28. a.	Calculate the S/N ratio and factor effect for the following data. Plot the factor effect	10	3	3	4,3,3
	diagram. Assume smaller the better S/N ratio.				

Expt. No	Speed	Feed rate	Depth of cut	GR
1	33(1)	2.5 (1)	0.5(1)	10
2	33(1)	5.0(2)	1.0(2)	12
3	45(2)	2.5(1)	1.0(2)	15
4	45(2)	5.0(2)	0.5(1)	20

(OR)

b. The objective of the research is an experimental investigation to find optimization of machining parameters of EDM machine for machining steel material EW-8 using Taguchi's DOE.

Column	Factors	Units	Level – 1	Level – 2
1	Peak current	Amps	3	5
2	Pulse time	μ- sec	25	52
3	Gap voltage	Volts	45	50
4	Fluid pressure	Kg/cm	0.5	0.75

Ra values obtained according to the experiment sequence are 2.625, 1.905, 2.5275, 2.99, 4.4325, 4.10, 3.38, 3.015, 3.312. Find out the main effect and draw the factor effect diagram and identify the optimum process parameters.

29. a. Write down about central composite design for various factor.

or. 10 2 4 4

(OR)

- b. Response surface for certain manufacturing process was defined by equation $Z = 17x_1 + 27x_2 x_1^2 0.9x_2^2$. Determine the approximate optimum operating point using the method of steepest ascent. The starting point of research should be $X_1 = 2$ and $X_2 = 3$ and step size e = 4.0
- 30. a. To asses the relationship between sintering times of 100, 150 and 200 min strength of 3 different metals with 27 experiments are conducted. Complete the ANOVA table and answer the following. What design was employed? What about the total number of observations? Contribution of each factor? At 5% level of significance, can you conclude that metal type have different effect?

Source of variations	Degree of	Sum of	Mean	F	P
	freedom	square	square		
Sintering time	?	8.22	4.11	1.71	0.2044
Metal type	?	20.22	?	4.2	0.0318
Sintering time X metal	?	46.22	11.55	?	0.0082
type					
Error	18	?	2.407		
Total	?	118.0			

(OR)

b. Explain interaction effects in ANOVA.

10 2 5 4,5,5

Reg. No.								
10.			2					

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth and Seventh Semester

18MEO113T – DESIGN OF EXPERIMENTS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

- **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- ii) Part B should be answered in answer booklet.

Time	: 2½	Hours	Max	. M	arks	s: 75
		$PART - A (25 \times 1 = 25 Marks)$	Marks	BL	co	PO
		Answer ALL Questions				
	1. R	epeatability refers to	1	1	1	2,1,1
	(/					
	((C) Variability due to gauge (D) Variability due to interaction				
	2. W	Thich of these does not appear into a typical process model?	1	4	1	2,1,1
	(A	A) Input factors (B) Controllable input factors				
	((C) Uncontrollable input factors (D) Acceptance sampling				
		process has 2 levels and 2 factors, find out the total number of experiment trial ns	1	4	1	2,1,2
	(A	A) 2 (B) 4				
	((C) 6 (D) 8				
	4. A	set of specified factor levels for an experiment is called	1	4	1	2,1,1
	(A	A) Noise (B) Factor				
	((C) Treatment (D) Response				
	5. T	ne main goal of applying the principles of experimental design is	1	4	1	2,1,1
	(<i>A</i>	process				
	(0	(D) To determine the outcome (D) To analyze the quality characteristics				
	C TC			-	_	
		the factors are spaced for widely, it increased the chances that The noise will overwhelm the (B) The signal and noise both will	1	1	2	2,5,1
	(2	The noise will overwhelm the (B) The signal and noise both will signal in the data affect the data				
	(C	The noise will not overwhelm the (D) The signal will not overwhelm the signal in the data				
	7. If	we have 3 factors and two levels per factors, what kind of experiment is this?	1	1	2	2,1,2
	(A					
	(C	(D) 2^2				
	8. Fa	ectors in a factorial design	1	1	2	2,1,1
	(A					
	(C	The dependent variables (D) The organismic variables				
	9. H	ow many independent variables are there in an experimental two factor design?	1	1	2	2,1,2

(D) 4

(C) 3

10.	(A)	is the appropriate statistical test for a The modes test t-test	(B)	orial design? Anova Chi-square	1	1	2	2,5,1
11	A ma	chine has five factors that can be	varied	at two levels each. Determine the	1	2	3	2,1,2
11.		to be used	variou	at two levels each. Determine the				
	(A)		(B)	L9				
	(C)	L12	(D)	L18				
	_				1	1	2	2,1,2
12.	_	chi's loss function can be expressed			1	1	3	2,1,2
		Step function Linear relation		Quadratic relation Cubic relation				
	` '		. /		,	,	2	222
13.		entific or technical study always con			1	1	3	2,3,2
		Decides the objective Evaluate the method in relation to		Considering the method Decide the objective, considering				
	. ,	the objective	(D)	the method and evaluate the				
		the objective		method in relation to the objective				
1.4	G -1	table and an inches			1	1	3	2,1,1
14.		t the external noise factor Temperature	(B)	Old material	1	•	5	2,1,1
		Product wear	(D)	Change in components				
	(0)	Troduct Wolf	(2)	onange m components				
15.		e and effect diagrams are also known			1	1	3	2,1,1
	` '	Process chart	(B)	Target specification graphs				
	(C)	Fish-bone chart	(D)	Pareto charts				
16	The o	bjective of response surface method	ology	is to	1	1	4	2,1,1
10.				Minimize the response				
		Optimize the response						
17.				rection of maximum decrease in the	1	1	4	2,1,1
		nse is called and used for		15 1 1 C				
	(A)	Method of steepest ascent, maximization	(B)	Method of steepest ascent, minimization				
	(C)	Method of steepest descent,	(D)					
	(0)	minimization	(-)	maximization				
18.		nethod of steepest ascent is a proced			1	1	4	2,1,1
	(A)		(B)	Direction of the minimum increase				
	(C)	in the response Direction of the maximum	(D)	in the response Direction perpendicular to the				
	(C)	increase in the response	(D)	maximum increase in the response				
		moreuse in the response						
19.	In cer	ntral composite design the possible of	of estin	nate quadratic terms defined by	1	1	4	2,1,2
	(A)	$\alpha = \sqrt[4]{NFD}$	(B)	$\alpha = \sqrt[3]{NFD}$				
	(C)	$\alpha = \sqrt[7]{NFD}$	(D)	$\alpha = \sqrt[1]{NFD}$				
20.		ening in RSM used for			1	1	4	2,1,1
		Outcome approach	(B)	Steepest ascent approach				
0.1	(C)	CCD approach	(D)	Optimum response	I	4	5	2,1,1
Z1.		riable that measure the effect that ma A dependent variable	(B)	A confounding variable	1	7	3	2,1,1
	(A) (C)	A predictor variable	(D)					
			(-)				_	212
22.		edictor variable is another name for	(D)	Am in domand and are in 11-	1	4	5	2,1,2
	(A) (C)	A dependent variable A confounding variable	(B) (D)	An independent variable A discrete variable				
	(0)	11 comounting variable	(1)	11 discrete variable				
					27144	7103	TEO.	127

23. Analysis of variance is a statistical method of comparing the several population (A) Means (B) Variances (C) Standard deviations (D) Error	ions ¹	4	5	2,1,2
 24. When conducting an ANOVA FDATA will always fall within what range (A) Between 0 and infinity (B) Between 0 and 1 (C) Between negative, infinity and (D) Between 1 and infinity infinity 	1	4	5	2,1,1
25. What is the function of a post test ANOVA? (A) Describe those groups that have (B) Set the critical value reliable differences between group means	1	4	5	2,1,1
(C) Determine if any statistical (D) Only critical value significant group differences have occurred				
$PART - B (5 \times 10 = 50 Marks)$	Marks	BL	со	PO

26. a. What are the three basic principles of DOE? What is replication and write down its	10	2	1	4,1,1
significance.				
(OR)				

27. a. Using the 2 factor factorial design predict the popcorn model. The factors used are time on the stove, low level (-)160sec and high level (+) 200 sec. type of popcorn used are white (-) low level and yellow corn (+) high level.

Answer **ALL** Questions

b. Write down about DOE temminology.

	Std. order	Run order	B=corn type	Outcome	
	1	2	14):	-	52
111	2	4	4	*:	74
	3	1	-	+	62
	4	3	+	+	80

(OR) b. Find the coefficient of chemical (C), temperature (T) and speed (S) factor using 3 10 2 4,2,2 factor factorial design.

10 2 1 4,1,1