Faculté Electronique et Informatique 2021/2022

Département Informatique

Module TAI

TD N° 2

Exercice 1:

Soit l'image I (ou fonction f) en niveaux de gris 8 bits suivante accompagnée de ses valeurs de pixels :

- 1. Calculer la moyenne de luminance de l'image.
- 2. Donner la dynamique de l'image (intervalle $[L_{min}, L_{max}]$).
- 3. Calculer le contraste de l'image.
- 4. Calculer l'écart type des niveaux de gris de l'image.
- 5. Construire l'histogramme de cette image ainsi que son histogramme normalisé.
- 6. Construire l'histogramme cumulé de cette image ainsi que son histogramme cumulé normalisé.

L'objectif de l'opération d'égalisation d'histogramme est d'étendre les valeurs de niveaux de gris de cette image entre 0 et 255. Ceci est fait en étendant l'histogramme cumulé.

- 7. Etendre l'histogramme et visualiser l'image résultante.
- 8. Comparer les histogrammes des deux images ; originale et étendue.

Travail personnel : Si le contraste de l'image aurait été rehaussé par étirement (expansion de la dynamique), quel serait le résultat de cette opération ? Comparer avec le résultat de l'égalisation d'histogramme.

Exercice 2:

Soit l'image I' résultante de l'exercice 1 avec les valeurs de pixels suivants :

0	12	53	32	190	53	174	53
57	32	12	227	219	202	32	154
65	85	93	239	251	227	65	158
73	146	146	247	255	235	154	130
97	166	117	231	243	210	117	117
117	190	36	146	178	93	20	170
130	202	73	20	12	53	85	194
146	206	130	117	85	166	182	215

- 1- Calculer le gradient de l'image I' dans les directions x et y.
- 2- Calculer la magnitude (mode) et la orientation (direction) du gradient pour l'image I'.

En considérant un seuil = 50 :

- 3- Binariser l'image I'.
- 4- Dilater l'image avec un élément structurant de type diamant.
- 5- Eroder l'image avec un élément structurant de type carré.

Soient les opérateurs Prewitt (C=1) et Sobel (C=2) suivants :

	G_{x}	
-1	0	1
-c	0	c
-1	0	1

	G_{v}	
-1	-c	-1
0	0	0
1	С	1

6- Calculer le gradient horizontal et vertical de l'image I' en utilisant ces masques d'approximation.

En utilisant le masque d'approximation du Laplacian suivant :

0	1	0
1	-4	1
0	1	0

7- Calculer la deuxième dérivée de l'image.

Sur une fenêtre de 3x3 appliquer les filtrages suivants à l'image :

- 8- Filtrage avec filtre moyen (linéaire),
- 9- Filtrage avec filtre gaussien (linéaire) avec sigma = 1,
- 10-Filtrage avec filtre médian (non linéaire).

Rappelons la formule de la loi gaussienne pour deux variables :

$$g(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{\sigma^2}}$$

Travail personnel : Dans le TP, changer la taille du filtre et observer la différence de résultat

Solutions

Solution exercice 1:

1/ Moyenne de luminance de l'image :

Moy =
$$\frac{1}{NM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f(i, j)$$

$$Moy=76$$

2/ Dynamique de l'image :

$$[L_{min}, L_{max}] = [L_{min}, L_{max}] = [52,154]$$

3/ Contraste de l'image:

$$C = \frac{Max_{i,j}(f(i,j)) - Min_{i,j}(f(i,j))}{Max_{i,j}(f(i,j)) + Min_{i,j}(f(i,j))} = \frac{L_{max} - L_{min}}{L_{max} + L_{min}} = 0.49$$

4/ écart type de l'image :

$$E = \frac{1}{NM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (f(i,j) - Moy)^2 = 482$$

5/ Histogramme et histogramme normalisé de l'image :

Etape 1 : trier les valeurs des niveaux de gris de l'image,

Etape 2 : compter le nombre de pixels ayant chaque valeur,

Etape 3: normaliser l'histogramme,

i : niveau de gris [0, L-1] L étant les niveaux de gris possibles, dans cet exercice L=256 pour une image à 8 bits.

H(i): nombre de pixels avec le niveau i.

 $H_n(i)$: nombre de pixels avec le niveau i sur le nombre total des pixels de l'image (l'image est de taille N x M). En fait, c'est la probabilité d'apparition du pixel i dans l'image I.

$$H_n(i) = \frac{H(i)}{NM}$$

i	52	55	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	75
H(i)	1	3	2	3	1	4	1	2	2	3	2	1	5	3	4	2	1	2	1
$H_n(i)$	0,0 1	0,0 4	0,0 3	0,0 4	0,0 1	0,0 6	0,0 1	0,0 3	0,0 3	0,0 4	0,0 3	0,0 1	0,0 7	0,0 4	0,0 6	0,0 3	0,0 1	0,0	0,0 1
	76	77	70	70	02	0.5	97	00	QΩ	0.4	10	10	10	11	12	1	2	1/	15

i	76	77	78	79	83	85	87	88	90	94	10 4	10 6	10 9	11 3	12 2	12 6	14 4	15 4
H(i)	1	1	1	2	1	2	1	1	1	1	2	1	1	1	1	1	1	1
$H_n(i)$	0,0 1	0,0 2	0,0 2	0,0	0,0 2	0,0	0,0 2	0,0 2	0,0 2	0,0 2	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02

6/ Histogramme cumulé et cumulé normalisé de l'image :

Histogramme cumulé:

$$C(i) = \sum_{k=0}^{i} H(i)$$

Histogramme cumulé normalisé :

$$C_n(i) = \sum_{k=0}^{i} H_n(i)$$

i	52	55	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	75
H(i)	1	3	2	3	1	4	1	2	2	3	2	1	5	3	4	2	1	2	1
C(i)	1	4	6	9	10	14	15	17	19	22	24	25	30	33	37	39	40	42	43
$H_n(i)$	0,01 6	0,05	0,0	0,0 5	0,015	0,06	0,02	0,03	0,03	0,05	0,03	0,02	0,08	0,05	0,06	0,03	0,02	0,03	0,02
$C_n(i)$	0,01 6	0,06	0,0 9	0,1 4	0,15	0,22	0,23	0,27	0,3	0,34	0,38	0,39	0,47	0,52	0,58	0,61	0,63	0,66	0,67

i	76	77	78	79	83	85	87	88	90	94	104	106	109	113	122	126	144	154
H(i)	1	1	1	2	1	2	1	1	1	1	2	1	1	1	1	1	1	1
C(i)	44	45	46	48	49	51	52	53	54	55	57	58	59	60	61	62	63	64
$H_n(i)$	0,01	0,0	0,0	0,0	0,01	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	6	2	2	3	5	3	2	2	2	2	3	2	2	2	2	2	2	2
$C_n(i)$	0,68		0,7	0,7			0,8	0,8	0,8	0,8	0,8	0,9	0,9	0,9	0,9	0,9	0,9	
	8	0,7	2	5	0,76	0,8	1	3	4	6	9	1	2	4	5	7	8	1

7/ Extension de l'image :

$$F'(x,y) = Cn[F(x,y)] \times (L-1)$$

Chaque pixel de l'image sera remplacé par la partie entière de sa valeur dans l'histogramme cumulé multiplié par le nombre de niveaux de gris maximum L (dans ce cas 256) moins 1.

i	52	55	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	75
H(i)	1	3	2	3	1	4	1	2	2	3	2	1	5	3	4	2	1	2	1
C(i)	1	4	6	9	10	14	15	17	19	22	24	25	30	33	37	39	40	42	43
$H_n(i)$	0,01 6	0,05	0,0 3	0,0 5	0,01563	0,0 6	0,02	0,03	0,03	0,05	0,03	0,02	0,08	0,05	0,06	0,03	0,02	0,03	0,02
$C_n(i)$	0,01 6	0,06	0,0 9	0,1 4	0,15625	0,2 2	0,23	0,27	0,3	0,34	0,38	0,39	0,47	0,52	0,58	0,61	0,63	0,66	0,67
i'	3,98 4	15,9	23, 9	35, 9	39,8438	55, 8	59,8	67,7	75,7	87,7	95,6	99,6	120	131	147	155	159	167	171

i	76	77	78	79	83	85	87	88	90	94	104	106	109	113	122	126	144	154
H(i)	1	1	1	2	1	2	1	1	1	1	2	1	1	1	1	1	1	1
C(i)	44	45	46	48	49	51	52	53	54	55	57	58	59	60	61	62	63	64
$H_n(i)$	0,01	0,0	0,0	0,0		0,0												
	6	2	2	3	0,01563	3	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,02	0,02
$C_n(i)$	0,68		0,7	0,7														
	8	0,7	2	5	0,76563	0,8	0,81	0,83	0,84	0,86	0,89	0,91	0,92	0,94	0,95	0,97	0,98	1
i'	175,			·		·								·				
	3	179	183	191	195,234	203	207	211	215	219	227	231	235	239	243	247	251	255

Nous remarquons que maintenant la couleur maximale est de 255 au lieu de 154.

8/ comparaison avant et après :

Image avant égalisation :

52	55	61	59	79	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	70	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

 \mathbf{NB} : Il existe une amélioration à la formule d'extension comme suit :

$$F'(x,y) = \frac{C[F(x,y)] - min(C)}{(NM) - min(C)} x (L-1)$$

La formule suivant peut aussi être utilisée pour le même résultat :

$$F'(x,y) = \frac{Cn[F(x,y)] - min(Cn)}{max(Cn) - min(Cn)} x (L-1)$$

L'image ci-dessous a été obtenue avec cette égalisation.

Image après égalisation :

	0	12	53	32	190	53	174	53
5	7	32	12	227	219	202	32	154
6	5	85	93	239	251	227	65	158
7	3	146	146	247	255	235	154	130
9	7	166	117	231	243	210	117	117
11	17	190	36	146	178	93	20	170
13	30	202	73	20	12	53	85	194
14	46	206	130	117	85	166	182	215

Solution exercice 2:

1/ Une image est une fonction à deux dimension, de ce fait, sa dérivée n'est pas unique, pour chaque variable nous aurons une dérivée partielle. Une dérivée partielle est appelée gradient.

La dérivée partielle ou gradient par rapport à x est donné par :

$$\frac{\partial f(x,y)}{\partial x} = \lim_{hx \to 0} \frac{f(x + h_x, y) - f(x, y)}{h_x}$$

La dérivée partielle ou gradient par rapport à x est donné par :

$$\frac{\partial f(x,y)}{\partial y} = \lim_{h_y \to 0} \frac{f(x,y+h_y) - f(x,y)}{h_y}$$

Le vecteur gradient peut aussi être représenté par :

$$\vec{\nabla} f \begin{cases} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{cases}$$

Gradient par rapport à x :

57	20	-41	195	29	149	-142	101
8	53	81	12	32	25	33	4
8	61	53	8	4	8	89	-28
24	20	-29	-16	-12	-25	-37	-13
20	24	-81	-85	-65	-117	-97	53
13	12	37	-126	-166	-40	65	24
16	4	57	97	73	113	97	21
-146	-206	-130	-117	-85	-166	-182	-215

Gradient par rapport à y :

	1			<u> </u>			
12	41	-21	158	-137	121	-121	-53
-25	-20	215	-8	-17	-170	122	-154
20	8	146	12	-24	-162	93	-158
73	0	101	8	-20	-81	-24	-130
69	-49	114	12	-33	-93	0	-117
73	-154	110	32	-85	-73	150	-170
72	-129	-53	-8	41	32	109	-194
60	-76	-13	-32	81	16	33	-215

2/ magnitude et direction du gradient :

$$Mod(G(i,j)) = \sqrt{G_x(i,j)^2 + G_y(i,j)^2}$$

58,249	45,618	46,065	250,98	140,04	191,94	186,56	114,06
26,249	56,648	229,75	14,422	36,235	171,83	126,38	154,05
21,541	61,522	155,32	14,422	24,331	162,2	128,72	160,46
76,844	20	105,08	17,889	23,324	84,77	44,102	130,65
71,84	54,562	139,85	85,843	72,897	149,46	97	128,44

74,148	154,47	116,06	130	186,5	83,241	163,48	171,69
73,756	129,06	77,833	97,329	83,726	117,44	145,91	195,13
157,85	219,57	130,65	121,3	117,41	166,77	184,97	304,06

$$\theta = Arg(\vec{\nabla} f) = \tan^{-1} \left| \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right|$$

	11,889	63,997	27,121	39,016	-78,048	39,079	40,435	-27,688
	-72,255	-20,674	69,356	-33,69	-27,979	-81,634	74,864	-88,512
	68,199	7,4716	70,048	56,31	-80,538	-87,173	46,259	79,951
Ī	71,801	0	-73,98	-26,565	59,036	72,848	32,969	84,289
Ī	73,836	-63,905	-54,605	-8,0357	26,917	38,48	0	-65,63
Ī	79,902	-85,544	71,409	-14,25	27,115	61,28	66,571	-81,964
Ī	77,471	-88,224	-42,917	-4,7148	29,32	15,811	48,334	-83,822
Ī	-22,341	20,251	5,7106	15,297	-43,62	-5,5055	-10,277	45

3/ binariser lorsque la magnitude du gradient > 70 :

0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1
0	0	1	0	0	1	1	1
1	0	1	0	0	1	0	1
1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

4/ dilatation avec un élément structurant de type diamant :

0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1		1		1		1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1

0	0	1	0	0	1	1	1
1	0	1	0	0	1	0	1
1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

4/ érosion avec un élément structurant de type carré :

0					1		
0	0	1	0	0	1	1	1
0					1		
1	0	1	0	0	1	0	1
1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1
<mark>1</mark>	1	<u>1</u>	1	1	1	1	1
1	1	1	1	1	<mark>1</mark>	1	1

6/ Prewitt et Sobel

Prewitt par rapport à x et Prewitt par rapport à y

-	_			_			
89	101	271	458	648	453	388	186
138	178	320	308	442	126	170	-4
130	264	268	190	89	191	131	98
113	137	97	8	-33	27	-6	11
		-16	-28	-32	-35	-23	
88	-22	7	8	0	3	6	-94
		-21	-48	-59	-42	-11	
69	25	9	6	9	0	2	45
45	139	81	-28	-49	142	280	207
-33	-27				-13	-27	-19
2	5	-93	-32	-65	8	9	4

			34		-20		-20
44	8	215	4	-4	3	-48	6
12			50		-38	-11	-27
9	36	369	2	-16	9	7	1
26			47		-47	-22	-25
3	56	450	4	-49	4	2	1
39			39		-41	-26	-33
7	121	320	3	-45	3	7	6
50			37		-38	-12	-29
2	12	122	7	-86	5	1	1
55	-11	-16	20		-21		-22
8	8	1	7	-41	1	125	2
59	-15	-31					-28
8	4	5	36	29	12	267	7
40				10			-18
8	57	-69	-33	2	182	243	2

Sobel par rapport à x et Sobel par rapport à y

146	133	283	685	867	655	420	340
203	251	360	515	503	300	61	101
146	378	402	210	125	224	253	74
145	218	121	0	-41	10	46	-30
		-27	-38	-39	-49	-37	
132	22	7	9	7	5	0	-54
		-26	-69	-83	-57	-14	
102	61	3	7	0	7	4	122
				-14			
74	155	175	-57	2	215	442	252
-46	-47	-16			-19	-36	-38
2	7	6	-52	-77	1	4	8

			48		-21		-38
56	61	235	1	17	9	-48	0
16			70		-57	-16	-30
1	-9	564	9	-41	6	5	3
34			63		-66	-29	-31
8	84	604	2	-61	0	1	6
54			50		-51	-37	-49
3	194	421	2	-57	4	2	0
66			50	-10	-51	-21	-40
8	32	187	3	7	1	4	8
74	-19	-20	34		-36		-24
8	9	5	9	-94	9	202	2
80	-21	-49					-37
0	1	7	-25	62	85	408	2
61	·	-15		·		·	-36
4	41	8	-78	151	279	292	4

7/ Laplacian :

69	37	-156	342	-456	354	-558	116	53
-131	38	357	-406	-6	-277	467	-373	154
-45	-4	110	-138	-64	-155	311	-283	158
16	-114	19	-117	-44	-94	-69	-91	130
-32	-114	111	-171	-98	-152	33	-51	117

	-51	-239	382	-119	-218	89	385	-349	170
	-55	-209	96	268	288	144	109	-306	194
Ī	-248	-346	-124	-233	-45	-344	-262	-484	215

8/ Filtrage avec filtre moyen (linéaire),

11,2	18	41	81	103	97	74	46	23
27,9	45	87	146	182	157	124	71	41
50,9	79	136	188	234	182	151	77	49
70,2	110	163	202	238	195	157	82	45
87,7	121	158	178	204	167	138	79	46
100	125	131	117	132	112	118	78	53
110	137	124	89	97	97	131	96	64
76	84	61	40	48	63	94	66	24

9/ Filtrage avec filtre gaussien (linéaire) avec sigma = 1,

Construire d'abord le filtre gaussien sur une fenêtre 3x3. Les indices de voisinage sont :

i=-1,j=-1	i=-1, j=0	i=-1, j=1
i=0,j=-1	i=0, j=0	i=0, j=1
i=1, j=-1	i=1, j=0	i=1, j=1

Filtre gaussien résultant est :

0,36	0,61	0,37
0,61	1	0,60
0,37	0,60	0,36

Image résultante :

261	395	626	970	1159	929	678	439	201
			103					
353	569	779	6	1183	999	750	458	181
437	638	738	916	1041	853	654	435	182
506	661	585	593	669	542	514	446	219
559	725	552	390	409	441	595	555	260
425	524	379	264	284	392	537	444	131

10/ Filtrage avec filtre médian (non linéaire).

Médiane du premier carré :

Trier le bloc : 0 - 12 - 12 - 32 - 53 - 57 - 65 - 85 - 93

Résultat : le pixel central sera remplacé par 53.

Refaire pour tous les pixels centraux pour obtenir le résultat ici-bas.

22	22	32	122	196	182	104	104	49
45	53	53	190	219	190	154	110	61
69	73	146	227	235	219	154	142	111
91	97	146	239	239	227	154	124	124
132	117	146	178	231	178	130	124	131
148	117	146	117	146	93	117	117	158
168	130	130	85	93	85	166	176	172
174	138	124	79	69	85	174	188	184

NB:

- Pour tous les filtres, il est important de rajouter des 0 au contour. Ceci afin de permettre de calculer l'image filtrée même pour les pixels du contour. Certaines approches non préservatives ne rajoutent pas de pixels au contour, ce qui fait que l'image résultante aura une taille plus petite que l'image originale. Notons que cette approche de rajouter des 0 est utilisée en apprentissage profond, et est appelée : zero-padding. Les pixels peuvent aussi être remplacés par leurs miroir.
- Pour le résultat de tous les filtres, il faut remplacer les valeurs négatives par 0 et les valeurs supérieures à 255 à 255.