Perieu:	read as "f prime".	
1. The derivative of y=f	$f(x)$: $f(x) \stackrel{\text{defined by}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ (if exists).	
	of x , and its domain is the set $\begin{cases} x \mid \lim_{h \to 0} f(x+h) - f(x) \end{cases}$ e	exists
$f(x): y', \frac{d}{dx}y$	$\frac{dy}{dx}$, $\frac{d}{dx}$ f, $\frac{df}{dx}$, Dy , Df .	
fia): fix) x= a y' x= a	$\left \frac{dy}{dx}\right _{x=a}$, $\left \frac{df}{dx}\right _{x=a}$, $\left \frac{df}{x=a}\right _{x=a}$.	
	(=> f is differentiable at X=a	
(2) f(a) = the	slope of the tangent line at x=a.	
= the	rate of change of f at x=a.	

3. Computation of derivatives

(1) Compute
$$f(x)$$
 by definition: $f(x) = \lim_{h \to 0} \frac{f(x)h}{h} - f(x)$

Example: $f(x) = x^2$ $f(x) = 2x$

$$f(x) = \lim_{h \to 0} \frac{f(x)h}{h} - \lim_{h \to 0} \frac{f(x)h}{h} = \lim_{h \to 0} \frac{2xh+h^2}{h} = \lim_{h \to 0} (2x+h) = 2x$$

(2). Compute $f(x)$ by rules of differentiation: $f', g' = (f\pm g)', c \cdot f', (f\cdot g)', (\frac{f}{g})'$

(2) $(f\pm g)' = f' \pm g'$

(2) $(c\cdot f)' = c \cdot f'$

(2) $(c\cdot f)' = c \cdot f'$

(3) $(f\cdot g)' = f' \cdot g + f \cdot g'$

(4) $(\frac{f}{g})' = f' \cdot g - f \cdot g'$

Example: $h(x) = \frac{f}{x^2} = h(x) = \frac{f(x)}{f(x)}$

where $f(x) = 1$. $g(x) = x^2$

$$h(x) = \frac{f(x)}{g(x)} = \frac{f(x)}{g(x)} = \frac{f(x)}{g(x)} = \frac{-2x}{x^2}$$

Quotient Pule (4)

Review some notable derivatives:

a comparate

$$\frac{d}{dx} = 0 \qquad \frac{d}{dx} = 0 \qquad \frac{$$

Example: y=fx)= ax How $\lim_{h\to 0} \frac{a^{x+h} - a^{x}}{h} = \lim_{h\to 0} \frac{a^{x}(a^{h} - 1)}{h} = a^{x} \cdot \lim_{h\to 0} \frac{a^{x}(a^{h} - 1)}{h} = a^{$ calculate lim and lim and 1) lim at + = fio) exists. (fio) is incressing in a (a'grows foster at 150 for larger a) 3 lim 2ⁿ-1 ≈ 0.69, lim 3ⁿ-1 ≈ 1-10. => There exists a unique number a E(2,3) such that => We use "e" to denote this $a = b \qquad \text{for any a 70, b 70 b 71.} \implies a = e$ $\lim_{h \to 0} \frac{(e^{\ln a})^h - 1}{h} = \lim_{h \to 0} \frac{e^{h \cdot \ln a}}{h} = \lim_{h \to 0} \frac{e^{h \cdot \ln a}}{h \cdot \ln a} = \lim_{h \to 0} \frac{e^{h \cdot \ln a}}{h} = \lim_{h \to 0$

If
$$y = f(u)$$
, $u = g(x)$, then $y = f(u) = f(g(x))$.

To calculate
$$\frac{dy}{dx}$$
, we use the chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
derivative of y derivative of u

derivative of y derivative of y derivative of
$$u$$
 with respect to u with respect to x .

with respect to
$$\chi$$
 with respect to U with respect to χ .

Example 1. Find
$$\frac{dy}{dx}$$
 if $y = (3x+1)^5$.

$$y = f(x) = u^{5}$$
, $u = g(x) = 3x + 1$.

 $\frac{dy}{dx} = \frac{dy}{dx} = \frac{du^{5}}{dx} = \frac{d(x + 1)}{dx} = 5u^{4} = 15(3x + 1)$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx} = \frac{du^{5}}{dx} \cdot \frac{d(x+1)}{dx} = 5u^{4} \cdot 3 = 15u^{4} = 15(3x+1)^{4}$$

Example 2 Find
$$\frac{dy}{dx}$$
 if $y = \sin(x^2 + e^x)$ \rightarrow a special case of Example 3. $y = f(u) = \sin(u)$, $u = g(x) = x^2 + e^x$.

 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{d\sin u}{dx} \frac{d(x^2 + e^x)}{dx} = \cos(x^2 + e^x) \cdot (2x + e^x)$

Example 3. Suppose $y = g(x)$. Ca(culate $\frac{d}{dx} \sin y$ in terms of x , y and $\frac{dy}{dx}$.

 $\frac{d}{dx} \sin y = \frac{d}{dx} \frac{dy}{dx} \frac{d\sin y}{dx} \frac{dy}{dx} = \cos y \frac{dy}{dx}$.

Similarly, by the chain rule we obtain:

 $\frac{d}{dx} \cos y = \frac{d\cos y}{dy} \frac{dy}{dx} = -\sin y \frac{dy}{dx}$.

 $\frac{d}{dx} y^n = \frac{dy^n}{dy} \frac{dy}{dx} = n \cdot y^{n-1} \frac{dy}{dx}$. (In it a real rule)

 $\frac{d}{dx} a^n = \frac{da^n}{dy} \frac{dy}{dx} = \ln a \frac{dy}{dx}$.

We can make the "chein" longer:

$$y = f(u)$$
, $u = g(x)$, $x = h(t)$ $\Rightarrow \frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dx} \cdot \frac{dx}{dt}$

proof: We use the chain rule fruice:

 $y = f(u)$, $u = g(h(t))$ $\Rightarrow \frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}$
 $u = g(x)$, $x = h(t)$ $\Rightarrow \frac{dy}{dt} = \frac{du}{dx} \cdot \frac{dx}{dt}$
 $x = h(t)$ $\Rightarrow \frac{dy}{dt} = \frac{du}{dx} \cdot \frac{dx}{dt}$

Example: Find
$$\frac{dy}{dx}$$
 if $y = \cos(e^{\sin t})$.

$$y = f(u) = \cos u. \quad u = g(x) = e^{x}, \quad x = h(t) = \sin t$$

$$\frac{dy}{dt} = \frac{dy}{du} \frac{du}{dx} \cdot \frac{dx}{dt} = \frac{d\cos u}{du} \cdot \frac{de^{x}}{dx} \cdot \frac{d\sin t}{dt} = -\sin u \cdot e^{x} \cdot \cot t = -\sin(e^{\sin t}) \cdot e^{x} \cdot \cot t$$

(4). Implicit Differentiation.

1 express y explicitly in terms of x:

 $y = x^2$, $y = \sin x$, $y = x^2 \sin x$. \Rightarrow How to find $\frac{dy}{dx}$: definition. when $(+, -, x, \pm)$.

 $\chi^3 - y^3 - \sin(x + y) = 0$, \Rightarrow How to find $\frac{dy}{dx}$?

If y is uniquely determined by X, then y is a function of X.

3. express y implicitly by a relation between x and y:

Given an input X, we solve the equation for y.

Two different ways to express a function y = fix):

The pie Compute
$$\frac{dy}{dx}$$
 in term of $x \circ dy$ if $x^3 - y^3 - \sin(x + y) = 0$.

Step 1: Differentiate both sides with respect to x .

$$\frac{d}{dx} \left(x^3 - y^3 - \sin(x + y) \right) = \frac{d}{dx} \left(0 \right) = 0 \quad (*)$$

Step 2: Regard y as $y = f(x)$ and use the chain rule to compute the derivative.

() $\frac{d}{dx} x^3 = \frac{1}{3}x^2$

(2) By the chain rule: $\frac{d}{dx} y^3 = \frac{dy^3}{dy} \cdot \frac{dy}{dx} = \frac{3}{3}y^2 \cdot \frac{dy}{dx}$

(3) $\sin(x + y) = \sin(x + f(x))$: a function of x .

Pefixe $z = \sin(u)$. $u = x + f(x) = x + y$. $\Rightarrow z = \sin(x + f(x)) = \sin(x + y)$.

$$\frac{d}{dx} \left(\sin(x + y) \right) = \frac{d^2}{dx} = \frac{d^2}{dx} \cdot \frac{dy}{dx} - \frac{d\sin y}{dx} \cdot \frac{d(x + f(x))}{dx} = \cos y \cdot (1 + \frac{dy}{dx}) = \cos(x + y) \cdot (1 + \frac{dy}{dx})$$

$$\Rightarrow (*) \text{ becomes } 3x^2 - 3y^2 \cdot \frac{dy}{dx} - \cos(x + y) \cdot (1 + \frac{dy}{dx}) = \cos(x + y) \cdot (1 + \frac{dy}{dx})$$

$$\Rightarrow (*) \text{ becomes } 3x^2 - 3y^2 \cdot \frac{dy}{dx} - \cos(x + y) \cdot (1 + \frac{dy}{dx}) = \cos(x + y) \cdot (1 + \frac{dy}{dx})$$

$$\Rightarrow (*) \text{ becomes } 3x^2 - 3y^2 \cdot \frac{dy}{dx} - \cos(x + y) \cdot (1 + \frac{dy}{dx}) = \cos(x + y) \cdot (1 + \frac{dy}{dx})$$

$$\Rightarrow (*) \text{ becomes } 3x^2 - 3y^2 \cdot \frac{dy}{dx} - \cos(x + y) \cdot (1 + \frac{dy}{dx}) = \cos(x + y) \cdot (1 + \frac{dy}{dx})$$