Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS

Matemática Discreta – Aula 6 Relações em um Conjunto A

Professor: Iuri Jauris

1º Semestre de 2022

☐ Relações em um conjunto A

- Um caso particular de relação é obtido quando relacionamos entre si elementos de um mesmo conjunto. Neste caso, teremos uma relação que associa um elemento de um certo conjunto A com outro(s) elemento(s) do próprio conjunto A.
- Relações deste tipo são denominadas relações de A em A, ou, simplesmente, relações em A.
- Relações desta natureza são importantes, por exemplo, para a identificação de informações de mesma natureza ou para a ordenação de estágios de um determinado processo. A definição de relações dentro de um único conjunto permite definir critérios de "varredura" do conjunto.

 A identificação de quais relações são adequadas para cada propósito depende da identificação de diversas propriedades, típicas das relações em A, e que as relações podem (ou não) ter.

Um Exemplo Intuitivo

 Seja A um conjunto de etapas necessários para a geração de uma aplicação computacional. Por exemplo,

A = { análise, projeto, implementação, testes, finalização }.

 Na prática, estas etapas não ocorrem todas ao mesmo tempo, podendo ser classificadas de maneira temporal da seguinte forma:

- Em termos matemáticos, podemos descrever esta situação através de uma relação definida no conjunto A da seguinte forma:
- $R \subseteq A \times A$, R = { (análise, análise), (análise, projeto), (projeto, projeto), (projeto, implementação), (implementação, projeto), (implementação, implementação), (implementação, testes), (testes, implementação), (testes, testes), (testes, finalização), (finalização, finalização)}

> Definição

 Seja A um conjunto. Então R é relação de A em A se e somente se R é subconjunto do produto cartesiano de A com A. Em notação lógica:

$$R$$
 é relação em $A \Leftrightarrow R \subseteq A \times A$

Exemplos:

1. Seja A um conjunto de pessoas. Neste conjunto podem-se definir diversas relações. Por exemplo:

```
R \subseteq A \times A, x R y \Leftrightarrow x \text{ tem o mesmo nome que y}

S \subseteq A \times A, x S y \Leftrightarrow x \text{ é parente de y}

T \subseteq A \times A, x T y \Leftrightarrow x \text{ é namorado de y}
```

- Observe-se que, neste exemplo, as pessoas identificadas pelas variáveis "x" e "y" devem sempre pertencer ao conjunto A especificado!
- 2. Seja A = { a, b, c }. Podem-se definir, por exemplo, as seguintes relações:

2. Seja A = { a, b, c }. Podem-se definir, por exemplo, as seguintes relações:

```
R \subseteq A \times A, x R y \Leftrightarrow x = a

S \subseteq A \times A, x S y \Leftrightarrow x = y

T \subseteq A \times A, x T y \Leftrightarrow ((x = a) \land (y \neq c)) \lor ((x = b) \land (y \neq b))

W \subseteq A \times A, W = A \times A
```

Logo as relações formariam os conjuntos tais quais:

```
\begin{split} R \subseteq A \times A, & R = \{(a,a),(a,b),(a,c)\} \\ S \subseteq A \times A, & S = \{(a,a),(b,b),(c,c)\} \\ T \subseteq A \times A, & T = \{(a,a),(a,b),(b,a),(b,c)\} \\ W \subseteq A \times A, & W = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\} \end{split}
```

3. Pode-se definir relações muito interessantes e importantes dentro do conjunto dos números reais, como por exemplo as relações de "ordem natural" e "divisor":

```
R \subseteq \mathbf{R} \times \mathbf{R}, x R y \Leftrightarrow x \le y (esta relação é denominada de "ordem natural") S \subseteq \mathbf{R} \times \mathbf{R}, x S y \Leftrightarrow x \mid y (x \mid y significa "x divide y", isto é, "x é divisor de y", ou ainda, (\exists \alpha \in \mathbf{Z})(y = \alpha.x))
```

4. Dado um conjunto M = {0,□}, o conjunto das partes de M, denotado por P(M), é formado por todos os subconjuntos de M, ou seja:

$$P(M)=\{\emptyset, \{0\}, \{0, \square\}\}\$$

 Este conjunto é interessante, pois permite definir relações entre os subconjuntos de M. Vejamos:

- Seja A = P(M), pode-se definir, por exemplo as relações:
- R ⊆ A x A, x S y ⇔ x = y
 Neste caso: S = { (Ø, Ø), ({O}, {O}), ({□}, {□}), ({O, □}, {O, □}) }
- S⊆AxA, xRy⇔x⊆y
 Então:
 R = { (Ø, Ø), (Ø, {O}), (Ø, {□}), (Ø, {O, □}), ({O}, {O, □}), ({O}, {O}), ({O}, {O, □}), ({O}, {O, □}), ({O, □}),
- Observe-se que, no exercício a cima, as variáveis "x" e "y" representam conjuntos pertencentes a P(M).

5. Sejam M = { 2, 3 } e N = { 0, 1 }. Com estes conjuntos formaremos um conjunto A através do produto cartesiano:

$$A = \{ (2,0), (2,1), (3,0), (3,1) \}$$

• Em A podemos definir diversas relações. Por exemplo:

```
• R \subseteq A \times A, (x, y) R (z, w) \Leftrightarrow x + y > z + w

Neste caso: R = \{ ((2, 1), (2, 0)), ((3, 0), (2, 0)), ((3, 1), (2, 0)), ((3, 1), (2, 1)), ((3, 1), (3, 0)) \}
```

- Observe que na definição de R as variáveis "x", "y", "z" e "w" foram utilizadas para representar componentes dos pares ordenados; no entanto, na definição de S as variáveis "x" e "y" representam diretamente pares ordenados.
- **Exemplo**: Sejam os conjuntos A = {1; 2} e B = {1; 2; 3} e a relação binária R de A para B como:

$$\forall (x,y) \in A \times B, (x,y) \in R \Leftrightarrow x-y \text{ \'e par }$$

- Logo, temos que
- A x B = $\{(1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (2; 3)\}$ e
- $R = \{(1; 1); (1; 3); (2; 2)\}$

 A relação anterior pode ser generalizada para o conjunto de todos os inteiros Z. Neste caso, a relação binária E de Z para Z pode ser definida como:

$$\forall (m,n) \in \mathbb{Z} \times \mathbb{Z}, mEn \Leftrightarrow m-n \text{ \'e par }$$

- Para m e n pares ou ímpares.
- Quando a relação acima é satisfeita, comumente diz-se que m e n são congruentes módulo 2; (Notação: m ≡ n mod 2)

☐ Definição: Congruências Modulo n

• Seja a relação $R \in A \times A$ então dizemos que:

$$a \equiv b \mod n \Leftrightarrow (a,b) \in R$$

 \Leftrightarrow a e b tem o mesmo resto quando divididos por n

 $\Leftrightarrow a$ - b é divisível por $n \Leftrightarrow a$ - b é um múltiplo de n

- Resumindo: Dizer que a é congruente a b módulo m significa que a e b deixam o mesmo resto quando divididos por m.
- Exemplos: 21 ≡ 15(mod 6), pois 6 | (21 –15). Observe que o resto da divisão dos dois números por 6 é igual a 5.

- Exemplos:
- $4 \equiv 15 \pmod{11}$, pois $11 \mid (4-15)$; $4 \not\equiv 15 \pmod{10}$, pois 10 / (4-15)
- $32 \equiv 0 \pmod{4}$, pois $4 \mid (32 0)$; $32 \equiv 4 \pmod{4}$, pois $4 \mid (32 4)$.
- Proposição : Sejam a, b, c e m inteiros, m > 0. Então:
- (a) $a \equiv a \pmod{m}$;
- (b) Se a ≡ b (mod m) , então b ≡ a(mod m) ;
- (c) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $a \equiv c \pmod{m}$.
- Demonstração:
- (a) Como m $\mid 0 = (a a)$, decorre que $a \equiv a \pmod{m}$.
- (b) Se a ≡ b(mod m), então m | (b a). Mas então m | (a b) ⇒ b ≡ a(mod m).
- (c) Vamos utilizar o seguinte fato: se m divide dois números X e Y, então m divide a soma X + Y desses dois números.

$$\begin{cases} a \equiv b \pmod{m} \Rightarrow m \mid (b-a) \\ b \equiv c \pmod{m} \Rightarrow m \mid (c-b) \end{cases} \Rightarrow m \mid (b-a) + (c-b) = (c-a) \Rightarrow m \mid (c-a)$$

$$\Rightarrow a \equiv c \pmod{m}$$

> PROPRIEDADES DAS RELAÇÕES EM A

Seja R uma relação definida em um conjunto A qualquer.
 Então:

i) <u>Reflexividade</u>

$$R \notin \text{reflexiva} \iff (\forall x \in A)(xRx) \iff (\forall x \in A)((x,x) \in R)$$

Exemplos (e contra-exemplos)

- 1) Seja A = {1, 2, 3}. Então
 - a) $R \subseteq A \times A$, $xRy \Leftrightarrow x = y$

$$R \subseteq A \times A$$
, $R = \{ (1, 1), (2, 2), (3, 3) \}$

$$=: A \rightarrow A$$
 (R é reflexiva)

b) $S \subseteq A \times A$, $xSy \Leftrightarrow x \ge y$

$$S \subseteq A \times A$$
, $S = \{ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) \}$

$$\geq$$
: A \rightarrow A (S é reflexiva)

c) $T \subseteq A \times A$, $xTy \Leftrightarrow x > y$

$$T \subseteq A \times A$$
, $T = \{ (2, 1), (3, 1), (3, 2) \}$

$$>: A \rightarrow A$$
 (T não é reflexiva)

d) $P \subseteq A \times A$, $P = \{ (1, 1), (2, 1) \}$ $\{ (1, 1), (2, 1) \}: A \rightarrow A$ (P não é reflexiva)

```
    2) W ⊆ B x B, W = Ø
    Ø: B → B (W <u>não</u> é reflexiva)
    3) R ⊆ IN², xRy ⇔ x ≤ y
    ≤: IN → IN (R é reflexiva)
    4) R ⊆ IR², xRy ⇔ x ≠ y
    ≠: IR → IR (R <u>não</u> é reflexiva)
```

ii) Transitividade

R é transitiva
$$\Leftrightarrow$$
 $(\forall x, y, z \in A)$ $(xRy \land yRz \rightarrow xRz)$
 $\Leftrightarrow (\forall x, y, z \in A)$ $((x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R)$

Exemplos e contra-exemplos:

- 1) Seja A = {1, 2, 3}. Então
 - a) $R \subseteq A \times A$, $xRy \Leftrightarrow x = y$

$$R \subseteq A \times A$$
, $R = \{ (1, 1), (2, 2), (3, 3) \}$

$$=: A \rightarrow A$$
 (R é transitiva)

b) $S \subseteq A \times A$, $xSy \Leftrightarrow x \ge y$

$$S \subseteq A \times A$$
, $S = \{ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) \}$

c) $T \subseteq A \times A$, $xTy \Leftrightarrow x > y$

$$T \subseteq A \times A$$
, $T = \{ (2, 1), (3, 1), (3, 2) \}$

 $>: A \rightarrow A$ (T é transitiva)

```
    2) W ⊆ B x B, W = Ø
    Ø: B → B (W é transitiva)
    3) R ⊆ IN², xRy ⇔ x ≤ y
    ≤: IN → IN (R é transitiva)
    4) R ⊆ IR², xRy ⇔ x ≠ y
    ≠: IR → IR (R <u>não</u> é transitiva)
```

iii) <u>Simetria</u>

R é simétrica
$$\Leftrightarrow$$
 $(\forall x, y \in A)$ $(xRy \rightarrow yRx)$ \Leftrightarrow $(\forall x, y \in A)$ $((x, y) \in R \rightarrow (y, x) \in R)$

- 1) Seja A = {1, 2, 3}. Então
 - a) $R \subseteq A \times A$, $xRy \Leftrightarrow x = y$

$$R \subseteq A \times A$$
, $R = \{ (1, 1), (2, 2), (3, 3) \}$

 $=: A \rightarrow A$ (R é simétrica)

b) $S \subseteq A \times A$, $xSy \Leftrightarrow x \ge y$

$$S \subseteq A \times A$$
, $S = \{ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) \}$

- ≥: A → A (S <u>não</u> é simétrica)
- c) $T \subseteq A \times A$, $xTy \Leftrightarrow x > y$

$$T \subseteq A \times A$$
, $T = \{ (2, 1), (3, 1), (3, 2) \}$

>: A → A (T <u>não</u> é simétrica)

d) $K \subseteq A \times A$, $K = \{ (1, 2), (2, 1), (3, 3) \}$ $\{ (1, 2), (2, 1), (3, 3) \}: A \rightarrow A \quad (K \in simétrica)$

- 2) W ⊆ B x B, W = Ø
 Ø: B → B (W é simétrica)
- 3) R ⊆ IN², xRy ⇔ x ≤ y
 ≤: IN → IN (R <u>não</u> é simétrica)
- 4) R ⊆ IR², xRy ⇔ x ≠ y
 ≠: IR → IR (R é simétrica)

iv) Anti-Simetria

R é anti-simétrica
$$\Leftrightarrow$$
 $(\forall x, y \in A)$ $(xRy \land yRx \rightarrow x = y)$ \Leftrightarrow $(\forall x, y \in A)$ $((x, y) \in R \land (y, x) \in R \rightarrow x = y)$

- 1) Seja A = {1, 2, 3}. Então
 - a) $R \subseteq A \times A$, $xRy \Leftrightarrow x = y$

$$R \subseteq A \times A$$
, $R = \{ (1, 1), (2, 2), (3, 3) \}$

- =: A → A (R é anti-simétrica)
- b) $S \subseteq A \times A$, $xSy \Leftrightarrow x \ge y$

$$S \subseteq A \times A$$
, $S = \{ (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3) \}$

≥: A → A (S é anti-simétrica)

- d) K ⊆ A x A, J = { (1, 2), (2, 1), (3, 3) }
 { (1, 2), (2, 1), (3, 3) }: A → A (K não é anti-simétrica)
- 2) W ⊆ B x B, W = ØØ: B → B (W é anti-simétrica)
- 3) R ⊆ IN², xRy ⇔ x ≤ y
 ≤: IN → IN (R é anti-simétrica)
- 4) R ⊆ IR², xRy ⇔ x ≠ y
 ≠: IR → IR (R <u>não</u> é anti-simétrica)

> RELAÇÕES DE EQUIVALÊNCIA EM A

- Definição: Seja R uma relação em A (R ⊆ A x A). Então, R é uma relação de equivalência em A se, e somente se, R é reflexiva, transitiva e simétrica.
- Exemplo: Mostre que T ⊆ Z x Z, m T n ⇔ 3 | (m n) é uma relação de equivalência.
- Solução: Temos que mostrar que T ⊆ Z x Z, m T n ⇔ 3 | (m –
 n) é um relação reflexiva, transitiva e simétrica.

Reflexiva (V): T é reflexiva sse

$$\forall m \in \mathbb{Z}, mTm$$
.

Pela definição de T, isto significa

$$\forall m \in \mathbb{Z}, 3 | (m-m),$$

ou ainda,

$$\forall m \in \mathbb{Z}, 3|0.$$

Essa afirmação é verdadeira já que $0 = 3 \cdot 0$.

Simétrica (\mathbf{V}): T é simétrica sse

$$\forall m, n \in \mathbb{Z}$$
, se mTn então nTm .

Pela definição de T, isto significa

$$\forall m, n \in \mathbb{Z}$$
, se $3|(m-n)$ então $3|(n-m)$.

Suponha que m e n sejam inteiros específicos mas escolhidos aleatoriamente tais que 3|(m-n). Deve-se mostrar que 3|(n-m). Pela definição de "divide" temos que 3|(m-n) e m-n=3k e $n-m=3\cdot -k$, para algum inteiro k. Logo, 3|(n-m).

Transitiva (\mathbf{V}): T é transitiva sse

$$\forall m, n, o \in \mathbb{Z}$$
, se mTn e nTo então mTo .

Pela definição de T, isto significa

$$\forall m, n, o \in \mathbb{Z}$$
, se $3|(m-n)$ e $3|(n-o)$ então $3|(m-o)$.

Suponha que m, n e o sejam inteiros específicos mas escolhidos aleatoriamente tais que 3|(m-n) e 3|(n-o). Deve-se mostrar que 3|(m-o). Pela definição de "divide" temos que: 3|(m-n) e m-n=3r; e 3|(n-o) e n-o=3s, para inteiros r e s, respectivamente. Sabemos que:

$$(m-n) + (n-o) = 3r + 3s$$

 $m-o = 3 \cdot (r+s)$

O que mostra que 3|(m-o).

Exercício: Mostre que T ⊆ Z x Z, m T n ⇔ 4 | (m – n) é uma relação de equivalência.

> Classes de Equivalência

Seja R uma relação de equivalência em A. Seja a E A. Então, a classe de equivalência de a, denotada por ā ou [a], é definida como:

$$\overline{a} = \{ x \in A \mid xRa \}$$

 $\overline{a} = \{ x \in A \mid (x, a) \in R \}$

Exemplo:

Seja A = $\{0, 1, 2, 3\}$. Seja a relação de equivalência definida por R \subseteq A x A, R = $\{(0, 0), (1, 1), (2, 2), (3, 3), (0, 2), (1, 3), (2, 0), (3, 1)\}$ Então,

- classe de equivalência do elemento 0: 0 = { x ∈ A | x R 0 } = { 0, 2 } [o]
- classe de equivalência do elemento 1: 1 = { x ∈ A | x R 1 } = { 1, 3 } [₁]

- classe de equivalência do elemento 2: 2 = { x ∈ A | x R 2 } = { 0, 2 } [a]
- classe de equivalência do elemento 3: $\overline{3} = \{x \in A \mid x \in 3\} = \{1, 3\} \begin{bmatrix} 3 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ Assim, $(\overline{0} = \overline{2}) \land (\overline{1} = \overline{3})$.
- Isto significa que, segundo esta relação, 0 é equivalente (congruente) a 2 e 1 é equivalente a 3: (0 = 2) $^{\land}$ (1 = 3).
- Exercício: Seja A = {0, 1, 2, 3, 4} e R uma relação de equivalência em A definida como: {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}. Determine as classes de equivalência em A:

As classes de equivalência de R são

$$[0] = \{x \in A | xR0\} = \{0, 4\}$$

$$[1] = \{x \in A | xR1\} = \{1, 3\}$$

$$[2] = \{x \in A | xR2\} = \{2\}$$

$$[3] = \{x \in A | xR3\} = \{1, 3\}$$

$$[4] = \{x \in A | xR4\} = \{0, 4\}$$

• Assim, as classes distintas de equivalência da relação são:

$$\{0,4\},\{1,3\},\{2\}$$

Exemplo: Seja R a relação de congruência módulo 3 no conjunto Z de todos os números inteiros. Isto significa que para todos inteiros m e n, mRn ⇔ 3|(m - n) ⇔ m ≡ n mod 3 Descreva as classes de equivalência distintas de R.

Para cada inteiro a,

$$[a] = \{x \in \mathbb{Z} | xRa \}$$

$$= \{x \in \mathbb{Z} | 3|(x-a) \}$$

$$= \{x \in \mathbb{Z} | x-a=3 \cdot k, \text{ para algum inteiro } k \}$$

$$= \{x \in \mathbb{Z} | x=3 \cdot k+a, \text{ para algum inteiro } k \}.$$

Assim:

[0] =
$$\{x \in \mathbb{Z} | x = 3 \cdot k + 0$$
, para algum inteiro $k\}$
= $\{x \in \mathbb{Z} | x = 3 \cdot k$, para algum inteiro $k\}$
= $\{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$,
[1] = $\{x \in \mathbb{Z} | x = 3 \cdot k + 1$, para algum inteiro $k\}$
= $\{\dots, -8, -5, -2, 1, 4, 7, 10 \dots\}$,
[2] = $\{x \in \mathbb{Z} | x = 3 \cdot k + 2$, para algum inteiro $k\}$
= $\{\dots, -7, -4, -1, 2, 5, 8, 11 \dots\}$.

- Portanto, cada inteiro está em uma das três classes [0], [1] ou
 [2].
- Isto significa que uma classe de equivalência pode ter diferentes "nomes".
- Neste exemplo, a classe do 0 ([0]) pode ser "chamada" pela classe do 3 ([3]) ou pela classe do -6 ([-6]), e assim por diante.
- Mas o que a classe [0] ou [3] ou [-6] significa é o conjunto.
 {x ∈ Z|x = 3 · k, para algum inteiro k}.

• Então:
$$[0] = [3] = [-3] = [6] = [-6] = \dots$$

 $[1] = [4] = [-2] = [7] = [-5] = \dots$
 $[2] = [5] = [-1] = [8] = [-4] = \dots$

As três classes de equivalência são:

- 1. $\{x \in \mathbb{Z} | x = 3 \cdot k, \text{ para algum inteiro } k\}$
 - Conjunto dos inteiros divisíveis por 3.
- 2. $\{x \in \mathbb{Z} | x = 3 \cdot k + 1, \text{ para algum inteiro } k\}$
 - Conjunto dos inteiros que deixam resto 1 quando divididos por 3.
- 3. $\{x \in \mathbb{Z} | x = 3 \cdot k + 2$, para algum inteiro $k\}$
 - Conjunto dos inteiros que deixam resto 2 quando divididos por 3.

> Definição (Congruências Modulo n):

- Sejam a; b ∈ Z e n ∈ N {0; 1}. Dizemos que a é congruente a b modulo n e denotamos a ≡ b mod n, se e somente se a e b tem o mesmo resto quando divididos por n.
- Ou seja, tomando A ∈ Z temos:
- a ≡ b mod n ⇔ (a, b) ∈ R ⇔ a e b tem o mesmo resto quando divididos por n ⇔ a − b é divisível por n ⇔ a − b é um múltiplo de n:
- Resultado: A relação de congruência definida acima é uma relação de equivalência em Z.

• Exercício: Seja A = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e a relação de equivalência definida por $S \subseteq A \times A, \times Sy \Leftrightarrow (x - y)$ é divisível por 4. Determine as classes de equivalência definidas por S.

cada classe de equivalencia é uma partição.

- > Partição de um conjunto
- Uma partição de um conjunto S é uma coleção de subconjuntos disjuntos não vazios cuja união é igual a S.
- Qualquer relação de equivalência divide o conjunto onde está definida em uma partição. Esta divisão é feita a partir das classes de equivalência, ou seja, <u>S é a união das classes de</u> <u>equivalência, sendo essas classes todas disjuntas.</u>

□RELAÇÕES DE ORDEM

- Algumas relações são usadas para ordenar elementos de conjuntos (alguns ou todos):
- Exemplos:
- Ordenamos palavras usando xRy, onde x vem antes de y no dicionário;
- Fazemos a programação de um projeto com xRy, onde x e y são tarefas tais que x deve ser concluída antes de y começar;

 Exemplo: Numa marcenaria que fabrica cadeiras de balanço com assentos estofados o processo pode ser dividido em uma série de tarefas, algumas delas tendo outras como prérequisitos. A tabela a seguir mostra as tarefas para se produzir uma cadeira de balanço, os pré-requisitos e o número de horas necessário para se concluir cada tarefa.

Podemos definir uma ordem parcial no conjunto das tarefas por

 $x \le y \leftrightarrow \text{tarefa } x = \text{tarefa } y \text{ ou tarefa } x \in \text{um pré-requisito para a tarefa } y$

É fácil ver que essa relação é reflexiva, antissimétrica e transitiva. Além disso,

x < y ↔ tarefa x é um pré-requisito para a tarefa y

Tarefa	Pré-requisitos	Horas para a Conclusão
1. Seleção da madeira	Nenhum	3,0
2. Talho da peça curva que balança	1	4,0
3. Talho da parte de madeira do assento	1	6,0
4. Talho do encosto	1	7,0
5. Talho dos braços	1	3,0
6. Seleção do tecido	Nenhum	1,0
7. Costura da almofada	6	2,0
8. Junção do encosto e da parte de madeira do assento	3,4	2,0
9. Colocação dos braços	5,8	2,0
10. Colocação da peça curva que balança	2,8	3,0
11. Aplicação de verniz	9, 10	5,0
12. Colocação da almofada	7, 11	0,5

 No diagrama de Hasse para essa ordem parcial, os nós são as tarefas; adicionaremos a cada nó a informação sobre o tempo necessário para a conclusão da tarefa. Além disso, como é tradicional, orientaremos o diagrama de modo que, se x ≺ y, então x estará à esquerda de y, em vez de embaixo. Logo, o diagrama vai da esquerda para a direita, em vez de debaixo para cima.

> RELAÇÕES DE ORDEM TOTAL E PARCIAL EM A

 Seja R uma relação em A (R ⊆ A x A). Então, R é uma relação de ordem parcial em A se, e somente se, R é reflexiva, transitiva e anti-simétrica.

- Definição
- R é relação de ordem parcial em A ⇔ R é reflexiva, transitiva e anti-simétrica.
- Obs 1: A relação de ordem é interna e só existe se comparar elementos do mesmo conjunto.
- **Obs 2:** Um conjunto A, junto com seu Ordenamento Parcial R, é chamado de **conjunto parcialmente ordenado (poset).**

> Ordem total ou Ordem Parcial?

- Como vimos uma relação R em um conjunto A que seja reflexiva, antissimétrica e transitiva é chamada de relação de ordem parcial em A.
- Agora, seja R uma relação de ordem parcial em A, então esta também será uma relação de ordem total se e somente se:

R é uma relação de ordem total \Leftrightarrow (\forall x, y \in A) ((x,y) \in R \lor (y, x) \in R)

 Obs: Toda relação de ordem total é também uma relação de ordem parcial, a recíproca não é verdadeira.

Exemplo

- Seja A um subconjunto qualquer de IR. Mostre que a relação em A definida por "x ≤ y" é uma relação de ordem em A:
- Reflexiva (V): Para ≤ ser reflexiva significa que x ≤ x para todos números reais. Mas x ≤ x significa que (x < x) ∨ (x = x) e x = x é sempre verdadeiro.
- Anti-simétrica (V): Para
 ser anti-simétrica significa que para todos números reais x e y, se x
 y e y
 x então x = y. Isto é consequência imediata da definição de
 e a propriedade de tricotomia que diz que dados quaisquer números reais x e y exatamente uma das afirmações é verdadeira: x
 y ou x
 y ou x

Transitividade (**V**): Para \leq ser transitiva significa que para todos os reais x, y e z, se $x \leq y$ e $y \leq z$ então $x \leq z$. Isto é verdade pela definição de \leq e pela propriedade transitiva da ordem dos números reais que diz que dados quaisquer números reais x, y e z, se x < y e y < z então x < z.

- Então no exercício anterior a relação " x ≤ y" é uma relação de ordem parcial em A para qualquer x,y € IR.
- Agora será que esta é também uma relação de ordem total?
- Resposta: Sim também será uma relação de ordem total, pois como vimos na demonstração da propriedade anti-simétrica, se x,y ∈ IR, ou x ≤ y ou y ≤ x ou seja todos os elementos do conjunto estão relacionados.
- **OBS:** Um conjunto A, junto com seu Ordenamento Parcial R é chamado de **conjunto parcialmente ordenado (poset).**

- Exemplo: Considere um conjunto S qualquer. A relação de inclusão, (⊆) é uma relação de ordem sobre o conjunto das P(S) ("o conjunto das partes de S").
- Vejamos que definimos nossa relação como: ⊆ = {(S1; S2) ∈ P(S) x
 P(S) | S1 ⊆ S2}
- i. Reflexiva: Sim pois seja: S1 \in P(S): como S1 \subseteq S1, logo \in reflexiva
- ii. Anti-simétrica: Sim pois se $S1 \subseteq S2$ e $S2 \subseteq S1$ logo S1 = S2
- iii. Transitiva: Sim pois se S1 \subseteq S2 e S2 \subseteq S3 então S1 \subseteq S3
- Portanto, (P(S);) é uma relação de ordem parcial.

 Agora novamente será que esta é uma relação de ordem total?

- Resposta: Não
- Demonstração: Veja o contra exemplo. Considere um conjunto S = {1,2,3}. Logo o conjuntos das partes de S é:

$$P(S)={\emptyset, \{1\}, \{2\}, \{3\}; \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}}$$

Agora observe por exemplo que: $\{1,2\} \not = \{2,3\}$, e $\{2,3\} \not = \{1,2\}$.

Portanto esta é apenas uma relação de ordem Parcial!

- Mais alguns exemplos de relações de ordem.
- **Ex:** Sejam A = $\{a, b, c\} \in R_1 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}.$
- R_1 é uma relação de ordem parcial pois $(b,c) \notin R_1$ e $(c,b) \notin R_1$
- Além disso as propriedades reflexiva, anti-simétrica e transitiva são verificadas
- Ex: Sejam A = {a, b, c} e R₂ = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}.
 R₂ é uma relação de ordem total. Verifique!

- Solução:
- Reflexiva: Todos os pares da forma (x, x), x ∈ A pertence a R₂,
- Anti-Simétrica: Nenhum par da forma (x, y), x, y ∈ A, x = y que pertence a relação (x, y) ∈ R₂ arrasta seu simétrico ou seja (y, x) ∉ R₂.
- A propriedade transitiva pode ser verificada por exaustão:
- $(a, a) \land (a, b) \rightarrow (a, b)$,
- $(b, b) \land (b, c) \rightarrow (b, c)$,
- $(a, a) \land (a, c) \rightarrow (a, c), e$
- $(a, b) \land (b, c) \rightarrow (a, c)$
- E a propriedade total é satisfeita pelos pares (a, b), (b, c), (a, c) para os pares da forma (x, y), x, y ∈ A, x ≠ y e pelos pares (a, a), (b, b), (c, c) para os pares da forma (x, y), x, y ∈ A, x = y.

- Exemplo:
- 1) A relação no conjunto A={2,4,8,16,...,2n,...) definida por "x é múltiplo de y" **é uma relação de ordem total** em A.
- 2) A relação no conjunto dos números naturais por "x|y" (relação de divisibilidade) é uma **Relação de Ordem Parcial** nos naturais porque dois números naturais nem sempre são comparáveis por esta ordem, como, por exemplo, 5 e 7
- 3) No conjunto dos inteiros positivos munidos com a operação divisão, $(\mathbf{Z}^+, |)$, 3 e 9 são comparáveis pois 3 | 9. Já os inteiros 5 e 7 são incomparáveis, pois $5 \mid 7$ e $7 \mid 5$.

 Exercício: Seja D a relação divide em Z⁺ (inteiros positivos) definida como:

$$\forall a, b \in \mathbb{Z}^+, a | b \Leftrightarrow b = k \cdot a$$
, para algum inteiro k .

- Mostre que D é uma relação de ordem.
- Reflexiva (V): D é reflexiva sse ∀a ∈ Z⁺, a|a.
 Suponha a ∈ Z⁺. Temos que a = 1 · a e assim a|a pela definição da divisibilidade.
- Anti-simétrica (V): D é anti-simétrica sse ∀a, b ∈ Z⁺, se a|b∧b|a então a = b.
 Suponha a, b ∈ Z⁺ e aRb e bRa. Pela definição de R, a|b e b|a. Pela definição de divide existem inteiros k₁ e k₂ tais que b = k₁ · a e a = k₂ · b. Temos que

$$b = k_1 \cdot a = k_1 \cdot (k_2 \cdot b) = (k_1 \cdot k_2) \cdot b$$

Ou seja, $k_1 \cdot k_2 = 1$. Temos que k_1 e k_2 são inteiros positivos. Mas o único produto de dois inteiros positivos que é igual 1 é $1 \cdot 1$. Assim, $k_1 = k_2 = 1$. Assim, $a = k_2 \cdot b = 1 \cdot b = b$.

• Transitividade (V): D é transitiva sse $\forall a, b, c \in \mathbb{Z}^+$, se a|b e b|c então a|c.

$$b = k_1.a$$

$$c = k_2.b$$

$$c = k_2.k_1.a$$

$$c = k_3.a \Rightarrow a \mid c$$

 Exemplo 4: O poset (Z; ≤) é totalmente ordenado, pois a ≤ b ou b ≤ a sempre que a e b são inteiros.

- Observação:
- Podemos definir também o conceito de quasi-ordem.
- Em outras palavras, dizemos que uma relação R sobre um conjunto A é uma relação de quasi-ordem se R for: reflexiva e transitiva

OBS: Não confundir quasi-ordem com ordem parcial!