Dendrograma

Maisy Samai Vázquez Sánchez

2022-05-29

Librerias

library(cluster.datasets)

Base de datos

```
data("all.mammals.milk.1956")
AMM=all.mammals.milk.1956
```

La base de datos "all.mammals.milk.1956", contiene información sobre la leche de diferentes especies de animales.

Exploración de la base de datos

Dimensión

dim(AMM)

[1] 25 6

La base cuenta con 25 observaciones y 6 variables

Datos faltantes

anyNA(AMM)

[1] FALSE

No hay valores faltantes por lo que se puede proseguir con el dendrograma

Tipo de variables

str(AMM)

```
## 'data.frame': 25 obs. of 6 variables:
## $ name : chr "Horse" "Orangutan" "Monkey" "Donkey" ...
## $ water : num     90.1 88.5 88.4 90.3 90.4 87.7 86.9 82.1 81.9 81.6 ...
## $ protein: num     2.6 1.4 2.2 1.7 0.6 3.5 4.8 5.9 7.4 10.1 ...
## $ fat : num     1 3.5 2.7 1.4 4.5 3.4 1.7 7.9 7.2 6.3 ...
## $ lactose: num     6.9 6 6.4 6.2 4.4 4.8 5.7 4.7 2.7 4.4 ...
## $ ash : num     0.35 0.24 0.18 0.4 0.1 0.71 0.9 0.78 0.85 0.75 ...
```

La base esta conformada por 5 variables numéricas y una de tipo carácter la cual contiene registrado el nombre de los animales y en las numéricas está la cantidad de proteína, nivel de agua, grasa, lactosa y los minerales de la leche.

Cálculo de la matriz de distancias de Mahalonobis

```
dist.AMM<-dist(AMM[,2:6])</pre>
```

Se calcula la distancia de Mahalanobis para las variables que comprende de la 2 a la 6, las cuales resultan ser variables numéricas.

Con la distancia de Mahalanobis podemos calcular la similitud que existe entre las variables teniendo en cuenta la correlación que hay entre ellas.

Redondeo

```
round(as.matrix(dist.AMM)[1:6, 1:6],3)
```

```
## 1 2 3 4 5 6

## 1 0.000 3.327 2.494 1.226 4.759 4.107

## 2 3.327 0.000 1.206 2.794 2.798 2.592

## 3 2.494 1.206 0.000 2.375 3.716 2.348

## 4 1.226 2.794 2.375 0.000 3.763 4.007

## 5 4.759 2.798 3.716 3.763 0.000 4.176

## 6 4.107 2.592 2.348 4.007 4.176 0.000
```

Se redondean de los valores de la distancia de Mahalanobis y se convierten a una matriz. Al proyectar indicamos que solo usaremos a los primeros 6 individuos así que se especifica la selección de las 6 filas y 6 columnas pertenecientes a estos individuos.

Calculo del dendrograma

```
dend.AMM<-as.dendrogram(hclust(dist.AMM))</pre>
```

Se calcula el Dendograma para nuestras observaciones, se utilizará el método de agrupación por Clústers "hclust", el cual es una agrupación jerárquica.

Graficación del dendrograma

Creamos un vector para las etiquetas que le asignaremos al Dendograma.

```
library(dendextend)
```

```
L=labels(dend.AMM)
labels(dend.AMM)=AMM$name[L]
```

Personalizamos nuestro dendrograma.

```
dend.AMM %>%
  set(what="labels_col", "#8B2252") %>%
  set(what="labels_cex", 0.8) %>%
  plot(main="Dendrograma de mamíferos")
```

Dendrograma de mamíferos

Podemos ver que esta dividido en dos grupos. En el primer grupo se encuentran la leche de las especies de foca y delfín son diferentes de el segundo grupo el cual esta sub-dividido en dos grupos más y dos mas para estos grupos que a su vez contienen más.

Lo interesante es ver que el gráfico muestra dos grupos en los que se pueden separara la leche de estos animales.