Chapter 1

General Discussion

1.1 Summary of results

The work described throughout this thesis has centered around how prediction is used in sensory processes such as object recognition and prolonged learning. The work was heavily motivated by the LeabraTI (TI: Temporal Integration) framework (Chapter ??) which leverages the laminocolumnar structure of the neocortex (Mountcastle, 1997; Buxhoeveden & Casanova, 2002; Horton & Adams, 2005) to learn to predict temporally structured sensory inputs. Predictive learning in the LeabraTI framework is made possible by temporally interleaving predictions and sensory processing across the same populations of neurons so that powerful error-driven learning mechanisms (O'Reilly & Munakata, 2000; O'Reilly, Munakata, Frank, Hazy, & Contributors, 2012) can be used to compute a prediction error that can be learned against to minimize the difference between predictions and sensory events over time.

LeabraTI relies on a 10 Hz prediction-sensation period as its core "clock cycle", suggested to correspond to the widely studied alpha rhythm observable across posterior cortex using scalp EEG (Palva & Palva, 2007; Hanslmayr, Gross, Klimesch, & Shapiro, 2011; VanRullen, Busch,

Drewes, & Dubois, 2011). Chapter ?? investigated the role of the alpha rhythm in prediction by using an entrainment paradigm (Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008; Calderone, Lakatos, Butler, & Castellanos, in press) in which stimuli were presented rhythmically at 10 Hz so that predictions and sensory information could be interleaved regularly at the optimal rate proposed by LeabraTI. The experiment made use of three-dimensional objects that required integration over multiple sequential views to extract their three-dimensional structure. Thus, relatively rapid predictive learning mechanisms that operate over subsequent 100 ms periods could be leveraged to optimally encode the the objects. The spatial coherence between views and temporal onset of each view were independently manipulated to determine their effect on stimulus encoding quality and the putative role of the alpha rhythm in predictive processing.

The results of the Chapter ?? experiment indicated that spatial coherence and predictable temporal onset of each stimulus in an entraining sequence enhanced discriminability of a subsequently presented probe stimulus. Temporal predictability of entrainers also speeded response times. EEG amplitude averaging indicated separable time courses for spatial and temporal prediction over posterior sites with temporal predictability always preceding the onset of stimuli and spatial predictability manifesting at the onset of stimuli and persisting for over 100 ms after in the case of the probe. Oscillatory analyses indicated strong bilateral alpha power and phase coherence modulation as a function of stimulus predictability. Specifically, spatial predictability of entraining stimuli suppressed alpha power with a lower degree of phase misalignment relative to unpredictable stimuli. Temporally predictable entraining stimuli had the opposite effect, with increased alpha power and phase alignment, indicating successful entrainment. Importantly, phase alignment due to temporal predictability remained elevated compared to temporally unpredictable stimuli during a 200 ms blank period between the entraining sequence and probe, indicating that the effects of temporal predictability could persist without exogenous entrainment. In addition to the main effects of predictability on bilateral EEG amplitude and oscillatory properties, right hemisphere sites exhibited synergistic effects of combined spatial and temporal probe predictability on EEG amplitude and 10 Hz phase coherence approximately 200 ms after probe onset.

Overall.

1.2 Outstanding issues

1.3 Conclusions

References

- Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. <u>Trends in Cognitive Sciences</u>, <u>16</u>(7), 390–398.
- Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125(Pt 5), 935–951.
- Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (in press). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in Cognitive Sciences.
- Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. <u>Nature Neuroscience</u>, <u>15</u>(4), 511–517.
- Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of oscillations in temporal attention. Brain research reviews, 67(1-2), 331–343.
- Horton, J. C., & Adams, D. L. (2005). The cortical column: A structure without a function. Philosophical Transactions of the Royal Society B, 360(1456), 837–862.
- Mountcastle, V. B. (1997). The columnar organization of the neocortex. <u>Brain</u>, <u>120</u>(Pt 4), 701–722.
- O'Reilly, R. C., & Munakata, Y. (2000). <u>Computational Explorations in Cognitive Neuroscience:</u> Understanding the Mind by Simulating the Brain. Cambridge, MA: The MIT Press.
- O'Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors (2012). Computational Cognitive Neuroscience. Wiki Book, 1st Edition, URL: http://ccnbook.colorado.edu.
- Palva, S., & Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. <u>Trends in Neurosciences</u>, 30(4), 150–158.
- Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal oscillations and visual amplification of speech. Trends in Cognitive Sciences, 12(3), 106–113.
- VanRullen, R., Busch, N. A., Drewes, J., & Dubois, J. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. <u>Frontiers in Psychology</u>, 2(60).