



## IUT GEII – Outils Mathématiques et Logiciels IV (OML4)

Introduction aux séries entières

Andrés F. López-Lopera Université Polytechnique Hauts-de-France (UPHF)

#### **Thèmes**

- 1. Séries entières
  - Séries entières réelles
  - Domaine de convergence
  - Propriétés des séries entières

2. Développement en série entière



1

### Séries entières

#### Séries entières

· Les séries entières introduisent une variable dans les séries :

$$\sum_{n=0}^{+\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

- · Pour une valeur donnée de x, une série entière devient une série numérique.
- $\cdot$  En un certain sens, les séries numériques peuvent être vues comme un cas particulier des séries entières (avec x=1 par exemple).



#### Séries entières

#### **Définition**

· On appelle série entière, toute série dont le terme général est de la forme

$$u_n(x) = a_n x^n$$

où  $(a_n)$  est une suite numérique et la variable  $x \in \mathbb{R}$  (ou  $x \in \mathbb{C}$ ).

· On note:

$$S(x) = \sum_{n=0}^{+\infty} (a_n x^n)$$
  
=  $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$ 

· On dit que S est une série entière réelle si la variable  $x \in \mathbb{R}$ . Si  $x \in \mathbb{C}$ , alors S est une série entière complexe.

Remarque. Les séries entières généralisent les polynômes.



### Séries entières réelles

**Exemple.** Si  $a_n = 1$  pour tout  $n \in \mathbb{N}$ , alors  $S(x) = \sum_{n=0}^{+\infty} x^n$  est une série géométrique.

- · S(x) est convergente si |x| < 1 et divergente si  $|x| \ge 1$ .
- · Si |x| < 1, alors

$$S(x)=\frac{1}{1-x}.$$



4

#### Lemme de convergence d'Abel

Si une série entière converge en  $x_0$ , alors elle converge pour tout x vérifiant  $|x| < |x_0|$ .

· À toute série entière de variable réelle

$$\sum_{n=0}^{+\infty} a_n x^n$$

on peut associer un unique nombre  $R \ge o$  (éventuellement infini) tel que :

- La série est absolument convergente pour tout x vérifiant |x| < R.
- La série est divergente pour tout x vérifiant |x| > R.
- · Le nombre R est appelé rayon de convergence de la série entière.



- · Une série entière dont la convergence est garantie pour tout x a un rayon de convergence infini :  $R = +\infty$ .
- $\cdot$  Si elle diverge pour toute valeur de x, son rayon de convergence est nul : R = o.
- · Dans tous les autres cas, il existe un réel positif R tel que :
  - Si |x| < R, la série converge.
  - Si |x| > R, la série diverge.

**Remarque.** Aux bornes, la série entière peut être convergente ou divergente. Il est alors nécessaire d'en faire l'étude pour |x| = R.



Interprétation graphique du rayon de convergence sur  ${\mathbb R}$ 



 $\cdot$  On appelle intervalle de convergence à l'intervalle ouvert ] - R; R[. Interprétation graphique du rayon de convergence dans  $\mathbb C$ 



· On appelle disque de convergence au disque de centre O et de rayon R.



#### Critère de d'Alembert

· Considérons la série entière  $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ . Si

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\ell,$$

alors le rayon de convergence est donné par :  $R = \frac{1}{\ell}$ .

**Remarque:** Si  $\ell = 0$ , alors  $R = +\infty$ .

### Critère de Cauchy

· Considérons la série entière  $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ . Si

$$\lim_{n\to+\infty}\sqrt[n]{|a_n|}=\ell,$$

alors le rayon de convergence est donné par :  $R = \frac{1}{\ell}$ .



Exercice. Déterminer le rayon de convergence R de la série suivante :

$$S(x) = \sum_{n=0}^{+\infty} \left( \frac{x^n}{(n+1)3^n} \right)$$

Étudier la série aux bornes de son rayon de convergence.



9

Exercice. Déterminer le rayon de convergence R de la série suivante :

$$S(x) = \sum_{n=0}^{+\infty} \left( \frac{x^n}{(n+1)3^n} \right)$$

Étudier la série aux bornes de son rayon de convergence.

#### Solution.

Soit 
$$a_n = \frac{1}{(n+1)3^n}$$
.

· En utilisant le critère de d'Alembert, on a

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{(n+1+1)3^{n+1}} \cdot (n+1)3^n = \frac{n+1}{3(n+2)},$$
d'où  $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3} = \ell$ . Alors,  $R = \frac{1}{\ell} = 3$ .



9

#### Solution (suite)

· Pour x = R = 3, on obtient :

$$S(3) = \sum_{n=0}^{+\infty} \frac{3^n}{(n+1)3^n} = \sum_{n=0}^{+\infty} \frac{1}{n+1}.$$

· D'après le critère d'équivalence :

$$\lim_{n\to+\infty}\frac{1}{n+1}\sim\lim_{n\to+\infty}\frac{1}{n},$$

et comme la série harmonique  $\sum_{n=1}^{+\infty} \frac{1}{n}$  est divergente (selon Riemann), on en déduit que  $\sum_{n=0}^{+\infty} \frac{1}{n+1}$  diverge également.

#### Solution (suite)

· Pour x = -R = -3, on obtient

$$S(-3) = \sum_{n=0}^{+\infty} \frac{(-3)^n}{(n+1)3^n} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}.$$

· D'après le critère de Leibniz pour les séries alternées, on a :

$$\lim_{n\to+\infty}\left|\frac{(-1)^n}{n+1}\right|=\lim_{n\to+\infty}\frac{1}{n+1}=0.$$

Lorsque  $\left|\frac{(-1)^n}{n+1}\right| = \frac{1}{n+1}$  est une suite décroissante, alors  $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$  converge.

- · Lorsque la série  $\sum_{n=0}^{+\infty} \frac{1}{n+1}$  ne converge pas, alors  $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$  ne converge pas absolument.
- · On peut donc conclure que la série entière  $\sum_{n=0}^{+\infty} \frac{x^n}{(n+1)3^n}$  converge pour

$$X \in [-3; 3[$$
CERAMATHS Université Polytechnique

**Exercice.** Déterminer le rayon de convergence *R* des séries entières suivantes :

$$1. \sum_{n=1}^{+\infty} \frac{X^n}{n}$$

2. 
$$\sum_{n=1}^{+\infty} \frac{(-1)^n X^n}{2^n}$$

$$3. \sum_{n=1}^{+\infty} \frac{x^n}{n^n}$$

· Soit  $f(x) = \sum_{n=0}^{+\infty} a_n x^n$  une série entière de la variable réelle x, de rayon de convergence R > 0.

#### Dérivation.

· Si f(x) est dérivable sur l'intervalle ] — R; R[, alors la série entière

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n,$$

a le même rayon de converge R.

### Intégration.

 $\cdot$  Si f(x) possède une primitive s'annulant en o obtenue comme somme des primitives, alors la série entière

$$F(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1},$$

a le même rayon de converge R.



**Exemple.** Considérons  $f(x) = \sum_{n=0}^{+\infty} x^n$ .

 $\cdot$  On sait que f est une série géométrique de rayon de convergence R= 1, et que la somme de la série est donnée par

$$f(x) = \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$
, pour  $|x| < 1$ .

· Alors, la dérivée de f(x) donnée par :

$$f'(x) = \sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=0}^{+\infty} (n+1)x^n,$$

a également pour rayon de convergence R = 1 avec la somme :

$$f'(x) = \frac{d}{dx} \left[ \frac{1}{1-x} \right] = \frac{1}{(1-x)^2},$$

d'où on en déduit que  $\sum_{n=0}^{+\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$ 



#### Exemple (suite)

 $\cdot$  La primitive de f est

$$F(x) = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

a également pour rayon de convergence R = 1 avec la somme :

$$F(x) = \int \frac{dx}{1-x} = -\ln(1-x),$$

d'où on déduit que  $\sum_{n=0}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$ .

**Exercice.** Calculer la somme de la série entière  $\sum_{n=0}^{+\infty} (n+3)x^n$ .

**Exercice.** Calculer la somme de la série entière  $\sum_{n=0}^{+\infty} (n+3)x^n$ .

#### Solution.

· On peut réécrire la série entière sous la forme suivante :

$$\sum_{n=0}^{+\infty} (n+3)x^n = \sum_{n=0}^{+\infty} (n+1)x^n + 2\sum_{n=0}^{+\infty} x^n$$
$$= \frac{1}{(1-x)^2} + 2\frac{1}{1-x}$$
$$= \frac{3-2x}{(1-x)^2}.$$

 $\cdot$  On dit qu'une fonction f est développable en série entière s'il existe une série entière de la forme

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n,$$

de rayon de convergence R > 0, telle que cette série converge pour tout |x| < R.

· Si cette série entière existe, alors elle est unique et les termes  $a_n$  sont donnés par :

$$a_n = \frac{1}{n!} f^{(n)}(o)$$
, pour tout  $n \ge o$ ,

où  $f^{(n)}(x) = \frac{d^n}{dx^n} f(x)$  désigne la dérivée d'ordre n de f.

**Remarque.** On observe que  $a_0 = f(0)$  et  $a_1 = f'(0)$ , ce qui montre que les termes de la série sont reliés aux dérivées successives de la fonction en o.



### **Exemple.** Considérons $f(x) = e^x$ .

 $\cdot$  On sait que  $f^{(n)}(x)=e^x$ . En supposant que f est développable, pour tout  $n\geq 0$ , on a

$$a_n = \frac{1}{n!}f^{(n)}(0) = \frac{1}{n!}.$$

· La série  $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$  a un rayon  $R=+\infty$  (grâce au critère de d'Alembert). Alors, on peut en réduire :

$$f(x) = e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
, pour tout x.

| f(x)             | Série entière                                                                      | Premiers termes                                                                             | Rayon R       |
|------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|
| e <sup>x</sup>   | $\sum_{n=0}^{+\infty} \frac{1}{n!} x^n$                                            | $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$                                          | $R = +\infty$ |
| $\frac{1}{1-X}$  | $\sum_{n=0}^{+\infty} x^n$                                                         | $1+x+x^2+x^3+\cdots$                                                                        | R = 1         |
| ln(1+x)          | $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$                                    | $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$                                | R = 1         |
| cos(X)           | $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$                                 | $1 - \frac{2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $x^3  x^5  x^7$               | $R = +\infty$ |
| sin(x)           | $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$                             | $x - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$                                   | $R=+\infty$   |
| $(1+x)^{\alpha}$ | $\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} x^n$ | $1+\alpha X+\frac{\alpha(\alpha-1)}{2!}X^2+\frac{\alpha(\alpha-1)(\alpha-2)}{3!}X^3+\cdots$ | R = 1         |

**Exemple.** Pour  $f(x) = \frac{x}{1 + y}$ , on a :

$$\frac{x}{1+x} = x \frac{1}{1-(-x)} = x \sum_{n=0}^{+\infty} (-x)^n = \sum_{n=0}^{+\infty} (-1)^n x^{n+1}.$$

· On peut obtenir d'autres exemples par changement de variable.

**Exercice.** Développer en série entière la fonction  $f(x) = e^{-x^2}$ .



## **Équivalents en** O

· Les premiers termes, voire même le premier terme, du développement en série entière permettent de fournir un équivalent de la fonction en o.

- $e^x = \sum_{n=0}^{+\infty} \frac{1}{n!} x^n$  permet de dire que  $e^x \sim 1 + x$ .
- $\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$  permet de dire que  $\ln(1+x) \sim x$ , et d'en déduire par exemple que

$$\ln \left( 1 - \frac{1}{n} \right) \underset{+\infty}{\sim} - \frac{1}{n},$$
 
$$\ln \left( 1 + \frac{2}{n^2} \right) \underset{+\infty}{\sim} \frac{2}{n^2}.$$

# Résolution d'équations différentielles

· Considérons l'équation différentielle donnée par :

$$y'(x) - y(x) = x$$
, avec  $y(0) = 0$ .

· On peut supposer que la solution est une série entière de la forme

$$y(x) = \sum_{n=0}^{+\infty} a_n x^n,$$

avec  $a_0 = o$  (condition initiale).

· La dérivée de y est donnée par :

$$y'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n,$$

· En substituant dans l'équation différentielle, on obtient :

$$y'(x) - y(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{+\infty} a_nx^n = \sum_{n=0}^{+\infty} [(n+1)a_{n+1} - a_n]x^n.$$



# Résolution d'équations différentielles

· D'après l'énoncé on a y' - y = x, alors

$$\sum_{n=0}^{+\infty}[(n+1)a_{n+1}-a_n]x^n=x,$$

c'est à dire:

$$[a_1-a_0]+[2a_2-a_1]x+[3a_3-a_2]x^2+\cdots+[na_n-a_{n-1}]x^{n-1}+[(n+1)a_{n+1}-a_n]x^n+\cdots=x,$$

d'où on obtient le système d'équations :

$$\begin{cases} a_1 - a_0 = 0 \\ 2a_2 - a_1 = 1 \\ 3a_3 - a_2 = 0 \\ \vdots \\ na_n - a_{n-1} = 0 \\ \vdots \end{cases}$$

· Il est possible de résoudre ce système de façon récursive car  $a_0 = o$ .



# Résolution d'équations différentielles

$$\begin{cases} a_1 = a_0 = 0 \\ a_2 = \frac{1+a_1}{2} = \frac{1}{2} \\ a_3 = \frac{a_2}{3} = \frac{1}{3 \cdot 2} \\ \vdots \\ a_n = \frac{a_{n-1}}{n} = \frac{1}{n!} \\ \vdots \end{cases}$$

Finalement, on en déduit que  $y(x) = \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=2}^{+\infty} \frac{x^n}{n!}$ .

**Remarque.** On remarque que  $y(x) = \sum_{n=2}^{+\infty} \frac{x^n}{n!}$  est le développement en série entière de  $f(x) = e^x$  auquel on a retiré les deux premiers termes 1 + x. Alors, on peut réécrire la solution sous la forme :

$$y(x)=e^x-1-x.$$

