Impact of Environmental and Supply Chain Metrics on Company Financials

TEAM 6

Gaurangi Agrawal
Saachi Dholakia
Sahasra Konkala
Rajashree Ramaprabu
Madhumitha Sriram

Questrom School of Business, Boston University

MSBA Presentation

Motivation:

In today's rapidly evolving business landscape, the integration of environmental sustainability in corporate strategy is not just a moral imperative but a foundational component of enduring financial success.

Our comprehensive dataset provides a unique opportunity to explore the multifaceted relationships between environmental practices and financial outcomes across diverse industries and geographies.

Goals for this Dataset

Product Safety and Quality Factors

Recycling and Waste Management

Inventories of raw materials and Emissions, Pollution Prevention

About the Dataset

The dataset contains data for 77,313 entries across 49 columns, primarily related to companies and their environmental and financial metrics.

MSCI : https://drive.google.com/drive/folders/1bHeKVn-scXl6HmgJNZ59MjKVjjuVRPZc
Finance : https://drive.google.com/drive/folders/1bHeKVn-scXl6HmgJNZ59MjKVjjuVRPZc
Finance : https://drive.google.com/drive/folders/1bHeKVn-scXl6HmgJNZ59MjKVjjuVRPZc
Finance : https://drive.google.com/drive/folders/1GXkMHmEPLMhxkeJeHpmVYNCclfAzj608

Summary of key aspects of the dataset:

Identification and General Information:

- Company Name: Name of the company.
- country: Country where the company is located.
- year: Year of the data entry.

Environmental Performance Metrics:

- Supply_Chain_Policies
- Hazardous Waste
- Regulatory_Problems
- Pollution_Prevention
- Recycling

Financial and Operational Metrics:

- roa (Return on Assets)
- invt_act (Inventory Activity)
- inv_turn (Inventory Turnover)
- at turn (Asset Turnover)

jxf@mastodon.social @ixxf

Optimist: The glass is ½ full.

Pessimist: The glass is ½ empty.

Excel: The glass is January 2nd

Needed a lot of data cleaning!

Understanding the Correlation Matrix:

The correlation matrix provided encompasses all numerical columns within the dataset. Notably, it highlights significant collinearity among specific financial variables:

- Total Revenue (revt) and Selling, General, and Administrative Expense (xsga)
- Capital Expenditures (capx), Property, Plant, and Equipment - Total Gross (ppegt), and Property, Plant, and Equipment - Total Net (ppent)
- Inventories Total (invt) and Inventories Finished Goods (invfg)

Awareness of these interrelationships prompts a cautious approach when incorporating these variables into regression analyses, ensuring accurate and reliable model outcomes.

REGRESSION ANALYSIS

Return on Assets Considering Product Safety and Quality Factors

Dep. Variable:			squared:		0.002		
Model:			R-squared:		0.002		
Method:	Least Squar		statistic:		14.09		
	Thu , 02 May 20	24 Pr	ob (F–statistic)		1.74e-11		
Time:	13:59:	26 Lo	g−Likelihood:		-32059 .		
No. Observations:	287	21 AI	:		6.413e+04		
Df Residuals:	287	16 BI	:		6.417e+04		
Df Model:		4					
Covariance Type:	nonrobu	st					
============	======== coef	====== std e	 rr t	P> t	======== [0.025	0.975]	
 Intercept	 0.1489	 A 10	 97 0.754	0.451	 -0.238	 0.536	
C(Product Safety)[T.0]			98 -0.371	0.711		0.314	
C(Product_Safety)[T.1]			99 0.064	0.711		0.402	
C(Product_Safety)[T.2]			l8 8.180	0.000			
C(Quality)[T.0]	-0.0080		9 -0.884	0.377	-0.026	0.016	
C(Quality)[T.1]	-0.1163	0.0		0.000	-0.151	-0.081	
 Omnibus:	 128070.9	 29 Du	 rbin-Watson:		1.925		
Prob(Omnibus):	0.0		rque-Bera (JB):	65406	6353813.118		
Skew:	-145.5		ob(JB):		0.00		
Kurtosis:	23379.6		nd. No.		3.01e+18		

Product Safety: This indicator gauges product and service quality/safety controversies, encompassing issues like

- Food safety,
- Media controversies
- 3. Recalls
- 4. Service disruptions
- Chemical concerns.

Quality: This indicator assesses companies' handling of major product quality concerns and potential recalls.

Result : Asset turnover inclusion reveals significance for companies with low product safety concerns, highlighting the need for a nuanced understanding of their impact on ROA.

Return on Assets Considering Product Safety and Quality Factors with Controls

OLS Regression Results									
Dep. Variable:		roa	R-squared:		0.07				
Model:		0LS	Adj. K-squar	ea:	ט.ט.				
Method:	Least So		F-statistic:		458				
Date:	Thu, 02 May				0.0				
Time:	13:	:59:26	Log-Likeliho	od:	5825				
No. Observations:		28441	AIC:		-1.164e+6				
Df Residuals:		28435	BIC:		−1 . 159e+6	ð4			
Df Model:		. 5							
Covariance Type:	non:	robust 							
	coef	std e	err t	P> t	[0.025	0.975]			
Intercept	0.1561	 0.0	 955	0.004	0.049	0.263			
Product Safety[T.0]	-0.1213	0.0	55 -2.218	0.027	-0.229	-0.014			
Product Safety[T.1]	-0.0638	0.0	55 -1.161	0.246	-0.172	0.044			
Product_Safety[T.2]	-1.147e-17	9.34e-	-12.282	0.000	-1.33e-17	-9.64e-18			
Quality[T.0]	-0.0206	0.0	02 -8.428	0.000	-0.025	-0.016			
Ouality[T.1]	-0.0389	0.0	05 -8.022	0.000	-0.048	-0.029			
at_turn	0.0689	0.0	02 45.871	0.000	0.066	0.072			
Omnibus:	4693	31.086	Durbin-Watso	n:	1.12	28			
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	107187233.50	9 5			
Skew:	<u> </u>	10.633			0.0	00			
Kurtosis:	36	02.997	Cond. No.		5.89e+3	16			

Result:

- 1. More Robust
- 2. Increase in R2
- Introducing a significant variable (at_turn) as a control.

Total Revenue with Recycling and Waste Management

	OLS Regr	ession	Results				
======================================	======================================	6 Adj 5 F-s 4 Pro 6 Log 1 AIC		ic):	0.01 0.01 78.3 4.47e-6 -2.2544e+0 4.509e+0	5 7 6 5	
Df Model: Covariance Type:	nonrobus	4		======= t	======== P> t	 [0.025	 0.975]
	-326 941 c_Waste[T.0] 1		153.972 1198.103 2342.805 1151.871 4350.126	43.529 -2.727 4.017 0.016 16.992	 0.000 0.006	6400.443 -5616.098	7004.037 -919.334 1.4e+04 2276.123 8.24e+04
Omnibus: Prob(Omnibus): Skew: Kurtosis:	30268.89 0.00 9.57 149.39	Jar 5 Pro	bin-Watson: que-Bera (JB b(JB): d. No.):	0.36 17985526.49 0.0 28.	1 0	

Result: Proactive environmental management, particularly in recycling and e-waste, correlates with higher revenues, alongside the significant role of cost of goods sold as a revenue control variable.

Recycling:

This indicator assesses how companies manage the risk of market loss or increased compliance costs due to packaging regulations.

Electronic Waste:

This indicator evaluates regulatory risks related to electronic waste recycling for companies. It considers exposure to regulations, recycling targets, and implementation of recovery programs.

Total Revenue with Recycling and Waste Management with controls

	0LS	Regress	ion R	esults				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:			Adj. F–st Prob	uared: R-squared: atistic: (F-statist Likelihood:	ic):	0.926 0.926 4.169e+04 0.00 -1.6854e+05 3.371e+05		
		c	oef	std err	 t	P> t	[0.025	0.975]
Intercept Recycling[T.0] Recycling[T.1] Waste_Mgt_Electron Waste_Mgt_Electron cogs		1054.4 -560.6 3593.5 641.9 1.355e	3428 3414 9769	49.642 347.817 670.790 333.278 1244.626 0.003	21.241 -1.612 5.357 1.926 10.890 452.380	0.000 0.107 0.000 0.054 0.000 0.000	957.124 -1242.401 2278.721 -11.284 1.11e+04 1.290	1151.730 121.115 4908.362 1295.238 1.6e+04 1.301
Omnibus: Prob(Omnibus): Skew: Kurtosis:		27.425 0.000 6.594 35.957	Jarq Prob	in-Watson: ue-Bera (JB (JB): . No.	3):	0.444 4892301.911 0.00 4.54e+05		

COGS significantly impacts revenue, highlighting its role as a control variable in understanding the impact of recycling and e-waste management on revenue.

Raw Material with Emissions, Pollution Prevention and Recycling

	OLS Regres:	sion Results				
	invrm OLS ast Squares 02 May 2024 13:59:27 15849 15842 6 nonrobust	R-squared: Adj. K-squared: F-statistic Prob (F-station) Log-Likelil AIC: BIC:	: atistic):	0.111 0.111 330.7 0.00 -1.1109e+05 2.222e+05 2.222e+05		
=======================================	coef	std err	-====== t	P> t	[0.025	0.975]
Intercept Substantial_Emissions[T.0] Substantial_Emissions[T.1] Pollution_Prevention[T.0] Pollution_Prevention[T.1] Recycling[T.0] Recycling[T.1]		6.593 5.772 15.657 4.865 13.038 9.683 27.323	1.462 8.748 28.753 3.484 23.935 4.903 16.975	0.144 0.000 0.000 0.000 0.000 0.000 0.000	-3.284 39.176 419.494 7.415 286.513 28.498 410.257	22.560 61.802 480.872 26.487 337.625 66.458 517.370
Omnibus: Prob(Omnibus): Skew: Kurtosis:	21992.456 0.000 8.108 103.718	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.		687258	 0.395 35.277 0.00 19.2	

Substantial Emission:

This indicator assesses controversies related to a company's non-GHG emissions, including spills, standard emissions, and hydraulic fracturing.

Pollution Prevention: This indicator evaluates companies' risk management of pollution and toxic emissions, favoring those with clear strategies and reduction programs.

Raw Material with Emissions, Pollution Prevention and Recycling with controls

	OLS Regres:	sion Results 				
	invrm OLS ast Squares 02 May 2024 13:59:27 15847 15839 7 nonrobust	R-squared: Adj. R-squared. F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.464 0.464 1960. 0.00 -1.0707e+05 2.141e+05 2.142e+05		
	coef	std err	======== t	P> t	[0.025	0.975]
Intercept Substantial_Emissions[T.0] Substantial_Emissions[T.1] Pollution_Prevention[T.0] Pollution_Prevention[T.1] Recycling[T.0] Recycling[T.1] invt	-4.1489 20.5758 239.1231 8.8971 111.4987 16.9913 354.7166 0.1502	5.122 4.492 12.333 3.780 10.314 7.526 21.245 0.001	-0.810 4.581 19.389 2.354 10.810 2.258 16.696 102.128	0.418 0.000 0.000 0.019 0.000 0.024 0.000 0.000	-14.188 11.772 214.949 1.489 91.282 2.240 313.073 0.147	5.890 29.380 263.297 16.305 131.715 31.742 396.360 0.153
Omnibus: Prob(Omnibus): Skew: Kurtosis:	13665.171 0.000 3.264 84.342	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			 0.315 44.251 0.00 58e+04	

1. Supply Chain Uncertainty and Risk Management:

Environmental controversies create supply chain doubts, leading to higher raw material stockpiles.

- 2. Regulatory Compliance: Stricter regulations compel companies to keep larger raw material inventories to meet compliance requirements.
- 3. Reputation Management: Companies build trust by sourcing eco-friendly materials, necessitating increased raw material stockpiles.

News Articles

downsides.

For manufacturers, there is concern that the shifting economic environment might lead to unwanted high inventories. While carrying more inventory helps soften the impact of supply disruptions, high inventories bring costs of their own. Storing extra inventories can be costly—firms need warehouse space, as well as the transport and labor to move their excess goods. Once stored, firms may need to lower prices in the future to offload excess goods.

The ISM New Orders Index contracted in July for a second month in a row. Still, long lead times for key products remain an issue, meaning that manufacturers, like retailers, remain in the uneasy position of worrying about inventories both above and below desired levels.

Importers increase inventories after the pandemic

We first show that before the pandemic, relative to firms that purchase inputs only domestically, importing firms tend to have higher inventory ratios (inventories over sales) and stocks in materials and supplies, work-in-process (intermediate goods), and finished goods, even controlling for firm size. While this relationship has been documented by Alessandria et al. (2010) for Chilean firms, we show that it is also present for Japanese manufacturing firms.

Understanding the Analysis through Dashboards <u>Tableau Link</u>

News Articles

оиоосучень ничеопрацон течешей имь сонинали ани соньтог сичионных неращимно

boost a company's worth when it is situated in a location with better government relations,

less dependency on natural resources, and stronger enforcement. The analysis concludes that there is no conflict between the "pursuit of profit" and the "benefit to society" under command-and-control environmental management. Therefore, governments should advise and support businesses in the areas of the environment, society, and governance; enhance the quality of information disclosed; create differentiated enforcement standards to ensure equity in the costs of environmental regulatory compliance for businesses; and

https://www.bakerinstitute.org/research/closing-loop-worlds-fastest-growing-waste-stream-electronics

and clang costs as the major driver, many os communices are similaring or ciminating kero

side recycling. Here we show that when recycling commodity markets were most lucrative in 2011, net US recycling costs were as little as US\$3 per household annually, and when markets reached a minimum (in 2018–2020), the annual recycling-programme costs ranged from US\$34 to US\$42 per household. This investment offsets the greenhouse gas emissions from

Key Takeaways

- Quality and Financial Impact: Companies abiding by product quality measures often tend to enjoy higher ROA gradually.
- 2. **Financial Benefits of Environmental Sustainability:** Initiatives like recycling and eco-friendly packaging correlate with higher revenues, emphasizing the financial advantages of environmental responsibility.
- 3. **Environmental Controversies and Inventory Management:** Companies facing environmental controversies tend to maintain larger raw material inventories, possibly due to supply chain uncertainties and regulatory compliance, underscoring the need for integrating environmental considerations into inventory management strategies.

Challenges

- 1. Majority of Missing Values: Incomplete data, impacting the robustness of statistical models and analyses.
- Making Sense of Statistical Significance in the Maze of Multicollinearity Challenges
- 3. Data set constraints: Our scope and depth of the analysis

Business Aspect

- Regulatory Compliance and Risk Management: With increasing global attention on climate change and environmental degradation, companies face heightened regulatory pressures. Understanding how environmental policies impact financial metrics can guide strategies that preemptively manage these risks.
- Consumer and Investor Preferences: Modern consumers and investors are progressively prioritizing sustainability. Companies leading in environmental stewardship are likely to attract more investments and loyal customers, directly impacting their financial health.
- Operational Efficiencies: Effective management of resources, including waste reduction and energy
 efficiency, often leads to cost savings and improved asset utilization, as evidenced by metrics such as asset
 turnover and inventory levels in our dataset.

Not all rules are meant to be broken!!!

Thank you!

