TD/TME semaine 2 : Simulation Électrique – eldo

Objectif(s)

- ★ Dans un premier temps, vous allez utiliser le simulateur électrique **eldo** ¹ et l'interface de visualisation **ezwave** pour observer les caractéristiques statiques et dynamiques du transistor NMOS et de l'inverseur CMOS.
- ★ Dans un second temps vous allez étudier l'influce de la charge (nb de portes attaquées) sur le temps de propogation d'un inverseur puis d'un inverseur suivi d'un buffer.
- ★ En dernier lieu, vous allez observer l'influence de la résistance des fils d'interconnexion sur les temps de propagation

Pour utiliser les outils eldo ¹ et ezwave et avoir 'sourcer' le fichier ~mentor/ams2015.1.csh (il faut être sous shell tcsh).

En résumé en début de séance effectuez dans l'ordre :

- 1. Ouvrir un terminal,
- 2. Passer en tcsh en tapant tcsh
- 3. faire un source du script de configuration de l'environnement : ~mentor/ams2015.1.csh

Exercice(s)

La plupart des fichiers sont fournis, vous n'aurez que quelques modifications mineures à effectuer. Les fichiers se trouvent dans le répertoire suivant :

/users/enseig/galayko/VLSI/TP2

Exercice 1 – Caractéristiques du transistor NMOS

Copiez le fichier polar_nmos.spi dans votre répertoire et lancez la simulation. Dans cette simulation la tension VDS = 3.3V et on fait varier la tension VGS de 0 V à 3.3 V et on mesure le courant IDS.

Question 1

Déterminez la tension de seuil à partir de laquelle le transistor commence à être passant.

Exercice 2 – Simulation statique de l'inverseur CMOS

Copiez les fichiers mon_inv.spi et inv_statique.spi dans votre répertoire et lancez la simulation.

> eldo inv_statique.spi

^{1.} la documentation se trouve dans le répertoire /users/soft/mentor/ams2015.1/aol/docs/pdfdocs/, consultez le fichier eldo_ur.pdf

UE VLSI – page 2/3

FIGURE 1 – Buffer à insérer.

Question 1

Qu'observez-vous, cet inverseur vous parait-il équilibré? Justifiez votre réponse.

Question 2

Faites varier la valeur de Wp jusqu'à ce que l'inverseur soit équilibré.

Exercice 3 – Simulation dynamique de l'inverseur CMOS

Copiez le fichier inv_dynamique. spi dans votre répertoire et lancez la simulation.

Question 1

Ajoutez une capacité de charge à la sortie de votre inverseur, faites varier la valeur de cette capacité de 0 fF à 100 fF. Pour chaque valeur mesurez le temps de commutation de l'inverseur et tracez la courbe.

Exercice 4 – Insertion d'un buffer

Copiez le fichier buf_x8.spi dans votre répertoire et en partant du fichier inv_dynamique.spi écrivez le fichier invplusbuf.spi qui ajoute un buffer buf_x8 entre la sortie de l'inverseur et la capacité de charge. Le schéma de principe du buffer est donné fig. 1.

Question 1

Simulez ce nouveau circuit en faisant varier la capacité de charge comme pour l'exercice précédent.

Ouestion 2

A partir de quelle valeur de charge, l'insertion d'un buffer est utile au temps de propagation global?

Question 3

A combien d'inverseurs correspond cette charge?

Exercice 5 – Influence de la resistance des fils d'interconnexion

Créez maintenant deux nouveaux fichiers (inv_dynamique_resist.spi et invplusbuff_resist.spi en ajoutant une résistance correspondant aux fils d'interconnexion reliant la sortie de l'inverseur ou du buffeur à la capacité de charge.

Question 1

Simulez ces nouveaux circuits en fixant la capacité de charge à 90 nF. Qu'observez vous? Proposez une explication.