Redes de Computadores 2

Parte 01 – camada de enlace – introdução e técnicas para detecção e correção de erros

Prof. Kleber Vieira Cardoso

Tópicos

- Introdução
 - Serviços oferecidos
 - Implementação da camada de enlace
- Técnicas para detecção e correção de erros
 - Paridade
 - Soma de verificação
 - Verificação de redundância cíclica (Cyclic Redundancy Check – CRC)

Camada de enlace: algumas questões

- Como os pacotes da camada de rede são encapsulados em quadros da camada de enlace?
- São usados diferentes protocolos de enlace ao longo de um caminho de comunicação?
- Como são tratadas as colisões entre transmissões em um enlace de difusão?
- Há endereçamento na camada de enlace? Se sim, como ele é interage com o endereçamento da camada de rede?
- Quais as diferenças entre roteador e comutador?

Camada de enlace: tipos básicos

- Canal de difusão
 - Múltiplos equipamentos no mesmo canal
 - É crítico ter um protocolo para arbitrar o meio
 - As soluções podem ser totalmente distribuídas ou ter um controlador central
 - Exemplos: redes locais sem fio, redes de satélites, HFC (hybrid fiber-coaxial ou cable modem), Ethernet "clássico" (não comutado)
- Canal ponto-a-ponto
 - Envolve apenas dois equipamentos
 - Exemplos: ADSL, linhas seriais E1/T1, Ethernet comutado

Camada de enlace: Introdução

Terminologia:

- hosts e roteadores são nós
- canais de comunicação que conectam nós adjacentes ao longo de um caminho de comunicação são enlaces (links)
 - enlaces com fio (cabeados)
 - enlaces sem fio (não cabeados)
 - LANs
- UDP (Unidade de Dados de Protocolo) da camada 2 é o quadro (frame), o qual encapsula o pacote IP

a camada de enlace é responsável por transferir os pacotes entre nós adjacentes através de um enlace

Possíveis serviços da camada de enlace

O conjunto de serviços efetivamente oferecidos pode variar de acordo com o enlace utilizado

☐ Enquadramento (Delimitação do quadro):

 encapsula pacote num quadro adicionando cabeçalho e, eventualmente, cauda (trailer)

☐ Acesso ao enlace:

- implementa acesso ao canal se meio for compartilhado,
- "endereços físicos (MAC)" são usados nos cabeçalhos dos quadros para identificar origem e destino de quadros em enlaces multiponto
 - Diferente do endereço IP!

☐ Entrega confiável entre nós adjacentes:

- já é um conceito conhecido (da camada de transporte)
- raramente usada em canais com baixas taxas de erro (ex.: fibra óptica, alguns tipos de pares trançados)
- canais sem fio: altas taxas de erros
 - Pergunta: para que confiabilidade na camada de enlace e de transporte (fim-a-fim)?

Serviços da camada de enlace (cont.)

☐ Controle de Fluxo:

 compatibilizar taxas de produção e consumo de quadros entre remetentes e receptores

□ Detecção de Erros:

- erros são causados por atenuação do sinal e por ruído
- receptor detecta presença de erros
 - receptor sinaliza ao remetente para retransmissão, ou simplesmente descarta o quadro com erro

☐ Correção de Erros:

 mecanismo que permite que o receptor localize e corrija o(s) erro(s) sem precisar da retransmissão

☐ Half-duplex e full-duplex

- com half-duplex um nó não pode transmitir e receber pacotes ao mesmo tempo
 - exemplos?

Onde a camada de enlace é implementada?

- A maior parte é implementada em uma interface de rede (NIC
 - Network Interface Card)
 - Em geral, há um chip controlador de propósito específico
 - Exemplos: Intel 8254x (Ethernet), Atheros AR5006 (WiFi)
 - implementa as camadas de enlace e física
 - combinação de hardware, software (e firmware)
- Conecta ao barramento de sistema do host
 - semelhante a outros dispositivo |

Comunicação entre adaptadores

- Transmissor:
 - encapsula o pacote em um quadro
 - adiciona bits de verificação de erro, realiza controle de fluxo, acessa o meio, etc.

- Receptor
 - verifica erros, realiza controle de fluxo, acesa o meio, etc.
 - extrai o pacote, passa-o para o nó receptor

Tópicos

- Introdução
 - Serviços oferecidos
 - Implementação da camada de enlace
- Técnicas para detecção e correção de erros
 - Paridade conceito básico
 - Soma de verificação usado na camada de transporte
 - Verificação de redundância cíclica (Cyclic Redundancy Check – CRC) – tipicamente usado na camada de enlace dos dispositivos

Erro!

- Um erro ocorre quando um bit é alterado entre a transmissão e a recepção
 - $Tx(0) \rightarrow Rx(1)$ ou $Tx(1) \rightarrow Rx(0)$
- Tipos de erro
 - Erro único ou isolado condição de erro que altera um bit, mas não afeta os bits próximos
 - Causa comum: deterioração leve e aleatória da SNR
 - Rajadas de erros uma rajada de erros de comprimento R é uma sequência de bits, na qual o primeiro, o último e qualquer quantidade de bits intermediários entre eles contém erros
 - Causa comum: ruído de impulso, desvanecimento rápido
 - Os efeitos das rajadas de erros são maiores em taxas de dados mais altas. Por que?

Detecção de erros

- A camada de transporte já verifica erros, porém em software, enquanto na camada de enlace a verificação é feita em hardware
 - Normalmente, a verificação na camada de enlace é mais rápida e pode ser mais sofisticada
- A diferença entre detecção e correção de erro é que a correção precisa identificar cada bit errado
 - A detecção precisa apenas identificar que houve erro(s)
- Não detectar um erro não significa a ausência de erro!
 - As técnicas de detecção não são perfeitas

Detecção de erros (cont.)

EDC = bits de Detecção e Correção de Erros (redundância)

 D = Dados enviados com verificação de erros, os quais podem incluir alguns campos do cabeçalho

D' = Dados recebidos

EDC'= bits de Detecção e Correção de Erros recebidos

Detecção de erros (cont.)

- Uma vez que as técnicas de detecção não são perfeitas, é importante definir algumas probabilidades em relação aos erros:
 - P_b: probabilidade de um bit ser recebido com erro, também conhecido com taxa de erro de bit (BER)
 - P₁: probabilidade de um quadro recebido não ter erros
 - P₂: probabilidade de um quadro recebido com erros não ser identificado (com erro) pela técnica de detecção
 - P₃: probabilidade de um quadro recebido com erros ser identificado (com erro) pela técnica de detecção

Detecção de erros (cont.)

- Algumas considerações sobre as probabilidades:
 - Se nenhuma técnica de detecção é usada, P₃ = 0 e
 - se assumirmos que P_b é constante e independente para cada bit, temos:
 - $P_1 = (1 P_b)^Q$, onde Q é o número de bits do quadro
 - $P_2 = 1 P_1$
 - A probabilidade de um quadro recebido não ter erros (P1)
 decresce à medida em que cresce a probabilidade de um bit ser
 recebido com erro (Pn)
 - A probabilidade de um quadro recebido não ter erros (P1)
 decresce à medida em que aumenta o tamanho do quadro (Q)
 - P₃ é uma medida de acurácia da técnica de detecção
 - P₂ é também conhecida como taxa de erro residual da técnica de detecção

Paridade

Paridade de 1 Bit:

Detecta erros em um único bit

Adiciona 1 bit que pode ser
'0' ou '1' de acordo com a paridade (par ou ímpar) e a quantidade de bits '1' dos dados

Paridade Bidimensional:

Detecta e corrige erro em um único bit

		Paridade	e de linha	
g	d _{1,1}		$d_{1,j}$	$d_{1,j+1}$
Paridade de coluna	d _{2,1}		d _{2, j}	$d_{2,j+1}$
e de				
ridad	$d_{i,1}$		$d_{i,j}$	$d_{i,j+1}$
₽	$d_{i+1,1}$		$d_{i+1,j}$	$d_{i+1,j+1}$

Nenhum erro					ú	Erro de bit único corrigível						
1	0	1	0	1	1	1	0	1	0	1	1	NO.50 50
1	1	1	1	0	0	1	0	1	1	0	0	Erro de parida de
0	1	1	1	0	1	0	1	1	1	0	1	
0	0	1	0	1	0	0	0	1	0	1	0	
	Erro de paridade											

Paridade (cont.)

• 1 bit

- Quando ocorrem erros em rajada, a probabilidade de não detectar esses erros pode se aproximar de 50%
 - Medições mostram que erros em rajada são mais frequentes que erros isolados

Bidimensional

- Erro de 1 bit na própria paridade pode ser detectado e corrigido
- Pode detectar, mas não corrigir, qualquer combinação de dois erros
- A capacidade de detectar e corrigir erros é conhecida como FEC (Forward Error Correction)

Soma de verificação

 Os d bits de dados são divididos em n conjuntos de tamanho k e somados. A soma resultante é usada para detecção de erros

Soma de verificação da Internet

Objetivo: detectar "erros" (i.e. bits trocados) no datagrama/segmento transmitido

- Usado apenas na camada de transporte (UDP/TCP)
- · Camada de rede verifica apenas o próprio cabeçalho

Transmissor:

- trata os dados como uma sequências de 16 bits
- realiza a soma de verificação: adição (complemento de 1 da soma)
 - Transbordo é realimentado à direita
 - Após concluir soma, inverte os bits (esse é a checksum)
- coloca o valor da soma de verificação (checksum) em um campo do cabeçalho

Receptor:

- calcula a soma de verificação do datagrama/segmento recebido
- confere a soma de verificação:
 - Se igual a 111...111 → soma correta (nenhum erro foi detectado)
 - Senão → soma incorreta (erro detectado

Verificação de redundância cíclica (CRC)

- Largamente usado na prática (Ethernet, CDMA, 802.11)
- Dados são considerados como a sequência de coeficientes de um polinômio (D)
 - Exemplo: $101110 \rightarrow X^5 + X^3 + X^2 + X$
- É escolhido um polinômio Gerador, (G), com r+1 bits
 - Divide (módulo 2) o polinômio D*2^r por G e acrescenta o resto (R) a D
 Por construção, a nova sequência <D,R> agora é exatamente divisível por G
 - Receptor conhece G, divide <D,R> por G. Caso o resto seja diferente de zero: detectado erro!
 - Pode detectar todos os erros em rajadas menores do que r+1 bits

CRC (cont.)

- Todos os cálculos realizados na CRC são em aritmética módulo 2
 - Multiplicação e divisão são as convencionais da aritmética binária
 - Na soma, não há transbordo, e na subtração, não há empréstimo
 - Soma e subtração se tornam idênticas e equivalentes a operação XOR
 - Exemplos:

CRC (cont.)

 Maiores detalhes sobre CRC serão apresentados no quadro

Exemplo de CRC

Questão crucial: como o transmissor obtém *R*?

Queremos encontrar *R* tal que existe um *n* tal que:

 $D \cdot 2^r XOR R = nG$

de forma equivalente:

$$D \cdot 2^r = nG XOR R$$

de forma equivalente:

se dividirmos D² por G, queremos o resto R

$$R = resto\left(\frac{D.2^r}{G}\right)$$

