ASTR8150/PHYS8150 Optimization

Fabien Baron

Georgia State University baron@chara.gsu.edu

Fall 2019

Convexity of a set

- In a convex set, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region.
- A set which is hollow or has an indent, for example, a crescent shape, is not convex.

Convexity of a function

- A real-valued function is called is convex if the set of points on or above the graph of the function (epigraph) is a convex set.
- For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. Examples: $f(x) = x^2$ or $f(x) = e^x$
- Jensen's inequality: if X is a convex set and $f: X \to \mathbb{R}$, f is convex if:

$$\forall x_1, x_2 \in X, \forall t \in [0,1]: \quad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

Smoothness of a function

- The smoothness of a function is a property measured by the number of derivatives it has which are continuous. A smooth function is a function that has derivatives of all orders everywhere in its domain.
- The function $f(x) = |x|^k$ is continuous and k times differentiable at all x. But at x = 0 they are not (k + 1) times differentiable.
- The norms ℓ_2 , ℓ_1 and pseudo-norm ℓ_0 are used in regularization. ℓ_2 is convex, differentiable and smooth. ℓ_1 is convex, differentiable but nonsmooth. ℓ_0 is non-convex and nonsmooth.

4 / 23

Fabien Baron (GSU) Optimization Fall 2019

Gradient descent (1)

• Gradient descent is based on the observation that if the multi-variable function $f(\mathbf{x})$ is defined differentiable in a neighborhood of a point $\mathbf{x_0}$, then $F(\mathbf{x})$ decreases "fastest" if one goes from $\mathbf{x_0}$ in the direction of the negative gradient of f at $\mathbf{x_0}$, $-\nabla f(\mathbf{x_0})$.

Gradient descent (2)

It follows that, if

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \nabla f(\mathbf{x}_n) \tag{1}$$

for α small enough, then $f(\mathbf{x_n}) \geq f(\mathbf{x_{n+1}})$. In other words, the term $\alpha \nabla f(\mathbf{x})$ is subtracted from \mathbf{x} because we want to move against the gradient, namely down toward the minimum.

- How can we choose α ?
- The Rosenbrock function $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$. has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

Line search

• A line search strategy is one of two basic iterative approaches to find a local minimum \mathbf{x}^* of an objective function $f: \mathbb{R}^n \to \mathbb{R}$. The other approach is trust region.

Algorithm 1 Line Search

```
▶ Line search
1: procedure LINE SEARCH(f, x)
          k=0. \mathbf{x}_0
                                              ▶ Iteration counter + initial parameter guess
2:
          while \|\nabla f(\mathbf{x}_k)\| > \epsilon do
                                                                                              \triangleright \epsilon = \mathsf{tolerance}
3:
                Descent direction \mathbf{d}_k \triangleright \mathbf{d}_k = -\nabla f(x_k) called steepest descent
4:
                \alpha_k \sim \operatorname{argmin} f(\mathbf{x}_k + \alpha \mathbf{d}_k)
5:
                           \alpha \in \mathbb{R}_{+}
                \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k
6:
                k = k + 1
7:
          end while
8.
9: end procedure
```

Fabien Baron (GSU)

Nonlinear conjugate gradient methods

- Let's pose $\mathbf{g_k} = \nabla f(x_k)$
- \bullet Conjugate directions deviate from the steepest descent $d_k=-g_k$ by attempting moves based on the history of the previous moves
- The descent direction for nonlinear conjugate gradient methods is

$$\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{d}_k, \quad \mathbf{d}_0 = -\mathbf{g}_0$$
 (2)

- \bullet The variation of the gradient is measured by $y_k = g_{k+1} g_k$
- The Conjugate Gradient update parameter β_k can be updated with different formulas

4□ > 4□ > 4 = > 4 = > = 90

8 / 23

Conjugate gradient: convergence

 A comparison of the linear convergence of simple gradient descent with optimal step size (in green) and the superlinear convergence of conjugate gradient (in red) for minimizing a quadratic function.

Nonlinear conjugate gradient methods

$$\beta_k^{HS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
 (1952) in the original (linear) CG paper of Hestenes and Stiefel [59]

$$\beta_k^{FR} = \frac{\|\mathbf{g}_{k+1}\|^2}{\|\mathbf{g}_k\|^2}$$
 (1964) first nonlinear CG method, proposed by Fletcher and Reeves [45]

$$\beta_k^D = \frac{\mathbf{g}_{k+1}^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}{\mathbf{d}_k^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}$$
(1967) proposed by Daniel [39], requires evaluation of the Hessian $\nabla^2 f(\mathbf{x})$

$$\beta_k^{PRP} = \frac{\mathbf{g}_{k+1}^1 \mathbf{y}_k}{\|\mathbf{g}_k\|^2}$$
 (1969) proposed by Polak and Ribière [84] and by Polyak [85]

$$\beta_k^{CD} = \frac{\|\mathbf{g}_{k+1}\|^2}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
 (1987) proposed by Fletcher [44], CD stands for "Conjugate Descent"

$$\beta_k^{LS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
(1991) proposed by Liu and Storey [67]
$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
(1999) proposed by Dai and Yuan [27]

$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_{L}^T \mathbf{y}_k}$$
 (1999) proposed by Dai and Yuan [27]

$$\beta_k^N = \left(\mathbf{y}_k - 2\mathbf{d}_k \frac{\|\mathbf{y}_k\|^2}{\mathbf{d}_1^T \mathbf{y}_k}\right)^T \frac{\mathbf{g}_{k+1}}{\mathbf{d}_1^T \mathbf{y}_k} \quad (2005) \quad \text{proposed by Hager and Zhang [53]}$$

Newton optimization method

Figure: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.

Hessian is used to exploit the curvature information

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$
(3)

 $lpha \in (0,1)$, with lpha = 1 the exact form.

Fabien Baron (GSU) Optimization Fall 2019 11/23

Newton-Raphson root-finding and eccentric anomaly

- Newton optimization method and Newton-Raphson's root finding methods are based on similar principles
- Newton-Raphson: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- Example: the mean anomaly is proportional to time it is an easily measured quantity for an orbiting body. Given the mean anomaly M, find the eccentric anomaly E and the orbital eccentricity e with Kepler's Equation:

$$M = E - e \sin E \tag{4}$$

12 / 23

Fabien Baron (GSU) Optimization Fall 2019

Better than Newton: quasi-Newton methods

- Also known as variable metric methods, they avoid computing the Hessian then its inverse.
- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Davidon-Fletcher-Powell (DFP) algorithms build iteratively approximations of $[\mathbf{H}f(\mathbf{x}_n)]^{-1}$.
- The most successfull is Limited-memory BFGS (L-BFGS) that approximates $[\mathbf{H}f(\mathbf{x}_n)]^{-1}\nabla f(\mathbf{x}_n)$ directly and thus can work on large scale problems (millions of variables).
- There are variants that attempt to deal with non-smooth functions (subgradient and bundle method)
- There are variants that deal with constrained miminization (i.e. bounds on variables or linearly tied variables) such as L-BFGS-B.
 Further refinements led to the VMLM algorithm in OptimPack.

Trust-region method and Levenberg-Marquardt

• Consider the quadratic approximation of function f around x_0 :

$$q(\epsilon) \simeq f(x_0) + \nabla f(x_0)\epsilon + \frac{1}{2}\epsilon^T \nabla^2 f(x_0)\epsilon$$
 (5)

- $q(\epsilon)$ has a close-form mimimum.
- $q(\epsilon)$ remains a good approximation within a given radius, $||e||_2 < r^2$ defines the **trust region** radius r.
- The quadratic approximation predicts a certain reduction in the cost function, Δf_{pred} , which is compared to the true reduction $\Delta f_{\mathrm{actual}} = f(x) f(x+\epsilon)$. By looking at the ratio $\Delta f_{\mathrm{pred}}/\Delta f_{\mathrm{actual}}$ we can estimate the trust-region size at each iteration, jump to the closed-form minimum within the trust region, and iterate.
- The Levenberg-Marquardt algorithm (first published in 1944 by Kenneth Levenberg, rediscovered in 1963 by Donald Marquardt) uses the trust-region approach with conjugate-gradients and Gauss-Newton (Newton optimized for non-linear χ^2). Like conjugate gradient and Newton, these local optimization.

Derivative-free optimization methods

- Derivative-free optimization methods simply do not require gradient information
- Among the most popular local optimizer is Nelder–Mead method (aka downhill simplex method or amoeba method), which moves points of a polytope of n+1 vertices in n-parameter dimensions via reflection, contraction, expansion steps
- Most MCMC optimization methods.
- NLopt library provides mostly derivative-free algorithms, some of them for global optimization.

Constrained minimization: the Lagrangian method

- Constrained minimization is minimization under equality or inequality constrains. Bounded optimization is a special case of constrained optimization where bounds are imposed on parameters (e.g. positivity, or variable within a range). In Bayesian terms, we're imposing a prior.
- A classic example is:

$$(\tilde{x}, \tilde{y}) = \underset{(x,y) \in \mathbb{R}^2}{\operatorname{argmin}} (x+y)$$
 s. t. $x^2 + y^2 = 1$

• We pose $g(x,y) = x^2 + y^2 - 1$ and the Lagrangian is:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot g(x, y)$$

= $x + y + \lambda(x^2 + y^2 - 1)$.

where λ is a Lagrange multiplier.

4 D > 4 D > 4 D > 4 D > 3 D 9 Q Q

Constrained minimization: the Lagrangian method

• The gradient with respect to variables x,y and λ

$$\nabla_{x,y,\lambda} \mathcal{L}(x,y,\lambda) = \left(\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda}\right)$$
$$= \left(1 + 2\lambda x, 1 + 2\lambda y, x^2 + y^2 - 1\right)$$

and therefore:

$$abla_{x,y,\lambda}\mathcal{L}(x,y,\lambda) = 0 \quad \Leftrightarrow \quad \begin{cases} 1 + 2\lambda x = 0 \\ 1 + 2\lambda y = 0 \\ x^2 + y^2 - 1 = 0 \end{cases}$$

• Solution $x=y=-\frac{1}{2\lambda},\ \lambda\neq 0$.. Substituting into the last equation we get $\lambda=\pm\frac{1}{\sqrt{2}}$ which implies that the stationary points of $\mathcal L$ are $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{\sqrt{2}}\right),\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},\frac{1}{\sqrt{2}}\right)$. And since $f\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=\sqrt{2}$ and $f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}$. the solution is found.

Constrained minimization: Half-quadratic splitting (1)

• Let's say we want to minimize:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu \Phi(\mathbf{x})$$

where $\Phi(x)$ is a function such that we wouldn't be able to solve this via Tikhonov. We saw a good example is $\Phi(x) = \ell_1(x)$.

 Splitting methods are methods that split the unconstrained problem into a constrained problem, using two different variables to represent the same one in different functions:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu \Phi(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$
$$= \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu \Phi(\mathbf{z}) + \frac{\rho}{2} \|\mathbf{z} - \mathbf{x}\|_{2}^{2}$$

◆ロト ◆母ト ◆差ト ◆差ト 差 めので

Fabien Baron (GSU) Optimization Fall 2019 18 / 23

Constrained minimization: the two subproblems

• So we now want to minimize:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \mu \Phi(\boldsymbol{z}) + \frac{\rho}{2} \|\boldsymbol{z} - \boldsymbol{x}\|_{2}^{2}$$

- $\frac{\rho}{2} \| \mathbf{z} \mathbf{x} \|_2^2$ is called an augmented term, and ρ the augmented penalty or hyperparameter.
- The half-quadratic splitting method solves iteratively (iteration variable = k) the problem with respect to x, then z:

$$\tilde{\boldsymbol{x}}^{k+1} = \operatorname*{argmin}_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\boldsymbol{z}}^{k} - \boldsymbol{x}\|_{2}^{2}$$
 \boldsymbol{x} sub-problem

$$\tilde{\mathbf{z}}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{\rho}{2} \left\| \mathbf{z} - \tilde{\mathbf{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\mathbf{z})$$

z sub-problem

and then increases ρ from initially low values to higher and higher ones.

Constrained minimization: analytical solutions exist

• Why is this easier than the original problem ?

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\mathbf{z}}^{k} - \mathbf{x}\|_{2}^{2}$$
 \mathbf{x} sub-problem

$$\tilde{\mathbf{z}}^{k+1} = \operatorname*{argmin}_{\mathbf{z}} \frac{\rho}{2} \left\| \mathbf{z} - \tilde{\mathbf{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\mathbf{z})$$
 \mathbf{z} sub-problem

- ullet The ${oldsymbol x}$ sub-problem can be solved by Tikhonov.
- The z sub-problem can be solved analytically for some functions, for which we know the solution of the problem:

$$\operatorname{prox}_{f}(\boldsymbol{z}) = \underset{\boldsymbol{y}}{\operatorname{argmin}} \left(\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{y} \|_{2}^{2} + f(\boldsymbol{y}) \right)$$

• This solution $prox_f(z)$ is the **proximal operator** for the function f. At each point z it finds a close-by local minimum of f.

Fabien Baron (GSU) Optimization Fall 2019 20 / 23

Proximal operator for the ℓ_1 norm and positivity

ullet One can demonstrate that the proximal operator for ℓ_1 norm is:

$$\operatorname{prox}_{\alpha\ell_1}(\boldsymbol{z}) = \underset{\boldsymbol{y}}{\operatorname{argmin}} \, \left(\frac{1}{2} \, \|\boldsymbol{z} - \boldsymbol{y}\|_2^2 + \alpha\ell_1(\boldsymbol{y}) \right) = \operatorname{sign}(\boldsymbol{z}) \cdot \max(\boldsymbol{z} - \alpha, 0)$$

where · is the Hadamard product.

 The proximal operator for positivity is the projection onto the positive set:

$$\operatorname{prox}_{I_{\mathbb{R}^+}}(\boldsymbol{z}) = \operatorname*{argmin}_{\boldsymbol{y} \in \mathbb{R}^{+n}} \left(\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{y} \|_2^2 \right) = \max(\boldsymbol{z}, 0)$$

4□ > 4□ > 4 = > 4 = > = 90

Fabien Baron (GSU) Optimization Fall 2019 21/23

Half-quadratic splitting: beyond the 1:1 change of variable

- Half-quadratic splitting only involves analytical steps: the x sub-problem is solved via Tikhonov and the z sub-problem via proximal operators (provided it is known). Instead of posing z = x, we can also have more complex constrains Az + Bx + c = 0.
- How should we solve the total variation problem, i.e. minimize $\frac{1}{2} \| \mathbf{A} \mathbf{x} \mathbf{b} \|_2^2 + \mu \ell_1(\nabla \mathbf{x}) ?$
- We only know the proximal operator for $\ell_1(z)$ and not for $\ell_1(\nabla z)$. So we should not pose z=x, since we wouldn't know how to solve the z sub-problem. However we can pose $z=\nabla x$, leading to:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} + \mu \ell_{1}(\boldsymbol{z}) + \frac{\rho}{2} \|\boldsymbol{z} - \nabla \boldsymbol{x}\|_{2}^{2}$$

Fabien Baron (GSU) Optimization Fall 2019 22 / 23

Total variation solved via Half-quadratic splitting

$$\mathcal{L}(x, z) = \frac{1}{2} \|Ax - b\|_{2}^{2} + \mu \ell_{1}(z) + \frac{\rho}{2} \|z - \nabla x\|_{2}^{2}$$

• The x sub-problem is:

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\mathbf{z}}^{k} - \nabla \mathbf{x}\|_{2}^{2} \qquad \mathbf{x} \text{ sub-problem}
\Longrightarrow \mathbf{A}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) - \rho \nabla^{\top} (\tilde{\mathbf{z}}^{k} - \nabla \mathbf{x}) = 0
\Longrightarrow \mathbf{x} = (\mathbf{A}^{\top} \mathbf{A} + \rho \nabla^{\top} \nabla)^{-1} (\mathbf{A}^{\top} \mathbf{b} + \rho \nabla^{\top} \tilde{\mathbf{z}}^{k})$$

• The z sub-problem is:

$$\tilde{\mathbf{z}}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \mu \ell_1(\mathbf{z}) + \frac{\rho}{2} \left\| \mathbf{z} - \nabla \tilde{\mathbf{x}}^{k+1} \right\|_2^2 \qquad \mathbf{z} \text{ sub-problem}$$

$$= \operatorname{sign}(\mathbf{z_0}) \cdot \max(\mathbf{z_0} - \alpha, 0) \quad \text{with } \mathbf{z_0} = \nabla \tilde{\mathbf{x}}^{k+1} \text{ and } \alpha = \frac{\mu}{\rho}$$

Fabien Baron (GSU) Optimization Fall 2019 23 / 23