$T_D n^o 5$

Langages et expressions régulières (3)

Exercice 5

1. On a $e=a(ab\mid b^*)\mid a,\, f=a_1(a_2b_1\mid b_2^*)\mid a_3$ et $f_{\varphi}=e$ où

$$\varphi: \left(\begin{array}{ccc} \forall i, \ a_i & \longmapsto & a \\ \forall i, \ b_i & \longmapsto & b \end{array} \right).$$

D'où

	Λ	P	S	F	
a_1	Ø	a_1	a_1	Ø	
a_2	Ø	a_2	a_2	Ø	
b_2^*	ε	b_2	b_2	$b_{1}b_{2}$	
$a_2b_1 b_2^*$	ε	a_2, b_2	b_{1}, b_{2}	a_2b_1, b_2b_2	•
a_3	Ø	a_3	a_3	Ø	
$a_1(a_2b_1 \mid b_2^*)$	Ø	a_1	b_1, b_2, a_1	$a_1a_2, a_1b_2, a_2b_1, b_2b_2$	
f	Ø	a_1, a_3	b_1, b_2, a_3, a_1	$a_1a_2, a_1b_2, a_3b_1, b_2b_2$	

Automate à faire...

2. On pose $e=(\varepsilon\mid a)^*\cdot ab\cdot (a\mid b)^*$ et $f=(\varepsilon\mid a_1)^*\cdot a_2b_1\cdot (a_3\mid b_2)^*$ et

$$\varphi: \left(\begin{array}{ccc} \forall i,\; a_i & \longmapsto & a \\ \forall i,\; b_i & \longmapsto & b \end{array}\right)$$

d'où $f_{\varphi} = e$.

Exercice 4

Q. 1

Algorithme: *Entrée* : Un automate A;

Sortie : $\mathcal{L}(\mathcal{A}) = \emptyset$;

On fait un parcours en largeur depuis les états initiaux et on regarde si on atteint un état final.

Algorithme (Nathan F.): *Entrée* : Deux automates \mathscr{A} et \mathscr{B} *Sortie* : $\mathscr{L}(\mathscr{A}) = \mathscr{L}(\mathscr{B})$; Soit \mathscr{C} l'automate reconnaissant $\mathscr{L}(\mathscr{A}) \bigtriangleup \mathscr{L}(\mathscr{B})$. On retourne $\mathscr{L}(\mathscr{C}) \stackrel{?}{=} \varnothing$ à l'aide de l'algorithme précédent.

Autre possibilité, on procède par double inclusion :

Algorithme (\subseteq): *Entrée* : Deux automates \mathscr{A} et \mathscr{B} *Sortie* : $\mathscr{L}(\mathscr{A}) \subseteq \mathscr{L}(\mathscr{B})$; On retourne $\mathscr{A} \setminus \mathscr{B} \stackrel{?}{=} \varnothing$.

Q. 2 L'algorithme reconnaissant $\mathcal{Z}(\mathcal{A}) \bigtriangleup \mathcal{Z}(\mathcal{B})$ doit être déterminisé, sa complexité est donc au moins de 2^n .

Exercice 6: Langages reconnaissables ou non

Q. 7 Le carré d'un langage est le langage $L_2 = \{u \cdot u \mid u \in L\}$. Si L est reconnaissable, L_2 est-il nécessairement reconnaissable ?

Avec $\Sigma=\{a,b\}$, soit $L=\mathcal{L}(a^*\cdot b^*)$. On a donc $L_2=\{a^n\cdot b^m\cdot a^n\cdot b^m\mid (n,m)\in\mathbb{N}^2\}$. Supposons L_2 reconnaissable. Soit $\mathcal{L}(a)$ un automate à n états reconnaissant L_2 . On pose $u=a^{2n}\cdot b^n\cdot a^{2n}\cdot b^n\in L_2$. D'après le lemme de l'étoile, il existe $(x,y,z)\in (\Sigma^*)^3$ tel que $u=x\cdot y\cdot z$, $|xy|\leqslant n, \mathcal{L}(x\cdot y^*\cdot z)\subseteq L_2$, et $y\neq \varepsilon$. Ainsi, il existe $m\in [\![1,n]\!]$ et $p\in [\![1,n]\!]$ tels que $y=a^m$, $x=a^p$ et $z=a^{2n-m-p}\cdot b^n\cdot a^{2n}\cdot b^n$. Et alors, $x\cdot y^2\cdot z=a^p\cdot a^{2m}\cdot a^{n-m-p}\cdot b^n\cdot a^{2n}\cdot b^n=a^{2n+m}\cdot b^n\cdot a^{2n}\cdot b^n\notin L_2$.

Q. 5 Le langage $L_5 = \{a^{n^3} \mid n \in \mathbb{N}\}$ est-il reconnaissable? Soit \mathcal{A} un automate à N états, et soit $u = a^{N^3}$. D'après le lemme de l'étoile, il existe $(x,y,z) \in (\Sigma^*)^3$ tel que $u = x \cdot y \cdot z$, $|xy| \leq N$, $\mathcal{L}(x \cdot y^* \cdot z) \subseteq L_5$ et $y \neq \varepsilon$. D'où $x \cdot y^0 \cdot z \in L$, et donc $a^{N^3-i} \in L$, avec $i \leq N$. Or, $\forall k \in \mathbb{N}, \ N^3-i \neq k^3$, ce qui est absurde.