Bag of Tricks for Image Classification with Convolutional Neural Networks (CVPR2019)

Tong He Zhi Zhang Hang Zhang Zhongyue Zhang Junyuan Xie Mu Li

Amazon Web Services {htong,zhiz,hzaws,zhongyue,junyuanx,mli}@amazon.com

Presenter: Nyanye

Introduction

- Much of the recent progress made in image classification research can be credited to training procedure refinements
- changes in
 - data augmentations
 - optimization methods
- examine a collection of such refinements and empirically evaluate their impact on the final model accuracy through ablation study

Baseline

Model

- Widely used implementation of ResNet (ResNet50)
- 1. Randomly sample an image and decode it into 32-bit floating point raw pixel values in [0, 255]
- 2. Randomly crop a rectangular region whose aspect ratio is randomly sampled in [3/4, 4/3] and area randomly sampled in [8%, 100%], then resize the cropped region into a 224-by-224 square image.
- 3. Flip horizontally with 0.5 probability.
- 4. Scale hue, saturation, and brightness with coefficients uniformly drawn from [0.6, 1.4].
- 5. Add PCA noise with a coefficient sampled from a normal distribution N (0, 0.1)
- 6. Normalize RGB channels by subtracting 123.68, 116.779, 103.939 and dividing by 58.393, 57.12, 57.375, respectively

Training – Large batch training

- Using large batch size, may slow down the training progress. For convex problems, convergence rate decreases as batch size increases.
- for the same number of epochs, training with a large batch size results in a model with degraded validation accuracy compared to the ones trained with smaller batch sizes.
- examine four heuristics that help scale the batch size up for single machine training.

Training – Linear scaling learning rate

- Increasing the batch size does not change the expectation of the stochastic gradient but reduces its variance
- large batch size reduces the noise in the gradient, so we may increase the learning rate to make a larger progress along the opposite of the gradient direction.
- choose 0.1 as the initial learning rate for batch size 256, then when changing to a larger batch size b, we will increase the initial learning rate to $0.1 \times b/256$
- Ex: batch size = 512, initial learning rate = 0.2

Training – Learning rate warmup

- At the beginning of the training, all parameters are typically random values and therefore far away from the final solution
- Using a too large learning rate may result in numerical instability
- In warmup heuristic, we use a small learning rate at the beginning and then switch back to the initial learning rate when the training process is stable
- we will use the first m batches (e.g. 5 data epochs) to warm up, and the initial learning rate is η , then at batch i, $1 \le i \le m$, we will set the learning rate to be $i\eta/m$.
- Ex) m = $1024/i = 512/\eta = 0.1$ 0.1*512/1024 = 0.05

Training – No bias decay

- weight decay is often applied to all learnable parameters including both weights and bias
- it's recommended to only apply the regularization to weights to avoid overfitting
- only applies the weight decay to the weights in convolution and fullyconnected layers. Other parameters, including the biases and γ and β in BN layers, are left unregularized.

Training – Low-precision training

- Neural networks are commonly trained with 32-bit floating point (FP32) precision
- New hardware, however, may have enhanced arithmetic logic unit for lower precision data types
- V100 offers 14 TFLOPS in FP32 but over 100 TFLOPS in FP16. As in Table 3, the overall training speed is accelerated by 2 to 3 times after switching from FP32 to FP16 on V100.
- store all parameters and activations in FP16 and use FP16 to compute gradients
- multiplying a scalar to the loss to better align the range of the gradient into FP16

Training

 Switching from FP32 to FP16 at the end of training does not affect the accuracy

Heuristic	BS=	=256	BS=1024		
Ticuristic	Top-1	Top-5	Top-1	Top-5	
Linear scaling	75.87	92.70	75.17	92.54	
+ LR warmup	76.03	92.81	75.93	92.84	
+ Zero γ	76.19	93.03	76.37	92.96	
+ No bias decay	76.16	92.97	76.03	92.86	
+ FP16	76.15	93.09	76.21	92.97	

• using a larger 1024 batch size and FP16 reduces the training time for ResNet-50 from 13.3-min per epoch to 4.4- min per epoch.

Model Tweaks

Figure 1: The architecture of ResNet-50. The convolution kernel size, output channel size and stride size (default is 1) are illustrated, similar for pooling layers.

Figure 2: Three ResNet tweaks. ResNet-B modifies the downsampling block of Resnet. ResNet-C further modifies the input stem. On top of that, ResNet-D again modifies the downsampling block.

Model Tweaks

Model	#params	FLOPs	Top-1	Top-5
ResNet-50	25 M	3.8 G	76.21	92.97
ResNet-50-B	25 M	4.1 G	76.66	93.28
ResNet-50-C	25 M	4.3 G	76.87	93.48
ResNet-50-D	25 M	4.3 G	77.16	93.52

Table 5: Compare ResNet-50 with three model tweaks on model size, FLOPs and ImageNet validation accuracy.

cosine learning rate decay

- Learning rate adjustment is crucial to the training
- Loshchilov et al. [18] propose a cosine annealing strategy. An simplified version is decreasing the learning rate from the initial value to 0 by following the cosine function.
- Assume the total number of batches is T (the warmup stage is ignored), then at batch t, the learning rate ηt is computed as

$$\eta_t = \frac{1}{2} \left(1 + \cos \left(\frac{t\pi}{T} \right) \right) \eta,$$

cosine learning rate decay

(a) Learning Rate Schedule

(b) Validation Accuracy

Figure 3: Visualization of learning rate schedules with warm-up. Top: cosine and step schedules for batch size 1024. Bottom: Top-1 validation accuracy curve with regard to the two schedules.

Label smoothing

```
If label_smoothing is nonzero smooth the labels towards 1 / num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes
```

```
tf.losses.softmax_cross_entropy(
    onehot_labels,
    logits,
    weights=1.0,
    label_smoothing=0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
```

Knowledge distillation

- Teacher Model = ResNet-152
- Student Model = ResNet-50
- add a distillation loss to penalize the difference between the softmax outputs from the teacher model and the learner model
- z and r are outputs of the last fully-connected layer of the student model and the teacher model

negative cross entropy loss $\ell(p, \operatorname{softmax}(z))$ to measure the difference between p and z, here we use the same loss again for the distillation. Therefore, the loss is changed to

$$\ell(p, \operatorname{softmax}(z)) + T^2 \ell(\operatorname{softmax}(r/T), \operatorname{softmax}(z/T)),$$
(6)

where T is the temperature hyper-parameter to make the softmax outputs smoother thus distill the knowledge of label distribution from teacher's prediction.

Mixup training

 randomly sample two examples (xi, yi) and (xj, yj). Then we form a new example by a weighted linear interpolation of these two examples:

$$\hat{x} = \lambda x_i + (1 - \lambda) x_i, \tag{7}$$

$$\hat{y} = \lambda y_i + (1 - \lambda)y_i, \tag{8}$$

where $\lambda \in [0,1]$ is a random number drawn from the $\mathbf{Beta}(\alpha,\alpha)$ distribution. In mixup training, we only use the new example (\hat{x},\hat{y}) .

$$\hat{x} = \lambda x_i + (1 - \lambda)x_j,$$

$$\hat{y} = \lambda y_i + (1 - \lambda)y_j,$$

where $\lambda \in [0,1]$ is a random number

Experiment results

- Teacher model = ResNett-152-D
- Label smoothing $\varepsilon = 0.1$
- Model distillation T = 20
- Mixup a = 0.2

Refinements	ResNet-50-D		Inception-V3		MobileNet	
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
Efficient	77.16	93.52	77.50	93.60	71.90	90.53
+ cosine decay	77.91	93.81	78.19	94.06	72.83	91.00
+ label smoothing	78.31	94.09	78.40	94.13	72.93	91.14
+ distill w/o mixup	78.67	94.36	78.26	94.01	71.97	90.89
+ mixup w/o distill	79.15	94.58	78.77	94.39	73.28	91.30
+ distill w/ mixup	79.29	94.63	78.34	94.16	72.51	91.02

Model	Val Top-1 Acc	Val Top-5 Acc	Test Top-1 Acc	Test Top-5 Acc
ResNet-50-D Efficient	56.34	86.87	57.18	87.28
ResNet-50-D Best	56.70	87.33	57.63	87.82

Table 7: Results on both the validation set and the test set of MIT Places 365 dataset. Prediction are generated as stated in Section 2.1. ResNet-50-D Efficient refers to ResNet-50-D trained with settings from Section 3, and ResNet-50-D Best further incorporate cosine scheduling, label smoothing and mixup.

Experiment results on Transfer Learning (Object Detection)

- Teacher model = ResNet-152-D
- Label smoothing $\varepsilon = 0.1$
- Model distillation T = 20
- Mixup a = 0.2

Refinement	Top-1	mAP
B-standard	76.14	77.54
D-efficient	77.16	78.30
+ cosine	77.91	79.23
+ smooth	78.34	80.71
+ distill w/o mixup	78.67	80.96
+ mixup w/o distill	79.16	81.10
+ distill w/ mixup	79.29	81.33

Table 8: Faster-RCNN performance with various pretrained base networks evaluated on Pascal VOC.

Experiment results on Transfer Learning (Semantic Segmentation)

- Teacher model = ResNet-152-D
- Label smoothing $\varepsilon = 0.1$
- Model distillation T = 20
- Mixup a = 0.2

Refinement	Top-1	PixAcc	mIoU
B-standard	76.14	78.08	37.05
D-efficient	77.16	78.88	38.88
+ cosine	77.91	79.25	39.33
+ smooth	78.34	78.64	38.75
+ distill w/o mixup	78.67	78.97	38.90
+ mixup w/o distill	79.16	78.47	37.99
+ mixup w/ distill	79.29	78.72	38.40

Table 9: FCN performance with various base networks evaluated on ADE20K.

Conclusion

Bag of Tricks for Image Classification with Convolutional Neural Networks

- These tricks introduce minor modifications to the model architecture, data preprocessing, loss function, and learning rate schedule
- tricks improve model accuracy consistently
- stacking all of them together leads to a significantly higher accuracy
- strong advantages in transfer learning, which improve both object detection and semantic segmentation