

2nd Design Review

Capstone7 / 배달의민족

Overall Design

New Sweeper Design

Too big

Motor Itself need more energy

Blade may squeeze the ball

- Reduce to single blade
- Make end to be angled

Further Improvement

Major Problem:

- 1. Overall weight
- 2. Distribution of the load
- 3. Stability

We can solve it with...

Adjust the support (Widened base)

Additional wheel

LabView

TCP/IP Connection

float[24]

- 1. Move all direction with controllable speed
- 2. Rotation with controllable speed
- 3. Control the sweeper and the rear gate

 $\theta = direction$

Left stick

X-magnitude ∝ rotation

Right stick

LabView

Future development

- Find exact relation between the voltage and actual motor speed
- Faster Communication (manipulate the data size)

OpenCV

Current Function

- -Detect & Locate Ball
- -Determine Color
- -Reduce Noise

- -Camera Calibration
- -Use radius of ball to calculate x, y, z distances
- -Find Center of Ball

OpenCV

FOV - lens

Data compression

Example of Lossy Compression

Original Lena Image (12KB size)

Lena Image, Compressed (85% less information, 1.8KB)

Lena Image, Highly Compressed (96% less information, 0.56KB)

OpenCV

Future Development

Increase precision of distance calculation

- -Use center of ball, rather than radius of ball to calculate distance
- -Because center information is more stable

Use pass filter + average values of multiple data to resolve outlier information problem

Underlying Algorithm


```
Case 1 : Default
Condition : B.D = NULL || #BALL < 3
Random walk
Rotate once at midpoint / specific point
 Case 2 : Catching ——
  Condition : B.D != NULL || #BALL
Ball Detection information
(1) Orient (2) Go Pick up
  Case 3 : Go Back
    Condition: \#BALL = 3
 Go to /I.P
 B.D for green
ball Data Integrate node → Orient → Balls out
```

/B.D: BALL DETECTION

<DECISION Node>

Case 1 : Default

<DECISION Node>

/TRANS

/S.T.

DECISION Node

Case 1 : Default

Condition : B.D = NULL || #BALL <

Follow the Walls

Rotate once at midpoint / specific poin

Many balls are detected & Many zero data

Which data should be use?

Case 1 : Default

Condition : B.D = NULL | #BALL < 3

Follow the Walls

Rotate once at midpoint / specific point

Case 2 : Catching

Ball Detection information

Energy Management / (Vibration)

Least Energy consumption

Mechanical Energy (Main motor)

Electrical Energy

50*W*

20% of energy heats up battery

 $q_{battery} = hA(T - T_{\infty})$ $h \sim 20W/Km^{2}$ $A \sim 0.1m^{2}$

$$(T-T_{\infty}) \sim 10$$
K

Intel Nuc: 25W (idle)

NI myRIO: 14W

RPLidar, DFR0315: 4W

Logitech HD pro webcam :3W

Vibration Control

Naïve analysis

Energy Management / (Vibration)

Major Heat generation: Motor

Demonstration

Manual control / Autonomous

