

Bryan Acevedo - Daniel Toribio

Aprendizaje supervisado y procesamiento de datos

Aprendizaje Supervisado

Definición

Algoritmo que se entrena para **predecir o clasificar** datos basándose en ejemplos etiquetados.

Necesita un conjunto de **datos de entrenamiento** que consta de entradas (**características**) y las salidas deseadas (**etiquetas**)

Aprende a hacer predicciones o tomar decisiones basadas en estas etiquetas.

Set De Entrenamiento

id	Attribute 1	Attribute 2	Attribute 3	Attribute 4
1	1	2	2	2
2	2	3	1	3
3	3	4	3	1
4	4	5	2	3

Etiqueta	
1	
2	
3	
4	

Set De Testeo

id	Attribute 1	Attribute 2 Attribute 3		Attribute 4	
1	1	2	2	2	
2	2	3	1	3	
3	3	4	3	1	
4	4	5	2	3	

Set De Testeo

El modelo toma este set de testing y hace una **predicción**

id	Attribute 1	Attribute 2	Attribute 3	Attribute 4	Predicción
1	1	2	2	2	1
2	2	3	1	3	 2
3	3	4	3	1	3
4	4	5	2	3	4

Matriz de Confusión

Accuracy

Proporción de **predicciones correctas** que hace un modelo (en relación al número total de predicciones hechas)

Accuracy =
$$(TP + TN) / (TP + TN + FP + FN)$$

Precisión

Mide la capacidad de un modelo para hacer predicciones **positivas correctas** en relación con **todas las predicciones positivas** realizadas.

Es útil cuando se desean minimizar los falsos positivos (o maximizar los VP), ya que se enfoca en la calidad de las predicciones positivas.

Recall o Sensibilidad

Mide la capacidad de un modelo para identificar todos los positivos en un conjunto de datos

→ De todos los valores positivos originales ¿cuántos fueron correctamente clasificados?

Es útil cuando se trata de problemas en los que los falsos negativos (omisiones) son costosos o críticos (como en casos médicos).

Cross-Validation

En la **validación cruzada** se debe dividir el conjunto de datos en varias particiones y realizar múltiples iteraciones de entrenamiento y evaluación del modelo. La validación cruzada se lleva a cabo de la siguiente manera:

- 1. El conjunto de datos se divide en *k* particiones de aproximadamente el mismo tamaño.
- 2. El modelo se entrena en k-1 particiones y se evalúa en la partición restante. Esto se repite k veces, de manera que cada una de las k particiones se utilice como conjunto de prueba exactamente una vez. Se calcula una métrica de rendimiento (ej accuracy) para cada evaluación.
- 3. Finalmente, se calcula el **promedio** de las métricas de rendimiento obtenidas en cada partición. Esto proporciona una **estimación del rendimiento general del modelo** en el conjunto de datos.

Cross-Validation

Procesamiento de datos

Limpieza de datos: Eliminar datos ruidosos (*outliers*), faltantes o inconsistentes. Es importante **tratar los valores nulos**.

Normalización y estandarización: Ajustar las escalas y unidades de las características para que sean comparables.

Codificación de variables categóricas: Si los datos contienen variables categóricas, es necesario convertirlas en representaciones numéricas (por ejemplo si hay una columna con "Verdadero" y "Falso", convertirlo a 1 y 0)

Selección de características: Identificar y seleccionar las características más relevantes para el problema.

Procesamiento de datos

Reducción de la dimensionalidad: En casos en los que el número de características sea alto, se puede realizar reducción de dimensionalidad.

Manejo de desequilibrio de clases: Ajustar si las clases objetivas están desequilibradas.

Gestión de valores atípicos: Identificar y gestionar valores atípicos.