

Study design

Results

Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples by Heng Li (2014)

Benjamin L. Moore

8th June 2015

Study design Results

Aims

- How important is choice of aligner, variant caller and filtering steps?
- What are the sources of errors and disagreements?
- What's a reasonable estimate for the global error rates of variant calls?

Study design

Results

Conclusions

Study design

Measure accuracy using real data rather than simulations

CHM1(hTERT)	NA12878
"Complete hydatidiform mole" cell line with haploid genome	Illumina platinum genomes (PCR free + deeply sequenced)

Handy in this case because heterozygous calls in CHM1 should (in theory) all be erroneous. . .

Study design

Results

Conclusions

Study design

Read mapping:

- bowtie2
- bwa-backtrack
- bwa-mem

Variant callers:

- FreeBayes
- samtools
- UnifiedGenotyper
- HaplotypeCaller
- Platypus

Study design

Results

Conclusion

Study design

Read mapping:

- bowtie2
- bwa-backtrack
- bwa-mem

Variant callers:

- FreeBayes
- samtools
- UnifiedGenotyper
- HaplotypeCaller
- Platypus

Broad comparison of popular tools but doesn't investigate:

- Aligner and variant caller parameters
- Pragmatic conerns: throughput, compute resources

Study design

Results

Conclusions

Variant filtering

Compare "universal filters", i.e. not those embedded in callers:

- 1 Low complexity: remove vars in LCRs*
- 2 Max-depth: filter if suspiciously high coverage
- 3 Allele balance: filter if not roughly 1 or .5
- 4 **Double strand**: var should be represented on both strands
- **5 Fisher strand**: reference/non- match forward/reverse
- 6 Quality: threshold by reported variant quality

^{*}alignment and caller independent

Study design

Results

Conclusion

Low complexity, max depth filters ++effective

Aims Study design

Results

Conclusions

Inconsistencies suggest non-biological errors

If problems were with ploidy or mutations, we'd expect more agreement between aligners + callers.

Study design

Results

Conclusions

Methods agree in diploid line

Low-hanging fruit + well-developed algorithms

Study design Results

Conclusion

... but not in low-complexity regions

Maybe variants in LC regions should be ignored until methods improve, or can be resolved with long-read tech

Study design

#NA12878 hets - #CHM1 hets $(\times 10^6)$

Results

Conclusion

 \approx FP on x-axis \approx TP on y-axis

Again max-depth stands out, optimally:

$$\mathsf{DP} < d + [3\sqrt{d}, 4\sqrt{d}]$$

Study design

Results

Conclusions

Investigating problematic regions

Interesting to look at where things are going wrong and why

Here mapping errors lead to variant calls instead of recognising insertion (over-penalising gap extension?)

Example of where assembling reads can help (HaplotypeCaller)

Study design

Results

Conclusions

Genome build matters

Study design

Results

Conclusions

Headline statistics

- 1) Raw variant calls: 1 error per 10-15 kb
- **After filtering**: 1 error per 100-200 kb

Study design

Results

Conclusions

Headline statistics

1 Raw variant calls: 1 error per 10-15 kb

2 **After filtering**: 1 error per 100-200 kb

... confirmatory.

Matches estimates by Bentley *et al.* (2008) and Nickles *et al.* (2012).

Study design

Results

Conclusions

Sources of errors

Largest sources of error:

- 1 Low complexity regions, incl. caller realignments
- 2 Incomplete reference genome

Study design

Results

Conclusions

Sources of errors

Largest sources of error:

- 1 Low complexity regions, incl. caller realignments
- 2 Incomplete reference genome

Read assembly can help with both: long synthetic reads can bridge low complexity regions and can be assembled *de novo*, independent of reference.

Study design

Conclusions

Advised best practices

Now:

Run ≥two pipelines, take intersection of raw calls and apply universal filters

Future:

De novo assembly using long reads (PacBio, ONT or something like Moleculo/TruSeq Synthetics)

Map to multiple possible genotypes instead of a single reference