Fall 2023

B.I Conditional Probabilities

PROBLEM 1. Let (S, \mathcal{A}, P) be a probability space. Suppose two events A and B are given such that P(A) = 0.5, P(B) = 0.3, and $P(A \cap B) = 0.1$. Find

a) P(A|B).

- b) $P(A|A \cup B)$.
- c) $P(A \cap B | A \cup B)$.

PROBLEM 2. Suppose that a balanced die is tossed once. What is the probability the die lands on a 1, given that an odd number was obtained?

B.II Bayes' Formula

PROBLEM 3. Let (S, A, P) be a probability space. If A, B are events, then show that

$$\frac{P(A|B)}{P(\overline{A}|B)} = \frac{P(A)}{P(\overline{A})} \frac{P(B|A)}{P(B|\overline{A})}.$$

PROBLEM 4. A laboratory blood test is 95% effective in detecting a certain disease when it is, in fact, present. However, the test also yields a "false positive" result for 1% of the healthy persons tested¹. If 0.5% of the population actually has the disease, what is the probability a person has the disease given that the test result is positive?

B.III Independent Events

PROBLEM 5. Three brands of coffee, x, y, and z, are to be ranked according to taste by a judge. Define the following events: A for "Brand x is preferred to y, B for "Brand x is ranked best", C for "Brand x is ranked second best" and D for "Brand x is ranked third best". If the judge actually has no taste preference and randomly assigns ranks to the brands, is event A independent of (a) event B? (b) event C? (c) event D?

PROBLEM 6. Cards are dealt, one at a time, from a standard 52-card deck. If A_i denotes the event "the *i*-th card dealt is a spade". Are A_1 and A_2 independent?

PROBLEM 7. Let (S, \mathcal{A}, P) be a probability space. Prove that if A and B are independent events with 0 < P(A), P(B) < 1, then so are A and \overline{B} . Are \overline{A} and \overline{B} independent?

¹That is, if a healthy person is tested, then, with probability 0.01, the test result will imply the person has the disease.