

Using an ontological representation of chemotherapy toxicities for guiding information extraction and integration from Electronics Health Records (EHRs)

Alice ROGIER, Adrien COULET, Bastien RANCE

Context (1/2)

Adverse Drug Reaction (ADR) due to chemotherapy treatment

Chemotherapy treatment

Context (1/2)

Adverse Drug Reaction (ADR) due to chemotherapy treatment

Adverse Drug Reaction (ADR)

Gastrointestinal disorders					
CTCAE Term	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Esophageal stenosis	Asymptomatic; clinical or diagnostic observations only;	Symptomatic; altered GI function	Severely altered GI function; tube feeding or	Life-threatening consequences; urgent	Death
CTC AE+	intervention not indicated		hospitalization indicated; elective operative intervention indicated	operative intervention indicated	

Context (2/2)

Toxicity sources in Clinical Data Warehouses (CDW)

Information about toxicities is available in CDW, but in heterogeneous forms

NAME_CHAR	TVAL_CHAR	
Asthenia	GRADE 1	

(...) the endoscopy revealed a peptic esophagitis of grade 2 with complications and (...)

NAME_CHAR	TVAL_CHAR	UNIT_CD
bilirubin	2	mg/dL

Objective

Integrating chemotherapy toxicities information in a common data model

Our contributions:

Creation of OntoTox, an **ontology** for chemotherapy toxicities guided by data

Toxicity extractions from different data sources

Demonstration of OntoTox interest with a clinical use case

OntoTox structure (1/3)

OntoTox classes: toxicity qualifications

OntoTox structure (2/3)

MedDRA and UMLS classes: toxicity normalization

OntoTox structure (3/3)

PROV-O classes: toxicity provenance encoding

OntoTox implementation

Data driven

Owlready, PyMedTermino

Protégé

Extract and integrate chemotherapy toxicities in OntoTox

Extract and gather chemotherapy toxicities in OntoTox

Extract and gather chemotherapy toxicities in OntoTox

Free text	<u>Table</u>	Questionnaire	

Entitiy recognition:

Entitiy recognition:

: 4,038 toxicity terms dictionary

: regular expression

Entitiy recognition:

: 4,038 toxicity terms dictionary

: grade ----- (.*) : regular expression

: Link between entities with dependency parsing

Free text

Table

Questionnaire

Entitiy recognition:

: 4,038 toxicity terms dictionary

🛖 : grade ----- (.*)

: regular expression

Context detection:

negation hypothesis

family

: Link between entities with dependency parsing

Example

Example

■ Toxicity extraction

Onto Tox instantiation

report 65 2021-01-01 Bob

Questionnaire 24 2021-02-01

Example

Onto Tox instantiation

Use case

ICD=C34*

3,239 patients with lung cancer

≥1 questionnaire AND ≥ 1 report

Random sample

330 patients with **11,819** reports and **71,140** questionnaire items

Results (1/2): What is extracted?

OntoTox Classes			
ChemotherapyToxicity	54,420	2,366	53,510
Grade (ΣGrade <i>X</i>)	6,366	400	53,510
Grade1	2,100	87	9,981
Grade2	1,996	52	1,832
Grade3	817	23	191
Grade4	422	0	19
Grade5	2	1	0
Grade0	596	152	41,487
Grade <i>Null</i>	433	85	0

Results (1/2): What is extracted?

OntoTox Classes			
ChemotherapyToxicity	54,420 >	> 2,366 <	< 53,510
Grade (ΣGrade <i>X</i>)	6,366	400	53,510
Grade1	2,100	87	9,981
Grade2	1,996	52	1,832
Grade3	817	23	191
Grade4	422	0	19
Grade5	2	1	0
Grade0	596	152	41,487
Grade <i>Null</i>	433	85	0

Results (1/2): What is extracted?

OntoTox Classes		A STATE OF	
ChemotherapyToxicity	54,420	2,366	53,510
Grade (ΣGrade <i>X</i>)	6,366	400	53,510
Grade1	2,100	87	9,981
Grade2	1,996	52	1,832
Grade3	817	23	191
Grade4	422	0	19
Grade5	2	1	0
Grade0	596	152	41,487
Grade <i>Null</i>	433	85	0

Source

Results (2/2): How sources agree?

Toxicity (UMLS concept) per-patient and per-month intersection sets between the three sources

Source

Results (2/2): How sources agree?

Toxicity (UMLS concept) per-patient and per-month intersection sets between the three sources

Source

Results (2/2): How sources agree?

Toxicity (UMLS concept) per-patient and per-month intersection sets between the three sources

Discussion

OntoTox an ontology

- link to other knowledge models (PROV-O, MedDRA, UMLS)

- further use of reasoner

Room for improvement

- treatment representation

- time representation

勇 - leveraging ontology hierarchy for granularity

- Evaluate and improve extractions algorithms

Conclusion

Onto Tox...

very first ontology for chemotherapy toxicities

can guide the data integration from various sources

will be be enriched

will further serve as a brick for clinical decision support systems

Thank you!

Alice ROGIER, Adrien COULET, Bastien RANCE

alice.rogier@inserm.fr

OntoTox GitHub:

https://github.com/TeamHeka/OntoTox

OntoTox BioPortal:

https://bioportal.bioontology.org/ontologies/ONTOTOX

Icons from Noun Project:

Fengquan Li Eucalyp Creative Stall Adrien Coquet Chanut is Indusries **Prettycons** H Alberto Gongora Smalllike visual world Pham Thi Dieu Linh icons alberto galindo Justin Blake Hrbon SA Family Ifki riantos Fajar **ProSymbols** Magicon Danil Polshin **Gregor Cresnar** Eynav Raphael angelina **Becris** 23 icons Hasanudin

Bibliography (1/2)

- Basch, Ethan, Bryce B. Reeve, Sandra A. Mitchell, Steven B. Clauser, Lori M. Minasian, Amylou C. Dueck, Tito R. Mendoza, et al. « Development of the National Cancer Institute's Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) ». *JNCI: Journal of the National Cancer Institute* 106, nº dju244 (1 septembre 2014). https://doi.org/10.1093/jnci/dju244.
- Brown, Elliot G., Louise Wood, et Sue Wood. « The Medical Dictionary for Regulatory Activities (MedDRA) ». *Drug Safety* 20, nº 2 (1 février 1999): 109-17. https://doi.org/10.2165/00002018-199920020-00002.
- Coulet, Adrien, Nigam H. Shah, Yael Garten, Mark Musen, et Russ B. Altman. « Using Text to Build Semantic Networks for Pharmacogenomics ». *Journal of Biomedical Informatics* 43, nº 6 (1 décembre 2010): 1009-19. https://doi.org/10.1016/j.jbi.2010.08.005.
- Datta, Surabhi, Elmer V. Bernstam, et Kirk Roberts. « A Frame Semantic Overview of NLP-Based Information Extraction for Cancer-Related EHR Notes ». *Journal of Biomedical Informatics* 100 (1 décembre 2019): 103301. https://doi.org/10.1016/j.jbi.2019.103301.
- Lamy, Jean-Baptiste. « Owlready: Ontology-Oriented Programming in Python with Automatic Classification and High Level Constructs for Biomedical Ontologies ». *Artificial Intelligence in Medicine* 80 (1 juillet 2017): 11-28. https://doi.org/10.1016/j.artmed.2017.07.002.
- Lamy, Jean-Baptiste, Alain Venot, et Catherine Duclos. « PyMedTermino: An Open-Source Generic API for Advanced Terminology Services », s. d., 5.
- Lebo, Timothy, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, et Jun Zhao. « PROV-O: The PROV Ontology », 30 avril 2013. https://www.research.manchester.ac.uk/portal/en/publications/provo-the-prov-ontology(733f89c6-5e48-44f9-aabc-ae1c276a5602).html.
- Murphy, Shawn N, Griffin Weber, Michael Mendis, Vivian Gainer, Henry C Chueh, Susanne Churchill, et Isaac Kohane. « Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2) ». *Journal of the American Medical Informatics Association* 17, no 2 (1 mars 2010): 124-30. https://doi.org/10.1136/jamia.2009.000893.
- Neuraz, Antoine, Ivan Lerner, William Digan, Nicolas Paris, Rosy Tsopra, Alice Rogier, David Baudoin, et al. « Natural Language Processing for Rapid Response to Emergent Diseases: Case Study of Calcium Channel Blockers and Hypertension in the COVID-19 Pandemic ». *Journal of Medical Internet Research* 22, nº 8 (14 août 2020): e20773. https://doi.org/10.2196/20773.

Bibliography (2/2)

- Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic*, Christopher D Manning, Ryan McDonald, et al. « Universal Dependencies v1: A Multilingual Treebank Collection », s. d., 8.
- Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason Bolton, et Christopher D. Manning. « Stanza: A Python Natural Language Processing Toolkit for Many Human Languages ». arXiv:2003.07082 [cs], 23 avril 2020. http://arxiv.org/abs/2003.07082.
- Soldaini, Luca, et Nazli Goharian. « QuickUMLS: A Fast, Unsupervised Approach for Medical Concept Extraction », s. d., 4.
- Stenetorp, Pontus, Sampo Pyysalo, Goran Topic, Tomoko Ohta, Sophia Ananiadou, et Jun'ichi Tsujii. « Brat: A Web-Based Tool for NLP-Assisted Text Annotation », s. d., 6.
- « The protégé project: a look back and a look forward: Al Matters: Vol 1, No 4 ». Consulté le 16 mai 2021. https://dl.acm.org/doi/abs/10.1145/2757001.2757003.
- Warner, Jeremy L., Andrew J. Cowan, Aric C. Hall, et Peter C. Yang. « HemOnc.org: A Collaborative Online Knowledge Platform for Oncology Professionals ». *Journal of Oncology Practice* 11, n° 3 (10 mars 2015): e336-50. https://doi.org/10.1200/JOP.2014.001511.
- Warner, Jeremy L., Dmitry Dymshyts, Christian G. Reich, Michael J. Gurley, Harry Hochheiser, Zachary H. Moldwin, Rimma Belenkaya, Andrew E. Williams, et Peter C. Yang. « HemOnc: A New Standard Vocabulary for Chemotherapy Regimen Representation in the OMOP Common Data Model ». *Journal of Biomedical Informatics* 96 (1 août 2019): 103239. https://doi.org/10.1016/j.jbi.2019.103239.