chassis No. X54

CONTENTS

SAFETY PRECAUTIONS	1
SPECIFICATIONS	2
DIMENSIONS	15
COMPONENT LOCATION	17
CONTROL LOCATION	18
DISASSEMBLY INSTRUCTIONS	19
CAUTION FOR ADJUSTMENT REPAIR	23
CAUTION FOR SERVICING	23
ADJUSTMENT PROCEDURE	24
CIRCUIT BOARD-SOLDER VIEW	44
BLOCK DIAGRAM	46
SCHEMATIC DIAGRAM	47
CONNECTIONS	51
TROUBLE SHOOTING HINTS	52
EXPLODED VIEW	59
REPLACEMENT PARTS LIST	60

Panasonic

Matsushita Electric Industrial Co., Ltd.

Central P.O. Box 288, Osaka 530-91, Japan

SAFETY PRECAUTIONS

1 CAUTION

No modification of any circuit should be attempted. Service work should only be performed after you are thoroughly familiar with all of the following safety checks and servicing guide lines.

2 SAFETY CHECK

Care should be taken while servicing this CRT display because of the high voltage used in the deflection circuits. These voltages are exposed in such area as the associated flyback and yoke circuits.

3 FIRE & SHOCK HAZARD

- 3-1 Insert an isolation transformer between the CRT display and AC power line before servicing the chassis.
- 3-2 In servicing pay attention to original lead dress especially in the high voltage circuit. If a short circuit is found, replace all parts which have been overheated as a result of the short circuit.
- 3-3 All the protective devices must be reinstalled per original design.
- 3-4 Soldering must be inspected for possible cold solder joints, frayed leads, damaged insulation, solder splashes or sharp solder points. Be certain to remove all foreign material.

4 LEAKAGE CURRENT COLD CHECK

- 4-1 Unplug the AC cord and connect a jumper between the two prongs on the plug.
- 4-2 Turn the CRT display power switch "on"
- 4-3 Measure the resistance value with an ohmmeter between the jumpered AC plug and each exposed metallic part on the CRT display such as the metal frame screwheads, control shafts, etc. When the exposed metallic part has a return path to the chassis, the reading should be 1.8 megaohm minimum

5 LEAKAGE CURRENT HOT CHECK

- 5-1 Plug the AC cord directly into the AC outlet. Do not use an isolation transformer during this check.
- 5-2 Connect a 1500 ohm, 10 watt resistor, paralleled by a $0.15\mu F$ capacitor between each exposed metallic part and a good earth ground (as shown in Figure 1).
- 5-3 Use an AC voltmeter with 1000 ohm/volt or more sensitivity and measure the AC voltage across the combination 1500 ohm resistor and $0.15\mu F$ capacitor.
- 5-4 Move the resistor connection to each exposed metallic part and measure the voltage.
- 5-5 Reverse the polarity of the AC plug in the AC outlet and repeat the above measurement.
- 5-6 Voltage measured must not exceed 7.5 volt RMS, from any exposed metallic part to ground. A leakage current tester may be used in the above hot check, in which case any current measured must not exceed 5.0 milliamp. In the case of a measurement exceeding the 5.0 milliamp value a rework is required to eliminate the chance of a shock hazard.

Note: High voltage is present when this CRT display is operating. Always discharge the anode of the picture tube to the display chassis to prevent shock hazard.

Figure 1

6 IMPLOSION PROTECTION

All Panasonic picture tubes are equipped with an integral implosion protection system, but care should be taken to avoid damage and scratching during installation. Use only Panasonic replacement picture tubes.

7 X-RADIATION

WARNING: The only potential source of X-Radiation is the picture tube. However when the high voltage circuitry is operating properly there is no possibility of X-Radiation problem. The basic precaution which must be exercised is to keep the high voltage at the following factory-recommended level.

Note: It is important to use an accurate periodically calibrated high voltage meter.

- 7-1 To measure the high voltage, use a high impedance high voltage meter, connect (-) to chassis and (+) to the CRT anode button.
- 7-2 Turn the Brightness control fully counterclockwise.
- 7-3 Measure the high Voltage. The high voltage meter should indicate at the following factory-recommended level:
- 7-4 If the upper meter indication exceeds the maximum level, immediate service is required to prevent the possibility of premature component failure.
- 7-5 To prevent X-Radiation possibility, it is essential to use the specified picture tube.
- 7-6 The nominal high voltage is 25KV and must not exceed 27.5K at zero beam current at rated voltage.

IMPORTANT SAFETY NOTICE

There are special components used in Panasonic CRT displays which are important for safety. These parts are identified by the international symbol Δ on the schematic diagram and on the replacement parts list. It is essential that these critical parts should be replaced with manufacturer's specified parts to prevent X-RADIATION, shock, fire or other hazards. Do not modify the original design without written permission of the Panasonic Industrial Company or this will void the original parts and labor guarantee.

SPECIFICATIONS

1. SCOPE

The purpose of this specification is to describe the frame type color display monitor which is able to function for MULTI modes.

1.1 FEATURES

- (1) This monitor all frequencies between 15.5 kHz and 36 kHz.
- (2) It is compatible with the IBM PC, PC/XT, PC/AT, PS2 and look-alikes.
- (3) It is compatible the IBM Color Graphics Adapter, the IBM Enhanced Graphics Adapter, the IBM Professional Graphics Controller and other IBM compatible graphics adapter.
- (4) The swivel base allows adjustment of the vertical angle and horizontal direction of the monitor to the most suitable position.
- (5) It offers both TTL and ANALOG signal inputs, and in the ANALOG mode can display an unlimited palette of colors depending on the graphics board and software being used.

1.2 PANASYNC SPECIAL FEATURES

- (1) PANASONIC World-famous technology, SST DY improves greatly, misconvergence and distortion.
- (2) 2-WAY 16 Colors
2 kinds of 16 colors available, Yellow colored 16-colors, and Brown colored 16-colors.

2. MECHANICAL DESCRIPTION

2.1 Dimensions

Height : 279 mm (11.0") typ.
Width : 330 mm (13.0") typ.
Depth : 408 mm (16.1") typ.
Net weight : 12.2 kg typ.
(Monitor only)

3. CONSTRUCTION

3.1 Outline

3.1.1 Auto/Manual switch

This switch selects either the IBM mode when AUTO or the manual mode when MANUAL.

When this switch is AUTO, MONITOR automatically works in the IBM mode and adjusts itself to the scanning frequency, resolution and color requirements of the IBM compatible graphics adapter CGA/EGA/PGC being used.

When this switch is MANUAL, the user must manually select the number of colors (8/16/64) needed by the graphics adapter being used with the COLOR SWITCH (see 3.1.3 below).

Refer to instructions accompanying the graphics adapter being used for information on how many colors the adapter can display.

3.1.2 Color switch

The three color configurations (8/16/64) necessary when using non-IBM compatible graphics adapters can be set using No. 1 and 2 of the dip switches as shown below. Refer to instructions accompanying the graphics adapter being used for information on how many colors the adapter can display.

Color Mode	DIP SWITCH (SW1303)	
	No. 1	No. 2
8 Colors	OFF	OFF
16 Colors (Yellow)	ON	OFF
16 Colors (Brown)	OFF	ON
64 Colors	ON	ON

Note :

These switches should be set correctly in relation to the input signal of the graphics adapter being used. Refer to instructions accompanying the graphics adapter for information on the input signal and refer to No. 3.1.4 below.

3.1.3 TTL/ANALOG switch

Used to select an input video signal-either TTL or ANALOG - of the graphics adapter. It is important to determine whether the input signal of the graphics adapter being used is ANALOG or TTL prior to connecting the adapter with your personal computer. Refer to instructions accompanying the graphics adapter for information on the input signal.

3.1.4 Text switch

This switch controls the text mode of MONITOR.

When it is ON, the text of the display will appear in one color selected by the TEXT COLOR SWITCH (No. 3, 4 and 5 of the dip switch on the REAR of MONITOR), regardless of the colors of the software program being used.

When it is OFF, the color of the software program being used will again be displayed. The diagram below of the dip switches shows how to display text in your choice of seven colors.

TEXT COLOR	DIP SWITCH (SW1303)		
	3 R	4 G	5 B
RED	ON	OFF	OFF
GREEN	OFF	ON	OFF
BLUE	OFF	OFF	ON
YELLOW	ON	ON	OFF
CYAN	OFF	ON	ON
MAGENTA	ON	OFF	ON
WHITE	ON	ON	ON

NOTE :

The text switch works only in the TTL mode.

3.2 CRT characteristics

Size : 33 cm (14 inch) diagonal
 Matrix : Black opaque material
 Matrix type : Negative guard band
 Faceplate type : Contrast enhancement,
 Direct Etched
 CRT type No. M34JDJ80X
 Phosphor : P22
 Persistance : Short
 Array : Dot trios
 Trio pitch : 0.31 mm typ. at center

4. ELECTRIC PERFORMANCE

4.1 Power Supply

Input voltage : AC 90 - 144V/180 - 264V
 Input frequency : 48 ~ 62 Hz
 Input current : 0.8A max. (at 230V AC)
 Power : 90W max.

4.2 Input signals

VIDEO	TTL level positive Analog 0.6V p-p/75Ω positive
SYNC.	Separate sync. TTL level Horizontal sync. Positive/Negative Vertical sync. Positive/Negative
	Composite sync. TTL level Positive/Negative
	Composite sync. On green video Sync. 0.3V p-p Negative (Video 0.6V p-p positive)

4.3 Synchronization

Horizontal 15.5 to 36 kHz
 Vertical 50 to 100 Hz

4.4 Signal timing

See page 9.

4.5 Video out

Amplifier response

The video amplifier shall produce a drive signal at the cathodes of the CRT of sufficient amplitude to produce a spot luminance of maximum luminance (RA, GA, BA, RB, GB, BB = H), with rise and fall times of less than 30 nsec from 10% to 90% pulse level.

5. OPTICAL CHARACTERISTICS

5.1 Image test condition

Character : All "H" character
 Color : Green 2/3 level
 Brightness
 controls : Max. (without background)
 Contrast control: Max.
 View direction : Parallel to the CRT axis
 Ambient
 Temperature : Room temperature
 Supply voltage : AC 230V, 50 Hz
 Terrestrial
 magnetism : Horizontal field 0 Gauss
 Vertical field 0.4 Gauss
 Mode : M2 signal
 V. Position
 control : VR431 Set to center of
 screen using VR431.

Note : All measurements shall be made under normal conditions after an initial warm-up time of more than 20 minutes.

Note : Normal conditions are those which satisfy image test condition.
 (Condition of each following item is normal condition unless otherwise stated).
 normal condition unless otherwise state

5.2 Image

5.2.1 Image size

Horizontal: $250 \pm 5 \text{ mm} (9.84 \pm 0.2'')$

Vertical: $187.5 \pm 5 \text{ mm} (7.38 \pm 0.2'')$

Testing condition is normal condition.

5.2.2 Image position

Image is within the area in figure 1.

$|A - B| \leq 4 \text{ mm} (0.157'')$

Testing condition is normal condition.

Figure 1

5.2.3 Distortion

(A) Pincushion

See figure 2.

Upper (a) Less than 2 mm (0.079'')

Lower (b) ... Less than 2 mm (0.079'')

Right (c1 or c2) and Left (d1 or d2)

..... Less than 2 mm (0.079'')

Input signal is a crosshatch pattern.

Other conditions are as stated in 5.1

Image test condition.

Figure 2

(B) Rectangularness & Parallelogram distortion Edge of the image is within the area indicated by the dotted line in figure 3.

a 4.5 mm (0.177'')

b 3 mm (0.118'')

Input signal is a crosshatch pattern.

Other conditions are as stated in 5.1

Image test condition.

a 4.5 mm (0.177'')

b 3 mm (0.118'')

Figure 3

(C) Linearity

Horizontal and vertical linearity shall be less than 7%.

See figure 4.

Input signal is a crosshatch pattern.

Other conditions are as stated in 6.1

Image test condition.

Figure 4

$$\text{HORIZONTAL LINEARITY} = \frac{X_{(\text{MAX})} - X_{(\text{MIN})}}{X_{(\text{MAX})} + X_{(\text{MIN})}} \times 100 (\%) \leq 7\%$$

$$\text{VERTICAL LINEARITY} = \frac{Y_{(\text{MAX})} - Y_{(\text{MIN})}}{Y_{(\text{MAX})} + Y_{(\text{MIN})}} \times 100 (\%) \leq 7\%$$

Maximum and minimum value should not be adjacent to each other

$X_{(\text{MAX})}$ = Maximum distance between vertical lines from X_1 to X_m

$X_{(\text{MIN})}$ = Maximum distance between vertical lines from X_1 to X_m

$Y_{(\text{MAX})}$ = Maximum distance between horizontal lines from Y_1 to Y_n

$Y_{(\text{MIN})}$ = Maximum distance between horizontal lines from Y_1 to Y_n

(D) Rotation

Horizontal center line of the image shall be within the shaded area in figure 5.

$a \dots\dots\dots 2 \text{ mm (0.079'')}$

Input signal is a crosshatch pattern.

Other conditions are as stated in 6.1

Image test condition.

$$a = 2 \text{ mm (0.079'')}$$

Figure 5

(E) Convergence

See figure 6.

Mis-convergence in

area (A) $\leq 0.3 \text{ mm (0.0118'')}$

Mis-convergence in

area (B) $\leq 0.5 \text{ mm (0.0197'')}$

Note: Should be measured under the following conditions.

1) Terrestrial Magnetism without horizontal field (0 Gauss).

With vertical field of 0.4 Gauss

2) At room temperature

3) Input signal; Cross hatch R, G, B mixed colors.

area A $\leq 0.3 \text{ mm (0.0118'')}$

area B $\leq 0.5 \text{ mm (0.0197'')}$

Figure 6

5.3 Image size variation

Notes and test conditions	Image size variation from the normal image size
Rotation of brightness VR	Within 4 mm (0.157") (Horizontal and Vertical)
AC line voltage varied 180 to 264 volts (90 - 144V)	Within \pm 4 mm (0.157") (Horizontal and Vertical)
External ambient temperature varied $25 \pm 25^\circ\text{C}$	Within \pm 4 mm (0.157") (Horizontal and Vertical)

Testing condition is normal condition.

6. OVERALL PERFORMANCE

6.1 Resolution

Horizontal 810 Pixels
Vertical 670 Pixels

6.2 Insulation

More than $100 \text{ M}\Omega$
(Between AC line and chassis).

6.3 Jitter

Less than 1 dot
Invisible at a distance of 45 cm (17.7") from CRT surface.

6.4 Moiré

According to the timing of input signal, there are possibilities of visible moiré.

7. CONNECTOR

7.1 Power connector

PIN NO. 1. AC (LIVE)
2. GND (F/G)
3. AC (NEUTRAL)

CONNECTOR	MONITOR	USER SIDE, See Note 1
POWER	Mfr. A.M.P. 3P Cap (350767-1) Male contact (350561-1)	Mfr. A.M.P. 3P Plug (350766-1) Female contact (350570-1)

Note 1. --- User side connectors are just for your reference.

7.2 Signal connector

D-SUB TYPE 9P :
FEMALE PIN

SCREW : Inch Type

PIN ASSIGNMENT OF IBM GRAPHICS ADAPTOR

IBM ADAPTERS PIN ASSIGNMENT	COLOR GRAPHICS TTL 16 COLORS	ENHANCED TTL 64/16 COLORS	PROFESSIONAL GRAPHICS ANALOG
1	GROUND	GROUND	RED (NOTE 1)
2	GROUND	SECONDARY RED	GREEN (NOTE 1)
3	RED	PRIMARY RED	BLUE (NOTE 1)
4	GREEN	PRIMARY GREEN	COMPOSITE SYNC
5	BLUE	PRIMARY BLUE	MODE CONTROL
6	INTENSITY	SECONDARY GREEN/INTENSITY	RED GROUND
7	NON-CONNECTION	SECONDARY BLUE	GREEN GROUND
8	HORIZONTAL SYNC	HORIZONTAL SYNC	BLUE GROUND
9	VERTICAL SYNC	VERTICAL SYNC	GROUND

PIN ASSIGNMENT OF OTHER COMPUTERS

SIGNAL Pin Assignment	TTL			ANALOG							
	8 Colors	16 Colors	64 Colors	Separate Sync.	Composite Sync.	Sync. On Green					
1	GROUND			RED (NOTE 1)							
2		Secondary RED	GREEN (Note 1)		Green H/V Sync. (Note 2)					
3	RED		Primary RED	BLUE (NOTE 1)							
4	GREEN		Primary Green	H. Sync.	H/V Sync.					
5	BLUE		Primary BLUE	V. Sync.						
6	Intensity	Secondary Green	GROUND							
7		Secondary Blue								
8	H. Sync. / H/V Sync.										
9	V. Sync.										

"....." means GROUND or NON-CONNECTION.

SIGNAL LEVEL

All signal level, except for those listed below, is TTL.

NOTE 1, means 0.6 V_{o-p} (VIDEO)

NOTE 2, means 0.6 V_{o-p} (VIDEO), 0.3 V_{p-p} (SYNC)

7.3 Signal cable

This monitor doesn't provide the signal cable.

Please prepare a shield cable of the coaxial type
to get the good image.

Necessary of sectional diagram of a signal cable

< An example >

7.4 Standard signal timing (preset timing)

	EGA				PGC ANALOG			
	16 Colors		64 Colors		Low Resolution Mode (Mode L)		High Resolution Mode (Mode H)	
PIXEL PERIOD	69.797	nSEC	61.51	nSEC	40.000	nSEC	40.000	nSEC
PIXEL RATE	14.3182	MHz	16.257	MHz	25.000	MHz	25.000	MHz
Horizontal Frequency	15.7	KHz	21.85	KHz	30.63	KHz	30.63	KHz
Line Time Total	63.66	μ SEC	45.76	μ SEC	32.647	μ SEC	32.647	μ SEC
ACTIVE	44.67	μ SEC	39.4	μ SEC	25.607	μ SEC	25.607	μ SEC
BLANKING	18.99	μ SEC	6.36	μ SEC	7.04	μ SEC	7.04	μ SEC
FRONT PORCH	7.26	μ SEC	0	μ SEC	0.20	μ SEC	0.20	μ SEC
SYNC PULSE	4.47	nSEC	3.94	μ SEC	4.48	μ SEC	4.48	μ SEC
BACK PORCH	7.26	nSEC	2.42	μ SEC	2.36	μ SEC	2.36	μ SEC
Vertical Frequency	60	Hz	60	Hz	60.06	Hz	60.06	Hz
Frame Time Total	16.67	mSEC	16.67	mSEC	16.650	mSEC	16.650	mSEC
ACTIVE	12.7	mSEC	16.02	mSEC	13.058	mSEC	15.670	mSEC
BLANKING	3.94	mSEC	0.64	mSEC	3.591	mSEC	0.979	mSEC
FRONT PORCH	1.59	mSEC	0	mSEC	1.404	mSEC	0.097941	mSEC
SYNC PULSE	0.19	mSEC	0.36	mSEC	0.065294	mSEC	0.065214	mSEC
BACK PORCH	2.16	mSEC	0.28	mSEC	2.122	mSEC	0.81618	mSEC
ACTIVE DOTS	640×200		640×350		640×400		640×480	

NOTE :

- 1) SCANNING MODENON-INTERLACED
- 2) IMAGE DUTY100%

7.4.1 Signal Timing (Separate Sync)

Horizontal
Frequency $(1/H_1)$ 15.5 - 36 kHz
Line Time Total (H_1) 64.5 - 27.8 μ sec
Blanking $(H_2 + H_3 + H_4)$

* Range 1 :

$$10 < \frac{H_1 - H_5 - 6.0}{H_1} (\mu\text{sec}) \times 100\%$$

* Range 2 :

$$3 < \frac{H_1 - H_5 - 4.5}{H_1} (\mu\text{sec}) \times 100\%$$

Front Porch (H_4) > 0 μ sec
Sync Pulse (H_2) > 1.5 μ sec
Back Porch (H_3) > 1.2 μ sec
Sync + Back porch $(H_2 + H_3)$ > 5.0 μ sec

Vertical
Frequency $(1/V_1)$ 50 - 100 Hz
Frame Time Total (V_1) 20 - 10 msec
Blanking $(V_2 + V_3 + V_4)$ > 0.6 msec
Front Porch (V_4) > 0 msec
Sync Pulse (V_2) 0.05 - 0.7 msec
Back Porch (V_3) 0.6 < $V_2 + V_3$ msec

* Note : Range 1 = 15.5 - 19 kHz
Range 2 = 19 - 36 kHz

7.4.2 Signal Timing

(Composite Sync and Sync on Green Video)

Horizontal
Frequency $(1/H_1)$ 15.5 - 36 kHz
Line Time Total (H_1) 64.5 - 27.8 μ sec
Blanking $(H_2 + H_3 + H_4)$

* Range 1 :

$$10 < \frac{H_1 - H_5 - 6.0}{H_1} (\mu\text{sec})$$

* Range 2 :

$$3 < \frac{H_1 - H_5 - 4.5}{H_1} (\mu\text{sec}) \times 100\%$$

Front Porch (H_4) > 0 μ sec
Sync Pulse (H_2) > 1.5 μ sec
Back Porch (H_3) > 1.2 μ sec
Sync + Back porch $(H_2 + H_3)$ > 5.0 μ sec

Vertical
Frequency $(1/V_1)$ 50 - 100 Hz
Frame Time Total (V_1) 20 - 10 msec
Blanking $(V_2 + V_3 + V_4)$ > 1.0 msec
Front Porch (V_4) > 0 msec
Sync Pulse (V_2) < 0.2 msec
Back Porch (V_3) > 0.8 msec

Display colors

TTL Input 8/16 (Yellow)/16 (Brown)/64 Colors
 ANALOG Input Unlimited Colors

Example of Color Function Table for TTL Input

EGA 16 Colors : Function Table
 [Vertical Sync Polarity : Positive]

No.	16 Colors				Output Level			Color Level	Note 1	
	GB(l)	RA	GA	BA	R%	G%	B%		Cont.	Bright
1	0	0	0	0	0	0	0	Black	×	×
2	0	0	0	1	0	0	66	Blue	×	○
3	0	0	1	0	0	66	0	Green	×	○
4	0	0	1	1	0	66	66	Cyan	×	○
5	0	1	0	0	66	0	0	Red	×	○
6	0	1	0	1	66	0	66	Magenta	×	○
7	0	1	1	0	66	66	0	Brown	○	○
8	0	1	1	1	66	66	66	Light Gray	×	○
9	1	0	0	0	33	33	33	Dark Gray	○	○
10	1	0	0	1	33	33	100	Light Blue	○	○
11	1	0	1	0	33	100	33	Light Green	○	○
12	1	0	1	1	33	100	100	Light Cyan	○	○
13	1	1	0	0	100	33	33	Light Red	○	○
14	1	1	0	1	100	33	100	Light Magenta	○	○
15	1	1	1	0	100	100	33	Yellow	○	○
16	1	1	1	1	100	100	100	White	○	○

Note 1 : External control availability "O" means available
 "X" means unavailable

EGA 64 Colors : Function Table

Vertical Sync polarity : Negative

No.	Input Video Signal						Relative Output Level			COLOR	Note 1	
	RB	GB	BB	RA	GA	BA	R%	G%	B%		Cont.	Bright
1	0	0	0	0	0	0	0	0	0	Black	x	x
2	0	0	0	0	1	0	0	0	66	L. L. Blue	x	o
3	0	0	0	0	0	1	0	66	0	L. L. Green	x	o
4	0	0	0	0	1	1	0	66	66	L. L. Cyan	x	o
5	0	0	0	1	0	0	66	0	0	L. L. Red	x	o
6	0	0	0	1	0	1	66	0	66	L. L. Magenta	x	o
7	0	0	0	1	1	0	66	66	0	L. L. Yellow	x	o
8	0	0	0	1	1	1	66	66	66	L. L. White	x	o
9	0	0	1	0	0	0	0	0	33	D. Blue H. L. Blue	o	o
10	0	0	1	0	0	1	0	0	100		o	o
11	0	0	1	0	1	0	0	66	33		o	o
12	0	0	1	0	1	1	0	66	100		o	o
13	0	0	1	1	0	0	66	0	33		o	o
14	0	0	1	1	0	1	66	0	100		o	o
15	0	0	1	1	1	0	66	66	100		o	o
16	0	0	1	1	1	1	66	66	100		o	o
17	0	1	0	0	0	0	0	33	0	D. Green H. L. Green	o	o
18	0	1	0	0	0	1	0	33	66		o	o
19	0	1	0	0	1	0	0	100	0		o	o
20	0	1	0	0	1	1	0	100	66		o	o
21	0	1	0	1	0	0	66	33	0		o	o
22	0	1	0	1	0	1	66	33	66		o	o
23	0	1	0	1	1	0	66	100	0		o	o
24	0	1	0	1	1	1	66	100	66		o	o
25	0	1	1	0	0	0	0	33	33	D. Cyan H. L. Cyan	o	o
26	0	1	1	0	0	1	0	33	100		o	o
27	0	1	1	0	1	0	0	100	33		o	o
28	0	1	1	0	1	1	0	100	100		o	o
29	0	1	1	1	0	0	66	33	33		o	o
30	0	1	1	1	0	1	66	33	100		o	o
31	0	1	1	1	1	0	66	100	33		o	o
32	0	1	1	1	1	1	66	100	100		o	o
33	1	0	0	0	0	0	33	0	0	D. Red H. L. Red	o	o
34	1	0	0	0	0	1	33	0	66		o	o
35	1	0	0	0	1	0	33	66	0		o	o
36	1	0	0	0	1	1	33	66	66		o	o
37	1	0	0	1	0	0	100	0	0		o	o
38	1	0	0	1	0	1	100	0	66		o	o
39	1	0	0	1	1	0	100	66	0		o	o
40	1	0	0	1	1	1	100	66	66		o	o
41	1	0	1	0	0	0	33	0	33	D. Magenta H. L. Magenta	o	o
42	1	0	1	0	0	1	33	0	100		o	o
43	1	0	1	0	1	0	33	66	33		o	o
44	1	0	1	0	1	1	33	66	100		o	o
45	1	0	1	1	0	0	100	0	33		o	o
46	1	0	1	1	0	1	100	0	100		o	o
47	1	0	1	1	1	0	100	66	33		o	o
48	1	0	1	1	1	1	100	66	100		o	o
49	1	1	0	0	0	0	33	33	0	D. Yellow H. L. Yellow	o	o
50	1	1	0	0	0	1	33	33	66		o	o
51	1	1	0	0	1	0	33	100	0		o	o
52	1	1	0	0	1	1	33	100	66		o	o
53	1	1	0	1	0	0	100	33	0		o	o
54	1	1	0	1	0	1	100	33	66		o	o
55	1	1	0	1	1	0	100	100	0		o	o
56	1	1	0	1	1	1	100	100	66		o	o
57	1	1	1	0	0	0	33	33	33	D. White H. L. White	o	o
58	1	1	1	0	0	1	33	33	100		o	o
59	1	1	1	0	1	0	33	100	33		o	o
60	1	1	1	0	1	1	33	100	100		o	o
61	1	1	1	1	0	0	100	33	33		o	o
62	1	1	1	1	0	1	100	33	100		o	o
63	1	1	1	1	1	0	100	100	33		o	o
64	1	1	1	1	1	1	100	100	100		o	o

Note 1: See Note 1 of prior page.

H. L. = High Light (Brighter)

L. L. = Low Light

D = Dark

8. FAULT AND DEFECT CRITERIA

Zone		A	B
Zone dimensions (mm)		127 × 178	Rest
Permissible major defects	Air bubble (average diameter, mm)	More than 0.76	0.91~1.10 0.76~1.10
	Black spot, stain, hole and open air bubble (average diameter, mm)	More than 0.66	0.91~1.10 0.66~1.10
	Maximum permissible number	Each zone Total	0 2 3
	Minimum allowable distance among defects (mm)	75	75
Permissible minor defects	Air bubble (average diameter, mm)	0.50~0.75	0.50~0.75
	Black spot, stain, hole and open air bubble (average diameter, mm)	0.50~0.65	0.50~0.65
	Maximum permissible number	Each zone Total	5 9 11
	Minimum allowable distance among defects (mm)	3	
Permissible defects any circle of 50 mm diameter	Air bubble (average diameter, mm)	0.50~0.75	0.25~0.75
	Black spot, stain, hole and open air bubble (average diameter, mm)	0.50~0.65	0.50~0.65
	Maximum permissible number	2	5
	Minimum allowable distance among defects (mm)	3	
Elongated air bubble (permissible size)	Width (mm)	0.13~0.25	0.26~0.50
	Length (mm)	Less than 9.0	Less than 5.0
		Less than 10.0	Less than 6.0

Note : 1) This is also applied to the distance to major defects.

2) This should be evaluated by its average diameter, and then relevant standards of air bubble are applied except maximum permissible number of each zone and minimum allowable distance among defects.
(Even if the average diameter of elongated bubble exceeds that of major defects, this is treated as a permissible major defects.)

9. COLOR CRT PHOSPHOR DEFECTIVE STANDARD

Defective		Defect Phenomenon		New Standard						
Level		Item	Example	A. Q. L.	Min. spacing between					
A	a1	Dot trio missed over 3 adjacent trios		0	-----					
	a2	Same color dots missed over 3 adjacent dots		0	-----					
B	b1	Dot trio missed 2 adjacents		0	-----					
	b2	2 dots missed out of 1 trio 2 adjacents trios		0	-----					
	b3	Same color dots missed 2 adjacent		1 defect X 3 colors	Between other color 20 mm					
C	c1	1 trio missed		2	Between trio 20 mm					
	c2	2 dots missed out of 1 trio		2	Between trio 20 mm					
	c3	1 dot missed		Total 6 dots	Between same color dots 20 mm					
Missing some portion of one dot		Definition (S)	Missing dot ← → OK - L - $L \times 50\% > a > L \times 25\%$							
		A. Q. L.	Less than 5 within the circle of 50 mm ϕ							
Min. spacing between defect		20 mm								
Total defects on one CRT		Less than 6 defects								
Others		<ul style="list-style-type: none"> • Same as left • Below the spacing standard shall be judged again with adjacent standard. 								

10. ENVIRONMENTAL CHARACTERISTICS

10.1 Ambient temp., humidity and altitude

	Operating	Non-operating	Storage and shipment
Temp.	Note 0 to 50 degrees C	-40 to 65 degrees C	-40 to 65 degrees C
Humidity	5 to 90% no condensation	5 to 90% no condensation	5 to 90% no condensation
Altitude	3,000 m Max. (10,000 ft)	12,000 m Max. (40,000 ft)	12,000 m Max. (40,000 ft)

Note

* CAUTION : Installation to your system

- 1) Never be hermetically shielded.
- 2) Give an appropriate ventilation (Air flow) to cool down the monitor below 50 degrees C in the worst case for the longer life.

Please keep them for the long life.

10.2 Vibration and Shock

10.2.1 VIBRATION

The color monitor must pass the following vibration test.

(Packed condition)

- 1) Frequency ... 5 to 55 Hz
(Sweep cycle 120 seconds)
- 2) Length of time for testing
Vertical 60 minutes
Horizontal .. 60 minutes
(Front and Rear :
30 minutes)
(Right and Left :
30 minutes)
- 3) Acceleration of Vibration
Vertical 1.25G
Horizontal ... 0.75G

10.2.2 Shock

The color monitor must pass the following drop shock test.

(Packed condition)

	Height	Times
A,B,C,D	50 cm	Totally
E,F,G,H,I,J	60 cm	10 times

Shock is given to A, B, C, D, E, F, G, H, I and G totally 10 times.

10.3 SAFETY SPECIFICATION

Shall be certified with
TÜV, BS415
VDE0871 (A)

DIMENSIONS

5°	283.6	150.4	119.6	395.3
0°	283.8	144.8	131.8	407.6
CRT TILT (H) MAX	(h) ± 3	(d) TYP.	(Db) TYP.	

A VIEW

COMPONENT LOCATION

A	CRT M34JDJ80X	F	AC INPUT CONNECTOR TXAJTA3P1427
B	WEDGE TMM85511	G	CRT SOCKET BOARD TNP800166-21
C	DEFLECTION YOKE TXALY85327B1	H	I/F P.W.A. TNP800167-31
D	SIDE PLATE (L) TUW87908	I	SIDE PLATE (R) TUW87909
E	MAIN P.W.A. TNP890253-31		

CONTROL LOCATION

1 BRIGHTNESS (VR1301)	15 V. LIN (VR402)	29 SUB BRIGHT (VR 361)
2 CONTRAST (VR1300)	16 SUB V. HEIGHT (VR407)	30 ANALOG/TTL SW (SW1301)
3 DIFFERENTIAL RESISTOR	17 SUB V. HEIGHT (VR406)	31 AUTO/MANUAL SW (SW1302)
4 DIFFERENTIAL COIL	18 SUB H. WIDTH (VR555)	32 TEXT ON/OFF SW (SW1304)
5 SUB H. POSITION (VR533)	19 SUB H. WIDTH (VR556)	33 COLOR SELECT SW (SW1303)
6 SUB H. POSITION (VR532)	20 SUB H. POSITION (VR535)	34 H. POSITION (VR531)
7 SUB H. WIDTH (VR553)	21 SUB H. POSITION (VR534)	35 H. WIDTH (VR552)
8 SUB H. WIDTH (VR554)	22 LOW LIGHT (B) (VR3372)	36 V. POSITION (VR431)
9 SUB V. HEIGHT (VR405)	23 LOW LIGHT (G) (VR3371)	37 V. HEIGHT (VR403)
10 SUB V. HEIGHT (VR404)	24 LOW LIGHT (R) (VR3370)	38 PED ADJ (VR1305)
11 SUB V. HEIGHT (VR408)	25 FOCUS CONTROL	39 R. GAIN (VR1301)
12 H. HOLD (VR501)	26 SCREEN CONTROL	40 B. GAIN (VR1303)
13 H. FERREN (VR502)	27 H. CENT (VR551)	41 SUB CONTRAST (VR1309)
14 V. PCC (VR751)	28 +B ADJ (VR841)	42 2/3 D-A (VR1311)
		43 1/3 D-A (VR1312)

DISASSEMBLY INSTRUCTIONS

Interface Block Removal

1. Remove the four screws that fasten the interface block to the side plate (right) and side plate mount.
2. Disconnect the CN102B connector from the interface board.
3. Straighten the clamper that fastens the ferrite core, and remove the ferrite core.
4. Remove three screws on the shield cover.
5. Disconnect the CN1301, CN1304, CN1305 and CN1306 connectors from the interface board.
6. Disconnect the V301, V302, and V303 phone jack connectors from the interface board.
7. Remove the four screws that fasten the interface board to the chassis.
8. Raise the interface board as shown and remove it.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

CRT Socket Board Removal

1. Remove the ground wire terminal screw.
2. Carefully use a knife to slice the silicon adhesive away from the CRT socket.

Then unplug the CRT socket board by gently rocking it from side to side while pulling it away from the CRT.

3. Disconnect the CN303 and CN304 cable connectors from the CRT socket board.
4. Disconnect the CN305, CN306 and CN307 phone-jack connectors from the CRT socket board.
5. Desolder the CRT socket board shield plate.
6. Desolder the G2 and E301 lead wires.
7. Open the CRT socket cover using a flat tip screwdriver.
8. Desolder the focus lead wires on the socket.

Fig. 5

Fig. 7

Fig. 6

Sub Board Removal

1. Disconnect the CN401B connectors from the Sub board (TNP890130Y).
2. Remove the screw that fastens the subboard.
3. Push a locking support with pliers as shown and raise the subboard.
4. Push the other locking support with pliers in the same way and remove the subboard.
5. Disconnect the CN502B and CN503B connectors from the subboard (TNP890130W).
6. Remove the screw that fastens the subboard.
7. Push a locking support with pliers as shown and raise the subboard.
8. Push the other locking support with pliers in the same way and remove the subboard.

Fig. 8

Main Board Removal

1. Discharge the CRT anode to the ground, and disconnect the anode lead from the CRT.
2. Remove the ground wire terminal screw.
3. Remove the three screws that fasten the main board to the chassis.
4. Remove the screws that fasten the rail to the chassis, and remove the rail.
5. Slightly pull the main board rearward.
6. Disconnect the CN101, CN102A, CN301, CN302, CN303, CN304, CN305A, CN305B, CN306, CN401A, CN501A, CN502A, CN503A and CN851 connectors from the Main board.
7. Untwist the cable ties to free the cables.
8. Unwrap the cable restraints to free the cables.
9. Pull and remove the main board.

Fig. 9

CRT Removal

The deflection yoke and convergence yoke remains on the CRT during removal.

1. Place a soft pad on the bench top and then the display unit on it face down.
2. Remove the four screws shown at the corners of the diecast chassis.
3. Hold the CRT by the neck, and remove the CRT from the chassis.

Fig. 10

CAUTION FOR ADJUSTMENT AND REPAIR

1. Degaussing is inevitably required at purity adjustment or convergence adjustment.
2. At the factory, white balance meter is used but we described the data in simple way.
3. If you check or adjust electrical specification or function, more than 20 minutes burn-in is required.
4. Reforming of the leadwire is required after your repair work.

CAUTION FOR SERVICING

When servicing or replacing the CRT, high voltage sometimes remains on the anode. So, completely discharge high voltage before servicing or replacing the CRT so as to prevent a shock to the serviceman.

CRT Anode Discharge

1. When you check the CRT anode or replace the CRT, discharge the CRT anode to the external conductive coating (quadag) of CRT, especially when checked right after power turn-off.
2. Ground one end of a jumper wire which has a resistor ($30kV < \text{resisting pressure } 100M\Omega$) and connect the other point to the CRT anode.

NOTE : Grounding must be done first.

This model has a section that does not share a common ground with the power supply section. The different sections are referred to as the HOT section and the COLD section in the precautions below.

1. Do not touch the HOT section and the COLD section at the same time. You may receive an electric shock.
2. Do not short the HOT section to the COLD section. This could blow the fuse or damage parts..
3. Never measure the HOT section and the COLD section at the same time when using tools such as oscilloscopes or multimeters.
4. Always unplug the unit before beginning any operation such as removing the chassis.

ADJUSTMENT PROCEDURE

PRELIMINARY NOTES

- The adjustment procedures in this section require various screen patterns and displays.
- Use a Helmholtz device to adjust this unit with no horizontal magnetic field and a vertical magnetic field of 0.5 Gauss. Inspect the unit under the same conditions.
- The ambient illumination must be less than 10 lux.
- When checking the adjustments, demagnetize with a degaussing coil.
- To be sure image width, height, linearity and distortion proceed as below.

Measure level with respect to tube axis.

STANDARD CONDITION OF ADJUSTMENT PROCEDURE

- Signal timing: Standard timing
MODE 2 signal (See page 25)
- Display pattern: Green (2/3 level) "H" character
- Signal level: TTL level
- Input source: AC 230V, 50 Hz
- Ambient temperature: Room temperature
- Warm up time: More than 20 minutes
- Brightness control: Point where back raster disappears
Fully clockwise
- Contrast control:
- TTL/ANALOG select switch: TTL position
- AUTO/MANUAL select switch: AUTO position
- TEXT switch: OFF position
- Color select switch:

No.	1	2	3	4	5
	ON	ON	OFF	ON	OFF

- H.FREERUN control: Center click position
- +B ADJ: Fully turn clockwise
- H. WIDTH control: Center click position
- H. POSITION control: Center click position
- V. HEIGHT control: Center click position
- V. POSITION control: Set to center of screen with VR431 in Mode 2
- AFC switch: ON position
- Voltage select connector: Connect to AC 220V
- Magnetic field: Vertical 0.4 Gauss
Horizontal 0
- Signal cable: 3C2V, $\leq 1.8m$ ($\leq 70.87''$)

TOOLS REQUIRED

- Oscilloscope (dual trace)
- Scope probe — Attenuation : 100:1
Attenuation : 10:1'
- Digital Voltmeter — Range : 0 to 1000V DC,
Accuracy : 0.1%
- High Voltage probe — Range : 0 to 24kV,
Attenuation : 1000:1, Input Impedance : 1000MΩ
- TV color Analyzer II — that reads luminance and chromaticity X and Y coordinates.
Calibrate with the Gamma C — 9DT.
- Digital High Voltmeter
- Frequency counter
- AC Power supply — Output voltage : 0 to 300V
- Degaussing coil
- Convergence meter
- Double-faced scale
- Screwdriver — Tip width : 1/10" (2.5mm)
Length : 6" (15 cm)
- Screwdriver — Tip width : 1/10" (2.5mm)
Length : 6" (15 cm), non-conductive
- Screwdriver — Tip width : 1/10" (2.5mm)
Length : 12" (30 cm), non-conductive
- Screwdriver — Cross Recessed Head
- Adjustment tool — Hex head, non-conductive
- White lacquer

Signal Condition Data for Adjustment**MODE 1 SIGNAL TIMING**

Display area	H (640 dot) x V (200 H)
Character	H (6) x V (7) dot
Block	H (8) x V (8 dot)
Video signal	TTL
Sync signal	TTL separate
Horizontal frequency	15.7 kHz
Vertical frequency	60 Hz
Duty ratio	100%
Clock frequency	14.31821 MHz
Clock period	0.069841 μ sec

MODE 2 SIGNAL TIMING

Display area	H (640 dot) x V (350 H)
Character	H (7) x V (9) dot
Block	H (8) x V (14 dot)
Video signal	TTL
Sync signal	TTL separate
Horizontal frequency	21.85 kHz
Vertical frequency	60 Hz
Duty ratio	100%
Clock frequency	16.257 MHz
Clock period	0.0615119 μ sec

Horizontal Frequency		15.7 kHz
H. Sync	(H1)	63.66 μ sec
HD pulse width	(H2)	4.47 μ sec
H. BLK start	(H3)	56.4 μ sec
H. BLK stop	(H4)	11.73 μ sec
Video width	(H5)	44.67 μ sec

Horizontal Frequency		21.85 kHz
H. Sync	(H1)	45.76 μ sec
HD pulse width	(H2)	3.94 μ sec
H. BLK start	(H3)	45.7 μ sec
H. BLK stop	(H4)	6.34 μ sec
Video width	(H5)	39.4 μ sec

Vertical Frequency		60 Hz
V. Sync	(V1)	16.67 msec
VD pulse width	(V2)	0.190 msec
V. BLK start	(V3)	15.08 msec
V. BLK stop	(V4)	2.350 msec
Video width	(V5)	12.70 msec

Vertical Frequency		60 Hz
V. Sync	(V1)	16.67 msec
VD pulse width	(V2)	0.360 msec
V. BLK start	(V3)	16.67 msec
V. BLK stop	(V4)	0.064 msec
Video width	(V5)	16.02 msec

MODE 3 SIGNAL TIMING

Display area	H (640 dot) x V (480 H)
Character	H (7) x V (9) dot
Block	H (8) x V (12 dot)
Video signal	ANALOG
Sync signal	TTL composite
Horizontal frequency	30.63 kHz
Vertical frequency	60.06 Hz
Duty ratio	100%
Clock frequency	25.000 MHz
Clock period	0.04 μ sec

MODE 4 SIGNAL TIMING

Display area	H (640 dot) x V (400 H)
Character	H (7) x V (9) dot
Block	H (8) x V (12 dot)
Video signal	ANALOG
Sync signal	TTL composite
Horizontal frequency	30.63 kHz
Vertical frequency	60.06 Hz
Duty ratio	100%
Clock frequency	25.000 MHz
Clock period	0.04 μ sec

Horizontal**Horizontal****Vertical****Vertical****Horizontal Frequency** 30.63 kHz

H. Sync	(H1)	32.647 μ sec
HD pulse width	(H2)	4.48 μ sec
H. BLK start	(H3)	32.447 μ sec
H. BLK stop	(H4)	6.84 μ sec
Video width	(H5)	25.607 μ sec

Horizontal Frequency 30.63 kHz

H. Sync	(H1)	32.647 μ sec
HD pulse width	(H2)	4.48 μ sec
H. BLK start	(H3)	32.447 μ sec
H. BLK stop	(H4)	6.84 μ sec
Video width	(H5)	25.607 μ sec

Vertical Frequency 60.06 Hz

V. Sync	(V1)	16.65 msec
VD pulse width	(V2)	0.0653 msec
V. BLK start	(V3)	16.552 msec
V. BLK stop	(V4)	0.8810 msec
Video width	(V5)	15.670 msec

Vertical Frequency 60.06 Hz

V. Sync	(V1)	16.650 msec
VD pulse width	(V2)	0.0653 msec
V. BLK start	(V3)	15.246 msec
V. BLK stop	(V4)	2.1870 msec
Video width	(V5)	13.058 msec

MODE 5 SIGNAL TIMING

Display area	H (1024 dot) x V (383 H)
Character	H (7) x V (9) dot
Block	H (18) x V (16 dot)
Video signal	ANALOG
Sync signal	TTL separate
Horizontal frequency	35.52 kHz
Vertical frequency	86.8 Hz
Duty ratio	100%
Clock frequency	44.8970 MHz
Clock period	0.0222732 μ sec

Horizontal**Vertical**

Horizontal Frequency 35.52 kHz

H. Sync	(H1)	28.153 μ sec
HD pulse width	(H2)	3.920 μ sec
H. BLK start	(H3)	27.975 μ sec
H. BLK stop	(H4)	5.167 μ sec
Video width	(H5)	22.808 μ sec

Vertical Frequency 86.8 Hz

V. Sync	(V1)	11.515 msec
VD pulse width	(V2)	0.2250 msec
V. BLK start	(V3)	11.458 msec
V. BLK stop	(V4)	0.6750 msec
Video width	(V5)	10.783 msec

Table of Switch Settings in Individual Modes

Item		Mode		1	2	3	4	5				
Analog/TTL switch			TTL	TTL	Analog	Analog	TTL				Analog	
Manual/auto switch			Auto	Auto	Auto	Auto	Manual				Manual	
DIP SW	Color select	1	—	—	—	—	OFF	ON	OFF	ON	—	
		2	—	—	—	—	OFF	OFF	ON	ON	—	
Display color (Numerals in parentheses are color table numbers)			16B (2)	64 (4)	∞	∞	8 (1)	16Y (1)	16B (2)	64 (4)	∞	
TEXT SW			OFF	OFF	—	—	ON or OFF				—	
DIP SW	Text color	3	—	—	—	—	One of 8 colors appears depending on switch combination with TEXT SW ON.				—	
		4	—	—	—	—					—	
		5	—	—	—	—					—	
Signal input connector Pin connection	1	GND	GND	RED	RED	GND	RED				RED	
	2	—	2nd RED (Rb)	GREEN	GREEN	2nd RED (Rb)	GREEN				GREEN	
	3	RED (Ra)	1st RED (Ra)	BLUE	BLUE	1st RED (Ra)	BLUE				BLUE	
	4	GREEN (Ga)	1st GREEN (Ga)	H.V SYNC	H.V SYNC	1st GREEN (Ga)	H. SYNC				H. SYNC	
	5	BLUE (Ba)	1st GREEN (Ba)	MODE (H)	MODE (L)	1st BLUE (Ba)	V. SYNC				V. SYNC	
	6	INT. (Gb)	2nd GREEN (Gb)	GND	GND	2nd GREEN (Gb)	GND				GND	
	7	—	2nd BLUE (Bb)	GND	GND	2nd BLUE (Bb)	GND				GND	
	8	H. SYNC	H. SYNC	GND	GND	H. SYNC	GND				GND	
	9	V. SYNC	V. SYNC	GND	GND	V. SYNC	GND				GND	

Notes :

- "—" indicates that the switch is invalid.
- 16B means 16-color display, brown; 16Y, 16-color display, yellow.

Color Table

(1) 8 color

No.	8 Colors			Output Level			Color Level	Note	
	RA	GA	BA	R%	G%	B%		Cont.	Bright
1	0	0	0	0	0	0	Black	X	X
2	0	0	1	0	0	100	Blue	X	O
3	0	1	0	0	100	0	Green	X	O
4	0	1	1	0	100	100	Cyan	X	O
5	1	0	0	100	0	0	Red	X	O
6	1	0	1	100	0	100	Magenta	X	O
7	1	1	0	100	100	0	Yellow	X	O
8	1	1	1	100	100	100	White	X	O

Note : External control availability "O" means availability

"X" means unavailability

(2) 16 color (Brown)
(Yellow)

No.	16 Colors				Output Level			Color Level	Note	
	GB(I)	RA	GA	BA	R%	G%	B%		Cont.	Bright
1	0	0	0	0	0	0	0	Black	X	X
2	0	0	0	1	0	0	66	Blue	X	O
3	0	0	1	0	0	66	0	Green	X	O
4	0	0	1	1	0	66	66	Cyan	X	O
5	0	1	0	0	66	0	0	Red	X	O
6	0	1	0	1	66	0	66	Magenta	X	O
7	0	1	1	0	66	66	0	Brown	O	O
									X	O
8	0	1	1	1	66	66	66	Light Gray	X	O
9	1	0	0	0	33	33	33	Dark Gray	O	O
10	1	0	0	1	33	33	100	Light Blue	O	O
11	1	0	1	0	33	100	33	Light Green	O	O
12	1	0	1	1	33	100	100	Light Cyan	O	O
13	1	1	0	0	100	33	33	Light Red	O	O
14	1	1	0	1	100	33	100	Light Magenta	O	O
15	1	1	1	0	100	100	33	Brown	O	O
									Yellow	—
16	1	1	1	1	100	100	100	White	O	O

Note : External control availability "O" means availability

"X" means unavailability

(3) 64 Color

No.	Input Video Signal						Relative Output Level			COLOR	Note 1	
	RB	GB	BB	RA	GA	BA	R%	G%	B%		Cont.	Bright
1	0	0	0	0	0	0	0	0	0	Black	x	x
2	0	0	0	0	0	1	0	0	66	L. L. Blue	x	o
3	0	0	0	0	1	0	0	66	0	L. L. Green	x	o
4	0	0	0	0	1	1	0	66	66	L. L. Cyan	x	o
5	0	0	0	1	0	0	66	0	0	L. L. Red	x	o
6	0	0	0	1	0	1	66	0	66	L. L. Magenta	x	o
7	0	0	0	1	1	0	66	66	0	L. L. Yellow	x	o
8	0	0	0	1	1	1	66	66	66	L. L. White	x	o
9	0	0	1	0	0	0	0	0	33	D. Blue H. L. Blue	o	o
10	0	0	1	0	0	1	0	0	100		o	o
11	0	0	1	0	1	0	0	66	33		o	o
12	0	0	1	0	1	1	0	66	100		o	o
13	0	0	1	1	0	0	66	0	33		o	o
14	0	0	1	1	0	1	66	0	100		o	o
15	0	0	1	1	1	0	66	66	100		o	o
16	0	0	1	1	1	1	66	66	100		o	o
17	0	1	0	0	0	0	0	33	0	D. Green H. L. Green	o	o
18	0	1	0	0	0	1	0	33	66		o	o
19	0	1	0	0	1	0	0	100	0		o	o
20	0	1	0	0	1	1	0	100	66		o	o
21	0	1	0	1	0	0	66	33	0		o	o
22	0	1	0	1	0	1	66	33	66		o	o
23	0	1	0	1	1	0	66	100	0		o	o
24	0	1	0	1	1	1	66	100	66		o	o
25	0	1	1	0	0	0	0	33	33	D. Cyan H. L. Cyan	o	o
26	0	1	1	0	0	1	0	33	100		o	o
27	0	1	1	0	1	0	0	100	33		o	o
28	0	1	1	0	1	1	0	100	100		o	o
29	0	1	1	1	0	0	66	33	33		o	o
30	0	1	1	1	0	1	66	33	100		o	o
31	0	1	1	1	1	0	66	100	33		o	o
32	0	1	1	1	1	1	66	100	100		o	o
33	1	0	0	0	0	0	33	0	0	D. Red H. L. Red	o	o
34	1	0	0	0	0	1	33	0	66		o	o
35	1	0	0	0	1	0	33	66	0		o	o
36	1	0	0	0	1	1	33	66	66		o	o
37	1	0	0	1	0	0	100	0	0		o	o
38	1	0	0	1	0	1	100	0	66		o	o
39	1	0	0	1	1	0	100	66	0		o	o
40	1	0	0	1	1	1	100	66	66		o	o
41	1	0	1	0	0	0	33	0	33	D. Magenta H. L. Magenta	o	o
42	1	0	1	0	0	1	33	0	100		o	o
43	1	0	1	0	1	0	33	66	33		o	o
44	1	0	1	0	1	1	33	66	100		o	o
45	1	0	1	1	0	0	100	0	0		o	o
46	1	0	1	1	0	1	100	0	100		o	o
47	1	0	1	1	1	0	100	66	33		o	o
48	1	0	1	1	1	1	100	66	100		o	o
49	1	1	0	0	0	0	33	33	0	D. Yellow H. L. Yellow	o	o
50	1	1	0	0	0	1	33	33	66		o	o
51	1	1	0	0	1	0	33	100	0		o	o
52	1	1	0	0	1	1	33	100	66		o	o
53	1	1	0	1	0	0	100	33	0		o	o
54	1	1	0	1	0	1	100	33	66		o	o
55	1	1	0	1	1	0	100	100	0		o	o
56	1	1	0	1	1	1	100	100	66		o	o
57	1	1	1	0	0	0	33	33	33	D. White H. L. White	o	o
58	1	1	1	0	0	1	33	33	100		o	o
59	1	1	1	0	1	0	33	100	33		o	o
60	1	1	1	1	0	0	33	100	100		o	o
61	1	1	1	1	0	1	33	100	33		o	o
62	1	1	1	1	0	1	100	33	33		o	o
63	1	1	1	1	1	0	100	100	33		o	o
64	1	1	1	1	1	1	100	100	100		o	o

H. L. = High Light (Brighter)

L. L. = Low Light

D = Dark

Analog Mode Signal Levels

The following levels apply to cases of 75-ohm termination.

VIDEO WAVEFORM LEVEL

For Color (Red, Blue and Green)

COMPOSITE VIDEO WAVEFORM LEVEL

ADJUSTMENT ITEM

The adjustments for this Display Unit are;

1. Horizontal adjustment
2. Voltage adjustment
3. Video pedestal adjustment
4. Focus adjustment
5. Purity adjustment
6. CRT cut off adjustment
7. Convergence adjustment
8. Voltage adjustment (DA output)
9. Side pincushion and V. lin adjustment
10. Horizontal position adjustment
11. Width and Height of Image adjustment
12. White balance adjustment

These adjustments are listed as independent items; however, the success of these adjustment depends on performing them in the above sequence.

No.	ITEM	SIGNAL TIMING	ADJUST VR	ADJUSTMENT PROCEDURE	DESCRIPTION
1	Horizontal Adjustment	MODE M2	VR501 (H. HOLD)	<ol style="list-style-type: none"> 1. Connect a frequency counter having a high-impedance probe to TP-51 and ground. 2. Turn off the SW501 (AFC). 3. Adjust VR501 (H. HOLD) to set the frequency to 21.85 kHz. 	
		MODE M2	VR502 (H. FREERUN)	<ol style="list-style-type: none"> 4. Turn off the H. SYNC signal and SW501 (AFC) on. 5. Adjust VR502 (H. FREERUN) to set the frequency to 15.5 kHz. <p><i>NOTE</i> <i>After the adjustment, check that the frequency remains unchanged at 15.5 kHz when the input terminal is high or open.</i></p>	
		MODE M1		<ol style="list-style-type: none"> 6. Turn on the H. SYNC signal and SW501 (AFC) off. 7. Check the frequency counter that it reads 16.3 kHz ± 0.7 kHz. 	
		MODE M5		<ol style="list-style-type: none"> 8. Check the frequency counter that it reads 34.8 kHz ± 1.7 kHz. 	
2	Voltage Adjustment	MODE M2	VR841 (+B ADJ)	<ol style="list-style-type: none"> 1. Connect a digital voltmeter between the TP-81 on the Power board and ground. 2. Adjust VR841 (+B ADJ) to set the voltage to 64V. <p><i>NOTE</i> <i>Because the voltage is subject to much variation with horizontal amplitude, a re-adjustment is necessary after horizontal amplitude adjustment.</i></p>	

No.	ITEM	SIGNAL TIMING	ADJUST VR	ADJUSTMENT PROCEDURE	DESCRIPTION
3	Video pedestal Adjustment	MODE M2	VR1305 (PED. ADJ)	<ol style="list-style-type: none"> Set the oscilloscope's time axis to the H rate, and connect the oscilloscope to TP-KB and ground. Turn off video signal. Adjust VR1305 (PED. ADJ) to set the voltage to 4V p-p. 	
4	Focus Adjustment	MODE M2	FOCUS CONTROL (FBT)	<ol style="list-style-type: none"> Apply Ga = on, Gb = off video signal. Adjust FOCUS control for best overall screen focus when viewing the displayed pattern. After completion of adjustment, apply locking paint to the FOCUS control. 	
5	Purity Adjustment			Refer to page 36.	
6	CRT Cut off Adjustment	MODE M2	LOW LIGHT CONTROL (VR3370, VR3371, VR3372) SCREEN CONTROL VR1301 (BRIGHT)	<ol style="list-style-type: none"> Set the ambient illuminance at 10 lux. Connect an oscilloscope to TP-G1 and ground. Turn off video signal. Adjust VR1301 (BRIGHT) and VR361 (SUB BRIGHT) to set the voltage -25V. Turn LOW LIGHT controls (VR3370, VR3371, and VR3372) to the maximum position {in the direction in which the beam runs}, then turn the SCREEN control until light goes on. Turn the LOW LIGHT controls that turned light on first and second to the minimum position. Turn the SCREEN control until the last illuminating color is dimly on, and the LOW LIGHT controls for the other two colors until white balance is X = 0.281 and Y = 0.311. Turn the SCREEN control until back-raster disappears. Fully turn VR301 (BRIGHT) clockwise, and adjust brightness to 5^{+2}_{-1} cd/m² (1.46 + 0.584 - 0.292 ft-L) using VR361 (SUB BRIGHT). 	
7	Convergence Adjustment	MODE M2		Refer to page 36.	
8	Voltage Adjustment (DA Output)	MODE M2	VR1311 (2/3 D-A) VR1312 (1/3 D-A)	<ol style="list-style-type: none"> Set the oscilloscope's time axis to the H rate, and connect the oscilloscope to TP-1302 and ground. Apply Ga = on, Gb = off video signal. Adjust VR1311 (2/3 D-A) to set the voltage to 0.36V p-p ①. Apply Ga = off, Gb = on video signal. Adjust VR1312 (1/3 D-A) to set the voltage to 0.36V p-p ②. Apply Ga = on, Gb = on video signal. 	

No.	ITEM	SIGNAL TIMING	ADJUST VR	ADJUSTMENT PROCEDURE	DESCRIPTION
8	Voltage Adjustment (DA Output)	MODE M2	VR1311 (2/3 D-A) VR1312 (1/3 D-A)	7. Check that the voltage is 0.6V p-p \pm 6 mV ③. NOTE <i>The voltages ① and ② must be the same, and the voltage ③ has priority. The voltages ① and ② are approximate.</i>	
9	Side Pincushion and V. lin Adjustment	MODE M2	VR402 (V. LIN) VR751 (V. PCC)	1. Apply a green crosshatch pattern signal. 2. Adjust VR751 (V. PCC) to achieve the optimum alignment of the grid pattern. 3. Adjust VR402 (V. LIN) until optimum linearity is obtained.	<p>HORIZONTAL LINEARITY $= \frac{X_{(\text{MAX})} - X_{(\text{MIN})}}{Y_{(\text{MAX})} + Y_{(\text{MIN})}} \times 100\% \leq 7\%$</p> <p>VERTICAL LINEARITY $= \frac{Y_{(\text{MAX})} - Y_{(\text{MIN})}}{Y_{(\text{MAX})} + Y_{(\text{MIN})}} \times 100\% \leq 7\%$</p>
		MODE M1		4. Check that linearity is \leq 7% and that rotation is 2 mm (0.079").	
		MODE M5		5. Set SW1302 to MANUAL. 6. Check that linearity is \leq 7% and that rotation is 2 mm (0.079").	
		MODE M2		7. Check that linearity is \leq 7% and that rotation is 2 mm (0.079"). NOTE <i>Only fc is variable. fH = 36.4 kHz, fV = 100 Hz</i>	
10	Horizontal Position Adjustment	MODE M5	VR551 (H. CENT)	1. Set SW1302 to MANUAL. 2. Turn off video signal. 3. Set VR1301 (BRIGHT) fully clockwise. 4. Turn VR551 (H. CENT) until displayed back raster horizontal position is A - B = 1 mm (0.039").	<p>A - B = 1 mm (0.039") a = b</p>
		MODE M1	VR532 (SUB H. POSITION)	5. Turn VR532 (SUB H. POSITION) until display area horizontal position is a = b.	
		MODE M2	VR533 (SUB H. POSITION)	6. Turn VR533 (SUB H. POSITION) until display area horizontal position is a = b.	
		MODE M3	VR534 (SUB H. POSITION)	7. Set SW1301 to ANALOG. 8. Select high mode. 9. Turn VR534 (SUB H. POSITION) until display area horizontal position is a = b.	
		MODE M5	VR535 (SUB H. POSITION)	10. Turn VR535 (SUB H. POSITION) until display area horizontal position is a = b.	
		MODE M5	VR531 (H. POSITION)	11. Turn VR531 (H. POSITION) and check that horizontal position is variable laterally by 15 mm (0.59") or more.	
11	Width and Height of Image Adjustment	MODE M1	VR533 (SUB H. WIDTH)	1. Adjust VR553 (SUB H. WIDTH) to set the width of the image at 250 mm (9.84"). 2. Adjust VR404 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38").	

No.	ITEM	SIGNAL TIMING	ADJUST VR	ADJUSTMENT PROCEDURE	DESCRIPTION
11	Width and Height of Image Adjustment	MODE M2		3. Adjust VR554 (SUB H. WIDTH) to set the width of the image at 250 mm (9.84"). 4. Adjust VR405 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38").	
		MODE M4		5. Set SW1301 to ANALOG and select low mode. 6. Adjust VR555 (SUB H. WIDTH) to set the width of the image at 250 mm (9.84"). 7. Adjust VR406 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38").	
		MODE M3		8. Select high mode. 9. Adjust VR408 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38").	
		MODE M5		10. Set SW1301 to MANUAL. 11. Adjust VR556 (SUB H. WIDTH) to set the width of the image at 250 mm (9.84"). 12. Adjust VR407 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38"). 13. Turn VR552 (H. WIDTH) and VR403 (V. HEIGHT) and check that width and height are variable vertically by 20 mm (0.79") or more.	
12	White Balance Adjustment	MODE M2		1. Turn video channel A off and channel B on. 2. Apply a 10% window signal. 3. Set VR1300 (CONTRAST) fully clockwise. 4. Turn VR1301 (BRIGHT) until back raster goes out. 5. Visually adjust picture to white using the red and blue GAIN controls (VR1301 and VR1303). CIE chromaticity coordinate must be at X = 0.281 and Y = 0.311 after ADJUSTMENT. 6. Adjust luminance to 110 cd/m ² (32.12 ft-L) with VR1309 (SUB CONT). 7. Turn both video channels A and B on. 8. Check luminance for full white field signal that it is 110 (32.12 ft-L) ± 25 cd/m ² (7.3 ft-L). 9. Check that luminance is 100 (29.2 ft-L) ± 25 cd/m ² (7.3 ft-L) when video channel A is on and channel B off, and when video channel A is off and channel B on.	
				<p style="text-align: center;">NOTE</p> <p><i>Check color tracking using VR1300 (CONTRAST).</i></p> <p><i>If not normal, readjust the LOW LIGHT controls (VR3370, VR3371, and VR-3372).</i></p>	

Purity adjustment

If color shading is apparent, make the following adjustment.

- (1) Degauss the magnetism of chassis and CRT with external degaussing coil.
- (2) Adjust the purity magnet until each of the red, green and blue channels is free of color shading.

Make the following adjustment if color shading cannot be corrected by the above, or if the CRT or deflection yoke has been replaced.

- (1) Keep the convergence yoke and deflection yoke in the positions shown below.

$$\begin{array}{ll} \text{CY tightening torque :} & 8 \pm 2 \text{ kgf} \cdot \text{cm} \\ \text{DY tightening torque :} & 22 \pm 2 \text{ kgf} \cdot \text{cm} \end{array}$$

- (1) Make sure that this adjustment is done later than 30 minutes after power on.
- (2) Degauss the magnetism of chassis and CRT with degaussing coil.
- (3) Verify that static convergence is roughly matched. If it is misaligned, adjust static convergence of Red color and Blue color with Four-pole magnet B. For this adjustment two same type of flaps of Four-pole magnet A must be put together.
- (4) Remove the wedge from the deflection yoke, and pull the deflection yoke fully to the front.
- (5) Display green color solely with the signal generator. Adjust the purity magnet so that the center of the screen displays a pure green disk.
- (6) After the adjustment of step 5, readjust the static convergence if some gap was found. Static convergence alignment for this step is to be performed with Four-pole magnet B and Six-pole magnet.
- (7) After the item 7, repeat the step 6 again.
- (8) Display red and blue disks. Adjust the purity magnets so as that each disk is at the center of the screen simultaneously.
- (9) Slide the deflection yoke rearward until the screen appears green on the whole, and fasten it there. (Fasten in a forward position with ample allowance for landing).

- (10) Confirm purity in each direction by rotating the set to direction of East, West, South and North after degauss by external degaussing coil.
- (11) If magnetism remains even after the adjustment, use the compensation magnet to obtain purity.

The final confirmation method for purity

In the natural magnetic field, rotate the monitor in the direction of East, West, South and North.

Earth's magnetic field may cause magnetism on the monitor. Confirm that the automatic degaussing circuit built in the monitor can erase the amount of magnetism which was introduced with above rotation.

The degaussing circuit operates only when the set is cold, you must wait for the set to cool after each purity test.

Convergence adjustment

- (1) Make sure that this adjustment is done later than 30 minutes after power on.
- (2) Degauss the magnetism of chassis and CRT with degaussing coil.
- (3) Apply signal of red "H" character of full screen size from the signal generator.
- (4) Bring the vertical center line to focus using the focus control.
- (5) Loosen magnet stoppers by turning them counterclockwise while looking them from the back of CRT.
- (6) Apply mixed crosshatch signals of red and blue from signal generator.
- (7) Align convergence of vertical lines and horizontal lines at the center portion of the screen.
(When 4 pole magnet B is moved red and blue move in the reversed directions each other while making circles).

- (8) Apply mixed crosshatch signal consists of red, blue and green from signal generator.
- (9) Align convergence of magenta and green vertical lines and horizontal lines observed at around center portion of the screen with 6 pole magnet.

TX-1441AE

(10) If any of following misconvergence is observed on the screen it must be adjusted. (This step may be skipped if no misconvergence is observed.)

Beams are twisted lefthand

Beams are twisted righthand

- (a) When beams are twisted lefthand.
- (b) Shift convergence of horizontal lines by 5 ~ 6 mm at the center portion with 4 pole magnet A. (Do not shift convergence of vertical lines.)

- (c) Align convergence with 4 pole magnet B.

- (d) Follow the same procedure when beams are twisted righthand. (Shift Red line upward and Blue line downward for adjustment.)

(11) Tighten magnet stoppers.

(12) Tilt the deflection yoke upward or downward to adjust the vertical line in the center of the screen. If convergence error is not reduced to 0 mm, refer to the figure below and tilt the deflection yoke till the convergence errors at the top and bottom are the same. After this adjustment, temporarily insert a wedge above the deflection yoke so that the convergence will not deviate due to an unsteady deflection yoke.

Tilt deflection yoke upward

Tilt deflection yoke downward

The red is on the right.

The red is on the left.

The red is too far to the right

Adjust the 4-pole magnet A.

The red is too far to the left

Wedge Inserting Position

(13) Referring to the figures below, tilt the deflection yoke to the right or left to correct the vertical lines at the right and left ends of the screen. If convergence error is not reduced to 0 mm, refer to the figures below, and tilt the deflection yoke till the convergence errors at the right and left are the same. After this adjustment, insert wedges on the right and left of the deflection yoke so that the convergence will not deviate due to an unsteady deflection yoke. (Do not apply silicon rubber to the wedges to prevent them from slipping out.)

(14) After checking that the purity has not deviated, tighten the deflection yoke securely, exercising care not to cause convergence deviation.
 Tightening torque : 22 ± 2 kgf·cm
 $(2.16 \pm 0.2$ N·m)

(15) Correct the upper and lower horizontal lines on the screen with the differential resistor. If convergence errors are not reduced to 0 mm, refer to the figures below, and adjust the differential resistor until the upper and lower convergence errors are the same.

(16) Adjust the center horizontal line on the screen using the differential coil. If convergence errors are not reduced to 0 mm, refer to the figure below, and adjust the differential coil until the right and left convergence errors are the same.

(17) Repeat adjustment the deflection yoke, differential resistor, and differential coil until the specified 0.35 mm is satisfied. The center convergence may deviate during their repeated adjustment. In that case, adjust the 4-pole magnet A and 6-pole magnet.

(18) Fasten the wedges to the bottom, upper left, and upper right of the deflection yoke with silicon adhesive and glass cloth tape as shown below.

(19) Then, fasten the right and left wedges with silicon adhesive and glass cloth tape similarly, and remove the top wedge.

(20) After the adjustments mentioned in Items (7) through (17) have been properly made, correct the convergence errors at the four corners with permalloy until the specifications are satisfied.

The red is too far to the right in the upper and lower right corners.

The blue is too far to the left in the upper and lower left corners.

The horizontal red lines are too far up and down in the upper and lower right corners.

The horizontal blue lines are too far up and down in the upper and lower left corners.

The vertical red lines are too far to the right in the upper and lower right corners.

The vertical blue lines are too far to the left in the upper and lower left corners.

NOTE

A permalloy must be affixed apart from the anode cap over 20mm (0.79").

Do not pick up permalloys.

Do not affix a permalloy on the label.

Do not affix a permalloy above or below the wedges.

Fix permalloys with polyester tape.

(21) After completion of adjustment, apply locking paint to the movable portions of the deflection yoke and convergence yoke to secure them.

CHECK PROCEDURE

The checks for this Display Unit are;

- 1. Vertical position check**
- 2. Multicolor check**
- 3. Gradation level check**
- 4. Multicolor check (Text check)**
- 5. White balance check**
- 6. Overall performance check (Sync on green check)**
- 7. Overall performance check (Sync combination check)**
- 8. Overall performance check
(TTL/ANALOG switch operation check)**

These are independent check items, but must be made in the specified sequence to be effective.

Be sure to make these checks after adjustments or repairs.

No.	ITEM	SIGNAL TIMING	CHECK PROCEDURE	DESCRIPTION
1	Vertical Position Check	MODE M5	<ol style="list-style-type: none"> 1. Set SW1302 to MANUAL. 2. Turn VR431 (V. POSITION) and check that vertical position is variable laterally by 5 mm (0.2") or more. 	
2	Multicolor Check	MODE M1	<ol style="list-style-type: none"> 1. Apply a 64-color bar signal input. 2. Turn VR1300 (CONTRAST) from MIN to MAX and check that color changes from brown to red to brown to yellow. 	See color table 2.
		MODE M2	<ol style="list-style-type: none"> 3. Turn VR1300 (CONTRAST) from MIN to MAX. 4. Check that 1/3 level changes from 0 to 2/3. 	See color table 4.
		MODE M5	<ol style="list-style-type: none"> 5. Set SW1302 to MANUAL, and set SW1303 ① and ② to OFF. 6. Turn VR1300 (CONTRAST) from MIN to MAX, and check that level changes from 2/3 to 3/3. 7. Set SW1303 ① to ON, and SW1303 ② to OFF. 8. Turn VR1300 (CONTRAST) from MIN to MAX, and check that 2/3 level remains unchanged. 9. Set SW1303 ① to OFF and SW1303 ② to ON. 10. Turn VR1300 (CONTRAST) from MIN to MAX, and check that color changes from brown to red to brown to yellow. 11. Set SW1303 ① and ② to ON. 12. Turn VR1300 (CONTRAST) from MIN to MAX, and check that 1/3 level changes from 0 to 2/3. <p>NOTE <i>Check displayed colors according to the color tables of all signal condition data.</i></p>	See color table 1. See color table 3. See color table 2.
3	Gradation Level Check	MODE M5	<ol style="list-style-type: none"> 1. Set the ambient illuminance at 10 lux. 2. Turn VR1301 (BRIGHT) until back raster goes out. 3. Set SW1301 to ANALOG and SW1302 to MANUAL. 4. Apply a video gradation pattern, mode 5 signal. 5. Turn VR1300 (CONTRAST) to MAX, and check that 16 gradations can be identified. <p>NOTE <i>If 16 gradations cannot be identified, repeat CRT cutoff adjustment.</i></p>	

No.	ITEM	SIGNAL TIMING	CHECK PROCEDURE	DESCRIPTION																																
3	Gradation Level Check	MODE M5	<p>6. Turn VR1300 (CONTRAST) from MIN to MAX, and check that tracking is satisfactory from white to black.</p> <p style="text-align: center;">NOTE</p> <p style="text-align: center;"><i>If tones (particularly, grey) are different, readjust white balance.</i></p>																																	
4	White Balance Check	MODE M2	<p>1. Set SW1301 to ANALOG.</p> <p>2. Apply a full white field signal.</p> <p>3. Adjust VR552 (H. WIDTH) to set the width of the image at 250 mm (9.84").</p> <p>4. Adjust VR406 (SUB V. HEIGHT) to set the height of the image at 187.5 mm (7.38").</p> <p>5. Set brightness to 110 cd/m² (32.12 ft-L) with VR1300 (CONTRAST).</p> <p>6. Check to be sure that chromaticity coordinates are X = 0.281, Y = 0.311.</p>																																	
5	Multicolor Check (Text Check)	MODE M2	<p>1. Apply a 64-color bar signal input.</p> <p>2. Set SW1304 to ON.</p> <p>3. Set SW1303 3(3), (4), and (5) as shown below, turn VR1300 (CONTRAST) from MIN to MAX, and check as shown in the table below.</p> <table border="1" data-bbox="552 1079 1176 1342"> <tr> <th>3</th><th>4</th><th>5</th><th>Check object</th></tr> <tr> <td>OFF</td><td>OFF</td><td>OFF</td><td>64-color bar</td></tr> <tr> <td>ON</td><td>OFF</td><td>OFF</td><td>Red solid</td></tr> <tr> <td>OFF</td><td>ON</td><td>OFF</td><td>Green solid</td></tr> <tr> <td>OFF</td><td>OFF</td><td>ON</td><td>Blue solid</td></tr> <tr> <td>ON</td><td>ON</td><td>ON</td><td>White solid</td></tr> </table> <p>4. Apply signal of green "H" character.</p> <p>5. Set SW1303 (3), (4), and (5) as shown below, turn VR1300 (CONTRAST) from MIN to MAX, and check as shown in the table below.</p> <table border="1" data-bbox="552 1573 1176 1663"> <tr> <th>3</th><th>4</th><th>5</th><th>Check object</th></tr> <tr> <td>ON</td><td>ON</td><td>ON</td><td>White H character</td></tr> </table>	3	4	5	Check object	OFF	OFF	OFF	64-color bar	ON	OFF	OFF	Red solid	OFF	ON	OFF	Green solid	OFF	OFF	ON	Blue solid	ON	ON	ON	White solid	3	4	5	Check object	ON	ON	ON	White H character	
3	4	5	Check object																																	
OFF	OFF	OFF	64-color bar																																	
ON	OFF	OFF	Red solid																																	
OFF	ON	OFF	Green solid																																	
OFF	OFF	ON	Blue solid																																	
ON	ON	ON	White solid																																	
3	4	5	Check object																																	
ON	ON	ON	White H character																																	
6	Overall Performance Check (Sync on Green Check)	MODE M5	<p>1. Set SW1301 to ANALOG.</p> <p>2. Apply a full green field signal.</p> <p>3. Set sync level to 0.2V.</p> <p>4. Set VR1301 (BRIGHT) fully clockwise.</p> <p>5. Check the screen that nothing is wrong.</p>																																	
		MODE M1	<p>6. Apply a crosshatch reverse signal.</p> <p>7. Set sync level to 0.4V.</p> <p>8. Check the screen that nothing is wrong.</p>																																	

No.	ITEM	SIGNAL TIMING	CHECK PROCEDURE	DESCRIPTION																																										
7	Overall Performance Check (Sync Combination Check)	MODE M5	<p>1. Set SW1302 to MANUAL.</p> <p>2. Combine input signals as shown below and check that nothing is wrong on the screen.</p> <table border="1" data-bbox="576 478 1211 725"> <thead> <tr> <th data-bbox="576 478 806 534">Connector MODE</th><th colspan="2" data-bbox="925 478 1108 534">INPUT SIGNAL</th></tr> <tr> <th data-bbox="576 534 806 590">M5</th><th data-bbox="878 534 949 590">8 pin</th><th data-bbox="1076 534 1132 590">9 pin</th></tr> </thead> <tbody> <tr> <td data-bbox="576 590 806 646">\bar{H}</td><td data-bbox="878 590 949 646">\bar{V}</td><td data-bbox="1076 590 1132 646">V</td></tr> <tr> <td data-bbox="576 646 806 702">\bar{H}</td><td data-bbox="878 646 949 702">\bar{V}</td><td data-bbox="1076 646 1132 702">\bar{V}</td></tr> <tr> <td data-bbox="576 702 806 758">HV</td><td data-bbox="878 702 949 758">NA</td><td data-bbox="1076 702 1132 758"></td></tr> <tr> <td data-bbox="576 758 806 792">$\bar{H}\bar{V}$</td><td data-bbox="878 758 949 792">NA</td><td data-bbox="1076 758 1132 792"></td></tr> </tbody> </table> <p>3. Set SW1301 to ANALOG.</p> <p>4. Combine input signal as shown below and check that nothing is wrong on the screen.</p> <table border="1" data-bbox="576 915 1211 1297"> <thead> <tr> <th data-bbox="576 915 806 972">Connector MODE</th><th colspan="2" data-bbox="925 915 1108 972">INPUT SIGNAL</th></tr> <tr> <th data-bbox="576 972 806 1028">M5</th><th data-bbox="878 972 949 1028">4 pin</th><th data-bbox="1076 972 1132 1028">5 pin</th></tr> </thead> <tbody> <tr> <td data-bbox="576 1028 806 1084">H</td><td data-bbox="878 1028 949 1084">V</td><td data-bbox="1076 1028 1132 1084"></td></tr> <tr> <td data-bbox="576 1084 806 1140">\bar{H}</td><td data-bbox="878 1084 949 1140">\bar{V}</td><td data-bbox="1076 1084 1132 1140">V</td></tr> <tr> <td data-bbox="576 1140 806 1196">H</td><td data-bbox="878 1140 949 1196">\bar{V}</td><td data-bbox="1076 1140 1132 1196">\bar{V}</td></tr> <tr> <td data-bbox="576 1196 806 1252">\bar{H}</td><td data-bbox="878 1196 949 1252">\bar{V}</td><td data-bbox="1076 1196 1132 1252">\bar{V}</td></tr> <tr> <td data-bbox="576 1252 806 1308">HV</td><td data-bbox="878 1252 949 1308">NA</td><td data-bbox="1076 1252 1132 1308"></td></tr> <tr> <td data-bbox="576 1308 806 1342">HV</td><td data-bbox="878 1308 949 1342">SYNC ON</td><td data-bbox="1076 1252 1132 1342">Green</td></tr> </tbody> </table>	Connector MODE	INPUT SIGNAL		M5	8 pin	9 pin	\bar{H}	\bar{V}	V	\bar{H}	\bar{V}	\bar{V}	HV	NA		$\bar{H}\bar{V}$	NA		Connector MODE	INPUT SIGNAL		M5	4 pin	5 pin	H	V		\bar{H}	\bar{V}	V	H	\bar{V}	\bar{V}	\bar{H}	\bar{V}	\bar{V}	HV	NA		HV	SYNC ON	Green	
Connector MODE	INPUT SIGNAL																																													
M5	8 pin	9 pin																																												
\bar{H}	\bar{V}	V																																												
\bar{H}	\bar{V}	\bar{V}																																												
HV	NA																																													
$\bar{H}\bar{V}$	NA																																													
Connector MODE	INPUT SIGNAL																																													
M5	4 pin	5 pin																																												
H	V																																													
\bar{H}	\bar{V}	V																																												
H	\bar{V}	\bar{V}																																												
\bar{H}	\bar{V}	\bar{V}																																												
HV	NA																																													
HV	SYNC ON	Green																																												
8	Overall Performance Check (TTL/ANALOG Switch Operation Check)	MODE M2	<p>1. Set SW1301 to ANALOG.</p> <p>2. Turn video signal on.</p> <p>3. Apply a full white field signal.</p> <p>4. Apply a TTL signal and check that the raster on the CRT screen does not converge into one horizontal streak.</p>																																											

—CIRCUIT BOARD-SOLDER VIEW

Main Board (TNP890253-31)

J/F Board (TNP800167-31)

CRT Socket Board (TNP800166-21)

 Parts Side pattern
 Solder Side pattern

BLOCK DIAGRAM

SCHEMATIC DIAGRAM FOR MODEL TX-1441AE**IMPORTANT SAFETY NOTICE**

The component identified by shading or international symbol Δ on the following schematic diagrams incorporate special features important for protection from X-Radiation, fire and electrical shock hazards. When servicing it is essential that only manufacturer's specified parts be used for those critical components.

NOTES :**1. RESISTOR**

All resistors are carbon 1/4W resistor, unless otherwise noted by the following marks.
Unit of resistance is ohm (Ω), (K = 1,000, M = 1,000,000).

	Non Flammable		Solid
	Metal Oxide		Metal (Precision and high stability)
	Wire Wound		Thermistor
	Fusible		Positive coefficient Thermistor

2. CAPACITOR

All capacitors are ceramic 50V capacitor, unless otherwise noted by the following marks.
Unit of capacitance is μF , unless otherwise noted.

	Electrolytic		Polyester
	Tantalum		Metallized Polyester
	Bipolar		Polypropylene
Z	Z Type		

3. COIL

Unit of inductance is μH , unless otherwise noted.

4. VOLTAGE MEASUREMENT

Voltage is measured by a digital meter with DC 10M OHM/V receiving normal signal.

5. This schematic diagram is the latest at the time of printing and is subject to change without notice.**SERVICE NOTES :**

This model has a section that does not share a common ground with the power supply section. The different sections are referred to as the HOT section and the COLD section in the precautions below.

- Do not touch the HOT section and the COLD section at the same time. You may receive an electric shock.
- Do not short the HOT section to the COLD section. This could blow the fuse or damage parts.
- Never measure the HOT section and the COLD section at the same time when using tools such as oscilloscopes or multimeters.
- Always unplug the unit before beginning any operation such as removing the chassis.

TRANSISTOR, IC & DIODE TERMINAL GUIDE

TX-1441AE TX-1441AE

- CONNECTIONS

Preparations Before Connection

1. Install the unit on a level and hard surface. Be sure not to obstruct the ventilation holes on the cabinet.
2. Avoid exposing the display to direct sunlight or other bright lights.
3. Before connecting the Computer Display to the personal computer, make sure that both power switches are off.
4. Preset can be made for IBM personal computers or compatible personal computers by the following settings.

TTL/ANALOG Switch	AUTO/MANUAL Switch	Preset mode
TTL	AUTO	IBM CGA or EGA
ANALOG	AUTO	IBM PGC

5. In case of other personal computers than those of IBM compatible, make checking by the following procedures.

TROUBLE SHOOTING HINTS

Troubleshooting Flowchart

Conditions : Standard conditions Mode :

a. No Characters/Patterns

b. No Raster

c. Horizontal Output Circuit Faulty

d. Specific Colors Not Reproduced

e. Horizontal Hold Faulty

f. Vertical Hold Faulty

g. Power Circuit Faulty

EXPLODED VIEWS

REPLACEMENT PARTS LIST**Important Safety Notice**

Components identified by the International symbol **Δ** have special characteristics important for safety. When replacing any of these components use only manufacturer's specified parts.

RESISTOR

PART NAME & DESCRIPTION		
TYPE		ALLOWANCE
C	Carbon	F ± 1%
F	Fuse	J ± 5%
M	Metal Oxide	K ± 10%
S	Solid	M ± 20%
W	Wire Wound	G ± 2%

CAPACITOR

PART NAME & DESCRIPTION		
TYPE		ALLOWANCE
C	Ceramic	C ± 0.25pF
E	Electrolytic	D ± 0.5pF
P	Polyester	F ± 1pF
S	Styrol	J ± 5%
T	Tantalum	K ± 10%
PP	Polypropylene	L ± 15%
		M ± 20%
		P +100% -0%
		Z +80% -20%

Part No.
Example: ERD25TJ104 C 100K J 1/4W

Part No.
Example: ECKF1H103ZF C 0.01μF Z 50V

Ref.No.	Part No.	Description	Ref.No.	Part No.	Description
	CABINET & MAIN PARTS		21	XNS8	NUT
△	1 TKX854001	PC BOARD HOLDER(BIG)	22	XTB4+16A	SCREW
△	2 TKX854101	PC BOARD HOLDER(SMALL)	23	XTB4+16F	SCREW
	3 TUW87908	SIDE PLATE(L)	24	XTB4+35B	SCREW
	4 TUW87909	SIDE PLATE(R)	25	XTB4+8F	SCREW
	5 TUX80701-2	CORD BRACKET(BIG)		XTV3+12A	SCREW
	6 TUX81158	PC BOARD BRACKET	26	XTV3+16F	SCREW
	7 TUX85106-2	UPPER BRACKET	27	XTV3+20F	SCREW
	8 TUX85618	PCB MOUNT BRACKET	28	XTV3+20U	SCREW
	9 TUX87110-1	SIDE PLATE BRACKET(L)	29	XTV3+8F	SCREW
	10 TUX87111-1	SIDE PLATE BRACKET(R)		XTW3+8L	SCREW
△	11 TUX87713-1	I/F BRACKET	30	XWA4B	WASHER
	12 TUX87713-1	BOTTOM PLATE	31	XWA5B	WASHER
	13 TUC85980	SHIELD PLATE(I/F)	32	XWC3BFN	WASHER
	13 TUC87522	SHIELD PLATE(CRT PCB)	33	XWG5H17	WASHER
	TBM870063-2	MODEL PLATE		XWS8A	WASHER
	14 TES5201	SPRING(CRT EARTH)	35	XYA4+EF8	SCREW
	TMM15404-1	SPACER RING	36	XYE3+EC8	SCREW
	TMM15414	CLAMPER(SMALL)	37	XYE3+EF8	SCREW
	TMM16419	EDGE BARRIER	38	XYN3+C6	SCREW
	15 TMM16452	CLAMPER(ANODE)BIG	39	M34JDJ80X	PICTURE TUBE
	TMM6463	CLAMPER	40	TNP800166-21	PC BOARD W/COMPONENT(CRT)
	TMM81416	CORD BAND(SMALL)	41	TNP800167-31	PC BOARD W/COMPONENT(I/F)
	TMM81460	LOCKING SUPPORT	42	TNP890253-31	PC BOARD W/COMPONENT(M)
	TMM81461	PUSH RIVET	43	TXALY85327B1	DEFLECTION YOKE
	TMM81481	PCB SPACER		ETC-33X9K	CONVERGENCE COIL
	TMM85407	SPACER	44	TLK859023A3	DEGAUSS COIL
△	TMM85417	BARRIER	45	TSX9218	9P CONNECTOR CORD(D-SUB)
	TMM85511	RUBBER(WEDGE)	46	TJT8907B	SOCKET
	TMM85610	LEAD TUBE	47	TXAJTE3P1250	3P CONNECTOR ASSY
	19 TMM87701	BUSHING		TXAJTE3P1251	3P CONNECTOR ASSY
	20 TMM87702	COLLAR		TXAJTT2P405	2P CONNECTOR ASSY
	TMK84549	PARMALLOY(BIG)		TSC8906-0	FERRITE CORE(BIG)
	TMK84557	PARMALLOY(SMALL)		TSN85511	MAGNET
	TMK85537	BARRIER	VR301	EVH60AF20B15	CONTROL B 100K OHM
			VR1300	EVH60AF20B53	CONTROL B 5K OHM
				T4F31519Q	POLYESTER TAPE(20M)

Ref.No.	Part No.	Description	Ref.No.	Part No.	Description
	T4F72425Q	COTTON TAPE(55M)	Q552	2SC1384AR	TRANSISTOR
	T4F80918-1	TAPE	Q553	2SA684R	TRANSISTOR
	T4F90219-1	MAIRA TAPE(20M)	Q554	2SK752FD	TRANSISTOR
	TPC8811001	DUTER CARTON	Q555	2SK754FDLT	TRANSISTOR
	TXAPD11441AE	FILLER	Q556	2SD1266R	TRANSISTOR
▲	TPE814055	SET COVER	Q557	2SB642Q	TRANSISTOR
	TQE616	BAG	Q581	2SC1384S	TRANSISTOR
▲	TQD8712001	PTB PASS SHEET	▲ Q582	2SD1849F	TRANSISTOR
▲	TQF81259	SERIAL NO LABEL	Q583	2SD636R	TRANSISTOR
▲	TQF82706	WARNING LABEL	Q751	2SK301Q	TRANSISTOR
▲	TQF85210	HIGH VOLTAGE LABEL	Q752	2SD636R	TRANSISTOR
	TQF86205-1	CONTROL LABEL	Q801	2SC1384AR	TRANSISTOR
	TQF86206-1	SELECT/TEXT LABEL	Q802	2SC1384AR	TRANSISTOR
	TQF86207	CONTRAST LABEL	Q881	2SC1573QNC	TRANSISTOR
	TQF86208	BRIGHT LABEL	Q1301	2SC3811R	TRANSISTOR
▲	TQF87296	PTB LABEL	Q1302	2SC3811R	TRANSISTOR
	I.C		Q1303	2SC3811R	TRANSISTOR
▲	IC401 LA7852	INTEGRATED CIRCUIT	Q1306	2SC3811R	TRANSISTOR
	IC402 AN78L12	INTEGRATED CIRCUIT	Q1307	2SB641R	TRANSISTOR
	IC431 M5224P	INTEGRATED CIRCUIT	Q1308	UN1212	TRANSISTOR
	IC432 M4052BP	INTEGRATED CIRCUIT	Q1309	UN1212	TRANSISTOR
	IC531 NJM4151D	INTEGRATED CIRCUIT	Q1310	2SD636R	TRANSISTOR
	IC532 M4052BP	INTEGRATED CIRCUIT	Q1311	2SB643S	TRANSISTOR
	IC533 M5224P	INTEGRATED CIRCUIT	Q1312	2SD636R	TRANSISTOR
	IC551 AN6912	INTEGRATED CIRCUIT	Q1313	2SC3811R	TRANSISTOR
	IC651 M5223L	INTEGRATED CIRCUIT	Q1314	2SC3811R	TRANSISTOR
	IC801 STR59041F501	INTEGRATED CIRCUIT	Q1315	2SD636R	TRANSISTOR
	IC851 M51848P	INTEGRATED CIRCUIT	Q1316	2SC3811R	TRANSISTOR
	IC881 STR50330F501	INTEGRATED CIRCUIT	Q1317	2SB641R	TRANSISTOR
▲	IC891 M5223L	INTEGRATED CIRCUIT	Q1318	2SD636R	TRANSISTOR
	IC1301 TVR8AJ001	INTEGRATED CIRCUIT	Q1319	UN1212	TRANSISTOR
	IC1302 M74ALS04AP	INTEGRATED CIRCUIT	Q1320	2SD636R	TRANSISTOR
	IC1303 M74ALS30AP	INTEGRATED CIRCUIT	Q3340	2SC3943	TRANSISTOR
	IC1304 MN74HC86	INTEGRATED CIRCUIT	Q3341	2SC3811R	TRANSISTOR
	IC1305 MN74HC32	INTEGRATED CIRCUIT	Q3342	2SC3943	TRANSISTOR
	IC1306 MN74HC08	INTEGRATED CIRCUIT	Q3343	2SC3811R	TRANSISTOR
	IC1307 MN74HCU04	INTEGRATED CIRCUIT	Q3344	2SC3943	TRANSISTOR
	IC1309 M51387P	INTEGRATED CIRCUIT	Q3345	2SC3811R	TRANSISTOR
	IC1310 M5216L	INTEGRATED CIRCUIT	Q3350	2SC3526H	TRANSISTOR
	IC1311 AN78M05	INTEGRATED CIRCUIT	Q3351	2SA11450Y	TRANSISTOR
	IC1312 AN78M12	INTEGRATED CIRCUIT	Q3352	2SC3526H	TRANSISTOR
	TRANSISTORS		Q3353	2SA11450Y	TRANSISTOR
	Q361 2SB1011	TRANSISTOR	Q3354	2SC3526H	TRANSISTOR
	Q371 2SD637R	TRANSISTOR	Q3355	2SA11450Y	TRANSISTOR
	Q372 2SD637R	TRANSISTOR	Q3370	2SD1211R	TRANSISTOR
	Q401 2SB644S	TRANSISTOR		DIODES	
	Q402 2SD637R	TRANSISTOR	D361	MA4140M	DIODE
	Q403 2SC1318R	TRANSISTOR	D362	MA165	DIODE
	Q404 2SB644S	TRANSISTOR	D363	EU2	DIODE.SI
	Q405 2SB940AP	TRANSISTOR	D371	MA29TA	DIODE
	Q406 2SD639R	TRANSISTOR	D372	MA4270M	DIODE.SI
	Q407 2SD1264AP	TRANSISTOR	D402	MA27QA	DIODE
	Q413 2SD636R	TRANSISTOR	D405	MA165	DIODE
	Q431 2SB644S	TRANSISTOR	D406	MA165	DIODE
	Q436 2SD639R	TRANSISTOR	D407	MA29WA	DIODE
	Q471 2SC1384AR	TRANSISTOR	D431	MA165	DIODE
	Q501 2SB644S	TRANSISTOR	D432	MA165	DIODE
	Q502 2SB641R	TRANSISTOR	D433	MA165	DIODE
	Q521 2SC2653H	TRANSISTOR	D471	EU2Z	DIODE.SI
	Q551 2SD1849F	TRANSISTOR	D472	MA165	DIODE
			D501	MA29A	DIODE

Ref.No.	Part No.	Description	Ref.No.	Part No.	Description
D502	MA29TA	DIODE	D1310	MA4051M	DIODE
D503	MA41OOH	DIODE.SI	D1311	MA4051M	DIODE
D504	MA29A	DIODE	D1312	MA4051M	DIODE
D506	MA29WA	DIODE	D1313	MA4051M	DIODE
D531	MA165	DIODE	D1314	MA4051M	DIODE
D534	MA165	DIODE	D1315	MA4051M	DIODE
D551A	TVSRU4DS	DIODE	D1316	MA700	DIODE.SI
D551B	RG2A2	DIODE.SI	D1317	MA700	DIODE.SI
D552A	TVSRG2	DIODE.SI	D1318	MA700	DIODE.SI
D552B	TVSRG2	DIODE.SI	D1319	MA700	DIODE.SI
D553	EU2A	DIODE.SI	D1320	MA700	DIODE.SI
D554	EU2A	DIODE.SI	D1321	MA700	DIODE.SI
D555	ERA4802	DIODE.SI	D1325	MA165	DIODE
D556	MA29WA	DIODE	D1326	MA165	DIODE
D557	EU2Z	DIODE.SI	D1327	MA165	DIODE
D558	MA4051M	DIODE	D1328	MA165	DIODE
D559	MA4051L	DIODE	D1329	MA150	DIODE
D560	MA4047L	DIODE.SI	D1330	MA165	DIODE
D561	MA4047L	DIODE.SI	D1331	MA165	DIODE
D591	MA162	DIODE	D1332	MA700	DIODE.SI
△ D601	MA4051M	DIODE	D1333	MA700	DIODE.SI
D602	EU2	DIODE.SI	D1334	MA4033M	DIODE.SI
D651	MA29A	DIODE	D1336	MA165	DIODE
D751	MA165	DIODE	D1337	MA29WA	DIODE
D752	MA165	DIODE	D1343	MA29A	DIODE
D753	MA700	DIODE.SI	D1344	MA165	DIODE
D754	MA700	DIODE.SI	D1347	MA165	DIODE
D755	MA700	DIODE.SI	D1348	MA165	DIODE
D756	MA700	DIODE.SI	D3360	MA165	DIODE
D757	MA700	DIODE.SI	D3361	MA165	DIODE
D758	MA165	DIODE	D3362	MA165	DIODE
D759	MA165	DIODE	D3363	MA165	DIODE
D804	ERTD7FFK16OL	THERMISTOR	D3364	MA165	DIODE
D805	RBV406	DIODE.SI	D3365	MA165	DIODE
D806	EU1Z	DIODE	D3366	MA165	DIODE
D807	EU1Z	DIODE	D3367	MA165	DIODE
D808	RG2A2	DIODE.SI	D3368	MA165	DIODE
D809	EU1Z	DIODE	D3370	MA167A	DIODE.SI
D810	EU2	DIODE.SI	D3371	MA167A	DIODE.SI
D852	ERPF5BOM120G	POSISTOR	D3372	MA167A	DIODE.SI
△ D853	TM361ML	DIODE.SI			COIL & TRANSFORMERS
D854	MA165	DIODE	△ L551	TLH85807	COIL
D861	TVSRG2A	DIODE	△ L552	ELH5L704	COIL
D862	TVSRG2A	DIODE	△ L553	ELC18B009	CHOKE COIL
D863	TVSRG2	DIODE.SI	△ L801	ELF18D656J	COIL TRANS
D864	EU2YX	DIODE.SI	△ L802	ELF18D656J	COIL TRANS
D866	FML22S	DIODE.SI	L861	ELC08D050	CHOKE COIL
D881	TVSRG2A	DIODE	L881	ELC10B006	CHOKE COIL
D882	TVSRG2A	DIODE	L1301	TLU121K186	PEAKING COIL
D883	EU1Z	DIODE	L1302	TLU121K186	PEAKING COIL
D884	EU1Z	DIODE	L1303	TLU121K186	PEAKING COIL
D886	TVSR2M	DIODE	L3301	TSC8921-1	FERRITE CORE
D891	MA4051H	DIODE.SI	L3302	TSC8921-1	FERRITE CORE
D1301	MA165	DIODE	L3303	TSC8921-1	FERRITE CORE
D1302	MA165	DIODE	L3340	TLUR68M186	PEAKING COIL
D1303	MA165	DIODE	L3341	TLU1ROM186	PEAKING COIL
D1304	MA165	DIODE	L3342	TLUR47M186	PEAKING COIL
D1305	MA165	DIODE	L3343	TLU1ROM186	PEAKING COIL
D1306	MA165	DIODE	L3344	TLUR47M186	PEAKING COIL
D1307	MA1051M	DIODE	L3345	TLU1ROM186	PEAKING COIL
D1308	MA1051M	DIODE	L3352	TLU47OK186	PEAKING COIL
D1309	MA27A	DIODE			

Ref.No.	Part No.	Description			Ref.No.	Part No.	Description			
L3390	TLU1ROM186	PEAKING COIL			C413	ECKF1H471KB	C	470PF	K	50V
L3391	TLU1ROM186	PEAKING COIL			C414	ECQB1H332JZ	P	3300PF	J	50V
L3392	TLU1ROM186	PEAKING COIL			C415	ECSF1VE106YE	T	10UF		35V
L3393	TLU121K106C	PEAKING COIL			C416	ECEA1HG4R7S	E	4.7UF		50V
△ PC851	TLP666JF	TRANS			C417	ECEA1EG100S	E	10UF		25V
T521	TLH6466	COIL			C431	ECEA1HG220S	E	22UF		50V
△ T551	TLF85681	FLYBACK TRANS			C432	ECEA1VFE151	E	150UF		35V
△ T801	ETS42K254A	TRANS			C471	ECEA1HNX220	E	22UF		50V
T881	ETS29K309A	TRANS			C472	ECEA1HNX220	E	22UF		50V
	CONTROL				C473	ECQV1H474JZ	P	0.47UF	J	50V
VR361	EVN32CA00B54	CONTROL	B	50K OHM	C501	ECCF1H101J	C	100PF	J	50V
VR402	EVN32CA00B13	CONTROL	B	1K OHM	C502	ECQK1152JZ	P	1500PF	J	100V
VR403	EVUF3AE25B24	CONTROL	B	20K OHM	C503	ECQP1H271JZ	PP	270PF	J	50V
VR404	EVM4HGA00B34	CONTROL	B	30K OHM	C504	ECQB1H682JZ	P	6800PF	J	50V
VR405	EVM4HGA00B34	CONTROL	B	30K OHM	C505	ECEA1HG010S	E	1UF		50V
VR406	EVM4HGA00B34	CONTROL	B	30K OHM	C506	ECQK1103JZ	P	0.01UF	J	100V
VR407	EVM4HGA00B34	CONTROL	B	30K OHM	C507	ECEA1HG010S	E	1UF		50V
VR408	EVM4HGA00B54	CONTROL	B	50K OHM	C508	ECQP1472FZ	PP	4700PF	F	100V
VR431	EVUF3AE25B24	CONTROL	B	20K OHM	C509	ECEA1CF101	E	100UF		16V
VR501	EVN32CA00B24	CONTROL	B	20K OHM	C511	ECEA1EFE560	E	56UF		25V
VR502	EVN32CA00B13	CONTROL	B	1K OHM	C512	ECEA1CGE102	E	1000UF		16V
VR531	EVUF3AE25B14	CONTROL	B	10K OHM	C513	ECQB1H472JZ	P	4700PF	J	50V
VR532	EVM4HGA00B54	CONTROL	B	50K OHM	C521	ECKD2H102KB2	C	1000PF	K	500V
VR533	EVM4HGA00B54	CONTROL	B	50K OHM	C522	ECKF1H102KB	C	1000PF	K	50V
VR534	EVM4HGA00B54	CONTROL	B	50K OHM	C523	ECKF1H102KB	C	1000PF	K	50V
VR535	EVM4HGA00B54	CONTROL	B	50K OHM	C524	ECKF1H102KB	C	1000PF	K	50V
VR551	EVM31GA00B33	CONTROL	B	3K OHM	C525	ECEA1HG010S	E	1UF		50V
VR552	EVUF3AE25B14	CONTROL	B	10K OHM	C526	ECKF1H102KB	C	1000PF	K	50V
VR553	EVM4HGA00B15	CONTROL	B	100K OHM	C527	ECEA1EFE560	E	56UF		25V
VR554	EVM4HGA00B15	CONTROL	B	100K OHM	C528	ECEA1EGE332	E	3300UF		25V
VR555	EVM4HGA00B15	CONTROL	B	100K OHM	C531	ECCF1H221J	C	220PF	J	50V
VR556	EVM4HGA00B15	CONTROL	B	100K OHM	C532	ECQP1H102FZ	PP	1000PF	F	50V
VR751	EVN32CA00B24	CONTROL	B	20K OHM	C533	ECEA1HG2R2S	E	2.2UF		50V
VR841	EVN32CA00B54	CONTROL	B	50K OHM	C536	ECEA1EG101S	E	100UF		25V
VR1301	EVM4HGA00B33	CONTROL	B	3K OHM	C551	ECKF1H103ZF	C	0.01UF	Z	50V
VR1303	EVM4HGA00B33	CONTROL	B	3K OHM	C552	ECEA1HG4R7S	E	4.7UF		50V
VR1305	EVM4HGA00B22	CONTROL	B	200 OHM	C553	ECEA1HG4R7S	E	4.7UF		50V
VR1309	EVM4HGA00B53	CONTROL	B	5K OHM	△ C554	ECWH12H562HS	PP	5600PF	H	1.2KV
VR1311	EVM4HGA00B53	CONTROL	B	5K OHM	△ C555	ECKC3D391JBN	C	390PF	J	2KV
VR1312	EVM4HGA00B53	CONTROL	B	5K OHM	△ C556	ECWH12H123JS	PP	0.012UF	J	1.2KV
VR3370	EVM4HGA00B13	CONTROL	B	1K OHM	C557	ECKC3D122JBN	C	1200PF	J	2KV
VR3371	EVM4HGA00B13	CONTROL	B	1K OHM	C558	ECEA1EFE560	E	56UF		25V
VR3372	EVM4HGA00B13	CONTROL	B	1K OHM	△ C559	ECWF2H105JNY	PP	1.0UF	J	500V
	CAPACITORS				△ C560	ECWF2H784R65	PP	0.78UF	R	500V
C361	ECEA1AG101S	E	100UF	10V	△ C561	ECWF2H824R65	PP	0.82UF		500V
C362	ECEA2VG4R7S	E	4.7UF	350V	△ C562	ECWF2H105JNY	PP	1.0UF	J	500V
C371	ECEA2AGE010	E	1UF	100V	C563	ECQV1H473JZ	P	0.047UF	J	50V
C372	ECQB1H472JZ	P	4700PF	J	C564	ECQV1H473JZ	P	0.047UF	J	50V
C373	ECEA2EG010S	E	1UF	250V	△ C565	ECEA1VW100	E	10UF		35V
C374	ECQB1H183JZ	P	0.018UF	J	C566	ECKD2H102KB2	C	1000PF	K	500V
C401	ECEA1CF101	E	100UF	16V	C567	ECEA1CG101S	E	100UF		16V
C402	ECQB1H223JZ	P	0.022UF	J	C568	ECOS2DG221E	E	220UF		200V
C403	ECQB1H103JZ	P	0.01UF	J	C569	ECCD2H180J	C	18PF	J	500V
C404	ECQV1H104JZ	P	0.1UF	J	△ C581	ECQM1H474JV	P	0.47UF	J	50V
C405	ECKF1H473ZF	C	0.047UF	Z	C582	ECKC3D272JBN	C	2700PF	J	2KV
C406	ECEA1HGER33	E	0.33UF	50V	C583	ECQB1H223JZ	P	0.022UF	J	50V
C409	ECSF1VE684Y	T	0.68UF	35V	C591	ECEA2EG010S	E	1UF		250V
C410	ECKD2H182KB2	C	1800PF	K	C601	ECEA1AG221S	E	220UF		10V
C411	ECEA1HFE561	E	560UF	50V	C602	ECEA2CG010S	E	1UF		160V
C412	ECKD2H471KB2	C	470PF	K	C651	ECEA1HG010S	E	1UF		50V
					C751	ECEA1HGE330	E	33UF		50V
					C752	ECEA1EG101S	E	100UF		25V

Ref.No.	Part No.	Description				Ref.No.	Part No.	Description			
C754	ECQB1H562JZ	P	5600PF	J	50V	C1332	ECBT1E103ZF5	C	0.01UF	Z	25V
△ C801	ECQU2A224MNS	PP	0.22UF	M	250V	C1333	ECBT1E103ZF5	C	0.01UF	Z	25V
△ C802	TAXDSR472M	CERAMIC FILTER				C1337	ECEA1HG2R2S	E	2.2UF		50V
△ C803	TAXDSR472M	CERAMIC FILTER				C1338	ECEA1HG2R2S	E	2.2UF		50V
△ C804	ECQU2A224MNS	PP	0.22UF	M	250V	C1339	ECEA1HG2R2S	E	2.2UF		50V
△ C807	ECKCNS472MFJ	C	4700PF	M		C1340	ECBT1E103ZF5	C	0.01UF	Z	25V
△ C808	ECKCNS472MFJ	C	4700PF	M		C1341	ECBT1E103ZF5	C	0.01UF	Z	25V
C809	ECOS2EG561U	E	560UF		250V	C1342	ECBT1E103ZF5	C	0.01UF	Z	25V
C810	ECOS2EG561U	E	560UF		250V	C1343	ECEA1HG100S	E	10UF		50V
C811	ECEA1HFE820	E	82UF		50V	C1344	ECCF1H330JC	C	33PF	J	50V
△ C812	ECKCNS472MFJ	C	4700PF	M		C1345	ECCF1H330JC	C	33PF	J	50V
△ C813	ECKCNS472MFJ	C	4700PF	M		C1346	ECCF1H330JC	C	33PF	J	50V
C814	ECQM4473KZ	P	0.047UF	K	400V	C1347	ECEA1AG101S	E	100UF		10V
C816	ECQV1H393JZ	P	0.039UF	J	50V	C1348	ECQV1H104JZ	P	0.1UF	J	50V
C817	ECEA2AFE560	E	56UF		100V	C1349	ECEA1AG101S	E	100UF		10V
C841	ECQB1H103JZ	P	0.01UF	J	50V	C1350	ECQV1H104JZ	P	0.1UF	J	50V
C851	ECEA25V47TU	E	47UF		25V	C1351	ECQV1H104JZ	P	0.1UF	J	50V
C852	ECQV1H104JZ	P	0.1UF	J	50V	C1352	ECBT1E103ZF5	C	0.01UF	Z	25V
C853	ECQE2A103M	P	0.01UF	M	250V	C1353	ECBT1E103ZF5	C	0.01UF	Z	25V
C854	ECQV1H105JZ	P	1.0UF	J	50V	C1354	ECBT1E103ZF5	C	0.01UF	Z	25V
C857	ECQE2224KSB	P	0.22UF	K	250V	C1355	ECBT1E103ZF5	C	0.01UF	Z	25V
C855	ECKF1H103ZF	C	0.01UF	Z	50V	C1356	ECBT1E103ZF5	C	0.01UF	Z	25V
C856	ECEA1EFE221	E	220UF		25V	C1357	ECBT1E103ZF5	C	0.01UF	Z	25V
C865	ECEA1HFE222	E	2200UF		50V	C1358	ECBT1E103ZF5	C	0.01UF	Z	25V
C867	ECEA1CFE332	E	3300UF		16V	C1360	ECEA1CG101S	E	100UF		16V
C869	ECEA1EFE681	E	680UF		25V	C1361	ECBT1E103ZF5	C	0.01UF	Z	25V
C871	ECEA2AFE101	E	100UF		100V	C1362	ECQB1H123JZ	P	0.012UF	J	50V
C872	ECEA2CG101S	E	100UF		160V	C1363	ECQB1H562JZ	P	5600PF	J	50V
C882	ECOS2DG221E	E	220UF		200V	C1364	ECKF1H102KB	C	1000PF	K	50V
C883	ECKD2H561KB2	C	560PF	K	500V	C1365	ECEA1CG101S	E	100UF		16V
C884	ECEA1HNX220	E	22UF		50V	C1366	ECEA1HG100S	E	10UF		50V
C885	ECQV1H473JZ	P	0.047UF	J	50V	C1367	ECBT1E103ZF5	C	0.01UF	Z	25V
C886	ECOS2DG221E	E	220UF		200V	C1368	ECEA1CG101S	E	100UF		16V
C887	ECQB1H103JZ	P	0.01UF	J	50V	C1369	ECBT1E103ZF5	C	0.01UF	Z	25V
C888	ECQM2474KZ	P	0.47UF	K	200V	C1370	ECBT1E103ZF5	C	0.01UF	Z	25V
C891	ECEA1HGN100	E	10UF		50V	C1372	ECEA1HG100S	E	10UF		50V
C1301	ECBT1E103ZF5	C	0.01UF	Z	25V	C1375	ECEA1EG470S	E	47UF		25V
C1303	ECCF1H221J	C	220PF	J	50V	C1381	ECBT1E103ZF5	C	0.01UF	Z	25V
C1305	ECBT1E103ZF5	C	0.01UF	Z	25V	C1382	ECBT1E103ZF5	C	0.01UF	Z	25V
C1306	ECEA1HG100S	E	10UF		50V	C1383	ECBT1E103ZF5	C	0.01UF	Z	25V
C1307	ECQV1H473JZ	P	0.047UF	J	50V	C1384	ECBT1E103ZF5	C	0.01UF	Z	25V
C1308	ECEA1HG2R2S	E	2.2UF		50V	C1385	ECBT1E103ZF5	C	0.01UF	Z	25V
C1309	ECEA1HGO10S	E	1UF		50V	C1386	ECBT1E103ZF5	C	0.01UF	Z	25V
C1310	ECEA1HGER33	E	0.33UF		50V	C1387	ECBT1E103ZF5	C	0.01UF	Z	25V
C1311	ECQB1H103JZ	P	0.01UF	J	50V	C1388	ECBT1E103ZF5	C	0.01UF	Z	25V
C1312	ECKF1H102KB	C	1000PF	K	50V	C1389	ECBT1E103ZF5	C	0.01UF	Z	25V
C1313	ECKF1H102KB	C	1000PF	K	50V	C3340	ECQV1H104JZ	P	0.1UF	J	50V
C1315	ECCF1H471J	C	470PF	J	50V	C3341	ECQV1H104JZ	P	0.1UF	J	50V
C1316	ECQV1H154UZ	P	0.15UF	J	50V	C3342	ECQV1H104JZ	P	0.1UF	J	50V
C1318	ECEA1HGO10S	E	1UF		50V	C3343	ECCF1H151J	C	150PF	J	50V
C1319	ECEA1AG101S	E	100UF		10V	C3344	ECCF1H151J	C	150PF	J	50V
C1320	ECBT1E103ZF5	C	0.01UF	Z	25V	C3345	ECCF1H151J	C	150PF	J	50V
C1321	ECEA1AG101S	E	100UF		10V	C3346	ECKD2H103PU	C	0.01UF	P	500V
C1322	ECBT1E103ZF5	C	0.01UF	Z	25V	C3347	ECKD2H103PU	C	0.01UF	P	500V
C1323	ECEA1AG101S	E	100UF		10V	C3348	ECKD2H103PU	C	0.01UF	P	500V
C1324	ECBT1E103ZF5	C	0.01UF	Z	25V	C3349	ECKD2H103PU	C	0.01UF	P	500V
C1325	ECEA1CG221S	E	220UF		16V	C3350	ECQE1105KN	P	1.0UF	K	100V
C1326	ECBT1E103ZF5	C	0.01UF	Z	25V	C3351	ECQE1105KN	P	1.0UF	K	100V
C1327	ECBT1E103ZF5	C	0.01UF	Z	25V	C3352	ECQE1105KN	P	1.0UF	K	100V
C1328	ECBT1E103ZF5	C	0.01UF	Z	25V	C3353	ECKD2H103PU	C	0.01UF	P	500V
C1329	ECCF1H101J	C	100PF	J	50V	C3354	ECKD2H103PU	C	0.01UF	P	500V
C1330	ECBT1E103ZF5	C	0.01UF	Z	25V	C3361	ECEA2AG221S	E	220UF		100V
C1331	ECBT1E103ZF5	C	0.01UF	Z	25V	C3362	ECEA1AG101S	E	100UF		10V

Ref.No.	Part No.	Description			Ref.No.	Part No.	Description		
C3370	ECEA2AGE470	E	47UF	100V	R442	ERDS2TJ222	C	2.2K OHM	J 1/4W
C3371	ECEA2AGE3R3	E	3.3UF	100V	R443	ERDS2TJ222	C	2.2K OHM	J 1/4W
C3394	ECKC3D122JBN	C	1200PF	J 2KV	R444	ERDS2TJ224	C	220K OHM	J 1/4W
C3395	ECQE4153KZ	P	0.015UF	K 400V	R445	ERDS2TJ103	C	10K OHM	J 1/4W
R502	ECKF1H102KB	C	1000PF	K 50V	R471	ERDS2TJ471	C	470 OHM	J 1/4W
RESISTORS									
D1323	ERDS2TCO	C	0 OHM	1/4W	R472	ERDS2TJ102	C	1K OHM	J 1/4W
D1335	ERDS2TCO	C	0 OHM	1/4W	R473	ERDS2TJ182	C	1.8K OHM	J 1/4W
D1342	EROS2CKF1001	M	1K OHM	F 1/4W	R475	EROS2CKG2051	M	2.05K OHM	G 1/4W
U120	ERD25FJ101K	C	100 OHM	J 1/4W	R476	ERDS2TJ822	C	8.2K OHM	J 1/4W
U121	ERDS2TJ101	C	100 OHM	J 1/4W	R477	ERDS2TJ222	C	2.2K OHM	J 1/4W
R361	ERDS2TJ102	C	1K OHM	J 1/4W	R478	ERDS2TJ222	C	2.2K OHM	J 1/4W
R362	ERDS2TJ562	C	5.6K OHM	J 1/4W	R479	ERDS2TJ222	C	2.2K OHM	J 1/4W
R363	EROS2CKG4752	M	47.5K OHM	G 1/4W	R480	ERDS2TJ222	C	2.2K OHM	J 1/4W
R365	EROS2CKG2743	M	274K OHM	G 1/4W	R501	ERDS2TJ391	C	390 OHM	J 1/4W
R367	ERD25FJ100K	C	10 OHM	J 1/4W	R503	ERDS2TJ223	C	22K OHM	J 1/4W
R368	EROS2CKG2742	M	27.4K OHM	G 1/4W	R504	ERDS2TJ123	C	12K OHM	J 1/4W
R371	ERDS2TJ221	C	220 OHM	J 1/4W	R505	ERDS2TJ123	C	12K OHM	J 1/4W
R372	ERDS2TJ223	C	22K OHM	J 1/4W	R506	ERDS2TJ223	C	22K OHM	J 1/4W
R373	ERDS2TJ103	C	10K OHM	J 1/4W	R507	ERD25FJ154K	C	150K OHM	J 1/4W
R374	ERDS2TJ102	C	1K OHM	J 1/4W	R508	ERDS2TJ333	C	33K OHM	J 1/4W
R375	ERDS2TJ153	C	15K OHM	J 1/4W	R509	ERDS2TJ822	C	8.2K OHM	J 1/4W
R376	ERD25FJ123K	C	12K OHM	J 1/4W	R510	ERDS2TJ102	C	1K OHM	J 1/4W
R402	ERDS2TJ104	C	100K OHM	J 1/4W	R511	EROS2CKF1202	M	12K OHM	F 1/4W
R403	ERDS2TJ333	C	33K OHM	J 1/4W	R512	EROS2CKF1052	M	10.5K OHM	F 1/4W
R404	ERDS2TJ562	C	5.6K OHM	J 1/4W	R513	ERDS2TJ472	C	4.7K OHM	J 1/4W
R405	ERDS2TJ473	C	47K OHM	J 1/4W	R514	EROS2CKG5901	M	5.9K OHM	G 1/4W
R406	ERDS2TJ472	C	4.7K OHM	J 1/4W	R516	ERDS2TJ273	C	27K OHM	J 1/4W
R407	ERDS2TJ331	C	330 OHM	J 1/4W	R518	ERDS2TJ472	C	4.7K OHM	J 1/4W
R408	ERDS2TJ334	C	330K OHM	J 1/4W	R519	EROS2CKF4642	M	46.4K OHM	F 1/4W
R409	ERD25FJ101K	C	100 OHM	J 1/4W	R520	ERDS2TJ122	C	1.2K OHM	J 1/4W
R410	ERDS2TJ123	C	12K OHM	J 1/4W	R521	ERD25FJ471K	C	470 OHM	J 1/4W
R411	ERDS2TJ332	C	3.3K OHM	J 1/4W	R522	ERDS2TJ681	C	680 OHM	J 1/4W
R412	ERDS2TJ183	C	18K OHM	J 1/4W	R523	ERG5SJ102	M	1K OHM	J 5W
R413	ERDS1FJ471	C	470 OHM	J 1/2W	R524	ERDS2TJ472	C	4.7K OHM	J 1/4W
R414	ERDS1FJ391	C	390 OHM	J 1/2W	R525	ERDS1FJ120	C	12 OHM	J 1/2W
R415	ERDS2TJ103	C	10K OHM	J 1/4W	R526	ERDS2TJ682	C	6.8K OHM	J 1/4W
R416	ERDS2TJ152	C	1.5K OHM	J 1/4W	R530	ERD25FJ1ROK	C	1 OHM	J 1/4W
R417	ERD25FJ472K	C	4.7K OHM	J 1/4W	R531	EROS2CKF1002	M	10K OHM	F 1/4W
R419	ERDS1FJ561	C	560 OHM	J 1/2W	R532	ERDS2TJ103	C	10K OHM	J 1/4W
R420	ERDS2TJ153	C	15K OHM	J 1/4W	R533	ERDS2TJ104	C	100K OHM	J 1/4W
R421	ERX3ANJ3R9	M	3.9 OHM	J 3W	R534	ERDS2TJ103	C	10K OHM	J 1/4W
R422	ERD25FJ6R8K	C	6.8 OHM	J 1/4W	R535	EROS2CKF8252	M	82.5K OHM	F 1/4W
R423	ERDS2TJ271	C	270 OHM	J 1/4W	R536	EROS2CKF5621	M	5.62K OHM	F 1/4W
R424	ERDS2TJ221	C	220 OHM	J 1/4W	R537	ERDS2TJ471	C	470 OHM	J 1/4W
R425	ERDS2TJ331	C	330 OHM	J 1/4W	R538	EROS2CKG2212	M	22.1K OHM	G 1/4W
R426	ERDS2TJ332	C	3.3K OHM	J 1/4W	R539	ER025CKG4422	M	44.2K OHM	G 1/4W
R428	ERDS2TJ332	C	3.3K OHM	J 1/4W	R545	ERDS2TJ100	C	10 OHM	J 1/4W
R429	ERW12PKR10	W	0.10 OHM	K 1/2W	R546	ERDS2TJ100	C	10 OHM	J 1/4W
R430	ERW12PKR10	W	0.10 OHM	K 1/2W	R547	EROS2CKG1003	M	100K OHM	G 1/4W
R431	ERDS2TJ104	C	100K OHM	J 1/4W	R548	ERDS2TJ222	C	2.2K OHM	J 1/4W
R432	ERDS2TJ473	C	47K OHM	J 1/4W	R549	ERDS2TJ102	C	1K OHM	J 1/4W
R433	ERDS2TJ222	C	2.2K OHM	J 1/4W	R551	EROS2CKF2102	M	21K OHM	F 1/4W
R434	EROS2CKG2151	M	2.15K OHM	G 1/4W	R552	EROS2CKF2102	M	21K OHM	F 1/4W
R435	ERDS2TJ101	C	100 OHM	J 1/4W	R553	ERDS2TJ472	C	4.7K OHM	J 1/4W
R436	ERDS2TJ822	C	8.2K OHM	J 1/4W	R554	ERDS2TJ472	C	4.7K OHM	J 1/4W
R437	ERDS2TJ154	C	150K OHM	J 1/4W	R555	EROS2CKF3162	M	31.6K OHM	F 1/4W
R438	ERDS2TJ333	C	33K OHM	J 1/4W	R556	EROS2CKF1652	M	16.5K OHM	F 1/4W
R439	ERG3ANJ271	M	270 OHM	J 3W	R557	ERDS2TJ824	C	820K OHM	J 1/4W
R440	ERD25FJ220K	C	22 OHM	J 1/4W	R558	ERDS2TJ824	C	820K OHM	J 1/4W
R441	ERD25FJ1ROK	C	1 OHM	J 1/4W	R559	ERQ1CJP1RO	F	1 OHM	J 1W
					R560	ERDS2TJ151	C	150 OHM	J 1/4W

Ref.No.	Part No.	Description					Ref.No.	Part No.	Description				
R561	ERDS2TJ151	C	150 OHM	J	1/4W		R806B	ERG3ANJ151	M	150 OHM	J	3W	
R562A	ERG3SJ221	M	220 OHM	J	3W		R807	ERG2ANJ563	M	56K OHM	J	2W	
R562B	ERG3SJ221	M	220 OHM	J	3W		R808A	ERG3ANJ680	M	68 OHM	J	3W	
R563A	ERG3SJ221	M	220 OHM	J	3W		R808B	ERG3ANJ680	M	68 OHM	J	3W	
R563B	ERG3SJ221	M	220 OHM	J	3W		R809	ERD25FJ561K	C	560 OHM	J	1/4W	
R564	ERDS2TJ472	C	4.7K OHM	J	1/4W		R810	ERD25FJ330K	C	33 OHM	J	1/4W	
R565	ERDS2TJ472	C	4.7K OHM	J	1/4W		R811	ERC12AGK474	S	470K OHM	K	1/2W	
R566	ERDS2TJ272	C	2.7K OHM	J	1/4W		R821	ERD25FJ474K	C	470K OHM	J	1/4W	
R569	ERDS2TJ182	C	1.8K OHM	J	1/4W		R822	ERD25FJ474K	C	470K OHM	J	1/4W	
R570	ERDS2TJ562	C	5.6K OHM	J	1/4W		R841	ERD25FJ101K	C	100 OHM	J	1/4W	
R571	ERDS2TJ393	C	39K OHM	J	1/4W	▲	R842	EROS2CKF2743	M	274K OHM	F	1/4W	
R572	ERDS2TJ104	C	100K OHM	J	1/4W		R843	EROS2CKF1213	M	121K OHM	F	1/4W	
R573	ERD25FJ680K	C	68 OHM	J	1/4W		R851	ERD25TJ124	C	120K OHM	J	1/4W	
R577	ERD25FJ471K	C	470 OHM	J	1/4W		R852	ERDS2TJ104	C	100K OHM	J	1/4W	
R578	ERDS1FJ682	C	6.8K OHM	J	1/2W		R854	ERDS2TJ100	C	10 OHM	J	1/4W	
R581	EROS2CKF3012	M	30.1K OHM	F	1/4W		R855	ERDS2TJ103	C	10K OHM	J	1/4W	
R582	EROS2CKF2152	M	21.5K OHM	F	1/4W		R856	ERDS2TJ122	C	1.2K OHM	J	1/4W	
R583	ERDS2TJ474	C	470K OHM	J	1/4W		R858	ERD25FJ390K	C	39 OHM	J	1/4W	
R584	ERDS2TJ562	C	5.6K OHM	J	1/4W		R859	ERDS1FJ470	C	47 OHM	J	1/2W	
R585	ERDS2TJ272	C	2.7K OHM	J	1/4W	▲	R867	ERQ14AJ1R0	F	1 OHM	J	1/4W	
R586	ERG2ANJ330	M	33 OHM	J	2W	▲	R868	ERQ14AJ1R0	F	1 OHM	J	1/4W	
R587	ERDS2TJ472	C	4.7K OHM	J	1/4W	▲	R869	ERQ12AJ1R0	F	1 OHM	J	1/2W	
R589	ERDS2TJ153	C	15K OHM	J	1/4W	▲	R870	ERQ12AJ1R0	F	1 OHM	J	1/2W	
R591	ERDS2TJ274	C	270K OHM	J	1/4W	▲	R872	ERQ2CKP33	F	0.33 OHM	K	2W	
R592	ERDS2TJ184	C	180K OHM	J	1/4W		R873	ERF5ZYK3R3	W	3.3 OHM	K	5W	
R601	ERDS2TJ153	C	15K OHM	J	1/4W	▲	R882	ERQ12HKR47	F	0.47 OHM	K	1/2W	
R602	ERDS2TJ473	C	47K OHM	J	1/4W		R885	ERD25FJ124K	C	120K OHM	J	1/4W	
R603	EROS2CKG2671	M	2.67K OHM	G	1/4W		R886	ERG1ANJ820	M	82 OHM	J	1W	
R604	EROS2CKG8662	M	86.6K OHM	G	1/4W		R887	ERDS2TJ100	C	10 OHM	J	1/4W	
R605	ERDS2TJ104	C	100K OHM	J	1/4W		R888	ERDS2TJ183	C	18K OHM	J	1/4W	
R606	ERDS2TJ822	C	8.2K OHM	J	1/4W		R889	ERD2FCG222	C	2.2K OHM	G	2W	
R607	ERDS2TJ103	C	10K OHM	J	1/4W		R890	ERDS2TJ333	C	33K OHM	J	1/4W	
R650	EROS2CKG8252	M	82.5K OHM	G	1/4W		R891	ERDS2TJ104	C	100K OHM	J	1/4W	
R651	EROS2CKF2322	M	23.2K OHM	F	1/4W		R1301	ERO25CKF75R0	M	75 OHM	F	1/4W	
R652	ERO25CKG2802	M	28K OHM	G	1/4W		R1302	ERO25CKF75R0	M	75 OHM	F	1/4W	
R653	EROS2CKG1051	M	1.05K OHM	G	1/4W		R1303	ERO25CKF75R0	M	75 OHM	F	1/4W	
R750	ERDS2TJ472	C	4.7K OHM	J	1/4W		R1304	ERD25TCO	C	0 OHM		1/4W	
R751	ERDS2TJ333	C	33K OHM	J	1/4W		R1305	ERDS2TJ124	C	120K OHM	J	1/4W	
R752	ERDS2TJ393	C	39K OHM	J	1/4W		R1307	ERDS2TJ101	C	100 OHM	J	1/4W	
R753	ERDS2TJ393	C	39K OHM	J	1/4W		R1308	ERDS2TJ101	C	100 OHM	J	1/4W	
R754	EROS2CKG4422	M	44.2K OHM	G	1/4W		R1309	ERD25FJ102K	C	1K OHM	J	1/4W	
R755	ERDS2TJ472	C	4.7K OHM	J	1/4W		R1310	ERD25FJ102K	C	1K OHM	J	1/4W	
R756	ERDS2TJ822	C	8.2K OHM	J	1/4W		R1311	ERD25FJ102K	C	1K OHM	J	1/4W	
R757	ERDS2TJ223	C	22K OHM	J	1/4W		R1312	ERD25FJ102K	C	1K OHM	J	1/4W	
R758	ERDS2TJ102	C	1K OHM	J	1/4W		R1313	ERD25FJ102K	C	1K OHM	J	1/4W	
R759	ERDS2TJ681	C	680 OHM	J	1/4W		R1314	ERD25FJ102K	C	1K OHM	J	1/4W	
R761	EROS2CKG1002	M	10K OHM	G	1/4W		R1324	ERO25CKF2700	M	270 OHM	F	1/4W	
R762	ERDS2TJ102	C	1K OHM	J	1/4W		R1325	ERO25CKF2700	M	270 OHM	F	1/4W	
R764	ERDS2TJ102	C	1K OHM	J	1/4W		R1326	ERO25CKF2700	M	270 OHM	F	1/4W	
R765	EROS2CKG1371	M	1.37K OHM	G	1/4W		R1327	ERO25CKF2700	M	270 OHM	F	1/4W	
R766	EROS2CKG6340	M	634 OHM	G	1/4W		R1328	ERO25CKF2700	M	270 OHM	F	1/4W	
R767	EROS2CKF1002	M	10K OHM	F	1/4W		R1329	ERO25CKF2700	M	270 OHM	F	1/4W	
R768	EROS2CKF5620	M	562 OHM	F	1/4W		R1330	ERDS2TJ560	C	56 OHM	J	1/4W	
R769	EROS2CKG1821	M	1.82K OHM	G	1/4W		R1331	ERD25FJ103K	C	10K OHM	J	1/4W	
R770	EROS2CKG1002	M	10K OHM	G	1/4W		R1332	ERD25FJ103K	C	10K OHM	J	1/4W	
R771	EROS2CKG1002	M	10K OHM	G	1/4W		R1333	ERD25FJ103K	C	10K OHM	J	1/4W	
R801	ERF1OZYK3R3	W	3.3 OHM	K	10W		R1334	ERD25FJ103K	C	10K OHM	J	1/4W	
R802	ERW2PKR33	W	0.33 OHM	K	2W		R1335	ERD25FJ103K	C	10K OHM	J	1/4W	
R804	ERDS2TJ561	C	560 OHM	J	1/4W		R1336	ERDS2TJ562	C	5.6K OHM	J	1/4W	
R805A	ERDS1FJ274	C	270K OHM	J	1/2W		R1337	ERDS2TJ332	C	3.3K OHM	J	1/4W	
R805B	ERDS1FJ224	C	220K OHM	J	1/2W		R1338	ERDS2TJ332	C	3.3K OHM	J	1/4W	
R806A	ERG3ANJ151	M	150 OHM	J	3W		R1340	ERDS2TJ222	C	2.2K OHM	J	1/4W	

TX-1441AE

Ref.No.	Part No.	Description					Ref.No.	Part No.	Description				
R1341	ERDS2TJ222	C	2.2K	OHM	J	1/4W	R1418	ERDS2TJ122	C	1.2K	OHM	J	1/4W
R1342	ERDS2TJ123	C	12K	OHM	J	1/4W	R1419	ERDS2TJ562	C	5.6K	OHM	J	1/4W
R1343	ERDS2TJ123	C	12K	OHM	J	1/4W	R1421	ERD25FJ152K	C	1.5K	OHM	J	1/4W
R1346	ERDS2TJ331	C	330	OHM	J	1/4W	R1422	ERDS2TJ104	C	100K	OHM	J	1/4W
R1347	ERDS2TJ473	C	47K	OHM	J	1/4W	R1423	ERDS2TJ273	C	27K	OHM	J	1/4W
R1348	ERDS2TJ563	C	56K	OHM	J	1/4W	R1424	ERDS2TJ222	C	2.2K	OHM	J	1/4W
R1349	ERDS2TJ223	C	22K	OHM	J	1/4W	R1425	ERDS2TJ561	C	560	OHM	J	1/4W
R1350	ERDS2TJ471	C	470	OHM	J	1/4W	R1426	ERDS2TJ122	C	1.2K	OHM	J	1/4W
R1351	ERDS2TJ104	C	100K	OHM	J	1/4W	R1429	ERD25FJ560K	C	56	OHM	J	1/4W
R1352	ERDS2TJ102	C	1K	OHM	J	1/4W	R1430	ERDS2TJ122	C	1.2K	OHM	J	1/4W
R1354	ERDS2TJ562	C	5.6K	OHM	J	1/4W	R1431	ERDS2TJ823	C	82K	OHM	J	1/4W
R1355	ERDS2TJ333	C	33K	OHM	J	1/4W	R1432	ERDS2TJ183	C	18K	OHM	J	1/4W
R1357	EROS2CKF3161	M	3.16K	OHM	F	1/4W	R1433	ERDS2TJ122	C	1.2K	OHM	J	1/4W
R1358	ERDS2TJ332	C	3.3K	OHM	J	1/4W	R3340	ERG5ZXJ821	M	820	OHM	J	5W
R1359	EROS2CKF3401	M	3.4K	OHM	F	1/4W	R3341	ERG5ZXJ821	M	820	OHM	J	5W
R1360	ERDS2TJ822	C	8.2K	OHM	J	1/4W	R3342	ERG5ZXJ821	M	820	OHM	J	5W
R1361	ERDS2TJ472	C	4.7K	OHM	J	1/4W	R3343	ERDS2TJ101	C	100	OHM	J	1/4W
R1362	ERDS2TJ223	C	22K	OHM	J	1/4W	R3344	ERDS2TJ101	C	100	OHM	J	1/4W
R1363	ERDS2TJ223	C	22K	OHM	J	1/4W	R3345	ERDS2TJ101	C	100	OHM	J	1/4W
R1365	EROS2CKG6491	M	6.49K	OHM	G	1/4W	R3346	ERDS2TJ330	C	33	OHM	J	1/4W
R1366	EROS2CKG5361	M	5.36K	OHM	G	1/4W	R3347	ERDS2TJ330	C	33	OHM	J	1/4W
R1367	EROS2CKG6801	M	6.8K	OHM	G	1/4W	R3348	ERDS2TJ330	C	33	OHM	J	1/4W
R1368	EROS2CKG8201	M	8.2K	OHM	G	1/4W	R3349	ERDS2TJ330	C	33	OHM	J	1/4W
R1369	EROS2CKG6491	M	6.49K	OHM	G	1/4W	R3350	ERDS2TJ330	C	33	OHM	J	1/4W
R1370	EROS2CKG5361	M	5.36K	OHM	G	1/4W	R3351	ERDS2TJ330	C	33	OHM	J	1/4W
R1371	ERDS2TJ823	C	82K	OHM	J	1/4W	R3352	ERDS2TJ220	C	22	OHM	J	1/4W
R1372	ERDS2TJ823	C	82K	OHM	J	1/4W	R3353	ERDS2TJ220	C	22	OHM	J	1/4W
R1373	ERD25FJ823K	C	82K	OHM	J	1/4W	R3354	ERDS2TJ220	C	22	OHM	J	1/4W
R1374	ERDS2TJ222	C	2.2K	OHM	J	1/4W	R3355	ERDS2TJ473	C	47K	OHM	J	1/4W
R1375	ERDS2TJ221	C	220	OHM	J	1/4W	R3356	ERDS2TJ473	C	47K	OHM	J	1/4W
R1376	ERDS2TJ124	C	120K	OHM	J	1/4W	R3357	ERDS2TJ473	C	47K	OHM	J	1/4W
R1377	ERDS2TJ562	C	5.6K	OHM	J	1/4W	R3361	ERD25FJ101K	C	100	OHM	J	1/4W
R1379	ERDS2TJ471	C	470	OHM	J	1/4W	R3362	ERD25FJ101K	C	100	OHM	J	1/4W
R1380	ERDS2TJ471	C	470	OHM	J	1/4W	R3363	ERD25FJ101K	C	100	OHM	J	1/4W
R1381	ERDS2TJ471	C	470	OHM	J	1/4W	R3364	ERD25FJ101K	C	100	OHM	J	1/4W
R1382	ERDS2TJ151	C	150	OHM	J	1/4W	R3365	ERD25FJ101K	C	100	OHM	J	1/4W
R1383	ERDS2TJ151	C	150	OHM	J	1/4W	R3366	ERD25FJ101K	C	100	OHM	J	1/4W
R1384	ERDS2TJ151	C	150	OHM	J	1/4W	R3367	ERDS2TJ181	C	180	OHM	J	1/4W
R1385	ERDS2TJ151	C	150	OHM	J	1/4W	R3368	ERDS2TJ271	C	270	OHM	J	1/4W
R1386	ERDS2TJ151	C	150	OHM	J	1/4W	R3369	ERDS2TJ563	C	56K	OHM	J	1/4W
R1387	ERDS2TJ151	C	150	OHM	J	1/4W	R3370	ERDS2TJ224	C	220K	OHM	J	1/4W
R1388	ERDS2TJ154	C	150K	OHM	J	1/4W	R3371	ERDS2TJ221	C	220	OHM	J	1/4W
R1389	EROS2CKF3401	M	3.4K	OHM	F	1/4W	R3372	ERDS2TJ224	C	220K	OHM	J	1/4W
R1390	ERDS2TCO	C	0	OHM	1/4W	R3373	ERDS2TJ221	C	220	OHM	J	1/4W	
R1391	ERDS2TJ822	C	8.2K	OHM	J	1/4W	R3374	ERD25FJ224K	C	220K	OHM	J	1/4W
R1392	ERD25TCO	C	0	OHM	1/4W	R3375	ERD25FJ221K	C	220	OHM	J	1/4W	
R1393	ERDS2TJ273	C	27K	OHM	J	1/4W	R3378	ERD25FJ820K	C	82	OHM	J	1/4W
R1395	ERDS2TJ273	C	27K	OHM	J	1/4W	R3379	ERDS2TJ102	C	1K	OHM	J	1/4W
R1396	ERDS2TJ182	C	1.8K	OHM	J	1/4W	R3380	ERDS1FJ153	C	15K	OHM	J	1/2W
R1397	ERDS2TJ273	C	27K	OHM	J	1/4W	R3381	ERG1ANU473	M	47K	OHM	J	1W
R1398	ERDS2TJ182	C	1.8K	OHM	J	1/4W	R3382	ERDS2TJ750	C	75	OHM	J	1/4W
R1399	ERDS2TJ682	C	6.8K	OHM	J	1/4W	R3383	ERDS2TJ750	C	75	OHM	J	1/4W
R1402	ERD25FJ182K	C	1.8K	OHM	J	1/4W	R3384	ERDS2TJ750	C	75	OHM	J	1/4W
R1403	ERDS2TJ122	C	1.2K	OHM	J	1/4W	R3390	ERDS1FJ151	C	150	OHM	J	1/2W
R1404	ERDS2TJ223	C	22K	OHM	J	1/4W	R3391	ERDS1FJ151	C	150	OHM	J	1/2W
R1405	ERD25FJ821K	C	820	OHM	J	1/4W	R3392	ERDS1FJ151	C	150	OHM	J	1/2W
R1406	ERDS2TJ822	C	8.2K	OHM	J	1/4W	R3393	ERD5OFJ151	C	150	OHM	J	1/2W
R1407	ERDS2TJ224	C	220K	OHM	J	1/4W	R3394	ERDS2TJ101	C	100	OHM	J	1/4W
R1409	ERD25FJ393K	C	39K	OHM	J	1/4W	R3395	ERD25FJ101K	C	100	OHM	J	1/4W
R1410	ERD25FJ561K	C	560	OHM	J	1/4W	R3396	ERDS2TJ101	C	100	OHM	J	1/4W
R1411	ERTD2FHL142S	THERMISTOR					R3397	ERD25FJ104K	C	100K	OHM	J	1/4W
R1416	ERDS1FJ121	C	120	OHM	J	1/2W	R3398	ERD25FJ104K	C	100K	OHM	J	1/4W

Ref.No.	Part No.	Description	Ref.No.	Part No.	Description
R3399	ERD25FJ104K	C 100K OHM J 1/4W OTHERS	CN1306TJS878204 CN3303TJS878205 CN3304TJS878203 CN3305TJS8A4180 CN3306TJS8A4180	4P SOCKET 5P SOCKET 3P SOCKET SOCKET SOCKET	
49	TJE81101 TJE81110 TJE81132 TMK87908 TMM81416	TERMINAL TERMINAL TERMINAL CONNECTION BOARD CORD BAND(SMALL)	CN3307TJS8A4180 D1 TEL302-9 D2 TEL302-9 D3 TEL302-9 D4 TEL302-9	SOCKET TERMINAL TERMINAL TERMINAL TERMINAL	
50	TMM81460 TMM85416 TMM85517-1 TMM85517-2 TMM85517-3	LOCKING SUPPORT RUBBER(LOKING SUPPORT) MARK BAND(R) MARK BAND(G) MARK BAND(B)	D3301 TEL302-9 D3302 TEL302-9 F801 XBA2C31TROA FS802 TJC3316 FS803 TJC3316	TERMINAL TERMINAL FUSE FUSE HOLDER FUSE HOLDER	
51	TMM87701 TMM87702 TQF85617 TQF85745 TSC8906-O	BUSHING COLLAR FUSE EXCHANGE LABEL FUSE EXCHANGE LABEL FERRITE CORE(BIG)	H1 TEL302-9 H2 TEL302-9 JC1301TJC6137 JC1302TJC6137 JC1303TJC6137	TERMINAL TERMINAL GNA TERMINAL GNA TERMINAL GNA TERMINAL	
52	TUC85981-1	SHIELD CASE COVER(AC)	JC1304TJC6137	GNA TERMINAL	
53	TUC87532	SHIELD PLATE(IC)	JS3301TJS8A505	CRT SOCKET	
54	TUX80701-2	CORD BRACKET(BIG)	S3390 TAGDSP301NT	SPARK GAP	
55	TUX87108-1	SHIELD CASE(AC)	S3391 TAGDSP301NT	SPARK GAP	
56	TUX87116	3P SOCKET BRACKET	S3392 TAGDSP301NT	SPARK GAP	
57	TXAJTA3P1427 TXAJTE3P1330 TXAJTE4P589 TXAJTE8P089 XNG3BS	3P CONNECTOR ASSY 3P CONNECTOR ASSY 4P CONNECTOR ASSY 8P CONNECTOR ASSY NUT	S3393 TAGDSP301NT S3394 TGPS152GL S3395 TAGDSP301NT SW501 EVQR1AL13 SW1301 TSE80735	SPARK GAP SPARK GAP SPARK GAP SWITCH SWITCH	
58	XSN3+10S XTV3+10C XTV3+12C XTV3+20U XTV3+6C	SCREW SCREW SCREW SCREW SCREW	SW1302 TSE80373 SW1303 TSE80948 SW1304 TSE80373	SWITCH SWITCH SWITCH	
59	XTV3+8C XTV3+8F	SCREW SCREW	V1 TEL302-9 V2 TEL302-9	TERMINAL TERMINAL	
60	XWA3B XWC3BFN XWGT40660	WASHER WASHER WASHER	V1301 TWHZZ2035 V1302 TWHZZ2035 V1303 TWHZZ2040	PHONO PIN CABLE PHONO PIN CABLE PHONO PIN CABLE	
	XWG3F10 XYA4+EF8 XYE3+EC8 XYE3+EF8 XYN3+C10	WASHER SCREW SCREW SCREW SCREW	X3301 TAXNFB506S X3302 TAXNFB506S X3303 TAXNFB506S	CR COMBINATION CR COMBINATION CR COMBINATION	
	CN1O2ATXAUTE12P051 CN1O2BTJS878312 CN3O3-TXAUTE3P1248 CN3O4-TXAUTE5P320A CN3O5ATXAUTE4P587A	12P CONNECTOR ASSY 12P CONNECTOR 3P CONNECTOR ASSY 5P CONNECTOR ASSY 4P CONNECTOR ASSY			
	CN3O5BTJS878204 CN3O6-TXAUTE3P1329 CN4O1ATXAUTE7P060 CN4O1BTJS878307 CN5O1ATXAUTE6P437	4P SOCKET 3P CONNECTOR ASSY 7P CONNECTOR ASSY 7P SOCKET 6P CONNECTOR ASSY			
	CN5O1BTJS878306 CN5O2ATXAUTE5P319 CN5O2BTJS878305 CN5O3ATXAUTE5P354 CN5O3BTJS878305	6P SOCKET 5P CONNECTOR ASSY 5P CONNECTOR 5P CONNECTOR ASSY 5P CONNECTOR			
	CN5O4 TJS878203 CN1301TJS878209 CN1304TJS878203 CN1305TJS878208	3P SOCKET 9P SOCKET 3P SOCKET 8P SOCKET			