

Вебинар №10. Производная Функции.

Определение производной

Производная является одним из фундаментальных понятий математического анализа. Интуитивно, производная функции в точке характеризует скорость изменения этой функции в данной точке или, что эквивалентно, угловой коэффициент касательной к графику функции в этой точке.

Определение.

Пусть функция f(x) определена в некоторой окрестности точки x_0 . Производной функции f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Обозначается как $f'(x_0)$ или $\frac{df}{dx}(x_0)$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Часто приращение аргумента обозначают как $\Delta x = x - x_0$. Тогда $x = x_0 + \Delta x$. Когда $x \to x_0$, то $\Delta x \to 0$. В этом случае определение принимает вид:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Рис. 1: Геометрический смысл производной $f'(x_0)$

Геометрический смысл производной:

Производная $f'(x_0)$ равна тангенсу угла наклона касательной к графику функции f(x) в точке $(x_0, f(x_0))$.

$$tg(\alpha) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

где α — угол наклона касательной к f(x) в точке x_0 .

Определение касательной к графику функции:

Пусть есть точка $A=(x_0,f(x_0))$ на графике функции и другая точка $B=(x_0+\Delta x,f(x_0+\Delta x))$. Секущая, проходящая через точки A и B, имеет угловой коэффициент $\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$. Когда $\Delta x \to 0$, точка B стремится к точке A, и секущая занимает предельное положение, становясь касательной. Угловой коэффициент касательной и есть производная функции f(x) в точке x_0 . На Рис. 2 можно наблюдать, как секущая превращается в касательную при стремлении x_i к точке x_0 :

Рис. 2: Касательная - предельное положение секущей

Связь между дифференцируемостью и непрерывностью

Важное свойство: если функция имеет производную в точке, то она обязательно непрерывна в этой точке.

Теорема: Если функция f(x) имеет производную в точке x_0 , то она непрерывна в этой точке.

Доказательство: Пусть функция f(x) дифференцируема в точке x_0 . Это означает, что существует конечная производная:

$$\exists f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A$$

По определению предела, если предел отношения равен A, то само отношение можно представить как A плюс некоторая функция $\alpha(\Delta x)$, которая стремится к нулю при $\Delta x \to 0$ (бесконечно малая функция):

$$rac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=A+lpha(\Delta x),$$
 где $\lim_{\Delta x o 0}lpha(\Delta x)=0$

Выразим из этого равенства $f(x_0 + \Delta x) - f(x_0)$:

$$f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

Перенесем $f(x_0)$ в правую часть:

$$f(x_0 + \Delta x) = f(x_0) + A\Delta x + \alpha(\Delta x)\Delta x$$

Теперь возьмем предел обеих частей равенства при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = \lim_{\Delta x \to 0} (f(x_0) + A\Delta x + \alpha(\Delta x)\Delta x)$$

Поскольку $f(x_0)$ и A — константы, $\lim_{\Delta x \to 0} (A\Delta x) = A \cdot 0 = 0$, и $\lim_{\Delta x \to 0} (\alpha(\Delta x)\Delta x) = 0 \cdot 0 = 0$ (произведение бесконечно малой на бесконечно малую).

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0) + 0 + 0 = f(x_0)$$

Это равенство $\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$ (или, если сделать замену $x = x_0 + \Delta x$, то $\lim_{x \to x_0} f(x) = f(x_0)$) в точности является определением непрерывности функции f(x) в точке x_0 . Следовательно, из дифференцируемости функции в точке следует её непрерывность в этой точке. Доказательство окончено.

Важное замечание: Обратное утверждение неверно! То есть, непрерывная функция не обязательно является дифференцируемой.

Контрпример: Функция y = |x| непрерывна в точке x = 0, но не имеет производной в этой точке. График функции |x| имеет "излом" в начале координат, где нельзя однозначно провести касательную.

Рис. 3: Функция |x| непрерывна всюду, но не имеет производную в нуле

Чтобы доказать отсутствие производной у функции y = |x| строго, необходимо вычислить ее производную слева и справа от точки $x_0 = 0$ по определению:

$$f'(x_0^+) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{|x_0 + \Delta x| - |x_0|}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = 1$$

$$f'(x_0^-) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{|x_0 + \Delta x| - |x_0|}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{-\Delta x}{\Delta x} = -1$$

Таким образом, в сколь угодно малой окрестности точки $x_0 = 0$ производная y = |x| справа равна 1, а слева равна -1. Таким образом, в самой точке x_0 функция не дифференцируема.

Свойства производных

Производная обладает рядом линейных свойств, которые значительно упрощают её вычисление. Пусть f(x) и g(x) имеют конечную производную в точке x_0 , а C — константа. Тогда:

1) Производная константы:

$$C' = 0$$

Доказательство:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{C - C}{\Delta x} = 0$$

2) **Производная суммы (разности):** Производная суммы (разности) функций равна сумме (разности) их производных:

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

Доказательство:

$$(f(x_0) + g(x_0))' = \lim_{\Delta x \to 0} \frac{(f(x_0 + \Delta x) + g(x_0 + \Delta x)) - (f(x_0) + g(x_0))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(f(x_0 + \Delta x) - f(x_0)) + (g(x_0 + \Delta x) - g(x_0))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} \right)$$

По свойству предела суммы функций (при условии существования пределов слагаемых):

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} = f'(x_0) + g'(x_0)$$

Аналогично доказывается для разности.

3) Вынесение константы: Константный множитель можно выносить за знак производной:

$$(c \cdot f(x))' = c \cdot f'(x)$$

Доказательство:

$$(c \cdot f(x_0))' = \lim_{\Delta x \to 0} \frac{cf(x_0 + \Delta x) - cf(x_0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{c(f(x_0 + \Delta x) - f(x_0))}{\Delta x}$$

По свойству предела произведения (вынесение константы):

$$= c \cdot \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = c \cdot f'(x_0)$$

4) Производная произведения: Производная произведения двух функций:

$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

Доказательство:

$$(f(x_0)g(x_0))' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)g(x_0 + \Delta x) - f(x_0)g(x_0)}{\Delta x}$$

Прибавим и вычтем $f(x_0)g(x_0 + \Delta x)$ в числителе:

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)g(x_0 + \Delta x) - f(x_0)g(x_0 + \Delta x) + f(x_0)g(x_0 + \Delta x) - f(x_0)g(x_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(g(x_0 + \Delta x) \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + f(x_0) \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} \right)$$

По свойству предела суммы и произведения:

$$= \lim_{\Delta x \to 0} g(x_0 + \Delta x) \cdot \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + f(x_0) \cdot \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x}$$

Поскольку g(x) имеет производную в x_0 , она непрерывна в x_0 , значит $\lim_{\Delta x \to 0} g(x_0 + \Delta x) = g(x_0)$.

$$= g(x_0)f'(x_0) + f(x_0)g'(x_0)$$

5) **Производная частного:** Производная частного двух функций (при условии $g(x_0) \neq 0$):

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Доказательство (краткий обзор): Начнем с определения производной:

$$\left(\frac{f(x_0)}{g(x_0)}\right)' = \lim_{\Delta x \to 0} \frac{\frac{f(x_0 + \Delta x)}{g(x_0 + \Delta x)} - \frac{f(x_0)}{g(x_0)}}{\Delta x}$$

Приведем дроби в числителе к общему знаменателю:

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)g(x_0) - f(x_0)g(x_0 + \Delta x)}{g(x_0 + \Delta x)g(x_0)\Delta x}$$

В числителе прибавим и вычтем $f(x_0)g(x_0)$:

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x_0 + \Delta x)}{g(x_0 + \Delta x)g(x_0)\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{g(x_0)(f(x_0 + \Delta x) - f(x_0)) - f(x_0)(g(x_0 + \Delta x) - g(x_0))}{g(x_0 + \Delta x)g(x_0)\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(\frac{g(x_0)\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f(x_0)\frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x}}{g(x_0 + \Delta x)g(x_0)} \right)$$

Применяя свойства пределов и непрерывность g(x):

$$= \frac{g(x_0) \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f(x_0) \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x}}{\lim_{\Delta x \to 0} g(x_0 + \Delta x) \cdot g(x_0)} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Табличные производные

Знание производных основных элементарных функций является обязательным. Давайте выведем некоторые из них по определению.

1) f(x) = C (константа)

$$f(x_0) = C$$

$$f(x_0 + \Delta x) = C$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{C - C}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0$$

Итак, (C)' = 0.

 $2) \ f(x) = x$

$$f(x_0) = x_0$$

$$f(x_0 + \Delta x) = x_0 + \Delta x$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x) - x_0}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$

Итак, (x)' = 1.

 $3) f(x) = x^2$

$$f(x_0) = x_0^2$$

$$f(x_0 + \Delta x) = (x_0 + \Delta x)^2 = x_0^2 + 2x_0 \Delta x + (\Delta x)^2$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{(x_0^2 + 2x_0 \Delta x + (\Delta x)^2) - x_0^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x_0 \Delta x + (\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} (2x_0 + \Delta x) = 2x_0 + 0 = 2x_0$$

Итак, $(x^2)' = 2x$.

 $4) \ f(x) = e^x$

$$f(x_0) = e^{x_0}$$

$$f(x_0 + \Delta x) = e^{x_0 + \Delta x} = e^{x_0} e^{\Delta x}$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{e^{x_0} e^{\Delta x} - e^{x_0}}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_0} (e^{\Delta x} - 1)}{\Delta x}$$

Вынесем e^{x_0} за знак предела, так как это константа по отношению к Δx :

$$= e^{x_0} \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

По следствию второго замечательного предела, $\lim_{z\to 0} \frac{e^z-1}{z} = 1$. Здесь $z=\Delta x$.

$$=e^{x_0}\cdot 1=e^{x_0}$$

Итак, $(e^x)' = e^x$.

5)
$$f(x) = a^x$$

$$(a^x)' = a^x \ln(a)$$

Доказательство: Используем определение производной:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{a^{x_0 + \Delta x} - a^{x_0}}{\Delta x}$$

Вынесем a^{x_0} из числителя:

$$= \lim_{\Delta x \to 0} \frac{a^{x_0} a^{\Delta x} - a^{x_0}}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^{x_0} (a^{\Delta x} - 1)}{\Delta x}$$

Вынесем a^{x_0} за знак предела, так как это константа по отношению к Δx :

$$= a^{x_0} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x}$$

Теперь используем эквивалентность $b^z-1\sim z\ln(b)$ при $z\to 0$ (это следствие второго замечательного предела $\lim_{z\to 0}\frac{b^z-1}{z}=\ln b$. Здесь $z=\Delta x$ (стремится к 0 при $\Delta x\to 0$) и b=a. Значит, $a^{\Delta x}-1\sim \Delta x\ln(a)$. Подставляем эту эквивалентность в предел:

$$= a^{x_0} \lim_{\Delta x \to 0} \frac{\Delta x \ln(a)}{\Delta x} = a^{x_0} \lim_{\Delta x \to 0} \ln(a) = a^{x_0} \ln(a)$$

$$6) f(x) = \ln(x)$$

$$(\ln(x))' = \frac{1}{x}$$

Доказательство:

$$(\ln(x_0))' = \lim_{\Delta x \to 0} \frac{\ln(x_0 + \Delta x) - \ln(x_0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln\left(\frac{x_0 + \Delta x}{x_0}\right) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln\left(1 + \frac{\Delta x}{x_0}\right)$$

Сделаем замену $t=\frac{\Delta x}{x_0}$. Тогда $\Delta x=x_0t$. При $\Delta x\to 0,\,t\to 0$.

$$= \lim_{t \to 0} \frac{1}{x_0 t} \ln(1+t) = \frac{1}{x_0} \lim_{t \to 0} \frac{\ln(1+t)}{t}$$

По следствию второго замечательного предела, $\lim_{t\to 0} \frac{\ln(1+t)}{t} = 1$.

$$=\frac{1}{x_0}\cdot 1=\frac{1}{x_0}$$

$$7) \ f(x) = \sin(x)$$

$$(\sin(x))' = \cos(x)$$

Доказательство:

$$(\sin(x_0))' = \lim_{\Delta x \to 0} \frac{\sin(x_0 + \Delta x) - \sin(x_0)}{\Delta x}$$

Используем формулу разности синусов: $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$.

$$= \lim_{\Delta x \to 0} \frac{2\cos\left(\frac{x_0 + \Delta x + x_0}{2}\right)\sin\left(\frac{x_0 + \Delta x - x_0}{2}\right)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{2\cos\left(x_0 + \frac{\Delta x}{2}\right)\sin\left(\frac{\Delta x}{2}\right)}{\Delta x}$$

Перепишем как:

$$= \lim_{\Delta x \to 0} \left(\cos \left(x_0 + \frac{\Delta x}{2} \right) \cdot \frac{\sin \left(\frac{\Delta x}{2} \right)}{\frac{\Delta x}{2}} \right)$$

Поскольку $\lim_{\Delta x \to 0} \cos \left(x_0 + \frac{\Delta x}{2} \right) = \cos(x_0)$ (в силу непрерывности косинуса) и $\lim_{\Delta x \to 0} \frac{\sin \left(\frac{\Delta x}{2} \right)}{\frac{\Delta x}{2}} = 1$ (по первому замечательному пределу, так как $\frac{\Delta x}{2} \to 0$), то:

$$=\cos(x_0)\cdot 1=\cos(x_0)$$

8)
$$f(x) = \cos(x)$$

$$(\cos(x))' = -\sin(x)$$

Доказательство:

Аналогично, используя формулу разности косинусов $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$.

$$(\cos(x_0))' = \lim_{\Delta x \to 0} \frac{\cos(x_0 + \Delta x) - \cos(x_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-2\sin\left(\frac{x_0 + \Delta x + x_0}{2}\right)\sin\left(\frac{x_0 + \Delta x - x_0}{2}\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-2\sin\left(x_0 + \frac{\Delta x}{2}\right)\sin\left(\frac{\Delta x}{2}\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(-\sin\left(x_0 + \frac{\Delta x}{2}\right) \cdot \frac{\sin\left(\frac{\Delta x}{2}\right)}{\frac{\Delta x}{2}}\right)$$

$$= -\sin(x_0) \cdot 1 = -\sin(x_0)$$

$$9) f(x) = tg(x)$$

$$(\operatorname{tg}(x))' = \frac{1}{\cos^2(x)}$$

Доказательство: $\operatorname{tg}(x) = \frac{\sin(x)}{\cos(x)}$. Используем формулу производной частного:

$$\left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos x - \sin x(\cos x)'}{\cos^2 x}$$
$$= \frac{\cos x \cdot \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x}$$

$$10) f(x) = \cot(x)$$

$$(\cot(x))' = -\frac{1}{\sin^2(x)}$$

Доказательство: $\cot(x) = \frac{\cos(x)}{\sin(x)}$. Используем формулу производной частного:

$$\left(\frac{\cos x}{\sin x}\right)' = \frac{(\cos x)' \sin x - \cos x (\sin x)'}{\sin^2 x}$$

$$= \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} = \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x}$$

$$= -\frac{1}{\sin^2 x}$$

Таблица производных

Соберем все основные производные в единую таблицу для удобства:

E (2/)	EL ()
Функция $f(x)$	Производная $f'(x)$
c	0
x^a	ax^{a-1}
ln(x)	$\frac{1}{x}$ e^x
e^x	e^x
a^x	$a^x \ln(a)$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tg(x)	$\frac{1}{\cos^2(x)}$
$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$-\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{\sqrt[4]{1-x}}{1+x^2}$
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
(x)	$\frac{1}{\cosh^2(x)}$
$\coth(x)$	$-\frac{1}{\sinh^2(x)}$

Производная обратных функций

Производная обратной функции может быть найдена следующим образом: если y=f(x) и существует обратная функция $x=f^{-1}(x),$ то $y'(x)=\frac{1}{x'(y)}.$

Пример: производная $y = \arcsin(x)$

Пусть $y = \arcsin(x)$. Тогда $x = \sin(y)$. Найдем производную x по y:

$$x'(y) = (\sin(y))' = \cos(y) = \frac{dx}{dy}$$

Теперь найдем производную y по x:

$$y' = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos(y)}$$

Нам нужно выразить $\cos(y)$ через x. Из основного тригонометрического тождества $\sin^2(y) + \cos^2(y) = 1$ следует $\cos(y) = \pm \sqrt{1 - \sin^2(y)}$. Поскольку функция $y = \arcsin(x)$ определена для $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, где $\cos(y) \ge 0$, мы выбираем положительный корень.

$$\cos(y) = \sqrt{1 - \sin^2(y)}$$

Так как $x = \sin(y)$, подставим x в выражение:

$$y' = \frac{1}{\sqrt{1 - x^2}}$$

Итак,
$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$
.

Из этого треугольника также видно, что:

$$\sin(\alpha) = \frac{a}{c} \implies \alpha = \arcsin\left(\frac{a}{c}\right)$$

 $\cos(\beta) = \frac{a}{c} \implies \beta = \arccos\left(\frac{a}{c}\right)$

В прямоугольном треугольнике $\alpha + \beta = \frac{\pi}{2}$. Если мы положим $x = \frac{a}{c}$, то получим известное тождество:

$$\arcsin(x) + \arccos(x) = \frac{\pi}{2}$$

Теперь найдем производную $(\arccos(x))'$:

$$(\arccos(x))' = \left(\frac{\pi}{2} - \arcsin(x)\right)'$$
$$= \left(\frac{\pi}{2}\right)' - (\arcsin(x))'$$
$$= 0 - \frac{1}{\sqrt{1 - x^2}}$$
$$= -\frac{1}{\sqrt{1 - x^2}}$$

Аналогично для арктангенса и арккотангенса, используя тождество $\arctan(x) + \operatorname{arccot}(x) = \frac{\pi}{2}$: Пример: производная $y = \arctan(x)$ Пусть $y = \arctan(x)$. Тогда $x = \operatorname{tg}(y)$.

$$x'(y) = (\text{tg}(y))' = \frac{1}{\cos^2(y)}$$

Используем тождество $\frac{1}{\cos^2(y)} = 1 + \operatorname{tg}^2(y).$

$$y' = \frac{1}{x'(y)} = \cos^2(y) = \frac{1}{1 + \operatorname{tg}^2(y)}$$

Так как $x = \operatorname{tg}(y)$, подставим x:

$$y' = \frac{1}{1+x^2}$$

Итак, $(\arctan(x))' = \frac{1}{1+x^2}$.

Теперь найдем производную $(\operatorname{arccot}(x))'$:

$$(\operatorname{arccot}(x))' = \left(\frac{\pi}{2} - \arctan(x)\right)'$$
$$= \left(\frac{\pi}{2}\right)' - (\arctan(x))' = 0 - \frac{1}{1+x^2} = -\frac{1}{1+x^2}$$

Практика вычисления производных

Используем свойства производных и таблицу основных производных для решения следующих примеров.

Пример 1. $(x^3 + 2x^2 - 3x + 7)'$

Решение: Используем свойство производной суммы и вынесения константы:

$$(x^3)' + (2x^2)' - (3x)' + (7)'$$

$$= 3x^2 + 2(2x) - 3(1) + 0$$

$$= 3x^2 + 4x - 3$$

Ответ: $3x^2 + 4x - 3$.

Пример 2. $(\sin(2x))'$

Решение: Это производная сложной функции. По правилу цепи $(f(g(x)))' = f'(g(x)) \cdot g'(x)$. Здесь внешняя функция $f(u) = \sin(u)$, внутренняя u = g(x) = 2x. $f'(u) = \cos(u)$. g'(x) = (2x)' = 2.

$$(\sin(2x))' = \cos(2x) \cdot (2x)' = \cos(2x) \cdot 2 = 2\cos(2x)$$

Otbet: $2\cos(2x)$.

Пример 3. $(\operatorname{tg}(x) \cdot \cot(x))'$

Решение: Можно применить формулу производной произведения, но проще сначала упростить выражение. Мы знаем, что $\operatorname{tg}(x) \cdot \cot(x) = 1$ (при условии, что $\sin x \neq 0$ и $\cos x \neq 0$). Тогда нам нужно найти производную от константы:

$$(\operatorname{tg}(x) \cdot \cot(x))' = (1)' = 0$$

Ответ: 0.

Пример 4. $(\cos^2(x) + \sin^2(x))'$

Решение: По основному тригонометрическому тождеству $\cos^2(x) + \sin^2(x) = 1$. Следовательно, нам нужно найти производную от константы:

$$(\cos^2(x) + \sin^2(x))' = (1)' = 0$$

Ответ: 0.

Пример 5. $(\ln(3))'$

Решение: ln(3) — это константа. Производная константы равна нулю.

$$(\ln(3))' = 0$$

Ответ: 0.

Пример 6. $\left(\frac{\sqrt[3]{\pi}\ln(10)^5 - \sin(15^\circ)}{\cos(38^\circ)}\right)'$

Решение: Все числа в этом выражении являются константами. Дробь, составленная из констант, также является константой. Производная константы равна нулю.

$$\left(\frac{\sqrt[3]{\pi}\ln(10)^5 - \sin(15^\circ)}{\cos(38^\circ)}\right)' = 0$$

Ответ: 0.

Пример 7. $(\sqrt{x})'$

Решение: Представим корень как степень: $\sqrt{x} = x^{1/2}$. Используем формулу $(x^a)' = ax^{a-1}$.

$$(\sqrt{x})' = (x^{1/2})' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

Otbet: $\frac{1}{2\sqrt{x}}$.

Пример 8. $\left(\frac{1}{x}\right)'$

Решение: Представим дробь как степень: $\frac{1}{x} = x^{-1}$. Используем формулу $(x^a)' = ax^{a-1}$.

$$\left(\frac{1}{x}\right)' = (x^{-1})' = -1 \cdot x^{-1-1} = -1 \cdot x^{-2} = -\frac{1}{x^2}$$

Otbet: $-\frac{1}{x^2}$.

Пример 9. $(\ln(3x))'$

Решение: Используем правило цепи. Внешняя функция $f(u) = \ln(u)$, внутренняя u = g(x) = 3x. $f'(u) = \frac{1}{u}$. g'(x) = (3x)' = 3.

$$(\ln(3x))' = \frac{1}{3x} \cdot (3x)' = \frac{1}{3x} \cdot 3 = \frac{1}{x}$$

Otbet: $\frac{1}{x}$.

Пример 10. $(\ln(x^5))'$

Решение: Можно использовать правило цепи или сначала упростить выражение с помощью свойства логарифма: $\ln(x^5) = 5 \ln(x)$.

$$(\ln(x^5))' = (5\ln(x))' = 5(\ln(x))' = 5 \cdot \frac{1}{x} = \frac{5}{x}$$

Otbet: $\frac{5}{x}$.

Пример 11. $(\sqrt[4]{x^3})'$

Решение: Представим корень как степень: $\sqrt[4]{x^3} = x^{3/4}$. Используем формулу $(x^a)' = ax^{a-1}$.

$$(\sqrt[4]{x^3})' = (x^{3/4})' = \frac{3}{4}x^{\frac{3}{4}-1} = \frac{3}{4}x^{-1/4} = \frac{3}{4\sqrt[4]{x}}$$

OTBET: $\frac{3}{4\sqrt[4]{x}}$.

Пример 12. $(5^{x/3})'$

Решение: Используем правило цепи и формулу $(a^u)' = a^u \ln(a) \cdot u'$. Здесь $a = 5, \ u = x/3$. $u' = (x/3)' = (\frac{1}{3}x)' = \frac{1}{3}$.

$$(5^{x/3})' = 5^{x/3}\ln(5) \cdot (x/3)' = 5^{x/3}\ln(5) \cdot \frac{1}{3} = \frac{1}{3}5^{x/3}\ln(5)$$

Ответ: $\frac{1}{3}5^{x/3}\ln(5)$.