Introdução a machine learning com aplicações em F

Aula 2 - Pré-processamento dos dados

Felipe Barletta

Departamento de Estatística

03 novembro, 2020

Sumáric

Revisão

Revisão - Machine Learning

- Intersecção de métodos estatísticos, Ciência da Computação (por meio de dados)
- É a tarefa de apredender com os dados e fazer generalizações

Revisão - Os três pilares

Revisão - Termos comuns

Machine Learning	Estatística	O que é?	
Label	Variável resposta	Variável a ser predita - (Y)	
Feature ou característica	Variável preditora	Variável que pode predizer (<i>Y</i>)	
output	Resposta	Predição do modelo	
input	Variável preditora	Variável que está no modelo	
Variável binária	Variável dicotômica	Variável com duas classes	
Treinamento	Ajuste do modelo	Estrutura matemática	
Missing values	Missing values	Valores faltantes	
Cross validation	Cross validation	Validação cruzada	

Revisão - Estrutura dos dados

Features ou características

duration.in.	nonth	credit.amount	present.residence.since	foreign.worker	creditability	ID
	- 6	1169	4	yes	good	1
	48	5951	2	yes	bad	2
S	12	2096	3	yes	good	3
O	42	7882	4	yes	good	4
old	24	4870	4	yes	bad	5
	36	9055	4	yes	good	6
e e	24	2835	4	yes	good	7
×	36	6948	2	yes	good	8
Ш	12	3059	4	yes	good	9
	30	5234	2	yes	bad	10

Tipos de características ou variáveis

- Nominal: São categorias que não podem ser ordenadas
- Ordinal: São categorias que seguem uma ordem natural
- Discreta: Seu suporte é um conjunto finito ou infinito enumerável
- Continua: Seu suporte é um conjunto infinito não-enumerável

- Formatar os dados.
- Retirar amostras
- Remover ou corrigir dados faltantes
- Agregar ou criar novas características(variáveis)
- Verificar associação entre características(variáveis)

^Oré-processamento

- Formatar os dados.
- Retirar amostras
- Remover ou corrigir dados faltantes
- Agregar ou criar novas características(variáveis)
- Verificar associação entre características(variáveis)

- Formatar os dados.
- Retirar amostras
- Remover ou corrigir dados faltantes
- Agregar ou criar novas características(variáveis)
- Verificar associação entre características(variáveis)

- Formatar os dados.
- Retirar amostras
- Remover ou corrigir dados faltantes
- Agregar ou criar novas características(variáveis)
- Verificar associação entre características(variáveis)

- Formatar os dados.
- Retirar amostras
- Remover ou corrigir dados faltantes
- Agregar ou criar novas características(variáveis)
- Verificar associação entre características(variáveis)

Feature Engineering

- É a arte de extrair informações dos dados coletados
 - Criação de características(variáveis)
 - ② Dados faltantes
 - O Dados desbalanceados
 - Características(variáveis) correlacionadas

Desfecho	Quantidade
Ainda Internado	246800
Alta Médica	4000
Alta Melhorado	502
Alta	70
Atendendimento Cancelado	203
Evadiu-se	5
Internação Cancelada	6
Internamento Cancelado	14
Óbito	400
Óbito - Pós-Operatório	29

Desfecho	Quantidade
Internado	246800
Alta	4000
Alta	502
Alta	70
Não Internado	203
Não Internado	5
Não Internado	6
Não Internado	14
Óbito	400
Óbito	29

Desfecho	Quantidade
Internado	246800
Alta	4572
Não Internado	228
Óbito	429

Desfecho	Quantidade	
Melhorado	4572	
Óbito	429	

	<=55	anos	>55	anos
Melhorado		2830		1742
Obito		101		328

Melhorado Obito 0.3526037 0.8087152

Exemplo: Sinais vitais coletados de pacientes internados em um hospital

Exemplo: Sinais vitais coletados de pacientes internados em um hospital

Exemplo: Óbitos de pacientes internados em um hospital

Exemplo: Altas de pacientes internados em um hospita

domingo quarta quinta sábado segunda sexta terça 61 144 148 107 97 174 135

Dados faltantes - missing data

- Missing completely at random (MCAR): quando a probabilidade dos dados faltantes é a mesma entre as observações. Por exemplo, dados perdidos por um backup incorreto;
- Missing at random (MAR): quando os dados faltantes variam de acordo com outras variáveis. Por exemplo, missing em uma variável idade pode ser diferente entre mulheres e homens;
- Missing not at random (MNAR): quando a probabilidade de missing está relacionada ao missing. Por exemplo, dependendo da renda do cliente, é mais provável que ele não responda sobre a renda.

Distribuição do desfecho na UTI

Com missing - sat_o2

Melhorado Obito 0.0438 0.9562

Sem missing - sat_o2

Melhorado Obito 0.0412 0.9588

Imputação

- Algoritmo KNN (k-nearest neighbors)
- Recebe um dado não classificado;
- ② Define o tamanho da vizinhança (K);
- Mede a distância (Euclidiana) do novo; dado com todos os outros dados que já estão classificados;
- Obtém a menor ou menores distâncias:
- Overifica o valor de cada da um dos dados que tiveram a menor distância;
- Toma como resultado o valor que mais apareceu dentre os dados que tiveram as menores distâncias.

Imputação

Distribuições de probabilidade

- Há diversos modelos probabilísticos
- Distribuições de probabilidade de V.A. (discretas ou contínuas)
- Descrição das probabilidades associadas com os possíveis valores de X
 - Variáveis discretas

 suporte em um conjunto de valores enumeráveis (finitos ou infinitos)
 - Variáveis contínuas ⇒ suporte em um conjunto não enumerável de valores

Distribuição de probabilidade - variável aleatória contínua

Definição: função densidade de probabilidade

A função densidade de probabilidade f(x) de uma V.A. contínua, é uma função definida em um intervalo de valores na reta dos reias, ou seja,

$$P[a \le X \le b] = \int_b^a f_x(x).$$

 \bigcirc A área total da abaixo da curva de f(x) é 1.

$$\int_{-\infty}^{\infty} f_{x}(x) = 1$$

$$f_x(x) \geq 0$$

Padronização

Modelo Gaussiano(ou Normal)

Definição:

Uma V.A. contínua é dita ter distribuição gaussiana com parâmetros μ e σ^2 se sua f.d.p. for:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty$$

Notação: $X \sim N(\mu, \sigma^2)$

Normal padrão

Definicão:

Uma V.A. contínua que segue uma distribuição normal com parâmetros $\mu=0$ e $\sigma^2=1$, é conhecida com uma distribuição normal padrão.

Notação: $Z \sim N(\mu = 0, \sigma^2 = 1)$ e sua f.d.p. é:

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(z)^2\right], \quad -\infty < z < \infty$$

$$Z = \frac{X - \mu}{\sigma}$$

Dados desbalanceados - Exemplo 1

Dados desbalanceados - Exemplo 2

Intuitivamente, a probabilidade de ocorrer um evento pode muito bem ser influenciada pelo ocorrência ou não de outros eventos

Exemplo:

- Probabilidade de que um aluno n\u00e3o comparecer a uma aula ser\u00e1 influenciado:
 - esteja chovendo ou não,
 - trote dos calouros foi ou não realizado na noite anterior.
 - Internet falhou ou não

Probabilidade condicional

Intuitivamente, a probabilidade de ocorrer um evento pode muito bem ser influenciada pelo ocorrência ou não de outros eventos

Exemplo:

- Probabilidade de que um aluno n\u00e3o comparecer a uma aula ser\u00e1 influenciado:
 - esteja chovendo ou não,
 - trote dos calouros foi ou não realizado na noite anterior.
 - Internet falhou ou não
 - Esta é a probabilidade condicional

Probabilidade condicional

Definição

• Dados dois eventos A e B, a probabilidade condicional de A ocorrer, dado que ocorreu B é representado por P(A|B) e dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$
 para $P(B) > 0.$

Regra do produto

• Da definição de probabilidade condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

temos que

$$P(A \cap B) = P(A|B) \cdot P(B)$$
.

• Caso P(B) = 0, definimos P(A|B) = P(A).

Independência de eventos

Os eventos A e B são **eventos independentes** se a ocorrência de B não altera a probabilidade de ocorrência de A, ou seja, eventos A e B são independentes se

$$P(A|B) = P(A)$$
 e também que $P(B|A) = P(B)$.

Com isso, e a regra do produto, temos que

$$P(A \cap B) = P(B) \cdot P(A|B) = P(B) \cdot P(A).$$

$$P(A \cap B) = P(A) \cdot P(B|A) = P(A) \cdot P(B).$$

Dizemos que os eventos $C_1, C_2, ..., C_k$ formam uma **partição** do espaço amostral, se eles não tem interseção entre si, e se sua união é igual ao espaço amostral. Isto é,

$$C_i \cap C_j = \emptyset$$
 para $i \neq j$ e $\bigcup_{i=1}^k C_i = \Omega$.

Teorema de Bayes

Suponha que os eventos C_1, C_2, \ldots, C_k formem uma partição de Ω e que suas probabilidades sejam conhecidas. Suponha, ainda, que para um evento A, se conheçam as probabilidades $P(A|C_i)$ para todo $i=1,2,\ldots,k$. Então, para qualquer j,

$$P(C_j|A) = \frac{P(C_j)P(A|C_j)}{\sum_{i=1}^{k} P(C_i)P(A|C_i)}, \quad j = 1, 2, \dots, k.$$

• Considere um teste de triagem de rotina para uma doença

• Teste altamente preciso

•
$$P(FP) = P(T_+|D_-) = 0.05$$

•
$$P(FN) = P(T_{-}|D_{+}) = 0.10$$

Exemplo - Regra de Bayes

• Qual a probabilidade de ter a doença, dado que o teste foi positivo?

•
$$P(D_+|T_+) = \frac{P(D_+) * P(T_+|D_+)}{P(T_+)}$$

Calculamos o denominador utilizando a lei da probabilidade total:

•
$$P(T_+) = P(D_+) * P(T_+|D_+) + P(D_-) * P(T_+|D_-) = 0.005 * .9 + 0.995 * .05 = 0.05425$$

Assim,

•
$$P(D_+|T_+) = \frac{P(D_+) * P(T_+|D_+)}{P(T_+)} = \frac{0.005 * 0.9}{0.05425} = .083$$

Dados desbalanceados

- **SMOTE** (*Synthetic Minority Over-sampling Technique*): reamostrar o conjunto de dados original por superamostragem da classe minoritária.
- Utilizar uma amostra balanceda excluindo registros da classe majoritária.
- Definir um ponto de corte diferente do default.

Correlação

Correlação

Coeficientes de correlação linear

Spearman

$$r = 1 - \frac{6\sum_{i} d_{i}^{2}}{n(n^{2} - 1)}$$

Pearson

$$\rho(X_1, X_2) = \frac{cov(X_1, X_2)}{\sigma_{x_1}\sigma_{x_2}}$$

Matriz de correlação

- Engenharia de características
 - 4 Faça uma análise exploratória de seus dados. Com gráficos e medidas descritivas;
 - ② Crie novas características com base em outras já presente no conjunto de dados:
 - Se houver dados faltantes, identifique-os e use dois tipos de imputação e compare os resultados:
 - (a) Se houver dados desbalanceados em sua label(Y), utilize a ténica SMOTE ou reducão da classe maioritária:
 - ⑤ Faça uma matriz de correlação linear, interprete e decida se irá excluir ou não alguma característica.

- Engenharia de características
 - 4 Faça uma análise exploratória de seus dados. Com gráficos e medidas descritivas:
 - ② Crie novas características com base em outras já presente no conjunto de dados:
 - Se houver dados faltantes, identifique-os e use dois tipos de imputação e compare os resultados:
 - Se houver dados desbalanceados em sua label(Y), utilize a ténica SMOTE ou reducão da classe majoritária:
 - ⑤ Faça uma matriz de correlação linear, interprete e decida se irá excluir ou não alguma característica.

- Engenharia de características
 - 4 Faça uma análise exploratória de seus dados. Com gráficos e medidas descritivas:
 - 2 Crie novas características com base em outras já presente no conjunto de dados:
 - 3 Se houver dados faltantes, identifique-os e use dois tipos de imputação e compare os resultados:
 - Se houver dados desbalanceados em sua label(Y), utilize a ténica SMOTE ou reducão da classe majoritária:
 - ⑤ Faça uma matriz de correlação linear, interprete e decida se irá excluir ou não alguma característica.

- Engenharia de características
 - 4 Faça uma análise exploratória de seus dados. Com gráficos e medidas descritivas;
 - 2 Crie novas características com base em outras já presente no conjunto de dados:
 - 3 Se houver dados faltantes, identifique-os e use dois tipos de imputação e compare os resultados:
 - 4 Se houver dados desbalanceados em sua label(Y), utilize a ténica SMOTE ou reducão da classe majoritária;
 - § Faça uma matriz de correlação linear, interprete e decida se irá excluir ou não alguma característica.

- Engenharia de características
 - 4 Faça uma análise exploratória de seus dados. Com gráficos e medidas descritivas:
 - 2 Crie novas características com base em outras já presente no conjunto de dados:
 - 3 Se houver dados faltantes, identifique-os e use dois tipos de imputação e compare os resultados:
 - 4 Se houver dados desbalanceados em sua label(Y), utilize a ténica SMOTE ou reducão da classe majoritária;
 - § Faça uma matriz de correlação linear, interprete e decida se irá excluir ou não alguma característica.

Referências

- 4 Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, 2009.
- James, G., Witten, D., Hastie, T. e Tibshirani, An Introduction to Statistical Learning, 2013.
- 4 L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3):199-231, 2001.
- 4 Lantz, B., Machine Learning with R, Packt Publishing, 2013.
- Tan, Steinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2005.
- Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
- Wickham, H.; Grolemund, G. R for data science: import, tidy, transform, visualize, and model data. "O'Reilly Media, Inc.", 2016.

