Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

Review: Inner products on real linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle = 0$ if and only if v = 0.

Review: Euclidean inner product

• The Euclidean inner product on \mathbb{R}^n :

$$\begin{cases} \langle \,, \, \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \\ \\ \langle x, y \rangle = y^T x = y_1 x_1 + \dots + y_n x_n. \end{cases}$$

where
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

• Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted ||v||, by $||v|| = \sqrt{\langle v, v \rangle}$.

4/15

• Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted ||v||, by $||v|| = \sqrt{\langle v, v \rangle}$.

• Two vectors $u, v \in V$ are said to be orthogonal if $\langle u, v \rangle = 0$.

• Suppose that V is an inner product space. For $v \in V$, we define the norm of v, denoted ||v||, by $||v|| = \sqrt{\langle v, v \rangle}$.

• Two vectors $u, v \in V$ are said to be orthogonal if $\langle u, v \rangle = 0$.

• Cauchy-Schwarz Inequality: Let V be an inner product and $u, v \in V$. Then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

• Cauchy-Schwarz Inequality: Let V be an inner product and $u, v \in V$. Then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

• Triangle Inequality: Let V be an inner product. If $u, v \in V$, then

$$||u + v|| \le ||u|| + ||v||$$

• If nonzero vectors v_1, \ldots, v_n are mutually orthogonal (every vector is perpendicular to every other), then those vectors are linearly independent.

Orthonormal vectors

Definition

Vectors q_1, \ldots, q_n are orthonormal if

$$q_i^T q_j = \begin{cases} 0 & \text{whenever} & i \neq j \\ 1 & \text{whenever} & i = j \end{cases}$$
 (for orthogonality)

A matrix with orthonormal columns will be denoted by Q.

• Example. The standard vectors e_1, \ldots, e_n .

Orthogonal Subspaces

Definition

Two subspaces W_1 and W_2 of the same space V are orthogonal, denoted by $W_1 \perp W_2$, if and only if each vector $w_1 \in W_1$ is orthogonal to each vector $w_2 \in W_2$:

$$\langle w_1, w_2 \rangle = 0.$$

for all w_1 and w_2 in W_1 and W_2 , respectively.

Orthogonal complement of a subspace

Definition

Given a subspace W in linear space V, the space of all vectors orthogonal to W is called the orthogonal complement of V. It is denoted by W^{\perp} .

- We emphasize that W_1 and W_2 can be orthogonal without being complements.
- $W_1 = \operatorname{span}((1,0,0))$ and $W_2 = \operatorname{span}((0,1,0))$.

Fundamental theorem of orthogonality

Fundamental theorem of orthogonality

Let $A \in M_{mn}(\mathbb{R})$.

- **1** The row space is orthogonal to the nullspace (in \mathbb{R}^n).
- ② The column space is orthogonal to the left nullspace (in \mathbb{R}^m).

Fundamental theorem of orthogonality

Let $A \in M_{mn}(\mathbb{R})$.

- The nullspace is the orthogonal complement of the row space in \mathbb{R}^n .
- ② The left nullspace is the orthogonal complement of the column space in \mathbb{R}^m .

Column space and row spase of

- $N(A) + N(A)^{\perp} = \mathbb{R}^n.$
- $N(A) \cap N(A)^{\perp} = \{0\}.$
- Direct Sum: $\mathbb{R}^n = N(A) \oplus N(A)^{\perp}$.
- $\bullet \ \mathbb{R}^n = N(A) + C(A^T).$
- Thus, for each $x \in \mathbb{R}^n$, there are $x_r \in C(A^T)$ and $x_n \in N(A)$ such that $x = x_n + x_r$.
- $\bullet \ Ax = Ax_r + Ax_n.$
 - The nullspace component goes to zero: $Ax_n = 0$.
 - 2 The row space component goes to the column space: $Ax = Ax_r$.

Column space and row space

Proposition

From the row space to the column space, A is actually invertible. Every vector in the column space comes from exactly one vector in the row space.

13 / 15

Column space and row space

Corollary

Every matrix transforms its row space onto its column space.

- $A \in M_{mn}(\mathbb{R})$ is invertible on those r-dimensional spaces.
- A on its nullspace is zero.
- Thus A^{-1} exists if and only if r = m = n.
- When A^{-1} fails to exist, the best substitute is the pseudoinverse A^+ .
- One formula for A^+ depends on the singular value decomposition under some conditions.

Thank You!