

HOTEL CHAIN C FORECASTING MODEL

Hiromi Nakashima 20201025 Manuel Carreiras 20200500 Luis Agottani 20200621 Venâncio Munhangane 202005791

WHAT EXPECT OF TODAY

CONTEXT

BUSINESS UNDERSTANDING

CLASSIFICATION MODEL

FORECASTING

RESULTS

IMPROVEMENTS

CONTEXT

- Hotel Chain C suffers from numerous cancellations.
- Lost more then 10 Mi Euros
- Goal to implement prediction models to forecast net demand on reservations
- Reduce in 20% the cancellations

BUSINESS UNDERSTANDING

Business Objectives	Data Mining Goals	Success Criteria		
Implement a predictive model to classify the reservations of the hotel	Apply a classification algorithm to identify the booking cancellations.	Evaluation of 90% of the classification model		
Identify the probability of Booking with high likelikood of cancelling	Implement a forecast algorithm to predict the booking goals	Evaluation of 80% in forecasting model		

DECREASE IN 20% THE FUTURE BOOKING CANCEL

CLASSIFICATION MODEL

- Classify the H2 cancelling customers based on they profile;
- Random Forest Machine Learning method

CLASSIFICATION MODEL

Training Results

	Halling	y ixesuits		
Model	precision	recall	F1	accuracy
Random Forest + unbalanced dataset + default hyperparameter	0.87 (0): 0.86 (1): 0.88	0.86 (0): 0.92 (1): 0.79	0.86 (0): 0.89 (1): 0.83	0.93
Random Forest + SMOTE-NC + Features Selection + default hyperparameter	0.86 (0): 0.87 (1): 0.86	0.85 (0): 0.91 (1): 0.80	0.86 (0) :0.89 (1): 0.83	0.93
Random Forest + SMOTE-NC + Features Selection + RandomizedSearch	0.86	0.84	0.85	0.93

Testing Results

Model	precision	recall	F1	accuracy
Random Forest + SMOTE-NC +Features Selection + default hyperparameter	0.86	0.85	0.86	0.93

FORECASTING

Date

Confirmed Bookings

700

600

200

FORECASTING

RESULTS

Business Objectives

Implement a predictive model to classify future reservations of the hotel

+

Predict the number of cancellation per season

Success Criteria

GOAL OF BOOKINGS TO REDUCE 20% OF CANCELLING

IMPROVEMENTS

- Define the probability for the Hotel's capacity is overpast
- Forecast the number of Customers not showing up and combine this with previous analysis

$$\binom{k-1}{r-1} p^r (1-p)^{k-r}$$

THANK