

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Grundlagen der Nachrichtentechnik

Aktive Filter

Autoren:

Tommy Jahnke J.Sebastian Frisch Nils Parche Professorin: Prof. Dr. LI

Abbildungsverzeichnis

1		3
2		4
3		5
4		7
5		8
6		9
7	Sprungantwort Butterworth-Tiefpass	14
8	Sprungantwort Tschebyscheff-Tiefpass	15
9	Sprungantwort Bessel-Tiefpass	15
10	Amplitudengang Butterworth-Tiefpass mit Marker	18
11	Amplitudengang Butterworth- und Tschebyscheff-Tiefpass mit Mar-	
	ker bei Tschebyscheff	18
12	Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass	
	mit Marker bei Bessel	19
13	Amplitudengang Butterworth-Hochpass mit Marker	19
14	Amplitudengang Butterworth- und Tschebyscheff-Hochpass mit Mar-	
	ker bei Tschebyscheff	20
15	Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Hochpass	
	mit Marker bei Bessel	21
16	Amplitudengang Bandsperre mit Marker	22
17	Amplitudengang Bandsperre und Bandpass mit Maker beim Band-	
	pass	23
18	Phasengang Butterworth-Tiefpass mit Markern	24
19	Phasengang Butterworth- und Tschebyscheff-Tiefpass mit Markern	
	bei Tschebyscheff	25
20	Phasengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit	
	Markern bei Bessel	25
21	Sprungantwort Butterworth: Messung der Anstiegszeit	26
22	Sprungantwort Butterworth: Messung der Einschwingzeit	26
23	Sprungantwort Butterworth: Messung des Überschwingers	27
24	Sprungantwort Tschebyscheff: Messung der Anstiegszeit	27
25	Sprungantwort Tschebyscheff: Messung der Einschwingzeit	28
26	Sprungantwort Tschebyscheff: Messung des Überschwingers	28
27	Sprungantwort Bessel: Messung der Anstiegszeit	29
28	Sprungantwort Bessel: Messung der Einschwingzeit	29

Tabellenverzeichnis

1	Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g	2
2	Hochpassfilter - Grundverstärkung V_{∞} , Grenzfrequenz f_g	7
3	Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe	13
4	Frequenzen bei einer Phasenverschiebung von -60° und -120°	13
5	Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Band-	
	sperre	13
6	Vergleich: gemessenen und vorausbestimmte Grenzfrequenzen der	
	verschieden Tiefpässe/Hochpässe	16
7	Gegenüberstellung: gemessene und vorausbestimmte Mittenfrequenz	
	und Sperrfrequenz des Bandpasses sowie der Bandsperre	16
8	Gegenüberstellung: gemessene und vorausbestimmte Frequenzen bei	
	einer Phasenverschiebung von -60° und -120°	16
9	Anstiegszeit, Überschwingen und Einschwingzeit der drei Tiefpässe	17

Inhaltsverzeichnis

1	Vor	bereitung	1
	1.1	Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe .	1
		1.1.1 Tiefpassfilter	1
		1.1.2 Hochpassfilter	4
		1.1.3 Bandpass	8
		1.1.4 Bandsperre	
2	Mes	ssungen 1	1
	2.1	Verwendete Geräte	12
	2.2	Messung von Amplituden- und Phasengang der Filterschaltungen . 1	13
	2.3	Sprungantworten der Tiefpässe	14
3	Aus	swertung 1	L 6
	3.1	Zu: Messung von Amplituden- und Phasengang der Filterschaltungen	16
	3.2	Zu: Sprungantworten der Tiefpässe	17
4	Anl	hang 1	L8
	4.1	Amplitudengänge	18
		4.1.1 Tiefpässe	18
		4.1.2 Hochpässe	19
		4.1.3 Bandpass/Bandsperre	20
	4.2	Phasengänge Tiefpässe	21
	4.3	Sprungantworten der Tiefpässe	
		4.3.1 Butterworth	
		4.3.2 Tschebyscheff	
			24

1 Vorbereitung

Es sind an einem Universalfilter verschiedenen Filtertypen 2. Ordnung zu Untersuchen. Über die Widerstandsbeschaltung R_a , R_b , R_c , R_d , R_e und R_f können bestimmte Filtercharakteristiken, wie Butterworth, Tschebyscheff und Bessel nachgebildet werden. Mit der Tabelle [?] in der Aufgabenstellung sollen bei den Hochpassund Tiefpassfilter der drei genannten Filtercharakteristiken die Grenzfrequenz f_g und die Grundverstärkung V_0 bestimmt werden. Bei dem Bandpass ist die Mittenfrequenz f_M und die Bandbreite B zu berechnen. Die Bandsperre wird auf ihre Sperrfrequenz untersucht.

1.1 Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe

1.1.1 Tiefpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{TP} angegeben mit.

$$H_{TP}(j\omega) = \frac{U_{TP}}{U_e} = \frac{R_b \cdot R_f}{R_a \cdot R_c} \cdot \frac{1}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C \ (1)$$

Durch die Wahl von $R_b=R_c=R_f=R_0$ vereinfacht sich die Gleichung zu:

$$H_{TP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_a} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
 (2)

Aus der Allgemeinen Gleichung eines Tiefpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_0 ist die maximale Verstärkung bei $\omega - > 0$.

$$\frac{V_0}{1 + a_1 \cdot j\omega + b_1 \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(3)

$$V_0 = \frac{R_0}{R_a} \tag{4}$$

$$a_1 = \frac{R_0}{R_e} \cdot \tau \tag{5}$$

$$b_1 = \frac{R_0}{R_d} \cdot \tau^2 \tag{6}$$

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{TP(j\omega)}| = \frac{|V_0|}{\sqrt{(1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2}}$$
 (7)

Mit der Definition $H_{TP(j\omega_g)}=|H_{TP(j\omega)}|_{max}\cdot\frac{1}{\sqrt{2}}$ und $V_0=1$ (Tabelle 1) kann über einen Koeffizientenvergleich die Grenzfrequenz bestimmt werden.

$$2 = (1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2 \tag{8}$$

$$0 = b_1^2 \cdot \omega^4 - (2 \cdot b_1 - a_1^2) \cdot \omega^2 - 1 \qquad substitutert \ \omega^2 = x$$
 (9)

$$0 = x^2 - \frac{2 \cdot b_1 - a_1^2}{b_1^2} \cdot x - \frac{1}{b_1^2} \tag{10}$$

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{11}$$

$$w_{g1} = +\sqrt{x1} \tag{12}$$

$$w_{g2} = -\sqrt{x1} \tag{13}$$

$$w_{g3} = +\sqrt{x2} \tag{14}$$

$$w_{g4} = -\sqrt{x2} \tag{15}$$

$TP_{Filter charakteristik}$	Grundverstärkung V_0	Grenzfrequenz f_g
Butterworth	1	1,5726 kHz
Tschebyscheff	1	1,5777 kHz
Bessel	1	$1,585~\mathrm{kHz}$

Tabelle 1: Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g

Bodeplot der TP-Filter Butterworth, Tschebyscheff und Bessel.

1.1.2 Hochpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{HP} angegeben mit.

$$H_{HP}(j\omega) = \frac{U_{HP}}{U_e} = \frac{R_b \cdot R_d}{R_a \cdot R_c} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C$$
(16)

Durch die Wahl von $R_b=R_c=R_d=R_0$ vereinfacht sich die Gleichung zu:

$$H_{HP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R} \cdot (j\omega\tau) + \frac{R_f}{R_0} \cdot (j\omega\tau)^2}$$
(17)

Aus der Allgemeinen Gleichung eines Hochpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_{∞} ist die maximale Verstärkung bei $\omega - > \infty$.

$$V_{\infty} \cdot \frac{\frac{1}{b_1} \cdot (j\omega)^2}{1 + \frac{a_1}{b_1} \cdot j\omega + \frac{1}{b_1} \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_0} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(18)

Abbildung 3

$$V_{\infty} = \frac{R_0}{R_a}$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2}$$

$$(20)$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{20}$$

$$\frac{a_1}{b_1} = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau$$

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2}$$
(21)

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1 \tag{22}$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{23}$$

$$\Rightarrow \frac{R_0}{R_e} \cdot \frac{1}{\tau} \tag{24}$$

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{HP(j\omega)}| = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}}$$
(25)

Mit der Definition $H_{HP(j\omega_g)} = |H_{HP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ und $V_{\infty} = 1$ (Tabelle 1) kann die Gleichung nach ω_g aufgelöst werden.

$$\frac{1}{\sqrt{2}} = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}} \tag{26}$$

$$\sqrt{2} \cdot |V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2 = \sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2} \tag{27}$$

$$2 \cdot |V_{\infty}|^2 \cdot \left(\frac{1}{b_1^2}\right) \cdot \omega^2 = \left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2 \tag{28}$$

$$0 = \left(\frac{1}{b_1^2} - 2 \cdot |V_{\infty}|^2 \cdot \frac{1}{b_1^2}\right) \cdot \omega^4 + \left(\frac{a_1^2}{b_1^2} - 2 \cdot \frac{1}{b_1}\right) \cdot \omega^2 + 1 \tag{29}$$

$$0 = x^2 + \frac{a_1^2 - 2 \cdot b_1}{1 - 2 \cdot |V_{\infty}|^2} \cdot x + \frac{b_1^2}{1 - 2 \cdot |V_{\infty}|^2}$$
 (30)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{31}$$

$$w_{g1} = +\sqrt{x1} \tag{32}$$

$$w_{a2} = -\sqrt{x1} \tag{33}$$

$$w_{g3} = +\sqrt{x2} \tag{34}$$

$$w_{g4} = -\sqrt{x2} \tag{35}$$

$HP_{Filter charakteristik}$	Grundverstärkung V_{∞}	Grenzfrequenz f_g
Butterworth	1	1,6107 kHz
Tschebyscheff	1	1,6055 kHz
Bessel	1	$1,582~\mathrm{kHz}$

Tabelle 2: Hochpassfilter - Grundverstärkung $V_{\infty},$ Grenzfrequenz f_g

Bodeplot der HP-Filter Butterworth, Tschebyscheff und Bessel.

9. Dezember 2016 7

1.1.3 **Bandpass**

Die vereinfachte Formel für den Bandpassfilter hergeleitet vom Universalfilter kann der Allgemeinen Übertragungsfunktion eine Bandpassen gleichgesetzt und so die Parameter bestimmt werden.

$$H_{BP}(j\omega) = V_{max} \cdot \frac{A \cdot j\omega}{1 + A \cdot j\omega + b \cdot (j\omega)^2} \Longleftrightarrow -\frac{R_0}{R_a} \cdot \frac{\frac{R_0}{R_C} \cdot (j\omega\tau)}{1 + \frac{R_0}{R_c} \cdot (j\omega\tau) + (j\omega\tau)^2}$$
(36)

Dadurch ergeben sich die nachfolgenden Parameter:

$$A = \frac{R_0}{R_c} \tag{37}$$

$$b = \tau^2 \tag{38}$$

$$A = \frac{R_0}{R_c}$$

$$b = \tau^2$$

$$V_{max} = -\frac{R_0}{R_a}$$
(37)
(38)

Das Maximum des Bandpassfilter wird erreicht wenn der Imaginärteil des Nenner = 0 ist. Somit entspricht V_{max} dem erreichbaren Maximum. An diesem Punkt befindet sich die Mittenfrequenz f_0 .

Abbildung 6

$$H_{BP}(jw) = V_{max} \cdot \frac{1}{\frac{1}{j\omega \cdot A} + 1 + \frac{j\omega \cdot b}{A}}$$

$$\tag{40}$$

$$\Rightarrow V_{max} \cdot \frac{1}{1 + j\left(\frac{b}{4} \cdot \omega - \frac{1}{4} \cdot \omega\right)} \tag{41}$$

$$0 = \frac{b}{A} \cdot \omega - \frac{1}{A \cdot \omega} \tag{42}$$

$$\frac{1}{A \cdot \omega} = \frac{b}{A} \cdot \omega \tag{43}$$

$$\omega_0 = \frac{1}{\sqrt{b}} \tag{44}$$

$$f_0 = \frac{1}{\tau} \cdot \frac{1}{2 \cdot \pi} = 1,592kHz \tag{45}$$

$$V_{f_0} = 1 \tag{46}$$

Die zwei zu berechnenden Grenzfrequenzen können nach der Definition $H_{BP(j\omega_g)}=$ $|H_{BP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ berechnet werden.

$$\frac{1}{\sqrt{2}} = \frac{V_{max} \cdot A \cdot \omega}{\sqrt{(1 - b \cdot \omega^2)^2 + A^2 \cdot \omega^2}}$$

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
(47)

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
 (48)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{49}$$

$$w_{g1} = +\sqrt{x1} \tag{50}$$

$$w_{g2} = -\sqrt{x1} \tag{51}$$

$$w_{g3} = +\sqrt{x2} \tag{52}$$

$$w_{g4} = -\sqrt{x2} \tag{53}$$

$$f_{gu} = 1,4395kHz$$
 (54)
 $f_{go} = 1,7597kHz$ (55)

$$f_{qo} = 1,7597kHz (55)$$

$$B = f_{go} - f_{gu} = 320, 2Hz (56)$$

1.1.4 Bandsperre

Die vereinfachte Formel für den Bandpassfilter hergeleitet vom Universalfilter kann der Allgemeinen Übertragungsfunktion eine Bandpassen gleichgesetzt und so die Parameter bestimmt werden.

$$H_{BS}(j\omega) = V_0 \cdot \frac{1 + (j\omega)^2}{1 + A \cdot j\omega + b \cdot (j\omega)^2} \Longleftrightarrow -\frac{R_0}{R_a} \cdot \frac{1 + (j\omega\tau)^2}{1 + \frac{R_0}{R_a} \cdot (j\omega\tau) + (j\omega\tau)^2}$$
 (57)

Dadurch ergeben sich die nachfolgenden Parameter:

$$A = \frac{R_0}{R_c} \cdot \tau \tag{58}$$

$$b = \tau^2 \tag{59}$$

$$V_0 = -\frac{R_0}{R_a} \tag{60}$$

Das Maximum der Bandsperre kann für $\lim_{\omega \to \infty}$ oder $\lim_{\omega \to 0}$ bestimmt werden und strebt gegen 1. Somit kann nach der Definition $H_{BS(j\omega_g)} = |H_{HP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ die Gleichung nach ω_g aufgelöst werden.

$$\frac{1}{\sqrt{2}} = \frac{|V_0| \cdot |1 - b\omega^2|}{\sqrt{(1 - b \cdot \omega^2)^2 + A \cdot \omega^2}} \tag{61}$$

$$\sqrt{(1-b\cdot\omega^2)^2 + A\cdot\omega^2} = |V_0|\cdot|1-b\omega^2|\cdot\sqrt{2} \tag{62}$$

$$0 = x^{2} + \frac{A^{2} - 2 \cdot b + 4 \cdot bV_{0}^{2}}{b^{2} - 2 \cdot b^{2}V_{0}^{2}} \cdot x + \frac{1 - 2 \cdot V_{0}^{2}}{b^{2} - 2 \cdot b^{2}V_{0}^{2}}$$
(63)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{64}$$

$$w_{q1} = +\sqrt{x1} \tag{65}$$

$$w_{q2} = -\sqrt{x1} \tag{66}$$

$$w_{q3} = +\sqrt{x2} \tag{67}$$

$$w_{g4} = -\sqrt{x2} \tag{68}$$

$$f_{qu} = 1,4395Khz (69)$$

$$f_{go} = 1,7597Khz (70)$$

$$B = f_{go} - f_{gu} = 320,24Hz (71)$$

2 Messungen

2.1 Verwendete Geräte

2.2 Messung von Amplituden- und Phasengang der Filterschaltungen

In diesem Versuch geht es darum, die Amplituden und Phasengänge der Butterworth-, Tschebyscheff- und Bessel-Tiefpässe und die Amplitudengänge der Butterworth-, Tschebyscheff- und Bessel-Hochpässe sowie des Bandpasses und der Bandsperre mittels dem Audio-Analyzer UVP zu messen. Die folgende Tabelle zeigt unsere gemessenen Grenzfrequenzen der Tiefpässe/Hochpässe. Die Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
$\overline{Tiefpass}$	1.538kHz	1.557kHz	1.551kHz
Hoch pass	1.596kHz	1.592kHz	1.610kHz

Tabelle 3: Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe

Anschließend ging es darum, die Phasengänge der oben genannten Filtertypen für den Tiefpass zu messen. Die Frequenzen bei einer Phasenverschiebung von -60° und -120° wurden bestimmt und in die folgende Tabelle eingetragen. Auch diese Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
-60°	1.046kHz	898.250kHz	1.229kHz
-120°	2.381kHz	1.400kHz	3.225kHz

Tabelle 4: Frequenzen bei einer Phasenverschiebung von -60° und -120°

Schließlich wurden die Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre gemessen. Ergebnisse sind der folgenden Tabelle zu entnehmen. Für die Graphen siehe Anhang.

	Mitten frequenz	Sperrfrequenz
Bandpass	1.556kHz	/
Bandsperre	/	1.568kHz

Tabelle 5: Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre

2.3 Sprungantworten der Tiefpässe

In diesem Versuch geht darum, die Anstiegszeit, Überschwingen und die Einstiegszeit der drei Tiefpässe nach Butterworth, Tschebyscheff und Bessel aus der Sprungantwort zu bestimmen. Die Filter wurde mit einem Rechtecksignal ($500mV_pp$ und 250mv Offset und variabler Frequenz) angesteuert. Eingangs- und Ausgangssignal wurden in einem gemeinsamen Oszillogramm dargestellt.

Abbildung 7: Sprungantwort Butterworth-Tiefpass

Abbildung 8: Sprungantwort Tschebyscheff-Tiefpass

Abbildung 9: Sprungantwort Bessel-Tiefpass

3 Auswertung

3.1 Zu: Messung von Amplituden- und Phasengang der Filterschaltungen

Alle Messwerte und Grenzfrequenzen wurden zusammen mit den vorausberechneten Werten in einer Tabelle dargestellt.

	Tiefpass	Hoch pass
$Butterworth_{errech.}$	1.573kHz	1.611kHz
$Butterworth_{gemes.}$	1.538kHz	1.596kHz
$Tschebyscheff_{errech.}$	1.578kHz	1.606kHz
$Tschebyscheff_{gemes.}$	1.557kHz	1.592kHz
$Bessel_{errech.}$	1.585kHz	1.582kHz
$Bessel_{gemes.}$	1.551kHz	1.610kHz

Tabelle 6: Vergleich: gemessenen und vorausbestimmte Grenzfrequenzen der verschieden Tiefpässe/Hochpässe

	$Mitten frequ{errech.}/Mitten freuqu{gemes.}$	$Sperrfrequ{errech.}/Sperrfrequ{gemes.}$
Bandpass	1.556kHz/1.591kHz	/
Bandsperre	/	1.568kHz/1.592kHz

Tabelle 7: Gegenüberstellung: gemessene und vorausbestimmte Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre

	−60°	-120°
$Butterworth_{errechnet}$	•••	
$Butterworth_{gemessen}$	1.046kHz	2.381kHz
$Tschebyscheff_{errechnet}$		
$Tschebyscheff_{gemessen}$	898.250kHz	1.400kHz
$Bessel_{errechnet}$		
$Bessel_{gemessen}$	1.229kHz	3.225kHz

Tabelle 8: Gegenüberstellung: gemessene und vorausbestimmte Frequenzen bei einer Phasenverschiebung von -60° und -120°

3.2 Zu: Sprungantworten der Tiefpässe

Die Anstiegszeit, das Überschwingen sowie die Einschwingzeit der drei Tiefpässe wurden gemeinsam in einer Tabelle zusammengefasst und verglichen.

	An stiegszeit	Ueberschwingen	Einschwingzeit
$\overline{Butterworth}$	$220\mu s$	4.86%	$320\mu s$
Tschebyscheff	$220\mu s$	27.24%	1.06ms
Bessel	$268\mu s$	0%	$308\mu s$

Tabelle 9: Anstiegszeit, Überschwingen und Einschwingzeit der drei Tiefpässe

Die Werte wurden den Oszillogrammen entnommen. Diese sind im Anhang zu finden.

4 Anhang

4.1 Amplitudengänge

4.1.1 Tiefpässe

Abbildung 10: Amplitudengang Butterworth-Tiefpass mit Marker

Abbildung 11: Amplitudengang Butterworth- und Tschebyscheff-Tiefpass mit Marker bei Tschebyscheff

Abbildung 12: Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit Marker bei Bessel

4.1.2 Hochpässe

Abbildung 13: Amplitudengang Butterworth-Hochpass mit Marker

Abbildung 14: Amplitudengang Butterworth- und Tschebyscheff-Hochpass mit Marker bei Tschebyscheff

${\bf 4.1.3 \quad Bandpass/Bandsperre}$

Abbildung 15: Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Hochpass mit Marker bei Bessel

4.2 Phasengänge Tiefpässe

Abbildung 16: Amplitudengang Bandsperre mit Marker

4.3 Sprungantworten der Tiefpässe

4.3.1 Butterworth

Abbildung 17: Amplitudengang Bandsperre und Bandpass mit Maker beim Bandpass

4.3.2 Tschebyscheff

Abbildung 18: Phasengang Butterworth-Tiefpass mit Markern

4.3.3 Bessel

Unter folgenden Link kann eine "Education" Version von PSPice heruntergeladen werden. http://www.orcad.com/buy/orcad-educational-program

Abbildung 19: Phasengang Butterworth- und Tschebyscheff-Tiefpass mit Markern bei Tschebyscheff

Abbildung 20: Phasengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit Markern bei Bessel

Abbildung 21: Sprungantwort Butterworth: Messung der Anstiegszeit

Abbildung 22: Sprungantwort Butterworth: Messung der Einschwingzeit

Abbildung 23: Sprungantwort Butterworth: Messung des Überschwingers

Abbildung 24: Sprungantwort Tschebyscheff: Messung der Anstiegszeit

Abbildung 25: Sprungantwort Tschebyscheff: Messung der Einschwingzeit

Abbildung 26: Sprungantwort Tschebyscheff: Messung des Überschwingers

Abbildung 27: Sprungantwort Bessel: Messung der Anstiegszeit

Abbildung 28: Sprungantwort Bessel: Messung der Einschwingzeit

Literatur