Première Partie

1981

par Alexandre GROTHENDIECK

Ce texte a été transcrit et édité par Mateo Carmona. La transcription est aussi fidèle que possible au typescript. Cette édition est provisoire. Les remarques, commentaires et corrections sont bienvenus.

https://agrothendieck.github.io/

SOMMAIRE

1. Topos multigaloisiens	7
2. Application aux revêtements des topos	11
3. Variantes pro-multigaloisiennes	13
4. Compléments, remords	14
5. Introduction du contexte arithmétique ; "conjecture anabélienne"	
fondamentale	16
6. Analyse locale de (X, S) en un $s \in S$	20
7. Reformulation "bordélique" de la conjecture (le purgatoire néces-	
saire)	22
8. Réflexions taxonomiques	40
9. Structure tangentielle en les $s \in S$	48
10. Ajustement des hypothèses (remords)	52
11. Conditions sur les systèmes de groupoïdes obtenus à partir de situa-	
tions géométriques	54
12. L'analogie topologique	58
13. Retour au cas arithmétique; formulation "galoisienne"	69
13 bis. Retour sur la notion de groupe à lacets	72
14. Digression cohomologique (sur le "bouchage de trous")	75
14 bis. Où on revient sur les morphismes mixtes	83
15. Retour sur le cas topologique: orbites critiques des scindages	
d'extensions;	86
16. Bouchage et forage de trous: préliminaires topologiques généraux	98
17. Complément au §15 ; sous-groupes de groupes à lacets	108
18. Forage de trous ; applications aux sous-groupes finis	110
19. Tour de Teichmüller	119

20. Digression: description 2-isotopique de la catégorie des isomor-	
phismes topologiques	136
21. Les espaces de Teichmüller	145
23. Retour sur les surfaces à groupes (finis) d'opérateurs ("mise en équa-	
tions" du problème)	152
24. Essai de détermination de $A^{0\Gamma}$; lien avec les relations $\pi_{g,(\nu,\nu+n-1)}^{\Gamma}$	
{1}, programme de travail	161
25. Groupes de Teichmüller "spéciaux"	168
25 bis. "Cas des deux groupes" d'opérateurs; retour sur les notations	175
26. Groupes de Teichmüller profinis (Discrétification et prédiscrétifi-	
cation). Lien avec topos modulaires de Teichmüller. Conjecture	
hâtive	180
27. Changement de type (g, v) : a) Bouchage de trous (et diagrammes	
remarquables p.174)	192
28. Changement de type (g, v) (suite): b) passage à un revêtement fini (la	
conjecture hâtive grince)	200
29. Critique de l'approche précédente (on rajuste les notions et les con-	220
jectures)	208
30. Propriétés des $\mathcal{N}_{g,\nu}$, $\Pi_{g,\nu}$	215
31. Digression sur les relèvements d'une action extérieure d'un groupe	224
fini sur un groupe profini à lacets	221
32. Retour sur les aspects arithmétiques du bouchage	222
de trous: relations entre $\Gamma_{g,\nu}$ et $\Gamma_{g,\nu-1}$	
33. Digression topologique : Anti-involutions des surfaces orientées al-	
gébroïdes	243
33bis. Étude des revêtements finis - relation entre les $\mathcal{N}_{g,\nu}$, $\Gamma_{g,\nu}$ pour g variable	262
34. Description heuristique profinie de la catégorie des courbes al-	202
gébriques définies sur des sous-extensions finies K de \overline{Q}_0/Q (i.e.	
de C/Q)	267
35. L'injectivité de $\Pi_Q \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\hat{\pi}_{0,3})$	272
γας(**0,3/**********************************	

36. L'isomorphisme $\mathbb{F}_Q \xrightarrow{\sim} \mathbb{F}_{1,1}$	
et l'injectivité de $\Pi_Q \longrightarrow \operatorname{Autext}(\hat{\mathfrak{Z}}_{1,1}^+) \simeq \operatorname{Autext}(SL(2,\mathbb{Z})^{}) \ldots$	279
37. Théorie des modules des courbes elliptiques via Legendre (rigidifica-	
tion d'échelon 2)	294

1. — TOPOS MULTIGALOISIENS

Proposition (1.1). — Soit E une catégorie. Conditions équivalentes :

- a) E est un topos, et tout objet de E est localement constant.
- b) E est équivalent à une catégorie \widehat{C} , où C est un groupoïde¹.
- b') Il existe une famille $(G_i)_{i\in I}$ de groupes et une équivalence de catégories

$$E \approxeq \prod_{i \in I} \operatorname{Ens}(G_i)$$

c) Conditions d'exactitudes ad-hoc, du type de celles données dans SGA 1...

Démonstration: b) \Rightarrow b') \Rightarrow a) immédiat. Pour a) \Rightarrow b) je suis moins sûr, peut être faut-il supposer que E est localement connexe, et qu'il a suffisamment de foncteurs fibres i.e. suffisamment de points.

Définition (1.2). — Si les conditions équivalentes b), b') ci-dessus sont satisfaites, on dit que C est un topos multigaloisien (ou une catégorie multigaloisienne).

Proposition (1.3). —

a) Si E est multigaloisien, tout topos induit C/S aussi.

¹N.B. On verra plus bas qu'on peut choisir C canoniquement

b) Toute somme de topos multigaloisiens (i.e. tout produit de catégories multigaloisiennes) l'est itou.

Proposition (1.4). — Soient E un topos, C la catégorie des points de E, (opposée à la catégorie des foncteurs fibres sur E). Le foncteur canonique $E \times C^{\circ} \longrightarrow \text{Ens}$ induit un foncteur canonique

$$E \longrightarrow \operatorname{Hom}(C^{\circ}, \operatorname{Ens}) \stackrel{def}{=} \widehat{C}$$

Ceci posé: (E étant multigaloisien)

- a) C est un groupoïde (appelé "groupoïde fondamental" du topos multigaloisien E et souvent noté $\Pi_1(E)$).
- b) $E \longrightarrow \widehat{C}$ est une équivalence de catégories.

Un objet S d'un topos E est dit 0-connexe s'il est $\neq \varnothing_E$ (i.e. n'est pas objet initial) et s'il est connexe (i.e. $S \simeq S' \coprod S''$ implique S' ou $S'' \simeq \varnothing_E$) — cela signifie aussi que le topos induit $E_{/S}$ est 0-connexe i.e. n'est pas le topos initial ("topos vide", équivalent à la catégorie finale) et qu'il est connexe, i.e... On dit que S est 1-connexe (ou "simplement connexe") s'il est 0-connexe, et si tout objet S' de $E_{/S}$ localement constant est constant — ce qui ne dépend encore que du topos induit $E_{/S}$, qui sera dit alors 1-connexe.

Proposition (1.5). — Soit E un topos multigaloisien, et soit S un objet de E. Conditions équivalentes

- a) S est 1-connexe
- b) S est 0-connexe et projectif
- c) Le foncteur covariant représenté par S

$$T \mapsto \operatorname{Hom}_{E}(S, T)$$

est un foncteur fibre, ou encore (comme il est déjà exact à gauche) il commute aux <u>lim</u> inductives quelconques (N.B. il suffit qu'il commute aux sommes et aux passages aux quotients...)

- d) $E_{/S}$ est équivalent au topos ponctuel
- e) (Si $E = \widehat{C}$, C un groupoïde) le foncteur S sur C est représentable.

Définition (1.6). — On dit alors, parfois, que S (ou mieux, le topos $E_{/S}$) est un revêtement universel du topos multigaloisien E.

Proposition (1.7). — Soit E_{\circ} la sous-catégorie pleine de E formée des objets 1-connexes (de la catégorie multigaloisienne E), et $\Pi_1(E)$ le groupoïde fondamental de E. On a par 1.5 un foncteur canonique

$$E_{\circ} \longrightarrow \Pi_{1}(C)$$

(associant à tout $S \in Ob(E_\circ)$ le foncteur fibre qu'il représente, ou plutôt le "point" correspondant de C), qui est (non seulement pleinement fidèle, mais même) une équivalence de catégorie : tout foncteur fibre sur E est représentable (par un objet (1-connexe) essentiellement unique comme de juste...)

Corollaire (1.8). — Soit P un "point" de E (associé à un foncteur fibre F_P). Il existe un objet 1-connexe S de E et un relèvement

(i.e. $\alpha \in F(S)$) et cela détermine (S, α) à isomorphisme près. En fait, S est l'unique objet de E qui représente F_p ...

Définition (1.9). — On dit que S (ou $E_{/S}$) est le revêtement universel ponctué au dessus de P déterminé par le point P.

Scholie (1.10). — Se donner un "point" du topos multigaloisien E, ou se donner un revêtement universel, revient essentiellement au même : chacun détermine l'autre...

Proposition (1.11). — Soient E, E' deux topos multigaloisiens, $\Pi_1(E)$, $\Pi_1(E')$

leur groupoïdes fondamentaux. Le foncteur évident

$$\underline{\operatorname{Hom}}_{top}(E,E') \longrightarrow \underline{\operatorname{Hom}}(\underbrace{\Pi_{1}(E)}_{C},\underbrace{\Pi_{1}(E')}_{C'})$$

est une équivalence de catégories, on trouve une équivalence quasi-inverse en composant

$$\underline{\mathrm{Hom}}(C,C') \longrightarrow \underline{\mathrm{Hom}}_{top}(\widehat{C},\widehat{C'}) \stackrel{\approx}{\longrightarrow} \underline{\mathrm{Hom}}_{top}(E,E')$$

 \cap

$$\underline{\text{Hom}}(\widehat{C}',\widehat{C})$$

(ou
$$\widehat{C} \cong E$$
, $\widehat{C'} \cong E'$)

(1.12). Explicitation du cas où E, E' sont 0-connexes et ponctués, donc donnés comme $E \cong \operatorname{Ens}(G)$, $E' \cong \operatorname{Ens}(G')$...

§ 2. — APPLICATIONS AUX REVÊTEMENTS DES TOPOS

Théorème (2.1). — Soit E un topos localement connexe (i.e. dont tout objet est somme d'objets connexes) et localement simplement connexe (i.e. admettant un système de générateurs qui sont 1-connexes)². Alors la catégorie E_{lc} des objets localement constants de E est un topos multigaloisien, et l'inclusion

$$(2.1.1.) E_{lc} \hookrightarrow E$$

commute aux \varprojlim finies (NB en fait, sans hypothèses sur le topos E, E_{lc} est stable par \varinjlim finies) et aux \varprojlim quelconques.

Définition (2.2). — On dénote ce topos par $E_{[1]}$, on l'appelle l'enveloppe multigaloisienne de E, et le morphisme de topos transposé de l'inclusion (2.1.1.) :

$$E \longrightarrow E_{[1]}$$

prend le nom de morphisme canonique.

N.B C'est l'équivalent en théorie des topos de l'opération de "tuage des π_i pour $i \geq 2$ ".

On peut définir aussi un $E_{[0]}$ et une suite

$$E \longrightarrow E_{\lceil 1 \rceil} \longrightarrow E_{\lceil 0 \rceil}$$

²N.B. peut-être faut-il supposé que *E* ait "assez de points" i.e. assez de foncteurs libres...

 $[E_{[0]}]$ est le topos discret défini par $\pi_0(E)$, qui a un sens satisfaisant dès que E localement connexe ...]. Moyennant des hypothèses convenables sur E (du type "locale contractibilité"), on doit pouvoir définir les $E_{[i]}$ pour tout $i \in \mathbb{N}$, et des morphismes canoniques

$$E \longrightarrow \dots E_{\lceil i \rceil} \longrightarrow E_{\lceil i-1 \rceil} \longrightarrow \dots E_{\lceil 1 \rceil} \longrightarrow E_{\lceil 0 \rceil}.$$

2.3. Le groupoïde fondamental de E se définit comme ayant pour objets les points de E (qui induisent des points de $E_{[1]}$ grâce à $E_{[1]} \longrightarrow E$), et comme morphismes les morphismes de points de $E_{[1]}$. On a donc des foncteurs canoniques

$$\underline{\mathrm{Pt}}(E) \xrightarrow{\alpha} \Pi_{1}(E) \xrightarrow{\beta} \underline{\mathrm{Pt}}(E_{[1]}) \stackrel{\mathrm{def}}{=} \Pi_{1}(E_{[1]})$$

où β est une équivalence (mais pas surjectif sur les objets), et où bien sûr α n'est pas nécessairement une équivalence ni même pleinement fidèle, ou seulement fidèle. Par exemple si E est 1-connexe i.e. $\Pi_1(E)$ équivalent à la catégorie ponctuelle, il ne s'ensuit pas nécessairement que les Hom dans Pt(E) soient tous de cardinal ≤ 1 !

Comme un point P de E définit un point (noté encore P par abus) de $E_{[1]}$, on peut donc définir le revêtement universel de E basé en ce point, comme un objet S 1-connexe de $E_{[1]}$ — il est caractérisé dans E par le fait d'être localement constant, 1-connexe, et muni d'un relèvement

$$P \longrightarrow E_{/S}$$
.

Mais comme α n'est pas une équivalence de catégories (bien qu'il soit essentiellement surjectif si on suppose que E a suffisamment de points...) on ne peut pas dire que tout revêtement universel de E soit défini par un point de E, défini à isomorphisme unique près...

\S 3. — VARIANTES "PRO-MULTIGALOISIENNES"

Respectivement profinies (en se bornant, pour simplifier, au cas des topos localement connexes...)

§ 4. — COMPLÉMENT-REMORD SUR LES CATÉGORIES MULTIGALOISIENNES,

Qui précise l'intention que pour un topos E, la donnée d'un objet $S \in E$ définit un topos induit $E_{/S} \longrightarrow E$, et que S se reconstitue à isomorphisme près par la connaissance du topos induit en tant que topos *au dessus de E*.

Ici, E étant multigaloisien, $E_{/S}$ aussi — et il se pose la question quand un morphisme de topos multigaloisien $E' \longrightarrow E$ peut être considéré comme un morphisme d'induction. Si $C = \Pi_1(E)$, $C' = \Pi_1(E')$, la donnée de $E' \longrightarrow E$ équivaut à la donnée d'un foncteur $C' \longrightarrow C$.

On trouve que $E' \longrightarrow E$ est un morphisme d'induction si et seulement si $C' \longrightarrow C$ est fidèle. Ainsi, on trouve une équivalence entre la catégorie E (des objets E de la catégorie multigaloisienne $E \cong \widehat{C}$, où E est un groupoïde, quelconque si on E ta catégorie dont les objets sont les "groupoïdes E' au dessus de E', avec un foncteur structural $E' \longrightarrow E'$ fidèle, les morphismes de E' dans E' étant les classes d'isomorphie d'une couple E' d'un foncteur E' et d'un isomorphisme de foncteurs E' est un morphisme de foncteurs E' et d'un isomorphisme de foncteurs E' est un morphisme d'une couple E' et d'un isomorphisme de foncteurs E' est un morphisme d'une couple E' et d'un foncteur E' et d'un isomorphisme de foncteurs E' est un morphisme d'une couple E' et d'un foncteur E' et d'un isomorphisme de foncteurs E' et d'une couple E' et d'un foncteur E' et d'un isomorphisme de foncteurs E' et d'une couple E' et d'une couple E' et d'une couple E' et d'un foncteur E' et d'une couple E' et d'un foncteur E' et d'une couple E' et d'une coupl

$$C_1' \xrightarrow{f} C_2'$$

$$\downarrow p_1 \qquad \downarrow p_2$$

$$C$$

³un peu vif

⁴Préciser les isomorphismes entre couples (f, α) et (g, β) ...

Dans le cas où par exemple C est la catégorie réduite à un seul objet, avec groupe d'automorphisme G, cette description de la catégorie $E = \operatorname{Ens}(G)$ est évidemment un peu lourde, mais elle s'insère bien dans certains contextes plus bas.

Ainsi, si k est un corps de base, la catégorie E des schémas étales sur k est décrit, en termes d'une clôture séparable k_s de k et du groupe profini $\Gamma = \operatorname{Gal}(k_s/k)$, comme les groupoïdes profinis au dessus du groupoïde profini (pt, Γ)...Nous voulons insérer cette description dans une "description" "galoisienne" de [certains] schémas [lisses quasi-projectifs de dimension ≤ 1] sur k, du moins si k corps de type fini sur k.

§ 5. — INTRODUCTION DU CONTEXTE ARITHMÉTIQUE; "CONJECTURE ANABÉLIENNE" FONDAMENTALE

Soit K une extension de type fini de \mathbb{Q} , et choisissons une clôture algébrique \overline{K} de K. On pose $\Gamma = \operatorname{Gal}(\overline{K}/K)$.

- **5.1**. Nous considérons des couples (X, S), où :
- a) X est un schéma projectif et lisse sur K, de dimension ≤ 1 ;
- b) *S* est sous-schéma fini réduit de *X* (donc fini étale sur *K*) contenu dans la réunion des composantes irréductibles de dimension 1 de *X*.

Les morphismes $(X',S') \longrightarrow (X,S)$ seront par définition les morphismes de schémas

$$f: X' \longrightarrow X$$

tels que

$$S' = f^{-1}(S)_{\text{red}}$$

i.e. tels que supp $S' = f^{-1}(\text{supp}S)$.

Nous cherchons une "description galoisienne" de cette catégorie, ou tout au moins d'une sous-catégorie pleine V_K que nous allons définir maintenant.

Lemme (5.2). — Soit Ω un corps algébriquement clos, X une courbe projective lisse connexe sur Ω , S une partie finie de $X(\Omega)$, $U = X \setminus S$, g le genre de X et $n = \operatorname{card} S$. Conditions équivalentes :

- a) $\pi_1(U)$ non abélien,
- b) Aut(U) fini,
- c) pour tout schéma connexe réduit X de type fini sur Ω , l'ensemble des morphismes non constants de X dans U est fini,
- d) on est dans l'un des trois cas suivant : 1°) $g \ge 2$ 2°) g = 1, $n \ge 1$ 3°) g = 0, $n \ge 3$
- e) (si $\Omega \subset \mathbb{C}$) le revêtement universel de $X(\mathbb{C})\backslash S(\mathbb{C})$ est isomorphe au demi plan de Poincaré,
- f) (??) (si $\Omega = \overline{\mathbf{Q}}$, $S \neq \emptyset$) Le revêtement universel de $X \setminus S = U$ est isomorphe à celui de $\mathbb{P}^1_{\Omega} \setminus \{0, 1, \infty\}$.

Définition (5.3). — On dit alors que (X, S) est anabélien.

Comme cette condition est (par d) par exemple) invariante par extension du corps de base algébriquement clos, on étend cette définition au cas d'un couple (X,S), avec (X,S) comme dans (5.1) (NB On regarde séparément les composantes connexes de $X_{\overline{K}}$...). Dorénavant, dans (5.1) nous allons nous borner au cas de couples (X,S) anabéliens.

(5.4). À un couple (X, S) (pas nécessairement anabélien) — plus généralement à tout schéma X localement de type fini sur S, on associe un objet "de nature galoisienne" [à] savoir le groupoïde fondamental (profini) $\Pi(X)$ de X (formé si on veut des revêtements universel de X), muni d'un foncteur canonique

$$\Pi_1(X) \longrightarrow \Pi_1(K)$$

$$\approx \downarrow$$
 $[\operatorname{Tors}(\Gamma)]$

Un morphisme de *K*-schémas

$$X' \xrightarrow{f} X$$

définit un foncteur

$$\Pi_1(X') \xrightarrow{\Pi_1(f)} \Pi_1(X)$$

et un isomorphisme α de commutation

On trouve ainsi un foncteur, de la catégorie des schémas localement de type fini X sur K, dans la "catégorie des groupoïdes profinis sur $\Pi_1(K)$ ", définie comme au n°4.

Quand on passe à la catégorie des schémas localement de type fini connexes, munis d'un point géométrique au dessus de \overline{K}/K^5 (i.e. d'un $x \in X$, d'une clôture séparable $\overline{k(x)}$ de k(x) et d'un K-morphisme $\overline{K} \hookrightarrow \overline{k(x)}$), cela correspond à un foncteur des K-schémas localement de type fini et connexes, ponctués sur \overline{K}/K (au ses précédent) vers la catégorie des groupes profinis π munis d'un homomorphisme (de groupes profinis)

$$\pi \longrightarrow \Gamma$$

(dont l'image sera d'ailleurs nécessairement ouverte donc d'indice fini, pour des objets provenant de X comme [ci-]dessus).

Conjecture (5.5)⁶ — La restriction du foncteur précédent $X \mapsto (\Pi_1(X) \operatorname{sur} \Pi_1(K))$ aux schémas projectifs lisses de dimension ≤ 1 et anabéliens (i.e. tels que (X,S) soit anabélien, où S est la réunion des composantes de dimension S0) est pleinement fidèle.

Il revient au même de dire ceci:

Définition (5.5 bis). — Le foncteur qui, à tout X comme dans (5.5.) et de plus connexe, (de dimension 0 ou 1), muni d'un point géométrique ξ au dessus de \overline{K} , associe le groupe profini $\pi_1(X,\xi)$ sur $\Gamma = \pi_1(K,\xi)$, est un foncteur pleinement fidèle.

⁵il vaut mieux dire : munis d'un revêtement universel...

 $^{^{6}}$ c'est un peu faux cf n° 9

Il faut quand même expliciter les morphismes $(X, \xi) \longrightarrow (X', \xi')$ dans la catégorie de départ : morphismes de K-schémas $X \stackrel{f}{\longrightarrow} X'$, munis d'un morphisme de $\Pi_1(X')$ (ou classe de chemins) $f(\xi) \simeq \xi'$.

Ces conjectures se réduisent à la théorie de Galois, pour des X de dimension 0. Pour des X de dimension 1, elles ne concernent que des X tels que les composantes connexes de $X_{\overline{K}}$ soient de genre ≥ 2 (ou, ce qui revient au même, introduisant l'extension finie $K' = H^0(X, \underline{\mathcal{O}}_X)$) de K, de sorte que X soit géométriquement connexe sur K', tel que X comme courbe algébrique sur K' soit de genre ≥ 2 . On voit aisément (prenant $X' = \operatorname{Spec}(K)$, $X = \mathbb{P}^1_K$ courbe elliptique sur K) qu'elles deviennent fausses sinon — c'est pourquoi il a fallu introduire S, plus l'hypothèse anabélienne sur (X,S), pour associer à (X,S) une structure plus riche que $\Pi_1(X)$ sur $\Pi_1(K)$. On trouvera des conjectures (par exemple) pour X courbe géométriquement connexe sur K de genre 1 (resp. 0), *pourvu* que S soit de degré ≥ 1 (resp. ≥ 3).

§ 6. — ANALYSE LOCALE DE (X, S) EN UN $s \in S$

On s'intéresse au cas où dim, (X) = 1, i.e. où s n'est pas point isolé dans X.

Soit $\underline{\mathcal{O}}_s$ le hensélisé (ou le complété, si on y tient) de $\underline{\mathcal{O}}_{X,s}$, K_s son corps de fractions, $D_s^* = \operatorname{Spec}(K_s)$, on identifie s à $\operatorname{Spec} k(s)$ (k(s) est le corps résiduel de l'anneau-jauge $\underline{\mathcal{O}}_s$). Considérons $D_s = \operatorname{Spec}(\underline{\mathcal{O}}_s)$ ("disque arithmétique relatif à k(s)"), donc $D_s^* = D_s \setminus \{s\} =$ ("disque épointé") $\longrightarrow D_s$, on a :

(6.1)
$$\Pi_{1}(D_{s}^{*}) \xrightarrow{fideles} \Pi_{1}(D_{s}) \xrightarrow{fideles} \Pi_{1}(K)$$

$$\Pi_{1}(s)$$

Pour le choix d'un point géométrique ξ_s de D_s^* sur \overline{K}/K (i.e. d'une clôture algébrique \overline{K}_s de K_s et d'une K-injection $\overline{K} \hookrightarrow \overline{K}_s$), ce diagramme de groupoïdes se reflète en un homomorphisme de groupes 7 de

$$(6.2) \qquad \begin{array}{c} \pi_1(D_s^*, \xi_s) & \xrightarrow{\text{surjectif}} & \pi_1(k(s), \xi_s) & \xrightarrow{\text{injectif}} & \Gamma \\ \\ - & & \\ - & & \\ Gal(\overline{K_s}/K_s) & & Gal(\overline{k(s)}/k(s)) \end{array}$$

dont le noyau, on le sait par Kummer, est canoniquement isomorphe à $T(\overline{k}_s) \simeq T(\overline{K}_s)$ [$\simeq T(\overline{K})$]. On veut exprimer la donnée de cet isomorphisme privilégié

 $^{{}^7{}m NB}$ Le choix de \overline{K}_s implique un choix de \overline{k}_s — c'est la flèche pointillée (6.1).

comme une structure supplémentaire sur (6.1) — i.e. sur le groupoïde $\Pi_1(D_s^*)$ sur $\Pi_1(s)$ (ou sur $\Pi_1(K)$). On peut le dire ainsi. Si à tout $\xi \in \Pi_1(D_s^*)$, on associe le noyau de

$$Aut(\xi) \longrightarrow Aut(i(\xi))$$

(qui est aussi le noyau des composés

$$\operatorname{Aut}(\xi) \longrightarrow \operatorname{Aut}(i(\xi)) \longrightarrow \operatorname{Aut}(p_s(\xi) = q_s(i_s(\xi)))$$

on trouve un groupe *abélien*, qui ne dépend (à isomorphisme canonique près) que de $i(\xi) = \xi'$ [ceci, et la suite de la phrase, marche chaque fois qu'on a un foncteur de groupoïdes connexes à noyau abélien et surjectif sur les Hom], et pour ξ' variable forme un système local sur $\Pi_1(D_s)$, qu'on peut appeler le π_1 relatif du groupoïde $\Pi_1(D_s^*)$ sur le groupoïde $\Pi_1(D_s)$. Ceci dit, on a un isomorphisme de systèmes locaux de groupes

$$\pi_1(\Pi_1(D_s^*) \operatorname{sur} \Pi_1(D_s)) \simeq q_s^*(\mathscr{T}_K)$$

où \mathcal{T}_K est le système local de Tate sur K.

Posons maintenant

$$D_S = \coprod_{s \in S} D_s$$
 ("multidisque arithmétique en S")

$$D_S^* = \coprod_{s \in S} D_s^*$$
 ("multicouronne arithmétique en S")

On a un homomorphisme de groupoïdes

$$\Pi_1(D_S^*) \xrightarrow{\sigma_s} \Pi_1(S) \quad (\xrightarrow{j_s} \Pi_1(K))$$

et un isomorphisme canonique

$$\pi_1(\Pi_1(D_S^*)/\Pi_1(S)) \simeq j_S^*(\mathcal{T}(K))$$

Ceci posé, on a aussi un morphisme

$$D_S^* \xrightarrow{\rho_S} X \backslash S$$

induisant

$$\Pi_1(D_S^*) \xrightarrow{\Pi_1(\rho_S)} \Pi(X \setminus S).$$

§ 7. — REFORMULATION "BORDÉLIQUE" DE LA CONJECTURE (LE PURGATOIRE NÉCESSAIRE . . .)

Ainsi, à (X, S) comme dans **5.1.**, on associe :

- 1°) Trois groupoïdes (profinis) Π_U , Π_D , Π_{D^*} (en plus de $\Pi_e=\Pi_1(\operatorname{Spec}(K))(\simeq \operatorname{Tors}(\Gamma))$).
- 2°) Quatre foncteurs (de groupoïdes profinis) :

3°) Un isomorphisme de commutation

$$\alpha:\varphi\rho\simeq \psi\sigma$$

(qui est même l'identité dans le cas de système provenant de (X,S), mais il vaut mieux oublier qu'il en soit ainsi). Ces données satisfaisant aux conditions préliminaires

a) σ induit un isomorphisme sur les π_0 , et des épimorphismes sur les Hom, et il est à noyau abélien ;

- b) ψ est fidèle
- [c) ρ est fidèle...
 - d) φ est épimorphique modulo groupes finis sur les Aut...]

La condition a) permet déjà de définir le π_1 relatif $\pi_1(\sigma) = \pi_1(\Pi_{D^*}/\Pi_D)$, qui est un système local de groupes abéliens sur Π_D i.e. un foncteur $(\Pi_D)^\circ \longrightarrow \text{Ens}$, et la dernière donnée

4°) Un isomorphisme kummérien

$$\chi : \pi_1(\sigma) \simeq \psi^*(\mathscr{T})$$

Si on a deux systèmes de cette nature $\Pi = (\Pi_U, \Pi_D, \Pi_{D^*}, \varphi, \psi, \rho, \sigma, \alpha, \varkappa)$ et $\Pi' = (\Pi_U, \ldots)$, un *morphisme* de Π' dans Π est un système de trois foncteurs

$$f_U:\Pi'_U\longrightarrow\Pi_U$$

$$f_D:\Pi'_D\longrightarrow\Pi_D$$

$$f_{D^*}:\Pi'_{D^*}\longrightarrow\Pi_{D^*}$$

et de quatre isomorphismes de commutation $\alpha_{D^*,D}$, $\alpha_{D^*,U}$, $\alpha_{U,e}$, $\alpha_{D,e}$, pour les quatre faces du prisme :

satisfaisant une équation de compatibilité avec α , α' que je n'écris pas — signifiant que les *deux* isomorphismes u, v de foncteurs

$$\Pi'_{D^*} \xrightarrow[\operatorname{id} \circ \sigma' \circ \sigma']{\varphi \circ \rho \circ f_{D^*}} \Pi_e$$

obtenus respectivement, u en utilisant successivement α , $\alpha_{D^*,D}$, $\alpha_{D,e}$, v en utilisant successivement $\alpha_{D^*,U}$, $\alpha_{U,e}$, α' , sont égaux. [Cette compatibilité pourrait s'exprimer en interprétant la donnée de Π comme celle d'une catégorie fibrée Π sur la "catégorie carrée"

(où $\varphi_0 \rho_0 = \psi_0 \sigma_0$) à restriction à $\{e\}$ imposée, et en prenant des foncteurs cartésiens entre catégories fibrées...]. De plus, on exige une autre compatibilité, savoir que l'homomorphisme de systèmes locaux en groupes abéliens sur Π'_D

$$\pi_1(\sigma') \longrightarrow (f_D)^*(\pi_1(\sigma))$$

défini à l'aide de f_{D^*} , f_D , $\alpha_{D^*,D}$ rende commutatif le diagramme suivant d'isomorphismes de systèmes locaux sur Π_D^{\prime} 8:

$$(f_{D^*})^*(\pi_1(\sigma)) \longleftarrow \pi_1(\sigma')$$

$$(f_{D^*})^*(x) \downarrow \sim \qquad \qquad \sim \uparrow_{x'}$$

$$(f_{D^*})^*(\psi^*(T)) \qquad \qquad \psi'(T)$$

$$\underset{\text{can.}}{\text{can.}} \downarrow \sim \qquad \qquad \downarrow^{x}$$

$$(\psi f_D)^*(T)$$

(où x est déduit de $\alpha_{D,e}: \psi' \simeq \psi \circ f_D$)

⁸non, cela ne marche que pour le cas de morphismes étales, sinon il faut faire intervenir la multiplication par les "degrés de ramifications" $d_{i'}$ ($i' \in \pi_0(\Pi'_{D^*})$.

Pour Π , Π^* fixés, les systèmes $(f_{\alpha} = (f_U, f_D, f_{D^*}, \alpha_{D^*,D}, \alpha_{D^*,U}, \alpha_{U,e}, \alpha_{D,e}))$ précédents forment une catégorie de façon naturelle — en fait un groupoïde — en prenant comme morphismes μ de (f', α') dans (f, α) les triplets de morphismes (foncteurs profinis)

$$f'_U \xrightarrow{\mu_U} f_U, \quad f'_D \xrightarrow{\mu_D} f_D, \quad f'_{D^*} \xrightarrow{\mu_{D^*}} f_D$$

satisfaisant quatre conditions de compatibilité avec $\alpha_{D^*,D}$ et $\alpha'_{D^*,D}$, avec $\alpha_{D^*,U}$ et $\alpha'_{D^*,U}$ avec $\alpha_{U,e}$ et $\alpha'_{U,e}$, avec $\alpha_{D,e}$ et $\alpha'_{D,e}$ respectivement (i.e. on travaille avec une sous-catégorie pleine de la catégorie des <u>Hom</u> entre catégories fibrées sur Q, à fibre en e fixée...).

J'ai l'impression que le groupoïde $\underline{\mathrm{Hom}}((f',\alpha'),(f,\alpha))$ est toujours rigide , i.e. $\mathrm{Aut}(f,\alpha)$ est toujours réduit au groupe unité — j'ai la flemme de vérifier — donc que si (f',α') et (f,α) son isomorphes, l'isomorphisme en question est unique. Quoi qu'il en soit, on posera

$$\operatorname{Hom}((f',\alpha'),(f,\alpha)) = \pi_0 \operatorname{\underline{Hom}}((f',\alpha'),(f,\alpha))$$

D'où une catégorie des systèmes $\Pi = (\Pi_U, \Pi_D, \Pi_{d^*}, \varphi, \psi, \rho, \sigma, \alpha, \varkappa)$.

On a un foncteur des couples $(X, S)^9$ (où X schéma localement de type fini sur K, S sous schéma fermé de X étale sur K, tels que $\forall s \in S, X$ soit lisse de dimension relative 1 en s) vers cette catégorie bordélique B.

Conjecture bordélique (7.1). — Quand on se borne aux (X, S) tels que X projectif lisse de dimension ≤ 1 , et qui de plus sont anabéliens, alors le foncteur précédent est pleinement fidèle¹⁰.

Description de la catégorie bordélique en termes de théorie de groupes.

Soit $I = \pi_0(\Pi_{D^*}) \simeq \pi_0(\Pi_D)$. Choisissons un élément D_i^* dans chaque composante de Π_{D^*} , et soit $D_i = \sigma(D_i^*)$. Pour tout i, choisissons un isomorphisme

$$\psi(D_i) \xrightarrow{\lambda_i} \operatorname{Spec}(\overline{K})$$

⁹[les] morphismes $(X', S') \longrightarrow (X, S)$ sont les morphismes $f: X' \longrightarrow X$ tels que $f^{-1}(S)_{red} = S'^{-10}$ **N.B.** La fidélité est facile...

Quitte à remplacer l'objet par un "sous-objet" isomorphe on peut supposer que Π_{D^*} est la catégorie somme de catégories $[E_i]$ définis par les $E_i = \operatorname{Aut}(D_i^*)$, Π_D la catégorie somme des catégories $[\Gamma_i]$ définies par les $\Gamma_i = \operatorname{Aut}(D_i)$, le foncteur σ s'exprimant par un système d'homomorphismes

$$\sigma_i: E_i \longrightarrow \Sigma_i \quad (i \in I)$$

qui sont surjectifs de noyaux abéliens, le foncteur ψ par un système d'inclusions $\psi_i : \Gamma_i \hookrightarrow \Gamma$ et la donnée de \varkappa équivaut en fait à des isomorphismes

$$\chi_i : \ker \sigma_i \simeq T(\overline{K})$$

compatibles avec les opérations de Γ_i et de Γ sur les deux morphismes respectivement, et les inclusions ψ_i . On peut dire que la donnée de $(\sigma, \psi, \varkappa)$ est exprimée par la donnée du système $(E_i)_{i\in I}$, d'un système de suites exactes¹¹¹²

$$\boxed{1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} \longrightarrow E_i \xrightarrow{p_i} \Gamma}$$

telles que les $\Sigma_i = \operatorname{Im} p_i$ soient ouverts, et que \varkappa_i soit compatible avec les opérations de $\Sigma_i \simeq \operatorname{Coker} \varkappa_i$ (ou de E_i et Γ sur les deux termes respectivement).

Supposant d'autre part (pour simplifier) Π_U connexe, et choisissant un élément \widetilde{U} de Π_U et un isomorphisme

$$\varphi(\widetilde{U}) \xrightarrow{\lambda_U} \operatorname{Spec}(\overline{k})$$

donc (quitte à remplacer Π_U par un groupoïde équivalent) on peut supposer Π_U réduit à \widetilde{U} , et Π_U est donné alors par un groupe E, et φ par un homomorphisme de groupes

$$E \xrightarrow{\varphi_{\widetilde{U}}, \lambda_U, (\text{ou } p)} \Gamma$$

dont l'image $\Sigma \subset \Gamma$ est encore un sous-groupe ouvert de Γ , et le noyau sera noté π^{13}

$$\boxed{1 \longrightarrow \pi \xrightarrow{x} E \longrightarrow \Sigma \longrightarrow 1}$$

 $^{^{11}}$ **NB** Les extensions des Γ_i par $T(\overline{K})$ obtenues par des situations géométriques splittent le choix d'une uniformisante en s_i définit un splittage, et même [seulement?] le choix d'une base de l'espace tangent en $s_{...}$

¹²Re N.B. Deux bases différents définissent des scindages différents!

 $^{^{13}}$ N.B. Dans la situation géométrique cette extension de *noyaux de groupes* splitte, i.e. il existe un sous-groupe ouvert Σ_{\circ} dans σ , et un relèvement $\Sigma_{\circ} \longrightarrow E...$

Ayant remplacé Π_U initial par une sous-catégorie pleine plus petite, on sera obligé de modifier ρ à isomorphisme près, pratiquement en choisissant pour chaque $i \in I$ un isomorphisme

$$\rho(D_i) \xrightarrow{\mu_i} \widetilde{U}$$

moyennant quoi ρ s'explicite simplement par des homomorphismes de groupes

$$\rho_i: E_i \longrightarrow E$$

Il reste à expliciter l'isomorphisme de commutation

$$\alpha:\varphi\rho\longrightarrow \psi\sigma$$

qui est défini par un système d'éléments

tels que

$$\varphi \circ \rho_i = \operatorname{int}(\gamma_i) \circ \rho_i$$

ce qui implique d'ailleurs que ρ_i applique $\ker \rho_i$ dans $\ker \rho$, i.e. induit un homomorphisme de suites exactes

$$1 \longrightarrow T(\overline{K}) \longrightarrow E_i \longrightarrow \Gamma_i \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{\rho_i} \qquad \downarrow$$

$$1 \longrightarrow \pi \longrightarrow E \longrightarrow \Gamma_0 \longrightarrow 1$$

avec un homomorphisme induit $\Gamma_i \longrightarrow \Gamma_0$ injectif — et ceci posé, la relation de compatibilité (*) devient une relation sur des monomorphismes de groupes

$$\Gamma_i \hookrightarrow \Gamma$$

$$\downarrow$$

$$\Gamma_0 \hookrightarrow \Gamma.$$

[Les "objets bordéliques simplifiés" sont donc les systèmes d'homomorphismes de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma_i$$

$$\downarrow \rho_i^{\circ} \qquad \downarrow \rho_i \qquad \downarrow \inf(\gamma_i)$$

$$1 \longrightarrow \pi \xrightarrow{x} E \xrightarrow{p} \Gamma_0$$

]

Ainsi, on a une description relativement simple des systèmes bordéliques "réduit" (i.e. où dans les groupoïdes Π_U , Π_{D^*} , Π_D , chaque composante connexe a exactement un objet, et où de plus on force en quelque sorte $\Pi(K)$ a n'avoir que l'objet $\operatorname{Spec}(\overline{K})$. Mais on est retrouvé en [ne] tournant pas la détermination des morphismes des systèmes

$$G = (I, G_i, p_i, K_i, E, \underbrace{\varphi}_{\text{ou}}, \rho_i, \gamma_i)$$
 et $G' = (I', G'_i, \ldots),$

disons dans le sens $f: G' \longrightarrow G$. Il faut donc (pour f_{D^*}) une application

$$\boxed{\tau = \tau_f : I' \longrightarrow I}$$

et pour tout i un homomorphisme

$$G'_{i'} \xrightarrow{f_{i'}} G_{\tau i'}$$

induisant (compte tenu de f_D) par passage au quotient des homomorphismes

$$\Gamma'_{i'} \xrightarrow{g_i} \Gamma_{\tau i'}$$

de sous groupes ouverts de Γ , et la donnée $f_{D^*}, f_D, \alpha_{D^*,D}, \alpha_{D,e}$ équivaut donc à la donnée d'éléments α_i $(i \in I)$ de Γ ,

$$\boxed{\alpha_{i'}\!\in\!\Gamma} \quad (i'\!\in\!I')$$

tels que

$$g_{i'}(\gamma') = \operatorname{int}(\alpha_{i'})(\gamma') \quad \forall i' \in I', \gamma' \in \Gamma'_{i'}$$

La donnée de f_U équivaut à la donnée d'un homomorphisme de groupes

$$f_E: E' \longrightarrow E$$

celle de $\alpha_{D,e}$ équivaut à la donnée de

$$\alpha \in \Gamma$$

tel que

$$\varphi f_E = \operatorname{int}(\alpha) \varphi$$

de sorte que f_E induit un homomorphisme de suites exactes

et moyennant cela, la condition dite (*) devient une condition sur des inclusions de sous-groupes de γ :

$$f_{\sigma_0}(\gamma') = \operatorname{int}(\alpha)\gamma'$$
 si $\gamma' \in \sigma_0'$.

Il faut expliciter encore (en plus de f_{D^*} , f_D , f_U , $\alpha_{D^*,D}$, $\alpha_{D,e}$, $\alpha_{U,e}$ déjà explicités) la donnée de commutation $\alpha_{D^*,U}$, et écrire les conditions de compatibilités avec α , α' et κ , κ' . La donnée de $\alpha_{D^*,U}$ équivaut à celle de systèmes d'éléments

$$\beta_{i'} \in E' \quad (i' \in I')$$

tels que l'on ait, dans le diagramme

$$G'_{i'} \xrightarrow{\rho'_{i'}} E'$$

$$f_{i'} \downarrow \qquad \qquad \downarrow f_E$$

$$G_{\tau i'} \xrightarrow{\rho_{\tau i'}} E$$

la relation

$$f_E \rho'_{i'} = \operatorname{int}(\beta_i) \rho_{\tau i'} \circ f_{i'}$$

Reste à exprimer les deux compatibilités de $(f_{D^*}, f_{D^1}, F_U, \alpha_{D^*,D}, \alpha_{D,e}, \alpha_{D^*,U}, \alpha_{U,e})$ avec lui même et avec x — la deuxième compatibilité est simplement la compatibilité des $f'_{i'}$ avec les $x'_{i'}, x_i$, i.e.

$$f'_{i'} \circ \chi'_{i'} = \chi_i \quad (i = \tau i')$$

et la première sauf erreur s'exprime par la "commutativité"

$$\boxed{\alpha_{i'} = \gamma_i^{-1} p(\beta_{i'}^{-1}) \alpha \gamma_{i'}'} \quad \forall i' \in I'$$

En résumé les homomorphismes, dans un système de diagrammes commutatifs

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

$$\downarrow \qquad \qquad \downarrow \rho_i \qquad \downarrow \operatorname{int}(\gamma_i) \qquad (i \in I)$$

$$1 \longrightarrow \pi \longrightarrow E \xrightarrow{p} \Gamma$$

d'un système analogue, relatif à un ensemble d'indices I', est donné par une application

$$\tau: I' \longrightarrow I$$

et pour tout $i' \in I'$, posant $i = \tau(i')$, d'un système de flèches verticales $f_{i'}: E'_{i'} \longrightarrow E_i$, et d'une flèche verticale $f_E: E' \longrightarrow E$, enfin d'un système d'éléments $\beta_{i'} \in E$ et d'un $\alpha \in \Gamma$, s'insérant dans le système de diagrammes¹⁴

¹⁴N.B. Comme les $E_i \longrightarrow E$ sont injectifs, $f_{i'}$ est connu quand on connaît f_E et $\beta_{i'}$, (l'existence de $f_{i'}$ est donc une condition sur les couples f_E , $\beta_{i'}$ savoir que $\operatorname{int}(\beta_{i'})^{-1}f_E\rho_{i'}$ applique $E_{i'}$ dans $p_i(E_i)$. On peut supposer les $\gamma_{i'}$, γ_i égaux à 1 (en choisissant l'isomorphisme de $\psi(\sigma(D_i^*))$ avec $\operatorname{Spec}(\overline{K})$ via l'isomorphisme de $\varphi(\rho(D_i^*)) = \varphi(\widetilde{U})$ avec $\operatorname{Spec}(\overline{K})$ [?])

où on a posé

$$\alpha'_i = \gamma_i^{-1} p(\beta_i^{-1}) \alpha \gamma'_{i'}$$
 i.e. $\alpha \gamma'_{i'} = p(\beta_i) \gamma_i \alpha_{i'}$

et où la face verticale postérieure des prismes est commutative (deux conditions, sur deux carrés), la face verticale antérieure aussi (c'est *une* condition, sur le carré de droite, l'autre carré commutatif s'en déduit par définition de $\pi' \longrightarrow \pi$ comme induit par f_E ...), la face verticale gauche du cube de droite étant commutative modulo l'isomorphisme de commutativité int($\beta_{i'}$), et la face verticale droite étant commutative (non seulement, par la condition précédente, sur $\sum_{i'} = \text{Im}(E'_{i'} \xrightarrow{p'_{i'}} \Gamma)$, mais sur Γ tout entier) en vertu de la relation plus précise.

Conjecture bordélique précisée (correspondant aux Π_U connexes). — Ces objets sont les homomorphismes de groupes profinis

$$E \xrightarrow{p} \Gamma$$

(donnant naissance à une suite exacte

$$1 \longrightarrow \pi \xrightarrow{x} E \xrightarrow{p} \Gamma$$

et un ensemble fini de sous-groupes (indexés par un ensemble I d'indices)

$$E_i \stackrel{\varphi_i}{\longleftrightarrow} E,$$

et d'isomorphismes

$$E_i \cap \pi \xrightarrow{\kappa_i} T(\overline{K})$$

Un homomorphisme d'un système $(E', p', (E'_{i'})_{i' \in I'}, (x'_{i'})_{i' \in I'})$ dans un système $(E, p, (E_i)_{i \in I}, \dots)$ est donné par un homomorphisme

$$f: E' \longrightarrow E$$

et des $\beta_{i'} \in E$ $(i' \in I')^{15}$, $\alpha \in \Gamma$, tels que l'on ait les conditions :

¹⁵Les $β_{i'}$ pas uniques (si $β_{i'}$ convient aussi $γβ_{i'}$, avec $γ ∈ Im x_i$) Mais α unique ??

- 1°) $p \circ f = \operatorname{int}(\alpha) p'$
- 2°) $\forall i' \in I'$, $\exists i \in I$ (unique!) tel que

$$int(\beta_{i'})^{-1} f(E'_{i'}) = E_i$$

et un entier $d_{i'} \in \mathbb{N}^{*16}$ tel que

$$\operatorname{int}(\beta_{i'}^{-1})f \, \varkappa'_{i'} = \varkappa_i \circ (d_i, \operatorname{id}_{T(\overline{K})})$$

Je me a'perçois qu'il vaut mieux remplacer les $\beta_{i'}$ par les $\beta_{i'}^{-1}$, i.e. prendre l'isomorphisme de commutation plutôt dans le sens

$$f_{\varepsilon}\rho'_{i'} \xrightarrow{\beta_{i'}} \rho_i f_{i'}$$

qu'en sens inverse. De plus, conceptuellement le diagramme

est trop compliqué, il suffit de se donner

$$\boxed{ \Pi_{D^*} \overset{\rho}{-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-} \Pi_U \overset{\varphi}{-\!\!\!\!\!\!-\!\!\!\!\!-} \Pi_e}$$

et de déduire Π_D par factorisation canonique de l'homomorphisme de groupoïdes $\Pi_{D^*} \longrightarrow \Pi_e$ en un homomorphisme qui induit un isomorphisme sur π_0 et un épimorphisme sur les π_1 , suivi d'un homomorphisme qui est [épi. sur π_0 , et pour cause, et qui est] fidèle. Alors les 1-morphismes de

$$\Pi'_{D^*} \xrightarrow{\rho'} \Pi'_{U} \xrightarrow{\varphi'} \Pi_{e}$$

¹⁶N. B. $d_{i'}$ est aussi unique...

dans

$$\Pi_{D^*} \xrightarrow{\ \rho \ } \Pi_U \xrightarrow{\ \varphi \ } \Pi_e$$

sont les quintuplés de 2-foncteurs et 3-isomorphismes de foncteurs $(f_{D^*}, f_U, \alpha_{D^*,U}, \alpha_{U,e}, x)$ donnant un diagramme avec données de commutation 1718

et si on a deux tels 1-morphismes $f=(f_{D^*},f_U,\alpha_{D^*,U},\alpha_{U,e})$ et $g=(g_{D^*},g_U,\beta_{D^*,U},\beta_{U,e})$ un 0-morphisme de f dans g est formé d'un couple (μ_{D^*},μ_U) d'isomorphismes de foncteurs

$$\mu_{D^*}: f_{D^*} \xrightarrow{\sim} g_{D^*}, \quad \mu_U: f_U \xrightarrow{\sim} g_U$$

compatibles avec $\alpha_{D^*,U}$, $\beta_{D^*,U}$ (deux conditions de compatibilités sur les deux carrés).

Si on se borne à des Π_U connexes, on trouve en choisissant comme plus haut un objet \widetilde{U} de Π_U , et un isomorphisme

$$\varphi(\widetilde{U}) \xrightarrow{\lambda} \Omega$$

(où $\Omega = \operatorname{Spec}(\overline{K})$ est l'objet référence de Π_e ...), un groupe E et un homomorphisme

$$E \xrightarrow{\varphi} \Gamma$$

(qui est changé par automorphisme intérieure si on change λ , et E lui même remplacé par un groupe isomorphe, l'isomorphisme défini modulo isomorphisme intérieur, si on change l'objet de référence \tilde{U}). De même, choisissant un \tilde{U}_i dans chaque composante $i \in \pi_0(\Pi_{D^*})$, et un isomorphisme

$$\lambda_i : \rho(\widetilde{U}_i) \simeq \widetilde{U},$$

 $^{^{-17}}$ de plus, $\pi_1(\varphi\rho) = \pi_1(\Pi_{D^*}/\Pi_e)$ peut se définir comme un système local de groupes (commutatifs) sur ΠD^* , et on peut alors définir $\varkappa : (\varphi\rho)^*T_K' \simeq \pi_1(\varphi\rho)$.

¹⁸ avec *une* condition sur le morphisme $\pi_1(\varphi'\rho') \simeq f_{D^*}(\pi_1(\varphi\rho))$ induit, qui modulo les isomorphismes de Kummer doit être la multiplication par un d (indice de ramification) qui est un application $\pi_0(\Pi'_{D^*}) \longrightarrow \mathbf{N}^*$.

on trouve des groupes E_i et des homomorphismes

$$E_i \xrightarrow{\rho_i} E$$

Si on change λ_i , ρ_i est changé par automorphisme intérieur de E. Si on change \widetilde{U}_i , E_i est remplacé par un groupe isomorphe, l'isomorphisme défini à automorphisme intérieur près.

Considérons les composés

$$E_i \xrightarrow{p_i} E$$

$$\Gamma$$

d'où [un?] noyau, x est défini par un système d'isomorphismes

$$T(\overline{K}) \xrightarrow{\kappa_i} \operatorname{Ker} p_i \quad (i \in I)$$

s'insèrent dans une famille de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

(NB l'image de p_i est un sous-groupe ouvert) \varkappa_i étant compatible aux actions de E_i , quand on fait opérer E_i sur $T(\overline{K})$ via l'action de Γ sur $T(\overline{K})$, et su lui même par automorphismes intérieures. Introduisant également $\pi = \operatorname{Ker} p$, on trouve donc un homomorphisme de suites exactes:

$$(D) \qquad 1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

$$\downarrow^{\varepsilon_i} \qquad \downarrow^{\rho_i} \qquad \downarrow \downarrow$$

$$1 \longrightarrow \pi \xrightarrow{x} E \xrightarrow{p} \Gamma$$

 $(i\in I)$. On peut dire que Π_U définit un "groupe extérieur" [E], et $\Pi_U\longrightarrow\Pi_e$ un homomorphisme de groupes extérieures

$$\lceil E \rceil \longrightarrow \lceil \Gamma \rceil$$

de même Π_{D^*} définit un système de "groupes extérieures" $[E_i]$, et $\Pi_{D^*} \longrightarrow \Pi_U$ un système d'homomorphismes extérieurs

$$[E_i] \longrightarrow [E],$$

mais comment en termes de groupes extérieurs exprimer les données de Kummer x_i ?

Revenant aux systèmes de diagrammes D (relatif à un ensemble d'indices I) et à un D' analogue (avec un ensemble d'indices I') :

 $D' \qquad 1 \longrightarrow T(\overline{K}) \xrightarrow{\chi'_{i'}} E'_{i'} \xrightarrow{p_{i'}} \Gamma$ $\downarrow^{\varepsilon'_{i'}} \qquad \downarrow^{\rho'_{i'}} \qquad \downarrow \downarrow$ $1 \longrightarrow \pi \xrightarrow{\chi'} E' \xrightarrow{p'} \Gamma \qquad i' \in I'$

un homomorphisme f de D' dans D s'explicite par

a) Un homomorphisme¹⁹

$$f_E: E' \longrightarrow E$$

[s'explicite en termes du choix d'un isomorphisme

$$\nu: f(\widetilde{U}') \simeq \widetilde{U}$$

(un autre choix modifie f_E par un $int(\beta), \beta \in E$)]

b) Une application²⁰ $\tau: I' \longrightarrow I$, et pour tout $i' \in I'$, posant $i = \tau(i')$, un homomorphisme de groupes

$$E_i \xrightarrow{f'_{i'}} E_i$$

[s'explicite en terme du choix d'un isomorphisme $f_{D^*}(\widetilde{U_{i'}}) \xrightarrow{\nu_i} \Pi_{U_i}$, et modifié par des $\operatorname{int}(\beta_{i'})$, $\beta_{i'} \in E_i$, si on change $\nu_{i'}$]

c) Une donnée de commutation²¹ pour

$$E' \xrightarrow{p'} \Gamma$$

$$E \xrightarrow{p} \Gamma$$

$$\alpha \in \Gamma$$

i.e.

$$pf_E = \operatorname{int}(\alpha)p'$$

 $^{^{19}}$ décrit le foncteur f_U

 $^{^{20}}$ décrit le foncteur f_{D^*}

 $^{^{21}\}alpha$ décrit $\alpha_{U,e}$

d) $\forall i' \in I$ une donnée de commutation²² pour

$$\boxed{\alpha_{i'}\!\in\!\Gamma}\quad (i'\!\in\!I')$$

i.e.

$$p_i f_{i'} = \operatorname{int}(\alpha_{i'}) f_E \rho'_{i'}$$

Notons que c), d) ensemble définissent une donnée de commutation

$$E'_{i'} \xrightarrow{p'_{i'}} \Gamma$$

$$f_{i'} \downarrow \qquad \beta_{i'} \downarrow \qquad \text{avec } \beta_{i'} = p(\alpha_{i'})\alpha$$

$$E_{i} \xrightarrow{p_{i}} \Gamma$$

i.e.

$$p_i f_{i'} = \operatorname{int}(\beta_{i'}) p'_{i'}$$

i.e. on a commutativité dans

$$E'_{i'} \xrightarrow{p'_{i'}} \Gamma$$

$$f_{i'} \downarrow \qquad \sim \inf(\beta_{i'})$$

$$E_i \xrightarrow{p_i} \Gamma$$

donc $f_{i'}$ induit un homomorphisme de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x'_{i'}} E'_{i'} \xrightarrow{p_{i'}} \Gamma$$

$$\downarrow f_{i'}^{\circ} \qquad \downarrow f_{i'} \qquad \downarrow \inf(\beta_{i'})$$

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

 $^{^{22}\}alpha_{i'}$ décrit $\alpha_{D^*,U}$

et il faut exprimer la fonctorialité de $f_{i'}^{\circ}$ avec l'indice de ramification $d_{i'} \in \mathbb{N}$, on trouve

$$f_{i'}^{\circ} = d_{i'} \chi(\beta_{i'}) \operatorname{id}_{T(\overline{K})}$$

où

$$\chi:\Gamma\longrightarrow\widehat{\mathbf{Z}}^{r}$$

est le caractère canonique.

Ceci posé, déterminons, pour un 1-morphisme $f=(f_E,\tau,(f_{i'}),\alpha,(\alpha_i))$ et un autre $f' = (f'_E, \tau', (f'_i), \alpha', (\alpha'_i))$, les 0-morphismes de l'un dans l'autre correspondants à de systèmes d'isomorphismes $\mu_{D^*}:f_{D^*}\longrightarrow f'_{D^*},\ \mu_U:f_U\longrightarrow \mathsf{g}_U.$ Cela correspond [à la] condition

$$au' = au$$
, $\underline{d'_{i'} = d'_i} \quad \forall i' \in I'$
ceci résulte des autres conditions

et à la donnée de

a) $\mu \in E^{23}$ définissant un isomorphisme entre $f_E: E' \longrightarrow E$ et $f'_E: E' \longrightarrow E$ i.e. tel que

$$f_E' = \operatorname{int}(\mu) f_E$$

b) $\mu_{i'} \in E_i$ 24 $(i' \in I', i = \tau(i'))$ satisfaisant

$$f'_{i'} = \operatorname{int}(\mu_{i'}) f_{i'}$$

ceci implique déjà $d_{i'}=d'_{i'}$. Les $\mu\in E$, $\mu_{i'}\in E_i$ étant liés aux α , α' ($\in E$), aux $\alpha_{i'}$, $\alpha'_{i'}$ ($\in \Gamma$) de la façon suivante

$$\alpha' = p(\mu)\alpha$$

$$\boxed{\alpha'_{i'} = \rho_i(\mu_{i'})\alpha'} \quad \forall i' \in I'$$

ou encore

$$\begin{bmatrix} \alpha'_{i'} = \rho_i(\mu_{i'})\alpha' \end{bmatrix} \quad \forall i' \in I'$$

$$\begin{cases} p(\mu) = \alpha'\alpha^{-1} \\ \rho_i(\mu_{i'}) = \alpha'_{i'}\alpha_{i'}^{-1} \end{cases}$$

 $^{^{-23}}$ décrit μ_U

 $^{^{24}}$ décrit μ_{D^*}

Notons que, comme ρ_i est injectif, les deuxièmes relations, donnant les $\rho_i(\mu_{i'})$, déterminent les $\mu_{i'}$ de façon unique, l'existence de ces $\mu_{i'}$ équivaut aux relations

$$\boxed{\alpha_{i'}\alpha_{i'}^{-1} \in \rho_i(E_i)} \qquad i' \in I'$$

Quant à la relation $p(\mu) = \alpha' \alpha^{-1}$, elle détermine μ modulo multiplication (à droite disons) par un $\mu_0 \in \operatorname{Ker} p = \pi$, mais qui doit être tel que l'on ait encore

$$f_E' = \operatorname{int}(\mu \mu_0) f_E$$

(en plus de $f'_E = \operatorname{int}(\mu) f_E$) ce qui signifie que

$$\operatorname{int}(\mu_0) f_E = f_E$$

i.e.

$$\rho_0 \in \operatorname{Centr}_{\Pi} f_E(E')$$

C'est donc cela l'indétermination exacte dans le choix d'un 0-morphisme des 1-morphismes f et f' de D' dans D.

Si par exemple on est dans les conditions où $\pi \longrightarrow \pi$ induit par $f_E : E' \longrightarrow E$ a une image d'indice fini (image ouverte) — cas d'un "morphisme non constant" ! — alors μ_0 doit centraliser un sous-groupe ouvert de π — sauf erreur cela aussi implique $\mu_0 = 1$, donc il semble bien que (dans les cas correspondants à des homomorphismes dominants de courbes algébriques) une 0-morphisme d'un f dans un f' (s'il existe) est unique, i.e. $\underline{\operatorname{Hom}}(D',D^*)$ est une catégorie $\operatorname{discrète}$.

On peut interpréter D comme E muni de sous-groupes $E_i \subset E$, et de $p: E \longrightarrow \Gamma$, (noyau π) enfin d'isomorphismes

$$\chi_i: T(\overline{K}) \xrightarrow{\sim} E_i \cap \pi = L_i$$

(commutant à l'action de E_i). Si on a une autre système $(E', (\underbrace{E'_{i'}}_{i'})_{i' \in I'}, p' : E' \longrightarrow \Gamma, (\varkappa'_{i'})_{i' \in I'})$, un morphisme du premier dans le second est *défini* par un

$$f: E' \longrightarrow E$$

satisfaisant les conditions suivantes

- a) $\forall i' \in I', \exists i \in I$ tel que $f(E_i')$ soit contenu dans un conjugué de E_i [soit $\alpha_{i'} \in E$ tel que $f(E_i') \subset \operatorname{int}(\alpha_{i'}^{-1}(E_i))$] i.e. $\operatorname{int}(\alpha_{i'}) f(E_i') \subset E_i$.
- b) pf est conjugué de f' [soit $\alpha \in \Gamma$ tel que $pf = \operatorname{int}(\alpha)p'$]

NB Le $i \in I$ correspondant à $i' \in I'$ est unique, d'où $\tau : I' \longrightarrow I$. Si les $\alpha_{i'}$ sont choisis, on déduit $\forall i'$ [un] homomorphisme induit $f_{i'} : E'_{i'} \longrightarrow E_i$, $f_{i'} = (\operatorname{int}(\alpha_{i'}) \circ f)/E'_{i'}$, qui induit dès lors, via les $\alpha_{i'}$, $\alpha_{i'}$, un endomorphisme $f_{i'}^{\circ} : T(\overline{K}) \longrightarrow T(\overline{K})^{25}$. On exige que $\alpha \in \Gamma$ (qui conjugue f_E en f_E' , et est probablement uniquement déterminé par cette condition) et $\alpha_{i'}$ (qui est sans doute déterminé modulo composition à gauche avec élément du normalisateur de $\alpha_{i'}$ (du moins des transporteurs des $\alpha_{i'}$ d'un sous-groupe ouvert de $\alpha_{i'}$ est itou si $\alpha_{i'}$ est isomorphisme) puissent être choisis de telle façon que, posant $\alpha_{i'} = \beta_{i'}$, on ait

$$f_{i'}^{\circ} = (d_{i'}\chi(\beta_{i'})) \operatorname{id}_{T(\overline{K})}$$
 i.e. $\chi_{i'} = d_{i'}\chi(\beta_{i'})$

où $d_{i'} \in \mathbb{N}^*$ est un entier naturel (évidement uniquement déterminé quand α et les $\alpha_{i'}$ sont choisis)²⁶.

²⁵**NB** A priori $f_{i'}^{\circ}$ est la multiplication par un $\chi_{i'} \in \widehat{\mathbf{Z}}^*$; le centralisateur dans Γ d'un sous-groupe ouvert est réduit à l'unité.

²⁶Cette condition sur les systèmes des $\alpha_{i'}$ ne change pas (α restant fixé) si on change $\alpha_{i'}$ en $\mu_{i'}\alpha_{i'} \in E_i$.

§ 8. – RÉFLEXIONS TAXONOMIQUES

Le cas $\dim X = 0$ se traduit sur le paradigme du système

$$(T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{\rho_i} E \xrightarrow{p} \Gamma)$$

par la condition p injectif et donc $I=\varnothing$ — donc ce cas se décrit simplement par la donnée d'un sous-groupe ouvert de $E\hookrightarrow \Gamma$, i.e. une sous-extension finie L de \overline{K}/K (NB on aura bien sûr $X'=\operatorname{Spec} L$, et le choix faits sur X — i.e. sur $\Pi_{D^*}(=\varnothing)\longrightarrow \Pi_U\longrightarrow \Pi_e$ — aboutissant à cette description, reviennent ici au choix d'une telle K-immersion de $L=\operatorname{H}^0(X,O_X)$ dans \overline{K}/K).

Le cas dimX=1 se traduit par le fait que $E\longrightarrow \Gamma$ n'est pas injectif — quand à I, il peut être vide ou non dans ce cas. S'il est vide, la description se fait donc simplement en termes d'un homomorphisme de groupes profinis $E\stackrel{p}{\longrightarrow}\Gamma$ (où Γ donnée d'avance = $\operatorname{Gal}(\overline{K}/K)$) = $\operatorname{Aut}_{\Pi}(\Omega)$).

Supposons données maintenant à la fois $D=(E,p,I,(\rho_i:E_i\hookrightarrow E),(\varkappa_i:T(\overline{K})\longrightarrow E_i))$ et $D'=(E',p',I',(\rho_i'),(\varkappa_i'))$, et revenons à la question de la description des morphismes de D' dans D. On va distinguer quatre cas suivant les deux valeurs possibles 0, 1 de $n=\dim D$ et $n'=\dim D'$ respectivement.

I) n = 0, n' = 0, $I = I' = \emptyset$ et les données se réduisent à des sous-groupes ouverts $E \stackrel{p}{\longleftrightarrow} \Gamma$, $E' \stackrel{p'}{\longleftrightarrow} \Gamma$. Dans la pesante description plus haut, les considérations relatives à I, I' tombent et un morphisme $D' \longrightarrow D$ revient à une classe de couples (f, α) , où $f : E' \longrightarrow E$ et $\alpha \in \Gamma$, tels que l'on ait

$$pf = \operatorname{int}(\alpha)f$$

$$E' \xrightarrow{f} E$$

$$\downarrow^{p} \\ \Gamma \xrightarrow{\operatorname{int}(\alpha)} \Gamma$$

— ce qui implique que f est déjà déterminé par α , étant induit par $\operatorname{int}(\alpha)$ [α assujetti à $\alpha \in \operatorname{Trans}_{\Gamma}(E',E) = \operatorname{Trans}_{\Gamma}(L,L')$] [qui induit bien un homomorphisme de $L \subset \overline{K}$ dans $L' \subset \overline{K}$, donc un homomorphisme $\operatorname{Spec}(L') \longrightarrow \operatorname{Spec}(L)$ en sens inverse].

La condition que α , $\alpha' \in \Gamma$ définissent le même morphisme $D' \longrightarrow D$ (ou encore $\operatorname{Spec} L' \longrightarrow \operatorname{Spec} L$) se décrit par l'existence d'un $\mu \in E$ tel que $\alpha' = \mu \alpha$. Le fait qu'on trouve une correspondance 1-1 entre $\operatorname{Hom}_K(X',X) \simeq \operatorname{Hom}_K(L,L')$ avec $\operatorname{Hom}(D',D)$ explicité aussi, est clair.

II) n'=1, n=0. Ici n=0 implique déjà $I=\emptyset$. Pour que $\operatorname{Hom}(X',X)\neq\emptyset$, il faut que l'on ait $I' = \emptyset$ (par la condition $\underbrace{F^{-1}(S)}_{} = S'$ qui implique $S' = \emptyset$, si $f:(X',S')\longrightarrow (X,S))$ — dans la description des morphismes $D'\longrightarrow D$, cela correspond au fait qu'on ne peut avoir d'application $\tau: I' \longrightarrow I (= \emptyset)$ que si $I' = \emptyset$. Se bornant donc au cas $I' = \emptyset$ (sinon Hom(X', X) = $\operatorname{Hom}(D',D)=\varnothing$ et on est heureux), on trouve donc que D revient à la donnée de $E \stackrel{p}{\hookrightarrow} \Gamma$ sous-groupe ouvert, et D' à la donnée d'un homomorphisme de groupes profinis $p': E' \longrightarrow \Gamma$, dont l'image sera un sous-groupe ouvert de Γ , soit $\Gamma_0 \subset \Gamma$, correspondant à une sous-extension finie L' de \overline{K}/K . Les choix faits relatifs à X' implique qu'on a un isomorphisme fixé $L' \simeq H^0(X', \underline{\mathscr{O}}_{X'})$. Ceci dit, un K-morphisme de (X',\emptyset) dans (X,\emptyset) i.e. de $X' \longrightarrow X$ revient (comme X affine) à la donnée d'un K-morphisme $\operatorname{Spec} L' \longrightarrow X$ ($\simeq \operatorname{Spec} L$) de l'enveloppe affine, i.e. d'un K-homomorphisme $L \longrightarrow L'$ (ce qui ne dépend que de L, L' ou encore que des sous-groupes $E \hookrightarrow \Gamma$ et $\Gamma_0 \hookrightarrow \Gamma$ de Γ). D'autre part la description en termes des diagrammes D, D' revient à dire qu'un morphisme est déterminé par un couple $(f,\alpha),\,f:E'\longrightarrow E$ et

 $\alpha \in \Gamma$, tels que l'on ait encore commutativité

ce qui implique encore que f est déterminé par α (savoir, induit par int (α)), et α étant sujet à la seule condition

$$\alpha \in \operatorname{Transp}_{\Gamma}(\Gamma'_0, E)$$

— et α , α' décrivant le même homomorphisme si et seulement si $\exists \mu \in E$ tel que

$$\alpha' = \mu \alpha$$

donc on a encore

$$\operatorname{Hom}(D', D) \simeq_E \backslash \operatorname{Transp}_{\Gamma}(\Gamma'_0, \Gamma)$$

 $\simeq \operatorname{Transp}_{\Gamma}(L, L') / \operatorname{Fix}_{\Gamma}(L)$
 $\simeq \operatorname{Hom}_{K-\operatorname{ext}}(L, L')$

donc on trouve encore dans ce cas le pleine fidélité.

En fait, on aurait pu traiter ensemble les deux cas (n' = 0, n' = 1) où n = 0, et la description de $\operatorname{Hom}(X, X')$ en termes de D, D' est valable d'ailleurs, sans faire des hypothèses draconiennes (projective, lisse, dimension ≤ 1 , anabélienne) sur X'.

En effet, comme X est fini étale sur K, son image inverse $X_{X'} = X' \times_K X$ sur X' est fini étale sur X', et

$$\operatorname{Hom}_K(X,X') \simeq \operatorname{Sections}(X_{X'}/X')$$

peut se décrire en termes de la catégorie $\Pi_1(X') (= \Pi_U)$ des systèmes locaux finis sur X' i.e. des systèmes locaux finis sur Π_U . Suivant cette description, on aboutit à la description commune donnée dans I, II, sans aucune

hypothèse autre sur X que la 0-connexité (pour pouvoir décrire $\Pi_U = \Pi_{X'}$ sur Π_e en termes d'un homomorphisme de groupe $p': E' \longrightarrow \Gamma...$)

Quand on se donne (X', S'), avec S' pas nécessairement vide, X' 0-connexe (et X' lisse de dimension 1 aux points de S' (il suffirait même que S' ne disconnecte pas localement pas localement (ét) X', donc $X' \setminus S'$ 0-connexe...), alors la donnée $\Pi_1(X'\backslash S')\longrightarrow \Pi_1(e_K)$ es décrite encore par $E'\stackrel{p'}{\longrightarrow} \Gamma$ (indépendence de la donnée $\Pi_1(X'\backslash S')$ damment de la considération des E_i etc) et par suite $\operatorname{Hom}_K(X' \setminus S', X)$ est décrit comme on vient de dire. Mais on a (avec les hypothèses de normalité sur X' aux points de S') $\operatorname{Hom}_K(X' \setminus S', X) = \operatorname{Hom}_K(X', X)$. Ceci encourage à modifier la définition des morphismes $(X', S') \longrightarrow (X, S)$ donnée au début, via $f: X' \longrightarrow X$ avec $f^{-1}(S)_{red} = S'$, en exigeant ceci non pour f, mais seulement pour la restriction de f à la réunion des composantes irréductibles de X' qui son envoyées dans des composantes irréductibles de X non discrète i.e. non réduites à un point. Dans la description correspondante D', D, on spécifiait que l'on n'exige la donnée d'une application $I' \longrightarrow I$ (et des données correspondantes $f_{i'}$, $\alpha_{i'}$) que si $n \neq 0$ i.e. $p_{si} : E \longrightarrow \Gamma$ pas injectif - dans le cas contraire (impliquant $I = \emptyset$) si par hasard $I' \neq \emptyset$, on laisse tomber la connaissance des I' et des éléments de structure correspondants.

III) n' = 0, n = 1. Ici on a donc $I' = \emptyset$, $p' : E' \hookrightarrow \Gamma$ i.e. D' se réduit à la donnée d'un sous-groupe ouvert $E \hookrightarrow \Gamma$ de Γ .

Du coté $(X', S' = \emptyset)$ et (X, S), la condition $f^{-1}(S)_{red} = S' = \emptyset$ sur le K-morphisme $f: X' \longrightarrow X$ implique que f se factorise par $X' = \operatorname{Spec}(L') \longrightarrow X \setminus S$, sans préjudice si $S = \emptyset$ ou non, i.e. si $I = \emptyset$ ou non. Donc il s'agit de décrire $\operatorname{Hom}_{K-\operatorname{Sch}}(X', S \setminus S)$, en termes de $\Pi_1(X') \longrightarrow \Pi_e = \Pi_1(e_K)$ et de $\underbrace{\Pi_1(X \setminus S)}_{=\Pi_U} \longrightarrow \Pi_e$. Ici les éventuelles donnés supplémentaires relatives à I

ne servent pas explicitement à la description, en termes de diagrammes de groupoïdes.

Sauf erreur, une réduction facile (descente galoisienne) nous ramène au cas où $X' = \operatorname{Spec} K$ i.e. $E' \hookrightarrow \Gamma$. La description des homomorphismes $D' \longrightarrow D$ est alors encore en terme des couples (f, α) , où $f : \Gamma' = \Gamma \longrightarrow E$ et où

 $\alpha \in \Gamma$ avec les sempiternelles conditions $pf = \operatorname{int}(\alpha)p'$, qui devient (comme $p' = \operatorname{id}$))

$$pf = int(\alpha)$$
.

Ici bien sûr α ne décrit plus f (mais l'inverse est vraie, ici la connaissance de f de $pf \in \operatorname{Aut}(\Gamma)$ implique celle de α , i.e. $\operatorname{Centr}(\Gamma) = \{1\}...$). Les couples (f,α) et (f',α') définissent le même morphisme de diagramme, si et seulement si $\exists \mu \in E$ tel que $f' = \operatorname{int}(\mu) \circ f$, $\alpha' = p(\mu)\alpha$. Comme (si $\exists (f,\alpha))$) p surjectif, on veut que, quitte à choisir μ au-dessus de α^{-1} , et de remplacer (f,α) par $(f',\alpha') = (\operatorname{int}(\mu)f,p(\mu)\alpha)$, on peut toujours décrire un morphisme $D' \longrightarrow D$ par (f,α) avec $\alpha = 1$ donc par une section f de l'homomorphisme $E \longrightarrow \Gamma$, et deux sections f, f' (correspondant à (f,1), (f',1)) définissent le même homomorphisme de D' dans D, si et seulement si $\exists \mu \in E$ tel que $p(\mu) = 1$, i.e. $\mu \in \pi = \operatorname{Ker}(p)$, et tel que $f' = \operatorname{int}(\mu) \circ f$.

Ainsi, les morphismes de D' (correspondant à $X' = \operatorname{Spec} K$) dans D correspondent exactement aux classes de scindages de $E \stackrel{p}{\longrightarrow} \Gamma$, modulo automorphismes intérieures par des $\mu \in K = \operatorname{Ker} p$. La "conjecture bordelique" dans le cas III équivaut donc à ceci:

$$\Gamma((X,S)/K)$$
 — Classes de π — conjugaison de sections de E — Γ

i.e de sections de
$$\Pi_1(X) \longrightarrow \Pi_1(e_K)$$

est bijective (si (X, S) est un couple permis "anabélien")²⁷.

Je sais en tout cas que cette application est *injective* — ceci vaut chaque fois qu'on a un schéma U sur K (ici $X \setminus S$) qui se plonge dans un groupe algébrique G extension d'une variété abélienne par un tore, et résulte alors du théorème de Mordell-Weil "absolu" : G(K) est un **Z**-module de type fini. En fait, il suffit de connaître la classe de splittage de l'extension E^{\natural} de Γ par $\pi_{ab} = \pi/\overline{[\pi,\pi]} \simeq \mathrm{H}_1(U)$, correspondant à un point de U rationnel sur K pour connaître ce point. Donc le résultat de fidélité est obtenu, avec des

²⁷Faux tel que, cf. n°9 ci-dessus - il faut des conditions supplémentaires sur les f...Peut-être si $I = \emptyset$.

hypothèses moins draconiennes sur X que l'hypothèse anabélienne (avec les notations du lemme 5.2, cela signifie que $g=0 \Rightarrow n \geq 2$ i.e. qu'il n'y a pas de composante irréductible de $U_{\overline{K}}$ qui soit isomorphe à $\mathbb{P}^1_{\overline{K}}$ ou $\mathbb{E}^1_{\overline{K}}$...).

NB Ceci suggère une approche de la conjecture de Mordell, via une meilleure connaissance des extensions de Γ par π : le fait qu'il n'a ait (pour $g \ge 2$) qu'un nombre fini de classes de π -conjugaison de scindages d'une telle extension...

Itou pour une approche du théorème de Fermat, via une bonne connaissance d'une extension de Γ par $\pi = \pi_1(\mathbb{P}^{\frac{1}{O}} \setminus \{0, 1, \infty\})...$

- IV) n = 1, n' = 1 i.e. X, X' de dimension 1.
 - a) Si I = I' = Ø, je n'ai rien à ajouter à la description des morphismes f: X → X' en termes de morphismes de diagrammes de groupoïdes. Ici la condition f⁻¹(S)_{réd} = S' n'est pas une restriction sur f on n'exclut donc pas des applications constantes. Celles-ci (grâce à l'étude du cas II) sont d'ailleurs décrites de façon "pleinement fidèle" pas des homomorphismes de diagrammes ils correspondent aux cas f: E' → E qui sont nuls sur π'.
 - b) Le cas $I' = \emptyset$, $I \neq \emptyset$ (i.e. $S' = \emptyset$, $S \neq \emptyset$) signifie, avec la condition $f^{-1}(S)_{r\acute{e}d} = S'$ i.e. $f^{-1}(S) = \emptyset$, que f doit appliquer X' dans $X \setminus S$, donc que tout f correspond à un morphisme de (X',\emptyset) dans (X,S) soit constant. La conjecture bordélique dans ce cas exprime donc essentiellement qu'au niveau des homomorphismes $E' \xrightarrow{p'} \Gamma$ et $E \xrightarrow{p} \Gamma$, tout homomorphisme des groupes $E' \xrightarrow{f} E$ tel que $pf = \operatorname{int}(\alpha)p'$ pour $\alpha \in \Gamma$ [on est ramené au cas où $\alpha = 1$, p, p' surjectifs, i.e. aux homomorphismes d'extensions de Γ par des groupes $\pi = \pi_1(\overline{X \setminus X})$ et $\pi' = \pi_1(\overline{X'})$] est trivial sur π' [i.e. "est" une section]. Il faudrait essayer de vérifier ce point directement, qui (modulo le cas III) établirait la "conjecture bordélique" dans ce cas-là.
 - c) Le cas $I' \neq \emptyset$, $I = \emptyset$ implique que $\operatorname{Hom}((X,S),(X',S')) = \emptyset$ (cas $f^{-1}(S) = f^{-1}(\emptyset) = \emptyset \neq S'$!), ce qui correspond bien à $\operatorname{Hom}(D',D) = \emptyset$ puisque $\nexists \tau : I' \longrightarrow I$.

d) Dans le cas $I' \neq \emptyset$, $I \neq \emptyset$, la condition $f^{-1}(S)_{\text{réd}} = S'$ implique que f n'est pas constante (sinon on aurait $f^{-1}(S)_{\text{réd}} = \emptyset$ ou X'), donc f est dominant et fini, génériquement étale. Donc, de tels f ne peuvent intervenir que si I et I' soit tous deux \emptyset (cas a), soit tous deux $\neq \emptyset$ (cas actuel d)). Le fait que dans ces cas-là, la description diagrammatique galoisienne soit fidèle (peut-être pas pleinement) résulte aisément du résultat analogue dans le cas III.

La pleine fidélité par contre est chose mystérieuse, même si le résultat correspondant dans le cas III était acquis (et encore semble loin, même si K fini sur $\mathbf{Q}...$).

Réductions élémentaires. Pour prouver la "conjecture bordélique", on est ramené (par des extensions finies du corps K) au cas où $E \longrightarrow \Gamma$ (et, si on y tient, aussi $E' \longrightarrow \Gamma$) est épimorphique. Sauf erreur, la connaissance du cas III pour des extensions de type fini de K, implique le cas général pour K (avec suffisamment de sueurs techniques...).

Revenant cependant au cas général quand $E \longrightarrow \Gamma$ est surjectif, dans toute classe d'équivalence de systèmes $(f:E'\longrightarrow E,\alpha\in\Gamma,\tau:I'\longrightarrow I,(\alpha_i\in E_{\tau(i')=i})_{i'\in I'})$, on peut trouver un système avec $\alpha=1$, de sorte que $f:E'\longrightarrow E$ soit compatible avec les homomorphismes dans Γ (i.e. les structures d'extension). Quand on se borne à de tels systèmes, l'équivalence par conjugaison se fait par un système $(\mu,(\mu_{i'})_{i'\in I'})$ avec $\mu\in\pi$ (= Ker p), et les $\mu_{i'}\in E_{i=\tau(i')}$ comme avant. Ainsi, $f:E'\longrightarrow E$ est un homomorphisme d'extensions, défini modulo automorphisme intérieur par un élément de $\pi=\mathrm{Ker}(E\longrightarrow\Gamma)$, et satisfaisant à des conditions explicitées par ailleurs. Il se pourrait (comme on a déjà remarqué) que la connaissance de la classe de π -conjugaison de f suffise à déterminer le "morphisme bordélique" dans lequel f s'insère (si $I,I'\neq\varnothing$).

[C'est lié à la question de savoir si $\forall d \in \mathbb{N}^*$, $\operatorname{Trans}_E(L_i^d, L_i)$ est réduit à E_i (où $L_i = \operatorname{Ker}(p_i : E_i \longrightarrow \Gamma) = \operatorname{Im}(\varkappa_i : T(\overline{K}) \longrightarrow E_i)$). Dans ce cas, E_i serait connu en termes de $L_i \subset \pi$, et même en termes du noyau de sous-groupes qu'il définit dans π , et a fortiori en termes des noyaux d'homomorphismes définis par $\varkappa_i : T(\overline{K}) \longrightarrow \pi \dots$

Cas où $E_i \longrightarrow \Gamma$ sont surjectifs (i.e. les $k(s_i) = K$ i.e. s_i rationnel sur K).

Alors si $(f,\tau,(\alpha_{i'}))$ est un homomorphisme de D' dans D, quitte à corriger par des $\mu_i \in E_i$ ayant même image que les $\alpha_{i'}$ dans Γ , on peut supposer $\alpha_{i'} \in \pi$, en plus de $\alpha=1$ (obtenu en corrigeant par μ convenable). Donc on décrit l'homomorphisme $D' \longrightarrow D$ par $(f,1,\tau,(\alpha_{i'}))$, les $\alpha_{i'}$ appartenant à π . La condition ici est que $f:E' \longrightarrow E$ soit un homomorphisme de groupes sur Γ , que $f(E'_{i'}) \subset \operatorname{int}(\alpha_{i'}^{-1}E_{\tau(i')=i})$, et que l'homomorphisme induit $E'_i \longrightarrow E_{i'}$ par $\operatorname{int}(\alpha_{i'})f$ induit sur $T(\overline{K})$ (via $\alpha_{i'}, \alpha_i$) l'homomorphisme de multiplication par d_i sans plus — que c'est beau! Deux systèmes $(f,\tau,(\alpha_i,1))$ et $(f',\tau',(\alpha'_i,1))$ définissent le même morphisme, si et seulement si $\tau=\tau'$ et s'il existe $\mu\in\pi,\mu_{i'}\in L_{i=\tau(i')}=\alpha_i(T(\overline{K}))$ tels que

$$f' = \operatorname{int}(\mu) f$$
$$\alpha'_{i'} = \mu_{i'} \alpha_{i'}$$

Notons qu'à priori, pour (f,τ) fixé, les $\alpha_{i'}$ sont déterminés modulo multiplication à droite par des éléments de $\mathrm{Transp}_\pi((L)_i^{d_{i'}}, L_i)$, qui est sans doute $=L_i=\mathrm{Ker}(\varkappa_i:E_i\longrightarrow\Gamma)=1=\mathrm{Im}(\pi_i:T(\pi)\longrightarrow E_i\pi)$. Donc on trouve que la classe de π -conjugaison de groupes sur Γ de $f:E'\longrightarrow E$ suffit à déterminer l'homomorphisme $D'\longrightarrow D$ dans la catégorie bordélique. Je présume qu'un peu de sueur permettrait de prouver que cela marche encore dans le cas général (sans supposer les $\Gamma_i=\mathrm{Im}(E_i\longrightarrow\Gamma)$ égaux à Γ). Cela signifie (dans le cas actuel) que la structure essentielle qui décrit (X,S) est celle d'extension extérieure" de Γ par un groupe π [homomorphisme extérieur surjectif d'un groupe, de noyau sur π], avec π muni d'une structure à lacets i.e. d'homomorphismes extérieurs $\varkappa_i:T(=T(\overline{K})\simeq\hat{\mathbf{Z}})\longrightarrow\pi$ (satisfaisant certaines conditions), les homomorphismes de $E'\longrightarrow\Gamma$ (noyau π') dans $E\longrightarrow\Gamma$ (noyau π) étant les classes de π -conjugaisons d'homomorphismes $E'\longrightarrow E$ de groupes sur Γ , induisant des homomorphismes $\pi'\longrightarrow\pi$ compatibles avec la structure à lacets.

§ 9. — STRUCTURE TANGENTIELLE EN LES $s \in S$

Les sections d'extensions "de deuxième type"

Revenant à la description "intrinsèque" des (X,S) par $\Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e$, un $s_i \in S$ correspond donc à une composante connexe de $\Pi_{D^*_i}$ dans Π_{D^*} , ou un Π_{D_i} de son quotient Π_D — considérons $\Pi_{D^*_i} \xrightarrow{\sigma_i = \sigma_{D^*_i D_i}} \Pi_{D_i}$. On va décrire certaines sections (à isomorphisme près) de ce morphisme de groupoïdes, i.e. des couples (γ, λ) ou γ est un foncteur $\Pi_{D_i} \xrightarrow{\gamma} \Pi_{D^*_i}$ et λ un isomorphisme $\sigma_i \circ \gamma \simeq \mathrm{id}$.

Si on choisit un $\widetilde{D}_i^* \in \operatorname{Ob}\Pi_{D_i^*}$ (revêtement universel de D_i^*) d'où [un] homomorphisme surjectif $E_i = \operatorname{Aut}(\widetilde{D}_i^*) \longrightarrow \Gamma_i = \operatorname{Aut}(\sigma_i(\widetilde{D}_i^*) = \widetilde{D}_i)$, la donnée de (γ, λ) , et d'un isomorphisme $\gamma(\widetilde{D}_i) \simeq \widetilde{D}_i^*$ donnant l'isomorphisme identique par application des σ_i , revient à celle d'un homomorphisme $\Gamma_i \longrightarrow E_i$ — et les classes d'isomorphismes des couples (γ, λ) correspondent aux classes de L_i -conjugaison $(L_i = \operatorname{Ker}(E_i \longrightarrow \Gamma_i))$ de sections de l'extension E_i de Γ_i par L_i .

Ceci posé, on a

$$\Gamma_i = \operatorname{Gal}(\overline{K}_i/K_i)$$

où $K_i = K(s_i)$, \overline{K}_i est la clôture algébrique de K_i définie par \widetilde{D}_i (à priori, elle n'est pas canoniquement isomorphe à \overline{K} sur K...), et les classes de scindages d'extensions forment un torseur Σ_i (s'il y en a, et on sait qu'il y en a...) sous $H^1(\Gamma_i, L_i)$, ou encore, comme $\kappa_i : L_i \stackrel{\sim}{\longleftarrow} T(\overline{K}_i)$, sous $H^1(\operatorname{Gal}(\overline{K}_i/K_i), T(\overline{K}_i)) \simeq$

 $H^1(K_i, T_l(\mathbb{G}_m)) \simeq \varprojlim_n H^1(K_i, \mu_n)$. Or la suite exacte de Kummer donne

$$0 \longrightarrow H^{0}(K_{i}, \mathbb{G}_{m})_{n} \longrightarrow H^{1}(K_{i}, \mu_{n}) \longrightarrow {}_{n}H^{1}(K_{i}, \mathbb{G}_{m}) \longrightarrow 0$$

$$\downarrow | \qquad \qquad |$$

$$(K_{i}^{*})_{n} \qquad \qquad 0$$

i.e. $\mathrm{H}^1(K_i,\mu_n)\simeq (K_i^*)_n$, donc $\mathrm{H}^1(K_i,T(\mathbb{G}_m))\simeq \varprojlim_n (K_i^*)_n$ Notons qu'on a un homomorphisme kummérien

$$K_i^* \longrightarrow \underbrace{H^1(K_i, T(\mathbb{G}_m))}_{H_i} \simeq \underbrace{\lim}_{K_i^*} (K_i^*)_n$$

dont le noyau est formé des $x \in K_i^*$ tel que pour tout $n \in \mathbb{N}$, on ait $x \in K_i^{*n}$. Comme K_i est de type fini sur \mathbb{Q} , cet homomorphisme est injectif, i.e. K_i^* s'identifie à un sous-groupe de H_i .

Ceci posé, on va définir, dans le torseur Σ_i sous H_i des scindages de D_i^* sur D_i , un sous- K_i^* -torseur (i.e. un élément de Σ_i/K_i^*). Pour ceci, considérons plus généralement le cas d'un corps k (= K_i) de caractéristique 0, et d'une k-algèbre O qui est une jauge hensélien de corps résiduel k. Soit L le corps des fractions de O. On va, pour tout uniformisante t de O, définir une section (γ, λ) du groupoïde des clôtures algébriques de L, vers celui ses revêtements universels de Spec O ou, ce qui revient au même, des clôtures algébriques de k. Pour ceci, soit $O(n,t) = O[T_n]/(T_n^n - t)$, et $O(\infty, t) = \lim_{n \to \infty} O(n, t)$, par $T_n \mapsto T_{mn}^m$.

Soit $L(n,t) = O(n,t) \otimes_O K = \text{corps}$ de fractions de O(n,t), $L(\infty,t) = \varinjlim L(n,t)$ le corps des fractions de $O(\infty,t)$. C'est une extension algébrique de L et pour tout extension finie ou ind-finie k' de k, posant $O' = O \otimes_k k'$ (qui est aussi une jauge hensélienne sur k' de corps résiduel k', de corps des fractions $L' \simeq L \otimes_k k'$), on a des isomorphismes canoniques

$$O(n,t) \otimes_O O' \simeq O'(n,t)$$

$$O(\infty, t) \otimes_O O' \simeq O'(\infty, t)$$

ďoù

$$L(n,t) \otimes_k k' \simeq L'(n,t)$$

$$L(\infty,t) \otimes_{k} k' \simeq L'(\infty,t)$$

Or si k' est algébriquement clos, O' strictement hensélien, on sait que $L'(\infty,t)$ est alors algébriquement clos. D'ailleurs comme $K' \subset O'(\infty,t) \subset L'(\infty,t)$ dans ce cas k [?] s'identifie à la clôture algébrique \overline{k} de k dans $L'(\infty,t) = \overline{L}$. Donc on a bien trouvé une section de Π_{D^*} sur Π_D .

Mais si on remplace s par $s' = s u^n$, avec $u \in O^*$, on trouve des isomorphismes

$$\lambda(n,u): O(n,s) (= O[T_n]/(T_n^n - s)) \longrightarrow O(n,s') (= O[T_n]/(T_n^n - s'))$$

$$\operatorname{par} T_n \mapsto u T_n$$

d'où par passage à la limite

$$\lambda(\infty, n): O(\infty, s) \longrightarrow O(\infty, s')$$

induisant

$$L(\infty, s) \xrightarrow{\sim} L(\infty, s')$$

isomorphisme d'extension de L, d'où un isomorphisme entre les sections correspondantes des Π_L sur Π_k . Ceci implique que si s, s' diffèrent par un $v \in O^*$ tel que son image dans k soit 1 (i.e. $v \in 1 + m$ [qui est un sous-groupe divisible de O^*] alors s, s' définissent des sections isomorphes).

On trouve une application canonique

$$(m/m^2)^* \qquad \text{i.e. de } \operatorname{Gal}(\overline{L}/L) \longrightarrow \operatorname{Gal}(\overline{k}/k)$$
 (ensemble des bases de m/m^2)
$$= \operatorname{qui} \text{ est un torseur sous } k^* \qquad \text{i.e. sous } \operatorname{H}^1(\mathbb{G}\operatorname{al}(\overline{k}/k), T(\overline{k}))$$
 i.e. sous $\operatorname{H}^1(k, T(\mathbb{G}_m)) \dots$

On constate aussitôt que cette application est compatible avec l'homomorphisme

$$\theta: k^* \longrightarrow H^1(k, T(\mathbb{G}_m))$$

sur les groupes d'opérateurs de ces torseurs.

Dans le cas où cet homomorphisme est injectif (par exemple k de type fini sur \mathbf{Q}) on trouve donc un plongement de m/m^2 comme un sous $\theta(k^*)$ -torseur du $\mathrm{H}^1(k,T(\mathbb{G}_m))$ -torseur des scindages de Π_{D^*} (\simeq groupoïde des clôtures algébriques de L) sur Π_D (\simeq groupoïde des clôtures algébriques de k).

Revenant au cas des $\Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e$, K... et des $D: T(\overline{K}^*) \stackrel{x_i}{\longrightarrow} E_i \hookrightarrow E \stackrel{p}{\longrightarrow} \Gamma$ qui les explicitent, on trouve donc une structure supplémentaire sur ce D via les extensions E_i de $\Gamma_i \subset \Gamma$ par $T(\overline{K}^*)$, savoir $\forall i \in I$, un sous- K_i^* -torseur dans le torseur sous $H^1(K_i, T(\mathbb{G}_m)) \simeq \varprojlim (K_i^*)_n$ des classes de scindages de E_i . Il faudrait expliciter le comportement de cette structure supplémentaire relativement à des morphismes (provenant de situations géométriques) et la relation avec la norme des 1-formes différentielles — j'ai la flemme de l'expliciter en long et en large !

La chose nouvelle que je retiens surtout, c'est que pour $I \neq \emptyset$ et les $E_i \longrightarrow \Gamma$ surjectifs (pour simplifier), on trouve $\forall i$ une "famille trancendante" de scindages de $E \longrightarrow \Gamma$ (via les scindages de E_i sur Γ) — essentiellement [?] par $H^1(K, T(\mathbb{G}_m)) \simeq \varprojlim (K^*)_n$ (plus précisément, par un torseur sous le dit) — dans cette famille, une sous-famille de scindages qu'on peut qualifier de "géométriques", indexée par K^* (plus précisément, un sous-torseur...). On vérifie que les classes de π -scindages obtenus par des indices i, i' distincts sont distinctes, même en se ramenant aux scindages correspondants de l'extension de Γ par π_{ab} déduite de l'extension E de Γ par π (je ne fais pas le détail des vérifications, via Mordell-weil...) et distincts des scindages associées aux points rationnels sur K de $X \setminus S$.

Il faudrait corriger la conjecture bordélique dans le cas III, en énonçant (sous toutes réserves, encore !) qu'il n'y a (peut-être) pas d'autres scindages de l'extension E de Γ par π que ceux-là...

§ 10. — AJUSTEMENT DES HYPOTHÈSES (REMORDS)

Je me rends compte que dans la définition des morphismes $(X',S') \stackrel{f}{\longrightarrow} (X,S)$, l'hypothèse $f^{-1}(S)_{\rm red} = S'$ est étriquée — il faut prendre des morphismes quelconques $f: X' \backslash S' \longrightarrow X \backslash S$ (se prolongeant bien sûr en $\hat{f}: X' \longrightarrow X$). On aura donc $S' \supset \hat{f}^{-1}(S)_{\rm red}$, mais S' peut être strictement plus grand que $\hat{f}^{-1}(S)_{\rm red}$. Il faut alors ajuster en conséquence la description de la "catégorie bordélique" — les objets restent les diagrammes de groupoïdes $D: \Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e$ (plus donnée de Kummer), mais un morphisme d'un D' dans un D ne définit plus nécessairement un $\Pi'_{D^*} \longrightarrow \Pi_{D^*}$ (en plus de $\Pi'_U \longrightarrow \Pi_U$) il faut se donner une partie I'_f de $I' = \pi_0(\Pi'_{D^*})$ et se donner seulement $\Pi'_{D^*,I'_f} \xrightarrow{f_{D^*}} \Pi_{D^*}$ (avec donnée de commutation $\alpha_{D^*,U}$ relative au carré avec f_U). Bien sûr, dans la description en termes de E', E etc, on exige que pour $i' \in I' \backslash I'_f$, $f_E: E' \longrightarrow E$ est trivial sur $E'_{i'} \subset E'$ - et τ est défini comme $I'_{f'} \longrightarrow I$; les données relatives aux $i' \in I'_{f'}$ ($f_{i'}: E_{i'} \longrightarrow E_{i=\tau(i')}$, les $\alpha_{i'} \in E$) sont pareilles que dans le cas envisagé précédemment.

NB Cela signifie en fait qu'on commence à "boucher les trous" (de X') correspondants aux $i' \in I' \setminus I'_{f'}$, en remplaçant E' par le groupe quotient de E' par le sousgroupe invariant engendré par les $L_{i'} = \varkappa_{i'}(T(\overline{K}))(i' \in I' \setminus I'_{f'})$, et les $E_{i'}(i' \in I'_f)$ par leurs images dans le dit groupe quotient, et en oubliant $I' \setminus I'_{f'}$ i.e. remplaçant I' par I'_f .

[Pour bien faire, il faudrait exprimer ces opérations aussi au niveau des diagrammes de groupoïdes $\Pi'_{D^*} \longrightarrow \Pi'_U \longrightarrow \Pi_e \dots$].

Cela signifie donc qu'en fait, on s'est ramené à la situation envisagée au début,

où $S'=\hat{f}^{-1}(S)...$ Donc finalement la différence des deux points de vue n'est pas énorme, et celui adopté au début a l'avantage de l simplicité plus grande (tout est relatif!)

§ 11. — CONDITIONS SUR LES SYSTÈMES DE GROUPOÏDES OBTENUS À PARTIR DE SITUATIONS GÉOMÉTRIQUES

On en a déjà cité au passage, par exemple que les groupes noyaux de $\Pi_{D^*} \longrightarrow \Pi_e$ sont abéliens (avec l'isomorphisme de Kummer \varkappa) et que les images sont des sousgroupes ouverts, et de même pour l'image des π_1 dans $\Pi_U \longrightarrow \Pi_e$. On va expliciter et préciser ceci dans le cadre de l'interprétation en termes de

$$T(\overline{K}) \xrightarrow{\kappa_i} E_i \xrightarrow{\rho_i} E \xrightarrow{p} \Gamma$$

(cas de la "dim 1" — on n'exclut pas le cas $I = \emptyset$ — le cas "dim 0" étant trivial...)

- a) L'image Σ de p est ouverte, plus précisément il existe un sous-groupe ouvert $\Gamma' \subset \Gamma$ au dessus du quel E ait une section [et même une "section admisible" en un sens qui sera défini par la suite de sorte à exclure les sections "triviales" provenant des E_i ...].
- b) L'image Σ_i de E_i dans Γ est ouverte, et l'extension E_i de Σ_i par $L_i(\simeq T(\overline{K}))$ est triviale. [En fait, on a une classe privilégiée de scindages, dits "algébriques", formant un torseur sous $K_i^* \hookrightarrow \varprojlim (K_i^*)_n$, cf n° 9 mais on ne va pas considérer pour l'instant cet élément de structure supplémentaire...]

Le reste des conditions concerne essentiellement la structure des groupes $\pi = \text{Ker}(p : E \longrightarrow \Gamma)$ avec ses classes de conjugaison de sous-groupes (ou plutôt les

homomorphismes extérieures $\varkappa_i:T(=T(\overline{K}^*)\longrightarrow\pi)$, et la façon dont Σ opère extérieurement sur π . Ces conditions s'expriment de façon particulièrement simple lorsque les $\Sigma_i\subset\Gamma$ sont $=\Gamma$ ("les points de S sont rationnels sur K") i.e. $E_i\longrightarrow\Gamma$ surjectif, a fortiori $\Sigma=\Gamma$ i.e. $E\longrightarrow\Gamma$ surjectif. On va se borner à ce cas. Le cas général s'en déduit par extension finie du corps de base [chaque point de S non rationnel sur K i.e. chaque $\Sigma_i\neq\Gamma$ donne naissance à n_i points, $n_i=[\Gamma:\Sigma_i]$ et $X_{K'}$ se scinde en $n=(\Gamma:\Sigma)$ composantes connexes qui sont géométriquement connexes] - mais j'ai la flemme d'expliciter comme il faudrait, dans le contexte des groupoïdes ou des homomorphismes de groupes profinis, l'opération d'extension du corps de base...

Il est entendu que les conditions que je vais décrire seront invariantes par extension du corps de base.

c) $\forall i$, l'homomorphisme extérieur

$$x_i: T \longrightarrow \pi$$

est compatible avec l'action extérieure de Γ (opérant sur T par le caractère cyclotomique χ , et sur π grâce à l'extension E de Γ par π). En d'autres termes, pour tout $g \in E$, existe un $\alpha \in \pi$ (**NB** pas seulement $\alpha \in E$!) tel que l'on ait :

$$\operatorname{int}(g)x_i(\xi) = \operatorname{int}(\alpha)x_i(\gamma(p(g))\xi)$$

i.e.

$$\operatorname{int}(\alpha^{-1}g)\varkappa_i(\xi) = \varkappa_i(\chi(p(g))\xi)$$

Ceci signifie que 1°) $\alpha^{-1}g$ normalise $L_i = \varkappa_i(T)$ [et ceci signifie même, probablement, que $\alpha^{-1}g \in E_i$ - et qu'on puisse trouver un tel $\alpha \in \pi$ (tel que $\alpha^{-1}g \in E_i$) provient de l'hypothèse $E_i \longrightarrow \Gamma$ surjectif - on prend un $\beta (= \alpha^{-1}g) \in E_i$ ayant même image que g dans Γ et on prend $\alpha = g\beta^{-1}$] et que 2°) l'action intérieure de $\beta = \alpha^{-1}$ sur T n'est autre que par multiplication par $\chi(g) = \chi(\beta)$ - ce qui (pour $\beta \in E_i$) n'est autre que la condition déjà explicitée que l'homomorphisme de groupes $\varkappa_i : T \longrightarrow E_i$ est compatible avec l'action de E_i , opérant sur T via $\chi \circ p|_{E_i}$, et sur lui même par automorphismes intérieures.

Donc la condition c) n'est pas vraiment nouvelle — je la réexplicite en termes un peu différents, à cause de son importance. Elle implique que l'opération de Γ

sur π est *très* non triviale (puisque $\chi:\Gamma\longrightarrow\widehat{\mathbf{Z}}^*$ a une image ouverte!) — il n'était pas même évident, a priori (sans raisons arithmétiques profondes!) — compte tenu de la structure de π qu'on va donner — qu'il existe de telles opérations de Γ sur π !

Cette condition sera complétée par une condition de non trivialité à la Weil.

- d) $\exists \eta \in T^*$ (une base de T), et des $\alpha_i \in \pi$ (afin de conjuguer κ_i en $\kappa_i' = \operatorname{int}(\alpha_i) \circ \kappa_i$), enfin un entier $g \geq 0$ et des éléments κ_j , $\kappa_j \in \pi$ ($1 \leq j \leq g$), tels que l'on ait
 - 1°) Les $x'_i(\eta)$, et les x_i , y_i engendrent le groupe profini π .
 - 2°) Ils satisfont la relation

$$[x_1, y_1].[x_2, y_2]...[x_g, xy_g]x_1'(\eta)x_2'(\eta)...x_{\nu}'(\eta) = 1$$

3°) Cette relation, avec les générateurs envisagés, décrit π (en tant que groupe profini) par générateurs et relations...

NB On sait que par ces conditions, g est uniquement déterminé, par exemple par le fait que $\pi_{ab}/\Sigma x_i(T)$ est un $\widehat{\mathbf{Z}}$ -module libre de rang $2g - \pi_{ab}$ étant libre de rang $2g + \nu - 1$ où $\nu = \operatorname{card}(I)$.

Pour le choix de η , on voit que si η convient, alors tout $\chi(\alpha)\eta$ aussi (où $\alpha \in \Gamma$) — quitte à prendre des conjugués. Donc les η qui conviennent contiennent un sous-torseur de T^* sous le sous-groupe ouvert $\chi(\Gamma)$ de $\widehat{\mathbf{Z}}^*$.

En fait, comme la structure du groupe π est indépendante de K, prenant $K=\mathbf{Q}$ (et en admettant qu'il existe une courbe lisse projective (géométriquement connexe de genre g sur \mathbf{Q} , ayant ν points rationnels sur \mathbf{Q} !), on trouve que si les l_i]($1 \le i \le \nu$) s'insèrent dans un système de générateurs privilégies (avec des x_j , y_i) alors pour tout $\rho \in \widehat{\mathbf{Z}}^*$, on peut trouver des conjugués l_i' des l_i^ρ qui s'insèrent de même. Même pour $\rho = -1$ ce n'est pas entièrement trivial...

Enfin, on va énoncer une condition draconienne de non trivialité de l'opération de Γ sur π . Soient E' un sous-groupe ouvert (donc d'indice fini) de E, $\pi' = \pi \cap E' = \operatorname{Ker}(E' \longrightarrow \Gamma)$, Γ' l'image de E' dans Γ . On trouve donc une extension de $\Gamma'(=\operatorname{Gal}(\overline{K}'/K'))$ sur π' , donc aussi par $(\pi'_{ab})(\ell)$ (ℓ étant un nombre

fourni), qui est (on le sait par d)) un \mathbf{Z}_{ℓ} -module libre de type fini, sur lequel Γ' opère.

[Avec un peu de travail²⁸, on doit pouvoir mettre sur $E' \longrightarrow \Gamma$ une "structure à lacets" i.e. des $E'_{i'}$ comme pour E, et décrire dans $(\pi_{ab}(\ell))$ la somme des images des $L'_{i'}$, sur lesquels Γ' opère donc via le caractère χ . On s'intéresse au quotient de $(\pi'_{ab})(l)$ par ce sous-module relativement trivial (la partie "VA" du module ℓ -adique envisagé). Ceci posé, on exige que la représentation de Γ' là dessus soir "pure de poids 1" — et que les polynômes caractéristiques des frobénius (qui sont à coefficients dans \mathbf{Z}_{ℓ}) soient *indépendants* de ℓ .

 $[\]overline{\ ^{28}\text{Qa}}$ se fait très élégamment dans le contexte $\Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e.$

§ 12. − L'ANALOGIE TOPOLOGIQUE

Soit X une surface (topologique) compacte orientable, S une partie finie de X. Si X est connexe, on considère l'ensemble ω de ces deux orientations, on l'utilise pour tordre le groupe \mathbb{Z} , d'où un groupe

$$T = \mathbf{Z} \wedge_{+1} \omega -$$

isomorphe (non canoniquement) à \mathbf{Z} . Plus généralement, supposons donné un tel groupe T, i.e. un $\omega \in \mathrm{Ob}\,\mathrm{Ens}_2$, une T-orientation de X sera par définition un élément de l'ensemble $\mathrm{Or}(X) \wedge_{\pm 1} \omega$ [dans le cas précédent, X sera donc canoniquement T-orienté...]

Considérons le groupoïde fondamental de $X \setminus S = U$ soit Π_U , et le groupoïde fondamental Π_{D^*} des germes d'espaces de X autour de S, privé de S (groupoïde des germes de revêtements universels de $X \setminus S$ au voisinage de S). On a donc un foncteur canonique

$$\Pi_{D^*} \longrightarrow \Pi_U$$

et d'autre part, si X est T-orienté, on a une structure supplémentaire intéressante sur le groupoïde Π_{D^*} : le système local de ses π_1 est canoniquement isomorphe à T.

Associant à tout X T-orienté le système

$$\Pi_{D^*} \longrightarrow \Pi_X, \quad \varkappa: T_{(\Pi_{D^*})} \simeq \pi_1(\Pi_{D^*}/e),$$

on trouve une 2-équivalence entre la 2-catégorie isotopique des couples (X,S) d'une variété compacte T-orientée (pour les homéomorphismes à isotopie

près...), et de la 2-catégorie des systèmes précédents (pour les équivalences) qui satisfont les conditions

- a) $\pi_0(\Pi_{D^*})$, $\pi_0(\Pi_X)$ finis
- b) Pour toute composante connexe de Π_U , soit Π_{U_0} , et la partie $\Pi_{D_0^*}$ audessus, explicitant la situation groupoïde par un groupe π , et une famille d'homomorphisme $T \xrightarrow{\varkappa_i} \pi$ (NB le tout dépendant de choix, mais π étant intrinsèque comme groupe extérieur, et les \varkappa_i comme homomorphismes extérieurs définissant une "T-structure à lacets sur S" —) on a ce qui suit :

il existe générateur $g \in T$ (i.e. $g \in T^*$) et un ordre i_1, \ldots, i_ν sur l'ensemble I, des conjugués l_i des $\varkappa_i(g)$, et $g \in \mathbf{N}$ et des $\varkappa_\alpha, y_\alpha \in \pi(1 \le \alpha \le g)$ tels que l'on ait

$$(\prod_{\alpha=1}^{g} [x_{\alpha}, y_{\alpha}]) \prod_{i=1}^{\nu} l_{i} = 1$$

et que ceci soit une relation de définition de π .

Il y a cependant un grain de sel pour $I = \emptyset$ (auquel cas T ne sert à rien apparemment dans la description groupoïde de $(X,S) = (X,\emptyset) = X$) il faut alors, au lieu des données "kummériennes" x, se donner un isomorphisme²⁹

$$H^2(\pi, \mathbf{Z}) \stackrel{\times}{\simeq} T$$

Enfin, il faut (même avec ce grain de sel) exclure le cas $X = \mathbb{S}^2$, $S = \emptyset$ (en tant que composante connexe) — i.e. du coté groupes, le cas d'une composante connexe de Π_U avec $\pi = (1)$ et $I = \emptyset$. Si je me rappelle bien, il n'y a pas lieu d'exclure (\mathbb{S}^2 , pt) (i.e. $X \setminus S = U \simeq \mathbb{R}^2 \simeq E^1_{\mathbb{C}}$ où pourtant on a $\pi = 0$. Mais sauf dans ces deux cas (correspondant au cas g = 0, v = 1) l'homomorphisme $x_i : T \longrightarrow \pi$ est injectif. Si $T = \mathbb{Z}$, la donnée des x_i équivaut à celle d'éléments $l_i \in \pi$, et on retrouve la définition usuelle des structures à lacets.

Ceci est explicité dans la thèse de Yves Ladegaillerie — ce qui y manque, est (entre autre) la considération de flèches entre (X,S) autres que des homéomorphismes (modulo isotopies) ; par exemple des applications $X' \xrightarrow{f} X$ telles que

 $^{^{29}}$ Il faut introduire ceci comme donnée supplémentaire dans la définition des groupes à lacets. L'exclusion des cas $X_0 \simeq \mathbb{S}^2$ (dans le cas $S = \emptyset$) est alors particulièrement convaincante.

 $S'=f^{-1}(S)$ [et que X' soit étale sur $X\setminus S$, si on y tient], ce qui se ramène au cas précédent - le cas plus général où on suppose seulement que X' est un revêtement ramifié de X (pouvant être ramifié aussi en dehors de S') et $S'\supset f^{-1}(S)$ (mais S' pouvant être plus grand) demanderait une étude soigneuse, avec une notion ad-hoc de l'isotopie...

Une autre direction importante (notamment pour l'étude du cas non orienté, non orientable) est l'introduction de groupes finis d'homéomorphismes, ne respectant pas nécessairement l'orientation. Pour traiter le cas du changement d'orientation, notons que dans la description groupoïdale $(\Pi_{D^*} \longrightarrow \Pi_U, \varkappa)$ d'une (X,S) T-orientée, le passage à l'orientation opposée s'exprime en gardant tel que $\Pi_{D^*} \longrightarrow \Pi_U$, et en remplaçant \varkappa par $\overline{\varkappa} = \varkappa^{-1}$

$$\overline{\varkappa}(\xi) = \varkappa(-\xi) = \varkappa(\xi)^{-1}$$

(si $T=\mathbf{Z}$, sur le système $(\pi,(l_i))$, cela revient à remplacer les l_i par les $l_i^{-1}\dots)^{30}$ Soit donc Γ un groupe (a priori pas nécessairement fini) qui opère sur (X,S) donc sur $U=X\setminus S$ et sur Π_U,Π_{D^*} . On trouve alors des groupoïdes fondamentaux mixtes par la construction bien connue

$$\Pi_{D^*,\Gamma} \longrightarrow \Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$$

(où $\Pi_{e,\Gamma}$ est la catégorie des Γ -torseurs i.e. des objets 1-connexes dans Γ — Ens) correspondant aux foncteurs en sens inverse

 Γ – revêtement étale de D^* ← Γ – revêtement étale de U ← Γ – Ens.

Les composantes connexes de $\Pi_{D^*,\Gamma}$ correspondent aux *orbites de* Γ *dans* $S=\pi_0(\Pi_{D^*})$, et même pour celles de $\Pi_{U,\Gamma}$. Le cas $\Pi_{U,\Gamma}$ connexe i.e. le topos $\hat{\Pi}_{U,\Gamma}$ connexe est celui où Γ transitif sur $\pi_0(U) \simeq \pi_0(X)$ — quitte à remplacer X par une composante connexe X_0 , et Γ par le sous-groupe $\Sigma \subset \Gamma$ qui le stabilise, on serait ramené (pour l'étude des topos $\hat{\Pi}_{U,\Gamma}$ et des morphismes de topos

$$\hat{\Pi}_{D^*,\Gamma} \longrightarrow \hat{\Pi}_{U,\Gamma} \longrightarrow (\hat{\Pi}_{e,\Sigma} \longrightarrow) \hat{\Pi}_{e,\Gamma}$$

au cas de (X_0, S_0, Σ) . Mais l'analogie que j'ai en vue le cas "arithmétique" prend cette réduction inopportune dans le cas général (cas dans le cas arithmétique, on

 $[\]overline{\,}^{30}$ et itou (si $I = \emptyset$) pour $x : T \simeq H^2(\pi, \mathbb{Z})$ remplacé par -x.

ne se borne pas non plus au cas où $\Sigma = \Gamma$ i.e. $E \longrightarrow \Gamma$ surjectif, i.e. la composante connexe X géométriquement connexe sur K). Notons ici que (X, S, Γ) se récupère à partir des $(X_0, S_0, \Gamma_0 = \Sigma)$ comme somme amalgamée $X = X_0 \wedge_{\Sigma} \Gamma...$

Quand on exprime (pour $\Pi_{U,\Gamma}$ connexe) la situation en termes de théorie de groupes, on trouve donc un groupe fondamental mixte

$$E_{U\Gamma} = \pi_1(U,\Gamma)$$

et un homomorphisme

$$E_{U,\Gamma} \longrightarrow \Gamma$$

surjectif si et seulement si U connexe (on a $\Gamma/\Sigma \simeq \pi_0(U)$), enfin un ensemble d'indices I ($\simeq S/\Gamma \simeq \pi_0(\Pi_{D^*,\Gamma})$) et des groupes fondamentaux mixtes.

$$E_i \simeq \pi_1(D_i^*, \Gamma) \simeq \pi_1(D_{i,0}^*, \Sigma_i)$$

où $D_{i,0}^*$ est une composante connexe du multidisque troué D_i^* , (correspondant au choix d'un $s_{i,0} \in S$) et où $\Sigma_i \subset \Gamma$ est son stabilisateur (i.e. le stabilisateur de $s_{i,0}$ dans Γ , qui est (si Γ_i est fini et opère fidèlement au voisinages de s_i) un groupe cyclique ou dièdral...On trouve donc, si X est T-orientée, une extension de $\Gamma_{i,0}$ par T, l'homomorphisme $E_i \longrightarrow \Sigma_i \hookrightarrow \Gamma_i$ étant induit bien sûr via $E_{U,\Gamma} \longrightarrow \Gamma$ et $E_i \longrightarrow E_{U,\Gamma}$.

Il faut encore lier l'action de Γ sur X à l'orientation de X — pour ceci on suppose donné un caractère

$$\chi:\Gamma\longrightarrow \mathbf{Z}^*=\{\pm 1\}$$

et on exige que pour $g \in \Gamma$, g_X conserve l'orientation si $\chi(g) = 1$, la renverse si $\chi(g) = -1$. Ceci implique que l'on a un isomorphisme

$$\underbrace{\pi_1(\Pi_{D^*,\Gamma}/\Pi_{e,\Gamma})}_{\text{système local des noyaux des }\pi_1(\xi)\longrightarrow \pi_1(\varphi\rho(\xi)) \text{ pour } \xi \in \text{Ob}\,\Pi_{D^*,\Gamma}}_{T}$$

T étant considéré comme système local sur $\Pi_{\Gamma,e}$ i.e. comme Γ -groupe, grâce à l'action de Γ via le caractère χ . Il revient au même de dire que $\forall i \in I$, l'application

$$\chi_i: T \xrightarrow{\sim} L_i = \operatorname{Ker}(E_i \longrightarrow \Gamma)$$

en tant que homomorphisme de T dans E_i , est compatible avec l'action de E_i (opérant sur T via χp_i ($p_i: E_i \longrightarrow \Gamma$)), et sur lui même par automorphisme intérieure...)

Si on exclut le cas où (X_0, S_0) est isomorphe à $(\mathbb{S}^2, \emptyset)$ ou $(\mathbb{S}^2, 1 \operatorname{pt})$ (i.e. le cas $\pi = 0$), les $\kappa_i : T \longrightarrow \pi$ sont injectifs, donc aussi les $E_i \longrightarrow E_{U,\Gamma}$, donc les E_i peuvent être considérés comme des sous-groupes de $E_{U,\Gamma}$.

Ici il serait particulièrement contre-indiqué (même si on suppose $\Sigma = \Gamma$ i.e. $X = X_0$ i.e. X connexe) de supposer que les Γ_i sont égaux à Γ i.e. que les $S \in S$ sont fixés par Γ !

Comme le centre de π est réduit à 1 (si on excepte le cas $(X_0, S_0) \simeq (\mathbb{S}^2$, deux points) i.e. $U_0 \simeq \mathbb{C}^*$ - cas de la couronne -), la donnée d'une extension de Σ ($\subset \Gamma$) par π revient (à isomorphisme unique près) à la donnée d'un homomorphisme

$$\Sigma \longrightarrow Autext(\pi)$$

E se reconstitue comme image inverse de l'extension

$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut}(\pi) \longrightarrow \operatorname{Autext}(\pi) \longrightarrow 1.$$

Mais ici les automorphismes extérieures relatifs aux $\alpha \in \Sigma$ respectent la structure à lacets de π , modulo le signe $\chi(\alpha)$ - i.e. pour $g \in E$, et $s \in S \ \exists \alpha \in pi$ et $s' \in S$ (s' unique!) tels que

$$\operatorname{int}(\alpha^{-1}g)\chi_{s}(\xi) = \operatorname{int}(\alpha)\chi_{s'}(\chi(p(g))\xi)$$

 $\forall \xi \in \Gamma$, i.e.

$$\operatorname{int}(\alpha^{-1}g)x_s(\xi) = x_i(\chi(p(g))\xi)$$

Ainsi, l'opération de Σ sur S_0 (donc de Γ sur $S = S_0 \wedge_{\Sigma} \Gamma$) est connue, par l'opération extérieure de $\Sigma \subset \Gamma$ sur π muni de sa structure à "T-lacets" (i.e. les homomorphismes extérieures $\varkappa_s : T \longrightarrow \pi$) - donc aussi $I = S_0/\Sigma \simeq S/\Gamma$. Peut-on reconstituer E_i ($i \in I$) à partir de la structure d'extension ? On voit, en vertu des choix faits, que si $i \in I$ (donc i une orbite de Σ dans S_0) $\exists s \in i$ tel que ($\ker E_i \longrightarrow \Gamma$) ne soit autre que $L_s = \varkappa_s(T)$, et on a donc $E_i \subset \operatorname{Norm}_E(L_s)$, mais on a

$$\operatorname{Norm}_{E}(L_{s}) \cap \pi = \operatorname{Norm}_{\pi}(L_{s}) = L_{s} = E_{i} \cap \pi,$$

et d'autre part l'image de $\operatorname{Norm}_E(L_s)$ dans $\Sigma \subset \Gamma$ est inclus dans $\Sigma_s =$ stabilisateurs de s dans $\Sigma =$ Image de E_i dans Σ , donc en résumé

$$E_i = \text{Norm}_E(L_s)$$

Inversement, la donnée de $E \longrightarrow \Gamma$ et des E_i , $\varkappa_i : T \longrightarrow E_i$ redonne la structure à lacets de π , en prenant les \varkappa_i et tous les conjugués extérieures distincts par les $\alpha \in \Sigma$ (modifiés par $\chi(\alpha)$...).

Donc la donnée de la situation $E \stackrel{p}{\longleftarrow} \Gamma$, $E_i \hookrightarrow E$ (famille de sous-groupes, chacun défini modulo conjugaison *dans E*) équivaut à la donnée de

- a) $\pi = \text{Ker } p$, avec sa structure à T-lacets (ensemble fini d'homomorphismes extérieurs de T dans π)
- b) Un sous-groupe $\Sigma \subset \Gamma$, et un homomorphisme

Teichmüller étendu de π

 $\Sigma \longrightarrow$ (automorphismes extérieurs de π ,

respectant la structure à lacets modulo signe)

compatible avec le caractère $\chi|_{\Sigma}$ et le caractère "signe" sur Teichmüller étendu. En fait, (X,S,Γ) où (U,Γ) ne définit π que comme groupe extérieur à T-lacets, sur lequel Γ opère de façon compatible avec χ .

En résumé, on a un foncteur canonique

Catégorie isotopique des $(X,S,\Gamma),X$ surface compacte T-orientée, S partie discrète, Γ opérant par χ -automorphisme ($\gamma \in \Gamma$ respectant l'orientation si $\chi(\gamma) = +1$, la renversant sinon), Γ transitif sur $\pi_0(X)$, et si (X_0,S_0) est une composante connexe de (X,S), on veut que si $X_0 \simeq \mathbb{S}$ on ait card $S \geq 3$

Catégorie des groupes extérieurs à T — lacets π , π non commutatif (i.e. $\pi \neq 0$, \mathbf{Z}) sur lesquels un sous-groupe $\Sigma \subset \Gamma$ de Γ opère.

(Cette description étant équivalente à une description en termes de système de groupoïdes

 $\Pi_{D^*,\Gamma} \longrightarrow \Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$ et $\varkappa \dots$, plus conceptuelle dans certains contextes).

Je présume que la démonstration du fait que ce foncteur soit pleinement fidèle ne fasse pas de difficultés essentielles³¹, en utilisant ce qui est connu pour $\Gamma=1$. Mais le fait que, pour Γ groupe fini donné, il soit essentellement surjectif est un problème ouvert sur lequel les gens sèchent. Bien sûr on peut supposer $\Sigma=\Gamma$, et $\Gamma\subset$ Teichmüller étendu et la question est si tout sous-groupe fini de Teichmüller étendu se réalise comme groupe opérant sur (X_0,S_0) , de façon essentiellement unique. Plus précisément, si A= groupe des homéomorphismes (ou difféomorphismes, si X_0 est différentiable) de X_0 , A° sa composante connexe [neutre] (N.B. A° est contractile dans le cas anabélien) donc $A/A^\circ=T_{g,\nu}$ (groupe de Teichmüller pour genre g et ν trous), la question revient à ceci si pour tout homomorphisme d'un groupe fini Σ dans $T_{g,\nu}$, (on peut supposer $\Sigma\subset T_{g,\nu}$), celui-ci se relève en un homomorphisme dans A, et si deux tels relèvements sont conjugués par un $a\in A^\circ$ (isotopie au sens strict de deux relèvements...).

Ayant aboutit à une réinterpretation tellement simple de la 1-catégorie ("1-

³¹Ca vaudrait drôlement le coup de le faire très soigneusement...

isotopique") déduite de la 2-catégorie des systèmes

$$(\Pi_{D^*,\Gamma} {\:\longrightarrow\:} \Pi_{U,\Gamma} {\:\longrightarrow\:} \Pi_{e,\Gamma}, \quad \varkappa)$$

en termes de groupes extérieurs à lacets π [munis d'un ensemble d'homomorphismes extérieurs $x_i: T \longrightarrow \pi$, et à défaut d'un $x: T \longrightarrow H^2(\pi, \mathbf{Z})$ (pour bien faire, il faudrait écrire $T^{(\otimes -1)} \simeq H^2(\pi, \mathbf{Z})$, mais ici on a un isomorphisme canonique $T^{\otimes -1} \simeq T$ i.e. $T^{\otimes 2} \simeq \mathbf{Z}...$)], la question se pose comment récupérer, (à équivalence définie à isomorphisme unique près) ce diagramme, en termes de x; tout revient à la description des catégories $\Pi_{D^*,\Gamma}$ et $\Pi_{U,\Gamma}$ et des deux foncteurs $\Pi_{D^*,\Gamma} \longrightarrow \Pi_{U,\Gamma}$, $\Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$; ou ce qui revient au même, des topos (multigaloisiens) et morphismes de topos correspondants.

a) Description de $\Pi_{U,\Gamma}$ et de $\Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$.

Soit plus généralement π un groupe extérieur dont le centre soit trivial (ceci correspond à l'hypothèse anabélienne !), montrons comment on lui associe une topos classifiant B_{π} , qui (comme catégorie de faisceaux) sera $Ens(\pi)$) de façon "fonctorielle" (pour les isomorphismes). Tout revit à voir comment, à une classe de conjugaison d'isomorphismes

$$\pi' \xrightarrow{u} \pi$$

on associe un foncteur "image inverse" $\operatorname{Ens}(\pi) \longrightarrow \operatorname{Ens}(\pi')$, défini à isomorphisme unique près. Considérons pour tout u de la classe θ , le foncteur "u-restriction des opérations"

$$\operatorname{Ens}(\pi) \xrightarrow{u^*} \operatorname{Ens}(\pi')$$

[qui définit donc, [?] $(u^{-1})^*$, une équivalence de topos

$$B_{\pi'} \xrightarrow{u_{\bullet}} B_{\pi} \quad]$$

On va, entre ces équivalences pour $u \in \theta$, définir un système transitif d'isomorphismes (ce qui permet donc de les identifier entre eux!).

Soit $u, u' \in \theta$, d'où $u^*, u^{'*}$; on a par hypothèse un $g \in \pi$ tel que $u' = \operatorname{int}(t) \circ u$, de plus g est déterminé module un élément de $\operatorname{Centr}_{\pi} u(\pi') = \operatorname{Centr}(\pi) = 1$, donc ici g est unique. Mais g peut servir à définir un isomorphisme fonctoriel

$$i_{u',u}: u^* \xrightarrow{\sim} u'^*$$

en prenant, pour $E \in Ob \operatorname{Ens}(\pi)$,

$$i_{u',u}(E): u^*(E) \longrightarrow u^{'*}(E) \quad i_{u',u}(E) = g_E.$$

N.B. Le raisonnement marche pour toute classe de conjugaison d'homomorphismes de groupes $\pi' \longrightarrow \pi$ (i.e. tout homomorphisme extérieur) dont le centralisateur dans π est réduit à 1 (ce qui pour un épimorphisme se réduit à l'hypothèse Centr $(\pi) = 1$)³².

Si maintenant un groupe Σ opère sur le groupe extérieur π , alors par le résultat précédent on peut dire qu'il opère aussi sur le topos B_{π} , d'où un topos $B_{\pi,\Gamma}$. On peut dire aussi que (comme $\operatorname{Centr}(\pi)=1$) l'opération de Σ sur π définit une extension E de Σ par π d'où un topos $B_{\pi,\Gamma}=B_E$. On récupère bien sûr aussi $B_{\pi,\Gamma}\longrightarrow B_{\Gamma}$. Pour se tranquilliser il faudrait s'assurer que si on a un homomorphisme de groupes extérieurs $\pi' \stackrel{\theta}{\longrightarrow} \pi$ commutant à l'action d'un Σ , avec $\operatorname{Centr}_{\pi}(\theta)=(1)$, alors il existe un $\theta_{\Gamma}: B_{\pi,\Gamma} \longrightarrow B_{\pi,\Gamma}$ défini à isomorphisme canonique près.

Or tout $u \in \theta$ définit un homomorphisme d'extension u_{Γ} (de Σ par π' resp. π) $E' \longrightarrow E$ au-dessus de u, et si on passe de u à $u' = \operatorname{int}(g) \circ u$, on aura $u'_{\Gamma} = \operatorname{int}_{E}(g) \circ u_{\Gamma}$, et on termine comme plus haut avec unicité de g; c'est maintenant un homomorphisme extérieur *injectif*

$$\Lambda = [x]: T \longrightarrow \pi \qquad (T \text{ commutatif})$$

(Λ comme initiale de "lacets")

L'injectivité dans le cas qui nous intéresse résulte de l'hypothèse anabélienne. Supposons que (pour $x \in [x]$)

$$\operatorname{Centre}_{\pi} \varkappa = \varkappa(T)$$

(ce qui ne dépend pas de choix de \varkappa dans $[\varkappa]$). Je vais alors définir un groupoïde abélien connexe Π_{λ} , et un isomorphisme de son π_1 avec T (d'où un topos, qui joue le rôle de $\hat{\Pi}_D$). Un objet sera un $\varkappa \in [\varkappa]$. Un homomorphisme de \varkappa dans

 $^{^{32}}$ Marche pour les groupes à lacets anabéliens, et les homomorphismes de tels dont l'image soit d'indice fini... (car le centralisateur dans un tel groupe π d'un sous-groupe d'indice fini est encore réduit à e)

 \varkappa' sera un élément $g \in \operatorname{Transp}_{\pi}(\varkappa, \varkappa')$. La composition des homomorphismes est évidente. On trouve bien un groupoïde connexe, dans lequel

$$\operatorname{Aut}(\varkappa) = \operatorname{Centr}_{\pi}(\varkappa) \stackrel{\operatorname{par} \operatorname{hyp.}}{=} \varkappa(T) \stackrel{\varkappa}{\simeq} T. \quad \operatorname{OK}.$$

Bien sûr, on a un homomorphisme

$$\Pi_{\Lambda} \longrightarrow$$
 groupoïde ponctuel

d'où sur les topos classifiants définis par π

$$B_{\Lambda} \longrightarrow B_{\pi}$$

Il faut voir le comportement de cette construction par homomorphisme extérieur. Soit donc

$$\theta = f_{\pi} = [u] : \pi' \longrightarrow \pi$$

un homomorphisme extérieur tel que $\operatorname{Centr}_{\pi}(\theta) = 1$, et $\Lambda' : T \longrightarrow \pi'$ un homomorphisme extérieur injectif tel que $\chi' \in \Lambda' \Rightarrow \operatorname{Centr}_{\pi'}(\chi') = \operatorname{Im} \chi'$ et considérons le composé

$$f_{\pi} \circ \Lambda' : T \longrightarrow \pi$$

soit $d \in \mathbf{Z}$ et considérons

$$\Lambda = f_{\pi} \circ \Lambda' \circ (d \operatorname{id}_{T})$$

supposons que $x \in \Lambda \ (\Rightarrow \operatorname{Centr}_{\pi}(x) = \operatorname{Im} x)$.

On va définir un homomorphisme de $\Pi_{\lambda'}$ dans Π_{λ} , d'où un homomorphisme de topos $B_{\Lambda'} \longrightarrow B_{\Lambda}$, et une donnée de commutativité α du

$$\begin{array}{ccc}
B_{\Lambda'} & \xrightarrow{f_D} & B_{\Lambda} \\
\downarrow & & \downarrow \\
B_{\pi'} & \xrightarrow{B_{f_{\pi}}} & B_{\pi}
\end{array}$$

Soit $x \in T \longrightarrow \pi'$ un objet de $\Pi_{\Lambda'}$ on veut définir (à isomorphisme unique près) un objet x de Π_{Λ} . Pour tout $u \in f_{\pi} = \theta$, on considère $u \circ x \circ (d \operatorname{id}_T)$, il y a entre eux un système transitif d'isomorphismes pour u variable dans θ , on peut les identifier entre eux.

La fonctorialité de cet objet par rapport à x' variable est évidente : on peut dire que $u \in \theta$ définit un homomorphisme de groupoïdes $u_{\Lambda}: \Pi_{\Lambda} \longrightarrow \Pi_{\Lambda'}$, et entre ceux-ci il y a un système transitif d'isomorphismes. En fait, pour u fixé on a un diagramme commutatif d'homomorphismes de groupoïdes

$$\Pi_{\Lambda'} \xrightarrow{u_{\Lambda}} \Pi_{\Lambda}
\downarrow \qquad \qquad \downarrow
(e, \pi') \xrightarrow{u} (e, \pi)$$

et entre ces diagrammes il y a un système transitif d'isomorphismes, d'où le diagramme (*) et la donnée de commutation α .

Quant on a une famille Λ' (ou un ensemble) d'homomorphisme extérieurs $\Lambda'_{i'}$ $(i' \in I') : T \longrightarrow \pi'$, et une famille $\Lambda(\Lambda_i)_{i \in I}$ d'homomorphismes extérieures $T \longrightarrow \pi$, et un $\tau : I' \longrightarrow I$, et $(d_{i'})_{i' \in I'}$ avec $d_{i'} \in \mathbf{Z}$, tels que (pour $\theta : \pi' \longrightarrow \pi$ homomorphisme extérieur donné) $\forall i' \in I'$, posant $i = \tau(i')$, on ait $\Lambda_i = \Lambda_{i'} \circ \theta \circ (d_i \operatorname{id})$

[N.B. Si $I \longrightarrow \operatorname{Homext}(T,\pi)$ injectif, ces conditions montrent que τ est déterminé par θ , et si de plus $\mathbf Z$ opère fidèlement sur T, par exemple si $T \simeq \mathbf Z$, alors $(d_{i'})$ est également unique...] alors on construit $\Pi_{D^*,\Lambda'} =$ groupoïde somme des $\Pi_{\Lambda'_{i'}}$ et de même $\Pi_{D^*,\Lambda}$, et on trouve un diagramme essentiellement commutatif de topos

Supposons maintenant (ouf !) que Σ opère sur [un] groupe extérieur à lacets...Je déclare forfait - il est évident que tout marche bien !

§ 13. — RETOUR AU CAS ARITHMÉTIQUE

où on veut décrire en termes "galoisiens" les couples (X, S) anabéliens connexes sur un corps K de type fini sur \mathbf{Q} . [NB Si on prend un K de type fini sur \mathbf{F}_p , il faudrait se borner aux groupes fondamentaux "premiers à p", à cela près nos développements pourraient se faire quand même...]

Il est devenu clair qu'en termes d'une clôture algébrique \overline{K} de K, d'où un groupe de Galois profini $\Gamma = \operatorname{Gal}(\overline{K}/K)$, la description la plus simple est en termes de groupes extérieures à lacets et d'actions extérieures de sous-groupes ouverts Σ de Γ dessus. De façon précise, on choisit une composante connexe \overline{X}_0 de \overline{X} (ou ce qui revient au même, \overline{U}_0 de $\overline{U} = (X \setminus S)_{\overline{K}}$), soit Σ son stabilisateur dans Γ (il est remplacé par un conjugué, quand on change \overline{U}_0). Alors Σ opère sur le schéma \overline{U}_0 , donc opère extérieurement sur π_1 (considéré comme groupe extérieure). Or sur celui-ci il y a une $T(\overline{K})$ -structure à lacets, avec comme ensemble d'indices $I = S_0(\overline{K}) \subset S(\overline{K}) \simeq S_0(K) \wedge_{\Sigma} \Gamma$ [vide si et seulement si $S \neq \emptyset$] et l'opération de Σ sur π est compatible avec cette structure à lacet, et le caractère cyclotomique $\chi: \Gamma \longrightarrow \widehat{\mathbf{Z}}^*$ (plutôt, $\chi|_{\Sigma}$). Ainsi l'opération de Σ sur π implique son action sur Σ , d'où $S(\overline{K}) \simeq S_0(\overline{K}) \wedge_{\Sigma} \Gamma$ en tant que σ -ensemble - on récupère donc le K-schéma étale S. Mais mieux, on récupère tout le diagramme

$$\Pi_{\overline{D_0^*}} \longrightarrow \left[\Pi_{\overline{U}_0} \longrightarrow \right] \Pi_{\overline{U}} \longrightarrow \Pi_e$$

et l'opération de Σ dessus d'où le diagramme des topos classifiant - où si on préfère, le diagramme

$$\Pi_{D^*} {\:\longrightarrow\:} \Pi_U {\:\longrightarrow\:} \Pi_e$$

(avec les notations du début de ces notes, qui deviendraient ici

$$\Pi_{D^*,\Gamma} \longrightarrow \Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$$

plus bien sur K...

Les homomorphismes $(X',S') \xrightarrow{f} (X,S)$ $[S' \supset f^{-1}(S), f \text{ dominant}]$ se décrivent simplement (via le choix d'un \overline{X}'_0 au dessus d'un \overline{X}_0 par des homomorphismes extérieures $\pi'(=\pi_1(\overline{X}'_0)) \longrightarrow \pi(=\pi_1(\overline{X}_0))$, compatibles avec les actions de Σ' ($\subset \Sigma$) et de Σ , et avec les structures à lacets anabéliennes (ce qui s'exprime à l'aide d'une application $\tau: (I' \subset \overline{S}'_0) \longrightarrow I = \overline{S}_0^{33}$ compatible avec Σ' , et un système d'entiers naturels $(d_{i'})_{i' \in I'}$).

Il faut cependant compléter, pour $I=\emptyset$, i.e. $S=\emptyset$, la définition de la structure à lacets, par la donnée d'un isomorphisme

$$\chi: T^{\otimes -1} \xrightarrow{\sim} H^2(\pi, \widehat{\mathbf{Z}})$$

[NB. en caractéristique $p \ge 0$, on doit se borner aux composantes ℓ -adiques avec $\ell \ne p$] i.e.

$$\widehat{\mathbf{Z}} \xrightarrow{\sim} H^2(\pi, T)$$

compatible avec l'action de Σ — et il faut exiger, dans l'interprétation "galoisienne" de $f:(X',S')\longrightarrow (X,S)$, quand $S=S'=\varnothing$ que l'homomorphisme $\pi\longrightarrow \pi'$ induit un diagramme commutatif

$$\widehat{\mathbf{Z}} \xrightarrow{\sim} H^{2}(\pi, T)$$

$$\downarrow f^{*}$$

$$\widehat{\mathbf{Z}} \xrightarrow{\sim} H^{2}(\pi', T)$$

où $d \in \mathbb{N}$ est le degré (défini de façon unique par cette condition, comme l'ordre de Coker f^*). Quand $S = \emptyset$, mais $S' \neq \emptyset$, il devrait y avoir encore une compatibilité pour les données kummériennes (de natures différentes sur π' , où il y a bel et bien "des lacets", et sur π , où elle est purement cohomologique). La question équivaut sans doute à celle de décrire une structure kummérienne "cohomologique" sur le

³³**NB**
$$I' = \overline{S}'_0 \cap f^{-1}(\overline{S}_0)$$

groupe $\widetilde{\pi}'$, déduit d'un π' à lacets (avec $I' \neq \emptyset$) en divisant par les dits lacets³⁴. La question est la même, semble-t-il dans le cadre topologique, ou le cadre arithmétique, il me faudra revenir dessus. Il faudrait que pour tout homomorphisme $\pi' \longrightarrow \pi$ de groupes à lacets, l'homomorphisme $\widetilde{\pi}' \longrightarrow \widetilde{\pi}$ correspondant respecte aussi (pour un degré convenable) la structure à lacets.

Quand on s'intéresse aux systèmes anabéliens $(\overline{X}, \overline{S})$ définis directement $sur \overline{K}$, avec \overline{X} connexe disons, ceci s'exprime par un groupe extérieur à T-lacets, muni d'une action (non de Γ mais des) noyaux de groupes profinis définis par Γ . Si on considère les " Γ -automorphismes" d'un tel objet (formés d'un $\gamma \in \Gamma$ et d'un automorphisme extérieur f de π respectant la structure à lacets, f et γ étant compatible dans un sens évident...), on trouve un groupe (profini ???) ("discret" ??) G et un homomorphisme $G \longrightarrow \Gamma$ (à image un sous-groupe ouvert de Γ , et à noyau G_0 le sou-groupe des automorphismes extérieures à lacets de π qui commutent à l'action extérieure du "noyau" (lequel G_0 est conjecturellement par la "conjecture bordélique", isomorphe au groupe fini $\operatorname{Aut}_{\overline{K}}(\overline{K}, \overline{S} \dots)$.

En termes de cette suite exacte

$$1 \longrightarrow G_0 \longrightarrow G \longrightarrow \Gamma$$

la "restriction de $(\overline{X}, \overline{S})$ au corps K" s'exprime donc (on l'espère, de façon pleinement fidèle, si la conjecture bordélique est valable) par un scindage $\Gamma \longrightarrow G$ de $G \longrightarrow \Gamma \dots$

 $^{^{34}}$ Paradigme du passage de (X,S) à X : "bouchage de trous"...

§ 13 bis. — RETOUR SUR LA NOTION DE GROUPE À LACETS

Soit π un groupe, $([L_i])_{i\in I}$ une famille de classes de conjugaison de sous-groupes de π . On dit que cela définit une "structure à lacets" sur π (de type (g, v)) si $\exists g \in \mathbf{N}$, $\forall i \in I$ un $L_i \in [L_i]$, un générateur $l_i \in L_i$, des éléments x_α , $y_\alpha \in \pi$ $(i \le \alpha \le g)$ enfin un ordre i_1, \ldots, i_v sur I $(v = \operatorname{card}(I))$ tels que (posant $l_\alpha = l_{i_\alpha}$ pour simplifier)

$$[x_1, y_1][x_2, y_2]...[x_g, y_g]l_1...l_v = 1$$

soit une présentation du groupe π . On n'exclut pas a priori le cas g=0, ni le cas $\nu=0$, i.e. I vide.

On déduit de ceci:

- a) Si $v \neq 0$, π est libre (à 2g + v 1 générateurs) donc libre *non abélien* sauf si g = 0, $v \leq 2$.
- b) ³⁵ Si $\nu = 0$, le seul cas où π abélien est celui où $g \le 1$. [donc $\pi \simeq \pi_{g,\nu}$ est abélien si et seulement si g = 0, $\nu \le 3$ ou g = 1, $\nu = 0$]

En tout cas³⁶, on a une suite exacte canonique de **Z**-modules libres de types finis

$$0 \longrightarrow T_{\pi} \longrightarrow \prod_{i \in I} L_{i} \xrightarrow{i} \pi_{ab} \longrightarrow \widetilde{\pi}_{ab} \longrightarrow 0$$

³⁶**NB**. Sauf si $\pi = 0$

³⁵Dire que $\pi = 0$ si et seulement si $\nu = 0$ ou 1, et qu'en dehors de ces cas les L_i sont $\simeq \mathbf{Z}$

où pour $I \neq \emptyset$, $\pi \neq \emptyset$ T_{π} est $\simeq \mathbf{Z}$ (défini comme Ker i), et où les projections

$$T_{\pi} \longrightarrow L_{i}$$

sont des isomorphismes. Dans le cas $I \neq \emptyset$, on appelle T_{π} le **Z**-module des orientations de π (muni de la famille des (L_i)) — on définit, si $I = \emptyset$, $(\nu = 0)$ mais $g \neq 0$ (donc $\pi \neq 1$)

$$T_{\pi} = \underbrace{H^{2}(\pi, \mathbf{Z})}_{\mathbf{Z}-\text{module libre de rang 1}}^{\otimes -1}$$

[on établira plus loin une relation entre les deux définition de T_{π}]. Ainsi π_{ab} est libre de rang $2g + \nu - 1$ si $\nu \neq 0$, 2g si $\nu = 0$ (donc g est uniquement déterminé par π et $\nu = \operatorname{card} \pi$).

Notons que [si $\nu \neq 0$, et] sauf les cas "abéliens" g = 0, $\nu = 1,2$, les classes de conjugaison des L_i ($i \in I$) sont distinctes, donc la structure à lacets de π peut se décrire comme la donnée d'un ensemble de ν classes de conjugaison de sousgroupes de $_p i$. De plus, on voit que tout $g \in \pi$ qui normalise un L_i le centralise³⁷ (c'est évident en tout cas pour $\nu \geq 2$, car alors $L_i \longrightarrow \pi_{ab}$ est injectif), ce qui implique que les L_i d'une même classe $[L_i]$ sont canoniquement isomorphes entre eux (ce qui donne un sens intrinsèque au terme $\prod L_i$ dans la suite exacte plus haut, et à l'isomorphisme canonique $T_{\pi} \longrightarrow L_i \dots$

Si³⁸ un groupe Σ opère sur la structure à lacets $(\pi,([L_i]))$ il opère sur le **Z**-module inversible T_π , d'où un caractère

$$\chi: \Sigma \longrightarrow \mathbf{Z}^* = \{\pm 1\}$$

inversement, si l'on a un caractère χ sur Σ donné d'avance, on parlera d'une action de Σ sur $(\pi,([L_i]))$ compatible avec χ .

On a des variantes profinies (ou profinies premières à p, si p est premier donné...) — mais il y a dès maintenant à signaler deux points à vérifier dans ce cas:³⁹

 $\operatorname{Norm}_{\pi}(L_i) = \operatorname{Centr}_{\pi}(L_i) = L_i$ dans le cas $\nu = 1$, sinon pas de problème.

 $[\]overline{^{37}}$ voir à part le cas v=1: normalisateur du sous-groupe engendré par $\prod [x_{\alpha}, y_{\alpha}]$, dans le groupe libre engendré par les générateurs x_{α}, y_{α} ...

³⁸On suppose dorénavant qu'on est dans le cas anabélien, ou du moins on exclut $g=0, \nu \le 2$

³⁹Ce n'est démontré pour le moment dans aucun cas anabélien profini!

Centr $(\pi)=1$ (cas anabéliens) plus généralement, le centralisateur de tout sous-groupe discret ouvert de π est réduit à 1...

§ 14. — DIGRESSION COHOMOLOGIQUE (SUR LE "BOUCHAGE DE TROUS")

Soit⁴⁰ un schéma localement noethérien, régulier de dimension 1, S un sousschéma fermé réduit discret tel que $\forall s \in S$, $\dim_s S = 1$ (donc S défini par une partie fermée discrète de X), $U = X \setminus S$. On veut expliciter par voie galoisienne les faisceaux d'ensembles étales constructibles sur X tels que $F|_U$ soit localement constant. Par le tapis d'Artin sur les ouverts du topos, ils correspondent aux triples

$$(F_U, F_S, \varphi)$$

où F_U est un faisceau constructible localement constant sur U, F_S un faisceau (nécessairement localement constant) et φ un homomorphisme

$$F_S \xrightarrow{\varphi} j^* i_*(F_U)$$

(où $i:U\hookrightarrow X$ et $j:S\hookrightarrow X$ sont les inclusions). Toute condition de constructibilité etc mises à part, un faisceau étale F sur X correspond à un tel triple - on se restreint ici aux F tels que F_U provienne du topos fondamental $B_{\Pi_1(U)}$ de $U\ldots$ (il n'y a pas lieu de supposer F_U à fibres finies pour ce qui suit).

Soit pour tout s dans S, $\underline{\mathcal{O}}_s$ un hensélisé de $\underline{\mathcal{O}}_{X,s}$, $D_s = \operatorname{Spec} \underline{\mathcal{O}}_s$ ("disque en s"), $D_s^* = D_s \setminus \{s\} = \operatorname{Spec} K_s$ (K_s corps des fractions de $\underline{\mathcal{O}}_s$) ("disque épointé" en s),

⁴⁰Il vaudrait peut être mieux démarrer avec le cas purement topologique d'une surface... et faire le lien avec les groupes *discrets*.

 $D = \coprod_{s \in S} D_s$, $D^* = \coprod_{s \in S} D_s^*$. On a un diagramme commutatif

en on voit (par Artin) que ce diagramme permet d'exprimer les faisceaux étales sur X comme des systèmes (F_U, F_D, φ) avec F_U faisceau étale sur U, F_D faisceau étale "essentiellement localement constant" sur D [N.B. l'inclusion $S \hookrightarrow D$ définit une équivalence entre la catégorie de ces faisceaux sur D, et celle des faisceaux étales sur S] et un homomorphisme de faisceaux

$$F_D \longrightarrow \sigma_* \rho^* F_U$$

ou encore

$$\sigma^*(F_D) \xrightarrow{\varphi} \rho^*(F_U)$$

Or, si on se borne aux F_U tels que F_U soit lui-même essentiellement localement constant, alors les données F_U , F_D , φ ne font intervenir que des faisceaux essentiellement localement constants, i.e. des topos fondamentaux (multigaloisiens) associés aux schémas envisagés, donc se décrivent entièrement en termes des diagrammes

- d'ailleurs le cas où φ est un *isomorphisme* correspond justement au cas des faisceaux localement essentiellement constant sur X, i.e. de faisceaux sur $B_{\Pi_1 X}$ - lequel topos fondamental apparaît donc comme somme amalgamée du diagramme de

topos précédent, s'insérant dans le carré

Supposons pour simplifier U connexe, choisissons un revêtement universel de \widetilde{U} de U, et un revêtement universel \widetilde{D}_i^* de chaque D_i^* - d'où un revêtement universel \widetilde{D}_i de D_i - et des isomorphismes (= "classes de chemins") entre $\rho_!(\widetilde{D}_i^*)$ et \widetilde{U} - donc le diagramme de topos (*) - ou des groupoïdes fondamentaux - s'explicite en termes d'un diagramme

et la donnée d'un F comme envisagé sur X revient à la donnée d'un système $(E_U,(E_i)_{i\in I},(\varphi_i)_{i\in I})$ où E_U est un E-ensemble, E_i un Γ_i -ensemble $(\forall i\in I)$, et φ_i un E_i -homomorphisme de E_i dans E_U (i.e. un Γ_i -homomorphisme

$$\varphi_i: E_i \longrightarrow E_U^{\pi_i},$$

où $\pi_i = \operatorname{Ker}(\sigma_i)$ s'insère dans la suite exacte

$$1 \longrightarrow \pi_i \longrightarrow E_i \longrightarrow \Gamma_i \longrightarrow 1$$

Le cas où les $E_i \longrightarrow E_U$ sont des isomorphismes, i.e. E_i s'identifiant tous à E_U , avec action triviale de π_i sur E_U , correspond au cas où F est essentiellement localement

constant sur X, d'où aussitôt

$$\pi_{\text{1}}\!(X) = \! E = \! \pi_{\text{1}}\!(U) \! /$$
 sous-groupe invariant engendré par les $\rho_{i}(\pi_{i})$

Notre propos est celui d'un calcul galoisien (si possible) de la cohomologie de X pour les F envisagés.

Soit $B_{X,U}$ le topos dont les faisceaux sont les triples (F_U, F_D, φ) comme dessus, qui s'envoie donc dans le topos $B_{\Pi_1 X}$, correspondant aux couples pour lesquels φ est un isomorphisme, et reçoit le topos $X_{\text{\'et}}$:

$$X_{\text{\'et}} \xrightarrow{f} \mathbf{B}_{X,U} \xrightarrow{g} B_{\Pi_1 X}$$

On se pose la question

- a) Calcul [?] "explicite", en termes de cohomologie des groupes profinis, de la cohomologie du topos abracadabra $B_{X,U}$. (N.B. La cohomologie de B_{Π_1X} n'est autre que la cohomologie galoisienne profinie de $\pi_1(X) = E/\dots$ calculée plus haut…).
- b) Vérifier si pour un faisceau de torsion F sur $\mathbf{B}_{X,U}$ l'homomorphisme canonique

$$H^*(B_{X,U},F) \longrightarrow H^*(X_{\acute{e}t},f^*F)$$

est un isomorphisme.

N. B. Jusqu'à maintenant, l'hypothèse dim X=1 n'a pas servi, ni l'hypothèse noethérienne - seulement le fait que S soit partie fermée discrète, X connexe...

Pour les calculs qui suivent, correspondants du cas où les $\underline{\mathcal{O}}_s$ sont des jauges à corps résiduels k(s) de caractéristique 0, on va supposer que

$$\pi_i \simeq \hat{\mathbf{Z}}$$
 (non canoniquement)

— en fait, par la théorie Kummérienne on a un système locaux de Tate T_E (sur E), T_i (sur Γ_i), et des E_i -isomorphismes $T_E \simeq T_i$ (i.e. un T_X sur lequel opère $\widetilde{E} = E \setminus \ldots$) et on aura un isomorphisme canonique Kummérien

$$T_i \xrightarrow{\kappa_i} \Pi_i$$

On aimerait pouvoir paraphraser, sur $\mathbf{B}_{X,U}$, la suite exacte de cohomologie bien connue

$$\longrightarrow H^{i}(X,F) \longrightarrow H^{i}(U,F) \longrightarrow H^{i+1}_{S}(X,F) \longrightarrow ...$$

relative à l'ouvert U du topos X, et son "complémentaire" fermé S. Or, tout comme X s'insère dans un diagramme de topos

de même $B_{X,U}$ s'insère dans

[N.B. Les \varprojlim finies et les \varinjlim quelconques dans $B_{X,U}$ i.e. pour les (F_U, F_D, φ) , se calculent "termes à termes"]

Je dis que $B_{\Pi_1 U} \longrightarrow B_{X,U}$ s'identifie à un morphisme d'induction, relatif à l'objet (noté encore U par abus de notation) de $B_{X,U}$ défini par

$$F_U =$$
 faisceau final $e_U, \quad F_D =$ faisceau initial \varnothing_D

(et φ étant alors fixé !).

En effet, les objets de $B_{X,U}$ au dessus de U s'identifient aux (F_U, F_D, φ) avec $F_D = \varnothing_D$ ([?] que fixe φ ? [?]) donc ils forment une catégorie équivalente à celle des F_U , i.e. ' $B_{\Pi,U}$.

On voit que le topos résiduel ('identifiant à la catégorie des $F=(F_U,F_D,\varphi)$ tels que $F_U=e_U$ faisceau final), s'identifie de même à la catégorie $B_{\Pi,D}$ des f_D - le

foncteur canonique " image inverse sur $B_{\Pi_1 D}$ de l'image directe sur $B_{\Pi_1 U}$ " n'étant autre [que [?]] $\sigma_* \rho^*$, de sorte que l'on retrouve la description typique d'Artin d'un topos déduit par "recollement" d'un ouvert et du fermé complémentaire.

On trouve donc une suite exacte

$$\longrightarrow \operatorname{H}^{i}(\mathsf{B}_{X,U},F) \longrightarrow \operatorname{H}^{i}(\mathsf{B}_{\Pi_{1}U},F_{U}) \longrightarrow \operatorname{H}^{i+1}_{S(\mathrm{ou}\ D)}(\mathsf{B}_{X,U},F) \longrightarrow \dots$$

s'envoyant dans la suite exacte analogue relative à $X_{\text{\'et}}$, $U_{\text{\'et}}$, $S_{\text{\'et}}$. (On n'a toujours pas utilisé d'hypothèse spéciale sur S...).

Pour vérifier que l'on a des isomorphismes au niveau des $H^i(B_{X,U},F) \longrightarrow H^i(X_{\text{\'et}},F)$, il suffit par le lemme des cinq de le prouver au niveau des $H^i(B_{\Pi_1,U},F) \longrightarrow H^i(U_{\text{\'et}},F)$ [i.e. vérifions que la cohomologie de $U_{\text{\'et}}$ "se calcule galoisiennement"] et au niveau des H^i_s .

Regardons d'abord ces derniers - on a

 $H_S^0(B_{X,U},F)=$ ensemble des sections de F [i.e. des couples d'une section de F_U et d'une de F_D se correspondant par φ , i.e. d'un élément x de E_U invariant par E, et des $x_i \in E_i$ invariants par les Γ_i , tels que $\forall i \ x=\varphi_i(x_i)$] tels que X=0 = $\prod_i (\text{Ker}(E_i \longrightarrow E_U))$

On constate que ce foncteur se factorise par le foncteur H_S^0 relatif à "l'inclusion" analogue

$$B_{\prod_1 D} \longrightarrow B_{D,D^*}$$
remplaçant $\Pi_1 U$

et les H_S^i sur $D_{X,U}$ se calculent comme ceux dans la situation locale B_{D,D^*} - où on trouve le calcul habituel⁴¹ en termes de l'homomorphisme de groupes $E_i \longrightarrow \Gamma_i$. Mais dans le cas actuel, l'hypothèse $\dim_s X = 1$ aux points $s \in S$, implique la situation du topos [?] $D_{\text{\'et}}^* \hookrightarrow D_{\text{\'et}}$ est déjà entièrement définie en termes des topos fondamentaux i.e. le topos B_{D,D^*} est équivalente à $D_{\text{\'et}}$ - or les $H_S^i(X_{\text{\'et}},F)$ se calculent bien sur $D_{\text{\'et}}$...

On trouve donc

Proposition⁴²: L'homomorphisme de suites exactes de cohomologie envisagé

⁴¹que j'ai un peu oublié!

⁴²Corollaire: Dans ce cas la cohomologie de X à coefficients dans un F_X localement constant se calcule également? Non, à cause du genre 0 !! Dans le cas de courbes projectives lisses de genre \neq 0 il faut un argument spécial.

est un isomorphisme, pourvu que l'on sache que l'homomorphisme $H^i(E, F_E) \longrightarrow H^i(U_{\acute{e}t}, F_U)$ est un isomorphisme pour tout i $(F_U$ faisceau étale sur $U_{\acute{e}t}$ défini par un groupe F_E sur lequel $E = \pi_1(U)$ opère).

Exemple: OK si U est une courbe affine sur k algébriquement clos F premier à car $[k\ [?]]$ (car OK pour i=0,1, et pour i=2 les deux [membres [?]] sont nuls (la cohomologie galoisienne, car le groupe fondamental premier à p est libre...) - d'où on déduit le cas analogue pour U affine sur k quelconque, puis même si U n'est pas affine mais simplement quasi-projective P)

Nous nous intéressons maintenant au cas où X projective (connexe) sur k algébriquement clos, on voit donc que :

a) Si $S = \emptyset$ i.e. X = U, la cohomologie de U (à coefficients dans des [?] locaux) est celle de π . Donc on a un isomorphisme canonique

$$H^2(\pi, T) \simeq H^2(X, T) \quad (\simeq \hat{\mathbf{Z}})$$

(avec [un] grain de sel en caractéristique p > 0)

b) Si $S \neq \emptyset$, les $H_1^i(U, -)$ se décrivent et [se] calculent par voie galoisienne, en termes de groupes à lacets, permettant de reconstituer la situation

en notant que le composant $B_{\Pi_1D_i^*}$ n'est autre que B_{L_i} (avec les notations du numéro précédent). On trouve alors des isomorphismes canoniques (par [calculs] [?] locaux)

$$\begin{split} & H^2_{s_i}(\mathbf{B}_{U,X},L_i) \simeq \hat{\mathbf{Z}} \quad \text{i.e.} \quad H^2_{s_i}(\mathbf{B}_{U,X},\hat{\mathbf{Z}}) \simeq L_i^{\otimes -1} \end{split}$$
 (si $g \neq 0$)
$$& H^2_{s_i}(\mathbf{B}_{U,X},\hat{\mathbf{Z}}) \stackrel{\sim}{\longrightarrow} H^2(X,\hat{\mathbf{Z}}) \simeq H^2(\pi,\hat{\mathbf{Z}}) \end{split}$$

d'où en mettant ensemble, des isomorphismes canoniques

$$L_i \simeq H^2(\pi, \hat{\mathbf{Z}})^{\otimes -1}$$

d'où en mettant ensemble⁴³, des isomorphismes canoniques

$$L_i \simeq \mathrm{H}^2(\pi, \hat{\mathbf{Z}})^{\otimes -1}$$

On constate que les composés

$$T_{\pi} \xrightarrow{\sim} L_i \longrightarrow H^2(\pi, \hat{\mathbf{Z}})^{\otimes -1}$$

ne dépendent pas du choix de i, de sorte que le module d'orientation T_{π} du groupe profini à lacets π s'identifie au *dual* de $H(\pi, \hat{\mathbf{Z}})$ (si $g \neq 0$).

Considérons maintenant un homomorphisme de groupes à lacets $\pi' \stackrel{f}{\longrightarrow} \pi$, $I'_0 \stackrel{\tau}{\longrightarrow} I$ associé à un isomorphisme $T_{\pi'} \simeq T_{\pi}$ et une application degré $d: I'_0 \longrightarrow \mathbf{N}$ (N.B. $i' \in I' \setminus I'_0 \longrightarrow f(L'_{i'}) = (1)$).

On voudrait en déduire un diagramme de morphismes de topos

et un homomorphisme trace sur la cohomologie à supports propres de U', U (définie en termes de cohomologie sur $B_{X',U'}$, $B_{X,U}$ relativement) qui induise un isomorphisme

$$H_1^2(U', \widehat{\mathbf{Z}}) \longrightarrow H_1^2(U, \widehat{\mathbf{Z}})$$

qui soit justement (contragrédiant de) l'isomorphisme des modules d'orientations associé à f...

⁴³Mais dans tous les cas (même si g=0, du moment qu'on n'a pas $\nu=0$) on trouve $H_!^2(B_{\pi,U}, \hat{\mathbf{Z}}) \simeq \hat{T}_{\pi}^{\otimes -1}$ canoniquement, d'où une description cohomologique des modules des orientations, commune au cas sans trous et avec trous...

§ 14 bis. — OÙ ON REVIENT SUR LES MORPHISMES MIXTES

(Correspondants, dans le cadre topologique, au cas de $f:(X',S')\longrightarrow (X,S)$ (avec X,X' T-orientés) tels que l'on ait $[f(X'\backslash S')\subset X\backslash S,$ i.e. $S'\supset f^{-1}(S),$ mais $]S'\neq f^{-1}(S),$ i.e. il y a des points de S' qui sont envoyés dans $U=X\backslash S$).

Dans le paradigme toposique et groupoïdal, (X, S) est décrit par un diagramme de groupoïdes

$$\Pi_{D^*} {\:\longrightarrow\:} \Pi_U \quad (\text{et } \ \varkappa : T_{\Pi_{D^*}} \simeq \text{ système local des } \pi_1 \text{ sur } \Pi_{D^*})$$

ou de topos

$$B_{D^*} \longrightarrow B_{II}$$

et un isomorphisme x du système local constant T, qui permet de définir le topos discret $B_D(\simeq B_{\Pi_0 D^*})$ et le topos $B_{X,U}$, s'insérant dans le diagramme de topos

où φ,ψ sont des morphismes d'inductions de sous-topos, φ ouvert ψ fermé, com-

plémentaire l'un de l'autre, et pour (X', S'), décrit par un diagramme analogue

Ceci dit, on veut absolument, dans une description de $f:(X',S')\longrightarrow (X,S)$, que celle-ci permette de retrouver non seulement $B_{U'}\longrightarrow B_U$ (ce qui sera acquis par la donnée d'un $f_\pi:\pi'\longrightarrow\pi$), mais aussi $B_{X',U'}\longrightarrow B_{X,U}$. On aura $S'=S'_0(=f^{-1}(S))\coprod S'_1$, donc $D'=D'_0\coprod D'_1$ et en fait f induit $S'_1\stackrel{f}{\longrightarrow} U$ (et non $S'_1\longrightarrow S$) qui doit s'expliciter, au niveau des topos multigaloisiens, par un morphisme

$$B_{D'_1}(\simeq B_{S'_1}) \longrightarrow B_U$$

i.e. la donnée d'une famille de revêtements universels de U, paramétrée par $S_1' = I_1'$, ou (si un te revêtement universel est choisi, U étant connexe, d'où un $\pi = \operatorname{Aut}(\widetilde{U})$) par une famille de torseurs sous π , $(P_{i'})_{i' \in I_1'}$. Ceci étant posé, on pourra décrire, en termes de

$$\begin{array}{ccc} \mathbf{B}_{D_0^{\prime*}} & \longrightarrow & \mathbf{B}_{U^{\prime}} \\ \downarrow & & \downarrow \\ \mathbf{B}_{D^*} & \longrightarrow & \mathbf{B}_{U} \end{array}$$

et de

$$B_{D_1^{\prime *}} \longrightarrow B_{D_1^{\prime}} \longrightarrow B_U$$

l'homomorphisme de topos $B_{X',U'} \longrightarrow B_{X,U}^{44}$

- Je passe sur le détail de la description.

Quand on se donne un groupe d'opérateurs Γ sur la situation $(X',S') \longrightarrow (X,S)$ donc sur la situation groupoïdale ou toposique, il faut en tenir compte dans la description ci-dessus.

⁴⁴Il semble qu'on soit en train de faire la description des morphismes de topos $B_{X',U'} \longrightarrow B_{X,U}$ qui induisent $U' \longrightarrow U$ et qui sur $D_1'^*(=D'^*|_U)$, se factorisent par $D_1'^* \longrightarrow D_1'$...

Ainsi I_0' [?] I_1' sera stable par Γ , et le morphisme $B_{D_1'} \longrightarrow B_U$ doit être stable par Γ . CE qui signifie aussi, sans doute, qu'on a un morphisme de topos de $B_{D_1',\Sigma} = B_{I_1',\Sigma}$ dans $B_{U,\Gamma}$. Choisissant pour toute orbite de Γ dans I_1' un représentant $s' \in I_1'$, et considérant son stabilisateur $\Gamma_{s'} \subset \Gamma$, il faut donc pour toute telle orbite i.e. tout i' se donner un $\Gamma_{s'}$ objet de la catégorie des revêtements universels de (U,Γ) .

Décrivant (U,Γ) en termes d'une extension E de $\Sigma \subset \Gamma$ par π (en choisissant un revêtement universel \widetilde{U} de U), la donnée de $B_{\Gamma_{s'}} \longrightarrow B_{X,U}$ compatible avec tout revient sauf erreur à la donnée d'un torseur P à droite sous π (permettant de tordre le revêtement universel de référence \widetilde{U} de U, à l'aide de P don aussi de tordre Epar P), et d'un scindage de $E^P \longrightarrow \Gamma$ au dessus de $\Gamma_{s'}...$)

Un automorphisme d'un tel couple $(P, \Gamma_{s'} \xrightarrow{q} E^P)$ correspond à un $\alpha \in \pi$ qui centralise $\Gamma_{s'}$, i.e. qui soit fixé par $\Gamma_{s'}$ opérant sur π .

Si les $\Gamma_{s_i'}$ opèrent assez fortement sur π pour que l'on sache que $\pi^{\Gamma_{s_i'}} = (1)$, l'objet $(P, q : \Gamma_{s_i} \longrightarrow E^P)$ est défini à *isomorphisme unique* près par la classe d'isomorphie (classe de scindage de E sur Γ_{s_i}).

Il me semble probable que ceci soit toujours le cas dans le cas arithmétique, où $\Gamma_{s'_i}$ est un sous-groupe ouvert du groupe de Galois Γ (dont l'opération extérieure est alors draconienne!) ; ceci en direction de la conjecture qu'une classe de scindage de E sur Γ est "aussi bonne" qu'un point rationnel de U sur K — et permet de paradigmer ce qu'un tel point rationnel permettrait d'obtenir...

§ 15. — RETOUR SUR LE CAS TOPOLOGIQUE

Structure des Γ -orbites critiques en termes d'extensions

Soit Γ un groupe fini opérant sur un groupe à lacets π ; supposons que ceci provienne d'une situation topologique, Γ opérant sur (X,S). Il y a des points à vérifier (cas anabélien).

a) Opération de Γ triviale $\iff \Gamma \xrightarrow[trivial]{} Autext(\pi)$.

En d'autres termes : un *automorphisme* d'ordre fini de (S,X) ne peut être isotope à l'identité (ou même seulement homotope, cela revient au même d'ailleurs) que si il est trivial.

C'est même connu en Géométrie Algébrique "abstraite" du moment qu'on admet que u conserve une structure complexe - il en est justement ainsi si on admet qu'il n'y a pas de sauvagerie...

Sans doute toute action d'un groupe fini Γ laisse [une] structure conforme invariante, et même si on restreint à $\Gamma^{\circ} = \ker(\Gamma \xrightarrow{\chi} \{\pm 1\})$, [laisse une] structure complexe invariante.

Supposons dorénavant que Γ opère fidèlement ($\Gamma \neq 1$), le choix d'une structure complexe sur $Y = X/\Gamma^{\circ}$ en définit une sur X^{45} stable par Γ° - et une structure conforme stable par Γ si on choisit celle de Y invariée par l'élément non trivial de Γ/Γ° (s'il y en a un)⁴⁶.

⁴⁵(N. B. Γ/Γ° opère encore sur X/Γ °, en fait si $\Gamma \neq \Gamma$ ° i.e. Γ/Γ ° $\simeq \{\pm 1\}$, X/Γ ° est muni d'une "structure de courbe algébrique réelle"...)

⁴⁶(cela marche chaque fois qu'on a un revêtement ramifié de surface conforme).

Tout $x \in U^{\Gamma}$ définit une classe de π -conjugaison de scindages de l'extension E de Γ par π , comme on voit en prenant x comme point base⁴⁷.

Notons que si $\Gamma^{\circ} \neq 1$ (i.e. Γ n'est pas réduit à l'identité et une anti-involution). U^{Γ} est un ensemble fini - on trouve une application $U^{\Gamma} \longrightarrow$ ensemble des classes de π -conjugaison de scindages de $E \longrightarrow \Gamma$, i.e. ensemble des relèvements de $\Gamma \longrightarrow$ Autext π ou $\Gamma \longrightarrow \operatorname{Aut}(\pi)$ mod. π -conjugaison.

Question. — Si $\Gamma^{\circ} \neq \{1\}$, cette application est-elle bijective? Si $\Gamma^{\circ} = \{1\}$, $\Gamma/\Gamma^{\circ} \simeq \{\pm 1\}$, alors X^{Γ} est l'ensemble des points réels d'une courbe algébrique réelle et $U^{\Gamma} = X^{\Gamma} \setminus S^{\Gamma}$ est le complémentaire d'une partie finie dedans, on a :

$$\pi_{\mathsf{0}}(X^{\Gamma} \backslash \mathcal{S}^{\Gamma}) \longrightarrow \pi - \mathrm{classe} \ \mathrm{de} \ \mathrm{scindages} \ \mathrm{de} \ E \ \mathrm{sur} \ \Gamma$$

et la question analogue de bijectivité se pose, pour l'extension de $\{\pm 1\}$ par π ...

Pour l'injectivité de l'application dans le cas $\Gamma^{\circ} \neq \{1\}$, on peut supposer $\Gamma = \Gamma^{\circ} \simeq \mathbf{Z}/p\mathbf{Z}$, avec p premier, i.e. Γ engendré par un automorphisme complexe u d'ordre p, qui définit (si $x,y \in U^{\Gamma}$, $x \neq y$) un automorphisme d'ordre p dans $\pi_1(U,x)$, u_x donc une classe de π -conjugaison d'automorphisme de π d'ordre p, et de même un automorphisme u_y de $\pi_1(U,y)$. Il faut prouver que u_x , u_y ne sont pas conjugués sur π .

Soient U un espace topologique connexe par arcs, Γ un groupe fini opérant sur U, \tilde{U} un revêtement universel de U, d'où un groupe extension

$$1 \longrightarrow \pi \xrightarrow{i} E \xrightarrow{p} \Gamma \longrightarrow 1$$

opérant fidèlement sur \widetilde{U} ($\pi=\operatorname{Aut}_U(\widetilde{U}\simeq\pi_1(U))...$). Pour tout point fixe $x\in U^\Gamma$, Γ opère sur le revêtement universel ponctué sur x, soir R_x , en laissant fixe le point marqué \widetilde{x} dans R_x au-dessus de x, d'où un scindage de l'extension relative

$$1 \longrightarrow \pi_x \xrightarrow{i_x} E_x \xrightarrow[\sigma_x]{p_x} \Gamma \longrightarrow 1$$

et pour tout isomorphisme c ("chemin") : $R_x \simeq \widetilde{U}$, induisant un isomorphisme d'extension $R_x \simeq E$ (défini de manière compatible avec l'automorphisme intérieur induit par un $\alpha \in \pi...$) on trouve par transport de structure un scindage $\sigma_{x,l}$ de

⁴⁷(N.B. $U^{\Gamma} \neq \emptyset$ implique que Γ est cyclique).

 $E \stackrel{p}{\longleftarrow} \Gamma$ (qui, pour l variable, est défini à automorphisme intérieur près par un $\alpha \in \mathbf{R}$).

On trouve ainsi une application

(*)

classes de π – conjugaison des scindages de l'extension E de Γ par π

$$U^{\Gamma} \longrightarrow$$
 (= classes de π – conjugaison de sous-groupes Γ' de E

[images de sections])

L'image de cette application est donc formée des classes de conjugaison de sousgroupes sections $\Gamma' \subset E$ tels que $\widetilde{\Gamma'} \neq \emptyset$, et pour un tel Γ' , l'ensemble des $x \in U^{\Gamma}$ qui donnent comme image cette classe de conjugaison est l'image de U^{Γ} dans U^{48} .

Enfin, si x est dans cette image, l'ensemble $\widetilde{U}_x^{\Gamma'}$ des $\widetilde{x} \in \widetilde{U}^{\Gamma'}$ au-dessus de $x \not\in \emptyset$ par hypothèse sur x) est un torseur sous $\pi^{\Gamma'}$ i.e. si $\widetilde{x} \in (U^{\Gamma'})_x$, et si $\alpha \in \pi$, alors

$$\alpha \widetilde{x} \in \widetilde{U}^{\Gamma'} \Longleftrightarrow \alpha \in \pi^{\Gamma'}$$

(vérification triviale, comme dans toutes les assertions précédentes).

- a) (*) est une bijection, et pour tout sous-groupe Γ de E section de l'extension, on a $\pi^{\Gamma'} = \{1\}$.
- b) pour tout Γ' comme dans a), Γ' opérant sur \widetilde{U} a un point fixe et un seul.

Ceci posé, prouvons le

Lemme fondamental. — Soit Γ un groupe fini, opérant fidèlement sur un espace $D \simeq \mathbf{R}^2$, soit Γ° le sous-groupe de Γ (d'indice 1 ou 2) formé des $g \in \Gamma$ tels que g_D conserve l'orientation, et supposons $\Gamma^\circ \neq \{1\}$ (i.e. Γ n'est réduit ni au groupe unité, ni au groupe $\{1, \sigma\}$, où σ est une anti-involution de D). Alors

a) Γ admet un point fixe et un seul dans D i.e. card $D^{\Gamma} = 1$.

⁴⁸(N.B. \widetilde{U}_x étant identifié à $\operatorname{Isom}_U(R_x,\widetilde{U})$, $\widetilde{U}_x^{\Gamma'}$ s'identifie à $\operatorname{Isom}_{U,\Gamma}(R_x,\widetilde{U})$. Les deux isomorphismes qui commutent à l'action de Γ, et $\pi^{\Gamma} = (1)$ signifie donc que cet isomorphisme est unique en terme de la classe de conjugaison des sections de [?])

b) Γ° est cyclique, et si $\Gamma \neq \Gamma^{\circ}$. Γ est un groupe diédral.

précisément, il existe un homéomorphisme $D \simeq \mathbb{C}$ tel que le groupe d'homéomorphismes de \mathbb{C} transformé de Γ soit : soit le groupe des homothéties par $\mu_n(\mathbb{C})$ (si $\Gamma = \Gamma^\circ$ d'ordre n), soit le groupe diédral associé

$$z \mapsto \xi \, \tau^{\varepsilon}(z) \quad (\xi \in \mu_n(\mathbf{C}), \varepsilon = \pm 1)$$

où τ est la conjugaison complexe.

Démonstration du lemme fondamental.

a) Supposons d'abord qu'on puisse trouver une structure C^2 sur D invariante par Γ alors un argument standard montre qu'il existe une structure conforme invariante par Γ , or le théorème fondamental de la représentation conforme montre qu'alors

ou bien $D \simeq$ intérieur Δ du disque unité ou du demi-plan de Poincaré ou bien $D \simeq \mathbb{C}$ (isomorphisme conforme).

Dans le premier cas, les groupes des automorphismes conformes est

$$\simeq \operatorname{Sl}(2,\mathbf{R})^{\sim} = \{u \in \operatorname{Sl}(2,\mathbf{R})/\det u = \pm 1\} (u = \begin{pmatrix} a & b \\ c & d \end{pmatrix}) \text{ opérant par } \theta_u \tau^{\det u} \text{ où } \tau$$

est la conjugaison complexe et $\theta_u(z) = \frac{az+b}{cz+d}$ en laissant stable le demi plan de Poincaré, et tout sous-groupe compact est contenu dans un conjugué du sus-groupe compact maximal qui (en repassant au disque unité Δ) s'identifie au groupe $O(2, \mathbf{R})$ des transformations du disque unité de la forme

$$z \mapsto \chi \tau^{\varepsilon}$$
 $\xi \in \mathbb{U} = \{\xi \in \mathbb{C}/|\xi| = 1\}$ $\varepsilon \in \{\pm 1\}$

au est la conjugaison complexe.

Tout sous-groupe fini de ce groupe est de l'un des types explicités plus haut.

On gagne, en utilisant un homéomorphisme $[0,1[\longrightarrow [0,+\infty[$ pour définir un homéomorphisme $D \simeq \mathbb{C}$ commutant à l'action de $G = O(2,\mathbb{R})$.

Dans le cas $D \simeq \mathbb{C}$, on voit que le groupe des endomorphismes conformes de \mathbb{C} est le groupe des transformations az + b ou $a\overline{z} + b$, dans lequel un sous-groupe compact maximal est le même groupe $O(2,\mathbb{R})$ que tantôt — et tout sous-groupe compact (à fortiori tout sous-groupe fini) est contenu dans un conjugué de celui-ci.

On gagne encore.

Le reste du travail consiste essentiellement à montrer que l'hypothèse de non-sauvagerie est toujours satisfaite, du moins pour Γ° . Supposons d'abord $\Gamma = \Gamma^{\circ}$.

On suppose que tout est prouvé pour les ordres < card Γ .

b) Γ admet un point fixe où $D^r \neq \emptyset$.

Sinon, les sous-groupes des orbites \widetilde{x} des $x \in D$ étant d'ordre < card Γ , par hypothèse de récurrence les Γ_x ont la structure dite dans le théorème, donc $D^{\Gamma} = U$ est une surface topologique et $D \longrightarrow U$ est un revêtement ramifié ; choisissons une structure conforme sur U, il y a une unique structure conforme sur D telle que $D \longrightarrow U$ soit "conforme" (holomorphe ou antiholomorphe), celle-ci est invariante par Γ et, d'après a), Γ admet un point fixe, contradiction.

c) Γ n'admet pas d'autre point fixe que 0. On fait opérer Γ fidèlement sur $D^* = D \setminus \{0\}$ et il faut prouver que $D^{*\Gamma} = \emptyset$.

Soit donc $x \in D^{*\Gamma}$. On va alors aboutir à une contradiction. Considérons le revêtement universel \widetilde{D}^* de D^* ponctué en x, donc Γ opère sur \widetilde{D}^* avec point fixe \widetilde{x} au-dessus de x. Ici $\pi = \pi_1(D^*) \simeq \mathbf{Z}$, et Γ y opère trivialement (car $\Gamma = \Gamma^\circ$) donc $\Gamma \times \mathbf{Z}$ opère sur \widetilde{D}^* .

On peut supposer $D={\bf C},\,O=0,\,x=1,\,D^*={\bf C}^*,\,\widetilde{D}^*={\bf C},\,\widetilde{x}=0,\,\widetilde{D}^*\longrightarrow\widetilde{D}$ donné par exp $(2i\,\pi z)$, et ${\bf Z}$ opérant sur ${\bf C}$ par $\theta_n z=z+n$ $(n\in{\bf Z}).$

Il reste à prouver que si un groupe fini Γ opère sur C en commutant à l'action de Z sur C, et en laissant fixe le point 0, alors Γ opère trivialement (ce qui contredit l'hypothèse de fidélité de l'opération).

On est ramené au

Lemme. — Soit u un homéomorphisme d'ordre fini de C commutant à $z \mapsto z+1$ et laissant invariant l'origine, alors $u \simeq id$.

On peut supposer qu'il existe un nombre premier p tel que $u^p = \mathrm{id}$, i.e. que u correspond à une opération de $\Gamma = \mathbf{Z}/p\mathbf{Z}$ sur \mathbf{C} . Tous les points de $\mathbf{Z} \subset \mathbf{C}$ sont fixe par Γ . Passant à $\widetilde{\mathbf{C}} \simeq \mathbb{S}^2$, on trouve que ∞ est un point d'accumulation des points fixes sous Γ . Si Γ n'opérait pas trivialement, ce serait décidément très sauvage ! On doit pouvoir terminer par la suite spectrale d'Adams...je n'entre pas dans ces dédales...

d) La partie purement topologique étant ainsi supposée prouvée, on en conclut aussi, si $\Gamma \neq \Gamma^{\circ}$, $\Gamma^{\circ} \neq \{1\}$, comme $D^{\Gamma^{\circ}}$ est invariant sous Γ , comme $D^{\Gamma^{\circ}}$ est réduit à un point, celui-ci est invariant sous Γ tout entier, pas seulement Γ° . D'autre part, on en sait assez maintenant pour savoir que si Γ groupe fini opère sur une surface compacte U, les Γ_x ($x \in U$) respectant l'orientation, alors $U \setminus \Gamma \simeq V$ est un surface $U \longrightarrow V = U \setminus \Gamma$ est un revêtement ramifié, choisissons une structure conforme sur V, on trouve par image inverse une structure conforme sur U invariante par Γ . Pour le cas U = D, on termine par A) pour le complément du lemme fondamental.

[Mais pour bien faire, il faudrait prouver qu'il existe toujours une structure conforme invariante si Γ est un groupe fini opérant sur une surface compacte donc $U\backslash\Gamma$ est une surface à bord...Ici ce qui manque, c'est l'analyse de l'action d'une anti-involution d'une surface au voisinage d'un point fixe...]⁴⁹

Conséquence du lemme fondamental:

Théorème. — Soit U une surface topologique paracompacte 0-connexe, Γ un groupe fini opérant fidèlement sur U, on suppose \widetilde{U} non compacte (i.e. U non homéomorphe à \mathbb{S}^2 ni au plan projectif réel) on suppose que de plus si U est orientable, le sous-groupe Γ° de Γ des $g \in \Gamma$ qui conservent une orientation soit $\neq \{1\}$ [donc Γ n'est

⁴⁹Il faudrait prouver que si τ est un anti-automorphisme involutif de D, alors il existe un isomorphisme $D \simeq \mathbb{C}$ tel que τ devienne $z \mapsto \overline{z}$ (donc $D^{\tau} \simeq \mathbb{R}$!) ce qui doit permettre de prouver, si $\Gamma = \mathbb{Z}/2\mathbb{Z}$ opère par anti-automorphisme sur U ([orientable $U \neq S^2$]) que $\pi_0(U^{\Gamma}) \longrightarrow$ classes de π -conjugaison de sections de E sur Γ est bijectif.

ni réduit à 1, ni à 1 et une anti-involution], et si U non orientable, que $\Gamma \neq \{1\}$ i.e. card $\Gamma > 3$.

Ceci posé considérons l'extension E de Γ par $\pi = \pi_1(U)$, et l'application

$$U^{\Gamma}$$
 \longrightarrow classes de π – conjugaison des scindages de E \longrightarrow Γ

on a ceci:

- a) Cette application est bijective
- b) Pour tout sous-groupe section $\Gamma' \subset E$ on a $\pi^{\Gamma'} = \{1\}$.
- c) Si $U^{\Gamma} \neq \emptyset$, i.e. il existe un scindage, alors Γ est cyclique ou diédral (et dans le cas U ouvert, Γ° est cyclique)⁵⁰.

Corollaire. — Supposons U orientée, Γ conservant l'orientation. Soit $U^!$ l'ensemble de $x \in U$ tels que $\Gamma_x \neq \{1\}$ (qui est donc une partie discrète dans U). A tout $x \in U^!$, associons la classe de π -conjugaison des sous-groupes de E (sections partielles de E sur $\Gamma_{x'}$) qui correspond à cet $x \in U^{\Gamma_{x'}}$.

Alors

- a) les sections partielles ainsi obtenues sont maximales parmi celles qui sont $\neq \{1\}$.
- b) l'application de $U^!$ vers l'une des classes de π -conjugaison des sections partielles \neq (1) maximales est bijective⁵¹.
- c) pour toutes telles sections partielles, on a $\pi^{\Gamma'} = \{1\}$, i.e. les automorphismes du revêtement universel R_x de U qui commutent à l'action de Γ_x sont triviaux. Il y a un isomorphisme unique commutant à l'action Γ_x entre ce torseur et le torseur déduit de \tilde{U} en tordant par le π -torseur P_x de Γ'' dans la classe Γ' ...

Prouvons a). Soit $\Gamma' \subset E$ section partielle sur Γ_x déduite de $x \in U^!$. Soit $\Gamma'' \supset \Gamma_x'$ un autre sous-groupe tel que $\Gamma'' \cap \pi = \{1\}$ i.e. $\Gamma'' \hookrightarrow \Gamma$. Soit $\Gamma_1 \supset \Gamma_x$ son image dans

 $^{^{50}}$ N.B. Les hypothèses sur U assurant que $\widetilde{U} \simeq D$, et celles sur Γ que Γ opérant sur D satisfait aux hypothèses du lemme fondamental.

⁵¹(N.B. Cette application commute aux actions naturelles de Γ !).

 Γ . Par le théorème précédent, il est défini par un unique $y \in U^{\Gamma_1}$, et il est clair que cet y ne change pas si on remplace l'action de Γ_1 sur U par l'action d'un groupe plus petit $\neq \{1\}$ (et la section induite) tel Γ_x , donc [?] Γ_1 fixe x donc (par définition de Γ_x) $\Gamma_1 = \Gamma_x$ donc $\Gamma'' = \Gamma'$.

b) Soient x, y donnant même image $[\Gamma']$, $[\Gamma'']$, donc $\Gamma_x = \Gamma_y$, soit Γ_1 , et appliquant le théorème à Γ_1 opérant sur U, on trouve x = y. Soit d'autre part Γ'_0 une section partielle $\neq 1$ maximale, $\Gamma_0 \subset \Gamma$, son image ; par le théorème appliqué à l'action de Γ_0 sur U, $\exists x \in U$ tel que $x \in U^{\Gamma'_0}$ i.e. $\Gamma'_0 \subset \Gamma_x$ et que $[\Gamma'_0]$ soit défini par x, mais si $[\Gamma']$ est défini par x pour l'action de Γ_x tout entier, on aura $[\Gamma'_0] \subset [\Gamma']$, donc par le caractère maximal de $[\Gamma'_0]$, on aura $[\Gamma'_0] = [\Gamma']$, ce qui prouve b). D'autre part c) est clair.

Revenons maintenant au cas où $U=X\backslash S$, X surface T-orientée compacte avec S partie finie, anabélienne. Donc on a une description "pleinement fidèle" de U par un π avec structure à lacets, et on voudrait se convaincre que l'opération extérieure d'un Γ sur π , quand Γ conserve l'orientation (pour simplifier) est également suffisante pour décrire pleinement l'objet (M,Γ) dans le catégorie isotopique qui convient.

On récupère déjà une description de $U^!$ en terme de l'action de π , soit $J(\simeq U^!)$ l'ensemble des classes de π -conjugaison de sections partielles ($\neq 1$) maximales de E sur Γ . Pour tout $j \in J$, j est un π -torseur comme classe de π -conjugaison de sections [que ce soit un π -torseur résulte de $\pi^{\Gamma'} = \{1\}$]. En fait l'ensemble de toutes ces sections partielles maximales ($\neq 1$) est de façon naturelle un E-ensemble (par conjugaison) sur lequel π opère librement et cet E-ensemble s'identifie canoniquement à $\widetilde{U}|_{U^!} = \widetilde{U}$ pour la structure de E-ensemble.

Soit $S' = S \cup U^!$, $U' = X \setminus S'$, il s'impose d'essayer de reconstituer (en terme de l'extension E de Γ par le groupe à lacets π) le groupe extérieur à lacets correspondant à X', S' i.e. à U' et l'action extérieure de Γ sur celui-ci. Mais il faudrait d'abord s'assurer du caractère intrinsèque de la définition de $J(\simeq U^!)$ comme Γ -ensemble, en terme du groupe extérieur π , et de l'action extérieure de Γ dessus. (Ceci est assez évident d'ailleurs : en termes justement de classes de π -conjugaison de relèvements partiels de $\Gamma \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi)$ (vers $\operatorname{Aut}_{\operatorname{lac}}(\pi)$)). On aimerait cependant aussi une description intrinsèque de $\widetilde{U}|_{U^!}$, en un paradigme pour l'application de Γ -espace

: $U^! \longrightarrow U$; on doit donc décrire un morphisme de topos avec opération de Γ dessus

$$B_I \xrightarrow{\nu} B_E$$

qui correspond donc à un foncteur "image inverse" ν^* (compatible avec l'action de Γ)

Ce n'est autre que le produit contracté sur π avec l'ensemble des sections partielles $\neq 1$ invariantes de E sur Γ .

Revenons 'l'extension E de Γ par π provenant d'une situation géométrique (laquelle extension dans le cas anabélien est définie déjà en terme d'une opération extérieure de Γ sur π) on voit que celle-ci satisfait des conditions supplémentaires draconiennes. (Pour les formules, on va supposer l'action de Γ fidèle).

Tout-sous-groupe $\Gamma' \subset E$ tel que $\Gamma' \cap \pi = \{1\}$ ("sections partielles") est cyclique (si $\Gamma = \Gamma^{\circ}$) ou diédral, et l'ensemble des classes de π -conjugaison de tels sous-groupes est fini. Tout sous-groupe section $\Gamma' \neq 1$ est contenu dans un unique sous-groupe section *maximal*. (On l'a établi tout au moins dans le cas $\Gamma = \Gamma^{\circ}$, il faudrait revenir sur le cas général, je pense que cela reste vrai tel quel, à vérifier...)

De plus on vit apparaître une structure supplémentaire sur le groupe E [qui dans le cas anabélien s'identifie à un sous-groupe de $Aut(\pi)$], à savoir une application

$$\mu$$
: {élément u d'ordre fini de E } $\longrightarrow T \otimes \mathbf{Q}/\mathbf{Z}$

obtenu en notant que si $u \in E$ est d'ordre fini n d'où $\mathbf{Z}/n\mathbf{Z} \hookrightarrow iE$, on a Im $i \cap \pi = \{1\}$ (π n'a pas d'élément de torsion) donc $\mathbf{Z}/n\mathbf{Z} \hookrightarrow \Gamma$ d'où un sous-groupe $\Gamma_1 \subset \Gamma$ (i.e. l'image a le même ordre n) et le relèvement $\Gamma_1 \longrightarrow E$ définit un $x \in U^{\Gamma_i}$ et U_1 opérant sur U en laissant fixe n correspond donc au voisinage de n à un "multiplicateur", qui (pour une orientation locale choisie) est une racine primitive $n^{\text{ième}}$ de 1 i.e. un élément de $\mathbf{Z}/n\mathbf{Z}$ et qui pour l'orientation changeante s'interprète intrinsèquement comme élément de $T \otimes \mathbf{Z}/n\mathbf{Z} \subset T \otimes \mathbf{Q}/\mathbf{Z}^{52}$.

⁵²Pour un u d'ordre fini de E, on doit avoir, si $u \notin E^{\circ}$, que u est d'ordre 2 exactement (...) [?].

L'application μ satisfait les conditions évidentes :

$$\begin{cases} \mu(\alpha u \alpha^{-1}) = \mu(u) & \text{si} \quad \alpha \in \pi \\ \mu(u^n) = n \mu(u) & \text{si} \quad n \in \mathbf{Z} \end{cases}$$

J'ignore si cette application μ peut se définir intrinsèquement en terme de l'extension ou si au contraire il peut exister deux extensions E, E' de Γ par π , définies par des situations géométriques de Γ opérant sur U et U' et un isomorphisme d'extension E, E' qui ne soit compatible avec les fonctions μ , μ' . Le cas non trivial le plus simple à regarder est le cas abélien (où $\pi \simeq \mathbb{Z}$ (card I=2) ou $\pi \simeq \mathbb{Z}^2$ ($I=\varnothing$)). Dans le premier cas $\pi=\mathbb{Z}$, on doit avoir (pour avoir une action fidèle de $\Gamma=\Gamma^\circ$),

 Γ° cyclique, $E \simeq \mathbb{Z}$, il n'y a pas d'éléments d'ordre fini dans E sauf 1 donc la question ne se pose pas.

Le cas $\pi \simeq \mathbf{Z}^2$ est plus intéressant ; si π est un **Z**-module libre de rang n, on aune suite exacte

$$0 \longrightarrow \pi \longrightarrow \pi \otimes_{\mathbf{Z}} \mathbf{R} \longrightarrow X_0(\pi) \longrightarrow 0$$

et si Γ opère sur π , la suite exacte de cohomologie donne :

(compte tenu de $H^i(\Gamma, \pi \otimes_{\mathbb{Z}} \mathbb{R}) = 0$ pour i > 0)

$$H^2(\Gamma, \pi)$$
 \sim $H^1(\Gamma, X_0(\pi))$

classes d'extension

classes de $X_0(\pi)$ torseur

avec opération de Γ dessus compatible avec

son action sur
$$X_0(\pi)$$

donc la donnée d'une extension E de Γ par π revient essentiellement à celle d'un Γ - $X_0(\pi)$ -torseur X (n-tore inhomogène intrinsèque sur lequel Γ opère - donc il opère sur son groupe des translations X_0 , donc sur $\pi = \pi_1(X_0, 0)...$). S'il était vrai pour n = 1 que toute opération de Γ sur une surface torique ($\Sigma \times S' \times S'$) est isomorphe à une telle action standard, alors le caractère intrinsèque de l'application μ dans

ce cas serait établi - ce qui ne rendrait pas inintéressant pour autant le calcul de μ , qui prend ses valeurs dans $T \otimes \mathbf{Q}/\mathbf{Z}$ où ici $T \simeq \Lambda_{\mathbf{Z}}^2 \pi$ (dim 2 dans $H^2(\pi, \mathbf{Z}) \simeq \Lambda^2 H^2(\pi, \mathbf{Z}) = \pi$).

La question revient à ceci : on a une extension *scindée* d'un groupe cyclique $\mathbf{Z}/n\mathbf{Z}$ de générateur u par π (décrite entièrement par un automorphisme θ de π tel que $\theta^n = \mathrm{id}_{\pi}$), décrire en termes de ceci un élément de $T \otimes \mathbf{Z}/\mathbf{Z}$.

Réponse : la situation géométrique standard correspond à $X = X_0(\pi)$, avec 0 comme point fixe sous Γ. Si on renverse l'orientation il est d'ordre 1 ou 2, il n'y a pas de problème, sinon c'est dans $\pi \otimes_{\mathbf{Z}} \mathbf{R}$ une rotation autour de 0 (d'ordre 2, 3, 4 ou 6) qui se repère bien par un élément de $T \otimes \mathbf{Z}/\nu\mathbf{Z}$ (si ν est l'ordre). C'est aussi (si on identifie $T \otimes \mathbf{Z}/\nu\mathbf{Z}$ à $\mu_{\nu}(\mathbf{C}^*)$), en posant $T \stackrel{\sim}{\longleftarrow} \mathbf{Z}$ donné i.e. π orienté i.e. $X_0(\pi) = X$ orienté) une de deux valeurs propres de $u \otimes_{\mathbf{Z}} \mathbf{C}$ (automorphisme du vectoriel sur \mathbf{C} de dimension 2 $\pi \otimes_{\mathbf{Z}} \mathbf{C}$).

Ceci nous montre, dans ce cas de la géométrie algébrique sur un corps algébriquement clos Ω , que si $X=X_0$ est une courbe elliptique, u un automorphisme d'ordre fini, on a comme description paradigmatique non seulement $\pi=\pi_1(X,0)$ (**Z**-module libre de rang 2) et l'action de u sur π , mais comme structure supplémentaire l'une des deux solutions dans Ω de l'équation caractéristique de u(à coefficients entiers)

$$T^2 + aT + b = 0$$
 $(a = -\operatorname{Tr} u, b = \det u)$

Il est clair que cette structure supplémentaire ne peut se déduire de la seule connaissance de l'action de u sur π .

Mais il reste la question si ce $\mu(u) \in \mu_n(\Omega)$ peut se déduire de la connaissance au moins de l'action extérieure de u sur le groupe "avec un lacet" correspondant à la situation géométrique — i.e. un automorphisme extérieur d'ordre n d'un tel groupe⁵³

$$1 \longrightarrow T \xrightarrow{n_i \operatorname{id}_T} E_I(\simeq T) \longrightarrow \Gamma_I \longrightarrow 1$$

d'où $\Gamma_i \simeq T/n_i T...$

 $^{^{53}}$ Oui il le peut grâce à la considération des "sous-groupes de ramification" de E qui définissent des structures d'extensions

(Où si là encore il faut la considérer décidément comme une donnée supplémentaire).

Mais s'il en était bien ainsi, cela impliquerait d'autre part que la construction de u appartenant au groupe à (1) lacet(s), avec l'opération de Γ dessus ne peut se faire non plus à l'aide de la seule connaissance de l'action de $\Gamma(=\mathbf{Z}/n\mathbf{Z})$ sur π .

C'est cette question de "forage de trous" qu'il faut donc en fin de compte, à la fin du fin, attaquer!

Quand à la question de savoir si dans le cas anabélien, l'application $\mu: {}_{\infty}E \longrightarrow T \otimes \mathbf{Q}/\mathbf{Z}$ (${}_{\infty}E$: ensemble des éléments d'ordre fini de E) est déduisible de l'action de Γ sur π [si elle est fidèle, E s'identifie donc à un sous-groupe de Autext_{lac}(π) = A, et on peut se demander si μ n'est pas alors définissable sur ${}_{\infty}E$ tout entier], ou si c'est une donné supplémentaire dont il faut disposer pour reconstruire la situation géométrique. La question reste entière⁵⁴

 $^{^{54}}$ N.B. Cela semble bien ainsi, compte tenu que pour Γ *résoluble* (a fortiori pour Γ cyclique) sauf erreur, on sait que toute action de Γ sur π se réalise géométriquement.

§ 16. — BOUCHAGE ET FORAGE DE TROUS : PRÉLIMINAIRES TOPOLOGIQUES GÉNÉRAUX

Considérons une situation⁵⁵

$$B_{D^*} \longrightarrow B_U$$

Je m'aperçois qu'il me fut revenir sur les notations des divers topos associes à une telle donnée. Mais je vais me guider sur la situation des n°...où on a un schéma régulier X de dimension 1, un sous-schéma fermé S de dimension 0, d'où $U = X \setminus S$ — dans ce cas $X_{\text{\'et}}$ ne peut se reconstituer à partir des B_{D^*} comme B_I avec $I = \pi_0(B_{D^*})$, il faut tenir compte des corps résiduels k(s) $(s \in S)$ i.e. des groupes de Galois $Gal(\overline{k(s)}/k(s))$.

Donc il y a lieu de revenir à *une* situation de départ (qui est adaptée au cas arithmético-géométrique) de morphismes de topos *multigaloisiens*

(attention, on écrit B_S , non B_D , qui aura un autre sens), où σ induit un isomorphisme sur les π_0 (et est surjectif sur les Hom).

⁵⁵(N.B. Une telle situation topossique (de topos multigaloisiens) décrit 2-fidèlement la situation topologique (X, S) ou U, pourvu qu'aucune composante irréductible de U ne soit $\simeq \mathbb{S}^2$, et du fait qu'elle reste très proche du langage et de l'intuition topologique, elle est supérieure au point de vue "groupe à lacets", qui correspond plutôt à l'approche calculatoire.)

Pour l'instant, on ne va faire aucune hypothèse particulière sur cette situation, qui pour B_U connexe, et en termes des choix (de revêtements universels \widetilde{D}_i^* des composantes connexes D_i^* de D^* , d'un revêtement universel \widetilde{U} de U, et d'isomorphismes entre les $\rho_!(\widetilde{D}_i^*)$ et \widetilde{U} s'explicite par la donné des groupes E (ou π) (= $\operatorname{Aut}(\widetilde{U})$) et E_i (ou π_i (= $\operatorname{Aut}(\widetilde{D}_i^*)$), $\Gamma_i(i \in I)$), et des homomorphismes de groupes

avec les σ_i surjectifs (quand il y a un corps de base K pour la situation géométrique alors dans la description toposique, posons $e = \operatorname{Spec} K$ et désignons par E_e le topos étale $e_{\operatorname{\acute{e}t}}$ de e, i.e. B_Γ si $\Gamma = \operatorname{Gal}(\overline{K}/K)$, le diagramme (*) s'insère dans

avec donnée de commutativité pour le carré envisagé...Comme au début de ces notes).

En termes de (*), on construit par "recollement" de B_U et de B_S (via le foncteur de recollement $\sigma_*\rho^*$) un topos mixte, qui n'est pas en général multigaloisien, noté précédemment $B_{X,U}$, et que je préfère maintenant noté $B_{X,S}$ [pour rappeler qu'il s'agit de faisceaux sur X, mais n'ayant de singularités que sur S].

Il s'insère dans un diagramme de topos

avec une flèche "de commutation" α_X qui n'est telle que par abus de langage — ce n'est pas un isomorphisme mais un morphisme de foncteurs sans plus

$$\sigma^* \psi^* \xrightarrow{\alpha_X} \rho^* \varphi^*$$

De la même façon, recollant D^* et S via σ_* (i.e. remplaçant B_U par B_{D^*} dans la construction précédente de $B_{X,S}$), on trouve un topos, pas multigaloisien en général, noté $B_{D,S}$. Dans le modèle géométrique avec un X, S comme dessus, B_X correspond aux faisceaux sur X qui sont essentiellement localement constants sur U (et sur S, où ils n'ont pas de mérite) i.e. sur U provenant de l'image inverse par U $U \longrightarrow B_{\Pi,U}$ d'un faisceau sur $B_{\Pi,U}$ et de même $B_{D,S}$ correspond aux faisceaux sur $D = \coprod_i \operatorname{Spec}(\mathscr{O}_i = \operatorname{hensélisé} \operatorname{de} \mathscr{O}_{X,S})$ qui sont localement constants sur $D^* = D \setminus S$ (et sur S, sans mérite!) mais avec l'hypothèse de dimension faite on a en fait

$$B_{D,S} \simeq D_{\acute{e}t}$$

 $(D_i \text{ n'a que 2 points}, D_i^* = {\eta_i}...).$

Ainsi $B_{D,S}$ ($\simeq D_{\text{\'et}}$ quand on part de X, S) s'insère dans un triangle de morphisme de

où α_D , comme α_X ci-dessus, n'est qu'un vulgaire homomorphisme (pas isomorphisme en général)⁵⁶.

Quand on parle du morphisme canonique de B_D dans $B_{D,S}$ c'est de φ_D (et non $\psi_D\sigma$) qu0il s'agit — dans le cas géométrique on a $B_{D^*}\simeq D_{\mathrm{\acute{e}t}}^*$ et φ_D correspond à l'inclusion de schémas

$$D^* \supset D \backslash S \longrightarrow D$$

et $\psi_D: \mathcal{B}_S \longrightarrow \mathcal{B}_{D,S}$ à l'inclusion de schémas $S \longrightarrow D$ alors que σ ni $\psi_D \sigma$ ne correspondent en général à des morphismes de schémas.

 $^{^{56}}$ (N.B. dans le cas géométrique, les trois topos de ce diagramme sont des topos étales $(D_{\text{\'et}}^*, D_{\text{\'et}}, S_{\text{\'et}})$ et les flèches φ_D et ψ_D correspondent à des morphismes de topos, mais non σ).

On obtient ainsi un diagramme de topos

(Attention le triangle n'est pas essentiellement commutatif mais on a une pseudo-commutativité...)

où les trois topos soulignés \underline{B}_U , \underline{B}_S , et \underline{B}_{D^*} sont multigaloisiens, et $B_{D,S}$ et $B_{X,S}$ sont composites (obtenus par recollement de deux topos multigaloisiens).

Sauf erreur les deux carrés sont [non seulement essentiellement commutatifs, mais aussi] 2-cartésiens (dans la 2-catégorie des topos).

Passant aux B_{Π_1} ? des topos envisagés (correspondant aux objets localement constants sur ce topos) on trouve un topos $B_X = B_{\pi_1 B_{X,S}}$ comme somme amalgamée de topos dans le diagramme

(ce carré est bel et bien essentiellement commutatif) et de même (en remplçant B_U par B_{D^*}) un B_D , qui est cependant (par $B_S \longrightarrow B_D$) isomorphe (plutôt équivalent)

à B_s. Le diagramme (**) devient alors

où cette fois-ci le triangle supérieur est bien essentiellement surjectif (c'est bien comme ça que l'on a défini σ , dans le cas géométrique !) et on a un morphisme de (**) dans (***), qui par les flèches qui sont par essence des identités [à] savoir $B_{D,S} \longrightarrow B_D$ et $B_{X,S} \longrightarrow B_X$, ont une nette tendance à être "acyclique" ou à induire des isomorphismes sur la cohomologie (il faudrait vérifier ce point). Enfin, dans le cas géométrique, on a un diagramme analogue de morphismes de topos étales

(triangle supérieur pas essentiellement commutatif)

où toutes les flèches sauf $D_{\text{\'et}}^* \longrightarrow S_{\text{\'et}}$ sont induites par des morphismes de topos, le (****) s'insère dans le diagramme homologue (**), en induisant des isomorphismes de topos pour D^* , D, S et, pour $U_{\text{\'et}} \longrightarrow B_U$ et $X_{\text{\'et}} \longrightarrow X$, induisant des morphismes qui ont moins tendance à être acyclique, mais qui le sont quand même dans des cas importants, rappelés dans une section antérieure...

Les constructions de (**) et (***) en termes du diagramme de départ

sont purement formelles, et indépendantes de toutes hypothèses. La construction d'un B_X multigaloisien, comme somme amalgamée, peut être interprété comme la traduction (au niveau des groupoïdes fondamentaux) d'une opération de "bouchage de trous".

Dans le contexte calculatoire (avec choix de \tilde{U} , \tilde{U}_i , $\rho_i(\tilde{U}_i) \simeq \tilde{U}$) avec

posant $\widetilde{X}=$ image de \widetilde{U} par i! $(i: \mathbf{B}_U \longrightarrow \mathbf{B}_{\pi_1 X})$, \mathbf{B}_U est décrit en termes de ce \widetilde{U} comme le classifiant $\mathbf{B}_{\pi X}$, où $\pi_X=\pi_1(X,\widetilde{X})$ se calcule comme quotient de π par le sous-groupe invariant engendré par les $\rho_i(L_i)$, où $L_i=\ker\sigma_i\supset E_i$.

Si on se donne une sommande directe $B_{D_0^*}$ dans B_{D^*} (correspondant à une partie de I_0 de $I=\pi_0(B_{D^*})$) on trouve de même une somme amalgamée de B_U et de B_{S_D} sous $B_{D_0^*}$ notée $B_{U\cup S_1}$ qui se visualise comme un bouchage partiel de trous, interprété au niveau des groupoïdes fondamentaux. Dans le cas géométrique, si on pose $I=I_0\coprod I_1$, i.e. $S=S_0\coprod S_1$, on peut interpréter ce topos comme $B_{\pi_1U_1}$, où $U=X\setminus S_1$.

Bien sûr, on a un homomorphisme de diagrammes cartésiens de topos relatifs à

celui relatif à B_{D^*} s'envoyant dans B_U , et B_S .

et d'autre part on a un composé

$$B_{D_1^*} \longrightarrow B_U \longrightarrow B_{U_1}$$

qui avec $B_{D_1} \longrightarrow B_{S_1}$, donne un diagramme de topos

du même type qu'au début, qu'on peut utiliser pour construire encore une somme amalgamée. Et il est évident que celle-ci est canoniquement équivalente à B_X , la somme amalgamée correspondant à cette situation du départ...

Toutes ces opérations sont essentiellement triviales et sans mystère, et indépendantes de toutes hypothèses spéciales du type "groupe à lacets". Un intérêt particulier s'attache au cas où B_S est un topos discret : e s'identifie B_I où $I=\pi_0(B_{D^*})$ de sorte qu'on part simplement d'un morphisme de topos multigaloisiens

$$\mathbf{B}_{D^*} \longrightarrow \mathbf{B}_U$$

mais où de plus on a un groupe Γ (discret, disons ou profini dans le contexte arithmétique) qui opère sur B_{D^*} , B_U ; le morphisme précédent commutant à l'action de Γ .

Notons que la donnée d'une action de Γ sur un topos B permet de construire un topos (B,Γ) , et un morphisme $(B,\Gamma) \longrightarrow B_{\Gamma}$ (topos classifiant de Γ) *i.e.* un Γ -torseur dans (B,Γ) et B s'identifie au topos induit par $X=(B/\Gamma)$ sur ce Γ torseur.

Inversement, la donnée d'un topos X et d'un Γ -torseur U dans X et d'un isomorphisme de B avec le topos induit X/U (identifié à U, ou à B) permet de récupérer des opérations de Γ sur B, via les opérations sur U. Donc la donnée d'une opération de Γ sur un topos B revient à celle de la donnée de B comme revêtement galoisien de groupe Γ d'un autre topos (essentiellement unique, noté alors (B,Γ) ...). Ainsi, faire opérer Γ sur $B_{D^*} \longrightarrow B_U$, c'est la même chose que d'insérer cette flèche dans un diagramme commutatif

où les flèches verticales sont Γ -galoisiennes, et le carré est 2-cartésien, ou encore (indépendamment de la donné préalable de D^* , B_U) c'est se donner un triangle essentiellement commutatif de morphismes de topos

Si Γ opère sur un topos multigaloisien, on veut que (B,Γ) soit aussi multigaloisien, et la situation d'un topos multigaloisien B_U et d'une opération de Γ dessus revient à celle d'un topos multigaloisien $B_{U,\Gamma}$ et d'un morphisme $B_{U,\Gamma} \longrightarrow B_{\Gamma}$.

Donc la donnée d'une situation $B_{D^*} \longrightarrow B_U$ de topos multigaloisiens et d'une opération de Γ dessus revient exactement à celle d'homomorphismes de topos multigaloisiens

$$\mathbf{B}_{D^*,\Gamma} \longrightarrow \mathbf{B}_{U,\Gamma} \longrightarrow \mathbf{B}_{\Gamma}$$

 $B_{U,\Gamma}$ est 0-connexe si et seulement si card $\pi_0(B_U)/\Gamma=1$, i.e. B_U non vide est Γ -transitif sur $\pi_0(B_U)$. Notons que la situation envisagée au début, avec (X,S) sur un corps K, d'où $B_{D^*} \longrightarrow B_U \longrightarrow B_\Gamma$ ($\Gamma=\operatorname{Gal}(\overline{K}/K)$), peut être interprétée comme

déduite de la situation "géométrique" $(\overline{K}, \overline{S})$ sur \overline{K} , $B_{\overline{D}_E^*} \longrightarrow B_{\overline{U}}$, en tenant compte des opérations de Γ dessus. Il se trouve que pour beaucoup de questions, c'est cette interprétation "géométrique" (au sens strict, i.e. \overline{K} algébriquement clos) avec opérations d'un groupe de Galois Γ , qui est la plus commode.

Si on regarde une opération de Γ sur un topos $(B_{D^*}$ disons), il opère sur le topos discret B_I ($I = \pi_0(B_{D^*})$), et $B_{D^*} \longrightarrow B_I$ est compatible aux actions de Γ .

Mais le topos $B_{(I,\Gamma)}$ est aussi celui des Γ -ensembles au dessus de I (sur lequel Γ opère) un topos induit dans B_{Γ} . Ses composantes connexes correspondent aux orbites de Γ sur I. Si Γ est transitif sur I non vide (ou si on regarde *une* telle orbite...), choisissant $i \in I$, le topos en question s'identifie à B_{Γ_i} où Γ_i est le stabilisateur de i dans Γ .

N.B. Si on donne une opération de Γ sur un topos discret $B(=B_I)$, quand on l'interprète en tant que morphisme d'un topos multigaloisien $B'=(B,\Gamma)\longrightarrow B_{\Gamma}$, est caractérisé par le fait que le morphisme du groupoïde qui la décrit soit *injectif* sur les flèches, i.e. en termes d'un système d'homomorphismes de groupe $\Gamma_j \longrightarrow \Gamma$ $i \in J(\simeq I \setminus \Gamma)$, par la condition que ces homomorphismes soient injectifs. Γ est donc I se reconstitue comme la somme directe des $\Gamma \setminus \Gamma_i \dots$

Ainsi un diagramme $B_{D^*} \longrightarrow B_U$ avec action de Γ équivaut à la donnée d'un diagramme

$$\mathbf{B}_{D^*,\Gamma} \longrightarrow \mathbf{B}_{U,\Gamma} \longrightarrow \mathbf{B}_{\Gamma}$$

et celui-ci se complète (en utilisant l'action de Γ sur $\pi_0(B_{D^*})$ — B étant lui-même déduit de $B_{D^*\Gamma}$ \longrightarrow B_Γ comme l'image inverse du torseur universel) en

$$B_{D^*,\Gamma} \longrightarrow B_{I,\Gamma} \longrightarrow B_{\Gamma}$$

i.e. il s'agit de la factorisation canonique d'un homomorphisme de groupoïdes en homomorphisme bijectif (pour les objets) épimorphique (pour les Hom) suivi d'un homomorphisme épimorphique (sur les Hom).

On trouve ainsi un carré essentiellement commutatif

qui correspond au diagramme de groupoïdes au début des notes (§7)

J'ai l'impression d'avoir à peu près compris le mécanisme des actions des groupes sur des topos multigaloisiens, et comment l'opération de passage d'un topos B avec opération de Γ au topos "quotient" $(B,\Gamma)=$ " B/Γ ", commute aux opérations du type passage de $B_{D^*}\longrightarrow B_U$ à un $B_{X,S}$, via un B_X ("Bouchage des trous"). Le temps semble donc mûr enfin pour s'expliquer avec l'opération inverse hypothétique de "forage des trous".

§ 17. — COMPLÉMENTS SUR LES OPÉRATIONS DE GROUPES FINIS SUR LES SURFACES (COMPLÉMENT AU §15)

Théorème. — Soit U surface paracompacte connexe telle que $\pi_1(U) \neq (1)$, i.e. $U \not\simeq \mathbb{S}^2$, \mathbf{R}^2 . On dit que U est "anabélienne" si $\pi = \pi_1(U)$ non abélien (auquel cas Centre $(\pi) = 1$) et si $U \not\simeq \mathbf{C}^*$, $\mathbb{S}^1 \times \mathbb{S}^1$.

Soit Γ un groupe fini opérant sur U^{57} , on a les conditions équivalentes :

- a) (cas anabélien) Γ opère trivialement ou (cas abélien) structure de groupe topologique sur U (donc $U \simeq \mathbb{S}^*$ de $\mathbb{S}^1 \times \mathbb{S}^1$) de façon que Γ opère par translations,
- b) $\forall g \in \Gamma$, g_U est isotope à l'identité,
- b') $\forall g \in \Gamma$, g_U est homotope à identité,
- c) l'opération extérieure de Γ sur $\pi_1(U)$ est triviale,
- d) (cas anabélien) l'extension E de Γ par π est isomorphe à une extension produit, ou (cas abélien) elle est centrale

⁵⁷N. B.: Il est prudent de supposer que Γ opère en conservant l'orientation de U (supposée orientable) sinon on a des ennuis par exemple avec $z \mapsto \overline{z}^{-1}$ de $C^* \longrightarrow C^*$ (Cela doit être le sel contre-exemple dans le cas où Γ ne conserve pas l'orientation...) En tout cas un contre-exemple doit être tel que (si Γ fidèle) $\Gamma = \cong \{\pm 1\}$, opère par anti-involutions...Il faudrait tirer au clair le cas de la situation générale...

Démonstration. a) \Rightarrow b) \Rightarrow b') \Rightarrow c) trivial.

c) \Rightarrow d). Dans [le] cas anabélien, cela provient du fait que Centre(π) = 1 une extension de Γ par π est définie déjà par l'action extérieure, comme image inverse de l'extension

$$1 \longrightarrow \pi \longrightarrow \text{Aut } \pi \longrightarrow \text{Autext } \pi \longrightarrow 1.$$

Dans le cas abélien c'est trivial.

d) \Rightarrow a) est la partie pas évidente. OPS que Γ opère fidèlement.

Cas anabélien : Si on avait $\Gamma=1$, pour un scindage de l'extension de Γ par π , on doit avoir par le théorème du n° 15 $\pi^{\Gamma}=1$, or le scindage canonique de $\pi\times\Gamma$ sur Γ donne $\pi^{\Gamma}=\pi$, absurde.

Cas abélien. $U \simeq \mathbb{C}^*$ (plus intrinsèquement U est un torseur sous $U_0 = \pi \otimes_{\mathbb{Z}} \mathbb{C}/\pi$) ou $U \simeq \mathbb{S}^1 \times \mathbb{S}^1$ (plus intrinsèquement U est un torseur sous $U_0 \simeq \mathbb{S}^1 \times \mathbb{S}^1$).

Je dis qu'une action de Γ sur U est (à homéomorphisme près) défini par une action de Γ sur le torseur⁵⁸; la classe d'isomorphisme d'un tel torseur s'identifie par ailleurs par la suite exacte de cohomologie associée à la suite exacte

$$0 \longrightarrow \pi \longrightarrow \pi \otimes_{\mathbf{Z}} \mathbf{C} \longrightarrow U_0 \longrightarrow 0$$

$$(\text{ou } \pi \otimes_{\mathbf{Z}} \mathbf{R})$$

à une classe d'extension de Γ par π .

Mais dire que l'action de Γ sur π est triviale, signifie que l'action de Γ sur le torseur U sous U_0 se fait par translations.

Corollaire — Scholie. — Le cas "abélien" n'est pas tout à fait démontré faute d'avoir établi la classification topologique des opérations d'un groupe fini sur \mathbb{C}^* ou sur $\mathbb{S}^1 \times \mathbb{S}^1$. Cependant, si dans le cas abélien on suppose d'avance que $U^{\Gamma} = \emptyset$ alors il est encore vrai que l'opération triviale de Γ sur π équivant à la trivialité de l'action de Γ sur U. Car on est ramené au cas où Γ opère fidèlement et à prouver dans ce cas que si l'opération de Γ sur π est triviale on a $\Gamma = 1$. Et on fait comme plus haut dans le cas anabélien.

⁵⁸pas prouvé!

§ 18. — FORAGE DE TROUS ; APPLICATION AUX ACTIONS EXTÉRIEURES DE GROUPES FINIS

Soit π' un groupe à lacets de type (g, v + 1) non abélien (i.e. si g = 0 on a $v \ge 2$).

Si T son module des orientations et I' (card I' = v + 1) l'ensemble de ses classes de conjugaison de sous-groupes de lacets.

Fixons nous un $i \in I'$ et soit $L'_i \subset \pi'$ dans la classe i.

Quand on se donne seulement un groupe extérieur à lacets $[\pi']$ (ce qui équivaut à la donnée de $B_{D'_*} \longrightarrow B_U$), la donnée d'un $i \in I'$ équivaut à celle d'une composante connexe de $B_{D'_*}$, et celle d'une réalisation du groupe extérieur (i.e. d'un couple d'un groupe π' et d'un isomorphisme extérieur $\pi' \longrightarrow [\pi']$) équivaut à isomorphisme près à celle d'un objet de $\pi_1 B_{U'}$ (revêtement universel \widetilde{U}' de U' pour $\pi' = \operatorname{Aut}(\widetilde{U}')$).

Enfin la donnée d'un couple (π', L'_i) $(L'_i$ dans la classe de conjugaison) équivaut (à isomorphisme unique près) à la donnée d'un objet $\widetilde{D}_i^{'*}$ dans $\pi_1 \operatorname{B}_{D_i^{'*}}$ en prenant l'image \widetilde{U}' de \widetilde{D}'^* dans $\pi_1 \operatorname{B}_{U'}$ et $\pi' = \operatorname{Aut}(\widetilde{U}')$, $L'i = \mathfrak{J}(\operatorname{Aut}(\widetilde{D}_i'^*))$ dans $\operatorname{Aut}(\widetilde{U}')$.

Quand on se donne un objet U_0' de $\pi_1\widetilde{\mathrm{B}}_{U'}$, d'où une réalisation $\pi'=\mathrm{Aut}(\widetilde{U}_0')$. (On va laisser tomber provisoirement les primer) alors la donnée d'un $L_i\subset\pi$ dans la classe i équivaut à la donnée d'un couple $(\widetilde{D}_i,\lambda)$ d'un $\widetilde{D}_i\in\mathrm{Ob}\,\pi_1\,\mathrm{B}_{D_i}$ et d'un isomorphisme de $\rho_!(\widetilde{D}_i)=\widetilde{U}$ avec \widetilde{U}_0 .

Quand la situation topossique est réalisée à partir d'un situation topologique (X,S) et qu'on définit \widetilde{U}_0 à l'aide d'un point de base $a \in U$, alors la façon standard de définir un $L_i \subset \pi = \operatorname{Aut}(\widetilde{U}_0) = \pi_1(U,a)$ est de choisir une petite rondelle Δ_i

autour de $s_i \in X$, un point b_i sur le bord et une classe d'homotopie de chemin dans $U-(\Delta_i^{\circ}-\{s_i\})=V_i$ de a vers b_i et de prendre le groupe L_i engendré par l'un quelconque des deux lacets correspondants autour de s_i (qui donnent des lacets opposés dans π).

On voit que l'on trouve ainsi une application surjective de $\mathrm{Isom}_{\pi_1 V_i}(a,b_i) \simeq \simeq_{\pi_1 U} (a,b_i)$ sur l'ensemble des $L_i \subset \pi$ dans la classe i, application compatible avec l'action naturelle de π opérant sur $\mathrm{Isom}_{\pi_1 U}(a,b_i)$ de la façon évidente par composition et sur l'ensemble des L_i par automorphisme intérieur

Ici le lien avec la description "abstraite" topossique s'établit ainsi : le choix d'un b_i peut servir de point de base pour définir un revêtement universel de $\Delta_i \setminus \{s_i\} \simeq D_i^*$, d'où un objet $\rho_!(\widetilde{D_i^*}(b_i))$ et les $L_i \subset \pi$ correspondant (d'après la description abstraite) aux isomorphismes de $\widetilde{U_0} = \widetilde{U}(a_i)$ avec $D_i^*(b_i)$ modulo composition avec un automorphisme de $D_i^*(b_i)$ provenant d'un automorphisme de $D_i^*(b_i)$ mais les isomorphismes $\widetilde{U}(a_i) \simeq \rho_!(\widetilde{D}_i^*(b_i))$ correspondent justement aux classes de chemins de a vers b_i .

(On revient aux notations π' , u',...)

Considérons un objet de $\pi_1 B_{D_i^{\prime*}}$, i.e. un couple (π', L_i') . Soit π le groupe quotient de π' par le sous-groupe invariant de π' engendré par L_i' . Je dis qu'à isomorphisme près (isomorphisme effectif de groupes, par seulement extérieur!) il ne dépend pas du choix de l'objet \widetilde{D}_i^* dans $\pi_1 B_{D_i^{\prime*}}$. En effet $\pi(\widetilde{B}_i^*)$ dépend fonctoriellement de \widetilde{D}_i^* et tout revient à voir que ce foncteur est constant, i.e., que l'opération de $\operatorname{Aut}(\widetilde{D}_i^*) \simeq T \simeq L_i$ sur $\pi = \pi(\widetilde{D}_i^*)$ est triviale. Or soit $u \in L_i$, l'automorphisme de π qu'il défini est défini par l'automorphisme intérieur int(u), pas passage au quotient donc (comme u devient 1 dans π) il est trivial.

On trouve ainsi un foncteur : "bouchage du trou i"

Groupes extérieurs à lacets
$$\pi'$$
de type $(g, \nu + 1)$ munis d'une
classe de lacets $i \in I(\pi')$

Groupes extérieurs à lacets π'

$$\Rightarrow \left(\begin{array}{c} \text{groupes (réalisés)} \\ \text{à lacets de type } (g, \nu) \end{array}\right)$$

$$(\pi',1) \longmapsto \beta(\pi',i)$$

qui s'exprime par un homomorphisme de groupes

$$Autext(\pi', i)$$

(= ensemble des automorphismes extérieures
$$\longrightarrow$$
 Aut π de π' respectant la structure à lacets) (où $\pi = \beta(\pi',i)$) et fixant la classe de lacets i

D'un point de vue géométrique ce fait (existence d'un foncteur) ne fait qu'exprimer le fait qu'après "bouchage du trou" i on a un $U = U' \cup \{s_i\}$ muni d'un point s_i , que l'on peut utiliser comme point de base canonique pour calculer $\pi_1(U)$. On peut dire aussi que le choix de i permet de construire la somme amalgamée partielle (bouchage partiel de trous) B_U .

et $B_{s_i} \longrightarrow B_{U^*}$ fournit un point géométrique dans B_{U^*} qui permet de décrire un objet canonique de $\pi_1 B_{U^*}$ (revêtement universel relatif à ce point) d'où canoniquement un groupe π , qui bien sûr est un groupe à lacets de type (g, v-1).

Théorème. — Supposons g, v tel que non seulement les groupes π' de type (g, v), mais aussi le groupe π (de type (g, v-1)) soient anabélien, i.e. $2g + v \ge 4$. Alors le foncteur précédent $(\pi', i) \mapsto \pi$ est une équivalence de catégorie. En d'autres termes (comme il s'agit de groupoïdes 0-connexes)

$$Autext(\pi', i) \longrightarrow Aut(\pi)$$

est un isomorphisme.

Notons pour ceci que l'on a une suite exacte

$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut} \pi \longrightarrow \operatorname{Autext} \pi \longrightarrow 1$$

(car centre $\pi = 1$ par hypothèse anabélienne sur π) or on va définir une suite exacte

$$1 \longrightarrow \pi \longrightarrow Autext(\pi', i) \longrightarrow Autext \pi \longrightarrow 1$$

et un homomorphisme d'extension de celle-ci dans la précédente (qui sera nécessairement un isomorphisme). O.P.S. $T=\mathbf{Z}$, on considère les groupes à lacets standard $\pi_{g,\nu+1}$, $\pi_{g,\nu}$. Posons

N.B. Le revêtement universel universel de $M_{g,v}$ est contractile par Teichmüller.

On sait que (pour $2g + \nu \ge 3$) $T_{g,\nu}$ est le groupe fondamental du topos modulaire complexe $M_{g,\nu}$ des courbes complexes (projectives non singulières connexes de genre g, avec un système de ν point $s_1 \dots s_{\nu}$ distincts données). Or le topos modulaire $M_{g,\nu+1}$ n'est autre que la "courbe complexe universelle de genre g à ν tous numérotés" sur $M_{g,\nu}$ [car se donner une courbe U' de genre g avec $\nu+1$ trous $x_1 \dots x_{\nu+1}$ plus un point de U] d'où une suite exacte d'homotopie

d'où une structure d'extension

$$1 \longrightarrow \pi_{g,\nu} \longrightarrow T_{g,\nu+1}^{\circ \circ} \longrightarrow T_{g,\nu}^{\circ \circ} \longrightarrow 1$$

qui est (à passage à un sous-groupe d'indice 2ν ! près) la structure d'extension annoncée. Les vérification de compatibilités sont laissées...

On a donc un foncteur quasi-inverse (défini à isomorphisme unique près)

$$\left(\begin{array}{c} \text{groupes à lacets de type} \\ g, \nu \quad 2g + \nu \geq 3 \end{array} \right) \longrightarrow \left(\begin{array}{c} \text{groupes extérieurs à lacets de type } (g, \nu + 1) \\ \text{avec une "classe de lacets" distinguée} \end{array} \right)$$

$$\left(\begin{array}{c} \text{couples } (\pi', i \in I(\pi'))) \end{array} \right)$$

Au niveau topossique, quand on a un système $B_{D^*} \longrightarrow B_U$ de type (g, v) $(2g + v \ge 3)$ et un "point" de B_U i.e. un $\widetilde{U} \in \operatorname{Ob} \pi_1 B_U$, alors on peut de façon canonique trouver un $B_{D_i^*}$ (T-groupoïde connexe, où T est le module d'orientation) et un système

$$\mathbf{B}_{D^*} \coprod \mathbf{B}_{D_i^*} \longrightarrow \mathbf{B}_{U'}$$

de type g, $\nu+1$ de façon que $(B_{D^*}, B_U, \widetilde{U})$ s'en déduise par l'opération de "bouchage du trou D_i^* ".

Ces constructions sont si fonctorielles qu'elles commutent aux actions de groupe Γ . Si un groupe Γ opère sur un groupe à lacet π de type (g, v) (pas seulement extérieurement), alors on en déduit une opération *extérieure* de Γ sur un π' à lacets de type (g, v + 1) qui fixe une classe de lacets privilégiée $i \in I$.

Mais alors, dans l'extension correspondante

$$1 \longrightarrow \pi' \longrightarrow E' \longrightarrow \Gamma \longrightarrow 1$$
,

choisissons un $L_i'\subset \pi'$ est soit E_i' le normalisateur dans L_i de E' , on trouve

$$1 \longrightarrow L'_i(\simeq T) \longrightarrow E'_i \longrightarrow \Gamma \longrightarrow 1$$

(ceci marche sans hypothèse de finitude sur Γ , le cas universel étant celui où Γ est le groupe de Teichmüller de π' fixant i; i.e. $\operatorname{Autext}_{\operatorname{lac}}(\pi',i) \xrightarrow{\sim} \operatorname{Aut}_{\operatorname{lac}}(\pi)$).

J dit que si Γ opère fidèlement sur π , i.e. si son opération extérieure sur π' est fidèle, et Γ est fini alors Γ est nécessairement cyclique (cas $\Gamma = \Gamma^{\circ}$) ou diédral ($\Gamma = \Gamma^{\circ}$) et que si de plus $\Gamma = \Gamma^{\circ}$ alors $E_i \simeq \mathbf{Z}$ i.e. $\exists !$ isomorphisme $T \xrightarrow{\sim} E_i'$ tel que $T \xrightarrow{x_i} E_i'$ s'identifie à $n \operatorname{id}_T$ (de sorte qu'on trouve $\Gamma = E_i'/nE_i' \simeq T \otimes_{\mathbf{Z}} \mathbf{Z}/n\mathbf{Z}$ si $n = \operatorname{card} \Gamma \dots$)

Changeant de notations, ceci revient au

Théorème⁵⁹. — Soit Γ un groupe fini opérant fidèlement sur un groupe extérieur à lacet π de type (g, v+1) ($v \ge 0$), en laissant fixé un $i \in I(\pi)$. Alors Γ est cyclique (si $\Gamma = \Gamma^{\circ}$) ou diédral (si $\Gamma = \Gamma^{\circ}$) et dans l'extension correspondante E de Γ par π , si E_i est le normalisateur d'un L_i dans E [de sorte que l'on a une suite exacte $1 \longrightarrow L_i \longrightarrow E_i \longrightarrow \Gamma \longrightarrow 1$] l'image inverse E_i° de Γ° est $\simeq \mathbf{Z}$.

Donc si $n=\operatorname{card}\Gamma^\circ=[E_i^\circ:L_i]x\mapsto x^n$ est un isomorphisme $E_i^\circ\simeq L_i$, qui compte tenu de x_i donne un isomorphisme $E_i^\circ\simeq T$, dont le composé avec $T\xrightarrow{x_i} L_i\subset E_i^\circ$ est $n\operatorname{id}_T$ de sorte que l'on a un isomorphisme canonique

$$\Gamma^{\circ} \simeq E_i^{\circ}/L_i \simeq T/nT$$

(évidemment indépendant du choix de L_i ...).

Démonstration. Considérons l'extension E° de Γ° par $L_i \simeq T$ (isomorphe non canoniquement à \mathbf{Z}), comme Γ° opère trivialement sur T (sans torsion) cette extension (par la suite exacte de cohomologie associée à

$$0 \longrightarrow T \longrightarrow T \otimes_{\mathbf{Z}} \mathbf{Q} \longrightarrow T \otimes_{\mathbf{Z}} \mathbf{Q}/\mathbf{Z} \longrightarrow 0)$$

est canoniquement isomorphe à l'extension définie par un homomorphisme $\Gamma^{\circ} \longrightarrow T_n = T/nT$, comme image de l'extension $o \longrightarrow T \stackrel{n}{\longrightarrow} T \longrightarrow T_n \longrightarrow 0$ de T_n par T. Je dis que cet homomorphisme est un isomorphisme (d'où résulteront les autres assertions), ou ce qui revient au même puisque Γ° et T_n sont tous deux d'ordre n, qu'il est injectif. Remplaçant Γ° par le noyau de $\Gamma^{\circ} \longrightarrow \mathbf{Z}/n\mathbf{Z}$, OPS que l'homomorphisme en question est nul et il faut prouver que cela implique que l'action de Γ° est triviale (ce qui, puisque par hypothèse l'action de Γ est fidèle, implique $\Gamma^{\circ} = \{1\}$, OK). Donc on est ramené au

⁵⁹Il y a équivalence si dans le théorème on suppose (g, v) anabélien sinon le théorème est un peu plus général.

Lemme fondamental. — Tout automorphisme direct extérieur u d'ordre fini n d'un groupe à lacets π , qui fixe une classe de lacets i et est tel que l'extension de $\mathbb{Z}/n\mathbb{Z}$ par $L_i \in i$ définie par u soit triviale est trivial.

L'hypothèse signifie que u se remonte en un automorphisme u_0 de π qui normalise L_i , et qui soit aussi d'ordre n (ou d'ordre fini, cela revient au même compte tenu que T est sans élément d'ordre fini) alors u_0 est trivial ; i.e. cela équivaut au corollaire :

Corollaire⁶⁰. — Tout automorphisme direct d'ordre fini d'un groupe à lacet π qui normalise un sous-groupe à lacet L_i (i.e. qui centralise L_i) est réduit à l'identité.

Pour le démontrer on est ramené aussitôt au cas où u_0 est tel que $u_0^p = 1$ avec p premier, i.e. u_0 correspond à une opération au sens strict (pas seulement extérieure) de $\mathbb{Z}/p\mathbb{Z}$ sur π . Mais (que l'on puisse ou non trouver un tel p) considérons le cas où l'on sait que l'opération extérieure de $\Gamma = \mathbb{Z}/n\mathbb{Z}$ (n = ordre de u) sur π se réalise géométriquement par une opération (fidèle) de Γ sur U de type (g,v+1) $U = X \setminus S$, $S \simeq I$, X compacte de genre g, le point s_i de S correspondant à un point fixe de Γ opérant sur U. On exprime l'hypothèse de l'opération [...?] de Γ sur π , centralisant un L_i , en disant que l'opération extérieure donne une extension de Γ par $L_i = T$ triviale. Mais on sait par ailleurs dans le cas géométrique (et opération fidèle) qu'elle n'est pas triviale!

Il suffirait donc pour prouver le lemme fondamental de savoir que toute action extérieure (fidèle) d'un groupe cyclique sur un groupe à lacets de type (g, v+1) est réalisable, et il suffit même de le savoir pour un groupe cyclique d'ordre premier. Or sauf erreur, ce résultat est connu (même pour les groupes résolubles) (comme théorème d'existence de point fixe d'un tel groupe opérant sur l'espace de Teichmüller...) de sorte que le lemme fondamental semble démontré. J'ai seulement un doute s'il est démontré dans le cas général d'un (g,v), ou seulement pour $g \ge 2$, v = 0. Mais s'il en est bien ainsi, je pense que (pour $g \ge 2$ tout au moins) on n'en tire par dévissage pour le cas v quelconque et le cas g = 0,1 demanderait aussi

⁶⁰N.B. Dans le lemme ou son corollaire, le cas g = 0, v + 1 = 1 ou v + 1 = 2 est trivial, le cas v + 1 = 3 ((g, v) = (0, 2) abélien!) n'est pas trivial par contre, ni le cas g = 1, v + 1 = 1 (i.e. (g, v) = (1, 0) abélien). Pourtant le résultat doit être valable aussi dans ce cas.

un traitement à part. Je reviendrai là-dessus par la suite et préfère pour l'instant admettre le "lemme fondamental", et examiner des conséquences et corollaires de celui-ci.

Pour une action extérieure fidèle d'un Γ fini sur un groupe à lacets *anabélien* π , correspondant à une extension E de Γ par π on a donc établi⁶¹.

- a) Que les scindages partiels de celle-ci ne peuvent se faire que sur des sousgroupes Γ' de Γ tels que Γ' ° soit cyclique et Γ' dihédral si $\Gamma \neq \Gamma'$ °.
- b) Pour toute classe de π-conjugaison de tels scindages partiels, on a un isomorphisme canonique correspondant Γ' ~ T_n(= T/nT) où n = card T'.
 Ce sont là des résultats que l'on avait précédemment obtenus pour le cas d'un opération réalisable.

Il n'y avait pas lieu d'ailleurs de se borner au cas anabélien, du moment que l'on suppose $\pi \neq 0$) (cas essentiellement vide !) ce qui inclut les cas abéliens g=0, v=2 et g=1, v=0 pour lesquels un traitement direct est possible, et a déjà été donné essentiellement, ces cas là où l'on part d'une *extension* (pas d'une extension "extérieure" i.e. ici d'une action tout court de Γ sur $\pi \simeq \mathbf{Z}$ ou \mathbf{Z}^2) étant toujours réalisables. (N.B. Dans ce cas, l'hypothèse d'une action fidèle est remplacée par celle que l'extension n'est une extension *produit* sous aucun sous-groupe $\Gamma' \subset \Gamma$ $\Gamma' \neq 1...$).

Il reste cependant d'autres résultats [de ?] cas réalisable qu'il faudrait examiner dans le cas général :

[O.P.S. $\Gamma = \Gamma^{\circ}$ donc Γ engendré par un automorphisme direct u ou Γ engendré par un anti-isomorphisme d'ordre 2].

- c) Si Γ est un sous-groupe fini de Aut (π) i.e. un groupe fini opérant *fidèlement* sur π a-t-on $\pi^{\Gamma} = \{1\}$?
- d) Si Γ' et Γ'' sont des sous-groupes finis de E (extension du groupe fini Γ par π correspondant à une opération extérieure fidèle, respectant l'orientation)

⁶¹i.e. on a établi l'existence d'une application canonique de l'ensemble des éléments d'ordre fini de $\operatorname{Aut}_{\operatorname{lac}}(\pi)$ dans $T \otimes \mathbf{Q}/T$, satisfaisant les conditions examinées précédemment.

tels que $\Gamma' \cap \Gamma'' = \{1\}$, alors Γ' et Γ'' sont-ils contenus dans le π -conjugué d'un sous groupe fini Γ''' de E?

[i.e. tout sous-groupe section = 1 est contenu dans un unique sous-groupe section maximal modulo conjugaison].

N.B. Deviendrait faux en se plaçant dans le groupe $\operatorname{Aut}_{\operatorname{lac}}(\pi)$ [...?].

e) Pour tout sous-groupe Γ' de Γ l'ensemble des classes de π -conjugaison de relèvements de Γ' sur E est-il fini ?

[OPS $\Gamma' = \Gamma$ cyclique (et $\Gamma = \Gamma^{\circ}$) ou dihédral sinon].

Dans le cas c), OPS Γ cyclique d'ordre premier et c'est OK s'il est acquis qu'une opération extérieure d'un tel groupe sur un $\pi_{g,\nu}$ est réalisable. De même e) est établi si l'on admet que les opérations extérieures de groupes cycliques sur un $\pi \simeq \pi_{g,\nu}$ sont réalisables.

Démontrons d). Nous identifions Γ' et Γ'' à des sous-groupes de Γ , et posons $\Gamma_0 = \Gamma' \cap \Gamma''$. Soit $E^!$ le sous-groupe de E formé des $g \in E$ tel que $\operatorname{int}(g)\Gamma_0$ soit π -conjugué de Γ_0 et dont l'image dans Γ centralise Γ_0 .

On a $E^!\supset\pi$ et E' est donc l'image inverse d'un sous-groupe de $\Gamma^!$ de Γ qui centralise Γ_0 et qui contient Γ' et Γ'' (car $E^!$ contient le centralisateur de Γ_0 dans E, donc Γ' et Γ''). Quitte à remplacer Γ par $\Gamma^!$, E par $E^!$, OPS $E=E^!$, $\Gamma=\Gamma^!$ i.e. que $\Gamma_0\subset C$ entre de Γ et que $\Gamma_0\hookrightarrow E$ invariant modulo π -conjugaison par Γ .

On va construire une section de E sur Γ tout entier, ainsi. Soit $\widetilde{\Gamma} \subset E$ le centralisateur de Γ_0 dans E, on a $\widetilde{\Gamma} \cap \pi = (1)$ (car cela signifie $\pi^{\Gamma_0} = (1)$) donc $\widetilde{\Gamma} \longrightarrow \Gamma$ est injectif, je dis qu'il est surjectif. En effet, soit $\gamma \in \Gamma$, $g \in E$ au-dessus de Γ , par hypothèse $\exists \alpha \in \pi$ tel que int $(g)\Gamma_0 = \operatorname{int}(\alpha)\Gamma_0$.

i.e. OPS $\operatorname{int}(g)\Gamma_0 = \Gamma_0$, i.e. g normalise Γ_0 , mais comme Γ_0 est central dans Γ cela signifie que g centralise Γ_0 i.e. $g \in \widetilde{\Gamma}$. Ainsi $\widetilde{\Gamma} \simeq \Gamma$ est un sous-groupe fini de $\operatorname{Aut}(\pi)$ contenant Γ' et Γ'' c.q.f.d..

N.B. Si on n'avait pas au début supposé Γ fini il serait vrai encore que Γ' et Γ'' engendre un sous-groupe $\widetilde{\Gamma} \subset \operatorname{Aut}(\pi)$ tel que $\widetilde{\Gamma} \cap \pi = (1)$ mais cela nous fait une belle jambe.

§ 19. — TOUR DE TEICHMÜLLER

Soit $g \in \mathbb{N}$ et X_g une surface compacte connexe orientable de genre g. Soit $(a_{g,i})_{i\in\mathbb{N}}$ une suite de points distincts de X_g . On pose pour $v\in\mathbb{N}$

(1)
$$S_{g,v} = \{a_{g,i} | 0 \le i \le v - 1\} \quad (v = \operatorname{card} S_{g,v})$$

(2)
$$U_{g,v} = X_g \setminus S_{g,v}$$
 N.B. on a $a_{g,v} \in U_{g,v}$.

On a donc $S_{g,0} = \emptyset$ et $U_{g,0} = X_g$.

Les $S_{g,\nu}$ forment une suite strictement croissante de parties finies de X_g et les $U_{g,\nu}$ une partie strictement décroissante d'ouverts de X_g . On prendra par la suite $U_{g,\nu}$ comme surface orientable type, de type (g,ν) .

(3) Soit $A_g = \operatorname{Aut}(X_g)$ le groupe des automorphismes de X_g muni de la topologie de la convergence uniforme de u et de son inverse. On pose

(4)
$$A_{g,v} = \{ u \in A_g | u(S_{g,v}) = S_{g,v} \}$$

on a un isomorphisme canonique (de restriction)⁶²

$$(5) A_{g,\nu} \xrightarrow{\sim} \operatorname{Aut}(U_{g,\nu})$$

 $^{^{62}}$ N.B. C'est sans doute un isomorphisme topologique quand $A_{g,\nu}$ est muni de la topologie induite par A_g et $\mathrm{Aut}(U_{g,\nu})$ de la topologie habituelle de la convergence compacte de u et de son inverse.

on a aussi un morphisme canonique surjectif

(6)
$$A_{g,\nu} \longrightarrow \operatorname{Aut}(S_{g,\nu}) \simeq \mathfrak{S}_{\nu}$$

dont le noyau est noté $A^!_{g,\nu}$

(7)
$$A_{g,v}^! = \{ u \in A_g | u(a_{g,i}) = a_{g,i} \forall i \in \{0, \dots, v-1\} \}$$

d'où la suite exacte :

$$(8) 1 \longrightarrow A^!_{\sigma,\nu} \longrightarrow A_{\sigma,\nu} \longrightarrow \mathfrak{S}\nu \longrightarrow 1$$

Soit $A_{g,v}^{\circ}$ la composante neutre du groupe $A_{g,v}$ on a donc :

(9)
$$A_{g,\nu}^{\circ} (= A_{g,\nu}^{!\circ}) \subset A_{g,\nu}^{!}$$

Posons

(10)
$$\Gamma_{g,v} = A_{g,v}/A_{g,v}^{\circ} = \pi_0(A_{g,v})$$
 groupe de Teichmüller de type g,v)

On pose aussi $\Gamma_g = \Gamma_{g,0} (= \Gamma_{g,0}^!)$

(11)
$$\Gamma_{g,\nu}^! = A_{g,\nu}^! / A_{g,\nu}^\circ$$

la suite exacte (8) donne donc une suite exacte.

$$1 \longrightarrow \Gamma_{g,\nu}^! \longrightarrow \Gamma_{g,\nu} \longrightarrow \mathfrak{S}_{\nu} \longrightarrow 1$$

On a des homéomorphismes canoniques :

- $(13) A_g/A_{g,\nu} \simeq \text{ouvert Sym}^{\nu}(X_g)^* \text{ du produit symétrique } (\text{Sym}^{\nu}(X_g)) \text{ formé des parties finies de card } \nu (= \mathfrak{P}_{\nu}(X_g)).$
- (14) $A_g/A_{g,\nu}^! \simeq \text{ouvert } (X_g^{\nu})^* \text{ des } \nu\text{-uples de points distincts } \simeq \text{Mon}(I_{\nu}, X_2) \text{ (ou } I_{\nu} = \{0, 1, \dots, \nu\}).$

(Cet homéomorphisme respectant les actions naturelles de $\mathfrak{G}_{\nu} = A_{g,\nu}/A_{g,\nu}^!$). Les $A_{g,\nu}^!$ pour ν variable forment une suite décroissante de sous-groupes de A_g .

$$(15) A_g = A_{g,0}^! \supset A_{g,1}^! \supset A_{g,2}^! \supset \cdots \supset A_{g,\nu}^! \supset \cdots$$

et les homomorphismes correspondants entre espaces homogènes de $A_{\rm g}$ s'insèrent dans le diagramme commutatif :

$$(16) \qquad A_{g}/A_{g,\nu}^{!} \longrightarrow \operatorname{Mon}(I_{\nu},X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_{g}/A_{g,\nu}^{!} \longrightarrow \operatorname{Mon}(I_{\nu'},X)$$

pour v = 1 on a $A_{g,1}^! = A_{g,1}$ et l'isomorphisme (13) (ou au choix (14)) s'écrit

$$(17) A_g/A_{g,1} \simeq X_g$$

(homéomorphisme compatible avec les actions de A_g).

D'ailleurs si à tout $x \in X_g$ on associe son stabilisateur $A_{g,x}$ dans A_g on trouve une application évidemment surjective

(18) $X_g \longrightarrow$ ensemble des conjugués du sous groupe $A_{g,1}$ de $A_g (\simeq A_g/\operatorname{Norm}_{A_g}(A_{g,1}))$

qui s'identifie via (17) à l'application canonique sur les espaces homogènes

$$A_{g}/A_{g,1} \longrightarrow A_{g}/\operatorname{Norm}_{A_{g}}(A_{g,1})$$

déduite de l'inclusion $A_{g,1} \subset \text{Norm}_{A_g}(A_{g,1})$.

On voit de suite que (18) est bijective i.e. que

$$A_{g,1} = \operatorname{Norm}_{A_g}(A_{g,1})$$

Plus généralement pour tout v on a

(20)
$$A_{g,\nu} = \operatorname{Norm}_{A_g}(A_{g,\nu}) = \operatorname{Norm}_{A_g}(A_{g,\nu}^!)$$

Ce qui signifie que les applications canoniques de $A_{\rm g}$ -ensembles homogènes :

$$\mathfrak{P}_{\mbox{\tiny ν}}(X_{\mbox{\tiny g}}) \longrightarrow$$
 ensemble des conjugués de $A_{\mbox{\tiny g},\mbox{\tiny ν}}$

(21)
$$S \longmapsto \text{stabilisateur } A_{g,S} \text{ de } S$$

$$(22) S \longmapsto A^!_{g,S}$$

sont non seulement surjectives mais même *bijectives*. Cela provient du fait que l'on retrouve S en termes de $A_{g,S}$ (ou de $A_{g,S}^!$):

(23)
$$S = \{x \in X_g | u(x) = x \quad \forall u \in A_{g,S}^! \} = X^{(A'_{g,S})}$$

$$= \{x \in X_g | A_{g,S} x \text{ fini}\}\$$

$$= \{x \in X_g | A_{g,S} x \neq X_g\}$$

On a aussi une application canonique d'espaces homogènes sous A_g

$$\mathfrak{P}_{\nu}(X_g) \longrightarrow \text{Ensemble des conjuguées de } A_{g,\nu}^{\circ} \text{ dans } A_g(\simeq A_g/\text{Norm}_{A_g}(A_{g,\nu}^{\circ}))$$

$$(25) S \longmapsto A_{g,S}^{\circ}$$

qui est bijective car on a la relation suivante qui renforce (23) et (24) : $\forall S \in \mathfrak{P}_{\nu}(X_g)$

(26)
$$S = \{x \in X_g | A_{g,S}^{\circ} = \{x\}\} = X_g^{A_{g,S}^{\circ}}$$
$$= \{x \in X_g | A_{g,S}^{\circ} x \text{ fini}\}$$
$$= \{x \in X_g | A_{g,S}^{\circ} x \neq X_g\}$$

ainsi pour tout v

(27)
$$A_{g,\nu} = \operatorname{Norm}_{A_{\sigma}}(Ag,\nu) = \operatorname{Norm}_{A_{\sigma}}(A_{g,\nu}^!) = \operatorname{Norm}_{A_{\sigma}}(A_{g,\nu}^{\circ})$$

Soi G un groupe topologique, muni d'une classe de conjugaison X de sous-groupes ; soit G_1 dans cette classe. On dit que (G,X) est un couple de Teichmüller de type g, s'il existe un isomorphisme de groupes topologiques $G \simeq A_g$, transformant X en la classe de conjugaison de $A_{g,1}$

Il revient au même de dire que X avec sa topologie d'espace homogène sous G ($\simeq G/G_1$) est une surface compacte connexe orientable de genre g, et que l'application naturelle

$$(28) G \longrightarrow \operatorname{Aut}(X)$$

est un homéomorphisme de groupes topologiques.

On voit alors que $(G,X) \mapsto X$ de la catégorie des couples de Teichmüller de type g, vers la catégorie des surfaces compactes orientables de genre g est une équivalence de catégorie. Il en résulte que pour un automorphisme u du groupe topologique G, u est intérieur si et seulement si u conserve la classe X i.e. si et seulement si $U(G_1)$ est conjugué de G_2 .

D'ailleurs le centre de G est trivial.

On peut donner une description analogue pour la catégorie des surfaces orientées de genre g à ν trous (i.e. homéomorphismes à $U_{g,\nu}$) en termes d'un groupe topologique G_{ν} ($\simeq A_{g,\nu}$) et d'une classe de conjugaison U_{ν} de sous-groupes H_{ν} de celui-ci ($\simeq A_{g,\nu} \cap A_{g,\nu+1}$) avec les conditions que $(G_{\nu}, \{H_{\nu}\})$ soit isomorphe à $(A_{g,\nu}, \{A_{g,\nu} \cap A_{g,\nu+1}\})$ ou encore que l'homomorphisme continu

$$(29) G \longrightarrow \operatorname{Aut}(U_{\nu})$$

soit un homéomorphise de groupes topologiques. On trouve alors une équivalence entre la catégorie des couples de Teichmüller $(G_{\nu}, \{H_{\nu}\})$ de type (g, ν) , et celle des surfaces orientables de type (g, ν) . On trouve encore que les automorphismes d'un tel G_{ν} ($\simeq A_{g,\nu}$) qui fixent la classe U_{ν} (i.e. qui transforme H_{ν} en un conjugué) sont intérieurs et que le centre de H_{ν} est $\{1\}$.

En fait U_{ν} peut être interprété aussi comme espace homogène sous G_{ν}° et pas seulement sous G_{ν} ; plus généralement on a que G_{ν}° est transitif sur U_{ν} et même sur $\mathfrak{P}_{\nu}(U_{\nu})$ pour tout $\nu' \in \mathbf{N}^*$.

Revenant à la situation type avec $U_{{\mathbf{g}},{\mathbf{v}}}$, ou trouve :

(30)
$$U_{g,\nu} \simeq A_{g,\nu}/A_{g,(\nu,\nu+1)} \text{ (avec } A_{g,(\nu,\nu+1)} = A_{g,\nu} \cap A_{g,\nu+1})$$

$$\simeq A_{g,\nu}^{\circ}/B_{g,(\nu,\nu+1)}$$

(avec
$$B_{g,(v,v+1)} = A_{g,v+1} \cap A_{g,v}^{\circ} = \{ u \in A_{g,v}^{\circ} \text{ tel que } u(a_{g,v}) = a_{g,v} \}$$
).

On a ainsi un diagramme d'inclusion de sous-groupes de $A_{g,\nu}$: (en posant $B_{g,\nu}=A_{g,\nu}^{\circ}\cap A_{g,\nu+1}^{!}$ et en remarquant que $A_{g,\nu+1}^{\circ}=B_{g,\nu}^{\circ}=(A_{g,\nu+1}^{!})^{\circ}$)

$$(31) \qquad A_{g,\nu+1}^{\circ} \stackrel{\longleftarrow}{\longleftarrow} B_{g,\nu} \stackrel{\stackrel{\text{inv.}}{\longleftarrow}}{\stackrel{\Gamma_{g,\nu}^{!}}{\longleftarrow}} A_{g,\nu+1}^{!} \stackrel{\stackrel{\text{inv.}}{\longleftarrow}}{\stackrel{\text{o}}{\longleftarrow}} A_{g,(\nu,\nu+1)} \left[\stackrel{\longleftarrow}{\longleftarrow} A_{g,\nu+1} \right] \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ A_{g,\nu}^{\circ} \stackrel{\stackrel{\text{inv.}}{\longleftarrow}}{\stackrel{\Gamma_{g,\nu}^{!}}{\longleftarrow}} A_{g,\nu}^{!} \stackrel{\stackrel{\text{inv.}}{\longleftarrow}}{\stackrel{\text{o}}{\longleftarrow}} A_{g,\nu}$$

où les 2 carrés sont cartésiens et les inclusions horizontales (sauf celle entre crochets) sont des inclusions de sous groupes invariants (invariant même dans le groupe le plus grand $A_{g,\nu}$ (resp. $A_{g,\nu+1}$)).

(L'égalité $B_{g,\nu}^{\circ} = (A_{g,\nu+1}^!)^{\circ}$, (qui précise l'inclusion triviale de $B_{g,\nu}^{\circ}$ dans $(A_{g,\nu+1}^!)^{\circ}$ par l'inclusion inverse équivalente à $(A_{g,\nu+1}^!)^{\circ} \subset B_{g,\nu}^{\circ}$) provient de l'inclusion

$$(A_{g,\nu+1}^!)^{\circ} \subset (A_{g,\nu}^!)^{\circ} = A_{g,\nu}^{\circ}, \quad \text{d'où} \quad A_{g,\nu+1}^{\circ} \subset A_{g,\nu+1} \cap A_{g,\nu}^{\circ} = B_{g,\nu}).$$

On notera dorénavant $A_{g,(\nu,\nu+1)}$ par $A_{g,\nu}^{\bullet}$ (comme $A_{g,\nu}$ ponctué par $a_{g,\nu}$).

Les trois inclusions verticales définissent trois espaces homogènes et les homomorphismes d'inclusions entre ceux-ci qui sont *bijectifs*

$$(A_{g,\nu} \simeq) \quad A_{g,\nu}/A_{g,\nu}^{\bullet} \xleftarrow{\sim} A_{g,\nu}^!/A_{g,\nu+1}^! \xleftarrow{\sim} A_{g,\nu}^{\circ}/B_{g,\nu}$$

et de même les groupes quotient \mathfrak{S}_{ν} et $\Gamma_{g,\nu}^{!}$ définis par les inclusions de la première ligne son isomorphes par les inclusions verticales aux quotients correspondants dans la deuxième ligne. Ainsi l'extension de groupe

$$1 \longrightarrow \Gamma_{g,\nu}^! \longrightarrow \Gamma_{g,\nu} \longrightarrow \mathfrak{S}_{\nu} \longrightarrow 0$$

peut se déduire indifféremment de la 1ère ligne ou de la 2ème ligne de (31) en particulier

$$\mathfrak{S}_{\nu} \simeq A_{g,\nu}^{\bullet} / A_{g,\nu+1}^{!}$$

$$\Gamma_{g,\nu} \simeq A_{g,\nu}^{\bullet}/B_{g,\nu}$$

$$\Gamma_{g,\nu}^! \simeq A_{g,\nu+1}^! / B_{g,\nu}$$

Ainsi le torseur canonique e groupe $A_{g,\nu}^{\bullet}$ sur l'espace homogène $U_{g,\nu}$ et celui de groupe $A_{g,\nu+1}^!(\subset A_{g,\nu}^{\bullet})$ qui lui donne naissance sont l'un et l'autre déduit par extension du groupe structural d'un torseur de groupe $B_{g,\nu}$ (dont la fibre en $x \in U_{g,\nu}$ est l'ensemble des $u \in A_{g,\nu}^{\circ}$ tel que $u(a_{g,\nu}) = x$). Le revêtement galoisien associé de groupe $B_{g,\nu}/B_{g,\nu}^{\circ}$ est donc aussi l'espace homogène $A_{g,\nu}^{\circ}/A_{g,\nu+1}^{\circ}$ qui est évidemment connexe et ponctué au dessus de $a_{g,\nu} \in U_{g,\nu}$.

Posons pour $(g, v) \neq (1, 0)$ et $(g, v) \neq (0, 2)$.

$$\widetilde{U}_{g,\nu} = A_{g,\nu}^{\circ} / A_{g,\nu+1}^{\circ}$$

On a le théorème :

Théorème. — $\widetilde{U}_{g,v}$ est simplement connexe (et même contractile si $(g,v) \neq (0,0)$) et s'identifie donc au revêtement universel de $U_{g,v}$ ponctué en $a_{g,v}$.

Corollaire. — On a un isomorphisme canonique

(34)
$$B_{g,\nu}/B_{g,\nu}^{\circ} \simeq \pi_1(U_{g,\nu}; a_{g,\nu}) \stackrel{def}{=} \pi_{g,\nu}$$

Démonstration du théorème en termes de choses "bien connues".

La suite exacte d'homotopie pour la fibration de $A_{g,\nu}^{\circ}$ sur $A_{g,\nu+1}^{\circ}/A_{g,\nu+1}^{\circ}\simeq \widetilde{U}_{g,\nu}$ est

(35)

$$\cdots \longrightarrow \pi_{i+1}(\widetilde{U}_{g,\nu}) \longrightarrow \pi_{i}(A_{g,\nu+1}^{\circ}) \longrightarrow \pi_{i}(A_{g,\nu}^{\circ}) \longrightarrow \pi_{i}(\widetilde{U}_{g,\nu}) \longrightarrow \pi_{i-1}(A_{g,\nu+1}^{\circ}) \cdots$$

$$\dots \pi_1(A_{g,\nu+1}^\circ) \longrightarrow \pi_1(A_{g,\nu}^\circ) \longrightarrow \pi_1(\widetilde{U}_{g,\nu}) \longrightarrow 1$$

Elle montre que $\pi_1(\widetilde{U}_{g,\nu})$ est isomorphe au conoyau de $\pi_1(A_{g,\nu+1}^\circ) \longrightarrow \pi_1(A_{g,\nu}^\circ)$ dont le noyau est un quotient de $\pi_2(\widetilde{U}_{g,\nu}^\circ)$...

Si
$$(g, v) \neq (0, 0)$$
 on sait que $\pi_i(\widetilde{U}_{g,v}) = 0 \ \forall i \geq 2 \ \text{d'où si} \ (g, v) \neq (0, 0)$ on a

$$\pi_i(A_{g,\nu+1}^\circ) \longrightarrow \pi_i(A_{g,\nu}^\circ)$$

est bijectif si $i \ge 2$, injectif à image invariante si i = 1 et l'on veut prouver que c'est bijectif pour i = 1.

La chose à retenir (?) est celle ci :

Théorème (bien connu). — Conditions équivalentes sur le couple $(g, v) \in \mathbb{N} \times \mathbb{N}$:

- a) $2g + v \ge 3$ (i.e. on n'est pas dans les cas: (1,0), (0,0), (0,1), (02)).
- b) $\pi_1(U_{\sigma,\nu})$ est non abélien.
- c) $A_{g,v}^{\circ}$ est simplement connexe.
- d) $A_{g,v}^{\circ}$ est contractile et $(g,v) \neq (0,1)$.

En tous cas, que ces condition soient ou non vérifies, on a $\pi_i(A_{g,v}^\circ) = 0$ si $i \ge 2$, et $(g,v) \ne (0,0)$.

(i.e. les $A_{g,\nu}^{\circ}$ sont des espaces classifiants de groupes discrets, avec la seule exception de $A_{0,0}^{\circ} \simeq \operatorname{Aut}^{\circ} \mathbb{S}^2$).

Compte tenu de (36) ce théorème équivaut aux relations :

(37)
$$\pi_i(A_{g,0}^\circ) = 0$$
 si $g \ge 2, i \ge 1$ (i.e. pour $g \ge 2A_{g,0}$ est cotractile)

$$\pi_i(A_{g,0}^\circ) = 0$$
 pour $i \ge 1$ (i.e. $A_{1,1}^\circ$ est contractile)

$$\pi_i(A_{0,1}^\circ) = 0$$
 pour $i \ge 1$ (i.e. $A_{0,1}^\circ$ est contractile)

(38)
$$\pi_i(A_{1,0}^\circ) = 0 \text{ et } \pi_i(A_{0,1}^\circ) = 0 \text{ pour } i \ge 2$$

i.e
$$A_{1,0}^{\circ} A_{0,1}^{\circ}$$
 sont des $K(\pi, 1)$

et elles ont comme conséquences que $\widetilde{U}_{g,\nu}$ est simplement connexe dans les cas anabéliens $(2g + \nu \geq 3)$. Pour savoir ce qu'il en est dans le cas abélien, il faut préciser la structure topologique de $A_{g,\nu}^{\circ}$ dans les 4 cas "abéliens" $2g + \nu \leq 2$.

Or on a le

Corollaire. — Pour que $U=U_{g,v}$ soit à π_i abélien (i.e. ne satisfasse pas aux conditions équivalentes du théorème) il faut et il suffit que U puisse :

Soit être muni d'une structure de groupe topologique (qui sera nécessairement isomorphe à $\mathbb{U} \times \mathbb{U}$ ($\mathbb{U} = \{z/|z| = 1\}$), (cas (1,0)) et \mathbb{C}^* (cas (0,2) ou \mathbb{C} (cas (0,1)))).

Soit d'une structure d'espace homogène sous un groupe topologique (on peut prendre $SO(3, \mathbf{R})$ ou $Gl(1, \mathbf{C})$ pour le cas de \mathbb{S}^2) par un sous groupe connexe. Dans tous les cas le groupe topologique en question peut se décrire e la façon suivante : on choisit une structure complexe sur $X_g = \widehat{U}_{g,v} = \widehat{U}$ (le compactifié pur de U) et on prend la structure complexe induite sur U (i.e. on choisit une structure de courbe algébrique (sur \mathbf{C}) sur U...) et on prend $G = \operatorname{Aut}_{\mathbf{C}}^{\circ} U$ composante neutre du groupe des automorphismes complexes de U i.e. des automorphismes complexes qui invarient $S_v = \widehat{U} \setminus U$.

Ceci posé, l'inclusion $G \hookrightarrow \operatorname{Aut}^{\circ} U \simeq A_{g,v}^{\circ}$ est une équivalence d'homotopie.

Le corollaire nous donne :

(39)
$$G = \mathbb{U} \times \mathbb{U} \qquad \qquad \pi_1(A_{1,0}^{\circ}) = \mathbf{Z} \times \mathbf{Z} \qquad \text{i.e.} \qquad A_{1,0}^{\circ} \simeq K(\mathbf{Z} \times \mathbf{Z}, 1)$$

$$G = \mathbf{C}^* = \mathrm{Gl}(1, \mathbf{C})$$
 $\pi_1(A_{0,2}^\circ) \simeq \mathbf{Z}$ i.e. $A_{0,2}^\circ \simeq K(\mathbf{Z}, 1)$

$$G = \operatorname{Aff}(1, \mathbb{C})$$
 $\pi_1(A_{0,1}^{\circ}) \simeq \mathbb{Z}$ i.e. $A_{0,1}^{\circ} \simeq K(\mathbb{Z}, 1)$

 $(Aff(1, \mathbb{C}) \text{ homotope à } \mathbb{C}^* \text{ par l'inclusion } Gl(\mathbb{S}^2) \subset Aff(1, \mathbb{C}))$

$$A_{0,0}^{\circ} = \operatorname{Aut}(\mathbb{S}^2) \simeq \operatorname{Aut}(\mathbb{P}^1_{\mathbf{C}})$$

 $^{^{63}}$ N.B. Le fait que si U est un espace homogène de groupe topologique par un sous groupe connexe alors π_1 est abélien provient de la suite exacte d'homotopie et du fait que le π_1 d'un groupe topologique est commutatif. Le réciproque dans le cas des surfaces topologiques est assez remarquable!

⁶⁴On a un résultat plus précis : si k est le plus petit entier tel que (g, v + k) soit un couple anabélien, alors dim G = k et G est simplement transitif sur l'ensemble des k-uples $(u_1, ..., u_k)$ de points distincts de $U_{g,v}$ d'où il résulte aussitôt que tout élément de $A_{g,v}$ s'écrit de façon unique comme un produit g u avec g ∈ G et $u ∈ A_{g,v,v+k}$; donc $A_{g,v}$ est homéomorphe à $A_{g,(v,v+k)} × G$. Comme G est connexe on en conclut $\Gamma_{g,v} \simeq \Gamma_{g,(v,v+k)} \subset \Gamma_{g,v+k}$, et $A_{g,v}^\circ \simeq G × A_{g,v+k}^\circ$ et comme $A_{g,v+k}^\circ$ est ∞-connexe on e conclut un homotopisme $G \xrightarrow{\sim} A_{g,v}^\circ$.

est homotope par l'inclusion au sous groupe $GP(1, \mathbb{C})$ (donc à son sous groupe compacte maximal $SO(3, \mathbb{R})/\{\pm 1\}$) qui *n'est pas* un $K(\pi, 1)$ et dont le π_1 est $\simeq \mathbb{Z}/2\mathbb{Z}$.

On va utiliser ce corollaire pour déterminer la nature de $\widetilde{U}_{g,\nu}$ (comme revêtement de $U_{g,\nu}$) pour les cas "abéliens".

Notons pour ceci que l'inclusion $G \hookrightarrow A_{g,\nu}^{\circ}$ induit une inclusion $G_0 \hookrightarrow B_{g,\nu}$ où

(40)
$$G_0 = G \cap B_{g,v} = \text{stabilisateur de } a_{g,v} \text{ dans } G$$

et comme $G/G_0 \simeq A_{g,\nu}^{\circ}/B_{g,\nu} \simeq U_{g,\nu}$ (G étant transitif sur $U_{g,\nu}$), on trouve que le fait que $G \longrightarrow A_{g,\nu}^{\circ}$ soit une équivalence d'homotopie équivaut à celle que $G_0 \hookrightarrow B_{g,\nu}$ en soit une. Or dans tous les cas envisagés, G_0 est déjà connexe : il est réduit à 1 dans les cas (1,0) et (0,2) (donc dans ce cas le corollaire équivaut à la *contractibilité* de $B_{g,\nu}$) et c'est \simeq C^* dans le cas (0,1), enfin c'est Aff(1,C) dans le cas (0,0). Donc on trouve le corollaire :

Corollaire. — Dans les cas abéliens 2g + v < 3 (et dans ceux-là seulement bien sûr) $B_{g,v}$ est connexe (i.e. $= A_{g,v+1}^{\circ}$) i.e. $A_{g,v}^{\circ}/A_{g,v+1}^{\circ} \longrightarrow U_{g,v}$ est un homéomorphisme. Donc $A^{\circ}/A_{g,v+1}^{\circ} \longrightarrow U_{g,v}$ fait du premier membre un revêtement universel de $U_{g,v}$ si et seulement si $(g,v) \neq (0,2)$ et $\neq (1,0)$.

Supposons donc (g, v) différent de (0, 1) et (0, 2) (moralement on travaille dans le cas anabélien, les cas abéliens inclus (0, 1) et (0, 0) étant sans intérêt pour ce qui va suivre il me semble).

Reprenons le diagramme (31) où dans la 1ère ligne le groupe quotient $B_{g,\nu}/B_{g,\nu}^{\circ}$ s'identifie donc à $\pi_{g,\nu}=\pi_1(U_{g,\nu},a_{g,\nu})$.

On trouve donc:

Théorème. — Supposons $(g,v) \neq (1,0)$ et (0,2), le sous groupe $A_{g,v}^{\bullet}/A_{g,v+1}^{\circ}$ du groupe de Teichmüller $\Gamma_{g,v+1} = A_{g,v+1}/A_{g,v+1}^{\circ}$ admet une suite de composition de longueur 3 dont les facteurs successifs sont \mathfrak{S}_v , $\Gamma_{g,v}^!$ et $\pi_{g,v}$, déduite d'une structure d'extension sur $\Gamma_{g,v+1}^! = A_{g,v+1}^!/A_{g,v+1}^{\circ}$

$$(41) 1 \longrightarrow \pi_{g,\nu} \longrightarrow \Gamma_{g,\nu+1}^! \longrightarrow \Gamma_{g,\nu}^! \longrightarrow 1$$

Les opérations extérieures de $\Gamma_{g,\nu}^!$ sur $\pi_{g,\nu}$ sont celles déduites par passage au quotient de celles de $A_{g,\nu}^! \subset \operatorname{Aut}(U_{g,\nu})$ opérant extérieurement sur $\pi_{g,\nu}$. Une autre façon de dire les choses est celle-ci : distinguons dans $\Gamma_{g,\nu+1}$ opérant sur $S_{\nu+1}$ le stabilisateur du dernier élément $a_{g,\nu}$, i.e. de son complémentaire ; soit $\Gamma_{g,\nu+1}' \simeq A_{g,\nu}^{\bullet}/A_{g,\nu+1}^{\circ}$ le sous-groupe d'indice $\nu+1$ image inverse de \mathfrak{S}_{ν} dans $\mathfrak{S}_{\nu+1}$ par $\Gamma_{g,\nu+1} \longrightarrow \mathfrak{S}_{\nu+1}$. Ceci posé on a un homomorphism évident de groupes discrets, déduit de l'inclusion $A_{g,\nu}^{\circ} \hookrightarrow A_{g,\nu+1}^{\circ}$

$$\Gamma'_{g,\nu+1} \longrightarrow \Gamma_{g,\nu}$$

et cet homomorphisme est surjectif (sans condition sur (g,v)) et pour $(g,v) \neq (1,0)$ et (0,1) son noyau est canoniquement isomorphe à $\pi_{g,v}$ de sorte que l'on a une extension

$$(43) 1 \longrightarrow \pi_{g,v} \longrightarrow \Gamma'_{g,v+1} \longrightarrow \Gamma_{g,v} \longrightarrow 1$$

où les opérations extérieurs correspondants de $\Gamma_{g,\nu}$ sur $\pi_{g,\nu}$ sont celles déduites par passage au quotient de celles de $A_{g,\nu} \simeq \operatorname{Aut}(U_{g,\nu})$ sur $\pi_1(U_{g,\nu},a_{g,\nu}) = \pi_{g,\nu}$. La structure d'extension (41) est déduite de (43) par image inverse par l'inclusion $\Gamma_{g,\nu}^! \longrightarrow \Gamma_{g,\nu}$.

Supposons que l'on soit dans le cas anabélien $2g + v \ge 3$. Comme pour toute structure d'extension par un noyau de centre trivial, il y a un homomorphisme canonique dans la structure d'extension canonique associée à $\pi_{g,v}$

où la flèche verticale centrale s'obtient en associant à $g \in \Gamma'_{g,\nu+1}$ la restriction à $\pi_{g,\nu} \subset \Gamma'_{g,\nu+1}$ de l'automorphisme intérieur int(g).

Théorème (bien connu). — Dans le cas anabélien $(2g + v \ge 3)^{66}$

$$\Gamma_{g,\nu} \xrightarrow{\sim} \operatorname{Autext}_{lac}(\pi_{g,\nu})$$

⁶⁵N.B. c'est un isomorphisme dans le cas abéliens $2g + v \le 2$.

⁶⁶N.B. En fait ceci reste vrai pour le couple (1,0) (cf. plus bas) et même dans le cas (0,2) si on définit ad-hoc la notion de groupe à lacets de type (0,2).

ou ce qui revient au même par (44):

$$\Gamma'_{g,\nu+1} \xrightarrow{\sim} \operatorname{Aut}_{lac}(\pi_{g,\nu})$$

L'image de $\Gamma_{g,\nu}$ \longrightarrow Autext $(\pi_{g,\nu})$ est formé des automorphismes extérieurs qui respectent la structure à lacets de $\Gamma_{g,\nu}$ (condition vide si $\nu=0$ d'ailleurs...)

Corollaire. — Dans le cas anabélien le foncteur $X \mapsto \pi_1(X)$ de la catégorie isotopique (les fèlches dans la catégorie isotopique sont les classes d'isotopie d'homéomorphisme) des surfaces de type (g,v) vers la catégorie des groupes extérieurs à lacets de type (g,v) est une équivalence de catégorie, ainsi que le foncteur $(X,s) \mapsto \pi_1(X,s)$ de la catégorie isotopique des surfaces ponctuées de type (g,v) vers la catégorie des groupes à lacets de type $(g,v)^{67}$.

Il reste à examiner dans quelle mesure on peut adapter ces résultats au cas "abélien". Rappelons que dans ce cas on a

(45)
$$\Gamma'_{g,\nu+1} \xrightarrow{\sim} \Gamma_{g,\nu} \quad \text{si} \quad 2g + \nu \le 2 \quad \text{(cas "abélien")}.$$

i.e. $\Gamma_{g,\nu}$ s'identifie au sous-groupe de $\Gamma_{g,\nu+1}$ formé des éléments qui fixent $a_{g,\nu}$.

(1)) Cas
$$g = 1$$
, $v = 0$ donc $\Gamma_{1,0} \simeq \Gamma'_{1,1} = \Gamma_{1,1}$.

Considérons l'homomorphisme canonique

(46)
$$\Gamma_{1} = \Gamma_{1,0} \longrightarrow \operatorname{Autext}(\pi_{1,0}) = \operatorname{Aut}(\pi_{1,0})$$

(\simeq Gl(2,**Z**) quand on a choisi une base de $\pi_{0,1} \simeq \mathbf{Z}^2$), qui correspond à l'homomorphisme

(46^{bis})
$$\Gamma_{1,1} \longrightarrow \operatorname{Aut} \pi_1(U_{1,0}, a_{1,0}) \quad (\simeq \operatorname{Gl}(2, \mathbf{Z}))$$

déduits l'un et l'autre par passage au quotient à partir des opérations évidentes de $A_1 = A_{1,0} = \operatorname{Aut}(X_1)$ et de $A_{1,1} = \operatorname{Aut}(X_1, a_{1,0})$. Il est immédiat que ce homomorphisme est surjectif mais moins évident que ce soit un isomorphisme i.e. que tout

⁶⁷N.B. C'est même une équivalence au niveau des catégories ∞-isotopiques ce qui exprime seulement le fait que $A_{g,v}^{\circ}$ et $A_{g,v+1}^{\circ}$ sont contractiles.

homéomorphisme de X_1 qui induit l'identité sur π_1 soit isotope à l'identité ; c'est pourtant un résultat vrai (et connu).

Dans le cas actuel où X_1 s'identifie à l'espace topologique sous-jacent à un groupe topologique H (ce qui est le cas dans tous les cas abéliens sauf celui de g = 0, v = 0 de la 2-sphère), par translation on a un homomorphisme naturel

$$(47) H \longrightarrow A_{g,v} \simeq \operatorname{Aut}_{\operatorname{top}} H$$

permettant d'identifier H à un sous-groupe topologique de $A_{g,\nu}$ et on trove que l'application

$$(48) H \times A_{g,\nu+1} \longrightarrow A_{g,\nu} (48)$$

est un homéomorphisme.

Ceci redonne (45) (puisque H est connexe) et le précise considérablement par

$$\pi_i(A_{g,\nu+1}) \simeq \pi_i(A_{g,\nu}) \times \pi_i(H)$$

Cas abéliens non sphériques i.e. un des trois cas (1,0), (0,1), (0,2).

Dans le cas "limites" (1,0) et (0,2) (quand (g,v) est abélien et (g,v+1) anabélien) comme $A_{g,v}^{\circ} \simeq H \times A_{g,v+1}^{\circ}$ contractile, on retrouve que $H \longrightarrow A_{g,v}^{\circ}$ est un homotopisme. Notons que dans les cas anvisagés (1,0),(0,2),(0,1), si on choisit une structure complexe sur le compactifié pur \widehat{X} de $X = U_{g,v}$ et qu'on choisit $a_{g,v}$ comme origine, il y a une structure de groupe C-algébrique unique sur X admettant $a_{g,v}$ comme unité et la composante neutre du groupe des automorphismes de la variété algébrique X n'est autre justement que le groupe des translations dans les cas limites (1,0) et (0,2).

2) Cas
$$g = 0$$
, $v = 2$ donc $H = \mathbb{C}^*$, $A_{g,v} \simeq H \times A_{g,v+1}^{\bullet}$ i.e. $A_{0,2} \simeq \mathbb{C}^* \times A_{0,3}^{\bullet}$ donc $\Gamma_{0,2} \simeq \Gamma'_{0,3}$

(50)
$$A_{0,2}^{\circ} \xleftarrow{\approx} \mathbf{C}^{*}$$
 (équivalence d'homotopie)

Ici $\pi_{0,2} = \pi_1(U_{0,2}) \simeq \mathbf{Z}$, considérons

(51)
$$\Gamma_{0,2} \xrightarrow{\rho} \operatorname{Aut}(\pi_{0,2}) \simeq \{\pm 1\} = \mathfrak{S}_2$$

s'identifiant à

(52)
$$\Gamma'_{0,3} \longrightarrow \operatorname{Aut}(\pi_{0,2}) \simeq \{\pm 1\}$$

Cette fis-ci l'homomorphisme (51) *n'est pas bijectif*, il s'identifie à l'homomorphisme canonique.

(51^{bis})
$$\Gamma_{0,2} \xrightarrow{\rho} \mathfrak{S}_2$$

de noyau $\Gamma_{0,1}^!$ et $\Gamma_{0,2}^!$ n'est pas réduit à 1, par exemple (si on prend $U_{0,2} = \mathbf{C}^*$) $z \longrightarrow \overline{z}$ définit un élément de $\Gamma_{0,2}^!$ qui n'est pas égal à 1. Notons maintenant l'homomorphisme canonique⁶⁸ (défini sans restriction sur (g, v))

$$\Gamma_{g,\nu} \xrightarrow{\chi} \{\pm 1\}$$

via l'action de $\Gamma_{g,\nu}$ sur le moule d'orientation $T_g = T$ de $U_{g,\nu}$ (qui se définit pour $(g,\nu) \neq (0,0), (0,1)$ et (0,2) en termes de la structure à lacets de $\pi_{g,\nu}$). Dans le cas actuel mettant ensemble ρ et χ on trouve un homomorphisme

(54)
$$g \mapsto (\rho(g), \chi(g)) : \Gamma_{0,2} \longrightarrow \mathfrak{S}_2 \times \{\pm 1\} \simeq \{\pm 1\} \times \{\pm 1\}$$

qui est évidemment surjectif (si g correspond à $z \longrightarrow z^{-1}$ son image est (-1,1), s'il correspond à $z \longrightarrow \overline{z}$, son image est (1,-1)). Je dis qu'il est *bijectif*

$$\Gamma_{0,2} \xrightarrow{\sim \rho, \chi} \mathfrak{S} \times \{\pm 1\}$$

ou ce qui vient au même, que la restriction de ρ (51^{bis}) au noyau $\Gamma_{0,2}^+$ de $\chi:\Gamma_{0,2}\mapsto$ {±1} est un isomorphisme ou ce qui revient au même

Théorème (bien connu !). $-\Gamma_{0,2}^{!+}=1$, ou encore $\rho_{0,2}^+:\Gamma_{0,2}^+\longrightarrow\mathfrak{S}_2$ est un isomorphisme (ou $\chi_{0,1}^!:\Gamma_{0,2}^!\xrightarrow{\sim}\{\pm 1\}$)⁶⁹.

⁶⁸Cet homomorphisme est toujours surjectif. Nous noterons son noyau $\Gamma_{g,\nu}^+$ (et non plus $\Gamma_{g,\nu}^\circ$!) ⁶⁹N.B. Ceci suggère que pour une description isotopique de la catégorie des surfaces de types (0,2) il faut utiliser le couple de $(\pi_1(X),T)$ où T est le module d'orientation ; itou plus bas pour le cas du type (0,1) mais alors $\pi_1=0$ et il suffit de T.

[N. B. Si on veut un énoncé commun aux deux cas "abéliens limites" (1,0) et (0,2) on dira que dans ce cas $\Gamma_{g,\nu}^+ \longrightarrow \operatorname{Aut}(\pi)$ est injectif, et a comme image le groupe des automorphismes du **Z**-module libre π de rang 2 ou 1 qui sont de déterminant égal à 1].

Ceci équivaut, modulo l'isomorphisme $\Gamma'_{0,3} \simeq \Gamma_{0,2}$ au

Corollaire. —

(56)
$$\begin{cases} \Gamma_{0,3}^{+} \xrightarrow{\rho_{0,3}^{+}} \mathfrak{S} & \textit{est un isomorphisme et} \\ \Gamma_{0,3} \xrightarrow{(\rho_{0,3},\chi_{0,3})} \mathfrak{S}_{3} \times \{\pm 1\} & \textit{aussi.} \end{cases}$$

3) Cas g = 0, v = 1 donc $H \simeq \mathbb{C}$ donc

(57)
$$A_{0,1} \xrightarrow{\text{hom\'eo}} \mathbf{C} \times A_{0,2} = \mathbf{C} \times \mathbf{C}^* \times A_{0,3}$$

(avec $\mathbf{C} \times \mathbf{C}^* = \mathrm{Aff}(1, \mathbf{C})$ (qui est simplement transitif sur les couples d'éléments distincts)) en prenant sur $A_{0,3}$ une structure de groupe algébrique complexe $\simeq \mathbf{C}^{70}$.

On a ici
$$\Gamma_{g,1} \simeq \Gamma_{g,2}' = \Gamma_{g,1}! \simeq \{\pm 1\}$$
 i.e. :

Corollaire. — On a par la signature un isomorphisme :

$$\Gamma_{0,1} \xrightarrow{\chi} \{\pm 1\}$$

4) Cas g = 0, v = 0. Ici il n'y a pas de H, i.e. de structure de groupe topologique sur $X \simeq X_0 = U_{0,0} \simeq \mathbb{S}^2$ mais prenant une structure complexe sur X (d'où $X \simeq \mathbb{P}^1_{\mathbf{C}}$) on trouve un groupe G de \mathbf{C} -automorphismes, $G = \mathrm{GP}(1,\mathbf{C})$, et

$$(59) G \hookrightarrow A_0 = A_{0,0}$$

Prouvons à nouveau que c'est un homotopisme. Comme G est simplement transitif sur les triples de 3 points distincts de X_0 , on trouve encore un homéomorphisme

$$G \times A_{0,3}^! \xrightarrow{\sim} A_0$$
(60)

$$(g,u) \longmapsto gu$$

⁷⁰N. B. Comme $A_{0,3}^{\circ}$ est contractile cela redonne bien que l'inclusion de $G = \text{Aff}(1, \mathbb{C}) = \text{Aut}_{\mathbb{C}}(X)^{\circ}$ dans $A_{g,1}$ est un homotopisme.

ďoù

$$\Gamma_0 \simeq \Gamma_{0.3}^! \simeq \{\pm 1\}$$

et compte tenu que la composante neutre $A_{0,3}^{\circ}$ de $A_{0,3}^{!}$ est contractile on trouve bien encore que (59) est un homotopisme.

Conclusion commune à tous les cas.

Il convient d'inclure dans la notion de "groupe à lacets" également les quatre cas abéliens, et on le fait de la manière suivante :

- 1) Type (1,0): on n'a pas à compléter la définition générale qui revient à dire ici que π est un groupe abélien, Z-module libre de rang 2. Son module d'orientation T peut se définir alors comme H₂(π, Z) ou comme Λ²_Z π. La signature d'un automorphisme de π est donné par son action su T, c'est aussi son déterminant.
- 2) Type (0,2): $\pi \simeq \mathbf{Z}$. Ici il faut se donner *en plus* de π , un \mathbf{Z} -module inversible T et la structure à lacets est définie par l'ensemble des deux isomorphismes $T \simeq \mathbf{Z}$. Un automorphisme de la structure à lacets est donc défini par n'importe quel couple (u_{π}, u_{T}) d'un automorphisme de π et d'un de T.
- 3) Types (0, 1) et (0,0) qui sont ceux où π₁ = {1}. Par définition, une structure de groupe à lacets de type (g,v) est définie ici par la donné d'un "module d'orientation" sans plus, qui est un Z-module inversible T; et il faut donner de plus le type i.e. (sous entendu g = 0) le v ∈ {0,1}; les automorphismes sont ceux de T.

Avec ces définitions et pour g,v fixés on a le

Théorème. — $Soit(g,v) \in \mathbb{N} \times \mathbb{N}$, le foncteur naturel de la catégorie isotopique des surfaces de type (g,v) vers la catégorie des groupes extérieures à lacets de type (g,v) est une équivalence de catégorie. (N.B. Comme flèches on prend les classes d'isomorphisme d'un coté comme de l'autre.)

Mais ce théorème n'est pas sûr pleinement satisfaisant dans le cas abélien par exemple. La donnée d'un objet de la catégorie isotopique (explicité par son π_1 extérieur à lacets) dans le cas d'une action d'un groupe ne permet pas même de

récupérer l'extension de ce groupe par le dit π_1 ! Ce qui cloche, on le sent bien, est le fait que cette équivalence de catégorie soit isotopique (i.e. tient compte des π_0 des espaces d'homéomorphismes) mais néglige la structure topologique interne des espaces topologiques Homeo(X,X'), en négligeant la structure homotopique des composantes connexes qui, en tant que torseurs sous des groupes topologiques $\cong A_{g,\nu}^{\circ}$, sont homéomorphes à $A_{g,\nu}^{\circ}$. C'est justement dans le cas anabélien et dans celui là seulement que ce groupe est ∞ -connexe. Dans le cas abélien, l'expérience prouve que la description précédente doit être remplacée par celle de Ladegaillerie en termes des

$$B_{D^*} \longrightarrow B_U$$
 ou $\pi_{D^*} \longrightarrow T_U$

elle devient alors (dans tous les cas sauf (0,0)) ∞ -fidèle (i.e. tient compte des $\pi_i(A_{g,\nu}^{\circ})^{71}$)

Le seul cas entièrement réfractaire (d'importance il faut bien dire !) est celui du type (0,0) i.e. des surfaces homéomorphes à \mathbb{S}^2 le type d'homotopie de

$$A_0^{\circ} = A_0^{+} \simeq GP(1, \mathbb{C}) \equiv \mathbb{S}^3 / \pm 1$$
 (quaternions)

et en particulier ses π_i n'étant pas tous bien connus.

Il faudrait pour commencer expliciter la Gr-catégorie G, d'invariant $\pi_0 \simeq \{\pm 1\}$ et $\pi_1 \simeq \pi_1(A_0^\circ) \simeq \{\pm 1\}$, déduit de A_0 en tuant les groupes d'homotopie supérieurs $\pi_i (i \geq 2)$ de A_0 ou, si l'on préfère, du groupe des automorphismes conformes de $\mathbb{P}^1_{\mathbf{C}}$ (extension scindée de $\mathbf{Z}/2\mathbf{Z}$ par $\mathrm{GP}(1,\mathbf{C})$). La 2-catégorie 2-isotopique des surfaces homómorphes à $\mathbb{P}^1_{\mathbf{C}}$ est alors décrite par le 2-groupoïde des 1-torseurs sous la Gr-catégorie précédente⁷².

 $^{^{71}}$ N.B. Il n'y a pas à se donner un k ici, T se décrit intrinsèquement à partir de la structure de topos ou de groupoïde.

⁷²On peut supposer que \mathscr{G} n'a que deux objets correspondant à l'identité et à la conjugaison complexe de la sphère de Riemann \widehat{C} ; en fait elle est scindable et même canoniquement scindée...

§ 20. — DIGRESSION : DESCRIPTION 2-ISOTOPIQUE DE LA CATÉGORIE DES SPHÈRES TOPOLOGIQUES

Voici une façon de trouver une description 1-isotopique (et même 2-isotopique, il se trouve) en utilisant un groupe revêtement canonique \tilde{A}_0 de A_0 , s'insérant dans la suite exacte

(62)
$$1 \longrightarrow \mu_2(\mathbf{C}) \longrightarrow \widetilde{A}_0 \longrightarrow A_0 \longrightarrow 1,$$

qui contient la suite exacte correspondante de sous-groupes

(63)
$$1 \longrightarrow \mu_2 \longrightarrow \widetilde{Sl}(2, \mathbb{C}) \longrightarrow \widetilde{GP}(1, \mathbb{C}) \longrightarrow 1$$

où $\widetilde{Sl}(2, \mathbb{C})$ est formé des automorphismes semi-linéaires de \mathbb{C}^2 (pour un Rautomorphisme ρ non précisé, id ou la conjugaison complexe τ), tels que l'automorphisme ρ -linéaire correspondant de $\bigwedge^2 \mathbb{C}^2 \simeq \mathbb{C}$ soit l'identité si $\rho = \mathrm{id}$ et soit $\tau : z \mapsto \overline{z}$ si $\rho = \tau$ i.e. indépendamment des cas, on considère un vectoriel unimodulaire V sur \mathbb{R} , d'où $V_{\mathbb{C}}$ sur \mathbb{C} , avec une restriction de $\bigwedge^2 V_{\mathbb{C}}$ à \mathbb{R} , d'où une conjugaison complexe sur $\bigwedge^2 V_{\mathbb{C}}$ et une base de $\bigwedge^2 V_{\mathbb{C}}$ invariante par celle-ci - et on s'intéresse aux automorphismes ρ -linéaires ($\rho \in \mathrm{Aut}_{\mathbb{R}} \mathbb{C}$ de $V_{\mathbb{C}}$ qui sur $\bigwedge^2 V_{\mathbb{C}}$ soient id ou la conjugaison complexe...)

 $\widetilde{GP}(1, \mathbb{C})^{73}$ s'identifie au groupe des automorphismes conformes de la sphère de Riemann $P_{\mathbb{C}}^1 \simeq \mathbb{P}^1(\mathbb{C}^2)$, i.e. des automorphismes de $P_{\mathbb{C}}^1$ comme **R**-schéma.

 $^{^{73}}$ N.B. $\widetilde{GP}(1, \mathbb{C})$ est aussi le grupe des automorphismes \mathbb{R} -linéaires de la \mathbb{R} -algèbre $M_2(\mathbb{C})$ (et la classification ∞-isotopique des 2-sphères équivaut donc à celle des algèbres simples de rang 4 sur une extension quadratique non précisée de \mathbb{C} ...)

On choisit ici $X_0 = P_C^1$, de sorte qu'on a une inclusion canonique

$$\widetilde{\mathrm{GP}}(1,\mathbf{C}) \hookrightarrow A_0$$

qui est (par ce qui précède (59)) une équivalence d'homotopie.

Sauf erreur il en résulte que la classification des extensions du groupe topologique A_0 par un groupe discret disons μ est équivalente (par le foncteur restriction, à la catégorie des extensions correspondantes pour $GP(1, \mathbb{C})$, ce qui permet de construire \widetilde{A}_0 , à isomorphisme unique près).

Ceci posé la donnée d'une surface compacte orientée X de genre 0, qui équivaut à celle d'un torseur $[\operatorname{Isom}(\mathbb{P}^1_{\mathbf{C}}, X)]$ sous A_0 , définit

- 1°) le torseur sous $\{\pm 1\}$ qui s'en déduit par $\chi:A_0\longrightarrow \{\pm 1\}$ (qui est surjectif de noyau A_0°) et
- 2°) le groupoïde des relèvements de ce A_0 -torseur en un \widetilde{A}_0 -torseur, qui est un groupoïde connexe (= gerbe) lié par le lien abélien $\underbrace{\mu_2(\mathbf{C}) = \{\pm 1\}}_{\mu}$, et sur lequel par suite $\mathrm{Tors}(\mu) \simeq \mathrm{Ens}_2$ opère (c'est un 1-torseur sous la Gr-catégorie $\mathrm{Tors}(\mu)$).

Associant ainsi à tout X le couple (ω, R) du μ -torseur associé ω (i.e. l'ensemble à 2 éléments des deux orientations de X, ou ce qui revient au même, le module des orientations de X), plus le μ -groupoïde R, on trouve un 2-foncteur de la 2-catégorie 2-isotopique des 2-sphères topologiques dans la catégorie des couples (ω, R) , et celui-ci est une équivalence de 2-catégorie.

De ce point de vue on a envie de dire qu'elle est 3-fidèle, mais comme la surjectivité essentielle sur les objets est triviale, il vaut mieux l'appeler 2-fidèle, et même (comme pour la décrire on a fait attention de respecter les π_1 (en plus des π_0) des composantes connexes du A_0 -torseur $\operatorname{Isom}(X_0,X)$, qui sont des A_0° -torseurs donc à π_1 isomorphe à $\mu=\{\pm 1\}$, il vaut encore mieux l'appeler 1-fidèle).

Mais en fait elle est même 2-fidèle (en le sens correspondant) grâce au fait que

(65)
$$\pi_2(A_0^\circ) \stackrel{\sim}{\longleftarrow} \pi_2(GP(1, \mathbb{C})) \stackrel{\sim}{\longleftarrow} \pi_2(S^3 / \pm 1) \simeq \pi_2 S^3 = 0$$

Par contre elle n'est pas 3-fidèle, car

(66)
$$\pi_i(A_0^\circ) \stackrel{\sim}{\longleftarrow} \pi_i(S^3) \qquad \text{pour } i \ge 2$$

et
$$\pi_0(S^3) \simeq \mathbf{Z}(\neq 0)$$
 donc $\pi_3(A_0^\circ) \simeq \mathbf{Z} \neq 0$.

On cherche une description ∞ -isotopique, qui tienne compte des groupes d'homotopie de tous ordres (à déterminer !) de A_0° i.e. de S^3 (ou encore $SI(2, \mathbb{C})$, ou de $GP(1, \mathbb{C})$). Au concours !

Mais déjà pour la modeste description proposée à prétention 1 ou 2-isotopique, faute d'avoir écrit les choses avec soin je ne suis pas trop sûr si la description donnée est bien correcte - je suis un peu inquiet du fait que je n'ai pas imposé de relations entre le μ -torseur w, et le μ -groupoïde R.

Soit plus généralement un groupe topologique $G(\widetilde{A}_0, \text{ ou } \widetilde{GP}(1, \mathbb{C}))$ tel que G° soit simplement connexe :

(67)
$$\pi_1(G^\circ) = 0$$

Soit

(68)
$$\mu = \operatorname{Centre}(G^{\circ}), \quad \Gamma = G/G^{\circ}$$

On suppose μ discret (donc G° s'identifie au groupe revêtement universel de $G^{\circ}/\mu = H^{\circ}$ si $H = G/\mu$).

Alors l'extension de groupes topologiques G de Γ par G° définit

(69)
$$\Gamma \longrightarrow \operatorname{Autext}(G^{\circ})(\longrightarrow \operatorname{Aut}(\mu))$$

et l'ensemble des classes d'extensions correspondants à une opération extérieure donnée de Γ sur G° est de façon naturelle un torseur sous $H^2(\Gamma, \mu)$ (s'il n'est vide, ce qu'on a exclu par l'hypothèse de départ, en parlant de G...)

Cette catégorie d'extension est d'ailleurs équivalente à celle des scindages d'une certaine Gr-catégorie définie par Sinh via (69) dont les π_0 et π_1 sont respectivement Γ est μ - laquelle est donc ici scindée par la donnée de l'extension G. Dans le cas qui nous intéresse, $\Gamma \simeq \mu \simeq \{\pm 1\}$, et cette extension est même scindée, et correspond à une opération d'ordre 2 de Γ sur G° , dont je doute fort que ce soit un automorphisme intérieur.

En fait, j'ai l'impression que dans les deux cas qui nous occupent $(\widetilde{GP}(1, \mathbb{C}))$ et \widetilde{A}_0 que (69) est un *isomorphisme* : $\Gamma = \{\pm 1\} \simeq \operatorname{Autext}(G^\circ)$.

Ceci posé, la donné d'un torseur sous $H = G/\mu$ définit⁷⁴

⁷⁴on suppose que Γ opère *trivialement* que μ i.e. $\mu \subset Centre(G)$

- 1°) un torseur sous Γ , grâce à $H \longrightarrow \Gamma \simeq H/H^\circ$
- 2°) le groupoïde des relèvements des relèvements de ce torseur est un torseur sous G, qui est un μ -groupoïde connexe (sur lequel μ opère).

Si on reprend en termes de fibrés sur un espace de base S, on trouve encore sur S (pour tout H_S -torseur topologique) un couple (ω, R) d'un Γ -torseur et d'une μ -gerbe sur S, qui sont décrits, (à isomorphisme et à équivalence près) par $H^1(S,\Gamma)$ et $H^2(S,\mu)$ respectivement⁷⁵.

On voudrait dégager des conditions sur G et sur S pour que l'application

(70)
$$H^{1}(S,H) \longrightarrow H^{1}(S,\Gamma) \times H^{2}(S,\mu)$$

soit bijective.

Injectivité : si l'image d'un $\xi \in H^1(S,H)$ dans $H^2(S,\mu)$ est nulle, ξ se relève en un élément $\widetilde{\xi}$ dans $H^1(S,\widetilde{H}=G)$, dont l'image dans $H^1(S,\Gamma)$ est la même que celle de ξ . Donc si elle est triviale, on voit que $\widetilde{\xi}$ provient d'un $\widetilde{\xi}_0 \in H^2(S,G^\circ)$.

Si on sait que $H^2(S, G^\circ) = \{1\}$, on gagne. Par les marteaux-pilons d'homotopie, ça marche si $\exists n \in \mathbb{N}$ avec :

$$\pi_i(G^\circ) = 0$$
 si $i \le n$ (donc $\pi_i(B_G^\circ) = 0$ si $i \le n+1$)

(dans le cas qui nous occupe on peut prendre n=2) et S un CW-complexe de dimension $\leq n+1$.

Par la surjectivité notons que pour un élément dans $H^2(S,\mu)$, l'obstraction à ce qu'il se relève en un élément ξ dans $H^1(S,H)$ est dans $H^2(S,G)$ [par la suite exacte de cohomologie associée à $1 \longrightarrow \mu_S \longrightarrow G_S \longrightarrow H_S \longrightarrow 1$].

Il faut exprimer qu'une certaine gerbe liée par g_s est neutre - brr ! Mais partons plutôt de l'élément ω de $H^1(S,\Gamma)$, si l'extension de Γ par H° est scindée, alors on peut trouver un $\xi_0 \in H^1(S,H_S)$ qui donne naissance à ω .

Elle a une certaine obstruction ρ_0 dans $H^2(S, \mu)$, et il s'agit de corriger ρ_0 en ξ , de telle façon que l'obstruction devienne $\rho \in H^2(S, \mu)$ donnée.

⁷⁵N.B. ω ne dépend pas du choix de l'extension G de H par $? ≃ π_1(H^\circ)$; par contre R en dépend (et il faudrait voir comment).

Utilisant ρ_0 pour tordre H_S en H_S' , et (via l'opération de $H_S = G_S/\mu_S$ sur G_S , compte tenu que $\mu_S \subset \text{Centre } G_S$) pour tordre aussi G_S et G_S' , d'où

$$1\mu \longrightarrow G'_{s} \longrightarrow H'_{s} \longrightarrow 1$$

on trouve que les ξ ayant même image dans $H^1(s,\Gamma)$ que ξ_0 correspond bijectivemment aux $\xi' \in H^1(S,H'_s)$.

Pour un tel ξ' , soit $S'(\xi') \in H^2(S, \mu)$ l'obstruction à le relever dans $H^1(S, G'_S)$ et $S(\xi') = S(\xi)$ l'obstruction à le relever dans $H^2(S, G_S)$.

Sauf erreur on a

$$\delta'(\xi') = \delta(\xi') - \rho_0$$

i.e. $\delta(\xi')=(\xi)=\delta'(\xi')+\rho_0$ et on veut $\delta(\xi)=\rho$ i.e. $\delta'(\xi')=\rho-\rho_0$ et la question revient encore à la surjectivité de

$$H^1(S, H'_S) \longrightarrow H^2(S, \mu)$$

- je ne m'en tire pas. Il faudrait consulter des gens compétents, comme Giraud ou Larry Breen. On sent qu'il faudrait travailler avec un Gr-champ \mathbf{H} de coefficients, d'invariants, $\underline{\pi}_0 = \Gamma$ et $\underline{\pi}_1 = \mu$, (mais pas nécessairement un champ de Picard !) et $\mathbf{H}^1(S,\mathbf{H}) \simeq \text{Classes d'applications de } S$ dans $B_{\mathbf{H}}$, qui est un espace connexe avec $\pi_1(B_{\mathbf{H}}) \simeq \Gamma$ et $\pi_2(B_{\mathbf{H}}) = \mu$.

Ici la classe de Postnikov dans $H^3(\Gamma, \mu)$ est nulle. [mais peut-être n'y a-t-il pas lieu trop sa raccrocher à cette hypothèse, correspondant à l'existence d'une extension G de H par $\pi_1(H^\circ)$ qui redonne l'extension universelle de H° par $\pi_1(H^\circ)$].

On a un homomorphisme $B_H \longrightarrow B_H$ qui induit un isomorphisme sur les π_i pour $i \le 2$, et pour $i \le n$ (où $n \ge 2$ est donné) si et seulement si $\pi_i(B_H) = 0$ pour $2 < i \le n$, i.e. $\pi_i(H) = 0$ pour $2 \le i \le n-1$ (dans le cas qui nous intéresse $H = A_0$, on peut prendre n = 3).

Ceci implique que pour tout CW-complexe S de dimension $\leq n$, on a

$$\operatorname{Hot}(S, B_H) \xrightarrow{\sim} \operatorname{Hot}(S, B_H)$$

(Hot désignant les morphismes dans la catégorie homotopique non ponctuée) i.e.

$$H^1(S,H) \xrightarrow{\sim} H^1(S,\mathbf{H})$$

Mais si l'invariant de Postnikov-Sinh $k \in H^3(\Gamma, \mu)$ est nul, (ainsi qu l'action de Γ sur μ) alors sauf erreur B_H s'identifie à un produit $K(\Gamma, 1) \times K(\pi, 2)$ (cette "idetification" dépendant justement du choix des $H^2(\pi_1, \pi_2) \simeq H^2(\Gamma, \mu)$!) et par suite

$$H^1(S, \mathbf{H}) \simeq H^1(S, \Gamma) \times H^2(S, \mu)$$

pour tout espace S donc pour S un CW-complexe de dimension $\leq n$

(71)
$$H^{1}(S,H) \xrightarrow{\sim} H^{1}(S,\Gamma) \times H^{2}(S,\mu)$$

Donc la classification des fibrés en sphères topologiques sur un espace topologique S, pour un CW-complexe S de dimension ≤ 3 , marche bel et bien.

Bien entendu, le fait qu'on soit obligé ici à se borner à S de dim ≤ 3 tient au fait que nous n'avons trouvé (via H) qu'une description 2-isotopique (et non ∞ -isotopique) de la catégorie des 2-sphères topologiques.

Je voudrais reprendre la classification pour un CW-complexe S quelconque, en utilisant le fait que l'inclusion

$$\widetilde{\mathrm{GP}}(1,\mathbf{C}) \hookrightarrow A_0$$

est une équivalence d'homotopie, et induit donc une bijection

$$H^1(S, \widetilde{GP}(1, \mathbb{C})) \longrightarrow H^1(S, A_0)$$

et même une ∞ -équivalence des ∞ -catégories des torseurs sur S de groupe \widetilde{GP} (correspondant aux fibrés en sphères conformes, en droites projectives sur une Ralgèbre non précisée isomorphe à \mathbb{C}) et de groupe A_0 - correspondant aux fibrés en sphères sur S.

Le premier invariant d'un fibré de groupe \widetilde{GP} est un torseur η sous $(\mathbf{Z}/2\mathbf{Z})_S$, défini (à isomorphisme *non unique près*) par un $\chi \in H^1(S, \mathbf{Z}/2Z)$ i.e. un revêtement de degré 2. La donnée de η revient à la donnée d'une système T d'entiers tordus sur S.

Ce torseur servira à tordre C (via l'opération fidèle de $\mathbb{Z}/2\mathbb{Z}$ sur la \mathbb{R} -extension C), d'où un fibré localement constant en extension quadratiques de \mathbb{R} , soit C, et on [?] S par le faisceau \underline{C}_S (ou \underline{C}) des sections continues de C (ce qui est une façon de tordre $\mathrm{GP}(1,\mathbb{C})_S$ ou $\mathrm{GP}(1,\mathbb{C})_S = \mathrm{GP}(1,\underline{C})$) et il s'agit de décrire de façon

compréhensible - en passant au besoin aux n-isotopiques, pour $n = \dots$ - la catégorie (dépendant du choix de χ via \underline{C}) des algèbres d'Azumaya de rang 4 sur \underline{C} , ou encore des fibrés en droites projectives sur \underline{C} , ou des torseurs sous $GP(1,\underline{C})$.

Or utilisant la suite exacte

$$1 \longrightarrow \mu_{2S} \longrightarrow Sl(2,\underline{C}_S) \longrightarrow GP(1,\underline{C}_S) \longrightarrow 1$$

on associe à un objet de la catégorie - disons un torseur sous $GP(1,\underline{C}_S)$ - la catégorie fibrée (sur des ouverts variables de S) de ces relèvements à $Sl(2,\underline{C}_S)$, qui est une gerbe G liée par μ_2 . C'est cette gerbe qui est le deuxième invariant complet - plus fin que sa classe d'équivalence qui s'identifie à un $\xi \in H^2(S,\mu_2) = H^2(S,\{\pm 1\})$ (jouant le rôle d'un groupe de Brauer).

Un isomorphisme de fibrés, d'invariants $(T,G) \simeq (T',G')$, définira un isomorphisme $T \simeq T'$ (d'où un isomorphisme $\underline{C}_T \simeq \underline{C}_{T'}$ d'où un isomorphisme $GP(1,\underline{C}_T) \simeq GP(1,\underline{C}_{T'})$) et une équivalence de gerbes.

Il faudrait expliciter que pour deux isomorphismes f et g des torseurs, d'où

$$f_T, g_T: T \xrightarrow{\sim} T'$$
 $f_G, g_G: G \xrightarrow{\sim} G'$

et pour toute homotopie h_t ($0 \le t \le 1$) de f à g on trouve $f_T = g_T$ et un isomorphisme $h_*: f_G \stackrel{\sim}{\longrightarrow} g_G$ d'équivalence des gerbes, qui ne dépend que de la classe d'homotopie de cette homotopie.

On trouve ainsi un 2-foncteur de la 2-catégorie des torseurs sur S de groupe $\widetilde{GP}(1, \mathbb{C})$ vers la 2-catégorie formée des couples (T, G) d'un système d'entiers tordus $(\Leftrightarrow$ d'un torseur sur S de groupe $\mathbb{Z}/2\mathbb{Z}$) et d'une $\mu_2(\mathbb{C})$ -gerbe G sur S.

Ce 2-foncteur, sauf erreur, est 2-fidèle sous les conditions explicitées plus haut $(\dim S \le 4)$ et est 3-fidèle (i.e. l'application injective

$$H^1(S, \widetilde{GP}) \longrightarrow H^1(S, \mathbb{Z}/2\mathbb{Z}) \times H^2(S, \mu_2)$$

est surjective) si on a même dim $S \le 3$.

On s'attend qu'elle soi 1-fidèle dès que dim $S \le 5$, 0-fidèle dès que dim $S \le 6$ (??...).

N.B.: l'assertion "0-fidèle" signifie que si ci-dessus on a deux homotopies h, h', de f à g, telles que $h_* = h'_*$ alors h et h' sont homotopes.

La condition "1-fidèle" signifie 0-fidèle et que tout isomorphisme de f_G à g_G est de la forme h_* (avec h bien déterminé à homotopie près, par la condition précédente de 0-fidélité).

La condition 2-fidèle signifies de plus que pour toute $\varphi: T \stackrel{\sim}{\longrightarrow} T', \psi: G \stackrel{\approx}{\longrightarrow} G'$, il existe un isomorphisme de fibrés f tel que $\varphi = f_T$, et un isomorphisme $\psi \stackrel{\sim}{\longrightarrow} f_G$.

Enfin 3-fidèle signifie que de plus, pour tout couple T, G, $\exists T', G'$ provenant d'un fibré, un isomorphisme $T \stackrel{\sim}{\longrightarrow} T'$ et une équivalence $G \stackrel{\sim}{\longrightarrow} G'$.

Ces notions catégoriques doivent interpréter simplement que, si on regarde $H = \widetilde{\mathrm{GP}}(1,\mathbf{C}) \longrightarrow \mathbf{H}$ - ou \mathbf{H} est déduite de H en "tuant les groupes d'homotopie π_i pour $i \geq 2$ ", de sorte que α induit un isomorphisme des π_i pour $i \leq 1$ (et même pour $i \leq n$ si $\pi_i(H) = 0$ pour $1 < i \leq n$) d'où $B_\alpha : B_H \longrightarrow B_H^{76}$ (induisant un isomorphisme des π_i pour $i \leq n+1$), alors prenant pour un espace donné S, l'application correspondante des espaces d'applications continues

$$\underline{\operatorname{Cont}}(S, B_H) \longrightarrow \underline{\operatorname{Cont}}(S, B_H)$$

celle-ci induit un isomorphisme pour les π_i ($0 \le i \le 2$).

Il semblerait que 0-fidèle est une condition d'injectivité pour les π_2 , 1-fidèle la bijectivité pou les π_2 , l'injectivité pour les π_1 , 2-fidèle la bijectivité π_2 et π_3 et l'injectivité pour π_0 , 3-fidèle la bijectivité pour π_0 , π_1 , π_2 .

Comme $\pi_i(\text{Cont}(S,B)) \simeq \pi_0(S \times S^i,B)$, il semblerait qu'on est conduit, pour la 0-fidèlité, de faire l'hypothèse draconienne que $S \times S^2$ de dim ≤ 4 pour la 1-fidèlite que $S \times S^2$ de dim ≤ 3 i.e. dim $S \leq 1$?, (qui impliquerait alors la 3-fidélité...)

Prenons l'analogue arithmétique d'une description (plus ou moins "fidèle") de nature "profinie" des droites projectives (éventuellement tordues) définies sur un corps de type fini K sur \mathbb{Q} (plus généralement sur un schéma S quelconque), celle-ci forment à priori une catégorie sans plus - un groupoïde (pas nécessairement connexe) - je ne sais pas en faire une 2-catégorie raisonnablement, pour deux isomorphismes f,g (= $f \circ u$) de tels torseurs, définir les homotopismes de f à g, i.e. pour une "forme" G de $GP(1)_S$ et une section u de G, définir les "homotopies" de u à l'identité, ou plutôt une notion qui remplace la notion de classe d'homotopie

 $^{^{76}{\}rm N.B.}~B_{\rm H}$ est déduite de B_H en tuant les π_i pour $i\geq 3$

de telles homotopies. Et serait sans doute un relèvement de u en une section du revêtement simplement connexe \widetilde{G} de G!

Je tiens là quelque chose d'assez amusant, mais que je ne vais pas poursuivre - de toute façon il est clair que la "description" des droites projectives (sur un corps de type fini disons) à laquelle on aboutit, n'a rien de fidèle - par même 0-fidèle!

Ainsi tous les automorphismes de \mathbb{P}^1_K provenant de $\mathrm{Sl}(2,K)$ seraient identifiés à l'identité - c'est un peu brutal! Mais je me rends compte que le travail conceptuel autour du thème "Brauer" n'est pas terminé - qu'il y a à comprendre des choses pour l'étude de la catégorie (qui devrait être une 2-catégorie!) des Algèbres d'Azumaya de degré *fixé* (ici 4)...

§ 21. — LIEN AVEC LES ESPACES DE TEICHMÜLLER

D'abord un complément lié au diagramme d'inclusion (31) du n°19. Considérons l'inclusion de sous-groupes de $A_{\rm g}$:

$$(72) A_{g,\nu}^{\circ} \supset B_{g,\nu} \supset A_{g,\nu+1}^{\circ} (= B_{g,\nu}^{\circ})$$

donne en divisant par $A_{g,\nu+1}^{\circ}$ et dans le cas anabélien la filtration

$$(73) (A_{g,\nu}^{\circ}/A_{g,\nu+1}^{\circ} =) \widetilde{U}_{g,\nu} \longrightarrow U_{g,\nu}$$

On cherche le plus grand sous-groupe de A_g qui normalise les triples (72), et qui opère donc sur la fibration ci-dessus. Comme les normalisateurs de $A_{g,\nu}^{\circ}$ et $A_{g,\nu+1}^{\circ}$ sont respectivement $A_{g,\nu}$ et $A_{g,\nu+1}^{\circ}$, le groupe en question doit être contenu dans leur intersection $A_{g,\nu}^{\bullet}$, lequel normalise également $B_{g,\nu} = A_{g,\nu}^{\bullet} \cap A_{g,\nu}^{\circ}$. C'est donc ce groupe qu'il y a lieu de faire opérer sur la fibration (73). Le sous-groupe formé des éléments de $A_{g,\nu}^{\bullet}$ dont l'opération sur $U_{g,\nu}$ est isotope à l'identité étant justement $B_{g,\nu}$, donc c'est le groupe $\Gamma = A_{g,\nu}^{\bullet}/B_{g,\nu} \simeq \Gamma_{g,\nu}$ qui comme de juste opère à isotopie près. On voudrait décrire le groupe de tous les automorphismes de la fibration topologique $\widetilde{U}_{g,\nu}$ sur $U_{g,\nu}$ qui sera a priori une extension du groupe $A_{g,\nu}^{\circ} = \operatorname{Aut}(U_{g,\nu})$ par

$$\pi_{g,v} = \pi_1(U_{g,v}, a_{g,v}) = \text{Aut}_{U_{g,v}}(\widetilde{U}_{g,v})$$

Cette extension est scindé sur $A_{g,\nu}^{\bullet}$ stabilisateur du point de base $a_{g,\nu}$, et on retrouve ainsi l'opération de $A_{g,\nu}^{\bullet}$ sur la fibration (73). Or on a déjà une extension $\Gamma_{g,\nu+1}'$ de

 $\Gamma_{g,\nu}$ par $\pi_{g,\nu}$ d'où par image inverse par $A_{g,\nu} \longrightarrow \Gamma_{g,\nu}$ une extension (que je vais notes $\widetilde{A}_{g,\nu}$) de $A_{g,\nu}$ par $\pi_{g,\nu}$:

$$\widetilde{A}_{g,\nu} = A_{g,\nu} \times_{\Gamma_{g,\nu}} \Gamma_{g,\nu+1}^i = \begin{cases} \text{groupe quotient du sous-groupe } A_{g,\nu}^{\natural} \text{ de} \\ A_{g,\nu} \times A_{g,\nu}^{\bullet} \text{ form\'e des couples} \\ (u,v) \text{ tel que } u \equiv v \text{ mod. } A_{g,\nu}^{\circ}, \\ \text{par le sous-groupe } 1 \times A_{g,\nu+1}^{\circ} \end{cases}$$

donc on a deux (et même trois) structures d'extension sur $\widetilde{A}_{g,\nu}$

$$1 \longrightarrow \pi_{g,v} \longrightarrow \widetilde{A}_{g,v} \stackrel{p}{\longrightarrow} A_{g,v} \longrightarrow 1$$

$$(75) 1 \longrightarrow A_{g,\nu}^{\circ} \longrightarrow \widetilde{A}_{g,\nu} \longrightarrow \Gamma_{g,\nu+1}' \longrightarrow 1$$

$$1 \longrightarrow A_{g,\nu}^{\circ} \times \pi_{g,\nu} \longrightarrow \widetilde{A}_{g,\nu} \longrightarrow \Gamma_{g,\nu} \longrightarrow 1$$

Je voudrais faire opérer $\widetilde{A}_{g,\nu}$ sur $\widetilde{U}_{g,\nu}$, i.e. faire opérer $H=\widetilde{A}_{g,\nu}^{\natural}$ avec opération triviale de $A_{g,\nu+1}^{\circ}$, et ceci en respectant les conditions suivantes :

- a) (Compatibilité avec $\pi_{g,\nu} \longrightarrow \widetilde{A}_{g,\nu}$). Le couple $(u,v) \in H$ opère sur $\widetilde{U}_{g,\nu}$ par un automorphisme compatible avec l'automorphisme u de $U_{g,\nu}$ (on dira que c'est un u-automorphisme).
- b) (Compatibilité avec $\pi_{g,\nu} \longrightarrow \widetilde{A}_{g,\nu}$). Si u=1, [donc $v \in A_{g,\nu}^{\circ}$ donc (comme $v \in A_{g,\nu}^{\bullet}$) $u \in B_{g,\nu}$] alors l'opération de (u,v)=(1,v) sur $\widetilde{U}_{g,\nu}$ n'est autre que celle définie par $v \mod B_{g,\nu}^{\circ} = A_{g,\nu+1}^{\circ}$ qui est un élément de $\pi_{g,\nu} \simeq \operatorname{Aut} \widetilde{U}_{g,\nu}/U_{g,\nu}$ ou encore celle définie par translation à droite par v^{-1} .
- c) Compatibilité avec l'opération déjà obtenue plus haut de $A_{g,v}^{\bullet}$ sur $\widetilde{U}_{g,v}$: si $(u,v)\in H$ est tel que u=v (donc $u=v\in A_{g,v}^{\bullet}$) alors (u,v)=(u,u) opère via l'automorphisme intérieur défini par u.
- d) Compatibilité avec $A_{g,\nu}^{\circ} \longrightarrow \widetilde{A}_{g,\nu}$; l'opération de $A_{g,\nu}^{\circ}$ est continue (ce qui, joint à a) détermine une opération de façon unique et l'existence à priori

d'une telle opération résulte de $\pi_1(A_{g,v}^\circ)=0$. Or tout élément (u,v) de H s'écrit de manière unique comme produit d'un élément (v,v) dans $\delta(A_{g,v}^\bullet)$, par un élément $(v^{-1}u,1)$ de $A_{g,v}^\circ \times 1$ (le 1^{er} groupe normalisant le 2^{ème})⁷⁷ et une opération de ce produit semi-direct est donnée bel et bien par la donnée d'opérations des deux groupes facteurs, satisfaisant une condition de compatibilité, qui est vérifiée ici par transport de structure. On a bien défini une opération de $H=\widetilde{A}_{g,v}^{\dagger}$ sur la fibration (73) satisfaisant aux contions c) et d) par construction même ; il reste à vérifier a) et b). Or pour a), il suffit de vérifier séparément pour des éléments de H dans $\delta(A_{g,v}^\bullet)$ et de $A_{g,v}^\circ \times 1$, où c'est trivial par construction dans les deux cas. Reste à vérifier b) et à expliciter l'opération d'un élément $(1,v), v \in B_{g,v}$ qu'on écrit comme $(1,v)=(v,v)(v^{-1},1)$ d'où $\rho(1,v)=\rho(v,v)\rho(v^{-1},1)$ or $\rho(v,v)$ est induit par int(v) et $\rho(v^{-1},1)$ par translation à guache $x \longrightarrow v^{-1}x$ donc le composé opère par $x \mapsto xv^{-1}$.

On suppose maintenant que X_g est muni d'une structure C^{∞} et l'on remplace dans les considérations précédentes les groupes d'homéomorphismes par des groupes de difféomorphismes.

(76) Soit
$$E_{\rm g}=$$
 Ensemble des structures conformes sur $X_{\rm g}$ compatibles avec sa structure C^{∞}

On voit de suite que E_g est un espace topologique ∞ -connexe, comme quotient de l'espace ∞ -connexe (et même convexe) des structures riemaniennes par le groupe ∞ -connexe des applications C^∞ de X_g dans \mathbf{R}^{+*} . Sur E_g le groupe A_g opère mais bien sûr E_g n'est plus un espace homogène. Notons tout de suite

(77)
$$E_g/A_g \simeq \begin{array}{c} \text{Ensemble des classes d'isomorphie de surfaces} \\ \text{conformes compactes orientables de genre } g. \end{array}$$

Si on choisit une des deux orientations de X_g de sorte que E_g s'identifie à l'ensemble des structures complexes sur X_g (compatible avec sa structure C^{∞}

⁷⁷N.B. L'opération de $A_{g,\nu}^{\circ} \times 1$ se décrit le plus simplement par *translation* de $A_{g,\nu}^{\circ}$ sur l'espace homogène $\tilde{U}_{g,\nu}$ de $A_{g,\nu}^{\circ}$

et son orientation) alors E_g/A_g s'identifie à l'espace des classes d'isomorphie de courbes complexes (non singulières) connexes compactes de genre g, modulo passage à la complexe conjuguée. D'autre part

(78)
$$E_g/A_g^+ \simeq \begin{array}{c} {
m Ensemble \ des \ classes \ d'isomorphie \ de \ courbes} \\ {
m {\bf C} \ alg\'ebriques \ lisses \ connexes \ de \ genre \ g.} \end{array}$$

plus généralement

(79)

 $E_g/A_g^{\bullet} \simeq \begin{array}{c} {
m Ensemble \ des \ classes \ d'isomorphie \ de \ surfaces \ compactes \ conformes} \\ {
m connexes \ multiponctu\'ees \ de \ type \ (g,v).} \end{array}$

Si X_g est orientée :

Ensemble des classes d'isomorphie de courbes algébriques

(80)
$$E_g/A_g \simeq$$
 [lisses projectives connexes de genre g] munies d'une multiponctuation de type (g, v)

Ce sont là les "espaces modulaires grossiers" ("Coarse moduli" de Mumford) qu'on peut noter M_g^{\natural} et $M_{g,\nu}^{\natural}$ et qui sont justement trop grossiers pour les usages géométriques les plus importants.

Beaucoup plus intéressant est le quotient

(81)
$$E_{g}/A_{g,v}^{\circ} = \widetilde{M}_{g,v} \quad (\widetilde{M}_{g} = \widetilde{M}_{g,0} = E_{g}/A_{g}^{\circ})$$

sur lequel opère le groupe

$$\Gamma_{g,\nu} = A_{g,\nu} / A_{g,\nu}^{\circ}$$

par passage au quotient de l'opération de $A_{g,v}$.

L'espace $\widetilde{M}_{g,\nu}$ (avec l'opération de $\Gamma_{g,\nu}$ est appelé *l'espace de Teichmüller* de type g,ν). Bien sûr on retrouve $M_{g,\nu}^{\natural}$ à partir de $\widetilde{M}_{g,\nu}$ et de l'opération de $\Gamma_{g,\nu}$ dessus par

$$M_{g,\nu}^{\natural} = \widetilde{M}_{g,\nu}/\Gamma_{g,\nu}$$

Théorème (Teichmüller). — L'espace de Teichmüller $\widetilde{M}_{g,\nu}$ est homéomorphe à \mathbf{C}^{μ} où $\mu=3g-3+\nu$ dans le cas anabélien $2g+\nu\geq 3$ et $\mu=3g-3+\nu+\delta$ avec $\delta=\dim_{\mathbf{C}}G$ dans le cas général G étant le groupe des automorphismes algébriques d'une $U_{g,\nu}$ complexe (donc $\delta=1$ dans le cas "limites" (1,0) et (0,2), et plus généralement δ augmente de 1 chaque fois pour g fixé et $(g,\nu-1)$ abélien quand on passe de ν à $\nu-1$), donc

 $\mu = 1$ dans le cas (1,0)

 $\mu=0$ dans le cas (0,2), (0,1), (0,0), i.e. $\widetilde{M}_{g,\nu}$ est réduit à 1 point i.e. l'action de $A_{g,\nu}^{\circ}$ sur $E_g=E_0$ est transitive et ce sont avec le cas anabélien (0,3) les seuls 4 cas où il en est ainsi.

A partis de $\widetilde{M}_{0,3}$ ou de $\widetilde{M}_{1,1}$ ou de $\widetilde{M}_{g,0} = \widetilde{M}_g$ avec $g \geq 1$ quand ν augmente la "dimension complexe" des $\widetilde{M}_{g,\nu}$ augmente d'autant (par contre $\widetilde{M}_{1,1} \stackrel{\sim}{\longrightarrow} \widetilde{M}_{1,0}$ est un homéomorphisme). On peut préciser le théorème de Teichmüller ainsi :

Corollaire. — Dans le cas anabélien, $A_{g,\nu}^{\circ}$ opère librement sur E_g , de sorte que E_g devient un torseur sur $\widetilde{M}_{g,\nu}$, de groupe structural $A_{g,\nu}^{\circ}$.

On en déduit que $\widetilde{M}_{g,\nu}$ joue le rôle d'espace classifiant pour $A_{g,\nu}^{\circ}$ et que

(83)
$$\pi_i(\widetilde{M}_{g,\nu}) \xrightarrow{\sim} \pi_{i-1}(A_{g,\nu}^{\circ})$$

et le fait que $\widetilde{M}_{g,\nu}$ soit ∞ -connexe (contenu dans le théorème de Teichmüller) équivaut à celui que $A_{g,\nu}^{\circ}$ le soit ce qui est un "théorème bien connu" rappelé au n° 19.

Je n'insiste pas ici sur l'interprétation de points de $\widetilde{M}_{g,\nu}$ comme des classes d'isomorphisme de courbes complexes, munies d'une "rigidification de Teichmüller" convenable et le point de vue espaces modulaires rigidifiés, qui permet de vérifier à priori que $\widetilde{M}_{g,\nu}$ est muni d'une structure de variété complexe non singulière ; mais déjà le fait que $\widetilde{M}_{g,\nu}$ soit simplement connexe (ce qu'on peut exprimer en interprétant $\widetilde{M}_{g,\nu}$ comme revêtement universel d'un topos modulaire $U_{g,\nu}$) est un résultat profond qui ne semble pas pouvoir rentrer dans le cadre de la topologie (ou de la topologie différentielle (C^{∞})) sans plus...

N.B. Pour prouver que les $\widetilde{M}_{g,\nu}$ sont ∞ -connexe on est réduit facilement au cas de $M_{g,0}$ (si $g \geq 2$) ou de $M_{1,1}$ (cas elliptique ponctué) en utilisant $A_{g,\nu}^{\circ}/A_{g,\nu+1}^{\circ} \simeq \widetilde{U}_{g,\nu}$ (qui est ∞ -connexe) le cas g=1 est d'ailleurs facile et bien compris...

Notons que les inclusions des sous-groupes $A_{g,\nu+1}^{\circ} \hookrightarrow A_{g,\nu}^{\circ} \cdots \subset A_{g,0}^{\circ} = A_{g}^{\circ}$, définissent une tour d'applications continues :

(85) où
$$\widetilde{M}_{g,\nu+1} \longrightarrow \widetilde{M}_{g,\nu}$$
 est pour (g,ν) anabélien une fibration en fibre $A_{g,\nu}^{\circ} \simeq \widetilde{U}_{g,\nu}$

[il est donc à fibre contractile et l' ∞ -connexité de $\widetilde{M}_{g,\nu}$ équivaut à celle de $\widetilde{M}_{g,\nu}$; ce qui nous ramène au cas \widetilde{M}_g si $g \geq 2$ de $M_{1,1}$ et de $M_{0,3}$ si g = 1 ou 0].

Dans le cas (g, v) abélien on trouve

$$\widetilde{M}_{g,\nu+1} \xrightarrow{\sim} \widetilde{M}_{g,\nu}$$

ce qui signifie que dans ce cas si on a deux structures complexes α , β sur X qui sont congrues par $u \in A_{g,\nu}^{\circ}$ (i.e. $\beta = u\alpha$) elles sont mêmes congrues par $A_{g,\nu+1}^{\circ}$. En effet si G est la composante neutre du groupe des automorphismes complexes de $U_{g,\nu}$ pour β on peut écrire u = gv avec $g \in G$, $v \in A_{g,\nu+1}^{\circ}$ donc $\beta = gu\alpha$ donc (comme $g^{-1}\beta = \beta$) $\beta = u\alpha$ c.q.f.d.

Donc $\widetilde{M}_{1,1} \simeq \widetilde{M}_{1,0}$ et il est immédiat que celui-ci est isomorphe au demi plan de Poincaré. De même $\widetilde{M}_{3,0} \simeq \widetilde{M}_{1,0} \simeq \widetilde{M}_{0,0}$ et comme A_0° est simplement formé des automorphismes de $X_0 = S^2$ qui conservent l'orientation, on voit que deux structures complexes sur \mathbb{S}^2 sont isotopes (puisqu'elles sont isomorphes et qu'un isomorphisme conserve l'orientation). Cela prouve que les $\widetilde{M}_{0,i}$ ($i \leq 3$), sont réduits à des points! Ainsi le théorème de Teichmüller est assez évident si g=0 ou 1, c'est le cas $g \geq 2$ qui est profond...

L'espace de Teichmüller (plus généralement tout espace $E \infty$ -connexe sur lequel A_g opère de façon que $A_{g,\nu}^{\circ}$ opère librement) va permettre d'interpréter l'extension canonique $\Gamma_{g,\nu+1}'$ de $\Gamma_{g,\nu}$ par $\pi_{g,\nu}$ (cas (g,ν) anabélien) comme groupe fondamental mixte d'un espace (homotope à $U_{g,\nu}$) sur lequel $\Gamma_{g,\nu}$ opère.

(On était ennuyé précédemment, car $\Gamma_{g,\nu}$ n'opérait pas lui même sur $U_{g,\nu}$ mais seulement le groupe $A_{g,\nu}$ dont $\Gamma_{g,\nu}$ est quotient, on avait l'impression que le passage au quotient par $A_{g,\nu}^{\circ}$ était pourtant inessentiel, car $A_{g,\nu}^{\circ}$, car $A_{g,\nu}^{\circ}$ est ∞ -connexe et d'ailleurs on avait trouvé une extension $\widetilde{A}_{g,\nu}$ de $\Gamma'_{g,\nu+1}$ par ce même groupe ∞ -connexe $A_{g,\nu}^{\circ}$ qui opère sur le revêtement universel, et un homomorphisme surjectif $\widetilde{A}_{g,\nu} \longrightarrow A_{g,\nu}$ de noyau $\pi_{g,\nu}$ compatible avec cette opération).

Or si $\widetilde{M}=E/A_{g,\nu}^{\circ}$, E est un $A_{g,\nu}^{\circ}$ - torseur de base \widetilde{M} , qu'on peut utiliser pour tordre $U_{g,\nu}$ sur lequel $A_{g,\nu}^{\circ}$ opère continuement, on trouve donc un fibré H ($\simeq U_{g,\nu} \times E/A_{g,\nu}^{\bullet}$ opérant diagonalement) sur \widetilde{M} , de fibre $U_{g,\nu}$ (c'est pour $E=E_g$ le fibré universel en courbes complexes de type (g,ν) avec rigidification de Teichmüller...). Comme E et $A_{g,\nu}^{\circ}$ sont ∞ -connexes, \widetilde{M} aussi, donc l'inclusion d'une fibre dans le fibré est un homotopisme. Or maintenant $\Gamma_{g,\nu}$ opère sur X (de façon compatible avec son opération sur \widetilde{M}), d'où la construction d'une extension de $\Gamma_{g,\nu}$ par $\pi_1(H)=\pi_1(U_{g,\nu})=\pi_{g,\nu}$.

On a fait tout ce qu'il fallait pour prouver que c'est bien essentiellement $\Gamma'_{g,\nu}$...

§ 23. — RETOUR SUR LES SURFACES À GROUPES D'OPÉRATORS

Notre point de vue sera non celui des groupes extérieurs à lacets mais celui des topos multigaloisiens et morphismes entre ceux-ci, plus souple, on l'a vu. Avant de faire intervenir des opérations de groupes, introduisons la catégorie des surfaces U orientables (NB pas orientées !) admissibles (i.e. de la forme $X \setminus S$ où X est compacte, S fini et toute composante connexe de X de genre zéro rencontre S) comme dans Ladegaillerie (en prenant comme 2-morphismes entre homéomorphismes $f,g:U \xrightarrow{\sim} U'$ les classes d'homotopie de chemins de f à g dans l'espace Isom(U,U')) (qui, avec les hypothèses faites a comme composantes connexes des torseurs sous de produits de groupes $A_{g,\nu}^{\circ}$ (avec $(g,\nu)=(0,0)$)) donc ce sont des $K(\pi,1)$.

On trouve un 2-foncteur de la 2-catégorie précédente dans celle des morphismes de topos multigaloisiens (ou, si on préfère, dans celle des morphismes de groupoïdes) notés

$$B_{D^*} \xrightarrow{\rho} B_U,$$

où pour deux objets de la 2-catégorie $B_{D^*} \longrightarrow B_U$ et $B_{D'^*} \longrightarrow B_{U'}$, la catégorie des morphismes de l'une dans l'autre est formée des diagrammes essentiellement

commutatifs de morphismes de topos (ou de morphismes de groupoïde).

où f^{D^*} et f_U sont des morphismes et $\alpha: \rho \circ f_{D^*} \xrightarrow{\sim} f_U \circ \rho'$ une donnée de commutativité. Les morphismes entre un h et un g étant définis ad hoc...

Il peut être utile de considérer les objets de la 2-catégorie comme des topos cofibrés (ou des groupoïdes cofibrés) sur la catégorie "flèche" $D^* \longrightarrow U$ ayant deux objets D^* et U et une seule flèche non identique $D^* \longrightarrow U$. En termes d'un foncteur entre groupoïdes, $\Pi_{D^*} \longrightarrow \Pi_U$ la catégorie cofibrée ("en groupoïdes") associée Π est définie par : $\mathrm{Ob}\,\Pi = \mathrm{Ob}\,\Pi_{D^*}\,\amalg\,\mathrm{Ob}\,\Pi_U$.

Les flèches entre deux objets de Π_{D^*} , ou deux objets de Π_U , étant celles de Π_{D^*} , resp. de Π_U et les flèches de $\widetilde{D}^* \in \operatorname{Ob}\Pi_{D^*}$ dans $\widetilde{U} \in \operatorname{Ob}\Pi_U$ étant les isomorphismes $\rho_!(\widetilde{D}) \simeq \widetilde{U}$ dans Π_U .

On a un foncteur canonique $\Pi \longrightarrow \Delta_1$ qui est "cofibrant" et pour lequel toute flèche de Π est cocartésienne. [Quand on préfère travailler avec les topos et qu'on rapère les morphismes ρ de topos par les foncteurs images inverses ρ^* (N.B. on a une suite de trois foncteurs adjoints $\rho_!\rho^*\rho_*$) alors $B_U \stackrel{\rho^*}{\longrightarrow} B_{D^*}$ est décrit par une catégorie *fibrée* en topos sur Δ i.e. une catégorie fibrée B telle que les catégories fibres soient des topos, et le foncteur de changement de base soit exact à guache et commute aux limites inductives quelconques.]

Soit $\mathcal S$ la 2-catégorie des surfaces admissibles, $\mathcal M$ celle des morphismes de topos multigaloisiens (sans condition). On a un 2-foncteur de 2-catégories

$$\mathcal{S} \longrightarrow \mathcal{M}$$

et on sait décrire l'image 2-essentielle par la condition "structure à lacets" qui définit une sous 2-catégorie pleine de $\mathcal M$ soit $\mathcal M_{\mathrm{lac}}$. Par ailleurs on sait que le

 $^{^{78}}$ N.B. On exclut par exemple B $_{D^*} \simeq$ "topos vide" B $_U \simeq$ "topos ponctuel" i.e. $\pi_{D^*} = \varnothing$ et $\pi_U \simeq$ catégorie ponctuelle.

foncteur est 2-fidèle, donc induit une 2-équivalence de 2-catégories⁷⁹

$$\mathscr{S} \longrightarrow \mathscr{M}_{lac}$$

Si maintenant Γ est un groupe et si on considère des surfaces admissibles avec action de Γ , elles définissent des topos (ou groupoïdes) B_{D^*} , B_U avec opération de Γ dessus [ou des topos cofibrés sur le groupoïde $[\Gamma]$ défini par Γ] et des morphismes entre ceux-ci commutant à Γ . On peut considérer une telle donnée comme celle d'un topos multigaloisien (ou groupoïde) cofibré sur $\Delta \times [\Gamma]$. Mais la donnée d'un tel morphisme de topos multigaloisiens avec opération de Γ , équivaut à celle de morphismes de topos multigaloisiens :

$$B_{D^*,\Gamma} \longrightarrow B_{U,\Gamma} \longrightarrow B_{\Gamma}$$

ceci semble un point de vue conceptuellement commode, notamment quand on fait varier Γ .

On peut remplacer Γ par un groupoïde Π (jouant le rôle d'un groupoïde fondamental) et se proposer de décrire la 2-catégorie \mathcal{RS} des foncteurs de Π dans la catégorie des surfaces admissibles, [ou encore la 2-catégorie des "surfaces fibrées admissibles" sur le topos multigaloisiens $\widehat{\Pi}^{\circ}$ correspondant à Π]. On la décrit par la 2-catégorie \mathcal{RM} des diagrammes de topos multigaloisiens (ou de groupoïdes)

$$(1) B_{D^*,\Pi} \longrightarrow B_{U,\Pi} \longrightarrow B_{\Pi}$$

donc finalement on a un 2-foncteur entre deux 2-catégories : celle des représentations de groupoïdes dans la catégorie des surfaces admissibles et celle des diagrammes de topos multigaloisiens (ou de groupoïdes) (1).

Prenant pour toute composante connexe B_{Π_i} de B_{Π} un revêtement universel \widetilde{B}_{Π_i} , et prenant les produits fibrés, on récupère comme de juste un diagramme

(2)
$$B_{D_i^*} \xrightarrow{\rho_i} B_{U_i} \longrightarrow \widetilde{B}_{\Pi} \simeq \text{ topos ponctuel}$$

 $^{^{79}}$ Il n'y a pas à se donner une structure supplémentaire dans le cas $B_{D^*} \simeq$ "topos vide" sur B_U - à savoir un isomorphisme $T \simeq H^2(M, \mathbb{Z})$ pour toute composante connexe - car on ne suppose pas que l'on travailler avec des structures orientées! (Dans l'analogue arithmétique il n'en sera plus de même bien sûr...)

et une action de $\pi_i = \operatorname{Aut}_{B_{\Pi_i}} \widetilde{B}_{\Pi_i}$ dessus ; et la famille de ceux-ci pour i variable permet de récupérer la situation complète...

On dira que le diagramme (1) est "admissible", si les ρ_i dans (2) sont admissibles ; d'où une 2-catégorie $\mathcal{R}\mathcal{M}_{lac}$, et un 2-foncteur

$$\mathcal{R}\mathcal{S} \longrightarrow \mathcal{R}\mathcal{M}_{loc}$$

On regarde la sous 2-catégorie pleine obtenue en se limitant aux Π dont les groupes fondamentaux sont finis, d'où un 2-foncteur induit

$$\mathcal{R}_f \mathcal{S} \longrightarrow \mathcal{R}_f \mathcal{M}_{lac}$$

et on se propose d'étudier ses propriétés de fidélité.

Je conjecture que c'est une équivalence de 2-catégorie i.e. qu'il est 3-fidèle.

Bien entendu on est ramené quand même au cas de groupoïdes connexes Π_f définis par un groupe (fini s'il le faut) et on est aussi ramené par des arguments essentiellement triviaux à regarder le cas de diagrammes $B_{D^*} \longrightarrow B_U$ avec B_U connexe.

Du côté géométrique la situation serait donnée par un $U=X\setminus S$ de type (g,ν) , $(g,\nu)=(0,0)$ et une opération de Γ dessus. OPS $U=U_{g,\nu}$ donc on donne $\Gamma \longrightarrow A_{g,\nu}$. Pour la question de i-fidélité avec $i \le 2$ OPS qu'il s'agit du même groupe Γ qui opère...

a) 0-fidélité. Soit U, U' avec opérations de Γ dessus $k, g: U \xrightarrow{\sim} U'$ commutant à Γ et α, β deux homotopies de f à g i.e. : deux chemins de f à g dans $\operatorname{Isom}_{\Gamma}(U, U')$. On suppose que dans la description topossique

$$\alpha_*^{D^*} = \beta_*^{D^*} : f_{D^*} \longrightarrow \mathsf{g}_{D^*} \text{ et } \alpha_*^U : \beta_*^U : f_U \longrightarrow \mathsf{g}_U.$$

A prouver que α et β sont homotopes. OPS $g=\mathrm{Id},\ U=U_{g,\nu}$, donc $f\in A_{g,\nu}^\Gamma$, et on a deux chemins α,β de 1 à f dans l'espace $A_{g,\nu}^\Gamma$. On suppose que les deux isomorphismes correspondants entre identité de Π_{D^*} et $f_{D^*,\Gamma}:\Pi_{D^*_{S,\nu},\Gamma}\longrightarrow\Pi_{D^*_{S,\nu},\Gamma}$ d'une

part entre identité de $\pi_{U,\Gamma}$ et $f_{U,\Gamma}$ d'autre part sont les mêmes. On veut prouver que α et β sont homotopes. Bien sur l'hypothèse sur α , β relative à l'action de Γ est vérifiée a fortiori en se restreignant à un groupe plus petit, par exemple, $\Gamma'=1$, et en fait on voit qu'elle est équivalente pour Γ et pour son sous-groupe 1. Le résultat déjà connu (Ladegaillerie) pour $\Gamma=1$, montre que ceci signifie que si deux chemins dans $A^{\Gamma}=(A_{g,\nu}^{\Gamma})$ de 1 à f sont homotopes dans A ils le sont dans A^{Γ} ou encore que

$$\pi_1(A^{\Gamma}) \longrightarrow \pi_1(A)$$
 est injectif.

Dans le cas $\pi_1(A) = 0$ (cas (g, v) anabélien) cela revient donc à prouver que $\pi_1(A^{\Gamma}) = 0$.

b) 1 fidélité. Cela signifie (en plus de la 0-fidélité) que tout isomorphisme entre B_f et B_g provient d'un chemin de f à g. Avec la réduction précédente OPS $g = \operatorname{id}$ donc on a $f \in A^{\Gamma}$ d'où $f: (B_{D^*} \longrightarrow U) \longrightarrow (B_{D^*} \longrightarrow B_U)$ (respectant Γ) et on a un isomorphisme avec l'identité.

Soit A un groupe topologique, d'où deux invariants :

$$\pi_0 = \pi_0(A), \quad \pi_1 = \pi_1(A)$$

le premier est un groupe (pas nécessairement commutatif) le deuxième est un groupe commutatif sur lequel π_0 opère. On définit une Gr-catégorie \underline{A} d'invariant π_0 , π_1 et correspondant à cette opération de π_0 sur π_1 en prenant comme catégorie sous jacente le groupoïde fondamental (naïf) de A et comme foncteur de composition celui de $A \times A \longrightarrow A$ (l'associativité de $\underline{A} = \Pi_1 A$ est stricte...).

Ceci posé, tout torseur sur A définit un 1-torseur sous la Gr-catégorie \underline{A} . Plus généralement pour tout espace topologique S (ou tout topos qui est localement un espace topologique) tout torseur sur S de groupe A_S définit un \underline{A}_S -champ sur S qui est un champ en \underline{A}_S -torseurs. Si $\pi_i(A)=0$ pour $i\geq 2$, alors on trouve ainsi pour tout $n\in \mathbb{N},\ n\geq 2$ une n-équivalence entre la n-catégorie des torseurs sur S de groupe A_S , et la n-catégorie déduite de la 2-catégorie des \underline{A}_S -torseurs en la prolongeant de façon discrète...

Mais considérons un groupe Γ , et considérons la classification des $A_{B_{\Gamma}}$ -torseurs sur le topos classifiant - i.e. celle des A-torseurs avec une opération de Γ dessus

(commutant à l'action de A). Ces objets forment une 2-catégorie dont les composantes connexes correspondent aux classes de conjugaison d'homomorphismes de Γ dans A. Si on a un homomorphisme $\Gamma \longrightarrow A$, il définit une action sur le torseur trivial 1_A . Si u, v sont deux homomorphismes, les isomorphismes de $(1_A, u)$ avec $(1_A, v)$ correspondent aux éléments de l'ensemble :

Transp
$$(u, v) = \{g \in A | v = \text{int}(g) \circ u\}$$

Mais on fera une catégorie 0-isotopique en remplaçant par son groupoïde fondamental Π_1 Transp(u, v).

Donc un isomorphisme de u et v est encore un point de Transp(u,v); mai si on a deux tels isomorphismes f, g les isomorphismes $f \simeq g$ sont les classes de chemins dans Transp(u,v) de f à g. Ainsi la catégorie $\underline{\mathrm{Aut}}(u)$ est équivalente à

$$\Pi_1 \operatorname{Transp}(u, v) \quad (\operatorname{Transp}(u, u) = A^u) \quad \underline{\operatorname{Aut}}(u) = \Pi_1 \operatorname{Transp}(u)$$

et la catégorie Isom(u, v) est soit vide (si u, v ne sont pas conjugués) soit un torseur sous Aut(u).

Mais pour tout torseur P sous A sur lequel Γ opère le 1-torseur $\Pi_1 P$ sous $\Pi_1 A = \underline{U}$ est muni d'opérations de Γ d'où un (Γ, \underline{A}) torseur. On trouve ainsi un foncteur de 2-catégorie :

En somme, on vient de répéter sur le topos classifiant B_{Γ} la construction faite plus haut pour un espace topologique S. On aimerait encore exprimer des conditions pour que ce 2-foncteur soient une 2-équivalence.

Pour ceci, il conviendrait d'abord d'avoir une compréhension de la classification des classes d'équivalence d'objets de la deuxième catégorie qui sont eux de nature purement algébrique, en terme de la Gr-catégorie \underline{A} et de Γ . Quitte à se borner à des torseurs triviaux sous \underline{A} (ce qui est licite) il faudrait expliciter ce qui signifie que Γ opère sur le torseur trivial. On constate que cea signifie qu'on a un homomorphisme de Gr-catégorie de la Gr-catégorie discrète définie par Γ dans \underline{A} .

Donc la 2-catégorie envisagée est celle dont les objets sont les homomorphismes de Gr-catégories

$$\Gamma \xrightarrow{u} \underline{A}$$

et pour deux tels morphismes u et v il faut définir (non seulement un ensemble Hom(u,v) mais) une catégorie $\underline{\text{Hom}}(u,v)$ comme la sous-catégorie $\underline{\text{Transp}}(u,v)$ de A, à définir ad-hoc.

Considérons pour simplifier le cas où $\pi_1 = 0$, d'où \underline{A} se réduit à π_0 et la catégorie des homomorphismes $\Gamma \longrightarrow \underline{A}$ à celle des homomorphismes $\Gamma \longrightarrow \pi_0$. Le fait que le foncteur de 2-catégorie plus haut soit une équivalence de 2-catégorie se traduit alors pas à pas ainsi :

0-fidèle signifie que pour tout hom *u* : Γ → A, on a π₁(A^u) = 0.
 N.B. A^u et A^{ou} ont même composante neutre donc la condition s'écrit

$$\pi_1((A^\circ)^u) = 0$$

2) **1-fidèle** signifie que de plus, si u, v sont des homomorphismes de $\Gamma \rightrightarrows A$, et $\alpha, \beta \in \operatorname{Transp}_A(u, v)$ ont même image dans $\operatorname{Transp}_{\pi_0}(\underline{u}, \underline{v})$ alors α, β sont dans une même composante connexe de $\operatorname{Transp}_A(u, v)$.

Pour le voir OPS u = v et on est ramené à exprimer que l'application $\pi_0(A^u) \longrightarrow \pi_0$ est injective i.e. que son noyau est réduit à 1, i.e. que le sous-groupe ouvert $A^u \cap A^\circ = (A^\circ)^u$ de A^u est connexe, i.e.

$$\pi_0((A^\circ)^u) = 0$$

3) **2-fidèle** signifie que en plus des conditions précédentes, qui assurent que pour u, v, fixés, le foncteur $\underline{\mathrm{Hom}}(u,v) \longrightarrow \underline{\mathrm{Hom}}(\underline{u},\underline{v})$ est pleinement fidèle, que celui-ci est essentiellement surjectif, i.e. que si u, v sont tels que $\underline{u},\underline{v}:\Gamma \longrightarrow \pi_0$ sont conjugués (si on veut égaux) alors u et v sont déjà conjugués par un élément de π_0 .

Il faut le dire de façon plus forte : Transp $(u, v) \longrightarrow$ Transp $(\underline{u}, \underline{v})$ surjectif : cela équivaut à dire que si $\underline{u} = \underline{v}$ alors u et v sont conjugués par un élément de A° .

En d'autres termes : pour tout homomorphisme $\underline{u}: \Gamma \longrightarrow \pi_0 = A/A^\circ$ s'il existe un relèvement de u en $\Gamma \longrightarrow A$, celui-ci est unique à conjugaison près.

4) **3-fidèle** signifie qu'en plus tout hom $\underline{u}:\Gamma\longrightarrow\pi_0$ se relève en $u:\Gamma\longrightarrow A$. En résumé, si $\pi_1(A^\circ)=0$ la 3-fidélité signifie que pour tout homomorphisme $\underline{u}:\Gamma\longrightarrow\pi_0=A/A^\circ$, il existe un relèvement $u:\Gamma\longrightarrow A$, unique à conjugaison près, et qu'alors $(A^\circ)^u$ est connexe et simplement connexe. Je présume que dans le cas général où on ne suppose pas $\pi_1(A^\circ)=0$ il faut remplacer la condition $\pi_1(A^{\circ u})=0$ par $\pi_1(A^{\circ u}\longrightarrow\pi_1(A^\circ))$ est un isomorphisme.

Trop brutal! la condition en question disant $\pi_1(A^{\circ\Gamma}) \xrightarrow{\sim} \pi_1(A^{\circ})^{\Gamma}$ mais il faut reprendre avec soin l'ensemble des conditions et les modifier ad-hoc... Cf feuille intercalaire.

(Le plus agréable serait que ce soit un homotopisme - c'est cela sans doute qui exprimerait qu'on a une ∞-équivalence...)

J'ai envie de prouver d'abord 1), 2), 3) dans le cas $A = A_{g,v}$, en me limitant au besoin au cas anabélien (sa doute le plus dur en fait ! mais moins touffu conceptuellement) et bien sûr au cas où Γ est fini. Le premier travail sera bien sûr celui de déterminer $A^{\circ u}$ et sa structure topologique pour essayer de prouver que $A^{\circ u}$ est contractile dans ce cas.

[Intercalaire]

(On ne suppose plus $\pi(A^{\circ}) = 0$).

- 1) 0-fidèle. $\pi_1(A^{\circ}\Gamma) \longrightarrow \pi_1(A^{\Gamma}) = H^{\circ}(\Gamma, \pi_1(A))$ injectif.
- 2) 1-fidèle. $\pi_1(A^{\circ \Gamma}) \longrightarrow \pi_1(A^{\Gamma})$ bijectif et $\pi_0(A^{\circ \Gamma}) \longrightarrow H^1(\Gamma, \pi_1)$ injectif.
- 3) 2-fidèle. $\pi_1(A^{\circ\Gamma}) \longrightarrow H^{\circ}(\Gamma, \pi_1(A))$ et $\pi_0(A^{\circ\Gamma}) \longrightarrow H^1(\Gamma, \pi_1(A))$ bijectif et $\pi_0(A^{\Gamma}) \longrightarrow \operatorname{Ker}(\pi_0(A)^{\Gamma}) \longrightarrow H^2(\Gamma, \pi_1)$ (qui est déjà injectif par la condition précédente) est surjectif i.e. tout élément de $\pi_0(A)$ qui centralise *strictement* Γ provient d'un élément de Λ qui centralise Γ . Il faut un peu plus, quand on a deux homomorphismes $u, v : \Gamma \longrightarrow \Lambda$ qui coïncident *strictement* dans Λ , on veut qu'il soient conjugués par un élément de Λ° .
- 4) 3-fidèle. En plus des conditions précédentes, on veut que tout homomorphismes Γ → A (défini par Γ → π₀(A) et un scindage de la Gr-catégorie de Sinh-Postnikov extension de Γ par π₁(A)) provienne d'un homomorphisme Γ → A.

\$ 24. — ESSAI DE DÉTERMINATION DE $A^{0\Gamma}$; LIEN AVEC LES RELATIONS $\pi_{g,(\nu,\nu+n-1)}^{\Gamma}=\{1\}$, ET PROGRAMME DE TRAVAIL

Considérons une opération (fidèle si on y tient) du groupe fini Γ sur la surface $U \subset X = \widehat{U}$ de type (g, v), $U = X \setminus S$.

Soit $A=\operatorname{Aut}(U)$, donc $\Gamma\subset A$ et $A''=A^\Gamma$ est le centralisateur de Γ . Supposons d'abord $\Gamma=\Gamma^+$; évidemment $f\in A^\Gamma$ implique que f induit un automorphisme g de $X/\Gamma=X'$ dont X est un revêtement galoisien de groupe Γ .

Soit S' l'image de S dans X' (donc $S = X|_{S'}$) et soit S! l'ensemble des points de ramification de Γ dans U, S'! son image dans $U' = X' \setminus S'$ (NB $U = X|_{U'}$).

Ainsi g est un automorphisme de (X', S'), appliquant $S'^!$ sur lui même, et induisant donc un automorphisme de $V' = U' \setminus S'^! = X' \setminus (S' \cup S'^!)$.

L'image inverse V=X|V' est étale sur V', c'est même un $\Gamma_{V'}$ -torseur sur V' et l'image inverse de celui-ci par $g|_{V'}$ est (via f) isomorphe à V. La donnée de f équivaut à la donnée d'un automorphisme du Γ -revêtement V de V', induisant un isomorphisme de V' qui, prolongé à X', envoie S' dans lui même. Cela donne une interprétation de A^{Γ} en termes de constructions sur X'.

Considérons le groupe fondamental π' de V'^{80} , avec sa structure à lacets indexée par $S' \sqcup S'^{!}$, on a donc un homomorphisme surjective

$$\pi' \xrightarrow{\varphi} \Gamma$$

⁸⁰On a choisit un point $x \in V$ et son image $x' \in V'$ comme points de base, pour expliciter π .

qui sur chacun des sous-groupes à lacets d'indice $s' \in S'^!$ n'est pas trivial, et un automorphisme g de V' définit un automorphisme extérieur \overline{g} de π' . La condition à mettre dessus est que son composé avec φ est conjugué de φ , et que \overline{g} applique $S'^!$ dans lui même.

Ceci posé, g est défini par \overline{g} à isotopie près (si on excepte les cas (g', v') dégénérés, à savoir (0, v') avec v' = 0, 1, 2 qu'il faudra examiner à part...) et g étant choisi, f est défini modulo multiplication par un élément du centre de Γ mais on sait déjà que $A^{\circ} \cap \Gamma = \{1\}$, donc si on se borne à examiner des éléments f dans $A^{\circ \Gamma}$, alors f sera déterminé par g de façon unique.

On est ainsi amené au problème suivant :

Soit $V' = X' \setminus (S' \sqcup S'^!)$ une surface admissible de type (g', v') avec X' compacte, et $v' = \operatorname{card} S' + \operatorname{card} S'^!$, muni d'un sous ensemble $S'^!$ de l'ensemble des points à l'infini et d'un point de base x', d'où $\pi' = \pi_1(V', x')$.

On se donne un revêtement galoisien connexe V de V' de groupe fini Γ , ponctué au dessus de x', donc défini par un homomorphisme surjectif

$$\pi' \xrightarrow{\varphi} \Gamma$$

et on suppose V' ramifié en chacun des $s' \in S'^!$ i.e. (pour un choix du groupe à lacets $L_{s'}$ correspondant à s') que $L_{s'} \longrightarrow \Gamma$ n'est pas trivial.

On considère le compactifié pour X de V, et l'ensemble S (resp. S') des points de X sur S' (resp. S'!).

Soit g un automorphisme de V, définissant un automorphisme extérieur \overline{g} de π'^{81} , on suppose que

$$\mathsf{g}^*(V'|_V) \xrightarrow{\hspace{1cm} \sim \\ V-\mathrm{iso}} V'$$

i.e. que $\varphi \circ \overline{g}$ est conjugué à φ (ce qui exprime que g provient par passage au quotient d'un automorphisme f de V, défini modulo multiplication par un élément $z \in \text{Centre }\Gamma$).

Soit $U = V \cup S! = X \setminus S$ (revêtement ramifié sur $U' = V' \cup S'! = X' \setminus S'$), on veut exprimer que parmi les f qui remonte g, il g en a un (nécessairement unique !) qui est isotope à 1 dans $\underline{\mathrm{Aut}}(U)$ - i.e. qui induise l'automorphisme extérieur trivial de $\pi_1(U)$. On aimerait prouver que se sont exactement ceux qui sont isotopes à 1

⁸¹ OPS que g fixe x' donc \overline{g} est un automorphisme bien défini de π' .

dans $\underline{\mathrm{Aut}}(V')$ - ou encore que pour un tel f, f est nécessairement isotope à 1 dans $\underline{\mathrm{Aut}}(V)$ - i.e. est dans $\underline{\mathrm{Aut}}(V)^{\circ}$ et pas seulement dans $\underline{\mathrm{Aut}}(U)^{\circ}$.

Notons, lorsque $\underline{\rm Aut}(V')^\circ$ est connexe, que $\underline{\rm Aut}(V')^\circ$ se relève (en vertu de principes généraux) en

$$\underline{\mathrm{Aut}}(V')^{\circ} \longrightarrow \underline{\mathrm{Aut}}(V)^{\circ \Gamma} \subset \underline{\mathrm{Aut}}(U)^{\circ \Gamma}$$

Donc la condition énoncée sur g d'isotopie à 1 est certainement suffisante. Notons d'ailleurs que les résultats déjà obtenus impliquent que $\underline{\operatorname{Aut}}(U)^{\Gamma} \cap \underline{\operatorname{Aut}}(U)^{\circ} = \underline{\operatorname{Aut}}(U)^{\circ\Gamma}$ induit *l'identité* sur $S'^{!}$ (= U avec une notation antérieure).

Or soit $B \subset \underline{\mathrm{Aut}}(U)^{\circ} \cap \mathrm{Aut}(U,S^{!})$ le sous-groupe des automorphismes qui fixent les $s \in S^{!}$ de sorte que

$$\underline{\operatorname{Aut}}(U)^{\circ}/B \simeq \underline{\operatorname{Mon}}(S^!, U)$$
 et $B^{\circ} = \underline{\operatorname{Aut}}(V)^{\circ}$

un argument connu nous montre que

$$B/B^{\circ} \simeq \pi_1(\underline{\mathrm{Mon}}(S^!,U))$$

Comme

$$\underline{\operatorname{Aut}}(U)^{\circ\Gamma} \subset B$$
 i.e. $\underline{\operatorname{Aut}}(U)^{\circ\Gamma} = B^{\Gamma}$

on déduit donc de $1 \longrightarrow B^{\circ} \longrightarrow B \longrightarrow B/B^{\circ} \longrightarrow 1$

$$1 \longrightarrow B^{\circ \Gamma} \longrightarrow B^{\Gamma} \longrightarrow (B/B^{\circ})^{\Gamma} \longrightarrow H(\Gamma, B^{\circ}) (= 1?)$$

Donc on trouve que la composante neutre de $\underline{\mathrm{Aut}}(U)^{\circ\Gamma}$ est isomorphe à $\underline{\mathrm{Aut}}(V)^{\circ}$ (donc est ∞ -connexe si V anabélienne), et son π_0 est inclus dans $(B/B^{\circ})^{\Gamma} \simeq \pi_1(\mathrm{Mon}(S^!,U))^{\Gamma}$. On voudrait prouver que le sous-groupe des invariants sous Γ est réduit à $\{1\}$

$$H^{\circ}(\Gamma, \pi_1(\text{Mon}(S^!, U))) = 0$$

On aimerait que ceci soit vrai même indépendemment d'hypothèse de réalisabilité, quand on se donne un homomorphisme de Γ dans le groupe de Teichmüller d'un V, et qu'on fait les hypothèses adéquates...

Conjecture. — Soit π un groupe extérieur à lacets de type (g,v), I l'ensemble d'indices des classes des lacets, Γ un groupe fini opérant extérieurement sur π . Alors il

existe un groupe extérieur à lacets π' , d'ensemble I' des classes de lacets, une opération extérieure de Γ sur π' , une partie I'! de I' stable par Γ , un homomorphisme extérieur de "bouchage des trous de I'"

$$\pi' \longrightarrow \pi$$

compatible avec l'action de Γ , tels que :

- 1°) Le stabilisateur dans Γ de tout élément de $I^{'!}$ soit réduit à 1.
- 2°) L'extension de Γ par π' déduite de l'action extérieure de Γ n'a pas d'éléments d'ordre fini $\neq 1$ (i.e. pour aucun élément de $\Gamma \neq 1$, l'action extérieure sur π' ne se réalise par un automorphisme de π' d'ordre fini).

De plus le Γ -groupe extérieur à lacets π' , muni du morphisme $\pi' \longrightarrow \pi$, est déterminé à isomorphisme près.

Commentaire. L'existence de π' , $\pi' \longrightarrow \pi$ est évidente dans le cas "réalisable". L'unicité à isomorphisme unique près, même dans le cas réalisable n'est pas évidente, ni même prouvée. Le noyau de

$$\mathsf{Autext}_{\mathsf{lac}}(\pi',\pi) = \mathsf{Autext}_{\mathsf{lac}}(\pi',I^{'!}) \longrightarrow \mathsf{Autext}_{\mathsf{lac}}(\pi)$$

est justement le groupe π_1 de tantôt⁸², et pour montrer que le foncteur des couples $(\pi', I'^!)$ d'un Γ -groupe extérieur π' et d'une partie $I'^!$ de $I(\pi')$ stable par Γ , telle que l'extension correspondante de Γ par π' soit "sas torsion" et que le stabilisateur de tout $i' \in I'^!$ dans Γ soit non trivial, vers les Γ -groupes extérieurs, soit (non seulement essentiellement surjectif mais) pleinement fidèle, est déjà problématique.

La fidélité signifie justement que $\pi_1^{\Gamma}=\{1\}$, la pleine fidélité est plus forte que le fait que

$$\operatorname{Autext}_{\operatorname{lac}}(\pi',\pi)^{\Gamma} \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi)^{\Gamma}$$

est surjectif (dans le cas réalisable, cette surjectivité serait conséquence du fait que toute classe d'homéomorphisme commutant à Γ contient un homéomorphisme commutant à Γ) - il faut ajouter à ceci que tout autre relèvement de Γ en une

 $^{^{82}}$ Plutôt une extension de $\mathfrak{S}_{I'}$ par ce π_1

opération extérieure sur π' [i.e. un $\Gamma \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi',\pi)$], ayant la même action de Γ sur $I'^!$, est conjugué du précédent par un élément du noyau π_1 de $\operatorname{Autext}_{\operatorname{lac}}(\pi',I'^!) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi) \times (\mathfrak{S}_{I'^!}) \dots$

On va ré-énoncer la conjecture précédente sous une forme un peu plus générale. Introduisons une notation :

Si Γ est un groupe fini opérant extérieurement de façon directe sur un groupe à lacets π anabélien, donnant lieu à une extension E de π par Γ , on va désigner par $\Phi = \Phi(\pi, \Gamma)$ ("points fixés") l'ensemble des classes de π -conjugaison des sections partielles $\neq \{1\}$ maximales de l'extension. (Le caractère intrinsèque de $\Phi(\pi, \Gamma)$, indépendemment des choix particuliers de E a été déjà noté). Il est clair que Φ est un Γ -ensemble, on sait aussi qu'il est fini.

Soit maintenant (π', Γ) un Γ -groupe extérieur à lacets avec Γ opérant de façon directe $(\Gamma = \Gamma^+)$ et fidèle (pour simplifier), fixons nous une partie I'! de $I' = I(\pi')$, stable par Γ , telle $\forall i' \in I'$!, on ait $\Gamma_{i'} \neq \{1\}$, et considérons le groupe extérieur quotient, défini par bouchage de I'!, soit π ; il est clair que Γ opère encore dessus.

On veut d'abord définir une bijection

(*)
$$\Phi(\pi,\Gamma) \simeq \Phi(\pi',\Gamma) \sqcup I^{'!}$$

en supposant (π, Γ) également anabélien pour être plus sur !

a) Application $I' \longrightarrow \Phi(\pi, \Gamma)$.

Soit $L_{i'} \subset \pi'$ de classe $i' \in I'$, $Z_{i'}$ son centralisateur dans l'extension E' de Γ par π' de sorte $L_{i'}$ est une extension de $\Gamma_{i'}$ par $L_{i'}$. LE passage au quotient $E' \longrightarrow E$ définit une section partielle $\Gamma_{i'} \hookrightarrow E$, contenue dans une unique section partielle maximale (sans doute déjà maximale elle même... 83). On trouve ainsi une application $I' \longrightarrow \Phi(\pi, \Gamma)$, évidemment compatible avec les actions de Γ .

b) Application $\Phi(\pi',\Gamma) \longrightarrow \Phi(\pi,\Gamma)$

Toute section partielle $\neq 1$ de E' sur Γ en définit évidemment une de E sur Γ en passant au quotient ; on a comme ci dessus qu'une section maximale donne une section maximale, en se ramenant au cas Γ cyclique. ⁸⁴

⁸³oui car pour le voir on peut supposer Γ cyclique et donc la situation est réalisable...! (?)

⁸⁴pas clair, car l'hypothèse que les $\Gamma_{i'} \neq 0$, risque de ne pas être réalisée.

c) Bijectivité de (*)

Elle n'est pas prouvée (sauf si la situation de départ est réalisable, ou si I'! réduit à un seul élément mais alors Γ est cyclique et la situation est réalisable...)

Ceci admis on a défini un foncteur

$$(\pi', \Gamma, I^{'!}) \mapsto (\pi, \Gamma, I^{'!})$$

allant de la catégorie des Γ -groupes extérieurs à lacets π' munis d'une partie I'! de $I' = I(\pi')$ stable par Γ , telle que $s' \in I' \Rightarrow \Gamma_{s'} \neq \{1\}$, dans la catégorie des Γ -groupes extérieures à lacets, munis d'une partie I'! de $\Phi(\pi, \Gamma)$.

La conjecture est que le foncteur (lui même un peu conjectural, sauf si on se réduit aux situations de départ réalisables, d'où situations d'arrivée également réalisables) est une équivalence de catégories i.e. i) pleinement fidèle et ii) essentiellement surjectif.

Le point ii) est clair, quand on se borne de part et d'autre à des situations réalisables. Mais même dans ce cas, le point i) n'est pas prouvé. Je pense que si I' est réduit à un élément, alors les propriétés du foncteur "forage d'un trou" permettront de l'établir aisément. On voit aussi que pour l'établir, on est ramené à établir la bijectivité de (*), et le théorème d'équivalence dans le cas où Γ est transitif sur I'!.

Pour résumer, le programme d'attaque du problème de réalisabilité d'un Γ-groupe extérieur à lacets serait le suivant :

- I) Établir la bijectivité de (*) dans le cas général.
- II) Établir la pleine fidélité du foncteur précédent (en se ramenant au besoin au cas où I'! est *une* orbite (singulière) de Γ dans $I' = I(\pi')$).
- III) Dans le cas où $\Phi(\pi,\Gamma) = \emptyset$ i.e. l'extension E n'a pas d'élément d'ordre fini $\neq 1$, prouver que E, muni de l'ensemble des E-classes de conjugaison des centralisateurs des L_i ($i \in I(\pi)$) dans E, est un groupe à lacets.

D'ailleurs, pour disposer des propriétés préliminaires indispensables des ensembles $\Phi(\pi,\Gamma)$, il faudrait commencer par réaliser ce programme pour les groupes cycliques (opérants de façon directe), et procéder dans ce cas par dévissage.

Si le théorème de classification complet (comme équivalence des 2-catégories des opérations topologiques et des opérations isotopiques -) était vrai, les points I, II, III de ce programme devrait l'être aussi, et ce serait donc un bon programme d'approche. Les points I et II devraient être encore valables, dès que le 2-foncteur entre 2-catégories serait 2-fidèle (pas nécessairement 3-fidèle), du moins pour les situations réalisables. On dirait alors qu'une action extérieure de Γ est *admissible*, si

$$\operatorname{Autext}(\pi', \Gamma, I^{'!}) \simeq \operatorname{Aut}(\pi, \Gamma, I^{'!})$$

et si de plus toute autre action de Γ sur π' , induisant la même action sur π et la même application $I'^! \longrightarrow \Phi(\pi, \Gamma)$, est conjugué de l'action originelle.

Ceci posé, la condition nécessaire et suffisante de réalisabilité d'une action extérieure fidèle de Γ sur π serait alors que cette action se remonte (par "forage de trous" pour $I'! = \Phi(\pi, \Gamma)$) en une action *admissible* de Γ sur un $(\pi', I'!)$, (par définition même le relèvement serait alors unique) et que de plus l'extension correspondante E' de Γ par π' soit un groupe à lacets.

§ 25. — GROUPES DE TEICHMÜLLER SPÉCIAUX

Revenons aux notations du $n^{\circ}19$, on va définir un sous-groupe $SA_{g,\nu}$ de $A_{g,\nu}^{!}$

$$SA_{g,v} = \{u \in A_g \mid u \text{ induise l'identit\'e sur un voisinage de } S_{g,v}\}$$

i.e. ensemble des automorphismes de $U_{g,\nu}$ qui induisent l'identité dans le complémentaire d'un compact.

Contrairement aux autre sous-groupes de A_g considérés jusqu'à présent, celuici n'est pas un sous-groupe fermé. N.B. Dans le cas où on travaille avec des surfaces compactes à bord au lieu de surfaces compactes (sans bord) "trouées", il y aurait lieu de prendre le groupe des automorphismes qui induisent l'identité sur le bord.

 $SA_{g,\nu}$ est un sous-groupe invariant de $A_{g,\nu}$, le quotient $A_{g,\nu}/SA_{g,\nu}$ étant isomorphe au groupe des *germes* d'automorphismes de X_g au voisinage de $S_{g,\nu}$, ou encore le groupe des germes à l'infini d'automorphismes de $U_{g,\nu}$ ([?] les complémentaires de compacts...)

On aura évidemment, puisque $SA_{g,\nu} \subset A_{g,\nu}$

$$(SA_{g,\nu})^{\circ} \subset A_{g,\nu}^{\circ}$$

Posons

$$SA_{g,\nu}^! = SA_{g,\nu}/SA_{g,\nu}^\circ$$

on aura un homomorphisme canonique

$$SA_{g,\nu}^! \longrightarrow \Gamma_{g,\nu}^{!+}$$

qu'on va interpréter de façon algébrique, en termes de l'interprétation de $\Gamma_{g,\nu}^!$ comme le groupe des automophismes extérieures du groupe à lacets $\pi_{g,\nu}$, induisant l'identité sur $S_{g,\nu}=I(\pi_{g,\nu})$.

Pour tout $i \in S_{g,\nu}$, choisissons un L_i de classe i dans $\pi_{g,\nu}$ - ce qui revient à se donner un "point" de $B_{D_i^*}$ (\simeq un revêtement universel \widetilde{D}_i^*) et un isomorphisme entre son image dans $B_{U=U_{g,\nu}}$ avec le "point" $s=s_{g,\nu}$ de référence, qui servait à définir $\pi_{g,\nu}$ comme $\operatorname{Aut}_{B_U} \simeq \pi_1(B_U,s)$.

Ceci dit, si u est un automorphisme de $\pi=\pi_{g,\nu}$ le fait qu'il respecte (strictement, en induisant l'identité sur $S_{g,\nu}$) la structure à lacets, s'exprime par l'existence d'une famille d'éléments $g_i \in \pi$, tels que

$$u(l) = \operatorname{int} g_i^{-1}(l^{\alpha}) \quad (i \in I, l \in L_i, \alpha = \chi(n))$$

-lesquels g_i sont déterminés par u modulo multiplication à droite par des $\lambda_i \in L_i$. Si on a de même v, (h_i) , alors : pour $l \in L_i$ on a (si $\alpha = \chi(u)$, $\beta = \chi(v)$)

$$(uv)(l) = v(u(l)) = v(\inf(g_i^{-1}))v(l^{\alpha}) = \inf(v(g_i^{-1})h_i^{-1})(l^{\alpha\beta}) = \inf(h_iu(g_i)^{-1})l^{\alpha\beta}$$

donc vu est compatible avec le système des $h_iv(g_i)$. Posons

$$(v,(h_i))(u,(g_i)) = (vu,h_iv(g_i))$$

On trouve alors une structure de groupe sur l'ensemble $SE^!$ des $(u,(g_i))$, sous-groupes du produit semi-direct de $E^!$ = Autext_{lac} $(\pi, \mathrm{id} \ \mathrm{sur} \ I)$ par π^I , sur lequel $E^!$ opère de façon évidente. L'homomorphisme naturel

$$SE^! \longrightarrow E^!$$

est surjectif, et son noyau est essentiellement isomorphe à $\prod_{i\in I}L_i\simeq T^I$, où T est le module des orientations. D'où une structure d'extension où E opère sur T^I via son action sur T

$$1 \longrightarrow T^I \longrightarrow SE^! \longrightarrow E^! \longrightarrow 1$$

Et je voudrais interpréter cette extension comme l'image inverse d'une extension canonique de Γ ! par T^I (canonique en tous cas, une fois choisi les \widetilde{D}_i^*).

Pour ceci, notons que si \dot{u} est une auto-équivalence de la situation $B_{D^*} \longrightarrow B_U$, induisant l'identité sur I, on peut considérer les $\tilde{\dot{u}}$ au dessus de \dot{u} , à savoir les

systèmes (\dot{u}, γ_i) , où pour tout $i \in I$, $\gamma_i : \widetilde{D}_i^* \longrightarrow \dot{u}(\widetilde{D}_i^*)$ [déterminé mod élément de T].

Le groupe des classes d'isomorphie d'automorphismes de $(B_{D^*} \longrightarrow B_U, (\widetilde{D_i^*}))$, ou si on préfère, des classes d'isomorphie d'automorphismes de $(B_I \longrightarrow B_{D^*} \longrightarrow B_U)$ induisant l'identité sur I, est donc une extension de $\Gamma^!$ par T^I , soit $ST^!$.

On va définir un homomorphisme de suites exactes

$$1 \longrightarrow T^{I} \longrightarrow SE^{!} \longrightarrow E^{!} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow T^{I} \longrightarrow S\Gamma^{!} \longrightarrow \Gamma^{!} \longrightarrow 1$$

qui prouve que $SE^!$ est bien l'image de l'extension $S\Gamma^!$ par T^I . Pour ceci, on note que $E^!$ est le groupe des classes d'isomorphie d'auto-équivalences de

$$\begin{array}{c} \mathbf{B}_{D^*} \\ \downarrow \\ \mathbf{B}_{IJ} \longleftarrow \text{ pt .s} \end{array}$$

et SE! celui des classes d'isomorphie d'auto-équivalences de

qui s'envoie e façon naturelle dans celui des classes d'isomorphie d'auto-équivalences des diagrammes $B_I \longrightarrow B_{D^*} \longrightarrow B_U$.

En fait, dans tout ceci il n'y avait aucunement lieu de se borner aux automorphismes de π (extérieurs ou totaux) induisant l'identité sur I. On trouve de toutes façons des extensions SE de E par T^I , $S\Gamma$ de Γ par T_I , et un homomorphisme

d'extension

de façon que l'on peut considérer SE comme extension de Γ par $T^I \times \pi$

$$1 \longrightarrow T^I \times \pi \longrightarrow SE \longrightarrow \Gamma \longrightarrow 1$$

et l'extension E resp. $S\Gamma$ se déduit en divisant par T^I resp. par π .

Revenant maintenant au cas type $U_{g,\nu} = X_{g,\nu} \setminus S_{g,\nu}$, on prends des notations

$$E_{g,v} = \text{Aut}_{\text{lac}}(\pi_{g,v}) \quad (\simeq \Gamma_{g,v+1} \text{ si } (g,v) \neq (0,0), (0,1) \text{ i.e. } \pi_{g,v} \neq 0)$$

et

$$S\Gamma_{g,\nu} = S \operatorname{Autext}_{\operatorname{lac}}(\pi_{g,\nu})$$
 (extension de $\Gamma_{g,\nu}$ par T^I)

et

$$SE_{g,\nu} \quad (\simeq S\Gamma'_{g,\nu+1}/\Gamma_{g,\nu}),$$

(où $S\Gamma'_{g,\nu+1}$ désigne le sous-groupe de $S\Gamma_{g,\nu+1}$ [?] des éléments qui fixent le dernier élément $s_{\nu}...$)

On désigne par $S\Gamma_{g,\nu}^!$ et $SE_{g,\nu}^!$ les sous-groupes des précédents $S\Gamma_{g,\nu}$, $SE_{g,\nu}$ qui induisent l'identité sur $I=S_{g,\nu}$.

Et revenons enfin aux relations avec $SA_{g,v}$, on va définir

$$SA_{g,\nu} \longrightarrow S\Gamma_{g,\nu}^{!+}$$

en notant que si un $u \in A_{g,v}$ induit l'identité sur un voisinage de $S_{g,v}$, alors $u_{\bullet}(\widetilde{D_i^*}) = \widetilde{D_i^*}$ et on pourra définir un élément de $S\Gamma_{g,v}^!$ en prenant comme Γ_i les identités. Le

fait que l'homomorphisme obtenu soit trivial sur $(SA_{g,\nu})^{\circ}$ est sans doute trivial, d'où

$$SA_{g,\nu}/(SA_{g,\nu})^{\circ} \longrightarrow S\Gamma_{g,\nu}^{!+}$$

Dire que c'est surjectif signifie que tout automorphisme dans $A_{g,\nu}^{!+}$ (i.e. tout automorphisme de $U_{g,\nu}$ induisant l'identité sur $S_{g,\nu}$ et respectant l'orientation) est isotope (par une isotopie, si on veut, qui reste l'identité dans l'extérieur d'un petit voisinage de $S_{g,\nu}$) à un automorphisme qui soit l'identité sur un voisinage, c'est facile. L'injectivité [est] peut-être plus délicate, elle revient essentiellement à déterminer le noyau de

$$SA_{g,\nu}/(SA_{g,\nu})^{\circ} \longrightarrow \Gamma_{g,\nu}^{!}$$
, i.e. $SA_{g,\nu} \cap A_{g,\nu}^{\circ}/(SA_{g,\nu})^{\circ}$

comme $T^I = T^{S_{g,v}}$. On peut sans doute se ramener au contexte des surfaces compactes à bord (notons par un ' les groupes topologiques correspondants), on a

$$1 \longrightarrow SA_{g,\nu}^{'+} \longrightarrow A_{g,\nu}^{'!+} \longrightarrow \prod_{i \in S_{g,\nu}} Aut^{+}(C_{i}) \longrightarrow 1$$

où $\operatorname{Aut}^+(C_i)$ homotope au groupe circulaire standard $\mathbb U$ tordu par T, et le + indique les automorphismes conservant l'orientation et les C_i sont les composantes connexes du bord. On en conclut la suite exacte d'homotopie

[et $\pi_i(SA_{g,v}^{'\circ}) \simeq \pi_i(A_{g,v}^{'\circ})$ si $i \geq 2$] i.e.

$$\begin{cases} 0 \longrightarrow \pi_1(SA_{g,\nu}^{'+}) \longrightarrow \pi_1(A_{g,\nu}^{'\circ}) \longrightarrow T^I \longrightarrow \pi_0(A_{g,\nu}^{'!+}) \longrightarrow \Gamma_{g,\nu}^{'!+} \longrightarrow 1 \\ \pi_i(SA_{g,\nu}^{'+}) \stackrel{\sim}{\longrightarrow} \pi_i(A_{g,\nu}^{'\circ}) \quad \forall i \geq 2 \end{cases}$$

On a un homomorphisme évidente (par "recollement de disques") $A_{g,\nu}^{'\circ} \longrightarrow A_{g,\nu}$ induisant $SA'_{g,\nu} \longrightarrow SA_{g,\nu}$, et ce sont là sûrement des équivalences d'homotopie donc la suite exacte précédente doit pouvoir s'interpréter comme suite exacte

$$\begin{cases} 0 \longrightarrow \pi_1(SA_{g,\nu})^\circ \longrightarrow \pi_1(A_{g,\nu}^\circ) \longrightarrow T^I \longrightarrow \pi_0(SA_{g,\nu}^{!+}) \longrightarrow \Gamma_{g,\nu}^{!+} \longrightarrow 1 \\ \pi_i(SA_{g,\nu})^\circ \stackrel{\sim}{\longrightarrow} \pi_i(A_{g,\nu})^\circ \quad \forall i \geq 2 \end{cases}$$

Dans le cas anabélien, on trouve bien, puisque $\pi_1(A_{g,\nu}^\circ)=0$, une structure d'extension

$$\boxed{1 \longrightarrow T^{S_{g,\nu}} \longrightarrow \pi_0(SA_{g,\nu}) \longrightarrow \Gamma_{g,\nu}^{!+} \longrightarrow 1}$$

et de plus

$$\pi_i((SA_{g,v})^\circ) = 0$$
 pour $i \ge 2$

Dans le cas abélien, on doit expliciter

$$\pi_1(A_{g,\nu}^{\circ}) \longrightarrow T^{S_{g,\nu}}$$

et on va distinguer les deux cas abéliens (sous-entendant que l'on ait $I \neq \emptyset$!) - on a toujours g = 0, v = 1 ou 2.

En tous cas, introduisant une structure analytique complexe et le groupe G, composante neutre du groupe des automorphismes complexes, on a

$$G \xrightarrow{\approx} A_{\sigma,\nu}^{\circ}$$

a) Cas g=0, $\nu=2$ $G\simeq {\bf C}^*$, on voit que si la structure à lacets de π est définie par les deux isomorphismes $\varkappa_i: T \longrightarrow \pi$ $(i \in I = \{s_{0,0}, s_{0,1}\})$ alors $\pi_1(G) \longrightarrow T^I$ s'identifie, à $T \longrightarrow T^I$ dont les composantes sont ces deux \varkappa_i (qui sont symétriques, donc c'est un homomorphisme injectif dont l'image est le noyau de l'application somme $T^I \longrightarrow T$, donc ici le noyau de $\pi_0(SA_{g,\nu}) \longrightarrow \Gamma^{!+}_{g,\nu}$ (dont $\pi_0(SA_{g,\nu})$) lui même) est isomorphe, non à T^I , mais à son quotient T.

Quant à $(SA'_{g,v})^{\circ}$, tous ses π_i $(i \ge 1)$ sont nuls - il est encore ∞ -connexe.

b) Cas $g=0, \nu=1$. Alors $G\simeq \mathrm{Aff}(1,\mathbf{C}), \ \pi_1(G)\simeq T$ et $\pi_1(G)\longrightarrow T^I=T$ est un isomorphisme. Ici, le noyau de l'homomorphisme $\pi_0(SA_{g,\nu})\longrightarrow \Gamma_{g,\nu}^{!+}$ est nul i.e. $\pi_0(SA_{g,\nu})=0$.

Dans ce cas encore, on trouve que $\pi_i(SA_{g,v}^\circ)=0$ pour tout $i\geq 1$. On trouve donc

Théorème. — Supposons v > 0. Si (γ, v) est anabélien, alors $\pi_0(SA_{g,v})$ est canoniquement isomorphe à $S\Gamma_{g,v}^{!+}$. Dans tous les cas $(SA_{g,v})^{\circ}$ est ∞ -connexe.

Nous allons expliciter une relation de compatibilité pour $S\Gamma$ relatif à un π à lacets, en fixant un $i \in I = I(\pi)$, d'où un stabilisateur $\Gamma_i \subset \Gamma$ dont l'image inverse $(S\Gamma)_i$ dans $S\Gamma$ est donc une extension de Γ_i par T^I .

Utilisant la projection $T^I \xrightarrow{\operatorname{pr}_i} T$, on trouve une extension de Γ_i par T, qu'on va décrire d'une autre façon.

L'extension $S\Gamma$ est définie intrinsèquement par la donnée de I réalisation $(\pi)_{i\in I}$ du groupe extérieur π par des groupes, avec dans chaque π_i un $L_i \subset \pi_i$ de la classe i (c'est cela, la donnée d'un système de (\widetilde{D}_i^*) !).

Pour un automorphisme extérieur à lacets $u \in \Gamma$ de π , pour tout i il est possible de le réaliser pour $u_i \in \operatorname{Aut}_{\operatorname{lac}}(\pi_i)$, avec $u_i(L_i) \subset L_i$ - cet u_i est déterminé modulo multiplication à droite par un $\operatorname{int}(\varkappa_i(\alpha))$, où $\alpha \in T$.

Si on regarde la sous-extension obtenue par restriction à Γ_i , on note que la projection $T^I \xrightarrow{\operatorname{pr}_i} T$ est stable par Γ_i , donc on en déduit une extension de Γ_i par T, qui n'est autre que le groupe des automorphismes à lacets de π_i qui normalisent L_i - qui est bien une extension de Γ_i par L_i (son intersection avec $\pi_i \subset \operatorname{Aut}_{\operatorname{lac}}(\pi_i)$ étant réduite à L_i).

Ceci nous montre que l'extension de Γ par T^I a une nette tendance à ne pas être triviale, car il en est ainsi (pour $i \in I$ fixé) de l'extension de Γ_i par T à qui elle donne naissance. Si par exemple on a un sous-groupe fini $G \subset \Gamma_i^+$, l'extension induite n'est jamais triviale si $G \neq 1$, on l'a vu. En ait, G doit être cyclique et son image inverse dans l'extension en question est isomorphe à $T \dots$

§ 25 bis. — CAS DES DEUX GROUPES. RETOUR SUR LES NOTATIONS

On se place d'abord pour fixer les idées dans le cas topologique et discret, mais la motivation est le cas d'un courbe algébrique U sur un corps de type fini K, où on a à la fois le groupe $G_K = \operatorname{Aut}_K(U)^{85}$ et $\Gamma = \operatorname{Gal}(\overline{K}/K)$ qui opérant extérieurement sur le $\pi_1(U_{\overline{K}})$.

Dans ce cas, G et Γ commutent, mais on peut regarder plus généralement le cas du groupe (plus gros que G_K) $G_{\overline{K}} = \operatorname{Aut}_{\overline{K}}(U)$, sur lequel Γ opère (de façon pas nécessairement triviale - cette opération décrit un groupe algébrique étale fini sur K).

Supposons donc qu'on ait une surface U (orientable, $U = X \setminus S$, X compacte connexe, S finie) sur laquelle opère deux groupes G, Γ , l'action de Γ normalisant celle de G - donc on a un groupe $\mathscr{G} = \Gamma G$ (produit semi-direct, pour une certaine action de Γ sur G) qui opère sur U. On suppose G fini, mais pas nécessairement Γ fini.

On suppose choisi un revêtement universel \tilde{U} de U, d'où un groupe à lacets $\pi = \operatorname{Aut}(\tilde{U})$, sur lequel $\mathscr G$ opère extérieurement, d'où l'extension

$$1 \longrightarrow \pi \longrightarrow E \longrightarrow \mathscr{G} \longrightarrow 1$$

Si l'action de $\mathscr G$ sur U est fidèle, alors $\mathscr G \hookrightarrow \operatorname{Autext}(\pi)$, et l'extension précédente

 $^{^{85}}$ Cas anabélien donc \overline{G} fini.

est l'image inverse de l'extension de Teichmüller de π

$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\pi) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi) \longrightarrow 1$$

On aura à regarder d'autres revêtements universels que \widetilde{U} , et leurs isomorphismes avec \widetilde{U} . Quand $\widetilde{U}=\widetilde{U}(P)$ est le revêtement universel basé en un certain $P\in U$, alors pour les revêtements universels U(Q) basés en un point, les U-isomorphismes $\widetilde{U}(P)\stackrel{\sim}{\longrightarrow} \widetilde{U}(Q)$ correspondent donc aux classes de chemins de P à Q.

Soit $Q \in U$ tel que son sous-groupe d'isotropie G_Q dans G soit tel que $G_Q^+ \neq 1$. (Donc G_Q^+ est cyclique). Choisissant une classe de chemins de P à Q, on trouve une opération de G_Q sur $\widetilde{U}(P)$ i.e. un relèvement $G_Q \xrightarrow{r_{G_Q}} E$ dans l'extension (1) - le changement de classe de chemins de λ en λ' donnera un relèvement r'_{G_Q} qui sera conjugué de r par un unique élément de $\pi = \pi_1(U,P)$ (l'unicité provient de $\pi^{G_Q} = 1$), savoir celui qui fait passer d'un chemin à l'autre.

Considérons le stabilisateur Γ_Q de Q dans Γ , qui opère bien sur $\widetilde{U}(Q)$ tout comme G_Q (en fait c'est \mathscr{G}_Q qui opère d'où $r:\mathscr{G}_Q\longrightarrow E\ldots$), donc via λ on a aussi un relèvement $r_{\Gamma_Q}:\Gamma_Q\longrightarrow E$, qui a la même propriété de normaliser r_{G_Q} (avec opération de Γ_Q dessus, qui est celle provenant de l'opération de Γ sur $G)^{86}$. Pour simplifier, supposons quand même que Γ opère trivialement sur G i.e. $\mathscr{G}=\Gamma\times G$, alors $r_{\Gamma_Q}(\Gamma_Q)\subset E$ est contenu dans le centralisateur de r (ou de $r(G_Q)$) et comme $\pi^{r(G_Q)}=1$, donc l'homomorphisme

$$\operatorname{Centr}(r(G_{\operatorname{Q}})) {\:\longrightarrow\:} \mathscr{G}$$

est injectif⁸⁷, le relèvement en question r_{Γ_Q} est uniquement déterminé par la condition précédente.

En ait, l'image de Centr $r(G_Q)$ dans $\mathscr G$ contient $\mathscr G_Q$, et on [] de même le relèvement $\mathscr G_Q \xrightarrow{r_{G_Q}} E$. La chose intéressante, c'est que le choix d'un relèvement du (petit) groupe $\mathscr G_Q$, impose déjà le choix d'un relèvement du (grand) groupe Γ_Q , ou $\mathscr G_Q$.

 $^{^{86}}$ N. B. Comme l'ensemble des points Q est fini, et que $\mathscr G$ opère dessus, l'orbite de Q sous $\mathscr G$ est finie, i.e. $\mathscr G_Q$ est d'indice fini dans $\mathscr G$ et de même Γ_Q sous Γ .

 $^{^{87}}$ N. B. Indépendamment de toute hypothèse que Γ centralise G, le normalisateur de $r(G_Q)$ dans π , égal à son centralisateur, est réduit à 1, donc $\operatorname{Norm}(r(G_Q)) \longrightarrow \mathscr{G}$ est injectif.

Je dis que l'image dans \mathscr{G} du centralisateur (et même du normalisateur) de $r(G_O)$ est \mathscr{G}_O lui même (a priori il le contient).

Revenant à $\widetilde{U}(Q)$ lui-même, cela signifie que si $g \in \mathscr{G}$ est tel qu'il existe un automorphisme \widetilde{g} de $\widetilde{U}(Q)$ qui relève g, en normalisant l'action de G_Q , alors $g \in \mathscr{G}_Q$ et \widetilde{g} est le relèvement évident). En effet, si \widetilde{g} normalise l'action de G_Q , il invarie l'ensemble des points fixes de G_Q dans $\widetilde{U}(Q)$, qui est réduit au point \overline{Q} .

L'ensemble $U^!$ des points $Q \in U$ tels que $G_Q^+ \neq (1)$ est stable par l'action de \mathcal{G} , et s'identifie (avec cette action) à l'ensemble des relèvements maximaux modulo π de sous-groupes (cycliques) $\neq 1$ de G^+ .

Quand on connaît, pour un relèvement partiel r d'un G_Q dans E, i.e. le relèvement correspondant de \mathcal{G}_Q , alors de même pour les conjugués de r par n'importe quel élément g (non seulement de π_1 mais même de E), par simple conjugaison. Donc les cas à déterminer correspondent pratiquement aux orbites de \mathcal{G} dans $U^!$.

On peut s'intéresser à décrire $\mathscr{G} \longrightarrow \Gamma$ en tant que sous-groupes de Autext $_{\operatorname{lac}}(\pi) = \Gamma'$ donnant lieu à l'extension E' de Γ' par π (donc $E \subset E'$). Mais pour tout relèvement r d'un G_Q , considérons $\operatorname{Centr}_{E'}(r)$, on a encore $\operatorname{Centr}_{E'}\cap\pi=(1)$ i.e. on trouve une section au dessus de l'image de ce centralisateur dans Γ' , soit $\Gamma'(Q)$. Cette image ne dépend que de Q i.e. de la classe de π -conjugaison de r ou de $r(G_Q)$, et est remplacée par un G-conjugué quand Q est remplacé par un G-conjugué. Ceci dit, l'intersection Γ'^{\natural} des $\Gamma'(Q)$, pour $Q \in U^!$, est un sous-groupe de Γ' qui contient l'intersection \mathscr{G}^{\natural} des \mathscr{G}_Q , et le centralisateur de G dans Γ'^{\natural} contient de même l'intersection Γ^{\natural} des Γ_Q , qui est un sous-groupe invariant d'indice fini de Γ . Et on peut alors se proposer de voir s'il est posssible de caractériser au moins le sous-groupe fini Γ^{\natural} de Γ comme $\operatorname{Centr}_{\Gamma'^{\natural}}(G)$, et de récupérer peut être Γ comme le normalisateur de Γ^{\natural} dans $\operatorname{Centr}_G(\Gamma)$.

Je m'intéresse plus particulièrement à la variante profini de ceci, dans le cas où $U = \mathbb{P}^1_{\mathbf{Q}} \setminus 0, 1, \infty, G = \mathfrak{S}_3, \Gamma = \text{groupe de Galois sur } \mathbf{Q}$ de la clôture algébrique $\overline{\mathbf{Q}}$ de \mathbf{Q} dans \mathbf{C} et $p = \exp(2i\pi/6)$.

Je n'ai pas vérifier que $\Gamma \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\widehat{\pi})$ soit injectif, cela m'empêche de faire des calculs dans $\operatorname{Aut}_{\operatorname{lac}}(\widehat{\pi})$, fussent-ils heuristiques pour le moment.

Je bute sur des ennuis de notations - trop de groupes sont désignés par la lettre Γ (avec éventuellement des primes, indices, exposants...) Il y a trois types de groupes

qui interviennent dans mes réflexions :

- a) Les groupes de Teichmüller et ses variantes, qui jouent le rôle de groupes "universels" opérant (éventuellement modulo isotopie) sur des surfaces, ou sur des groupes extérieurs à lacets. Ces groupes ont tendance à être infinis. Des groupes (le plus souvent finis) opérant sur des surfaces topologiques, ou sur des courbes algébriques (sans, dans ce cas là, bouger le corps de base).
- c) Des groupes de Galois profinis (donc infinis), [] de corps de type fini sur \mathbf{Q} , opérant "arithmétiquement" sur des surfaces et leurs $\widehat{\pi}_1$ -géométriques⁸⁸.

C'est à cause des analogies profondes entre les cas b) et c), et leurs relations étroites avec le cas a), que j'avais été induit à adopter des notations communes, mais qui à la longue finissent par aboutir à des collisions. Il y a donc lieu de revoir les notations. Je vais réserver la lettre G et variantes pour des actions géométriques (cas b)) de groupes, le plus souvent finis, la lettre Γ et variantes pour des groupes de Galois, la lettre $\mathscr G$ pour des groupes mixtes.

Quant aux groupes "universels" de type Teichmüller, comme ceux notés $\Gamma_{g,\nu}$ précédemment, je vais plutôt les noter $\mathfrak{T},\mathfrak{T}_{g,\nu}$ (initiale de "Teichmüller", alors que Γ , G sont l'initiale de Galois).

Le groupe de Galois sur \mathbb{Q} de la clôture $\overline{\mathbb{Q}}$ de \mathbb{Q} dans \mathbb{C} mérite une lettre spéciale, je le noterai \mathbb{F} . Le quotient $\operatorname{Norm}_{\widehat{\mathfrak{X}}_{g,\nu}}(\widehat{\mathfrak{X}}_{g,\nu})/(\widehat{\mathfrak{X}}_{g,\nu})$, qui s'apparente plus à un groupe de Galois qu'à un group de Teichmüller, sera noté $\mathbb{F}_{g,\nu}$ (lettre grasse!). Dans le cas $(g,\nu)=(0,3)$ qui m'occupe plus particulièrement, $\mathbb{F}_{0,3}^{-89}$ s'identifie au centralisateur de $G=\mathfrak{S}_3=\mathfrak{X}_{0,3}^+$ dans $\widehat{\mathfrak{X}}_{0,3}^-$ il est contenu dans $\widehat{\mathfrak{X}}_{0,3}^!$, et peut-être égal. On a un homomorphisme canonique $\mathbb{F} \longrightarrow \mathbb{F}_{0,3}$ (plus généralement $\Gamma \longrightarrow \Gamma_{g,\nu}$) dont j'ignore pour l'instant s'il est injectif, et encore plus s'il est surjectif. Les réflexions qui précèdent suggèrent des conditions sur l'image, qui sont surtout intéressantes si on admet les relations

$$\widehat{\pi}^{\rho} S = \widehat{\pi^{\sigma_0}} = (1)$$

⁸⁸Les cas b) et c) se mélangent parfois (dans un groupe \mathcal{G} extension d'un groupe de Galois Γ par un groupe fini G) dans le cas de la Géométrie Algébrique.

⁸⁹**I** Γ est ici produit semi-direct de $\mathfrak{S}_3 = \mathfrak{T}^+$ par $\mathfrak{T}^!$.

On a désigné par $E_{g,\nu}$ l'extension canonique de $\mathfrak{T}_{g,\nu}$ par $\pi_{g,\nu}$ (qui pour (g,ν) anabélien s'identifie à $\mathfrak{T}'_{g,\nu+1}$). L'opération extérieure d'un groupe G, Γ , \mathscr{G} définit aussi une extension par π (ou par $\widehat{\pi}$), qu'on a également désigné par la lettre E (initiale d'extension) - il y a à nouveau collisions de notations.

Je vais prendre la lettre \mathfrak{S} (qui fait penser à \mathfrak{T}) pour ces extensions dans les cas universels à la Teichmüller, (en écrivant $\mathfrak{S}_{g,\nu}$ au lieu de $\Gamma'_{g,\nu+1}$, puisque l'optique est différente...), et en gardant la lettre E dans le cas précédent. Donc E a tendance à être une sous-extension d'un \mathfrak{S} .

Admettant que $\Gamma \longrightarrow \Gamma_{0,3}$ est injectif, on aurait donc

N. B. On note $\widehat{\mathfrak{S}}'_{g,\nu}$ le normalisateur de $\widehat{\mathfrak{S}}^+_{g,\nu}$ dans $\widehat{\mathfrak{S}}_{g,\nu}$, extension de $\mathbb{F}_{g,\nu}$ par $\widehat{\mathfrak{S}}^+_{g,\nu}$. Si $\gamma \in \mathbb{F}_{0,3}$, pour qu'il soit dans l'image de \mathbb{F} il faut qu'il admette un relèvement u qui commute à ρ , et un relèvement qui commute à σ_0 (ce qui, dès que $\gamma \in \widehat{\mathfrak{T}}_{0,3}$, implique déjà que γ dans $\widehat{\mathfrak{T}}_{0,3}$ commute à $\mathfrak{T}_{0,3}^+ = \mathfrak{S}_3$, i.e. qu'ils est dans $\mathbb{F}_{0,3}$). Il se pourrait que tout élément de $\mathbb{F}_{0,3}$ ait déjà cette propriété, donc que cette condition ne pose pas de restriction sur l'image de \mathbb{F} dans $\mathbb{F}_{0,3}$.

§ 26. — GROUPES DE TEICHMÜLLER PROFINIS (DISCRÉTIFICATION ET PRÉDISCRÉTIFICATION)

Soit π un groupe profini à lacets de type g, v, T le $\hat{\mathbf{Z}}$ -module inversible de ses orientations. On suppose qu'on est dans le cas anabélien, et on admettra qu'alors

(1)
$$\operatorname{Centre}(\pi) = \{1\},\$$

plus généralement que le centralisateur dans π de tout sous-groupe ouvert de π est réduit à $\{1\}$. On aura donc encore une suite exacte canonique de groupes profinis

(2)
$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\pi) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi) \longrightarrow 1.$$

On posera aussi

(3) Autext_{lac}
$$(\pi) = \hat{\hat{\mathbf{z}}}(\pi),$$

et on l'appellera le groupe de Teichmüller étendu de π . On posera aussi $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$, de sorte qu'on peut écrire (2) comme

$$(2') 1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi) \longrightarrow \hat{\mathfrak{S}}(\pi) \longrightarrow 1.$$

Appelons "base" de π un ensemble d'éléments de π : $(x_i, y_i)_{1 \le i \le g}$, $(l_j)_{1 \le j \le \nu}$, les l_j engendrant les différents groupes à lacets, satisfaisant

(4)
$$l_{\nu}l_{\nu-1}Dotsl_{1}[x_{g},y_{g}]Dots[x_{1},y_{1}]=1,$$

et tels que ceci soit une relation génératrice. Si on choisit dans $\pi_{g,\nu}$ une base (discrète) (définition correspondante)⁹⁰, d'où une base de $\hat{\pi}_{g,\nu}$: on aura une bijection évidente

(5)
$$\operatorname{Bases}(\pi) \overset{\sim}{\leftarrow} \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi).$$

L'ensemble des bases de π est un ensemble homogène sous $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$. Si la base correspond à un isomorphisme $u:\hat{\pi}_{g,\nu} \longrightarrow \pi$, le groupe π_0 engendré par les x_i, y_i, l_j n'est autre que $u(\pi_{g,\nu})$. Les sous-groupes de π qui peuvent s'obtenir ainsi sont appelés les *discrétifications* de π . Celles-ci forment un ensemble homogène sous $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$, canoniquement isomorphe au quotient du $\hat{\mathfrak{S}}_{g,\nu}$ -ensemble à droite $\operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu},\pi)$ par $\mathfrak{S}_{g,\nu}$:

(6)
$$\operatorname{Discr\acute{e}t}(\pi) \overset{\sim}{\leftarrow} \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \mathfrak{S}_{g,\nu}.$$

Les automorphismes (profinis à lacets) de π fixant une discrétification π_0 s'identifient aux automorphismes du groupe discret à lacets π_0 :

(7)
$$\operatorname{Aut}_{\operatorname{lac}}(\pi, \pi_0) \simeq \operatorname{Aut}_{\operatorname{lac}}(\pi_0).$$

La bijection (5) met sur l'ensemble des bases de π une structure de bitorseur sous $\hat{\mathfrak{S}}(\pi)$, $\hat{\mathfrak{S}}_{g,\nu}$, et la topologie correspondante en fait un ensemble profini. L'ensemble des discrétifications de π , qui est un quotient de l'ensemble précédent, hérite d'une topologie quotient, qui n'est autre que la topologie quotient du deuxième membre de (6). Cet espace n'est pas séparé $(\mathfrak{S}_{g,\nu}$ est toujours infini), car le groupe $\mathfrak{S}_{g,\nu} \subset \hat{\mathfrak{S}}_{g,\nu}$ n'est pas fermé. On désigne par Discrét' (π) l'espace topologique séparé associé, s'identifiant à $\mathrm{Isom}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)/\overline{\mathfrak{S}}_{g,\nu}$, où $\overline{\mathfrak{S}}_{g,\nu}$ désigne l'adhérence de $\mathfrak{S}_{g,\nu}$ dans $\hat{\mathfrak{S}}_{g,\nu}$. On a d'ailleurs un homomorphisme évident $\hat{\mathfrak{S}}_{g,\nu} \to \hat{\mathfrak{S}}_{g,\nu}$ dont l'image est $\overline{\mathfrak{S}}_{g,\nu}$, nous admettrons qu'il est injectif et identifierons $\overline{\mathfrak{S}}_{g,\nu}$ à $\hat{\mathfrak{S}}_{g,\nu}$. Ainsi

(8)
$$\operatorname{Discr\acute{e}t}'(\pi) \simeq \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{S}}_{g,\nu}.$$

Un élément de Discrét' (π) s'appelle une classe de discrétifications de π (ou prédiscrétification de π). Si π_0 est une discrétification, on désigne sa classe par π_0^{\natural} .

⁹⁰ou encore on définit $\pi_{g,v}$ comme le groupe discret de générateurs les x_i, y_i, l_j et de relation de définition (4)

L'ensemble des classes de discrétifications de π est un espace homogène sous $\hat{\mathfrak{S}}(\pi)$, le stabilisateur de π_0^{\natural} s'identifiant à l'adhérence de $\mathfrak{S}(\pi_0) = \operatorname{Aut}_{\operatorname{lac}}(\pi_0)$ dans $\hat{\mathfrak{S}}(\pi)$, ou encore à $\hat{\mathfrak{S}}(\pi_0)$. Celle-ci contient toujours π .

(9)
$$\operatorname{Aut}_{\operatorname{lac}}(\pi, \pi_0^{\natural}) \simeq \hat{\mathfrak{S}}(\pi_0).$$

Pour toute [pré?] discrétification π_0^{\natural} , le sous-groupe de $\hat{\mathfrak{S}}(\pi)$ des automorphismes à lacets qui fixent π_0^{\natural} est noté $\hat{\mathfrak{S}}(\pi_0^{\natural})$. C'est donc l'image inverse d'un sous-groupe de $\hat{\mathfrak{T}}(\pi)$, noté $\hat{\mathfrak{T}}(\pi_0^{\natural})$. On a donc une inclusion de structures d'extensions:

(10)
$$1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi_0^{\natural}) \longrightarrow \hat{\mathfrak{T}}(\pi_0^{\natural}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi) \longrightarrow \hat{\mathfrak{T}}(\pi) \longrightarrow 1.$$

(On montre par voie arithmético-géométrique que l'inclusion $\hat{\mathfrak{T}} \longrightarrow \hat{\hat{\mathfrak{T}}}$ n'est jamais un isomorphisme). On trouve ainsi une application

(11) Discrét'
$$(\pi)$$
 \longrightarrow sous-groupes fermés de $\hat{\hat{\mathfrak{Z}}}(\pi)$,

$$\left[\pi_0^{\natural} \mapsto \hat{\mathfrak{Z}}(\pi_0^{\natural})\right]$$

évidemment compatible à l'action de $\hat{\mathfrak{S}}(\pi)$ (transport de structure) – opérant à droite via $\hat{\mathfrak{L}}(\pi)$ et ses automorphismes intérieurs sur lui-même.

On trouve ainsi une classe de conjugaison bien déterminée de sous-groupes fermés de $\hat{\hat{\mathfrak{Z}}}(\pi)$, qu'on appelle ses sous-groupes de Teichmüller "géométriques". Il se pourrait d'ailleurs que $\hat{\mathfrak{Z}}_{g,\nu}$ soit son propre normalisateur dans $\hat{\hat{\mathfrak{Z}}}_{g,\nu}$ ce qui équivaut à l'assertion que (11) est bijective: la donnée d'une classe de discrétifications de π

⁹¹NB. L'ensemble des classes de discrétification de π se décrit en termes de groupes *extérieurs* définis par π comme Isomext_{lac}($\hat{\pi}_{g,\nu},\pi$) divisé par $\hat{\mathfrak{X}}_{g,\nu}$; on a d'ailleurs une application de degré 2 Isomext($\hat{\pi}_{g,\nu},\pi$)/ $\hat{\mathfrak{X}}_{g,\nu}^+$ — Isomext($\hat{\pi}_{g,\nu},\pi$)/ $\hat{\mathfrak{X}}_{g,\nu}$, ce qui permet pour toute classe de discrétification de définir ses deux *orientations* et de parler des classes de discrétification *orientées*.

serait équivalente à celle d'un sous-groupe de Teichmüller géométrique dans son groupe de Teichmüller étendu $\hat{\hat{\mathbf{x}}}$.

Notons qu'on a des homomorphismes canoniques

$$\hat{\hat{\mathfrak{X}}} \xrightarrow{Hi} \hat{\mathbf{Z}}^*$$

$$\hat{\hat{\mathbf{x}}} \longrightarrow \mathfrak{S}_I$$

(où $I = I(\pi)$ est l'ensemble des classes de conjugaison des sous-groupes à lacets de π), induisant sur $\hat{\mathfrak{T}}(\pi_0^{\natural})$ des homomorphismes correspondants – d'où la définition des sous-groupes $\hat{\mathfrak{T}}, \hat{\mathfrak{T}}, \hat{\mathfrak{T}}$ et de même pour $\hat{\mathfrak{T}}$. Notons que Hi ne prend sur $\hat{\mathfrak{T}}$ que les valeurs ± 1 .

Le sous-groupe $\hat{\mathfrak{X}}^+$ des automorphismes extérieurs du groupe à lacets profinis π , fixant une classe de discrétifications π_0^{\natural} et de multiplicateur ± 1 , joue un rôle très particulier. A l'opposé de ce qu'on peut conjecturer sur $\hat{\mathfrak{X}}$ (dont $\hat{\mathfrak{X}}^+$ est un sous-groupe ouvert d'indice 2), on supposerait plutôt que $\hat{\mathfrak{X}}^+$ est invariant dans $\hat{\mathfrak{X}}$ [voir note en bas de page précédente]. En tout état de cause, les sous-groupes ainsi définis dans $\hat{\mathfrak{X}}$ via classes de discrétification de π (peut-être n'y en a-t-il qu'un seul et unique!) s'appelleront les sous-groupes de Teichmüller géométriques stricts. Le choix d'un tel sous-groupe de $\hat{\mathfrak{X}}$ est, en tout état de cause, un élément de structure nettement plus faible que celui d'une classe de discrétification, et même que celui d'un sous-groupe de Teichmüller géométrique (pas strict). Pour préciser les relations entre ces deux notions, rappelons d'abord que $\hat{\mathfrak{X}}^+ = \Sigma$ se déduit de $\hat{\mathfrak{X}}$ comme noyau de $Hi|\hat{\mathfrak{X}}:\hat{\mathfrak{X}}\longrightarrow \{\pm 1\}$. D'autre part (pour un sous-groupe de Teichmüller géométrique strict choisi $\hat{\mathfrak{X}}^+$), considérons

(14)
$$\mathcal{N}_{\Sigma} = \mathcal{N} = \operatorname{Norm}_{\hat{\hat{\mathbf{x}}}}(\Sigma)$$

 $^{^{92}}$ c'est complètement déconnant et ultra-faux; un moment d'égarement! Cela apparaît clairement par la suite...La question judicieuse (avec laquelle j'ai dû sur le coup confondre) c'est si $\hat{\mathfrak{Z}}$ est invariant dans $\hat{\mathfrak{Z}}$, i.e. si le normalisateur est $\hat{\mathfrak{Z}}$ tout entier.

où $\Sigma=\hat{\mathfrak{T}}^+$ ([\mathscr{N}_{Σ} est] peut-être toujours égal à $\hat{\mathfrak{T}}$ tout entier), évidemment (si Σ provient d'un $\hat{\mathfrak{T}}$)

$$\Sigma = \hat{\mathfrak{Z}}^+ \subset \hat{\mathfrak{Z}} \subset \mathcal{N}_{\Sigma}.$$

Le groupe profini \mathcal{N}/Σ associé à Σ se note \mathbb{F}_{Σ} (si Σ est unique, on note \mathbb{F}_{π}), et les $\hat{\mathfrak{D}}$ donnant naissance au même Σ correspondent à une classe de conjugaison d'éléments d'ordre 2 de \mathbb{F}_{Σ} . Il est clair en tous cas qu'on a une application injective

{ensemble des sous-groupes de Teichmüller géométriques $\hat{\mathfrak{Z}}$ dans $\hat{\hat{\mathfrak{Z}}}$ tels que $\hat{\mathfrak{Z}}^+ = \Sigma$ }

 \downarrow

(16) {ensemble des éléments d'ordre 2 dans
$$\Gamma_{\Sigma}$$
}

et que son image est stable par conjugaison. Montrons que deux éléments de l'image sont conjugués dans \mathbb{F}_{Σ} . En effet, soient $\hat{\mathfrak{X}}, \hat{\mathfrak{X}}' \supset \Sigma$ tels que $\Sigma = \hat{\mathfrak{X}}^+ = \hat{\mathfrak{X}}'^+$. Il existe $g \in \hat{\mathfrak{X}}$ tel que $\hat{\mathfrak{X}}' = \operatorname{Int}(g)\hat{\mathfrak{X}}$, et on aura alors $\hat{\mathfrak{X}}'^+ = \operatorname{Int}(g)\hat{\mathfrak{X}}^+$, i.e. $g \in \mathcal{N}$, OK.

Les éléments d'ordre 2 ainsi obtenus dans Π_{Σ} s'appellent les involutions canoniques. On en donnera une interprétation conjecturale remarquable plus bas. L'ensemble $\hat{\mathfrak{T}}/\mathcal{N}$ s'identifie à l'ensemble des sous-groupes de Teichmüller géométriques stricts (une fois choisi l'élément "origine" Σ). Plus intrinsèquement, on aura:

{Ensemble des sous-groupes de Teichmüller géométriques stricts de $\hat{\hat{\mathfrak{Z}}}(\pi)$ }

1

(17)
$$\operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu},\pi)/\mathcal{N}_{g,\nu}$$

où on pose, comme de juste,

(18)
$$\mathcal{N}_{g,\nu} = \operatorname{Norm}_{\hat{\mathfrak{X}}_{g,\nu}}(\hat{\mathfrak{X}}_{g,\nu}^+)$$

(peut-être égal à $\hat{\hat{\mathfrak{X}}}_{g,\nu}$ tout entier !).

Considérons maintenant le topos modulaire sur \mathbf{Q} des courbes algébriques de type (g,v), noté $M_{g,v,\mathbf{Q}}$ ou simplement $M_{g,v}$. Si nous choisissons un revêtement universel $M_{g,v}$ (d'où un revêtement universel de Spec \mathbf{Q} , i.e. une clôture algébrique $\overline{\mathbf{Q}}$ de \mathbf{Q}), on peut préciser le $\pi_1(M_{g,v,\mathbf{Q}})$ comme le groupe des $M_{g,v,\mathbf{Q}}$ -automorphismes de ce revêtement et l'appeler le groupe de Teichmüller arithmétique de type (g,v) (relatif au choix de $M_{g,v,\mathbf{Q}}$). On aura donc une suite exacte

$$(19) 1 \longrightarrow \pi_1(M_{g,\nu,\overline{\mathbf{Q}}}) \longrightarrow \pi_1(M_{g,\nu}) \longrightarrow \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow 1,$$

(où $\overline{\mathbf{Q}}$ et les points base sont explicités comme il a été dit). Notons que par la théorie transcendante de Teichmüller on a un isomorphisme (défini modulo l'opération induite par $\pi_1(M_{g,v})$ sur $\pi_1(M_{g,v}\overline{\mathbf{Q}})$):

(20)
$$\pi_1(M_{g,\nu,\overline{Q}}) \simeq \hat{\mathfrak{T}}_{g,\nu}^+$$

(où $\hat{\mathfrak{Z}}_{g,\nu}^+$ est le compactifié profini de ${\mathfrak{Z}}_{g,\nu}^+$).

Considérons d'autre part le schéma $U_{g,\nu}$ sur $M_{g,\nu}$, courbe de type (g,ν) "universelle". On a donc, en choisissant un revêtement universel $\widetilde{U}_{g,\nu}$ de celle-ci audessus du revêtement universel choisi $\widetilde{M}_{g,\nu}$ de $M_{g,\nu}$, un diagramme commutatif:

et de même pour $U_{g,v,\overline{\mathbf{Q}}} \longrightarrow M_{g,v,\overline{\mathbf{Q}}}$:

$$(21') 1 \longrightarrow \pi \longrightarrow \pi_1(U_{g,v,\overline{\mathbf{O}}}) \longrightarrow \pi_1(M_{g,v,\overline{\mathbf{O}}}) \longrightarrow 1.$$

On a bien sûr un isomorphisme de groupes à lacets

$$\pi \simeq \hat{\pi}_{g,\nu}$$

dont on voudrait déterminer l'indétermination de façon précise.

Notons $M_{g,\nu,C}$ le topos modulaire de Teichmüller complexe, défini à l'aide de la surface C^{∞} $U_{g,\nu}$; il est muni du revêtement universel canonique $\widetilde{M}_{g,\nu,C}$ (§21;

 $\widetilde{M}_{g,\nu,C} \simeq E_g/A_{g,\nu}^o$) de groupe d'automorphismes $\mathfrak{T}_{g,\nu}^+$ justement - $U_{g,\nu,C}$ étant lui aussi muni d'un revêtement universel au-dessus du précédent, $(\widetilde{U}_{g,\nu,C} = E_g/A_{g,\nu_1}^o)$. Ceci donne naissance aux suites exactes des groupes discrets (dans le contexte topologique général)

$$(24) \qquad 1 \longrightarrow \pi_{g,\nu} \longrightarrow \mathfrak{S}_{g,\nu}^{+} \longrightarrow \mathfrak{T}_{g,\nu}^{+} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \pi_{g,\nu} \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\pi_{g,\nu}) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi_{g,\nu}) \longrightarrow 1$$

(la première suite s'envoyant dans la seconde par un isomorphisme de structures d'extensions [avec les identifications] $\mathfrak{S}_{g,\nu}^+ = \pi_1(U_{g,\nu,\mathbf{C}})$ et $\mathfrak{X}_{g,\nu}^+ = \pi_1(M_{g,\nu,\mathbf{C}})$) qui par passage aux complétés profinis donne la suite exacte analogue pour les multiplicités algébriques sur \mathbf{C} .

Cette situation provient d'ailleurs canoniquement d'une situation analogue sur $\overline{\mathbb{Q}}_0 = \text{clôture}$ algébrique de \mathbb{Q} dans \mathbb{C} , le choix de $U_{g,\nu,\mathbb{C}}$ définissant un $U_{g,\nu,\overline{\mathbb{Q}}_0}$, d'où un $M_{g,\nu,\overline{\mathbb{Q}}_0}$. Pour définir un isomorphisme entre cette suite (25) et la suite exacte (21') (munie canoniquement de deux homomorphismes dans (22)) il faut

- 1) choisir un isomorphisme $\overline{Q}\simeq\overline{Q_0}$ l'indétermination est dans $Gal(\overline{Q}/Q)$; ceci permet d'identifier \overline{Q} et $\overline{Q_0}$;
- 2) Choisir un isomorphisme (sur $\overline{\mathbf{Q}} = \overline{\mathbf{Q}}_0$) de $(\widetilde{U_{g,\nu}})_0$ (construit par voie transcendant sur \mathbf{C} et descendu à $\overline{\mathbf{Q}}_0$) avec $\widetilde{U_{g,\nu,\overline{\mathbf{Q}}}}$ l'indétermination est dans $\pi_1(M_{g,\nu,\overline{\mathbf{Q}}})$. En résumé, on a une classe d'isomorphismes de (21) et (25), définie modulo automorphismes intérieurs dans le groupe profini $\pi_1(U_{g,\nu})$. Une fois choisi l'isomorphisme $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$, les isomorphismes correspondants transforment la classe de discrétifications orientée standard de $\hat{\pi}_{g,\nu}$ en exactement une classe de discrétifications orientée de π .

Changeant le choix de l'isomorphisme en son complexe conjugué, on trouve la quasi-discrétification orientée opposée.

On voit d'autre part que l'image de $\pi_1(M_{g,\nu,\overline{Q}})\subset \pi_1(M_{g,\nu})$ dans $\hat{\mathbb{Z}}(\pi)$ n'est autre que le $\hat{\mathbb{Z}}^+$ correspondant à une quelconque des classes de quasi-rigidification discrètes choisies – le sous-groupe ne dépend pas du choix de cette classe – ce qui ne fait qu'exprimer que l'image de $\pi_1(M_{g,\nu,\overline{Q}})$ dans $\hat{\mathbb{Z}}(\pi)$, considérée comme sous-groupe de l'image du groupe plus grand $\pi_1(M_{g,\nu})$, y est invariante – ce qui résulte du fait que $\pi_1(M_{g,\nu,\overline{Q}})$ est invariant dans $\pi_1(M_{g,\nu,Q})$. Ainsi π est muni canoniquement (non d'une quasi-rigidification discrète orientée, ce qui dépend du choix d'un isomorphisme $\overline{Q}\simeq \overline{Q}_0$, i.e. d'un plongement $\overline{Q}\hookrightarrow C$), mais du moins d'un groupe de Teichmüller géométrique strict $\Sigma\subset\hat{\mathbb{Z}}(\pi)$, à savoir l'image de $\pi_1(M_{g,\nu,\overline{Q}})$ (isomorphe à [??]) Ceci posé, on a un homomorphisme canonique d'extensions de groupes

où $\mathcal{N}_{\Sigma}=\operatorname{Norm}_{\hat{\mathfrak{Z}}(\pi)}(\Sigma)$ et $\operatorname{I\!\Gamma}_{\Sigma}$ est le groupe des automorphismes extérieurs "arithmétiques" de π (muni de Σ).

Pour le choix d'un isomorphisme $\overline{Q} \simeq \overline{Q}_0$, i.e. d'un plongement $\overline{Q} \hookrightarrow C$, l'image de la conjugaison complexe de $\operatorname{Gal}(\overline{Q}_0/Q)$ n'est autre que l'élément d'ordre 2 de $\operatorname{I\!\Gamma}_\Sigma$ associé au sous-groupe de Teichmüller géométrique, associé à la quasi-discrétification (orientée, mais peu importe) canonique sur π (définie par $\overline{Q} \simeq \overline{Q}_0$).

La conjecture naturelle ici, c'est que

(27)
$$\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \longrightarrow \Gamma_{\Sigma}$$

du groupe de Galois vers les automorphismes extérieurs arithmétiques de (π, Σ) soit un isomorphisme. On peut la compléter par la conjecture, encore plus hardie, que de plus Σ est invariant dans $\hat{\hat{\mathbf{x}}}(\pi)$ ($\Leftrightarrow \Sigma_{g,\nu}$ invariant dans $\hat{\hat{\mathbf{x}}}_{g,\nu}$), ce qui signi-

fierait donc que $\mathcal{N}_{\Sigma} = \hat{\hat{\mathbf{x}}}$, ou encore que 93

(28)
$$\pi_1(M_{g,\nu}) \xrightarrow{\sim} \hat{\mathfrak{Z}}(\pi) = \operatorname{Autext}_{lac}(\pi)$$

et $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ s'identifierait au quotient "arithmétique" du groupe des automorphismes extérieurs à lacets de π .

Soit maintenant U une courbe algébrique de type g, v sur $\overline{\mathbf{Q}}$. Elle est définie par un point de $M_{g,v,\overline{\mathbf{Q}}}$ sur $\operatorname{Spec}\overline{\mathbf{Q}}$, et comme fibre de U_g,v en ce point. Choisissons un revêtement universel de U, d'où un groupe $\pi(U)$, canoniquement isomorphe au groupe π ci-dessus, une fois choisi un isomorphisme entre $\widetilde{U_g,v}$ et le revêtement universel de U_g,v déduit de \widetilde{U} , ce qui donne une indétermination dans $\pi_1(U_{g,v,\overline{\mathbf{Q}}}) \simeq \hat{\mathfrak{E}}^+$. Ainsi, une fois choisi un isomorphisme $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$, on trouve sur $\pi_1(U)$ une quasi-discrétification orientée [voir 8] (évidente d'ailleurs à définir directement, par voie transcendante), changée en son opposée par changement de l'isomorphisme $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$ par conjugaison complexe. D'autre part, le sous-groupe $\hat{\mathfrak{E}}^+$ de $\hat{\mathfrak{T}}(\pi)$, correspondant à cette quasi-discrétification (orientée, peu nous chaut) ne dépend pas du choix de l'isomorphisme en question $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$, il est canoniquement associé à π en tant que groupe fondamental d'un U sur un corps algébriquement clos (N.B. on pourrait prendre un corps algébriquement clos de caractéristique zéro quelconque, pas la peine que ce soit sur $\overline{\mathbf{Q}}$, cf. plus bas).

Si la conjecture sur \mathbb{F} est vérifiée, il en résulterait que la donnée d'un groupe profini à lacets π de type (g, ν) , muni d'un groupe de Teichmüller géométrique strict $\Sigma \subset \hat{\mathfrak{X}}(\pi)$ (ce qui peut-être n'est pas une structure supplémentaire du tout – Σ serait uniquement déterminé par $\pi!$) équivaudrait à la donnée d'une extension algébriquement close $\overline{\mathbf{Q}}$ de \mathbf{Q} (dont le groupe de Galois serait $\mathcal{N}_{\hat{\mathfrak{X}}}(\Sigma)/\Sigma = \mathbb{F}_{\Sigma}$) et le \mathbb{F}_0 -torseur $\mathrm{Isom}(\overline{\mathbf{Q}},\overline{\mathbf{Q}}_0)$ s'identifierait à l'ensemble ($\subset \mathrm{Isom}(\hat{\pi}_{g,\nu},\pi)/\hat{\mathfrak{X}}_{g,\nu}^{\circ}$) des quasi-rigidifications orientées donnant naissance à $\pi...$) et d'un revêtement universel de $U_{g,\nu,\overline{\mathbf{Q}}}$ ou simplement d'un revêtement universel $\widetilde{U}_{g,\nu}$ de $U_{g,\nu} = U_{g,\nu,\mathbf{Q}}$.

La donnée d'un isomorphisme $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$ revient donc à celle d'une quasi-rigidification orientée sur π compatible avec Σ (condition peut-être automatique-

⁹³conjectural

 $^{^{94}}$ si on se donne seulement π comme groupe extérieur, avec Σ , ce qui revient à la donnée d'un revêtement universel de $M_{g,\nu}$.

ment satisfaite...). Ceci dit, la donnée d'une courbe algébrique de type g, v sur un corps algébriquement clos $\overline{\mathbf{Q}}$, et d'un revêtement universel de celle-ci reviendrait à la donnée d'une donnée précédente (à savoir un revêtement universel d'un $M_{g,v}$, plus un point de $M_{g,v,\overline{\mathbf{Q}}}$ sur $\overline{\mathbf{Q}}$ définissant un revêtement universel) 95, et cette dernière donnée s'identifierait à un germe de scindage dans l'extension

$$1 \longrightarrow \pi_1(M_{g,\nu,\overline{\mathbf{Q}}}) \longrightarrow \pi_1(M_{g,\nu}) \longrightarrow \pi_1(\mathbf{Q}) \longrightarrow 1.$$

L'interprétation profinie (en termes des groupes extérieurs à lacets π) est alors un (π, Σ) , et un germe de scindage de

$$1 \longrightarrow \Sigma \longrightarrow \mathcal{N}_{\Sigma} \longrightarrow \mathbb{I}\Gamma_{\Sigma} \longrightarrow 1.$$

Si on veut une courbe sur une sous-extension finie K' de $\overline{\mathbb{Q}}/\mathbb{Q}$, correspondant à un sous-groupe d'indice fini $\Gamma' \subset \mathbb{F}_{\Sigma}$, il s'agira d'un scindage partiel $\Gamma' \longrightarrow \mathcal{N}_{\Sigma}$.

Mais sûrement, si cette description des courbes algébriques anabéliennes est pleinement fidèle, elle n'est pas 2-fidèle, i.e. il faut des conditions sur ce scindage, qu'il faudra examiner par la suite.

La description d'une courbe algébrique de type g, v sur un corps fixé, de type fini sur \mathbf{Q} , K quelconque, muni d'une extension algébriquement close \overline{K} (donc $\mathbb{F} = \mathrm{Gal}(\overline{K}/K) \longrightarrow \mathbb{F}_0 = \mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, où $\overline{\mathbf{Q}}$ est la clôture algébrique de \mathbf{Q} dans \overline{K}), en termes de $\mathbb{F} \leftarrow \mathbb{F}_0$, serait la suivante: donnée d'un groupe extérieur à lacets π de type g, v, d'un sous-groupe de Teichmüller Σ dans $\hat{\mathbb{E}}(\pi)$, d'un isomorphisme $\overline{\mathbf{Q}} \simeq \mathrm{corps}$ défini par cette situation (ayant comme groupe de Galois $\mathcal{N}_{\Sigma}/\Sigma$, de sorte qu'on trouve un isomorphisme $\mathbb{F}_0 \simeq \mathcal{N}_{\Sigma}/\Sigma$), enfin d'un relèvement de $\mathbb{F} \longrightarrow \mathbb{F}_0$ (qui décrit une action arithmétiquement extérieure de \mathbb{F} sur (π, Σ)) en une action extérieur $\mathbb{F} \longrightarrow \mathcal{N}_{\Sigma}$ de \mathbb{F} sur (π, Σ) avec des conditions qu'il faudra essayer de dégager (nécessaires et suffisantes conjecturalement) sur ce relèvement.

Notons que tout plongement $\overline{K} \hookrightarrow \mathbb{C}$ définit canoniquement sur le groupe extérieur $\pi = \pi_1(U_{\overline{K}})$ une quasi-discrétification orientée, remplacée par l'opposée quand on remplace le plongement par le complexe conjugué. Je dis que ces quasi-discrétifications définissent toutes Σ comme groupe des automorphismes et que la quasi-discrétification définie par $\overline{K} \hookrightarrow \mathbb{C}$ ne dépend que de sa restriction en $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$

 $^{^{95}}$ NB. Si on renonce à choisir \widetilde{U} , ceci revient à travailler avec les groupes à lacets extérieurs.

- de façon plus précise, c'est celle qu'on définit directement à l'aide de $\overline{\mathbf{Q}} \hookrightarrow \mathbf{C}$, i.e. de $\overline{\mathbf{Q}} \simeq \overline{\mathbf{Q}}_0$. Mais il y a lieu d'examiner aussi la façon d'obtenir des *discrétifications*. Ainsi, si un U est défini sur $\overline{\mathbf{Q}}_0$, [c'est] un π extérieur de type (g, v), muni d'une quasi-discrétification orientée $\pi_0^{\natural +}$, et d'un germe de scindage de

$$1 \longrightarrow \Sigma \longrightarrow \mathscr{N}_{\Sigma} \longrightarrow \mathbb{\Gamma}_{\Sigma} \longrightarrow 1,$$

où $\Sigma=\operatorname{Autext}_{\operatorname{lac}}(\pi,\pi_0^{\mathfrak{h}+})$, qui fait opérer extérieurement le noyau du groupe défini par Γ_{Σ} sur π , les points rationnels sur $\overline{\mathbb{Q}}_0$ correspondant aux classes de π -conjugaison des germes de relèvement de cette opération extérieure en une vraie opération. Supposons donc donné un tel point, i.e. on a un sous-groupe ouvert $\Gamma\subset \Gamma_{\Sigma}$ qui opère bel et bien sur π , l'opération définie mod automorphismes intérieurs (lui-même unique car $\pi^{\Gamma}=\{1\}$!) Dans cette situation, il faudrait définir dans $\pi\simeq\pi_1(U_P,P)$ une discrétification orientée $\pi_0\subset\pi$, et pas seulement une quasi-discrétification orientée! (Bien sûr, elle doit être dans la classe qu'on s'est donnée d'avance de discrétifications orientées, qu'on avait justement notée $\pi_0^{\mathfrak{h}+}$. On y reviendra – ainsi qu'à la situation analogue sur un corps de base K de type quelconque...)

Je réfère au début du \S suivant ($\S 27$) pour le changement de terminologie, la "quasi-discrétification" devenant une "prédiscrétification". Mais il y a lieu d'introduire aussi une notion plus fine, correspondant au cas d'un π_1 (profini) d'une variété algébrique X définie sur un corps algébriquement clos \overline{K} , quand on plonge \overline{K} dans C: il y a une discrétification mod automorphismes intérieurs – on l'appellera une *prédiscrétification stricte*. Dans le cas d'un π à lacets, l'espace homogène sous $\hat{\mathfrak{Z}}(\pi)$ de celles-ci s'identifie à

$$\operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,v},\pi)/(\hat{\pi}_{g,v}Dot\mathfrak{T}_{g,v}) \simeq \operatorname{Isomext}_{\operatorname{lac}}(\hat{\pi}_{g,v},\pi)/\mathfrak{T}_{g,v},$$

et cette action également ne dépend que du groupe profini à lacets extérieur défini par $\pi_{g,\nu}$, et équivaut à celle d'une "base extérieure" de π mod action de $\mathfrak{T}_{g,\nu}$, i.e. d'un isomorphisme de π avec le $\hat{\pi}_{g,\nu}$ "type", mod action de $\mathfrak{T}_{g,\nu}$. L'application

Bases extérieures de
$$\pi$$
 \longrightarrow Prédiscrétifications de (π)

fait donc du membre de gauche un torseur relatif à droite sur celui de droite, de groupe $\mathfrak{T}_{g,\nu}$.

Une prédiscrétification de (π, Σ) correspond à un choix d'un isomorphisme de la clôture algébrique $\overline{\mathbf{Q}}_{(\pi,\Sigma)} = \overline{\mathbf{Q}}$ associé à (π,Σ) , avec $\overline{\mathbf{Q}}_0$. Quand on se donne (π,Σ) comme correspondant à une courbe algébrique sur $\overline{\mathbf{Q}}$, i.e. qu'on se donne un germe de relèvement de \mathbb{F}_{Σ} dans $\mathscr{N}_{\Sigma} \subset \hat{\mathfrak{T}}(\pi)$, i.e. un germe d'actions extérieures de \mathbb{F}_{Σ} sur π , toute prédiscrétification doit donner naissance à une discrétification stricte et même à une discrétification quand on remonte un germe d'action ("admissible") de \mathbb{F}_{Σ} sur π ...

\S 27. — CHANGEMENT DE TYPE (g, ν) : a) BOUCHAGE DE TROUS

Je vais changer de terminologie, en appelant prédiscrétification ce que j'avais appelé (un peu péjorativement!) quasi-discrétification. En effet, on prévoit qu'une prédiscrétification – compatible avec Σ – qui revient moralement au plongement (modulo la conjugaison complexe) dans ${\bf C}$ de la clôture algébrique $\overline{{\bf Q}}$ de ${\bf Q}$ canoniquement associé à $(\pi,\Sigma(\subset\hat{\hat{\bf Z}}(\pi)))$, donne naissance, dès que l'action extérieure arithmétique de $\Pi_\Sigma=\mathcal{N}_\Sigma/\Sigma$ sur π est relevée en un germe d'action sur π , à une vraie discrétification de π . Itou pour les prédiscrétifications orientées. Le groupe $\mathcal{N}_\Sigma/\Sigma$ mérite aussi un nom – je vais l'appeler le groupe de Teichmüller arithmétique associé à $(\pi,\Sigma)^{96}$, et ses éléments seront appelés les automorphismes arithmétiquement extérieurs de π – déduits d'un automorphisme extérieur (normalisant Σ) en négligeant les automorphismes extérieurs "géométriques" (i.e. justement ceux dans Σ) – comme les automorphismes extérieurs ordinaires étaient décrits en négligeant les automorphismes intérieurs de π . On fera attention que le caractère "multiplicateur"

$$Hi: \hat{\hat{\mathfrak{Z}}}(\pi) \longrightarrow \hat{\mathbf{Z}}^*$$

est trivial sur Σ , par construction de Σ , et passe à Π_{Σ} :

$$Hi_{\Sigma}: \mathbb{I}\Gamma_{\Sigma} \longrightarrow \hat{\mathbf{Z}}^*.$$

⁹⁶ moralement, $\Sigma = \hat{\mathfrak{Z}}^+$, mais il n'y a pas de $\hat{\mathfrak{Z}}^!$

Bien sûr, ce caractère s'appelera encore "multiplicateur", ou "caractère cyclotomique". Si notre conjecture fondamentale est vraie¹, ce caractère identifie $(\mathbb{F}_{\Sigma})_{ab}$ à $\hat{\mathbf{Z}}^*$. Par contre, si $I = I(\pi)$, l'homomorphisme canonique

$$\hat{\hat{\mathfrak{X}}} \longrightarrow \mathfrak{S}_I$$

n'est pas trivial sur Σ , mais induit un homorphisme surjectif:

$$\Sigma \longrightarrow \mathfrak{S}_I$$

d'où un sous-groupe Σ ! tel que

$$\Sigma/\Sigma^! \xrightarrow{\sim} \mathfrak{S}_I.^{97}$$

On voit de suite que tout $\gamma \in \hat{\hat{\mathfrak{X}}}$ qui normalise Σ normalise $\Sigma^! = \Sigma \cap \hat{\hat{\mathfrak{X}}}^!$, d'où $\Sigma^!$ est aussi invariant dans \mathscr{N}_{Σ} . Soit $\mathscr{N}_{\Sigma}^! = \mathscr{N}_{\Sigma} \cap \hat{\hat{\mathfrak{X}}}^!$, on a un diagramme cartésien de sous-groupes de $\hat{\hat{\mathfrak{X}}}$:

$$\begin{array}{ccc}
\mathcal{N}! & \stackrel{\mathfrak{S}_I}{\longrightarrow} \mathcal{N} \\
& & & \downarrow \\
\Gamma_{\Sigma} & & & \downarrow \\
\Sigma! & \stackrel{\mathfrak{S}_I}{\longrightarrow} \Sigma
\end{array}$$

donnant un homomorphisme injectif $\mathcal{N}/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \times \mathcal{N}/\Sigma$ (ici $\mathcal{N}/\mathcal{N}^! = \mathfrak{S}_I$), $\mathcal{N}/\Sigma = \mathbb{I}_{\Sigma}$ et $\Sigma/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \simeq \mathfrak{S}_I$), dont on voit de suite qu'il est bijectif

$$\mathcal{N}/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \times \mathcal{N}/\Sigma \simeq \mathfrak{S}_I \times \mathbb{I}\Gamma_{\Sigma}$$

et on a par suite aussi

$$\mathcal{N}^!/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\Sigma = \mathbb{I}\Gamma_{\Sigma},$$

i.e. le groupe $\[\Gamma_{\Sigma} \]$ des automorphismes arithmétiquement extérieurs de (π, Σ) peut se décrire aussi via les automorphismes extérieurs induisant l'identité sur I.

Dans le cas (g, v) = (0,3), on a $\Sigma^! = \{1\}$, donc $\Sigma \xrightarrow{\sim} \mathfrak{S}_3$. \mathscr{N} est le normalisateur de \mathfrak{S}_3 dans $\hat{\mathfrak{Z}}$, $\mathscr{N}^! \xrightarrow{\sim} \mathbb{I}_{\Sigma}$ est son centralisateur, et \mathscr{N} s'identifie au produit direct des deux.

⁹⁷moralement, $\Sigma^! \simeq \hat{\mathfrak{Z}}^{!+}$

Soit maintenant $I' \subset I$, $\nu' = \operatorname{card}(I')$, et considérons le groupe extérieur π' déduit de π par "bouchage de trous" en $I \setminus I'$, d'où un homomorphisme

$$\pi \longrightarrow \pi'$$
.

Considérons les bases de π pour lesquelles, les ν' premiers l_i soient dans des groupes à lacets $L_{i'}$ ($i' \in I'$) – on les appelle adaptées à I'; elles forment un torseur $\subset \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu},\pi)$ sous le sous-groupe $\hat{\mathfrak{S}}_{g;(\nu,\nu')}$ de $\hat{\mathfrak{S}}_{g,\nu} = \operatorname{Aut}_{\operatorname{lac}}(\hat{\pi}_{g,\nu})$, formé des $u \in \hat{\mathfrak{S}}_{g,\nu}$ dont l'image dans \mathfrak{S}_I invarie l'ensemble des ν' premiers éléments (ou encore l'ensemble complémentaire des $\nu-\nu'$ derniers).

Pour une telle base, on trouve une base correspondante de π' . La donnée de (π, I') équivaut à celle d'un torseur sous $\hat{\mathfrak{S}}_{g;(\nu,\nu')}$, celle d'un π' à la donnée d'un torseur sous $\hat{\mathfrak{S}}_{g,\nu'}$, et le passage de π à π' est décrit par le changement de groupe d'opérateurs $\hat{\mathfrak{S}}_{g,\nu'}$

$$\hat{\mathfrak{S}}_{g;(\nu,\nu')} \longrightarrow \hat{\mathfrak{S}}_{g,\nu'}.$$

Cet homomorphisme envoie $\hat{\mathfrak{S}}_{g;(\nu,\nu')}$ dans $\hat{\mathfrak{S}}_{g,\nu'}$, et même $\mathfrak{S}_{g;(\nu,\nu')}$ dans $\mathfrak{S}_{g,\nu'}$, aussi π dans π' . Il s'ensuit que toute prédiscrétification de π en définit une de π' , de même pour les prédiscrétifications strictes, discrétifications, bases extérieures "adaptées à I'". Enfin, si on a une "préarithmétisation" de π , i.e. un $\Sigma \subset \hat{\mathfrak{Z}}(\pi)$, en déduit-on une préarithmétisation de π' – i.e. (par exemple) si deux prédiscrétifications de π sont compatibles i.e. ont le même groupe $\Sigma \subset \hat{\mathfrak{Z}}(\pi)$ d'automorphismes extérieurs, en est-il de même de leurs images?

Pour y voir plus clair, on va écrire sous forme de diagramme les ensembles remarquables associés à π , et ceci de deux façons, l'une sans utiliser de structure particulière sur $I=I(\pi)$, l'autre en utilisant un ordre total, ce qui permet, dans le torseur $\mathrm{Isom}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)$ sous $\hat{\mathfrak{S}}_{g,\nu}$, de définir le sous-torseur sous $\hat{\mathfrak{S}}_{g,\nu}^!$ qu'on peut noter $\mathrm{Isom}_{\mathrm{lac}}^!(\hat{\pi}_{g,\nu},\pi)$. 1.4cm

 $^{^{98}}$ D'où aussi: toute base, toute discrétification, discrétification orientée de π en définit une de π' , itou pour les classes de π , π' conjugaison i.e. pour les prédiscrétifications (éventuellement orientées) strictes, et aussi pour les adhérences des classes i.e. pour les prédiscrétifications et prédiscrétifications orientées. Il n'y a que le cas des arithmétisations qui demande une analyse plus fine.

N.B. On pose

$$\Pi_{g,\nu} = \mathcal{N}_{g,\nu}/\Sigma_{g,\nu} = \mathcal{N}_{g,\nu}^!/\Sigma_{g,\nu}^!$$

(où $\Sigma_{g,\nu} = \hat{\mathfrak{X}}_{g,\nu}^+$, $\Sigma_{g,\nu}^! = \hat{\mathfrak{X}}_{g,\nu}^{!+}$). On peut aussi le décrire comme le groupe \mathbb{F}_{Σ} associé à un groupe extérieur profini à lacets π muni d'une prédiscrétification orientée α (sans plus). Si on a deux tels couples (π,α) , (π',α') , d'où \mathbb{F}_{Σ} et $\mathbb{F}_{\Sigma'}$ ($\Sigma = \operatorname{Autext}_{\operatorname{lac}}(\pi,\alpha)$, $\Sigma' = \operatorname{Autext}_{\operatorname{lac}}(\pi',\alpha')$), on trouve en effet un isomorphisme canonique:

$$\Gamma_{\Sigma} \xrightarrow{\sim} \Gamma_{\Sigma'}$$

en prenant n'importe quel isomorphisme extérieur à lacets u de π avec π' transformant α en α' et l'isomorphisme associé $\mathbb{F}_{\Sigma} \longrightarrow \mathbb{F}_{\Sigma'}$ ne dépend évidemment pas du choix de u.

Ceci posé, les couples (π, Σ) d'un groupe profini à lacets de type (g, ν) , muni d'une préarithmétisation, avec comme morphismes les isomorphismes arithmétiquement extérieurs (relatifs à Σ et Σ' ...), forment un groupoïde connexe $\Pi_{g,\nu}$, ayant un objet "origine" défini à isomorphisme unique près comme étant $(\hat{\pi}_{g,\nu}, \Sigma_{g,\nu})$, où au choix n'importe quel (π, Σ_{α}) provenant d'un (π, α) (α une prédiscrétification orientée de π), et dont le groupe des automorphismes est justement $\Pi_{g,\nu}$.

On constate qu'à l'exception des deux espaces homogènes (sous $\hat{\mathfrak{S}}(\pi)$, mais pas nécessairement sous $\hat{\mathfrak{S}}(\pi,I')$, voire sous $\hat{\mathfrak{S}}^!(\pi)$) Bases (π) et Bases $\operatorname{ext}(\pi)$, les quatre autres sont en fait des espaces homogènes sous $\hat{\mathfrak{S}}^!$, et s'expriment comme quotients du $\hat{\mathfrak{S}}^!_{g,\nu}$ -torseur Isom $!(\hat{\pi}_{g,\nu},\pi)$, par les quatre sous-groupes $\mathfrak{S}^!_{g,\nu}$, $\mathfrak{S}^!_{g,\nu}$ Dot $\hat{\pi}_{g,\nu}$, $\hat{\mathfrak{S}}^!_{g,\nu}$, $M^!_{g,\nu}$ (ce dernier défini comme image inverse de $\mathcal{N}^!_{g,\nu}$ dans $\hat{\mathfrak{S}}^!_{g,\nu}$, tout comme $M_{g,\nu}$ est défini comme image inverse de $\mathcal{N}^!_{g,\nu}$. On trouve d'autre part, si $I' = \{i_0, \ldots, i_{\nu-1}\}$, un homomorphisme $\hat{\mathfrak{S}}^!_{g,\nu} \longrightarrow \hat{\mathfrak{S}}^!_{g,\nu'}$, envoyant $\mathfrak{S}^!_{g,\nu}$ dans $\mathfrak{S}^!_{g,\nu'}$, en envoyant $\pi_{g,\nu}$ dans $\pi_{g,\nu'}$, donc $\pi_{g,\nu}$ dans $\pi_{g,\nu'}$, $\pi_{g,\nu}$ dans $\pi_{g,\nu'}$, et le sous-groupe $\mathfrak{S}^!_{g,\nu}$ Dot $\pi_{g,\nu}$ de $\mathfrak{S}^!_{g,\nu'}$. Enfin, comme $\pi_{g,\nu}$ s'envoie dans $\pi_{g,\nu'}$ s'envoie dans le normalisateur de $\pi_{g,\nu'}$ dans $\hat{\mathfrak{S}}^!_{g,\nu'}$, je dis que ce n'est autre que $\pi_{g,\nu'}$. Changeant de notation, ceci revient au

$$\operatorname{Lemme}^{99}.-\mathcal{N}_{\Sigma}^{!}=\operatorname{Norm}_{\hat{\widehat{\mathfrak{X}}}^{!}}(\Sigma^{!})\big(=\operatorname{Norm}_{\hat{\widehat{\mathfrak{X}}}}(\Sigma^{!})\cap \hat{\widehat{\mathfrak{X}}}^{!}\big).$$

Évidemment on a $\mathcal{N}_{\Sigma}^{!} \subset \operatorname{Norm}_{\hat{\mathfrak{X}}}(\Sigma^{!}) \cap \hat{\mathfrak{X}}^{!}$; inversement soit $g \in \hat{\mathfrak{X}}^{!}$ qui normalise $\Sigma^{!}$, montrons qu'il normalise Σ , i.e. qu'il est $\in \mathcal{N}$ (donc $\in \mathcal{N}^{!} = \mathcal{N} \cap \hat{\mathfrak{X}}^{!}$)....
C'est pas clair. J'ai pourtant envie de prouver la

Conjecture. — L'application canonique

$$Prédiscrét^+(\pi) \longrightarrow Prédiscrét^+(\pi')$$

est bijective. Pour que deux prédiscrétifications orientées α , β de π aient même groupe d'automorphismes extérieurs $\Sigma_{\alpha} = \Sigma_{\beta}$, il faut qu'il en soit ainsi pour leurs images $\Sigma_{\alpha'}$ et $\Sigma_{\beta'}$, i.e. que $\Sigma_{\alpha'} = \Sigma_{\beta'}$, de sorte que la bijection précédente induit une bijection

$$Pr\acute{e}arithm\acute{e}tisation(\pi) \xrightarrow{\sim} Pr\acute{e}arithm\acute{e}tisation(\pi').$$

Enfin, les bijections précédentes sont compatibles avec l'homomorphisme des groupes d'opérateurs $\hat{\hat{\mathbf{x}}}(\pi,I') \longrightarrow \hat{\hat{\mathbf{x}}}(\pi')^4$, a fortiori avec $\hat{\hat{\mathbf{x}}}^!(\pi) \longrightarrow \hat{\hat{\mathbf{x}}}^!(\pi')$, ce qui implique qu'elle induit (pour une préarithmétisation $\Sigma \subset \hat{\hat{\mathbf{x}}}(\pi)$ donnée de π , donnant $\Sigma' \subset \hat{\hat{\mathbf{x}}}(\pi')$ dans π' avec $\Sigma^! \longrightarrow \Sigma'^!$ un homomorphisme $\mathcal{N}^!_{\Sigma} \longrightarrow \mathcal{N}^!_{\Sigma'}$, et l'homomorphisme correspondant

$$\Pi_{\Sigma} = \mathcal{N}_{\Sigma}^{!}/\Sigma^{!} \longrightarrow \Pi_{\Sigma'} = \mathcal{N}_{\Sigma'}^{!}/\Sigma'^{!}$$

est un isomorphisme.

Pour s'en convaincre il suffit de regarder le cas où $I' = \{i\}$ (et si on note $\pi = \pi_{g,\nu}$, I' réduit au dernier élément de I). On a alors un homomorphisme

$$\hat{\hat{\mathbf{x}}}(\pi,i) \longrightarrow \hat{\hat{\mathbf{x}}}(\pi')$$

(les automorphismes extérieurs à lacets de π fixant i définissent des automorphismes bien déterminés de π' – pas seulement extérieurs, i.e. $\hat{\mathfrak{S}}(\pi,i) \longrightarrow \hat{\mathfrak{S}}(\pi')$ est trivial sur π , et passe donc au quotient en $\hat{\mathfrak{T}}(\pi,i) \longrightarrow \hat{\mathfrak{S}}(\pi,i)$).

⁹⁹pas prouvé

J'admets, en analogie avec le cas discret, que cet homomorphisme est un *iso-morphisme*, de sorte qu'on a une suite exacte ¹⁰⁰

$$1 \longrightarrow \pi' \longrightarrow \hat{\hat{\mathbb{E}}}(\pi, i) \longrightarrow \hat{\hat{\mathbb{E}}}(\pi, i) \longrightarrow 1$$

ou encore

$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\hat{\mathfrak{Z}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{S}}}_{g,\nu-1} \longrightarrow 1$$

qui contient la suite exacte

$$1 \longrightarrow \pi_{g,\nu-1} \longrightarrow \mathfrak{T}_{g;(\nu,\nu-1)} \longrightarrow \mathfrak{S}_{g,\nu-1} \longrightarrow 1$$

comme sous-suite exacte. Il est commode de travailler plutôt avec

$$1 \longrightarrow \pi_{g,\nu-1} \longrightarrow \mathfrak{T}^{!+}_{g,\nu} \longrightarrow \mathfrak{S}^{!+}_{g,\nu-1} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\mathfrak{T}}^{!+}_{g,\nu} \longrightarrow \hat{\mathfrak{S}}^{!+}_{g,\nu-1} \longrightarrow 1$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\mathfrak{T}}^{!}_{g,\nu} \longrightarrow \hat{\mathfrak{S}}^{!}_{g,\nu-1} \longrightarrow 1.$$

L'application Prédiscrét⁺ (π) \longrightarrow Prédiscrét⁺ (π') s'identifie alors à $\hat{\hat{z}}_{g,\nu}^!/\hat{\hat{z}}_{g,\nu}^!$, on lit sur le diagramme que c'est $\simeq \hat{\hat{\mathfrak{S}}}_{g,\nu-1}^!/\hat{\hat{\mathfrak{S}}}_{g,\nu-1}^{!+}$, d'où la bijectivité sur les ensembles de prédiscrétifications orientées.

Dans le groupe $\hat{\mathfrak{Z}}_{g,\nu}^! = \mathfrak{T}$, on a un sous-groupe invariant $\hat{\pi}_{g,\nu-1} = \pi'$, et un sous-groupe $\Sigma (= \hat{\mathfrak{Z}}_{g,\nu}^{!+})$ entre π' et \mathfrak{T} , donnant un sous-groupe $\Sigma' \simeq \hat{\mathfrak{S}}_{g,\nu-1}^{!+}$ dans $\mathfrak{T}' = \mathfrak{T}/\pi'$ ($\simeq \hat{\mathfrak{S}}_{g,\nu-1}^{!}$), et on sait bien qu'alors $\mathfrak{T}/\Sigma \simeq \mathfrak{T}'/\Sigma'$, et que le normalisateur \mathscr{N} de Σ dans \mathfrak{T} est l'image inverse du normalisateur \mathscr{N}' de Σ' dans \mathfrak{T}' , de sorte que $\mathscr{N}/\Sigma \simeq \mathscr{N}'/\Sigma'$, ce qui prouve ce qu'on voulait.

Corollaire. — On a des isomorphismes canoniques:

¹⁰⁰rappelons qu'on suppose π anabélien, i.e. $2g + \nu \ge 3$

de sorte que si g \geq 2, on a canoniquement $\Pi_{g,\nu}\simeq\Pi_{g,0}$; d'autre part $\Pi_{1,\nu}\simeq\Pi_{1,1}$ (g = 1, $\nu\geq$ 1), $\Pi_{0,\nu}\simeq\Pi_{0,3}$ ($\nu\geq$ 3). 101

NB. Le "fait" admis est loin d'être évident – même que $\hat{\hat{\mathfrak{X}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{X}}}_{g,\nu-1}$ soit surjectif ou que $\hat{\hat{\mathfrak{X}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{X}}}_{g,\nu-1}$ soit injectif, est loin d'être évident, et est peut-être tout à fait faux! Le fait admis revient à un énoncé d'existence d'un foncteur en sens inverse "forage de trous" qui en tout état de cause reste incompris.

¹⁰¹ On voit aussi que Σ invariant dans $\hat{\hat{z}}$ équivaut à Σ' invariant dans $\hat{\hat{z}}$.

\$ 28. — CHANGEMENT DE TYPE (g, v) (SUITE): PASSAGE À UN REVÊTEMENT FINI

Soit π un groupe profini à lacets de type (g, v), anabélien comme toujours, π' un sous-groupe d'indice fini. On sait (ou on vérifie, par passage au cas discret) que muni des traces sous π des sous-groupes à lacets de π , π' est un groupe à lacets. Ses sous-groupes à lacets sont aussi les sous-groupes L' tels que

a)
$$L' = \operatorname{Centr}_{\pi}(L') \cap \pi'$$

b) $L = \operatorname{Centr}_{\pi}(L')$ est un sous-groupe à lacets dans π .

On pose d(L') = [L : L'], et on a ainsi une fonction $d : I' = I(\pi') \longrightarrow \mathbb{N}^*$, et une application $I' \stackrel{\varphi}{\longrightarrow} I$, telles que $\forall i \in I$, on ait:

(1)
$$\sum_{i' \in I'} d(i') = n \quad (\text{où } n = [\pi : \pi']).$$

On aura la formule de Hurwitz

(2)
$$2g'-2=n(2g-2)+\sum_{i'\in I'}(d(i')-1),$$

où la somme à droite est égale à $(n \operatorname{card}(I) - \operatorname{card}(I'))$, i.e.

(3)
$$2g'-2+\operatorname{card}(I') = n(2g-2+\operatorname{card}(I)).$$

(NB. 2g-2+card(I) est l'opposé de la caractéristique d'Euler-Poincaré à supports compacts de la courbe dont π est le groupe fondamental...).¹⁰²

De façon évidente, toute discrétification de π en définit une de π' – et il en est de même pour les discrétifications orientées, modulo un peu de cohomologie, ce qui revient à dire, dans le cas discret par exemple, que $T \simeq H_!^2(U, \mathbf{Z}) \longrightarrow H_!^2(U', \mathbf{Z}) \simeq T'$ peut s'écrire sous la forme $n\theta^{-1}$, où θ est un isomorphisme bien déterminé (l'isomorphisme trace) $T' \stackrel{\sim}{\longrightarrow} T$.

Il n'est pas clair pour moi à première vue si l'application

$$Discrét(\pi) \longrightarrow Discrét(\pi')$$

est surjective, ou injective. L'injectivité pour tout π' d'indice fini dans π signifierait que deux discrétifications π_0 , π'_0 de π qui sont commensurables, i.e. telles que $\pi_0 \cap \pi'_0$ soit d'indice fini dans π_0 et dans π'_0 , sont égales.

Supposons que π' soit un sous-groupe invariant dans π , et posons $G = \pi/\pi'$.

Conjecture. — L'application Discrét (π) \longrightarrow Discrét (π') est injective, et son image est formée des discrétifications $\pi'_0 \subset \pi'$ telles que $G \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi') \simeq \operatorname{Autext}_{\operatorname{lac}}(\hat{\pi}'_0) \simeq \hat{\mathfrak{F}}(\hat{\pi}'_0)$ se factorise par $\mathfrak{F}(\pi'_0) = \operatorname{Autext}_{\operatorname{lac}}(\pi'_0)$ (et en fait, même par $\mathfrak{F}(\pi'_0)^+$). En d'autres termes, $\forall g \in \pi$, $\exists h \in \pi'$ tel que $\operatorname{Int}(hg)(\pi'_0) \subset \pi'_0$, i.e. $\pi'Dot \pi_0 = \pi$, où π_0 est le normalisateur de π'_0 dans π .

La condition pour qu'un π'_0 soit dans l'image est évidemment nécessaire. Montrons qu'elle est suffisante, et que le π_0 donnant naissance à π'_0 par $\pi_0 \cap \pi'$ est unique. On a une action extérieure de G sur π'_0 , qui définit l'action extérieure sur $\hat{\pi}'_0 \simeq \pi'$, or π se récupère canoniquement à partir de cette dernière (car Centre($\hat{\pi}'$) = 1), et on voit que c'est le complété profini de l'extension π_0 de G par π'_0 , définie par l'action extérieure de G sur π'_0 . On a donc bien une discrétification généralisée π_0 de π , au sens de la seule structure de groupe profini, et elle induit π'_0 – mais il faut voir qu'elle est compatible avec la structure à lacets de π . Mais celle-ci s'explicite, à partir de la structure à lacets de π' , en prenant les sousgroupes à lacets L' de π' , et leurs centralisateurs dans π . Faisant itou pour $\pi_0 \supset \pi'_0$,

 $^{^{102}}$ NB. Dire qu'on est dans le cas anabélien signifie que —EP_! [i.e. l'opposé de la caractéristique d'Euler-Poincaré à support compact] est ≥ 1 , et cette relation est donc conservée par passage à un revêtement. L'entier —EP_! mesure par sa positivité stricte le degré d'anabélianité en quelque sorte..

on devrait trouver une structure à lacets sur π_0 , donnant lieu aux mêmes d_i . J'ai l'impression que ça ne doit pas être très vache à prouver – ce serait comme si on savait déjà que toute extension "sans torsion" d'un groupe fini par un groupe à lacets est de façon canonique un groupe à lacets...

Corollaire. — En tout cas, l'application

$$Discrét(\pi) \longrightarrow Discrét(\pi')$$

est injective.

N.B. Elle ne doit pas toujours être bijective, car il doit y avoir une action extérieure d'un G sur un $\hat{\pi}'_0$, i.e. un homomorphisme $G \longrightarrow \hat{\hat{\mathfrak{X}}}(\hat{\pi}'_0)$, qui ne se factorise pas par $\mathfrak{X}(\pi'_0)$, et qui pourtant est aussi bonne du point de vue groupe profini que celles provenant d'un π et d'un sous-groupe invariant π' . En fait, partons d'une telle situation $\operatorname{discrète} \pi_0 \supset \pi'_0$, d'où $G = \pi_0/\pi'_0$ et $G \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi'_0) = \mathfrak{X}(\pi'_0) \subset \hat{\hat{\mathfrak{X}}}(\hat{\pi}'_0)$, et $\operatorname{conjuguons} G$ par un élément γ de $\hat{\hat{\mathfrak{X}}}(\pi'_0)$, de façon à trouver $G \longrightarrow \hat{\hat{\mathfrak{X}}}(\hat{\pi}'_0)$ qui ne se factorise pas par $\mathfrak{X}(\pi'_0)$. On trouve une extension π^{\natural} de G par $\hat{\pi}'_0$, $\operatorname{isomorphe}$ à $\hat{\pi}_0$ (en tant qu'extension de G par $\hat{\pi}'_0$), donc la structure à lacets de $\hat{\pi}'_0$ en définit une sur π^{\natural} (de façon à être induite par cette dernière), mais pourtant la discrétification choisie π_0 de $\hat{\pi}_0$ n'est pas induite par une de π . Pour faire la construction, il suffit de trouver un élément $\gamma \in \hat{\hat{\mathfrak{X}}}(\pi'_0)$ tel que $\operatorname{Int}(\gamma) \cdot G \not\subset \mathfrak{X}$ i.e. tel que G ne stabilise pas $\gamma^{-1}(\pi'_0) \subset \hat{\pi}'_0$. Un tel γ existe toujours...

Bien sûr, il n'y a pas de raison, pour deux discrétifications π_0 , π_1 de π , que si π_0 , π_1 sont π -conjugués (i.e. définissent la même prédiscrétification stricte de π), il en soit de même pour π'_0 et π'_1 pour l'action intérieure de π' (il faudrait que π_0 , π_1 soient conjugués par π' , et pas seulement par π). Par contre, je présume que si π_0 , π_1 sont "adhérents" l'un à l'autre dans l'espace des discrétifications de π , i.e. s'ils définissent une même prédiscrétification, il en est de même pour π'_0 , π'_1 , et que l'application

(4)
$$\operatorname{Pr\'{e}discr\'{e}t}(\pi) \longrightarrow \operatorname{Pr\'{e}discr\'{e}t}(\pi')$$

qu'on obtient ainsi, est encore bijective, et qu'elle passe à son tour au quotient,

pour définir une application bijective

(5)
$$\operatorname{Pr\'{e}arith}(\pi) \longrightarrow \operatorname{Pr\'{e}arith}(\pi'),$$

et que si Σ, Σ' se correspondent par cette dernière, on a un isomorphisme canonique

$$\Gamma_{\Sigma} \longrightarrow \Gamma_{\Sigma'},$$

compatible avec les actions de ces groupes sur l'ensemble P_{Σ} des prédiscrétifications de π compatibles à Σ , et l'ensemble $P_{\Sigma'}$ des prédiscrétifications de π' compatibles à Σ' (qui sont respectivement des torseurs à gauche sous Π_{Σ} , $\Pi_{\Sigma'}$). En même temps, on trouvera donc que Σ est unique pour π , i.e. invariant dans $\hat{\hat{\mathfrak{X}}}(\pi)$, si et seulement si Σ' est unique dans π' , i.e. invariant dans $\hat{\hat{\mathfrak{X}}}(\pi')$.

En tout cas, la conjecture fondamentale qui interprète les $\Gamma_{g,\nu}$ comme $\Gamma_0 = Gal(\overline{\mathbb{Q}}_0/\mathbb{Q})$ aurait au moins comme conséquence que l'application Discrét $^+(\pi) \longrightarrow \mathrm{Discr\acute{e}}^+(\pi')$ passe au quotient de deux façons, pour donner un diagramme commutatif:

Discrét⁺(
$$\pi$$
) \longrightarrow Discrét⁺(π')
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P = \text{Prédiscrét}^+(\pi) \longrightarrow P' = \text{Prédiscrét}^+(\pi')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A = \text{Arithm}(\pi) \longrightarrow A' = \text{Arithm}(\pi')$$

et que le carré inférieur est cartésien (sans préjuger de l'injectivité ou de la bijectivité de l'application $A \longrightarrow A'$). Donc il faudrait que si π_0 , π_1 sont deux discrétifications orientées de π , qui définissent la même prédiscrétification (orientée), alors il en soit de même pour leurs traces sur π' , π'_0 et π'_1 , relativement à π' . Mais déjà si π_0 et π_1 sont π -conjugués (i.e. définissent la même discrétification orientée, *stricte*), ce n'est pas tellement clair – mais si, car on aura $\pi = \pi' Dot \pi_0$ donc si $\pi_1 = \text{int}(u) \pi_0$, écrivant $u = u'u_0$ avec $u' \in \pi'$, $u_0 \in \pi_0$, on aura $\pi_1 = \text{int}(u')\text{int}(u_0)\pi_0 = \text{int}(u')\pi_0$, donc $\pi'_1 = \text{int}(u')\pi'_0$ donc π'_0 et π'_1 sont conjugués. Tâchons de procéder de même dans le cas général d'un $u \in \hat{\mathfrak{S}}(\pi_0)^+$ tel que $\pi_1 = u(\pi_0)$, en écrivant si possible $u = u'u_0$, avec $u' \in \hat{\mathfrak{S}}(\pi_0, \pi'_0)^+$, et $u_0 \in \mathfrak{S}(\pi_0)^+$, où on définit $\mathfrak{S}(\pi_0, \pi'_0)^+$ comme

le groupe des automorphismes discrets de π_0 qui *stabilisent* π'_0 , et $\hat{\mathfrak{S}}(\pi_0, \pi'_0)^+$ est son compactifié profini. On aurait alors $\pi_1 = u'(u_0(\pi_0)) = cdot u'(\pi_0)$, où

cdot u' désigne l'image de u' dans $\hat{\mathfrak{T}}(\pi'_0)$. En tous cas, il n'y a aucun problème si π' est un sous-groupe caractéristique de π , car alors on a un homomorphisme discret $\mathfrak{S}(\pi_0) \longrightarrow \mathfrak{S}(\pi'_0)$, définissant l'homomorphisme $\hat{\mathfrak{S}}(\hat{\pi}_0) \longrightarrow \hat{\mathfrak{S}}(\hat{\pi}'_0)$. Comme les sous-groupes ouverts caractéristiques de π sont cofinaux, on est ramené (pour les questions de factorisabilité de $D(\pi) \longrightarrow D(\pi')$ en $P(\pi) \longrightarrow P(\pi')$ et $A(\pi) \longrightarrow A(\pi')$ et de bijectivité des applications $P(\pi) \longrightarrow P(\pi')$ et $A(\pi) \longrightarrow$ $A(\pi')$) au cas où π' est un sous-groupe caractéristique. On a alors factorisabilité de $D(\pi) \longrightarrow D(\pi')$ en $P(\pi) \longrightarrow P(\pi')$. Montrons que cette application est injective... Cela signifie (a) que l'image inverse dans $\hat{\mathfrak{S}}(\hat{\pi}_0)$ de $\hat{\mathfrak{S}}(\hat{\pi}_0')^+$ est $\hat{\mathfrak{S}}(\hat{\pi}_0)^+$, la surjectivité signifie (b) que tout élément de $\hat{\mathfrak{S}}(\hat{\pi}_0')$ est congru mod $\hat{\mathfrak{S}}(\pi_0')^+$ à un élément de l'image de $\hat{\mathfrak{S}}(\pi_0)$. La factorisabilité en $A(\pi) \longrightarrow A(\pi')$ signifie que (c) par l'application précédente $\hat{\hat{\mathfrak{S}}}(\pi_0) \hookrightarrow \hat{\hat{\mathfrak{S}}}(\pi'_0)$, (NB. il est immédiat que c'est injectif) envoie $M(\pi_0) = \operatorname{Norm}_{\hat{\mathfrak{S}}(\pi_0)}(\hat{\mathfrak{S}}^+(\pi_0))$ dans $M(\pi_0')$, l'injectivité de $A(\pi) \longrightarrow A(\pi')$ que (d) l'on a même que $M(\pi)$ est exactement l'image inverse de $M(\pi')$, la surjectivité de $A(\pi) \longrightarrow A(\pi')$ que (e) tout élément de $\hat{\mathfrak{S}}(\pi'_0)$ est congru mod $M(\pi'_0)$ à un élément de $\hat{\hat{\mathfrak{S}}}(\pi_0)$ (c'est plus faible que (b)) – et ces conditions réunies impliquent que l'homomorphisme canonique

$$M(\pi_0)/\hat{\mathfrak{S}}(\pi_0) = \prod_{\pi_0} \longrightarrow \prod_{\pi'_0} = M(\pi'_0)/\hat{\mathfrak{S}}(\pi'_0)$$

est un isomorphisme – il suffit même pour ceci d'avoir (c) (pour pouvoir définir cette application) et (a) (pour son injectivité), et (b) et le renforcement (d) de (c) (pour sa surjectivité). Donc on voit que tout est suspendu aux propriétés des homomorphismes d'inclusions de groupes:

(7)
$$\hat{\mathfrak{S}}^{+}(\pi_{0}) \hookrightarrow M(\pi_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi_{0})$$

$$\downarrow \qquad \qquad \downarrow, \qquad \qquad \downarrow$$

$$\hat{\mathfrak{S}}^{+}(\pi'_{0}) \hookrightarrow M(\pi'_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi'_{0})$$

à charge de prouver (a) et (b) (qui ne concernent que le carré composé) et (c).

Peut-être les propriétés (a), (b) et (c) sont-elles tout à fait fausses – pourtant (a) (qui correspond à l'injectivité de $P(\pi) \longrightarrow P(\pi')$) semble assez plausible. La propriété (b) (qui exprimerait la surjectivité de $P(\pi) \longrightarrow P(\pi')$) est beaucoup plus problématique, voir fausse. L'ennui, c'est que le groupe $\hat{\mathfrak{S}}(\pi_0)$ peut être "beaucoup plus petit" que $\hat{\mathfrak{S}}(\pi'_0)$, on s'en rend compte en passant au quotient par le sous-groupe $\hat{\pi}'_0 = \pi'$ (contenu dans le plus petit des groupes de (7), et invariant dans le plus grand), on trouve sur la deuxième ligne les groupes $\hat{\mathfrak{T}}^+(\pi'_0)$, $\mathcal{N}(\pi'_0)$ et $\hat{\mathfrak{T}}(\pi'_0)$, sur la première des extensions des groupes correspondants pour π_0 ($\hat{\mathfrak{T}}^+(\pi_0)$, $\mathcal{N}(\pi_0)$ et $\hat{\mathfrak{T}}(\pi_0)$) par le groupe fini $G = \pi_0/\pi'_0 \simeq \pi/\pi'$, notées par des $\hat{\mathfrak{T}}$, de sorte que l'on a:

(8)
$$G \longleftrightarrow \hat{\hat{\mathfrak{X}}}^{+}(\pi_{0}) \longleftrightarrow \widetilde{\mathcal{N}}(\pi_{0}) \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}) \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}) \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}) \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}) \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}') \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}') \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}') \longleftrightarrow \hat{\hat{\mathfrak{X}}}(\pi_{0}')$$

qui montre que les groupes de la première ligne *normalisent* le sous-groupe $G \subset \hat{\mathfrak{Z}}^+(\pi_0')$ (NB en fait on a $G \subset \mathfrak{T}^+(\pi_0')$, et π_0 se reconstitue à partir de π_0' et de ce sous-groupe de π_0') – on doit pouvoir montrer sans trop de mal que dans (8), $\hat{\mathfrak{Z}}^+(\pi_0)$ et $\hat{\mathfrak{Z}}(\pi_0)$ sont justement les normalisateurs de G dans $\hat{\mathfrak{Z}}^+(\pi_0')$ et dans $\hat{\mathfrak{Z}}(\pi_0')$ (ce qui impliquerait bien (a), d'ailleurs) – mais je ne vois aucune raison plausible que (b) soit vrai – ce qui signifierait, essentiellement, qu'il n'y a pas plus de "transcendance arithmétique" définie par le ("très gros"!) $\hat{\mathfrak{Z}}(\pi_0')$ (mod $\hat{\mathfrak{Z}}(\pi_0')^+$), que celle définie par le ("bien plus petit") groupe $\hat{\mathfrak{Z}}(\pi_0) = \operatorname{Norm}_{\hat{\mathfrak{Z}}(\pi_0)}(G) \dots D$ 'ailleurs ces conditions (a), (b) ne sont pas impératives pour que la conjecture fondamentale reliant les $\pi_{g,\nu}$ à Π_0 soit cohérente – par contre il faudrait absolument avoir (c) pour pouvoir au moins définir $A(\pi) \longrightarrow A(\pi')$ et (si Σ , Σ' se correspondent) $\Pi_\Sigma \longrightarrow \Pi_\Sigma$, dans le cas π' caractéristique dans π (et dans tous les cas si on admet de plus (a), qui semble assez plausible, et donne les *injectivités* qu'il faut). Mais on se demande bien pourquoi un élément de $\hat{\mathfrak{Z}}(\pi_0')$ simplement parce qu'il est dans le normalisateur R de G dans $\hat{\mathfrak{Z}}(\pi_0')$, donc aussi R, et qu'il normalise $R \cap \hat{\mathfrak{Z}}^+(\pi_0')$, devrait normaliser

aussi $\hat{\mathfrak{Z}}^+(\pi_0')$ lui-même! Il est vrai qu'on a fait des hypothèses draconiennes au départ (partant d'un sous-groupe *caractéristique* π_0' de π_0) qui doivent bien se refléter par des propriétés particulières de $G\subset \mathfrak{T}^+(\pi_0')$. Peut-être finalement l'astuce de se ramener à des sous-groupes caractéristiques pour examiner la situation n'est-elle pas si astucieuse. Pour y voir plus clair, on pourrait déjà essayer de comprendre le cas où (sans suppose π' caractéristique), on suppose π' d'indice 2 dans π , donc invariant et $G\simeq \mathbf{Z}/2\mathbf{Z}$, ou bien on prend le noyau de l'homomorphisme canonique $\pi\longrightarrow (\pi_{ab})_2$ ($\simeq (\mathbf{Z}/2\mathbf{Z})^{2g}$ si $\nu=0$, $\simeq (\mathbf{Z}/2\mathbf{Z})^{2g-\nu-1}$ si $\nu\ge 1$), en prenant par exemple $\pi=\hat{\pi}_{0,3}$ – situation de la courbe de Fermat $x^2+y^2+z^2=0$ (revêtement octaédral de $\mathbb{P}^1_{\Omega}\setminus\{0,1,\infty\}...$)

Mais admettons provisoirement les hypothèses d'injectivité (relativement anodines), plus la condition (c), pas anodine du tout – d'où si Σ et Σ' se correspondent, un homomorphisme injectif

et voyons ce qu'on pourrait en tirer, en admettant même, provisoirement (pour voir) que (9) est un isomorphisme, c'est-à-dire toute la force de la conjecture principale $\Gamma_0 \simeq \Gamma_{g,v}$.

Soit π un groupe profini à lacets de type (g,v), π' de type (g',v'). Appelons "correspondance" entre π et π' un couple formé d'un $\mathfrak G$ profini à lacets et d'homomorphismes à lacets $\mathfrak G \stackrel{p}{\longrightarrow} \pi$, $\mathfrak G \stackrel{q}{\longrightarrow} \pi'$ qui sont donc chacune composée d'un morphisme "bouchage de trous", et d'un isomorphisme avec un sousgroupe d'indice fini. Soient D_p , $D_q \subset D = I(\pi'')$ les sous-ensembles de D qui correspondent aux "trous bouchés par p" resp. par q, on suppose s'il le faut que $D_p \cap D_q = \emptyset$ (sinon on pourrait factoriser par un même quotient $\widetilde{\pi}''$ de π''). En d'autres termes, si \overline{D}_p , \overline{D}_q sont les complémentaires de D_p , D_q dans D (de sorte qu'on a $\overline{D}_p \setminus I = I(\pi)$, $\overline{D}_q \setminus I' = I(\pi')$), on a $\overline{D}_p \cup I p \overline{D}_q = D$.

On va supposer maintenant π muni d'un $\Sigma \in A(\pi)$, π' muni d'un $\Sigma' \in A(\pi')$, on appellera "correspondance arithmétique" entre π et π' un quadruplet $(\mathfrak{G}, p, q, \Sigma_{\mathfrak{G}})$ où (\mathfrak{G}, p, q) sont comme dessus, et $\Sigma_{\mathfrak{G}} \in A(\mathfrak{G})$, tel que l'on ait $\Sigma_{\mathfrak{G}} = p^*(\Sigma) = q^*(\Sigma')$. Si P_{Σ} , $P_{\Sigma'}$, P_{Σ_G} sont respectivement les torseurs sous Γ_{Σ} ,

d'où par composition un isomorphisme

$$(P_{\Sigma}, \mathbb{\Gamma}_{\Sigma}) \xrightarrow{\sim} (P_{\Sigma'}, \mathbb{\Gamma}_{\Sigma'}).$$

On appelle "isomorphisme arithmétiquement extérieur" de (π, Σ) avec (π', Σ') , tout isomorphisme de torseurs qu'on peut obtenir de cette façon. Deux correspondances sont dites équivalentes du point de vue arithmétiquement extérieur, si elles définissent le même isomorphisme arithmétiquement extérieur. La composition est définie par composition des actions sur $(P_{\Sigma}, \mathbb{F}_{\Sigma})$ – on voit que ça provient d'une correspondance. On trouve donc un groupoïde, dont on vérifie sans peine qu'il est connexe. ¹⁰³ Je dis que les automorphismes de (π, Σ) "sont" les automorphismes de $(P_{\Sigma}, \mathbb{F}_{\Sigma})$ définis par des éléments de \mathbb{F}_{Σ} . C'est facile...

Dans ce groupoïde, il y a un système transitif d'isomorphismes entre les $(\hat{\pi}_0, \Sigma_{\pi_0})$, où π_0 est un groupe discret à lacets) plus généralement entre les (π, Σ_{α}) , où $\alpha \in P(\pi)$ est un prédiscrétification de π – définissons donc un isomorphisme arithmétiquement extérieur de $\pi_{g,\nu}$, π ... Le groupe de ces automorphismes est noté Γ_0 . Le groupoïde des courbes virtuelles arithmétiques extérieures s'identifie donc à la catégorie des torseurs sous Γ_0 . Une prédiscrétification (on pourrait aussi l'appeler une rigidification arithmétiquement extérieure) n'est pas autre chose qu'un isomorphisme arithmétiquement extérieur entre cet élément de référence, et π .

¹⁰³On l'appellera le groupoïde des courbes arithmétiques extérieures.

\$ 29. — CRITIQUE DE L'APPROCHE PRÉCÉDENTE

L'approche des paragraphes précédents semble finalement très brutale. J'ai même des doutes si la conjecture sur les propriétés du foncteur "bouchage de trous" est vraie telle quelle. Il est vrai que pour un groupe profini à lacets π , si on fixe $i \in I(\pi)$, on a un homomorphisme canonique

(1)
$$\hat{\hat{\mathbf{x}}}(\pi,i) = \hat{\hat{\mathbf{x}}}(\pi)_i \longrightarrow \hat{\hat{\mathbf{x}}}(\pi'),$$

(où $\hat{\mathfrak{Z}}(\pi)_i$ est le stabilisateur de i dans $\hat{\mathfrak{Z}}(\pi)$), mais il est problématique si c'est un isomorphisme – et même si c'est injectif, ou si c'est surjectif. Mais, choisissant une discrétification $\pi_0 \subset \pi$, d'où itou π'_0 pour π' , l'homomorphisme précédent induit bel et bien un isomorphisme

$$\mathfrak{T}(\pi_0)_i \simeq \mathfrak{S}(\pi'_0)$$

ďoù

$$\hat{\mathfrak{Z}}(\pi_0) \xrightarrow{\sim} \hat{\mathfrak{S}}(\pi'_0)$$

et par suite, la suite exacte $1 \longrightarrow \hat{\pi}'_0 \longrightarrow \hat{\mathfrak{S}}(\pi'_0) \longrightarrow \hat{\mathfrak{T}}(\pi'_0) \longrightarrow 1$ donne :

$$(4) 1 \longrightarrow \hat{\pi}'_{0} \longrightarrow \hat{\mathfrak{Z}}(\pi_{0}) \longrightarrow \hat{\mathfrak{Z}}(\pi'_{0}) \longrightarrow 1$$

et par suite on trouve un homomorphisme injectif

$$\hat{\pi}_0' \longrightarrow \hat{\mathfrak{Z}}(\pi_0)_i \hookrightarrow \hat{\hat{\mathfrak{Z}}}(\pi_0)_i \simeq \hat{\hat{\mathfrak{Z}}}(\pi)$$

(où $\hat{\pi}'_0 = \pi'$) donc un homomorphisme

$$i_{\pi_0}: \pi' \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i$$

dont le composé avec (1) est l'injection canonique $\pi' \hookrightarrow \hat{\mathfrak{S}}(\pi')$. Remplaçant la discrétification π_0 par une autre, π_1 , on trouve a priori un autre homomorphisme $i_{\pi_1} : \pi' \longrightarrow \hat{\mathfrak{Z}}(\pi)_i$. On peut supposer que $\pi_1 = u(\pi_0)$, $u \in \hat{\mathfrak{Z}}(\pi_0)_i$ et par transport de structure on trouve

$$i_{\pi_1} = i_{u(\pi_0)} = \text{Int}(u) \circ i_{\pi_0} \circ u_{\pi'}^{-1}$$

où $u_{\pi'}$ est l'automorphisme de π' défini par u via (1). Dire que i_{π_0} est indépendant du choix de la discrétification π_0 , revient aussi à dire que son image dans $\hat{\hat{\mathbf{x}}}(\pi)_i$ est un sous-groupe invariant – et alors l'action de $\hat{\hat{\mathbf{x}}}(\pi)_i$ sur le sous-groupe invariant $i_{\pi_0}(\pi) = i(\pi)$ via automorphismes intérieurs, n'est autre que celle définie par (1). Dans ce cas, on trouve par passage au quotient un homomorphisme

(6)
$$\hat{\hat{\mathbf{x}}}(\pi)_i/\pi' \longrightarrow \hat{\hat{\mathbf{x}}}(\pi')$$

dont l'injectivité resp. surjectivité équivaudrait à celle de (1). Mais il n'est pas évident du tout qu'il en soit toujours ainsi.

S'il n'en était pas ainsi, il s'imposerait de regarder le sous-groupe de $\hat{\hat{\mathfrak{Z}}}(\pi)_i$ formé des $\gamma \in \hat{\hat{\mathfrak{Z}}}(\pi)_i$ qui normalisent le sous-groupe $i_{\pi_0}(\pi')$, et tels que l'action induite sur $i_{\pi_0}(\pi')$ correspond à celle donnée par l'action (1) de $\hat{\hat{\mathfrak{Z}}}(\pi)$ sur π' . Ce sous-groupe H_{π_0} (qui contient $\hat{\mathfrak{Z}}(\pi_0)_i$) dépend donc a priori de la discrétification choisie. Remplaçant π_0 par $u(\pi_0)$ (où $u \in \hat{\hat{\mathfrak{Z}}}(\pi)_i$) le remplace par $\mathrm{Int}(u) \cdot H$ – donc H tout au moins ne change pas, si on fait varier π_0 dans une classe de prédiscrétifications.

On peut faire des choix plus symétriques, en considérant pour tout $i \in I$ le quotient correspondant π'_i de π , d'où, pour une discrétification donnée π_0 , des homomorphismes

$$i_{\pi_0,i}:\pi_i'\longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i\subset \hat{\hat{\mathfrak{Z}}}(\pi),$$

et on définit $H_{\pi_0} \subset \hat{\hat{\mathfrak{Z}}}(\pi)$ comme le sous-groupe des $\gamma \in \hat{\hat{\mathfrak{Z}}}(\pi)$ qui "permutent les

 $i_{\pi_0,i}$ entre eux" dans un sens évident. On a donc

$$(7) H_{\pi_0} \cap \hat{\hat{\mathfrak{Z}}}(\pi)_i = H_{\pi_0,i}$$

et

$$(8) H \supset \hat{\mathfrak{Z}}(\pi_0).$$

Le point que j'ai en vue, c'est que le sous-groupe de $\hat{\mathfrak{X}}(\pi_0)$ image de $\pi_1(M_{g,\nu})$, doit non seulement normaliser $\hat{\mathfrak{X}}(\pi_0)^+$, mais de plus être contenu dans un H. C'est là une condition que j'ai rencontrée par la bande, à la faveur de l'hypothèse (peut-être bien hâtive) que (1) est un isomorphisme, qui impliquait (facilement) que l'on avait $H = \hat{\mathfrak{X}}(\pi_0)$ tout entier. Il est possible que $\hat{\mathfrak{X}}(\pi_0)$ soit un groupe à tel point démesuré et pathologique, qu'il ne pourra jamais être question de dire des choses raisonnables (et vraies) sur le groupe tout entier, (tel que la bijectivité de (1) par exemple) et qu'on soit obligé de travailler avec des sous-groupes plus petits, qui restent proches du discret (avec quand-même des aspects supplémentaires "arithmétiques", dû au $\Pi_0 = \operatorname{Gal}(\overline{\mathbb{Q}}_0/\mathbb{Q})!$). En fait, il y a (pour $I = I(\pi) \neq \emptyset$, i.e. $\nu \neq 0$) dans le groupe $\hat{\mathfrak{X}}(\pi_0)$ une structure simpliciale d'extensions successives, qui va être respectée par l'action extérieure du groupe de Galois, et dont il faudrait tenir compte. Elle fait partie de la "structure à l' ∞ " dans le π_1 des multiplicités modulaires $M_{g,\nu}$, qui même pour $\nu=0$ est sans doute non triviale, et il est possible qu'il faille en tenir compte, pour arriver à mettre le doigt sur Π_0 .

Sans essayer de donner d'emblée une description a priori de Γ_Q "dans les $\hat{\mathbb{E}}_{g,\nu}$ ", on va procéder de façon plus inductive, en partant de la présence de Γ_Q (pour des raisons arithmético-géométriques), et en essayant de dégager des propriétés de cette présence peut-être assez fortes pour finir par donner une caractérisation purement algébrique. Rappelons que, via le choix de $U_{g,\nu}$ (différentiable), on avait pu construire, par voie transcendante, un $\widetilde{M}_{g,\nu,C}$ et un $\widetilde{U}_{g,\nu,C} = \widetilde{M}_{g,\nu+,C}$, d'où un $\widetilde{M}_{g,\nu,Q}$, et un $\widetilde{U}_{g,\nu,Q}$, d'où un $\pi_1(U_{g,\nu,Q})$, avec une filtration en trois crans, dont les facteurs sont respectivement canoniquement isomorphes à

(9)
$$\hat{\pi}_{g,\nu}, \, \hat{\mathfrak{Z}}(\pi_{g,\nu})^+, \, \mathbb{\Gamma}_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}_0}/\mathbf{Q}).$$

Ce groupe s'envoie (on présume injectivement) dans $\hat{\mathfrak{S}}(\pi_{g,\nu})$, induisant un isomorphisme entre son sous-groupe $\pi_1(U_{g,\nu,\overline{\mathbb{Q}}_0})$ et $\hat{\mathfrak{S}}(\pi_{g,\nu})$; désignons son image par $M_{g,\nu}$. Donc c'est un sous-groupe fermé

$$\hat{\mathfrak{S}}_{g,\nu} \subset M_{g,\nu} \subset \hat{\mathfrak{S}}_{g,\nu}$$

et $\hat{\mathfrak{S}}_{g,\nu}^+$ est normal dans $M_{g,\nu}$ (mais pas $\hat{\mathfrak{S}}_{g,\nu}$!), La donnée d'un tel $M_{g,\nu}$ équivaut à celle d'un $\mathcal{N}_{g,\nu}$

(11)
$$\hat{\mathfrak{Z}}_{g,\nu} \subset \mathcal{N}_{g,\nu} \subset \hat{\hat{\mathfrak{Z}}}_{g,\nu},$$

avec $\hat{\mathfrak{T}}_{g,\nu}^+$ normal dans $\mathscr{N}_{g,\nu}$. On pose¹⁰⁴:

(12)
$$\Gamma_{g,\nu} = \mathcal{N}_{g,\nu} / \hat{\mathfrak{T}}_{g,\nu}^+ \simeq M_{g,\nu} / \hat{\mathfrak{S}}_{g,\nu}^+$$

On a un homomorphisme surjectif

(13)
$$\Gamma_{\mathbf{Q}} \longrightarrow \Gamma_{g,\nu}$$

dont on présume qu'il est bijectif – i.e. que les $\Pi_{g,\nu}$ sont canoniquement isomorphes entre eux.

Soit maintenant π_0 un groupe discret à lacets de type g, v, alors on définit des sous-groupes M_{π_0} , \mathcal{N}_{π_0} :

$$\hat{\mathfrak{S}}(\pi_0) \subset M_{\pi_0} \subset \hat{\mathfrak{S}}(\pi_0)$$

(15)
$$\hat{\mathfrak{Z}}(\pi_0) \subset \mathcal{N}_{\pi_0} = M(\pi_0) / \hat{\pi}_0 \subset \hat{\mathfrak{Z}}(\pi_0)$$

(et on pose $\Pi_{\pi_0} = M_{\pi_0}/\hat{\mathfrak{S}}(\pi_0)$), en utilisant un isomorphisme $\pi_0 \stackrel{\sim}{\longrightarrow} \pi_{g,v}$ et en procédant par transport de structure – le résultat n'en dépend pas. Plus généralement, partons d'un couple (π,α) d'un groupe π profini, muni d'une *prédiscrétification* α , qu'on peut donc interpréter comme une classe d'isomorphismes $\hat{\pi}_{g,v} \longrightarrow$

¹⁰⁴Dans $\Gamma_{g,\nu}$, on a un élément canonique d'ordre 2 $\tau_{g,\nu}$, correspondant aux éléments de $\hat{\mathfrak{Z}}_{g,\nu} \setminus \hat{\mathfrak{Z}}_{g,\nu}^+ = \hat{\mathfrak{Z}}_{g,\nu}^-$.

 π , définie modulo composition à droite par un $u \in \hat{\mathfrak{S}}_{g,v}$. Alors par transport de structure on en déduit des groupes M_{α} , \mathcal{N}_{α}

$$\hat{\mathfrak{S}}_{\alpha} \subset M_{\alpha} \subset \hat{\hat{\mathfrak{S}}}(\pi)$$

(17)
$$\hat{\mathfrak{Z}}_{\alpha} \subset \mathcal{N}_{\alpha} = M_{\alpha}/\pi \subset \hat{\hat{\mathfrak{Z}}}(\pi)$$

avec $\hat{\mathfrak{T}}(\pi)$ normal dans M_{α} , i.e. $\hat{\mathfrak{T}}^{+}(\pi)$ normal dans \mathcal{N}_{α} . On pose

On a un élément canonique

(19)
$$\tau_{\alpha} \in \mathbb{\Gamma}_{\alpha}, \ \tau_{\alpha}^{2} = 1, \ \tau_{\alpha} \neq 1.$$

Soit maintenant π un groupe profini à lacets de type (g,v). On appelle arithmétisation de π la donnée d'un élément de

(20)
$$A(\pi) = \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,v}, \pi) / M_{g,v} \simeq \operatorname{Isomext}_{\operatorname{lac}}(\hat{\pi}_{g,v}, \pi) / \mathcal{N}_{g,v}.$$

Soit $P(\pi)$ l'ensemble des prédiscrétifications orientées de π :

(21)
$$P(\pi) = \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{S}}_{g,\nu}^{+} \simeq \operatorname{Isomext}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{T}}_{g,\nu}^{+};$$

alors $\Pi_{g,\nu}$ opère librement à droite sur $P(\pi)$, et

(22)
$$A(\pi) \simeq P(\pi) / \Gamma_{g,\nu}$$

 $-P(\pi)$ est un torseur relatif sur $A(\pi)$, de groupe $\Pi_{g,\nu}$. Pour $a \in A(\pi)$, soit M_a le sous-groupe de $\hat{\mathfrak{S}}(\pi)$ des automorphismes de (π,a) , il opère sur le $\Pi_{g,\nu}$ -torseur P_a des discrétifications orientées de π sur a. Pour $\alpha \in P_a$, soit $\hat{\mathfrak{S}}_{\alpha} \subset \hat{\mathfrak{S}}(\pi)$; alors $\hat{\mathfrak{S}}_{\alpha}^+$ ne dépend pas de α (on le notera $\hat{\mathfrak{S}}_a$); 105 c'est aussi le noyau de l'opération de M_a sur P_a . On a

$$\hat{\mathfrak{S}}_{a}^{+} \subset M_{a} \subset \hat{\hat{\mathfrak{S}}}(\pi)$$

 $^{^{105}}$ mais attention, $\hat{\mathfrak{S}}_{\alpha}$ dépend de $\alpha,$ i.e. $\tau_{\alpha}\in \mathbb{F}_{a}$ dépend de $\alpha.$

d'où encore

$$\hat{\mathfrak{Z}}_{a}^{+} \subset \mathcal{N}_{a} \subset \hat{\hat{\mathfrak{Z}}}(\pi)$$

en posant

(25)
$$\mathcal{N}_a = M_a / \pi, \, \hat{\mathfrak{T}}_a^+ = \hat{\mathfrak{S}}_a^+ / \pi.$$

On pose

(26)
$$\Gamma_a = M_a / \hat{\mathfrak{S}}_a^+ \simeq \mathcal{N}_a / \hat{\mathfrak{Z}}_a^+.$$

Alors Π_a s'identifie au commutant de $\Pi_{g,\nu}$ opérant sur P_a , i.e. à $\Pi_{g,\nu}$ "tordu" par le torseur P_a . Le choix d'un $\alpha \in P_a$ revient donc au choix d'un tel isomorphisme

(27)
$$\Gamma_{a} \simeq \Gamma_{g,\nu}$$

qui est changé par automorphisme intérieur si on change α ...

On a la catégorie des groupes à lacets extérieurs arithmétisés de type g, ν - c'est un groupoïde connexe, avec une origine fixée $(\hat{\pi}_{g,\nu}, a_{g,\nu})$ $(a_{g,\nu}$ arithmétisation "canonique"), dont le groupe des automorphismes est $\mathcal{N}_{g,\nu}$, extension de $\mathbb{F}_{g,\nu}$ par $\hat{\mathfrak{T}}_{g,\nu}^+ \simeq \pi_1(M_{g,\nu,Q})$ (si $\mathbb{F}_Q \longrightarrow \mathbb{F}_{g,\nu}$ est injectif!) (calculé par rapport au revêtement universel canonique de $M_{g,\nu,Q}$)...

Se donner un objet de cette catégorie, c'est essentiellement la même chose (à isomorphisme unique près) que de se donner un revêtement universel $\widetilde{M}_{g,\nu,\mathbf{Q}}$ de $M_{g,\nu,\mathbf{Q}}$ – ou un torseur sous $\mathcal{N}_{g,\nu}$; on considère alors la famille de courbes de type g,ν sur $\widetilde{M}_{g,\nu,\mathbf{Q}}$

$$(28) U_{g,\nu} \times_{M_{g,\nu}} \widetilde{M_{g,\nu,Q}} = U_{g,\nu} (\widetilde{M_{g,\nu,Q}})$$

comme étant "la" courbe algébrique dont le π_1 extérieur (qui est donc le π_1 de ce schéma...) soit le groupe extérieur à lacets donné.

Si on prenait les groupes à lacets arithmétisés, pas extérieurs, on aurait encore un groupoïde connexe avec "origine" $(\hat{\pi}_{g,\nu}, a_{g,\nu})$, avec un groupe d'automorphismes qui est $M_{g,\nu} \simeq \pi_1(U_{g,\nu,\mathbf{Q}})$. La donnée d'un objet de cette catégorie revient à la donnée d'un revêtement universel (non seulement de $M_{g,\nu,\mathbf{Q}}$),

mais) de $U_{g,\nu,\mathbf{Q}}$, soit $\widetilde{U_{g,\nu,\mathbf{Q}}}$, qui sert de revêtement universel de référence pour la courbe relative (28), permettant alors de préciser son groupe fondamental comme un vrai groupe à lacets (pas seulement un groupe extérieur).

On peut enfin regarder aussi la catégorie des groupes profinis à lacets arithmétisés, où on prend comme morphismes les isomorphismes arithmétiquement extérieurs. On trouve encore un groupoïde connexe avec origine marquée $(\hat{\pi}_{g,\nu}, a_{g,\nu})$, dont le groupe des automorphismes est maintenant $\Gamma_{g,\nu}$. Maintenant les groupes $\hat{\pi}_0$ (π_0 groupe à lacets discret de type g,ν) sont canoniquement isomorphe entre eux. La catégorie est (conjecturalement, admettant que $\Gamma_Q \longrightarrow \Gamma_{g,\nu}$ soit un isomorphisme) équivalente à celle des revêtement universels de Spec Q, i.e. à celle des clôtures algébriques de Q, l'élément origine correspondant à \overline{Q}_0 .

Quand on se donne un π avec arithmétisation a, alors il lui correspond donc canoniquement une clôture algébrique $\overline{\mathbf{Q}}$ de \mathbf{Q} . Le $\Gamma_{\mathbf{Q}}$ -torseur des isomorphismes Isom $(\overline{\mathbf{Q}}_0, \overline{\mathbf{Q}})$, i.e. des plongements $\overline{\mathbf{Q}} \hookrightarrow \mathbf{C}$, est en correspondance 1-1 avec l'une (P_a) des prédiscrétifications orientées de π donnant naissance à a.

Notons que tout α définit un élément $\tau_{\alpha} \in \mathbb{F}_a$, $\tau_{\alpha}^2 = 1$ ($\tau_a \neq 1$), d'où une application canonique

$$(29) P_{a} \longrightarrow {}_{2} \mathbf{\Gamma}_{a}.$$

On voit que cette application est compatible avec l'action du groupe ± 1 sur P_a ,

$$\tau_{\alpha} = \tau_{-\alpha}$$
.

S'il est vrai que $\Gamma_Q \xrightarrow{\sim} \Gamma_{g,\nu}$, alors (29) induit par passage au quotient une application bijective

(30) $P_a/\pm 1 \stackrel{\sim}{\longrightarrow}$ ensemble des éléments d'ordre 2 de Π_a (où $P_a/\pm 1 = P_a^{\natural} =$ ensemble des prédiscrétifications – pas orientées – sur a). Cela provient du fait connu que dans Π_Q , les seuls éléments d'ordre 2 sont les conjugués de τ , et que le centralisateur de τ dans Π_Q est réduit à $\{1,\tau\}$. On peut dire que la donnée d'une discrétification (pas orientée) α^{\natural} sous l'arithmétisation a, revient à la donnée d'une valuation archimédienne sur la clôture algébrique \overline{Q} de Q définie par (π,a) (i.e. d'un isomorphisme $\overline{Q}_1 \simeq \overline{Q}_0$ modulo conjugaison complexe).

§ 30. — PROPRIÉTÉS DES $\mathcal{N}_{g,\nu}$, $\mathbf{I}\Gamma_{g,\nu}$

a) Propriétés liées aux sous-groupes finis de Teichmüller

On aimerait dégager des propriétés, inspirées par le contexte géométricoarithmétique, mais qui puissent se formuler de façon purement algébrique – et qui soient assez fortes peut-être pour finir par caractériser les $\mathcal{N}_{g,y}$.

Revenons à un (π,a) , groupe à lacets arithmétisé, heuristiquement, il correspond à la donnée d'une clôture algébrique $\overline{\mathbf{Q}}$ de \mathbf{Q} , et (si π est donné extérieurement) d'une famille algébrique, paramétrée par un revêtement universel $M_{g,\nu,\overline{\mathbf{Q}}}$ de $M_{g,\nu,\overline{\mathbf{Q}}}$, de courbes algébriques de type (g,ν) . Dans cette optique, réduire cette famille à *une* courbe algébrique – i.e. se donner une courbe algébrique de type (g,ν) sur $\overline{\mathbf{Q}}$ – doit revenir à se donner un noyau de relèvement de l'homomorphisme surjectif

$$(1) \mathcal{N}_{a} \longrightarrow \mathbf{I}\Gamma_{a}$$

(de noyau $\hat{\mathfrak{Z}}_a^+$). La donnée d'un tel relèvement sur un sous-groupe ouvert Γ' revient à la donnée d'une courbe algébrique de type g, v, définie sur l'extension finie $K' \subset \overline{\mathbf{Q}}$ définie par Γ' . Il s'agit ici non pas de relèvements continus quelconques, mais de relèvements ayant des propriétés particulières (dont certaines fort profondes, du genre "Weil"... mais *peut-être* conséquences de propriétés beaucoup plus simples). Les propriétés à dégager devraient en tout cas être stables par passage à un sous-groupe ouvert plus petit. Parmi ces propriétés, il y aurait que ces germes de relèvements pourraient à leur tour se remonter à $\hat{\mathfrak{E}}(\pi)$ lui-même – de façon

également "admissible" en un sens à préciser – et même qu'il y aurait "beaucoup" de classes de π -conjugaison de tels germes de relèvements, pour un germe d'action extérieure sur π déjà donné – ce qui correspond au fait naïf que la courbe algébrique U sur $\overline{\mathbf{Q}}$ définie par cette action extérieure a "beaucoup de points" rationnels sur $\overline{\mathbf{Q}}$. En fait, il suffirait, à la limite, de parler des propriétés de ces relèvements plus complets en un germe d'une vraie action de Γ_a sur π (pas seulement extérieure) – dont les actions extérieures vont se déduire par composition avec

$$M_a \longrightarrow \mathcal{N}_a \simeq M_a/\pi$$
.

On suppose donc donné un sous-groupe fermé

$$\Gamma \subset M_a \subset \hat{\mathfrak{S}}(\pi)$$

tel que

$$\Gamma \longrightarrow \Gamma_a = M_a / \pi$$

est injectif, et a comme image un sous-groupe ouvert de Γ_a – étant entendu que deux sous-groupes conjugués sous π – voire même parfois, sous M_a – ne sont pas considérés comme essentiellement distincts. On considère, en même temps que Γ , ses sous-groupes ouverts Γ' . On veut surement, pour de tels sous-groupes ouverts

$$\pi^{\Gamma'} = \{1\}.$$

Si on désigne par $\widetilde{\Gamma}$ l'image de Γ dans \mathcal{N}_a , de sorte qu'on a une extension

$$(1') 1 \longrightarrow \pi \longrightarrow E \longrightarrow \widetilde{\Gamma} \longrightarrow 1$$

(où $\widetilde{\Gamma}$ est isomorphe à Γ); on peut considérer Γ comme une section de cette extension, Γ' comme une section partielle. L'hypothèse $\pi^{\Gamma'}=\{1\}$ assure la *rigidité* de la catégorie des points de U à valeurs dans $\overline{\mathbf{Q}}$, paradigmée par celle des germes de scindage de l'extension (1').

On peut aussi regarder les ensembles $(\hat{\mathfrak{S}}_a^+)^{\Gamma'} = \operatorname{Centr}_{M_a}(\Gamma') \cap \hat{\mathfrak{S}}_a^+$ et $(\hat{\mathfrak{T}}_a^+)^{\Gamma'} = \operatorname{Centr}_{M_a}(\widetilde{\Gamma}') \cap \hat{\mathfrak{T}}_a^+$; on a donc une suite exacte

$$(2) 1 \longrightarrow \pi^{\Gamma'} \longrightarrow (\hat{\mathfrak{S}}_{a}^{+})^{\Gamma'} \longrightarrow (\hat{\mathfrak{X}}_{a}^{+})^{\Gamma'}$$

qui, compte tenu de l'hypothèse $\pi^{\Gamma'} = \{1\}$, donne

$$(\hat{\mathfrak{S}}_{a}^{+})^{\Gamma'} \hookrightarrow (\hat{\mathfrak{T}}_{a}^{+})^{\Gamma'}.$$

Le deuxième membre de (3), par notre dictionnaire hypothétique, devrait être canoniquement isomorphe au groupe des automorphismes de la courbe U sur K', donc être un groupe fini, et même la limite inductive (pour Γ' décroissant) – qui est le groupe des automorphismes de U sur $\overline{\mathbf{Q}}$ – est finie. Désignant par un exposant \natural le germe de groupe correspondant, on veut donc que

(c)
$$Z = (\hat{\mathfrak{T}}_a^+)^{\Gamma^{\natural}} (= \operatorname{Centr}_{\mathcal{N}_a} (\widetilde{\Gamma}^{\natural}) \cap \hat{\mathfrak{T}}_a^+)$$
 soit un groupe fini

– ce qui fait pendant à (b), et exprime que les groupes d'automorphismes des points de $M_{g,\nu,\overline{\mathbf{O}}}$ sur $\overline{\mathbf{Q}}$ sont finis.

En fait, on voudrait que Z soit conjugué dans M_a à un sous-groupe de \mathfrak{T}^+ (si on suppose qu'on dispose d'une discrétification π_0 de π , permettant de définir \mathfrak{T} – sinon, on peut exprimer cette propriété en disant qu'il existe une discrétification π_0 de π , compatible avec a, telle que $Z \subset \mathfrak{T}(\pi_0) \ldots$)

Considérons maintenant un sous-groupe fini quelconque $G \subset \hat{\mathfrak{T}}_a^+$. [N.B. si on prend seulement $G \subset M_a$, de sorte que l'image de G dans $\Pi_a = M_a/\hat{\mathfrak{T}}_a^+$ est un sous-groupe fini, alors s'il est vrai que $\Pi_a \simeq \operatorname{Gal}(\overline{\mathbb{Q}}, \mathbb{Q})$, cette image doit être d'ordre 1 ou 2, et dans le deuxième cas, doit définir un $\tau \in \Pi_a$ correspondant à une prédiscrétification (pas orientée) bien déterminée de π . Ce cas devrait être encore réutilisée dans la suite...] Supposons alors que [ce n'est sans doute pas automatique – si on ne suppose pas $\mathcal{N}_a = \operatorname{Norm}_{\hat{\mathfrak{T}}}(\hat{\mathfrak{T}}_a)$], que G est contenu dans \mathfrak{T}^+ , pour une discrétification convenable dans la classe a, et que l'action extérieure ainsi obtenue de G sur un π_0 discret de type (g, v) soit toujours réalisable. Elle est donc réalisable aussi pour une action de G sur une structure complexe, donc algébrique, ce qui signifie qu'on peut trouver un germe de relèvement admissible

qui centralise G. Considérons d'autre part

(4)
$$\operatorname{Centr}_{\mathcal{N}}(G) \longrightarrow \mathbf{I}\Gamma_a$$

dont le noyau est Centr $_{\hat{\mathfrak{X}}_a^+}(G)=\hat{\mathfrak{X}}_a^{+G}$. Si on se plaçait dans le contexte discret (avec une discrétification $\pi_0\subset\pi$ invariante par G) on aurait, par les conjectures standard topologiques, que $\hat{\mathfrak{X}}_a^{+G}$ est le groupe des automorphismes, dans la catégorie isotopique, de l'action de G sur une surface U de type (g,ν) , décrite par l'opération extérieure donnée de G sur π_0 . Ce groupe n'a aucune raison d'être fini – s'il l'était, l'homomorphisme (4) serait à noyau fini, donc serait un isomorphisme des noyaux des groupes, et il y aurait un germe de relèvement unique $\Pi_a^{\natural} \longrightarrow M_a$ qui centraliserait G – ce qui signifierait qu'il y a une seule façon de réaliser l'opération topologique de G sur U par une opération analytique complexe, donc algébrique – or ce n'est surement pas le cas, l'ensemble des points fixes de G opérant sur l'espace de Teichmüller $\widetilde{M}_{g,\nu}$ n'est pas réduit à un point – c'est (dans le contexte algébrique) une multiplicité schématique qui peut être de dimension quelconque – elle est de dimension > 0 en tout cas, si le quotient U/G n'est pas de genre 0.

A retenir en tout cas, comme propriétés plausibles:

(d) Pour tout sous-groupe fini G de $\hat{\mathfrak{T}}_a^+$ (ou du moins si $G \subset \mathfrak{T}^+$, quand on dispose d'une discrétification $\pi_0 \subset \pi$ dans a), regardant $\operatorname{Centr}_{\hat{\mathfrak{T}}}(G) = Z(G)$, $\mathcal{N}_a \cap Z(G) \longrightarrow \mathbb{F}_a$ a une image ouverte (et il y a même des germes de relèvements admissibles $\mathbb{F}_a \longrightarrow Z(G)$).

Ceci implique une propriété non triviale pour les $g \in M_a$ en tant qu'éléments de $\hat{\mathfrak{X}}(\pi)$, ou mieux de $\mathscr{N}' = \operatorname{Norm}_{\hat{\mathfrak{X}}}(\hat{\mathfrak{X}})$ [à savoir: $\exists n \in \mathbf{N}^*$ tel que g^n soit congru mod $\hat{\mathfrak{X}}_a^+$ à un élément de Z(G)...]. Considérons en effet l'image Z_G' de $Z(G) \cap \mathscr{N}'$ dans $\Gamma' = \mathscr{N}'/\hat{\mathfrak{X}}$. On a évidemment $\Gamma_a \subset \Gamma'$, et l'image de $Z(G) \cap \mathscr{N}_a$ dans Γ_a n'est autre que $Z_G' \cap \Gamma_a$. Dire que celle-ci est ouverte, i.e. d'indice fini, implique donc que $\forall g \in \Gamma_a$, $\exists n \in \mathbf{N}^*$ tel que $g^n \in Z_G'$.

Notons que dans $\mathfrak{T}(\pi_{g,\nu})$ il n'y a qu'un nombre fini de classes de conjugaison de sous-groupes finis, donc si on regarde leurs centralisateurs Z_G dans $\hat{\mathfrak{T}}(\pi_{g,\nu})$ et leurs images dans

$$\Gamma_{g,\nu}' = \operatorname{Norm}_{\hat{\mathfrak{Z}}_{g,\nu}}(\hat{\mathfrak{Z}}_{g,\nu}^+)/\hat{\mathfrak{Z}}_{g,\nu}^+,$$

on ne trouve qu'un nombre fini de sous-groupes de $\Gamma'_{g,\nu}$, soit $Z'_{g,\nu}$ leur intersection. On voit donc que le sous-groupe $\mathrm{I}\!\Gamma_{g,\nu}$ de $\Gamma'_{g,\nu}$ est tel que $\mathrm{I}\!\Gamma_{g,\nu}\cap Z'_{g,\nu}$ soit ouvert dans $\mathrm{I}\!\Gamma_{g,\nu}$.

Passons maintenant à des sous-groupes finis de $\hat{\mathfrak{S}}(\pi)$ lui-même – ou du moins de M_a – ou, ce qui revient presque au même, de $\hat{\mathfrak{S}}_a^+$. On va, comme tantôt, se borner à des $G \subset \mathfrak{S}(\pi_0)$, pour une discrétification convenable $\in a$, car autrement il n'y aurait rien à dire. On sait qu'alors G est cyclique – et correspond à une action de G sur un U topologique, avec point fixe. On peut la réaliser de façon complexe, ce qu'on exprime en disant qu'il existe un relèvement admissible $\Gamma_a^{\natural} \longrightarrow M_a$, qui centralise G. On sait d'ailleurs, si $G \neq 1$, que

$$\pi^G = \{1\}$$

(ou plutôt, on le sait dans le cas discret – on l'admet dans le contexte profini) – ce qu'on peut encore interpréter comme une propriété de rigidité – ainsi

$$\operatorname{Centr}_{\hat{\mathfrak{S}}}(G) = \hat{\mathfrak{S}}^G \longrightarrow \hat{\mathfrak{T}}^G$$

est *injectif*, donc si on a $\Gamma \subset \mathcal{N}_a$ qui est dans l'image, alors il existe un relèvement $\Gamma \longrightarrow \hat{\mathfrak{S}}$ unique qui centralise G, i.e. tel que $\Gamma \longrightarrow \hat{\mathfrak{S}}^G$. Mais en fait ce qu'on saura, pour un $\Gamma \subset M_a$ donné (décrivant une courbe algébrique via son action extérieure sur un π_1) c'est que $\Gamma \subset M_a^G$ (i.e. l'action extérieure commute à une action extérieure donnée de G, i.e. G opère sur la courbe algébrique) – et on voudrait néanmoins en conclure que lorsqu'on a relevé $G \longrightarrow \hat{\mathfrak{T}}^+$ ou $G \longrightarrow \hat{\mathfrak{S}}^+$ (i.e. quand on s'est donné un point fixe de l'action de G sur G0 alors l'action de G1 se remonte automatiquement en G2 de façon à commuter..... (i.e. G3 est ce là une propriété du choix de G4 ou de celui du relèvement G5 est ce là une propriété du choix de G6 ou de celui du relèvement G6 ou de G7?

Dans le cadre discret, sauf erreur, si on a une action fidèle discrète de G fini sur π_0 , alors $\mathfrak{S}(\pi_0)^G \longrightarrow \mathfrak{T}(\pi_0)^G$ (qui est injectif, par $\pi_0^G = 1$) est aussi surjectif. Non, il y a erreur – ça signifierait tel quel que si G opère fidèlement sur une surface topologique U de type g, v, avec un point fixe P, alors les automorphismes qui commutent à G fixent P (au lieu de permuter seulement les points fixes entre deux...). Donc il ne faut pas s'attendre à ce que tout tout élément dans \mathcal{N}_a^G , ni même dans $\hat{\mathfrak{T}}_a^G$, se remonte à M_a^G – mais plutôt ceci: pour un $G \subset \mathfrak{T}_a(\pi_0)$ sous-groupe fini donné, les classes de π -conjugaison de "remontages" à $\hat{\mathfrak{S}}$, qui s'interprètent comme des points fixes d'une action de G sur quelque U, forment un ensemble fini, sur lequel $\hat{\mathfrak{T}}(\pi)^G$ opère de façon naturelle, et le stabilisateur d'un

point P i.e. d'une classe de conjugaison de relèvements se remonte de façon unique en $\hat{\mathfrak{E}}^G$. Il faudrait réexaminer ceci de façon plus soigneuse par la suite. Mais il me semble qu'on ne trouve pas ici de nouvelles propriétés des $\Gamma \subset M_a$ ni de M_a luimême, i.e. de Γ_a comme sous-groupe profini de $\Gamma' = \operatorname{Norm}_{\hat{\mathfrak{Z}}}(\hat{\mathfrak{T}})/\hat{\mathfrak{T}}$.

\$ 31. — DIGRESSION SUR LES RELÈVEMENTS D'UNE ACTION EXTÉRIEURE D'UN GROUPE FINI G SUR UN GROUPE PROFINI À LACETS π

On suppose l'action extérieure *fidèle*, i.e. $G \subset \hat{\mathfrak{Z}}(\pi) = \hat{\mathfrak{Z}}$, et que $G = G^+$. On suppose de plus qu'il existe une discrétification invariante π_0 , i.e. telle que $G \subset \mathfrak{Z}(\pi_0)$. Si on suppose G cyclique, alors sauf erreur il est prouvé que la situation est *réalisable* topologiquement (donc aussi de façon analytique complexe...)

Dans le cas discret, la signification des classes de π_0 conjugaison de relèvement $G \longrightarrow \mathfrak{S}(\pi_0)$ est bien comprise, de même que pour les relèvements partiels. On trouve une réalisation canonique [si $U^! \neq \emptyset$] du groupoïde fondamental associé au groupe extérieur π_0 , par un groupoïde fini $[U^!]$ sur lequel G opère au sens strict, dont les points correspondent aux classes de π_0 -conjugaison de sections partielles $\neq 1$ maximales. Le groupe $\mathfrak{T}(\pi_0)^G$ opère de façon également canonique sur ce groupoïde. Si $P \in U^!$ correspond à un relèvement $G \longrightarrow \mathfrak{S}(\pi_0)$, alors un élément $cdot u \in \mathfrak{T}(\pi_0)^G$ est dans l'image de $\mathfrak{S}(\pi_0)^G$, i.e. peut se remonter en $u \in \mathfrak{S}(\pi_0)$ commutant à G, si et seulement si

cdotu(P) = P, i.e. (si

cdot u est remonté de façon quelconque en v), si et seulement si v(G) est π_0 conjugué à G, i.e. si et seulement s'il existe $g \in \pi_0$ tel que $v(G) = \operatorname{int}(g)(G)$, i.e. $u \stackrel{\text{def}}{=} \operatorname{int}(g^{-1})v$ fixe G (auquel cas bien sûr il centralise, par l'hypothèse $cdot u \in \mathfrak{T}^G$). Donc notre brillante assertion est une tautologie, et donc le relèvement est unique. Comme $U^!$ est fini, le stabilisateur $\mathfrak{T}(\pi_0)_P^G$ de P dans $\mathfrak{T}(\pi_0)_P^G$ est

d'indice fini, et c'est donc ce sous-groupe d'indice fini qui se remonte gaillardement et canoniquement.

Que peut-on dire dans le contexte profini? Bien sûr, on a une application canonique

classes de
$$\pi_0$$
-conjugaison classes de π_0 -conjugaison de relèvements de des relèvements de G en $G \longrightarrow \mathfrak{S}(\pi_0)$ \longrightarrow G en $G \longrightarrow \hat{\mathfrak{S}}(\pi_0)$, i.e. de scindage de l'extension $1 \longrightarrow \pi_0 \longrightarrow E \longrightarrow G \longrightarrow 1$ $1 \longrightarrow \hat{\pi}_0 = \pi \longrightarrow \hat{E} \longrightarrow G \longrightarrow 1$.

Il faudrait examiner d'abord

- a) la question de la bijectivité de cette application,
- b) si $\pi^G = 1$ (rigidité), pour $G \neq \{1\}$. (pour un relèvement donné, dans E pour simplifier).

J'ai envie de conjecturer sans vergogne qu'il en est ainsi – ce qui impliquerait par exemple que pour tout tel relèvement de G, il y a un sous-groupe ouvert $(\mathfrak{T}^G)_P$ du groupe (peut-être vraiment immense a priori!) $\hat{\mathfrak{T}}^G$, qui se remonte canoniquement de façon à commuter à G....

Il faudrait manifestement faire, en même temps qu'une théorie des opérations extérieures des groupes finis sur des groupes discrets à lacets (qui est pour le moment extrêmement conjecturale) une théorie analogue dans le cas profini – j'aurai sans doute à y revenir par la suite.

§ 32. — RETOUR SUR LES ASPECTS ARITHMÉTIQUES DU BOUCHAGE DE TROUS : RELATIONS ENTRE $\Pi_{g,\nu}$ et $\Pi_{g,\nu-1}$

Bien sûr, on a que

$$\mathcal{N}_{g,v} \longrightarrow \mathfrak{S}_{v}$$

est surjectif (puisque $\mathfrak{T}_{g,\nu} \longrightarrow \mathfrak{S}_{\nu}$ l'est), donc on aura

$$1 \longrightarrow \mathcal{N}_{g,\nu}^! \longrightarrow \mathcal{N}_{g,\nu} \longrightarrow \mathfrak{S}_{\nu} \longrightarrow 1$$

et le diagramme cartésien de sous-groupes de $\hat{\hat{\mathfrak{X}}}_{g,\nu}$:

$$\hat{\mathbf{x}}_{g,\nu}^{+} \longleftrightarrow \mathcal{N}_{g,\nu}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\hat{\mathbf{x}}_{g,\nu}^{!+} \longleftrightarrow \mathcal{N}_{g,\nu}^{!}$$

 $[\mathscr{N}_{g,\nu} = \mathscr{N}_{g,\nu}^! \cdot \hat{\mathfrak{T}}_{g,\nu}^+] \text{ donnera un isomorphisme}$

(3)
$$\mathcal{N}_{g,v}^!/\hat{\hat{\mathbf{x}}}_{g,v}^{!+} \xrightarrow{\sim} \mathcal{N}_{g,v}/\hat{\hat{\mathbf{x}}}_{g,v}^{+} = \mathbf{I}\Gamma_{g,v}.$$

Dans le cas d'un (π, a) , $(\pi$ groupe extérieur à lacets, a une arithmétisation), on aura de même:

(4)
$$\begin{cases} \mathcal{N}_{a}^{!}/\hat{\mathfrak{T}}_{a}^{+} \xrightarrow{\sim} \mathcal{N}_{a}/\hat{\mathfrak{T}}_{a}^{+} = \mathbf{I}\Gamma_{a} \\ \mathcal{N}_{a} = \mathcal{N}_{a}^{!} \cdot \hat{\mathfrak{T}}_{a}^{+}. \end{cases}$$

Considérons maintenant pour tout $i \in I$ le stabilisateur \mathcal{N}_i de i dans \mathcal{N} , et le groupe à lacets (pas extérieur!) π_i , de type (g, v-1), déduit de π par "bouchage du trou i" ¹⁰⁶. On a alors, pour une discrétification choisie α compatible avec l'arithmétisation, un homomorphisme injectif

(5)
$$\pi_i' \xrightarrow{\varphi_i} \hat{\mathfrak{X}}^{!} \subset \mathcal{N}^! \subset \hat{\mathfrak{X}}_i,$$

tel que le composé

$$\pi'_i \longrightarrow \hat{\hat{\mathfrak{X}}}_i \longrightarrow \hat{\hat{\mathfrak{S}}}(\pi'_i) (\hookrightarrow \pi'_i)$$

soit l'inclusion canonique. Ceci posé, on veut ¹⁰⁷ que l'image de (5) (qui n'est peutêtre pas invariante dans $\hat{\mathfrak{Z}}_i$) soit *invariante dans* \mathcal{N}_i , ¹⁰⁸Cela signifie aussi que φ_i ne dépend pas du choix de la discrétification de classe α ... ou ce qui revient au même, dans $\mathcal{N}^!$ (car $\mathcal{N}_i = \mathcal{N}^! Dot \hat{\mathfrak{Z}}_i^+$, or $\hat{\mathfrak{Z}}_i^+$ invarie cette image). Revenant à la situation universelle, cela signifie:

(5') $\mathcal{N}_{g,\nu}^! \subset \hat{\mathfrak{X}}_{g,\nu}$ est contenu dans le normalisateur des $\pi_i' \hookrightarrow \hat{\mathfrak{X}}_{g,\nu}^{!+}$ $(1 \le i \le \nu-1)$, qui sont donc invariants dans $\mathcal{N}_{g,\nu}^!$ De plus, $\hat{\mathfrak{X}}_{g,\nu}^! \xrightarrow{\psi_i} \hat{\mathfrak{S}}_{g,\nu-1}^!$ induit un *isomorphisme*

(6)
$$\mathcal{N}_{g,\nu}^! \xrightarrow{\sim} M_{g,\nu-1}^!.$$

Cette assertion se décompose en deux: tout d'abord que ψ_i applique bien $\mathcal{N}_{g,\nu}^!$ dans $M_{g,\nu}^!$ – et ceci résulte de la définition arithmético-géométrique de ces groupes – cela implique d'autre part, puisque ψ_i induit aussi un isomorphisme

$$\hat{\mathfrak{Z}}_{g,\nu}^{+} \xrightarrow{\sim} \hat{\mathfrak{S}}_{g,\nu-1}^{+},$$

qu'il induit un homomorphisme

¹⁰⁶On écrit ici $\mathcal N$ etc. au lieu de $\mathcal N_a$; on suppose $(g,\nu-1)$ aussi anabélien, i.e. $2g+\nu\geq 4$.

¹⁰⁷ Plutôt, il est vrai que!

^{108 (***)}

 $^{^{109}}$ Il suffit me semble-t-il de le prouver pour un i pour le déduire pour les autres.

et l'injectivité (resp. surjectivité) de (6) équivaut à celle de (7). D'ailleurs (7) s'insère, par construction, dans un diagramme commutatif:

(8)
$$\Gamma_{Q} \xrightarrow{\theta_{g,\nu}} \Gamma_{Q} \xrightarrow{\theta_{g,\nu-1}} \Gamma_{g,\nu-1}$$

avec $\theta_{g,\nu}$ et $\theta_{g,\nu-1}$ surjectifs, donc il est bel et bien évident que (6) est *surjectif*. La bijectivité signifie que $\theta_{g,\nu}$ et $\theta_{g,\nu-1}$ ont même noyau (alors qu'a priori il se pourrait que $\theta_{g,\nu}$ ait un noyau plus petit, i.e. corresponde à une représentation de \mathbb{F}_Q "moins infidèle" que $\theta_{g,\nu-1}$). D'ailleurs, il est évident (même, a priori, sans utiliser la définition ailleurs explicitée de $\mathcal{N}_{g,\nu}$) que l'homomorphisme λ_i de (7) ne dépend pas du choix de $0 \le i \le \nu-1$ – par exemple puisque l'on passe de l'un à l'autre en appliquant des opérations de $\hat{\mathfrak{T}}^+$ (puisque $\hat{\mathfrak{T}}^+$ opère transitivement sur I) et que $\hat{\mathfrak{T}}^+$ opère trivialement dans $\mathbb{F}_{g,\nu}$...

On peut dire que (6) décrit $M_{g,\nu-1}^!$ (donc $\mathcal{N}_{g,\nu-1}^!$) en termes de $\mathcal{N}_{g,\nu}$ – mais l'inverse est moins clair, faute de savoir si $\hat{\mathfrak{X}}_{g,\nu} \xrightarrow{\phi_i} \hat{\mathfrak{S}}_{g,\nu-1}$ est injectif; si on le savait, on pourrait décrire $\mathcal{N}_{g,\nu}^!$ comme l'image inverse de $M_{g,\nu-1}^!$... Il ne serait pas impossible d'ailleurs que (6) soit faux, i.e. que les $\theta_{g,\nu}$ soient infidèles, mais de moins en moins quand on fait augmenter ν – en passant à la limite projective $\theta_{g,\infty}$, seulement, aurait-on (peut-être!) une représentation fidèle de Γ_Q ? Mais jusqu'à indication contraire, je préfère travailler hypothétiquement avec (6), ce qui s'exprime par les suites exactes fondamentales

(9)
$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \xrightarrow{\varphi_i} \mathcal{N}_{g,\nu}^! \xrightarrow{\psi_i} \mathcal{N}_{g,\nu-1}^! \longrightarrow 1^{110}$$

qui étend la suite exacte

(10)
$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \xrightarrow{\varphi_i} \hat{\mathfrak{Z}}_{g,\nu}^! \xrightarrow{\psi_i'} \hat{\mathfrak{Z}}_{g,\nu-1}^! \longrightarrow 1$$

(et tient lieu de la suite exacte peut-être défaillante

$$?? \quad 1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\hat{\mathfrak{X}}}_{g,\nu}^! \longrightarrow \hat{\hat{\mathfrak{X}}}_{g,\nu-1}^! \longrightarrow 1 \quad ??).$$

¹¹⁰On pourrait l'inclure dans une suite exacte un peu plus grande, avec $(\mathcal{N}_{g,\nu})_i$ et $\mathcal{N}_{g,\nu-1}$...

Quand (π, a) est un groupe extérieur à lacets muni d'une arithmétisation – ce qu'on pourrait appeler une "courbe algébrique virtuelle" – alors ce qui précède permet de définir, sur chacun des π'_i de type (g, v-1) associés aux $i \in I(\pi)$, une arithmétisation canoniquement associée à a, soit a_i , et on trouve alors une suite exacte

$$(11) 1 \longrightarrow \pi'_i \longrightarrow (\mathcal{N}_a)_i \xrightarrow{\psi_i} \mathcal{N}_{a_i^+} \longrightarrow 1$$

telle que l'on ait

(12)
$$(\hat{\mathbf{x}}_{a}^{+})_{i} = \psi_{i}^{-1}(\hat{\mathbf{x}}_{a'}^{+}),$$

induisant

et induisant par passage au quotient

(13)
$$\Gamma_a \xrightarrow{\sim} \Gamma_{a_i}.$$

De plus, l'application canonique

$$\operatorname{Discr\acute{e}t}^+(\pi) \longrightarrow \operatorname{Discr\acute{e}t}^+(\pi_i')$$

définit par passage aux quotients

$$\mathbb{P}_{a} \xrightarrow{\sim} \mathbb{P}_{a}.$$

compatible avec les actions de \mathbb{F}_a , $\mathbb{F}_{a'_i}$ et (13).

Je ne fais ici aucune assertion sur une soi-disant bijectivité entre ensemble des arithmétisations de π , et ensemble des arithmétisations de π'_i – ce qui reviendrait à la bijectivité de

$$\hat{\hat{\mathbb{X}}}/\mathcal{N}_{a} \longrightarrow \hat{\hat{\mathfrak{S}}}'/M_{a'} \simeq \hat{\hat{\mathbb{X}}}'/\mathcal{N}_{a'},$$

qui n'aurait guère de raison d'être que si on admettait $\hat{\hat{\mathfrak{Z}}}(\pi) \stackrel{\sim}{\longrightarrow} \hat{\hat{\mathfrak{S}}}(\pi'_i)$, qui me semble bien problématique.

Cependant, on trouve, par le foncteur "bouchage de trous", une équivalence entre la catégorie des groupes profinis à lacets **extérieurs arithmétisés** de type (g,v), et des groupes profinis à lacets (pas extérieurs!) **arithmétisés**, de type (g,v-1).

On peut se proposer d'essayer de préciser le type de propriétés qui vont caractériser $\mathcal{N}_{g,\nu}$ dans $\mathcal{N}_{g,\nu}' = \operatorname{Norm}_{\hat{\mathfrak{X}}_{g,\nu}}(\hat{\mathfrak{X}}_{g,\nu}^+)$, ou encore $\Pi_{g,\nu}$ dans $\Pi_{g,\nu}' = \mathcal{N}_{g,\nu}'/\hat{\mathfrak{X}}_{g,\nu}^+$. On a des homomorphismes naturels

(15)
$$\begin{cases} \prod_{g,\nu}' \longrightarrow \operatorname{Autext}(\hat{\mathfrak{T}}_{g,\nu}^+) \\ \prod_{g,\nu}' \longrightarrow \operatorname{Autext}(\hat{\mathfrak{T}}_{g,\nu}^{+!}) \end{cases}$$

et je présume que $\[\Gamma_{g,\nu} \]$ pourra se décrire comme image inverse d'un sous-groupe fermé convenable de l'un ou de l'autre des seconds membres, i.e. qu'on peut le décrire en termes des propriétés d'opérations extérieures sur $\hat{\mathfrak{Z}}_{g,\nu}^+$ ou sur $\hat{\mathfrak{Z}}_{g,\nu}$. Les conditions (e) en tout cas, sont bien de ce type (propriété de normaliser des sous-groupes invariants π_i' de $\mathfrak{Z}_{g,\nu}^{+!}$...). Bien sûr, on pourrait poser des conditions sur des automorphismes extérieurs (de $\hat{\mathfrak{Z}}_{g,\nu}'^{+!}$, disons), qui soient stables par passage successifs à des $\hat{\mathfrak{Z}}_{g,\nu-1}'^{+!}$, $\hat{\mathfrak{Z}}_{g,\nu-1}'^{+!}$ etc....et qui soient engendrées par les conditions (5') et (6). Mais il n'est pas dit du tout que cela suffira à décrire les $\Gamma_{g,\nu} \subset \Gamma_{g,\nu}'$, ne serait-ce que parce que la condition devient vide pour le cas limite $\nu=0$ (si $g\geq 2$; ou pour les cas g=1, $\nu=1$, ou g=0, $\nu=3$). Il est possible qu'il faille faire intervenir des propriétés des π_1 des $M_{g,\nu,\overline{Q}}$, liées à la compactification. Ce n'est guère que dans le cas de $(g,\nu)=(0,3)$ qu'il ne faut pas s'attendre du tout à ce genre de condition.

Appelons "courbe algébrique potentielle" (sous-entendu, sur une clôture algébrique non précisée de \mathbf{Q}) la donnée d'un groupe extérieur profini π à lacets de type (g, v), muni d'une arithmétisation a, et d'un germe de relèvement "admissible"

(16)
$$\Gamma_a^{\natural} \longrightarrow \mathcal{N}_a.$$

Elles forment une catégorie (pour les isomorphismes, pour le moment); si on se donne un torseur P sous $\prod_{g,v}$ (ce qui, moralement, revient à se donner une clôture algébrique $\overline{\mathbf{Q}}$ de $\mathbf{Q}...$) les courbes potentielles de type (g,v) relatives à

ce torseur (moralement, correspondant à des courbes algébriques sur \overline{Q} ...) sont celles munies en plus d'un isomorphisme ("intérieur")

$$\mathbb{P}_{a} \xrightarrow{\sim} P$$

(définissant un isomorphisme

Cette fois-ci, on s'attend à trouver des ensembles d'isomorphismes *finis*, au lieu de torseurs sous des groupes profinis considérables ¹¹¹.

On considère les points de π , comme les classes de π -conjugaison de relèvements "admissibles" de (16) en

i.e. un germe de vraie action de Γ_a sur π avec $\pi^{\Gamma_a^{\natural}} = 1$ ceci pour l'admissibilité.

Question liminaire: La connaissance de π , de $\Sigma_a = \hat{\mathfrak{X}}_a^+ \subset \hat{\mathfrak{X}}(\pi)$, et d'un sous-groupe $\Gamma \subset \hat{\mathfrak{X}}(\pi)$ (normalisant Σ_a , tel que $\Gamma' \cap \Sigma_a = \{1\}$) permet-elle de retrouver l'arithmétisation de π – et, pour commencer, de retrouver \mathcal{N}_a (dans lequel $\Gamma \cdot \Sigma$ est d'indice fini)? Il suffirait, pour pouvoir répondre par l'affirmative, de savoir que tout isomorphisme extérieur $\pi \longrightarrow \pi_{g,\nu}$, qui envoie Σ sur $\hat{\mathfrak{X}}_{g,\nu} = \Sigma_{g,\nu}$, et tout sous-groupe d'indice fini $\Gamma'Dot\Sigma$ de \mathcal{N}_a dans $\mathcal{N}_{g,\nu}$, est compatible avec les arithmétisations. Or ceci revient exactement à:

(g) (facultatif, quand-même!) Pour tout sous-groupe ouvert \mathcal{N}' de $\mathcal{N}_{g,\nu}$, les éléments de $\hat{\hat{\mathfrak{X}}}_{g,\nu}$ normalisant $\hat{\mathfrak{X}}_{g,\nu}$ et qui transportent \mathcal{N}' dans $\mathcal{N}_{g,\nu}$, sont dans $\mathcal{N}_{g,\nu}$ (a fortiori $\mathcal{N}_{g,\nu}$ serait son propre normalisateur dans $\operatorname{Norm}_{\hat{\mathfrak{X}}_{g,\nu}}(\hat{\mathfrak{X}}_{g,\nu})$).

Avec les "points de U" (définis comme classes de conjugaison de relèvements (19)) "admissibles" i.e. satisfaisant (20), on fait un groupoïde, ayant comme groupe

$$1 \longrightarrow \hat{\mathfrak{T}}_{\alpha} \longrightarrow \hat{\mathcal{N}}_{\alpha} \longrightarrow \mathbf{\Gamma}_{\alpha} \longrightarrow 1$$

¹¹¹Le cas où P est le torseur trivial est celui des π [extérieurs?] munis d'une *prédiscrétification* orientée α ; d'où une suite exacte:

fondamental extérieur π , et sur lequel $\Gamma \subset \mathcal{N}_a$ opère strictement (NB. pour se reposer, on se donne maintenant Γ lui-même, pas seulement un germe – moralement, cela signifie qu'on a une courbe définie sur une sous-extension finie K de $\overline{\mathbb{Q}}/\mathbb{Q}$...Les points fixes de Γ correspondent aux points rationnels sur K, les points fixes sous un sous-groupe fermé Γ' aux points rationnels sur la sous-extension K' de $\overline{\mathbb{Q}}/\mathbb{Q}$ associée à Γ' ...)

Soit maintenant $I'\subset I=I(\pi)$ une partie de I, stable par Γ . On trouve par "bouchage de trous en I'" un groupe extérieur à lacets π' , et un homomorphisme extérieur

$$(20) \pi \longrightarrow \pi'.$$

D'ailleurs π' hérite d'une arithmétisation a' par π – et on aura

(21)
$$\begin{cases} \prod_{a} \stackrel{\sim}{\longrightarrow} \prod_{a'} \\ P \simeq \mathbb{P}_{a} \stackrel{\sim}{\longrightarrow} \mathbb{P}_{a'} \end{cases}$$

donc π' est défini sur la même P que Γ_a (i.e. en faisant des trous dans U pour trouver U', on n'a pas dérangé le corps de base algébrique absolu $\overline{\mathbb{Q}}$...). D'ailleurs on aura un homomorphisme canonique

$$\hat{\hat{\mathfrak{Z}}}(\pi) \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi')$$

induisant

$$\begin{array}{ccc}
\mathcal{N}_{a} & \longrightarrow & \mathcal{N}_{a'} \\
\uparrow & & \uparrow \\
\hat{\mathbb{S}}_{a} & \longrightarrow & \hat{\mathbb{S}}_{a'}
\end{array}$$
(22)

(induisant justement $\Gamma_a \longrightarrow \Gamma_{a'}$ par passage aux quotients), et on trouve, en composant

$$\Gamma \hookrightarrow \mathcal{N}_a \longrightarrow \mathcal{N}_{a'}$$

un homomorphisme également injectif

$$\Gamma \hookrightarrow \mathcal{N}_{a'}$$

qui est une quasi-section de $\mathcal{N}_{a'}$ sur $\Gamma_{a'}$. Donc sous réserve d'admissibilité, on trouve sur π' une structure de courbe algébrique potentielle, relative au même P.

Je suis vraiment gêné aux entournures, faute d'avoir une définition en forme d'"admissible" – je vais y revenir très vite – mais pour le moment, j'ai envie de noter que, si $I' \neq \emptyset$, le groupe extérieur π' peut se décrire par un vrai groupoïde, ayant I' comme ensemble d'objets, et sur lequel Γ opère en sens strict (ceci est de l'algèbre pure, indépendamment des histoires d'arithmétisation...) Le fait que Γ opère trivialement sur les $i' \in I'$ implique que pour tout $i' \in I'$, on a un homomorphisme canonique

$$\Gamma \longrightarrow \pi'(i')$$

qui relève son action extérieur, d'où une classe de π' -conjugaison de relèvements de l'action extérieure de Γ sur π' en une vraie action de Γ sur π' – on espère qu'elle satisfait $\pi'^{\Gamma} = 1$ – et on a donc une application canonique

(25)
$$I' \longrightarrow \operatorname{Pts}(\pi', \alpha', \Gamma).$$

Je dis que cette application est injective. Ceci est "évident" quand on interprète "action extérieure admissible" par "réalisable par une vraie courbe algébrique", et "relèvements admissibles" par "réalisables par des vrais points rationnels sur K, corps des invariants de Γ " ¹¹². Mais on voudrait bien sûr des raisons internes à la donnée des $(\mathcal{N}_{g,\nu})$, et des propriétés de ces données! Ce point étant admis (en mettant entre parenthèses les deux définitions essentielles d'admissibilité, sur lesquelles on va revenir plus bas) on trouve un foncteur "bouchage de trous" (il faut faire aussi les restrictions anabéliennes habituelles):

Courbes algébriques potentielles Courbes algébriques potentielles

sur P relatives à un sous-groupe ouvert $\Gamma \longrightarrow \sup P$ relatives à Γ de Π_P , et munies d'un ensemble munies d'une partie de l'ensemble

I' de points à l'infini des "points invariants sous Γ "

¹¹²On est ramené au cas Card(I') = 2...

et sauf erreur, il est devenu évident que ce foncteur est une équivalence de catégories [pour les isomorphismes] et comme conséquence, il y a le foncteur en sens inverse: forer des trous en des "points" invariants sous Γ (ou en des points quelconques, quitte à passer à un Γ' plus petit).

Mais je me rends compte que ce n'est pas du tout évident – je vais essayer d'élucider la situation axiomatiquement. On a fixé un genre g, on suppose donné, pour ν variable (tel que (g,ν) anabélien) des sous-groupes fermés $\mathcal{N}_{g,\nu}\subset \hat{\hat{\mathfrak{T}}}_{g,\nu}$, normalisant $\hat{\mathfrak{T}}_{g,\nu}$, et satisfaisant la condition essentielle que les $\psi_i:\hat{\hat{\mathfrak{T}}}_{g,\nu}\longrightarrow \hat{\hat{\mathfrak{T}}}_{g,\nu-1}$ induisent

$$M_{g,\nu} \xrightarrow{\sim} M_{g,\nu-1},$$

ce qui permet de définir la notion d'arithmétisation d'un π profini de type (g, v) anabélien, et la théorie du bouchage d'un nombre quelconque de trous, et du forage d'un seul trou, dans la catégorie des groupes de type (g, v) arithmétisés.

On suppose d'autre part donné une sous-catégorie pleine ¹¹³ de la catégorie des groupes profinis (qui pourrait se réduire aux sous-groupes ouverts de Γ_g , valeur commune des $\Gamma_{g,\nu}$, ou des sous-groupes ouverts du groupe Γ_a , α une arithmétisation), et une notion d'opérations extérieures "admissibles" de tels Γ sur des π arithmétisés. On suppose

- (1) Si Γ opère admissiblement sur π , tout sous-groupe ouvert aussi (et inversement);
- (2)¹¹⁴ Si de plus Γ invarie une partie I' de $I = I(\pi)$, alors en "bouchant I'", l'opération de Γ sur π' est admissible.

Quand on a une action effective (pas extérieure) de Γ sur un (π, a) de type (g, v), alors le foncteur "forage de trous" donne une action extérieure sur un (π°, a°) de type (g, v + 1) et on dit que l'action de départ est admissible, si l'action extérieure déduite l'est. On trouve ainsi une équivalence entre la catégorie des systèmes $(\pi, a, \Gamma, \psi, i)$ d'un (π, a) de type (g, v + 1), avec une opération extérieure admissible ψ d'un Γ dessus, et un $i \in I(\pi)$ stable par Γ , avec la catégorie des $(\pi', a', \Gamma, \psi')$ des (π', a') de type (g, v), avec une vraie action admissible ψ' de Γ dessus. La con-

¹¹³On la supposera stable par passage à des sous-groupes ouverts.

¹¹⁴Il suffit de la poser pour Card(I') = 1, i.e. bouchage d'un trou – dumoins si on sait que la condition d'admissibilité ne dépend que de l'action des noyaux des groupes.

dition (2) assure que si Γ opère effectivement, de façon admissible, alors l'action extérieure déduite est admissible (mais l'inverse ne sera pas vrai – il y aura des relèvements "pathologiques" d'une action extérieure admissible donnée...). On suppose de plus

(3) Si Γ opère effectivement de façon admissible sur π , alors $\pi^{\Gamma} = \{1\}$.

Cela implique que la catégorie des Γ -points de π , ou si on veut des sections de $B_{\pi,\Gamma}(\simeq B_u)$ sur B_{Γ} , est rigide. Mais considérons la catégorie limite inductive de la catégorie des sections de $B_{\pi,\Gamma} \simeq B_u$ sur des $B_{\Gamma'}$ (Γ' sous-groupe ouvert); elle est discrète et correspond à l'ensemble

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^\natural}) \simeq \varinjlim \operatorname{Pt}_{ad}(B_{\pi,\Gamma'})$$

où l'on prend la limite inductive sur les ouverts Γ' de Γ .

Si $\operatorname{Pt}(B_{\pi,\Gamma}) \neq \emptyset$, alors (du seul fait que $\pi^{\Gamma'} = \{1\}$ pour tout sous-groupe ouvert de Γ) le groupe extérieur π peut être décrit canoniquement par un groupoïde profini $\operatorname{Pt}(B_{\pi,\Gamma})$ ayant $\operatorname{Pt}(B_{\pi,\Gamma})$ comme ensemble d'objets 115 , liés par le groupe extérieur π , sur lequel Γ opère en sens strict, le stabilisateur Γ_P de tout point étant ouvert, et $\Gamma_P \longrightarrow \operatorname{Aut}(P)$ ($\simeq \pi$ modulo automorphismes intérieurs) étant continue. On a ici que si à tout $P \in \operatorname{Pt}(B_{\pi,\Gamma})$ on associe la classe d'isomorphie de sections de $B_{\pi,\Gamma}$ sur B_{Γ} , on trouve une bijection – ce qui caractérise le Γ -groupoïde en question à *isomorphisme* unique près. On supposera:

(4) Si Γ opère admissiblement sur (π, a) , alors il existe un sous-groupe ouvert Γ' de Γ dont l'opération extérieure se relève en une opération effective admissible – i.e. $\operatorname{Pt}_{ad}(B_{\Gamma,\pi}) \neq \emptyset$.

Notons que dans la situation envisagée, du bouchage d'un trou $i \in I(\pi)$ d'un π , en plus de l'homomorphisme

$$\hat{\hat{\mathfrak{Z}}}(\pi)_i \xrightarrow{\phi_i} \hat{\hat{\mathfrak{S}}}(\pi'_i)$$

associé, donnant par composition

$$\hat{\hat{\mathfrak{Z}}}(\pi)_i \xrightarrow{\psi'_i} \hat{\hat{\mathfrak{Z}}}(\pi'_i)$$

¹¹⁵Le groupoïde à opérateurs stricts $\underline{Pt}(B_{\pi,\Gamma})$ dépend fonctoriellement de (π,Γ) , pour des morphismes extérieurs [??].

d'où une action extérieure de $\hat{\mathfrak{X}}(\pi)$ sur π_i' , de façon que les $\pi \xrightarrow{p_i} \pi_i'$ commutent aux actions extérieures de $\hat{\mathfrak{X}}(\pi)$, on a un homomorphisme canonique d'extensions, provenant de cette action extérieure et de l'homomorphisme $p_i: \pi \longrightarrow \pi_i'$;

$$1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi)_{i} \longrightarrow \hat{\mathfrak{T}}(\pi)_{i} \longrightarrow 1$$

$$\downarrow^{p_{i}} \qquad \varphi_{i} \downarrow \qquad [\psi_{i}] \qquad \psi'_{i} \qquad 1$$

$$1 \longrightarrow \pi'_{i} \longrightarrow \hat{\mathfrak{S}}(\pi'_{i}) \longrightarrow \hat{\mathfrak{T}}(\pi'_{i}) \longrightarrow 1$$

qui n'est pas le composé

$$\hat{\hat{\mathfrak{S}}}(\pi)_i \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i \stackrel{\psi_i}{\longrightarrow} \hat{\hat{\mathfrak{S}}}(\pi'_i)$$

(il peut se définir chaque fois qu'on a un groupe Γ , i.e. $\hat{\mathfrak{Z}}(\pi)$, qui commute extérieurement sur deux groupes extérieurs π , π' , et qu'on a un homomorphisme $p_i \pi \longrightarrow \pi'$ qui commute à l'action de Γ , et tel que le centre de π et le centralisateur de son image dans π' soient triviaux...) C'est aussi ici l'homomorphisme de "transport de structure", qui pour tout automorphisme à lacets u de π , associe l'automorphisme correspondant de π'_i . On a oublié de préciser:

(g) L'homomorphisme canonique $(\hat{\mathfrak{S}}_{g,\nu})_i \longrightarrow \hat{\mathfrak{S}}_{g,\nu-1}$ associé à $i \in [0,\nu-1]$ envoie $(M_{g,\nu})_i$ dans $M_{g,\nu}$, donc il s'insère dans un homomorphisme de suites exactes:

$$(26) \qquad 1 \longrightarrow \pi \longrightarrow M_{a}(\pi)_{i} \longrightarrow \mathcal{N}_{a}(\pi)_{i} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \pi'_{i} \longrightarrow M_{a'}(\pi'_{i}) \longrightarrow \mathcal{N}_{a'}(\pi'_{i}) \longrightarrow 1$$

Ceci posé, si on a une opération extérieure admissible $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ de Γ sur π , fixant i, donc aussi par exemple $\mathcal{N}_a(\pi) \longrightarrow \mathcal{N}_{a'}(\pi')$ sur π'_i , on peut considérer que tout relèvement $\Gamma \longrightarrow M_a(\pi)$ pour π définit par composition un relèvement $\Gamma \longrightarrow M_{a'}(\pi'_i)$ pour π'_i . On conclut aisément de (2) que si le premier est admissible, le deuxième l'est. On trouve donc

(27)
$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma})$$

et en passant à la limite, une application de Γ -ensembles:

(28)
$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma^{\natural}})$$

- qui correspond d'ailleurs à un homomorphisme de Γ-groupoïdes

(29)
$$\underline{\operatorname{Pt}}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \underline{\operatorname{Pt}}_{ad}(B_{\pi',\Gamma^{\natural}}).$$

Ceci posé, soit $P \in \operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma})$ le "point canonique" de $\operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma}) = \left(\operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma^{\natural}})\right)^{\Gamma}$. On demande:

(5) L'application (27) induit une bijection

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma}) \setminus \{P\}$$

ou encore (passant à la limite) une bijection de Γ-ensembles

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{
\natural}}) \stackrel{\sim}{\longrightarrow} \operatorname{Pt}_{ad}(B_{\pi'_{:},\Gamma^{
\natural}}) \setminus \{P\}.$$

Ceci signifie trois choses:

- (a) L'homomorphisme canonique $\Gamma \longrightarrow M_{a'}(\pi'_i)$, composé de $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ et de $\mathcal{N}_a(\pi) \stackrel{\sim}{\longrightarrow} M_{a'}(\pi'_i)$, n'est pas π'_i -conjugué à un homomorphisme composé $\Gamma \stackrel{\lambda}{\longrightarrow} M_a(\pi) \stackrel{\varphi_i}{\longrightarrow} M_{a'}(\pi'_i)$, où $\Gamma \stackrel{\lambda}{\longrightarrow} M_a(\pi)$ est un relèvement admissible.
- (b) Si $\lambda, \mu: \Gamma \longrightarrow M_a(\pi)$ sont deux relèvements admissibles de $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ tels que $\varphi_i \circ \lambda$ et $\varphi_i \circ \mu: \Gamma \longrightarrow M_a(\pi)$ soient π'_i -conjugués, alors λ et μ sont déjà π -conjugués.
- (c) Tout relèvement admissible de $\Gamma \longrightarrow \mathcal{N}_{a'}(\pi'_i)$ en $\Gamma \longrightarrow M_{a'}(\pi'_i)$, provient par composition d'un relèvement admissible $\Gamma \longrightarrow M_a(\pi)$.

Grâce à ceci: l'équivalence de categories entre systèmes $(\pi, a, i, \Gamma, \theta : \Gamma \longrightarrow \mathcal{N}_a)$ et les systèmes $(\pi', a', \Gamma, \theta' : \Gamma \longrightarrow \mathcal{N}_{a'}, P)$, où $P \in \text{Pt}(B_{\pi', \Gamma^{\natural}})^{\Gamma}$, se précise de façon parfaite au niveau des points: les points Γ-rationnels de B_{π} s'identifient à l'un des pts Γ-rationnels de $B_{\pi'}$, distincts de P.

Ceci nous permet alors (ce qui n'était pas faisable dans le contexte discret!) d'étendre l'équivalence de catégories en une équivalence:

[Catégorie des systèmes $(\pi, \alpha, I', \Gamma, \theta : \Gamma \longrightarrow \mathcal{N}_{\alpha})$ d'un π arithmétisé par α de type (g, v) avec $2g + (v - \operatorname{card}(I')) \ge 3$, de $I' \subset I(\pi)$, d'une action *admissible* extérieure de Γ sur π telle que Γ *fixe chaque point de I'*]

[Catégorie des systèmes $(\pi', \alpha', I', \Gamma, \theta' : \Gamma \longrightarrow \mathcal{N}_{\alpha'})$ d'un π' arithmétisé par α' de type (g, v') [$v' = v - \operatorname{card}(I')$] avec opération extérieure admissible de Γ dessus, et une partie $I' \subset \operatorname{Pt}_{ad}(B_{\pi',\Gamma})$ (donc $I' \subset \operatorname{Pt}_{ad}(B_{\pi',\Gamma})^{\Gamma}$), i.e. I' formé de points invariants par Γ , i.e. " Γ -rationnels"].

On a alors un foncteur quasi-inverse: forage de trous en I'! Il est à noter que dans cette approche, on a dû se borner au cas d'un ensemble de points $I' \subset I(\pi)$, non seulement stable par Γ , mais inclus dans I^{Γ} , ou encore à une partie $I' \subset \operatorname{Pt}(B_{\pi',\Gamma^{\natural}})$ non seulement stable par Γ , mais même dans $\operatorname{Pt}(B_{\pi',\Gamma^{\natural}})^{\Gamma}$. Pour montrer que sans cette restriction, le foncteur naturel correspondant est néanmoins une équivalence, on est ramené à ceci:

(6) Soit $(\pi, a, I' \subset I(\pi))$ avec (π, a) groupe à lacets extérieur profini arithmétisé de type (g, v), d'où (π', a') – soit Γ , avec Γ' sous-groupe ouvert opérant sur (π, a) de façon admissible $(\Gamma \longrightarrow \mathcal{N}_a(\pi))$, et laissant stable I', donc il opère de façon admissible sur (π', a') . Supposons donné un *relèvement* de cette action de Γ' en une action admissible de Γ sur $\mathcal{N}_{a'}$, qui invarie $I' \subset \operatorname{Pt}(B_{\pi',\Gamma^{\natural}}) \simeq \operatorname{Pt}(B_{\pi',\Gamma^{\flat}})$ [cf. le diagramme],

Alors il existe une action admissible unique de Γ sur (π,a) , qui prolonge celle de Γ' et qui donne naissance à celle donnée sur π' .

L'unicité est-elle de toutes façons claire? Considérons l'extension E de Γ par $L = \operatorname{Ker}((\mathcal{N}_a)_{I'} \longrightarrow \mathcal{N}_a)$, image inverse de l'extension $(\mathcal{N}_a)_{I'}$ (de $\mathcal{N}_{a'}$ pas L) via $\Gamma \longrightarrow \mathcal{N}_{a'}$, on a un scindage partiel de cette extension au dessus du sous-groupe Γ' de Γ , et l'assertion est que ce scindage se *prolonge*, *de façon unique* à Γ . On peut

supposer Γ' invariant dans Γ , et on identifie Γ' à un sous-groupe de E. Toutes les sections de E sur Γ s'identifient à des sous-groupes, sections $\widetilde{\Gamma}$ de E. Pour un tel $\widetilde{\Gamma}$, on a bien sûr $\widetilde{\Gamma} \subset \operatorname{Norm}_E(\Gamma')$, d'ailleurs on a évidemment:

(31)
$$\operatorname{Norm}_{E}(\Gamma') \cap L = L^{\Gamma'}$$

et je présume qu'on doit avoir $L^{\Gamma'}=1$ (qui généralise la condition (3) plus haut...) Or cette condition implique l'unicité – savoir $\widetilde{\Gamma}=\operatorname{Norm}_E(\Gamma')$ et l'existence signifie que

 $\operatorname{Norm}_{E}(\Gamma') \longrightarrow \Gamma$ est un épimorphisme (donc un isomorphisme...).

Mais il faudra essayer de préciser, dans certains contextes (au moins celui des actions arithmétiquement fidèles, i.e. $\Gamma \longrightarrow \mathbb{F}_a$ injectif – qui correspond normalement au cas des courbes algébriques définies sur des extensions *algébriques* de Q) – la notion d'action "admissible". Pour ceci, on doit revenir sur la relation entre courbes (potentielles) et revêtements finis, ce qui donne aussi une façon de faire varier g.

Mais j'ai envie d'abord de reprendre sous un autre aspect (peut-être plus général) le formalisme précédent, qui peut-être aussi s'applique au cas des groupes discrets à lacets (je pense au formalisme des $U^!$, lié aux actions extérieures de groupes finis sur de tels groupes à lacets). Soit $\mathscr X$ un ensemble $\neq \varnothing$ (moralement, un ensemble de "points" d'une courbe algébriques, ou d'une surface topologique...); on suppose donné, pour toute partie finie I de $\mathscr X$, de complémentaire $U_I = \mathscr X \setminus I$, un groupoïde Π_{U_I} , ayant U_I comme ensemble d'objets. De plus, pour $J \supset I$ i.e. $U_I \subset U_I$, on suppose donné un homomorphisme de groupoïdes

$$\Pi_{U_I} \longrightarrow \Pi_{U_I}$$

qui sur les objets soit l'inclusion $U_J \hookrightarrow \mathbf{C}U_I$. On supposera la transitivité (stricte) i.e. [l'existence d']un foncteur covariant de la catégorie des parties U de \mathscr{X} complémentaires de parties finies ¹¹⁶ (avec les inclusions), vers la catégorie des groupoïdes, qui sur l'ensemble d'objets coïncide avec le foncteur évident...On

 $^{^{116}}$ Si $\mathscr X$ est fini et $I=\mathscr X$, on suppose que cependant $\Pi_{U_I}(=\Pi_{\varnothing})$ n'est pas le groupoïde vide, mais un groupoïde (qui s'envoie dans les précédents...) mais on ne pourra pas exiger la transitivité stricte Il faudrait peut-être faire des hypothèses anabéliennes sur Π_{U_I} .

suppose de plus que pour tout $i \in I$, on se donne un groupoïde Π_i (ou $\Pi_{D_i^*}$), et pour $i \in I \in \mathfrak{P}_f(\ref{interpolarity})$ un homomorphisme de groupoïdes

$$\Pi_{D_i^*} \longrightarrow \Pi_{U_I}$$

compatible avec les morphismes de transition $\pi_{U_I} \longrightarrow \pi_{U_I}$, $I \supset J$. On suppose que pour I fixé, on trouve sur Π_{U_I} une structure de groupoïde à lacets par

$$\Pi_{D_i^*} \longrightarrow \Pi_{U_I}$$

sans d'ailleurs exclure le cas où $I=\emptyset$, et où $(\Pi_{\mathscr{X}}$ étant connexe, disons) le genre *est* 0. On suppose de plus que si $J\supset I$ i.e. $U_J\subset U_I$, et pour $i\in J\setminus I$, l'homomorphisme composé

$$\Pi_{D_i^*} \longrightarrow \Pi_{U_I} \longrightarrow \Pi_{U_I}$$

soit "constant", de telle façon que Π_{U_I} se déduise de Π_{U_J} par "bouchage des trous" en $J\setminus I$.

Jusqu'à présent, tout ceci pouvait se visualiser par exemple en partant d'une surface topologique orientable X, et d'une partie $\mathscr X$ de X rencontrant toute composante connexe, en prenant pour Π_I la restriction à $\mathscr X\setminus I$ du groupoïde fondamental de $X\setminus I$ (si $I\neq \mathscr X$; si $\mathscr X=I$, ce qui exige $\mathscr X$ fini, on prendra le groupoïde fondamental de $X\setminus I=X\setminus \mathscr X$, qu'on aura du mal à envoyer dans les autres avec transitivité *stricte*, qu'à cela ne tienne!) Mais, on est surtout interessé au cas $\mathscr X$ infini. Où on prend X courbe algébrique sur un corps algébriquement clos, $\mathscr X$ partie de X rencontrant toute composante connexe, et on définit les Π_{U_I} comme précédemment.

Soit maintenant Γ une groupe qui opère sur la situation (*strictement*, s'entend), donc sur l'ensemble \mathscr{X} , les groupoïdes Π_{U_I} , les $\Pi_{D_i^*}$ (NB qu'il permute entre eux), en commutant aux homomorphismes

$$\Pi_{U_I} \longrightarrow \Pi_{U_J}$$
 et les $\Pi_{D_i^*} \longrightarrow \Pi_{U_I}$.

(On aura des difficultés, si $\mathscr X$ est fini, pour Π_{U_I} quand $I=\mathscr X$, pour la commutation *stricte* des $\Pi_{U_{\mathscr X}} \longrightarrow \Pi_{U_J} ...$ mais passons...) Nous supposons définie une notion de sous-groupe *admissible* de Γ (ils sont en tout cas \neq {1}) telle que si Γ' est admissible alors tout sous-groupe $\Gamma'' \supset \Gamma'$ aussi.

On suppose

(1°) $\forall P \in \mathcal{X}, \Gamma_P \neq \{1\}$, et Γ_P d'indice fini dans Γ (i.e. l'orbite de P finie).

Nous voulons des conditions qui assurent que \mathscr{X} et les Π_{U_I} etc. peuvent se reconstruire à isomorphisme canonique près à l'aide des données purement groupoïdiques ou topossiques (à opérateurs Γ) correspondantes. On peut le dire en langage topossique savant, mais on va l'exprimer en termes de théorie des groupes à lacets. Soit I une partie de \mathscr{X} stable par Γ , on voudrait poser des conditions qui permettent d'exprimer (pour tout tel I) la situation des groupoïdes Π_V associés aux $V \supset U_I$ (i.e. les U_J avec $J \subset I$), les $\Pi_{D_i^*}$ ($i \in I$) et l'opération de Γ dessus, en termes des seules opérations de Γ sur le groupe extérieur à lacets $\pi_1(\Pi_{U_I})$ associé à I ou plutôt (car cela est immédiat, par l'opération de forage de trous), en sens inverse, montrer comment, sous réserve d'anabélianité, disons de $\Pi_{\mathscr{X}}$ (pour fixer les idées), on peut plus ou moins reconstituer Π_{U_I} et l'action de Γ dessus. . . , à partir de $\Pi_{\mathscr{X}}$ (ou plutôt, du topos $B_{\Pi_{\mathscr{X}}}$), et de l'action de Γ dessus. On veut au moins une description intrinsèque des éléments de \mathscr{X} et de l'action de Γ dessus, via cette action "molle" – qui, pour \mathscr{X} connexe, revient encore à une action extérieure de Γ sur un groupe à lacets (sans lacets!) π

Une première condition, sous forme faible, est que (supposant $\mathscr X$ connexe, et appelant $\pi(I)$ le groupe extérieur $\pi_1(\Pi_{U_I})$, pour tout partie finie I de $\mathscr X$) que pour $\pi(I)$ anabélien (ce qui sera le cas pour I "assez grand", du moins si $\mathscr X$ est infini, donc qu'on puisse prendre I de cardinal arbitrairement grand…) l'application évidente

$$\begin{cases} U_I \longrightarrow \operatorname{Pt}(B_{\pi(I),\Gamma^\natural}) \overset{\sim}{\longrightarrow} & \text{de germes de scindage de} \\ & \text{l'extension E(I)} \end{cases}$$

(compatible avec les actions de Γ) soit *injective*. Mais pour aller plus loin, il faudrait pouvoir donner une caractérisation de l'image. Notons (nous plaçant dans le contexte profini désormais) que si on se donne sur les $\pi(I)$ des arithmétisations, compatibles avec les homomorphismes extérieurs de bouchage de trous $\pi(I) \longrightarrow \pi(J)$, et avec l'action de Γ sur les $\pi(I)$, on a donc un homomorphisme canonique de Γ dans le groupe commun Γ des automorphismes arithmétiquement extérieurs de

ces arithmétisations (et même $\Gamma \longrightarrow M_{\pi(\theta)=\pi}$, ce qui est déjà une donnée nettement plus forte). On peut donc supposer donnée une notion de *relèvement admissible* d'une telle action arithmétiquement extérieure, de telle façon que l'application (2°) soit une bijection

$$U_I = X \setminus I \xrightarrow{\sim} \operatorname{Pt}_{ad}(B_{\pi(I),\Gamma^{\natural}}).$$

Ceci signifie d'ailleurs, pratiquement, que la notion d'admissibilité satisfait aux conditions (1°) à (6°) vues ci-dessus.

Quant à savoir ce qu'il y a lieu d'appeler opération extérieure "admissible" de Γ sur un groupe extérieur profini à lacets, cela reste pour le moment conjectural. On pourrait à titre expérimental conjecturer que la notion qui suit marcherait. Appelons "admissible" toute telle action

$$\Gamma \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)$$

qui respecte une arithmétisation a, i.e. qui se factorise par le \mathcal{N}_a correspondant, telle que l'image de $\Gamma \longrightarrow \mathcal{N}_a/\hat{\mathfrak{X}} = \mathbb{I}_a$ soit ouverte, et que pour tout homomorphisme de bouchage de trous en $i \in I(\pi), \ \pi \longrightarrow \pi'_i, \ \mathcal{N}(\pi)_i \longrightarrow M(\pi'_i)$, l'homomorphisme correspondant de Γ_i ni d'aucun sous-groupe ouvert Γ de Γ_i , ne normalise un $L'_j, \ j \in I(\pi'_i) = I \setminus \{i\}$; peut-être même faudrait-il imposer que $\pi^{(\Gamma'^+)} = \{1\}$, où Γ'^+ est le noyau de $\Gamma' \xrightarrow{Hi} \hat{\mathbf{Z}}^*$ – en tout cas on s'attend à ce que l'on ait alors $\pi^{\Gamma'} = \{1\}$, et si ce n'était le cas, il faudrait l'introduire dans la définition – pour chaque opération de bouchage de trous relatif à $I' \subset I(\pi)$, et un choix d'un $i \in I'$, permettant de définir $\Gamma_{(I',i)} \longrightarrow M(\pi(I')))^{-117}$.

Notons qu'une vraie action de Γ sur π (pas seulement extérieure) qui relève une action donnée "admissible", est elle-même admissible (en ce sens qu'elle définit une action extérieure admissible sur un π' de type (g, v+1)), si et seulement si cette action ou plutôt son germe, ne normalise aucun L_i ($i \in I(\pi)$), et qu'il en soit de même pour l'action induite sur chaque $\pi(I')$ ($I' \subset I = I(\pi)$) [il suffit de prendre les $\pi(I')$ pour I' de la forme $I \setminus \{j\}$, $j \in I$, du moins si $g \neq 0$] – et qu'enfin l'action de Γ^{\natural} sur $\pi'(I)$ (déduite de π' en bouchant les trous en I, de sorte que $\pi'(I)$ a une

The specific pour $i \in I' \subset I = I(\pi)$ on impose que la [??] action de Γ_I' sur $\pi(I')$ correspondant à i ne normalise aucun sous-groupe L_j ($j \in I \setminus I'$). On est ramené pour ceci au cas où $I' = I \setminus \{j\}$, donc où $\pi(I')$ n'a qu'une seule classe de lacets...(si $g \ge 1$)

seule classe de lacets; $\pi'(I)$ se déduit aussi de l'action effective de Γ sur $\pi(I)$ – avec 0 classe de lacets – en faisant "un trou" correspondant – relatifs à un point $i \in I$), ne normalise pas de sous-groupe lacets... Mais je présume que la première condition (action de Γ^{\natural} ne normalisant aucun des L_i) implique les autres. Mais il faut dans la définition d'admissibilité aussi tenir compte de la condition (4°), qui implique l'existence de suffisamment de relèvements...

J'en arrive (péniblement!) à une

Conjecture provisoire profinie¹¹⁸. — Pour Γ groupe profini donné, une action extérieure sur un (π,a) arithmétisé anabélien de type (g,v) est dite admissible, si

- a) L'homomorphisme $\Gamma \longrightarrow \Pi_{\alpha}$ a une image ouverte
- b) Les actions effectives déduites par bouchages de trous ($i' \in I' \subset I = I(\pi)$) ne normalisent pas de sous-groupe à lacets.
- c) Il existe une infinité de classes de π -conjugaison de germes de scindages de l'extension de Γ par π , qui ne normalisent aucun sous-groupe à lacets de π^{119} .

Une action effective de Γ sur π est dite effective, si l'action extérieure est effective, et si elle ne normalise aucun sous-groupe à lacets.

Ceci posé:

a) Si Γ opère effectivement de façon admissible, on a

$$\pi^{\Gamma} = \{1\}$$

(peut-être même $\pi^{\Gamma^+} = \{1\}$).

- b) Si $i \in I$ est stable par Γ opérant extérieurement de façon admissible, alors l'action effective sur $\pi' = \pi(i)$ ne normalise aucun L'_i $(j \in I \setminus \{i\})$.
- c) Si Γ opère effectivement sur π de façon admissible, en laissant fixe $i \in I$, alors l'action correspondante effective (par passage au quotient) sur $\pi' = \pi(i)$ ne normalise aucun L_j , $j \in I \setminus \{i\}$).

¹¹⁸ Canulé, cf. plus bas...

¹¹⁹Cette condition c) exclut sans doute des cas comme $\Gamma = \mathcal{N}_{g,\nu}$ avec $(g,\nu) \neq (0,3)$, car l'extension $M_{g,\nu}$ de $\mathcal{N}_{g,\nu}$ par $\hat{\pi}_{g,\nu}$ n'admet sans doute pas de germe de scindage - ce qui est équivalent (?) au fait que $U_{g,\nu}$ sur g,ν n'admet pas de multisection étale...

d) Si Γ opère effectivement sur π de façon admissible, alors l'application

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma^{\natural}})$$

définie par c) est injective, et le complémentaire de son image est égal à $\{P\}$, où P est défini par le "trou" i.

Mais cette dernière partie de l'assertion, allant au-delà de la seule *injectivité* – et caractérisant l'image, me semble maintenant tout à fait douteuse – en effet, il suffit de regarder un schéma S de paramètres, de type fini sur \mathbf{Q} (un $K(\pi,1)$ de préférence, par exemple une courbe algébrique) et de prendre pour Γ (non le groupe fondamental de son point générique, i.e. d'un corps, mais) le groupe fondamental de S lui-même. La donnée d'une action extérieure admissible de Γ sur un π correspond moralement à celle d'une famille de courbes U de type g, v paramétré par S. La condition c) est vérifiée par exemple si U provient d'une courbe algébrique sur le corps de base lui-même, donc pas de problème – et il est manifeste que la surjectivité déconne. La difficulté provient du fait que deux actions distinctes de U sur S peuvent ne pas être disjointes!

Il faut pouvoir parler de sections "strictement distinctes" i.e. distinctes en tout point de S – ce qui, en traduction profinie, revient à comparer deux scindages de l'extension de Γ par π , avec les germes de scindages sur $\Gamma' \subset \Gamma$ de Γ (en tant qu'extension de Γ_Q par une partie géométrique) qui correspondent aux points de S – i.e. les (germes de scindage) *admissibles* justement. On a l'impression de tourner dans un cercle vicieux ou presque – il semblerait qu'il ne faudrait pas trop vouloir avaler à la fois – traiter d'emblée *tous* les groupes profinis Γ à la fois – mais plutôt se borner d'abord à ceux qui moralement, correspondent à des π_1 de schémas de type fini sur Q, des $K(\pi,1)$ disons, ou même des variétés élémentaires à la Artin – et dans les définitions resp. conjectures se tirer par les lacets des souliers, en récurrant sur la dimension. Au premier cran donc (dimension 0) on se bornerait à des actions de groupes Γ qui soient (modulo tout au moins passage à un sousgroupe ouvert) "arithmétiquement fidèles", par exemple $\Gamma \longrightarrow \Gamma_d$ injectif. Dans ce cas-là, la conjecture telle qu'elle est énoncée tantôt semble raisonnable, ou du moins pas nécessairement déconnante. Le test décisif, il est vrai, serait la possibilité

¹²⁰ Les scindages d'extensions correspondent aux section de U sur S.

d'obtenir les "courbes" ainsi définies comme des revêtements de $\mathbb{P}^1\setminus\{0,1,\infty\}\dots$

§ 33. — DIGRESSION TOPOLOGIQUE

Anti-involutions des surfaces orientées algébroïdes 121

On appelle surface algébroïde une surface U de la forme $X \setminus S$, X surface compacte orientable, S fini. Alors X est determinée à homéomorphisme unique près comme "compactifié pur" de U; on la note \hat{U} . Les homéomorphismes de U avec lui-même s'identifient aux homéomorphismes de X qui appliquent S dans lui-même. Les orientations de X sont en correspondance 1-1 avec celles de U. Le anti-involutions de U (supposées orientées) sont en correspondance 1-1 avec celles de X qui conservent S.

On trouve alors une équivalence entre la catégorie des surfaces orientées algébroïdes U munies d'une anti-involution σ , et des surfaces à bord compactes Y, munies d'une partie finie T; à (U,σ) correspond $(\hat{U}/\sigma,(\hat{U}\setminus U)/\sigma)$ – et à (Y,T) correspond $\widetilde{Y}\setminus\widetilde{T}$, où \widetilde{Y} est le "double orienté" de Y (qui est une surface orientée compacte), et \widetilde{T} est l'image inverse de T dans \widetilde{Y} .

Nous nous intéressons maintenant au cas où U est connexe de type (g, v), en examinant d'abord le cas v = 0, i.e. $U = \hat{U}$, $S = \emptyset$ (auquel le cas général se ramènera). La condition v = 0 correspond au cas où $T = \emptyset$ – donc les U = X envisagés s'identifient aux doublements orientés de certaines variétés à bord compactes Y. Lesquelles? Evidemment il faut que Y soit *connexe*, et *non orientable*

 $^{^{121}}$ Finalement je ne regarde que les surfaces compactes – pourtant le cas non compact serait aussi très intéressant à regarder – pour essayer de retrouver par voie algébrique, sur l'automorphisme extérieur d'ordre 2 du π_1 , la disposition des "points à l'infini" de la courbe sur les composantes connexes de $X^{\sigma} = \hat{U}$.

¹²². Donc Y est caractérisé, à homéomorphisme près, par son genre γ et le nombre μ des composantes connexes du bord – il peut se déduire du plan projectif réel Y_0 en y découpant γ rondelles disjointes, et y recollant des rubans de Möbius, puis en découpant encore μ rondelles ouvertes – ce qui donne

$$Hi(Y) = Hi(Y_0) - \gamma Hi_1$$
 (rondelles ouvertes) + (rubans de Möbius ouverts)

$$-\mu Hi_!$$
(rondelles ouvertes)

[où $Hi(Y_0) = 1$ et Hi_1 (rondelle ouverte) = 1]. Or le ruban de Möbius ouvert (déduit de Y_0 en enlevant une rondelle fermée) a un Hi_1 égal à $Hi(Y_0) - Hi_1$ (rondelle fermée), soit 1 - 1 = 0, d'où

(1)
$$Hi(Y) = 1 - (\gamma + \mu),$$

pour une surface Y compacte connexe avec un bord à μ composantes non orientable de genre γ .

D'autre part, on a

$$Hi(X) = Hi(X \setminus X^{\sigma});$$

or X^{σ} est une réunion de cercles donc son Hi est nul. Or, comme $X \setminus X^{\sigma}$ est un revêtement étale d'ordre 2 de Y, on a

$$Hi(X \setminus X^{\sigma}) = 2Hi(Int(Y))$$

enfin

$$Hi(Y) = Hi(Y \setminus \partial Y) = Hi(Int(Y));$$

pour la même raison que tantôt ($Hi(\partial Y) = 0$), d'où enfin

(2)
$$Hi(X) = 2Hi(Y) = 2(1 - (\gamma + \mu)),$$

ou encore, puisque Hi(X) = 2 - 2g

$$(3) g = \gamma + \mu.$$

Donc on trouve

 $^{^{122}}$ Ce n'est pas vrai que Y soit nécessairement non orientable – seulement dans le cas où $X^{\sigma} = \emptyset$.

Proposition¹²³. — La catégorie des surfaces orientées connexe compactes de genre g munies d'une anti-involution σ est équivalente à celle des variétés compactes à bord non orientables, de type (γ, ν) (γ le genre, μ le nombre de trous), avec $\gamma + \nu = g$.

Corollaire ¹²⁴. — Il y a exactement g+1 classes d'isomorphisme de systèmes (X, σ) , classifiés par $\sigma \le \mu \le g$, où $\mu = \operatorname{card}(\pi_0(X^{\sigma}))$.

Si $X=X_g$ est une surface orientée compacte de genre g, cela signifie aussi que dans le groupe $A_g=\operatorname{Aut}(X_g)$, il y a exactement g+1 classes de conjugaison d'éléments σ satisfaisant

$$\sigma^2 = 1, \operatorname{sg}(\sigma) = +1$$

(i.e. qui soient des anti-involutions). Elles fournissent g+1 classes de conjugaison d'éléments de $A_g/A_g^\circ=\mathfrak{T}_g$, satisfaisant les mêmes relations. Nous montrerons (on l'espère!) que ces classes sont distinctes et que tout $\sigma\in\mathfrak{T}_g$ satisfaisant les relations (4) est dans l'une de ces classes.

On admettra le

Lemme. — Toute anti-involution du disque unité ou de C est conjugué de $z \mapsto \overline{z}$, et par suite l'ensemble de ses points fixes est homomorphe à R, et en particulier est connexe.

Théorème. — Soit U une surface orientée séparée connexe, paracompacte, non isomorphe à S^2 , σ une anti-involution de U, \widetilde{U} un revêtement universel de U, d'où $\pi = \operatorname{Aut}(\widetilde{U}/U)$ et une extension E de $\mathbb{Z}/2\mathbb{Z}$ par π , formée des automorphismes topologiques de \widetilde{U} compatibles avec la relation d'équivalence définie par $\widetilde{U} \setminus U$, et induisant sur U l'automorphisme id_U ou σ . Alors:

- a) (Pour mémoire) U^{σ} est une sous-variété fermée de U de dimension 1.
- b) Pour tout $x \in U^{\sigma}$, on trouve une classe de π -conjugaison de scindages de

¹²³Non, on ne trouve qu'une sous-catégorie pleine de celle de tous les (X, σ) . Il y a d'autre part aussi les doublements orientés $\coprod_{\partial Y} Y$ des surfaces *orientables* compactes à bord non vide – si Y est de type (γ, μ) , X est de genre g avec $g = 2\gamma + \mu - 1$ (ou $\gamma \ge 0$, $\mu \ge 1$).

¹²⁴Ça ne marche qu'en se limitant aux (X, σ) tels que X/σ non orientable – cf. ci-contre (i.e. (*)) pour le cas orientable.

l'extension E, à la façon habituelle, d'où une application

(5)
$$U^{\sigma} \longrightarrow Sc(E, \mathbb{Z}/2),$$

où $Sc(E, \mathbb{Z}/2)$ désigne l'ensemble des classes de π -conjugaison de scindages de E sur $\mathbb{Z}/2\mathbb{Z}$, ou encore des éléments d'ordre 2 de E qui ne sont pas dans π . Cette application se factorise en une bijection

(6)
$$\pi_0(U^{\sigma}) \simeq \operatorname{Sc}(E, \mathbb{Z}/2).$$

c) Soit Z_i une composante connexe de U^σ , correspondant à un scindage $\sigma_i \in E^-$ d'ordre 2. Alors

(7)
$$\pi^{\sigma_i} = \{1\} \quad \text{si et seulement si } Z_i \simeq \mathbb{R}.$$

d) Si $Z_i \not \succeq \mathbf{R}$, i.e. $Z_i \simeq S^1$, alors, pour une orientation choisie de Z_i , désignant par g_i l'élément de $\pi = \pi_1(U)$ qu'il définit (défini à conjugaison près), et par $\varphi_i : \mathbf{Z} \longrightarrow \pi$ l'homomorphisme $\varphi_i(n) = g_i^n$ de \mathbf{Z} dans π , on a:

1°) φ_i est injectif;

2°) quitte à remplacer φ_i par un conjugué, on a

(8)
$$\pi^{\sigma_i} = \operatorname{Im} \varphi_i.$$

Démonstration. On trouve l'application (5) en prenant, pour tout $x \in U^{\sigma}$, l'opération canonique de $\mathbb{Z}/2\mathbb{Z}$ sur le revêtement universel $\widetilde{U}(x)$ ponctuée en x, et en prenant les opérations correspondantes sur \widetilde{U} , déduites par les isomorphismes $\widetilde{U} \simeq \widetilde{U}(x)$. On voit que les opérations σ' obtenues sur \widetilde{U} (pour x fixé) sont celles pour lesquelles $\widetilde{U}^{\sigma'}$ a un point au-dessus de x – donc l'ensemble des x qui donnent naissance à la classe d'un σ' , sont les éléments de l'image de $\widetilde{U}^{\sigma'}$ par la projection $\widetilde{U} \longrightarrow U$. Comme par le lemme $\widetilde{U}^{\sigma'}$ est non vide et connexe, il s'ensuit que son image dans U^{σ} l'est aussi – on va voir que son image est exactement une composante connexe de U^{σ} – ce qui à la fois prouvera la factorisabilité de (5) par $\pi_0(U^{\sigma})$ (assez triviale de toutes façons) et le fait que l'application déduite de (6) est bijective.

Soit \widetilde{Z}_i un revêtement universel de Z_i , et prenons le revêtement universel correspondant \widetilde{U}_i de U, de sorte qu'on a

$$\begin{array}{cccc}
\widetilde{Z}_i & \longleftarrow & U_i \\
\downarrow & & \downarrow \\
Z_i & \longleftarrow & U
\end{array}$$

et par fonctorialité σ opère aussi sur ce diagramme (en opérant trivialement sur Z_i , \widetilde{Z}_i), soit σ_i son opération sur \widetilde{U}_i . On voit donc que \widetilde{Z}_i s'envoie dans $\widetilde{U}_i^{\sigma_i}$, qui s'envoie donc sur Z_i – ce qui achève déjà de prouver b).

Considérons l'image de \widetilde{Z}_i dans $\widetilde{U}_i|Z_i$; c'est une partie ouverte et fermée (comme image d'un homomorphisme de revêtements étales sur la même composante Z_i), donc c'est a fortiori une partie ouverte et fermée de $\widetilde{U}_i^{\sigma_i}$, et comme cet espace est connexe, il lui est égal. De plus $\widetilde{Z}_i \longrightarrow \widetilde{U}^{\sigma_i}$ fait de Z_i un revêtement étale de son image $\widetilde{U}_i^{\sigma_i}$ dans $\widetilde{U}^{\sigma_i}|Z_i$, et comme \widetilde{U}^{σ_i} est simplement connexe, on trouve finalement

$$\widetilde{Z}_{i} \xrightarrow{\sim} \widetilde{U}_{i}^{\sigma_{i}}.$$

Lorsque Z_i est simplement connexe, i.e. $\widetilde{Z}_i \simeq Z_i$, cela signifie aussi que $\widetilde{U}_i^{\sigma_i}$ est un homéomorphisme (donc $\widetilde{Z}_i = Z_i \longrightarrow \widetilde{U}_i^{\sigma_i}$ est l'homéomorphisme inverse). Comme, pour $x \in Z_i$ et $\widetilde{x} \in (\widetilde{U}_i^{\sigma_i})_x$, les \widetilde{x}' de $\widetilde{U}_i^{\sigma_i}$ au-dessus de x sont les éléments de la forme $\widetilde{x}\gamma$, avec $\gamma \in \pi_i^{\sigma_i}$ ($\pi_i = \operatorname{Aut}(\widetilde{U}_i/U)$), il s'ensuit que l'on a bien

$$\pi_i^{\sigma_i} = 1$$

ce qui est essentiellement la formule (7). Dans le cas Z_i non simplement connexe, posant

(12)
$$T_i = \operatorname{Aut}(\widetilde{Z}_i/Z_i) \simeq \pi_1(Z_i; \widetilde{Z}_i)$$

on trouve un homomorphisme canonique

$$\varphi_i: T_i \longrightarrow \pi_i$$

et l'injectivité dans (10) équivaut au fait que (13) est injectif. Bien entendu, le choix d'un générateur g_i° de T_i équivaut au choix d'une orientation de Z_i , et $g_i = \varphi_i(g_i^\circ) \in \pi$ est alors l'élément correspondant de $\pi_1(U)$ dont il est question dans l'énoncé (moins précis, car on n'y parle que de classe de conjugaison). Il est clair que σ_i (opérant trivialement sur T_i , et sur π_i par transport de structure) commute à l'homomorphisme injectif φ_i , donc φ_i induit $T_i \longrightarrow \pi_i^{\sigma_i}$. Je dis que c'est en fait un *isomorphisme*

$$\varphi_i: T_i \xrightarrow{\sim} \pi_i^{\sigma_i}$$

– il reste à prouver la surjetivité. Mais si $\gamma \in \pi_i^{\sigma_i}$, alors $\widetilde{x}\gamma \in \widetilde{U}_i^{\sigma_i}$, donc $\widetilde{x}\gamma \in \varphi_i(\widetilde{Z}_i)$ ce qui signifie que $\widetilde{x}\gamma = \widetilde{x}\varphi_i(g)$ pour $g \in T_i$, donc $\gamma \in \operatorname{Im} y_i$, cqfd.

Corollaire 1. — Soit $\sigma_i \in \mathfrak{T}_g$ ($1 \le i \le g$), correspondant à une anti-involution σ_i de X_g telle que $\operatorname{Card} \pi_0(X_g^{\sigma_i}) = i$ et X_g/σ non orientable. Alors

a) Il y a exactement i classes de π_g -conjugaison d'automorphismes effectifs d'ordre 2 de π_g dans la classe σ_i (ce qui prouve que si $i \neq j$, σ_i et σ_j ne sont pas conjugués dans \mathfrak{T}_g ...);

b) Si $u_i \in \mathfrak{S}_g = \operatorname{Aut}_{\operatorname{lac}}(\pi_g)$ est d'ordre 2 dans la classe σ_i , alors

(14)
$$\pi_{g} \simeq \mathbf{Z};$$

c) Si $u_i, u_i' \in \mathfrak{S}_g$ sont d'ordre 2, de classe σ_i , alors $\exists h \in \mathfrak{S}_g^+$ tel que

(15)
$$u_i' = h u_i h^{-1} = \text{int}(h) u_i.$$

(NB. Nécessairement, l'image de h dans \mathfrak{T}_g^+ sera dans $(\mathfrak{T}_g^+)^{\sigma_i} = \operatorname{Centr}_{\mathfrak{T}_o}(\sigma_i)^+$.)

Démonstration. a) et b) sont des cas particuliers du théorème, appliqué à une anti-involution σ_i de X_g , avec $\pi_0(X_g^{\sigma_i})$ de cardinal i. Soit $Y_{g,i} = X_g^{\sigma_i}$ surface compacte à bord non orientable connexe de type (g-i,i); il est bien connu et immédiat que le groupe des automorphismes d'une telle variété est transitif sur $\pi_0(\partial Y)$, donc en remontant à (X_g,σ_i) , que le groupe des automorphismes de (X_g,σ_i) est transitif sur $\pi_0(X_g^{\sigma_i})$, qu'on peut interpréter aussi comme l'ensemble des classes de π_g -conjugaison de u_i , comme dans b), c). Cela implique donc qu'il existe $h \in \mathfrak{T}_g^+$,

commutant à σ_i , tel que – désignant par h un relèvement dans \mathfrak{S}_g^+ – on ait u_i' π conjugué à $\operatorname{int}(h)u_i$, ce qui signifie aussi qu'on peut (quitte à modifier h) le choisir
de façon qu'on ait (15).

Corollaire 2. — Sous les conditions du corollaire précédent, posant $\pi_g^{u_i} = T$ ($\simeq \mathbf{Z}$), on a un diagramme de suites exactes

(16)
$$1 \longrightarrow T \longrightarrow \mathfrak{S}_{g}^{+u_{i}} \longrightarrow \mathfrak{T}_{g}^{+\sigma_{i}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow T \longrightarrow \mathfrak{S}_{g}^{u_{i}} \longrightarrow \mathfrak{T}_{g}^{\sigma_{i}}$$

et l'indice de $\mathfrak{S}_g^{+u_i}$ dans $\mathfrak{T}_g^{+\sigma_i}$ (et de $\mathfrak{S}_g^{u_i}$ dans $\mathfrak{T}_g^{\sigma_i}$) est i.

Comme les deux dernières flèches verticales sont des inclusions de sous-groupes d'indice 2, il suffit de traiter l'assertion concernant \mathfrak{S}^+ , \mathfrak{T}^+ . Or $\mathfrak{T}_g^{+\sigma_i}$ opère trivialement sur l'ensemble des classes de π -conjugaison de u_i' , d'après c); d'autre part le stabilisateur dans $\mathfrak{T}_g^{+\sigma_i}$, pour cette action, de u_i , est formé des $\dot{\gamma} \in \mathfrak{T}_g^{+\sigma_i}$ tels que int $(\gamma)u_i$ soit π -conjugué à u_i , i.e. tels qu'il existe $\alpha \in \pi$, avec int $(\gamma)u_i = \operatorname{int}(\alpha)u_i$, i.e. $\alpha^{-1}\gamma \in \mathfrak{S}_g^{+u_i}$, ce qui signifie que $\dot{\gamma}$ est dans l'image de $\mathfrak{S}_g^{+u_i}$, cqfd.

J'ai envie de construire une igure géométrique où on puisse mettre en évidence simultanément des anti-involutions topologiques qui donnent naissance aux $\sigma_i \in \mathfrak{X}_g$ (à conjugaison près, et aux divers $u_i \in \mathfrak{S}_g$ associés à un σ_i (ce qui sera alors facile, par la recette générale). Nous savons que $\sigma_i \in \mathfrak{X}_g$ s'obtient en regardant un X_g comme doublement orienté d'un $Y = Y_{g-i,i}$, donc en partant du plan projectif réel Y_0 , en y faisant g trous, dont on rebouche g-i par des rubans de Möbius, en laissant les i autres trous tels quels. Soient D_j $(1 \le j \le g)$ les disques disjoints fermés correspondant aux "trous" donc

$$(17) V_{0,j} = Y_0 \setminus \cup_j D_j^{\circ}$$

est une variété à bord (non orientable), contenue à la fois dans Y_0 et dans $Y=Y_{g-i,i}$, et coïncidant même avec Y en les points de

$$\partial Y = \bigcup_{g-i+1 \le j \le g} \partial D_j.$$

Soit X_0 la sphère orientée qui revêt Y_0 , et $U_0 = X_0 \setminus V_0$ sa restriction sur UpD_j , c'est donc le complémentaire d'une réunion de 2g disques

$$(18) U_0 = X_0 \setminus \bigcup_{1 \le j \le g} \Delta_j$$

où $\Delta_j \longrightarrow D_j$ est un revêtement trivial à 2 feuillets de D_j ($\Delta_j = \Delta_j' \coprod \Delta_j'' \simeq D_j \times \varepsilon_j$, où ε_j est un ensemble à 2 éléments qui s'identifie à l'ensemble des deux orientations de D_j). Soit d'autre part M_j ($1 \le j \le g-i$) le ruban de Möbius dont le bord a été recollé à V_0 par un homomorphisme

(19)
$$\partial M_{i} \simeq \partial D_{i}.$$

Soit

$$(20) M = \coprod_{1 \le j \le g-i} M_j$$

de sorte que

$$(21) Y_{g-i,i} = V_0 \coprod_{\partial M} M.$$

Soit donc $X=X_g$ le doublement orienté de $Y_{g-i,i}$ défini par (21), soit $\widetilde{M}=\coprod_{1\leq j\leq g}\widetilde{M}_j$ l'image inverse de M dedans, qui est un revêtement étale de degré 2 de M:

$$(22) X_{g,i} = X_g \setminus \operatorname{Int}(\widetilde{M}),$$

et on aura

$$(23) X_{g} = X_{g,i} \coprod_{\partial \widetilde{M}} \widetilde{M}$$

pour un homéomorphisme bien déterminé de $\partial \widetilde{M}$ avec une partie ouverte et fermée de $\partial X_{g,i}$. D'ailleurs, on aura une application continue canonique:

$$(24) U_0 \longrightarrow X_{g,i}$$

qui définit un homéomorphisme de $X_{g,i}$ avec la surface obtenue en contractant les $\partial \Delta_j \subset U_0$ ($\partial \Delta_j = (\partial D_j) \times \varepsilon_j$), pour $g-i+1 \leq j \leq g$ à l'aide des projections $\partial \Delta_j \simeq (\partial D_j) \times \varepsilon_j \longrightarrow D_j$.

D'autre part, chaque \widetilde{M}_j $(1 \leq j \leq g-i)$, revêtement des orientations du ruban du Möbius, est isomorphe au cylindre $S^1 \times I$, et son anti-involution canonique est sans point fixe, et s'identifie à $(z,t) \longrightarrow (-z,-t)$ (où S^1 est identifié aux nombres complexes de module 1, et I à [-1,+1]). D'ailleurs, X_0 orienté avec son anti-involution de revêtement de Y_0 s'identifie à la sphère ordinaire (dans un espace vectoriel euclidien de dimension 3), avec l'anti-involution $x \longmapsto -x$. En résumé:

Proposition. — On peut obtenir (pour $1 \le i \le g$ fixé) les couples (X_g, σ_i) , à homéomorphisme près, en prenant la sphère (euclidienne orientée) X_0 , avec son antipodisme standard τ , en prenant un ensemble de 2g disques D_j $(j \in J)$ mutuellement disjoints, stable par τ , et une partie $I' \subset J/\tau = I$ (I de cardinal g) avec $\operatorname{card}(I') = i$, et en procédant ainsi: pour tout $j \in I$, soient $\Delta_j = D'_j U p D''_j$ la réunion des deux disques correspondants, et $S_j = \partial \Delta_j / \tau$, de sorte que S_j est un cercle; soit

$$T_j = S_j \times I^{\varepsilon_j}$$

(où I = [-1, +1], $\varepsilon_j = \{j \in I \mid j \text{ sur } i\} \simeq l$ 'ensemble des orientations de S_i , I^{ε_j} tordu par ε_j , de sorte qu'on a un homéomorphisme canonique:

(25)
$$\partial T_{i} \simeq \partial \Delta_{i},$$

de sorte que $X_g = U_0 \coprod_{\partial \Delta} T$ (où $\Delta = \coprod_1^g \Delta_j$, $T = \coprod_1^g T_j$) est orientée. [NB. T_j est canoniquement orienté et l'isomorphisme (25) respecte comme il se doit l'orientation, i.e. $\partial T \simeq \partial V_0$ la renverse.] Ceci posé, l'antipodisme τ induit sur chaque $\widetilde{M}_i \simeq S_j \times \varepsilon_j$ l'anti-involution canonique provenant de cette expression des ∂T_i , qui échange les deux composantes connexes. Pour tout $j \in I$, on prolonge $\dot{\tau} | \partial T_j$ à T_j en deux anti-involutions $\dot{\tau}_j$, $\dot{\tau}_j'$ de T_j de telle façon que

a) $\dot{\tau}_i$ soit sans points fixes,

b) $\dot{\tau}'_j$ ait un ensemble de points fixes homéomorphe à S_j par la projection $T_j^{\dot{\tau}_j} \longrightarrow S_j$ (cf. plus bas pour des choix particuliers explicites – on verra qu'on peut même supposer $T_i^{\dot{\tau}_j} = S_i \times \{0\}$).

Soit, pour toute partie $I' \subset I$, $\tau_{I'}$ l'anti-involution de $X_g = V_0 \coprod_{\partial T} T$ (où $V_0 = X_0 \setminus Up_{j \in I}D'_j$) qui coïncide avec τ sur V_0 , avec τ'_j sur T_j pour $j \in I'$, avec τ_j pour

 $j \in I \setminus I'$. Alors on a

$$(26) X_g^{(\tau_{I'})} = \bigcup_{j \in I'} (S_j \times \{0\})$$

donc si card(I') = i (0 $\leq i \leq g$), alors $\tau_{I'}$ est un σ_i .

Choix de $\dot{\tau}_j$, $\dot{\tau}_j'$. On choisit un isomorphisme $S_j \simeq U \stackrel{\text{def}}{=} \{z \in \mathbb{C} \mid |z| = 1\}$, d'où une orientation de S_j , et une bijection $\varepsilon_j \simeq \{\pm 1\}$, d'où $I^{\varepsilon_j} \simeq I = [-1, +1]$ et on prend

(27)
$$\begin{cases} \dot{\tau}(z,t) = (-z \exp(i\pi t), -t) \\ \dot{\tau}'(z,t) = (z, -t). \end{cases}$$

[NB. Pour la définition des $\dot{\tau}'_j$, on n'a pas besoin du choix d'un isomorphisme $S_i \simeq U$.]

On a bien $\dot{\tau}^2 = \dot{\tau}'^2 = id$, $\dot{\tau} | \partial \tau = \dot{\tau}' | \partial \tau = \tau | \partial \tau$.

D'ailleurs on note que:

$$(\dot{\tau}'\dot{\tau})^2 = \dot{\tau}'\dot{\tau}\dot{\tau}'\dot{\tau} = ((z,t) \longmapsto (z \exp(2i\pi t), t)).$$

Ce n'est pas l'application identique – l'ensemble de ses points fixes est égal à l'ensemble des (z,t) tels que $t \in \{-1,0,+1\}$ – i.e.

(28)
$$T_j^{(\dot{\tau}_j'\dot{\tau}_j)^2} = S_j \times [\partial I^{\varepsilon_j} U p\{0\}].$$

Soit

(29)
$$\dot{\rho}_{j} = \dot{\tau}'_{j}\dot{\tau}_{j}, \ [(z,t) \longmapsto (-z \exp(i\pi t), t)]$$

– c'est un automorphisme de T_j qui est *l'identité* sur ∂T_j . Pour toute partie I' de $I=J/\tau$, soit

(30)
$$\rho_{I'} = 1$$
'automorphisme de X_g qui est l'identité sur $V_0 = X_g \setminus \bigcup_{j \in I \setminus I'} T_j$,

et qui est
$$\rho_j$$
 sur T_j pour $j \in I'^{125}$.

Posant $\rho_j = \rho_{\{j\}}$, on aura simplement $\rho_J = \prod_{j \in J} \rho_j$. Sauf erreur, ρ_j engendre le groupe $S\Gamma^{!+}(T_j)(??) \simeq \mathbf{Z}$, donc les ρ_j engendre un groupe $\simeq \mathbf{Z}^I$. NB. On a $\rho_j = \tau_{\{j\}} \tau_{\varnothing}$.

On aura donc

(32)
$$\tau_{I'}\tau_{I''} = \rho_{I'_0}\rho_{I''_0}^{-1}$$

où $I_0' = I' \setminus I' \cap I''$, $I_0'' = I'' \setminus I' \cap I''$; d'autre part on aura evidemment

$$[\rho_J, \rho_K] = 1 \text{ pour } J, K \subset I.$$

Remarque. Au lieu d'un isomorphisme $S_j \simeq \mathbb{U}$ supposons donné plutôt sur S_j une structure de torseur sous $\mathbb{U}^{\varepsilon_j}$ (\mathbb{U} tordu par ε_j , grâce à l'automorphisme d'ordre 2,

 $z \longmapsto z^{-1} = \overline{z}$ de \mathbb{U}). On peut donc définir

$$(36 \lceil sic \rceil) \qquad \exp: \mathbf{R}^{\varepsilon_j} \longrightarrow \mathbb{U}^{\varepsilon_j}$$

où $I_j^{\varepsilon} \subset \mathbb{R}^{\varepsilon_j}$, de façon évidente, d'où des anti-involutions $\dot{\tau}_j, \dot{\tau}_j' : T_j \xrightarrow{\sim} T_j$ par les formules (27).

Si par exemple on choisit des disques D'_j tels que leurs bords soient des *cercles* euclidiens, alors il y a sur chaque $\partial D'_j$ une structure de torseur sous un groupe $\mathbb{U}^{\varepsilon_j}$, invariante par antipodisme, et qui passe donc au quotient. Dès lors tout automorphisme de $(X_0,(D'_j))$ qui respecte cette structure supplémentaire de torseur – et notamment tout automorphisme qui respecte la structure *métrique*, opère sur X_g en commutant au système des τ_j , τ'_j au sens évident.

Également, si on retient sur X la structure conforme seulement, et si on choisit dans chaque D_j un "centre" a_j , de façon compatible avec l'involution, alors le choix des $a_j \in \operatorname{Int}(D_j')$ définit une structure de torseur sur M_j et ces structures sont invariantes par transformations conformes qui respectent l'ensemble de points a_j . [NB. On ne suppose plus nécessairement que $(\partial D_j$ soit un cercle, seulement que ∂D_j pas trop sauvage. Si ∂D_j est un cercle cette définition coïncide avec la précédente si et seulement si a_j est le centre du cercle.]

Pour définir τ_j sur T_j , il suffit de nettement moins de données que d'une structure de torseur topologique sur T_j . Ecrivant, pour $(z,t) \in S_j \times I^{\varepsilon_j}$

(37)
$$\tau_j(z,t) = \left(u_t(z), -t\right)$$

où $u_t: S_j \xrightarrow{\sim} S_j$ est un homéomorphisme dépendant continûment de t, écrivant que $\tau_j | \partial T_j = \tau | \partial T_j$ on trouve la condition

a) $u_t = \operatorname{id} \operatorname{si} t \in \partial I^{\varepsilon_j} \simeq \varepsilon_j$ (ça s'écrit, si S_j est orienté, $u_1 = u_{-1} = 0$); écrivant que $\tau_j^2 = \operatorname{id}$, on trouve la condition

b)
$$u_{-t} = u_t^{-1} \ (t \in I^{\varepsilon_j}),$$

et écrivant que $T_i^{\tau_j} = \emptyset$ on trouve la condition

c) u_0 sans points fixes.

Si une orientation est choisie, les $j \mapsto u_j$ satisfaisant a), b), c) correspondent aux applications $[0,1] \longrightarrow \operatorname{Aut}(S_j)$ par $t \longmapsto u_t$, telles que $u_1 = \operatorname{id}$, u_0 sans point fixe *et d'ordre* 2 (le cas envisagé plus haut est celui-ci où $t \longmapsto u_{1-t}$ provient d'une représentation continue $\mathbf{R} \longmapsto \operatorname{Aut}(S_j)$).

Remarques. On peut se proposer de déterminer la structure de toutes les anti-involutions τ , sur un cylindre orienté $T \simeq S \times I^{\varepsilon_j}$ ($\varepsilon = \operatorname{Or}(S)$) qui n'ont pas de point fixe sur le bord – ce qui implique déjà que τ permute les deux composantes connexes du bord. Plus généralement, les anti-involutions τ d'une surface à bord orientée X, n'ayant pas de point fixe sur ∂X , correspondent aux variétés à bord munies d'un partie à la fois ouverte et fermée $(\partial Y)'$ de ∂Y – en associant à une telle $(Y,(\partial Y)')$ son "doublement" orienté relativement à $(\partial Y)'$ – à X,σ correspondant $(X/\sigma,\operatorname{Im} X^\sigma \longrightarrow X/\sigma)$. Si X est connexe compact, Y est compacte non orientable 126 ; supposons que son type soit (γ,j) , et soit $i=\operatorname{card}\left(\pi_0((\partial Y)')\right)=\operatorname{card}(\pi_0(X^\sigma))$. Donc $0 \le i \le j$, et $Hi(Y)=1-(\gamma+j)$, et on voit de suite que

$$Hi(X) = Hi(X \setminus (X \mid \partial Y)) = Hi(X \mid Int(Y))$$

(car le *Hi* d'un cercle est nul)

$$=2Hi_!(Int(Y)) = 2Hi(Y) = 2(1-(\gamma+j));$$

donc si X est de type (g, v), on aura Hi(X) = 2 - 2g, $2 - 2g - v = 2(1 - (\gamma + j))$, i.e.

$$(38) g + \nu/2 = \gamma + j$$

¹²⁶Pas vrai! Si Y est orientable de type (γ, j) , avec $0 \le i \le j$, on aura $g + v/2 = 2\gamma + j - 1, v = 2(j - i)$, i.e. i = j - v/2 comme dans le cas ci-contre [celui du texte qui suit].

(cela exige que ν soit pair, ce qui était évident a priori, car σ doit permuter les éléments de $\pi_0(\partial X)$ entre eux, sans y avoir de points fixes...). Mais j'ai oublié de noter que ν est déterminé en fonction de (γ, j, i) où $i = \operatorname{card}((\partial Y)')$ par

$$(39) v = 2(j-i),$$

i.e. i = j - v/2. Donc il faut ici (pour g = 0, v = 2) chercher (γ, j, i) avec $\gamma \in \mathbb{N}$, $0 \le i \le j \in \mathbb{N}$, tels que l'on ait v = 2(j-i), i.e. j-i=1 i.e. i=j-1, et $\gamma+j=1$, ce qui donne la seule possibilité (comme $i \ge 0$, donc $j \ge 1$)

a)
$$\gamma = 0$$
, $j = 1$, $i = 0$.

Le cas a) correspond au cas où $T^{\sigma} = \emptyset$; il se déduit du plan projectif réel en y faisant un trou à bord (d'où ruban de Möbius), et en prenant le doublement orienté.

Le cas où $T^{\sigma} \neq \emptyset$ donnera nécessairement un quotient Y orienté, on doit avoir que pour son type $(\gamma, [??])$, le seul cas:

b)
$$\gamma = 0$$
, $j = 2$, $i = 1$ (quotient *orienté*)

déduit de la sphère à deux trous, i.e. du cylindre, en prenant le doublement orienté par rapport à *un* des trous.

C'est bien les deux cas donnés respectivement par $\dot{\tau}$ et $\dot{\tau}'$ dans les formules (27).

Je voudrais maintenant construire une situation sous les conditions de la proposition mettant en évidence un maximum de symétries – il est vrai que l'on pourrait travailler avec tous les automorphismes de X_0 commutant à l'antipodisme τ , invariant l'ensemble des D_j , et respectant (disons) des structures de torseur topologique sur l'ensemble des ∂D_j – ou ce qui revient naturellement au même (à indétermination de multiplication par 2 près) 127 les automorphismes de Y_0 qui invarient $D=\cup_{i\in I}D_i$, et respectent des structures de torseur sur les composantes connexes ∂D_j de ∂D . On prévoit que (travaillant modulo isotopie) on aura un groupe qui sera voisin d'un groupe de tresses, et sans doute calculable sans grand mal – et en le mettant ensemble avec le groupe engendré par les opérateurs précédents, on trouvera peut-être un démarrage pour engendrer par exemple \mathfrak{T}_g par générateurs (anti-involutifs) et relations.

¹²⁷ Non, sans indétermination, en relevant à la sphère de façon à repsecter l'orientation.

Considérons le sous-groupe G de $A_g = \operatorname{Aut}(X_g)$ engendré par les $\tau_{I'}, I' \subset I$. Soit H le sous-groupe engendré par les ρ_j , $(j \in I)$. On a

$$\tau_{I'}\rho_I\tau_{I'} = \tau_{I'}(\tau_{\{j\}}\tau_{\varnothing})\tau_{I'} = (\tau_{I'}\tau_{\{j\}})(\tau_{\varnothing}\tau_{I'}) \in H$$

par la formule (32) donc H est un sous-groupe invariant. Les formules (32) montrent que G/H est un groupe *commutatif*, et même qu'il est isomorphe à ± 1 par le caractère d'orientation tous les τ'_I sont égaux mod H).

Considérons comme élément de référence de H l'élément

$$\tau = \tau_{\varnothing}$$

(anti-involution sans points fixes de X_g). On trouve alors par (32) que pour $I' \subset I$,

(41)
$$\tau_{I'} = \rho_{I'} \tau = \left(\prod_{j \in I'} \rho_j\right) \cdot \tau^{128},$$

d'ailleurs on aura, pour $j \in I$,

$$\tau \rho_i \tau = \tau_{\varnothing}(\tau_{\{i\}} \tau_{\varnothing}) \tau_{\{0\}} = \tau_{\varnothing} \tau_{\{j\}} = \rho_j^{-1}$$

$$\tau \rho_i \tau^{-1} = \rho_i^{-1}.$$

Ainsi G apparaît comme le produit semi-direct de $H \simeq \mathbf{Z}^I$, et de $\{\pm 1\} \simeq \{1, \tau\}$ y opérant par la symétrie $\rho \longmapsto \rho^{-1}$. Donc pour tout $\rho \in H$, on a $(\tau \rho)^2 = 1$, i.e. pour tout $\sigma \in H^{-1}$, σ est une anti-involution. Comme σ coïncide avec τ sur $V_0 = X_g \setminus \bigcup_{i \in I} \operatorname{Int}(T_i)$, on voit que l'ensemble des points fixes de σ est contenu dans $\bigcup_{i \in I} \operatorname{Int}(T_i)$, et pour calculer l'indice de σ , i.e. $\operatorname{card}(\pi_0(X_g^{\sigma}))$, il suffit de prendre la somme des indices dans les T_j . Or dans T_j , on a par (29) $\rho_j(z,t) = (-z \exp(i\pi t),t)$, et par récurrence,

(43)
$$\rho_j^{n_j}(z,t) = \left((-1)^{n_j} z \exp(i\pi n_j t), t \right)$$

donc

(44)
$$\tau \rho_j^{n_j}(z,t) = ((-1)^{n_j+1} z \exp(i\pi(n_j+1)t), -t)$$

The second rest of the second r

et $(z,t) \in T_j$ est point fixe de $\tau \rho_j^{n_j}$ si et seulement si t=0, et n_j est *impair*, donc

$$T_{j}^{\tau \rho_{j}^{n_{j}}} = \begin{cases} \emptyset \\ S_{j} \times \{0\} \end{cases}$$

donc

(46) Indice de
$$u = \tau \prod_{j} \rho_{j}^{n_{j}} =$$

= cardinal de l'ensemble I'_n des $j \in I$ tels que n_j soit impair.

Il en résulte pour des raisons générales que u est conjugué dans $A_g = \operatorname{Aut}(X_g)$ (par un élément de A_g^+) à $\tau_{I'} = \rho_{I'}\tau = \tau \rho_{I'}^{-1}$, ou aussi $\rho_{I'}^{-1}\tau = \tau \rho_{I'}$.

Mais si $\tau \rho'$, $\tau \rho'' \in G$, $(\rho', \rho'' \in H)$, et si $\rho \in H$, la relation

$$\rho(\tau \rho')\rho^{-1} = \tau \rho''$$

équivaut à

$$\tau \rho \tau \rho' \rho^{-1} = \rho''$$

(où $\tau \rho \tau = \rho^{-1}$), i.e. $\rho^2 = \rho' \rho''^{-1}$; donc $\tau \rho'$ et $\tau \rho''$ sont conjugués par un élément de H si et seulement si $\rho' \rho''^{-1} \in H^2$ – ce qui précise l'observation précédente...

La façon la plus riche en symétries simples pour disposer les 2g trous antipodiques D_j me semble la suivante. On considère la sphère euclidienne, avec l'action du groupe diédral \mathbb{D}_{2g} – par exemple quand c'est la sphère de Riemann qui est considérée comme riemannienne, par le choix de antipodisme comme étant

(47)
$$\tau z = -\frac{1}{z};$$

on prend l'action type du groupe diédral (avec comme pôles les points $0, \infty$, et comme équateur le cercle unité $U = \{z \in \mathbb{C} \mid |z| = 1\}$), en écrivant \mathbb{D}_n comme $\subset O(2, \mathbb{R})$, comme produit semi-direct de $\{\pm 1\}$ par $\mu_n(\mathbb{C}) = \mu_n$, le couple (ξ, α) $(\xi \in \mu_n, \alpha \in \{\pm 1\})$ opérant par $(\xi, \alpha)(z) = \xi z^{\alpha}$. On peut d'ailleurs l'élargir en un groupe $\widetilde{\mathbb{D}}_n \simeq \mathbb{D}_n \times \mathbb{Z}/2\mathbb{Z}$, où le deuxième facteur $\mathbb{Z}/2\mathbb{Z}$ est engendré par l'antipodisme (47) (qui commute à \mathbb{D}_n – de même d'ailleurs que l'anti-involution $z \longmapsto 1/\overline{z}$, qui a comme ensemble de points fixes U et n'est autre que la symétrie

par rapport à l'équateur, leur composé $z \longmapsto -z$ étant la symétrie par rapport à l'axe des pôles...) donc on regarde les transformations

$$u_{\xi,\alpha,\beta} = u_{\xi,\alpha} \tau^{\beta}, \ \xi \in \mu_n, \ \alpha \in \{\pm 1\}, \ \beta \in \mathbb{Z}/2\mathbb{Z},$$

donc

$$u_{\xi,\alpha,\beta} z = \begin{cases} u_{\xi,\alpha}(z) = \xi z^{\alpha} & si\beta = 0 \ u_{\xi,\alpha}(\frac{-1}{\overline{z}}) = -\xi \overline{z}^{-\alpha} \end{cases}$$

mais on se rappellera que τ renverse l'orientation, donc est à manier avec réserve pour ce qui concerne le "transport de structure" dans la situation présente. Ici n=2g, \mathbb{D}_{2g} est d'ordre 4g, et $\widetilde{\mathbb{D}}_n$ d'ordre 8g. On prend sur l'équateur une trajectoire de $\mu_n=\mu_{2g}$, par exemple justement l'ensemble μ_{2g} , de racines 2g-ièmes de l'unité lui-même (en tant que sous-ensemble de la sphère) comme l'ensemble des "centres" des disques D_i' . On choisit un disque D_0' autour du point P_0 (assez petit pour ce qui va suivre) 129 , et on prend les transformés de D_0' par les $\xi \in \mu_n$. Ces choix étant faits, la surface X_g est déterminée sans ambiguité, et le groupe \mathbb{D}_{2g} y opère par transport de structure, en permutant entre eux les g cylindres T_i , correspondant aux éléments de $J/\tau=J/\{\pm 1\}$, i.e. aux paires d'éléments antipodiques de S, i.e. aux "diagonales" du polygone à 2μ côtés qu'ils déterminent sur l'équateur. Le groupe \mathbb{D}_{2g} normalise le groupe G; de façon précise on aura, pour $u\in\mathbb{D}_{2g}$,

$$u \tau_{I'} u^{-1} = \tau_{u(I')}$$

pour $I'\subset I=J/\tau$, en tenant compte de l'opération de \mathbb{D}_{2g} sur I. On aura donc en particulier, désignant par $\tau_g=\tau_\varnothing$ l'extension de l'antipodisme de la sphère X_0 (ou plutôt de $\tau|V_0$) en un antipodisme sans points fixes de X_g , noté τ précédemment

$$(50) u \tau_g u^{-1} = \tau_g$$

i.e. τ_g commute à l'action de \mathbb{D}_n , et

$$(51) u \rho_j u^{-1} = \rho_{u(j)}.$$

On peut donc dire que \mathbb{D}_{2g} opère sur G, d'où un produit semi-direct \mathbb{D}_{2g} , qui opère donc sur X_g .

¹²⁹Il faut simplement que D_0' ne rencontre pas $\xi D_0'$, où $\xi = \exp(2i\pi/2g)$.

Quant à la question de prolonger de même l'action sur X_0 de $\widetilde{\mathbb{D}}_{2g}$ tout entier en une action sur X_g , ça a été fait sans crier gare, à τ_{X_0} correspondant naturellement $\tau_{X_g} = \tau_g$, qui a en effet le bon goût de commuter à l'action de \mathbb{D}_{2g} . [Il pourrait sembler plus naturel, il est vrai, dans un esprit de "transport de structure (envers et contre tout?)", de faire correspondre à τ_{X_0} l'opération τ_I donnée par (27), qui en chaque T_j serait égal à τ_j (et sur V_0 , bien sûr, coïncide avec τ_{X_0}), $\tau_j(z,t)=(z,-t)$, l'ensemble des points fixes de τ_I étant formé des g cercles médians $S_j \times \{0\}$ des g tubes T_j . On aura par (41) $\tau_I = \rho_I \tau_g$, donc τ_I commute également à \mathbb{D}_n , puisque τ et $\rho_I = \prod_{i \in I} \rho_i$ y commutent. Mais il ne semble pas important pour le moment quelle convention nous adoptons.] On peut donc dire aussi que le groupe $\widetilde{\mathbb{D}}_{2g}$ opère sur H – cette opération prolongeant celle de τ_g , identifié maintenant à un élément de $\widetilde{\mathbb{D}}_{2g}$, i.e. à l'antipodisme dans $\widetilde{\mathbb{D}}_{2g}$ – et le produit semi-direct

$$\widetilde{\mathbb{D}}_{2g} \cdot H \supset G = \langle 1, \tau_g \rangle \cdot H$$

opère sur X_g .

Il faudrait maintenant, dans cette voie:

- 1) Expliciter l'action extérieure de ce produit semi-direct sur le groupe fondamental π_g , avec une attention toute particulière à l'action du groupe $(\mathbf{Z}/2\mathbf{Z})^3 \subset \widetilde{\mathbb{D}}_{2g}$ qui stabilise un des cylindres T_j qui dans l'espace euclidien de dimension 3 s'interprète comme le groupe des changements de signe relatif au système d'axes orthonormés correspondant.
- 2) Etendre l'action sur π_g du groupe de Teichmüller (plus ou moins) "spécial" de données chacun des T_j , en l'action d'un groupe analogue d'un ensemble plus grand obtenu en lui rajoutant une "lanière" L (d'où un tore à un trou, et son groupe de Teichmüller spécial, qui s'introduisent de façon naturelle) 130 voire l'ensemble encore plus grand obtenu en mettant également la lanière antipodique L' (cet ensemble se présente comme un cylindre $(L \cup L')$ ou "buse", où on aurait mis un tube (T_j) en travers, et a la structure topologique d'un tore à deux trous). Il est possible qu'il faille considérer de près ce dernier, pour étudier les relations entre les éléments de \mathfrak{T}_g provenant des ensembles précédents.... Un travail amusant sera de

 $^{^{130}}$ C'est essentiellement un $SL(2, \mathbb{Z})$ – plutôt une extension centrale remarquable de $SL(2, \mathbb{Z})$ par \mathbb{Z} , qui rappelle celle de $SL(2, \mathbb{R})$ par \mathbb{Z} ... (revêtement universel de $SL(2, \mathbb{R})$).

se débrouiller pour écrire les générateurs du groupe π_g , et surtout la fameuse relation, dans une disposition géométrique relative des "anses", qui est une disposition "panachée" – et non plus sagement à la queue-leu-leu!

En attendant d'entrer ainsi dans le vif de la structure du groupe de Teichmüller, je vais déjà essayer de décrire des générateurs et relations pour le sous-groupe intéressant qu'on vient d'écrire, $\widetilde{\mathbb{D}}_{2g} \cdot H$. Je vais prendre les sempiternels générateurs ε_0 , ε_1 de \mathbb{D}_{2g}^{-131} ,

$$\varepsilon_0^2 = \varepsilon_1^2 = 1$$
, $(\varepsilon_0 \varepsilon_1)^{2g} = 1$

et y joindre $\tau=\tau_{\rm g}$, et $\rho_{\rm 0}\tau=\tau'$ ($\rho_{\rm 0}=\rho_{j_{\rm 0}}$, $j_{\rm 0}$ point marqué de $I=J/\tau$) satisfaisant

$$\tau^2 = {\tau'}^2 = 1$$
,

$$(\tau \varepsilon_0)^2 = (\tau \varepsilon_1)^2 = 1$$

exprimant la commutation de τ à ε_0 , ε_1 ;

$$(\varepsilon_1 \tau')^2 = 1$$
,

i.e. ε_1 commute à τ' ,

$$\left((\varepsilon_0 \varepsilon_1)^g \tau' \right)^2 = 1$$

(l'involution $(\varepsilon_0 \varepsilon_1)^g$ commute à τ'); sauf erreur, ça fait un ensemble de générateurs et relations pour $\widetilde{\mathbb{D}}_{2g} \cdot H$ – en résumé ε_0 , ε_1 , τ , τ' :

(52)
$$\begin{cases} \varepsilon_0^2 = \varepsilon_1^2 = \tau^2 = {\tau'}^2 = 1\\ (\tau \varepsilon_0)^2 = (\tau \varepsilon_1)^2 = (\tau' \varepsilon_1)^2 = 1\\ (\varepsilon_0 \varepsilon_1)^{2g} = 1\\ (\tau'(\varepsilon_0 \varepsilon_1)^g)^2 = 1. \end{cases}$$

C'est peut-être pas très astucieux comme choix de générateurs, en ce sens que ε_0 , ε_1 ne sont pas du tout sur le même pied que τ , τ' – ce ne sont pas des *anti*-involutions.

¹³¹NB. ε_0 bouge le sommet du repère, ε_1 l'arête et pas le sommet, donc $\varepsilon_1(j_0) = j_0$.

Il vaudrait mieux prendre $\varepsilon_0' = \tau \varepsilon_0$, $\varepsilon_1' = \tau \varepsilon_1$, de façon à obtenir:

$$\begin{cases} \varepsilon_0'^2 = \varepsilon_1'^2 = \tau^2 = \tau^2 = 1\\ (\tau \varepsilon_0')^2 = (\tau \varepsilon_1')^2 = (\tau'(\tau \varepsilon_1'))^2 = 1\\ (\varepsilon_0' \varepsilon_1')^{2g} = 1\\ (\tau'(\varepsilon_0' \varepsilon_1')^g)^2 = 1. \end{cases}$$

Ce sont essentiellement les "mêmes" relations sauf la dernière de la deuxième ligne.

Peut-être ce petit jeu avec le tout petit groupe $\widetilde{\mathbb{D}}_n$ opérant sur H est un peu une amusette – le groupe $H\simeq \mathbf{Z}^g$ dans \mathfrak{T}_g suggère beaucoup la situation d'un tore maximal dans un groupe semi-simple; on a vraiment envie d'en avoir une caractérisation intrinsèque dans \mathfrak{T}_g – ou dans \mathfrak{S}_g , ce qui est possible puisqu'en tant que groupe de transformations topologiques effectives, il laisse fixe les points de $V_0\subset X_g$ – par exemple les deux pôles, qu'on peut prendre comme points base pour construire revêtement universel et groupe fondamental. Ce sont peut-être les sous-groupes abéliens-libres maximaux. On aimerait étudier le normalisateur – est-ce exactement ce qui provient des automorphismes de $X_g\setminus U_i^\circ\simeq V_0$? Les $\mathrm{SL}(2,\mathbf{Z})$ associés aux "lanières" à travers le tube T_j , jouent-ils un rôle analogue à celui des groupes $\mathrm{SL}(2,K)$ où $\mathrm{GP}(1,K)$ "de rang 1" dans la théorie des groupes algébriques réductifs? Si [?] ne "mord" pas à la situation, la soumettre peut-être à [?], qui est à l'aise tant avec les groupes discrets et leurs générateurs et relations, qu'avec la théorie des semi-simples – et la topologie…

\S 33bis. — ÉTUDE DES REVÊTEMENTS FINIS - RELATION ENTRE LES $\mathcal{N}_{g,\nu}$, $\Gamma_{g,\nu}$ POUR g VARIABLE

Soient π un groupe extérieur à lacets profini arithmétisé de type (g, v), π' un sousgroupe connexe de π , d'où une application injective

$$Discrét(\pi) \hookrightarrow Discrét(\pi');$$

on voudrait prouver qu'elle est compatible avec la relation d'équivalence de l'arithmétisation, de sorte que toute arithmétisation de π en donne une de π' , et de même pour les prédiscrétifications. On voudrait établir en même temps que les applications $P^+(\pi) \longrightarrow P^+(\pi')$ sur les prédiscrétifications orientées et $A(\pi) \longrightarrow A(\pi')$ sur les arithmétisations sont injectives. Pour prouver ces points, on est ramené au cas où π' invariant caractéristique (cf. §28, diagramme (7)). Choisissant une discrétification π_0 de π , donc π'_0 de π' , on trouve donc $\hat{\mathfrak{S}}(\pi_0) \longrightarrow \hat{\mathfrak{S}}(\pi'_0)$ et on a:

L'homomorphisme $\hat{\mathfrak{S}}(\pi_0) \longrightarrow \hat{\mathfrak{S}}(\pi'_0)$ envoie $M(\pi_0)$ dans $M(\pi'_0)$.

On aura donc un diagramme (variante de celui du §28):

(18)
$$\hat{\mathfrak{S}}^{+}(\pi_{0}) \hookrightarrow M(\pi_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi_{0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\hat{\mathfrak{S}}^{+}(\pi'_{0}) \hookrightarrow M(\pi'_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi'_{0})$$

qui implique qu'une discrétification π_1 sur π qui donne même prédiscrétification orientée que π_0 (resp. même arithmétisation) définit une discrétification π'_1 de π' qui donne même prédiscrétification orientée (resp. même arithmétisation) que π'_0 .

Donc on a bien $P^+(\pi) \longrightarrow P^+(\pi')$, $A(\pi) \longrightarrow A(\pi')$ et il faut encore exprimer l'injectivité, qui revient aux relations

(2)
$$\hat{\mathfrak{S}}^{+}(\pi_{0}) = \hat{\mathfrak{S}}^{+}(\pi'_{0}) \cap \hat{\mathfrak{S}}(\pi_{0}), \quad M(\pi_{0}) = M(\pi'_{0}) \cap \hat{\mathfrak{S}}(\pi_{0})$$

i.e. un automorphisme à lacets de π qui, sur π' , appartient à $\hat{\mathfrak{S}}(\pi'_0)$, resp. à $M(\pi'_0)$, est déjà dans $\hat{\mathfrak{S}}(\pi_0)$, resp. dans $M(\pi'_0)$.

L'assertion repérée étant admise, l'assertion non repérée signifie aussi que l'homomorphisme canonique:

(3)
$$\Gamma_a = M_a(\pi)/\hat{\mathfrak{S}}_a^+(\pi) \longrightarrow \Gamma_a' = M_a'(\pi')/\hat{\mathfrak{S}}_{a'}^+(\pi')$$

est *injectif*. Par construction (via Γ_Q), c'est aussi surjectif, donc on trouverait: l'homomorphisme canonique (3) est bijectif et on trouverait aussi une bijection

$$(4) P_a(\pi) \longrightarrow P'_a(\pi')$$

entre arithmétisation de π de type a et arithmétisation de π' de type a', compatible avec l'isomorphisme (3).

Enfin, ces résultats dans les cas π' invariant caractéristique s'étendraient aussitôt au cas d'un $\pi' \subset \pi$ ouvert quelconque.

Procédant par exemple comme dans le §28 à coups de "correspondances" arithmétiques extérieures entre "courbes potentielles", on trouve un groupoïde connexe (ponctué par les $\hat{\pi}_{g,\nu}$, par exemple, qui y sont canoniquement isomorphes), dont le π_1 extérieur est la valeur commune des $\Pi_{g*} = \Pi_{g,\nu}$. Pour trouver un isomorphisme canonique entre $\Pi_{g,\nu}$ et $\Pi_{g',\nu'}$, on choisit une correspondance entre $\pi_{g,\nu}$ et $\pi_{g',\nu'}$, par exemple on regarde l'un et l'autre (quitte à passer de g,ν à g,ν' avec $\nu' \geq \nu$, et de même pour g',ν' à g',ν' avec $\nu' \geq \nu'$) comme des sous-groupes [d'indices] finis du même $\pi_{0,3}$, d'où $\Pi_{0,3} \xrightarrow{\sim} \Pi_{g,\nu}$, $\Pi_{0,3} \xrightarrow{\sim} \Pi_{g',\nu'}$.

On aimerait maintenant voir ce qui, dans le yoga précédent, est indépendant de toute conjecture. Par exemple, le fait que les homomorphismes surjectifs canoniques

 $\Pi_{g,\nu} \longrightarrow \Pi_{g,\nu'}(g \text{ le même, } \nu' \text{ constant}) \text{ n'est pas établi. Cependant, si on savait que dans la situation du } (\pi, \pi') \text{ avec } \pi' \text{ invariant caractéristique, on a } \hat{\mathfrak{Z}}(\pi'_0) \cap \hat{\mathfrak{S}}^+(\pi_0) = \hat{\mathfrak{S}}^+(\pi_0) \text{ (qui est un énoncé de nature relativement anodine sur des groupes à lacets$

profinis), on concluerait à la bijectivité de $\Gamma_{\pi_0} \longrightarrow \Gamma_{\pi'_0}$ dans cette situation, et on en concluerait que le noyau de $\Gamma_Q \longrightarrow \Gamma_{0,3}$ s'envoie trivialement dans les $\Gamma_{g,\nu}$ pour tout ν – i.e. qu'il s'envoie dans les $\Gamma_{g,\nu}$ par l'intermédiaire de $\Gamma_{0,3}$ – et que de plus $\Gamma_{0,3} \longrightarrow \Gamma_{g,\nu}$ est un isomorphisme pour tout (g,ν) avec ν assez grand – il suffit que la surface de type (g,ν) (ou de type (g,ν') avec un $\nu' \le \nu$) puisse s'obtenir comme revêtement étale de $X_{0,3}$, i.e. que $\pi_{g,\nu'}$ se réalise (avec sa structure à lacets) comme sous-groupe d'indice fini de $\pi_{0,3}$. Alors, considérant un $\pi'' = \pi_{g'',\nu''} \subset \pi_{g,\nu'}$ d'indice fini et contenu dans $\pi_{0,3}$, on aura un diagramme commutatif:

d'où notre assertion $\Gamma_{0,3} \stackrel{\sim}{\longrightarrow} \Gamma_{g,\nu'}$ et a fortiori l'homomorphisme surjectif $\Gamma_{0,3} \longrightarrow \Gamma_{g,\nu}$ qui le factorise $(\nu \geq \nu')$ est bijectif. Notons par exemple que les $\Gamma_{0,\nu} \longrightarrow \Gamma_{0,3}$ $(\nu \geq 3)$ sont alors bijectifs. Mais on notera qu'en tout état de cause, on ne trouve de résultat pour un g,ν que si $\nu \geq 3$ – donc ceci ne dit rien sur la fidélité éventuelle, par exemple de $\Gamma_{0,3} \longrightarrow \Gamma_{g,0} = \Gamma_g$ $(g \geq 2)$, ou $\Gamma_{0,3} \longrightarrow \Gamma_{1,1} = \Gamma_1$.

Soit une courbe algébrique U de type g, v ¹³², définie sur un sous-corps K fini sur \mathbf{Q} de $\overline{\mathbf{Q}}_0$, donc elle définit une action extérieure du sous-groupe ouvert $\Gamma = \Gamma_K \subset \Gamma_{\mathbf{Q}}$ sur $\pi_1(U_{\overline{\mathbf{Q}}_0})$. Quitte à agrandir K, et à agrandir v ou v' (i.e. faire des trous) pour trouver U' on peut supposer que U' est un revêtement étale de $(U_{0,3})_K$. On pose $\pi' = \pi_1(U_{\overline{\mathbf{Q}}_0})$, $\pi = \pi_1(U_{\overline{\mathbf{Q}}_0})$. Soit alors θ le noyau de

$$\Gamma (\subset \mathbb{F}_{\mathbf{O}}) \longrightarrow \mathbb{F}_{0,3},$$

il opère donc par automorphismes intérieurs sur $\hat{\pi}_{0,3}$, donc l'image de $\theta' = \Gamma' \cap \theta$ dans le groupe des automorphismes extérieurs de $\pi' \subset \hat{\pi}_{0,3}$ est un sous-groupe fini – a fortiori son image dans $\Gamma_{\pi'}$, et dans $\mathcal{N}(\pi)$, et dans Γ_{π} . Il en est de même (choisissant un point base rationnel sur K dans U') de l'opération effective sur $\pi_1(U,P)$ car il suffit d'appliquer le résultat précédent à $U \setminus \{P\}$. On en conclut aussi que les

¹³²On ne fait plus d'hypothèse conjecturale (telle que l'injectivité dans (3)).

noyaux des homomorphismes $\Gamma_{0,\nu} \longrightarrow \Gamma_{0,3}$ ($\nu \ge 3$) sont *finis*. On voit facilement que pour tout V.A. [Valuation Arithmétique] A définie sur K, l'opération de θ' sur $\prod_{\ell} T_{\ell}(A)$ se fait à travers un groupe quotient fini.

Il devient très difficile de s'imaginer comment il pourrait se faire que θ' n'opère pas en fait trivialement! J'ai même l'impression que je peux montrer, grâce au résultat du russe que m'a signalé Deligne, que $\Gamma_Q \longrightarrow \Gamma_{0,3}$ est un isomorphisme! Cela signifierait que les actions extérieures de Γ_Q sur des $\pi_1 \simeq \overline{\pi_{g,\nu}}$ peuvent s'interpréter (au moins pour ν assez grand, g étant fixé) comme des scindages de l'extension $\mathcal{N}_{g,\nu}$ de $\Gamma_{g,\nu}$ par $\hat{\mathfrak{T}}_{g,\nu}$ – ou de l'extension $M_{g,\nu}$ de $\Gamma_{g,\nu}$ par $\hat{\mathfrak{T}}_{g,\nu}$, quand il s'agit d'actions effectives.

Bien entendu, la question essentielle qui se pose alors (admettant $\Gamma_Q \simeq \Gamma_{0,3}$) est de caractériser $\Gamma_{0,3}$ algébriquement, ainsi que les $\mathcal{N}_{g,\nu}$ – et de donner une description algébrique également des scindages "admissibles" – i.e. correspondant bel et bien à des courbes algébriques sur des corps de nombres algébriques, que ce sont exactement les actions relevant l'action extérieure donnée, qui ne normalisent aucun sous-groupe à lacets, ou encore telle que $\hat{\pi}_{0,3}^{\Gamma''+}$ (mais il est concevable qu'il faille y ajouter de conditions plus subtiles, faisant intervenir les Frobenius...). On peut se proposer de trouver une description des actions extérieures "admissibles", sans avoir à passer par des actions effectives admissibles – et à s'embarasser d'en donner une définition plus ou moins plausible. La difficulté bien sûr provient du fait que si Γ'' opère extérieurement sur $\hat{\pi}_{0,3}$, il n'opère pas extérieurement pour autant sur un sous-groupe ouvert donné π' de $\hat{\pi}_{0,3}$. Mais on va supposer justement qu'il existe une telle action, de telle façon que $\pi' \longrightarrow \hat{\pi}_{0,3}$ soit compatible avec les actions extérieures, et que l'action de Γ' sur π se déduise (modulo isomorphisme) de [??].

Pour ce deuxième point, on a une réponse immédiate (supposant connus déjà les $\mathcal{N}_{g,\nu}$). Soit un (π,a) de type g,ν , avec relèvement partiel de \mathbb{F}_a en $\Gamma_a' \hookrightarrow \mathcal{N}_a$. Elle sera admissible si et seulement si on peut trouver un (π',a') de type (g,ν') et un plongement de π' comme sous-groupe d'indice fini de $\hat{\pi}_{0,3}$ compatible avec a', et un sous-groupe ouvert Γ'' de $\mathbb{F}_{0,3}$, et une action effective admissible de Γ'' sur $\hat{\pi}_{0,3}$ qui relève l'action extérieure donnée, et qui invarie π' , de façon qu'à isomorphisme près, (π,a) , et le germe d'action de Γ' dessus se déduise de (π',a') par l'action de Γ'' dessus, par "bouchage" d'un paquet de trous (et oubli d'une action effective

au profit de l'action extérieure). Il faut dans cette approche de simplement savoir préciser algébriquement ce qu'on entend par action "admissible" de $\Gamma'' \subset \mathbb{F}_{0,3}$ sur $\hat{\pi}_{0,3}$ – sous-entendant que ça doit correspondre aux points de $U_{0,3}$ rationnels sur le corps de nombres défini par Γ'' . On peut conjecturer celle-ci, par "bouchage de trous".

Il semble qu'on puisse sur le même principe donner une description des $\mathcal{N}_{g,\nu}$ (donc de $\mathbb{F}_{g,\nu}$) en termes de $\mathbb{F}_{0,3}$. Utilisant les homomorphismes de transition $\hat{\mathfrak{X}}_{g,\nu} \longrightarrow \hat{\mathfrak{X}}_{g,\nu}$, il suffit de le faire, quand g est fixé, pour des ν grands – assez grands pour qu'il existe une courbe algébrique de type g,ν sur Q qui soit un revêtement étale de $U_{0,3}$ sur Q. On considère donc un plongement correspondant de $\pi_{g,\nu}$ dans $\pi_{0,3}$, et on décrète que si on peut faire opérer extérieurement $\mathbb{F}_{0,3}$ dans $\pi_{g,\nu}$, de façon que $\pi_{g,\nu} \longrightarrow \pi_{0,3}$ commute à ces actions extérieures, *alors* le sous-groupe de $\hat{\mathfrak{X}}_{g,\nu}$ engendré par $\hat{\mathfrak{X}}_{g,\nu}$ et $\mathbb{F}_{0,3}$ est $\mathcal{N}_{g,\nu}$.

§ 34. — DESCRIPTION HEURISTIQUE PROFINIE DE LA CATÉGORIE DES COURBES ALGÉBRIQUES DÉFINIES SUR DES SOUS-EXTENSIONS FINIES K DE $\overline{\bf Q}_0/{\bf Q}$ (I.E. DE ${\bf C}/{\bf Q}$))

On se borne aux courbes géométriques connexes (par commodité) anabéliennes (par nécessité provisoire), cf. plus bas sur la façon de se débarrasser de cette restriction. La donnée d'un revêtement de $U_{\overline{\mathbb{Q}}_0}$ définit une structure d'extension

$$1 \longrightarrow \pi \longrightarrow \Sigma \longrightarrow \Gamma^{+} \longrightarrow 1$$

ou encore on a un homomorphisme

$$(2) E \longrightarrow \mathbf{I}\Gamma$$

(image Γ ouverte, de noyau appelé π) où $\Gamma \subset \Pi_Q \simeq \Pi_{0,3}$ est le sous-groupe ouvert correspondant à K. Se donner une telle extension (moyennant $\operatorname{Centre}(\pi) = 1$) revient à se donner une action extérieure de Γ' sur π . Une première question: faut-il mettre la structure à lacets de π dans les données de l'objet (1) (ou (2)) censé décrire U/K?

Conjecture. — Ce n'est pas la peine – la structure à lacets de π est la seule structure à lacets invariante par l'action extérieure de Γ (ou de Γ^{\natural}). Les sous-groupes à lacets L_i sont les sous-groupes maximaux dans π , tels que $\operatorname{Norm}_E(L_i) \longrightarrow \Gamma$ ait comme image un sous-groupe ouvert de Γ ¹³³. Je présume aussi que tout homomorphisme entre ex-

tensions E de Γ^+ par un π , E' de Γ par un π' (E, E' provenant de courbes algébriques U, U') et tel que l'image de E dans E' soit ouverte respecte nécessairement la structure à lacets, et en fait provient d'un homomorphisme (unique, on le sait) de courbes algébriques.

En tout cas, si on admet la description des sous-groupes à lacets, il sera clair que l'image par u d'un L_i sera ou bien (1), ou bien contenu dans un unique L_i ...

Ceci signifierait que le foncteur des courbes algébriques sur K ([avec comme] morphismes les morphismes dominants) vers les groupes profinis extérieurs sur lesquels Γ opère, serait pleinement fidèle. Le foncteur "extension du corps de base" de K à K' correspond au foncteur restriction d'un groupe extérieur (ou d'une structure d'extension) de Γ à Γ' (sous-groupe ouvert). Les revêtements étales finis de U correspondent aux E-ensembles (\widetilde{U} étant choisi). . .

Pour décrire l'image essentielle de ce foncteur, on n'est pas réduit aux conjectures. On part de l'extension canonique $E_{0,3}$ de $\Gamma_{0,3} = \Gamma$ par $\hat{\pi}_{0,3}$, on prend un sous-groupe ouvert E' de $E_{0,3}$, d'image $\Gamma \subset \Gamma_{0,3}$, noyau $\pi' \subset \hat{\pi}_{0,3}$, et dans la structure à lacets canonique de π' de genre g (induite par celle de $\pi_{0,3}$), on prend un $I \subset I(\pi')$ tel que $2g + \operatorname{card}(I) \geq 3$, stable par Γ , et on "bouche les trous" en $I(\pi') \setminus I$. De même, pour décrire quand une action effective, relevant une action extérieure admissible, est elle-même admissible – i.e. peut-être obtenue à partir d'une courbe algébrique U, ponctuée par un point rationnel sur K. Ceci ne signifie pas pour autant, que si U est donnée par une action extérieure de Γ sur un π , que les classes de conjugaison de relèvements admissibles de cette action proviennent bien toutes de points de U rationnels sur K. Mais on voit de suite que ceci sera le cas, dès que l'on admet la pleine fidélité pour les *isomorphismes*.

(NB. Même pour les automorphismes de $U_{0,3} = \mathbb{P}^1_Q \setminus \{0,1,\infty\}$, cette pleine fidélité n'est pas du tout claire. Il faudrait prouver que le commutant de $\Pi_{0,3}$ dans $\hat{\mathfrak{S}}_{0,3}$ est réduit à \mathfrak{S}_3 . La situation est moins sans espoir, quand on se donne, avec la structure de groupe profini extérieur à opérateur Γ , une arithmétisation de π (ce qui suppose qu'on a explicité une structure à lacets) invariante par Γ – donc dans $\hat{\mathfrak{S}}(\pi)$ on dispose d'un $\mathcal{N}(\pi)$, et $\Gamma \hookrightarrow \mathcal{N}(\pi)$. Dans ce point de vue, pour un homomorphisme de Γ -groupes extérieurs (arithmétisés) $\pi' \longrightarrow \pi$, il est sous-entendu qu'il est compatible avec les arithmétisations, i.e. si π'' est l'image de π' dans π , on

veut que l'arithmétisation de π'' déduite de celle de π' par "passage au quotient", soit celle induite par π . En particulier, pour les automorphismes extérieurs de π , il est sous-entendu que non seulement ils commutent à Γ , mais encore qu'ils sont dans $\mathcal{N}(\pi)$ (ce qui implique qu'ils sont dans $\hat{\mathfrak{T}}(\pi)$, car le centralisateur dans π de tout sous-groupe ouvert de Γ_{π} est $\{1\}$!) Dans le cas de $U_{0,3}$, on a $\mathcal{N}_{0,3} \simeq \mathfrak{S}_3 \times \Gamma_{0,3}$, et on sait que le centre de $\Gamma_{0,3} \simeq \Gamma$ est triviale – donc on trouve bien que le groupe des automorphismes de cette structure est réduit à \mathfrak{S}_3 !

Ce point de vue est néanmoins probablement superflu – car on présume que pour l'action extérieure donnée de Γ , il y a une unique arithmétisation invariante par Γ , et que les homomorphismes "admissibles" de Γ -groupes extérieurs "admissibles", tels qu'ils ont été définis précédemment, respectent automatiquement cette arithmétisation. S'il n'en était rien, il faudrait bien entendu introduire les arithmétisations dans la structure.

Il se pose la question de trouver une description plus simpliste des actions extérieures d'un Γ sur un π qui sont "admissibles". Ici, on va partir d'un π dont on fixe déjà une structure à lacets et une arithmétisation a (invariantes par Γ), de sorte que $\Gamma \subset \mathcal{N}(\pi)$, $\Gamma \longrightarrow \Pi_{\pi}$ injective à image ouverte, i.e. Γ correspond à un scindage partiel (ou germe de scindage) de

$$1 \longrightarrow \hat{\mathfrak{Z}}(\pi) \longrightarrow \mathcal{N}(\pi) \longrightarrow \mathbf{I}\Gamma_{\pi} \longrightarrow 1.$$

Soit (g, v) le type de π ; si $g \ge 1$ le critère la plus simple, c'est que les " Γ^{\natural} -points" de π' déduits de π en bouchant tous les trous, soient distincts. (NB. Si g=1, en bouchant tous les trous on tombe dans un cas abélien – mais ça ne fait rien). Si g=0, il n'y a pas de condition pour v=3, et si v>3, mettant à part une partie $I'\subset I(\pi)$ avec $\operatorname{card}(I')=3$, la condition c'est qu'en bouchant les trous en $I\setminus I'$, les Γ^{\natural} -points de π déduits des points de $I\setminus I'$ soient distincts.

On notera que dans cette optique conjecturale, dans les cas limites (g,0) $(g \ge 2)$, (1,1), (0,3), on n'impose aucune condition a priori sur les relèvements. C'est peut-être très brutal – et il se pourrait qu'on trouve des relèvements qui ne correspondent pas à une courbe algébrique – i.e. qui en fait ne sont *pas* admissibles, même s'ils le paraissent.

Pour y comprendre quelque chose, il me semble qu'il faut revenir à une inter-

prétation des germes de scindages dits "admissibles" d'une extension telle que

$$1 \longrightarrow \hat{\mathfrak{Z}}_{g,\nu} \longrightarrow \mathcal{N}_{g,\nu} \longrightarrow \mathbb{\Gamma}_{g,\nu} \longrightarrow 1$$

où $\[\Pi_{g,\nu} \simeq \Pi_Q \simeq \Pi_{0,3} \]$, comme correspondants aux points algébriques d'une *variété* (plutôt ici, une multiplicité) modulaire $M_{g,\nu,Q}$, dont $\mathcal{N}_{g,\nu}$ est le groupe fondamental arithmétique, et $\hat{\mathfrak{X}}_{g,\nu}$ le groupe fondamental géométrique. J'aimerais examiner cette situation de plus près, par la suite. Pour le moment, il semble prudent de ne pas faire de conjectures hâtives pour une description *directe* (i.e. *pas* via $U_{0,3}$) des opérations extérieures "admissibles". On travaillera donc pour le moment avec cette notion sous la forme constructive (via $U_{0,3}$).

Si on a un π extérieur de type (g,v) avec opération extérieure admissible de $\Gamma \subset \mathbb{F}$, on prévoit qu'il y aura une prédiscrétification stricte canonique sur π (pas invariante pas Γ , bien sûr – mais telle que l'arithmétisation correspondante le soit). On va même, pour une action effective admissible de Γ^{\natural} sur π (relevant l'action extérieure donnée), définir une discrétification orientée correspondante canonique $\pi_0 \subset \pi$ (remplacée par une conjuguée, quand on conjugue le relèvement $\Gamma^{\natural} \longrightarrow E$ par un $g \in \pi$) – toutes ces discrétifications orientées (correspondant aux différents "points" de $B_{\pi,\Gamma^{\natural}}$) définissent une même prédiscrétification orientée – et même une même prédiscrétification orientée *stricte*.

L'action effective de Γ^{\natural} sur π peut s'obtenir (à isomorphisme près) comme suit: on prend un sous-groupe ouvert $E' \subset E_{0,3}$, d'où extension $1 \longrightarrow \pi' \longrightarrow E' \longrightarrow \Gamma' \longrightarrow 1$ avec $\pi' \subset \hat{\pi}_{0,3}$, donc $\pi' = \hat{\pi}'_0$ ($\pi'_0 = \pi' \cap \pi_{0,3}$). On a une opération de Γ' sur $I(\pi') = I(\pi'_0)$, on la prend triviale (quitte à passer à un sous-groupe ouvert de Γ'), on choisit $i \in I' \subset I(\pi')$, on bouche les trous en I', d'où π , avec discrétification orientée π_0 , et une action extérieure de Γ' dessus, qui est relevée en une action effective grâce à i. On trouvera bien ainsi un "réseau" – une discrétification orientée dans π – je dis qu'il ne dépend pas des choix qui ont été faits – en particulier, que les automorphismes de $(\pi,a,\Gamma^{\natural})$ transforment π_0 en lui-même. De plus, si on a deux points x,y de $B_{\pi,\Gamma^{\natural}}$, d'où $\pi(x)$, $\pi(y)$, parmi les classes de chemins de x à y (qui font un bitorseur sous $\pi(y)$, $\pi(x)$) il y a en a pour lesquelles $\pi(x) \longrightarrow \pi(y)$ envoie $\pi_0(x)$ dans $\pi_0(y)$ – quand on se limite à ceux-ci, on trouve un sous-groupoïde du groupoïde fondamental $\Pi(\pi,\Gamma^{\natural})$, qui est cette fois-ci un groupoïde connexe à lacets. On fera attention que Γ n'opère pas sur ce groupoïde, bien qu'il opère sur

l'ensemble de ses objets.

\S 35. — L'INJECTIVITÉ DE ${ m I}{\Gamma}_{ m Q}$ \longrightarrow Autext $_{ m lac}(\hat{\pi}_{ m 0,3})$

Théorème 1^{134} . — Soit $\mathbb{I}\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}_0/\mathbb{Q})$, où $\overline{\mathbb{Q}}_0$ est la clôture algébrique de \mathbb{Q} dans \mathbb{C} , considérons l'homomorphisme canonique

Cet homomorphisme est injectif.

Démonstration.

Lemme 1. — Soit $x \in \mathbb{Q}$, $x \neq 0,1$ i.e. $x \in U_{0,3}(\mathbb{Q})$; choisissons un chemin sur $\mathbb{P}^1(\mathbb{C})$ de $P = -\overline{j}$ (point base pour définir $\pi_{0,3} = \pi_1(U_{0,3}(\mathbb{C}), P)$, (NB. $U_{0,3} = \mathbb{P}^1(\mathbb{Q}) \setminus \{0,1,\infty\}$), d'où un isomorphisme $\pi_1(U_{0,3}(\overline{\mathbb{Q}}_0),x) \simeq \hat{\pi}_{0,3}$, et par transport de structure une action effective de \mathbb{F} sur $\hat{\pi}_{0,3}$ (pas seulement extérieure). Alors $K = \text{Ker }\Theta$ opère trivialement sur $\hat{\pi}_{0,3}$.

Démonstration. Il suffit de voir que l'opération extérieure de K sur $\pi_1(\overline{V})$ où $V = U_{0,3} \setminus \{x\}$, est triviale. D'après le résultat de Belyi, il existe un morphisme (défini sur \mathbb{Q} , ceci est essentiel)

$$\mathbb{P}^1 \mathbf{Q} \longrightarrow \mathbb{P}^1 \mathbf{Q},$$

étale au-dessus de $U_{0,3} = \mathbb{P}^1 \mathbf{Q} \setminus \{0,1,\infty\}$, et tel que $x \longmapsto 0$. Soit U' le revêtement étale de $U_{0,3} = U$ induit, $\pi' = \pi_1(\overline{U}')$ son groupe fondamental géométrique, sur lequel Γ donc $K \subset \Gamma$ opère extérieurement. Alors $\pi(\overline{V})$ est un quotient de π' ,

¹³⁴Démontré modulo le lemme 2 plus bas.

avec respect des opérations extérieures de I Γ , et il suffit de prouver que K opère trivialement sur π' . Mais π' s'identifie à un sous-groupe ouvert de $\hat{\pi}_{0,3} = \pi$ (avec respect des opérations extérieures de K), sur lequel l'opération extérieure de K est triviale. Il s'ensuit que l'opération extérieure de K sur π' se fait à travers un groupe quotient fini.

[En effet, l'action extérieure de K se fait à travers l'action effective du groupe extérieur E_K , laquelle par construction de K se fait par un homomorphisme $E_K \longrightarrow \Pi/Z$ ($Z = \operatorname{Centre}(\pi)$), et l'action de E_K' induite se fait par le composé $E_K' \longrightarrow E_K \longrightarrow \pi/Z$, dont l'image est dans \mathcal{N}/Z , où \mathcal{N} est le normalisateur de π' dans π . Donc l'image de K dans $\operatorname{Autext}(\pi')$ est contenue dans celle de $\mathcal{N}/Z \longrightarrow \operatorname{Autext}(\pi')$, or \mathcal{N}/π' est fini.]

Repassant à $\pi_1(\overline{V})$, on voit donc que l'image de K dans $\operatorname{Autext}(\pi_1(\overline{V}))$ est finie, donc l'image de K dans $\operatorname{Aut}(\hat{\pi}_{0,3})$ est finie. Elle est d'ailleurs formée d'automorphismes intérieurs, donc le lemme 1 sera conséquence du

Lemme 2. — Tout automorphisme intérieur d'ordre fini de $\hat{\pi}_{0,3}$ (groupe profini libre à deux générateurs) est trivial. De façon plus précise: $\hat{\pi}_{0,3}$ a un centre réduit à $\{1\}$, et tout élément de $\hat{\pi}_{0,3}$ d'ordre fini est réduit à 1.

Ceci est un énoncé d'algèbre profini pure, que je reporte pour plus tard, pour en terminer avec la partie "géométrique" de la démonstration du théorème.

Lemme 3. — Pour tout ouvert non vide $V \subset \mathbb{P}^1\mathbf{Q}$, considérant l'action extérieure de \mathbb{F} sur $\pi_1(\overline{V})$, la restriction de celle-ci à K est triviale.

Quitte à passer à un ouvert plus petit, on peut supposer par Belyi que V est un revêtement étale de $U_{0,3}$ – et le raisonnement précédent montre alors que l'action extérieure de K se fait via un groupe quotient fini – mais cela n'est pas suffisant pour notre propos, et n'implique pas par lui-même que cette action soit triviale. D'ailleurs, au point où j'en suis, on aurait pu remplacer U par n'importe quelle courbe algébrique quasi projective lisse géométriquement connexe – pour trouver

que K opère sur le groupe extérieur $\pi_1(\overline{V})$ via un groupe fini. Mais ici l'hypothèse $V \subset \mathbb{P}^1\mathbf{Q}$ implique qu'il existe $y \in V(\mathbf{Q})$, soit $x \in U(\mathbf{Q})$ son image dans $U = U_{0,3}$. Prenant y, x comme points base pour les groupes fondamentaux, on trouve maintenant un homomorphisme effectif de groupes fondamentaux

$$\pi' = \pi_1(\overline{V}, y) \hookrightarrow \pi(\simeq \hat{\pi}_{0.3}) = \pi_1(\overline{U}, x),$$

compatible avec une action effective de \mathbb{F} sur ces groupes. Par le lemme 1 l'action induite de K sur $\pi = \pi_1(\overline{U}, x)$ est triviale, donc aussi son action sur le sous-groupe π' . A fortiori l'action extérieure est triviale, cqfd.

On peut maintenant prouver le

Lemme 4.
$$-K = \{1\}$$
 (i.e. le théorème!)

En effet, sous les conditions du lemme 2, l'action de \mathbb{F} sur l'ensemble $I = S(\overline{\mathbb{Q}}_0)$, où $S = \mathbb{P}^1_{\mathbb{Q}} \setminus V$, est déduite de l'action extérieure de \mathbb{F} sur $\pi_1(\overline{V})$ si card $(I) \geq 2$, comme l'action sur les classes de conjugaison de "sous-groupes lacets". Comme K opère trivialement sur le groupe extérieur, il opère trivialement sur I. Ceci étant vrai pour tout V, on voit que l'action de K sur $\mathbb{P}^1(\overline{\mathbb{Q}}_0) = \overline{\mathbb{Q}}_0 \cup \{\infty\}$ est triviale, i.e. son action sur $\overline{\mathbb{Q}}_0$ l'est, donc $K = \{1\}$, cqfd.

Ouf!

Il reste à reporter la démonstration du lemme 2, que je vais reformuler sous une forme plus générale:

Théorème 2. — Soit π un groupe profini libre sur un ensemble fini I de cardinal \geq 2. Alors:

- a) Le centre de π est égal à $\{1\}$.
- b) Il n'y a pas dans π d'élément d'ordre fini autre que 1.

Finalement je cale sur a) – tout comme je ne vois pas pourquoi le centre de \mathbb{F} (et de tout sous-groupe ouvert) doit être réduit à $\{1\}$. Consulter Deligne à ce sujet!

Pour b), voici un expédient. Soit K un corps algébriquement clos de caractéristique 0, et considérons le corps des fonctions L = K(X) de $U = \mathbb{P}^1_K \setminus \{n+1 \text{ points}\}$ $(n = \operatorname{card}(I))$. Alors $\pi \simeq \pi_1(U)$, et c'est un quotient de $E_L = \operatorname{Gal}(\overline{L}/L)$. Comme π

est libre, $E_L \longrightarrow \pi$ se relève en $\pi \longrightarrow E_L$, et il suffit de voir que E_L n'a pas d'élément d'ordre fini $\neq 1$. Mais d'après Artin, il n'y a pas d'automorphisme d'ordre fini $\neq 1$ d'un corps algébriquement clos \overline{L} , sauf dans le cas où \overline{L} est extension quadratique d'un corps ordonné maximal R, qui soit le corps des invariants de τ (donc τ d'ordre 2 exactement).

Mais en l'occurence on aurait $R \supset L$, et $L \supset K$, or dans K l'élément -1 est un carré, donc R ne peut être ordonné – absurde!

Corollaire 1 (du théorème 1). — Soit X une courbe algébrique (lisse, géométriquement connexe, quasi-projective), sur k extension finie de \mathbb{Q} . (Je présume que l'action extérieure de $E_k^{\overline{k}}$ sur $\pi_1(X_{\overline{k}})$ est fidèle si U anabélien – à défaut de pouvoir le prouver, j'énonce:) Alors il existe une partie ouverte non vide V de X telle que l'action extérieure de $E_k^{\overline{k}}$ sur $\pi_1(V_{\overline{k}})$ soit fidèle.

Démonstration. D'après Belyi, on sait qu'on peut trouver $V\subset X$ qui soit un revêtement étale de $U=(U_{0,3})_k$, je dis que ce V là convient. Soit donc K le noyau de l'opération extérieure de $\Gamma=E_k^{\overline{k}}$ sur $\pi'=\pi_1(V_{\overline{k}})$. Soit y un point fermé de V, rationnel sur l'extension finie k' de k correspondant à un sous-groupe ouvert $\Gamma'=E_{k'}^{\overline{k}}$ de Γ , soit $K'=\Gamma'\cap K$. Soit x l'image de y dans U: on a

$$\pi' = \pi_1(V_{\overline{k}}, y) \hookrightarrow \pi = \pi_1(U_{\overline{k}}, x),$$

et par construction l'action extérieure de K' sur π' est triviale, donc K' opère sur π' par automorphismes intérieurs. Or on a le

Lemma 5^{135} . — Soit π un groupe profini à lacets, π' un sous-groupe ouvert; alors tout automorphisme u de π qui laisse stable π' et induit sur π' un automorphisme intérieur (resp. l'identité) est intérieur (resp. l'identité).

Admettons pour l'instant ce lemme – il en résulte que les éléments de K', qui opèrent sur π en induisant sur π' des automorphismes intérieurs, induisent sur π lui-même des automorphismes intérieurs, i.e. que l'action extérieure de K' sur π est triviale. D'après le théorème 1, on sait d'autre part que l'action extérieure de Γ' sur π est fidèle, donc $K' = \{1\}$. Il en résulte que K est fini. Mais par Artin

¹³⁵prouvé seulement modulo vérification de (2), (4) ci-dessous – pour le Corollaire 1; (2) est d'ailleurs suffisant...

on sait que les seuls sous-groupes finis $\neq \{1\}$ de Γ sont ceux engendrés par une "conjugaison complexe" τ , correspondant à un sous-corps ordonné maximal entre k et \overline{k} . Mais pour un tel τ on a $Hi(\tau) = -1$, donc l'action extérieure de τ ne peut être triviale – on gagne. En fait, la démonstration a montré ceci:

Corollaire. — Soient k un corps de caractéristique 0, U une courbe algébrique (lisse etc.) sur k, telle que $E_k^{\overline{k}} = \Gamma$ opère fidèlement sur $\pi_1(U_{\overline{k}})$ (opération extérieure). Alors pour tout revêtement étale géométriquement connexe V de U, l'opération extérieure de Γ sur $\pi_1(V_{\overline{k}})$ est également fidèle.

Reste à prouver le lemme 5. Il suffit de le prouver dans le cas "respé" – l'autre s'en déduit aussitôt. Si π a au moins une classe de lacets (cas d'une courbe algébrique affine i.e. non propre), alors π est libre – et le lemme 5 est valable justement pour de tels groupes. Si $(l_i)_{1 \leq i \leq \nu}$ est un système de générateurs, soit L_i le sous-groupe fermé engendré par l_i , nous admettrons que $\forall n \in \mathbf{N}^*$

$$(2) L_i = \operatorname{Centr}_{\pi}(L_i^n)^{136}.$$

Ceci posé, si l'automorphisme u de π induit l'identité sur π' , $\exists n \in \mathbb{N}^*$ tel que $\forall 1 \leq i \leq v$, $u(l_i^n) = l_i^n$, donc $u(l_i)$ centralise $l_i^n = u(l_i)^n$, donc par (2) on a $u(l_i) \in L_i$, i.e. $u(L_i) \subset L_i$, mais on a $\operatorname{Aut}(L_i) \simeq \hat{\mathbf{Z}}^*$, et un automorphisme d'un $\hat{\mathbf{Z}}$ -module libre de rang 1 est connu quand on le connaît sur ${}_{u}L_{i} \overset{\sim}{\leftarrow} L_{i}$. Donc $\forall i$ on a $u(l_i) = l_i$, donc $u = \operatorname{id}$, cqfd.

Dans le cas où π n'est pas libre, prenons un bon $(x_i, y_i)_{1 \le i \le g}$ – de sorte que π soit défini par la relation génératrice

(3)
$$\prod_{1}^{g} [x_i, y_i] = 1.$$

Soient Λ_i , Λ_i' les sous-groupes fermés engendrés par x_i , y_i . (Ils sont d'ailleurs tous conjugués sous $\operatorname{Aut}(\pi)$...). J'admets que ces groupes sont $\simeq \hat{\mathbf{Z}}$ (i.e. que les homomorphismes surjectifs $\hat{\mathbf{Z}} \longrightarrow \Lambda_i$, $\hat{\mathbf{Z}} \longrightarrow \Lambda_i'$ envoyant 1 dans les x_i , y_i sont injectifs – c'est d'ailleurs trivial en passant à π_{ab}) et qu'on a, en analogie avec (2), pour tout $n \in \mathbf{N}^*$

$$\operatorname{Centr}_{\pi}(\Lambda_{i}^{n}) = \Lambda_{i}, \quad \operatorname{Centr}_{\pi}(\Lambda_{i}^{\prime n}) = \Lambda_{i}^{\prime},$$

¹³⁶ pas prouvé!

et on termine comme ci-dessus.

Remarque: Le résultat le plus fort de fidélité dans la direction du présent paragraphe, concernant des actions de \mathbb{F} et de ses sous-groupes ouverts, serait le suivant: si V est une courbe algébrique anabélienne sur l'extension finie k de \mathbb{Q} , avec la clôture algébrique \overline{k} , alors non seulement l'action extérieure de $E_k^{\overline{k}} = \Gamma$ sur $\pi_1(V_{\overline{k}})$ devrait être fidèle, i.e.

$$\Gamma \longrightarrow \hat{\mathfrak{Z}}(\pi)^{137}$$

injective, mais même l'homomorphisme composé

$$\Gamma \longrightarrow \mathcal{N}(\pi) \longrightarrow \mathcal{N}(\pi)/\hat{\mathfrak{T}}^+(\pi) \simeq \mathbf{I}\Gamma_{\pi}$$

devrait être injectif (auquel cas ce sera même un isomorphisme, puisqu'il est surjectif par construction même de $\mathcal{N}(\pi)$, Γ_{π} ...) Des raisonnements heuristiques faits précédemment (moins convaincants sans doute que ceux du présent paragraphe!) semblent indiquer que ce serait le cas au moins lorsque V est un revêtement étale de $U=(U_{0,3})_k$, auquel cas en effet l'homomorphisme $\Gamma \longrightarrow \Gamma_{\pi}$ s'insère dans un diagramme commutatif

où $\pi_0 = \pi_1(U_{\overline{k}})$, de sorte que π est un sous-groupe ouvert de π_0 , et π' est un sous-groupe ouvert convenable, *caractéristique* dans π_0 . Si on pouvait montrer que $\mathbb{F}_{\pi_0} \longrightarrow \mathbb{F}_{\pi'}$ est injectif (ce qui est plus ou moins une histoire d'algèbre profinie), il en serait de même du composé $\Gamma \hookrightarrow \mathbb{F}_{\pi_0} \longrightarrow \mathbb{F}_{\pi'}$, donc aussi de $\Gamma \longrightarrow \mathbb{F}_{\pi}$. Donc modulo cette hypothèse sur les groupes profinis, et utilisant Belyi, on trouve que pour toute courbe algébrique V sur k, il existe $V' \subset V$ ouvert non vide, tel que

$$\Gamma \longrightarrow \mathbb{I}\Gamma_{\pi'}$$

(où $\pi' = \pi_1(V'_{\overline{k}})$) soit injectif. Quant à savoir si $\Gamma \longrightarrow {\rm I}\!\Gamma_\pi$ est lui-même déjà injectif – ou ce qui revient au même, si $\Gamma \longrightarrow {\rm I}\!\Gamma_g$ pour $g \ge 2$ et $\Gamma \longrightarrow {\rm I}\!\Gamma_{1,1}$ sont injectifs, je

¹³⁷ Cet homomorphisme se factorise automatiquement par le sous-groupe $\mathcal{N}(\pi)$ qui normalise $\hat{\mathfrak{Z}}(\pi)$.

n'ai pas de raison heuristique plausible pour m'en convaincre à présent – peut-être est-ce tout à fait faux? L'argument plus ou moins convaincant rappelé précédemment (à supposer qu'on arrive à le justifier) montrerait seulement que si $\Gamma \longrightarrow \Pi_{\pi}$ est injectif pour un π (ce qui ne dépend que de son type (g,v)) alors il l'est pour les π' ouverts dans π . On le sait à présent (modulo peu de chose, tout au moins) pour les types (0,v) ($v \geq 3$) exactement – ni plus ni moins – et on pourrait peut-être le déduire pour les types (g,v) qui s'en déduisent par "revêtement fini". Mais il est clair déjà qu'on n'obtient pas les types (g,0) comme cela $(g \geq 2)$, ni même aucun (g,v) avec $g \geq 1$, $v \in \{0,1,2\}$. C'est dire qu'on est loin du compte... Le premier cas bien intéressant serait donc le cas (1,1) (tore à un trou!), où $\hat{\mathfrak{T}}_{1,1}^+ \simeq \mathrm{SL}(2,\mathbf{Z})$ opérant extérieurement sur $\hat{\pi}_{1,1}$ (groupe libre à deux générateurs, encore – comme par hasard) – l'action "arithmétique" de Π_Q sur $\hat{\pi}_{1,1}$ (i.e. l'action extérieure mod $\hat{\mathfrak{T}}_{1,1}^+ \simeq \mathrm{SL}(2,\mathbf{Z})$) est-elle fidèle?

\S 36. — L'ISOMORPHISME $\Gamma_Q \xrightarrow{\sim} \Gamma_{1,1}$ ET L'INJECTIVITÉ DE $\Gamma_Q \longrightarrow \operatorname{Autext}(\hat{\mathbb{S}}_{1,1}^+) \simeq \operatorname{Autext}(SL(2,\mathbf{Z})^{\hat{}})$

Soit 138 $\pi'_{0,3}$ le groupe quotient de $\mathbb{F}_{0,3}$ défini par les relations

(1)
$$l_1^2 = l_\infty^3 = 1;$$

c'est donc le groupe "cartographique orienté pour structures triangulées", les $\pi'_{0,3}$ -ensembles finis correspondant aux cartes orientées finies (pouvant avoir des boucles aplaties) dont les faces sont des triangles ou des mono-angles. L'opération extérieure de Γ_Q (mais non celle de \mathfrak{S}_3 !) sur $\hat{\pi}_{0,3}$ passe au quotient en une action sur $\hat{\pi}'_{0,3}$. On peut améliorer le théorème 1 du paragraphe précédent par la

Proposition. — L'action extérieure de Π_{O} sur $\hat{\pi}'_{0,3}$ est fidèle.

Pour le montrer, on va plonger $\pi_{0,3}$ comme sous-groupe d'indice fini dans $\pi'_{0,3}$, d'où un plongement analogue

$$\hat{\pi}_{03} \hookrightarrow \hat{\pi}'_{03}$$

qui sera compatible avec l'action extérieure de Γ_Q .

Considérons pour cela le schéma quotient $Y = \mathbb{P}_{\mathbb{Q}}^1/\mathfrak{S}_3 = X/\mathfrak{S}_3$ avec les trois points a_0, a_1, a_∞ de Y, rationnels sur \mathbb{Q} , a_0 correspondant à la trajectoire $\{0, 1, \infty\}$, a_1 à la trajectoire $\{-1, \frac{1}{2}, 2\}$ et a_∞ à la trajectoire $\{j, \overline{j}\}, (j = \exp\frac{2i\pi}{3})$ de \mathfrak{S}_3 (ce qui épuise l'ensemble des trajectoires "singulières" géométriques). On sait que Y est

¹³⁸Les réflexions du présent paragraphe, un peu cahin caha, seront reprises de façon moins pesante au paragraphe suivant.

une droite projective (sur $\overline{\mathbf{Q}}$ a priori), qu'on épingle par a_0, a_1, a_∞ comme points $0, 1, \infty$, donc $Y \simeq \mathbb{P}^1_{\mathbf{Q}}$; l'homomorphisme $X \longrightarrow Y$ s'identifie donc à un morphisme bien déterminé

$$f: X = \mathbb{P}_{\mathbf{Q}}^{1} \longrightarrow \mathbb{P}_{\mathbf{Q}}^{1} = Y$$

qui fait de X un revêtement galoisien de Y, de groupe \mathfrak{S}_3 , étale au dessus de $\mathbb{P}^1_Q\setminus\{0,1,\infty\}$, avec comme indices de ramifications en ces points 2,2,3. Du point de vue de la géométrie des cartes (se plaçant sur le corps de base \mathbb{C}), on considère la carte déterminée sur X par le triangle sphérique $(0,1,\infty)$ (sur l'axe réel comme équateur) – qui est donc la carte pondérée universelle – comme image inverse de la carte universelle (ayant un seul sommet 0, une seule arête repliée $0 \longrightarrow 1$, une seule face, de centre ∞). Tout revêtement étale topologique de $U_{0,3}(\mathbb{C}) \subset X$ donne ainsi un revêtement étale topologique de $U_{0,3}(\mathbb{C}) \subset Y$, ayant au dessus de 1 la ramification 2, au dessus de l'infini la ramification 3 exactement, ce qui correspond au foncteur "oubli" de la pondération, où une carte triangulaire pondérée est considérée comme une carte tout court. Du point de vue des groupes fondamentaux, on trouve ainsi une équivalence de catégories:

Revêtements étales de
$$X \setminus \{0, 1, \infty\} = U_{0,3} \simeq \pi_{0,3}$$
-ensembles

(4)

Revêtements de $Y \setminus \{0, 1, \infty\} = U_{0,3} \setminus \{0, 1, \infty\}$ de la dite caté

Revêtements de $Y \setminus \{0,1,\infty\} = U_{0,3}$ /(l'objet $X \setminus \{0,1,\infty\}$ de la dite catégorie) $\simeq \pi'_{0,3}$ -ensembles/E

où:

- les revêtements de $Y \setminus \{0, 1, \infty\}$ considérés sont ceux dont la ramification est subordonnée à la signature $2\{1\} + 3\{\infty\}$,
- E est le $\pi'_{0,3}$ -ensemble correspondant à l'objet $X \setminus \{0,1,\infty\}$ de la catégorie des revêtements étales de $Y \setminus \{0,1,\infty\}$ à ramification subordonnée à $2\{1\} + 3\{\infty\}$.

Ici, le point base de $Y \setminus \{0, 1, \infty\}$ choisi pour décrire les revêtements (à ramification subordonnée à...) par un groupe fondamental à ramification, étant encore $P = -\overline{j}$, on aura:

$$(5) E = f_{\mathbf{C}}^{-1}(P)$$

et on peut expliciter ainsi la catégorie ($\pi'_{0,3}$ -ens.)/E, où E est un espace homogène, isomorphe au quotient de $\pi'_{0,3}$ par le sous-groupe $\pi'^{0}_{0,3}$, noyau de

l'homomorphisme surjectif idoine,

$$\pi'_{0,3} \longrightarrow \mathfrak{S}_{3}$$

$$l_{0} \longmapsto \text{éléments d'ordre 2}$$

$$l_{1} \longmapsto \text{éléments d'ordre 2}$$

$$l_{\infty} \longmapsto \text{éléments d'ordre 3}$$

[en marge:] A calculer!.

On choisit un $Q_0 \in E$ comme "origine" de E – pour pouvoir identifier E comme $\pi'_{0,3}$ -ensemble à $\pi'_{0,3}/\pi'^0_{0,3} \simeq \mathfrak{S}_3$ – alors $\operatorname{Ens}(\pi'_{0,3})/E$ s'identifie, par le foncteur $F \longrightarrow F_{Q_0}$, à $\operatorname{Ens}(\pi'^0_{0,3})$.

On trouve donc en résumé une équivalence de catégories (dépendant du choix de Q_0)

$$\pi_{0,3}$$
 — ensembles $\stackrel{\sim}{\longrightarrow} \pi'_{0,3}^{0}$ — ensembles

qui est elle-même décrite par un bitorseur sous $(\pi_{0,3}^{0}, \pi_{0,3})$ et, à isomorphisme (non unique!) près par un isomorphisme

$$\pi_{0,3} \xrightarrow{\sim} \pi'_{0,3}$$

les isomorphismes ainsi obtenus (pour des origines variables du bitorseur) formant exactement une classe de conjugaison par $\pi'^0_{0,3}$, i.e. un isomorphisme extérieur $\pi_{0,3} \stackrel{\sim}{\longrightarrow} \pi'^0_{0,3}$. Quand de plus le choix de Q_0 varie, on trouve un composé $\pi_{0,3} \longrightarrow \pi'^0_{0,3} \longrightarrow \pi'_{0,3}$ exactement une classe de $\pi'_{0,3}$ -conjugaison, i.e. un homomomorphisme extérieur.

J'ai beaucoup turbiné pour pas grand chose – à défaut d'avoir écrit les fonctorialités [?] très générales [??] pour les "groupes fondamentaux avec ramification". Par exemple le bifoncteur I mystérieux de tantôt est formé des classes de chemins de $P \in X(\mathbb{C}) \setminus \{0,1,\infty\}$ (point base pour calculer $\pi_{0,3}$) vers Q_0 (jouant le rôle d'un nouveau point base, ayant le mérite de s'envoyer sur celui – P – qui sert à calculer $\pi'_{0,3}$, groupe fondamental à ramification sur $Y(\mathbb{C}) \setminus \{0,1,\infty\}...$). Il serait peut-être plus commode de définir directement un foncteur en sens inverse,

(7) Revêtements de $Y(\mathbf{C}) \setminus \{0, 1, \infty\}$ — Revêtements étales de $X(\mathbf{C}) \setminus \{0, 1, \infty\}$

subordonnés à la signature $2\{1\} + 3\{\infty\}$

par image inverse, suivi d'une normalisation.

Ici on utilise le fait que l'objet $X(\mathbb{C})\setminus\{0,1,\infty\}$ de la catégorie des revêtements à ramification maximum imposée, réalise justement un maximum sur les points $1,\infty$ où la condition intervient. On trouve que le foncteur correspondant

(7 bis)
$$\pi'_{0,3}$$
 - ensembles $\longrightarrow \pi_{0,3}$ - ensembles

a les propriétés d'exactitude d'un foncteur associé à un morphisme de topos galoisiens

$$B_{\pi_0,3} \longrightarrow B \pi'_{0,3}$$

(commute aux limites inductives, exact à gauche) et est donc défini par un $(\pi_{0,3}, \pi'_{0,3})$ -ensemble qui soit un torseur (à droite) pour $\pi'_{0,3}$ ¹³⁹. Le choix d'une origine pour ce torseur définit alors aussi un homomorphisme correspondant $\pi_{0,3} \longrightarrow \pi'_{0,3}$.

Revenons à la situation arithmétique sur Q, où on dispose non seulement des groupes fondamentaux géométriques profinis $\hat{\pi}_{0,3}$, $\hat{\pi}'_{0,3}$, mais aussi d'extensions

$$1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow E_{0,3} \longrightarrow \mathbb{\Gamma} \longrightarrow 1$$

$$1 \longrightarrow \hat{\pi}'_{0,3} \longrightarrow E'_{0,3} \longrightarrow \mathbb{\Gamma} \longrightarrow 1$$

qui s'interprètent comme des groupes fondamentaux de $U_{0,3}$, resp. de $U_{0,3}$ avec ramification subordonnée à $2\{1\} + 3\{\infty\}$. Les raisonnements précédents s'étendent à ce cadre et fournissent donc un homomorphisme d'extension

(9)
$$\begin{array}{cccc}
1 & \longrightarrow \hat{\pi}_{0,3} & \longrightarrow E_{0,3} & \longrightarrow & \mathbb{I}\Gamma & \longrightarrow & 1 \\
& & \downarrow & & & \parallel & \\
1 & \longrightarrow \hat{\pi}'_{0,3} & \longrightarrow & E'_{0,3} & \longrightarrow & \mathbb{I}\Gamma & \longrightarrow & 1
\end{array}$$

défini modulo composition par un automorphisme intérieur de $\pi'_{0,3}$ [$\hat{\pi}_{0,3} \longrightarrow \hat{\pi}_{0,3}$ s'insère dans une suite exacte

$$(9 \text{ bis}) \qquad 1 \longrightarrow \hat{\pi}_{03} \longrightarrow \hat{\pi}'_{03} \longrightarrow \mathfrak{S}_{3}$$

¹³⁹Ce bitorseur est aussi l'ensemble des $Y_{\mathbb{C}} \setminus \{0\}$ homomorphismes du "revêtement universel" à ramification imposée de cet espace sur le revêtement universel ordinaire de $X(\mathbb{C}) \setminus \{0, 1, \infty\}$.

et itou pour les groupes discrets, $1 \longrightarrow \pi_{0,3} \longrightarrow \pi'_{0,3} \longrightarrow \mathfrak{S}_3$].

Ceci dit, soit K le noyau de l'opération extérieure de Γ sur $\pi'_{0,3}$. On voit alors que l'opération extérieure de K sur le sous-groupe ouvert $\hat{\pi}_{0,3}$ se fait par un groupe fini (en fait par l'intermédiaire de $\hat{\pi}'_{0,3}/\hat{\pi}_{0,3}\simeq\mathfrak{S}_3...$) – ce qui implique, par le théorème 1 du paragraphe précédent, que le groupe K lui-même est fini. Donc par Artin on a K=1 ou $K=(1,\tau),\ \tau$ la conjugaison complexe. Mais comme $Hi(\tau)=-1$, il est évident que l'opération extérieure de τ sur $\pi'_{0,3}$ (où même sur $\pi'_{0,3\,ab}$ ($\simeq \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$) n'est pas triviale. Cela prouve la proposition.

J'ai envie maintenant d'interpréter $\pi'_{0,3}$ comme $\mathfrak{T}^+_{1,1}/(\text{centre})$ (le centre est isomorphe à $\{\pm 1\}$), et itou pour $\hat{\pi}'_{0,3} \simeq \hat{\mathfrak{T}}_{1,1}/\{\pm 1\}$, isomorphisme qui soit compatible avec l'action extérieure de Γ . On a (pour mémoire)

(10)
$$\mathfrak{T}_{1,1} \xrightarrow{\sim} GL(2, \mathbf{Z}),$$

l'isomorphisme étant obtenu ainsi

(11)
$$\mathfrak{T}_{1,1} \xrightarrow{\sim} \mathfrak{T}_{1,0} \xrightarrow{\sim} \operatorname{Autext}(\pi_{1,0}) \simeq \operatorname{Autext}(\mathbf{Z}^2) \simeq GL(2,\mathbf{Z})$$

[où le premier isomorphisme est celui de bouchage de trou]. On a donc

(12)
$$\mathfrak{T}_{1,1}^{+} \simeq SL(2,\mathbf{Z})$$

et

(13)
$$\operatorname{Centre}(\mathfrak{T}_{1,1}) \simeq \{\pm 1\}$$

(s'identifie au groupe des homothéties de $SL(2, \mathbb{Z})$). Il est connu qu'on a dans $SL(2, \mathbb{Z})/\{\pm 1\}$ deux générateurs λ_2, λ_3 satisfaisant respectivement

(14)
$$\lambda_3^3 = 1, \lambda_2^2 = 1$$

et tels que ces relations soient une présentation de $SL(2, \mathbb{Z})/\{\pm 1\}$. Sauf erreur ces éléments proviennent d'éléments u_4 , u_6 de $SL(2, \mathbb{Z})$ lui-même, satisfaisant

$$u_6^6 = 1, u_4^4 = 1,$$

et qui correspondent aux seuls éléments d'ordres 6 et 4 (à conjugaison et passage à l'inverse près). En fait, tout élément d'ordre fini de $SL(2, \mathbb{Z})$ est conjugué à une puissance de u_4 ou u_6 . Les sous-groupes engendrés respectivement par u_4 et u_6 , cycliques d'ordre 4 et 6, sont les groupes des automorphismes des deux courbes elliptiques exceptionnelles (dîtes "anharmoniques") (en caractéristique 0).

Je n'ai pas de formule sous la main pour "placer" u_4 et u_6 , de façon qu'ils engendrent le groupe $SL(2, \mathbf{Z})$ modulo son centre (ce qui implique sans doute qu'ils engendrent $SL(2, \mathbf{Z})$) – mais on fera attention à la relation supplémentaire, s'ajoutant à (15)

$$(16) u_4^2 = u_6^3$$

(c'est justement l'élément -1 du centre de $SL(2, \mathbb{Z})$). Je n'ai peut-être pas besoin de la formule explicite pour u_4 et u_6 . On définit alors

(17)
$$\pi'_{0,3} \xrightarrow{\sim} SL(2, \mathbf{Z})/\{\pm 1\}$$

par

$$(18) l'_1 \longmapsto \lambda_2, \ l'_{\infty} \longmapsto \lambda_3$$

(donc $l_0' \longmapsto (\lambda_3 \lambda_2)^{-1} = \lambda_2 \lambda_3^{-1} = \lambda_2 \lambda_3^2$), où l_0', l_1', l_∞' sont les générateurs de $\pi_{0,3}'$ correspondants à ceux l_0, l_1, l_∞ de $\pi_{0,3}$, avec les relations de définition

(19)
$$l_{\infty}' l_{1}' l_{0}' = 1, \ l_{1}'^{2} = 1, \ l_{\infty}'^{3} = 1,$$

de sorte que $\pi'_{0,3}$ est bien le groupe de générateurs l'_1, l'_{∞} satisfaisant à $l'^2_1 = 1, l'^3_{\infty} = 1$.

Je veux maintenant me convaincre que l'homomorphisme correspondant à (17),

(20)
$$\hat{\pi}'_{0,3} \longrightarrow SL(2, \mathbf{Z})/\{\pm 1\} \simeq \hat{\mathfrak{T}}^{+}_{1,1}/\{\pm 1\}$$

est compatible avec l'opération extérieure de $\Gamma = \Gamma_Q$. Pour ceci, j'ai envie de définir directement le composé avec $\hat{\pi}_{0,3} \longrightarrow \hat{\pi}'_{0,3}$, i.e. $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}^+_{1,1}/\{\pm 1\}$, et même de le relever en un homomorphisme

$$\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}_{1,1}^+.$$

Au niveau des groupes discrets, on définit bien

$$(22) \pi_{0,3} \longrightarrow SL(2, \mathbf{Z})$$

par
$$l_1 \mapsto u_4, l_\infty \mapsto u_6, l_0 \mapsto (u_6 u_4)^{-1} = u_4^{-1} u_6^{-1},$$

et $SL(2, \mathbf{Z}) \simeq \mathfrak{T}_{1,1}^+$ s'identifie au quotient de $\pi_{0,3}$ par le sous-groupe engendré par les éléments

$$l_1^4, l_\infty^6, (l_1^2)(l_\infty^3)^{-1}.$$

D'ailleurs $\pi_{0,3}$ peut s'interpréter comme un groupe de Teichmüller $\mathfrak{T}_{0,4}^{!+}$ 140, et (22) comme un homomorphisme

$$\mathfrak{T}_{0,4}^{!+} \longrightarrow \mathfrak{T}_{1,1}^{+}$$

dont je soupçonne qu'il se prolonge en un homomorphisme

(24)
$$\mathfrak{T}_{0,4}^! \longrightarrow \mathfrak{T}_{1,1} \simeq SL(2, \mathbf{Z})$$

[le premier membre étant] une extension de $(1, \tau)$ par $\pi_{0,3}$, qui n'est autre que le groupe cartographique triangulé pondéré non orienté.

J'interprète le premier membre de (23) comme le π_1 "géométrique transcendant" du topos modulaire $M_{0,4}^!$, classifiant les droites projectives avec quatre points disctincts numérotés de 1 à 4; et le deuxième membre de (23) est le π_1 transcendant du topos modulaire $M_{1,1}$, classifiant les courbes elliptiques (avec une origine fixée). On devrait donc pouvoir définir, au niveau des multiplicités modulaires sur \mathbf{Q} ,

$$(25) (M_{0.4}^!)_{\mathcal{O}} \longrightarrow (M_{1.1})_{\mathcal{O}},$$

qui donnerait naissance à (23).

Mais on voit de suite qu'on a un isomorphisme canonique

$$(26) M_{0,4}^! \simeq U_{0,3}$$

(je laisse tomber les indices Q), et la donnée de (25) revient donc aussi à la donnée d'une famille de courbes elliptiques sur $U_{0,3}$. Mais si λ est la "variable $\in U_{0,3}$ ", en

¹⁴⁰ En effet $\mathfrak{T}_{g,\nu}^!$ est extension de $\mathfrak{T}_{g,\nu-1}^!$ par $\pi_{g,\nu-1}$ (si $(g,\nu-1)$ anabélien) et itou pour les \mathfrak{T}^+ ; $\mathfrak{T}_{0,2}^{!+} = \{1\}!$

prenant "le" revêtement quadratique E_{λ} de \mathbb{P}^1 ramifié en $0, 1, \infty, \lambda$, on trouve une courbe elliptique, avec quatre points marqués – au dessus de $0, 1, \infty, \lambda$ – dont on peut prendre le point au dessus de 0 comme origine – alors les trois autres points sont les trois points d'ordre 2, indexés respectivemnt par $1, \infty, \lambda$.

De façon plus précise: sur un schéma de base quelconque S, sauf que 2 y soit inversible (caractéristique résiduelle différente de 2), on a un foncteur qui va de la catégorie des systèmes (E, α, β) d'une courbe elliptique (homogène) relative sur S, et α , β deux sections de E formant une base de $_{2}E$, en tant que schéma localement constant en \mathbb{F}_2 – modules (ou système local de \mathbb{F}_2 -modules) de S (donnant naissance à $\gamma = \alpha + \beta$, comme troisième larron - de sorte que (β, γ) etc. sont en fait aussi des bases) 141 - vers la catégorie des fibrés en droites projectives P sur S, avec quatre sections $u_0, u_1, u_\infty, \lambda$ marquées disctinctes en chaque point, en associant à E le quotient $E/\pm 1$, muni des sections $u_0, u_1, u_\infty, \lambda$ qui sont images respectivement de $0, \alpha, \beta, \gamma = \alpha + \beta$; et ce foncteur est *presque* une équivalence de catégories. Ce qui lui manque pour l'être, c'est que pour une courbe elliptique relative E, la symétrie $x \longrightarrow -x$ de E – qui est un automorphisme non trivial – opère trivialement sur l'objet correspondant $E/\{\pm 1\}$ 142. Donc il faut prendre le champ sur (Sch), déduit de celui des courbes elliptiques en commençant par prendre Isom $(E,F)' = \text{Isom}(E,F)/\pm 1$, puis on prendra le champ associé à un préchamp (les objets sur S sont les "courbes elliptiques relatives à symétrie près sur S"). Le champ est représentable par une multiplicité modulaire $M'_{1,1}$, ayant comme groupe fondamental géométrique $SL(2, \mathbb{Z})/\{\pm 1\}$ justement, déduit par exemple des variétés modulaires à rigidification de Jacobi déchelon n, $M_{1,1}[n]$ – avec un groupe $SL(2, \mathbf{Z}/n\mathbf{Z})$ opérant dessus, de sorte que

(27)
$$M_{1,1} \simeq (M_{1,1}[n], SL(2, \mathbb{Z}/n\mathbb{Z}))$$

et en outre que le sous-groupe central $\{\pm 1\}$ de $SL(2, \mathbb{Z}/n\mathbb{Z})$ opère trivialement sur $M_{1,1}[n]$; donc on peut faire opérer le groupe quotient $SL(2, \mathbb{Z}/n\mathbb{Z})' =$

¹⁴¹ Il revient au même de dire que l'on a trois sections α, β, γ de $_2E$ sur S, qui sont distinctes en tout $s \in S$ et partant $\neq 1$.

¹⁴²Les pages qui suivent sont inutilement compliquées, avec l'introduction de $_{1,1}', \mathfrak{T}'_{1,1}$ etc. il suffit d'y aller brutalement avec la courbe elliptique $y^2 = \sqrt{x(x-1)(x-\lambda)}$ sur $U_{0,3}$, pour avoir $U_{0,3} \longrightarrow M_{1,1}$; cf. plus bas...

 $SL(2, \mathbb{Z}/n\mathbb{Z})/\{\pm 1\}$, et poser

(28)
$$M'_{1,1} = (M_{1,1}[n], SL(2, \mathbf{Z}/n\mathbf{Z})')$$

(ce qui manifestement ne dépend pas du choix de n, $n \ge 2$). On trouve ainsi un homomorphisme

$$(29) M_{0.4}^! \simeq U_{0.3} \longrightarrow M_{1.1}',$$

qui fait de $M_{0,4}^!$ un revêtement galoisien de groupe \mathfrak{S}_3 de $M_{1,1}'$, et de façon plus précise

$$(30) M_{0.4}^! \xrightarrow{\sim} M_{1.1}[2]' \longrightarrow M'_{1.1}$$

[la deuxième flèche définissant un] revêtement galoisien de groupe $SL(2,\mathbb{F}_2) \simeq \mathfrak{S}_3$), le groupe fondamental géométrique de $M_{1,1}[2]$ étant d'ailleurs isomorphe au noyau de l'homomorphisme $SL(2,\mathbb{Z})' \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})$ qui factorise l'homomorphisme canonique $SL(2,\mathbb{Z}) \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})$.

Passant aux groupes fondamentaux pour $M_{0,4}^! = U_{0,3}$ et $M_{1,1}'$, on trouve un homomorphisme de suites exactes

([avec] $\hat{\mathfrak{Z}}_{1,1}^{'+} = \hat{\mathfrak{Z}}_{1,1}^{+}/\{\pm 1\} \simeq SL(2,\mathbf{Z})^{\prime}/\{\pm 1\}$), qui identifie $E_{0,3}$ à un sous-groupe ouvert d'indice 6 dans $E_{1,1}^{\prime} = E_{1,1}/\{\pm 1\}$, et itou pour $\hat{\pi}_{0,3}$ dans $\hat{\mathfrak{Z}}_{1,1}^{\prime+}$. On trouve ainsi un isomorphisme

(32)
$$\hat{\pi}_{0,3} \xrightarrow{\sim} \operatorname{Ker}(\mathfrak{T}_{1,1}^{\prime +} \longrightarrow \mathfrak{S}_{3}) \simeq \left(\operatorname{Ker}(\mathfrak{T}_{1,1}^{+} \longrightarrow \mathfrak{S}_{3}) \right) / \{\pm 1\}$$

compatible avec les actions extérieures de Ir. On peut dire aussi qu'on a une structure d'extension

$$(33) 1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow \mathfrak{T}_{1,1}^{\prime+} \longrightarrow \mathfrak{S}_3 \longrightarrow 1$$

(i.e. $1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow SL(2, \mathbb{Z}) / \{\pm 1\} \longrightarrow SL(2, \mathbb{Z}/2\mathbb{Z}) \longrightarrow 1$) compatible avec les actions de \mathbb{F} (\mathbb{F} opérant trivialement sur \mathfrak{S}_3).

Je finis par m'apercevoir que ce qu'on obtient ici est loin de (22) – cet homomorphisme (22) n'a rien d'injectif, par contre il est surjectif, et ses valeurs sont, non dans $SL(2, \mathbb{Z})/\{\pm 1\}$, mais dans $SL(2, \mathbb{Z})$ lui-même! Il faudra donc que je revienne encore sur une façon de donner un sens arithmético-géométrique remarquable à (22), et son extension aux groupes profinis correspondants. Pour le moment, je m'en tiens à exploiter un peu (33). Tout d'abord je note que les arguments faits dans le cadre schématique marchent aussi dans le cas transcendant, analytique complexe, et fournissent alors

(34)
$$\pi_{0,3} \xrightarrow{\sim} \operatorname{Ker}(\mathfrak{T}_{1,1}^{\prime+} \longrightarrow \mathfrak{S}_3) = \operatorname{Ker}(SL(2,\mathbf{Z})/\{\pm 1\} \longrightarrow SL(2,\mathbf{Z}/2\mathbf{Z}))$$

compatible avec (32), ou encore une suite exacte,

$$(35) 1 \longrightarrow \pi_{0,3} \longrightarrow \mathfrak{T}_{1,1}^{\prime+} = SL(2,\mathbf{Z})/\pm 1 \longrightarrow \mathfrak{S}_3 = SL(2,\mathbf{Z}/2\mathbf{Z}) \longrightarrow 1.$$

On aimerait interpréter (35) et (33), comme correspondant aux suites exactes analogues liées au diagramme (9), reliant $\pi_{0,3}$ et $\pi'_{0,3}$ – en identifiant $\pi'_{0,3}$ à $\mathfrak{T}'_{1,1}^+$, $\hat{\pi}'_{0,3}$ à $\hat{\mathfrak{T}}'_{1,1}^+$. J'y reviendrai tantôt.

Remarque: On peut se demander si l'homorphisme

$$\hat{\pi}_{0,3} \longrightarrow SL(2,\mathbf{Z})^{\hat{}}/\{\pm 1\} \simeq \hat{\mathfrak{T}}_{1,1}^{+}/\{\pm 1\}$$

se remonte ¹⁴³Oui, on peut remonter, et c'est plus ou moins trivial...cf. plus bas... (de façon plus ou moins naturelle) en un homomorphisme

$$\hat{\pi}_{0,3} \longrightarrow SL(2,\mathbf{Z})^{\hat{}} \simeq \hat{\mathfrak{T}}_{1,1}^{+},$$

et itou pour les groupes discrets

$$\pi_{0,3} \longrightarrow SL(2, \mathbf{Z}) \simeq \mathfrak{T}_{1,1}^+.$$

Bien sûr, comme $\pi_{0,3}$ et $\hat{\pi}_{0,3}$ sont libres (avec deux générateurs) on peut toujours remonter – d'exactement *quatre* façons d'ailleurs (qui nécessairement, dans le cadre

^{143 (*)}

profini, respectent les réseaux discrets). Mais peut-on le faire en respectant les opérations de \mathbb{F} ? Il suffirait pour cela qu'on puisse remonter $U_{0,3} \longrightarrow M'_{1,1}$ en $U_{0,3} \longrightarrow M_{1,1}$ (NB. $M_{1,1}$ est une $\mathbb{Z}/2\mathbb{Z}$ -gerbe au dessus de $M'_{1,1}$), et je suspecte, d'après le yoga "anabélien" que j'essaye de développer, que l'inverse doit être vrai 144 – que tout relèvement de $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}'_{1,1}$ commutant aux opérations de \mathbb{F} est défini par un tel relèvement $U_{0,3} \longrightarrow M_{1,1}$. Or l'existence d'un tel relèvement $U_{0,3} \longrightarrow M_{1,1}$ signifierait exactement l'existence d'une famille de courbes elliptiques sur $U_{0,3}$, avec rigidification de Jacobi d'échelon 2, qui corresponde à l'invariant tautologique λ . Je doute qu'il en existe une, comme je doute que le relèvement en termes de groupes profinis à opération puisse se faire.

À vrai dire, comme $\hat{\mathfrak{X}}_{1,1}^+ = SL(2,\mathbf{Z})^{\hat{}}$ n'a plus de centre trivial, il n'est plus raisonnable de vouloir "tout exprimer" par les opérations extérieures de \mathbb{F} sur $\hat{\mathfrak{X}}_{1,1}^+$, il faut plutôt revenir à l'extension $E_{1,1} = E_{M_{1,1}}$ de \mathbb{F} par $\hat{\mathfrak{X}}_{1,1}^+$, et la question est si l'homomorphisme

$$E_{0.3} \longrightarrow E'_{1.1} = E_{1.1}/\{\pm 1\}$$

se remonte en

$$E_{0,3} \xrightarrow{?} E_{1,1}$$

ce qui est plus fort que de trouver un relèvement $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{X}}_{1,1}^+$, compatible avec les opérations extérieures de \mathbb{F} . Pour apprécier cette différence, je note que \mathbb{F} opère sur l'ensemble E des quatre relèvements $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{X}}_{1,1}^+$ (interprétés comme homomorphismes extérieurs), et la question posée sous la forme faible est s'il existe un élément de E invariant par \mathbb{F} . S'il n'existait pas, il y aurait en tous cas un sousgroupe ouvert de \mathbb{F} , d'indice 2 ou 4, qui laisserait invariant un élément – donc, quitte à passer à l'extension finie correspondante de \mathbb{Q} , on trouve un relèvement, et quitte à passer à une extension un peu plus grande, les *quatre* relèvements possibles commutent à l'action extérieure de \mathbb{F} . Par contre, rien ne prouve que l'on puisse trouver un "germe de relèvement" de $E_{0,3} \longrightarrow E'_{1,1}$ en $E^{\natural}_{0,3} \longrightarrow E^{\natural}_{1,1}$ (germes pris par rapport aux sous-groupes ouverts de $E_{0,3}$ contenant $\hat{\pi}_{0,3}$, ou même tous les sous-groupes ouverts). L'obstruction à remonter sur $E_{0,3}$ lui-même, i.e. à scinder une

¹⁴⁴Pas tout fait, cf. page suivante pour une formulation plus raisonnable...

certaine extension de $E_{0,3}$ par $\{\pm 1\}$, est

(36)
$$\alpha \in H^2(E_{0,3}, \mathbb{Z}/2\mathbb{Z}),$$

et rien ne dit que cette classe de cohomologie puisse s'effacer, en passant à un sous-groupe ouvert de $E_{0,3}$.

Mais en termes géométriques, les courbes elliptiques relatives cherchées sur $U_{0,3}$ forment les sections d'un champ sur $(U_{0,3})_{\text{\'et}}$ – qui est une $\mathbb{Z}/2\mathbb{Z}$ -gerbe – l'obstruction se trouve donc dans un groupe de Brauer,

$$\beta \in H^2(U_{0,3}, \mathbb{Z}/2\mathbb{Z}),$$

ou comme $U = U_{0,3}$ est une courbe algébrique affine sur un corps (il suffirait qu'elle ne soit pas de type 0,0), il s'en suit que l'homomorphisme canonique (à coefficients de torsion quelconques)

$$H^*(E_U, -) \longrightarrow H^*(U, -)$$

est un isomorphisme. D'ailleurs, il doit être plus ou moins trivial que β est l'image de α – ce qui confirme l'intuition que si le relèvement est possible au niveau des groupes fondamentaux profinis (arithmético-géométriques), il l'est aussi au niveau des multiplicités modulaires elles-mêmes, donc qu'on a une existence d'une courbe elliptique relative sur $U_{0.3}$ qui...

Il est vrai qu'il est bien connu qu'une classe de cohomologie (37) à coefficients de torsion s'efface, en passant à une extension finie du corps de base (Q en l'occurence). En fait, on a une suite spectrale

(38)
$$H^*(U_{0,3}, \mathbf{Z}/2\mathbf{Z}) \Leftarrow E_2^{p,q} = H^p(\mathbf{Q}, H^q(\overline{U_{0,3}}, \mathbf{Z}/2\mathbf{Z})),$$

et ici $H^q(\overline{U_{0,3}}) = 0$ pour $q \ge 2$, donc on trouve une suite exacte

$$...E_2^{0,1} = H^q(\mathbf{Q}, H^1(\overline{U})) \longrightarrow E_2^{2,0} = H^q(\mathbf{Q}, \mathbf{Z}/2\mathbf{Z}) \longrightarrow H^2(U_{0,3}) \longrightarrow$$
$$\longrightarrow E_2^{1,1} = H^p(\mathbf{Q}, H^1(\overline{U}) \simeq \mathbb{F}_2^2) \longrightarrow E_2^{3,0} = H^3(\mathbf{Q}, \mathbf{Z}/2\mathbf{Z}) \longrightarrow ...$$

Je me rends compte enfin que l'existence d'un relèvement – i.e. de la courbe elliptique hypothétique sur $U_{0,3}$ – est tout à fait triviale, il suffit de le définir par l'équation

$$y = \sqrt{x(x-1)(x-\lambda)},$$

i.e.
$$y^2 - x(x-1)(x-\lambda) = F(x, y; \lambda) = 0$$
,

ce qui définit une courbe plane affine, ou passer en coordonnées projectives

$$F(x, y, z; \lambda) = y^2 z - x^3 + (1 + \lambda)x^2 z - \lambda x z^2 = 0.$$

Je ne vais pas approfondir la question ici, dans quelle mesure ce choix est "naturel". Il donne en tous cas un homomorphisme tout ce qu'il y a de précis

$$(39) M_{0,4}^! \simeq U_{0,3} \longrightarrow M_{1,1},$$

d'où un homomorphisme d'extensions

défini modulo automorphisme intérieur par un élément de $\hat{\mathfrak{Z}}_{1,1}^+ = SL(2, \mathbf{Z})^{\hat{}}$, et au niveau des groupes discrets,

$$\pi_{0,3} \longrightarrow \hat{\mathfrak{T}}_{1,1}^+$$

et même,

(42)
$$\pi_{0,3} \hookrightarrow \Gamma_2 = \operatorname{Ker}(\hat{\mathfrak{T}}_{1,1}^+ = SL(2, \mathbf{Z})^{\hat{}} \longrightarrow \mathfrak{S}_3 = SL(2, \mathbf{Z}/2\mathbf{Z}))$$

(et itou pour les groupes profinis). Ici $\pi_{0,3}$ est tel que le sous-groupe de congruence du deuxième membre [?], soit Γ_2 soit produit direct [??] sous-groupe $\pi_{0,3}$ et de son centre $\{\pm 1\}$. Mais en fait, il y a exactement quatre sous-groupes dans Γ_2 qui réalisent cette décomposition. Pour ne pas faire de jaloux, on pourrait regarder l'intersection des quatre, qui est un sous-groupe de Γ_2 d'indice un diviseur de 24=16 [?] Γ_2 = Γ_3 En tant que sous-groupe de Γ_3 , il est d'indice un diviseur de Γ_3 [c'est vrai et c'est même trivial...] – ça ne m'étonnerait pas que ce soit justement le groupe des commutateur de Γ_3 , qui est d'indice 4 – il y a là toute une situation à élucider...

¹⁴⁵NB. Ça doit être le noyau de $SL(2, \mathbb{Z}) \longrightarrow SL(2, \mathbb{Z}/4\mathbb{Z})$.

Bien entendu, il faudrait aussi expliciter l'homorphisme (42) (défini modulo automorphismes intérieurs) par ses valeurs sur les générateurs l_0, l_1, l_∞ – j'y reviendrai peut-être tantôt ¹⁴⁶.

Théorème. — L'action extérieure naturelle de \mathbb{F}_Q sur $\hat{\mathfrak{T}}_{1,1}^+$, et même sur $\mathfrak{T}_{1,1}^{\prime+}=\mathfrak{T}_{1,1}^+/\{\pm 1\}$, est fidèle.

On utilise le fait qu'on a un homomorphisme extérieur injectif

$$\hat{\pi}_{0,3} \hookrightarrow \hat{\mathfrak{T}}_{1,1}^{\prime+},$$

compatible avec l'action de Γ , en procédant comme pour la proposition du début (où $\hat{\pi}'_{0,3}$ jouait le rôle de $\hat{\mathfrak{Z}}'^+_{1,1}$).

Corollaire. — Les homomorphismes canoniques (surjectifs)

(43)
$$\Gamma_{\mathbf{O}} \longrightarrow \Gamma_{1,\nu} \ (\nu \ge 1),$$

sont injectifs, donc des isomorphismes.

Il suffit de le prouver pour $\Gamma_Q \longrightarrow \Gamma_{1,1}$ (puisque $\Gamma_{1,1}$ est un quotient de $\Gamma_{1,\nu}$, $\nu \geq 1...$), or on a un homorphisme canonique $\Gamma_{1,1} \longrightarrow \operatorname{Autext} \hat{\mathfrak{T}}_{1,1}^+$ et on peut considérer le composé,

$$\Gamma_{\mathbf{O}} \longrightarrow \Gamma_{1,1} \longrightarrow \operatorname{Autext} \hat{\mathfrak{T}}_{1,1}^{+} \longrightarrow \operatorname{Autext} \mathfrak{T}_{1,1}^{+};$$

par le théorème précédent ce composé est injectif, donc aussi $\mathbb{F}_Q \longrightarrow \mathbb{F}_{1,1}$, cqfd.

Remarque. On a vraiment l'impression, avec la proposition du début, et le résultat précédent baptisé "théorème", d'avoir démontré deux fois la même chose, et avec la même démonstration encore! Donc il est temps, après ce détour, de s'assurer qu'il en est bien ainsi, i.e. que l'homorphisme $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}'_{1,1}$ qu'on vient d'utiliser s'identifie bel et bien à l'homomorphisme $\hat{\pi}_{0,3} \longrightarrow \hat{\pi}'_{0,3}$, moyennant un isomorphisme convenable (qui reste à décrire) commutant aux actions extérieures de Π , qu'on se proposait de construire (cf. (10) à (20)) – et on l'a perdu en route, en

¹⁴⁶Il n'est pas clair si $\pi_{0,3}$ est invariant en tant que sous-groupe de $\mathfrak{T}^+_{1,1} = SL(2,\mathbf{Z})$, i.e. stable par l'action extérieure de \mathfrak{S}_3 sur $SL(2,\mathbf{Z})$ – je présume que oui, puisque \mathfrak{S}_3 agit aussi extérieurement sur $\pi_{0,3}$ a priori... $\mathfrak{T}^+_{1,1}/\pi_{0,3}$ serait une extension centrale intéressante de \mathfrak{S}_3 par $\{\pm 1\}$...

essayant de trouver $\pi'_{0,3} \stackrel{\sim}{\longrightarrow} \mathfrak{T}'^+_{1,1}$ par factorisation dans l'homomorphisme composé $\pi_{0,3} \longrightarrow \pi'_{0,3} \longrightarrow \mathfrak{T}'^+_{1,1}$ [la première flèche étant donnée par la surjection canonique] – et on s'est en un sens fourvoyé, car l'homomorphisme "naturel" $\pi_{0,3} \longrightarrow \mathfrak{T}'^+_{1,1}$ sur lequel on est tombé n'était *pas* du tout celui qu'on avait en vue: j'étais à côté de mes pompes. Donc il me faut revenir à la charge!

§ 37. — THÉORIE DES MODULES DES COURBES ELLIPTIQUES VIA LEGENDRE (RIGIDIFICATION D'ÉCHELON 2)

Je me rends compte que j'ai pas mal compliqué des choses pourtant bien simples, au paragraphe précédent. D'abord un remords de topologie des surfaces:

Proposition ¹⁴⁷. — Soit X une surface topologique paracompacte, G un groupe discret opérant proprement sur X; on suppose que pour tout $x \in X$, le stabilisateur G_x opère fidèlement sur un voisinage de x (de sorte que G opère fidèlement – en fait les deux doivent être équivalents) en préservant l'orientation locale (donc G_x est un groupe cyclique) de sorte que Y = X/G est une surface topologique paracompacte. Considérons l'ensemble $X^! = \{x \in X \mid G_x \neq (1)\}$ – qui est une partie discrète de X stable sous G – et l'image $Y^! \subset Y$ de $X^!$ – partie discrète de Y – et la "signature" sur $(Y,Y^!)$, pour laquelle le coefficient d_y ($y \in Y^!$) est l'indice de ramification ord(G_X) en les $x \in X$ au dessus de y. Pout tout G-revêtement X' de X, considérons alors X'/G = Y' comme espace au dessus de Y. Alors:

a) Y' est une surface topologique, revêtement ramifié de Y, subordonné à la signature $\underline{d} = \underline{d}(X/Y)$.

¹⁴⁷**Variante**: G opère sur X avec sous-groupe *invariant* G satisfaisant les conditions ci-contre [i.e. ci-dessus] on a alors, posant Y = X/G avec opération de G/G = H dessus: $\underline{\text{Rev}}(X,G) \simeq \underline{\text{Rev}}((Y,\underline{d}),H)$, qui donne $\pi_1(X,G,x) \stackrel{\sim}{\longrightarrow} \pi_1((Y,\underline{d},H),y)$. Application: $\mathfrak{S}_{0,3} \simeq \mathfrak{S}'_{1,1}(\simeq GL(2,\mathbf{Z})^+/\pm 1)$ (où $\mathfrak{S}_{0,3}$ est une extension de $\mathfrak{S}_{0,3} = \mathfrak{S}_3 \times \mathbf{Z}/2\mathbf{Z}$ par $\pi_{0,3}$).

b) Le foncteur $X' \mapsto Y' = X'/G$ est une équivalence de catégories:

N.B. On peut expliciter un foncteur quasi-inverse, en associant à tout revêtement ramifié Y' de Y compatible avec \underline{d} , le (X,G)- revêtement "normalisé" (en un sens topologique facile à expliciter) de $X \times_Y Y'$. On a un énoncé analogue pour les schémas localement noethériens réguliers de dimension 1, où le foncteur quasi-inverse s'obtient en normalisant $X \times_Y Y'$.

Corollaire. — Soient $x \in X \setminus X'$, y son image dans Y. On suppose Y connexe (i.e. que G opère transitivement sur l'ensemble des composantes connexes de X). Alors on a un isomorphisme canonique

(2)
$$\pi_1(X, G, x) \xrightarrow{\sim} \pi_1((Y, \underline{d}), y)$$

d'où, pour X connexe, une suite exacte canonique

(3)
$$1 \longrightarrow \pi_1(X, x) \longrightarrow \pi_1((Y, \underline{d}), y) \longrightarrow G \longrightarrow 1.$$

N.B. On a un corollaire analogue dans le contexte schématique, X et Y étant des schémas réguliers de dimension 1 – ou, le cas échéant, des schémas relatifs lisses de dimension relative 1 sur un S, mais dans ce cas il faudrait (si j'en ai besoin) faire un peu attention de préciser l'énoncé en forme raisonnable.

Exemple: Prenons $X = \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\} = U_{0,3}(\mathbb{C})$, $G = \mathfrak{S}_3$ opérant de façon habituelle, donc (avec les conventions du paragraphe précédent), identifiant $\mathbb{P}^1(\mathbb{C})/(G = \mathfrak{S}_3)$ à $\mathbb{P}^1(\mathbb{C})$, avec:

$$(0,1,\infty) \longmapsto 0$$
 $d_0=2$

$$(4) (2,-1,1/2) \longmapsto 1 d_1 = 2$$

$$(j,\overline{j}) \longmapsto \infty$$
 $d_{\infty} = 3$,

on trouve $Y = \mathbb{P}^1(\mathbb{C}) \setminus \{0\}$, et $\underline{d} = 2\{1\} + 3\{\infty\}$. On trouve donc un isomorphisme canonique:

(5)
$$\pi_1((U_{0,3}(\mathbf{C}),\mathfrak{S}_3),x) \simeq \pi_1((\mathbb{P}^1(\mathbf{C})\setminus\{0\},\underline{d}),y),$$

où malheureusement on ne peut prendre x = P = j; il faut prendre $x \in \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty, 2, -1, -1/2, j, \overline{j}\}$ et le plus commode sera de prendre x tel que y = f(x) soit le point base typique Q = y pour calculer le π_1 à ramification – pour un tel x on trouve donc un isomorphisme canonique

(5 bis)
$$\pi_1((U_{0,3}(C),\mathfrak{S}_3),x) \simeq \pi'_{0,3}$$

et en choisissant une \mathfrak{S}_3 -classe de chemins du point base initial P = y sur $X = U_{0,3}(\mathbb{C})$ vers x, d'où un isomorphisme correspondant du premier membre de (5 bis) avec $\pi_{0,3}$, on trouve un isomorphisme canonique

(6)
$$\pi_1((U_{0,3}(\mathbf{C}),\mathfrak{S}_3),P) \simeq \pi'_{0,3}$$

(qui change par automorphisme intérieur quand on modifie le choix d'une \mathfrak{S}_3 -classe de chemins), d'où la suite exacte

$$(7) 1 \longrightarrow \pi_{0,3} \longrightarrow \pi'_{0,3} \longrightarrow \mathfrak{S}_3 \longrightarrow 1,$$

qui n'est autre que (9 bis) du paragraphe précédent, mais interprétée ici de façon bien plus transparente comme suite exacte d'homotopie pour \mathfrak{S}_3 opérant sur $U_{0,3}(\mathbb{C})$. Et on trouve de même, dans le cadre arithmético-géométrique, travaillant sur le schéma $U_{0,3} = U_{0,3,Q}$ et son quotient $U_{0,3}/\mathfrak{S}_3 \simeq \mathbb{P}^1_{\mathbb{O}} \setminus \{0\}$, avec la signature

 $2\{1\} + 3\{\infty\}$ dessus, le diagramme de suites exactes:

Nous voulons maintenant mettre en relation $U_{0,3}$, avec l'action de \mathfrak{S}_3 dessus, avec la multiplicité modulaire $M_{1,1}$ pour les courbes elliptiques (indices \mathbf{Q} sousentendus). C'est domage d'ailleurs de travailler seulement sur \mathbf{Q} - je vais travailler plutôt sur $\mathbf{Z}[\frac{1}{2}]$ - i.e. en caractéristique résiduelle différente de 2.

Au paragraphe précédent j'ai identifié, un peu vaseusement, $U_{0,3}=M_{0,4}^!$ à $M_{1,1}[2]'$ (sous lequel $M_{1,1}[2]$ est une gerbe liée par $\mathbb{Z}/2$). Les ennuis techniques (plutôt les complications conceptuelles) tiennent au fait que pour les courbes elliptiques (plus généralement pour les variétés abéliennes de dimension quelconque), si n est un entier ≥ 3 , la "rigidification de Jacobi d'échelon n" est bel et bien une rigidification, i.e. tout automorphisme d'une courbe elliptique relative E qui induit l'identité sur E – sous schéma noyau de E de l'identité; mais il n'en est plus de même pour E qui E courbe est l'identité idE au-dessus d'une partie ouverte fermée de E et E qui le complémentaire. Ceci suggère, pour une meilleure compréhension, de coiffer E qui E par un E par un E pour une meilleure compréhension, de coiffer E qui la qui E par un E par un E par un multiple de 2; donc E qui E sera un schéma ordinaire de type fini sur Spec E (son image dans Spec E sera l'ouvert Spec E E qui au-dessus de Spec E E qui le topos modulaire E qui récupère comme

(9)
$$M_{1,1} \simeq (M_{1,1}[n], GL(2, \mathbb{Z}/n\mathbb{Z}) = \Gamma_n)$$

au-dessus de Spec $\mathbb{Z}[\frac{1}{n}]$. ¹⁴⁸ Ici $M_{1,1}[n]$ est le schéma qui représente le foncteur sur

¹⁴⁸Attention, c'est bien $GL(2, \mathbb{Z}/n\mathbb{Z})$ et non $SL(2, \mathbb{Z}/n\mathbb{Z})$ qu'il faut prendre ici.

(Sch):

 $S \longrightarrow$ ensemble des courbes elliptiques relatives sur S munies d'un isomorphisme $(\mathbf{Z}/n\mathbf{Z})_S^2 \longrightarrow {}_n E^{149}$

sur lequel le groupe $\Gamma_n = GL(2, \mathbf{Z}/n\mathbf{Z}) = \operatorname{Aut}((\mathbf{Z}/n\mathbf{Z})^2)$ opère de façon évidente. Le schéma modulaire "grossier" (par opposition à la multiplicité ou topos modulaire) est décrit au-dessus de $\mathbf{Z}/n\mathbf{Z}$ par

$$(10) \widetilde{M}_{1,1} \simeq M_{1,1}[n]/\Gamma_n$$

au-dessus de $\mathbf{Z}[\frac{1}{n}]$.

N.B. Le schéma $\widetilde{M}_{1,1}$ sur Spec **Z** peut se décrire comme "l'enveloppe représentable" du foncteur non-représentable

 $S \mapsto$ classes d'isomorphisme de courbes elliptiques relatives sur S...

- itou sur un schéma de base (par exemple Q ou Spec $\mathbb{Z}[\frac{1}{n}]$), quelconque...

Il faut faire attention qu'en tant que schéma sur $\mathbb{Z}[\frac{1}{n}]$ (ou sur \mathbb{Q} , en passant à la fibre générique), $M_{1,1}[n]$ n'est pas relativement connexe (i.e. n'est pas à fibres géométriquement connexes). En effet, un isomorphisme

$$(\mathbf{Z}/n\mathbf{Z})_{S}^{2} \simeq {}_{n}E$$

implique par passage à la seconde puissance extérieure, un isomorphisme

$$(\mathbf{Z}/n\mathbf{Z})_{S} \xrightarrow{\sim} \bigwedge_{\mathbf{Z}/n\mathbf{Z}}^{2} {}_{n}E \simeq \mu_{n}^{\otimes -1}(S)$$

d'où un isomorphisme

$$\mathbf{Z}/n\mathbf{Z} \simeq \mu(S)$$

qui s'identifie (prenant l'image de 1 mod n) à une section de $\mu_n^*(S)$ où μ_n^* est le $(\mathbf{Z}/n\mathbf{Z})^*$ -torseur relatif sur Spec $\mathbf{Z}[\frac{1}{n}]$ des "racines primitives n-ièmes de 1". On a donc un morphisme canonique

$$(11) M_{1,1}[n] \longrightarrow \mu_n^*$$

et c'est ce morphisme qui est à fibres géométriques connexes en caractéristique 0. Passant à la limite sur n variable, on trouve sur \mathbf{Q}

(12)
$$M_{1,1}[\infty] = \lim_{n \to \infty} M_{1,1}[n] \longrightarrow \mu_{\infty}^* \simeq \operatorname{Spec} \Sigma$$

¹⁴⁹Ce foncteur est représentable si et seulement si $n \ge 3$ (donc il ne l'est pas pour n = 1, 2).

où le dernier isomorphisme est canonique et $\Sigma \subset C$ est la sous-extension cyclotomique maximale de $\overline{\mathbb{Q}}_0$.

On récupère les $M_{1,1}[n']$, pour $n'|n, n' \neq 1, 2$, à partir de $M_{1,1}[n]$ avec l'action de Γ_n dessus par

(13)
$$M_{1,1}[n'] \simeq M_{1,1}[n] \times_{\Gamma} \Gamma_{n'} \simeq M_{1,1}[n] / K_{n,n'}$$

sur Spec $\mathbb{Z}[\frac{1}{n}]$, où

(14)
$$K_{n,n'} = \operatorname{Ker}(\Gamma_n \longrightarrow \Gamma_{n'}).^{150}$$

Si on applique cependant cette formule dans les cas non licites n'=1 ou 2, on trouve pour le cas n'=1, non $M_{1,1}$ mais $\widetilde{M}_{1,1}$ (schéma modulaire grossier), et pour n'=2, non $M_{1,1}[2]$ (qui n'est pas non plus un schéma), mais ce qu'on avait appelé au paragraphe précédent $M_{1,1}[2]'$.

On peut expliciter $M_{1,1}$ et $\widetilde{M}_{1,1}$ sur Spec ${\bf Z}$ tout entier en termes des $M_{1,1}[n]$

On peut expliciter $M_{1,1}$ et $M_{1,1}$ sur Spec \mathbb{Z} tout entier en termes des $M_{1,1}[n]$ en les décrivant au-dessus des schémas ouverts $\operatorname{Spec}(\mathbb{Z}[\frac{1}{n}])$, $\operatorname{Spec}(\mathbb{Z}[\frac{1}{n'}])$ qui recouvrent $\operatorname{Spec}(\mathbb{Z})$ (i.e. pour (n,n')=1) par (9) et (10) en y prenant d'abord n puis n', et en "recollant" au-dessus de $\operatorname{Spec}(\mathbb{Z}[\frac{1}{nn'}])$, par ces mêmes formules appliquées à nn'...

On a d'ailleurs (pour mémoire)

Théorème.
$$-\widetilde{M}_{1,1} \simeq \mathbb{E}^1_{\mathbf{Z}}$$
 (sur Spec \mathbf{Z}).

On peut épingler un tel isomorphisme (défini à priori modulo le groupe affine entier $X \longmapsto \pm X + n, n \in \mathbf{Z}$), en notant qu'il y a dans $\widetilde{M}_{1,1}$ deux sections privilégiées sur \mathbf{Z} , dont les valeurs au point générique correspondent aux deux classes d'isomorphisme de courbes elliptiques en caractéristique 0 (sur \mathbf{C} par exemple) qui ont des automorphismes différents de id, —id – les deux groupes d'automorphimes qu'on obtient sont d'ailleurs $\mathbf{Z}/4\mathbf{Z}$ et $\mathbf{Z}/6\mathbf{Z}$ (très facile, par exemple par voie transcendante). Ce sont ce qu'on appelle sauf erreur les courbes elliptiques "anharmoniques". Sur un

 $M_{1,1}[n]$, le groupe des automorphismes rationnels sur k d'une courbe elliptique décrite par un point x de $M_{1,1}[n](k)$ s'identifie canoniquement au stabilisa-

 $[\]overline{}^{150}K_{n,n'}$ opère *librement* sur le schéma si $n'|n,n'\neq 1,2$ mais pas bien sûr si n'=1 ou 2.

teur de x dans Γ_n :

(15)
$$\operatorname{Aut}(E_x) \simeq (\Gamma_n)_x.$$

Bien sûr on a des énoncés idoines sur un schéma de base quelconque, pas nécessairement un corps. Cela montre déjà que les automorphismes des courbes elliptiques sont liés de façon essentielle à la *ramification* de Γ_n opérant sur $M_{1,1}[n]$. On trouve ainsi:

Proposition (Sur Spec Q, si $n \neq 1,2$). — Il y a exactement deux orbites de Γ_n opérant sur $M_{1,1}[n]$ qui sont "critiques", et qui correspondent à des stabilisateurs isomorphes respectivement à $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$, qui sont les groupes d'automorphismes des courbes elliptiques ("anharmoniques") correspondantes.

On montre que Γ_n n'opère pas fidèlement sur $M_{1,1}[n]$ – le noyau de cette opération est le sous-groupe central $\{\pm 1\}$, image du groupe correspondant de $GL(2, \mathbb{Z})$ – il correspond au groupe des automorphismes "universels" $\pm \mathrm{id}_E$ des courbes elliptiques E. Le groupe quotient

$$\Gamma_n' := \Gamma_n / \{ \pm 1 \}$$

opère fidèlement, et on peut regarder le "topos mixte" $(M_{1,1}[n], \Gamma'_n)$ – on trouve aussitôt qu'il ne *dépend pas* (à équivalence canonique près) *du choix de n* [à cela près que l'ouvert de Spec **Z** sur lequel "il a un sens" dépend de n...] ¹⁵¹ – et en fait, on a:

(17)
$$(M_{1,1}[n], \Gamma'_n) \simeq M'_{1,1}$$

au-dessus de Spec $\mathbb{Z}[\frac{1}{n}]$, où la multiplicité schématique modulaire $M'_{1,1}$ est décrite, en termes de courbes elliptiques "définies modulo symétries", comme au paragraphe précédent.

Remarque: La proposition précédente semble dépendre de n, mais on voit a priori (grâce au fait que les $\Gamma_{n,n'}$, $n'|n,n' \neq 1,2$ opèrent librement) que si elle est valable pour un n, elle est valable pour tous.

¹⁵¹donc à condition de se placer au dessus d'un schéma de base tel Spec ($\mathbb{Z}[\frac{1}{nn'}]$) où n, n' sont tous deux inversibles...

Notons aussi

Corollaire (de la Proposition). — En caractéristique 0, les stabilisateurs dans Γ'_n (le groupe qui opère fidèlement sur $(M_{1,1}[n])$ des points des deux orbites critiques sont respectivement $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$. 152

On a supposé ici que $n \neq 1,2$, mais rien ne nous empêche de regarder aussi

$$M_{1.1}[2]'$$

 $S \mapsto$ catégorie des courbes elliptiques relatives sur S, avec rigidification d'échelon n, i.e. isomorphisme $(\mathbf{Z}/n\mathbf{Z})_S \simeq {}_n E$ $= \mathrm{Ell}_n(S)$

donc par construction, on a pour tout schéma S une équivalence:

$$\operatorname{Ell}_n(S) \xrightarrow{\sim} \operatorname{Hom}(S, (M_{1,1}[n])$$

[où les homomorphismes sont des homomorphismes de topos localement annelés, i.e. homomorphismes de multiplicités).] Pour que les catégories $Ell_n(S)$ soient discrètes, ou encore que $(M_{1,1}[n]$ soit un schéma, ou encore que les automorphismes d'une courbe elliptique respectant une rigidification de Jacobi d'échelon n soient l'identité, il faut et il suffit que $n \geq 3$, i.e. $n \neq 1,2$. Donc $M_{1,1}[2]$ n'est pas un schéma, mais $M_{1,1}[2]'$ en est un, et $M_{1,1}[2] \longrightarrow M_{1,1}[2]'$ est un isomorphisme local (décrit entièrement par une $\mathbb{Z}/2\mathbb{Z}$ -gerbe sur $M_{1,1}[2]'$). Il faut quand même prendre la peine de définir:

$$(20) \qquad M_{1,1}[2] \overset{\text{``th\'eor.''}}{\simeq} (M_{1,1}[2m], \Gamma_{2m,2}) \longrightarrow M_{1,1}[2]' \overset{\text{``d\'efini''}}{\simeq} M_{1,1}[2m]/\Gamma'_{2m,2}$$

(on a aussi $M_{1,1}[2m]/\Gamma'_{2m,2}=M_{1,1}[2m]/\Gamma_{2m,2}$) comme l'homorphisme canonique de "passage au quotient grossier" qui a un sens chaque fois qu'un groupe discret (disons) G opère sur un schéma (disons) X, comme un morphisme

$$(21) (X,G) \longrightarrow X/G = Y$$

dont le foncteur image inverse (faisceaux sur $Y = X/G \longrightarrow G$ -faisceaux sur X) est évident. Ici on a un sous-groupe invariant z de G qui opère trivialement sur X,

 $^{^{152}}$ valable pour *n* ≥ 2, cf. plus bas.

tel que G/z opère librement, ce qui signifie que le morphisme (21) se factorise en

$$(22) (X,G) \longrightarrow (X,G/z =: G') \longrightarrow Y = X/G = X/G'$$

de sorte que le morphisme de multiplicité (21) s'identifie aussi, simplement, à:

(23).
$$(M_{1,1}[2m], \Gamma_{2m,2}) \longrightarrow (M_{1,1}[2m], \Gamma'_{2m,2}) \simeq M_{1,1}[2]'$$

Par contre, si on veut descendre jusqu'à $M_{1,1}[1]' = M'_{1,1}$, en passant au quotient (au sens "grossier") dans $M_{1,1}[n]$ par Γ'_n , l'homorphisme

(24)
$$(M_{1,1}[n], \Gamma'_n) = M'_{1,1} \longrightarrow M_{1,1}[n]/\Gamma'_n = \widetilde{M}_{1,1}$$

n'est plus un "isomorphisme", i.e. n'est plus une équivalence, car Γ'_n n'opère pas librement – il a (même en caractéristique 0) de la ramification de degrés 2, 3. [Si cependant en excluant les courbes elliptiques anharmoniques, ça marcherait – ce n'est "qu'au voisinage" de ces courbes elliptiques que (24) n'est pas un isomorphisme...].

En fait les raisonnements du paragraphe précédent établissent un isomorphisme (valable sur Spec $\mathbf{Z}[\frac{1}{2}]$) 153

$$(25) M_{1,1}[2]' \simeq M_{0,4}! \simeq U_{0,3}$$

et cet isomorphisme est compatible avec les opérations de

(26)
$$\Gamma_2' \simeq \Gamma_2 = GL(2, \mathbf{Z}/2\mathbf{Z}) = SL(2, \mathbf{Z}/2\mathbf{Z})$$

sur $M_{1,1}[2]'$ d'une part, de \mathfrak{S}_3 sur $U_{0,3}$ d'autre part, quand on considère l'isomorphisme

(27)
$$\Gamma_2 = GL(2, \mathbf{F}_2) \xrightarrow{\sim} \mathfrak{S}_3$$

qui associe, à tout automorphisme de F_2 , son action sur les trois éléments non nuls $\underline{\alpha} = (1,0), \underline{\beta} = (0,1)$ et $\underline{\gamma} = (1,1) = \underline{\alpha} + \underline{\beta}$ (de sorte qu'on a d'ailleurs)

(28)
$$\gamma = \alpha + \beta, \ \alpha = \beta + \gamma, \ \beta = \gamma + \alpha.$$

¹⁵³ L'image de $M_{1,1}[2]'$ dans Spec \mathbf{Z} est Spec $\mathbf{Z}[\frac{1}{2}]$ tandis que celle de $M_{0,4}^! \simeq U_{0,1}$ est Spec \mathbf{Z} tout entier.

Il faudrait expliciter cette compatibilité, en considérant l'action naturelle de \mathfrak{S}_4 sur $M_{0,4}^!$, $M_{0,n}^!$ étant la multiplicité modulaire définie par

(29) $\underline{\text{Hom}}_{\text{multipl}}(S, M_{0,n}^!) \simeq \text{cat\'egorie}$ des courbes relatives sur S, localement isomorphes à \mathbb{P}^1_S et munies de n sections mutuellement disjointes numérotées S_1, S_2, \ldots, S_n .

N.B. C'est représentable bel et bien par une multiplicité si et seulement si $n \ge 3$, i.e. si le champ des groupoïdes qu'on veut représentés est "rigide", ¹⁵⁴ et alors cette multiplicité est même un schéma, isomorphe d'ailleurs canoniquement au sous-schéma

Mais on fera attention qu'il y a une opération naturelle de \mathfrak{S}_n sur $M_{0,n}^!$, donc sur $\underline{\mathrm{Mon}}(I_{n-3},U_{0,3})$ – alors que l'on ne voit a priori que l'action de $\mathfrak{S}_3 \times \mathfrak{S}_{n-3}$ sur ce dernier: l'isomorphisme canonique

(30)
$$M_{0,n}^! \simeq \operatorname{Mon}((I_{n-3}, U_{0,3}) \subset U_{0,3}^{I_{n-3}} \text{ (où } I_{n-3} = \{i \in \mathbb{N} \mid 3 < i \le n\})$$

ne tient compte que des opérations naturelles du sous-groupe

$$\mathfrak{S}_{3} \times \mathfrak{S}_{n-3} \subset \mathfrak{S}_{n}$$

de \mathfrak{S}_n sur $M_{0,n}^!$, et pas de celle de \mathfrak{S}_n tout entier. Dans le cas de n=4, l'opération de $\Gamma_2'=GL(2,\mathbb{F}_2)\simeq\mathfrak{S}_3$ sur $M_{0,4}^!$ qui nous intéresse est celle qui correspond au sousgroupe $\mathfrak{S}_1\times\mathfrak{S}_3$ qui fixe le premier élément (correspondant à la section nulle d'une courbe elliptique) et qui permute les trois suivants (correspondant aux trois éléments d'ordre 2 d'une courbe elliptique générique en caractéristique différente de 2, qui sont les trois autres points fixes de $x\longmapsto -x$), alors que l'opération naïve de \mathfrak{S}_3 sur $U_{0,3}$ correspond au sous-groupe $\mathfrak{S}_3\times\mathfrak{S}_1$ dans \mathfrak{S}_4 , qui fixe les trois premiers éléments. Petite question de gymnastique schématique (indépendante maintenant de la géométrie des courbes elliptiques, mais histoire de géométrie projective de dimension 1): comment passer d'une de ces actions de \mathfrak{S}_3 à l'autre? On a envie de prouver que ce sont les mêmes !

 $^{^{154}}$ Si on veut une représentabilité pour n=0,1,2, il ne suffit plus de travailler avec une topologie étale – il faut des topologies fppf par exemple.

Notons que si I est un ensemble à 4 éléments, alors il lui est associé un ensemble à 3 éléments de "partitions de type (2,2)", $P_{2,2}(I) = \tilde{I}$, et l'homomorphisme

$$\mathfrak{S}_{I} \simeq \mathfrak{S}_{4} \longrightarrow \mathfrak{S}_{\widetilde{I}} \simeq \mathfrak{S}_{3}$$

est surjectif – son noyau est un sous-groupe isomorphe (non canoniquement) à $\mathbb{F}_2 \times \mathbb{F}_2$ – donc un groupe commutatif V(I) annulé par 2, i.e. un espace vectoriel sur \mathbb{F}_2 , et en tant que tel de dimension 2. En fait, V(I) opèrant sur I fait de I un V(I)-torseur – donc I est muni canoniquement d'une structure de plan affine sur \mathbb{F}_2 , et $V(I) \subset \mathfrak{S}_I$ est le groupe de ses translations. \mathfrak{S}_I s'interprète comme le groupe des automorphismes affines de I (toute permutation de I est affine – il Y0 a sur l'ensemble I1 une et une seule structure de plan affine sur \mathbb{F}_2), et \mathfrak{S}_I 1 comme le groupe $\operatorname{Aut}(V(I))$ 1 - ce qui suggère d'interpréter I1 comme l'ensemble des trois éléments non nuls de V(I), et en fait, on constate que l'on a une bijection canonique

(33)
$$\widetilde{I} \xrightarrow{\sim} V(I)^* \stackrel{\text{def}}{=} V(I) \setminus \{0\}$$

en associant à une partition I = I'UpI'', avec I',I'' de cardinal 2, la seule permutation de I qui invarie I',I'' et induit sur chacun une permutation non triviale (les éléments de \mathfrak{S}_I obtenus ainsi sont les permutations paires d'ordre 2, qui avec l'identité forment donc le sous-groupe V(I)).

On trouve, si $i \in I$, d'où $I \setminus \{i\}$ de cardinal 3, une application canonique

$$(34) I \setminus \{i\} \longrightarrow \widetilde{I}$$

en associant à $j \in I \setminus \{i\}$ la partition de I en $\{i,j\}$ et en son complémentaire. Cette bijection étant compatible avec le transport de structure, on en conclut que l'isomorphisme correspondant

$$\mathfrak{S}_{I\setminus\{i\}} \simeq \mathfrak{S}_{\widetilde{I}}$$

est aussi le composé

$$\mathfrak{S}_{I\setminus\{i\}}\hookrightarrow\mathfrak{S}_{I}\longrightarrow\mathfrak{S}_{\widetilde{I}},$$

 $(\mathfrak{S}_{I\setminus\{i\}} \text{ étant le stabilisateur de } i \text{ dans } \mathfrak{S}_I)$ donc les quatre sous-groupes symétriques d'indice $3\mathfrak{S}_{I\setminus\{i\}}$ de \mathfrak{S}_I ($i\in I$) sont canoniquement isomorphe à $\mathfrak{S}_{\widetilde{I}}$ – donc entre eux, par des isomorphismes qui sont d'ailleurs déduits des bijections canoniques

$$(37) I \setminus \{i\} \xrightarrow{\sim} I \setminus \{j\} \ (i \neq j, i, j \in I),$$

égales à la transposition (non à l'identité) sur $I \setminus \{i, j\}$. Cette bijection en effet est le composé

$$I \setminus \{i\} \xrightarrow{\sim} \widetilde{I} \xrightarrow{\sim} I \setminus \{j\},$$

et pour i,j variables, ces isomorphismes forment un système transitif d'isomorphismes.

Revenant à l'action de \mathfrak{S}_4 sur $M^!_{0,4}$, la clef de la compréhension est donnée par ceci:

Proposition. — Considérons le sous-groupe V(I) de \mathfrak{S}_I formé de l'identité et des involutions paires. Alors l'action de V(I) sur $M_{0,I}^!$ 155 est triviale, donc \mathfrak{S}_I agit sur $M_{0,I}^!$ par l'intermédiaire de $\mathfrak{S}_I/V(I) = \mathfrak{S}_{\widetilde{I}}$.

Corollaire. — Soit $i \in I$, alors l'action de $\mathfrak{S}_{I \setminus \{i\}} \subset \mathfrak{S}_I$ sur $M^!_{0,I}$ est déduite de celle de $\mathfrak{S}_{\widetilde{I}}$ via l'isomorphisme $\mathfrak{S}_{I \setminus \{i\}} \stackrel{\sim}{\longrightarrow} \mathfrak{S}_I$ provenant de $I \setminus \{i\} \stackrel{\sim}{\longrightarrow} \widetilde{I}$.

En particulier, pour I=[1,2,3,4], pour comparer l'action de $\mathfrak{S}_{\{1,2,3\}}$ et de $\mathfrak{S}_{\{2,3,4\}}$ sur $M_{0,4}^! \simeq U_{0,3}$ – où la première est l'action standard de \mathfrak{S}_3 sur $U_{0,3}$, la deuxième celle de \mathfrak{S}_3 sur M1,1[2]', on utilise l'isomorphisme

(38)
$$\mathfrak{S}_{\{1,2,3\}} \simeq \mathfrak{S}_{\{2,3,4\}}$$

explicité dans (37), correspondant à la bijection

$$1 \longmapsto 4, 2 \longmapsto 3, 3 \longmapsto 2$$

des ensembles d'indices, qui correspond donc à l'automorphisme

$$\operatorname{int}(\sigma_1):\mathfrak{S}_3\longrightarrow\mathfrak{S}_3$$

en identifiant maintenant les deux ensembles d'indices [1,2,3], [2,3,4] à $[0,1,\infty]$, et en désignant par $\sigma_i \in \mathfrak{S}_{\{0,1,\infty\}}$ (pour $i \in \{0,1,\infty\}$) la transposition des éléments $\neq i$. Donc

Corollaire. — L'isomorphisme canonique

$$U_{0,3} \xrightarrow{\varphi} M_{1,1}[2]' \text{ (sur } \mathbf{Z}[\frac{1}{2}]),$$

¹⁵⁵N.B. $M_{0,I}^!$ se définit en termes de I, pour tout ensemble I de cardinal ≥ 3 comme $M_{0,4}^!$

quand on fait opérer $\mathfrak{S}_3 = \mathfrak{S}_{\{0,1,\infty\}}$ sur l'un et l'autre membre, est compatible avec ces opérations, via l'automorphisme int (σ_1) , i.e.

(40)
$$\varphi(u \cdot x) = (\sigma_1 u \sigma_1^{-1}) \cdot \varphi(x)$$

Il faut quand même démontrer la proposition 4, qui équivaut bien sûr à ceci:

Corollaire. — Soit X une droite projective relative sur un schéma S, I un ensemble à quatre éléments, $(S_i)_{i\in I}$ une famille de sections mutuellement disjointes, et σ une involution paire de I (correspondant à une partition $I=\{i_1,i_2\}U$ $p\{i_3,i_4\}$ par $\sigma i_1=i_2, \sigma i_2=i_1, \sigma i_3=i_4, \sigma i_4=i_3$). Alors il existe un automorphisme (évidemment unique) u de X, tel que $u\circ s_i=s_{\sigma i}$.

Démonstration: On peut supposer que $X = \mathbb{P}^1_S$, $s_1 = 0$, $s_2 = \infty$; donc s_3 , s_4 s'identifient à des sections de \mathscr{O}_S^* ; on prendra u défini par

$$u(z) = \frac{\lambda}{z}, \quad \lambda \in \Gamma(S, \mathcal{O}_X^*)$$

qui échange 0 et ∞ , et la condition pour échanger s_3 , s_4 s'écrit $\frac{\lambda}{s_3} = s_4$, $\frac{\lambda}{s_4} = s_3$, i.e. $\lambda = s_3 s_4$ (N.B. il suffirait que (s_1, s_2, s_3) et (s_1, s_2, s_4) soient mutuellement disjointes – pas la peine que s_3 , s_4 soient mutuellement disjointes...)

Plaçons nous à nouveau sur Q (pour fixer les idées), et considérons les groupes fondamentaux des multiplicités modulaires $M_{1,1}, M'_{1,1}$. On part de

(41)
$$\begin{cases} M_{1,1} \simeq (M_{1,1}[n], \Gamma_n) \\ M'_{1,1} \simeq (M_{1,1}[n], \Gamma'_n = \Gamma_n/\pm 1) \end{cases}$$

(où pour n=2 on remplace $M_{1,1}[2]$ par $M_{1,1}[2]'$), qui donne des isomorphismes de groupes extérieurs

$$(42) \qquad \begin{array}{ccc} \pi_{1}(M_{1,1}) & \simeq \pi_{1}(M_{1,1}[n], \Gamma_{n}) & (n \geq 3) \\ & & \downarrow & \\ \pi_{1}(M_{1,1}) & \simeq \pi_{1}(M_{1,1}[n], \Gamma_{n}') & (n \geq 2) \end{array}$$

(où comme au (41) si n=2), et comme $M_{1,1}[n]$ est connexe (même s'il n'est pas géométriquement connexe) ¹⁵⁶, on trouve

$$(43) \qquad \begin{array}{c} 1 \longrightarrow \pi_{1}(M_{1,1}[n]) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \Gamma_{n} \longrightarrow 1 \\ & \downarrow \sim \qquad \qquad \downarrow \qquad \qquad \downarrow \\ 1 \longrightarrow \pi_{1}(M_{1,1}[n]) \longrightarrow \pi_{1}(M'_{1,1}) \longrightarrow \Gamma'_{n} \longrightarrow 1 \end{array}$$

qui permet de reconstruire $\pi_1(M_{1,1})$, en tant qu'extension de Γ_n , quand on connaît $\pi_1(M'_{1,1})$ comme extension de Γ'_n , par image inverse via $\Gamma_n \longrightarrow \Gamma'_n$. On trouve comme de juste

Proposition. — $\pi_1(M_{1,1})$ est une extension centrale de $\pi_1(M'_{1,1})$ par $\{\pm 1\}$.

D'autre part, on a les suites exactes d'homotopie sur Spec Q

$$(44) \qquad \begin{array}{c} 1 \longrightarrow \pi_{1}(\overline{M_{1,1}}) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \Pi_{n} \longrightarrow 1 \\ & \downarrow^{\sim} \qquad \qquad \downarrow \qquad \qquad \downarrow \\ 1 \longrightarrow \pi_{1}(\overline{M'_{1,1}}) \longrightarrow \pi_{1}(M'_{1,1}) \longrightarrow \Pi_{n} \longrightarrow 1 \end{array}$$

(avec les isomorphismes $\pi_1(\overline{M_{1,1}}) \simeq \mathfrak{T}_{1,1}^+$, $\pi_1(M_{1,1}) \simeq \mathfrak{T}_{1,1} \simeq \mathcal{N}_{1,1}$) et la théorie transcendante fournit des isomorphismes extérieurs canoniques ¹⁵⁷

(45)
$$\pi_1(\overline{M_{1,1}}) \simeq \operatorname{Sl}(2, \mathbf{Z}), \ \pi_1(\overline{M'_{1,1}}) \simeq \operatorname{Sl}(2, \mathbf{Z})^{\wedge} = SL(2, \mathbf{Z})/\pm 1,$$

On a la compatibilité essentielle suivante entre (43), (44), (45): la commutativité de

$$1 \longrightarrow \pi_{1}(\overline{M_{1,1}}) \simeq \operatorname{Sl}(2, \mathbf{Z})^{\hat{}} \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \Pi_{n} \longrightarrow 1$$

$$\downarrow^{\operatorname{surj}} \qquad \downarrow^{Hi_{n}}$$

$$1 \longrightarrow \operatorname{Sl}(2, \mathbf{Z}/n\mathbf{Z}) \hookrightarrow \Gamma_{n} = \operatorname{Gl}(2, \mathbf{Z}/n\mathbf{Z}) \xrightarrow{\operatorname{det}} (\mathbf{Z}/n\mathbf{Z})^{*} \longrightarrow 1$$

(où Hi_n est le caractère cyclotomique).

¹⁵⁶ c'est le théorème de Kronecker d'irréductibilité de l'équation cyclotomique.

¹⁵⁷ Attention; ne pas confondre $SL(2, \mathbb{Z})$ avec $SL(2, \hat{\mathbb{Z}})$!!!

Passant à la limite sur n, ceci donne un diagramme commutatif

diagramme sur lequel nous allons revenir.

Pour l'instant je vais exploiter le deuxième isomorphisme (42) pour n = 2:

(48)
$$\pi_1(M'_{1,1}) = \mathcal{N}'_{1,1} \simeq \pi_1(M_{1,1}[2]', \Gamma_2 = \mathfrak{S}_3) \simeq \pi_1(U_{0,3}, \mathfrak{S}_3),$$

où le dernier isomorphisme correspond à l'isomorphisme $\operatorname{int}(\sigma_1): \mathfrak{S}_3 \xrightarrow{\sim} \mathfrak{S}_3$, explicité dans (40). On trouve donc bien, comme prévu aux paragraphe précédent – et de façon entièrement conceptuelle, l'isomorphisme d'extension

$$(49) \qquad 1 \longrightarrow \pi_{1}(\overline{M'_{1,1}}) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \mathbb{F}_{n} \longrightarrow 1$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim} \qquad \qquad | \qquad \qquad |$$

$$1 \longrightarrow \pi_{1}(\overline{U_{0,3}},\mathfrak{S}_{3}) \longrightarrow \pi_{1}(U_{0,3},\mathfrak{S}_{3}) \longrightarrow \mathbb{F}_{n} \longrightarrow 1$$

où l'on a $\pi_1(\overline{M'_{1,1}}) = \hat{\mathfrak{Z}}'_{1,1}^+ \simeq SL(2, \mathbf{Z}), \ \pi_1(M'_{1,1}) \simeq \mathcal{N}'_{1,1}, \ \pi_1(\overline{U_{0,3}}, \mathfrak{S}_3) \simeq \hat{\pi}'_{0,3}$ et $\pi_1(U_{0,3}, \mathfrak{S}_3) \simeq E'_{0,3}$. D'ailleurs, reprenant ces réflexions dans le contexte transcendant, on voit que cet isomorphisme

(50)
$$\hat{\pi}_{0,3}/\{l_1^2, l_\infty^3\} = \hat{\pi}'_{0,3} \xrightarrow{\sim} \pi_1(\overline{M'_{1,1}}) = SL(2, \mathbf{Z}) = SL(2, \mathbf{Z})/\pm 1$$

est associé à un isomorphisme

(51)
$$\pi_{0,3}/\{l_1^2, l_\infty^3\} = \pi'_{0,3} \xrightarrow{\sim} SL(2, \mathbf{Z})' = SL(2, \mathbf{Z})/\pm 1$$

déduit de l'isomorphisme de multiplicités analytiques complexes

(52)
$$M_{1,1}^{\text{ran}} \simeq (U_{0,3}^{\text{an}}, \mathfrak{S}_3).$$

Il faudrait quand même expliciter l'homomorphisme (51) – qui n'est défini que modulo automorphisme intérieur, a priori, par des formules explicites – alors que

sa définition ici sort de façon purement conceptuelle, "géométrique" (au sens de la géométrie algébrique relative, des courbes rationnelles et elliptiques sur des espaces analytiques arbitraires). C'est là un calcul clef, sûrement instructif, qui ne devrait pas présenter de difficulté particulière...

J'ai un peu laissé tomber en chemin dans tout ça le schéma modulaire "grossier" $\widetilde{M}_{1,1}$, après avoir affirmé qu'il est isomorphe à $\mathbb{E}^1_{\mathbf{Z}}$ et qu'il y a deux sections marquées, dont les les valeurs en caractéristique 0 correspondent aux deux classes d'isomorphisme de courbes elliptiques anharmoniques. En termes de l'isomorphisme

(53)
$$\widetilde{M}_{1,1} \simeq M_{1,1}[2]'/\Gamma_2' \simeq U_{0,3}/\mathfrak{S}_3$$

(valable sur Spec $\mathbf{Z}[\frac{1}{2}]$), on trouve bien, au dessus de $S=\operatorname{Spec}\mathbf{Z}[\frac{1}{2}]$, que $\widetilde{M}_{1,1}$ se déduit d'un schéma relatif Y qui est localement (au sens étale) isomorphe à \mathbb{P}^1_s , en enlevant une section s, dont l'existence implique déjà que Y est globalement isomorphe à \mathbb{P}^1_S – donc $Y \setminus s(S)$ isomorphe à \mathbb{E}^1_S . Dans cette approche, on a donc envie de désigner par ∞ (non par 0, comme en théorie des cartes !) cette section, qui correspond aux "points à l'infini" $(0, 1, \infty)$ de $U_{0,3}$, ou encore au "point à l'infini" de $M_{1,1}$. Il est d'ailleurs facile de vérifier a priori (par la compactification de Deligne-Mumford de $M_{1,1}$ et de $\widetilde{M}_{1,1}$) que $\widetilde{M}_{1,1}$ sur Spec ${\bf Z}$ tout entier est de la forme $Y \setminus \text{Im } s$, où Y est lisse et propre sur Spec Z tout entier, et s une section - dès lors ce qu'on connaît par exemple sur la fibre géométrique, et le fait que Z est principal, impliquent que $Y \simeq \mathbb{P}^1_{\mathbf{Z}}$, et qu'on a donc $M_{1,1} \simeq \mathbb{E}^1_{\mathbf{Z}}$. Pour choisir cet isomorphisme, on utilise les deux sections de $\mathbb{E}^1_{\mathbf{Z}}$, correspondant aux courbes anharmoniques. Ces deux sections ne sont pas disjointes, elles se rencontrent en caratéristique 2 et en caractéristique 3 (pour ce qui se passe en caractéristique \neq 2, i.e. sur Spec $\mathbb{Z}[\frac{1}{2}]$, on le voit bien par l'isomorphisme (53) – car en caractéristique 3 les deux orbites $(2,-1,\frac{1}{2})$ et (j,\overline{j}) coïncident et se collapsent en un seul et même point). Mais prenant l'une de ces sections comme section nulle (sauf erreur c'est celle qui correspond à la courbe elliptique la plus riche en symétries, à savoir le groupe Z/6Z, qu'on prend - c'est une question de convention bien sûr - c'est donc aussi l'orbite $\{j,\bar{j}\}\$, correspondant à un stabilisateur isomorphe à $\mathbb{Z}/3\mathbb{Z}$), cela détermine l'isomorphisme $M_{1,1} \simeq \mathbb{E}_{\mathbf{z}}^1$ au signe près. L'autre section devient

alors un entier de la forme $\pm 2^a 3^b$ ($a, b \in {}^*$ – entiers bien déterminés dont je ne sais pas la valeur par coeur), et on achève de normaliser en exigeant que le signe soit *plus*. Donc

Théorème (pour mémoire – c'est bien connu). — Il y a un isomorphisme unique

$$\widetilde{M_{1,1}} \simeq \mathbb{E}^1_{\mathbf{Z}}$$

qui en caractéristique 0 donne à la courbe anharmonique de groupe d'automorphisme $\mathbb{Z}/6\mathbb{Z}$ l'invariant 0, et à celle de groupe $\mathbb{Z}/4\mathbb{Z}$ un invariant > 0 (qui sera nécessairement $2^a 3^b$, avec $a, b \in *$ bien déterminés, mais par moi oubliés... b = 3, cf. ci-dessous).

En termes de l'isomorphisme

$$\widetilde{M_{1,1}} \simeq U_{0,3}/\mathfrak{S}_3 \subset \mathbb{P}^1/\mathfrak{S}_3$$

valable sur Spec $\mathbb{Z}[\frac{1}{2}]$, ceci correspond à un isomorphisme entre $\mathbb{P}^1/\mathfrak{S}_3$ et \mathbb{P}^1 qui à l'orbite $(0,1,\infty)$ associe ∞ (non 0), et à l'orbite $(j,\overline{\jmath})$ associe 0 (non ∞), à l'orbite $(2,-1,\frac{1}{2})$ le fameux 2^a3^b (et non 1). La fonction (invariant modulaire)

$$(55) J(\lambda) \in \mathbf{Q}(\lambda)$$

qui réalise cet isomorphisme, i.e. le morphisme

$$\mathbb{P}^{1}_{\mathbf{Z}} \xrightarrow{J} \mathbb{P}^{1}_{\mathbf{Z}}$$

correspondant (de degré 6, avec $J \circ u = J$, $u \in \mathfrak{S}_3$) est donc lié à celle inspirée de la théorie des cartes, soit $f(\lambda)$, par

(57).
$$J(\lambda) = 2^a 3^b f(\lambda)^{-1}$$

D'ailleurs, $f(\lambda)$ (ou $J(\lambda)$) se calcule aisément par la connaissance de ses zéros et de ses pôles, avec leurs multiplicités, et la "normalisation" pour la valeur de f (ou de J) sur une des sections $2,-1,\frac{1}{2}$; on trouve immédiatement

(58)
$$f(z) = \frac{3^3}{2^2} \frac{z^2(z-1)^2}{(z^2-z+1)^3},$$

donc,

(59)
$$J(z) = 2^{a+2} 3^{b-3} \frac{(z^2 - z + 1)^3}{z^2 (z - 1)^2}.$$

Comme $J(\lambda)$ doit garder un sens en caractéristique 3, et ne peut pas être constante, ceci montre d'ailleurs que b=3, donc (59) s'écrit aussi

$$J(z) = 2^{a+2} \frac{(z^2 - z + 1)^3}{z^2 (z - 1)^2},$$

mais on se rappellera que cette formule n'est pertinente – ne permet de calculer l'invariant d'une courbe elliptique – que si la caractéristique est différente de 2, heureusement! Pour décrire

$$(60) M_{1,1} \longrightarrow \mathbb{E}^1_{\mathbf{Z}}$$

(et en particulier pour déterminer l'autre invariant modulaire critique $2^a 3^3$, i.e. pour déterminer a) aussi au voisinage de 2 – disons en caractéristique différente de 3 – il faut une étude des courbes elliptiques qui ne passe plus par la représentation (de Legendre, sauf erreur) $y^2 = \sqrt{x(x-1)(x-\lambda)}$, ou encore, par la rigidification de Jacobi d'échelon 2, mais par celle d'échelon 3.

Remarques: on voit tout de suite que le quotient $\mathbb{P}^1_{\mathbf{Z}}/\mathfrak{S}_3$ s'identifie à $\mathbb{P}^1_{\mathbf{Z}}$ de façon unique en prenant comme images des orbites $(0,1,\infty)$ et (j,\overline{j}) les sections 0 et ∞ (par exemple, en suivant la convention qui correspond à la théorie des cartes), et en prenant comme image de l'orbite $(2,-1,\frac{1}{2})$ un nombre rationnel qui soit > 0.

Ceci est possible a priori, car on note que les orbites $(0,1,\infty)$ et (j,\overline{j}) ne coïncident en aucune caractéristique, donc correspondent à des sections disjointes de $Y = \mathbb{P}^1_{\mathbb{Z}}/\mathfrak{S}_3$, tandis que l'orbite constante $(2,-1,\frac{1}{2})$ coïncide avec la première en caractéristique 2, avec la deuxième en caractéristique 3 (et ce sont là les deux seules coïncidences qui peuvent arriver).

On voit donc a priori que la troisième section sera de la forme $2^{\alpha}/3^{\beta}$, avec $\alpha, \beta \in \mathbb{R}$. Le calcul explicite est d'ailleurs évident; l'homomorphisme composé

(61)
$$\mathbb{P}_{\mathbf{Z}}^{1} \xrightarrow{f_{1}} \mathbb{P}_{\mathbf{Z}}^{1} / \mathfrak{S}_{3} \simeq \mathbb{P}_{\mathbf{Z}}^{1}$$

doit être de la forme $f_1 = c f$, avec la constante $c \in \mathbf{Q}$ choisie de telle façon que cf se réduise bien en toute caractéristique (ce qui détermine c modulo le signe), et que $f_1(-1) = c f(-1) = c > 0$ (ce qui lève l'indétermination du signe). On trouve alors

(62)
$$f_1(\lambda) = \frac{\lambda^2(\lambda - 1)^2}{(\lambda^2 - \lambda + 1)^2} = \frac{2^2}{3^3} f(\lambda),$$

donc

(63)
$$f_1(-1) = \frac{2^2}{3^3}$$
 (donc $\alpha = 2, \beta = 3$).

Mais on fera attention qu'au voisinage de la caractéristique 2, ces calculs ne se rapportent plus à $\widetilde{M}_{1,1}$ et $\widehat{M}_{1,1}$ où la configuration des trois sections n'est pas la même qu'ici...

Sur la lancée de ces réflexions, il serait naturel de regarder de plus près le schéma

(64)
$$M_{1,1}[4] \text{ sur lequel agit } \Gamma_4 = GL(2, \mathbf{Z}/4\mathbf{Z}) \text{ via } \Gamma_4' = \Gamma_4/\pm 1$$
 et l'homomorphisme

(65)
$$M_{1,1}[4] \longrightarrow M_{1,1}[2]' \simeq U_{0,3}$$

compatible avec

$$\Gamma_4' = GL(2, \mathbb{Z}/4\mathbb{Z})/\pm 1 \longrightarrow \Gamma_2' = \Gamma_2 \simeq GL(2, \mathbb{Z}/2\mathbb{Z}) \simeq \mathfrak{S}_3.$$
¹⁵⁸

Un calcul immédiat, compte tenu que $(\mathbb{Z}/4\mathbb{Z})^* \simeq \{\pm 1\}$ donne

$$\operatorname{Card}\Gamma_4 = 2\operatorname{Card}SL(2, \mathbb{Z}/4\mathbb{Z}) = 8\operatorname{Card}SL(2, \mathbb{Z}/2\mathbb{Z}) = 16\operatorname{Card}\Gamma_2 = 16 \times 6.$$

Donc

(66)
$$\operatorname{Card}(\Gamma'_{4,2} = \operatorname{Ker}(\Gamma'_4 \longrightarrow \Gamma'_2)) = 8$$

i.e. $M_{1,1}[4]$ est un revêtement galoisien de $M_{1,1}[2]'$ d'ordre 8. Notons qu'il n'est pas géométriquement connexe sur \mathbb{Q} , ou sur Spec $\mathbb{Z}[\frac{1}{2}]$, puisque $M_{1,1}[4]$ se trouve sur l'extension quadratique μ_4^* , de Spec Λ où $\Lambda = \mathbb{Z}[\frac{1}{2}]$, qui n'est autre que $\Lambda(i)$. On a une factorisation de $M_{1,1}[4] \longrightarrow M_{1,1}[2]'$:

(67)
$$M_{1,1}[4] \longrightarrow (U_{0,3})_{S} \xrightarrow{2} M_{1,1}[2]' \simeq U_{0,3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{1} = \mu_{4}^{*} \xrightarrow{2} \operatorname{Spec} \mathbf{Z}[\frac{1}{2}] = S$$

The second representation of the second repr

[où les flèches horizontales sont galoisiennes du degré indiqué et] où maintenant

$$M_{1,1}[4] \longrightarrow M_{1,1}[2]_{S}' = (U_{0,3})_{S}'$$

est un revêtement galoisien dont le groupe est le noyau de $\Gamma'_{4,2} \xrightarrow{\text{det}} \{\pm 1\}$, ou encore celui de $SL(2, \mathbb{Z}/4\mathbb{Z})' \longrightarrow SL(2, \mathbb{Z}/2\mathbb{Z})$, que nous allons désigner par $S\Gamma'_{4,2}$, qui est d'ordre 4.

Proposition. — *Le groupe*

(68)
$$S\Gamma_{4,2} = \operatorname{Ker}(SL(2, \mathbb{Z}/4\mathbb{Z}) \longrightarrow SL(2, \mathbb{Z}/2\mathbb{Z})$$

est isomorphe à $TL(2, \mathbf{F}_2)$ (groupe des matrices de trace nulle à coefficients dans \mathbb{F}_2), avec l'opération évidente de $SL(2, \mathbf{F}_2)$ dessus, et le sous-groupe $\{\pm 1\}$ correspond aux matrices scalaires – le quotient $S\Gamma'_{4,2}$ des deux est isomorphe à \mathbf{F}_2^2 (de façon idiote et pas canonique du tout!). Regardant $M_{1,1}[4]$ comme un revêtement galoisien de $M'_{1,1}[2]_{S'}=(U_{0,3})_{S'}$, on trouve géométriquement "le" revêtement abélien universel de $U_{0,3}$ de groupe annulé par 2 (et pour cause), qui a comme groupe de Galois $(\mathbf{F}_2)^{\{0,1,\infty\}}/(diagonale)$. 159

Enfin, tout est essentiellement tautologique, mais un calcul amusant à faire sera de redécrire l'action de $SL(2,\mathbb{F}_2)$ sur $\mathcal{T}L(2,F_2)$ / (matrices scalaires), de façon à l'identifier à l'action de \mathfrak{S}_3 sur $\mathbf{F}_2^{\{0,1,\infty\}}$ /(diagonale). Comme revêtement de

(69)
$$\widetilde{M_{1,1s'}} \simeq M_{1,1}[4]/S\Gamma_4' \simeq M_{1,1}[2]'_{s'}/\Gamma_2'$$

 $M_{1,1}[4]$ est un revêtement galoisien d'ordre 24 (=4·6) de groupe $SL(2, \mathbb{Z}/4\mathbb{Z})'$. Ce serait bien qu'on n'ait pas un isomorphisme

(70)
$$SL(2, \mathbf{Z}/4\mathbf{Z})' \simeq \mathfrak{S}_4$$

(où \mathfrak{S}_4 est le groupe des automorphismes de l'octaèdre), et que $M_{1,1_{S'}}$ ne soit le revêtement de $\mathbb{P}^1_{S'}\setminus\{0,1,\infty\}$, avec ramification compatible avec $2\{1\}+3\{\infty\}$,

The solution of the supplémentaire de ce sous-espace $\mathbb{F}_2 \leftarrow TL(2, \mathbb{F}_2)$ qui forment un torseur sur le dual de $V = TL(2, \mathbb{F}_2)$, qui devraient correspondre aux quatre relèvements en $\pi_{0,3} \hookrightarrow \mathfrak{T}_{1,1}^{\prime +} = SL(2, \mathbb{Z})$; cf. plus haut sur ces questions.

qui correspond à *l'octaèdre* dans la théorie des cartes – on devrait avoir sur $S' = \operatorname{Spec} \mathbf{Z}[\frac{1}{2}][i]$ un isomorphisme canonique

(71)
$$M_{1,1}[4]_{S'} \simeq \text{courbe de Fermat } x^r + y^r + z^r = 0 \text{ (sur } S')^{160}$$

dont le groupe d'automorphismes est justement une extension de 3, par

$$\mu_2^{\{0,1,\infty\}}$$
 /(diagonale)!

Pour bien faire, il faudrait expliciter la relation entre courbes elliptiques E (sur un schéma S au dessus de $\mathbf{Z}[\frac{1}{2}][i]$) munies d'une rigidification de Jacobi d'échelon E, E, E, E0 avec E1, E2 avec E3, E4 solutions "non triviales" de l'équation

$$(72) x^r + y^r + z^r = 0$$

sur S, i.e. les systèmes de sections $x,y,z\in\Gamma(S,O_S^*)$ satisfaisant (72), modulo multiplication par un "scalaire" $\alpha\in\Gamma(S,O_S^*)$ – ou encore, rompant la symétrie en posant X=x/z,Y=y/z, les solutions de l'équation

(73)
$$X^r + Y^r = -1 (= i^2), X, Y \in \Gamma(S, O_S^*)...$$

On a ainsi interprété $M_{1,1}[2]'$ et (modulo des vérifications et une étude un peu plus poussée) $M_{1,1}[4]$, en relation avec deux cartes triangulaires pondérées régulières – la carte "diédrale" ou carte triangulaire pondérée universelle (trois sommets $0, 1, \infty$, trois arêtes, deux faces qui sont des triangles, type (p,q)=(3,3)), et la carte *octogonale*, qui est un revêtement d'ordre 4 de celle-ci (étale en dehors de $\{0,1\infty\}$).

Il serait bien aussi de regarder de plus près le variétés modulaires congruentielles $M_{1,1}[3]$ et $M_{1,1}[5]$, correspondant à des groupes modulaires "géométriques":

$$\begin{cases} S\Gamma_3' = SL(2, \mathbf{F}_3)/ \pm 1 \text{ (d'ordre 12)} \subset GP(1, \mathbf{F}_3) \text{ (d'ordre 24)} \simeq \mathfrak{S}_4 \\ \text{en fait on doit avoir } S\Gamma_4' \simeq \mathfrak{A}_4 \\ S\Gamma_5' = SL(2, \mathbf{F}_5)/ \pm 1 \text{ (d'ordre 60)} \subset GP(1, \mathbf{F}_5) \text{ (d'ordre 120)} \simeq \text{ groupe du bi-icosaèdre} \end{cases}$$

¹⁶⁰ Il vaudrait mieux écrire l'équation de Fermat ici $x_0^r + x_1^r + x_\infty^r = 0$.

Sauf erreur, ces groupes sont respectivement les groupes \mathfrak{A}_4 du *tétraédre* orienté et celui \mathfrak{A}_5 de l'icosaèdre orienté. Si je me rappelle bien, les cas n=2,3,4,5 épuisent les cas de courbes modulaires congruentielles $M_{1,1}[n]$ qui soient *rationnelles*. C'est une chose remarquable qu'on trouve par exemple tous les polyèdres réguliers finis à faces des triangles [sauf un, à arêtes repliées - celui de la figure (76), cf. plus bas...]; il était clair a priori, par l'isomorphisme entre $\mathfrak{T}'_{1,1}$ et le "groupe cartographique triangulé orienté" $\pi'_{0,3}$, qu'on devrait retrouver tous les polyèdres réguliers finis à faces des triangles de cette façon, mais non pas que ce soit des sous-groupes de congruences, très exactement. Le tableau obtenu est alors le suivant:

groupe $G = S\Gamma'_n$ courbe modulaire type du polyèdre

$$\begin{cases} D_3 \simeq \mathfrak{S}_3 & M_{1,1}[2]' & \text{triangle sphérique} \\ \mathfrak{A}_4 & M_{1,1}[3] & \text{tétraèdre} \\ \mathfrak{S}_4 & M_{1,1}[4] & \text{octaèdre} \\ \mathfrak{A}_5 & M_{1,1}[5] & \text{icosaèdre} \end{cases}$$

Comme autres courbes modulaires (pas congruentielles) rationnelles galoisiennes sur $\widetilde{M}_{1,1}$, il y aurait encore les quotients des précédents par les sous-groupes invariants de $S\Gamma'_n$, distincts du groupe entier et de 1. On trouve comme quotients possibles:

- a) Cas \mathfrak{S}_3 : le quotient $\{\pm 1\}$ (via signature).
- d) Cas \mathfrak{A}_4 : le quotient $\mathbb{Z}/3\mathbb{Z} = \mathfrak{A}_3$ (via $\mathfrak{S}_4 \longrightarrow \mathfrak{S}_3$ induisant $\mathfrak{A}_4 \longrightarrow \mathfrak{A}_3$).
- c) Cas \mathfrak{S}_4 : le quotient \mathfrak{S}_3 , et le quotient $\{\pm 1\}$ de celui-ci.

(pour d il n'y a rien, ¾5 étant un groupe simple).

Les courbes modulaires rationnelles obtenues se réduisent aux deux cas a) et b) (qui sont retrouvés dans c)). Dans le cas a), on trouve le revêtement quadratique de $Y = \mathbb{P}_1(\mathbf{C}) \setminus \{0,1,\infty\}$, qui est non ramifié en ∞ (car l'indice de ramification devrait diviser 2 et 3), qui correspond donc au revêtement $y = \sqrt{x(x-1)}$ et à la carte sphérique de type (2,1) (sommets d'indice 2, faces d'indice 1), formée d'un sommet avec une arête (équateur) délimitant deux faces qui sont des monogones.

Le cas b) est le revêtement cyclique d'ordre 3, ramifié seulement en 0 et en ∞ (en 1, l'indice de ramification doit être diviseur de 2 et de 3, donc est 1) avec carte

sphérique de type (3,3), avec des arêtes qui sont des boucles repliées: (76) 1 seul sommet, 3 arêtes repliées qui en sortent, une face triangulaire.

Les variétés modulaires sont trop proches de $\widetilde{M}_{1,1}$ – avec un groupe d'automorphismes (quotient de $\Gamma_{\infty}' = SL(2, \mathbf{Z})$) trop petit, pour pouvoir être rigidifiantes; il faudrait que le groupe de Galois-Poincaré du revêtement soit multiple de 12 (multiple de 4 et 6!), pour que la courbe modulaire ait une chance d'être rigidifiante. Ces cas semblent donc nettement moins intéressants.

Il y aurait lieu par ailleurs, dans chacun des trois cas restants de (75) (mis à part donc le premier cas, qui correspond à $M_{1,1}[2]'$ et est à peu près compris), d'expliciter la relation entre les points des courbes rationnelles correspondantes, et entre courbes elliptiques à rigidification de Jacobi, d'échelon respectivement 3,4,5. Il y a sûrement des choses précises dans Klein, mais on aimerait faire des choses un peu plus fines, qui soient valables simultanément en toute caractéristique, i.e. sur des schémas de base généraux. Ce souci semble intuitivement lié à la question des opérations de \mathbb{F}_Q sur les classes d'isomorphismes des cartes, et plus particulièrement des cartes sphériques régulières. C'est assez extraordinaire que [?], depuis trois ans que la question est là, n'y ait pas encore touché. Dieu sait qu'elle est juteuse!

Complément sur les rapports anharmoniques:

Soient x_1, x_2, x_3, x_4 des sections partout distinctes de \mathbb{P}^1_S , on veut construire la section correspondante de $U_{0,3} = \mathbb{P}^1_S \setminus \{0,1,\infty\}_S$. Soient a,b,c,d sections locales de O_S , avec ad - bc inversible, telles que:

(77)
$$u = u_{a,b,c,d} : z \longmapsto \frac{az+b}{cz+d}$$

transforme (x_1, x_2, x_3) en $(0, 1, \infty)$ – on aura donc

$$\lambda = u(x_4).$$

Les conditions sur (a, b, c, d) pour $ux_1 = 0$ etc sont

$$ax_1 = 0$$
, $ax_2 + b = cx_2 + d$, $cx_3 + d = 0$

qui donnent, si par exemple a est inversible (sinon on peut supposer c inversible),

en résolvant en b, c, d [ici quelques lignes de calcul élémentaire omises]:

(79)
$$\lambda(x_1, x_2, x_3, x_4) = \frac{(x_4 - x_1)(x_2 - x_3)}{(x_2 - x_1)(x_4 - x_3)}.$$

En tant que fonction rationnelle en x_1, x_2, x_3, x_4 (à coefficients dans un anneau intègre fixé), λ est caractérisé par les deux propriétés:

- a) invariance par rapport à une (même) transformation homographique sur les variables $x_1, x_2, x_3, x_4, f(ux_1, ux_2, ux_3, ux_4) = f(x_1, x_2, x_3, x_4)$, et
- b) $f(0,1,\infty,x_4)=x_4$ (avec un grain de sel pour donner un sens au premier membre).

On a de plus

c) une propriété remarquable de symétrie, qu'on explicite en définissant un homomorphisme de \mathfrak{S}_4 dans le groupe homographique (moralement, GP(1))

de telle façon qu'on ait

(80)
$$\lambda(x_{\sigma^{-1}1}, x_{\sigma^{-1}2}, x_{\sigma^{-1}3}, x_{\sigma^{-1}4}) = \varphi_{\sigma}(\lambda(x_1, x_2, x_3, x_4)) \dots$$