Lab Report #06

2021.06.08. 실험 보고서

과 목 : 논리회로설계및실험

분 반: 공통

담당교수 : 김석윤과

실 험 일: 2021.06.08.

조 번 호 : 22

학 번 : **20163340** 20193438

이 름 : **강 원 경** 이 민 철

1. JK Flip Flop을 이용하여 Finite State Machine 구현

- State Transition Table 유도

 현재	현재 상태 입력 차기		차기	차기 상태 플립플롭 입력				출력	
$\overline{Q_A}$	Q_B	x	$Q_A + \Delta$	$Q_B + \Delta$	J_A	K_A	J_B	K_B	z
0	0	0	1	0	1	Х	0	Χ	0
		1	1	1	1	Χ	1	Χ	0
0	1	0	1	0	1	Х	Х	1	0
		1	1	1	1	Χ	Х	0	0
1	0	0	1	0	Х	0	0	Х	0
		1	0	1	Х	1	1	Χ	1
1	1	0	1	0	Х	0	Х	1	0
		1	1	1	Х	0	X	0	1

- 카르노 맵을 이용한 간소화 된 논리식 작성

J_A :				
Q_AQ_B	00	01	11	10
0	1	1	Χ	Χ
1	1	1	Y	V

 $J_A = 1$

 K_A :

Q_AQ_B	00	01	11	10
0	Х	Χ	0	0
1	Х	Х	0	1
,			'	

 $K_A = \overline{Q_B} x$

J_B :				
Q_AQ_B	00	01	11	10

 $J_B = x$

0

1

0

1

 K_B :

Q_AQ_B	00	01	11	10
0	Х	1	1	Х
1	Х	0	0	Х
'				

 $K_{B}=\overline{x}$

z :

Χ

Χ

Χ

Χ

0

1

Q_AQ_B	00	01	11	10					
0	0	0	0	0					
1	0	0	1	1					

 $z=\,Q_{\!A}\,x$

- 회로도 (IC칩 단위)

- 회로도 (블럭 단위)

- 사진

- ※ 8번 Output Signal 단자에 이상이 있어 출력 위치를 이동하였습니다.
- $ightharpoonup Q_A$: 7 Q_B : 6 z: 5 J_A : 4 J_B : 3 J_B : 2 K_B : 1

- 파형

- ※ 8번 Output Signal 단자에 이상이 있어 출력 위치를 이동하였습니다.
- $ightharpoonup Q_A$: 7 Q_B : 6 z: 5 J_A : 4 J_B : 3 J_B : 2 K_B : 1

- 파형을 보고 State Transition Table 작성

└ ①에서 만든 표 전체가 안 나오고 일부만 나올 수 있음.

현재 상태 입력		차기 상태		플립플롭 입력				출력	
Q_A	Q_B	x	$Q_A + \Delta$	$Q_B + \Delta$	J_A	K_A	J_{B}	K_B	z
0	0	0			파형에 해당 상태 없음.				
		1	1	1	1	1	1	0	0
0	1	0	1	0	1	0	0	1	0
		1	1	1	1	0	1	0	0
1	0	0	1	0	1	0	0	1	0
		1	0	1	1	1	1	0	1
1	1	0	1	0	1	0	0	1	0
		1	1	1	1	0	1	0	1

- State Transition Table을 참고하여 State Diagram을 작성

└ [그림 1] 전체가 안 나오고 일부만 나올 수 있음.

