2. Visszalépéses keresés

Gregorics Tibor

Mesterséges intelligencia

Visszalépéses keresés

- □ A visszalépéses keresés egy olyan KR, amely
 - globális munkaterülete:
 - egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel együtt)
 - · kezdetben a startcsúcsot tartalmazó nulla hosszúságú út
 - terminálás célcsúcs elérésekor vagy a startcsúcsból való visszalépéskor
 - keresés szabályai:
 - a nyilvántartott út végéhez egy új (ki nem próbált) él hozzáfűzése, vagy a legutolsó él törlése (visszalépés szabálya)
 - vezérlés stratégiája a visszalépés szabályát csak a legvégső esetben alkalmazza

Visszalépés feltételei

- zsákutca: az aktuális csúcsból (azaz az aktuális út végpontjából) nem vezet tovább él
- zsákutca torkolat: az aktuális csúcsból kivezető utak nem vezettek célba
- □ kör: az aktuális csúcs szerepel már korábban is az aktuális úton
- mélységi korlát: az aktuális út hossza elér egy előre megadott értéket

Alacsonyabb rendű vezérlési stratégiák

- □ Az általános vezérlési stratégia kiegészíthető:
 - sorrendi szabállyal: amely sorrendet egy csúcsból kivezető élek vizsgálatára
 - vágó szabállyal: megjelöli egy csúcs azon kivezető éleit, amelyeket nem érdemes megvizsgálni
- □ Ezek a szabályok lehetnek
 - modellfüggő vezérlési stratégiák (a probléma modelljének sajátosságaiból származó ötlet)
 - heurisztikák (a megoldandó problémától származó információra támaszkodó ötlet)

Első változat: VL1

- □ A visszalépéses algoritmus első változata az, amikor a visszalépés feltételei közül az első kettőt építjük be a kereső rendszerbe.
- □ Bebizonyítható: Véges körmentes irányított gráfokon a VL1 mindig terminál, és ha létezik megoldás, akkor talál egyet.

UI: véges sok adott startból induló út van.

- □ Rekurzív algoritmussal (VL1) szokták megadni
 - Indítás: megoldás := VL1(startcsúcs)

```
ADAT := kezdeti érték
while ¬terminálási feltétel(ADAT) loop
   SELECT SZ FROM alkalmazható szabályok
                                                                          VLI
   ADAT := SZ(ADAT)
endloop
                           A \sim \text{\'elek}
                           A^* \sim \text{véges élsorozat}
                          N \sim \text{csúcsok}
    Recursive procedure VL1(akt : \dot{N}) return (A^*; hiba)
              if cél(akt) then return(nil) endif
    1.
              for \forall ij \in \Gamma(akt)^* \hat{\mathbf{loop}} \Gamma(akt) \sim \text{akt gyermekei}
    3.
                  megoldás := VL1(új)
                  if megoldás ≠ hiba then
                        return(fűz((akt,új), megoldás) endif
    5.
              endloop
              return(hiba)
    end
```


n-királynő probléma

2. állapotér modell

Dinamikus nyomkövetés

sorrendi stratégia: balról jobbra

Gregorics Tibor

Mesterséges intelligencia

Sorrendi heurisztikák az n-királynő problémára

Az *i*-edik sor mezőit rangsoroljuk azért, hogy ennek megfelelő sorrendben próbáljuk ki az *i*-edik királynő lehetséges elhelyezéseit.

- □ Diagonális: a mezőn áthaladó *hosszabb átló hossza*.
- □ Páratlan-páros:a páratlan sorokban *balról jobbra*, a páros sorokban *jobbról balra* legyen a sorrend.
- ☐ Ütés alá kerülő szabad mezők száma: új királynő elhelyezésével hány szabad mező kerül ütésbe

4	3	3	4
3	4	4	3
3	4	4	3
4	3	3	4

1	2	3	4
4	3	2	1
1	2	3	4
4	3	2	1

₩	×	×	×
×	×	3	2
×		×	
×			×

Heurisztikák az n-királynő problémára

n-királynő probléma3. állapotér modellsorrendi stratégia: balról jobbra

VL1 heurisztika nélkül

 $D_i = \{i - \text{dik sor szabad mezői}\}$

A *k*-adik királynő elhelyezése után a hátralevő üres sorokból töröljük az ütésbe került szabad mezőket.

$$for i=k+1 ... n loop$$

 $T\ddot{o}r\ddot{o}l(i,k)$

Töröl(*i*,*k*) : törli az *i*-dik sor azon szabad mezőit, amelyeket a *k*-dik királynő üt

VL1: **if** $D_k = \emptyset$ **then** visszalép

Forward Checking

FC algoritmus:

+

if $\exists i \in [k+1.. n]: D_i = \emptyset$

then visszalép

Partial Look Forward

PLF algoritmus:

$$VL1$$

+ for $i=k+1$.. n loop
for $j=i+1$.. n loop $(i \le j)$
 $Sz "ur (i,j)$
if $\exists i \in [k+1...n]: D_i = \emptyset$
then $visszal\'ep$

Szűr(i,j): törli az i-edik sor azon szabad mezőit, amelyekhez nem található a j-edik sorban vele ütésben nem álló szabad mező

$$i = 4, j = 6$$
 $D_4 = \emptyset$

Look Forward

LF algoritmus:

$$VL1 +$$
 $for i=k+1$

for
$$i=k+1$$
 .. n loop
for $j=k+1$.. n and $i\neq j$ loop
 $Sz \tilde{u}r(i,j)$

if
$$\exists i \in [k+1.. n]$$
: $D_i = \emptyset$ then $visszal\acute{e}p$

$$i = 4, j = 3$$
 $D_6 = \emptyset$
 $i = 5, j = 4$
 $i = 6, j = 4$
 $i = 6, j = 5$

Az n-királynő probléma új reprezentációs modellje

- □ Az előző vágási stratégiák alkalmazásánál az *n*-királynő problémának egy új modelljére volt szükség:
 - o Tekintsük a D_1 , ..., D_n halmazokat, ahol $D_i = \{1...n\}$ (ezek az *i*-dik sor szabad mezői).
 - Keressük azt az $(x_1,...,x_n) \in D_1 \times ... \times D_n$ elhelyezést $(x_i \text{ az } i\text{-dik sorban elhelyezett királynő oszloppozíciója}),$
 - o amely nem tartalmaz ütést: minden i, j királynő párra: $C_{ij}(x_i, x_j) \equiv (x_i \neq x_j \land |x_i x_j| \neq |i j|).$
- □ A visszalépéses keresés e modell változóinak értékét keresi, miközben az alkalmazott vágó stratégiák ezen változók lehetséges értékeit adó D_i halmazokat szűkítik.

Bináris korlát-kielégítési modell

- □ Keressük azt az $(x_1, ..., x_n) \in D_1 \times ... \times D_n$ n-est $(D_i \text{ véges})$ amely kielégít néhány $C_{ij} \subseteq D_i \times D_j$ bináris korlátot.
- □ Példák:
 - 1. Házasságközvetítő probléma (*n* férfi, *m* nő; keressünk minden férfinak neki szimpatikus feleségjelöltet):
 - o Az *i*-dik férfi (i=1..n) felesége (x_i) a $D_i = \{1, ..., m\}$ azon elemei, amelyekre fenn áll, hogy szimpatikus(i, x_i).
 - Az összes (i,j)-re: $C_{ij}(x_i,x_j) \equiv (x_i \neq x_j)$ (azaz nincs bigámia)
- 2. Gráfszínezési probléma (egy véges egyszerű irányítatlan gráf *n* darab csúcsát kell kiszínezni *m* színnel úgy, hogy a szomszédos csúcsok eltérő színűek legyenek):
 - o Az *i*-dik csúcs (i=1..n) színe (x_i) a $D_i = \{1, ..., m\}$ elemei.
 - o Minden *i*, *j* szomszédos csúcs párra: $C_{ij}(x_i, x_j) \equiv (x_i \neq x_j)$.

Modellfüggő vezérlési stratégia

□ A bemutatott vágó stratégiákat a modell bináris korlátaival definiálhatjuk, de ehhez a korlátok jelentését nem kell ismerni:

$$T\ddot{o}r\ddot{o}l(i,k): D_i := D_i - \{e \in D_i \mid \neg C_{ik}(e,x_k)\}$$

$$Sz\ddot{u}r(i,j): D_i := D_i - \{e \in D_i \mid \forall f \in D_j : \neg C_{ij}(e,f)\}$$

- □ Ezekben a módszerekben tehát nem heurisztikák, hanem modellfüggő vágó stratégiák jelennek meg.
- Modellfüggő sorrendi stratégiák is konstruálhatók:
 - Mindig a legkisebb tartományú még kitöltetlen komponensnek válasszunk előbb értéket.
 - Ugyanazon korláthoz tartozó komponenseket lehetőleg közvetlenül egymás után töltsük ki.

Második változat: VL2

- □ A visszalépéses algoritmus második változata az, amikor a visszalépés feltételei közül mindet beépítjük a kereső rendszerbe.
- Bebizonyítható: A VL2 δ-gráfban mindig terminál. Ha létezik a mélységi korlátnál nem hosszabb megoldás, akkor megtalál egy megoldást.

UI: véges sok adott korlátnál rövidebb startból induló út van.

- □ Rekurzív algoritmussal (VL2) adjuk meg
 - Indítás: megoldás := VL2(<startcsúcs>)

```
ADAT := kezdeti érték

while ¬terminálási feltétel(ADAT) loop

SELECT SZ FROM alkalmazható szabályok

ADAT := SZ(ADAT)

endloop
```

VL2

```
Recursive procedure VL2(\acute{u}t:N^*) return (A^*;hiba)
         akt := utolsó csúcs(út)
1.
2.
         if cél(akt) then return(nil) endif
3.
         if hossza(\acute{u}t) \ge korl\acute{a}t then return(hiba) endif
4.
         if akt∈maradék(út) then return(hiba) endif
         for \forall ij \in \Gamma(akt) - \pi(akt)loop \Gamma(akt) \sim \text{akt gyermekei}
5.
                                             \pi(akt) ~ akt egy szülője
             megoldás := VL2(fűz(út, új))
6.
7.
             if megoldás ≠ hiba then
8.
                  return(fűz((akt,új),megoldás)) endif
9.
         endloop
         return(hiba)
10.
end
```

Mélységi korlát szerepe

- □ A mélységi korlát önmagában is biztosítja a terminálást körök esetén is.
 - Ilyenkor nem kell a rekurzív hívásnál a teljes aktuális utat átadni : elég az út hosszát, az aktuális csúcsot és annak szülőjét (a kettő hosszú körök kiszűréséhez).
 - Ez az egyszerűsítés a hatékonyságon javíthat, de ha a reprezentációs gráfban vannak rövid körök is, akkor futási idő szempontjából ez nem előnyös.
- □ A VL2 nem talál megoldást, ha a megoldási utak a megadott mélységi korlátnál hosszabbak. (A keresés ilyenkor sikertelenül terminál.)

Értékelés

□ ELŐNYÖK

- mindig terminál,
 talál megoldást (a mélységi korláton belül)
- könnyenimplementálható
- kicsi memória igény

□ HÁTRÁNYOK

- nem ad optimális megoldást.
 (iterációba szervezhető)
- kezdetben hozott rossz döntést csak sok visszalépés korrigál (visszaugrásos keresés)
- egy zsákutca részt többször is bejárhat a keresés