

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 2 e 3

Markus Stein
14 August 2019

Intervalos de Confiança (IC)

"O que podemos dizer sobre a variabilidade de um estimador $\widehat{\theta}$?"

• Exemplo 1: Como podemos usar o resultado abaixo para contruir intervalos de confiança?

Teorema: Sejam X_1, \ldots, X_n variáveis aleatórias independentes tal que $X_i \sim Normal(\mu, \sigma^2)$. Então: i. \overline{X} e S^2 são independentes;

ii.
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)};$$
iii. $\frac{\sqrt{n}(\overline{X}-\mu)}{S} \sim t_{(n-1)}.$
Provar!!!

Definição (**Estimador Intervalar**): Seja $X = (X_1, \dots, X_n)$ uma amostra aleatória e $x = (x_1, \dots, x_n)$ uma possível realização. Assuma $\theta \in \Theta$ o parâmetro de interesse. Se existem estatísticas L(X) e U(X) tal que $L(x) \leq U(x)$ para todo $x \in \mathcal{X}$, então [L(X); U(X)] é denominado **estimador intervalar**.

• Estimador intervalar + Coeficiente de confiança = Intervalo de Confiança.

Definição (**Probabilidade de Cobertura** - Casella e Berger, definição 9.1.4.): Seja [L(X); U(X)] um estimador intervalar para θ , definimos $P_{\theta}[L(X) < \theta < U(X)]$ como a probabilidade de que o intervalo (aleatório) cubra o verdadeiro parâmetro θ , denominada **probabilidade de cobertura**.

Definição (Coeficiente de Confiança - Casella e Berger, definição 9.1.5.): Seja [L(X); U(X)] um estimador intervalar para θ , definimos como coeficiente de confiança a menor (infimum) das probabilidades de cobertura. Ou seja, $inf_{\theta} P_{\theta}[L(X) < \theta < U(X)]$.

- Em geral, $inf_{\theta} P_{\theta}(L(X) < \theta < U(X)) = 1 \alpha$ para um α próximo de 0.
- Nesse caso dizemos que $IC(\theta; 1-\alpha) = [L(\mathbf{X}); U(\mathbf{X})]$ é um intervalo $(1-\alpha) \times 100\%$ para θ .
- Exemplo 2: IC para população Normal. Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Normal(\mu, \sigma^2)$, com σ^2 conhecido. A estatística suficiente minimal $\sum_{i=1}^n X_i$ é uma quantidade pivotal? E \overline{X} ? Encontre uma quantidade pivotal com base em \overline{X} .

Método da quantidade pivotal

Definição (Quantidade pivotal): $Q(X;\theta)$ (Notas de aula, definição 1.2.).

• Exemplo 3: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Uniforme(0, \theta)$. A estatística suficiente minimal $X_{(n)}$ é uma quantidade pivotal? Encontre uma quantidade pivotal com base em $X_{(n)}$.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Como encontrar IC usando quantidades pivotais?

- Se para $Q(X; \theta)$ temos $P(q_1 \ge Q \ge q_2) = 1 \alpha$ se e somente se $P(t_1 \le \theta \le t_2) = 1 \alpha$. Então, dizemos que $IC(\theta; 1 \alpha) = [t_1; t_2]$ é um intervalo $(1 \alpha) \times 100\%$ para θ .
- Interpretação quando X versus x! Estimador intervalar \times estimativa intervalar.
- Existem infinitos intervalos, escolhemos o de menor tamanho.
- continuação Exemplo 2: Encontrar ICs para μ e σ^2 com base nas quantidades pivotais do Teorema acima.
 - E quando temos interesse em duas populações, como calcular IC para duas médias μ_1 e μ_2 (todas as combinações)? E para σ_1 e σ_2 ?

Tarefa 1: Ler "Plano Aula 3" e refazer os exemplos acima.

Tarefa 2: Fazer lista 1 para entregar.

Leitura: "Uma senora toma chá" capítulo 12.