原始数据:

学号:

姓名:

实验一 电子元件伏安特性的测试

一、测定线性电阻器的伏安特性

U (V)	0	2	4	6	8	10
I (mA)	0					

二、测定半导体二极管的伏安特性

正向特性实验数据

U (V)	0	0.2	0.4	0.5	0.55	0.6	0.65	0.7	0.71	0.73	0.75
I (mA)	0										

反向特性实验数据

U (V)	0	-5	-10	-15	-20	-24
I (mA)						

原始数据:

学号: 姓名:

实验二 仪器练习及电信号的测量

一、数字多用表测试表

测量参数	510 Ω	10Κ Ω	0.33uF	2400pF	12V
测量值					

二、正弦波信号测试表

波形频率	正弦波信号周期的测定				
所测项目	50H _Z	2KH _z	2MH _Z		
周期理论值	20ms	500us	500ns		
直读周期值					
标尺所测周期值					

波形频率	正弦波信号幅度(峰峰值)的测定				
所测项目	100mV	2V	20V		
直读峰峰值					
标尺所测峰峰值					

学号:

姓名:

实验三 共发射极放大电路

一、静态工作点设置

$U_{BQ}(V)$	$U_{EQ}(V)$	$U_{CQ}(V)$	$U_{BEQ}(V)$	$U_{CEQ}(V)$
	1.9			

二、电压放大倍数测量

u_{ipp}	U_{oLpp}	$A_u = u_{oLpp}/u_{ipp}$
30mV		

三、输入、输出电阻测量

三、输入、输出电阻测量
$$R_o = (\frac{u_{opp}}{u_{oLpp}} - 1)R_L$$
 $R_L = \frac{u_{oLpp}}{u_{oLpp}}$

输入信号取f=1kHz, $u_{ipp}=30mV$ 时

u_{opp}	u_{oLpp}	$R_{\rm o}$

$$R_i = \frac{Ru_{ipp}}{u_{spp} - u_{ipp}} \qquad R =$$

u_{spp}	u_{ipp}	R_{i}
500mV		

实验四 集成运算放大器的应用

一、反相比例放大器

u _{ipp} (mV)	u _{opp} (mV)		$A_{uF} = -R_F / R_1$	输入波形	输出波形
200	理论值	实测值			
200					

二、同相比例放大器

u _{ipp} (mV)	u _{opp} (mV)		$A_{uF} = 1 + (R_F / R_1)$	输入波形	输出波形
200	理论值	实测值			
200					

一、积分器

四、微分器

学号:

姓名:

实验五 TTL 集成逻辑门的功能与参数测试

1. 验证 TTL 集成与非门 74LS20 的逻辑功能

画出测试电路(预习时画)

真值表

兴 田 八				输出		
	输入					
A	В	С	D	Y		
-			•			

表达式: Y=

2、测试 74LS20 主要参数

V _{OH} (V)	$V_{\mathrm{OL}}\left(\mathbf{V}\right)$

电压传输特性

$V_{\rm I}$ (V)	0	0.2	0.4	0.6	0.8	1.0	1.5	2.0	2.5	
V_0 (V)										

学号:

姓名:

实验六 数据选择器、译码器测试及应用

1、 测试数据选择器 74LS153 的逻辑功能

画出测试电路(预习时画)

验证真值表

2、74LS138译码器逻辑功能测试

画出测试电路 (预习时画)

验证真值表

3、用双 4 选 1 数据选择器 74LS153 产生 1011 序列信号 画出设计电路(预习时画)

4、用 74LS138 译码器设计判决电路 画出设计电路 (预习时画)

姓名:

实验七 触发器及其应用

1、测试基本 RS 触发器的逻辑功能

画出测试电路(预习时画)

表 2.1.10

输入	输	出
\bar{S}_{D} \bar{R}_{D}	Q^{n+1}	\overline{Q}^{n+1}
0 1		
1 1		
1 0		
1 1		
0 0		

小结: 当 \bar{S}_D 、 \bar{R}_D 为0、1时,触发器的逻辑功能为:

当 \bar{S}_D 、 \bar{R}_D 为1、1时,触发器的逻辑功能为:

当 \bar{S}_D 、 \bar{R}_D 为1、0时,触发器的逻辑功能为:

当 \overline{S}_D 、 \overline{R}_D 为1、1时,触发器的逻辑功能为:

2、测试双 D 触发器 74LS74 的逻辑功能

画出测试电路 (预习时画)

输入				输出
\overline{S}_{D}	$\overline{R}_{\mathrm{D}}$	D	CP	Q
0	1			
1	0			

表 2.1.11

输 入		输 出		
D	CP	Q^n	Q^{n+1}	
0	1	0		
0	†	1		
1	†	0		
1	↑	1		
×	↓	×		

3、测试双 JK 触发器 74LSII2 逻辑功能

画出测试电路(预习时画)

(1) 测试 \overline{S}_D 、 \overline{R}_D 的置位、复位功能

(2)测试 JK 触发器的逻辑功能

表 2.1.12

输入					输出	
\overline{S}_{D}	$\overline{S}_{\mathrm{D}} \mid \overline{R}_{\mathrm{D}} \mid \mathrm{J} \mid \mathrm{K} \mid \mathrm{CP} \mid$					
0	1					
1	0					

输	入	输出		
J K	CP	Q^n	Q^{n+1}	
0 0	↓	0		
0 0	↓	1		
0 1	↓	0		
0 1	↓	1		
1 0	↓	0		
1 0	↓	1		
1 1	↓	0		
1 1	↓	1		
$\times \times$	↑	×		

总结各类触发器的特点:

学号: 姓名:

实验八 计数器及其应用

1、测试 74LS192 同步十进制可逆计数器的逻辑功能

画出测试电路(预习时画)

逐项验证指导书 P178 的表 2.1.13 的真值表,注意观察加计数时,进位信号 \overline{CO} 与计数值 "9" 的变化情况,减计数时,借位信号 \overline{BO} 与计数值 "0" 的变化情况。

2、用复位法及预置法设计模8计数器

(1) 复位法

画出设计电路 (预习时画)

(2) 预置法

画出设计电路 (预习时画)

