Package 'datana'

November 5, 2022

Type Package
Title Data and Functions to Accompany Analisis De Datos Con R
Version 1.0.2
Date 2022-11-05
Description Datasets and Functions to Accompany Salas-Eljatib (2021, ISBN: 9789566086109) ``Analisis de datos con el programa estadistico R: una introduccion aplicada". The package helps carry out data management, exploratory analyses, and model fitting.
License GPL-3
<pre>URL https://eljatib.com/rlibro</pre>
Depends R (>= 3.5.0)
Imports ggplot2, stats, graphics
Suggests covr, knitr, rmarkdown, spelling, testthat
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.2.1
BuildResaveData best
R topics documented:
datana-package 4 airquality 5 airquality2 6 annualppCities 7 annualppCities2 7 anscombe 8 anscombe2 9 araucaria 10 araucaria2 11 baiTreelines 12 baiTreelines2 13

pears	. 14
pears2	. 15
pearsDepu	. 16
pearsDepu2	. 17
piomass	. 18
piomass2	. 18
carbohydrateTreelines	. 19
chicksw	. 20
corkoak	. 21
corkoak2	22
crownradii	. 23
deadForestCA	24
leadForestCA2	25
leadLianas	27
deadLianas2	29
lemograph	
lescstat	
election	
election2	
eucaleaf	
eucaleaf2	
eucaplot	
eucaplot2	
fertilizaexpe	
fertilizaexpe2	
fishgrowth	
fishgrowth2	
floraChile	
floraChile2	41
football	42
football 2	43
forestFire	44
forestFire2	45
forestHawaii	46
nawaii	48
	49
ngrowthDfir	
ngrowthDfir2	
dahohd	
dahohd2	
nvasivesRCI	
andCoverSantiago	
andCoverSantiago2	
leuque	
orange	
orange2	
pinaster	
oinaster2	. 61

nusContorta	 . 62
nusContorta2	 . 63
nusSpp	 . 64
nusSpp2	 . 65
antsHawaii	 . 66
resenceIce	 . 67
residentChile	 . 68
pLlancahue	 . 69
pLlancahue2	
spRuca	
pRuca2	
aeda	
diatapl	
ulihg	
ulihg2	
gNothofagus	
mula	
ashpine	
ashpine2	
udge	
aspeChile	
naspeChile2	
patAustria	
peciesList	
ppAbundance	
pTraits	
andLleuque	
andLleuque2	
ailCameraTrap	
aits	
aits 2	
eegrowth	
eegrowth2	
eelistinve	
eelistinve2	
eevol	
eevol2	
eevolroble	
eevolroble2	
eevolruca	
eevolruca2	
Boxplot	
Hist	 . 100

4 datana-package

datana-package

Data and Functions to Accompany Analisis De Datos Con R

Description

The datana package provides the data and functions that accompany the book "Análisis de datos con el programa estadístico R: una introducción aplicada" by Salas-Eljatib (2021, ISBN: 9789566086109). You can visit the book's website at https://eljatib.com/rlibro.

Notice that every dataframe has a similar one but using column names in Spanish. For instance, the dataframe 'pinaster' has column names in English, but 'pinaster' has column names in Spanish. Both dataframes have the same data.

Details

The package contains several datasets for exploratory data analysis in an array of disciplines. Furthermore, datana provides functions as tools for descriptive statistics and plotting.

To see the preferable citation of the package, type citation("datana").

Author(s)

The datana development team is Christian Salas-Eljatib, Nicolas Pino and Joaquin Riquelme. Many other people have contributed to individual dataframes and functions: see credits in help pages.

References

Salas-Eljatib C. 2021. Análisis de datos con el programa estadístico R: una introducción aplicada. Santiago, Chile: Ediciones Universidad Mayor. ISBN: 9789566086109. https://tienda.zigzag.cl/9789566086109-analisis-de-datos-con-el-programa-estadistico-r.html

```
##scatter-plot and marginal histograms
library(datana)
data(treevolroble)
df <- treevolroble
xyHist(x=df$dbh,y=df$htot, xlab="Variable X", ylab="Variable Y")
##scatter-plot and box-plots
data(fishgrowth)
df <- fishgrowth
xyBoxplot(x=df$length,y=df$scale)</pre>
```

airquality 5

airquality

Airquality data, from the datasets library.

Description

Daily air quality measurements in New York, May to September 1973.

Usage

```
data(airquality)
```

Format

```
Contains 6 variables, as follows:
```

```
ozone numeric Ozone (ppb).

solar numeric Solar R (lang).

wind numeric Wind (mph).

temp numeric Temperature (degrees F).

month numeric Month (1–12).

day numeric Day of month (1–31).
```

Source

The data were obtained from the library 'datasets'.

References

Chambers J, Cleveland W, Kleiner B, Tukey P. 1983. Graphical Methods for Data Analysis. Belmont. CA: Wadsworth.

```
data(airquality)
head(airquality)
```

6 airquality2

airquality2

Contiene informacion de calidad del aire.

Description

Calidad del aire diario medido en New York, de Mayo a Septiembre de 1973.

Usage

```
data(airquality)
```

Format

```
Contiene 6 variables:
```

```
ozone Ozono (ppb).

solar Solar R (largo).

wind Viento (mph).

temp Temperatura (grados F).

month Mes del anho (1–12).

day Dia del mes (1–31).
```

Source

Los datos fueron obtenidos desde la libreria 'datasets'.

References

Chambers J, Cleveland W, Kleiner B, Tukey P. 1983. Graphical Methods for Data Analysis. Belmont. CA: Wadsworth.

```
data(airquality2)
head(airquality2)
```

annualppCities 7

annualppCities

Time series of annual precipitations in cities of Chile.

Description

Data contains annual precipitations in six cities in Chile (Santiago, Talca, Chillan, Temuco, Valdivia, and Puerto Montt) at different years.

Usage

```
data(annualppCities)
```

Format

The dataframe contains three variables as follows:

```
city Name of city.year Year of registry.annual Value of the annual precipitation of a given year (mm).
```

Source

The data were obtained from https://explorador.cr2.cl/.

Examples

```
data(annualppCities)
head(annualppCities)
```

annualppCities2

Serie de tiempo de precipitaciones anuales en Chile.

Description

Data contains annual precipitations in six cities in Chile (Santiago, Talca, Chillan, Temuco, Valdivia, and Puerto Montt) at different years.

Usage

```
data(annualppCities2)
```

Format

The dataframe contains three variables as follows:

```
ciudad Name of city.anho Year of registry.pp.anual Value of the annual precipitation of a given year (mm).
```

8 anscombe

Source

Los datos fueron obtenidos desde https://explorador.cr2.cl/.

Examples

```
data(annualppCities2)
head(annualppCities2)
```

anscombe

Anscombe quartet dataset

Description

A dataset that contains four pairs of columns with the same descriptive statistics; however, there is a difference when representing the points through a graph.

Usage

data(anscombe)

Format

The data frame contains four variables as follows:

- X1 Integers values that represent X-axis for Y1, Y2 and Y3 column
- **Y1** Float values that represent Y-axis for X1 column
- Y2 Float values that represent Y-axis for X1 column
- Y3 Float values that represent Y-axis for X1 column
- X2 Integers values that represent X-axis for Y4 column
- **Y4** Float values that represent Y-axis for X2 column

Source

Data were assembled by Dr Christian Salas-Eljatib (Santiago, Chile).

References

Anscombe, Francis J. (1973). Graphs in statistical analysis. The American Statistician, 27, 17-21. doi: 10.2307/2682899.

```
data(anscombe)
head(anscombe)
```

anscombe2

anscombe2

Cuarteto de Anscombe

Description

Dataset que contiene 4 pares de columnas con la mismos estadisticos descriptivos, sin embargo si existe diferencia al representar los puntos mediante un grafico.

Usage

```
data(anscombe2)
```

Format

Variables se describen a continuacion::

- X1 Valores enteros que representan el eje X para las columnas Y1, Y2 e Y3
- Y1 Valores flotantes que representan el eje Y para la columna X1
- Y2 Valores flotantes que representan el eje Y para la columna X1
- Y3 Valores flotantes que representan el eje Y para la columna X1
- X2 Valores enteros que representan el eje X para las columnas Y4
- Y4 Valores flotantes que representan el eje Y para la columna X2

Source

Datos fueron contribuidos por el Dr Christian Salas-Eljatib (Universidad Mayor, Santiago, Chile).

References

Anscombe FJ. 1973. Graphs in statistical analysis. The American Statistician, 27, 17-21. doi: 10.2307/2682899.

```
data(anscombe2)
head(anscombe2)
```

10 araucaria

	araucaria	Contains plot-level variables in Araucaria araucana forests in southern Chile.
--	-----------	--

Description

These are plot-level measurement data from the Araucaria araucana forests in southern Chile, measured in 2009. The data was based on fixed-area plots of 1000 m². They are two forest stands.

Usage

```
data(araucaria)
```

Format

Contains plot-level variables as follows:

```
stand Stand number

plot.no Plot sample identificator number

x.utm UTM coordinate in X-axis, in km

y.utm UTM coordinate in Y-axis, in km

slope Slope, in %

aspect Aspect, in degrees

eleva Elevation, in msnm

nha Tree density, in trees/ha

gha Basal area, in m²/ha
```

hdom Dominant height, in m **vha** Gross stand volume, m³/ha

dg Diameter of the average basal area tree of the plot, in cm

Source

The data are provided courtesy of Dr Nelson Ojeda at Universidad de La Frontera (Temuco, Chile).

References

Salas C, Ene L, Ojeda N, Soto H. 2010. Metodos estadisticos parametricos y no parametricos para predecir variables de rodal basados en Landsat ETM+: una comparación en un bosque de Araucaria araucana en Chile [Parametric and non-parametric statistical methods for predicting plotwise variables based on Landsat ETM+: a comparison in an Araucaria araucana forest in Chile]. Bosque 31(3): 179-194.

```
data(araucaria)
head(araucaria)
```

araucaria2

araucaria2	Variables a nivel de parcela para bosques de Araucaria araucana el sur de Chile.

Description

Estos son variables a nivel de parcela para bosques Araucaria araucana en el sur de Chile, medidos en 2009. Estas variables se basan en mediciones realizadas en parcelas de muestreo de superficie fija de 1000 m². Hay dos rodales.

Usage

data(araucaria)

Format

Contains plot-level variables as follows:

rodal Stand number

parcela Plot sample identificator number

x.utm UTM coordinate in X-axis, in km

y.utm UTM coordinate in Y-axis, in km

pendiente Slope, in %

exposicion Aspect, in degrees

altitud Elevation, in msnm

nha Densidad, en arb/ha

gha Area basal, en m²/ha

hdom Altura dominante, en m

vha Volumen bruto, en m³/ha

dg Diameter medio cuadratico, en cm

Source

Los datos a nivel de arbol fueron cedidos por el Dr Nelson Ojeda de la Universidad de La Frontera (Temuco, Chile).

References

Salas C, Ene L, Ojeda N, Soto H. 2010. Metodos estadisticos parametricos y no parametricos para predecir variables de rodal basados en Landsat ETM+: una comparacion en un bosque de Araucaria araucana en Chile. Bosque 31(3): 179-194.

Examples

data(araucaria2)
head(araucaria2)

12 baiTreelines

baiTreelines

Annual basal area increment for four tree species.

Description

The dataset contains 157 observations of the last ten years in 6-8 adult trees of different species at three elevations of altitudinal gradients sampled in four locations in Chile and two in Spain.

Usage

```
data(baiTreelines)
```

Format

Contains seven columns, as follows:

climate Climate of each location, mediterranean and temperate.

site Name of Location of study (termmas:Termas de Chillan, antillanca:Antillanca area within Puyehue National Park, castillo:Cerro Castillo Natural Reserve, farellones:Farellones in Central Chile, pyrenees: Sierra de Cutas area in Spanish Central Pyrenees, sierra:Sierra Nevada).

species name species of study (lenga: Nothofagus pumilio, frangel: Kageneckia angustifolia, uncinata: Pinus uncinata, sylvestris: Pinus sylvestris).

elevation Type of elevation. "Treeline", intermediate named as "inter", and closed or montane forest named as low.

tree Id for tree.

bai Value of annual basal area increment.

mean.bai Mean of annual basal area increment.

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.ks97h.

References

Piper F, Vinegla B, Linares J, Camarero J, Cavieres L, Fajardo A. 2016. Mediterranean and temperate treelines are controlled by different environmental drivers. Journal Ecology. 104: 691-702.

```
data(baiTreelines)
head(baiTreelines)
```

baiTreelines2

baiTreelines2

Incremento anual en area basal de cuatro especies arboreas.

Description

Este set de datps contiene 157 observaciones, de los ultimos 10 anhos en 6-8 arboles adultos de cuatro especies en un gradiente altitudinal. Las muestras se distribuyeron en cuatro localidades o sitios de Chile y dos en Espanha.

Usage

data(baiTreelines2)

Format

Contains seven columns, as follows:

clima Climate of each location, mediterranean and temperate.

sitio Name of Location of study (termmas:Termas de Chillan, antillanca:Antillanca area within Puyehue National Park, castillo:Cerro Castillo Natural Reserve, farellones:Farellones in Central Chile, pyrenees: Sierra de Cutas area in Spanish Central Pyrenees, sierra:Sierra Nevada).

especie name species of study (lenga: Nothofagus pumilio, frangel: Kageneckia angustifolia, uncinata: Pinus uncinata, sylvestris: Pinus sylvestris).

tipo.altitud Type of elevation. "Treeline", intermediate named as "inter", and closed or montane forest named as low.

arbol Id for tree.

bai Value of annual basal area increment.

bai.medio Mean of annual basal area increment.

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.ks97h.

References

Piper F, Vinegla B, Linares J, Camarero J, Cavieres L, Fajardo A. 2016. Mediterranean and temperate treelines are controlled by different environmental drivers. Journal Ecology. 104: 691-702.

```
data(baiTreelines2)
head(baiTreelines2)
```

14 bears

bears

Age and physical measurement data for wild bears.

Description

Wild bears were anaesthetised, and their bodies were measured and weighed. One goal of the study was to make a table (or perhaps a set of tables) for people interested in estimating the weight of a bear based on other measurements. Notice that there are missing values for some of the variables.

Usage

```
data(bears)
```

Format

Contains individual-level variables, as follows:

id Bear id

age age in months

month Diameter at breast height, in cm

sex 1 = male, 2 = female

headL length of head, in cm

headW width of head, in cm

neckG girth of neck, in cm

length body length, in cm

chestG girth of chest, in cm

weight body weight, in kg

obs observation number for bear

name name given to bear

Source

Minitab, Inc. The data description is courtesy of Prof. Timothy Gregoire at Yale University (USA).

References

According to Prof. Gregoire, This data set was supplied by Gary Alt. Entertaining references are in Reader's Digest April, 1979, and Sports Afield September, 1981.

Examples

data(bears)
head(bears)

bears2

bears2

Age and physical measurement data for wild bears.

Description

Los osos salvajes fueron anestesiados y sus cuerpos fueron medidos y pesados. Uno de los objetivos del estudio fue hacer una tabla (o quiz?s un conjunto de tablas) para las personas interesadas en estimar el peso de un oso bas?ndose en otras medidas. Esto se usar?a porque en el bosque es m?s f?cil medir la longitud de un oso, por ejemplo, que pesarlo. Observe que faltan valores para algunas de las variables.

Usage

```
data(bears2)
```

Format

Contiene variables de nivel individual, como se describen a continuacion:

id Identificador de oso

age edad en meses

month diametro a la altura del pecho, en cm

sex 1 = hombre, 2 = mujer

headL longitud de la cabeza, en cm

headW ancho de la cabeza, en cm

neckG circunferencia del cuello, en cm

length longitud del cuerpo, en cm

chestG circunferencia del pecho, en cm

weight peso corporal, en kg

obs numero de observacion para el oso

name nombre dado al oso

Source

Minitab, Inc. The data description is courtesy of Prof. Timothy Gregoire at Yale University (USA).

References

According to Prof. Gregoire, This data set was supplied by Gary Alt. Entertaining references are in Reader's Digest April, 1979, and Sports Afield September, 1981.

```
data(bears2)
head(bears2)
```

16 bearsDepu

bearsDepu	Age and physical measurement data for wild bears. Dataframe same as "bears" but without missing values.

Description

Wild bears were anaesthetised, and their bodies were measured and weighed. One goal of the study was to make a table (or perhaps a set of tables) for people interested in estimating the weight of a bear based on other measurements.

Usage

```
data(bearsDepu)
```

Format

Contiene variables de nivel individual, como se describen a continuacion:

```
id Bear identificator
age age in months
month Diameter at breast height, in cm
sex 1 =male, 2 = female
headL length of head, in cm
headW width of head, in cm
neckG girth of neck, in cm
length body length, in cm
chestG girth of chest, in cm
weight body weight, in kg
obs observation number for bear
name name given to bear
```

Source

Minitab, Inc. The data description is courtesy of Prof. Timothy Gregoire at Yale University (New Haven, CT, USA).

References

According to Prof. Gregoire, This data set was supplied by Gary Alt. Entertaining references are in Reader's Digest April, 1979, and Sports Afield September, 1981.

```
data(bearsDepu)
head(bearsDepu)
```

bearsDepu2 17

bearsDepu2	Age and physical measurement data for wild bears. Dataframe same as "bears" but without missing values.

Description

Los osos salvajes fueron anestesiados y sus cuerpos fueron medidos y pesados. Uno de los objetivos del estudio fue hacer una tabla (o quizas un conjunto de tablas) para las personas interesadas en estimar el peso de un oso basandose en otras medidas. Esto se usara porque es mas facil medir la longitud de un oso, por ejemplo, que pesarlo. Observe que faltan valores para algunas de las variables.

Usage

data(bearsDepu2)

Format

Contiene variables de nivel individual, como se describen a continuacion:

id Identificador de oso

age edad en meses

month diametro a la altura del pecho, en cm

sex 1 = hombre, 2 = mujer

headL longitud de la cabeza, en cm

headW ancho de la cabeza, en cm

neckG circunferencia del cuello, en cm

length longitud del cuerpo, en cm

chestG circunferencia del pecho, en cm

weight peso corporal, en kg

obs numero de observacion para el oso

name nombre dado al oso

Source

Minitab, Inc. The data description is courtesy of Prof. Timothy Gregoire at Yale University (New Haven, CT, USA).

References

According to Prof. Gregoire, This data set was supplied by Gary Alt. Entertaining references are in Reader's Digest April, 1979, and Sports Afield September, 1981.

Examples

data(bearsDepu2)
head(bearsDepu2)

18 biomass2

biomass

Contains tree-level biomass data for several species in Canada.

Description

These are tree-level variables for several species in Canada.

Usage

biomass

Format

```
treenum tree number.
```

spp species common name.

dbh diameter at breast height, in cm.

height total height, in m.

totbiom total biomass, in kg.

bolebiom stem biomass, in kg.

branchbiom branches biomass, in kg.

foliagebiom foliage biomass, in kg.

Source

The data are provided courtesy of Prof. Timothy Gregoire at the School of Forestry and Environmental Studies at Yale University (New Haven, CT, USA).

Examples

data(biomass)
head(biomass)

biomass2

Biomasa a nivel de arbol para especies arboreas de Canada.

Description

These are tree-level variables for several species in Canada.

Usage

biomass2

carbohydrateTreelines 19

Format

treenum tree number.

spp species common name.

dbh diameter at breast height, in cm.

height total height, in m.

totbiom total biomass, in kg.

bolebiom stem biomass, in kg.

branchbiom branches biomass, in kg.

foliagebiom foliage biomass, in kg.

Source

The data are provided courtesy of Prof. Timothy Gregoire at the School of Forestry and Environmental Studies at Yale University (New Haven, CT, USA).

Examples

data(biomass2)
head(biomass2)

carbohydrateTreelines Carbohydrates concentrations of tree species.

Description

Dataset contains 863 observations, about of total soluble carbohydrate, starch, and non structural carbohydrates concentrations per mass unit and per volume unit, in three tissues in early summer and early autumn 6-8 adult trees of different species at three elevations of altitudinal gradients sampled in four locations of Chile and Spain.

Usage

data(carbohydrateTreelines)

Format

Contains 16 variables, as follows:

climate Climate of each location, mediterranean and temperate.

site Name of Location of study (termmas:Termas de Chillan, antillanca:Antillanca area within Puyehue National Park, castillo:Cerro Castillo Natural Reserve, farellones:Farellones in Central Chile, pyrenees: Sierra de Cutas area in Spanish Central Pyrenees,sierra:Sierra Nevada).

species name species of study (lenga: Nothofagus pumilio, frangel: Kageneckia angustifolia, uncinata: Pinus uncinata, sylvestris: Pinus sylvestris).

20 chicksw

tissue Type of tissue, new developing twings, stem sapwood and branches.

time Meauserement season (spring or autumn).

elevation Type of elevation. "Treeline", intermediate named as "mid", and closed or montane forest named as "low".

tree Id for tree.

tree.site Id site for each location of study.

tss Value of concentrations soluble carbohydrate per mass unit.

st Value of concentrations starch per mass unit.

nsc Value of concentrations non structural carbohydrates per mass unit.

tss.nsc .

wd It might be 'wood density', but not sure.

tss.mv Value of concentrations soluble carbohydrate per volume unit.

st.mv Value of concentrations starch per volume unit.

nsc.mv Value of concentrations non structural carbohydrates per volume unit.

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.ks97h.

References

Piper F, Vinegla B, Linares J, Cawieres L, Fajardo A. 2016. Mediterranean and temperate treelines are controlled by different environmental drivers. Journal Ecology. 104: 691-702.

Examples

data(carbohydrateTreelines)
head(carbohydrateTreelines)

chicksw

Chicken growth data.

Description

The body weights of the chicks were measured at birth and every second day thereafter until day 20. They were also measured on day 21. There were four groups on chicks on different protein diets.

Usage

data(chicksw)

corkoak 21

Format

Contains four variables, as follows:

weight a numeric vector giving the body weight of the chick (gm).

time a numeric vector giving the number of days since birth when the measurement was made.

chick an ordered factor with levels different giving a unique identifier for the chick. The ordering of the levels groups chicks on the same diet together and orders them according to their final weight (lightest to heaviest) within diet.

diet a factor with levels 1,2,3 and 4 indicating which experimental diet the chick received.

Source

The data were obtained from the alr4 library.

References

Crowder M, Hand D. 1990. Analysis of Repeated Measures. Chapman and Hall

Examples

data(chicksw)
head(chicksw)

corkoak

Tree-level cork biomass data for Oak trees in Portugal.

Description

Measurements of cork weight in sample trees of Quercus suber (Oak) in Portugal.

Usage

corkoak

Format

tree A correlative number for each sample tree.

csc is tree circumference at 1.3 m outside bark, in cm.

cbc is tree circumference at 1.3 m under bark, in cm.

bt bark thickness, in cm.

hdeb is debarking height, in m.

hblc height to base of live crown, in m.

nb number of branches debarked

crown.d crown diameter, in m.

w total green weight of the stripped cork, in kg

stratum Stratum

22 corkoak2

Source

Data supplied electronically to Prof. Timothy Gregoire (Yale University) by authors accompanied by a note which said "After the article was published we discovered a problem with 2 of the observations so Teresa and I decided it was best just to delete them."

References

- Fonseca TJ, Parresol BR. 2001. A new model for cork weight estimation in northern Portugal with methodology for construction of confidence intervals. Forest Ecology and Management 152(1):131–139.

Examples

data(corkoak)
head(corkoak)

corkoak2

Datos de biomasa de corcho en arboles de Encino en Portugal.

Description

Mediciones de peso de corcho en arboles muestra de Quercus suber en Portugal.

Usage

corkoak2

Format

arbol A correlative number for each sample tree.

perimetro.cc is tree circumference at 1.3 m outside bark, in cm.

perimetro.sc is tree circumference at 1.3 m under bark, in cm.

e.corteza bark thickness, in cm.

h.desc is debarking height, in m.

hcc height to base of live crown, in m.

num.ram number of branches debarked

diam.copa crown diameter, in m.

biomasa total green weight of the stripped cork, in kg

estrato Estrato

Source

Datos cedidos por Prof. Timothy Gregoire (Yale University) y los autores originales mencionaron "After the article was published we discovered a problem with 2 of the observations so Teresa and I decided it was best just to delete them."

crownradii 23

References

- Fonseca TJ, Parresol BR. 2001. A new model for cork weight estimation in northern Portugal with methodology for construction of confidence intervals. Forest Ecology and Management 152(1):131–139.

Examples

data(corkoak2)
head(corkoak2)

crownradii

Tree crown radii

Description

Crown radii measurements in cardinal directions for sample trees at the Rucamanque experimental forest, near Temuco, Chile. Data were collected within a sample plot of 250m², located in a secondary forest stand dominated by Nothofagus obliqua.

Usage

data(crownradii)

Format

Contains of variables, as follows:

spp Species code. Ro is Roble, Co is Coigue and Ol is Olivillo.

dbh Diameter at breast height, in cm.

htot Total height, in m.

r.n Crown radii towards the north, in m.

r.e Crown radii towards the east, in m.

r.s Crown radii towards the south, in m.

r.w Crown radii towards the west, in m.

x.coord Cardinal position at the X-axis, in m.

y.coord Cardinal position at the Y-axis, in m.

crown.d Crown diameter, in m.

Source

Data were provided by Dr Christian Salas-Eljatib (Santiago, Chile).

24 deadForestCA

References

Salas C. 2001. Caracterizacion basica del relicto de biodiversidad Rucamanque [Basic characterization of the biodiversity remnant Rucamanque]. Bosque Nativo 29: 3–9.

Salas C, and Garcia O. 2006. Modelling height development of mature Nothofagus obliqua. Forest Ecology and Management 229 (1-3): 1–6.

Examples

data(crownradii)
head(crownradii)

deadForestCA

Data contains climatic, forest structure and forest mortality variable

Description

The data file contains one row per unique 3.5km grid cell by year combination. The data frame covers all grid cells within the state of California where at least one Aerial Detection Survey (ADS) flight was taken between 2009 and 2015, so each grid cell position has between 1 and 7 years of data (reflected as 1 to 7 rows in the data file per grid cell position). The main response variables are mort.bin (presence of any mortality) and mort.tph (number of dead trees/ha within the given grid cell by year).

Usage

data(deadForestCA)

Format

The data frame contains four variables as follows:

live.bah Live basal area from the GNN dataset

live.tph Live trees per hectare from the GNN dataset

pos.x rank-order x-position of the grid cell (position 1 is western-most)

pos.y rank-order y-position of the grid cell (position 1 is northern-most)

alb.x x-coordinate of the grid cell centroid in California Albers (EPSG 3310)

alb.y y-coordinate of the grid cell centroid in California Albers (EPSG 3310)

mort.bin 1= dead trees observed in grid cell. 0= no dead trees observed

mort.tph Dead trees per hectare from the aggregated ADS dataset

mort.tpa Dead trees per acre from the aggregated ADS dataset

year Year of the ADS flight. Most flights occurred from May-August.

Defnorm Mean annual climatic water deficit for the grid cell, for Oct 1-Sept 31 water year, averaged from 1981-2015

deadForestCA2 25

Def0 Climatic water deficit for the grid cell during the Oct-Sept water year overlapping the summer ADS flight of the given year

Defz0 Z-score for climatic water deficit for the given grid cell/water year. Calculated as (Def0-Defnorm)/(standard deviation in deficit among all years 1981-2015 for the given grid cell)

Defz1 Z-score for climatic water deficit for the given grid cell in the preceding water year.

Defz2 Z-score for climatic water deficit for the given grid cell two water years prior.

Tz0 Z-score for temperature for the given grid cell/year.

Pz0 Z-score for precipitation for the given grid cell/year.

Defquant FDCI variable. Quantile of Defnorm of the given grid cell, relative to the Defnorm of all other grid cells with a basal area within 2.5 m2 ha-1 of the given cell is basal area.

Source

The data were provided from DRYAD repository.

References

-Derek J. N. Young, Jens T. Stevens, J. Mason Earles, Jeffrey Moore, Adam Ellis, Amy L. Jirka, and Andrew M. Latimer. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20(1):78-86, 2017.

-C. Salas-Eljatib, Andres Fuentes-Ramirez, Timothy G. Gregoire, Adison Altamirano, and Valeska Yaitul. A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecological Indicators, 85:502-508, 2018

Examples

data(deadForestCA)
head(deadForestCA)

deadForestCA2

Los datos contienen variables climaticas, de estructura forestal y de mortalidad forestal.

Description

El archivo de datos contiene una fila por combinacion unica de celda de cuadricula de 3,5 km por anho. El marco de datos cubre todas las celdas de la cuadricula dentro del estado de California donde se tomo al menos un vuelo de la Encuesta de deteccion aerea (ADS) entre 2009 y 2015, por lo que cada posicion de celda de la cuadricula tiene entre 1 y 7 anhos de datos (reflejados como 1 a 7 filas en el archivo de datos por posicion de celda de cuadricula). Las principales variables de respuesta son mort.bin (presencia de alguna mortalidad) y mort.tph (n?mero de arboles muertos / ha dentro de la celda de la cuadr?cula por anho).

Usage

data(deadForestCA2)

26 deadForestCA2

Format

Variables se describen a continuacion::

live.bah Area basal viva del conjunto de datos GNN

live.tph Arboles vivos por hectarea del conjunto de datos GNN

pos.x posicion x del orden de clasificación de la celda de la cuadricula (la posición 1 es la mas occidental)

pos.y posicion y del orden de clasificacion de la celda de la cuadricula (la posicion 1 es la mas al norte)

alb.x coordenada x del centroide de la celda de la cuadricula en California Albers (EPSG 3310)

alb.y coordenada y del centroide de la celda de la cuadricula en California Albers (EPSG 3310)

mort.bin 1 = arboles muertos observados en la celda de la cuadricula. 0 = no se observaron arboles muertos

mort.tph Arboles muertos por hectarea del conjunto de datos ADS agregado

mort.tpa Arboles muertos por acre del conjunto de datos ADS agregado

year Anho del vuelo de ADS. La mayoria de los vuelos se realizaron entre mayo y agosto

Defnorm Deficit hidrico climatico anual medio para la celda de la cuadricula, para el anho hidrico del 1 de octubre al 31 de septiembre, promediado de 1981 a 2015

Def0 Deficit de agua climatica para la celda de la cuadricula durante el anho hidrologico de octubre a septiembre que se superpone al vuelo ADS de verano del anho dado

Defz0 Puntaje Z para el deficit hidrico climatico para la celda de cuadricula / anho hidrico dado. Calculado como (Def0-Defnorm) / (desviacion estandar en el deficit entre todos los anhos 1981-2015 para la celda de la cuadricula dada

Defz1 Puntuacion Z para el deficit h?drico climatico para la celda de la cuadricula dada en el anho hidrologico anterior.

Defz2 Puntuacion Z para el deficit hidrico climatico para la celda de la cuadricula dada dos anhos antes

Tz0 Puntaje Z para la temperatura para la celda de cuadricula / anho dado.

Pz0 Puntaje Z para la precipitación para la celda / anho de la cuadricula dado.

Defquant Variable FDCI. Cuantil de Defnorm de la celda de la cuadricula dada, en relacion con la Defnorm de todas las demas celdas de la cuadricula con un area basal dentro de 2.5 m2 ha-1 de la celda dada

Source

The data were provided from DRYAD repository.

References

-Derek J. N. Young, Jens T. Stevens, J. Mason Earles, Jeffrey Moore, Adam Ellis, Amy L. Jirka, and Andrew M. Latimer. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20(1):78-86, 2017.

-C. Salas-Eljatib, Andres Fuentes-Ramirez, Timothy G. Gregoire, Adison Altamirano, and Valeska Yaitul. A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecological Indicators, 85:502-508, 2018.

deadLianas 27

Examples

data(deadForestCA2)
head(deadForestCA2)

deadLianas

This dataset has 43 columns and 4247 rows. Each row corresponds to an epiphyte individual located on the reliable sections of the host trees

Description

This study is part of the project "Diversity and dynamics of vascular epiphytes in Colombian Andes" supported by COLCIENCIAS (contract 2115-2013). The data corresponds to the first large-scale assessment of vascular epiphyte mortality in the neotropics. Based on two consecutive annual surveys, we followed the fate of 4247 epiphytes to estimate the epiphyte mortality rate on 116 host trees at nine sites. Additional variables were taken from the area of study in order to find relationships with epiphyte mortality.

Usage

data(deadLianas)

Format

The data frame contains four variables as follows:

PlotSite Municipality name of the 9 study sites

Y.Plot Latitude of the plot in decimal degrees

X.Plot Longitude of the plot in decimal degrees

PhoroNo ID number of the sampled host trees in each site

EpiFam Epiphyte taxonomic family

EpiGen Epiphyte taxonomic genus

cf.aff Abbreviations of Latin terms in the context of taxonomy. cf. "confer" meaning "compare with". aff.: "affinis" meaning "similar to".

Species Epiphyte (morpho) species name

Author Author of the scientific name

EpiAzi Azimuth of the epiphyte individual on each host tree

BraAzi Azimuth of the branch in which the epiphyte individual was found

EpiDisTru Distance in meters from the trunk to the epiphyte attachment site on a branch

EpiSize Estimated size of the epiphyte individual in centimetres

EpiAttHei Epiphyte attachment height in meters

Date0 Date of the first census

Date1 Date of the final census

28 deadLianas

Location Section (roots, trunks, branches) of the host tree in which theepiphyte individual was found

Mortality Dichotomous variable. 0 if the epiphyte individual was dead in the final census and 1 if otherwise

MorCat Mechanical or non-mechanical cause of mortality

Elevation Elevation (m a.s.l.) of the plot

AP_bio12 Annual precipitation in the plot (mm yr-1)

PDM_bio14 Precipitation of driest month in the plot (mm)

PS_bio15 Precipitation seasonality in the plot (coefficient of variation)

MDT_bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) in the plot (oC*10)

TS_bio4 Temperature seasonality in the plot (standard deviation*100)

ATR_bio7 Annual temperature range in the plot (10 celsius degrees)

AET Actual evapotranspiration in the plot (mm yr-1)

BasAre Basal area of trees with DBH major or equal to 5 cm (AB) in the plot (m2 ha-1)

BasAre5_10 Basal area of trees with greater or equal than 5 DBH and less than 10 cm in the plot (m2 ha-1)

BasAre10 Basal area of trees with greater or equal than 10 cm DBH in the plot (m2 ha-1)

Ind10 Number of canopy trees (with greater or equal than 10 cm DBH) in the plot

Ind5 Number of understory trees (with greater or equal than 5 DBH and less than 10 cm) in the plot

Ind5_10 Number of trees with greater or equal than 5 DBH and less than 10 cm in the plot

Ind10_15 Number of trees with greater or equal than 10 DBH and less than 15 cm in the plot

Ind15_20 Number of trees with greater or equal than 15 DBH and less than 20 cm in the plot

Ind20_25 Number of trees with greater or equal than 20 DBH and less than 25 cm in the plot

Ind25_30 Number of trees with greater or equal than 25 DBH and less than 30 cm in the plot

Ind30 Number of trees with DBH major or equal to 30 cm in the plot

TreeHei Total tree height in meters

MedHei Median height of trees in each plot

MaxHei Maximum height of trees in each plot

BranchNumb Number of branches of the host tree

Obs Observations and notes in Spanish

Source

Data were extracted from Zuleta, D., Benavides, A.M., Lopez-Ros, V. & Duque, A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia.

References

Zuleta, D., Benavides, A.M., Lopez-Rios, V. & Duque, A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia.

deadLianas2 29

Examples

data(deadLianas)
head(deadLianas)

deadLianas2

Este conjunto de datos tiene 43 columnas y 4247 filas. Cada fila corresponde a un individuo epifito ubicado en el secciones confiables de los arboles hospedantes

Description

Este estudio es parte del proyecto "Diversidad y din?mica de ep?fitas vasculares en los Andes colombianos". apoyado por COLCIENCIAS (contrato 2115-2013). Los datos corresponden a la primera gran escala evaluaci?n de la mortalidad de ep?fitas vasculares en los neotr?picos. Basado en dos encuestas anuales consecutivas, Seguimos el destino de 4247 ep?fitas para estimar la tasa de mortalidad de ep?fitas en 116 ?rboles hospedantes. en nueve sitios. Se tomaron variables adicionales del area de estudio para encontrar relaciones con mortalidad de epifitas.

Usage

data(deadLianas2)

Format

Variables se describen a continuacion::

PlotSite Nombre del municipio de los 9 sitios de estudio

Y.Plot Latitud del grafico en grados decimales

X.Plot Longitud de la grafica en grados decimales

PhoroNo numero de identificación de los arboles hospedantes muestreados en cada sitio

EpiFam Familia taxonomica de epifitas

EpiGen Genero taxonomico de epifitas

cf.aff Abreviaturas de terminos latinos en el contexto de la taxonomia. cf. "conferir" que significa "comparar con". aff .: "affinis" que significa "similar a"

Species Nombre de la especie epifita (morfo)

Author Autor del nombre cientifico

EpiAzi Azimut del individuo epifito en cada arbol huesped

BraAzi Azimut de la rama en la que se encontro el individuo epifito

EpiDisTru Distancia en metros desde el tronco hasta el sitio de union de la epifita en una rama

EpiSize Tamanho estimado del individuo epifito en centimetros

EpiAttHei Altura del accesorio de la epifita en metros

Date0 Fecha del primer censo

30 deadLianas2

Date1 Fecha del censo final

Location Seccion (raices, troncos, ramas) del arbol anfitrion en el que se encontro el individuo epifito

Mortality Variable dicotomica. 0 si el individuo epifito estaba muerto en el censo final y 1 si no

MorCat Causa de mortalidad mecanica o no mecanica

Elevation Elevacion (msnm) de la parcela

AP_bio12 Precipitacion anual en la parcela (mm anho-1)

PDM bio14 Precipitacion del mes mas seco en la parcela (mm)

PS_bio15 Estacionalidad de la precipitacion en la parcela (coeficiente de variacion)

MDT_bio2 Rango diurno medio (Media mensual (temperatura maxima - temperatura minima)) en la grafica (10 grados celsius)

TS_bio4 Estacionalidad de la temperatura en la grafica (desviacion estandar * 100)

ATR_bio7 Rango de temperatura anual en la parcela (10 grados centigrados)

AET Evapotranspiracion real en la parcela (mm anho-1)

BasAre Area basal de arboles con DAP mayor o igual a 5 cm (AB) en la parcela (m2 ha-1)

BasAre5_10 Area basal de arboles con DAP mayor o igual a 5 y menor a 10 cm en la parcela (m2 ha-1)

BasAre10 Area basal de arboles con DAP mayor o igual a 10 cm en la parcela (m2 ha-1)

Ind10 Numero de arboles del dosel (con un DAP superior o igual a 10 cm) en la parcela

Ind5 Numero de arboles de sotobosque (con DAP mayor o igual a 5 y menor a 10 cm) en la parcela

Ind5_10 Numero de arboles con un DAP mayor o igual a 5 y menos de 10 cm en la parcela

Ind10_15 Numero de arboles con un DAP mayor o igual a 10 y menos de 15 cm en la parcela

Ind15_20 Numero de arboles con un DAP mayor o igual a 15 y menos de 20 cm en la parcela

Ind20 25 Numero de arboles con un DAP mayor o igual a 20 y menos de 25 cm en la parcela

Ind25_30 Numero de arboles con un DAP mayor o igual a 25 y menos de 30 cm en la parcela

Ind30 Numero de arboles con DAP mayor o igual a 30 cm en la parcela

TreeHei Altura total del arbol en metros

MedHei Altura media de los arboles en cada parcela

MaxHei Altura maxima de los arboles en cada parcela

BranchNumb Numero de ramas del arbol anfitrion

Obs Observaciones y notas en espanhol

Source

Data fue extraida desde Zuleta, D., Benavides, A.M., Lopez-Ros, V. & Duque, A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia.

References

Zuleta, D., Benavides, A.M., Lopez-Rios, V. & Duque, A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia.

demograph 31

Examples

```
data(deadLianas2)
head(deadLianas2)
```

demograph

Contains information of demography of species.

Description

Dataset contains 61 observations about life histories values for each species and site, as obtained from the parameterization carried out in studies that used the model SORTIE

Usage

```
data(demograph)
```

Format

```
Contains 15 variables, as follows:
```

```
sp Name specie.

site Name of site of study.

country Name of country.

site.n Code of site.

code Code of specie.

genus Genus of specie.

sps Abbreviated name specie.

family Family of specie.

phyl Type of phylogeny.

l.hab Type of leaf habit.

l.type .

leaf Type of leaf.

growth.l Growth at full light (time in years).

growth.d Growth in shade.

surv.d Survival in shade.
```

Source

The data were obtained from the DRYAD repository.

References

- Ameztegui A, Paquette A, Shipley B, Heym M, Messier C, Gravel D. 2016. Shade tolerance and the functional trait: demography relationship in temperate and boreal forests. Functional Ecology, 31: 821-830.

32 descstat

Examples

```
data(demograph)
head(demograph)
```

descstat

A descriptive statistics table for continuous variables

Description

descstat: Function that creates a descriptive statistics table for all continuous variables in a dataframe excluding missing values.

Usage

```
descstat(data = data, decnum = NA)
```

Arguments

data a dataframe containing variables as columns decnum the number of decimals to be used in the output

Details

As always, please check the output after applying the function.

Value

This function wraps descriptive statistics into a summarize table having the following descriptive statistics: sample size, minimum, maximum, mean, median, SD, and coefficient of variation (

Author(s)

Christian Salas-Eljatib and Tomas Cayul.

```
#creating a fake dataframe
set.seed(1234)
df <- as.data.frame(cbind(variable1=rnorm(5, 0), variable2=rnorm(5, 2)))
## adding one missing value
df[3,1] <- NA
df
#using the function
descstat(data=df)
descstat(data=df,decnum=1)
descstat(df,2)</pre>
```

election 33

election

Presidential election data of Florida (USA) in 2000.

Description

County-by-county vote for president in Florida in 2000 for Bush, Gore and Buchanan.

Usage

```
data(election)
```

Format

Contains 3 variables, as follows:

gore Vote for Gore.

bush Vote for Bush.

buchaman Vote for Buchaman.

Source

The data were obtained from the 'alr4' library.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. Hoboken NJ: Wiley

Examples

```
data(election)
head(election)
```

election2

Eleccion presidential en el estado de Florida (USA) en el 2000.

Description

County-by-county vote for president in Florida in 2000 for Bush, Gore and Buchanan.

Usage

```
data(election2)
```

34 eucaleaf

Format

Contains 3 variables, as follows:

gore Votos para Gore.bush Votos para Bush.

buchaman Votos para Buchaman.

Source

Los datos se obtuvieron desde el paquete 'alr4' de R.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. Hoboken NJ: Wiley

Examples

```
data(election2)
head(election2)
```

eucaleaf

Leaf measurements for Eucalyptus nitens trees in Tasmania, Australia.

Description

The length, width, and area of Eucalyptus nitens leaves were measured.

Usage

```
data(eucaleaf)
```

Format

Contains leaf-level variables, as follows:

time Early or Late

tree an identificator for a given sample tree

shoot shoot description

I length of the leaf, in mm

w width of the leaf, in mm

la leaf area, in cm²

Source

Although the original source of the measurements is the Dissertation of Dr Candy (1999), the data file used here was courtesy of Prof. Timothy Gregoire at Yale University (New Haven, CT, USA). Furthermore, these data were used by Gregoire and Salas (2009).

eucaleaf2 35

References

- Candy SG. 1999. Predictive models for integrated pest management of the leaf beetle Chrysophtharta bimaculata in Eucalyptus nitens in Tasmania. Doctoral dissertation, University of Tasmania, Hobart, Australia.

- Gregoire TG, and Salas C. 2009. Ratio estimation with measurement error in the auxiliary variate. Biometrics 65(2):590-598

Examples

data(eucaleaf)
head(eucaleaf)

eucaleaf2

Mediciones foliares para arboles de Eucalyptus nitens en Tasmania, Australia.

Description

Mediciones de largo, ancho y area de hojas de Eucalyptus nitens.

Usage

data(eucaleaf)

Format

Contiene variables a nivel de hoja, como sigue:

tiempo factor a dos niveles: Temprano o Tardio arbol un identificador del arbol muestra meristema descripcion del meristema largo largo de la hoja, en mm ancho ancho de la hoja, en mm area area foliar, en cm²

Source

Aunque la fuente original de estas mediciones proviene de la tesis del Dr Candy (1999), el archivo de datos fue cortesia del Prof. Timothy Gregoire de Yale University (New Haven, CT, USA). Ademas, estos datos fueron ocupados en el estudio de Gregoire y Salas (2009).

References

- Candy SG. 1999. Predictive models for integrated pest management of the leaf beetle Chrysophtharta bimaculata in Eucalyptus nitens in Tasmania. Doctoral dissertation, University of Tasmania, Hobart, Australia.
- Gregoire TG, y Salas C. 2009. Ratio estimation with measurement error in the auxiliary variate. Biometrics 65(2):590-598

36 eucaplot

Examples

```
data(eucaleaf2)
head(eucaleaf2)
```

eucaplot

Data from a Eucalyptus globulus plantation near Gorbea, Region de La Araucania, Chile.

Description

Tree-level data collected within a sample plot in a forestry plantation of Eucalyptus globulus near Gorbea, Southern Chile. The plot size is 500 square meters. The plantation is 15 yr-old and had been subject to three thinnings.

Usage

```
data(eucaplot)
```

Format

The dataframe contains four variables as follows:

```
dbh Diameter at breast height, in cm.
health health status (1: good, 2: medium, 3: bad).
shape stem shape for timber purposes (1: good, 2: medium, 3: bad).
crown.class Crown class (1: superior, 2: intermedium, 3: lower).
toth Total height, in m.
```

Source

The data were provided courtesy of Dr Christian Salas-Eljatib (Chile).

```
data(eucaplot)
head(eucaplot)
```

eucaplot2 37

eucaplot2	Arboles dentro de parcelas de muestreo en una plantacion de Eucalyptus globulus, Chile.

Description

Tree-level data collected within a sample plot in a forestry plantation of Eucalyptus globulus near Gorbea, Southern Chile. The plot size is 500 square meters. The plantation is 15 yr-old and had been subject to three thinnings.

Usage

```
data(eucaplot2)
```

Format

The dataframe contains four variables as follows:

```
dbh Diameter at breast height, in cm.
health health status (1: good, 2: medium, 3: bad).
shape stem shape for timber purposes (1: good, 2: medium, 3: bad).
crown.class Crown class (1: superior, 2: intermedium, 3: lower).
toth Total height, in m.
```

Source

The data were provided courtesy of Dr Christian Salas-Eljatib (Chile).

Examples

```
data(eucaplot2)
head(eucaplot2)
```

fertilizaexpe

Fertilization experiment data.

Description

Data contains volume data at plot-level for a fertilization experiment.

Usage

```
data(fertilizaexpe)
```

38 fertilizaexpe2

Format

Contains three variables, as follows:

treat Treatment level.

volume Plot-level volume, in m3/plot.

Source

The data were provided by Dr Christian Salas.

References

not yet

Examples

```
data(fertilizaexpe)
head(fertilizaexpe)
```

fertilizaexpe2

Datos a nivel de parcela de un experimento de fertilizacion.

Description

Data contains volume data at plot-level for a fertilization experiment.

Usage

```
data(fertilizaexpe2)
```

Format

Contains three variables, as follows:

treat Treatment level.

volume Plot-level volume, in m3/plot.

Source

The data were provided by Dr Christian Salas.

References

not yet

```
data(fertilizaexpe2)
head(fertilizaexpe2)
```

fishgrowth 39

fishgrowth

Data on fish growth.

Description

Data on samples of small mouth bass collected in West Bearskin Lake, Minnesota, in 1991. The file wblake includes only fish of ages 8 or younger.

Usage

```
data(fishgrowth)
```

Format

Contains 3 variables, as follows:

```
years Year at capture.
```

length Length at capture (mm).

scale radius of a key scale (mm).

Source

The data were obtained from the alr4 library of R.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. Hoboken NJ: Wiley

Examples

```
data(fishgrowth)
head(fishgrowth)
```

fishgrowth2

Crecimiento de peces

Description

Data on samples of small mouth bass collected in West Bearskin Lake, Minnesota, in 1991. The file wblake includes only fish of ages 8 or younger.

Usage

```
data(fishgrowth2)
```

40 floraChile

Format

```
Contiene tres variables, como sigue:
```

```
edad Year at capture.
```

largo Length at capture, en mm.

escala radius of a key scale, en mm.

Source

Datos obtenidos desde el paquete 'alr4' de R.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. Hoboken NJ: Wiley

Examples

```
data(fishgrowth2)
head(fishgrowth2)
```

floraChile

Flora of Chile.

Description

Dataset contains taxonomic level information segregatted by latitude.

Usage

```
data(floraChile)
```

Format

Contains seven columns, as follows:

```
family .
```

genus .

scientific.name .

author .

origin .

life.form .

lat... .

Source

The data are provided courtesy of Dr Jan Bannister at the Instituto Forestal (Chiloe, Chile).

floraChile2 41

References

- Bannister JR, Vidal OJ, Teneb E, Sandoval V. 2012. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecology, 37(4), 500-509.

Examples

```
data(floraChile)
head(floraChile)
```

floraChile2

Flora de Chile.

Description

Contiene informacion taxonomica segregada por latitude.

Usage

```
data(floraChile)
```

Format

Contains seven columns, as follows:

```
family .
genus .
scientific.name .
author .
origin .
life.form .
lat... .
```

Source

Datos cedidos por el Dr Jan Bannister del Instituto Forestal (Chiloe, Chile).

References

- Bannister JR, Vidal OJ, Teneb E, Sandoval V. 2012. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecology, 37(4), 500-509.

```
data(floraChile2)
head(floraChile2)
```

42 football

football

Anaerobic potential of soccer players.

Description

Data about anaerobic variables of football players.

Usage

```
data(football)
```

Format

The data frame contains 13 variables as follows:

WPM

WPMk

WPm

WPmk

WTT

WTTk

WIF

W5

W10

W15

W20

W25

W30

Source

Data were provided by Dr Aquiles Yanez-Silva at Universidad Mayor (Santiago, Chile).

References

Not yet.

```
data(football)
head(football)
```

football2 43

football2

Potencia anaerobica de jugadores de football.

Description

Datos sobre potencia anaerobica de jugadores de football.

Usage

```
data(football2)
```

Format

Contiene variables de nivel individual, como se describen a continuacion::

WPM

WPMk

WPm

WPmk

WTT

WTTk

WIF

. . __

W5

W10

W15

W20

W25

W30

Source

Los datos fueron cedidos por el Dr Aquiles Yanez-Silva de la Universidad Mayor (Santiago, Chile).

References

Not yet.

```
data(football2)
head(football2)
```

44 forestFire

forestFire

Data of forest fire occurrence

Description

Data of forest fire occurrence from Altamirano et al. (2013) as our population, containing 7210 total observations (N), with only 890 cases of fire occurrence (N 1) and 6320 cases of non occurrence (N 0). The binary variable (Y) is the occurrence of forest fire, where Y equal to 1 denotes occurrence and Y equal to 0 otherwise.

Usage

data(forestFire)

Format

The data frame contains four variables as follows:

fire Presence of forest fire (1 yes, 0 no)

xcoord Geographic coordinate x.utm

ycoord Geographic coordinate y.utm

aspect Exposure (degrees from north)

eleva Elevation (m)

slope Slope (degrees)

distr Distance to dirt roads

distcity Distance to cities

distriver Distance to paved roads

covera Land use classifications according to a polygon

coverb Land use classifications according to a polygon

tempe Minimum temperature of the coldest month

ppan Annual precipitation

ndii Normalized difference infrared index

nvdi Normalized difference vegetation index

tempe2 Minimum temperature of the warmest month

ppan2 Precipitation of the driest month

frec.fire Frequency of fires

perc.fire Percentage of fire frequency

fireClass Class for frecuency fire

asp.class Class of variable exposure

eleva.class Class of numerical variable elevation

slope.class Class of numerical variable slope

ndii.class Normalized difference infrared index class

nvdi.class Normalized difference vegetation index class

forestFire2 45

Source

Data were provided by Dr Adison Altamirano at the Universidad de La Frontera (Temuco, Chile).

References

Altamirano A, Salas C, Yaitul V, Smith-Ramirez C, Avila A. Infuencia de la heterogeneidad del paisaje en la ocurrencia de incendios forestales en Chile Central. Revista de Geografia del Norte Grande, 55:157-170, 2013.

Examples

data(forestFire)
head(forestFire)

forestFire2

Datos de ocurrencia de incendios forestales

Description

Datos de ocurrencia de incendios forestales de Altamirano et al. (2013) como nuestra poblacion, que contiene 7210 observaciones totales (N), con solo 890 casos de ocurrencia de incendios (N1) y 6320 casos de no ocurrencia (N0). La variable binaria (Y) es la ocurrencia de un incendio forestal, donde Y igual a 1 denota ocurrencia e igual a 0 en caso contrario.

Usage

data(forestFire2)

Format

Variables se describen a continuacion:

fire Presencia de incendio forestal (1 si, 0 no)

xcoord Coordenada geografica x.utm

ycoord Coordenada geografica y.utm

aspect Exposicion (grados desde el norte)

eleva Elevacion (m)

slope Pendiente (grados)

distr Distancia a caminos de tierra

distcity Distancia a ciudades

distriver Distancia a caminos pavimentados

covera Clasificaciones de uso del suelo segun un poligono

coverb Clasificaciones de uso del suelo segun un poligono

tempe Temperatura m?nima del mes m?s frio

46 forestHawaii

ppan Precipitacion anual

ndii Indice infrarrojo de diferencia normalizado

nvdi Indice de vegetacion de diferencia normalizado

tempe2 Temperatura m?nima del mes mas calido

ppan2 Precipitacion del mes mas seco

frec.fire Frecuencia de incendios

perc.fire Porcentajede la frecuencia de incendios

fireClass Clase para variable frecuencia de incendio

asp.class Clase de variable exposicion

eleva.class Clase de variable numerica elevacion **slope.class** Clase de variable numerica pendiente

ndii.class Clase de indice infrarrojo de diferencia normalizado

nvdi.class Clase de indice de vegetacion de diferencia normalizado

Source

Datos fueron cedidos por el Dr Christian Salas-Eljatib (Santiago, Chile).

References

Altamirano A, Salas C, Yaitul V, Smith-Ramirez C, and Avila A. Infuencia de la heterogeneidad del paisaje en la ocurrencia de incendios forestales en Chile Central. Revista de Geografia del Norte Grande, 55:157-170, 2013.

Examples

data(forestFire2)
head(forestFire2)

forestHawaii

Contains information of forest plots across the Hawaiian archipelago.

Description

Diameter at breast height (or occurrence) of individual trees, shrubs and tree ferns across 530 plots across the Hawaiian archipelago and includes native status and cultivated status of the 185 species.

Usage

data(forestHawaii)

forestHawaii 47

Format

Contains 18 variables, as follows:

island Island name.

plot.id Unique numeric identifier for each plot.

study Brief name of study.

plot.area Plot area in m2.

longitude Longitude of plot in decimal degrees; WGS84 coordinate system.

latitude Latitude of plot in decimal degrees; WGS84 coordinate system.

year Year in which plot data was collected.

census Numeric identifier for each census.

tree.id Unique numeric identifier for each individual.

scientific.name Genus and species of each individual following TPL v. 1.1.

family Family of each individual following TPL v. 1.1.

angiosperm Binary variable (1 = yes, 0 = no) indicating whether an individual is classified as an angiosperm following APG III.

monocot Binary variable (1 = yes, 0 = no) indicating whether an individual is classified as a monocot following APG III.

native.status Categorical variable ("native", "alien", "uncertain") indicating alien status of each individual following Wagner et al. (2005).

cultivated.status Binary variable (1 = yes, 0 = no, NA = not applicable) indicating if species is cultivated following PIER.

abundance Number of individuals (all = 1).

abundance.ha Abundance of each individual on a per hectare basis.

dbh Diameter at 1.3 m (DBH in cm) for each individual; NA indicates that size was not measured, but was classified by size class.

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.1kk02qr.

References

- Craven D, Knight T, Barton K, Bialic-Murphy L, Cordell S, Giardina C, Gillespie T, Ostertag R, Sack L,Chase J. 2018. OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal 6: e28406.

```
data(forestHawaii)
head(forestHawaii)
```

48 hawaii

hawaii

Diameter growth increments of a tropical tree species in Hawaii

Description

Tree size, competition, and diameter growth increment of Metrosideros polymorpha trees collected in the Kilauea Volcano, Hawaii. Data containing 64 observations at the current annual growth rate (defined as dbh increment within one calendar year) of each tree was measured from 1986 to 1988 using band dendrometers.

Usage

```
data(hawaii)
```

Format

The dataframe has the following columns:

tree.code Tree number identification. The first letter of the ID represents a cohort. Six cohorts representing a chronosequence were sampled.

dbh Initial stem diameter, in cm.

htot Total height, in m.

crown.area Crown outline area, in square meters.

comp.ind Competition index (Basal area of nearest neighbor divided by square of distance to nearest neighbor plus basal area of second nearest neighbor divided by square of distance to second nearest neighbor).

cai.1986 Current annual stem diameter increment during 1986, in mm.

cai.1987 Current annual stem diameter increment during 1987, in mm.

cai.1988 Current annual stem diameter increment during 1988, in mm.

Source

The data were obtained from Gerrish and Mueller-Dombois (1999).

References

Gerrish G, Mueller-Dombois D. 1999. Measuring stem growth rates for determining age and cohort analysis of a tropical evergreen tree. Pacific Science. 53(4): 418-429.

```
data(hawaii)
head(hawaii)
```

hawaii2 49

hawaii Incremento corriente anual en diametro de una especie t Hawaii
--

Description

Tamanho del arbol, competencia, e incremento corriente anual de arboles de Metrosideros polymorpha colectado en el volcan Kilauea, en Hawaii. Los datos contienen 64 observaciones de incremento corriente anual (definido como el incremento en diametro en un anho calendario) de cada arbol. Estos incrementos fueron medidos desde el anho 1986 a 1988 usando bandas dendrometricas.

Usage

```
data(hawaii)
```

Format

Estos datos contienen las siguientes columnas:

arb.id Codigo identificador del arbol. La primera letra del ID representa un cohorte. Hay seis cohortes que representan una cronosecuencia.

dap Diametro a la altura del pecho, en cm.

htot Altura total, en m.

area.copa Area de copa, en metros cuadrados.

ind.comp Competition index (Basal area of nearest neighbor divided by square of distance to nearest neighbor plus basal area of second nearest neighbor divided by square of distance to second nearest neighbor).

ica.1986 Incremento corriente anual durante el anho 1986, en mm.

ica.1987 Incremento corriente anual durante el anho 1987, en mm.

ica.1988 Incremento corriente anual durante el anho 1988, en mm.

Source

Los datos fueron obtenidos desde Gerrish and Mueller-Dombois (1999).

References

Gerrish G, Mueller-Dombois D. 1999. Measuring stem growth rates for determining age and cohort analysis of a tropical evergreen tree. Pacific Science. 53(4): 418-429.

```
data(hawaii2)
head(hawaii2)
```

50 hgrowthDfir

United States	hgrowthDfir	Tree height growth of Douglas-fir sample trees in the Northwest of the United States
---------------	-------------	--

Description

Data contains 148 observations on the height growth of dominant trees of Pseudotsguga mensiezzi in the Northwest of the United States.

Usage

```
data(hgrowthDfir)
```

Format

The data frame contains seven variables as follows:

```
natfor.id Code identifier.
```

plot.code Plot number identification

tree.code Tree number identification.

dbh Diameter at breast height at sampling, in in.

htot Total height at sa,pling, in ft

age Age of tree, yr

height Height at a given age, in ft

Source

The data were provided by Dr Christian Salas.

References

Monserud RA. Height growth and site index curves for Inland Douglas- fir based on stem analysis data and forest habitat type. Forest Sci., 30(4):943-965, 1984.

Salas C, Stage AR, and Robinson AP. Modeling effects of overstory density and competing vegetation on tree height growth. Forest Sci., 54(1):107-122, 2008.

```
data(hgrowthDfir)
head(hgrowthDfir)
```

hgrowthDfir2 51

Onidos	hgrowthDfir2	Crecimiento en altura de una muestra de arboles en los Estados Unidos
--------	--------------	--

Description

Data contiene 148 observaciones sobre el crecimiento en altura de arboles dominantes de Pseudotsguga mensiezzi en el Nor-Oeste de los Estados Unidos

Usage

```
data(hgrowthDfir2)
```

Format

La data frame contiene siete variables:

bosque.id Codigo identificador del bosque.

parcela Codigo identificador de la parcela.

arbol Numero de identificacion arbol.

dap Diametro a la altura del pecho, en pulgadas.

htot Altura total, en pies

edad Edad, en anhos

altura Altura para cada edad del arbol, en pies

Source

La data fue cedida por el Dr Christian Salas-Eljatib.

References

Monserud RA. Height growth and site index curves for Inland Douglas- fir based on stem analysis data and forest habitat type. Forest Sci., 30(4):943-965, 1984.

Salas C, Stage AR, and Robinson AP. Modeling effects of overstory density and competing vegetation on tree height growth. Forest Sci., 54(1):107-122, 2008.

```
data(hgrowthDfir2)
head(hgrowthDfir2)
```

52 idahohd

idahohd

Tree height-diameter data from Idaho (USA).

Description

These data are forest inventory measures from the Upper Flat Creek stand of the University of Idaho Experimental Forest, dated 1991.

Usage

```
data(idahohd)
```

Format

Contains five variables, as follows:

plot plot number.

tree tree within plot.

species a factor with levels DF = Douglas-fir, GF = Grand fir, SF = Subalpine fir, WL = Western larch, WC = Western red cedar, WP = White pine.

dbh Diameter 137 cm perpendicular to the bole, mm.

height Height of the tree, in decimeters.

Source

The data were obtained from the alr4 library.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. New York: Wiley.

```
data(idahohd)
head(idahohd)
```

idahohd2 53

idahohd2

Altura-diametro de arboles en el estado de Idaho (USA).

Description

Estos datos provienen de un muestreo en un bosque de Upper Flat Creek en el bosque experimental de la University of Idaho, medido en 1991.

Usage

```
data(idahohd2)
```

Format

Contiene cinco variables, como sigue:

parce numero de la parcela de muestreo.

narb numero del arbol dentro de la parcela.

spp especie del arbol, una variable factor con niveles DF = Douglas-fir, GF = Grand fir, SF = Subalpine fir, WL = Western larch, WC = Western red cedar, WP = White pine.

- **d** Diametro del tronco a los 1.3m sobre el suelo, en cm.
- h Altura del arbol, en m.

Source

Los datos fueron obtenidos desde la libreria 'alr4'.

References

Weisberg S. 2014. Applied Linear Regression. 4th edition. New York: Wiley.

```
data(idahohd2)
head(idahohd2)
```

54 invasivesRCI

invasivesRCI

Contains regeneration microsite data in Robinson Crusoe Island forest

Description

These are plot-level measurement (2x2 m) data from the forests in the Robinson Crusoe Island, located in the Pacific Ocean, 667 km from mainland Chile. Measurements were collected in transects of 100 to 240 meters in which, 398 squared plots (2x2 m) were set to include canopy gaps, gap borders and closed forest conditions.

Usage

data(invasivesRCI)

Format

Data has the following columns

plot.id Plot identification code

Gap.type Canopy gap classified as invaded=Inv, non invaded= Nat or treated =Treat(considering the estimated cover of invasive plant species)

Forest.zone Location of the plot (gap, border or forest)

Ferns Estimated cover of fern species (in 2x2 plots)

Moss.liverw Estimated cover of mosses and liverworts (in 2x2 plots)

Cwd Estimated cover of coarse woody debris > 3 cm diameter (in 2x2 plots)

Litter Estimated cover of litter (in 2x2 plots)

Ms Estimated cover of mineral soil (in 2x2 plots)

Rock Estimated cover of rocks (in 2x2 plots)

Est.age Age category for the canopy gap associated to each plot

Source

The data are provided courtesy of Prof. Rodrigo Vargas-Gaete at Universidad de La Frontera (Temuco, Chile).

References

Vargas-Gaete R, Salas-Eljatib C, Gärtner SM, Vidal OJ, Bannister JR, Pauchard A. 2018. Invasive plant species thresholds in the forests of Robinson Crusoe Island, Chile. Plant Ecology & Diversity, 11(2), 205-215.

landCoverSantiago 55

landCoverSantiago	Land-cover, environmental and sociodemographic data for the 34 municipalities composing the Greater Santiago area, Santiago, Chile.

Description

dataset contains 476 observations, 34 categorical and 442 numerical. Land-cover data was generated through remote sensing classification techniques using Sentinel-2 satellite images from year 2016. Temperatures were obtained from TIRS band 10 of Landsat 8 satellites images. Particulate matter concentrations were estimated using spatial modelling techniques from 10 pollution stations distributed in the city. Altitude was generated from a Digital Elevation Model. Population and poverty were gathered from Casen 2017 survey.

Usage

data(landCoverSantiago)

Format

The data frame contains four variables as follows:

Comuna Name of Municipality

p.Construido Percentage of surface covered by built-up area

p.Vegetacion Percentage of surface covered by vegetation

p.Desnudo Percentage of surface covered by bare soil

p.Pasto Percentage of surface covered by deciduous vegetation

p.Deciduo Percentage of surface covered by evergreen vegetation

p.Siempreverde Percentage of surface covered by evergreen vegetation

Temp Invierno Land surface temperature in celsius degrees at 2pm on a winter 0% cloud day

Temp Verano Land surface temperature in celsius degrees at 2pm on a summer 0% cloud day

PM10 Invierno Average particulate matter 10 micron during winter months

PM10 Verano Average particulate matter 10 micron during summer months

p.pobreza 2017 Percentage of people under poverty line year 2017

Altitud promedio Average altitude of municipal area

Poblacion Total population of municipality

Source

Data were provided by Dr Ignacio Fernandez at the Universidad Mayor (Santiago, Chile).

References

Not yet

56 landCoverSantiago2

Examples

data(landCoverSantiago)
head(landCoverSantiago)

landCoverSantiago2

Cobertura territorial, ambiental y sociodemografica de los 34 municipios que componen el area del Gran Santiago, Santiago, Chile..

Description

El conjunto de datos contiene 476 observaciones, 34 categoricas y 442 numericas. Los datos de cobertura terrestre se generaron mediante tecnicas de clasificacion de teledeteccion utilizando imagenes de satelite Sentinel-2 del anho 2016. Las temperaturas se obtuvieron de la banda TIRS 10 de las imagenes de los satelites Landsat 8. Las concentraciones de material particulado se estimaron mediante tecnicas de modelado espacial de 10 estaciones de contaminacion distribuidas en la ciudad. La altitud se genero a partir de un modelo de elevacion digital. La poblacion y la pobreza se obtuvieron de la encuesta Casen 2017.

Usage

data(landCoverSantiago2)

Format

Variables se describen a continuacion:

Comuna Name of Municipality

p.Construido Porcentaje de superficie cubierta por area construida

p. Vegetacion Porcentaje de superficie cubierta por vegetacion

p.Desnudo Porcentaje de superficie cubierta por suelo desnudo

p.Pasto Porcentaje de superficie cubierta por cesped

p.Deciduo Porcentaje de superficie cubierta por vegetacion de hoja caduca

p.Siempreverde Porcentaje de superficie cubierta por vegetacion siempre verde

Temp Invierno Temperatura de la superficie terrestre en grados celsius a las 2 p.m.en un dia de invierno con 0% de nubes

Temp Verano Temperatura de la superficie de la tierra en grados celsius a las 2 p.m.en un dia de verano con 0% de nubes

PM10 Invierno Material particulado promedio de 10 micrones durante los meses de invierno

PM10 Verano Material particulado promedio de 10 micrones durante los meses de verano

p.pobreza 2017 Porcentaje de personas por debajo de la linea de pobreza anho 2017

Altitud promedio Altitud media del termino municipal

Poblacion poblacion total del municipio

lleuque 57

Source

Los datos fueron cedidos por el Dr Ignacio Fernandez de la Universidad Mayor (Santiago, Chile).

References

Not yet

Examples

data(landCoverSantiago2)
head(landCoverSantiago2)

lleuque

Contains species composition data of Prumnopitys andina (Lleuque) forests

Description

Contains species composition data for forests with presence of Lleuque (Prumnopitys andina)

Usage

lleuque

Format

The dataframe has the following columns

stand Stand number

plot.num Plot number

Aus.chi Tree density/ha of Austrocedrus chilensis

May.dis Tree density/ha of Maytenus disticha

Not.obl Tree density/ha of Nothofagus obliqua

Pru.and Tree density/ha of Prumnopitys andina

Source

The data are provided courtesy of Prof. Rodrigo Vargas-Gaete at Universidad de La Frontera (Temuco, Chile).

References

Vargas-Gaete R, Salas-Eljatib C, Penneckamp D, Neira Z, Diez MC, Vargas-Picón, R. 2020. Estructura y regeneración de bosques de Prumnopitys andina en los Andes del sur de Chile. Gayana Botánica, 77(1), 48-58.

58 orange

orange

Diameter growth of orange trees

Description

The orange data frame has 35 rows and four columns of records of the growth of orange trees.

Usage

```
data(orange)
```

Format

A time series data containing the following columns:

tree.id an ordered factor indicating the tree on which the measurement is made. The ordering is according to increasing maximum diameter.

time a numeric vector giving the numbers of days since 1968/12/31

girth a numeric vector of trunk perimeter (mm). This is probably a circumference at breast height, a standard measurement in forestry.

dbh a numeric vector of diameter at breast height (mm).

site a factor variable, representing site conditions with two levels.

spp a factor variable, representing tree species with three levels.

Source

Modified by Christian Salas-Eljatib from the Orange R dataframe.

orange2 59

orange2

Crecimiento diametral de arboles de naranjo

Description

The orange data frame has 35 rows and four columns of records of the growth of orange trees.

Usage

```
data(orange2)
```

Format

A time series data containing the following columns:

arbol indica el identificador del arbol.

tiempo numero de dias desde el 31 de diciembre de 1968.

peri el perimetro del tronco (mm), medido a la altura del pecho.

dap diametro a la altura del pecho (mm).

sitio un factor, representando condiciones de sitio, en dos niveles.

especie un factor, representando especie del arbol, en tres niveles.

Source

Modificado por Christian Salas-Eljatib desde la dataframe Orange de R.

pinaster

pinaster

Tree volume for Pinus pinaster in the Baixo-Mino, Galicia, Spain.

Description

These are volume measurements data of sample trees in the Baixo-Mino region in Galicia, Spain.

Usage

```
data(pinaster)
```

Format

Contains tree-level variables, as follows:

stand stand number from the sample tree was selected.

si Site index of the stand.

tree.no tree number.

dbh Diameter at breast height, in cm.

htot Total height, in m.

d4 Upper-stem diameter at 4 m, in cm.

vol.wb Tree gross volume, in m³ with bark.

vol.wob Tree gross volume, in m³ without bark.

Source

The data are provided courtesy of Dr Christian Salas-Eljatib (Chile).

References

```
- Salas C, Nieto L, Irisarri A. 2005. Modelos de volumen para Pinus pinaster Ait. en la comarca del Baixo Mino, Galicia, Espana. Quebracho 12: 11-22. https://eljatib.com/publication/2005-01-01_modelos_de_volumen_p/
```

```
data(pinaster)
head(pinaster)
```

pinaster2 61

pinaster2	Datos de volumen individual de arboles de Pinus pinaster en Galicia, España.

Description

Variables de volumen y otras a nivel de arbol para una muestra de arboles de Pinus pinaster en la comarca del Baixo-Mino en Galicia, España.

Usage

```
data(pinaster2)
```

Format

Contiene las siguientes variables a nivel de arbol:

rodal Rodal desde donde el arbol fue muestreado

ind.sitio Indice de sitio del rodal, en m.

arbol Numero del arbol.

dbh Diametro a la altura del pecho, en cm.

htot Altura total, en m.

d4 Diametro fustal a los 4 m, en cm.

vt.cc Volumen bruto total con corteza, en m³.

vt.sc Volumen bruto total sin corteza, en m³.

Source

Los datos fueron cedidos por el Dr Christian Salas (Chile).

References

- Salas C, Nieto L, Irisarri A. 2005. Modelos de volumen para Pinus pinaster Ait. en la comarca del Baixo Mino, Galicia, España. Quebracho 12: 11-22. https://eljatib.com/publication/2005-01-01_modelos_de_volumen_p/

```
data(pinaster2)
head(pinaster2)
```

62 pinusContorta

pinusContorta

Contains spatial location of Pinus contorta trees in sample plots.

Description

These are tree-level measurement data, with cartesian location of each tree, from Pinus contorta invasion in Patagonian steppe in Coyhaique in southhern Chile, measured in 2011. There are 3 plots, each of $10.000 \,\mathrm{m}^2$.

Usage

data(pinusContorta)

Format

Contains 8 variables, as follows:

plot.id Plot sample ID.

tree.id Tree identificator number in each plot. Same indv/id for multi-stem trees.

y.coord coordinate of S latitude.

x.coord coordinate of W longitude.

substrate Ground cover in which each pine grow. Bare soil, Festuca pallescens, Baccharis magellanica, Oreopulus glacialis, Acaena integerrima and others species.

drc Diameter at the root collar on trees, in mm.

h Height of trees, in cm.

canopy.area Proyection of canopy area of each tree, in square meters.

Source

The data are provided courtesy of Drs. Anibal Pauchard and Rafael Garcia at the Laboratorio de Invasiones Biologicas, Universidad de Concepcion (Chile).

References

Pauchard A, Escudero A, Garcia RA, de la Cruz M, Langdon B, Cavieres LA, Esquivel J. 2016. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecology and Evolution. 6(2): 447-459.

```
data(pinusContorta)
head(pinusContorta)
unique(pinusContorta$plot.id)
```

pinusContorta2 63

	pinusContorta2	Ubicacion espacial de arboles de Pinus contorta en parcelas de muestreo.
--	----------------	--

Description

Mediciones a nivel de arbol, con la ubicacion cartesian de cada arbol de Pinus contorta, en parcelas de muestreo para estudio de invasion en la estepa Patagonica en Coyhaique en el sur de Chile. Hay tres parcelas, cada una de 10.000 m^2 .

Usage

```
data(pinusContorta2)
```

Format

Contiene ocho variables, como siguen:

parcela Parcela.

arbol Numero de arbol en cada parcela. Mismo arbol/id para arboles multifustales.

coord.y coordinada de latitud W.

coord.x coordinada de longitud W.

substrato Cobertura del suelo donde cada pino crece. Bare soil, Festuca pallescens, Baccharis magellanica, Oreopulus glacialis, Acaena integerrima and others species.

h Height of trees, in cm.

diam.cuello Diametro del cuello, en mm.

area.copa Area de copa, en m².

Source

Los datos fueron cedidos por los Drs. Anibal Pauchard y Rafael Garcia del Laboratorio de Invasiones Biologicas, Universidad de Concepcion (Chile).

References

Pauchard A, Escudero A, Garcia RA, de la Cruz M, Langdon B, Cavieres LA, Esquivel J. 2016. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecology and Evolution. 6(2): 447-459.

Examples

data(pinusContorta2)
head(pinusContorta2)
unique(pinusContorta2\$plot.id)

64 pinusSpp

pinusSpp	Tree-level variables of several sample plots of invasive Pinus spp in Chile.

Description

These are tree-lavel measurement data from Pinus spp invasion in Araucaria-Nothofagus forests in the Malalcahuello National Reserve in La Araucania region in southhern Chile, measured in 2012. There are 26 plots and plot size is 100 m^2 .

Usage

data(pinusSpp)

Format

Contains 8 variables, as follows:

plot.id Plot sample ID.

plot.size Plot size, en m².

lat.s Decimal coordinate of S latitude.

long.w Decimal coordinate of W longitude.

indv.id Tree identificator number in each plot. Same indv/id for multi-stem trees.

stem.id Stem identificator number in each plot.

spp Specie.

dbh Diameter at breast-height, in cm.

h Height, in m.

hcb Height to crown base, in m.

crown.lenght Crown lenght, in m.

obs Extra information.

Source

The data are provided courtesy of Drs. Anibal Pauchard and Rafael Garcia at the Laboratorio de Invasiones Biologicas, Universidad de Concepcion (Chile).

References

Cobar-Carranza A, Garcia R, Pauchard A, Pena E. 2014. Effect of Pinus contorta invasion on forest fuel properties and its potential implications on the fire regime of Araucaria araucana and Nothofagus antarctica forests. Biological Invasions. 16(11): 2273 - 2291. doi: 10.1007/s10530014-06638

pinusSpp2 65

Examples

```
data(pinusSpp)
head(pinusSpp)
length(unique(pinusSpp$plot.id))
boxplot(dbh~plot.id, data=pinusSpp)
```

pinusSpp2

Variables a nivel de arbol en parcelas de muestreo de Pinus spp en Chile.

Description

Mediciones a nivel de arbol para estudiar la invasion de Pinus spp en bosques de Araucaria-Nothofagus en la Reserva Nacional Malalcahuello en la region de la Araucania en el sur de Chile. Hay 26 parcelas, y la superficie de cada una es de 100 m².

Usage

data(pinusSpp2)

Format

Contains 8 variables, as follows:

parcela Numero de la parcela.

sup.parcela Superficie de la parcela, en m².

lat.s Decimal coordinate of S latitude.

long.w Decimal coordinate of W longitude.

indv.id Identificador del arbol en la parcelaeach plot. Same indv/id for multi-stem trees.

fuste.id Identificador del fuste.

especie Especie.

dap Diametro a la altura del pecho, en cm.

h Altura total, en m.

hcc Altura comienzo de copa, en m.

largo.copa Largo de copa, en m.

obs Observacion.

Source

Los datos fueron cedidos por los Drs. Anibal Pauchard y Rafael Garcia del Laboratorio de Invasiones Biologicas, Universidad de Concepción (Chile).

66 plantsHawaii

References

Cobar-Carranza A, Garcia R, Pauchard A & Pena E. 2014. Effect of Pinus contorta invasion on forest fuel properties and its potential implications on the fire regime of Araucaria araucana and Nothofagus antarctica forests. Biological Invasions. 16(11): 2273-2291. doi: 10.1007/s10530014-06638

Examples

```
data(pinusSpp2)
head(pinusSpp2)
length(unique(pinusSpp2$parcela))
boxplot(dap~parcela, data=pinusSpp2)
```

plantsHawaii

Maximum plant size in the Hawaiian archipelago.

Description

Maximum plant size of 58 tree, shrub and tree fern species that occur in 530 forest plots across the Hawaiian archipelago.

Usage

data(plantsHawaii)

Format

Contains 6 variables, as follows:

scientific.name Genus and epithet of each individual following The Plant List v. 1.1 (2013).

family Family of each individual following The Plant List v. 1.1 (2013).

native.status Categorical variable ('native', 'alien', 'uncertain') indicating alien status of each individual following Wagner et al. (2005).

n Number of individuals used to estimate maximum plant size.

d.95 Maximum plant size, estimated as D950.1 (King et al. 2006).

d.max.3 Maximum plant size, estimated as Dmax3 (King et al. 2006).

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.1kk02qr.

References

- Craven D, Knight T, Barton K, Bialic-Murphy L, Cordell S, Giardina C, Gillespie T, Ostertag R, Sack L, Chase J. 2018. OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal 6: e28406.

presenceIce 67

Examples

```
data(plantsHawaii)
head(plantsHawaii)
```

presenceIce

Presence or absence of sea ice from logbook records of annual cruises

Description

Data containing 52717 observations about presence of sea ice from logbook records of annual cruises to the B-C-B in an unbroken record between years 1850 to 1910.

Usage

```
data(presenceIce)
```

Format

The dataframe contains the following columns:

ship.id The code number for ships.

move.type Type of movement of ships. 0 indicates a sail-powered vessel and 1 indicates an auxiliary-powered vessel.

year Year of registry.

month Month of registry.

day Day of registry.

lat.dec Decimal latitude.

long.dec Decimal longitude.

e.w East or west of the Prime Meridian.

ice.cov Sea Ice Observed. 0 no see (Not registered) and 1 presence sea ice (Registered).

Source

The data were provided from Sea Ice Group at the Geophysical Institute.

References

Mahoney A, Bockstoce J, Botkin D, Eicken H, Nisbet R. 2011. Sea-Ice Distribution in the Bering and Chukchi Seas: Information from Historical Whaleships' Logbooks and Journals ARCTIC. 64(4): 465-477.

```
data(presenceIce)
head(presenceIce)
```

68 presidentChile

presidentChile

2021 presidential election in Chile.

Description

Voting table-level data of the 2021 presidential election in Chile. The election was held on December 19, 2021.

Usage

```
data(presidentChile)
```

Format

The dataframe contains the following columns:

region.no Administrative region number of Chile.

region Administrative region name.

provincia Province.

circu.senatorial Senatorial constituency.

distrito Distrit.

comuna County.

region Senatorial constituency.

provincia Province.

circu.elec Electoral constituency.

local Place.

no.mesa Voting table.

tipo.mesa Voting table type.

mesas.fusionadas Merged voting tables.

electores Electors.

nro.en.voto .

candidato Candidate. Gabriel Boric and Jose A. Kast

votos.tricel Total number of votes.

Source

The data were obtained from the electoral service of the Chilean Government (SERVEL) at https://www.servel.cl/resultados-definitivos-elecciones-segunda-votacion-presidencia-2021/. The datafile name was "Resultados_mesa_presidencial_TRICEL_2v_2021-1.xlsx", and was downloaded on October 24, 2022.

```
data(presidentChile)
head(presidentChile)
```

pspLlancahue 69

pspLlancahue	Tree locations for a sample plot in the Llancahue experimental forest, near Valdivia, Chile.

Description

The Cartesian position, species, and diameter of trees within a plot were measured. The sample plot is rectangular of 130 m by 70 m. Further details can be #' reviewed in the reference.

Usage

```
data(pspLlancahue)
```

Format

Contains tree-level variables, as follows:

tree.code Tree identificator

spp.name Species abbreviation as follows: AP= Aextocicon puncatatum, EC=Eucryphia cordifolia, GA=Gevuina avellana, LP= Laureliopsis philippiana, LS= Laurelia sempervirens, ND=Nothofagus dombeyi, Ot=Other, PS=Podocarpus saligna

dbh Diameter at breast height, in cm.

x.coord Cartesian position in the X-axis, in m,

y.coord Cartesian position in the Y-axis, in m.

spp.ori Original species abbreviation.

Source

The data are provided courtesy of Prof. Daniel Soto at Universidad de Aysen (Coyhaique, Chile).

References

- Soto DP, Salas C, Donoso PJ, Uteau D. 2010. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi despues de un disturbio parcial. Revista Chilena de Historia Natural 83(3): 335-347.

```
data(pspLlancahue)
head(pspLlancahue)
tapply(pspLlancahue$dbh,pspLlancahue$spp.name,length)
boxplot(dbh~spp.name, data=pspLlancahue)
```

70 pspLlancahue2

pspLlancahue2	Ubicacion espacial de arboles dentro de una parcela de muestreo en el bosque de Llancahue, Valdivia, Chile.
	ei vosque de Liancanue, valatvia, Chite.

Description

Posicion cartesiana, especie, y diametro de arboles dentro de una parcela rectangular de 130 m por 70 m.

Usage

```
data(pspLlancahue2)
```

Format

Contiene las siguientes variables a nivel de arbol

```
arbol Codigo identificador del arbol.
```

especie Abreviacion de la especie: AP= Aextocicon puncatatum, EC=Eucryphia cordifolia, GA=Gevuina avellana, LP= Laureliopsis philippiana, LS= Laurelia sempervirens, ND=Nothofagus dombeyi, Ot=Other, PS=Podocarpus saligna

dap Diametro a la altura del pecho, en cm.

coord.x Posicion cartesiana en el eje-X, en m.

coord.y Posicion cartesiana en el eje-Y, en m.

especie.ori Abreviacion original para las especies.

Source

Los datos fueron cedidos por el Prof. Daniel Soto de la Universidad de Aysen (Coyhaique, Chile).

References

- Soto DP, Salas C, Donoso PJ, Uteau D. 2010. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi despues de un disturbio parcial. Revista Chilena de Historia Natural 83(3): 335-347.

```
data(pspLlancahue2)
head(pspLlancahue2)
tapply(pspLlancahue2$dap,pspLlancahue2$especie,length)
boxplot(dap~especie, data=pspLlancahue2)
```

pspRuca 71

pspRuca	Tree-level measurements and spatial coordinates in a sample plot in the Rucamanque experimental forest, Temuco, Chile.

Description

Tree level measurements and spatial coordinates in a permanent sample plot of 1 ha (100 x 100m) in the Rucamanque experimental forests, near Temuco, Chile.

Usage

```
data(pspRuca)
```

Format

The data frame contains four variables as follows:

```
tree.no tree number
```

spp Species name, "N. obliqua" is Nothofagus obliqua, "A. punctatum" is Aexitocicon puncatatum, etc.

status 1 alive, 0 standing-dead

dbh diameter at breast-height, in cm

x.coord Cartesian position at the X-axis, in m

y.coord Cartesian position at the Y-axis, in m

crown.class Crown class (1: superior, 2: intermediate, 3; inferior)

Source

Data were provided by Dr Christian Salas-Eljatib (Universidad Mayor, Santiago, Chile).

References

Salas C, LeMay V, Nunez P, Pacheco P, and Espinosa A. 2006. Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management 231(1-3): 38-46. doi: 10.1016/j.foreco.2006.04.037

```
data(pspRuca)
head(pspRuca)
tapply(pspRuca$dbh,pspRuca$spp,summary)
```

72 pspRuca2

pspRuca2	Coordenadas espaciales y variables a nivel de arbol en parcela de muestreo en predio Rucamanque, Temuco, Chile
	•

Description

Medidas a nivel de arbol y coordenadas espaciales en un parcela de muestreo permanente de 1 ha (100 x 100m) en el bosque de Rucamanque, cerca de Temuco, Chile.

Usage

```
data(pspRuca2)
```

Format

Variables se describen a continuacion::

```
arbol Numero de arbol.
```

especie Nombre de la especie, "N. obliqua" es Nothofagus obliqua, "A. punctatum" es Aexitocicon puncatatum, etc.

estado Estado del arbol: 1 vivo, 0 muerto en pie.

dap Diametro a la altura del pecho, en cm.

coord.x Posicion cartesiana en el eje X, en m.

coord.y Posicion cartesiana en el eje Y, en m.

clase.copa Clase de copa (1: superior, 2: intermedio, 3; inferior).

Source

Los datos fueron cedidos por el Dr Christian Salas-Eljatib (Santiago, Chile).

References

Salas C, LeMay V, Nunez P, Pacheco P, and Espinosa A. 2006. Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management 231(1-3): 38-46. doi: 10.1016/j.foreco.2006.04.037

```
data(pspRuca2)
head(pspRuca2)
tapply(pspRuca2$dap,pspRuca2$especie,summary)
```

ptaeda 73

ptaeda

Height growth of Pinus taeda (Loblolly pine) trees

Description

The Loblolly data frame has 84 rows and tree columns of records of the tree height growth of Loblolly pine trees. This dataframe is a slight modification to the original dataframe "Loblolly" from the datasets R package.

Usage

```
data(ptaeda)
```

Format

An object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame") containing the following columns:

seed.id an ordered factor indicating the seed source for the tree. The ordering is according to increasing maximum height.

age a numeric vector of tree ages, in yr.

height a numeric vector of tree heights, in m.

Source

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS. Springer.

74 raulihg

radiatapl	Sampling plots data from a Pinus radiata plantation near Capitan Pas- tene, Region de La Araucania, Chile.
	iche, Region de La Tradeana, Chie.

Description

Tree-level information collected within sample plots in a forestry plantation of Pinus radiata near Capitan Pastene, Southern Chile. Sample plots size is 150 square meters.

Usage

```
data(radiatapl)
```

Format

The data frame contains four variables as follows:

plot Plot number identification.

tree Tree number identification.

dbh Diameter at breast height, in cm.

heigth Total height, in m.

Source

The data are provided courtesy of Mr. Mauricio Lobos-Beneventi (Temuco, Chile).

Examples

```
data(radiatapl)
head(radiatapl)
```

raulihg

Height growth of Nothofagus alpina trees in Chile.

Description

Time series data of height for Nothofagus alpina (rauli) trees in south-central Chile. These sampled trees are part of the ones used in the cited article (reference section).

```
data(raulihg)
```

raulihg2 75

Format

The data frame contains four variables as follows:

```
tree.code Tree id codespp Species common namebha.t Breast-height age, in yrs.h.t Total height, in m.
```

Source

Data were provided by Dr Christian Salas-Eljatib (Santiago, Chile).

References

- Salas-Eljatib C. 2021. An approach to quantify climate-productivity relationships: an example from a widespread Nothofagus forest. Ecological Applications 31(4): e02285.
- Salas-Eljatib, C. 2021. Time series height-data for Nothofagus alpina trees. doi: 10.6084/m9.figshare.13521602.v5

Examples

```
data(raulihg)
head(raulihg)
```

raulihg2

Crecimiento en altura de arboles de Nothofagus alpina.

Description

Datos de series de tiempo de altura para arboles muestreados de Nothofagus alpina (rauli) en el centro-sur de Chile. Estos arboles son parte de los usados en articulo de referencia.

Usage

```
data(raulihg2)
```

Format

Contiene variables de nivel individual, como se describen a continuacion::

```
arbol Codigo del arbolespecie Nombre comun especiebha.t Edad a la altura del pecho, en anhos.h.t Altura total, en m.
```

Source

Datos cedidos por el Dr Christian Salas-Eljatib (Chile).

76 regNothofagus

References

- Salas-Eljatib C. 2021. An approach to quantify climate-productivity relationships: an example from a widespread Nothofagus forest. Ecological Applications 31(4): e02285.
- Salas-Eljatib, C. 2021. Time series height-data for Nothofagus alpina trees. doi: 10.6084/m9.figshare.13521602.v5

Examples

data(raulihg2)
head(raulihg2)

regNothofagus

Contains information about regeneration of Nothofagus seedlings.

Description

Dataset contains 442 observations.

Usage

data(regNothofagus)

Format

Contains 15 variables, as follows:

site Id site of study.

plot Number of plot.

scar Scarification in percentage of total area.

x.trans.total Transmitted radiation in percentage.

kPa Soil resistance to penetration.

SWC Soil water content.

SM Exposed mineral soil.

litter Litter cover in percentage.

CWD Ocular estimation in the regeneration plot in percentage.

MT Microtopography. 1 plane, 2 convex, 3 concave, 4 mixed (convex and concave) in the regeneration plot.

S Ground-layer vascular species richness in the regeneration plot..

LLES Long-lived early-seral tree species (N. dombeyi, N. alpina, Nothofagus pumilio).

SLES Short-lived early-seral plants (Ribes spp. and Fuchsia sp).

LLLS Long-lived late-seral tree species (L. philippiana and Dasyphyllum diacantaoides).

log.bam Logarithm of the cover of bamboo (%) in the regeneration plot.

simula 77

Source

The data were obtained from the DRYAD repository at doi: 10.5061/dryad.3q977

References

Soto D, Puettmann K.2018. Topsoil removal through scarification improves natural regeneration in high-graded Nothofagus old-growth forests. Journal Applied Ecology. 55: 967-976.

Examples

```
data(regNothofagus)
head(regNothofagus)
```

simula

Simulated yield of forestry plantations of exotic species in Chile.

Description

The yield tables of simulated plantations of Pinus radiata, Eucalyptus globulus, and Eucalyptus nitens are obtained from the Radiata simulator and EucaSim simulator built in Chile. Several standlevel variables are part of the output.

Usage

```
data(simula)
```

Format

Contains stand-level variables, as follows:

species "P. radiata" is Pinus radiata, "E. globulus" is Eucalyptus globulus, and "E. nitens" is Eucalyptus nitens.

age plantation age, in years

tph Tree density, in trees/ha

gha Basal area, in m²/ha

toph Dominant height, in m

qmd quadratic mean diameter, in cm

totvol gross stand volume, in m³/ha

viu.10 stand volume below an utilizacion index of 10 cm, in m³/ha

viu.15 stand volume below an utilizacion index of 15 cm, in m³/ha

viu.20 stand volume below an utilizacion index of 20 cm, in m³/ha

viu.25 stand volume below an utilizacion index of 25 cm, in m³/ha

78 slashpine

Source

The data were obtained as outputs for plantations without management in Chile. The academic version of the simulator was used. You can visit mnssimulacion.cl

Examples

```
data(simula)
```

slashpine

Biomass dataset

Description

Dataset that contains nine pairs of columns with information about biomass of 40 samples.

Usage

```
data(slashpine)
```

Format

The data frame contains nine variables as follows:

tree_id tree code

dbh diameter

h heigth

lcl live crown lenght

age age tree

wood wood biomass

bark bark biomass

crown crown biomass

tree tree biomass

Source

Data were provided by Dr Christian Salas-Eljatib (Universidad Mayor, Santiago, Chile).

References

Parresol BR. 2001. Additivity of nonlinear biomass equations. Canadian Journal of For Research, 31:865-878.

```
data(slashpine)
head(slashpine)
```

slashpine2 79

slashpine2

Biomasa

Description

Dataset que contiene 9 pares de columnas con informacion sobre la biomasa de 40 arboles.

Usage

```
data(slashpine2)
```

Format

Variables se describen a continuacion::

tree_id Identifcador arbol

dbh diametro

h altura total

lcl largo de copa

age edad arbol

wood biomasa madera

bark biomasa corteza

crown biomasa copa

tree biomasa arbol

Source

Datos fueron contribuidos por el Dr Christian Salas-Eljatib (Universidad Mayor, Santiago, Chile).

References

Parresol BR. 2001. Additivity of nonlinear biomass equations. Canadian Journal of For Research, 31:865-878.

```
data(slashpine2)
head(slashpine2)
```

80 snaspeChile

sludge

ludge data are at different cities, with a value of concentration zinc.

Description

Dataset contains 36 observations

Usage

```
data(sludge)
```

Format

Contains four variables, as follows:

city Name of city.

rate Concentration rate of sludge.

zinc Value of concentration (in ppm).

trt.comb Combination between city and rate factors.

Source

The data were provided from.

References

not yet

Examples

data(sludge)
head(sludge)

snaspeChile

On the National System of State Protected Wild Areas (SNASPE) of Chile.

Description

Dataset contains the protected wild areas of Chile that are part of the National System of State Protected Wild Areas (SNASPE).

```
data(snaspeChile)
```

snaspeChile2 81

Format

Contains the following variables:

unit.id Number for the unit.

unit Name of the protected area.

category Category of the unit. It can be either a National Park, a National Reserve or a Natural Monument.

commune Name of the commune (the smallest Chilean territorial division) where the unit is located.

province Province where the comunne is located (one territorial division level above the commune).

region Region where the province is located (one territorial division level above the province and the biggest Chilean territorial division).

perim.km Perimeter, in km.

area.ha Area, in hectares.

area.m2 Area, in m².

Source

These data is freely available at https://ide.minagri.gob.cl/geoweb/2019/11/21/medio-ambiente/

References

The SNASPE has been created and is currently managed by the National Forest Corporation (CONAF). More information and documentation can be found at https://www.conaf.cl/parques-nacionales/parques-de-chile/

Examples

data(snaspeChile)
head(snaspeChile)

snaspeChile2

Sistema nacional de areas protegidas del estado (SNASPE) de Chile

Description

Contiene variables general de las unidades del sistema de areas protegidas por el estado de Chile (SNASPE).

```
data(snaspeChile2)
```

82 spatAustria

Format

Contiene las siguientes variables para cada unidad del SNASPE:

uni.id numero indentificador de la unidad.

unidad Nombre de la unidad.

categoria Categoria de la unidad. It can be either a National Park, a National Reserve or a Natural Monument.

comuna Name of the commune (the smallest Chilean territorial division) where the unit is located.

province Province where the comunne is located (one territorial division level above the commune).

region Region where the province is located (one territorial division level above the province and the biggest Chilean territorial division).

perim.km Perimeter, in km.

area.ha Area, in hectares.

area.m2 Area, in m².

Source

Estos datos fueron obtenidos desde https://ide.minagri.gob.cl/geoweb/2019/11/21/medio-ambiente/

References

EL SNASPE esta bajo la administracion de la Corporacion Nacional Forestal (CONAF) de Chile. Mayor informacion y documentacion se puede encontrar en https://www.conaf.cl/parques-nacionales/parques-de-chile/

Examples

data(snaspeChile2)
head(snaspeChile2)

spatAustria

Tree locations for several plots of Norway spruce

Description

The Cartesian position, species, year, ID tree, and diameter of trees within a plot were measured.

```
data(spatAustria)
```

speciesList 83

Format

Contains cartesian position of trees, and covariates, in sample plots, as follows:

```
tree.code Tree identificator

spp.name species abreviation as follows: PCAB=Picea abies, FASY=Fagus sylvatica, QCPE=Quercus petraea, PNSY= Pinus Sylvestris, LADC=Larix decidua

x.coord Cartesian position in the X-axis, in m

y.coord Cartesian position in the Y-axis, in m

year Measurement year

dbh diameter at breast-height, in cm
```

References

- Kindermann G. Kristofel F, Neumann M, Rossler G, Ledermann T & Schueler. 2018. 109 years of forest growth measurements from individual Norway spruce trees. Sci. Data 5:180077 doi: 10.1038/sdata.2018.77

Examples

speciesList

Names and other information of plant species (mainly trees)

Description

This data set provides names (taxonomy), of plant species. Includes codes and name abbreviations used by the Biometrics research group lead by Dr Christian Salas-Eljatib (Chile).

```
data(speciesList)
```

84 speciesList

Format

A data frame with 63 observations on 31 variables

nesp Unique correlative specie number

spp.ci.name Species scientific name

spp.ci.abb Species scientific name abbreviation

common.name Species common name. No blank spaces, no special characters

common.nameBlank Species common name. With blank spaces, no special characters

esp Species code: code given by CEM Biometrics to identify species for different processing routines

common.nameLatex Species common name formatted for Latex

nTaxon Unique number of the taxon (i.e., species)

kingdom Taxonomic rank Kingdom. In this datase, all species belong to the Kingdom Plantae

division Taxonomic rank division or phylum within the Kingdom

class Taxonomic rank Class within the Kingdom

order Taxonomic rank Order within the Class

family Taxonomic rank Family within the Order

spp.ci.full Full scientific name including author

genus Taxonomic rank Genus within the Family

epithet Specific epithet

sppAuthor Species author

subSpp Subespecies: one of two or more populations of a species varying from one another by morphological characteristics

subSppAuthor Subespecies author

varSpp Species variety or varietas

varSppAuthor Variety author

formSpp Form or forma

formSppAuthor Form author

commonNamesList List of common names per species, separated by commas

synonyms Synonyms of the scientific name by which the species has been or is known

borCountries Border countries given the species distribution range

habit Habit. The general appearance, growth form, or architecture e.g., tree, shrub, grass

lifeCycle Life cycle

statusOri Status according to the species origin: Native or Endemic

regDist Distribution range of the species, within Chile administrative regions

elevRange Distribution range of the species, in terms of elevation. Meters above sea level

notes Notes

sppAbundance 85

Source

Data provided from https://investigacion.conaf.cl/repositorio/documento/ficha-repositorio.php?redo_id=1080946

References

Proyecto 004/2016 Lista sistematica actualizada de la flora vascular nativa de Chile, origen y distribucion geografica. VII Concurso del Fondo de Investigacion del Bosque Nativo

sppAbundance Contains information of abundance of plant species in the central southern Andes of Chile.	sppAbundance	Contains information of abundance of plant species in the central-southern Andes of Chile.
---	--------------	--

Description

Abundance of plant species [50 total] (at parcel scale [100 m2]) in burned Araucaria-Nothofagus forests with different levels of fire severity (ie, unburned = unburned, low_sev = low severity, mid_sev = medium severity, high_sev = high severity) in the China Muerta National Reserve, Andes of central-southern Chile.

Usage

data(sppAbundance)

Format

Contains 6 variables, as follows:

sp.name name of specie.

sp.code.name code of specie

unburned Abundance of plants unburned.

low.sev Abundance of plants for low severity of burned.

mid.sev Abundance of plants for middle severity of burned.

high.sev Abundance of plants for high severity of burned.

Source

The data are provided courtesy of Dr Andres Fuentes at the Universidad of La Frontera (Temuco, Chile)

References

- Fuentes A, Salas C, Gonzalez M, Urrutia J, Arroyo P, Santibanez P. 2020. Initial response of understorey vegetation and tree regeneration to a mixed-severity fire in old-growth Araucaria-Nothofagus forests. Applied Vegan Science. 23:210-222.

86 sppTraits

Examples

```
data(sppAbundance)
head(sppAbundance)
```

sppTraits

Contains information of functional traits of species.

Description

Dataset contains 48 observations about about functional trait values for each of the 48 study species, including 23 evergreen and 25 deciduous.

Usage

```
data(sppTraits)
```

Format

```
Contains 17 variables, as follows:
```

sp Abbreviated name of specie.

sp.name Name of specie.

family Family of specie.

genus Genus of specie.

phyl Type of phylogeny.

l.hab Type of leaf habit.

leaf Type of leaf.

lt .

lma Leaf mass area.

amass Photosynthetic capacity per unit leaf mass.

n.mass Leaf N content per unit mass.

pmass Leaf P content per unit mass.

l.lifespan Leaf life span.

l.length Leaf length.

sem Seed mass.

wd Wood density.

max.h Maximum height.

Source

The data were provided from DRYAD repository

standLleuque 87

References

- Ameztegui A, Paquette A, Shipley B, Heym M, Messier C, Gravel D. 2016. Shade tolerance and the functional trait: demography relationship in temperate and boreal forests. Functional Ecology, 31: 821-830.

Examples

```
data(sppTraits)
head(sppTraits)
```

standLleuque

Plot-level data with variables from Andean Prumnopitys forests

Description

Data on density, basal area, mean square diameter and other variables of 24 plots for Lleuque is provided.

Usage

data(standLleuque)

Format

The data frame contains seven variables as follows:

rodal number of standplot.id code of plotnha Density of plot

gha Basal area of plot

gia Busur ureu er pret

qmd Quadratic mean diameter of plot

toph Dominant height of plot

structure Forest structure level: open, secondary adult, pure

Source

The data are provided courtesy of Prof. Rodrigo Vargas-Gaete at Universidad de La Frontera (Temuco, Chile).

References

Vargas-Gaete R, Salas-Eljatib C, Penneckamp D, Neira Z, Diez MC, Vargas-Picón, R. 2020. Estructura y regeneración de bosques de Prumnopitys andina en los Andes del sur de Chile. Gayana Botánica, 77(1), 48-58.

88 standLleuque2

Examples

data(standLleuque)
head(standLleuque)

standLleuque2

Datos con variables a nivel de parcela de bosques de Prumnopitys andina

Description

Se proporciona informacion de densidad, area basal, diametro medio cuadratico y otras variables de 24 parcelas para Lleuque.

Usage

data(standLleuque2)

Format

Variables se describen a continuacion::

rodal Numero de rodal

plot.id Codigo de parcela

nha Densidad de parcela

gha Area basal de parcela

qmd Diametro medio cuadratico

toph Altura dominante

estructura Estructura del bosque. Abiero, secundario adulto o puro

Source

The data are provided courtesy of Prof. Rodrigo Vargas-Gaete at Universidad de La Frontera (Temuco, Chile).

References

Vargas-Gaete R, Salas-Eljatib C, Penneckamp D, Neira Z, Diez MC, Vargas-Picón, R. 2020. Estructura y regeneración de bosques de Prumnopitys andina en los Andes del sur de Chile. Gayana Botánica, 77(1), 48-58.

Examples

data(standLleuque2)
head(standLleuque2)

trailCameraTrap 89

trailCameraTrap	Contains information of Camera trap data on medium to large ter- restrial mammals collected at 54 camera stations in Ruaha National Park southern Tanzania
	Park, southern Tanzania.

Description

Dataset contains 14604 observations and sampling was carried out for two months during the dry season of 2013 and two months during the wet season of 2014. Each camera station is associated with a randomly placed camera and a trail-based camer, with the aim of comparing communities resulting from the two camera trap placement strategies.

Usage

```
data(trailCameraTrap)
```

Format

Contains 6 variables, as follows:

reference Number of observation od datasets.

placement Type of "placement" placed in each station (random or trail).

season Season where were made the samplings.

station Station where were collected the data.

specie Name of specie medium to large terrestrial mammals.

date.time The date and time of each photographic event is also given.

Source

The data were provided by Dr Jeremy Cusack at Universidad Mayor (Santiago, Chile)

References

- Cusack J, Dickman A, Rowcliffe M, Carbone C, Macdonald D, Coulson T. 2016 . Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5): e0126373.

```
data(trailCameraTrap)
head(trailCameraTrap)
```

90 traits2

traits

Functional traits of vegetative species in Chile.

Description

Functional traits of vegetative species in Chile. Includes column with codified name (esp)

Usage

```
data(traits)
```

Format

esp species codified name

shadeTolerance indicates the species tolerance to shape. There are three main classes: shade-tolerant, shade-midtolerant and shade-intolerant

spp.ci.name Scientific name.

spp.ci.abb. .

wd wood density in kg per cubic meters.

Source

Some of the information on shade tolerance can be found in Soto et al 2010.

References

- Soto DP, Salas C, Donoso PJ, Uteau D. 2010. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi despues de un disturbio parcial. Revista Chilena de Historia Natural 83(3): 335-347.

traits2

Rasgos funcionales para algunas especies vegetales de Chile.

Description

Rasgos funcionales para algunas especies vegetales de Chile.

```
data(traits2)
```

treegrowth 91

Format

especie Codigo alfanumerico para especie.

tolerancia.sombra Tolerancia a la sombra de la especie.

nombre.cient Nombre cientifico.

nom.cient.abre Nombre cientifico abreviado.

den.madera Densidad de la madera en kg/m3.

Source

Parte de la informacion sobre tolerancia a la sombra se encuentra en Soto et al 2010

References

- Soto DP, Salas C, Donoso PJ, Uteau D. 2010. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi despues de un disturbio parcial. Revista Chilena de Historia Natural 83(3): 335-347.

treegrowth

Diameter and height growth of Grand-fir sample trees.

Description

Diameter and height growth of 66 Grand-fir trees. Data derived from stem analysis sample trees collected by Dr Albert Stage (US Forest Service, Moscow, ID, USA.)

Usage

data(treegrowth)

Format

Contains seven column, as follows:

tree.id Tree number identificator. An unique number to each sample tree.

forest Forest type.

habitat Forest habitat type.

tree.code A composite tree code representing the following columns: tree.id-forest-habitat

age Age, in yr

dbh Diameter at breast-height, in cm.

htot Total height, in m.

Source

Originally, the data were provided by Dr Albert Stage (R.I.P) to Professor Andrew Robinson (University of Idaho, USA), whom used them to explain the fitting of statistical models. Dr Christian Salas-Eljatib was a former graduate student of Statistics of Prof Robinson at the Univ. of Idaho.

92 treegrowth2

References

Stage, A. R., 1963. A mathematical approach to polymorphic site index curves for Grand fir. Forest Science 9 (2), 167–180.

Examples

data(treegrowth)
head(treegrowth)

treegrowth2

Crecimiento en diametro y altura de arboles muestras de Grand-fir.

Description

Crecimiento en diametro y altura de 66 arboles de Grand-fir. Los datos fueron derivados a partir de arboles muestras de analisis fustal colectados por el Dr Albert Stage (US Forest Service, Moscow, ID, USA.)

Usage

data(treegrowth)

Format

Contiene las siguientes siete columnas:

num.arb Numero identificador del arbol. Unico para cada arbol muestra.

bosque Tipo forestal.

habitat Clasificacion de tipo de habitat.

cod.arb Un codigo que combina a las siguientes columnas: num.arb-bosque-habitat

edad Edad, en anhos.

dap Diametro a la altura del pecho, en cm. Note que los decimales es debido a que esta variable originalmente fue medida en pulgadas.

htot Altura total, in m. Note que los decimales es debido a que esta variable fue originalmente medida en pies.

Source

Originalmente los datos fueron cedidos por el Dr Albert Stage (Q.E.P.D) al Profesor Andrew Robinson (University of Idaho, USA), quien los usaba para explicar el ajuste de modelos estadisticos. El Dr Christian Salas-Eljatib fue un estudiante de postgrado en estadistica del Prof. Robinson en la Univ. of Idaho.

References

Stage, A. R., 1963. A mathematical approach to polymorphic site index curves for Grand fir. Forest Science 9 (2), 167–180.

treelistinve 93

Examples

```
data(treegrowth2)
head(treegrowth2)
```

treelistinve

Tree-list data in a forest inventory.

Description

Tree-level variables measured within 3 sample plots in a forest inventory. Notice that not all plots have the same size.

Usage

```
data(treelistinve)
```

Format

Contains tree-level variables, as follows:

plot Plot number.

plot.size Plot size, in m2.

tree Tree identificator

species species common name as follows: Olivillo= Aextocicon puncatatum, Tepa= Laureliopsis philippiana, Lingue= Persea lingues, Coigue=Nothofagus dombeyi, Roble=Nothofagus obliqua, Other=Other

dbh Diameter at breast-height, in cm

htot Total height, in m. Only measured for some sample trees.

Source

The data are provided courtesy of Prof. Christian Salas-Eljatib (Chile).

References

- Salas C. 2001. Caracterización básica del relicto de Biodiversidad Rucamanque. Bosque Nativo, 29:3-9. https://eljatib.com/publication/2001-01-01_caracterizacion_basi/
- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

```
data(treelistinve)
head(treelistinve)
```

94 treelistinve2

treelistinve2

Lista de arboles en un inventario forestal.

Description

Variables a nivel de arbol medidos en 3 unidad de muestreo establecidas en un inventario forestal. Note que las parcelas no tienen todas la misma superficie. Las parcelas fueron establecidas en un bosque secundario de Nothofagus obliqua en las cercanias de Temuco.

Usage

```
data(treelistinve2)
```

Format

Contiene variables a nivel de arbol dentro de parcelas.

parcela Numero de la parcela de muestreo.

sup.parce Superficie de la parcela, en m2.

arbol Numero identificador del arbol.

especie Nombre comun de especies como sigue: Olivillo= Aextocicon puncatatum, Tepa= Laureliopsis philippiana, Lingue= Persea lingues, Coigue=Nothofagus dombeyi, Roble=Nothofagus obliqua, Other=Other

dap Diametro a la altura del pecho, en cm

htot Altura total, en m. Solo medida en algunas arboles muestra.

Source

The data are provided courtesy of Prof. Christian Salas-Eljatib (Chile).

References

- Salas C. 2001. Caracterización básica del relicto de Biodiversidad Rucamanque. Bosque Nativo, 29:3-9. https://eljatib.com/publication/2001-01-01_caracterizacion_basi/
- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

```
data(treelistinve2)
unique(treelistinve2$parcela)
table(treelistinve2$parcela,treelistinve2$sup.parce)
```

treevol 95

treevol

Diameter, height and volume for Black Cherry Trees

Description

This data set provides measurements of the diameter, height and volume of timber in 31 felled black cherry trees. This dataframe is a slight modification to the original dataframe "trees" from the datasets R package.

Usage

```
data(treevol)
```

Format

A data frame with 31 observations and three variables

```
dbh diameter at breast height, in cmhtot total height, in mvolume volume of timber, in cubic meters
```

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury Press.

Examples

treevol2

Volumen, altura, y diametro para arboles de Black Cherry

Description

Estos datos provienen de mediciones de volumen, altura y diametro en 31 arboles volteados de black cherry (Prunus serotina). Son una modificacion la dataframe 'trees' del paquete 'datasets' de R.

```
data(treevol2)
```

96 treevolroble

Format

```
Datos con 31 observaciones y tres variables dap diametro a la altura del pecho, en cm
```

```
htot altural total, en m
vtot volumen total, en m3
```

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury Press.

Examples

treevolroble

Contains tree-level variables for roble (Nothofagus obliqua) in the Rucamanque experimental forest, near Temuco, Chile.

Description

These are tree-level measurement data of sample trees in the Rucamanque experimental forest, near Temuco, in the Araucania region in south-centralChile, measured in 1999. The data are the same as in the dataframe "treevolruca", but only having observations for the species roble (Nothofagus obliqua).

Usage

```
data(treevolroble)
```

Format

Contains tree-level variables, as follows:

```
tree.no Tree number.
```

dbh Diameter at breast height, in cm.

htot Total height, in m.

d6 Upper-stem diameter at 6 m, in cm.

vtot Tree gross volume, in m³ with bark.

treevolroble 2 97

Source

The data are provided courtesy of Dr Christian Salas-Eljatib (Chile).

References

- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

Examples

```
data(treevolroble)
head(treevolroble)
plot(vtot~dbh, data=treevolroble)
```

treevolroble2

Variables alometricas a nivel de arbol para roble (Nothofagus obliqua) en el bosque de Rucamanque, cerca de Temuco, Chile.

Description

These are tree-level measurement data of sample trees in the Rucamanque experimental forest, near Temuco, in the Araucania region in south-centralChile, measured in 1999. The data are the same as in the dataframe "treevolruca", but only having observations for the species roble (Nothofagus obliqua).

Usage

```
data(treevolroble2)
```

Format

Las siguientes columnas son parte de la dataframe:

arbol Numero del arbol.

especie Especie.

dap Diametro a la altura del pecho, en cm.

htot Altura total, en m.

d6 Diametro fustal a los 6 m, en cm.

vtot Volumen bruto total, en m³ with bark.

Source

The data are provided courtesy of Dr Christian Salas-Eljatib (Chile).

98 treevolruca

References

- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

Examples

```
data(treevolroble2)
head(treevolroble2)
plot(vtot~dap, data=treevolroble2)
```

treevolruca

Contains tree-level variables of several species from the Rucamanque experimental forest, near Temuco, Chile.

Description

These are tree-level measurement data of sample trees in the Rucamanque experimental forest, near Temuco, in the Araucania region in south-centralChile, measured in 1999. The following species are part of the data: laurel (laurelia sempervirens), lingue (Persea lingue), olivillo (Aextocicon puncatum), roble (Nothofagus obliqua), tepa (Laureliosis philippiana), y tineo (Weinmannia trichosperma).

Usage

```
data(treevolruca)
```

Format

Contains tree-level variables, as follows:

tree.no Tree id.

spp Species.

dbh Diameter at breast height, in cm.

htot Total height, in m.

d6 Upper-stem diameter at 6 m, in cm.

vtot Tree gross volume, in m³ with bark.

Source

The data were provided courtesy of Dr Christian Salas-Eljatib (Chile).

References

- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

treevolruca2 99

Examples

data(treevolruca)
head(treevolruca)

treevolruca2

Variables alometricas a nivel de arbol para varias especies del bosque de Rucamanque, cerca de Temuco, Chile.

Description

Volumen, altura y diametro, entre otras para arboles muestra en el bosque de Rucamanque, cerca de Temuco, en la region de la Araucania, en el sur de Chile. Las siguientes especies son parte de los datos: laurel (laurelia sempervirens), lingue (Persea lingue), olivillo (Aextocicon puncatum), roble (Nothofagus obliqua), tepa (Laureliosis philippiana), y tineo (Weinmannia trichosperma).

Usage

```
data(treevolruca2)
```

Format

Las siguientes columnas son parte de la dataframe:

arbol Numero del arbol.

especie Especie.

dap Diametro a la altura del pecho, en cm.

htot Altura total, en m.

d6 Diametro fustal a los 6 m, en cm.

vtot Volumen bruto total, en m³ with bark.

Source

Los datos fueron cedidos por el Dr Christian Salas-Eljatib (Chile).

References

- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque 23(2): 81-92. https://eljatib.com/publication/2002-01-01_ajuste_y_validacion_/

```
data(treevolruca2)
head(treevolruca2)
```

100 xyHist

х١	/Box	p]	lot

xyBoxplot: Function for a scatter-plot with boxplots

Description

Creates a scatter-plot with boxplots for the Y-axis variable.

Usage

```
xyBoxplot(x = x, y = y, col.dots = "blue", xlab = NULL, ylab = NULL)
```

Arguments

x	A numeric vector representing the X-axis variable
У	A numeric vector representing the Y-axis variable
col.dots	(optional) A string specifying the dot colors. Default is "blue".
xlab	(optional) A string specifying X-axis label.
ylab	(optional) A string specifying Y-axis label.

Value

Result of calculation

Examples

```
library(datana)
data(fishgrowth)
df <- fishgrowth
xyBoxplot(x=df$age,y=df$length)
xyBoxplot(x=df$age,y=df$length)</pre>
```

xyHist

xyHist: Function for a scatter-plot with marginal histograms

Description

It creates a scattter-plot with histograms in both axys.

xyHist 101

Usage

```
xyHist(
    x = x,
    y = y,
    col.x = "blue",
    col.y = "red",
    xlab = NULL,
    ylab = NULL,
    x.lim = NULL,
    y.lim = NULL
)
```

Arguments

X	A numeric vector representing the X-axis variable
у	A numeric vector representing the Y-axis variable
col.x	(optional) A string specifying the color of the histogram of the X-variable. Default is "blue".
col.y	(optional) A string specifying the color of the histogram of the Y-variable. Default is "red".
xlab	(optional) A string specifying X-axis label. Default is "xvar".
ylab	(optional) A string specifying Y-axis label. Default is "yvar".
x.lim	(optional) A vector of two elements with the limits of the Y-axis. Default is the range of the X-variable.
y.lim	(optional) A vector of two elements with the limits of the Y-axis. Default is the range of the Y-variable.

Value

Result of calculation

```
library(datana)
data(treevolroble)
df <- treevolroble
head(df)
xyHist(x=df$dbh,y=df$htot)
xyHist(x=df$dbh,y=df$htot, xlab="Variable X", ylab="Variable Y")
xyHist(x=df$dbh,y=df$htot, xlab="Variable X", ylab="Variable Y",
    col.x = "gray",col.y="white")</pre>
```

Index

*Topic datasets	football, 42
airquality,5	footbal12, 43
airquality2,6	forestFire, 44
annualppCities, 7	forestFire2, 45
annualppCities2,7	forestHawaii,46
anscombe, 8	hawaii,48
anscombe2, 9	hawaii2,49
araucaria, 10	hgrowthDfir, 50
araucaria2,11	hgrowthDfir2,51
baiTreelines, 12	idahohd, 52
baiTreelines2, 13	idahohd2, 53
bears, 14	invasivesRCI, 54
bears2, 15	landCoverSantiago, 55
bearsDepu, 16	landCoverSantiago2, 56
bearsDepu2, 17	lleuque, 57
biomass, 18	orange, 58
biomass2, 18	orange2, 59
carbohydrateTreelines, 19	pinaster, 60
chicksw, 20	pinaster2, 61
corkoak, 21	pinusContorta, 62
corkoak2, 22	pinusContorta2,63
crownradii,23	pinusSpp, 64
deadForestCA, 24	pinusSpp2, 65
deadForestCA2, 25	plantsHawaii, <mark>66</mark>
deadLianas, 27	presenceIce, 67
deadLianas2, 29	presidentChile,68
demograph, 31	pspLlancahue, 69
election, 33	pspLlancahue2, 70
election2, 33	pspRuca, 71
eucaleaf, 34	pspRuca2, 72
eucaleaf2, 35	ptaeda, 73
eucaplot, 36	radiatapl, 74
eucaplot2, 37	raulihg,74
fertilizaexpe, 37	raulihg2,75
fertilizaexpe2,38	regNothofagus, 76
fishgrowth, 39	simula, 77
fishgrowth2, 39	slashpine, 78
floraChile, 40	slashpine2,79
floraChile2,41	sludge, 80

INDEX 103

snaspeChile, 80	datana-package, 4
snaspeChile2, 81	deadForestCA, 24
spatAustria,82	deadForestCA2, 25
speciesList, 83	deadLianas, 27
sppAbundance, 85	deadLianas2, 29
sppTraits, 86	demograph, 31
standLleuque, 87	descstat, 32
standLleuque2, 88	46565646, 32
trailCameraTrap, 89	election, 33
	election2, 33
traits, 90	eucaleaf, 34
traits2,90	eucaleaf2, 35
treegrowth, 91	eucaplot, 36
treegrowth2, 92	eucaplot2, 37
treelistinve, 93	eucapiotz, 37
treelistinve2,94	fertilizaexpe, 37
treevol, 95	fertilizaexpe2, 38
treevol2,95	fishgrowth, 39
treevolroble, 96	fishgrowth2, 39
treevolroble2,97	_
treevolruca, 98	floraChile, 40
treevolruca2,99	floraChile2,41
*Topic package	football, 42
datana-package, 4	football2, 43
	forestFire, 44
airquality,5	forestFire2, 45
airquality2,6	forestHawaii,46
annualppCities, 7	
annualppCities2,7	hawaii,48
anscombe, 8	hawaii2,49
anscombe2, 9	hgrowthDfir,50
araucaria, 10	hgrowthDfir2,51
araucaria, 10	
ai aucai 1a2, 11	idahohd, 52
paiTreelines, 12	idahohd2, 53
	invasivesRCI, 54
paiTreelines2, 13	
pears, 14	landCoverSantiago, 55
bears2, 15	landCoverSantiago2, 56
pearsDepu, 16	11euque, <u>57</u>
pearsDepu2, 17	
piomass, 18	orange, 58
piomass2, 18	orange2, 59
carbohydrateTreelines,19	pinaster, 60
chicksw, 20	pinaster2, 61
corkoak, 21	pinusContorta, 62
corkoak2, 22	pinusContorta2, 63
crownradii, 23	pinusSpp, 64
Ci Owin dull, 23	pinusSpp2, 65
datana (datana-package), 4	plantsHawaii, 66
uatana juatana package), 4	prancsnawarr, 00

INDEX

```
presenceIce, 67
presidentChile, 68
pspLlancahue, 69
pspLlancahue2, 70
pspRuca, 71
pspRuca2, 72
ptaeda, 73
radiatapl, 74
{\tt raulihg}, {\tt 74}
raulihg2, 75
regNothofagus, 76
simula, 77
slashpine, 78
slashpine2, 79
sludge, 80
snaspeChile, 80
snaspeChile2, 81
spatAustria, 82
speciesList, 83
sppAbundance, 85
sppTraits, 86
standLleuque, 87
standLleuque2, 88
trailCameraTrap, 89
traits, 90
traits2, 90
treegrowth, 91
treegrowth2, 92
treelistinve, 93
treelistinve2, 94
treevol, 95
treevol2, 95
treevolroble, 96
treevolroble2, 97
treevolruca, 98
treevolruca2, 99
xyBoxplot, 100
xyHist, 100
```