MATIGO MOCKS 2024 UACE MARKING GUIDE 2024 PURE MATHEMATICS P425/1

NO	SOLUTION	REMARKS	MKS
NO.1	$4^x - 2^{x+3} + 15 = 0$		M1
	$2^{2x} - 2^{3+3} + 15 = 0$		IVII
	$(2^x)^2 - 2^3 - 2^x + 15 = 0$		
	$let 2^x = m$		
	$m^2 - 8m + 15 = 0$		
	$m = \frac{8 \pm \sqrt{(-8)^2 - 4(1)(15)}}{2 \times 1}$		M1
	either $m = 5$ or $m = 3$		B1
	for m = 5		
	$2^x = 5$		
	$x \log 2 = \log 5$		
	$x = \frac{\log 5}{\log 2}$		
	<u>= 2.3219</u>		A1
	for $m = 3$ $2^x = 3$		
	$x \log 2 = \log 3$		
	$x = \frac{\log 3}{\log 2}$		
	<u>= 1.5850</u>		A1 <u>05</u>

No.2	$\frac{\tan \theta}{\sin \theta} - \frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\cos \theta \sin \theta} - \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}}$	M1
	$= \frac{1}{\cos \theta} - \sin \theta \cdot \frac{\cos \theta}{\sin \theta}$	M1
	$=\frac{1}{\cos\theta}-\frac{\cos\theta}{1}$	
	$=\frac{1-\cos^2\theta}{\cos\theta s}$	M1
	$\frac{\tan\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta}$	M1
	$= \tan \theta . \sin \theta$	A1 <u>05</u>
NO.3	$\overrightarrow{OP} = \frac{\mu \xrightarrow{OA} + \lambda \xrightarrow{OB}}{\lambda + \mu}$	
	$\underset{OM}{\longrightarrow} = \frac{3\left(3\underbrace{\mathbf{j}} + 2\underbrace{\mathbf{j}} - 5\mathbf{k}\right) + 4\left(\underbrace{\mathbf{j}} + 3\underbrace{\mathbf{j}} + 2\mathbf{k}\right)}{2 + 4}$	M1 M1 M1
	$=\frac{13 \underline{\mathbf{i}} + 18 \underline{\mathbf{j}} = 7 \mathrm{k}}{7}$	M1
	$= \frac{13}{7} i + \frac{18}{7} j - k$	A1
		<u>05</u>
No.4	3x - 4y + 14 = 0	
	$x = \left(\frac{4y - 14}{3}\right)$	M1
	from $x^2 + y^2 + 4x + 6y - 3 = 0$	
		M1

	$\left(\frac{4y-14}{3}\right)^2$	$+y^2+4$	$\left(\frac{4y-14}{3}\right)+6$	y - 3 = 0		
	$\frac{16y^2 - 112y + 1}{9}$	+ 169 + y	$y^2 + \frac{16y - 56}{3}$	+6y-3=0) Accept	
	$16y^2 - 112y + 1$	96 + 9y²	+ 48 <i>y</i> – 168 -	+ 54 <i>y</i> – 12 :	$B^2 - 4AC = 0$ $B^2 = 4AC$	M1
		25 <i>y</i> ² –	10y + 1 = 0		Give marks to a student	
	A	,	= 10, C = 1	-	who solves the equation	M1
	4		$(-10)^2 = 100$ $(25 \times 1 = 100)$		and gets one point of intersection.	
	Since $B^2 =$	4AC, the	line is a tangen	t to circle.		B1
NO.5		x-2	< 3x - 4			
		$(x-2)^2$	$2 < (3x - 4)^2$			M1
	x^2 –	4x + 4 <	$<9x^2-24x+$	16		
		$-8x^2 + 2$	20x - 12 < 0			
		$2x^{2}$ –	5x + 3 > 0			M1
		(2x-3))(x-1)>0			M1
	Critical points a	are x=1 a	and x = 1.5	_		
	x	<i>x</i> < 1	1 < x < 1.5	<i>x</i> > 1.5		
	2x-3	-	-	+		M1
	x-1	-	+	+		
	(2x-3)(x-1)	+	-	+		
	x < 1 and $x > 1$ -	5				
	testing					

		1
	for $x < 1$ taking $x = 0.5$	
	0.5 - 2 < 3(0.5) - 4	
	1.5 < -2.5: false	
	For $x > 1.5$, taking $x = 2$.	
	2-2 < 3(2) - 4	
	0 < 2.: true.	
	: <i>x</i> > 1.5	A1 05
NO.6	$\frac{dv}{dt} = 0.05m^2s^{-1}$	
	$A=4\pi r^2$	
	$\frac{dA}{dt} = 8\pi r$	M1
	$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$	
	$V = \frac{4}{3}\pi r^2$	
	$\frac{dv}{dr} = 4\pi r^2$	M1
	$\frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dr}{dt}$	
	$0.05 = 4\pi r^2 \frac{dr}{dt}$	M1
	$\frac{dA}{dt} = 8\pi r \cdot \frac{0.05}{4\pi r^2}$	M1
	$=\frac{8\times0.05}{4r}$	

	8 × 0.05	
	$=\frac{8\times0.05}{4\times0.4}$	
	$= 0.25cm^2s^{-1}$	A1 05
No.7	$\tan\theta = \pm \frac{m_2 - m_1}{1 + m_1 m_2}$	
	$\tan 45 = \pm \frac{2 - m_1}{1 + 2m_1}$	M1
	$1 = \frac{2 - m_1}{1 + 2m_1}$	
	$2 - m_1 = 1 + 2m_1$	
	$3m_1 = 1$	
	$m_1 = \frac{1}{3}$	M1
	Also:	
	$\frac{-1}{1} = \frac{2 - m_1}{1 + 2m_1}$	
	$-1(1+2m_1) = 2 - m_1$	
	$-1 - 2m_1 = 2 - m_1$	A1 if
	$m_1 = -3$	done
	if $m_1 = -3$	
	$\frac{y-3}{x-2} = \frac{-3}{1}$	
	y - 3 = 3x + 6	
	y = -3x + 9	

	$ if m_1 = \frac{1}{3} \\ v - 3 \qquad 1 $	M1
	$\frac{y-3}{x-2} = \frac{1}{3}$	
	3y - 9 = x - 2	
	3y - x - 7 = 0	A1 05
No.8	$\frac{dy}{dx} = \frac{114y^2}{e^2}$	
	$\frac{dy}{1+4y^2} = \frac{dx}{e^x}$	M1
	$\int \frac{1}{1 = 4y^2} dy = \int e^{-x} dx$	M1
	$\frac{1}{1 \times 2} \tan^{-1} \left(\frac{2y}{1} \right) = e^{-x} + c$	M1 M1
	$\frac{1}{2} \tan^{-1}(2y) + e^{-x} = c$	A1 05
No.9	SECTION B: (i) $\overrightarrow{AB} = \begin{pmatrix} 5 \\ -2 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$	
	$= \begin{pmatrix} 1 \\ -2 \\ 13 \end{pmatrix}$	
	$\overrightarrow{CD} = \begin{pmatrix} -1\\0\\-4 \end{pmatrix} - \begin{pmatrix} 1\\1\\0 \end{pmatrix}$	M1
	$= \begin{pmatrix} -2 \\ -1 \\ -4 \end{pmatrix}$	
	$ \overrightarrow{AB} = \sqrt{1^2 + (-2)^2 + (-1)^2} = \sqrt{14}$	M1
	$\left \overrightarrow{CD} \right = \sqrt{(-2)^2 + (-1)^2 + (-4)^2} = \sqrt{21}$	

$\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{CD} \cos \theta$	
$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \\ -4 \end{pmatrix} = \sqrt{14} \cdot \sqrt{21} \cos \theta$	M1
$-2 + 2 + 12 = \sqrt{294} \cos \theta$	
$12 = \sqrt{294} \cos \theta$	M1
$\cos\theta = \frac{12}{\sqrt{294}}$	
$\theta = \cos^{-1}\left(\frac{12}{7\sqrt{6}}\right)$	
$\theta = 45.58^{0}$	A1
(ii) $ \mathcal{L}AB = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -1 \\ -4 \end{pmatrix} $	
For intersection: $rAB = rCD$	
$ \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -1 \\ -4 \end{pmatrix} $	M1
$ \begin{pmatrix} 4+\lambda\\ -2\lambda\\ 1-3\lambda \end{pmatrix} = \begin{pmatrix} 1-2\mu\\ 1-\mu\\ -4\mu \end{pmatrix} $	
$4 + \lambda = 1 + 2\mu$	
$\lambda + 2\mu = -3 \dots (i)$	N/ 1
$-2\lambda + \mu = 1 \dots (ii)$	M1
$-3\lambda + 4\mu = -1 \dots (iii)$	
$2\lambda + 4\mu = -6$	

$21 + \mu = 1$	M1
$\frac{-2\lambda + \mu = 1}{5\mu - 5}$	
$5\mu = -5$	
$\mu = -1$	
From equation (ii) $-2\lambda - 1 = 1$	
$-2\lambda = 2$	
$\lambda = -1$	
Subtracting μ and λ in equation (iii)	
-3(-1) + 4(-1) = -1 $3 - 4 = -1$ $-1 = -1$	
Since R.H.S. = L.H.S. the lines intersect.	A1
(iii) $\overrightarrow{OM} = \begin{pmatrix} 4 + \lambda \\ -2\lambda \\ 1 - 3\lambda \end{pmatrix} \overrightarrow{AB}$	
$\rightarrow \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	
$\overrightarrow{OP} = \begin{pmatrix} 1 \\ 5 \\ 6 \end{pmatrix}$	
$\overrightarrow{PM} = \begin{pmatrix} 4 + \lambda \\ -2\lambda \\ 1 - 3\lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 6 \end{pmatrix}$	
$\overrightarrow{PM} = \begin{pmatrix} 3 + \lambda \\ -2\lambda - 5 \\ -5 - 3\lambda \end{pmatrix}$	M1
$\overrightarrow{PM}.d = 0$	
$\begin{pmatrix} 3+\lambda\\ -5-2\lambda\\ -5-3\lambda \end{pmatrix} \cdot \begin{pmatrix} 1\\ -2\\ -3 \end{pmatrix} = 0$	3.61
· 3 3/v · 3/	M1

	$3 + \lambda + 10 + 4\lambda + 15 + 9\lambda = 0$	
	$14\lambda + 28 = 0$	
	$\lambda = \frac{-28}{14}$	
	$\lambda = -2$	
	$\overrightarrow{PM} = \begin{pmatrix} 3-2\\ -5+4\\ -5+6 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$	
	$\left \overrightarrow{PM}\right = 1^2 + (-1)^2 + 1^2$	
	$=\sqrt{3}$	Λ 1
		A1 12
NO.10	a) $\frac{\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} = \frac{4}{\sin\theta\tan\theta}$	
	$L.H.C = \frac{1 + \cos \theta}{1 - \cos \theta} - \frac{1 - \cos \theta}{1 + \cos \theta}$	
	$=\frac{(1+\cos\theta)^2-(1-\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}$	M1
	$=\frac{1+2\cos\theta+\cos^2\theta-1+2\cos\theta-\cos^2\theta}{1-\cos^2\theta}$	M1
	$=\frac{4\cos\theta}{\sin^2\theta}$	M1
	$=\frac{4\cos\theta}{\sin\theta\cdot\frac{\sin\theta}{\cos\theta}}$	
	$=\frac{4}{\sin\theta\tan\theta}$	M1
	$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} = 3$	

	,
$\frac{4}{\sin\theta\tan\theta} = 3$	
$\frac{4}{\sin\theta} = 3$	M1
$\frac{4\cos\theta}{1-\cos^2\theta} - 3 = 0$	
$\frac{4\cos\theta - 3(1-\cos^2\theta)}{1-\cos^2\theta} = 0$	M1
$3\cos^2\theta + 4\cos\theta - 3$	N. 1
$\cos \theta = \frac{-4 \pm \sqrt{4^2 - 2(3)(-3)}}{2 \times 3}$	M1
either $\cos \theta = \frac{-2 + \sqrt{13}}{3}$ or $\cos \theta = \frac{-2 - \sqrt{13}}{3}$	
for $\cos \theta = \frac{-2 + \sqrt{13}}{3}$ for $\cos \theta = \frac{-2 - \sqrt{13}}{3}$	A1
$\theta = 57.64^{\circ}, \qquad 302.36^{\circ}$	
b) Let $\tan^{-1}(1/2) = \infty$, $\tan^{-1}(1/3) = \beta$	
$\tan \propto = \frac{1}{2}; \tan \beta = \frac{1}{2}$	7.7.1
$\tan(\alpha + B) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$	M1
$\alpha + \beta = \tan^{-1} \left[\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} \right]$	M1
$\alpha + \beta = \tan^{-1}(1)$	M1
$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$	A1 12

No.11	$a + ar = -4 \dots (i)$	1	M1
110.11	a + ai = -4 (i) $ar^2 = 4ar^2 (ii)$		IVI I
	$ar^2 \cdot r^2 = 4a \cdot r^2$		
	$r^2 = 4$		
	$r = \pm 2.$		N /T 1
	from equation (i) $a(1 + r) = -4$		M1
	a(1+2) = -4		
	a = -4/3		
	when $r = -2$		
	a(1-2) = -4		
	$a = -4/_{-1}$		
	a = 1		
	when $r = 2$, $a = \frac{4}{3}$	I	B1
	when $r = -2$, $a = 1$	F	B1
	the possible G. P. S are;		
	$\frac{-4}{3}$, $\frac{-8}{3}$ $\frac{-16}{3}$ $\frac{-32}{3}$ +	l A	A1
	$1 - 2 + 4 - 8 + 16 - 32 + \cdots$		
	b)		
	(i) $\propto +\beta = 7k$		
	$\propto \beta = k^2$		
	$(\alpha - \beta) = \sqrt{\alpha^2 - 2 \alpha \beta + \beta^2}$		M 1
	$(\propto -\beta) = \sqrt{(\propto +\beta)^2 - 4 \propto \beta}$		
	$=\sqrt{(7k)^2-4k^2}$		

	$=\sqrt{49k^2-4k^2}$	
	$=\sqrt{45k^2}$	
	$=\sqrt{9k^2\times 5}$	
	$3k\sqrt{5}$	A1
	(ii) sum of roots = $\propto +1 + \beta - 1$ = $\propto +\beta$ = $7k$	M1
	product of roots = $(\infty + 1)(\beta - 1)$ = $\alpha \beta - \alpha + \beta - 1$ = $\alpha \beta - 1 - (\alpha - \beta)$	M1
	product of roots = $k^2 - 1 - 3k\sqrt{5}$	M1
	$=k^2-3k\sqrt{5-1}$	
	$x^2 + 7kx + k^2 - 3k\sqrt{5 - 1} = 0$	A1
No.12 (a)	$\frac{dy}{dx} = \sqrt{1 + 2x}$	
	$\frac{dy}{dx} = (1+2x)^{\frac{1}{2}}$	
	$\int dy = \int (1+2x)^{\frac{1}{2}} dx$	M1
	$y = \frac{(1+2x)^{\frac{3}{2}}}{\frac{3}{2}(2)} + c$	
	$y = \frac{1}{3}(1+2x)^{\frac{3}{2}} + c$	M1
	y(4) = 11	
	$11 = \frac{1}{3} (1 + 2(4)^{\frac{3}{2}} + c$	

	$11 = \frac{1}{3}(9)^{\frac{3}{2}} + c$	
	c = 2	
	$: y = \frac{1}{3}(1+2x)^{\frac{3}{2}} + 2$	A1
	x 24-2x x	
(b)	x	
	\mathbf{x}	
	x x x	
	$v = L \times w \times h$ v = (24 - 2x)(9 - 2x)x	
	$v = (216 - 48x - 18x + 4x^{2})x$ $v = (216 - 48x - 18x + 4x^{2})x$	
	$v = (216 - 66x + 4x^2)x$	D. 7.1
	$v = 216x - 66x^2 + 4x^3$	M1
	$\frac{dy}{dx} = 216 - 132x + 12x^2$	M1
	for maximum volume	
	$\frac{dy}{dx} = 0$	
		M1
	$12x^{2} - 132x + 216 = 0.$ $x = -132 \pm \sqrt{(-132)^{2} - (12)(216)}$	M1
	Either x = 9 or x = 2.	M1
	$\frac{1}{2} \frac{1}{2} \frac{1}$	

	147	hen x	· – 9			when	v -	2			
	Value of x	L	9	R		L	$\frac{x-}{2}$	R			
	Sign of x	_	0	+		+	0	-			
	13-8-2-2-	_/_		l	/						
	MIN MAX										
	Dimension and 2cm.	for 1	maxi	imum	ı voluı	ne are	200	cm, 5	cm,		A1 12
No.13					ın² xdx	:					
				$\frac{dy}{dx}$	a = x $y = 1$						
				$\frac{dy}{dx} =$	tan²x						M1
	$v = \int tan^2 x dx$										
			<i>v</i> =	$=\int se$	c^2x-1	1 dx					
				v = tc	anx - x	κ					M1
	$\int xta$	$n^2 x d$	2x = 1	x(tan	(x-x)	$-\int ta$	nx –	-x dx			M1
	=	= xta1	nx –	$x^2 + \frac{1}{2}$	-in se	$ cx + \frac{x}{2}$	$\frac{x^2}{1} + a$	С			M1
	$\int \sqrt{2}$	1-x	$\frac{1}{2} dx$	$= \frac{1}{4}$	₄ .2 sin	u cos u	$u + \frac{u}{2}$	+ <i>k</i>			
		=	$= \frac{1}{2}$	$\sin u$	cos u +	$-\frac{u}{2}+k$					
		₌ 1	$\frac{1}{2}x^{4}$	$\sqrt{1-z}$	$\frac{1}{x^2} + \frac{si}{s}$	$\frac{n^{-1}x}{2}$ +	- k				M1
	$\int x \sin^{-1} x dx$	_			$-\frac{1}{2}sin$ $+\frac{sinx}{2}$						
		' 2\	2 1	<i>λ</i>	2						

		1
	$=\frac{x^2}{2}\sin^{-1}x + \frac{1}{4}x\sqrt{1-x^2} - \frac{1}{4}\sin^{-1}x + c$	M1
	$= \frac{1}{4}(2x^2 - 1)\sin^{-1}x + \frac{1}{4}x\sqrt{1 - x^2} + c.$	A1
14(a)	$ \sqrt{-3 + 4i} = \pm (a + bi) -3 + 4i = a^2 + 2bi \pm b^2 -3 = a^2 - b^2 (i) 2b = 4 (ii) b = 2 $	M1 M1 M1
	from (i) $-3 = a^2 - 2^2$ $a^2 = 1$ $a = 1$	M1
	$\sqrt{3+4i} = \pm (1+2i) = 1+2 \ i \ and -1-2i$	A1A1
(b)(i)	$=\frac{-1+3i}{2+i}$	
	$=\frac{(-1+3i)(2-i)}{(2+i)(2-i)}$	M1
	$=\frac{-2+i+6i+3}{2^2+1}$	M1
	$2 = \frac{1+7i}{5} \qquad M1$	
	$2 = \frac{1}{5} + \frac{7}{5}i A1$	

Im(y)	B1 B1
1/5 Re(x)	Re(x)
15(a) $y^2 = 4ax$ let the point A(at ¹ , 2at) lie on the parabola. $2y \frac{dy}{dx} = 4a$ $\frac{dy}{dx} = \frac{4a}{2y}$ $\frac{dy}{dx} = \frac{4a}{4at}$ $\frac{dy}{dx} = \frac{1}{t}$ equation of a tangent is;	M1
$(y - 2at) = \frac{1}{t}(x - at^2)$ $ty - 2at^2 = x - at^2$ $ty = x + at^2 \dots (i)$ $y = \frac{x + at^2}{t}$	M1

	$\left(\frac{x+at^2}{t}\right)^2 = 8ax$	
	$x^2 + 2axt^2 + a^2 + 4 = 8axt^2$	
	$x^2 - 6axt^2 + a^2 + 4 = 0$	
	let the mid $-$ point of LM be (X, Y)	
	$X = 3at^2(iii)$	M1
	from equation (i) and (ii)	
	$x = ty - at^{2}$ $: y^{2} = 8a(ty - at^{2})$ $y^{2} = 8aty - 8a^{2}t^{2}$ $y^{2} - 8aty + 8a^{2}t^{2} = 0$ $Y = 4at \dots (iv)$	
		M1
	$: t = \frac{Y}{4a}.$	
	from eqn (iii) Y ²	M1
	$X = 3a \frac{\mathring{Y}^2}{(4a)^2}$	
	$X = \frac{3y^2}{16a}$	
	$16ax = 3y^2$ $16ax = 3y^2$	A1
	20000	
(b)	Equation of chord of contact is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	M1
	$when x = 0$ $y = \frac{b^2}{y_1}$	
	when $y = 0$ $x = \frac{a^2}{x_1}$	M1

	L is $\left(0, \frac{b^2}{y_1}\right)$ and M is $\left(\frac{a^2}{x_1}, 0\right)$	M1
	mid point is $\left(\frac{a^2}{2x_1}, \frac{b^2}{2y_1}\right)$	
	$\left(\frac{a^2}{2x_1}\right)^2 + \left(\frac{b^2}{2y_1}\right)^2 = 1$	M1
	$\frac{a^4}{4x_1^2} + \frac{b^4}{4b_1^2} = 1$	
	: The locus of (x_1, y_1) is $\frac{a^4}{4x_1^2} + \frac{b^4}{4y_1^2} = 1$	A1 12
16.	$lny + \frac{x}{y}\frac{dy}{dx} = secxtanx; y(0) = \frac{\pi}{2}$	
	$\int \frac{d}{dx}(xlny)dx = \int secxtanx \ dx$	M1
	xlny = secx + c	M1 M1
	$(0)ln\left(\frac{\pi}{2}\right) = \sec(o) + c$	
	o = 1 + c	B1
	c = -1	
	$: xiny = \sec x - 1$	A1
(b)	Rate in =0 Rate out = $\frac{y}{1000} (kg/L) \times 20(L/min)$	M1
	$=\frac{y}{50}(kg/min)$	
	$\frac{dy}{dt} = 0 - \frac{y}{50}$	

	<u> </u>
$\frac{dy}{dt} = \frac{-y}{50}$	
$\int \frac{dy}{y} = \int \frac{-1}{50} dt$	M1
$Iny = \frac{-1}{50}(0) + c.$	
c = In10.	
$Iny = \frac{-1}{50}t + In10$	
$Iny - In10 = \frac{-t}{50}$	
$e\frac{-t}{50} = \frac{y}{10}$	A1
$y = 10 e^{-t} \frac{-t}{50}$	
$(i) \qquad at t = 5 y = 2$	M1
$at t = 5, y = ?$ $y = 10 e^{\frac{-5}{50}}$	
y = 9.0484kg.	A1
(ii) $y = 5kg, t = ?$ $5 = 10.e \frac{-t}{50}$	
	M1
$in \ 0.5 = \frac{-t}{50}$	
t = -50In(0.5) $t = 34.6574 minutes$	A1 12