156 Endomorphismes trigonalisables. Endomorphismes nilpotents.

Soit E un espace vectoriel de dimension finie n sur un corps \mathbb{K} . Tout au long de la leçon, on abusera du fait que $\mathscr{L}(E) \cong \mathscr{M}_n(\mathbb{K})$: les notions définies pour les endomorphismes sont valables pour les matrices.

I - Endomorphismes trigonalisables

1. Premiers outils de réduction

Définition 1. Soient $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

[**GOU21**] p. 171

- On dit que λ est **valeur propre** de u si $u \lambda$ id_E est non injective.
- Un vecteur $x \neq 0$ tel que $u(x) = \lambda x$ est un **vecteur propre** de u associé à la valeur propre λ .
- L'ensemble des valeurs propres de u est appelé **spectre** de u. On le note Sp(u).

Remarque 2. Soit $u \in \mathcal{L}(E)$.

- 0 est valeur propre de u si et seulement si $Ker(f) \neq \{0\}$.
- On peut définir de la même manière les mêmes notions pour une matrice de $\mathcal{M}_n(\mathbb{K})$ (une valeur est propre pour une matrice si et seulement si elle l'est pour l'endomorphisme associé). On reprendra les mêmes notations.

Exemple 3.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 est vecteur propre de $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ associé à la valeur propre 1.

Proposition 4. Soit $u \in \mathcal{L}(E)$. En notant $\chi_u = \det(X \operatorname{id}_E - u)$,

[ROM21] p. 644

$$\operatorname{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \chi_u(\lambda) = 0 \}$$

Définition 5. Le polynôme χ_u précédent est appelé **polynôme caractéristique** de u.

Remarque 6. On peut définir la même notion pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, ces deux notions coïncidant bien si A est la matrice de u dans une base quelconque de E.

Exemple 7. Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
, on a $\chi_A = X^2 - \operatorname{trace}(A)X + \det(A)$.

p. 604

Lemme 8. Soit $u \in \mathcal{L}(E)$.

- (i) Ann $(u) = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$ est un sous-ensemble de $\mathbb{K}[u]$ non réduit au polynôme nul.
- (ii) Ann(u) est le noyau de $P \rightarrow P(u)$: c'est un idéal de $\mathbb{K}[u]$.
- (iii) Il existe un unique polynôme unitaire engendrant cet idéal.

Définition 9. On appelle **idéal annulateur** de u l'idéal Ann(u). Le polynôme unitaire générateur est noté π_u et est appelé **polynôme minimal** de u.

Remarque 10. En reprenant les notations précédentes,

- π_u est le polynôme unitaire de plus petit degré annulant u.
- Si $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u dans une base de E, on a $\mathrm{Ann}(u) = \mathrm{Ann}(A)$ et $\pi_u = \pi_A$.

Exemple 11. Un endomorphisme est nilpotent d'indice q si et seulement si son polynôme minimal est X^q .

Proposition 12. Soit $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E stable par u. Alors, le polynôme minimal de l'endomorphisme $u_{|F}: F \to F$ divise π_u .

Proposition 13. Soit $u \in \mathcal{L}(E)$.

- (i) Les valeurs propres de *u* sont racines de tout polynôme annulateur.
- (ii) Les valeurs propres de u sont exactement les racines de π_u .

Remarque 14. Soit $u \in \mathcal{L}(E)$. π_u et χ_u partagent dont les mêmes racines.

[**GOU21**] p. 186

Théorème 15 (Cayley-Hamilton). Soit $u \in \mathcal{L}(E)$. Alors,

[ROM21] p. 607

 $\pi_u \mid \chi_u$

Théorème 16 (Lemme des noyaux). Soit $P = P_1 \dots P_k \in \mathbb{K}[X]$ où les polynômes P_1, \dots, P_k

p. 609

p. 675

sont premiers entre eux deux à deux. Alors, pour tout endomorphisme u de E,

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{k} \operatorname{Ker}(P_i(u))$$

2. Trigonalisation

Définition 17. Soit $u \in \mathcal{L}(E)$.

- On dit que u est **trigonalisable** s'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure.
- On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **trigonalisable** si elle est semblable à une matrice diagonale.

Remarque 18. Un endomorphisme u de E est trigonalisable si et seulement si sa matrice dans n'importe quelle base de E l'est.

Exemple 19. Une matrice à coefficients réels ayant des valeurs propres imaginaires pures n'est pas trigonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Théorème 20. Un endomorphisme u de E est trigonalisable sur \mathbb{K} si et seulement si χ_u est scindé sur \mathbb{K} .

Corollaire 21. Si \mathbb{K} est algébriquement clos, tout endomorphisme de u est trigonalisable sur \mathbb{K} .

Proposition 22. Soit $u \in \mathcal{L}(E)$. Si u est trigonalisable, sa trace est la somme de ses valeurs propres et son déterminant est le produit de ses valeurs propres.

[DEV]

Théorème 23 (Trigonalisation simultanée). Soit $(u_i)_{i \in I}$ une famille d'endomorphismes de E diagonalisables qui commutent deux-à-deux. Alors, il existe une base commune de trigonalisation.

II - Endomorphismes nilpotents

1. Définition, caractérisation

Définition 24. On note

[**BMP**] p. 168

$$\mathcal{N}(E) = \{ u \in \mathcal{L}(E) \mid \exists p \in \mathbb{N} \text{ tel que } u^p = 0 \}$$

l'ensemble des éléments **nilpotents** de $\mathcal{L}(E)$.

Exemple 25. Dans $\mathbb{K}_n[X]$, l'opérateur de dérivation $P\mapsto P'$ est nilpotent.

Définition 26. On appelle **indice de nilpotence** d'un endomorphisme $u \in \mathcal{N}(E)$ l'entier q tel que

$$q = \inf\{p \in \mathbb{N} \mid u^p = 0\}$$

Proposition 27. Soit $u \in \mathcal{L}(E)$. Alors,

u est nilpotent d'indice $p \iff \pi_u = X^p$

En particulier, $p \le n$.

Théorème 28. Soit $u \in \mathcal{L}(E)$. Les assertions suivantes sont équivalentes :

- (i) $u \in \mathcal{N}(E)$.
- (ii) $\chi_u = (-1)^n X^n$.
- (iii) Il existe $p \in \mathbb{N}$ tel que $\pi_u = X^p$. Dans ce cas, p est l'indice de nilpotence de u.
- (iv) *u* est trigonalisable avec zéros sur la diagonale.
- (v) *u* est trigonalisable et sa seule valeur propre est 0.
- (vi) 0 est la seule valeur propre de u dans toute extension algébrique de \mathbb{K} .
- (vii) Si car(\mathbb{K}) = 0 : u et λu sont semblables pour tout $\lambda \in \mathbb{K}^*$.

Contre-exemple 29. La matrice

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

n'est pas nilpotente, alors que $\chi_A = -X(X^2+1)$ n'admet que 0 comme valeur propre réelle.

Proposition 30. Soit $u \in \mathcal{L}(E)$. On suppose $car(\mathbb{K}) = 0$. Alors,

$$u \in \mathcal{N}(E) \iff \forall k \in \mathbb{N}, \operatorname{trace}(u^k) = 0$$

2. Cône nilpotent

Proposition 31. $\mathcal{N}(E)$ est un cône : si $u \in \mathcal{N}(E)$, alors $\forall \lambda \in \mathbb{K}$, $\lambda u \in \mathcal{N}(E)$.

Remarque 32. $\mathcal{N}(E)$ n'est pas un sous-groupe additif de $\mathcal{L}(E)$. Par exemple,

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

A est somme de deux matrices nilpotentes, mais est inversible donc non nilpotente. En particulier, $\mathcal{N}(E)$ n'est ni un idéal, ni un sous-espace vectoriel de $\mathcal{L}(E)$.

Proposition 33.

$$Vect(\mathcal{N}(E)) = Ker(trace)$$

Exemple 34. En dimension 2,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 est nilpotente $\iff -a^2 - bc = 0$

Proposition 35. Soient $u, v \in \mathcal{L}(E)$ tels que uv = vu.

- (i) Si $u, v \in \mathcal{N}(E)$, alors $u + v \in \mathcal{N}(E)$.
- (ii) Si $u \in \mathcal{N}(E)$, alors $uv \in \mathcal{N}(E)$.

3. Unipotence

Définition 36. On note

$$\mathscr{U}(E) = \mathrm{id}_E + \mathscr{N}(E)$$

l'ensemble des endomorphismes **unipotents** de E.

Remarque 37. On dispose de caractérisations analogues au Théorème 28 pour les endomorphismes unipotents. Par exemple, un endomorphisme u de E est unipotent si et seulement si $\chi_u = (1-X)^n$.

p. 174

On se place dans le cas où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} pour la fin de cette sous-section.

Proposition 38. Soit $u \in \mathcal{N}(E)$. Alors $e^u \in \mathcal{U}(E)$.

[ROM21] p. 767

Théorème 39. L'exponentielle matricielle réalise une bijection de $\mathcal{N}(E)$ sur $\mathcal{U}(E)$ d'inverse le logarithme matriciel.

4. Sous-espaces caractéristiques, noyaux itérés

Soit $u \in \mathcal{L}(E)$ de polynôme caractéristique scindé, de la forme

[**GOU21**] p. 201

$$\chi_u = \prod_{i=1}^s (X - \lambda_i)^{\alpha_i}$$

Définition 40. Soit $i \in [1, s]$. On appelle **sous-espace caractéristique** de u associé à la valeur propre λ_i le sous-espace vectoriel $N_i = \text{Ker}((u - \lambda_i \text{id}_E)^{\alpha_i})$.

Proposition 41. Soit $i \in [1, s]$.

- (i) N_i est stable par u.
- (ii) $\dim(N_i) = \alpha_i$.
- (iii) $\chi_{u_{|N_i}} = (-X)^{\dim(N_i)} = (-X)^{\alpha_i}$.
- (iv) $u_{|N_i}$ est nilpotent.

De plus, $E = \bigoplus_{i=1}^{s} N_i$.

Proposition 42. Soit $v \in \mathcal{L}(E)$.

- (i) La suite de sous-espaces vectoriels $(Ker(v^n))$ est décroissante, stationnaire.
- (ii) La suite de sous-espaces vectoriels $(Im(v^n))$ est croissante, stationnaire.

Définition 43. Un **bloc de Jordan** de taille m associé à $\lambda \in \mathbb{K}$ désigne la matrice $J_m(\lambda)$ suivante :

[**BMP**] p. 171

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_m(\mathbb{K})$$

Application 44 (Réduction de Jordan d'un endomorphisme nilpotent). On suppose que u

est nilpotent. Alors il existe des entiers $n_1 \geq \cdots \geq n_p$ et une base \mathcal{B} de E tels que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} J_{n_1}(0) & & \\ & \ddots & \\ & & J_{n_p}(0) \end{pmatrix}$$

De plus, on a unicité dans cette décomposition.

III - Applications

1. Décomposition de Dunford

[DEV]

Théorème 45 (Décomposition de Dunford). Soit $u \in \mathcal{L}(E)$. On suppose que π_u est scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d, n) tels que :

- -d est diagonalisable et n est nilpotent.
- u = d + n.
- -dn = nd.

Corollaire 46. Si u vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $u^k = (d+n)^k = \sum_{i=0}^m \binom{k}{i} d^i n^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de n.

Remarque 47. On peut montrer de plus que d et n sont des polynômes en u.

Théorème 48 (Décomposition de Dunford multiplicative). Soit $f \in \mathcal{L}(E)$. On suppose que π_f est scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d, u) tels que :

- d est diagonalisable et u est unipotente.
- f = du.
- -du = ud.

2. Invariants de similitude

Soient E un espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

[**GOU21**] p. 397

[ROM21]

Définition 49. On dit que u est **cyclique** s'il existe $x \in E$ tel que $\{P(u)(x) \mid P \in \mathbb{K}[X]\} = E$.

Proposition 50. u est cyclique si et seulement si $deg(\pi_u) = n$.

[**GOU21**] p. 203 **Définition 51.** Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_0 \in \mathbb{K}[X]$. On appelle **matrice compagnon** de P la matrice

$$\mathscr{C}(P) = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \ddots & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{p-2} \\ 0 & \dots & 0 & 1 & -a_{p-1} \end{pmatrix}$$

Proposition 52. u est cyclique si et seulement s'il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u,\mathscr{B})=\mathscr{C}(\pi_u).$

Théorème 53. Il existe F_1, \ldots, F_r des sous-espaces vectoriels de E tous stables par u tels que :

- $--E = F_1 \oplus \cdots \oplus F_r$.
- $u_i = u_{|F_i}$ est cyclique pour tout i.
- Si $P_i = \pi_{u_i}$, on a $P_{i+1} \mid P_i$ pour tout i.

La famille de polynômes P_1, \dots, P_r ne dépend que de u et non du choix de la décomposition. On l'appelle **suite des invariants de similitude** de u.

Théorème 54 (Réduction de Frobenius). Si P_1, \ldots, P_r désigne la suite des invariants de u, alors il existe une base \mathcal{B} de E telle que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} \mathcal{C}(P_1) & & \\ & \ddots & \\ & & \mathcal{C}(P_r) \end{pmatrix}$$

On a d'ailleurs $P_1 = \pi_u$ et $P_1 \dots P_r = \chi_u$.

Corollaire 55. Deux endomorphismes de *E* sont semblables si et seulement s'ils ont la même suite d'invariants de similitude.

Application 56. Pour n = 2 ou 3, deux matrices sont semblables si et seulement si elles ont mêmes polynômes minimal et caractéristique.

Application 57. Soit \mathbb{L} une extension de \mathbb{K} . Alors, si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables dans $\mathcal{M}_n(\mathbb{L})$, elles le sont aussi dans $\mathcal{M}_n(\mathbb{K})$.

3. Commutant d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

Lemme 58. Si $\pi_A = \chi_A$, alors A est cyclique :

 $\exists x \in \mathbb{K}^n \setminus \{0\} \text{ tel que } (x, Ax, \dots, A^{n-1}x) \text{ est une base de } \mathbb{K}^n$

Notation 59. — On note $\mathcal{T}_n(\mathbb{K})$ l'ensemble des matrices carrées triangulaires supérieures d'ordre n à coefficients dans le corps \mathbb{K} .

— On note $\mathscr{C}(A)$ le commutant de A.

Lemme 60.

$$\dim_{\mathbb{K}}(\mathscr{C}(A)) \geq n$$

Lemme 61. Le rang de *A* est invariant par extension de corps.

Théorème 62.

$$\mathbb{K}[A] = \mathscr{C}(A) \iff \pi_A = \chi_A$$

p. 289

[**FGN2**] p. 160

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Oraux X-ENS Mathématiques

[FGN2]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 2.* 2e éd. Cassini, 16 mars 2021.

https://store.cassini.fr/fr/enseignement-des-mathematiques/111-oraux-x-ens-mathematiques-nouvelle-serie-vol-2.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$