大学物理实验报告

实验名称:

核磁共振

学院: 理学院 专业: 应用物理学 班级: 应物 1601

学号: 20161413 姓名: 谢尘竹 电话: 18640451671

实验日期: 2019 年 7 月 17 日

第<u>二十</u>周星期<u>三</u> 第<u>一</u>节

实验室房间号: 122 实验组号: 2

成绩	指导教师	批阅日期
	高茜	<u>2019</u> 年 <u>7</u> 月 <u>17</u> 日

1	实验目	的.
ㅗ.	ヘ処ロ	HJ•

- ①.了解核磁共振现象及实验原理;
- ②.掌握测定核的自旋比γ和朗德 g 因子的方法。

2. 实验器材:

名称	编号	型号	精度
核磁共振边限振荡器	12009		
示波器	S1120010752	GES831528	
磁场			
频率计			
调制磁场电源	12009		
待测样品			

3. 实验原理(请用自己的语音简明扼要地叙述,注意原理图需要画出,测试公式需要写明)

1.经典理论

按照经典的电磁理论,由于原子核具有自旋运动,并且是带电体,所以存在核自旋角动量 \mathbf{p}_S 和自旋磁矩 μ ,并且二者间满足 μ = $\mathbf{g}\frac{e}{2m_N}\mathbf{p}_S$ = $\mathbf{g}\frac{\mu_N}{\hbar}\mathbf{p}_S$ = $\mathbf{y}\mathbf{p}_S$,其中 m_N 为原子核质量; μ_N = $\frac{e\hbar}{2m_N}$ 叫核磁子,它是仿照玻尔磁子 μ_B = μ_e = $\frac{e\hbar}{2m_e}$ 提出来的概念。

若在 z 轴方向施加外磁场 B_z ,且刚开始 μ 与 B_z 存在一定夹角,则 μ 受到力矩 $L=\mu\times B_z$,联立 $L=\frac{dp_s}{dt}=\frac{1}{\gamma}\frac{d\mu}{dt}$,解得 μ 的拉摩尔旋进频率 $\omega_0=\gamma B_z$ 。

可见 $\omega_0 \propto B_z$,不过比例系数 γ 会因 g而异,而不同原子核的 g不同,所以只有同一类原子核,其 γ 才相同,在同一磁场下的转动频率 ω_0 才相同。

2.量子理论

 $(1).|\mathbf{p}_{S}|=\sqrt{I(I+1)}\hbar$, $\mathbf{p}_{z}=m\hbar$,其中I为 $\geqslant 0$ 的半整数,m为 $\in [-I,I]$ 的、间隔为 1 的半整数。代入 $\mu=\gamma\mathbf{p}_{S}=\mathbf{g}\frac{\mu_{N}}{\hbar}\mathbf{p}_{S}$,即得: $|\mu|=\mathbf{g}\mu_{N}\sqrt{I(I+1)}$, $\mu_{z}=\mathbf{g}\mu_{N}m$ 。此即核自旋角动量的量子化,导致了核自旋磁矩的量子化。

其中, 当原子核的质量数 A 为偶数时, 若质子数为偶数,则 I=0, 若质子数为奇数,则 I=1; 当原子核的 A 为奇数时,I=半整数。

(2).由于 μ 的量子化,最终也会导致原子核磁矩在外磁场中的附加势能的量子化:比如对于氢核, $I=\frac{1}{2},\ m=\pm\frac{1}{2},\ 则$ $\mu_{zm}=g\mu_{N}m$ 有两个取值,相应的在外场中的附加势能 $E_{m}=-\mu\cdot B_{z}=-\mu_{z}B_{z}=-g\mu_{N}mB_{z}$,也有两个值 $E_{+\frac{1}{2},}E_{-\frac{1}{2}}$ 。 于是 \triangle $E=E_{-\frac{1}{2}}-E_{+\frac{1}{2}}=g\mu_{N}B_{z}=\hbar\omega_{0}$,其中用到了 $\omega_{0}=\gamma B_{z}=g\frac{\mu_{N}}{\hbar}B_{z}$ 。

对于 I 为其他值的原子核,尽管分裂的级数不同,但相

邻两能级间的间隔都是 $\hbar\omega_0$,所以只要利用核磁共振技术测出 ω_0 ,除以 B_z 就能得出 $\gamma=g\mu_N/\hbar$,再算出特定原子核的g,即可得到该原子核的 μ_N 。

3.旋转磁场的产生和应用

为了实现核磁共振,沿上 B_z 的方向(定为x轴方向)加一个具有一定射频范围的线偏振磁场 B_1 =2 $B_{10}\cos(\omega_1 t+\varphi)i$,而它等价于两个沿相反方向圆形旋转的两个旋转磁场的磁场 B_{11} = $B_{10}[\cos(\omega_1 t+\varphi)i+\sin(\omega_1 t+\varphi)j]$ 、

 $B_{12}=B_{10}[\cos(\omega_1 t + \varphi)i - \sin(\omega_1 t + \varphi)j]$ 之和。

【注意这可不是虚数 $\cos\theta+i\cdot\sin\theta=e^{(i\theta)}$; i 表基矢量】

- (1).当 ω_1 与 ω_0 相差较多时,无论是 B_{11} 还是 B_{12} ,对 μ 的平均力矩均=0。
- (2).当 ω_1 = ω_0 时,与 μ 运动方向相反的旋转磁场分量仍不会对其产生作用,但另一个旋转磁场分量将与 μ 相对静止,从而对其产生稳定指向和大小的力矩,使得其进动并改变

 \triangle θ 角,对应着原子核吸收能量 $\hbar\omega_0$, μ 的方向从原 θ 角,朝着 θ =< μ , B_z >变大的方向,突然改变一个 Δ m=-1对应的 Δ θ >0,跃迁到另一个m -1对应的 θ' = $a\cos\frac{\mu_z}{|\mu|}$ = $a\cos\frac{m-1}{\sqrt{I(I+1)}}$ 角上去。

【吸收一个 $\hbar\omega_0$ 后, ω_0 没变, ω_1 可能会降低(外磁场能量被吸走了减小?但按理说 B_1 的大小与其频率无关),所以不会继续往上跃迁到更高 m 的能级,并继续吸收能量?如果能保持 ω_1 = ω_0 不变的话,m 会不会最终到达最高值I?】

4.实际样品核磁共振的微观机理

(1).在某一时间断面下,各个原子磁矩停止转动;将这些小磁矩的起点均移到 B_z 上的同一个点上,则每个 θ_m 所对应的锥面上,都均匀分布着小磁矩;不同锥面上的磁矩长度相等,但磁矩个数 or 密度不同,这是因为热平衡时,磁矩的能量遵循玻尔兹曼分布,高能级即 θ_m 较大、m较小的锥面上的磁矩个数更少,即该磁量子态上的粒子数少。

定量地来说,设热平衡时第 m 号能级量子态简并度为 g_m ,则该能级上的平均粒子数为 $N_{0m}=g_m e^{-\frac{E_m}{kT}}$,0 表示热平衡态;那么 $\frac{N_{0,m+1}}{N_{0m}}=\frac{g_{m+1}}{g_m}e^{-\frac{E_{m+1}-E_m}{kT}}=\frac{g_{m+1}}{g_m}e^{\frac{\hbar\omega_0}{kT}}>1$,设核自旋引入的各个磁能级在热平衡时的量子态简并度都相等 $g_m=g_{m+1}$,则高能级粒子数与相邻低能级粒子数之比为

$$\frac{N_{0m}}{N_{0,m+1}} = e^{-\frac{\hbar\omega_0}{kT}}.$$

于是低能级上多出的超量核子数(相当于高能级多出的 反转粒子数的负值、相反数),即低能级粒子数比高能级粒子 数多出来的这部分粒子数

$$N_{0,m+1} - N_{0m} =$$

$$(e^{\frac{\hbar\omega_0}{kT}}-1)N_{0m}$$

 $\hbar\omega_0$ 《kT(当然其实用玻尔兹曼分布已经暗示此条件) $\hbar\omega_0 \over k$ T N_{0m}

$$= \frac{g\mu_N B_z}{kT} N_{0m} = \frac{\gamma \hbar B_z}{kT} N_{0m} \circ$$

受激辐射减去受激吸收,不至于使得核子数分布反转, 因此数量级上只有这些低能态的少量超量核的受激跃迁,对 信号才有贡献,这便是考虑的实空间主体。而磁能级之间的 间距很小,可以忽略自发辐射,因此考虑的爱因斯坦激光理 论过程,主要只包括(低能级到高能级的)受激辐射和(高能级 到周围其他粒子系统如晶格的)无辐射跃迁。

(2).宏观上需要查看磁化强度矢量 $\mathbf{M} = \frac{\sum \mu_i}{\Delta V}$ 。

在只有 B_z 时,热平衡态下,不同锥面上均匀分布着数量不同的磁矩 μ , θ_m 小的核子多。设M在z方向的投影为 M_z ,当 $\perp B_z$ 施加一个合适频率($\omega_1 = \omega_0$)的 B_1 ,使得发生核磁共振时, θ_m 较小的低能级核子受激跃迁到 θ_m 较大的高能级锥面上去,低能级核子数减少,高能级核子数增多, M_z 往 $-B_z$ 方向增加,M向 $-B_z$ 方向偏离和靠近;但同时低能级超量核数减少,维持核磁共振的动力减弱,现象趋于消失。

同时,处于高能级的核子又将能量通过无辐射热弛豫跃 迁,将能量传递给周围其他粒子系统如给晶格振动,该过程 又会使得粒子数趋于热平衡分布, 维持低能级的超量核数, 也就维持了核磁共振。——这就要求在样品中加入一些顺磁 性物质, 增加超量核数, 加大弛豫效果, 增强热弛豫过程。

4. 实验内容与步骤

1.实验装置的连接

- (1)将样品放入边限振荡器的探头线圈中,注意要将样品 及线圈置于磁场最均匀处。
 - (2)按照图 3.22.7 进行连接:
 - ①.扫描输出接磁铁的扫描线圈;
 - ②.X 轴输出接示波器的输入端;
- ③.扫描电源的电源输出接头通过航空接头连接线与边 限振荡器的电源输入接头连接;
 - ④.频率输出接频率计;
 - ⑤.信号输出接示波器Y轴输入端。

2.观察质子的核磁共振

- (1)接通 220V 电源, 打开电源开关旋转幅度调节旋钮, 使射频场振幅至最佳频幅度。
- (2)将扫描场幅度调节至最大,旋转频率调节至共振,可以在示波器上观察到子的核磁共振波形。

3.观察各种因素对核磁共振现象的影响

- (1)改变射频场B₁的强度;
- (2)改变扫描场幅度;
- (3)观察磁场B₀的均匀度变化(将装有样品的探头向磁场区的外边缘移动)对共振信号的影响;
 - (4)观察顺磁离子的影响(用不同样品比较)

4.待测样品

- (1)掺入CuSO₄的水溶液样品,可以获得¹H核共振;
- (2)掺入FeCl₃的水溶液样品,可以观察顺磁离子对¹H核 共振的影响;
 - (3)液态HF样品,可以观察19F核的共振;
- (4)液态丙三醇样品,可以观察有机化合物中的¹H核共振;
 - (5)纯H2O样品,可以观察弱的¹H核共振;
 - (6)MnSO4样品,可以获得强的H核共振。

5. 实验记录(注意:单位、有效数字、列表)

一.调出各样品的共振吸收峰,并拍照

二.记录相应的共振频率

1	20.3854 MHZ
2.	20.388 MH2.
3. (F)	19.1733 MHZ.
#3 (H)	20.379pMHz.
4.	20.3/72MHZ
5.	20.3780MAZ
1.	20.3773 MHZ
	2019. 7.47

6. 数据处理及误差分析

一.用所有含氢样品求出氢的共振频率,用含 氟样品测出氟的共振频率,参考 P246:

待测样品	待测样品	共振频率	共振角频
序号	化学式	f/MHz	率 ω_1
1	CuSO ₄	20.3854	128.085
2	FeCl ₃	20.3881	128.102
3	HF(19F)	19.1733	120.469
3	HF(1H)	20.3794	128.048
4	丙三醇	20.3772	128.034
5	纯水	20.3780	128.039
6	MnSO ₄	20.3773	128.034

①.氢的共振角频率的平均值证=

128.085+128.102+128.048+128.034+128.039+128.034

128.057rad·Hz, 共振频率平均值为 $\frac{128.057}{2\pi}$ =20.381MHz。

其相对于 H 的标准共振频率 20429Khz 的百分差误差为

$$E_s = \frac{|20.381 - 20.429|}{20.429} \times 100\% = 0.235\%$$

②. 氟的共振角频率为ω₀=120.469rad·Hz。

其相对于 F 的标准共振频率 19218 Khz 的百分差误差为 $E_s = \frac{|19.1733-19.218|}{19.218} \times 100\% = 0.233\%.$

二.P246 的后续数据处理:

由于已知磁场强度 B=4798Gs=0.4798T,则

$$\gamma = \frac{\omega_0}{B_z} = \frac{128.057}{0.4798} = 266.882 \text{ (rad·Hz/T)}, 或写为 \frac{\gamma}{2\pi} =$$

42.478 (Hz/T).

同理也可算出F的 γ ,以及二者的朗德g因子= $\frac{\gamma\hbar}{\mu_N}$ 。

三.用到的数据:

7.	思考题及实验小结

以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩

上课时间:
上课地点:
任课教师:
报告得分:
教师留言:
操作得分:
教师留言:
预习得分:
预习情况: