G, H oznaczają grupy skończone. p oznacza liczbę pierwszą.

Teoria: Produkt (prosty) grup. Twierdzenie o produkcie wewnętrznym grup. Produkt półprosty grup. p-grupy. Twierdzenia Sylova. p-grupa ma nietrywialne centrum. Twierdzenie Cauchy'ego o elemencie rzędu p. Uwaga: do rozwiązania zadań o podgrupach Sylova wystarczy znajomość twierdzeń Sylova i idei ich dowodu.

- 1. Wyznaczyć orbity działania grupy $GL(n,\mathbb{R})$ na:
 - (a) przestrzeni liniowej \mathbb{R}^n (tu dla $A \in GL(n, \mathbb{R})$) i $X \in \mathbb{R}^n$ $A \cdot X = f_A(X)$, gdzie f_A to odwzorowanie liniowe o macierzy A),
 - (b)* zbiorze macierzy $M_{n\times n}(\mathbb{R})$ (tu działanie to mnożenie macierzy $A\cdot X$).
- 2. Udowodnić, że grupa $(\mathbb{Q}, +)$ nie jest izomorficzna z produktem dwóch nietrywialnych grup.
- 3. (a)– Załóżmy, że $g \in G$, $h \in H$, ord(g) = n, ord(h) = m. Udowodnić, że w $G \times H$ $ord(\langle g, h \rangle) = NWW(n, k)$.
 - (b)– Udowodnić, że jeśli $n = m \cdot k$, gdzie m i k są względnie pierwsze, to $(\mathbb{Z}_n, +_n) \cong (\mathbb{Z}_m, +_m) \times (\mathbb{Z}_k, +_k)$. Określić też jawnie izomorfizm między tymi grupami.
- 4. Załóżmy, że grupy N i H są abelowe. Udowodnić, że grupa $N \rtimes H$ jest abelowa \iff działanie H na N przez automorfizmy (w definicji $N \rtimes H$) jest trywialne, tzn. każde $h \in H$ działa jak id_N (tzn. $\varphi(h) = id_N$).
- 5. Załóżmy, że H < G. Udowodnić, że N(H) < G i $H \triangleleft N(H)$. Tu N(H) oznacza normalizator podgrupy H w grupie G, tj. zbiór $\{g \in G : H^g = H\}$.
- 6. Przedstawić następujące grupy jako produkty półproste $N \rtimes H$ nietrywialnych grup N, H. W każdym przypadku opisać działanie H na N.
 - (a) Grupy z zad. 7 z listy 1.
 - (b) $D_n, n \ge 3 \text{ i } S_n, n \ge 3.$
- 7. Dla $a, b \in \mathbb{R}$ określamy funkcję $f_{a,b} : \mathbb{R} \to \mathbb{R}$ wzorem $f_{a,b}(x) = ax + b$. Niech $A = \{f_{a,b} : a, b \in \mathbb{R}, a \neq 0\}$ oznacza grupę przekształceń afinicznych prostej \mathbb{R} (ze składaniem). Udowodnić, że $A \cong (\mathbb{R}, +) \rtimes (\mathbb{R}^*, \cdot)$.
- 8. Znaleźć wszystkie p-podgrupy Sylova w grupach S_p i S_{p+1} . Ile ich jest?
- 9. (a) Dowieść, że wszystkie grupy rzędu p^2 są abelowe.
 - (b) Udowodnić, że każda nieabelowa grupa rzędu 2p jest izomorficzna z D_p .
- 10. * Dowieść, że każda grupa rzędu 200 zawiera normalną 5-podgrupę Sylova (wsk: liczba 5-podgrup Sylova w tej grupie dzieli 200 i przystaje do 1 modulo 5).
- 11. Udowodnić, że każda normalna p-podgrupa grupy G jest zawarta w każdej p-podgrupie Sylova grupy G.

- 12. * Niech p < q będą liczbami pierwszymi.
 - (a) Dowieść, że jeśli $p \nmid q-1$, to każda grupa rzędu pq jest cykliczna.
 - (b) Dowieść, że jeśli $p\mid q-1$, to istnieje dokładnie jedna (z dokładnością do \cong) grupa nieabelowa rzędu pq i że q-podgrupa Sylova tej grupy jest dzielnikiem normalnym.
- 13. * Załóżmy, że G działa na zbiorze n-elementowym S. Niech $G^+=\bigcap_{x\in S}G_x$. Dowieść, że $G^+\triangleleft G$ oraz $[G:G^+]\mid n!$.