														٧	901		1			,	4
ŀ	50		pivot	5		Joseph	550		2 okt	000		Pivot,	তা	O	tros tros	200	851	350	1974	Paray	Quick
0	00	SHOP		30	_		S		-	<u>ن</u>	5.		80	30	+ the	greater than	b	301 2	743	15 P	K Soat
	ō	incars		ō	JUNE	-	. 10	increment		õ	increment		ō	10		tha	ging		10 4	div	- +3
		ment		90	pent	*	90	taga		90	100		90	90	fallowing		the s	300	list Contains	divide inta	
	080	incarementating	1	00	margine 1 to marginier		O O	ind i		800	i paintex	00	80	80	house (pivat.	deme	then on equa	25.5		
	20	-		2	nter		00	pointex		20	roter		20	20					きゃっ	two p	
/ 1	040	decrement	1	5			90			01		-	01	040	by using quick		-	to pi	plemenate	parts	
č	4	pent	- 2	1		۷.	4		۷,	2011		٠. ١	1	0 40	fog (000	1000		THE 4391	

		-										-		1
\$ \$	1	500		ত্ব		σ1 .o			Q Q			0		2.00
00	8-	30	8400	30	N	ပ		0	30 10			0	11:00	100
To	8	0 40	1	10 40	20 4	ō		n			80> 50	ē	swex3us	- 1 G
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 Crossed	C 12	incrementing	20	20 10	40	ap A	2 -	40 80	derscrement i	Stop	- 80 HO 80	100	20
pivot 80	ALVI A	4.00	phing	E. 00	increment	- 0	1 1	ال محمد ال		03003		102		20
50	Q. D	용		0	o+ i	C. 83	EA [J	00	£.	toement	0 80		L.0
4	pivot	11	deinementa	+ ¹		40		2	با 0		+	0		

0	Divot	2 6		20					100	2000		P			-	•	2
Swap Swap	- 1	dape			IR		20	840			S)	POVOL	20	Ξ.	Divot.	20	51
	C-10	inex		ã	+ uswanzur		10		-	0	ما مو		O O	y cocement		00	
(C)	0	portementing	Z.	30		L.	30	Jamas	۷.	ŏ	mano		õ	1 asu		10	
	40	Hing 1		0.4	i pointer		40	decrementing ;		40	Stop incrementing i	۲.	0,1	i paintea	٠.	0	
Pivot		decrement			en no			Swap Alijs Alj			\$			terr			
		t near	1					A[:]			decrement	'n					
				1	П			SAI			Pt.	J					

(G) (2)	*					٠.			11	1		*
Sort the following armay by using quick bent	nal Sorted armay	i has prossed Swap A [J] & A [Piot]	80 70 90	increment i & decrement i	80 쿠o qo i j		Stop incrementing i & stop	0	inerement i	Pivot J.	80 90 70	NST:-

.

Divid 500

40

Ω

15

9

5

25

P- 11

-1

increment i pointer.

٠

60

CI

ρ.

173

90

00

S

paro V.

ingrement

pointer.

50 40 5 9 45 25 65 90 75
c. 6
2
Swap A [i] & A [i]
Cho d
50 40 5 9 45 90 65 25 75
Stap incrementing i decrement i
T H
in covernent i pointer
000000
40 5 9 45 92 65 04
increment i pointer
50 40 5 9 45 90 65 25 35
increment i pointer
0.13

DIVOT 10 Not 0 01 11.7 -925 in in 101 0.00 5 to 00 to 10 Private Total 一品 F-108 in 1 10 Promotoria degra 0.7 0 10 7.intermed. 40 d. connewting is - 1 O Contract UI decrement Č. 75 J HILLS MOST u Mort UT 10 UI. 14 -0 O UL -5 C) 4. COSIDER 5 1 D. Cer (-----2.6 ۵ 01 pointin Ut jp-SOUTH tig L 20.00 E 0 C IS 25 15 L. 01 6) Jonach 5.00 eryat 15 - 01 00 00 -187 1ú D +1 41 41 O Un

0.55 104.0 63 2000 3000 Ping : Panid C PROST 20 90 8 - 0 17.11600 14 4 Ports 11 5 - . 30 0 1 dovesin A | cival 5 Laterback 15

```
180
                                                                                                                                                                                                                 Algorithm Quick Sort
                                                                                                                                                                                 200
                                                                          0
                                                                                                                    Swap
                                                                                                                                                                 partition
                                                                                                                                                                         en d
                                                                                       auntar
                                                                                              Swap 1
                                                                                                            end
                                                                                                      end
                                                                                                                                                 11
                                                                                                                                                                                                    low < high
                                                                                                                                                                              A 9+1 , high)
                                                                                                                                                                                      A 100 9-17
                                                                         08
                                           partition
                                                                                                                                                                                             Darkition
                                                                                                                                                  10w 1
                                                                                                                    (A (i)
                                                                          3
                                                                                                                                                      A [high]
                                    A
                                                                                                                                                                 D
                                                                                        (1+-
low to high-
                                                                                                A ( ;+;)
               a low-
                              D
                      70
                                                                                                                                                              Jow.
                                                                                                                                         to high - 1
                                    [high]
                                                                           90
                                                        high = 6
                                                                                                                                                                                                   ) then
                              6
                                                                                                                    B
                                          (A 10 16
                                                                                                                                                              high)
                                                                         0.7
                                                                                                                                                                          11 right Sublist
                                                                                                                                                                                           Llow
                                                                                                                                                                                                              A low high
                                                                                                                                  then
                                                                                              A ( high)
                                                                         SI
                                                                               ь
                                                                         47
```

53/02/25

Basel ase Complexity: & Average Case:

Besi the Sublist to get Storted for the 1,64 and (3)= Replace is deivided in middle. n/2 27(3) 3900 3 + 5 + 5 7(11/2 Complexity occurs when Sublist toget by the right Time taken + n -> (Time taken to SOTTED. combine left Sublist

2年(日)十日

100 11 4T(2)+n+0 (1/2) in ean 4T (1/4) +2n 2個「(九)十九)十九 in pan (= n by 1/2 in eat ()

27 000 (I) abb U! 1 P

Replace

P G

24

20

DU4 7/14 27 (4)+6)+2n

3 P F 8 (mg) +3n +×+27

Herrates of Selection Sort. Morst Warst Case occurs when the After each iterration one clement get Son ted Sarted. 北京 はシェロ Complexity = o (nlog = n Replace o Problem of Size 1 (n) = T(n-1)+n 3 (a86:-3 3" Banif a rod (n) = T(n-1)+ n and inner lace K = log = n S 3 3 if. ひゅっと 5 D* 237 Campanisan is n log 2 n 0+ 10 77 25 E K 5 <u>5</u>-Jedunged mye list is already Same as that F Go L

*

Sort the following among using Pivot POVOE Replace n by 3 povot 77 3 = emplexity = o(nz) Dut HH 0-2 Tin-i) in egn (T(n-k)+T(n-k+1)+T(n-k+2)+---+n 3 22 20 1(11-3) increment Tuement シュナラリズ D (D+0) 1+2+3+ 2 11 T(n-2) 3 33 negement S S n-2)+(n-1) n-2 in eqn O n-3) + (n-2) + (n-2) + (n-1)+n 4)+(5-1)+ 47 pointer 11 i pointex peinter = + 3 57. UI UI S Or n-1 in pan (1) 500 4.0 66 quick Gart

401

Pivot 4 pivot Povid Pivot pivot 44 44 Pol tot 44 tovid 44 Stop decomment has Crossed; 22 22 increment 22 22 22 20 20 Swap A Stop increment i pointer Stop increment is decrement the Stop decrement decrement demoment 3 S ယ 33 33 3 38 多三 i pointer 55 -a +1 = 20 五五 [j] & A 44 -- 01 O Swap H(i) = Z. 07 UI UI D 44 [Pivot 并干 +++ 75 17 五年 55 99 66 99 66 ALI 00 90 66

11 22 33 44 55 66 77
Ans
66 77
Pivot J
74 66
100W0 55
J, pivot ;
55 74 66
pivot 1,3
Stop increment i & devrement i
pivot ; J
55 77 66
incorement i pointer
pivot.
39 tt as
261
757 John 167
ω

+4 Sant Salution Sart. SalvHan of 0 4 paiwellat 2, divided independently 0 4 whole. both the into two parts annay by using o Subproblems ō δj Cambining each Menge #Putque

*	Best Case,	average	Cuse	8,	worst	Case Camplerit
		1		_		

(n) = T(n12)+T(n12)+n time taken Time taken by Time taken by to Combine eft Sublist to right Sublist to two parts get Sorted

get Sorted.

T(n) = 2:00T ($n_{12}) + n$

Same as that of Bestrase average case of quick sort algorithm.

Complexity = o(n log2n)

* Binary Search: -An element which is to be search from list of em elements Sortedinanamay is called key elements. let A(m) is mid element then there are three conditions i) key= A(m) then desired element is found in the list-likey > A(m)) we need to 10W = mid+1) gearch right Sublist iii) key < A(m) ? we need to search high = mid-1) left Sublist gill Find the element 60 from the following array by using binary Search. 10 20 30 40 50 60 70 Step I: - Armange the elements in ascending order 10w = 1 , high = 7 A(mid) = 60 = key mid = low + high desired element is found in the list. mid = 1++ = 4 A(mid) = 40 Key > A(mid) True low=mid+1 10w= 4+1=5 mid = 5+7 = 6

11 02 49 00 05 68 71 82 1 2 3 4 5 6 7 8 icu = 1 righ = 3 mid = 1 = 4 A (mid) = 44 key < n(mid) True high + mid €1 4 001 - B+3 mid = 2 A(mid) = 22 key > A(mid) low = mid+1 = 2+1 low = 3 mid = 3+3 mid = 3D(mid) = 33

Algorithm binary Search low < 1 $high \leftarrow n$ While low < high do mid = low + high if A[mid] = key then return mid else if A (mid) < key then low < mid+1 high ← mid-1 end end * Time Complexity: -In every iteration binary search does one Camparasion and Creates the new problem of Size n/2. $T(n) = T(\underline{n}) + 1 - 0$ -T(n)=1 if n=1 Replace n by 12 in ear (1) put T(n12) in ean 1 $\pm (v) = \pm (\overline{v}) + i + i$ T(n)= T(元)+2 · -

Replace hye my in ear () as nby m/2 in ear ()

$$T(\frac{n}{4}) = T(\frac{n}{8}) + 1$$

put $T(\frac{n}{4})$ in eq n (2)

 $T(\frac{n}{4}) = T(\frac{n}{8}) + 1 + 2$
 $T(\frac{n}{8}) = T(\frac{n}{8}) + 3$
 $T(\frac{n}{8$

Fare_____

A(mid) = 45

key >
$$\bigcirc$$
 A(mid) True

low = mid+1

= 5+1

low = 6

mid = 6+9

2

mid = 7

A(mid) = 65

key > A(mid) True

low = mid+1

= 7+1

low = 8

mid = 8+9

mid = 8

A(mid) = 75

key = A(mid)

Flement is found in the list.

Min | Max Algorithm: find min and max Value from the following Trop amay. 25 75 65 45 90 50 40 -5min =50 max= 50 Yninzo min=-5 min40 maxig Max=50 Max = 50 min=-9 110X - 50 min = - a min-9 min=9 max = 90 max-90 max = 80 min=-9 max = 90 65 -13 090 135 70 min=-13 min=70 mox=290 min=70 Max= 10 min=70 max=135 max= 290 min=+-13 min=-13 mine-13 max=290 max=290 max=290 Algorithm Max-Min (A [1----n], max, min) max < min < A [1] for (i=2 ton) do A[i] > max) then max <- A [i] A[i] < min) then min < A[i]

Time Complexity:problem is divided intortuo Subproblems of Size & and two comparisons are needed to combine the result. $T(n) = 2T(\frac{n}{2}) + 2$ if n > 2 T(2) = 1丁(1)=0 丁(n)= 2T(皇)+2 Replace n by n in ean O T(2) = 2T(2) +2 -0 Put T(2) in ear 1 $T(n) = 2(2T(\frac{n}{4})+2)+2$ T(n) = 4T(2) +4+2 -0 Replace n by 4 in ear 1 arn by 12 in egr 1 $T(\frac{n}{4}) = 2T(\frac{n}{2}) + 2$ Put T(4) in ear (11) $T(n) = 8T(\frac{n}{3}) + 8 + 4 + 2$ $T(n) = 2^3 T(\frac{n}{2^3}) + 2^3 + 2^2 + 2^4$ $T(n) = 2^k T(\frac{n}{2^k}) + 2^{2^{k}} + 2^2 + 2^3 + \cdots + 2^k$ $\frac{n}{2^k} = 2$ $\frac{n}{2} = 20^k$ $n = 2^{k+1}$ $T(n) = 2^k T(2) + 2(2^k - 1)$

Divide & Grace of Careedy Conquery approach (1) This used to find Solution I) This used to fine to the problem II) physical Solution; (2) This approach problem II) physical Solution; (3) Solved independently. (4) East the Solutions of Solutions of Picked III) (5) Solved independently. (6) Both the Solutions (7) Both the Solutions (8) Solution of Solutions (9) To this approach is IV) Gareedy method is less effected to Solutions. (10) To this approach is IV) Gareedy method is less effected to Solutions. (11) Combining the Solutions (12) Combined to Solutions (13) Solution of Solutions (14) Company Solutions (15) Company Solutions (16) Compined to Solutions (17) Compined to Solutions (18) Compined to Solutions (19) Compined to Solutions (10) Compined to Solutions (11) Compined to Solutions (12) Compined to Solutions (13) Compined to Solutions (14) Compined to Solutions (15) Compined to Solutions (16) Compined to Solutions (17) Compined to Solutions (18) Compined to Solutions (19) Compined to Solut	*	Single Source Shartest path (path (10 + A)
This used to find Salution 1) to the paroblem To this approach paroblem 1) is divide into two Sub- paroblems each Subparoblem is divide into two Sub- paroblems each Subparoblem of both the Salutions of both the Sub-paroblems into a Solution of To this approach is 10 To this approach is 10 cof yework of Solutions of yework of Solutions Sewrch & min max olgorithm.		Divide & Canquer approach	Method.
To this approach pashlem 1) is divide into two Sub- problems each Sub-problem is solved independently. Gembinaing the Salutions of both the Sub-problems into a Solution of To this approach is 10 To this approach is 10 less effecient because represent solutions. Of rework of Solutions Search & min max olganithm. Search & min max digarithm.	0	It is used to find Solution to the problem	It is u
To this apprach is less effectent because of gework of Solutions. Eg:- Quick Sort, binary Search & min max algorithm.	=		generated and optimal Salution is Salution is picked up
Bearch & min max olgarithm.		To this apprach is less effectent because of sewark of Solutions.	morre efficaint.
	2	eg:- Buick Sart, binary Bearch & min max olgorithm.	W) eg: - Single Saural Shartest path. Jab Sequencing with deadline and minimal Spanning tree algorith knap stack parable

Ċŧ	1
15	-1
Ш	-11
И	- 17
	-17.
	20
2	2
7	31
X.	12

Disikstra's Algorithm: - (885P). It is used to find shartest path from Source to destination.	Algarithm Diskstra's (G1.8.t): - 8 -> Source Vertex t-> target Vertex	dist[5] <- 0 p 67 <- nil	if V ≠ S them dist[v] ← ∞ p[v] ← nil	end	U -> Unprracessed Vextex in 9 having minimum distance if U == t then	for each advacent node N of u do Nal [v] - dist [u] + weight (u,v)	if Vally 1.< dist [v] then dist [v] - val [v] P[v] + u end end
. Diej	Alger S	4			24	G.	

having Val (F) - dist (A) + W+ (A,E dist(A) + wt (A,B) - Unpractessed Vertexing 10 8 A=0,6,F minimum distance. 0 i. < dist ni. P (B) = A dist 8 + 0 1 dist (B) = 1 8 dist Adjacent of Val(B) = dis Val (E) 0 ä Va1(B) D 0 distu dist dist Newton 0 ゴ

Val (F) = dist(A) + wt (A,F) Lot (F) < dis(F) Alis (F) = 8 P(F) = A Alis (F) = 8 Alis (F) = 8 Alis (G) = 8 Alis (G) = 8 Alis (G) = 9 Alis (G) = 4 Alis (G) = 6 Alis (G) = 4 Alis (G) = 6 Alis (G) = 4 Alis (G) = 4	ot (A,F)	- ବ୍ୟ	0			B B	8 7	A A	Unprocessed Vextex in & having	nce.		CJ.	dist(B) + wt (B.f)			0					A B		(c) + (ii+ (E)F)	+ 22	
Val(E) = Val(E) = Joh Val(E) = Addia Val(E) = Addia Val(E) = Addia Val(E) = Addia Addia Val(E)	dist(A) + u	10 48 1	(F) < dis (F)	die (f) = 8	P(P) = A	8	-	В	processed	mum dista	0 = 0	cont of B=	-	10	Įŧ II	(r) -< dist (14 00	F = 4	Œ	0	i.	U = P	40 t	1001	0 11

	AF E = 9 3		A. > B > F	Value = 7	Suppose diskotra Algarithm is run on the following graph Starting at nade A.	Oraw a table Showing the intermediate	iterration of the algorithm and show thefinal	2 10 1 20,	A)=0	dist(E) = dist(E) = dist(a) = dist(H) = 00		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2:4	Adjacent of A = B.E.F	dist [8] = 1 , dist [6] = 4 , dist(E) = 8
9	9 = 4 J = N	Final	H.		Got Suppose dist	Oraw a table	Shortest Bath of tree.	() 8 / 17 / 17 / 17 / 17 / 17 / 17 / 17 /	@ dist[A]=0 P(A)= nil	dist(P) = dist	P (0) = P	Verriex [u]	1	Adjacent	dist [e

nil A nil nil A A nil sert of B = C.f.G ist [c] = 3 dist [c] = 4 o 1 3 00 4 4 4 o 1 3 00 4 4 4 o 1 3 00 4 4 7 liacent of C = D.G nil A B C P E E A B C P A B C P A B	diet Fil	•	8	8	8			8	8	
Adjacent of B = C. F.G. dist[G] = 3 dist [G] = 1 Vertexu A B C D E F G H dist[U] 0 1 3 00 4 1 4 00 p[U] nil A B nil A B B nil Adjacent of C = D.G. dist[D] = 4 dist[G] = 5 Vertexu A B C D E F G H dist[U] O 1 3 4 4 7 5 00 p[U] D 1 3 4 4 7 5 00 p[U] D 1 3 4 4 7 5 00 p[U] D 1 3 4 4 7 5 00 dist[G] - Vol(G) = 5 dist[G] - Vol(G) = 6 dist(G) - Vol(G) = 6 dist(H) = 8	(n) d	- - -	æ	E	-7	T	T)	Ē	Ē	
dist [c] = 3 dist [k] = 4 dist[G] = 1 Ventexu A B C D E F G H dis [u] Q 1 3 00 4 4 4 00 plu] nil A B nil A B B nil Aliacent of C = D, G dist[U] O 1 3 4 4 7 5 00 plu] nil A B C P F G H Adjacent of D = G, H Val(G) = 5 Adjacent of D = G, H Val(G) = 5 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent of D = G, H Val(G) = 6 Aliacent (H) = 8	Adian	c + u o	4	b	3	3	. 5			
Ventexy A B C D E F G H dis[u] 0 1 3 00 4 4 4 00 plu] 0 1 3 00 4 4 4 00 Aljacent of C = D, G dist[D] = 4	dig	St Co	1	cD.	70	40	12	t† #	015	t (G) - 1
disful o 1 3 00 4 4 7 00 Pluz mil A B mil A B B mil Adiacentef C = D. G. Vertex 4 A B C D E F G. H disful O 1 3 4 4 7 5 00 Pluz mil A B C A B C mil Adiacent of D = G. H Vol(6) = 50.1 H Olist (H) = 50.1 H	Vertex 4	А	æ	U	0	Œ	Q.	J	I	
Ajacent of C = D. G. ToJ = 4 dist For A B C D E F O 1 3 4 4 7 O 1 3 4 4 7 O 1 3 6 4 8 Jacent of D = G.H No change. 1 5 1 (H) = 8	dis [u]	Đ		9	8	7	14	4	8	
diacent of C = D, G TDJ = 4	P [4]	Ē	Œ	8	Ē	Œ	2	8	Ē	
10)= 4 distle A B C D E E O 1 3 4 4 7 jacent of D = Gi.H Nochange. 101 (H) = 8	Pol	jaren	+ 0 +	U	11	0	S	1	1	
A B C D E F O 1 3 4 4 7 Dil A B C A B Jacent of D = G1,H Dist (G1) = No change.	dist	0	J			0	18	5	52	
iacent of D = G1, H Jacent of D = G1, H No change. 10 t (H) = 8	Vertexy	В	00	0			a	Q.	J	工
jacent of D = Gr, H dist (Cr) = No change.	dis [4]	0	-	2.17	~	.7	ı	ť+	10	8
	CM 9	nil	Œ	5	-	¢/	œ	ත	U	nil
	170	000	40	0	11	5	=	dii	ValCo	3 = 5
Nockunge.	7	191	E	b				380	Valle	3=0196
dist (H) = 8			No	100	9	à				
The state of the s	0.10	3 t (F	1)	500	2					

	1	í	١
1	1		1
1	Į.	J	l
1	d	4	
W		1	2

dis+[u]								Ì
(n)d	e	0	8	8	O	8	30	80
1	Li4	-		Tur			-	n.i
0=2								
adjacent of 2-3	t of 2	6)						
dist	diet (3) = 30	30						
	P(3)=	2						
Ventex u	-	4	60	2	t()		9	11-
diet[iu]	0	10	30	8	8		30	8
P(u)	ni)	-	N	id	j.		-	nij
11:3								
adjacent of 3 = 4, E	Ju t	1 1 2	ıΩ					
10	Nin+ 20(4) = 45	1=(5	10					
	dist (5) = 35	5 = 3	B					
(h)d	P(4) = 3	0.	(3)	co.				
Now ton u	1	ч	C.	7	மி		S	т+
diat[u]	ю	10	30		10	5	8	8
(M)d		-	CI		50	(7)	-	-Ĉ
9=11								
adjacent Bof 6 = #	Jog	# = 9						
dis	dist (7)=65	59=						
Ventex u	-	4	60	7	r	vo	++	
dist [u]	0	10	38	20	35	30	7.5	
P(S)	Į.į	-	2	3	m	-	и	
15								
7 7		1						
DOLOGENT OF	Cont of	Ψ.					ĺ	

	They are
(4) (4) Aich (7)	
dist (a)=42	
(I= 4	
adjacent of 7 - 9 3	
24 d	
0 = (1) (4)	
No change:	
Val (7) = 65	
Nochanap	
Val (5) = 57	
No change	
Final table showlest path	4
1-2-3-5-4	

deadline :-With Jab Sequencing *

with deadline is to Objective of job Sequencing

oldico, Completed MAX Profit. jobs (uill be gives given deadling Schedule the Algorithm:-.

Job - Sequencing (J.D.P) N Jobs To Kossa Algorithm Thout

for done at it. Ordensed deadline for each job Profit associated in demonstra 40 daray of Sdoi darray F Sport à

Sp <- o Sum of the profit for i=1 to N do. if iob in latest passible free slot meeting its deadline. S <- Su J(i) Whion operation S <- Su J(i) Whion operation Sp <- Su J(i) Whion operation Ond Sp <- Su J(i) Whion operation Sp <- Su J(i)
--

1			ä	4
1		7	f	#
	1	Ť	1	1
	1	1	Ų	1
	l	7		1
	1			4

	1		7		
To S	Salve the fallowing instances of Job Sequencing	sing in 9.1	an res	of 30	b Sequencing
	0 10 10				
	P., Pa, Pa, Pu, Pa = 20, 15, 10, 5, 1	B = 201	15, 10,	10	
1	dida, da, da, de = 2,2,1,3,3	8 = 2,5	2,1,3	୯	
	profit: 20	- 5	10	ß	
			Pa	P4	Ps
		d	-	m	3
	d d d				
	d	4 5			
	Alecard 15	-, 0000	Po > P. > PL	p, J	77
	powfit.	1:- 15	15 + 20 + 5 = 40	7	0
*	Knap Back problem:-	coplem:			
	Consider that there are noticets onch abjects	thear a	u du	hiato	Parch o high
	has weight and profit associated with it-	ard ba	G+ 080	sacial	ed with it.
	Objective is to choose only those abjects that	ours pag	fit.	Hras.	abjects the
	Fractional-Knapsack (weight (1), profit (1)	Sock (u	seight (1	6	profit (el-o)
	Meight = 0		ode	(ghacity)	
	The second second				1

	O				c	200	27	571	ı,	One Line	Towns 7 200									Weight = 10+40 = 50	380			Ġ
۵	120	24	L		5	200	000	3	0	3	1		0	100		No		Trup		= 05	280	ă		Fals
U	120	20	S							7 0	9	-	101	100	W =	9		1		10+	100 4	09 =		60-
8	00	10	0		(200	707	7		11	0+10 560	2 [1] = 1	0	0	weight == w	10 = = 60		5 60	2 = 1	+	D -	50 = = 60 No		VI 0
⊄	280	40	1+		C.	2 4	2	-	0	4 of (=) to 4	+0	×	Weight = 0+10=10	profit = 0+100=	weig	0	11.22	+40 560	200	4plaW	P ox o	ĬΩ	9	50 + 20 6 60 - Folse
Hem	prof/4	weight	ā	ig	.tom	Profit	Weight	Pia.	ã	5			(1)	posed				0						48.7

) I I I																													
19	1111																	t	9 1	20	09	D.	9	P:/w;		0.83	±9.0	0.0	45
	m * [0									00				t	7	200	70	-		ā	-	ò	Ö	Ó	ó
	+ % [i]	10 X 20	20		+10 ×120	20	09+					X	14	Secretary of knoonshock = 100	30.40.50	Je Ja Ju, Te	9 40 160	ł	13	30	99	84.0		weight	710	09	30	20	99
	Weight	50+10		2 60 E	380+10		380	- 440	09 = =	09==09	ak	Return X		Kook	200	1.1	30,66		10	50	80	7	m	1	- 1				
	74	ø		15	11		ti			6.2	Break	tax.	1.44	40	5		20		F	0	00	4	0	Profit	40	50	20	0	00
i i	Meight	•			Dro Fit				tilleight				-	No. of about	Commercial	: tome =		,	items	Creatit +	(Upicible	5.4	iŝ	Titems	Ť	4	Ť	F	F
)(-										Ī	1200															

Capacity = 100	For i= 1405	0+40 5 100 True		1t = 0+40=40	profit=0+40=40	weight = = w	40 = = 10 No	i= 2	60 ≤ 100 True	-2	Profit = 40+50 = 90	$\omega_{eight} = \omega$	100 = = 100 466	Saga K	Proposit is till no mare items can be added	Weight = 100	profit = 90	mplexity:-	Died marged sort or quick Sort then the Complexity is O(n log , n).	loop Gruns for a stone
9	Eag	O	8	tueigh	H out o				09 + 07	tweigh	Prof	giam		د	Anap Sack added	3	4	* Time Complexity:-	Used mas Camplexi	Cord too