$\begin{array}{c} {\rm Math}\ 440-{\rm Real}\ {\rm Analysis}\ {\rm II} \\ {\rm Exam}\ 2 \end{array}$

Amandeep Gill

April 21, 2015

Problem 1

(a) The sequence $\{\cos(nx)\}_{n=0}^{\infty}$ is orthogonal on $[-\pi,\pi]$.

Proof: Let $m, n \in \mathbb{N} \cup \{0\}$.

case $m \neq n$:

$$\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \int_{-\pi}^{\pi} \frac{1}{2} (\cos(mx - nx) + \cos(mx + nx)) dx
= \frac{1}{2} \left(\frac{1}{m-n} \sin((m-n)x) + \frac{1}{m+n} \sin((m+n)x) \right)_{-\pi}^{\pi}
= 0$$

case $m = n \neq 0$:

$$\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \int_{-\pi}^{\pi} \cos^{2}(mx) dx$$
$$= \left(\frac{\sin(2mx)}{m} + \pi\right)_{-\pi}^{\pi}$$
$$= \pi \neq 0$$

case m = n = 0:

Since cos(0x) = 1, $\langle 1, 1 \rangle = 2\pi \neq 0$

Therefore the sequence $\{\cos(nx)\}_{n=0}^{\infty}$ is orthogonal on $[-\pi,\pi]$.

(b) Find the Fourier series of f(x) = |x| on $[-\pi, \pi]$ with respect to the sequence $\{\cos(nx)\}_{n=0}^{\infty}$.

Solution:
$$f(x) \sim \sum_{n=0}^{\infty} c_n \cos(nx)$$

 $c_o = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{\pi}{2}$
 $c_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi n^2} (\pi n \sin(\pi n) + \cos(\pi n) - 1)$
 $c_n = \begin{cases} 0 & \text{if } n = \text{even} \\ -\frac{4}{\pi n^2} & \text{if } n = \text{odd} \end{cases}$

Therefore:

$$\sum_{n=0}^{\infty} c_n \cos(nx) = \frac{\pi}{2} - \frac{4}{\pi} \cos(x) - \frac{4}{9\pi} \cos(3x) - \frac{4}{25\pi} \cos(5x) - \cdots$$

$$= \frac{\pi}{2} - \frac{4}{\pi} \left[\cos(x) + \frac{1}{9} \cos(3x) + \frac{1}{25} \cos(5x) + \cdots \right]$$

$$= \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos((2n+1)x)$$

Problem 1 continued...

(c) Graph the first four n^{th} partial sums from (b) with f(x).

Problem 2 Let $K \neq \emptyset$, and $\mathcal{F} = \{f : K \to \mathbb{R} : \exists M \text{ such that } |f(x)| \leq M, \forall x \in K\}$. For each $f \in \mathcal{F}$, define $||f|| = \sup_{x \in K} |f(x)|$.

- (a) \mathcal{F} is a vector space.
- **Proof:** Let $f, g \in \mathcal{F}$ such that $|f(x)| \leq M_1$ and $|g(x)| \leq M_2$ for all $x \in K$. Then $|f(x) + g(x)| \leq |f(x)| + |g(x)| \leq M_1 + M_2$ for al $x \in K$, thus $(f+g) \in \mathcal{F}$ and \mathcal{F} is closed under vector addition.

Let $f \in \mathcal{F}$ such that $|f(x)| \leq M$ and $c \in \mathbb{R}$. From this, we have $|c \cdot f(x)| = |c| \cdot |f(x)| \leq |c| \cdot M$ for all $x \in K$, which means that $c \cdot f \in \mathcal{F}$ for all $c \in \mathbb{R}$ and \mathcal{F} is closed under scalar multiplication.

Since the eight vector space axioms are assumed trivially, \mathcal{F} is a vector space.

(b) $(\mathcal{F}, ||\cdot||)$ is a normed vector space.

Proof: Let $f, g \in \mathcal{F}$ and $c \in \mathbb{R}$

- (a) $||f|| \ge 0$ since for all $x \in K$, $|f(x)| \ge 0$, and thus $\sup_{x \in K} |f(x)| \ge 0$
- (b) f(x) = 0 for all $x \in K$ implies that $\sup_{x \in K} |0| = 0$, and $\sup_{x \in K} |f(x)| = 0$ means that $|f(x)| \le 0$, and thus f(x) = 0. Therefore ||f|| = 0 if and only if f(x) = 0 for all $x \in K$.
- (c) $||c \cdot f|| = \sup_{x \in K} |c \cdot f(x)|$. Because $|c \cdot f(x)| = |c| \cdot |f(x)|$ is bounded, $\sup_{x \in K} |c \cdot f(x)| = |c| \cdot \sup_{x \in K} |f(x)| = |c| \cdot ||f||.$
- (d) For all $x \in K$, $|f(x) + g(x)| \leq |f(x)| + |g(x)| \leq \sup_{x \in K} |f(x)| + \sup_{x \in K} |g(x)| = ||f(x)|| + ||g(x)||$. Thus $||f + g|| = \sup_{x \in K} (f(x) + g(x)) \leq ||f|| + ||g||$.

Therefore $(\mathcal{F}, ||\cdot||)$ is a normed vector space.

Problem 3 Every finite or countable infinite subset E of \mathbb{R} is Lebesgue measurable with $\lambda(E)=0$

Proof: Let $n \in \mathbb{N}$, $a, b \in \mathbb{R}$, and $E = \{x_1, x_2, \dots, x_n\}$ be ordered such that $a < x_i < x_{i+1} < b$ for all i < n. E is a finite, and therefore compact subset of (a, b), so $m(E) = m(a, b) - m((a, b) \setminus E)$. Since $(a, b) \setminus E = (a, x_1) \cup (x_1, x_2) \cup \cdots \cup (x_n, b)$ is a union of disjoint open intervals, $m((a, b) \setminus E) = (x_1 - a) + (x_2 - x_1) + \cdots + (b - x_n) = b - a = m(a, b)$. Thus m(E) = (a - b) - (a - b) = 0, and because n was arbitrary m(E) = 0 for all countable subsets of \mathbb{R} .

Problem 4 Define $f:[0,1]\to\mathbb{R}$ such that

$$f(x) = \begin{cases} 2x^2 & \text{if } x \in [0,1] \backslash \mathbb{Q} \\ 1 & \text{if } x \in [0,1] \cap \mathbb{Q} \end{cases}$$

f is a measurable function

Proof: By the definition, f is a measurable function if and only if $E = \{x \in [0,1]: f(x) \ge s\}$ is has a measure for all $s \in \mathbb{R}$.

case $s \leq 0$:

E = [0, 1] and is therefore measurable.

case $s \geqslant 2$:

 $E = \emptyset$ and has measure 0 by definition.

case $0 < s \le 1$:

 $E = \left(\left[0, \sqrt{\frac{s}{2}}\right] \cap \mathbb{Q}\right) \cup \left[\sqrt{\frac{s}{2}}, 1\right]$. Because $\left[0, \sqrt{\frac{s}{2}}\right] \cap \mathbb{Q}$ is a countable set, it is measurable by previous work. Thus E is a union of measurable sets and hence has measure by Theorem 10.4.1.

case 1 < s < 2:

 $E = \left[\sqrt{\frac{s}{2}}, 1\right] \setminus \mathbb{Q}$. By Corollary 10.4.3 E is measurable because the complimentary set $\left[\sqrt{\frac{s}{2}}, 1\right] \cap \mathbb{Q}$ has measure 0.

Thus f is a measurable function.

Problem 5 Let $\{A_k\}$ be a countable collection of measurable sets. If $\lambda(A_i \cap A_j) = 0$ for all $i \neq j$, then $\lambda\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \lambda(A_k)$.

Proof: Let
$$n \in \mathbb{N}$$
 and $U_n = \lambda \left(\bigcup_{k=1}^n A_k\right)$, then

$$U_1 = \lambda(A_1)$$

 $U_2 = \lambda(A_1 \cup A_2)$. By Theorem 10.4.1, $\lambda(A_1) + \lambda(A_2) = \lambda(A_1 \cup A_2) + \lambda(A_1 \cap A_2) = \lambda(A_1 \cup A_2)$, since $\lambda(A_1 \cap A_2) = 0$ by assumption. So $U_2 = \lambda(A_1) + \lambda(A_2)$

 $U_3 = \lambda(A_1 \cup A_2 \cup A_3)$. By substitution, $\lambda(A_1) + \lambda(A_2) + \lambda(A_3) = \lambda(A_1 \cup A_2) + \lambda(A_3) = \lambda(A_1 \cup A_2 \cup A_3) + \lambda((A_1 \cap A_3) \cup (A_2 \cap A_3))$. Since, definition of Lebesgue measure and the finite extension of Theorem 10.4.4(a), $\lambda((A_1 \cap A_3) \cup (A_2 \cap A_3)) \leq \lambda(A_1 \cap A_3) + \lambda(A_2 \cap A_3) = 0$. Thus, $U_3 = \lambda(A_1) + \lambda(A_2) + \lambda(A_3)$.

Assume $U_m = \sum_{k=1}^m \lambda(A_k)$ for 1 < m < n. Then,

$$U_{m+1} = U_m + \lambda(A_{m+1})$$

$$= \lambda(A_1 \cup A_2 \cup \dots \cup A_m) + \lambda(A_{m+1})$$

$$= \lambda(A_1 \cup A_2 \cup \dots \cup A_{m+1}) + \lambda((A_1 \cup A_2 \cup \dots \cup A_m) \cap A_{m+1})$$

$$= \lambda(A_1 \cup A_2 \cup \dots \cup A_{m+1}) \text{ by similar inequality as step } 3$$

Inductively then, $U_n = \sum_{k=1}^n \lambda(A_k)$, and because n was arbitrary this holds true for all $n \in \mathbb{N}$, so $\lambda\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \lambda(A_k)$.

6

- **Problem 6** Let $\epsilon > 0$ be given, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions defined on [a,b] that converges point-wise to $f:[a,b] \to \mathbb{R}$. Define $E_k = \{x: |f_n(x) f(x)| < \epsilon \text{ for all } n \geqslant k\}.$
 - (a) E_k is measurable for all $k \in N$

Proof: Let $\{g_k\}_{k\in\mathbb{N}}$ be a sequence of functions where $g_k(x) = \sup_{n\geqslant k} |f_n(x)-f(x)|$. Since each f_n are real-valued functions, for each $x\in[a,b]$ the sequence $\{f_n(x)\}_{n=k}^{\infty}$ is a sequence of real values that converges to f(x). Thus the sequence is bounded, and therefore $\{|f_n(x)-f(x)|\}$ has a supremum and by Theorem 10.5.9 $g_k(x)$ is a measurable function. Hence the set $\{x:g_k(x)\leqslant\epsilon\}$ is measurable by Theorem 10.5.3, and because $|f_n(x)-f(x)|\leqslant g_k(x)$ for all $n\geqslant k$, $\{x:|f_n(x)-f(x)|\leqslant\epsilon$ for all $n\geqslant k\}$ has a measure. This is equivalent to E_k being measurable.

(b) $\lim_{k\to\infty} \lambda(E_k^c)$ where $E_k^c = [a,b] \backslash E_k$.

Proof: If $|f_n(x) - f(x)| < \epsilon$ for all $n \ge k$, then $|f_n(x) - f(x)| < \epsilon$ for all $n \ge k+1$ as well, so $E_k \subset E_{k+1}$ and $E_k^c \supset E_{k+1}^c$. Thus $\bigcap_{k \in \mathbb{N}} E_k^c = [a,b] \setminus (\bigcup_{k \in \mathbb{N}} E_k)$. Given that $\{f_n\}_{n=1}^{\infty}$ is pointwise convergent for all $x \in [a,b]$, $\bigcup_{k \in \mathbb{N}} E_k = [a,b]$ and $\bigcap_{k \in \mathbb{N}} E_k^c = \emptyset$. Therefore $\lim_{k \to \infty} \lambda(E_k^c) = \lambda(\emptyset) = 0$.