Feuille d'exercices 14 : Normes et suites.

Exercice 14.1 : (niveau 1)

Dans un K-espace vectoriel normé,

démontrer qu'une suite périodique convergente est constante.

Exercice 14.2 : (niveau 1)

Soient (u_n) et (v_n) deux suites convergentes de réels. Calculer $\lim_{n\to+\infty} \max(u_n,v_n)$.

Exercice 14.3 : (niveau 1)

On note $E = \mathcal{C}^1([0,1],\mathbb{R})$ et pour tout $f \in E$, on pose $||f|| = ||f||_{\infty} + ||f'||_{\infty}$.

Montrer que $\|.\|$ est une norme sur E. Est-elle équivalente à $\|.\|_{\infty}$?

Exercice 14.4 : (niveau 1)

Soient a et b deux réels tels que 0 < a < b. On définit les deux suites (u_n) et (v_n) par :

$$u_0 = a, v_0 = b \text{ et } : \forall n \in \mathbb{N} \quad u_{n+1} = \sqrt{u_n v_n} \text{ et } v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1°) Montrez que : $\forall n \in \mathbb{N} \quad u_n < v_n$.
- 2°) Montrez que (u_n) est croissante et que (v_n) est décroissante.
- 3°) En déduire que (u_n) et (v_n) converge vers une même limite.

Exercice 14.5 : (niveau 1)

Soit (u_n) une suite telle que les sous-suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent.

Montrer que la suite (u_n) est convergente.

Exercice 14.6: (niveau 1)

On suppose que $u_0 = 0$, $u_1 = 1$ et, pour tout $n \ge 0$, $u_{n+2} = 2u_{n+1} - 3u_n$.

Exprimer u_n en fonction de n.

Exercice 14.7 : (niveau 1)

On suppose que $u_0 = 2$, $u_1 = 4$ et, pour tout $n \ge 0$, $u_{n+2} = \frac{u_{n+1}^4}{u_n^3}$.

Exprimer u_n en fonction de n.

Exercice 14.8: (niveau 2)

Soient (u_n) et (v_n) deux suites de réels et $a, b \in \mathbb{R}$ tels que, pour tout $n \in \mathbb{N}$, $u_n \leq a$, $v_n \leq b$, et tels que $u_n + v_n \longrightarrow a + b$.

 $v_n \leq b$, et tels que $u_n + v_n \underset{n \to +\infty}{\longrightarrow} a + b$. Montrer que $u_n \underset{n \to +\infty}{\longrightarrow} a$ et $v_n \underset{n \to +\infty}{\longrightarrow} b$.

Exercice 14.9 : (niveau 2)

E est un espace vectoriel normé. B et C sont deux parties non vides de E. Montrer que $\delta(B \cup C) \leq \delta(B) + \delta(C) + d(B, C)$.

Exercice 14.10 : (niveau 2)

On note E l'ensemble des applications de classe C^1 de [0,1] dans \mathbb{R} telles que f(0)=0. Si $f \in E$, on note $N(f) = ||f||_{\infty} + ||f'||_{\infty}$ et $n(f) = ||f + f'||_{\infty}$.

- 1°) Montrer que N et n sont des normes.
- 2°) Montrer que N et n sont équivalentes.

Exercice 14.11: (niveau 2)

On considère une suite de complexes (z_n) vérifiant la relation de récurrence $z_{n+1} = \frac{1}{2}(z_n + |z_n|).$ Déterminer la limite de z_n lorsque n tend vers $+\infty$ en fonction de z_0 .

Exercice 14.12 : (niveau 2)

- 1°) Définir sur $\mathbb{R}^{(\mathbb{N})} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} / \exists N \in \mathbb{N}, \forall n \geq N, x_n = 0\}$ les normes 1, 2 et ∞ et montrer directement que ce sont bien des normes.
- 2°) Montrer que ces normes sont deux à deux non équivalentes.

Exercice 14.13: (niveau 2)

Démontrer que la suite $(\sin n)_{n\in\mathbb{N}}$ n'a pas de limite.

Exercice 14.14: (niveau 2)

On suppose que $u_0 = 1$ et que, pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{u}$.

Déterminer u_n en fonction de n.

En déduire la valeur de $\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$.

Exercice 14.15 : (niveau 2)

Soit f une application injective de \mathbb{N} dans \mathbb{N} .

Démontrer que $(f(n))_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Exercice 14.16: (niveau 3)

Soit $(E, \|.\|)$ un \mathbb{R} -espace vectoriel et $K \in \mathcal{P}(E)$ une partie de E, que l'on suppose convexe, bornée, symétrique par rapport à 0 et tel que 0 est un point intérieur de K. Pour tout $x \in E$, on pose $N_x = \{|\lambda| / \frac{x}{\lambda} \in K\}$ et $N(x) = \inf(N_x)$.

- 1°) Montrer que N est une norme sur E.
- $\mathbf{2}^{\circ})$ Montrer que N et $\|.\|$ sont des normes équivalentes.

Exercice 14.17 : (niveau 3)

Notons E l'ensemble des applications de classe C^1 de [0,1] dans \mathbb{R} . Soit φ une application continue de [0,1] dans \mathbb{R} telle que $\int_0^1 \varphi \neq 0$. Pour tout $f \in E$, on pose

$$N(f) = |f(0)| + \int_0^1 |f'(t)| dt \text{ et } N'(f) = |\int_0^1 f(t)\varphi(t)dt| + \int_0^1 |f'(t)| dt.$$

Montrer que N et N' sont des normes équivalentes sur E.

Exercice 14.18: (niveau 3)

Soit (u_n) une suite de réels telle que $u_{n+1} - u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Montrer que l'ensemble des valeurs d'adhérence de (u_n) est un intervalle.

Exercices supplémentaires

Exercice 14.19: (niveau 1)

Soit (u_n) une suite réelle telle que pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{Z}$. Montrez que (u_n) converge si et seulement si elle est stationnaire.

Exercice 14.20 : (niveau 1)

Soient (u_n) et (v_n) deux suites de réels telles que $(u_n + v_n)$ et $(u_n - v_n)$ convergent. Montrer que (u_n) et (v_n) sont convergentes.

Exercice 14.21 : (niveau 1)

Soit (u_n) une suite croissante de réels telle que $u_{2n} \underset{n \to +\infty}{\longrightarrow} \ell \in \mathbb{R}$.

Montrer que (u_n) converge.

Exercice 14.22 : (niveau 2)

Déterminer les réels θ tels que toutes les suites (u_n) de réels vérifiant la relation de récurrence $u_{n+2} - 2\cos\theta \ u_{n+1} + u_n = 0$ soient périodiques.

Exercice 14.23 : (niveau 2)

Soit (a_n) une suite de réels positifs telle que $n(a_n + a_{2n}) \underset{n \to +\infty}{\longrightarrow} 1$.

- 1°) Montrer que $a_n \xrightarrow[n \to +\infty]{} 0$.
- **2°)** On suppose que $na_n \underset{n \to +\infty}{\longrightarrow} \ell \in \mathbb{R}_+$. Montrer que $\ell = \frac{2}{3}$.

Exercice 14.24: (niveau 2)

Dans un \mathbb{K} -espace vectoriel normé non réduit à $\{0\}$, montrer que deux boules fermées sont égales si et seulement si elles ont même centre et même rayon.

Exercice 14.25 : (niveau 2)

Soit (u_n) une suite quelconque de réels.

Montrer que (u_n) est la différence de deux suites strictement croissantes.

Exercice 14.26: (niveau 2)

Soit $\ell \in \mathbb{R}$ et soit (u_n) une suite de réels telle que, pour tout $k \geq 2$, la sous-suite (u_{kn}) converge vers ℓ . Peut-on affirmer que (u_n) converge vers ℓ ?

Exercice 14.27 : (niveau 2)

Une personne a dépensé tout ce qu'elle avait en poche dans N magasins. Dans chacun elle a dépensé dix euros de plus que la moitié de ce qu'elle avait en entrant. Combien avait-elle en poche au départ?

Exercice 14.28: (niveau 2)

Soient $a, b, c \in \mathbb{C}$. On considère une suite (u_n) définie par la donnée de ses deux premiers termes u_0 et u_1 et la relation de récurrence affine d'ordre 2 :

pour tout $n \in \mathbb{N}$, $u_{n+2} = au_{n+1} + bu_n + c$.

- 1°) On suppose que $a + b \neq 1$.
- a) Donner une méthode de détermination de u_n en fonction de n.
- b) Le faire dans le cas où a = -1, b = 6, c = 4, $u_0 = 1$ et $u_1 = -2$.
- 2°) On suppose que a + b = 1.
- a) Donner une méthode de détermination de u_n en fonction de n: on pourra poser $w_n = u_{n+1} u_n$.
- b) Le faire dans le cas où $a = 3, b = -2, c = 1, u_0 = 0$ et $u_1 = 0$.

Exercice 14.29 : (niveau 2)

Soit E l'ensemble des applications lipschitziennes de [0,1] dans \mathbb{R} .

- $\mathbf{1}^{\circ}$) Montrer que si $f \in E$, on peut définir le plus petit réel positif k(f) tel que f soit k(f)-lipschitzienne.
- 2°) Montrer que E est un \mathbb{R} -espace vectoriel.
- 3°) On pose $M(f) = \sup_{t \in [0,1]} |f(t)|$ et N(f) = M(f) + k(f).

Montrer que M et N sont des normes sur E et qu'elles ne sont pas équivalentes.

Exercice 14.30 : (niveau 2)

Soit (a_n) une suite réelle telle que :

- i) $\forall n \in \mathbb{N} \quad a_n \ge 1 \text{ et} :$
- ii) $\forall (m,n) \in \mathbb{N}^2$ $a_{m+n} \le a_m a_n$.

Montrez que la suite $b_n = \frac{\ln(a_n)}{n}$ converge vers sa borne inférieure.

Exercice 14.31 : (niveau 3)

On note $E = \mathcal{C}([0,1],\mathbb{R})$ et E^+ l'ensemble des applications définies et continues sur [0,1], à valeurs dans \mathbb{R}_+ et qui ne s'annulent qu'en un nombre fini de réels.

Si $\varphi \in E^+$, pour tout $f \in E$, on note $||f||_{\varphi} = \int_0^1 \varphi(t)|f(t)|dt$.

- 1°) Pour tout $\varphi \in E^+$, montrer que $\|.\|_{\varphi}$ est une norme sur E.
- **2°)** Soient φ_1 et φ_2 deux éléments de E^+ à valeurs dans \mathbb{R}_+^* . Montrer que $\|.\|_{\varphi_1}$ et $\|.\|_{\varphi_2}$ sont équivalentes.

3°) Montrer que $\|.\|_X$ et $\|.\|_{X^2}$ ne sont pas équivalentes.

Exercice 14.32 : (niveau 3)

E est un \mathbb{R} -espace vectoriel normé et A est une partie non vide de E.

Soit $f:A \longrightarrow \mathbb{R}$ une application k-lipschitzienne avec k>0. Pour tout $x \in E$, on pose $g(x) = \sup(f(t) - k||x - t||).$

- 1°) Montrer que q est bien définie.
- 2°) Montrer que q prolonge f sur E.
- 3°) Montrer que g est k-lipschitzienne.

Exercice 14.33: (niveau 3)

On dira qu'une partie T de \mathbb{N}^* est négligeable si et seulement si $\frac{|T_n|}{n} \xrightarrow[n \to +\infty]{} 0$, où $T_n = T \cap [1, n]$ et où $|T_n|$ désigne le cardinal de T_n .

Une suite $(a_n)_{n\in\mathbb{N}^*}$ de complexes est dite presque convergente vers $\ell\in\mathbb{C}$ si et seulement si il existe une partie négligeable $T \subset \mathbb{N}^*$ telle que :

$$\forall \varepsilon > 0, \ \exists p \in \mathbb{N}^*, \ \forall n \in \mathbb{N}^*, \ [n \ge p] \land [n \notin T] \Longrightarrow |a_n - \ell| \le \varepsilon.$$

 ℓ est alors unique, on ne demande pas de le démontrer.

- 1°) Montrer que l'ensemble $P = \{n \in \mathbb{N}^* / \exists m \in \mathbb{N}^*, n = m^2\}$ des carrés parfaits est négligeable.
- **2°)** a) Montrer que (a_n) , définie par $a_n = n$ si $n \in P$ et $a_n = \frac{1}{n}$ sinon, est presque convergente vers 0.
- b) Une sous-suite d'une suite presque convergente est-elle presque convergente?

Dans les deux questions qui suivent, (a_n) est une suite de réels, $(b_n) = \left(\frac{a_1 + \dots + a_n}{n}\right)$ est sa moyenne de Cesaro et on suppose que $b_n \longrightarrow 0$.

- 3°) On suppose dans cette question que les a_n sont positifs ou nuls.
- a) Montrer qu'il existe une suite décroissante (u_n) de réels strictement positifs telle que $u_n \underset{n \to +\infty}{\longrightarrow} 0$ et $\frac{b_n}{u_n} \underset{n \to +\infty}{\longrightarrow} 0$. b) Soit $T = \{k \in \mathbb{N}^*/a_k \ge u_k\}$. Montrer que T est négligeable.
- c) En déduire que a_n est presque convergente vers 0.
- 4°) Montrer que l'hypothèse de positivité en question 3 est essentielle en donnant un exemple de suite (a_n) de réels telle que $|a_n| \underset{n \to +\infty}{\longrightarrow} +\infty$ alors que $b_n \underset{n \to +\infty}{\longrightarrow} 0$.

Exercice 14.34: (niveau 3)

- 1°) Si z est un complexe de module 1, montrer que 1 est une valeur d'adhérence de la suite $(z^n)_{n\in\mathbb{N}}$.
- **2°)** Soit $p \in \mathbb{N}^*$ et z_1, \ldots, z_p p complexes de module 1. Montrer que p est une valeur d'adhérence de la suite $(z_1^n + \cdots + z_p^n)_{n \in \mathbb{N}}$.