

Linguagens Formais e Autômatos (LFA)

Aula de 09/09/2013

Panorama do Restante da Disciplina

Próximo Tópicos da Matéria

Linguagens

Autômatos

Regulares

- Autômatos Finitos
 - Máquinas de Moore e Mealy

Livres de Contexto

Autômatos de Pilha

- Sensíveis a Contexto
- Irrestritas

- Máquina de Turing
 - MT com fita limitada
 - MT Universal

Linguagens Regulares e Autômatos Finitos

Características das LR's

 $\alpha \in Ne |\alpha| = 1$

AF's (exploração no JFLAP)

Exercício de Exploração

No JFLAP

- 1. Criar <u>autômato finito determinístico</u> para que aceite a linguagem L = a e salve como AFD
- Explorar o processamento de várias cadeias (aceitáveis e não-aceitáveis) oferecidas uma a uma, através do menu "Input > Step by State"
- Explorar a aceitação/rejeição de múltiplas cadeias (gravadas em arquivo txt, uma por linha) oferecidas em conjunto, através do menu "Input > Multiple Run > Load Inputs > Run Inputs"
- 4. Examinar as etapas de reconhecimento das cadeias oferecidas em [3] acionando, para cada uma o botão "View Trace"
- 5. Criar <u>autômato finito não determinístico</u> (AFN) para que aceite a linguagem L = a e salve como AFN
- 6. Explorar o processamento de várias cadeias (aceitáveis e não-aceitáveis) oferecidas uma a uma, através do menu "Input > Step by Closure"
- Explorar a aceitação/rejeição das mesmas cadeias oferecidas em [3]
- 8. Examinar as etapas de reconhecimento das cadeias oferecidas em [3] acionando, para cada uma o botão "View Trace"
- 9. Converter AFN para Gramática equivalente através do menu "Convert > Convert to Grammar"
- 10. Converter a gramática gerada de volta para um autômato finito através do menu "Convert > Convert Right Linear Grammar to FA" e salve como AF
- 11. Teste a equivalência entre AF, AFN e AFD através do menu "Test > Compare Equivalence"
- 12. Examine os três autômatos e em seguida assinale e anote as diferenças entre eles.

Exercício de Exploração (para casa)

No JFLAP

- 1. Criar autômato finito determinístico para que aceite a linguagem L = a (bb) e salve como AFD
- 2. Explorar o processamento de várias cadeias (aceitáveis e não-aceitáveis) oferecidas uma a uma, através do menu "Input > Step by State"
- Explorar a aceitação/rejeição de múltiplas cadeias (gravadas em arquivo txt, uma por linha) oferecidas em conjunto, através do menu "Input > Multiple Run > Load Inputs > Run Inputs"
- 4. Examinar as etapas de reconhecimento das cadeias oferecidas em [3] acionando, para cada uma o botão "View Trace"
- 5. Criar <u>autômato finito não determinístico</u> (AFN) para que aceite a linguagem L = a (bb) e salve como AFN
- 6. Explorar o processamento de várias cadeias (aceitáveis e não-aceitáveis) oferecidas uma a uma, através do menu "Input > Step by Closure"
- Explorar a aceitação/rejeição das mesmas cadeias oferecidas em [3]
- 8. Examinar as etapas de reconhecimento das cadeias oferecidas em [3] acionando, para cada uma o botão "View Trace"
- 9. Converter AFN para Gramática equivalente através do menu "Convert > Convert to Grammar"
- 10. Converter a gramática gerada **de volta para um autômato finito** através do menu "Convert > Convert Right Linear Grammar to FA" e salve como AF
- 11. Teste a equivalência entre AF, AFN e AFD através do menu "Test > Compare Equivalence"
- 12. Examine os três autômatos e em seguida assinale e anote as diferenças entre eles.

Mais sobre autômatos finitos

Correspondências entre Autômatos Finitos, Linguagens Regulares e Expressões Regulares (Sugestão: http://lrodrigo.lncc.br/images/c/c0/ExpressoesRegulares.pdf)

Autômatos Mínimos (com o menor número possível de estados necessários para aceitar uma linguagem regular L) + Método de Minimização de Autômatos Finitos

Transdutores Finitos (máquinas que <u>estendem</u> os autômatos finitos, acrescentando-lhes a possibilidade de escrever uma <u>fita de saída</u> cujos símbolos correspondem aos da fita original de entrada do autômato finito).

- Máquinas de Moore (símbolos da fita de saída correspondem a <u>estados</u> visitados pelo autômato durante o reconhecimento)
- Máquinas de Mealy (símbolos da fita de saída correspondem a <u>transições</u> realizadas pelo autômato durante o reconhecimento).

Outras Linguagens e Outros Autômatos (trailer)

Linguagens

Autômatos

Livres de Contexto

Autômatos de Pilha

- Sensíveis a Contexto
- Irrestritas

- Máquina de Turing
 - MT com fita limitada
 - MT Universal

LLC (GLC) e Autômatos de Pilha

 $\alpha \in N \ e \ |\alpha| = 1$ $V = N \ U \ \Sigma$ $\beta \in V^*$

LSC (GSC) e Máquinas de Turing de Fita Limitada

LI (GI) e a Máquina de Turing Universal

Efeitos interessantes de manipulação simbólica


```
// Moves right until finds the "#".
// Reads "#", moves second number to second tape.
// Finishes the previous movement.
// Reads the first number from the last digit to the first, if the digit is a 0,
// does nothing, otherwise, sums the number on the second tape to the third,
// keeping the sum on the third tape. Then multiplies the number on the second tape
// by 2.
// Shift left, second tape.
. . .
// Sum
// Sum Carry.
. . .
// Head goes back to the end of the second and third tape.
// First tape deletion.
// Moves the output to the first tape.
```


Firefox Programa de Aulas +			
♦ www.inf.puc-rio.br/~inf1626/index.php?option=com_content&view=article&id=20&Itemid=14			
	8	Prova G1 Guia de Correção	4-Sep
Próximo Bloco da Matéria	9	Panorama do Restante da Disciplina: Linguagens Regulares, Livres de Contexto, Sensíveis a Contexto e Irrestritas; Autômatos Finitos; Autômatos de Pilha, Máquinas de Turing	9-Sep
	10	Gramáticas Regulares Propriedades; Linearidade à Esquerda e à Direita	11-Sep
	11	Autômatos Finitos Modelo Conceitual	16-Sep
	12	Autômatos Finitos Transições com Vazio; Estados Inacessíveis e Inúteis	18-Sep
	13	Minimização de Autômatos Finitos	23-Sep
	14	Máquinas de Moore e Mealy	25-Sep
	15	Autômatos Finitos Modelo de Implementação	30-Sep
	16	Aula de Atendimento Dúvidas sobre a matéria da Prova	2-Out
	17	Prova G2	7-Out