Лекпия 1

Введение. Теория графов берет начало с решения знаменитым математиком Эйлером задачи о кенигсбергских мостах в 1736 году. Задача возникла в прусском городе Кенигсберг на реке Прегал. Жителям Кенигсберга нравилось гулять по дорожке, которая включала семь мостов через реку Прегал. Люди интересовались, могут ли они, начав путь с одного участка суши, обойти все мосты, посетив каждый лишь однажды, и вернуться в точку начала пути, не переплывая реки (рис.1). Эйлер построил граф, показанный на рис. 2.

В этом графе участки суши Эйлер изобразил как точки (вершины), а дорожки через мосты — как линии (ребра), соединяющие эти точки. В таком случае задача приобретает следующую формулировку: начиная с любой вершины, проходя по каждому ребру только один раз, вернуться в исходную вершину. Эйлер доказал, что эта задача не имеет решения, т.е. существует такая вершина, начиная с которой и проходя по каждому ребру только один раз, вернуться в исходную вершину невозможно.

Определение 1. Пусть заданы множество V, называемое множеством вершин, и множество X, называемое множеством ребер, соединяющих вершины. Тогда совокупность множеств V и X называется графом и обозначается G(V, X).

Примеры приложений теории графов

1. «Транспортные» задачи:

А) Вершинами графа могут являться пункты, а ребрами дороги (автомобильные. железнодорожные, авиационные маршруты).

Б) Сети снабжения (энергоснабжения, газоснабжения, снабжения товарами и т.д.), в которых вершинами являются пункты производства и потребления, а ребрами - возможные маршруты перемещения (линии электропередач, газопроводы, дороги и т.д.).

Замечание. Соответствующий класс задач оптимизации потоков грузов, размещения пунктов производства и потребления и т.д., иногда называется задачами обеспечения или задачами о размещении. Их подклассом являются задачи о грузоперевозках.

Пример. Одним из простейших примеров задачи обеспечения, которую можно промоделировать на основе теории графов, является задача о снабжении трех домов тремя видами коммунальных услуг. Согласно условию задачи к каждому из трех домов необходимо подключить три вида коммунальных услуг, например, воду, газ и электричество, посредством подземных линий труб и кабелей. Вопрос состоит в том, можно ли обеспечить эти три дома коммунальными услугами без пересечения линий снабжения. Граф, моделирующий данную задачу, показан на рис. 3. Ответ отрицательный.

2. «*Технологические задачи»*: вершины представляют собой производственные элементы (заводы, цеха, станки и т.д.), а ребра — потоки сырья, материалов и продукции между ними.

Замечание. Задача заключается в определении оптимальной загрузки производственных элементов и обеспечивающих эту загрузку потоков.

3. Модели коллективов и групп: в виде вершин представляются люди или их группы, а в виде ребер – отношения между ними (например, отношения знакомства, доверия, симпатии и т.д.).

Замечание. В рамках подобного описания решаются задачи исследования структуры социальных групп, их сравнения, определения агрегированных показателей, отражающих степень напряженности, согласованности взаимодействия и др.

4. Модели организационных структур: вершинами являются элементы организационной системы, а ребрами – связи (информационные, управляющие, технологические и др.) между ними.

Способы задания графов

1. Графический способ

Графы принято изображать рисунками, состоящими из точек, представляющих собой *вершины*, и линий, представляющих собой *ребра*, соединяющие две вершины графа. Форма ребер несущественна, важен только сам факт соединения вершин. Ребра могут пересекаться, но точки пересечения не являются вершинами графа.

Определение 2. Графы, у которых ребра имеют направление (ориентацию), отмеченное стрелкой, называются ориентированными или *орграфами*.

Определение 3. Графы, у которых ребра не имеют направления (ориентации), отмеченного стрелкой, называются неориентированными или не*орграфами* (очень часто неорграф называют просто «графом»).

Вершины графа будем обозначать v_i, а ребра x_i. На рис.4 изображен граф, а на рис.5 – орграф.

Определение 4. Ребро в орграфе, имеющее направление от вершины v_i к вершине v_j , называется *выходящим* из вершины v_i и *заходящим* в вершину v_j . При этом вершина v_i называется *началом* ребра, а v_j – его *концом*.

Определение 5. Две вершины графа называются *смежными*, если они соединены хотя бы одним ребром, иначе они называются *несмежными*.

Упражнение. Привести примеры смежных и несмежных вершин на рис. 4,5.

2. Задание с помощью матрицы смежности

Определение 6. *Матрицей смежности* графа, имеющего n вершин, называется квадратная матрица A_{nn} , у которой элемент $a_{ij} = k$, если вершины v_i и v_j соединены k ребрами, иначе $a_{ij} = 0$. Любой граф или орграф можно задать *матрицей смежности*.

Пример 1. В табл.1 и 2 приведены матрицы смежности графа рис.4 и орграфа рис.5 соответственно.

Таблица 1

$$\begin{pmatrix}
0 & 2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Таблица 2

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

Пример 2. Построить граф по матрице смежности:

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Пример 3. Построить орграф по матрице смежности:

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix}$$

Можно заметить, что для неорграфа матрица смежности симметрична, так как a_{ij} – число ребер, соединяющих вершины v_i и v_j , равно a_{ji} – числу ребер, соединяющих вершины v_j и v_i . Если в графе нет ребер, у которых начало и конец совпадают, так называемых nemenb, то в матрице смежности по главной диагонали стоят нулевые элементы (см. пример 1, табл. 1).

Упражнение (д/з). Построить граф по матрице смежности:

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Упражнение (д/з). Построить орграф по матрице смежности:

$$\begin{pmatrix}
0 & 0 & 2 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

Упражнение (д/з). Построить матрицы смежности графа и орграфов, изображенных на рисунке.

