Predictive Analysis on Mean Commute Time Based on Census Tract Dataset

Yiyang Zhou & Haoyuan Xia

AAE 722 Nov.17 2022

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- **5** Evaluation
- **6** Conclusion

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- 5 Evaluation
- **6** Conclusion

Introduction

Labor Force and Regional Development

- Labor force plays an important role in regional development (Florida et al., 2008; Shapiro, 2006; Jones, 2002; Simon, 1998; Rauch, 1993).
- Ambitious cities should try to attract labor force to boost regional development (especially the development of certain industries).
- More importantly, cities need to make labor forces stay.

Commute Time, Job Satisfaction, and Turnover Rate

- Long commute time significantly increases employees' perceived stress (Gottholmseder et al., 2009), decreases job satisfaction (Amponsah-Tawiah et al., 2016), and does harm to some employees' psychological health (Roberts et al., 2011).
- Low job satisfaction leads to high turnover rate (Porter et al., 1974).

Urban Planning

 Focus more on urban planning to avoid traffic digestion and decrease commute time.

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- 5 Evaluation
- 6 Conclusion

ACS Census Tract Data

American Community Survey

- Originally from 2015 American Community Survey 5-year estimates
- Randomly choose 35,000 Census Tracts from the full dataset
- Census Tract: a small, relatively permanent statistical subdivisions of a county
- Attributes: Demographics, Occupation, Employment

Data Cleaning Process

Proportion of Missing Values

Figure 1: Proportion of Missing Values

Data Cleaning Process (Cont'd)

Drop Problematic Observations

Operation	N Dropped	N Remaining
Raw Census Tract Data	0	35,000
Drop Missing Values	623	34,377
Drop Duplicated Census Tract Number	1,158	33,219

Table 1: Data Cleaning Process

Drop Unused Variables

 IncomePerCapErr: a variable measuring margin of error when estimating Income Per Capita

Split Sample

• Train: 75%; Test: 25%

Descriptive Statistics

Variable	N	Mean	SD	Min	Max
TotalPop	33219	4401.127	30104105.335	66	39454
Men	33219	2162.097	8370440.716	30	27962
Women	33219	2239.03	7670967.316	26	18182
Hispanic	33219	16.723	1901.627	0	100
White	33219	62.51	3260.629	0	100
Black	33219	12.947	1738.043	0	100
Native	33219	0.747	363.031	0	100
Asian	33219	4.568	432.139	0	91.3
Pacific	33219	0.141	35.3	0	64
Citizen	33219	3092.963	13803746.041	53	28932
Income	33219	57655.036	4797093957.032	2611	24587
Poverty	33219	16.677	700.895	0	98.6
ChildPoverty	33219	22.205	1288.455	0	100
Professional	33219	34.909	1203.893	0	100
Service	33219	18.955	375.188	0	69
Office	33219	23.91	288.143	0	74.4
Construction	33219	9.34	171.673	0	66.8
Production	33219	12.887	255.029	0	59.6
WorkAtHome	33219	4.364	99.158	0	90.6
MeanCommute	33219	25.817	396.779	5.3	70.5
Employed	33219	2024.512	7166949.803	9	18538
PrivateWork	33219	78.944	1215.477	14.1	100
PublicWork	33219	14.63	325.335	0	85.7
SelfEmployed	33219	6.255	75.016	0	44.2
Unemployment	33219	8.966	182.995	0	68.8

Table 2: Descriptive Statistics

Distribution of Mean Commute Time

Figure 2: Distribution of Mean Commute Time

Mean Commute Time by State

Figure 3: Mean Commute Time by State

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- 5 Evaluation
- **6** Conclusion

Linear Regression Model

Figure 4: Linear Regression Diagram¹

¹Source: DataQuest

OLS with Best Subset Selection

Forced Out Variables (Avoid Perfect Multicollinearity)

• Men, White, IncomePerCap, Professional, PublicWork

Cross Validation

• 5 × 5 folds

Search Method

Exhaustive search

Ramdom Forest

Figure 5: Random Forest Diagram²

Ramdom Forest

Tuning Parameters

- Minimal Node Size: From 4 to 10
- Number of Predictors for Each Split: From 4 to 15

Split Rule

Variance

Number of Trees

• 1000

Neural Network

Figure 6: Neural Network Diagram³

³Source: Baeldung

Neural Network

Tuning Parameter

• Number of Hidden Layers: From 1 to 5

Other Parameters

# of Hidden Layers	# of Neurons	Dropout Rate	Activation Function
1	32	0.05	ReLU
2	32, 16	0.05	ReLU
3	32, 16, 8	0.05	ReLU
4	32, 16, 8, 4	0.05	ReLU
5	32, 16, 8, 4, 2	0.05	ReLU

Table 3: Other Parameters in the Neural Network

Data is properly scaled for Neural Network

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- 5 Evaluation
- **6** Conclusion

OLS: Best Subset

Figure 7: Best Subset of Predictors

OLS: Final Model

OLS: Prediction on Test Set

Figure 8: OLS Prediction on Test Set (RMSE = 6.168)

Random Forest: Optimal Parameters

Figure 9: Tuning Parameters of the Random Forest Model

Parameter	Randomly Selected Predictors	Minimal Node Size	Split Rule
Best Tune	11	7	Variance

Table 4: Best Tuning Parameters

Random Forest: Number of Trees

Figure 10: Number of Trees and RMSE

Random Forest: Importance of Predictors

Figure 11: Importance of Predictors

Random Forest: Prediction on Test Set

Figure 12: Random Forest Prediction on Test Set (RMSE = 5.456)

Neural Network Model with Optimal Layer: Selection

Figure 13: RMSE of the Neural Network Model on Training Set with Each Layer

Neural Network Model with Optimal Layer: Structure

Figure 14: Structure of the Neural Network Model with Optimal Layer

Neural Network: Training Process

Figure 15: Training Process and Prediction Error of the Neural Network

Neural Network: Prediction on Test Set

Figure 16: Neural Network Prediction on Test Set (RMSE = 5.421)

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- **5** Evaluation
- **6** Conclusion

Comparison Between Three Models

Figure 17: Prediction of Three Models on Test Set

Model	Prediction Error (RMSE)
Best Subset OLS	6.168
Ramdom Forest	5.456
Neural Network	5.421

Table 5: Comparison Between Three Models

Prediction v.s. Causual Inference

Estimate the Effect of Occupation Structure on Commute Time

- Machine Learning Results Above Imply No Causal Relationship
 - ML methods focus on prediction but not the parameters
 - Omitted Variables: e.g. Infrastructure
 - Reverse Causality: commute time could affect occupation structure
- Possible Ways of Causal Inference
 - Panel Data & More Variables
 - Exogenous Shock: Talent Policy (DID)
 - Alternative: Implement a Sorting Model (Kuminoff et al., 2013)

Outline

- 1 Introduction
- 2 Data
- 3 Model
- 4 Results
- 5 Evaluation
- **6** Conclusion

Conclusion

Variable Importance

• Occupation Structure, Race and Income are the three most important attributes.

Best Model

 Random Forest and Neural Network performed similarly in predicting mean commute time. They both improved RMSE by nearly 1 compared to the baseline model.

Machine Learning Methods Imply No Causal Inference

Machine Learning focuses on prediction but not estimates of parameters.
 More variables and information are needed to identify the causal relationship.

References I

- Amponsah-Tawiah, K., Annor, F., and Arthur, B. G. (2016). Linking commuting stress to job satisfaction and turnover intention: The mediating role of burnout. *Journal of Workplace Behavioral Health*, 31(2):104–123.
- Florida, R., Mellander, C., and Stolarick, K. (2008). Inside the black box of regional development—human capital, the creative class and tolerance. *Journal of Economic Geography*, 8(5):615–649.
- Gottholmseder, G., Nowotny, K., Pruckner, G. J., and Theurl, E. (2009). Stress perception and commuting. *Health Economics*, 18(5):559–576.
- Jones, C. I. (2002). Sources of u.s. economic growth in a world of ideas. *American Economic Review*, 92(1):220–239.
- Kuminoff, N. V., Smith, V. K., and Timmins, C. (2013). The new economics of equilibrium sorting and policy evaluation using housing markets. *Journal of Economic Literature*, 51(4):1007–62.
- Porter, L. W., Steers, R. M., Mowday, R. T., and Boulian, P. V. (1974). Organizational commitment, job satisfaction, and turnover among psychiatric technicians. *Journal of Applied Psychology*, 59(5):603.

References II

- Rauch, J. E. (1993). Productivity gains from geographic concentration of human capital: Evidence from the cities. *Journal of Urban Economics*, 34(3):380–400.
- Roberts, J., Hodgson, R., and Dolan, P. (2011). "it's driving her mad": Gender differences in the effects of commuting on psychological health. *Journal of Health Economics*, 30(5):1064–1076.
- Shapiro, J. M. (2006). Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital. *The Review of Economics and Statistics*, 88(2):324–335.
- Simon, C. J. (1998). Human capital and metropolitan employment growth. *Journal of Urban Economics*, 43(2):223–243.