A spelling correction model for end-to-end speech recognition

Jinxi Guo, Tara N.Sainath, Ron J. Weiss

2020 IEEE International Conference on Acoustics, Speech, and Signal Processing

Contents

 논문 선정 이유)
 Review	
 논문 시연	
 논문의 한계	
 향후 연구계획	

논문 선정 이유

■ 논문 선정 이유

- End-to-End 음성인식 모델은 음성 신호를 직접 입력 받음
 - → 입력 데이터의 품질에 많은 영향을 받음
- 음성인식 교정 분야에서 영어를 제외한 다른 언어에 대한 연구 부재

Abstract

- 기존 연구의 한계
 - End-to-End 음성인식 모델
 - → 데이터가 적어 드물게 나타나는 단어에 대한 처리가 어려움
 - 사전학습된 RNN-LM과 cold · shallow fusion을 수행
 - → 음성인식의 결과에서 생성된 단어를 고려하기 어려움

■ 제안 방법론

- STT → TTS → STT 방법으로 데이터 생성
 (신경망 기반 기계번역 분야에서 사용되는 backtranslation 응용)
- Spelling Correction model, RNN-LM, Recognition model과 shallow fusion

Baseline recognition model

(Very deep convolutional networks for end-to-end speech recognition)

- Methodology(External LM)
 - 학습된 RNN-LM과 shallow fusion수행
 - 외부 Language model을 통해 가장 높은 확률의 토큰 sequence 생성

- Methodology(Spelling Correction)
 - Recognition Model에서 생성된 오류를 참조하기 위한 모델 학습

- Methodology(Spelling Correction)
 - Spell Correction model의 특징
 - ✓ Residual Connection
 - ✓ Layer Normalization Per-gate
 - ✓ Multi-head additive attention
 - ✓ LAS model의 결과 n-best lists를 모두 학습 데이터로 이용해 LAS 모델의 오류 분포를 충분히 고려

Inference

• 최적의 결과 생성을 위한 수식

$$A^* = \underset{A}{\operatorname{argmax}} \lambda_{LAS} * p_i + \lambda_{SC} * q_{ij} + \lambda_{LM} * r_{ij}$$

- ▶ A*: 최적의 결과
- \triangleright λ_{LAS} , λ_{SC} , λ_{LM} : LAS, SC, LM에서 생성된 결과를 고려하기 위한 각각의 가중치
- $ightharpoonup p_i$: LAS 통해 생성된 단위 token의 확률 분포
- ➤ q_{ii}: Spelling Correction을 통해 생성된 단위 token의 확률 분포
- $ightharpoonup r_{ij}$: Language Model을 통해 생성된 단위 token의 확률 분포

• 실험 데이터 및 결과

- ➤ LibriSpeech 960 hours["Clean"]
- ➤ STT-TTS-STT (backtranslation) 에서 multi-style training을 통해 데이터 증폭
- ➤ STT에서 beam size를 8로 지정

System	Dev-clean	Test-clean
LAS	5.80	6.03
LAS→LM(8)	4.56	4.72
LAS-TTS	5.68	5.85
LAS-TTS→LM(8)	4.45	4.52
LAS→SC(1)	5.04	5.08
$LAS \rightarrow SC(8) \rightarrow LM(64)$	4.20	4.33
LAS→SC-MTR(1)	4.87	4.91
LAS→SC-MTF(8) →LM(64)	4.12	4.2

구현

- 데이터
 - 1. BBC 뉴스 데이터
 - 2. Kaggle 뉴스 기사 데이터
- Hyper-Parameter
 - 1. Optimizer : Adam
 - 2. Learning rate: warm up
 - 3. Dropout: 0.2
 - 4. Embedding: Glove(256)

논문의 한계

- 논문의 한계점
 - LSTM기반의 모델을 겹겹이 쌓은 구조
 - ▶ 학습 시간 및 처리시간 ↑
 - 복잡한 모델 구조로 실제로 상용화 하거나 모델을 학습시키는데 제한적
 - ▶ 학습데이터↑
 - 다양한 음성인식 모델의 오류를 학습하지 못하는 Spelling Correction Model
 - ▶ 음성인식 모델의 오류만 고려

향후 연구계획

■ 향후 연구계획

- Transformer 기반의 spell correction 모델 생성
- 한국어와 같은 low resource 언어에서도 학습이 가능한 비교적 간단한 형태의 모델
- 음성신호의 특징이 고려되어 다양한 음성인식 모델에서 적용이 가능한 모델 생성

THANK YOU