

Week 39: Lecture 2

The conditional distribution of the locations of events, and simulation of Poisson processes

Geir-Arne Fuglstad

September 23, 2020

Information

- No lectures next week (September 28 and September 30).
- Guidance with project next week:
 - 1. Smia and S21 on Monday 8:15–10:00. You need to **pre-register** using https://s.ntnu.no/proj1mon.
 - R2 on Tuesday 8:15–10:00. No pre-registration, but we need to follow infection control rules such as maximum 4 people at each table.
 - Digital guidance on Wednesday 12:15–14:00. More information later.
 - 4. Ask questions by e-mail to Mina (mina.spremic@ntnu.no) or Susan (susan.anyosa@ntnu.no)

Example

 $\{X(t): t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Determine the distribution of $W_1|X(t) = 1$.

Theorem (Theorem 5.7)

Let $W_1, W_2,...$ be the occurrence times in a Poisson process $\{X(t): t \geq 0\}$ with rate $\lambda > 0$. Then

$$(W_1, W_2, \dots, W_n)|X(t) = n \sim f(w_1, w_2, \dots, w_n|X(t) = n)$$

= $\frac{n!}{t^n}$, $0 < w_1 < w_2 < \dots < w_n \le t$.

Fuglstad, G.-A., Week 39: Lecture 2

Example

Customers arrive according to a Poisson process with rate $\lambda > 0$ per hour. The store opens at 09:00. If 10 people have arrived at 11:00, what is the probability that exactly 5 of the 10 people arrived before 10:00?

Joint simulation

Input:

- Time interval: (0, t]
- Rate: $\lambda > 0$

Algorithm:

- 1. Simulate $n \sim \text{Poisson}(\lambda t)$
- 2. Simulate $v_1, v_2, \ldots, v_n \stackrel{\text{iid}}{\sim} \mathcal{U}(0, t)$
- 3. Let $(w_1, w_2, \ldots, w_n) = \operatorname{sort}(v_1, v_2, \ldots, v_n)$

Output:

$$x(s) = \begin{cases} 0, & 0 \le s < w_1 \\ 1, & w_1 \le s < w_2 \\ \vdots & \\ n, & w_n \le s < t. \end{cases}$$

Sequential simulation

Input:

- Number of jumps: N
- Rate: $\lambda > 0$

Algorithm:

- 1. $w_0 = 0$
- 2. for n = 1 ... N
- 3. Simulate $s_{n-1} \sim \text{Exp}(\lambda)$
- 4. Set $w_n = w_{n-1} + s_{n-1}$
- 5. end

Output:

$$x(s) = \begin{cases} 0, & 0 \le s < w_1 \\ 1, & w_1 \le s < w_2 \\ \vdots & \\ n, & w_n \le s < t. \end{cases}$$

Chapter 6

Definition

We call the stochastic process $\{X(t): t \ge 0\}$ a **continuous-time** Markov chain with state space $\{0,1,\ldots\}$ if it satisfies the Markov property

$$\Pr\{X(t+s) = j | X(s) = i, X(u), 0 \le u < s\} = \Pr\{X(t+s) = j | X(s) = i\}$$
 for $i, j = 0, 1, ...$ and for all $s \ge 0$ and $t > 0$.

Definition

Let $\{X(t): t \ge 0\}$ be a continuous-time Markov chain with state space $\{0, 1, \ldots\}$ and stationary transition probabilities. We call

$$P_{ij}(t) = \Pr\{X(t) = j | X(0) = i\}, \quad i, j = 0, 1, \dots,$$

the transition probability functions.