$CES\ Software entwicklungspraktikum$

Analyse- und Entwurfsdokument

Lena Blum, Alexander Fischer und William Hulin

Matr.-Nr. 302253, 303979 und 293858email:

[lena.blum|alexander.fischer|william.hulin]@rwth-aachen.de

Inhaltsverzeichnis

1	Vorwort						
	1.1	Aufgabenstellung und Struktur des Dokuments					
	1.2	Projektmanagement					
2	Ana	alyse					
	2.1	Anforderungsanalyse					
		2.1.1 Benutzeranforderungen					
		2.1.2 Systemanforderungen					
	2.2	Begriffsanalyse					
3	Entwurf						
	3.1	Grobentwurf: Subsysteme					
	3.2	Detailentwurf: Klassen					
	3.3	Graphical User Interface					
	3.4	Use-Case-Diagramm					

Kapitel 1

Vorwort

1.1 Aufgabenstellung und Struktur des Dokuments

Aufgabenstellung

Im Rahmen des Softwareentwicklungspraktikums (CES_SS2012) soll eine Software zur Simulation eines Stehaufkreisels erstellt werden. Die Simulationssoftware muss sowohl den reibungsfreien, als auch den reibungsbehafteten Fall korrekt simulieren können.

Als Programmiersprache soll C++ verwendet werden. Der Quellcode soll derart strukturiert und kommentiert sein, dass spätere Modifikationen und Erweiterungen durch Dritte möglich sind.

1.2 Projektmanagement

Protoyping (MATLAB/ FORTRAN)		
Dokumentation	Lena	
Coding:		
Parameterset, Solver, Solution, Rkv56Parset, Rkv56,		
DESolution, < <interface>>RightSide, RHS, Rkv56Modified</interface>	Alexander	
$<<\!\!\mathrm{interface}>>\!\!\mathrm{OutputInterface},\mathrm{OutputToolbox},\mathrm{Main},\mathrm{ExceptionHandlingModule},$		
${\bf Math Exception, NonCritical ME, Critical ME, Parameter Exception}$	William	
GUI	Lena	

Kapitel 2

Analyse

2.1 Anforderungsanalyse

2.1.1 Benutzeranforderungen

Das von Herrn Professor Gauger gestellte Simulationsproblem umfasst die Erstellung einer Software zur Simulation eines Stehaufkreisels.

Die Simulation muss sowohl den reibungsbehafteten, als auch reibungsfreien Fall korrekt simulieren.

Im Speziellen wird ein Runge-Kutta56-Verfahren mit adaptiver Schrittweitensteuerung unter Betrachtung einer Erhaltungsgröße (conserved quantity) zur Simulation des Problems verwendet.

Wahrscheinlich wird das Rkv56 Verfahren durch ein BDF-Verfahren oder eine C++ Implementierung eines speziellen Krylow-Verfahrens ersetzt.

https://computation.llnl.gov/casc/software.html

Die Realisierung der Simulation findet in C++ statt.

Die Bedienung sowie das ausgeben der Simulationsergebnisse muss durch eine grafische Benutzeroberfläche (GUI) möglich sein.

Die Simulationsergebnisse können in einer ASCII-formatierten Datei zur weiteren Verarbeitung und Auswertung exportiert werden.

Durch den modularen Aufbau ist die Wartbarkeit und einfache Erweiterbarkeit der Software durch Dritte gewährleistet.

Das Kernproblem besteht im Lösen der Rechten Seite des folgenden Differentialgleichungssystems:

$$\ddot{\theta}(I + ma^2 \sin^2 \theta + kma \sin \theta (R - a \cos \theta)(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi - (R - a \cos \theta)\dot{\theta}))$$

$$= \underbrace{-(I_3 - I)\dot{\phi}^2 \sin \theta \cos \theta}_{=0} - I_3\dot{\phi}\sin \theta\dot{\psi} + (g + a\dot{\theta}^2 \cos \theta)(-ma \sin \theta - km(R - a \cos \theta))$$

$$(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi - (R - a \cos \theta)\dot{\theta}))$$

$$\ddot{\phi}I\sin\theta = -\underbrace{(2I - I_3)}_{=I}\dot{\phi}\dot{\theta}\cos\theta + I_3\dot{\theta}\dot{\psi}$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\dot{\theta})(a - R\cos\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$\ddot{\psi}I_3 = -I_3(\ddot{\phi}\cos\theta - \dot{\phi}\dot{\theta}\sin\theta)$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\dot{\theta})(R\sin\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$m\ddot{x}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\dot{\theta})(\dot{x}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\cos\phi + (a\cos\theta - R)\sin\phi\dot{\theta})$$

$$m\ddot{y}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\dot{\theta})(\dot{y}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\cos\phi + (R - a\cos\theta)\cos\phi\dot{\theta})$$

2.1.2 Systemanforderungen

Funktionale Anforderungen

Dem Anwender ist es möglich die Simulationsparameter k (Reibung) sowie $\dot{\psi}$ (rad/s) über eine grafische Eingabemaske festzulegen. Wenn während der Simulation ein Fehler auftritt wird der Anwender über ein Popup-Fenster benachrichtigt. Nach Durchlauf der Simulation bekommt der Anwender die Simulationsergebnisse - $\theta, \psi, \phi, x_c, y_c, \dot{\theta}, \dot{\psi}, \phi$ - in Form von LineCharts in eine GUI eingebettet angezeigt.

Die auf der GUI ausgegebenen Plots können als Bilddatei exportiert werden.

Kommt es während der Laufzeit zu einem kritischen Fehler (ein Fehler, der das korrekte Fortführen des Programmes unmöglich macht) wird der Anwender über ein Popup-Fenster benachrichtigt und das Programm beendet.

Nicht-Funktionale Anforderungen

Die Exportfunktion der Simulationssoftware schreibt Tecplot konforme ASCII-kodierte Ausgabedateien. Vormals exportierte Dateien können wieder importiert und geplottet werden. Der Nutzer kann sich eine Statistik über das Verhalten der Erhaltungsgröße und der Kontrollgrößen zur Schrittweitensteuerung ausgeben lassen.

2.2 Begriffsanalyse

- LineChart Zwei Achsen Diagramm mit Kartesischem Koordinatensystem. Die einzelnen Datenpunkte sind durch gerade Linien verbunden.
- GUI Eine grafische Benutzeroberfläche (GBO oder GUI) ist eine Software-Komponente, die dem Benutzer eines Computers die Interaktion mit der Maschine über grafische Symbole erlaubt.

Kapitel 3

Entwurf

3.1 Grobentwurf: Subsysteme

3.2 Detailentwurf: Klassen

3.3 Graphical User Interface

	Parameters	3	
psidot_0 [rad/s]=	250		
theta_0 [rad]=	0.1		
R [cm]=	2.5		
a [cm]=	0.5		
m [g]=	15		
Factor I=	0.4		
k [s/cm]=	0.3	O Friction O (no third	
Tolerance Conserved Quantity =	10^-6	Option)	

3.4 Use-Case-Diagramm

