Soham Kalburgi¹

¹f20230460@goa.bits-pilani.ac.in BITS Pilani, KK Birla Goa Campus

Week 3

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- 5 Projecting onto ℓ_1 -balls

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- 5 Projecting onto ℓ_1 -balls

Last Time: Gradient Descent

- Goal: Iterative Approach to Approximate Global Minima
- **Definition:** The step of gradient descent is defined by

$$\mathbf{x}_{t+1} := \mathbf{x} - \gamma \nabla f(\mathbf{x_t}) \tag{1}$$

where $\gamma > 0$ is a fixed stepsize.

 Analysis of Lipschitz, Smooth, Strongly, Smooth & Strongly convex functions

Last Time: Convergence Rates

	Lipschitz convex functions	smooth convex functions	strongly convex functions	smooth & strongly convex functions
gradient descent	Thm. 3.1 $\mathcal{O}(1/\varepsilon^2)$	Thm. 3.8 $\mathcal{O}(1/\varepsilon)$		Thm. 3.14 $\mathcal{O}(\log(1/\varepsilon))$
accelerated gradient descent		Thm. 3.9 $\mathcal{O}(1/\sqrt{\varepsilon})$		
projected gradient descent	Thm. 4.2 $\mathcal{O}(1/\varepsilon^2)$	Thm. 4.4 $\mathcal{O}(1/\varepsilon)$		Thm. 4.5 $\mathcal{O}(\log(1/\varepsilon))$
subgradient descent	Thm. 10.20 $\mathcal{O}(1/\varepsilon^2)$		Thm. 10.22 $\mathcal{O}(1/\varepsilon)$	
stochastic gradient descent	Thm. 12.4 $\mathcal{O}(1/\varepsilon^2)$		Thm. 12.4 $\mathcal{O}(1/\varepsilon)$	

Table 3.1: Results on gradient descent. Below each theorem, the number of steps is given which the respective variant needs on the respective function class to achieve additive approximation error at most ε .

Definition

Choose $\mathbf{x}_0 \in X$ arbitrary and for $t \geq 0$ define

$$\mathbf{y}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \tag{2}$$

$$\mathbf{x}_{t+1} := \Pi_X(\mathbf{y}_{t+1}) := \underset{\mathbf{x} \in X}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}_{t+1}\|^2$$
 (3)

- After each iteration, we project the obtained iterate \mathbf{y}_{t+1} back to X
- Computing $\Pi_{\mathbf{X}}(\mathbf{y}_{t+1})$ means to solve an auxiliary convex constrained minimization problem in each step²

²the projection is well defined: $d_y(x) := \|x - y\|^2$ is strongly convex, and hence, a unique minimum over the nonempty closed and convex set X exists

Figure: Illustration of Projected Gradient Descent³

³image from Bolduc, E., Knee, G.C., Gauger, E.M. *et al.* Projected gradient descent algorithms for quantum state tomography. *npj Quantum Inf* 3, 44 (2017).

Fact 1.1

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \le 0$$
 (4)

(ii)
$$\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$$
 (5)

Equation (4) says that the vectors $\mathbf{x} - \Pi_X(\mathbf{y})$ and $\mathbf{y} - \Pi_X(\mathbf{y})$ form an obtuse angle, and equation (5) equivalently says that the square of the long side $\mathbf{x} - \mathbf{y}$ in the triangle formed by the three points is at least the sum of squares of the two short sides.

Figure: Illustration of Fact 1.1

What happens when $\mathbf{x}_t = \mathbf{x}_{t+1}$?

Substitute into equations 2 and 3 to get

$$\mathbf{x}_t = \Pi_X(\mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)) \tag{6}$$

- This means we project back to the previous iterate
- In this case, \mathbf{x}_t is a *minimizer* of f over the closed and convex set X (f is a convex differentiable function)

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- 5 Projecting onto ℓ_1 -balls

Analysis: Convergence Rate

Theorem

Let $f: \mathbf{dom}(f) \to \mathbb{R}$ be convex and differentiable, $X \subseteq \mathbf{dom}(f)$ closed and convex, \mathbf{x}^* a minimizer of f over X; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$, and that $\|\nabla f(\mathbf{x})\| \le B$ for all $\mathbf{x} \in X$. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}}$$

projected gradient descent with $\mathbf{x}_0 \in X$ yields

$$\frac{1}{T} \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{RB}{\sqrt{T}}$$
 (7)

Analysis: $\mathcal{O}(1/\varepsilon^2)$ steps

- This follows from the analysis of Lipschitz Convex Functions in Gradient Descent with the change being replace \mathbf{x}_{t+1} by \mathbf{y}_{t+1} as this is the real next (non-projected) gradient descent iterate and then using Fact 1.1(ii) (with $\mathbf{x} = \mathbf{x}^*, \mathbf{y} = \mathbf{y}_{t+1}$)
- In order to achieve $\min_{t=0}^{T-1} (f(\mathbf{x}_t) f(\mathbf{x}^*) \leq \varepsilon)$ we need

$$T \ge \frac{R^2 B^2}{\varepsilon^2} \implies \mathcal{O}(1/\varepsilon^2)$$

where T is the number of iterations

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- 5 Projecting onto ℓ_1 -balls

Smooth Convex Functions

Definition: *f* is *L*-smooth over *X* if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X$$
 (8)

Analysis: Sufficient Decrease

Lemma

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be differentiable and smooth with parameter L over a closed and convex set $X \subseteq \mathbf{dom}(f)$, according to (8). Choosing stepsize

$$\gamma := \frac{1}{L}$$

projected gradient descent (2, 3) with arbitrary $\mathbf{x}_0 \in X$ satisfies

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0$$
 (9)

More specifically, this already holds if f is smooth with parameter L over the line segment connecting \mathbf{x}_t and \mathbf{x}_{t+1} .

Analysis: Convergence Rate

Theorem

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbf{dom}(f)$ be a closed convex set, and assume that there is a minimizer \mathbf{x}^* of f over X; furthermore, suppose that f is smooth over X with parameter L, according to (8). Choosing stepsize

$$\gamma := \frac{1}{L}$$

projected gradient descent (2, 3) with $\mathbf{x}_0 \in X$ satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0$$
 (10)

Analysis: $\mathcal{O}(1/arepsilon)$ steps

Implication: With $R^2 := \|\mathbf{x} - \mathbf{x_0}\|^2$ we now only need

$$T \geq \frac{R^2L}{2\varepsilon} \implies \mathcal{O}(1/\varepsilon)$$

iterations instead of R^2B^2/ε^2 to achieve absolute error at most ε

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- 5 Projecting onto ℓ_1 -balls

Strongly Convex Functions

Definition: f is strongly convex with parameter $\mu > 0$ over X if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X$$
 (11)

Analysis: Convergence Rate

Theorem

Let $f: \mathbf{dom}(f) \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbf{dom}(f)$ be a nonempty closed and convex set and suppose that f is smooth over X with parameter L according to (8) and strongly convex over X with parameter $\mu > 0$ according to (11). Choosing

$$\gamma := \frac{1}{L}$$

projected gradient descent (2, 3) with arbitrary \mathbf{x}_0 satisfies the following two properties —

Analysis: Convergence Rate

Theorem cont.

(i) Squared distances to \mathbf{x}^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^*\|^2, \quad t \ge 0$$
 (12)

(ii) The absolute error after $\mathcal T$ iterations is exponentially small in $\mathcal T$:

$$f(\mathbf{x}_{T}) - f(\mathbf{x}^{*}) \leq \|\nabla f(\mathbf{x}^{*})\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|$$

$$+ \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^{T} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}, \quad T > 0 \quad (13)$$

Analysis: $\mathcal{O}(\log(1/\varepsilon))$

- In the constrained case we cannot argue that $\nabla f(\mathbf{x}^*) = 0$, thus the additional term
- The additional term is the dominating one, once the error becomes small
- It has the effect that the required number of steps to reach error at most ε will roughly double compared to the analysis in Gradient Descent $\implies \mathcal{O}(\log(1/\varepsilon))$

Contents¹

- 1 The Algorithm
- 2 Bounded Gradients
- 3 Smooth Convex Functions
- 4 Smooth and Strongly Convex Functions
- **5** Projecting onto ℓ_1 -balls

ℓ_1 -ball

Let

$$X = B_1(R) := \left\{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i| \le R \right\}$$
 (14)

be the ℓ_1 -ball of radius R>0 around ${\bf 0}$, i.e., the set of all points with 1-norm at most R^4

⁴geometrically, X is a *cross polytope* (square for d=2, octahedron for d=3), and as such it has 2^d many facets. https://en.wikipedia.org/wiki/Polytope

Goal: $\Pi_X(\mathbf{v})$

Figure: Projecting onto an ℓ_1 -ball

Our goal is to compute $\Pi_X(\mathbf{v})$ for a given vector \mathbf{v} , i.e., the projection of \mathbf{v} onto X

Simplifying Observations

Fact 5.1

We may assume WLOG that (i) R=1, (ii) $v_i \geq 0$ for all i, and (iii) $\sum_{i=1}^d v_i > 1$

Fact 5.2

Under the assumptions of Fact 5.1, $\mathbf{x} = \Pi_X(\mathbf{v})$ satisfies $x_i \geq 0$ for all i and $\sum_{i=1}^d x_i = 1$

Simplifying Observations

Corollary

Under the assumptions of Fact 5.1,

$$\Pi_X(\mathbf{v}) = \operatorname*{argmin}_{x \in \Delta_d} \|\mathbf{x} - \mathbf{v}\|^2$$

where

$$\Delta_d := \left\{ \mathbf{x} \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_i \ge 0 \ \forall i \right\}$$

is the standard simplex⁵

Standard Simplex

We have reduced the projection onto an ℓ_1 -ball to the projection onto the standard simplex

Figure: Projecting onto the standard simplex

Fact 5.3

We may assume WLOG that $v_1 \geq v_2 \geq \cdots \geq v_d$

Lemma 5.1

Let $\mathbf{x}^* := \operatorname{argmin}_{\mathbf{x} \in \Delta_d} \|\mathbf{x} - \mathbf{v}\|^2$. Under the assumption of Fact 5.3, there exists (a unique) $p \in \{1, \dots, d\}$ such that

$$x_i^* > 0, \quad i \le p, \tag{15}$$

$$x_i^* = 0, \quad i > p \tag{16}$$

Lemma 5.2

Under the assumption of Fact 5.3, and with p as in Lemma 5.1,

$$x_i^* = v_i - \Theta_p, \quad i \le p, \tag{17}$$

where

$$\Theta_{\rho} = \frac{1}{\rho} \left(\sum_{i=1}^{\rho} v_i - 1 \right) \tag{18}$$

Summary:

■ We have d candidates for \mathbf{x}^* , namely the vectors

$$\mathbf{x}^*(p) := (v_1 - \Theta_p, \dots, v_p - \Theta_p, 0, \dots, 0), \quad p \in \{1, \dots, d\}$$
(19)

and we just need to find the right one

■ In order for candidate $\mathbf{x}^*(p)$ to comply with Lemma 5.1, we must have

$$v_p - \Theta_p > 0, \tag{20}$$

and this actually ensures $\mathbf{x}^*(p)_i > 0$ for all i < p by the assumption of Fact 5.3 and therefore $\mathbf{x}^*(p) \in \Delta_d$

- There could still be several values of p satisfying (20)
- Among them, we simply pick the one for which $\mathbf{x}^*(p)$ minimizes the distance to \mathbf{v}
- This can be done in $\mathcal{O}(d \log d)$, by first sorting v and then updating the values Θ_p and $\|\mathbf{x}^*(p) \mathbf{v}\|^2$ as we vary p to check all candidates

There is a simpler criterion that saves us from comparing distances

Lemma 5.3

Under the assumption of Fact 5.3, with $\mathbf{x}^*(p)$, and with

$$p^* := \max\{p \in \{1, \dots, d\} : \nu_p - \frac{1}{p} \left(\sum_{i=1}^p \nu_i - 1 \right) > 0 \}, \quad (21)$$

it holds that

$$\underset{x \in \Delta_d}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{v}\|^2 = \mathbf{x}^*(p^*) \tag{22}$$

Projecting onto ℓ_1 -balls

Theorem

Let $\mathbf{v} \in \mathbb{R}^d$, $R \in \mathbb{R}_+$, $X = B_1(R)$ the ℓ_1 -ball around $\mathbf{0}$ of radius R. The projection

$$\Pi_X(\mathbf{v}) = \underset{x \in X}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{v}\|^2$$
 (23)

of **v** onto $B_1(R)$ can be computed in time $\mathcal{O}(d \log d)$.

This can be improved to time $\mathcal{O}(d)$, based on the observation that a given p can be compared to the value p^* in Lemma 5.3 in linear time, without the need to presort v

Summary

Thank you!