2D 영상 기반 신체 측정 시스템 조사

산학 캡스톤 연구

한동대학교 기계제어공학부 임순호 |지도교수: 김영근

목차

table of contents

1 프로젝트 목표

2 현재 상용 시스템

3 신체 측정 방법 및 채택

- 4 Al 모델 시험 & 시각화 방법
- 프로젝트 세부 목표및 진행계획

신체를 측정하여 <u>"신체 스펙"</u>을 한눈에 보기 쉽고 이해하기 쉬운 시스템

Part 2 **현재 상용 시스템** – 3D 스캔

제품 이름	Fit3d	Styku	PMT innovation (shape care)	
사용 데이터	3D	3D	3D	
기능	신체 측정 BMI 3D 재구성 데이터 저장	BMI 3D 재구성 3D 재구성 데이터 저장		
하드웨어 구성	BMI 디스플레이 RGBD(3) 턴테이블	RGBD(2) 턴테이블	BMI LED 조명 RGBD(3) 턴테이블	
측정 시간	측정시간 40[sec]		-	
정확도	정확도 Slightly better than Styku		-	
가격	12스캔: \$500 구매: 1000만원	1스캔: \$59 구매: 870만원	-	

Fit3d

PMT innovation

Part 2 **현재 상용 시스템** – 2D 영상

제품 이름	Abody.ai	Abody.ai 3D Look			
사용 데이터	2D	2D	2D		
기능	신체 측정	신체측정 신체 측정 3D 재구성 버추얼 옷			
측정 기술	신체 측정 AI	신체 측정 AI	신체 측정 AI		
측정 시간	20[sec] (실험적)	45[sec]	-		
정확도	약3.2[cm] (실측)	-	0.5[cm]		
가격	free	\$499/달 (100번 한정)	Paid		

3D Look

esenca

Abody.ai

Part 2 현재 상용 시스템 – 2D 영상

Abody.ai – self test

신체 부위	실측[cm]	프로그램[cm]	절대오차[cm]
Neck circ.	38.4	41.6	3.2
Chest circ.	100.6	99.9	0.7
Waist circ.	86.8	86.22	0.58
Stomach circ.	90.5	92.02	1.52
Hips circ.	101	88.06	12.94
Thigh circ.	63	63.86	0.86
Knee circ.	39	39.79	0.79
Leg	100	99.53	0.07
Bicep circ.	36.5	36.15	0.1
Wrist circ.	17.9	18.23	0.33
Arm	56	55.53	0.47
Shoulder	46	43.41	2.59

측정 데이터 비교

최대오차: 12.94[cm]

MAE: 2[cm]

Part 3 신체 측정 방법

측정 방법	3D 스캔	2D 알고리즘	Al
사용 데이터	3D point cloud	2D	2D
측정 기술	2D convex hull Alpha shape Concave hull Quickhull	Keypoint	Deep learning (CNN)

신체 측정 방법

2D 측정방법	알고리즘 기반 신체 측정 (1)	AI 모델 신체 측정 (2)
정확성(MAE) - 논문	4.87[mm]	4.64[mm]
장점	설명가능한 프로그램	간단하게 구축이 가능
단점	Keypoint 추출어려움 둘레 에러 발생	학습 데이터 학습 시간

2D 측정 방법 비교

2D 알고리즘

Part 3 신체 측정 방법 – 2D vs 3D

							Cir	cumfer	ence						Length		Breadth	Height]
		From	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	O	P	Mean
	Smith et al. [149]	[149]	14.2	11.4	16.2	25.0	15.2	5.5	10.4	7.9	11.1	10.4	6.3	11.0	6.0	8.0	8.4	7.9	10.9
	Yan et al. [173]	[173]	11.6	12.3	26.1	28.7	22.6	6.9	13.0	7.8	18.2	11.7	7.8	13.9	9.5	11.2	7.6	20.1	14.3
	Dibra et al. 17 [45]	[173]	10.8	13.1	28.3	38.6	26.0	6.5	13.4	8.0	18.5	11.8	7.9	13.4	6.9	8.7	7.7	11.8	14.5
21	Boisvert et al. [25]	[25]	11.0	27.0	21.0	14.0	42.0	21.0	23.0	13.0	33.0	12.0	14.0	20.0	20.0	34.0	30.0	9.0	21.5
21	Chen et al. [34]	[149]	23.0	27.0	18.0	37.0	15.0	24.0	59.0	76.0	19.0	16.0	28.0	52.0	53.0	9.0	12.0	21.0	30.6
	Kanazawa et al. [80]	[173]	16.3	27.2	68.3	85.3	62.8	14.3	35.6	16.7	39.3	21.4	13.6	28.6	45.3	37.2	21.8	96.5	39.4
	Xi et al. [170]	[149]	50.0	59.0	36.0	55.0	23.0	56.0	146.0	182.0	35.0	33.0	61.0	119.0	109.0	19.0	24.0	49.0	66.0
	Bogo et al. [23]*	[173]	28.1	24.4	74.5	72.8	99.1	11.9	28.4	25.9	51.3	28.4	28.8	57.8	150.2	219.1	51.9	398.5	84.4
	Yan et al. [172] [†]	[172]	-	9.1	14.3	12.4	8.9	4.5	5.5	-	7.9	3.0	10.6	-	13.2	-	-	-	8.9
31	Tsoli et al. [159]	[159]	5.9	15.8	12.7	-	12.4	-	-	-	-	-	6.2	-	10.1	-	-	7.5	10.1
31	Hasler et al. [64]	[159]	7.5	17.0	13.0	-	16.2	-	-	-	-	-	6.6	-	10.4	-	-	10.2	11.5
-	Anthroscan [7]	[159]	7.4	21.1	12.4		7.5		-				7.6		11.7			5.6	10.4
	AE [58]	[58]	± 5	± 11	± 15	± 12	± 12	-	-	-	± 6	-	± 4	-	-	-	± 8	± 10	\pm 9.2

Measurements Head C Neck base C Chest C Waist C Hip C Wrist C Bicep C Forearm C Thigh C Calf C Ankle C Shoulder-crotch L Shoulder-wrist L Inside leg L Shoulder B Height

정확도: 3D > 2D

가격 효율: 3D << 2D

"2D 기술 채택"

Part 4 Al 모델 시험 – Conv_BoDiEs

Body part	Actual	Prediction	MAE [mm]
chest circ	97.47	97.33	9.3
waist circ	84.56	83.57	8.8
pelvis circ	99.24	98.75	9.2
neck circ	38.61	39.38	5.8
bicep circ	27.19	27.43	4.6
thigh circ	48.74	49.19	8.4
knee circ	36.97	37.03	5.3
arm length	54.18	54.04	2.5
leg length	79.19	79.56	3.7
calf length	41.19	41.46	2.4
head circ	56.97	56.76	4.1
wrist circ	16.61	16.69	3.0
arm span	183.77	183.11	4.4
shoulders width	38.81	38.61	3.1
torso length	50.07	50.60	4.4
inner leg	75.31	74.15	8.7
MAE(total)			5.537[mm]

. —			
논문	모넬.	시험	결과

모델	Conv_BoDiEs			
입력	Gray Scale, front image			
출력	16개의 신체 치수 예측 값			
학습 데이터	4만개의 *SMPL 모델을 캡처 한 200x200x1 이미지 (전체 데이터의 80%)			
학습률	10 ⁻⁴			
<u>손</u> 실 함수	$L1 oss$ $(L_1 = \sum_{i=1}^{n} y_i - f(x_i))$			
활성 함수	Relu			
Epoch	300			
정확도 /MAE	4.64[mm] (논문)			

데이터 이미지

논문 기반 모델 학습 및 성능

Part 4 시각화 - SMPL

- ■사용자 직관적인 시스템을 위해 3차원 형상 디스플레이 필요
- ■SMPL 모델을 사용하여 2D 데이터를 3D 데이터로 표현

SMPL(Skinned multi person linear model) 인간의 선형 3D 모델 72개의 pose 파라미터 + 10개의 shape 파라미터

모델	SMPL (선형 모델)
입력	pose parameter: (23,3) - 24개의 조인트 위치 Shape parameter: (10) - 10개의 외형 파라미터
출력	(6890, 3) 3차원 좌표 (24,3) joint location

pose 관절 이름 및 순서
Root (Pelvis)
Left Hip
Right Hip
Spine 1
Left Knee
Right Knee
Spine 2
Left Ankle
Right Ankle

shape 신체 부분 및 순서
전신의 전반적인 크기 및 비율 조정
상체와 하체의 길이 비율 조정
상체의 두께 및 어깨 넓이 조정
하체의 두께 및 허벅지 크기 조정
몸통의 두께 및 복부의 모양 조정

Part 5 프로젝트 세부 목표 및 진행계획

■ 적은 비용으로 개인이 사용할 수 있는 신체 측정 시스템 구축 측정오차: MAE = 4[mm] 이하 시각화 시스템

월	9월 상반기/하반기		10월 상반기/하반기		11월 상반기/하반기	
하드웨어 설계	>->->->	<mark>완료</mark>				
AI 측정 모델	>->->->	>->->->	완료			
SMPL 시각화	>->->->	>->->->	>->->->	완료		
시험 및 개선				<mark>1차, 2차</mark>	3차, 4차	5차,6차

감사합니다