微處理機 LAB 5 Clock and Timer

Due: 兩週後 早上 8:00

PART 1. (10%) 實作題

Lab 5.1 Modify system initial clock:

請完成實驗 錄影紀錄實驗結果並附上程式碼(main.c 及 include 之.h. .c 檔案)

·在範例程式 Lab 5.1 中新增 20 HMz 的 system clock 頻率,讓 LED 閃爍頻 率做出對應改變。

PART 2. (40%) 實作題

Lab 5.2 Timer

請完成實驗 錄影及截圖紀錄實驗結果並附上程式碼(main.c 及 include 之.h. .c 檔案)

- 使用 STM32 timer 實做一個計時器會從 0 上數(Upcounting) TIME SEC 秒(自訂)的時間。顯示到小數點以下第二位,結束時 7-SEG LED 停留在 TIME SEC 的數字。(建議使用擁用比較高 counter resolution 的 TIM2~TIM5 timer),取得 timer CNT register 值並換算成時間顯示到 7-SEG LED上。
- 0.01 ≤ TIME SEC ≤ 10000.00 (超過範圍請直接顯示 0.00)
- Note: 7-SEG LED 驅動請利用之前 Lab 所實作的 GPIO init()、7segment init()與 Display()等等函式呈現(須改成可呈現 2 個小數位)。

PART 3. (40%) 實作題

Lab 5.3 電子琴

請完成實驗 錄影及截圖紀錄實驗結果並附上程式碼(main.c 及 include 之.h, .c 檔案)

製作電子琴,用 Timer 製作出所需要的頻率波形並連到變頻喇叭發出 Do, Re, Mi 等音符, 八個 keypad 按鍵 0~7 分別對應投影片中音階頻率 表中第三度的 Do ~Si 和高音 Do。

- 注意
- 1.輸出正反變換一次為一個週期。或者可使用 PWM mode 輸出,參考 Reference Manual 26.3.11 PWM mode o
- 2.喇叭接 Vcc 和輸出接腳 or GND 和輸出接腳 都可。

	X0	X1	X2	Х3
Y0	Do	Re	Mi	
Y1	Fa	So	La	
Y2	Si	HDo		
Y3				

Keypad 對應音名

音名	Do	Re	Mi	Fa	So	La	Si	HDo
頻率(Hz)	261.6	293.7	329.6	349.2	392.0	440.0	493.9	523.3

音名頻率對應表

PART 4. (10%) 問答題

- 1. 說明 Sysclk 和 timer 內 clk 差異 (5%)
- 2. 說明如何在 ARM 中設定生成 PWM,參考 Reference Manual 26.3.11 PWM。

PART 4.加分題

5.4. Music 音色實驗(15%)

請完成實驗 錄影紀錄實驗結果並附上程式碼(main.s 及 include 之 pin.s 檔案) 在前一實驗(Lab 5.3 電子琴)中的 keypad 增加 2 個功能按鈕用以調整 PWM 輸 出的 Duty cycle(範圍 10%~90%,每按一次鍵調整 5%),觀察是否會影響蜂鳴 器所發出的聲音大小或音色。

Note: 須注意頻率與 duty cycle 的關係來設定 timer ARR 與 CCR registers。可用 LED 或者錄音測試 duty cycle 是否有改變,成功應會看到 LED 隨著 duty cycle 不同而有明暗變化。

本作業參考自: DCP1155 Microprocessor System Lab 2016 曹孝櫟教授 國立交通大學 資訊工程學系 Lab7