1 Nízkofrekvenční zesilovače s OZ

Střídavý zesilovač s nesymetrickým napájením operačního zesilovače

Abychom si vystačili s jedním zdrojem vytvoříme referenční napětí pro neinvertující vstup.

1.1 DC

Na vstupu je kondenzátor a do vstupu OZ neteče žádný proud \Rightarrow skrz R_1 a R_2 neteče žádný proud. V uzlech 2,4,5 a 3 je tedy stejné napětí a to $U\frac{R_4}{R_4+R_3}=(15\frac{22\cdot 10^3}{22\cdot 10^3+22\cdot 10^3})[V]=7.5[V]$

1.2 AC

Na vstup přivedeme 1[V] s frekvencí 1[kHz] $U_5=-\frac{R_2}{R_1}U_{vst}=-\frac{10\cdot10^3}{1\cdot10^3}\cdot 1=-10[V]$

Sumační zesilovač

$$U_1 = 0[V] \Rightarrow I_{R1} = \frac{U_1}{R_1}; I_{R1} = \frac{U_2}{R_2}$$

$$I_{R3} = I_{R1} + I_{R2} \Rightarrow U_3 = R_3 I_{R3} = R_3 \left(\frac{U_1}{R_1} + \frac{U_2}{R_2}\right)$$

$$U_3 = \frac{R_3}{R_1} U_1 + \frac{R_3}{R_2} U_2$$

Diferenční zesilovač

$$\begin{split} U_{BA} &= 0[V] \Rightarrow U_A = U_B = U_1 \frac{R_2}{R_2 + R_1} \\ \textbf{u3=u1-u2} & I_{R3} = I_{R4} = \frac{U_2 - U_A}{R_3} = \frac{U_2 - U_1 \frac{R_2}{R_2 + R_1}}{R_3} \\ & U_3 = U_A - I_{R4} R_4 = U_1 \frac{R_2}{R_2 + R_1} - \frac{U_2 - U_1 \frac{R_2}{R_2 + R_1}}{R_3} R_4 \end{split}$$

Simulace

Střídavý zesilovač s nesymetrickým napájením operačního zesilovače

Table 1: Napětí v uzlech zaměřené na LC (čísla uzlu dle schematu v zadání)

Časový průběh s vyznačenými maximy na výstupu OZ.

Časový průběh s vyznačenými maximy na výstupu zapojení.

Amplitudová kmitočtová charakteristika.

Sumační zesilovač

Časový průběh dvou různých signálů sumačním zesilovače a jeho výstup.

$$\begin{array}{l} \text{sign\'al-1} \ U_{pp} = 10[V] \ f = 1[kHz] \\ \text{sign\'al-2} \ U_{pp} = 1[V] \ f = 10[kHz] \end{array}$$

Časový průběh se dvěma vstupními signály lišící se vzájemným posunutím 180° $U_{pp}=10[V]\ f=1[kHz].$

Změřený časový průběh dvou různých signálů sumačním zesilovače a jeho výstup. signál-1 $U_{pp}=200[mV]\ f=1[kHz]$ signál-2 $U_{pp}=100[mV]\ f=10[kHz]$.

Změřený časový průběh se dvěma vstupními signály lišící se vzájemným posunutím 180° $U_{pp}=2[V]$ f=1[kHz].

Diferenční zesilovač

Časový průběh se dvěma rozdílnými vstupními signály signál-1 $U_{pp}=10[V]\ f=1[kHz]$ signál-2 $U_{pp}=1[V]\ f=10[kHz].$

Časový průběh se dvěma identickými vstupními signály $U_{pp}=10[V]\ f=1[kHz].$

Změřený časový průběh se dvěma identickými vstupními signály $U_{pp}=2[V]\ f=1[kHz].$

Změřený časový průběh se dvěma vstupními signály lišící se vzájemným posunutím 180° $U_{pp}=2[V]$ f=1[kHz].

Časový průběh se dvěma rozdílnými vstupními signály signál-1 $U_{pp}=2[V]\ f=1[kHz]$ signál-2 $U_{pp}=200[mV]\ f=10[kHz].$

1.3 Závěr

Z prvního zapojení je vidět, že se OZ dá použít i jen s jedním zdrojem napájení, při vytvoření referenčního napájení. Pokud v dalším zapojení vadí takto vytvořená stejnosměrná složka, dá se vstup a výstup oddělit kapacitorem.

Další zapojení ukazuje, jak sečíst dva signály do jednoho. Poslední zapojení ukazuje, jak od sebe dva signály odečíst. Měření i simulace ukazují, co se stane s výstupním signálem, když na vstup přivedeme dva stejné, různé a vzájemně opačné signály pro obě dvě zapojení.

Měření všech tří reálných zapojení, i jejich simulace, odpovídá teorii z numerických cvičení. U druhého zapojení je důležité si povšimnout, že vstupní signály sice sečte, ale výsledek následně invertuje, jak je vidět na následujícím obrázku.

Časový průběh se dvěma identickými vstupními signály $U_{pp} = 2[V] f = 1[kHz]$.

Z teorie také plyne, že jak sumační, tak diferenční zesilovač může krom prostého sčítání resp. odčítání signálu jednotlivé složky násobit. Tato funkce je v našich zapojeních ovlivněna všemi rezistory, z čehož také plynou nadstandardní požadavky na přesnost těchto rezistorů.

Oproti tomu zapojení zesilovače s nesymetrickým napájením má vysoké požadavky na přesnost rezistoru R_1 a R_2 zatím co u R_3 a R_4 ne až tolik. Nepřesnost rezistoru R_3 a R_4 by způsobila různé saturační napětí v kladném a záporném směru, nikoliv však zkreslení signálu v okolí střední hodnoty. Proto na rezistory R_3 a R_4 nejsou tak vysoké požadavky jako R_1 a R_2 .

uzel n	1	2	3	4	5	6
$NC U_{nG}[V]$	15	7.5	7.5	7.5	7.5	0
$PC U_{nG}[V]$	15	7.499	7.499	7.499	7.499	0
$LC U_{nG}[V]$	15.074	7.536	7.539	7.536	7.537	0

Table 2: Porovnání výsledku stejnosměrné analýzy z NC, PC a LC