Semaine 4 - Fonctions usuelles

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Fonctions hyperboliques réciproques

- 1 Montrer que sinh est une bijection de \mathbb{R} dans \mathbb{R} .
- 2 Déterminer la réciproque de sinh.
- **3** Montrer que cosh est une bijection de \mathbb{R} dans $[1, +\infty[$.
- 4 Déterminer la réciproque de cosh.
- **5** Montrer que tanh est une bijection de \mathbb{R} dans]-1,1[.
- 6 Déterminer la réciproque de tanh.

2 Quelques arctangentes célèbres

- 1 Montrer que $\frac{\pi}{4} = 2\arctan(\frac{1}{2}) \arctan(\frac{1}{7})$ (Jakob Hermann 1678-1733).
- **2** Montrer que $\frac{\pi}{4} = 4\arctan(\frac{1}{5}) \arctan(\frac{1}{239})$ (John Machin 1680-1751).

Remarque : ces formules et d'autres du même type ont longtemps été utilisées pour calculer π avec précision. Depuis le début du XX^e siècle on utilise les formules trouvées par Srinivasa Ramunajan qui permettent de calculer plus rapidement les décimales de π .

3 Somme et arctangente

Soit $(a,b) \in \mathbb{R}^2$.

- 1 On suppose que ab = 1, calculer $\arctan(a) + \arctan(b)$.
- **2** On suppose que a > 0 et 0 < ab < 1, calculer $\arctan(a) + \arctan(b)$ en fonction de $\arctan(\frac{a+b}{1-ab})$.
- **3** Même question si a > 0 et ab > 1.
- 4 Même question si a < 0 et ab > 1.
- **5** Même question si ab < 0.

4 Somme et cosinus hyperbolique

Soit $n \in \mathbb{N}$. Soit $(a, b) \in \mathbb{R}^2$.

1 Exprimer $\sum_{k=0}^{n} {n \choose k} \cosh(ak+b)$ comme produit de fonctions hyperboliques.

5 Composée, fonctions circulaires et fonctions circulaires réciproques

Soit $x \in \mathbb{R}$.

- 1 Rappeler les valeurs de arccos(cos(x)) et cos(arccos(x)) si elles existent.
- 2 Simplifier $\sin(\arccos(x))$ et $\cos(\arcsin(x))$.
- **3** Simplifier $\cos(\arctan(x))$ et $\sin(\arctan(x))$.

6 Suite et arctangente

Pour cet exercice on admettra que si $(a,b) \in \mathbb{R}^2$ et ab < 0 alors $\arctan(a) + \arctan(b) = \arctan(\frac{a+b}{1-ab})$ (on pourra trouver une démonstration de ce résultat à l'exercice 2).

- 1 Montrer que $\forall k \in \mathbb{N}^*$, $\arctan(\frac{2}{k^2}) = \arctan(k+1) \arctan(k-1)$.
- **2** En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\sum_{k=1}^n\arctan(\frac{2}{k^2})$ admet une limite lorsque $n\to+\infty$ et la déterminer.

7 Suite et tangente hyperbolique

Soit $x \in \mathbb{R}^*$.

- 1 Montrer que $tanh(x) = \frac{2}{\tanh(2x)} \frac{1}{\tanh(x)}$.
- **2** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n = \sum_{k=0}^n 2^k \tanh(2^k x)$. Grâce à la question précédente, montrer que $(u_n)_{n\in\mathbb{N}}$ admet une limite lorsque $n \to +\infty$ et la déterminer.

8 Résolution d'équations

- 1 Résoudre dans \mathbb{R} , $\arctan(2x) + \arctan(x) = \frac{\pi}{4}$.
- **2** Résoudre dans [-1,1], $\arcsin(x) + \arcsin(\sqrt{3}x) = \frac{\pi}{2}$.

9 Quelques considérations sur l'exponentielle

- 1 Montrer que $\forall (n,x) \in \mathbb{N} \times \mathbb{R}_+, \ (1 + \frac{x}{n})^n \le e^x$.
- **2** Montrer que $\lim_{n\to+\infty} (1+\frac{x}{n})^n = e^x$

10 Quelques considérations sur le logarithme

- 1 Faire l'étude de la fonction f définie par l'expression $f(x) = \frac{\ln(x)}{x}$.
- **2** Trouver tous les couples d'entiers $(a,b) \in \mathbb{N}^{*2}$ avec $a \neq b$ qui vérifient : $a^b = b^a$.