第四章 电化学

一. 判断题;

1. 相同条件下,氧化还原电对中电极电势代数值愈小的还原态, 其还原能力愈强。

答:对

2. 在氧化还原反应中,凡是 $\varphi^{\,\,\theta}$ 值小的氧化态一定不能氧化 $\varphi^{\,\,\theta}$ 值大的还原态。

答: 错。不一定

3. φ值仅与物质的本性有关

答: 错,与物质的浓度也有关。

4. 在 2 9 8K 下, ϕ^{θ} 值与物质的本性有关。

答:对

5. 一定温度下,在氧化还原电对中氧化态的浓度降低,则还原态的还原能力增强。

答: 对

6,一定温度下,在氧化还原电对中还原态的浓度的浓度增加,则 氧化态的氧化能力减弱。

答:对

7. 已知半反应 H_2O_2 —— $\rightarrow O_2$ + $2H^{\dagger}$ + $2e^{-}$, 过氧化氢是该半反应中的氧化 态物质。

答: 错,还原态

8. 对于电极反应 I₂+e⁻ → 2 I⁻ 期φ ^θ=0.45V, 将反应改写为 1/2 I₂ +e⁻ ---> I⁻, 则φ ^θ=40.27.

答: 错, φ 不改变

9. 微小浓度的改变就很容易逆转的氧化还原反应,是那些 E^{θ} 值接近于零的反应。

答: 错,还需考虑浓度

10. 当一种氧化剂能氧化系统中的几种还原剂时,首先发生的反应一定是在 E 值大的电对之间。

答: 错,不一定,考虑浓度。

- 11. 已知电对 Br₂ /Br⁻, Fe³⁺/Fe²⁺, I₂ /I⁻ 的 φ ^θ 值分别为 1. 065V,
 - 0.771V, 0.535V,则标态下,它们中氧化态氧化能力的顺序是: Br₂>Fe³⁺>I₂

答:对

12. 一定温度下,Cr₂0₁² 的氧化性随溶液的 pH 值增大而增强。

答: 错,酸性强(pH越小)氧化性强

13. 氧化还原反应 Cu+2Ag⁺ =Cu²⁺ +2Ag, 改写为 1/2Cu+Ag⁺ =1/2Cu²⁺ +Ag, E⁶ 不变。

答: 对,

14. 将 13 题的方程式改写为: Cu²+ +2Ag=Cu+2Ag+ , E θ 不变。

答: 错, 反应改变了

15 标准条件下,反应: 2MnO ₄ ¯ +10C1 ¯ +16H ¯ =2Mn ² + +5C1 ₂ + 8H ₂0. 的原电池图式为:

(-) Pt | $C1_2(p^{\Theta})$ | $C1^-(c^{\Theta})$ || $Mn0_4^-(c^{\Theta})$, $Mn^{2+}(c^{\Theta})$, $H^+(c^{\Theta})$ | Pt (+) 答: 对

16 已知 $\varphi^{\,\Theta}$ (Fe³/Fe²+) =0.77V, $\varphi^{\,\Theta}$ (Sn⁴+/ Sn²+) =0.15V,则氧化还原反应进行的方向为: Sn⁴++ Fe²+= Sn²++ Fe³+ (在标准条件下);

答: 错, 0.15-0.77<0

17. 锌的浓差电池,其原电池符号为:

(-) $Zn \mid Zn^{2+}(1.0\text{mol} \cdot L^{-1}) \parallel Zn^{2+}(0.0010\text{mol} \cdot L^{-1}) \mid Zn(+)$

答: 错,正负极反转。

18. 已知 $\varphi^{\,\Theta}$ (Br₂/Br⁻) =1.07V, $\varphi^{\,\Theta}$ (Fe³⁺/Fe²⁺) =0.77V,则在标准条件下,Br⁻ 的还原能力较 Fe²⁺ 强。

答: 错,

19. 对于由几个氧化还原反应,当总反应的标准摩尔吉布斯函数变为: $\triangle G^{\theta}_{\beta} = \triangle G^{\theta}_{1} + \triangle G^{\theta}_{2}$ 则 $\triangle E^{\theta}_{\beta} = \triangle E^{\theta}_{1} + \triangle E^{\theta}_{2}$

答: 错, ΔG^{θ} = nFE $^{\theta}$, n 不一定相同。

20. 已知电极反应 I₂ (s) +2e⁻→2I⁻ (aq), 该氧化还原电对的符号 是: I₂/I⁻。

答:对,高价在前。

21. 已知电极反应 H₂O₂ -→O₂+2H⁺+2e⁻, 该氧化还原电对的符号是 H₂O₂ /O₂

答:错,高价应在前。

22. 对于电极反应 H₂O₂ +20H ⁻-→O₂ +2H ₂O+2e⁻, O₂ 是电对中的氧化 态物质。

答: 对,

23. 已知原电池图式为: (一) Pt | Sn²⁺、 Sn⁴⁺ || Fe²⁺、Fe³⁺ | Pt (+) 在标态下其电池反应为: 2Fe²⁺+Sn⁴⁺=Sn²⁺+2Fe³⁺

答: 错, 反转。

24 将反应 Zn +Cu²⁺=Zn²⁺+2Cu 装配成原电池, 期电动势随 c(Zn²⁺)/c(Cu²⁺) 的比值增加而减小。

答:对。

25 已知φ^θ (Fe³+/Fe²+) =+0.77V, φ^θ (Br₂/Br⁻) =+1.07V, 在标准条件下其反应为: 2Fe³+2Br -=2Fe²+Br₂(1)

答: 错, 反转。

26 两个电对如果能够组成原电池, φ^{θ} 较小的一定作负极。

答: 错,

27 氢电极 (H */H 2) 的电极电势等于零。

答: 错

28 在氧化还原反应中若两个电对的电极电势相差较大,则该反应的速率较大。

答: 错

二 选择题

1 已知方程式 5Fe²⁺+8H⁺+MnO₄⁻=5Fe³⁺+Mn²⁺+4H₂0 其氧化和还原的半反应式为:

A. $5 \text{Fe}^{2+} = 5 \text{Fe}^{3+} 718 \text{H}^{+} + \text{MnO}_{4}^{-} = \text{Mn}^{2+} + 4 \text{H}_{2} \text{O}$

- B. $Fe^{2+}=Fe^{3+}$ $AH^+ + MnO_4^- = Mn^{2+} + 4H_2O_5$
- C. $Fe^{2+}=Fe^{3+}+e^{-}\pi 18H^{+}+MnO_{4}^{-}=Mn^{2+}+4H_{2}O$
- D、 $5Fe^{2+}=5Fe^{3+}+5e^{-}$ 和 $8H^{+}+MnO_{4}^{-}+5$ $e^{-}=Mn^{2+}+4H_{2}O$
- 2. 在标准条件下将氧化还原反应 Fe²⁺ +Ag⁺=Fe³⁺ +Ag 装配成原电池,原电池符号为:

A (
$$\longrightarrow$$
) Fe²⁺ | Fe³⁺ | Ag⁺ | Ag⁺

B
$$(-)$$
 Ag⁺ | Ag⁺ | Fe³⁺ | Fe²⁺

C (
$$\longrightarrow$$
) Pt | Fe²⁺ , Fe³⁺ || Ag⁺ | Ag (+)

D (
$$\longrightarrow$$
) Ag⁺ | Ag⁺ || Fe²⁺ | Pt (+)

3. 25度时,已知氧化还原电对

C1
2
/C1 $^-$ Pb 2 +/Pb Fe 3 + / Fe 2 + ϕ $^{\Theta}$ +1.36 -0.126 +0.77

选择一种氧化剂,在标准状态下能将上面三个电对中的还原态氧化成其氧化态。

A
$$MnO_2$$
 [ϕ^{Θ} (MnO_2/Mn^{2+}) =+1.208V]

B
$$K_2Cr_2O_7$$
 $[\phi^{\theta} (Cr_2O_7^{2+}/Cr^{3+}) = +1.33V]$

C
$$K_2MnO_4$$
 [ϕ^{Θ} (MnO_4^-/Mn^{2+}) =+1.49V]

D
$$O_2$$
 [ϕ^{Θ} (O_2/H_2O_2) =+0.682V]

4 25 度时, 已知氧化还原电对数值如下,请问这些电对中氧化和还原能力最强的是:

$$A Sn^{4+} Fe^{2+}$$
 $B Cu^{2+} Cu$

$$C Fe^{3+} Cu$$
 $D Fe^{3+} Sn^{2+}$

5 对于反应 4A1+30₂+6H₂O=4A1(OH)₃ 进度为 1Mo1 时,转移电荷数 n/mo1 为:

6. 某氧化还原反应的 $E^{\theta} > 0$ 文意味着:

A
$$\triangle G^{\Theta} > 0$$
 $K^{\Theta} > 1$ B $G^{\Theta} < 0$ $K^{\Theta} < 1$

$$C \triangle G^{\Theta} < 0 \quad K^{\Theta} > 1$$
 $D \quad G^{\Theta} > 0 \quad K^{\Theta} < 1$

7. 已知 $\phi^{\,\theta}$ (Zn²⁺/Zn) =0.763, $\phi^{\,\theta}$ (Cu/Cu) =0.34V 在标准 条件下反应,

8. 在标准条件下将反应 2Fe³⁺ +Cu=2Fe²⁺ +Cu²⁺ 改写为 Fe³⁺ +1/2Cu =Fe²⁺ +1/2Cu²⁺

下面说法中不正确的是:

- A 电子得失数不同
- B E^θ相同
- $C \triangle G^{\Theta}$ 不同, K^{Θ} 值也不同 D 组成原电池时, Cu 作正极。
- 9. Cu-Zn 原电池, 反应为: Zn+Cu²⁺=Zn²⁺+Cu, 欲使电动势增加, 采 取的方法是:

 - A 增加 Zn²⁺ 浓度; B 增加 Cu²⁺ 浓度;

 - C 增加溶液体积; D 增大电极尺寸。
- 10 已知氧化还原电对 Br₂/Br⁻ 和 Fe³⁺ /Fe²⁺ 的 φ 值分别为 1.07V 和 0.77V,标准条件下反应 $Br^- + Fe^{3+} = 1/2$ $Br + Fe^{2+}$ 的 E^{θ} 值为:
 - A 0.30V B. -0.30V
 - C 1.84V D -1.84V
- 11. 已 φ^{θ} (I_2/I^-) =0.53, 在标准条件下反 $I^- + Fe^{3+} = 1/2I_2 + Fe^{2+}$ 的 E^{θ} /V 值为:
 - B 0. 24 C 1. 30 D. 1. 30
- 12 根据 10 和 11 题的结果, 上面两个反应标准条件下的方向依 次 为:
 - A 正 正方向 B 逆 逆方向
 - C 正 逆方向 D 逆 正方向

13 已 φ^{θ} (Co²+/Co) =--0. 28 V φ^{θ} (Ni²+/Ni) =--0. 23V,在标准状态下氧化还原反应的方向为: Ni²++Co→Ni+Co²+ 欲使反应逆向进行,采取的措施是:

A 增加 Ni²⁺浓度

B增加 Ni 用量

C增加 Co²⁺浓度

D 增加 Co 浓度

14 在酸性介质中 KMn0₄氧化 H₂0₂ 其反应为: 2Mn0₂+5H₂0 +6H⁺=Mn²++8H₂0₂+50₂ , 该反应中 H₂0₂的半反应方程式:

- B $H_2O_2+2e^-=OH^-$
- C $(H_2O_2=O_2+2H^++2e^-) \times 5$
- $D H_2O_2+2OH^-=O_2+H_2O+2e^-$

15 已知电极反应 $Cu^{2+} + 2e^{-} = Cu$, $φ^{\theta}$ (Cu^{2+} / Cu) =+0.34V $c(Cu^{2+}) = 1.0 \times 10^{-2}$ mol • L^{-1} 时,φ 值为

A +0.40V B+0.34V C +0.28V D+0.31V

16 已知电极反应 $Cl_2 + 2e^- = 2Cl^-$, ϕ^{Θ} (Cl_2 / Cl^-) =1.36V, 当 $c(Cl^-) = 0.10$ mol • L^{-1}

[p(Cl₂)=1.01325×10⁵ Pa]时, φ值为:

A1. 30V B1. 36V C1. 39V D+1. 42V

17 已知电极反应 Cr₂O₇²⁻ + 14H⁺ +6e⁻=2Cr³⁺+7H₂O φ θ (Cr₂O₇ /Cr³⁺)

=1.33V, 设

 $C(Cr_2O_7^{2^-})=C(Cr^{3^+})=1.00$ mol • L⁻¹ 当 $c(H^+)=18.40$ mol • L⁻¹ 时, ϕ 值为

A 1.33 B1.45 C 1.50 D 1.55V

18 已知 $\phi^{\,\,\theta}$ (C1₂/C1⁻) =1.36V $\phi^{\,\,\theta}$ (MnO₂/Mn²⁺) =1.21V 在标准状太下 MnO₂

不能氧化盐酸,在实验室常用 MnO_2 氧化浓盐酸制备氯气,当 HC1 的浓度为 $10.0 mol • L^{-1}$ 设 $c (Mn^{2+}) = 1.0 mol • L^{-1}$, $P(C1_2) = 1.01325$ $\times 10^5$ Pa 计算反应:

 $MnO_2(s) + 2C1^-(aq) + 4H^+ = Mn^{2+}(aq) + C1_2(s) + 2H_20$ 的 E 值: A +0.027V B -0.027V C +0.086 D.—0.086V

19 已知电极反应 H₂O₂+2OH →O₂+H₂O+2e , 其氧化还原电对的符号 是:

A H_2O_2/H_2O B H_2O_2/O_2 C O_2/H_2O_2 D H_2O/H_2O_2

20 已知氧化还原反应 $1/2Zn+1/2Cu^{2+} = 1/2Zn^{2+} + 1/2Cu$ 的 $E^{\theta}=1.103V$,该反应的

△G^θ / (KJ/mol • L⁻¹) 和 25℃时的平衡常数 K^θ 值依次为:
A -212.8 和 2.188×10³⁷

B 212.8 和 4.571×10⁻³⁸

C -106.4 和 4。677×10¹⁸

D 106 和 2.138×10⁻¹⁹

21 根据下列各电对的 φ^{θ} ,在标准状态时不能共存于同一溶液的物 质是:

$$Br_2 = 2e + 2Br^-$$

$$2 \text{Hg}^{2+} + 2 \text{e}^{-} = \text{Hg}^{2+} + 0.92 \text{V}$$

$$+0.92V$$

$$Fe^{3+}+2e^{-}=Fe^{2+}$$

$$\operatorname{Sn}^{2+}+2e^{-}=\operatorname{Sn}$$

$$+0.14V$$

22 罐头铁皮上镀有一层锡, 当镀层损坏后, 被论腐蚀的金属是:

B Fe C Sn和Fe D 不能判断

23 利用教材附录 9.1, 标准状态下,下列各组物质的水溶液混合后 发生反应的是:

A
$$Co^{2+}$$
 Fe^{2+} Co B Fe^{2+} Fe^{3+} Ag⁺

$$C NO_3^- H^{\dagger} H_{\xi}$$

24 金属表面因其吸附的氧分布不均匀而被腐蚀时, 金属溶解处的氧

气浓度和该处氧电对的电极电势的大小各为:

A 较大和较小 B 较小和较大

C 较小和较小 D 较大和较大

25 已知 25℃下,反应 H⁺+Na=Na⁺+1/2H₂ (g), φ θ (Na⁺/Na) =2.71v, 当 pH=5 时,其 K^{θ}

值为:

A 5. 12×10^{17}

 5.98×10^{45} В

C7. 6 \times 10¹⁹

5. 98 D $\times 10^{40}$

标准状态时,下列物质中能 26 在含有 C1⁻ Br⁻ I⁻的酸性溶液中, 将氧化而不氧化 Br _C1 _ 的是

A MnO_2 $B Cr_2O_7$

Fe³⁺

 $D S_2 O_8$

27 向 A1₂(S0₄)₃ 和 CuS0₄ 的混合溶液中放入一个铁钉,下列结论正确 的是:

A 生成 A1, Fe²⁺和 H₂ B 生成 Fe²⁺ A1 和 Cu

C 生成 Fe²⁺和 Cu D 生成 Cu 和 H₂

28 MnO₂ 能氧化浓盐酸中的 Cl⁻ 发生如下反应, 但却不能氧稀盐酸,

这是因为:

$$MnO_2(s) + 2C1^-(aq) + 4H^+ \rightarrow Mn^{2+}(aq) + C1_2(g) + 2H_20$$

- A 两个电对的标准电极电势相差不大;
- B 酸度增加, φ ^θ (MnO₂/Mn²⁺) 增大;
- C c(C1⁻)增加, φ^θ (C1₂/C1⁻)減小
- D 浓度增大, 反应速率增大。
- 29 已知标准状态时下列两反应均自发(ABC均为金属单质)

$$A (s) + B^{2+} (aq) \rightarrow A^{2+} (aq) + B (s)$$

$$A (aq) + C^{2+}(s) \rightarrow C^{2+}(aq) + A (s)$$

标准状态时, 关于反应 $B^{2+}(aq)+C(s)\rightarrow B(s)+C^{2+}(aq)叙述正确$ 的是:

- A 反应正向自发 B 正向非自发
- C 处于平衡态 D 反应方向 无法判断
- 30 已知 $\phi^{\,\,\theta}$ (AgI/Ag) =-0.15V, $\phi^{\,\,\theta}$ (AgBr/Ag) = +0.095 根据标准电极电势,判断金属银可以自发溶于:
 - A 盐酸 B 氢溴酸
 - C 氢碘酸 D 氢氟酸
- 三 原电池图式练习:

1 在标准条件下,下列氧化还原反应正向进行,用原电池图式表示它们。

A
$$2I^{-}+ 2Fe^{3^{+}}=I_{2} +2Fe^{2^{+}}$$

(-) Pt | I_{2} | I^{-} | $Fe^{2^{+}}$, $Fe^{3^{+}}$ | Pt (+)

B $3Sn^{2^{+}}+Cr_{2}O_{7}^{2^{-}}+14H^{+}=3Sn^{4^{+}}+2Cr^{3^{+}}+7H_{2}O$
(-) Pt | $Sn^{2^{+}}$, $Sn^{4^{+}}$ | $Cr_{2}O_{7}^{2^{-}}$, $Cr^{3^{+}}$, H^{+} | Pt (+)

C $Cl_{2}(g)+Co(s)=2Cl^{-}+Co^{2^{+}}$
(-) Co | $Co^{2^{+}}$ | Cl^{-} | Cl_{2} | Pt (+)

2. 下列各组电对在标准条件下组成原电池,根据教材附录 9.1 计算原电池的 ${\bf E}^{\theta}$ 的值

写出原电池图式

$$A Sn^{2+}/Sn Ag^{+}/Ag$$

B
$$Zn^{2+}/Zn$$
 $C1_2/C1^-$

2. 12 (-)
$$Zn \mid Zn^{2+} \parallel C1^- \mid C1_2 \mid Pt (+)$$

1. 323 (-) Ni | Ni
$$^{2+}$$
 || Br $^{-}$ | Br $_{2}$ | Pt (+)

四,填空

1 已知: φ^{θ} (Fe³+/Fe²+) =0.77V, φ^{θ} (I₂/I¯) =0.535V, F=96485C/mo1, 计算

298K 下原电池反应: 2Fe³⁺ +2I⁻ =2Fe²⁺+I₂(s)

- A 标准电动势 $E^{\theta} = 0.235$
- B 标准吉布斯函数变 $\triangle G^{\theta}$ / (KJ mol L⁻¹) = -45.3
- C 反应的平衡常数 $K^{\Theta} = 8.8 \times 10^7$
- D 假设其它离子浓度为标准状态, c(I⁻)= 1.07×10⁻⁴ E=0V
- 2. 一定温度下,原电池反应 Zn(s)+2H=Zn+H₂(g),欲使该原电池的电动势于 0.5V,

 $C(Zn^{2+})=1.0 \text{mol} \cdot L^{-1}$ 时, $c(H^{+})=3.9\times 10^{-5}$

- 3. 一定温度下,原电池反应的 $\triangle G^{\theta} = -20.02 \text{KJ/mo1}$, n=2, 该 原电池的标准电动势 $E^{\theta} = 0.104$
- 4. 某原电池反应,在 25℃下 K^{Θ} =2. 0×10^{19} n=2 该原电池 25℃的标准电动势 E^{Θ} = 0.57
- 5 25 ℃ 下 电 极 反 应 Br₂+2e¯==2Br¯ 的 φ ^θ 值 =1.07V , 当 c (Br)=1.00×10⁻¹⁰ mol L¯ 时, 该条件下的 φ 值是 1.66

6. 已知原电池为: +

(一) Zn | Zn (c_{zn}²⁺) | H⁺ (c_H⁺) | H₂ (101325Pa) | Pt (+) 298K 该原电池的电动势 E=0. 540V,锌半电池的电极电势φ (Zn²⁺/Zn) =-0.82

且 φ^{θ} (Zn/Zn²⁺) =-0.763V, φ^{θ} (H⁺/H₂) =0.00V 计算:

- (1) 锌半电池中锌离子的浓度 c (Zn2+)
 - 1.18×10^{-2}
- (2) 氢电极的电极电动势φ^θ (H⁺/H₂)
 -0.28
 - (3) 氢半电池溶液的 PH=4.7
 - (4) 氢半电池溶液的氢离子浓度, c(H⁺)=1.8×10⁻⁵
 - (5) 若氢半电池中的酸性溶液是由浓度为 $0.10 \text{mol} \cdot \text{L}^{-1}$ 一元弱酸 HA 和浓度为 $0.10 \text{mol} \cdot \text{L}^{-1}$

该弱酸的盐 NaA 组成,则弱酸 HA 的电离常数 $K_a = 1.8 \times 10^{-5}$

- (6) 该原电池的△G_{298K}= -104
- (7) 该氧化还原反应达到的平衡,反应的 $\triangle G_{\pi} = 0$
- (8) 该氧化还原反应的平衡常数 $K^{\theta} = 5.8 \times 10^{25}$