Bayesian Logistic Regression

Zeel B Patel, Nipun Batra

August 27, 2023

IIT Gandhinagar

Outline

MLE

MAP

Fully Bayesian

Laplace Approximation

Data

Data

×1	x2	У
-5.97	-10.68	0
-0.44	5.90	1
-0.97	3.27	1

Data

×1	x2	У
-5.97	-10.68	0
-0.44	5.90	1
-0.97	3.27	1

$$\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$$
$$= \{X, \boldsymbol{y}\}$$

$$p(\mathcal{D}|\boldsymbol{\theta}) = p(\boldsymbol{y}|X, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|\boldsymbol{x}_i, \boldsymbol{\theta})$$

$$p(\mathcal{D}|\boldsymbol{\theta}) = p(\mathbf{y}|X, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

$$= \prod_{i=1}^{N} \text{Bernoulli}\left(\boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\mathbf{x}_i\right)\right) \quad \left[\boldsymbol{\sigma}(x) = \frac{1}{1 + e^{-x}}\right]$$

$$\begin{split} \rho(\mathcal{D}|\theta) &= \rho(\mathbf{y}|X,\theta) = \prod_{i=1}^{N} \rho(y_{i}|\mathbf{x}_{i},\theta) \\ &= \prod_{i=1}^{N} \mathsf{Bernoulli}\left(\sigma\left(\theta^{T}\mathbf{x}_{i}\right)\right) \quad \left[\sigma(x) = \frac{1}{1 + e^{-x}}\right] \\ &= \prod_{i=1}^{N} \sigma\left(\theta^{T}\mathbf{x}_{i}\right)^{y_{i}} \left(1 - \sigma\left(\theta^{T}\mathbf{x}_{i}\right)\right)^{1 - y_{i}} \end{split}$$

$$\begin{split} \rho(\mathcal{D}|\boldsymbol{\theta}) &= \rho(\boldsymbol{y}|X,\boldsymbol{\theta}) = \prod_{i=1}^{N} \rho(y_{i}|\boldsymbol{x}_{i},\boldsymbol{\theta}) \\ &= \prod_{i=1}^{N} \mathsf{Bernoulli}\left(\boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{i}\right)\right) \quad \left[\boldsymbol{\sigma}(x) = \frac{1}{1+e^{-x}}\right] \\ &= \prod_{i=1}^{N} \boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{i}\right)^{y_{i}} \left(1-\boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{i}\right)\right)^{1-y_{i}} \\ \log \rho(\boldsymbol{y}|X,\boldsymbol{\theta}) &= \sum_{i=1}^{N} \left[y_{i} \log \boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{i}\right) + (1-y_{i}) \log\left(1-\boldsymbol{\sigma}\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{i}\right)\right)\right] \end{split}$$

$$-\log p(\mathcal{D}|\boldsymbol{\theta}) = -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_i \right) - (1 - y_i) \log \left(1 - \sigma \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_i \right) \right) \right]$$

$$-\log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T \mathbf{x}_i \right) - (1 - y_i) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right) \right]$$

$$\frac{\partial}{\partial \theta} - \log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \frac{\sigma \left(\theta^T \mathbf{x}_i \right) \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right)}{\sigma \left(\theta^T \mathbf{x}_i \right)} \mathbf{x}_i \right]$$

$$-\log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T \mathbf{x}_i \right) - (1 - y_i) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right) \right]$$

$$\frac{\partial}{\partial \theta} - \log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \frac{\sigma \left(\theta^T \mathbf{x}_i \right) \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right)}{\sigma \left(\theta^T \mathbf{x}_i \right)} \mathbf{x}_i$$

$$- (1 - y_i) \frac{\sigma \left(\theta^T \mathbf{x}_i \right) \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right)}{1 - \sigma \left(\theta^T \mathbf{x}_i \right)} \mathbf{x}_i \right]$$

$$-\log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T x_i \right) - (1 - y_i) \log \left(1 - \sigma \left(\theta^T x_i \right) \right) \right]$$

$$\frac{\partial}{\partial \theta} - \log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \frac{\sigma \left(\theta^T x_i \right) \left(1 - \sigma \left(\theta^T x_i \right) \right)}{\sigma \left(\theta^T x_i \right)} x_i$$

$$- (1 - y_i) \frac{\sigma \left(\theta^T x_i \right) \left(1 - \sigma \left(\theta^T x_i \right) \right)}{1 - \sigma \left(\theta^T x_i \right)} x_i \right]$$

$$= -\sum_{i=1}^{N} \left[y_i \left(1 - \sigma \left(\theta^T x_i \right) \right) x_i - (1 - y_i) \sigma \left(\theta^T x_i \right) x_i \right]$$

$$-\log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T x_i \right) - (1 - y_i) \log \left(1 - \sigma \left(\theta^T x_i \right) \right) \right]$$

$$\frac{\partial}{\partial \theta} - \log p(\mathcal{D}|\theta) = -\sum_{i=1}^{N} \left[y_i \frac{\sigma \left(\theta^T x_i \right) \left(1 - \sigma \left(\theta^T x_i \right) \right)}{\sigma \left(\theta^T x_i \right)} x_i$$

$$- (1 - y_i) \frac{\sigma \left(\theta^T x_i \right) \left(1 - \sigma \left(\theta^T x_i \right) \right)}{1 - \sigma \left(\theta^T x_i \right)} x_i \right]$$

$$= -\sum_{i=1}^{N} \left[y_i \left(1 - \sigma \left(\theta^T x_i \right) \right) x_i - (1 - y_i) \sigma \left(\theta^T x_i \right) x_i \right]$$

$$= -\sum_{i=1}^{N} \left(y_i - \sigma \left(\theta^T x_i \right) \right) x_i$$

$$X^T(\sigma(X\theta) - \mathbf{y}) = 0$$

$$X^{T}(\sigma(X\theta) - \mathbf{y}) = 0$$
$$X^{T}\sigma(X\theta) = X^{T}\mathbf{y}$$

$$X^{T}(\sigma(X\theta) - \mathbf{y}) = 0$$
$$X^{T}\sigma(X\theta) = X^{T}\mathbf{y}$$
$$\frac{1}{1 + e^{-X\theta}} = \mathbf{y}$$

$$X^{T}(\sigma(X\theta) - \mathbf{y}) = 0$$

$$X^{T}\sigma(X\theta) = X^{T}\mathbf{y}$$

$$\frac{1}{1 + e^{-X\theta}} = \mathbf{y}$$

$$X\theta = \log\left(\frac{\mathbf{y}}{1 - \mathbf{y}}\right)$$

$$X^{T}(\sigma(X\theta) - \mathbf{y}) = 0$$

$$X^{T}\sigma(X\theta) = X^{T}\mathbf{y}$$

$$\frac{1}{1 + e^{-X\theta}} = \mathbf{y}$$

$$X\theta = \log\left(\frac{\mathbf{y}}{1 - \mathbf{y}}\right)$$

$$\theta_{MLE} = \left(X^{T}X\right)^{-1}X^{T}\log\left(\frac{\mathbf{y}}{1 - \mathbf{y}}\right)$$

$$X^{T}(\sigma(X\theta) - \mathbf{y}) = 0$$

$$X^{T}\sigma(X\theta) = X^{T}\mathbf{y}$$

$$\frac{1}{1 + e^{-X\theta}} = \mathbf{y}$$

$$X\theta = \log\left(\frac{\mathbf{y}}{1 - \mathbf{y}}\right)$$

$$\theta_{MLE} = \left(X^{T}X\right)^{-1}X^{T}\log\left(\frac{\mathbf{y}}{1 - \mathbf{y}}\right)$$

However, $\log\left(\frac{y}{1-y}\right)$ is undefined when $y_i=0$ or $y_i=1$, which is always the case.

 \bullet There is no closed form solution for $\theta_{\rm MLE}.$ So, we have to use gradient descent.

ullet There is no closed form solution for $heta_{
m MLE}.$ So, we have to use gradient descent.

Prior

ullet We may use a Gaussian prior on $oldsymbol{ heta}.$

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{0}, \sigma^2)$$

Log Joint

$$\log p(\theta, \mathbf{y}|X) = \log p(\mathbf{y}|X, \theta) + \log p(\theta)$$

$$= \sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T \mathbf{x}_i \right) + (1 - y_i) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right) \right]$$

$$- \frac{1}{2} \frac{\theta^T \theta}{\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2)$$

$$= \sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T \mathbf{x}_i \right) + (1 - y_i) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right) \right]$$

$$- \left(c_1 \theta^T \theta + c_2 \right) \quad [c_1 \ge 0]$$

MAP with a weak prior

MAP

MAP with a medium prior

MAP

MAP with a strong prior

MAP

Fully Bayesian

Posterior

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

 Normal prior and Bernoulli likelihood do not form a conjugate pair. Thus, the denominator is intractable and we cannot find the posterior in closed form.

Posterior

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

- Normal prior and Bernoulli likelihood do not form a conjugate pair. Thus, the denominator is intractable and we cannot find the posterior in closed form.
- We need another method to find the posterior.

Posterior

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

- Normal prior and Bernoulli likelihood do not form a conjugate pair. Thus, the denominator is intractable and we cannot find the posterior in closed form.
- We need another method to find the posterior.
- Laplace approximation!

Laplace Approximation

A Quick Refresher

Neg. Log Joint
$$f(\theta) = -\log p(\mathcal{D}|\theta) - \log p(\theta)$$

$$= -\sum_{i=1}^{N} \left[y_i \log \sigma \left(\theta^T \mathbf{x}_i \right) + (1 - y_i) \log \left(1 - \sigma \left(\theta^T \mathbf{x}_i \right) \right) \right] - \left(-\frac{1}{2} \frac{\theta^T \theta}{\sigma^2} - \frac{1}{2} \log(2\pi\sigma^2) \right)$$
 Laplace Posterior $q(\theta) = \mathcal{N}(\theta|\theta_{\mathsf{MAP}}, \nabla^2 f(\theta_{\mathsf{MAP}})^{-1})$

$$ho(y^*=1|oldsymbol{x}^*,\mathcal{D})=\int
ho(y^*=1|oldsymbol{x}^*,oldsymbol{ heta})
ho(oldsymbol{ heta}|\mathcal{D})doldsymbol{ heta}$$

$$p(y^* = 1 | \mathbf{x}^*, \mathcal{D}) = \int p(y^* = 1 | \mathbf{x}^*, \mathbf{\theta}) p(\mathbf{\theta} | \mathcal{D}) d\mathbf{\theta}$$

 $\approx \int p(y^* = 1 | \mathbf{x}^*, \mathbf{\theta}) q(\mathbf{\theta}) d\mathbf{\theta}$

$$egin{aligned}
ho(y^* = 1 | oldsymbol{x}^*, \mathcal{D}) &= \int
ho(y^* = 1 | oldsymbol{x}^*, oldsymbol{ heta})
ho(oldsymbol{ heta}| \mathcal{D}) doldsymbol{ heta} \ &pprox \int
ho(y^* = 1 | oldsymbol{x}^*, oldsymbol{ heta}) q(oldsymbol{ heta}) doldsymbol{ heta} \ &= \int \sigma(oldsymbol{ heta}^T oldsymbol{x}^*) q(oldsymbol{ heta}) doldsymbol{ heta} \end{aligned}$$

$$p(y^* = 1 | \mathbf{x}^*, \mathcal{D}) = \int p(y^* = 1 | \mathbf{x}^*, \boldsymbol{\theta}) p(\boldsymbol{\theta} | \mathcal{D}) d\boldsymbol{\theta}$$

$$\approx \int p(y^* = 1 | \mathbf{x}^*, \boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \int \sigma(\boldsymbol{\theta}^T \mathbf{x}^*) q(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \mathbb{E}_{q(\boldsymbol{\theta})} \left(\sigma(\boldsymbol{\theta}^T \mathbf{x}^*) \right)$$

$$egin{aligned}
ho(y^* = 1 | oldsymbol{x}^*, \mathcal{D}) &= \int
ho(y^* = 1 | oldsymbol{x}^*, oldsymbol{ heta})
ho(oldsymbol{ heta}| \mathcal{D}) doldsymbol{ heta} \ &pprox \int
ho(y^* = 1 | oldsymbol{x}^*, oldsymbol{ heta}) q(oldsymbol{ heta}) doldsymbol{ heta} \ &= \int \sigma(oldsymbol{ heta}^T oldsymbol{x}^*) q(oldsymbol{ heta}) doldsymbol{ heta} \ &= \mathbb{E}_{q(oldsymbol{ heta})} \left(\sigma(oldsymbol{ heta}^T oldsymbol{x}^*)
ight) \ &pprox rac{1}{M} \sum_{i=1}^M \sigma(oldsymbol{ heta}_i^T oldsymbol{x}^*) \end{aligned}$$

Predictive Distribution with a Weak Prior

Laplace

Predictive Distribution with a Medium Prior

Laplace

Predictive Distribution with a Strong Prior

Laplace

