

L1 ANSWER 1 OF 1 WPINDEX COPYRIGHT 2006 THE THOMSON CORP on STN
AN 1996-026421 [03] WPINDEX
DNC C1996-008580
TI DNA polymerase from a super-thermophilic archaebacterium - is suitable for polymerase chain reaction.
DC B04 D16
PA (TOYM) TOYOB0 KK
CYC 1
PI JP 07298879 A 19951114 (199603)* 20 C12N009-12 <--
JP 3132624 B2 20010205 (200110) 19 C12N009-12
ADT JP 07298879 A JP 1994-95109 19940509; JP 3132624 B2 JP 1994-95109 19940509
FDT JP 3132624 B2 Previous Publ. JP 07298879
PRAI JP 1994-95109 19940509
IC ICM C12N009-12
ICS C12N001-21; C12N015-09
ICI C12N001-21, C12R001:19; C12N009-12, C12R001:01; C12N009-12, C12R001:19;
C12N001-21, C12R001:19
AB JP 07298879 A UPAB: 19960122
A DNA polymerase (I) from a superthermophilic archaebacterium KOD1 is new.
Also claimed are: (1) an isolated DNA coding for (I); (2) an expression vector containing the DNA of (1); (3) a recombinant host cell transformed with the expression vector of (2); and (4) methods for the preparation of (I).
USE - The DNA polymerase has a high thermal stability and is suitable for PCR.
Dwg. 0/4
FS CPI
FA AB
MC CPI: B04-E02E; B04-E08; B04-F10A3E; B04-L04A0E; B12-K04A; D05-C03G;
D05-H12A; D05-H12E; D05-H14; D05-H17A3

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-298879

(43)公開日 平成7年(1995)11月14日

(51)Int.Cl.⁶

識別記号

F I

C12N 9/12

1/21

8828-4B

15/09

ZNA

//(C12N 9/12

9281-4B

C12N 15/00

ZNA

A

審査請求 未請求 請求項の数16 O L (全20頁) 最終頁に続く

(21)出願番号 特願平6-95109

(71)出願人 000003160

東洋紡績株式会社

(22)出願日 平成6年(1994)5月9日

大阪府大阪市北区堂島浜2丁目2番8号

特許法第30条第1項適用申請有り 平成5年11月10日、
社団法人日本生物工学会発行の「平成5年度日本生物工
学会大会講演要旨集」に発表

(72)発明者 今中 忠行

大阪府吹田市藤白台2-28-11

(72)発明者 高木 昌宏

大阪府吹田市青山台1-3 C-58-207

(72)発明者 森川 正章

大阪府箕面市小野原東5丁目4-12-406

(72)発明者 柿原 博文

滋賀県草津市東矢倉2-19-16

(54)【発明の名称】超好熱始原菌由来のDNAポリメラーゼ遺伝子およびその用途

(57)【要約】

【目的】 新規な耐熱性DNAポリメラーゼを提供す
る。

【構成】 超好熱始原菌であるKOD1から耐熱性DN
Aポリメラーゼをコードする遺伝子をクローニングし、
さらに大腸菌にて発現可能な遺伝子を得て、T7プロモ
ーターで誘導可能なプラスミドベクターに挿入し、該プ
ラスミドベクターで大腸菌を形質転換する耐熱性DNA
ポリメラーゼの製造法および精製法。

【特許請求の範囲】

【請求項1】 超好熱始原菌KOD1由来のDNAポリメラーゼ。

【請求項2】 分子量が約86~92Kdaであることを特徴とする請求項1記載のDNAポリメラーゼ。

【請求項3】 組換え宿主細胞を用いて生産されたことを特徴とする請求項1記載のDNAポリメラーゼ。

【請求項4】 配列番号2に記載されるアミノ酸配列を含有することを特徴とする請求項1記載のDNAポリメラーゼ。

【請求項5】 超好熱始原菌KOD1由来のDNAポリメラーゼをコードする単離されたDNA。

【請求項6】 配列番号2に記載されるアミノ酸配列をコードする塩基配列を含有することを特徴とする請求項5に記載される単離されたDNA。

【請求項7】 配列番号3に記載される塩基配列またはその一部分を含有することを特徴とする請求項5に記載される単離されたDNA。

【請求項8】 請求項5に記載されたDNAをベクターに挿入したDNA組換え発現ベクター。

【請求項9】 ベクターがpET-8c由来のベクターであることを特徴とする請求項8記載のDNA組換え発現ベクター(pET-p01)。

【請求項10】 請求項8に記載されるDNA組換え発現DNAベクターを用いて形質転換された組換え宿主細胞。

【請求項11】 宿主細胞が大腸菌であることを特徴とする請求項8記載の組換え宿主細胞。

【請求項12】 請求項10に記載される組換え宿主細胞を培養し、培養物からDNAポリメラーゼを採取することを特徴とする超好熱始原菌KOD1由来のDNAポリメラーゼの製造法。

【請求項13】 請求項10に記載される組換え宿主細胞を培養し、(a)該組換え宿主細胞を集めた後、破碎し、細胞抽出物を調製し、(b)組換え宿主細胞由來の不純蛋白質を除去する工程を含むことを特徴とする超好熱始原菌KOD1由来DNAポリメラーゼを精製する方法。

【請求項14】 組換え宿主細胞を破碎する方法が、超音波処理であることを特徴とする請求項13記載の超好熱始原菌KOD1由来DNAポリメラーゼを精製する方法。

【請求項15】 組換え宿主細胞由來の不純蛋白質を除去する工程が高温熱処理であることを特徴とする請求項13記載の超好熱始原菌KOD1由来DNAポリメラーゼを精製する方法。

【請求項16】 高温熱処理条件が、70℃以上、好ましくは90℃以上であることを特徴とする請求項15記載の超好熱始原菌KOD1由来DNAポリメラーゼを精製する方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は新規な超好熱始原菌KOD1由来のDNAポリメラーゼおよび該ポリメラーゼをコードする遺伝子ならびに該遺伝子を使用するDNAポリメラーゼの製造法に関する。

【0002】

【従来の技術】 従来から大腸菌のような中温性細菌由来のDNAポリメラーゼおよび中温性細菌に感染するファージ由来のDNAポリメラーゼに関しては、既に多くの研究がなされている。また最近、ポリメラーゼ連鎖反応(PCR)等の核酸增幅を用いる組換えDNA技術に有用な耐熱性DNAポリメラーゼに関する研究も多くなされている。PCR反応に用いられる耐熱性DNAポリメラーゼとしては、主としてサーマス・サーモフィラス(*Thermus thermophilus*)由来のDNAポリメラーゼ(*Tth*ポリメラーゼ)や、サーマス・アクアチカス(*Thermus aquaticus*)由来のDNAポリメラーゼ(Taqポリメラーゼ)などが用いられてきた。

【0003】

【発明が解決しようとする課題】 しかしながら、従来知られている耐熱性DNAポリメラーゼには、耐熱性を有するものの、その熱安定性や、有機溶媒に対する安定性に若干、問題を残している。また、核酸の取り込みの際の正確性にも欠ける点があり、DNA配列決定やポリメラーゼ連鎖反応にこれらの酵素を用いるに当たり、解決すべき課題が残っている。そのため、これらの欠点を解消する新規な耐熱性DNAポリメラーゼが待ち望まれていた。またピロコッカス・フリオサス(*Pyrococcus furiosus*)由来の耐熱性DNAポリメラーゼ(*Pfu*ポリメラーゼ、W092/09689、特開平5-328969号公報)、サーモコッカス・リトラリス(*Thermococcus litoralis*)由来の耐熱性DNAポリメラーゼ(*Tli*ポリメラーゼ、特開平6-7160号公報)なども知られている。しかしながら、これらの熱安定性DNAポリメラーゼは、核酸の取り込みの際の正確性はTaqDNAポリメラーゼや*Th*eDNAポリメラーゼに比べ優れているが、完全なものではなく新規な耐熱性DNAポリメラーゼが望まれていた。

【0004】

【課題を解決するための手段】 本発明者らは熱安定性DNAポリメラーゼを生産する新規な超好熱始原菌の1種を得ることに成功し、さらにその遺伝子を解明して、本発明に到達した。すなわち本発明は超好熱始原菌KOD1由来のDNAポリメラーゼである。

【0005】 また本発明は超好熱始原菌KOD1由来のDNAポリメラーゼをコードする単離されたDNAである。

【0006】 さらに本発明は超好熱始原菌KOD1由来のDNAポリメラーゼをコードする単離されたDNAをベクターに挿入したDNA組換え発現ベクターである。

【0007】また本発明は超好熱始原菌KOD 1由来のDNAポリメラーゼをコードする単離されたDNAをベクターに挿入したDNA組換え発現ベクターを用いて形質転換された組換え宿主細胞である。

【0008】本発明は超好熱始原菌KOD 1由来のDNAポリメラーゼをコードする単離されたDNAをベクターに挿入したDNA組換え発現ベクターを用いて形質転換された組換え宿主細胞を培養し、培養物からDNAポリメラーゼを採取することを特徴とする超好熱始原菌KOD 1由来のDNAポリメラーゼの製造法である。

【0009】また本発明は超好熱始原菌KOD 1由来の

細胞形態
生育温度範囲
最適生育温度
生育pH範囲
最適pH
最適塩濃度
栄養要求性
酸素要求性
細胞膜脂質
DNAのGC含量

【0011】超好熱始原菌KOD 1株は、直径約1μmの球菌であり、複数の極鞭毛を有していた。この菌株は菌学的性質からPfu DNAポリメラーゼ生産菌(*Pyrococcus furiosus*)およびT1i (*Vent*) DNAポリメラーゼ生産菌(*Thermococcus litoralis*)との菌縁関係が示唆された。

【0012】本発明の耐熱性DNAポリメラーゼ遺伝子のクローニングは、以下の方法により行う。クローニングの方法は、Pfu DNAポリメラーゼの保存領域アミノ酸配列(Nucleic Acids Research, 1993, vol. 21, No. 2, 259-265)に基づき、プライマーを設計し、合成する。

【0013】まず超好熱始原菌KOD 1株の染色体DNAを鋳型に、上記調製したプライマー(例、配列番号4と5)を用いてPCR反応を行い、DNA断片を増幅させる。増幅された断片のDNA配列(例、配列番号6)を決定し、当初設定したアミノ酸配列をコードしていることを確認後、該断片をプローブとし、染色体DNAの制限酵素切断産物に対し、サザンハイブリダイゼーションを実施する。目的とするDNAポリメラーゼ遺伝子を含む断片のおおよその大きさを約4~7Kbpに限定することが好ましい。

【0014】更に、約4~7KbpのDNA断片をゲルから回収し、これを用いて、大腸菌にてDNAライブリーアーを作製し、上記記載のPCR増幅DNA断片(例、配列番号6)をプローブにコロニーハイブリダイゼーションを行い、クローン株を取得する。

【0015】本発明においてクローニングしたKOD 1株

DNAポリメラーゼをコードする単離されたDNAをベクターに挿入したDNA組換え発現ベクターを用いて形質転換された組換え宿主細胞を培養し、(a)該組換え宿主細胞を集めた後、破碎し、細胞抽出物を調製し、(b)組換え宿主細胞由来の不純蛋白質を除去する工程を含むことを特徴とする超好熱始原菌KOD 1由来DNAポリメラーゼを精製する方法である。

【0010】本発明において使用する超好熱始原菌の1種であるKOD 1は、鹿児島県小宝島の硫気抗から単離した菌株である。該菌株の菌学的性質を以下に記載する。

球菌・二連球菌、鞭毛あり
65~100°C
95°C
5~9
6
2~3%
従属栄養
嫌気性
エーテル型
38%

のDNAポリメラーゼ遺伝子は5010塩基(推定アミノ酸1670個)から構成されている(配列番号1)。他のDNAポリメラーゼと比較したところ、本発明の遺伝子には真核生物型であるαDNAポリメラーゼの保存領域、Region 1~5が存在している。また該遺伝子のN末端側に3'→5'エキソヌクレアーゼモチーフであるEXO 1, 2, 3が存在している。超好熱始原菌KOD 1株由来の耐熱性DNAポリメラーゼ遺伝子の保存領域、Region 1, 2内には、各々介在配列が存在しており、かつオープンリーディングフレーム(ORF)の保存された形でつながっている。

【0016】超好熱始原菌KOD 1株の耐熱性DNAポリメラーゼ遺伝子を、既知酵素であるピロコッカス・フリオサス(*Pyrococcus furiosus*)由来のPfu DNAポリメラーゼ遺伝子(特開平5-328969号公報)、及びサーモコッカス・リトラリス(*Thermococcus litoralis*)由来のT1i (*Vent*) DNAポリメラーゼ遺伝子(特開平6-7160号公報)と比較すると、本発明のKOD 1株の遺伝子には介在配列が存在するが、上記Pfu DNAポリメラーゼの遺伝子には介在配列は存在せず、またT1i DNAポリメラーゼ遺伝子には、2種の介在配列が存在するものの、その存在箇所は各々保存領域であるRegion 2, 3の内であり、本発明のKOD 1株の耐熱性DNAポリメラーゼ遺伝子内の介在配列の存在箇所とは大きく異なる(図4参照)。

【0017】本発明の遺伝子は超好熱始原菌KOD 1由来のDNAポリメラーゼをコードするDNAである。該DNAの一例は配列番号1または2に記載されるアミノ

酸配列をコードする塩基配列を含有する。また、このようなDNAは配列番号1または3に記載される塩基配列またはその一部分を含有する。本発明の超好熱始原菌KOD1株由来の耐熱性DNAポリメラーゼを大腸菌で発現させるため、配列番号1に示される塩基配列の1374～2453bp、2708～4316bpの介在配列をPCR遺伝子融合法により取り除き、完全な形のDNAポリメラーゼ遺伝子を構築する。具体的には、介在配列を含むクローニングした遺伝子を3組のプライマーの組み合わせによりPCR反応を行い、介在配列により分断される3断片を増幅する。ここで使用するプライマーを設計する際、その末端に結合すべき断片の一部をその5'端に含ませておく。次いで、結合すべき断片同志を用いてその末端の重複する配列を利用してPCR反応を行い、各々断片を結合する。更に得られた2種の断片を用い同様にPCR反応を行い、介在配列を含まないKOD1株由来のDNAポリメラーゼ遺伝子を含まない、完全な形のDNAポリメラーゼ遺伝子を得る。

【0018】本発明において使用するベクターは、KOD1由来の耐熱性DNAポリメラーゼのクローニングおよび発現を可能とするものであれば、いかなるものでもよく、例えばファージおよびプラスミドが挙げられる。プラスミドとしては、T7プロモーターで誘導発現が可能なプラスミドベクター、例えばpET-8cなどを挙げることができる。また別なプラスミドの例としては、pUC19、pBR322、pBluescript、pSP73、pGW7、pET3A、pET11Cなどがある。ファージとしては、たとえばλgt11、λDASH、λZapIなどが挙げられる。本発明において使用する宿主細胞としては、大腸菌、酵母などが挙げられる。大腸菌としては、例えばJM109、101、XL1、PR1、BL21(DE3)plySなどが挙げられる。本発明では上記KOD1由来の耐熱性DNAポリメラーゼをコードする遺伝子を上記ベクターに挿入して組換え発現ベクターとし、更に、この組換え発現ベクターにて宿主細胞を形質転換する。

【0019】本発明の製造法では、上記組換え宿主細胞を培養して、KOD1株由来の耐熱性DNAポリメラーゼ遺伝子を誘導発現させる。組換え宿主細胞の培養に使用する培地ならびに条件は常法に従う。具体例としては、KOD1株由来の介在配列を含まない完全な形のDNAポリメラーゼ遺伝子を含むpET-8cプラスミドにより形質転換された大腸菌を、例えばTB培地にて培養し、誘導処理する。T7プロモーターの誘導処理はイソプロピオチ-β-D-ガラクトシドの添加により行なうことが好ましい。

【0020】本発明の精製法では、組換え宿主細胞を培養した後、(a)組換え宿主細胞を集めた後、破碎し、細胞抽出物を調製し、(b)宿主細胞由来の不純蛋白質を除去する工程を含む。組換え宿主細胞より産出された

耐熱性DNAポリメラーゼは、宿主細胞を培地で培養・誘導処理後、培養液から遠心分離等にて分離・回収する。該細胞を緩衝液に再懸濁した後、超音波処理、ダイノミル・フレンチプレス等により細胞を破碎する。次いで、熱処理を実施し、上清より耐熱性DNAポリメラーゼを回収する。細胞破碎方法は、超音波処理、ダイノミル・フレンチプレス法などが好ましい。宿主細胞由来の不純タンパク質を除去する工程の1つとして、熱処理が好ましい。熱処理条件は70℃以上、好ましくは90℃以上である。他の不純タンパク質の除去法としては各種クロマトグラフィーなどを実施する。

【0021】この様にして取得した超好熱始原菌KOD1株由来の耐熱性DNAポリメラーゼの分子量は、約90KD aである(図2参照)。

【0022】また、この耐熱性DNAポリメラーゼを用いポリメラーゼ連鎖反応を実施すると、十分な目的DNA断片の増幅が確認される(図3参照)。

【0023】

【発明の効果】本発明により取得される超好熱始原菌由来のDNAポリメラーゼは、高い熱安定性を有し、ポリメラーゼ連鎖反応等に適した酵素である。

【0024】

【実施例】次に本発明を実施例を用いて説明する。

実施例1

超好熱始原菌KOD1株由来DNAポリメラーゼ遺伝子のクローニング

鹿児島県小宝島にて単離した超好熱始原菌KOD1株を95℃にて培養後、菌体を回収した。得られた菌体から常法に従い超好熱始原菌KOD1株の染色体DNAを調製した。Pyrococcus furiosus由来のDNAポリメラーゼ(Pfuポリメラーゼ)の保存領域アミノ酸配列に基づき、2種のプライマー(5'-GGATTAGTATAGGCCAATGGAA GGCGAC-3'(配列番号4), 5'-GAGGGCGAAGTTTATTCCGAGCTT-3'(配列番号5)を合成した。この2種のプライマーを使用し、調製した染色体DNAを錆型として、PCR反応を行った。

【0025】PCR増幅DNA断片の塩基配列(配列番号6)を決定し、アミノ酸配列(配列番号7)を決定した後、この増幅DNA断片をプローブとして、KOD1

40株染色体DNA制限酵素処理産物に対してサザンハイブリダイゼーションを行い、DNAポリメラーゼをコードする断片のサイズを求めた(約4～7Kbp)。さらに、この大きさのDNA断片をアガロースゲルから回収し、プラスミドpBS(ストラタジーン社製)に挿入し、これらの混合物により大腸菌(E.coli JM109)を形質転換して、ライブラーを作製した。サザンハイブリダイゼーションに使用したプローブ(配列番号6)を用いて、コロニーハイブリダイゼーションを行い、上記ライブラーから、KOD1株由来のDNAポリメラーゼ遺伝子を含有すると考えられるクローニング株(E.coli JM109/

pBSKOD1)を取得した。

【0026】実施例2

クローン断片の塩基配列の決定

実施例1で取得したクローン株、*E.coli* JM109/pBSKOD1よりプラスミド、BSKOD1を回収し、常法に従い塩基配列(配列番号1)を決定した。さらに求められた塩基配列からアミノ酸配列を推定した。KOD1株由来のDNAポリメラーゼ遺伝子は5010塩基からなり、1670個のアミノ酸がコードされていた。

【0027】実施例3

組換え発現ベクターの構築

完全なポリメラーゼ遺伝子を作成するため、2箇所の介在配列部分(1374~2453bp, 2708~4316bp)をPCR融合法により取り除いた。PCR融合法では、クローン株より回収したプラスミドを鋳型に、3組のプライマー(配列番号8~13)を組み合わせて、各々PCRを行い、介在配列を除いた3断片を増幅した。この際、PCRに用いるプライマーは、他の断片と結合する側に結合相手と同様な配列がくるように設計した。また、両端には別々の制限酵素サイト(N末端側：*EcoRV*、C末端側：*BamHI*)が創出されるように設計した。次いで、PCR增幅断片中、構造上中央に位置する断片と、N末端側に位置する断片を混合し、PCRを各々の断片をプライマーとして行った。また、同様に構造上、中央に位置する断片と、C末端側に位置する断片を混合し、PCRを各々の断片をプライマーとして行った。このようにして得られた2種の断片を用いて再度PCRを行い、介在配列が取り除かれ、N末端に*EcoRV*、C末端に*BamHI*サイトを有するKOD1株由来のDNAポリメラーゼをコードする完全な形の遺伝子断片を取得した。更に、同遺伝子をT7プロモーターで誘導可能な発現ベクター、pET-8cのNcoI/BamHIサイト、先に創出した制限酵素サイトを利用し、サブクローニングして、組換え発現ベクター(pET-p01)を得た。

【0028】実施例4

KOD1由来DNAポリメラーゼの発現と精製

実施例3で取得した組換え発現ベクター(pET-p01)を用いて大腸菌(*E.coli* JM109)を形質転換し、得られた形質転換体をTB培地(Molecular Cloning, p.A. 2, 1989に記載)で培養し、集菌1時間前にT7プロモーターの誘導処理をイソプロピオチ-β-D-ガラクトシドの添加により行った。培養液より菌体を遠心分離により回収した。緩衝液に再懸濁した後、超音波処理によって菌体を破碎し、細胞抽出物を得た。さらに宿主細胞由來の不純タンパク質を除去するために、細胞破碎液を94℃にて20分間処理し、宿主細胞由來の不純タンパク質を不溶化した。不溶画分を遠心分離して除去し、KOD1株由来の耐熱性DNAポリメラーゼを得た。

【0029】実施例5

KOD1由来耐熱性DNAポリメラーゼの精製

実施例4で得られたKOD1由来耐熱性DNAポリメラーゼの分子量をSDS-PAGE法によって求めたところ、約86~92kDaであった(図2)。また、実施例4で得たKOD1由来の耐熱性DNAポリメラーゼと既知の鋳型・プライマーを用いてPCRを実施したところ、サーモコッカス・リトラリス(*Thermococcus litoralis*)由来の耐熱性DNAポリメラーゼを用いた場合と同様に標的とするDNA断片が確認され(図3)、高い熱安定性DNAポリメラーゼ活性が確認された。

【0030】比較例1

本発明の超好熱始原菌KOD1と類縁菌であると思われるピロコッカス・フリオサス(*Pyrococcus furiosus*)またはサーモコッカス・リトラリス(*Thermococcus litoralis*)由来の耐熱性DNAポリメラーゼ遺伝子との比較

本発明の超好熱始原菌KOD1由来のDNAポリメラーゼ遺伝子(配列番号3)、ピロコッカス・フリオサス(*Pyrococcus furiosus*)由来の耐熱性DNAポリメラーゼ遺伝子(特開平5-328969号公報)、サーモコッカス・リトラリス(*Thermococcus litoralis*)由来の耐熱性DNAポリメラーゼ遺伝子(特開平6-7160号公報)のDNA配列からアミノ酸配列を推定し、比較検討した。

本発明のKOD1由来のDNAポリメラーゼは、真核生物型であるαDNAポリメラーゼの保存領域であるRegion1~5が存在していた。またN末端側には3'→5'エキソヌクレアーゼモチーフであるEXO1, 2, 3が存在していた。しかし、αDNAポリメラーゼ保存領域Region1とRegion2の内には、各々介在配列IVS-A、IVS-Bが存在していた(図4参照)。一方、ピロコッカス・フリオサス(*Pyrococcus furiosus*)由来の耐熱性DNAポリメラーゼであるPfuポリメラーゼには介在配列が存在しなかった。またサーモコッカス・リトラリス(*Thermococcus litoralis*)由来の耐熱性DNAポリメラーゼであるVentポリメラーゼでは、αDNAポリメラーゼ保存領域Region2とRegion3の内に、介在配列IVS1とIVS2が認められた(図4参照)。

【0031】

【配列表】

40 配列番号1

配列の長さ：5342

配列の型：核酸(DNA)

鎖の数：2本鎖

トロポジー：直鎖状

配列の種類：cDNA

起源：超好熱始原菌

株名：KOD1

配列の特徴

156-5165 P CDS

50 1374-2453 介在配列

2708-4316 介在配列

配列

GCTTGAGGGC CTGCGGTTAT GGGACGTTGC AGTTTGCGCC TACTCAAAGA TGCCGGTTT	60
ATAACGGAGA AAAATGGGGA GCTATTACGA TCTCTCCTTG ATGTGGGTT TACAATAAAG	120
CCTGGATTGT TCTACAAGAT TATGGGGAT GAAAG ATG ATC CTC GAC ACT GAC	173
Met Ile Leu Asp Thr Asp	
1 5	
TAC ATA ACC GAG GAT GGA AAG CCT GTC ATA AGA ATT TTC AAG AAG GAA	221
Tyr Ile Thr Glu Asp Gly Lys Pro Val Ile Arg Ile Phe Lys Lys Glu	
10 15 20	
AAC GGC GAG TTT AAG ATT GAG TAC GAC CGG ACT TTT GAA CCC TAC TTC	269
Asn Gly Glu Phe Lys Ile Glu Tyr Asp Arg Thr Phe Glu Pro Tyr Phe	
25 30 35	
TAC GCC CTC CTG AAG GAC GAT TCT GCC ATT GAG GAA GTC AAG AAG ATA	317
Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile Glu Glu Val Lys Ile	
40 45 50	
ACC GCC GAG AGG CAC GGG ACG GTT GTA ACG GTT AAG CGG GTT GAA AAG	365
Thr Ala Glu Arg His Gly Thr Val Val Thr Val Lys Arg Val Glu Lys	
55 60 65 70	
GTT CAG AAG AAG TTC CTC GGG AGA CCA GTT GAG GTC TGG AAA CTC TAC	413
Val Gln Lys Lys Phe Leu Gly Arg Pro Val Glu Val Trp Lys Leu Tyr	
75 80 85	
TTT ACT CAT CCG CAG GAC GTC CCA GCG ATA AGG GAC AAG ATA CGA GAG	461
Phe Thr His Pro Gln Asp Val Pro Ala Ile Arg Asp Lys Ile Arg Glu	
90 95 100	
CAT GGA GCA GTT ATT GAC ATC TAC GAG TAC GAC ATA CCC TTC GCC AAG	509
His Gly Ala Val Ile Asp Ile Tyr Glu Tyr Asp Ile Pro Phe Ala Lys	
105 110 115	
CGC TAC CTC ATA GAC AAG GGA TTA GTG CCA ATG GAA GGC GAC GAG GAG	557
Arg Tyr Leu Ile Asp Lys Gly Leu Val Pro Met Glu Gly Asp Glu Glu	
120 125 130	
CTG AAA ATG CTC GCC TTC GAC ATT CAA ACT CTC TAC CAT GAG GGC GAG	605
Leu Lys Met Leu Ala Phe Asp Ile Gln Thr Leu Tyr His Glu Gly Glu	
135 140 145 150	
GAG TTC GCC GAG GGG CCA ATC CTT ATG ATA AGC TAC GCC GAC GAG GAA	653
Glu Phe Ala Glu Gly Pro Ile Leu Met Ile Ser Tyr Ala Asp Glu Glu	
155 160 165	
GGG GCC AGG GTG ATA ACT TGG AAG AAC GTG GAT CTC CCC TAC GTT GAC	701
Gly Ala Arg Val Ile Thr Trp Lys Asn Val Asp Leu Pro Tyr Val Asp	
170 175 180	
GTC GTC TCG ACG GAG AGG GAG ATG ATA AAG CGC TTC CTC CGT GTT GTG	749
Val Val Ser Thr Glu Arg Glu Met Ile Lys Arg Phe Leu Arg Val Val	
185 190 195	
AAG GAG AAA GAC CCG GAC GTT CTC ATA ACC TAC AAC GGC GAC AAC TTC	797
Lys Glu Lys Asp Pro Asp Val Leu Ile Thr Tyr Asn Gly Asp Asn Phe	
200 205 210	
GAC TTC GCC TAT CTG AAA AAG CGC TGT GAA AAG CTC GGA ATA AAC TTC	845
Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu Lys Leu Gly Ile Asn Phe	
215 220 225 230	
GCC CTC GGA AGG GAT GGA AGC GAG CCG AAG ATT CAG AGG ATG GGC GAC	893

11

12

Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys Ile Gln Arg Met Gly Asp			
235	240	245	
AGG TTT GCC GTC GAA GTG AAG GGA CGG ATA CAC TTC GAT CTC TAT CCT			941
Arg Phe Ala Val Glu Val Lys Gly Arg Ile His Phe Asp Leu Tyr Pro			
250	255	260	
G TG ATA AGA CGG ACG ATA AAC CTG CCC ACA TAC ACG CTT GAG GCC GTT			989
Val Ile Arg Arg Thr Ile Asn Leu Pro Thr Tyr Thr Leu Glu Ala Val			
265	270	275	
TAT GAA GCC GTC TTC GGT CAG CCG AAG GAG AAG GTT TAC GCT GAG GAA			1037
Tyr Glu Ala Val Phe Gly Gln Pro Lys Glu Lys Val Tyr Ala Glu Glu			
280	285	290	
ATA ACA CCA GCC TGG GAA ACC GGC GAG AAC CTT GAG AGA GTC GCC CGC			1085
Ile Thr Pro Ala Trp Glu Thr Gly Glu Asn Leu Glu Arg Val Ala Arg			
295	300	305	310
TAC TCG ATG GAA GAT GCG AAG GTC ACA TAC GAG CTT GGG AAG GAG TTC			1133
Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr Glu Leu Gly Lys Glu Phe			
315	320	325	
CTT CCG ATG GAG GCC CAG CTT TCT CGC TTA ATC GGC CAG TCC CTC TGG			1181
Leu Pro Met Glu Ala Gln Leu Ser Arg Leu Ile Gly Gln Ser Leu Trp			
330	335	340	
GAC GTC TCC CGC TCC AGC ACT GGC AAC CTC GTT GAG TGG TTC CTC CTC			1229
Asp Val Ser Arg Ser Ser Thr Gly Asn Leu Val Glu Trp Phe Leu Leu			
345	350	355	
AGG AAG GCC TAT GAG AGG AAT GAG CTG GCC CCG AAC AAG CCC GAT GAA			1277
Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala Pro Asn Lys Pro Asp Glu			
360	365	370	
AAG GAG CTG GCC AGA AGA CGG CAG AGC TAT GAA GGA GGC TAT GTA AAA			1325
Lys Glu Leu Ala Arg Arg Gln Ser Tyr Glu Gly Gly Tyr Val Lys			
375	380	385	390
GAG CCC GAG AGA GGG TTG TGG GAG AAC ATA GTG TAC CTA GAT TTT AGA			1373
Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile Val Tyr Leu Asp Phe Arg			
395	400	405	
TGC CAT CCA GCC GAT ACG AAG GTT GTC GTC AAG GGG AAG GGG ATT ATA			1421
Cys His Pro Ala Asp Thr Lys Val Val Lys Gly Ile Ile			
410	415	420	
AAC ATC AGC GAG GTT CAG GAA GGT GAC TAT GTC CTT GGG ATT GAC GGC			1469
Asn Ile Ser Glu Val Gln Glu Gly Asp Tyr Val Leu Gly Ile Asp Gly			
425	430	435	
TGG CAG AGA GTT AGA AAA GTA TGG GAA TAC GAC TAC AAA GGG GAG CTT			1517
Trp Gln Arg Val Arg Lys Val Trp Glu Tyr Asp Tyr Lys Gly Glu Leu			
440	445	450	
GTA AAC ATA AAC GGG TTA AAG TGT ACG CCC AAT CAT AAG CTT CCC GTT			1565
Val Asn Ile Asn Gly Leu Lys Cys Thr Pro Asn His Lys Leu Pro Val			
455	460	465	470
GTT ACA AAG AAC GAA CGA CAA ACG AGA ATA AGA GAC AGT CTT GCT AAG			1613
Val Thr Lys Asn Glu Arg Gln Thr Arg Ile Arg Asp Ser Leu Ala Lys			
475	480	485	
TCT TTC CTT ACT AAA AAA GTT AAG GGC AAG ATA ATA ACC ACT CCC CTT			1661
Ser Phe Leu Thr Lys Lys Val Lys Gly Lys Ile Ile Thr Thr Pro Leu			
490	495	500	

13

14

TTC TAT GAA ATA GGC AGA GCG ACA AGT GAG AAT ATT CCA GAA GAA GAG		1709
Phe Tyr Glu Ile Gly Arg Ala Thr Ser Glu Asn Ile Pro Glu Glu Glu		
505 510 515		
GTT CTC AAG GGA GAG CTC GCT GGC ATA CTA TTG GCT GAA GGA ACG CTC		1757
Val Leu Lys Gly Glu Leu Ala Gly Ile Leu Leu Ala Glu Gly Thr Leu		
520 525 530		
TTG AGG AAA GAC GTT GAA TAC TTT GAT TCA TCC CGC AAA AAA CGG AGG		1805
Leu Arg Lys Asp Val Glu Tyr Phe Asp Ser Ser Arg Lys Lys Arg Arg		
535 540 545 550		
ATT TCA CAC CAG TAT CGT GTT GAG ATA ACC ATT GGG AAA GAC GAG GAG		1853
Ile Ser His Gln Tyr Arg Val Glu Ile Thr Ile Gly Lys Asp Glu Glu		
555 560 565		
GAG TTT AGG GAT CGT ATC ACA TAC ATT TTT GAG CGT TTG TTT GGG ATT		1901
Glu Phe Arg Asp Arg Ile Thr Tyr Ile Phe Glu Arg Leu Phe Gly Ile		
570 575 580		
ACT CCA AGC ATC TCG GAG AAG AAA GGA ACT AAC GCA GTA ACA CTC AAA		1949
Thr Pro Ser Ile Ser Glu Lys Lys Gly Thr Asn Ala Val Thr Leu Lys		
585 590 595		
GTT GCG AAG AAG AAT GTT TAT CTT AAA GTC AAG GAA ATT ATG GAC AAC		1997
Val Ala Lys Lys Asn Val Tyr Leu Lys Val Lys Glu Ile Met Asp Asn		
600 605 610		
ATA GAG TCC CTA CAT GCC CCC TCG GTT CTC AGG GGA TTC TTC GAA GGC		2045
Ile Glu Ser Leu His Ala Pro Ser Val Leu Arg Gly Phe Phe Glu Gly		
615 620 625 630		
GAC GGT TCA GTA AAC AGG GTT AGG AGG AGT ATT GTT GCA ACC CAG GGT		2093
Asp Gly Ser Val Asn Arg Val Arg Arg Ser Ile Val Ala Thr Gln Gly		
635 640 645		
ACA AAG AAC GAG TGG AAG ATT AAA CTG GTG TCA AAA CTG CTC TCC CAG		2141
Thr Lys Asn Glu Trp Lys Ile Lys Leu Val Ser Lys Leu Leu Ser Gln		
650 655 660		
CTT GGT ATC CCT CAT CAA ACG TAC ACG TAT CAG TAT CAG GAA AAT GGG		2189
Leu Gly Ile Pro His Gln Thr Tyr Thr Tyr Gln Tyr Gln Glu Asn Gly		
665 670 675		
AAA GAT CGG AGC AGG TAT ATA CTG GAG ATA ACT GGA AAG GAC GGA TTG		2237
Lys Asp Arg Ser Arg Tyr Ile Leu Glu Ile Thr Gly Lys Asp Gly Leu		
680 685 690		
ATA CTG TTC CAA ACA CTC ATT GGA TTC ATC AGT GAA AGA AAG AAC GCT		2285
Ile Leu Phe Gln Thr Leu Ile Gly Phe Ile Ser Glu Arg Lys Asn Ala		
695 700 705 710		
CTG CTT AAT AAG GCA ATA TCT CAG AGG GAA ATG AAC AAC TTG GAA AAC		2333
Leu Leu Asn Lys Ala Ile Ser Gln Arg Glu Met Asn Asn Leu Glu Asn		
715 720 725		
AAT GGA TTT TAC AGG CTC AGT GAA TTC AAT GTC AGC ACG GAA TAC TAT		2381
Asn Gly Phe Tyr Arg Leu Ser Glu Phe Asn Val Ser Thr Glu Tyr Tyr		
730 735 740		
GAG GGC AAG GTC TAT GAC TTA ACT CTT GAA GGA ACT CCC TAC TAC TTT		2429
Glu Gly Lys Val Tyr Asp Leu Thr Leu Glu Gly Thr Pro Tyr Tyr Phe		
745 750 755		
GCC AAT GGC ATA TTG ACC CAT AAC TCC CTG TAC CCC TCA ATC ATC ATC		2477
Ala Asn Gly Ile Leu Thr His Asn Ser Leu Tyr Pro Ser Ile Ile Ile		

15

16

760	765	770	
ACC CAC AAC GTC TCG CCG GAT ACG CTC AAC AGA GAA GGA TGC AAG GAA			2525
Thr His Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu			
775	780	785	790
TAT GAC GTT GCC CCA CAG GTC GGC CAC CGC TTC TGC AAG GAC TTC CCA			2573
Tyr Asp Val Ala Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro			
795	800	805	
GGA TTT ATC CCG AGC CTG CTT GGA GAC CTC CTA GAG GAG AGG CAG AAG			2621
Gly Phe Ile Pro Ser Leu Leu Gly Asp Leu Leu Glu Glu Arg Gln Lys			
810	815	820	
ATA AAG AAG AAG ATG AAG GCC ACG ATT GAC CCG ATC GAG AGG AAG CTC			2669
Ile Lys Lys Met Lys Ala Thr Ile Asp Pro Ile Glu Arg Lys Leu			
825	830	835	
CTC GAT TAC AGG CAG AGG GCC ATC AAG ATC CTG GCA AAC AGC ATC CTA			2717
Leu Asp Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Ile Leu			
840	845	850	
CCC GAG GAA TGG CTT CCA GTC CTC GAG GAA GGG GAG GTT CAC TTC GTC			2765
Pro Glu Glu Trp Leu Pro Val Leu Glu Glu Gly Glu Val His Phe Val			
855	860	865	870
AGG ATT GGA GAG CTC ATA GAC CGG ATG ATG GAG GAA AAT GCT GGG AAA			2813
Arg Ile Gly Glu Leu Ile Asp Arg Met Met Glu Glu Asn Ala Gly Lys			
875	880	885	
GTA AAG AGA GAG GGC GAG ACG GAA GTG CTT GAG GTC AGT GGG CTT GAA			2861
Val Lys Arg Glu Gly Glu Thr Glu Val Leu Glu Val Ser Gly Leu Glu			
890	895	900	
GTC CCG TCC TTT AAC AGG AGA ACT AAC AAG GCC GAG CTC AAG AGA GTA			2909
Val Pro Ser Phe Asn Arg Arg Thr Asn Lys Ala Glu Leu Lys Arg Val			
905	910	915	
AAG GCC CTG ATT AGG CAC GAT TAT TCT GGC AAG GTC TAC ACC ATC AGA			2957
Lys Ala Leu Ile Arg His Asp Tyr Ser Gly Lys Val Tyr Thr Ile Arg			
920	925	930	
CTG AAG TCG GGG AGG AGA ATA AAG ATA ACC TCT GGC CAC AGC CTC TTC			3005
Leu Lys Ser Gly Arg Arg Ile Lys Ile Thr Ser Gly His Ser Leu Phe			
935	940	945	950
TCT GTG AGA AAC GGG GAG CTC GTT GAA GTT ACG GGC GAT GAA CTA AAG			3053
Ser Val Arg Asn Gly Glu Leu Val Glu Val Thr Gly Asp Glu Leu Lys			
955	960	965	
CCA GGT GAC CTC GTT GCA GTC CCG CGG AGA TTG GAG CTT CCT GAG AGA			3101
Pro Gly Asp Leu Val Ala Val Pro Arg Arg Leu Glu Leu Pro Glu Arg			
970	975	980	
AAC CAC GTG CTG AAC CTC GTT GAA CTG CTC CTT GGA ACG CCA GAA GAA			3149
Asn His Val Leu Asn Leu Val Glu Leu Leu Leu Gly Thr Pro Glu Glu			
985	990	995	
GAA ACT TTG GAC ATC GTC ATG ACG ATC CCA GTC AAG GGT AAG AAG AAC			3197
Glu Thr Leu Asp Ile Val Met Thr Ile Pro Val Lys Gly Lys Lys Asn			
1000	1005	1010	
TTC TTT AAA GGG ATG CTC AGG ACT TTG CGC TGG ATT TTC GGA GAG GAA			3245
Phe Phe Lys Gly Met Leu Arg Thr Leu Arg Trp Ile Phe Gly Glu Glu			
1015	1020	1025	1030
AAG AGG CCC AGA ACC GCG AGA CGC TAT CTC AGG CAC CTT GAG GAT CTG			3293

17

18

Lys Arg Pro Arg Thr Ala Arg Arg Tyr Leu Arg His Leu Glu Asp Leu		
1035	1040	1045
GGC TAT GTC CGG CTT AAG AAG ATC GGC TAC GAA GTC CTC GAC TGG GAC		3341
Gly Tyr Val Arg Leu Lys Lys Ile Gly Tyr Glu Val Leu Asp Trp Asp		
1050	1055	1060
TCA CTT AAG AAC TAC AGA AGG CTC TAC GAG GCG CTT GTC GAG AAC GTC		3389
Ser Leu Lys Asn Tyr Arg Arg Leu Tyr Glu Ala Leu Val Glu Asn Val		
1065	1070	1075
AGA TAC AAC GGC AAC AAG AGG GAG TAC CTC GTT GAA TTC AAT TCC ATC		3437
Arg Tyr Asn Gly Asn Lys Arg Glu Tyr Leu Val Glu Phe Asn Ser Ile		
1080	1085	1090
CGG GAT GCA GTT GGC ATA ATG CCC CTA AAA GAG CTG AAG GAG TGG AAG		3485
Arg Asp Ala Val Gly Ile Met Pro Leu Lys Glu Leu Lys Glu Trp Lys		
1095	1100	1105
ATC GGC ACG CTG AAC GGC TTC AGA ATG AGA AAG CTC ATT GAA GTG GAC		3533
Ile Gly Thr Leu Asn Gly Phe Arg Met Arg Lys Leu Ile Glu Val Asp		
1115	1120	1125
GAG TCG TTA GCA AAG CTC CTC GGC TAC TAC GTG AGC GAG GGC TAT GCA		3581
Glu Ser Leu Ala Lys Leu Leu Gly Tyr Tyr Val Ser Glu Gly Tyr Ala		
1130	1135	1140
AGA AAG CAG AGG AAT CCC AAA AAC GGC TGG AGC TAC AGC GTG AAG CTC		3629
Arg Lys Gln Arg Asn Pro Lys Asn Gly Trp Ser Tyr Ser Val Lys Leu		
1145	1150	1155
TAC AAC GAA GAC CCT GAA GTG CTG GAC GAT ATG GAG AGA CTC GCC AGC		3677
Tyr Asn Glu Asp Pro Glu Val Leu Asp Asp Met Glu Arg Leu Ala Ser		
1160	1165	1170
AGG TTT TTC GGG AAG GTG AGG CGG GGC AGG AAC TAC GTT GAG ATA CCG		3725
Arg Phe Phe Gly Lys Val Arg Arg Gly Arg Asn Tyr Val Glu Ile Pro		
1175	1180	1185
AAG AAG ATC GGC TAC CTG CTC TTT GAG AAC ATG TGC GGT GTC CTA GCG		3773
Lys Lys Ile Gly Tyr Leu Leu Phe Glu Asn Met Cys Gly Val Leu Ala		
1195	1200	1205
GAG AAC AAG AGG ATT CCC GAG TTC GTC TTC ACG TCC CCG AAA GGG GTT		3821
Glu Asn Lys Arg Ile Pro Glu Phe Val Phe Thr Ser Pro Lys Gly Val		
1210	1215	1220
CGG CTG GCC TTC CTT GAG GGG TAC TCA TCG GCG ATG GCG ACG TCC ACC		3869
Arg Leu Ala Phe Leu Glu Gly Tyr Ser Ser Ala Met Ala Thr Ser Thr		
1225	1230	1235
GAA CAA GAG ACT CAG GCT CTC AAC GAA AAG CGA GCT TTA GCG AAC CAG		3917
Glu Gln Glu Thr Gln Ala Leu Asn Glu Lys Arg Ala Leu Ala Asn Gln		
1240	1245	1250
CTC GTC CTC CTC TTG AAC TCG GTG GGG GTC TCT GCT GTA AAA CTT GGG		3965
Leu Val Leu Leu Asn Ser Val Gly Val Ser Ala Val Lys Leu Gly		
1255	1260	1265
CAC GAC AGC GGC GTT TAC AGG GTC TAT ATA AAC GAG GAG CTC CCG TTC		4013
His Asp Ser Gly Val Tyr Arg Val Tyr Ile Asn Glu Glu Leu Pro Phe		
1275	1280	1285
GTA AAG CTG GAC AAG AAA AAC GCC TAC TAC TCA CAC GTG ATC CCC		4061
Val Lys Leu Asp Lys Lys Asn Ala Tyr Tyr Ser His Val Ile Pro		
1290	1295	1300

19

20

AAG GAA GTC CTG AGC GAG GTC TTT GGG AAG GTT TTC CAG AAA AAC GTC 4109
 Lys Glu Val Leu Ser Glu Val Phe Gly Lys Val Phe Gln Lys Asn Val
 1305 1310 1315
 AGT CCT CAG ACC TTC AGG AAG ATG GTC GAG GAC GGA AGA CTC GAT CCC 4157
 Ser Pro Gln Thr Phe Arg Lys Met Val Glu Asp Gly Arg Leu Asp Pro
 1320 1325 1330
 GAA AAG GCC CAG AGG CTC TCC TGG CTC ATT GAG GGG GAC GTA GTG CTC 4205
 Glu Lys Ala Gln Arg Leu Ser Trp Leu Ile Glu Gly Asp Val Val Leu
 1335 1340 1345 1350
 GAC CGC GTT GAG TCC GTT GAT GTG GAA GAC TAC GAT GGT TAT GTC TAT 4253
 Asp Arg Val Glu Ser Val Asp Val Glu Asp Tyr Asp Gly Tyr Val Tyr
 1355 1360 1365
 GAC CTG AGC GTC GAG GAC AAC GAG AAC TTC CTC GTT GCC TTT GGG TTG 4301
 Asp Leu Ser Val Glu Asp Asn Glu Asn Phe Leu Val Gly Phe Gly Leu
 1370 1375 1380
 GTC TAT GCT CAC AAC AGC TAC TAC GGT TAC TAC GCC TAT GCA AGG GCG 4349
 Val Tyr Ala His Asn Ser Tyr Tyr Gly Tyr Tyr Gly Tyr Ala Arg Ala
 1385 1390 1395
 CGC TGG TAC TGC AAG GAG TGT GCA GAG AGC GTA ACG GCC TGG GGA AGG 4397
 Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser Val Thr Ala Trp Gly Arg
 1400 1405 1410
 GAG TAC ATA ACG ATG ACC ATC AAG GAG ATA GAG GAA AAG TAC GGC TTT 4445
 Glu Tyr Ile Thr Met Thr Ile Lys Glu Ile Glu Glu Lys Tyr Gly Phe
 1415 1420 1425 1430
 AAG GTA ATC TAC AGC GAC ACC GAC GGA TTT TTT GCC ACA ATA CCT GGA 4493
 Lys Val Ile Tyr Ser Asp Thr Asp Gly Phe Phe Ala Thr Ile Pro Gly
 1435 1440 1445
 GCC GAT GCT GAA ACC GTC AAA AAG AAG GCT ATG GAG TTC CTC AAC TAT 4541
 Ala Asp Ala Glu Thr Val Lys Lys Lys Ala Met Glu Phe Leu Asn Tyr
 1450 1455 1460
 ATC AAC GCC AAA CTT CCG GGC GCG CTT GAG CTC GAG TAC GAG GGC TTC 4589
 Ile Asn Ala Lys Leu Pro Gly Ala Leu Glu Leu Glu Tyr Glu Gly Phe
 1465 1470 1475
 TAC AAA CGC GGC TTC TTC GTC ACG AAG AAG TAT GCG GTG ATA GAC 4637
 Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys Tyr Ala Val Ile Asp
 1480 1485 1490
 GAG GAA GGC AAG ATA ACA ACG CGC GGA CTT GAG ATT GTG AGG CGT GAC 4685
 Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu Glu Ile Val Arg Arg Asp
 1495 1500 1505 1510
 TGG AGC GAG ATA GCG AAA GAG ACG CAG GCG AGG GTT CTT GAA GCT TTG 4733
 Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala Arg Val Leu Glu Ala Leu
 1515 1520 1525
 CTA AAG GAC GGT GAC GTC GAG AAG GCC GTG AGG ATA GTC AAA GAA GTT 4781
 Leu Lys Asp Gly Asp Val Glu Lys Ala Val Arg Ile Val Lys Glu Val
 1530 1535 1540
 ACC GAA AAG CTG AGC AAG TAC GAG GTT CCG CCG GAG AAG CTG GTG ATC 4829
 Thr Glu Lys Leu Ser Lys Tyr Glu Val Pro Pro Glu Lys Leu Val Ile
 1545 1550 1555
 CAC GAG CAG ATA ACG AGG GAT TTA AAG GAC TAC AAG GCA ACC GGT CCC 4877
 His Glu Gln Ile Thr Arg Asp Leu Lys Asp Tyr Lys Ala Thr Gly Pro

21

22

1560	1565	1570	
CAC GTT GCC GTT GCC AAG AGG TTG GCC GCG AGA GGA GTC AAA ATA CGC			4925
His Val Ala Val Ala Lys Arg Leu Ala Ala Arg Gly Val Lys Ile Arg			
1575	1580	1585	1590
CCT GGA ACG GTG ATA AGC TAC ATC GTG CTC AAG GGC TCT GGG AGG ATA			4973
Pro Gly Thr Val Ile Ser Tyr Ile Val Leu Lys Gly Ser Gly Arg Ile			
1595	1600	1605	
GGC GAC AGG GCG ATA CCG TTC GAC GAG TTC GAC CCG ACC AAG CAC AAG			5021
Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe Asp Pro Thr Lys His Lys			
1610	1615	1620	
TAC GAC GCC GAG TAC TAC ATT GAG AAC CAG GTT CTC CCA GCC GTT GAG			5069
Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln Val Leu Pro Ala Val Glu			
1625	1630	1635	
AGA ATT CTG AGA GCC TTC GGT TAC CGC AAG GAA GAC CTG CGC TAC CAG			5117
Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys Glu Asp Leu Arg Tyr Gln			
1640	1645	1650	
AAG ACG AGA CAG GTT GGT TTG AGT GCT TGG CTG AAG CCG AAG GGA ACT			5165
Lys Thr Arg Gln Val Gly Leu Ser Ala Trp Leu Lys Pro Lys Gly Thr			
1655	1660	1665	1670
TGACCTTCC ATTGTTTC CAGCGGATAA CCCTTTACT TCCCTTCAA AAACCTCCCT			5225
TAGGGAAAGA CCATGAAGAT AGAAATCCGG CGGGCGCCGG TTAAATACGC TAGGATAGA			5285
GTGAAGCCAG ACGGCAGGGT AGTCGTCACT GCCCGAGGG TTCAACGTT AGAAGTT			5342

【0032】配列番号2

トポロジー：直鎖状

配列の長さ：774

配列の種類：タンパク質

配列の型：アミノ酸

配列

Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asp Gly Lys Pro Val Ile
 1 5 10 15
 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Lys Ile Glu Tyr Asp Arg
 20 25 30
 Thr Phe Glu Pro Tyr Phe Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile
 35 40 45
 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr
 50 55 60
 Val Lys Arg Val Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Val
 65 70 75 80
 Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile
 85 90 95
 Arg Asp Lys Ile Arg Glu His Gly Ala Val Ile Asp Ile Tyr Glu Tyr
 100 105 110
 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Val Pro
 115 120 125
 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Gln Thr
 130 135 140
 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile
 145 150 155 160
 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Val
 165 170 175
 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys
 180 185 190

23

24

Arg Phe Leu Arg Val Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr
 195 200 205
 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu
 210 215 220
 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys
 225 230 235 240
 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile
 245 250 255
 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr
 260 265 270
 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Val Phe Gly Gln Pro Lys Glu
 275 280 285
 Lys Val Tyr Ala Glu Glu Ile Thr Pro Ala Trp Glu Thr Gly Glu Asn
 290 295 300
 Leu Glu Arg Val Ala Arg Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr
 305 310 315 320
 Glu Leu Gly Lys Glu Phe Leu Pro Met Glu Ala Gln Leu Ser Arg Leu
 325 330 335
 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu
 340 345 350
 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala
 355 360 365
 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr
 370 375 380
 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile
 385 390 395 400
 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His
 405 410 415
 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp
 420 425 430
 Val Ala Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe
 435 440 445
 Ile Pro Ser Leu Leu Gly Asp Leu Leu Glu Glu Arg Gln Lys Ile Lys
 450 455 460
 Lys Lys Met Lys Ala Thr Ile Asp Pro Ile Glu Arg Lys Leu Leu Asp
 465 470 475 480
 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Tyr Tyr Gly Tyr
 485 490 495
 Tyr Gly Tyr Ala Arg Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser
 500 505 510
 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Lys Glu Ile
 515 520 525
 Glu Glu Lys Tyr Gly Phe Lys Val Ile Tyr Ser Asp Thr Asp Gly Phe
 530 535 540
 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala
 545 550 555 560
 Met Glu Phe Leu Asn Tyr Ile Asn Ala Lys Leu Pro Gly Ala Leu Glu
 565 570 575
 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys
 580 585 590

25

26

Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu
 595 600 605
 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala
 610 615 620
 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Lys Ala Val
 625 630 635 640
 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Pro
 645 650 655
 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Lys Asp
 660 665 670
 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala
 675 680 685
 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu
 690 695 700
 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe
 705 710 715 720
 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln
 725 730 735
 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys
 740 745 750
 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp
 755 760 765
 Leu Lys Pro Lys Gly Thr
 770

【0033】配列番号 3

配列の長さ : 5342

配列の型 : 核酸 (DNA)

鎖の数 : 2本鎖

トロポジー : 直鎖状

配列の種類 : c DNA

起源 : 超好熱始原菌

株名 : KOD 1

配列

GCTTGAGGGC CTGCGTTAT GGGACGTTGC AGTTTGCGCC TACTCAAAGA TGCCCGTTTT 60
 ATAACGGAGA AAAATGGGGA GCTATTACGA TCTCTCCTTG ATGTGGGTT TACAATAAAG 120
 CCTGGATTGT TCTACAAGAT TATGGGGAT GAAAGATGAT CCTCGACACT GACTACATAA 180
 CCGAGGATGG AAAGCCTGTC ATAAGAATT TCAAGAAGGA AAACGGCGAG TTTAAGATTG 240
 AGTACGACCG GACTTTGAA CCCTACTTCT ACGCCCTCCT GAAGGACGAT TCTGCCATTG 300
 AGGAAGTCAA GAAGATAACC GCCGAGAGGC ACGGGACGGT TGTAACGGTT AAGCGGGTTG 360
 AAAAGGTTCA GAAGAAAGTTC CTCGGGAGAC CAGTTGAGGT CTGGAAACTC TACTTACTC 420
 ATCCGAGGA CGTCCCAGCG ATAAGGGACA AGATACGAGA GCATGGAGCA GTTATTGACA 480
 TCTACCGAGTA CGACATACCC TTGCGCAAGC GCTACCTCAT AGACAAGGGG TTAGTGCCAA 540
 TGGAAAGGCGA CGAGGAGCTG AAAATGCTCG CCTTCGACAT TCAAACCTCTC TACCATGAGG 600
 GCGAGGAGTT CGCCGAGGGG CCAATCCTTA TGATAAGCTA CGCCGACGAG GAAGGGGCCA 660
 GGGTGATAAC TTGGAAGAAC GTGGATCTCC CCTACGTTGA CGTCGTCCTCG ACGGAGAGGG 720
 AGATGATAAA GCGCTTCCTC CGTGTGTTGA AGGAGAAAGA CCCGGACGTT CTCATAACCT 780
 ACAACGGCGA CAACTTCGAC TTGCGCTATC TGAAAAGCG CTGTGAAAAG CTCGGAATAA 840
 ACTTCCCT CGGAAGGGAT GGAAGCGAGC CGAAGATTCA GAGGATGGC GACAGGTTG 900
 CCGTCGAAGT GAAGGGACGG ATACACTTCG ATCTCTATCC TGTGATAAGA CGGACGATAA 960
 ACCTGCCAC ATACACGCTT GAGGCCGTT ATGAAGCCGT CTTCGGTCA CGGAAGGAGA 1020
 AGGTTACGC TGAGGAAATA ACACCAGCCT GGGAAACCGG CGAGAACCTT GAGAGAGTCG 1080
 CCCGCTACTC GATGGAAGAT GCGAAGGTCA CATACTGAGCT TGGGAAGGAG TTCCTCCGA 1140
 TGGAGGCCA GCTTCTCGC TTAATCGGCC AGTCCCTCTG GGACGTCCTCC CGCTCCAGCA 1200
 CTGGCACCT CGTTGAGTGG TTCCTCCTCA GGAAGGCCCT ATGAGAGGAA TGAGCTGGCC 1260

CCGAACAAAGC CCGATGAAAA GGAGCTGGCC AGAAGACGGC AGAGCTATGA AGGAGGCTAT 1320
 GTAAAAGAGC CCGAGAGAGG GTTGTGGAG AACATAGTGT ACCTAGATT TAGATGCCAT 1380
 CCAGCCGATA CGAAGGTTGT CGTCAGGGGG AAGGGGATTAA AACATCAG CGAGGTTCA 1440
 GAAGGTGACT ATGTCCTTGG GATTGACGGC TGGCAGAGAG TTAGAAAAGT ATGGAATAC 1500
 GACTACAAAG GGGAGCTTGT AAACATAAAC GGGTTAAAGT GTACGCCAA TCATAAGCTT 1560
 CCCGTTGTTA CAAAGAACGA ACGACAAACG AGAATAAGAG ACAGTCTTGC TAAGTCTTC 1620
 CTTACTAAAA AAGTTAACGG CAAGATAATA ACCACTCCCC TTTTCTATGA AATAGGCAGA, 1680
 GCGACAAGTG AGAATATTCC AGAAGAAGAG GTTCTCAAGG GAGAGCTCCG TGGCATAGTA, 1740
 TTGGCTGAAG GAACGCTTT GAGGAAGAC GTTGAATACT TTGATTTCATC CCGCAAAAAA 1800
 CGGAGGATT CACACCAGTA TCGTGTGAG ATAACCATTG GGAAAGACGA GGAGGAGTT 1860
 AGGGATCGTA TCACATACAT TTTTGGCGT TTGTTTGGGA TTACTCCAAG CATCTGGAG 1920
 AAGAAAGGAA CTAACGCAGT AACACTCAA GTTGCAGAAGA AGAATGTTA TCTTAAAGTC 1980
 AAGGAAATT A TGGACAACAT AGAGTCCCTA CATGCCCTC CGGTTCTCAG GGGATTCTTC 2040
 GAAGGCAGC GTTCAGTAAA CAGGTTAGGA GGAGTATTGT TGCAACCCAG GGTACAAAGA 2100
 ACGAGTGGAA GATTAACATG GTGTCAAAAC TGCTCTCCA GCTTGGTATC CCTCATCAA 2160
 CGTACACGTA TCAGTATCAG GAAAATGGGA AAGATCGGAG CAGGTATATA CTGGAGATAA 2220
 CTGGAAAGGA CGGATTGATA CTGTTCCAAA CACTCATTGG ATTCACTCAGT GAAAGAAAGA 2280
 ACGCTCTGCT TAATAAGGC ATATCTCAGA GGGAAATGAA CAACTGGAA AACATGGAT 2340
 TTTACAGGCT CAGTGAATT C AATGTCAGCA CGGAATACTA TGAGGGCAAG GTCTATGACT 2400
 TAACTCTTGA AGGAACCTCC TACTTGCCA ATGGCATATT GACCCATAAC TCCCTGTACC 2460
 CCTCAATCAT CATCACCCAC AACGCTCGC CCGATACGCT CAACAGAGAA GGATGCAAGG 2520
 AATATGACGT TGCCCCACAG GTCGGCCACC GCTTCTGC A GGACTTCCC GGATTATCC 2580
 CGAGCCTGCT TGGAGACCTC CTAGAGGAGA GGCAGAAGAT AAAGAAGAAG ATGAAGGCCA 2640
 CGATTGACCC GATCGAGAGG AAGCTCCTCG ATTACAGGCA GAGGGCCATC AAGATCTGG 2700
 CAAACAGCAT CCTACCCAG GAATGGCTTC CAGTCCTCGA GGAAGGGGAG GTTCACCTCG 2760
 TCAGGATTGG AGAGCTCATA GACCGGATGA TCGAGGAAAAA TGCTGGAAA GTAAAGAGAG 2820
 AGGGCGAGAC GGAAGTGCTT GAGGTCACTG GGCTTGAAGT CCCGTCTTT AACAGGAGAA 2880
 CTAACAAGGC CGAGCTCAAG AGAGTAAAGG CCCTGATTAG GCACGATTAT TCTGGCAAGG 2940
 TCTACACCAT CAGACTGAAG TCGGGGAGGA GAATAAAGAT AACCTCTGGC CACAGCTCT 3000
 TCTCTGTGAG AAACGGGGAG CTCGTTGAAG TTACGGGCGA TGAACATAAG CCAGGTGACC 3060
 TCGTTGCAGT CCCC CGGAGA TTGGAGCTTC CTGAGGAGAA CCACGTGCTG AACCTCGTTG 3120
 AACTGCTCT TGGAACGCCA GAAGAAGAAA CTTTGGACAT CGTCATGACG ATCCCAGTC 3180
 AGGGTAAGAA GAACTTCTTT AAAGGGATGC TCAGGACTTT GCGCTGGATT TTCGGAGAGG 3240
 AAAAGAGGCC CAGAACCGCG AGACGCTATC TCAGGCACCT TGAGGATCTG GGCTATGTC 3300
 GGCTTAAGAA GATCGGCTAC GAAGTCCCTCG ACTGGGACTC ACTTAAGAAC TACAGAAGGC 3360
 TCTACCGAGGC GCTTGTGAG AACGTCAAGAT ACAACGGCAA CAAGAGGGAG TACCTCGTTG 3420
 AATTCAATTC CATCCGGAT GCAGTTGGCA TAATGCCCT AAAAGAGCTG AAGGAGTGG 3480
 AGATCGGCAC GCTGAACGGC TTCAGAATGA GAAAGCTCAT TGAAGTGGAC GAGTCGTTAG 3540
 CAAAGCTCCT CGGCTACTAC GTGAGCGAGG GCTATGCAAG AAAGCAGAGG AATCCAAAAA 3600
 ACGGCTGGAG CTACACCGTG AAGCTCTACA ACGAAGACCC TGAAGTGTG GACGATATGG 3660
 AGAGACTCGC CAGCAGGTTT TTCGGGAAGG TGAGGCAGGG CAGGAACCTAC GTTGAGATAC 3720
 CGAAGAAGAT CGGCTACCTG CTCTTGAGA ACATGTGCGG TGTCTTAGCG GAGAACAAAGA 3780
 GGATTCCCGA GTTCGTCCTC ACGTCCCCGA AAGGGGTTCG, GCTGGCCCTC CTTGAGGGGT 3840
 ACTCATCGGC GATGGCGACG TCCACCGAAC AAGAGACTCA GGCTCTCAAC GAAAAGCGAG 3900
 CTTTAGCGAA CCAGCTCGTC CTCCCTTGA ACTCGGTGGG GGTCTCTGCT GTAAAACCTG 3960
 GGCACGACAG CGGGCTTAC AGGGCTATA TAAACGAGGA GCTCCCGTC GTAAACCTGG 4020
 ACAAGAAAAA GAACGCTAC TACTCACACG TGATCCCCAA GGAAGTCCCTG AGCGAGGTCT 4080
 TTGGGAAGGT TTCCAGAAA AACGTCACTC CTCAGACCTT CAGGAAGATG GTCGAGGACG 4140
 GAAGACTCGA TCCCGAAAAG GCCCAGAGGC TCTCCTGGCT CATTGAGGGG GACGTAGTGC 4200
 TCGACCGCGT TGAGTCCGTT GATGTGGAAG ACTACGATGG TTATGTCTAT GACCTGAGCG 4260

29

30

TCGAGGACAA CGAGAACTTC CTCGTTGGCT TTGGGTTGGT CTATGCTCAC AACAGCTACT 4320
 ACGGTTACTA CGGCATGCA AGGGCGCGCT GGACTGCAA GGAGTGTGCA GAGAGCGTAA 4380
 CGGCCTGGGG AAGGGAGTAC ATAACGATGA CCATCAAGGA GATAGAGGAA AAGTACGGCT 4440
 TTAAGGTAAT CTACAGCGAC ACCGACGGAT TTTTGCCAC AATACCTGGA GCCGATGCTG 4500
 AAACCGTCAA AAAGAAGGCT ATGGAGTTCC TCAACTATAT CAACGCCAAA CTTCCGGCG 4560
 CGCTTGAGCT CGAGTACGAG GGCTTCTACA AACGCGGCTT CTTCGTCACG AAGAAGAAGT 4620
 ATGCGGTGAT AGACGAGGAA GGCAAGATAA CAACGCCGG ACTTGAGATT GTGAGGCGTG 4680
 ACTGGAGCGA GATAGCGAAA GAGACCGCAGG CGAGGGTTCT TGAAGCTTG CTAAAGGACG 4740
 GTGACGTCGA GAAGGCGCTG AGGATAGTCA AAGAAGTTAC CGAAAGCTG AGCAAGTACG 4800
 AGGTTCCGCC GGAGAAGCTG GTGATCCACG AGCAGATAAC GAGGGATTTA AAGGACTACA 4860
 AGGCAACCGG TCCCCACGTT GCCGTTGCCA AGAGGTTGGC CGCGAGAGGA GTCAAAATAC 4920
 GCCCTGGAAC GGTGATAAGC TACATCGTGC TCAAGGGCTC TGGGAGGATA GGCAGACAGG 4980
 CGATACCGTT CGACGAGTTC GACCCGACGA AGCACAAGTA CGATGCCAG TACTACATTG 5040
 AGAACCCAGGT TCTCCCAGCC GTTGAGAGAA TTCTGAGAGC CTTCGGTTAC CGCAAGGAAG 5100
 ACCTGCGCTA CCAGAAGACG AGACAGGTTG GTTGAGTGC TTGGCTGAAG CCGAAGGGAA 5160
 CTTGACCTTT CCATTTGTT TCCAGCGGAT AACCTTTAA CTTCCCTTTC AAAAACTCCC 5220
 TTTAGGGAAA GACCATGAAG ATAGAAATCC GGCAGCGCCC GGTAAATAC GCTAGGATAG 5280
 AAGTGAAGCC AGACGGCAGG GTAGTCGTCA CTGCCCCGAG GGTTCAACGT TGAGAAGTT 5339

【0034】配列番号4

トポロジー：直鎖状

配列の長さ：24

20 配列の種類：合成DNA

配列の型：核酸

配列

GGATTAGTGC CAATGGAAGG CGAC

24

【0035】配列番号5

トポロジー：直鎖状

配列の長さ：24

配列の種類：合成DNA

配列の型：核酸

配列

GAGGGCGAAG TTTATTCCGA GCTT

24

【0036】配列番号6

鎖の数：2本鎖

配列の長さ：324

30 トポロジー：直鎖状

配列の型：核酸(DNA)

配列の種類：cDNA

配列

GGATTAGTGC CAATGGAAGG CGACGAGGAG CTGAAAATGC TCGCCTTCGA CATTCAAAC 60
 CTCTACCATG AGGGCGAGGA GTTCGCCAG GGGCCAATCC TTATGATAAG CTACGCCAC 120
 GAGGAAGGGG CCAGGGTGAT AACTTGGAAAG AACGTGGATC TCCCCTACGT TGACGTCGTC 180
 TCGACGGAGA GGGAGATGAT AAAGCGCTTC CTCCGTGTTG TGAAGGAGAA AGACCCGGAC 240
 GTTCTCATAA CCTACAAACGG CGACAACTTC GACTTCGCCT ATCTGAAAAA GCGCTGTGAA 300
 AAGCTCGGAA TAAACTTCGC CCTC 324

【0037】配列番号7

トポロジー：直鎖状

配列の長さ：108

40 配列の種類：タンパク質

配列の型：アミノ酸

配列

Gly	Leu	Val	Pro	Met	Glu	Gly	Asp	Glu	Glu	Leu	Lys	Met	Leu	Ala	Phe
1				5				10				15			
Asp	Ile	Gln	Thr	Leu	Tyr	His	Glu	Gly	Glu	Glu	Phe	Ala	Glu	Gly	Pro
	20						25				30				
Ile	Leu	Met	Ile	Ser	Tyr	Ala	Asp	Glu	Glu	Gly	Ala	Arg	Val	Ile	Thr
	35						40				45				
Trp	Lys	Asn	Val	Asp	Leu	Pro	Tyr	Val	Asp	Val	Val	Ser	Thr	Glu	Arg
	50				55				60						

31

32

Glu Met Ile Lys Arg Phe Leu Arg Val Val Lys Glu Lys Asp Pro Asp
 65 70 75 80
 Val Leu Ile Thr Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys
 85 90 95
 Lys Arg Cys Glu Lys Leu Gly Ile Asn Phe Ala Leu
 100 105

【0038】配列番号 8

鎖の数： 1本鎖

配列の長さ：42

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

GCCATCAAGA TCCTGGCAAA CAGCTACTAC GGTTACTACG GC 42

【0039】配列番号 9

鎖の数： 1本鎖

配列の長さ：32

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

GATGGATCCA ACTTCTAAC GTTGAACCCT CG 32

【0040】配列番号 10

鎖の数： 1本鎖

配列の長さ：46

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

GAACATAGTG TACCTAGATT TTAGATCCCT GTACCCCTCA ATCATC 46

【0041】配列番号 11

鎖の数： 1本鎖

配列の長さ：42

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

GCCGTAGTAA CCGTAGTAGC TGTTGCCAG GATCTTGATG GC 42

【0042】配列番号 12

鎖の数： 1本鎖

配列の長さ：33

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

ATCGATATCC TCGACACTGA CTACATAACC GAG 33

【0043】配列番号 13

鎖の数： 1本鎖

配列の長さ：46

配列の種類：合成DNA

配列の型：核酸（DNA）

配列

GATGATTGAG GGGTACAGGG ATCTAAAATC TAGGTACACT ATGTTTC 46

【図面の簡単な説明】

【図1】 組換え発現ベクターの構築図を示す。

【図2】 KOD 1由来耐熱性DNAポリメラーゼ分子量測定結果を示す電気泳動の写真である。

【図3】 KOD 1由来耐熱性DNAポリメラーゼによるPCRの結果を示す電気泳動の写真である。

【図4】 超好熱始原菌KOD 1由来のDNAポリメラーゼ遺伝子と類縁菌と思われる *Pyrococcus furiosus* 由來の耐熱性DNAポリメラーゼ遺伝子および *Thermococcus litoralis* 由來の耐熱性DNAポリメラーゼ遺伝子との比較を示す。

【図 1】

発現組換えベクター (pET-pol) の構築

【図 2】

1: pET-8c 沈殿
2: pET-pol(△IVS-A, △IVS-B) 沈殿
3: pET-8c 上澄み
4: pET-8c 上澄み ×5
5: pET-pol(△IVS-A, △IVS-B) 上澄み
6: pET-pol(△IVS-A, △IVS-B) 上澄み ×5

組換え菌が生産する超好熱始原菌KOD1株由来DNAポリメラーゼの分子量測定(SDS-PAGE法)

【図 3】

1 : Vent ポリメラーゼ (*Thermococcus litoralis*由来)
2 : pET-pol(△IVS-A, △IVS-B)上澄み
3 : pET-pol(△IVS-A, △IVS-B)上澄み × 5
4 : pET-8c 上澄み
5 : pET-8c 上澄み × 5

組換え菌が生産する超好熱始原菌KOD1株由来DNAポリメラーゼを用いたPCR(Polymerase Chain Reaction)により増幅されたDNA断片

【図 4】

超好熱始原菌KOD1株のDNAポリメラーゼ遺伝子

*Pyrococcus furiosus*のDNAポリメラーゼ遺伝子 (Pfu DNA polymerase)

*Thermococcus litoralis*のDNAポリメラーゼ遺伝子 (Vent DNA polymerase)

超好熱始原菌KOD1株のDNAポリメラーゼ遺伝子と他の好熱性菌のDNAポリメラーゼ遺伝子の比較

フロントページの続き

(51) Int.CI.⁶

識別記号 庁内整理番号

F I

技術表示箇所

C 1 2 R 1:19)

(C 1 2 N 1/21

C 1 2 R 1:19)