Introduction to **Information Retrieval**

Recap

- · Previous: Information Retrieval
 - How to store for efficient lookup
 - The vector space model for document scoring
 - · Nearest neighbor retrieval with an exemplar document
 - With new queries daily, can be hard to use parametric classifier
 - How to evaluate performance
 - Optimizations: relevance feedback + tolerant retrieval
- · Now: Text Classification
 - Have fixed classification task and available labeled data
 - Parametric classifiers effective and efficient for this task

troduction to Information Retrieval

Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 Evaluation
- **5** Linear Classifiers

A text classification task: Email spam filtering

From: ''' <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay Anyone can buy real estate with no money down

Stop paying rent TODAY ! There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties

methods outlined in this truly INCREDIBLE ebook. Change your life NOW !

Click Below to order: http://www.wholesaledaily.com/sales/nmd.htm

How would you write a program that would automatically detect and delete this type of message?

Formal definition of TC: Training

- A document space X
 - Documents are represented in this space, e.g. vectors
- A fixed set of classes C = {c₁, c₂, . . . , c_i}
 - The classes are human-defined for the needs of an application (e.g., relevant vs. nonrelevant).
- A training set D of labeled documents with each labeled $document < d, c > \in X \times C$

Using a learning method or learning algorithm, we then wish to learn a classifier Y that maps documents to classes:

 $\Upsilon: X \to C$

Formal definition of TC: Application/Testing

Given: a description $d \in X$ of a document (often previously unseen)

Determine: $\Upsilon(d) \in C$, that is, the class that is most appropriate for d

ntroduction to Information Retrieval

Examples of how search engines use classification

- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)
- Standing queries (e.g., Google Alerts)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)

8

ntroduction to Information Retrieval

Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- → We need automatic methods for classification.

Introduction to Information Retrievo

Classification methods: 2. Rule-based

- Google Alerts uses rule-based classification.
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is cumbersome and expensive.
 - But immediately apply to new data

10

Outline 1 Recap 2 Text classification 3 Naive Bayes 4 Evaluation 5 Linear Classifiers

ntroduction to Information Retrieva

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows: $P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$
 - n_d is the length of the document. (number of tokens)
 - $P(t_k \mid c)$ is the conditional probability of term t_k occurring in a document of class c
 - = $P(t_k \mid c)$ as a measure of how much evidence t_k contributes that c is the correct class.
 - P(c) is the prior probability of c.

13

atroduction to Information Retrieva

Maximum a posteriori class

- Goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or maximum a posteriori (MAP) class cmap:

$$c_{\mathsf{map}} = \argmax_{c \in \mathbb{C}} \hat{P}(c|d) = \argmax_{c \in \mathbb{C}} \ \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)$$

14

ntroduction to Information Retrieval

Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = \mathop{\arg\max}_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c) \right]$$

15

troduction to Information Retrieva

Naive Bayes classifier

Classification rule:

$$c_{\mathsf{map}} = \mathop{\mathsf{arg\,max}}_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k | c) \right]$$

- Simple interpretation:
 - = Each conditional parameter log $\hat{P}(t_k|c)$ is a weight that indicates how good an indicator t_k is for c.
 - The prior $\log \hat{P}(c)$ is a weight that indicates the relative frequency of c.
 - We select the class with the most evidence (weight).

16

Introduction to Information Retrieva

Parameter estimation take 1: Maximum likelihood

- Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?
- Prior:

$$\hat{P}(c) = \frac{N_c}{N}$$

- N_c: number of docs in class c; N: total number of docs
- Conditional probabilities:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

 T_{ct} is the number of tokens of t in training documents from class c (includes multiple occurrences) Introduction to Information Retrieve

The problem with maximum likelihood estimates: Zeros

P(China | d) ∝ P(China) · P(BEIJING | China) · P(AND | China) · P(TAIPEI | China) · P(JOIN | China) · P(WTO | China)

• If WTO never occurs in class China in the train set:

$$\hat{P}(\mathrm{WTO}|\mathit{China}) = \frac{T_{\mathit{China}}, \mathrm{WTO}}{\sum_{t' \in \mathit{V}} T_{\mathit{China},t'}} = \frac{0}{\sum_{t' \in \mathit{V}} T_{\mathit{China},t'}} = 0$$

18

Introduction to Information Retrieva

To avoid zeros: Add-one smoothing (prior)

Before:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

• Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

 B is the number of different words (in this case the size of the vocabulary: | V | = M)

19

troduction to Information Retrieva

Exercise

	docID	words in document	in $c = China$?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

- Estimate parameters of Naive Bayes classifier (offline)
- Classify test document (online)

20

ntroduction to Information Retrieval

Example: Parameter estimates

Priors: $\hat{P}(c) = 3/4$ and $\hat{P}(\overline{c}) = 1/4$ Conditional probabilities:

$$\begin{split} \hat{P}(\text{Chinese}|c) &= (5+1)/(8+6) = 6/14 = 3/7 \\ \hat{P}(\text{Tokyo}|c) &= \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14 \\ \hat{P}(\text{Chinese}|\overline{c}) &= (1+1)/(3+6) = 2/9 \\ \hat{P}(\text{Tokyo}|\overline{c}) &= \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9 \end{split}$$

The denominators are (8+6) and (3+6) because the lengths of $text_c$ and $text_{\overline{c}}$ are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

21

Introduction to Information Retriev

Example: Classification

$$\begin{array}{ll} \hat{P}(c|d_5) & \propto & 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003 \\ \hat{P}(\overline{c}|d_5) & \propto & 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001 \end{array}$$

Thus, the classifier assigns the test document to c = China. The reason for this classification decision is that the three occurrences of the positive indicator CHINESE in d_5 outweigh the occurrences of the two negative indicators JAPAN and TOKYO.

22

ntroduction to Information Retrieva

Linear Time complexity of Naive Bayes

mode	time complexity
training	$\Theta(\mathbb{D} L_{ave} + \mathbb{C} V)$
testing	$\Theta(L_{a} + \mathbb{C} M_{a}) = \Theta(\mathbb{C} M_{a})$

- L_{ave}: average length of a training doc, L_a: length of the test doc, M_a: number of distinct terms in the test doc, D: training set, V: vocabulary, C: set of classes
- $\Theta(|\mathbb{D}|L_{ave})$ is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$ is the time it takes to compute the parameters from the counts.
- Generally: $|\mathbb{C}||V| < |\mathbb{D}|L_{\mathsf{ave}}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

ntroduction to Information Retrieval

Why does Naive Bayes work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

	c_1	c_2	class selected
	0.6	0.4	c_1
$\hat{P}(c)\prod_{1\leq k\leq n_{d_k}}\hat{P}(t_k c)$	0.00099	0.00001	
NB estimate $\hat{P}(c d)$	0.99	0.01	c_1

- Double counting of evidence causes underestimation (0.01) and overestimation (0.99).
- Classification is about predicting the correct class and not about accurately estimating probabilities.
 - Correct estimation ⇒ accurate prediction.
 - But not vice versa!

ntroduction to Information Retrieva

Naive Bayes is not so naive

- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast, low storage requirements
- More data often more important than better classifiers

25

Introduction to Information Retriev

Outline

- Recap
- 2 Text classification
- 3 Naive Bayes
- 4 Evaluation
- **5** Linear Classifiers

26

ntroduction to Information Retrieval

Evaluating classification

- Evaluation must be done on test data that are independent of the training data
 - Split your data into train and test sets!
- It's easy to get good performance on a test set that was available to the learner during training
 - e.g., just memorize the test set
- Measures:
 - Accuracy: not useful when class imbalance
 - Precision, recall, F₁
 - When can we use ranking metrics?

27

troduction to Information Retrieva

Averaging: Multiclass & Micro vs. Macro

- We now have an evaluation measure (F_1) for one class.
- Can report independently, or aggregate performance over all classes in the collection...
- Macroaveraging
 - Compute F₁ for each of the C classes
 - Average these C numbers
- Microaveraging
 - Compute TP, FP, FN for each of the C classes
 - Sum these C numbers (e.g., all TP to get aggregate TP)
 - Compute F₁ for aggregate TP, FP, FN

28

Naive Bayes vs. other methods NB Rocchio kNN micro-avg-L (90 classes) 47 59 60 60 macro-avg (90 classes) Rocchio kNN trees SVM earn 92 78 88 57 79 80 64 65 85 70 money-fx 68 70 65 85 85 73 grain crude 82 86 77 74 79 77 78 95 89 76 78 86 trade ship 93 wheat 69 corn 65 48 78 92 micro-avg (top 10) 62 65 82 88 micro-avg-D (118 classes) 75 62 n/a n/a Evaluation measure: F₁ Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

Outline

- 1 Recap
- 2 Text classification
- 3 Naive Bayes
- 4 Evaluation
- **5** Linear Classifiers

Introduction to Information Retrieva

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - . . . where θ (the threshold) is a parameter. (First, we only consider *binary* classifiers.)

- We find this separator based on training set.
- Assumption: Classes are (mostly) linearly separable

31

atroduction to Information Retrieva

Naive Bayes as a linear classifier

Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{M} w_i f_i > \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, f_i = is whether term t_i is present in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$.

32

**Classification decision based on majority of k nearest neighbors.

- The decision boundarie between classes are piecewise linear . . .
- Not generally linear

33

Introduction to Information Retrieval

Computational Considerations

- Computationally, there are **two types** of learning algorithms.
- (i) Simple learning algorithms that estimate parameters of the classifier directly from training data in one linear pass.
 - Naive Bayes, Rocchio, kNN
- (ii) Iterative (discriminative) algorithms that require optimization
 - Support vector machines
 - Logistic regression
- Best algorithms are iterative, but need fast training
 - Up to a few million data points/features, use scikitlearn (see lab)
 - Beyond that (or if data streaming), need online training...