Created On 7/10/2015

Completed No

Passed	Blocked	Untested	Retest	Failed
100% (4/4)	0% (0/4)	0% (0/4)	0% (0/4)	0% (0/4)

1. Third Test on Convolution

R3: Test Run 7/10/2015

Convolution is a simple mathematical operation which is fundamental to many common image processing operators. Convolution provides a way of `multiplying together' two arrays of numbers, generally of different sizes, but of the same dimensionality, to produce a third array of numbers of the same dimensionality. This can be used in image processing to implement operators whose output pixel values are simple linear combinations of certain input pixel values.

To test for convolution of one input image with the kernel image to show the result in color of the kernel image.

T19: Oepn GUI & define the convolution step

Status	Type	Priority	Estimate	
Passed	Functional	Critical	None	
References None				

Preconditions

Master branch should not have any errors before performing the functionality test

Steps

- 1) Open the GUI
- 2) create step 1 & name it as "convolution".
- 3) choose the module as image processing with convolution
- 4) set the value of delta as "-500"
- E) input from stone kernel 0. image

Expected Result	

No error in the log window

Results

Passed works fine

By a s. 7/10/2015 1:47 PM

Elapsed 1s

T20: set up the image & kernel steps

Status	Туре	Priority	Estimate
Passed	Functional	Critical	None

References

None

Preconditions

C4

Steps

- 1) Create a new step & name it as image
- 2) set the I/O module as loadimage
- 3) Set the parameters in the filename as input.jpg
- 4) Create a new step & name it as kernel
- 5) set the I/O module as loadimage
- 6) Set the parameters in the filename as kernel.png & mode as grayscale

Expected Result

No error in the log window

Results

Passed

works fine

By **a s.** 7/10/2015 1:47 PM

Elapsed 3s

T21: set up result

Preconditions

C5

Steps

- 1) create the step & name it as result
- 2) set the module I/O with storeimage & filename as output.png 3) set the input steps from convolution & output to image

Expected Result

No error in the log window

Results

works fine Passed By **a s.** 7/10/2015 1:47 PM Elapsed 1s

T22: set up show image, kernel, result

Status	Type	Priority	Estimate	
Passed	Functional	Critical	None	
References None				

Preconditions

C6

Steps

- 1) Create the step show image
- 2) set the module I/O with showImage
- 3) inputs from step image and output name as image
- 4) create the step show kernel
- 5) set the module I/O with showImage
- 6) inputs from step kernel and output name as kernel
- 7) create the step show result
- 8) set the I/O module with showImage
- 9) input from step convolution and output name as image

Expected Result

Input image

show result

graph

