Football Analysis

Presented by Michael Diaz

Agenda

- Introductions
- Project Rationale
- Project Process
- The Results
- 5 Bias, Challenges, Plans

Part 1:

Introductions

Responsibilities

- Michael Diaz-
 - Gathered measurable NFL data, using:
 - API (MySportsFeed)
 - Web Scraping (ProFootballReference)
 - Dataframe structures with Pandas
 - Graph plots with Matplotlib
 - Make Statistical Correlations

Part 2

Project Rationales

Objectives

Our Goals/Outcomes from the Data

- ★ Make meaningful observations and connections of statistics from all phases of Football and Winning of top and bottom 25% NFL teams.
- Target and correlate key statistics in all phases with winning
- Prove or disprove biases for meaningful statistics.

Rationales

Why we used what we used?

- We looked into free and available API that showed all major NFL stats that are used for: Fantasy Sports, Sports Betting, Media, Coaching
- API dates go back to 2014 season
- Focused on only Team statistics, looking at the top and bottom 25% of teams (16) in recent history.

Introduction

Briefly explaining what/how we did this

- After looking extensively through available API and websites, we chose sources we initially thought:
 - 1.Free
 - 2. Easy to gather
- ➤ We felt we needed to combine all this data through:
 - merging and creating DataFrames
- We looked through all statistical categories and compared the results with:
 - Sixteen teams with most wins over 4 seasons.
- We put these into visuals to look for:
 - "Eye popping" correlations
 - "Eye popping" disparities

Constraints

Considerations for this project:

- > \$0 Budget
- > 7 Days
- 2 Members

Part 3

The process

How it was made

- We created API pull call that:
 - Specifically ran all seasons, for data sets we wanted
 - Searched through Kaggle competitions that posted relevant data
- Using Python and Pandas:
 - We were able to create Data Frames that looked at all NFL scores, individual "stats" for each season, schedules, and game results
 - We then narrowed down to only looking through top and bottom 25% of NFL.
- Using Python and Matplotlib:
 - We generated scatter plots to find correlations or disparities.

Code Snippet 1 - Imports

```
#### Dependencies
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import urllib
from urllib.request import urlopen
import ison
import csv
# import simpleison
import pandas as pd
# import pytest
import base64
import sys
import glob
if sys.version info[0] < 3:
   from StringIO import StringIO
else:
   from io import StringIO
from bs4 import BeautifulSoup
import requests
import scipy.stats
import statistics as s
pd.options.display.max_rows = 999
pd.options.display.max_columns = 999
```

Code Snippet 2 - Creating DFs/.CSVs

```
#SuperBowL DataFrame
sb dates = []
sb_number = []
sb mvp = []
sb winner = []
sb winPts = []
sb loser = []
sb losePts = []
sb_stadium = []
sb city = []
sb_state = []
for data in sb ison print:
    sb dates.append(sb json print["Date"])
    sb_number.append(sb_json_print["SB"])
    sb mvp.append(sb json print["MVP"])
    sb_winner.append(sb_json_print["Winner"])
    sb winPts.append(sb json print["Pts"])
    sb_loser.append(sb_json_print["Loser"])
    sb losePts.append(sb json print["Pts.1"])
    sb_stadium.append(sb_json_print["Stadium"])
    sb city.append(sb json print["City"])
    sb_state.append(sb_json_print["State"])
    SB DF = pd.DataFrame.from_dict(sb_json_print)
SB_DF = SB_DF[["SB", "Date", "Winner", "Pts", "Loser", "Pts.1", "MVP", "Stadium", "City", "State"]]
SB dataDF = SB DF.rename(index=str, columns={"Pts": "Winning Score", "Pts.1": "Losing Score"})
SB dataDF
# sb date pretty = sb json print["Date"]
# pprint(sb date pretty)
```

```
NFL_data = "box_scores.csv"
NFL_data = pd.read_csv(NFL_data)
NFL_data.head(5)
```

Code Snippet 3 - Colors

```
#Top 5 Teams Bar Chart
overall = "NFL Standings/Overall/Overall Standings Combined.csv"
overall = pd.read csv(overall)
overall.drop(["Unnamed: 0", "Unnamed: 0.1"], axis=1, inplace=True)
overall.set index("Season")
overall.head(8)
new_england = mpatches.Patch(color='navy', label='Tier 1')
pit_steelers = mpatches.Patch(color='orange', label="Def Tier 1")
sea seahawks = mpatches.Patch(color='navy')
gb packers = mpatches.Patch(color='navy')
kc_chiefs = mpatches.Patch(color='navy')
car panthers = mpatches.Patch(color='navy')
den broncos = mpatches.Patch(color='navy')
ari_cardinals = mpatches.Patch(color='navy')
colors = ["navy", "navy", "navy", "navy", "navy", "navy", "navy"]
cle browns = mpatches.Patch(color='crimson', label="Tier 2")
stl rams = mpatches.Patch(color='green', label= "Def Tier 2")
sd_chargers = mpatches.Patch(color='crimson')
chi bears = mpatches.Patch(color='crimson')
sf 49ers = mpatches.Patch(color='crimson')
tb bucs = mpatches.Patch(color='crimson')
jax jags = mpatches.Patch(color='crimson')
ny jets = mpatches.Patch(color='crimson')
colors2 = ["crimson", "crimson", "crimson", "crimson", "crimson", "crimson", "crimson", "crimson"]
handles = [new england, cle browns, pit steelers, stl rams]
```

Code Snippet 4 - Beautiful Soup

```
#Web Scrapping
quote_page = "https://www.pro-football-reference.com/super-bowl/"
#Ouery the website to get HTML page of the url
html page = urlopen(quote page)
html page
#Parse the html using beautiful soup and store in a variable
sb_parser = BeautifulSoup(html_page, "html.parser")
superbowl id = sb parser.find(id = "all super bowls")
super_bowl_scores = superbowl_id.text.strip() # strip() is used to remove starting and trailing
# super bowl scores.to json("Super Bowl Scores")
super bowl dumps = json.dumps(super bowl scores)
super_bowl_json = json.loads(super_bowl_dumps)
super_bowl_json.replace("\n", " ")
# super bowl ison.to ison("Super Bowl Scores")
# print(super bowl json)
sb DF = StringIO(super bowl json)
super_bowl_DF = sb_DF.writable()
#Using Pandas to webscrape
html df, = pd.read html(quote page)
#Store as JSON and CSV
superbowl DF = html df.to csv("Super Bowl Scores.csv", sep=",")
```

Code Snippet 5 - Scatter Plot Base

```
In [102]: yplot ST = np.array([st list[61]])
         xplot_ST = np.array([x1["#Wins"]])
          plt.scatter(x=xplot ST,
                     y=yplot ST,
                     S=15.
                     facecolors=colors.
                     alpha=0.8,
                     linewidth=1)
         yplot_ST2 = np.array([st_list[68]])
         xplot_ST2 = np.array([x1["#Wins"]])
          plt.scatter(x=xplot_ST2,
                     y=yplot_ST2,
                     S=15,
                     facecolors="green",
                     alpha=0.8,
                     linewidth=1)
         yplot_ST3 = np.array([st_list2[61]])
         xplot_ST3 = np.array([x2["#Wins"]])
          plt.scatter(x=xplot_ST3,
                     v=vplot ST3,
                     S=15,
                     facecolors=colors2,
                     alpha=0.8,
                     linewidth=1)
         yplot_ST4 = np.array([st_list2[68]])
          xplot ST4 = np.array([x2["#Wins"]])
          plt.scatter(x=xplot ST4,
                     v=vplot ST4,
                     S=15,
                     facecolors="orange",
                     alpha=0.8,
                     linewidth=1)
          plt.grid(True)
         plt.legend(handles=handles)
          plt.title("Overall Wins vs Special Teams Stats", fontsize=20)
         plt.ylabel("Wins", fontsize=20)
          plt.ylim(0,320)
          plt.xlabel("Total Special Teams Stats", fontsize=20)
          plt.xlim(0,70)
          plt.figure(figsize=(10,10), dpi=80)
          plt.show()
```

Part 4

The results

Quick Grouped Statistics

Offense

#Team Abbr.	NE	PIT	SEA	GB	кс	CAR	DEN	ARI
count	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000
mean	2347.768293	2189.926829	1991.973171	2009.429268	1793.236585	1886.109756	1869.187805	1858.563415
std	5693.566161	5297.601887	4612.385070	4702.314289	4174.589397	4320.465804	4472.418847	4549.019682
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	55.100000	66.000000	48.000000	48.800000	44.000000	52.000000	38.700000	39.300000
50%	279.000000	264.000000	236.000000	237.000000	199.000000	218.800000	214.000000	216.000000
75%	1112.000000	1210.000000	1329.000000	1274.000000	992.000000	1236.000000	1235.000000	1119.000000
max	22106.000000	20528.000000	17755.000000	18285.000000	16050.000000	16563.000000	17404.000000	17743.000000
#Team Abbr.	CLE	STL	SD	CHI	SF	ТВ	JAX	NYJ
count	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000	41.000000
mean	1562.765854	756.0756 1 0	1367.082927	1618.829268	1585.824390	1720.356098	1746.790244	1593.821951
std	3861.298891	1751.151426	3477.517202	3952.057889	3784.419643	4255.748380	4174.864804	3817.423672
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
<mark>25</mark> %	37.000000	22.300000	33.000000	34.000000	37.000000	36.000000	37.000000	41.000000
50%	199.000000	70.000000	155.000000	166.000000	181.000000	185.000000	200.000000	176.000000
75 %	856.800000	452.000000	696.000000	828.000000	859.000000	961.300000	1088.200000	855.600000
max	15096.000000	6687.000000	13582.000000	15203.000000	14588.000000	16554.000000	16188.000000	14584.000000

Quick Grouped Statistics

Defense

#Team Abbr.	NE	PIT	SEA	GB	КС	CAR	DEN	ARI
count	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000
mean	722.613043	697.513043	670.378261	705.147826	614.395652	685.530435	645.069565	660.213043
std	1198.012304	1137.736804	1130.657954	1155.399173	1049.024556	1120.395108	1071.982531	1074.477014
min	-70.000000	-91.000000	-278.000000	-43.000000	-196.000000	-278.000000	-121.000000	-205.000000
25%	39.000000	38.000000	41.000000	38.000000	37.000000	45.100000	41.500000	44.000000
50%	88.100000	89.800000	83.000000	96.400000	84.100000	87.000000	85.000000	125.900000
75%	995.500000	993.500000	867.000000	936.000000	752.500000	1017.000000	767.000000	767.000000
max	4671.000000	4296.000000	4418.000000	4416.000000	3938.000000	4280.000000	4027.000000	3917.000000
#Team Abbr.	CLE	STL	SD	СНІ	SF	ТВ	JAX	NYJ
#Team Abbr.	CLE 23.000000	STL 23.000000	SD 23.000000	CHI 23.000000	SF 23.000000	TB 23.000000	JAX 23.000000	NYJ 23.000000
count	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000	23.000000
count	23.000000 608.500000	23.000000 316.386957	23.000000 442.943478	23.000000 554.560870	23.000000 594.121739	23.000000 597.726087	23.000000 631.986957	23.000000 600.882609
count mean std	23.000000 608.500000 1063.633492	23.000000 316.386957 540.805509	23.000000 442.943478 779.170573	23.000000 554.560870 998.400247	23.000000 594.121739 1053.625160	23.000000 597.726087 1078.579832	23.000000 631.986957 1076.496765	23.000000 600.882609 1029.010919
count mean std min	23.000000 608.500000 1063.633492 -81.000000	23.000000 316.386957 540.805509 -62.000000	23.000000 442.943478 779.170573 -16.000000	23.000000 554.560870 998.400247 -158.000000	23.000000 594.121739 1053.625160 -70.000000	23.000000 597.726087 1078.579832 -82.000000	23.000000 631.986957 1076.496765 0.000000	23.000000 600.882609 1029.010919 -169.000000
count mean std min 25%	23.000000 608.500000 1063.633492 -81.000000 37.250000	23.000000 316.386957 540.805509 -62.000000 20.500000	23.000000 442.943478 779.170573 -16.000000 27.350000	23.000000 554.560870 998.400247 -158.000000 36.950000	23.000000 594.121739 1053.625160 -70.000000 36.000000	23.000000 597.726087 1078.579832 -82.000000 43.000000	23.000000 631.986957 1076.496765 0.000000 39.500000	23.000000 600.882609 1029.010919 -169.000000 37.000000

Quick Grouped Statistics Special Teams

	ARI	CAR	CHI	CLE	DEN
count	69.000000	69.000000	2.000000	2.000000	69.000000
mean	939.942029	990.395652		126.500000	940.886957
std	3333.455957	3610.412249	179.605122	178.898016	3392.698579
min	0.000000	0.00000	0.000000	0.000000	0.000000
25%	7.000000	7.000000	63.500000	63.250000	9.000000
50%	107.000000	100.000000	127.000000	126.500000	100.000000
75%	307.000000	311.300000	190.500000	189.750000	309.000000
max	21550.000000	24717.000000	254.000000	253.000000	21614.000000
	GB	JAX	KC	NE	CYN
count	69.000000	2.000000	69.00000	69.000000	2.000000
mean	932.175362	155.000000	993.15942	1073.113043	143.500000
std	3330.263002	219.203102	3450.48370	3966.585226	202.939646
min	0.000000	0.000000	0.00000	0.000000	0.000000
25%	9.000000	77.500000	11.00000	8.000000	71.750000
50%	91.000000	155.000000	107.00000	102.000000	143.500000
75%	320.400000	232.500000	313.70000	355.900000	215.250000
max	23579.000000	310.000000	23218.00000	28633.000000	287.000000
	PIT	SD	SEA	SF	STL
count	69.000000	2.000000	69.000000	2.000000	2.000000
mean	922.315942	117.000000	999.646377	136.000000	68.500000
std	3329.829143	165.462987	3502.004570	192.333044	96.873629
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	4.000000	58.500000	7.000000	68.000000	34.250000
50%	98.000000	117.000000	110.000000	136.000000	68.500000
75%	299.200000	175.500000	304.800000	204.000000	102.750000
max	23997.000000	234.000000	23809.000000	272.000000	137.000000
	ТВ				
count	2.000000				
mean	146.500000				
std	207.182287				
min	0.000000				
25%	73.250000				
50%	146.500000				
75%	219.750000				

293.000000

max

Positive Correlations & Linear Stagnation

<matplotlib.figure.Figure at 0x2c7563de518>

```
#Team Abbr.
       145
NE
PIT
       123
SEA
       199
GB
       177
KC
       171
CAR
       163
DEN
       160
ARI
       157
Name: #PassSacks, dtype: int64 #Team Abbr.
CLE
       199
STL
       65
SD
       112
CHI
       142
SF
       195
TB
       156
JAX
       186
NYJ
       151
```


NE

Name:

957

```
PIT
         871
SEA
        1329
GB
        1274
KC
         992
CAR
        1236
DEN
        1235
ARI
        1119
Name: #PassSackY, dtype: int64 #Team Abbr.
CLE
        1389
STL
         452
         682
SD
CHI
         828
SF
        1215
        1173
TB
JAX
        1211
CYN
Name:
       #PassSackY, dtype: int64 #Team Abbr.
NE
        1249
PIT
        1261
SEA
        1162
GB
        1325
KC
         873
CAR
        1457
        1223
DEN
ARI
        1349
       #SackYds, dtype: int64 #Team Abbr.
Name:
NE
        1249
        1261
PIT
SEA
        1162
GB
        1325
KC
         873
CAR
        1457
DEN
        1223
ARI
        1349
```

#SackYds, dtype: int64

<matplotlib.figure.Figure at 0x2c756a00c18>

```
#Team Abbr.
NE
      98.7250
PIT
     82.4000
SEA
    83.4750
GB
     82.3000
KC
     81.5875
CAR
    77.4125
DEN
    60.5250
ARI
      55.9500
Name: #QBRating, dtype: float64 #Team Abbr.
CLE
      36.8375
STL
     20.0250
SD
     34.5500
CHI
     42.7375
SF
     41.5750
TB
     42.2750
JAX
    51.8750
NYJ
      39.7125
Name: #QBRating, dtype: float64
```


Overall Wins vs. Defensive Touchdowns **Defensive Touchdowns** 20.0 Tier 1 17.5 Tier 2 Def Tier 1 15.0 Def Tier 2 12.5 10.0 7.5 ... 5.0 2.5 0.0 0 20 40 60 80 100 Wins

```
#Team Abbr.
NE
         0
PIT
         6
SEA
         6
GB
         6
KC
         9
CAR
         9
DEN
        11
ARI
        10
       #IntTD, dtype: int64 #Team Abbr.
Name:
CLE
STL
         4
SD
         4
CHI
         4
SF
         4
TB
        10
JAX
CYN
         0
       #IntTD, dtype: int64 #Team Abbr.
Name:
NE
         6
PIT
         3
         6
SEA
GB
         3
KC
         -
CAR
         4
DEN
         6
ARI
         5
        #FumTD, dtype: int64 #Team Abbr.
Name:
           1
CLE
STL
           2
           52
SD
CHI
SF
           1
           5
TB
         10
JAX
CYN
        #FUMTD,
Name:
                  dtype:
                            int64
```

Overall Wins vs. FG PCT

<matplotlib.figure.Figure at 0x1e86fb0dd30>

```
#Team Abbr.
NE
       720.7
PIT
       551.7
SEA
       605.7
GB
       608.2
KC
       544.1
CAR
       579.0
DEN
       528.8
ARI
       433.2
Name: #FgPct, dtype: float64 #Team Abbr.
       320.9
CLE
STL
       150.5
SD
       247.0
CHI
       310.6
SF
       353.0
TB
       302.6
JAX
       428.7
LYN
       334.2
Name: #FgPct, dtype: float64
```


<matplotlib.figure.Figure at 0x1cc9b8db470>

#Team Abbr.

```
NE
       301.2
PIT
       246.6
SEA
       299.9
GB
       187.4
KC
       253.3
CAR
       244.1
DEN
       193.5
ARI
       186.7
      #PuntIn20Pct, dtype: float64 #Team Abbr.
Name:
CLE
       123.8
STL
        84.5
        66.5
SD
CHI
       132.5
SF
       129.6
       142.4
TB
JAX
       186.8
NYJ
       136.8
Name: #PuntIn20Pct, dtype: float64
```

Overall Wins vs. Pass Over 20 Yards

<matplotlib.figure.Figure at 0x1e87034bac8>

```
#Team Abbr.
NE
       279
PIT
       264
SEA
       254
       237
GB
KC
       199
CAR
       211
DEN
       214
       234
ARI
Name: #Pass20Plus, dtype: int64 #Team Abbr.
       203
CLE
STL
        78
SD
       171
       177
CHI
       181
SF
       203
TB
JAX
       215
       192
CYN
      #Pass20Plus, dtype: int64
Name:
```

Overall Wins vs. Rush Over 20 Yards

<matplotlib.figure.Figure at 0x1e86fcda940>

#Team Abbr.

```
NE
        29
PIT
        42
SEA
        48
GB
        49
KC
       44
CAR
        37
DEN
        38
ARI
        30
      #Rush20Plus, dtype: int64 #Team Abbr.
Name:
CLE
        34
STL
        26
SD
        21
        26
CHI
SF
        35
TB
        36
JAX
        37
CYN
        41
      #Rush20Plus, dtype: int64
Name:
```

Overall Wins vs. Rush 1st Down Pct Tier 1 Tier 2 Def Tier 1 Def Tier 2 Def Tier 2

30

40

Wins

50

60

70

<matplotlib.figure.Figure at 0x1e86fcd4240>

20

Ó

10

```
#Team Abbr.
NE
       23.5125
PIT
       19.4375
SEA
       20.5375
GB
       22.2500
KC
       21.8250
CAR
       20.5250
DEN
       15.6500
ARI
       13.8500
Name: #Rush1stDownsPct, dtype: float64 #Team Abbr.
CLE
       11.2125
STL
        5.2750
SD
        7.8375
CHI
       11.9250
SF
       11.3500
TB
       10.0375
JAX
       12.9125
       10.6500
NYJ
Name: #Rush1stDownsPct, dtype: float64
```


<matplotlib.figure.Figure at 0x1e86b7629b0>

#Team Abbr.

```
NE
       462
PIT
       421
SEA
       489
GB
       443
KC
      417
CAR
       522
DEN
       369
ARI
       333
Name:
     #Rush1stDowns, dtype: int64 #Team Abbr.
CLE
       350
STL
       174
SD
       246
CHI
       386
SF
       393
TB
       331
JAX
       351
       383
CYN
Name: #Rush1stDowns, dtype: int64
```


<matplotlib.figure.Figure at 0x1e86b7a50b8>

```
#Team Abbr.
NE
       1094
PIT
        959
SEA
        818
GB
        902
KC
        780
CAR
        827
        824
DEN
ARI
        885
      #Rec1stDowns, dtype: int64 #Team Abbr.
Name:
CLE
       712
STL
       317
SD
       658
CHI
       733
SF
       680
TB
       828
       806
JAX
CYM
       688
Name: #Rec1stDowns, dtype: int64
```

Part 5

Bias, Challenges, Plans

Data Bias

Due to constraints stated above, we:

- Did not consider other major factors that can influence the outcome of a game in the "stats" we used.
- We only made a statistical model based on four cumulative season and playoff totals.
- Correlations between prior success and statistics does not always represent or determine future success.

Challenges to Overcome

- API was extremely time consuming to properly pull.
- API had severe restrictions on number of pulls.
- Data available with relation to deadline of assignment
- Assignment due date was pushed forward by 4 days, while well into assignment
- Questions to guide our project were constantly changing as they needed to become more narrow to focus data
- Objective/Goal for project needed to chang
- Duties had to be constantly shifted as new arrived while moving forward with project

Plans for Improvement

- Data will include evaluation and correlation between each year
- Individual "stats" will be included as factors of team success
- Standard Deviations, Variance, and P-Values will be put in place to show level of accuracy
- Regression models and Machine Learning to create predictions for future success, rather than just connections to past success.
- Potentially ask user input for "stats" they wish to know and output charts with rating and correlation

Credits

- Data made available from:
 - Mysportsfeed
 - ProFootballReference
 - Kaggle
- Logo property of:
 - NFL (National Football League)

