- Q1

 $2x_1+4x_2+5x_3+8x_4=10,\ x_i: is\ non\ negative\ integer$ we set the coefficient of x_i as a_i and RHS as S.(S=10)

note that $\frac{(x_1+x_2+x_3+x_4)!}{(x_1)!(x_2)!(x_3)!(x_4)!}$ is the permutation of 4 unique objects and x_i is the number of object i.

so in order to explain the problem better we can say that Given a value S=10 and we have given a set of 4 cards with values $A=a_1,\ldots,a_4$, we must find the total number of arrangements of cards that will make sum S, we can use each card as much as we want.

so we mapped the coefficient a_i with a card with value a_i , x_i as the number of cards a_i we use, and $\frac{(x_1+x_2+x_3+x_4)!}{(x_1)!(x_2)!(x_3)!(x_4)!}$ as the number of card arrengments.

solution

we first initalize a DP array with length 10+1. DP_i represents the number of ways we can arrenge cards with total value of i.

we initialize DP_0 as 1 (the only way to have 0 sum is to select no cards). for each $1 \le i \le 10$, we count the ways of permuting cards with total amount i.

for each 1 < i < 10:

- 1. for each cards a_j :
- if $a_j>i$: we can not use this card becous a_j is already bigger than the sum of all cards i. so $DP_{i_{new}}=DP_i$
- if $a_j \leq i$: when we choose a_j the sum is $i-a_j$. so we need to find the total permutations of the cards that add up to $i-a_j$ which is DP_{i-a_j} and has been calculated. we need to add the number of these new permutations to the old ones, so $DP_{i_{new}} = DP_i + DP_{i-a_j}$

```
def all_permutation(rhs,coefs):
    dp=[0 for i in range(rhs + 1)]
    dp[0]=1
    for i in range(1,rhs + 1):
        for j in range(len(coefs)):
            if (coefs[j] <= i):
                 dp[i] += dp[i - coefs[j]]</pre>
return dp[rhs]
```

coefs=[2,4,5,8]
sum=all_permutation(rhs,coefs)
print("sum: ",sum)

_→ sum: 11