

神经网络与深度学习简介

赵沄堃

人机对弈: AlphaGo击败人类棋手,然后...

- 2016年03月
- AlphaGo(1.0) 4:1 李世石

- 2017年05月
- AlphaGo(2.0) **3:0** 柯洁

- 2017年10月
- AlphaGo(2.0) 0 : 100 AlphaGo Zero

百度面部识别AI在《最强大脑》中击败人类

机器学习的应用

机器是如何学习的?

▶ 例子: 用线性回归模型预测房价

模型:
$$Y = f(X) + \varepsilon = X\beta + \varepsilon$$

$$\min_{\beta} Loss(\beta) = \varepsilon^{T} \varepsilon = (Y - X\beta)^{T} (Y - X\beta)$$

$$\rightarrow$$
 一阶求导: $-2X^TY + 2X^TX\beta = 0$

$$\rightarrow \beta_{OLS} = (X^T X)^{-1} X^T Y$$

ID	面积 (m²)	#房间	#卫生间	房价 (万元)
1	65	2	2	900
2	72	3	2	120
••••		•••••	•••••	•••••
n	50	1	1	500

机器是如何学习的?

机器学习:规范模式

输入: $X \in \mathbb{R}^d$

(房屋信息,如:面积,地段,等)

(如:房价)

分类: $y \in (0,1)$

目标函数: $f: X \to y$

(真实的预测模型)

f 实际未知

(训练数据集)

数据: $D = \{(x_1, y_1), ...(x_N, y_N)\}$

(最小化训练误差)

拟合模型 $\hat{f} \in F$: $\hat{f}: X \to y$

其中训练误差: $\frac{1}{N} \sum_{n=1}^{N} Loss(\hat{f}(x_n) \neq f(x_n))$

机器学习目标: $\min_{\hat{f}} E[Loss(\hat{f}(x_{new}) \neq f(x_{new}))]$

(最小化预测/测试误差)

传统机器学习的问题

▶例子:用传统机器学习模型,对非线性数据集进行分类

欠拟合: 训练偏差

过拟合: 预测方差

 \mathbf{Y}

 \mathbf{X}

传统机器学习的问题

▶测试数据集上的泛化误差:

$$\Pr\{|\frac{1}{N}\sum_{n=1}^{N}Loss(\hat{f}(x_n) \neq f(x_n)) - E[Loss(\hat{f}(x_{new}) \neq f(x_{new}))]| > \varepsilon\}$$

 $= \Pr\{| 训练误差 - 预测误差 |> \varepsilon\}$

$$\leq \frac{2M}{e^{2N\varepsilon^2}}$$

- M: 反映模型的复杂程度
- N: 训练数据集的大小
- c: 对预测误差偏离训练误差多少的接受程度

♥ 理想模型 \hat{f} : 训练误差≈0 并且: 训练误差≈预测误差

从传统机器学习到深度学习

Machine Learning

Deep Learning

- ▶ "深度学习,并非学的东西不同,而 是学习方式不同"
- > 深度学习是自适应的

▶人类大脑的学习能力这么强, 为什么不让机器学习模仿人类 大脑?

Performance

深度学习: 基本认识

深度学习

- ▶ 机器学习如何模仿人类大脑?
- > 生物学理论
 - ▶ 神经元细胞(或感知器): 信息接收、处理与传递
 - > 多层结构:上一层神经元的输出信息被下一层神经元接收并处理
 - ▶ 激活函数(非线性): 对输入信息进行(非线性)处理

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

神经网络:激活函数

- ▶神经网络模型:如何更好地学习到数据的非线性特性?
- > 非线性激活函数

非线性激活函数:

赋予神经网络模型对**复杂非线** 性数据特性的学习能力

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

神经网络: 基本结构

▶ 基本结构: 使多层神经元细胞(或感知器)连接在一起

Input Layer

- Each neuron gets ONLY one input, directly from outside

Hidden Layer

Connects Input and Output layers

Output Layer

 Output of each neuron directly goes to outside

神经网络: 深层神经网络

- > 深层神经网络
 - ▶ 基本结构: 使多层神经元细胞(或感知器) 连接在一起
 - ▶ 很多很多隐藏层

NN (perceptron) consists of three layers:

神经网络: 模型训练的基本流程

神经网络: 前向传递

神经网络:反向传播

问题:为什么要反向传播?目的是什么?

- 产生误差的原因在 于权值有偏差,所以 需要返回更新权值

- 返回更新权值的方法: 梯度下降算法 (Gradient Descent)

神经网络: 反向传播

▶ 梯度下降算法

权值更新规则:

每次往梯度值相反的方向 移动更新,更新步速可以 设置为 λ :

$$w_i^{(t)} \leftarrow w_i^{(t-1)} - \lambda \times \frac{\partial E}{\partial w_i^{(t-1)}}$$

这里我们需要 $\frac{\mathbf{v}_{i}}{\mathbf{v}_{i}}$ 因为梯度值 $\frac{\partial E}{\partial w_{i}^{(t-1)}}$ 是 $\frac{\partial \mathbf{w}_{i}}{\partial \mathbf{v}_{i}}$

神经网络: 快速总结

神经网络模型: 缺陷与不足

神经网络: 缺陷 I

- ▶神经网络模型强在预测与泛化能力,但解释能力不足
- ▶神经网络模型的隐藏层就像"黑箱"

神经网络: 缺陷 II

▶ 梯度消失与梯度爆炸问题

权值更新:
$$w_i^{(t)} \leftarrow w_i^{(t-1)} - \lambda \times \frac{\partial E}{\partial w_i^{(t-1)}}$$

》计算梯度的链式法则:
$$\frac{\partial E}{\partial W_0} = \frac{\partial E}{\partial O_{1_out}} \times \frac{\partial O_{1_out}}{\partial O_{1_n}} \times \frac{\partial O_{1_n}}{\partial h_{n_out}} \times \frac{\partial h_{n_out}}{\partial h_{n_out}} \times \cdots \times \frac{\partial h_{1_out}}{\partial h_{1_out}} \times \frac{\partial h_{1_out}}{\partial w_0}$$
$$= \frac{\partial E}{\partial O_{1_out}} \times f'(O_{1_out}) \times w_n \times f'(h_{n_out}) \times w_{n-1} \times \cdots \times f'(h_{1_out}) \times x_1$$

- > 如果随意选择激活函数,

➤ 如果梯度小于1 → 梯度消失:
$$\frac{\partial Sigmoid(x)}{\partial x} \in (0,1)$$
 so $\frac{\partial E}{\partial w_0} \to 0$

- ▶ 解决办法:想清楚该不该选这个激活函数
- ➤ 如果梯度大于1 → 梯度爆炸: $\frac{\partial E}{\partial w_o}$ → ∞
 - ➤ 解决办法: 梯度裁剪(Gradient Clipping); 对权值进行正则化(Regularization)

神经网络: 缺陷 III

▶用"梯度下降算法"进行权值优化:

- ▶ 改进梯度下降: 随机梯度下降算法(Stochastic Gradient Descent)
- ▶ 其他优化算法:模拟退火算法(Simulated Annealing),用于玻尔兹曼机(Boltzmann Machine)

神经网络: 缺陷 IV

▶测试数据集上的泛化误差:

$$\Pr\{|\frac{1}{N}\sum_{n=1}^{N}Loss(\hat{f}(x_n) \neq f(x_n)) - E[Loss(\hat{f}(x_{new}) \neq f(x_{new}))]| > \varepsilon\}$$

- $= \Pr\{| 训练误差 预测误差 |> \varepsilon\}$
- $\leq \frac{2M}{e^{2N\varepsilon^2}}$
- ▼ 理想模型f: 训练误差≈0并且: 训练误差≈预测误差
- ▶神经网络模型仍可能过拟合!
- ▶通常的解决办法:
 - ➤ 对权值进行正则化(Regularization)
 - ➤ 批标准化(Batch normalization)
 - ▶ 神经元随机失活(Dropout neurons randomly in each layer)

偏差-方差权衡 true error 欠拟合 过拟合 train error Model complexity Need Weak stronger learner learner

"天下没有免费午餐"

神经网络: 缺陷 IV

▶图像分类:

- ▶ 如果用普通的深层神经网络对图片进行分析,会发生什么?
- ➤ 首先把图片分割成独立的像素(pixel)作为输入值,每个像素看作一个变量,取值在0-255之间,衡量像素的颜色深浅
- ▶ 这有什么问题呢?

On this training image red weights w_{ij} will change a little bit to better detect a cat

On this training image green weights w_{ij} will change...

- 普通神经网络并不能 完全利用数据集的所 有重要信息
- 如果在测试数据集中, 猫的位置改变了,怎 么办?

神经网络: 缺陷 IV

▶图像分类:

普通神经网络

300*300 维度

300*300*4+1

大约有360,001 权值

这里假设隐藏层只有 4 个神经元,如果增加神 经元数量呢? 如果将普通神经网络应用于 图像分析:

- 训练速度慢
- 容易过拟合

卷积神经网络

Convolutional Neural Networks:

(Filter/Kernel):

假设卷积层每次移动2个单位

Input layer

 θ_{11}

 θ_{12}

 θ_{11}

 θ_{12}

 θ_{11}

 θ_{12}

 θ_{11}

 θ_{12}

 θ_{22}

 θ_{22}

 θ_{22}

 x_1

 x_2

 X_4

 X_5

 x_6

 x_8

Xq

X₁₀

 X_{11}

X₁₂

X₁₃

X₁₄

X₁₅

X₁₆

Because interesting features (edges) can happen at anywhere in the image.

输出Feature Map: with new "pixels"

卷积神经网络

▶普通神经网络 V.S. 卷积神经网络

普通神经网络

300*300*4+1 大约有360,001权重 值

> 300*300 维度

这里假设隐藏层 只有 4个神经元, 如果增加神经元 数量呢?

卷积神经网络

这里假设隐藏层只有 4个5*5维度的卷积层 filter/kernel

神经网络: 其他模型

- ▶循环神经网络 Recurrent Neural Networks (RNN)
 - 神经元的输出值有时间依赖性
 - Long-Short-Term-Memory (LSTM)
- ➤受限玻尔兹曼机 Restricted Boltzmann Machine (RBM)
- ▶深度信念网络 Deep Belief Network (DBN)
- ▶自编码神经网络 Auto-Encoder
- ▶其他更多...

神经网络: IS学术与实际应用

神经网络: 学术应用

> Academic Research

• Shunyuan Zhang, Dokyun Lee, Param Vir Singh, Kannan Srinivasan. How Much is an Image Worth? Airbnb Property Demand Analytics Leveraging A Scalable Image Classification Algorithm. Working Paper. (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2976021)

- 研究问题: What is the effect of joining Airbnb photography program (i.e., verified photos)?
- 模型测试: Label image quality on Amazon Mechanical Turk
- 卷积神经网络(VGG-16): Image quality and (12) interpretable image features

神经网络:实际应用

- ▶计算机视觉
 - 图像分类,面部识别,目标对象检测
 - 视频流媒体挖掘
- ▶自然语言处理
 - 文本挖掘(如,内容挖掘,情感分析,语义分析等)
- ▶时间序列预测
- ▶语音识别
- ▶其他更多...

注意:

需要赚更多钱,买GPU跑模型

机器学习与深度学习

In God we trust, all others bring data

-----William Edwards Deming (1900-1993)

非常感谢各位!