Первый замечательный предел.

Формулировка:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. Заметим, что отношение $\frac{\sin x}{x}$ представляет собой четную функцию. Поэтому при анализе поведения этой функции можно ограничиться областью малых положительных значений аргумента x.

Пусть x — центральный угол окружности единичного радиуса, выраженный в радианах. Сравним между собой площади фигур, показанных на рисунке 1.

 ${f Puc.1}$. Равнобедренный треугольник AOB, круговой сектор AOB и прямоугольный треугольник AOC.

Очевидно, что для всех $0 < x < \pi/2$ выполняется неравенство

$$\sin x < x < \tan x$$
.

Представим tg x в виде отношения $\sin x$ к $\cos x$ и разделим обе части этого двойного неравенства на $\sin x$. Тогда неравенство

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

влечет за собой

$$\cos x < \frac{\sin x}{x} < 1.$$

Поскольку $\cos x \to 1$ при $x \to 0$, то и $\frac{\sin x}{x} \to 1$.