Math 118B HW5

Zih-Yu Hsieh

February 25, 2025

1

Question 1

(a) Show that there exists a sequence of polynomials $q_m:[0,1]\to\mathbb{R}$ such that for each $x\in[0,1]$

$$\lim_{m \to \infty} q_m(x) = 0$$

(pointwise convergence) but it does not converge uniformly.

(b) Prove that if a sequence of polynomial $p_m : [0,1] \to \mathbb{R}$ converges pointwise to 0 and for all $m \in \mathbb{N}$ one has that $\deg(p_m) \le 100$, then the p_m converges uniformly to 0.

Pf:

(a) Continuous Functions Converging to 0 Pointwise, but not Uniformly:

We'll first construct a sequence of continuous functions converging to 0 pointwise, but not uniformly. For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be defined as:

$$f_n(x) = \begin{cases} 4nx - 2 & x \in \left[\frac{2}{4n}, \frac{3}{4n}\right] \\ -4nx + 4 & x \in \left(\frac{3}{4n}, \frac{4}{4n}\right] \\ 0 & x \notin \left[\frac{2}{4n}, \frac{4}{4n}\right] \end{cases}$$

This is a continuous function for all $n \in \mathbb{N}$, since the limit at $\frac{3}{4n}$, $\frac{2}{4n}$, and $\frac{4}{4n}$ all agrees with the function f_n 's actual values.

However, since at $x = \frac{3}{4n} \in [0,1]$, $f_n(x) = 4n \cdot \frac{3}{4n} - 2 = 3 - 2 = 1$, then $||f_n||_{\infty} = \sup_{x \in [0,1]} |f_n(x)| \ge 1$, showing that f_n doesn't converge to 0 uniformly (since the norm $||\cdot||_{\infty}$ is at least 1 for all $n \in \mathbb{N}$).

Sequence of Polynomials:

Now, since f_n is continuous on [0,1], by Stone-Weierstrass Theorem, there exists a sequence of polynomials $\{q_{n,k}\}_{k\in\mathbb{N}}$ that converges to f_n uniformly.

For all $n \in \mathbb{N}$, since $\frac{1}{n} > 0$, by the uniform convergence of $\{q_{n,k}\}_{k \in \mathbb{N}}$ onto f_n , there exists N_n , such that $k_n \geq N_n$ implies $||f_n - q_{n,k_n}||_{\infty} < \frac{1}{n}$ (for simplicity, fix k_n to be the smallest integer with $k_n \geq N_n$). For the rest of the proof of **Part** (a), consider the sequence of polynomials $\{q_{n,k_n}\}_{n \in \mathbb{N}}$.

The Sequence Pointwise Converges to 0:

For all $x \in [0, 1]$, there are two cases to consider:

- First, if x = 0, for all $n \in \mathbb{N}$, we have $f_n(0) = 0$. Then, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$, with $\frac{1}{N} < \epsilon$ based on Archimedean's Property. For all $n \ge N$ (which $\frac{1}{n} \le \frac{1}{N} < \epsilon$), the previous choice of polynomials satisfy:

$$|q_{n,k_n}(0)| = |q_{n,k_n}(0) - f_n(0)| \le ||q_{n,k_n} - f_n||_{\infty} < \frac{1}{n} < \epsilon$$

Hence, this states that $\lim_{n\to\infty} q_{n,k_n}(0) = 0$.

- Else if $x \neq 0$ (which x > 0 since $x \in [0,1]$), there exists $N \in \mathbb{N}$, such that $\frac{1}{N} < x$ based on Archimedean's Property. Then, for all $n \geq N$, since $\frac{4}{4n} = \frac{1}{n} \leq \frac{1}{N} < x$, $f_n(x) = 0$ (since $x \notin [\frac{2}{4n}, \frac{4}{4n}]$).

Again, for all $\epsilon > 0$, there exists $M \in \mathbb{N}$, with $\frac{1}{M} < \epsilon$ again based on Archimedean's Property. Choose $K = \max\{M, N\}$, for all $n \geq K$ (which $n \geq N$, showing that $f_n(x) = 0$; and $n \geq M$, showing that $\frac{1}{n} \leq \frac{1}{M} < \epsilon$), the previous choice of polynomials satisfy:

$$|q_{n,k_n}(x)| = |q_{n,k_n}(x) - f_n(x)| \le ||q_{n,k_n} - f_n||_{\infty} < \frac{1}{n} < \epsilon$$

Hence, this states that $\lim_{n\to\infty} q_{n,k_n}(x) = 0$.

So, regardless of the case, $\lim_{n\to\infty} q_{n,k_n}(x) = 0$, showing that $\{q_{n,k_n}\}_{n\in\mathbb{N}}$ converges pointwise to 0.

The Convergence is not Uniform:

Recall that for all $n \in \mathbb{N}$, $||f_n||_{\infty} \ge 1$, and $||f_n - q_{n,k_n}||_{\infty} < \frac{1}{n}$. Hence, for $n \ge 2$ (which $\frac{1}{n} \le \frac{1}{2}$), the following inequality is true:

$$||q_{n,k_n}||_{\infty} = ||(q_{n,k_n} - f_n) - (-f_n)||_{\infty} \ge \left| ||q_{n,k_n} - f_n||_{\infty} - ||-f_n||_{\infty} \right| = ||f_n||_{\infty} - ||q_{n,k_n} - f_n||_{\infty}$$

$$||q_{n,k_n}||_{\infty} \ge ||f_n||_{\infty} - ||q_{n,k_n} - f_n||_{\infty} \ge 1 - ||q_{n,k_n} - f_n||_{\infty} > 1 - \frac{1}{n} \ge 1 - \frac{1}{2} = \frac{1}{2}$$

So, since $\|q_{n,k_n}\|_{\infty} \geq \frac{1}{2}$ for all $n \geq 2$, the $\lim_{n\to\infty} \|q_{n,k_n}\|_{\infty} \neq 0$, showing that $\{q_{n,k_n}\}_{n\in\mathbb{N}}$ doesn't converge to 0 uniformly.

In Conclusion, $\{q_{n,k_n}\}_{n\in\mathbb{N}}$ constructed above, is a sequence of polynomial that converges pointwise to 0, yet it doesn't converge uniformly to 0. Which, it is a desired sequence for the question.

(b) Let $\mathcal{P}_{100}([0,1])$ be the real vector space of polynomial defined on [0,1] with degree at most 100 (which dim $(\mathcal{P}_{100}([0,1])) = 101$). For this part, the sequence $\{p_m\}_{m\in\mathbb{N}} \subset \mathcal{P}_{100}([0,1])$, and they converges pointwise to 0.

Now, choose distinct points $x_1, x_2, ..., x_{101} \in [0, 1]$, and define the map $T : \mathcal{P}_{100}([0, 1]) \to \mathbb{R}^{101}$ by:

$$T(p) = (p(x_1), p(x_2), ..., p(x_{101}))$$

The map T is a Linear Map:

For the zero function $0 \in \mathcal{P}_{100}([0,1])$, it is clear that $T(0) = (0,0,...,0) \in \mathbb{R}^{101}$.

Then, for all $p, q \in \mathcal{P}_{100}([0, 1])$:

$$T(p+q) = ((p+q)(x_1), (p+q)(x_2), ..., (p+q)(x_{101})) = (p(x_1)+q(x_1), p(x_2)+q(x_2), ..., p(x_{101})+q(x_{101}))$$
$$= (p(x_1), p(x_2), ..., p(x_{101})) + (q(x_1), q(x_2), ..., q(x_{101})) = T(p) + T(q)$$

Also, for all $\lambda \in \mathbb{R}$ and $p \in \mathcal{P}_{100}([0,1])$:

$$T(\lambda p) = ((\lambda p)(x_1), (\lambda p)(x_2), ..., (\lambda p)(x_{101})) = (\lambda \cdot p(x_1), \lambda \cdot p(x_2), ..., \lambda \cdot p(x_{101}))$$
$$= \lambda (p(x_1), p(x_2), ..., p(x_{101})) = \lambda T(p)$$

Hence, with the above three criteria, T is a linear map from $\mathcal{P}_{100}([0,1]) \to \mathbb{R}^{101}$.

The map T is Bijective:

Since both $\mathcal{P}_{100}([0,1])$ and \mathbb{R}^{101} have dimension 101, then showing T is bijective is equivalent to show T is injective.

Suppose $p \in \ker(T)$ (or $T(p) = (0, 0, ..., 0) \in \mathbb{R}^{101}$) while $p \neq 0$, since for all $i \in \{1, 2, ..., 101\}$, it has $p(x_i) = 0$, then p has at least 101 distinct zeroes. However, since $p \in \mathcal{P}_{100}([0, 1])$, then its degree is at most 100. By Fundamental Theorem of Algebra, if $p \neq 0$, it has at most 100 distinct roots, which contradicts the statement that p has at least 101 distinct zeroes. Hence, p = 0 is required.

So, $ker(T) = \{0\}$, showing that T is injective, hence bijective. So, T^{-1} exists.

The map T^{-1} is Continuous:

For this section, there are several arguments needed to be done before heading to conclusion. We'll use inner product $\langle \cdot, \cdot \rangle_{int} : \mathcal{P}_{100}([0,1]) \times \mathcal{P}_{100}([0,1]) \to \mathbb{R}$ by $\langle f, g \rangle_{int} = \int_0^1 f g dx$, and the norm $||f||_{int} = \langle f, f \rangle_{int}^{\frac{1}{2}}$.

– With Respect to $\|\cdot\|_{int}$, T^{-1} is Continuous:

Recall that $T^{-1}: \mathbb{R}^{101} \to \mathcal{P}_{100}([0,1])$ is a linear map. Let \mathbb{R}^{101} uses regular dot product as inner product, and $\mathcal{P}_{100}([0,1])$ uses $\langle \cdot, \cdot \rangle_{int}$ as inner product, and the norm for each space correspond to the given inner product.

Then, by Singular Value Decomposition, because the map is bijective, there exists orthonormal basis $e_1, ..., e_{101} \in \mathbb{R}^{101}, f_1, ..., f_{101} \in \mathcal{P}_{100}([0, 1])$, and positive real numbers $s_1, ..., s_{101} \in \mathbb{R}$, such that the following is true:

$$\forall v \in \mathbb{R}^{101}, \quad T^{-1}(v) = \sum_{j=1}^{101} s_j (v \cdot e_j) f_j$$

Hence, let $s = \max\{s_1, ..., s_{101}\} > 0$, for all $v \in \mathbb{R}^{101}$, the below inequality is satisfied:

$$||T^{-1}(v)||_{int}^{2} = \left\| \sum_{j=1}^{101} s_{j}(v \cdot e_{j}) f_{j} \right\|_{int}^{2} = \sum_{j=1}^{101} ||s_{j}(v \cdot e_{j}) f_{j}||_{int}^{2} = \sum_{j=1}^{101} s_{j}^{2} (v \cdot e_{j})^{2}$$

$$||T^{-1}(v)||_{int}^{2} = \sum_{j=1}^{101} s_{j}^{2} (v \cdot e_{j})^{2} \le \sum_{j=1}^{101} s^{2} (v \cdot e_{j})^{2} = s^{2} ||v||^{2}$$

$$||T^{-1}(v)||_{int} \le s||v||$$

(Note: $v \cdot e_j$ denotes the dot product. The above is true based on Pythagorean Theorem, since the list $f_1, ..., f_{101}$ is orthonormal).

Hence, for all $\epsilon > 0$, let $\delta = \frac{\epsilon}{s} > 0$, for all $u, v \in \mathbb{R}^{101}$ satisfying $||u - v|| < \delta = \frac{\epsilon}{s}$, the following is true:

$$||T^{-1}(u) - T^{-1}(v)||_{int} = ||T^{-1}(u - v)||_{int} \le s||u - v|| < s \cdot \frac{\epsilon}{s} = \epsilon$$

Hence, based on the norm from the inner product $\langle \cdot, \cdot \rangle_{int}$ for $\mathcal{P}_{101}([0,1])$, the linear map T^{-1} is continuous.

- The Norms are Equivalent:

Given $\|\cdot\|_{\infty}$ and $\|\cdot\|_{int}$ the two norms, consider the set $B = \{p \in \mathcal{P}_{100}([0,1]) \mid \|p\|_{int} = 1\}$ (set of polynomials with norm 1 under $\|\cdot\|_{int}$). Because it is a compact set (unit sphere) under the topology generated by $\|\cdot\|_{int}$, and the norm function is always continuous (proof below):

Let $p_1, ..., p_{101} \in \mathcal{P}_{100}([0,1])$ be an orthonormal basis with respect to $\langle \cdot, \cdot \rangle_{int}$. Which, $D = \max_{i \in \{1,...,101\}} \{ \|p_i\|_{\infty} \} > 0$ exists. Now, for all $\epsilon > 0$, let $\delta = \frac{\epsilon}{101D} > 0$.

Suppose $p, q \in \mathcal{P}_{100}([0,1])$ satisfy $||p - q||_{int} < \delta = \frac{\epsilon}{101D}$:

Notice that $(p-q) = \sum_{i=1}^{101} a_i p_i$, where $||p-q||_{int}^2 = \sum_{i=1}^{101} |a_i|^2$ by Pythagorean Theorem. Then, the following is true:

$$\begin{split} \left| \|p\|_{\infty} - \|q\|_{\infty} \right| &\leq \|p - q\|_{\infty} = \left\| \sum_{i=1}^{101} a_i p_i \right\|_{\infty} \leq \sum_{i=1}^{101} |a_i| \cdot \|p_i\|_{\infty} \leq \sum_{i=1}^{101} |a_i| D \\ \\ \left| \|p\|_{\infty} - \|q\|_{\infty} \right| &\leq \sum_{i=1}^{101} |a_i| D = D \sum_{i=1}^{101} \sqrt{a_i^2} \leq D \sum_{i=1}^{101} \sqrt{\sum_{j=1}^{101} a_j^2} = D \sum_{i=1}^{101} \sqrt{\|p - q\|_{int}^2} = 101 D \|p - q\|_{int} \\ \\ \left| \|p\|_{\infty} - \|q\|_{\infty} \right| &\leq 101 D \|p - q\|_{int} < 101 D \cdot \frac{\epsilon}{101 D} = \epsilon \end{split}$$

Hence, under the topology generated by $\|\cdot\|_{int}$, $\|p-q\|_{int} < \delta$ implies $\|p\|_{\infty} - \|q\|_{\infty} < \epsilon$, showing that the norm function $\|\cdot\|_{\infty}$ is continuous.

Then, since B is compact and $\|\cdot\|_{\infty}$ is continuous, the set $\|B\|_{\infty} \subset \mathbb{R}$ is compact, there exists a minimum m and maximum M of the set $\|B\|_{\infty}$, which there exists $p, q \in B$, with $\|p\|_{\infty} = m$ and $\|q\|_{\infty} = M$.

Notice that since $p, q \in B$, then $p, q \neq 0$ (because they have nonzero norm for one of the norms), hence $m = ||p||_{\infty}, M = ||q||_{\infty} > 0$.

Now, for all $p \in \mathcal{P}_{100}([0,1])$ with $p \neq 0$, notice that the following is true:

$$\left\|\frac{p}{\|p\|_{int}}\right\|_{i}nt = 1, \quad \frac{p}{\|p\|_{int}} \in B, \quad m \le \left\|\frac{p}{\|p\|_{int}}\right\|_{\infty} \le M$$

$$m||p||_{int} \le ||p||_{\infty} \le M||p||_{int}$$

And, the above inequality is true for 0 regardless. So, we can claim that the two norms are in fact equivalent.

– WIth Respect to $\|\cdot\|_{\infty}$, T^{-1} is Continuous:

Because the two norms are equivalent, then since T^{-1} is continuous with respect to the norm $\|\cdot\|_{int}$. Hence, we reach the desired result.

The Sequence of Polynomial Converges Uniformly to 0:

Recall that since $\{p_m\}_{m\in\mathbb{N}}$ converges pointwise to 0, then for all $i\in\{1,...,101\}$, $\lim_{m\to\infty}p_m(x_i)=0$. Also, from the previous section, since T^{-1} is continuous (possibly on a restricted domain), for all $\epsilon>0$, there exists $\delta>0$, such that for all $u\in\mathbb{R}^{101}$, $||u||_2<\delta$ implies $||T^{-1}(u)||_\infty<\epsilon$.

Using the pointwise convergence, for the given $\delta > 0$ (which $\frac{\delta}{\sqrt{101}} > 0$), each $i \in \{1, ..., 101\}$ has a corresponding M_i , such that $m \ge M_i$ implies $|p_m(x_i)| < \frac{\delta}{\sqrt{101}}$.

Then, let $M = \max_{i \in \{1,...,101\}} \{M_i\}$, for all $m \ge M$ (which $m \ge M_i$ for all $i \in \{1,...,101\}$), the following is true:

$$||T(p_m) - T(0)||_2 = ||T(p_m)||_2 = \sqrt{\sum_{i=1}^{101} |p_m(x_i)|^2} < \sqrt{\sum_{i=1}^{101} \left(\frac{\delta}{\sqrt{101}}\right)^2} = \sqrt{101 \cdot \frac{\delta^2}{101}} = \sqrt{\delta^2} = |\delta| = \delta$$

Hence, by the continuity of T^{-1} , $T^{-1}(T(p_m)) = p_m$ satisfies $||T^{-1}(T(p_m))||_{\infty} < \epsilon$, or $||p_m||_{\infty} < \epsilon$. Therefore, this concludes that the sequence of polynomials p_m converges to 0 uniformly. **Question 2** Let $f:[0,1] \to \mathbb{R}$ be a function such that $f', f'', f^{(3)}$ are defined and continuous in [0,1]. Prove that for any $\epsilon > 0$ there exists a polynomial P such that

$$\sum_{j=0}^{3} \|f^{(j)} - P^{(j)}\|_{\infty} = \sum_{j=0}^{3} \sup_{x \in [0,1]} |(f^{(j)} - P^{(j)})(x)| < \epsilon$$

Pf:

Before starting the prove, recall that the antiderivatives of a polynomial $p:[0,1] \to \mathbb{R}$ is a collection of polynomials $\{P(x) + C \mid C \in \mathbb{R}\}$, where $P:[0,1] \to \mathbb{R}$ is a polynomial satisfying P'=p.

When taking the antiderivative of any polynomial in the following steps, we'll explicitly state the initial condition to prevent ambiguity about the constant coefficients of the antiderivative.

Generalized Statement:

We'll prove a more general version recursively: For all $n \in \mathbb{N}$, let $f:[0,1] \to \mathbb{R}$ be a function such that $f',...,f^{(n)}$ are all defined and continuous on [0,1], then there exists a sequence of polynomials $\{P_m\}_{m\in\mathbb{N}}$, such that for all $j \in \{0,1,...,n\}$, $P_m^{(j)}$ converges to $f^{(j)}$ uniformly.

For base case, since $f^{(n)}$ is defined and continuous on [0, 1], by Stone-Weierstrass Theorem, there exists a sequence of polynomials $\{p_{n,m}\}$ converging to $f^{(n)}$ uniformly.

Then as **Step (1)**, for all $m \in \mathbb{N}$, let polynomial $p_{(n-1),m} : [0,1] \to \mathbb{R}$ be an antiderivative of $p_{n,m}$ $(p'_{(n-1),m} = p_{n,m})$ such that $p_{(n-1),m}(0) = f^{(n-1)}(0)$.

Which, since the sequence of polynomials $\{p_{(n-1),m}\}_{m\in\mathbb{N}}$ satisfies: $p'_{(n-1),m}=p_{n,m}$ converges to $(f^{(n-1)})'=f^{(n)}$ uniformly, and $\lim_{m\to\infty}p_{(n-1),m}(0)=f^{(n-1)}(0)$. Then, the sequence $p_{(n-1),m}$ converges to $f^{(n-1)}$ uniformly.

Now, for given $k \in \{1, ..., n-1\}$, at **Step (k)** we constructed a sequence of k^{th} antiderivative of the sequence of polynomials $\{p_{n,m}\}_{m\in\mathbb{N}}$ (denoted as $\{p_{(n-k),m}\}_{m\in\mathbb{N}}$), such that $p_{(n-k),m}$ converges to $f^{(n-k)}$ uniformly:

At **Step (k+1)**, for each $m \in \mathbb{N}$, let polynomial $p_{(n-(k+1)),m} : [0,1] \to \mathbb{R}$ be an antiderivative of $p_{(n-k),m}$ (which $p'_{(n-(k+1)),m} = p_{(n-k),m}$) such that $p_{(n-(k+1)),m}(0) = f^{(n-(k+1))}(0)$.

Which, since the new sequence of polynomials $\{p_{(n-(k+1)),m}\}_{m\in\mathbb{N}}$ satisfies: $p'_{(n-(k+1)),m} = p_{(n-k),m}$ converges to $(f^{(n-(k+1))})' = f^{(n-k)}$, and $\lim_{m\to\infty} p_{(n-(k+1)),m}(0) = f^{(n-(k+1))}(0)$. Then, the sequence $p_{(n-(k+1)),m}$ converges to $f^{(n-(k+1))}$ uniformly.

From the above process, since for all $k \in \{1,...,n\}$, we can find a sequence of k^{th} antiderivative of polynomials $\{p_{n,m}\}_{m\in\mathbb{N}}$, denoted as $\{p_{(n-k),m}\}_{m\in\mathbb{N}}$, that converges to $f^{(n-k)}$ uniformly.

Then, $\{p_{0,m}\}_{m\in\mathbb{N}}$ is a sequence of polynomial that converges to $f^{(0)}=f$ uniformly. Which, for $j\in\{1,...,n\}$, the sequence of j^{th} derivative $\{p_{j,m}\}_{m\in\mathbb{N}}$ converges uniformly to the j^{th} derivative of f, namely $f^{(j)}$. (Note: Recall that for all $j\in\{1,...,n\}$ and all $m\in\mathbb{N}$, $p_{(j-1),m}$ is defined as an antiderivative of $p_{j,m}$).

Hence, the sequence of polynomials $\{p_{0,m}\}_{m\in\mathbb{N}}$ has its j^{th} derivative converges to $f^{(j)}$ uniformly for all given $f^{(j)}$, satisfying the desired condition stated initially.

The Original Problem:

From the above Generalized Statement, given $f:[0,1]\to\mathbb{R}$ such that $f',f'',f^{(3)}$ that are all defined and continuous on [0,1], there exists a sequence of polynomials $\{P_m\}_{m\in\mathbb{N}}$, such that for $j\in\{0,1,2,3\}$, its j^{th} derivative $P_m^{(j)}$ converges to $f^{(j)}$ uniformly.

Hence, given arbitrary $\epsilon > 0$ (which $\frac{\epsilon}{4} > 0$), for each $j \in \{0, 1, 2, 3\}$, there is a corresponding N_j , such that the following is true:

$$\forall m \in \mathbb{N}, \quad m \ge N_j \implies ||f^{(j)} - P_m^{(j)}||_{\infty} < \frac{\epsilon}{4}$$

Then, choose $N = \max_{j \in \{0,1,2,3\}} N_j$, for any index $m \ge N$, since $m \ge N_j$ for all $j \in \{0,1,2,3\}$, the above statement guarantees $||f^{(j)} - P_m^{(j)}||_{\infty} < \frac{\epsilon}{4}$ for each j. Hence, the following inequality is true:

$$\sum_{j=0}^{3} \|f^{(j)} - P_m^{(j)}\|_{\infty} < \sum_{j=0}^{3} \frac{\epsilon}{4} = \epsilon$$

Therefore, for every $\epsilon > 0$, we can find a corresponding polynomial P, such that $\sum_{j=0}^{3} \|f^{(j)} - P^{(j)}\|_{\infty} < \epsilon$.

Question 3 Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that

$$\int_0^1 f(x)x^j dx = 0, \qquad j = 0, 1, 2, \dots$$

Prove that $f(x) = 0, \forall x \in [0, 1].$

Pf:

Since f(x) is continuous on [0, 1] a bounded closed interval, by Stone-Weierstrass Theorem, there exists a sequence of polynomial $\{p_n\}_{n\in\mathbb{N}}$, such that p_n converges to f uniformly.

Now, notice that for all polynomial $p(x) = a_0 + a_1x + ... + a_mx^m$ (where $a_0, a_1, ..., a_m \in \mathbb{R}$), the following integral is true based on the Linearity of Riemann Integrable functions:

$$\int_0^1 f(x)p(x)dx = \int_0^1 f(x) \sum_{k=0}^m a_k x^k dx = \sum_{k=0}^m a_k \int_0^1 f(x)x^k dx = 0$$

Hence, for all $n \in \mathbb{N}$, we have $\int_0^1 f(x)p_n(x)dx = 0$.

fp_n Converges Uniformly to f^2 :

Because f is continuous on [0,1] a compact set, hence f is bounded, there exists M > 0, such that all $x \in [0,1]$ satisfies |f(x)| < M.

Also, since p_n converges to f uniformly, for all $\epsilon > 0$ (which $\frac{\epsilon}{M} > 0$), there exists N, such that $n \geq N$ implies $||f - p_n||_{\infty} < \frac{\epsilon}{M}$.

Hence, for all $n \geq N$, every $x \in [0,1]$ satisfies the following:

$$|f(x)p_n(x) - (f(x))^2| = |f(x)| \cdot |p_n(x) - f(x)| < M \cdot |p_n(x) - f(x)| \le M \cdot ||f - p_n||_{\infty} < M \cdot \frac{\epsilon}{M} < \epsilon$$

Hence, ϵ is an upper bound of the set $\{|f(x)p_n(x)-(f(x))^2|: x \in [0,1]\}$, showing that $||fp_n-f^2||_{\infty} = \sup_{x \in [0,1]} |f(x)p_n(x)-(f(x))^2| \le \epsilon$. Based on the above statement, we can conclude that fp_n converges uniformly to f^2 .

Integral of fp_n converges to Integral of f^2 :

For all $n \in \mathbb{N}$, we have fp_n being continuous on [0,1] (since both f and p_n are continuous on [0,1]), and fp_n converges to f^2 uniformly, hence the following is true:

$$\lim_{n \to \infty} \int_0^1 f(x) p_n(x) dx = \int_0^1 \lim_{n \to \infty} f(x) p_n(x) dx = \int_0^1 (f(x))^2 dx$$

Since $\int_0^1 f(x)p_n(x)dx = 0$, then the limit above is 0, hence $\int_0^1 (f(x))^2 dx = 0$.

Integral of f^2 is 0 implies f = 0:

Since f is continuous on [0, 1], so does f^2 ; then, since for all $x \in [0, 1]$, $(f(x))^2 \ge 0$, together with the statement $\int_0^1 (f(x))^2 dx = 0$, this implies that $(f(x))^2 = 0$ for all $x \in [0, 1]$.

Therefore, f(x) = 0 for all $x \in [0, 1]$.