Uka Tarsadia University

B.Tech. Computer Semester VI

SOFTWARE ENGINEERING

CE5007

EFFECTIVE FROM July-2021

Syllabus version:1.00

Cubicat	Subject Title	Teaching Scheme				
Subject Code		Hours		Credits		
Code		Theory P	Practical	Theory	Practical	
CE5007	Software Engineering	4	2	4	1	

Subject Code	Subject Title	Theory Examination Marks		Practical Examination Marks	Total Marks
		Internal	External	CIE	
CE5007	Software Engineering	40	60	50	150

Objectives of the course:

- To apply their foundations in software engineering to adapt to readily changing environments using the appropriate theory, principles and processes.
- To make strong contributions to teams that are responsible for the specifications, design, construction, testing, deployment, maintenance, or use of software systems.
- To demonstrate the ability to work effectively as a team member and/or leader in an ever-changing professional environment.

Course outcomes:

Upon completion of the course, the student shall be able to

- CO1: Plan and deliver an effective software engineering process, based on knowledge of widely used development lifecycle models.
- CO2: Prepare SRS (Software Requirement Specification) document and translate a requirements specification into an implementable design, following a structured and organized process.
- CO3: Make effective use of UML, along with design strategies such as defining a software architecture.
- CO4: Recognize how to ensure the Scheduling, Risk, quality of software product, different quality standards and software review techniques.
- CO5: Formulate a testing strategy for a software system, employing techniques such as unit testing, test driven development and functional testing.
- CO6: Expose Software Process Improvement and Reengineering.

Sr. No.	Topics	Hours					
	Unit – I						
1	Introduction to Software Engineering:	8					
	Introduction of software engineering, Changing nature of the						
	software, Legacy software, Software development myths, Generic						
	view of Process, Software engineering - A layered technology,						
	Process framework, Capability Maturity Model Integration, (CMMI),						
	Process technology, Product and process, Perspective process						
	models - Waterfall model, Incremental; Evolutionary process models						
	- Prototype, Spiral, Concurrent development model.						
	Agile Development:						
	Agility and Agile Process model, Extreme programming, Other						
	process models of Agile Development and Tools.						
Unit – II							

2	Requirements Engineering and Structured System Design:	12
	Requirement engineering tasks, Initiating the requirements	
	engineering processes, Eliciting requirements, Developing use cases,	
	Negotiating and validating requirements, Design concepts, The	
	design model, Software architecture, Data design, Architectural	
	styles and Patterns, Architectural design, Assessing alternative	
	architectural designs; Modeling component level design -	
	Component, Designing class-based component.	
	Unit - III	
3	Data Oriented Analysis and Design:	10
	Building the analysis model: Data modeling concepts, Scenario –	
	based modeling, Flow-Oriented modeling, Class based modeling and	
	creating a behavioral model. User interface design - The Golden	
	rules, User interface analysis and design, Interface analysis, Interface	
	design steps, Design evaluation.	
	Unit – IV	
4		0
4	Software Project Planning and Quality Assurance:	8
	Estimation - Software scope and feasibility, Software project	
	estimation, Empirical estimation models; Project Scheduling: Project	
	scheduling, Defining a task set for the software project, Defining a	
	task network, Scheduling, Earned value analysis; Risk management:	
	Reactive vs. Proactive risk strategies, Software risk, Risk	
	identification, Risk refinement, Risk mitigation, Monitoring and	
	management, The RMMM plan; Quality management - Quality	
	concepts, Software quality assurance, Software reviews, Statistical	
	software quality assurance, Software reliability, Quality standards-	
	ISO 9000.	
	Unit – V	
5	Coding and Testing:	12
	Programming principles and guidelines - Programming practices,	
	Coding standards, Coding process; Verification - Code inspection,	
	Unit testing; Metrics, Software testing fundamentals, Black-box and	
	white box testing, Basis path testing, Control structure testing,	
	Black-box testing - Graph-based testing method, Boundary value	
	analysis; Testing strategies - A strategic approach to software	
	testing, Test strategies for conventional and object-oriented	
	software, Testing strategies for Web and Mobile applications.	
	Unit – VI	
6	Advanced Topics in Software Engineering:	10
	Component-based software engineering - Engineering of	
	component-based system, The CBSE process, Domain engineering,	
	Component-based development; Reengineering - Business process	
	reengineering, Reverse engineering.	
	DevOps:	
	Overview, Problem case definition, Benefits of fixing application	
	development challenges, DevOps adoption approach through	
	assessment, Solution dimensions, What is DevOps?, DevOps	
	importance and benefits, DevOps principles and practices, 7 C's of DevOps lifecycle for business agility, DevOps and continuous testing.	
•	- Libevous inecycle for business agility. Devous and continuous testing. T	

Sr. No.	Software Engineering (Practical)	Hours
1	To select the project title and assign requirement engineering to the	2
	project title.	
2	To perform the system analysis: Requirement analysis, SRS.	2
3	To perform the function-oriented diagram: DFD and Structured	2
	chart.	
4	To perform the user's view analysis: Use case diagram.	2
5	To draw the structural view diagram: Class diagram.	2
6	To draw the behavioral view diagram: Sequence diagram, Activity	2
	diagram.	
7	To draw the environmental view diagram: Deployment diagram.	2
8	Implementation of the project.	10
9	To study various testing tools.	2
10	To design test cases and to apply them using various testing tools.	2
11	To study cost estimation and preparation of timeline chart.	2

Text book:

1. Roger S. Pressman - "Software Engineering – A Practitioner's Approach", McGraw-Hill.

Reference books:

- 1. Deepak Gaikwad, Viral Thakkar "DevOps Tools from Practitioner's Viewpoint", Wiley India.
- 2. Sommerville "Software Engineering", Pearson Education.
- 3. Pankaj Jalote "An Integrated approach to SE", Narosa.
- 4. Rajib Mall "Software Engineering", PHI.
- 5. Ghezzi, Jazayeri, Mandrioli "Fundamentals of Software Engineering", Pearson Education.
- 6. Stephen R.Schach "Software Engineering with JAVA", TMH.
- 7. John M. Nicolas "Project Management for Business, Engineering and Technology", Elsevier.

Course objectives and Course outcomes mapping:

- Apply their foundations in software engineering to adapt to readily changing environments using the appropriate theory, principles and processes: CO1, CO2
- Make strong contributions to teams that are responsible for the specifications, design, construction, testing, deployment, maintenance, or use of software systems:CO3, CO4, CO5
- Demonstrate the ability to work effectively as a team member and/or leader in an ever-changing professional environment: CO6

Course units and Course outcomes mapping:

Unit	Unit Name	Course Outcomes					
No.	Unit Name	CO1	CO2	CO3	CO4	CO5	CO6
1	Introduction to Software Engineering and Agile Development	√					
2	Requirements Engineering and Structured System Design		✓				
3	Data Oriented Analysis and Design			✓			
4	Software Project Planning and Quality Assurance				✓		
5	Coding and Testing					✓	
6	Advanced Topics in Software Engineering and DevOps						✓

Programme outcomes:

- PO 1: Engineering knowledge: An ability to apply knowledge of mathematics, science, and engineering.
- PO 2: Problem analysis: An ability to identify, formulates, and solves engineering problems.
- PO 3: Design/development of solutions: An ability to design a system, component, or process to meet desired needs within realistic constraints.
- PO 4: Conduct investigations of complex problems: An ability to use the techniques, skills, and modern engineering tools necessary for solving engineering problems.
- PO 5: Modern tool usage: The broad education and understanding of new engineering techniques necessary to solve engineering problems.
- PO 6: The engineer and society: Achieve professional success with an understanding and appreciation of ethical behaviour, social responsibility, and diversity, both as individuals and in team environments.
- PO 7: Environment and sustainability: Articulate a comprehensive world view that integrates diverse approaches to sustainability.
- PO 8: Ethics: Identify and demonstrate knowledge of ethical values in non-classroom activities, such as service learning, internships, and field work.
- PO 9: Individual and team work: An ability to function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give/receive clear instructions.
- PO 11: Project management and finance: An ability to demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO 12: Life-long learning: A recognition of the need for, and an ability to engage in life-long learning.

Programme outcomes and Course outcomes mapping:

Programme			Course O	utcomes		
Outcomes	CO1	CO2	CO3	CO4	CO5	C06
P01					✓	
PO2						
P03						
P04						
P05	✓			✓	✓	✓
P06		✓	✓	✓		✓
P07						
P08	✓		✓		✓	
P09		✓	✓	✓	✓	✓
PO10	✓	√				
P011	✓	✓		√		✓
P012						√