Klausur im Lehrgebiet

Signale und Systeme

- Prof. Dr.-Ing. Thomas Sikora -

Na	me:				□ Bachel	or	□ ET
				□ Master		□ TI	
Vor	mame:				□ Diplom	ı	\square KW
					☐ Magist	er	□
Ma	tr.Nr:				☐ Erasmı	1S	
	Ich bin mit der Veröffentlic	hung	des Kl	ausure	rgebnisses im	ı Web	
	unter meiner verkürzten M	Iatrike	elnumr	ner eir	verstanden.		
		A1	A2	A3	Summe		
		711	112	710	Dumme		
	J						
Hinv	veise:						
1.	Füllen Sie vor Bearbeitung d	ler Kla	usur da	s Deck	blatt vollständ	l ig und	sorgfältig aus.
2.	Schreiben Sie die Lösungen	jeweils	direkt	auf de	n freien Platz ι	ınterha	lb der Aufgabenstellung.
3.	Die Rückseiten können bei	i Beda	rf zusä	tzlich l	oeschrieben w	erden.	Sollte der Platz auf der
	Rückseite nicht ausreichen,					zu verv	venden. Die Klausurauf-
	sicht teilt auf Anfrage zusät z	zliche	leere E	Blätter	aus.		
4.	Ein nichtprogrammierbare		henrecl	nner ur	nd ein einseiti	g hand	beschriebenes DIN-A4-
	Blatt sind als Hilfsmittel erla	aubt.					
5.	Bearbeitungszeit: 90 min.						
6.	Keinen Bleistift und auch k	einen	Rotstif	t verwe	enden!		
7.	Bei Multiple-Choice-Fragen	gibt es	je richt	tiger Ar	ntwort einen ha	alben Pı	unkt, je falscher Antwort
	wird ein halber Punkt abgezogen. Im schlechtesten Fall wird die Aufgabe mit null Punkten						
	bewertet.						
8.	8. Grundsätzlich müssen bei allen Skizzen die Achsen vollständig beschriftet werden.						
Ich h	abe die Hinweise gelesen und	voreta	ndon:				(Unterschrift)
1011 11	are minweise geresen und	7 C15ta					··· (ontersemmt)
	Technische Universität Berlin			Klausu	r im Lehrgebiet		
	Fachgebiet Nachrichtenübertragung	:		Signal	e und Systeme		Blatt: 1

am 25.02.2021

Prof. Dr.-Ing. T. Sikora

Erklärung zur Prüfungsfähigkeit

ch erkläre, dass ich mich prüfungsfähig fühle. (§7 (10) Satz 5+6 AllgPO vom 13. Juni 2012)
(Datum und Unterschrift der Studentin/ des Studenten)

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 2
Prof. DrIng. T. Sikora	am 25.02.2021	

Inhaltsverzeichnis

1	Zeitkontinuierliche Signale	4
2	Zeitkontinuierliche Systeme und Abtastung	9
3	Zeitdiskrete Signale und Systeme	13

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 3
Prof. DrIng. T. Sikora	am 25.02.2021	

1 Zeitkontinuierliche Signale

11 Punkte

22. Zeichnen Sie das folgende Signal $u_1(t)$. Achten Sie auf eine vollständige Achsenbeschriftung. $-A \prod_{\tau} (t + \frac{3}{2} \tau)$ $A \prod_{\tau} (t - \frac{3}{2} \tau)$

1.2 Gegeben seien die folgende, zeitkontinuierliche Signale $u_2(t)$ und $u_3(t)$: 2 P

a) Bestimmen Sie die Funktion des zeittransformierten Signals $u_3(t)$ in Abhän- 1,5 P gigkeit zu $u_2(t)$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 4
Prof. DrIng. T. Sikora	am 25.02.2021	

b) Bestimmen Sie die Gesamtleistung des Signals $u_2(t)$.

$$P_{U} = \frac{1}{21} \int_{0}^{27} A^{2} \left(\frac{t}{2T}\right)^{2} dt + \frac{1}{3T} \int_{21}^{37} A^{2} \left(-\frac{t}{2T} + \frac{3}{3}\right) dt$$

$$= \frac{1}{3T} \cdot \int_{0}^{27} A^{2} \cdot \frac{t^{2}}{4T^{2}} dt + \frac{1}{3T} \int_{21}^{37} A^{2} \left(\frac{t^{2}}{4T^{2}} + \frac{3}{4} + \frac{1}{2T} + \frac{3}{2T} + \frac{1}{2T} + \frac{1}{$$

c) Wie kann mittels Verknüpfung mit einem anderen Signal aus einem Energie- *1 P signal ein Leistungssignal werden?

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 5
Prof. DrIng. T. Sikora	am 25.02.2021	

0,5 P

1.3 Gegeben seien die folgenden Signale u(t) und v(t).

a) Berechnen Sie die Kreuzkorrelationsfunktion $r_{uv}(\tau)$.

You
$$(2) = \int_{-\infty}^{\infty} u(t) v(t+2) dt$$
links: $t+2=0 \implies t=-2$

reulis: Etre = 27 => t=- 7+27

7 P

4,5 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 6
Prof. DrIng. T. Sikora	am 25.02.2021	

b) Skizzieren Sie $r_{uv}(\tau)$ im Bereich $-3T \le \tau \le 3T$. Achten Sie dabei auf vollständige Achsenbeschriftungen!

1 P

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 7
Prof. DrIng. T. Sikora	am 25.02.2021	

1.4 Berechnen Sie die Fouriertransformierte des folgenden Signals w(t). Fassen Sie das Ergebnis so weit wie möglich zu trigonometrischen Funktionen zusammen.

2 P

$$w''(t) = \frac{c}{67} S(t+3,57) - \frac{2}{3} - \frac{c}{3} S(t+2,57) + \frac{c}{9} S(t+27)$$

$$-\frac{2}{3} - \frac{c}{9} S(t+1,57) + \frac{c}{67} S(t+0,57)$$

$$(50)^{2} w(5)w) = \frac{c}{67} e^{jw^{2}/57} - \frac{2c}{37} e^{jw^{2}/57} + \frac{c}{9} e^{jw^{2}/7} - \frac{2c}{37} e^{jw^{2}/7} + \frac{c}{67} e^{jw^{2}/7} + \frac{2c}{67} e^{jw^{2}/7}$$

Technische Universität Berlin	Klausur im Lehrgebiet		
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 8	
Prof. DrIng. T. Sikora	am 25.02.2021		

2 Zeitkontinuierliche Systeme und Abtastung

10,5 Punkte

UZ4

2.1 Gegeben sei die folgende Impulsantwort h(t). Bestimmen Sie den Amplituden- 2 P und Phasengang des Systems.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 9
Prof. DrIng. T. Sikora	am 25.02.2021	

- 2.2 Gegeben sei das folgende Blockschaltbild. Geben Sie die Gesamtübertragungsfunktion $H_{\text{Ges}}(s)$ in Abhängigkeit von den Einzelübertragungsfunktionen $H_i(s)$, i=1,...,5 an. Fassen Sie das Ergebnis so weit wie möglich zusammen.
- 2 P

AIS) =
$$X(s) - H_4(s) \cdot H_5(s) \cdot Y(s) + H_3(s) \cdot (Y(s) H_2(s) - (A(s) + H_4(s) Y(s)))$$

= $X - H_4 H_5 Y + H_3 [H_2 Y - A - H_4 Y]$
= $X - H_4 H_6 Y + H_2 H_3 Y - AH_3 - H_3 H_4 Y$
 $= X - H_4 H_6 Y + H_2 H_3 Y - H_3 H_6 Y)$
 $A(s) = \frac{\Lambda}{\Lambda + H_3} \cdot (X - H_4 H_5 Y + H_2 H_3 Y - H_3 H_6 Y)$

H(5) =
$$\frac{Y(5)}{X(5)} = \frac{H_0}{n + H_3 + H_4 H_5 - H_1 H_2 + H_3 + H_4 H_6}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 10
Prof. DrIng. T. Sikora	am 25.02.2021	

- 2.3 Von einem realen zeitkontinuierlichen System mit 5 Extremstellen (Pol- und Nullstellen zusammen) seien die folgenden Eigenschaften bekannt. Skizzieren Sie das PN-Diagramm des Systems. Erläutern Sie Ihre Schlussfolgerungen aus den genannten Eigenschaften.
 - a) Der Imaginärteil einer Nullstelle sei 2.
 - b) Der minimalphasige Anteil besteht aus einer Polstelle.
 - c) Der Allpassanteil besitzt mindestens eine Nullstelle mit dem Realteil -2.
 - d) $|H(0)| = \frac{1}{3}, H_0 = 1$.
 - e) Das System ist nicht stabil.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 11
Prof. DrIng. T. Sikora	am 25.02.2021	

2.4 Gegeben sei das Signal $u(t) = \frac{A}{2} \cdot \sin \left(\omega_0 \frac{t}{4}\right)$, $\omega_0 = \frac{2\pi}{T_0}$.

4 P

a) Skizzieren Sie u(t) im Bereich $-8T_0 \le t \le 8T_0$.

1 P

b) Geben Sie das Spektrum $U(j\omega)$ an.

1 P

Beispiel: Rechteckfunktion (Fortsetzung)

Aus Gl. (4.8)

$$\Pi_{\mathrm{T}}(t) \leftrightarrow \mathrm{T} \, \mathrm{si} \left(\frac{\omega \mathrm{T}}{2}\right)$$

ergibt sich durch Ersetzen von T durch $\omega_T=2\pi/T$ und Anwendung des Vertauschungssatzes das Transformationspaar

$$\operatorname{si}\left(\omega_{\mathrm{T}} \frac{\mathrm{t}}{2}\right) \leftrightarrow \mathrm{T} \cdot \prod_{\omega_{\mathrm{T}}}(\omega)$$
 (4.28)

$$U(1) = \frac{A}{2} Si(\frac{W_0}{2} \cdot \frac{1}{2})$$

$$U(1)w) = \frac{A}{2} Ii(\frac{W_0}{2} \cdot \frac{1}{2}) = \frac{A}{2} \frac{1}{(\frac{1}{2})} A^{-1} Si(w_0 \frac{1}{2}) (\frac{w_0}{2})$$

$$= A \cdot T \cdot \prod_{N_0} (2N)$$

W4 = W6 \(\frac{27}{T_1} = \frac{27}{7_0}\)

17: To

c) Das Signal werde mittels Shapetop-Sampling ($\alpha=\frac{1}{2},\ \omega_T=\omega_0$) abgetastet. Skizzieren Sie den Verlauf des abgetasteten Signals $u_A(t)$ im Zeitbereich

 $-8T_0 \le t \le 8T_0$.

max Amplitudu: $\frac{4}{2}$ Nullstellen: $t = 2kT_0$ wit $k \ne 0$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 12
Prof. DrIng. T. Sikora	am 25.02.2021	

3 Zeitdiskrete Signale und Systeme

11,5 Punkte

3.1 PN-Diagramme zeitdiskreter Systeme

- 4 P
- a) Gegeben sei das folgende PN-Diagramm eines zeitdiskreten Systems. Kreuzen Sie rechts die entsprechenden Eigenschaften des Systems an.
- 3 P

$$S = \frac{2}{T} \left(\frac{2-1}{2+1} \right)$$

- ja nein
- □ reellwertig
- **∑** □ (bedingt) stabil
- □ kausal
- □ linearphasig
- □ 🔀 Allpass
- □ minimalphasig

b) Skizzieren Sie qualitativ den Amplitudengang des Systems im Bereich $-\pi \leq 1$ P $\Omega \leq \pi.$

c) Gehen Sie davon aus, dass das PN-Diagramm aus Teilaufgabe 3.1 a) die Polund Nullstellen eines entsprechenden zeitkontinuierlichen Systems nach der
Abtastung zeigt. Skizzieren Sie im untenstehenden Koordinatensystem die PNVerteilung des Systems **vor** der Abtastung.

Abbildung 1: Transformation von der s-Ebene in die z-Ebene

- * Z平面上的单位圆会映射到S平面的虚轴上。
- * Z平面内的点会映射到S平面左半部(表明稳定性)。
- * Z平面外的点会映射到S平面右半部(表明不稳定性)。

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 14
Prof. DrIng. T. Sikora	am 25.02.2021	

3.2 Gegeben sei nachfolgende Impulsantwort h(n).

a) Bestimmen Sie die Systemfunktion H(z).

b) Ist das System stabil? Begründen Sie Ihre Antwort.

3 P

0,5 P

1 P

0,5 P

c) Bestimmen Sie den Frequenzgang $H(j\Omega)$. Fassen Sie das Ergebnis so weit wie 1 P möglich zu trigonometrischen Funktionen zusammen.

möglich zu trigonometrischen Funktionen zusammen.

$$H(j \Omega) = \sum_{k=0}^{\infty} h(k) e^{-jkN} = e^{-2j\Omega} + 2e^{-3j\Omega} + e^{-4jN}$$

$$= e^{-3j\Omega} \cdot (e^{j\Omega} + 2 + e^{-jN})$$

$$= e^{-3j\Omega} \cdot (2\cos\Omega + 2)$$

d) Zeichnen Sie den Amplitudengang $A(\Omega)$.

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 15
Prof. DrIng. T. Sikora	am 25.02.2021	

R= 0 1 23

Gegeben sei die Folge $\{2; 0; 1; 2\}$. 3.3

4,5 P

Berechnen Sie die DFT der Folge.

2 P

1 P

- DD= 2K = Z Upro(n) = = = u(k)e = 2e°+0+e=2in=7+1e-33n=2
- UDM(0) = 2 + 1 + 2 = 5 $UDM(1) = 2 + 2 \frac{3}{2}J\pi$ $UDM(1) = 2 + 2 \frac{3}{2}J\pi$ $= 2 - 1 + 2 \cdot j = 142 \cdot j$ $UDFT(2) = 2 + e^{-2j\pi} + 2e^{-3j\pi x}$
- = 2 +1 -2 = 1

Uppr(3) = 1-2j

b) Welche Eigenschaften unterscheiden die DFT von der gewöhnlichen Fourieru ansiormanon: transformation?

Zeitsignale werden so interpretient, als ob sie periodisch wairen

das Spelktrum period: nm fortgesend Technische Universität Berlin Klausur im Lehrgebiet Fachgebiet Nachrichtenübertragung Signale und Systeme Blatt: 16 Prof. Dr.-Ing. T. Sikora am 25.02.2021

Gegeben sei nun die diskrete Fouriertransformierte $U_{DFT}=\{2;\frac{1}{2}-j\frac{\sqrt{3}}{2};\frac{1}{2}+1,5\text{ P}\ j\frac{\sqrt{3}}{2}\}$. Bestimmen Sie mithilfe der inversen DFT (IDFT) die Zahlenfolge u(k). $U(k)=\frac{1}{3}\sum_{n=0}^{2}U_{n+1}(n)\cdot e^{-\frac{3k^{n}\Delta^{n}}{3}}$

$$U(A) = \frac{1}{3} \sum_{N=0}^{2} (U_{N+1}(N) \cdot e^{\frac{1}{3}AN\Delta L}} \Delta \Omega - \frac{2\pi}{3}$$

$$= \frac{1}{3} \sum_{N=0}^{2} (U_{N+1}(N) \cdot e^{\frac{1}{3}AN \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}) e^{\frac{1}{3}A \cdot \frac{2\pi}{3}R} + (\frac{1}{24} + \frac{1}{3} + \frac{1}$$

Technische Universität Berlin	Klausur im Lehrgebiet	
Fachgebiet Nachrichtenübertragung	Signale und Systeme	Blatt: 17
Prof. DrIng. T. Sikora	am 25.02.2021	