

Arnaud Lheureux

Cloud Chief Security Officer APAC Office of the CTO One Commercial Partner Twitter: @arnaudLheureux

DevOps: The Three Stage Conversation

DevOps = **People** + **Process** + **Tools**

Infrastructure as Code with Terraform?

- ✓ Reproducible Environments
- ✓ Automation CI/ CD
- ✓ Trackable GitHub
- ✓ Language HCL
- ✓ Workflow
- ✓ Providers

➤ Apply same config across clouds

Why people love Terraform?

- Clean and easy code to write and maintain
- Fully declarative configuration
- Version control on infra
- Implicit dependencies management explicit can be forced
- Ecosystem of providers and skilled personnel

Azure Provider

```
Authentication
Azure CLI
Service Principal
Azure Managed Identities
```

Arguments

```
provider "azurerm" {
    subscription_id = "{My Subscription ID}"
    client_id = "{My Service Principle ID}"
    client_secret = "{My Service Principle Password}"
    tenant_id = "{My Tenant ID}"
}
```

Environment Variables

Resources & Data Sources

Azure Resources & Datasources

```
# Configure the Azure Provider
provider "azurerm" { }
# Create a resource group
resource "azurerm_resource_group" "network" {
          "production"
 location = "West US"
# Create a virtual network within the resource group
resource "azurerm_virtual_network" "network" {
                     = "production-network"
 name
 address_space
                  ["10.0.0.0/16"]
                     "${azurerm_resource_group.network.location}"
 location
 resource_group_name = "${azurerm_resource_group.network.name}"
  subnet {
                  "subnet1"
   address_prefix = "10.0.1.0/24"
  subnet {
                  "subnet2"
   address_prefix = "10.0.2.0/24"
  subnet {
   name
                  "subnet3"
   address prefix = "10.0.3.0/24"
```

Provisioning for Azure laaS

Compute (VMSS, Disk, Image, Snapshot, ...)
Networking (Vnet, LB, DNS, ...)
Azure Active Directory
Database (MySQL, PostgreSQL, SQL)
Monitoring
Storage (Storage Account, Blob, Share, ...)

Provisioning for Azure PaaS

Containers (AKS, ACI)

Web Apps

CosmosDB

Data Lake

Logic Apps

KeyVault

...

Catch-All

ARM Template

Assembly

Cloud Shell

Terraform integration Editor with Terraform Syntax Highlighting

Visual Studio Code

Terraform extension

Azure Terraform extension

```
V 0 ? @ D C
Bash
 FILES
                                                           resource "azurerm_resource_group" "core"
 + git
                                                                                                   = "${var.loc}"
                                                                location
                                                                                                   = "S{var tags}"
   core.tf
                                                            resource "azurerm_public_ip" "vpnGatewayPublicIp" {
   keyvaults.#

    "vpnGatewayPublicIp"

   LICENSE
                                                               public_ip_address_allocation
                                                                                                    = "dynamic"
   negs.tf
                                                               resource_group_name
                                                                                                   # "${azurerm_resource_group.core.name}"
   README.md
                                                               location
                                                                                                    = "${azurerm_resource_group.core.location}"
                                                                                                    # ${azurerm_resource_group.core.tags}
   terraform tfstate backup
   terraform.tfvars
                                                            resource "azurerm_virtual_network" "core" {
   variables.tf
                                                                                                    = "core"
   webapps.tf
                                                                address_space
                                                                                                   = ["18.8.8.8/16"]
                                                                                                   = ["1.1.1.1","1.0.0.1"]
                                                               dns_servers
                                                               resource_group_name
                                                                                                   = "${azurerm_resource_group.core.name}"
                                                               location
                                                                                                    = "${azurerm_resource_group.core.location}
                                                                                                    = "${azurerm_resource_group.core.tags}"
                                                            resource "azurerm_subnet" "GatewaySubnet" {
                                                                                                    "GatewaySubnet"
                                                               address_prefix
                                                                                                   = "10.0.0.0/24"
                                                               resource_group_name
                                                                                                   " ${azurerm_resource_group.core.name}"
                                                               virtual network name
                                                                                                    = "${azurerm_virtual_network.core.name}"
                                                            resource "azurerm_subnet" "training" {
                                                                                                   = "training"
                                                                                                   m "10.0.1.0/24"
                                                                address_prefix
mark@Azure:-/clouddrive/my_terraform_sandbox$ terraform -v
Terraform v0.11.8
+ provider.azurerm v1.13.0
```

provider.random v2.0.0

mark@Azure:-/clouddrive/my terraform sandbox\$

Demo 1 Authoring

Language fundamentals

Variables

 Values can be supplied as a .tfvars file containing simple key/value pairs, env variables, or command parameters.

Functions

- String and math (all the usual)
- Count simple method for deploying multiple resources
- Conditional "\${var.env == "production" ? var.prod_subnet : var.dev_subnet}"
- CIDR

Provisioners

local-exec, remote-exec, file

```
module "vaultstorage" {
    source = "./modules/storage/account"

    name = "${var.vault_storage_account_name}"
    resource_group_name = "${azurerm_resource_group.storage_rg.name}"
    location = "${azurerm_resource_group.storage_rg.location}"

    tags {
        Application = "Vault"
        Environment = "SS-Prod"
        Category = "Storage Account"
    }
}
```

Workflow

Demo 2 Workflow

State

Compare configuration to current

- Responsible for mapping "azure_virtual_machine" "vm" to "/subscriptions/dcf628c7-fc9d-4e40-af2c-
- 5c963345a237/resourceGroups/BDIterraformdemo/providers/Microsoft.Compute/virtualMachines/BDIvm-vm"
- Tracks dependencies between resources
 - Knows that if the VM is deleted, to also delete the Disk(s)
- Provides the ability to pass in previous deployments as parameters

Develop plan

Local - default

terraform.tfstate

Show

Import

Collaboration

Workspaces

Multiple deployments with common backend and separate state

Backends

Partial Configurations

Interactive

File (.tfvars)

Command-line

Standard backends

AzureRM (Blob storage), Artifactory, Consul

Enhanced backend

Terraform Enterprise

Azurerm backend

Standard Backend with state locking & consistency checking Azure Storage (Blob)

remote-state.tf

terraform { | backend "azurerm" {}

.backend.tfvars

```
storage_account_name = "tfbackend4mcg"
container_name = "tfstate"
key = "sandbox.terraform.tfstate"
access_key = "
```

Demo 3 State

Abstraction

Modules

Modules

Reusable template code

•Container of resources that are used together

```
resource module "MyApp-Network-Azure"
   name
                                = "Azure/network/azurerm"
            source
                                                            ne}"
   resi
            vnet_name
                                = "nework1"
   add
            location
                                = "westus"
   loci
            tags
   tag:
                environment
                                = "dev"
                                = "it"
                costcenter
```


Demo 4 Modules

Developer Hub for Terraform

http://aka.ms/tfhub

- https://docs.microsoft.com/az ure/Terraform/
- The best place to find technical guidance for Terraform on Azure

Up next:

Azure Landing Zones Using Terraform

Thanks for your attention!

Arnaud Lheureux, CISSP
Cloud Security Officer for APAC Partners
https://aka.ms/arnaud

Twitter: @arnaudLheureux

