Rejection Approximate Bayesian Computation

-/

p(x)

 θ)

 $\approx p(\theta \mid x^o)$

 $x^* \sim p(x \mid \theta^*)$ while $d(x^*, x^o) > \epsilon$:

 $set \theta_i = \theta^*$

 $\theta^* \sim p(\theta)$

 $x^* \sim p(x \mid \theta^*)$

For i = 1, ..., N

 $\theta^* \sim p(\theta)$

Rejection Approximate Bayesian Computation (ABC)

For
$$i=1,\ldots,N$$

$$\theta^* \sim p(\theta)$$

$$x^* \sim p(x \mid \theta^*)$$
 while $d(x^*,x^o) > \epsilon$:
$$\theta^* \sim p(\theta)$$

$$x^* \sim p(x \mid \theta^*)$$
 set $\theta_i = \theta^*$

Rejection ABC

Alternative approach

- Instead of choosing a fixed threshold we can instead sample a very large artificial data set and choose a fraction of samples that are most similar to the observed data
- Threshold can then be calculated after the simulation as the largest distance that was still accepted
- The approach can be used in smaller scale to find out reasonable threshold levels for sampling based ABC methods