Exercise 11.1

Determine the irreducible representations of \mathscr{T}_d to which f-orbitals belong.

Solution 11.1

Firstly, the information of seven (un-normalized) f-orbitals is listed below and they are marked in my symbols.

angular function	f ombital armofal	marr armah al
angular function	f-orbital symfol	my symbol
$\sin\theta\cos\phi(5\sin^2\theta\cos^2\phi-3)$	$f_{x(5x^2-3r^2)}$ or f_{x^3}	f_1
$\sin\theta\sin\phi(5\sin^2\theta\sin^2\phi - 3)$	$f_{y(5y^2-3r^2)}$ or f_{y^3}	f_2
$5\cos^3\theta - 3\cos\theta$	$f_{z(5z^2-3r^2)}$ or f_{z^3}	f_3
$\sin\theta\cos\phi(\cos^2\theta-\sin^2\theta\sin^2\phi)$	$f_{x(z^2-y^2)}$	f_4
$\sin\theta\sin\phi(\cos^2\theta-\sin^2\theta\cos^2\phi)$	$f_{y(z^2-x^2)}$	f_5
$\sin^2 \theta \cos \phi \cos 2\phi$	$\mathbf{f}_{z(x^2-y^2)}$	f_6
$\sin^2\theta\cos\phi\sin2\phi$	f_{xyz}	f_7

Figure 11.1: aaaaaaa

Then, the definition of all operation R is demonstrated below, and they are classified according to their classes. Note that R(x', y', z') means that x, y, z are converted to x', y', z', respectively.

- class EThere is only one element, i.e. identical operation E, which is E(x,y,z).
- class C_3

There are 8 elements, whose information is listed below. $C_{3xyz}(y,z,x) \quad \text{rotate } \frac{2\pi}{3} \text{ clockwise around } \boldsymbol{i+j+k}$ $C_{3\bar{x}\bar{y}z}(z,x,y) \quad \text{rotate } \frac{4\pi}{3} \text{ clockwise around } \boldsymbol{i+j+k}$ $C_{3\bar{x}\bar{y}z}(y,\bar{z},\bar{x}) \quad \text{rotate } \frac{2\pi}{3} \text{ clockwise around } \boldsymbol{-i-j+k}$ $C_{3\bar{x}\bar{y}z}(\bar{z},x,\bar{y}) \quad \text{rotate } \frac{4\pi}{3} \text{ clockwise around } \boldsymbol{-i-j+k}$ $C_{3\bar{x}y\bar{z}}(\bar{y},\bar{z},x) \quad \text{rotate } \frac{2\pi}{3} \text{ clockwise around } \boldsymbol{-i+j-k}$ $C_{3\bar{x}y\bar{z}}(z,\bar{x},\bar{y}) \quad \text{rotate } \frac{4\pi}{3} \text{ clockwise around } \boldsymbol{-i+j-k}$ $C_{3\bar{x}y\bar{z}}(\bar{y},z,\bar{x}) \quad \text{rotate } \frac{4\pi}{3} \text{ clockwise around } \boldsymbol{-i-j-k}$ $C_{3x\bar{y}\bar{z}}(\bar{y},z,\bar{x}) \quad \text{rotate } \frac{2\pi}{3} \text{ clockwise around } \boldsymbol{i-j-k}$ $C_{3x\bar{y}\bar{z}}(\bar{z},\bar{x},y) \quad \text{rotate } \frac{4\pi}{3} \text{ clockwise around } \boldsymbol{i-j-k}$

• class C_2

There are 3 elements, whose information is listed below.

$C_{2x}(x,\bar{y},\bar{z})$	rotate π clockwise around x -axis
$C_{2y}(\bar{x},y,\bar{z})$	rotate π clockwise around y -axis
$C_{2z}(\bar{x},\bar{y},z)$	rotate π clockwise around z-axis

• class S_4

There are 6 elements, whose information is listed below.

mones, whose information is inseed below.
rotate $\frac{\pi}{2}$ clockwise around x-axis and then perform horizontal mirror reflection
rotate $\frac{3\pi}{2}$ clockwise around x-axis and then perform horizontal mirror reflection
rotate $\frac{\pi}{2}$ clockwise around y-axis and then perform horizontal mirror reflection
rotate $\frac{3\pi}{2}$ clockwise around y-axis and then perform horizontal mirror reflection
rotate $\frac{\pi}{2}$ clockwise around z-axis and then perform horizontal mirror reflection
rotate $\frac{3\pi}{2}$ clockwise around z-axis and then perform horizontal mirror reflection

• class $\sigma_{\rm d}$

There are 6 elements, whose information is listed below.

$\sigma_{\mathrm{d},yz}(x,z,y)$	perform mirror reflection about the $y-z=0$ plane
$\sigma_{\mathrm{d},-yz}(x,\bar{z},\bar{y})$	perform mirror reflection about the $y + z = 0$ plane
$\sigma_{\mathrm{d},xz}(z,y,x)$	perform mirror reflection about the $x-z=0$ plane
$\sigma_{\mathrm{d},-xz}(\bar{z},y,\bar{x})$	perform mirror reflection about the $x + z = 0$ plane
$\sigma_{\mathrm{d},xy}(y,x,z)$	perform mirror reflection about the $x - y = 0$ plane
$\sigma_{\mathrm{d},-xy}(\bar{y},\bar{x},z)$	perform mirror reflection about the $x + y = 0$ plane

Next, the result of the transformation of these orbitals under O_R is listed below.

element	E	C_{3xyz}	C_{3xyz}^{-1}	$C_{3\bar{x}\bar{y}z}$	$C_{3\bar{x}\bar{y}z}^{-1}$	$C_{3\bar{x}y\bar{z}}$	$C_{3\bar{x}y\bar{z}}^{-1}$	$C_{3x\bar{y}\bar{z}}$	$C_{3x\bar{y}\bar{z}}^{-1}$	C_{2x}	C_{2y}	C_{2z}
f_1	f_1	f_2	f_3	f_2	$-f_3$	$-f_3$	$-f_2$	f_3	$-f_2$	f_1	$-f_1$	$-f_1$
f_4	f_4	$-f_5$	$-f_6$	$-f_5$	f_6	f_5	$-f_6$	f_5	f_6	f_4	$-f_4$	$-f_4$
f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7
element	S_{4x}	S_{4x}^{3}	S_{4y}	S_{4y}^3	S_{4z}	S_{4z}^{3}	$\sigma_{\mathrm{d},yz}$	$\sigma_{\mathrm{d},-yz}$	$\sigma_{\mathrm{d},xz}$	$\sigma_{\mathrm{d},-xz}$	$\sigma_{\mathrm{d},xy}$	$\sigma_{\mathrm{d},-xy}$
f_1	$-f_1$	$-f_1$	f_3	$-f_3$	$-f_2$	f_2	f_1	f_1	f_3	$-f_3$	f_2	$-f_2$
f_4	f_4	f_4	f_6	$-f_6$	$-f_5$	f_5	$-f_4$	$-f_4$	f_6	$-f_6$	f_5	$-f_5$
c	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_7	f_{7}	f_7	f_7	f_7

Here, we check the character table of the point group \mathcal{I}_{d} ,

-	\mathscr{T}_{d}	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_{ m d}$		
-	A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
	A_2	1	1	1	-1	-1		
	E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
	T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
	T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

and we find the character below for Γ^{rmhyb} for the \mathcal{T}_{d} point group.

$$\frac{\mathcal{J}_{d}}{\chi^{\text{hyb}}(C_{i})} \frac{E}{7} \frac{8C_{3}}{1} \frac{3C_{2}}{-1} \frac{6S_{4}}{1} \frac{6\sigma_{d}}{1}$$

We can calculate the reduction of representation $\Gamma^{\rm hyb},$

$$a_1 = \frac{1}{24}[1 \times 7 \times 1 + 8 \times 1 \times 1 + 3 \times (-1) \times 1 + 6 \times 1 \times 1 + 6 \times 1 \times 1] = 1,$$

$$a_2 = \frac{1}{24}[1 \times 7 \times 1 + 8 \times 1 \times 1 + 3 \times (-1) \times 1 + 6 \times 1 \times (-1) + 6 \times 1 \times (-1)] = 0,$$

$$e = \frac{1}{24}[1 \times 7 \times 2 + 8 \times 1 \times (-1) + 3 \times (-1) \times 2 + 6 \times 1 \times 0 + 6 \times 1 \times 0] = 0,$$

$$t_1 = \frac{1}{24}[1 \times 7 \times 3 + 8 \times 1 \times 0 + 3 \times (-1) \times (-1) + 6 \times 1 \times 1 + 6 \times 1 \times (-1)] = 1,$$

$$t_2 = \frac{1}{24}[1 \times 7 \times 3 + 8 \times 1 \times 0 + 3 \times (-1) \times (-1) + 6 \times 1 \times (-1) + 6 \times 1 \times 1] = 1,$$

and we obtain

$$\Gamma^{\text{hyb}} = \Gamma^{A_1} \oplus \Gamma^{T_1} \oplus \Gamma^{T_2}. \tag{11.1}$$

For simplification, we summarize the operations of the same classes.

\mathscr{T}_{d}	O_E	$\sum_{k=1}^{8} O_{C_{3k}}$	$\sum_{k=1}^{3} O_{C_{2k}}$	$\sum_{k=1}^{6} O_{S_{4k}}$	$\sum_{k=1}^{6} O_{\sigma_{\mathrm{d},k}}$
f_1	f_1	0	$-f_1$	$-2f_{1}$	$2f_1$
f_4	f_4	0	$-f_4$	$2f_4$	$-2f_{4}$
f_7	f_7	$8f_7$	$3f_{7}$	$6f_7$	$6f_{7}$

$$\begin{split} P^{A_1}f_1 &= (1\times O_E + 1\times \sum_{k=1}^8 O_{C_{3k}} + 1\times \sum_{k=1}^3 O_{C_{2k}} + 1\times \sum_{k=1}^6 O_{S_{4k}} + 1\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{A_2}f_1 &= (1\times O_E + 1\times \sum_{k=1}^8 O_{C_{3k}} + 1\times \sum_{k=1}^3 O_{C_{2k}} + (-1)\times \sum_{k=1}^6 O_{S_{4k}} + (-1)\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^Ef_1 &= (2\times O_E + (-1)\times \sum_{k=1}^8 O_{C_{3k}} + 2\times \sum_{k=1}^3 O_{C_{2k}} + 0\times \sum_{k=1}^6 O_{S_{4k}} + 0\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{T_1}f_1 &= (3\times O_E + 0\times \sum_{k=1}^8 O_{C_{3k}} + (-1)\times \sum_{k=1}^3 O_{C_{2k}} + 1\times \sum_{k=1}^6 O_{S_{4k}} + (-1)\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 0, \\ P^{T_2}f_1 &= (3\times O_E + 0\times \sum_{k=1}^8 O_{C_{3k}} + (-1)\times \sum_{k=1}^3 O_{C_{2k}} + (-1)\times \sum_{k=1}^6 O_{S_{4k}} + 1\times \sum_{k=1}^6 O_{\sigma_{\mathrm{d},k}})f_1 = 8f_1. \end{split}$$

Thus, f_1 belongs to T_2 , which is a three-dimentional irreducible representation. With

$$C_{3xyz}f_1 = f_2, \quad C_{3xyz}^{-1}f_1 = f_3,$$

we conclude that f_1 , f_2 and f_3 belong to T_2 . Similarly, we note

$$P^{A_1}f_4 = 0$$
, $P^{A_2}f_4 = 0$, $P^Ef_4 = 0$, $P^{T_1}f_4 = 8f_4$, $P^{T_2}f_4 = 0$.

So f_4 belongs to T_1 . Besides, with

$$C_{3xyz}f_4 = -f_5, \quad C_{3xyz}^{-1}f_4 = -f_6,$$

we can also conclude that f_4 , f_5 and f_6 belong to the same three-dimentional irreducible representation T_1 .

$$P^{A_1}f_7 = 24f_7$$
, $P^{A_2}f_7 = 0$, $P^Ef_7 = 0$, $P^{T_1}f_7 = 0$, $P^{T_2}f_7 = 0$.

Thus, we conclude that f_7 belongs to the one-dimentional irreducible representation A_1 . In conclusion, we find

- $f_1 \equiv f_{x(5x^2-3r^2)}$, $f_2 \equiv f_{y(5y^2-3r^2)}$ and $f_3 \equiv f_{z(5z^2-3r^2)}$ belong to the three-dimentional irreducible representation T_2 ,
- $f_4 \equiv f_{x(z^2-y^2)}$, $f_5 \equiv f_{y(z^2-x^2)}$ and $f_6 \equiv f_{z(x^2-y^2)}$ belong to the three-dimentional irreducible representation T_1 ,
- $f_7 \equiv f_{xyz}$ belongs to the one-dimentional irreducible representation A_1 .

Exercise 11.2

Show that for a molecule of octahedral symmetry the σ -bonding hybrid orbitals on the central atom are composed of six atomic orbitals: s, p_x , p_y , p_z , d_{z^2} and $d_{x^2-y^2}$.

Solution 11.2

The structure of a general molecule AB₆ of octahedral symmetry is shown in Fig 11.3.

Figure 11.2: A set of vectors v_1 , v_2 , v_3 , v_4 , v_5 , and v_6 representing the six σ -hybrid orbitals used by the atom A to bond the six B atoms in AB₆.

The character table of the point group \mathcal{O}_h is shown below.

$-\mathscr{O}_{\mathrm{h}}$	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$	i	$8S_6$	$3\sigma_h$	$6S_4$	$6\sigma_d$		
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1		
E_g	2	-1	2	0	0	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
$4 A_{2u}$	1	1	1	-1	-1	-1	-1	-1	1	1		
E_u	2	-1	2	0	0	-2	1	-2	0	0		
T_{1u}	3	0	-1	1	-1	-3	0	1	-1	1	(x, y, z)	
T_{2u}	3	0	-1	-1	1	-3	0	1	1	-1		

The character for Γ^{hyb} for the \mathcal{O}_{h} point group is

$$\Gamma^{\text{hyb}} = \Gamma^{A_{1g}} \oplus \Gamma^{E_g} \oplus \Gamma^{T_{1u}}.$$

In conclusion, we have proved that for a molecule of octahedral symmetry the σ -bonding hybrid orbitals on the central atom are composed of six atomic orbitals, s, p_x , p_y , p_z , d_{z^2} , and $d_{x^2-y^2}$.

Exercise 11.3

Determine what type of π -bonding hybrid orbitals can be formed for the square planar AB₄ molecule which belongs to the \mathcal{D}_{4h} point group.

Solution 11.3

The character table of the point group \mathcal{D}_{4h} is shown below.

	\overline{E}	$2C_4$	C_2	$2C_2'$	$2C_2''$	i	$2S_4$	σ_{b}	$2\sigma_{\rm o}$	$2\sigma_{\rm d}$		
	1	1		$\frac{20_2}{1}$			1	$\frac{\sigma_n}{1}$	$\frac{20v}{1}$	$\frac{2 \sigma_u}{1}$		$x^2 + y^2; z^2$
	1				-1					-1	R_z	x + y, z
					-1				1		I_{0z}	$x^2 - y^2$
3					1					1		x y xy
E_a											(R R)	(xz, yz)
	1				1						(n_x, n_y)	(xz, yz)
					-1					-1 1	~	
_ 2 a	1								1	-	2	
1 0	1	-1 1		1				-1		1		
	1		1	-1		-1		-1	1	-1	()	
$\underline{E_u}$	2	0	-2	0	0	-2	U	2	0	0	(x, y)	

Figure 11.3: rehstrjstfjs

$\mathscr{D}_{4\mathrm{h}}$	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$	
$\chi^{\mathrm{hyb}}(C_i)$	8	0	0	-4	0	0	0	0	0	0	
$\chi_{\mathrm{perp}}^{\mathrm{hyb}}(C_i)$	4	0	0	-2	0	0	0	-4	2	0	
$\chi_{\text{perp}}^{\text{hyb}}(C_i)$ $\chi_{\text{plane}}^{\text{hyb}}(C_i)$	4	0	0	-2	0	0	0	4	-2	0	

$$\begin{split} \Gamma^{\text{hyb}}_{\text{perp}} &= \Gamma^{A_{2u}} \oplus \Gamma^{B_{2u}} \oplus \Gamma^{E_g}, \\ \Gamma^{\text{hyb}}_{\text{plane}} &= \Gamma^{A_{2g}} \oplus \Gamma^{B_{2g}} \oplus \Gamma^{E_u}. \end{split}$$

	$\Gamma_{ m pe}^{ m hy}$	b rp	$\Gamma_{ m plane}^{ m hyb}$				
$\Gamma^{A_{2u}}$	$\Gamma^{B_{2u}}$	Γ^{E_g}	$\Gamma^{A_{2g}}$	$\Gamma^{B_{2g}}$	Γ^{E_u}		
\mathbf{p}_z	none	$(\mathbf{d}_{xz},\mathbf{d}_{yz})$	none	d_{xy}	$(\mathbf{p}_x,\mathbf{p}_y)$		

Thus, we conclude two conclusions.

- There will be only 3 π -bonds which are formed by p_z , d_{xz} , and d_{yz} , perpendicular to the molecular plane and they are shared equally amongst the 4 B atoms.
- There will be also only 3 π -bonds which are formed by d_{xy} , p_x , and p_y , in the molecular plane and they are shared equally amongst the 4 B atoms.

Exercise 11.4

Show that for the square planar AB₄ molecule a possible set of four σ -hybrid orbitals on A is composed of the atomic orbitals: s, $d_{x^2-y^2}$, p_x , and p_y . Find explicit expressions for the four hybrid orbitals.

#