Solution for Missionaries and Cannibals Problem using Search Algorithms

Berke Emrecan Arslan, Zeynep Grdk November 23, 2018

0.1 Introduction

Many transportation scheduling problems are problems of reasoning about actions. Such problems can be formulated as follows. Given a set of space points, an initial distribution of objects in these points and transportation facilities with given capacities; find an optimal sequence of transportations between the space points such that a terminal distribution of objects in these points can be attained without violating a set of given constraints on possible intermediate distribution of objects.

In a more generalized version of this problem, there are N missionaries and N cannibals (where $N \geq 3$) and the boat has a capacity k (where $k \geq 2$). We call this problem the Missionaries and Cannibals Problem.

0.2 Problem Formulation

We shall formulate now the Missionaries and Cannibals problem in a system of productions of the type described in section 2. We start by specifying a simple but straightforward N-state language.

The universe U_0 of the N-state language contains the following basic elements:

- N individuals m_1, m_2, \ldots, m_N that are missionaries and N individuals c_1, c_2, \ldots, c_N that are cannibals,
- an object (transportation facility) tho boat b_k with a carrying capacity k,
- two space points p_L, p_R for the left bank and the right bank of the river respectively.

The basic relations between basic elements in U_0 are as follows:

at; this associates an individual or the boat with a space point (example: at (m_1, p_L) asserts the missionary m_1 is at the left bank)

on; this indicates that an individual is aboard the boat (example: on (c_1, b_k) asserts that the cannibal c_1 is on the boat)

A set of expressions, one for each individual and one for the boat (they specify the positions of all the individuals and of the boat) provides a basic description of a situation, i.e. it characterizes an N-state. Thus, the initial N-state for the Missionaries and Cannibals problem can be written as follows:

$$s_0 = at(b_k, p_L), at(m_1, p_L), \dots, at(m_n, p_L), at(c_1, p_L), \dots, at(c_N, p_L)$$

The terminal N-state is attained by substituting p_R for p_L through-out.