Lab 4 – Podstawy rachunku prawdopodobieństwa

Modele dyskretne

- Przestrzeń probabilistyczna: skończony zbiór zdarzeń elementarnych $\Omega = \{e_1, ..., e_n\}$, sigma algebra $\Sigma = 2^{\Omega}$, Prawdopodobieństwo, to funkcja której uporządkowanym zbiorem wartości jest $\{p_1, ..., p_n\}$. Każdy podzbiór Ω jest zdarzeniem, w szczególności singleton każdego zdarzenia elementarnego $\{e_i\}$.
- Model klasyczny $n < +\infty$, $p_i = p_i$, $\forall i, j$.
- W ogólności prawdopodobieństwa zdarzeń elementarnych mogą się różnić.

Te maty zadań:

Zadanie 1. Z talii 52 kart losowo wybieramy 5 bez zwracania. Oblicz prawdopodobieństwo, że wszystkie karty będą czarne.

Zadanie 2. Pewien student zdaje egzaminy z fizyki i matematyki. Prawdopodobieństwo, że zda fizykę wynosi 0.4, że zda oba egzaminy 0.2, a że zda co najmniej jeden egzamin wynosi 0.7. Oblicz prawdopodobieństwo, że student zda egzamin z matematyki.

Zadanie 3. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia *A* polegającego na tym, że liczba oczek w drugim rzucie jest o 1 większa od liczby oczek w pierwszym rzucie.

Zadanie 4. W sklepie wśród dziesięciu żarówek trzy są wadliwe, a pozostałe są dobrej jakości. Klient kupił losowo wybraną jedną żarówkę (bez sprawdzania). Po namyśle dokupił jeszcze jedną. Jakie jest prawdopodobieństwo zdarzenia, że klient, otrzyma obie żarówki dobrej jakości?

Zadanie 5. Zakłady A1, A2, A3 produkują igły w ilościach równych $\alpha_1 = 20000$, $\alpha_2 = 15000$, $\alpha_3 = 25000$. Wiadomo, że zakłady wytwarzają odpowiednio w1=0.003, w2=0.002 i w3=0.004 braków. Towar stanowi mieszaninę produkcji wszystkich fabryk. Pobrana z niego igła okazała się brakiem. Oblicz prawdopodobieństwa, że pochodzi ona z zakładu A1, A2 i A3.

Zadanie 6. Produkcja pewnego rodzaju części maszynowej może być przeprowadzona dwoma technologiami:

I jest sekwencją trzech operacji, a prawdopodobieństwo wadliwej obróbki w kolejnych operacjach wynosi odpowiednio 0.05, 0.1, 0.3;

II jest sekwencją 2 operacji, a prawdopodobieństwo wadliwej obróbki w każdej operacji wynosi 0.25.

- a) Która technologia ma mniejsze prawdopodobieństwo wytworzenia części bez wady?
- b) Podjęto losowo (z rozkładem równomiernym) produkcję jedną z technologii. Obliczyć prawdopodobieństwo wytworzenia części bez wady.

Zadanie 6.1. W urnie znajduje się 12 kul: 2 czarne 5 białych i 5 czerwonych. Losujemy 3 razy bez zwracania.

- 1) Jakie jest prawdopodobieństwo wylosowania 2 kul białych?
- 2) Jakie jest prawdopodobieństwo wylosowania jednej kuli czarnej przed jedną kulą białą?

Modele ciagle

1. Losowanie punktu z odcinka rzeczywistego

 $\Omega = [a,b]$; $a,b \in \mathbb{R}$; $a < b, \Sigma = \mathcal{B}([a,b])$. Zdarzeniem jest każdy podzbiór należący do $\mathcal{B}([a,b])$. Każdy przedział zawarty w [a,b] jest zdarzeniem. Przecięcie (iloczyn) i unia (suma) każdego ciągu przedziałów zawartych w [a,b] jest zdarzeniem. Każdy punkt z [a,b] jest zdarzenie o zerowym prawdopodobieństwie.

Czy istnieje podzbiór [a, b] który nie jest zdarzeniem?

Zbiór Vitalego – podzbiór zbioru liczb rzeczywistych zawarty w przedziale [-1,2], który nie jest mierzalny w sensie Lebesgue'a. Konstrukcję zbioru (wymagająca założenia aksjomatu wyboru) podał Giuseppe Vitali w 1905 i pokazał, że nie istnieje dla tego zbioru miara Lebesgue'a – miara, która jest niezmiennicza na przesunięcia, przyjmująca niezerowe i skończone wartości na przedziałach [a, b]i określona na rodzinie wszystkich podzbiorów prostej rzeczywistej.

Konstrukcja

Niech meas oznacza miarę Lebesgue'a w zbiorze liczb rzeczywistych. W przedziale [0,1] można określić relację ~ w następujący sposób:

 $x \sim y$ wtedy i tylko wtedy, gdy x - y jest liczbą wymierną.

Relacja \sim jest relacją równoważności. Klasy abstrakcji tej relacji są rozłącznymi podzbiorami [0,1]. Aksjomat wyboru gwarantuje istnienie zbioru V, który ma dokładnie jeden element wspólny z każdą klasą abstrakcji. Każdy zbiór o takiej własności nazywany jest **zbiorem Vitalego**.

Jeśli V jest zbiorem Vitalego, to:

- różnica dowolnych dwóch różnych elementów tego zbioru jest liczbą niewymierną, skad
- $(V+q) \cap (V+q') = \emptyset$ dla każdych dwóch różnych liczb wymiernych q, q'.

Oznacza to, że rodzina $\mathfrak{F} = \{V + q; q \in [-1,1] \cap \mathbb{Q}\}$

jest przeliczalna i składa się ze zbiorów parami rozłącznych.

Gdyby V był zbiorem mierzalnym, to każdy ze zbiorów postaci V+q byłby zbiorem mierzalnym oraz zbiory te byłyby tej samej miary (miara Lebesgue'a jest niezmiennic za na przesunięcia). Oznaczałoby to, że $\bigcup \mathfrak{I}$ jest zbiorem mierzalnym oraz $1 \leq \text{meas}(\bigcup \mathfrak{I}) \leq 3$, ponieważ $[0,1] \subseteq \bigcup \mathfrak{I} \subseteq [-1,2]$.

V nie może być więc miary zero, bo wówczas meas $(\bigcup \mathfrak{I}) = 0$

V nie może być również zbiorem miary dodatniej, bo wówczas meas(U \mathfrak{J}) = $+\infty$ co w sumie prowadzi do sprzeczności.

Argument przedstawiony powyżej wykazuje, że jeśli przyjmiemy aksjomat wyboru, to na prostej istnieją zbiory niemierzalne w sensie Lebesgue'a, niemniej jednak zbiory takie w żadnym sensie nie są *konstruowalne*. Czasami używa się jednak zwrotu "konstrukcja zbioru Vitalego" w znaczeniu "definicja takich zbiorów".

Bibliografia

- https://pl.wikipedia.org/wiki/Zbi%C3%B3r Vitalego
- <u>Aleksander Błaszczyk</u>, Sławomir Turek: *Teoria mnogości*. Warszawa: PWN, 2007, s. 323-324. ISBN 978-83-01-15232-1.
- <u>Stanisław Łojasiewicz</u>: *Wstęp do teorii funkcji rzeczywistych*. Warszawa: <u>PWN</u>, 1973, s. 118-119.

2. Losowanie ze zbiorów wielowymiarowych - model algorytmu Pure Random Search

Niech $D \subset \mathbb{R}^N$ ograniczony zbiór zwarty w pełni regularny (z brzegiem Lipschitza), meas (D) > 0 oraz poszukiwany podzbiór pełnej miary $S \subset D \subset \mathbb{R}^N$; meas (S) > 0. Założymy, że S posiada skończona ilość składowych spójnych pełnej miary.

Zadanie 1. Skonstruuj najprostszy algorytm stochastyczny znajdujący punkty w poszukiwanym zbiorze S.

Zadanie 2. Zakładając, że znamy względną miarę zbioru S, tj. $p = \frac{\text{meas}(S)}{\text{meas}(D)}$ obliczyć, ile losowań należy wykonać, aby wylosować co najmniej k punktów z S z zadaną gwarancją $\delta \in (0,1)$?