## Invers CDF of Continuous Distribution

We know that the CDF of a continuous distribution is not always in the form of an elementary function. In such cases, we can use numerical methods to find the inverse of the CDF.

The Newton-Raphson method is one approach to finding the inverse of the CDF. It is an iterative method used to find the root of a function. The formula for the Newton-Raphson method is given by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{1}$$

where  $x_{n+1}$  is the next approximation,  $x_n$  is the current approximation,  $f(x_n)$  is the function value at  $x_n$ , and  $f'(x_n)$  is the derivative of the function at  $x_n$ .

Let's consider any continuous distribution X with the CDF F(x),

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$
 (2)

Next, we set the CDF to be R and aim to find x such that F(x) = R. We can rewrite the equation as

$$F(x) - R = 0 (3)$$

Thus, we define a new function g(x) = F(x) - R. Applying the Newton-Raphson method (1), we get the iterative formula as

$$x_{n+1} = x_n - \frac{F(x_n) - R}{f(x_n)} \tag{4}$$

## **Direct Transformation**

We know that the PDF of the standard normal distribution is given by

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{5}$$

For any random variable X with PDF f(x) and a function u(X), the expected value of u(X) is given by

$$E[u(X)] = \int_{-\infty}^{\infty} u(x) \cdot f(x) dx$$
 (6)

Next, we are interested in finding the MGF of the sum of independent random variables  $X_i$  such that  $Y = \sum_{i=1}^{n} X_i$ . The MGF of Y is given by

$$M_Y(t) = E[e^{tY}] = E\left[e^{t\sum_{i=1}^n X_i}\right] = E\left[\prod_{i=1}^n e^{tX_i}\right] = \prod_{i=1}^n E[e^{tX_i}] = \prod_{i=1}^n M_{X_i}(t)$$

Thus, we conclude that the MGF of the sum of independent random variables is the product of the MGFs of each random variable:

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$$
 (7)

# Chi-Square and Normal Distribution

Consider independent random variables  $Z_1, Z_2, \ldots, Z_n$  with  $Z_i \sim N(0,1)$  for  $i = 1, 2, \ldots, n$ . The MGF of  $Z_i^2$  is given by

$$M_{Z_i^2}(t) = E[e^{tZ_i^2}] = \int_{-\infty}^{\infty} e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{(t-\frac{1}{2})z^2} \, dz$$

Let  $u = \sqrt{t - \frac{1}{2}}z$ , then  $du = \sqrt{t - \frac{1}{2}} dz$ . Thus, we get

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{u^2} \frac{1}{\sqrt{t - \frac{1}{2}}} du = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\pi}{t - \frac{1}{2}}} = \frac{1}{\sqrt{1 - 2t}}$$

So, the MGF of  $Z_i^2$  is

$$M_{Z_i^2}(t) = \frac{1}{\sqrt{1 - 2t}} \tag{8}$$

This result is similar to the MGF of a chi-square distribution with 1 degree of

freedom. Therefore, we conclude that  $Z_i^2 \sim \chi^2(1)$ . Now, consider the sum of independent random variables  $Z_1^2, Z_2^2, \dots, Z_n^2$ . Since  $Z_i$  are independent,  $Z_i^2$  are also independent. Then we can use (7) to

find the MGF of the sum of independent random variables  $Y = \sum_{i=1}^{n} Z_i^2$ .

$$M_Y(t) = \prod_{i=1}^n M_{Z_i^2}(t) = \prod_{i=1}^n \frac{1}{\sqrt{1-2t}} = \left(\frac{1}{\sqrt{1-2t}}\right)^n$$
 (9)

Equation (9) is the MGF of a chi-square distribution with n degrees of freedom. Thus, we conclude that

$$\sum_{i=1}^{n} Z_i^2 \sim \chi^2(n) \tag{10}$$

## Relation with Uniform Distribution

The PDF of a chi-square distribution with n degrees of freedom is given by

$$f(x) = \frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}$$
(11)

Let  $B^2=Z_1^2+Z_2^2\sim\chi^2(2)$  from (10). Then, from (11), the CDF of  $B^2$  is given by

$$F_{B^2}(x) = P(B^2 \le x) = \int_{-\infty}^x \frac{e^{-t/2}}{2} dt = 1 - e^{-x/2}$$
 (12)

Now, on the other hand, let  $R \sim U(0,1)$ . Then the CDF of R is

$$F_R(x) = P(R \le x) = x \tag{13}$$

If we want to understand the relation between  $B^2$  and R, we can start from (13) to match (12). Manipulating equation (13):

$$P(R > x) = 1 - P(R < x) = 1 - x$$

Substitute x with  $e^{-t/2}$ , then we get

$$P(R > e^{-t/2}) = 1 - e^{-t/2}$$

$$P(\ln R > -t/2) = 1 - e^{-t/2}$$

$$P(-2\ln R < t) = 1 - e^{-t/2}$$
(14)

We see that (14) matches (12). Thus, we conclude that

$$B = \sqrt{-2\ln R} \tag{15}$$

#### Polar Coordinates

Since  $B^2 = Z_1^2 + Z_2^2$  resembles the equation of a circle, we can interpret B as the radius of a circle centered at (0,0) with radius B. So we can construct relation between B and  $Z_1, Z_2$  by the polar coordinate of circle

$$Z_1 = B\cos(\theta) \tag{16}$$

$$Z_2 = B\sin(\theta) \tag{17}$$

If  $R_1, R_2 \sim U(0,1)$  then from (15) we can get  $B = \sqrt{-2 \ln R_1}$ . In other hand, for  $0 \le \theta \le 2\pi$  then rewrite the equation as  $\theta = 2\pi R_2$  and its obvious because  $0 \le R_2 \le 1$ . So the random variables from (16) and (17) can be formulated as

$$Z_1 = \sqrt{-2\ln R_1}\cos(2\pi R_2) \tag{18}$$

$$Z_2 = \sqrt{-2\ln R_1} \sin(2\pi R_2) \tag{19}$$