Matrix Computations Continued

QR Method: One of the top 10 algorithms!

1946: The Metropolis Algorithm

1947: Simplex Method

1950: Krylov Subspace Method

1951: The Decompositional Approach to Matrix Computations

1957: The Fortran Optimizing Compiler

1959: QR Algorithm 1962: Ouicksort

1965: Fast Fourier Transform

1977: Integer Relation Detection

1987: Fast Multipole Method

Dantzig von Neumann Hestenes Householder Backus

Hoare Greengard

Motivation for QR Method: Computer Vision

- Identify 3D image from a set of 2D images taken from fixed camera positions
- Formulate the problem as nonlinear least squares, and solve it using QR method
- (Image source: Google images)

Motivation for QR Method

- Given a set of data points, fit a surface through it
- Formulate the problem as least squares, use QR to solve

Projections that preserve length

Given $x_1 \neq 0$, we have seen a projection P such that:

$$P\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- Does all projections preserve lengths?
- Which projections preserve lengths?
- What do we mean by length?

Orthogonal Matrices

Inner product in \mathbb{R}^n : Given two vectors $x, y \in \mathbb{R}^n$, define inner product $\langle x, y \rangle$ as

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = y^T x = x^T y$$

Properties of inner product:

- $\bullet \ \langle x,y\rangle = \langle y,x\rangle$
- $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$
- $\langle x, \alpha_1 y_1 + \alpha_2 y_2 \rangle = \alpha_1 \langle x, y_1 \rangle + \alpha_2 \langle x, y_2 \rangle$
- $\langle x, x \rangle \ge 0$, equality iff x = 0

Inner product

Euclidean Norm denoted by $||x||_2$ is defined as

$$||x||_2 = (\langle x, y \rangle)^{1/2}$$

Cauchy Schwarz Inequality:

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$

• Angle between vectors: Let θ be the angle between two vectors x and y, then

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$

Orthogonal vectors

- Two vectors are called orthogonal if $\langle x, y \rangle = 0$
- When two vectors are orthogonal we say that the angle between them is $\pi/2$
- A matrix $Q \in \mathbb{R}^{n \times n}$ is called orthogonal if $QQ^T = I$
- Quiz: If Q_1 and Q_2 are orthogonal, then
 - Is Q_1^{-1} orthogonal?
 - Is Q_1Q_2 orthogonal?
 - What is det(Q)?
 - Is $\langle Qx, Qy \rangle = \langle x, y \rangle$? That is, does Q preserve angle?
 - Is $||Qx||_2 = ||x||_2$? That is, does Q preserve length?
 - If $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all x, y, then Q is orthogonal?

Orthogonal transformations

- Want to find a matrix $Q \in \mathbb{R}^{2 \times 2}$ that rotates a given vector $[x, y]^T$ by θ degrees
- Let

$$Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$

See Class Notes for More...

Rotators

• Rotators can be used to create zeros in a matrix. That is,

$$Q\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

See Class Notes for More ...

Using rotators to simplify a matrix

Given

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

See Class Notes for More...

Use QR to solve a linear system

Solve

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

See Class Notes for More...

Rotator picture

Rotators for high dimensional vectors

Let Q be a (ij) plane rotator. Show that the transformations $x \to Qx$ and $x \to Q^Tx$ alter only the ith and jth entries of x and that the effect on these entries is the same as that of the 2 by 2 rotators

$$\hat{Q} = egin{bmatrix} c & -s \ s & c \end{bmatrix}, \quad \hat{Q}^{\mathcal{T}} = egin{bmatrix} c & s \ -s & c \end{bmatrix}$$

Choose the rotators:

$$c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad s = \frac{x_j}{\sqrt{x_i^2 + x_j^2}}$$