Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3114 SBE 16 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 19-May-22 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = 1.53245926e-003j = -3.48919789e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.00000	2.88531	0.00000	0.00000
1.0000	34.6774	2.96522	8.21459	2.96518	-0.00004
4.5000	34.6581	3.27127	8.57599	3.27131	0.00004
15.0000	34.6168	4.24972	9.63915	4.24974	0.00002
18.5000	34.6080	4.59371	9.98562	4.59372	0.00001
23.9999	34.5987	5.14981	10.52117	5.14975	-0.00006
28.9999	34.5929	5.66982	10.99817	5.66985	0.00003
32.5001	34.5879	6.04066	11.32591	6.04080	0.00014

f = Instrument Output (kHz)

 $t = temperature \; (^{\circ}C); \quad p = pressure \; (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = (g + h * f^2 + i * f^3 + j * f^4) /10 (1 + δ * t + ϵ * p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

