IT5429E-1-24 (24.1A01)(Fall 2024): Graph Analytics for Big Data

Week 7: Recommender Systems & Scaling GNNs

Instructor: Thanh H. Nguyen

Many slides are adapted from https://web.stanford.edu/class/cs224w/

Preliminary of Recommendation

- Information Explosion in the era of Internet
 - 10K+ movies in Netflix
 - 12M products in Amazon (350m on Marketplace)
 - 70M+ music tracks in Spotify
 - 10B+ videos on YouTube
 - 200B+ pins (images) in Pinterest

• Personalized recommendation (i.e., suggesting a small number of interesting items for each user) is critical for users to effectively explore the content of their interest.

Recommender System as a Graph

- Recommender system can be naturally modeled as a bipartite graph
 - A graph with two node types: users and items.
 - Edges connect users and items
 - Indicates user-item interaction (e.g., click, purchase, review etc.)
 - Often associated with timestamp (timing of the interaction).

Recommendation Task

Given

Past user-item interactions

Task

- Predict new items each user will interact in the future.
- Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.
- For $u \in U$, $v \in V$, we need to get a real-valued score f(u, v).

Modern Recommender System

- Problem: Cannot evaluate f(u, v) for every user u item v pair.
- Solution: 2-stage process:
 - Candidate generation (cheap, fast)

Example: $f(u, v) = z_u \cdot z_v$

5

Top-K Recommendation

- For each user, we recommend *K* items.
 - For recommendation to be effective, **K** needs to be much smaller than the total number of items (up to billions)
 - *K* is typically in the order of 10—100.
- The goal is to include as many positive items as possible in the top-*K* recommended items.
 - Positive items = Items that the user will interact with in the future.

■ Evaluation metric: Recall@K (defined next)

Evaluation Metric: Recall@K (1)

- For each user \boldsymbol{u} ,
 - Let P_u be a set of positive items the user will interact in the future.
 - Let R_u be a set of items recommended by the model.
 - In top-K recommendation, $|R_u| = K$.
 - Items that the user has already interacted are excluded.

Evaluation Metric: Recall@K (2)

- Recall@K for user u is $\frac{|P_u \cap R_u|}{|P_u|}$
 - Higher value indicates more positive items are recommended in top-K for user u.

• The final Recall@K is computed by averaging the recall values across all users.

Recommender Systems: Embedding-based Models

9

Notation:

- •Notation:
 - U: A set of all users
 - V: A set of all items
 - **E**: A set of observed user-item interactions
 - ■ $\boldsymbol{E} = \{(u, v) \mid u \in \boldsymbol{U}, v \in \boldsymbol{V}, u \text{ interacted with } v\}$

10

Score Function

- To get the top-*K* items, we need a score function for user-item interaction:
 - For $u \in U$, $v \in V$, we need to get a real-valued scalar score(u, v).
 - *K* items with the largest scores for a given user *u* (excluding already interacted items) are then recommended).

For K=2, recommended items for user u would be $\{v_1, v_3\}$. $_{9/24/2024}$

Embedding-based Models

- We consider embedding-based models for scoring user-item interactions.
 - For each user $u \in U$, let $u \in \mathbb{R}^D$ be its D-dimensional embedding.
 - For each item $v \in V$, let $v \in \mathbb{R}^D$ be its D-dimensional embedding.
 - Let $f_{\theta}(\cdot,\cdot): \mathbb{R}^{D} \times \mathbb{R}^{D} \to \mathbb{R}$ be a parametrized function.
 - Then, score $score(u, v) = f_{\theta}(u, v)$

9/24/2024

Training Objective

- Embedding-based models have three kinds of parameters:
 - An encoder to generate user embeddings $u \in U$
 - An encoder to generate item embeddings $v \in V$
 - Score function $f_{\theta}(\cdot,\cdot)$
- Training objective: Optimize the model parameters to achieve high recall@*K* on seen (i.e., training) user-item interactions
 - We hope this objective would lead to high recall@*K* on unseen (i.e., test) interactions.

Surrogate Loss Functions

- The original training objective (recall@K) is not differentiable.
 - Cannot apply efficient gradient-based optimization.
- Two surrogate loss functions are widely-used to enable efficient gradient-based optimization.
 - Binary loss
 - Bayesian Personalized Ranking (BPR) loss

• Surrogate losses are differentiable and should align well with the original training objective.

Binary Loss (1)

- Define positive/negative edges
 - A set of positive edges **E** (i.e., observed/training user-item interactions)
- •A set of negative edges $E_{ne,g} = \{(u,v) | (u,v) \notin E, u \in U, v \in V\}$
- Define sigmoid function $\sigma(x) = \frac{1}{1 + \exp(-x)}$
- Maps real-valued scores into binary likelihood scores, i.e., in the range of [0,1].

Binary Loss (2)

• Binary loss: Binary classification of positive/negative edges using $\sigma(f_{\theta}, \boldsymbol{u}, \boldsymbol{v})$:

$$-\frac{1}{|E|} \sum_{(u,v) \in E} \log \left(\sigma(f_{\theta}(u,v)) \right) - \frac{1}{|E_{neg}|} \sum_{(u,v) \in E_{neg}} \log \left(1 - \sigma(f_{\theta}(u,v)) \right)$$

During training, these terms can be approximated using mini-batch of positive/negative edges

- Binary loss pushes the scores of positive edges higher than those of negative edges.
 - This aligns with the training recall metric since positive edges need to be recalled.

Issue with Binary Loss (1)

• Issue: In the binary loss, the scores of ALL positive edges are pushed higher than those of ALL negative edges.

• This would unnecessarily penalize model predictions even if the training recall metric is perfect.

• Why? (example in the next slide)

Issue with Binary Loss (2)

- Let's consider the simplest case:
 - Two users, two items
 - Metric: Recall@1.
 - A model assigns the score for every user-item pair (as shown in the right).
- Training Recall@1 is 1.0 (perfect score), because v_0 (resp. v_1) is correctly recommended to u_0 (resp. v_1)
- However, the binary loss would still penalize the model prediction because the negative (u_1, v_0) edge gets the higher score than the positive edge (u_0, v_0)

Positive edge

..... Negative edge

Issue with Binary Loss (3)

• Key insight: The binary loss is non-personalized in the sense that the positive/negative edges are considered across ALL users at once.

- However, the recall metric is inherently personalized (defined for each user).
 - The non-personalized binary loss is overly-stringent for the personalized recall metric.

Desirable Surrogate Loss

- Lesson learned: Surrogate loss function should be defined in a personalized manner.
 - For each user, we want the scores of positive items to be higher than those of the negative items
 - We do not care about the score ordering across users.

 Bayesian Personalized Ranking (BPR) loss achieves this!

___ Observed interaction

...... Unobserved interaction

Loss Function: BPR Loss (1)

- Bayesian Personalized Ranking (BPR) loss is a personalized surrogate loss that aligns better with the recall@K metric.
- For each user $u^* \in U$, define the rooted positive/negative edges as
 - Positive edges rooted at u^*
 - **■** $E(u^*) \equiv \{(u^*, v) \mid (u^*, v) \in E\}$
 - Negative edges rooted at u^*
 - $\bullet \mathbf{\textit{E}}_{\text{neg}} (u^*) \equiv \{(u^*, v) \mid (u^*, v) \in \mathbf{\textit{E}}_{\text{neg}}\}\$

Loss Function: BPR Loss (2)

- Training objective: For each user u^* , we want the scores of rooted positive edges $E(u^*)$ to be higher than those of rooted negative edges $\boldsymbol{E}_{neg}(u^*)$.
 - Aligns with the personalized nature of the recall metric.
- BPR Loss for user u^* : Encouraged to be positive for each user =positive edge score is higher than negative edge score

$$\operatorname{Loss}(u^*) = \frac{1}{|\boldsymbol{E}(u^*)| \cdot |\boldsymbol{E}_{\operatorname{neg}}(u^*)|} \sum_{(u^*, v_{\operatorname{pos}}) \in \boldsymbol{E}(u^*)} \sum_{(u^*, v_{\operatorname{neg}}) \in \boldsymbol{E}_{\operatorname{neg}}(u^*)} -\log \left(\sigma \left(f_{\theta}(\boldsymbol{u}^*, v_{\operatorname{pos}}) - f_{\theta}(\boldsymbol{u}^*, v_{\operatorname{neg}})\right)\right)$$

Can be approximated using a mini-batch

• Final BPR loss:
$$\frac{1}{|U|} \sum_{u^* \in U} \text{Loss}(u^*)$$

Loss Function: BPR Loss (3)

• Mini-batch training for the BPR loss:

- In each mini-batch, we sample a subset of users $U_{mini} \in U$.
- For each user $u^* \in U_{mini}$, we sample one positive item v_{pos} and a set of sampled negative items $V_{neg} = \{v_{neg}\}$.
- The mini-batch loss is computed as:

Average over users in the mini-batch

Summary So Far

We have introduced

- Recall@K as a metric for personalized recommendation
- Embedding-based models
 - Three kinds of parameters to learn
 - user encoder to generate user embeddings
 - item encoder to generate item embeddings
 - score function to predict the user-item interaction likelihood.
 - Surrogate loss functions to achieve the high recall metric.
- Embedding-based models have achieved SoTA in recommender systems.
 - Why do they work so well?

Why Embedding Models Work?

Underlying idea:

- Collaborative filtering
 - Recommend items for a user by collecting preferences of many other similar users.
 - Similar users tend to prefer similar items.
- Key question: How to capture similarity between users/items?

(25)

Why Embedding Models Work?

- Embedding-based models can capture similarity of users/items!
- Low-dimensional embeddings cannot simply memorize all useritem interaction data.
- Embeddings are forced to capture similarity between users/items to fit the data.
- This allows the models to make effective prediction on unseen user-item interactions.

This Lecture: GNNs for RecSys

In this lecture, we teach two representative GNN approaches for recommender systems.

- (1) Neural Graph Collab. Filtering (NGCF) [Wang et al. 2019]
- (2) LightGCN [He et al. 2020]
 - Improve the conventional collaborative filtering models (i.e., shallow encoders) by explicitly modeling graph structure using GNNs.
 - Assumes no user/item features.
- PinSAGE [Ying et al. 2018]
 - Use GNNs to generate high-quality embeddings by simultaneously capturing rich node attributes (e.g., images) and the graph structure.

Neural Graph Collaborative Filtering

Conventional Collaborative Filtering

- Conventional collaborative filtering model is based on shallow encoders:
 - No user/item features.
 - Use shallow encoders for users and items:
 - For every $u \in U$ and $v \in V$, we prepare shallow learnable embeddings $u, v \in \mathbb{R}^{D}$.
 - Score function for user u and item v is $f_{\theta}(u, v) = z_u^T z_v$

Learnable shallow user/item embeddings

Limitations of Shallow Encoders

- The model itself does not explicitly capture graph structure
- The graph structure is only implicitly captured in the training objective.
- Only the first-order graph structure (i.e., edges) is captured in the training objective.
- High-order graph structure (e.g., *K*-hop paths between two nodes) is not explicitly captured.

Motivation

- We want a model that...
 - explicitly captures graph structure (beyond implicitly through the training objective)
 - captures high-order graph structure (beyond the first-order edge connectivity structure)
- •GNNs are a natural approach to achieve both!
 - Neural Graph Collaborative Filtering (NGCF) [Wang et al. 2019]
 - LightGCN [He et al. 2020]
 - A simplified and improved version of NGCF

NGCF: Overview

- Neural Graph Collaborative Filtering (NGCF) explicitly incorporates high-order graph structure when generating user/item embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.

32

NGCF Framework

- Given: User-item bipartite graph.
- NGCF framework:
 - Prepare shallow learnable embedding for each node.
 - Use multi-layer GNNs to propagate embeddings along the bipartite graph.
 - High-order graph structure is captured.
 - Final embeddings are explicitly graph aware!
- Two kinds of learnable params are jointly learned:
 - Shallow user/item embeddings
 - GNN's parameters

Initial Node Embeddings

- Set the shallow learnable embeddings as the initial node features:
 - For every user $u \in U$, set $h_u^{(0)}$ as the user's shallow embedding.
 - For every item $v \in V$, set $h_v^{(0)}$ as the item's shallow embedding.

Learnable shallow user/item embeddings

Neighbor Aggregation

• Iteratively update node embeddings using neighboring embeddings.

$$\boldsymbol{h}_{v}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{v}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$$
$$\boldsymbol{h}_{u}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{u}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$$

- High order graph structure is captured through iterative neighbor aggregation
- Different architecture choices are possible for AGGR and COMBINE.
 - $AGGR(\cdot)$ can be MEAN()
 - COMBINE(x, y) can be ReLU Linear(Concat(x, y))

Final Embeddings and Score Function

- •After K rounds of neighbor aggregation, we get the final user/item embeddings $h_u^{(K)}$ and $h_v^{(K)}$
- For all $u \in U$, $v \in V$, we set:

$$u = h_u^{(K)}, v = h_v^{(K)}$$

Score function is the inner product

$$score(u, v) = u^T v$$

NGCF Summary

- Conventional collaborative filtering uses shallow user/item embeddings.
 - The embeddings do not explicitly model graph structure.
 - The training objective does not model high-order graph structure.
- NGCF uses a GNN to propagate the shallow embeddings.
 - The embeddings are explicitly aware of high-order graph structure.

LightGCN

LightGCN: Motivation (1)

- Recall: NGCF jointly learns two kinds of parameters:
 - Shallow user/item embeddings
 - GNN's parameters
- Observation: Shallow learnable embeddings are already quite expressive.
 - They are learned for every (user/item) node.
 - Most of the parameter counts are in shallow embeddings when N (#nodes)
 D (embedding dimensionality)
 - Shallow embeddings: O(ND).
 - GNN: $O(D^2)$.
 - The GNN parameters may not be so essential for performance.

LightGCN: Motivation (2)

- Can we simplify the GNN used in NGCF (e.g., remove its learnable parameters)?
 - Answer: Yes!
 - Bonus: Simplification improves the recommendation performance!
- Overview of the idea:
 - Adjacency matrix for a bipartite graph
 - Matrix formulation of GCN
 - Simplification of GCN by removing non-linearity
 - Related: SGC for scalable GNN [Wu et al. 2019]

Adjacency and Embedding Matrices

- Adjacency matrix of a (undirected) bipartite graph.
- Shallow embedding matrix.

41

Matrix Formulation of GCN

- Define: The diffusion matrix
- Let **D** be the degree matrix of **A**.
- Define the normalized adjacency matrix \tilde{A} as

$$\tilde{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

- Let $E^{(k)}$ be the embedding matrix at k-th layer.
- Each layer of GCN's aggregation can be written in a matrix form:

$$\mathbf{E}^{(k+1)} = \text{ReLU}(\widetilde{\mathbf{A}}\mathbf{E}^{(k)}\mathbf{W}^{(k)})$$

Neighbor aggregation Learnable linear transformation

Matrix of node embeddings $E^{(k)}$

Each row stores node embedding

Simplifying GCN (1)

Simplify GCN by removing ReLU non-linearity:

$$E^{(k+1)} = \widetilde{A}E^{(k)}W^{(k)}$$
 Original idea from SGC [Wu et al. 2019]

The final node embedding matrix is given as

$$E^{(K)} = \widetilde{A} E^{(K-1)} W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} E^{(K-2)} W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} (\cdots (\widetilde{A} E^{(0)} W^{(0)}) \cdots) W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A}^{K} E (W^{(0)} \cdots W^{(K-1)})$$

Simplifying GCN (2)

Removing ReLU significantly simplifies GCN!

$$\boldsymbol{E}^{(K)} = \widetilde{\boldsymbol{A}}^{K} \boldsymbol{E} \boldsymbol{W}$$

$$\boldsymbol{W} \equiv \boldsymbol{W}^{(0)} \cdots \boldsymbol{W}^{(K-1)}$$

Diffusing node embeddings along the graph

- •Algorithm: Apply $E \leftarrow \tilde{A}E$ for K times
 - Each matrix multiplication diffuses the current embeddings to their one-hop neighbors.
 - Note: \tilde{A}^K is dense and never gets materialized. Instead, the above iterative matrix-vector product is used to compute $\tilde{A}^K E$

Multi-Scale Diffusion

We can consider multi-scale diffusion

$$\alpha_0 E^{(0)} + \alpha_1 E^{(1)} + \cdots + \alpha_K E^{(K)}$$

- The above includes embeddings diffused at multiple hop scales.
- $\alpha_0 E^{(0)} = \alpha_0 \tilde{A}^0 E^{(0)}$ acts as a self-connection (that is omitted in the definition \tilde{A})
- The coefficients $\alpha_0, \alpha_1, \cdots, \alpha_K$ are hyper-parameters

• For simplicity, LightGCN uses the uniform coefficient, i.e., $\alpha_k = \frac{1}{\kappa+1}$ for all $k=1,2,\cdots,K$.

2024 45

LightGCN: Model Overview (1)

- Given:
 - Adjacency matrix A
 - Initial learnable embedding matrix *E*

LightGCN: Model Overview (2)

•Iteratively diffuse embedding matrix \boldsymbol{E} using \tilde{A}

LightGCN: Model Overview (3)

•Average the embedding matrices at different scales.

LightGCN: Model Overview (4)

- Score function:
 - Use user/item vectors from E_{final} to score user-item interaction

LightGCN: Intuition

• Question: Why does the simple diffusion propagation work well?

- Answer: The diffusion directly encourages the embeddings of similar users/items to be similar.
 - Similar users share many common neighbors (items) and are expected to have similar future preferences (interact with similar items).

LightGCN and GCN

- The embedding propagation of LightGCN is closely related to GCN
- Recall: GCN (neighbor aggregation part)

$$\boldsymbol{h}_{v}^{(k+1)} = \sum_{u \in N(v)} \frac{1}{\sqrt{d_{u}} \sqrt{d_{v}}} \cdot \boldsymbol{h}_{u}^{(k)}$$
Node degree

- Self-loop is added in the neighborhood definition.
- LightGCN uses the same equation except that
 - Self-loop is not added in the neighborhood definition.
 - Final embedding takes the average of embeddings from all the layers:

$$h_{v} = \frac{1}{K+1} \sum_{k=0}^{K} h_{v}^{(K)}$$

LightGCN and MF: Comparison

- Both LightGCN and shallow encoders learn a unique embedding for each user/item.
- The difference is that LightGCN uses the diffused user/item embeddings for scoring.
- LightGCN performs better than shallow encoders but are also more computationally expensive due to the additional diffusion step.
 - The final embedding of a user/item is obtained by aggregating embeddings of its multi-hop neighboring nodes.

LightGCN Summary

- LightGCN simplifies NGCF by removing the learnable parameters of GNNs.
- Learnable parameters are all in the shallow input node embeddings.
- Diffusion propagation only involves matrix-vector multiplication.

• The simplification leads to better empirical performance than NGCF.

PinSAGE

Motivation

•P2P recommendation

PinSAGE: Pin Embedding

- Unifies visual, textual, and graph information.
- The largest industry deployment of a Graph Convolutional Networks.
- Huge Adoption across Pinterest
- Works for fresh content and is available in a few seconds after pin creation

Application: Pinterest

- PinSage graph convolutional network:
 - Goal: Generate embeddings for nodes in a large-scale Pinterest graph containing billions of objects
 - Key Idea: Borrow information from nearby nodes
 - E.g., bed rail Pin might look like a garden fence, but gates and beds are rarely adjacent in the graph

- Pin embeddings are essential to various tasks like recommendation of Pins, classification, ranking
 - Services like "Related Pins", "Search", "Shopping", "Ads"

Harnessing Pins and Boards

Very ape blue structured coat

Nitty Gritty

Hans Wegner chair Room and Board

This is just a beautiful image for thoughts.
Yay or nay, your choice.

mid century modern ...

Man Style Gavin Jones

men + style I

Plants HelioSandwich

Men's Style Andrea Sempi

Mid century modern Tyler Goodro

Plants Moorea Seal

Mid century modern ... Prottygreentes

ULUTIAUAT

58

Time in the second

PinSAGE: Graph Neural Network

- •Graph has tens of billions of nodes and edges
- •Further resolves embeddings across the Pinterest graph

PinSAGE: Methods for Scaling Up

- •In addition to the GNN model, the PinSAGE introduces several methods to scale the GNN to a billion-scale recommender system (e.g., Pinterest).
 - Shared negative samples across users in a mini-batch
 - Hard negative samples
 - Curriculum learning
 - Mini-batch training of GNNs on a large-graph (to be covered in the next part of the lecture)

PinSAGE Model

- Task: Recommend related pins to users
- Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2}) < d(z_{cake1}, z_{sweater})$

Training Data

- 1+B repin pairs:
 - From Related Pins surface
 - Capture semantic relatedness
 - Goal: Embed such pairs to be "neighbors"
- Example positive training pairs (Q,X):

Shared Negative Samples (1)

- •Recall: In BPR loss, for each user $u^* \in U_{mini}$, we sample one positive item v_{pos} and a set of sampled negative items $V_{neg} = \{v_{neg}\}$
- Using more negative samples per user improves the recommendation performance, but is also expensive.
- We need to generate $|U_{mini}| \cdot |V_{neg}|$ embeddings for negative nodes.
- We need to apply $|U_{mini}| \cdot |V_{neg}|$ GNN computational graphs (see right), which is expensive.

4/2024 63

Shared Negative Samples (2)

• Key idea: We can share the same set of negative samples $V_{neg} = \{v_{neg}\}$ across all users U_{mini} in the mini-batch.

- This way, we only need to generate $|V_{neg}|$ embeddings for negative nodes.
 - This saves the node embedding generation computation by a factor of $|U_{mini}|!$
 - Empirically, the performance stays similar to the non-shared negative sampling scheme.

Hard Negatives (1)

- Challenge: Industrial recsys needs to make extremely fine-grained predictions.
 - #Total items: Up to billions.
 - #Items to recommend for each user: 10 to 100.
- Issue: The shared negative items are randomly sampled from all items
 - Most of them are "easy negatives", i.e., a model does not need to be fine-grained to distinguish them from positive items.
- We need a way to sample "hard negatives" to force the model to be fine-grained!

PinSAGE: Curriculum Learning

- Idea: use harder and harder negative samples
- Include more and more hard negative samples for each epoch

Source pin

Positive

Easy negative

Hard negative

Curriculum Learning

• Key insight: It is effective to make the negative samples gradually harder in the process of training.

- •At n-th epoch, we add n-1 hard negative items.
 - #(Hard negatives) gradually increases in the process of training.

• The model will gradually learn to make finer grained predictions.

Hard Negatives (2)

- For each user node, the hard negatives are item nodes that are close (but not connected) to the user node in the graph.
- Hard negatives for user $u \in U$ are obtained as follows:
 - Compute random walks from user *u*.
 - Run random walk with restart from *u*, obtain visit counts for other items/nodes.
 - Sort items in the descending order of their visit count.
 - Randomly sample items that are ranked high but not too high, e.g., 2000th —5000th.
 - Item nodes that are close but not too close (connected) to the user node.
- The hard negatives for each user are used in addition to the shared negatives.

PinSAGE: Negative Sampling

- (q, p) positive pairs are given but various methods to sample negatives to form (q, p, n)
- Distance Weighted Sampling (Wu et al., 2017)
 - Sample negatives so that query-negative distance distribution is approx U[0.5, 1.4]

Fine-Grained Object Similarity

Query

Compare against Prod

Query

A Shates maje had journey has the seniors sould recorded to not synthe each of few, course temperarelates a couple of senior of notific as my part court to a shat of leadering a powth man a bit of league, a shape-of product the part ty seal and a desh of telly.

PinSAGE: Summary

- PinSAGE uses GNNs to generate high-quality user/item embeddings that capture both the rich node attributes and graph structure.
- The PinSAGE model is effectively trained using sophisticated negative sampling strategies.
- PinSAGE is successfully deployed at Pinterest, a billion-scale image content recommendation service.
 - Uncovered in this lecture: How to scale up GNNs to large-scale graphs. Will be covered in a later lecture.

Scaling Up GNNs

- •Recommender systems:
 - Amazon
 - YouTube
 - Pinterest
 - Etc.

- •ML tasks:
 - Recommend items (link prediction)
 - Classify users/items (node classification)

- Social networks:
 - Facebook
 - Twitter
 - Instagram
 - Etc.
- •ML tasks:
 - Friend recommendation (link-level)
 - User property prediction (node-level)

- •Academic graph:
 - Microsoft Academic Graph
- •ML tasks:
 - Paper categorization (node classification)
 - Author collaboration recommendation
 - Paper citation recommendation (link prediction)

Papers Authors 120M 120M

(76)

- •Knowledge Graphs (KGs):
 - Wikidata
 - Freebase

- •ML tasks:
 - KG completion
 - Reasoning

Entities 80M—90M

What is in Common?

- •Large-scale:
 - •#nodes ranges from 10M to 10B.
 - •#edges ranges from 100M to 100B.
- Tasks
 - Node-level: User/item/paper classification.
 - Link-level: Recommendation, completion.
- Todays' lecture
 - Scale up GNNs to large graphs!

- Recall: How we usually train an ML model on large data (N = # data is large)?
- Objective: Minimize the averaged loss

$$l(\theta) = \frac{1}{N} \sum_{i=0}^{N-1} l_i(\theta)$$

- θ : model parameters, $l_i(\theta)$: loss for i-th data point
- We perform Stochastic Gradient Descent
 - Sample M (<<N) data points (mini-batches)
 - Compute the $l_{sub}(\theta)$ over the M data points
 - Perform SGD: $\theta = \theta \nabla l_{sub}(\theta)$

- What if we were to use the standard SGD for GNN?
- •In mini-batch, we sample $M(\ll N)$ nodes independently:

- Sampled nodes will be be isolated from each other!
- GNN generates node embeddings by aggregating neighboring node features.
 - GNN does not access to neighboring nodes within the mini-batch!
- Standard SGD cannot effectively train GNNs.

 Naïve full-batch implementation: Generate embeddings of all the nodes at the same time:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^T) + H^{(k)}B_k^T$$

- Load the entire graph *A* and features X. Set $H^{(0)} = X$.
- At each GNN layer: Compute embeddings of all nodes using all the node embeddings from the previous layer.
- Compute the loss
- Perform gradient descent

Given all node embeddings at layer K

Perform messagepassing

Obtain **all node embeddings** at layer K+1

- However, Full-batch implementation is not feasible for a large graphs.
- Why?
 - Because we want to use GPU for fast training, but GPU memory is extremely limited (10GB-80GB).
 - The entire graph and the features cannot be loaded on GPU.

Slow computation, large memory

CPU 1TB—10TB Fast computation, limited memory

GPU 10GB—20GB

82

Lecture Outline

We introduce three methods for scaling up GNNs:

- Two methods perform message-passing over small subgraphs in each mini-batch; only the subgraphs need to be loaded on a GPU at a time.
 - Neighbor Sampling [Hamilton et al. NeurIPS 2017]
 - Cluster-GCN [Chiang et al. KDD 2019]
- One method simplifies a GNN into feature preprocessing operation (can be efficiently performed even on a CPU)
 - Simplified GCN [Wu et al. ICML 2019]

GraphSAGE Neighbor Sampling

Recall: Computational Graph

- Recall: GNNs generate node embeddings via neighbor aggregation.
 - Represented as a computational graph (right).

Recall: Computational Graph

• Observation: A 2-layer GNN generates embedding of node "0" using 2-hop neighborhood structure and features.

2024 (86)

Recall: Computational Graph

• Observation: More generally, *K*-layer GNNs generate embedding of a node using *K*-hop neighborhood structure and features.

Computing Node Embeddings

- Key insight: To compute embedding of a single node, all we need is the *K*-hop neighborhood (which defines the computation graph).
- Given a set of *M* different nodes in a mini-batch, we can generate their embeddings using *M* computational graphs. Can be computed on GPU!

9/24/2024

Stochastic Training of GNNs

- We can now consider the following SGD strategy for training *K*-layer GNNs:
 - Randomly sample M ($\ll N$) root nodes.
 - For each sampled root node *v*:
 - Get *K*-hop neighborhood and construct the computation graph.
 - Use the above to generate *v*'s embedding.
 - Compute the loss $l_{sub}(\theta)$ averaged over the M nodes.
 - Perform SGD: $\theta = \theta \nabla l_{sub}(\theta)$

K-hop neighborhood

Computational graph

89

Issue with Stochastic Training (1)

- For each node, we need to get the entire *K*-hop neighborhood and pass it through the computation graph.
- We need to aggregate lot of information to compute one node embedding.
- Some computational redundancy:

Issue with Stochastic Training (2)

- •2nd issue:
 - Computation graph becomes exponentially large with respect to the layer size *K*.
 - Computation graph explodes when it hits a hub node (high-degree node).

Next: Make the comp. graph more compact!

Neighborhood Sampling

• Key idea: Construct the computational graph by (randomly) sampling at most *H* neighbors at each hop.

• Example (H = 2):

92

Neighborhood Sampling

• We can use the pruned computational graph to more efficiently compute node embeddings.

Neighborhood Sampling Algorithm

Neighbor sampling for *K*-layer GNN

- For k = 1, 2, ..., K:
 - For each node in *k*-hop neighborhood:
 - (Randomly) sample at most H_k neighbors:

1st-hopSample $H_1 = 2$ neighborhoodneighbors

2nd-hop Sample $H_2 = 2$ **neighborhood** neighbors

• K-layer GNN will at most involve $\prod_{k=1}^K H_k$ leaf nodes in comp. graph.

Remarks on Neighborhood Sampling (1)

- Remark 1: Trade-off in sampling number *H*
 - Smaller *H* leads to more efficient neighbor aggregation, but results are less stable training due to the larger variance in neighbor aggregation.

- Remark 2: Computational time
 - Even with neighbor sampling, the size of the computational graph is still exponential with respect to number of GNN layers *K*.
 - Adding one GNN layer would make computation *H* times more expensive

Remarks on Neighborhood Sampling (2)

- •Remark 3: How to sample the nodes
 - Random sampling: fast but many times not optimal (may sample many "unimportant" nodes)
 - Random Walk with Restarts:
 - Natural graphs are "scale free", sampling random neighbors, samples many low degree "leaf" nodes.
 - Strategy to sample important nodes:
 - Compute Random Walk with Restarts score R_i starting at the green node
 - At each level sample H neighbors i with the highest R_i
 - This strategy works much better in practice.

Summary: Neighbor Sampling

- A computational graph is constructed for each node in a minibatch.
- In neighbor sampling, the comp. graph is pruned/sub-sampled to increase computational efficiency.
- The pruned comp. graph is used to generate a node embedding.

• However, computational graphs can still become large, especially for GNNs with many message-passing layers.

Cluster-GCN

Issues with Neighbor Sampling

- The size of computational graph becomes exponentially large w.r.t. the #GNN layers.
- Computation is redundant, especially when nodes in a mini-batch share many neighbors.

Thanh H. Nguyen

Recall: Full Batch GNN

• In full-batch GNN implementation, all the node embeddings are updated together using embeddings of the previous layer.

$$\begin{aligned} & \text{Update for all } v \in V \\ & h_v^{(\ell)} = COMBINE \left(h_v^{(\ell-1)}, AGGR \left(\left\{ \begin{matrix} h_u^{(\ell-1)} \\ \end{matrix} \right\}_{u \in N(v)} \right) \right) \end{aligned}$$

- In each layer, only 2*#(edges) messages need to be computed.
- For K-layer GNN, only 2K*#(edges)messages need to be computed.
- GNN's entire computation is only linear in #(edges) and #(GNN layers). Fast!

Thanh H. Nguyen

Insight from Full-Batch GNN

• The layer-wise node embedding update allows the re-use of embeddings from the previous layer.

- This significantly reduces the computational redundancy of neighbor sampling.
 - Of course, the layer-wise update is not feasible for a large graph due to limited GPU memory.
 - Requires putting the entire graph and features on GPU.

Layer-wise update

Subgraph Sampling

• Key idea: We can sample a small subgraph of the large graph and then perform the efficient layer-wise node embeddings update over the subgraph.

Large graph

Sampled subgraph (small enough to be put on a GPU)

Layer-wise node embeddings update on the GPU

Subgraph Sampling

- Key question: What subgraphs are good for training GNNs?
 - Recall: GNN performs node embedding by passing messages via the edges.
 - Subgraphs should retain edge connectivity structure of the original graph as much as possible.
 - This way, the GNN over the subgraph generates embeddings closer to the GNN over the original graph.

103

Subgraph Sampling: Case Study

• Which subgraph is good for training GNN?

Original graph

Subgraphs (both 4-node induced subgraph)

- Left subgraph retains the essential community structure among the 4 nodes (Good)
- Right subgraph drops many connectivity patterns, even leading to isolated nodes (Bad)

Exploiting Community Structure

- Real-world graph exhibits community structure
 - A large graph can be decomposed into many small communities.
- Key insight [Chiang et al. KDD 2019]:
 - Sample a community as a subgraph.
 - Each subgraph retains essential local connectivity pattern of the original graph.

105

Thanh H. Nguyen

Cluster-GCN: Overview

- We first introduce "vanilla" Cluster-GCN.
- Cluster-GCN consists of two steps:
 - Pre-processing: Given a large graph, partition it into groups of nodes (i.e., subgraphs).
 - Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.

9/24/2024

Thanh H. Nguyen

Cluster-GCN: Pre-processing

- Given a large graph G = (V, E), partition its nodes V into C groups: V_1, \dots, V_C .
 - We can use any scalable community detection methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].
- V_1, \dots, V_C induces C subgraphs, G_1, \dots, G_C ,
 - Recall: $G_c \equiv (V_c, E_c)$, where $E_c = \{(u, v) | u, v \in V_c\}$

Notice: Between-group edges are not included in G_1, \dots, G_C

107

Cluster-GCN: Mini-Batch Training

- For each mini-batch, randomly sample a node group V_c .
- Construct induced subgraph $G_c = (V_c, E_c)$

Sampled node group V_c

Induced subgraph G_c

Cluster-GCN: Mini-Batch Training

- •Apply GNN's layer-wise node update over G_c to obtain embedding h_v for each node $v \in V_c$.
- Compute the loss for each node $v \in V_c$ and take average: $l_{sub}(\theta) = \left(\frac{1}{|V_c|}\right) \sum_{v \in V_c} l_v(\theta)$
- Update params: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \nabla \ell_{sub}(\boldsymbol{\theta}) * (\boldsymbol{\theta})$

Induced subgraph G_c

Embedding

109

Issues with Cluster-GCN (1)

- The induced subgraph removes between group links.
- •As a result, messages from other groups will be lost during message passing, which could hurt the GNN's performance.

Issues with Cluster-GCN (2)

- Graph community detection algorithm puts similar nodes together in the same group.
- Sampled node group tends to only cover the small-concentrated portion of the entire data.

111

Issues with Cluster-GCN (3)

• Sampled nodes are not diverse enough to be represent the entire graph structure:

- •As a result, the gradient averaged over the sampled nodes, $\left(\frac{1}{|V_c|}\right)\sum_{v\in V_c}l_v(\theta)$, becomes unreliable.
 - Fluctuates a lot from a node group to another.
 - In other words, the gradient has high variance.
- Leads to slow convergence of SGD

112

Advanced Cluster-GCN: Overview

- Solution: Aggregate multiple node groups permini-batch.
- Partition the graph into relatively-small groups of nodes.
- For each mini-batch:
 - Sample and aggregate multiple node groups.
 - Construct the induced subgraph of the aggregated node group.
 - The rest is the same as vanilla Cluster-GCN (compute node embeddings and the loss, update parameters)

113

Advanced Cluster-GCN: Overview

- Why does the solution work?
- Sampling multiple node groups → Makes the sampled nodes more representative of the entire nodes. Leads to less variance in gradient estimation.

- → Includes edges between groups
- → Message can flow across groups.

Advanced Cluster-GCN

• Similar to vanilla Cluster-GCN, advanced Cluster-GCN also follows a 2-step approach.

1) Pre-processing step:

- Given a large graph G = (V, E), partition its nodes V into C relatively-small groups: V_1, \dots, V_C .
 - $V_1, ..., V_C$ needs to be small so that even if multiple of them are aggregated, the resulting group would not be too large.

115

Advanced Cluster-GCN

2) Mini-batch training:

- For each mini-batch, randomly sample a set of q node groups: $\{V_{t_1}, \dots, V_{t_q}\} \subset \{V_1, \dots, V_C\}.$
- Aggregate all nodes across the sampled node groups:

$$V_{aggr} = V_{t_1} \cup \cdots \cup V_{t_q}$$

- Extract the induced subgraph $G_{aggr} = (V_{aggr}, E_{aggr})$,
 - where $E_{aggr} = \{(u,v) \mid u,v \in V_{aggr}\}$
 - *Eaggr* also includes between-group edges!

116

Comparison of Time Complexity

- Generate $M(\ll N)$ node embeddings using
- K-layer GNN (N: #all nodes).
- Neighbor-sampling (sampling *H* nodes per layer):
 - For each node, the size of K-layer computational graph is H^K .
- For M nodes, the cost is $M \cdot H^K$

Comparison of Time Complexity

- Generate $M(\ll N)$ node embeddings using K-layer GNN (N: #all nodes).
- Cluster-GCN:
 - Perform message passing over a subgraph induced by the *M* nodes.
 - The subgraph contains $M \cdot D_{avg}$: edges, where D_{avg} : is the average node degree.
 - *K*-layer message passing over the subgraph costs at most $K \cdot M \cdot D_{avg}$.

118

Comparison of Time Complexity

- In summary, the cost to generate embeddings for *M* nodes using *K*-layer GNN is:
 - Neighbor-sampling (sample H nodes per layer): $M \cdot H^K$
 - Cluster-GCN: $K \cdot M \cdot D_{avg}$
- •Assume $H = D_{avg}/2$. In other words, 50% of neighbors are sampled.
 - Then, Cluster-GCN (cost: 2MHK) is much more efficient than neighbor sampling (cost: $M \cdot H^K$).
 - Linear (instead of exponential) dependency w.r.t. *K*.

4/2024

Cluster-GCN: Summary

- Cluster-GCN first partitions the entire nodes into a set of small node groups.
- At each mini-batch, multiple node groups are sampled, and their nodes are aggregated.
- GNN performs layer-wise node embeddings update over the induced subgraph.
- Cluster-GCN is more computationally efficient than neighbor sampling, especially when #(GNN layers) is large.
- But Cluster-GCN leads to systematically biased gradient estimates (due to missing cross-community edges)

Simplifying GNN Architecture

Roadmap of Simplifying GCN

• We start from Graph Convolutional Network (GCN) [Kipf & Welling ICLR 2017].

- We simplify GCN ("SimplGCN") by removing the non-linear activation from the GCN [Wu et al. ICML 2019].
 - SimplGCN demonstrated that the performance on benchmark is not much lower by the simplification.
 - Simplified GCN turns out to be extremely scalable by the model design.
 - The simplification strategy is very similar to the one used by LightGCN for recommender systems.

Quick Overview of LightGCN (1)

- Adjacency matrix: A
- Degree matrix: D
- Normalized adjacency matrix:

$$\tilde{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

- Let $E^{(k)}$ be the embedding matrix at k-th layer.
- Let **E** be the input embedding matrix.
 - We backprop into *E*.
- •GCN's aggregation in the matrix form $E^{(k+1)} = ReLU(\tilde{A}E^{(k)}W^{(k)})$

9/24/202

Thanh H. Nguyen

Quick Overview of LightGCN (2)

Removing ReLU non-linearity gives us

$$E^{(K)} = \widetilde{A}^K E W$$
, where $W \equiv W^{(0)} \cdots W^{(K-1)}$
Diffusing node embeddings
along the graph

- Efficient algorithm to obtain $\tilde{A}^K E$
 - Start from input embedding matrix *E*.
 - Apply $\boldsymbol{E} \leftarrow \tilde{A}E$
- Weight matrix *W* can be ignored for now.
 - W acts as a linear classifier over the diffused node embeddings $\tilde{A}^K E$

(2024)

Differences to LightGCN

•SimplGCN adds self-loops to adjacency matrix *A*:

- $\blacksquare A \leftarrow A + I$
 - Follows the original GCN by Kipf & Welling.
- SimplGCN assumes input node embeddings *E* to be given as features:
 - Input embedding matrix *E* is fixed rather than learned.
 - Important consequence: $\tilde{A}^K E$ needs to be calculated only once.
 - Can be treated as a pre-processing step.

9/24/2024

Thanh H. Nguyen

Simplified GCN: "SimplGCN"

- Let $\tilde{E} = \tilde{A}^K E$ be pre-processed feature matrix.
 - Each row stores the pre-processed feature for each node.
 - \tilde{E} can be used as input to any scalable ML models (e.g., linear model, MLP).
- •SimplGCN empirically shows learning a linear model over \tilde{E} often gives performance comparable to GCN!

Comparison with Other Methods

- Compared to neighbor sampling and cluster-GCN, SimplGCN is much more efficient.
 - SimplGCN computes \tilde{E} only once at the beginning.
 - The pre-processing (sparse matrix vector product, $(E \tilde{A}E)$ can be performed efficiently on CPU.
 - Once \tilde{E} is obtained, getting an embedding for node v only takes constant time!
 - Just look up a row for node v in \tilde{E}
 - No need to build a computational graph or sample a subgraph.

• But the model is less expressive (next).

Potential Issue of Simplified GCN

• Compared to the original GNN models, SimplGCN's expressive power is limited due to the lack of non-linearity in generating node embeddings.

Performance of Simplified GCN

• Surprisingly, in semi-supervised node classification benchmark, SimplGCN works comparably to the original GNNs despite being less expressive.

Why?

Graph Homophily

• Many node classification tasks exhibit homophily structure, i.e., nodes connected by edges tend to share the same target labels.

• Examples:

- Paper category classification in paper-citation network
- Two papers tend to share the same category if one cites another.
- Movie recommendation for users in social networks
- Two users tend to like the same movie if they are friends in a social network.

Thanh H. Nguyen

When does Simplified GCN Work?

- •Recall the preprocessing step of the simplified GCN: Do $E \leftarrow \widetilde{A}E$ for K times.
 - E is node feature matrix E = X

• Pre-processed features are obtained by iteratively averaging their neighboring node features.

• As a result, nodes connected by edges tend to have similar pre-processed features.

When does Simplified GCN Work?

- Premise: Model uses the pre-processed node features to make prediction.
- Nodes connected by edges tend to get similar pre-processed features.
- Nodes connected by edges tend to be predicted the same labels by the model
- Simplified SGC's prediction aligns well with the graph homophily in many node classification benchmark datasets.

132

Simplified GCN: Summary

- Simplified GCN removes non-linearity in GCN and reduces to the simple pre-processing of node features.
- Once the pre-processed features are obtained, scalable mini-batch SGD can be directly applied to optimize the parameters.
- Simplified GCN works surprisingly well in node classification benchmark.
- The feature pre-processing aligns well with graph homophily in real-world prediction tasks.

/2024