

CCTGACCGGCCGGCGCCGGCCGGTCTGCCCTCTACCGAGCGCCTGCCGCC
CCCTCCCCGGCCCGTCCCCCTCCCCGTCCCTCTCCCTCCCCGCCGCCCTCTC
GGGGGGAGGGGCGTGGGGCAGGGAGCCGATTGCATGCCGCCGCCGCCCTG
CCTGAGCCGGAGCCCGCCGCCGGAGCCGCCGCCGCCGCCGCCGCC
CGGCCCATGCCCTGGCGGCCCTCGGGGGCGAAGGTGAAGATCGGCTCTAG
GATGAGTGAAGGGGCGGCCGGTGCCTGCCACCTGGTCCGCTCGGCAGCCGCC
CTCAGCCGAGGAGGGCACCGCGGCCGGCTGCCGCCGCCGCCGCCGCC
CGGACGGCGGCCGGAGAAGGGCGGCCAACCCCCCGGGAGTTACGCTTAGCGACT
GCATCGTGTGGAACCAGCAGCACGAGCTGGTGTGCGTGGTCCTGTTCATCGGCTT
CATCGCCTGGGCTCAGCCTCATGCTGCTAAATGGATCGTGGTAGGCTCCGTCAAG
GAGTACGTGCCAACGGACCTGGTGGACTCCAAGGGATGGCCAGGACCCCTTCTCC
TCTCCAAGCCCAGCTTTCCCCAAGGCTATGAAACCACACAACCACCTCTACC
ACGTCCCCCGCCACCCCTCTGCCGGCGCCCTCTCCAGGACGCCAACCGGA
TTAGCACCCGCTTGACCAACATCACACGGCACCCACCCGCTTCCCTGGCACCGGGT
TCCCACCGGGCTAGCCCAGCCTTACACAGCACGGAACACTGCTGCCCTCCGACG
GTCTGTCCACCAAGGGCCCTTCTCAGTAGCAGCACGCCGGCTCCGACCCCGAT
GCCAGGAGCCCCAGTACGCAGGCGATGCCCTGGCCACTGCCGTATGCTACC
TCCTCTACCTCCACGATTCCACTCCCTCTGGACCCCTGTCAACCTTCAGGATGCTGC
TGCCGCCTCTCTCTCACCTCTCCACCTCCACTACCACCAACCCCCAGAAACTA
GCACCAGCCCCAAATTCTATACTACAACATACTCCACTGAACGATCTGAGCACTTCAA
ACCCTGCGAGACAAGGACCTGGGTATTGCTCAATGATGGTAATGCTTGTGATT
GAGACCTGACAGGATCCCATAAGCACTGTCGGTCAAGGAAGGCTACCAAGGAGTC
CGTTGTGATCAATTCTGCCAAAACAGACTCCATCTATCGGATCCAACAGACCACTT
GGGGATTGAATTCTGGAGAGTGAAGACGTTATCAAAGGCAGGTGCTGTCATTCA
TGTATCATCTTGAATTGTCATCGTGGCATGTTCTGTCAGCATTCTACTTCAAAG
CAAGAAACAAGCTAAACAAATTCAAGGAGCACCTGAAAGAGTCACAGAATGGGAAGAA
CTACAGCCTCAAGGCATCCAGCACAAAGTCTGAGAGCTTGTGATGAAGAGCCATGTCCAT
CTACAAAATTATTCAAAGGCGATAGGCATCTGACTGCGCTGGAGAAAATAATGG
AGTCAAGTTTCAGCTCCCCAGTCGTTCCAGAACGACTTCTCTGACCGAGGAAG
CCAGCCTATCAAGCACACAGGCCAGGACAAAGGAGTGGATGTTGCATAGGAATAC
TTCAAGGGACCACCCCTCACCCGAAGTCGACTGGTGGTATTGTTAGGACAGCA
TATCAACAATTGAAAGAATCAAGAATTCCAGACCAGGATACGATACCTGCCAAGGG
TAGAGGTAGGAAGACTATATCCCACCTGCCTATACAGCTGTTGTGAAAGACC
CCTGGACTAAAGTATGTGCAATGGCTTAAGAACCCACAAATGCATCAATAAT
ATGCAACTGCCCTCAAGAGAGACAAACCCCTATTTAATAGCTGGATCAAAGGACC
TGGTGGTTATTATCCCAAGGGCCAATTCTGTCGCCATCATCCGTCGATGGGTCTA
GAAGAAACCTGCATGCAAATGCCAGGGATTCTGACGTAAAAGCATTAAATGGTCA
AAAACCTACTCCGCTGACATTGTCACCGCAGTATGCCAGTCAGTGAATTGCTTCTA
GAAGAACACAGGAAGTGAAGAAATTACTAGAGACTGTGCAAGAACAGATCCGGATT
CTGACTGATGCCAGACGGTCAGAAGACTTCGAACTGGCCAGCATGGAAACTGAGGAC
AGTGCAGCGAAAACACAGCCTTCTCCCCCTGAGTCCCACGGCAAATCAGAACGAG
AGGCACAATTGCTTAAGAAATGAAATACAAAGAGACTCTGTGCTAACCAAGTGACT
GGAAATGTAGGAATCTGTGCATTATATGCTTGTCAAACAGGAAGGAGAGGAATTA
AATACAAATTATGCTTAATTAGAGCATCTACTTAGAAGCC

Figure 1

TCACCGACCTAGTGGACTCCACTAGGTGGTGGGACGTACTCCTGACGGAGCCCAC
CACGATCCATTGAGAACATGAGGCAGGCCCATGCCTCTGCCGCCCTGGGG
GGCGAAGGTGAANACCGCTCTAGGATGAGTGAAGGGCGGCCGTGCCCGCCA
CCTGGTGCCGCTCGGCAGCCGCCCTGGCGAGGAGGGCACCGCGGGCTGCG
GCGGCCGGCAGCGCGGGCGGGGCCGACGGCGCGAAGGGCGGCCGAGCC
CCCCCGGGAGTTACGCTGTAGCGACTGCATCGTGTGAACCAGCAGCACGTGGCT
GTGCGTGGTACCTCTGTTATCGGCTTCATCGGCCTGGGCTAGCCTCATGCTTCTCA
AATGGATCGTGGTGGCTCCGTAAGGAGTACGTGCCACCGACCTAGTGGACTCAA
GGGGATGGGCCAGGACCCCTTCTTCCCTCCAAGCCCAGCTTTCCCAAGGCCATG
GAGACCAACCACCACTACCACTCCACCACGTCCCCGCCACCCCTCCGCCGGGGTG
CCGCCTCCCTCAGGACGCCAACCGGATTAGCACTCGCCTGACCACCATACGCC
GCCCACTCGCTCCCCGGCACCGGGTCCCCATCCGGGCCAGCCCGCTCCACCA
GCACGAAACACTGCGGCCCTCGACGGTCCACACGGCCCCGTTCTCAGTA
GCAGCACGCTGGCTCCCAGCCCCGGTGCAGGAACCTCAAGTACCCAGGCAATGCC
CTCCTGGCCTACTCGGGCATACGCTACCTCTCTACCTTCACGATTCTACTCCCTCCT
GGACCTGTCTCCCTTCAGGATGCTGCCCTCTTCTCTCTCTCCCTCCGCTA
CCACCAACACCAAGAAACTAGACCAAGCCCCAAATTCAACGACGACATATTCCAC
AGAGCGATCCGAGCAGCTCAAACCCCTGCCAGACAAGGACCTGCAACTGTCTCAAT
GATGGCGAGTGTTGTGATGAAACCTGACGGATCCCATAAACACTGTCGGTGCA
AAGAAGGCTACCAAGGAGTCCGTTGTGATCAATTCTGCCAAAAGTCAATTCCATCTT
ATCGGATCCAACAGACCACTGGGATTGAATTCATGGAGAGTGAAGAAGTTATCAA
AGGCAGGTGCTGCAATTATCATGTATCATCTTCCAATTGTGATCGTGGCATGTTCTG
TGCAGCATTCTACTTCAAAAGCAAGAAACAAGCTAAACAAATCCAAGAGCAGCTGAA
AGTGCACAAAATGGTAAAAGCTACAGTCTCAAAGCATCCAGCACATGGCAAAGTC
AGAGAACTTGGTGAAGAGCCATGTCCAGCTGCAAATTATTCAAAGGTGGAAAGGCA
TCCTGTGACTGCATTGGAGAAAATGATGGAGTCAAGTTGTGCGCCCCAGTCATT
CCTGAGGTCCCTCTCCTGACAGAGGAAGCCAGTCTGTCAAACACACCACAGGAGTCTAT
CCTCTGCTGAGCCAGGGCAAAGAAGTAGGCTAGGTGGATTGTGGGACAGCATATCAGCA
ACTCGAAGAATCAAGGATCCCAGACAGGATACGATACCTGCCAAGGGATAGAGGT
CAGGAAGACTATATCCCACCTGCCATACAGCTGTGGTGTGAAAGACCCCTGGAC
TTAAAGTATTATCCAGTGGTTAAAAACCCAAACGAAATACATCAATAAATATGCAAC
TGCCTCAAGAGAGACAAACCCCTATTAAATAGCTTGGAGCAAAAGGACCTGGTGGG
CTATTATCCACAAGGCCAGTTCTGTGCCATATCCCTCAGTGGTTAGAGGAA
ACCTGCCTGCAAATGCCAGGGATTCTGAAGTCAAAGCATCAAATGGTCAAAAAGT
CCTATTCAAGGAGACAAACCCCTATTAAATAGCTTGGAGCAAAAGGACCTGGTGGG
ACAACAAGAAGTAAAATATTGCTAGAAACTGTCCAGGAGCAGATCCGAATTCTGACT
GATGCCAGACGGTCAGAAGACTACGAACACTGGCAGCGTAGAAACCGAGGACAGTGCA
AGCAGAAACACAGCCTTCTCCCCCTGAGTCCCACAGCCAATCAGAACGAGAGGGCG
AATTGTCTTAAGAAATGAAATACAAAGAGACTCTGCATTGACCAAGTGACTGGAGAT
GTAGGAATCTGTGCATTCTATGCTTGTCAACAGGAAAGAGAGGAAATCAAATCAA
ATTATTTATATGCATTAATTAAAGAGCATCTACTTAGAAGAAACCAAATAGTCTATCGC
CCTCATATCATAGTGTGTTAACAAAATTTTTAAGGGAAAGAAATGTTAGGAA
GGGATAAAAGCTT

Figure 2

ATGAGTGAAGGGCGGCCGTGCCACCTGGTGCCGCTCGGCAGCCG
CCGCCTCGGCCGAGGAGGGACCGCGGCCGTGCGCGGCCAGCGCG
GCGGGGGCCGGACGGCGGCCGAAGGGCGGCCAGGCCCCCGGGAGT
TACGCTGTAGCGACTGCATCGTGTGGAACCGCAGCAGACGTGGCTGTGCGT
GGTACCTCTGTTCATCGGCTTCATCGGCCTGGGCTCAGCCTCATGCTTCTCA
AATGGATCGTGGTGGGCTCCGTCAAGGAGTACGTGCCACCGACCTAGTGGA
CTCCAAGGGATGGGCCAGGACCCCTTCTCCTCTCCAAGGCCAGCTTTCC
CCAAGGCCATGGAGACCACCACTACCACTTCCACACGTCCCCGCCACC
CCCTCCGCCGGGGTGCCGCCTCCTCCAGGACGCCAACCGGATTAGCACTCG
CCTGACCACCATCACGCCGGCCACTCGCTCCCCGGGACCGGGTGCCCA
TCCGGGCCAGCCCGCGCTCCACACAGCACGGAACACTGCGGCCCTGCGAC
GGTCCCCTCACCACGGCCCCGTTCTCAGTAGCAGCACGCTGGGCTCCGAC
CCCCGGTGCCAGGAACCTCAAGTACCCAGGCAATGCCCTCTGGCCTACTGCG
GCATACGCTACCTCCTCACCTCACGATTCTACTCCCTCTGGACCCGTCT
CCCTTCAGGATGCTGCCTCCTCTTCTCTTCTCCCTCCGCTACCACC
ACCACACCAGAAACTAGCACCAAGCCCCAAATTCTACGACGACATATTCCAC
AGAGCGATCCGAGCACTCAAACCCCTGCCGAGACAAGGACCTGCAACTGTC
TCAATGATGGCGAGTGCTTGTGATCGAAACCCCTGACCGGATCCCATAACAC
TGTGGTGCAAAGAAGGCTACCAAGGAGTCCGTTGTGATCAATTCTGCCGAA
AACTGATTCCATCTTATCGGATCCAACAGACCACTTGGGATTGAATTATGG
AGAGTGAAGAAGTTATCAAAGGCAGGTGCTGTCAATTCTATGTATCTT
GGAATTGTGATCGTGGGATGTTCTGTGCAGCATTCTACTTCAAAAGCAAGAA
ACAAGCTAAACAAATCCAAGAGCAGCTGAAAGTGCCACAAAATGGTAAAAGC
TACAGTCTCAAAGCATCCAGCACAATGGCAAAGTCAGAGAAACTTGGTGAAGA
GCCATGTCCAGCTGCAAAATTATTCAAAGGTGGAAAGGCATCCTGTGACTGCA
TTGGAGAAAATGATGGAGTCAAGTTGTGGCCCCAGTCATTCCCTGAGGT
CCCTCTCCTGACAGAGGAAGCCAGTCTGTCAAACACACCAGGAGTCTATCCT
CTTGTGCAAGCCAGGGCAAAGAAGTGGCATGCTCCATAGGAATGCCCTCAG
AAGGACACCCCCGTACCCCGAAGTAGGCTAGGTGGAATTGTGGACCAGCA
TATCAGCAACTCGAAGAATCAAGGATCCCAGACCAGGATACGATACCTGCCA
AGGTATTCATCCAGTGGTTAAAAACCCAAAGAAATACATCAATAAAATATGC
AACTGCCTTCAAGAGAGACAAACCCCTATTAAATAGCTTGGAGCAAAAGGAC
CTGGTGGCTATTCATCCACAAGGGCCAGTTCTGTGCCCATCCTCAGT
GGGTTAGAGGAACCTGCTGCAAATGCCAGGGATTCTGAAGTCAAAGC
ATCAAATGGTGCAAAACTCCTATTCAAGCTGACGTGCAATGTGAGTATTCC
AGTCAGCGATTGTCTTATAGCAGAACACAAGAAGTGAAAATATTGCTAGAA
ACTGTCCAGGAGCAGATCGAATTCTGACTGATGCCAGACGGTCAGAAGACT
ACGAACACTGGCCAGCGTAGAAACCGAGGACAGTGCAAGTGAAAACACAGCCTT
TCTCCCCCTGAGTCCCACAGCCAATCAGAACGAGAGGCGCAATTGTCTAA
GAAATGAAATACAAAGAGACTCTGCATTGACCAAGTGA

Figure 3

hNRG3B1 1 MSEGA~~AAASPPGA~~ASAAAASAEETAAAAAGGGPDGGGE~~GAAEPPR~~
mNRG3 1 MSEGA~~AGASPPGA~~ASAAAASAEETAAAAAGGGPDGGGE~~GAAEPPR~~

H φ ← →

hNRG3B1 51 ELRCSDCIVWNRQQTWL~~C~~VVPLFIGFIGLGLSLM~~L~~LKWIVVGSVKEYVPT
mNRG3 51 ELRCSDCIVWNRQQTWL~~C~~VVPLFIGFIGLGLSLM~~L~~LKWIVVGSVKEYVPT

← S/T rich

hNRG3B1 101 DLVDSKG~~M~~GQDPFFLSKPSSFPKAMETTTT~~T~~TSPATPSAGGAASSRT
mNRG3 101 DLVDSKG~~M~~GQDPFFLSKPSSFPKAMETTTT~~T~~TSPATPSAGGAASSRT

hNRG3B1 151 PNRISTRLLTITRAPTRFPGH~~R~~VPIASPRSTTARNTAAPA~~P~~TVPSTTAPF
mNRG3 151 PNRISTRLLTITRAPTRFPGH~~R~~VPIASPRSTTARNTAAPP~~T~~VLSTTAPF

hNRG3B1 201 FSSSTLGS~~R~~PPVPGTP~~S~~TQAMPSWPTAA~~Y~~ATSSY~~L~~H~~D~~STPSWTLSPFQD
mNRG3 201 FSSSTP~~G~~S~~R~~PPMPGAP~~S~~TQAMPSWPTAA~~Y~~ATSSY~~L~~H~~D~~STPSWTLSPFODA

← → EGF-like

hNRG3B1 250 AASSSSSSS~~S~~ATTTPETSTSPKFHTTYSTERSEHFKP~~C~~RD~~K~~DLAYC
mNRG3 251 AASSSSP~~S~~TSS~~T~~TTPETSTSPKFHTTYSTERSEHFKP~~C~~RD~~K~~DLAYC

hNRG3B1 299 LNDGE~~E~~FVIETLTGSHKH~~R~~KEGYOGVRC~~D~~QFLPKTDSILSDPTDHLGI
mNRG3 301 LNDGE~~E~~FVIETLTGSHKH~~R~~KEGYOGVRC~~D~~QFLPKTDSILSDPTDHLGI

TM ← →

hNRG3B1 349 EFMESEE~~V~~YQROQLSISCIIFGIVIVGMFC~~A~~AFYFKSKKQAKQIQEQLKV
mNRG3 351 EFMESED~~V~~YQROQLSISCIIFGIVIVGMFC~~A~~AFYFKSKKQAKQIQEHLKE

hNRG3B1 399 PONGK~~S~~YSLKASSTMAKSEN~~V~~KSHV~~G~~Q~~N~~YSKVER~~R~~HPTALEKMMMESSF
mNRG3 401 SONGKN~~S~~YSLKASST-X~~E~~SLW~~K~~SHV~~H~~Q~~N~~YSKADR~~R~~HPTALEKIMMESSF

hNRG3B1 449 VGPQS~~F~~PEV~~P~~SPDRGS~~G~~SV~~K~~HRS~~L~~SSCC~~S~~PGQRSGMLHRNA~~F~~RR~~T~~PPSF
mNRG3 449 SAPOS~~F~~PEV~~T~~SPDRGS~~G~~OP~~I~~KHH~~.....~~SPGQRSGMLHRNT~~F~~RRAPPSP

hNRG3B1 499 RSRLGGIVGPAYQQLEESRIPDQDTIPCOGIEVRKTISHLP~~I~~QLWCVERP
mNRG3 492 RSRLGGIVGPAYQQLEESRIPDQDTIPCOGIEVRKTISHLP~~I~~QLWCVERP

hNRG3B1 549 DLKY~~S~~SSGLK~~T~~ORN~~T~~SINMQLPSRETNPYFNSLEOKDLVGYS~~S~~STRASSV
mNRG3 542 DLKY~~V~~SNGLR~~T~~Q~~N~~ASINMQLPSRETNPYFNSLDOKDLVGYS~~P~~RANSV

hNRG3B1 599 PIIPS~~V~~GLEETCLQMPGISE~~V~~KSIKWKNSYSADVVNV~~S~~IPVS~~D~~CLI~~A~~E~~O~~
mNRG3 592 PIIPS~~M~~GLEETCMQMPGISDV~~V~~KSIKWKNSYSADIVNA~~S~~MPVS~~D~~CV~~I~~E~~O~~

hNRG3B1 649 QEVKILLETVQEQIRILTDARRSEDYELAS~~V~~ETEDSASENTAFLPLSPTA
mNRG3 642 QEVKILLETVQEQIRILTDARRSED~~F~~ELAS~~M~~ETEDSASENTAFLPLSPTA

hNRG3B1 699 KSEREAQFVLRNEIORDSA~~TK~~
mNRG3 692 KSEREAQFVLRNEIORDS~~V~~TK

Figure 4A

hNRG3B1 1 MSEGA₁₀ASPPGAASAAA₁₀ASAEETAA₁₀AGGGPDGGGE₁₀GAAEPPR
 hNRG3B2 1 MSEGA₁₀ASPPGAASAAA₁₀ASAEETAA₁₀AGGGPDGGGE₁₀GAAEPPR

HΦ

hNRG3B1 51 ELRCSDCIVWHRQQTWL₁₀CVVPLFIGFIGLGLSLMLLK₁₀WIVVGSVK₁₀EYVPT
 hNRG3B2 51 ELRCSDCIVWHRQQTWL₁₀CVVPLFIGFIGLGLSLMLLK₁₀WIVVGSVK₁₀EYVPT

↑ ↓ S/T rich

hNRG3B1 101 DLVDSKGMDQDPFFLSKPSSFPKAMETTTT₁₀TSPATPSAGGAASSRT
 hNRG3B2 101 DLVDSKGMDQDPFFLSKPSSFPKAMETTTT₁₀TSPATPSAGGAASSRT

hNRG3B1 151 PNRISTRLLTTITRAPTRFPGH₁₀RVP₁₀IRASPRSTTARNTAAPATV₁₀PSTTAPF
 hNRG3B2 151 PNRISTRLLTTITRAPTRFPGH₁₀RVP₁₀IRASPRSTTARNTAAPATV₁₀PSTTAPF

hNRG3B1 201 FSSSTLGSRPPVPGTPSTQAMPSWPTAAAYATSSYLHDSTPSWTLSPFQDA
 hNRG3B2 201 FSSSTLGSRPPVPGTPSTQAMPSWPTAAAYATSSYLHDSTPSWTLSPFQDA

← → EGF-like

hNRG3B1 251 A₁₀SSSSSSSSATTTPETSTSPKFHTTYSTERSEHFKPCRD₁₀KD₁₀LAYCLN
 hNRG3B2 251 A₁₀SSSSSSSSATTTPETSTSPKFHTTYSTERSEHFKPCRD₁₀KD₁₀LAYCLN

hNRG3B1 301 DGE₁₀CFVIETLTGSHKHCRCKEGYOGVRCDOFLPKTDSILSDOPTDHLGIEF
 hNRG3B2 301 DGE₁₀CFVIETLTGSHKHCRCKEGYOGVRCDOFLPKTDSILSDOPTDHLGIEF

TM

hNRG3B1 351 M₁₀ESEEVYORQVL₁₀SISCIIFGIVIVGMFC₁₀A₁₀FY₁₀FKSKKQAKO₁₀I₁₀EQ₁₀OLKVPO
 hNRG3B2 351 M₁₀ESEEVYORQVL₁₀SISCIIFGIVIVGMFC₁₀A₁₀FY₁₀FKSKKQAKO₁₀I₁₀EQ₁₀OLKVPO

hNRG3B1 401 NGKSYS₁₀LKASSTMAKSEN₁₀LVKSHVQL₁₀ONYSKVERHPVTALEKMMMESSFVG
 hNRG3B2 401 NGKSYS₁₀LKASSTMAKSEN₁₀LVKSHVQL₁₀ONYSKVERHPVTALEKMMMESSFVG

hNRG3B1 451 POSFPEVPS₁₀PD₁₀RGSOSV₁₀KHHRS₁₀LSSCCSPG₁₀QRS₁₀GML₁₀HRNAFRRTPPSPR₁₀
 hNRG3B2 451 POSFPEVPS₁₀PD₁₀RGSOSV₁₀KHHRS₁₀LSSCCSPG₁₀QRS₁₀GML₁₀HRNAFRRTPPSPR₁₀

hNRG3B1 501 RLGGI₁₀VGPAYOOLEE₁₀S₁₀RIPDQDT₁₀T₁₀PCOG₁₀I₁₀EVRKT₁₀I₁₀SHLP₁₀I₁₀LWCVERPLD
 hNRG3B2 501 RLGGI₁₀VGPAYOOLEE₁₀S₁₀RIPDQDT₁₀T₁₀PCOG₁₀-----₁₀

hNRG3B1 551 LKY₁₀SS₁₀GLKT₁₀ORTNT₁₀S₁₀INMOLP₁₀S₁₀RET₁₀NPY₁₀F₁₀N₁₀S₁₀LE₁₀Q₁₀D₁₀L₁₀V₁₀GY₁₀S₁₀STRASSVPI
 hNRG3B2 551 -Y₁₀SS₁₀GLKT₁₀ORTNT₁₀S₁₀INMOLP₁₀S₁₀RET₁₀NPY₁₀F₁₀N₁₀S₁₀LE₁₀Q₁₀D₁₀L₁₀V₁₀GY₁₀S₁₀STRASSVPI

hNRG3B1 601 IPSV₁₀G₁₀LEET₁₀C₁₀L₁₀O₁₀M₁₀P₁₀G₁₀I₁₀S₁₀E₁₀V₁₀K₁₀W₁₀C₁₀K₁₀N₁₀S₁₀A₁₀D₁₀V₁₀V₁₀N₁₀V₁₀S₁₀I₁₀P₁₀V₁₀S₁₀D₁₀C₁₀L₁₀I₁₀A₁₀E₁₀O₁₀E
 hNRG3B2 577 IPSV₁₀G₁₀LEET₁₀C₁₀L₁₀O₁₀M₁₀P₁₀G₁₀I₁₀S₁₀E₁₀V₁₀K₁₀W₁₀C₁₀K₁₀N₁₀S₁₀A₁₀D₁₀V₁₀V₁₀N₁₀V₁₀S₁₀I₁₀P₁₀V₁₀S₁₀D₁₀C₁₀L₁₀I₁₀A₁₀E₁₀O₁₀E

hNRG3B1 651 VKILLET₁₀VQE₁₀QIR₁₀I₁₀L₁₀D₁₀A₁₀R₁₀R₁₀S₁₀E₁₀D₁₀Y₁₀E₁₀L₁₀A₁₀S₁₀V₁₀E₁₀T₁₀E₁₀D₁₀S₁₀A₁₀E₁₀N₁₀T₁₀A₁₀F₁₀L₁₀P₁₀S₁₀T₁₀A₁₀K₁₀S
 hNRG3B2 627 VKILLET₁₀VQE₁₀QIR₁₀I₁₀L₁₀D₁₀A₁₀R₁₀R₁₀S₁₀E₁₀D₁₀Y₁₀E₁₀L₁₀A₁₀S₁₀V₁₀E₁₀T₁₀E₁₀D₁₀S₁₀A₁₀E₁₀N₁₀T₁₀A₁₀F₁₀L₁₀P₁₀S₁₀T₁₀A₁₀K₁₀S

hNRG3B1 701 EREAQFVLRNEIORDSALT₁₀K
 hNRG3B2 677 EREAQFVLRNEIORDSALT₁₀K

Figure 4B

hNRG3.egf	268	H F K P C R D K D L A Y C L N D G E C F V I E T L T G S H K H - C R C K E G Y O G V R C - D Q F
cARIA.egf	137	H L T K C D I K O K A F C V N G G E C Y M V K D L P N P P R Y L C R C P N E F T G D R C - Q N Y V
hAR.egf	142	K K N P C N A E F O N F C I H - G E C K Y I E H L E A V T - - - C K C Q Q E Y F G E R C G E K S M
hBTC.egf	65	H F S R C P K Q Y K H Y C I K - G R C R F V V A E Q T P S - - - C V C D E G Y I G A R C E R V D L
hEGF.egf	972	S D S E C P L S H D G Y C L H D G V C M Y I E A L D K Y A - - - C N C V V G Y I G E R C Q Y R D L
hHB-EGF.egf	104	K R D P C L R K Y K D F C I H - G E C K Y V K E L R A P S - - - C I C H P G Y H G E R C H G L S L
hHRG α .egf	178	H L V K C A E K E K T F C V N G G E C F M V K D L S N P S R Y L C K C Q P G F T G A R C T E N Y P
hHRG β .egf	178	H L V K C A E K E K T F C V N G G E C F M V K D L S N P S R Y L C K C P N E F T G D R C - Q N Y V
hTGF α .egf	43	H F N D C P D S H T O F C F H - G T C R F L V Q E D K P A - - - C V C H S G Y V G A R C E H A D L
mEPR.egf	57	Q I T K C S S D M D G Y C L H - G O C I Y L V D M R E K F - - - C R C E V G Y T G L R C E H F F L

Figure 5

Figure 6A - 6H

Figure 7