

Lecture 2

Package Types and Considerations

Reminders & Announcements

 I'll be traveling internationally from the evening of the 27th to the evening of the 31st and may be delayed in responding to emails. I will teach the lectures virtually next week

Office hours:

- Wednesday, Jan. 29th, 3:00pm 4:00pm ET
- See syllabus and Canvas Calendar for Zoom link
- Quiz #1 next week
 - Canvas Quizzes
 - 5 multiple choice questions
 - Conceptual, no calculations
 - Open book/note, individual work

Lecture 1 Summary

- 1. What is electronics packaging?
 - Interconnecting, powering, cooling and protecting the system components
- 2. What are the four functions of a package?
 - Signal and power distribution and integrity, thermal management, protection
- 3. What are key packaging considerations?
 - Electrical performance, thermal, reliability, size, cost, ...
- 4. What are some components in an electronics package?
 - Die attach, substrate, interconnect, terminals, encapsulant

Ceramic and Plastic Packages

Package Type	Advantages	Disadvantages	
Ceramic	 Hermetic* High-temperature Low CTE** compatible with semiconductor devices Good thermal conductivity 	HeavyBrittleExpensiveLow-volume manufacturing	
Plastic	LightweightCheapHigh-volume manufacturing	 Moisture sensitive Not for high-temperature applications Low thermal conductivity 	

^{*}Hermetic – a seal or closure that is airtight.

^{**}CTE = Coefficient of Thermal Expansion

Semiconductor Packaging Schemes

Semiconductor Packaging Schemes

Bonded to the surface of a substrate (e.g., PCB, PWB).

Has pins that are inserted through holes in a printed circuit board (PCB) or printed wiring board (PWB).

Through-Hole vs Surface Mount

	Through-Hole	Surface Mount (SMT/SMD)
Strengths	ManufacturabilityTestabilityThermalMechanical	Density/sizeElectrical performanceAssembly speed and automation

Semiconductor Packaging Schemes

Inside the Package

Dual in Package (DIP)

Pin Grid Array (PGA)

Semiconductor Packaging Schemes

Inside the Package

WIRE BOND

FLIP CHIP

There are Many Types of Packages...

Material	Dual in-line Package (DIP)	Quad Flat J-Lead (QFJ)	Quad Flat No Lead (QFN)	Transistor Outline (TO-3P)
Ceramic	C-DIP	C-QFJ	C-QFN	
Plastic		MC68HC717E9CFN3 SC47M QQTU9348	CMD241	

13

Ceramic:

- Hermetic
- High-temperature
- High-reliability

Plastic:

- Low-cost
- High-volume manufacturing
- Lightweight

Multi-Chip Module (MCM)

- An MCM is a single package containing more than one chip.
- What are the advantages of an MCM over multiple SCMs?
 - Smaller size and weight
 - Better performance (shorter interconnects)
 - Lower cost

Source: Advanced Packaging Systems/ICE, "Roadmaps of Packaging Technology"

6208

Multi-Chip Module (MCM)

- An MCM is a single package containing more than one chip.
- What are the advantages of an MCM over multiple SCMs?
 - Smaller size and weight
 - Better performance (shorter interconnects)
 - Lower cost

Source: Rockwell/ICE, "Roadmaps of Packaging Technology"

6204

Power Multi-Chip Module

Power Multi-Chip Module

Systems Packaging

Packaging Evolution: Package Types & I/O Density

Trends:

Increasing packaging I/O density

DIP= dual in line

QFP= quad flat pack

BGA= ball grid array

CSP= chip scale package

WLP= wafer level package

SIP= system in package

Packaging Evolution: Package Size Efficiency

Trends:

- Increasing packaging I/O density
- Increasing packaging efficiency

PGA= pin grid array

QFP= quad flat pack

BGA= ball grid array

CSP= chip scale package

WLP= wafer level package

SIP= system in package

IC packaging efficiency of various single chip packages.

"Fundamentals of MSP" -Rao Tummala

Packaging Evolution: Interconnect & Lead Pitch

Trends:

- Increasing packaging I/O density
- 2. Increasing packaging efficiency
- 3. Decreasing interconnect& lead pitch

DIP= dual in line

QFP= quad flat pack

BGA= ball grid array

CSP= chip scale package

WLP= wafer level package

SIP= system in package

Packaging Evolution: Interconnect & Lead Pitch

Trends:

- Increasing packaging I/O density
- Increasing packaging efficiency
- 3. Decreasing interconnect& lead pitch

DIP= dual in line

QFP= quad flat pack

BGA= ball grid array

CSP= chip scale package

WLP= wafer level package

SIP= system in package

Packaging Evolution: Interconnect & Lead Pitch

- Pitch center-to-center distance between adjacent interconnects, I/Os, or leads
- The I/O pitch is directly related to the I/O density – the finer the pitch, the higher the I/O density
- Reducing interconnect pitch has been key to achieving <u>higher</u> <u>densities</u> and <u>minimizing electronic</u> <u>systems</u>

Packaging Considerations

- Electrical
- Thermal
- Mechanical
- Reliability
- Manufacturability

- Testability / Characterization
- Size
- Weight
- Environmental/safety
- Cost
- •

Electrical

- Objectives
 - Signal distribution & integrity
 - Power distribution & integrity
- Industry trends
 - Increasing switching speeds
 - Decreasing noise margins
 - Increasing I/O density

- Critical components
 - Interconnects
 - Terminals/leads

Electrical

Challenges

- Parasitic capacitance, inductance, and resistance
 - Delays, slow speed, distortion, noise, voltage drop, reflection
- Dielectric loss
- Electrical insulation

Solutions

- Short signal lengths
- Separated signal and power
- High electrical conductivity
- Low dielectric constant

Consequences

- Increased heat flux
- Increased thermal resistance

Impact of Parasitic Inductance and Capacitance

10 MHz square signal with 5 ns fall and rise times

Pin inductance 50 nH, parasitic capacitance 50 pF

Impact of Parasitic Resistance

10 MHz square signal with 5 ns fall and rise times

Pin inductance 50 nH, parasitic capacitance 50 pF

Thermal

Objective

- Dissipate heat to keep the chip temperature below the maximum
- Industry trends
 - Decreasing size
 - Increasing power
- Critical components
 - Die attach
 - Substrate
 - Molding

IC packaging efficiency of various single chip packages.

"Fundamentals of MSP" -Rao Tummala

29

Thermal

30

Challenges

- Thermal resistance
- Heat flux
- Heat spreading
- Thermal coupling

Solutions

- Low defects (e.g., voids)
- High thermal conductivity materials
- Increase spacing between chips

Consequences

- Higher cost
- Higher dielectric constant
- Increased size
- Reduced speed

Thermal Resistances

 θ = thermal resistance (R_{th})

j = junction (chip temperature)

c = case of package

31

Thermal Management

Thermal Management

Mechanical

- Objectives
 - Protection
 - Support
 - Durability
- Industry trends
 - Harsh environment
 - Increased density
- Critical components
 - Substrate
 - Molding
 - Terminals

- Challenges
 - Vibration
 - Bending
 - Fracture
- Solutions
 - Materials
 - Geometry
- Consequences
 - Cost
 - Performance
 - Thermal and electrical performance

Mechanical Stress due to Lead Bending

Reliability

- Objective
 - Sufficient product lifetime
- Industry trends
 - More components
 - Increased integration
 - Harsh environment
 - Longer lifetime
- Critical components
 - All (chip attach, substrate, interconnect, molding, terminals)

"Moore's Law Meets It's Match" - Tummala

Reliability

- Challenges
 - Integration of different materials
 - Coefficient of thermal expansion (CTE)
 - Elastic modulus
 - High temperature
 - Temperature cycles
 - Humidity

- Solutions
 - Design for reliability
 - CTE matching
 - Increase cooling
 - Accelerated life testing

- Consequences
 - Lower performance
 - Increased cost
 - Longer design cycle

Interconnect Failures

Wire Bond

→ Lift-Off

Wire Bond

→ Heel Crack

Solder Ball

→ Crack

Thermomechanical stress → degradation → increased electrical resistance → thermal stress → open circuit

Manufacturability

- Objectives
 - Low cost
 - High yield and throughput
 - High volume
- Industry trends
 - Cheaper
 - Faster design cycle times
 - Short life spans
- Critical components
 - All

- Challenges
 - Process control
 - Automation
 - Yield
 - Cycle time
 - Rework
- Solutions
 - Design for manufacturability
 - Statistical process control

Wire Bonding

- One wire bond at a time
- Spacing between bonds limited by size of tool
- Cheap, lots of supporting infrastructure

Testability

Objectives

- Eliminate defective parts
- Verify manufacturing
- Verify new design
- Predict product performance
- Industry trends
 - Increased I/O density
 - Shorter leads
- Critical components
 - Terminals/leads

Testability

- Challenges
 - Lead length
 - Lead pitch
 - Visibility
- Solutions
 - Test sockets

Complex, Interdependent Nature of Packaging

P. Sandborn, M. Vertal, "Analyzing Packaging Trade-Offs During System Design," IEEE Design & Test of Computers, 1998.

Interaction Between Packaging Levels

IC-Package-PCB Co-design

Questions

- What are the advantages of an MCM over multiple SCMs?
- What is package size efficiency?
- Which package has a higher I/O density: 1) DIP or 2) BGA?
- Name an electrical packaging challenge.
- Name a thermal packaging challenge.

Course Topics

- 1. Introduction
- 2. Electrical → Next class (Chapter 2)
- 3. Thermal
- 4. Materials and Processes
- 5. Characterization and Testing
- 6. Reliability and Ruggedness
- 7. Emerging Technologies and Research Topics