Большие языковые модели для генерации кода

Лебедев Андрей Алексеевич

Научный руководитель: Тихомиров Михаил Михайлович

МГУ им. М.В. Ломоносова, кафедра Алгоритмических языков

Проблемы

- 1. Увеличение спроса на программное обеспечение
- 2. Дефицит кадров среди разработчиков
- 3. Трудоемкость процесса разработки
- 4. Сложность изучения программирования

Актуальность

Автоматическая генерация кода позволяет решить следующие проблемы:

- 1. Автоматизация процесса программирования
- 2. Снижение затрат на разработку
- 3. Повышение доступности разработки
- 4. Улучшение качества кода

Постановка задачи

- 1. Исследовать большие языковые модели для генерации кода
- 2. Изучить способы оценки качества работы больших языковых моделей
- 3. Научиться развертывать, запускать и тестировать модели
- 4. Научиться работать с инструктивными и обычными моделями
- 5. Оценить качество работы некоторых моделей на русском языке по сравнению с английским

Какие задачи ставятся перед языковыми моделями для генерации кода?

- 1. Генерация
- 2. Завершение
- 3. Перевод на другие языки программирования
- 4. Модернизация
- 5. Обобщение
- 6. Тестирование и отладка

Способы оценки моделей генерации кода

Бенчмарки:

- MBPP
- HumanEval
- MultiPL-E

Метрика:

pass@k

MBPP

HumanEval

MultiPL-E

```
// C++
#include<assert.h>
#include<bits/stdc++.h>
// You have been tasked to write a function that receives
// a hexadecimal number as a string and counts the number of hexadecimal
// digits that are primes (prime number, or a prime, is a natural number
// greater than 1 that is not a product of two smaller natural numbers).
// Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
// Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
// So you have to determine a number of the following digits: 2, 3, 5, 7,
// B (=decimal 11), D (=decimal 13).
// Note: you may assume the input is always correct or empty string.
// and symbols A,B,C,D,E,F are always uppercase.
// Examples:
long hex_key(std::string num) {
  long sum = \theta:
  for (int i = 0; i < num.length(); i++) {
   if (num[i] == '2' || num[i] == '3' || num[i] == '5'
     || num[i] == '7' || num[i] == 'B' ||
      sum++: }
  return sum:
```


9

https://arxiv.org/pdf/2208.08227

pass@k метрика

- n количество сгенерированных семплов
- с количество правильных

$$\mathsf{C}$$
 – количество сочетаний $\mathit{C}_{n}^{k} = \frac{n!}{k! \, (n-k)!}$

Цель метрики: оценить вероятность того, что по крайней мере одна из k лучших выборок является правильной.

$$pass@k := \mathbb{E}_{problems} \left[1 - \frac{C(n-c,k)}{C(n,k)} \right]$$

Обзор больших языковых моделей для генерации кода с открытым исходным кодом

- DeepSeek Coder
- 2. CodeLlama
- 3. StarCoder2
- 4. WizardCoder

Инструктивные модели

Все модели предобучаются на большом количестве данных, во время этого процесса закладывается представление о мире

Инструктивные модели – модели, дообученные на задачу следования пользовательским инструкциями на естественном языке

DeepSeek Coder

- Предобучена на 2 триллионах токенов более чем на 80 языках программирования
- 87% кода и 13% данных на естественном языке (преимущественно на английском и китайском)
- Размеры: 1.3B, 5.7B, 6.7B и 33B
- Есть инструктивная версия
- Есть API

DeepSeek Coder

Model	C:	Hum	nanEval		DS-1000
	Size	Python	Multilingual	MBPP	
		Pre-Trair	ned Model		
Codex-001	-	33.5	26.1	45.9	20.2
Codex-002	-	-	-	-	39.2
CodeGeeX2	6B	36.0	24.5	42.4	22.9
StarCoder	16B	36.0	28.7	46.8	27.2
CodeLlama	7B	31.7	29.2	41.6	22.1
	13B	36.0	35.4	48.4	26.8
	34B	48.2	41.0	55.2	34.3
DeepSeek-Coder Base	1B	34.8	28.3	46.2	16.2
	7B	49.4	44.7	60.6	30.5
	33B	56.1	50.3	66.0	40.2
		Instruction-	Tuned Model		
GPT-3.5-turbo	-	76.2	64.9	70.8	-
GPT4	-	84.1	76.5	80.0	-
DeepSeek-Coder Instruct	7B	78.6	66.1	65.4	-
	33B	79.3	69.2	70.0	-

https://arxiv.org/pdf/2401.14196

CodeLlama

- Построена на базе Llama2
- Размеры: 7В, 13В, 34В
- Хорошо решает задачи завершения и заполнения кода

https://arxiv.org/pdf/2308.12950

CodeLlama

Model	Size	HumanEval			MBPP		
		pass@1	pass@10	pass@100	pass@1	pass@10	pass@100
code-cushman-001	12B	33.5%	(-)	-	45.9%	(-0)	-
GPT-3.5 (ChatGPT)	-	48.1%	(-)	-	52.2%	(=)	1-1
GPT-4	_	67.0%	-	-	-	-	-
PaLM	540B	26.2%	-	-	36.8%	-	-
PaLM-Coder	540B	35.9%	-	88.4%	47.0%	-	-
PaLM 2-S	-	37.6%	(-)	88.4%	50.0%	-	-
StarCoder Base	15.5B	30.4%	(-)	-	49.0%	(=))	-
StarCoder Python	15.5B	33.6%		-	52.7%	- 1	-
StarCoder Prompted	15.5B	40.8%	(=)	-	49.5%	-	-
Llama 2	7B	12.2%	25.2%	44.4%	20.8%	41.8%	65.5%
	13B	20.1%	34.8%	61.2%	27.6%	48.1%	69.5%
	34B	22.6%	47.0%	79.5%	33.8%	56.9%	77.6%
	70B	30.5%	59.4%	87.0%	45.4%	66.2%	83.1%
Code Llama	7B	33.5%	59.6%	85.9%	41.4%	66.7%	82.5%
	13B	36.0%	69.4%	89.8%	47.0%	71.7%	87.1%
	34B	48.8%	76.8%	93.0%	55.0%	76.2%	86.6%
	70B	53.0%	84.6%	96.2%	62.4%	81.1%	91.9%
Code Llama - Instruct	7B	34.8%	64.3%	88.1%	44.4%	65.4%	76.8%
	13B	42.7%	71.6%	91.6%	49.4%	71.2%	84.1%
	34B	41.5%	77.2%	93.5%	57.0%	74.6%	85.4%
	70B	67.8%	90.3%	97.3%	62.2%	79.6%	89.2%
Unnatural Code Llama	34B	62.2%	85.2%	95.4%	61.2%	76.6%	86.7%
Code Llama - Python	7B	38.4%	70.3%	90.6%	47.6%	70.3%	84.8%
	13B	43.3%	77.4%	94.1%	49.0%	74.0%	87.6%
	34B	53.7%	82.8%	94.7%	56.2%	76.4%	88.2%
	70B	57.3%	89.3%	98.4%	65.6%	81.5%	91.9%

https://arxiv.org/pdf/2308.12950

StarCoder2

- Предобучена на более чем 4 триллионах токенов и более чем 600 языках программирования
- Обучалась на задачу заполнения кода
- Размеры: 3В, 7В и 15В

StarCoder2

Model	HumanEval	HumanEval+	MBPP	MBPP+
StarCoderBase-3B	21.3	17.1	42.6	35.8
DeepSeekCoder-1.3B	28.7	23.8	55.4	46.9
StableCode-3B	28.7	24.4	53.1	43.1
StarCoder2-3B	31.7	27.4	57.4	47.4
StarCoderBase-7B	30.5	25.0	47.4	39.6
CodeLlama-7B	33.5	25.6	52.1	41.6
DeepSeekCoder-6.7B	47.6	39.6	70.2	56.6
StarCoder2-7B	35.4	29.9	54.4	45.6
StarCoderBase-15B	29.3	25.6	50.6	43.6
CodeLlama-13B	37.8	32.3	62.4	52.4
StarCoder2-15B	46.3	37.8	66.2	53.1
CodeLlama-34B	48.2	44.3	65.4	52.4
DeepSeekCoder-33B	54.3	46.3	73.2	59.1

https://arxiv.org/pdf/2402.19173

WizardCoder

- Построена на базе CodeLlama
- Размеры: 7В, 13В, 70В
- Использован Evol-Instruct метод
- Evol-Instruct это метод, использующий языковые модели (ChatGPT 3.5)
 вместо людей для автоматического написания инструкций с открытым доменом различных уровней сложности и диапазона навыков.

WizardCoder

Model	Params	HumanEval	MBPP
Clo	sed-source	models	
LaMDA [40]	137B	14.0	(20)
AlphaCode [12]	1.1B	17.1	-
PaLM [3]	540B	26.2	36.8
PaLM-Coder [3]	540B	36.0	47.0
PaLM 2-S [4]	-	37.6	50.0
Codex [16]	2.5B	21.4	1,50
Codex [16]	12B	28.8	-
Code-Cushman-001 [38]	_	33.5	45.9
Code-Davinci-002 [38]	-	47.0	58.1
GPT-3.5 [2]	-	48.1	-
GPT-4 [2]	-	67.0	140
Op	en-source n	nodels	
LLaMa [8]	33B	21.7	30.2
LLaMa [8]	65B	23.7	37.7
CodeGen-Multi [13]	16B	18.3	20.9
CodeGen-Mono [13]	16B	29.3	35.3
CodeGeeX [14]	13B	22.9	24.4
StarCoder [11]	15B	33.6	43.6*
CodeT5+ [18]	16B	30.9	-
InstructCodeT5+ [18]	16B	35.0	-
WizardCoder	15B	57.3 (+22.3)	51.8 (+8.2

https://arxiv.org/pdf/2306.08568

Эксперименты

Промптинг: zero-shot

< begin_of_sentence | > You are a smart assistant in writing code that helps the user solve his tasks. Below is an instruction describing the task. Write an answer that exactly fulfills the user's request.

Instruction:

Write a python function to remove first and last occurrence of a given character from the string. The function should have the following name: remove_Occ.

Response:

Промптинг: few-shot

< | begin_of_sentence | > You are a smart assistant in writing code that helps the user solve his tasks. Below is an instruction describing the task. Write an answer that exactly fulfills the user's request.

Instruction:

Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost[][] and a position (m, n) in cost[][]. The function should have the following name: min cost.

Response:

expected model's answer

<|EOT|>

Instruction:

Write a function to find the similar elements from the given two tuple lists. The function should have the following name: similar_elements.

Response:

expected model's answer

<|EOT|>

Instruction:

Write a python function to remove first and last occurrence of a given character from the string. The function should have the following name: remove Occ.

Response:

DeepSeek 7B Instruct MBPP zero-shot

Задача: протестировать инструктивную модель DeepSeek 7B на бенчмарке MBPP с системным промптом, но без подсказок

Цели:

- 1. Научиться запускать и оценивать модель
- 2. Изучить влияние добавления системного промпта
- 3. Подобрать лучшие параметры и изучить поведение модели при их изменении
- 4. Посмотреть на качество модели на задачах на естественном языке

Результат: 34,6% (173/500 тестов)

DeepSeek 7B Instruct MBPP few-shot

Задача: протестировать инструктивную модель DeepSeek 7B на бенчмарке MBPP с системным промптом и с подсказками (few-shot)

Цель: рассмотреть, как изменение промпта путем добавления примеров диалогов между пользователем и моделью может повлиять на качество генерации

Результат: 38,2% (191/500 тестов)

DeepSeek 7B Instruct EN HumanEval zero-shot

Задача: протестировать инструктивную модель DeepSeek 7B на бенчмарке HumanEval с системным промптом, но без подсказок

Цели:

- Посмотреть, как изменится качество генерации, если решается задача продолжения кода вместе задачи на естественном языке (как это было в МВРР)
- 2. Оценить качество модели на бенчмарке HumanEval

Результат: 68,3% (112/164 тестов)

RU HumanEval

DeepSeek 7B Instruct RU HumanEval zero-shot

Задача: протестировать инструктивную модель DeepSeek 7B на бенчмарке RU HumanEval с системным промптом, но без подсказок

Цель: оценить, как изменится качество генерации на тех же заданиях, что в оригинальном MBPP, но сформулированных на русском языке

Результат: 67,6% (111/164 тестов)

StarCoder2 7B HumanEval, RU HumanEval

Задача: протестировать не инструктивную модель StarCoder2 7B на бенчмарках HumanEval и RU HumanEval с системным промптом

Цели:

- 1. Оценить качество генерации модели StarCoder2 на бенчмарках, где задача состоит в продолжении кода
- 2. Оценить поведение модели на русском языке по сравнению с английским

Текущие результаты

В рамках курсовой работы удалось:

- 1. Научиться запускать большие языковые модели генерации кода с открытым исходным кодом, оценивать их качество
- 2. Научиться работать с инструктивными моделями
- 3. Протестировать наиболее популярные модели генерации кода на бенчмарках HumanEval и MBPP
- 4. Сравнить поведение модели при работе с русским и английским языками
- 5. Воспроизвести результаты модели DeepSeek 7B Instruct на датасете HumanEval как в оригинальной статье

Текущие результаты

Были сделаны следующие выводы:

- 1. few-shot для инструктивных моделей помогает повысить качество генерации
- 2. В целом модели устойчивы к отклонениям гиперпараметров от оптимальных, при этом параметры по умолчанию таковыми не являются, то есть их стоит подбирать под определенную задачу
- 3. Качество модели не ухудшается при работе на русском языке по сравнению с английским
- 4. Актуальные модели с открытым исходным кодом и небольшим количеством параметров достаточно плохо справляются с решением задач, представленных на естественном языке

Дальнейшие планы

- 1. Оценить, как квантизация модели влияет на качество ее работы
- 2. Оценить качество других, более крупных, моделей генерации кода
- 3. Дообучить модель на конкретную задачу

Источники

- 1. Ziyang Luo и др. "WizardCoder: Empowering Code Large Language Models with Evol-Instruct". B: arXiv:2306.08568v1 (2023)
- 2. Xiao Bi и др. "DeepSeek LLM. Scaling Open-Source Language Models with Longtermism". B: arXiv:2401.02954v1 (2024)
- 3. Anton Lozhkov и др. "StarCoder 2 and The Stack v2: The Next Generation". B: arXiv:2402.19173v1 (2024)
- 4. Baptiste Rozière и др. "Code Llama: Open Foundation Models for Code".B: arXiv:2308.12950v3 (2024)
- 5. Mark Chen и др. "Evaluating Large Language Models Trained on Code". B: arXiv:2107.03374v2 (2021)
- 6. Maxwell Nye и др. "Program Synthesis with Large Language Models". B: arXiv:2108.07732v1 (2021)