实验二 分组密码算法DES

一、实验目的

通过用DES算法对实际的数据进行加密和解密来深刻了解DES的运行原理。

二、实验原理

DES算法将明文分成64位大小的众多数据块,即分组长度为64位。同时用56位密钥对64位明文信息 加密,最终形成64位的密文。如果明文长度不足64位,即将其扩展为64位(如补零等方法)。

具体加密过程首先是将输入的数据进行初始置换(IP),即将明文M中数据的排列顺序按一定的规 则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记 为LO,右边记为RO,然后对RO实行在子密钥(由加密密钥产生)控制下的变换f,结果记为f(RO, K1) , 再与L0做逐位异或运算, 其结果记为R1, R0则作为下一轮的L1。如此循环16轮, 最后得到L16、 R16,再对L16、R16实行逆初始置换IP-1,即可得到加密数据。解密过程与此类似,不同之处仅在于 子密钥的使用顺序正好相反。

三、实验环境

运行Windows操作系统的PC机,具有VC等语言编译环境

四、实验内容和步骤

- 1. 算法分析:对课本中DES算法进行深入分析,对初始置换、E扩展置换,S盒代换、轮函数、密钥生成 等环节要有清晰的了解,并考虑其每一个环节的实现过程。
- 2. DES实现程序的总体设计:在第一步的基础上,对整个DES加密函数的实现进行总体设计,考虑数据 的存储格式,参数的传递格式,程序实现的总体层次等,画出程序实现的流程图。
- 3. 在总体设计完成后,开始具体的编码,在编码过程中,注意要尽量使用高效的编码方式。
- 4. 利用3中实现的程序,对DES的密文进行雪崩效应检验。即固定密钥,仅改变明文中的一位,统计密 文改变的位数;固定明文,仅改变密钥中的一位,统计密文改变的位数。

五、执行结果

程序代码在压缩包的源代码文件中,下面给出程序执行结果(对每一组样例进行验证)。

```
x:加密0,解密1 y:加解密分别10组,输入第y组
0x82, 0xDC, 0xBA, 0xFB, 0xDE, 0xAB, 0x66, 0x02
             x:加密0,解密1 y:加解密分别10组,输入第y组
青输入(x, y)
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
请输入(x,y)
             x:加密0,解密1 y:加解密分别10组,输入第y组
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
             x:加密0,解密1 y:加解密分别10组,输入第y组
请输入(x,y)
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 输入(x, y)
             x:加密0,解密1 y:加解密分别10组,输入第y组
0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
```

x:加密0,解密1 y:加解密分别10组,输入第y组 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

```
输入(x, y)
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
0 6
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
请输入(x, y)
              x:加密0,解密1
                              y:加解密分别10组,输入第y组
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
清输入(x,y)
0 8
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  输入(x, y)
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
                             y:加解密分别10组,输入第y组
请输入(x, y)
              x:加密0,解密1
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
 输入(x, y)
0x95, 0xF8, 0xA5, 0xE5, 0xDD, 0x31, 0xD9, 0x00
清输入(x, y)
              x:加密0,解密1 y:加解密分别10组,输入第y组
0xDD, 0x7F, 0x12, 0x1C, 0xA5, 0x01, 0x56, 0x19
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
  输入(x, y)
0x2E, 0x86, 0x53, 0x10, 0x4F, 0x38, 0x34, 0xEA
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
0x4B, 0xD3, 0x88, 0xFF, 0x6C, 0xD8, 0x1D, 0x4F
 输入(x, y)
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
0x20, 0xB9, 0xE7, 0x67, 0xB2, 0xFB, 0x14, 0x56
                             y:加解密分别10组,输入第y组
              x:加密0,解密1
  输入(x, y)
0x55, 0x57, 0x93, 0x80, 0xD7, 0x71, 0x38, 0xEF
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
0x6C, 0xC5, 0xDE, 0xFA, 0xAF, 0x04, 0x51, 0x2F
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
请输入(x, y)
0x0D, 0x9F, 0x27, 0x9B, 0xA5, 0xD8, 0x72, 0x60
              x:加密0,解密1
                             y:加解密分别10组,输入第y组
 输入(x, y)
0xD9, 0x03, 0x1B, 0x02, 0x71, 0xBD, 0x5A, 0x0A
```

六、验证雪崩效应

利用上面的程序对DES的密文进行雪崩效应验证。

- 固定每一组的密钥,利用随机数随机改变明文中的一位,共八次,统计每一次加密后密文改变的位数,计算平均值。
- 固定每一组的明文,利用随机数随机改变密钥中的一位,共八次,统计每一次加密后密文改变的位数,计算平均值。

下面是明文变化的程序执行结果。

```
明文第51位发生变化
0x82, 0xDC, 0xBA, 0xFB, 0xDE, 0xAB, 0x66, 0x2,
0xC9, 0xEC, 0x03, 0x0B, 0xB1, 0x65, 0x13, 0xBB
密文有36位发生变化
```

明文变化一位											
	第1组	第2组	第3组	第4组	第5组	第6组	第7组	第8组	第9组	第10组	
1	24	24	32	31	33	22	34	32	24	34	
2	33	32	22	37	27	28	35	34	40	28	
3	23	32	39	33	31	33	30	36	41	34	
4	37	36	33	32	37	35	34	34	31	37	
5	29	27	33	37	31	35	32	42	33	34	
6	24	29	35	40	26	30	32	33	24	32	
7	30	28	31	37	25	32	27	34	39	38	
8	28	34	30	37	30	32	35	30	31	27	
合计	228	242	255	284	240	247	259	275	263	264	
平均值	22.8	24.2	25.5	28.4	24	24.7	25.9	27.5	26.3	26.4	
总和	2557										
总平均	31.963										

下面是密钥变化的执行结果。

密钥第45位发生变化 0x82, 0xDC, 0xBA, 0xFB, 0xDE, 0xAB, 0x66, 0x2, 0x22, 0x4D, 0xD0, 0x08, 0x84, 0x9C, 0xF6, 0xA1 密文有30位发生变化

统计结果

密文变化一位											
	第1组	第2组	第3组	第4组	第5组	第6组	第7组	第8组	第9组	第10组	
1	34	27	35	35	38	40	37	29	26	33	
2	30	29	36	38	32	36	29	41	34	28	
3	34	31	33	31	35	32	36	42	37	30	
4	30	33	32	27	34	31	36	29	31	26	
5	28	27	32	27	28	29	35	32	28	39	
6	31	33	28	31	43	39	28	29	30	31	
7	29	30	26	32	29	31	34	32	32	34	
8	37	28	32	29	32	34	28	29	31	32	
合计	253	238	254	250	271	272	263	263	249	253	
平均值	25.3	23.8	25.4	25	27.1	27.2	26.3	26.3	24.9	25.3	
总和	2566										
总平均	32.075										

结论

可以看到在仅仅改变一位明文或密钥的情况下,得出的密文和正确的相差位数在32位左右,即占密文的一半。