

# **HURTOWNIE DANYCH**

Projekt – Analiza danych platformy e-commerce Olist (Brazylia)



### **ALEKSANDER STEPANIUK**

NR. INDEKSU: 272644 Politechnika Wrocławska, Informatyka Stosowana

### Etap I - 19.05.2025 r.

### 1. Tytuł projektu

Analiza danych platformy e-commerce Olist (Brazylia)

### 2. Charakterystyka dziedziny problemowej, krótki opis obszaru analizy, problemy i potrzeby

Celem projektu jest analiza brazylijskiego rynku e-commerce, gdzie platforma Olist pośredniczy między tysiącami sprzedawców, a setkami tysięcy klientów, gromadząc dane o zamówieniach, płatnościach, produktach i opiniach.

W obszarze analizy ważne jest śledzenie przebiegu transakcji od momentu złożenia zamówienia aż po dostawę i ocenę satysfakcji użytkownika. Rozproszone w różnych plikach typu CSV źródła danych utrudniają szybkie agregowanie takich informacji. Problemy pojawiają się także przy zapewnieniu spójnej jakości danych – niekompletne lub niespójne rekordy recenzji czy płatności mogą zafałszować raporty, a brak zintegrowanego modelu danych wydłuża czas przygotowania analiz.

Potrzeby biznesowe koncentrują się na możliwości błyskawicznego generowania wielowymiarowych raportów (np. przychód wg regionu i miesiąca, ocena sprzedawcy według kwartału), monitorowaniu najważniejszych wskaźników jakości obsługi klienta (czas dostawy, liczba reklamacji) oraz elastycznej segmentacji klientów i produktów, co wymaga wdrożenia hurtowni danych z jasno zdefiniowanymi wymiarami i faktami.

### 3. Cel przedsięwzięcia (oczekiwania) oraz zakres analizy – badane aspekty

Cel główny: zbudowanie hurtowni danych, która pozwoli na:

- Monitorowanie kluczowych wskaźników sprzedaży (przychód, liczba zamówień) w czasie.
- Analizę jakości dostaw i satysfakcji klienta (recenzje, czasy realizacji).
- Podział klientów i sprzedawców wg regionów i zachowań zakupowych.

### Zakres:

- Dane sprzedażowe, zamówienia, płatności, opinie, dane klientów, sprzedawców, produktów.
- Analizy czasowe (miesiąc, kwartał), geograficzne (stan, miasto), produktowe (kategorie).

### 4. Źródła danych (lokalizacja, format, dostępność), wstępna analiza źródeł danych

Dane zostały pobrane ze strony kaggle.com:

• https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

| Lp. | Plik                              | Тур  | Liczba<br>rekordów | Rozmiar<br>[MB] | Opis                                                   |
|-----|-----------------------------------|------|--------------------|-----------------|--------------------------------------------------------|
| 1   | olist_customers_dataset           | .CSV | 99441              | 9.03            | zamówienia (daty: złożenia,<br>zatwierdzenia, dostawy) |
| 2   | olist_geolocation _dataset        | .CSV | 1000164            | 61.27           | pozycje zamówień (produkt, ilość, cena)                |
| 3   | olist_order_items _dataset        | .CSV | 112650             | 15.44           | klienci (id, miasto, stan, kod<br>pocztowy)            |
| 4   | olist_order_payments _dataset     | .csv | 103887             | 5.78            | płatności (metoda, rata, wartość)                      |
| 5   | olist_order_reviews_dataset       | .CSV | 103887             | 14.45           | opinie klientów (ocena,<br>komentarz, data)            |
| 6   | olist_orders_dataset              | .csv | 99442              | 17.65           | produkty (id, kategoria, wymiary)                      |
| 7   | olist_products                    | .csv | 32952              | 2.38            | sprzedawcy (id, lokalizacja)                           |
| 8   | olist_sellers                     | .CSV | 3096               | 0.17            | tłumaczenia kategorii<br>produktowych                  |
| 9   | product_category_name_translation | .csv | 72                 | 0.26            | geolokalizacja kodów pocztowych                        |

## 5. Profilowanie danych (analiza jakości danych oraz ich przydatności w projekcie)

| Lp. | Atrybut                           | Typ danych    | Zakres wartości                                 | Uwagi – ocena jakości danych                                                          |
|-----|-----------------------------------|---------------|-------------------------------------------------|---------------------------------------------------------------------------------------|
| 1   | order_purchase_timest<br>amp      | datetime      | 2016-09-04 – 2018-09-03                         | brak nulli, format ISO spójny w 100 % wierszy                                         |
| 2   | order_approved_at                 | datetime      | 2016-09-04 – 2018-09-05                         | ~0,1 % null (zamówienia anulowane)                                                    |
| 3   | order_delivered_carrier<br>_date  | datetime      | 2016-09-07 – 2018-09-17                         | ~0,2 % null (problemy logistyczne)                                                    |
| 4   | order_delivered_custo<br>mer_date | datetime      | 2016-09-09 – 2018-09-23                         | ~0,3 % null (zwrócone lub nie<br>dostarczone)                                         |
| 5   | order_status                      | string        | delivered, shipped, invoiced, created, approved | brak nulli; wartości spójne                                                           |
| 6   | price                             | decimal(10,2) | 0.01 – 9999.00                                  | brak wartości ujemnych, ~0,01 % skrajnie niskich cen (promocje)                       |
| 7   | payment_type                      | string        | credit_card, boleto, voucher, debit_card        | ~5 % null (zwroty/refundy); pozostałe<br>wartości zgodne z dokumentacją               |
| 8   | payment_installments              | integer       | 1-12                                            | brak nulli, realistyczny rozkład<br>(najwięcej 1–3 raty)                              |
| 9   | review_score                      | integer       | 1-5                                             | ~0,3 % null (brak opinii), średnia ocena<br>≈ 4,09                                    |
| 10  | review_creation_date              | datetime      | 2016-10-01 – 2018-10-15                         | ~0,3 % null, daty recenzji mieszczą się<br>do 30 dni po dostawie                      |
| 11  | customer_state                    | string (2)    | SP, RJ, MG, BA, CE,                             | brak nulli, 27 kodów stanów (BR-XX),<br>wszystkie poprawne zgodnie z ISO<br>3166-2:BR |
| 12  | customer_city                     | string        | São Paulo, Rio de Janeiro,<br>Salvador,         | ~0,05 % literówek (akcenty), można<br>ujednolicić wielkość liter                      |
| 13  | seller_state                      | string (2)    | SP, RJ, MG, PR, RS,                             | brak nulli; ~3 095 unikalnych<br>sprzedawców, wszystkie stany pokryte                 |

| 14 | seller_city           | string       | São Paulo, Curitiba, Porto<br>Alegre,          | ok, podobnie jak w kliencie: drobne<br>literówki/różnice w zapisie     |
|----|-----------------------|--------------|------------------------------------------------|------------------------------------------------------------------------|
| 15 | product_category_name | string       | bed_bath_table, health_beauty, sports_leisure, | 71 kategorii, wszystkie występują min.<br>raz, brak nulli              |
| 16 | product_weight_g      | integer      | 50 – 40000                                     | ~0,1 % null, wartości realistyczne,<br>możliwe outliery do weryfikacji |
| 17 | product_length_cm     | integer      | 5 – 200                                        | ~0,1 % null, typowe zakresy dla e-<br>commerce                         |
| 18 | product_height_cm     | integer      | 1-150                                          | analogicznie do długości                                               |
| 19 | product_width_cm      | integer      | 2 – 150                                        | ok, można obliczyć objętość                                            |
| 20 | geolocation_lat       | decimal(9,6) | -33.868820 – 5.193082                          | ~2 % błędnych koordynat (poza<br>granicami BR) – wymaga filtrowania    |
| 21 | geolocation_lng       | decimal(9,6) | -73.985506 – -34.793129                        | jak wyżej                                                              |

6. Definicja typów encji/klas (wraz z właściwościami) oraz związków pomiędzy nimi, diagram klas (propozycja wymiarów, hierarchii, miar addytywnych i nieaddytywnych)

### **Encje wymiarów:**

- 1. DateDim
  - Klucz: date key (INT, YYYYMMDD)
  - Atrybuty: full\_date, year, quarter, month, day, weekday
  - Hierarchia: Year -> Quarter -> Month -> Day -> Weekday
- 2. CustomerDim
  - Klucz: customer id (VARCHAR)
  - Atrybuty: customer city key, customer zip code, customer segment
  - Hierarchia: State -> City -> Zip Code -> Segment
- 3. SellerDim
  - Klucz: seller\_id (VARCHAR)
  - Atrybuty: seller\_city\_key, seller\_zip\_code, seller\_segment
  - Hierarchia: State -> City -> Zip Code -> Segment
- 4. ProductDim
  - Klucz: product id (VARCHAR)
  - Atrybuty: category, sub\_category, weight\_g, height\_cm, width\_cm, length\_cm
  - Hierarchia: Category -> Sub-category -> Product
- 5. PaymentDim
  - Klucz: payment id (VARCHAR)
  - Atrybuty: payment\_type, installments, payment\_value
  - Hierarchia: Type -> Installments
- 6. ReviewDim
  - Klucz: review\_id (VARCHAR)
  - Atrybuty: review score, review date, review comment
  - Hierarchia: Score -> Date
- 7. CityDim
  - Klucz: city\_key (INT, autoincrement)
  - Atrybuty: state, city, population, area\_km2, density\_per\_km2
  - Hierarchia: State -> City

### Encja faktu:

#### 7. FactOrders

- Klucz główny: order id (VARCHAR)
- Klucze obce:
  - o order date key -> DateDim
  - o customer id -> CustomerDim
  - o seller id -> SellerDim
  - o product\_id -> ProductDim
  - payment id -> PaymentDim
  - o review id -> ReviewDim
  - customer\_city\_key -> CityDim
  - seller\_city\_key -> CityDim
- Miary addytywne:
  - o order\_count (INT) liczba zamówień,
  - o total revenue (DECIMAL) suma przychodu,
  - o total\_items (INT) liczba produktów.
- Miary nieaddytywne:
  - o average\_review\_score (DECIMAL) średnia ocena;
  - o payment\_type (VARCHAR), order\_status (VARCHAR) opisowe, nie sumują się.

### Diagram klas:



### 7. Min. 10 wielowymiarowych zestawień, które zostaną utworzone po wdrożeniu kostki

- 1. Przychód i liczba zamówień według miesiąca i stanu klienta
- 2. Średnia ocena i liczba opinii wg sprzedawcy i kwartału
- 3. Rozkład typów płatności wg kategorii produktu i roku
- 4. Średni czas dostawy wg regionu sprzedawcy i miesiąca
- 5. Top 10 produktów wg przychodu i liczby sztuk w pewnym analizowanym okresie
- 6. Średni czas dostawy według gęstości zaludnienia
- 7. Liczba zamówień według populacji miasta
- 8. Liczba zamówień nowych vs powracających klientów według miast
- 9. Przychód według dnia tygodnia i typu płatności
- 10. Top 10 najgorszych sprzedawców według średniej ocen i miesiąca

### 8. Implementacja bazy danych zgodnie z zaproponowanym konceptualnym modelem danych

```
CREATE SCHEMA Stepaniuk;
       -- tabela pomocnicza dla miesięcy
    CREATE TABLE Stepaniuk.MonthDim (
            month_key SMALLINT PRIMARY
month_name VARCHAR(20) NOT NULL
                                                       PRIMARY KEY,
    □INSERT INTO Stepaniuk.MonthDim VALUES
      (1,'January'), (2,'February'), (3,'March'), (4,'April'), (5,'May'), (6,'June'), (7,'July'), (8,'August')
                                                                                        (8, 'August'),
      (9, 'September'), (10, 'October'), (11, 'November'), (12, 'December');
         - wvmiar datv
    CREATE TABLE Stepaniuk.DateDim (
            date_key INT PRIMARY KEY,
full_date DATE NOT NULL,
year_n SMALLINT NOT NULL,
quarter_n SMALLINT NOT NULL,
month_key SMALLINT NOT NULL
day_n SMALLINT NOT NULL
                                                                                     REFERENCES Stepaniuk.MonthDim(month key),
       -- wymiar klienta
    CREATE TABLE Stepaniuk.CustomerDim (
          customer_id VARCHAR(50) PRIMARY KEY,
             customer_state CHAR(2)
                                                          NOT NULL,
            customer_city VARCHAR(100) NOT NULL
       -- wymiar sprzedawcy
    CREATE TABLE Stepaniuk.SellerDim (
         seller_id VARCHAR(50) PRIMARY KEY,
seller_state CHAR(2) NOT NULL,
            seller_state CHAR(2)
            seller_city VARCHAR(100) NOT NULL
-- wymiar produktu
-- CREATE TABLE Stepaniuk.ProductDim (
    product_id VARCHAR(50) PRIMARY KEY, category VARCHAR(100) NOT NULL, sub_category VARCHAR(100)
-- wymiar płatności
CREATE TABLE Stepaniuk PaymentDim
   payment_id VARCHAR(50) PRIMARY KEY,
payment_type VARCHAR(30) NOT NULL,
installments SMALLINT NOT NULL
    - wymiar opinii
review_date
                            DATE
-- tabela faktów

⊡CREATE TABLE Stepaniuk.FactOrders
      EATE TABLE Stepaniuk.FactOrders (
order_id VARCHAR(50) PRIMARY KEY,
order_date_key INT NOT NULL
customer_id VARCHAR(50) NOT NULL
seller_id VARCHAR(50) NOT NULL
payment_id VARCHAR(50) NOT NULL
payment_id VARCHAR(50) NOT NULL
review_id VARCHAR(50)
order_count INT NOT NULL DEFAULT 1,
total_revenue DECIMAL(18,2)NOT NULL,
average_review_score
average_delivery_time DECIMAL(10,2) -- dni
                                                                                      REFERENCES Stepaniuk.DateDim(date_key),
REFERENCES Stepaniuk.CustomerDim(customer_id),
                                                                                       REFERENCES Stepaniuk.SellerDim(seller_id),
REFERENCES Stepaniuk.ProductDim(product_id),
                                                                                       REFERENCES Stepaniuk.PaymentDim(payment_id),
REFERENCES Stepaniuk.ReviewDim(review_id),
                                                           NOT NULL DEFAULT 1,
```

### 9. Wnioski

Zdecydowana większość atrybutów jest kompletna i może z powodzeniem trafić do hurtowni danych – mamy pełne informacje o zamówieniach, klientach, produktach i płatnościach, co pozwala na zbudowanie rozbudowanych wymiarów czasowego, geograficznego, klienta, sprzedawcy, produktu i płatności. Dane o opiniach są niemal kompletne, choć kilkaset rekordów nie zawiera ocen lub komentarzy, co jednak nie powinno zaburzyć ogólnych trendów. Z kolei geolokalizacje wymagają odfiltrowania kilku procent współrzędnych spoza terytorium Brazylii, ale same kody pocztowe umożliwiają precyzyjne grupowanie według stanów i miast.

Wartości numeryczne – takie jak cena, liczba rat czy wymiary produktów – mieszczą się w sensownych zakresach i nie zawierają błędnych skrajnych wartości, co czyni je gotowymi do agregacji i obliczeń KPI. Potencjalne outliery w wadze lub wymiarach można prawdopodobnie wyfiltrować. Pola tekstowe (kategorie, nazwy miast) wymagają jedynie podstawowej normalizacji (usunięcie literówek, standaryzacja akcentów), by zapobiec duplikacji wymiaru.

W wymiarach znajdziemy naprawdę sporo do badania: czasowego (analiza sezonowości i trendów), przestrzennego (różnice między regionami), produktowego (popularność i marże w kategoriach) oraz behawioralnego (liczba rat czy typ płatności jako wskaźniki preferencji klientów). Faktowe miary – przychód, liczba zamówień, średnia ocena czy czas dostawy – pozwolą na wielowymiarowe zestawienia i dogłębne analizy jakości obsługi. Dzięki temu hurtownia stanie się solidnym fundamentem dla raportów sprzedażowych, monitoringu satysfakcji klientów oraz optymalizacji procesów logistycznych i marketingowych.