

Capsule Network with Routing Mechanism

Part 1: Dynamic Routing

- Ou Changkun
- Email: hi@changkun.us
- ☐ Homepage: https://changkun.de

Agenda

1. Motivations of Capsule Network

- Limitations of Convolutional Networks
- "Coordinate Frame" in Human Vision

2. Traditional v.s. Capsule Neuron

3. Routing Mechanism

- Dynamic Routing
- Case Study: CapsNet with Activity Vector

4. Experiments

- Interpretable Activity Vector
- CapsNet on Fashion MNIST

Limitations of CNN

person	0.88	
•		

reddish orange color	_	0.78
light brown color	_	0.78
starlet	_	0.66
entertainer	_	0.66
female	_	0.60
woman	_	0.59
young lady (heroine)	_	0.59

"Coordinate Frame" in Human Vision

What is a **Capsule**?

- "A capsule is a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part."
- General ideas:
 - Each dimension of v represents the characteristic of pattern;
 - The norm of v represents the existence (confidence). !!!

entity

Activation function $f(\cdot)$

Scalar

Traditional Neuron: Scalar → Scalar

$$s = b + \sum_{i} W_i x_i$$
$$y = f(s)$$

 $f(\cdot)$: Sigmoid, ReLU, Maxout, etc.

Capsule Neuron: Vector → Vector

$$oldsymbol{u_i} = oldsymbol{W_iv_i} \quad oldsymbol{s} = \sum c_i oldsymbol{u_i} \quad rac{????}{1 + \|oldsymbol{s}\|^2} rac{oldsymbol{s}}{\|oldsymbol{s}\|}$$

Dynamic Routing (by Agreement)

 $\|oldsymbol{v}\|$ is confidence

A Capsule Network (CapsNet) for MNIST

- **Layer 1. ReLU Conv:** $[28x28x1] \rightarrow [20x20x256]$
- **Layer 2. PrimaryCaps:** [20x20x256] → [6x6(x8)x32] → [1152x8]
- **► Layer 3. DigitCaps:** $[1152x8] \rightarrow [16x10] \rightarrow [10x1]$

Interpretable Activity Vector

Each dimension contains a specific information (pattern)

Scale and thickness	00000000000000000000000000000000000000		
Localized part	06666666666	[1.0]	Γ-1.0
Stroke thickness	555555555		
Localized skew	99999994444		
Width and translation	11133333333	[·]	— [·]
Localized part	222222222		

Interpretable Activity Vector: Fasion MNIST

Routing v.s. Backpropagation (on Fashion MNIST)

- Baseline(left): only using routing
- Ex1: routing+backpropagation

Why Routing? Memory Network (Hopping Machanism)

Summary of CapsNet

- Key Points of Capsule:
 - Vector → Vector (Tensor → Tensor)
 - Encapsulate entity or its pattern
 - Routing by agreement
 - o Invariance v.s. Equivariance
- Uncovered Topics:
 - Margin Loss
 - Reconstruction Network
 - Overlapping Handling
 - 0 ...
- Future works:
 - Other squashing
 - Improving routing process
 - 0 ...

References of this Section

- 1. [Hinton, G. E., Krizhevsky, A., & Wang, S. D. (2011, June). **Transforming autoencoders**. In International Conference on Artificial Neural Networks (pp. 44-51). Springer, Berlin, Heidelberg.]
- 2. [Su, J., Vargas, D. V., & Kouichi, S. (2017). One pixel attack for fooling deep neural networks. arXiv:1710.08864.]
- 3. [Hinton, G (2017). What's wrong with convolutional neural nets. <a href="https://www.youtube.com/watch?v="https://www.youtube.com
- 4. [Sabour, S., Frosst, N., & Hinton, G. E. (2017). **Dynamic Routing Between Capsules**. arXiv:1710.09829.]
- 5. [Under double-blink review (ICLR 2018). Matrix Capsules with EM Routing.] Rating results: 4, 6, 7
- 6. [Sukhbaatar, S., Weston, J., & Fergus, R. (2015). End-to-end memory networks. In Advances in neural information processing systems (pp. 2440-2448).]
- 7. [Hung-Yi Lee (2017). Capsule. https://www.youtube.com/watch?v=UhGWH3hb3Hk]