

5.2 计数器 (Counter)

- 5.2.1 计数器的特点和分类
- 一、计数器的功能及应用
- 1. 功能: 对时钟脉冲 CP 计数。
- 2. 应用: 分频、定时、产生节拍脉冲和脉冲 序列、进行数字运算等。
- 二、计数器的特点
- 1. 输入信号: 计数脉冲 *CP* Moore 型
- 2. 主要组成单元: 时钟触发器

三、计数器的分类

按数制分:

二进制计数器 十进制计数器 N进制(任意进制)计数器

按计数 方式分:

加法计数器 减法计数器 可逆计数 (Up-Down Counter)

按触发器翻转是否同时分:

同步计数器 (Synchronous ~) 异步计数器 (Asynchronous ~)

按开关 元件分:

TTL 计数器 CMOS 计数器

5.2.2 二进制计数器

计数器计数容量、长度或模的概念

计数器能够记忆输入脉冲的数目,即电路的有效状态数M。

3位二进制同步加法计数器:

$$M = 2^3 = 8$$

4位二进制同步加法计数器:

$$M = 2^4 = 16$$

n 位二进制同步加法计数器:

$$M=2^n$$

- 一、二进制同步计数器
- 1. 3位二进制同步加法计数器
- (1) 结构示意框图与状态图

$$000 \xrightarrow{/0} 001 \xrightarrow{/0} 010 \xrightarrow{/0} 011 \xrightarrow{/0} 100 \xrightarrow{/0} 101 \xrightarrow{/0} 110 \xrightarrow{/0} 111$$

 $_1{}^{\mathrm{n}}\, Q_0{}^{\mathrm{n}}$

 $=T_0$

(2) 分析和选择触发器

$$\left\{\begin{array}{cccc} \mathbf{FF_2}, \ \mathbf{FF_1}, \ \mathbf{FF_0} \\ Q_2, \ Q_1, \ Q_0 \end{array}\right.$$

设计方法一:按前述设计步骤进行(P297~299)

沿计方法一。 按计学与经联

L	又 V	JIA	一: 1久	上来	一个CP	纵机	
	CP	Q	Q_1Q_0	7	- 01	CP CP	
	0	0	0 0	<u></u>	$\frac{20-1}{300}$		$Q_2^n Q_1$
	1	0	0		$U_1U_0=1$,	CI	
	2	0	1 0		到来即翻	特	$_{0}=1$
	3	0	1 1	0			
	4	1	0 0	0		$J_1 = K_1$	$Q = Q_0$
	5	1	0	0			
	6	1	1 0	0		$J_2 = K_2$	$_{2}=Q_{1}$
	7	1)	141	1			
	8	0	0 0_	0			

 $T_0 = T_1$ $Q_0 = T_2$

(3) 用T型触发器构成的逻辑电路图

(4) 用T²型触发器构成的逻辑电路图

(5) n 位二进制同步加法计数器级联规律:

$$T_i = Q_{i-1}^n Q_{i-2}^n \cdots Q_1^n Q_0^n = \prod_{j=0}^{i-1} Q_j^n$$

2. 3 位二进制同步减法计数器

- 3. 3位二进制同步可逆计数器
- (1) 单时钟输入二进制同步可逆计数器

$$\overline{U}/D=0$$
 加计数 $T_0=1$ 、 $T_1=Q_0^n$ 、 $T_2=Q_1^nQ_0^n$ $C/B=Q_2^nQ_1^nQ_0^n$

$$\overline{U}/D=1$$
 減计数 $T_0=1$ 、 $T_1=\overline{Q_0}^n$ 、 $T_2=\overline{Q_1}^n\overline{Q_0}^n$ $C/B=Q_2^nQ_1^n\overline{Q_0}^n$

(2) 双时钟输入二进制同步可逆计数器

$$\begin{cases} CP_0 = CP_{\mathbf{U}} + CP_{\mathbf{D}} & CP_{\mathbf{U}} + CP_{\mathbf{D}} \cdot \overline{Q}_{\mathbf{D}} \\ CP_1 = CP_{\mathbf{U}} \cdot Q_0^n + CP_{\mathbf{D}} \cdot \overline{Q}_0^n & CP_{\mathbf{U}} = CP, CP_{\mathbf{D}} = 0 \\ CP_2 = CP_{\mathbf{U}} \cdot Q_1^n Q_0^n + CP_{\mathbf{D}} \cdot \overline{Q}_1^n \overline{Q}_0^n & CP_{\mathbf{D}} = CP, CP_{\mathbf{U}} = 0 \end{cases}$$

- 4. 集成二进制同步计数器
 - (1) 集成 4 位二进制同步加法计数器
 - 1) 74LS161 和 74LS163

异步清零

$$\overline{CR} = 0$$
 $Q_3 \sim Q_0 = 0000$

同步并行置数 $\overline{CR}=1$, $\overline{LD}=0$, \overline{CP} $Q_3 \sim Q_0 = D_3 \sim D_0$

74163的状态表

		4	俞		\					输		出		注
CR	<u>LD</u>	$CT_{\mathbb{P}}$	CT_{1}	_r CP	D_3	$\overline{D_2}$	$\overline{D_1}$	D_0	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+}	¹ CO	
0	×	×	×	↑	×	×	×	×	0	0	0	0	0	清零
1	0	×	×	\uparrow	d_3	d_2	d_{10}	d_0	d_3	d_2	d_1	d_0		置数
1	1	1	1	\uparrow	×	×	×	×		计		数		
1	1	0	×	×	×	X	×	×		保		持		
1	1	×	0	×	×	×	×	×		保	•	持	0	

$$\overline{CR}=1, L\overline{D}=1, CP^{\uparrow}, CT_{P}=CT_{T}=1$$
 二进制同步加法计数 $\overline{CR}=1, L\overline{D}=1, CT_{P}CT_{T}=0$ 保持 若 $CT_{T}=0$ CO = 0

若
$$CT_{\mathrm{T}} = 0$$
 $CO = 0$ 若 $CT_{\mathrm{T}} = 1$ $CO = Q_3^n Q_2^n Q_1^n Q_0^n$

				5-23-		3.5
2	输	>	_	输		±
CR	EN	CP	Q_3^{n-1}	$+1Q_2^{n}$	$^{+1}Q_1^{n+1}$	$^{+1}Q_0^{n+1}$
1	×	×	0	0	0	0
0	1	\uparrow		加	计	数
0	\downarrow	0		加	计	数
0	0	×		保	持	
0	×	1		保	: 持	

使能端 计数脉 异也可作 冲输入 步计数脉 也可作 清冲输入 使能端 零

 $D_1 Q_1 Q_0 CT U/D Q_2 Q_3$ t

时,RC=CP> RC 74191

\overline{LD} \overline{CT} $\overline{U/D}$ \overline{CP} D_3 D_2 D_1 D_0 \times d_3 d_2 d_1 d_0 0

× × X 0 X X X

X X 加法计数

 $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$

减法计数 保

_ 1		\sim 0	<u> </u>			23						
CR	<u>LD</u>	<i>CP</i> _U	<i>CP</i> _D	D_3	D_2	D_1	D_0	Q_3^{n-1}	$^{+1}Q_2^{n+1}$	Q_1^{n+1}	$-1Q_0^{n+1}$	注
1	×	×	×	×	×	×	×	0	0	0	0	异步清零
0	0	×	×	d_3	d_2	d_1	d_0	d_3	d_2	d_1	d_0	异步置数
0	1	\uparrow	1	×	×	×	×		加法	计计	数	
0	1	1	\uparrow	×	×	×	×		减法	占计	数	
0	1	1	1	×	×	×	×		保	持		<i>BO</i> = <i>CO</i> =1

1. 二进制异步加法计数器

若采用上升沿触发的T'触发器

 $CP_0 = CP$ $CP_1 = Q_0$ $CP_2 = Q_1$ 用T'触发器 (J=K=1)下降沿触发 $C = Q_2^n Q_1^n Q_0^n$ 进位 $CP_2 = Q_1$

D 触发器构成的 T' 触发器 (D = Q),

——下降沿触发

若改用上升沿触发的 D 触发器?

2. 二进制异步减法计数器

CP	Q_2	Q_1	Q_0
0	0	0	0
1	1	1	1
2	1	1	0
3	1	0	1
4	1	0	0
5	0	1	1
6	0	1	0
7	0	0	1
8	0	0	0

用T'触发器 (J=K=1) 上升沿触发

二进制异步计数器级间连接规律

$CP_0 = CP$	
$ \begin{cases} CP_1 = Q_0 \end{cases} $	
$CP_2 = Q_1$	
$B = \overline{Q}_2^n \overline{Q}_1^n \overline{Q}_1^n$.
$D-2_2$ 2_1	2 ()

n

) 计数规律	T'触发器的触发沿					
(1)	上升沿	下降沿				
加法计数	$CP_i = \overline{Q}_{i-1}$	$CP_i = Q_{i-1}$				
减法计数	$CP_i = Q_{i-1}$	$CP_i = \overline{Q}_{i-1}$				

74197、74LS197

二-八-十六进制计数器的实现

$$M = 2$$
 $CP_0 = CP$

$$M = 8$$
 $CP_1 = CP$

$$M = 16$$
 $CP_0 = CP, CP_1 = Q_0$ 计数输出: $Q_3Q_2Q_1Q_0$

$$CP_1 = CP, CP_0 = Q_3$$

计数输出:
$$Q_0$$

计数输出:
$$Q_3 Q_2 Q_1$$

计数输出:
$$Q_3Q_2Q_1Q_0$$

$$Q_0Q_3Q_2Q_1$$

其它: 74177、74LS177、74293、74LS293等。

5.2.3 十进制计数器 (8421BCD 码)

- 一、十进制同步计数器
- 1. 十进制同步加法计数器

$$Q_3Q_2Q_1Q_0$$

$$CP_0 = CP_1 = CP_2$$
$$= CP_3 = CP$$

输出方程

$$C = Q_3^n Q_0^n$$

状态方程

$$Q_0^{n+1} = Q_0^n$$

$$Q_{1}^{n+1} = \overline{Q_{3}^{n}Q_{1}^{n}Q_{0}^{n}} + Q_{1}^{n} \overline{Q_{0}^{n}}$$

$$Q_{2}^{n+1} = \overline{Q_{2}^{n}Q_{1}^{n}Q_{0}^{n}} + Q_{2}^{n} \overline{Q_{1}^{n}}$$

$$+ Q_{2}^{n} \overline{Q_{0}^{n}}$$

$$Q_3^{n+1} = Q_2^n Q_1^n Q_0^n + Q_3^n \overline{Q_0^n}$$

选择下降沿、JK触发器

检查能否自启动 $C = Q_3^n Q_0^n$

将无效状态1010~1111 代入状态方程:

$$1010 \rightarrow 1011 \rightarrow 0100$$
 $1110 \rightarrow 1111 \rightarrow 1000$
 $1100 \rightarrow 1011 \rightarrow 0100$

2. 十进制同步减法计数器

3. 十进制同步可逆计数器

(略)

4. 集成十进制同步计数器

(1) 集成十进制同步加法计数器 74160、74162

异步清零功能: $\overline{CR} = 0$

(74162 同步清零)

同步置数功能:

$$\overline{CR} = 1$$
 $\overline{LD} = 0$ $CP = \uparrow$

同步计数功能:

$$CR = LD = 1$$

$$CT_{T} = CT_{P} = 1$$

$$CO = Q_{3}^{n}Q_{0}^{n}$$

保持功能:

$$CT_{\mathbf{T}} \cdot CT_{\mathbf{P}} = 0$$

$$CO = CT_{\mathrm{T}} \cdot Q_3^n Q_0^n$$

$$CT_{\rm T}=1$$
 进位信号保持

$$CT_{\rm T}=0$$
 进位输出低电平

(2) 集成十进制同步可逆计数器

1) 74190 (单时钟, 引脚与74191相同)

异步并行置数功能:

同步可逆计数功能:

$$\overline{LD} = 1$$
 $\overline{CT} = 0$

$$\overline{U}/D=0$$
 加法计数 $CO/BO=Q_3^nQ_0^n$

$$U/D=1$$
 减法计数 $CO/BO=Q_3^n Q_2^n Q_1^n Q_0^n$

保持功能: LL

$$\overline{CT} = 1$$

2) 74192 (双时钟,引脚与74193相同)

异步清零功能: CR = 1

异步置数功能:

$$CR = 0 \overline{LD} = 0$$

$$Q_0 \sim Q_3 = D_0 \sim D_3$$

同步可逆计数功能:

$$CR = 0$$
 $\overline{LD} = 1$

$$CP_U = \uparrow$$
, $CP_D = 1$ 加法计数 $CO = CP_UQ_3^nQ_0^n$

$$CP_D = \uparrow$$
, $CP_U = 1$ 减法计数 $\overline{BO} = \overline{CP_D}Q_3^n Q_2^n Q_1^n Q_0^n$

保持功能

$$CR = 0$$
 $\overline{LD} = 1$

$$CP_U = CP_D = 1$$

二*、十进制异步计数器

3. 集成十进制异步计数器

异步清零功能 异步置"9"功能

异步计数功能

$$egin{array}{c} Q_0 \ Q_3 \ Q_2 \ Q_1 \ Q_3 \ Q_2 \ Q_1 \ Q_0 \ Q_3 \ Q_2 \ Q_1 \end{array}$$

5.2.4 N 进制计数器

[例] 利用EWB观察同步和异步归零的区别。

علم والمرواح والمرواح

一、利用同步清零或置数端获得 N 进制计数

思路: 当M 进制计数到 S_{N-1} 后使计数回到 S_0 状态

步骤: 1. 写出状态 S_{N-1} 的二进制代码;

- 2. 求归零逻辑表达式;
- 3. 画连线图。

[例5.2.1] 用4位二进制计数器 74163 构成十二进制计数器。

解: 1.
$$S_{N-1} = S_{11} = 1011$$

2. 归零表达式:

$$\overline{CR} = \overline{Q_3 Q_1 Q_0}$$
或
$$\overline{LD} = \overline{Q_3 Q_1 Q_0}$$

3. 连线图

二、利用异步清零或置数端获得N进制计数

思路: 当计数到 S_N 时,立即产生清零或置数信号,使返回 S_0 状态。(瞬间即逝)

- 步骤: 1. 写出状态 S_N 的二进制代码;
 - 2. 求归零逻辑表达式;
 - 3. 画连线图。

[例5.2.2] 用二-八-十六进制异步计数器197构成12进制计数器。

$$S_{12} = 1100$$
 $\overline{CR} = \overline{Q_3Q_2}$
或 $\overline{LD} = \overline{Q_3Q_2}$
状态 S_{12} 的作用:
产生归零信号

- 2. 利用级联获得大容量 N 进制计数器
- 1) 级联 N_1 和 N_2 进制计数器,容量扩展为 $N_1 \times N_2$

[例] 用 74290 构成 六十 进制计数器

2) 用归零法或置数法获得大容量的 N 进制计数器 [例] 试分别用 74161 和 74162 接成六十进制计数器。

用 S_N 产生异步清零信号: $S_N = S_{60} = (1111100)$

用 S_{N-1} 产生同步置数信号: $S_{N-1} = S_{59} = (111011)$

74162 — 同步清零,同步置数。

先用两片74162构成 10×10 进制计数器,

再用归零法将M=100改为N=60进制计数器,即用 S_{N-1} 产生同步清零、置数信号。

$$S_{N-1} = S_{59} = (0101 \ 1001)_{BCD}$$

$$Q_0 Q_1 Q_2 Q_3$$

$$CT_P \ 74162 \ CD$$

$$CP \ D_0 \ D_1 \ D_2 \ D_3$$

$$CP \ D_0 \ D_1 \ D_2 \ D_3$$

$$CP \ D_0 \ D_1 \ D_2 \ D_3$$

$$CP \ D_0 \ D_1 \ D_2 \ D_3$$

- 1. 同步 清零(或置数)端计数终值为 S_{N-1} 异步 清零(或置数)端计数终值为 S_N
- 2. 用集成 二进制 计数器扩展容量后, 终值 S_N (或 S_{N-1}) 是二进制代码;

用集成十进制计数器扩展容量后, 终值 S_N (或 S_{N-1})的代码由个位、十位、 百位的十进制数对应的 **BCD** 代码构成。