Package 'EmpiricalCalibration'

April 18, 2016

Title Routines for Performing Empirical Calibration of Observational Study Estimates

Type Package

Version 1.1.1 **Date** 2016-04-18

	plotCoverage	
	plotForest	
	plotMcmcTrace	
	plotTrueAndObserved	
	simulateControls	
	Simulate Controls	ر.
Index	1	16

calibrateConfidenceInterval

Calibrate confidence intervals

Description

Calibrate confidence intervals

Usage

```
calibrateConfidenceInterval(logRr, seLogRr, model)
```

Arguments

logRr A numeric vector of effect estimates on the log scale.

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate >))/qnorm (0.025).

 $\begin{tabular}{ll} model & An object of type systematic Error Model as created by the fit Systematic Error Model \\ \end{tabular}$

function.

Details

Compute calibrated confidence intervals based on a model of the systematic error.

Value

A data frame with calibrated confidence intervals and point estimates.

```
data <- simulateControls(n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = \log(c(1, 2, 4))) model <- fitSystematicErrorModel(data$logRr, data$seLogRr, data$trueLogRr) newData <- simulateControls(n = 15, mean = 0.25, sd = 0.25, trueLogRr = \log(c(1, 2, 4))) result <- calibrateConfidenceInterval(newData$logRr, newData$seLogRr, model) result
```

calibrateP 3

Description

calibrateP computes calibrated p-values using the fitted null distribution

Usage

```
calibrateP(null, logRr, seLogRr, ...)
## S3 method for class 'null'
calibrateP(null, logRr, seLogRr, ...)
## S3 method for class 'mcmcNull'
calibrateP(null, logRr, seLogRr, pValueOnly, ...)
```

Arguments

null	An object of class null created using the fitNull function or an object of class mcmcNull created using the fitMcmcNull function.
logRr	A numeric vector of one or more effect estimates on the log scale
seLogRr	The standard error of the log of the effect estimates. Hint: often the standard error = $(\log(< \text{lower bound 95 percent confidence interval>}) - \log(< \text{effect estimate>}))/qnorm(0.025)$
	Any additional parameters (currently none).
pValueOnly	If true, will return only the calibrated P-value itself, not the credible interval.

Details

This function computes a calibrated two-sided p-value as described in Schuemie et al (2014).

Value

The two-sided calibrated p-value.

Methods (by class)

- null: Computes the calibrated P-value using asymptotic assumptions.
- mcmcNull: Computes the calibrated P-value and 95 percent credibel interval using Markov Chain Monte Carlo (MCMC).

References

Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in Medicine 33(2):209-18,2014

4 caseControl

Examples

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
null <- fitNull(negatives$logRr, negatives$seLogRr)
positive <- sccs[sccs$groundTruth == 1, ]
calibrateP(null, positive$logRr, positive$seLogRr)</pre>
```

caseControl

Odds ratios from a case-control design

Description

Odds ratios from a case-control design

Usage

```
data(caseControl)
```

Format

A data frame with 47 rows and 4 variables:

drugName Name of the drug
groundTruth Whether the drug is a positive (1) or negative (0) control
logRr The log of the incidence rate ratio
seLogRr The standard error of the log of the incidence rate ratio

Details

A dataset containing the odds ratios (and standard errors) produced using a case-control design. The outcome is upper GI bleeding, the drug of interest (groundTruth = 1) is sertraline. Also included are 46 negative control drugs, for which we believe there to be no causal relation with upper GI bleeding. We used a database of medical records from general practices in the USA, the General Electric (GE) Centricity database, which contains data on 11.2 million subjects. We restricted on study period (start of 1990 through November 2003), age requirements (18 years or older), available time prior to event (180 days), number of controls per case (6), and risk definition window (30 days following the prescription). Controls were matched on age and sex. Cases of upper GI bleeding were identified on the basis of the occurrence of ICD-9 diagnosis codes in the problem list. These codes pertain to esophageal, gastric, duodenal, peptic, and gastrojejunal ulceration, perforation, and hemorrhage, as well as gastritis and non-specific gastrointestinal hemorrhage. For more information on this set see Schuemie et al (2014).

References

Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in Medicine 33(2):209-18.2014

cohortMethod 5

cohortMethod

Relative risks from a new-user cohort design

Description

Relative risks from a new-user cohort design

Usage

data(cohortMethod)

Format

A data frame with 31 rows and 4 variables:

drugName Name of the drug

groundTruth Whether the drug is a positive (1) or negative (0) control

logRr The log of the incidence rate ratio

seLogRr The standard error of the log of the incidence rate ratio

Details

A dataset containing the relative risks (and standard errors) produced using a new-user cohort design. The outcome is acute liver injury, the drug of interest (groundTruth = 1) is Isoniazid Also included are 30 negative control drugs, for which we believe there to be no causal relation with acute liver injury. We used the Thomson MarketScan Medicare Supplemental Beneficiaries database, which contains data on 4.6 million subjects. We selected two groups (cohorts): (1) all subjects exposed to isoniazid and (2) all subjects having the ailment for which isoniazid is indicated, in this case tuberculosis, and having received at least one drug that is not known to cause acute liver injury. We removed all subjects who belonged to both groups and subjects for which less than 180 days of observation time was available prior to their first exposure to the drug in question. Acute liver injury was identified on the basis of the occurrence of ICD-9-based diagnosis codes from inpatient and outpatient medical claims and was defined broadly on the basis of codes associated with hepatic dysfunction, as have been used in prior observational database studies. The time at risk was defined as the length of exposure + 30 days, and we determined whether subjects experienced an acute liver injury during their time at risk. Using propensity score stratification, the cohorts were divided over 20 strata, and an odds ratio over all strata was computed using a Mantel-Haenszel test. The propensity score was estimated using Bayesian logistic regression using all available drug, condition, and procedure covariates occurring in the 180 days prior to first exposure, in addition to age, sex, calendar year of first exposure, Charlson index, number of drugs, number of visit days, and number of procedures. For more information on this set see Schuemie et al (2014).

References

Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in Medicine 33(2):209-18,2014

6 EmpiricalCalibration

Description

computeTraditionalP computes the traditional two-sided p-value based on the log of the relative risk and the standard error of the log of the relative risk.

Usage

```
computeTraditionalP(logRr, seLogRr)
```

Arguments

logRr A numeric vector of one or more effect estimates on the log scale

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025)

Value

The two-sided (traditional) p-value.

Examples

```
data(sccs)
positive <- sccs[sccs$groundTruth == 1, ]
computeTraditionalP(positive$logRr, positive$seLogRr)</pre>
```

EmpiricalCalibration EmpiricalCalibration

Description

EmpiricalCalibration

fitMcmcNull 7

|--|--|--|

Description

fitNull fits the null distribution to a set of negative controls using Markov Chain Monte Carlo (MCMC).

Usage

```
fitMcmcNull(logRr, seLogRr, iter = 10000)
```

Arguments

logRr A numeric vector of effect estimates on the log scale

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025)

iter Number of iterations of the MCMC.

Details

This is an experimental function for computing the 95 percent credible interval of a calibrated p-value using Markov-Chain Monte Carlo (MCMC).

Value

An object of type mcmcNull containing the mean and standard deviation (both on the log scale) of the null distribution, as well as the MCMC trace.

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
null <- fitMcmcNull(negatives$logRr, negatives$seLogRr)
null
plotMcmcTrace(null)
positive <- sccs[sccs$groundTruth == 1, ]
calibrateP(null, positive$logRr, positive$seLogRr)</pre>
```

8 fitNull

fitNull

Fit the null distribution

Description

fitNull fits the null distribution to a set of negative controls

Usage

```
fitNull(logRr, seLogRr)
```

Arguments

logRr A numeric vector of effect estimates on the log scale

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025)

Details

This function fits a Gaussian function to the negative control estimates as described in Schuemie et al (2014).

Value

An object containing the parameters of the null distribution.

References

Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in Medicine 33(2):209-18,2014

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
null <- fitNull(negatives$logRr, negatives$seLogRr)
null</pre>
```

fitSystematicErrorModel

Fit a systematic error model

Description

Fit a systematic error model

Usage

```
fitSystematicErrorModel(logRr, seLogRr, trueLogRr)
```

Arguments

logRr A numeric vector of effect estimates on the log scale.

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025).

trueLogRr A vector of the true effect sizes.

Details

Fit a model of the systematic error as a function of true effect size. This model is an extention of the method for fitting the null distribution. The mean and standard deviations of the error distributions are assumed to be linear with respect to the true effect size, and each component is therefore represented by an intercept and a slope.

Value

An object of type systematicErrorModel.

Examples

```
 controls <- simulateControls (n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = log(c(1, 2, 4))) \\ model <- fitSystematicErrorModel(controls$logRr, controls$seLogRr, controls$trueLogRr) \\ model
```

plotCalibration

Create a calibration plot

Description

plotCalibration creates a plot showing the calibration of our calibration procedure

Usage

```
plotCalibration(logRr, seLogRr, useMcmc = FALSE, legendPosition = "right",
    fileName = NULL)
```

10 plotCalibrationEffect

Arguments

logRr A numeric vector of effect estimates on the log scale

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025)

useMcmc Use MCMC to estimate the calibrated P-value?

legendPosition Where should the legend be positioned? ("none", "left", "right", "bottom",

"top")

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Creates a calibration plot showing the number of effects with p < alpha for every level of alpha. The empirical calibration is performed using a leave-one-out design: The p-value of an effect is computed by fitting a null using all other negative controls. Ideally, the calibration line should approximate the diagonal. The plot shows both theoretical (traditional) and empirically calibrated p-values.

Value

A Ggplot object. Use the ggsave function to save to file.

Examples

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
plotCalibration(negatives$logRr, negatives$seLogRr)</pre>
```

```
\verb"plotCalibration" Effect" \textit{ Plot the effect of the calibration}
```

Description

plotCalibrationEffect creates a plot showing the effect of the calibration.

Usage

```
plotCalibrationEffect(logRrNegatives, seLogRrNegatives, logRrPositives,
  seLogRrPositives, null = NULL, xLabel = "Relative risk",
  fileName = NULL)
```

Arguments

 $\label{logRrNegatives} \begin{tabular}{ll} A numeric vector of effect estimates of the negative controls on the log scale. \\ $selogRrNegatives \end{tabular}$

The standard error of the log of the effect estimates of the negative controls.

logRrPositives A numeric vector of effect estimates of the positive controls on the log scale.

plotCoverage 11

seLogRrPositives

The standard error of the log of the effect estimates of the positive controls.

null An object representing the fitted null distribution as created by the fitNull

function.

xLabel The label on the x-axis: the name of the effect estimate.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Creates a plot with the effect estimate on the x-axis and the standard error on the y-axis. Negative controls are shown as blue dots, positive controls as yellow diamonds. The area below the dashed line indicated estimates with p < 0.05. The orange area indicates estimates with calibrated p < 0.05.

Value

A Ggplot object. Use the ggsave function to save to file.

Examples

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
positive <- sccs[sccs$groundTruth == 1, ]
plotCalibrationEffect(negatives$logRr, negatives$seLogRr, positive$logRr, positive$seLogRr)</pre>
```

plotCoverage

Plot the coverage

Description

Plot the coverage

Usage

```
plotCoverage(logRr, seLogRr, trueLogRr, region = 0.95, fileName = NULL)
```

Arguments

logRr A numeric vector of effect estimates on the log scale

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate>))/qnorm(0.025)

trueLogRr A vector of the true effect sizes

region Size of the confidence interval. Default is .95 (95 percent).

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

12 plotForest

Details

Plot the fractions of estimates where the true effect size is below, above or within the confidence interval, for one or more true effect sizes.

Examples

```
data <- simulateControls(n = 50 * 3, mean = 0, sd = 0.15, trueLogRr = log(c(1, 2, 4))) plotCoverage(data$logRr, data$seLogRr, data$trueLogRr)
```

plotForest

Create a forest plot

Description

plotForest creates a forest plot of effect size estimates.

Usage

```
plotForest(logRr, seLogRr, names, xLabel = "Relative risk", fileName = NULL)
```

Arguments

logRr	A numeric vector of effect estimates on the log scale
seLogRr	The standard error of the log of the effect estimates. Hint: often the standard error = $(\log(< \text{lower bound 95 percent confidence interval>}) - \log(< \text{effect estimate>}))/qnorm(0.025)$
names	A vector containing the names of the drugs or outcomes
xLabel	The label on the x-axis: the name of the effect estimate
fileName	Name of the file where the plot should be saved, for example 'plot.png'. See the

Details

Creates a forest plot of effect size estimates (ratios). Estimates that are significantly different from 1 (alpha = 0.05) are marked in orange, others are marked in blue.

function ggsave in the ggplot2 package for supported file formats.

Value

A Ggplot object. Use the ggsave function to save to file.

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
plotForest(negatives$logRr, negatives$seLogRr, negatives$drugName)</pre>
```

plotMcmcTrace 13

plotMcmcTrace	Plot the MCMC trace	
---------------	---------------------	--

Description

Plot the MCMC trace

Usage

```
plotMcmcTrace(mcmcNull, fileName = NULL)
```

Arguments

mcmcNull An object of type mcmcNull as generated using the fitMcmcNull function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Plot the trace of the MCMC for diagnostics purposes.

Examples

```
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
null <- fitMcmcNull(negatives$logRr, negatives$seLogRr)
plotMcmcTrace(null)</pre>
```

plotTrueAndObserved

Plot true and observed values

Description

Plot true and observed values, for example from a simulation study.

Usage

```
plotTrueAndObserved(logRr, seLogRr, trueLogRr, xLabel = "Relative risk",
    fileName = NULL)
```

Arguments

logRr A numeric vector of effect estimates on the log scale.

seLogRr The standard error of the log of the effect estimates. Hint: often the standard

error = (log(<lower bound 95 percent confidence interval>) - log(<effect esti-

mate >))/qnorm(0.025).

trueLogRr A vector of the true effect sizes.

xLabel The label on the x-axis: the name of the effect estimate.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

14 sccs

Details

Creates a forest plot of effect size estimates (ratios). Estimates that are significantly different from the true value (alpha = 0.05) are marked in orange, others are marked in blue.

Value

A Ggplot object. Use the ggsave function to save to file.

Examples

```
data <- simulateControls(n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = \log(c(1, 2, 4))) plotTrueAndObserved(data$logRr, data$seLogRr, data$trueLogRr)
```

sccs

Incidence rate ratios from Self-Controlled Case Series

Description

Incidence rate ratios from Self-Controlled Case Series

Usage

data(sccs)

Format

A data frame with 46 rows and 4 variables:

drugName Name of the drug

groundTruth Whether the drug is a positive (1) or negative (0) control

logRr The log of the incidence rate ratio

seLogRr The standard error of the log of the incidence rate ratio

Details

A dataset containing the incidence rate ratios (and standard errors) produced using a Self-Controlled Case Series (SCCS) design. The outcome is upper GI bleeding, the drug of interest (groundTruth = 1) is sertraline. Also included are 45 negative control drugs, for which we believe there to be no causal relation with upper GI bleeding. We used a database of medical records from general practices in the USA, the General Electric (GE) Centricity database, which contains data on 11.2 million subjects. We restricted on study period (start of 1990 through November 2003), age requirements (18 years or older), available time prior to event (180 days), and risk definition window (30 days following the prescription). Time 30 days prior to the first prescription was removed to account for possible contra-indications. Cases of upper GI bleeding were identified on the basis of the occurrence of ICD-9 diagnosis codes in the problem list. These codes pertain to esophageal, gastric, duodenal, peptic, and gastrojejunal ulceration, perforation, and hemorrhage, as well as gastritis and non-specific gastrointestinal hemorrhage. For more information on this set see Schuemie et al (2014).

simulateControls 15

References

Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Statistics in Medicine 33(2):209-18,2014

simulateControls

Simulate (negative) controls

Description

Simulate (negative) controls

Usage

```
simulateControls(n = 50, mean = 0, sd = 0.1, seLogRr = runif(n, min = 0.01, max = 0.2), trueLogRr = 0)
```

Arguments

n Number of controls to simulate.

mean The mean of the error distribution (on the log RR scale).

sd The standard deviation of the error distribution (on the log RR scale).

seLogRr The standard error of the log of the relative risk. This is recycled for the controls.

The default is to sample these from a uniform distribution.

trueLogRr The true relative risk (on the log scale) used to generate these controls. This is

recycled for the controls.

Details

Generate point estimates given known true effect sizes and standard errors

Index

```
*Topic datasets
    caseControl, 4
    cohortMethod, 5
    sccs, 14
{\tt calibrateConfidenceInterval, 2}
calibrateP, 3
caseControl, 4
cohortMethod, 5
{\tt computeTraditionalP, 6}
{\it Empirical Calibration}, 6
EmpiricalCalibration-package
         (EmpiricalCalibration), 6
fitMcmcNull, 7
fitNull, 8
fitSystematicErrorModel, 2, 9
plotCalibration, 9
plotCalibrationEffect, 10
plotCoverage, 11
plotForest, 12
plotMcmcTrace, 13
\verb|plotTrueAndObserved|, 13|
sccs, 14
{\tt simulateControls}, {\tt 15}
```