Лекции по алгебре 4 модуль.

Андрей Тищенко

2023/2024 гг.

Лекция 3 апреля

Квадратичные формы

Определение:

Многочлен второй степени от n переменных, то есть выражение вида

$$q(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Где $a_{ij} \in \mathbb{R}$, называют квадратичной формой.

Замечание:

Многочлен q(x) называется однородным степени k, если

$$\forall \alpha \quad q(\alpha x) = \alpha^k q(x)$$

Замечание:

Квадратичная форма - это отображение $q:V\longrightarrow \mathbb{R}$ (вектор в число)

Рассмотрим n-мерное вектороное пространство V над \mathbb{R} . Зафиксируем в нём базис e_1, \ldots, e_n :

Тогда у любого $x \in V$ есть набор координат в этом базисе x_1, \ldots, x_n . То есть $\forall x \in V : x = x_1e_1 + \cdots + x_ne_n$

Пусть
$$x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow q(x)$$
 можно представить в виде $q(x) = (x^e)^T A x^e$, где

 $A=(a_{ij})$ матрица квадратичной формы q(x) в базисе $e_1,\ldots,\ e_n,$ a_{ij} - коэффициенты квадратичной формы.

Пример:

 $B \mathbb{R}^3$

$$q(x) = x_1^2 + 8x_1x_3 = x_1^2 + 4x_1x_3 + 4x_3x_1 = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Замечание:

Матрица квадратичной формы всегда симметрическая. То есть

$$A^T = A$$

Замечание:

По любой билинейной форме можно построить квадратичную форму, взяв $q(x)=b(x,\ x).$ Тогда $a_{ij}=\frac{b_{ij}+b_{ji}}{2}$

Пример:

$$b(x, y) = x_1y_1 + ex_1y_3 + 5x_3y_1 \Rightarrow q(x) = b(x, x) = x_1^2 + 8x_1x_3$$

Определение:

Билинейная форма называется симметрической, если

$$b(x, y) = b(y, x)$$
, например, скалярное произведение

Называется кососиметрической, если

$$b(x, y) = -b(y, x)$$

Пример:

Кососиметрическая билинейная форма с матрицей $B=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow \Rightarrow B^T=-B$

Замечание:

По любой квадратичной форме можно построить симметрическую билинейную форму. Это называется поляризацией квадратичной формы.

$$b(x, y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

Полярная билинейная форма к q(x) (имеет ту же матрицу, что и q(x), b(x, x) = q(x))

Утверждение:

При переходе от базиса e к базису e' в линейном пространстве V матрица квадратичной формы меняется так:

$$A' = C^T \cdot A \cdot C$$
, "Стас" без рофлов, реально Стасямба конкретная

A' - матрица квадартичной формы в новом базисе e'

C - матрица перехода от базиса e к базису e'

Доказательство:

Связь координат вектора:

x = Cx', так как $x' = C^{-1}x$ - формула изменения координат вектора при замене базиса.

Тогда $\forall x \quad q(x) = x^T A x = (Cx')^T A (Cx') = (x')^T C^T A C x' = (x')^T A' x',$ значит $A' = C^T A C$ (Можно в качестве x брать все векторы канонического базиса $(0, \ldots 0, \ 1, \ 0, \ldots, \ 0)$ и показать совпадение матричных элементов)

Определение:

Если квадратичная форма в некотором базисе записана в виде $q(x) = x^T A x$, то есть если A - матрица квадратичной формы в некотором базисе, то $\operatorname{Rg} A$ называется рангом квадратичной формы q(x). Почему это определение корректно? То есть почему $\operatorname{Rg} A$ не зависит от базиса.

Лемма:

Пусть $A, U \in M_n(\mathbb{R}), \det U \neq 0$. Тогда $\operatorname{Rg} A \cdot U = \operatorname{Rg} A = \operatorname{Rg} U \cdot A$, то есть при умножении на невырожденную матрицу ранг не меняется.

Доказательство:

 $\operatorname{Rg} A \cdot U \leqslant \operatorname{Rg} A$, так как столбцы матрицы AU есть линейные комбинации столбцов матрицы A.

Ранг матрицы по теореме о ранге матрицы равен максимальному числу линейно независимых столбцов не могло вырасти, так как все столбцы AU линейно выражаются через столбцы исходной матрицы.

Покажем $\operatorname{Rg} A \cdot U \geqslant \operatorname{Rg} A$.

$$\operatorname{Rg} A = \operatorname{Rg} A(U \cdot U^{-1}) = \operatorname{Rg}(AU)U^{-1} \leq \operatorname{Rg}(AU)$$
$$\operatorname{Rg} U \cdot A = \operatorname{Rg}(UA)^{T} = \operatorname{Rg} A^{T}U^{T} = \operatorname{Rg} A^{T} = \operatorname{Rg} A = \operatorname{Rg} AU$$

Утверждение: (об инвариантности ранга квадратичной формы)

Пусть q(x) - квадратичная форам на линейном пространстве V.

Пусть $a = (a_1, \ldots, a_n)$ и $b = (b_1, \ldots, b_n)$ - базисы в V.

Пусть A - матрица квадратичной формы в базисе a

Пусть B - матрицы квадратичной формы в базисе b

Тогда $\operatorname{Rg} A = \operatorname{Rg} B$ и ранг квадратичной формы корректно определен.

Доказательство:

Было доказано, что $B = C^T A C \Rightarrow$ по лемме, так как мы умножаем матрицу A на матрицы C^T слева и на C справа, то $\operatorname{Rg} B = \operatorname{Rg} A$, ч.т.д.

Определение:

квадратичную форму q(x) будем назвать положительно определённой, если

$$\forall x \neq 0 \quad q(x) > 0$$

отрицательно определённой, если

$$\forall x \neq 0 \quad q(x) < 0$$

знакопеременной, если

$$\exists x, \ y \in V : q(x) < 0 < q(y)$$

Пример:

 $q_1(x) = x_1^2 + 2x_2^2 + 5x_3^2$ на \mathbb{R}^3 - положительно определена

 $q_2(x)=x_1^2-x_3^2$ - знакопеременна $\left(y=\begin{pmatrix} 1 & 0 & 0 \end{pmatrix},\; x=\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}\Rightarrow q(x)<0< q(y) \right).$ $q_3(x)=-x_1^2-2x_2^2-3x_3^2$ - отрицательно определена на $\mathbb{R}^3,$ но $q_3'(x)=-x_1^2-3x_3^2$ - не является отрицательно определённой, так как

 $q_3'\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 0$ - это неположительно определённая квадратная форма.

Теорема: (Критерий Сильвестра положительной определённости)

Пусть A - матрица квадратичной формы q(x) в некотором базисе. Тогда

q(x) положительно определена $\Leftrightarrow \frac{\text{последовательность главных угловых}}{\text{миноров в A строго положительна}}$

То есть
$$\begin{cases} \Delta_1 = a_{11} > 0 \\ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \\ \dots \\ \Delta_n = \det A > 0 \end{cases}$$

Следствие:

Квадратичная форма отрицательно определена
$$\Leftrightarrow egin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \dots \\ (-1)^n \Delta_n > 0 \end{cases}$$

То есть знаки главных угловых миноров чередуются, начиная с минуса.

Доказательство:

Так как A - отрицательно определена $\Leftrightarrow -A$ положительно определена $\det(-A) = (-1)^n \det A$, ч.т.д.

Пример:

$$q(x) = -x_1^2 - x_2^2 - \dots - x_n^2$$
 - отрицательно определённая $A = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{pmatrix}$

Определение:

Квадратичную форму $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2$, где $\alpha_i \in \mathbb{R}$, $i = \overline{1, n}$, то есть в квадратичной форме нет попарных произведений вида Cx_ix_j , называют квадратичной формой каноничесмкого вида.

Если $\alpha_i \in \{-1, 0, 1\}$, то канонический вид называют нормальным.

Замечание:

Матрица квадратичной формы в каноническом виде является диагональной.

Лекция 10 апреля

 $x \in V$ $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2 \ (\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n})$ - канонический вид. Если все коэффициенты α_i являются элементами множества $\{-1, \ 0, \ 1\}$, то это называется нормальным видом.

Утверждение. Любую квадратичную форму можно привести к каноническому и к нормальному виду.

Методы приведения

1. Метод Лагранжа.

Главная идея состоит в последовательном выделении полных квадратов. При этом на каждом шаге под квадрат полностью уходит одна переменная (невыполнение этого условия является частой ошибкой при решении задач). Получается, что не более чем за n шагов алгоритм даст канонический вид.

Если на некотором этапе переменных в квадрате не осталось, но есть выражение вида $c \cdot x_i \cdot x_j \ (i \neq j)$, то делают замену переменных:

$$\begin{cases} x_i = x_i' - x_j' \\ x_j = x_i' + x_j' \end{cases} \Rightarrow cx_i x_j = c\left((x_i')^2 - (x_j')^2\right)$$

Получили новые квадраты, продолжаем выполнение метода (то есть выделяем полный квадрат при необходимости).

$$\alpha_i x_i^2 + 2x_i \underbrace{\left(\beta_1 x_1 + \dots + \beta_n x_n\right)}_{\text{HeT } x_i} = \alpha_i \left(x_i^2 + 2x_i \frac{\beta_i x_1 + \dots + \beta_n x_n}{\alpha_i} + \left(\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} \right)^2 \right)$$

$$-\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} = \alpha_i \underbrace{\left(x_i + \frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i}\right)}_{\text{заменяем на } y_i} - \underbrace{\frac{\left(\beta_1 x_1 + \dots + \beta_n x_n\right)^2}{\alpha_i}}_{\text{уже без } x_i}$$

То есть x_i полностью ушла под квадрат.

2. Метод Якоби. (может быть пройдём на семинаре)

- 3. Симметичный Гаусс. (может быть пройдём на семинаре)
- 4. Метод приведения к главным осям (только для канонического). (может быть пройдём на семинаре)

Теорема. Закон инерции квадратичной формы

Для любых двух канонических видов одной квадратичной формы. $q(x) = \lambda_1 x_1^2 + \dots + \lambda_k x_k^2, \ \lambda_i \neq 0, \ i = \overline{1, \ k}$ $q(y) = \mu_1 y_1^2 + \dots + \mu_m y_m^2, \ \mu_j \neq 0, \ j = \overline{1, \ m}$ где $x, \ y \in V$

То есть это запись одной и той же квадратичной формы в разных базисах.

- 1. $k = m = \operatorname{Rg} A \leftarrow$ равно рангу квадратичной формы. При этом k = m может быть меньше размерности V, то есть $k = m \leqslant n = \dim V$
- 2. Количество положительных λ_i совпадает с количество положительных μ_j . Это называется положительный индекс инерции квадратичной формы.

Обозначение: i_+

3. Количество отрицательных λ_i совпадает с количеством отрицательрных μ_i и называется отрицательным индексом инерции.

Обозначение: i_

Определение: Сигнатурой квадратичной формы называют два числа (i_+, i_-) .

Замечание: Если у двух квадратичных форм совпадают сигнатуры, то существует невырожденная линейное преобразование (=замена координат, =замена базиса), которое одну квадратичную форму переводит в другую. Сначала обе в нормальный вид, он совпадает, так как одинаковое количество +1 и -1, и для одной преобразование в обратную сторону.

Замечание: Если у двух квадратичных форм разные сигнатуры (i_+, i_-) , то одну нельзя перевести в другую невырожденным линейным преобразованием. То есть квадратичные формы разные.

Замечание: $\operatorname{Rg} A = i_+ + i_-$. Иногда вводят величину $S = i_+ - i_-$. Знание $\operatorname{Rg} A$ и S эквивалентно знанию i_+ и i_- , и поэтому число S иногда называют сигнатурой.

Линейные отображения и линейные операторы

Пусть V_1 и V_2 - два линейных пространства над полем F

Определение: Отображение $\varphi: V_1 \longrightarrow V_2$ называется <u>линейным</u>, если

- 1. $\forall x, y \in V_1, \varphi(x+y) = \varphi(x) + \varphi(y)$
- 2. $\forall x \in V_1, \ \forall \alpha \in F \ \varphi(\alpha x) = \alpha \varphi(x)$

Замечание: эти два условия равносильны $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$

Замечание: Линейное отображение это гомоморфизм линейных пространств, и есть обозначение $\varphi \in \text{Hom}(V_1, V_2)$

Определение: Если $V_1 = V_2 = V$ (пространства совпадают), то линейное отображение φ называется линейным оператором (л. о.)

Пусть e_1, \ldots, e_n - базис в $V_1, \dim V_1 = n$

 $f_1,\ldots,\ f_m$ - базис в $V_2,\ \dim V_2=m$

Рассмотрим векторы $\varphi(e_1), \ldots, \varphi(e_n) \in V_2$ (образы базисных векторов первого пространства под действием φ), и разложим их по базису второго пространства f_1, \ldots, f_m :

$$\begin{cases} \varphi(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m \\ \vdots \\ \varphi(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m \end{cases}$$

Определение: Матрица линейного отображения в паре базисов (e_1, \ldots, e_n) и (f_1, \ldots, f_m) это матрица:

$$[\varphi]_{ef} = A_{ef} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}_{m \times n}}_{\text{dim } V_1}$$
 dim V_2

По столбцам стоят координаты образов векторов первого базиса при разложении по второму базису.

Определение: Пусть
$$\varphi: V_1 \longrightarrow V$$
 - линейный оператор и e_1, \dots, e_n - базис. Пусть
$$\begin{cases} \varphi(e_1) = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n \\ \vdots \\ \varphi(e_n) = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n \end{cases}$$

То есть образы базисных векторов под дейсвтием φ разложим по тому же базису.

Тогда:

$$A_e = \begin{pmatrix} a_{1\,1} & \dots & a_{1\,n} \\ a_{2\,1} & \dots & a_{2\,n} \\ \vdots & \ddots & \vdots \\ a_{n\,1} & \dots & a_{n\,n} \end{pmatrix}$$

Называется матрицей линейного оператора

Пример: $\varphi(x)=\Pi \mathrm{p}_L \, x$, где $L=\mathcal{L}(\overline{i})$ в V_3 , где \overline{i} - ось абсцисс. Рассмотрим стандартный базис $\{\bar{i}, \bar{j}, \bar{k}\}$ в V_3 .

$$\begin{cases} \varphi(i) = i = 1 \cdot i + 0 \cdot j + 0 \cdot k \\ \varphi(j) = 0 \\ \varphi(k) = 0 \end{cases} \Rightarrow A_{\{i, j, k\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Теорема: (о том, что действие линейного оператора полностью определяется его матрицей)

> Пусть φ - линейный оператор в пространстве V $e = (e_1, \dots, e_n)$ - базис в $V, x \in V$ - вектор.

$$x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 - столбец координат вектора x в базисе e , то есть $x = \frac{x_1}{x_2}$

Пусть A_e - матрица линейного оператора φ в базисе e, тогда:

$$(\varphi(x))^e = A_e \cdot x^e$$
, (матричное произведение)

Доказательство:
$$\varphi(x) = \varphi(x_1e_1 + \dots + x_1e_1)$$
 по линейности $x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$ определение $x_1(a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n) + \dots + x_1(a_{1n}e_1 + a_{21}e_2 + \dots + a_{nn}e_n) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)e_1 + \dots + (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n)e_n$ - получили разложение $\varphi(x)$ по базису e

$$\Rightarrow \left(\varphi(x)\right)^e = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots a_{1n}x_n \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{pmatrix}$$
 Но это результат умножения A_e на $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x^e$, то есть $\left(\varphi(x)\right)^e = A_e \cdot x^e$, ч.т.д.

Замечание: Для линейных отображений аналогично

$$\left(\varphi(x)\right)^f = A_{ef} x^e$$

Замечание: При фиксированном базисе есть биекция между линейными операторами (линейными отображениями) и матрицами $n \times n$, $(m \times n)$.

Лекция 17 апреля.

Линейные операторы

(Напоминание) Пусть $\varphi: V \longrightarrow V$ - линейный оператор в пространстве V, фиксируем базис $e = \{e_1, \dots, e_n\}$ в V.

Тогда \exists ! матрица линейного оператора A_e в базисе e, что

$$\forall x \in V \left(\varphi(x)\right)_{n \times 1}^e = \underset{n \times n}{A_e} \cdot x_{n \times 1}^e$$

Для линейного отображения $\phi: V_1 \longrightarrow V_2$ в фиксированной паре базисов $e,\ f$

$$\left(\phi(x)\right)_{m\times 1}^f = A_{ef} \cdot x_{n\times 1}^e$$

Утверждение: Пусть A - матрица линейного оператора φ в базисе e.

A' - матрица линейного оператора φ в базисе e'

Пусть T - матрица перехода в V от базисе e к базису e'.

Тогла $A' = T^{-1} \cdot A \cdot T$

Доказательство: По доказанному:

$$y = A \cdot x, \ y = (\varphi(x))^e \tag{1}$$

$$y' = A' \cdot x', \ y' = \left(\varphi(x)\right)^{e'} \tag{2}$$

 $y = T \cdot y'$ (так как $y' = T^{-1}y$) и x = Tx' - формула зименения координат вектора при замене базиса.

Подставляем в (1): $T \cdot y' = A \cdot T \cdot x'$, но T - невырожденная матрица (так как она является матрицей перехода), домножим слева на

$$\Rightarrow y' = \underbrace{T^{-1} \cdot A \cdot T}_{A'} \cdot x'$$
, сравним с (2) $\Rightarrow A' = T^{-1} \cdot A \cdot T$, так как

матрица линейного оператора в заданном базисе единственная.

Утверждение: Пусть φ - линейное отображение линейного пространства V_1 (dim V_1 = n) в линейное пространство V_2 , $(\dim V_2 = m)$.

> Пусть $A_{\varepsilon_1 \, \varepsilon_2}$ - матрица линейного отображения в паре базисов ε_1 в пространстве V_1 и ε_2 в пространстве V_2 .

> Тогда, если T_1 - Это матрица перехода в V_1 от базиса ε_1 к базису

 T_2 - матрица перехода в V_2 от ε_2 к ε_2' .

Тогда имеет место следующее равенство:

$$A_{\varepsilon_{1}'\varepsilon_{2}'} = T_{2}^{-1} \cdot A_{\varepsilon_{1}\varepsilon_{2}} \cdot T_{1}$$

$$m \times n \quad m \times n \quad n \times n$$

Доказательство: Пусть y - образ x под действием φ (то есть $y = \varphi(x)$), тогда:

- (1) $y^{\varepsilon_2} = A_{\varepsilon_1 \varepsilon_2} \cdot x^{\varepsilon_1} \leftarrow$ в старом базисе

Подставим в (1), получим:

 $T_2 y^{\varepsilon_2'} = A_{\varepsilon_1 \varepsilon_2} T_1 x^{\varepsilon_1'}$. Домножим на T_2^{-1} слева, так как T_2 - невырожденная \Rightarrow

$$\begin{split} &\Rightarrow y^{\varepsilon_2'} = \underbrace{T_2^{-1} A_{\varepsilon_1 \, \varepsilon_2} T_1}_{A_{\varepsilon_1' \, A_{\varepsilon_2'}}} x^{\varepsilon_1'}, \, \text{сравнивая c } (2) \Rightarrow \\ &\Rightarrow A_{\varepsilon_1' \, \varepsilon_2'} = T_2^{-1} \cdot A_{\varepsilon_1 \, \varepsilon_2} T_1 \end{split}$$

Определение: Квадратные матрицы А и В называются подобными, если существует невырожденная матрица C:

$$B = C^{-1}AC \quad (\det C \neq 0)$$

Замечание: Матрицы линейных операторов в разных базисах подобнымежду собой.

Утверждение: Определители подобных матриц равны.

Доказательство: Пусть A и B подобны, то есть $B = C^{-1}AC \Rightarrow$

$$\det B = \det \left(C^{-1}AC \right) = \det C^{-1} \det A \det C = \frac{\det C}{\det C} \det A = \det A$$

Замечание: Это означает, что $\det A$ - определитель матрицы линейного оператора не зависит от выбора базиса, то есть является инвариантом замены координат (и $\operatorname{Rg} A$ - тоже инвариант)

Определение: Ядром линейного отображения $\varphi: V_1 \longrightarrow V_2$ назыается множество:

$$\ker \varphi = \{ x \in V_1 | \varphi(x) = 0 \} = \varphi^{-1}(0) \subseteq V_1$$

Образом линейного отображения φ называется множество

$$\operatorname{Im} \varphi = \{ x \in V_2 \mid \exists y \in V_1 : \ \varphi(y) = x \} = \varphi(V_1) \subseteq V_2$$

Замечание: $\ker \varphi$ и $\operatorname{Im} \varphi$ являются линейными подпространствами в V_1 и V_2 соответственно (проверить замкнутость по оперицаям).

Утверждение: Пусть $\varphi:V_1\longrightarrow V_2$ - линейное отображение. Тогда $\dim\ker\varphi+\dim\operatorname{Im}\varphi=n=\dim V_1$

Доказательство: Зафиксируем базис $e = \{e_1, \dots, e_n\}$ в V_1 $\forall x \in V_1$ можно представить в виде $x = x_1e_1 + \dots + x_ne_n$ $\varphi(x) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$, но $\varphi(e_1), \dots, \varphi(e_n)$ - столбцы матрицы линейного отображения (если фиксировать базис и в V_2). $\operatorname{Im} \varphi = \mathcal{L}\big(\varphi(e_1), \dots, \varphi(e_2)\big)$ (линейная оболочка). \Rightarrow $\Rightarrow \dim \operatorname{Im} \varphi = \operatorname{Rg} A$ - ранг матрицы линейного отображения. Ядро φ описывается однородной СЛАУ Ax = 0, размерность пространства её решений (то есть число векторов ФСР) равна $k = n - \operatorname{Rg} A$, где k - размерность ядра,

n - размерность образа. Итак, $\dim \ker \varphi + \dim \operatorname{Im} \varphi = n$, где $n = \dim V_1$.

Замечание: Если $\varphi: V \longrightarrow V$ - линейный оператор (то есть $\ker \varphi$, $\operatorname{Im} \varphi \subseteq V$), то вообще говоря, $V \neq \ker \varphi + \operatorname{Im} \varphi$, хотя и $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V$

Пример: Рассмотрим линейное пространство $\mathbb{R}_n[x]$ - пространство многочленов от x, $\deg f \leqslant n$ с вещественными коэффициентами и оператор $\mathcal{D}: f \mapsto f' \leftarrow$ производная, $\mathcal{D}: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ $\dim \mathbb{R}_n[x] = n+1$, так как $\mathbb{R}_n[x] = \mathcal{L}\{1, x, x^2, \dots, x^n\}$ $\operatorname{Im} \mathcal{D} = \mathbb{R}_{n-1}[x]$, $\dim \operatorname{Im} \mathcal{D} = n$ $\ker \mathcal{D} = \mathcal{L}(1)$ - константы, $\dim \ker \mathcal{D} = 1$, но $\ker \mathcal{D} \subseteq \operatorname{Im} \mathcal{D}$, но $\dim \ker \mathcal{D} + \dim \operatorname{Im} \mathcal{D} = n+1 = \dim \mathbb{R}_n[x]$

Действия с линейными операторами и их матрицами

Пусть A и B - линейные операторы на линейном пространстве V над полем F, тогда

Определение: (A+B)(x)=A(x)+B(x) $(\lambda A)(x)=\lambda A(x)$ - умножение на число $\lambda\in F$ $(A\cdot B)(x)=A\big(B(x)\big)$ - умножение линейного оператора (композиция)

Замечание: A+B, $\lambda \cdot A$, $A \cdot B$ - снова линейные операторы (провека по определению)

Утверждение: Пусть фиксирован базис $e = \{e_1, \ldots, e_n\}$. Тогда:

$$\begin{cases} (1) (A+B)_e = A_e + B_e \\ (2) (\lambda A)_e = \lambda A_e \\ (3) (A \cdot B)_e = A_e \cdot B_e \end{cases}$$

Доказательство (3): $\left(\left(A\cdot B\right)(x)\right)^e=A_e\cdot\left(B(x)\right)^e=A_e\cdot B_e x^e=(AB)_e x^e\Rightarrow$ $\Rightarrow (AB)_e=A_e B_e$, так как матрица линейных операторов в фиксированном базисе единственна.

Собственные векторы и собственные числа

Определение: Число λ называется собственным числом (или собственным значением, то есть <u>с. з.</u>) линейного оператора $\varphi: V \longrightarrow V$, где V - линейное простраснтво, если \exists вектор $x \in V$, $x \neq 0$, такой что $\varphi(x) = \lambda \cdot x$. При этом x называется собственным вектором (с. в.), отвечающим собственному значению λ .

Замечание: Если x - собственный вектор, отвечающих собственному значению λ , то $\forall \alpha \in F, \ \alpha \neq 0, \ \alpha x$ - тоже собственный вектор, отвечающий собственному значению $\lambda \ \varphi(\alpha x) = \alpha \varphi(x) = \alpha \lambda x = \lambda(\alpha x) \Rightarrow \alpha x$ - собственный вектор.

- Замечание: Дригими словами, собственный вектор ненулевой вектор, остающийся коллинеарным (либо равным 0) самому себе под действием линейного оператора φ
- Пример 1: Пусть $\Pi p_{Ox}: V_2 \longrightarrow V_1 \ (V_2 \cong \mathbb{R}^2)$ линейный оператор проекции на Ox в плоскости V_2 . Все векторы $\in Ox$, отличные от 0 собственные векторы.

Например, $\vec{i} = (1, 0)$

 $\varphi(\vec{i})=i$ - собт
свенный вектор, отвечающий собственному значению $\lambda_1=1$

 $ec{arphi(ec{j})}=0\Rightarrow j$ - собственный вектор, отвечающий собственному значению $\lambda_2=0$

В базисе $\{i,\ j\}$ - базис из собственных векторов. Матрица линейного оператора $A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ - диагональная матрица.

 $V_2 = Ox \oplus Oy$

Бывает, что нет собственных значений и собственных векторов для линейного оператора

Лекция 24 апреля

Задача:

Есть 10000 человек.

Каждый день 15% здоровых заболевают и 10% больных выздоравливают (можно болеть повторно).

В первый день заболело 100 человек.

A - линейный оператор ежедневной динамики.

$$\lim_{\substack{n \to \infty \\ A^n - ?}} = A^n(x_0), \ x_0 = \begin{pmatrix} 9900 \\ 100 \end{pmatrix}$$

Определение:

Для произвольной квадратной матрицы A определитель

$$\chi_A(\lambda) = \det(A - \lambda E)$$

Называется характеристическим многочленом матрицы A, а уравнение $\chi_A(\lambda)$ - многочлен степени n

Пример:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \chi_A(\lambda) = \det \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda = \lambda(\lambda - 2)$$

Утверждение:

Характеристические уравнения подобных матриц совпадают.

Доказательство:

$$A$$
 и A' подобны, если существует T , $\det T \neq 0$: $A' = A' = T^{-1}AT$
$$\chi_{A'}(\lambda) = \det(A' - \lambda' E) = \det(T^{-1}AT - \lambda T^{-1}ET) = \det\left(T^{-1}(A - \lambda E)T\right) = \det T^{-1} \det(A - \lambda E) \det T = \det(A - \lambda E) = \chi_A$$

Следствие:

Характеристические многочлены для матриц линейных операторов в разных базисах совпадают (сами матрицы могут различаться).

То есть корректно говорить о характеристическом многочлене для линейного оператора (то есть он инвариантен при замене базиса).

Определение:

Множество всех собственных значений линейного оператора называют спектром линейного оператора.

Теорема:

 λ - собственное значение линейного оператора $\Leftrightarrow \lambda$ - корень характеристического уравнения линейного оператора (над алгебраически замкнутым полем (например \mathbb{C}) или в случае, когда корни характеристического уравнения лежат в том же поле, над которым рассматривается линейный оператор).

Доказательство:

Необходимость:

Дано: λ - собственное значение линейного оператора A

Доказать: λ - корень $\chi_A(\lambda) = 0$

По определению $\exists x \neq 0 \ A(x) = \lambda \cdot x$, то есть $A(x) = \lambda \cdot I(x)$, где I(x) - тождественный линейный оператор.

$$(A - \lambda I)(x) = 0 \quad (*)$$

Запишем равенство (*) в некотором базисе e:

$$(A_e - \lambda E) \cdot x^e = 0$$

Это однородное СЛАУ с ненулевым решением, то есть по критерию существования ненулевых решений $\det(A_e - \lambda E) = 0$, а это и есть $\chi_A(\lambda) = 0$

Достаточность:

Дано: λ - корень $\chi_A(\lambda) = 0$

Доказать: λ - собственное значение линейного оператора A

Если λ - корень, то в заданном базисе e выполнено равенство

$$\det(A_e - \lambda E) = 0$$

То есть однородное СЛАУ $(A_e - \lambda E)x^e = 0$ имеет ненулевое решение (по тому же критерию) и соответственно выполняется (*)

$$(A - \lambda I)(x) = 0 \Leftrightarrow A(x) = \lambda x \quad (x \neq 0)$$

То есть x - собственный вектор, отвечающий собственному значению λ , ч.т.д.

Пример:

$$\chi_A=(\lambda)=\lambda(\lambda-2)\Rightarrow egin{bmatrix} \lambda_1=0 \ \lambda_2=2 \end{bmatrix}$$
 - спектр линейного оператора A

Определение:

Алгебраической кратностью собственного значения λ называется его кратность как корня характеристического уравнения.

Обозначение:

 m_i - алгебраическая кратность собственного значения λ_i

Пример:

$$\chi_A(\lambda) = (\lambda - 5)^3 (\lambda - 2)^2$$

Тогда будет верно:

$$\begin{cases} \lambda_1 = 5 \leftarrow m_1 = 3 \\ \lambda_2 = 2 \leftarrow m_2 = 2 \end{cases}$$

Определение:

Пусть $A:V \to V$ - линейный оператор λ - собственное значение линейного оператора A. Тогда множество

$$V_{\lambda} = \{ x \in V \mid Ax = \lambda x \}$$

называется собственным подпространством отвечающим собственному значению λ .

Замечание:

 V_{λ} является линейным подпространством в V (состоящим из собственных векторов, отвечающих собственным значениям λ , и нулевого вектора).

Доказательство:

$$Ax = \lambda x \Leftrightarrow (A - \lambda E) \cdot x = 0$$

То есть $V_{\lambda} = \ker(A - \lambda I)$ линейный оператор с матрицей $(A - \lambda E)$ ker B любого линейного оператора B является подпространством в V (проверить замкнутость).

Определение:

Размерность собственного подпространства V_{λ} называется <u>геометрической кратностью</u> собственного значения λ

Обозначение:

 s_i - геометрическая кратность собственного значения λ

Замечание:

Геометрическая кратность собственного значения λ всегда ≥ 1 ($s_i \geq 1$).

Теорема: без доказательства

Геометрическая кратность собственного значения λ всегда \leqslant его алгебраической кратности $(s_i \leqslant m_i)$

Определение:

Следом матрицы $A \in M_n(F)$ называется сумма е диагональных элементов

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$$

Утверждение:

$$\forall A, B \in M_n(F) \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

Утверждение:

Пусть A - линейный оператор в базисе e. Тогда $\operatorname{tr} A_e$ не зависит от выбора базиса.

Доказательство:

 $A_{e'} = T^{-1}A_eT$, где $A_{e'}$ - матрица линейного оператора A в базисе e'. Тогда $\operatorname{tr} A_{e'} = \operatorname{tr} \left((T^{-1}A_e)T \right) = \operatorname{tr} \left(T(T^{-1}A_e) \right) = \operatorname{tr} A_e$.

Итого:

 $\operatorname{Rg} A$, $\det A$, $\operatorname{tr} A$, $\chi_A(\lambda)$ - инварианты линейного оператора при замене базиса.

Замечание:

$$A \in M_n(\mathbb{R}), \ \chi_A(\lambda) = \det(A - \lambda E) = (-1)^n \lambda^n \neq (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + \dots + \det A$$

Критерий диагональности линейного оператора

Утверждение:

Пусть $\lambda_1, \ldots, \lambda_k$ - собственные значения линейного оператора и пусть $\lambda_i \neq \lambda_j$ при $i \neq j$.

Пусть v_1, \ldots, v_k - соответствующие собственные векторы

Тогда v_1, \ldots, v_k - линейно независимы.

То есть собственные векторы, отвечающие различным собственным значениям являются линейно независимыми.

Доказательство:

Применим принцип математической индукции.

При k=1 - утверждение верно, так как собственный вектор по определению $\neq 0$ и соответсвенно образует линейно независимую систему.

Пусть утверждение верно при k=m.

Добавим ещё 1 собтвенный вектор v_{m+1} , отвечающий собственному значению λ_{m+1} . Докажем, что система собственных векторов $v_1,\ldots,\ v_{m+1}$ останется линейно независимой.

Рассмотрим равенство:

1.
$$\alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0$$

Применим к 1. линейный оператор A, тогда по линейности:

$$\alpha_1 A(v_1) + \dots + \alpha_m A(v_m) + \alpha_{m+1} A(v_{m+1}) = 0$$

Вспомним, что v_i - собственный вектор для собственного значения λ_i

2.
$$\alpha_1\lambda_1v_1 + \cdots + \alpha_m\lambda_mv_m + \alpha_{m+1}\lambda_{m+1}v_{m+1}$$

Умножим 1. на λ_{m+1} и вычтем из 2.

$$\alpha_1(\lambda_1 - \lambda_{m+1})v_1 + \dots + \alpha_m(\lambda_m - \lambda_{m+1})v_m = 0$$

По предположению индукции v_1, \ldots, v_m - линейно независимы:

$$\begin{cases} \alpha_1(\lambda_1 - \lambda_{m+1}) = 0 \\ \dots \\ \alpha_m(\lambda_m - \lambda_{m+1}) = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = 0 \\ \dots \\ \alpha_m = 0 \end{cases}$$

Теперь 1. можно записать в виде:

$$0 + \alpha_{m+1} v_{m+1} = 0$$

Но $v_{m+1} \neq 0$ (собственный вектор), значит $\alpha_{m+1} = 0 \Rightarrow$ по определению система v_1, \ldots, v_{m+1} является линейно независимой.

 $\mathbf{Утверждение}$: Критерий диагональности матрицы линейного оператора A

Матрица линейного оператора A является диагональной в данном базисе \Leftrightarrow все векторы этого базиса являются собственными векторами для линейного оператора A.

Доказательство:

Необходимость:

Дано: A_e - диагональная матрица

Доказать: e состоит из собственных векторов по A

По определению матрицы линейного оператора в j-м столбце стоят координаты вектора $A(e_j)$ в базисе e_1, \ldots, e_n

Если A_e - диагональна, то j-й столбей имеет вид $(0,\ldots,\ 0,\ \lambda_j,\ 0,\ldots,\ 0)\Rightarrow$

 $\Rightarrow A(e_j) = 0 + \dots + 0 + \lambda_j e_j + 0 + \dots + 0$, то есть $A(e_j) = \lambda_j e_j$, $e_j \neq 0 \Rightarrow$ по определению e_j - собственный вектор, отвечающий собственному значению λ_j (на диагонали матрицы A_e - собственное значение).

Достаточность:

Дано: e состоит из собственных векторов по A

Доказать: A_e - диагональная матрица

$$A(e_j) = \lambda_j e_j,$$

 $\forall j=\overline{1,\ n}\Rightarrow$ по определению матрицы линейного оператора, все элементы кроме диагональных равны нулю в каждом столбце (на диагонали собственные значения λ_i), ч.т.д.

Определение:

Линейный оператор, для которого в линейном пространстве V существует базис из собственных векторов, называется диагонализируемым.

Теорема: Критерий диагонализируемости линейного оператора.

(Без доказательства) Линейный оператор диагонализируем \Leftrightarrow для любых его собственных значений λ_i алгебраическая кратность равна геометрической кратности ($m_i = s_i$)

Теорема:

Если характеристическое уравнение линейного оператора, действующего в пространстве V, где $\dim V = n$ имеет ровно n попарно различных корней, то оператор диагонилизируеем (корни лежат в поле, над которым рассматривается линейное пространство V)

Доказательство:

Если собственное значение $\lambda_i \in F$, то ему можно сопоставить хотя бы один собственный вектор v_i . Система $v_1,\ldots,\ v_n$ - линейно независимы, так как по условию $\lambda_i \neq \lambda_j$, при $i \neq j$ (доказали ранее), их число равно $\dim V \Rightarrow$ они образуют базис в V из собственных векторов \Rightarrow линейный оператор диагонализируем

Лекция 15 мая

Евклидовы пространства

В этом разделе всякое поле будет полем вещественных чисел:

$$\forall F$$
 F - поле $\Rightarrow F = \mathbb{R}$

Определение:

Евклидово пространство \mathcal{E} - это пара (V, g(x, y)), где

V - линейное пространство,

g(x, y) - скалярное произведение, то есть симметрическая, положительно определённая билинейная форма.

То есть для $g: V \times V \to \mathbb{R}$ выполняются свойства (аксиомы скалярного произведения):

- 1. $\forall x, y \in \mathcal{E} \ g(x, y) = g(y, x)$ симметричность
- 2. $\forall x, y, z \in \mathcal{E} \ \forall \alpha, \beta \in \mathbb{R}$

$$g(\alpha x + \beta y, z) = \alpha g(x, z) + \beta g(y, z)$$
, линейность

3. $\forall x, \in \mathcal{E} \ g(x, \ x) \geqslant 0 \land g(x, \ x) = 0 \Leftrightarrow x = 0$ нулевой вектор

Пример:

1.
$$\mathcal{E} = \left(V_3, \ g(x, \ y) = |x| \cdot |y| \cos \widehat{(x, \ y)}\right)$$
 - евклидово пространство

2.
$$V = C[a, \ b]$$
 - функции, непрерывные на отрезке $[a, \ b]$

$$g(f_1(x), f_2(x)) = \int_a^b f_1(x) f_2(x) dx$$
 — скалярное произведение \Rightarrow $\Rightarrow \mathcal{E} = \left(C[a, b], g(x, y)\right)$ — евклидово пространство

Определение:

Пусть $\mathcal E$ - евклидово пространство. Тогда величина $||v||=\sqrt{g(v,\,v)}$ (может обозначаться как |v|) называется нормой (длиной) вектора v.

Определение:

 $\forall v_1, v_2 \in \mathcal{E}, v_1, v_2 \neq 0$:

$$\cos \varphi = \frac{g(v_1, v_2)}{||v_1|| \cdot ||v_2||} = \frac{g(v_1, v_2)}{\sqrt{g(v_1, v_1)} \sqrt{g(v_2, v_2)}}$$

 Γ де φ - угол между v_1 , v_2 .

Это определение угла между векторами (берём $\varphi \in [0, \pi]$)

Определение:

 $\forall x, y \in \mathcal{E}$:

$$\rho(x, y) = ||x - y||$$
 — расстояние между векторами x, y

Утверждение (Неравенство Коши-Буняковского)

 $\forall x, y \in \mathcal{E}$:

$$|g(x, y)| \leqslant ||x|| \cdot ||y||$$

Доказательство:

 $\forall \lambda \in \mathbb{R}$:

$$0 \le g(\lambda x - y, \ \lambda x - y) = \lambda g(x, \ \lambda x - y) - g(y, \ \lambda x - y) = 0$$

$$= \lambda^2 g(x, x) - \lambda g(x, y) - \lambda g(y, x) + g(y, y) = ||x||^2 \lambda^2 - 2g(x, y)\lambda + ||y||^2$$

Квадратное уравнение относительно λ , которое $\geq 0 \ \forall \lambda \in \mathbb{R} \Rightarrow D \leq 0, \ D = 4\big(g(x,\ y)\big)^2 - 4||x||^2 \cdot ||y||^2 \leq 0 \Rightarrow |g(x,\ y)| \leq ||x|| \cdot ||y||,$ ч.т.д.

Утверждение (неравенство треугольника):

 $\forall x, y \in \mathcal{E}$:

$$||x+y|| \leqslant ||x|| + ||y||$$

Доказательство:

$$||x+y||^2 = g(x+y, \ x+y) = ||x||^2 + 2g(x, \ y) + ||y||^2 \leqslant ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = ||x||^2 + 2||x|| \cdot ||y||^2 + ||x||^2 + 2||x||^2 + ||x||^2 + 2||x||^2 + ||x||^2 + |$$

 $=(||x+y||)^2$. Тут было применено неравенство Коши-Буняковского. Так как норма вектора всегда ≥ 0 , То

$$||x+y|| \leqslant ||x|| + ||y||$$

Определение:

Два вектора $x, y \in \mathcal{E}$ называются ортогональными, если g(x, y) = 0.

Определение:

Система векторов a_1, \ldots, a_k называется:

- а. Ортогональной, если $g(a_i, a_j) = 0, \ \forall i, \ j = \overline{1, k}, \ i \neq j$
- b. Ортонормированной, если она ортогональна и $\overline{q(a_i,\ a_i)=1},\ \forall i=\overline{1},\ \overline{k}$

Лемма 1.

Пусть a_1, \ldots, a_k - ортогональная система векторов, и $a_i \neq 0, i = \overline{1, k}$. Тогда эта система линейно независима.

Доказательство:

Приравняем к нулю линейную комбинацию

$$\alpha_1 a_1 + \cdots + \alpha_k a_k = 0$$

Домножим скларяно на a_i для каждого $i=\overline{1,\ k}$

$$(\alpha_1 a_1 + \dots + \alpha_k a_k, \ a_i) = (0, \ a_i) = 0$$

$$\alpha_1(a_1, a_i) + \dots + \alpha_i(a_i, a_i) + \dots + \alpha_k(a_k, a_i) = 0 \Rightarrow$$

 $\Rightarrow \alpha_i(a_i,\ a_i)=0$, но $a_i\neq 0\Rightarrow \alpha_i=0\Rightarrow$ по определению система $a_1,\ldots,\ a_k$ линейно независима.

Замечание:

Если dim $\mathcal{E} = n$ и k = n, то a_1, \ldots, a_n , $(a_i \neq 0, \forall i)$ образует ортогональный базис. Если рассмотреть $e_i = \frac{a_i}{||a_i||}$, $i = \overline{1, n}$ (то есть нормировать), то получим ортонормированный базис.

Лемма 2.

Пусть $x=x_1e_1+\cdots+x_ne_n$, то есть x_i - коэффициенты вектора x в ортонормированном базисе. $e_1,\ldots,\ e_n$, тогда $x_i=(x_1,\ e_i),\ \forall i=\overline{1,\ n}$ Если базис не является ортонормированным, но ортогонален, то $x_i=\frac{(x,\ e_i)}{(e_i,\ e_i)},\ i=\overline{1,\ n}$

Доказательство:

$$= x_1 e_1 + \dots + x_n e_n \leftarrow$$
 умножим скалярно на $e_i, e = \overline{1, n}$
 $(x, e_i) = x_1 \cdot g(e_1, e_i) + \dots + x_i \cdot g(e_i, e_i) + \dots + x_n \cdot g(e_n, e_i) = x_i \cdot g(e_i, e_i) = x_i$

Замечание:

Пусть a_1, \ldots, a_n - базис в \mathcal{E} . Тогда $g(x, y) = x^T \Gamma Y$, где x, Y - столбцы координат векторов x, y в базисе a_1, \ldots, a_n ,

$$\Gamma = \begin{pmatrix} g(a_1, a_1) & \dots & g(a_1, a_n) \\ \vdots & \ddots & \vdots \\ g(a_1, a_n) & \dots & a(a_n, a_n) \end{pmatrix}$$

Матрица Грамма (она же матрица билинейной формы).

Свойства Грамма

- 1. Γ симметрическая, то есть $\Gamma^T = \Gamma$ (из симметричности скалярного произведения). Более того $\forall x \neq 0$ $\underset{=g(x, x)}{x^T \Gamma x} > 0$ (из положительной определённости)
- 2. Матрицы Грамма двух базисов e, e' связаны соотношением

$$\Gamma' = U^T \Gamma U$$

Где U - матрица перехода $e \to e'$ (так как это верно для всмех билинейных форм).

3. $\det \Gamma = \operatorname{Gr}(a_1, \dots, a_n) > 0$ если a_1, \dots, a_n - базис $(\det \Gamma)$ называется граммианом и обозначается Gr)

Доказательство пункта 3.

По свойству $2 \det \Gamma' = \det(U^T \Gamma U) = \det U^T \det \Gamma \det U = (\det U)^2 \det \Gamma$ Перейдём к ортонормированному базису (далее докажем, что это всегда возможно). В ортонормированном базисе

$$\Gamma' = E, \det \Gamma' = \det E = 1 \Rightarrow \det \Gamma = \frac{1}{(\det U)^2} > 0$$

Утверждение (Метод ортогонализации Грамма-Шмидта):

Если \mathcal{E} - евклидово пространство, то в нём существует ортонормированный базис.

Доказательство:

Предъявим алгоритм, который по произвольному базису a_1, \ldots, a_n строит ортогональный $b_1, \ldots b_n$ (из него можно получить ортонормированный $e_i = \frac{b_i}{||b_i||}$).

- 1. Так как $a_1 \neq 0$ (вектор базиса), можно взять $b_1 = a_1$.
- 2. Будем считать b_2 в виде:

$$b_2 = a_2 - \alpha b_1, \ \alpha \in \mathbb{R}$$

Ищем α из условия $(b_1, b_2) = 0$. То есть:

$$(a_2 - \alpha b_1, b_1) = 0 \Rightarrow (a_2, b_1) - \alpha(b_1, b_1) = 0 \Rightarrow$$

Так как $(b_1, b_1) \neq 0$ может на него поделить

$$\Rightarrow \alpha = \frac{(a_2, b_1)}{(b_1, b_1)}$$

То есть α - проекция вектора a_2 на $a_1, b_2 = a_2 - \frac{(a_2, b_1)}{(b_1, b_1)} b_1$

Векторы b_1 , b_2 линейно выражаются через a_1 , $a_2 \Rightarrow$ они принадлежат \mathcal{E} (это может быть подпространство). При этом a_1 , a_2 могут быть выражены через b_1 , $b_2 \Rightarrow b_1$, b_2 - линейно независимы.

3. Пусть $b_1, \ldots, b_k, \ k \geqslant 2$, уже построены. Будем искать b_{k+1} в виде:

$$b_{k+1} = a_{k+1} - c_{k+1, 1}b_1 - c_{k+1, 2}b_2 - \dots - c_{k+1, k}b_k$$

Коэффициент $c_{k+1, i}$, $i = 1, \bar{k}$, найдём из условия ортогональности с b_i , домножим выражение скалярно на b_i .

$$0 = (b_{k+1}, b_i) = (a_{k+1}, b_i) - 0 - \dots - c_{k+1, i}(b_i, b_i) - \dots - 0 \Rightarrow$$

$$\Rightarrow c_{k+1, i} = \frac{(a_{k+1}, b_i)}{(b_i, b_i)} \Rightarrow b_{k+1} = a_{k+1} - \sum_{i=1}^{k} \frac{a_{k+1}, b_i}{(b_i, b_i)} b_i$$

Продолжаем так делать, пока не получим ортогональную линейно независимую систему векторов b_1, \ldots, b_n , где $n = \dim \mathcal{E} \Rightarrow$ ортонормальный базис.

Утверждение (четвёртое свойство матрицы Грамма):

Определитель матрицы Грамма не меняется в процессе ортогонализации Грамма-Шмидта.

$$Gr(a_1, ..., a_n) = \det \Gamma = \det \Gamma' = Gr(b_1, ..., b_n) = ||b_1||^2 \cdot ... \cdot ||b_n||^2$$

Так как матрица Грамма ортогонального базиса является диагональной.

Доказательство:

Рассмотрим матрицу перехода от a b:

$$U_{a \to b} = \begin{pmatrix} 1 & \dots & * & \dots & * \\ \vdots & \ddots & \dots & * & \vdots \\ 0 & \dots & 1 & \dots & * \\ \vdots & 0 & \dots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

Получилась верхнетреугольная матрица, определитель которой равен 1. И участвуют только векторы b_i с $i \leq k$, которые выражаются через a_j , где $a_j \leq a_i$

$$\Rightarrow \det U_{a \to b} = 1 \Rightarrow$$

$$\Rightarrow \operatorname{Gr}(b_1,\ldots,\ b_n) = \det \Gamma' = (\det U)^2 \det \Gamma = 1 \det \Gamma = \operatorname{Gr}(a_1,\ldots,\ a_n)$$

Лекция 22 мая

Свойства матрицы Грамма

- 1. F симметрическаяи положительно определённая.
- 2. $\Gamma' = U^T \Gamma U$
- 3. Если a_1, \ldots, a_n базис, то

$$\det \Gamma(a_1, \ldots, a_n) = \operatorname{Gr}(a_1, \ldots, a_n) > 0$$

4. Метод ортогонализации Грамма-Шмидта не меняет $\det \Gamma$

$$Gr(a_1, ..., a_n) = Gr(b_1, ..., b_n) = ||b_1||^2 ... ||b_n||^2$$

Утверждение (5 свойство матрицы Грамма).

Пусть a_1, \ldots, a_n - некоторые векторы (необязательно базис). Тогда:

$$a_1, \ldots, a_k \Leftrightarrow \operatorname{Gr}(a_1, \ldots, a_k) = \det \Gamma \neq 0$$

Доказательство:

Составим линейную комбинацию a_1, \ldots, a_k и приравняем к нулю:

$$\alpha_1 a_1 + \dots + \alpha_k a_k = 0 \tag{1}$$

Умножим (1) скалярно последовательно на a_1, \ldots, a_k

$$\begin{cases} \alpha_1(a_1, \ a_1) + \alpha_2(a_1, \ a_2) + \dots + \alpha_k(a_1, \ a_k) = 0 \\ \vdots \\ \alpha_1(a_k, \ a_1) + \alpha_2(a_k, \ a_2) + \dots + \alpha_k(a_k, \ a_k) = 0 \end{cases}$$

Это СЛАУ относительно неизвестных $\alpha_1, \ldots, \alpha_k$ вида

$$\Gamma(a_1,\ldots,\ a_k)\alpha=0,$$
 где $\alpha=\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}$

Однородная СЛАУ с квадратной матрицей \Rightarrow по критерию существования ненулевого решения, существуют нетривиальные коэффициенты α , такие что:

$$\alpha_1, \ldots \alpha_k \Leftrightarrow \det \Gamma(a_1, \ldots, a_k) = 0$$

то есть векторы $a_1, \dots a_k$ линейно независимы из (1).

Замечание:

В V_3 если $a_1,\ a_2,\ a_3$ - линейно независимые столбцы координат в некотором ортонормированном базисе, тогда

$$\Gamma(a_1,\ a_2,\ a_3) = A^T E A^T = A^T A$$
, где $A = [a_1,\ a_2,\ a_3]$, матрица по столбцам

Равенство верно, так как матрица A является матрицей перехода от ортонормированного базиса к базису a (а в ОНБ $\Gamma=E$).

Получается $Gr(a_1, a_2, a_3) = (\det A)^2$.

При этом $\det A = \langle a_1, a_2, a_3 \rangle = V(a_1, a_2, a_3)$ - ориентированный объём параллелипипеда, построенного на векторах a_1, a_2, a_3 .

To есть
$$|V(a_1, a_2, a_3)| = \sqrt{\operatorname{Gr}(a_1, a_2, a_3)}$$

Замечание:

В *п*-мерном случае положим

$$V(a_1,\ldots, a_n) = \sqrt{\operatorname{Gr}(a_1,\ldots, a_n)}$$

Объём n-мерного параллелипипеда, построенного на векторах a_1, \ldots, a_n .

Ортогональные дополнения

Определение:

Пусть H - подпространство в евклидовом пространстве \mathcal{E} , тогда множество:

$$H^{\perp} = \left\{ x \in \mathcal{E} \middle| \forall h \in H \ (x, \ h) = 0 \right\}$$

называется ортогональным дополнением к пространству H.

Утверждение:

 H^{\perp} является линейным подпространством в \mathcal{E} и $\mathcal{E}=H\oplus H^{\perp}$ Следствие:

$$\dim \mathcal{E} = \dim H + \dim H^{\perp}$$

Доказательство:

Проверим замкнутость операции сложения:

$$\forall h \in H \ \forall x_1, \ x_2 \in H^{\perp} \ (x_1 + x_2, \ h) = (x_1, \ h) + (x_2, \ h) = 0 + 0 = 0 \Rightarrow x_1 + x_2 \in H^{\perp}$$

Умножения на скаляр:

$$\forall h \in H, \ \forall x \in H^{\perp}, \ \forall \alpha \in \mathbb{R} \ (\alpha x, \ h) = \alpha(x, \ h) = \alpha 0 = 0$$

To есть H^{\perp} - подпространство в $\mathcal{E} \Rightarrow$

 \Rightarrow можно рассмотреть сумму подпространств $H+H^{\perp}$

Докажем, что сумма $H+H^{\perp}$ прямая.

$$\forall x \in H \cap H^{\perp} (x, x) = 0 \Leftrightarrow x = 0 \Rightarrow H \cap H^{\perp} = \{0\} \Rightarrow$$
 сумма прямая

Покажем, что $H \oplus H^{\perp} = \mathcal{E}$

Пусть f_1, \ldots, f_m - ортонормированный базис в H (существует по теореме о методе Грамма-Шмидта)ю

Дополним его до базиса в \mathcal{E} векторами f_{m+1}, \ldots, f_n

Применим процесс ортогонализации Грамма-Шмидта, получим векторы

$$\underbrace{f_1,\ldots,f_m}_{\text{yжe OHE}},\ e_{m+1},\ldots,\ e_n$$

Тогда e_{m+1}, \ldots, e_n по построению ортогональны каждому вектору f_1, \ldots, f_m , то есть ортогональны всему H, так как $H = \mathcal{L}(f_1, \ldots, f_m) \leftarrow$ линейная оболочка, тогда $e_{m+1}, \ldots, e_n \in H^{\perp}$ по определению. То есть $\forall x \in \mathcal{E}$:

$$x = \underbrace{x_1 h_1 + \dots x_m h_m}_{h \in H} + \underbrace{x_{m+1} e_{m+1} + \dots + e_n}_{h^{\perp} \in H^{\perp}}$$

То есть все $x \in \mathcal{E}$ представимы в виде $x = h + h^{\perp}$, где $h \in H$, $h^{\perp} \in H^{\perp}$, что и означает, что $\mathcal{E} = H \oplus H^{\perp}$

Определение:

Пусть $x=h+h^\perp$, где $h\in H,\ h^\perp\in H^\perp$, тогда - ортогональная проекция на H, а h^\perp - ортогональная составляющая x относительно H

Обозначение:

$$h = \prod p_H x$$

Замечание:

 $\forall x \in \mathcal{E} \ \forall H \ \exists !h, \ h^{\perp} \ x = h + h^{\perp}, \ \text{tak kak} \ \mathcal{E} = H \oplus H^{\perp}$

Утверждение:

$$(H^{\perp})^{\perp} = H$$

Доказательство:

 $\forall h^{\perp} \in H^{\perp} \ \forall \in H \ x, \ h^{\perp}$ ортогональны $\Rightarrow H \subseteq (H^{\perp})^{\perp}$ По предыдущему утверждению $\mathcal{E} = H \oplus H^{\perp}$ и $\mathcal{E} = H^{\perp} \oplus (H^{\perp})^{\perp} \Rightarrow$ \Rightarrow размерности H и $(H^{\perp})^{\perp}$ одинаковы $\Rightarrow H = (H^{\perp})^{\perp}$

Утверждение:

Пусть $H = \mathcal{L}(a_1, \ldots, a_k)$ и a_1, \ldots, a_k - линейно незивисимы (то есть базис в H), тогда $\forall x \in \mathcal{E}$:

$$\prod_{h \in \mathcal{A}} p_H x = \underset{n \times k}{A} \cdot \left(A^T \cdot A \right)^{-1} \cdot \underset{k \times n}{A^T} \cdot \underset{n \times 1}{x}$$

где $A = [a_1, \ldots, a_k]$ - матрица $n \times k$, составленная из столбцов a_1, \ldots, a_k , (координаты в некотором ортонормированном базисе).

Замечание:

$$h^{\perp} = x - h = (E - A(A^T \cdot A)^{-1} \cdot A^T)x$$

Доказательство:

По утверждению, доказанному выше:

$$\forall x \in \mathcal{E} \ x = h + h^{\perp}, \ h \in H, \ h^{\perp} \in H^{\perp}$$

При этом a_1, \ldots, a_k - базис в $H \Rightarrow x = \alpha_1 a_1 + \cdots + \alpha_k a_k + h^{\perp}$ (2) То есть если мы знаем коэффициенты $\alpha_1, \ldots, \alpha_k$, то мы знаем

 $h = \prod p_H x = \alpha_1 a_1 + \dots + \alpha_k a_k$

Равенство (2) последовательно скалярно умножим на a_1, \ldots, a_k

$$\begin{cases} \alpha_1(a_1, \ a_1) + \alpha_2(a_1, \ a_2) + \dots + \alpha_k(a_1, \ a_k) = (a_1, \ x) \\ \vdots \\ \alpha_2(a_k, \ a_1) + \alpha_2(a_k, \ a_2) + \dots + \alpha_k(a_k, \ a_k) = (a_k, \ x) \end{cases}$$
(3)

В *i*-м уравнении слагаемые $(a_i, h^{\perp}) = 0$, так как $h^{\perp} \in H^{\perp}$. Перепишем (3) в матричном виде (все координаты векторов даны в ортонормированном базисе).

$$(3) \Leftrightarrow A^T \cdot A \cdot \alpha = A^T x, \ \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ A = [a_1, \dots, a_k]$$

То есть $\Gamma(a_1, \ldots, a_k) = A^T A$, поскольку $(a_i, a_j) = a_i^T E a_j = a_i^T a_j$. E - матрица Грамма в ортонормированном базисе.

Таким образом $\Gamma(a_1, \ldots, a_k) = A^T A$ невырождена по свойству 5 матрицы Грамма (векторы a_1, \ldots, a_k линейно независимы), значит существует $\Gamma^{-1} = (A^T A)^{-1}$.

Тогда (3)
$$\Rightarrow \alpha = (A^T A)^{-1} A^T x$$

Пр_H $x = \alpha_1 a_1 + \dots + \alpha_k a_k = [a_1, \dots, a_k] = A \alpha = A (A^T A)^{-1} A^T x$.

Определение:

Множество решений неоднородной СЛАУ Ax=b называется <u>линейным</u> алгебраическим многообразием

Замечание:

По теореме о структуре общего решения неоднородной СЛАУ: общее решение НСЛАУ (то есть произвольный элемент многообразия) равен частному решению НСЛАУ + общее решение ОСЛАУ. Это означает, что линейное многообразие $P=x_0+L$, где $x_0\in P$ (частное решение НСЛАУ Ax=b), а L - множетсво решений ОСЛАУ Ax=0, то есть подпространство, являющееся линейной оболочкой ФСР ОСЛАУ.

Таким образом L всегда содержит $\{0\}$ (начало координат), а $x_0 \in P$ - вектор сдвига. Любое линейное многообразие можно получить (параллельным) сдвигом некоторого подпространства L на вектор $x_0 \in P$

Определение:

Расстоянием от точки M, заданной радиус-вектором x до линейного многообразия P называется

$$\rho(M, P) = \inf_{u \in P} \rho(x, u) = \inf_{u \in P} ||x - u||$$

Заметим, что в конечномерном евклидовом пространстве inf всегда достигается (это min), то есть

$$\rho(M, P) = \rho(x, P) = \min_{u \in P} ||x - u||$$

Замечание:

 $\rho(x, P) =$ длине ортогональной составляющей вектора $x-x_0$ относительно пространства L, где $P = x_0 + L$, то есть

$$\rho(x, P) = ||(x - x_0)^{\perp}||$$

Доказательство:

$$\forall u \in P \ x - u = x - (x_0 + \underset{\in L}{l}) = \prod p_L(x - x_0 - l) + (x - x_0 - l)^{\perp}$$

Где
$$l \in L \Rightarrow l^{\perp} = 0 \Rightarrow x - u = \underbrace{\Pi p_L(x - x_0) - l}_{\in L} + \underbrace{(x - x_0)}_{\in L^{\perp}}^{\perp}$$
. Проекцию

можем уменьшать, варьируя L. Тогда из геометрии получим:

$$\forall u \in P ||(x - x_0)^{\perp}|| \leq ||(x - u)||,$$
 (катет не больше гипотенузы)

При $l=\Pi \mathrm{p}_L(x-x_0),$ то есть $u=x_0+\Pi \mathrm{p}_L(x-x_0)$ достигается равенство \Rightarrow

$$\rho(x, P) = \min_{u \in P} ||x - u|| = ||(x - x_0)^{\perp}||$$

Лекция 29 мая

Утверждение:

Расстояние $\rho(M, P)$ между точкой M с радиус вектором X и линейным многообразием $P = x_0 + L$, где $L = \mathcal{L}(a_1, \ldots, a_k)$ и a_1, \ldots, a_k - линейно независимые (то есть базис \mathcal{L}), вычисляется по формуле:

$$\rho(M, P) = \sqrt{\frac{\text{Gr}(a_1, ..., a_k, x - x_0)}{\text{Gr}(a_1, ..., a_k)}}$$

1 способ: $\rho(M, P) = \|(x - x_0)_L^{\perp}\|$

Доказательство:

Применим к $a_1, \ldots, a_k, x-x_0$ процесс ортогонализации Грамма-Шмидта.

$$\underbrace{a_1, \ldots, a_k}_{\text{базис } L}, x - x_0 \longmapsto \underbrace{b_1, \ldots, b_k}_{\text{базис } L}, (x - x_0)^{\perp}$$

 $(x-x_0)^\perp$, так как он ортогонален $L=h(b_1,\dots,\ b_k)$ и при ортогонализации мы вычитаем из $x-x_0$ его проекцию на L

По свойству 4 матрицы Грамма определитель не меняется в процессе ортогонализации, тогда:

$$\operatorname{Gr}(a_1, \dots, a_k, x - x_0) = \operatorname{Gr}(b_1, \dots, b_k, (x - x_0)^{\perp}) = \underbrace{\|b_1\|^2 \dots \|b_k\|^2}_{\operatorname{Gr}(a_1, \dots, a_k)} \cdot \|(x - x_0)^{\perp}\|^2$$

И так как $\rho(M, P) = \|(x - x_0)^{\perp}\|$, то

$$\rho(M, P)^2 = \frac{\operatorname{Gr}(a_1, \dots, a_k, x - x_0)}{\operatorname{Gr}(a_1, \dots, a_k)}, \text{ ч.т.д.}$$

Линейные операторы в евклидовых пространствах

Определение:

Линейный оператор $\mathcal{A}^*: \mathcal{E} \longrightarrow \mathcal{E}$ называется сопряжённым к линейному оператору $\mathcal{A}: \mathcal{E} \longrightarrow \mathcal{E}$, если:

$$\forall x, y \in \mathcal{E} (\mathcal{A}x, y) = (x, \mathcal{A}^*y)$$

Определение:

Линейный оператор $\mathcal{A}: \mathcal{E} \longrightarrow \mathcal{E}$ называется самосопряжённым, если:

$$\forall x, y \in \mathcal{E} (\mathcal{A}x, y) = (x, \mathcal{A}y) \Rightarrow \mathcal{A} = \mathcal{A}^*$$

Лемма:

Пусть $M, N \in M_n(\mathbb{R})$, тогда:

$$\forall x, y \in \mathbb{R}^n \ x^T M y = x^T N y \Rightarrow M = N$$

Доказательство:

 $x,\ y$ - любые, возьмём элементы канонического базиса: $e_i \begin{pmatrix} 0_1 \\ 0_2 \\ \vdots \\ 1_i \\ \vdots \\ 0_n \end{pmatrix}, \ldots,\ e_j =$

$$\begin{pmatrix} 0_1 \\ 0_2 \\ \vdots \\ 1_j \\ \vdots \\ 0_n \end{pmatrix} \Rightarrow e_i M e_j = [M]_{ij} = [N]_{ij} = e_i N e_j \Rightarrow \forall i, \ j = \overline{1, \ n} \ M = N, \ \text{ч.т.д.}$$

Теорема (о существовании сопряжённого):

Пусть $\mathcal{A}: \mathcal{E} \longrightarrow \mathcal{E}$. Тогда существует единственный сопряжённйы линейный оператор $\mathcal{A}^*: \mathcal{E} \longrightarrow \mathcal{E}$, причём его матрица в любом базисе e имеет вид:

$$(\mathcal{A}^*)_e = \Gamma^{-1} (\mathcal{A}_e)^T \Gamma$$

Замечание:

Если базис e - ортонормированный, то $\mathcal{A}_e^* = \mathcal{A}_e^T$

Доказательство:

Запишем равенство (1): $(Ax, y) = (x, A^*y)$ в базисе e. Пусть x^e , y^e - столбцы координат векторов x, y в базисе e

$$(\mathcal{A}x)^e = \mathcal{A}_e x^e, \qquad (x, y) = (x^e)^T \Gamma y^e$$

Тогда в матричной записи равенство (1) имеет вид:

$$((\mathcal{A}x)^e)^T \Gamma y^e = (x^e)^T \Gamma (\mathcal{A}^* y)^e \Leftrightarrow$$

$$\Leftrightarrow (x^e)^T \underbrace{\mathcal{A}_e^T \Gamma}_{M} y^e = (x^e)^T \underbrace{\Gamma \mathcal{A}_e^*}_{N} y^e \Rightarrow$$

 \Rightarrow так как верно для всех $x,\ y,$ то по лемме M=N, то есть $\Gamma \mathcal{A}_e^*=\mathcal{A}_e^T=\Gamma$ \Rightarrow так как e базис, то по свойству 5 матрицы Γ рамма, существует $\Gamma^{-1},$ то есть:

$$\mathcal{A}_e^* = \Gamma^{-1} \mathcal{A}_e^T \mathcal{A}$$

То есть в любом базисе сопряжённый линейный оператор задаётся матрицей \mathcal{A}_e^* и действие линейного оператора полностью определяется его матрицей \Rightarrow существует единственный сопряжённый линейный оператор.

Следствие (критерий самосопряжённости):

Линейный оператор самосопряжён \Leftrightarrow матрица линейного оператора $\mathcal A$ в ортонормированном базисе симметрическая.

Доказательство:

 $\mathcal{A}^* = \mathcal{A}$. В ортонормированном базисе e выглядит так:

$$\mathcal{A}_e^* = A_e^T \wedge \forall$$
 базиса $\mathcal{A}_e^* = \mathcal{A}_e \Leftrightarrow$ в ОНБ $\mathcal{A}_e = \mathcal{A}_e^T$

Теорема:

Все корни характеристического многочлена самосопряжённого линейного оператора является вещественными числами.

Доказательство:

Пусть $\lambda_i \in \mathbb{C}$ - корень характеристичекого уравнения $\chi_{\mathcal{A}}(\lambda) = 0$ и \mathcal{A} самосопряжённый линейный оператор, значит в некотором ортонормированном базисе $\det(\mathcal{A} - \lambda_i E) = 0 \Rightarrow \text{СЛАУ } (\mathcal{A} - \lambda_i E) x = 0$ (2) имеет ненулевое решение (это координаты собственного вектора, соответствующего собственному

Пусть
$$x=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n\end{pmatrix}\neq 0$$
 - решение. Вообще говоря $\forall k=\overline{1,\ n}\ x_k\in\mathbb{C}.$ Рассмотрим $\overline{x}=\begin{pmatrix} \overline{x}_1\\\overline{x}_2\\\vdots\\\overline{x}_n\end{pmatrix}\neq 0$ (комплексные сопряжённые чисел).
Умножим (2) слева на $(\overline{x})^T:\ (\overline{x})^T(A-\lambda_iE)x=0\Leftrightarrow \overline{x}^TAx-\lambda_i\overline{x}^Tx=0,$ где $\overline{x}^Tx=\overline{x}_1x_1+\cdots+\overline{x}_nx_n=\underbrace{|x_1|^2+\cdots+|x_n|^2}_{\in\mathbb{R}}>0.$
Тогда $\lambda_i=\frac{\overline{x}^TAx}{\overline{x}^Tx}$ - отношение Рэлея (Rayleigh).
Покажем, что $\omega=\overline{x}^TAx$ - вещественное число, то есть $\overline{\omega}=\omega$:

Рассмотрим
$$\overline{x} = \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \vdots \\ \overline{x}_n \end{pmatrix} \neq 0$$
 (комплексные сопряжённые чисел).

Умножим (2) слева на
$$(\overline{x})^T$$
: $(\overline{x})^T(A - \lambda_i E)x = 0 \Leftrightarrow \overline{x}^T A x - \lambda_i \overline{x}^T x = 0$ где $\overline{x}^T x = \overline{x}_1 x_1 + \dots + \overline{x}_n x_n = \underbrace{|x_1|^2 + \dots + |x_n|^2}_{=\overline{x}^T} > 0$.

Тогда
$$\lambda_i = \frac{\overline{x}^T A x}{\overline{x}^T x}$$
 - отношение Рэлея (Rayleigh)

$$\omega = \omega^T$$
, (так как это число) \Rightarrow
$$\Rightarrow \omega = (\overline{x}^T A x)^T = x^T A^T (\overline{x}^T)^T = x^T A \overline{x}$$

Так как $A=A^T$ в ортонормированном базисе. $\overline{A}=A,$ так как $A\in M_n(\mathbb{R})$ Ho $\overline{\omega} = \overline{(\overline{x}^T A x)} = \overline{(\overline{x}^T)} \overline{A} \overline{x} = x^T A \cdot \overline{x} \Rightarrow \overline{\omega} = \omega \Rightarrow$ собственное значение λ_i - тоже является вещественным, ч.т.д.

Теорема (без доказательства):

Пусть λ_i - собственное значение самосопряжённого линейного оператора \mathcal{A} . Тогда алгебраическая кратность λ_i всегда равна геометрической кратности λ_i $(m(\lambda_i) = s(\lambda_i))$

Следствие:

Самосопряжённый линейный оператор всегда является диагонилизируемым.

Утверждение:

Собственные векторы самосопряжённого линейного оператора, отвечающие различным собственным значениям, являются ортогональными.

Доказательство:

Пусть λ_1 , λ_2 такие собственные значения, что:

$$\begin{cases} \lambda_1 \neq \lambda_2 \\ \exists x_1 \neq 0 : \mathcal{A}x_1 = \lambda_1 x_1 \\ \exists x_2 \neq 0 : \mathcal{A}x_2 = \lambda_2 x_2 \end{cases}$$

 $(\mathcal{A}x_1,\ x_2)=(\lambda_1x_1,\ x_2)=\lambda_1(x_1,\ x_2).$ Из самосопряжённости получим:

$$(\mathcal{A}x_1, x_2) = (x_1, \mathcal{A}x_2) = (x_1, \lambda_2 x_2) = \lambda_2(x_1, x_2)$$

То есть
$$\underbrace{(\lambda_1 - \lambda_2)}_{\neq 0}(x_1, x_2) = 0 \Rightarrow (x_1, x_2) = 0$$
, то есть x_1, x_2 - ортогональны.

Теорема (без доказательства):

Для всех самосопряжённым линейных операторов \mathcal{A} существует ортонормированный базисиз собственных векторов, его матрица \mathcal{A}_e в этом базисе диагональна, на диагонали стоят собственные значения, повторяющиейся столько раз, какова их кратность.

Теорема (частный случай):

Если собственные значения $\lambda_1, \ldots, \lambda_k$ - самосопряжённого линейного оператора $\mathcal{A}: \mathcal{E} \longrightarrow \mathcal{E}, \dim \mathcal{E} = n$, попарно различны $(i \neq j \Rightarrow \lambda_i \neq \lambda_j)$, то в \mathcal{E} сущетсвует ортонормированный базис (из собственных векторов), в котором матрица линейного оператора \mathcal{A} имеет диагональный вид.

Доказательство:

Если собственные значения $\lambda_i, \ldots, \lambda_k$ - попарно различны, то, выбрав для каждого λ_i соответсвующий ему собственный вектор b_i , мы получим n ненулевых векторов, они будут линейно независимы по доказанному ранее и, так как \mathcal{A} - самосопряжённый линейный оператор, то система

 $b_1, \dots, \ b_n$ будет ортогональна \Rightarrow ортогональный базис. Нормируя его, получим ортонормированный базис из собственных векторов $e_i = \frac{b_i}{\|b_i\|}$, в нём матрица линейного оператора диагональна.

Ортогональные матрицы и ортогональные линейные операторы

Определение:

Квадратную матрицу $U = M_n(\mathbb{R})$ называют ортогональной, если

$$U^T \cdot U = E$$

Пример:

$$A_{arphi}=egin{pmatrix}\cosarphi&-\sinarphi\ \sinarphi&\cosarphi\end{pmatrix}$$
 - матрица поворота

Свойства ортогональных матриц

1.
$$|\det U| = 1$$

$$\det(U^T \cdot U) = \det E = 1 \Rightarrow (\det U)^2 = 1 \Rightarrow |\det U| = 1$$

Замечание:

Ортогональная матрица всегда невырождена.

2.
$$U^{-1} = U^T$$

По замечанию U^{-1} всегда существует, равенство $U^T U = E$ умножим справа на U^{-1} :

$$(U^T U) \cdot U^{-1} = E U^{-1}$$

$$U^T (U \cdot U^{-1}) = U^{-1} \Rightarrow U^T = U^{-1}$$

3. U^T тоже ортогональная матрица

$$(U^T)^TU^T = U \cdot U^{-1} = E$$

4. Произведение ортогональный матриц одинакового размера - ортогональная матрица

Доказательсто:

$$(U_1U_2)^T(U_1U_2) = U_2^T \underbrace{U_1^T U_1}_E U_2 = \underbrace{U_2^T U_2}_E = E$$

Замечание:

Все ортогональные матрицы $n \times n$ над \mathbb{R} с операцией умножения матриц образуют группу $O_n(\mathbb{R})$

Определение:

Линейный оператор $\mathcal{A}: \mathcal{E} \longrightarrow \mathcal{E}$ называется ортогональным, если

$$\forall x, y \in \mathcal{E} (\mathcal{A}x, \mathcal{A}y) = (x, y)$$

То есть говорят, что ${\cal A}$ "сохраняет склаярное произведение".

Замечание:

Ортогональный оператор сохраняет норму вектора и угол между векторами.

Доказательство:

$$\|\mathcal{A}x\|^2 = (\mathcal{A}x, \ \mathcal{A}x) = (x, \ x) = \|x\|^2$$

$$\cos(\widehat{\mathcal{A}x, \ \mathcal{A}y}) = \frac{(\mathcal{A}x, \ \mathcal{A}y)}{\|\mathcal{A}x\| \cdot \|\mathcal{A}y\|} = \frac{(x, \ y)}{\|x\| \cdot \|y\|} = \cos(\widehat{x, \ y})$$

Теорема (критерий ортогональности линейного оператора с помощью матрицы):

 \mathcal{A} - ортогональный линейный оператор \Leftrightarrow его матрица в ортонормированном базисе ортогональна.

Доказательство:

Необходимость

Дано: \mathcal{A}_e - ортогональный линейный оператор.

Доказать: \mathcal{A}_e - ортогональная матрица в ортонормированном базисе e.

$$(\mathcal{A}x, \mathcal{A}y) = (x, y) \Rightarrow (\mathcal{A}_e x)^T \Gamma(\mathcal{A}_e y) = x^T E y \Leftrightarrow$$

E - матрица грамма в ортонормированном базисе

$$\Leftrightarrow \forall x, \ y \in \mathcal{E} \ x^T \underbrace{\mathcal{A}_e^T \mathcal{A}_e}_{M} y = x^T E y$$

Тогда по лемме $\mathcal{A}_e^T \mathcal{A}_e = E$, то есть по определению A_e - ортогональная матрица.

Достаточность

Дано: \mathcal{A}_e - ортогональная матрица в ортонормированном базисе Доказать: \mathcal{A} - ортогональный линейный оператор.

$$\mathcal{A}_e^T \mathcal{A}_e = E \Rightarrow \forall x, \ y \in \mathcal{E} \ x^T (A_e^T A_e) y = x^T E y \Leftrightarrow$$
$$\Leftrightarrow (A_e x)^T \Gamma (A_e y) = x^T E y$$

А это матричная запись скалярного произдведения в ортонормированном базисе. То есть

$$\forall x, y \in \mathcal{E} (\mathcal{A}x, \mathcal{A}y) = (x, y) \Rightarrow$$

 $\Rightarrow \mathcal{A}$ ортогональный линейный оператор, ч.т.д.

Теорема (критерий ортогональности линейного оператора):

Пусть линейный оператор $\mathcal{A}:\mathcal{E}\longrightarrow\mathcal{E},$ тогда:

 \mathcal{A} - ортогональный линейный оператор $\Leftrightarrow \mathcal{A}$ переводит любой ортонормированный базис $e_1,\ldots,\ e_n$ в ортонормированный $\mathcal{A}e_1,\ldots,\ \mathcal{A}e_n$