

MSS54 Modulbeschreibung

Tankentlüftung "Funktional Check" TEFC (V416)

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62

Projekt: MSS54 Modul: TEFC

Seite 2 von 9

1 Allgemeines

Die Diagnose hat die Aufgabe, die Funktion der Tankentlüftung anhand der Motorreaktion zu überprüfen

1.1 Methode

Zweistufiges Verfahren:

1. TEA-Messung:

Adaptionsfaktor tea_f_1/2 unterhalb einer Schwelle (Beladungsgrad) Falls n.i.O, dann:

2. LL-Messung:

Aktives Öffnen und Schließen des TEV und beobachten der Reaktion des Leerlaufreglers (Soll-Luftmasse) und der Leerlauf-Drehzahl

Parallel wird weiterhin die TEA-Messung durchgeführt.

Sobald ein Kriterium erfüllt ist, wird der Funktional Check als i.O. gewertet.

2 Funktionsbeschreibung

Die Funktion läuft im 200ms-Raster.

Generelle Vorbedingungen für TEA und LL-Messung:

- elektrische Diagnose TEV i.O (B_TEV_FEHLER)
- Kein Fehler Leerlaufsteller (B ZWD FEHLER)
- Kein Fehler EDK (SK EGAS ZUSTAND < 2)
- Kein HFM-Fehler (B HFM FEHLER)
- Kein Vanos-Fehler (B_VAN_FEHLER)
- Keine Sekundärlufteinblasung (B SLP ON)
- Kein Katheizen
- Nach Motor Start muss die Zeit K_TEFC_DELAY abgelaufen sein
- TEV muß in B_TE_NORM sein
 Damit muß der Lamda-Regler aktiv und all seine Bedingungen erfüllt sein.

2.1 Überprüfung Tankentlüftungs-Adaptionsfaktor TEA (TEA-Messung)

Zusätzliche Bedingungen für TEA-Messung:

- Betriebsbereich innerhalb eines Fensters (K_TEFC_N_MIN, K_TEFC_N_MAX, K_TEFC_RF_MIN, K_TEFC_RF_MAX)
- keine zu große Dynamik n, rf (B_N_DYNAMIK, B_RF_DYNAMIK), kann mit K_TEFC_CFG ausgenommen werden

Ab Eintreten der Vorbedingungen wird die Zeit K TEFC TEA DELAY abgewartet.

Mit jedem Abtasten (alle 200ms) wird der Zähler tefc_tea_ok um eins erhöht, wenn die Werte von tea1_f oder tea2_f kleiner oder gleich K_TEFC_TEA_MAX sind. Erreicht der Wert von tefc_tea_ok die Schwelle K_TEFC_TEA_OK, wird die Diagnose als i.O. gewertet und beendet. Erreicht die Anzahl der Abtastungen jedoch den Wert von K_TEFC_TEA_ANZ, ohne daß K_TEFC_TEA_OK erreicht wird, wird die LL-Messung gestartet. Parallel wird die TEA-Messung ohne Wartezeit wieder neu begonnen.

Durch Verletzen der Bedingungen wird die Diagnose abgebrochen. Nach Erfüllen aller Bedingungen und nach erneutem Ablaufen der Wartezeit **K_TEFC_TEA_DELAY** wird die Diagnose mit den eingefrorenen Werten von tefc_tea_cnt und tefc_tea_ok fortgesetzt.

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62

Projekt: MSS54 Modul: TEFC

Seite 3 von 9

2.2 Reaktion von Leerlaufdrehzahl / Leerlaufsteller LL (LL-Messung)

Zusätzliche Bedingungen für die LL-Messung:

- TEA-Messung erster Durchlauf nicht erfolgreich
- Bedingung Leerlauf (PWG = 0, Leerlaufdrehzahl eingeregelt +/- K_LFR_DN_EINGEREGELT, kein Kraftschluß)
- Kein Regleranschlag des Leerlaufreglers an rf min oder tetv min
- geringe Lenkwinkeländerung (K_TEFC_LRW_DELTA)
- Keine Klima-Kompressor-Schaltung
- Kein Zündwinkeleingriff
- Geschwindigkeit = 0

Die Stufe 2 greift aktiv in die Tankentlüftung ein:

Die LL-Messung durchläuft folgende Schritte:

- 1. Die Zeit K_TEFC_LL_DELAY ab Erfüllen aller Startbedingungen wird gewartet.
- 2. Das TEV wird mit der K_TEFC_RAMPE geschlossen und der Lambda-Regler abgeschalten
- 3. Nach der Zeit **K_TEFC_LL_DAUER** werden die Größen ml_soll und n in tefc_ll_ml_alt bzw. tefc_ll_n_alt gemerkt.
- 4. Das TEV wird mit der Rampe K_TEFC_RAMPE auf den Wert K_TEFC_TETV_MAX aufgeregelt. Ist die Motorreaktion | tefc_II_delta | >= K_TEFC_LL_DELTA, wird tefc_II_ok um eins erhöht und die Größen ml_soll und n werden in tefc_II_ml_alt bzw. tefc_II_n_alt gemerkt. Ist außerdem tefc_II_ok >= K_TEFC_LL_OK, ist die LL-Messung und somit das TEV o.k. und die TEA-Messung wird abgebrochen, ansonsten wird zu Punkt 6 gesprungen.
- 5. Nach der Zeit **K_TEFC_LL_DAUER** werden die Größen tefc_ll_ml und n mit den Werten tefc_ll_ml_alt bzw. tefc_ll_n_alt verglichen:
 - Ist | tefc_Il_delta | >= **K_TEFC_LL_DELTA**, wird tefc_Il_ok um eins erhöht und die Größen ml_soll und n werden in tefc_Il_ml_alt bzw. tefc_Il_n_alt gemerkt.
 - Ist tefc_Il_ok >= **K_TEFC_LL_OK**, ist die LL-Messung und somit das TEV o.k. und die TEA-Messung wird abgebrochen.
- 6. Das TEV wird mit der Rampe K_TEFC_RAMPE geschlossen.

Ī		Abteilung	Datum	Name	Filename
ĺ	Bearbeiter		20.09.2004		62

Projekt: MSS54 Modul: TEFC

Seite 4 von 9

7. Nach der Zeit **K_TEFC_LL_DAUER** wird der Zähler tefc_ll_cnt um eins erhöht und die Größen ml_soll und n mit den Werten tefc_ll_ml_alt bzw. tefc_ll_n_alt verglichen.

Ist | tefc_ll_delta | >= K_TEFC_LL_ZU_DELTA, wird tefc_ll_ok um eins erhöht.

Die Größen ml soll und n werden in tefc II ml alt bzw. tefc II n alt gemerkt.

Ist tefc_Il_ok >= K_TEFC_LL_OK, ist die LL-Messung und somit das TEV o.k. und die TEA-Messung wird abgebrochen.

- Erreicht der Zähler tefc_II_cnt den Wert **K_TEFC_LL_ANZ**, wird die TEA-Messung abgebrochen und die LL-Messung mit DEFEKT beeendet, ansonsten wird ein neuer Durchlauf ab Punkt 4 wieder gestartet.
- 8. Mit dem Ende der LL-Messung wird die Funktion wieder der TE übergeben und der Lambda-Regler nimmt die Regelung wieder auf.

2.2.1 Zeitlicher Ablauf der Diagnose:

(Beispiel)

2.2.2 Berechnung der Motorreaktion:

1					
		Abteilung	Datum	Name	Filename
	Bearbeiter		20.09.2004		62

2.2.3 Zustandsdiagramm TEA-Messung:

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62

2.2.4 Zustandsdiagramm LL-Messung:

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62

Seite 7 von 9

Während der Dauer der Stufe 2 muß gesperrt werden:

- Leerlauf-Adaption
- Leerlauf-Synchronisation
- I-Anteil des LLR einfrieren
- Zündwinkeleingriff des Leerlaufreglers

3 Beschreibung der Bezeichner

3.1 Applikationsgrößen:

Name	Bedeutung:
K_TEFC_CFG	Konfiguration, ob TEA-Messung bei n/rf-DYNAMIK abgebrochen werden soll
K_TEFC_DELAY	Verzögerung nach Motor Start bis Freigabe des Functional Check
K_TEFC_N_MIN	Minimale Drehzahl für die TEA-Messung
K_TEFC_N_MAX	Maximale Drehzahl für die TEA-Messung
K_TEFC_RF_MIN	Minimale Füllung für die TEA-Messung
K_TEFC_RF_MAX	Maximale Füllung für die TEA-Messung
K_TEFC_TEA_DELAY	Verzögerung der TEA-Messung nach Erfüllung aller Freigabebedingungen
K_TEFC_TEA_MAX	Schwelle, ab der eine tea1/2_f- Abtastungen als O.K gezählt wird
K_TEFC_TEA_OK	Anzahl der tea1/2_f- Abtastungen <= K_TEFC_TEA_MAX, ab der der FC
	als O.K abgeschlossen wird
K_TEFC_TEA_ANZ	Maximale Anzahl der tea1/2_f- Abtastungen eines Durchlaufs
K_TEFC_LL_DELAY	Verzögerung der LL-Messung nach Erfüllung aller Freigabebedingungen
K_TEFC_LRW_DELTA	Maximal zulässige Lenkwinkeländerung während der LL-Messung
K_TEFC_RAMPE	Rampe, mit der das TEV durch den FC auf- und zugesteuert wird
K_TEFC_RAMPE_ABBRUCH	Rampe, mit der bei Abbruch des FC von tetv_fc auf tetv_func = Wert aus TE umgeschalten wird
K_TEFC_TETV_MAX	Maximalwert, auf den das TEV geöffnet wird
K_TEFC_LL_DAUER	Beruhigungsdauer nach Erreichen von "0" bzw. K_TEFC_TETV_MAX, bis die Abtastung von n und ml_soll erfolgt
K_TEFC_LL_DELTA	Minimale Änderung von tefc_II_delta, ab der tefc_II_ok inkrementiert wird
K_TEFC_LL_ZU_DELTA	Minimale Änderung von n, ab der tefc_ll_ok inkrementiert wird
K_TEFC_LL_ANZ	Maximale Anzahl der durchgeführten LL-Messdurchläufe
K_TEFC_LL_OK	Wert von tefc_ll_ok, ab dem der FC als O.K. abgeschlossen wird

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62

Seite 8 von 9

3.2 Prozessvariablen:

Name	Bedeutung:
tefc_tea_st	Zustand der tea1/2_f -Messung
tefc_II_st Zustand der Leerlauf -Messung	
tefc_flags	Interne Steuerflags
tefc_t_tea_dly	Startverzögerung der TEA-Messung nach Erfüllung aller
-	Freigabebedingunen
tefc_t_ll_dly	Startverzögerung der LL-Messung nach Erfüllung aller Freigabebedingunen
tefc_II_mess	Einschwingdauer der LL-Messung in den Zuständen OFFEN bzw. ZU
tefc_tea_ok	Zähler der Abtastungen mit tea1/2_f <= K_TEFC_TEA_MAX
tefc_tea_cnt	Zähler der durchgeführten Abtastungen von tea1/2_f
tetv_fc	Tastverhältnis TEV, wenn LL-Messung aktiv ist
tefc_ll_cnt Anzahl der durchgeführten LL-Mess-Durchläufe	
tefc_ll_ok	Zähler der "Gut"- Reaktion von n un Ils_tv_aq der LL-Messungen
tefc_lws_lrw_start	Lenkwinkel zu Beginn der LL-Messung
tefc_ll_n_alt	Merker der abgetasteten Drehzahl
tefc_ll_ml_alt	Merker für ml_soll
tefc_ll_delta	Motorreaktion auf TEV-Veränderung:
	= tefc_ll_ml_alt /ml_soll - tefc_ll_n_alt / n
tefc_ed	Fehlerspeichervariable

3.3 Bedeutung der Steuerflags:

B_TEFC_START_DS2 B_100MS_VORBEI B_TEFC_LL_ABBRUCH B_KKOS_CAN_OLD B_S_KO_OLD	tefc_flags, BIT0 tefc_flags, BIT1 tefc_flags, BIT2 tefc_flags, BIT3 tefc_flags, BIT4 tefc_flags, BIT5	 TEV-Check über DS2 angestoßen Warteflag, toggelt alle 100ms LL-Abbruch, Umschaltung auf tetv_func! Merker Zustand Klimakompresssor Merker Anforderung Klimakompressor frei frei
	tefc_flags, BIT6	= frei
	tefc_flags, BIT7	= frei

Ī		Abteilung	Datum	Name	Filename
ĺ	Bearbeiter		20.09.2004		62

Projekt: MSS54 Modul: TEFC

Seite 9 von 9

4 Applikationshinweise:

Bevor der Funktional Check appliziert ist, sollten alle tea1/2_f beeinflussenden Faktoren sowie der Leerlaufregler weitgehend appliziert sein.

4.1 TEA-Messung

Es sollte, wenn möglich, bereits die TEA-Messung zum OK-Ergebnis kommen, denn dann muss nicht aktiv in die TEV-Funktion eingegriffen werden.

Die Bereiche n /rf für die TEA-Messung sollten dort liegen, wo **tea1/2_f** möglichst aussagekräftig ist. Die **K_TEFC_TEA_DELAY** sollte mindestens so lange sein, wie die Faktoren **tea1/2_f** nach Eintritt in die Spülphase zur Reaktion brauchen.

K_TEFC_TEA_MAX sollte so gewählt werden, daß bei defektem TEV und aktiver TEA-Messung die Faktoren **tea1_f** und **tea2_f** diese Schwelle gerade noch nicht erreichen.

Falls dynamische Einflüsse die Faktoren **tea1/2** im relevanten n/rf-Bereich stören, können diese mit **K_TEFC_CFG** zur Abbruch der Auswertung führen. Dynamik wird dabei für die Dauer von **K_RF_DYN_T_TEFC** erkannt bei Überschreitung der Schwellen **K_RF_DYN_DELTA_TEFC** oder **K_N_DELTA_DYN**.

4.2 LL-Messung:

K_TEFC_LL_DELAY beschreibt die Einschwingdauer von n und ml_soll für den stabilen Leerlauf ab der Bedingung vom Leerlaufregler "Leerlauf eingeregelt mit **K_LFR_DN_EINGEREGELT**"

K_TEFC_LL_DELTA sollte min. so groß sein, wie die typische Motorreaktion auf nicht abbrechende Störeinflüsse, wie z.b. Schalten der Heckscheibenheizung.

Falls **K_TEFC_LL_DELTA** kleiner gewählt wird, sollte die Anzahl der nötigen o.K-Messungen **K_TEFC_LL_OK** sowie die Anzahl der zulässigen Durchläufe **K_TEFC_LL_ANZ** so gewählt werden, daß die Wahrscheinlichkeit einer OK-Erkennung eines defekten TEV gering bleibt.

K_TEFC_LL_ZU_DELTA beschreibt die Motorreaktion auf das Schließen des TEV, und sollte sinnvollerweise kleiner gewählt werden als K_**TEFC_LL_DELTA**. Die Reaktion beim Schließen ist dabei nicht so konstant wie beim Öffnen, da sich hier die unterschiedliche Öffnung vor dem Schließen und die normalen Leerlaufschwankungen überlagern.

K_TEFC_TETV_MAX muß so groß gewählt werden, daß unter allen Umständen ein funktionierendes TEV (bei verschiedenen Umweltbedingungen wie AKF-Beladungen, Luftdrücken, Leerlauf-Luftbedarf) auch erkannt wird. Die Gefahr, daß dabei der Motorleerlauf bei vollem AKF deutlich gestört wird, ist gering, da auch negative Reaktion (d.h. Drehzahlrückgang) sofort das Schließen des TEV einleiten.

Abbruchbedingungen:

Grundsätzlich kann die Beobachtung der Leerlaufstabilität am besten über die gerechntete Größe tefc_II_delta erfolgen. Die Größe wird allerdings nur während aktiver Leerlaufmessung gerechnet. Durch Ändern der K_TEFC_LL_RAMPE auf 0 und Starten der LL-Messung (Überschreiben von tefc_tea_st auf "AUS") kann, solange der te_st in NORM sich befindet, die Größe tefc_II_delta beobachtet werden.

K_TEFC_LRW_DELTA sollte die Lenkwinkeländerung darstellen, ab der eine Störung des Leerlaufs, sichtbar in tefc II delta auftritt.

	Abteilung	Datum	Name	Filename
Bearbeiter		20.09.2004		62