DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular F	End Semester	Examination -	Summer 2022
Kegmar r	enu semester	examination -	Summer 2022

	Course: B. Tech. (S.Y.)	Branen : CIVIL	30	mester :IV	1
	Subject Code & Name:	BTCVC405 HYDRAULI	CS II	DI-	~
	Max Marks: 60	Date: 27/08/2022	Duratio	on: 3.45 Hr.	93
	which the question	nts: re compulsory. on/expected answer as per O is based is menticaed in () immable scientific calculator ata wherever necessary and i	in front of the questions is allowed.	n.	Marks
0.1	Solve Any Two of the fol	lowing.			
4.1	Define open channel flow	and differentiate pipe flow f	from channel flow	(1)	6
B)		lischarge through triangular		(1)	6
6 K	Find the time required to I reservoir of 80 m x80 m b i) a rectangular no	ower down water level from y otch of length 1.5 m		(1)	6
0.2	Solve Any Two of the fo	llowing.			
		most efficient trapezoidal sec	tion of a channel.	(1)	1
B)	V . 7	;- specific energy curve.	it	/ (1)	6
C)	discharge 15 m3/s when d	rough a rectangular channel depth of flow of water is 1.2 ii) critical depth .		(1)	6
	iii) minimum specific ene	ergy			
Q. 3	Solve Any Two of the fo	llowing.			
(3)	Derive the dynamic equat	ion gradually varied flow.		(2)	6
• ^(B)	a discharge 19.20 m3/s .w	vater into a horizontal rectanged the first of channel 8 m and dept p will occur, if so find its hei	th of flow 0.40 m.	(2)	6
C)	m/s. The curved plate is a	strikes a curved plate at its ce also moving with a relocity of through an angle of 165 0 a	f 8 m/s in the direction	0 (3) n	6
Q.4	Solve Any Two of the fo				
西地		f turbines. Also differentiate	impulse and reaction	(3)	6
B)	Describe draft tube statis	ng its need and performance,	also state different	(3)	6
	31 32 32 41	1			

	A pelton wheel turbine has mean bucket speed of 10 m/s with a jet of water flowing at a rate of 700 lit/s under a head of 30 m. The bucket deflects the jet through an angle of 160 ° Calculate horse power and hydraulic efficiency of turbine, assuming co-efficient of velocity 0.98.	(3)
Q. 5	Solve Any Two of the following. How pumps are generally classified, Explain in detail working of a	(3)
A)	centrifugal pump.	
B)	Write a detailed note on : i) Efficiencies of pump. ii) Multistage pump arrangements.	(3.)
C)	A centrifugal pump delivers water against a not head of 14.5 m and at a speed of 1000 r.p.m. The vanes are curved at an angle of 30 ° with the periphery. The impeller diameter is 300 m m and the outlet width 50 mm. Determine the discharge of pump if manometric efficiency is 95%.	(3)
93	*** End *** doi:	\frac{1}{2}
2	h-	ar she