IL2233 - Embedded Intelligence

Project presentation

Joshua Sadiq

Introduction

- Background
 - Anomaly Detection
- Purpose
 - Learn how to detect anomalies
- Setup
 - Python: Programming language
 - PyTorch, Keras : Neural Network modules
 - Statstools, Scipy, Numpy, Pandas: Various tools for data handling, metrics, etc.
 - Matplotlib: Plotting
 - o VSCode, Github: Workflow
- Methods
 - Time-series prediction with neural networks and ARIMA-process
 - Decomposition-based anomaly detection
 - Prediction-based anomaly detection
 - Clustering-based anomaly detection

Prediction with MLP, RNN, LSTM, using synthetic series

Task 1.1 Prediction with MLP, RNN, LSTM, using synthetic series

Task 1.1 Prediction with MLP, RNN, LSTM, using synthetic series

Predict white noise, random walk, and ARMA process using NN

Series	MSE
White Noise	0.2285
Random Walk	1.3837
ARMA(2, 2)	0.9802

Predict white noise, random walk, and ARMA process using NN

Comparison with ARIMA-based modeling and prediction

	MLP	RNN	LSTM	ARIMA
MSE	27168008400014944	13383429941157064704	1383429928908566528	0.0015
MAE	128959329	2987257672	2987257670	0.0308
MAPE	0.0525	1.0000	1.0000	0.0667

Decomposition-based anomaly detection

Decomposition-based anomaly detection

Decomposition-based anomaly detection

Task 3.1

Prediction-based anomaly detection

Task 3.1

Anomaly detection for uni-variate series with ARIMA

Task 3.1

Anomaly detection for uni-variate series with ARIMA

Task 3.2 Anomaly detection with LSTM in ECG signals

20

Elapsed time

Task 3.2 Anomaly detection with LSTM in ECG signals

		MLII	V5
Input size	4		
MSE		0.0090	0.0090
MAE		0.2004	0.1831
MAPE		71.5060	107.9604

Clustering-based anomaly detection

K-Means Clustering

K-Means Clustering

Summary

- Statistical approach: ARIMA
- Neural Networks: MLP, RNN, LSTM
- Clustering: K-Means, SOM

Thank you for your patience!