

ANALIZA SENTIMENTA

Završni projekat kursa Mašinsko učenje 2023. godine na Matematičkom fakultetu, Univerziteta u Beogradu

Pavle Savić 1075/2022

SKUP PODATAKA

- 50 000 komentara na filmove sa IMDB sajta
- zadaci: osnovna analitika nad sirovim podacima, analiza prirodnog jezika i binarna klasifikacija komentara na pozitivne i negativne

INICIJALNA ANALIZA SKUPA

Negativni
1294.06
973.00
945.87
8969.00
32.00

Statistika	Pozitivni	Negativni
Prosek	241.84	239.48
Medijana	179.00	182.00
Standardna devijacija	184.33	172.02
Maks vrednost	2515.00	1620.00
Min vrednost	10.00	6.00

Pozitivni komentari

Negativni komentari

WORD CLOUD – NAJZASTUPLJENIJE REČI

ANALIZA BIGRAMA I TRIGRAMA

VEKTORIZACIJA

Preprocesiran komentar

Tokenizacija

Tokeni

• Bag of Words

tf-idf

Vektorizacija

Vektor

```
def simple_tokenization(review):
    tokens = nltk.tokenize.word_tokenize(review)
    tokens_without_punctuation = [token for token in tokens if token not in string.punctuation]
    return tokens_without_punctuation
```

```
def review_preprocessor(text):
    text = text.lower()
    text = short_form_transform(text)
    text = strip_html(text)
    text = strip_url(text)
    text = full_stop_abbrev_elim(text)
    return text
```

```
def review_tokenizer(stemming, text):
    tokens = simple_tokenization(text)
    tokens = remove_stop_words(tokens)

stems = []

for token in tokens:

    token_pattern = re.compile(r'\b[^\\\d]+\b')
    if not token_pattern.match(token) or len(token) <= 2:
        continue

    stem = stemming.stem(token)
    stems.append(stem)
    return stems</pre>
```

$$TF(t,d) = rac{number\ of\ times\ t\ appears\ in\ d}{total\ number\ of\ terms\ in\ d}$$
 $IDF(t) = lograc{N}{1+df}$ $TF-IDF(t,d) = TF(t,d)*IDF(t)$

STEMOVANJE ILI LEMATIZACIJA

- Dosledna primena niza pravila kako bi se dobio stem - veštački koren reči
- Manja preciznost
- Značajno brže
- Stemovi mogu biti reči bez značenja (ograničena primena)

- Reči se pridružuje njen gramatički koren (lema)
- Veća preciznost
- Značajno sporije
- Leme zadržavaju značenje polazne reči

Porter Stemmer

generous ---> gener
fairly ---> fairli
sings ---> sing
generation ---> gener

Snowball Stemmer

generous ---> generous
fairly ---> fair
sings ---> sing
generation ---> generat

Lancaster Stemmer

generous ---> gen fairly ---> fair sings ---> sing generation ---> gen

Povećanje agresivnosti i brzine

PODELA SKUPA I PODEŠAVANJE HIPERPARAMETARA

MODELI – NAJBOLJE VREDNOSTI HIPERPARAMETARA

Logistička regresija

```
Cs = np.array([10**i for i in range(-5,5)])
penalties = np.array(['l1', 'l2', 'elasticnet'])
l1_ratios = np.array([0.1 * i for i in range(1, 10)])

Najbolja vrednost regularizacionog hiperparametra: 1.0
Najbolja norma regularizacije: elasticnet
Najbolji l1_ratio: 0.4
Najbolji skor: 0.8365671641791045
```

Kernelizovani SVM

```
Cs = np.array([10**i for i in range(-3, 3)])
# scale - 1 / (n_features * X.var())
# auto - 1/ n_features
gammas = ['scale', 'auto']
kernels = ['linear', 'rbf', 'sigmoid']
```

```
Najbolja vrednost regularizacionog hiperparametra: 1.0
Najbolji tip kernela: rbf
Najbolji koeficijent kernela: scale
Najbolji skor: 0.8417910447761194
```

K najbližih suseda

```
Ks = np.array([10*i for i in range(1, 10)])
dist_metrics = ['manhattan', 'euclidean']
```

```
Najbolji broj suseda : 50
Najbolja metrika: euclidean
Najbolji skor: 0.7756716417910448
```


METRIKE - LOGISTIČKA REGRESIJA

- Tačnost na train-val skupu: 0.8402089552238806
- Tačnost na test skupu: 0.835090909090909091

	precision	recall	f1-score	support
ø	0.84	0.82	0.83	8250
1	0.83	0.85	0.84	8250
accuracy			0.84	16500
macro avg	0.84	0.84	0.84	16500
weighted avg	0.84	0.84	0.84	16500

LOGISTIČKA REGRESIJA – ANALIZA KOEFICIJENATA

METRIKE – KERNELIZOVANI SVM

- Tačnost na train-val skupu: 0.9412238805970149
- Tačnost na test skupu: 0.84187878787879

	C		111
Over	ritt	เทต	ш
0 1 61		9	• • • •

	precision	recall	f1-score	support
0	0.85	0.83	0.84	8250
1	0.83	0.86	0.84	8250
accuracy			0.84	16500
macro avg	0.84	0.84	0.84	16500
weighted avg	0.84	0.84	0.84	16500

METRIKE – K NAJBLIŽIH SUSEDA

- Tačnost na train-val skupu: 0.7893432835820896
- Tačnost na test skupu: 0.78218181818182

	precision	recall	f1-score	support
0	0.80	0.75	0.77	8250
1	0.77	0.81	0.79	8250
accuracy			0.78	16500
macro avg	0.78	0.78	0.78	16500
weighted avg	0.78	0.78	0.78	16500

UPOREDNA ANALIZA

BERT TRANSFORMER

Konfiguracija modela

Layer (type)	Output Shape	Param #	Connected to
input_ids (InputLayer)	[(None, 512)]	0	[]
attention_mask (InputLayer)	[(None, 512)]	0	[]
bert (TFBertMainLayer)	TFBaseModelOutputWithPooli ngAndCrossAttentions(last_ hidden_state=(None, 512, 7 68), pooler_output=(None, 768) , past_key_values=None, hi dden_states=None, attentio ns=None, cross_attentions= None)	1083102	['input_ids[0][0]', 'attention_mask[0][0]']
dense (Dense)	(None, 1024)	787456	['bert[0][1]']
dense_1 (Dense)	(None, 1)	1025	['dense[0][0]']

Obučavanje modela

METRIKE - TRANSFORMER

• Tačnost na test skupu: 0.7169380177092259

	precision	recall	f1-score	support
0	0.69	0.78	0.73	1744
1	0.75	0.65	0.70	1757
accuracy			0.72	3501
macro avg	0.72	0.72	0.72	3501
weighted avg	0.72	0.72	0.72	3501

LITERATURA

- https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-stemming-in-natural-language-processing/
- https://www.datacamp.com/tutorial/stemming-lemmatization-python
- https://medium.com/@Mirza_Yusuf/using-a-bert-model-for-sentiment-analysis-6c6fcc106843
- https://www.geeksforgeeks.org/sentiment-classification-using-bert/