AP (Cher	nistry
Spec	ific	Heat

Solve the following problems for heat showing the proper units. Use the table of specific heats shown below. Show all work.

Substance	specific heat(J/g·°C)
H_2O	4.18
Fe	0.452
Pb	0.130

1. How much heat in kJ will be needed to warm 500. g of iron from 30 °C to 34 °C?

$$Q = m(ST)$$

= $(500.3)(0.452)$ $(34.0°(-30.0)) = 9045 = $[0.904]$ $(34.0°(-30.0))$$

2. What is the specific heat of tin if 18.27 cal of heat are released when 282 g of tin is cooled from 26.3 °C to 25.1 °C?

3. A 111 g piece of platinum is heated to 112 °C and placed into 50.0 mL water that has been sitting at room temperature (21.0 °C). The temperature gets raised to 27 °C. What is the specific heat of the platinum

4. A chunk of lead at 60.0 °C is dropped into 40.0 mL of water at 25.5 °C. The final temperature is found to be 29.7 °C. What is the mass of the lead?

$$-m(\Delta T) = m(\Delta T)$$

$$-(m)(0.130)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(20.70(-60.00())) = (40.03)(4.184)(4.184)(20.70(-60.00())) = (40.03)(4.184)(4.184$$

5. How much heat (in
$$\mathcal{V}$$
) is required to change 296 g of ice from -6.0 °C to its liquid form at 55. °C?

$$\frac{1}{9} = \frac{1}{2969} (2.060 \pm 1)(0\% = -6\%) = 3700 \pm 3$$

$$= (2963)(33) \pm 3 = -99000 \pm 3$$

$$= (2963)(33) \pm 3 = -99000 \pm 3$$

$$= (2963)(4.184 \pm 3)(55 - 0\%) = 68000 \pm 3$$
The heat in kLing required if 31.0 or of ion starts at 10.0 % and changes to steam

6. How much heat in kJ is required if 31.0 g of ice starts at -10.0 °C and changes to steam with a temperature of 117 °C?

$$1) = m(DT)$$

$$= (31.03)(2.060) = (0.09(--109()) = 639$$

$$= (31.03)(333) = (10300)$$

94900 1