Построение доверительных интервалов*

Общий вид закона распр. ген. сов. X	Параметры	Центральная статистика и ее закон распределения	
	μ – неизв., σ – изв. Оценить μ .	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0,1)$	
$N(\mu, \sigma^2)$	μ – неизв., σ – неизв. Оценить μ .	$\frac{\mu - \overline{X}}{S(\vec{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$	
	μ – неизв., σ – неизв. Оценить σ .	$\frac{S^2(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$	
$\operatorname{Exp}(\lambda)$	λ – неизв. Оценить λ .	$2\lambda n\overline{X} \sim \chi^2(2n)$	

Проверка статистических гипотез*

для нормально распределенной генеральной совокупности $X \sim \mathrm{N}(\mu, \sigma^2)$

	Основная	Конкур.	Статистика T и ее закон	Условие, определяющее
	гипотеза H_0	гипотеза H_1	распределения при $H_0^{}$	критическую область W
I. о изв.	$\mu = \mu_0$	$\mu < \mu_0$	$T(\vec{X}) = \frac{\mu_0 - \overline{X}}{\sigma} \sqrt{n} \sim N(0,1)$	$T(\vec{X})\geqslant u_{1-\alpha}$
		$\mu > \mu_0$		$T(\vec{X}) \leqslant -u_{1-\alpha}$
		$\mu \neq \mu_0$		$\left T(\vec{X})\right \geqslant u_{1-\alpha/2}$
$\mu=\mu$ неизв.		$\mu < \mu_0$	$T(\vec{X}) = \frac{\mu_0 - \overline{X}}{S(\vec{X})} \sqrt{n} \sim \text{St}(n-1)$	$T(\vec{X}) \geqslant t_{1-\alpha}$
	$\mu = \mu_0$	$\mu > \mu_0$		$T(\vec{X}) \leqslant -t_{1-\alpha}$
		$\mu \neq \mu_0$		$\left T(\vec{X})\right \geqslant t_{1-\alpha/2}$
III. о1 и о2 изв.		$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \overline{Y} \overline{Y}$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant u_{1-\alpha}$
	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$= \frac{\bar{X}_{n_1} - \bar{Y}_{n_2}}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant u_{1-\alpha/2}$
IV. σ1=σ2 и неизв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\overline{X}_{n_1} - \overline{Y}_{n_2}}{\sqrt{1/n_1 + 1/n_2}} \times$	$T(ec{X}_{n_{\!\scriptscriptstyle 1}},ec{Y}_{n_{\!\scriptscriptstyle 2}})\!\geqslant\! t_{1-lpha}$
		$\mu_1 \neq \mu_2$	$\times \frac{\sqrt{n_1 + n_2 - 2}}{\sqrt{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}}$ $\sim \operatorname{St}(n_1 + n_2 - 2)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant t_{1-\alpha/2}$
V.	$\sigma = \sigma_0$	$\sigma > \sigma_0$		$T(\vec{X})\geqslant h_{1-\alpha}$
		$\sigma < \sigma_0$	$T(\vec{X}) = \frac{S^2(\vec{X})}{\sigma_0^2} (n-1) \sim \chi^2(n-1)$	$T(\vec{X}) \leqslant h_{\alpha}$
		$\sigma \neq \sigma_0$		$\boxed{ \left[T(\vec{X}) \leqslant h_{\alpha/2} \right] \vee \left[T(\vec{X}) \geqslant h_{1-\alpha/2} \right] }$
VI.	$\sigma_{_1}=\sigma_{_2}$	$\sigma_1 > \sigma_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = S^2(\vec{Y})$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1)$
		$\sigma_1 < \sigma_2$		
		$\sigma_1 eq \sigma_2$	$= \frac{S^{2}(X_{n_{1}})}{S^{2}(\vec{Y}_{n_{2}})} \sim F(n_{1}-1, n_{2}-1)$	$ [T \geqslant F_{1-\alpha/2}(n_1 - 1, n_2 - 1)] \lor \lor [T \geqslant 1 / F_{1-\alpha/2}(n_2 - 1, n_1 - 1)] $
	<u> </u>			<u></u>

 $^{^*}$ \overline{X} – выборочное среднее, S^2 — исправленная выборочная дисперсия,

lpha — уровень значимости критерия, $\ u_q$, $\ t_q$, $\ h_q$, $\ F_q$ — квантили уровня $\ q$ соответствующих распределений.