Syntaks og semantik

Lektion 10

27 marts 2007

Fra sidst

- Operationel semantik
- Big vs. small step
- At opskrive en operationel semantik
- Derivationstræer

- Operationel semantik: at oversætte et program til et transitionssystem:
 - konfigurationer: programtilstande
 - transitioner: programskridt
 - slutkonfigurationer: (succesfuld) terminering af programmet
- Transitionssystemer: (Γ, \rightarrow, T)
 - konfigurationer Γ , transitioner \rightarrow , slutkonfigurationer T
 - slutkonfigurationer er *terminale*: $\forall \gamma \in T \not\exists \gamma' \in \Gamma : \gamma \to \gamma'$
 - men ikke alle terminale konfigurationer er nødvendigvis slutkonfigurationer! – deadlock

Big-step-semantik:

- at evaluere ting i ét hug
- transitioner fra konfigurationer til slutkonfigurationer

$\Gamma \setminus T$ T

Small-step-semantik:

- at evaluere ting ét skridt ad gangen
- transitioner fra konfigurationer til konfigurationer og til slutkonfigurationer

At opskrive en operationel semantik for et programmeringssprog:

- abstrakt syntaks
 - syntaktiske kategorier

```
n \in Num – Numeraler
 x \in Var - Variable
 a \in Aud – Aritmetiske udtryk
b \in \mathbf{Bud} - \mathbf{Boolske} udtryk
S \in \mathbf{Kom} – Kommandoer
```

opbygningsregler

```
S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2
          while b do S
b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)
a ::= n | x | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)
```

At opskrive en operationel semantik for et programmeringssprog:

- abstrakt syntaks
 - syntaktiske kategorier
 - opbygningsregler
- semantiske mængder og hjælpefunktioner
 - værdier af numeraler er elementer i Z
 - funktionen $\mathcal{N}: \mathbf{Num} \to \mathbb{Z}$ giver værdien af en numeral

At opskrive en operationel semantik for et programmeringssprog:

- abstrakt syntaks
 - syntaktiske kategorier
 - opbygningsregler
- semantiske mængder og hjælpefunktioner
- transitionssystem(er)
 - konfigurationer og slutkonfigurationer

$$\Gamma = Aud \cup \mathbb{Z}, T = \mathbb{Z}$$

transitionsrelationen givet ved transitionsregler

f.eks.
$$\frac{a_1 \to v_1 \quad a_2 \to v_2}{a_1 + a_2 \to v}$$
 hvor $v = v_1 + v_2$

Derivationstræer

For at vise at en bestemt transition findes i en operationel semantik, konstrueres et derivationstræ:

- aksiomer i bladene
- knude k har sønner p_1, p_2, \dots, p_n hvis og kun hvis der er en transitionsregel $\underline{p_1, p_2, \dots, p_n}$
- mekanisk proces ⇒ automatisering!

Operationelle semantikker for Bims

- Programtilstande
- Big-step-semantik for aritmetiske udtryk med variable
- Big-step-semantik for boolske udtryk
- Big-step-semantik for **Bims**
- At konstruere et derivationstræ
- Terminering (big-step)
- 11 Small-step-semantik for Bims
- 12 Terminering (small-step)
- Ækvivalens af big-step- og small-step-semantikken for **Bims**

Mål: Transitionssystem hvori transitioner beskriver udførelser af **Bims**-kommandoer.

Hvad skal konfigurationerne være?

- konfiguration = programtilstand
- programmers opførsel kan afhænge af værdier af variable
- ⇒ programtilstand = de kommandoer vi mangler at udføre
 + værdier af alle variable

Definition 4.1: En tilstand er en partiel funktion $Var \to \mathbb{Z}$. Definition 4.3: Mængden af alle tilstande kaldes **Tilstande**.

Dvs. **Tilstande** = $Var \rightarrow \mathbb{Z}$. \longleftarrow mængden af alle *partielle* funktioner fra Var til \mathbb{Z}

konfigurationerne vil være par af kommandoer og tilstande:

 $\Gamma = Kom \times Tilstande$

Aritmetiske udtryk med variable:

Aud:
$$a ::= n | x | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

- big-step-semantik
- semantikken afhænger af tilstanden, men ændrer den ikke
- \Rightarrow konfigurationer $\Gamma = \text{Aud} \cup \mathbb{Z}$ (som før!), men transitionssystemet afhænger af tilstanden!
 - transitioner skrives $s \vdash a \rightarrow_a v$: i tilstand s kan a evaluere til v
 - slutkonfigurationer $T = \mathbb{Z}$ (også som før)

- syntaksdirigerede: ethvert sammensat element fra syntaksen optræder som konklusion i en transitionsregel, ethvert basiselement som aksiom
- kompositionelle: præmisserne i en regel udtaler sig om de umiddelbare bestanddele af elementet i konklusionen

Boolske udtryk:

Bud:
$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$$

- samme big-step-semantik som før
- bortset fra at alle transitioner nu er af formen $s \vdash b \rightarrow_b tt$ eller $s \vdash b \rightarrow_b tt$
- det gider vi ikke vise igen . . .

Kommandoer i Bims:

$$S ::= x := a \mid ext{skip} \mid S_1; S_2 \mid ext{if } b ext{ then } S_1 ext{ else } S_2 \mid ext{while } b ext{ do } S$$

- kommandoer kan ændre tilstanden (f.x. kommandoen x:=2)
- ⇒ skal have tilstanden med i konfigurationerne
 - dvs. konfigurationer Γ = Kom × Tilstande ∪ Tilstande og slutkonfigurationer T = Tilstande
 - skrives $\langle S, s \rangle$ (S kommando, s tilstand)
 - (og transitionsrelationen → defineres ved transitionsregler; coming up)
- at ændre en tilstand: Definition 4.4: Lad $s \in \textbf{Tilstande}$, $x \in \textbf{Var}$ og $v \in \mathbb{Z}$. Den opdaterede tilstand $s[x \mapsto v]$ er givet ved

$$s[x \mapsto v](y) = \begin{cases} s(y) & \text{hvis } y \neq x \\ v & \text{hvis } y = x \end{cases}$$

hvor $s \vdash a \rightarrow_a v$

 $\langle x := a, s \rangle \rightarrow s[x \mapsto v]$

 $\langle S_1,s
angle
ightarrow s'' \ \langle S_2,s''
angle
ightarrow s'$

 $\langle S_1; S_2, s \rangle \rightarrow s'$

 $\langle S_1,s\rangle \to s'$

 $\langle \text{skip}, \boldsymbol{s} \rangle \to \boldsymbol{s}$

[ass_{bss}]

[skip_{hee}]

[comp_{hss}]

$$[\text{while-sand}_{\text{bss}}] \quad \frac{\langle \mathcal{S}, s \rangle \to s'' \quad \langle \text{while } b \text{ do } \mathcal{S}, s'' \rangle \to s'}{\langle \text{while } b \text{ do } \mathcal{S}, s \rangle \to s'} \\ \quad \text{hvis } s \vdash b \to_b t t$$

Dén regel er ikke kompositionel: præmissen indeholder ikke kun umiddelbare bestanddele af konklusionens syntakselement

- fordi while-løkker er rekursive
- reglen skal anvendes indtil b bliver falsk
- ellers: uendelig løkke ikke-terminering
- fikspunkt-teori!

Eksempel: Givet kommandoen

$$S = i := 6$$
; while $i \neq 0$ do (x:=x+i; i:=i-2)

og tilstanden s ved s(x) = 5, konstruer et derivationstræ for at finde en transition $\langle S, s \rangle \to s'$:

$$\frac{\langle \texttt{i} := 6, \textbf{s} \rangle \rightarrow \textbf{s}_2 \quad \langle \texttt{while } \texttt{i} \neq \texttt{0} \quad \texttt{do } (\texttt{x} := \texttt{x} + \texttt{i}; \; \texttt{i} := \texttt{i} - \texttt{2}), \textbf{s}_2 \rangle \rightarrow \textbf{s}'}{\langle \texttt{i} := 6; \; \texttt{while } \texttt{i} \neq \texttt{0} \; \texttt{do } (\texttt{x} := \texttt{x} + \texttt{i}; \; \texttt{i} := \texttt{i} - \texttt{2}), \textbf{s} \rangle \rightarrow \textbf{s}'}$$

$$\lozenge$$
 $\langle \mathtt{i} := 6, s \rangle \rightarrow s[\mathtt{i} \mapsto 6]$, fordi $s \vdash 6 \rightarrow_a 6$. Så $s_2 = s[\mathtt{i} \mapsto 6]$.

$$\langle x := x+i; i := i-2, s_2 \rangle \rightarrow s_3$$

 $i \neq 0$ do $\langle x := x+i; i := i-2, s_2 \rangle \rightarrow s'$

fordi
$$s_2 \vdash i \neq 0 \rightarrow$$

$$\frac{\langle \mathbf{x} := \mathbf{x} + \mathbf{i}, \mathbf{S}_2 \rangle \to \mathbf{S}_4 \quad \langle \mathbf{i} := \mathbf{i} - 2, \mathbf{S}_4 \rangle \to \mathbf{S}_3}{\langle \mathbf{x} := \mathbf{x} + \mathbf{i}; \quad \mathbf{i} := \mathbf{i} - 2, \mathbf{S}_2 \rangle \to \mathbf{S}_3}$$

Programtilstande Aud Bud Bims: big-step Derivationstræ Terminering Bims: small-step $\{x : =x+i, s_2\} \rightarrow s_2[x \mapsto 11], \text{ fordi } s_2 \vdash x+i \rightarrow_a 11 \text{ (anvend [plus_{bss}]!)}$

$$\Rightarrow s_4 = s_2[x \mapsto 11] = s[i \mapsto 6, x \mapsto 11]$$

$$\Rightarrow (i := i-2, s_4) \rightarrow s_4[i \mapsto 4], \text{ fordi } s_4 \vdash i-2 \rightarrow_a 4 \text{ (anvend [plus_{bss}]!)}$$

 $\Rightarrow s_3 = s_4[i \mapsto 4] = s[i \mapsto 4, x \mapsto 11]$ $\langle x := x+i; i := i-2, S_3 \rangle \rightarrow S_5$

$$9 \dots$$

$$9 \dots$$

$$9 \dots$$

fordi $s_5 \vdash i \neq 0 \rightarrow$

- **1**2 . . .
- ⑬ ...
- (a) while $i \neq 0$ do $(x := x + i; i := i 2), s_7 \rightarrow s_7$, fordi $s_7 \vdash i \neq 0 \rightarrow_b$
- \Rightarrow $s' = s_7 = s[i \mapsto 0, x \mapsto 17], dvs.$

$$\langle i:=6; \text{ while } i\neq 0 \text{ do } (x:=x+i; i:=i-2), s \rangle$$

$$\rightarrow s[i \mapsto 0, x \mapsto 17]$$

- at konstruere derivationstræer = kedeligt, mekanisk
- ⇒ automatisering ⇒ fortolker!

Definition: Givet $S \in \mathbf{Kom}$ og $s \in \mathbf{Tilstande}$:

 $\langle \mathcal{S}, \widetilde{s}
angle
ightarrow s'.$

• S siges at terminere fra s hvis der findes $s' \in \textbf{Tilstande}$ så

- S siges at gå i uendelig løkke på s hvis S ikke terminerer fra s.
- *S* terminerer altid hvis *S* terminerer fra alle $s \in \textbf{Tilstande}$.
- S går altid i uendelig løkke hvis S går i uendelig løkke på alle $s \in T$ ilstande.

Opgave 4.8: Vis at S = while 0=0 do skip altid går i uendelig løkke.

- (Husk: **Tilstande** = $Var \rightarrow \mathbb{Z}$)
- konfigurationer $\Gamma = \mathbf{Kom} \times \mathbf{Tilstande} \cup \mathbf{Tilstande}$, slutkonfigurationer $T = \mathbf{Tilstande}$
- transitionsregler for ⇒ coming up
- transition $\langle S, s \rangle \Rightarrow s'$: terminering i s' efter ét skridt
- transition $\langle S, s \rangle \Rightarrow \langle S', s' \rangle$: efter ét skridt kommer vi fra S i tilstand s til S' i tilstand s'

reglen for while-løkken indeholder igen rekursion

 $\langle x := a, s \rangle \Rightarrow s[x \mapsto v]$

 $\langle \text{skip}, \boldsymbol{s} \rangle \Rightarrow \boldsymbol{s}$

[ass_{sss}]

[skip_{sss}]

hvor $s \vdash a \rightarrow_a v$

Ikke-terminering svarer nu til uendelige transitionsfølger:

$$\langle \text{while 0=0 do skip}, \boldsymbol{s} \rangle \stackrel{3}{\Rightarrow} \langle \text{while 0=0 do skip}, \boldsymbol{s} \rangle \stackrel{3}{\Rightarrow} \dots$$

(eller til løkker i transitionssystemet!)

Definition: Givet $S \in \mathbf{Kom}$ og $s \in \mathbf{Tilstande}$:

- *S* siges at terminere fra *s* hvis der findes $s' \in \textbf{Tilstande}$ så $\langle S, s \rangle \stackrel{*}{\Rightarrow} s'$.
- S siges at gå i uendelig løkke på s hvis der findes en uendelig transitionsfølge

$$\langle S, s \rangle \Rightarrow \langle S_1, s_1 \rangle \Rightarrow \langle S_2, s_2 \rangle \Rightarrow \dots$$

Sætning 4.11 / 4.13 : Lad $S \in \textbf{Kom}$ og $s, s' \in \textbf{Tilstande}$. Da har vi $\langle S, s \rangle \rightarrow s'$ hvis og kun hvis $\langle S, s \rangle \overset{*}{\Rightarrow} s'$.

- dvs. kommandoen S terminerer fra tilstand s i tilstand s' i big-step-semantikken hvis og kun hvis den gør det i small-step-semantikken.
- dvs. big-step- og small-step-semantikken er ækvivalent.

Vi viser her sætning 4.11 med tilhørende lemma 4.12. Beviserne for sætning 4.13 og lemma 4.14 springes over.

Lemma 4.12: Lad $S_1, S_2 \in \mathbf{Kom}$ og $s, s' \in \mathbf{Tilstande}$. Hvis $\langle S_1, s \rangle \stackrel{*}{\Rightarrow} s'$ så $\langle S_1; S_2, s \rangle \stackrel{*}{\Rightarrow} \langle S_2, s' \rangle$.

Bevis ved *induktion* i transitionsfølgers længde: (Bemærk forskellen fra bogens bevis!)

- Lad $\langle S_1, s \rangle \stackrel{*}{\Rightarrow} s'$, dvs. $\langle S_1, s \rangle \stackrel{k}{\Rightarrow} s'$ for et eller andet $k \in \mathbb{N}_0$.
- ② Vi må have $k \neq 0$, da $\langle S_1, s \rangle \neq s'$. ($\stackrel{0}{\Rightarrow}$ er defineret som = !)
- Induktionsbasis: Lad k=1. Reglen [comp-2_{sss}] giver at $\langle S_1, s \rangle \Rightarrow s'$ medfører $\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle$.
- Induktionsskridt: Lad $k \ge 1$ og antag at vi har vist påstanden for alle transitionsfølger af længde k.
- **5** Lad $\langle S_1, s \rangle \stackrel{k+1}{\Rightarrow} s'$. Vi må have $S'_1 \in \mathbf{Kom}$ og $s'' \in \mathbf{Tilstande}$ med $\langle S_1, s \rangle \Rightarrow \langle S'_1, s'' \rangle \stackrel{k}{\Rightarrow} s'$.
- $\begin{array}{c} \textbf{ 9} \text{ Pga. induktionsantagelsen kan vi konkludere} \\ \langle S_1'; S_2, s'' \rangle \overset{k}{\Rightarrow} \langle S_2, s' \rangle. \text{ Og med [comp-1}_{sss] har vi} \\ \langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s'' \rangle. \text{ Dvs.} \end{array}$

$$\langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s'' \rangle \stackrel{k}{\Rightarrow} \langle S_2, s' \rangle \quad \checkmark$$

Sætning 4.11: Lad $S \in \text{Kom}$ og $s, s' \in \text{Tilstande}$. Hvis $\langle S, s \rangle \to s'$ så $\langle S, s \rangle \stackrel{*}{\Rightarrow} s'$.

Bevis ved transitionsinduktion:

Vis at egenskaben gælder for alle aksiomer, og at den bevares ved opbygning af derivationstræer.

[ass_{bss}]: Hvis
$$\langle S, s \rangle \to s'$$
 kommer fra [ass_{bss}], må vi have $S = x := a, s \vdash a \to_a v \text{ og } s' = s[x \mapsto v]$ for nogle $x, a \text{ og } v$. [ass_{sss}] medfører $\langle S, s \rangle \Rightarrow s' \quad \checkmark$

[skip_{bss}]: Hvis $\langle S, s \rangle \to s'$ kommer fra [skip_{bss}], må vi have S = skip og s' = s. [skip_{sss}] medfører $\langle S, s \rangle \Rightarrow s'$

[comp_{bes}]: Hvis $\langle S_1; S_2, s \rangle \rightarrow s''$ kommer fra reglen

$$\frac{\langle \mathcal{S}_1, s \rangle \to s' \quad \langle \mathcal{S}_2, s' \rangle \to s''}{\langle \mathcal{S}_1; \mathcal{S}_2, s \rangle \to s''}$$

og vores påstand gælder for præmisserne, må vi have $\langle S_1, s \rangle \stackrel{*}{\Rightarrow} s'$ og $\langle S_2, s' \rangle \stackrel{*}{\Rightarrow} s''$.

Med lemma 4.12 bliver den første til $\langle S_1; S_2, s \rangle \stackrel{*}{\Rightarrow} \langle S_2, s' \rangle$, sammensæt $\Rightarrow \checkmark$

[if-falsk_bss]: Hvis $\langle \text{if } b \text{ then } S_1 \text{ else } S_2 \;, s \rangle \to s' \; \text{kommer frareglen}$

$$\frac{\langle \mathcal{S}_2,s\rangle \to s'}{\langle \text{if b then \mathcal{S}_1 else \mathcal{S}_2},s\rangle \to s'} \qquad s \vdash b \to_b \mathit{ff}$$

giver [if-falsk_{sss}] transitionen

(if
$$b$$
 then S_1 else S_2 , $s
angle \Rightarrow \langle S_2,s
angle$

Med induktionsantagelsen har vi $\langle S_2, s \rangle \stackrel{*}{\Rightarrow} s'$, sammensæt $\Rightarrow \checkmark$

[if-sand_{bss}]: tilsvarende

[while-sand_bss]: Hvis $\langle \mathtt{while}\ b\ \mathtt{do}\ S,s
angle o s'$ kommer fra reglen

$$\frac{\langle \mathcal{S}, s \rangle \to s'' \quad \langle \text{while } b \text{ do } \mathcal{S}, s'' \rangle \to s'}{\langle \text{while } b \text{ do } \mathcal{S}, s \rangle \to s'} \quad s \vdash b \to_b tt$$

kan vi per antagelse konkludere at

$$\langle \mathcal{S}, s
angle \stackrel{*}{\Rightarrow} s''$$
 og \langle while b do $\mathcal{S}, s''
angle \stackrel{*}{\Rightarrow} s'$

dvs. med lemma 4.12: $\langle S; \text{while } b \text{ do } S, s \rangle \stackrel{*}{\Rightarrow} s'$ Og med [if-sand_{sss}] og [while_{sss}] har vi så

while
$$b$$
 do S, s \
 $\Rightarrow \langle \text{if } b \text{ then } (S; \text{ while } b \text{ do } S) \text{ else skip}, s \rangle$
 $\Rightarrow \langle S; \text{ while } b \text{ do } S, s \rangle$
 $\overset{*}{\Rightarrow} s'$

[while-falsk_{bss}]: tilsvarende

Færdig!