Assignment 3 Report

2)

Steps performed for linear SVM for binary classification

- Converted the data file into .csv file
- Picked 2000 samples of 3 and 8 each from the data set.
- Permute the rows to increase randomness. The above steps were performed for both testing and training files.
- For soft margin SVM formulation apply 5 fold cross validation with Grid search to get an approximate value of C.
- I performed 5 fold cross validation to find the optimal value of C. For my program, C=0.03125.
- Used the above value of C to trained the model and saved it
- Test the test data using the saved model "model_linear.model".
- Plot roc curve for it.

ROC curve obtained:

Linear SVM for multi-class classification

Steps Performed:

- Converted the data file into .csv file
- Picked 2000 samples of 3 and 8 each from the data set.
- Permute the rows to increase randomness. The above steps were performed for both testing and training files.
- Run loop for one vs all approach such that for each label we have different trained model.
- Test the various models on the subset of 5000 samples.
- Plot roc curve for it.

RBF Kernel for multi-class classification

Steps:

- Converted the data file into .csv file
- Picked 2000 samples of 3 and 8 each from the data set.
- Permute the rows to increase randomness. The above steps were performed for both testing and training files.

- For soft margin SVM formulation apply 5 fold cross validation with Grid search to get an approximate value of C.
- I performed 5 fold cross validation to find the optimal value of C. For my program, C=10 and gamma=0.01
- Run loop for one vs all approach such that for each label we have different trained model.
- Test the various models on the subset of 5000 samples.
- Test the test data using the saved model "multi2.model".
- Plot roc curve for it.

KPCA and k-nearest neighbor classification

Steps performed:

- Select 150 random samples from the training set of MNIST data set.
- Create test set using 100 samples from test set.
- Randomised both the dataset
- Construct the kernel matrix and perform KPCA with k=3
- Use 5 fold cross validation with grid search to estimate gamma for RBF kernel.
- Perform KPCA + kNN classification on the 1000 test samples and check the accuracy.

Results:

- For linear, after grid search and cross validation, the value of C was found to be 0.03125
- This value can be used for linear models in binary classification and one-versus-all approach.
- For RBF, the value of gamma and C found by 5 fold cross validation with grid search are C = 10, gamma = 0.01.
- Accuracy:

Binary classification: 92.9%

One-versus-all: 89.3%

Rbf kernel: 95% KPCA+kNN: 50%

Theory Questions

Rall Ma -	Prerna Singh 2013149 Evergreen
30, 110	2013149 Everyfeen Page No.
	Machine Lowning Date: 1 1201
	Assignment
	R Table 1
	$P(y_i=1 f(x_i))=\frac{1}{1+e^{-f(x)}}$ where $f(x_i)=w^Tx_i+b$
	$p(y_i = -1 f(x_i)) = 1 - p(y_i = 1 f(x_i))$
	1-1e-t(ni)
	110-140 -1 - 0-1(41)
ricio m	1 + e - f(xi) 1 + e - f(xi)
	et(ni) - Det(ni)
	0-(4)+1
	et(xi) et(xi)
2.	The March 1 March 1 and
	0 ef(xi) +1
	: General form of probability can be written
	as:-
	p(yi) f(ni)) = 1 = -yf(xi)
_	-> O solvis feis both:
	p(g=1) +(xi) - 1 + e-+(xi)
	1 / (+e-1(m)
	$p(y_i = -1) + (x_i) = \frac{1}{1}$
	11et(x)
	Since we have data points (xi, yi) for i=1.1
	and x ERd
7	$\frac{1}{p(x)+p(x)} = 11 \frac{p(y+1+x+1)}{p(y+1+x+1)}$
(4 1-1-1-1	1 - In the second secon
	- 11 1+e-yif(xi)
	71. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Taking log of the done equation log p (y) f(x) = log fr

Page No. Date: / /201
$= \frac{5}{1 - 1} \log \left(\frac{1}{1 + e^{-y} i f(x)} \right)$ $= \frac{5}{1 - 1} \log \left(1 + e^{-y} i f(x) \right)$
$= 0 - \sum_{i=1}^{n} \log_{i} \left(1 + e^{-y_{i} + (w_{i})}\right)$
$= -\frac{5}{5} \log \left(1 + e^{-y_i + (x_i)}\right)$
log Vkolihood with addition of regulations Torm is given by - 5 log (1+ e-yif(xi)) + > w ^2
: ve log likalihood would b9:- \$\frac{2}{2}\log (1+\exp(-y;f(xi)) + \frac{1}{2}\log (2)\$
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1
netre ELR (yi, f(ni)) = log (1+ e-yif(ni))
Hence proved

	The state of the s
Ų	$L(\omega_1b, \Xi_i, \mathfrak{D}\Sigma_N, \widehat{\Sigma}_i\widehat{\Sigma}_N) = C\sum_{i=1}^{N} (\Sigma_i + \widehat{\Sigma}_i)$
	$+ \frac{1}{2} \ \mathbf{w} \ ^2 - \sum_{i=1}^{n} (\mathbf{u}_i \mathbf{\hat{\Sigma}}_i + \hat{\mathbf{u}}_i \mathbf{\hat{\Sigma}}_i) + \sum_{i=1}^{n} (\mathbf{\hat{\Sigma}}_i + \mathbf{\hat{\Sigma}}_i \mathbf{\hat{\Sigma}}_i) - \sum_{i=1}^{n} (\mathbf{\hat{\Sigma}}_i + \mathbf{\hat{\Sigma}}_i - \mathbf{\hat{\Sigma}}_i \mathbf{\hat{\Sigma}}_i) + \mathbf{\hat{\Sigma}}_i \mathbf{\hat{\Sigma}}_$
	Substituting $f(ni) = w^* \phi(x) + b$ and known differentialing with to $w, b, \Sigma i, \Sigma i$ we get:
	Civilities + 1

7.0	(Date: / /201
	$cN = \sum_{i=1}^{N} \mu_i - \sum_{i=1}^{N} a_i $
	Mulliphying by $\xi_i \Rightarrow c\xi_i = l_i \xi_i - a_i \xi_i$
	Multiplying by $\mathcal{E}_{i} \Rightarrow \mathcal{E}_{i} = \mathcal{U}_{i} \mathcal{E}_{i} - \alpha_{i} \mathcal{E}_{i}$
	Do summation $C \geq Si = \sum_{i=1}^{N} L_i Si - \sum_{i=1}^{N} a_i Si$
	$c\sum_{i=1}^{N} S_{i} - \sum_{i=1}^{N} \text{Li} S_{i}^{2} - \sum_{i=1}^{N} \text{Li} S_{i}^{2} = 0$
	flence trontom () -0
	$CN = \sum_{i=1}^{\infty} \hat{u}_i + \sum_{i=1}^{\infty} \hat{a}_i$
	or $c = \hat{\mathcal{U}}_i + \hat{\alpha}_i$ multiplying by $\hat{\mathcal{Z}}_i$, $\hat{\mathcal{Z}}_i + \hat{\alpha}_i \cdot \hat{\mathcal{Z}}_i$
	Summation, $\sum_{i=1}^{N} \hat{\xi}_i = \sum_{i=1}^{N} \hat{\chi}_i^i \hat{\xi}_i + \sum_{i=1}^{N} \hat{\alpha}_i^i \hat{\xi}_i$
	$\frac{\sum_{i=1}^{N} \hat{z}_{i} - \sum_{i=1}^{N} \hat{u}_{i} \hat{z}_{i}}{\hat{z}_{i}} = 0$
	cloarly term DO -> 0
	Jum (b), -> 0 since \(\sum_{i=1}^{N} \) - \(\sum_{i=1}^{N} \) = 0 from equal \(\sum_{i=1}^{N} \)
	finally (3) 1 2 - 2 a; w p(n) + 5 a; w p(n)
	$=\frac{1}{2}\ \mathbf{w}\ ^2-\mathbf{w}^{T}\phi(\mathbf{x})\left[\sum_{i=1}^{N}a_i-\sum_{i=1}^{N}\hat{a}_i\right]$
20 F 20 SK	$=\frac{1}{2}\ \omega\ ^2-\frac{1}{2}\ \omega\ ^2=-\frac{1}{2}\ \omega\ ^2$
	Z LWW

		Everbreen
	<i>N</i> ,	Page No. Date: / /201
	= -1 5 3 (ai	- ai)(aj-aj) \$ (xi) \ (xi)
tlence -12 2 i=	finally, the gar \[\begin{align*} \frac{2}{a_i} & \frac{a_i}{a_i} & \frac{a_i}{a_i} \end{align*} \]	palion becomes - aj) K(ni, nj)
	t 2 (ai + ai) +	$= \sum_{i=1}^{N} (a_i - \hat{a}_i) y_i$
where	$R(n_i, x_j) =$	p(ni) p(nj)