# <u>PS</u>

### LEVEL-I

| 1.  | n <sup>th</sup> term of 5, 3, 1, –1<br>(A) 2n – 7   | , –3, –5, is<br>(B) 7 – 2n                    | (C) 2n + 3                                               | (D) 2n + 5                                 |
|-----|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------|
| 2.  | $n^{th}$ term of 1, $\frac{1}{2}$ , $\frac{1}{3}$ , | is                                            |                                                          |                                            |
|     | (A) $\frac{1}{n-1}$                                 | (B) $\frac{1}{n+1}$                           | (C) $\frac{1}{n}$                                        | (D) $\frac{n}{n-1}$                        |
| 3.  | Sum of the series $\frac{1}{2}$                     | $+ \frac{1}{2\sqrt{2}} + \frac{1}{4} + \dots$ | ∞ is                                                     |                                            |
|     | (A) 1 + $\frac{1}{\sqrt{2}}$                        | (B) 1                                         | (C) $\frac{1}{\sqrt{2}-1}$                               | (D) $\frac{\sqrt{2}}{\sqrt{2}-1}$          |
| 4.  | Number of integers b<br>(A) 10                      | etween 100 and 200, t<br>(B) 20               | that are divisible by 5 a<br>(C) 9                       | are<br>(D) 19                              |
| 5.  | H.M of 3 and $\frac{1}{3}$ is                       |                                               |                                                          |                                            |
|     | (A) $\frac{5}{3}$                                   | (B) 1                                         | (C) $\frac{20}{3}$                                       | (D) $\frac{3}{5}$                          |
| 6.  | The n <sup>th</sup> terms of the to value of n is   | wo series 3 + 10 + 17                         | + and 63 + 65 + 6                                        | 7 + are equal, then the                    |
|     | (A) 9<br>(C) 19                                     |                                               | (B) 13<br>(D) none of these                              |                                            |
| 7.  | If n A.M's are inserte                              | d between two quantiti                        | es a and b, then their                                   | sum is equal to                            |
|     | (A) n(a + b)                                        |                                               | (B) $\frac{n}{2}$ (a + b)                                |                                            |
|     | (C) 2n(a + b)                                       |                                               | (D) $\frac{n}{2}$ (a – b)                                |                                            |
| 8.  | If a, b, c are in H.P, t                            | hen the value of $\frac{b+a}{b-a}$            | $+\frac{b+c}{b}$ is                                      |                                            |
|     | (A) 1<br>(C) 3                                      |                                               | (B) 2<br>(D) none of these                               |                                            |
| 9.  | If a, b, c are in A.P., (A) H.P<br>(C) A.P          | a, x, b are in G.P. and                       | b, y, c are in G.P., the<br>(B) G.P<br>(D) none of these | $n x^2$ , $b^2$ , $y^2$ are in             |
| 10. | If a, b, c, d, e are in A<br>(A) 2(b + d)           | A.P, then (e – a) is equ<br>(B) 2(b – d)      | al to<br>(C) 2(d – b)                                    | (D) none of these                          |
| 11. | If (2x - 1), (4x - 1), (<br>(A) 625/3               | 7 + 2x) are in G.F<br>(B) 125/3               | P, then next term of the (C) 81                          | e sequence is<br>(D) 9                     |
| 12. | In any triangle ABC t (A) 1/2                       | he angles A, B, C are in (B) $\sqrt{3}/2$     | in A.P, then the value (C) $1/\sqrt{2}$                  | of sin 2B is given by<br>(D) none of these |
|     |                                                     |                                               |                                                          |                                            |

13. If 
$$1 + 2 + 3 + \dots + 49 = x$$
, then  $1^3 + 2^3 + 3^3 + \dots + 49^3$  is given by (A)  $x^3$  (B)  $x^2$  (C)  $x^2 + x$  (D) none of these

15. rth term of sequence 
$$\frac{1}{1 \cdot 3 \cdot 5} + \frac{1}{3 \cdot 5 \cdot 7} + \frac{1}{5 \cdot 7 \cdot 9} + \dots$$
 is given by

(A)  $\frac{1}{r(r+2)(r+4)}$  (B)  $\frac{1}{(2r+1)(2r+3)(2r+5)}$  (C)  $\frac{1}{(2r-1)(2r+1)(2r+3)}$  (D) none of these

16. If 
$$v_r = \frac{1}{1 + (r - 1)r}$$
, then  $v_{r-1}$  is equal to
$$(A) \frac{1}{1 + (r + 1)r} \qquad (B) \frac{1}{1 + (r - 1)r} \qquad (C) \frac{1}{1 + (r - 1)(r - 2)} \qquad (D) \text{ none of these}$$

17. The value of 
$$\log x + \log \left(1 + \frac{1}{x}\right) + \log \left(1 + \frac{1}{1+x}\right) + \log \left(1 + \frac{1}{2+x}\right) + \dots + \log \left(1 + \frac{1}{(n-1+x)}\right)$$
(A)  $\log \frac{x}{n}$  (B)  $\log nx$  (C)  $\log (n+x)$  (D)  $\log (n-1)x$ 

- 18. If a, b, c, d are in H.P., then ab + bc + c d is equal to.......
- 19. If the first term of a G.P is 1 and the sum of the third and fifth terms is 90. Then the common ratio if G.P is

(A) 
$$\pm 1$$
 (B)  $\pm 2$  (C)  $\pm 3$  (D)  $\pm 4$ 

20. If a, b, c are in A.P., then 
$$\frac{1}{bc}$$
,  $\frac{1}{ca}$ ,  $\frac{1}{ab}$  will be in

- A.P. (B)
- G.P. (C) H.P. (D) None of these
- 21. The numbers 1, 4, 16 can be three terms (not necessarily consecutive) of (A) no A.P.

(B) only 1 or 2 G.Ps

(C) infinite number of A.Ps

(D) infinite number of G.Ps

22. If 
$$S_n = \sum_{r=1}^n \frac{1 + 2 + 2^2 \dots r \text{ terms}}{2^r}$$
, then  $S_n$  is equal to

(A) 
$$2^n - (n + 1)$$

 $(C)(n^2 + 3n + 2)/6$ 

- If  $S_n = nP + \frac{n(n-1)}{2}Q$ , where  $S_n$  denotes the sum of the first 'n' terms of an A.P. then the 23. common difference is
  - (A) P + Q

(B) 2P + 3Q

(C) 2Q

a, b,  $c \in R^+$  and from an A.P. if abc = 4, then the minimum value of b is 24.

(A)  $(2)^{2/3}$  (C)  $(4)^{2/3}$ 

(D) none of these

|     |                                                                                                             | 3                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 25. | If b + c, c + a, a + b are in H.P., then a <sup>2</sup> , b <sup>2</sup> , (A) G.P. (C) A.P.                | c <sup>2</sup> will be in<br>(B) H.P.<br>(D) none of these                     |
| 26. | Every term of a G.P. is positive and every to common ratio of the G.P. is                                   | erm is the sum of two preceding terms. Then the                                |
|     | (A) $\frac{1-\sqrt{5}}{2}$                                                                                  | (B) $\frac{1+\sqrt{5}}{2}$                                                     |
|     | (C) $\frac{\sqrt{5}-1}{2}$                                                                                  | (D) 1                                                                          |
| 27. | If the roots of the equation $a(b-c)x^2 + b(c$<br>(A) A.P.<br>(C) H.P.                                      | - a)x + c(a - b) = 0 are equal, then a, b, c are in (B).G.P. (D) none of these |
| 28. | If a, b, $c \in R^+$ , then $\frac{bc}{b+c} + \frac{ac}{a+c} + \frac{ab}{a+b}$ is                           | always                                                                         |
|     | $(A) \leq \frac{1}{2}(a+b+c)$                                                                               | $(B) \geq \frac{1}{3}\sqrt{abc}$                                               |
|     | $(C) \leq \frac{1}{3} (a+b+c)$                                                                              | (D) $\geq \frac{1}{2}\sqrt{abc}$                                               |
| 29. | If a, b, c are in A.P., then $a^3 + c^3 - 8b^3$ is eq (A) 2abc (C) 4abc                                     | ual to (B) 6abc (D) none of these                                              |
| 30. | If $\frac{1}{a} + \frac{1}{a-b} + \frac{1}{c} + \frac{1}{c-b} = 0$ and $a + c - b \neq 0$ (A) A.P. (C) H.P. | O, then a, b, c are in  (B) G.P.  (D) none of these                            |
| 31. | • •                                                                                                         | A.P Increasing a by 1 or increasing c by 2 the                                 |
|     | number become in G.P., then 'b' equals to (A) 10 (C) 14                                                     | (B) 12<br>(D) 16                                                               |
| 32. | Let the positive numbers a, b, c, d be in A.F. (A) not in A.P./G.P./H.P. (C) in G.P.                        | P. then abc, abd, acd, bcd are (B) in A.P. (D) in H.P.                         |
| 33. | Consider an infinite series with first term a a                                                             | and common ratio 'r'. If its sum is 4 and the                                  |
|     | second term is $\frac{3}{4}$ , then                                                                         | 2                                                                              |
|     | (A) $a = \frac{7}{4}, t = \frac{3}{7}$                                                                      | (B) $a = 2$ , $r = \frac{3}{8}$                                                |
|     | (C) $a = \frac{3}{2}, r = \frac{1}{2}$                                                                      | (D) $a = 3$ , $r = \frac{1}{4}$                                                |
| 34. | The value of $\sum_{r=1}^{n} log \left( \frac{a^{r}}{b^{r-1}} \right)$ is                                   |                                                                                |
|     | (A) $\frac{n}{2} log \left( \frac{a^n}{b^n} \right)$                                                        | (B) $\frac{n}{2} log \left( \frac{a^{n+1}}{b^n} \right)$                       |

$$\text{(C) } \frac{n}{2} log \left( \frac{a^{n+1}}{b^{n+1}} \right)$$

$$(D) \ \frac{n}{2} log \left( \frac{a^{n+1}}{b^{n-1}} \right)$$

# LEVEL-II

| 1.  | If a, b, c are in H.P                                                 | . and a > c > 0 , ther                                                                | $\frac{1}{h} - \frac{1}{2h}$                                     |                                                                                     |
|-----|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|     | (A) is positive                                                       |                                                                                       | (C) is negative                                                  | (D) has no fixed sign.                                                              |
| 2.  | whose sum of n ter                                                    | rms is $S_n - S_{n-1}$ is                                                             |                                                                  | in n, then the progression                                                          |
|     | (A) an A. P.                                                          | (B) a G. P.                                                                           | (C) a H.P.                                                       | (D) an A. G. P.                                                                     |
| 3.  | Let $p, q, r \in R^+$ and (A) 3                                       | $27pqr \ge (p + q + r)^3$ 6 (B) 6                                                     |                                                                  | then p <sup>3</sup> + q <sup>4</sup> + r <sup>5</sup> is equal to (D) none of these |
| 4.  | Let a, b and c be pos<br>(A) $(0, \infty)$                            | sitive real numbers suc<br>(B) (0, 1)                                                 | ch that a + b + c = 6. T<br>(C) (0, 108]                         | Then range of ab <sup>2</sup> c <sup>3</sup> is<br>(D) (6, 108]                     |
| 5.  | log <sub>4</sub> 5 , log <sub>20</sub> 5, log <sub>100</sub> (A) A.P. | 5 are in<br>(B) G.P.                                                                  | (C) H.P.                                                         | (D) none of these                                                                   |
| 6.  |                                                                       |                                                                                       | rs say a, b, c be 27,                                            | then the minimum value of                                                           |
|     | ab + bc + ca is equal (A) 27 <sup>4</sup>                             | al to<br>(B) 27 <sup>3</sup>                                                          | (C) 27 <sup>2</sup>                                              | (D) 27                                                                              |
| 7.  |                                                                       |                                                                                       | G.P and a + b + c = ax                                           | κ, then                                                                             |
|     | (A) $x \in \left[\frac{3}{4}, \infty\right) - \{1, 3\}$               | $(B) x \in R^+$                                                                       | (C) $x \in (-1, \infty)$                                         | (D) none of these                                                                   |
| 8.  |                                                                       |                                                                                       | . then 9 <sup>ax + 1</sup> , 9 <sup>bx+1</sup> , 9 <sup>cx</sup> |                                                                                     |
|     | (A) G.P.                                                              | (B) G.P. only if $x < 0$                                                              | (C) G.P. only if $x > 0$                                         | (D) none of these                                                                   |
| 9.  | is equal to 64/7. The                                                 | n 5 <sup>th</sup> term of the progre                                                  | ession is                                                        | um of the cubes of its terms                                                        |
|     | (A) $\frac{1}{4}$                                                     | (B) $\frac{1}{8}$                                                                     | (C) $\frac{1}{16}$                                               | (D) $\frac{1}{32}$                                                                  |
| 10. |                                                                       |                                                                                       | ` '                                                              | unity, such that any three                                                          |
|     | (A) 0                                                                 | n doubling the middle<br>(B) 1                                                        | (C) 2                                                            | (D) infinity                                                                        |
| 11. | Sum of n terms of a s<br>(A) AP                                       | sequence be n² + 2n, t<br>(B) GP                                                      | then it is<br>(C) HP                                             | (D) none of these                                                                   |
| 12. | Sum of $\left(x + \frac{1}{x}\right) + \left(x^2\right)$              | $\left(x^{2} + \frac{1}{x^{2}}\right) + \left(x^{3} + \frac{1}{x^{3}}\right) + \dots$ | ∞ is                                                             |                                                                                     |
|     | (A) -1                                                                | (B) $\frac{x+1}{1-x}$                                                                 | (C) 0                                                            | (D) none of these                                                                   |
| 13. | The third term of a G (A) 4 <sup>3</sup> (C) 4 <sup>4</sup>           | .P is 4. The product of                                                               | first five terms is<br>(B) 4 <sup>5</sup><br>(D) none of these   |                                                                                     |
| 14. | The sum of n terms of                                                 | of the series $1^2 - 2^2 + 3$                                                         | $3^2 - 4^2 + \dots$ is, where                                    | e n is even number                                                                  |

|     | $(A)-\frac{n(n+1)}{2}$                                                                                       |                                                              | (B) $\frac{n(n+1)}{2}$                                       |                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|
|     | (C) -n(n + 1)                                                                                                |                                                              | (D) none of these                                            |                                                                  |
| 15. | value of n is<br>(A) 10                                                                                      | s between 2 and 38,                                          | (B) 8                                                        | ing progression is 200. The                                      |
|     | (C) 9                                                                                                        |                                                              | (D) none of these                                            |                                                                  |
| 16. | If the numbers a, b, c (A) 1 (C) 0                                                                           | c, d, e form an A.P., the                                    | en the value of a – 4b<br>(B) 2<br>(D) none of these         | + 6c – 4d + e is                                                 |
| 17. | If $S_1 = \{1\}$ , $S_2 = \{2, 3\}$<br>(A) 20                                                                | , S <sub>3</sub> = {4, 5, 6}, S <sub>4</sub> = {7<br>(B) 190 | 7, 8, 9, 10}, then first te<br>(C) 191                       | rm of $S_{20}$ is given by (D) none of these                     |
| 18. | perimeter is 2100 cm<br>length of smallest sid                                                               | n and length of largest<br>le and common differe             | side is 20 times that once of A.P is                         | smallest sides are in A.P. If of the smallest side then the      |
|     | (A) 6, $6\frac{1}{3}$                                                                                        | (B) $8, 6\frac{1}{3}$                                        | (C) 8, $5\frac{1}{3}$                                        | (D) none of these                                                |
| 19. | The fourth term of a (A) 2 <sup>19</sup>                                                                     | G.P is 8, the product of (B) 2 <sup>20</sup>                 | f the first seven terms<br>(C) 2 <sup>21</sup>               | is<br>(D) 2 <sup>24</sup>                                        |
| 20. | If $3x+7y + 4z = 21$ , we equal to                                                                           | here x, y, z are positiv                                     | ve real numbers, then                                        | maximum value of $x^4y^5z^3$ is                                  |
|     | (A) $\frac{7^7 \times 5^5 \times 4^{-10}}{12}$                                                               | (B) $\frac{7^7 \times 5^5 \times 4^{10}}{12}$                | (C) $\frac{7^6 \times 5^7}{4^{11} \times 3}$                 | (D) $\frac{7^5 \times 5^6}{4^{10} \times 3}$                     |
| 21. | If A, G and H be the a<br>equation $Ax^2 -  G x -  G $<br>(A) both roots as frac<br>(C) exactly one position | H = 0 has<br>tions                                           |                                                              | ct positive integers, then the as a negative fraction as integer |
| 22. | If a <sub>1</sub> , a <sub>2</sub> , a <sub>3</sub> ,a <sub>n</sub>                                          | $_{n}$ are in H.P, then ${a_{2}}$                            | $\frac{a_1}{a_1 + a_3 + \dots + a_n}, \frac{a_1}{a_1 + a_3}$ | $\frac{a_{1}}{a_{1}++a_{n}},\frac{a_{n}}{a_{1}+a_{2}++a_{n-1}}$  |
|     | are in<br>(A) A.P<br>(C) H.P                                                                                 |                                                              | (B) G.P<br>(D) A.G.P                                         |                                                                  |
| 23. | The tenth common to (A) 191 (C) 211                                                                          | erm between the series                                       | s 3 + 7 + 11 + and<br>(B) 193<br>(D) none of these           | 1 + 6 + 11 + is                                                  |
| 24. | $\frac{3}{1^2} + \frac{5}{1^2 + 2^3} + \frac{7}{1^2 + 2^3}$ (A) 3                                            | $\frac{1}{+3^3} + \dots$ to $\infty$ is                      | (B) 5                                                        | (D) 6                                                            |
| 25. |                                                                                                              | ors of 1029, 1859 and 1                                      |                                                              | •                                                                |
| 26. | If the first two terms                                                                                       | ms of a H.P. are $\frac{3}{5}$                               | $\frac{3}{5}$ and $\frac{9}{10}$ respective                  | ely then the largest term of                                     |

H.P. is

|     | (A) 2 <sup>nd</sup> term<br>(C) 4 <sup>th</sup> term                                               | (B) 3 <sup>rd</sup> term<br>(D) none of these                                             |
|-----|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 27. | If $log_{10}x + log_{10} y \ge 2$ then the smallest po (A) 200 (C) 100                             | ssible value of $x^2 + y^2$ is<br>(B) 2000<br>(D) none of these                           |
| 28. | If ab = 4a + 9b, a> 0, b> 0 then minimum (A) 13 (C) 12                                             | value of $\sqrt{ab}$ is (B) 14 (D) none of these                                          |
| 29. | If $ax^3 + bx^2 + cx + d$ is divisible by $ax^2 + c$ ,<br>(A) $\frac{ab}{2}$<br>(C) $\frac{ac}{b}$ | then d is equal to (B) $\frac{bc}{a}$ (D) none of these                                   |
| 30. | The sum of the products of the nine number (A) 155 (C) –30                                         | rs $\pm$ 1, $\pm$ 2, $\pm$ 3, $\pm$ 4, 5 taking two at a time is (B) 30 (D) none of these |
| 31. | If in a series $t_n = \frac{n+1}{(n+2)!}$ then $\sum_{n=0}^{10} t_n$ is equ                        | al to                                                                                     |
|     | (A) $1 - \frac{1}{10!}$                                                                            | (B) $1 - \frac{1}{11!}$                                                                   |
|     | (C) $1 - \frac{1}{12!}$                                                                            | (D) none of these                                                                         |
| 32. | The value of $\sum_{r=3}^{n} (r-n-2)^3$ is equal to                                                |                                                                                           |
|     | (A) $\frac{n^2(n+1)^2}{4} - 9$                                                                     | (B) $\frac{n^2(2n+1)(n+1)}{6} - 9$                                                        |
|     | (C) $\frac{(n+1)n(n+1)^2}{4}-9$                                                                    | (D) none of these                                                                         |
| 33. | The harmonic means of the roots of equa (A) 2 (C) 6                                                | tion $(5+\sqrt{2})x^2-(4+\sqrt{5})x+8+2\sqrt{5}=0$ is (B) 4 (D) 8                         |
| 34. | If $x^2 + 9y^2 + 25z^2 = 15yz + 5xz + 3xy$ then (A) A.P. (C) H.P.                                  | (, y, z are in<br>(B) G.P.<br>(D) none of these                                           |
| 35. | If $x_1^2 + x_2^2 + x_3^2 + \dots + x_{50}^2 = 50$ and $\frac{1}{x_1^2 x_2^2}$                     |                                                                                           |
|     | (A) $A_{minimum} = 1$<br>(C) $A_{minimum} = 50$                                                    | (B) $A_{\text{maximum}} = 1$<br>(D) $A_{\text{maximum}} = 50$                             |

If n is an odd integer greater than or equal to 1 then the value of  $n^3 - (n-1)^3 + (n-2)^3 - \dots + (-1)^{n-1}1^3$  is

36.

| (A) $\frac{(n+1)^2(2)}{4}$      | (n-1)            |        | (B) $\frac{(n-1)^2(2n-1)}{4}$                                                                      |
|---------------------------------|------------------|--------|----------------------------------------------------------------------------------------------------|
| (C) $\frac{(n+1)^2(2n+1)^2}{4}$ |                  |        | (D) None of these                                                                                  |
|                                 | ut slips 1 metre |        | pole of height 12 meters takes every time a jump<br>ne pole. The number of jumps required to reach |
| (A) 6                           | (B) 10           | (C) 11 | (D) 12                                                                                             |

37.



(D) None of these.

39. If 
$$1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{(2n-1)3^a + b}{4}$$
 then (a,b) is:

39. If 
$$1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{(2n-1)3^n + b}{4}$$
 then (a,b) is (A)  $(n-2, 3)$  (B)  $(n-1,3)$  (C)  $(n,3)$  (D)  $(n+1,3)$ 

40. The sum of infinite series 
$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots \infty$$
 is   
 (A)  $\frac{1}{3}$  (B) 3 (C)  $\frac{1}{4}$  (D)  $\infty$ 

 $(C) n(n+1)^2 (2n+1)$ 

- If a,b,c,d are positive real numbers such that a+b+c+d=2, then 41. M=(a+b)(c+d) satisfies the relation (A)  $0 \le M \le 1$  (B)  $1 \le M \le 2$  (C)  $2 \le M \le 3$  (D)  $3 \le M \le 4$
- 42. If A.M. and G.M. between two numbers be A and G respectively, then the numbers are (A) A  $\pm \sqrt{A^2 - G^2}$ (B) G  $\pm \sqrt{A^2 - G^2}$ 
  - (C)  $A + \sqrt{G^2 A^2}$ (D) None of these
- 43. The H.M. of two numbers is 4 and their A.M. and G.M. satisfy the relation  $2A + G^2 = 27$ , then the numbers are : (a) -3.1(b) 5, -25(c) 5, 4 (d) 3, 6
- If  $\sum n = 55$  then  $\sum n^2$  is equal to 44. (b) 506 (c) 1185 (d) 3025
- If  $< a_n >$  is an A.P. and  $a_1 + a_4 + a_7 + \dots + a_{16} = 147$ , then  $a_1 + a_6 + a_{11} + a_{16} =$ 45. (b) 98 (c) 100 (d) none of these
- The interval for which the series  $1+(x-1)+(x-1)^2+....\infty$  may be summed, is 46. (c) (-1.1) (d) (-2.2)(a) (0.1)(b) (0.2)
- 47. The interior angles of a polygon are in A.P. the smallest angle is 120° and The common difference is 5°. Then, the number of sides of polygon is : (a) 5 (b) 7 (c) 9 (d) 15

| 48. | $\log_{\sqrt{3}} x + \log_{\sqrt[4]{3}} x + \log_{\sqrt[6]{3}} x + \dots + \log_{\sqrt[6]{3}} x + \dots$                | x = 36 is                                                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|     | (a) $x = 3$ (b) $x = 4\sqrt{3}$ (c) $x = 9$                                                                             | (d) $x = \sqrt{3}$                                                                   |
| 49. | If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ be the geometric mean between value of n is                                    | een two distinct positive reals a and b, then the                                    |
|     | (A) 0<br>(C) -1/2                                                                                                       | (B) 1/2<br>(D) 1                                                                     |
| 50. | If log 2, log $(2^x - 1)$ and log $(2^x + 3)$ are in A. (A) 5/2 (C) $\log_3 2$                                          | P then x is equal to (B) log <sub>2</sub> 5 (D) 3/2                                  |
| 51. | The values of x for which $\frac{1}{1+\sqrt{x}}$ , $\frac{1}{1-x}$ , $\frac{1}{1-x}$                                    | $\frac{1}{-\sqrt{x}}$ are in A.P lies in                                             |
|     | (A) (0, 2)<br>(C) (0, ∞)                                                                                                | <ul><li>(B) (1, ∞)</li><li>(D) none of these</li></ul>                               |
| 52. | If three positive real numbers a, b, c (c > a) to                                                                       | are in H.P. then log [(a + c) (a + c $-2b$ )] is equal                               |
|     | (A) 2 log (c -b)<br>(C) 2 log (c -a)                                                                                    | (B) 2 log (a + c)<br>(D) log (abc)                                                   |
| 53. | The value of the expression 1.(2 $-\omega$ ) (2 $-\omega$ ) - $\omega^2$ ), where $\omega$ is an imaginary cube root of | $(n^2)^2 + 2.(3 - \omega) (3 - \omega^2) + \dots + (n - 1).(n - \omega)$ (nunity is  |
| 54. | Co-efficient of x <sup>99</sup> in the polynomial                                                                       | (x -1) (x -2) (x -3) (x -100) is                                                     |
|     |                                                                                                                         | 1 3 7 15                                                                             |
| 55. |                                                                                                                         | series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equal to |
|     |                                                                                                                         |                                                                                      |
| 56. | log <sub>3</sub> 2, log <sub>6</sub> 2, log <sub>12</sub> 2, are in                                                     |                                                                                      |
| 57. | If an A.P, the pth term is q and the $(p + q)$ th $(A) -p$ $(C) p + q$                                                  | term is 0. the qth term is (B) p (D) p -q                                            |
| 58. | If the sum of the series $1 + \frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots$                                      | to $\infty$ is a finite number then                                                  |
|     | (A) x < 2                                                                                                               | (B) $x > \frac{1}{2}$                                                                |
|     | (C) $x > -2$                                                                                                            | (D) $x < -2$ or $x > 2$                                                              |
| 59. | If $a > 1$ , $b > 1$ then the minimum value of log (A) 0 (C) 2                                                          | $g_b$ a + $log_a$ b is<br>(B) 1<br>(D) none of these                                 |
| 60. | The product of n positive numbers is 1. The                                                                             | . ,                                                                                  |

| ( | Ά  | ) a | positive | integei |
|---|----|-----|----------|---------|
| ١ | ٠. | , ~ | POORTIVO | micogo  |

(B) divisible by n

(C) equal to 
$$n + \frac{1}{n}$$

(D) greater than or equal to n

61. If 
$$(1 + x) (1 + x^2) (1 + x^4)$$
 ...... $(1 + x^{128}) = \sum_{r=0}^{n} x^r$  then n is

(C) 63

- (D) none of these
- 62. If  $t_n$  denotes the nth term of the series  $2 + 3 + 6 + 11 + 18 + \dots$  then  $t_{50}$  is
  - $(A) 49^2 1$

(C)  $50^2 + 1$ 

(D) 49<sup>2</sup> + 2

63. Let 
$$t_n = n$$
 (n!). Then  $\sum_{n=1}^{15} t_n$  is equal to

(A) 15! -1

(B) 15! +1

(C) 16! -1

- (D) none of these
- The sum of 19 terms of an A.P, whose nth terms is 2n + 1 is 64.
  - (A) 390

(B) 399

(C)499

- (D) none of these
- 65. Three numbers whose sum is 15 are in A.P., if 8, 6 and 4 be added to then respectively then these are in G.P, then the numbers are
  - (A) 4, 6, 8

(B) 1, 5, 9

(C) 2, 5, 8

(D) 3, 5, 7

66. If 
$$x + y + z = 3$$
, then  $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$  is, x, y, z > 0

 $(A) \leq 3$  (C) 4

- (D) none of these
- If  $x = \log_5^3 + \log_7^5 + \log_9^7$  then 67.
  - (A)  $x \ge 3/2$

(B)  $x \ge \frac{1}{\sqrt[3]{2}}$ 

(C)  $x > \frac{3}{\sqrt[3]{2}}$ 

(D) none of these

68. If 
$$t_r = 2^{r/2} + 2^{-r/2}$$
 then  $\sum_{r=1}^{10} t_r^2$  is equal to

(A)  $\frac{2^{21}-1}{2^{10}}+20$ 

(B)  $\frac{2^{21}-1}{2^{10}}+19$ 

(C)  $\frac{2^{21}-1}{2^{20}}-1$ 

- (D)  $3 \times \frac{2^{10} 1}{2^{10}} + 20$
- If (a, b), (c, d), (e, f) are the vertices of a triangle such that a, c, e are in G.P. with common 69. ratio r and b, d, f are in G.P. with common ratio s then the area of the triangle is
  - (A)  $\frac{ab}{2}(r+1)(s+2)(s+r)$

(B)  $\frac{ab}{2}(r-1)(s+1)(s-r)$ 

(C)  $\frac{ab}{2}(r-1)(s-1)(s-r)$ 

(D)  $\frac{ab}{2}(r+1)(s+1)(s-r)$ 

| 70. | $a,b,c\in R^+,$ then the minimum value of $\ a(b)$ (A) abc (C) 3abc                                                                          | $(a^{2} + c^{2}) + b(c^{2} + a^{2}) + c(a^{2} + b^{2})$ is equal to (B) 2abc (D) none of these                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 71. | $a,b,c\in R^+\sim\{1\}$ and $log_a100,2log_b10,2log_b(A)2b=a+c$ (C) $b(a+c)=2ac$                                                             | $_{0}$ 5 + $log_{c}$ 4 are in H.P., then<br>(B) $b^{2}$ = ac<br>(D) none of these                                                       |
| 72. | If $(m + 1)$ th, $(n + 1)$ th and $(r + 1)$ th terms of ratio of the first term of the A.P. to its comm  (A) $\frac{n}{2}$ (C) $\frac{n}{3}$ | an A.P. are in G.P. and m, n, r in H.P., then on difference in terms of n is $(B) - \frac{n}{2}$ $(D) - \frac{n}{3}$                    |
| 73. | Suppose a, b, c are in A.P. and $a^2$ , $b^2$ , $c^2$ are value of a is  (A) $\frac{1}{2\sqrt{2}}$ (C) $,\frac{1}{2}-\frac{1}{3}$            | e in G.P If $a < b < c$ and $a + b + c = \frac{3}{2}$ , then the<br>(B) $\frac{1}{2\sqrt{3}}$<br>(D) $\frac{1}{2} - \frac{1}{\sqrt{2}}$ |
| 74. | The value of $2^{1/4}.4^{1/8}.8^{1/16} \infty$ is (A) 1 (C) $\frac{3}{2}$                                                                    | (B) 2 (D) $\frac{5}{2}$                                                                                                                 |
| 75. | Coefficient of $x^9$ in the polynomial $(x - 5)(x - (A) 185$ (B) 153                                                                         | -8)(x - 11)(x - 32) is given by<br>(C) -185 (D) -153                                                                                    |

70.

#### **LEVEL-III**



12. 
$$\frac{1}{1^2 \cdot 3^2} + \frac{2}{3^2 \cdot 5^2} + \frac{3}{5^2 \cdot 7^2} + \dots$$
 up to n terms equals to

$$(A) \frac{n+1}{2n+1}$$

(A) 
$$\frac{n+1}{2n+1}$$
 (B)  $\frac{n(n+1)}{2(2n+1)^2}$  (C)  $\frac{n}{2n-1}$ 

(C) 
$$\frac{n}{2n-1}$$

(D) None of these

13. If 
$$abc = 8$$
 and  $a$ ,  $b$ ,  $c > 0$ , then the minimum value of  $(2 + a) (2 + b) (2 + c)$  is  $(A) 32$   $(B) 64$   $(C) 8$   $(D) 10$ 

14. Coefficient of 
$$x^{49}$$
 in the polynomial  $\left(x - \frac{1}{1 \times 3}\right) \left(x - \frac{2}{1 \times 3 \times 5}\right) \dots \left(x - \frac{50}{1 \times 3 \times \dots \times 101}\right)$  is

(A) 
$$\frac{1}{2} - \frac{1}{1 \times 3 \times \dots \times 101}$$

(B) 
$$-\frac{1}{2} \left( 1 - \frac{1}{1 \times 3 \times \dots \times 101} \right)$$

(C) 
$$\frac{49}{1 \times 3 \times \dots \times 101}$$

(D) 
$$\frac{50}{1 \times 3 \times \dots \times 101}$$

15. Let 
$$\sum_{r=1}^{n} r^4 = f(n)$$
, then  $\sum_{r=1}^{n} (2r-1)^4 =$ 

(A) f (2n) 
$$-16$$
 f (n);  $\forall$  n  $\in$  N

(B) f (n) 
$$-16 f\left(\frac{n-1}{2}\right)$$
, when n is odd

(C) f (n) 
$$-16$$
 f  $\left(\frac{n}{2}\right)$ , when n is even

(D) none of these

16. The co-efficient of 
$$x^{n-2}$$
 in  $(x-1)(x-2)(x-3)$ ..... $(x-n)$  is

(A) 
$$\frac{n(n^2+1)(3n+1)}{24}$$

(B) 
$$\frac{n(n^2-1)(3n+2)}{24}$$

(C) 
$$\frac{n(n^2+1)(3n+4)}{24}$$

(D) None of these

(a) cab/990

- (b) (99c + ab) / 990
- (c) (99c + 10a + b) / 99
- (d) (99c + 10a + b) / 990

18. If 
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \infty = \frac{\pi^4}{90}$$
 then  $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty$  is equal to

(a) 
$$\frac{\pi^4}{96}$$
 (b)  $\frac{\pi^4}{45}$  (c)  $\frac{\pi^4}{90}$  (d)  $\frac{\pi^4}{46}$ 

(b) 
$$\frac{\pi^4}{45}$$

(c) 
$$\frac{\pi^4}{90}$$

(d) 
$$\frac{\pi^4}{46}$$

19. 
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \dots$$

(a) 
$$\frac{n(n+1)(n+2)}{6}$$
 (b)  $\sum n^2$  (c)  $\frac{n(n-1)(n-2)}{6}$  (d) none of these

(b) 
$$\sum n^{n}$$

(c) 
$$\frac{n(n-1)(n-2)}{6}$$

20 If 
$$I_n = \int\limits_0^{\pi/4} tan^n \ x \ dx$$
, then  $\frac{1}{I_2 + I_4}$ ,  $\frac{1}{I_3 + I_5}$ ,  $\frac{1}{I_4 + I_6}$  are in

|     |                                                                                                                                                                                            | 14                                                                                                                                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21  | If x > 1, y > 1, z > 1 are in G.P, then $\frac{1}{1 + \ln x}$                                                                                                                              | $\frac{1}{1 + \ln y}$ , $\frac{1}{1 + \ln z}$ are in                                                                                                   |
| 22. | If $a^x = b^y = c^z = d^u$ and a, b, c, d are in G.P.,                                                                                                                                     | then x, y, z, u are in                                                                                                                                 |
| 23. | Let $a_1$ , $a_2$ , $a_3$ ,, $a_{10}$ be in AP and $h_1$ , $h_{10} = 3$ then $a_4h_7$ is (A) 2 (C) 5                                                                                       | $a_{1}, b_{2}, b_{3}, \dots, b_{10}$ be in H.P. If $a_{1} = b_{1} = 2$ and $a_{10} = a_{10}$ (B) 3 (D) 6                                               |
| 24. | In the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 the 150 <sup>th</sup> term is (A) 17 (C) 18                                                                                                   | , where n consecutive terms have the value n,  (B) 16  (D) none of these                                                                               |
| 25. | If a, a <sub>1</sub> , a <sub>2</sub> a <sub>2n-1</sub> , b are in A.P, a, b <sub>1</sub> , b <sub>2</sub> in H.P. where a, b are positive then the equ (A) real and unequal (C) imaginary | $b_{2n-1}$ , b are in G.P. and a $c_1$ , $c_2$ $c_{2n-1}$ , b are lation $a_nx^2 - b_nx + c_n = 0$ has its roots  (B) real and equal  (D) do not exist |
| 26. | If $\sum_{k=1}^{n} \left[ \sum_{m=1}^{k} m \right] = an^4 + bn^3 + cn^2 + dn + e$ , the                                                                                                    | en                                                                                                                                                     |
|     | (A) $a = \frac{1}{12}$ , $e = \frac{1}{12}$                                                                                                                                                | (B) $a = 0$ , $e = 0$                                                                                                                                  |
|     | (C) $a = 0$ , $e = \frac{1}{12}$                                                                                                                                                           | (D) $a = \frac{1}{12}$ , $e = 0$                                                                                                                       |

27. In the above question find the values of b, c and d?

.....

- 29. If mth, nth and pth terms of an A.P. and G.P. are equal and are respectively x, y, z then (A)  $x^y y^z z^x = x^z y^x z^y$ (B)  $(x - y)^x (y - z)^y = (z - x)^z$ (A)  $x^{2}y^{2} = x^{2}y^{2}$ (C)  $(x - y)^{2} (y - z)^{x} = (z - x)^{y}$ (D) none of these
- Coefficient of  $x^8$  in (x-1)(x-2)(x-3) .... (x-10) is (A) 980 (B) 1395 (C) 1320 30. (D) none of these.
- 31. If the sum to n terms of an A.P. is cn(n-1), where  $c \neq 0$ . The sum of the squares of these terms is
  - (B)  $\frac{2}{3}$  c<sup>2</sup>n (n -1) (2n -1) (A)  $c^2n^2(n + 1)^2$
  - (C)  $\frac{2}{3}$  c<sup>2</sup>n (n + 1) (2n + 1) (D) none of these

## ANSWERS

|          |   |     | A   | AOAATI | 13 |     |   |
|----------|---|-----|-----|--------|----|-----|---|
| LEVEL -I |   |     |     |        |    |     |   |
| 1.       | В | 2.  | С   | 3.     | Α  | 4.  | D |
| 5.       | D | 6.  | В   | 7.     | Α  | 8.  | В |
| 9.       | С | 10. | С   | 11.    | В  | 12. | В |
| 13.      | В | 14. | В   | 15.    | С  | 16. | С |
| 17.      | С | 18. | 3ad | 19.    | С  | 20. | Α |
| 21.      | С | 22. | D   |        |    |     |   |
| 23.      | D | 24. | Α   |        |    |     |   |
| 25.      | С | 26. | В   |        |    |     |   |
| 27.      | С | 28. | Α   |        |    |     |   |

| 29.<br>33.                                       | D<br>D                                                                             | 30.<br>34.                                                                            | C<br>D                                                         | 31.                                                                                   | В                                                             | 32.                                                                            | D                                                   |
|--------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|
| 1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. | A A B B C C A B B C A B B C                                                        | 2.<br>6.<br>10.<br>14.<br>18.<br>22.<br>26.<br>30.<br>34.<br>38.<br>42.<br>46.<br>50. | A D B A B C C D C A A B B B $\frac{n^2(n+1)^2}{n^2(n+1)^2} -1$ | 3.<br>7.<br>11.<br>15.<br>19.<br>23.<br>27.<br>31.<br>35.<br>39.<br>43.<br>47.<br>51. | A<br>A<br>A<br>B<br>C<br>A<br>A<br>C<br>A<br>D<br>D<br>A<br>B | 4.<br>8.<br>12.<br>16.<br>20.<br>24.<br>28.<br>32.<br>36.<br>40.<br>44.<br>48. | C A A C C A B C D A A A D D n - 1 + 2 <sup>-n</sup> |
| 56.<br>60.<br>64.<br>68.<br>72.                  | H.P.<br>D<br>B<br>B                                                                | 57.<br>61.<br>65.<br>69.<br>73.                                                       | B<br>A<br>D<br>C<br>D                                          | 58.<br>62.<br>66.<br>70.<br>74.                                                       | D<br>D<br>B<br>D                                              | 59.<br>63.<br>67.<br>71.                                                       | C<br>C<br>C<br>D                                    |
| 1. 5. 9. 13. 17. 21. 23. 25. 27.                 | D<br>D<br>A<br>B<br>D<br>H.P.<br>B<br>B<br>$\frac{1}{6}, \frac{1}{2}, \frac{1}{3}$ | 2.<br>6.<br>10.<br>14.<br>18.<br>22.<br>24.<br>26.                                    | C<br>A<br>B<br>B<br>A<br>H.P.<br>A<br>B                        | 3.<br>7.<br>11.<br>15.<br>19.                                                         | D<br>C<br>B<br>A<br>A                                         | 4.<br>8.<br>12.<br>16.<br>20.                                                  | C<br>C<br>B<br>B<br>C                               |