Write proofs in the form specified by your teacher (two-column form, paragraph form, or a list of key steps).

9. Given: $\triangle RST \cong \triangle XYZ$; \overrightarrow{SK} bisects $\angle RST$; \overrightarrow{YL} bisects $\angle XYZ$.

Prove: $\overline{SK} \cong \overline{YL}$

10. Given: Congruent parts as marked in the diagram.

Prove: $\angle B \cong \angle F$

(Hint: First draw two auxiliary lines.)

11. Given: $\overline{DE} \cong \overline{FG}$; $\overline{GD} \cong \overline{EF}$;

 $\angle HDE$ and $\angle KFG$ are rt. \triangle .

Prove: $\overline{DH} \cong \overline{FK}$

Prove: O is the midpoint of \overline{QS} .

- 13. Draw two line segments, \overline{KL} and \overline{MN} , that bisect each other at O. Mark a point P on \overline{KN} and let Q be the point where \overrightarrow{PO} intersects \overline{ML} . Prove that O is the midpoint of \overline{PQ} . (First state what is given and what is to be proved.)
- 14. This figure is like the one that Euclid used to prove that the base angles of an isosceles triangle are congruent (our Theorem 4-1). Write a paragraph proof following the key steps shown below.

Given: $\overline{AB} \cong \overline{AC}$;

 \overline{AB} and \overline{AC} are extended so $\overline{BD} \cong \overline{CE}$.

Prove: $\angle ABC \cong \angle ACB$

Key steps of proof:

1. $\triangle DAC \cong \triangle EAB$

2. $\triangle DBC \cong \triangle ECB$

3. $\angle DBC \cong \angle ECB$

 $4. \ \angle ABC \cong \angle ACB$

