Konstruktion von Automorphismengruppen schlichter Graphen

Dominik Bernhardt
RWTHAACHEN
INIVERSITY

Gießen 15. März 2019

Allgemeines

 Gemeinsame Arbeit mit Prof. Wilhelm Plesken (Aachen) und Prof. Alice Niemeyer (Aachen)

Allgemeines

- Gemeinsame Arbeit mit Prof. Wilhelm Plesken (Aachen) und Prof. Alice Niemeyer (Aachen)
- Analyse der gruppentheoretischen Struktur von Automorphismengruppen schlichter Graphen
 - → Konstruktionsalgorithmen für Automorphismengruppen herleiten.

Table of contents

- Einführung
- Formenräume und Graphen
- 3 Subdirekte Produkte und Automorphismengruppen
- 4 Automorphismengruppen mit 2 Bahnen

Einführung

Schlichte Graphen

Definition

Seien $n, k \in \mathbb{N}$ natürliche Zahlen. Ein schlichter Graph mit n Punkten und k Kanten ist ein Tupel $\Gamma = (V, E)$, wobei $V = \{1, ..., n\}$ und $E \subseteq \text{Pot}_2(\{1, ..., n\})$ mit |E| = k ist.

Schlichte Graphen

Definition

Seien $n, k \in \mathbb{N}$ natürliche Zahlen. Ein schlichter Graph mit n Punkten und k Kanten ist ein Tupel $\Gamma = (V, E)$, wobei $V = \{1, ..., n\}$ und $E \subseteq \text{Pot}_2(\{1, ..., n\})$ mit |E| = k ist.

$$n = 4 = k, V = \{1, 2, 3, 4\}$$
 und $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$

Schlichte Graphen

Definition

Seien $n, k \in \mathbb{N}$ natürliche Zahlen. Ein schlichter Graph mit n Punkten und k Kanten ist ein Tupel $\Gamma = (V, E)$, wobei $V = \{1, ..., n\}$ und $E \subseteq \text{Pot}_2(\{1, ..., n\})$ mit |E| = k ist.

$$n = 4 = k, V = \{1, 2, 3, 4\}$$
 und $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$

Konvention

Ab jetzt: Graph = Schlichter Graph.

Automorphismengruppen schlichter Graphen

Alle Gruppenoperationen sind Rechtsoperationen.

Definition (Graphenisomorphismus)

Seien $\Gamma = (V, E)$ und $\Gamma' = (V', E')$ zwei Graphen. Ein *Isomorphismus* zwischen Γ und Γ' ist eine Bijektion $\pi : V \to V'$ mit $(V)\pi = V'$ und $\{v_1, v_2\} \in E \Leftrightarrow \{(v_1)\pi, (v_2)\pi\} \in E'$.

Automorphismengruppen schlichter Graphen

Alle Gruppenoperationen sind Rechtsoperationen.

Definition (Graphenisomorphismus)

Seien $\Gamma = (V, E)$ und $\Gamma' = (V', E')$ zwei Graphen. Ein *Isomorphismus* zwischen Γ und Γ' ist eine Bijektion $\pi : V \to V'$ mit $(V)\pi = V'$ und $\{v_1, v_2\} \in E \Leftrightarrow \{(v_1)\pi, (v_2)\pi\} \in E'$.

Definition

Sei $\Gamma=(V,E)$ ein Graph. Eine Abbildung $\pi\in \operatorname{Sym}(V)$ mit $\{v_1,v_2\}\in E\Leftrightarrow \{(v_1)\pi,(v_2)\pi\}\in E$ heißt *Automorphismus* von Γ . Die Menge der Automorphismen eines Graphen Γ bildet eine Gruppe, die wir mit $\operatorname{Aut}(\Gamma)$ bezeichnen.

$$\mathsf{Aut}(\Gamma) = \{(), (1\,2)(3\,4)$$

$$\mathsf{Aut}(\Gamma) = \{(), (1\,2)(3\,4), (2\,4),$$

$$\begin{split} & \mathsf{Aut}(\Gamma) = \{(), (1\,2)(3\,4), (2\,4), (1\,2\,3\,4), (1\,3), \\ & (1\,3)(2\,4), (1\,4\,3\,2), (1\,4)(2\,3)\} \\ & = \langle (1\,2\,3\,4), (1\,4)(2\,3)\rangle \simeq \mathit{D}_8 \end{split}$$

$$\begin{split} & \mathsf{Aut}(\Gamma) = \{(), (1\,2)(3\,4), (2\,4), (1\,2\,3\,4), (1\,3), \\ & (1\,3)(2\,4), (1\,4\,3\,2), (1\,4)(2\,3)\} \\ & = \langle (1\,2\,3\,4), (1\,4)(2\,3)\rangle \simeq \textit{D}_8 \end{split}$$

 \rightarrow D₈ operiert auf Γ.

Gruppenoperation

Lemma

Sei $\Gamma = (V, E)$ ein Graph und $G := \operatorname{Aut}(\Gamma)$. Dann operiert jede Untergruppe $U \le G$ auf Γ vermöge

$$E \times U \to E, (\{v_1, v_2\}, g) \mapsto \{v_1, v_2\}^g := \{v_1^g, v_2^g\}.$$

Adjazenzmatrix

Definition (Adjazenzmatrix)

Sei $\Gamma = (V, E)$ ein Graph mit $V = \{1, \dots, n\}$. Definiere $A_{\Gamma} \in \{0, 1\}^{n \times n}$ via

$$(A_{\Gamma})_{i,j} = \begin{cases} 1, \text{ falls } \{i,j\} \in E \\ 0, \text{ sonst} \end{cases}$$

Dann heisst A_{Γ} die *Adjazenzmatrix* des Graphen Γ.

Adjazenzmatrix

Definition (Adjazenzmatrix)

Sei $\Gamma = (V, E)$ ein Graph mit $V = \{1, \dots, n\}$. Definiere $A_{\Gamma} \in \{0, 1\}^{n \times n}$ via

$$(A_{\Gamma})_{i,j} = \begin{cases} 1, \text{ falls } \{i,j\} \in E \\ 0, \text{ sonst} \end{cases}$$

Dann heisst A_{Γ} die *Adjazenzmatrix* des Graphen Γ.

Sei $G \leq S_n$. Mit \widetilde{G} bezeichnen wir die Darstellung von G als Permutationsmatrizen, also das Bild der Abbildung

$$G \hookrightarrow S_n \hookrightarrow \mathsf{GL}(n,\mathbb{Z}), \pi \mapsto (e_{(1)\pi}, \dots, e_{(n)\pi}).$$

Lemma

Sei Γ ein Graph auf n Punkten und $U \leq \widetilde{S_n}$. Dann gilt $U \leq \widetilde{\operatorname{Aut}(\Gamma)}$ genau dann, wenn

 $u^t A_{\Gamma} u = A_{\Gamma}$ für alle $u \in U$.

Formenräume und Graphen

Automorphismengruppen vs # Nicht isomorphe

Graphen

Punkte	#Automorphismengruppen	# Iso.Klassen Graphen
1 dilikte	#/ tatornorpriismengrappen	# 130.1 Na33err Grapherr
1	1	1
2	1	2
3	2	4
4	6	11
5	9	34
6	23	156
7	31	1044
8	71	12346
9	103	274668
10	213	12005168
11	299	1018997864
12	691	165091172592
13	951	50502031367952
n	$\stackrel{?}{\sim} \sqrt{3^n}$	$(1+o(1))2^{\binom{n}{2}}/n!$

 Analysiere Automorphismengruppen anhand ihrer Bahnenstruktur und transitiven Konstituenten. Es ergeben sich 2 Fälle

- Analysiere Automorphismengruppen anhand ihrer Bahnenstruktur und transitiven Konstituenten. Es ergeben sich 2 Fälle
 - ► Transitive Gruppen auf den Ecken des Graphen
 - ► Intransitive Gruppen auf den Ecken des Graphen

- Analysiere Automorphismengruppen anhand ihrer Bahnenstruktur und transitiven Konstituenten. Es ergeben sich 2 Fälle
 - ► Transitive Gruppen auf den Ecken des Graphen
 - ▶ Intransitive Gruppen auf den Ecken des Graphen
- Benötigte Konzepte: Formenräume und subdirekte Produkte.

Formenraum

Definition

Sei $G \leq S_n$ eine Permutationsgruppe. Dann heisst

$$\mathcal{F}(G) := \left\{ A \in \mathbb{Z}_{\mathsf{sym}}^{n \times n} \mid g^t A g = A \ \forall g \in \widetilde{G}
ight\}$$

der Formenraum von G.

Formenraum

Definition

Sei $G \leq S_n$ eine Permutationsgruppe. Dann heisst

$$\mathcal{F}(G) := \left\{ A \in \mathbb{Z}_{\mathsf{sym}}^{n \times n} \mid g^t A g = A \ orall g \in \widetilde{G}
ight\}$$

der Formenraum von G.

Beispiel

$$G := \langle (1,2,3), (4,5,6) \rangle$$
. Dann liegen folgenden Matrizen in $\mathcal{F}(G)$:

Formenraum

Lemma

Sei $G \le S_n$ eine Permutationsgruppe mit Bahnen $\{B_1, \ldots, B_k\} = \{1, \ldots, n\}/G, \{P_1, \ldots, P_\ell\} = \text{Pot}_2(\{1, \ldots, n\})/G.$ Definiere

- $I_{B_i} \in \{0,1\}^{n \times n}$ als die Diagonalmatrix mit $\left(I_{B_i}\right)_{a,a} = egin{cases} 1, & \text{falls } a \in B_i \\ 0, & \text{sonst} \end{cases}$ (charakteristische Funktion).
- $\widetilde{P}_i \in \{0,1\}^{n \times n} \ mit \left(\widetilde{P}_i\right)_{a,b} = \begin{cases} 1, \ falls \{a,b\} \in P_i \\ 0, \ sonst \end{cases}$

Dann ist $\mathcal{F}(G)$ ein freier \mathbb{Z} -Modul mit \mathbb{Z} -Modulbasis

$$\left(I_{B_1},\ldots,I_{B_k},\widetilde{P_1},\ldots,\widetilde{P_\ell}\right).$$

 $G := \langle (1,2,3), (4,5,6) \rangle$. Dann gilt

$$\widetilde{G} = \langle \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rangle$$

 $G := \langle (1,2,3), (4,5,6) \rangle$. Dann gilt

$$\widetilde{\textbf{\textit{G}}} = \langle \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \rangle$$

Dann ist eine Basis von $\mathcal{F}(G)$ gegeben durch:

$$Diag(1, 1, 1, 0, 0, 0), Diag(0, 0, 0, 1, 1, 1),$$

$$\begin{pmatrix}
0 \\
1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 \\
0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{pmatrix}$$

$$G := \langle (1,2,3), (4,5,6) \rangle.$$

$$A_{\Gamma} = egin{pmatrix} 0 & & & & & \ 1 & 0 & & & & \ 1 & 1 & 0 & & & \ 1 & 1 & 1 & 0 & 0 & \ 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$G := \langle (1,2,3), (4,5,6) \rangle.$$

$$A_{\Gamma} = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ 1 & 1 & 0 & & \\ 1 & 1 & 1 & 0 & \\ 1 & 1 & 1 & 0 & 0 & \\ 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Lemma

Seien $G \leq S_n$ und Γ ein Graph auf n Punkten. Dann gilt: $G \leq \operatorname{Aut}(\Gamma)$ genau dann, wenn $A_{\Gamma} \in \mathcal{F}(G)$.

Graphen und Formenräume

- Bestimmung einer Basis des Formenraums möglich mit
 - Carat oder
 - Bahnen von Permutationsgruppen.

Graphen und Formenräume

- Bestimmung einer Basis des Formenraums möglich mit
 - Carat oder
 - Bahnen von Permutationsgruppen.
 - \rightarrow Für $G \leq S_n$ können alle Graphen Γ mit $G \leq \operatorname{Aut}(\Gamma)$ bestimmt werden.

Subdirekte Produkte und Automorphismengruppen

Automorphismengruppen mit 2 Bahnen

$$G = \langle (1,3)(2,4) \rangle \simeq C_2$$
 ist Automorphismengruppe des Graphen 3

Automorphismengruppen mit 2 Bahnen

Automorphismengruppen mit 2 Bahnen

$$G = \langle (1,3)(2,4) \rangle \simeq C_2$$
 ist Automorphismengruppe des Graphen

$$\left. G \right|_{\{1,3\}} \simeq \left. C_2 \simeq G \right|_{\{2,4\}}$$
und $\left. G \twoheadrightarrow G \right|_{\{1,3\}}, \left. G \twoheadrightarrow G \right|_{\{2,4\}}.$

ightarrow $\left. G ext{ ist subdirektes Produkt von } \left. G
ight|_{\{2,4\}} ext{ und } \left. G
ight|_{\{1,3\}}.$

Subdirekte Produkte

Definition (Subdirektes Produkt)

Seien G_1 , G_2 Gruppen. Eine Untergruppe $H \leq G_1 \times G_2$ des äußeren direkten Produkts von G_1 und G_2 heißt *subdirektes Produkt*, falls H surjektiv auf G_i projiziert.

Subdirekte Produkte

Definition (Subdirektes Produkt)

Seien G_1 , G_2 Gruppen. Eine Untergruppe $H \leq G_1 \times G_2$ des äußeren direkten Produkts von G_1 und G_2 heißt *subdirektes Produkt*, falls H surjektiv auf G_i projiziert.

Satz (Lemma von Goursat)

Sei $G = G_1 \times G_2$ mit Projektionen $\pi_i : G \twoheadrightarrow G_i, (g_1, g_2) \mapsto g_i$ und $H \leq G$ mit $(H)\pi_i = G_i$ für i = 1, 2. Dann existieren eine Gruppe F und Epimorphismen $\alpha_i : G_i \twoheadrightarrow F$ mit

$$H = \{(g_1, g_2) \in G \mid (g_1)\alpha_1 = (g_2)\alpha_2\}.$$

Wir schreiben $H = G_1 \, {}_{\downarrow}^F \, G_2$.

$C_2 \downarrow^F C_2$

Satz (Goursat)

Sei $G = G_1 \times G_2$ mit Projektionen $\pi_i : G \twoheadrightarrow G_i, (g_1, g_2) \mapsto g_i$ und $H \leq G$ mit $(H)\pi_i = G_i$. Dann existieren eine Gruppe F und Epimorphismen $\alpha_i : G_i \twoheadrightarrow F$ für i = 1, 2 mit

$$H = \{ (g_1, g_2) \in G \mid (g_1)\alpha_1 = (g_2)\alpha_2 \}.$$

Wir schreiben $H = G_1 \downarrow^F G_2$.

$$H = \langle (13)(24) \rangle \leq \langle (13), (24) \rangle \simeq C_2 \times C_2.$$

$C_2 \perp^F C_2$

Satz (Goursat)

Sei $G = G_1 \times G_2$ mit Projektionen $\pi_i : G \twoheadrightarrow G_i, (g_1, g_2) \mapsto g_i$ und $H \leq G$ mit $(H)\pi_i = G_i$. Dann existieren eine Gruppe F und Epimorphismen $\alpha_i : G_i \twoheadrightarrow F$ für i = 1, 2 mit

$$H = \{(g_1, g_2) \in G \mid (g_1)\alpha_1 = (g_2)\alpha_2\}.$$

Wir schreiben $H = G_1 \downarrow^F G_2$.

$$H = \langle (13)(24) \rangle \leq \langle (13), (24) \rangle \simeq C_2 \times C_2.$$

$$G_1 = \langle (1\,3) \rangle, \, G_2 = \langle (2\,4) \rangle, \, F = G_1,$$

$C_2 \perp^F C_2$

Satz (Goursat)

Sei $G = G_1 \times G_2$ mit Projektionen $\pi_i : G \twoheadrightarrow G_i, (g_1, g_2) \mapsto g_i$ und $H \leq G$ mit $(H)\pi_i = G_i$. Dann existieren eine Gruppe F und Epimorphismen $\alpha_i : G_i \twoheadrightarrow F$ für i = 1, 2 mit

$$H = \{ (g_1, g_2) \in G \mid (g_1)\alpha_1 = (g_2)\alpha_2 \}.$$

Wir schreiben $H = G_1 \downarrow^F G_2$.

$$H = \langle (13)(24) \rangle \leq \langle (13), (24) \rangle \simeq C_2 \times C_2.$$

$$G_1 = \langle (13) \rangle, G_2 = \langle (24) \rangle, F = G_1,$$

$$\alpha_1: G_1 \twoheadrightarrow G, (13) \mapsto (13), \alpha_2: G_2 \twoheadrightarrow G, (24) \mapsto (13)$$

$C_2 \perp^F C_2$

Satz (Goursat)

Sei $G = G_1 \times G_2$ mit Projektionen $\pi_i : G \twoheadrightarrow G_i, (g_1, g_2) \mapsto g_i$ und $H \leq G$ mit $(H)\pi_i = G_i$. Dann existieren eine Gruppe F und Epimorphismen $\alpha_i : G_i \twoheadrightarrow F$ für i = 1, 2 mit

$$H = \{(g_1, g_2) \in G \mid (g_1)\alpha_1 = (g_2)\alpha_2\}.$$

Wir schreiben $H = G_1 \downarrow^F G_2$.

$$H = \langle (13)(24) \rangle \leq \langle (13), (24) \rangle \simeq C_2 \times C_2.$$

$$G_1 = \langle (13) \rangle, G_2 = \langle (24) \rangle, F = G_1,$$

$$\alpha_1: G_1 \twoheadrightarrow G, (13) \mapsto (13), \alpha_2: G_2 \twoheadrightarrow G, (24) \mapsto (13)$$

Dann ist $H \simeq \{id, ((13), (24))\}.$

• Sei $\Gamma = (V, E)$ ein Graph, sodass $G := Aut(\Gamma)$ genau 2 Bahnen $B_1 = \{1, \dots, b_1\}$ und $B_2 = \{b_1 + 1, \dots, n\}$ auf V hat.

• Sei $\Gamma = (V, E)$ ein Graph, sodass $G := Aut(\Gamma)$ genau 2 Bahnen $B_1 = \{1, \dots, b_1\}$ und $B_2 = \{b_1 + 1, \dots, n\}$ auf V hat.

$$\Rightarrow A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right)$$

• Sei $\Gamma = (V, E)$ ein Graph, sodass $G := Aut(\Gamma)$ genau 2 Bahnen $B_1 = \{1, \dots, b_1\}$ und $B_2 = \{b_1 + 1, \dots, n\}$ auf V hat.

$$\Rightarrow A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right)$$

• $G|_{B_i}$ ist transitiv auf B_i und für $G_i := G|_{B_i}$ gilt: $G \simeq G_1 \, \dot{\setminus} \, G_2$.

• Sei $\Gamma = (V, E)$ ein Graph, sodass $G := Aut(\Gamma)$ genau 2 Bahnen $B_1 = \{1, \dots, b_1\}$ und $B_2 = \{b_1 + 1, \dots, n\}$ auf V hat.

$$\Rightarrow A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right)$$

• $G|_{B_i}$ ist transitiv auf B_i und für $G_i := G|_{B_i}$ gilt: $G \simeq G_1 \, \dot{\setminus} \, G_2$.

Fragen

Welche subdirekten Produkte treten auf?

• Sei $\Gamma = (V, E)$ ein Graph, sodass $G := Aut(\Gamma)$ genau 2 Bahnen $B_1 = \{1, \dots, b_1\}$ und $B_2 = \{b_1 + 1, \dots, n\}$ auf V hat.

$$\Rightarrow A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right)$$

• $G|_{B_i}$ ist transitiv auf B_i und für $G_i := G|_{B_i}$ gilt: $G \simeq G_1 \, \dot{\setminus} \, G_2$.

Fragen

- Welche subdirekten Produkte treten auf?
- Wie sieht die Matrix X aus?

Satz

Sei $ggT(|B_1|, |B_2|) = 1$. Dann gilt $G \simeq G_1 \times G_2$.

Satz

Sei $ggT(|B_1|,|B_2|)=1$. Dann gilt $G\simeq G_1\times G_2$.

Beweis.

Satz

Sei $ggT(|B_1|,|B_2|) = 1$. Dann gilt $G \simeq G_1 \times G_2$.

Beweis.

- Falls X = 0: \checkmark .
- **2** Angenommen $X \neq 0$. Für $x_1 \in B_1$, $x_2 \in B_2$ setze

$$\alpha_1(x_1) := |\{\{x_1, v_2\} \in E | v_2 \in B_2\}|,$$

 $\alpha_2(x_2) := |\{\{v_1, x_2\} \in E | v_1 \in B_1\}|$

Satz

Sei $ggT(|B_1|,|B_2|) = 1$. Dann gilt $G \simeq G_1 \times G_2$.

Beweis.

- Falls X = 0: \checkmark .
- **2** Angenommen $X \neq 0$. Für $x_1 \in B_1$, $x_2 \in B_2$ setze

$$\alpha_1 := |\{\{x_1, v_2\} \in E | v_2 \in B_2\}|,$$

 $\alpha_2 := |\{\{v_1, x_2\} \in E | v_1 \in B_1\}|$

Satz

Sei $ggT(|B_1|,|B_2|)=1$. Dann gilt $G\simeq G_1\times G_2$.

Beweis.

- Falls X = 0: \checkmark .
- **2** Angenommen $X \neq 0$. Für $x_1 \in B_1$, $x_2 \in B_2$ setze

$$\alpha_1 := |\{\{x_1, v_2\} \in E | v_2 \in B_2\}|,$$

 $\alpha_2 := |\{\{v_1, x_2\} \in E | v_1 \in B_1\}|$

$$\Rightarrow b_1 \cdot \alpha_1 = b_2 \cdot \alpha_2 \leq b_1 \cdot b_2.$$

Satz

Sei
$$ggT(|B_1|,|B_2|) = 1$$
. Dann gilt $G \simeq G_1 \times G_2$.

Beweis.

- Falls X = 0: \checkmark .
- ② Angenommen $X \neq 0$. Für $x_1 \in B_1$, $x_2 \in B_2$ setze

$$\alpha_1 := |\{\{x_1, v_2\} \in E | v_2 \in B_2\}|,
\alpha_2 := |\{\{v_1, x_2\} \in E | v_1 \in B_1\}|$$

 $\Rightarrow b_1 \cdot \alpha_1 = b_2 \cdot \alpha_2 \le b_1 \cdot b_2$. Wegen $ggT(b_1, b_2) = 1$ hat diese Gleichung nur die Lösung $\alpha_1 = b_2$, $\alpha_2 = b_1$. $\Rightarrow (X)_{i,j} = 1$.

$$G = \langle (1,2)(3,4) \rangle = \operatorname{Aut}(\Gamma), \text{ wobei } A_{\Gamma} = egin{pmatrix} 0 & & & \ 1 & 0 & \ 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

$$G = \langle (1,2)(3,4) \rangle = \operatorname{Aut}(\Gamma), \text{ wobei } A_{\Gamma} = egin{pmatrix} 0 & & & \ 1 & 0 & \ 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

$$\alpha_1 := \mid \{\{a, v_2\} \in E | v_2 \in B_2\} \mid, \ \alpha_2 := \mid \{\{v_1, b\} \in E | v_1 \in B_1\} \mid$$

$$b_1 \cdot \alpha_1 = b_2 \cdot \alpha_2 \leq b_1 \cdot b_2.$$

Korollar

Sei $\Gamma = (V, E)$ ein Graph so, dass $Aut(\Gamma)$ genau zwei Bahnen auf V hat. Dann ist die Anzahl der Einsen und Nullen in jeder Zeile von X konstant.

Definition (Zulässige Matrix)

Sei $X \in \{0,1\}^{b_2 \times b_1}$. Wenn X in jeder Zeile z Einträge gleich Eins und in jeder Spalte s Einträge gleich Eins hat nennen wir X eine (z,s)-zulässige Matrix.

Sei $X \in \{0,1\}^{b_2 \times b_1}$ eine (z,s)-zulässige Matrix. Definiere

$$\mathcal{P}_s^{b_2}: \{(X)_{-,i} \mid i = 1, \dots, b_2\} \to \mathsf{Pot}_s(\{1, \dots, b_2\}): \ (X)_{-,i} \mapsto \{j \in \{1, \dots, b_2\} \mid (X)_{j,i} = 1\}$$

$$A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right),$$

 $G := Aut(\Gamma) \simeq G_1 \curlywedge G_2$ hat genau 2 Bahnen mit transitiven Konstitutenten G_i und $X \in \{0,1\}^{b_2 \times b_1}$ ist eine (z,s)-zulässige Matrix.

$$A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^{\tau} \\ \hline X & A_2 \end{array}\right),$$

 $G := Aut(\Gamma) \simeq G_1 \curlywedge G_2$ hat genau 2 Bahnen mit transitiven Konstitutenten G_i und $X \in \{0,1\}^{b_2 \times b_1}$ ist eine (z,s)-zulässige Matrix.

Satz

Die Menge

$$\left\{ \mathcal{P}_{s}^{b_{2}}\left((X)_{-,i} \right) \mid i \in \{1,\ldots,b_{2}\} \right\}$$

ist eine Bahn unter der Operation von G_2 auf $Pot_s(\{1,\ldots,b_2\})$.

$$A_{\Gamma} = \left(\begin{array}{c|c} A_1 & X^t \\ \hline X & A_2 \end{array}\right),$$

 $G := Aut(\Gamma) \simeq G_1 \curlywedge G_2$ hat genau 2 Bahnen mit transitiven Konstitutenten G_i und $X \in \{0,1\}^{b_2 \times b_1}$ ist eine (z,s)-zulässige Matrix.

Satz

Die Menge

$$\left\{ \mathcal{P}_{s}^{b_{2}}\left((X)_{-,i} \right) \mid i \in \{1,\ldots,b_{2}\} \right\}$$

ist eine Bahn unter der Operation von G_2 auf $Pot_s(\{1,\ldots,b_2\})$.

Korollar

Unter den obigen Voraussetzungen ist X nach Konjugation eine Blockmatrix mit ℓ Blöcken der Länge k. Weiter: $G_1 \lesssim S_k \wr S_\ell$.

- $\Gamma = (V, E)$ Graph, Aut(Γ) hat genau 2 Bahnen auf V.
- X ist (z, s)-zulässige Blockmatrix mit k Blöcken der Länge ℓ.
- Bahn B von G_2 auf $Pot_s(\{1,\ldots,b_2\})$ zu X gehörig.

- $\Gamma = (V, E)$ Graph, $Aut(\Gamma)$ hat genau 2 Bahnen auf V.
- X ist (z, s)-zulässige Blockmatrix mit k Blöcken der Länge ℓ .
- Bahn B von G_2 auf $Pot_s(\{1, ..., b_2\})$ zu X gehörig.

Satz

 $Aut(\Gamma) \simeq H \downarrow^F G_2$, wobei $H \lesssim S_k \wr S_\ell$ transitiv ist und F die Permutationsdarstellung von G_1 auf B ist.

Ein Beispiel

- $B_1 = \{1, \dots, 8\}, B_2 = \{9, 10, 11, 12\}.$
- $G_2 = \langle (1,4)(2,3), (1,2)(3,4) \rangle \simeq V_4$.
- X soll (6,3) zulässig sein.

Ein Beispiel

- $B_1 = \{1, \ldots, 8\}, B_2 = \{9, 10, 11, 12\}.$
- $G_2 = \langle (1,4)(2,3), (1,2)(3,4) \rangle \simeq V_4.$
- X soll (6,3) zulässig sein.
- $\bullet \ \mathsf{Pot}_3(\{1,2,3,4\})/\textit{G}_2 = \{\{1,2,3\},\{2,3,4\},\{1,2,4\},\{1,3,4\}\}$

$$\Rightarrow F = \langle (12)(34), (13)(24) \rangle.$$

35 Kandidaten für G₁.

Zukunft

- Strukturbeschreibung von Automorphismengruppen als Permutationsgruppen
- Bestimmung der reduzierten Markentafel von Automorphismengruppen
- Bibliothek von Automorphismengruppen und Graphen
- Klassifikation des Rangs von Formenräumen
- Verallgemeinerungen auf Switching Classes