Temporal Logic Motion Planning and Control with Probabilistic Satisfaction Guarantees

Jatin, Vibhor, Sahil

Instructor: Indranil Saha

March 27, 2019

Motivation

- Till now, we have done motion planning under two fundamental assumptions:
 - purely deterministic or,
 - purely non-deterministic (with no information on the likelihoods of those transitions).
- However, noise in the actuators and sensors can invalidate both these assumptions.
- The probabilities of each transition can be found by using repeated simulation and experiments.
- We also assume that robot can find its current position precisely.
- Sample Problem: Find the maximum probability of reaching Destination by always avoiding Unsafe regions.

Markov Decision Process

Markov Decision Process (MDP) \mathcal{M} is a tuple (S, s_0 ,Act,T, Π ,L,c) where,

- S is a finite set of states
- $s_0 \in S$ is the start state
- Act is finite set of actions
- $T: S \times Act \times S \rightarrow [0,1]$ is transition probability function such that for each $s \in S$ and $\alpha \in Act$, either $T(s,\alpha,.)$ is a probability distribution on S, or $T(s,\alpha,.)$ is the null function.
- \bullet II is a finite set of atomic propositions
- L:S $\to 2^\Pi$ is the labelling function assigned to each s in S.
- Cost, c: $S \times Act \to \mathbb{R}^{\geq 0}$

MDP Example

Figure: MDP

Probabilistic Computation Tree Logic Formulas

- Syntax of PCTL:
 - $\phi ::= true \mid \pi \mid \neg \phi \mid \phi \land \phi \mid P_{\bowtie p}[\psi] \mid \varepsilon_{\bowtie c}[\phi]$ state formulas • $\psi ::= X\phi \mid \phi \mathcal{U}^{\leq k}\phi \mid \phi \mathcal{U}\phi$ path formulas

where $\bowtie \in \{ \le, <, \ge, > \}, p \in [0, 1], c \in [0, \infty] \text{ and } k \in \mathbb{N}$

• Semantics of PCTL:

For any state $s \in S$, the satisfaction relation \models is defined inductively as follows:

- $s \models \text{true for all } s \in S$;
- $s \models \pi \Leftrightarrow \pi \in L(q)$;
- $s \models (\phi_1 \land \phi_2) \Leftrightarrow s \models \phi_1 \land s \models \phi_2;$
- $s \models \neg \phi \Leftrightarrow s \not\models \phi$;
- $s \models P_{\bowtie p}[\psi] \Leftrightarrow \exists \ \mu \text{ s.t. } p_{\mu}^s \bowtie p;$
- $s \models \varepsilon_{\bowtie c}[\phi] \Leftrightarrow \exists \ \mu \text{ s.t. } e_{\mu}^{s'} \bowtie c;$

Semantics of PCTL Continued ...

- p_{μ}^{s} is the probability of all the infinite paths that start from s and satisfy ψ under policy μ and $e_{\mu}^{s}(\phi)$ denotes the total expected cost of reaching a state that satisfy ϕ from s under μ . Moreover, for any path $\omega \in \text{Path}$:
 - $\omega \models X\phi \Leftrightarrow w(1) \Leftrightarrow \phi$
 - $\omega \models \phi_1 \mathcal{U}^{\leq k} \phi_2 \Leftrightarrow \exists i \leq k, \omega(i) \models \phi_2 \land w(j) \models \phi_1 \forall j < i;$
 - $\omega \models \phi_1 \mathcal{U} \phi_2 \Leftrightarrow \exists k \geq 0, \omega \models \phi_1 \mathcal{U}^{\leq k} \phi_2$

Control Policy

- A control policy is a function $A: Path^{fin} \to Act$. For every finite path, a policy specifies the next action to be applied. Under a policy A, an MDP becomes a Markov Chain denoted by D_A .
- There are two kinds of control policies *History Dependent* and *Stationary*.

Next operator

- Next Optimal- $\phi = P_{max=?}[X\phi_1]$:
 - First find the set $Sat(\phi_1)$, the set of states that satisfy ϕ_1 .
 - Let $\sigma_a^{s_i}(s_j)$ denotes the transition probability of making a transition from s_i to s_j on action a i.e. $\sigma_a^{s_i}(s_j) = T(s_i, a, s_j)$.
 - Probability that ϕ_1 is satisfied in next state on action a is(current state is s_i)

$$\sigma_a^{s_i}(Sat(\phi_1)) = \sum_{s_j \in Sat(\phi_1)} \sigma_a^{s_i}(s_j)$$

• Then the optimal probability $(x_{s_i}^*)$ of satisfying ϕ at state s_i can be find out using:

$$x_{s_i}^* = \max_{a \in A(s_i)} \sum_{s_j \in Sat(\phi_1)} \sigma_a^{s_i}(s_j)$$

• The corresponding optimal policy is:

$$\mu^*(s_i) = arg \max_{a \in A(s_i)} \sum_{s_j \in Sat(\phi_1)} \sigma_a^{s_i}(s_j)$$

Example for Next Optimal

- Consider the MDP given in Fig 1, take $\phi_1 = P_{max=?}[X(\neg R_3)]$
- Now, $Sat(\phi_1) = \{q_0, q_1, q_2\}.$
- We can see that $\sigma_{a_2}^{q_1}(Sat(\phi_1)) = 0.6, \ \sigma_{a_3}^{q_1}(Sat(\phi_1)) = 0.56,$
 - $\sigma_{a_4}^{q_1}(Sat(\phi_1)) = 0.5$ $\sigma_{a_4}^{q_1}(Sat(\phi_1)) = 1.$
- Thus, $x_{q_1}^* = 1$ and $\mu_{q_1}^* = a_4$.

Next operator

- Next all- $P_{\bowtie p}[X\phi_1]$: where $\bowtie \in \{\leq, <, \geq, >\}$
 - Aim to find all the policies that satisfy the formula.
 - Find the probabilities of satisfying $X\phi_1$ for each state–action pair, using the Next Optimal Algorithm.
 - Eliminate all the policies that are not in the range of $\bowtie p$.

Bounded Until operator

- Bounded Until Optimal $\phi = P_{max=?}[\phi_1 \mathcal{U}^{\leq K} \phi_2]$:
 - First group the MDP states into three subsets.
 - $S^{yes} = Sat(\phi_2)$
 - $S^{no} = S \setminus (Sat(\phi_1) \cup Sat(\phi_2))$
 - $S^? = S \setminus (S^{yes} \cup S^{no})$
 - Example: $P_{max=?}[true\ \mathcal{U}^{\leq 2}R_3]$
 - $\bullet S^{yes} = \operatorname{Sat}(R_3) = q_3$
 - $S^{no} = \phi$
 - $S^? = \{q_0, q_1, q_2\}$
 - $x_{s_i}^j$ denotes the maximum probability of satisfying the formula $(\phi_1 \mathcal{U}^{\leq j} \phi_2)$ from state s_i .
 - Hence, $x_{s_i}^j = 1 \ \forall \ s_i \in S^{yes}, \ \forall j \ \text{and} \ x_{s_i}^j = 0 \ \forall \ s_i \in S^{no}, \ \forall j$
 - The probabilities for the remaining states $s_i \in S^?$ are defined recursively.

Bounded Until optimal continued ...

Finding maximum probabilities for $s_i \in S^?$:

- $x_{s_i}^0 = 0 \ \forall s_i \in S^?$
- $\forall k > 0, s_i \in S^?$

•
$$x_{s_i}^k = \max_{a \in A(s_i)} \left(\sum_{s_j \in S^?} \sigma_a^{s_i}(s_j) x_{s_j}^{k-1} + \sum_{s_j \in S^{yes}} \sigma_a^{s_i}(s_j) \right)$$

•
$$\mu_{s_i}^{*^k} = arg \max_{a \in A(s_i)} \left(\sum_{s_j \in S^?} \sigma_a^{s_i}(s_j) x_{s_j}^{k-1} + \sum_{s_j \in S^{yes}} \sigma_a^{s_i}(s_j) \right)$$

• We can solve the minimization problem similarly.

Example

 $P_{max=?}[true\ \mathcal{U}^{\leq 2}R_3]$:

- $S^{yes} = \operatorname{Sat}(R_3) = q_3$
- $S^{no} = \phi$
- $S^? = \{q_0, q_1, q_2\}$

k	x_0^k	x_1^k	x_2^k
0	0	0	0
1	0	0.44	0
2	0.44	0.444	0

• In above table, for k=2, $x_1^k = \max(0.44 \text{ (corr. to } a_3), 0.444 \text{ (corr. to } a_2)).$

Bounded Until Stationary

- Bounded Until Stationary- $P_{\bowtie p}[\phi_1 \mathcal{U}^{\leq k} \phi_2]$: where $\bowtie \in \{\leq, <, \geq, >\}$
 - Aim to find all the policies that satisfy the formula.
 - Find the probabilities of satisfying $(\phi_1 \mathcal{U}^{\leq k} \phi_2)$ for each state-action pair, using the *Bounded Until Optimal Algorithm* with the exception that the optimal actions determined at each iteration are fixed for the remaining iterations.
 - Eliminate all the policies that are not in the range of $\bowtie p$.

Unbounded Until Operator

- Unbounded Until Operator $\phi = P_{max=?}[\phi_1 \mathcal{U} \phi_2]$:
 - First group the MDP states into three subsets: $S^{yes} = Sat(\phi_2)$, S^{no} using Algorithm 2, $S^? = S \setminus (S^{yes} \cup S^{no})$

```
Algorithm 1 Find S^{no} = \{ s \in S \mid p_q^{max}(\phi_1 \mathcal{U} \phi_2) = 0 \}
```

```
R = \operatorname{Sat}(\phi_2)
\operatorname{done} = \operatorname{false}
while \operatorname{done} = \operatorname{false} do
R' = R \cup \{s \in \operatorname{Sat}(\phi_1) \mid \exists a \in \operatorname{Act}(s), \exists q' \in R \text{ s.t. } \sigma_a^q(q') > 0 \}
if R' = R then
\operatorname{done} = \operatorname{true}
end if
R = R'
end while
\operatorname{return} \ Q \setminus R
```

Optimal control synthesis for Simple PCTL continued..

- Consider the example: $P_{max=?}(\neg R_3 \mathcal{U} R_2)$
- $S^{yes} = Sat(\phi_2) = \{q_2\}, Sat(\phi_1) = \{q_0, q_1, q_2\}$
- Finding S^{no} : Initially $R = \{q_2\}$. After first iteration $R = \{q_1, q_2\}$. After second iteration $R = \{q_0, q_1, q_2\}$. Hence $S^{no} = \{q_3\}$.
- To compute the optimal probabilities for the states in $S^{?}$, we will use linear programming problem which is in fact maximum reachability problem.

Unbounded Until Operator

Example

minimize

$$\sum_{s_i \in S?} x_{s_i}$$

subject to:

$$x_{s_i} \ge \sum_{s_j \in S^?} \sigma_a^{s_i}(s_j).x_{s_j} + \sum_{s_j \in S^{yes}} \sigma_a^{s_i}(s_j)$$

for all $s_i \in S$? and $(a, \sigma_a) \in Steps(s_i)$

• Linear Equations:

$$x_0 \ge x_1$$

 $x_1 \ge 0.1x_1 + 0.5$
 $x_1 \ge 0.2x_1 + 0.8x_0$
 $x_1 \ge 0.56$

• Solution to this will be $x_0 = x_1 = 0.56$.

Complex PCTL Formulas

- The formulas which consists of more than one P or ε operator.
- The problem can be solved if all the inner P operators are of the form $P_{\bowtie}[\phi]$ rather than of the form $P_{max=?}[\psi]$
- The general nested formula are of the form:

Complex PCTL Specification

- - Find Optimal control Policy for ϕ_R and use the Next Optimal Algorithm on this.
- - States satisfying ϕ_R are directly marked.
 - Find Stationery Control Policy using the algorithms described above for ϕ_L .
 - Remove all the other actions from MDP which are not part of the above policy.
 - Now this problem can be solved using the above algorithms for simple PCTL formulas.

Extensions

- Dynamic Environment: [2]
 - Finding a control strategy that maximizes a PCTL specification in a dynamic environment composed with doors (which can open/close in sync with robot transition) under different levels of assumptions:
 - With prior knowledge on probability of door being open/closed and perfect sensing of the state of door.
 - With only perfect sensing of the state of door.
 - With error in sensing the state of door (Most Realistic Case).
- Continuous-time Dynamic Environment with time-bounded specification: [3]
 - Problem Statement being same as above, but here doors need not make transition in sync with robot motion.
 - Change in state of door is assumed to follow poisson distribution.
 - The time for which robot stays in a given region is modeled as exponential distribution.

Extensions

continued ...

- Presence of other agents: [5]
 - To generate optimal control policy for a robot in presence of independent uncontrollable agents in a graph like environment when mission specification is given as an sc-LTL formula.
 - For example, consider a setting where a car(robot) is required to go from one location to another without colliding with the pedestrians(agents) crossing the road can be formulated as the above problem.
- Uncertain Environment: [4]
 - To generate a control strategy for a robot in presence of non-determinism not only in the robot motion, but also in the robot's observation of properties in the environment.
 - For example, we can model a task where a robot is operating in an indoor environment, and is required to pick-up and deliver items among some rooms. Non-determinism occurs in observations because items may or may not be available when a robot visits a room.

References

- [1] Morteza Lahijanian, Sean B. Andersson, Calin Belta. "Temporal Logic Motion Planning and Control With Probabilistic Satisfaction Guarantees" (Presented in the presentation)
- [2] I. Medina Ayala, Sean B. Andersson, Calin Belta. "Temporal logic control in dynamic environments with probabilistic satisfaction guarantees"
- [3] I. Medina Ayala, Sean B. Andersson, Calin Belta. "Probabilistic control from time-bounded temporal logic specifications in dynamic environments"
- [4] Xu Chu Ding, Stephen L. Smith, Calin Belta, Daniela Rus "LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees"

Thank You

Questions?