<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:20:51

Lecture due Aug 18, 2021 20:30 IST Completed

Explore

Vectors with unit length

0:00 / 0:00 ▶ 2.0x X CC " Start of transcript. Skip to the end.

PROFESSOR: Here's another very common example

of a question about vectors in the same direction.

It's the problem of finding a vector in a given

direction with a given length.

So-- suppose we have to find a vector--

find a unit vector--

I'll remind everybody what that is in a

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Definition 6.1

A vector $ec{v}$ is a **unit vector** if $|ec{v}|=1$

Note on notation: If \vec{v} is any vector, then \hat{v} is a unit vector pointing in the same direction as \vec{v} .

Example 6.2 Find a unit vector in the same direction as $\langle 2, 1 \rangle$.

Solution: We want to find

$$\hat{v}=\lambda\langle 2,1
angle$$

where we choose $\pmb{\lambda}$ so that $|\pmb{\hat{v}}|=\pmb{1}$. So we want

$$1 = |\hat{\boldsymbol{v}}| \tag{3.12}$$

$$= |\lambda\langle 2, 1\rangle| \tag{3.13}$$

 $= \lambda |\langle 2,1
angle |$

$$= \lambda\sqrt{5} \implies \lambda = \frac{1}{\sqrt{5}}.$$
 (3.15)

So

$$\hat{v}=rac{1}{\sqrt{5}}\langle 2,1
angle.$$

A formula for unit vectors

1.0/1 point (graded)

Find a unit vector that points in the same direction as a nonzero vector $\langle v_1, v_2 \rangle$.

(Enter you answer as a vector with two components inside square brackets, e.g. <code>[a,b]</code> for $\langle a,b \rangle$, or as a scalar multiple times a vector, e.g. <code>[2*[1,1]]</code>. Type <code>v_1</code> for v_1 and <code>v_2</code> for v_2 .)

Solution:

We want to find a vector

$$\hat{v}=\lambda \langle v_1,v_2
angle,$$

where we choose $\pmb{\lambda}$ so that $|\hat{\pmb{v}}|=1$.

Thus we want

$$1 = \lambda |\langle v_1, v_2 \rangle| \tag{3.16}$$

$$= \lambda \sqrt{v_1^2 + v_2^2} \qquad \Longrightarrow \qquad \boxed{\lambda = \frac{1}{\sqrt{v_1^2 + v_2^2}}} \tag{3.17}$$

Therefore

$$\hat{v}=rac{1}{\sqrt{v_1^2+v_2^2}}\langle v_1,v_2
angle$$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

6. Unit vectors

Show all posts

Topic: Unit 2: Geometry of Derivatives / 6. Unit vectors

Hide Discussion

by recent activity >

Add a Post

? [STAFF] Could we get extension, please?

ars in the g 3 2
ars in the g 3
2

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>