Tracking Environmental Change through the Data Resources of the Bird-Monitoring Community

Mirek Riedewald, Rich Caruana, Daniel Fink, Wesley M. Hochachka, Steve Kelling, Art Munson, Ben Shaby, Daria Sorokina

Cornell University, Ithaca, NY

Our Vision

Understand ecological processes at the continent scale.

<u>Examples:</u> Where, how, and why are bird populations changing? Which features of the environment are the most important ones and how do they interact?

Traditional approach: Hypothesis, design study, collect data, test hypothesis

- -Not feasible to collect data for large-scale analysis
- -System complexity: Limited ability to come up with relevant hypothesis

Our approach: Develop novel techniques for mining observational data

Main idea: Find interesting patterns automatically, use them for hypothesis generation Advantages: (1) Large amounts of observational data already available, (2) Might find surprising patterns that lead to new discovery

Challenges:

- -Is observational data useful for deriving knowledge at all? We believe the answer is YES!
- -Need novel methods to improve accuracy and confidence of results from observational data
 - -Discovery of biological and ecological patterns, include domain knowledge
- -Need to handle high-dimensional data from various protocols: Computational cost, protocol bias, observer bias, noise, missing values etc.

Massive Data Collection and Sharing

Many partner organizations contribute data, for example:

Current data resources:

- -37 million observations
- -200,000 locations
- -Time period: 1900 to 2007
- -2266 species and sub-species
- -1000s of variables (habitat, observer effort, land cover, climate, weather, human demographics)
- -Growing rapidly: Millions of new observations every year, more variables from GIS data

Promising Data Mining Results

Detecting interactions between variables

Statistical interaction = non-additive effects among two or more variables in a function

-F $(x_1,...,x_n)$ shows no interaction between x_i and x_j when

 $F(x_1,x_2,...x_n) = G(x_1,...,x_{i-1},x_{i+1},...,x_n) + H(x_1,...,x_{j-1},x_{j+1},...,x_n)$

(G does not depend on x_i , H does not depend on x_j) -Example: $F(x_1,x_2,x_3) = \sin(x_1+x_2) + x_2x_3$

-x1, x2 interact; x2, x3 interact; x1, x3 do not interact

New interaction detection approach:

- 1. Build a model from the data (no restrictions).
- 2. Build a restricted model this time do not allow interaction of interest.
- 3. Compare their predictive performance.
 - -If restricted model as good as unrestricted no interaction
 - -If restricted model significantly worse interaction

Discovered interaction: (year, latitude) for house finch

-Corresponds to an eye-disease that affected house finches during the decade covered by the dataset

Novel regression technique—Grove of Trees [Best student paper at ECML 2007]

Originally developed as tool for interaction detection procedure

-Ensemble of trees: combines additive models and bagging

-Main features: Large trees and additive structure

-Outperforms state-of-the-art ensembles like stochastic gradient boosting

Bagged Grove: (1/N)· +...+ (1/N)· +...+ (1/N)· +...+ (1/N)·

Training a Grove: $\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$

Next Steps

- -Combining statistical techniques with data mining to model domain knowledge
- -Efficient search for interesting patterns among trend plots
- -Detecting multi-way interactions
- -Standard observation protocol mapping to combine data from different sources

